Complete genome sequence of endophytic nitrogen-fixing *Klebsiella variicola* strain DX120E

Li Lin¹, Chunyan Wei²†, Mingyue Chen³†, Hongcheng Wang³, Yuanyuan Li³, Yangrui Li¹,², Litao Yang¹,²,⁴* and Qianli An³*

Abstract

Klebsiella variicola strain DX120E (=CGMCC 1.14935) is an endophytic nitrogen-fixing bacterium isolated from sugarcane crops grown in Guangxi, China and promotes sugarcane growth. Here we summarize the features of the strain DX120E and describe its complete genome sequence. The genome contains one circular chromosome and two plasmids, and contains 5,718,434 nucleotides with 57.1% GC content, 5,172 protein-coding genes, 25 rRNA genes, 87 tRNA genes, 7 ncRNA genes, 25 pseudo genes, and 2 CRISPR repeats.

Keywords: Endophyte, *Klebsiella variicola*, *Klebsiella pneumoniae*, Nitrogen fixation, Pathogenicity, Plant growth-promoting bacteria, Sugarcane

Introduction

The species *Klebsiella variicola* was classified in 2004 and consisted of clinical and plant-associated isolates [1]. The species *K. singaporensis* was classified in 2004 based on a single soil isolate [2] and was recently identified as a later junior heterotypic synonym of *K. variicola* [3]. *K. variicola* is able to fix N₂ [1]. *K. variicola* strain At-22, one of the dominant bacteria in the fungus gardens of leaf-cutter ants, provides nitrogen source by N₂ fixation [4] and carbon source by degrading leaf polymers to the ant-fungus symbiotic system [5]. Former *K. pneumoniae* strain 342 (Kp342), which is phylogenetically close to strain At-22 [6,7] and has been identified as a strain of *K. variicola* [3], is able to colonize in plants and to provide small but critical amounts of fixed nitrogen to plant hosts [8].

K. variicola strain DX120E was isolated from roots of sugarcane grown in Guangxi, the major sugarcane production area in China [9]. It is able to colonize in sugarcane roots and shoots, to fix N₂ in association with sugarcane plants, and to promote sugarcane growth [10], and thus shows a potential as a biofertilizer. Here we present a summary of the features of the *K. variicola* strain DX120E (=CGMCC 1.14935) and its complete genome sequence, and thus provide a genetic background to understand its endophytic lifestyle, plant growth-promoting potentials, and similarities and differences to other plant-associated and clinical *K. variicola* isolates.

Organism information

Classification and general features

K. variicola strain DX120E is a Gram-negative, non-sporule-forming, non-motile rod (Figure 1). It grows aerobically but reduces N₂ to NH₃ at a low pO₂. It is able to grow and fix N₂ on media containing 10% (w/v) cane sugar or sucrose. It forms circular, convex, smooth colonies with entire margins on the solid high-sugar content media. It grows best around 30°C and pH 7 (Table 1). Phyllogenetic analysis of the 16S rRNA gene sequences from strain DX120E and strain Kp342, the type strains of the species in the genera *Klebsiella* and *Raoultella*, and the type strain of the type species of the type genus of the family *Enterobacteriaceae* (*Escherichia*)
coli ATCC11775T) showed that K. variicola strains (type strain F2R9, Kp342, DX120E and LX3) were most closely related and formed a monophyletic group with K. pneumoniae and K. quasipneumoniae (Figure 2).

Like typical members in the genera Klebsiella, K. variicola DX120E utilizes alanine, arabinose, D-arabitol, L-aspartate, D-cellulbiose, citrate, D-fructose, L-fucose, D-galactose, gentiobiose, glucose, glycerol, myo-inositol, lactate, lactose, malate, maltose, D-mannitol, D-mannose, D-melibiose, L-proline, D-raffinose, L-rhamnose, L-serine, D-sorbitol, sucrose, and D-trehalose [23]. DX120E does not utilize adonitol (also known as ribitol), which is a distinctive characteristic from K. pneumoniae [1].

Genome sequencing information

Genome project history
K. variicola DX120E was selected for sequencing because it is a plant growth-promoting endophyte [10]. Its 16S rRNA gene sequence is deposited in GenBank under the accession number HQ204296. Its genome sequences are deposited in GenBank under the accession numbers CP009274, CP009275, and CP009276. A summary of the genome sequencing project information and its association with MIGS version 2.0 [11] is shown in Table 2.

Growth conditions and DNA isolation
K. variicola DX120E was grown in liquid Luria-Bertani (LB) medium at 30°C to early stationary phase. The genome DNA was extracted from the cells by using a TIANamp bacterial DNA kit (Tiangen Biotech, Beijing, China). DNA quality and quantity were determined with a Nanodrop spectrometer (Thermo Scientific, Wilmington, USA).

Genome sequencing and assembly
The genome DNA of K. variicola DX120E was constructed into a 4 – 10 kb insert library and sequenced by

Table 1 Classification and general features of Klebsiella variicola strain DX120E according to the MIGS recommendations [11]
MIGS ID
Classification
MG5-6
MG5-63
MG5-22
MG5-15
MG5-14
MG5-4
MG5-5
MG5-41
MG5-42
MG5-43
MG5-44

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [21].
the Pacific Biosciences’ (PacBio) Single Molecule, Real-Time (SMRT) sequencing technology [24] at the Duke University Genome Sequencing & Analysis Core Resource. Sequencing was run on single SMRT cell and resulted in 91,190 high-quality filtered reads with an average length of 6,196 bp. High-quality read bases were assembled by the Hierarchical Genome Assembly Process (HGAP) with smrtanalysis-2.1.1. The resulting draft genome consisted of 5,719,400 nucleotides and 5 contigs.

The genome DNA of *K. variicola* DX120E was also constructed into a 500-bp insert library and sequenced by an Illumina HiSeq 2000 sequencing system at BGI Tech, Shenzhen, China. The Illumina HiSeq 2000 sequencing resulted in 6,699,933 high-quality filtered reads with an average length of 90 bp. The sequencing data were assembled by the Short Oligonucleotide Analysis Package (SOAPdenovo 2.04) [25]. The resulting draft genome consisted of 5,695,362 nucleotides and 27 scaffolds.

The two draft genomes were aligned by Mauve [26]. The Illumina scaffold 1 bridged the PacBio contig 1 and contig 2; the Illumina scaffold 3 bridged the PacBio contig 1, contig 2, and contig 3; the Illumina scaffold 11 bridged the circular PacBio contig 4; the Illumina scaffold 16 bridged the circular PacBio contig 5. The genome sequencing was completed by PCR and Sanger sequencing to close the contig gaps of the PacBio-sequenced genome.

Table 2: Genome sequencing project information for *Klebsiella variicola* strain DX120E

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	PacBio 4 – 10Kb library
		Illumina 500 bp library
MIGS-29	Sequencing platforms	PacBio RS II
		Illumina HiSeq 2000
MIGS-31.2	Fold coverage	PacBio 96 x
		Illumina 106 x
MIGS-30	Assemblers	HGAP in smrtanalysis-2.1.1
MIGS-32	Gene calling method	GeneMarkS+
	Locus Tag	K75
Genbank ID		CP009274 (Chromosome)
		CP009275 (plasmid pKV1)
		CP009276 (plasmid pKV2)
Genbank Date of Release	January 1, 2015	
GOLD ID		GI0078577
BIOPROJECT		PRJNA259590
MIGS 13	Source Material Identifier	CGMCC 1.14935
	Project relevance	Agriculture, plant-microbe

Table 3: Summary of genome: one chromosome and two plasmids

Label	Size (bp)	Topology	INSDC identifier	RefSeq ID
Chromosome	5,501,013	Circular		CP009274.1
Plasmid pKV1	162,706	Circular		CP009275.1
Plasmid pKV2	54,715	Circular		CP009276.1
Figure 3 Circular map of the chromosome and plasmids of Klebsiella variicola strain DX120E. From outside to the center: genes on forward strand, genes on reverse strand, GC content, GC skew. Circular map was generated by CGView [31].
Automated genome annotation was completed by the NCBI Prokaryotic Genome Annotation Pipeline. Product description annotations were obtained by searching against the KEGG, InterPro, and COG databases. Genes with signal peptides were predicted by SignalP [27]. Genes with transmembrane helices were predicted by TMHMM [28]. Genes for tRNA were found by tRNAscanSE [29]. Ribosomal RNAs were found by BLASTN vs. ribosomal RNA databases; 5S rRNA hits were further refined by Cmsearch [30]. Thirteen disrupted genes were replaced by the complete gene sequences obtained from the Illumina HiSeq 2000 sequencing.

Genome properties

The genome of *K. variicola* DX120E contains one circular chromosome and two plasmids (pKV1 and pKV2) (Table 3, Figure 3). The chromosome contains 5,501,013 nucleotides with 57.3% G + C content. The plasmid pKV1 contains 162,706 nucleotides with 50.7% G + C content. The plasmid pKV2 contains 54,715 nucleotides with 53.1% G + C content. The genome contains 5,316

Attribute	Value	% of total
Genome size (bp)	5,718,434	100
DNA coding (bp)	4,930,539	86.22
DNA G + C (bp)	3,265,303	57.10
DNA scaffolds	3	100
Total genes	5,316	100
Protein-coding genes	5,172	97.29
RNA genes	112	2.12
Pseudo genes	25	0.47
Genes with function prediction	4,623	87.00
Genes assigned to COGs	4,398	82.73
Genes with Pfam domains	4,631	87.11
Genes with signal peptides	526	9.89
Genes with transmembrane helices	1,289	24.25
CRISPR repeats	2	0.04

The total is based on the total number of protein coding genes in the genome.

Table 5 Number of genes associated with general COG functional categories

Code	Value	% age	Description
J	198	3.83	Translation, ribosomal structure and biogenesis
A	1	0.02	RNA processing and modification
K	489	9.45	Transcription
L	159	3.07	Replication, recombination and repair
B	1	0.02	Chromatin structure and dynamics
D	43	0.83	Cell cycle control, cell division, chromosome partitioning
V	71	1.37	Defense mechanisms
T	235	4.54	Signal transduction mechanisms
M	260	5.03	Cell wall/membrane biogenesis
N	62	1.20	Cell motility
U	111	2.15	Intracellular trafficking and secretion
O	158	3.05	Posttranslational modification, protein turnover, chaperones
C	342	6.61	Energy production and conversion
G	583	11.27	Carbohydrate transport and metabolism
E	538	10.40	Amino acid transport and metabolism
F	102	1.97	Nucleotide transport and metabolism
H	215	4.16	Coenzyme transport and metabolism
I	130	2.51	Lipid transport and metabolism
P	344	6.65	Inorganic ion transport and metabolism
Q	112	2.17	Secondary metabolites biosynthesis, transport and catabolism
R	541	10.46	General function prediction only
S	414	8.00	Function unknown
-	774	14.97	Not in COGs

The total is based on the total number of protein coding genes in the genome.
predicted genes, 5,172 protein-coding genes, 119 RNA genes (25 rRNA genes, 87 tRNA genes, and 7 ncRNA genes), 25 pseudo genes, and 2 CRISPR repeats. The chromosome, pKV1, and pKV2 contain 4990, 131, and 51 protein-coding genes with coding density of 87.3%, 74.2%, and 83.9%, respectively. Among the 5,172 protein-coding genes, 4,511 genes (87.2%) have been assigned functions, while 661 genes (12.8%) have been annotated as hypothetical or unknown proteins (Table 4). The distribution of genes into COGs functional categories is presented in Table 5.

Insights from the genome sequence

The genome of *K. variicola* DX120E contains genes contributing to multiple plant-beneficial functions. In accordance with previously detected N₂ fixation, indole-3-acetic acid production, siderophore production, and phosphate solubilization [9], the genome of *K. variicola* DX120E contains *nif* cluster, indole-3-pyruvate decarboxylase, siderophore enterobactin synthesis genes (*entABCDEF*) and enterobactin exporter gene (*ents*), and pyrroloquinoline quinone synthesis genes (*pqgBCDEF*) contributing to these functions. Moreover, the genome of *K. variicola* DX120E contains the *budABC* operon for the synthesis of acetoin and 2,3-butanediol [32], and thus may induce plant systemic resistance to pathogens [33].

DX120E contains plasmids similar to those in *Klebsiella* relatives. The plasmid pKV1 is most similar to the plasmid pKp5-1 of the *K. pneumoniae* strain 5–1 (Kp5-1) [34] with a 97% identity of 56% coverage (Additional file 1: Figure S1); the similar regions mainly encode transposase/recombinases and proteins functioning in plasmid replication, partitioning, and conjugal transfer. The plasmid pKV2 is most similar to the plasmid pKOXM1C of the *K. oxytoca* strain M1 with a 96% identity of 89% coverage (Additional file 2: Figure S2); the similar regions mainly encode proteins for plasmid partitioning and phage functions.

The genome of *K. variicola* DX120E has high average nucleotide identities (ANI) [35] about 99% to the available genomes of *K. variicola* strains DSM 15968¹, At-22, Bz19, and Kp342. Bz19 was isolated from faeces of a hospitalized patient [6]. The plant-beneficial strain Kp342 is able to infect mouse organs, although it is less virulent than typical clinical *K. pneumoniae* isolates [36]. Kp5-1, which has the plasmid pKp5-1 close to pKV1, is a cotton pathogen causing brown-rot disease [34]. The genome of strain Kp5-1 has ANI values about 99% to the genomes of the known *K. variicola* strains and thus belongs to *K. variicola*. These drive concerns about potential pathogenicity of DX120E to animals and plants. Therefore, DX120E’s pathogenic potentials to animals and plants should be determined before using DX120E as a biofertilizer in the field.

Conclusions

The complete genome sequence of *K. variicola* DX120E provides the genetic background for understanding the bacterial mechanisms to adapt endophytic life and to promote plant growth. The high degree of whole-genome and plasmid similarities between DX120E and phytopathogenic and clinical *Klebsiella* isolates suggests the risk of using DX120E as a biofertilizer. The available genome sequences of the *K. variicola* strains allow an in-depth comparative analysis to understand the subtle pathogenicity mechanisms of the pathogens and to predict pathogenic risks for the plant-beneficial strain DX120E.

Additional files

Additional file 1: Figure S1. Comparison of plasmid pKV1 of *Klebsiella variicola* strain DX120E with plasmid pKp5-1 of *K. pneumoniae* strain 5–1.

Additional file 2: Figure S2. Comparison of plasmid pKV2 of *Klebsiella variicola* strain DX120E with plasmid pKOXM1C of *K. oxytoca* strain M1.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

LL did the microbiological studies and obtained the organism information; CW assembled the Illumina sequencing data; MC assembled the PacBio sequencing data; HW and YYL completed the genome analysis; YRL, LY, and QA designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31171504 and 31240056), Guangxi Provincial Natural Science Foundation of China (2011GXNSFF018002 and 2013GXNSFBA019061), Science and Technology Development Foundation of Guangxi Academy of Agricultural Sciences (2013JZ1), Guangxi Special Funds for Bagui Scholars and Distinguished Experts (2013).

Author details

¹Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture; Guangxi Key Laboratory of Sugarcane Genetic Improvement; Sugarcane Research Institute, Guangxi Academy of Agriculture and Forest Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China. ²State Key Laboratory for Conservations and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China. ³State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China. ⁴Microbiology Research Institute, Guangxi Academy of Agriculture and Forest Sciences, Nanning, China.

Received: 14 January 2015 Accepted: 10 April 2015

Published online: 08 May 2015

References

1. Rosenblueth M, Martinez L, Silva J, Martinez-Romero E. *Klebsiella variicola*, a novel species with clinical and plant-associated isolates. *System Appl Microbiol*. 2006;27:27–35. PubMed http://dx.doi.org/10.1078/0723-2020-00261.
Klebsiella singaporensis

342. Mol Plant Microbe Interact. 2004;17:1078–1080. PubMed http://dx.doi.org/10.1099/342. Mol Plant Microbe Interact. 2004;17:1078–1080. PubMed http://dx.doi.org/10.1099/ipm.0.1605-13.

Andrade BG, de Veiga RN, Abanto Marin MF, Fonseca EL, Vicente AC. The genome of a clinical Klebsiella variicola strain isolated from a known cotton insect boll vector. Journal of Medical Microbiology. 2011;60:1114–1117. PubMed http://dx.doi.org/10.1099/jmm.0.063263-0.

Klebsiella variicola subsp. nov., and demonstration of novel antibiotic resistance alleles and exhibits genetic similarities to plant and clinical Klebsiella isolates. Antimicrob Agents Chemother. 2014;58:1879–88. PubMed http://dx.doi.org/10.1128/AAC.01605-13.

Iniguez AL, Dong Y, Tripplett EW. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact. 2004;17:1078–85. PubMed http://dx.doi.org/10.1099/mpmi.0.1605-13.

Liu L, Li Z, Hu C, Zhang X, Chang S, Yang L, et al. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ. 2012;27:391–8. PubMed http://dx.doi.org/10.1264/mje2.11ME1275.

Wei C, Lin L, Luo L, Xing Y, Hu C, Yang L, et al. Endophytic nitrogen-fixing Klebsiella variicola strain DX12E promotes sugarcane growth. Biol Fertil Soils. 2014;50:657–66. PubMed http://dx.doi.org/10.1007/s00374-013-0878-3.

Field D, Gantzi G, Gray T, Morrison N, Sefengut J, Sterk P, et al. Minimum Information about a Genome Sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7. PubMed http://dx.doi.org/10.1038/nbt1360.

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576.

Gantzi GM, Bell JA, Lilburn TG, Pasterski L, Sahl JW, Robinson G, et al. Genome sequence of the plant growth-promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 2010;6:e1000943. PubMed http://dx.doi.org/10.1371/journal.pgen.1000943.

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Park PW, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100:4927–32. PubMed http://dx.doi.org/10.1073/pnas.0307845100.

Medrano EG, Foray MM, Bell AA. Complete genome sequence of a Klebsiella pneumoniae strain isolated from a known cotton insect boll vector. Genome Announc. 2014;2:e00850–914. PubMed http://dx.doi.org/10.1128/genomeA.00850-14.

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. PubMed http://dx.doi.org/10.1099/ijs.0.06483-0.

Fouts DE, Tyler HL, Delboy RT, Daugherty S, Ren Q, Badger JH, et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 2008;4:e1000141. PubMed http://dx.doi.org/10.1371/journal.pgen.1000141.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit