Analytic residues along algebraic cycles *

by
Carlos. A. Berenstein
carlos@src.umd.edu
Institute for Systems Research
University of Maryland, MD 20742, USA
Alekos Vidras
msvidras@ucy.ac.cy
Department of Mathematics and Statistics
University of Cyprus, Nicosia 1678, Cyprus
Alain Yger
yger@math.u-bordeaux.fr
Department of Mathematics,
University of Bordeaux, 33405 Talence, France.

January 16, 2022

*AMS classification number: 32A27, (32A25, 32C30)
Abstract

Let W be a q-dimensional irreducible algebraic subvariety in the affine space \mathbb{A}^n, P_1, \ldots, P_m m elements in $\mathbb{C}[X_1, \ldots, X_n]$, and $V(P)$ the set of common zeros of the P_j's in \mathbb{C}^n. Assuming that $|W|$ is not included in $V(P)$, one can attach to P a family of non trivial W-restricted residual currents in $\mathcal{D}^{0,k}(\mathbb{C}^n)$, $1 \leq k \leq \min(m,n)$, with support on $|W|$. These currents (constructed following an analytic approach) inherit most of the properties that are fulfilled in the case $q = n$. When the set $|W| \cap V(P)$ is discrete and $m = q$, we prove that for every point $\alpha \in |W| \cap V(P)$ the W-restricted analytic residue of a $(q,0)$-form $\mathcal{R} d\zeta_I$, $\mathcal{R} \in \mathbb{C}[X_1, \ldots, X_n]$, at the point α is the same as the residue on W (completion of W in $\text{Proj} \mathbb{C}[X_0, \ldots, X_n]$) at the point α in the sense of Serre ($q = 1$) or Kunz-Lipman ($1 < q < n$) of the q-differential form $(\mathcal{R}/P_1 \cdots P_q)d\zeta_I$. We will present a restricted version of some affine version of Jacobi’s residue formula and applications of this formula to higher dimensional analogues of Reiss (or Wood) relations, corresponding to situations where the Zariski closures of $|W|$ and $V(P)$ intersect at infinity in an arbitrary way.
1 Introduction

Let Γ be a complete integral curve embedded as a closed subscheme in $\text{Proj } \mathbb{C}[X_0, ..., X_n]$ and $\mathcal{C}(\Gamma)$ its function field. Following the exposition of Hülbl and Kunz of the Serre’s approach [15], the residue of a meromorphic $(1,0)$-differential form $\omega \in \Omega^1_{\mathcal{C}(\Gamma)/\mathcal{C}}$ at the point $\alpha \in \Gamma$ is defined as follows: let $\mathcal{M}_1, \ldots, \mathcal{M}_d$ be the minimal prime ideals of the completion $\hat{\mathcal{O}}_{\Gamma,\alpha}$ of the local ring of Γ at α and let \mathcal{R}_j, $j = 1, \ldots, d$, be the integral closures of the "branches" $\mathcal{R}_j = \hat{\mathcal{O}}_{\Gamma,\alpha}/\mathcal{M}_j$, $j = 1, \ldots, d$, of the curve Γ at the point α. Then \mathcal{R}_j is isomorphic to some algebra of formal power series $\mathbb{C}[[t_j]]$ and in $\mathbb{C}((t_j))$ the differential $(1,0)$-form ω can be written as

$$\omega = \sum_{k \geq k_j} a^j_k t^k_j,$$

where $a^j_k \in \mathbb{C}$, $k \geq k_j$, are complex numbers which are independent of the parameters t_j. Define

$$\text{Res}_{\Gamma,\alpha,\mathcal{R}_j} \omega := a^{j,-1}_1, \quad \text{Res}_{\Gamma,\alpha} \omega := \sum_{j=1}^d a^{j,-1}_1.$$

It was pointed by G. Biernat in [2] that, if f_1, \ldots, f_n are n germs of holomorphic functions in n variables (with jacobian determinant $J_f \in \mathcal{O}_n$) such that (f_1, \ldots, f_{n-1}) define a germ of curve γ (with branches parametrized respectively by $\varphi_1, \ldots, \varphi_d$) and $\dim [\gamma \cap \{J_f = 0\}] = 0$, then, for any $h \in \mathcal{O}_n$, the Grothendieck residue

$$\text{Res}_{0} \left[\frac{hd\zeta_1 \wedge \cdots \wedge d\zeta_n}{f_1 \cdots f_n} \right] := \frac{1}{(2\pi i)^n} \int_{|f_1| = \epsilon_1} \cdots \int_{|f_n| = \epsilon_n} \frac{hd\zeta_1 \wedge \cdots \wedge d\zeta_n}{f_1 \cdots f_n}$$

(with the orientation for the cycle $\{|f_1| = \epsilon_1, \ldots, |f_n| = \epsilon_n\}$ that ensures the positivity of the differential form $d\arg f_1 \wedge \cdots \wedge d\arg f_n$ on it) equals

$$\sum_{j=1}^d \text{Res}_{t=0} \left[\left(\frac{f'_n h}{f_n^j J_f} \circ \varphi_j \right)(t) \right] dt.$$
in particular, if \(\omega \) denotes the \((1,0)\)-meromorphic differential form
\[
\omega := \frac{g d\zeta_\alpha}{f_n}, \quad g \in \mathcal{O}_n, \quad \alpha \in \{1, \ldots, n\},
\]
then
\[
\text{Res}_0 \left[\frac{df_1 \wedge \cdots \wedge df_{n-1}}{f_1 \cdots f_{n-1}} \wedge \omega \right]
\]
equals the sum
\[
\sum_{j=1}^{d} \nu_j \text{Res}_{\gamma_j,0} [\omega],
\]
where \(\gamma_1, \ldots, \gamma_d \) correspond to the irreducible germs of curves attached to the isolated primes in the decomposition of \((f_1, \ldots, f_{n-1})\), and \(\text{Res}_{\gamma_j,0} [\omega] \) is defined on the model of the Kunz-H"ubl residue, this notion being transposed from the algebraic context to the analytic one. This suggests a natural relation between the approaches developed by Serre-H"ubl-Kunz and the analytic residue approach developed by Coleff-Herrera \([9]\) (which precisely allows the transposition of the definition of the Grothendieck residue in the complete intersection case to the setting of currents).

The analytic approach we use to define restricted residual currents on a \(q\)-dimensional reduced analytic space \(Y \subset U \), where \(U \) is an open subset of \(\mathbb{C}^n \), will be described in section 2 as follows: if \(f_1, \ldots, f_m \) are \(m \) functions holomorphic in \(U \), then the map
\[
\lambda \mapsto \Phi_{Y,f}(\lambda) := \|f\|^2 \mathcal{Y}
\]
where \(\mathcal{Y} \) denotes the integration current on \(Y = |Y| \), can be meromorphically continued as a \(\mathcal{D}^{(n-q,n-q)}(U) \)-map. Moreover, for any \(k \in \{1, \ldots, m\} \), for any ordered subset \(\mathcal{I} \subset \{1, \ldots, m\} \) with cardinal \(k \leq \min(q, m) \), the analytic continuation of
\[
\lambda \mapsto \lambda c_k \Phi_{Y,f}(\lambda - k - 1) \wedge \overline{\partial} \|f\|^2 \wedge \left(\sum_{l=1}^{k} (-1)^{l-1} f_i \wedge \sum_{j=1}^{k} \sum_{j \neq l} df_{i_j} \right),
\]
where
\[
c_k := \frac{(-1)^{k(k-1)/2}(k-1)!}{(2i\pi)^k}
\]
is holomorphic at the origin. Its value at 0 defines, up to a multiplicative constant, a residual regular holonomic \((n - q, n - q + k)\)-current which is supported by \(Y \cap V(f)\); regular holonomicity is here understood in the sense of Björk ([4], chapter 9). Properties of such currents are similar to those introduced as above in the case \(q = n\). Proposition 2.1 will summarize the different properties of such restricted residual currents. The main case of interest for us will be the case where \(m \leq q\) and \(\dim (Y \cap V(f)) \leq q - m\), that is \(f_1, \ldots, f_m\) define a complete intersection in \(Y\). In this case, the restricted residue current corresponding to \(I := \{1, \ldots, m\}\) is the Coleff-Herrera current on \(Y\)

\[
\left(\bigwedge_{j=1}^{m} \frac{1}{f_j} \right) \wedge [Y]
\]

introduced in [9]. It is not surprising that residual restricted currents in such a complete intersection setting obey the transformation law for multidimensional residue calculus ([12], chapter 6), which we will prove (and use next) in the case \(m = q\). If \(f_1 = P_1, \ldots, f_q = P_q\) are polynomials and \(W\) is an affine \(q\)-dimensional algebraic subvariety of the affine scheme \(A^n_\mathbb{C}\) such that \(\dim (V(P) \cap |W|) = 0\), we will prove in section 3 that the total sum of restricted residues

\[
\text{Res} \left[[W] \wedge Q dX_{i_1} \wedge \cdots \wedge dX_{i_q} \right]
\]

vanishes as soon as the degree of \(Q\) is sufficiently small, under a properness assumption on the restriction of \((P_1, \ldots, P_q)\) to \(|W|\). We will thus transpose to the restricted case an Abel-Jacobi formula proved in the case \(q = n\) and \(W = A^n_\mathbb{C}\) in [28].

Let again \(W\) be a \(q\)-dimensional irreducible algebraic subvariety in the affine scheme \(A^n_\mathbb{C}\) and \(P_1, \ldots, P_q, q\) polynomials in \(\mathbb{C}[X_1, \ldots, X_n]\) such that \(|W| \cap V(P)\) is a discrete (hence finite) algebraic set in \(\mathbb{C}^n\). Let \(Q \in \mathbb{C}[X_1, \ldots, X_n]\) and \(I\) a subset in \(\{1, \ldots, n\}\) with cardinal \(q\). The meromorphic differential form

\[
\omega := \frac{Q d\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_q}}{P_1 \cdots P_q}
\]

induces an element in \(\Omega^q_{\mathbb{C}[W]/\mathbb{C}}\), where \(W\) denotes the completion of \(W\) in \(\text{Proj} \mathbb{C}[X_0, \ldots, X_n]\). We will prove in section 4, thanks to the algebraic residue
theorem in [21] and the properties of restricted residual currents that were
defined in previous sections, that the residue at a closed point \(\alpha \) in
\(|W| \cap V(P)\) (in the sense of H"{u}bl or Lipman [20]) of the differential form \(\omega \)
(viewed as an element in \(\Omega_{d(V)/\mathbb{A}^n}^q \)) equals

\[
\text{Res}_{W,\alpha} \left[\omega \right] := \left(\bigwedge_{j=1}^q \frac{1}{P_j} \right) \wedge [W], \psi Qd\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_q} \right),
\]

where \(\psi \) denotes a test-function with compact support in some arbitrary
small neighborhood of \(\alpha \), such that \(\psi \equiv 1 \) near \(\alpha \). The result is clear when
\(\alpha \) is a smooth point of \(W \), it will follow from the algebraic residue formula
combined with a perturbation argument in the case \(\alpha \) is a singular point of
\(W \). As a consequence of the fact that the analytic and algebraic approaches
lead to the same restricted residual objects, we will extend (also in section 4)
with an algebraic formulation to such a restricted context the affine Jacobi’s
theorem obtained in the non-restricted case \(W = \mathbb{A}^n_\mathbb{C} \) in [28].

Theorem 1.1 Let \(W \) be a \(q \)-dimensional irreducible affine algebraic subva-
riety in \(\mathbb{A}^n_\mathbb{C} \) \((0 < q < n)\) and \(P_1, ..., P_q \) be \(q \) polynomials in \(\mathbb{C}[X_1, ..., X_n] \) such that there exists strictly positive rational numbers \(\delta_1, ..., \delta_q \) and two constants \(K > 0, \kappa > 0 \) such that :

\[
\zeta \in |W|, \|\zeta\| \geq K \implies \sum_{j=1}^q \left| \frac{\partial P_j}{\partial \zeta_j} \right| \geq \kappa; \quad (1.2)
\]

then, for any \(Q \in \mathbb{C}[X_1, ..., X_n] \) such that \(\deg Q < \delta_1 + \cdots + \delta_q - q \), for any
multi-index \((i_1, ..., i_q)\) in \(\{1, ..., n\}^q \),

\[
\sum_{\alpha \in |W| \cap V(P)} \text{Res}_{W,\alpha} \left[\frac{Qd\zeta_{i_1} \wedge \cdots \wedge d\zeta_{i_q}}{P_1 \cdots P_q} \right] = 0. \quad (1.3)
\]

We will derive (in sections 4 and 5) some consequences of this result in
the spirit of Cayley-Bacharach’s theorem or Wood’s results [31]. The key
point here (compare to the framework of [15] or [13]) is that the properness
assumption along \(|W|\) (1.2) which is satisfied by the polynomial map \(P := (P_1, ..., P_q) \) does not imply that the Zariski closures of \(|W|\) and \(V(P_1, ..., P_q) \)
in \(\mathbb{P}^n(\mathbb{C}) \) have an empty common intersection on the hyperplane at infinity.
2 Restricted residual currents

We begin this section by recalling some basic facts about currents on analytic manifolds, especially integration currents on analytic sets or Coleff-Herrera currents and their “multiplication” with integration currents; we will inspire ourselves from [3], [6], [7] or [22].

We start with basic facts about integration on a \(q \)-dimensional irreducible analytic subset \(Y \) in \(U \subset \mathbb{C}^n \). The subset \(Y_{\text{reg}} \) of regular points of \(Y \) is a \(q \)-dimensional complex manifold. The set of singular points \(Y_{\text{sing}} \) is an analytic subset of \(U \) with complex dimension \(\dim Y_{\text{sing}} < q \). Therefore for any smooth \((q,q)\) test form \(\phi_{(q,q)} \in D^{(q,q)}(U) \), one can define the action of the integration current \([Y]\) on \(\phi_{(q,q)} \) as

\[
\langle [Y], \phi_{(q,q)} \rangle = \int_{Y_{\text{reg}}} \phi_{(q,q)}(\zeta, \bar{\zeta}) + \int_{Y_{\text{sing}}} \phi_{(q,q)}(\zeta, \bar{\zeta})
\]

For \(\text{Re} \lambda > 0 \) and \(f_1, \ldots, f_m \) holomorphic in \(U \), one can define the \((q,q)\)-current \(\|f\|^{2\lambda} [Y] \) by

\[
\langle \|f\|^{2\lambda} [Y], \phi_{(q,q)} \rangle := \int_{Y_{\text{reg}}} \|f\|^{2\lambda} \phi_{(q,q)}.
\]

It is known ([3], [4]) that this current \([Y]\) is a regular holonomic current, which implies, for each point \(z_0 \) in \(U \cap Y \), the existence of a Bernstein-Sato relation

\[
Q_{z_0} (\lambda, \zeta, \bar{\zeta}, \frac{\partial}{\partial \zeta}, \frac{\partial}{\partial \bar{\zeta}}) \left[\|f\|^{2(\lambda+1)} \otimes [Y] \right] = b_{z_0} (\lambda) \left(\|f\|^{2\lambda} \otimes [Y] \right) \tag{2.1}
\]

\((b_{z_0} \in \mathbb{C}[X]) \) valid in a neighborhood of \(z_0 \). In fact, this does not follow directly from theorem 3.2.6 in [3] since \(\|f\|^2 \) is a real analytic function (and not a holomorphic one). Nevertheless, the existence of Bernstein-Sato relations of the form (2.1) remains valid here since \(\|f\|^2 \) has the particular form

\[
\|f(\zeta)\|^2 = \sum_{j=1}^{m} f_j(\zeta) \overline{f_j(\zeta)}
\]

and the integration current on \(Y = \{ g_1 = \cdots = g_N = 0 \} \) admits a Siu decomposition

\[
[Y] = \sum_{1 \leq i_1 < \cdots < i_{n-q} \leq N} T_{i_1, \ldots, i_{n-q}} \wedge \bigwedge_{l=1}^{n-q} dg_{i_l},
\]
where the $T_{i_1,\ldots,i_{n-q}}$ are $(0, n-q)$ currents which are regular holonomic because of Coleff-Herrera type (\cite{12, 22, 3}). One can then proceed in

\[U := \{(\zeta, \overline{\zeta}) : \zeta \in U\} \subset \mathbb{C}^{2n} \]

with blocks of variables $(\zeta, \overline{\zeta})$ and profit from the fact that formally ∂_ζ and $\partial_{\overline{\zeta}}$ can be considered as derivations respect to independent sets of variables. Consider then the function of one complex variable defined by

\[\lambda \mapsto \Phi_{Y,f}(\lambda) := \|f\|^{2\lambda}[Y] . \tag{2.2} \]

This function (which is a $'D^{(n-q,n-q)}(U)$-current valued function) is well defined and holomorphic in $\{\lambda \in \mathbb{C} ; \text{Re} \lambda > 0\}$. Thanks to the Bernstein-Sato relations (2.1), it can be continued to the whole complex plane as a meromorphic function. The poles of this meromorphic extension are among strictly negative rational numbers. Furthermore, there is a true pole at any point $\lambda = -k$, $k \in \mathbb{N}^*$.

In fact, we will need a more precise result, where the construction of the meromorphic continuation of (2.2) is involved. What we need is formulated in the following proposition.

Proposition 2.1 Let Y be an irreducible q-dimensional analytic subset of $U \subset \mathbb{C}^n$ and f_1,\ldots,f_m functions holomorphic in U. For any $k \in \{1,\ldots,m\}$ and for any ordered subset $I \subset \{1,\ldots,m\}$ with cardinal $k \leq \min(q,m)$, the $'D^{(n-q,n-q+k)}$-valued map

\[\lambda \mapsto \lambda^k \|f\|^{2(\lambda-k+1)}[Y] \wedge \overline{\partial}\|f\|^2 \wedge \left(\sum_{l=1}^{k} (-1)^{l-1} \prod_{j=1, j \neq l}^{k} \wedge df_{i_j} \right) \]

(which is holomorphic in $\text{Re} \lambda > k + 1$) can be continued as a meromorphic map to the whole complex plane, with no pole at $\lambda = 0$. Its value at $\lambda = 0$ defines a residual $(n-q,n-q+k)$-current which is supported by the analytic set $Y \cap \{f_1 = \cdots = f_m = 0\} = Y \cap V(f)$ and denoted as

\[\varphi \in D^{(q,q-k)} \mapsto \text{Res} \left[\begin{bmatrix} [Y] \wedge \varphi \\ f_{i_1}, \ldots, f_{i_k} \\ f_1, \ldots, f_m \end{bmatrix} \right] (\varphi) = \left[\begin{bmatrix} [Y] \wedge \varphi \\ f_{i_1}, \ldots, f_{i_k} \\ f_1, \ldots, f_m \end{bmatrix} \right] . \tag{2.3} \]
Proof. Assume that Y is defined (in U) by the equations $g_1 = \cdots = g_N = 0$ and that ν is the multiplicity of the ideal $\mathcal{O}_{U,y}$ generated by g_1, \ldots, g_N at a generic point $y \in Y$. Let $d = n - q$. One can conclude from [22] that $[Y]$ coincides with the value at $\mu = 0$ of the meromorphic $\mathcal{D}^{(d,d)}(U)$-valued map Ψ_g

$$
\mu \mapsto \frac{\mu(d-1)!}{(2\pi i)^d} \|g\|^{2\mu} \delta \|f\|^2 \wedge \partial \log \|f\|^2 \wedge \sum_{j_1 < \cdots < j_{d-1}} \prod_{l=1}^{d-1} \left(\frac{\partial g_{j_l}}{\|g\|^2} \wedge \partial g_{j_l} \right).
$$

In fact, in the general situation where (g_1, \ldots, g_N) define a q-purely dimensional cycle \mathcal{Z} (non necessarily irreducible) in U, the integration current (with multiplicities) on \mathcal{Z} can be expressed as the value at $\lambda = 0$ of some meromorphic $\mathcal{D}^{(d,d)}(U)$-valued function which can be made explicit in terms of g_1, \ldots, g_N (see theorem 3.1 in [7] for a proof in the algebraic case). Let $\mathcal{I} \subset \{1, \ldots, m\}$ with cardinal $k \leq \min(q, m)$ and, for $\Re \lambda > k + 1$,

$$
\Theta_{f,\mathcal{I}}(\lambda) := \lambda \|f\|^{2(\lambda-k-1)} \delta \|f\|^2 \wedge \left(\sum_{l=1}^{k} (-1)^{l-1} \prod_{j=1}^{l} \partial f_{j_l} \right).
$$

In order to prove the proposition, we can localise the problem and assume that the origin belongs to $Y \cap V(f)$. As in our previous work (see for example [8], pages 32-33, or [7], page 208) we construct an analytic n-dimensional manifold \mathcal{X}, a neighborhood V of 0 in U, a proper map $\pi : \mathcal{X} \to V$ which realizes a local isomorphism between $V \setminus \{f_1 \cdots f_m g_1 \cdots g_N = 0\}$ and $\mathcal{X} \setminus \pi^{-1}(\{f_1 \cdots f_m g_1 \cdots g_N = 0\})$, such that in local coordinates on \mathcal{X} (centered at a point x), one has, in the corresponding local chart U_x around x,

$$
f_j \circ \pi(t) = u_j(t) t_1^{a_j} \cdots t_m^{a_j} = u_j(t) t_j^{\alpha_j}, \quad j = 1, \ldots, m
$$

$$
g_k \circ \pi(t) = v_k(t) t_1^{b_k} \cdots t_n^{b_k} = v_k(t) t_k^{\beta_k}, \quad k = 1, \ldots, N
$$

where the $u_j, j = 1, \ldots, m$ and the $v_k, k = 1, \ldots, N$, are non vanishing holomorphic functions in U_x, at least one of the monomials $t_j^{\alpha_j}, j = 1, \ldots, m$ divides all of them (we will denote this monomial as t^α), and at least one of the monomials $t_k^{\beta_k}, k = 1, \ldots, N$ divides all of them (we will denote this monomial as t^β).

When φ is a $(q, q - k)$-test form with support in V, one has, for $\Re \lambda >> 0$,

$$
\int_{V \cap Y} \Theta_{f,\mathcal{I}}(\lambda) \wedge \varphi = \left[\int_V \Psi_g(\mu) \wedge \Theta_{f,\mathcal{I}}(\lambda) \wedge \varphi \right]_{\mu = 0}
$$
(the right hand side being continued as a meromorphic function of \(\mu\) which has no pole at \(\mu = 0\)). For \(\lambda\) fixed with \(\text{Re}\, \lambda >> 0\), one can rewrite for \(\text{Re}\, \mu >> 0\) the integral
\[
\int_V \Psi_g(\mu) \wedge \Theta_{f,\mathcal{I}}(\lambda) \wedge \varphi
\]
as a sum of integrals of the form
\[
\int_{U_x} \pi^*[\Psi_g(\mu)] \wedge \pi^*[\Theta_{f,\mathcal{I}}(\lambda)] \wedge \rho \pi^*(\varphi), \tag{2.4}
\]
where \(\rho\) is a test-function in \(U_x\) which corresponds to a partition of unity for \(\pi^*(\text{Supp} \varphi)\). We know from lemma 1.1 and lemma 1.2 in \([7]\) that
\[
\left[\pi^*[\Psi_g(\mu)]\right]_{\mu=0} = \left[\Psi_g \circ \pi(\mu)\right]_{\mu=0}
\]
is a positive \(\partial\) and \(\bar{\partial}\)-closed current \(\theta|_{U_x}\) in \(U_x\), which implies that, as soon as \(\text{Re} \lambda >> 0\),
\[
\left[\int_{U_x} \pi^*[\Psi_g(\mu)] \wedge \pi^*[\Theta_{f,\mathcal{I}}(\lambda)] \wedge \rho \pi^*(\varphi)\right]_{\mu=0} = \int_{U_x} \theta|_{U_x} \wedge \pi^*[\Theta_{f,\mathcal{I}}(\lambda)] \wedge \rho \pi^*(\varphi).
\]
On the other hand, in \(U_x\) and for \(\text{Re} \lambda >> 0\), a straightforward computation leads to
\[
\pi^*[\Theta_{f,\mathcal{I}}](\lambda) = \lambda \frac{a^{2\lambda}|t^\alpha|^2}{t^{k}\alpha} \left(\vartheta + \varpi \wedge \frac{dt^\beta}{t^\alpha}\right),
\]
where \(\vartheta\) and \(\varpi\) are smooth differential forms in \(U_x\) (with respective types \((0, k)\) and \((0, k - 1)\)) and \(a\) is a strictly positive real analytic function in \(U_x\). It follows from Stokes’s theorem that
\[
\int_{U_x} \pi^*[\Theta_{f,\mathcal{I}}](\lambda) \wedge \theta|_{U_x} \wedge \rho \pi^*(\varphi) = \int_{U_x} \frac{|t^\alpha|^2}{t^{k}\alpha} \theta|_{U_x} \wedge \xi_{\varphi}(\rho; t, \lambda), \tag{2.5}
\]
where \((t, \lambda) \mapsto \xi_{\varphi}(\rho; t, \lambda)\) is a \((n - q, n - q)\)-differential form with smooth coefficients (in \(t\)) depending holomorphically in \(\lambda\).
One can see also that, for \(\text{Re} \mu >> 0\),
\[
\pi^*[\Psi_g](\mu) = \mu b^{2\mu} |t^\beta|^2 \left(\frac{dt^\beta}{t^\alpha} + \eta(0,1)\right) \wedge \left(\frac{dt^\beta}{t^\beta} + \eta(1,0)\right) \wedge \upsilon,
\]
where \(b \) is a strictly positive real analytic function in \(U_x \), \(\eta_{(0,1)}, \eta_{(1,0)}, \nu \) are smooth differential forms in \(U_x \) with respective types \((0,1), (1,0)\) and \((d-1,d-1)\). This implies that, if \(t_{i_1}, \ldots, t_{i_k} \) are the coordinates that appear in \(t^\beta \),

\[
\theta_{U_x} = \sum_{l=1}^s [t_{i_l} = 0] \wedge \omega_{i_l},
\]

where \(\omega_{i_l} \) is a smooth \((d-1,d-1)\)-form in \(U_x \) and \([t_i = 0]\) denotes the integration current (without multiplicities) on \(\{ t_i = 0 \} \). Therefore, for Re \(\lambda \gg 0 \),

\[
\int_{U_x} \pi^*[\Theta_{f,I}](\lambda) \wedge \theta_{U_x} \wedge \rho \pi^*(\varphi) = \sum_{l=1}^s \int_{\{t_{i_l}=0\} \cap U_x} \frac{|t_{i_l}|^{2\lambda}}{k\alpha} \omega_{i_l}(t) \wedge \xi_{\varphi}(\rho ; t, \lambda).
\]

Such a function of \(\lambda \) can be continued to a meromorphic function in the whole complex plane, with no pole at \(\lambda = 0 \) (using Stokes’s theorem). The assertion of the proposition follows, since for Re \(\lambda \gg 0 \),

\[
\int_V \Psi_g(\mu) \wedge \Theta_{f,I}(\lambda) \wedge \varphi
\]

is a sum of integrals of the form (2.4). ♦

Keeping the notation from above one has the following corollary.

Corollary 2.1 *Under the conditions of proposition 2.1, the residual current defined by (2.3) has the following properties*

1) For any \(h \in H(U) \) such that

\[
\forall K \subset \subset U \cap Y, \exists C_K > 0, |h| \leq C_K \| f \| \text{ on } K, \quad (2.6)
\]

one has

\[
\text{Res} \begin{bmatrix} h^k[Y] \wedge (\cdot) \\ f_{i_1}, \ldots, f_{i_k} \\ f_1, \ldots, f_m \end{bmatrix} \equiv 0
\]

2) If \(h \in H(U) \) and

\[
h(z) = 0, \forall z \in Y \cap V(f), \quad (2.7)
\]

then one has

\[
\text{Res} \begin{bmatrix} \overline{h}[Y] \wedge (\cdot) \\ f_{i_1}, \ldots, f_{i_k} \\ f_1, \ldots, f_m \end{bmatrix} \equiv 0
\]
Proof. Let us now suppose that \(h \) satisfies (2.6). If we do not perform integration by parts as in (2.5), we have, for \(\text{Re} \lambda >> 0 \),

\[
\int_{U_x} \pi^*[\Theta_{f,I}](\lambda) \wedge \theta_{U_x} \wedge \rho \pi^*(h^k \varphi) = \lambda \sum_{l=1}^{s} \int_{\{t_{ij}=0\} \cap U_x} \frac{a^{2\lambda}|t^\alpha|^2\lambda}{t^{k\alpha}} (\vartheta + \varpi \wedge \frac{dt\alpha}{t\alpha}) \wedge \omega_{i_1}(t) \wedge \rho \pi^*(h^k \varphi).
\]

Condition (2.6) implies that there exists some positive constant \(\kappa \) such that, for any \(l = 1, \ldots, s \) with \(t_{ij} \) coprime with \(t^\alpha \),

\[
|\pi^*h(t_1, \ldots, 0, \ldots, t_n)| \leq \kappa|t^\alpha|, \quad t \in \text{Supp} \rho,
\]

which implies that \(t^{k\alpha} \) divides \((\pi^*h_k)^{\{\kappa_{ij}=0\}} \) on the support of \(\rho \). This implies that for such \(h \),

\[
\left[\int_{U_x} \pi^*[\Theta_{f,I}](\lambda) \wedge \theta_{U_x} \wedge \rho \pi^*(h^k \varphi) \right]_{\lambda=0} = 0,
\]

which gives the first assertion of the corollary since

\[
\int_V \Psi_g(\mu) \wedge \Theta_{f,I}(\lambda) \wedge \varphi
\]

as a sum of integrals of the form (2.4).

If \(h \) vanishes on \(Y \cap V(f) \), then, for any \(l = 1, \ldots, s \) such that \(t_{ij} \) is coprime with \(t^\alpha \), any coordinate which divides \(t^\alpha \) also divides \((\pi^*h_k)^{\{\kappa_{ij}=0\}} \) on the support of \(\rho \). This implies that any expression of the form

\[
\int_{\{t_{ij}=0\} \cap U_x} \frac{a^{2\lambda}|t^\alpha|^2\lambda}{t^{k\alpha}} (\vartheta + \varpi \wedge \frac{dt\alpha}{t\alpha}) \wedge \omega_{i_1}(t) \wedge \rho \pi^*(h \varphi)
\]

has in fact no antiholomorphic singularity (therefore has a meromorphic extension which is polefree at the origin). It follows that for such \(h \), one has again

\[
\left[\int_{U_x} \pi^*[\Theta_{f,I}](\lambda) \wedge \theta_{U_x} \wedge \rho \pi^*(h \varphi) \right]_{\lambda=0} = 0,
\]

12
which proves the remaining assertion of the corollary since again

\[\int_V \Psi_g(\mu) \wedge \Theta(f)(\lambda) \wedge \varphi \]

is a sum of integrals of the form (2.4). ☐

When \(k = m \leq q \), we will use the simplified notation

\[
\text{Res} \left[\begin{array}{c}
 [Y] \\
 f_1, \ldots, f_m
\end{array} \right] (\varphi) := \text{Res} \left[\begin{array}{c}
 [Y] \\
 f_1, \ldots, f_m
\end{array} \right].
\]

The transformation law for residual currents can be transposed to the case of restricted residual currents. Since we deal in this paper with restricted residual currents supported by discrete sets, we state the transformation law in this particular setting. One has the following proposition:

Proposition 2.2 Let \(Y \) be an irreducible \(q \)-dimensional analytic subset of \(U \subset \mathbb{C}^n \) and \(f_1, \ldots, f_q, g_1, \ldots, g_q \), \(2q \) functions holomorphic in \(U \) such that \(Y \cap V(f) \) and \(Y \cap V(g) \) are discrete analytic sets. Assume that there exist \(q^2 \) holomorphic functions in \(U \), \(a_{kl}, 1 \leq k, l \leq q \), such that

\[
g_k(\zeta) = \sum_{l=1}^{q} a_{kl}(\zeta) f_l(\zeta), \quad k = 1, \ldots, q, \quad \zeta \in Y
\]

Then, one has the following equality between restricted residual currents:

\[
\text{Res} \left[\begin{array}{c}
 [Y] \\
 f_1, \ldots, f_q
\end{array} \right] = \text{Res} \left[\begin{array}{c}
 \Delta [Y] \\
 g_1, \ldots, g_q
\end{array} \right],
\]

where \(\Delta := \det [a_{kl}]_{1 \leq k, l \leq q} \).

Proof. In order to prove this equality, we just need to prove it when \(U \) is a neighborhood \(V \) of a point \(\alpha \in Y \cap (V(f) \cup V(g)) \) such that \(\alpha \) is the only point of \(Y \cap (V(f) \cup V(g)) \) which lies in this neighborhood. Thanks to the first assertion in Corollary 2.1, it is enough to test the two currents involved
in (2.8) on test forms in $\mathcal{D}^{(q,0)}(V)$ whose coefficients are holomorphic in a neighborhood of α. Let φ be such a test form. Since

$$
\overline{\partial}\left[\|f\|^{2(\lambda-\varrho)} [Y] \wedge \left(\sum_{j=1}^{q} (-1)^{j-1} \overline{\mathcal{T}}_j \wedge \overline{df}_j\right)\right]
$$

$$
= \lambda \|f\|^{2(\lambda-\varrho)} [Y] \wedge \bigwedge_{j=1}^{q} \overline{df}_j
$$

$$
= \lambda \|f\|^{2(\lambda-\varrho-1)} [Y] \wedge \overline{\partial}\|f\|^2 \wedge \left(\sum_{j=1}^{q} (-1)^{j-1} \overline{\mathcal{T}}_j \wedge \overline{df}_j\right)
$$

for $\text{Re} \lambda >> 0$ and

$$
\sum_{j=1}^{q} s_j(\zeta) f_j(\zeta) = 1, \quad \forall \zeta \in (V \cap Y_{\text{reg}}) \setminus \{\alpha\},
$$

where

$$
s_j := \frac{\overline{\mathcal{T}}_j}{\|f\|^2}, \quad j = 1, \ldots, q,
$$

one has, by Stokes’s theorem, that

$$
\text{Res} \left[\left[Y \wedge \varphi \right] \frac{\sum_{j=1}^{q} (-1)^{j-1} \overline{\mathcal{T}}_j \wedge \overline{df}_j}{\|f\|^{2q}} \right] = (-1)^{q} \omega_q \int_{Y_{\text{reg}}} \frac{\sum_{j=1}^{q} (-1)^{j-1} \overline{\mathcal{T}}_j \wedge \overline{df}_j}{\|f\|^{2q}} \wedge \overline{\partial}\varphi
$$

$$
= (-1)^{q} \omega_q \int_{Y_{\text{reg}}} \left(\sum_{j=1}^{q} (-1)^{j-1} s_j \wedge ds_t\right) \wedge \overline{\partial}\varphi. \quad (2.9)
$$

Similarly, if we introduce

$$
t_j := \frac{\overline{g}_j}{\|g\|^2}, \quad j = 1, \ldots, q,
$$

and

$$
\tilde{s}_j := \sum_{t=1}^{q} a_{jt} t_t, \quad j = 1, \ldots, q,
$$

one has also

$$
\sum_{j=1}^{q} \tilde{s}_j(\zeta) f_j(\zeta) = 1, \quad \forall \zeta \in (V \cap Y_{\text{reg}}) \setminus \{\alpha\}.
$$
Let, for $\xi \in [0,1]$ and $j = 1,\ldots,q$,
\[s_j^{(\xi)} = (1 - \xi) s_j + \xi \tilde{s}_j. \]

Note that we have
\[\sum_{j=1}^{q} s_j^{(\xi)}(\zeta)f_j(\zeta) = 1, \quad \forall \xi \in [0,1], \quad \forall \zeta \in (V \cap Y_{\text{reg}}) \setminus \{\alpha\}. \]

Therefore, one has, since
\[\prod_{j=1}^{q} \partial \zeta s_j^{(\xi)} \equiv 0 \]
on $(V \cap Y_{\text{reg}}) \setminus \{\alpha\}$,
\[\frac{d}{d\xi} \left[\int_{Y_{\text{reg}}} \left(\sum_{j=1}^{q} (-1)^{j-1} s_j^{(\xi)} \prod_{\ell=1, \ell \neq j}^{q} ds_\ell^{(\xi)} \right) \right] \equiv 0 \]
on $[0,1]$. It follows from (2.9) that
\[\text{Res} \left[[Y] \wedge \varphi \right] = (-1)^q \omega_q \int_{Y_{\text{reg}}} \left(\sum_{j=1}^{q} (-1)^{j-1} s_j \prod_{\ell=1, \ell \neq j}^{q} \bar{s}_\ell \right) \wedge \bar{\partial} \varphi \]
\[= (-1)^q \omega_q \int_{Y_{\text{reg}}} \sum_{j=1}^{q} (-1)^{j-1} g_j \prod_{\ell=1, \ell \neq j}^{q} \overline{dg_j} \]
\[\left\| g \right\|_{2q}^{2q} \wedge \bar{\partial} \varphi \]
\[= \text{Res} \left[\Delta [Y] \wedge \varphi \right]. \]

this concludes the proof of the proposition. \(\Diamond\)

As a consequence of this result, we will state in the algebraic context the following analog of the global transformation law. We need first some piece of notation. Assume that W is a q-dimensional irreducible algebraic subvariety in the affine space \mathbb{A}^n_q (the integration current on $|W|$ without multiplicities taken into account being denoted as $[W]$) and that P_1, \ldots, P_q are q elements in $\mathbb{C}[X_1, \ldots, X_n]$ such that $|W| \cap V(P_1, \ldots, P_q)$ is a discrete (hence finite) algebraic
subset of \(\mathbb{C}^n \). For any \(Q \in \mathbb{C}[X_1, \ldots, X_n] \), any ordered subset \(\{i_1, \ldots, i_q\} \) of \(\{1, \ldots, n\} \), we will denote as

\[
\text{Res} \left[[W] \wedge Q \wedge_{l=1}^q dX_{i_l} \right]_P
\]

the result of the action of the \(W \)-restricted current

\[
\varphi \mapsto \text{Res} \left[[W] \wedge \varphi \right]_P
\]

on the \((q,0)\)-test form \(Q(\zeta)\psi(\zeta) \wedge_{l=1}^q d\zeta_{i_l} \), where \(\psi \) is any test-function in \(\mathcal{D}(\mathbb{C}^n) \) which equals 1 in a neighborhood of \(|W| \cap V(P) \). If

\[
\Gamma = \sum_{j=1}^M \nu_j W_j
\]

(where \(W_1, \ldots, W_M \) are \(M \) irreducible algebraic subsets in \(\mathbb{C}^n \) and \(\nu_j \in \mathbb{N}^* \), \(j = 1, \ldots, M \) is an effective \(q \)-dimensional algebraic cycle in the affine space \(\mathbb{C}^n \) and \(P_1, \ldots, P_q \) are \(q \) polynomials such that \(W_j \cap V(P) \) is discrete for any \(j = 1, \ldots, M \), we will also denote as

\[
\text{Res} \left[[\Gamma] \wedge Q \wedge_{l=1}^q dX_{i_l} \right]_P
\]

the weighted sum

\[
\sum_{j=1}^M \nu_j \text{Res} \left[[W_j] \wedge Q \wedge_{l=1}^q dX_{i_l} \right]_P
\]

Corollary 2.2 Let \(\Gamma \) be an effective \(q \)-dimensional algebraic cycle in the affine space \(\mathbb{C}^n \) and \(P_1, \ldots, P_q, R_1, \ldots, R_q \) be \(2q \) polynomials such that \(\text{Supp} \, \Gamma \cap V(P_1, \ldots, P_q) \) and \(\text{Supp} \, \Gamma \cap V(R_1, \ldots, R_q) \) are discrete (hence finite) algebraic subsets of \(\mathbb{C}^n \). Assume that there is a \((q,q)\)-matrix of polynomials \([A_{k,l}]_{1 \leq k, l \leq q} \) such that

\[
R_k = \sum_{l=1}^q A_{kl} P_l \quad \text{on} \quad \text{Supp} \, \Gamma \quad k = 1, \ldots, q.
\]
Then, for any $Q \in \mathbb{C}[X_1, ..., X_n]$, any ordered subset $\{i_1, ..., i_q\}$ of $\{1, ..., n\}$, one has

$$\text{Res} \left[[\Gamma] \wedge Q \bigwedge_{l=1}^{q} dX_{i_l} \right] = \text{Res} \left[[\Gamma] \wedge \Delta Q \bigwedge_{l=1}^{q} dX_{i_l} \right],$$

where Δ denotes the determinant of the matrix $[A_{k,l}]_{1 \leq k,l \leq q}$.

Another key point about the restricted residual current in the discrete context is the following annihilating property:

Proposition 2.3 Let Y be an irreducible q-dimensional analytic subset of $U \subset \mathbb{C}^n$ and $f_1, ..., f_q$ be q functions holomorphic in U such that $Y \cap V(f)$ is a discrete analytic set. Then one has, for $k = 1, ..., q$,

$$\text{Res} \left[\frac{f_k[Y]}{f_1, ..., f_q} \right] = 0$$

Proof. We give here a self-contained proof of the above proposition. Actually, because of the properties quoted in Corollary 2.1, it is enough to show that if $\alpha \in V(P) \cap Y$ and φ is a test-function with support arbitrarily small about α, then, for any function $h \in C^\infty(U)$ which is holomorphic on v_α, for any ordered subset $I = \{i_1, ..., i_q\} \subset \{1, ..., n\}$, one has, for $j = 1, ..., q$,

$$\text{Res} \left[\frac{f_j[Y] \wedge \cdot \cdot \cdot \wedge h \varphi d\zeta}{f_1, ..., f_q} \right] = 0.$$

One can use Stokes's formula (as in the proof of proposition 2.2) and write

$$\text{Res} \left[\frac{f_k[Y] \wedge h \varphi d\zeta}{f_1, ..., f_q} \right] = (-1)^q \omega_q \int_{Y_{\text{reg}}} h f_k \left(\sum_{j=1}^{q} (-1)^{j-1} s_j \bigwedge_{l=1, l \neq j}^{q} ds_l \right) \wedge \overline{\partial \varphi} \wedge d\zeta,$$

where $s_j := f_j / \|f\|^2$, $j = 1, ..., q$. One can see at once that

$$f_k \left(\sum_{j=1}^{q} (-1)^{j-1} s_j \bigwedge_{l=1, l \neq j}^{q} ds_l \right) \wedge d\zeta \wedge [Y] = \left(\bigwedge_{l=1}^{q} ds_l \right) \wedge \overline{\partial \varphi} \wedge d\zeta \wedge [Y]$$

$$= \pm d \left[s_{k'} \left(\bigwedge_{l=1}^{q} ds_l \right) \wedge \overline{\partial \varphi} \wedge d\zeta \wedge [Y] \right].$$
for \(k' \neq k \), since \(s_1 f_1 + \cdots + s_q f_q \equiv 1 \) on \(Y \cap \text{Supp } \overline{\partial} \phi \), which shows that

\[
\int_{Y_{\text{reg}}} h f_k \left(\sum_{j=1}^{q} (-1)^{j-1} s_j \bigwedge_{l \neq j} d s_l \right) \wedge \overline{\partial} \phi \wedge d \zeta_I = 0
\]

as a consequence of Stokes’s formula on \(Y \). ♦

We remark here that there is an alternative proof of the last proposition. In fact, when \(m \leq q \) and \(f_1, \ldots, f_m \) define a complete intersection on \(Y \), one can show that the restricted residual current

\[\text{Res} \left[[Y] \wedge (\cdot) \right] f_1, \ldots, f_m \]

coincides with the Coleff-Herrera current \(\left(\wedge_{j=1}^{m} \overline{\partial} (1/f_j) \right) \wedge [Y] \) as it is defined in \([9]\). The proof of this claim can be carried out as it is done in the non-restricted case in \([23]\), section 4. Since the proof of this fact is rather tedious, we will not give it here. A consequence of this result is that, when \(f_1, \ldots, f_m \) \((m \leq q)\) define a complete intersection on \(Y \), one has, for \(k = 1, \ldots, m \),

\[\text{Res} \left[f_k [Y] \wedge (\cdot) \right] f_1, \ldots, f_m = f_k \left(\wedge_{j=1}^{m} \frac{1}{f_j} \right) \wedge [Y] = 0 \]

(see \([3]\)). This implies the proposition when \(m = q \).

3 An Abel-Jacobi formula in the restricted case (analytic approach)

One of the key facts about restricted residual currents (as defined through the analytic approach described in section 2) is that they satisfy (in the 0-dimensional complete intersection setting) Abel-Jacobi’s formula, exactly as in the non-restricted case (see \([28]\)). Such a result will be, together with the validity of the transformation law in the restricted context) a crucial fact in order to compare our analytic approach and the algebraic one.

Proposition 3.1 Let \(W \) be a \(q \)-dimensional irreducible affine algebraic subvariety of the affine scheme \(\mathbb{A}^n_\mathbb{C} (0 < q < n) \) and \(P_1, \ldots, P_q \) be \(q \) polynomials in
$\mathbb{C}[X_1, \ldots, X_n]$ such that there exists strictly positive rational numbers $\delta_1, \ldots, \delta_q$ and two constants $K > 0$, $\kappa > 0$ with:

$$\zeta \in |W|, \|\zeta\| \geq K \implies \sum_{j=1}^{q} \frac{|P_j(\zeta)|}{\|\zeta\|^{\delta_j}} \geq \kappa. \quad (3.1)$$

Then, for any $Q \in \mathbb{C}[X_1, \ldots, X_n]$ such that $\deg Q < \delta_1 + \cdots + \delta_q - q$, for any multi-index (i_1, \ldots, i_q) in $\{1, \ldots, n\}^q$,

$$\text{Res} \left[[W] \wedge Q \prod_{i=1}^{q} dX_{i_l} \right] = 0. \quad (3.2)$$

Before we give the proof of this result, let us state an important corollary:

Corollary 3.1 Let W be a q-dimensional irreducible algebraic subvariety in the affine scheme \mathbb{A}_n^q, and \widetilde{W} be its completion in $\text{Proj} \mathbb{C}[X_0, \ldots, X_n]$. Let P_1, \ldots, P_q be q elements in $\mathbb{C}[X_1, \ldots, X_n]$, with respective degrees D_1, \ldots, D_q, such that

$$|W| \cap \left\{ [\zeta_0 : \ldots : \zeta_n] \in \mathbb{P}^n(\mathbb{C}) ; hP_j(\zeta_0, \ldots, \zeta_n) = 0, j = 1, \ldots, q \right\} \subset \mathbb{C}^n, \quad (3.3)$$

where hP_j, $j = 1, \ldots, q$, denotes the homogenization of the polynomial P_j. Then, for any $Q \in \mathbb{C}[X_1, \ldots, X_n]$ such that $\deg Q < D_1 + \cdots + D_q - q$, for any multi-index (i_1, \ldots, i_q) in $\{1, \ldots, n\}^q$,

$$\text{Res} \left[[W] \wedge Q \prod_{i=1}^{q} dX_{i_l} \right] = 0 \quad (3.4)$$

Proof of corollary 3.1. Assume that

$$|W| \cap \left\{ [\zeta_0 : \ldots : \zeta_n] \in \mathbb{P}^n(\mathbb{C}) ; hG_j(\zeta_0, \ldots, \zeta_n) = 0, j = 1, \ldots, N \right\},$$

where G_1, \ldots, G_N are homogeneous polynomials in $\overline{\zeta} = (\zeta_0, \ldots, \zeta_n)$. Condition (3.3) implies that

$$|W| \cap \left\{ [\zeta_0 : \ldots : \zeta_n] \in \mathbb{P}^n(\mathbb{C}) ; hP_j(\zeta_0, \ldots, \zeta_n) = 0, j = 1, \ldots, q \right\}$$
is a finite set in \mathbb{C}^n; this implies (through a compacity argument) that there exists $K, \kappa > 0$ such that, for any $(\zeta_0, ..., \zeta_n) \in \mathbb{C}^{n+1} \setminus \{(0, ..., 0)\}$ such that

$$\left(|\zeta_1|^2 + \cdots + |\zeta_n|^2 \right)^{1/2} \geq K |\zeta_0|,$$

one has

$$\sum_{j=1}^q \frac{|h P_j(\tilde{\zeta})|}{\|\zeta\| D_j} + \sum_{l=1}^M \frac{|G_l(\tilde{\zeta})|}{\|\zeta\| \deg G_l} \geq \kappa.$$

Condition (3.1) with $\delta_j = D_j$, $j = 1, ..., q$, holds if we restrict to the affine space \mathbb{C}^n. The statement (3.4) follows then from (3.2).

We remark that a proposition similar to proposition 3.1 was proved in the non restricted case ($W = \mathbb{A}_n^q$) in [28]. Unfortunately, the proof which is given there (and depends heavily on resolution of singularities on the analytic manifold $\mathbb{P}^n(\mathbb{C})$) cannot immediately be transposed to the restricted case (since the Zariski closure $|W|$ of $|W|$ in $\mathbb{P}^n(\mathbb{C})$ is not a smooth manifold anymore). Instead, we will follow an alternative approach (applicable also for the case $q = n$), based on an argument in the affine space (and not in its compactification $\mathbb{P}^n(\mathbb{C})$), which was proposed by Haï Zhang in [32]. Our task has been to adapt this argument to the restricted case.

Note that, if $z = Aw$ is a linear change of variables in \mathbb{C}^n, one has, for any element in $D^{(q,0)}(\mathbb{C}^n)$

$$\text{Res} \left[[W] \wedge \varphi \right]_{f_1, ..., f_q} = \text{Res} \left[[A^{-1}(W)] \wedge A^* \varphi \right]_{f_1 \circ A, ..., f_q \circ A}.$$

Therefore, we do not lose generality is we assume that $\mathcal{I} = \{1, ..., q\}$ and that the projection

$$\Pi : (\zeta_1, ..., \zeta_n) \mapsto (\zeta_1, ..., \zeta_q)$$

is a proper map from $|W|$ to \mathbb{C}^q (coordinates can be choosen in such a way that Noether normalization theorem applies respect to any $(q, n-q)$ splitting $\zeta = (\zeta', \zeta'')$ of the set of variables $(\zeta_1, ..., \zeta_n)$, see for example [11, 24]).

For δ_i, $i = 1, ..., q$ which appear in the statement of Proposition 3.1 we choose a positive integer N large enough so that

$$N \prod_{i=1}^q \delta_i > 2, \quad j = 1, \ldots, q. \quad (3.5)$$
Then, let
\[\delta^{[j]} := N \prod_{l=1}^{q} \delta_l, \quad j = 1, \ldots, q, \]
and
\[\delta := N \delta_1 \cdots \delta_q = \delta_j \delta^{[j]}, \quad j = 1, \ldots, q. \]
Similarly, for the polynomials \(P_1, \ldots, P_q \), one can define, in the affine open set \(\mathbb{C}^n \setminus \{ P_1 \cdots P_q = 0 \} \), the \(C^\infty \) functions
\[\tilde{s}_j := \frac{|P_j|^{\delta^{[j]}}}{P_j \sum_{l=1}^{q} |P_l|^{\delta^{[l]}}}, \quad j = 1, \ldots, q. \]
These functions \(\tilde{s}_j, \quad j = 1, \ldots, q \), extend (provided \(N >> 1 \)) to \(C^1 \) functions in \(\mathbb{C}^n \setminus V(P) \), satisfying
\[\sum_{j=1}^{q} \tilde{s}_j(\zeta) P_j(\zeta) = 1, \quad \zeta \in \mathbb{C}^n \setminus V(P). \]
Let finally
\[u_j := |P_j|^{\delta^{[j]}/2}, \quad j = 1, \ldots, q \]
and
\[S := \sum_{j=1}^{q} u_j^2 = \|u\|^2. \]
At this point we return to the

Proof of proposition 3.1. One can suppose without any loss of generality that \(\{i_1, \ldots, i_q\} = \{1, \ldots, q\} \) and that the projection \(\Pi \) is a proper map from \(|W| \) to \(\mathbb{C}^q \). Condition (3.1) implies the existence of a strictly positive constant \(\kappa_N \) such that
\[S(\zeta) \geq \kappa_N \|\zeta\|^\delta, \quad \zeta \in |W|, \quad \|\zeta\| \geq K. \quad (3.6) \]
Let
\[\theta \in \mathcal{D}[\varepsilon - 3\kappa_N/4, 3\kappa_N/4[\]
such that $\theta \equiv 1$ on $[-\kappa_N/4, \kappa_N/4]$; for any $R > 0$, let the element φ_R in $C^1(\mathbb{C}^n)$ defined as

$$\varphi_R : \zeta \mapsto \theta(S(\zeta)/R^\delta).$$

Since the restriction $S|_W$ is a proper map (all δ_j’s, $j = 1, \ldots, q$, being strictly positive) and $V(P) \cap |W|$ is a discrete (hence finite) algebraic subset of \mathbb{C}^n (this follows also from (3.1)), there exists R_0 such that for $R > R_0$, $\varphi_R \equiv 1$ in a neighborhood of $|W| \cap V(P)$. Therefore, if

$$s_j := \frac{P_j}{\|P\|^2}$$

one has (see for example formula (2.9))

$$\text{Res} \left[\begin{array}{c} [W] \wedge Q \wedge \bigwedge_{l=1}^q dX_l \\ P_1, \ldots, P_q \end{array} \right]$$

$$= c_q \int_{|W|_{\text{reg}}} \left(\sum_{j=1}^q (-1)^{j-1} s_j \wedge \bigwedge_{l=1}^q ds_l \right) \wedge Q d\zeta' \wedge \overline{\partial} \varphi_R$$

(3.7)

for any $R > R_0$, where $d\zeta' = \bigwedge_{l=1}^q d\zeta_l$. It follows from an homotopy argument similar to the one which is developed in the proof of proposition 2.2 that

$$\text{Res} \left[\begin{array}{c} [W] \wedge Q \wedge \bigwedge_{l=1}^q dX_l \\ P_1, \ldots, P_q \end{array} \right]$$

$$= c_q \int_{|W|_{\text{reg}}} \left(\sum_{j=1}^q (-1)^{j-1} \bar{s}_j \wedge \bigwedge_{l=1}^q \overline{\partial s}_l \right) \wedge Q d\zeta' \wedge \overline{\partial} \varphi_R$$

$$= c_q \int_{|W|_{\text{reg}}} \left(\sum_{j=1}^q (-1)^{j-1} \bar{s}_j \wedge \bigwedge_{l=1}^q \overline{\partial s}_l \right) \wedge Q d\zeta' \wedge \overline{\partial} \varphi_R$$

(3.8)

for any $R > R_0$. Since $P_j \bar{s}_j = u_j^2/S$, $j = 1, \ldots, q$, one can rewrite (3.8) as

$$\text{Res} \left[\begin{array}{c} [W] \wedge Q \wedge \bigwedge_{l=1}^q dX_l \\ P_1, \ldots, P_q \end{array} \right]$$

22
\[c_q 2^{q-1} \int_{|W|_{\text{reg}}} \left(\prod_{j=1}^q \left| \frac{P_j}{P_j} u_j \right|^{1 - \frac{2}{\delta_j}} \right) \frac{\sum_{j=1}^q (-1)^{j-1} u_j \bigwedge_{l \neq j}^q du_l}{\|u\|^{2q}} \wedge Q d\zeta' \wedge \bar{\partial} \varphi_R \]

\[= \frac{(-1)^q c_q 2^{q-1}}{R^q} \int_{|W|_{\text{reg}}} \left(\prod_{j=1}^q \left| \frac{P_j}{P_j} u_j \right|^{1 - \frac{2}{\delta_j}} \right) \frac{\bigwedge_{l=1}^q du_l}{\|u\|^{2(2q-1)}} \wedge \theta' \left(\frac{\|u\|^2}{R^q} \right) Q d\zeta'. \]

(3.9)

For any order \(\mathcal{J} \subset \{1, ..., q\} \), let

\[\omega_{\mathcal{J}} = \bigwedge_{j=1}^q d\alpha_{\mathcal{J}, j} \]

where

\[\alpha_{\mathcal{J}, l}(\zeta_1, ..., \zeta_q) := \begin{cases} \Re \zeta_j & \text{if } j \in \mathcal{J} \\ \Im \zeta_j & \text{if } j \notin \mathcal{J} \end{cases} ; \]

then one can write

\[d\zeta' = \bigwedge_{l=1}^q d\zeta_l = \sum_{\mathcal{J} \subset \{1, ..., q\}} i^{q-\#\mathcal{J}} d\omega_{\mathcal{J}}. \]

In order to prove formula (3.4), it is enough to prove that for any \(\mathcal{J} \subset \{1, ..., q\} \), one has, as soon as \(\deg Q < \delta_1 + \cdots + \delta_q - q \),

\[\lim_{R \to +\infty} \left[\frac{1}{R^q} \int_{|W|_{\text{reg}}} \left(\prod_{j=1}^q \left| \frac{P_j}{P_j} u_j \right|^{1 - \frac{2}{\delta_j}} \right) \frac{\bigwedge_{l=1}^q du_l}{\|u\|^{2(q-1)}} \wedge \theta' \left(\frac{\|u\|^2}{R^q} \right) Q \omega_{\mathcal{J}}(\zeta') \right] = 0. \]

(3.10)

Since the restriction of \(P = (P_1, ..., P_q) \) to each connected sheet \(\mathcal{F} \) (above the \(\zeta' \)-space) of the \(2q \)-dimensional real manifold \(|W|_{\text{reg}} \) is proper, the map

\[F_{\mathcal{J}, \mathcal{F}} : \zeta \in \mathcal{F} \mapsto (u_1, ..., u_q, \alpha_{\mathcal{J}, 1}, ..., \alpha_{\mathcal{J}, q}) \]

is a \(\mathbb{R}^{2q} \)-valued proper map, with topological degree \(d_{\mathcal{J}, \mathcal{F}} \). Moreover, condition (3.6) implies that, for \(R > K \),

\[\text{Supp} \left(\theta(S/R^\delta) \right) \subset \{ \zeta \in \mathbb{C}^m : \|\zeta\| < R \}. \]
Actually, for \(\|\zeta\| \geq R > K \), one has
\[
S(\zeta) \geq \kappa_N \|\zeta\|^\delta \geq \kappa_N R^\delta > (3\kappa_N/4)R^\delta.
\]

For such \(R \), one has
\[
\left\| \prod_{j=1}^q \frac{|P_j|}{P_j} Q \theta'(S/R^\delta) \right\|_\infty \leq C R^{\deg Q},
\]
where \(C = C(\theta, Q) \) is a positive constant. It follows then from the properness of all maps \(F_\mathcal{J}, F \) and from the positivity of the differential form
\[
\left(\prod_{j=1}^q u_j^{1-2/\delta_j} \right)^q \bigwedge_{l=1}^q du_l
\]
in \(]0, \infty[^q \) that
\[
\frac{1}{R^\delta} \left| \int_{W_{\text{reg}}} \left(\prod_{j=1}^q \frac{|P_j|}{P_j} u_j^{1-2/\delta_j} \right)^q \bigwedge_{l=1}^q du_l \right| \leq \left(\sum_{\mathcal{J}} d_{\mathcal{J}, \mathcal{F}} \right) C R^{\deg Q} R^{\delta} \left(\int_{\|u\|^2 \leq 3\kappa_N R^\delta} \left(\prod_{j=1}^q u_j^{1-2/\delta_j} \right)^q \bigwedge_{l=1}^q du_l \right) \times \left(\int_{\|u\| < R} dt_1 \wedge \cdots \wedge dt_q \right) \leq \left(\sum_{\mathcal{J}} d_{\mathcal{J}, \mathcal{F}} \right) C_N R^{\deg Q+q} R^{\delta} \left(\int_{\|u\|^2 \leq 3\kappa_N R^\delta} \left(\prod_{j=1}^q u_j^{1-2/\delta_j} \right)^q \bigwedge_{l=1}^q du_l \right) \leq \left(\sum_{\mathcal{J}} d_{\mathcal{J}, \mathcal{F}} \right) \tilde{C}_{N, \delta} R^{\deg Q+q} R^{\delta} \sum_{j=1}^q \left(1 - \frac{1}{\delta_j} \right) + q \frac{\delta}{2} \leq \left(\sum_{\mathcal{J}} d_{\mathcal{J}, \mathcal{F}} \right) \tilde{C}_{N, \delta} R^{\deg Q+q-\delta_1-\cdots-\delta_q} = o(1),
\]
which proves the conclusion (3.10) we need. The proof of proposition 3.1 is therefore completed. ♦
4 Analytic versus algebraic approach

Let \mathcal{X} be an integral \mathbb{C}-variety of dimension q and $\mathcal{D}_1, ..., \mathcal{D}_q$ be q Cartier divisors on \mathcal{X} such that $|\mathcal{D}_1| \cap \cdots \cap |\mathcal{D}_q|$ is finite. If ω is a meromorphic form in $\Omega^q_{\Phi(X)/\Phi}$ which has a simple pole along $\mathcal{D}_1 + \cdots + \mathcal{D}_q$, one may define (see [14], page 621) the local residue of ω at any closed point α in $|\mathcal{D}_1| \cap \cdots \cap |\mathcal{D}_q|$. That is, if

$$\omega = \frac{\eta}{f_1 \cdots f_q},$$

where $\eta \in \omega^q_{\Phi(X)/\Phi;\alpha}$ and $f_j = 0$, $j = 1, ..., q$, is a local equation for \mathcal{D}_j at α then

$$\text{Res}_{\mathcal{X};\mathcal{D}_1, ..., \mathcal{D}_q;\alpha}(\omega) = \text{Res}_{\Phi(X)/\Phi;\alpha}\left(\left[\frac{\eta}{f_1, \ldots, f_q}\right]\right).$$

When \mathcal{X} is smooth, this definition agrees with the definition in [12], chapter 5, section 1 (see [20], Appendix A). Adding the hypothesis that \mathcal{X} is \mathbb{C}-complete, one has (see proposition 12.2, page 108, in [21])

$$\sum_{\alpha \in |\mathcal{D}_1| \cap \cdots \cap |\mathcal{D}_q|} \text{Res}_{\mathcal{X};\mathcal{D}_1, ..., \mathcal{D}_q;\alpha}(\omega) = 0,$$

which is known as residue theorem on \mathcal{X} (it extends the classical residue theorem on a complete integral curve in its algebraic formulation, see [25]).

Such a residue theorem holds in our analytic setting (and is essentially a consequence of Stokes’s formula). Namely, if W is an integral algebraic q-dimensional subscheme in $\mathbb{A}^n_\mathbb{C}$ (with completion W in Proj $\mathbb{C}[X_0, ..., X_n]$) and $P_1, ..., P_q$ are q polynomials in n variables such that $|W| \cap \{hP_1 = \cdots = hP_q = 0\}$ is finite and included in \mathbb{C}^n, then ($[W]$ being understood as the integration current free of multiplicities),

$$\text{Res}\left([W] \wedge Q(X) dX_{i_1} \wedge \cdots \wedge dX_{i_q}\right)_{P_1, ..., P_q} = 0$$

when $\deg Q \leq \sum_{j=1}^q \deg P_j - q - 1$ (corollary 3.1) for any ordered subset $\{i_1, ..., i_q\} \subset \{1, ..., n\}$.

On the other hand, the transformation law holds for our analytic restricted residue (see corollary 2.2). Such a transformation law remains valid (in its
local formulation) for restricted residue symbols defined through the algebraic approach (see theorem 2.4 in [13]).

Finally, the local residue symbol

\[Res_{W; D_1, \ldots, D_q, \alpha} (\omega) = Res_{\Phi(X)/\Phi, \alpha} \left(\left[\frac{\eta}{f_1, \ldots, f_q} \right] \right), \]

where

\[\omega = \frac{\eta}{f_1 \cdots f_q}, \]

\(\eta \in \omega_{\Phi(X)/\Phi, \alpha}^q \) and \(f_j = 0, j = 1, \ldots, q \), is a local equation for \(D_j \) at \(\alpha \), equals to 0 as soon as \(\eta = f_j \tilde{\eta} \) for some \(\tilde{\eta} \in \omega_{\Phi(X)/\Phi, \alpha}^q \) (see also [13], section 2). The same annihilation property is satisfied by the restricted residual current (proposition 2.3).

Our goal in this section is to profit from the fact that both restricted residual objects (defined through the algebraic or analytic approach) satisfy the transformation law, the residue formula, the annihilation property, in order to show that they coincide. Therefore, we are able to give an algebraic formulation of the Proposition 3.1, which is the Theorem 1.1 stated in our introduction.

In order to do that, we will need the following technical lemma:

Lemma 4.1 Let \(|W| \) be an irreducible \(q \)-dimensional algebraic set in \(\mathbb{C}^n \) and \(|W| \) its Zariski closure in \(\mathbb{P}^n(\mathbb{C}) \). Let also \(P_1, \ldots, P_q \) be \(q \) polynomials in \(\mathbb{C}[X_1, \ldots, X_n] \) such that \(V(P) \cap |W| \) is a discrete (hence finite) algebraic subset of \(\mathbb{C}^n \), with \(0 \in V(P) \cap |W| \). Then, there exists \(N_0 > 0 \) such that, for any integer \(N \geq N_0 \), one can find \(qn + 1 \) complex parameters \(u_{jk}, j = 1, \ldots, q, \) \(k = 1, \ldots, n \), \(t \in \mathbb{C}^* \), so that, if

\[\tilde{P}_j^{(N,u,t)}(X) := tP_j(X) + \left(\sum_{k=1}^{n} u_{jk}X_k \right)^N, \quad j = 1, \ldots, q, \]

one has:

- any point \(\alpha \in |W| \cap V(\tilde{P}^{(N,u,t)}) \) but \(0 \) belongs to \(|W|_{\text{reg}} \);
the set

\[|W| \cap \{ [\zeta_0 : \ldots : \zeta_n] \in \mathbb{P}^n(\mathbb{C}) : h P_j^{(N,u,t)}(\zeta_0, \ldots, \zeta_n) = 0, \ j = 1, \ldots, q \} \]

is contained in \(\mathbb{C}^n \).

Proof. Since \(|W|\) is irreducible and \(q \)-dimensional, one has \(\dim |W|_{\text{sing}} < q \); one can find an algebraic affine hypersurface \(H := \{ \zeta \in \mathbb{C}^n ; H(\zeta) = 0 \} \) (with Zariski closure \(|H|\)) such that \(|W|_{\text{sing}} \subset H \) and \(\dim (|W| \cap |H|) < q \).

Let \(N_0 > \deg P_j, \ j = 1, \ldots, q \), and \(N \geq N_0 \). Assume also that \(N \geq \rho_{P,W}(0) \), where \(\rho_{P,W}(0) \) is the order of vanishing of \(P \) at the origin (along \(|W| \)).

Let \(u = [u_{jk}], \ j = 1, \ldots, q, \ k = 1, \ldots, n \), be a \((q,n)\) matrix with generic complex entries,

\[M_u := \{ \zeta \in \mathbb{C}^n : u_{j1}\zeta_1 + \cdots + u_{jn}\zeta_n = 0, \ j = 1, \ldots, q \} \]

and \(|M_u| \) its Zariski closure in \(\mathbb{P}^n(\mathbb{C}) \). Since \(\dim |W| = q \) and \(\dim (|W| \cap |H|) < q \), \(|M_u| \cap |W| \subset \mathbb{C}^n \) and \(|M_u| \cap |W| \cap |H| = \{0\} \) for \(u \) generic.

Therefore, for such a generic choice of \(u (u = u^0) \) (this choice will be refined later), for any \(t \in \mathbb{C}^* \), the polynomials

\[tP_j(X) + (u^0_{j1}X_1 + \cdots + u^0_{jn}X_n)^N, \ j = 1, \ldots, q, \]

define in \(\mathbb{C}^n \) an algebraic set \(Z^{(N,u^0,t)} \) whose closure \(Z^{(N,u^0,t)} \) in \(\mathbb{P}^n(\mathbb{C}) \) intersects \(|W| \) only at points in \(\mathbb{C}^n \) (note that 0 is one of these points). The algebraic set \(|W| \cap Z^{(N,u^0,t)} \) can be described as

\[|W| \cap Z^{(N,u^0,t)} = \{ \zeta^{(N,1)}(u^0, t), \ldots, \zeta^{(N,m)}(u^0, t) \} \cup \{0\}, \]

where \(m \) is fixed (depending on \(N \) and \(|W| \)) and the \(t \mapsto \zeta^{(N,j)}(u^0, t), \ j = 1, \ldots, m \), are algebraic \(\mathbb{C}^m \)-valued functions of \(t \) which are not identically 0 and can be classified in two classes, depending on their behavior when \(|t| \) tends to zero. A branch \(t \mapsto \zeta^{(N,j)}(u^0, t) \) will be in the first class if \(\zeta^{(N,j)}(u^0, t) \) tends to zero when \(|t| \) tends to 0. It will be in the second class if \(\zeta^{(N,j)}(u^0, t) \) tends to a point in \(|W| \cap M_{u^0} \) which is distinct from 0 when \(|t| \) goes to 0. It follows then from \(M_{u^0} \cap |W| \cap H = \{0\} \) that none of the functions

\[t \mapsto H(\zeta^{(N,j)}(u^0, t)) \]
where $t \mapsto \zeta^{(N,j)}(u^0, t)$ belongs to the second category, can be identically equal to 0. The behavior of branches of the first category can now be studied when $|t|$ goes to infinity. The assumption on N ensures us that such branches either approach points in $([W] \cap V(P)) \setminus \{0\}$, either satisfy

$$\lim_{|t| \to \infty} |\zeta^{(N,j)}(u^0, t)| = +\infty$$

in the second alternative. The hypothesis on u^0 implies that the function $t \mapsto H(\zeta^{(N,j)}(u^0, t))$ is not identically 0 if we are in the second alternative. Finally, for any branch $t \mapsto \zeta^{(N,j)}(u^0, t)$, one has $H(\zeta^{(N,j)}(u^0, t)) \neq 0$. Therefore, once u^0 has been conveniently chosen, one can pick up $t \neq 0$ such that the map $\bar{P}^{(N,u^0,t)}$ satisfies the assertions of the lemma.

We can now relate the analytic and algebraic approaches for restricted residual symbols.

Proposition 4.1 Let W be a complete integral \mathbb{C}-variety of dimension q, embedded in the projective scheme $\text{Proj} \mathbb{C}[X_0, \ldots, X_n]$, α be a closed point in $|W|$ such that $\alpha \in \mathbb{C}^n$ and D_1, \ldots, D_q be q Cartier divisors on W so that the intersection $|D_1| \cap \cdots \cap |D_q|$ define a zero-dimensional scheme on W in a neighborhood of α. If

$$\omega = \frac{\eta}{P_1 \cdots P_q},$$

where $\eta = Q dX_{i_1} \wedge \cdots \wedge dX_{i_q}$, $Q \in \mathbb{C}[X_1, \ldots, X_n]$ induces an element in $\omega^q_{\Phi(X)/\mathbb{C}, \alpha}$ and P_1, \ldots, P_q are elements in $\mathbb{C}[X_1, \ldots, X_n]$ such that P_j, $j = 1, \ldots, q$, is a local equation for D_j at α, then, for any function $\varphi \in D(\mathbb{C}^n)$ with arbitrary small support around α satisfying $\varphi \equiv 1$ in a neighborhood of α, one has

$$\text{Res}_{W; D_1, \ldots, D_q, \alpha} (\omega) = \text{Res} \left[\left[\frac{[W] \wedge \varphi \eta}{P_1, \ldots, P_q} \right] \right].$$

Proof. One can assume for the sake of simplicity that $\alpha = 0$. Let \mathcal{M} be the maximal ideal (X_1, \ldots, X_n) in the local algebra $\mathcal{O}_{\Phi[X_1, \ldots, X_n], 0}$ and $(I(W))_0$ the localization at 0 of the radical ideal

$$I(W) := \{ g \in \mathbb{C}[X_1, \ldots, X_n] : g(\zeta) = 0 \ \forall \zeta \in |W| \cap \mathbb{C}^n \}.$$
Choose $p \in \mathbb{N}^*$ such that

$$\mathcal{M}^p \in \left(\left([P_1, ..., P_q]_0 \right)^2, I(W)_0 \right).$$

It follows from the validity of the transformation law and the annihilating property in the algebraic context that, if

$$\tilde{P}_j(X) := P_j(X) + \left(\sum_{k=1}^{n} u_{jk} X_k \right)^p,$$

then one has, for any $\eta = Q dX_{i_1} \wedge \cdots \wedge dX_{i_q}, Q \in \mathbb{C}[X_1, ..., X_n]$, that

$$\text{Res}_{W; \tilde{D}_1, ..., \tilde{D}_q, 0} (\frac{\eta}{P_1 \cdots P_q}) = \text{Res}_{W; \tilde{D}_1, ..., \tilde{D}_q, 0} (\frac{\eta}{\tilde{P}_1 \cdots \tilde{P}_q}),$$

(4.2)

where $\tilde{D}_j, j = 1, ..., q,$ is the Cartier divisor on W with local equation \tilde{P}_j in a neighborhood of the origin. On the other hand, it follows from Proposition 2.2 and Proposition 2.3 that, for any test-function φ with arbitrary small support around the origin, one has also

$$\text{Res}_{W; \tilde{D}_1, ..., \tilde{D}_q, 0} (\tilde{P}_1 \cdots \tilde{P}_q) = \text{Res}_{W; \tilde{D}_1, ..., \tilde{D}_q, 0} (\eta \tilde{P}_1 \cdots \tilde{P}_q).$$

(4.3)

If the $u_{jk}, j = 1, ..., q, k = 1, ..., n$ are generic (see for example the construction in the proof of lemma 4.1), the algebraic set $V(P) \cap |W| \cap \mathbb{C}^n$ is discrete (hence finite). We can then conclude from (4.2) and (4.3) that in order to prove (4.1), it is not restrictive to assume that the algebraic set $V(P) \cap |W| \cap \mathbb{C}^n$ is finite, what we will do from now on.

The same argument as above shows that, in order to prove (4.1), one can replace $P_j, j = 1, ..., q,$ by the polynomial

$$\frac{1}{t} \tilde{P}^{(N,u,t)}_{\tilde{j}}$$

constructed in lemma 4.1 (N being choosen sufficiently large, certainly such that $N \geq \max \deg P_j, \mathcal{M}^N \subset (I(P)_0, I(W)_0))$ and $\deg Q < q(N - 1)$, and this is what we do (preserving the notations P_j and D_j). As a consequence of the residue formula in the algebraic context (which we recalled at the beginning of this section) and of Corollary 3.1, one has

$$\sum_{\alpha \in V(P) \cap \mathcal{W}(\Phi)} \text{Res}_{W; \tilde{D}_1, ..., \tilde{D}_q, \alpha} (\frac{\eta}{P_1 \cdots P_q}) = \sum_{\alpha \in V(P) \cap \mathcal{W}(\Phi)} \text{Res} \left(\frac{[W] \wedge \varphi \eta}{P_1, ..., P_q} \right),$$

(4.4)
whenever \(\varphi \) is a test-function in \(D(\mathbb{C}^n) \) with arbitrary small support around the points \(\alpha \in V(P) \cap |W| \), such that \(\varphi \equiv 1 \) in a neighborhood of each of these points (\(\varphi_\alpha \) will denote next \(\varphi \theta_\alpha \), where \(\theta_\alpha \) is a test-function with support arbitrary small around \(\alpha \) and \(\theta_\alpha \equiv 1 \) in a neighborhood of \(\alpha \)). If \(\alpha \) is any point in \(V(P) \cap |W| \) distinct from 0, \(W \) is smooth about \(\alpha \) (lemma 4.1, first assertion) and we know in this case that

\[
\text{Res}_{W;D_1,...,D_q,\alpha} \left(\frac{\eta}{P_1 \cdots P_q} \right) = \text{Res} \left[\frac{[W] \wedge \varphi_\alpha \eta}{P_1, ..., P_q} \right],
\]

since the construction of our restricted residual currents corresponds to the construction proposed in [12], chap 5, section 1 (this is a consequence of the classical relation between Bochner-Martinelli and Cauchy kernels), which is known to fit with the algebraic approach in the smooth case (as it was recalled at the beginning of this section). Formula (4.1) follows then from (4.4) and from the identifications (4.5).

\[\boxdot\]

Proof of Theorem 1.1. We may now transpose to the algebraic context the analytic result stated in proposition 3.1. This gives the statement of the Theorem 1.1 of our introduction, provided we remember that we have

\[
\text{Res}_{W;D_1,...,D_q,\alpha} (\omega) = \text{Res}_{\mathfrak{d}(W)/\mathfrak{d},\alpha} \left(\left[\frac{\eta}{f_1, ..., f_q} \right] \right)
\]

for any point \(\alpha \) in \(|W| \cap |D_1| \cap \cdots \cap |D_q| \cap \mathbb{C}^n \) (here we just assume that \(D_1,...,D_n \) define a 0-dimensional scheme on \(W \), there is no assumption about what happens on \(|W| \setminus |W| \)) and any \(\omega \) in \(\Omega^q_{\mathfrak{d}(W)/\mathfrak{d}} \) with simple poles (in \(W \)) along \(D_1 + \cdots + D_q \) (\(\eta = f_1 \cdots f_q \omega \), where \(f_j \) denotes a local equation for the Cartier divisor \(D_j \)). Since the reference to the divisors \(D_1,...,D_q \) was implicit in the expression of the element in \(\Omega^q_{\mathfrak{d}(W)/\mathfrak{d}} \), we used the abridged notation \(\text{Res}_{W,\alpha} [\cdot] \) instead of \(\text{Res}_{W;D_1,...,D_q,\alpha} \) in order to formulate the statement in this theorem. \[\boxdot\]

As a direct consequence we formulate the restricted version of the Cayley-Bacharach Theorem.

Corollary 4.1 Let \(W \) be a \(q \)-dimensional irreducible affine algebraic subvariety in \(\mathbb{A}^q_\mathbb{C} \) (\(0 < q < n \)) and \(P_1, ..., P_q \) be \(q \) polynomials in \(\mathbb{C}[X_1, ..., X_n] \) satisfying the condition (1.2). Assume also that \(V(P) \) and \(|W| \) intersect
transversally at any of the \(k \) points in \(V(P) \cap |W| \). Then any algebraic hypersurface \(\{ Q = 0 \} \), \(Q \in \mathbb{C}[X_1, \ldots, X_n] \), such that \(\text{deg} \, Q < \delta_1 + \cdots + \delta_q - q \), which passes through any \(k - 1 \) points of the set \(V(P) \cap W \) passes through the last one also.

5 An affine version of Wood’s theorem.

Let \(\gamma_1, \ldots, \gamma_d \) be \(d \) pieces of manifold in \(\mathbb{P}^n(\mathbb{C}) \) and \(|L_{0,0}| \) be a line in \(\mathbb{P}^n(\mathbb{C}) \) which intersects each of the \(\gamma_j \) transversally respectively at distinct points \(p_{j0}, j = 1, \ldots, d \). Assume that affine coordinates are such that the support \(|L_{0,0}| \) is the line \(\zeta_1 = \cdots = \zeta_{n-1} = 0 \). Then, for \((\alpha, \beta) \in (\mathbb{C}^{n-1})^2 \) close to \((0,0)\), the projective line

\[
|L_{\alpha,\beta}| := \{ [\zeta_0 : \cdots : \zeta_n] \in \mathbb{P}^n(\mathbb{C}) ; \, \zeta_k = \alpha_k \zeta_n + \beta_k \zeta_0, \, k = 1, \ldots, n - 1 \}
\]

intersects transversally \(\gamma_1, \ldots, \gamma_d \) at the respective points \(p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta) \) (\(p_j(\alpha, \beta) \) being close to \(p_{j0} \)). In [31], J. Wood gave a simple criterion for the local germs of manifold \(\gamma_1, \ldots, \gamma_d \) to be germs of a global algebraic hypersurface (with degree \(d \)) \(|H| \) in \(\mathbb{P}^n(\mathbb{C}) \) satisfying the relation such that

\[
|H| \cap |L_{\alpha,\beta}| = \{ p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta) \}
\]

for \((\alpha, \beta) \) close to \((0,0)\). The (necessary and sufficient) condition he gave can be formulated as follows:

\[
\sum_{j=1}^{d} \zeta_n[p_j(\alpha, \beta)] = h_0(\alpha) + \sum_{k=1}^{n-1} h_k(\alpha) \beta_k, \quad (5.5)
\]

where \(h_0, \ldots, h_{n-1} \) are germs of holomorphic functions in \(\alpha \) at the origin (here \(\zeta_n[p] \), where \(p \) denotes a point in \(\mathbb{C}^n \), means the \(n \)-th affine coordinate of \(p \)). Note that the algebraic hypersurface \(|H| \) (in \(\mathbb{P}^n(\mathbb{C}) \)) which interpolates \(\gamma_1, \ldots, \gamma_d \) is such that its intersection at infinity with any line \(|L_{\alpha,\beta}| \), with \((\alpha, \beta) \) close to \((0,0)\), is empty. What we would like to state here is an affine analog of this result, \(\mathbb{P}^n(\mathbb{C}) \) being replaced by some irreducible \(q \)-dimensional affine algebraic subvariety of \(\mathbb{C}^n \) \((q = 2, \ldots, n)\).

Let us first state the following easy consequence of our Theorem 1.1.
Proposition 5.1 Let W be an algebraic irreducible q-dimensional subvariety of the affine scheme \mathbb{A}_C^q (with $2 \leq q \leq n$), m be a positive integer strictly between 0 and q, and $\gamma_1, \ldots, \gamma_d$ be d disjoint pieces of $q-m$-dimensional analytic manifold such that γ_j lies in $|W|_{\text{reg}}$ for $j = 1, \ldots, d$. Furthermore, assume that the affine $n + m - q$-dimensional subspace

$$L_{0,0} := \{ \zeta \in \mathbb{C}^n ; \zeta_k = 0, \ k = 1, \ldots, q - m \}$$

intersects each γ_j transversally respectively at points p_{j0}, $j = 1, \ldots, d$. Suppose that there are strictly positive rational numbers $\delta_1, \ldots, \delta_m$ and polynomials P_1, \ldots, P_m with $\deg P_j = d_j \geq \delta_j$, $j = 1, \ldots, m$, such that

- $|W| \cap V(P)$ is a $q - m$-dimensional variety in \mathbb{C}^n which interpolates the pieces γ_j and is such that $|W| \cap V(P) \cap L_{0,0} = \{ p_{10}, \ldots, p_{d0} \}$;

- there exists strictly positive constants κ, K such that

$$\zeta \in |W|, \| \zeta \| \geq K \implies \sum_{j=1}^m \frac{|P_j(\zeta)|}{\| \zeta \|^{\delta_j}} + \sum_{k=1}^{q-m} \frac{|\zeta_k|}{\| \zeta \|} \geq \kappa. \quad (5.6)$$

Then, for (α, β) close to $(0, 0)$ in $(\mathbb{C}^{n+m-q})^{q-m} \times \mathbb{C}^{q-m}$, the affine $n + m - q$-dimensional subspace

$$L_{\alpha,\beta} := \{ \zeta \in \mathbb{C}^n ; \zeta_k = \sum_{r=1}^{n+m-q} \alpha_{k,r} \zeta_{q-m+r} + \beta_k, \ k = 1, \ldots, q - m \}$$

intersects each γ_j transversally respectively at the points $p_j(\alpha, \beta)$, $j = 1, \ldots, d$ (necessarily distinct and close to the p_{j0}) and one has

$$\sum_{j=1}^d \zeta[p_j(\alpha, \beta)] = \sum_{k \in \mathbb{N}^{q-m} \atop \|k\| \leq \rho+1} h_k^{(l)}(\alpha) \beta_1^{k_1} \cdots \beta_{q-m}^{k_{q-m}}, \ l = q - m + 1, \ldots, n, \quad (5.7)$$

where the $h_k^{(l)}$ are germs of holomorphic functions in α about the origin and

$$\rho := \sum_{j=1}^m (d_j - \delta_j)$$
Proof. Let, for $k = 1, \ldots, q - m$,

$$\Lambda_{\alpha, \beta, k}(\zeta) := \zeta_k - \sum_{r=1}^{n+m-q} \alpha_{k, r} \zeta_{q-m+r} - \beta_k, \; \zeta \in C^n;$$

condition (5.7) implies that, when (α, β) is sufficiently close to $(0, 0)$, one has

$$\zeta \in |W|, \; \|\zeta\| \geq K \implies \sum_{j=1}^{m} \frac{|P_j(\zeta)|}{\|\zeta\| \delta_j} + \sum_{k=1}^{q-m} \frac{|\Lambda_{\alpha, \beta, k}(\zeta)|}{\|\zeta\|} \geq \frac{\kappa}{2}. \tag{5.8}$$

This shows that for (α, β) close to $(0, 0)$, the only points in $L_{\alpha, \beta} \cap |W| \cap V(P)$ are d points $p_j(\alpha, \beta)$, $j = 1, \ldots, d$ which approach the points p_{10}, \ldots, p_{d0} (about each of these points, one can use the implicit function theorem in order to describe the intersection $\gamma_j \cap L_{\alpha, \beta}$). This proves the first assertion of the proposition.

It follows from proposition 3.1 that, as soon as the multi-index $k \in \mathbb{N}^{q-m}$ is such that

$$\sum_{j=1}^{m} (d_j - 1) + 1 < \sum_{j=1}^{m} \delta_j + \sum_{l=1}^{q-m} (k_l + 1) - q = \sum_{j=1}^{m} \delta_j + |k| - m,$$

then, for $l = q - m + 1, \ldots, n$, for any finite ordered subset $\{i_1, \ldots, i_{q-m}\} \subset \{1, \ldots, n\}$,

$$\text{Res} \left[\left[[W] \wedge X_l \left(\bigwedge_{j=1}^{m} dP_j \right) \wedge \left(\bigwedge_{l=1}^{q-m} dX_{i_l} \right) \right] \right. \left. P_1, \ldots, P_m, (\Lambda_{\alpha, \beta, 1})^{k_1+1}, \ldots, (\Lambda_{\alpha, \beta, q-m})^{k_{q-m}+1} \right] = 0$$

for (α, β) such that (5.9) holds. It is immediate to check (use for example formula (3.7)) that for such (α, β), one has, for any multi-index $k = (k_1, \ldots, k_{q-m}) \in \mathbb{N}^{q-m}$,

$$\frac{\partial^{k_1} \cdots \partial_{\beta_{q-m}}^{k_{q-m}} \text{Res}}{\partial \zeta} \left[\left[[W] \wedge X_l \left(\bigwedge_{j=1}^{m} dP_j \right) \wedge \left(\bigwedge_{l=1}^{q-m} dX_{i_l} \right) \right] \right. \left. P_1, \ldots, P_m, \Lambda_{\alpha, \beta, 1}, \ldots, \Lambda_{\alpha, \beta, q-m} \right]$$

$$= \pm \text{Res} \left[\left[[W] \wedge X_l \left(\bigwedge_{j=1}^{m} dP_j \right) \wedge \left(\bigwedge_{l=1}^{q-m} dX_{i_l} \right) \right] \right. \left. P_1, \ldots, P_m, (\Lambda_{\alpha, \beta, 1})^{k_1+1}, \ldots, (\Lambda_{\alpha, \beta, q-m})^{k_{q-m}+1} \right]. \tag{5.9}$$
Then it follows from (5.9) that the right-hand side of (5.10) (hence the left-hand side) equals identically 0 when

$$|k| > \sum_{j=1}^{m} (d_j - \delta_j) + 1 = \rho + 1.$$

This proves that, when \((\alpha, \beta)\) is close to \((0, 0)\) and \(l = m - q + 1, ..., n\),

$$\sum_{j=1}^{d} \zeta_l[p_j(\alpha, \beta)] \equiv \text{Res} \left[[W] \wedge \zeta_l \left(\bigwedge_{j=1}^{m} dP_j \right) \wedge \left(\bigwedge_{l=1}^{q-m} d\Lambda_{\alpha,\beta,l} \right) \right]$$

is a polynomial expression in \(\beta = (\beta_1, ..., \beta_{q-m})\) with total degree at most \(\rho + 1\) (the coefficients being holomorphic functions in \(\alpha\)). The second assertion of the proposition is proved.

\textbf{Remark.} Note that we recover here as a particular case the necessity of Wood’s condition in the case \(W = \mathbf{A}_n^m, m = 1, \delta_1 = d_1 = d\), which means precisely that in this case we also impose the restriction

$$\{ \tilde{\zeta} \in \mathbb{P}^n(\mathbb{C}) ; h P_1(\tilde{\zeta}) = 0 \} \cap |L_{0,0}| = \{ p_{10}, ..., p_{d0} \}.$$

Furthermore, one can state the following proposition, which appears as a weak converse of proposition 5.1 in the affine setting.

\textbf{Proposition 5.2} Let \(\gamma_1, ..., \gamma_d\) be \(d\) disjoint pieces of \(n - m\)-dimensional analytic manifold \((1 \leq m < n)\) in the affine space \(\mathbb{C}^n\). Suppose that for any \((\alpha, \beta) \in (\mathbb{C}^m)^{n-m} \times \mathbb{C}^{n-m}\) close to \((0, 0)\), the affine \(m\)-dimensional subspace

$$L_{\alpha,\beta} := \{ \zeta \in \mathbb{C}^n ; \zeta_k = \sum_{r=1}^{m} \alpha_{k,r} \zeta_{n-m+r} + \beta_k, k = 1, ..., n - m \}$$

intersects transversally \(\gamma_1, ..., \gamma_d\) respectively at points \(p_1(\alpha, \beta), ..., p_d(\alpha, \beta)\). Assume that there exists \(D \in \mathbb{N}\) and analytic functions \(h^{(l)}_{k}(\alpha) ; |k| \leq D + 1, l = n - m + 1, ..., n\), in a neighborhood of 0 in \((\mathbb{C}^m)^{n-m}\) such that for \((\alpha, \beta)\) close to \((0, 0)\) in \((\mathbb{C}^m)^{n-m} \times \mathbb{C}^{n-m}\), for any \(l = n - m + 1, ..., n,\)

$$\sum_{j=1}^{d} \zeta_l[p_j(\alpha, \beta)] = \sum_{\substack{k \in \mathbb{N}^{n-m} \\ |k| \leq D+1}} h^{(l)}_{k}(\alpha) \beta_{1}^{k_1} \cdots \beta_{q-m}^{k_{q-m}}. \quad (5.10)$$
Then, one can find a collection of polynomials \((P_\iota)_\iota \in \mathcal{J}\) with degree at most \(d + D\) which define an affine algebraic variety \(V(P)\) such that for some convenient constants \(\epsilon > 0\), \(\kappa > 0\), \(K > 0\), one has:

- if \(\Gamma_\epsilon := \bigcup_{(\alpha, \beta) \in \mathbb{C}^{m \times n-m} \times \mathbb{C}^{n-m}} \max(\|\alpha\|, \|\beta\|) < \epsilon \)

\[L_{\alpha, \beta} \]

then

\[\zeta \in \Gamma_\epsilon, \|\zeta\| \geq K \implies \max_{\iota \in \mathcal{J}} |P_\iota(\zeta)| \geq \kappa \|\zeta\|^d; \quad (5.11) \]

- for \(\max(\|\alpha\|, \|\beta\|) < \epsilon\), one has

\[L_{\alpha, \beta} \cap V(P) = \{p_1(\alpha, \beta), ..., p_d(\alpha, \beta)\}. \quad (5.12) \]

Before the proof of this proposition we remark that our approach is directly inspired from [31] (page 237, proof of the sufficiency). First we observe, as in Wood’s argument, that conditions (5.11) imply that for any integer \(\sigma \in \mathbb{N}^\ast\), for any \(l = n - m + 1, ..., n\), one has, for \((\alpha, \beta)\) close to \((0, 0)\) in \((\mathbb{C}^m)^{n-m} \times \mathbb{C}^{n-m}\),

\[\sum_{j=1}^d (\zeta_\iota \zeta_\iota[p_\iota(\alpha, \beta)])\sigma = \sum_{k \in \mathbb{N}^{n-m}} h_{\sigma, k}^{(l)}(\alpha) \beta_1^k \cdots \beta_{n-m}^k, \quad (5.13) \]

where the \(h_{\sigma, k}^{(l)}\) are analytic functions in \(\alpha\) in a neighborhood of 0. Actually, if \(\gamma_j\) is defined semi-locally as the smooth complete intersection

\[\gamma_j = \{\zeta \in \mathbb{C}^m : \Phi_{j, 1}(\zeta) = \cdots = \Phi_{j, m}(\zeta) = 0\}, \]

then for any \(j = 1, ..., d\) and for any \(k = 1, ..., n - m\),

\[\zeta_k(p_\iota(\alpha, \beta)) = \text{Res} \left[\phi_j \zeta_k \Phi_j \wedge d\Lambda_{\alpha, \beta} \middle| \begin{array}{c} \Phi_{j, 1}, ..., \Phi_{j, m}, \Lambda_{\alpha, \beta, 1}, ..., \Lambda_{\alpha, \beta, n-m} \end{array} \right] \]

\[= \text{Res} \left[\phi_j \left(\sum_{r=1}^m \alpha_{k, r} \zeta_{n-m+r} + \beta_k \right) \Phi_j \wedge d\Lambda_{\alpha, \beta} \middle| \begin{array}{c} \Phi_{j, 1}, ..., \Phi_{j, m}, \Lambda_{\alpha, \beta, 1}, ..., \Lambda_{\alpha, \beta, n-m} \end{array} \right] , \]
where
\[\Lambda_{\alpha,\beta,k} := \zeta_k - \sum_{r=1}^{m} \alpha_{k,r} \zeta_{n-m+r} - \beta_k, \quad k = 1, \ldots, n - m, \]
\[d\Phi_j := \bigwedge_{k=1}^{m} d\Phi_{j,k}, \quad d\Lambda_{\alpha,\beta} := \bigwedge_{k=1}^{n-m} d\Lambda_{\alpha,\beta,k}, \]
and \(\varphi_j \) is a test-function which is supported by an arbitrary small neighborhood of \(p_{j0} \) and is such that \(\varphi \equiv 1 \) near this point. This implies that one can also represent in fact any sum \(\sum_{j} \zeta_l[p_j(\alpha,\beta)], \quad l = 1, \ldots, n, \) in the form (5.11). Since we also have for any \(j = 1, \ldots, d, \) for any \(\sigma \in \mathbb{N}^* \) and for any \(k = 1, \ldots, n - m \) that
\[\text{Res} \left[\varphi_j \left(\zeta_k - \sum_{r=1}^{m} \alpha_{k,r} \zeta_{n-m+r} - \beta_k \right)^{\sigma} \right] = 0, \]
it follows by induction on \(\sigma \) that (5.14) holds in a neighborhood of \((0, 0) \) for any \(l = 1, \ldots, n, \) in particular for any \(l = n - m + 1, \ldots, n \) (here we use the fact that one can choose \(\alpha \) generic in a neighborhood of the origin in \((\mathbb{C}^m)^{n-m}\)).

At this point we return to the proof of the Proposition 5.2.

Proof of Proposition 5.2. For any \(l = n - m + 1, \ldots, n, \) let \(A_l \) be the polynomial in variable \(X_l \) (with coefficients analytic in \(\alpha \) and polynomial in \(\beta \)) defined as
\[A_l(X_l, \alpha; \beta) = \prod_{j=1}^{d} (X_l - \zeta_l[p_j(\alpha,\beta)]) = X_l^d - A_{l1}(\alpha,\beta)X_l^{d-1} + \cdots + (-1)^d A_{ld}(\alpha,\beta) \tag{5.14} \]
(\(\alpha \) and \(\beta \) close to 0 in their respective spaces). For any such \(\alpha \), denote as \(P_{l,\alpha} \) the element in \(\mathbb{C}[X_1, \ldots, X_n] \) defined as
\[P_{l,\alpha}(X) = A_l \left(X_l, \alpha; X_1 - \sum_{r=1}^{m} \alpha_{1,r}X_{n-m+r}, \ldots, X_{n-m} - \sum_{r=1}^{m} \alpha_{n-m,r}X_{n-m+r} \right). \]

For each \(\alpha \) close to 0, \(P_{l,\alpha} \) is a polynomial in variables \((X_1, \ldots, X_n) \) with total degree less than \(d + D \). If \(\zeta \) is a point in \(\gamma_j \), then one can write, for any \(\alpha \) close to 0 in \((\mathbb{C}^m)^{n-m}\), for any \(l = n - m + 1, \ldots, n, \)
\[\zeta_l = \zeta_l[p_j(\alpha,\beta)], \]
\[
\beta_{\zeta,k} = \zeta_k - \sum_{r=1}^{m} \alpha_{k,r} \zeta_{n-m+r};
\]
then, it follows from the definition (5.15) of \(A_l \), hence of \(P_{l,\alpha} \), that \(\zeta \in V(P_{l,\alpha}) \) for any \(l = n - m + 1, \ldots, n \) and for any \(\alpha \) close to zero. All pieces of manifold \(\gamma_1, \ldots, \gamma_d \) lie in \(V(P_{n-m+1,\alpha}, \ldots, P_{n,\alpha}) \) for any \(\alpha \) close to 0 in \((\mathbb{C}^m)^n \).

Moreover, if \(\epsilon \) is sufficiently small and \(K = K_\epsilon > 0 \) large enough, then for any \(\alpha \) such that \(\|\alpha\| < \epsilon \), define the strip
\[
\Gamma_{\alpha,\epsilon} := \{ \zeta \in \mathbb{C} : \|\zeta\| \geq K, \max_{k=1,\ldots,n-m} |\zeta_k - \sum_{r=1}^{m} \alpha_{k,r} \zeta_{n-m+r}| < \epsilon \}.
\]
For any \(\zeta \in \Gamma_{\alpha,\epsilon} \) one has that
\[
\max_{l=n-m+1,\ldots,n} |P_{l,\alpha}(\zeta)| = \max_{l=n-m+1,\ldots,n} \prod_{j=1}^{d} |\zeta_l - \zeta_l[p_j(\alpha, \beta_{\zeta})]| \geq \kappa \|\zeta\|^d,
\]
where \(\kappa = \kappa_\epsilon \) is a strictly positive constant (independent of \(\alpha \)).

Let now \(\mathcal{F} \) be the finite subset in \(L_{0,0} \) defined as
\[
\zeta \in \mathcal{F} \iff \forall l = n - m + 1, \ldots, n, \exists j \in \{1, \ldots, d\}, \zeta_l = \zeta_l[p_{j0}]
\]
and \(\mathcal{F}' := \mathcal{F} \setminus \{p_{10}, \ldots, p_{d0}\} \). There exists an affine form \(\Lambda \) in \(X_{n-m+1}, \ldots, X_n \) such that for any \(\zeta \in \mathcal{F}' \),
\[
\Lambda(\zeta) \neq \Lambda(p_{j0}), \ j = 1, \ldots, d.
\]
We can define
\[
B(X_{n-m+1}, \ldots, X_n ; \beta) = \prod_{j=1}^{d} (\Lambda(X_{n-m+1}, \ldots, X_n)) - \Lambda(p_{j}(0, \beta))
\]
and \(Q(X) = B(X_{n-m+1}, \ldots, X_n ; X_1, \ldots, X_{n-m}) \). One can check as before that \(V(Q) \) contains the pieces \(\gamma_1, \ldots, \gamma_q \). Moreover \(Q \) does not vanish at any point in \(\mathcal{F}' \), and \(\deg Q \leq d + D \).

We now define the family \((P_l)_{l \in \mathcal{J}} \) as the collection of all polynomials \(P_{l,\alpha} \), \(\|\alpha\| < \epsilon \), \(l = n - m + 1, \ldots, n \), and the polynomial \(Q \). It is clear that
(5.12) holds (since it already holds for the collection \((P_{i,\alpha})\), \(\|\alpha\| < \epsilon\), \(l = n - m + 1, \ldots, n\)). Since the pieces \(\gamma_1, \ldots, \gamma_d\) lie in \(V(P)\), one has, for any \((\alpha, \beta)\) such that \(\max(||\alpha||, ||\beta||) < \epsilon\),

\[
\{p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta)\} \subset L_{\alpha,\beta} \cap V(P).
\]

Since points in \(V(P) \cap \Gamma,\epsilon\) lie in the compact set \(\{\zeta \in \mathbb{C}^n : ||\zeta|| \leq K\}\) (because of (5.12)), points in \(L_{\alpha,\beta} \cap V(P)\) uniformly approach points in \(L_{0,0} \cap V(P)\) when \((\alpha, \beta)\) tends to \((0, 0)\). Since \(Q \neq 0\) on \(F'\) and

\[
V(P_{n-m+1,0}, \ldots, P_{n,0}) \cap L_{0,0} \subset F,
\]

one has that \(V(P) \cap L_{0,0} = \{p_{10}, \ldots, p_{d0}\}\). Therefore, if we refine the choice of \(\epsilon\), we can assume that (5.13) holds. This concludes the proof of our proposition. ♦

In the particular case \(m = 1\), one can be more precise and repeat Wood’s argument in order to obtain the:

Proposition 5.3 Let \(\gamma_1, \ldots, \gamma_d\) be \(d\) disjoint pieces of smooth analytic hypersurface in the affine space \(\mathbb{C}^n\). Suppose that for any \((\alpha, \beta) \in (\mathbb{C}^{n-1})^2\) close to \((0,0)\), the affine line

\[
L_{\alpha,\beta} := \{\zeta \in \mathbb{C}^n ; \zeta_k = \alpha_k \zeta_n + \beta_k, \ k = 1, \ldots, n-1\}
\]

intersects transversally \(\gamma_1, \ldots, \gamma_d\) respectively at points \(p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta)\). Assume that there exists \(D \in \mathbb{N}\) and analytic functions \(h_k, \ |k| \leq D + 1\), in a neighborhood of \(0\) in \(\mathbb{C}^{n-1}\) such that for \((\alpha, \beta)\) close to \((0,0)\) in \((\mathbb{C}^{n-1})^2\),

\[
\sum_{j=1}^d \zeta_n[p_j(\alpha, \beta)] = \sum_{\substack{|k| \leq D + 1 \\text{in} \ \mathbb{C}^{n-m} \ \text{with} \ |k| \leq D+1}} h_k(\alpha) \beta_{k_1}^{k_1} \cdots \beta_{k_n-m}^{k_n-m}.
\]

(one from the \(h_k\) for \(|k| = D + 1\) being non identically zero). Then, one can find a polynomial \(P\) with degree \(d + D\) which defines an affine algebraic variety \(V(P)\) such that for some convenient constants \(\epsilon > 0, \kappa > 0, K > 0\), one has:
• if
\[\Gamma_\epsilon := \bigcup_{(\alpha,\beta) \in \mathcal{C}_m \times \mathcal{C}_n - m} L_{\alpha,\beta}, \]

then
\[\zeta \in \Gamma_\epsilon, \quad \| \zeta \| \geq K \implies |P(\zeta)| \geq \kappa \| \zeta \|^d; \]

• for \(\max(\| \alpha \|, \| \beta \|) < \epsilon \), one has
\[L_{\alpha,\beta} \cap V(P) = \{ p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta) \}. \]

Proof. We repeat here Wood’s argument (as we did in the proof of proposition 5.2). For \((\alpha, \beta)\) close to \((0, 0)\), the points \(p_1(\alpha, \beta), \ldots, p_d(\alpha, \beta)\) are the only intersection points (in the affine space \(\mathbb{C}^n\)) between the affine line \(L_{\alpha,\beta}\) and the affine algebraic hypersurface (with exact degree \(d + D\) for \(\alpha\) generic) \(\{ P_{n,\alpha} = 0 \}\). Since these intersection points are simple (the line hits each \(\gamma_j\) transversally), the homogeneous polynomial \(h_P n, \alpha\) vanishes at the order at most \(D\) at the point \(p_{\alpha,\infty}\) at infinity on the projective line \([L_{\alpha,0}]\). On the other hand, one has
\[|P_{n,\alpha}(\zeta)| \geq \kappa \| \zeta \|^d \]
in a tube \(\Gamma_{\alpha,\epsilon}\) along the line \(L_{\alpha,0}\) (see (5.16) in the proof of proposition 5.2). This implies that the the homogeneous polynomial \(h_P n, \alpha\) vanishes at the order at least \(D\) at the point \(p_{\alpha,\infty}\). Therefore, the hypersurface \(\{ P_{n,\alpha} = 0 \}\) (with degree \(d + D\)) contains the germs \(\gamma_1, \ldots, \gamma_d\) (as simple germs) and the germ corresponding to the hyperplane \(H_\infty\) (this germ being counted with multiplicity \(D\)). This, combined with the fact that the degree of \(P_{n,\alpha}\) is exactly \(d + D\), implies that all the polynomials \(P_{n,\alpha}\) define the same algebraic hypersurface \(H\) in \(\mathbb{C}^n\). Since they have the same degree, they are equal (up to some constant) to a polynomial \(P\). As the auxiliary construction of the polynomial \(Q\) is not needed in the hypersurface case, proposition 5.3 follows immediately from proposition 5.2.

\[\diamond \]

Remark. In the particular case \(W = A^n_{d^*}, m = 1\), proposition 5.3 appears as the reciprocal assertion to proposition 5.1. The difficulty in the more general case \(W = A^n_{d^*}, m > 1\), is to be able to interpolate the germs \(\gamma_1, \ldots, \gamma_d\) by an algebraic complete intersection \(V(P_1, \ldots, P_m)\). It does not seem possible
when $m > 1$ even if conditions (5.11) are satisfied with $D = 0$ (which would mean that the projective variety $\{^h P_1 = \ldots = ^h P_m = 0\}$ corresponding to the complete intersection $V(P)$ that interpolates the pieces γ_j does not hit $|\mathcal{H}_\infty| \cap |\mathcal{L}_{0,0}|$). We do not have the answer to that question yet. Nevertheless, proposition 5.2 can be seen as an attempt to settle a converse to proposition 5.1 in general.

References

[1] M.F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure. Appl. Math. 23, 1970, 145-150.

[2] G. Biernat, La représentation paramétrique d’un résidu multidimensionnel, Rev. Roumaine Math. Pures and Appl. 36, 1991, no. 5-6, 207-211.

[3] J.E. Björk, Residue currents and \mathcal{D}-modules on complex manifolds, preprint, 1996.

[4] J.E. Björk, Analytic \mathcal{D}-modules and applications, Kluwer Science Publications, 1993.

[5] C. A. Berenstein, A. Yger, A formula of Jacobi and its consequences, Annales de l’École Normale Supérieure, 24, 1991, 73-83.

[6] C. A. Berenstein, A. Yger, Green currents and analytic continuation, Journal d’analyse mathématique, 75, 1990, 1-50.

[7] C. A. Berenstein, A. Yger, Analytic residue theory in non complete intersection case. J. reine angew. Math. 527, 2000, 203-235.

[8] J. Chadzynski, T. Krasinski, A set on which the Lojasiewicz exponent at infinity is attained, Ann. Pol. Nath. LXVII. 2, 1997, p. 191-197.

[9] N. Coleff, M. Herrera, Les courants résidus associés à une forme méromorphe, Lect. Notes in Math. 633, Springer-Verlag, New York, 1978. (N.S.) 33, 1996, no. 3, 295-324.
[10] D. Eisenbud, M. Green, J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33, 1996, no. 3, 295-324.

[11] E. Fortuna, S. Lojasiewicz Sur l’algébricité des ensembles analytiques complexes, J. reine angew. Math. 329, 1981, 215-220.

[12] P. Griffiths, J. Harris, *Principles of algebraic geometry*, Wiley Interscience, New York, 1978.

[13] R. Hübbl, E. Kunz, Integration of differential forms on schemes, J. reine. angew. Math. 410, 1990, 53-83.

[14] R. Hübbl, Residues of regular and meromorphic differential forms, Math. Ann. 300, 1994, 605-628.

[15] R. Hübbl, E. Kunz, On the intersection of algebraic curves and hypersurfaces, Math. Z., 1998, 263-278.

[16] C.G.J. Jacobi, De relationibus, quae locum habere denent inter puncta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algebraici, Gesammelte Werke, Band III, 329-354.

[17] E. Kunz, *Kähler differentials*, Advanced topics in Mathematics, Braunschweig, Wiesbaden 1986.

[18] E. Kunz, Über den n-dimensionalen Residuensatz, Jahresber. DMV 94, 1992, 170-188.

[19] P. Lelong, *Fonctions plurisousharmoniques et formes différentielles positives*, Gordon and Beach, Paris-London-New York, 1968.

[20] J. Lipman, *Residues and Traces of differential forms via Hochschild homology*, Contemporary Math. 61, 1987, Amer. Math. Society.

[21] J. Lipman, *Dualizing sheaves, differentials and residues on algebraic varieties*, Astérisque 117, 1984.

[22] M. Méo, Résidus dans le cas non nécessairement intersection complète, C. R. Acad. Sci. Paris, t. 333, Série I, 2001, 33-38.
[23] M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type, Publicacions Matemàtiques, 44, 2000, 85-117.

[24] W. Rudin, A geometric criterion for algebraic varieties, J. Math. Mech. 17, 1968, 671-683.

[25] J.P. Serre, *Groupes algébriques et corps des classes*, Hermann, Paris, 1969.

[26] M. Spivak, *Introduction to differential Geometry*, vol 1. Publish or Perish Press, 1980.

[27] W. Stoll, The growth area of a transcendental analytic set I, II, Math. Annal. 156, 1964, 144-170.

[28] A. Vidras, A. Yger, On some generalizations of Jacobi’s Residue Formula, Annales Scienc. de l’École Normale Supérieure, 34, 2001, 131-157.

[29] A. Yger, Lectures at Croce di Magara, June 1998, informal notes.

[30] A. Yger, Résidus, courants résiduels et courants de Green, in *Géométrie complexe*, F. Norguet, S. Ofman, J. J. Szczeciniarz ed., Actualités Scientifiques et Industrielles 1438, Hermann, 1996.

[31] J. A. Wood, A simple criterion for local hypersurfaces to be algebraic, Duke Mathematical Journal, 51, 1, 1984, 235-237.

[32] H. Zhang, Formules de Jacobi et méthodes analytiques. preprint, 2000.