Ion Charge States in a Time-Dependent Wave-Turbulence-Driven Model of the Solar Wind

Roberto Lionello1 · Cooper Downs1 · Jon A. Linker1 · Zoran Mikić1 · John Raymond2 · Chengcai Shen2 · Marco Velli3

© Springer

Abstract Ion fractional charge states, measured in situ in the heliosphere, depend on the properties of the plasma in the inner corona. As the ions travel outward in the solar wind and the electron density drops, the charge states remain essentially unaltered or “frozen in”. Thus they can provide a powerful constraint on heating models of the corona and acceleration of the solar wind. We have implemented non-equilibrium ionization calculations into a 1D wave-turbulence-driven (WTD) hydrodynamic solar wind model and compared modeled charge states with the Ulysses 1994-5 in situ measurements. We have found that modeled charge state ratios of C^{6+}/C^{5+} and O^{7+}/O^{6+}, among others, were too low compared with Ulysses measurements. However, a heuristic reduction of the plasma flow speed has been able to bring the modeled results in line with observations, though other ideas have been proposed to address this discrepancy. We discuss implications of our results and the prospect of including ion charge state calculations into our 3D MHD model of the inner heliosphere.

Keywords: Solar wind, Fractional charge states

1. Introduction

Fractional charge states of ions in the solar corona are determined by the local properties of the plasma. However, the rapidly decreasing electron density of the...
plasma released into the solar wind prevents further ionization and recombination beyond a few solar radii (Bochsler, 2002; Cranmer, 2002, and references therein). Thus measurements of charge states in the heliosphere such as those performed by Ulysses/SWICS (Zurbuchen et al., 2002) give us information and constraints on the properties of the corona from which they originate, the higher-ionization states being associated with hotter regions. While ionization equilibrium is a valid assumption in many cases and especially in the lower corona, it does not apply when the dynamic time scales of the plasma are shorter than those of ionization and recombination. In those instances charge states must be calculated with a time-dependent scheme, which is then relaxed to a steady state for the steady solar wind solutions computed here (Shen et al., 2015). Although the evolution of the charge state distribution in the solar wind has been studied with sophisticated multi-fluid models (Bueri and Geiss, 1986; Esser, Edgar, and Brickhouse, 1992; Ko et al., 1994; Chen, Esser, and Hu, 2003; Byhring et al., 2011), connecting in situ measurements with coronal spectroscopic data still remains problematic (Landi et al., 2014). This very difficulty makes the reproduction of charge-states in MHD computational models of the solar corona a robust constraint for the validation of the models themselves. Oran et al. (2015) pioneered in this effort by using an external code to evaluate charge states in the solar wind calculation obtained with the Alfvén Wave Solar Model (AWSoM), and comparing them with in situ measurements from Ulysses. Recently we incorporated a Wave-Turbulence-Driven (WTD) formulation for coronal heating and solar wind acceleration by Alfvénic turbulence into a 3D MHD model of the global solar corona (Mikić et al., 2018). In this effort, we constrained the model by forward modeling EUV, X-Ray, and white-light coronal emission and comparing directly to observations. Although it is our long-term goal to use the calculation of fractional charge states to further constrain our 3D model, it is expedient to start this process with our 1D solar wind model, since it contains analogous heating and acceleration schemes (Lionello et al., 2014a,b). With this aim in mind, we have added the fractional charge states module of Shen et al., 2015 to our 1D model. Then we have compared the calculated C^{6+}/C^{5+} and O^{7+}/O^{6+} ratios and the average iron charge state, $<Q>_{Fe}$ with those measured by Ulysses during 1994-5, when the spacecraft spanned a large latitudinal interval. Since our preliminary results could not match the in situ data, we have developed and validated a heuristic method to correct the 1D model and improve the comparison with satellite measurements. This modification can also be implemented in 3D calculations. This paper is organized as follows: in Sec. 2 we describe the 1D model; the first results, the modifications to the model, and the corrected results are in Sec. 3; we draw our conclusions in Sec. 4.

2. Model Description

We use the 1D hydrodynamic (HD) model of the solar wind of Lionello et al., 2014a,b, which is based on our WTD formulation. This formulation uses the propagation, reflection, and non-linear dissipation of Alfvénic turbulence to
heat and accelerate the solar wind (Verdini et al., 2010). This model solves the following set of time-dependent, 1D HD equations:

\[
\frac{\partial \rho}{\partial t} = -\frac{1}{A} \frac{\partial}{\partial s} (AU\rho), \tag{1}
\]

\[
\rho \frac{\partial U}{\partial t} = -\rho U \frac{\partial U}{\partial s} - \frac{\partial}{\partial s} (p + p_w) + g_s \rho + R_s + \frac{1}{s^2} \frac{\partial}{\partial s} \left(s^2 \nu p \frac{\partial U}{\partial s} \right), \tag{2}
\]

\[
\frac{\partial T}{\partial t} = -U \frac{\partial T}{\partial s} - (\gamma - 1) \left[T \frac{1}{A} \frac{\partial}{\partial s} AU - \frac{m_p}{2k} \frac{\partial}{\partial s} Aq - n_e n_p Q(T) + H \right], \tag{3}
\]

\[
\frac{\partial z_\pm}{\partial t} = -[U \pm V_a] \frac{\partial z_\pm}{\partial s} - \frac{1}{2} [U \mp V_a] \left(\frac{\partial \log V_a}{\partial s} \right) z_\pm + \frac{1}{2} [U \mp V_a] \frac{\partial \log V_a}{\partial s} ~ \frac{z_\mp - |z_\mp| z_\pm}{2 \lambda \sqrt{A/A_\odot}}, \tag{4}
\]

\[
H = \rho \frac{|z_-| z_+^2 + |z_+| z_-^2}{4 \lambda \sqrt{A/A_\odot}}, \tag{5}
\]

\[
p = 2 n k T, \tag{6}
\]

\[
p_w = \frac{1}{2} \rho \frac{(z_- - z_+)^2}{8}, \tag{7}
\]

\[
R_s = \rho z_+ z_- \frac{\partial \log A}{\partial s}, \tag{8}
\]

where \(s \geq R_\odot\) is the distance along a magnetic field line; \(p, T, U,\) and \(\rho\) are the plasma pressure, temperature, velocity, and density. The number density, \(n\), is assumed to be equal for protons \((n_p)\) and electrons \((n_e)\). \(k\) is Boltzmann constant.

\(g_s = g_0 R_\odot^2 \hat{b} \cdot \hat{r} / r^2\) is the gravitational acceleration parallel to the magnetic field line \((\hat{b})\). The kinematic viscosity is \(\nu\). \(A(s) = 1/B(s)\) is the area factor along the field line and the inverse of the magnetic field magnitude \(B(s)\). The field aligned component of the vector divergence of the MHD Reynolds stress, \(\mathbf{R} = (\partial \delta \mathbf{b}/\partial \tau - \rho \delta \mathbf{u}/\partial \tau)\), is \(R_z\). \(\delta \mathbf{u}\) and \(\delta \mathbf{b}\) are respectively the fluctuations of the velocity \(\mathbf{u} = U(s) \hat{b} + \delta \mathbf{u}\) and of the magnetic field, \(\mathbf{B} = B(s) \hat{b} + \delta \mathbf{b}\), with \(\hat{b} \cdot \delta \mathbf{b} = 0\) and \(\delta \mathbf{b}^2/8 \pi\) is the wave pressure. In Eq. (5), the polytropic index is \(\gamma = 5/3\). The radiation loss function \(Q(T)\) is as in Athay (1964). For the heat flux \(q\), according to the radial distance, either a collisional (Spitzer’s law) or collisionless form (Hollweg, 1978) is employed. At a distance of 10\(R_\odot\) from the Sun, a smooth transition between the two forms occurs (Mikić et al., 1999). In Eq. (4), the Elsasser variables \(z_\pm = \delta \mathbf{u} \mp \delta \mathbf{b} / \sqrt{4 \pi p}\) (Dmitruk, Milano, and Matthaeus, 2001) are advanced. \(z_+\) represents an outward propagating perturbation along a radially outward magnetic field line, while \(z_-\) is directed inwardly. The actual direction of \(z_\pm\) is assumed to be unimportant, provided that it is in the plane perpendicular to \(\hat{b}\) and that only low-frequency perturbations are relevant for the heating and acceleration of the plasma. Hence, we treat \(z_\pm\) as scalars. The Alfvén speed along the field line is \(V_A(s) = B / \sqrt{4 \pi p}\). With \(R_A^+\) and \(R_A^-\) respectively, we indicate the WKB and reflection terms, which...
are related to the large scale gradients. λ_{\odot} is the turbulence correlation scale at the solar surface. Thus the heating function H (de Karman and Howarth, 1938; Matthaeus et al., 2004, p_w and R_s (Usmanov et al., 2011; Usmanov, Goldstein, and Matthaeus, 2012) can all be expressed in terms of z_{\pm}. We are allowed to specify temperature and density at the lower boundary because the solar wind is subsonic there. However, the velocity must be determined by solving the 1D gas characteristic equations. Since the upper boundary is placed beyond all critical points, the characteristic equations are used for all variables. The amplitude of the outward-propagating (from the Sun) wave is imposed in the z^{\pm} equations.

Lionello et al. (2014b) used the model to explore the parameter space of λ_{\odot} and z_{\odot}^{\pm} (at the solar surface) in a radial field line to determine the plasma speed, density, and temperature at 1 A.U. Lionello et al. (2014a) calculated instead solar wind solutions at different latitudes along open flux tubes of the magnetic field described in Banaszkiewicz, Axford, and McKenzie (1998). In the present work, in parallel with the HD equations, we use $U, T,$ and n_e to evolve the fractional charge states of minor ions according to the model of Shen et al. (2015):

$$\frac{\partial ZF^i}{\partial t} + U \frac{\partial}{\partial s} ZF^i = n_e \left[ZC^{i-1} ZF^{i-1} - \left(ZC^i + z R^{i-1} \right) ZF^i + z R^i ZF^{i+1} \right]. \tag{9}$$

For an element with atomic number Z, $ZF^i(s)$ indicates the fraction of ion $i \pm (i = 0, Z)$ in respect of the total at a grid point:

$$\sum_{i=0}^{Z} ZF^i = 1. \tag{10}$$

For each element, the ion fractions are coupled through the ionization, $zC^i(T)$, and recombination, $z R^i(T)$, rate coefficients derived from the CHIANTI (version 7.1) atomic database (Dere et al., 1997; Landi et al., 2013). Although in principle the values of the ion fractions could be used to determine the radiation law function $Q(T)$ in Eq. (3), they provide no feedback effects in this investigation. As initial condition, we prescribe at each point the equilibrium values of each $ZF^i(s)$, which is obtained from the module of Shen et al. (2013). As boundary condition at $s = R_{\odot}$ we keep the initial, equilibrium $ZF^i(R_{\odot})$. At the outer boundary $s = 215R_{\odot}$, since the charge states are frozen-in, we set the values to be the same as those at the grid point immediately preceding, $ZF^i(215R_{\odot}) = ZF^i(215R_{\odot} - \Delta r)$.

3. Results

We calculate the fractional charge states in a parameter space study of the fast solar wind and for the magnetic field configuration of Banaszkiewicz, Axford, and McKenzie (1998). Since in either case the computed ion fractions do not match in situ measurements, we devise a correction for the ion outflow speed. Then we show the calculated charge states with the corrected flow.
3.1. Charge-States in a Parameter Study of the Fast Solar Wind

Using the WTD model described in Sec. 2, Lionello et al. (2014b) performed a parameter study of the fast solar wind along a radial magnetic field line. They varied \(\lambda_S \) at 5 values within 0.01 \(R_S \) \(\leq \lambda_S \leq 0.09 \ R_S \), with an interval \(\Delta \lambda_S = 0.02 \ R_S \), and \(z^+_i \) at 13 values equally spaced between 19 km/s \(\lesssim z^+_i \lesssim 42 \) km/s, the interval between each value being \(\Delta z^+_i = 1.9 \) km/s. Not all values yielded steady-state solutions; when \(\lambda_S = 0.01 \ R_S \), acceptable solutions were found only for 19 km/s \(\lesssim z^+_i \lesssim 31 \) km/s; when \(\lambda_S = 0.03 \ R_S \), a steady-state solution was not found for \(z^+_i \approx 42 \) km/s.

We have repeated the same simulations, having activated the ion charge states evolution module for carbon, oxygen, and iron. In Fig. 1 we show comparisons between results of the computation and the measurements of Ulysses/SWICS (Zurbuchen et al., 2002) during the years 1994 and 1995, when the spacecraft performed the rapid latitude scans. Since the parameter study concerns the fast solar wind, we show measurements only for latitudes larger than 70° north or

Figure 1. The ion charge states at 1 A.U. in the parameter study of the solar wind in WTD model of Lionello et al. (2014b) compared with the measurements of Ulysses at latitudes \(|\phi| \geq 70° \) during 1994-5. Values from simulations with the same \(\lambda_S \) are grouped along curves. Along each, curve a symbol indicates the calculated result. \(z^+_i \) increases from bottom left to top right at 13 values equally spaced between 19 km/s \(\lesssim z^+_i \lesssim 42 \) km/s, the interval between each value being \(\Delta z^+_i \approx 1.9 \) km/s. The thin area in gold corresponds to solutions with 630 \(\lesssim U \leq 820 \) km/s and 1.5 \(\leq n_e \leq 3 \) cm\(^{-3} \) for the plasma at 1 A.U. Enlargements around the areas are provided in the upper right corners of each panel. (a) \(O^{+4} / O^{+4} \) vs. \(O^{+6} / O^{+6} \) in the original model. (b) The same as (a) with corrected flow in the evolution of the ions. (c) \(Q \approx Fe \) vs. \(O^{+4} / O^{+4} \) in the original model. (d) The same as (c) with corrected flow in the evolution of the ions.

SGLA: ioncharge.tex; 15 January 2019; 1:42; p. 5
Figure 2. Latitudinal dependence of ion charge states of the solar wind at 1 A.U. in WTD model of Lionello et al. (2014a) compared with the measurements of Ulysses during 1994-5. 25 solar wind solutions (indicated with symbols along the curves) were calculated at latitudes between 0° and 90° along field lines of the symmetric model of Banaszkiewicz, Axford, and McKenzie (1998). The cyan curves are for the unmodified charge states evolution model, the orange curves show the results when a correction to the flow is applied. (a) O^{7+}/O^{6+}. (b) C^{6+}/C^{5+}. (c) O^{7+}/O^{6+}. (d) Si^{10+}/Si^{9+}. south. Each symbol along the curves represents the solutions of results with the same λ_\odot but increasing z_+^\odot from bottom-left to top-right. Panel (a) has the ratio of O^{7+}/O^{6+} on the x-axis and C^{6+}/C^{5+} on the y-axis and Panel (c) has the average charge state of iron, $<Q>_{Fe}$, versus the O^{7+}/O^{6+} ratio [Panels (b) and (d) will be described later]. From Panel (a) it is evident that, although in some instances values of O^{7+}/O^{6+} compatible with in situ data are reproduced, there are no solutions that can simultaneously match the measured C^{6+}/C^{5+} and O^{7+}/O^{6+}. Panel (c) shows some superposition between measurements and calculations with the highest values of z_+^\odot. However, as it appears from Fig. 2 of Lionello et al. (2014b), these large z_+^\odot yields plasma parameters at 1 A.U. that are not generally observed in the solar wind. On the contrary, the thin area in gold in Panel (c), which corresponds to solutions with $630 \lesssim U \lesssim 820$ km/s and $1.5 \lesssim n_e \lesssim 3$ cm$^{-3}$, does not intersect the bulk of Ulysses measurements.

3.2. Latitudinal Profiles of Charge-States in the Solar Wind

Lionello et al. (2014a) used the WTD model of Sec. 2 to calculate solar wind solutions along 25 magnetic field lines extracted at different latitudes between 0° and 90° from the 2D, axisymmetric, analytic model of Banaszkiewicz, Axford,
and McKenzie (1998). For each flux-tube, the same combination of turbulence parameters $z_\odot = 54 \text{ km/s}$ and $\lambda_\odot = 0.02 \ R_\odot$ was employed. The computed latitudinal dependence at 1 A.U. of plasma wind speed, number density, temperature, and pressure (Fig. 2 of Lionello et al., 2014a) was found to be in qualitative agreement with more advanced model of Cranmer, van Ballegooijen, and Edgar (2007) and within the range of in situ data.

We have also repeated the simulations of Lionello et al. (2014a) to calculate the charge states for carbon, oxygen, and iron. In Fig. 2, we compare the latitudinal dependence of the computed C^{6+}/C^{5+} ratio (in cyan, each symbol representing a solution) with that measured by Ulysses during 1994-5. Although we cannot expect agreement at low latitudes, where the charge states are affected by the properties of the equatorial streamer and possible encounters with CMEs, the results of the simulations are about one order of magnitude too low even at the poles. The calculated O^{7+}/O^{6+} ratios (in cyan) in Fig. 2b are also too low. The curve of simulated average iron charge states, $< Q > Fe$, which is depicted in cyan in Fig. 2c, is at the lower limit of the measurements.

3.3. Correcting the Ion Outflow Speed

Since the results in Subsecs. 3.1 and 3.2 show that the WTD model described in Sec. 4 cannot reproduce the charge states of ions in the solar wind, we have looked for possible improvements that may also be implemented in the 3D model of Mikić et al. (2018). One possible reason why the charge states in our model are too low is that we do not include the effect of a suprathermal electron tail in the corona that would increase the ionization coefficients (Ko et al., 1996; Esser, Edgar, and Brickhouse, 1998; Cranmer, 2014). However, no conclusive evidence of such non-Maxwellian distribution has yet emerged (Cranmer, 2009). Another possibility is that a simple, one fluid model does not account for the possibility that ions traveling at lower speeds than electrons would spend more time in the lower corona, where they would likely reach higher charge states (Ko, Geiss, and Gloeckler, 1998). Landi et al. (2013) proposed a correction to the flow in the model of Cranmer, van Ballegooijen, and Edgar (2007) to have the source region located in the corona rather than in the lower atmosphere. The charge states of the solar wind were already closer to the measured ones, but still a better agreement was reached mostly due to this fact. Inspired by their work, we intend to determine a modifying factor $v_{\text{mod}}(r)$ such that when applied to $U(s)$,

$$U_{\text{mod}}(s) = v_{\text{mod}}(r)U(s),$$

may give a smaller ion outflow speed in the lower corona, and thus make the charge states at 1 A.U. as calculated in Eq. (9) compatible with the Ulysses measurements. We choose for $v_{\text{mod}}(r)$ the following formulation:

$$v_{\text{mod}}(r) = \frac{1}{2} \left(1 + \tanh \frac{r - r_0}{\Delta r} \right),$$

which is based on two parameters, r_0 and Δr. As Fig. 3a shows, r_0 controls where the flow is switched on and Δr is the interval over which this transition
Figure 3. (a) A plot of the two-parameter (i.e., Δr and r_0) function in Eq. (12). (b) In purple, the solar wind speed along the polar magnetic field line of the model of Banaszkiewicz, Axford, and McKenzie (1998) calculated with the WTD algorithm. In green, the speed used to advance the charge states in Eq. (9) when $v_{\text{mod}}(r)$ with $\Delta r = 0.5 R_\odot$ and $r_0 = 1.6 R_\odot$ is applied to the flow as in Eq. (11). Values along the lower left corner shows the values if no correction is applied to the flow in Eq. (11). The circle in the lower left corner shows the values if no correction is applied to the flow in Eq. (9). Values along each curves, from bottom-left to top-right, represents solutions with the same Δr in $v_{\text{mod}}(r)$ and increasing r_0, from 1 to 2.2 R_\odot at intervals of 0.2 R_\odot. The curves are superimposed to the Ulysses measurements at latitudes $|\phi| \geq 70^\circ$ during 1994-5. (d) The same as (c) but for $<Q> \text{Fe}$ vs. O^{7+}/O^{6+}.

occurs. To determine heuristically the optimal values of these parameters, we repeat the charge-states calculation for the polar field line in Subsec. 3.2 with v_{mod} having $r_0 = 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2 R_\odot$ and $\Delta r = 0.125, 0.25, 0.75, 1, 1.25 R_\odot$. Then we evaluate for each solutions the values of the ratios O^{7+}/O^{6+} and C^{6+}/C^{5+} as well as $<Q> \text{Fe}$. Finally we select the couple $(r_0, \Delta r)$ that yields the results closest to the Ulysses measurements. Figures 3c and 3d show the calculated charge states respectively in the C^{6+}/C^{5+} vs. O^{7+}/O^{6+} and in the $<Q> \text{Fe}$ vs. O^{7+}/O^{6+} planes. Each curve corresponds to a given Δr. The symbols along each curve represent values of r_0 increasing from the bottom left (where the charge states for the solution with no v_{mod} are indicated with circles) to top right. The values corresponding to the couple $(r_0 = 1.6 R_\odot, \Delta r = 0.5 R_\odot)$ fall close to the centers of the Ulysses measurements. With this choice, the ion outflow speed is modified as depicted in Fig. 3b. Since the ions are traveling for a longer time in the lower corona, they can reach higher charge states before being “frozen-in.”
3.4. Charge States Calculations with Modified Ion Outflow Speed

We have repeated the calculations of Subsec. 3.1 with the ion outflow speed modified with v_{mod} according to the optimal choice of parameters ($\Delta r = 0.5 R_\odot$ and $r_0 = 1.6 R_\odot$) as described in the previous subsection. The effects of the modification can be seen in Figures 1b and 1d, which are the respective counterparts of the unmodified calculations in Figs. 1a and 1c. Higher charge states are reached so that now the thin areas in gold, which correspond to solar wind solutions with $630 \lesssim U \lesssim 820$ km/s and $1.5 \lesssim n_e \lesssim 3$ cm$^{-3}$, intersect (or at least touch) the bulk of Ulysses measurements. Hence, solutions in these subregions have not only plasma velocity and density, but also charge states values compatible with \textit{in situ} measurements.

Analogously, we have recalculated the latitudinal profiles of Subsec. 3.2 applying v_{mod} to slow down the flow of ions. The orange curves in panels a, b, and c of Fig. 2, which correspond to simulations with the corrected ion outflow speed, show higher charge states being formed in comparison with the cyan curves, for which no such modification is applied. Thus, at least for the higher latitudes, the calculated charge states lie now close to the middle of the bulk of the Ulysses measurements.

To verify our approach, we also calculate the Si$^{10+}$/Si$^{9+}$ ratio, which has not been used to optimize the parameters of the v_{mod} function and for which there exists data in the Ulysses/SWICS archive. The resulting latitudinal profiles, with and without the ion outflow speed correction, are shown in Fig. 2d superimposed to the measurements. These, due to uncertainties, span about two orders of magnitude. Although both curves fall within the bulk of the data, the profile with flow correction lies closer to the average value. This confirms that our approach is not, at least, inferior to that using the unmodified flow.

4. Conclusions

We have incorporated time-dependent fractional charge states evolution into our 1D WTD model of the solar wind. We have implemented this capability with the aim of introducing it also into our 3D MHD model of the solar corona and inner heliosphere. In fact, charge states calculations, especially when combined with other EUV, X-ray, and white light emission diagnostics, represent a powerful constraint on the underlying WTD MHD model. They can provide additional constraints on the correlation scale of the turbulence and the amplitude of the outwardly propagating Alfvén perturbation at the solar surface. However, the charge states percentages as calculated from the WTD model do not match the heliospheric measurements taken by Ulysses in 1994-5. We have heuristically determined a correction to the ion outflow speed to be used to evolve the charge states. This yields, particularly for the polar regions, a better agreement between the calculated values and the \textit{in situ} measurements of Ulysses during 1994-5. At lower latitudes, where there are uncertainties due to possible encounters with CMEs and the configuration of the equatorial streamer, the discrepancy is larger. Comparing our work with that of Oran \textit{et al.} (2015), we notice first
the differences between their models and ours: Oran et al. employed a global MHD algorithm driven by a sophisticated Alfvén WTD formulation, selected field lines at different latitudes, used an external code to evaluate the charge states along the same, and compared the results with the measurements of Ulysses during its third polar scan of 2007. Yet, despite all these differences, their models disagreed with measurements in the same sense as ours, namely ionization rates were underpredicted. Oran et al. (2015) considered the same explanations we discuss in the text, but finally invoked suprathermal electrons as a possible, unaccounted mechanism to close the gap with observations. We have postulated a slower propagation speed for the ions. Although the ion outflow speed modification, which was inspired by that of Landi et al. (2014), may capture some of the physics of the ions, there are several other possible explanations for the mismatch between the calculated charge states and the observations. On the other hand, our modified ion outflow speed (Fig. 3b) lies within the range of recent empirical results (Fig. 4 of Abbo et al., 2016), since it is already more than 300 km/s at 3 R_\odot. It is also possible that photoionization may yield the higher charge states measured in the solar wind. Even if Landi and Lepri (2015) found that it could be a significant factor, yet it was not sufficient to explain the discrepancy between predictions and measurements. We plan to explore this effect in future work. Moreover, the plasma density and temperature in the lower corona could also be factors of critical importance in setting the charge state distribution of the solar wind. Although our model was shown to provide results compatible with observations (Lionello et al., 2014a), we cannot categorically exclude that a different heating model could yield not only the same plasma parameters at 1 AU, but also conditions in the lower corona causing higher ionization. Needless to say, a more accurate calculation of charge states would also require multi-fluid simulations (e.g., Ofman, Abbo, and Giordano, 2013) or even multi-ions simulations (e.g., Byhring et al., 2011). In particular, as Fig. 3b of Byhring et al. (2011) shows, a single outflow speed for all ions is only a crude approximation. Introducing a more realistic evolution of the plasma, starting from evolving the temperature of electrons and protons separately, is a first step into this direction that will be implemented next. However, considering the end goal of our investigation is to provide accurate 3D modeling of the corona and heliosphere capable of predicting tomorrow’s conditions from today’s empirical data, compromises on which physical mechanisms to include next will be inevitable. They will also be acceptable only if the results can be quantitatively matched with observations.

Acknowledgments RL is grateful to Drs. Susanna Parenti and Alessandro Bemporad for providing helpful advice. RL was funded through NASA Grant NNH14CK98C.

References
Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., Wang, Y.-M.: 2016, Slow Solar Wind: Observations and Modeling. Space Sci. Rev. 201, 55. DOI ADS
Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, An analytic solar magnetic field model. *Astron. Astrophys.* **337**, 940. [ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998A&A...337..940B&db_key=AST)

Bochsler, P.: 2002, Abundances and charge states of particles in the solar wind. *Reviews of Geophysics* **38**(2), 247. [DOI](https://doi.org/10.1029/2000RG000630)

Byhring, H.S., Cranmer, S.R., Lie-Svendsen, Ø., Habbal, S.R., Eser, R.: 2011, Modeling Iron Abundance Enhancements in the Slow Solar Wind. *Astrophys. J.* **732**, 119. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2011ApJ...732..119B&db_key=AST)

Cranmer, S.R.: 2002, Coronal Holes and the High-Speed Solar Wind. *Space Sci. Rev.* **101**, 229. [ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002SSRv..101..229C&db_key=ADS)

Cranmer, S.R.: 2009, Coronal Holes. *Living Reviews in Solar Physics* **6**, 3. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2009LRSP...6....3C&db_key=AST)

Cranmer, S.R.: 2014, Suprathermal Electrons in the Solar Corona: Can Nonlocal Transport Explain Heliospheric Charge States? *Astrophys. J. Lett.* **791**, L31. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...791L..31C&db_key=AST)

Dere, K.P., Landi, E., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., van der Holst, B.: 2014, Charge State Evolution in the Solar Wind. III. Model Comparison with Observations. *Astrophys. J.* **790**, 111. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...790..111D&db_key=AST)

Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI—an atomic database for emission lines. *Astron. Astrophys. Suppl.* **125**, 149. [ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997A&A..125..149D&db_key=AST)

Eser, R., Edgar, R.J., Brickhouse, N.S.: 1998, High Minor Ion Outflow Speeds in the Inner Corona and Observed Ion Charge States in Interplanetary Space. *Astrophys. J.* **498**, 448. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...498..448E&db_key=AST)

Eser, R., Edgar, R.J., Brickhouse, N.S.: 1998, High Minor Ion Outflow Speeds in the Inner Corona and Observed Ion Charge States in Interplanetary Space. *Astrophys. J.* **498**, 448. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...498..448E&db_key=AST)

Landi, E., Lepri, S.T.: 2015, Photoionization in the Solar Wind. *Astrophys. J. Lett.* **812**, L28. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2015ApJ...812L..28L&db_key=AST)

Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI—an atomic database for emission lines. *Astron. Astrophys. Suppl.* **125**, 149. [ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997A&A..125..149D&db_key=AST)

Landi, E., Oran, R., Lepri, S.T.: 2014, CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes. *Astrophys. J.* **763**, 86. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...763...86L&db_key=AST)

Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes. *Astrophys. J.* **763**, 86. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...763...86L&db_key=AST)

Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes. *Astrophys. J.* **763**, 86. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...763...86L&db_key=AST)

Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes. *Astrophys. J.* **763**, 86. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...763...86L&db_key=AST)

Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z.: 2014a, Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration. *Astrophys. J.* **796**, 111. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...796..111L&db_key=AST)

Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014b, Validating a Time-dependent Turbulence-driven Model of the Solar Wind. *Astrophys. J.* **784**, 120. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2014ApJ...784..120L&db_key=AST)

Matthaeus, W.H., Minnie, J., Breech, B., Parhi, S., Bieber, J.W., Oughton, S.: 2004, Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. *Geophys. Res. Lett.* **31**, 12803. [DOI][ADS](http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004GeoRL..3112803M&db_key=ADS)
Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic Modeling of the Global Solar Corona. Phys. of Plasmas 6, 2217. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999PhPl....6.2217M&db_key=PHY

Mikić, Z., Downs, C., Linker, J.A., Caplan, R.M., Mackay, D.H., Upton, L.A., Riley, P., Lionello, R., Török, T., Titov, V.S., Wijaya, J., Druckmüller, M., Pasachoff, J.M., Carlos, W.: 2018, Predicting the corona for the 21 August 2017 total solar eclipse. Nature Astronomy.

Otman, L., Abbo, L., Giordano, S.: 2013, Observations and Models of Slow Solar Wind with Mg3+ Ions in Quiescent Streamers. Astrophys. J. 762, 18. [DOI] [ADS]

Oran, R., Landi, E., van der Holst, B., Lepri, S.T., Vásquez, A.M., Nuevo, F.A., Frazin, R., Manchester, W., Sokolov, I., Gombosi, T.I.: 2015, A Steady-state Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-driven MHD Model. Astrophys. J. 806, 55. [DOI] [ADS]

Shen, C., Raymond, J.C., Murphy, N.A., Lin, J.: 2015, A Lagrangian scheme for time-dependent ionization in simulations of astrophysical plasmas. Astronomy and Computing 12, 1. [DOI] [ADS]

Usmanov, A.V., Goldstein, M.L., Matthaeus, W.H.: 2012, Three-dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport. Astrophys. J. 754, 40. [DOI] [ADS]

Usmanov, A.V., Matthaeus, W.H., Breech, B.A., Goldstein, M.L.: 2011, Solar Wind Modeling with Turbulence Transport and Heating. Astrophys. J. 727, 84. [DOI] [ADS]

Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P.: 2010, A Turbulence-Driven Model for Heating and Acceleration of the Fast Wind in Coronal Holes. Astrophys. J. Lett. 708, L116. [DOI] [ADS]

Zurbuchen, T.H., Fisk, L.A., Gloeckler, G., von Steiger, R.: 2002, The solar wind composition throughout the solar cycle: A continuum of dynamic states. Geophys. Res. Lett. 29, 1352. [DOI] [ADS]