Final 5-year outcomes following aortic valve replacement with a RESILIA™ tissue bioprosthesis

Krzysztof Bartus, Radoslaw Litwinowicz, Agata Bilewska, Maciej Stapor, Maciej Bochenek, Jacek Rozanski, Jerzy Sadowski, Grzegorz Filip, Mariusz Kusmierczyk and Boguslaw Kapelak

John Paul II Hospital, Krakow, Poland
Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Krakow, Poland
Department of Cardiac Surgery and Transplantology, Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
Department of Heart Transplantation and Mechanical Circulatory Support, Centre for Heart Diseases, Wroclaw Medical University, Wroclaw, Poland

* Corresponding author. Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Jagiellonian University, Pradnicka 80, 31-202 Krakow, Poland. Tel: +48-126-143075; e-mail: radek.litwinowicz@gmail.com (R. Litwinowicz).

Received 9 April 2020; received in revised form 15 July 2020; accepted 23 July 2020

Abstract

OBJECTIVES: Long-term durability of bioprosthetic valves is predominantly limited by structural valve deterioration. RESILIA™ tissue has exhibited reduced calcification in pre-clinical and early clinical studies. This study evaluated the 5-year clinical and haemodynamic outcomes of an aortic valve with this tissue.

METHODS: This was a prospective, non-randomized, single-arm study of 133 patients implanted with a RESILIA aortic bioprosthesis between July 2011 and February 2013 at 2 sites in Poland. Clinical outcomes and haemodynamic performance were assessed annually for 5 years post-implant. Safety events were adjudicated by a Clinical Events Committee and echocardiographic data were assessed by an independent core laboratory.

Presented at Heart Valve Society Annual Meeting, Sitges, Spain, 11–13 April 2019.
RESULTS: Mean patient age was 65.3 ± 13.5 years, with 34 patients (25.6%) <60. The mean follow-up was 4.2 ± 1.5 years. Early (<30 days) and late (>30 days) all-cause mortality were 2.3% (N = 3) and 3.2%/late patients-years (N = 18) respectively. Early events included thromboembolism in 3 patients (2.3%). Late valve-related events included endocarditis in 1 patient, which led to explant, and valve thrombosis in another patient. There were no events of structural valve deterioration throughout the study. At 5 years, mean gradient was 14.8 ± 7.6 mmHg and effective orifice area was 1.4 ± 0.5 cm², a marked improvement over baseline values. All New York Heart Association class III patients and most class II patients at baseline had improved classifications at 5 years.

CONCLUSIONS: The bioprosthesis with RESILIA tissue demonstrated a good safety profile with excellent haemodynamic performance over 5 years of follow-up. These encouraging outcomes warrant additional investigation of this novel tissue.

Clinical trial registration number: NCT01651052

Keywords: Aortic valve replacement • RESILIA • Bioprosthesis

INTRODUCTION

Aortic valve replacement (AVR) in patients with severe aortic stenosis relieves symptoms and increases survival [1–4]. Although bioprosthetic valves are recommended for surgical AVR in patients >60–65 years old, the optimal type of prosthesis in younger patients is less clear [1–3]. The excellent durability of mechanical valves may be offset by the need for lifetime anticoagulation. Bioprosthetic valves, on the other hand, are associated with an increased risk of structural valve deterioration (SVD), particularly in younger patients [5].

Through mid-term follow-up, contemporary bioprostheses for AVR are not expected to deteriorate structurally, and have been reported to exhibit freedom from either SVD or reoperation due to SVD of between 97% and 100%. Over 5 years of follow-up, the Carpentier-Edwards PERIMOUNT Magna valve series (Edwards Lifesciences, Irvine, CA, USA) has exhibited freedom from SVD or reoperation due to SVD of 99% [6–8]. The Trifecta bioprosthesis (Abbott Laboratories, Santa Clara, CA, USA) over 5 years has demonstrated similar durability, between 97% and 99% [9–12]. However, long-term durability >10 years is key, and such data with contemporary bioprostheses are still lacking.

In an attempt to reduce SVD and improve bioprosthetic durability, a new bioprosthesis tissue platform has been developed. RESILIA™ tissue is made of bovine pericardium that undergoes integrity preservation technology [13]. This technology consists of stable capping that permanently blocks calcium (Ca²⁺) binding sites, and glycerolization that allows dry storage of the bioprosthesis prior to implant. The RESILIA tissue was incorporated within a standard bioprosthesis design and implanted in a cohort of 133 patients who underwent surgical AVR at 2 centres in Poland. An earlier report of this study through 1 year of follow-up found this bioprosthesis to be safe and associated with improved haemodynamic performance compared with baseline [14]. This report specifies upon the final outcomes of this study over a follow-up period of 5 years.

PATIENTS AND METHODS

Study design and patient population

This study was prospective, multicentre, single arm, and observational, designed to evaluate the safety and haemodynamic performance of a novel aortic valve incorporating RESILIA tissue (Clinical Trial Number NCT01651052). Patients who were 18 years of age or older and were candidate for AVR with or without concomitant procedures were included. Details regarding patient inclusion and exclusion criteria have been reported previously [14]. The study protocol was reviewed and approved by the local Ethics Committee (Jagiellonian University Bio-Ethics Committee no. KBET/163/I/2010 of 7 October 2010) and Polish Ministry of Health (CEBK). All study participants provided written informed consent prior to enrolment. This report is based upon the study’s final data extraction of 20 April 2018.

Study device and surgical procedures

The study device consisted of the model 11000 aortic bioprosthesis (Edwards Lifesciences, Irvine, CA, USA). This tri-leaflet bioprosthesis is similar to the Carpentier-Edwards PERIMOUNT Magna Ease aortic valve (Model 3300TFX, Edwards Lifesciences), except for the RESILIA tissue leaflets. All cases were performed at the 2 largest cardiac surgery centres in Poland. Details about the surgical procedure have been previously reported [14]. The decision to implant the study device was based on an indication for surgical AVR, an appropriate risk profile and a surgeon confirmation that the bioprosthesis could be implanted in the consenting patient. Per protocol, it was suggested that patients be maintained on oral anticoagulant therapy for ~2–3 months based on American College of Cardiology/American Heart Association 2008 guidelines [15]; however, this was left to the discretion of the investigator.

Study end points and follow-up

Safety end points were evaluated during the early (<30 days) and late (>30 days) postoperative periods and were based on objective performance criteria described previously [16]. All safety events were defined according to established guidelines [17] and were adjudicated by an independent Clinical Events Committee and included all-cause mortality, valve-related mortality, thromboembolism, all bleeding, major bleeding that required transfusion, major paravalvular leak (PVL), haemolysis, valve thrombosis, endocarditis, valve explant, non-structural valve
dysfunction and SVD. Major PVL was defined as a PVL of any grade resulting in intervention or considered a serious adverse event. The definition of SVD included dysfunction or deterioration involving the operated valve (excluding infection or thrombosis), as determined by reoperation, autopsy or clinical investigation [17].

Haemodynamic end points were assessed by echocardiography and included the mean systolic transvalvular pressure gradients and the effective orifice area (EOA). All echocardiography data were analysed by an independent core laboratory (BioTelemetry Research, Rockville, MD, USA). Patients were assessed preoperatively, at discharge, at 3–6 months and at 1, 2, 3, 4 and 5 years of follow-up. The preoperative assessments included valve haemodynamic performance and New York Heart Association (NYHA) functional class. These same parameters as well as the safety end points were assessed postoperatively, except that haemodynamic measures were not required at the 2- or 4-year follow-up unless murmur was heard on auscultation.

Data management and statistical analysis

The 2 investigational sites collected and recorded the clinical data. Edwards Lifesciences, the study sponsor, monitored and aggregated the clinical data, and analysed them per the protocol and the statistical analysis plan. The investigators were responsible for an accurate accounting of these data as represented in this report. Summary statistics for categorical variables include the number and percentage of subjects with a recorded value for the variable of interest and mean ± standard deviation for continuous measures. Early safety events were defined as those occurring ≤30 days of the index procedure, and were reported as the number of events divided by the number of enrolled subjects. Linearized rates were used to summarize safety events for the late (>30 day) postoperative period. Late event rates were calculated as the number of late events divided by the total number of late patient-years. In addition, Kaplan–Meier analyses were undertaken on each of the safety end points and the freedom from many of these events is reported at 5 years. SAS version 9.3 was used for all statistical analyses.

RESULTS

Baseline characteristics

A total of 133 patients requiring surgical AVR were implanted with the study valve between July 2011 and February 2013. The average age of the patients at implant was 65.3 ± 13.5 years, and 26% were ≤60 years old. The proportion of patients with NYHA class I, II, III and IV symptoms at baseline was 21.1%, 45.9%, 32.3% and 0.8%, respectively. Patients underwent AVR for one or more of the following reasons: degenerative valve disease in 93 (69.9%), dystrophic calcification in 24 (18.0%), rheumatic heart disease in 9 (6.8%), endocarditis in 2 (1.5%) and other aetiologies in 18 (13.5%). The baseline characteristics of the patients implanted with the study valve are summarized in Table 1. Among key comorbidities and risk factors at baseline, 82% had mitral insufficiency, 79% systemic hypertension, 72% aortic insufficiency, 69% hyperlipidaemia/hypercholesterolaemia, 68% tricuspid insufficiency, 48% coronary artery disease, 25% cardiac rhythm/conduction disturbance and 20% were smokers.

Table 1: Demographics and baseline characteristics

Variables	Implanted (N = 133)
Age (years)	
Mean ± SD	65.3 ± 13.5
Range (min-max)	22.0–88.0
Gender/sex, n (%)	
Female	68 (51.1)
Male	65 (48.9)
LVEF	
Mean ± SD	61.2 ± 13.7
Range (min-max)	22.4–85.6
EuroSCORE II (%)	
Mean ± SD	1.4 ± 1.0
Range (min-max)	0.5–6.0
STS risk of mortality (%)	
Mean ± SD	1.4 ± 0.9
Range (min-max)	0.4–4.0
BMI (kg/m²)	
Mean ± SD	29.2 ± 6.7
Range (min-max)	15.8–62.1
Underweight, n (%)	2 (1.5)
Normal weight, n (%)	31 (23.3)
Overweight, n (%)	51 (38.3)
Obese, n (%)	49 (36.8)
Aortic valve pathology, n (%)	
Aortic stenosis	108 (86)
Aortic insufficiency	81 (72)
NYHA, n (%)	
Class I	28 (21.1)
Class II	61 (45.9)
Class III	43 (32.3)
Class IV	1 (0.8)

Percentages are based on the total number of implanted subjects. Baseline LVEF data were not available for 20 subjects. EuroSCORE II was not available for 20 subjects. STS risk of mortality score was not available for 23 subjects.

Procedural outcomes

All 133 patients were successfully implanted with the study valve during the first attempt (100% technical success). Twelve patients (9%) were implanted with a valve of 19 mm, 46 patients (35%) with a valve of 21 mm, 41 patients (31%) with a valve of 23 mm, 24 patients (18%) with a valve of 25 mm and 10 patients (8%) with a valve of 27 mm. Figures 1 and 2 display the surgical approach as well as aortic cross-clamp and cardiopulmonary bypass times. Out of 133 patients successfully implanted, 114 patients (85.7%) underwent isolated surgical AVR. The surgical approaches consisted of a full sternotomy in 117 patients (88.0%) and an upper mini sternotomy in 16 (12.0%). Mean aortic cross-clamp and cardiopulmonary bypass times were 61.7 ± 14.4 and 96.2 ± 25.6 min, respectively. In the 114 patients who underwent isolated AVR, the mean aortic cross-clamp and cardiopulmonary bypass times were 59.6 ± 13.1 and 94.5 ± 25.2 min, respectively. The length of hospital stay for all 133 patients was 9.7 ± 5.0 days, with 2.2 ± 2.4 days in the intensive care unit and 7.6 ± 5.4 days in the general ward.
Safety outcomes

Patients were followed up for a mean of 4.2 ± 1.5 years. Early and late safety event rates, including valve-relatedness, are summarized in Table 2. In the early period, there were 3 all-cause deaths (2.3%), of which 1 (0.8%) was valve-related. In the late period, there were 18 all-cause deaths (3.2%/late patient-years), of which 4 (0.7%/late patient-years) were valve-related. Nine patients (6.8%) and 2 patients (0.4%/late patient-years) had major bleeding in the early and late period, respectively. There was 1 case of endocarditis in the late period, which led to explant of the valve and 1 other case of valve thrombosis which was discovered postmortem. There were no events of SVD or of major PVL in either the early or late period. Table 3 shows the Kaplan–Meier freedom from various safety end points over 5 years, and Fig. 3 shows a Kaplan–Meier curve of 2 event types: all-cause mortality and SVD.

Haemodynamic outcomes

The mean transvalvular gradients and EOAs over 5 years by valve size are shown in Fig. 4. The gradients over 5 years represent a sustained improvement compared to the values at baseline. Across all valve sizes, the mean gradients were 13.9 ± 6.1, 13.8 ± 6.4, 14.3 ± 6.1, 15.0 ± 7.2 and 14.8 ± 7.6 mmHg at years 1–5, respectively. Similarly, the overall EOAs at years 1–5 were 1.8 ± 0.6, 1.6 ± 0.5, 1.5 ± 0.5, 1.5 ± 0.4 and 1.4 ± 0.5 cm² and represented a marked improvement over that observed at baseline (1.0 ± 0.8 cm²).

Transvalvular/central, paravalvular and total regurgitation are shown in Fig. 5. The severity of transvalvular/central leak was mild in no >5% of patients each year over the 5-year observational period, with no measurements of moderate or severe, and with all other patients exhibiting none/trivial such leak. One patient exhibited moderate PVL at discharge, but over the annual follow-ups, there were no observations of moderate or severe PVL, and only a few per cent of patients exhibited mild PVL.

New York Heart Association functional status

Ninety-one patients had their NYHA classification assessed at baseline and 5 years (Table 4). Of the 18 class I patients at baseline,
72% of them remained class I after 5 years and 28% worsened. Of the 47 class II patients at baseline, 51% improved after 5 years, 43% remained class II and 6% worsened. Of the 25 class III patients at baseline, all of them were either class I or class II after 5 years. The 1 class IV patient at baseline improved to class I at 5 years.

DISCUSSION

This trial evaluated the clinical outcomes and haemodynamic performance of an aortic bioprosthesis with RESILIA tissue in 133 patients monitored over 5 years of follow-up. Valve haemodynamics and safety outcomes were good. Furthermore, there were no events of SVD over the follow-up period. A larger recent multicentre observational study of 689 patients investigating AVR outcomes with the same aortic valve with RESILIA tissue also exhibited good haemodynamics and safety outcomes and zero events of SVD through 4 years of follow-up [18, 19]. In their totality, these data are encouraging for RESILIA tissue; but, of course, longer-term data are mandatory.

Although mechanical valves are often recommended for younger patients because they provide superior long-term durability compared to bioprostheses, patients with mechanical valves require lifetime anticoagulation, which increases the risk of major bleeding [2, 3]. The On-X mechanical valve, however, does offer the advantage of requiring a lower international normalized

Patients at risk at 5 years	Cumulative events	Probability event free	Standard error	95% CI	
Mortality	65	21	0.834	0.033	0.768–0.899
Reoperation on study valve	65	1	0.992	0.008	0.977–1.000
Explant	65	1	0.992	0.008	0.977–1.000
Thromboembolism	65	5	0.959	0.018	0.923–0.995
Valve thrombosis	65	1	0.992	0.008	0.976–1.000
All bleeding	60	13	0.898	0.027	0.845–0.951
Major bleeding	60	11	0.913	0.025	0.864–0.963
Major paravalvular leak	65	0	1.000	0.000	1.000–1.000
Endocarditis	65	1	0.992	0.008	0.977–1.000
Haemolysis	65	1	1.000	0.000	1.000–1.000
Non-structural valve dysfunc	64	1	0.991	0.009	0.974–1.000
Structural valve deterioration	65	0	1.000	0.000	1.000–1.000

CI: confidence interval.
ratio of 1.5–2.0, which should reduce the risk of bleeding. Bioprosthetic valves are a reasonable option for patients who wish to avoid long-term anticoagulation; however, these valves are susceptible to SVD, especially in younger patients. Patient-related risk factors for SVD include younger age, increased body mass index, hypertension, diabetes, smoking, dyslipidaemia and chronic renal failure; valve-related risk factors for SVD include glutaraldehyde fixation of the leaflets, persistent left ventricular hypertrophy, smaller prosthesis size and prosthesis–patient mismatch [20, 21]. One of the prominent mechanisms by which SVD occurs with tissue valves is believed to be due to calcification over time, resulting in leaflet stiffening and/or tearing [22].

Several methods of processing leaflet tissue have been developed in order to try to reduce tissue calcification [13, 23–26]. The RESILIA pericardial tissue undergoes an aldehyde capping process that permanently reduces Ca\(^{2+}\) binding [25]. This is followed by glycerolization to replace water, allowing dry storage. In an elegant randomized chronic study in juvenile sheep, RESILIA tissue exhibited significantly less Ca\(^{2+}\) content and improved haemodynamics compared with PERIMOUNT tissue [26].

The haemodynamics of the study valve reported here over 5 years are encouraging. Mean gradients were between 10 and 15 mmHg for all valve sizes except 19 mm, which were in the 20s mmHg; these are qualitatively very similar to those reported over 5 years for the Carpenter-Edwards PERIMOUNT Magna valve by Chang et al., [27] which were 11–13 mmHg. The breakdown of haemodynamics by valve size reported here highlight the need for consideration of aortic annular/root enlargement in AVR patients with small annuli, especially those requiring a 19 mm valve. Smaller valves exhibit greater increased gradients, and should serve a reminder to all surgeons to implement as safe as possible means to provide increased EOAs and reduced gradients [28, 29]. Smaller valves also limit the viable options that are available to patients in the future in the event that they require reintervention.

An important finding in the present study is that the prostheses with RESILIA tissue showed no evidence of SVD over 5 years of follow-up. Although these mid-term results are promising, it must be recognized that SVD is infrequent in the first few years following AVR. Based upon 12,569 patients who underwent AVR using a Carpenter-Edwards PERIMOUNT valve, the actuarial estimates of explant for SVD at 10, 15 and 20 years in patients 60–80 years old were 1.5%, 5.1% and 8.1%, respectively [29]. In patients <60 years old, the actuarial estimate of explant for SVD at 10, 5 and 20 years was 5.6%, 20% and 45%, respectively.

Our observation of no SVD over 5 years compares well with recent observations of contemporary bioprostheses. Investigating Carpenter-Edwards PERIMOUNT Magna valves over 5 years,
Anselmi et al. [6] and Blasco-Lucas et al. [8] reported 99.1% and 99.2% freedom from SVD, respectively; Axtell et al. [7] reported 99% freedom from reoperation due to SVD. One other contemporary bioprosthesis, the Trifecta valve, has demonstrated similar durability over 5 years of follow-up. Lehmann et al. [12] and Fukuhara et al. [10] reported 98.7% and 97.9% freedom from SVD, respectively. Anselmi et al. [9] and Kilic et al. [11] reported 98.9% and 98.7% freedom from reoperation due to SVD. Additionally, it should be noted that all of these published studies report upon AVR populations with a mean age of between 70 and 75, while our cohort investigating the RESILIA tissue had a mean age of only 65. Regardless, however, in the end, testing with RESILIA tissue will require follow-up much beyond 5 years in order to determine its true long-term durability [30].

Limitations
As the study was not designed with a comparator group, comparison of various performance measures from this study to similar measures from other studies is intrinsically compromised. Also, because the study’s enrolment was non-consecutive, selection bias cannot be excluded. Further, a longer follow-up is required to establish durability of this new tissue.

CONCLUSIONS
One-hundred and thirty-three patients undergoing AVR with a RESILIA tissue valve exhibited good safety and haemodynamic outcomes over 5 years of follow-up. Most importantly in the elucidation of this tissue’s durability, zero events of SVD were observed. Still, additional longer-term data will be necessary to draw conclusions about the durability of this tissue compared to that of contemporary tissue.

ACKNOWLEDGEMENTS
The authors would like to thank Trina Patel and Lily Jeng of Edwards Lifesciences for statistical support of the analyses.

Funding
This work was supported by Edwards Lifesciences.

Conflict of interest: Krzysztof Bartus is a consultant/lecturer for Edwards Lifesciences. Agata Bilewska, Maciej Stapor, Maciej Bochenek, Jacek Rozanski, Jerzy Sadowski, Mariusz Kusmierzczyn and Boguslaw Kapelak have received scientific grant support from Edwards Lifesciences. Agata Bilewska has received speaker honoraria from Edwards Lifesciences. Jacek Rozanski and Jerzy Sadowski have received a grant as Principal Investigator for their respective institution from Edwards Lifesciences. The other authors have no conflicts of interest to report.

Author contributions
Krzysztof Bartus: Conceptualization; Data curation; Methodology; Writing—original draft; Writing—review & editing. Radoslaw Litwinowicz: Project administration; Writing—review & editing. Agata Bilewska: Data curation; Investigation; Writing—review & editing. Maciej Stapor: Data curation; Investigation; Writing—review & editing. Maciej Bochenek: Data curation; Investigation; Writing—review & editing. Maciej Rozanski: Data curation; Project administration; Validation; Writing—review & editing. Jerzy Sadwoski: Project administration; Supervision; Writing—review & editing. Grzegorz Filip: Formal analysis; Visualization; Writing—review & editing. Mariusz Kusmierzczyn: Formal analysis; Visualization; Writing—review & editing. Boguslaw Kapelak: Formal analysis; Visualization; Writing—review & editing.

Reviewer information
European Journal of Cardio-Thoracic Surgery thanks Yoshiro Matsui, David Schibliyko and the other, anonymous reviewer(s) for their contribution to the peer review process of this article.

REFERENCES
[1] Falk V, Baumgartner H, Bax JJ, De Bonis M, Hamm C, Holm P; et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. The task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 2017;52:616–64.
[2] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Fleisher LA et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017;135:e1159–95.
[3] Bartus K, Sadwoski J, Litwinowicz R, Filip G, Jasiński M, Deja M; et al. Changing trends in aortic valve procedures over the past ten years from mechanical prosthetic via stented bioprosthesis to TAVI procedures: analysis of 50,846 aortic valve cases based on a Polish National Cardiac Surgery Database. J Thorac Dis 2019;11:2340–9.
[4] Litwinowicz R, Bartus K, Drwila R, Kapelak B, Konstanty-Kalandyk J, Sobczynski R; et al. In-hospital mortality in cardiac surgery patients after readmission to the intensive care unit: a single-center experience with 10,992 patients. J Cardiothorac Vasc Anesth 2015;29:570–5.
[5] Rodriguez-Caule EA, Macias D, Aduar A, Ferreiro A, Arias-Dachary J, Parody G et al. Biological or mechanical prostheses for isolated aortic valve replacement in patients aged 50–65 years: the ANDALVALVE study. Eur J Cardiothorac Surg 2019;55:1160–7.
[6] Anselmi A, Ruggieri VG, Soulimi RB, Flecher E, Langanay T, Corbineau H et al. Hemodynamic results and mid-term follow-up of 850 19 to 23 mm PERIMOUNT magna ease valves. Thorac Cardiovasc Surg 2019;67:274–81.
[7] Axtell AL, Chang DC, Melnitchouk S, Jassar AS, Tolis G, Villavicencio MA et al. Early structural valve deterioration and reoperation associated with the mitroflow aortic valve. J Card Surg 2018;33:778–86.
[8] Blasco-Lucas R, Permyaner P, Perez M; et al. Effect of bioprostheses anti-calcification treatment: comparative follow-up between Mitroflow LX and Magna pericardial xenografts using a propensity score-weighted analysis. Interact CardioVasc Thorac Surg 2017;24:335–41.
[9] Anselmi A, Ruggieri VG, Lelong B, Flecher E, Corbineau H, Langanay T; et al. Medium-term durability of the Trifecta bioprosthesis for aortic valve replacement. J Thorac Cardiovasc Surg 2017;153:21–8.
[10] Fukuhara S, Shiomi S, Yang B, Kim K, Bolling SF, Haft J; et al. Mid-term durability of the Trifecta bioprosthesis. Ann Thorac Surg 2020;109:720–7.
[11] Kilic A, Sultan I, Navid F, Aranda-Michel E, Chu D, Thoma F; et al. Trifecta aortic bioprosthesis: midterm results in 1,953 patients from a single center. Ann Thorac Surg 2019;107:1356–63.
[12] Lehmann S, Jawad K, Dieterlen MT, Hoyer A, Garbade J, Davvarehala P; et al. Durability and clinical experience using a bovine pericardial prosthetic aortic valve. J Thorac Cardiovasc Surg 2020; doi:10.1016/j.jtcvs. 2019.11.028.
[13] de le Fuente AB, Wright GA, Olin JM, Duhay FG, Kapelak B, Bochenek M; et al. Advanced integrity preservation technology reduces bioprosthesis calcification while preserving performance and safety. J Heart Valve Dis 2015;24:101–9.
[14] Bartuś K, Litwinowicz R, Kuśmierczyk M, Bilewska A, Bochenek M, Stapór M et al. Primary safety and effectiveness feasibility study after surgical aortic valve replacement with a new generation bioprosthesis: one-year outcomes. Kardiol Pol 2017;76:618–24.

[15] Bonow RO, Carabello BA, Chatterjee K, de Leon JF, Faxon DP, Freed MD et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease) endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008;52:e1–142.

[16] Wu Y, Butchart EG, Borer JS, Yoganathan A, Grunkemeier GL. Clinical evaluation of new heart valve prostheses: update of objective performance criteria. Ann Thorac Surg 2014;98:1865–74.

[17] Akins CW, Miller DC, Turina MI, Kouchoukos NT, Blackstone EH, Grunkemeier GL et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. J Thorac Cardiovasc Surg 2008;135:732–8.

[18] Puskas JD, Bavaria JE, Svensson LG, Blackstone EH, Gammie JS et al. The COMMENCE trial: 2-year outcomes with an aortic bioprosthesis with RESILIA tissue. Eur J Cardiothorac Surg 2017;52:432–9.

[19] Bartus K, Litwinowicz R, Bilewska A, Stapór M, Bochenek M, Rozanski J et al. Intermediate-term outcomes after aortic valve replacement with a novel RESILIA tissue bioprosthesis. J Thorac Dis 2019;11:3039.

[20] Filip G, Litwinowicz R, Kapelak B, Piatek J, Bartus M, Konstanty-Kalandyk J et al. Mid-term follow-up after suture-less aortic heart valve implantation. J Thorac Dis 2018;10:6128–36.

[21] Filip G, Litwinowicz R, Kapelak B, Bryndza M, Bartus M, Konstanty-Kalandyk J et al. Patient-prosthesis mismatch after minimally invasive aortic valve replacement. Kardiol Pol 2018;76:908–10.