Analyticity of Gaussian free field percolation observables. (English) Zbl 07605989
Commun. Math. Phys. 396, No. 1, 187-223 (2022)

Summary: We prove that cluster observables of level-sets of the Gaussian free field on the hypercubic lattice \mathbb{Z}^d, $d \geq 3$, are analytic on the whole off-critical regime $\mathbb{R} \setminus \{ h_* \}$. This result concerns in particular the percolation density function $\theta(h)$ and the (truncated) susceptibility $\chi(h)$. As an important step towards the proof, we show the exponential decay in probability for the capacity of a finite cluster for all $h \neq h_*$, which we believe to be a result of independent interest. We also discuss the case of general transient graphs.

MSC:
82Bxx Equilibrium statistical mechanics
60Kxx Special processes
60Gxx Stochastic processes

Full Text: DOI arXiv

References:
[1] Abächerli, A.; Sznitman, A-S, Level-set percolation for the Gaussian free field on a transient tree, Ann. Inst. Henri Poincaré Probab. Stat., 54, 1, 175-201 (2018) · Zbl 1396.60099 · doi:10.1214/16-AIHP799
[2] Aizenman, M.; Barsky, D., Sharpness of the phase transition in percolation models, Commun. Math. Phys., 108, 3, 489-526 (1987) · Zbl 0618.60098 · doi:10.1007/BF01212322
[3] Bricmont, J.; Lebowitz, J.L; Maes, C., Percolation in strongly correlated systems: the massless Gaussian field, J. Stat. Phys., 48, 5-6, 1249-1268 (1987) · Zbl 0962.82520 · doi:10.1007/BF01009544
[4] Duminil-Copin, H.; Goswami, S.; Raoufi, A.; Severo, F.; Yadin, A., Existence of phase transition for percolation using the Gaussian free field, Duke Math. J., 109, 18, 3539-3563 (2020) · Zbl 1470.60275 · doi:10.1215/00127094-2020-0036
[5] Duminil-Copin, H., Goswami, S., Rodriguez, P.-F., Severo, F., Equality of critical parameters for percolation of Gaussian free field level-sets, Preprint arXiv:2002.07735 (2020)
[6] Drewitz, A.; Prévost, A.; Rodriguez, P.-F., The sign clusters of the massless Gaussian free field percolate on \mathbb{Z}^d, $d \geq 3$ (and more), Commun. Math. Phys., 362, 2, 513-546 (2018) · Zbl 1394.60099 · doi:10.1007/s00220-018-3209-6
[7] Dumitriu, I., Lawler, Intersections of Tandom Walks, Probability and its Applications (1991), Boston, MA: Birkhäuser Boston Inc., Boston, MA
[8] Menshikov, M., Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, 288, 6, 1308-1311 (1986)
[9] Nitzschner, M., Solidification of porous interfaces and disconnection, J. Eur. Math. Soc., 22, 8, 2629-2672 (2020) · Zbl 1475.60145 · doi:10.4171/JEMS/973
[10] Popov, S.; Ráth, B., On decoupling inequalities and percolation of excursion sets of the Gaussian free field, J. Stat. Phys., 2022 FIZ Karlsruhe GmbH
[20] Rodriguez, P-F; Sznitman, A-S, Phase transition and level-set percolation for the Gaussian free field, Commun. Math. Phys., 320, 2, 571-601 (2013) · Zbl 1269.82028 · doi:10.1007/s00220-012-1649-y

[21] Sznitman, A-S, Disconnection and level-set percolation for the Gaussian free field, J. Math. Soc. Japan, 67, 4, 1801-1843 (2015) · Zbl 1337.60246 · doi:10.2969/jmsj/06741801

[22] Sznitman, A.-S.: Coupling and an application to level-set percolation of the Gaussian free field. Electron. J. Probab. 21, Paper No. 35, 26 (2016)

[23] Sznitman, A.-S.: On bulk deviations for the local behavior of random interlacements. To appear in Annales Scientifiques de l’École Normale Supérieure. arXiv:1906.05809 (2019)

[24] Sznitman, A-S, On macroscopic holes in some supercritical strongly dependent percolation models, Ann. Probab., 47, 4, 2459-2493 (2019) · Zbl 1467.60081 · doi:10.1214/18-AOP1312

[25] Sznitman, A.-S.: On the \(\{(C)^{-1}\} \)-property of the percolation function of random interlacements and a related variational problem. arXiv:1910.04737 (2019)

[26] Sznitman, A.-S.: Excess deviations for points disconnected by random interlacements. Preprint arXiv:2009.00601 (2020)

[27] Sznitman, A.-S.: On the cost of the bubble set for random interlacements. Preprint arXiv:2105.12110 (2021)