ON THE SUBCONVEXITY PROBLEM FOR $GL(3) \times GL(2)$ L-FUNCTIONS

RIZWANUR KHAN

ABSTRACT. Fix g a self-dual Hecke-Maass form for $SL_3(\mathbb{Z})$. Let f be a holomorphic newform of prime level q and fixed weight. Conditional on a lower bound for a short sum of squares of Fourier coefficients of f, we prove a subconvexity bound in the q aspect for $L(s, g \times f)$ at the central point.

1. Introduction

An outstanding problem in analytic number theory is to understand the size of an L-function at its central point. For an L-function $L(s)$ from the Selberg class with analytic conductor C and functional equation relating values at s and $1-s$, the Lindelöf hypothesis $L(\frac{1}{2}) \ll \epsilon C^\epsilon$ is expected for any $\epsilon > 0$. Given an average version of the Ramanujan conjecture (which in many cases is available by the works of Iwaniec [8], Molteni [18], and Xiannan Li [15]), it only requires the functional equation to prove the so called convexity bound $L(\frac{1}{2}) \ll_{\epsilon,d} C^{\frac{1}{4}+\epsilon}$, where d denotes the degree of $L(s)$. This (or a refinement of this due to Heath-Brown [7]) is considered the trivial bound and was the best known in general until Soundararajan [20] recently proved, assuming the Ramanujan conjecture, that $L(\frac{1}{2}) \ll_{\epsilon,d} C^{\frac{1}{4}+(\log C)^{-1+\epsilon}}$. The subconvexity problem is to save a power of C; that is to prove that $L(\frac{1}{2}) \ll_{\epsilon,d} C^{\frac{1}{4}-\delta}$ for some $\delta > 0$. For L-functions of degree 1 or 2, the problem is completely solved. This involves the work of many authors, but the contribution of Friedlander and Iwaniec is particularly noteworthy. They invented the amplifier method [8, 18], which has been used to solve many cases of the subconvexity problem. For higher degree L-functions, a subconvexity bound is known only in a limited number of cases and remains a challenging and important goal.

In this paper we study certain degree 6 L-functions, the Rankin-Selberg $GL(3) \times GL(2)$ L-functions. In a recent breakthrough, Xiaqing Li [16] proved a subconvexity bound for the L-function of a self-dual Hecke-Maass form for $SL_3(\mathbb{Z})$ twisted by a Hecke-Maass form for $SL_2(\mathbb{Z})$, or by a holomorphic Hecke cusp form for $SL_2(\mathbb{Z})$, in the eigenvalue aspect, or respectively in the weight aspect, of the $GL(2)$ form. As a corollary she derived subconvexity for a self dual $GL(3)$ form on the critical line. Blomer [2] considered this problem in the level aspect and proved subconvexity for $GL(3) \times GL(2)$ L-functions where the twist is by special Hecke-Maass forms of prime square level. For prime level however, subconvexity is still unknown and this is the problem which we consider.

2010 Mathematics Subject Classification: 11M99

The author was supported by a grant from the European Research Council (grant agreement number 258713).
Let \(H_k^*(q) \) denote the set of holomorphic cusp forms of weight \(k \) which are newforms of level \(q \) with trivial nebentypus in the sense of Atkin-Lehner Theory \([1]\). Fix \(g \) a self-dual Hecke-Maass form for \(SL_3(\mathbb{Z}) \) which is unramified at infinity. Let \(L(s, g \times f) \) denote the Rankin-Selberg convolution of \(g \) with \(f \in H_k^*(q) \). Kim and Shahidi \([13]\) have shown that this is in fact an automorphic \(L \)-function. We normalize to have the central point at \(s = \frac{1}{2} \). The analytic conductor in the \(q \) aspect equals \(q^{\frac{3}{4}} \), so that the convexity bound is \(q^{\frac{3}{4} + \epsilon} \).

In the works of Xiaoqing Li and Blomer, a study of the first moment of the \(L \)-function at \(s = \frac{1}{2} \) is enough to yield subconvexity. For example, in the weight aspect, the analytic conductor of \(L(s, g \times f) \) equals \(k^{\frac{6}{2}} \) so that the convexity bound is \(k^{\frac{3}{2} + \epsilon} \). We further know by a result of Lapid \([14]\) that \(L(g \times f, \frac{1}{2}) \geq 0 \). Hence if we had the expected (by the Lindelöf hypothesis) upper bound

\[
\sum_{f \in H_k^*(q)} L\left(\frac{1}{2}, g \times f\right) \ll q^k + \epsilon \tag{1.3}
\]

for \(L > q^{1/4 + 1/2001} \), where \(a_{f_0}(n) \) is the \(n \)-th Fourier coefficient of \(f_0 \) as defined in \([1, 2]\). Then

\[
L\left(\frac{1}{2}, g \times f_0\right) \ll q^{3/4 - 1/2001} \tag{1.4}
\]

One of the fundamental contributions to the subconvexity problem for degree 2 \(L \)-functions is Iwaniec’s conditional proof of subconvexity for Hecke-Maass \(L \)-functions in the eigenvalue aspect \([8]\), in which an assumption just like \((1.3)\) is made. The assumption in the theorem is expected of all \(f_0 \) \(\in \) \(H_k^*(q) \) and any \(L > q^\epsilon \). It is known to be true for almost all \(f_0 \) \(\in \) \(H_k^*(q) \) and would follow, for instance, from a strong subconvexity bound for \(L(\frac{1}{2} + it, f_0 \times f_0) \) in the \(q \) aspect. It is interesting that a bound on one \(L \)-function can imply a bound on another very different one.

The exponent in our subconvexity bound and the lower bound for \(k \) are not optimal. We have concentrated on a method to break the convexity bound, leaving the task of finding the best parameters to a time when the theorem can be made unconditional.

1.2. \(L \)-functions. Every \(f \in H_k^*(q) \) has a Fourier expansion of the type

\[
f(z) = \sum_{n=1}^{\infty} a_f(n) n^{\frac{k-1}{2}} e(nz) \tag{1.5}
\]
for \(\Im z > 0 \), where \(e(z) = e^{2\pi iz} \), \(a_f(n) \in \mathbb{R} \) and \(a_f(1) = 1 \). The coefficients \(a_f(n) \) satisfy the multiplicative relation

\[
a_f(n)a_f(m) = \sum_{\substack{d \mid (n,m) \\ (d,q)=1}} a_f(\frac{nm}{d^2})
\]

and Deligne’s bound \(a_f(n) \leq d(n) \ll n^\epsilon \). Here and throughout the paper, \(\epsilon \) denotes an arbitrarily small positive constant, but not necessarily the same one from one occurrence to the next, and any implied constant may depend on \(\epsilon \). Also, \(q \) will always be a prime number. The \(L \)-function associated to \(f \) is defined as

\[
L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}
\]

for \(\Re(s) > 1 \). This satisfies the functional equation

\[
q^{\frac{s}{2}} \pi^{-s} \Gamma\left(\frac{s + \frac{\nu-1}{2}}{2}\right) \Gamma\left(\frac{s + \frac{\nu+1}{2}}{2}\right) L(s, f) = \epsilon_f q^{\frac{1-s}{2}} \pi^{-s} \Gamma\left(\frac{1-s + \frac{\nu-1}{2}}{2}\right) \Gamma\left(\frac{1-s + \frac{\nu+1}{2}}{2}\right) L(1-s, f),
\]

where

\[
\epsilon_f = -i^\kappa a_f(q) q^{\frac{\nu-1}{2}} = \pm 1.
\]

The left hand side of (1.8) analytically continues to an entire function. The facts above can be found in [9].

We fix a self-dual Hecke-Maass form \(g \) of type \((\nu,\nu)\) for \(SL_3(\mathbb{Z}) \). We refer to [4], especially Chapter 6, and follow its notation. We write \(A(n,m) = A(m,n) \) for the Fourier coefficients of \(g \) in the Fourier expansion (6.2.1) of [4], normalized so that \(A(1,1) = 1 \). The \(L \)-function associated to \(g \) is defined as

\[
L(s, g) = \sum_{n=1}^{\infty} A(n,1) \frac{1}{n^s}
\]

for \(\Re(s) > 1 \). The coefficients \(A(n,1) \) are real. \(L(s, g) \) is actually the symmetric-square \(L \)-function of a Hecke-Maass form for \(SL_2(\mathbb{Z}) \), by the work of Soudry [19]. This implies, by the work of Kim and Sarnak [12], that

\[
|A(n,1)| \ll n^{7/32+\epsilon}
\]

and, by the work of Selberg, that

\[
\Re(3\nu - 1) = 0.
\]

We have the Hecke relation

\[
A(n,m) = \sum_{d \mid (n,m)} \mu(d) A\left(\frac{n}{d},1\right) A\left(1,\frac{m}{d}\right),
\]

and if \((n_1m_1, n_2m_2) = 1 \), we have

\[
A(n_1n_2, m_1m_2) = A(n_1, m_1)A(n_2, m_2).
\]

By (1.11) and (1.13) we have

\[
A(n, m) \ll (nm)^{7/32+\epsilon}.
\]
By (1.11) and Rankin-Selberg theory we have (cf. [2] for a proof):

\[\sum_{n \leq x} |A(na,b)|^2 \ll x(ab)^{7/16+\epsilon}. \]

This together with (1.13) and the Cauchy-Schwarz inequality yields

\[\sum_{\substack{n \leq x \atop m \leq y}} |A(na,mb)| \ll (xy)^{1+\epsilon}(ab)^{7/32+\epsilon}. \]

The Rankin-Selberg L-function $L(s, g \times f)$ is defined as

\[L(s, g \times f) = \sum_{n,r \geq 1} \frac{A(r,n)a_f(n)}{(r^2n)^s} \]

for $\Re(s) > 1$. It satisfies the functional equation

\[q^{\frac{3s}{2}}G(s)L(s, g \times f) = \epsilon_{g \times f}q^{\frac{3(1-s)}{2}}G(1-s)L(1-s, g \times f), \]

where $\epsilon_{g \times f} = (\epsilon_f)^3 = \epsilon_f$ and

\[G(s) = \pi^{-3s} \Gamma\left(\frac{s + \frac{k+1}{2} + 3\nu - 1}{2} \right) \Gamma\left(\frac{s + \frac{k+1}{2} + 1 - 3\nu}{2} \right) \]
\[\times \Gamma\left(\frac{s + \frac{k-1}{2} + 3\nu - 1}{2} \right) \Gamma\left(\frac{s + \frac{k-1}{2} + 1 - 3\nu}{2} \right). \]

The left hand side of (1.19) analytically continues to an entire function. To study $L(1/2, g \times f)$, we first express it as a weighted Dirichlet series.

Lemma 1.3. Approximate functional equation

Let

\[V(x) = \frac{1}{2\pi i} \int_{(\sigma)} x^{-s} \frac{G\left(\frac{s}{2} + s \right)}{G\left(\frac{s}{2} \right)} \frac{ds}{s} \]

for $x, \sigma > 0$. We have

\[L(\frac{1}{2}, f \times g) = \sum_{n,r \geq 1} \frac{a_f(n)A(r,n)}{r\sqrt{n}} V\left(\frac{r^2n}{q^{3/2+1/300}} \right) \]
\[+ \epsilon_{g \times f} \sum_{n,r \geq 1} \frac{a_f(n)A(r,n)}{r\sqrt{n}} V\left(\frac{r^2n}{q^{3/2-1/300}} \right). \]

For any $A > 0$ and integer $B \geq 0$ we have that

\[V(B)(x) \ll_B x^B (1 + x)^{-A}, \]

so that the first sum in (1.22) is essentially supported on $r^2n < q^{3/2+1/300+\epsilon}$ and the second sum is essentially supported on $r^2n < q^{3/2-1/300+\epsilon}$.

Proof. The proof of this standard result may be found in Theorem 5.3 of [10].

Note that the sums in (1.22) are of different lengths. This will result in less work with the second sum, which contains the root number $\epsilon_{g \times f}$.

1.4. **Trace formula.** We have Weil’s estimate for the Kloosterman sum:

\[
|S(n,m;c)| = \left| \sum_{h \mod c}^* e\left(\frac{nh + mh}{c}\right) \right| \leq (n,m,c)^{1/2}c^{1/2}d(c).
\]

(1.24)

Here \(^*\) denotes that the summation is restricted to \((h,c) = 1\), and \(\overline{h} h \equiv 1 \mod c\).

We will also need the following estimates for the \(J\)-Bessel function (see [6] and [21]).

For \(x > 0\) we have

\[
J_{k-1}(x) \ll \min(x^{k-1}, x^{-1/2}).
\]

(1.25)

For \(x > 0\) and integers \(B > 0\) we have

\[
J(B)k-1(x) \ll Bx^{-B} + x^{-1/2}.
\]

(1.26)

For any complex numbers \(\alpha\), define the weighted sum

\[
\sum_{f \in H^*_{k}(q)} \alpha_f = \sum_{f \in H^*_{k}(q)} \alpha_f \frac{\zeta(2)^{-1}L(1, \text{sym}^2 f)}{\Delta_{k,1}(n,m; c)},
\]

(1.27)

where \(L(s, \text{sym}^2 f)\) denotes the symmetric-square \(L\)-function of \(f\). The arithmetic weights above occur naturally in the Petersson trace formula (1.29) and the following trace formula for newforms. Define

\[
\Delta_{k,q}(n,m) = \frac{12}{q(k-1)} \sum_{f \in H^*_{k}(q)}^* a_f(n)a_f(m).
\]

(1.28)

Lemma 1.5. Trace formula.

(i) We have

\[
\Delta_{k,1}(n,m) = \delta(n,m) + 2\pi i \sum_{c \geq 1} S(n,m;c) J_{k-1}\left(\frac{4\pi \sqrt{nm}}{c}\right),
\]

where \(\delta(n,m)\) equals 1 if \(n = m\) and 0 otherwise.

(ii) Let \(q\) be a prime. If \((m,q) = 1\) and \(q^2 \nmid n\) then

\[
\Delta_{k,q}(n,m) = \delta(n,m) + 2\pi i \sum_{c \geq 1} \frac{S(n,m; cq)}{cq} J_{k-1}\left(\frac{4\pi \sqrt{nm}}{cq}\right)
\]

\[
- \frac{1}{q[\Gamma_0(1) : \Gamma_0((n,q))]} \sum_{i=0}^{\infty} q^{-i} \Delta_{k,1}(n mq^{2i}).
\]

(1.30)

Proof. (1.29) can be found in [9]. See Proposition 2.8 of [11] for (1.30). \(\square\)

Note that if \(q|n\) then the last line of (1.30) is \(\ll q^{-2+\epsilon}(nm)^{\epsilon}\) since \([\Gamma_0(1) : \Gamma_0(q)] > q\).

1.6. **Voronoi summation.** The \(GL(3)\) Voronoi summation formula (1.31) was found by Miller and Schmid [17]. Goldfeld and Li [5] later gave another proof.

Lemma 1.7. GL(3) Voronoi Summation. Let \(\psi\) be a smooth, compactly supported function on the positive real numbers and \((b,d) = 1\). We have

\[
\sum_{n \geq 1} A(r,n) e\left(\frac{nb}{d}\right) \psi\left(\frac{n}{N}\right) = \sum_{l \geq 1} \frac{\psi\left(\frac{n}{d}\right) S\left(rb, \pm n; \frac{dr}{l}\right)}{l l^{-2}},
\]

(1.31)
where we define

\[\Psi^{\pm}(X) = X \frac{1}{2\pi i} \int_{(\sigma)} (\pi^3 X)^{-s} H^{\pm}(s) \tilde{\psi}(1 - s) ds, \]

\[H^{\pm}(s) = \frac{\Gamma\left(\frac{s+3\nu-1}{2}\right) \Gamma\left(\frac{s+1-3\nu}{2}\right)}{\Gamma\left(1-\frac{s-1+3\nu}{2}\right) \Gamma\left(\frac{1+s+3\nu-1}{2}\right)} \mp i \frac{\Gamma\left(\frac{1+s+3\nu-1}{2}\right) \Gamma\left(\frac{1+s-3\nu+1}{2}\right)}{\Gamma\left(\frac{2-s+1-3\nu}{2}\right) \Gamma\left(\frac{2-s+3\nu-1}{2}\right)} \]

for \(\sigma > 0 \), where \(\tilde{\psi} \) denotes the Mellin transform of \(\psi \). Writing \(s = \sigma + it \), by Stirling’s approximation of the gamma function we have

\[H^{\pm}(s) \ll (1 + |t|)^{3\sigma}. \]

1.8. Amplifier method. Let \(f_0 \in H_k^*(q) \). Define the amplifier

\[A(f) = \sum_{n<q^{1/2+1/2000}} \frac{a_{f_0}(n) a_f(n)}{\sqrt{n}}. \]

The assumption (1.3) implies that \(A(f) \) is 'amplified' at \(f = f_0 \):

\[\sum_{n<q^{1/2+1/2000}} \frac{a_{f_0}(n)^2}{\sqrt{n}} \gg q^{1/8+1/4000-\epsilon}. \]

This can be seen by partial summation together with the following upper bound given in [18]:

\[\sum_{n<L} a_{f_0}(n)^2 \ll L^{1+\epsilon} \]

for all \(L > q^\epsilon \). Theorem [14] will be deduced from the following.

Proposition 1.9. We have

\[\sum_{f \in H_{\text{sym}}^*(q)} L(\frac{1}{2}, g \times f) A(f)^2 \ll q^{1+\epsilon}. \]

By Lapid’s work, we have that \(L(\frac{1}{2}, g \times f) \geq 0 \). Now if we drop all but the term corresponding to \(f_0 \) then we have

\[\frac{1}{L(1, \text{sym}^2 f_0)} L(\frac{1}{2}, g \times f_0) A(f_0)^2 \ll q^{1+\epsilon}. \]

Using the trivial bound \(L(1, \text{sym}^2 f_0) \ll q^\epsilon \) and the assumption (1.35), the subconvexity bound (1.4) follows.

By (1.6) we may write

\[A(f)^2 = \sum_{m<q^{1/2+1/1000}} \frac{x_m a_f(m)}{\sqrt{m}}, \]

for some numbers \(x_m \ll q^\epsilon \). By (1.17), Proposition 1.9 follows from

Proposition 1.10. Let \(m < q^{1/2+1/1000} \) be a natural number. We have

\[\frac{1}{q} \sum_{f \in H_{\text{sym}}^*(q)} L(\frac{1}{2}, g \times f) a_f(m) \ll q^\epsilon \sqrt{m} \left(1 + \sum_{r<q^2} \frac{|A(r, m)|}{r} \right). \]
2. Proof of Proposition 1.10

In this section we reduce the proof of Proposition 1.10 to two claims. By Lemma 1.3 and (1.6), we have that the left hand side of (1.40) is

\[
(2.1) \quad \ll \sum_{n, r \geq 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2+1/300}} \right) \Delta_{k, q}^* (n, m) + q^{1/2} \sum_{n, r \geq 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2-1/300}} \right) \Delta_{k, q}^* (n, m).
\]

By Lemma 1.5, the first line of (2.1) is

\[
(2.2) \quad \ll \sum_{r < q^2} \frac{|A(r, m)|}{r \sqrt{m}} \left| \sum_{n, r \geq 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2+1/300}} \right) \sum_{c \geq 1} S(n, m; cq) \frac{q^{k-1}}{cq} J_{k-1} \left(\frac{4 \pi \sqrt{nm}}{cq} \right) \right|
+ q^{-1+\epsilon} \sum_{f' \in \mathcal{H}_2^*(1)} \left| \sum_{n, r \geq 1} \frac{A(r, n) a_p(n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2+1/300}} \right) \right|.
\]

Using (1.21), the last sum over \(n \) and \(r \) above can be written as an integral involving \(L(s, q \times f') \). The line of integration can be moved to \(-\infty \) to see that the last line of (2.2) is \(\ll q^{-1+\epsilon} \). We will prove

Lemma 2.1. Let \(m < q^{1/2+1/1000} \). We have

\[
(2.3) \quad \sum_{n, r \geq 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2+1/300}} \right) \sum_{c \geq 1} S(n, m; cq) \frac{q^{k-1}}{cq} J_{k-1} \left(\frac{4 \pi \sqrt{nm}}{cq} \right) \ll \frac{q^\epsilon}{\sqrt{m}}.
\]

For the second line of (2.1), we first consider the contribution of the terms with \((n, q) = 1 \). By Lemma 1.6 and the remark immediately following, the contribution of such terms is

\[
(2.4) \quad \ll q^{1/2} \sum_{n, r \geq 1 \atop (n, q) = 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2-1/300}} \right) \sum_{c \geq 1} S(nq, m; cq) \frac{q^{k-1}}{cq} J_{k-1} \left(\frac{4 \pi \sqrt{nm}}{cq} \right) + O(q^{-1/2}).
\]

In the sum above, the contribution of the terms with \(c > q^{1/2} \) is \(\ll q^{-100} \). Thus we may assume that \((c, q) = 1 \), so that we have \(S(nq, m, cq) = -S(nq, m, c) \). We may extend the sum to all natural numbers \(n \), with an error of

\[
(2.5) \quad \ll \sum_{n, r \geq 1} \frac{A(r, nq)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2-1/300}} \right) \frac{1}{q} \sum_{c \geq 1} S(n, m; c) \frac{q^{k-1}}{c} J_{k-1} \left(\frac{4 \pi \sqrt{nm}}{c} \right) \ll q^{-1/2},
\]

on observing that the \(c \)-sum equals \(\Delta_{k, 1}^* (n, m) \) \(\ll q^\epsilon \) and using (1.17). We will prove

Lemma 2.2. Let \(m < q^{1/2+1/1000} \). We have

\[
(2.6) \quad q^{1/2} \sum_{n, r \geq 1} \frac{A(r, n)}{r \sqrt{n}} V \left(\frac{r^2 n}{q^{3/2-1/300}} \right) \sum_{c \geq 1} S(nq, m; cq) \frac{q^{k-1}}{cq} J_{k-1} \left(\frac{4 \pi \sqrt{nmq}}{cq} \right) \ll q^{-1}.
\]
Finally we must consider the terms of the second line of (2.11) with \(q \mid n \). The contribution of these terms is
\[
\sum_{n,r \geq 1} \frac{A(r,nq)}{r\sqrt{n}} V\left(\frac{r^2n}{q^{1/2-1/300}} \right) \Delta^*_{k,q}(nq^2, m) \ll q^{-1/2},
\]
on using (1.6) and (1.9) to see that \(\Delta^*_{k,q}(nq^2, m) = q^{-1} \Delta^*_{k,q}(n, m) \) and then using (1.14) to bound the sum absolutely. This completes the proof of Proposition 1.10.

2.3. Sketch. Before starting on the proofs of the lemmas presented in this section, we give a rough sketch of the argument for the main lemma, Lemma 2.1. Since \(m \approx q^{3/2} \) and \(r^2n \) is essentially bounded by about \(q^{3/2} \) in (2.3), the value of the \(J \)-Bessel function will be very small unless \(n \approx q^{3/2}, r \approx q^r \) and \(c \approx q^r \). Consider the range \(q^{3/2} < n < 2q^{3/2}, r = 1 \) and \(c = 1 \). Opening the Kloosterman sum, a part of what we must bound in (2.3) is
\[
\sum_{h \text{ mod } q}^* e(mh/q) \sum_{q^{3/2} < n < 2q^{3/2}} A(1, n) e(n\bar{h}/q).
\]
The weight function \(V \) and the \(J \)-Bessel function have been ignored because they are roughly constant in this range. We apply the GL(3) Voronoi summation formula to exchange the \(n \)-sum for another sum of length about \(q^{3}/q^{3/2} = q^{1/2} \). A part of what we must bound is then
\[
\sum_{h \text{ mod } q}^* e(mh/q) \sum_{q^{3/2} < n < 2q^{3/2}} A(n, 1) S(n, h, q)
\]
We have \(\sum_{h \text{ mod } q}^* e(mh/q)S(n, h, q) \approx qc(n\bar{m}/q) \). By reciprocity (the Chinese Remainder Theorem), we have \(e(n\bar{m}/q) = e(n/mq)e(-n\bar{m}/m) \approx e(-n\bar{m}/m) \), since \(n \approx q^{3/2} \approx mq \). Thus we must bound
\[
\sum_{q^{3/2} < n < 2q^{3/2}} A(n, 1) e(-n\bar{m}/m).
\]
The new modulus \(m \) of the exponential is much smaller than the original modulus \(q \). We apply the GL(3) Voronoi summation formula once again, to exchange the \(n \)-sum for another sum of length about \(m^3/q^{3/2} \approx 1 \). We must bound
\[
\sum_{n < q^c} A(1, n) S(-n, q, m).
\]
We bound this sum absolutely, using Weil’s bound for the Kloosterman sum.

3. Proof of Lemma 2.2

Write \(S(n\bar{m}, m, c) = \sum_{h \text{ mod } q}^* e(n\bar{m}h/c)e(m, c) \). As noted above, by (1.25) we may assume that \(c < q^{1/2} \). By (1.23), we may also assume that \(r^2 < q^{3/2} \). Thus to prove Lemma 2.2, it is enough to show that
\[
\sum_n A(r, n)e(n\bar{m}h/c)n^{-1/2}J_{k-1}\left(\frac{4\pi \sqrt{nmq}}{cq} \right) V\left(\frac{r^2m}{q^{3/2-1/300}} \right) \ll q^{-2}.
\]
We consider this sum in dyadic intervals. For \(N > 0 \), let \(\omega(x) \) be a smooth function, compactly supported on \([1, 2]\) and satisfying \(\omega(B) \ll_B 1 \) and let
\[
W(x) = x^{-1/2}J_{k-1}\left(\frac{4\pi \sqrt{xNmq^{-1}}}{c} \right) V\left(\frac{xr^2N}{q^{3/2-1/300}} \right) \omega(x).
\]
It is enough to show that
\[\sum_n A(r, n)e(nq^h/c)W\left(\frac{R}{N}\right) \ll q^{-3} \]
for
\[r^2N < q^{3/2-1/300+\epsilon} \]
and
\[\sqrt{Nmq^{-1}} > q^{-1/10^5}. \]

We enforce the conditions (3.4) and (3.5) since otherwise (3.3) follows easily by (1.23) and (1.25).

Applying Lemma 1.7 to (3.3), it is enough to show that
\[\sum_{n \geq 1} A(n,l)S(rhq, \pm n, rc/l)W\left(\frac{nNl^2}{c^3r}\right) \ll q^{-4}, \]
where
\[W(X) = \int_{(\sigma)} X^{1-s}H^{\pm}(s)\tilde{W}(1-s)ds, \]
for \(\sigma > 0 \) and
\[\tilde{W}(1-s) = \int_1^2 x^{-s}W(x)dx. \]

By (1.26) and (3.5) we have for \(B > 0, \)
\[W^{(B)}(x) \ll_B \left(\frac{\sqrt{Nmq^{-1}}}{c}\right)^B q^{B/10^5}. \]

Thus, writing \(s = \sigma + it \), we have by integration by parts \(B \) times,
\[\tilde{W}(1-s) \ll_B |t|^{-B} \left(\frac{\sqrt{Nmq^{-1}}}{c}\right)^B q^{B/10^5}. \]

Using this bound with \(B = |3\sigma + 5| \) and (1.33), we have
\[W\left(\frac{nNl^2}{c^3r}\right) \ll q^{10} \left(\frac{nl^2N}{c^3r}\right)^{-\sigma} \left(\frac{\sqrt{Nmq^{-1}}}{c}\right)^{3\sigma/10^5} q^{3\sigma/10^5} \ll q^{10} \left(\frac{nl^2N}{c^3r}\right)^{-\sigma} \left(\frac{r^2Nm^3}{q^3}\right)^{\sigma/2} q^{3\sigma/10^5}. \]

By (3.4) and the assumptions of the lemma, we have \(r^2Nm^3 \ll q^{3-1/10^4} \). Thus taking \(\sigma \) large enough proves (3.6).

4. Proof of Lemma 2.1

We consider the \(n \)-sum in dyadic intervals. For \(N_1 > 0 \), let \(\omega_1(x) \) be a smooth function, compactly supported on \([1, 2]\) and satisfying \(\omega_1^{(B)}(x) \ll_B 1 \) and let
\[W_1(x) = x^{-1/2}J_{k-1}\left(\frac{4\pi \sqrt{xN_1mq^{-2}}}{c}\right)V\left(\frac{xr^2N_1}{q^{3/2+1/300}}\right)\omega_1(x). \]
It is enough to show that
\[(4.2) \quad \sum_{n \geq 1} A(r, n) S(n, m; cq) W_1 \left(\frac{n}{N_1} \right) \ll q^{1+\epsilon} \sqrt{N_1} \sqrt{m} \]
for
\[(4.3) \quad q^{3/2-1/990} < N_1 < q^{3/2+1/300+\epsilon}, \]
\[q^{1/2-1/290} < m < q^{1/2+1/100}, \]
\[r < q^{1/450}, \]
\[c < q^{1/450}. \]

We may assume the conditions above, since otherwise (4.2) follows easily by (1.23) and (1.25). Thus it is enough to prove that
\[(4.4) \quad \sum_{n \geq 1} A(r, n) S(n, m; cq) W_1 \left(\frac{n}{N_1} \right) \ll q^{3/2-1/990}. \]

We apply Lemma 1.7 to the left hand side of (4.4) after writing \(S(n, m; cq) = \sum^*_{h \mod cq} e((n\overline{\alpha} + mh)/cq) \). We need to show that
\[(4.5) \quad cq \sum^*_{h \mod cq} e(mh/cq) \sum_{n \geq 1} \frac{A(n,l)}{n l} S(rh, n; qcr/l) W_1 \left(\frac{nN_1^2}{cq^3r^2} \right) \ll q^{3/2-1/990}, \]
where
\[(4.6) \quad W_1(X) = X \int_{(\sigma)} (\pi^3 X)^{-s} H^\pm(s) \tilde{W}_1(1-s) ds \]
for \(\sigma > 0 \). Note that \(W_1(B)(x) \ll_B q^{B/450} \) so that by integrating by parts \(B \) times we have for \(s = \sigma + it \),
\[(4.7) \quad \tilde{W}_1(1-s) = \int_1^2 x^{-s} W_1(x) dx \ll_B |t|^{-B} q^{B/450}. \]

We can use this bound together with (1.33) to estimate \(W_1(X) \). If \(X > q^{1/150+\epsilon} \), we can take \(\sigma \) in (4.6) to be very large and \(B = [3\sigma + 5] \) in (4.7) to see that \(W_1(X) \ll X^{-2} q^{-100} \). If \(X \leq q^{1/150+\epsilon} \), we take \(\sigma = \epsilon \) in (4.6) and \(B = 2 \) in (4.7) to see that
\[(4.8) \quad W_1(X) \ll q^{1/200} X. \]

So the \(n \)-sum in (4.5) is essentially supported on \(n < \frac{q^{3+1/150+\epsilon} \cdot \epsilon}{N_1 l^2} < q^{3/2+1/60} \).

The contribution to (4.5) by the terms with \(q/l \) is negligible since if \(q/l \) then \(nN_1^2 / cq^3r^2 > q^{1/150+\epsilon} \) and we have just seen that then \(W_1 \left(\frac{nN_1^2}{cq^3r^2} \right) \ll q^{-100} \). Henceforth fix \(l|cr \), so that \(l < q^{1/225} \).

We open the Kloosterman sum: \(S(rh, n; qcr/l) = \sum^*_{u \mod qcr/l} e((rh\overline{u} + n\overline{\alpha})l/qcr) \).

For (4.5), it is enough to show that
\[(4.9) \quad \sum^*_{u \mod qcr/l} \sum_{n \geq 1} \frac{A(n,l) e(n\overline{\alpha}l/qcr)}{n} W_1 \left(\frac{nN_1^2}{cq^3r^2} \right) \sum^*_{h \mod cq} e(h(lu + m)/cq) \ll q^{1/2-1/300}. \]
The innermost sum above, a Ramanujan sum, equals
\[
\sum_{n \geq 1} A(n, l) \frac{n N l^2}{c^3 q r} W_1 \left(\frac{n N l^2}{c^3 q r} \right) \sum_{h \equiv m \mod q} e(h m/c) S(n, q h r; q r/c/l)
\]
\[
= q \sum_{n \geq 1} A(n, l) \frac{n N l^2}{c^3 q r} W_1 \left(\frac{n N l^2}{c^3 q r} \right) \sum_{h \equiv m \mod q} e(h m/c) \sum_{u \equiv m q r/c/l \mod q} e \left(\frac{u q h r + \overline{v} m}{q r/c/l} \right).
\]

Since \((c/r/l, q) = 1\), we have \(S(n, q h r; q r/c/l) = S(n q^2, h r q/c/l) S(0, n; q)\). This product of a Kloosterman sum and a Ramanujan sum is \(\ll q^{1+1/225}\) if \(q | n\) and \(\ll q^{1/225}\) otherwise. In any case, using (1.17), the first line of (4.11) satisfies the bound required in (4.9). Now consider the second line. By the Chinese Remainder Theorem we have
\[
e^{\left(\frac{u q h r}{q r/c/l} \right) \overline{v} m/c} = e^{\left(\frac{v h r q}{c r/l} \right) \frac{n q}{q}} = e^{\left(\frac{n l^2 m c r}{q} \right) e^{\left(\frac{n q v}{c r/l} \right)}}.
\]
Thus (4.13) is reduced to showing
\[
\sum_{n \geq 1} A(n, l) \frac{n N l^2}{c^3 q r} W_1 \left(\frac{n N l^2}{c^3 q r} \right) \sum_{h \equiv m \mod q} e(h m/c) S(n q^2, h r q/c/l) \ll q^{-1/2-1/300}.
\]

Now comes a crucial step. By the Chinese Remainder Theorem we have
\[
e^{\left(\frac{n l^2 m c r}{q} \right)} = e^{\left(\frac{n l^2}{m c r} \right)} e^{\left(\frac{-n l^2 q}{m c r} \right)}.
\]
For \(n < q^{3/2+1/60}\), the exponential factor \(e^{\left(\frac{n l^2}{m c r} \right)}\) has amplitude at most \(q^{1/30}\) and will be absorbed into the weight function. Let \(N_2 < q^{3/2+1/60+\epsilon}\), let \(\omega_2(x)\) be a smooth function, compactly supported on \([1, 2]\) and satisfying \(\omega_2^{(B)}(x) \ll_B 1\) and let
\[
W_2(x) = x^{-1} e^{\left(\frac{x N_2 l^2}{m c r} \right)} W_1 \left(\frac{x N_2 N_1 l^2}{c^3 q r} \right) \omega_2(x).
\]
It is enough to prove that
\[
\sum_{n \geq 1} A(n, l) e^{\left(\frac{-n l^2 q}{m c r} \right)} W_2 \left(\frac{n}{N_2} \right) \sum_{h \equiv m \mod q} e(h m/c) S(n q^2, h r q/c/l) \ll N_2 q^{-1/2-1/300}.
\]
Combining the exponential factors, it is enough to prove that
\begin{equation}
\sum_{n \geq 1} A(n, l) e(n b/d) W_2\left(\frac{n}{N_2}\right) \ll N_2 q^{-1/2-1/100},
\end{equation}
for \(d < q^{1/2+1/150} \) and \((b,d)=1\). We use the Voronoi summation formula again.
Applying Lemma 1.7 to the left hand side of (4.17), it suffices to show that
\begin{equation}
 d \sum_{n \geq 1} \frac{A(\ell, n)}{n \ell} S(l b, n; d l/\ell) W_2\left(\frac{n N_2^2}{d^2 r}\right) \ll N_2 q^{-1/2-1/100}.
\end{equation}
where
\begin{equation}
 W_2(x) = X \int_{(s)} (\pi X)^{-s} H^\pm(s) W_2(1-s) ds
\end{equation}
for \(\sigma > 0 \). We need to estimate \(W_2(X) \). To this end we first note, using (4.8), that
\begin{equation}
 W_2(B) x \ll_B q^{B/30} q^{1/200} N_2 N_1 r^2 \ll q^{(B+1)/30} q^{-3/2} N_2.
\end{equation}
Integrating by parts \(B \) times, we have for \(s = \sigma + i t \) the bound
\begin{equation}
 \tilde{W}_2(1-s) = \int_1^2 x^{-s} W_2(x) dx \ll_B |t|^{-B} q^{(B+1)/30} q^{-3/2} N_2.
\end{equation}
Now we can estimate \(W_2(X) \). We take \(\sigma = 1 \) in (4.19) and \(B = 5 \) above. By (1.33) and (4.21) we see that
\begin{equation}
 W_2(X) \ll N_2 q^{-3/2+1/5}.
\end{equation}
Taking \(\sigma = 2 \), we also observe that the sum in (4.18) can be restricted to \(n < q^{100} \), say, with negligible error.
Using (4.22), to prove (4.18) it is enough to show that
\begin{equation}
 \sum_{n \leq q^{100}} \frac{|A(\ell, n)|}{n \ell} |S(l b, n; d l/\ell)| \ll q^{1/2-13/60}.
\end{equation}
By (1.22), we have \(|S(l b, n; d l/\ell)| \ll (l b, n, d l/\ell)^{1/2}(dl)^{1/2+\epsilon} \ll q^{1/4+1/100} \), since \((b, d) = 1\). This establishes (4.23), using (1.17).

References
1. A. O. L. Atkin and J. Lehner, Hecke operators on \(\Gamma_0(m) \), Math. Ann. 185 (1970), 134–160.
2. Valentin Blomer, Subconvexity for twisted \(L \)-functions on \(GL(3) \), Amer. J. Math. (to appear), 25 pp.
3. J. Friedlander and H. Iwaniec, A mean-value theorem for character sums, Michigan Math. J. 39 (1992), no. 1, 153–159.
4. Dorian Goldfeld, Automorphic forms and \(L \)-functions for the group \(GL(n, \mathbb{R}) \), Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006, With an appendix by Kevin A. Broughan.
5. Dorian Goldfeld and Xiaoqing Li, Voronoi formulas on \(GL(n) \), Int. Math. Res. Not. (2006), Art. ID 86295, 25.
6. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, sixth ed., Academic Press Inc., San Diego, CA, 2000, Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
7. D. R. Heath-Brown, Convexity bounds for \(L \)-functions, Acta Arith. 136 (2009), no. 4, 391–395.
ON THE SUBCONVEXITY PROBLEM FOR $GL(3) \times GL(2)$ L-FUNCTIONS

8. Henryk Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math. 428 (1992), 139–159.
9. ______, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997.
10. Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004.
11. Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55–131 (2001).
12. Henry H. Kim, Functoriality for the exterior square of GL_4 and the symmetric fourth of GL_2, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183 (electronic), With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.
13. Henry H. Kim and Freydoon Shahidi, Functorial products for $GL_2 \times GL_3$ and functorial symmetric cube for GL_2, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 8, 599–604.
14. Erez M. Lapid, On the nonnegativity of Rankin-Selberg L-functions at the center of symmetry, Int. Math. Res. Not. (2003), no. 2, 65–75.
15. Xiannan Li, Upper bounds on L-functions at the edge of the critical strip, Int. Math. Res. Not. IMRN (2010), no. 4, 727–755.
16. Xiaoqing Li, Bounds for $GL(3) \times GL(2)$ L-functions and $GL(3)$ L-functions, Ann. of Math. (2) 173 (2011), no. 1, 301–336.
17. Stephen D. Miller and Wilfried Schmid, Automorphic distributions, L-functions, and Voronoi summation for $GL(3)$, Ann. of Math. (2) 164 (2006), no. 2, 423–488.
18. Giuseppe Molteni, Upper and lower bounds at $s = 1$ for certain Dirichlet series with Euler product, Duke Math. J. 111 (2002), no. 1, 133–158.
19. David Soudry, On Langlands functoriality from classical groups to GL_n, Astérisque (2005), no. 298, 335–390, Automorphic forms. I.
20. Kannan Soundararajan, Weak subconvexity for central values of L-functions, Ann. of Math. (2) 172 (2010), no. 2, 1469–1498.
21. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995, Reprint of the second (1944) edition.

Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3-5, D-37073 Göttingen, Germany
E-mail address: rrkhan@uni-math.gwdg.de