Correction to the paper
“Some remarks on Davie’s uniqueness theorem”

A.V. Shaposhnikov

Abstract

The property 4 in Proposition 2.3 from the paper “Some remarks on Davie’s uniqueness theorem” is replaced with a weaker assertion which is sufficient for the proof of the main results. Technical details and improvements are given.

AMS Subject Classification: 60H10, 34F05, 46N20.

Keywords: Brownian motion, stochastic differential equation, pathwise uniqueness

1. Introduction

We consider the stochastic differential equation

\[X_t = x + W_t + \int_0^t b(s, X_s) \, ds. \]

In the paper \cite{1} the following theorem was proved:

Theorem 1.1. Let \(b : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d \) be a Borel measurable bounded mapping. Then for almost all Brownian paths the equation \(\mathbb{I} \) has exactly one solution.

In the work \cite{11} an alternative approach was proposed. However as it was pointed out in \cite{10} (see Remark 5.3, p. 24) the uniform Hölder continuity (the property 4 from Proposition 2.3 in \cite{11}) doesn’t immediately follow from Kolmogorov continuity theorem and the moments estimates established in \cite{11}. Below we present a simple modification of Kolmogorov continuity theorem and adjust the proofs of the main results from \cite{11} accordingly. Some other observations regarding the regularity of the flow, in particular, a simple treatment of the case of a bounded drift, are not included into this short note and will be discussed in a separate paper.

2. Auxiliary results

Proposition 2.3. Let

\[b \in L^q([0, T], L^p(\mathbb{R}^d)), \quad \frac{d}{p} + \frac{2}{q} < 1. \]

Then, there exists a Hölder flow of solutions to the equation \(\mathbb{I} \). More precisely, for any filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)\) and a Brownian motion \(W \), there exists a mapping \((s, t, x, \omega) \mapsto \varphi_{s,t}(x)(\omega)\) with values in \(\mathbb{R}^d \), defined for \(0 \leq s \leq t \leq T, \ x \in \mathbb{R}^d, \ \omega \in \Omega \), such that for each \(s \in [0, T] \) the following conditions hold:

1. for any \(x \in \mathbb{R}^d \) the process \(X_{s,t}^x = \varphi_{s,t}(x) \) is a continuous \(\mathcal{F}_{s,t} \) adapted solution to the equation \(\mathbb{I} \)

2. \(P \)-almost surely the mapping \(x \mapsto \varphi_{s,t}(x) \) is a homeomorphism,

3. \(P \)-almost surely for all \(x \in \mathbb{R}^d \) and \(0 \leq s \leq u \leq t \leq 1 \)

\[\varphi_{s,t}(x) = \varphi_{u,t}(\varphi_{s,u}(x)), \]

1e-mail: shal1t7@mail.ru
4. For any \(\alpha \in (0, 1) \), \(\eta > 0 \), \(N > 0 \) and a given increasing sequence \(S \) of finite sets \(\{S_n\}_{n=0}^{\infty} \) with \(|S_n| \leq 2^{\eta n} \) there exists a set \(\Omega' \) of probability 1 such that for any \(s \in S_n \), \(x, y \in \mathbb{R}^d \) with \(|x|, |y| < N, |x - y| \leq 2^{-n} \) and each \(t \in [s, T] \)

\[
|\varphi_{s,t}(x) - \varphi_{s,t}(y)| \leq C(\alpha, T, N, S, \omega)|x - y|^{\alpha}.
\]

Following the proof given in [11] we consider the process

\[
Y_t := \psi_t(t, X_t) = X_t + U(t, X_t)
\]

which is the unique solution of the transformed equation

\[
dY_t = \tilde{b}(t, Y_t) \, dt + \tilde{\sigma}(t, Y_t) \, dW_t,
\]

for details see [11]. In the work [11] the following bound was established:

\[
\mathbb{E} \sup_{t \in [0, T]} |Y_t^x - Y_t^y|^{\alpha} \leq C(a, T)(|x - y|^{\alpha} + |x - y|^{\alpha-1}), \tag{2}
\]

It is easy to see that the same arguments provide the estimate

\[
\sup_{s \in [0, T]} \mathbb{E} \sup_{t \in [s, T]} |Y_{s,t}^x - Y_{s,t}^y|^{\alpha} \leq C(a, T)(|x - y|^{\alpha} + |x - y|^{\alpha-1})
\]

Since \(\psi_t, \psi_t^{-1} \) are Lipschitz continuous uniformly in time an analogous bound holds for \(X_{s,t}^x \)

\[
\sup_{s \in [0, T]} \mathbb{E} \sup_{t \in [s, T]} |X_{s,t}^x - X_{s,t}^y|^{\alpha} \leq C(a, T)(|x - y|^{\alpha} + |x - y|^{\alpha-1})
\]

We can assume (see [2]) that for each \(s \) the mapping \(X_{s,t}^x \) is jointly continuous with respect to \(t, x \). To complete the proof we will need the following lemma:

Lemma 2.1. Let \(X(s, x) \) be a continuous with respect to \(x \) process with values in a complete metric space \((M, \varrho_{M}) \) on \(S \times [0, 1]^d \). Assume that for some \(a, b > 0 \)

\[
\sup_{s \in S} \mathbb{E} \varrho_{M}(X_s(u), X_s(v))^{\alpha} \leq |u - v|^{d+b}, \quad u, v \in [0, 1]^d
\]

For any \(\alpha \in (0, b/a), \eta \in (0, b - \alpha a) \) and any increasing sequence \(S \) of finite subsets \(\{S_n\}_{n=0}^{\infty} \) with \(|S_n| \leq 2^{\eta n} \) there exists a set \(\Omega' \) of probability 1 such that

\[
\varrho_{M}(X_s(u), X_s(v)) \leq C(\alpha, \eta, S, \omega)|u - v|^{\alpha} \quad s \in S_n, u, v \in [0, 1]^d, |u - v| \leq 2^{-n}, \omega \in \Omega',
\]

The proof is a minor modification of the standard proof of Kolmogorov continuity theorem, for details see [9].

Proof. Let \(\alpha \in (0, b/a) \). Define \(D_n \) as

\[
D_n := \{(k_1, \ldots, k_d)2^{-n}; k_1, \ldots, k_d \in \{1, \ldots, 2^n\}\}
\]

Let

\[
Y(s, n) := \max \left\{ \varrho_{M}(X_s(u), X_s(v)); u, v \in D_n, |u - v| = 2^{-n} \right\}
\]

Then

\[
\mathbb{E}(2^{an}Y(s, n))^{\alpha} \leq C2^{an}2^{dn}(2^{-n})^{d+b} \leq C2^{(a\alpha-b)n}
\]

Now one readily sees that

\[
\mathbb{E} \sum_{n=1}^{\infty} \sum_{s \in S_n} (2^{an}Y(s, n))^{\alpha} < \infty
\]
Consequently, there exists a set \(\Omega' \) of full measure such that
\[
\sum_{n=1}^{\infty} \sum_{s \in S_n} (2^{an} Y(s, n))^a < C(\omega) < \infty, \omega \in \Omega'.
\]
in particular
\[
Y(s, n)(\omega) \leq C'(\omega) 2^{-an}, s \in S_n, \omega \in \Omega'.
\]
Using the fact that the sequence \(S \) is increasing we obtain the bound
\[
Y(s, m)(\omega) \leq C'(\omega) 2^{-am}, s \in S_n, m \geq n, \omega \in \Omega'.
\]
Now let \(s \) be a fixed point in \(S_n \). Applying the standard arguments one can see that for each \(m \geq n \) and any \(u, v \in D_m \) such that \(|u - v| \leq 2^{-n} \) the following inequality holds:
\[
\varrho(M(X_s(u), X_s(v)) \leq C'(\omega) 2^{-a}, s \in S_n, m \geq n, \omega \in \Omega'.
\]
Now it is easy to complete the proof. \(\square \)

Now let us come back to the proof of the property 4. Define a random mapping \(J \) from \([0,T] \times [-N,N]^d\) to the Banach space \(\mathcal{C}([0,T], \mathbb{R}^d) \) equipped with the standard sup-norm as follows:
\[
J(\omega, s, x)(t) := X_{s,t}(\omega).
\]
The joint continuity of \(X_{s,t} \) with respect to \(t, x \) immediately implies the mapping \(J \) is continuous. Next, the estimate
\[
\sup_{s \in [0,T]} \mathbb{E} \sup_{t \in [s,T]} |X_s^x - X_s^y|^a \leq C(a, T)(|x - y|^a + |x - y|^{a-1})
\]
can be written as
\[
\sup_{s \in [0,T]} \mathbb{E}||J(s, x) - J(s, y)||^a \leq C(a, T)(|x - y|^a + |x - y|^{a-1})
\]
For any \(\alpha \in (0, 1) \) and \(\eta > 0 \) one can find sufficiently large \(a > 0 \) such that
\[
\alpha < a - 1 - d, \quad \eta < a - 1 - d - \alpha a
\]
so now it is easy to complete the proof applying Lemma \(\ref{lemma2.1} \).

3. Main results

In this section we adjust the proofs of the main results stated in the paper \(\cite{11} \) using the corrected version of the property 4 from Proposition \(\ref{prop2.3} \).

Theorem 3.1. Assume that the coefficient \(b \) satisfies the following conditions:
1. there exists \(M_1 \in L^{q_1}([0,T], \mathbb{R}) \) such that
 \[
 |b(t, x)| \leq M_1(t), \quad t \in [0,T], \quad x \in \mathbb{R}^d
 \]
2. there exists \(M_2 \in L^{q_2}([0,T], \mathbb{R}) \) and \(\beta > 0 \) such that
 \[
 |b(t, x) - b(t, y)| \leq M_2(t)|x - y|^\beta, \quad t \in [0,T], \quad x, y \in \mathbb{R}^d
 \]
3. one has
 \[
 q_1 \geq q_2 > 2, \quad \beta > 0, \quad \frac{\beta}{p_1} + \frac{1}{p_2} > 1, \quad \text{where} \quad \frac{1}{p_1} + \frac{1}{q_1} = 1, \quad \frac{1}{p_2} + \frac{1}{q_2} = 1.
 \]
Then there exist a set \(\Omega' \) with \(P(\Omega') = 1 \) such that for each \(\omega \in \Omega' \) the equation \(\ref{equation1} \) has exactly one solution.
Proof. Let Y_t be a solution to the equation for a fixed Brownian trajectory W. Then the following estimate holds:

$$
\max_{t \in [0,T]} |Y_t| \leq |x| + \max_{t \in [0,T]} |W_t| + T^{1/p_1} \| M_1 \|_{L^{\infty}[0,T]} =: M(x,W),
$$

so without loss of generality we can assume that $b(t,x) = b(t,x)I_{|x| < N}$ for some $N > 0$. Then Proposition 2.3 (it is clear that one can take q_1 for q and any sufficiently large positive number for p) yields that P-almost surely the equation has a Hölder-continuous flow of solutions which will be denoted by $X(s,t,x,W), s \leq t, x \in \mathbb{R}^d$.

$$
1 + \gamma := \frac{\beta}{p_1} + \frac{1}{p_2}, \gamma > 0.
$$

Let us pick $\alpha \in (0,1)$ such that

$$
\frac{\alpha \beta}{p_1} + \frac{\alpha}{p_2} = 1 + \delta, \delta > 0.
$$

Let us estimate $|Y_r - X(u,r,Y_u,W)|$. It is clear that we have the following trivial bound:

$$
|Y_r - X(u,r,Y_u,W)| \leq \int_u^r |b(s,Y_s) - b(s,X(u,s,Y_u,W))| \, ds \leq 2 \int_u^r M_1(s) \, ds \leq 2 \| M_1 \|_{L^{\infty}[0,T]} |r - u|^{\frac{1}{p_1}}
$$

The previous estimate can be improved if we take into account the Hölder-continuity of the coefficient b:

$$
|Y_r - X(u,r,Y_u,W)| \leq \int_u^r |b(s,Y_s) - b(s,X(u,s,Y_u,W))| \, ds \leq \int_u^r M_2(s) |Y_s - X(u,s,Y_u,W)|^\beta \, ds \leq K' \int_u^r M_2(s) |r - u|^{\frac{2}{p_1}} \, ds \leq K' \| M_2 \|_{L^{\infty}[0,T]} |r - u|^{\frac{2}{p_1} + \frac{1}{p_2}} = K' \| M_2 \|_{L^{\infty}[0,T]} |r - u|^{1+\gamma}.
$$

Define sets $\{S_n\}$ as

$$
S_n := \left\{ k/2^n; k \in \{0,1,\ldots,2^n - 1\} \right\}, \ |S_n| = 2^n
$$

Using the property 4 from Proposition 2.3 with $\eta = 1$ and $S = \{S_n\}_{n=1}^{\infty}$ we obtain Ω' with $P(\Omega') = 1$ such that the following estimate holds:

$$
|X(s,t,x,W) - X(s,t,y,W)| \leq C(\alpha, T, N, \omega) |x - y|^\alpha, \ |x - y| \leq \frac{1}{2^n}, s \in S_n.
$$

Now let us prove that for each trajectory $W \in \Omega'$ the equation has exactly one solution. Let us choose a sufficiently large number K. Let $t \in S_{k'}$, where $k' \geq K$. Define an auxiliary function f by the formula

$$
f(s) = X(s,t,Y_s,W) - X(0,t,x,W), \ s \in [0,t].
$$

Let $k \geq k'$ and u, r be of the form $\frac{k}{2^n}$, $\frac{k'}{2^n}$ respectively, in particular $u, r \in S_k$. Recall that

$$
|Y_r - X(u,r,Y_u,W)| \leq C|r - u|^{1+\gamma} \leq C2^{-k\gamma}2^{-k}
$$
Since K is supposed to be sufficiently large we may assume that $C2^{-K\gamma} \leq 1$. Consequently,

$$|Y_r - X(u, r, Y_u, W)| \leq 2^{-k}$$

Then

$$|f(r) - f(u)| = |X(r, t, Y_r, W) - X(u, t, Y_u, W)| =$$

$$= |X(r, t, Y_r, W) - X(r, t, X(u, r, Y_u, W), W)| \leq$$

$$\leq C(\alpha, S, T, M(x, W), \omega)|Y_r - X(u, r, Y_u, W)|^\alpha.$$

Finally,

$$|f(r) - f(u)| \leq C(\alpha, S, T, M(x, W), \omega)|r - u|^{1+\delta}.$$

Due to the arbitrariness of k we conclude

$$f(t) = X(x, 0, t, W) - Y_t = 0.$$

Since t was an arbitrary dyadic number in $[0, 1]$ with a sufficiently large denominator, the continuity of Y_t and $X(x, 0, t, W)$ implies the equality $Y_t = X(x, 0, t, W)$ for each $t \in [0, 1]$. The proof is complete.

Now we show how to prove uniqueness in the case of a Borel measurable drift following [11]. Similarly to the proof of Theorem 3.1, it is readily seen that without loss of generality we can assume that $b(t, x) = b(t, x)I_{\{|x|<N\}}$ and $\|b\|_{\infty} \leq 1$.

Below we will need the following set of functions:

$$Lip_N([r, u], \mathbb{R}^d) := \{h \in C([r, u], \mathbb{R}^d) \mid |h(t) - h(s)| \leq |t - s|, s, t \in [r, u], \max_{s \in [r, u]} |h(s)| \leq N\}$$

with the uniform metric $\rho(h_1, h_2) = \|h_1 - h_2\|_{\infty}$.

The following result was proved in [11] and the corresponding arguments remain unchanged.

Lemma 3.6. There exist constants $C, \zeta > 0$, independent of $l = u - r$, and a set Ω' such that

$$P(\Omega \setminus \Omega') \leq C \exp(-l^{-\zeta})$$

and for any $h_1, h_2 \in Lip_N([r, u], \mathbb{R}^d)$ with $\|h_1 - h_2\|_{\infty} \leq 4l$, $W \in \Omega'$ the following inequality holds:

$$|\varphi(h_1, W) - \varphi(h_2, W)| \leq C l^{\frac{1}{\delta}}.$$

We can now proceed to the proof of Theorem 1.1.

Proof. Let us fix a positive number N. Let C, ζ be constants found in Lemma 3.6. For each k we split the interval $[0, 1]$ into $M = 2^k$ closed subintervals

$$[0, \frac{1}{M}], \ldots, \left[\frac{M - 1}{M}, M\right].$$

Applying Lemma 3.6 to each interval $[\frac{i}{M}, \frac{i+1}{M}]$ we can find the corresponding sets $\Omega_{k,i}$. Let

$$\Omega_k := \bigcap_{i=0}^{M-1} \Omega_{k,i}.$$
With the help of the Borel–Cantelli lemma it is easy to show that the set
\[
\Omega' := \liminf_{k \to \infty} \Omega_k = \bigcup_{K=1}^{\infty} \bigcap_{k=K}^{\infty} \Omega_k
\]
has probability 1.
Define \(S_n \) as
\[
S_n := \left\{ k/2^n; k \in \{0, 1, \ldots, 2^n - 1\} \right\}, \mid S_n \mid = 2^n
\]
Using the property 4 from Proposition 2.3 with \(\eta = 1 \) and \(S = \{S_n\}_{n=1}^{\infty} \) we may assume (removing, if necessary, a set of zero probability) that on the set \(\Omega' \) the following estimate holds:
\[
|X(s, t, x, W) - X(s, t, y, W)| \leq C(\alpha, T, N, \omega)|x - y|^\alpha, \quad |x - y| \leq \frac{1}{2^n}, s \in S_n
\]
Let us show that for each \(W \in \Omega' \) such that
\[
|x| + \max_{t \in [0,1]} |W_t| + 1 \leq N,
\]
the equation 1 has a unique solution. Indeed, let \(Y_t \) be a solution to the equation 1. It is not difficult to see that \(|Y_t| \leq N \) for each \(t \in [0,1] \). Due to our choice of \(\Omega' \) there exists \(K = K(\omega) \) such that for all \(k \geq K \) the Brownian trajectory \(W \) belongs to \(\Omega_k \). Let
\[
M' = 2^{k'}, \quad r = \frac{i}{M'}, \quad \text{where} \quad k' \geq K.
\]
Let us define an auxiliary function \(f \) on the interval \([0, r] \) by the following formula:
\[
f(t) := X(x, 0, r, W) - X(Y_t, t, r, W).
\]
We observe that for any \(s \leq t, \) by the definition of a flow we have
\[
f(t) - f(s) = -X(Y_t, t, r, W) + X(Y_s, s, r, W) =
= -X(Y_t, t, r, W) + X(X(Y_s, s, t, W), r, W).
\]
The difference \(Y_t - X(Y_s, s, t, W) \) can be represented as follows:
\[
Y_t - X(Y_s, s, t, W) =
= \int_s^t b\left(u, Y_s + W_u - W_s + \int_s^u b(r, Y_r) \, dr\right) \, du -
\int_s^t b\left(u, Y_s + W_u - W_s + \int_s^u b(r, X_r) \, dr\right) \, du =
= \int_s^t b\left(u, W_u + h_1(u)\right) \, du - \int_s^t b\left(u, W_u + h_2(u)\right) \, du,
\]
where
\[
h_1(u) = Y_s - W_s + \int_s^u b(r, Y_r) \, dr, \quad h_2(u) = Y_s - W_s + \int_s^u b(r, X_r) \, dr.
\]
Let \(k \geq k' \quad M = 2^k \). If we take \(s, t \) of the form \(\frac{i}{M} \) and \(\frac{i+1}{M} \), respectively, then we obtain the following estimate:
\[
|Y_t - X(Y_s, s, t, W)| \leq \frac{C}{M^4}
\]
Since we may assume that M is sufficiently large this inequality implies the bound
$$|Y_t - X(Y_s, s, t, W)| \leq \frac{1}{M}.$$ Hence there exists a positive constant $C = C(N, S, W)$ such that
$$|f(t) - f(s)| \leq C|Y_t - X(Y_s, s, t, W)|^{\frac{4}{5}}.$$ and consequently
$$|f(r)| \leq \frac{C}{M^{\frac{4}{5}}}.$$ Due to the arbitrariness of k we conclude
$$f(r) = X(x, 0, r, W) - Y_r = 0.$$ Since r was an arbitrary dyadic number in $[0, 1]$ with a sufficiently large denominator, the continuity of Y_t and $X(x, 0, t, W)$ implies the equality $Y_t = X(x, 0, t, W)$ for each $t \in [0, 1]$. The proof is complete. □

Acknowledgment

I would like to thank Enrico Priola for pointing out the incompleteness of the proof of the property 4 in Proposition 2.3 in [11], fruitful discussions and comments.

References

[1] Davie A.M. Uniqueness of solutions of stochastic differential equations. International Mathematics Research Notices, 2007, V. 2007.
[2] Fedrizzi E., Flandoli F. Hölder flow and differentiability for SDEs with nonregular drift. Stoch. Anal. Appl., 2013, V. 31, N4, P. 708–736.
[3] Fedrizzi E., Flandoli F. Pathwise uniqueness and continuous dependence for SDEs with nonregular drift. arXiv preprint arXiv:1004.3485, 2010.
[4] Van Kampen E.R. Remarks on systems of ordinary differential equations. Amer. J. Math., 1937, V. 59, N1, P. 144–152.
[5] Flandoli F. Regularizing properties of Brownian paths and a result of Davie. Stochastics and Dynamics, 2011, V. 11, N02n03, P. 323–331.
[6] Föllmer H., Protter P., Shiryaev A.N. Quadratic covariation and an extension of Ito’s formula. Bernoulli, 1995, V.1, N1-2, P. 149–169.
[7] Kolmogorov A.N., Tihomirov V. M. ε-entropy and ε-capacity of sets in function spaces. Uspekhi Matem. Nauk, 1959, V. 14, N2, P. 3–86 (in Russian). English translation: Amer. Math. Soc. Transl. Ser. 2, 1961, V. 17, P. 277–364
[8] Krylov N.V., Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 2005, V. 131, N2, P. 154–196.
[9] Kallenberg O. Foundations of modern probability. Probability and its Applications. Springer-Verlag, New York, II edition, 2002
[10] Priola E. Davie’s type uniqueness for a class of SDEs with jumps. preprint arXiv:1509.07448 2015.
[11] Shaposhnikov A.V. Some remarks on Davie’s uniqueness theorem. preprint arXiv:1401.5455 2014.