ππ scattering S wave from the data on the reaction

$$\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$$

N.N. Achasov * and G.N. Shestakov †

Laboratory of Theoretical Physics,
S.L. Sobolev Institute for Mathematics,
630090, Novosibirsk, Russia

Abstract

The results of the recent experiments on the reaction $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ performed at KEK, BNL, IHEP, and CERN are analyzed in detail. For the $I = 0 \pi \pi S$ wave phase shift δ_{0}^{0} and inelasticity η_{0}^{0} a new set of data is obtained. Difficulties emerging when using the physical solutions for the $\pi^{0} \pi^{0} S$ and D wave amplitudes extracted with the partial wave analyses are discussed. Attention is drawn to the fact that, for the $\pi^{0} \pi^{0}$ invariant mass, m, above 1 GeV, the other solutions, in principle, are found to be more preferred. For clarifying the situation and further studying the $f_{0}(980)$ resonance thorough experimental investigations of the reaction $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ in the m region near the KK threshold are required.

*Email: achasov@math.nsc.ru
†Email: shestako@math.nsc.ru
I. INTRODUCTION

The reactions $\pi N \rightarrow \pi\pi N$ so far are a major source of information on the processes $\pi\pi \rightarrow \pi\pi$. At high energies and small values of the momentum-transfer-squared from the incident π to the outgoing $\pi\pi$ system, $0 < -t < 0.2 \text{ GeV}^2$, the reactions $\pi N \rightarrow \pi\pi N$ are dominated by the one-pion exchange (OPE) mechanism. In treating the data on these reactions the partial wave analysis method is used. As a rule, a few possible solutions for the partial wave amplitudes of the final $\pi\pi$ system are obtained. In some cases, the preferred solution is selected from the additional physical arguments. Generally, to obtain the reliable and unambiguous results in a wide region of m, high statistics, polarized targets, and precise measurements of the $\pi N \rightarrow \pi\pi N$ reaction cross section at different energies are needed. The detailed reviews and comprehensive discussions of the experimental results on the reactions $\pi N \rightarrow \pi\pi N$ and $\pi\pi$ scattering in the region $2m_\pi < m < 2 \text{ GeV}$ available by the early 1999 have been presented in Refs. [1,2].

In this work we analyze the recent data on the intensities and relative phase of the S and D partial waves of the $\pi^0\pi^0$ system produced in the reaction $\pi^- p \rightarrow \pi^0\pi^0 n$. The data have been obtained in the experiments with incident π^- energies of 8.9, 18.3, 38, and 100 GeV performed at KEK [3], BNL [4], IHEP [5], and CERN [6], respectively. Our main goal is to obtain information on the $\pi\pi S$ wave phase shift δ^0_0 and inelasticity η^0_0 in the channel with isospin $I = 0$ that would be complementary to the previous “canonical” data extracted from the 17.2 GeV experiments on the reactions $\pi^- p \rightarrow \pi^+\pi^- n$ [7-12]. We especially emphasize a strong likeness of the physical solutions selected in all four experiments on $\pi^0\pi^0$ production and also the common difficulties that emerge when interpreting these solutions and in their comparison with the $\pi^+\pi^-$ data. It turns out, in particular, that some of the physical solutions found lead to considerable violations of the unitarity condition for the $\pi\pi$ scattering amplitude in question. In addition, we conclude that the data on $\pi^0\pi^0$ production are indicative of a noticeably smaller value of the $f_2(1270) \rightarrow \pi\pi$ decay branching ratio in comparison with the Particle Data Group (PDG) data [13]. In connection with a considerable interest in the light scalar meson sector (see for reviews Refs. [1,2,13-15]), we suggest to perform especially careful measurements of the reaction $\pi^- p \rightarrow \pi^0\pi^0 n$ in the m region from 0.9 to 1.1 GeV, i.e., near $K\bar{K}$ threshold. This would allow the $f_0(980)$ coupling constant to the $K\bar{K}$ channel to be determined more reliably and also to resolve the long-standing question [16] of a possible ambiguity in the behavior of the phase shift δ^0_0 above the $K\bar{K}$ threshold.

The paper is organized as follows. In Sec. II, the KEK results [3] are analyzed. In Ref. [3] the data on the phase shift δ^0_0 have been obtained in the m region from 0.36 to 1 GeV. The δ^0_0 values found by us in other way in the interval $0.68 \leq m \leq 1 \text{ GeV}$ agree with the KEK data [3] within experimental uncertainties. We also present new results for δ^0_0 and η^0_0 in the region $1 < m < 1.64 \text{ GeV}$. In Sec. III, the extrapolation of the S and D wave mass distributions obtained in the BNL experiment [4] from the physical region of the reaction $\pi^- p \rightarrow \pi^0\pi^0 n$ to the pion pole ($t = m_{\pi}^2$) is performed. Considering the different solutions found in Ref. [4] for these distributions we obtain a few sets of the values of δ^0_0 and η^0_0 in the m region from 0.32 to 1.52 GeV. The GAMS results on the reaction $\pi^- p \rightarrow \pi^0\pi^0 n$ [5,6] are discussed in Sec. IV. Here we also summarize all difficulties encountered while analyzing the $\pi^0\pi^0$ data [3-6]. In Sec. V, we formulate briefly a few concrete suggestions for further studying the reaction $\pi^- p \rightarrow \pi^0\pi^0 n$ which, as one can hope, will be used to clarify the experimental situation.
II. ANALYSIS OF THE KEK DATA

In the KEK experiment [3], the data on the intensities and the relative phase of the S and D partial waves for the reaction $\pi^+\pi^- \to \pi^0\eta^0$ have been obtained in the m interval from 0.36 to 1.64 GeV. They have been extracted from the $\pi^- p \to \pi^0\eta^0 n$ data by using the linear Chew-Low extrapolation and partial wave analysis. Because the absolute $\pi^0\eta^0$ production cross section has not been determined in the experiment, the S and D wave intensities, $|A_S|^2$ and $|A_D|^2$, have initially been presented in arbitrary (identical) units [3]. Any alternative solution for $|A_S|^2$ and $|A_D|^2$ has not been discussed in Ref. [3]. The S and D wave intensities are related to the phase shifts δ_0^S and δ_2^D and inelasticities η_0^I and η_2^I in a conventional way: $|A_S|^2 \sim |a_0^S - a_2^S|^2$, where $a_0^S = (\eta_0^I \exp(2i\delta_0^S) - 1)/2i$, and $|A_D|^2 \sim |a_0^D - a_2^D|^2$, where $a_2^D = (\eta_2^I \exp(2i\delta_2^D) - 1)/2i$. To find δ_0^S below the KK threshold, it was assumed [3] that in this region $\eta_0^I = \eta_2^I = 1$, and consequently $|A_S|^2 \sim \sin^2(\delta_0^S - \delta_2^D)$. As is well known from a large number of previous experiments, the phase shift δ_0^S smoothly goes through 90° in the region $0.7 < m < 0.9$ GeV and the phase shift δ_2^D is negative, smooth, and small (see, for example, [2,7,8,17]). Therefore, to extract the phase shift difference $\delta_0^S - \delta_2^D$ from the unnormalized data, the following normalization condition was accepted in Ref. [3]: the maximum value of $|A_S|^2$ is equal to 1. The KEK data for the S and D partial wave intensities normalized in this way are shown in Fig. 1, together with the data on the relative phase $\delta = \phi_S - \phi_D$ between the amplitudes $A_S = |A_S| \exp(i\phi_S)$ and $A_D = |A_D| \exp(i\phi_D)$. The values of the $I = 2 \pi \pi$ S wave phase shift δ_0^S used in Ref. [3] were given by the parametrization $\delta_0^S = -0.87q$ [with $q = (m^2/4 - m_0^2)^{1/2}$ in GeV and δ_0^S in radians], and in such a way the data for δ_0^S were obtained in the m region from 0.36 to 1 GeV. In the following, for δ_0^S we shall use the fit to the data from Refs. [17,18] which is shown in Fig. 2. Using the fit and the data for $|A_S|^2$ shown in Fig. 1a we have also determined the values of δ_0^S for $m < 1$ GeV. They are plotted in Fig. 1d. The resulting values are in excellent agreement with those obtained in Ref. [3].

We now determine δ_0^S and η_0^I simultaneously by using the available data on the relative phase δ and the intensity $|A_S|^2$ (see Figs. 1c and 1d) in the m region from 0.68 to 1.64 GeV. In order to estimate the phase ϕ_D we neglect the tiny amplitude a_2^D [17,18] (which is quite reasonable because the experimental errors of $|A_D|^2$, as is seen from Fig. 1b, are not too small) and assume that the D wave amplitude is dominated by the $f_2(1270)$ resonance contribution and can be written in the form

$$A_D = \frac{m_{f_2} B_{f_2\pi\pi} \Gamma}{m_{f_2}^2 - m^2 - im_{f_2} \Gamma},$$ \hspace{0.5cm} (1)

were $\Gamma = (m_{f_2}/m)\Gamma_{f_2}(q/q_{f_2})^\delta D(q_{f_2}R_{f_2})/D(q_{f_2}R_{f_2})$, $D(x) = 9 + 3x^2 + x^4$, $q_{f_2} = (m_{f_2}^2/4 - m_0^2)^{1/2}$, R_{f_2} is the interaction radius, and m_{f_2}, Γ_{f_2}, and $B_{f_2\pi\pi}$ are the mass, width, and $\pi\pi$ decay branching ratio of the $f_2(1270)$. The fitted curve on Fig. 1b corresponds to the following values of the $f_2(1270)$ resonance parameters:

$$m_{f_2} = 1.283 \pm 0.008 \text{ GeV}, \hspace{1cm} \Gamma_{f_2} = 0.170 \pm 0.014 \text{ GeV},$$ \hspace{1cm} (2)

$$R_{f_2} = 3.59 \pm 0.71 \text{ GeV}^{-1}, \hspace{1cm} B_{f_2\pi\pi} = 0.760 \pm 0.034.$$ \hspace{0.5cm} (2)

1This fit was obtained with the parametrization $\delta_0^S = -aq/(1 + bm^2 + cm^4 + dm^6)$, where a, b, c, and d are fitted parameters. In addition, in lacking the reliable data on the deviation of η_0^I from 1, we set $\eta_0^I = 1$ for all considered values of m. When more or less detailed data on η_0^I are available, it will be interesting to take into account possible inelastic effects. It is not unreasonable to think that such effects may appear in the $I = 2 \pi \pi$ channel only above the nominal $\rho\rho$ threshold (1.54 GeV), but not above the KK threshold as in the $I = 0 \pi \pi$ channel.
Thus, the phase ϕ_D is defined by that of the Breit-Wigner amplitude (1). To express the parameters δ^0_0 and η^0_0 in terms of the known values δ, $|A_S|^2$, δ^0_0, and ϕ_D, it is convenient to represent the amplitude A_S in the form (see footnote 1)

$$A_S = e^{2i\delta^0_0} \left(\frac{\eta^0_0 e^{2i(\delta^0_0 - \delta^2_0)} - 1}{2i} \right) = e^{2i\delta^0_0} \tilde{A}_S = e^{i(2\delta^0_0 + \phi)} |\tilde{A}_S|,$$

(3)

where ϕ is the phase of the amplitude \tilde{A}_S. The distinctive feature of the amplitude \tilde{A}_S is that in its Argand diagram the relations between $\delta^0_0 - \delta^2_0$, ϕ, η^0_0, and $|\tilde{A}_S|$ formally look like the relations between the corresponding parameters of any unitary partial wave amplitude with definite isospin I; for example, the phase ϕ is confined within the range from 0° to 180° because $\text{Im}(\tilde{A}_S) > 0$. Thus, we have

$$\phi = \delta - 2\delta^2_0 + \phi_D, \quad \eta^0_0 = \sqrt{1 - 4|A_S| \sin \phi + 4|A_S|^2},$$

(4)

$$\sin 2(\delta^0_0 - \delta^2_0) = \frac{2|A_S| \cos \phi}{\eta^0_0}, \quad \cos 2(\delta^0_0 - \delta^2_0) = \frac{1 - 2|A_S| \sin \phi}{\eta^0_0}.$$

(5)

Since the interference between the S and D partial waves is defined by the product $|A_S||A_D| \cos \delta$ and $\cos \delta$ determines δ only up to the sign, two solutions always exist: the solution with $\delta > 0$ and the other one with $\delta < 0$. Moreover, if $\cos \delta$ is close to 1 (and $|\delta| \approx 0$) in some region of m then in this region a transition from one solution to the other one is possible. The KEK data [3] presented in Fig. 1c show that the phase δ changes most rapidly near the $K\bar{K}$ threshold (which is one of the evident manifestation of the $f_0(980)$ resonance) and that just near 1 GeV $\cos \delta \approx 1$. Thus, in principle, we have four possible variants: (i) $\delta > 0$ for $m < 1$ GeV and $\delta < 0$ for $m > 1$ GeV, (ii) $\delta > 0$ for all m, (iii) $\delta < 0$ for all m, and (iv) $\delta < 0$ for $m < 1$ GeV and $\delta > 0$ for $m > 1$ GeV. However, variants (iii) and (iv) with $\delta < 0$ for $m < 1$ GeV can be rejected at once. Really, estimating δ for $m < 1$ GeV by using the relation $\delta = \delta^0_0 + \delta^2_0 - \phi_D$, one can easy verify that δ must be positive in this region with the conventional definition of the signs of the phase shifts δ^0_0, δ^2_0, and ϕ_D [see Figs. 1d, 2, and Eq. (1)]. So, we shall consider only variants (i) and (ii).

Figure 3 shows the values of δ^0_0 and η^0_0 extracted from the KEK data (see Figs. 1a, 1b, and 1c) in the region $0.68 < m < 1.64$ GeV by using the Eqs. (4) and (5) for the two above mentioned variants of the δ phase behavior. The values of δ^0_0 in the region $0.36 < m < 1$ GeV obtained above from the data on $|A_S|^2$ with $\eta^0_0 = 1$ (see Fig. 1d) are also shown in Figs. 3a and 3b for comparison and completeness. As is seen, for example, from Fig. 3a, the sets of the δ^0_0 values found in the region $0.68 < m < 1$ GeV by two different ways are in quite reasonable agreement with each other. With obtaining δ^0_0 and η^0_0 in the general case, the Argand diagram of the amplitude \tilde{A}_S was built for each variant. After this the values of $2(\delta^0_0 - \delta^2_0)$ obtained from Eqs. (4) and (5) were finally defined by the requirement that those of δ^0_0 be smoothly connected as a function of m. That the strong violation of unitarity takes place in variant (ii) for $m > 1.16$ GeV (see Fig. 3d) can be easily understood from the relation $\phi = \delta - 2\delta^2_0 + \phi_D$ [see Eq. (4)]. The fact is that the values of ϕ in this case fall into the range from 180° to 360°, which is forbidden as ϕ is the phase of the formally unitary amplitude \tilde{A}_S. Furthermore, in variant (ii), the phase silt δ^0_0 for $m > 1$ GeV (see Fig. 3c) is in rather poor agreement with the $\pi^+\pi^-$...
production data [7-12] according to which, for example, at $m \approx 1.3$ GeV δ_0^0 has to be close to 270$^\circ$. Thus, variant (ii) with $\delta > 0$ for all m can be rejected. As for variant (i), there are a set of specific features which, to our knowledge, are missing from the $\pi^+\pi^-$ data [7-12]. As is seen from Figs. 3a and 3b, in this case we have noticeable differences of η_0^0 from unity for $m < 1$ GeV, its approximate equality to 1 for $1 < m < 1.12$ GeV, violation of unitarity near 1.2 GeV, and sharp jumps of δ_0^0 and η_0^0 with further increasing m. There is little doubt that these features are artefacts of the partial wave analysis of the $\pi^-p \rightarrow \pi^0\pi^0n$ data.

Another difficulty is that the accepted normalization for $|A_S|^2$ leads to $B_{f_2\pi\pi} = 0.760 \pm 0.034$ [see Eq. (2)], while according the PDG data [13] $B_{f_2\pi\pi} = 0.847 \pm 0.013$. These two values cling to one another only by their double errors. Hence, in principle, one may conclude that the $\pi^0\pi^0$ data [3] indicate that the absolute cross section of the $f_2(1270)$ resonance formation through the OPE mechanism in the reaction $\pi^-p \rightarrow \pi^0\pi^0n$ can turn out to be approximately 20% smaller, at least at $m \approx m_{f_2}$, than that expected from the PDG data [13]. Alternatively, the KEK data [3] might be normalized with use of the known value max $|A_D|^2 = (1 + \eta_0^0)^2/4 = B_{f_2\pi\pi}^2$ with $B_{f_2\pi\pi}$ from Ref. [13]. However, in this case, the resulting values of $|A_S|^2$ in the most interesting region of the lightest scalar resonance $\sigma(600)$ [3,13,19] would be approximately 25% higher than the unitarity limit for $|A_S|^2$.

We shall see in the next Sections that the other experimental data on the reaction $\pi^-p \rightarrow \pi^0\pi^0n$ lead to very similar difficulties.

III. ANALYSIS OF THE BNL DATA

In the BNL experiment [4], the high statistics on the reaction $\pi^-p \rightarrow \pi^0\pi^0n$ (about 8.5×10^5 events) has been accumulated and the detailed partial wave analysis of the $\pi^0\pi^0$ angular distributions has been performed. This analysis has been done for ten sequential intervals in $-t$ covering the region $0 < -t < 1.5$ GeV2 and over the m range from 0.32 to 2.2 GeV scanned with the 0.04 GeV-wide step. As a result, two solutions for the unnormalized intensities of the S and D_0 partial waves and four ones (because of a sign ambiguity) for their relative phase have been obtained. The above quantities were denoted in Ref. [4] by $|S|^2$, $|D_0|^2$, and φ_{S-D_0}, respectively; in so doing, D_0 denotes the D wave with $L_z = 0$, where L_z is a projection of the $\pi^0\pi^0$ relative orbital angular momentum on the z-axis in the Gottfried-Jackson reference frame [4]. In the following, we shall use these notations, too. One of the solutions for the S and D_0 wave intensities, which is characterized by a large magnitude of $|S|^2$ and a small one of $|D_0|^2$ for $m < 1$ GeV, and which is smoothly continued to the higher mass region, where the D_0 wave is dominated by the $f_2(1270)$ resonance contribution, has been selected in Ref. [4] as the physical solution. Together with the intensities $|S|^2$ and $|D_0|^2$, the physical solution also includes two corresponding sets of the φ_{S-D_0} phase values which differ only in sign. Note that the other solution intersects with the physical one at $m \approx 1$ GeV. We agree with the physical arguments given in Ref. [4] based on which the other solution can be rejected in the region $m < 1$ GeV. However, for $m > 1$ GeV we shall analyze the two solutions and also the cases with transitions of the phase φ_{S-D_0} from one solution to the other one.

For the analysis we take the BNL data [4] on $|S|^2$, $|D_0|^2$, and φ_{S-D_0} pertaining to five intervals of $-t$, $0.01 < -t < 0.03$ GeV2, $0.03 < -t < 0.06$ GeV2, $0.06 < -t < 0.1$ GeV2, $0.1 < -t < 0.15$ GeV2, and $0.15 < -t < 0.2$ GeV2, and to the region $0.32 < m < 1.6$
GeV. Note that the data on φ_{S-D_0} are available only for $m > 0.8$ GeV. To obtain the values of the quantities $|A_S|^2$, $|A_D|^2$, and δ (see Sec. II) as functions of m characterizing the reaction $\pi^+\pi^- \rightarrow \pi^0\pi^0$ on the mass shell, we parametrize the t dependence of $|S|^2$, $|D_0|^2$, and φ_{S-D_0} by the following expressions

$$|S|^2 = \frac{m^2}{q}|A_S|^2 - t \exp[b_S(t - m_{\pi^0}^2)],$$
$$|D_0|^2 = 5\frac{m^2}{q}|A_D|^2 - t \exp[b_{D_0}(t - m_{\pi^0}^2)],$$

$$\varphi_{S-D_0} = \delta + \alpha (t/m_{\pi^0}^2 - 1)$$

and, in each 0.04 GeV mass bin, thus determine the unnormalized intensities $|A_S|^2$ and $|A_D|^2$, the phase δ and also the slopes b_S, b_{D_0}, and α by fitting to the BNL data on the t and m distributions by the formulae (6) and (7). In so doing, for $|S|^2$, $|D_0|^2$, and φ_{S-D_0} in each $-t$ bin we take into account the physical solution for $m < 1$ GeV and the physical and other ones for $m > 1$ GeV. Unfortunately, the absolute value of the $\pi^-p \rightarrow \pi^0\pi^0n$ reaction cross section has not been determined in the BNL experiment [4]. Therefore, to normalize the extrapolated intensities $|A_S|^2$ and $|A_D|^2$ we proceed in the same way as in Sec. II. The extrapolated and normalized data corresponding to the physical and other solutions are plotted in Figs. 4a, 4c, and 4e with solid and open symbols, respectively. It is interesting to note that as a result of the extrapolation two branches of the φ_{S-D_0} phase values for the other solution (i.e., the branch with $\varphi_{S-D_0} > 0$ for all m and that with $\varphi_{S-D_0} < 0$ for all m) interweave with each other in the region $m > 1.24$ GeV (see Fig. 4e) in such a way that there arise two new branches of the extrapolated phase δ, which are characterized by a smooth dependence on m and which, for example, can be considered either intersecting or oscillating near 1.26 GeV.

As in Sec. II, we begin with the determination of the phase shift δ_0^0 for $m < 1$ GeV from the data on $|A_S|^2$ (see Fig. 4a) assuming that $\eta_0^0 = 1$ in this region. The resulting phase shift values are shown in Fig. 5 by open circles. Note that two points in the region $m \approx m_K$ disturbed by the $K_S^0 \rightarrow \pi^0\pi^0$ events [4] are omitted. Then, having the data on $|A_S|^2$, $|A_D|^2$, and δ for $m > 0.8$ GeV (see Fig. 4), we determine the values of δ_0^0 and η_0^0 with use of the general formulae (3) and (4), and also Eq. (1). The results for the previously selected solutions among all the possible ones, that are shown in Fig. 4, are plotted in Fig. 5 with solid circles. Strictly speaking, the selection is reduced to rejection of the physical solution with $\delta < 0$ for $m < 1$ GeV (see Fig. 4e), since a simple

Such two-parametric fits to the off-shell partial wave intensities were widely used in the literature to obtain the suitably extrapolated data (see, for example, Refs. [9,17,20,21]. However, the determination of the phase δ with use of the direct extrapolation of the data on the phase φ_{S-D_0} [see Eq. (7)] may provoke a question. If the data on the $S-D_0$ interference contribution, as such, had been presented in Ref. [4], the problem would not have arisen. The fit to such data to the function $-2a \exp[b(t - m_{\pi^0}^2)]/(t - m_{\pi^0}^2)^2$ analogous to those in Eq. (6) and the identification of the fitted parameter a with $\sqrt{3}(m^2/q)|A_S||A_D|\cos \delta$ would allow $|\delta|$ to be determined in the proper way. Because such data are not available, the indirect test of the results obtained with Eq. (7) was carried out. Using the data [4] on $|S|^2$, $|D_0|^2$, and φ_{S-D_0} we constructed the quantity $2|S||D_0|\cos \varphi_{S-D_0}$ and found with the above extrapolation the on-shell $S-D$ interference contribution. Then, knowing independently $|A_S|^2$ and $|A_D|^2$, we determined δ as a function of m. The δ phase values obtained in the two ways are in very close agreement with each other. Certainly, owing to the forced double recounting of the errors of the input data with the indirect test, the errors of δ turn out to be larger then those obtained from the fit by Eq. (7). On the other hand, when the values of δ are determined by using Eq. (7) their errors practically are not differ from the errors of the input data for φ_{S-D_0}. All the aforesaid allowed us to prefer the determination of the phase δ with use of Eq. (7).
estimate \(\delta_0^0 = \delta - \delta_2^2 + \phi_D \) (see Sec. II) yields \(\delta_0^0 \approx -(25 \div 40)^\circ \) for this solution in the region of 0.8 – 1 GeV, which is, certainly, unsatisfactory. In its turn, Figs. 5a and 5b show that the physical solution with \(\delta > 0 \) for all \(m \) can be also rejected due to strong violation of the unitarity condition for \(m > 1.2 \) GeV. Figures 5c and 5d correspond to the physical solution for \(|A_S|^2, |A_D|^2 \), and \(\delta \) with the transition of the phase \(\delta \) at \(m \approx 1 \) GeV from the branch with \(\delta > 0 \) to that with \(\delta < 0 \) (see Fig. 4e). Such a physical solution consists with unitarity but corresponds to the weak coupling between the \(\pi \pi \) and \(K \bar{K} \) channels near the \(K \bar{K} \) threshold. Indeed, for this solution \(\eta_0^0 \) is close to unity in the region \(1 < m < 1.15 \) GeV. However, the latter disagrees with the data obtained from the reactions \(\pi^- p \rightarrow \pi^+ \pi^- n, \pi^+ p \rightarrow \pi^+ \pi^- \Delta^{*+} \), and \(\pi N \rightarrow K \bar{K}(N, \Delta) \) (see, for example, Refs. [7,9,10,16,22,23]). Figures 5e and 5f correspond to the combination of the physical solution with \(\delta > 0 \) for \(m < 1 \) GeV and the other one for \(m > 1 \) GeV with \(\delta > 0 \) in the region \(1 < m < 1.28 \) and \(\delta < 0 \) in the region \(1.28 < m < 1.52 \) GeV (see Figs. 4a and 4e). Finally, Figs. 5g and 5h correspond to the similar combination of the physical solution and the other one for which \(\delta < 0 \) for \(m \) from 1 to 1.52 GeV (see also Fig. 4e). Certainly, there are two more variants which differ from the last two ones only by the sign of \(\delta \) for \(m > 1.28 \) GeV (see Fig. 4e). These variants lead, however, to appreciable violations of the unitarity condition for \(m > 1.32 \) GeV, and therefore, are of little interest. Thus, one can conclude that just the variant presented in Figs. 5e and 5f is, in many respects, in qualitative agreement with the results of the previous partial wave analyses of the \(\pi^+ \pi^- \) data [1,7,9,11]. As indicated above, this variant corresponds to the positive relative phase \(\delta = \phi_S - \phi_D \) up to the \(f_2(1270) \) resonance and the negative one above it. An important point is that such a behavior of \(\delta \) as a function of \(m \) is strongly confirmed by the pioneering data from the polarized target experiment on the reaction \(\pi^- p \rightarrow \pi^+ \pi^- n \) at 17.2 GeV [11].

Comparing Fig. 5 with Fig. 3 we just note that the BNL data lead to the obviously higher values of the phase shift \(\delta_0^0 \) for \(m < 0.5 \) GeV than the KEK data.

In extracting the information on \(\delta_0^0 \) and \(\eta_0^0 \), the phase \(\phi_D \) has been defined by fitting to the data on \(|A_D|^2 \) (see Fig. 4c) with use of Eq. (1). The parameters of the \(f_2(1270) \) were found to be (see also the curves on Fig. 4c): for the physical solution,

\[
\begin{align*}
m_{f_2} &= 1.279 \pm 0.002 \text{ GeV}, \\
R_{f_2} &= 3.96 \pm 0.24 \text{ GeV}^{-1}, \\
\Gamma_{f_2} &= 0.205 \pm 0.005 \text{ GeV}, \\
B_{f_2 \pi \pi} &= 0.697 \pm 0.008
\end{align*}
\]

and, for the other solution,

\[
\begin{align*}
m_{f_2} &= 1.281 \pm 0.002 \text{ GeV}, \\
R_{f_2} &= 4.65 \pm 0.33 \text{ GeV}^{-1}, \\
\Gamma_{f_2} &= 0.211 \pm 0.005 \text{ GeV}, \\
B_{f_2 \pi \pi} &= 0.712 \pm 0.007
\end{align*}
\]

Thus, the BNL data indicate that the branching ratio \(B_{f_2 \pi \pi} \) can amount to approximately 84% of the PDG value [13]. Possible consequences of a similar discrepancy has been already discussed in connection with the KEK data at the end of Sec. II (recall that the relevant ratio for the KEK data has been found to be approximately 90%).

IV. DISCUSSION OF THE GAMS DATA

The highest statistics on the reaction \(\pi^- p \rightarrow \pi^0 \pi^0 n \) was accumulated by the GAMS Collaboration in two experiments at 38 GeV [5] and 100 GeV [6]. However, the small \(-t\)
region from 0 to 0.2 GeV2 has been examined in the works [5,6] very sparingly. But the data averaged over the small $-t$ region have been presented for $|S|^2$ and φ_{S-D_0} in Ref. [5] and for $|S|^2$, $|D_0|^2$, and φ_{S-D_0} in Ref. [6]. Such “global” data, of course, do not permit to perform a proper extrapolation of the mass distributions measured from the physical region to the pion pole. Nevertheless, we discuss some typical features of the GAMS data. The physical solution for $|S|^2$ and φ_{S-D_0} and the other solution only for $|S|^2$ have been presented in Ref. [5] in the region $0.8 < m < 1.6$ GeV. The φ_{S-D_0} phase was found to be positive in the full mass range [5] (about existing the ambiguous solution with $\varphi_{S-D_0} < 0$ the readers, probably, have to guess by themselves). In general, the available GAMS data [5] are very similar to the corresponding BNL data [4]. For example, in the case of the physical solution, $|S|^2$ and φ_{S-D_0} from Ref. [5] behave as functions of m in the same way as the extrapolated quantities $|A_S|^2$ and δ shown in Figs. 4a and 4e by solid circles. However, it is such a physical solution for $|A_S|^2$ and δ (with $\delta > 0$ for all m) that leads to strong violation of the unitarity condition for $m > 1.2$ GeV (see Fig. 5b). In analyzing the $\pi^0\pi^0$ system produced in the reaction $\pi^-p \rightarrow \pi^0\pi^0n$ at 100 GeV, the only solution for $|S|^2$, $|D_0|^2$, and φ_{S-D_0} has been selected and presented by the GAMS Collaboration in Ref. [6]. Unfortunately, this unique solution is very close to the above physical one obtained in the GAMS 38 GeV $\pi^-p \rightarrow \pi^0\pi^0n$ experiment [5].

It is of first importance that the GAMS Collaboration measured the absolute cross section of the $f_2(1270)$ resonance formation in the D_0 wave in the region $0 < -t < 0.2$ GeV2. According to Ref. [24], at 38 GeV, $\sigma_{D_0}(\pi^-p \rightarrow f_2(1270)n \rightarrow \pi^0\pi^0n) = 2.3 \pm 0.2$ mb. More recently, this value was used, in particular, to normalized the 100 GeV data [6]. Although the cross section value obtained is approximately 1.5–2 times greater than in a set of previous $\pi^0\pi^0$ production experiments [24,25], nevertheless, it is 1.57 times smaller than the estimate based on the OPE model (it is an old story with the experimental underestimation of the $\pi^-p \rightarrow f_2(1270)n \rightarrow \pi^0\pi^0n$ reaction cross section all details of which can be found in Ref. [25]). By using this model with the PDG values of m_{f_2}, Γ_{f_2}, and $B_{f_2\pi\pi}$ [13] we estimate

$$\sigma_{D_0}(\pi^-p \rightarrow f_2(1270)n \rightarrow \pi^0\pi^0n) \approx \sigma^{OPE}(\pi^-p \rightarrow f_2(1270)n \rightarrow \pi^0\pi^0n) \approx$$

$$\approx \frac{g^2_{\pi^-p}}{4\pi} \frac{5\pi}{m_{f_2}^2P_{\pi^-}^2} m_{f_2} \Gamma_{f_2} \frac{2}{9} B_{f_2\pi\pi} \int_{-2 GeV^2}^{0} \frac{-t \exp[b_{f_2}(t - m_{f_2}^2)]}{(t - m_{f_2}^2)^2} dt \approx 3.6 \mu b,$$ \hspace{1cm} (10)

where $P_{\pi^-} = 38$ GeV, $g^2_{\pi^-p}/4\pi \approx 2 \times 14.3$, and $b_{f_2} \approx 7.5$ GeV$^{-2} + 2 \times 0.8$ GeV$^{-2} \ln(38/18.3) \approx 8.68$ GeV$^{-2}$ (in estimating the slope b_{f_2}, its Regge energy dependence and the results for the slope b_{D_0} in the $f_2(1270)$ mass region presented in Fig. 4d have been taken into account). Note that this estimate is in good agreement with the result of the extrapolation of the available data on the reaction $\pi^-p \rightarrow f_2(1270)n \rightarrow \pi^+\pi^-n$ at 17.2 GeV [8], 100 GeV and 175 GeV [26] to the GAMS energy (see Ref. [25] for details). Thus, the GAMS data [24] indicate that the value of $B_{f_2\pi\pi}$ can amount to about 80% of that given by the PDG [13].

We now summarize briefly the common difficulties encountered in analyzing the data obtained in four recent experiments on the reaction $\pi^-p \rightarrow \pi^0\pi^0n$. First, the physical solutions selected by using the partial wave analyses of the $\pi^0\pi^0$ production data lead to the values of δ^0_0 and η^0_0 which are incompatible with the known results obtained from the $\pi^+\pi^-$ data, at least for $m > 1$ GeV. Some of these solutions lead to strong violations of
the unitarity condition. On the other hand, among the other solutions one can point out, in principle, the more preferred ones. Secondly, it is astonishing that the data of the four recent experiments on \(\pi^0\pi^0 \) production include the indications that the value of \(B_{f_2\pi\pi} \) can be distinctly smaller than the currently accepted one. This difficulty is rather serious and highly interesting. Let us remind that the \(\pi\pi \) production experiments on unpolarized targets, in particular, those under discussion here, do not permit the contributions of the \(\pi \) and \(a_1 \) exchange mechanisms to be separated in principle, even with huge statistics, because these contributions to the unpolarized cross section are incoherent [27]; in other words, there is no model-independent way to do this. Therefore, by our opinion, the difficulty with \(B_{f_2\pi\pi} \) may present itself a further evidence that the partial wave analyses of the unpolarized data allow to determine the intensities and the relative phases of the \(S, D, ... \) \(\pi\pi \) partial waves only approximately, with any extrapolation method. “The degree of proximity” is associated with the relative magnitude of the non-leading \(a_1 \) exchange contribution. With high statistical accuracy of the unpolarized data the presence of the \(a_1 \) exchange mechanism can manifest itself in the events responsible for \(|S|^2 \) just in the form of the above difficulty. In fact, this statement follows naturally from the analysis of the unnormalized KEK and BNL data (see the end of Sec. II and also Sec. V for details).

As for the GAMS data [23], they appear to point merely to the general problem involving the accurate measurement of the \(\pi^- p \rightarrow \pi^0 \pi^0 n \) reaction cross section. More discussions both of the additional assumptions needed in analyzing the unpolarized data and of the \(a_1 \) exchange contribution can be found in the works [1,2,11,12,27-29].

V. CONCLUSION

Using the most simple way we have extracted the values of the \(I = 0 \) \(\pi\pi \) \(S \) wave phase shift \(\delta_0^0 \) and inelasticity \(\eta_0^0 \) from the current data on the reaction \(\pi^- p \rightarrow \pi^0 \pi^0 n \).

It seems clear that a new set of precise experiments on this reaction is needed both for the more precise definition of the \(\pi^0\pi^0 \) production mechanism and for obtaining the more detailed information on \(\pi\pi \) scattering and light scalar resonances in the \(\pi\pi \) channel. Let us formulate in this connection several concrete suggestions, leaving aside the general wish to investigate the reaction \(\pi^- p \rightarrow \pi^0 \pi^0 n \) on the polarized target.

1) Detailed data on the \(m \) and \(t \) distributions for the \(\pi^0\pi^0 \) \(S \) and \(D_0 \) partial waves, especially in the region \(0 < -t < 0.2 \text{ GeV}^2 \) where the OPE mechanism dominates, and measurements of the absolute value of the \(\pi^- p \rightarrow \pi^0\pi^0 n \) reaction cross section at different energies, for example, at KEK, BNL, IHEP, and CERN, would be highly desirable. The relative accuracy of new measurements must be comparable with (or better of) that given by the PDG [13] for \(B_{f_2\pi\pi}^2 \). This would allow to perform the accurate description of the \(f_2(1270) \) formation differential cross section within the OPE model and to test how well the \(S \) wave \(\pi^0\pi^0 \) production cross section at its absolute maximum (which is located in the region \(0.6 < m < 0.8 \text{ GeV} \)) agrees with the OPE model prediction under the standard normalization condition according to which \(|A_S|^2 = 1 \) (i.e., \(\delta_0^0 - \delta_2^0 = 90^\circ \) and \(\eta_0^0 = \eta_2^0 = 1 \)) at the absolute maximum point. An excess of the experimental values over the model expectations would be a good evidence, obtained from the unpolarized target data, for the presence of the \(a_1 \) exchange contribution to the \(S \) wave \(\pi^0\pi^0 \) production cross section in the region of its absolute maximum. Alternatively, if the maximal experimental value of the \(S \) wave cross section turns out to be less than in the OPE model, then it will completely disturb of the existing ideas about the \(\delta_0^0 \) phase shift for \(m < 1 \text{ GeV} \), which seems to be highly unlikely.
2) We suggest to perform in the low $-t$ region the especially careful measurements of $\pi^0\pi^0$ production in the S wave for m from 0.9 to 1.1 GeV, i.e., in the region of the well-known interference minimum in $|S|^2$ located near the $K\bar{K}$ threshold. This would allow to obtain the important additional information on the $f_0(980)$ resonance coupling constant to the $K\bar{K}$ channel, $g_{f_0K\bar{K}}$, and to resolve the long-standing question [16] concerning a possible ambiguity in the behavior of the phase shift δ_0^f above the $K\bar{K}$ threshold which arises at $g_{f_0K\bar{K}}^2/4\pi > 4\pi m_{K\bar{K}}^2 \approx 3.1$ GeV2. Furthermore, the magnitude of the S wave intensity in the immediate region of the minimum (if it lies below the $K\bar{K}$ threshold) can be used to obtain a very strong upper limit on the a_1 exchange contribution at small $-t$ in this region of m.

3) As a rule, the assumption of phase coherence between the D_0 and D_- amplitudes is one of those using to select the physical solution, see, for example, Refs. [4,6,9,30]. Here D_- denotes the D wave with $|L_z| = 1$, in the Gottfried-Jackson reference frame, which is produced via the unnatural parity exchanges in the t channel of the reaction $\pi N \rightarrow \pi\pi N$. In this connection we would like to call attention to a new curious circumstance. According to the GAMS measurements [6], the ratio $|D_-|^2/|D_0|^2$ in the $f_2(1270)$ mass region at 100 GeV is half as large as that at 38 GeV. This fact may testify to compensation of the πP and $a_2 P$ Regge cut contributions (P denotes the Pomeron exchange) to the D_- wave production amplitude with energy increasing, i.e., to violation of phase coherence.

4) We also suggest to use in future the more suitable notation for the $S - D_0$ interference contribution to be extracted in the unpolarized target experiments, instead of the commonly used simplified one of the form $|S||D_0| \cos \varphi_{S-D_0}$. It includes the mention of the coherence factor (see, for example, Ref. [31]) and is more adequate to the measured quantity. Experimentally, the S and D_0 wave intensities, $|S|^2$ and $|D_0|^2$, and the $S - D_0$ interference contribution, $|S||D_0| \cos \bar{\varphi}$, are measured simultaneously. In fact, $|S| \equiv \left[|S_\pi|^2 + |S_{a_1}|^2 \right]^{1/2}$, $|D_0| \equiv \left[|D_{0\pi}|^2 + |D_{0a_1}|^2 \right]^{1/2}$, and the coherence factor ξ ($0 \leq \xi \leq 1$) and the phase $\bar{\varphi}$ have the form

$$\xi = \left| \sum_{i=\pi,a_1} S_i D_{0i}^* \right| / \left[\left(\sum_{i=\pi,a_1} |S_i|^2 \right) \left(\sum_{i=\pi,a_1} |D_{0i}|^2 \right) \right]^{1/2},$$

$$\bar{\varphi} = \arctan \left[\left(\sum_{i=\pi,a_1} |S_i||D_{0i}| \sin \varphi_i \right) / \left(\sum_{i=\pi,a_1} |S_i||D_{0i}| \cos \varphi_i \right) \right],$$

where S_{π} ($D_{0\pi}$) and S_{a_1} (D_{0a_1}) are the S (D_0) wave production amplitudes caused by the π and a_1 exchange mechanisms, respectively (these amplitudes correspond to two independent configurations of the nucleon helicities in the reaction $\pi N \rightarrow \pi\pi N$), and φ_i is the relative phase between the amplitudes S_i and D_{0i}. Let us consider the case when the amplitude D_{0a_1} is negligible. Then, denoting $\bar{\varphi} = \varphi_\pi$ by φ_{S-D_0}, one can see that the real interference contribution differs from that presented with the simplified notation, $|S||D_0| \cos \varphi_{S-D_0}$, by the coherence factor $\xi = 1/\sqrt{1 + |S_{a_1}|^2/|S_\pi|^2}$. If we put $\xi = 1$ for all m, we shall always deal with the effectively underestimated values of $|\cos \varphi_{S-D_0}|$.

ACKNOWLEDGMENTS

We would like to thank the E852 Collaboration for allowing free access to the detailed BNL data, http://dustbunny, physics.indiana.edu/pi0pi0pwa/. This work was supported in part by the grant INTAS-RFBR No. IR-97-232 and the grant RFBR No. 02-02-16061.
References

[1] P. Minkovski and W. Ochs, Eur. Phys. J. C 9, 283 (1999).

[2] V.V. Vereshchagin, K.N. Mukhin, and O.O. Patarakin, Usp. Fiz. Nauk 170, 353 (2000) [Phys. Usp. 43, 315 2000].

[3] K. Takamatsu et al., in Proceedings of the International Workshop on e^+e^- Collisions from ϕ to J/Ψ, Novosibirsk, 1999, edited by G.V. Fedotovich and S.I. Redin (BINP, Novosibirsk, 2000), p. 163; Nucl. Phys. A 675, 312c (2000); Progr. Theor. Phys. 102, E52 (2001).

[4] J. Gunter, A.R. Dzierba et al., Phys. Rev. D 64, 072003 (2001).

[5] D. Alde et al., Z. Phys. C 66, 375 (1995).

[6] D. Alde et al., Eur. Phys. J. A 3, 361 (1998); Yad. Fiz. 62, 446 (1999).

[7] B. Hyams et al., Nucl. Phys. B 64, 134 (1973).

[8] G. Grayer et al., Nucl. Phys. B 75, 189 (1974).

[9] P. Estabrooks and A.D. Martin, Nucl. Phys. B 79, 301 (1974); ibid. 95, 322 (1975).

[10] B. Hyams et al., Nucl. Phys. B 100, 205 (1975).

[11] H. Becker et al., Nucl. Phys. B 151, 46 (1979).

[12] R. Kamiński, L. Leśniak and K. Rybicki, Z. Phys. C 74, 79 (1997).

[13] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).

[14] N.N. Achasov, Usp. Fiz. Nauk 168, 1257 (1998) [Phys. Usp. 41, 1149 (1998)]; Nucl. Phys. A 675, 279c (2000); Yad. Fiz. 65, 573 (2002) [Phys. Atom. Nucl. 65, 546 (2002)].

[15] N.N. Achasov, in Proceedings of the Ninth International Conference on Hadron Spectroscopy, Protvino, Russia, 2001, edited by D. Amelin and A.M. Zaitsev, AIP Conf. Proc. No. 619 (AIP, Melville, New York, 2002), p. 112; W. Ochs, ibid., p. 167; T. Barnes, ibid., p. 447; E. Klempt, ibid., p. 463.

[16] N.N. Achasov, S.A. Devyanin and G.N. Shestakov, Phys. Lett. B 102, 196 (1981); Yad. Fiz. 32, 1098 (1980) [Sov. J. Nucl. Phys. 32, 566 (1980)].

[17] W. Hoogland et al., Nucl. Phys. B 126, 109 (1977).

[18] N.B. Durusoy et al., Phys. Lett. B 45, 517 (1973).

[19] N.N. Achasov and G.N. Shestakov, Phys. Rev. D 49, 5779 (1994); M. Harada, F. Sannino, and J. Schechter, Phys. Rev. D 54, 1991 (1996); S. Ishida et al., Prog. Theor. Phys. 98, 1005 (1997).
[20] P. Estabrooks, A.D. Martin et al., in *Proceedings of the International Conference on \(\pi\pi \) Scattering*, Tallahassee, 1973, edited by D.K. Williams and V. Hagopian, AIP Conf. Proc. No. 13 (AIP, New York, 1973), p. 37.

[21] N.N. Biswas et al., Phys. Rev. Lett. 47, 1378 (1981); N.M. Cason et al., ibid. 48, 1316 (1982); Phys. Rev. D 7, 1586 (1983).

[22] S.D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).

[23] A.D. Martin, E.N. Ozmutlu and E.J. Squires, Nucl. Phys. B 121, 514 (1977); N.N. Achasov, S.A. Devyanin, and G.N. Shestakov, Usp. Fiz. Nauk 142, 361 (1984) [Sov. Phys. Usp. 27, 161 (1984)]; Z. Phys. C 22, 53 (1984).

[24] A.A. Kondashov and Yu.D. Prokoshkin, Nuovo. Cim. A107, 1903 (1994); Yu. D. Prokoshkin, Yad. Fiz. 62, 396 (1999) [Phys. Atom. Nucl. 62, 356 (1999)].

[25] N.N. Achasov and G.N. Shestakov, Mod. Phys. Lett. A 8, 2343 (1993).

[26] C. Bromberg et al., Nucl. Phys. B 232, 189 (1984).

[27] N.N. Achasov and G.N. Shestakov, Phys. Rev. D 58, 054011 (1998); Yad. Fiz. 62, 548 (1999) [Phys. Atom. Nucl. 62, 505 (1999)].

[28] M. Svec, Phys. Rev. D 47, 2132 (1993); ibid. 53, 2343 (1996).

[29] R. Kamiński, L. Leśniak and K. Rybicki, Eur. Phys. J. direct C 4, 4 (2002).

[30] A.D. Martin and C. Michael, Nucl. Phys. B 84, 83 (1975).

[31] S. Hagopian et al., Phys. Rev. Lett. 25, 1050 (1970); G.S. Adams et al., Phys. Rev. D 4, 653 (1971); N.N. Achasov and G.N. Shestakov, Fiz. Elem. Chast. Atom. Yadra 9, 48 (1978).
Figure 1: (a), (b), (c) The KEK data on the reaction $\pi^+\pi^- \rightarrow \pi^0\pi^0$ [3]. (a) The normalized S wave intensity $|A_S|^2$. (b) The normalized D wave intensity $|A_D|^2$; the curve is the fit using Eq. (1) with the parameters of the $f_2(1270)$ presented in Eq. (2). (c) The relative phase δ between the amplitudes A_S and A_D. (d) The $I = 0$ $\pi\pi$ S wave phase shift δ_0^0 obtained from the data on $|A_S|^2$ alone under the assumption η_0^0 is unity.
Figure 2: The $I = 2 \pi \pi S$ wave phase shift δ_0^2. The data are from Refs. [17] (solid circles) and [18] (open circles). The curve corresponds to the fit described in the text.
Figure 3: The solid circles show the values of the phase shift δ_0^0 (a) and inelasticity η_0^0 (b) extracted from the KEK data [3] on the reaction $\pi^+\pi^- \rightarrow \pi^0\pi^0$ in the case that the m dependence of the phase δ corresponds to variant (i) described in the text. (c), (d) The same for variant (ii). The open diamonds show the values of δ_0^0 corresponding to Fig. 1d.
Figure 4: The results of the extrapolation of the BNL data [4]. (a) The extrapolated and normalized S wave intensity. (c) The extrapolated and normalized D wave intensity. (e) The extrapolated relative phase δ between the S and D wave amplitudes. The slopes b_S (b), b_D (d), and α (f) as functions of m. The solid circles correspond to the physical solution. The open circles [and also the open triangles in plot (e) for δ] correspond to the other solution. The lower and upper curves in plot (c) are the fits using Eq. (1) with the parameters of the $f_2(1270)$ presented in Eqs. (8) and (9), respectively.
Figure 5: The phase shift δ^0_0 and inelasticity η^0_0 extracted from the BNL data [4]. Plots (a) and (b) correspond to the physical solution (see Fig. 4) with $\delta > 0$ for all m. Plots (c) and (d) correspond to the physical solution with a transition of the phase δ at $m \approx 1$ GeV from the branch pertaining to its positive values to that with its negative ones (see Fig. 4e). Plots (e) and (f) correspond to the combination of the physical solution with $\delta > 0$ for $m < 1$ GeV and the other solution for $m > 1$ GeV with $\delta > 0$ in the region $1 < m < 1.28$ GeV and with $\delta < 0$ in the region $1.28 < m < 1.52$ GeV (see Figs. 4a and 4e). Plots (g) and (h) correspond to the combination of the physical solution with $\delta > 0$ for $m < 1$ GeV and the other solution for $m > 1$ GeV with $\delta < 0$ in the region $1 < m < 1.52$ GeV (see Figs. 4a and 4e). The open circles show the values of the phase shift δ^0_0 obtained from the data on $|A_S|^2$ for $m < 1$ GeV (see Fig. 4a) alone under the assumption η^0_0 is unity.