Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin

Highlights

- ANTXR1 does not support collagen VI or C5/endotrophin binding to the cell surface
- ANTXR2 does not support collagen VI or C5/endotrophin binding to the cell surface
- NG2/CSPG4 supports collagen VI, but not C5/endotrophin binding to the cell surface
Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin

Matthias Przyklenk, Stefanie Elisabeth Heumüller, Carolin Freibur, Steffen Lütke, Gerhard Sengle, Manuel Koch, Mats Paulsson, Alvise Schiavinato, and Raimund Wagener

SUMMARY
The microfibril-forming collagen VI is proteolytically cleaved and it was proposed that the released C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Designated “endotrophin,” C5 is a potent biomarker for fibroinflammatory diseases. However, the biochemical mechanisms behind endotrophin activity were not investigated. Earlier, anthrax toxin receptor 1 was found to bind C5, but this potential interaction was not further studied. Given the proposed physiological role of endotrophin, we aimed to determine how the signal is transmitted. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we detect no binding of fully assembled collagen VI to either receptor. We also studied the collagen VI receptor NG2 (CSPG4) and confirmed that NG2 binds assembled collagen VI, but not cleaved C5/endotrophin. A cellular receptor for C5/endotrophin, therefore, still remains elusive.

INTRODUCTION
Collagen VI is a microfibrillar protein expressed in most tissues and is there involved in anchoring large interstitial structures and cells (Cescon et al., 2015). It is an unusual collagen in that it is predominantly composed of von Willebrand factor type A (VWA) domains and contains only a short collagenous domain. The VWA domains are crucial for collagen VI assembly (Lamande et al., 1998) and for the interaction with other extracellular matrix proteins (Wiberg et al., 2003). The major form of collagen VI consists of α1, α2, and α3 chains, but in some cases the α3 chain is replaced by an α4, α5 or α6 chain (Maaß et al., 2016). The α3-α6 chains are larger than the α1 and α2 chains and possess up to 10 tandem VWA domains in their N-terminal region.

The assembly of collagen VI microfibrils is a complex multi-step process. After the folding of heterotrimeric monomers (α1α2α3) these form antiparallel dimers (Knupp and Squire, 2001) that finally assemble laterally to tetramers and are then secreted. Microfibrils form by intercalating end-to-end associations that are accompanied by proteolytic processing of a large C-terminal globular region of the α3 chain (Beecher et al., 2011) which is absent in mature microfibrils (Beecher et al., 2011; Heumuller et al., 2019). This results in the release of the short most C-terminal C5 domain, a Kunitz domain, which was also termed endotrophin and proposed to be an adipokine (Park and Scherer, 2012; Sun et al., 2014). Recently it was shown that endotrophin can be released by BMP1 (Heumuller et al., 2019) or MMP14 (Li et al., 2020). However, the free endotrophin fragment is much less abundant than larger C5-containing fragments (Heumuller et al., 2019).

Collagen VI is linked to several diseases and, most prominently, mutations in COL6A1, COL6A2, or COL6A3 lead to myopathies (Bonnemann, 2011). Bethlem myopathy and Ullrich congenital muscular dystrophy are the most frequent, inherited both in an autosomal dominant and recessive manner and represent, respectively, the mild and severe end of the disease spectrum (Bonnemann, 2011). Moreover, collagen VI mutations can cause autosomal dominant limb-girdle muscular dystrophy (Scacheri et al., 2002) and autosomal recessive myosclerosis (Merlini et al., 2008). Recessive mutations in COL6A3 have been also linked to isolated dystonia (Zech et al., 2015).
The pathomechanisms leading to collagen VI-related myopathies have been studied in mouse models. Mice lacking Col6a1 display a phenotype reflecting Bethlem myopathy owing to an abnormal opening of the mitochondrial pore and disturbed autophagy in skeletal muscle (Grumati et al., 2010; Irwin et al., 2003). However, it is still unclear how the lack of extracellular collagen VI leads to an intracellular phenotype. Integrins (Pfaff et al., 1993), the cell surface proteoglycan NG2 (Nishiyama and Stallcup, 1993), and the anthrax toxin receptors 1 (Nanda et al., 2004) and 2 (Burgi et al., 2017) have been reported to be collagen VI receptors. Interestingly, the latter two have been linked to collagen VI in fibroproliferative diseases. Mutations in the anthrax toxin receptors cause GAPO syndrome (anthrax toxin receptor 1, ANTXR1, also known as TEM8) (Stranecky et al., 2013) or infantile hyaline fibromatosis (anthrax toxin receptor 2, ANTXR2, also known as CMG2) (Lee et al., 2005) that are both accompanied by excessive deposition of collagen VI.

For endotrophin, the cleaved-off C5 domain, growing evidence has been provided that points to important roles in tumor progression, fibrosis, inflammation, and insulin resistance (Park and Scherer, 2012; Sun et al., 2014). However, the cellular receptor/s responsible for mediating these effects are still not known. A proposed interaction between the ANTX1 and the C5 domain was originally based on a yeast two-hybrid screen and co-immunoprecipitation of overexpressed ANTX1 and C5, but was not studied in detail (Nanda et al., 2004). Recently, serum levels of endotrophin have been shown to be valuable biomarkers for several pathological conditions (Nielsen et al., 2021). The combination of a proposed important physiological role of endotrophin and its growing importance as a biomarker led us to study the interaction with its proposed receptors in more detail. Moreover, the second anthrax toxin receptor, ANTX2, which shares high homology with ANTX1, was shown to act as a receptor for collagen VI, even if it remains unknown which part of the collagenous domain is mediating such an interaction (Burgi et al., 2017). Therefore, we revisited the interaction of the C5 domain (endotrophin) and of collagen VI with the anthrax toxin receptors and present data that substantially challenge current concepts.

RESULTS
The VWA domains of the anthrax toxin receptors do not bind to the proteolytically released C5 domain of the collagen VI α3 chain

As the cellular receptor/s mediating the biological activity of endotrophin — the cleaved-off C5 domain of collagen VI — is/are not known, we revisited the well-accepted binding of C5 to ANTX1 (Nanda et al., 2004) by performing direct protein-protein interaction studies. Such studies, to our knowledge, have not been performed earlier. For that purpose, we expressed and purified recombinant murine C5 and the VWA domains of both ANTX1 and ANTX2 in HEK293T cells (Figures 1A and 1B). We decided to use the anthrax toxin receptor VWA domains as they are proposed to be the major extracellular ligand-binding regions of the two receptors and known to be sufficient to bind to the anthrax toxin (Bell et al., 2001; Sergeeva and van der Goot, 2019). In our analysis, we included the VWA domain of ANTX2 even if it was proposed that collagen VI binds to this receptor via its collagenous domain (Burgi et al., 2017). As a positive control, we used the protective antigen (PA) subunit of the anthrax toxin, the pathogenic and well-characterized ligand of the anthrax toxin receptors (Bradley et al., 2001). To be sure that recombinant C5 was correctly produced and purified we performed several quality controls on the protein. First, we excluded that the purified protein may form aggregates and confirmed that C5 was exclusively present in solution in a monomeric form by performing size exclusion chromatography (Figure S1A). To further prove that recombinant
C5 was correctly folded, we measured CD spectra and analyzed the mobility of the protein using SDS-PAGE under reducing and non-reducing conditions. Both assays confirmed the proper folding of recombinant C5 (Figures S1 B and S1C) (Nagy et al., 2003). Finally, we performed deglycosylation experiments and found that, in line with an in silico prediction (Steenoft et al., 2013), C5 is O-glycosylated, as it can be deglycosylated by trifluoroacetic acid and O-glycosidase but not by PNGase F (Figures S1 D and S1E). By performing direct interaction studies using surface plasmon resonance, we confirmed that both VWA domains coupled with the sensor chip can bind to PA in a cation-dependent manner, with the VWA domain of Antxr2 showing a higher binding affinity than the same domain of Antxr1 (KDs: 6.45 ± 1.08 nM and 182 ± 64.3 nM, respectively) as previously reported (Liu et al., 2009). Surprisingly, using the same assay under the same conditions, we could not detect any direct interaction between the VWA domain of Antxr1 and the C5 domain. Similarly, also the VWA domain of Antxr2 did not show any binding to C5 (Figure 1 C). Lack of binding was confirmed when C5 was immobilized on the sensor chip and the VWA domains were used as analytes (Figure S2).

Figure 1. PA, but not the C5 domain of the collagen VI α3 chain binds to the VWA domains of anthrax toxin receptors

(A) Schematic representation of the domain organization of collagen VI α chains. C5 is found at the most C-terminal part of the α3 chain, from which it can be cleaved-off by the proteases BMP1 or MMP14.

(B) Coomassie Blue stained SDS/polyacrylamide gel with the recombinant proteins used for the binding experiments. The upper C5 band is owing to O-glycosylation of the recombinant protein (see Figure S1C).

(C) SPR sensograms obtained either in presence of EDTA or CaCl2, of the interaction between murine Antxr1 or Antxr2 VWA-domains (immobilized on the sensor chips in similar quantities) and Protective Antigen (PA) or murine C5 (flowed over as soluble ligands) in a dilution series from 0 to 320 nM. Ligand binding to the immobilized proteins on the chip is shown as response units on the y axis (n = 3).
Plasma membrane located, full-length anthrax toxin receptors do not mediate cell binding to the recombinant C5 domain

The fact that we could not detect direct binding of the C5 domain to the principal binding domain of the Antxr1 was surprising and in conflict with the results obtained by others (Nanda et al., 2004). Our contradictory findings made it necessary to unequivocally confirm this result by using alternative methods employing a biologically more relevant setting. Therefore, we generated HEK293T cell lines stably overexpressing full-length Antxr1 or Antxr2 on the plasma membrane to test if they support cell binding to the C5 domain. To first validate the system, we treated the cells for 1 h at 37 °C with 5 μg/mL PA in a serum-free medium. When using a PA-specific antibody, staining of control HEK293T cells that had been transfected with an empty vector did not reveal any immunoreactivity. In contrast, when PA was added to Antxr1 or Antxr2 expressing cells we could detect a strong PA signal colocalizing with the two receptors on the cell surface (Figure 2A). However, when the same cells were treated with an equivalent concentration of the C5 domain and stained with a C5-specific antibody, we could not detect any positive signal in control cells or on cells overexpressing the two anthrax toxin receptors (Figures 2B and 2C). To further confirm that Antxr1 and Antxr2 act as surface receptors for PA but not for C5, we once more treated HEK293T cells with the two

Figure 2. Anthrax toxin receptors support the binding of PA, but not of C5 to the surface of HEK293T cells

(A and B) Confocal microscopy pictures of control and His-tagged Antxr1 or Antxr2 overexpressing HEK293T cells labeled with the indicated antibodies. Cells were treated with 5 μg/mL PA (A) or human C5 (B) in a serum-free medium for 1 h at 37 °C, washed, and then fixed. Similar experiments were also carried out using recombinant murine C5 with identical results (not shown).

(C) Quantification of the mean fluorescence intensity of the immunolabeled cells as in A and B. One-way ANOVA, a p value of ≤0.05 was considered significant.

(D) Control and anthrax toxin receptors overexpressing HEK293T cells were treated with 1 μg/mL PA or murine C5 for 1 h at 37 °C and then washed with PBS before collecting the culture supernatants (S) and harvesting the cell layers (CL). Samples were immunoblotted using the indicated antibodies. Each experiment was performed at least three times with similar results. Scale bars: 10 μm.
Figure 3. NG2, but not anthrax toxin receptors, mediates the binding of collagen VI to the cell surface

(A) Confocal microscopy pictures of control, His-tagged Antxr1, Antxr2 or NG2 overexpressing HEK293T cells that were incubated for 1 h at 37°C with collagen VI-containing serum-free conditioned medium derived from MC3T3-E1 osteoblasts. After washing, cells were fixed and immunolabeled with the indicated antibodies.

(B) Quantification of the mean fluorescence intensity of the immunolabeled cells as in A.

(C) Control HEK293T cells and cells expressing the indicated receptors were treated with the conditioned medium as in A. After washing, cell lysates were harvested and analyzed by immunoblotting using the indicated antibodies to detect collagen VI moieties bound to the cell layers. For the detection of the α1 chain (top panel) by immunoblot, samples were resolved on a 10% acrylamide gel under reducing conditions; for the cleaved-off C5 domain (middle panel) a 15% acrylamide gel was used under non-reducing conditions. For immunoblotting of collagen VI tetramers (bottom panel), samples were submitted to composite agarose/acrylamide gel electrophoresis under non-reducing conditions and immunoblotted with the C5 antibody.

(D) Cell lysates of control HEK293T cells and of cells expressing His-tagged Antxr1 or Antxr2 were incubated with Ni-NTA agarose beads and with either collagen VI containing conditioned medium or PA spiked into the same medium. After
ligands and analyzed the amount of cell-bound protein by immunoblotting. Consistent with our immuno-fluorescence results, we could recover an increased amount of PA from the cell lysate fractions upon Antxr1 or Antxr2 overexpression, while we found that the C5 domain was only present in the culture medium and not in the cell layer of the three cell lines, irrespective of the expression of the anthrax toxin receptors (Figure 2D). Altogether, these results show that expression of the full-length anthrax toxin receptors mediates the binding of PA, but not of the C5 domain of the collagen VI α3 chain, to HEK293T cells. To exclude the possibility that C5 does not bind to the cell surface of HEK293T cells because of the lack of a co-receptor, we performed similar experiments using CHO-K1 cells, as it is known that these can bind and uptake the anthrax toxin (Bradley et al., 2001). For this purpose, we generated CHO-K1 cell lines overexpressing full-length Antxr1 and Antxr2 receptors and found that, while the overexpression of the two receptors greatly increased the capacity of PA to bind to the cells, they were completely unable to mediate the binding of C5 to the cell surface (Figure S3). Importantly, using the same assays (immunostaining or immunoblot) we could not detect any interaction of the recombinant C5 domain with the cell surface of mouse primary dermal fibroblasts, MC3T3-E1, RPE-1, U2OS, MCF-7 or MDA-231-MB cells (not shown).

The cell surface proteoglycan NG2, and not the anthrax toxin receptors, supports cell binding to collagen VI, but not to the isolated C5 domain

Our previous experiments did not provide evidence supporting the role of anthrax toxin receptors as cell-surface receptors for the recombinant C-terminal C5 domain (endotrophin) of the collagen VI α3 chain. We, therefore, performed further experiments with a more physiological source of C5. For this purpose, we collected the conditioned medium of MC3T3-E1 osteoblasts grown in the presence of ascorbate, as we have previously found that these cells secrete collagen VI tetramers and form an abundant collagen VI microfibrillar network (Schiavinato et al., 2021). Next, we treated control and anthrax toxin receptor overexpressing HEK293T cells with the conditioned medium and stained them with the C5 antibody. As a positive control, we also generated HEK293T cells stably expressing the integral plasma membrane proteoglycan NG2 (CSPG4), an established collagen VI receptor (Stallcup et al., 1990). C5-containing collagen VI molecules present in the osteoblast medium bound scarcely to control HEK293T cells and, similar to what we observed using the recombinant C5 domain, overexpression of the two anthrax toxin receptors did not increase the interaction of collagen VI with the cells. In contrast, using the same antibody, we detected an intense signal on the cell surface of NG2-expressing cells (Figures 3A and 3B). The C5 domain is progressively cleaved-off from the α3 chain after the secretion of collagen VI tetramers (Aigner et al., 2002; Heumuller et al., 2019). Therefore, the signal detected on the NG2-expressing cells could represent either the released C5 domain, C5-containing collagen VI molecules, or fragments thereof. To distinguish between these possibilities, we stained the same cells with an antibody (α3N) specific for the N-terminal region of the α3 chain that is not cleaved from the rest of the molecule. Using this antibody, we observed no or very scarce reactivity on control cells and on cells expressing the anthrax toxin receptors, while NG2-expressing cells were intensely labeled with a signal that colocalized completely with that obtained with an antibody against C5 (Figures 3A and 3B). Another co-staining experiment with the different cell lines, using the α3N antibody together with an antibody specific to the α1 chain of collagen VI (α1C), gave similar results (Figure S4). Next, we analyzed extracts of the cells incubated with the conditioned medium by immunoblotting. Using an antibody specific for the α1 chain we found that only NG2-expressing cells showed an increased binding. Strikingly, using the C5 antibody on the same samples, we could confirm that the cells expressing NG2, but not Antxr1 or Antxr2, showed enhanced binding to the fully assembled C5-containing collagen VI tetramers, while the soluble, cleaved-off C5 domain did not bind to any of the cell lines (Figure 3C).
As these results are in disagreement with previous studies proposing a role for Antxr2 as the collagen VI receptor, we sought to further verify our findings. Toward this aim, we performed pull-down assays using full-length anthrax toxin receptors and a conditioned medium of MC3T3-E1 cultures. However, despite the fact that we performed the assay multiple times under different conditions, we could not pull-down collagen VI or the cleaved-off C5 domain with the anthrax toxin receptors, while PA was consistently pulled down (Figure 3D). On the other hand, we could co-precipitate collagen VI from MC3T3-E1 conditioned medium in a similar assay by using the recombinant ectodomain of NG2 (Tillet et al., 1997) (Figure 3E). Our results indicate that collagen VI tetramers bind only scarcely to HEK293T cells and that NG2, but neither Antxr1 nor -2, is able to endow the cells with increased binding activity. It has been previously shown that NG2 is able to interact with both pepsin-solubilized collagen VI, lacking its globular, non-collagenous domains, and the recombinant collagen VI α2 chain while the N-terminal region of the α3 chain showed no binding (Burg et al., 1996). However, it is not known if the C-terminal part of the α3 chain may also participate in the interaction. Therefore, to determine if the isolated C5 domain could be a ligand for NG2, and use this receptor to convey signals into the cell, we treated in parallel NG2-expressing cells with either recombinant C5 domain or the conditioned medium from osteoblast cultures or conditioned medium from collagen VI α2 deficient osteoblasts and stained them with the C5 antibody. We found that while cells treated with the conditioned medium showed a strong signal on the cell surface, no staining was present on the cells treated with the recombinant C5 protein, showing that the C5 domain alone does not possess the ability to bind to NG2. Moreover, the conditioned medium derived from the α2 deficient osteoblast cultures that contain only single α1 and α2 chains of collagen VI, but no assembled tetramers, showed no significant binding of collagen VI molecules to the cell surface, implying that the α2 chain or a full tetramer conformation is needed to allow efficient binding to NG2. (Figures 3F and 3G).

Our results so far have failed to demonstrate the role of anthrax toxin receptors as surface receptors for collagen VI or for C5. Next, we sought to investigate if anthrax receptors may interfere with collagen VI production in a cell-autonomous manner when expressed in collagen VI-producing cells. Therefore, we generated MC3T3-E1 osteoblasts with inducible expression of His-tagged full-length Antxr1 and -2. Again, we included NG2 in our experiments as it has been previously shown that expression of NG2 in collagen VI producing cells caused retention of collagen VI on the cell surface (Nishiyama and Stallcup, 1993). Cells were grown in the presence of ascorbate for 5 days with or without doxycycline and then analyzed by immunofluorescence. Upon doxycycline treatment expression of the three receptors was strongly induced in MC3T3-E1 cells as shown by staining with an antibody against the His-tag. To study the effect on collagen VI deposition, we stained the cells with the C5 and α3N antibodies. The α3N antibody mainly stained extracellular collagen VI fibers incorporated into the ECM of the MC3T3-E1 osteoblasts, while the C5 antibody gave a more prominent intracellular signal, as previously described also in other cell types (Mayer et al., 1994). Upon expression of the anthrax toxin receptors, we could not detect any significant differences in collagen VI localization and deposition. Moreover, no colocalization between anthrax toxin receptors and C5 or α3N was evident. On the other hand, NG2 expression caused marked retention of collagen VI on the cell surface, where the C5 and α3N signals were largely overlapping with the signal for NG2 (Figures 4A and 4B).

DISCUSSION

C5, also named endotrophin, the C-terminal cleavage product of the collagen VI α3 chain has received a great deal of attention, as it was proposed to act as an adipokine that is involved in tumorogenesis and fibrogenesis. Moreover, endotrophin has been shown to be a valuable biomarker for fibrotic conditions (for review see (Williams et al., 2021)), in this context also named PRO-C6. Long before the C5 domain was recognized as an adipokine and biomarker, it was shown that it binds to Antxr1 (Nanda et al., 2004). To date, no other receptor for endotrophin has been identified (Williams et al., 2021) and it is remarkable that although the physiological function of endotrophin has been extensively studied the interaction between endotrophin and a receptor that transmits the signal into the cell has not been further shown. The still enigmatic function of endotrophin is in part reminiscent of that of the adipokine adiponectin, where more than 25 years after its discovery (Scherer et al., 1995) it is still not clear how and why it exerts multiple beneficial effects on various tissues and organs (Maeda et al., 2020). However, in contrast to endotrophin adiponectin-binding partners, such as AdipoR1/2 (Yamauchi et al., 2003) or T-cadherin (Hug et al., 2004), have been identified.

Therefore, after we showed that endotrophin (C5) is released by BMP1 (Heumuller et al., 2019) we carefully searched for receptor-ligand interactions to gain better insight into the mechanism behind the proposed
physiological responses to endotrophin. However, despite extensive attempts, we were not able to find any evidence for receptor interaction, although we applied not only methods to detect direct binding of recombinant proteins but also performed cell culture-based interaction studies. It remains uncertain how the earlier results indicating a binding of the C5 domain to Antxr1 were obtained. The understanding and reproduction of the former experiments are hampered by the fact that the exact borders of the C5 construct were not given by Nanda et al. (2004). A 210 bp cDNA clone encoding the C-terminal end of the collagen VI α3 chain is mentioned. If this is consistent with a fragment encompassing the last 70 amino acid residues of the α3 chain, this fragment would start with E3108TDI. It would be slightly shorter than endotrophin released by BMP1 which starts with T3101EPL or endotrophin released by MMP14 which starts at A3087RSA. Nevertheless, also the C5 fragment used by Nanda et al. most likely contained all six cysteine residues that are required for proper folding of a Kunitz domain (Zweckstetter et al., 1996). However, the yeast-two-hybrid screening that was used for the identification of the interaction may not be suited to study protein-protein interactions that naturally occur in the extracellular space. Structurally important posttranslational modifications of extracellular proteins, in particular the formation of disulphide bonds, are hindered by the reducing conditions in the nucleus where the interaction in yeast-two-hybrid assays actually takes place. The impact of reduction on the C5 structure is evident by the difference in its mobility on SDS-PAGE (Figure S1). Finally, the immunoprecipitation experiment shown to verify the yeast-two-hybrid result was performed without a positive control, using only myc-tagged proteins and an anti-TEM8 antibody, while the reverse pulldown using a C5 antibody was not performed (Nanda et al., 2004). The result is, therefore, of uncertain validity. The fact that we did not observe the binding of the C5 domain to a variety of cultured cells makes it difficult to understand the mechanism behind its proposed function as an adipokine. In particular, we could not see a binding or uptake of endotrophin by MCF-7 or MDA-MB-231 cells. This is remarkable as these cell lines have been shown to display an up-regulation of the epithelial-mesenchymal transition markers Twist and Snail, and an enhanced cell migration upon endotrophin exposure (Bu et al., 2019). In line with our negative results, there are conflicting data on if collagen VI affects MDA-MB-231 cell migration not through endotrophin, but via interaction of the triple helical part of collagen VI with NG2 (Wishart et al., 2020).
Nevertheless, when we used NG2 as a positive control we could confirm that NG2 binds to collagen VI, but also show that NG2 does not bind to endotrophin. This differs from our results on the proposed role of the Antxr2 in the uptake of collagen VI. Although it is evident that this receptor, like Antxr1, does not bind to endotrophin, it was surprising that we also could not detect the binding of Antxr2 to collagen VI while it was proposed that Antxr2 is involved in the endocytosis and lysosomal degradation of assembled collagen VI tetramers (Burgi et al., 2017). We could not provide evidence for a direct interaction between Antxr2 and collagen VI. If Antxr2, as proposed, is involved in the endocytosis of collagen VI it must contribute indirectly, perhaps by the activation of proteases located at the plasma membrane (Reeves et al., 2012).

In summary, we could not obtain evidence for the binding of endotrophin to cells, which would be a prerequisite for its manifold proposed roles. It remains difficult to explain how endotrophin influences lipogenesis, lipolysis, and inflammation (Oh et al., 2021), how it induces the transcription of pro-fibrotic and pro-inflammatory genes (Sun et al., 2014), or how it acts as a chemokine augmenting tumor growth (Park and Scherer, 2012). Our results, however, are consistent with the proposed role of endotrophin during the complex assembly of collagen VI (Aigner et al., 2002; Lamande et al., 2006). It is, therefore, likely that endotrophin as a biomarker senses newly expressed collagen VI, which is a hallmark of fibrotic conditions.

Limitations of the study
In this study we provide evidence supporting the concept that ANTXR1 does not function as a receptor for the cleaved-off collagen VI domain C5/endotrophin contrary to what was previously reported (Nanda et al., 2004). Therefore, the identity of the cellular receptor(s) that mediate the biological functions of C5/endotrophin remains unclear. Physiological ligands for ANTXR1 remain largely unknown and further studies will be required for their identification. In addition, we could not detect any interaction between collagen VI and ANTXR2, despite that earlier studies suggested a function as a collagen VI cell surface receptor (Burgi et al., 2017, 2020). Therefore, further investigation will be needed to clarify the role of ANTXRs in collagen VI function in health and disease.

STAR METHODS
Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - Data and code availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Cell culture
- METHOD DETAILS
 - Plasmids and recombinant proteins
 - Deglycosylation experiments
 - Coomassie staining
 - Size exclusion chromatography
 - Circular dichroism (CD)-spectroscopy
 - Surface plasmon resonance (SPR) interaction assays
 - Binding assays with C5 domain, PA and collagen VI-rich conditioned medium
 - Immunofluorescence microscopy
 - Immunoblotting and pull-down assays
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105116.

ACKNOWLEDGMENTS
We would like to thank Birgit Kobbe for her invaluable technical assistance and Franz-Georg Hanisch for advice on the deglycosylation experiments. This work was supported by the Deutsche
Forschungsgemeinschaft through project ID 384170921: FOR2722/B1-407164210 (MP and RW), FOR2722/B2 (MK) FOR2722/M2 and FOR2722/C2 (GS).

AUTHOR CONTRIBUTIONS
Conceptualization, AS and RW; Investigation, MP, SHE, CF, SL and AS; Formal analysis and data curation, MP and AS; Resources, GS; Supervision, GS, MP, RW and AS; Funding acquisition, GS, MP and RW; Project administration, MP, RW and AS; Visualization, MP and AS; Writing - original draft, AS and RW; Writing - review & editing, MP, RW and AS.

DECLARATION OF INTERESTS
The authors declare that there is no commercial or financial conflict of interest.

Received: February 16, 2022
Revised: May 29, 2022
Accepted: September 8, 2022
Published: October 21, 2022

REFERENCES
Aigner, T., Hambach, L., Söder, S., Schlötzer-Schrehardt, U., and Poschl, E. (2002). The CS domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem. Biophys. Res. Commun. 290, 743–748. https://doi.org/10.1006/bbrc.2001.6227.

Beecher, N., Roseman, A.M., Jowitt, T.A., Berry, R., Trollo, H., Kammerer, R.A., Shuttleworth, C.A., Kiely, C.M., and Baldock, C. (2011). Collagen VI, conformation of A-domain arrays and microfibril architecture. J. Biol. Chem. 286, 40266–40275. https://doi.org/10.1074/jbc.M111.265595.

Bell, S.E., Movila, A., Salazar, R., Bayless, K.J., Kanagala, S., Maxwell, S.A., and Davis, G.E. (2001). Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci. 114, 2755–2773.

Besschetnova, T.Y., Ichimura, T., Katebi, N., Stahl, A., Besschetnova, T., Sengle, G., Paulsson, M., Moali, C., and Wagener, C. (2019). The role of the α3(V) chain in collagen VI assembly. Expression of an α3(V) chain lacking N-terminal modules N10-N7 restores collagen VI assembly, secretion, and matrix deposition in an α3(V)-deficient cell line. J. Biol. Chem. 294, 13723–13740. https://doi.org/10.1074/jbc.S119.008641.

Bjug, H., Wang, J., Ahmad, N.S., Bogan, J.S., Tsao, T.S., and Lodish, H.F. (2004). T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acp30/ adiponectin. Proc. Natl. Acad. Sci. USA 101, 10308–10313. https://doi.org/10.1073/pnas.0403582101.

Burg, J.A., Brami, L., Castanon, I., Abruña, L.A., Kunz, B., Yan, S.E., Lera, M., Unger, S., Superti-Furga, A., Peraro, M.D., et al. (2020). Ligand binding to the collagen VI receptor triggers a talin-to-RhoA switch that regulates receptor endocytosis. Dev. Cell 53, 418–430.e4. https://doi.org/10.1016/j.devcel.2020.04.015.

Burg, J., Kunz, B., Brami, L., Dequet, J., Piersigilli, A., Scholl-Bürge, S., Lausch, E., Unger, S., Superti-Furga, A., Bonaldo, P., and van der Goot, F.G. (2017). CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat. Commun. 8, 15861. https://doi.org/10.1038/ncomms15861.

Cescon, M., Gattazzo, F., Chen, P., and Bonaldo, P. (2015). Collagen VI at a glance. J. Cell Sci. 128, 3525–3531. https://doi.org/10.1242/jcs.169748.

Glover, M.T., Lake, B.D., and Atherton, D.J. (1991). Infantile systemic hyalinos: newly recognized disorder of collagen? Pediatrics 87, 228–234.

Grumati, P., Colotto, L., Sabatelli, P., Cescon, M., Angelini, A., Bertaggia, E., Blaauw, B., Urciuolo, A., Tiepolo, T., Merlini, L., et al. (2010). Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat. Med. 16, 1313–1320. https://doi.org/10.1038/nm.2247.

Heumuller, S.E., Talankite, M., Napoli, U., Armengaud, J., Morgelin, M., Hartmann, U., Sengle, G., Paulsson, M., Moali, C., and Wagener, R. (2019). C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J. Biol. Chem. 294, 13769–13780. https://doi.org/10.1074/jbc.RA119.008641.

Hug, C.S., Wang, J., Ahmed, N.S., Bogan, J.S., Tsao, T.S., and Lodish, H.F. (2004). T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acp30/adiponectin. Proc. Natl. Acad. Sci. USA 101, 10308–10313. https://doi.org/10.1073/pnas.0403582101.

Irwin, W.A., Bergamin, N., Sabatelli, P., Reggiani, C., Meghghian, A., Merlini, L., Braghetta, P., Columbaro, M., Volpin, D., Bressan, G.M., et al. (2003). Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat. Genet. 35, 367–371. https://doi.org/10.1038/ng1270.

Knapp, C., and Squire, J.M. (2001). A new twist in the collagen story—the type VI segmented supercoil. EMBO J. 20, 372–376. https://doi.org/10.1093/emboj/20.3.372.

Lamandé, S.R., Morgelin, M., Adams, N.E., Selan, C., and Allen, J.M. (2006). The CS domain of the collagen VI alpha3(VI) chain is critical for extracellular microfibril formation and is present in the extracellular matrix of cultured cells. J. Biol. Chem. 281, 16607–16614. https://doi.org/10.1074/jbc.M510192200.

Lamandé, S.R., Sigalas, E., Pan, T.C., Chu, M.L., Dziedzak, M., Timpl, R., and Bateman, J.F. (1998). The role of the α3(VI) chain in collagen VI assembly. Expression of an α3(VI) chain lacking N-terminal modules N10-N7 restores collagen VI assembly, secretion, and matrix deposition in an α3(VI)-deficient cell line. J. Biol. Chem. 273, 7423–7430. https://doi.org/10.1074/jbc.273.13.7423.

Lee, J.Y.Y., Tsai, Y.M., Chao, S.C., and Tu, Y.F. (2005). Capillary morphogenesis gene-2 mutation in infantile systemic hyalinosis: ultrastructural study and mutation analysis in a Taiwanese infant. Clin. Exp. Dermatol. 30, 176–179. https://doi.org/10.1111/j.1365-2230.2004.01698.x.

Li, X., Zhao, Y., Chen, C., Yang, L., Lee, H.H., Wang, Z., Zhang, N., Kolinin, M.G., An, Z., Ge, X., et al. (2020). Critical role of matrix metalloproteinase 14 in adipose tissue remodeling during obesity. Mol. Cell Biol. 40, 005644-19. https://doi.org/10.1128/MCB.00564-19.

Liu, S., Crown, D., Miller-Randolph, S., Moayeri, M., Wang, H., Hu, H., Morley, T., and Leppa, S.H. (2009). Collagen morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA 106, 12426–12429. https://doi.org/10.1073/pnas.0905409106.
Maas, T., Bayley, C.P., Möngelm, M., Lettermann, S., Bonaldo, P., Paulsson, M., Baldock, C., and Wagener, R. (2016). Heterogeneity of collagen VI microfibrils: structural analysis of non-collagenous regions. J. Biol. Chem. 291, 5247–5258. https://doi.org/10.1074/jbc.M115.675160.

Maeda, N., Funahashi, T., Matsuzawa, Y., and Shimomura, I. (2020). Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 292, 1–9. https://doi.org/10.1016/j.atherosclerosis.2019.10.021.

Maertens, B., Hopkins, D., Franzke, C.W., Keene, D.R., Bruckner-Tuderman, L., Greenspan, D.S., and Koch, M. (2007). Cleavage and oligomerization of glomiedin, a transmembrane collagen required for node of ranvier formation. J. Biol. Chem. 282, 10647–10659. https://doi.org/10.1074/jbc.M608392200.

Mayer, U., Posch, E., Nischt, R., Specks, U., Pan, T.C., Chu, M.L., and Timpl, R. (1994). Recombinant expression and properties of the Kunitz-type protease-inhibitor module from human type VI collagen alpha 3(VI) chain. Eur. J. Biochem. 225, 573–580.

Merlini, L., Martoni, E., Grumati, P., Sabatelli, P., Squarzoni, S., Uricchio, A., Ferlini, A., Gualandi, F., and Bonaldo, P. (2008). Autosomal recessive myosclerosis myopathy is a collagen VI disorder. Neurology 71, 1245–1253. https://doi.org/10.1212/wnl.0b013e31816b75e5.

Moya-Torres, A., Gupta, M., Heide, F., Kranz, N., Legare, S., Nikodemus, D., Imhof, T., Meier, M., Koch, M., and Stetefeld, J. (2021). Homogenous overexpression of the extracellular matrix protein Nematrilin-1 in a hollow fiber bioreactor. Appl. Microbiol. Biotechnol. 105, 6047–6057. https://doi.org/10.1007/s00253-021-11438-0.

Nagy, A., Trexler, M., and Pathy, L. (2003). Expression, purification and characterization of the second Kunitz-type protease inhibitor domain of the human WIFKNN protein. Eur. J. Biochem. 270, 2101–2107. https://doi.org/10.1046/j.1432-1033.2003.03593.x.

Nanda, A., Carson-Walter, E.B., Seamans, S., Barber, T.D., Stampfl, J., Singh, S., Vogelstein, B., Knizler, K.W., and St Croix, B. (2004). TEM8 product, endotrophin, cooperatively regulate the second Kunitz-type protease inhibitor domain of collagen VI. Exp. Cell Res. 296, 167–176. https://doi.org/10.1016/excr.1993.11134.

Reeves, C.V., Wang, X., Charles-Horvath, P.C., Vink, J.Y., Borsenko, V.Y., Young, J.A.T., and Kitajewski, J.K. (2012). Anthrax toxin receptor 2 vaccines. J. Immunol. 187, 1–9. https://doi.org/10.1172/JCI63930.

Schäfer, P.C., Gillairends, E.M., Subramony, S.H., Vedanaryase, U., Crowe, C.A., Thakore, N., Bingler, M., and Hoffman, E.P. (2002). Novel mutations in collagen VI genes. expansion of the Bethlem myopathy phenotype. Neurology 58, 593–602.

Scherer, P.E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H.F. (1995). A novel serum-protein similar to Ct4q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749. https://doi.org/10.1074/jbc.270.45.26746.

Schiaivonato, A., Przyklenski, M., Kobbe, B., Paulsson, M., and Wagener, R. (2021). Collagen type VI is the antigen recognized by the ER-TR7 antibody. Eur. J. Immunol. 51, 2345–2347. https://doi.org/10.1002/eji.202149263.

Sengle, G., Charbonneau, N.L., Ono, R.N., Sasaki, T., Alvarez, J., Keene, D.R., Bächinger, H.P., and Glomb, M. (2008). Decorin connect collagen VI microfibrils to both collagens II and aggrecan. J. Biol. Chem. 293, 37698–37704. https://doi.org/10.1074/jbc.M304638200.

Williams, L., Layton, T., Yang, N., Feldmann, M., and Nanchahal, J. (2021). Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 289, 3603–3629. https://doi.org/10.1111/febs.16039.

Wishart, A.L., Conner, S.J., Guiran, J.R., Fatheree, J.P., Peng, Y., McGinn, R.A., Crews, R., Naber, S.P., Hunter, M., Greenberg, A.S., and Oudin, M.J. (2020). Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci. Adv. 6, eabc3175. https://doi.org/10.1126/sciadv.abc3175.

Yamachi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kitai, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769. https://doi.org/10.1038/nature01705.

Yuan, P., Zhang, H., Cai, C., Zhu, S., Zhou, Y., Yang, X., He, R., Li, C., Guo, S., Li, S., et al. (2015). Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168. https://doi.org/10.1038/cr.2014.169.

Zech, M., Lam, D.D., Francescato, L., Schirmair, B., Salminen, A.V., Jochim, A., Wieland, T., Lichtner, P., Peters, A., Gieger, C., et al. (2015). recessive mutations in the alpha3(VI) collagen gene COL6A3 cause early-onset isolated dystonia. Am. J. Hum. Genet. 96, 883–893. https://doi.org/10.1016/j.ajhg.2015.04.010.

Zweckstetter, M., Czisch, M., Mayer, U., Chu, M.-L., Zinth, W., Timpl, R., and Holak, T.A. (1996). Structure and multiple conformations of the Kunitz-type domain from human type VI collagen a3(VI) chain in solution. Structure 4, 195–209.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit polyclonal anti-Col6a3 C5	(Heumuller et al., 2019)	N/A
Rabbit polyclonal anti-Col6a1 C-term	(Maß et al., 2016)	N/A
Rabbit polyclonal anti-Col6a3 N-term	(Maß et al., 2016)	N/A
Guinea pig polyclonal anti-Col6a3 N-term	(Maß et al., 2016)	N/A
Goat polyclonal anti PA	list labs	#771B
Mouse monoclonal anti-Tetra-His	Qiagen	#34650
Mouse monoclonal anti-Actin	Millipore	#1501R
Swine anti-rabbit IgG HRP-conjugated	DAKO	#P0399
Rabbit anti-mouse IgG HRP-conjugated	DAKO	#P0260
Rabbit anti-goat IgG HRP-conjugated	DAKO	#P0449
Rabbit anti-guinea pig IgG HRP-conjugated	Sigma Aldrich	#A5545
Goat anti-guinea pig IgG Alexa fluor 555	Thermo Fisher Scientific	#A21435
Goat anti-rabbit Alexa IgG Alexa fluor 488	Thermo Fisher Scientific	#A11034
Chicken anti goat IgG Alexa fluor 488	Thermo Fisher Scientific	#A21467
Donkey anti-mouse IgG Cy5	Jackson ImmunoResearch	#715-175-151
Chemicals, peptides, and recombinant proteins		
FuGENE 6	Promega	#E2691
Strept-Tactin XT superflo	IBA Lifesciences	#2-5030-002
Desthiobiotin	IBA Lifesciences	#2-1000-001
PNGase F	NEB	#P0708
O-Glycosidase	NEB	#P0733
Superose 6 Increase 10/300 GL	Cytivia	#29091596
Gel filtration standard	Biorad	#1511901
PureCube 100 INDIGO Ni-Agarose	Cube Biotech	#75103
HBS-P Buffer	Cytivia	#BR100368
HBS-EP Buffer	Cytivia	#BR100188
Murine Antrx1 VWA domain	This work	N/A
Murine Antrx2 VWA domain	This work	N/A
Murine C5	This work	N/A
Human C5	This work	N/A
Experimental models: Cell lines		
MC3T3-E1	ATCC	#CRL-2593
HEK293T	ATCC	#CRL-11268
CHO-K1	ATCC	CCL-61
Critical commercial assays		
Protein Deglycosylation Mix II Kit	NEB	#P6044
Amine coupling kit	Cytivia	#BR100050
Amersham ECL Prime Western Blotting Detection Reagent	Cytivia	#RPN2232
Oligonucleotides		
See detailed methods part		

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents should be directed to and will be fulfilled by the lead contact: Alvise Schiavinato (aschiav1@uni-koeln.de), Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.

Materials availability
All materials generated in this study are available from the lead contact without restriction.

Data and code availability
- The published article includes all data generated or analyzed for this study. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
- This paper does not report original code

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
All cell lines used in this study were obtained from the American Type Culture Collection (ATCC). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 nutritional mix. MC3T3-E1 cells were cultured with Minimum Essential Medium (MEM) growth medium. All media were supplemented with 10% FBS and 1% penicillin/streptomycin. MC3T3-E1 cells lacking the α2 chain of collagen VI were previously described (Schiavinato et al., 2021).

To generate stable cell lines, HEK293T and CHO-K1 cells were transfected with the FuGENE6 transfection reagent (Promega) and selected by the addition of puromycin (1 µg/mL and 10 µg/mL respectively) for full-length anthrax toxin receptors 1 and 2, or blasticidin for NG2. Collagen VI-rich conditioned medium was obtained by letting MC3T3-E1 cells grow to confluence in 100 mm culture dishes and afterwards shifting them to serum-free medium. Ascorbate (0.625 M L-ascorbate/1.125 M L-ascorbate-2-phosphate) was supplied every second day for a total of 7 days. Harvested conditioned media were briefly centrifuged at 13,000 x g to pellet dead cells and cell debris.

METHOD DETAILS

Plasmids and recombinant proteins
Human (Thr3101–Thr3177) and murine C5 (Thr3217-Val3284) domains were cloned as previously described (Heumuller et al., 2019) using the following primers: hC5: AAAGCTAGCGACAGAACCATTGGCTCTC (forward) and TTTGGATCCGGTTCCCATCACA CTGAT (reverse); mC5: AAAGCTAGCAACAGAACCATT...
GTTTCT (forward) and TTTGGATCCAACTGTTAACTCAGGACTACACA (reverse). Both human and murine
C5 sequences were chosen to start at the BMP1 cleavage site (Heumuller et al., 2019). Murine Antxr1-VWA
(Gly34-Ile221) and Antxr2-VWA (Glu35-Ile221) were cloned using the following primers. Antxr1-VWA:
AAAGCTAGCAGCTTGCTACGGAGGATTC (forward) and TTTGGATCCTTCGATGCAGGATTTCTT
(reverse); Antxr2-VWA: AAAGCTAGCATCTTGCAAAAAAGCCTTC (forward) and TTTGGATCC TTCAGT
ACATGATTGAGC (reverse). Amplified PCR products were inserted into a modified pCEP-pu vector con-
taining an N-terminal BM40 signal peptide as well as a C-terminal Twin-Strep-tag (Maertens et al., 2007).
Full-length murine Antxr1 and 2 were cloned using the following primers. Antxr1: CAATGCTAGCGGGCC
GCCGCGAGGATG (forward) and CAATGGATCCGACAGAAGGCCTTGGAGGAGG (reverse); Antxr2:
CAATGCTAGCCCAGGAGCAGCCCTC (forward) and CAATCTCGAGTTGATGTGGAACCCGGGAG
(reverse). Amplified PCR products were inserted into a modified sleeping beauty vector (Moya-Torres
et al., 2021). A construct coding for the full-length human NG2 cloned into the pEF6/MycHis-B vector
was previously described (Yuan et al., 2015). The NG2-ectodomain (Tillet et al., 1997) was subcloned
into the same modified sleeping beauty vector from the full-length construct using the following primers:
GATGCTAGCGGCTTCCTTCTTGAGTGAAC (forward) and GAATGCGGCCGCGAACATGTTGGCCTC
AAGG (reverse).

Human and murine collagen VI C5 domains, anthrax toxin receptor VWA domains and the NG2 ectodo-
main were expressed and purified as previously described (Heumuller et al., 2019). Briefly, plasmids
were introduced into HEK293T cells using the FuGENE 6 transfection reagent (Promega). Cells were
selected with puromycin (1 µg/mL), and the recombinant proteins were purified directly from serum-free
culture medium. After filtration and centrifugation (1 h, 10,000 × g), the supernatants were applied to a
Strep-Tactin column (1.5 mL; IBA GmbH) and eluted with 2.5 mm desthiobiotin, 10 mm Tris-HCl, pH 8.0.
Protein purity and concentration was estimated via SDS-polyacrylamide gel electrophoresis followed by
Coomassie blue staining.

Deglycosylation experiments
Deglycosylation was performed using commercially available PNGase F (NEB #P0708), O-Glycosidase
(NEB #P0733) or the Protein Deglycosylation Mix II Kit (NEB #P6044) according to manufacturer’s protocols.
Briefly, 5 µg of recombinant C5 was denatured and after addition of the enzymes and buffers incubated for
at least 1 h at 37°C. Samples used for deglycosylation of O-glycans were beforehand treated with 0.1 M
trifluoroacetic acid at 75°C for 30 minutes to remove sialic acid residues.

Coomassie staining
Proteins separated by SDS-polyacrylamide gel electrophoresis were stained overnight using a solution of
0.02% Coomassie brilliant blue g-250, 5% aluminium sulfate-(14–18)-hydrate, 10% ethanol and 2% ortho-
phosphoric acid. A solution of 10% ethanol and 2% orthophosphoric acid was used for destaining.

Size exclusion chromatography
Size exclusion chromatography of recombinant C5 was performed using an Äkta™ FPLC together with a
Superose 6 Increase 10/300 GL column (Cytiva) equilibrated in TBS. Proteins were injected with a flow
rate of 0.3 mL/min and measured at a wavelength of 215 nm. A gel filtration standard (Biorad #1511901)
was used to calibrate the column.

Circular dichroism (CD)-spectroscopy
Recombinant C5 dissolved in sodium phosphate buffer was subjected to measurement in a JASCO-715
CD-spectrometer using a 0.1-cm-path length quartz cell. Spectra were recorded between 170 nm and
260 nm at 20 nm/min and at 20°C.

Surface plasmon resonance (SPR) interaction assays
SPR experiments were performed as described using a BIACore 2000 system (BIACore AB, Uppsala, Swe-
den) (Sengle et al., 2008). Recombinant VWA domains of Antxr1 and -2 were immobilized at 1000 reference
units (RUs) to a CM5 sensor chip following the manufacturer’s instructions (Cy-
tiva). Interaction studies were performed by injecting 0–320 nM analyte in HBS-P buffer (0.01 M HEPES, pH
7.4, 0.15 M NaCl, 0.005% (v/v) surfactant P20) supplemented with 10 mM CaCl2 and HBS-EP (0.01 M HEPES,
pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% (v/v) surfactant P20) (Cytiva). Kinetic constants were calculated by
nonlinear fitting (1:1 interaction model with mass transfer) to the association and dissociation curves (BIAevaluation version 3.0 software). Apparent equilibrium dissociation constants (K_D values) were then calculated as the ratio of the dissociation rate constant (kd) and the association rate constant (ka). Experiments in the calcium-containing buffer were performed as triplicates.

Binding assays with C5 domain, PA and collagen VI-rich conditioned medium

For immunofluorescence staining 6 × 10^4 cells were plated on 12 mm glass cover slips in 24-well plates; for western blot analysis 1.5 × 10^5 cells were plated in 12-well plates. Cells were left to grow for 24 hours before shifting them to serum-free conditions for another 24 hours. Cells were then incubated with recombinant proteins in serum-free medium (5 μg/mL for immunofluorescence or 1 μg/mL for immunoblotting) or with conditioned media for 1 h at 37°C. Afterwards, cells were washed twice with serum-free medium and fixed with 4% paraformaldehyde or lysed with RIPA buffer.

Immunofluorescence microscopy

Fixed cells were permeabilized with 0.5% NP-40 for 10 min and blocked with 1% FBS in PBS for 30 min. Cells were then incubated with primary antibodies diluted in 1% FBS in PBS for 1 hour at RT, washed 3 x with PBS for 10 minutes, and incubated with appropriate highly cross-adsorbed secondary antibodies conjugated to Alexa Fluor 488, 555 or 647 (Thermo Fisher Scientific) and DAPI (0.1 μg/mL; Sigma-Aldrich) for 1 hour at RT. Cover slips were mounted with Fluorescence Mounting Medium (DAKO) on glass slides and images taken with a Leica TCS SP5 confocal microscope. For statistical evaluation, at least 10 images containing a single cell were randomly acquired and fluorescence intensities determined with the Leica LAS AF Lite software.

Immunoblotting and pull-down assays

Cell lysates and cell culture supernatants were separated by 10% or 15% SDS-polyacrylamide gel electrophoresis under reducing conditions (non-reducing when using the antibody against C5), transferred to a nitrocellulose membrane and blocked with 5% non-fat dry milk in 0.1% Tween 20/TBS solution. The membranes were probed with primary goat antibodies against PA (1:5000, List Biological Laboratories), rabbit antibodies against C5 (1:1000, in-house generated), mouse antibodies against the His-tag (1:1000, Qia-gen), rabbit antibodies against the C-terminal region of the collagen VI α1 chain (1:1000, in-house generated), guinea pig antibodies against the N-terminal region of the collagen VI α3 chain (1:500, in-house generated), or mouse antibodies against actin (1:5000, Millipore) and species corresponding horseradish peroxidase conjugated polyclonal secondary antibodies (DAKO) in blocking solution. Signals were detected by chemiluminescence (Cytivia, AmershamTM ECLTM prime western blot detection reagent). For immunoblotting of collagen VI tetramers, samples were subjected to electrophoresis on 0.5% (w/v) agarose/2.4% (w/v) polyacrylamide composite gels under non reducing conditions (Schiavinato et al., 2021). For anthrax receptor pulldown experiments, Indigo-Ni Agarose beads were used (Cube Biotech GmbH). Beads were washed and equilibrated in 0.15 M NaCl, 0.025 M Tris-HCl pH 7.5 prior to incubation with cell lysates from anthrax toxin receptor overexpressing cells (0.15 M NaCl, 0.025 M TrisHCl pH 7.5, 10% Glycerol, 1% NP-40, 1mM EDTA) for 3–6 hours. Afterwards the beads were washed three times (equilibration buffer with 0.1% NP-40 and 0.02 M imidazol) and incubated with MC3T3-E1 conditioned media or conditioned media spiked with 1 μg/mL PA overnight at 4°C. Elution of the bound material was performed after extensive washing by boiling the samples at 95°C with 2X Laemmli buffer. NG2 pulldown experiments were performed by binding recombinant NG2-ectodomain to Strep-Tactin coupled Sepharose beads (IBA GmbH) for 3-6 hours. Afterwards the beads were incubated with collagen VI rich conditioned medium overnight. After extensive washing, bead bound material was eluted by boiling the samples at 95°C with 2x Laemmli buffer.

QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad was used for generation of graphs and statistical analysis. For data comparison between multiple groups, one way ANOVA with Dunnett multiple testing correction was used, where a p value of ≤0.05 was considered as significant.