RESEARCH ARTICLE

ROLE OF IMAGING IN DIAGNOSIS OF INTRACRANIAL INFECTIONS- LITERATURE REVIEW

Dr. Mousumy Abbas and Dr. Tu Meng Qi

Abstract

Neuroimaging performs an essential position in the analysis and diagnostic choice making in infectious illnesses of the world. The overview summarizes imaging findings and latest advances in the diagnosis of pyogenic brain abscess, ventriculitis, viral diseases which includes distinguished and emerging viruses, and opportunistic infections. For each circumstance, the ensuing therapeutic steps are presented. In instances of typical meningitis, cranial computed tomography (CT) seems to be enough for clinical control to exclude acute cerebral edema, hydrocephalus, and pathology involving the base of the skull. Magnetic resonance imaging (MRI) is advanced in depicting complications like subdural and epidural empyema and vasculitic complications considerably on FLAIR (fluid-attenuated inversion healing)-weighted pics. The more recent technique of diffusion-weighted imaging (DWI) suggests early parenchymal headaches of meningitis in advance and with greater readability and is of assist in differentiation of pyogenic abscess (PA) from ring enhancing lesions of other etiology. Proton magnetic resonance spectroscopy (PMRS) seems to produce unique top patterns in instances of abscess. The presence of lactate cytosolic amino acids and absence of choline appears to signify PA. Additionally in instances of suspected opportunistic infection because of toxoplasma DWI can be of very helpful inside the differentiation from lymphoma, showing no limit of water diffusion. In patients with herpes simplex and extra exceptional viruses like West Nile and Murray Valley virus, DWI lets in advance lesion detection and better therapeutic intervention with virustatic tablets.

Introduction:

Infections of the brain and surrounding systems are often land up in life-threatening situations. The diagnosis mainly relies upon rapid identification of the site of pathogenesis and pathogen to put an effective antimicrobial remedy as early as viable. While evaluation of CSF, biopsy and laboratory analysis continue to be the specific investigative modalities for the accurate diagnosis of the infectious agent for example in meningitis, neuroimaging is essential in certainly depicting inflammatory lesions of brain and spinal cord. Visualization of ordinary lesion patterns frequently lets in a rapid prognosis and next healing choices. Substantially, in opportunistic disease neuroimaging has a pivotal function not most effective in diagnosis but additionally in tracking therapeutic reaction. The subsequent evaluate summarizes current findings in neuroimaging of CNS infections inclusive of bacterial infections.
meningoencephalitis, ventriculitis, infectious sickness of the spinal wire as well as viral and opportunistic disorder of the CNS.

Meningitis:

In cases of suspected bacterial meningitis with clouded focus, a right away cranial computed tomography (CT) is usually recommended earlier than lumbar puncture to rule out causes for swelling that could lead to herniation. But, it needs to be noted that empirical antimicrobial treatment must be started out before CT experiment and/or lumbar puncture is carried out. In the early segment of meningitis, the CT findings are in general regular. Comparison-better CT may also display beginning meningeal enhancement, which will become greater accentuated in later tiers of ailment. Parenchymal lesions aren't effortlessly visualized, besides for regions of ischemia because of secondary vasculitis, a difficulty in up to 20% of instances (Figure 1).

Figure 1: Enhanced CT of tubercular meningitis with perivascular inflammation and temporal infraction.

CT is important and sufficient to outline pathology of the base of skull that may be causative and require rapid therapeutic intervention and surgical session. Capability assets of contamination consist of fractures of the paranasal sinus or petrous bone in addition to inner ear infection and mastoiditis. CT venography is an terrific device to diagnose complicating thrombosis of the transverse and sagittal sinus, necessitating therapeutic anticoagulation with intravenous heparin. In later ranges, persistent drowsiness and meningeal signs ought to be appeared as an illustration for repeat CT to rule out a resorptive hydrocephalus. If external ventricular drainage is required, further CT research to check on ventricular size will help in timing of the operation and later cessation of this measure. Frequently subdural effusions are referred to, which usually solve spontaneously with out particular therapeutic intervention. A bizarre parenchymal experiment correlates with neurological signs and a worse diagnosis.

Magnetic resonance imaging (MRI) isn't always routinely required in cases of uncomplicated bacterial meningitis. It allows to visualise meningeal enhancement more absolutely. Now and again no longer simplest the meninges round mind and spinal twine display enhancement after management of gadolinium (Gd)-DTPA, but also the CSF, as mentioned in instances of spirochaetal meningitis. Recently, magnetization transfer MRI has been proposed as a useful tool within the diagnosis of tuberculous meningitis. Visibility of the meninges on precontrast T1-weighted magnetization transfer photos may be taken into consideration fantastically suggestive of tuberculous meningitis. It is essential to institute tuberculosis triple therapy as early as possible because morbidity and mortality is still high. A current have a look at of adjunctive dexamethasone for the treatment of tuberculous meningitis in children and adults tested an development in survival however no prevention of disability.

In complex instances with seizures and evolving focal signs and symptoms, MRI is superior to CT in demonstrating parenchymal lesions because of meningoencephalitis or vasculitic complications on flair (fluid-attenuated inversion restoration) sequences. In Lyme disease, multifocal nonenhancing patchy lesions on T2 WI may be visible. Collectively with a suspect records and pathologic CSF, immediately intravenous therapy with ceftriaxone for 21 days is mandatory. Additional records may be gleaned from diffusion-weighted imaging (DWI). Acute inflammatory lesions, such as encephalitis, cerebritis, and tuberculosis, are hyperintense. Neurocysticercosis
suggests hypointense lesions on DWI. The prognosis of neurocysticercosis can be quite simply made neuroradiologically. Open brain or stereotaxic biopsy is usually not necessary. The lesions clear up after treatment with praziquantel or albendazole. The appearance of toxoplasmosis is variable on DWI, treatment must be instituted right now, and the remedy reaction monitored with a comply with-up test after four weeks.

A few pathogens have a predilection for mind stem involvement, conveniently visualized on MRI. Drastically, the finding of rhombencephalitis points to listeria monocytogenes as the causative agent, necessitating appropriate preference of antibiotics inclusive of ampicillin. Neurobrucellosis suggests a huge spectrum of imaging findings from regular to nonspecific findings of infection of CNS and nerve roots or vascular headaches. Remedy remains empirical.

Vascular complications ought to be suspected in patients with fast deterioration no matter therapy. In those instances, the sensitivity of DWI has better sensitivity than traditional MRI in depicting small cortical or deep white rely infarcts because of septic vasculitis. Magnetic resonance angiography can exclude or affirm vasculitis, which is of clinical help within the selection to use excessive-dose steroid therapy. Recent research have also endorsed the adjunct use of steroids straight away after the prognosis of bacterial meningitis earlier than antibiotic therapy because of an advanced outcome with out improved chance of gastrointestinal bleeding.

Pyogenic ventriculitis is an uncommon but very extreme intracranial contamination requiring fast diagnosis and remedy due to its excessive mortality. Neuroimaging is the only tool to reliably diagnose this lifestyles-threatening circumstance. MRI is greater toughy and shows periventricular excessive signal on flair pictures, ependymal enhancement and in maximum instances additionally pial or dura-arachnoid pathology. Irregular intraventricular debris appears to be the maximum unique abnormality. MRI is imperative in diagnosing intraventricular rupture of pyogenic abscess. High-dose intravenous antibiotics ought to accept over a protracted duration over weeks. In case of worsening no matter intravenous remedy, intraventricular administration via an Ommaya reservoir need to be considered.

Subdural And Epidural Empyema:
Extraaxial bacterial empyema is most reliably recognized through MRI. CT regularly leaves doubt as to the character of the lesion and its precise place. Those fluid collections may be located over the convexities or interhemispherically. They are mildly hyperintense relative to CSF and hypointense to white count number on T1WI and hyperintense relative to CSF and white count on T2WI allowing distinction from sterile effusions and most continual hematomas. In assessment to subdural empyemas, epidural empyemas show a hypointense rim representing displaced dura depicted at the interface among lesion and brain. Frequent irritation-brought about parenchymal abnormalities like edema, mass effect, and reversible cortical hyperintensity can be visible. DWI can be used to verify that greater-axial collections constitute empyemas and differentiate them further. Subdural empyema typically show high signal, while epidural empyema tend to be of low or blended sign intensity. Neurosurgical evacuation is the remedy of choice.

Pyogenic Abscess:
The analysis of pyogenic mind abscesses remains difficult. The clinician faces a diagnostic and therapeutic quandary mostly in the ones cases where a single ring-improving lesion with perifocal edema has been recognized on CT giving rise to the differential prognosis of abscess versus necrotic tumor (glioblastoma) or metastasis (Figure 2). Gd-more advantageous MRI is of help to identify more than one small additional lesions indicating metastatic disorder. In cases of unmarked lesions on MRI, stereotaxic biopsy is the next diagnostic step. Because abscesses ought to be preferentially centrally aspirated whereas necrotic tumors need to have biopsy from the hollow space wall, in addition records to optimize stereotaxic surgical planning is required. DWI has been proposed because the approach of preference. In numerous research, nearly all pyogenic abscesses had markedly hyperintense signal on DWI and reduced calculated obvious diffusion coefficient (ADC) indicating restrained water diffusion opposite to nonpyogenic lesions that showed hypointense or mixed signal. Only chordoma and epidermoid can display markedly expanded DWI sign. Other authors have burdened that the calculated ADC values alone do no longer permit a reliable differentiation because of a big overlap. Even though the method is beneficial, it does now not solve the diagnostic quandary or obviate the want for biopsy. In unclear cases, additional facts can be accrued from proton magnetic resonance spectroscopy (PMRS). This technique is not automatically available, but a few authors have located the effects promising. The presence of lactate cytosolic amino acids with/with out succinate, acetate, alanin, and glycine may be regarded as a marker for abscess, lactate and choline for nonabscess instances. In addition
confirmatory research are needed. Although a few authors have stated the possibility of differentiating cardio from anaerobic or sterile brain abscesses, this ought to be appeared with caution. The contribution of this approach and of puppy to distinguish infection from tumors is further discussed in different articles of this difficulty, handling PMRS and with the imaging of mind tumors.

Figure 2: Post contrast- T1WI MRI of pyogenic brain abscess showing ring enhancing lesion with mass effect.

Toxoplasmosis:
This is the most common opportunistic contamination in immunosuppressed patients. Prenatal contamination may also provide rise to later seizures, prompting using neuroimaging. Drastically, in third global international locations multiple small calcified lesions may be detected. Acute infection in sufferers with received immune deficiency syndrome (AIDS) or after bone marrow transplantation reasons lesions which might be normally multiple, with ring enhancement or stable. MRI delineates them most truly, from time to time revealing hemorrhagic zones. In cases with normal lesion appearance therapy with pyrimethamin 50–100 mg/day and sulfadiazine 4 g/day have to be commenced promptly. In cases of sulfia allergic reaction, the patient can as a substitute be placed on clindamycin 600 mg q.identity. Not now and again, neuroimaging famous toxoplasma lesions with mass impact and marked perifocal edema. In these cases, in the first 7days dexamethasone four mg q.i.d have to take delivery of additionally. Similarly progression of edema requires osmodiuretics. In approximately 80% of patients, radiological improvement can be visible in approximately 1 week, assisting the analysis. Should the lesions be unchanged or revolutionary, the analysis needs to be reconsidered and the healing strategy reevaluated.

Sadly, in cases of extreme immunosuppression, the MR look can be completely bizarre, deceptive radiologist and clinician. Significantly in fulminate encephalitic editions of the sickness, lesions are great on T2WI and are absolutely devoid of enhancement. In those cases, antitoxoplasma remedy have to be began till the diagnosis has been clarified in addition. also in cases of ordinary massive solitary toxoplasma lesions showing marked enhancement akin to lymphoma, the clinician have to search for additional diagnostic modalities apart from traditional imaging whilst treating the patient for toxoplasmosis.

DWI more often than not suggests no restriction of water diffusion inside the core tissue, perfusion research exhibit a really hypovascular lesion. Spectroscopy is characterized by a most important lipid top. A widely available method
is thallium-201 mind SPECT, of unique help within the differentiation from lymphoma, which indicates marked uptake in evaluation to toxoplasma abscess. Tuberculosis abscess may also display uptake.

Viral Meningoencephalitis:
Herpes simplex virus (HSV) I remains the most commonplace purpose of viral encephalitis. However, the recently located epidemic of the West Nile virus, newly recognized viruses consisting of the Nipah virus and the previously unnoticed affiliation of viruses just like the human herpes viruses 6 or 7 (HHV 6, HHV 7) or enterovirus 71 with CNS infections underline that marketers aside from HSV I have to be taken into consideration in acute encephalitis. Even in immunocompetent adults, HHV 6 can motive a chronic encephalitis (Figure 3). In immunocompromised sufferers the spectrum of viable causative agents is even broader.

Detection of HSV DNA inside the CSF by means of PCR remains the mainstay for the prognosis of HSV encephalitis, despite the fact that results of this laboratory take a look at may be false poor or might also arrive belatedly. Thus, effects of imaging studies are crucial to decide whether or not antiviral treatment must be started out in patients with suspected HSV encephalitis. Cranial MRI is advanced to CT in early detection of signs of this necrotizing encephalitis, which can be verified inside the first forty eight h on T2-weighted (T2WI) or aptitude pix. In infants and neonates, DWI appears to be more sensitive than T2WI or flair imaging in early detection of the cytotoxic cortical edema. these days, this finding will be showed in adults. Apparently, repeated MRIs done inside the same observe confirmed that diffusion abnormalities disappear within 14 days after symptom onset, while hyperintensities on T2WI persist. In addition research are warranted to look whether or not decision of these adjustments on DWI is related to remedy with antiviral substances and whether or not the persistence of these adjustments reflects cortical harm and poorer final results in patients with HSV encephalitis.

The Nipah virus, a brand new paramyxovirus carefully related to the Hendra virus (an equine mobillivirus), has these days been shown to cause severe acute encephalitis. Radiological capabilities normally consist of a couple of
small hyperintense lesions inside the white matter on T2WI. T2WI can also display temporary hyperintense punctate lesions in the brainstem and cortex. Curiously, T2WI of asymptomatic seropositive individuals might also display small hyperintense lesions similar to the ones determined in encephalitis patients suggesting that a moderate subclinical variant of Nipah virus encephalitis exists.

Enterovirus seventy one (EV71), an enterovirus of the circle of relatives Picornaviridae, may additionally lead to a polio-like brainstem encephalitis and acute flaccid paralysis. MRI of EV71 encephalitis typically suggests hyperintense lesions on T2WI placed inside the brainstem and dentate nuclei of the cerebellum. In some sufferers, lesions might also increase to the spinal twine, thalamus, and putamen. In a few sufferers, DWI is able to demonstrate hyperintense modifications within the posterior medulla without other brain abnormalities on T1WI or T2WI on the primary day of neurological deterioration, underlining the prevalence of DWI in early detection of infectious CNS disease as compared with results of T2WI or evaluation improved T1WI.

Eastern encephalitis impacts about 50,000 human beings per year, of whom about 10,000 will die. As with other infectious CNS diseases, cranial MRI seems extra touchy than CT in detection of JE-associated brain abnormalities. Standard MRI features include both mixed intensity or hypointense lesions on T1WI and hyperintense or combined depth lesions on T2WI predominantly in the thalami, however additionally inside the basal ganglia, brainstem, cerebellum, and cortical regions. A these days published study determined that cranial CT became extraordinary in around 38%, while MRI discovered pathological modifications in ninety-six to ninety-five percent. Thalamic abnormalities on T2WI have been observed in eighty-five percent both in kids and adults, in forty-six to fifty-four percent in the basal ganglia, in twenty-eight to forty-five percent within the midbrain and in twenty-one to twenty-five percent in cortical areas.

The West Nile virus (WNV) has triggered encephalitis outbreaks in Southern Europe, Russia, and america, with the remaining big encephalitis outbreak in 2002. Clinical, laboratory, and neuroimaging capabilities have been described in a latest observe comparing WNV seropositive sufferers. Five patients infected with meningitis, eight with encephalitis and three with polio-like acute flaccid paralysis. T2WI and DWI found out focal hyperintense lesions within the basal ganglia, thalamus and pons in simplest of the eight encephalitic patients, whereas CT remained ordinary in all patients. In patients with acute flaccid paralysis, MRI validated enhancement of the cauda equina and nerve root clumping. In a few sufferers, the virus influences substantia nigra as advised with the aid of hyperintensities on T2WI in this region. Just like HSV and EV71 encephalitis DWI appears to be greater sensitive to come across sign abnormalities specially within the initial section of WNV contamination of the brain.

Murray Valley encephalitis (MVE) belongs to the japanese encephalitis antigenic complex and is endemic to Australia and Papua New Guinea. MRI demonstrates abnormalities very just like the ones in japanese encephalitis. Because it has these days been said, T2WI suggests hyperintense changes in the thalami, pink nucleus, substantia nigra, and cervical spinal wire. For this reason, the similarities in MRI look of japanese encephalitis, West Nile encephalitis, and Murray Valley encephalitis do now not allow discrimination of these CNS infections best from imaging features.

Acute measles virus encephalitis and subacute sclerosing panencephalitis (SSPE) contamination of the CNS with the measles virus (MV) might also result in 1) acute postinfectious encephalitis, 2) acute revolutionary encephalitis, and 3) SSPE. Facts about imaging findings in acute measles encephalitis are sparse. T2WI may additionally reveal cortical edema and bilateral symmetric hyperintense lesions within the putamen and caudate nuclei as well as inside the centrum semiovale.

From time to time sufferers additionally gift bilateral thalamic lesions and signal abnormalities within the corpus callosum. The fee of DWI in detection of early acute measles encephalitis has now not been evaluated. Evaluation enhancement may additionally seem in cortical areas and leptomeninges in some patients. SSPE is an extraordinary progressive CNS disorder that generally happens in childhood and early early life however will also be present in older adults. Differences in appearance of early and past due stage SSPE on MRI are now not thoroughly described. A recent examine compared MR spectroscopy and conventional MRI in children with early level and children with past due stage SSPE. Conventional MRI found out no abnormalities in early stage SSPE, but disclosed vast periventricular hyperintense changes on T2WI in overdue degree SSPE. In evaluation, MR spectroscopy proven an growth in choline/creatinine ratios in the frontal and parieto-occipital white count number in all patients suggestive of irritation additionally in early tiers of SSPE. N-acetylaspartate/creatine ratios have been normal in the early level possibly reflecting an absence of neuronal loss, which could be detected in the past due degree of SSPE.
Fungal Infections:
Fungal infections of the CNS are very rare inside the general population. Besides for people with longstanding diabetes, they're maximum often encountered in immunocompromised patients which includes people with AIDS or after organ transplantation. Due to the dearth of inflammatory reaction, neuroradiological findings are often nonspecific.

Despite the fact that almost any fungus might also motive encephalitis, cryptococcal meningoencephalitis is maximum often visible, observed with the aid of aspergillosis and greater rarely candidiasis. Cerebral candidiasis is commonly preceded by way of a systemic candida contamination and is frequently catheter associated. In immunocompetent patients, it can occur as strong or abscess-like lesions giving upward push to the differential diagnosis of a pyogenic abscess. In immunosuppressed patients, the neuroradiological findings are regularly difficult to interpret. MRI indicates punctuate or patchy sign hyperintensities on T2WI, gadolinium enhancement is frequently absent. Those findings by myself do now not allow a specific diagnosis, in order that remedy decisions must be based totally on medical parameters and CSF findings.

In cryptococcal meningoencephalitis, diffuse meningeal enhancement and also ventriculitis may be seen on MRI. Common findings are more than one punctuate lesions, regularly inside the basal ganglia. those are characteristic cystic lesions due to cryptococcal invasion of the Virchow-Robin-areas. they're termed “soap bubble lesions” and allow the short provisional analysis leading to speedy antifungal treatment. In nonimmunodeficient sufferers or patients with AIDS below distinctly lively antiretroviral remedy, who expand an immune reconstitution syndrome the lesions can become ring enhancing. regardless of intensive remedy (amphotericin B and 5-flucytosine), final results is frequently terrible and mortality as excessive as 70%.

Rarely in patients with AIDS and extra often in sufferers who have had bone marrow transplantation (BMT), aspergillus is an agent for opportunistic infection of the CNS. Mortality is high in those patients, and early analysis is mandatory if survival is to be accomplished. Laboratory findings do no longer always affirm the analysis of fungal contamination so that neuroimaging is vital in organising the analysis. CT findings can be nonspecific and the prognosis of fungal contamination is often made retrospectively at autopsy. The appearance of aspergillus contamination of the CNS is extremely numerous.

The use of MRI, numerous patterns of cerebral aspergillosis had been said: Edematous lesions, hemorrhagic lesions, solid enhancing lesions known as aspergilloma or “tumoral shape,” abscess-like ring-like improving lesions (figure 4), and infarction-like lesions. Dural enhancement is usually seen in lesions adjacent to inflamed paranasal sinuses. On MRI, lesions may also display regions of isointense or low signal intensity on T2WI, that is attributed to fungal hyphen containing paramagnetic factors like manganese, iron, and magnesium, but can be additionally associated with blood breakdown merchandise. Cortical and subcortical infarction without or with hemorrhage is a not unusual finding in aspergillus infection explained by way of fungal infiltration of the vessel wall and thrombosis.reputation of these radiological styles in patients with cerebral aspergillosis is helpful in organising an early prognosis, patients with AIDS and after BMT, who are significantly immunoineptent, regularly do no longer show any enhancement or perifocal edema.
Figure 4: Coronal post contrast- TIWI MRI of post-bone marrow transplantation with aspergillus encephalitis showing ring enhancing lesions with perifocal edema and compression of the lateral ventricles.

References:
1. Tuncer O, Caksen H, Arslan S, Atas B, Uner A, Oner AF, et al. Cranial computed tomography in purulent meningitis of childhood. Int J Neurosci 114: 167–174, 2004.
2. Good CD, Jager HR. Contrast enhancement of the cerebrospinal fluid on MRI in two cases of spirochaetal meningitis. Neuroradiology 42: 448–450, 2000.
3. Kamra P, Azad R, Prasad KN, Jha S, Pradhan S, Gupta RK. Infectious meningitis: prospective evaluation with magnetisation transfer MRI. Br J Radiol 77: 387–394, 2004.
4. Thwaites GE, Nguyen DB, Nguyen HD, Hoang TW, Do TT. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351: 1741–1751, 2004.
5. Soulie D, Meyer P, Raynaud M, Berge J, Dousset V. MRI and Listeria monocytogenes rhombencephalitis. J Radiol 77: 489–496, 1996.
6. Al-Sous MW, Bohlega S, Al-Kawi MZ, Alwatban J, McLean DR. Neurobrucellosis: clinical and neuroimaging correlation. Am J Neuroradiol 25: 395–401, 2004.
7. De Gans J, Van den Beek D. European dexamethasone in adulthood—Bacterial Meningitis Study Investigators. N Engl J Med 347: 1549–1556, 2004.
8. Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. Am J Neuroradiol 22: 1510–1516, 2001.
9. Tsuchiya K, Osawa A, Katase S, Fujikawa A, Hachiya J, Aoki S. Diffusion-weighted MRI of subdural and epidural empyemas. Neuroradiology 45: 220–223, 2003.
10. Guzman R, Barth A, Lovblad KO, El-Koussy, M. Weis J, Schroth G et al. Use of diffusion-weighted magnetic resonance imaging in differentiating purulent brain processes from cystic brain tumors. J Neurosurg 97: 1101–1107, 2002.
11. Leuthardt EC, Wippold FJ 2nd, Oswood MC, Rich KM. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol 58: 395–402, 2002.
12. Dorenbeck U, Butz B, Schlaier J, Bretschneider T, Schuierer G, Feuerbach S. Diffusion-weighted echo-planar MRI of the brain with calculated ADC—a useful tool in the differential diagnosis of tumor necrosis from abscess. Neuroimaging 13: 330–338, 2003.
13. Tung GA, Evangelista P, Rogg JM, Duncan JA 3rd. Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? Am J Roentgenol. 177: 709–712, 2001.
14. Mishra AM, Gupta RK, Jaggi RS, Reddy JS, Jha DK, Husain N, et al. Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr 28: 540–547, 2004.
15. Garg M, Gupta RK, Husain M, Chawla S, Chawla J, Kumar R, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology 230: 519–527, 2003.
16. Maschke M, Dietrich U, Prumbaum M, Kastrup O, Turowski B, Schaefer UW, et al. Opportunistic CNS infection after bone marrow transplantation. Bone Marrow Transplant 23: 1167–1176, 1999.
17. Dietrich U, Maschke M, Dorfler A, Prumbaum M, Forsting M. MRI of intracranial toxoplasmosis after bone marrow transplantation. Neuroradiology 42: 14–18, 2000.
18. Ionita C, Wasay M, Balos L, Bakshi R. MR imaging in toxoplasmosis encephalitis after bone marrow transplantation: paucity of enhancement despite fulminant disease. Am J Neuroradiol 25: 270–273, 2004.
19. Chong-Han CH, Cortez SC, Tung GA. Diffusion-weighted MRI of cerebral toxoplasma abscess. Am J Roentgenol 181: 1711–1714, 2003.
20. Skiest DJ, Erdman W, Chang WE, Oz OK, Ware A. Fleckenstein J SPECT thallium-210 combined with toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infect 40: 274–281, 2000.
21. Tali ET. Spinal infections. Eur J Radiol 50: 120–133, 2004.
22. Tur BS, Suldur N, Ataman S, Ozturk EA, Bingol A, Atay MB. Brucellar spondylitis: a rare cause of spinal cord compression. Spinal Cord 42: 321–324, 2004.
23. Jung NY, Jeon WH, Ha KY, Park CK, Byun JY. Discrimination of tuberculous spondylitis from pyogenic spondylitis by MRI. Am J Roentgenol 182: 1405–1410, 2004.
24. Gupta SK, Chhabra R, Sharma BS, Das A, Khosla VK. Vertebral cryptococcosis simulating tuberculosis. Br J Neurosurg 17: 556–559, 2003.
25. Vaishya S, Sharma MS. Spinal aspergillus vertebral osteomyelitis with extradural abscess: case report and review of the literature. Surg Neurol 61: 551–555, 2004.
26. Bluman EM, Palumbo MA, Lucas PR. Spinal epidural abscess in adults. Am Acad Orthop Surg 12: 155–163, 2004.
27. Van de Warrenber BP, Wesseling P, Leyten QH, Boerrmann RH. Myelopathy due to spinal epidural abscess without cord compression. Clin Neuroradiol 23: 102–106, 2004.
28. Tullmann, MJ, Delman BN, Lublin FD, Weinberger J Magnetic resonance imaging of meningoradiculo(my)elitis in early disseminated Lyme disease. Neuroimaging 13: 264–268, 2003.
29. Srivastava T, Kochar DK. Asymptomatic spinal arachnoiditis in patients with tuberculous meningitis. Neuroradiology 45: 727–729, 2003.
30. Karacostas D, Christodoulou C, Drevelengas A, Paschalidou M, Ioannides P, Constantinou A, et al. Cytomegalovirus-associated transverse myelitis in a non-immunocompromised patient. Spinal Cord 40: 145–149, 2002.
31. Majid A, Galetta SL, Sweeney CJ, Robinson C, Mahalingam R, Smith J, et al. Epstein-Barr virus myeloradiculitis and encephalomyeloradiculitis. Brain 125: 159–165, 2002.
32. Minami K, Tsuda Y, Maeda H, Yanagawa T, Izumi G, Yoshikawa N. Acute transverse myelitis caused by Coxsackie virus B5 infection. Paediatr Child Health 40: 66–68, 2004.
33. Jeha LE, Sila CA, Lederman RJ, Prayson RA, Isada CM, Gordon SM. West Nile virus infection: a new acute paralytic illness. Neurology 8: 55–59, 2003.
34. Thurmer MM, Post MJ, Jinkins JR. MRI of infections and neoplasms of the spine and spinal cord in55 patients with AIDS. Neuroradiology 42: 551–563, 2000.
35. Oommen A, Madhusoodanan M. Tropical spastic paraparesis in Kerala. Neurol India 51: 493–496, 2003.
36. Schmutzhard E. Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol 248: 469–477, 2001.
37. Hinson VK, Tyor WR. Update on viral encephalitis. Curr Opin Neurol 14: 369–374, 2001.
38. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, van Loon AM. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psychiatry 61: 339–345, 1996.
39. Maschke M, Kastrup O, Forsting M, Diener HC. Update on neuroimaging in infectious central nervous system disease. Curr Opin Neurol 17: 475–480, 2004.
40. Teixeira J, Zimmerman RA, Haselgrove JC, Bilaniuk LT, Hunter JV. Diffusion imaging in pediatric central nervous system infections. Neuroradiology 43: 1031–1039, 2001.
41. Kuker W, Nagele T, Schmidt F, Heckl S, Herrlinger U. Diffusion-weighted MRI in herpes simplex encephalitis: a report of three cases. Neuroradiology: 122–125, 2004.
42. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. Fatal encephalitis due to Nipah virus among pig farmers in Malaysia. Lancet 354: 1257–1259, 1999.
43. Lim CC, Lee KE, Lee WL, Tambyah PA, Lee CC, Sitoh YY, Auchus AP, Lin BK, Hui F. Nipah virus encephalitis: serial MR study of an emerging disease. Radiology 222: 219–226, 2002.
44. Lim CC, Lee WL, Leo YS, Lee KE, Chan KP, Ling AE, Oh H, Auchus AP, Paton NI, Hui F, Tambyah PA. Late clinical and magnetic resonance imaging follow up of Nipah virus infection. J Neurol Neurosurg Psychiatry 74: 131–133, 2003.
45. Shen WC, Chiu HH, Chow KC, Tsai CH. MR imaging findings of enteroviral encephalomyelitis: an outbreak in Taiwan. Am J Neuroradiol 20: 1889–1895, 1999.
46. Nolan MA, Craig ME, Lahra MM, Rawlinson WD, Prager PC, Williams GD, Bye AM, Andrews PI. Survival after pulmonary edema due to enterovirus 71 encephalitis. Neurology 60: 1651–1656, 2003.
47. Kalita J, Misra UK. Comparison of CT scan and MRI findings in the diagnosis of Japanese encephalitis. J Neurol Sci 174: 3–8, 2000.
48. Kalita J, Misra UK, Pandey S, Dhole TN. A comparison of clinical and radiological findings in adults and children with Japanese encephalitis. Arch Neurol 60: 1760–1764, 2003.
49. Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokie DS, Petersen LR. Neurologic manifestations and outcome of West Nile virus infection. JAMA 290: 511–515, 2003.
50. Bosanko CM, Gilroy J, Wang AM, Sanders W, Dulai M, Wilson J, Blum K. West Nile virus encephalitis involving the substantia nigra: neuroimaging and pathologic findings with literature review. Arch Neurol 60: 1448–1452, 2003.
51. Einsiedel L, Kat E, Ravindran J, Slavotinek J, Gordon DL. MR findings in Murray Valley encephalitis. AJNR Am J Neuroradiol 24: 1379–1382, 2003.
52. Lee KY, Cho WH, Kim SH, Kim HD, Kim IO. Acute encephalitis associated with measles: MRI features. Neuroradiology 45: 100–106, 2003.
53. Frings M, Blaeser I, Kastrup O. Adult-onset subacute sclerosing panencephalitis presenting as a degenerative dementia syndrome. J Neurol 249: 942–943, 2002.
54. Gagnon A, Bouchard RW. Fulminating adult-onset subacute sclerosing panencephalitis in a 49-year-old man. Arch Neurol 60: 1160–1161, 2003.
55. Alkan A, Sarac K, Kuthu R, Yakinci C, Sigirci A, Aslan M, Baysal T. Early- and late-state subacute sclerosing panencephalitis: chemical shift imaging and single-voxel MR spectroscopy. Am J Neuroradiol 24: 501–506, 2003.
56. Burgert SJ, Classen DC, Burke JP, Blatter DD. Candidal brain abscess associated with vascular invasion: a devastating complication of vascular catheter-related candidemia. Clin Infect Dis 21: 202–205, 1995.
57. Narai H, Manabe Y, Deguchi K, Iwatsuki K, Sakai K, Abe K. Serial MRI findings in patients with chronic Cryptococcus meningoencephalitis. Neuroradiology 23: 810–812, 2001.
58. Coley SC, Jäger HR, Szydlo RM, Goldman JM. CT and MRI manifestations of central nervous system infection following allogeneic bone marrow transplantation. Clin Radiol 54: 390–397, 1999.
59. Shuper A, Levitsky HI, Cornblath DR. Early invasive CNS aspergillosis. An easily missed diagnosis. Neuroradiology 33: 183–185, 1991.