The functional diversity of protein lysine methylation

Sylvain Lanouette, Vanessa Mongeon, Daniel Figeys & Jean-François Couture*

Abstract

Large-scale characterization of post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high-throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine-methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε-amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non-histone lysine-methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.

Keywords lysine demethylation; lysine methylation; networks; proteomics; systems biology

DOI 10.1002/msb.134974 | Received 8 November 2013 | Revised 17 February 2014 | Accepted 18 February 2014

Mol Syst Biol. (2014) 10: 724

Introduction

Covalent post-translational modifications (PTMs) of proteins create an intricate layer of modulation of the proteome. The convergence of high-throughput proteomics efforts with targeted studies of site-specific PTM and protein-modifying enzymes has shed light on the scope of these modifications across a wide variety of organisms. Among the 20 amino acids, lysine is one of the most heavily modified. To this day, lysine residues are known to be covalently modified by acetyl (Choudhary et al., 2009; Weinert et al., 2011; Henriksen et al., 2012), hydroxyl (Van Slyke & Sinex, 1958), glycosyl (Johansen et al., 2006), propionyl (Chen et al., 2007; Cheng et al., 2009), butyryl (Chen et al., 2007), crotonyl (Tan et al., 2011), ubiquitinyl and ubiquitinyl-like (SUMOylation, ISGylation and NEDDylation) (Hochstrasser, 2009; Kim et al., 2011a; Wagner et al., 2011), formyl (Wisniewski et al., 2008), malonyl (Peng et al., 2011), succinyl (Zhang et al., 2011b; Park et al., 2013; Weinert et al., 2013) and methyl (Lan & Shi, 2009; Yang et al., 2009b; Egorova et al., 2010; Stark et al., 2011) groups. Among those modifications, lysine methylation represents a complex and often elusive PTM that has nonetheless the potential to alter the function of the modified protein. This widespread PTM, which involves the transfer of up to three methyl groups to the ε-amine of a lysine residue, has drawn considerable attention in recent years. To this day, lysine methylation has been observed in both nuclear and cytoplasmic proteins and is now considered a prevalent modification in eukaryotes, prokaryotes and archaea (Iwabata et al., 2005; Jung et al., 2008; Botting et al., 2010; Pang et al., 2010). Here, we review the range of lysine methylation, its regulation, dynamics and effects.

Uncovering lysine methylation

Methylation of a lysine residue was first reported in 1959 by Ambler and Rees (1959), in the flagellin protein of Salmonella typhimurium. While the origin and the function of the methyllysine residue was a mystery at the time, the observation that histone proteins were also methylated suggested that this PTM is a prevalent modification (Murray, 1964). The subsequent discovery of the methylation of a wide range of proteins (DeLange et al., 1969, 1970; Hardy & Perry, 1969; Hardy et al., 1970; Ames & Niakido, 1979; L’Italien & Laursen, 1979; Bloxham et al., 1981; Motojima & Sakaguchi, 1982; Tong & Elzinga, 1983) confirmed the predominance of this PTM in both prokaryotes and eukaryotes.

In addition, the regulation of EF-Tu methylation by carbon, phosphorus or nitrogen availability (Young et al., 1990) and the evolutionarily conserved character of multiple methylation sites identified in ribosomal proteins (Dognin & Wittmann-Liebold, 1980; Amaro & Jerez, 1984; Lhøest et al., 1984; Gürün et al., 1989) hinted that lysine methylation could serve important biological functions. This was confirmed by the report that methylation of calmodulin K115 (Waterson et al., 1980; Marshak et al., 1984; Lukas et al., 1985) lowers its capacity to stimulate NAD kinase activity (Roberts et al., 1986). Methylation of calmodulin does not, however, prevent the activation of other calmodulin targets (Molla et al., 1981; Roberts et al., 1986). These findings showed that lysine methylation modulates the function of a protein and demonstrated that this PTM has the ability to affect only a subset of activity of the methylated substrate.

Interest in lysine methylation intensified following the observation that the methylation of lysine 9 on histone H3 leads to the
Protein lysine methyltransferases

Two groups of enzymes, both using S-adenosyl-L-methionine (SAM) as a methyl donor, catalyze the addition of a methyl group to the ε-amine group of a lysine side chain (Schubert et al., 2003). The first type of protein lysine methyltransferase regroups the enzymes containing a catalytic SET domain (class V methyltransferases). The SET domain, named after SU(var), Enhancer of Zeste and Trithorax, the three first identified proteins harboring this domain in Drosophila (Tschiersch et al., 1994), is characterized by three regions folded into a mainly β-sheet knot-like structure that forms the active site consisting of the four conserved motifs GXG, YXG, NHXCXPN and ELXFDY (Dillon et al., 2005; Qian & Zhou, 2006; Cheng & Zhang, 2007). Binding of SAM and the substrate takes place on each side of a methyl-transfer channel formed by this knot-like structure. It is suggested that a catalytic tyrosine resting in this channel is important for the methyl transfer from SAM to the lysine ε-amine (Min et al., 2002; Trievel et al., 2002, 2003; Wilson et al., 2002; Kwon et al., 2003; Manzur et al., 2003; Xiao et al., 2003; Couture et al., 2006). A network of aromatic residues and hydrogen bonds in this channel limits the possible orientations of the lysine substrate (Couture et al., 2008), controlling the ability of SET domain proteins to transfer a specific number of methyl groups to a substrate.

Based on sequence similarities and domain organization, the SET-domain-containing proteins can be broadly divided in seven families (Dillon et al., 2005): SUV3/9, SET1, SET2, SMYD, EZ, SUV4-20 and RIZ. Members of the SUV3/9 (Ga9 (Rathert et al., 2008b), GLP (Chang et al., 2011), SETDB1 (Van Duyne et al., 2008)), SET1 (Zhang et al., 2005)), SET2 (NSD1 (Lu et al., 2010)), SMYD (SMYD2 (Huang et al., 2006), SMYD3 (Kunizaki et al., 2007)) and EZ (EZH2 (He et al., 2012a)) families methylate both histone and non-histone substrates (Supplementary Table S1 and Fig 1), while substrates reported to this day for the SUV4-20 and RIZ families are limited to histone proteins (Yang et al., 2008; Pinheiro et al., 2012). Outside of these seven families, SET7/9 and SET8 are also reported to methylate a substantial number of proteins (Table 1, Supplementary Table S1 and Fig 1).

The second class of PKMTs, the seven β-strand methyltransferases (class I methyltransferases), belongs to an extended superfamily of methyltransferases found throughout eukaryotes, prokaryotes and archaea. Members of this family methylate DNA, RNA or amino acids such as arginine, glutamine, aspartate and histidine (Martin & McMillan, 2002; Schubert et al., 2003). They are named after its Rossmann fold built around a central β-sheet structure, which includes the conserved, catalytic motifs hXhXh/E, XDAX and PXVN/DXXLXL (h=hydrophobic residue) that allow the association of SAM and the protein substrate.

Across all three domains of life, a number of class I methyltransferases are reported to methylate lysine residues in proteins (Table 1 and Supplementary Table S1). The bacterial methyltransferases PrmA and PrmB methylate the ribosomal units L11 (Cameron et al., 2004) and L3 (Colson et al., 1979), respectively (Supplementary Table S1). In S. cerevisiae, Rkm5 methylates the ribosomal protein Ll (Webb et al., 2011) and Seel methylates the elongation factor EF1-α on K316 (Lipson et al., 2010) (Supplementary Table S1; Fig 1). Recently, VCP-KMT, a newly identified class I methyltransferase, was shown to methylate the membrane protein VCP (Kernstock et al., 2012). Class I methyltransferases are also able to methylate histones, as Dot1 homologs trimethylate K79 of histone H3 (Nguyen & Zhang, 2011). In crenarchaea, the methyltransferase aKMT, a broad specificity class I lysine methyltransferase, was shown to methylate the DNA-binding protein Cren7 (Chu et al., 2012) (Table 1; Fig 1).

Detection of lysine methylation

Systematic high-throughput studies helped uncover the global implication of PTMs such as phosphorylation (Ptacek et al., 2005; Sopko & Andrews, 2008) and acetylation (Choudhary et al., 2009; Weinert et al., 2011; Henriksen et al., 2012) in different cellular processes. If the terms “phosphorylome” and “acetylome” can now properly be applied to our understanding of those modifications, an exhaustive description of the lysine methylome and the biological functions it regulates has yet to be produced. The challenges still associated with the detection of lysine methylation impede research on this PTM. The small molecular weight of a methyl group relative to other PTMs and the lack of a charge difference between methylated and unmethylated lysine residues leave few options for the detection of methylated lysine residues via direct physicochemical methods.

Targeted discovery of lysine methylation

Given the challenges associated with its detection, the identification of lysine methylation has long relied on the targeted identification of single sites by amino acid sequencing, radio-labelled assays or immunoblotting. Some of the earliest reports of lysine methylation were provided by Edman sequencing (Bloxham et al., 1981; Tong & Elzenga, 1983; Schaefer et al., 1987; Ammdendola et al., 1992). This method is reliable and precise enough to detect methyllysine (Fig 2A). However, Edman sequencing is time-consuming and necessitates large amounts of the target proteins, making it inapplicable to high-throughput approaches. Introduction of radioactively labelled methyl donors either in culture media or lysate (Fig 2A,B) has also been used to detect methylated proteins in model systems, together with 2D SDS–PAGE or liquid chromatography (Dognin & Wittmann-Liebold, 1980; Wang et al., 1982, 1992; Wang & Lazareides, 1984). The use of radioactive material on this scale is however cumbersome and does not allow the identification of specific methylation sites. It also does not indicate what type of residue is labelled, as arginine, histidine, aspartate and glutamate residues as well as the amino terminus of proteins can be the targets of S-adenosyl-L-methionine-dependent methyltransferase (Stock et al., 1987; Webb et al., 2010; Petrossian & Clarke, 2011). More recent studies have made use of immunoblotting to explore potential methylation sites on proteins (Iwabata et al., 2005). However, pan-methyllysine antibodies suffer from a low level of specificity, sensitivity and low reproducibility between suppliers and lots available. As for generic radioactive methylation assays, immunoblotting with pan-methyllysine antibodies does not allow the determination of the
Figure 1. PKMT–substrate association maps suggest that lysine methylation is found in complex regulatory networks. Each PKMT or substrate node of the methylation networks is color-coded according to its functional classification (see Supplementary Table S1). In Eukarya, 34 PKMTs methylate > 65 substrates other than histones. SET7/9 is by far the most promiscuous PKMT targeting close to half of eukaryotic substrates reported to this day. In contrast to eukaryotes, only 8 unique PKMTs have been identified in prokaryotes and 2 in Archaea. Those interactions, together with the 1,038 methylation sites listed in Supplementary Table S1, demonstrate the complexity of this modification and its regulatory potential for the proteome.

© 2014 The Authors

Molecular Systems Biology 10: 724 | 2014 3
Table 1. Lysine methylation is a prominent post-translational modification

Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
Transcription									
p53	P0467	1Me	Hs	SMYD2	LSD1	viv, vit; AB, RD, MS	Represses p53 activity and prevents methylation of K372	Huang (2007) Nature	
		2Me	Hs	?	LSD1	Prevents S3BP1 binding (represses p53 activity)	Huang (2006) Nature (LSD1 : Huang et al (2007) Nature)		
						Recruits PHF20 with K382Me2 and inhibits p53Ub after DNA damage	Cui (2012) NSMB		
		372	1Me	Hs	9/9	LSD1	Stabilizes p53	Chukov (2004) Nature (LSD1 : Huang et al (2007) Nature)	
						Inhibits methylation at K370 by SMYD2	Huang et al (2007) Nature		
						Promotes acetylation of p53 (K373, K382)	Ivanov (2007) Mol Cell. Bio.		
						Inhibited by HPV E6 and protects p53 from E6-mediated degradation	Hsu et al (2012) Oncogene		
						In contrast, deletion of SET7/9 in mice does not impair p53 function, anti-oncogenic activity, transcriptional activity, or its acetylation	Campaner (2011) Mol Cell, Lehnertz (2011) Mol Cell		
		373	2Me	Hs	C9a (Glp)	?	viv, vit; AB, RD	Inhibits apoptotic activity	Huang (2010) JBC
						Stimulated by recruitment of MDM2 and correlates with H3K9Me3 at p21 promoter	Chen (2010) EMBO J		
		382	1Me	Hs	SET8	?	viv, vit; AB, MS	Suppresses transcriptional activation of highly responsive target genes	Shi (2007) Mol. Cell
						Recruits L3MBT1L through MBT repeats	West (2010) JBC		
		382	2Me	Hs	?	?	viv; AB, MS	Correlates with DNA damage and facilitates S3BP association	Kachirskaia et al (2008) JBC
						Recruits PHF20 with K382Me2 and inhibits p53Ub after DNA damage	Cui et al (2012) NSMB		
		386	1/2Me	Hs	?	?	viv; MS	?	Kachirskaia (2008) JBC
Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
---------	------------	--------	-------	----------	--------	---------	----------	--	-----------------------------------
pRb	P06400	810	1Me	Hs	SET7/9	?	viv, vit; RD, MS	Elicited by DNA damage and cell cycle arrest, impairs Cdk binding and Pi of Rb	Carr et al (2011) EMBO J
		810	1Me	Hs	SMYD2	?	viv; vit; AB, RD, MS	Enhances Pi of S807/S811 and promotes cell cycle progression through E2F activity	Cho (2012) Neoplasia
		860	1Me	Hs	SMYD2	?	viv; AB, RD, MS	Required for cell cycle arrest and transcriptional repression and recruits HP1 to pRb	Munro (2010) Oncogene
E2F1	Q01094	185	1Me	Hs	SET7/9	LSD1	viv; vit; RD	Decreases stability (increases ubiquitination) and impairs PCAF-Ac and CHK2/ATM-Pi (activating modifications)	Kontaki (2010) Mol. Cell
								Prevents NEDDylation of E2F1, protecting its activity	Loftus et al (2012) EMBO rep.
								Inhibited by TMCG/DIPTY which reduces RASSF1A expression	Montenegro et al (2012) PLoS One
								Levels correlate with DNA damage and increases DNA binding	Xie (2011) J. Recept. Signal Transduct. Res.
NF-kB (p65, RelA)	Q04206	37	1Me	Hs	SET7/9	?	viv, vit; AB, RD, MS	Regulates p65 promoter binding, necessary for certain target genes	Ea (2009) PNAS
		218/221	1Me/2Me	Hs	NSD1	FBXL11	viv; AB, MS	Activation of NF-kB; K221 recruits PHF20 that prevents PP2A recruitment and protects Pi and Ac of p65	Lu (2010) PNAS, PHF20: Zhang et al (2013) Nature Comm.
		310	1Me	Hs	SETD6	?	viv; vit; AB, RD, MS	Recognized by ankyrin repeat domain of GLP that is recruited to RelA target genes and upregulates H3K9Me2 levels and downregulates their expression (GLP association inhibited in turn by S311Pi by PKC-ζ, which then allows expression of target genes)	Levy et al (2011) Nat. Immunol., Chang (2011) Nucl. Ac. Res.
Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
---------	------------	--------	-------	----------	-----	-----	----------	---------	------------
TAF10	Q12962	1Me	Hs	SET7/9	?	(PRC2)	viv, vit; AB, RD	Stimulated by TNF-α; induces degradation of promoter-associated RelA (proteasome); stimulated by berberine and leads to ROS production	Yang (2009a,b) EMBO J (Berberine: Hu et al. (2013) Acta Pharm. Sin.)
CATA4	P43694, Q08369	1Me	Hs, Mm	EZH2 (PRC2)	?	viv, vit; MS, AB, RD	Requires SUZ12 and EED, occurs in fetal hearts, prevents CATA4 C-terminal AcKn by p300, limits CATA4-mediated recruitment of p300 to chromatin which represses the expression of these target genes	He (2012) Genes Dev.	
Reptin (Ruvb12)	Q0Y230	1Me	Hs	G9a	?	viv, MS, AB	Negatively regulates hypoxia-responsive genes	Lee (2010) Mol. Cell	
C/EBPβ	Q08266, P28033, P21272	?	Mm, Rn	G9a	?	viv, vit; RD	Inhibition of transactivation potential	Pless (2008) JBC	
ARIDSB	Q14865	2Me	Hs	PHF2	?	viv, MS, AB	Demethylation of ARIDSB necessary for binding to target promoters	Baba (2011) Nat. Cell. Biol.	
ERα	P03372	1Me	Hs	SET7/9	?	viv, vit; MS, RD, AB	Recruitment of ER to target genes and transactivation	Subramanian et al. (2008) Mol. Cell	
472	3Me	Hs	?	?	?	viv, MS	Could be AcK	Atsuki et al. (2009) MCP	
AR	P10275	1Me	Hs	SET7/9	?	viv, vit; RD, AB	Enhances AR transactivation through interdomain (N-C) interaction	Ko et al. (2011) Mol. Endocr.	
632	1Me	Hs	?	?	?	viv, vit; RD, AB	Enhances transcriptional activity and recruitment to target genes, site disputed	Gaughan et al. (2011) Nucl. Acid Res. (disputed: Ko et al. (2011) Mol. Endocr.)	
Chromatin/chromosomal regulation									
Dam1	P53267	2Me	Sc	SET1	?	viv, AB	Tunes levels of Pi for S232, S234, and S235 by Ip1L; important for proper chromosome segregation	Zhang (2005) Cell	

© 2014 The Authors

Molecular Systems Biology 10: 741-2014

The diversity of lysine methylation

Sylvain Lanouette et al
Table 1 (continued)

Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References	
MC1-a	Q8PY15	37	?	M. mazei	Go1-SET	?	vit, RD	?	independently of transcriptional elongation	Latham et al (2011) Cell
								Requires H2BK123Ub; requires Rad6 & Bre1; Ubp8 downregulates levels		
Cren7	Q97ZE3.C3NSA6	16	1Me/2Me	S. solfataricus S. islandicus	aKMT	?	viv; vit; RD, MS	?	Guo et al (2008) Nucl. Ac. Res.; aKMT: Chu (2012) J. Bact.	
		34	1Me	S. solfataricus S. islandicus	aKMT	?	viv; vit; RD, MS	?	Guo et al (2008) Nucl. Ac. Res.; aKMT: Chu et al (2012) J. Bact.	
		31, 37, 42?	?Me	S. solfataricus	?	?	viv; MS	?	Guo et al (2008) Nucl. Ac. Res.	

Protein synthesis

Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
EF-Tu	P09591	5	3Me	P. aeruginosa	EftM	?	viv; MS	Mimics platelet-activating factor to mediate interaction with PAF receptor and allows bacterial invasion in pneumonia	Barbier (2013) Pneumonia
	P0CE47, P02891, P0A1H5, P33166, Q65PA9	56	1Me/2Me	E. coli, E. gracilis, S. typhimurium, B. subtilis, B. licheniformis	?	?	viv; RD	Affects bound tRNA conformation, lowers GTPase activity (2Me in stationary phase) and hypermethylation controlled by the availability of carbon, nitrogen, and phosphate sources in external medium; induces dissociation of EF-Tu from membranes	L’Italien (1979) FEBS Lett.; role: Van Noort (1986) Eur. J. Biochem, Young (1991) J. Bacteriol, Toledo & Jerez (1990)
RL1ab	P0CX43, P0CX44	46	1Me	Sc	RkmS	?	viv, vit; MS, RD	No effect versus protein synthesis inhibitors	Webb (2011) JBC
RL12	P0CX53, P0CX54, P0G050, Q75000, Q9W189	3	3Me	Sp, Hs, Dm	SET11	?	viv, vit; MS, RD	“Growth defect” if SET11 overexpressed; recruits Corto chromodomain to Drosophila nucleus which recruits RNApol III to chromatin and activates transcription	Sadaie et al (2008) JBC; Corto: Coleno-Costes (2012) PLOS genet.
		39, 40?	?Me?	Sp	SET11	?			Sadaie et al (2008) JBC
Protein	Uniprot ID	Lysine State	Organism	KDM	Evidence	State	Evidence	Effects	References
---------	------------	--------------	----------	-----	----------	-------	----------	---------	------------
RL12	106/26358	2Me	Sc, Sc	KMT	No effect on RNA binding, may affect Rpl24a position in the large subunit	?	?	?	Porras-Yakushi et al (2007) JBC
	110/26358	2Me	Sc, Sc	KMT	No effect on RNA binding, may affect Rpl24a position in the large subunit	?	?	?	Porras-Yakushi et al (2007) JBC
	55/26358	1Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC, Coutas et al (2012) Proteomics
	35/26358	1Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC
	70/26358	2Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC
	40/26358	1Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC
	70/26358	2Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC
	44/26358	2Me	Sc, Sc	KMT	Stress protection, survival in stationary phase, cyclolobycinide protection	?	?	?	Webb et al (2008) JBC

Table 1 (continued)

- **Protein**: RL12, RL2, SET13(K-RMK), SET13-(K-RMK)
- **Uniprot ID**: As specified in the table
- **Lysine State**: Various lysine states are listed
- **Organism**: Sc, Hs, Mm
- **KDM**: Various KDMs are listed
- **Evidence**: Various evidence types are listed
- **State**: Various states are listed
- **Effects**: Various effects are listed
- **References**: Various references are listed

The diversity of lysine methylation in Molecular Systems Biology, by Sylvain Lanouette et al. 2014.
Table 1 (continued)

Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
GLP Q9H9B1	122	3Me	Hs	?	?	viv, MS*	?	Bremang et al (2013) Mol. BioSyst.	
	174	?	Hs	G9a	?	viv; RD	In vitro evidence only	Chin et al (2007) Nucl. Acids Res.	
	205	?	Hs	GLP	?	viv, vit; MS, RD, AB	Recruits MPP8 and GLP; possible role in G9a/GLP/DNMT3a/MPP8 complex formation	Chang et al (2011) Nature Comm.	

Chaperones

| HSP90 | P07900 | 615 | 1Me | Hs, Mm, Dr | SMYD2 | LSD1 | viv, vit; MS, RD, AB | Correlates with association of a SMYD2/HSP90 complex to titin and correct myofilament organization | Abu-Fahra (2011) J. Mol. Cell Biol., Donlin (2012) Genes & Dev, Voelkel (2013) BBA |
| HSP70 | P08107 | 561 | 2Me | Hs | SETD1A | ? | viv, vit; MS, AB | Promotes association with AURKB which enhances its activity; enhances cancer cell growth | Cho et al (2012a, 2012b) Nature Comm., Cloutier et al (2013) PloS Genet. |

Metabolism

| Calmodulin | P62152 | 94 | 1Me/2Me | Dm | ? | ? | viv, MS | Eye specific | Takemori et al (2007) Proteomics |
| Calmodulin | P62158, P62161, P06787, P07463 | 115 | 3Me | Hs, Rn, Oa, Nt, Ps, Sc, Sp, P. tetraurelia | CaKMT | ? | viv, vit; ED, RD, MS | Reduces NAD kinase activation; reduces in vitro Tm of linker region, not required for myosin light chain activation; role in stem internode growth, seed production and seed and pollen viability; for mammals, no effect on cell growth, proliferation or calmodulin stability; necessitate chaperoning of CaKMT by middle domain of HSP90 | Watterson 1980 (JBC) (role: Roberts et al (1986) JBC, myosin: Molla (1981) JBC, Roberts et al (1992) PNAS CAKMT: Sitaramayya et al (1980) JBC, Oh & Roberts (1990) Plant Physiol, Han et al (1993) Biochemistry, Pech1994 BBA, Magnani et al (2010) Nat. Comm.; Tm: Magnani et al (2012) Protein; Expr. and Pur. Mammals; Panina et al (2012) JBC; HSP90: Magen et al (2012) PloS One), Bremang et al (2013) Mol. BioSyst. |
Protein	Uniprot ID	Lysine	State	Organism	KMT	KDM	Evidence	Effects	References
Rubisco	P11383, P00876, P04717, P27064	14	3Me	T. aestivum, Nt, P. sativum, Solanaceae, Cucurbitaceae	RLSMT	?	viv, vit, ED, RD, MS	? - Not methylated in Arabidopsis	Houtz et al (1989) PNAS, Houtz et al (1992) Plant Physiol. (RLSMT: Houtz et al (1991) Plant Physiol. At: Mininno (2012) JBC
β-glycosidase	P22498	116/135	1Me/2Me?	S. solfataricus	?	?	viv, MS	Enhances thermal stability	Febbraio et al (2004) JBC
		272	2Me	S. solfataricus	?	?	viv, MS	Enhances thermal stability	Febbraio et al (2004) JBC
		311/322	1Me/2Me?	S. solfataricus	?	?	viv, MS	Enhances thermal stability	Febbraio (2004) JBC
Citrate synthase	P00889	368	3Me	Ss	?	?	viv, ED	No effect on catalysis	Bloxham (1981) PNAS (no effect: Evans et al (1988) BBRC)
Electron transfer & oxidative stress									
Cytochrome c	P00044, P00068, P62898, P00048, P00043, P00041	3Me		Rn, Sc, Nc, T. aestivum, P. sativum, N. crassa, H. anomala, D. meloeckeri, C. krusei	Ctm1	?	viv, vit, ED, RD	Blocks cytochrome c apoptotic activity; minor role in transfer to mitochondria in yeast; absent from most higher mammals, vertebrates	DeLange (1969) JBC, DeLange (1970) JBC, Sugeno et al (1971) J Biochem. Brown et al (1973) Biochem. J (Ctm1p: Polevoda et al (2000) JBC; roles: Kluck et al (2000) JBC)
Viral proteins									
Tat	P04610	50/51	3Me?	HIV-1	SETDB1	?	vit, RD	Inhibits LTR transcription	Van Duyne (2008) Retrovirology
VP1	A8Y983	5?	3Me	polymavirus	?	?	viv, RD	?	Burton & Consigli (1996) Virus Res.
Membrane proteins									
VCP	P55072	315	3Me	Hs	VCP-KMT	?	viv, vit, RD, MS	Methylated prior to hexamer assembly, does not affect ATPase activity (contested: also observed to lower VCP ATPase activity)	Kernstock (2012) Nature Comm., Lower ATPase activity: Cloutier et al (2013) PloS Genet., Bremang et al (2013) Mol. BioSyst.
Table 1 (continued)

Protein Protein	Uniprot ID	Organism	State	Lysine	State	Evidence	Effects	
Omp8	QA3010, Q96969	R. prowazekii	RpB92, R0601018	?	?	in vitro		
HIP4A	A614510, B0K0475	M. leprae	MtB	1482-185	14Me/16Ac			
LBP	?	M. smegmatis	M. smegmatis	?	?	in vivo		
		M. smegmatis	M. smegmatis	?	?	in vitro, in vivo		

Evidence: v/w, in vitro; u/v, in vivo; A/B, specific antibody; A/B, pan-methyllysine antibody; MS, mass spectrometry; MS*, high-throughput mass spectrometry; KDM, high-throughput mass spectrometry; KDM, high-throughput mass spectrometry; ED, Edman degradation; RD, radiolabelling assay.

methylated site. Antibodies raised against a specific methylation site have however been invaluable in the identification and *in vivo* confirmation of methylated proteins (Fig 2A and Supplementary Table S1).

High-throughput discovery of lysine methylation

Mass spectrometry is the current method of choice to detect PTMs. This technique is sensitive and reproducible: it can detect the 14 Da shift in the mass of a given peptide corresponding to a methyl group and is also capable to determine the residues being methylated (Fig 2B). Its use has nonetheless been impaired by the low abundance, *in vivo*, of methylated sites relatively to their non-methylated counterpart. In addition, the small mass difference between a tri-methylated and an acetylated peptide (42.05 Da versus 42.01 Da) cannot be separated using low-resolution mass spectrometers. Fortunately, the precision of recent instruments such as Orbitrap and triple TOF simplifies their respective identification (Huq et al., 2009; Chu et al., 2012). Previous proteome-scale studies of acetylation in human cells have used pan-acetyllysine antibodies to enrich acetylated proteins prior to mass spectrometry analysis (Choudhary et al., 2009). Low specificity and sensitivity of previously available pan-methyllysine antibodies have limited the use of this approach.

Recently, a cocktail of antibodies was developed to enrich methylated peptides (Guo et al., 2014) and has successfully yielded a significant number of novel methylation sites. This novel approach identified 165 sites across a wide variety of sequences in histones, elongation factors and chaperone proteins in HCT116 cells. In addition, metabolic labeling methods, such as heavy methyl SILAC (Ong et al., 2004), are being developed and have been applied to the *de novo*, high-throughput discovery of chromatin-specific methylation sites (Bremang et al., 2013).

Recently, a new approach for the detection of methylation was reported, based on known methyllysine-binding protein domains in lieu of a classic antibody fold (Fig 2B). Liu et al used the HP1 β chromodomains as bait against cell extracts and systematic peptide arrays to identify a methyllysine-dependent interactome for the protein (Liu et al., 2013). This led to the discovery of 29 new methylated proteins and demonstrated a role of HP1 β in DNA damage response, driven by its interaction with methylated DNA-PKc. Moore et al. (2013) also made use of methyl-binding domains by engineering a generic methyl probe from the L3MBTL1 fold. This construct was then used to identify new targets for the PKMTs G9a and GLP directly from cell extracts, utilizing SILAC and specific PKMTs inhibitors.

Prediction-based discovery of lysine methylation

As an alternative approach to high-throughput technologies, other research groups decided to focus on the determination of substrate recognition by PKMTs. A library of peptides spanning the sequence recognized by a PKMT and bearing targeted or systematic mutations is assayed for methylation optima. These, often together with structural studies, allow for the elucidation of the PKMT specificity and the prediction of new substrates. The approach has so far been applied to G9a (Rathert et al., 2008a), SETD6 (Levy et al., 2011b), SET7/9 (Couture et al., 2008; Dhayalan et al., 2011) and SET8 (Kuditipudi et al., 2012). More specifically, the methyltransferase activity of SET7/9 toward TAF7 (Couture et al., 2008), TAF10 (Kouskouti et al., 2004) and E2F1 (Kontaki & Talianidis, 2010; Xie et al., 2011)
was first predicted on the basis of methylation assays performed on a small library of peptides (Couture et al., 2008). To date, the majority of methylation sites reported for SET7/9 are included within the motif [R/K]-[S/T/A]-K*- [D/K/N/Q] inferred from these assays (Supplementary Table S1). Moreover, a recent study expanded the range of SET7/9 putative substrates (Dhayalan et al., 2011). The broader motif identified in this study, [G/R/H/K/P/S/T]- [K/R]-[S/K/T/A/R/T/P/N]-K*, suggests that SET7/9 may have a more relaxed specificity than previously assessed (Dhayalan et al., 2011). An extensive peptide array based on a 21-residue peptide encompassing the N-terminus of histone H3 was also used to characterize the sequence recognized by the methyltransferase G9a (Rathert et al., 2008a). The team found that G9a recognizes the motif [N/T/GS]-[G/C/S]-[R]-K*- [T/G/Q/S/V/M/A]-[F/V/I/L/A], where K* is the methylated lysine (Rathert et al., 2008a). Among the candidates including this motif, CDYL, WIZ, ACINUS, DNMT1, HDAC1 and Kruppel were shown to be methylated both in vitro and in vivo by G9a. Furthermore, methylated peptides of the CDYL and WIZ target sequences were found to bind HP1 β chromodomain, demonstrating that methyllysine effectors can recognize those sites. While peptide arrays have proven useful in the identification of protein substrates, this approach may not be applicable to all PKMTs. For example, identification of a motif for SET8 based on a peptide array designed from the tail of histone H4 failed to provide new substrates for this PKMT, demonstrating that peptide substrates may lack important structural determinants required for substrate recognition and catalysis (Kudithipudi et al., 2012). In a variation on this approach, full-length protein arrays regrouping over 9000 candidate substrates were used to determine the motif recognized by the methyltransferase SETD6, only known at the time to methylate RelA. A total of 154 total putative targets were predicted. Of these, six substrates were confirmed in vitro, and of these, PLK1 and PAK4 were found to be methylated in HEK293 cells overexpressing SETD6 (Levy et al., 2011b). In summary, while the proteome-wide characterization of lysine methylation has recently progressed significantly, the success rates of linking a genuine proteome-wide characterization of lysine methylation has recently progressed significantly, the success rates of linking a genuine methylation site to a proper biological cue have remained relatively low. However, even with the shortcomings of current methods, efforts from several groups have highlighted the roles played by lysine methylation in a myriad of cellular processes.

Functional roles of lysine methylation

Methylation of histone proteins

Given their abundance and ease of preparation, histone proteins were one of the first characterized methyllysine proteins (Murray, 1964). Research efforts have subsequently mapped several...
methyllysine residues on histone proteins and related those modifications to specific biological cues (Fig 3) (comprehensively reviewed in Black et al., 2012; Kouzarides, 2007; Shilatifard, 2006; Smith & Shilatifard, 2010). For example, methylation of histones is associated with activity at transcription start sites (H3 K4 (Santos-Rosa et al., 2002)), heterochromatin formation (H3K9 (Bannister et al., 2001; Lachner et al., 2001)), X chromosome silencing and transcriptional repression (H3 K27 (Cao & Zhang, 2004; Plath, 2003)), transcriptional elongation and histone exchange in chromatin (H3K36 (Carrozza et al., 2005; Keogh et al., 2005; Li et al., 2007a; Venkatesh et al., 2012; Wagner & Carpenter, 2012)) and DNA damage response (H4 K20 (Greerson et al., 2008; Sanders et al., 2004) and H3K79 (Huyen et al., 2004)). Our view of this network of modifications increased in complexity with the recent observation that methylation of a lysine residue influences the deposition of the same modifications increased in complexity with the recent observation that methylation of a lysine residue influences the deposition of the same PTM on other histone proteins (Latham & Dent, 2007). The combination of different PTMs forms patterns of modifications distributed throughout the genome, and these configurations strongly correlate with the state, cell type and gene expression profile of the cell line studied (Heintzman et al., 2009; Ernst et al., 2011; Kharchenko et al., 2011; Yin et al., 2011).

Methylation of the transcription apparatus

The study of histone lysine methylation paved the way for the subsequent identification of an important number of sites on other proteins involved in the regulation of transcription and translation (Table 1 and Supplementary Table S1). Among those, methylation of p53 by SET7/9 (Chuikov et al., 2004) was initially reported to promote the pre-apoptotic activity of the transcription factor in stimulating its acetylation by p300/CBP (Ivanov et al., 2007). Methylation of K370 by SMYD2 was later shown to prevent the methylation of K372 by SET7/9, thus keeping p53 in a “poised” state (Huang et al., 2006, 2007). Methylation of K373 and K382, by G9a (Huang et al., 2010) and SET8 (Shi et al., 2007; West et al., 2010), respectively, were also reported to regulate the function of p53. In the first case, the modification directly inhibits p53 pre-apoptotic activity (Huang et al., 2010). Methylation of K382 recruits the transcriptional suppressor L3MTL1 to block the expression of p53 target genes such as PRDM2 and SET2 family.

Figure 3. Methyllysine residues on canonical histone H2A, H2B, H3 and H4.

Bold numbers indicate the methylated residue, italics indicate the organisms in which these modifications are found. At, Arabidopsis thaliana; Bt, Bos taurus; Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Dr, Dania rerio; Gg, Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Nc, Neurospora crassa; Pb, Paramecium bursaria; Sp, Saccharomyces cerevisiae; Sc, Schizosaccharomyces pombe; Tt, Tetrahymena thermophila. Known methylation states are indicated in parenthesis. A * indicates methyllysine residues modified by an unidentified enzyme.
as p21 and PUMA (West et al, 2010). Altogether, these findings suggest that lysine methylation tunes p53 activity in a variety of ways. Intriguingly, Lehertz et al (Lehnertz et al, 2011) and Campaner et al (Campaner et al, 2011) reported recently that SET7/9 null mice do not show any defects in p53 acetylation or apoptotic activity. However, the authors did note the possibility that other compensatory mechanisms could exist—as p53 is regulated by redundant mechanisms (Cinelli et al, 1998; Ryan et al, 2001; Kruse & Gu, 2009; Gu & Zhu, 2012; Shadfan et al, 2012). In addition, it remains to be investigated whether other p53 PTMs—such as the methylation of K370 by SMYD2 in control mice or redundant activating mechanisms such as the acetylation of K373 and 382—buffer the impact of SET7/9 knock-out.

Besides p53, several transcription factors are methylated by SET7/9, and as a result, their activity is modulated in different ways. Methylation of K185 inhibits E2F1 apoptotic activity by inducing its proteasomal degradation (Kontaki & Talianidis, 2010). TAF10 methylation increases its affinity for RNA polymerase II thereby stimulating the transcription of specific target genes (Kouskouti et al, 2004). Methylation of K630 on the androgen receptor (AR) stabilizes interaction of its N- and C-terminal domains, allowing transactivation of AR-responsive genes (Gaughan et al, 2011), while methylation of FOXO3 on K270 lowers the DNA binding affinity of the forkhead protein (Xie et al, 2012).

In apparently conflicting studies, SET7/9 was reported to methylate RelA (p65) on both K37 (Ea & Baltimore, 2009) and K314/315 (Yang et al, 2010b). While Ea & Baltimore (2009) showed that methylation of K37 is required for NF-κB target gene expression in HEK293 cells following TNFα stimulation, Yang et al (2010b) showed that, also in response to TNFα, methylation of K314 and K315 induces the proteasomal degradation of the protein in U2OS cells. It is possible that SET7/9 can methylate both residues and that another regulatory switch directs its activity specifically toward the activation or repression of RelA.

In addition to SET7/9, other methyltransferases modulate RelA activity. Methylation of K310 on p65 by SETD6 tethers GLP through its ankyrin repeat domain, promoting the deposition of the repressive mark H3K9Me2 on inflammatory response NF-κB target genes (Levy et al, 2011a). In contrast, cytokine stimulation induces methylation of RelA by NSD1, which promotes NF-κB activity through an unknown mechanism (Lu et al, 2010).

Similar to RelA, lysine methylation is a key PTM in the intricate regulatory network of the retinoblastoma protein (pRb) (Saddic et al, 2010; Cho et al, 2012a). Methylation of K810 by SMYD2 enhances pRb phosphorylation and promotes cell cycle progression, while methylation of K860 by the same PKMT stimulates the binding of the tumor suppressor to L3MBTL1 and induces cell cycle arrest (Saddic et al, 2010). Interestingly, following DNA damage, pRb methylation on K810 by SET7/9 leads to cell cycle arrest (Carr et al, 2011). Intriguingly, the same enzyme also methylates the tumor suppressor on residue K873, leading to the recruitment of HP1 to pRb target genes which also triggers cell cycle arrest (Munro et al, 2010).

Methyllysine residues have also been mapped on other pioneer transcription factors. Methylation of GATA4 by EZH2 regulates association of the activator to p300, regulating the expression of GATA4 target genes (He et al, 2012a). Similarly, methylation of C/EBP β (Pless et al, 2008) by G9a is important for the transactivation potential of the transcription factor. Conversely, methylation of Reptin by the same enzyme negatively regulates a subset of hypoxia responsive genes (Lee et al, 2010). Taken together, these studies suggest that lysine methylation of the same residue can lead to different outcomes depending on the cellular context. Overall, it is clear that different methylation sites on the same protein can lead to drastically different effects. These findings also suggest that additional mechanisms such as feedback loops, switches and even demethylation of methyllysine residues (see below) will mark which lysine will be methylated during a given cellular process.

Methylation of the translation apparatus

In contrast to the various effects reported for lysine methylation on gene transcription, investigation of the impacts of lysine methylation on translation has yielded far less details. Notably, although methylation of ribosomal proteins has been reported for three decades, the molecular and biological implications of these marks have remained elusive. Evidence that these PTMs are found in mammals, yeast, plants, bacteria and archaea lends credence to the hypothesis that methylation of the ribosome is important for its functions. However, systematic mutation of lysine residues known to be methylated failed to promote or impair either ribosomal assembly or cell survival, suggesting that methylation of ribosomal subunits plays a role in a novel, yet unexplored, biological pathway. It was recently suggested that methylation of K106 and K110 of L23ab could influence its precise positioning within the ribosome (Porras-Yakushi et al, 2007), while methylation of K55 on L42 might modulate association with rRNA (Shirai et al, 2010). However, in both cases, further experimental evidence is needed to provide a definite answer. Interestingly, recent studies have shown that the *Drosophila* Polycomb interactor Corto (centrosomal and chromosomal factor) recognizes trimethylated K3 of the ribosomal protein L12. This association, mediated by the chromodomain of Corto, recruits the RNA polymerase III and activates transcription of the heat-shock responsive gene *hsp70* (Coléno-Costes et al, 2012). The involvement of lysine methylation in the nuclear functions of ribosomal proteins (Bhavsar et al, 2010) suggests that lysine methylation of ribosome components has the potential to modulate or elicit important functions beside its canonical functions. However, given the substantial number of methyllysine residues within a ribosome (approximately 80), redundant mechanisms could mask the role of lysine methylation during translation.

Functional diversity of lysine methylation beyond histones and transcription

In addition to transcription factors and the translation machinery, a wide variety of proteins are methylated by PKMTs, as demonstrated by both targeted and large-scale studies (Iwabata et al, 2005; Jung et al, 2008; Pang et al, 2010). Across all domains of life, a critical set of functions is regulated by the methylation of lysine on proteins.

Lysine methylation & eukaryotes

Some chaperone proteins are regulated by lysine methylation in eukaryotes. For example, methylation of HSP90 by SMYD2 is involved in sarcomere assembly through titin stabiliza
(Donlin et al., 2012; Voelkel et al., 2013). Also, SETD1 methylation of HSP70 on K561 promotes the association of the chaperone to Aurora Kinase B and stimulates the proliferation of cancer cells (Cho et al., 2012b). In the yeast kinetochore, methylation of Dam1 by SET1 at the yeast kinetochore is important for proper chromosome segregation during cell division (Zhang et al., 2005; Latham et al., 2011), while methylation of DNA methyltransferase DNMT1 by SET7/9 regulates global levels of DNA methylation (Estève et al., 2009, 2011; Zhang et al., 2011a). These examples demonstrate that in eukaryotes, lysine methylation is not limited to proteins of the transcriptional apparatus, but affects a wide variety of functions in the cell, many of them yet to be explored.

The role of lysine methylation in plants is even more elusive: The chloroplastic Rubisco large subunit (Houtz et al., 1989) and fructose 1,6-biphosphate aldolase (Magnani et al., 2007; Mininno et al., 2012) are both methylated by RLSMT, but their activity remains unaffected by the modification. Methylation of aquaporin PIP2 K3 is necessary for E6 methylation in Arabidopsis thaliana; yet the roles that these PTMs play remain unknown (Santoni et al., 2006; Sahr et al., 2010).

Lysine methylation & prokaryotes

Similar to eukaryotes, lysine methylation modulates protein functions in bacteria. Methylation of pilin in Synechocystis sp. regulates cell motility (Kim et al., 2011b), while methylation of EF-Tu's K56 lowers its GTPase activity and stimulates dissociation from the membrane (Van Noort et al., 1986). In the latter case, levels of methylated EF-Tu increase in response to deprivation in carbon, nitrogen or phosphate levels, suggesting that extracellular cues control the activity of lysine methyltransferases (Young et al., 1990; Young & Bernlohr, 1991). Other lines of evidence suggest that lysine methylation of surface proteins might play a role in optimizing bacterial adherence to their environment (see Disease implications of lysine methylation and (Biet et al., 2007; Delogu et al., 2011; Guerrero & Locht, 2011; Soares de Lima et al., 2005; Temmerman et al., 2004)). Recent large-scale proteomic studies in Desulfovibrans vulgaris (Gaucher et al., 2008; Chhabra et al., 2011) and Leishmania interrogans (Cao et al., 2010) reported a large number of methylation sites on a wide variety of proteins (Supplementary Table S1), suggesting that lysine methylation is a prevalent and dynamic post-translational modification in bacteria.

Lysine methylation & archaea

Archaea are devoid of histone proteins capable of folding DNA into octameric nucleosomes reminiscent of those found in eukaryotes. Instead, DNA compaction is achieved by a family of small basic proteins (Sandman & Reeve, 2005). As an interesting parallel with lysine methylation in eukaryotes, several of these DNA-binding proteins are methylated on lysine residues. Among those, Sac7d from S. acidocaldarius was the first archaeal protein reported to be methylated (Mcafee et al., 1995). Other members of the archaeal histone-like DNA-binding proteins, such as CCI, Cen7, Sso7c, are methylated on multiple lysine residues (Knapp et al., 1996; Oppermann et al., 1998; Guo et al., 2008; Botting et al., 2010). However, no role has yet been ascribed to this modification in the context of archaeal chromatin (Mcafee et al., 1996). As a possible counterpart to eukaryotes, a SET protein able to methylate the DNA-associated protein MCI-α was identified in the crenarchaea *Methanococcus mazei* (Manzur & Zhou, 2005), illustrating that similar processes bring about lysine methylation across life's domains. Unique to an archaeal organism, the β-glycosidase of the hyperthermophile *Sulfolobus solfataricus* was reported to be methylated on up to five residues, a modification reported to protect the protein from thermal denaturation (Febbraio et al., 2004). Further proteomic studies uncovered a large number of proteins methylated in *S. solfataricus* (Botting et al., 2010). Interestingly, for a subset of these proteins such as the β-glycosidase, lysine methylation enhances the thermal stability of the modified protein (Fusi et al., 1995; Knapp et al., 1996; Botting et al., 2010). Altogether, these findings strongly suggest that lysine methylation in Archaea is equally important for proper protein function as in Eukarya.

Lysine methylation of viral proteins

Viruses are able to use the arsenal of methyltransferases of their host cell. Burton and Consigli, (1996) were the first to report the methylation of the major capsid protein VP1 of the murine polyomavirus. Since then, other examples of methyllysine residue have been discovered in viral proteins. Methylation of the HIV-1 transcriptional activator Tat on K50 by SETDB1 inhibits LTR trans-activation (Van Duyne et al., 2008), while concurrent methylation of K51 by SET7/9 enhances HIV transcription (Pagans et al., 2011; Sakane et al., 2011), demonstrating that, at least in a specific context, the virus uses the host’s PKMTs to ensure proper viral propagation. Some viruses also possess their own methylation machinery: *Paramecium bursaria* chlorella virus 1 methyltransferase vSET site-specifically methylates histone H3 on K27 to trigger gene silencing (Manzur et al., 2003; Mujtaba et al., 2008). Overall, viruses seem to take advantage of lysine methylation mechanisms in their invasion cycle as they do of other PTMs (Gustin et al., 2011; Keating & Striker, 2012; Van Opdenbosch et al., 2012; Zheng & Yao, 2013).

Lysine demethylation

Evidence that purified cell extracts showed slow yet detectable activity toward methylated lysine suggested that the methyl moiety added to lysine residues could be removed by dedicated lysine demethylases (KDM) (Paik & Kim, 1973, 1974). The discovery of the first KDM, LSD1, a flavine amine oxidase able to demethylate mono- and di-methylated histone H3K4, confirmed those initial reports and demonstrated that lysine methylation was part of a dynamic equilibrium. Jumonji-containing proteins, Fe(II)/α-KEG-dependent dioxygenase, were subsequently shown to demethylate tri-, di- and mono-methyllysine residues in histone proteins (Tsuchida et al., 2006). In contrast to other KDMs, LSD1 shows a broad specificity and demethylates a large spectrum of methylated proteins. For example, demethylation of the poised K370-methylated pool of p53 by LSD1 is necessary for subsequent methylation and activation by SET7/9 (Huang et al., 2007). LSD1 also plays a role in the function of other transcription factors such as E2F1 (Kontaki & Talianidis, 2010), Sp1 (Chuang et al., 2011), STAT3 (Yang et al., 2010a) and MYPT1 (Cho et al., 2011). In addition to the demethylation of transcription factors, LSD1 also targets the DNA methyltransferases DNMT1 (Wang et al., 2009) and DNMT3 (Chang et al., 2011) and the molecular chaperone HSP90 (Abu-Farha et al., 2011). Notably,
demethylation of DNMT1 by LSD1 enhances its stability and regulates global levels of DNA methylation in embryonic stem cells (Wang et al., 2009).

Only two jumonji proteins are reported to demethylate non-histone proteins. JHDM1 (FXXBL11) demethylates RelA on K218Me and K221Me, opposing the activation of this transcription factor. Interestingly, given that RelA regulates fxb11 gene expression, the demethylase participates in a negative feedback loop that tightly controls the activity of FXB11 (Lu et al., 2010). In another study, Baba et al. reported that the jumonji demethylase PHF2, following activation by protein kinase A, demethylates the transcription factor ARID5B. Demethylation of ARID5B stabilizes the PHF2/ARID5B complex and triggers the recruitment of PHF2’s H3K9Me2 demethylation activity to, and regulate the expression of, ARID5B target genes (Baba et al., 2011). These examples demonstrate that demethylation is a key component of the signalization and modulation dynamics of the proteome.

Molecular functions of lysine methylation

In comparison with other post-translational modifications, methylation appears to present only limited ways to affect the chemistry of a residue. For example, acetylation of lysine ε-amine neutralizes its positive charge and the addition of a carbonyl’s dipole makes possible new types of interactions. Phosphorylation drastically modifies the charge of a protein (-3 per phosphate group) and adds a relatively important mass to an amino acid side chain (95 Da; 80 Da for Ser and Thr phosphorylation). The addition of ubiquitin and ubiquitin-like molecules, which increase the size of the targeted proteins by at least 10 kDa, is linked to cell trafficking, transcriptional regulation, and endocytosis (Hicke, 2001; Haglund et al., 2003) and is coupled to a dedicated recognition pathway, leading to degradation by the proteasome (Glickman & Ciechanover, 2002; Ciechanover, 2005). Comparatively, methylation of a lysine residue does not modify the side chain’s positive charge and causes only a small change in mass of a protein (14, 28 or 42 Da).

Following the large-scale identification of methylated lysine residues in S. cerevisiae, Pang et al. (2010) observed that 43% of these sites corresponded to potentially ubiquitinated residues, thus raising the possibility that methylation increases the stability of proteins by competing with ubiquitination (Fig 4A). Accordingly, pulse-chase experiments revealed an increase in the half-life of several proteins. Therefore, methylation can be considered as a regulator of ubiquitination. However, this means of regulating protein turnover rate cannot be applied to the entire proteome, as lysine methylation has been shown to increase global ubiquitination of E2F1, DNMT1, RORx and NF-κB (Estève et al., 2009; Yang et al., 2009a; Kontaki & Talianidis, 2010; Lee et al., 2012).

In the most direct case, methylation of a given lysine residue would preclude the addition of another modification on the same methylation site. However, “methyl switches”, in which methylation of one lysine residue stimulates or inhibits the modification of at least one neighboring residue (Fig 4B), have been observed. For example, methylation of p53 K372 depends on the addition of an acetyl moiety on neighboring lysine residues (Kurash et al., 2008). Inhibition of cell cycle-promoting activity of E2F1 is blocked by methylation of K185, thereby stimulating the ubiquitination of the transcription factor and preventing its phosphorylation by CK2 and ATM as well as its acetylation by PCAF (Kontaki & Talianidis, 2010). Another example is the methylation of K810 on pRb by SMYD2, which enhances phosphorylation of serine residues 807 and 811 by CDK4, inhibiting its cell cycle repressor activity (Cho et al., 2012a). In S. cerevisiae, methylation of Dam1 K233 prevents the phosphorylation of S232 and S234 by Ipl1, allowing its optimal phosphorylation at S235, which promotes efficient chromosome segregation (Zhang et al., 2005). Overall, these observations support the fact that lysine methylation is connected to other networks of PTM and consequently to most signaling events.

In addition to controlling the deposition of neighboring PTMs, lysine methylation creates a binding surface for the recruitment of other proteins (Fig 4C). Recognition of methylated lysine residues by chromodomains—part of the Royal domain family—was first reported for histone proteins (Bannister et al., 2001; Jacobs et al., 2001; Lachner et al., 2001; Jacobs & Khorasanizadeh, 2002). Members of the Royal domains family can specifically bind methylated lysine residues through an “aromatic cage” formed by combination of hydrophobic contacts and cation–π interactions (Ma & Dougherty, 1997; Jacobs & Khorasanizadeh, 2002; Botuyan et al., 2006; Hughes et al., 2007; Taverna et al., 2007). Besides the Royal family, the Plant HomeoDomain (PHD) family also reads methyl-lysine residues. Despite structural divergence between chromodomain and PHD, the methyllysine engages in similar cation–π interactions (Li et al., 2006; Peña et al., 2006; Shi et al., 2006; Wysocka et al., 2006). Interestingly, the presence of hydrogen bond networks in the aromatic cages allows the specific recognition of either mono- or di-methylated over tri-methylated lysine (Li et al., 2007b) triggering a specific biological response.

For instance, in histone proteins, the Polycomb complex chromodomain recognizes di- or tri-methylated H3K27 (Min et al., 2003), while the EaB chromodomain protein recruits the Rpd3S deacetylase complex to regions enriched in H3K36 methylation (Carrozza et al., 2005). Among the numerous domains able to recognize methylated lysine residues on histone proteins (Musselman et al., 2012), the Tudor (Cui et al., 2012) and MBT (Kim et al., 2006; Li et al., 2007b) domains are also able to read specific methyl marks of both histone and non-histone proteins (Fig 4C). L3MBTL1 binds methyllysine residues on p53 (West et al., 2010) or pRb (Saddic et al., 2010), and the MPP8 chromodomain associates with the methylated form of DNMT3 (Chang et al., 2011) (Fig 4D). Interestingly, ankyrin repeats also appear to recognize methyllysine residues, as illustrated in the recruitment of GLP to methylated RelA (Levy et al., 2011a).

Lysine methylation can also affect biological outcomes through other mechanisms such as modulation of a protein’s DNA affinity (Ito et al., 2007; Xie et al., 2011; Calnan et al., 2012), resistance to tryptic cleavage (Soares de Lima et al., 2005; Kim et al., 2011b) and heat denaturation (Febbraio et al., 2004). Overall, despite its apparently simple character, lysine methylation regulates the proteome using a wide range of mechanisms.

Disease implications of lysine methylation

Several types of cancer involve the misregulation of PKMTs (Varier & Timmers, 2011; Butler et al., 2012; Greer & Shi, 2012; Hoffmann et al., 2012; Black & Whetstine, 2013; Campbell & Turner, 2013;
SMYD2 is up-regulated in esophageal squamous cell carcinoma (Komatsu et al., 2009) and bladder cancer cells (Cho et al., 2012a).

SMYD3 is overexpressed in breast carcinoma and correlates with tumor proliferation (Luo et al., 2009), while G9a is overexpressed in hepatocellular carcinoma and contributes to lung and prostate cancer invasiveness (Kondo et al., 2007, 2008; Chen et al., 2010; Huang et al., 2010). Accordingly, lysine methylation has been reported to influence processes directly linked to oncogenic pathways, providing a rationale for the involvement of PKMTs in cancer.

For instance, methylation of pRb by SMYD2 promotes cell proliferation, possibly through E2F transcriptional activity (Cho et al., 2012a). Similarly, SMYD2 methyltransferase activity prevents the activation of p53 pro-apoptotic function by the opposing modification of K372 by SET7/9 (Huang et al., 2006). Accordingly, these enzymes are currently explored as efficient cancer markers and potential anti-oncogenic drug targets (Cole, 2008; Natoli et al., 2009; Poke et al., 2010; Huang et al., 2011; Varier & Timmers, 2011; He et al., 2012b; Hoffmann et al., 2012; Zagni et al., 2013).

In addition to cancer, lysine methylation plays key roles in bacterial pathogenicity. Vaccination efforts against typhus’ agent Rickettsia typhi are targeting the immunodominant antigen OmpB. Interestingly, a critical difference between OmpB from infectious and attenuated strains is the methylation of several lysine residues of the N-terminal region of the protein (Chao et al., 2004, 2008). Chemical methylation of lysine residues on a recombinant peptide re-establishes serological reactivity of the OmpB fragment (Chao et al., 2004). In a similar fashion, Mycobacterium tuberculosis adhesins HBHA and LBP, important for adhesion to host cells, are also heavily methylated (Pethe et al., 2002; Temmerman et al., 2004;
Soares de Lima et al, 2005; Biet et al, 2007; Delogu et al, 2011; Guerrero & Locht, 2011). Similar to OmpB in R. typhi, immunological protection potential can be sustained by Mycobacterium tuberculosis HBHA only in its methylated form (Temmerman et al, 2004). Methylolation of lysine residues in HBHA or LBP per se does not appear to affect the adhesive potential of the pathogen, but it instead protects the protein against proteolytic cleavage in mouse bronchoalveolar fluid, suggesting a possible role for methylation in the biology and pathogenicity of Mycobacteria. This hypothesis is further strengthened by the observations that the related species Mycobacterium smegmatis and Mycobacterium leprae possess methylated adhesins (Pethe et al, 2002; Soares de Lima et al, 2005). More recently, methylation of P. aeruginosa EF-Tu K5 was shown to mimic the ChoP epitope of human platelet-activating factor (PAF), allowing association with PAF receptor and strongly contributing to bacterial invasion and pneumonia onset (Barbier et al, 2013). Given the increasing need for new and more efficient vaccines, understanding how lysine methylation impacts host-pathogen interaction will open exciting new avenues in understanding the mechanisms of pathogenicity.

Concluding remarks
Since its discovery over half a century ago, lysine methylation has been found in all domains of life. It is a dynamic modification, as it can involve the addition of one, two or three methyl groups, and it can be reversed by dedicated demethylases. Although histone lysine methylation is held as a canonical example of the importance of this PTM, it still remains unclear whether it acts as repository of epigenetic instructions or whether it is a consequence of transcriptional and replicative DNA-based processes. Importantly, methylation of lysine residues influences protein function beyond the context of chromatin, predominantly by modulating the deposition of other PTMs such as phosphorylation, acetylation and ubiquitination or by regulating protein–protein interactions. The versatility of lysine methylation is highlighted by the fact that the same mark, mediated by different methyltransferases, can trigger distinct biological effects in different cellular contexts. Similarly, modification of different residues on a given protein by the same methyltransferase can elicit different biological responses. Future efforts involving the high-throughput analysis of protein methylation and the identification of the specific subsets of substrates attributable to each PKMT will advance our understanding of the regulatory networks underlying the lysine methylome and will provide novel functional insights regarding this PTM. Moreover, considering the involvement of protein methylation in pathologies, such analyses would be beneficial for developing diagnostic biomarkers and for revealing mechanisms of pathogenicity.

Supplementary information for this article is available online: http://msb.embopress.org

Acknowledgments
Jean-François Couture acknowledges an Early Research Award from MEDI and a Canada Research Chair in Structural biology and Epigenetics. J-F C. is supported by grants from the Canadian Institutes for Health Research (GMX-209406) and the Natural Sciences and Engineering Research Council of Canada (discovery grant # 191666). Sylvain Lanouette holds a PhD Scholarship from the Fonds de Recherche en Santé du Québec (FRSQ). We would like to thank Elisa Bergamin, Pamela Zhang and William Lam for providing helpful comments on the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Abeykoon AH, Chao CC, Wang G, Cucek M, Yang DC, Ching WM (2012) Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia. J Bacteriol 194: 6410 – 6418
Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, Couture J-F (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol 3: 301 – 308
Amaro AM, Jerez CA (1984) Methylation of ribosomal proteins in bacteria: evidence of conserved modification of the eubacterial SOS subunit. J Bacteriol 158: 84 – 93
Ambler RP, Rees MW (1959) Epsilon-N-Methyl-lysine in bacterial flagellar protein. Nature 184: 56 – 57
Ames GF, Niakido K (1979) In vivo methylation of prokaryotic elongation factor Tu. J Biol Chem 254: 9947 – 9950
Ammendola S, Raia CA, Caruso C, Camardella L, D’Auria S, De Rosa M, Rossi M (1992) Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry 31: 12514 – 12523
Atriikl C, Britton DJ, Held JM, Schilling B, Scott GK, Gibson BW, Benz CC, Baldwin MA (2009) Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites. Mol Cell Proteomics 8: 467 – 480
Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, Meyer CA, Igarashi K, Kanno J, Brown M, Kato S (2011) PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARIDSB. Nat Cell Biol 13: 668 – 675
Bannister AJ, Zegerman P, Partridge JF, Mistka EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone h3 by the HP1 chromo domain. Nature 410: 120 – 124
Barbier M, Owings JR, Martinez-Ramos I, Damron FH, Comila R, Blazquez J, Goldberg JB, Alberti S (2013) Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia. MBio 4: e00207 – 00213
Bhavsar RB, Makley LN, Tsonis PA (2010) The other lives of ribosomal proteins. Hum Genomics 4: 327 – 344
Biet F, Angela de Melo Marques M, Grayon M, Xavier da Silveira EK, Brennan PJ, Drobecq H, Raze D, Vidal Pessolani MC, Locht C, Menozzi FD (2007) Mycobacterium smegmatis produces an HBHA homologue which is not involved in epithelial adherence. Microbes Infect 9: 175 – 182
Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48: 491 – 507
Black JC, Whetstine JR (2013) Tipping the lysine methylation balance in disease. Biopolymers 99: 127 – 135
Bloxham DP, Parmelee DC, Kumar S, Wade RD, Ericsson LH, Neurath H, Walsh KA, Titani K (1981) Primary structure of porcine heart citrate synthase. Proc Natl Acad Sci USA 78: 5381 – 5385
The diversity of lysine methylation

Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, Lai TC, Chang JS, Jan YH, Chien MH, Yang CJ, Huang MS, Hsiao M, Kuol ML (2010) H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. *Cancer Res* 70: 7830–7840

Chen Y, Sprung R, Tang Y, Ball H, Sangrás B, Kim SC, Falk JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. *Mol Cell Proteomics* 6: 812–819

Cheng X, Zhang X (2007) Structural dynamics of protein lysine methylation and demethylation. *Mutat Res* 618: 102–115

Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SSC, Gu W, Zhao Y (2009) Molecular characterization of propionyllsines in non-histone proteins. *Mol Cell Proteomics* 8: 45–52

Chin HG, Estève PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S (2007) Autometylation of G9a and its implication in wider substrate specificity and HP1 binding. *Nucleic Acids Res* 35: 7313–7323

Chhabra SR, Joachimiak MP, Petzold CJ, Zane GM (2011) Towards a rigorous network of protein-protein interactions of the model sulfate reducer *Desulfurobium vulgaris* Hildenborough. *PloS One* 6: e21470

Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M, Toyokawa G, Takawa M, Chen T, Kurash JK, Field HI, Ponder BAj, Nakamura Y, Hamamoto R (2011) Demethylation of RB regulator MYP1T1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. *Cancer Res* 71: 655–660

Cho HS, Hayami S, Kogure M, Kang D, Neal DE, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Ponder BAj, Yamaue H, Nakamura Y, Hamamoto R (2012a) RB1 methylation by Smyd2 enhances cell cycle progression through an increase of RB1 phosphorylation. *Neoplasia* 14: 476–486

Cho HS, Shimazu T, Toyokawa G, Daigo Y, Maehara Y, Hayami S, Itou A, Masuda K, Ikawa N, Field HI, Tsuchiya E, Ohnuma SI, Ponder BAj, Yoshida M, Nakamura Y, Hamamoto R (2012b) Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. *Nature Commun* 3: 1072

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Waltert TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. *Science (New York, NY)* 325: 834–840

Chu Y, Zhang Z, Wang Q, Luo Y, Huang L (2012) Identification and characterization of a highly conserved crenarchaeal protein lysine methyltransferase with broad substrate specificity. *J Bacteriol* 194: 6917–6926

Chuang JY, Chang WC, Hung JJ (2011) Hydrogen peroxide induces Sp1 methylation and thereby suppresses cyclin B1 via recruitment of Suv39H1 and HDAC1 in cancer cells. Free Radical Biol Med 51: 2309–2318

Chukov S, Kurash JK, Wilson JR, Xiao B, Justice N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p35 activity through lysine methylation. *Nature* 432: 353–360

Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. *Nat Rev Mol Cell Biol* 6: 79–87

Cinelli M, Magnelli L, Chiarugi V (1998) Redundant down-regulation pathways for p35. *Pharmacol Res* 37: 83–85

Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B (2013) A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. *PloS Genet* 9: e1003210

© 2014 The Authors

Molecular Systems Biology 10: 724 | 2014
Molecular Systems Biology

The diversity of lysine methylation

Sylvain Lanouette et al

Colson C, Lhoest J, Urlings C (2012) New partners in regulation of gene expression: the enhancer of trithorax and polycomb corto interacts with methylated ribosomal protein L12 via its chromodomains. PLoS Genet 8: e1003006

Colson C, Lhoest J, Urrlanges C (1979) Genetics of ribosomal protein methylation in Escherichia coli. III. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3. Mol Gen Genet 169: 245 – 250

Couttas TA, Raftery MJ, Padula MP, Herbert BR, Wilkins MR (2012) Methylation of translation-associated proteins in Saccharomyces cerevisiae: identification of methylated lysines and their methyltransferases. Proteomics 12: 960 – 972

Couture J-F, Hauk G, Thompson MJ, Blackburn GM, Trievel RC (2006) Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases. J Biol Chem 281: 19280 – 19287

Couture J-F, Dirk LMA, Brunzelle JS, Houtz RL, Trievel RC (2008) Structural origins for the product specificity of SET domain protein methyltransferases. Proc Natl Acad Sci USA 105: 20659 – 20664.

Cui G, Park S, Badeaux AI, Kim D, Lee J, Thompson JR, Yan F, Kaneko S, Yuan Z, Botuyan MV, Bedford MT, Cheng JQ, Mer G (2012) PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Nat Struct Mol Biol 19: 916 – 924

Delange RJ, Glazer AN, Smith EL (1969) Presence and location of an unusual amino acid, epsilon-N-trimethyllysine, in cytochrome c of wheat germ and Neurospora. J Biol Chem 244: 1385 – 1388

Delange RJ, Glazer AN, Smith EL (1970) Identification and location of epsilon-N-trimethyllysine in yeast cytochromes c. J Biol Chem 245: 3325 – 3327

Delogu G, Chiacchio T, Vanini V, Butera O, Cuzzi G, Bua A, Molicotti P, Zanetti and L. (2009) Methylated HBHA produced in M. smegmatis discriminates between active and non-active tuberculosis disease among RD1-responders. PLoS One 6: e18315

Dhalyan A, Kudithipudi S, Rathert P, Jeltsch A (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18: 111 – 120

Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6: 227

Dognin MJ, Wittmann-Liebold B (1980) Purification and primary structure determination of the N-terminal blocked protein, L11, from Escherichia coli ribosomes. European J Biochem/FEBS 112: 131 – 151

Donlin LT, Andrese C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Ziesenis A, Dobenecker M-W, Voelkel T, Char BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26: 114 – 119

Ea C-K, Baltimore D (2009) Regulation of NF-kappaB activity through lysine methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 18: 42 – 48

Evans CT, Owens DD, Slaughter CA, Sreer PA (1988) Characterization of mutant TMK368K pig citrate synthase expressed in and isolated from Escherichia coli. Biochem Biophys Res Commun 157: 1231 – 1238

Febbraio F, Andolfo A, Tanfani F, Briante R, Gentile F, Formisano S, Vaccaro C, Sciri A, Bertoli E, Pucci P, Nucci R (2004) Thermal stability and aggregation of Sulfolobus solfataricus beta-glycosidase are dependent upon the N-epsilon-methylation of specific lysyl residues: critical role of in vivo post-translational modifications. J Biol Chem 279: 10185 – 10194

Fusi P, Grisa M, Mombelli E, Consoloni R, Tortora P, Vanoni M (1995) Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaeabacterium Sulfolobus solfataricus in mesophytic hosts. Gene 154: 99 – 103

Gauger SP, Redding AM, Mukhopadhyay A, Keasling JD, Singh AK (2008) Post-translational modifications of Desulfowulbrio vulgaris Hildenborough sulfate reduction pathway proteins research articles. J Proteome Res 7: 2320 – 2331

Gauthan L, Stockley J, Wang N, McCracken SRC, Treumann A, Armstrong K, Shaheen F, Watt K, McEwan IJ, Wang C, Pestell RG, Robson CN (2011) Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 39: 1266 – 1279

Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytical pathway: destruction for the sake of construction. Physiol Rev 82: 373 – 428

Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13: 343 – 357

Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL (2008) Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J Biol Chem 283: 33168 – 33174

Gu B, Zhu WG (2012) Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8: 672 – 684

Guérin MF, Hayes DH, Rodrigues-Pousada C (1989) Methylated amino acids in the proteins of the cytoplasmic ribosome of Tetrahymena thermophila. Biochimie 71: 805 – 811

Guerrero GG, Locht C (2011) Recombinant HBHA boosting effect on BCG-induced immunity against Mycobacterium tuberculosis infection. Clin Dev Immunol 2011: 730702

Guo A, Gu H, Zhou J, Mulhem D, Wang Y, Lee KA, Yang V, Aguier M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ (2014) Immunooaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13: 372 – 387.

Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L (2008) Biocatalytic and structural characterization of CrenMT, a novel chromatin protein conserved among Crenarchaeota. Nucleic Acids Res 36: 1129 – 1137

Gustine JK, Moses AV, Fruh K, Douglas JL (2011) Viral takeover of the host ubiquitin system. Front Microbiol 2: 161

Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquititin signals in receptor endocytosis. Trends Biochem Sci 28: 598 – 603

Han CH, Richardson J, Oh SH, Roberts DM (1993) Isolation and kinetic characterization of the calmodulin methyltransferase from sheep brain. Biochemistry 32: 13974 – 13980
Hardy MI, Perry SV (1969) In vitro methylation of muscle proteins. Nature 223: 300–302

Huq MDM, Ha SG, Barcelona H, Wei LN (2009) Lysine methylation of nuclear corepressor receptor interacting protein 140 research articles. J Proteome Res 8: 1156–1167

Huyen Y, Zgeib O, Ditullio RA, Gorgoulis VG, Zacharatos P, Petty TJ, Shenton EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylation lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406–411

Ito I, Fukazawa J, Yoshida M (2007) Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 282: 16336–16344

Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuiko S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27: 6756–6769

Iwabata H, Yoshida M, Komatsu Y (2005) Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 5: 4653–4664

Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eisenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 20: 5232–5241

Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science (New York, NY) 295: 2080–2083

Johansen MB, Kiemer L, Brunak S (2006) Analysis and prediction of mammalian protein glycation. Glycobiology 16: 844–853

Jung SY, Li Y, Wang Y, Chen Y, Zhao Y, Qin J (2008) Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal Chem 80: 1721–1729

Kachirskaia I, Shi X, Yamaguchi H, Tanoue K, Wen H, Wang EW, Appella E, Gozani O (2008) Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J Biol Chem 283: 34660–34666

Keating JA, Striker R (2012) Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 22: 166–181

Keogh M-C, Kurdistan SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593–605

Kernstock S, Davydova E, Jakobsson M, Moen A, Pettersen S, Mælandsmo GM, Eggé-Jacobsen W, Falnes PB (2012) Lysine methylation of VCP by a member of a novel human protein methyltransferase family. Nat Commun 3: 1038

Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485

Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT (2006) Tudor and chromo domains gauge the degree of lysine methylation. EMBO Rep 7: 397–403

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011a) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44: 325–340

Kim YH, Park KH, Kim SY, Ji ES, Kim JY, Lee SK, Yoo JS, Kim HS, Park YM (2011b) Identification of trimethylation at C-terminal lysine of pinin in the
The diversity of lysine methylation

Sylvain Lanouette et al

Molecular Systems Biology
Magnani R, Dirk LM, Trievel RC, Houtz RL (2010) Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat Commun 1: 1–43
Magnani R, Chaffin B, Dick E, Bricken ML, Houtz RL, Bradley LH (2012) Utilization of a calmodulin lysine methyltransferase co-expression system for the generation of a combinatorial library of post-translationally modified proteins. Protein Expr Purify 86: 83–88
Manzur KL, Faroqi A, Zeng L, Plotnikova O, Koch AW, Sachchidanand, Zhou MM (2008) A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat Struct Biol 10: 187–196
Manzur KL, Zhou MM (2005) An archaetal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MCI1-alpha. FEBS Lett 579: 3859–3865
Marshak DR, Clarke M, Roberts DM, Watterson DM (1984) Structural and functional properties of calmodulin from the eukaryotic microorganism Dictyostelium discoideum. Biochemistry 23: 2893–2899
Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12: 783–793
Mcafee JG, Edmondson SP, Datta PK, Shriver JW, Gupta R (1995) Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry 34: 10063–10077
Mcafee JG, Edmondson SP, Zeger I, Shriver JW (1996) Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. Biochemistry 35: 4034–4045
Min J, Zhang X, Cheng X, Grewal SIS, Xu RM (2002) Structure of the SET domain histone lysine methyltransferase Clr4. Nat Struct Mol Biol 9: 828–832
Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycamb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17: 1823–1828
Mininno M, Brugière S, Pautre V, Gilgen A, Ma S, Ferro M, Tardif M, Albain C, Ravanel S (2012) Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J Biol Chem 287: 21034–21044
Molla A, Kilhofer MC, Ferraz C, Audemard E, Walsh MP, Demaille JG (1981) Octopus calmodulin. The trimethyllysyl residue is not required for myosin light chain kinase activation. J Biol Chem 256: 15–18
Montenegro MF, Sáez-Ayala A, Piñero-Madrona A, Cabezas-Herrera J, Rodríguez-López JN (2012) Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 7: e52231
Moore KE, Carlson SM, Camp ND, Cheung P, James RG, Chua KF, Wolf-Yadlin A, Gozani O (2013) A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 50: 444–456
Motojima K, Sakaguchi K (1982) Part of the lysyl residues in wheat a-amylose is methylated as Af-e-trimethyl lysine. Plant Cell Physiol 23: 709–712
Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou MM (2008) Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10: 1114–1122
Munro S, Khaire N, Inche A, Carr S, La Thangue NB (2010) Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29: 2357–2367
Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3: 10–15
Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19: 1218–1227
Natoli G, Testa G, De Santa F (2009) The future therapeutic potential of histone demethylases: a critical analysis. Curr Opin Drug Discov Devel 12: 607–615
Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25: 1345–1358
Oh SH, Roberts DM (1990) Analysis of the state of postranslational calmodulin methylation in developing pea plants. Plant Physiol 93: 880–887
Ong S, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1: 1–8
Oppermann UCT, Knapp S, Bonetto V, Ladenstein R (1998) Isolation and structure of repressor-like proteins from the archaeon Sulfolobus solfataricus. Co-purification of RNase A with Sso7c. FEBS Lett 442: 141–144
Pagans S, Kauder SE, Kaehlicke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M (2010) The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7: 234–244
Pagans S, Sakane N, Schnolzer M, Ott M (2011) Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Methods 53: 91–96
Paik WK, Kim S (1973) Enzymatic demethylation of calf thymus histones. Biochem Biophys Res Commun 51: 781–788
Paik WK, Kim S (1974) Epsilon-alkyllysine. New assay method, purification, and biological significance. Arch Biochem Biophys 165: 369–378
Pang CNI, Gasteger E, Wilkins MR (2010) Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics 11: 92
Panina S, Stephan A, la Cour JM, Jacobsen K, Kallerup LK, Bumbuleviciute R, Knudsen KV, Sánchez-González P, Villalobos OA, Olesen UH, Berchtold MW (2012) Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system. J Biol Chem 287: 18173–18181
Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50: 919–930
Peña PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442: 100–103
Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine monolysylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(M111): 012658
Pethe K, Bifani P, Drobecq H, Sergheraert C, Debrie A-S, Locht C, Menozzi FD (2002) Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci USA 99: 10759–10764
Petersson TC, Clarke SC (2011) Uncovering the human methyltransferasome. Mol Cell Proteomics 10(M110): 000976
Pinheiro I, Margueron R, Shukier N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, Jenuwein T (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150: 948–960
Plath K (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131–135
Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ, Leutz A (2008) C9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. *J Biol Chem* 283: 26357–26363

Polevoda B, Martzen MR, Das B, Phizicky EM, Sherman F (2000) Cytochrome c methyltransferase, Ctm1p, of yeast. *J Biol Chem* 275: 20508–20513

Poke FS, Qadi A, Holloway AF (2010) Reversing aberrant methylation patterns in cancer. *Curr Med Chem* 17: 1246–1254

Porras-Yakushi TR, Whitelegge JP, Clarke S (2007) Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. *J Biol Chem* 282: 12368–12376

Pracek J, Devgant G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee S-J, Mah AS, Meng L, Stark MJR, Stern DF, De Virgilio C, Tyers M et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438: 679–684

Qian C, Zhou M-M (2006) SET domain protein lysine methyltransferases: Structure, specificity and catalysis. *Cell Mol Life Sci* 63: 2755–2763

Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R, Komatsu Y, Shinkai Y, Cheng X, Jeltsch A (2008a) Protein lysine methyltransferase C9a acts on non-histone targets. *Nat Chem Biol* 4: 344–346

Rathert P, Zhang X, Freund C, Cheng X, Jeltsch A (2008b) Analysis of the substrate specificity of the Dim-5 histone lysine methyltransferase using peptide arrays. *Chem Biol* 15: S5–S11

Roberts DM, Rowe PM, Siegel FL, Lukas TJ, Watterson DM (1986) Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. *J Biol Chem* 261: 1491–1494

Roberts DM, Besl L, Oh SH, Masterson RV, Schell J, Stacey G (1992) Expression of a calmodulin methyltransferin mutant affects the growth and development of transgenic tobacco plants. *Proc Natl Acad Sci USA* 89: 8394–8398

Ryan KM, Phillips AC, Vouwen KH (2001) Regulation and function of the p53 tumor suppressor protein. *Curr Opin Cell Biol* 13: 332–337

Ruan J, Ouyang H, Amaya MF, Ravichandran M, Loppnau P, Min J, Zang J (2012) Structural basis of the chromodomamin of Cbx3 bound to methylated peptides from histone h1 and C9a. *PloS One* 7: e53376

Sadaie M, Shinmyozu K, Nakayama J (2008) A conserved SET domain methyltransferase, Set11, modifies ribosomal protein Rpl12 in fission yeast. *J Biol Chem* 283: 7185–7195

Sadic LA, West LE, Aslanian A, Yates JR, Rubin SM, Gozani O, Sage J (2010) Methylation of the retinoblastoma tumor suppressor by SMYD2. *J Biol Chem* 285: 37733–37740

Sahri A, Sadaie M, Shinmyozu K, Nakayama JI, Unit PS, Way R, Kingdom U (2010) Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth. *J Biol Chem* 285: 22448–22460

Sitarameyaya A, Wright LS, Siegel FL (1980) Enzymatic methylation of calmodulin in rat brain cytosol. *J Biol Chem* 255: 8894–8900

Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. *Mol Cell* 40: 689–701

Soares de Lima C, Zulianello L, Marques MADM, Kim H, Portugal ML, Antunes SL, Menozzi FD, Ottenhoff THM, Brennan PJ, Pessolani MCV (2005) Mapping the laminin-binding and adhesive domain of the cell surface-associated Hip/LBP protein from *Mycobacterium leprae*. *Microbes Infect* 7: 1097–1109

Sopko R, Andrews BJ (2008) Linking the kinome and phosphorylome—a comprehensive review of approaches to find kinase targets. *Mol BiolSyst* 4: 920–933

Santoni V, Verduocq L, Sommerer N, Vinh J, Pfleider G, Maurel C (2006) Methylation of aquaporins in plant plasma membrane. *Biochem J* 400: 189–197

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NCT, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. *Nature* 419: 407–411

Schaefer WH, Lukas TJ, Blair IA, Schultz JE, Watterson DM (1987) Amino acid sequence of a novel calmodulin from Parmecium tetracraul. *Mol Biol Chem* 262: 1025–1029

Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. *Trends Biochem Sci* 28: 329–335

Shadfan M, Lopez-Pajares Y, Yuan Z-M (2012) MDM2 and MDMX: Alone and together in regulation of p53. *Transl Cancer Res* 1: 88–99

Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Pan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kudateladze TG, Shi Y, Côté J, Chua KF et al. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. *Nature* 442: 96–99

Shi X, Kachirasika I, Yamaguchi H, West LE, Wen H, Wang EW, Dutta S, Appella E, Gozani O (2007) Modulation of p35 function by SET8-mediated methylation at lysine 382. *Mol Cell* 27: 636–646

Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. *Annu Rev Biochem* 75: 243–269

Shiraishi A, Sadaie M, Shinmyozu K, Nakayama JI, Unit PS, Way R, Kingdom U (2010) Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth. *J Biol Chem* 285: 22448–22460

Sitaramayya A, Wright LS, Siegel FL (1980) Enzymatic methylation of calmodulin in rat brain cytosol. *J Biol Chem* 255: 8894–8900

Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. *Mol Cell* 40: 689–701

Soares de Lima C, Zulianello L, Marques MADM, Kim H, Portugal ML, Antunes SL, Menozzi FD, Ottenhoff THM, Brennan PJ, Pessolani MCV (2005) Mapping the laminin-binding and adhesive domain of the cell surface-associated Hip/LBP protein from *Mycobacterium leprae*. *Microbes Infect* 7: 1097–1109

Sopko R, Andrews BJ (2008) Linking the kinome and phosphorylome—a comprehensive review of approaches to find kinase targets. *Mol BiolSyst* 4: 920–933

Stark GR, Wang Y, Lu T (2011) Lysine methylation of promoter-bound transcription factors and relevance to cancer. *Cell Res* 21: 375–380

Stock A, Clarke S, Clarke C, Stock J (1987) N-terminal methylation of proteins: structure, function and specificity. *FEBS Lett* 220: 8–14

Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Ayer DE, Kudateladze TG, Shi Y, Côté J, Chua KF et al. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. *Nature* 442: 96–99

Sugeno K, Narita K, Titani K (1971) The amino acid sequence of cytochrome c from *Debaryomyces kloeckeri*. *J Biochem* 70: 659–682

Tabernero J, Komori N, Thompson NJ Jr, Yamamoto MT, Matsumoto H (2007) Novel eye-specific calmodulin methylation characterized by protein mapping in *Drosophila melanogaster*. *Proteomics* 7: 2651–2658

Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. *Cell* 146: 1016–1028
Taverna SD, Li H, Ruthenburg AJ, Alis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14: 1025–1040
Temmerman S, Pethe K, Parra M, Alonso S, Rouanet C, Pickett T, Drowart A, Debie A-S, Delogu G, Menozzi FD, Sergheraert C, Brennan MJ, Mascart F, Loch C (2004) Methylphony-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding haemagglutinin. Nat Med 10: 935–941
Toledo H, Jerez CA (1990) In vivo and in vitro methylation of the elongation factor EF-Tu from Euglena gracilis chloroplast. FEMS Microbial Lett 59: 241–26
Tong SW, Elzinga M (1983) The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J Biol Chem 258: 13100–13110
Trievel RC, Beach BM, Dirk LMA, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111: 91–103
Trievel RC, Flynn EM, Houtz RL, Hurley JH (2003) Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nat Struct Biol 10: 545–552
Tschercks B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J: 38: 3822–3831
Tsukada Y-I, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811–816
Van Duyne R, Easley R, Wu W, Berro R, Pedati C, Kehn-Hall K, Flynn EM, Symer DE, Kashanchi F (2008) Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5: 40
Van Noort JM, Kraal B, Sinjorgo KM, Persson NL, Johanns ES, Bosch L (1986) Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. European J Biochem/FEBS 160: 557–561
Van Opdenbosch N, Favoere H, Van de Walle CR (2012) Histone modifications in herpesvirus infections. Biol Cell 104: 139–164
Van Slyke DD, Sinex FM (1958) The course of hydroxylation of lysine to form hydroxylysine in collagen. J Biol Chem 232: 797–806
Varier RA, Timmers HTM (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815: 75–89
Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL (2012) Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489: 452–455
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochim Biophys Acta 1833: 812–822
Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13: 115–126
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitination sites reveals widespread regulatory roles. Mol Cell Proteomics 10: M111.031284
Wang C, Lazarides E, O’Connor CM, Clarke S (1982) Methylation of chicken fibroblast heat shock proteins at lysyl and arginyl residues. J Biol Chem 257: 8356–8362
Wang C, Lazarides E (1984) Arsenite-induced changes in methylation of the 70,000 dalton heat shock proteins in chicken embryo fibroblasts. Biochem Biophys Res Commun 119: 735–743
Wang C, Lin JM, Lazarides E (1992) Methylation of 70,000-Da heat shock proteins in 3T3 cells: alterations by aserine treatment, by different stages of growth and by virus transformation. Arch Biochem Biophys 297: 169–175
Wang J, Hevi S, Kurash JK, Liu H, Sun M, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41: 125–129
Waterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255: 962–975
Webb KJ, Laganowsky A, Whitelegge JP, Clarke SG (2008) Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab. J Biol Chem 283: 35561–35568
Webb KJ, Lipson RS, Al-Hadid Q, Whitelegge JP, Clarke SG (2010) Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry 49: 5225–5235
Webb KJ, Al-hadid Q, Zurita-lopez CI, Young BD, Lipson RS, Clarke SG (2011) The ribosomal L1 protuberance in yeast is methylated on a lysine residue catalyzed by a novel b-strand. J Biol Chem 286: 18405–18413
Weinert BT, Wagner SA, Horn H, Henniksen P, Liu WR, Olsen JV, Jensen LJ, Choudhary C (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4: ra48
Weinert BT, Scholz C, Wagner SA, Isamsantavics V, Su D, Daniel JA, Choudhary C (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4: 842–851
West LE, Roy S, Lachmi-Weiner K, Hayashi R, Shi X, Appellia E, Kutateladze TG, Gozani O (2010) The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J Biol Chem 285: 37725–37732
Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B (2002) Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111: 105–115
Wisniewski JR, Zougman A, Mann M (2008) N-epision-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 36: 570–577
Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NuRFL conjugates histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86–90
Xhemalce B (2013) From histones to RNA: role of methylation in cancer. Brief Funct Genomics 12: 244–253
Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421: 652–656
Xie Q, Bai Y, Wu J, Sun Y, Wang Y, Zhang Y, Mei P, Yuan Z (2011) Methylation-mediated regulation of EZF1 in DNA damage-induced cell death. J Recept Signal Transduct Res 31: 139–146
Xie Q, Yao H, Tao L, Peng S, Rao C, Chen H, You H, Dong M-Q, Yuan Z (2012) Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep 13: 371–377
Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL, Mizzen CA (2008) Preferential dimethylation of histone H4 lysine 20 by Suz4-20. J Biol Chem 283: 12085–12092
Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, Chance MR, Chen X, Du Y, Wang Y, An L, Wang Q, Lu T, Zhang X, Wang Z, Stark GR (2010a) Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci USA 6: 21499 – 21504
Yang X-D, Huang B, Li M, Lamb A, Kelleher NL, Chen LF (2009a) Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 28: 1055 – 1066
Yang X-D, Lamb A, Chen LF (2009b) Methylation, a new epigenetic mark for protein stability. Epigenetics 4: 429 – 433
Yang X-D, Tajkhorshid E, Chen L-F (2010b) Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol 30: 2170 – 2180
Yin H, Sweeney S, Raha D, Snyder M, Lin H (2011) A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster. PLoS Genet 7: e1002380
Young CC, Alvarez JD, Bernlohr RW (1990) Nutrient-dependent methylation of a membrane-associated protein of Escherichia coli. J Bacteriol 172: 5147 – 5153
Young CC, Bernlohr RW (1991) Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. J Bacteriol 173: 3096 – 3100
Zagni C, Chiacchio U, Rescifina A (2013) Histone methyltransferase inhibitors: novel epigenetic agents for cancer treatment. Curr Med Chem 20: 167 – 168

Zhang J, Yuan B, Zhang F, Xiong L, Wu J, Pradhan S, Wang Y (2011a) Cyclophosphamide perturbs cytosine methylation in Jurkat-T cells through LSD1-mediated stabilization of DNMT1 protein. Chem Res Toxicol 24: 2040 – 2043
Zhang K, Lin W, Latham JA, Riefler GM, Schumacher JM, Chan C, Tatchell K, Hawke DH, Kobayashi R, Dent SYR (2005) The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122: 723 – 734
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011b) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7: 58 – 63
Zhang T, Park KA, Li Y, Byun HS, Jeon J, Lee Y, Hong JH, Kim JM, Huang SM, Choi SW, Kim SH, Sohn KC, Ro H, Lee JH, Lu T, Stark GR, Shen HM, Liu ZG, Park J, Hur GM (2013) PHF20 regulates NF-kB signalling by disrupting recruitment of PP2A to p65. Nat Commun 4: 2062
Zheng Y, Yao X (2013) Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 5: 1787 – 1801

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.