Guidelines

Consensus and evidence-based Indian initiative on obstructive sleep apnoea guidelines 2014 (first edition)

Surendra K. Sharma1,2, Vishwa Mohan Katoch3, Alladi Mohan2,4, T. Kadhiraivan2,5, A. Elavarasi1,2, R. Ragesh1,2, Neeraj Nischal1,2, Prayat Sethi1,2, D. Behera2,6, Manvir Bhatia7,2, A. G. Ghoshal2,8, Dipi Gothi9,2, Jyotsna Joshi10, M. S. Kanwar11,2, O. P. Kharbanda1,2, Suresh Kumar12,2, P. R. Mohapatra2,13, B. N. Mallick14,2, Ravindra Mehta1,2,15, Rajendra Prasad16,8, S. C. Sharma1,2, Kapil Sikka1,2, Sandeep Aggarwal1,2, Garima Shukla1,2, J. C. Suri17,2, B. Vengamma1,2, Ashoo Grover1,2, V. K. Vijayan1,8, N. Ramakrishnan1,18, Rasik Gupta2,2

1All India Institute of Medical Sciences, 2Indian Council of Medical Research, 3Employees State Insurance Corporation, Post Graduate Institute of Medical Sciences and Research, 4Apollo Hospitals, 5School of Life Sciences, Jawaharlal Nehru University, 6VP Chest Institute, 7Safdarjung Hospital, New Delhi, 8Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 9Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 10Post Graduate Institute of Medical Education and Research, Chandigarh, 11Medanta Hospital, Gurgoan, Haryana, 12National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, 13Topiwala National Medical College, Mumbai, Maharashtra, 14Sree Balaji Medical College and Hospital, Bharath University, 15Apollo Hospitals, Chennai, Tamil Nadu, 16All India Institute of Medical Sciences, Bhubaneswar, Odisha, 17Apollo Hospitals, Bengaluru, Karnataka, 18Indian Council of Medical Research, Bhopal, Madhya Pradesh, India, 19Writing Committee of the Indian Initiative on Obstructive Sleep Apnoea Guidelines Working Group

This statement was prepared by the Writing Group of the Indian initiative on obstructive sleep apnoea guidelines based on the consensus and evidence-based guidelines for the diagnosis and treatment of obstructive sleep apnoea in India framed by the Working Group of Indian initiative on obstructive sleep apnoea guidelines.

Other Contributors (Names Listed Alphabetically)

A. Muruganathan, A. Shaheer Ahmed, Abrol Raman, Agarwal A.K., Agarwal Ashish, Ahluwalia Gautam, Athavale Amita U., Bhansali Anil, Bhassin Dinkar, Bhattacharjee Hemanga K., Chawla Rajesh, Devnani Preeti, Garg Ajay, Gaur S.N.,

Godbole Gauri, Goyal Vinay, Gupta K.B., Jain Sanjay, Jena Ashok, Jha Saket, Jha Sushil D., Joshi Shashank, Kamath Sandhya, Khatiwada Saurav, Kohli Mikashmi, Koul Parvaiz, Kumar Atin, M. Nandhini, M. Vignesh, Makode Sagar R., Mehandiratta M.M., Mehta Manju, Mishra Narayan, Moses Isaac Christian, Mujal Y.P., N. Ramakrishnan, Nakdar Milind Y., Naik Ramavath Devendra, Pati A.K., Pawar Satyajit, P.B. Sryma, Preetam C., Raj Swaroop K., Ranjan Piuyush, Rasalkar Pavan, Reddy Harish, Roy D.J., Roy Prasun, Sagar Rajesh, Sahoo R.C., Samaria J.K., Sanas B.B., Sarabhai Vikram, Shah N.N., Shannugam Krishnan, Sharma Sanchit, Sinha Sanjeev, Singhal Rajinder, Sonja Manish, Subramanian Krishnan A, T. Mohan Kumar, Thakkar Alok, Tiwari Akash, Tripathi Manjari, Tripathi Suryakant, Upaadhay Vishwanath and Varna Subhash.

Address for correspondence: Dr. Surendra K. Sharma, Department of Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029, India.

E-mail: sksharma.aiims@gmail.com

ABSTRACT

Obstructive sleep apnea (OSA) and obstructive sleep apnea syndrome (OSAS) are subsets of sleep-disordered breathing. Awareness about OSA and its consequence among the general public as well as the majority of primary care physicians across India is poor. This necessitated the development of the Indian initiative on obstructive sleep apnoea (INOSA) guidelines under the auspices of Department of Health Research, Ministry of Health and Family Welfare, Government of India. OSA is the occurrence of an average five or more episodes of obstructive respiratory events per hour of sleep with either sleep-related symptoms or co-morbidities or ≥15 such episodes without any sleep-related symptoms or co-morbidities. OSAS is defined as OSA associated with daytime symptoms, most often excessive sleepiness. Patients undergoing routine health check-up with snoring, daytime sleepiness, obesity, hypertension, motor vehicular
INTRODUCTION

In obstructive sleep apnea (OSA), repetitive collapse of the upper airway occurs that leads to snoring, frequent episodes of sleep interruption, hypoxemia, hypercapnia, swings in intrathoracic pressure, and increased sympathetic activity. Management of OSA needs a long-term multi-disciplinary approach. Once diagnosed, patients should be properly counseled to manage their illness including co-morbidities through their active participation.

Obstructive sleep apnea is being increasingly recognized as an emerging important public health problem worldwide, including India. Awareness among lay public and even among primary care physicians is dismally low in India. This disorder is common among obese individuals, children, and postmenopausal women. It is usually associated with several co-morbidities such as insulin resistance, metabolic syndrome, diabetes mellitus, hypertension, stroke, coronary artery disease, increased risk of vehicular accidents, and various psychiatric disorders. Though there are guidelines regarding the diagnosis and management of this condition by various bodies in the western world, these recommendations may not be entirely applicable to the developing countries like India. There was a need to develop comprehensive guidelines on OSA in the Indian context. Thus, the consensus and evidence-based Indian initiative on obstructive sleep apnea syndrome (INOSA Guidelines) were developed under the auspices of Department of Health Research, Ministry of Health and Family Welfare, Government of India following a series of meetings and discussions under the convenership of the Department of Medicine, All India Institute of Medical Sciences, New Delhi, with the support of Indian Council of Medical Research. During this first Indian initiative, in light of the available evidence, consensus statements were developed and finalized by the various national experts in the field of sleep medicine including internists, pulmonologists, neurologists, otorhinolaryngologists, endocrinologists, bariatric surgeons, and dental surgeons.

In order to make the guidelines evidence-based, the expert group reviewed the available evidence and graded the recommendations according to the quality of evidence as mentioned in Figure 1.[1]

EPIGENOLOG AND RISK FACTORS OF OBSTRUCTIVE SLEEP APNEA

Epidemiology

Obstructive sleep apnea is a major public health problem. The International Classification of Sleep Disorders, Third Edition classifies sleep-disordered breathing into three basic categories: Central sleep apnea syndrome, obstructive sleep apnea syndrome (OSAS), and sleep-related hypoventilation/hypoxia syndrome.[2,3] Community-based epidemiological studies from several parts of India have estimated that the prevalence of OSAS is 2.4–4.96% in men and 1–2% in women.[4] Table 1 summarizes some of the important definitions.[5]

Pathogenesis

Multiple factors (Table 2)[6,7] are responsible for pathogenesis of OSA with inter-individual variation. OSA patients have repeated narrowing or obstruction of pharyngeal airway during sleep. It has been suggested that pathophysiological mechanisms, such as anatomic compromise, pharyngeal dilator muscle dysfunction, lowered arousal threshold, ventilatory control instability, and/or reduced lung volume tethering are the pathophysiological mechanisms leading to OSA.[8]

Consequences of obstructive sleep apnea

Obstructive sleep apnea and mortality

It has been demonstrated that OSA is associated with several health consequences. Hypoxemia results in increased sympathetic activity, which leads to increased cardiac output and intrathoracic pressure, and increased sympathetic activity. Management of OSA needs a long-term multi-disciplinary approach. Once diagnosed, patients should be properly counseled to manage their illness including co-morbidities through their active participation.

FIGURE 1: Evidence quality - reproduced with permission from: American Academy of pediatrics steering committee on quality improvement and management. Classifying recommendations for clinical practice guidelines, pediatrics 2004;114:874-71

KEY WORDS: Bariatric surgery, continuous positive airway pressure, Indian guidelines, obstructive sleep apnea, obstructive sleep apnea syndrome, polysomnography, sleep apnea, sleep study, syndrome Z
with increased mortality. Severe sleep disordered breathing (SDB) has a 3.8-fold greater risk for all-cause mortality and 5.2-fold greater risk for cardiovascular mortality than those without SDB (Evidence Quality B). \[5\]

The consequences of OSA are described in Table 3. \[4,10-26\]

Diagnosis of obstructive sleep apnea

History and physical examination

The diagnosis of OSA requires a high index of suspicion. OSA may be suspected during routine health check-up or while evaluating high-risk patients. \[167\] The chances of underdiagnosis are minimized if individuals with risk factors are subjected to a comprehensive sleep evaluation during routine health check-up. Similarly, high-risk patients like those with congestive heart failure, extreme obesity, diabetes mellitus, coronary artery disease, stroke, nocturnal dysrhythmias including atrial fibrillation, pulmonary hypertension, preoperative patients should have comprehensive sleep evaluation [Boxes 1 and 2]. \[2,27\] In addition, medical examiners evaluating drivers, pilots, railway drivers, and heavy machinery workers should be educated about OSA and should refer them for evaluation if snoring, daytime sleepiness, or obesity is noted (Evidence Quality B, Strong Recommendation).

In a patient suspected to have OSA, secondary causes such as hypothyroidism, facial abnormality, tonsil adenoid hypertrophy, and musculoskeletal abnormalities should be ruled out and the patient should be evaluated for consequences of OSA like metabolic syndrome, diabetes mellitus, hypertension, CAD, stroke, and gastroesophageal reflux. \[27,28\] The patient should also be investigated for associated co-morbid illnesses like allergic rhinosinusitis, nasal polyps, asthma, chronic obstructive pulmonary disease (COPD), obesity hypoventilation syndrome, and kyphoscoliosis. \[27,28\] The clinical examination should include detailed anthropometry including measurement of neck circumference, body mass index (BMI), modified Mallampati score, and a comprehensive upper airway assessment. \[27\]

Other diagnostic investigations

Anthropometric measurements, nasal and upper airway examination, orthodontic assessments, and radiological measurements have low sensitivity and specificity when used alone for diagnosis of OSA. \[50\] Patients suspected to have OSA should be referred for an appropriate type of sleep study after detailed history, examination, and basic investigations. Various questionnaires for the prediction of OSA are available and can be used prior to sleep study, but the same is not mandatory.
Table 3: Consequences of OSA

Condition	Description
Hypertension	OSA is an independent risk factor for systemic hypertension (Evidence Quality A). Several studies have shown an increased prevalence of hypertension in patients with OSA (Evidence Quality A). Increase in one additional apneic event per hour of sleep enhances the odds of developing hypertension by about 1. The odds of developing hypertension increases by 13% with 10% decline in nocturnal oxygen saturation.
Resistant hypertension	OSA is a very important but often missed diagnosis in patients with resistant hypertension. All patients with resistant hypertension should be evaluated for OSA (Evidence Quality A, recommended)
Coronary artery disease	There is an increased prevalence of the coronary artery disease in OSA patients (Evidence Quality B). Studies have shown a graded increase in the risk of acute myocardial infarction with increasing AHI.
Congestive heart disease	There is a high prevalence of OSA among patients with symptomatic HFrEF (Evidence Quality B).
Arrhythmias	OSA is independently associated with a high frequency of nocturnal arrhythmias such as atrial fibrillation, complex ventricular ectopy, and nonsustained ventricular tachycardia. (Evidence Quality B)
Cerebrovascular disease	OSA is associated with increased risk of stroke. Patients with recurrent strokes had a higher percentage of OSA (AHI > 10) than initial strokes (74% compared to 57%) (Evidence Quality B).
DM	The prevalence of OSA in diabetic and prediabetic obese patients is higher than those with normal glucose tolerance. Moreover, the risk of developing type 2 DM increases with the severity of OSA (Evidence Quality B).
Dyslipidemia	OSA is independently associated with increased total cholesterol and HDL cholesterol levels and carotid intima-media thickness irrespective of the cardiovascular co-morbidity. RCTs have shown that PAP therapy may produce a clinically relevant fall in total cholesterol level, potentially reducing cardiovascular risk (Evidence Quality A).
Metabolic syndrome	OSAS has been shown to be strongly and independently associated with metabolic syndrome. The combination of OSA and metabolic syndrome is called syndrome Z. The prevalence of metabolic syndrome varies from 74 to 85% among patients with OSA as compared to 37–41% among patients with no OSA (Evidence Quality C).
OSA and neurocognitive function	Slow thought process, early forgetfulness, impaired concentration, and decreased work-related performance have been observed in OSA (Evidence Quality C). Impairment in verbal episodic memory, visuospatial episodic memory, attention span, driving ability, vigilance, executive function, have been associated with OSA (Evidence Quality B).
OSA and excessive daytime sleepiness	Excessive daytime sleepiness in OSA has been associated with increased risk of motor vehicle accidents (Evidence Quality B).
OSA and psychiatric disorders	There is high prevalence of depression in patients with OSA, especially in females (Evidence Quality C). All patients with erectile dysfunction (Evidence Quality B: Recommendation) should be screened for OSA.
OSA and quality of life	Studies have shown impaired quality of life in OSA with correlation of arousal index with physical function, general health, and physical roles which improve with PAP therapy (Evidence Quality B).
OSA and economic impact	Potential costs attributable to OSA include the costs of diagnosis and treatment, the decrement in quality of life, the medical consequences, motor vehicle accidents, and occupational losses (Evidence Quality B).

Box 1: Symptoms of OSAS

- **Nocturnal**
 - Snoring: Is it loud? Is it audible in the other room? Is it crescendo-decrescendo in nature? Does he/she wake up with one’s own snoring?
 - Witnessed apnea: Has the partner witnessed apneas or sudden interruption in the loud snoring sound?
 - Nocturnal choking: Does he/she wake up with a gasping or choking sensation?
 - Nocturia: How many times does he/she wake up due to nocturia?
 - Sleep quality: Is the sleep disturbed with tossing and turning? Is there frequent sleep fragmentation and difficulty in maintaining sleep leading to insomnia? What is the total amount of sleep? Is there a feeling of un-refreshing sleep or early morning headache or dryness of throat?

- **Daytime**
 - Excessive daytime sleepiness: Does the patient feel sleepy during quiet activities like reading, watching television or during activities that generally require alertness like school, work, driving.
 - Lethargy: Does he/she have daytime fatigue/tiredness, decreased alertness?
 - Cognitive deficits: History of memory loss, poor concentration, and intellectual impairment
 - Psychiatric symptoms: Personality and mood changes, depression, anxiety, sexual dysfunction like impotence, and decreased libido
 - Systemic complaints: Gastroesophageal reflux, hypertension, diabetes

*In patients with nocturia, UTI and BPH (in males) should be ruled out.

Epworth sleepiness scale

Epworth sleepiness scale (ESS) is a simple, self-administered measurement of sleep propensity during daytime in adults that requires the subject to rate the probability of dozing off in eight different situations that are met in day-to-day life on a scale of 0–3. Thus, the sum of the score can vary from 0 to 24. ESS score >10 is defined as excessive daytime sleepiness and has a sensitivity of 49% and specificity of 80% for predicting OSA (Evidence Quality C, Recommended).

Clinical prediction rules for obstructive sleep apnea

Various algorithms have been devised for screening and risk stratification of patients suspected to have OSA. The utility of these tools to estimate the clinical severity of OSA and to suggest the likelihood of OSA related consequences have not been studied systematically.

The Berlin questionnaire has three categories of questions. Category 1 questions are about snoring with five questions and 2–5 multiple choice answers. Category 2 includes excessive daytime sleepiness with four or more multiple choice answers. Category 3 has BMI and blood pressure.
With Berlin questionnaire, OSA was considered probable if two of the categories are positive. The Berlin questionnaire was modified at AIIMS, New Delhi, in 2006 for application in the setting of developing countries.\[31\] Both Berlin questionnaire and modified Berlin questionnaire are moderately accurate (sensitivity and specificity generally <90%) in screening for OSA\[30,31\] (Evidence Quality C; Recommended). Although these questionnaires have not been adequately studied, these can be used to screen the patients for OSA. The snoring, daytime tiredness, observed apnea, high blood pressure, BMI, age, neck circumference, and gender (STOP-BANG) questionnaire (Evidence Quality C, Recommended) are the most appropriate questionnaire for the screening in preoperative cases.

Patients who have both symptoms and physical findings suggestive of OSA on comprehensive sleep evaluation along with Epworth's sleepiness score greater than or equal to 10 have a high-risk of OSA and the diagnosis is confirmed and severity determined with objective testing in an expedited manner in order to initiate treatment. Patients who have neither are at low probability and the rest have moderate probability for OSA. Figure 2 shows the algorithm for the diagnosis of OSA.

Types of sleep study
The diagnosis and severity of OSA must be ascertained before initiating the treatment of OSA. The standard diagnostic test for OSA is an attended in-laboratory polysomnography (PSG) or portable monitoring (PM).\[27\] PSG is supervised by a trained technician with at least seven channels whereas PM is performed without a

Box 2: Clinical examination finding suggestive of OSAS

- Neck circumference >16 inches (40.6 cm) in women and >17 inches (43.2 cm) in men
- BMI ≥30 kg/m²
- Modified Mallampati score 3 or 4
- Upper airway evaluation showing retrognathia, high arched palate, macroglossia, tonsillar hypertrophy, enlarged uvula, nasal abnormality

OSAS: Obstructive sleep apnea syndrome, BMI: Body mass index
monitoring can be practically used as portable monitors, but is not frequently used in the outpatient setting. Type 2 study may identify apnea-hypopnea index (AHI) suggestive of OSA with high positive likelihood ratio and low negative likelihood ratio, though differences in AHI have been encountered between type 2 study and PSG.30,35 (Evidence Quality B, Recommended).

Portable monitoring/out-of-center sleep testing/home sleep testing/unattended limited channel testing (type 3 and 4 sleep study)

Portable monitoring or out-of-center sleep testing (OCST) as a diagnostic test for OSA has evolved as an alternative to PSG due to convenience and lower cost. The disadvantage of PM or OCST, however, is that AHI may be falsely low.30,36 This is because in the absence of EEG recording in these tests, actual sleep time cannot be determined and the denominator is the total recording time instead of the total sleep time. Comprehensive sleep evaluation should always be done prior to PM studies.27

The diagnosis and severity assessment should be performed using the same definitions as used for PSG. PM should be performed only in conjunction with comprehensive sleep evaluation and in the presence of a practitioner eligible for conducting sleep studies (Evidence Quality B, Recommended).32 Overall, PM (type 3 and 4) may be useful, cost-effective, convenient, and speedy method of diagnosis if the patient is selected carefully. Hospital-based PSG is the investigation of choice for patients who cannot be investigated adequately at home or whose home study result does not match with the clinical suspicion of the investigating physician.28

Preoperative evaluation of obstructive sleep apnea

The incidence of postoperative desaturation, respiratory failure, postoperative cardiac events, and Intensive Care Unit transfers is higher in patients with OSA (Evidence Quality A, Strong Recommendation).27 Both PSG and PM are helpful in diagnosing and categorizing the severity of OSA, but PM reduces the likelihood of delay in the surgery, inconvenience and high cost of laboratory study.

Box 3: Indications of PM and PSG

PM

- Patients with high pretest probability of moderate to severe OSA
- Patients for whom in-laboratory PSG is not possible by virtue of immobility, safety, or critical illness
- To monitor response to non-PAP treatments for OSA including OAs, upper airway surgery, and weight loss

PSG

- Patients with significant co-morbid medical conditions (moderate to severe pulmonary disease, neuromuscular disease, congestive heart failure)
- Patients with EDS where PM is negative
- Patients suspected to have other sleep disorders
- Screening of asymptomatic high-risk populations with heart failure, morbid obesity, diabetes, coronary artery disease, stroke, refractory hypertension, nocturnal dysrhythmias, and atrial fibrillation

OSA: Obstructive sleep apnea, **PAP:** Positive airway pressure, **EDS:** Excessive daytime sleepiness, **PM:** Portable monitoring, **PSG:** Polysomnography, **OAs:** Oral appliances
Alternatively, in a case at high-risk of OSA, sleep study may be deferred if it is not feasible or causes delay in surgery. Instead, a standby positive airway pressure (PAP) device with a close monitoring may be advised. Patients who have previously been diagnosed to have OSA must be asked to use PAP preoperatively and postoperatively.

Diagnostic criteria for obstructive sleep apnea
The diagnostic criteria for OSA are summarized in Box 4.

Optimal continuous positive airway pressure titration
Optimal PAP to treat OSA is the effective pressure that eliminates sleep-disordered breathing events in all sleep positions and stages, particularly rapid eye movement (REM) sleep, improving sleep quality without creating any untoward pressure-related side effects for the patient.

Titration effectiveness has been described by a grading system, detailed below:
- **Optimal titration**: AHI < 5/h and includes supine REM sleep
- **Good titration**: AHI < 10/h or reduced by 50% if the baseline < 15/h and includes supine REM
- **Adequate titration**: AHI cannot be reduced to less than 10/h, but is reduced by 75% from baseline or criterion for optimal or good titration is attained, but without supine REM sleep
- **Unacceptable titration**: Any one of the above grades is not met, which requires a repeat titration.

Process of positive airway pressure titration
Continuous positive airway pressure (CPAP) titration is done by starting at a minimum pressure of 4 cm water (H2O) which is then increased by 1 cm H2O every 5 min or more, with the target of eliminating all the events (Evidence Quality A, Strong Recommendation). If this pressure does not allow adequate titration, bilevel positive airway pressure (BPAP) titration is recommended (Evidence Quality C, Recommended). Ideally, 15 min of supine REM sleep must be a part of the titration.

Split night versus single night titration
Full-night PSG with attended manual PAP titration is regarded as the gold standard for prescription of PAP therapy (Evidence Quality A, Strong Recommendation). However, split-night study that is, initial PSG followed by 3 h of PAP titration may be performed if AHI is > 40 events/h during the first 2 h or between 20 and 40 events/h with clinical judgment regarding definitiveness of prescribing PAP therapy (Evidence Quality A, Strong Recommendation). It is recommended that the arousals should be abolished with PAP; otherwise, a repeat study with PSG is indicated for PAP titration. Auto-PAP titration using auto-PAP devices that monitor snoring, apnea or hypopnea by airflow, flow contour, and/or impedance by forced oscillation technique can be tried during attended titration with PSG (Evidence Quality B, Recommended) to determine a fixed PAP level in patients with moderate to severe OSA without significant co-morbid illness such as congestive heart failure (CHF), COPD, central sleep apnea or hypoventilation syndromes (Evidence Quality B, Recommended).

MEDICAL MANAGEMENT OF OBSTRUCTIVE SLEEP APNEA

General measures, including pharmacotherapy
The general measures in the management of OSA are summarized in Box 5.

Pharmacotherapy in obstructive sleep apnea
Several drugs have been tried in OSA in small trials and the data at present are insufficient to recommend primary drug treatment in OSA. Wake promoting agents modafinil and armodafinil are the only agents approved for excessive daytime sleepiness (EDS) despite adequate PAP therapy in OSA patients (Evidence Quality A, Strong Recommendation). Positive airway pressure therapy

Introduction
The principle of PAP in OSA is based on providing air under positive pressure through an interface (nasal or oral)

Box 4: Criteria for diagnosis of OSA
The diagnostic criteria for OSA as recommended in International Classification of Sleep Disorders, 3rd Edition, 2014 are the presence of (A and B) or C
- **A.** Presence of one or more of the following
 - Complains of sleepiness, nonrestorative sleep, fatigue, or symptoms of insomnia
 - Waking up with breath holding, gasping, or choking
 - Habitual snoring, interruptions in breathing, or both during sleep as reported by patient’s bed partner or other observer
 - Co-existing morbidities such as hypertension, T2DM, coronary artery disease, congestive heart failure, atrial fibrillation, stroke, mood disorder, or cognitive dysfunction
- **B.** PSG or OCST demonstrates
 - Five or more obstructive respiratory events (apneas, hypopneas, or RERAs) per hour of sleep during a PSG or per hour of monitoring with OCST
- **C.** PSG or OCST demonstrates
 - Fifteen or more obstructive respiratory events (apneas, hypopneas, or RERAs) per hour of sleep during a PSG or per hour of monitoring with OCST, even in the absence of symptoms

Box 5: General measures for treating OSA

- Counseling regarding smoking cessation (Evidence Quality B, strong recommendation)
- Avoidance of alcohol, sedatives, and nicotine (Evidence Quality D, optional recommendation)
- Treatment of nasal obstruction in consultation with otolaryngologist (Evidence Quality C, optional recommendation)
- Weight loss (Evidence Quality B, strong recommendation)
- Positional therapy (Evidence Quality C, optional recommendation)
- Counseling about sleep hygiene and avoidance of sleep deprivation

OSA: Obstructive sleep apnea
or face mask), thus creating a pneumatic splint in the upper airway which prevents collapse of the pharyngeal airway, acting at all potential levels of obstruction.\(^{56}\) PAP is the most effective and widely used treatment for OSA and is the first-line therapy for moderate to severe OSA. PAP improves quality of life, in terms of clear-cut reductions in daytime sleepiness and quality of life measures. The effective PAP therapy reduces snoring and nocturnal respiratory disturbances and improves nocturnal oxygenation and sleep architecture. Benefits of PAP therapy include reduced daytime sleepiness, improved driving performance, health status, and improvement in neurocognitive performance. Positive effects on cardiovascular outcomes, such as hypertension, cardiac arrhythmias, nocturnal ischemia, left ventricular function, and even overall mortality have been reported.\(^{51-53}\)

Indications for CPAP and BPAP-CPAP is currently the “gold standard” for the treatment of moderate to severe OSA (AHI >15 h), and an option for less severe OSA. Treatment of OSA is indicated with the following criteria on PSG (Evidence Quality A, Strong Recommendation).\(^{10,54-56}\)

- AHI or (RDI) ≥ 15 events/h
- AHI (or RDI) ≥ 5 but <15 events/h with any of the following symptoms:
 - Excessive daytime sleepiness (confirmed by either a score of <10 on ESS or inappropriate daytime napping (e.g., during driving, conversation, or eating) or sleepiness that interferes with daily activities on a regular basis
 - Impaired cognition or mood disorders
 - Hypertension
 - Ischemic heart disease
 - History of stroke
 - Cardiac arrhythmias
 - Pulmonary hypertension.

All these factors have to be taken into account while planning treatment of OSA. Currently, three types of PAP devices are available for treatment of OSA - Continuous PAP (CPAP), BPAP, and automatic self-adjusting positive airway pressures (APAP). CPAP devices generate a fixed continuous pressure during inspiration and expiration. In BPAP, the pressure alternates between a fixed inspiratory and lower expiratory level during the respiratory cycle, which allows differential titration of the inspiratory (IPAP) and expiratory positive airway pressures (EPAP). In APAP, the pressure changes throughout the night in response to changes in airflow, respiratory events, and snoring. There is no evidence base to choose the modality of PAP.

The role of supplemental oxygen—Supplemental oxygen (O\(_2\)) is used after adequate CPAP/BPAP titration, for residual sleep-related hypoxemia. Specifically, O\(_2\) supplementation is done during the PAP titration study, if the SpO\(_2\) is <88% for 5 or more minutes in the absence of sleep-disordered breathing events, and oxygen flow rate is increased at a rate of 1 L/min every 15 min to target SpO\(_2\) ≥88%. Patients on O\(_2\) prior to PAP titration usually need a higher amount of O\(_2\) with the PAP device due to flow related dilution of the supplied O\(_2\). Supplemental O\(_2\) is to be connected to the PAP device outlet and not to the mask. The possibility of a rise in CO\(_2\) due to the supplemental O\(_2\) is to be kept in mind, and should be monitored with an arterial blood gas next day after disconnecting the PAP device.

Recommendations for APAP\(^{57,58}\) - APAP is a concept based on continuously adjusting positive airway pressure to meet the patient’s variable needs to maintain a patent airway, thereby reducing the overall mean airway pressure. This could be done in an unattended setting such as the patient’s home, and potentially enhances tolerability and compliance. Figure 4 summarizes PAP prescription.

![Figure 4](image-url): Comprehensive approach to PAP prescription. PAP: Positive airway pressure; PSG/PM: Polysomnography/portable monitoring; APAP: Auto-titrating positive airway pressure; CPAP: Continuous positive airway pressure.
• Certain APAP devices may be useful for attended titration with PSG to identify a single pressure for use with standard CPAP (also called fixed CPAP [f-CPAP]) for management of moderate to severe OSA (Evidence Quality B, Optional Recommendation)

• Patients who are being treated with APAP itself, or f-CPAP calculated on the basis of APAP titration must have close clinical follow-up to monitor treatment effectiveness. In the event of an inadequate symptomatic or objective response with APAP therapy, a standard attended CPAP titration should be done

• Self-adjusting positive airway pressures devices are not recommended for split-night titration (Evidence Quality A, Strong Recommendation)

• Patients with CHF, COPD, and CSA are not currently considered candidates for APAP titration or treatment (Evidence Quality A, Not Recommended).

Positive airway pressures compliance.[59] The treatment of sleep apnea with PAP has inherent problems with initial acceptance and long-term adherence, together called compliance due to discomfort from the mask interface, positive pressure itself, need for daily night use, and long-term therapy. Compliance with PAP is a significant problem, and nasal congestion and mask intolerance are the most common complaints that reduce PAP compliance.

Some patients cannot tolerate PAP because of the initial discomfort of sudden application of pressure, or discomfort perceived in exhaling against high pressure. Most PAP devices have a pressure “ramp”, where the pressure rise can be slow until it attains the target pressure, over as much as 45 min. An option for reducing expiratory pressure is BPAP, which allows independent adjustment of inspiratory and expiratory pressures though the comfort benefits of BPAP have not been categorically demonstrated. Pressure-relief CPAP reduces the discomfort of breathing against high pressure during expiration by lowering the pressure at the onset of expiration. Recent Cochrane database review has concluded that pressure-relief CPAP did not improve compliance.[60] Similarly, APAP, with a lower mean pressure through the night has a minimal impact on improving compliance.

Adverse effects of PAP therapy-Adverse effects of PAP therapy are summarized in Table 4.

Oral appliances
Background and rationale
Oral appliances (OA) are an established treatment option for snoring and mild to moderate OSA in selected cases and not in severe OSA. OAs are less cumbersome than PAP therapy and should be considered for patients who have failed or refused PAP treatment, for those with snoring or mild to moderate OSA.[61,62] Dental professionals trained in sleep medicine should prescribe and prepare appropriately fitting OA for the treatment of OSA.

Types of oral appliances

Mandibular repositioning appliance
Mandibular repositioning appliance (MRA) works by bringing the mandible forward, thereby increasing the airway volume. It can be either fixed (predetermined advancement), titratable (adjustable) or either a one-piece or a two-piece appliance. The titratable MRA has an adjustable mechanism that allows progressive advancement of the mandible after initial construction until the optimal mandibular position is achieved. Single-piece or nonadjustable appliances often have to be made again if the initial jaw advancement is insufficient.[62,63]

Tongue retaining appliances
Tongue retaining appliances (TRA) are indicated for patients with large tongue and when the use of MRA is limited due to edentulous ridges. Once the patient is using the appliance routinely, overnight PSG is required to assess the clinical response objectively.[62,63]

Effects of oral appliances therapy
Effects of OA therapy are summarized in Table 5.[61,63-70] Contraindications to OA therapy[62,71,72] Contraindications to OA therapy are summarized in Box 6.

Table 4: Adverse effects of PAP therapy

Problem	Solution
Nasal congestion, rhinorrhea, nasal dryness, sinus pain	Nasal steroids, heated humidification
Mask discomfort, leakage	Using suitable mask interface, good mask fitting
Skin breakdown, abrasions	Gel and air-cushion interface masks
Mask claustrophobia	Other types of masks, nasal pillows
Pressure intolerance, difficulty in exhalation	Use “ramp”, pressure-relief, BPAP, auto-PAP
Mouth breathing	Chin strap, full face or oro-nasal mask
Bed partner intolerance	Teaching adaptation skills to the patient and bed partner

PAP: Positive airway pressure, BPAP: Bilevel positive airway pressure

Table 5: Effects of OAs

Effects on snoring	OAs are beneficial in decreasing snoring in the majority of OSA patients on both subjective and objective assessment[63,64] (Evidence Quality A)
Effects on OSA	OAs are effective in the treatment of mild to moderate OSA[61] with improvement in the AHI and oxygen saturation following OA therapy[62,64-67] (Evidence Quality B)
Effects on daytime functions	Improvement in daytime sleepiness assessed by ESS is seen with usage of OAs[64,66,68] The assessment of neurophysiological function showed significant improvement in measures of self-reported sleepiness, fatigue and energy levels, and simulated driving performance[66,69] (Evidence Quality B)
Effects on vascular diseases	There is a modest favorable effect of OAs on systolic and diastolic blood pressure and on mean arterial pressure[60] (Evidence Quality A)

OAs: Oral appliances, OSA: Obstructive sleep apnea, AHI: Apnea-hypopnea index, ESS: Epworth Sleepiness Scale
SURGICAL TREATMENT OF OBSTRUCTIVE SLEEP APNEA

Positive airway pressure therapy has been considered to be the first-line of management for patients with OSAS. However, some patients may prefer alternative treatment options because they are unable to tolerate, and are noncompliant or do not benefit from PAP therapy. The lack of randomized controlled trials comparing PAP therapy and surgical treatment make it very difficult to attain a consensus in selecting the appropriate management option. The decision for surgical management should be strictly individualized after careful assessment of the patient with due importance given to the sites of obstruction. The following description provides insight into the procedures that are currently available and their potential role in routine management.

Evaluation of level of obstruction

The most significant concern in the assessment of airway is that it can only be performed in an awake patient and the scenario hardly simulates the exact status during sleep. Apart from drug-induced sleep nasoendoscopy in patients who are planned for surgery and fiberoptic nasopharyngoscopy with Mueller maneuver (FNMM), other methods such as cephalometry, acoustic analysis, somnofluoroscopy, computed tomography, and sleep magnetic resonance imaging are not recommended for routine use to assess the level of obstruction.

Surgeries in Obstructive sleep apnea: Surgical options in OSA are site directed surgeries and bariatric surgery (BS).

Nasal and nasopharyngeal surgery-Patients with OSAS frequently have nasal obstruction that results in snoring and mild sleep apnea, but nasal blockage per se does not lead to severe OSA.

- Nasal surgery (correction of anatomical defects) alone is not a useful method of treatment of moderate to severe sleep apnea (Evidence Quality B, Not recommended)
- It also improves the compliance with PAP and also improves its effectiveness (Evidence Quality B, Recommended)

Maxillomandibular surgeries
Malpositioning of maxilla and mandible contribute to OSAS by reducing the posterior hypopharyngeal space. The role of surgery in the correction of such anatomical abnormalities is summarized in Table 6.

Role of bariatric surgery for treatment of obstructive sleep apnea syndrome
Bariatric surgery is a surgery done in order to create caloric restriction and/or malabsorption for weight loss. The commonly performed bariatric procedures are adjustable gastric banding, Roux-en-Y gastric bypass, sleeve gastrectomy (SG), and biliopancreatic diversion (BPD).
Table 6: Maxillomandibular surgeries

Procedure	Notes
Genioglossus advancement (Evidence Quality C, optional recommendation)	Genioglossus advancement is found to be helpful in patients with hypopharyngeal soft tissue and tongue base abnormalities. The short-and long-term effects of genioglossus advancement are improvement of Epworth scale, AHI score and oxygen saturation.
Maxillomandibular advancement surgery (Evidence Quality C, optional recommendation)	Maxillomandibular advancement surgery is an option for severe OSA patients with maxillary and mandibular retrusion, unable to tolerate PAP therapy and in whom oral appliances have failed. It can also be considered in patients who have failed to improve after other surgical procedures.
Distraction osteogenesis (Evidence Quality C, optional recommendation)	Distraction osteogenesis can be employed in patients with severe OSA due to maxillofacial skeletal disharmony, particularly mandibular and maxillary retrusion where more than 10-12 mm advancement is required.
UPPP (Evidence Quality C, recommended in patients with retropalatal obstruction)	UPPP is the standard mode of management in patients with retropalatal obstruction
Laryngeal surgery (Evidence Quality C, recommended only for patients with laryngeal pathology)	Laryngeal surgery is limited to patients with laryngeal obstruction requiring surgical excision for its management. PAP therapy is the primary mode of management in patients with laryngeal pathology. Surgery is usually preferred for intractable cases or patients with poor compliance to PAP.
Tonsillectomy (Evidence Quality C, recommended in adults with tonsillar hypertrophy)	Tonsillectomy is indicated in adults with tonsillar hypertrophy that is nonresponsive to medical management.
MLS in OSAS (Evidence Quality C, recommended for cases with documented multiple level obstruction)	MLS refers to surgical procedures performed at two or more sites in the upper airway. The three main levels of obstruction identified are nasal, retropalatal, and retroglottis/hypopharyngeal. MLS is a viable option for patients who failed PAP or other conservative methods. The suitable candidates include those with mild-moderate OSA, BMI <30 kg/m², age >60 years, retroglottal obstruction, and without any co-morbidity.
Tracheostomy for OSAS (Evidence Quality C, optional recommendation)	Tracheostomy is poorly accepted in the present scenario. Patients with significant OSA who have failed all medical and surgical procedures might require permanent tracheostomy. It significantly decreases apnea index, desaturation index, sleepiness, and mortality in OSA subjects, but does not correct central apnea.

UPPP: Uvulopalatopharyngoplasty, **MLS:** Multilevel surgery, **AHI:** Apnea-hypopnea index, **OSA:** Obstructive sleep apnea, **PAP:** Positive airway pressure, **BMI:** Body mass index, **OSAS:** Obstructive sleep apnea syndrome

Impact of bariatric surgery on obstructive sleep apnea

Following BS, there is improvement of postoperative sleep quality, reduction in daytime sleepiness, improvement in quality of life, decrease in use of PAP, and decrease in use of high PAP pressure requirement. Gastric bypass was the most successful procedure in improving or resolving OSA followed by gastroplasty, BPD, and gastric banding being the least effective procedure. However, in the majority of the patients (62%), the mean residual AHI after surgery was more than 15 events/h. This indicates that there is a persistent residual disease, even though there has been considerable improvement. As such, all patients should undergo repeat PSG after surgical weight loss and those patients who have residual disease consistent with moderately severe OSA need continued treatment with PAP. The available evidence suggests that that the patients cured of OSA were less obese and younger than those who had residual OSA after BS.

In a recent meta-analysis of 13,900 patients who underwent BS, 79% of patients experienced either resolution or improvement of their sleep apnea. BS is strongly recommended for obese OSA patients with BMI ≥ 35kg/m² (Evidence Quality B).

ACKNOWLEDGMENT

Atul Malhotra, University of California, San Diego, USA.

REFERENCES

1. American Academy of Pediatrics Steering Committee on Quality Improvement and Management. Classifying recommendations for clinical practice guidelines. Pediatrics 2004;114:874-7.
2. ICSD-3 Online Version – American Academy of Sleep Medicine (AASM) AASM. Available from: http://www.aasmnet.org/store/product.aspx?pid=849. [Last accessed on 2014 Sep 27].
3. Yaggi HK, Strohl KP. Adult obstructive sleep apnea/hypopnea syndrome: Definitions, risk factors, and pathogenesis. Clin Chest Med 2010;31:179-86.
4. Sharma SK, Reddy EV, Sharma A, Kadhiravan T, Mishra HK, Sreenivas V, et al. Prevalence and risk factors of syndrome Z in urban Indians. Sleep Med 2010;11:362-8.
5. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012;8:597-619.
6. Lam JC, Sharma SK, Lam B. Obstructive sleep apnoea: Definitions, epidemiology and natural history. Indian J Med Res Med 2010;131:165-70.
7. Al Lawati NM, Patel SR, Ayas NT. Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration. Prog Cardiovasc Dis 2009;51:285-93.
8. Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008;5:144-53.
9. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008;31:1071-8.
10. Montesi SB, Edwards BA, Malhotra A, Bakker JP. The effect of continuous positive airway pressure treatment on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J Clin Sleep Med 2012;8:107-96.
11. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378-84.
12. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 2001;19:2271-7.
13. Hung J, Whitford EG, Parsons RW, Hillman DR. Association of sleep disordered breathing and mortality. J Med 2000;342:1378-84.
14. Herrsch TE, Akre H, Överland B, Sandvik L, Westheim AS. High prevalence of sleep apnea in heart failure outpatients: Even in patients with preserved systolic function. J Card Fail 2011;17:420-5.
15. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al.
Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004;110:364-7.

16. Johnson KG, Johnson DC. Frequency of sleep apnea in stroke and TIA patients: A meta-analysis. J Clin Sleep Med 2010;6:131-7.

17. Wang X, Bi Y, Zhang Q, Pan F. Obstructive sleep apnoea and the risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Respir Med 2013;18:140-6.

18. Technology C, Pesapane KL, Segal HC, Davies RJ, Stradling JR. Circulating cardiovascular risk factors in obstructive sleep apnoea: Data from randomised controlled trials. Thorax 2004;59:777-82.

19. Coughlin SR, Mawsdesley L, Mujraga JA, Calverley PM, Wilding JP. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 2004;25:735-41.

20. Sharma H, Sharma SK, Kadhiravan T, Mehta M, Sreenivas V, Gulati V, et al. Pattern and correlates of neurocognitive dysfunction in Asian Indian adults with severe obstructive sleep apnoea. Indian J Med Res 2010;132:409-14.

21. Bucks RS, Olatheh M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: A meta-review. Respirrology 2013;18:61-70.

22. Tregear S, Reston J, Schöelles K, Phillips B. Obstructive sleep apnea and risk of motor vehicle crash: Systematic review and meta-analysis. J Clin Sleep Med 2012;8:573-81.

23. Ejaz SM, Khawaja IS, Bhatia S, Hurwitz TD. Obstructive sleep apnea and depression: A review. Innov Clin Neurosci 2011;8:17-25.

24. Xu J, Huang P, Song B, Chen JM. Effect of continuous positive airway pressure on erectile dysfunction in patients with obstructive sleep apnoea syndrome: A meta-analysis. Zhonghua Nan Ke Xue 2013;19:77-81.

25. Barnes CM, Evans AM, Mays MAJ, Robbins J, Shafazand S, Walsleben J, et al. Sleep disturbances, quality of life, and ethnicity: The Sleep Heart Health Study. J Clin Sleep Med 2010;6:176-83.

26. Kapur VK. Obstructive sleep apnea: Diagnosis, epidemiology, and economics. Respir Care 2010;55:1155-67.

27. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 2009;5:263-76.

28. National Guidelines Clearinghouse (NGC). Management of Obstructive Sleep Apnoea/Hypopnoea Syndrome in Adults. A National Clinical Guideline. Available from: http://www.guideline.gov/content.aspx?id=3878. [Last accessed on 2014 Sep 22].

29. Johns MW. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991;14:540-5.

30. Balk EM, Moorthy D, Obadan NO, Patel K, Ip S, Chung M, et al. Obstructive sleep apnea devices for out-of-center (OOC) testing: Practice parameters for the use of continuous and bilevel positive airway pressure for obstructive sleep apnea does not improve compliance with therapy: Systematic review and meta-analysis. Thorax 2006;61:364-70.

31. Sharma SK, Vasudev C, Sinha S, Banga A, Pandey RM, Handa KK. Continuous positive airway pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev 2008;1:CD004246.

32. Reeves-Hoché MK, Fudgel DW, Meck R, Wittman R, Ross A, Zwillich CW. Continuous versus bilevel positive airway pressure for obstructive sleep apnea. Am J Respir Crit Care Med 1995;151:443-9.

33. Gay P, Weaver T, Loube D, Iber C, Positive Airway Pressure Task Force, Standards of Practice Committee, et al. Evaluation of positive airway pressure treatment for sleep related breathing disorders in adults. Sleep 2006;29:381-401.

34. Kay GG, Feldman N. Effects of armodafinil on simulated driving and self-report measures in obstructive sleep apnea patients prior to treatment with continuous positive airway pressure. J Clin Sleep Med 2013;9:445-54.

35. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981;1:862-5.

36. McNicholas WT. Cardiovascular outcomes of CPAP therapy in obstructive sleep apnoea syndrome. Am J Physiol Regul Integr Comp Physiol 2007;293:R1666-70.

37. Denker MG, Cohen DL. Use of continuous positive airway pressure for sleep apnea in the treatment of hypertension. Curr Opin Nephrol Hypertens 2014;23:462-7.

38. Shaamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: Implications for cardiac and vascular disease. JAMA 2003;290:1906-14.

39. Bajracharya T, Marsh NS, Barnes M, Travier N, Campbell AJ, Pierje R, McEvoy R, et al. Continuous positive airway pressure reduces daytime sleepiness in mild to moderate obstructive sleep apnea: A meta-analysis. Thorax 2006;61:430-4.

40. Yetkin O, Rankin F, Dayan F, Flora J, Tarlow D. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation 1998;98:2269-75.

41. Weaver TE, Mancini C, Maislin G, Caster J, Staley B, Landis JR, et al. Continuous positive airway pressure treatment of sleep apnea in patients with mild obstructive sleep apnea: Results of the CPAP Apnea Trial North American Project (CATNAP) randomized clinical trial. Am J Respir Crit Care Med 2012;186:677-83.

42. Meurice JC, Cornette A, Philip-Joet F, Pepin JL, Escourrou P, Ingrand P, et al. Evaluation of autoCPAP devices in home treatment of sleep apnea/hypopnea syndrome. Sleep Med 2007;8:695-703.

43. Smith I, Lasserson TJ. Pressure modification for improving usage of continuous positive airway pressure devices in adults with obstructive sleep apnoea. Cochrane Database Syst Rev 2009:CD003519.

44. Yetkin O, Kunter E, Gunen H. CPAP compliance in patients with obstructive sleep apnoea: A meta-review. Sleep Med 2013;14:151-66.

45. Obstructive sleep apnea and depression: Effect of continuous positive airway pressure on obstructive sleep apnea and depression: A review. Innov Clin Neurosci 2011;8:17-25.

46. Johansson K, Neovius M, Lagerros YT, Harlid R, Rössner S, Granath F, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: A randomised controlled trial. BMJ 2009;339:b4609.

47. Ravesloot MJ, van Maanen JP, Dun L, de Vries N. The undervalued potential of positional therapy in position-dependent snoring and obstructive sleep apnoea: A review of the literature. Sleep Med 2013;17:39-49.

48. Inoue Y, Takasaki Y, Yamashiro Y. Efficacy and safety of adjunctive modafinil treatment on residual excessive daytime sleepiness among nasal continuous positive airway pressure-treated Japanese patients with obstructive sleep apnea syndrome: A double-blind placebo-controlled study. J Clin Sleep Med 2010;6:751-7.

49. Kay GG, Feldman N. Effects of armodafinil on simulated driving and self-report measures in obstructive sleep apnea patients prior to treatment with continuous positive airway pressure. J Clin Sleep Med 2013;9:445-54.

50. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981;1:862-5.

51. McNicholas WT. Cardiovascular outcomes of CPAP therapy in obstructive sleep apnoea syndrome. Am J Physiol Regul Integr Comp Physiol 2007;293:R1666-70.

52. Denker MG, Cohen DL. Use of continuous positive airway pressure for sleep apnea in the treatment of hypertension. Curr Opin Nephrol Hypertens 2014;23:462-7.

53. Shaamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: Implications for cardiac and vascular disease. JAMA 2003;290:1906-14.

54. Marshall NS, Barnes M, Travier N, Campbell AJ, Pierje R, McEvoy RD, et al. Continuous positive airway pressure reduces daytime sleepiness in mild to moderate obstructive sleep apnea: A meta-analysis. Thorax 2006;61:430-4.

55. Takoava R, Rankin F, Fitzgerald FS, Flora J, Tarlow D. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation 1998;98:2269-75.
to continuous positive airway pressure in obstructive sleep apnea: A population-based study. Chest 2002;121:430-5.
82. Bridgman SA, Dunn KM. Surgery for obstructive sleep apnoea. Cochrane Database Syst Rev 2000;CD001004.
83. Kotecha BT, Hannah SA, Khalil HM, Georgallas C, Bailey P. Sleep nasendoscopy: A 10-year retrospective audit study. Eur Arch Otorhinolaryngol 2007;264:1361-7.
84. Soares D, Folke AJ, Yoo G, Badr MS. Rowley JA, Lin HS. Drug-induced sleep endoscopy vs awake Müller’s maneuver in the diagnosis of severe upper airway obstruction. Otolaryngol Head Neck Surg 2013;148:151-6.
85. George JR, Chung S, Nielsen I, Goldberg AN, Miller A, Kezirian EJ. Comparison of drug-induced sleep endoscopy and lateral cephalometry in obstructive sleep apnea. Laryngoscope 2012;122:2600-5.
86. Shnider ST, Spiegel CJ, Shpivak RJ, Spielman AJ, Burak B, McGregor PA. Predictive value of Müller maneuver in selection of patients for uvulopalatopharyngoplasty. Laryngoscope 1985;95:1483-7.
87. Li HY, Wang PC, Chen YP, Lee LA, Fang TJ, Lin HC. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy 2011;25:49-5.
88. Nakata S, Noda A, Yagi H, Yanagi E, Mimura T, Okada T, et al. Nasal resistance for determinant factor of nasal surgery in CPAP failure patients with obstructive sleep apnea syndrome. Rhinology 2005;43:296-9.
89. Foltán R, Hoffmannová J, Pretl M, Donet V, Vlk M. Genioglossus advancement and hyoid myotomy in treating obstructive sleep apnoea syndrome – A follow-up study. J Cranio-maxillofac Surg 2007;35:246-51.
90. Holty JE, Guillemaintal C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2010;14:287-97.
91. Li KK, Powell NB, Riley RW, Guillemaintal C. Distraction osteogenesis in adult obstructive sleep apnea surgery: A preliminary report. J Oral Maxillofac Surg 2002;60:6-10.
92. Hicklin LA, Tostevin P, Dusan S. Retrospective survey of long-term results and patient satisfaction with uvulopalatopharyngoplasty for snoring. J Laryngol Otol 2000;114:673-81.
93. Boot H, van Wegen R, Poubion RM, Bogaard JM, Schmitz PI, van der Meché FG. Long-term results of uvulopalatopharyngoplasty for obstructive sleep apnoea syndrome – A follow-up study. J Cranio-maxillofac Surg 2007;35:47-51.
94. Golz A, Goldenberg D, Netzer A, Westerman ST, Joachims HZ. Epiglottic carcinoma presenting as obstructive sleep apnea. J Otolaryngol 2001;30:58-9.
95. Verste T, Kroker BA, Pirsig W, Brosch S. Tonsillectomy as a treatment of obstructive sleep apnea in adults with tonsillar hypertrophy. Laryngoscope 2000;110:1556-9.
96. Lin HC, Friedman M, Chang HW, Gurpinar B. The efficacy of multilevel surgery of the upper airway in adults with obstructive sleep apnoea/hypopnoea syndrome. Laryngoscope 2012;122:2120-7.
97. Richard W, Kox D, den Herder C, van Tinteren H, de Vries N. One stage multilevel surgery (uvulopalatopharyngoplasty, hyoid suspension, radiofrequency ablation of the tongue base with/without genioglossus advancement), in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 2007;264:439-44.
98. Camacho M, Cortal V, Bizzetto SE, Holty JE, Guillemaintal C, Capasso R. Tonsillectomy as treatment for adult obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope 2014;124:803-11.
99. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004;292:1724-37.
100. Greenburg DL, Lettieri CJ, Eliasson AH. Effects of surgical weight loss on measures of obstructive sleep apnea: A meta-analysis. Am J Med 2009;122:535-42.
101. Sarkhosh K, Switzer NJ, El-Hadi M, Birch DW, Shi X, Karmali S. The impact of bariatric surgery on obstructive sleep apnea: A systematic review. Obes Surg 2013;23:414-23.

How to cite this article: Sharma SK, Katoh VC, Mohan A, Kadhiran T, Elavarasi A, Ragesh R, et al. Consensus and evidence-based Indian initiative on obstructive sleep apnea guidelines 2014 (first edition). Indian Journal of Medical Research 2014, Vol 140, issue 3, pages 451-68., Sharma SK et al, copyright.. the IJMR.

Reproduced with permission from: Consensus & Evidence-based INOSA Guidelines 2014 (First edition). Indian Journal of Medical Research 2014, Vol 140, issue 3, pages 451-68., Sharma SK et al, copyright.. the IJMR.