Introduction

Alpacas (Lama pacos) and llamas (Lama glama) are domesticated species of South American camelid (SAC), and have been imported by many countries in recent decades (Davies et al., 2007). As the important economically species for wool and meat production (San Martin and Bryant, 1989), alpacas and llamas were investigated extensively, especially their forestomach characteristics and nutritional strategies (Pei et al., 2013; Ortiz-Chura et al., 2018). It is described (Vallenas et al., 1973; San Martin and Bryant, 1989) that alpacas and llamas have similar anaerobic fermentation process and end-product volatile fatty acids (VFA) production, but lower energy and protein requirements in comparison to true ruminants.

It was reported (San Martin and Bryant, 1989; Dulphy et al., 1994) that SAC show stronger low-quality food digestion capacity than sheep, and it was speculated that this phenomenon was due to a higher ruminal retention time for the solid phase, and a more efficient nitrogen recycling. Higher pH stability of forestomach may be another reason why alpacas exhibit better digestion capacity of low-quality food than sheep (Eckerlin and Stevens, 1973). In addition, the differences in forestomach fermentation characteristics including ammonia-N (NH₃-N), redox potential, osmolarity, surface potential, and
foregut pressure between alpacas and sheep might influence digestive efficiency of both animals (Liu et al., 2009).

Except for physiological factors, rumen microbial community may be also a part of differences in foregut digestion (Pei et al., 2013). We have previously shown that there were apparent differences in the bacterial diversity and abundance in alpaca foregut and sheep rumen fed alfalfa (Pei et al., 2010). Besides, lower population of methanogens and higher percentage of cellulolytic fungi have been also found in alpaca foregut when compared with sheep rumen fed fresh alfalfa as a forage source (Pei et al., 2013).

Unfortunately, the studies on the foregut digestion coupled with microbiota descriptions in alpacas and sheep, especially under low-quality maize stalk diet, are scarce. So, the aim of the study was to comprehensively investigate the foregut fermentation parameters and microbial communities of alpacas and sheep fed maize stalk-based diets.

Material and methods

Animals and experimental design

Six male alpacas (12 ± 2 months old, 29.5 ± 7.1 kg) and six male sheep (12 ± 2 months old, 27.9 ± 2.7 kg) were used in the study. The animals were housed in metabolic crates (1.2 × 1.6 m) with expanded metal flooring and fed low-quality diet (30% maize-based concentrate and 70% rubberized maize stalk). The composition and nutritional value of diet are shown in Table 1. Maize stalk was harvested during September and October, and chopped manually at 3–4 cm length before being fed to animals. Animals were offered diets twice a day (07:00 and 19:00) *ad libitum* and had free access to fresh water. Experimental period included 18 days of adaptation to the diet and then 3 days of sampling. The experiment was conducted at the Shanxi Agriculture University, and the protocol was approved by the Animal Care and Use Committee of the Shanxi Agriculture University.

Measurements and collection of samples

Feed offered and refusals were weighted daily to calculate feed intake of the animals. The samples of feed refusals were collected once a day and then composited by period. The faeces were collected by harness-collection bag sets and were dried in an oven at 55 °C for 48 h, and then composited by period. The feeds and faeces were ground to pass a 1-mm screen with a mill (FZ102, Shanghai Hong Ji instrument Co., Ltd., Shanghai, China) for chemical analysis. Urine was collected into a container with 50 ml 12 M sulphuric acid and the volume was recorded daily.

Approximately 100 ml of foregut fluid was taken anaerobically via oesophagus using a stomach tube (outer diameter 1 cm, inner diameter 0.8 cm, length 200 cm) connected to a 100-ml syringe, from several sites (the front and middle of the ventral sac and the cranial sac) within the foregut after morning feeding (0, 3, 6 and 9 h), on three consecutive days at the end of each experimental period. The samples were filtered through cotton gauze (4-sheets) and ‘ruminal fluid’ was obtained. Then the ‘ruminal fluid’ was used for the microbial community determination, pH, VFA and NH₃-N analyses. The pH values were measured with an electric pH meter (Sartorius AG, Goettingen, Germany). Filtrate (5 ml) was preserved by adding 1 ml of 250 g/l (w/v) meta-phosphoric acid, and 1 ml of 20 g/l (w/v) H₂SO₄ to determine VFA and NH₃-N, respectively.

Chemical analysis

The dry matter (DM) content of samples was determined by oven drying (135 °C, 3 h), the ash content was determined by incineration at 550 °C for 5 h (AOAC, 1990). The organic matter (OM) content was calculated based on the difference between DM and ash content. The crude fibre (CF) was determined using the Weende method (Henneberg and Stohmann, 1859) and ether extract (EE) with the method of AOAC (1990). The acid detergent fibre (ADF) contents were determined according to the

Table 1. Ingredient and nutrient levels of alpaca and sheep, % dry matter (DM)

Indices	Amount
Ingredient	
maize stalk, cracked	70.0
maize grain, ground	5.1
soyabean meal	17.7
rapeseed meal	2.85
soyabean oil	2.85
premixª	1.5
Nutrient	
crude protein, %	13.22
neutral detergent fibre, %	44.79
acid detergent fibre, %	32.62
metabolizable energy (ME), MJ/kg DMª	11.16

ª contained per kg of diet: g: NaCl 1.5, mg: CuSO₄ 22.8, ZnSO₄ 98.7, MnSO₄ 90.7, KI 1, FeSO₄ 326, Na₂S₂O₃ 0.7, CoCl₂ 0.6, IU: vit. A 3000, vit. D 500, vit. E 300; † calculated using the formula: ME (MJ/kg DM) = 11.78 + 0.00654 crude protein + (0.00665 ether extract)² – crude fibre (0.00414 ether extract) – 0.0118 ash
methods described by Van Soest et al. (1991). The neutral detergent fibre (NDF) was determined according to Mertens (2002).

The nitrogen concentration in the samples was determined by the Kjeldahl method (AOAC, 1990) and multiplied by 6.25 to obtain crude protein (CP) concentration. The VFA was separated and determined by a gas chromatography (GC122; Shanghai Jingke instrument Co., Ltd., Shanghai, China) with 2-ethylbutyric acid as the internal standard. The concentration of NH$_3$-N, MCP as well as the content of phosphorus and calcium were determined using the method of AOAC (1990).

DNA extraction, PCR amplification and 16S rRNA gene sequencing

Microbial DNA was extracted from forestomach fluid based on the bead-beating method described by Zoetendal et al. (1998). Microbial DNA was amplified using the 517F/926R primers set (517F: 5' - GCCAGCAGCAGCCGTTA-3', 926R: 5' - CCGTCATTTYGCTGTTTGT-3'). PCR product was purified using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences; Union City, CA, USA). Purified PCR products were sequenced using an Illumina MiSeq platform according to standard protocols.

Bioinformatics and statistical analysis

Operational taxonomic units (OTUs) were clustered with a 97% similarity cut-off using UPARSE (version 7.1, http://drive5.com/uparse/), and chimeric OTUs were identified and removed using UCHIME. Mothur was used to calculate the alpha diversity including ACE, Chao1, Shannon, Simpson and coverage. Principal coordinate analysis (PCoA) was conducted using the unweighted UniFrac distance method (Lozupone and Knight, 2005). Analysis of molecular variance (AMOVA) was conducted using the programme MOTHUR v.1.29.0.

All statistical analyses were performed using SPSS (SPSS Statistics 21, SPSS Inc., Chicago, IL, USA) software packages. The statistical model on animal species was:

$$ Y_i = \mu + A_j + P_f + e_{ijk} $$

where: Y_i – abundance or relative abundance of a given classification of microorganisms, sequences, or OTU; μ – mean; A_j – fixed effect of animal species j; P_f – fixed effect of experimental period f; and e_{ijk} – experimental error. Post-hoc multiple comparisons were made to compare the means using Fisher’s least significant difference (LSD). Differences were considered significant when $P < 0.05$.

Results

Apparent digestibility in the total tract

The DM intake was 38% lower in alpacas (547.8 g/day) than in sheep (880.4 g/day). The digestibilities of DM, OM, CP, EE, NDF and ADF were similar in alpacas and sheep (Table 2). The digestibility of phosphorus was higher ($P = 0.081$) in alpacas than in sheep, while that of calcium was lower ($P = 0.067$) in alpacas.

Forestomach fermentation characteristics

Forestomach fermentation characteristics in alpacas and sheep fed maize stalk are shown in Table 3. The fermentation profiles of propionate, valerate, isobutyrate and isovalerate in alpacas were higher ($P < 0.001$) than those in sheep, whereas acetate and acetate:propionate ratio (A/P ratio) was lower ($P < 0.001$) in alpacas than in sheep. The concentrations of ammonia-N and microbial protein in alpaca forestomach were 23 and 33% lower than those in sheep, respectively.

Indices	Alpaca	Sheep	SE	P-value
Intake, g/day				
Dry matter	547.8	880.4	14.28	0.001
Digestibility				
Dry matter	65.1	67.1	2.94	0.509
Organic matter	68.0	69.3	2.85	0.663
Crude protein	72.5	71.2	11.19	0.910
Ether extract	92.6	92.8	0.96	0.840
Neutral detergent fibre	57.4	55.8	6.20	0.798
Acid detergent fibre	46.6	47.7	5.78	0.899
Calcium	31.6	41.4	4.80	0.067
Phosphorus	41.7	25.5	8.35	0.081

SE – standard error

Indices	Alpaca	Sheep	SE	P-value
Total volatile fatty acids, mM	66.29	66.72	1.110	0.851
Acetate (A)	63.72	66.12	0.236	0.001
Propionate (P)	24.04	22.83	0.155	0.001
Butyrate	8.15	8.35	0.104	0.339
Valerate	1.34	1.01	0.026	0.001
Isobutyrate	1.07	0.80	0.014	0.001
Isovalerate	1.66	0.89	0.044	0.001
A/P ratio	2.66	2.92	0.026	0.001
Microbial crude protein, mg/ml	0.64	0.95	0.043	0.001
NH$_3$-N, mg/100ml	11.63	15.14	0.628	0.010
pH	6.76	6.72	0.026	0.498

SE – standard error
However, the fermentation profiles of pH values, total VFA, and butyrate were similar in alpacas and in sheep.

Forestomach microbial community

In this study, 32 211 and 33 038 high-quality sequences per sample from alpaca forestomach and sheep rumen, respectively were obtained (Table 4). The number of OTUs per sample was similar in alpacas (1139) and sheep (1103). Microbial community diversity indices ACE, Chao1 and Shannon were slightly, but not significantly, higher ($P > 0.10$) in alpacas than in sheep (Table 4). However, the Simpson indices were lower ($P < 0.10$) in alpacas than in sheep.

Table 4. The diversity of bacterial communities in forestomach fluid of alpacas and sheep

Indices	Alpaca	Sheep	SE	P-value
Reads	32211	33038	2833	0.776
OTUs	1139	1103	74.05	0.436
ACE indices	1304	1280	45.11	0.615
Chao1 value	1307	1289	48.17	0.717
Shannon indices	5.46	5.29	0.10	0.139
Simpson indices	0.014	0.017	0.0042	0.237
Coverage, %	99.31	99.29	0.10	0.842

SE - standard error

In total, 18 phyla were identified in all samples (Table 5). Bacteroidetes (62.73 and 64.72%) were the most dominant and more numerous than Firmicutes (32.18 and 31.12%) in both alpacas and sheep (Table 5). The other phyla were of low-relative-abundance for the percentage under 2% in the total bacterial communities. In addition, the relative abundances of Spirochaetes, Proteobacteria and Nitrospirae in alpacas were higher ($P < 0.05$) than that in sheep, while the relative abundances of Chloroflexi ($P = 0.013$) and Fibrobacteres ($P = 0.073$) in alpacas were lower than that in sheep.

At the genus level, a total of 251 genera were detected in the forestomach of alpaca and sheep. Sixteen genera were discovered only in alpacas, and eleven genera were found only in sheep. In addition, the proportions of Treponema, Quinella and Pseudobutyri vibrio were higher ($P < 0.05$) in alpacas than those in sheep, but the proportion of Selenomonas was lower ($P < 0.05$) in alpacas (Table 5, Figure 1).

Table 5. Bacterial phyla and selected genera in forestomach bacterial community of alpaca and sheep, % of total sequences

Phyla	Alpaca	Sheep	SEM	P-value
Bacteroidetes	62.73	64.717	1.676	0.422
Prevotella	31.495	34.390	2.045	0.6991
Rikenellaceae RC9	21.392	18.830	1.8619	0.5177
Prevotellaceae UCG-001	2.907	3.7080.3390	0.2559	
Prevotellaceae UCG-003	3.037	4.1860.3315	0.08146	
others	3.902	3.608		-
Firmicutes	32.180	31.324	1.547	0.704
Christensenellaceae R-7	2.881	3.3580.2629	0.4019	
Ruminococcaceae UCG-011	2.266	1.6490.2431	0.2189	
Erysipelotrichaceae UCG-004	1.759	3.4750.8422	0.3313	
Lachnospiraceae UCG-004	1.640	3.0250.3676	0.05414	
Saccharofermentans	0.898	0.884	0.07104	0.9291
Quinella	1.081	0.157	0.272	0.037
Butyrivibrio	0.925	0.645	0.1002	0.1727
Ruminococcus	1.056	0.863	0.1361	0.093
Pseudobutyri vibrio	0.768	0.312	0.107	0.013
Selenomonas	0.404	0.624	0.083	0.003
Clostridium	0.290	0.144	0.039	0.024
others	18.716	16.406		-
Spirochaetae	1.889	0.954	0.212	0.011
Treponema	1.673	0.489	0.162	< 0.001
others	0.216	0.465		-
Proteobacteria	1.278	0.867	0.111	0.026

SEM - standard error

Figure 1. Relative abundances of bacterial taxa at the genus level in the forestomach of alpacas (A) and sheep (S)
At the species level, the proportions of *Fibrobacter succinogenes* and *Ruminococcus flavefaciens* (0.013 and 0.174%, respectively) were higher (*P* > 0.05) in alpacas than those (0.004 and 0.106%, respectively) in sheep.

The PCoA results of overall diversity based on an unweighted UniFrac metric showed that bacterial communities in alpacas were slightly different from that of sheep, as shown by PC1, which accounted for 25.02% of the total variation (Figure 2).

Figure 2. Principal coordinate analysis (PCoA) results showing relationships of bacterial communities in the forestomach of alpacas (A) and sheep (S). The PCoA plots were constructed using the unweighted UniFrac method

Discussion

It was found that alpacas had a lower DM intake than sheep when fed maize stalk as roughage. It is consistent with the results reported by Liu et al. (2009), who noted that feed intake (sorghum-sudan or fresh alfalfa) was lower in alpacas than in sheep. Lower DM intake values in alpacas probably result from smaller rumen volumes and lower particulate passage (San Martin, 1987). In addition, the lack of differences in nutrient digestibility (DM, OM, CP, EE, NDF and ADF) between alpacas and sheep in the present study is in line with previous findings (San Martin et al., 1982; Liu et al., 2009). However, numerous studies have suggested that SAC show an apparently better digestion capacity than sheep (San Martin and Bryant, 1989; Dulphy et al., 1997).

The discrepancy between studies could be due to the CP content in diet. Greater digestion coefficients were found in alpacas than in sheep fed diets with less than 7.5% CP, but similar digestion coefficients were detected in those animals when dietary CP was above 10.5% (San Martin and Bryant, 1989). In the present study, the similar nutrient digestibility between alpacas and sheep may closely correlate with the content (13.22%) of dietary CP but not the roughage (maize stalk).

The total VFA concentration in the forestomach was similar in alpacas and sheep, as it was previously observed by Vallenas et al. (1973). Analysing concentrations of various kinds of VFA, lower acetate as well as A/P ratio were found in alpacas. However, Liu et al. (2009) found in alpacas similar A/P ratio but higher acetate than in sheep fed alfalfa or sorghum diet. This discrepancy can be probably linked to the properties of roughage. Maize stalk inherent complex lignocellulosic structures and contain higher proportion of lignin preventing the digestion by ruminal microbes, than alfalfa or sorghum (Himmel et al., 2007). In this study, higher Firmicutes/Bacteroidetes ratio was found in alpacas fed maize stalk-based diet. Firmicutes and Bacteroidetes are the most abundant phyla in ruminant forestomach (Petri et al., 2012; Plaizier et al., 2016), they are the major degraders of polysaccharides including cellulose, starch, hemicellulose, xylan and so on (Martens et al., 2011). The changes in the composition of microbiota may be leaded to lower acetate and higher propionate in alpacas.

In the present study, higher NH₃⁻N concentration was observed in sheep rumen than in alpaca forestomach when maize stalk was fed as forage source. This finding coincided with the results of previous study (Liu et al., 2009) in which higher NH₃⁻N concentration was noted in sheep fed alfalfa or sorghum-sudan diet. Higher concentration of NH₃⁻N in sheep might be due to the higher DM intake (major intake of N) than in alpacas (Ortiz-Chura et al., 2018), however, more studies are needed to confirm this hypothesis. Besides, the concentration of NH₃⁻N in the rumen could be associated to the degradation of dietary protein and NH₃⁻N absorption by ruminal microbes (Ushida et al., 1986; Belanche et al., 2012). In the present study, higher proportions of proteolytic bacteria *Selenomonas* spp., which significantly increased NH₃⁻N production (Liu et al., 2020), was found in sheep rumen. In addition, fibrolytic bacteria are highly dependent on NH₃⁻N availability as a source of N (Russel et al., 1992). In this study, higher abundance of fibrolytic bacteria,
such as Butyrivibrio, Selenomonas, Clostridium, F. succinogenes and R. flavefaciens were found in alpaca forestomach, and may be one of the reasons for lower NH3−N concentration in alpacas. Except proteolytic and fibrolytic bacteria, protozoa and animal species may be also attributed to lower NH3−N concentration in alpacas.

It is generally agreed that dietary composition was one of the major factors influencing types and numbers of forestomach microbial communities (Ley et al., 2008; Henderson et al., 2015). However, to date, little information is available on microbial populations present in forestomach of alpacas fed low-quality roughages. In this study, high-throughput sequencing was used to reveal the composition and biodiversity of the forestomach microbial community in alpacas and sheep fed maize stalk as roughage. It was shown that Bacteroidetes is the most abundant bacteria phylum in the forestomach bacterial community of alpacas and sheep. Additionally, the genus Prevotella, which was the dominated genus under Bacteroidetes, reached up to 31.5 and 34.4% of the total bacterial communities in alpacas and sheep, respectively. This finding is in agreement with the results of previous studies indicating that Prevotella was one of the most abundant genera in the forestomach (Bekele et al., 2010). This likely reflects that the dominant bacteria, such as Prevotella, Butyrivibrio, Pseudobutyrivibrio and Selenomonas are likely to be responsible for the majority of the transformation of ingested and used feed for microbial growth in the rumen of alpacas and sheep (Bekele et al., 2010).

It was believed that the host phylogeny influence gut bacterial diversity, and bacterial communities diversified with their hosts (Ley et al., 2008). Although they all belong to Artiodactyla, alpacas are classified as Camelidae, and sheep as Bovidae. In this study, significant differences in the diversity and richness of bacterial communities between alpacas and sheep were revealed by AMOVA analysis (P < 0.0002) and PCoA plot. For example, at the genus level, 16 genera were found only in alpacas as well as 11 genera were discovered only in sheep, and the major determinant for the difference of bacterial community composition in the forestomach may be animal species. Furthermore, significantly different (P < 0.05) abundance of some bacteria was found in alpacas and sheep, such as Pseudobutyrivibrio, Selenomonas, and Treponema. This phenomenon may be related to the discrepancy of forestomach environments. It is described that SAC showed faster liquid passage rate (Clemens and Stevens, 1980) and longer gastrointestinal retention time of digesta (Yao et al., 2015), which may influence the interaction of microorganisms and feed particles.

Conclusions

The apparent digestibility in the total tract was similar, but the forestomach fermentation characteristics were different in alpacas and sheep when offered low-quality maize stalk diet. The different forestomach fermentation patterns may result from the different composition of forestomach microbiota (such as carbohydrate degrading bacteria and proteolytic bacteria).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31201825, 31972590, and 32002143), Youth Foundation of the Shanxi Science and Technology Department (201901D211375), Natural Science Funding projects of the Shanxi Science and Technology Department (201801D121243), and Animal Husbandry and ‘1331 project’ Key Discipline Construction programme of Shanxi Province.

References

AOAC, 1990. Official Methods of Analysis. 14th Edition. Association of Official Analytical Chemists. Arlington, VA (USA)

Bekele A.Z., Koike S., Kobayashi Y., 2010. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 305, 49–57, https://doi.org/10.1111/j.1574-6968.2010.01911.x

Belanche A., de la Fuente G., Moorbry J.M., Newbold C.J., 2012. Bacterial protein degradation by different rumen protozoal groups. J. Anim. Sci. 90, 4495–4504, https://doi.org/10.2527/jas.2012-5118

Clemens E.T., Stevens C.E., 1980. A comparison of gastrointestinal transit-time in 10 species of mammal. J. Agric. Sci. 94, 735–737, https://doi.org/10.1017/S0021859600028732

Davies H.L., Robinson T.F., Roeder B.L., Sharp M.E., Johnston N.P., Christensen A.C., 2007. Plasma metabolites and nitrogen balance in Lama glama associated with forage quality at altitude. Small Ruminant Res. 69, 1–9, https://doi.org/10.1016/j.smallrumres.2005.11.016

Dulphy J.P., Dardillat C., Jailler M., Ballet J.M., 1997. Comparative study of forestomach digestion in llamas and sheep. Reprod. Nutr. Dev. 37, 709–725, https://doi.org/10.1051/rnd:19970608

Dulphy J.P., Dardillat C., Jailler M., Jouany J.P., 1994. Comparison of the intake and digestibility of different diets in llamas and sheep-a preliminary-study. Ann. Zootec. 43, 379–387, https://hal.archives-ouvertes.fr/hal-00889058

Eckerlin R.H., Stevens C.E., 1973. Bicarbonate secretion by the glandular saccules of the llama stomach. Cornell Vet. 63, 436–445
Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P.H., Collaborators G.R.C., 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567, https://doi.org/10.1038/srep14567

Henneberg W., Stohmann F., 1859. About the maintenance fodder of adult cattle (in German). J. Landwirthsch. 34, 485–511

Himmel M.E., Ding S.Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807, https://doi.org/10.1126/science.1137016

Ley R.E., Hamady M., Lozupone C. et al., 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651, https://doi.org/10.1126/science.1155725

Liu Q., Dong C.S., Li H.Q., Yang W.Z., Jiang J.B., Gao W.J., Pei C.X., 2010. Anaerobe 16, 426–432, https://doi.org/10.1016/j.anaerobe.2010.06.004

Petri R.M., Forster R.J., Yang W., McKinnon J.J., McAllister T.A., 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J. Appl. Microbiol. 112, 1152–1162, https://doi.org/10.1111/j.1365-2672.2012.05295.x

Plaizier J.C., Li S., Tun H.M., Khabouri E., 2016. Nutritional models of experimentally-induced subacute ruminal acidosis (sara) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front. Microbiol. 7, 2128, https://doi.org/10.3389/fmicb.2016.02128

Russell J.B., O’Connor J.D., Fox D.G., Van Soest P.J., Sniffen C.J., 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Rumen fermentation. J. Anim. Sci. 70, 3551–3561, https://doi.org/10.2527/1992.70113551x

San Martin F., 1887. Comparative forage selectivity and nutrition of South American cameldids and sheep. Ph.D. Dissertation. Texas Tech University, Lubbock, TX (USA). 146 pp.

San Martin F., Bryant F.C., 1989. Nutrition of domestic South American llamas and alpacas. Small Ruminant Res. 2, 191e216, https://doi.org/10.1016/0921-4488(89)90001-1

San Martin F., Huasasquiche A., Del Valle A.O., Holgado D., Arbaiza T., Navas M., Farfan R., 1982. Comparative intake and digestibility of native grasses by alpacas and sheep during two seasons (in Spanish). Res. Univ. Nac. Mayor de San Marcos. Lima 2, 254

Ushida K., Jouany J.P., Thivend P., 1986. Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets. Br. J. Nutr. 56, 407–419, https://doi.org/10.1079/BJN19860121

Vallenas A.P., Llerena L., Valenzuela A., Chauca D., Esquerre J., Candela E., 1973. Volatile fatty acid concentration along the digestive tract of alpacas and llamas. Rev. Invest. Pecu. (IVITA), Univ. Nac. Mayor de San Marcos. Lima 2, 2–4

Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3161/jds.S0022-0302(91)70855-1

Yao J., Wang J., Liu Q., Yang Z., Pei C.X., Liu Q., 2015. Solid and fluid outflow rate of the first compartment in alpaca and rumen in sheep (in Chinese). Chin. J. Anim. Nutr. 27, 1394–1400

Zoetendal E.G., Akkermans A.D., De Vos W.M., 1998. Temperature gradient gel electrophoresis analysis of 16S RNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859, https://doi.org/10.1128/AEM.64.10.3854-3859.1998