Influence of Island Diffusion on Submonolayer Epitaxial Growth

P. L. Krapivsky,1 J. F. F. Mendes,2 and S. Redner1
1Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215
2Centro de Física do Porto and Departamento de Física, Universidade do Porto, 4150 Porto, Portugal

We investigate the kinetics of submonolayer epitaxial growth which is driven by a fixed flux of monomers onto a substrate. Adatoms diffuse on the surface, leading to irreversible aggregation of islands. We also account for the effective diffusion of islands, which originates from hopping processes of their constituent adatoms, on the kinetics. When the diffusivity of an island of mass k scales as $k^{-\alpha}$, the (mean-field) Smoluchowski rate equations predicts steady behavior for $0 \leq \mu < 1$, with the concentration c_k of islands of mass k varying as $k^{-(3-\mu)/2}$. For $\mu \geq 1$, a quasi-static approximation to the rate equations predicts slow continuous evolution in which the island density increases as $(\ln t)^{\mu/2}$. A more refined matched asymptotic expansion reveals unusual multiple-scale mass dependence for the island size distribution. Our theory also describes basic features of epitaxial growth in a more faithful model of growing circular islands. For epitaxial growth in an initial population of monomers and no external flux, a scaling approach predicts power-law island growth and a mass distribution with a behavior distinct from that of the non-zero flux system. Finally, we extend our results to one- and two-dimensional substrates. The physically-relevant latter case exhibits only logarithmic corrections compared to the mean-field predictions.

PACS numbers: 68.35.Fx, 36.40.Sx, 66.30.Fq, 82.20.Wt, 05.40.+j

I. INTRODUCTION

Submonolayer epitaxial thin film growth involves deposition of atoms onto a substrate and diffusion of these adatoms (monomers) leading to their aggregation into islands of ever-increasing size [12]. The resulting island morphology and mass distribution ultimately depend on these diffusion processes on the substrate. While it has long been recognized that these mass transport details are crucial to epitaxial growth [1], its ramifications are still incompletely understood. Part of the reason for slow progress is that a variety of microscopic details can and do influence the rate at which adsorbate islands move [2–4].

One direction of previous investigation was based on a picture that only monomers can diffuse while larger islands remain immobile [3–14]. In this case, the island density N scales with time as $F^{1/3}$ before it reaches a maximum which scales with flux F as $F^{1/3}$. Subsequent work revealed, however, that basic results are sensitive to minor alterations to the mass transport mechanism. For example, if both monomers and dimers diffuse while larger islands remain immobile, the exponents of the time and flux dependences change [1]. More generally, these exponents depend on the threshold size between mobile and immobile islands.

On the other hand, there has been increasing appreciation [14–15] that adatom hopping continues to occur even when they are incorporated into islands of arbitrary size. This leads to a non-zero diffusivity of such islands. For appropriate systems and experimental conditions there is ample evidence that the effective island diffusivity D_k has a power-law dependence on mass k [10–14]. This adatom hopping also typically leads to islands maintaining compact shapes, an important simplifying feature for theoretical modeling.

The goal of this paper is to determine the aggregation kinetics of compact islands in the submonolayer regime with power law and more general mass-dependent island diffusivities [15]. An essential, and at first sight surprising feature about such compact islands is that their reactivity depends only logarithmically on island size in two dimensions. Accordingly, our theoretical treatment is based on a model of point-like islands. Such a description should accurately describe island growth, up to these logarithmic corrections in the low coverage limit.

Within the mean-field Smoluchowski rate equations, we will consider a system with: (i) fixed monomer flux, (ii) point-like islands with diffusivity which decays faster than inversely with island mass, and (iii) irreversible mass-conserving coalescence of islands. We will show that the number of islands grows logarithmically in time and that the island mass distribution exhibits a multiple-scale mass dependence. Our predictions are also found to apply to a more faithful model of epitaxial growth in which islands are growing circles, with the radius of a mass-k island proportional to \sqrt{k}. Thus the point-island model provides a useful framework to describe submonolayer epitaxial growth and gives quantitative predictions which are robust to variations in model parameters.

In Sec. II, we introduce our model and discuss the applicability of the Smoluchowski approach to epitaxial growth. In Sec. III, we present our main results about the asymptotic growth of islands based on the rate equations. Different behaviors arise depending on whether the mobility exponent μ is smaller, larger, or equal to unity. We also discuss the flux dependence of the maximum island density and the time range where our theory should apply. In Sec. IV, we briefly discuss island growth kinetics in the absence of external flux. In Sec. V, we present nu-
merical simulations and compare results for the epitaxial growth of point islands and growing circular islands with radius proportional to \sqrt{k}. Sec. VI contains a summary and discussion. In Appendix A, we generalize our theory to one-dimensional substrates and in Appendix B we outline a more accurate treatment for two-dimensional substrates which accounts for the logarithmic corrections in the reaction rate.

II. MICROSCOPIC MODEL

We consider submonolayer epitaxial growth which results from the irreversible deposition of atoms from a gas onto a substrate and subsequent irreversible aggregation. Adatoms (or monomers) diffuse on the substrate and aggregate upon colliding, creating dimers and larger islands. We consider the class of models for which adatoms which are already incorporated into islands can continue to diffuse – this often occurs along the periphery of islands. Whenever two islands meet and aggregate, we assume that adatom hopping quickly causes the resulting aggregate to become compact. We therefore treat islands as circular throughout our modeling.

Within this picture for islands, a classic way to calculate the island mass distribution is based on the Smoluchowski rate equations \[16,17\]. This approach requires knowledge of the rate K_{ij} at which an island of mass i and an island of mass j aggregate to form an island of mass $i+j$. If the aggregation process is diffusion-controlled and islands are spherical, this aggregation rate is given by the Smoluchowski formula $K_{ij} \sim (D_i + D_j)(R_i + R_j)^{d-2}$ in d dimensions \[16\]. Here R_i is the radius of an island of mass i. This formula applies for $d > 2$, while in the physically relevant case of two-dimensional substrates, there is only a slow logarithmic dependence on island radius \[17\]. Thus a reasonable starting point for theoretical investigation is to ignore the logarithmic term; this significantly simplifies the resulting analysis. In Appendix B we will return to the two-dimensional case and show that these logarithmic corrections do not alter our main findings but rather give rise to a logarithmic renormalization of the monomer flux.

As discussed in the Introduction, we consider the island diffusion coefficient to be a homogeneous function of island mass, $D_k \sim k^{-\mu}$ with μ non-negative on basic physical grounds. In appropriate time units the reaction rate is

$$K_{ij} = i^{-\mu} + j^{-\mu}. \quad (1)$$

However, our approach can equally-well be applied to any functional dependence of D_k on k which decays faster than k^{-1} as $k \to \infty$.

For a self-contained discussion, we give a qualitative argument for the exponent value $\mu = 3/2$ for the “periphery” adatom hopping mechanism; this has been obtained previously by a Langevin approach \[13,18\]. In periphery diffusion, adatoms on the edge of an island can hop freely to neighboring sites on the periphery. Consider an island of linear size $R \gg 1$. In a time interval $\Delta t \sim R^2$ an adatom on the edge will typically explore the entire island boundary, so this adatom will typically be a distance R from its initial location. Hence the effective island-center-of-mass displacement is $\delta x \sim R/R^2 = R^{-1}$. If each edge adatom diffuses independently, the total center-of-mass displacement Δx is the sum of R independent identically distributed random variables with variance $\delta x \sim R^{-1}$. This implies $\Delta x \sim \sqrt{R(\delta x)^2} \sim R^{-1/2}$. Thus the effective center-of-mass diffusion coefficient is $D_R \sim (\Delta x)^2/\Delta t \sim R^{-3}$, or $D_k \sim k^{-3/2}$. For a d-dimensional substrate, a straightforward generalization of this argument gives $\mu = 1 + 1/d$. Similarly, in the case of so-called “terrace” diffusion \[13\], it is found that $D_k \sim k^{-1}$ independent of d.

Before presenting detailed results, we discuss some limitations of our rate equation approach. As stated previously, we ignore the effect of a finite island radius on the form of the reaction rates, as this dependence is only logarithmic in two dimensions. Moreover, as the coverage increases a rate equation description based on two-body aggregation eventually breaks down. Our approach is also inapplicable to fractal-shape islands, a situation which can arise at low temperature \[13\]. Finally, the rate equation description should fail below an upper critical dimension d_c \[20\] which is given by $d_c = 2/(1 - \mu - \lambda)$, with λ the homogeneity degree of the reaction kernel. For our point-island model with kernel given by Eq. (4), $\lambda = -\mu$ and hence $d_c = 2$. Thus the relevant two-dimensional case corresponds to the critical dimension, and logarithmic corrections to mean-field predictions, in addition to the previously-discussed logarithmic corrections to the reaction rate, can be anticipated.

III. GROWTH WITH FLUX

Consider a point-island system with flux F of monomers onto the substrate. The rate equations for the concentrations c_k of islands of mass k in the presence of this steady monomer flux are

$$\frac{dc_k}{dt} = \frac{1}{2} \sum_{i+j=k} K_{ij}c_ic_j - c_k \sum_{k=1}^{\infty} K_{kj}c_j + F \delta k_1. \quad (2)$$

These rate equations represent a mean-field approximation in which spatial fluctuations are neglected, and also a low-coverage approximation, since only binary interactions are treated.
A. Steady State Regime

Let us first consider the behavior in the steady state regime. To analyze this system of rate equations when the time derivative term is set to zero, it proves convenient to use the generating function technique. We introduce two generating functions

$$C(z) = \sum_{k=1}^{\infty} c_k z^k, \quad C_\mu(z) = \sum_{k=1}^{\infty} k^{-\mu} c_k z^k. \quad (3)$$

Multiplying Eq. (2) by z^k, and summing over all k, gives

$$C_{\mu}(z)C(z) - C_{\mu}(z)N - C(z)N_\mu + F z = 0. \quad (4)$$

Here $N = C(z = 1) = \sum_c k$ is the total island density and $N_\mu = C_{\mu}(z = 1) = \sum k^{-\mu} c_k$.

We now assume a power law asymptotic behavior for the steady state concentration,

$$c_k \simeq \frac{C}{k^{\tau}}, \quad (5)$$

as $k \to \infty$. For this power law to hold for all k, we require $\tau > 1$, so that $\sum k^{-\tau}$ converges; this leads to the condition $\mu < 1$ for the mobility exponent as shown below. From basic Tauberian theorems [21], the asymptotic form for c_k in Eq. (3) induces the following power-law singularities in the generating functions as $z \to 1$

$$C(z) = N + CT(1 - \tau)(1 - z)^{-1} + \ldots, \quad C_{\mu}(z) = N_\mu + CT(1 - \tau - \mu)(1 - z)^{-\mu-1} + \ldots, \quad (6)$$

where Γ is the gamma function. The leading constant factor in each line is finite and coincides with the definition given in Eq. (3) if the exponent of the second term is positive. Otherwise, the constant factor vanishes and the generating function has a power-law divergence as $z \to 1$.

Substituting these expansions into Eq. (4) and matching the leading behavior in $(1 - z)$ leads to the decay exponent $\tau = (3 - \mu)/2$. The condition for a steady state to occur, $\tau > 1$, thus imposes an upper bound on the mobility exponent, $\mu < 1$. From matching the leading behavior in $(1 - z)$, the constant C may also be determined, from which the island mass distribution in the steady-state regime $0 \leq \mu < 1$ is

$$c_k \simeq \sqrt{\frac{F(1 - \mu^2) \cos(\pi \mu/2)}{4\pi}} k^{-(3 - \mu)/2}. \quad (7)$$

In the special case of constant reaction rate, $\mu = 0$, one can find a complete time-dependent solution. In this case, the rate equations are

$$\frac{dc_k}{dt} = \sum_{i+j=k} c_i c_j - 2c_k N + F \delta_{k1} \quad (8)$$

By summing these equations over k, one obtains the associated equations for the density,

$$\frac{dN}{dt} = -N^2 + F, \quad (9)$$

and for the generating function,

$$\frac{dC(z, t)}{dt} = C(z, t) - 2C(z, t)N(t) + F z. \quad (10)$$

Solving these equations for initially clean surface, $c_k(0) = 0$, we obtain the time-dependent island density

$$N(t) = \sqrt{F} \tanh \left(t\sqrt{F} \right), \quad (11)$$

and the generating function

$$C(z, t) = N(t) - \sqrt{F(1 - z)} \tanh \left(t\sqrt{F(1 - z)} \right). \quad (12)$$

Expanding the generating function $C(z, t)$ in a series in z, gives the concentrations $c_k(t)$. Relatively simple results are obtained in the long time limit

$$c_k(t) \simeq \sqrt{\frac{F(1 - \mu^2) \cos(\pi \mu/2)}{4\pi}} \frac{\Gamma\left(k - \frac{\mu}{2}\right)}{\Gamma(k + 1)}. \quad (13)$$

This exact solution of Eq. (13) agrees with the asymptotic solution of Eq. (4). Note that islands of sizes comparable with $(1 - z)^{-1}$ or smaller, give dominant contribution to the generating function, $C_0(z, t) = \sum_{k \geq 1} z^k c_k(t)$, while bigger islands provide an asymptotically negligible correction. Eq. (12) also shows that the crossover from a time-dependent to saturated behavior takes place when $t\sqrt{1 - z} \sim 1$. Together with $k \sim (1 - z)^{-1}$ this implies that the steady state is established for small islands whose size is in the range, $k \ll t^2$. For general mobility exponent, one physically expects a similar crossover to steady behavior when $k \sim t^\zeta$, with mass cutoff exponent ζ dependent on μ. To determine ζ, we use the physical condition that the total mass on the substrate $\sum k c_k(t)$ equal Ft together with the steady state asymptotics of Eq. (4). This gives

$$\sum_{k=1}^{\infty} k c_k(t) \sim \sum_{k=1}^{t^\zeta} k^{(\mu-1)/2} \sim t^{(\mu+1)/2} \sim t, \quad (14)$$

that is, $\zeta = 2/(\mu + 1)$.

B. Continuous Island Evolution

For sufficiently large mobility exponent, $\mu \geq 1$, continuous evolution can be anticipated. Indeed, in the previous subsection we showed that assuming a steady state leads to $\mu < 1$. Additionally, continuous evolution is known to occur when $\mu = \infty$, that is, in the extreme case of mobile monomers and immobile islands. This case has been treated analytically [23] and power-law
growth in the number of islands, \(N(t) \approx (3F^2 t)^{1/3} \), was found. Moreover, in the scaling region

\[
k \to \infty, \quad t \to \infty, \quad \text{with} \quad x = \frac{2k}{(F/2)^{1/3}} < 1, \quad (15)
\]

the island mass distribution approaches the scaling form

\[
c_k(t) \approx \left(\frac{E}{3t} \right)^{1/3} (1-x)^{-1/2}, \quad \text{when} \quad x < 1, \quad (16)
\]

while for \(x > 1 \) the island concentrations are negligible.

We therefore expect that for all \(1 \leq \mu \leq \infty \), the island mass distribution does not reach a steady state. The marginal case of \(\mu = 1 \) is interesting since it corresponds to experimentally relevant case of terrace diffusion \[13\].

As discussed in the previous section, such values of the mobility exponent \(\mu \) naturally appear for different microscopic mass-transport mechanisms.

Our primary results are that when \(\mu \) is strictly greater than unity but still finite,

\[
N(t) \approx \sqrt{F} \left[\frac{\sin(\pi/\mu)}{\pi} \ln \left(t \sqrt{F} \right) \right]^{\mu/2}, \quad (17)
\]

while the concentration of islands of mass \(k \) decays in time as

\[
c_k(t) \sim \sqrt{F} (k!)^{\mu} \left[\ln \left(t \sqrt{F} \right) \right]^{-\mu(2k-1)/2} \quad (18)
\]

for sufficiently small islands, \(k \ll \ln(t \sqrt{F}) \). It is remarkable that these logarithmic dependences, a feature which generally signals marginal behavior, occurs in the entire regime \(1 < \mu < \infty \).

Our approach that leads to Eqs. (17) and (18) is based on the physical picture that the system is slowly evolving because the growth of islands by aggregation is substantially counterbalanced by the input of monomers. These competing effects lead to nearly time-independent island concentrations over an “inner” size range, while more strongly-time-dependent behavior occurs in an “outer” range which extends to the largest islands. In the inner region, the picture of near balance between aggregation and input motivates the use of the quasi-static approximation, where the time derivative in Eq. (3) is initially neglected, from which the island concentrations as a function of the total concentration of islands can be obtained. The dependence of the island concentrations on time is then determined by the condition that the total mass in the system is proportional to \(t \). The validity of this approach may be verified a posteriori, where the logarithmic dependences in Eqs. (13) and (14) imply that the temporal derivatives in the Smoluchowski rate equations are asymptotically negligible.

Within this quasi-static framework, Eqs. (3) become

\[
0 = 1 - c_i (N + N_{\mu}), \quad (19)
\]

By summing Eqs. (19) over all \(k \), the total island density in the quasi-static limit obeys

\[
0 = 1 - NN_{\mu}, \quad (20)
\]

Eqs. (19) and (20) have been non-dimensionalized by the scale transformation \(c_l \to \sqrt{F} c_k \). We also scale the time variable by \(t \to t/\sqrt{F} \), so that the mass density obeys

\[
\theta(t) = \sum_{k=1}^{\infty} k c_k(t) = t. \quad (21)
\]

Eq. (20) immediately gives \(N_{\mu} = N^{-1} \), and then from the first of Eqs. (19), \(c_1 \approx 1/N \). The remainder of Eqs. (19) may then be solved recursively. By writing the first few of these equations, it is evident that the dominant contribution to \(c_k \) is the term in the quadratic product which is proportional to \(c_1 c_{k-1} \). Keeping only this contribution, the resulting recursion may be solved straightforwardly to yield

\[
c_k \approx \frac{1}{N} \left[\prod_{j=2}^{k} \left(\frac{j^\mu N^2}{1 + j^\mu N^2} \right) \right] \prod_{j=1}^{k-1} (1 + j^{-\mu}) \approx \frac{1}{N} \left[\prod_{j=2}^{k} B_j \prod_{j=1}^{k-1} b_j. \right. \quad (22)
\]

Since the factors \(B_j \gg 1 \) for \(j^\mu \ll N^2 \), while \(B_j \to 1 \) for \(j^\mu \gg N^2 \), this implies that \(c_k \) is a rapidly decreasing function of \(k \) for \(k \ll N^2/\mu \equiv \kappa \) and then converges to a finite value \(\rho \) for \(k > \kappa \).

To compute \(c_k \), first note that for \(\mu > 1 \) the product \(\prod b_j \) converges, so that it may treated as constant. We then write the second product as the exponential of a sum and take the continuum limit. This leads to

\[
c_k \sim \frac{1}{N} \exp \left[\sum_{j=2}^{k} \ln \left(\frac{j^\mu N^2}{1 + j^\mu N^2} \right) \right] \sim \frac{1}{N} \exp \left[-N^{2/\mu} \int_0^x \ln(1 + w^{-\mu}) \, dw \right], \quad (23)
\]

where \(w = j/N^2/\mu \) and \(x = k/N^2/\mu \). This form has two slightly different asymptotic behaviors depending on whether \(\mu \) is strictly greater than or equal to 1. For \(\mu > 1 \), the monotonically increasing integral in Eq. (23) converges as \(x \to \infty \). Thus \(c_k \) decreases as a function of \(k \) until a threshold value \(\kappa \approx N^2/\mu \), beyond which \(c_k \) remains constant with a value \(\rho \) determined by taking the upper limit of the integral as infinite. Hence

\[
c_k \to \rho \sim \frac{1}{N} \exp \left[-A_{\mu} N^{2/\mu} \right], \quad (24)
\]

with \(A_{\mu} = \int_0^\infty \ln(1 + w^{-\mu}) \, dw = \pi/\sin(\pi/\mu) \). Within the quasi-static approximation, this constancy in \(c_k \) should
persist over the range, $\kappa \lesssim k \ll K$. Here K defines an upper limit for the "inner" regime where the quasi-static approximation remains valid. Physically, this limit corresponds to the size range where islands are only beginning to form.

Because of the importance of the temporal decay of the densities in the outer size range, $k \gg \kappa$, the quasi-static approximation is inadequate and an alternative is needed. We therefore separately account for the distribution of these "raw" (evolving) islands and then perform a matched asymptotic expansion [22], to join the inner ($k \ll K$) quasi-static solution of "ripe" islands to the outer ($k \gg \kappa$) solution of raw islands in the overlap region $\kappa \ll k \ll K$. In the outer region, the asymptotically dominant terms in the rate equations are [23]

$$\frac{d c_k}{dt} = c_1 (c_{k-1} - c_k). \quad (25)$$

Since raw islands are large, we employ the continuum limit of Eq. (25),

$$\left(\frac{\partial}{\partial T} + \frac{\partial}{\partial k} - \frac{1}{2} \frac{\partial^2}{\partial k^2} \right) c_k(T) = 0, \quad (26)$$

where $T = \int_0^t dt' c_1(t')$. If we neglect the diffusive term, the solution of the resulting wave equation is $c_k(T) = f(T - k)$, with f an arbitrary function. Matching with the inner solution determines f and gives

$$c_k(T) = \rho(T - k), \quad (27)$$

which thus provides the time dependence of the island concentrations once T has been determined. Also, Eq. (27) provides the estimate $K \approx T$ for the cutoff size beyond which essentially no islands exist.

To close the solution, we now determine the time dependence of the island density $N(t)$. To accomplish this, we use the sum rules for the mass and island densities, $\sum k c_k = M \equiv t$ and $\sum c_k = N$. In the continuum limit these become

$$t = \int_0^T du (T - u) \rho(u), \quad N = \int_0^T du \rho(u). \quad (28)$$

The dominant contribution to these integrals arises from large (raw) islands in the outer region. The second relation also gives $\frac{dN}{dT} = \rho(T)$. Combining this with Eq. (24) yields

$$\rho(T) \sim \frac{(\ln T)^{\mu/2 - 1}}{T}. \quad (29)$$

The raw island mass distribution is then given by Eqs. (27) and (28) as,

$$c_k(T) \sim \frac{\left| \ln(T - k) \right|^{\mu/2 - 1}}{T - k}. \quad (30)$$

Notice that the singularity when $k = K = T$. However in the mass range $T - k \sim \sqrt{T}$, this singularity is smoothed out by the diffusive term in Eq. (24). Thus instead of the singularity at $k = K$, the density of raw islands reaches a peak value of the order of $t^{-1/2}$ and then rapidly decreases for larger k.

Using Eq. (24), we can now estimate the left integral in Eq. (28) and find that the ratio of the first to the second term scales as $\ln T$. Keeping only the dominant contribution and using the right integral of (28) gives $T \approx t/N$. Thus the cutoff size is given by

$$K(t) \approx \frac{t}{N} \sim \frac{t}{(\ln t)^{\mu/2}}. \quad (31)$$

Parenthetically, the basic relation between the real and modified times, $T = \int_0^t dt' c_1(t')$, together with $c_1 \equiv 1/N$ also leads to $T \approx t/N$ and thus to Eq. (31).

In real time the island density becomes

$$N(t) \approx A_1 t^{-1/2} \ln \left(\frac{t}{t_0} \right) \ln \left(\frac{t}{t_1} \right) \ln \left(\frac{t}{t_2} \right), \quad (32)$$

where $A_1 = \mu/\sin(\pi/\mu)$. Upon neglecting the logarithmic temporal factor inside the logarithm, our basic result quoted in Eq. (17) is recovered.

C. The Case $\mu = 1$

In the borderline case $\mu = 1$, subtler nested logarithmic behavior arises, as reflected by a singularity in Eq. (17) that appears upon formal continuation to $\mu \rightarrow 1$. The analysis closely parallels the case $\mu > 1$ and we just outline the main results.

In the inner region, the general approach of the previous subsection applies up to Eq. (24). However, when $\mu = 1$, the product $\prod_{j=1}^{\infty} b_j = \prod_{j=1}^{\infty} (1 + j^{-1})$ in Eq. (22) now equals k, i.e., it diverges. Second, the term $c_2 c_{k-2}$ in addition to $c_1 c_{k-1}$ contributes to the asymptotic behavior. Due to this latter attribute, the recursion relation for c_k becomes

$$c_k \left(1 + \frac{k/N^2}{k/N^2} \right) = c_{k-1} - c_{k-2} \frac{1}{k-2} \frac{1}{N^2}. \quad (33)$$

We seek a solution for c_k in the form of Eq. (24). Thus we write

$$c_k \sim C_k \frac{k}{N} \prod_{j=2}^{k} \frac{1 + j/N^2}{1 + j/N^2}, \quad (34)$$

where the factor C_k accounts for the additional term in Eq. (33). Substituting into Eq. (33) gives the recursion formula for this correction factor C_k

$$C_k = C_{k-1} + C_{k-2} \left(\frac{1}{k-1} + \frac{1}{N^2} \right). \quad (35)$$
These coefficients are slowly varying in k when $k \gg 1$ and we may treat k as continuous in this asymptotic regime. Eq. (33) then becomes a differential equation whose solution is $c_k \sim k^2 e^x$ (with $x = k/N^2$). Consequently,

$$c_k \sim \frac{k^2}{N} \exp \left[x - N^2 \int_0^x \ln(1 + w^{-1}) \, dw \right].$$

(36)

Thus for $\mu = 1$, the concentration c_k decreases rapidly in k for $k \ll N^2$ and reaches a minimum at $k = N^4$ whose value is

$$\rho \sim \exp \left[-N^2 \ln N^2 \right].$$

(37)

In the outer region, the general results of the previous subsection, Eqs. (25) through (28), are still valid. Thus combining (27) with $\frac{dN}{dt} = \rho(T)$ we solve for the total island concentration to obtain

$$N(t) \sim \sqrt{\frac{\ln t}{\ln(\ln t)}}.$$

(38)

Eq. (34) together with $c_k \sim k$ implies that the concentration of islands for mass $k \ll N^2$ is

$$c_k(t) \sim \frac{(k + 1)!}{N^{2k-1}} \sim (k + 1)! \left[\frac{\ln(\ln t)}{\ln t} \right]^{k-1/2}.$$

(39)

Then the island mass density is approximately constant, $c_k(T) \simeq \rho(T)$, where

$$\rho(T) \sim T^{-1}(\ln T)^{-1}[\ln(\ln T)]^{-1}.$$

(40)

This holds over the range $\kappa \lesssim k \ll K$ with $K(t) \sim t \sqrt{\ln(\ln t)/\ln t}$. Finally, the raw island density given by Eqs. (27) and (41) holds up to a mass cutoff $K(t)$.

D. Maximum Island Density

To apply our results to real submonolayer epitaxial systems, note that in the submonolayer regime, the coverage must be small, that is, $M \equiv Ft \ll 1$. On the other hand, the asymptotic predictions of our theory apply when $t\sqrt{F} \gg 1$. Consequently, our results should be valid in the time range $F^{-1/3} \approx t \ll F^{-1}$. Since the (dimensionless) flux F is typically small in epitaxy experiments, the time range over which our theory should apply is correspondingly large. A commonly employed connection between theory and experimental results is to determine the maximum island density at the end of the submonolayer regime, $t_{\text{max}} \sim F^{-1}$. The conventionally-quoted result is that this maximum density scales as a power of the flux

$$N_{\text{max}} \sim F^x,$$

with the flux exponent typically in the range $\frac{1}{2} \leq \chi \leq \frac{3}{2}$. While most theoretical studies predict $\chi < 1/2$ [4,27,28], (e.g., for point immobile islands $\chi = 1/3$), the value $\chi = 1/2$ has been observed experimentally, see Ernst et al. [26]. Our analysis predicts that the maximum island density attains the value

$$N_{\text{max}} \sim F^{1/2[\ln(1/F)]/\mu^2},$$

(42)

and that $\chi = 1/2$ is generic and applies to any model where island diffusion leads to continuous evolution. Previous theoretical work has focused on somewhat pathological models where only a few (the smallest) island species could diffuse. In such models, the exponent χ is sensitive to the cutoff size between mobile and immobile islands. Fortunately, the generic situation is simpler and the asymptotic flux dependence of N_{max} is universal. However, there do exist logarithmic factors which are non-universal, as they depend on the mobility exponent. For example, the logarithmic factor in Eq. (42) gives an effective exponent, when plotting N_{max} versus F, $\chi_{\text{eff}} = \frac{1}{2} \left[1 - \frac{\ln(\ln(1/F))}{\ln(\ln(1/F))} \right]$, which is smaller than $1/2$. Indeed, for a fixed flux, the effective exponent is a decreasing function of μ. Such a feature should be taken into account in the interpretation of experimental and numerical data.

IV. GROWTH WITHOUT FLUX

We now consider epitaxial growth for point islands with a non-zero initial monomer density, reaction rate $K_{ij} = i^{-\mu} + j^{-\mu}$, and no subsequent monomer flux. Such a system has been extensively investigated within the framework of irreversible aggregation [23, 33], as well as in theoretical studies of point-island aggregation with immobile islands [3, 34]. More realistic examples of the latter system have also been investigated numerically and experimentally in recent studies (see [17] and references therein).

We give here a simple argument for the asymptotic form of the island size distribution. This argument is based on first solving for the island and monomer densities, $N(t)$ and $c_1(t)$, respectively, and then using scaling [17] to infer the asymptotics of the distribution. According to the scaling ansatz, the asymptotic island-mass distribution should have the following form

$$c_k(t) \sim N^2 G(x), \quad x = kN,$$

(43)

for finite x. The constraints $\int dx \, G(x) = 1$ and $\int dx \, x \, G(x) = \theta$ automatically enforce the conditions $\sum c_k(t) = N(t)$ and mass conservation $\sum k c_k(t) = \theta$. Starting with the exact rate equation for $N(t)$,

$$\frac{dN}{dt} = -\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} K_{ij} c_i c_j,$$

(44)

we substitute the scaling ansatz Eq. (43) to obtain $\dot{N} \sim -N^{2+\mu}$ whose solution is
Consider now the rate equation for the monomer density, $c_1 = -Kc_1(N + N_0)$. As shown by Eq. (24), we may neglect the second term and integrate the resulting equation to yield

$$c_1(t) \sim \exp \left[-t^{1/(1+\mu)} \right].$$ \hspace{1cm} (46)

Together with Eqs. (43) and (13), (46) predicts that the asymptotic behavior for the scaling function in the small-x limit is $\exp(-1/x^\mu)$. On the other hand, for the entire class of reaction kernels of the form $K_{ij} = i^{-\mu} + j^{-\mu}$, the scaling function $G(x)$ decays exponentially in x for large x. Combining these results gives the asymptotic forms of the island size distribution in the absence of monomer flux

$$G(x) \sim \begin{cases} e^{-1/x^\mu}, & x \downarrow 0, \\ e^{-x}, & x \uparrow \infty. \end{cases}$$ \hspace{1cm} (47)

To determine the validity of these mean-field predictions, let us consider the kinetics of this process in general spatial dimension. To this end, we determine the reactivity of an arbitrary cluster by a dimensional argument. Consider an island of radius R which diffuses with the diffusion coefficient D in d-dimensional space. During a time interval t this particle traces out the so-called Wiener sausage whose volume is

$$V_d(t) \sim \begin{cases} Dt \left[\ln(Dt/R^2) \right]^{-1}, & d = 2, \\ DtR^{d-2}, & d > 2. \end{cases}$$ \hspace{1cm} (48)

For epitaxial growth with no flux, R corresponds to a (growing) average island radius, and D to the diffusivity of a mass-k island, $D \sim k^{-\mu} \sim R^{-d\mu}$. Clearly, all monomers initially within a Wiener sausage will aggregate into a typical island by time t. Consequently, the initial coverage of the substrate is given by $R^d \sim \theta V_d(t)$. This, together with Eq. (13), gives $R^d \sim Dt$ in all dimensions $d \geq 2$. Finally, combining $R^2 \sim Dt$ and $D \sim R^{-d\mu}$ leads to

$$R \sim t^{1/(2+d\mu)}, \quad N \sim t^{-d/(2+d\mu)}.$$ \hspace{1cm} (49)

In two dimensions, the rate equation predictions (Eq. (44)) and the above heuristic argument agree. Thus in the absence of a monomer flux, and under the assumption of compact islands, the two sources of logarithmic corrections – a logarithmic dependence of the reaction rate on island radius and the fact that the system is at the critical dimension – evidently cancel each other. Therefore the Smoluchowski rate equations appear to be asymptotically correct in two dimensions.

V. NUMERICAL RESULTS

We have performed detailed Monte Carlo simulations for island growth for two models of epitaxial growth. We first consider point islands, in which single-site islands hop with equal probability to any lattice site (diffusion on a complete graph) and aggregate whenever two islands occupy the same site. This corresponds to the mean-field limit and thus provides a direct test of some of the delicate approximations made in our theoretical analysis. The second model is a more faithful description in which circular island “droplets” with radius proportional to the square-root of the island mass diffuse to nearest-neighbor sites on a two-dimensional lattice. Whenever there is overlap of two islands, they immediately coalesce to a single island which is centered at the initial position of the larger island. After each coalescence, a test is made to determine if additional overlaps have been created. All such higher-order coalescences are performed until all overlaps are resolved. We treat here only the case with external flux. Since growth without flux has already been investigated numerically (see e.g., [33] and references therein).

The point-island model is relatively easy to implement. Additionally, this model has a technical advantage over growing droplets in that the submonolayer description applies over a longer time range. For point islands, the submonolayer regime is defined by the criterion $N \ll 1$, which is considerably less stringent than the criterion $Ft \ll 1$ appropriate for the droplet-island model. Therefore our theoretical results may be compared with the point-island simulations in the time range $F^{-1/2} \ll t \ll \exp(-F^{-1/\mu})$ and with droplet-island simulations in the time range $F^{-1/2} \ll t \ll F^{-1}$.

A. Point Islands

Due to the point-like nature of islands and the equiprobable hopping to any site of the system, the simulations correspond directly to the Smoluchowski rate equations. Simulations of point islands were performed on a graph of L sites with the following time evolution. At any stage, the number of deposition events per unit time is FL^2, while the number of aggregation events per unit time is L^2_{occ}. Here L_{occ} is the number of occupied sites in the system. In a microscopic event, deposition is chosen with probability $r_{dep} = FL^2/(FL^2 + L^2_{occ})$ and aggregation is chosen with probability $r_{agg} = 1 - r_{dep}$. In a deposition event, a monomer is deposited onto a randomly chosen vacant site. We checked that restricting the deposition onto unoccupied sites only does not alter our results. In an aggregation event, two sites were chosen randomly from the list of occupied sites. If these sites contain islands of mass i and j, aggregation occurs with probability $(i^{-\mu} + j^{-\mu})/2$. Time is then increased by $\Delta t = 1/(FL^2 + L^2_{occ})$, and the procedure is repeated.

To test our algorithm, we considered first the extreme case of immobile islands, $\mu = 0$, where a complete time-dependent analytical solution is available ([12]). Simulations were performed for an initially empty system with L
between 10^3 and 10^4. We found excellent agreement between numerical and theoretical predictions, both for the steady state and transient characteristics. More generally for $\mu < 1$, our simulations showed that the system reaches a steady state with the observed steady state characteristics in good agreement with the theoretical prediction of Eq. (3).

![Fig. 1](image1.png)

Fig. 1. Semilogarithmic plot of $\ln c_k(t)$ vs k at $t \approx 22000$ for $\mu = 1.5$ based on simulations of point islands. The data is based on 5000 realizations of an initially empty system of 2000 sites with $F = 0.05$. Notice the existence of an inner scale $k \lesssim \kappa \approx 50$ (inset) and an outer scale for $k \approx K \approx 4000$.

![Fig. 2](image2.png)

Fig. 2. Plot of $N(t)/t^{1/2}$ vs. $\log (t\sqrt{F})$ for $\mu = 1.2$ (\odot), $\mu = 1.4$ (\ast), and $\mu = 2.0$ (\Box). The simulation parameters are the same as in Fig. 1.

For $\mu > 1$, the total number of islands is found to increase indefinitely and the island mass distribution substantively agrees with our theoretical predictions (see Fig. 1). Indeed, the island mass distribution $c_k(t)$ sharply decreases for small mass (ripe islands), and then increases in a mass range which corresponds to raw islands. In the proximity of $k \approx K$, there is a peak in c_k as predicted by our description based on matched asymptotic expansions. Our data for the time dependence of the total island density (Fig. 2) are consistent with $N(t)$ growing as a power of $\ln t$, as predicted by Eq. (17), but with somewhat smaller exponent than $\mu/2$. We consider our data sufficient to exclude a power-law time dependence of the island density. However, impractically long simulation would be needed to determine the exponent of the logarithmic factor in Eq. (17).

B. Circular Island Droplets

We now consider simulations of compact growing circular islands which we term as droplets. We additionally assume that islands are always centered on sites of the square lattice. In the simulations, we consider a system of size L^2 to which we add monomer droplets of radius $r_0 = 0.495$ to guarantee that adjacent monomers do not overlap. Monomers, however, can overlap with bigger droplets. When two droplets of radii r_1 and r_2 overlap they coalesce to form a droplet of radius $\sqrt{r_1^2 + r_2^2}$ which is located at the center of the larger of the two initial coalescing droplets. As the coverage increases, multiple coalescences become increasingly probable and we therefore check for new island overlaps after each coalescence event and perform additional coalescences and continue to resolve all additional overlaps, if needed.

In the time evolution, a microscopic process, either deposition onto any system site or diffusion to a nearest-neighbor site is chosen with respective probabilities $p_{dep} = F/(F + N)$ and $p_{diff} = 1 - p_{dep}$. We then test for and perform all possible subsequent coalescences after each event. After completion of this microscopic event the time is incremented by $\Delta t = (FL^2 + NL^2)^{-1}$ and the process is repeated.

![Fig. 3](image3.png)

Fig. 3. Plot of $N(t)/t^2$ versus $t\sqrt{F}$ for $\mu = 1.2$ and $F = 0.001$ for point (\odot) and growing circular islands (\ast).

Fig. 3 compares the time evolution of point and growing circular islands. For $t < 1/\sqrt{F}$, the plots of $N(t)$ versus t for the two processes coincide, thus indicating that the point-island model provides an excellent early-time description for the more realistic model of growing
droplets. However, when $t > 1/\sqrt{F}$, multi-body aggregation starts to become important and the density of droplets decreases with time while the density of point islands continues to grow. Thus the point-island model is a suitable starting point to interpret simulational and experimental data of epitaxial growth [38].

A visualization of the aggregation of circular droplets at a relatively late stage is shown in Fig. 4. Here, many-body effects become significant and a coalescence of two large droplets can lead to a large avalanche of coalescence events.

In Fig. 5 we plot the dependence of the maximum island density as a function of the flux. Using the power-law form of Eq. (41) leads to a best-fit value $\chi \approx 0.43$, while taking into account the logarithmic correction given by Eq. (42) gives $\chi \approx 0.50$, in excellent agreement with our theory. However, using the additional flux renormalization from our more accurate treatment of the reaction rate (Appendix B) to fit the data leads to the somewhat different exponent estimate of $\chi \approx 0.53$.

We have also performed simulations of two-dimensional fractal islands. Specifically, when two monomers occupy neighboring sites they stick irreversibly to form a dimer. This process continues and leads to the formation of fractal islands which hop as a rigid unit. Simulation of this process is simpler than in the growing droplet model because coalescences subsequent to the primary event cannot occur. This model has been studied earlier [4] and our respective results agree. For example, for the case $\mu = 1.2$ we obtain $\chi \approx 0.43$ if we fit the data for N_{max} versus F to power-law behavior. Our interpretation for this exponent value differs, however, from that of Ref. [4]. Indeed, they suggest that there might be a deep connection to a point-island model where both monomers and dimers diffuse and larger islands are immobile, since the exponent in that model, $\chi = 2/5$ [27], is close to their simulation results. We believe that there is no connection between these two models and the exponent observed by simulation is just an effective value whose asymptotic value is governed by the logarithmic correction in Eq. (B3). Our theory predicts universal flux exponent $\chi = 1/2$, and the difference with observed effective flux exponent is due to the logarithmic correction. When this feature is taken into account, a value for χ very close to our prediction is found.

VI. SUMMARY AND DISCUSSION

We have investigated the kinetics of submonolayer epitaxial growth within a simple model which incorporates basic physical features of epitaxial growth – deposition, island diffusion, and aggregation. We have shown that our model displays universal kinetics – up to logarithms – as the governing exponents associated with the time and flux dependence of observables are detail independent. This is in contrast to the behavior exhibited by models where islands below a cutoff size are mobile while larger islands are immobile. In this case, characteristic exponents depend on this mass threshold.

We analyzed in detail the situation where the effective diffusivity D_k for islands of mass k is $D_k \propto k^{-\mu}$. Such a diffusivity arises, e.g., in periphery diffusion, where an adatom on the edge of an island detaches, hops to a neighboring site on the edge, and then re-attaches to the island. This mechanism also causes islands to be compact. A Smoluchowski approach shows that the reaction rate between two islands of mass i and j is $K_{ij} \propto i^{-\mu} + j^{-\mu}$ multiplied by a factor which depends logarithmically on their radii in two dimensions. This weak dependence implies that a model with point-like diffusing islands should be quantitatively accurate when applied to the submonolayer regime. The net effect of the logarithmic factor is the flux renormalization, $F \rightarrow F \ln(1/F)$, as demonstrated in Appendix B.

For mobility exponent $0 \leq \mu < 1$, there is a steady
state, with the concentration of islands of mass k, $c_k \propto k^{-(3-\mu)/2}$. For $\mu \geq 1$, logarithmic time dependence arises in which the total island density $N(t) \propto (\ln t)^{\mu/2}$. In this regime, the island distribution exhibits a rich mass dependence in which there is: (i) a precipitous decay in a "boundary layer" $k \ll \kappa$ (with $\kappa \sim \ln t$), (ii) a gradual growth in the main part of the mass distribution $\kappa < k < K$ (with $K \sim (\ln t)^{-\mu/2}$), and (iii) an internal layer $\kappa = K$ which the density of islands reaches a peak and then sharply vanishes. The entire regime $1 \leq \mu < \infty$ exhibits this same behavior up to logarithmic corrections, while the transition between the steady and evolving regimes at $\mu = 1$ is characterized by nested logarithmic behavior.

It is noteworthy that our theoretical approach can be applied to epitaxial systems with arbitrary mass-dependent diffusivity D_k which decays faster than inverse mass. For this general situation, the analog of Eq. (22) is

$$c_k \sim N^{-1} \prod_{j=2}^{\infty} \frac{1 + D_j}{1 + N^2 D_j}. \quad (50)$$

For example, for a diffusivity which decays exponentially in island mass, $D_k = e^{-a(k-1)}$, the case investigated numerically in Ref. [39], our theory predicts

$$N(t) \sim \sqrt{F} \exp \left[\frac{a}{2} \ln \left(\frac{t}{\sqrt{F}} \right) \right] \quad (51)$$

and $K \sim t/N$, leading again to the same universal value of the mass cutoff exponent $\zeta(a) = 1$. Eq. (51) exhibits unusual time dependence – faster than any power of logarithm and slower than any power law – and may be difficult to observe numerically. The maximum island density is

$$N_{\text{max}} \sim \sqrt{F} \exp \left[\frac{a}{4} \ln(1/F) \right]. \quad (52)$$

so again $\chi = 1/2$. Numerically, the exponent $\chi(a)$ appears to decrease as a increases [39]. Our analysis suggests that in the asymptotic regime $\chi(a) \equiv 1/2$ for all $0 < a < \infty$. However, fitting the functional form in Eq. (52) to a single power-law in F gives $\chi_{\text{eff}} = \frac{1}{2} - \frac{1}{2} a/[4 \ln(1/F)]$. Therefore even for small flux the effective exponent may be considerably smaller than 1/2. Also, $\chi_{\text{eff}}(a)$ is a decreasing function of a, in agreement with the observations from the simulation [39].

JFFM gratefully acknowledges support from FLAD and JNICT/PRAXIS XXI: grant /BPD/6084/95 and project PRAXIS/2.2.1/Fis/299/94. PLK and SR gratefully acknowledge support from NSF grant DMR9632059 and ARO grant DAAH04-96-1-0114.

APPENDIX A: EPITAXIAL GROWTH ON 1D SUBSTRATES

We now extend our results to the case of a one-dimensional substrate. Since the upper critical dimension $d_c = 2$ [20], the mean-field approximation does not apply in one dimension. In the absence of a theoretical framework to systematically treat the case $d < d_c$, we give a heuristic treatment. We will derive results for the specific cases of $d = 1$ and $d = 2$; comparison between the latter and the rate equation results provide a check of our approach.

Consider first the simpler case of systems that approach a steady state. We present an argument based on the volume swept out by a Wiener sausage, as in the case of systems without flux (Sec. IV). To mimic the effect of the flux, we suppose that there is no flux but that all islands have initial mass which equals t. At time t, all islands within a reaction volume $(Dt)^{d/2}$ have coalesced into a single island. Ignoring logarithmic correction in two dimensions, this gives the following estimate for the average island mass M,

$$M(t) \sim t \times \begin{cases} \frac{Dt}{\sqrt{Dt}}, & d = 2, \\ \frac{t^{d/2}}{\sqrt{t^{d/2}}}, & d = 1. \end{cases} \quad (A1)$$

Combining (A1) with $D \sim M^{-\mu}$ and using the fact that the average island mass M scales as the mass cutoff we find

$$K(t) \sim \begin{cases} (t^{2/(1+\mu)}), & d = 2, \\ (t^{\mu/(2+\mu)}), & d = 1. \end{cases} \quad (A2)$$

In the steady state regime $c_k \sim k^{-\tau}$. Consequently the sum rule $t = \sum_k k c_k \sim K^{2-\tau} \sim t^{\zeta(2-\tau)}$ implies the relation $\tau = 2 - 1/\zeta$. This, together with (A2), gives

$$\tau = \begin{cases} (3-\mu)/2, & d = 2, \\ (4-\mu)/3, & d = 1. \end{cases} \quad (A3)$$

This argument reproduces the correct values of the cutoff and the decay exponents when $d = 2$, and we anticipate that the one-dimensional results are also exact. Indeed, an exact solution of one-dimensional aggregation with monomer input and mass-independent island diffusivities gives $\tau = 4/3$. Finally, note that the exponents ζ and τ attain the critical value $\zeta = \tau = 1$ when the mobility exponent $\mu = 1$ in both one and two dimensions.

When $\mu \geq 1$, continuous evolution occurs. We now argue that the densities asymptotically evolve according to generalized rate equations. For monomers, we write

$$\frac{dc_1}{dt} = F - \frac{c_1}{\Delta t}. \quad (A4)$$

Here Δt is the collision time for a monomer to encounter an island. During this time interval, a monomer visits $\sqrt{\Delta t}$ different sites in one dimension, so that the collision time is determined by $N \sqrt{\Delta t} \approx 1$. Consequently, the rate equation for the monomer density becomes
Continuing this line of reasoning we obtain the rate equations for the densities \(c_k(t) \), which differ from Eqs. (3) by a factor \(N \) in each reaction term.

We now analyze these equations by the same quasi-static framework as in Sec. II. Thus we need to solve

\[
0 = F - N^2 c_1, \quad (A5)
\]

\[
0 = \frac{1}{2} \sum_{i+j=k} (i^{-\mu} + j^{-\mu}) c_i c_j - c_k (k^{-\mu}N + N_k). \quad (A6)
\]

Repeating the steps of our previous derivations we obtain, e.g., for the density of islands,

\[
N(t) \simeq F^{1/3} \left[\frac{\sin(\pi/\mu)}{\pi} \ln \left(t F^{2/3} \right) \right]^{\mu/2}, \quad (A7)
\]

and for the behavior of the density of relatively small islands

\[
c_k(t) \sim F^{1/3} \left(\frac{k!}{N^k} \right)^{\mu/2}. \quad (A8)
\]

This in the continuously evolving regime, the time dependence remains primarily unaffected by the dimensionality of the substrate. However, the flux dependence does change with \(d \), and we find \(N_{\text{max}} \sim F^{1/3} [\ln(1/F)]^{\mu/2} \) (compared to the \(F^{1/2} \) dependence in Eq. (A2)). Overall, universal behavior arises in continuous evolution which is only slightly affected by model details, substrate dimensionality, etc..

APPENDIX B: REACTION RATE IN TWO DIMENSIONS

We now account for the logarithmic corrections to the reaction rate (Eq. (1)) that appear in two dimensions. We first demonstrate that these logarithmic corrections can be accounted for within modified rate equations. Let us first consider a simpler model where point islands diffuse at the same mass-independent rate. Then the total island density \(c(t) \) obeys \(\dot{c} = -c/\Delta t \), where \(\Delta t \) is the time between successive collisions. A collision is expected when the island visits 1/c distinct sites. Since the number of distinct sites visited by a random walk in time \(t \) grows as \(Dt/\ln(Dt) \) in two dimensions [35], the collision time follows from the condition \(D\Delta t/\ln(D\Delta t) \sim 1/c \). The resulting expression for \(\Delta t \) leads to the rate equation \(\dot{c} = -Dc^2/\ln(1/c) \). Similarly, for an island of radius \(R \) we obtain \(\dot{c} = -Dc^2/\ln(1/cR^2) \).

For growing droplets with mass dependent diffusivity, these logarithmic factors imply that the reaction rate \(K_{ij} = D_i + D_j \) should be replaced by

\[
K_{ij} \sim \frac{D_i + D_j}{\ln[N^{-1}(R_i + R_j) - 1]^2]. \quad (B1)
\]

In the low coverage limit, the average separation between neighboring islands \(N^{-1/2} \) is much larger than the average island size. Keeping only this dominant factor inside the logarithm gives the asymptotic form of the reaction rate \(K_{ij} \sim (D_i + D_j)/\ln(1/N) \). Moreover, we can replace the total island density by \(\sqrt{F} \) inside the logarithm. This is obvious when \(\mu < 1 \), since in this case the island density indeed approaches a steady state value \(N_{\infty} \sim \sqrt{F} \). For \(\mu \geq 1 \), the island density grows according to \(N \sim \sqrt{F}[\ln(t)^{\mu/2}] \). However, the time-dependent factor is clearly sub-dominant as it is at most logarithmic in the flux, \((\ln t_{\text{max}})^{\mu/2} = (\ln(1/F))^{\mu/2} \). Hence for arbitrary mobility exponent \(\mu \), the form \(K_{ij} \sim (D_i + D_j)/\ln(1/F) \) provides an asymptotically correct description for the reaction rate.

Therefore in two dimensions we can continue to use the mean-field Smoluchowski equations, with the modification of the reactive term by the factor \(1/\ln(1/F) \). Upon rescaling the densities by \(c_k \to c_k\sqrt{F}\ln(1/F) \), and the time variable by \(t \to t\sqrt{F^{-1}\ln(1/F)} \), we formally map Smoluchowski equations for epitaxial growth in two dimensions onto the mean-field Eqs. (2) with \(F = 1 \) and the reaction rates given by (1).

We therefore conclude that we can apply the mean-field results to two-dimensional substrates upon making the flux renormalization

\[
F \to F \ln(1/F). \quad (B2)
\]

This renormalization does not alter the basic predictions of the Smoluchowski approach; for example, all exponents remain the same. However, this renormalization does alter some logarithmic factors, e.g., Eq. (A2) for the maximum island density is replaced by

\[
N_{\text{max}} \sim F^{1/2}[\ln(1/F)]^{(\mu+1)/2}. \quad (B3)
\]

[1] J. J. Métois, K. Heinemann and H. Poppa, Philos. Mag. 35, 1413 (1977).
[2] J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).
[3] N. V. Brilliantov and P. L. Krapivsky, Sov. Phys. Solid State 31, 271 (1989); J. Phys. A 24, 4787 (1991).
[4] J. A. Blackman and A. Wielding, Europhys. Lett. 16, 115 (1991); J. A. Blackman, A 220, 85 (1995).
[5] Z. Zhang, M. C. Bartelt and J. W. Evans, Phys. Rev. B 46, 12675 (1992).
[6] G. L. Kellogg, Phys. Rev. Lett. 73, 1833 (1994); Surf. Sci. Rep. 21, 1 (1994).
[7] A. F. Voter, Phys. Rev. B 34, 6819 (1986).
[8] S. C. Wang and G. Ehrlich, Surf. Sci. 239, 301 (1990); Phys. Rev. Lett. 79, 4234 (1997).
[9] I. Furman and O. Biham, Phys. Rev. B 55, 7917 (1997).
[10] K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995).
[11] G. M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Phys. Rev. Lett. 73, 2591 (1994); J. M. Wen, J. W. Evans, M. C. Bartelt, J. W. Burnett, and P. A. Thiel, Phys. Rev. Lett. 76, 652 (1996).
[12] W. W. Pai, A. K. Swan, Z., and J. F. Wendelken, Phys. Rev. Lett. 79, 3210 (1997).
[13] S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995).
[14] P. Jensen, A.-L. Barabasi, H. Larralde, S. Havlin, and H. E. Stanley, Phys. Rev. B 50, 15316 (1994) and references therein.
[15] A preliminary account is given in P. L. Krapivsky, J. F. F. Mendes, and S. Redner, Eur. Phys. J. B 4, xxx (1998).
[16] R. L. Drake, in Topics of Current Aerosol Research, vol. III part 2, ed. G. M. Hidy and J. R. Brock (Oxford: Pergamon, 1972).
[17] M. H. Ernst, in Fractals in Physics, ed. L. Pietronero and E. Tosatti (Amsterdam: Elsevier, 1986) p. 289.
[18] E. E. Gruber, J. Appl. Phys. 38, 243 (1967).
[19] R. Q. Hwang, J. Schröder, C. Günter, and R. J. Behm, Phys. Rev. Lett. 73, 553 (1994).
[20] P. G. J. van Dongen, Phys. Rev. Lett. 63, 1281 (1989).
[21] G. H. Hardy, Divergent Series (Clarendon Press, Oxford, 1967).
[22] A. H. Nayfeh, Introduction to Perturbation Technique (Wiley, New York, 1981).
[23] Similar rate equations describe the model of mobile adatoms and immobile islands [3–5], leading to somewhat similar island mass distribution.
[24] G. Zinsmeister, Thin Solid Films, 2, 497 (1968); 4, 363 (1969); 7, 51 (1971).
[25] Y. W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).
[26] H. J. Ernst, F. Fabre, and J. Lapujoulade, Phys. Rev. B 46, 1929 (1992).
[27] J. Villain, A. Pimpinelli, L.-H. Tang, and D. E. Wolf, J. Phys. I France 2, 2107 (1992); J. Villain, A. Pimpinelli, and D. E. Wolf, Comments Cond. Mat. Phys. 16, 1 (1992).
[28] M. Schroeder and D. E. Wolf, Phys. Rev. Lett. 74, 2062 (1995).
[29] P. Meakin, Physica A 165, 1 (1990).
[30] M. Moreau and G. Oshanin, J. Chem. Phys. 102, 2977 (1995).
[31] D. S. Sholl and R. T. Skodje, Physica A 231, 631 (1996).
[32] S. Cueille and C. Sire, Phys. Rev. E 55, 5465 (1997).
[33] D. Kandel, Phys. Rev. Lett. 79, 4238 (1997).
[34] J. Li, A. G. Rojo, and L. M. Sander, Phys. Rev. Lett. 78, 1747 (1997).
[35] D. S. Sholl and R. T. Skodje, Phys. Rev. Lett. 75, 3158 (1995).
[36] W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1968).
[37] K. Kang, S. Redner, P. Meakin, and F. Leyvraz, Phys. Rev. A 33, 1171 (1986).
[38] Note, however, that there are alternative approaches which are based on “self-consistent” rate equations. See e.g., G. S. Bales and D. C. Chrzan, Phys. Rev. B 50, 6057 (1994); G. S. Bales and A. Zangwill, Phys. Rev. B 55, 1973 (1997).
[39] L. Kuipers and R. E. Palmer, Phys. Rev. B 53, 7649 (1996).
[40] H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev. A 37, 3110 (1988); B. R. Thompson, J. Phys. A 22, 879 (1989).