Zero bias transformation and asymptotic expansions II: the Poisson case
Ying Jiao

To cite this version:
Ying Jiao. Zero bias transformation and asymptotic expansions II: the Poisson case. 2009. hal-00378846

HAL Id: hal-00378846
https://hal.science/hal-00378846
Preprint submitted on 27 Apr 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Zero bias transformation and asymptotic expansions II:
the Poisson case

Ying Jiao

April 27, 2009

Abstract

We apply a discrete version of the methodology in [12] to obtain a recursive asymptotic expansion for $E[h(W)]$ in terms of Poisson expectations, where W is a sum of independent integer-valued random variables and h is a polynomially growing function. We also discuss the remainder estimations.

MSC 2000 subject classifications: 60G50, 60F05.
Key words: Poisson approximation, zero bias transformation, Stein’s method, asymptotic expansions, discrete reverse Taylor formula.

1 Introduction and main result

It should be noted in the first place that the notation used in this paper is similar as in [12], however, their meanings are different since we here consider discrete random variables. Stein’s method for Poisson approximation has been introduced by Chen [8]. Let Z be an \mathbb{N}-valued random variable (\mathbb{N}-r.v.), then Z follows the Poisson distribution with parameter λ if and only if the equality $E[Zf(Z)] = \lambda E[f(Z + 1)]$ holds for any function $f : \mathbb{N} \to \mathbb{R}$ such that both sides of the equality are well defined. Based on this observation, Chen has proposed the following discrete Stein’s equation:

\begin{equation}
xf(x) - \lambda f(x + 1) = h(x) - \mathcal{P}_\lambda(h), \quad x \in \mathbb{N}
\end{equation}

where $\mathcal{P}_\lambda(h)$ is the expectation of h with respect to the λ-Poisson distribution. If X is an \mathbb{N}-r.v., one has $E[h(X)] - \mathcal{P}_\lambda(h) = E[xf_h(X) - f_h(X + 1)]$ where f_h is a solution of (1) and is given as

\begin{equation}
f_h(x) = \frac{(x - 1)!}{\lambda^x} \sum_{i=x}^{\infty} \frac{\lambda^i}{i!} (h(i) - \mathcal{P}_\lambda(h)).
\end{equation}
The value $f_h(0)$ can be arbitrary and is not used in calculations in general.

Stein’s method has been adopted for Poisson approximation problems since $[8]$ in a series of papers such as $[3], [4], [5]$ among many others, one can also consult the monograph $[6]$ and the survey paper $[10]$. In particular, Barbour $[3]$ has developed, in parallel with the normal case $[2]$, asymptotic expansions for sum of independent N-r.v.s and for polynomially growing functions. The asymptotic expansion problem has also been studied by using other methods such as Lindeberg method (e.g. $[7]$).

In this paper, we address this problem by the zero bias transformation approach. Similar as in Goldstein and Reinert $[11]$, we introduce a discrete analogue of zero bias transformation (see also $[9]$). Let X be an N-r.v. with expectation λ. We say that an N-r.v. X^* has Poisson X-zero biased distribution if the equality

$$\mathbb{E}[X f(X)] = \lambda \mathbb{E}[f(X^* + 1)]$$

holds for any function $f : \mathbb{N} \rightarrow \mathbb{R}$ such that the left side of (3) is well defined. The distribution of X^* is unique: one has $P(X^* = x) = \frac{x + 1}{\lambda} P(X = x + 1)$. Combining Stein’s equation (1) and zero bias transformation (3), the error of the Poisson approximation can be written as

$$\mathbb{E}[h(X)] - \mathcal{P}_\lambda(h) = \lambda \mathbb{E}[f_h(X^* + 1) - f_h(X + 1)].$$

A first order correction term for the Poisson approximation has been proposed in $[8]$ by using the Poisson zero bias transformation.

Recall the difference operator Δ defined as $\Delta f(x) = f(x + 1) - f(x)$. For any $x \in \mathbb{N}_* := \mathbb{N} \setminus \{0\}$ and any $n \in \mathbb{N}$, one has $\Delta \binom{x}{n} = \binom{x}{n-1}$. If f and g are two functions on \mathbb{N}, then

$$\Delta(f(x)g(x)) = f(x + 1)\Delta g(x) + g(x)\Delta f(x).$$

We have the Newton’s expansion ([4, Thm 5.1]), which can be viewed as an analogue of the Taylor’s expansion in the discrete case. For all $x, y \in \mathbb{N}$ and $N \in \mathbb{N}$,

$$f(x + y) = \sum_{j=0}^{N} \binom{y}{j} \Delta^j f(x) + \sum_{0 \leq j_1 < \cdots < j_{N+1} < y} \Delta^{N+1} f(x + j_1).$$

Let us introduce the following quantity, where we use the same notation as in $[12]$, but its meaning is changed. For any N-r.v. Y and any $k \in \mathbb{N}$ such that $\mathbb{E}(|Y|^k) < +\infty$, denote by

$$m_Y^{(k)} := \mathbb{E} \left[\binom{Y}{k} \right] = k! [Y]_k$$

where $[Y]_k$ is the k^{th} factorial moment of Y. Let X and Y be two independent N-r.v.s and $f : \mathbb{N} \rightarrow \mathbb{R}$ such that $\Delta^k f(X)$ and $\Delta^k f(X + Y)$ are both integrable, then

$$\mathbb{E}[f(X + Y)] = \sum_{k=0}^{N} m_Y^{(k)} \mathbb{E}[\Delta^k f(X)] + \delta_N(f, X, Y).$$
where
\[
\delta_N(f, X, Y) = \mathbb{E} \left[\sum_{0 \leq j_1 < \cdots < j_{N+1} < Y} \Delta^{N+1} f(X + j_1) \right].
\]

We introduce the discrete reverse Taylor formula. Once again, the following result is very similar with [12, Pro1.1], however, with different significations of notation.

Proposition 1.1 (discrete reverse Taylor formula) With the above notation, we have
\[
\mathbb{E}[f(X)] = \sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_+, |J| \leq N} m_{X^*}^{(J)} \mathbb{E}[\Delta^{|J|} f(X + Y)] + \varepsilon_N(f, X, Y)
\]

where
\[
\varepsilon_N(f, X, Y) := -\sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_+, |J| \leq N} m_{X^*}^{(J)} \delta_{N-|J|}(\Delta^{|J|} f, X, Y),
\]

for any integer \(d \geq 1 \) and any \(J = (j_1, \cdots, j_d) \) with expectations \(\lambda_i \), which are “sufficiently good” in a sense we shall precise later. Let \(W = X_1 + \cdots + X_n \) and denote \(\lambda_W := \mathbb{E}[W] = \lambda_1 + \cdots + \lambda_n \). Let \(W^{(i)} = W - X_i \) and \(X_i^* \) be an \(\mathbb{N} \)-r.v., independent of \(W^{(i)} \) and which has the Poisson \(X_i \)-zero biased distribution. Finally, let \(I \) be a random index valued in \(\{1, \cdots, n\} \) which is independent of \((X_1, \cdots, X_n, X_1^*, \cdots, X_n^*) \) and such that \(\mathbb{P}(I = i) = \lambda_i / \lambda_W \) for any \(i \). Then, similar as in [11], the random variable \(W^* := W^{(i)} + X_i^* \) follows the Poisson \(W \)-zero biased distribution.

We give below the asymptotic expansion formula in the Poisson case.

Theorem 1.2 Let \(N \in \mathbb{N} \) and \(p \geq 0 \). Let \(h : \mathbb{N} \to \mathbb{R} \) be a function which is of \(O(x^p) \) at infinity and \(X_i \) \(i = 1, \cdots, n \) be a family of independent \(\mathbb{N} \)-r.v.s having up to \((N + p + 1)^{th} \) order moments. Let \(W = X_1 + \cdots + X_n \) and \(\lambda_W = \mathbb{E}[W] \). Then \(\mathbb{E}[h(W)] \) can be written as the sum of two terms \(C_N(h) \) and \(e_N(h) \) such that \(C_0(h) = \mathcal{P}_{\lambda_W}(h) \) and \(e_0(h) = \mathbb{E}[h(W)] - \mathcal{P}_{\lambda_W}(h) \), and recursively for any \(N \geq 1 \),
\[
C_N(h) = C_0(h) + \sum_{i=1}^{n} \lambda_i \sum_{d \geq 1} (-1)^{d-1} \sum_{J \in \mathbb{N}_+, |J| \leq N} m_{X_i^*}^{(J)} (m_{X_i}^{(J)} - m_{X_i^*}^{(J)}) C_{N-|J|}(\Delta^{|J|} f_h(x+1)),
\]

\[
e_N(h) = \sum_{i=1}^{n} \lambda_i \left[\sum_{d \geq 1} (-1)^{d-1} \sum_{J \in \mathbb{N}_+, |J| \leq N} m_{X_i^*}^{(J)} (m_{X_i}^{(J)} - m_{X_i^*}^{(J)}) e_{N-|J|}(\Delta^{|J|} f_h(x+1)) \right]
\]
\[
+ \sum_{k=0}^{N} m_{X_i^*}^{(k)} e_{N-k}(\Delta^k f_h(x+1), W^{(i)} , X_i) + \delta_N(f_h(x+1), W^{(i)} , X_i^*),
\]

where for any integer \(d \geq 1 \) and any \(J \in \mathbb{N}_+, J^\dagger \in \mathbb{N}_+ \) denotes the last coordinate of \(J \), and \(J^\circ \) denotes the element in \(\mathbb{N}_+^{d-1} \) obtained from \(J \) by omitting the last coordinate.
Remark 1.3 In view of the similarity between the above theorem and [12, Thm.1.2], which has also been shown by the two papers [2, 3] of Barbour, the following question arises naturally: can we generalize the result to any infinitely divisible distribution?

2 Several preliminary results

In this section, we are interested in some properties concerning the function h and the associated function f_h. Compared to the normal case, we no longer need differentiability conditions on h in Theorem 1.2 and shall concentrate on its increasing speed at infinity. This makes the study much simpler.

We begin by considering the modified Stein’s equation on \mathbb{N}_*:

\[x\tilde{f}(x) - \lambda \tilde{f}(x+1) = h(x), \quad x \in \mathbb{N}_*. \]

The above equation may have many solutions, one of which is given by

\[\tilde{f}_h(x) := \frac{(x-1)!}{\lambda x} \sum_{i=x}^{\infty} \frac{\lambda^i}{i!} h(i). \]

A general solution of (12) can be written as $\tilde{f}_h(x) + C(x-1)!/\lambda x$, where C is an arbitrary constant. However, when h is of polynomial increasing speed at infinity, \tilde{f}_h is the only solution of (12) which has polynomial increasing speed at infinity.

In order that the function \tilde{f}_h is well defined, we need some condition on h. Denote by \mathcal{E}_λ the space of functions h on \mathbb{N}_* such that, for any polynomial P, we have

\[\sum_{i \geq 1} \frac{\lambda^i}{i!} |h(i)P(i)| < +\infty. \]

Clearly \mathcal{E}_λ is a linear space. We list below some properties of \mathcal{E}_λ.

Proposition 2.1 The following assertions hold:

1) for any $Q \in \mathbb{R}[x, x^{-1}]$ and any $h \in \mathcal{E}_\lambda$ where $\mathbb{R}[x, x^{-1}]$ denotes the set of Laurent polynomials on \mathbb{R}, we have $Qh \in \mathcal{E}_\lambda$;

2) for any $h \in \mathcal{E}_\lambda$, $\Delta h \in \mathcal{E}_\lambda$ and $\tilde{f}_h \in \mathcal{E}_\lambda$;

Proof. 1) is obvious by definition.

2) Let h_1 be the function defined as $h_1(x) := h(x+1)$. If P is a polynomial, then

\[\sum_{i \geq 1} \frac{\lambda^i}{i!} |P(i)h_1(i)| = \sum_{j \geq 2} \frac{\lambda^{j-1}}{(j-1)!} |P(j-1)h(j)| = \lambda^{-1} \sum_{j \geq 2} \frac{\lambda^j}{j!} |jP(j-1)h(j)| < +\infty \]
since $h \in \mathcal{E}_\lambda$. Therefore, $\Delta h \in \mathcal{E}_\lambda$. We next prove the second assertion. For any arbitrary polynomial P, there exists another polynomial Q such that, for any integer $i \geq 1$, $Q(i) \geq \sum_{j=1}^{\left\lfloor \frac{P(j)}{i} \right\rfloor} h(j)$. Therefore

$$
\sum_{a \geq 1} \frac{\lambda^a}{a!} \left| P(a) \frac{(a-1)!}{\lambda^a} \sum_{i=a}^\infty \frac{\lambda^i}{i!} h(i) \right| \leq \sum_{a \geq 1} \frac{|P(a)|}{a} \sum_{i=a}^\infty \frac{\lambda^i}{i!} |h(i)|
$$

$$
= \sum_{i \geq 1} \left(\sum_{a=1}^i \frac{|P(a)|}{a} \frac{\lambda^i}{i!} |h(i)| \right) \leq \sum_{i \geq 1} Q(i) \frac{\lambda^i}{i!} |h(i)| < +\infty,
$$

which implies that $\tilde{f}_h \in \mathcal{E}_\lambda$. \hfill \square

For any function $h \in \mathcal{E}_\lambda$, we define $\tau(h) : \mathbb{N} \to \mathbb{R}$ such that

$$
\tau(h)(x) = h(x+1)/(x+1).
$$

Note that for any integer $k \geq 1$, one has $\tau^k(h)(x) = x!h(x+k)/(x+k)!$. The proof of Proposition 2.1 shows that τ is actually an endomorphism of \mathcal{E}_λ.

Lemma 2.2 Let $h \in \mathcal{E}_\lambda$. Then

$$
\tilde{f}_{\tau(h)}(x) = \tilde{f}_h(x+1)/x.
$$

Proof. Let $u(x) = \tilde{f}_h(x+1)/x$. Dividing both sides of (12) by x and then replacing x by $x+1$, we obtain $\tilde{f}_h(x+1) - \lambda \tilde{f}_h(x+2)/(x+1) = \tau(h)(x)$, or equivalently,

$$
xu(x) - \lambda u(x+1) = \tau(h)(x).
$$

(14)

Since $\tilde{f}_{\tau(h)}$ is the only solution of (14) in \mathcal{E}_λ, the lemma is proved. \hfill \square

Corollary 2.3 Let $p \in \mathbb{R}$. If $h(x) = O(x^p)$, then $\tilde{f}_h(x) = O(x^{p-1})$.

Proof. First of all,

$$
0 \leq \frac{x!}{\lambda^x} \sum_{i \geq x} \frac{\lambda^i}{i!} = \sum_{i \geq x} \frac{\lambda^{i-x}}{i!} \frac{x!}{x!} \leq \sum_{i \geq x} \frac{\lambda^{i-x}}{(i-x)!} = e^{-\lambda}.
$$

Therefore, when $p \leq 0$, one has

$$
x \tilde{f}_h(x) = \frac{x!}{\lambda^x} \sum_{i \geq x} \frac{\lambda^i}{i!} h(i) = O(x^p)
$$

since $i^p \leq x^p$ if $x \leq i$. Hence $\tilde{f}_h(x) = O(x^{p-1})$. The general case follows by induction on p by using (14). \hfill \square
We now introduce the function space: for any $p \in \mathbb{R}$, denote by H^p the space of all functions $h : \mathbb{N} \to \mathbb{R}$ such that $h(x) = O(x^p)$ when $x \to \infty$. In the following are some simple properties of H^p, their proofs are direct.

Proposition 2.4

1) For any $p \geq 0$ and any $h \in H^p$, the restriction of h on \mathbb{N}^* lies in $\bigcap_{\lambda > 0} E_\lambda$.

2) If $h \in H^p$, then also are $h(x + 1)$ and Δh.

3) If $h \in H^p$ and $g \in H^q$, then $gh \in H^{p+q}$.

The following proposition is essential for applying the recursive estimation procedure.

Proposition 2.5

Let $p \geq 0$. If $h \in H^p$, then $f_h \in H^p$.

Proof. Note that f_h coincides with \tilde{f}_h on \mathbb{N}^* where $\tilde{h} = h - \mathcal{P}_\lambda(h)$. Since $h \in H^p$, also is \tilde{h}. Then Corollary 2.3 implies $f_h(x) = O(x^{p-1}) = O(x^p)$. \[\square\]

3 Proof of the main result

In this section, we give the proof of Proposition [1.1] and of Theorem [1.2], which are essentially the same with the ones of [12, Prop1.1, Thm1.2] in a discrete setting.

Proof of Proposition 1.1

We replace $E[\Delta^{|J|}f(X + Y)]$ on the right side of (8) by

$$
\sum_{k=0}^{N-|J|} m_Y^{(k)} E[\Delta^{|J|+k}f(X)] + \delta_{N-|J|}(\Delta^{|J|}f, X, Y)
$$

and observe that the sum of terms containing δ vanishes with $\varepsilon_N(f, X, Y)$. Hence the right side of (8) equals

$$
\sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_d^p, |J| \leq N} \sum_{k=0}^{N-|J|} m_Y^{(J)} E[\Delta^{|J|+k}f(X)]
$$

If we split the terms for $k = 0$ and for $1 \leq k \leq N - |J|$ respectively, the above formula can be written as

$$(15) \quad \sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_d^p, |J| \leq N} m_Y^{(J)} E[\Delta^{|J|}f(X)] + \sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_d^p, |J| \leq N} m_Y^{(J)} \sum_{k=1}^{N-|J|} m_Y^{(J)} E[\Delta^{|J|+k}f(X)].$$

We make the index changes $J' = (J, k)$ and $u = d + 1$ in the second part of (15) and find that it is nothing but

$$
\sum_{u \geq 1} (-1)^{u-1} \sum_{J' \in \mathbb{N}_u^p, |J'| \leq N} m_Y^{(J')} E[\Delta^{|J'|}f(X)].
$$
By taking the sum, it only remains the term of index \(d = 0 \) in the first part of (13), which is equal to \(\mathbb{E}[f(X)] \). So the lemma is proved.

\[\square \]

Proof of Theorem 1.2 We prove the theorem by induction on \(N \). The case where \(N = 0 \) is trivial. Assume that the assertion holds for \(0, \cdots, N - 1 \).

Since \(h \in \mathcal{H}_p \), by Lemma 2.5 and Proposition 2.4, for any \(k \in \{1, \cdots, N\} \), \(\Delta^k f_h(x + 1) \in \mathcal{H}_{p-1} \subset \mathcal{H}_p \). Therefore \(C_{N-k}(\Delta^k f_h(x + 1)) \) and \(e_{N-k}(\Delta^k f_h(x + 1)) \) are well defined and

\[
\mathbb{E}[\Delta^k f_h(W + 1)] = C_{N-k}(\Delta^k f_h(x + 1)) + e_{N-k}(\Delta^k f_h(x + 1)).
\]

We now prove the equality \(\mathbb{E}[h(W)] = C_N(h) + e_N(h) \). Recall that for any \(i \in \{1, \cdots, n\} \), \(X_i^* \) follows the Poisson \(X_i \)-zero biased distribution and is independent of \(W^{(i)} = W - X_i \).

\(I^* \) is an independent random index such that \(\mathbb{P}(I = i) = \lambda_i/\lambda \), and \(W^* = W^{(i)} + X_i^* \). So \(\mathbb{E}[h(W)] - C_0(h) \) is equal to

\[
\lambda W \mathbb{E}[f_h(W^* + 1) - f_h(W + 1)] = \sum_{i=1}^n \lambda_i \left(\mathbb{E}[f_h(W^{(i)} + X_i^*)] - \mathbb{E}[f_h(W + 1)] \right),
\]

where, by using (3),

\[
\mathbb{E}[f_h(W^{(i)} + X_i^*)] = \sum_{k=0}^N m_X^{(k)} \mathbb{E}[\Delta^k f_h(W^{(i)} + 1)] + \delta_N(f_h(x + 1), W^{(i)}, X_i^*).
\]

By replacing \(\mathbb{E}[\Delta^k f_h(W^{(i)} + 1)] \) in the above formula by its \((N-k)\)th order reverse Taylor expansion, we obtain that \(\mathbb{E}[f_h(W^{(i)} + X_i^*)] \) equals

\[
\sum_{k=0}^N m_X^{(k)} \left[\sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_d, |J| \leq N-k} m_X^{(J)} \mathbb{E}[\Delta^{|J|+k} f_h(W + 1)] + \delta_N(f_h(x + 1), W^{(i)}, X_i) \right] + \delta_N(f_h(x + 1), W^{(i)}, X_i^*). \]

Note that the term of indices \(k = d = 0 \) in the sum is \(\mathbb{E}[f_h(W + 1)] \). Therefore, \(\mathbb{E}[f_h(W^{(i)} + X_i^*)] - \mathbb{E}[f_h(W + 1)] \) is the sum of the following three terms

\[
\sum_{k=1}^N \sum_{d \geq 0} (-1)^d \sum_{J \in \mathbb{N}_d, |J| \leq N-k} m_X^{(J)} \mathbb{E}[\Delta^{|J|+k} f_h(W + 1)],
\]

\[
\sum_{d=1}^N (-1)^d \sum_{J \in \mathbb{N}_d, |J| \leq N} m_X^{(J)} \mathbb{E}[\Delta^{|J|} f_h(W + 1)],
\]

\[
\sum_{k=0}^N m_x^{(k)} \mathbb{E}[\Delta^k f_h(x + 1), W^{(i)}, X_i] + \delta_N(f_h(x + 1), W^{(i)}, X_i^*). \]

By interchanging summations and then making the index changes \(K = (J, k) \) and \(u = d + 1 \), we obtain

\[
(13) = \sum_{u \geq 1} (-1)^{u-1} \sum_{K \in \mathbb{N}_u} m_X^{(K)} m_X^{(K)} \mathbb{E}[\Delta^K f_h(W + 1)].
\]
As the equality $m_{X_i}^{(J)} = m_{X_i}^{(J')}m_{X_i}^{(J)}$ holds for any J, (12) + (17) simplifies as

$$\sum_{d \geq 1} (-1)^{d-1} \sum_{J \in \mathbb{N}^d, |J| \leq N} m_{X_i}^{(J')} \left(m_{X_i}^{(J)} - m_{X_i}^{(J)} \right) \mathbb{E}[\Delta^{[J]}f_h(W + 1)].$$

By the hypothesis of induction, we have

$$\mathbb{E}[\Delta^{[J]}f_h(W + 1)] = C_{N-|J|}(\Delta^{[J]}f_h(x + 1)) + e_{N-|J|}(\Delta^{[J]}f_h(x + 1)),$$

so the equality $\mathbb{E}[h(W)] = C_N(h) + e_N(h)$ holds with $C_N(h)$ and $e_N(h)$ being defined in (10) and (11).

\[\square\]

4 Error estimations

In this section, we concentrate on the remainder $e_N(h)$ in the asymptotic expansion. The following quantity will be useful. Let $p \geq 0$. For $h \in \mathcal{H}_p$ and $N \in \mathbb{N}$, we define

$$\|h\|_{N,p} := \sup_{x \in \mathbb{N}^*} \left| \frac{\Delta^{N+1}h(x)}{x^p} \right|,$$

which is finite by Proposition (2.4 2).

Lemma 4.1 Let $N \in \mathbb{N}$, $k \in \{0, \cdots, N\}$ and $p \geq 0$. Let X be an \mathbb{N}-r.v. with pth order moment, Y be an \mathbb{N}-r.v. independent of X and having $(N - k + 1 + p)$th order moment. Then, for any $f \in \mathcal{H}_p$, the following inequalities hold:

$$|\delta_{N-k}(\Delta^k f(x + 1), X, Y)| \leq \max(2^{p-1}, 1) f \|h\|_{N,p} \left(\mathbb{E}[X^p]m_Y^{(N-k+1)} + m_Y^{(N-k+1), p} \right),$$

where

$$m_Y^{(N-k+1), p} := \mathbb{E}\left[\left(\frac{Y}{N-k+1} \right)^p \right].$$

The discrete reverse Taylor remainder satisfies

$$|\delta_{N-k}(\Delta^k f(x + 1), X, Y)| \leq \max(2^{p-1}, 1) f \|h\|_{N,p} \sum_{d \geq 0} \sum_{J \in \mathbb{N}^d, |J| \leq N-k} m_Y^{(J)} \left(\mathbb{E}[X^p]m_Y^{(N-k-|J|+1)} + m_Y^{(N-k-|J|+1), p} \right).$$

Proof. By definition (7) and (13),

$$|\delta_{N-k}(\Delta^k f(x + 1), X, Y)| \leq \mathbb{E}\left[\sum_{0 \leq j_1 < \cdots < j_{N-k+1} < Y} |\Delta^{N+1}f(X + 1 + j_1)| \right]$$

$$\leq \|f\|_{N,p} \mathbb{E}\left[\sum_{0 \leq j_1 < \cdots < j_{N-k+1} < Y} (X + j_1 + 1)^p \right] \leq \|f\|_{N,p} \mathbb{E}\left[\left(\frac{Y}{N-k+1} \right)^p (X + Y)^p \right]$$

$$\leq \max(2^{p-1}, 1) f \|h\|_{N,p} \left(\mathbb{E}[X^p]m_Y^{(N-k+1)} + m_Y^{(N-k+1), p} \right),$$
where we have used in the last inequality the estimations \((X + Y)^p \leq 2^{p-1}(X^p + Y^p)\) if \(p > 1\) and \((X + Y)^p \leq X^p + Y^p\) if \(p \leq 1\). Thus (21) is proved. The inequality (22) follows from (11) and (21). \(\square\)

Proposition 4.2 Let \(N \in \mathbb{N}, p \geq 0\) and \(h \in H_p\). Let \(X_i (i = 1, \ldots, n)\) be a family of independent \(N\)-r.v.s with mean \(\lambda_i > 0\) and up to \((N + p + 1)\)th order moments; \(W = X_1 + \ldots + X_n\). Let \(X_i^*\) be an \(N\)-r.v. having Poisson \(X_i\)-zero biased distribution and independent of \(W(i) := W - X_i\). Then the following estimations hold.

1) When \(N = 0\),

\[
|e_0(h)| \leq \max(2^{p-1}, 1)\|f_h\|_{0,p} \sum_{i=1}^{n} \left(E[(W(i))^p] (E[X_i^2] + \lambda_i^2 - \lambda_i) + \lambda_i (E[(X_i^*)^p+1]) + E[(X_i)^p+1]) \right).
\]

2) When \(N \geq 1\), one has the recursive estimation:

\[
|e_N(h)| \leq \sum_{i=1}^{n} \lambda_i \left[\sum_{d \geq 1} \sum_{|J| \leq N} m_{X_i}^{(N)} (m_{X_i}^{(J)} + m_{X_i}^{(J^*)}) |e_{N-|J|}(\Delta|J|f_h(x + 1))| \\
+ \max(2^{p-1}, 1)\|f_h\|_{N,p} \sum_{k=0}^{N} \sum_{|J| \leq N-k} m_{X_i}^{(J)} (E[(W(i))^p] m_{X_i}^{(N-k-|J|+1)} + m_{X_i}^{(N-k-|J|+1)p}) \\
+ \max(2^{p-1}, 1)\|f_h\|_{N,p} (E[(W(i))^p] m_{X_i}^{(N+1)} + m_{X_i}^{(N+1,p)}) \right],
\]

Proof. We begin by the case when \(N = 0\). By (11),

\[
e_0(h) = \sum_{i=1}^{n} \lambda_i \left(E[f_h(W(i) + X_i^* + 1)] - E[f_h(W(i) + X_i + 1)] \right) \\
= \sum_{i=1}^{n} \lambda_i (\delta_0(f_h(x + 1), W(i), X_i^*) + \varepsilon_0(f_h(x + 1), W(i), X_i)) \\
\leq \max(2^{p-1}, 1)\|f_h\|_{0,p} \sum_{i=1}^{n} \lambda_i \left(E[(W(i))^p] (m_{X_i}^{(1)} + m_{X_i}^{(J)}) + (m_{X_i}^{(1,p)} + m_{X_i}^{(J,p)}) \right)
\]

where the last inequality is by estimations (23) and (22), so (22) follows. Combining in addition the recursive formula (11), we obtain the inequality (23). \(\square\)
References

[1] R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for Poisson approximations: the Chen-Stein method. *The Annals of Probability*, 17(1):9–25, 1989.

[2] A. D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem. *Probability Theory and Related Fields*, 72:289–303, 1986.

[3] A. D. Barbour. Asymptotic expansions in the Poisson limit theorem. *Annals of Probability*, 15(2):748–766, 1987.

[4] A. D. Barbour and V. Čekanavičius. Total variation asymptotics for sums of independent integer random variables. *The Annals of Probability*, 30(2):509–545, 2002.

[5] A. D. Barbour, L. H. Y. Chen, and K. P. Choi. Poisson approximation for unbounded functions. I. Independent summands. *Statistica Sinica*, 5(2):749–766, 1995.

[6] A. D. Barbour, L. Holst, and S. Janson. *Poisson Approximation*. Oxford University Press, 1992.

[7] I. S. Borisov and P. S. Ruzankin. Poisson approximation for expectations of unbounded functions of independent random variables. *Annals of Probability*, 30(4):1657–1680, 2002.

[8] L. H. Y. Chen. Poisson approximation for dependent trials. *Annals of Probability*, 3:534–545, 1975.

[9] N. El Karoui and Y. Jiao. Stein’s method and zero bias transformation for CDOs tranches pricing. *Finance and Stochastics*, 13(2):151–180, 2009.

[10] T. Erhardsson. Stein’s method for Poisson and compound Poisson approximation. In *An Introduction to Stein’s Method*, volume 4 of *Lecture Notes Series, IMS, National University of Singapore*, pages 61–113. Singapore University Press and World Scientific Publishing Co. Pte. Ltd., 2005.

[11] L. Goldstein and G. Reinert. Stein’s method and the zero bias transformation with application to simple random sampling. *Annals of Applied Probability*, 7:935–952, 1997.

[12] Y. Jiao. Zero bias transformation and asymptotic expansions. Preprint, PMA Université Paris 6 - Université Paris 7, 2009.