Respondent-Driven Sampling in Online Social Networks

Christopher M. Homan1, Vincent Silenzio2, and Randall Sell3

1 Rochester Institute of Technology, Rochester, NY. Email: cmh@cs.rit.edu
2 University of Rochester Medical Center, Rochester, NY. Email: vincent_silenzio@URMC.Rochester.edu
3 Drexel University, Philadelphia, PA. Email: rls82@drexel.edu

Abstract. Respondent-driven sampling (RDS) is a commonly used method for acquiring data on hidden communities, i.e., those that lack unbiased sampling frames or face social stigmas that make their members unwilling to identify themselves. Obtaining accurate statistical data about such communities is important because, for instance, they often have different health burdens from the greater population, and without good statistics it is hard and expensive to effectively reach them for prevention or treatment interventions. Online social networks (OSN) have the potential to transform RDS for the better. We present a new RDS recruitment protocol for (OSNs) and show via simulation that it outperforms the standard RDS protocol in terms of sampling accuracy and approaches the accuracy of Markov chain Monte Carlo random walks.

1 Introduction

Respondent-driven sampling (RDS) is a commonly used method to survey such communities as IV drug users, men who have sex with men, and sex workers; jazz musicians; unregulated workers; native American subcommunities; and other hidden communities. RDS is a variant of snowball sampling that uses a clever recruitment protocol that: (1) helps ensure the confidentiality of respondents and the anonymity of the target community and (2) generates a relatively large number of recruitment waves, which hypothetically leads to unbiased sampling estimators.

Unfortunately, in terms of sampling accuracy there is still a large gap between theory and practice. A small body of work, most of which focuses on improving the estimators on which RDS depends, deals with closing that gap.

* This material is based upon work supported by the National Science Foundation under Grant No. 1111016, and through Grant No. K23MH079215 from the National Institute of Mental Health, National Institutes of Health. The final publication is available at link.springer.com.
This paper describes a new approach: leveraging the features of online social networks (OSNs) to improve the sampling design. We believe OSNs have the potential to dramatically transform RDS by enabling better neighborhood recall, randomized and confidential recruitment, and other improvements that allow it to better meet the assumptions on which the estimators rest. Here we focus on one particular modification, which is based on the network that a recruitment protocol generates, i.e., the network consisting of all respondents as actors and having directed ties between each respondent and those whom the respondent recruits. The estimators for RDS typically assume that these so-called recruitment networks are arbitrary, although in practice they are essentially trees. Gile and Handcock show [GH10] in simulation that this discrepancy is a major source of the poor performance they observe in established RDS estimators.

Our main contribution is a new protocol where the recruitment networks are directed acyclic graphs (DAGs). This protocol, while likely infeasible in many other settings, seems well suited for RDS over OSNs. Using the same simulation-based experimental framework that Gile and Handcock [GH10] and Tomas and Handcock [TG11] developed in their rather comprehensive assessments of RDS, we show that this new protocol dramatically outperforms the standard RDS protocol and approaches the sampling accuracy of a Markov chain Monte Carlo (MCMC) random walk (a process that typically satisfies standard RDS sampling assumptions). It even outperforms a recruitment protocol that, superficially at least, more closely resembles MCMC walks than does ours.

Our work is related to that of Gjoka et al. [GKBM11], who use the established RDS estimators to compare the performance of several different methods for passively—without the active participation of its users—crawling Facebook, including MCMC random walks and breadth-first search. By contrast, we are concerned primarily with methods that, due to confidentially concerns, require the active participation of those sampled, and this leads different sampling dynamics.

In another closely related study, Wejnert and Heckathorn develop a tool for conducting RDS over the World-Wide Web they call WebRDS [WH08]. Their system explicitly fixes the recruitment graph to be a tree. We, on the other hand, study what happens precisely when we relax this constraint.

2 A Brief Overview of Respondent-Driven Sampling

Heckathorn introduced RDS as a sampling protocol paired with an estimator [He97]. The protocol begins with a small number of seed respondents from the target community, who may be recruited in any fashion. Each respondent takes a survey, and is then given a small number of recruitment coupons (e.g., three) to distribute among other members of the target community, each of which allows whomever redeems it to take the survey (assuming that he or she meets the inclusion criteria). Each respondent is paid for taking the survey and for each of the redeemed coupons he or she distributed. The process continues until a target number of either recruitment waves or samples is reached. Thus, RDS
uses the social network of the hidden population itself to do the work of subject identification, and in this regard it has been very successful in finding hidden communities. Couponing ensures the confidentiality of all those surveyed, which is often a crucial concern for the communities RDS is designed to reach.

Though the recruitment protocol has remained stable, the estimators have evolved significantly over time as questions are raised about each successive generation of estimators. We present here what is known as the Volz-Heckathorn (VH) estimator \[\text{VH08}\]. Although probably not as widely used as an earlier estimator due to Salganik and Heckathorn \[\text{SH04}\], it is newer and has been the subject of recent papers \[\text{GHI09}, \text{TGI11}, \text{GKM11}\] that experimentally test its performance. In particular, Handcock and Gile show that the VH estimator frequently outperforms the Salganik-Heckathorn estimator \[\text{GHI09}\]. The assumptions underlying the VH estimator are:

1. The network is connected and aperiodic.
2. Each respondent recruits exactly one person into the survey.
3. Each respondent chooses whom to recruit uniformly at random from all network relationships.
4. All relationships are reciprocal.
5. Respondents are sampled with replacement (i.e., may be rerecruited into the survey).
6. Respondents can accurately recall the number of people in the target community that they know.

It is fairly clear that in practice these assumptions, except possibly the first one, never hold. In this paper, we are particularly interested in assumption 5. In typical RDS settings most people lack the time to respond more than once, since doing so often involves travel, so this assumption fails. Consequently, recruitment networks tend to look like trees.

It is worth noting that prior estimators rested on even stronger assumptions \[\text{Hec97, SH04}\]. More recently, Handcock and Gile \[\text{GHI10}\] proposed newer estimators that depend on fewer assumptions and that seem in their experiments to outperform earlier estimators \[\text{GHI11}\] (see also \[\text{GHI11, TGI11, GJS12}\]). Though their approach seems very promising, it is model based, and such approaches themselves depend on assumptions that can be difficult or impossible to validate.

Let \(\{y_1, \ldots, y_n\}\) be samples of some scalar property of a networked population. Let each \(d_i \in \{d_1, \ldots, d_n\}\) be the degree (number of network ties) of the person associated with each sample. When the VH assumptions do hold, Markov chain Monte Carlo (MCMC) theory suggests \(\hat{y} = (\sum_{i=1}^{n} y_i/d_i)/(\sum_{i=1}^{n} 1/d_i)\) as an asymptotically unbiased estimator for the mean of \(\{y_1, \ldots, y_n\}\).

3 Simulation-based experiments for assessing RDS

Gile and Handcock \[\text{GHI10}\] and Tomas and Gile \[\text{TGI11}\] provide a pair of thorough critiques of the VH estimator. We adopted their methods to test our new recruitment protocol, so we present them here in detail.
They simulate RDS over graphs drawn randomly from an exponential random graph model (ERGM). In each experiment, 20% of the network nodes are labeled “infected” and the remaining are “uninfected.” The goal in these experiments is to estimate the proportion of infected nodes in the population. Each experiment fixes the ERGM and recruitment parameters, then repeats the following steps 1000 times:

1. Generate a test graph from the ERGM.
2. Run an RDS simulation on the test graph; stop when 500 samples are made.
3. Estimate the proportion of infected nodes using VH.

The ERGM parameters Gile and Handcock use are based on a CDC study \cite{AQM:06}. Network size ranges from 525 to 1000. They fix the expected degree at seven. Expected activity ratio is the mean degree of the infected nodes divided by the mean degree of the uninfected nodes. This ranges from one to three. Expected homophily is defined here as the expected number of relationship between infected actors divided the expected number of relationships between infected and uninfected actors. This ranges from two to thirteen.

Seed nodes are drawn at random in proportion to their neighborhood size, either from all nodes, just the infected nodes, or just the non-infected nodes. The number of seeds ranges from 4 to 10.

For the recruitment parameters, each chosen node recruits exactly two new nodes uniformly at random from its “eligible” network neighbors, where “eligible” is either all neighbors (for sampling with replacement) or all neighbors who have not yet been sampled (for sampling without replacement). We call the without-replacement protocol “RDS” and the with-replacement one “REP.” Note that RDS produces trees as recruitment networks and REP produces arbitrary graphs.

4 A new DAG-based recruitment protocol

As Gile and Hancock show (see also Fig. \ref{fig:1}, which reproduce in part their results), the RDS protocol, even with perfect randomness and response in the recruitment process, results in significantly degraded performance under the VH estimator. But what if sampling with replacement were feasible? It seems plausible do so in an online setting, i.e., where the survey is administered via the Web: if a respondent is recruited a second time, all the respondent needs to do is log in to the website where the survey is administered and the system can automatically count the respondent’s survey a second time (and send the respondent additional electronic recruiting coupons) without requiring the respondent to return to a physical polling site.

The trickier part is in the recruitment dynamics. If we let respondents rerecruit freely, as in the REP protocol, then, in order to gain more money from survey incentives, they could collude to rerecruit each other many more times than chance would predict, thus skewing the results. We propose to discourage this behavior by allowing respondents to be rerecruited only if doing so does
not result in the recruitment graph containing a directed cycle. The resulting recruitment graph is thus a directed acyclic graph. We call this protocol “DAG.”

5 Experiments and Results

We use the same methods as Gile and Handcock, as we described in section 3. The major difference is that we consider two additional variants of the RDS protocol: “MCMC,” in which each respondent recruits only one person (with replacement), chosen from that person’s friend list uniformly at random, i.e., it is a Markov chain Monte Carlo random walk and serves as a control case; and “DAG,” as described in Sect. 4.

Figures 1–5 show some of our results. Here we run a series of tests, analogous to those Gile and Handcock [GH10]. All tests shown used a seed size of six. The first three figures show the effects of drawing seeds from the entire population, just the infected population, and just the uninfected population, respectively. Together, they show the effects of recruitment bias on the performance of the estimators.

Additionally, we consider burn-in, a feature of most MCMC-based sampling in which a fraction of the earliest samples are dropped, because they more heavily depend on the seeds—and are thus more biased—than the later samples, which are ideally independent of the seeds. The last two figures show the effects of recruitment bias after a burn-in of the first 100 samples.

The parameters considered within each figure are the network sizes 1000, 715, and 525 and the activity ratios (labeled “w”) 1.1 and 3.

![Fig. 1. Estimated size of infected population where seeds are drawn from the entire population with no burn-in.](image)
Fig. 2. Estimated size of infected population where seeds are drawn from the infected population only with no burn-in.

Fig. 3. Estimated size of infected population where seeds are drawn from the noninfected population only with no burn-in.

Fig. 4. Estimated size of infected population where seeds are drawn from the infected population only with the first 100 nodes of each sample are discarded as “burn-in.”
6 Discussion and Conclusion

The results for RDS and REP essentially replicate for comparison purposes those of Gile and Handcock. One reason RDS performance degrades so dramatically as network size decreases is that the probability that any node is sampled approaches one as the network size decreases, but the VH estimator still weighs each sample as if it had been chosen in proportion to its network neighborhood.

Of all the protocols we test, MCMC performs best, which is what we would expect as it represents RDS in the impractical case when all the VH assumptions hold. Surprisingly to us, DAG was clearly second best, outperforming even REP, the protocol which seemed to us to be the most like MCMC (note that both REP and MCMC produce arbitrary recruitment networks). The only test in which DAG did not perform at a level comparable to MCMC was when all seed nodes were drawn from the infected population and the activity ratio was low, though a 100 node burn-in almost corrects this. We are investigating why DAG performs as well as it has. Space prevents us from giving details, but we have seen that the recruitment graphs created by DAG have clustering coefficients and average path lengths that are closer than the other protocols to MCMC.

We hope that this study shows that creative thinking about how RDS is implemented in OSNs may lead to significant improvements in its sampling accuracy. We have ideas about how human-computer interface methods on OSNs can improve neighborhood size recall and the randomness of the recruitment process, neither of which we have space to discuss here. Additional open issues remain, such as the inherent biases of OSNs and the degree of realism that the ERGM models used here and in related work provide. In future work we plan to conduct field studies of these issues and others, using an actual implementation of RDS over Facebook.
AQHM+06. A.S. Abdul-Quader, D.D. Heckathorn, C. McKnight, H. Bramson, C. Nemeth, K. Sabin, K. Gallagher, and D.C. Des Jarlais. Effectiveness of respondent-driven sampling for recruiting drug users in New York City: findings from a pilot study. *Journal of Urban Health*, 83(3):459–476, 2006.

BSPar. A. Bernhardt, M. Spiller, and D. Polson. All work and no pay: Violations of employment and labor laws in Chicago, Los Angeles and New York City. *Social Forces*, to appear.

GH10. K. Gile and M. Handcock. Respondent-driven sampling: an assessment of current methodology. *Sociological Methodology*, 40(1):285–327, August 2010.

GH11. K.J. Gile and M.S. Handcock. Network model-assisted inference from respondent-driven sampling data. *arXiv preprint arXiv:1108.0298*, 2011.

GIL11. K.J. Gile. Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. *Journal of the American Statistical Association*, 106(493):135–146, 2011.

GJS12. K.J. Gile, L.G. Johnston, and M.J. Salganik. Diagnostics for respondent-driven sampling. *arXiv preprint arXiv:1209.6254*, 2012.

GKBMI1. M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou. A walk in facebook: Uniform sampling of users in online social networks. Technical Report 0906.0060v4, arXiv, February 2011.

GS10. Sharad Goel and Matthew J Salganik. Assessing respondent-driven sampling. *Proceedings of the National Academy of Sciences of the United States of America*, 107(1515):6743–6747, 2010.

Hec97. D. Heckathorn. Respondent-driven sampling: A new approach to the study of hidden populations. *Social Problems*, 44(2):174–199, May 1997.

Hec07. D. Heckathorn. Extensions of respondent-driven sampling: Analyzing continuous variables and controlling for differential recruitment. *Sociological Methodology*, 37(1):151–207, December 2007. in press.

HG10. M.S. Handcock and K.J. Gile. Modeling social networks from sampled data. *The Annals of Applied Statistics*, 4(1):5–25, 2010.

HJ01. D. Heckathorn and J. Jeffri. Finding the beat: Using respondent-driven sampling to study jazz musicians. *Poetics*, 28(4):307–329, 2001.

MJK*08. M. Malekinejad, L.G. Johnston, C. Kendall, L.R.F.S. Kerr, M.R. Rifkin, and G.W. Rutherford. Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. *AIDS and Behavior*, 12:105–130, 2008.

SH04. M.J. Salganik and D.D. Heckathorn. Sampling and estimation in hidden populations using respondent-driven sampling. *Sociological Methodology*, 34(1):193–240, 2004.

TG11. A. Tomas and K.J. Gile. The effect of differential recruitment, nonresponse and non-recruitment on estimators for respondent-driven sampling. *Electronic Journal of Statistics*, 5:899–934, 2011.

Tho92. S. Thompson. *Sampling*. John Wiley & Sons, New York NY, 1992.

VH08. E. Volz and D. Heckathorn. Probability based estimation theory for respondent driven sampling. *Journal of Official Statistics*, 24(1):79–97, 2008.

Wej09. C Wejnert. An empirical test of respondent-driven sampling: Point estimates, variance, degree measures, and out-of-equilibrium data. *Sociological Methodology*, 39(1):73–116, August 2009.
WH08. C. Wejnert and D. Heckathorn. Web-based network sampling: Efficiency and efficacy of respondent-driven sampling for online research. *Sociological Methods & Research*, 37(1):105–134, June 2008.

WS02. K. Walters and J. Simoni. Health survey of two-spirited native americans, 2002.