Supporting Information for

Spatiotemporal properties of sub-Rayleigh and supershear ruptures inferred from full-field dynamic imaging of laboratory experiments

V. Rubino¹, A. J. Rosakis¹, N. Lapusta²,³

¹Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California, USA, ²Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California, USA, ³Seismological Laboratory, California Institute of Technology, Pasadena, California, USA.

Additional Supporting Information (Files uploaded separately)

Table S1
Captions for Movies S1 to S4
Table S1. Imaging and image analysis parameters for vision measurements

Camera	HPV-X 400 x 250 pixel array
Lens	Nikon AF Micro-Nikkor 200 mm
Light source	Cordin 605
Exposure	200 ns
Aperture setting	F/8

Small field of view

Field of view	19 x 12 mm²
Subset size	41 x 41 to 51 x 51 pixels²
Step	1 pixel
Filter type	Center-weighted gaussian
Magnification	45.7 - 46.5 µm/pixel
Average speckle size	279 µm

Large field of view

Field of view	131 x 82 mm²
Subset size	41 x 41 pixels²
Step	1 pixel
Filter type	Center-weighted gaussian
Magnification	327.9 µm/pixel
Average speckle size	984 µm
Movie 1. Experimental measurements of a sub-Rayleigh rupture revealing the spatiotemporal evolution of the fault-parallel (left) and fault-normal (right) velocity components. Full-field velocity maps with contour lines (top) and plots of the particle velocities tracked along the fault (bottom). The particle velocities in m/s are obtained for the sub-Rayleigh case discussed in the text ($P = 12$ MPa, $\alpha = 24^\circ$). Time is in microseconds starting from rupture nucleation. The rupture arrival is anticipated by the dilatational field entering the imaging window at a time $t = 60.3\,\mu$s, signaled by the two lobes in the fault-parallel velocity field and the associated positive motion in the fault-normal direction. As the rupture enters the field of view at $t = 63.3\,\mu$s, the fault-parallel velocity discontinuity across the interface increases rapidly with the particle velocity reaching $+/-\,1.2$ m/s on each side of the fault. At the same time, the fault-normal velocity is characterized by a pronounced negative motion, localized around the rupture tip, with a peak of 2.4 m/s indicating the predominance of the fault-normal over the fault-parallel motion for sub-Rayleigh ruptures.

Movie 2. Experimental measurements of a supershear rupture revealing the spatiotemporal evolution of the fault-parallel (left) and fault-normal (right) velocity components. Full-field velocity maps with contour lines (top) and plots of the particle velocities tracked along the fault (bottom). The particle velocities in m/s are obtained for the supershear case discussed in the text ($P = 23$ MPa, $\alpha = 29^\circ$). Time is in microseconds starting from rupture nucleation. The rupture arrival is signaled by the sharp increase in the fault-parallel velocity up to 12 m/s. The fault-parallel motion is accompanied by a fault-normal motion in the positive x_2 direction with a peak of 1.5 m/s. The positive fault-normal motion is localized to a near-fault region and is followed by a negative motion of 1 m/s, indicating the prevalence of the fault-parallel over the fault-normal motion for supershear ruptures. The evolving maps also capture the formation of shear Mach fronts, a key feature of supershear ruptures.

Movie 3. Spatiotemporal surface of the fault-parallel velocity of a supershear rupture. The plot is produced for the supershear rupture discussed in the text with $P = 23$ MPa and $\alpha = 29^\circ$. At the beginning of the animation, the fault-parallel velocity time history is shown for a point on the interface ($x_2 = 0^\circ$) and at the center of the field of view ($x_2 = 8.9\,\text{mm}$), replicating the time history shown in Figure 9b (blue curve). The plot is then rotated to display the x_2 axis and the animation develops by incrementally adding time histories at increasing values of x_2, up to $x_2 = -5.2\,\text{mm}$, so that the last curve added corresponds to the time history shown in Figure 9d (blue curve). The three-dimensional plot is then spun around to show the spatiotemporal surface.

Movie 4. Spatiotemporal surface of the fault-normal velocity of a supershear rupture. The plot is produced for the supershear rupture discussed in the text with $P = 23$ MPa and $\alpha = 29^\circ$. At the beginning of the animation, the fault-parallel velocity time history is shown for a point on the interface ($x_2 = 0^\circ$) and at the center of the field of view ($x_2 = 8.9\,\text{mm}$), replicating the time history shown in Figure 9b (red curve). The plot is then rotated to display the x_2 axis and the animation continues by incrementally adding time histories at increasing values of x_2, up to $x_2 = -5.2\,\text{mm}$, so that the last curve added corresponds to the time history shown in Figure 9d (red curve). The three-dimensional plot is then spun around to show the spatiotemporal surface.