A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice

Zhengsheng Li1, Megan K. Mulligan1*, Xusheng Wang1, Michael F. Miles2, Lu Lu1, Robert W. Williams1*

1 Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 2 Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America

Abstract

Background: Catechol-O-methyltransferase (COMT) is a key enzyme responsible for the degradation of dopamine and norepinephrine. COMT activity influences cognitive and emotional states in humans and aggression and drug responses in mice. This study identifies the key sequence variant that leads to differences in Comt mRNA and protein levels among mice, and that modulates synaptic function and pharmacological and behavioral traits.

Methodology/Principal Findings: We examined Comt expression in multiple tissues in over 100 diverse strains and several genetic crosses. Differences in expression map back to Comt and are generated by a 230 nt insertion of a B2 short interspersed element (B2 SINE) in the proximal 3' UTR of Comt in C57BL/6J. This transposon introduces a premature polyadenylation signal and creates a short 3’ UTR isofrom. The B2 SINE is shared by a subset of strains, including C57BL/6J, AV/J, BALB/cByJ, and AKR/J, but is absent in others, including DBA/2J, FVB/NJ, SJL/J, and wild subspecies. The short isoform is associated with increased protein expression in prefrontal cortex and hippocampus relative to the longer ancestral isoform. The Comt variant causes downstream differences in the expression of genes involved in synaptic function, and also modulates phenotypes such as dopamine D1 and D2 receptor binding and pharmacological responses to haloperidol.

Conclusions/Significance: We have precisely defined the B2 SINE as the source of variation in Comt and demonstrated that a transposon in a 3’ UTR can alter mRNA isoform use and modulate behavior. The recent fixation of the variant in a subset of strains may have contributed to the rapid divergence of inbred strains.

Citation: Li Z, Mulligan MK, Wang X, Miles MF, Lu L, et al. (2010) A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice. PLoS ONE 5(8): e12181. doi:10.1371/journal.pone.0012181

Editor: Jörg Hoheisel, Deutsches Krebsforschungszentrum, Germany

Received May 25, 2010; Accepted July 20, 2010; Published August 17, 2010

Copyright: © 2010 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Institute on Drug Abuse (P20-DA 21131) and the National Institute on Alcohol Abuse and Alcoholism (U01AA13499, U24AA13513, U01AA016667, and U01AA104425) to RWW, MFM, and LL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rwilliam@nb.utmem.edu

† These authors contributed equally to this work.

Introduction

Degradation of the catecholamine neurotransmitters dopamine, epinephrine, and norepinephrine is catalyzed by catechol-O-methyltransferase (COMT) and the monoamine oxidase enzymes. The mechanism of transmitter inactivation is distinct for each enzyme—methylation for COMT and deamination for monamine oxidase—and the impact each exerts on neurotransmitter tone varies by brain region. COMT is a key enzyme regulating dopamine tone in frontal neocortex in which expression is high relative to the monoamine oxidases and dopamine transporters, but COMT contributes less to dopamine tone in the striatum and nucleus accumbens [1,2,3,4]. Dopamine levels play a critical role in the modulation of cognitive and emotional states, and changes in dopamine signaling are hallmarks of many psychiatric and addiction disorders. In humans, non-human primates, and rodents dopamine levels and cognitive performance have been described by an inverted U-shaped relation in which too much or too little extracellular dopamine has detrimental effects [5,6,7].

Multiple SNPs have been identified that lead to changes in mRNA, protein, and/or activity levels but a single allele (Val108/158Met) accounts for most of the variation in the level of COMT activity in humans. Individuals homozygous for the Met allele have a 3- to 4-fold reduction in COMT activity and increased prefrontal cortex dopamine levels [8]. Although mice lack this particular polymorphism, several recent studies have shown that variation in Comt mRNA level [9] and activity [10] between C57BL/6J (B6) and DBA/2J (D2) mouse strains is associated with differences in aggression level and morphine sensitivity, respectively.

The B6 and D2 strains differ greatly on a wide variety of traits and their genomes are highly polymorphic with approximately 5 million identified sequence variants (www.sanger.ac.uk and www.genenetwork.org). A genetic reference population of B6 X D2 (BXD) recombinant inbred lines made by crossing these parental strains has been used extensively to explore differences in gene expression, neuropharmacology, and behavior, often using quantitative trait locus (QTL) mapping methods [11,12]. The
expression of Comt in this family of strains varies over 2-fold in several CNS regions and is strongly modulated by a polymorphism located within Comt itself [13]. However, there are no known SNPs between B6 and D2 in Comt, and the gene is situated in a ~8 Mb region that is identical by descent among most inbred strains. The genetic mechanism of the observed variation in Comt expression has been an unresolved question. In this paper we report the cloning of the cis sequence variant that controls Comt mRNA expression in many inbred strains and that produces widespread effects in the BXD family. The cause of this Comt cis-regulation is the insertion of a strong and premature polyadenylation signal in the proximal 3′ UTR in B6 and several other strains. As a consequence these strains produce short 3′UTRs compared to strains without the insertion. This is the first known variant in a mouse that causes variation in Comt expression. This mutation has effects on Comt activity and is clearly linked to downstream variation in expression of many other genes, dopamine tone, and behavior. We find both expected and novel biological roles for Comt that are relevant for the diagnosis and treatment of psychiatric and cognitive diseases in humans.

Results

Variation in Comt mRNA expression and cis-regulation in CNS and peripheral tissues

We measured expression of Comt across multiple tissues in over 100 strains of mice and several large F2 intercrosses using four microray platforms. Between strains and across tissue we consistently detect large differences in expression for probe sets that target both coding exons and the distal 3′ UTR (Fig. 1A, Figure S1, and Figure S2). We mapped this variation in Comt expression in several crosses, including the large BXD family. In this family, Comt expression maps to the location of the Comt gene itself (Fig. 1C and Fig. 1D). Such differences that map back to the region around the indel in 8 strains with high or low expression (Fig. 4) and B6 and D2 reciprocal F1 hybrids. The presence or absence of the indel corresponded to the expression level detected in the BXD interval. The sole exception was a 230 bp deletion in D2 (Figure S4). This insertion/deletion (indel) was located in the proximal 3′ UTR (Chr 16 from 18,407,621–18,407,392 Mb). We sequenced the region around the indel in 8 strains with high or low expression (Fig. 4) and B6 and D2 reciprocal F1 hybrids. The presence or absence of the indel corresponded to the expression level detected by the distal 3′ UTR probe set (1418701_at). Strains with the insertion, B6, BXD31, LG/J, and A/J (not shown), have low expression whereas strains without the insertion, D2, BXD76, PWK/PhJ, and KK/HJ (not shown), have high expression.

To rule out the possibility that other sequence variants regulate Comt we queried genomic sequence data from seventeen inbred strains available from the Sanger Institute. We found no SNPs, indels, or haplotypes that segregate with the pattern of expression for a ~2 Mb interval surrounding Comt. The only exception is an isolated indel that segregates perfectly among all strains with high or low distal 3′ UTR expression. This indel is the only viable candidate for the massive cis-QTL in Comt. For this reason we closely examined this variant to understand the mechanisms that generate the strong cis-eQTL.

Characterization of the 3′ UTR indel in the comt locus

The 230 bp indel is a repetitive B2 family short interspersed element (SINE). B2 SINEs are a common type of retrotransposon representing ~2.4% of the mouse genome [14]. The B2 sequence contains several typical features, including a split RNA polymerase III promoter and termination signal. Of greater significance, this element also contains an array of overlapping polyadenylation signals flanked by an adenosine (A) rich segment in the 3′ region [15,16,17] (Fig. 5A). The insertion of this element and several premature polyadenylation sites in a subset of strains, including B6, should generate mRNA containing a shorter 3′ UTR. In contrast, D2 and other strains that do not contain the SINE, should use the more distal and highly conserved polyadenylation site, and therefore produce a
longer 3' UTR. We used 3' RACE and RNA sequencing (RNA-seq) to test the effect of the introduced polyadenylation signal on 3' UTR length. As expected, the B6 strain produced a much shorter 3' UTR compared to D2 (Fig. 5B) and there was a marked reduction in mRNA containing the distal 3' UTR in B6 (Figure S5).

Figure 1. Cis modulation of Comt expression by B and D alleles in different tissues. (A) Orientation of probe sets relative to the Comt gene based on the UCSC Genome Browser Mouse July 2007 Assembly (mm9). Probe sets 1418701_at and 1449183_at are associated with mRNA containing distal 3' UTR and the last two coding exons and proximal 3' UTR of Comt mRNA, respectively. (B) Cis-modulation of Comt expression visualized using the QTL heatmap tool available at www.genedevelopment.org. Coloration at 18.408 Mb indicates association between genotype at this locus and gene expression. No color means there is not an association, whereas blue and red shading indicates whether B6 (B) or D2 (D) alleles, respectively, are associated with higher expression. Yellow arrowheads indicate the physical location of Comt. Among the BXD family the D allele is associated with higher expression of the distal 3' UTR of Comt in all tissues. However, expression of the common coding mRNA probe set is associated with higher expression of the B allele in whole brain (WB), cerebellum (CER), hippocampus (HIP) and striatum (STR). In the kidney (KID) and the prefrontal cortex (PFC), expression of coding Comt mRNA is also associated with higher expression of the D allele. (C) Multiple QTL maps for Comt coding exons. Strong cis-regulation of expression is observed for all tissues except for the EYE (eye), VTA (ventral tegmental area), and NAC (nucleus accumbens). Purple arrowheads indicate the approximate location of Comt. (D) Multiple QTL maps for Comt distal 3' UTR. Significant cis-regulation of Comt is observed across all tissues.
doi:10.1371/journal.pone.0012181.g001
The insertion of the B2 SINE produces variation in 3' UTR length that segregates among BXD strains and is the sole cause of cis-regulation of
Comt expression. In the BXD panel, probe set measurements based on the distal 3' UTR detect the presence or absence of the long 3' UTR isoform and show consistent allelic regulation of expression (Figure S1, Figure S2). Probe sets that target coding exons do not discriminate between isoforms and more accurately reflect overall strain and tissue differences in total mRNA level. The genetic control of these probe sets was tissue specific. For example, highest expression of coding exons do not discriminate between isoforms and more accurately reflect overall strain and tissue differences in total mRNA level. The genetic control of these probe sets was tissue specific. For example, highest expression of coding exons in the cerebellum, hippocampus, and striatum was associated with the B allele, whereas in prefrontal cortex and kidney, higher expression was generally associated with the D allele (Fig. 1B and Fig. 2). This demonstrates that transacting factors and tissue specific trans-QTLs are also important modulators of
Comt expression.

Independent of variation in total
Comt levels, strains with the B2 SINE insertion primarily produce
Comt with a short 3' UTR and strains without the insertion produce
Comt with a long 3' UTR. It is possible that these differences in 3' UTR length have a functional consequence on protein level. In rodent brain a single transcript codes for both soluble (S-) and membrane bound (MB-) COMT through a leaky scanning mechanism [18]. We compared the level of both protein isoforms between strains in hippocampus and prefrontal cortex and both are expressed more highly in B6 (Fig. 6). Regardless of relative mRNA abundance between strains, B6 mRNA containing the shorter 3' UTR is associated with higher levels of COMT protein expression.

Impact of
Comt gene sequence variation on downstream biological functions

What sets of higher order phenotypes are downstream of the
Comt polymorphism? To answer this question we extracted all classical phenotypes in the GeneNetwork BXD phenotype database that map within 2 Mb of
Comt. The prior probability of mapping near
Comt is unusually low because this region is small (0.16% of the genome) and, with the exception of the B2 SINE polymorphism, is identical by descent (Fig. 3). Even in massive expression data sets no more than 1–2 transcripts are expected to map to this region by chance. Twelve classical phenotypes with high content validity map to the
Comt locus (p<0.02, Table S2), including binding affinity of both dopamine receptors (DRD1 and DRD2) in caudate, nucleus accumbens, ventral tegmental area,
and prefrontal cortex [19]. Linkage of DRD1 and DRD2 binding was sex-specific and only detected in males. Sensitivity to the dopamine receptor antagonist haloperidol [20] and chloradiazepoxide, an allosteric modulator of GABA-A receptors [21], also map to Comt.

To explore intermediate networks between Comt and the classic phenotypes listed above, we extracted transcripts modulated by Comt in four brain regions (Fig. 7, Table S3). Transcripts and genes with trans QTLs mapping into the Comt locus were filtered by expression level, biological relevance, and by examining expression in the Allen Institute for Brain Science (AIBS) brain atlas (www.brain-map.org). Downstream targets of Comt participate in cytoskeletal regulation (Cmip, Enuk1, and Ptprd), intracellular signaling (Cdc42, Araf, Hypk2, Comt, Enuk1, Ptprd, and Rasgrp1), transport (Stau1, Adam10, Dnajc10, Mcoln1, Golga3, Atr7, Spo, Ptprd, Ddx47, Caps1, and Kif5a), receptor/channel trafficking (Palm, Akap9, Sptm1, Ctnn2, Nog1, and Dlgap1), synaptic maintenance and plasticity (Apa1, Tle3, Slit3, Sh2d2a, Elav1, and Syt1), transcriptional regulation (Npnt, Myt1l, Ncor1, Junb21, and Tefs), and catecholamine metabolism (Maoa). Given the marked differences in expression of Comt covariates in different tissues and organs, we neither expected nor did we find significant overlap of its downstream targets. One exception was receptor protein tyrosine phosphatase delta (Ptprd). A key signaling molecule in the CNS

Figure 3. C57BL/6J and DBA/2J are identical by descent for a large region on chromosome 16 surrounding Comt. (A) Next-generation sequencing (red) reveals previously unknown SNPs between B6 and D2. The original SNP panel (blue) was obtained at www.ncbi.nlm.nih.gov/projects/SNP/. A large interval surrounding Comt from ~15 to 23 Mb is devoid of SNPs. (B) There are no known SNPs between B6 and D2.

doi:10.1371/journal.pone.0012181.g003
involved in neurite growth [22], deletion of Ptprd leads to learning and feeding impairments, in addition to alterations in hippocampal long-term potentiation [23]. There was significant overlap in gene function across data sets. Well supported categories included receptor trafficking, and synaptic maintenance/plasticity. Each region also included key genes associated with addiction (Maoa, Ptprd, and Slit3), psychiatric illnesses (Maoa, Myt1l, Slc12a6, and Slit3), and neurodegenerative diseases (Abpa1 and Slc12a6).

Discussion

In this study we have identified the sequence variant underlying a strong cis-acting expression quantitative trait locus (eQTL) for the Comt gene. Comt is located in a large interval that is otherwise devoid of sequence variants between the BXD strains. In combination with strong mapping data, this provides definitive genetic and sequence support that the insertion of the B2 SINE into the proximal 3’ UTR is the ultimate cause of the Comt eQTL. Based on expression data and corroborative sequence data, wild derived strains (MOLF/Eij, CAST/Eij, PWK/Phij, and PWD/Phij) and Swiss mice (FVB/Nj and SJL/J) lack the insertion. Some strains derived from W. E. Castle and C. C. Little’s stocks contain the insertion (C57BL/6J, A/J, 129S1/SvlmJ, and BALB/cByJ) whereas others do not (DBA/2J, 129P3/J, CBA/J, and C58/J). In the absence of the B2 SINE, inbred strains produce mRNA with a long 3’ UTR. The insertion introduces a premature polyadenylation site and the production of a short isoform. The propagation of the B2 SINE in several strains derived by Castle and Little, as well as its absence in wild derived strains, is evidence that the long 3’ UTR is ancestral. The short isoform is likely the result of a transposition fixed by inbreeding in the early 1900s. This naturally occurring mutation is likely to be the major source of variation in Comt expression among inbred strains.

The B2 SINE is associated with higher expression of Comt coding exons in B6 relative to D2 in the cerebellum, hippocampus, and striatum but not in the prefrontal cortex, ventral tegmental area, and nucleus accumbens. The B2 SINE insertion accounts for over 90% of the variance in mRNA length and expression across tissues but it is not the only mechanism governing expression. Approximately 50% of the variance of the common coding form is due to segregating trans-effects, non-segregating masking epistatic
Dopaminergic systems are clearly downstream of multiple brain regions, and the response to the dopamine receptor
expression of genes involved in excitatory synapse maintenance glutamatergic and GABAergic systems and is linked to the
modulates synaptic transport (\textit{catecholamine metabolism})\textit{, nervous system maintenance}
and previous research has demonstrated significantly higher
in humans substantially reduces COMT activity. This results in increased brain dopamine signaling in humans with important cognitive
consequences. For example, Met polymorphisms, which decrease
COMT activity, enhance working memory and attention [5,34,35,36,37,38,39]. However, the Met allele is associated with
less pain and stress resiliency compared to the Val allele [40].
Despite the differences in the genetic regulation of \textit{Comt} between mouse and human, manipulations point to very similar roles in
cognition and behavior. Consistent with human studies, disruption
of \textit{Comt} in male mice elevates dopamine levels in the prefrontal
cortex [2] and enhances working memory [30]. Conversely,
overexpression of human \textit{COMT} containing the Val polymorphism in mice leads to the disruption of working memory and attention and a reduction in sensitivity to pain and stress [30].
Mammalian genomes contain a large proportion of transposable elements (TEs), including the Alu family of SINEs in humans, and B1 and B2 SINEs in rodents. TE insertions, such as the B2 SINE in \textit{Comt}, are important drivers of gene evolution [16,41]. Approximately 7% of genes in mice contain non-conserved polyadenylation sites derived from TEs [41]. These polyadenylation sites can be co-opted to create novel mRNA structures that
effect message processing, distribution, and translation. As in the case of \textit{Comt}, insertion of a B2 SINE in the 3' UTR of major histocompatibility complex genes results in preferential usage of a premature polyadenylation signal [15]. Given the abundance of B1 and B2 SINES—564,000 and 348,000 copies, respectively—[14]—it is highly likely that insertions of TEs modulate the expression of several other genes. These types of mutations, combined with intense selection, may have contributed to the rapid behavioral evolution of both wild populations and laboratory strains [42].
Methods

Ethics statement
All animal work was conducted according to an approved animal use protocol (UTHSC680) and in accordance with procedures approved by the Institutional Animal Care and Use Committee.

Expression and QTL analysis of Comt using GeneNetwork
Multiple expression datasets from many brain and peripheral tissues of inbred and RI strains were used in this analysis (see Text S1 for additional methods). Additional detailed descriptions of strain, sex, tissue preparation and microarray method for each individual database is available at www.genenetwork.org. Four microarray platforms were used in this analysis including; Agilent, Illumina, Affymetrix Exon 1.0 ST, and M430 arrays. Tools for QTL mapping and visualization are available at www.genenetwork.org [43,44].

Comt 3’ UTR genomic DNA isolation and sequencing
Mice were purchased from Jackson Laboratory or bred in-house. Mice were housed at the University of Tennessee Health Science Center in a pathogen-free colony in accordance with procedures approved by the Institutional Animal Care and Use Committee. Naive B6, D2, BXD31, BXD76, B6D2F1, D2B6F1, A/J, LG/J, PWK/PhJ, and KK/HJ mice were killed at about 60 days of age by cervical dislocation. The liver was immediately collected and stored in RNALater (Ambion) at 4°C overnight. Genomic DNA was isolated using DNeasy Kits (QIAGEN) We used Primer 3 software to design custom forward (5’-GCG CCA TCA TAC CTG AAA AG-3’) and reverse (5’-GGA AAA CAC CTG TGC ATCA A-3’) primers specifically targeting Comt 3’ UTR genomic DNA for amplification by PCR. PCR product size was predicted to be 608 bp based on available genomic data for the B6 reference strain. Coverage area within the Comt locus was from 18,407,151 to 18,407,758 Mb. DNA amplification was performed using the HotStar HiFidelity Polymerase kit (Qiagen) and 10 ng of genomic DNA for each strain followed by sequencing of the PCR products with each custom primer using an A3130XL Genetic Analyzer (Applied Biosystems). The resulting sequences were aligned against reference sequences from the NCBI GenBank database using nucleotide blast. The sequences were also aligned.

Figure 7. Comt regulatory model. Insertion of a B2 SINE causes 3’ UTR length isoforms with important functional consequences. Two concentric rings show the downstream effect Comt sequence variation has on the gene expression (white ring) and phenotypes (yellow ring). Variation in Comt influences several neurotransmitter systems, including GABA and dopamine, and modulates the expression of genes involved in numerous biological processes, including receptor trafficking at excitatory synapses (Palm, Sqstm1, Nig1, Akap9, and Apba1). doi:10.1371/journal.pone.0012181.g007
between strains using BLAST (bl2seq). The genomic DNA sequence of the Comt 3’ UTR for the D2 strain is available at GenBank (GU324998).

Expression analysis using RNA -seq
Total RNA was isolated from the whole brains of 27 BXD RI strains using RNA STAT-60 (Tel-Test Inc). Samples were DNase treated using a DNA-free kit (Ambion) to eliminate genomic DNA. The quality and purity of total RNA from each sample was assessed using an Agilent Bioanalyzer 2100 system. For RNA-seq, ribosomal RNA (rRNA) was removed from each total RNA sample using the RiboMinus Eukaryote Kit (Invitrogen). Each RNA sample was then converted to cDNA and amplified. Emulsion PCR was performed for each sample and each fragment library was subsequently sequenced on the Applied Biosystems SOLiD platform. This procedure preserves the strandedness (plus or minus) of the RNA read.

RNA-seq data processing and visualization
Short sequence reads were analyzed using Applied Biosystems whole transcriptome software tools (www.solidsoftwaretools.com/). Reads were mapped to the B6 reference genome (mm9, US National Center for Biotechnology Information [NCBI] build 37) with a minimum alignment score of 24.

Isolation and sequencing of Comt 3’ UTR mRNA
RNA STAT-60 (Tel-Test Inc) was used for RNA extraction from B6 and D2 hippocampus followed by ethanol precipitation. RNA quality was determined using a NanoDrop spectrophotometer (Thermo Scientific) and Agilent Bioanalyzer 2100 (Agilent). Target cDNA was generated using the FirstChoice RLM-RACE kit (Ambion) with minor modifications to the standard protocol (Text S1). The amplified products for each strain were purified with a PCR purification kit (Qiagen) and sequenced using both adding (plus) and trans (minus) of the RNA read.

SOLiD platform. This procedure preserves the strandedness (plus or minus) of the RNA read.

Protein extraction and immunoblotting
Fresh brain tissue from the hippocampus and prefrontal cortex was dissected from B6 and D2, snap-frozen in liquid nitrogen, and stored at −80°C followed by protein extraction (Text S1). Aliquots were created from each total protein extract and stored at −80°C until used for immunoblotting. Six total protein samples each from the hippocampus and prefrontal cortex of the B6 and D2 strain were used. Fifteen μg of protein was loaded on a NuPAGE 4–12% Bis-Tris Gel (Invitrogen). Protein samples were separated by electrophoresis at 150 volts for 45 min before transferring to a PVDF membrane. Immunoblotting was performed using the WesternDot 625 goat anti-mouse Western blot kit (Invitrogen). Immunoblotting was performed using the AIBS (www.brain-map.org).

Supporting Information
Figure S1 Strain variation in expression of distal 3’UTR Comt mRNA in whole brain and hippocampus. Mean log2 expression values depicted above on the y-axis are from the UCHSC BXD Whole Brain M430 2.0 (Nov06) RMA database and the Hippocampus Consortium M430v2 (Jun06) RMA. Strains are indicated by the x-axis. Average expression across databases is 8 log2 units. Arrows indicate parental strains and numbers indicate recombinant inbred line (e.g. 40 = BXD40). (A) Both BXD and other inbred strains separate into two expression groups with either B6-like low expression or D2-like high expression of Comt mRNA containing distal 3’UTR sequence in the whole brain. (B) The same pattern of expression is observed in the hippocampus for BXD and other inbred strains. BXD and CXB parental strains are designated by the red and black arrows, respectively. When strains that share the same distal 3’ UTR mRNA expression pattern are crossed, as in the CXB strains (C57BL/6ByJ x BALB/cByJ), no expression differences are observed. Found at: doi:10.1371/journal.pone.0012181.s001 (0.56 MB TIF)

Figure S2 Strain variation in expression of coding exon Comt mRNA (1449183_at) in whole brain and hippocampus. Mean log2 strain expression values are shown on the y-axis from the (A) UCHSC BXD Whole Brain M430 2.0 (Nov06) RMA database and the (B) Hippocampus Consortium M430v2 (Jun06) RMA. Strains are identified on the x-axis. Average expression across databases is 8 log2 units. Arrows indicate parental strains for the BXD and CXB strains (C57BL/6By x BALB/cByJ). Found at: doi:10.1371/journal.pone.0012181.s002 (0.68 MB TIF)

Figure S3 Replication of Comt expression and genetic regulation in the hippocampus using Affymetrix Exon 1.0 ST arrays. (A) Location of probe sets to the distal 3’ UTR (4985945) and the last exon (5131400) of Comt based on BLAT search in the UCSC Genome Browser Mouse July 2007 Assembly (mm9). (B) Both probe sets are strongly cis-regulated from a region on chromosome 16 near the physical location of the Comt gene. (C) The B allele
drives expression of the last exon while the D allele drives expression of the distal 3' UTR.

Figure S4 Sequence alignment of C57BL/6J (B6) and DBA/2J (D2) genomic DNA in the chromosome 16 region containing the indel. There is a 230 bp insertion in the B6 strain, absent in the D2 strain. Red and black indicate genomic sequence from the D2 and B6, respectively. The corresponding genomic position is based on the (-) strand for the B6 reference strain. Dashes indicate the indel position.

Table S1 Summary of *Comt* regulation.

Table S2 Published phenotypes mapping to the *Comt* locus.

Table S3 BXD exon and M430 top probe sets mapping to the *Comt* locus.

Text S1 Supplemental methods.

Author Contributions
Conceived and designed the experiments: LL MKM RWW. Performed the experiments: ZL. Analyzed the data: MKM XW MFM. Wrote the paper: MKM RW.

References

1. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ (2004) Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24: 5331–5335.
2. Gregos JA, Morgan JA, Luine V, Santha M, Ogawa S, et al. (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 95: 9991–9996.
3. Karasam F, Chrapusta SJ, Egas MF (1994) 3-Methyltyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63: 972–979.
4. D'Souza M, Gregos JA, Karayorgou M, Koponen O, Forsberg M, et al. (2002) Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci 15: 246–256.
5. Mattay VS, Goldberg TE, Fera F, Harit AR, Tessitore A, et al. (2003) Catechol-O-methyltransferase val158met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100: 6186–6191.
6. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10: 376–384.

7. Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42: 707–711.
8. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, et al. (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75: 807–821.
9. Fernandes C, Paya-Cano JL, Sluyter F, D’Souza U, Plomin R, et al. (2004) Hippocampal gene expression profiling across eight mouse inbred strains: towards understanding the molecular basis for behaviour. Eur J Neurosci 19: 2576–2582.
10. Grice DE, Reenil, A, Mannisto PT, Brooks Al, Smith GG, et al. (2007) Trancriptional profiling of C57 and DBA strains of mice in the absence and presence of morphine. BMC Genomics 8: 76.
11. Choler RJ, Lu L, Shou S, Qiu Y, Gu J, et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: 233–242.
12. Philip VM, Dasvuru S, Gomez C, Anike A, Biha CD, et al. (2009) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav.
13. Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, et al. (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Frontiers of Neurogenetics 3: 76.
14. Watsonen HR, Lindblad-Toh K, Birney E, Rogers J, Ablil JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
15. Kress M, Barra Y, Seidman JG, Khoury G, Jay G (1984) Functional insertion of an Alu type 2 (B2 SINE) repetitive sequence in murine class I genes. Science 226: 974–977.
16. Georgiev GP (1984) Mobile genetic elements in animal cells and their biological significance. Eur J Biochem 145: 203–220.
17. Ferrigno O, Viorel T, Djaiber Z, Ortsoune P, White RJ, et al. (2001) Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat Genet 28: 77–81.
18. Tenhunen J, Ullman I (1993) Production of rat soluble and membrane-bound catechol-O-methyltransferase forms from bifunctional mRNAs. Biochem J 296(Pt 3): 595–600.
19. Jones BC, Tananzino LM, Rodrigue LA, Reed CR, Mclearn GE, et al. (1999) Quantitative-trait loci analysis of cocaine-related behaviours and neurochemistry. Pharmacogenetics 9: 607–617.
20. Kanes S, Dains K, Cipp I, Galley J, Hitzemann B, et al. (1996) Mapping the genes for haloperidol-induced catalepsy. J Pharmacol Exp Ther 277: 1046–1055.
21. Demarest K, McCaughran J, Jr., Mahjubi E, Cipp I, Hitzemann R (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 19: 349–361.
22. Wang J, Bubu JL (1999) Receptor tyrosine phosphate-delta is a homophilic, neurite-promoting cell adhesion molecule for CNS neurons. Mol Cell Neurosci 14: 370–384.
23. Utani N, Kato K, Oghara H, Mizuno K, Kawano K, et al. (2000) Impaired learning with enhanced hippocampal long-term potentiation in PtdDeltadeficient mice. Embo J 19: 2775–2785.
24. Houk J (2007) Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 22: 276–281.
25. Straub RE, Lipska BK, Egas MF, Goldberg TE, Callcott JH, et al. (2007) Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 12: 854–869.
26. Buckholz JW, Saut S, Tan HY, Mattay VS, Straub RE, et al. (2007) fMRI evidence for functional epistasis between COMT and RS54. Mol Psychiatry 12: 893–895, 885.
27. Nicodemus KK, Koechel-Ba, Mackalaka R, Straub RE, Gieding I, et al. (2007) Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RS54, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet 120: 899–906.
28. Puls I, Mohr, J, Wrase J, Priller J, Behr J, et al. (2008) Synergistic effects of the dopaminergic and glutamatergic system on hippocampal volume in alcohol-dependent patients. Biol Psychol 79: 126–136.
29. Tan HY, Chen Q, Saut S, Buckholz JW, Meyers JD, et al. (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci U S A 104: 12536–12541.
30. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, et al. (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28: 8709–8723.
31. Lachman HM, Paplos DF, Saito T, Yu YM, Szumlanski CL, et al. (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243–250.

32. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, et al. (1995) Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34: 4202–4210.

33. Roth JA (1992) Membrane-bound catechol-O-methyltransferase: a reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. Rev. Physiol Biochem Pharmacol 120: 1–29.

34. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60: 141–151.

35. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, et al. (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98: 6917–6922.

36. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, et al. (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159: 652–654.

37. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, et al. (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8: 594–596.

38. Savitz J, Solms M, Ramesar R (2006) The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav 5: 311–320.

39. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, et al. (2002) Neurocognitive correlates of the COMT Val158Met polymorphism in chronic schizophrenia. Biol Psychiatry 52: 701–707.

40. Goldman D, Orosi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6: 521–532.

41. Lee JY, Ji Z, Tian B (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes. Nucleic Acids Res 36: 5581–5590.

42. Koide T, Moriwaki K, Ikeda K, Niki H, Shiroishi T (2000) Multi-phenotype behavioral characterization of inbred strains derived from wild stocks of Mus musculus. Mamm Genome 11: 664–670.

43. Chedler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7: 485–486.

44. Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1: 299–308.