Multiscale Clustering
of Nonparametric Regression Curves

Michael Vogt1 Oliver Linton2
University of Bonn University of Cambridge

In a wide range of modern applications, one observes a large number of time series rather than only a single one. It is often natural to suppose that there is some group structure in the observed time series. When each time series is modelled by a nonparametric regression equation, one may in particular assume that the observed time series can be partitioned into a small number of groups whose members share the same nonparametric regression function. We develop a bandwidth-free clustering method to estimate the unknown group structure from the data. More precisely speaking, we construct multiscale estimators of the unknown groups and their unknown number which are free of classical bandwidth or smoothing parameters. In the theoretical part of the paper, we analyze the statistical properties of our estimators. Our theoretical results are derived under general conditions which allow the data to be dependent both in time series direction and across different time series. The technical analysis of the paper is complemented by simulated and real-data examples.

Key words: Clustering of nonparametric curves; nonparametric regression; multiscale statistics; multiple time series.

JEL classifications: C14; C38; C55.

1 Introduction

In this paper, we are concerned with the problem of clustering nonparametric regression curves. We consider the following model setup. We observe a large number of time series \(T_i = \{ (Y_{it}, X_{it}) : 1 \leq t \leq T \} \) for \(1 \leq i \leq n \). For simplicity, we synonymously speak of the \(i \)-th time series, the time series \(i \) and the time series \(T_i \) in what follows. Each time series \(T_i \) satisfies the nonparametric regression equation

\[
Y_{it} = m_i(X_{it}) + u_{it}
\]

(1.1)

for \(t = 1, \ldots, T \), where \(m_i \) is an unknown smooth function, \(X_{it} \) are random or deterministic regressors and \(u_{it} \) is the error term. The \(n \) time series in our sample belong

1Corresponding author. Address: Department of Economics and Hausdorff Center for Mathematics, University of Bonn, 53113 Bonn, Germany. Email: michael.vogt@uni-bonn.de. Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – GZ 2047/1, Project-ID 390685813.

2Address: Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD, UK. Email: obl20@cam.ac.uk. Financial support by the Cambridge-INET Institute is gratefully acknowledged.
to K_0 different groups. More specifically, the set of time series $\{1, \ldots, n\}$ can be partitioned into K_0 groups G_1, \ldots, G_{K_0} such that for each $k = 1, \ldots, K_0$,

$$m_i = m_j \text{ for all } i, j \in G_k. \quad (1.2)$$

According to (1.2), the time series of a given group G_k all have the same regression function. Model (1.1)–(1.2) provides a parsimonious way to deal with a potentially very large number of time series n. It thus stands in the tradition of multiple time series analysis, an area which greatly benefited from the pioneering work of George Tiao. A detailed description of model (1.1)–(1.2) can be found in Section 2.

In many applications, it is quite natural to suppose that there is a group structure of the form (1.2) in the data. We give some examples to illustrate this. A first example comes from environmental statistics, a field to which George Tiao has contributed immensely with numerous articles including Box et al. (1975), Reinsel et al. (1989) and Niu and Tiao (1995). Suppose we observe time series $T_i = \{Y_{it} : 1 \leq t \leq T\}$ of temperature, precipitation or ozone measurements at various spatial locations i. A simple model for the measurements at location i is given by $Y_{it} = m_i(t/T) + u_{it}$, where $X_{it} = t/T$ is (rescaled) time and m_i is a nonparametric time trend function. It is natural to suppose that the locations i in the observed sample can be grouped into geographical regions where the trend m_i is the same (or at least very similar). We come back to this example in Section 8. Another example which was analyzed in Vogt and Linton (2017) comes from finance. A recent question of policy interest is how competition between trading venues affects market quality in stock markets; cp. O’Hara and Ye (2009), Degryse et al. (2014) and Boneva et al. (2015, 2016) among others. To tackle this question, one may consider the model $Y_{it} = m_i(X_{it}) + u_{it}$, where Y_{it} is a measure of market quality for stock i at time t such as volatility and X_{it} is a measure of trading-venue fragmentation which gives information on whether stock i is traded simultaneously at many different venues at time t. The function m_i captures the effect of trading-venue fragmentation on market quality for stock i. It is quite plausible to suppose that there are groups of stocks for which this effect is the same (or at least very similar). Hence, it makes sense to assume a group structure of the form (1.2) in this situation.

An interesting statistical problem is how to construct estimators of the unknown groups G_1, \ldots, G_{K_0} and their unknown number K_0 in model (1.1)–(1.2). For the case that the design points $X_{it} = t/T$ represent (rescaled) time and the functions m_i are nonparametric time trends, this problem has been analyzed for example in Luan and Li (2003) and Degras et al. (2012). For the case that X_{it} are general random design points which may differ across time series i, Vogt and Linton (2017) have developed a thresholding method to estimate the unknown groups and their number. Notably, their approach can also be adapted to the case of deterministic regressors X_{it}, in
particular to the case that $X_{it} = t/T$. The model (1.1)–(1.2) with the fixed design points $X_{it} = t/T$ is closely related to models from functional data analysis. There, the aim is to cluster smooth random curves that are functions of (rescaled) time and that are observed with or without noise. A number of different clustering approaches have been proposed in the context of functional data models; see for example Abraham et al. (2003), Tarpey and Kinateder (2003) and Tarpey (2007) for procedures based on k-means clustering, James and Sugar (2003) and Chiou and Li (2007) for model-based clustering approaches and Jacques and Preda (2014) for a recent survey.

Virtually all of the proposed procedures to cluster nonparametric curves in model (1.1)–(1.2) and in related functional data settings depend on a number of bandwidth or smoothing parameters required to estimate the nonparametric functions m_i. In general, nonparametric curve estimators are strongly affected by the chosen bandwidth parameters. A clustering algorithm which is based on such estimators can be expected to be strongly influenced by the choice of bandwidths as well. In particular, the clusters produced by the algorithm can be expected to vary considerably with the chosen bandwidths.

The main aim of this paper is to develop estimators of the unknown groups G_1, \ldots, G_{K_0} and of their unknown number K_0 in model (1.1)–(1.2) which are free of classical smoothing or bandwidth parameters that need to be selected. To achieve this, we make use of multiscale techniques from statistical hypothesis testing. In recent years, a number of multiscale methods have been developed in the context of different test problems. Early examples are the SiZer approach of Chaudhuri and Marron (1999, 2000) and the multiscale tests of Horowitz and Spokoiny (2001) and Dümbgen and Spokoiny (2001). More recent references include the tests in Schmidt-Hieber et al. (2013), Armstrong and Chan (2016), Eckle et al. (2017) and Proksch et al. (2018) among others. In this paper, we develop multiscale techniques for clustering rather than testing purposes.

Our strategy to construct estimators of the unknown groups G_1, \ldots, G_{K_0} and of their unknown number K_0 in model (1.1)–(1.2) can be outlined as follows: To start with, we construct statistics \hat{d}_{ij} which measure the distance between pairs of functions m_i and m_j. Building on multiscale techniques, we design the statistics \hat{d}_{ij} in such a way that they do not depend on a specific bandwidth or smoothing parameter. To estimate the unknown classes G_1, \ldots, G_{K_0}, the multiscale distance statistics \hat{d}_{ij} are combined with a hierarchical clustering algorithm. To estimate the unknown number of classes K_0, we develop a thresholding rule that is applied to the dendrogram produced by the clustering algorithm. Alternatively, the multiscale statistics \hat{d}_{ij} may be combined with other distance-based clustering algorithms. In particular, they can be used to turn the estimation strategy of Vogt and Linton (2017) into a bandwidth-free procedure. We comment on this in more detail in Section S.2 of the Supplementary Material.
The problem of estimating the unknown groups and their unknown number in model (1.1)–(1.2) is closely related to a developing literature in econometrics that aims to identify the unknown group structure in parametric panel regression models. The clustering problem considered in this literature can be regarded as a parametric version of our problem. In its simplest form, the panel regression model under consideration is given by the equation $Y_{it} = \beta_i^T X_{it} + u_{it}$ for $1 \leq t \leq T$ and $1 \leq i \leq n$, where the coefficient vectors β_i are allowed to vary across individuals i. Similarly as in our nonparametric model, the coefficients β_i are assumed to belong to a number of groups: there are K_0 groups G_1, \ldots, G_{K_0} such that $\beta_i = \beta_j$ for all $i, j \in G_k$ and all $1 \leq k \leq K_0$.

The problem of estimating the unknown groups and their unknown number has been studied in different versions of this modelling framework in Bonhomme and Manresa (2015), Su et al. (2016), Wang et al. (2018) and Su and Ju (2018) among others. Notably, our clustering methods can be adapted in a straightforward way to a number of semiparametric models which are middle ground between the fully parametric panel models just discussed and our nonparametric framework. In Section S.2 of the Supplementary Material, we discuss in more detail how to achieve this.

Our estimation methods are described in detail in Sections 3–5. In Section 3, we construct the multiscale statistics that form the basis of our clustering methods. Section 4 introduces the hierarchical clustering algorithm to estimate the unknown classes G_1, \ldots, G_{K_0}. In Section 5, we finally describe the procedure to estimate the unknown number of classes K_0. The main theoretical result of the paper is laid out in Section 6. This result characterizes the asymptotic convergence behaviour of the multiscale statistics and forms the basis to derive the theoretical properties of our clustering methods. To investigate the finite sample properties of our approach and to illustrate its advantages over bandwidth-dependent clustering algorithms, we conduct a simulation study in Section 7 and explore a real-data example from environmental statistics in Section 8.

2 The model

We now introduce the model framework in detail which underlies our analysis. As already mentioned in the Introduction, we observe n time series $T_i = \{(Y_{it}, X_{it}) : 1 \leq t \leq T\}$ of length T for $1 \leq i \leq n$. For our theoretical analysis, we regard the number of time series n as a function of T, that is, $n = n(T)$. The time series length T is assumed to tend to infinity, whereas the number of time series n may be either bounded or diverging. The exact technical conditions on T and n are laid out in Section 6. Throughout the paper, asymptotic statements are to be understood in the sense that $T \to \infty$.
2.1 The model for time series \mathcal{T}_i

Each time series \mathcal{T}_i in our sample is modelled by the nonparametric regression equation

$$Y_{it} = m_i(X_{it}) + u_{it}$$

(2.1)

for $1 \leq t \leq T$, where m_i is an unknown smooth function and u_{it} denotes the error term. To keep the exposition as simple as possible, we assume that the regressors X_{it} are real-valued. As discussed in Section S.2 of the Supplementary Material, our methods and theory carry over to the multivariate case in a straightforward way. We further suppose that the regressors X_{it} have compact support, which w.l.o.g. is equal to $[0,1]$ for each i.

We consider both a random and a fixed design version of model (2.1), which we denote by (RD) and (FD), respectively. The regressors X_{it} are assumed to have the following properties in these two versions of the model:

(RD) For each i, the regressors X_{it} are real-valued random variables that are distributed according to some density f_i.

(FD) For each i, the regressors X_{it} are deterministic points on the unit interval with $0 \leq X_{i1} < X_{i2} < \ldots X_{iT} \leq 1$. They are generated by a design density in the sense of Sacks and Ylvisaker (1970): for each i, there exists a density f_i such that $\int_{X_{i,t-1}}^{X_{it}} f_i(w)dw = 1/T$ for $1 \leq t \leq T$, where $X_{i0} = 0$.

Note that by setting $f_i \equiv 1$ in (FD), we obtain the important special case of equidistant design points $X_{it} = t/T$, which represent (rescaled) time in many applications. The error terms u_{it} are assumed to have an additive component structure both in the random and the fixed design case:

(RD) It holds that $u_{it} = \alpha_i + \gamma_t + \varepsilon_{it}$, where α_i and γ_t are fixed effects that may be correlated with the regressors X_{it} in an arbitrary way and ε_{it} are standard regression errors that satisfy $\mathbb{E}[\varepsilon_{it}|X_{it}] = 0$.

(FD) It holds that $u_{it} = \alpha_i + \varepsilon_{it}$, where α_i are fixed effects and ε_{it} are standard regression errors with $\mathbb{E}[\varepsilon_{it}] = 0$.

As discussed in more detail in Section 2.3, we do not include the time fixed effects γ_t in the (FD) case for identifiability reasons: Whereas the functions m_i can be identified in the presence of the time fixed effects γ_t in the (RD) model, this is in general not possible in the (FD) model. Both in the (RD) and the (FD) case, the time series $E_i = \{\varepsilon_{it} : 1 \leq t \leq T\}$ are supposed to be weakly dependent stationary processes that are independent across i. The error terms ε_{it} are thus allowed to be dependent across t but are assumed to be independent across i. The fixed effects α_i, in contrast,
may be correlated across i in an arbitrary way. Hence, by including α_i (and γ_t) in the error structure, we allow for some restricted types of cross-sectional dependence in the errors u_{it}. As a result, we accommodate for both time series dependence and certain forms of cross-sectional dependence in the error terms of our model. The exact conditions on the dependence structure are stated in (C1) in Section 6.

2.2 The group structure

We impose the following group structure on the time series T_i in our sample: There are K_0 groups of time series G_1, \ldots, G_{K_0} with $\bigcup_{k=1}^{K_0} G_k = \{1, \ldots, n\}$ such that for each $1 \leq k \leq K_0$,

$$m_i = m_j \quad \text{for all } i, j \in G_k. \quad (2.2)$$

Put differently, for each $1 \leq k \leq K_0$,

$$m_i = g_k \quad \text{for all } i \in G_k, \quad (2.3)$$

where g_k is the group-specific regression function associated with the class G_k. According to (2.3), the time series of a given class G_k all have the same regression curve g_k. To make sure that time series which belong to different classes have different regression curves, we suppose that $g_k \neq g_{k'}$ for $k \neq k'$. The exact technical conditions on the functions g_k are summarized in (C6) in Section 6. For simplicity, we assume that the number of groups K_0 is fixed. It is however straightforward to allow K_0 to grow with the number of time series n. We comment on this in more detail in Section S.2 of the Supplementary Material. The groups $G_k = G_{k,n}$ depend on the cross-section dimension n in general. For ease of notation, we however suppress this dependence on n throughout the paper.

2.3 Identification of the functions m_i

We first discuss the (RD) case. If we drop the fixed effects α_i and γ_t from the error terms u_{it}, we obtain the standard regression equation $Y_{it} = m_i(X_{it}) + \varepsilon_{it}$. Obviously, m_i is identified in this case since $m_i(\cdot) = \mathbb{E}[Y_{it}|X_{it} = \cdot]$ almost surely. In the full model $Y_{it} = m_i(X_{it}) + \alpha_i + \gamma_t + \varepsilon_{it}$, by contrast, m_i is not identified. Specifically, we can rewrite the model as $Y_{it} = \{m_i(X_{it}) + a_i\} + \{\alpha_i - a_i\} + \gamma_t + \varepsilon_{it}$, where a_i is an arbitrary real constant. In order to get identification, we need to impose certain constraints which pin down the expectation $\mathbb{E}[m_i(X_{it})] = \int m_i(w)f_i(w)dw$ for any i. A common choice is the identification constraint

$$\int m_i(w)f_i(w)dw = 0 \quad \text{for } 1 \leq i \leq n, \quad (2.4)$$

6
which is implicitly assumed to be fulfilled throughout the paper. Given this constraint, it is straightforward to show that the functions m_i are identified under our regularity conditions from Section 6. A formal identification result is provided in Section S.2 of the Supplementary Material for completeness.

The situation is somewhat different in the (FD) case. There, it is in general not possible to identify the functions m_i in the presence of the time fixed effects γ_t. To see the issue, consider the special case $X_{it} = t/T$ and suppose for simplicity that $\alpha_i = 0$ and $\gamma_t = \gamma(t/T)$ with some deterministic function γ. In this case, $Y_{it} = m_i(t/T) + \gamma(t/T) + \varepsilon_{it}$, where $\tau_i(t/T) = m_i(t/T) + \gamma(t/T)$ is the trend function of time series i. Obviously, we cannot identify the trend components m_i and γ in this situation without imposing severe assumptions on their functional form. However, if we restrict attention to the model $Y_{it} = m_i(X_{it}) + \alpha_i + \varepsilon_{it}$ without the time fixed effects γ_t, we can proceed analogously as in the (RD) case. In particular, we get identification of the functions m_i under the constraint (2.4).

It is important to note that the identification constraint (2.4) and thus the fixed effects error structure of our model implicitly imposes certain restrictions on the design densities f_i. The identification constraint (2.4) requires that $\int g_k(w)f_i(w)dw = 0$ for all $i \in G_k$, where g_k is the regression function associated with the group G_k. It is in general not possible to satisfy the constraint $\int g_k(w)f_i(w)dw = 0$ simultaneously for all i when the densities f_i are arbitrarily different across i. However, if we suppose that for any $1 \leq k \leq K_0$,

$$f_i = f_j \quad \text{for all } i, j \in G_k,$$

then this constraint is satisfied quite naturally. In the remainder of the paper, we take for granted that the property (2.5) is fulfilled, that is, we assume the design density f_i to be the same for all time series i in a given group G_k.

3 The multiscale distance statistic

Let i and j be two time series from our sample. In what follows, we construct a test statistic \hat{d}_{ij} for the null hypothesis $H_0 : m_i(x) = m_j(x)$ for all $x \in [0, 1]$, that is, for the null hypothesis that i and j belong to the same group G_k for some $1 \leq k \leq K_0$. Using multiscale techniques, we design the statistic \hat{d}_{ij} in such a way that it is free of specific bandwidth parameters. The statistic \hat{d}_{ij} will serve as a distance measure between the functions m_i and m_j in our clustering algorithm later on.

3.1 Construction of the multiscale statistic

Step 1. As a first preliminary step, we define a nonparametric estimator $\hat{m}_{i,h}$ of the function m_i, where h denotes the bandwidth. We work with the same local linear
kernel smoother as in Vogt and Linton (2017). This estimator is given by

$$
\hat{m}_{i,h}(x) = \frac{\sum_{t=1}^{T} W_{it}(x,h) \hat{Y}_{it}^*}{\sum_{t=1}^{T} W_{it}(x,h)},
$$

where $\hat{Y}_{it}^* = Y_{it} - \overline{Y}_i - \overline{Y}_i^{(i)} + \overline{Y}_i^{(i)}$ in the (RD) case and $\hat{Y}_{it}^* = Y_{it} - \overline{Y}_i$ in the (FD) case with

$$
\overline{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}, \quad \overline{Y}_i^{(i)} = \frac{1}{n-1} \sum_{j=1, j\neq i}^{n} Y_{jt} \quad \text{and} \quad \overline{Y}_i^{(i)} = \frac{1}{(n-1)T} \sum_{j=1}^{n} \sum_{t=1}^{T} Y_{jt}.
$$

(3.1)

Moreover, $W_{it}(x,h)$ are kernel weights of the form

$$
W_{it}(x,h) = K_h(X_{it} - x) \left\{ S_{i,2}(x,h) - \left(\frac{X_{it} - x}{h} \right) S_{i,1}(x,h) \right\},
$$

where $S_{i,\ell}(x,h) = T^{-1} \sum_{t=1}^{T} K_h(X_{it} - x) \{X_{it} - x\}/h^\ell$ for $\ell = 0, 1, 2$ and K is a kernel function with $K_h(\varphi) = h^{-1}K(\varphi/h)$. Throughout the paper, we assume that the kernel K has compact support $[-C_K, C_K]$. For ease of notation, we set $C_K = 1$ and take the kernel K to be the same for each i.

Step 2. As an intermediate step, we construct a bandwidth-dependent test statistic of the hypothesis H_0. Specifically, we consider the statistic

$$
\hat{d}_{ij}(h) = \sup_{x \in [0,1]} |\hat{\psi}_{ij}(x,h)|,
$$

where

$$
\hat{\psi}_{ij}(x,h) = \sqrt{T h} \frac{\hat{m}_{i,h}(x) - \hat{m}_{j,h}(x)}{\sqrt{\hat{\nu}_{ij}(x,h)}}
$$

is a rescaled version of the difference between the curve estimators $\hat{m}_{i,h}(x)$ and $\hat{m}_{j,h}(x)$ at location x with bandwidth h. The term $\hat{\nu}_{ij}(x,h)$ is a scaling factor which normalizes the asymptotic variance of $\hat{\psi}_{ij}(x,h)$. Importantly, our theory does not require the statistics $\hat{\psi}_{ij}(x,h)$ to have asymptotic variance exactly equal to 1. Nevertheless, for the multiscale methods we are about to develop, it is desirable to normalize the statistics $\hat{\psi}_{ij}(x,h)$ such that their variance is approximately equal to 1 and thus comparable in size across locations x and bandwidths h. In order to achieve this, we set

$$
\hat{\nu}_{ij}(x,h) = \left\{ \frac{\hat{\sigma}_{i,h}^2}{f_{i,h}(x)} + \frac{\hat{\sigma}_{j,h}^2}{f_{j,h}(x)} \right\} s(x,h),
$$

(3.2)

where $s(x,h) = \left\{ \int_{-x/h}^{(1-x)/h} K^2(u)[\kappa_2(x,h) - \kappa_1(x,h)u]^2du \right\}/\left\{ \kappa_0(x,h)\kappa_2(x,h) - \kappa_1(x,h)^2 \right\}^2$.
is a kernel constant with \(\kappa_t(x, h) = \int_{-x/h}^{(1-x)/h} u^tK(u)du \), \(f_{i,h}(x) = \{\kappa_0(x, h)T\}^{-1} \sum_{t=1}^{T} K_h(X_{it} - x) \) is a boundary-corrected kernel density estimator of the design density \(f_i \) and \(\hat{\sigma}_{i,h}^2 = T^{-1} \sum_{t=1}^{T} (\hat{Y}_{it} - \hat{m}_{i,h}(X_{it}))^2 \) is an estimator of the error variance \(\sigma_i^2 = \mathbb{E}[\varepsilon_{it}^2] \). In the (RD) case, the definition of \(\hat{\sigma}_{i,h}^2 \) implicitly presupposes that the error terms \(\varepsilon_{it} \) are homoskedastic. When they are heteroskedastic, \(\hat{\sigma}_{i,h}^2 \) can be replaced by an estimator of the conditional error variance \(\sigma_i^2 = \mathbb{E}[\varepsilon_{it}^2 | X_{it} = x] \), in particular, by \(\hat{\sigma}_{i,h}^2(x) = \{\sum_{t=1}^{T} K_h(X_{it} - x)\hat{Y}_{it} - \hat{m}_{i,h}(X_{it}))^2\}/\{\sum_{t=1}^{T} K_h(X_{it} - x)\}. \) In the (FD) case, the term \(\hat{\sigma}_{i,h}^2 \) must give a reasonable approximation to the long-run error variance \(\Gamma_i = \sum_{\ell=-\infty}^{\infty} \text{Cov}(\varepsilon_{i0}, \varepsilon_{i\ell}) \) in order to produce a correct normalization of the statistic \(\hat{\psi}_{ij}(x, h) \). As long as the time series dependence in the errors \(\varepsilon_{it} \) is not too strong, \(\sigma_i^2 = \text{Var}(\varepsilon_{i0}) \) will be the dominant term in the long-run variance \(\Gamma_i \), implying that \(\hat{\sigma}_{i,h}^2 \) should approximate \(\Gamma_i \) reasonably well. However, if the dependence in the errors is expected to be strong, \(\hat{\sigma}_{i,h}^2 \) should be replaced by an estimator of the long-run variance \(\Gamma_i \), for example, by a HAC-type estimator as discussed in Andrews (1991) or de Jong and Davidson (2000).

To motivate the following steps, it is instructive to examine the statistic \(\hat{d}_{ij}(h) \) in a simplified version of our model. We in particular consider the setting

\[
Y_{it} = m_i(X_{it}) + \varepsilon_{it},
\]

where (a) the design density \(f = f_i \) is the same for all \(i \), (b) the fixed effects \(\alpha_i \) and \(\gamma_t \) are dropped from the model and (c) the errors \(\varepsilon_{it} \) are i.i.d. both across \(i \) and \(t \). In this simplified setting, the statistic \(\hat{\psi}_{ij}(x, h) \) can be decomposed into a bias part \(\hat{\psi}_{ij}^B(x, h) \) and a variance part \(\hat{\psi}_{ij}^V(x, h) \) according to

\[
\hat{\psi}_{ij}(x, h) = \hat{\psi}_{ij}^B(x, h) + \hat{\psi}_{ij}^V(x, h) + \text{lower order terms},
\]

where for any \(x \in [h, 1-h], \)

\[
\hat{\psi}_{ij}^B(x, h) = \sqrt{T h} \left\{ m_i(x + hu) - m_j(x + hu) \right\} w(u, x, h)du
\]

\[
\hat{\psi}_{ij}^V(x, h) = \sqrt{T h} \frac{\left(\hat{m}_{i,j,h}(x) - \hat{m}_{i,h}(x) \right)}{\sqrt{\hat{\nu}_{ij}(x, h)}}
\]

with \(\hat{m}_{i,j,h}(x) = \{\sum_{t=1}^{T} W_i(x, h)\varepsilon_{it}\}/\{\sum_{t=1}^{T} W_i(x, h)\} \) and \(w(u, x, h) = K(u)f(x + hu)/\int K(v)f(x + hv)dv \). Under standard conditions, \(\hat{\psi}_{ij}^V(x, h) \overset{d}{\to} N(0, 1) \). Moreover, the bias term \(\hat{\psi}_{ij}^B(x, h) \) vanishes for any pair of time series \(i \) and \(j \) that belong to the same class \(G_k \), that is, \(\hat{\psi}_{ij}^B(x, h) = 0 \) for any \(i, j \in G_k \) and \(1 \leq k \leq K_0 \).

The variance part \(\hat{\psi}_{ij}^V(x, h) \) captures the stochastic fluctuations of the statistic \(\hat{\psi}_{ij}(x, h) \). Inspecting (3.5) and recalling that the kernel \(K \) has support \([-1, 1]\), the
bias part $\hat{\psi}_{ij}^B(x,h)$ can be seen to be a weighted integrated difference between m_i and m_j on the interval $[x-h, x+h]$. It can thus be regarded as a signal which indicates a deviation from H_0 locally around x. The strength of the signal $\hat{\psi}_{ij}^B(x,h)$ depends on the choice of the bandwidth h. To see this more clearly, consider two regression functions m_i and m_j from two different groups. The functions m_i and m_j may differ on different scales. In particular, they may differ on a local/global scale, that is, they may have certain local/global features which distinguish them from each other. To fix ideas, suppose that m_i and m_j differ on the interval $I^* = [x-h^*, x+h^*]$ but are the same outside I^*. The parameter h^* can be regarded as the scale on which m_i and m_j differ: For small/large values of h^*, the interval I^* is small/large compared to the overall support $[0, 1]$, which means that m_i and m_j differ on a local/global scale. Usually, the signal $\hat{\psi}_{ij}^B(x,h)$ is strong for bandwidths h close to h^* and becomes weak for bandwidths h substantially smaller or larger than h^*. Very roughly speaking, the reason for this is as follows: Depending on the choice of h, the integration region in (3.5) changes. If h is much larger than h^*, we integrate over a much larger interval than I^* in (3.5) and thus smooth out the differences between m_i and m_j. If h is much smaller than h^*, in contrast, we only integrate over a small part of the region I^* where the two functions m_i and m_j differ and thus do not use all of the information available on the differences between m_i and m_j.

According to these heuristic considerations, it strongly depends on the chosen bandwidth whether the test statistic $\hat{d}_{ij}(h) = \sup_{x \in [0,1]} |\hat{\psi}_{ij}(x,h)|$ is able to detect a deviation from the null H_0. In particular, if the bandwidth h is much smaller/larger than the scale h^* on which m_i and m_j mainly differ, the statistic $\hat{d}_{ij}(h)$ is not able to pick up the differences between m_i and m_j.

STEP 3. We now construct a test statistic of H_0 which does not depend on a specific bandwidth h but takes into account a wide range of different bandwidths simultaneously. By construction, such a statistic should be able to detect differences between the functions m_i and m_j on multiple scales simultaneously. To obtain such a statistic, we proceed as follows: We compute the bandwidth-dependent statistic $\hat{d}_{ij}(h)$ for all bandwidths h in a large set $\mathcal{H} = \{h : h_{\min} \leq h \leq h_{\max}\}$, where h_{\min} and h_{\max} denote some minimal and maximal bandwidth values that are specified later on. We then combine the statistics $\hat{d}_{ij}(h)$ for all $h \in \mathcal{H}$ to obtain a single test statistic.

A simple way of combining the statistics $\hat{d}_{ij}(h)$ for all $h \in \mathcal{H}$ is to take their supremum, which leads to the definition

$$\tilde{d}_{ij} := \sup_{h \in \mathcal{H}} \hat{d}_{ij}(h) = \sup_{h \in \mathcal{H}} \sup_{x \in [0,1]} |\hat{\psi}_{ij}(x,h)|. \quad (3.7)$$

On first sight, the statistic \tilde{d}_{ij} seems to be a reasonable multiscale statistic which
where \(\lambda \) is approximately of size \(\lambda_0 \) for all \(x \) and \(h \) as already noted in Step 2. Hence, the statistic \(\hat{\psi}_{ij}(x, h) \) is approximately equal to the variance term \(\hat{\psi}_{ij}^V(x, h) \), which captures its stochastic fluctuations. Neglecting terms of lower order, we obtain that under \(H_0 \), \(\hat{\psi}_{ij}(x, h) = \hat{\psi}_{ij}^V(x, h) \) and thus

\[
\hat{d}_{ij} = \sup_{h \in H} \hat{d}_{ij}(h) \quad \text{with} \quad \hat{d}_{ij}(h) = \sup_{x \in [0,1]} |\hat{\psi}_{ij}^V(x, h)|.
\]

For a given bandwidth \(h \), the statistics \(\hat{\psi}_{ij}^V((2\ell - 1)h, h) \) for \(\ell = 1, \ldots, \lfloor 1/2h \rfloor \) can be shown to be (approximately) standard normal and independent (for sufficiently large \(T \)). Since the maximum over \([1/2h] \) independent standard normal random variables is \(\lambda(2h) + o_p(1) \) as \(h \to 0 \) with \(\lambda(r) = \sqrt{2\log(1/r)} \), it holds that \(\max_{x} \hat{\psi}_{ij}^V((2\ell - 1)h, h) \) is approximately of size \(\lambda(2h) \) for small bandwidths \(h \). Moreover, since the statistics \(\hat{\psi}_{ij}^V(x, h) \) with \((2\ell - 1)h < x < (2\ell + 1)h \) are correlated with \(\hat{\psi}_{ij}^V((2\ell - 1)h, h) \) and \(\hat{\psi}_{ij}^V((2\ell + 1)h, h) \), the supremum \(\sup_x \hat{\psi}_{ij}^V(x, h) \) approximately behaves as the maximum \(\max_{x} \hat{\psi}_{ij}^V((2\ell - 1)h, h) \). Taken together, these heuristic considerations suggest that

\[
\hat{d}_{ij}(h) \approx \max_{1 \leq \ell \leq \lfloor 1/2h \rfloor} |\hat{\psi}_{ij}^V((2\ell - 1)h, h)| \approx \lambda(2h)
\]

(3.8)

for small bandwidth values \(h \). According to (3.8), the statistic \(\hat{d}_{ij}(h) \) tends to be much larger in size for small than for large bandwidths \(h \). As a consequence, the stochastic behaviour of \(\hat{d}_{ij} \) tends to be dominated by the statistics \(\hat{d}_{ij}(h) \) which correspond to small bandwidths \(h \).

Step 4. To fix this bias issue, we follow Dümbgen and Spokoiny (2001) and replace the statistic \(\hat{d}_{ij} \) by the modified version

\[
\hat{d}_{ij} := \sup_{h \in H} \{ \hat{d}_{ij}(h) - \lambda(2h) \} = \sup_{h \in H} \sup_{x \in [0,1]} \{|\hat{\psi}_{ij}(x, h)| - \lambda(2h)\}.
\]

(3.9)

where \(\lambda(r) = \sqrt{2\log(1/r)} \). For each given bandwidth \(h \), we thus subtract the additive correction term \(\lambda(2h) \) from the statistic \(\hat{d}_{ij}(h) \). The idea behind this additive correction is as follows: When \(i \) and \(j \) belong to the same class, the statistic \(\hat{d}_{ij}(h) \) is approximately of size \(\lambda(2h) \) for small values of \(h \) according to the heuristic considera-
tions from above. Hence, we correct \(\hat{d}_{ij}(h) \) by subtracting its approximate size under the null hypothesis \(H_0 \). This calibrates the statistics \(\hat{d}_{ij}(h) \) in such a way that their stochastic fluctuations are more comparable across bandwidths \(h \). We thus put them on a more equal footing and prevent small bandwidths from dominating the stochastic behaviour of the multiscale statistic. As a result, \(\hat{d}_{ij} \) should be a reliable test statistic of the null hypothesis \(H_0 \) which is able to detect differences between the functions \(m_i \) and \(m_j \) on multiple scales simultaneously.

To make the statistic \(\hat{d}_{ij} \) defined in (3.9) computable in practice, we replace the supremum over \(x \in [0, 1] \) and \(h \in H \) by the maximum over all points \((x, h)\) in a suitable grid \(G_T \). The final version of the multiscale statistic is thus defined as

\[
\hat{d}_{ij} = \max_{(x,h) \in G_T} \left\{ |\hat{\psi}_{ij}(x,h)| - \lambda(2h) \right\}.
\]

(3.10)

In this definition, \(G_T \) may be any subset of \(G = \{(x, h) \mid h_{\min} \leq h \leq h_{\max} \text{ and } x \in [0, 1] \} \) with the following properties: (a) \(G_T \) becomes dense in \(G \) as \(T \to \infty \), (b) \(|G_T| \leq C T^\beta \) for some arbitrarily large but fixed constants \(C, \beta > 0 \), where \(|G_T| \) denotes the cardinality of \(G_T \), and (c) \(h_{\min} \geq c T^{-(1-\delta)} \) and \(h_{\max} \leq CT^{-\delta} \) for some arbitrarily small but fixed \(\delta > 0 \) and some positive constants \(c \) and \(C \). According to conditions (a) and (b), the number of points \((x, h)\) in \(G_T \) should grow to infinity as \(T \to \infty \), however it should not grow faster than \(C T^\beta \) for some arbitrarily large constants \(C, \beta > 0 \). This is a fairly weak restriction as it allows the set \(G_T \) to be extremely large as compared to the sample size \(T \). As an example, we may use the Wavelet multiresolution grid \(G_T = \{(x, h) = (2^{-r}, 2^{-\nu}) \mid 1 \leq r \leq 2^\nu - 1 \text{ and } h_{\min} \leq 2^{-\nu} \leq h_{\max} \} \). Condition (c) is quite weak as well, allowing us to choose the bandwidth window \([h_{\min}, h_{\max}]\) extremely large. In particular, we can choose the minimal bandwidth \(h_{\min} \) to converge to zero almost as quickly as the time series length \(T \) and thus to be extremely small. Moreover, the maximal bandwidth \(h_{\max} \) is allowed to converge to zero very slowly, in particular much more slowly than the optimal bandwidths for estimating the functions \(m_i \), which are of the order \(T^{-1/5} \) for all \(i \) under our technical conditions from Section 6. Hence, \(h_{\max} \) can be chosen very large.

Remark 3.1. Alternatively to (3.10), one may define

\[
\hat{d}_{ij}^\omega = \max_{(x,h) \in G_T} \omega(2h) \left\{ |\hat{\psi}_{ij}(x,h)| - \lambda(2h) \right\},
\]

where the multiplicative constant \(\omega(r) = \sqrt{\log(e/r) / \log \log(e^e/r)} \) is motivated by Theorem 2.1 in Dümbgen and Spokoiny (2001). In simple special cases, the limit distribution of \(\hat{d}_{ij} \) can be shown to be degenerate for \(i, j \in G_k \) as the largest bandwidth \(h_{\max} \) converges to zero. For this reason, one may prefer the statistic \(\hat{d}_{ij}^\omega \) over \(\hat{d}_{ij} \) in the context of statistical testing. For our clustering purposes, however, both statistics
are appropriate. In particular, it does not matter whether \(\hat{d}_{ij} \) has a degenerate limit. The main theoretical results on our clustering methods hold true no matter whether we work with \(\hat{d}_{ij} \) or \(\hat{d}_{ij}^\omega \). Moreover, from a practical point of view, the performance of \(\hat{d}_{ij}^\omega \) appears to be very similar to that of \(\hat{d}_{ij} \). In particular, the simulation results of Section 7 are almost identical when \(\hat{d}_{ij} \) is replaced by \(\hat{d}_{ij}^\omega \). For these reasons, we stick to the somewhat simpler statistic \(\hat{d}_{ij} \) throughout the paper.

3.2 Tuning parameter choice

The multiscale statistic \(\hat{d}_{ij} \) does not depend on a specific bandwidth \(h \) that needs to be selected. It is thus free of a classical bandwidth or smoothing parameter. However, it is of course not completely free of tuning parameters. It obviously depends on the minimal and maximal bandwidths \(h_{\min} \) and \(h_{\max} \). Importantly, \(h_{\min} \) and \(h_{\max} \) are much more harmless tuning parameters than a classical bandwidth \(h \). In particular, (a) they are much simpler to choose and (b) the multiscale methods are much less sensitive to their exact choice than conventional methods are to the choice of bandwidth. In what follows, we discuss the reasons for (a) and (b) in detail and give some guidelines how to choose \(h_{\min} \) and \(h_{\max} \) in practice. These guidelines are in particular used to implement our methods in the simulated and real-data examples of Sections 7 and 8.

Ideally, we would like to make the interval \([h_{\min}, h_{\max}]\) as large as possible, thus taking into account as many bandwidths \(h \) as possible. From a technical perspective, we can pick any bandwidths \(h_{\min} \) and \(h_{\max} \) with \(h_{\min} \geq cT^{-(1-\delta)} \) and \(h_{\max} \leq CT^{-\delta} \) for some small \(\delta > 0 \). Hence, our theory allows us to choose \(h_{\min} \) and \(h_{\max} \) extremely small and large, respectively. Heuristically speaking, the bandwidth \(h_{\min} \) can be considered very small if the effective sample size \(Th_{\min} \) for estimating the functions \(m_i \) is very small, say \(Th_{\min} \leq 10 \). Likewise, \(h_{\max} \) can be regarded as extremely large if the effective sample size \(Th_{\max} \) is very large compared to the full sample size \(T \), say \(Th_{\max} \approx T/4 \) or \(Th_{\max} \approx T/3 \). Hence, in practice, we have a pretty good idea of what it means for \(h_{\min} \) and \(h_{\max} \) to be very small and large, respectively. It is thus clear in which range we need to pick the bandwidths \(h_{\min} \) and \(h_{\max} \) in practice.

As long as the bandwidth window \([h_{\min}, h_{\max}]\) is chosen reasonably large, the exact choice of \(h_{\min} \) and \(h_{\max} \) can be expected to have little effect on the overall behaviour of the multiscale statistic \(\hat{d}_{ij} \). To see why, write \(\hat{\psi}_{ij}(x, h) = \hat{\psi}_{ij}^B(x, h) + \hat{\psi}_{ij}^V(x, h) + \text{lower order terms as in (3.4)} \), where the variance term \(\hat{\psi}_{ij}^V(x, h) \) captures the stochastic fluctuations of \(\hat{\psi}_{ij}(x, h) \) and the bias term \(\hat{\psi}_{ij}^B(x, h) \) is a signal which picks up differences between the functions \(m_i \) and \(m_j \) locally around \(x \). Neglecting terms of lower order, the multiscale statistic \(\hat{d}_{ij} \) from (3.9) can be written as

\[
\hat{d}_{ij} = \sup_{h \in [h_{\min}, h_{\max}]} \sup_{x \in [0,1]} \left\{ |\hat{\psi}_{ij}^B(x, h) + \hat{\psi}_{ij}^V(x, h)| - \lambda(2h) \right\}.
\]
If the bandwidth window \([h_{\text{min}}, h_{\text{max}}]\) is chosen sufficiently large, it will contain all the scales \(h^*\) on which the two functions \(m_i\) and \(m_j\) mainly differ. As discussed in Section 3.1, the signals \(\hat{\psi}_{ij}^h(x, h)\) should be strongest for bandwiths \(h\) which are close to the scales \(h^*\). Hence, as long as the window \([h_{\text{min}}, h_{\text{max}}]\) is chosen large enough to contain all the scales \(h^*\), the size of the overall signal of the multiscale statistic \(\hat{d}_{ij}\) should be hardly affected by the exact choice of \(h_{\text{min}}\) and \(h_{\text{max}}\). Moreover, the size of the stochastic fluctuations of \(\hat{d}_{ij}\) should not be strongly influenced either: The stochastic part of \(\hat{d}_{ij}\) can be expressed as

\[
\sup_{h \in [h_{\text{min}}, h_{\text{max}}]} \hat{V}_{ij}(h) \quad \text{with} \quad \hat{V}_{ij}(h) = \sup_{x \in [0, 1]} \{|\hat{\psi}_{ij}^h(x, h)| - \lambda(2h)|},
\]

where \(\hat{V}_{ij}(h)\) captures the stochastic fluctuations corresponding to bandwidth \(h\). According to our heuristic considerations from Section 3.1, the variables \(\hat{V}_{ij}(h)\) are roughly comparable in size across bandwidths \(h\). Moreover, for \(h\) and \(h'\) close to each other, \(\hat{V}_{ij}(h)\) and \(\hat{V}_{ij}(h')\) are strongly correlated. For these reasons, the size of the stochastic part \(\sup_{h \in [h_{\text{min}}, h_{\text{max}}]} \hat{V}_{ij}(h)\) should not change much when we make the very large bandwidth window \([h_{\text{min}}, h_{\text{max}}]\) somewhat larger or smaller.

In view of these heuristic considerations, we suggest to choose \(h_{\text{min}}\) in practice such that the effective sample size \(T h_{\text{min}}\) is small, say \(\leq 10\), and \(h_{\text{max}}\) such that the effective sample size \(T h_{\text{max}}\) is large compared to \(T\), say \(T h_{\text{max}} \geq T/4\).

3.3 Properties of the multiscale statistic

We now discuss some theoretical properties of the multiscale statistic \(\hat{d}_{ij}\) which are needed to derive the formal properties of the clustering methods developed in the following sections. Specifically, we compare the maximal multiscale distance between two time series \(i\) and \(j\) from the same class,

\[
\max_{1 \leq k \leq K_0} \max_{i, j \in G_k} \hat{d}_{ij},
\]

with the minimal distance between two time series \(i\) and \(j\) from two different classes,

\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij}.
\]

In Section 6, we formally prove that under appropriate regularity conditions,

\[
\max_{1 \leq k \leq K_0} \max_{i, j \in G_k} \hat{d}_{ij} = O_p\left(\sqrt{\log n} + \log T\right) \tag{3.11}
\]

\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij} \geq c_0 \sqrt{T h_{\text{max}}} + o_p\left(\sqrt{T h_{\text{max}}}\right), \tag{3.12}
\]
where \(c_0 \) is a sufficiently small positive constant. These two statements imply that

\[
\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \frac{\hat{d}_{ij}}{\sqrt{Th_{\max}}} = o_p(1) \tag{3.13}
\]

\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \frac{\hat{d}_{ij}}{\sqrt{Th_{\max}}} \geq c_0 + o_p(1). \tag{3.14}
\]

According to (3.13) and (3.14), the maximal distance between time series of the same class converges to zero when normalized by \(\sqrt{Th_{\max}} \), whereas the minimal distance between time series of two different classes remains bounded away from zero. Asymptotically, the distance measures \(\hat{d}_{ij} \) thus contain enough information to detect which time series belong to the same class. Technically speaking, we can make the following statement for any fixed positive constant \(c < c_0 \): with probability tending to 1, any time series \(i \) and \(j \) with \(\hat{d}_{ij} \leq c \) belong to the same class, whereas those with \(\hat{d}_{ij} > c \) belong to two different classes. The hierarchical clustering algorithm introduced in the next section exploits this information in the distances \(\hat{d}_{ij} \).

4 Estimation of the unknown groups

Let \(S \subseteq \{1, \ldots, n\} \) and \(S' \subseteq \{1, \ldots, n\} \) be two sets of time series from our sample. We define a dissimilarity measure between \(S \) and \(S' \) by setting

\[
\hat{\Delta}(S, S') = \max_{i \in S} \min_{j \in S'} \hat{d}_{ij}. \tag{4.1}
\]

This is commonly called a complete linkage measure of dissimilarity. Alternatively, we may work with an average or a single linkage measure. To partition the set of time series \(\{1, \ldots, n\} \) into groups, we combine the multiscale dissimilarity measure \(\hat{\Delta} \) with a hierarchical agglomerative clustering (HAC) algorithm which proceeds as follows:

Algorithm 4.1 (HAC algorithm).

Step 0 (Initialization): Let \(\hat{G}_i^{[0]} = \{i\} \) denote the \(i \)-th singleton cluster for \(1 \leq i \leq n \) and define \(\{\hat{G}_1^{[0]}, \ldots, \hat{G}_n^{[0]}\} \) to be the initial partition of time series into clusters.

Step \(r \) (Iteration): Let \(\hat{G}_1^{[r-1]}, \ldots, \hat{G}_{n-(r-1)}^{[r-1]} \) be the \(n-(r-1) \) clusters from the previous step. Determine the pair of clusters \(\hat{G}_k^{[r-1]} \) and \(\hat{G}_{k'}^{[r-1]} \) for which

\[
\hat{\Delta}(\hat{G}_k^{[r-1]}, \hat{G}_{k'}^{[r-1]}) = \min_{1 \leq \ell < \ell' \leq n-(r-1)} \hat{\Delta}(\hat{G}_\ell^{[r-1]}, \hat{G}_{\ell'}^{[r-1]})
\]

and merge them into a new cluster.

Iterating this procedure for \(r = 1, \ldots, n-1 \) yields a tree of nested partitions \(\{\hat{G}_1^{[r]}, \ldots, \hat{G}_{n-r}^{[r]}\} \), which can be graphically represented by a dendrogram. Roughly speaking, the
HAC algorithm merges the n singleton clusters $\hat{G}_i^{[0]} = \{i\}$ step by step until we end up with the cluster $\{1, \ldots, n\}$. In each step of the algorithm, the closest two clusters are merged, where the distance between clusters is measured in terms of the dissimilarity $\hat{\Delta}$. We refer the reader to Ward (1963) for an early reference on HAC clustering and to Section 14.3.12 in Hastie et al. (2009) for an overview of hierarchical clustering methods.

We now examine the properties of our HAC algorithm. In particular, we investigate how the partitions $\{\hat{G}^{[r]}_1, \ldots, \hat{G}^{[r]}_{n-r}\}$ for $r = 1, \ldots, n - 1$ are related to the true class structure $\{G_1, \ldots, G_{K_0}\}$. From (3.13) and (3.14), it immediately follows that the multiscale statistics \hat{d}_{ij} have the following property:

$$\mathbb{P} \left(\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \hat{d}_{ij} < \min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij} \right) \to 1. \quad (4.2)$$

To formulate the results on the HAC algorithm, we do not restrict attention to the multiscale statistics \hat{d}_{ij} from (3.10) but let \hat{d}_{ij} denote any statistics with the high-level property (4.2). We further make use of the following notation: Let $\mathcal{A} = \{A_1, \ldots, A_r\}$ and $\mathcal{B} = \{B_1, \ldots, B_r\}$ be two partitions of the set $\{1, \ldots, n\}$, that is, $\bigcup_{\ell=1}^{r} A_\ell = \{1, \ldots, n\}$ and $\bigcup_{\ell=1}^{r'} B_\ell = \{1, \ldots, n\}$. We say that \mathcal{A} is a refinement of \mathcal{B} if each $A_\ell \in \mathcal{A}$ is a subset of some $B_\ell' \in \mathcal{B}$. With this notation at hand, the properties of the HAC algorithm can be summarized as follows:

Theorem 4.1. Suppose that the statistics \hat{d}_{ij} satisfy condition (4.2). Then

(a) $\mathbb{P} \left(\{\hat{G}^{[n-K_0]}_1, \ldots, \hat{G}^{[n-K_0]}_{K_0}\} = \{G_1, \ldots, G_{K_0}\} \right) \to 1,$

(b) $\mathbb{P} \left(\{\hat{G}^{[n-K]}_1, \ldots, \hat{G}^{[n-K]}_{K}\} \text{ is a refinement of } \{G_1, \ldots, G_{K}\} \right) \to 1 \text{ for any } K > K_0,$

(c) $\mathbb{P} \left(\{G_1, \ldots, G_{K_0}\} \text{ is a refinement of } \{\hat{G}^{[n-K]}_1, \ldots, \hat{G}^{[n-K]}_{K}\} \right) \to 1 \text{ for any } K < K_0.$

The proof of Theorem 4.1 is trivial and thus omitted, the statements (a)–(c) being immediate consequences of condition (4.2). By (a), the partition $\{\hat{G}_1, \ldots, \hat{G}_{K_0}\}$ with $\hat{G}_k = \hat{G}^{[n-K_0]}_k$ for $1 \leq k \leq K_0$ is a consistent estimator of the true class structure $\{G_1, \ldots, G_{K_0}\}$ in the following sense: $\{\hat{G}_1, \ldots, \hat{G}_{K_0}\}$ coincides with $\{G_1, \ldots, G_{K_0}\}$ with probability tending to 1. Hence, if the number of classes K_0 were known, we could consistently estimate the true class structure by $\{\hat{G}_1, \ldots, \hat{G}_{K_0}\}$. The partitions $\{\hat{G}^{[n-K]}_1, \ldots, \hat{G}^{[n-K]}_{K}\}$ with $K \neq K_0$ can of course not serve as consistent estimators of the true class structure. According to (b) and (c), there is nevertheless a close link between these partitions and the unknown class structure. In particular, by (b), for any $K > K_0$, the estimated clusters $\hat{G}^{[n-K]}_1, \ldots, \hat{G}^{[n-K]}_{K}$ are subsets of the unknown classes with probability tending to 1. Conversely, by (c), for any $K < K_0$, the unknown classes are subsets of the estimated clusters with probability tending to 1.
5 Estimation of the unknown number of groups

5.1 The estimation method

Let $\hat{\Delta}(S, S')$ be the dissimilarity measure from (4.1) and define the shorthand $\hat{\Delta}(S) = \hat{\Delta}(S, S)$. Moreover, let $\{\pi_{n,T}\}$ be any sequence with the property that

$$\sqrt{\log n + \log T} \ll \pi_{n,T} \ll \sqrt{Th_{\max}},$$

(5.1)

where the notation $a_{n,T} \ll b_{n,T}$ means that $a_{n,T} = o(b_{n,T})$. Combining properties (3.11) and (3.12) of the multiscale distance statistics \hat{d}_{ij} with the statements of Theorem 4.1, we immediately obtain the following: For any $K < K_0$,

$$\mathbb{P}\left(\max_{1 \leq k \leq K} \hat{\Delta}(\hat{G}_k^{[n-K]}) \leq \pi_{n,T} \right) \to 0,$$

(5.2)

whereas for $K = K_0$,

$$\mathbb{P}\left(\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_k^{[n-K_0]}) \leq \pi_{n,T} \right) \to 1.$$

(5.3)

Taken together, (5.2) and (5.3) motivate to estimate the unknown number of classes K_0 by the smallest number K for which the criterion

$$\max_{1 \leq k \leq K} \hat{\Delta}(\hat{G}_k^{[n-K]}) \leq \pi_{n,T}$$

is satisfied. Formally speaking, we estimate K_0 by

$$\hat{K}_0 = \min \left\{ K = 1, 2, \ldots \mid \max_{1 \leq k \leq K} \hat{\Delta}(\hat{G}_k^{[n-K]}) \leq \pi_{n,T} \right\}.$$

The estimator \hat{K}_0 depends on the threshold parameter $\pi_{n,T}$ whose choice is discussed in detail below. Note that the clustering algorithm of Vogt and Linton (2017) also depends on a threshold parameter, which however plays a quite different role than $\pi_{n,T}$. We comment on the relationship between our clustering approach and the method in Vogt and Linton (2017) in more detail in Section S.2 of the Supplement.

Provided that $\pi_{n,T}$ satisfies (5.1), \hat{K}_0 can be shown to be a consistent estimator of K_0 in the sense that $\mathbb{P}(\hat{K}_0 = K_0) \to 1$. More precisely speaking, we can prove the following result.

Theorem 5.1. Suppose that the multiscale statistics \hat{d}_{ij} defined in (3.10) have the properties (3.11) and (3.12). Moreover, let $\{\pi_{n,T}\}$ be any threshold sequence with the property (5.1). Then it holds that $\mathbb{P}(\hat{K}_0 = K_0) \to 1.$

The proof of Theorem 5.1 is straightforward: As already noted, the properties (3.11)
and (3.12) of the multiscale distance statistics and the statements of Theorem 4.1 immediately imply (5.2) and (5.3). From (5.2), it further follows that $\mathbb{P}(\hat{K}_0 < K_0) = o(1)$, whereas (5.3) yields that $\mathbb{P}(\hat{K}_0 > K_0) = o(1)$. As a consequence, we obtain that $\mathbb{P}(\hat{K}_0 = K_0) \to 1$.

The estimator \hat{K}_0 can be interpreted in terms of the dendrogram produced by the HAC algorithm. It specifies a simple cutoff rule for the dendrogram: The value

$$
\max_{1 \leq k \leq K} \hat{\Delta}(\hat{G}_k^{[n-K]}) = \min_{1 \leq k < k' \leq K+1} \hat{\Delta}(\hat{G}_k^{[n-(K+1)]}, \hat{G}_{k'}^{[n-(K+1)]})
$$

is the dissimilarity level at which two clusters are merged to obtain a partition with K clusters. In the dendrogram, the clusters are usually indicated by vertical lines and the dissimilarity level at which two clusters are merged is marked by a horizontal line which connects the two vertical lines representing the clusters. To compute the estimator \hat{K}_0, we simply have to cut the dendrogram at the dissimilarity level $\pi_{n,T}$ and count the vertical lines that intersect the horizontal cut at the level $\pi_{n,T}$. See Figure 1 for an illustration.

5.2 Choice of the threshold level $\pi_{n,T}$

As shown in Theorem 5.1, \hat{K}_0 is a consistent estimator of K_0 for any threshold sequence $\{\pi_{n,T}\}$ with the property that $\sqrt{\log n + \log T} \ll \pi_{n,T} \ll \sqrt{T \bar{h}_{\max}}$. From an asymptotic perspective, we thus have a lot of freedom to choose the threshold $\pi_{n,T}$. In finite samples, a totally different picture arises. There, different choices of $\pi_{n,T}$ may result in markedly different estimates of K_0. Selecting the threshold level $\pi_{n,T}$ in a suitable way is thus a crucial issue in finite samples.
In what follows, we describe a data-driven procedure to choose the threshold level \(\pi_{n,T}\). We first introduce the algorithm and then give a heuristic explanation why it should yield a suitable choice of \(\pi_{n,T}\) in practice. To formulate the algorithm, we make use of the following notation: We write the set \(G_T\) of location-bandwidth points \((x, h)\) as

\[
G_T = \left\{ z_{\nu,\ell} = (x_{\nu,\ell}, h_{\nu}) : 1 \leq \nu \leq p, 1 \leq \ell \leq N_\nu \right\},
\]

where \(x_{\nu,\ell} (1 \leq \ell \leq N_\nu)\) are the locations corresponding to the bandwidth \(h_{\nu}\) and \(p\) different bandwidths \(h_{\nu}\) \((1 \leq \nu \leq p)\) are considered. Moreover, we let \(\zeta_i = (\zeta_{i,\nu,\ell} : 1 \leq \nu \leq p, 1 \leq \ell \leq N_\nu) = (\zeta_{i,1,1}, \ldots, \zeta_{i,1,N_1}, \ldots, \zeta_{i,p,1}, \ldots, \zeta_{i,p,N_p})^\top\) be independent Gaussian random vectors of length \(\sum_{\nu=1}^p N_\nu\) for \(1 \leq i \leq n\). Each random vector \(\zeta_i\) has the covariance structure

\[
\text{Cov}(\zeta_{i,\nu,\ell}, \zeta_{i,\nu',\ell'}) = 4\rho_{\nu,\ell}(\rho_{\nu',\ell'})^{-1/2} \sqrt{\frac{h_{\nu}}{h_{\nu'}} \left\{ \int_{-x_{\nu,\ell}/h_{\nu}}^{(1-x_{\nu,\ell})/h_{\nu}} K(u) [\kappa_{2,\nu,\ell} - \kappa_{1,\nu,\ell} u] \right.}

\[
\times K \left(\frac{h_{\nu} u + x_{\nu,\ell} - x_{\nu',\ell'}}{h_{\nu'}} \right) \left[\kappa_{2,\nu',\ell'} - \kappa_{1,\nu',\ell'} \left(\frac{h_{\nu} u + x_{\nu,\ell} - x_{\nu',\ell'}}{h_{\nu'}} \right) \right] \right. \left\{ \int_{-x/h}^{(1-x)/h} K(u) du \right\}, \tag{5.4}
\]

where we use the shorthands \(\kappa_{j,\nu,\ell} = \kappa_j(x_{\nu,\ell}, h_{\nu})\) with \(\kappa_j(x, h) = \int_{-x/h}^{(1-x)/h} u^j K(u) du\) and \(\rho_{\nu,\ell} = \rho(x_{\nu,\ell}, h_{\nu})\) with \(\rho(x, h) = \int_{-x/h}^{(1-x)/h} K^2(u)[\kappa_2(x, h) - \kappa_1(x, h) u]^2 du\). We further define the random variable

\[
B_n = \max_{1 \leq i,j \leq n} \left(|\zeta_i - \zeta_j| - \lambda \right)_\infty,
\]

where we employ the notation \(|z| = (|z_1|, \ldots, |z_q|)^\top\) and \((z)_\infty = \max_{1 \leq \ell \leq q} z_\ell\) for vectors \(z \in \mathbb{R}^q\) and \(\lambda = (\lambda_1, \ldots, \lambda_p)^\top\) with \(\lambda_{\nu} = (\lambda(2h_{\nu}), \ldots, \lambda(2h_{\nu})) \in \mathbb{R}^{N_\nu}\) for each \(\nu\). With this notation at hand, we compute \(\pi_{n,T}\) as follows.

Algorithm 5.1 (Choice of the threshold level \(\pi_{n,T}\)). For some pre-specified \(\alpha \in (0,1)\), compute the empirical \((1-\alpha)\)-quantile \(\hat{q}_n(\alpha)\) of \(B_n\) by simulation. In particular, simulate a large number of realizations of \((\zeta_1, \ldots, \zeta_n)\), compute the corresponding realizations of \(B_n\) and calculate the empirical \((1-\alpha)\)-quantile \(\hat{q}_n(\alpha)\) from these. Set \(\pi_{n,T} = \hat{q}_n(\alpha)\), where we suggest to pick \(\alpha \in \{0.01, 0.05, 0.1\}\), thus mimicking the usual significance levels of a statistical test in practice.

We now give some heuristic arguments why Algorithm 5.1 should yield an appropriate choice of \(\pi_{n,T}\). To do so, we suppose that the technical conditions from Section 6 are fulfilled. In addition, we make the simplifying assumption that \(\alpha_i = \gamma_t = 0\) for all \(i\) and \(t\), that is, we drop the fixed effects from the model. Moreover, we suppose that the errors \(\varepsilon_{it}\) are homoskedastic in the (RD) case and that the error variances \(\sigma_{\varepsilon}^2 = \mathbb{E}[\varepsilon_{it}^2]\) are the same within groups. As already discussed in Section 2.3, the design densities
f_i are supposed to be the same within groups as well. Slightly abusing notation, we write σ_k^2 and f_k to denote the group-specific error variance and design density in the k-th class G_k. We can now make the following heuristic observations, where we use the notation introduced above:

(a) Consider any pair of time series i and j that belong to the same class G_k. As in (3.4), we can decompose $\hat{\psi}_{ij}(x, h)$ into a bias and a variance part according to $\hat{\psi}_{ij}(x, h) = \hat{\psi}_{ij}^B(x, h) + \hat{\psi}_{ij}^V(x, h) + \text{lower order terms}$, where $\hat{\psi}_{ij}^B(x, h) = 0$ for $i, j \in G_k$ and thus

$$
\hat{\psi}_{ij}(x, h) \approx \hat{\psi}_{ij}^V(x, h) = \sqrt{T}h \{\hat{m}^V_{i,h}(x) - \hat{m}^V_{j,h}(x)\} / \{\hat{\nu}_{ij}(x, h)\}^{1/2} \quad (5.5)
$$

with $\hat{m}^V_{i,h}(x) = \{\sum_{t=1}^T W_{it}(x, h)\epsilon_{it}\} / \{\sum_{t=1}^T W_{it}(x, h)\}$. Standard arguments for kernel smoothers suggest that

$$
\hat{m}^V_{i,h}(x) \approx \left\{ f_k(x) \left[\kappa_0(x, h)\kappa_2(x, h) - \kappa_1(x, h)^2 \right] \right\}^{-1} \times \frac{1}{T} \sum_{t=1}^T K_h(X_{it} - x) \left[\kappa_2(x, h) - \kappa_1(x, h) \left(\frac{X_{it} - x}{h} \right) \right] \epsilon_{it}. \quad (5.6)
$$

Since by construction, $\hat{\nu}_{ij}(x, h)$ is an estimator of $\nu_{ij}(x, h) = 2\{\sigma_k^2/f_k(x)\} s(x, h)$ with $s(x, h)$ introduced in (3.2), we can combine (5.5) and (5.6) to obtain the approximation $\hat{\psi}_{ij}(x, h) \approx \hat{\psi}_i(x, h) - \hat{\psi}_j(x, h)$ with

$$
\hat{\psi}_i(x, h) = \left\{ 2\rho_s(x, h)\sigma_k^2 f_k(x) \right\}^{-1/2} \times \frac{1}{\sqrt{T}h} \sum_{t=1}^T K \left(\frac{X_{it} - x}{h} \right) \left[\kappa_2(x, h) - \kappa_1(x, h) \left(\frac{X_{it} - x}{h} \right) \right] \epsilon_{it}.
$$

For each i, we stack the random variables $\hat{\psi}_i(x, h)$ with $(x, h) \in G_T$ in the vector $\hat{\psi}_i = (\hat{\psi}_i(x_{i,\nu,\ell}, h_{\nu}) : 1 \leq \nu \leq p, 1 \leq \ell \leq N_0) = (\hat{\psi}_i(x_{1,1}, h_1), \ldots, \hat{\psi}_i(x_{1,N_1}, h_1), \ldots, \hat{\psi}_i(x_{p,1}, h_p), \ldots, \hat{\psi}_i(x_{p,N_p}, h_p))^T$. With this notation at hand, we obtain that

$$
\hat{d}_{ij} \approx (|\hat{\psi}_i - \hat{\psi}_j| - \lambda)_\infty
$$

for any pair of time series i and j that belong to the same class.

(b) For any fixed number of points $z_1, \ldots, z_q \in (0, 1)$ and related bandwidths $h_{z\ell}$ with $h_{\min} \leq h_{z\ell} \leq h_{\max}$ for $1 \leq \ell \leq q$, the random vector $[\hat{\psi}_i(z_1, h_{z1}), \ldots, \hat{\psi}_i(z_q, h_{zq})]^T$ is asymptotically normal. Hence, the random vector $\hat{\psi}_i$ can be treated as approximately Gaussian for sufficiently large sample sizes. More specifically, since $\text{Cov}(\hat{\psi}_i(x_{i,\nu,\ell}, h), \hat{\psi}_i(x_{i',\nu',\ell'}, h)) \approx \text{Cov}(\zeta_{i,\nu,\ell}, \zeta_{i',\nu',\ell'})$, we can approximate the random vector $\hat{\psi}_i$ by the Gaussian vector ζ_i. Moreover, since the vectors $\hat{\psi}_i$ are
By observation (a), we further obtain that
\[
\max_{i,j \in S} (|\hat{\psi}_i - \hat{\psi}_j| - \lambda)_{\infty}
\]
by that of
\[
\max_{i,j \in S} (|\zeta_i - \zeta_j| - \lambda)_{\infty}
\]
for any \(S \subseteq \{1, \ldots, n\}\).

Ideally, we would like to tune the threshold level \(\pi_{n,T}\) such that \(\hat{K}_0 = K_0\) with high probability. Put differently, we would like to choose \(\pi_{n,T}\) such that it is slightly larger than \(\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_{k[n-K_0]}^{[n-K_0]}\) with high probability. With the help of the observations (a) and (b) as well as some further heuristic arguments, this can be achieved as follows:

Since the partition \(\{\hat{G}_{1[n-K_0]}^{[n-K_0]}, \ldots, \hat{G}_{K_0[n-K_0]}^{[n-K_0]}\}\) consistently estimates the class structure \(\{G_1, \ldots, G_{K_0}\}\), we have that

\[
\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_{k[n-K_0]}^{[n-K_0]}) \approx \max_{1 \leq k \leq K_0} \hat{\Delta}(G_k). \tag{5.7}
\]

By observation (a), we further obtain that

\[
\max_{1 \leq k \leq K_0} \hat{\Delta}(G_k) = \max_{1 \leq k \leq K_0} \left\{ \max_{i,j \in G_k} \hat{d}_{ij} \right\} \approx \max_{1 \leq k \leq K_0} \left\{ \max_{i,j \in G_k} (|\hat{\psi}_i - \hat{\psi}_j| - \lambda)_{\infty} \right\}, \tag{5.8}
\]

and by (b),

\[
\max_{1 \leq k \leq K_0} \left\{ \max_{i,j \in G_k} (|\hat{\psi}_i - \hat{\psi}_j| - \lambda)_{\infty} \right\} \overset{d}{=} \max_{1 \leq k \leq K_0} \left\{ \max_{i,j \in G_k} (|\zeta_i - \zeta_j| - \lambda)_{\infty} \right\}, \tag{5.9}
\]

where \(Z \overset{d}{=} Z'\) means that \(Z\) is approximately distributed as \(Z'\). Since the right-hand side of (5.9) depends on the unknown groups \(G_1, \ldots, G_{K_0}\), we apply the trivial bound

\[
\max_{1 \leq k \leq K_0} \left\{ \max_{i,j \in G_k} (|\zeta_i - \zeta_j| - \lambda)_{\infty} \right\} \leq B_n = \max_{1 \leq i,j \leq n} (|\zeta_i - \zeta_j| - \lambda)_{\infty} \tag{5.10}
\]

and define \(q_n(\alpha)\) to be the \((1 - \alpha)\)-quantile of \(B_n\). Taken together, (5.7)–(5.10) suggest that

\[
\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_{k[n-K_0]}^{[n-K_0]}) \leq q_n(\alpha)
\]

holds with high probability if we pick \(\alpha\) close to 0. In particular, if the random variable \(\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_{k[n-K_0]}^{[n-K_0]})\) is not only approximately but exactly distributed as \(\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} (|\zeta_i - \zeta_j| - \lambda)_{\infty}\), then

\[
P\left(\max_{1 \leq k \leq K_0} \hat{\Delta}(\hat{G}_{k[n-K_0]}^{[n-K_0]}) \leq q_n(\alpha) \right) \geq 1 - \alpha.
\]

According to these considerations, \(\pi_{n,T} = \hat{q}_n(\alpha)\) with \(\alpha\) close to 0 (in particular with
$\alpha \in \{0.01, 0.05, 0.1\}$ should be an appropriate threshold level.

6 Theoretical results

In this section, we derive the statements (3.11) and (3.12) under appropriate regularity conditions. These statements characterize the convergence behaviour of the multiscale statistics \hat{d}_{ij} and underlie Theorems 4.1 and 5.1 which describe the theoretical properties of our clustering methods. To prove (3.11) and (3.12), we impose the following conditions.

(C1) Define $P_i = \{(X_{it}, \varepsilon_{it}) : t = 1, 2, \ldots\}$ in the (RD) case and $P_i = \{\varepsilon_{it} : t = 1, 2, \ldots\}$ in the (FD) case. The time series processes P_i are independent across i. Moreover, they are strictly stationary and strongly mixing for each i. Let $\alpha_i(\ell)$ for $\ell = 1, 2, \ldots$ be the mixing coefficients corresponding to the i-th time series P_i. It holds that $\alpha_i(\ell) \leq \alpha(\ell)$ for all i, where the coefficients $\alpha(\ell)$ decay exponentially fast to zero as $\ell \to \infty$.

(C2) For each $1 \leq i \leq n$, the design density f_i has the following properties: (a) f_i has bounded support, which w.l.o.g. equals $[0, 1]$ for all i, (b) f_i is bounded away from zero and infinity on $[0, 1]$ uniformly over i, that is, $0 < c \leq f_i(x) \leq C < \infty$ for all $x \in [0, 1]$ with some constants c and C that neither depend on x nor on i, and (c) f_i is twice continuously differentiable on $[0, 1]$ with first and second derivatives that are bounded away from infinity in absolute value uniformly over i. Moreover, in the (RD) case, the variables $(X_{it}, X_{it+\ell})$ have a joint density $f_{i,\ell}$ which is bounded away from infinity uniformly over i, that is, $f_{i,\ell}(x, x') \leq C < \infty$ for all i, x, x' and ℓ, where the constant C neither depends on i, x, x' nor on ℓ.

(C3) The error variances $\sigma_i^2 = \mathbb{E}[\varepsilon_{it}^2]$ are uniformly bounded away from zero and infinity, that is, $0 < c \leq \sigma_i^2 \leq C < \infty$ for all i, where the constants c and C do not depend on i. In the (RD) case, the error terms ε_{it} are homoskedastic, that is, $\sigma_i^2 = \mathbb{E}[\varepsilon_{it}^2] = \mathbb{E}[\varepsilon_{it}^2 | X_{it} = x]$ for all $x \in [0, 1]$.

(C4) The densities f_i and the error variances σ_i^2 are the same within groups. That is, for any k with $1 \leq k \leq K_0$, it holds that $f_i = f_j$ and $\sigma_i^2 = \sigma_j^2$ for all $i, j \in G_k$.

(C5) There exist a real number $\theta > 4$, a natural number ℓ^* and a positive constant C such that the following holds: In the (RD) case,

$$\max_{1 \leq i \leq n} \sup_{x \in [0, 1]} \mathbb{E}[|\varepsilon_{it}|^\theta | X_{it} = x] \leq C < \infty$$

$$\max_{1 \leq i \leq n} \sup_{x, x' \in [0, 1]} \mathbb{E}[|\varepsilon_{it}\varepsilon_{it+\ell}| | X_{it} = x, X_{it+\ell} = x'] \leq C < \infty$$
for any $\ell \in \mathbb{Z}$ with $|\ell| \geq \ell^*$, and in the (FD) case,
\[
\max_{1 \leq i \leq n} \mathbb{E}[|\varepsilon_{it}|^\theta] \leq C < \infty.
\]

(C6) The group-specific regression functions g_k are twice continuously differentiable on $[0, 1]$ for $1 \leq k \leq K_0$ with Lipschitz continuous second derivatives g''_k, that is, $|g''_k(v) - g''_k(w)| \leq L|v - w|$ for any $v, w \in [0, 1]$ and some constant L. Moreover, for any pair of indices (k, k') with $1 \leq k < k' \leq K_0$, the functions g_k and $g_{k'}$ are different in the sense that $g_k(x) \neq g_{k'}(x)$ for some point $x \in [0, 1]$.

(C7) It holds that
\[
n = n(T) \leq C \left(T^{1/2} \wedge Th_{\min} \right)^{\frac{a-d}{2}} T^{1+\delta}
\]
for some small $\delta > 0$ and a sufficiently large constant $C > 0$, where we use the notation $a \wedge b = \min\{a, b\}$ and θ is defined in (C5).

(C8) The minimal and maximal bandwidths have the form $h_{\min} = aT^{-b}$ and $h_{\max} = AT^{-b}$ with some positive constants a, A, b and B, where $0 < b \leq B < 1$.

(C9) The kernel K is non-negative, bounded and integrates to one. Moreover, it is symmetric about zero, has compact support $[-1, 1]$ and fulfills the Lipschitz condition that $|K(v) - K(w)| \leq L|v - w|$ for some L and all $v, w \in \mathbb{R}$.

Remark 6.1. We briefly comment on the above assumptions.

(i) (C1) imposes some weak dependence conditions on the time series P_i in the form of mixing assumptions. Note that we do not necessarily require exponentially decaying mixing rates as assumed in (C1). These could alternatively be replaced by sufficiently high polynomial rates. We nevertheless make the stronger assumption of exponential mixing to keep the proofs as clear as possible.

(ii) (C1) restricts the error components ε_{it} to be independent across i. Nevertheless, some restricted types of cross-sectional dependence in the error terms u_{it} are possible via the fixed effects α_i and γ_t.

(iii) The homoskedasticity assumption in (C3) as well as the condition in (C4) that the error variances σ_i^2 are the same within groups are not necessarily needed but are made for simplicity. The restriction in (C4) that the densities f_i are the same within groups, in contrast, is required for identification purposes as already discussed in Section 2.3.

(iv) (C2), (C5) and (C6) are standard moment, boundedness and smoothness conditions to derive uniform convergence results for the kernel estimators on which the multiscale statistics \hat{d}_{ij} are based; see Hansen (2008) for similar assumptions.
(v) (C6) requires the functions g_k to be different across groups. However, it does not impose any quantitative restrictions on the size of their differences. From an asymptotic perspective, such statements are not needed. Asymptotically, the clustering algorithm developed in Sections 3–5 is able to detect the true group structure, no matter how small the differences between the functions g_k are in comparison to the noise level in the data, that is, in comparison to the error variances σ_i^2. The situation in practice is of course very different: In finite samples, the algorithm is only able to distinguish between two groups G_k and $G_{k'}$ if the difference between the functions g_k and $g_{k'}$ is sufficiently large compared to the noise level in the data. Otherwise, the multiscale statistics \widehat{d}_{ij} will not pick up this difference, implying that the algorithm treats $G_k \cup G_{k'}$ as one group.

(vi) (C7) imposes restrictions on the growth of the number of time series n. Loosely speaking, it says that n is not allowed to grow too quickly in comparison to T. More specifically, let $h_{\text{min}} = aT^{-B}$ with some $B \leq 1/2$ and $h_{\text{max}} = AT^{-b}$ with some $b > 0$. In this case, (6.1) simplifies to $n \leq CT^{(\theta-4-5\delta)/4}$ with some small $\delta > 0$. This shows that the growth restriction (6.1) on n is closely related to the moment conditions on the error terms ε_{it} in (C5). In particular, the larger the value of θ, that is, the stronger the moment conditions on ε_{it}, the faster n may grow in comparison to T. If $\theta = 8$, for example, then n may grow (almost) as quickly as T. If θ can be picked arbitrarily large, that is, if all moments of ε_{it} exist, then n may grow as quickly as any polynomial of T, that is, $n \leq CT^\rho$ with $\rho > 0$ as large as desired.

(vii) (C8) imposes some conditions on the minimal and maximal bandwidths h_{min} and h_{max}. Specifically, it requires that $h_{\text{min}} \geq cT^{-(1-\delta)}$ and $h_{\text{max}} \leq CT^{-\delta}$ for some small $\delta > 0$ and positive constants c and C. These conditions are fairly weak as already discussed in Section 3: According to them, we can choose h_{min} to converge to zero extremely fast, in particular much faster than the optimal bandwidths for estimating the functions m_i, which are of the order $T^{-1/5}$ for any i under the smoothness conditions (C2) and (C6). Similarly, we can let h_{max} converge to zero much more slowly than the optimal bandwidths. Hence, we can choose the interval $[h_{\text{min}}, h_{\text{max}}]$ to be very large, allowing for both substantial under- and oversmoothing.

(viii) Finally, it is worth noting that our assumptions do not impose any restrictions on the class sizes $|G_k|$. The sizes $|G_k|$ may thus be very different across the classes G_k. In particular, they may be fixed for some classes and grow to infinity at different rates for others.

Under the regularity conditions just discussed, we can derive the following result whose proof is provided in the Supplementary Material.
Theorem 6.1. Under (C1)–(C9), it holds that
\[
\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \hat{d}_{ij} = O_p(\sqrt{\log n + \log T}) \tag{6.2}
\]
\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij} \geq c_0\sqrt{Th_{\max}} + o_p(\sqrt{Th_{\max}}), \tag{6.3}
\]
where \(c_0\) is a fixed positive constant that does not depend on \(T\) (nor on \(n = n(T)\)).

7 Simulation study

The simulation study splits up into two main parts. In the first, we carry out some simulations to illustrate the advantages of our multiscale approach over clustering methods that depend on a specific bandwidth. In the second, we compare our estimator \(\hat{K}_0\) of the number of groups with alternative methods. Due to space constraints, the second part of the simulation study is presented in Section S.1 of the Supplement.

7.1 Comparison with bandwidth-dependent alternatives

When the grid \(G_T\) of location-bandwidth points \((x, h)\) comprises only one bandwidth value \(h\), our multiscale approach reduces to a bandwidth-dependent procedure. Specifically, the resulting procedure consists in applying a hierarchical clustering algorithm to the supremum distances \(\hat{d}_{ij}(h) = \max_{x \in X} |\hat{\psi}_{ij}(x, h)|\), where \(X\) is the set of locations and \(h\) the bandwidth under consideration.\(^3\) In what follows, we compare our multiscale approach with this bandwidth-dependent procedure.

We consider the following simulation setup: The data are drawn from the model
\[
Y_{it} = m_i(X_{it}) + \varepsilon_{it} \quad (1 \leq t \leq T, 1 \leq i \leq n), \tag{7.1}
\]
where \(T = 1000\) and \(n = 100\). The time series \(i \in \{1, \ldots, n\}\) belong to \(K_0 = 5\) different groups \(G_1, \ldots, G_{K_0}\) of the same size. In particular, we set \(G_k = \{(k-1)n/5 + 1, \ldots, kn/5\}\) for \(1 \leq k \leq K_0 = 5\). The group-specific regression functions \(g_k : [0, 1] \to \mathbb{R}\) are given by \(g_1(x) = 0\) and
\[
\begin{align*}
g_2(x) &= 0.35b(x, \frac{1}{4}, \frac{1}{4}) \quad g_4(x) = 2b(x, \frac{1}{4}, \frac{1}{4}) \\
g_3(x) &= 0.35b(x, \frac{3}{4}, \frac{1}{4}) \quad g_5(x) = 2b(x, \frac{3}{4}, \frac{1}{4}),
\end{align*}
\]
where \(b(x, x_0, h) = 1(|x-x_0|/h \leq 1) \{1 - ((x-x_0)/h)^2\}\). Figure 2 provides a graphical illustration of the functions \(g_k\). The error process \(\mathcal{E}_i = \{\varepsilon_{it} : 1 \leq t \leq T\}\) has an autoregressive (AR) structure for each \(i\), in particular \(\varepsilon_{it} = a\varepsilon_{it-1} + \eta_{it}\) for \(1 \leq t \leq T\),\(^3\)Note that the additive correction term \(\lambda(2h)\) can be dropped from the distance statistic as it is a fixed constant when only one bandwidth value \(h\) is considered.
where a is the AR parameter and the innovations η_{it} are i.i.d. normal with $\mathbb{E}[\eta_{it}] = 0$ and $\mathbb{E}[\eta_{it}^2] = \nu^2$. We consider two different values for the AR parameter a, in particular $a = -0.25$ and $a = 0.25$. The innovation variance ν^2 is chosen as $\nu^2 = 1 - a^2$, which implies that $\text{Var}(\varepsilon_{it}) = 1$. The regressors X_{it} are drawn independently from a uniform distribution on $[0, 1]$ for each i. As can be seen, there is no time series dependence in the regressors, and we do not include fixed effects α_i and γ_i in the model. We do not take into account these complications because the main aim of the simulations is to display the advantages of our multiscale approach over bandwidth-dependent procedures. These advantages can be seen most clearly in a simple stylized simulation setup as the one under consideration.

To implement our multiscale approach, we use the location-bandwidth grid $G_T = \{(x, h) : x \in \mathcal{X} \text{ and } h \in \mathcal{H}\}$, where $\mathcal{X} = \{x : x = r/100 \text{ for } r = 5, \ldots, 95\}$ is the set of locations and $\mathcal{H} = \{h : 0.025 \leq h \leq 0.25 \text{ with } h = 0.025k \text{ for } k = 1, 2, \ldots\}$ is the set of bandwidths. The bandwidth-dependent algorithm is implemented with the same set of locations \mathcal{X} and five different bandwidths $h \in \{0.025, 0.05, 0.1, 0.2, 0.25\}$. The local linear smoothers $\hat{m}_{i,h}$ which underlie the clustering algorithms are computed with an Epanechnikov kernel K. The number of classes $K_0 = 5$ is estimated as described in Section 5 both when the multiscale and the bandwidth-dependent algorithm is used. The threshold parameter $\pi_{n,T}$ is set to $\pi_{n,T} = \hat{\gamma}_n(\alpha)$ with $\alpha = 0.05$. To produce our simulation results, we draw $S = 1000$ samples from model (7.1) and compute the estimates of the classes G_1, \ldots, G_{K_0} and their number K_0 for each simulated sample both for the multiscale and the bandwidth-dependent algorithm.

The simulation results for the scenario with the negative AR parameter $a = -0.25$ are reported in Figure 3 and those for the scenario with the positive parameter $a = 0.25$ in Figure 4. We first have a closer look at Figure 3. To produce Figure 3a, we treat K_0 as known and compute the number of classification errors $\# F$, that is, the number of wrongly classified indices i for each of the $S = 1000$ simulated samples.\footnote{Formally, $\# F$ is defined as follows: Let π be some permutation of the class labels $\{1, \ldots, K_0\}$ and denote the set of all possible permutations by Π. Moreover, denote the group membership of i by $\rho(i)$, i.e. set $\rho(i) = k$ if $i \in G_k$. Similarly, let $\hat{\pi}_n(i)$ be the estimated group membership of i, where the estimated classes are labelled according to the permutation π. Specifically, set $\hat{\pi}_n(i) = \pi(k)$ if $i \in \hat{G}_k = \hat{G}_k^{[\alpha-k_0]}$. With this notation at hand, we define $\# F = \min_{\pi \in \Pi} \sum_{i=1}^n 1(\rho(i) \neq \hat{\pi}_n(i))$.}

The upper
Figure 3: Simulation results for the design with the negative AR parameter $a = -0.25$. In both subfigures (a) and (b), the upper left panel shows the results for the multiscale approach and the other panels those for the bandwidth-dependent competitor with different bandwidths h.
(a) Histograms of the number of classification errors $\#F$

(b) Histograms of the estimated number of clusters \hat{K}_0

Figure 4: Simulation results for the design with the positive AR parameter $a = 0.25$. In both subfigures (a) and (b), the upper left panel shows the results for the multiscale approach and the other panels those for the bandwidth-dependent competitor with different bandwidths h.

28
The left panel of Figure 3a shows the histogram of these $S = 1000$ values for our multiscale approach. The other panels of Figure 3a present the corresponding histograms for the bandwidth-dependent algorithm with the five different bandwidth values h under consideration. As can be seen very clearly, our multiscale approach performs much better than the bandwidth-dependent competitor for any of the considered bandwidths. Figure 3b shows the simulation results for the estimated number of classes \hat{K}_0. The upper left panel depicts the histogram of the $S = 1000$ values of \hat{K}_0 produced by the multiscale approach. As one can see, the estimate \hat{K}_0 equals the true number of classes $K_0 = 5$ in about 95% of the cases (that is, in about 950 out of $S = 1000$ simulations). The performance of the bandwidth-dependent algorithm is considerably worse, which becomes apparent upon inspecting the other panels of Figure 3b. The results in Figure 4 for the scenario with the positive AR parameter $a = 0.25$ give a very similar picture. In particular, our multiscale approach shows a much better performance than the bandwidth-dependent competitor for any of the considered bandwidths. Comparing Figures 3 and 4, one can further see that the estimation precision is a bit better for the negative than the positive AR parameter (both for the multiscale and the bandwidth-dependent approach). This is not very surprising but simply reflects the fact that it is more difficult for the procedures to handle positive rather than negative correlation in the error terms.

Overall, our multiscale approach clearly outperforms the bandwidth-dependent algorithm in the simulation setup under consideration. Heuristically, this can be explained as follows: The setup comprises two very different types of signals. The signals g_4 and g_5 are very local in nature; they differ from a flat line only by a sharp, very local spike. The signals g_2 and g_3, in contrast, are much more global in nature; they differ from a flat line on a large part of the support $[0, 1]$, but they are much smaller in magnitude than g_4 and g_5. A bandwidth-dependent clustering algorithm is hardly able to distinguish these signals reliably from each other. When a small bandwidth value is used, local features of the functions (the spikes in g_4 and g_5) can be detected reliably, but more global features (the slight curvature in g_2 and g_3) are hard to see. Hence, when implemented with a small bandwidth, the algorithm is barely able to detect differences between the functions on a global scale. When implemented with a large bandwidth, in contrast, it is hardly able to capture differences on a local scale. Our multiscale approach, in contrast, is able to produce appropriate estimates since it analyzes the data on various scales simultaneously.

Even though we have considered a quite stylized setup in our simulations, the advantages of our multiscale approach that become visible in this setup can be expected to persist in real-data applications. In practice, it is usually not known whether the group-specific regression functions g_k ($1 \leq k \leq K_0$) differ on a local or global scale. Hence, it is usually not clear at all which bandwidth is appropriate for implementing
a bandwidth-dependent clustering algorithm. If the bandwidth is not picked suitably, the clustering results may not be very accurate. Moreover, when the functions \(g_k \) differ on multiple scales, a clustering approach which is based on a single bandwidth \(h \) can be expected to perform not very well, regardless of the specific value of \(h \). Our multiscale approach, in contrast, can be expected to produce reliable clustering results, no matter whether the functions \(g_k \) differ on a local, global or multiple scales.

8 Application

We now illustrate the advantages of our multiscale clustering method by a real-data example. To do so, we compare it with the bandwidth-dependent algorithm introduced in Section 7.1. Unlike in simulations, the true groups are not known in real-data applications. Hence, we cannot simply evaluate the performance of the clustering algorithms by comparing the estimated groups with the true ones. Nevertheless, some clusterings may be more plausible than others in the light of the application context. In what follows, we use plausibility arguments to obtain a meaningful comparison of our multiscale method with the bandwidth-dependent alternative.

Our application example comes from environmental statistics. We examine a sample of monthly rainfall data from 34 UK weather stations. The data are publicly available on the webpage of the UK Met Office. We use a subset of 27 stations for which data are available over the time span from 1986 to 2018. We thus observe a time series \(\mathcal{Y}_i = \{Y_{it} : 1 \leq t \leq T\} \) of length \(T = 385 \) for each station \(i \in \{1, \ldots, 27\} \), where \(Y_{it} \) denotes total monthly rainfall (in mm) at station \(i \) at time \(t \). Each of the \(n = 27 \) rainfall time series \(\mathcal{Y}_i \) in our sample is assumed to follow the model

\[
Y_{it} = m_i \left(\frac{t}{T} \right) + \alpha_i + \varepsilon_{it},
\]

where \(m_i \) is an unknown nonparametric time trend function which satisfies the normalization constraint \(\int_0^1 m_i(u)du = 0 \), \(\alpha_i \) is a fixed effect error term and \(\varepsilon_{it} \) is an idiosyncratic error with \(\mathbb{E}[\varepsilon_{it}] = 0 \). As usual in nonparametric regression, we let \(m_i \) depend on rescaled time \(t/T \) rather than on real time \(t \); see e.g. Robinson (1989), Dahlhaus (1997) and Vogt and Linton (2014) for the use and some discussion of the rescaled time argument. The trend function \(m_i \) describes the rainfall pattern at station \(i \) corrupted by noise \(\alpha_i + \varepsilon_{it} \). Due to the normalization \(\int_0^1 m_i(u)du = 0 \), it holds that \(T^{-1} \sum_{t=1}^T Y_{it} = \alpha_i + O_p(T^{-1/2}) \), that is, the average rainfall level \(T^{-1} \sum_{t=1}^T Y_{it} \) at station \(i \) is absorbed into the term \(\alpha_i \). As in the theoretical part of the paper, we assume that the stations \(i \) can be partitioned into \(K_0 \) groups \(G_1, \ldots, G_{K_0} \) such that for each \(1 \leq k \leq K_0 \), \(m_i = m_j \) for all \(i, j \in G_k \). We thus suppose that the time trends \(m_i \) are the same (or at least very similar) at all stations \(i \) in a given group \(G_k \).
To estimate the unknown group structure in the data, we implement our multiscale method as follows: We use an Epanechnikov kernel \(K \) to compute the local linear smoothers \(\hat{m}_{i,h} \) and consider the location-bandwidth grid \(\mathcal{G}_T = \{(x,h) : x \in \mathcal{X} \text{ and } h \in \mathcal{H}\} \), where \(\mathcal{X} = \{t/T : 1 \leq t \leq T\} \) is the set of locations and \(\mathcal{H} = \{h : h = 3\ell/T \text{ with } 1 \leq \ell \leq 20\} \) is the set of bandwidths. The bandwidths \(h = 3/T, 6/T, 9/T, \ldots \) correspond to effective sample sizes of 3, 6, 9, \ldots months of data. To implement the bandwidth-dependent algorithm, we use the same grid of locations \(\mathcal{X} \) and consider different bandwidths \(h \).

An example of the \(n = 27 \) rainfall time series in our sample is shown in Figure 5. The plot depicts the time series of total monthly rainfall at Lerwick weather station. As can be clearly seen, the time series exhibits strong seasonal fluctuations. The underlying trend function \(m_i \) can thus be expected to strongly vary on local scales, in particular, over short time periods of only a few months. There may of course be variation in the function \(m_i \) on more global scales as well. However, the variation on local scales due to seasonal fluctuations in rainfall appears to be quite dominant. Hence, it seems crucial to take into account differences between the functions \(m_i \) on local scales when clustering the rainfall time series. As a consequence, a bandwidth-dependent algorithm can be expected to produce an appropriate clustering when implemented with a small bandwidth. When implemented with a large bandwidth, in contrast, it will presumably neglect important local differences between the functions \(m_i \) and thus produce inappropriate results.

This is illustrated in Figure 6. Figure 6a shows the clustering results produced by the bandwidth-dependent algorithm with the very small bandwidth \(h = 3/T \), which corresponds to an effective sample size of 3 months of data. In order to estimate the number of clusters, we apply the procedure from Section 5 with \(\alpha = 0.05 \), which yields the estimate \(\hat{K}_0 = 3 \). For reasons of comparability, we do not re-estimate the number of clusters when running the multiscale algorithm and the bandwidth-
Figure 6: Clusters produced by the bandwidth-dependent algorithm. The curve estimates $\hat{m}_{i,h}$ are plotted with the bandwidth $h = 3/T$ in both subfigures for reasons of comparability. Their colours correspond to the clusters in subfigure (a).
dependent method with other bandwidths h. The number of clusters is thus set to $\hat{K}_0 = 3$ throughout the empirical analysis. Each panel of Figure 6a represents one of the three estimated clusters and shows the curve estimates $\hat{m}_{i,h}$ with $h = 3/T$ which belong to the respective cluster. The clusters appear to capture the local differences between the curves reasonably well. Curves with similar shape are sorted into the same group. In particular, the overall pattern of oscillations, their amplitudes and peaks are similar within each group.

Figure 6b depicts the clusters produced by the bandwidth-dependent algorithm with the quite large bandwidth $h = 48/T$, which corresponds to an effective sample size of 4 years of data. As before, each panel shows the curve estimates $\hat{m}_{i,h}$ of one cluster. For comparability reasons, the estimates $\hat{m}_{i,h}$ are computed with the same bandwidth $h = 3/T$ as in Figure 6a and their colours correspond to the clusters in Figure 6a. Figure 6 illustrates two important points: First, the bandwidth-dependent algorithm yields quite different clusters depending on which bandwidth is used. Second, the algorithm with $h = 48/T$ is not able to detect the local differences between the curves appropriately. Cluster 2, for example, contains curves of quite different shapes, some having a strong oscillatory pattern whereas others have fluctuations with a much smaller amplitude.

Our multiscale approach produces exactly the same clusters as the bandwidth-dependent algorithm with the small bandwidth $h = 3/T$, which are depicted in Figure 6a. As argued above, it is quite plausible to suppose that the functions m_i differ predominantly on local scales. Importantly, we do not feed this information into the multiscale algorithm. The method is rather designed to automatically select the important scales on which the functions m_i mainly differ. In the data example at hand, this appears to work quite well: The multiscale algorithm picks out very local scales, which are quite plausibly the most important ones. As a consequence, it produces clusters which reflect the seasonal fluctuations in the data quite well. The performance of the bandwidth-dependent algorithm, in contrast, strongly depends on the chosen bandwidth.

Figure 7 presents a map of Great Britain which shows the locations of the $n = 27$ weather stations in our sample. The symbols that indicate the stations reflect the clustering produced by our multiscale approach. In particular, the stations that belong to a specific cluster are depicted by the same symbol. As can be seen, most stations of Cluster 1 are located in the eastern part of the UK, whereas those of Cluster 2 are mainly situated in the western part. The clusters thus show a clear divide between the west and east of the UK. This makes sense as the UK weather is strongly influenced by winds from the Atlantic ocean that move from west to east across the UK, implying that the precipitation patterns in the west are different from those in the east.
Before we close this section, we should note that the real-data example we have considered here is of course not meant to be a full-blown empirical application. In serious environmental applications, data are collected on huge spatial grids, with rainfall, temperature or ozone measurements being available at hundreds or thousands of different locations. Our application example, in contrast, has a purely illustrative purpose. We have deliberately kept the example simple and the number of locations small such that the main advantages of our multiscale method can be demonstrated in a clear and easy way.

Acknowledgements

We thank the Editor and two referees for their helpful and constructive comments on an earlier version of the paper.

References

Abraham, C., Cornillon, P. A., Matzner-Løber, E. and Molinari, N. (2003). Unsupervised curve clustering using B-splines. Scandinavian Journal of Statistics, 30 581–595.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59 817–858.
ARMSTRONG, T. B. and CHAN, H. P. (2016). Multiscale adaptive inference on conditional moment inequalities. *Journal of Econometrics*, **194** 24–43.

BONEVA, L., LINTON, O. and VOGT, M. (2015). A semiparametric model for heterogeneous panel data with fixed effects. *Journal of Econometrics*, **188** 327–345.

BONEVA, L., LINTON, O. and VOGT, M. (2016). The effect of fragmentation in trading on market quality in the UK equity market. *Journal of Applied Econometrics*, **31** 192–213.

BONHOMME, S. and MANRESA, E. (2015). Grouped patterns of heterogeneity in panel data. *Econometrica*, **83** 1147–1184.

BOX, G. E. P., HAMMING, W. J. and TIAO, G. C. (1975). A statistical analysis of the Los Angeles ambient carbon monoxide data. *J. Air Pollution Control Assoc.*, **25** 1129–1136.

CHAUDHURI, P. and MARRON, J. (1999). SiZer for exploration of structures in curves. *Journal of the American Statistical Association*, **94** 807–823.

CHAUDHURI, P. and MARRON, J. (2000). Scale space view of curve estimation. *Annals of Statistics*, **28** 408–428.

CHIOU, J.-M. and LI, P.-L. (2007). Functional clustering and identifying substructures of longitudinal data. *Journal of the Royal Statistical Society: Series B*, **69** 679–699.

DAHLHAUS, R. (1997). Fitting time series models to nonstationary processes. *Annals of Statistics*, **25** 1–37.

DE JONG, R. M. and DAVIDSON, J. (2000). Consistency of kernel estimators of heteroscedastic and autocorrelated covariance matrices. *Econometrica*, **68** 407–423.

DEGRAS, D., XU, Z., ZHANG, T. and WU, W. B. (2012). Testing for parallelism among trends in multiple time series. *IEEE Transactions on Signal Processing*, **60** 1087–1097.

DEGRYSE, H., DE JONG, F. and VAN KERVEL, V. (2014). The impact of dark trading and visible fragmentation on market quality. *Review of Finance* 1–36.

DÜMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypotheses. *Annals of Statistics*, **29** 124–152.

ECKLE, K., BISSANTZ, N. and DETTE, H. (2017). Multiscale inference for multivariate deconvolution. *Electronic Journal of Statistics*, **11** 4179–4219.

HANSEN, B. (2008). Uniform convergence rates for kernel estimation with dependent data. *Econometric Theory*, **24** 726–748.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). *The Elements of Statistical Learning*. Springer.

HOROWITZ, J. L. and SPOKOINY, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. *Econometrica*, **69** 599–631.

JACQUES, J. and PREDA, C. (2014). Functional data clustering: a survey. *Advances in Data Analysis and Classification*, **8** 231–255.
JAMES, M. and SUGAR, C. A. (2003). Clustering for sparsely sampled functional data. *Journal of the American Statistical Association, 98* 397–408.

LUAN, Y. and LI, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. *Bioinformatics, 19* 474–482.

NIU, X. and TIAO, G. C. (1995). Modeling satellite ozone data. *Journal of the American Statistical Association, 90* 969–983.

O’HARA, M. and YE, M. (2009). Is fragmentation harming market quality? *Journal of Financial Economics, 100* 459–474.

PROKSCH, K., WERNER, F. and MUNK, A. (2018). Multiscale scanning in inverse problems. *Annals of Statistics, 46* 3569–3602.

REINSEL, G. C., TIAO, G. C., DELUISO, J. J., BASU, S. and CARRIERE, K. (1989). Trend analysis of aerosol-corrected Umkehr ozone profile data through 1987. *J. Geophys. Res. Atmospheres, 94* 16373–16386.

ROBINSON, P. M. (1989). Nonparametric estimation of time-varying parameters. In *Statistical Analysis and Forecasting of Economic Structural Change* (P. Hackl, ed.). Springer, 253–264.

SACKS, J. and YLVISAKER, D. (1970). Designs for regression problems with correlated errors. III. *Annals of Mathematical Statistics, 41* 2057–2074.

SCHMIDT-HIEBER, J., MUNK, A. and DÜMBGEN, L. (2013). Multiscale methods for shape constraints in deconvolution: confidence statements for qualitative features. *Annals of Statistics, 41* 1299–1328.

SU, L. and Ju, G. (2018). Identifying latent grouped patterns in panel data models with interactive fixed effects. *Journal of Econometrics, 206* 554–573.

SU, L., SHI, Z. and PHILLIPS, P. C. B. (2016). Identifying latent structures in panel data. *Economica, 84* 2215–2264.

TARPEY, T. (2007). Linear transformations and the k-means clustering algorithm. *The American Statistician, 61* 34–40.

TARPEY, T. and KINATEDER, K. K. J. (2003). Clustering functional data. *Journal of Classification, 20* 93–114.

VOGJT, M. and LINTON, O. (2014). Nonparametric estimation of a periodic sequence in the presence of a smooth trend. *Biometrika, 101* 121–140.

VOGJT, M. and LINTON, O. (2017). Classification of non-parametric regression functions in longitudinal data models. *Journal of the Royal Statistical Society: Series B, 79* 5–27.

WANG, W., PHILLIPS, P. C. B. and SU, L. (2018). Homogeneity pursuit in panel data models: theory and application. *Journal of Applied Econometrics, 33* 797–815.

WARD, J. H. (1963). Hierarchical grouping to optimize an objective function. *Journal of the American Statistical Association, 58* 236–244.
In this supplement, we conduct additional simulations (Section S.1), we discuss some extensions of the estimation methods developed in the paper (Section S.2) and we provide the proofs of the main theoretical results, in particular of Theorem 6.1 (Section S.3).

S.1 Simulation study

Comparison of \(\hat{K}_0 \) with alternative estimators

In what follows, we compare \(\hat{K}_0 \) with an alternative estimator of \(K_0 \) which is obtained by combining the multiscale distance statistics \(\hat{d}_{ij} \) with a standard procedure to determine the unknown number of groups in a data set. A common approach to find the unknown number of groups in a data sample is to optimize some criterion function \(\text{Crit}(K) \) over different cluster numbers \(K \). Prominent examples are the CalinskiHarabasz index (Calinski and Harabasz, 1974), the Hartigan index (Hartigan, 1975), the silhouette statistic (Rousseeuw, 1987) and the gap statistic (Tibshirani et al., 2001). Many of these procedures are tailored to the Euclidean distance and are thus not compatible with the multiscale distance measure \(\hat{d}_{ij} \), at least not without major modifications. An important exception is the silhouette statistic which is defined as follows for our purposes: Let \(D_{ij} \) be a non-negative distance measure between \(i \) and \(j \) which is given by \(D_{ij} = \max \{0, \hat{d}_{ij} \} \). Moreover, let \(\{ \hat{G}^{[n-K]}_k : 1 \leq k \leq K \} \) be the partition produced by the HAC algorithm with \(K \) clusters. For any \(K > 1 \) and any \(i \in \hat{G}^{[n-K]}_k \), define the silhouette of \(i \) by

\[
S_i^{[K]} = \begin{cases}
(\hat{b}_i^{[K]} - \hat{a}_i^{[K]}) / \max \{\hat{a}_i^{[K]}, \hat{b}_i^{[K]}\} & \text{if } |\hat{G}^{[n-K]}_k| > 1 \\
0 & \text{if } |\hat{G}^{[n-K]}_k| = 1,
\end{cases}
\]

where

\[
\hat{a}_i^{[K]} = \frac{1}{|\hat{G}^{[n-K]}_k| - 1} \sum_{j \in \hat{G}^{[n-K]}_k, j \neq i} D_{ij} \quad \text{and} \quad \hat{b}_i^{[K]} = \min_{\ell \neq k} \frac{1}{|\hat{G}^{[n-K]}_{\ell}|} \sum_{j \in \hat{G}^{[n-K]}_{\ell}} D_{ij}.
\]
We refer the reader to Rousseeuw (1987) for some discussion of the idea behind the silhouette statistics $s_i^{[K]}$. The unknown number of groups K_0 can now be estimated by

$$\hat{K}_{0,\text{sil}} = \arg \max_{2 \leq K \leq K_{\text{max}}} \text{Crit}(K) \quad \text{with} \quad \text{Crit}(K) = \frac{1}{n} \sum_{i=1}^{n} s_i^{[K]},$$

where K_{max} is a pre-specified upper bound. Note that $\text{Crit}(K)$ is only defined for $K > 1$. Hence, the silhouette estimator $\hat{K}_{0,\text{sil}}$ implicitly presupposes that $K_0 > 1$.

Unlike for $\hat{K}_{0,\text{sil}}$, we do not have theory available for the estimator $\hat{K}_{0,\text{sil}}$. In particular, it is not clear whether $\hat{K}_{0,\text{sil}}$ is consistent in the sense that $\mathbb{P}(\hat{K}_{0,\text{sil}} = K_0) \to 1$. Such a consistency result does not follow from the theoretical properties of the multiscale statistics \hat{d}_{ij} stated in Theorem 6.1. Nevertheless, the estimator $\hat{K}_{0,\text{sil}}$ is a useful benchmark against which $\hat{K}_{0,\text{sil}}$ can be compared in simulation exercises.

For our comparison study, we consider the same simulation design as in Section 7.1. In this design, there are $K_0 = 5$ groups of the same size K_0/n. In addition to this “balanced” scenario with equally sized groups, we examine an “unbalanced” scenario, where $G_1 = \{1, \ldots, 44\}$, $G_2 = \{45, \ldots, 88\}$, $G_3 = \{89, \ldots, 92\}$, $G_4 = \{93, \ldots, 96\}$ and $G_5 = \{97, \ldots, 100\}$. In this unbalanced scenario, the first two groups are large ($|G_1| = |G_2| = 44$), whereas the last three groups have a small size ($|G_3| = |G_4| = |G_5| = 4$). We implement our methods in exactly the same way as in Section 7.1 and set $K_{\text{max}} = 10$ in the definition of $\hat{K}_{0,\text{sil}}$. To produce the simulation results, we draw $S = 1000$ samples from each model setting under consideration and compute the estimates \hat{K}_{0} and $\hat{K}_{0,\text{sil}}$ for each simulated sample.

The simulation results for the balanced scenario are reported in Figure S.1. Subfigure S.1a corresponds to the setting with the negative AR parameter $a = -0.25$. The left-hand panel shows the histogram of the $S = 1000$ simulated values of the estimator \hat{K}_{0} and the right-hand panel the corresponding histogram for the silhouette estimator $\hat{K}_{0,\text{sil}}$. As can be seen, both estimators \hat{K}_{0} and $\hat{K}_{0,\text{sil}}$ produce accurate results and are comparable in quality. Subfigure S.1b shows the results for the setting with the positive AR parameter $a = 0.25$. Unlike in the previous case, the silhouette estimator performs somewhat better than \hat{K}_{0}, which indicates that it is less affected by the positive autocorrelation in the error terms. Nevertheless, \hat{K}_{0} performs reasonably well, with \hat{K}_{0} being equal to the true $K_0 = 5$ in around 80% of the cases and $\hat{K}_{0} = 6$ in most other simulation runs.

Figure S.2 presents the results for the unbalanced scenario. As before, Subfigure S.2a corresponds to the case with $a = -0.25$ and Subfigure S.2b to the case with $a = 0.25$. As one can see, the estimator \hat{K}_{0} produces reasonable results both for the setting with the negative and the positive AR parameter. The silhouette estimator $\hat{K}_{0,\text{sil}}$, in contrast, performs very poorly, substantially underestimating the true number of groups $K_0 = 5$. This indicates that $\hat{K}_{0,\text{sil}}$ is not able to handle unbalanced settings.
Figure S.1: Histograms of the estimates \hat{K}_0 and $\hat{K}_{0, \text{sil}}$ for the balanced scenario with equal group sizes. Subfigure (a) corresponds to the design with the negative AR parameter $a = -0.25$, subfigure (b) to the design with the positive AR parameter $a = 0.25$. The true number of groups is $K_0 = 5$.

Figure S.2: Histograms of the estimates \hat{K}_0 and $\hat{K}_{0, \text{sil}}$ for the unbalanced scenario with unequal group sizes. Subfigure (a) corresponds to the design with the negative AR parameter $a = -0.25$, subfigure (b) to the design with the positive AR parameter $a = 0.25$. The true number of groups is $K_0 = 5$.

where some groups are much smaller in size than others. The heuristic reason for this is as follows: The criterion function $\text{Crit}(K)$ is the average of the silhouettes $s_i^{[K]}$. When n is large, this average is hardly affected by the values $s_i^{[K]}$ of only a few time series i that form a small group. Hence, the criterion function $\text{Crit}(K)$ hardly reflects whether the time series of a small group are well clustered.

To summarize, the estimator \hat{K}_0 performs reasonably well in all of the simulation settings under consideration. The silhouette estimator $\hat{K}_{0, \text{sil}}$ produces somewhat preciser results in the balanced scenario; however, it performs very poorly in unbalanced settings. Overall, the simple threshold estimator \hat{K}_0 thus compares quite favourably with the silhouette estimator $\hat{K}_{0, \text{sil}}$.
S.2 Extensions and modifications

Extension to the multivariate case and to other model settings

Throughout the paper, we have restricted attention to real-valued regressors X_{it}. Our approach extends to \mathbb{R}^d-valued regressors $X_{it} = (X_{it,1}, \ldots, X_{it,d})^\top$ in a straightforward way. The clustering methods described in Sections 4 and 5 remain the same in the multivariate case, only the multiscale statistics \hat{d}_{ij} need to be adjusted. To do so, we simply need to (i) replace the involved kernel estimators by multivariate versions and (ii) modify the scaling factors $\hat{\nu}_{ij}(x,h)$ appropriately to normalize the variance of the statistics $\hat{\psi}_{ij}(x,h)$. We neglect the details as these modifications are completely straightforward.

The kernel smoothers on which the multiscale statistics \hat{d}_{ij} are based suffer from the usual curse of dimensionality. Hence, our fully nonparametric approach is only useful in practice as long as the dimension d of the regressors is moderate. If d is large, it makes sense to resort to structured nonparametric or semiparametric approaches. As an example, consider the partially linear model

$$ Y_{it} = m_i(X_{it}) + \beta^\top Z_{it} + u_{it}, \quad (S.1) $$

where X_{it} is a real-valued random variable, $Z_{it} = (Z_{it,1}, \ldots, Z_{it,d})^\top$ is an \mathbb{R}^d-valued random vector and the error terms u_{it} have the fixed effects structure $u_{it} = \alpha_i + \gamma_t + \varepsilon_{it}$. In this model, Z_{it} is a vector of controls which enters the equation (S.1) linearly for simplicity. In particular, $\beta = (\beta_1, \ldots, \beta_d)^\top$ is an unknown parameter vector which is assumed to be the same for all i. Suppose we are mainly interested in the effect of X_{it} on the response Y_{it}, which is captured by the functions m_i. As in Section 2, we may model this effect by imposing a group structure on the curves m_i: We may suppose that there exist classes G_1, \ldots, G_{K_0} and associated functions g_1, \ldots, g_{K_0} such that $m_i = g_k$ for all $i \in G_k$ and $1 \leq k \leq K_0$. In order to apply our estimation methods in this context, we merely need to adjust the multiscale statistics \hat{d}_{ij}. In particular, we need to replace the local linear smoothers $\hat{m}_{i,h}(x)$ by appropriate estimators of m_i and adjust the scaling factors $\hat{\nu}_{ij}(x,h)$. The functions m_i may for example be estimated with the help of the methods developed in Robinson (1988). Once the multiscale statistics \hat{d}_{ij} have been adjusted to the partially linear model setting (S.1), estimators of the unknown classes and their unknown number can be obtained as described in Sections 4 and 5. We conjecture that the two main Theorems 4.1 and 5.1 on the multiscale clustering methods remain to hold true in the context of the partially linear model (S.1). However, extending our theoretical results to model (S.1) is by no means trivial but would require a substantial deal of additional work.
Another interesting model setting to which our methods can be extended is the following: Suppose that
\[Y_{it} = m_i(X_{it}) + \alpha_i + \gamma_t + \varepsilon_{it}, \]
(S.2)
where \(X_{it} \) is a continuous treatment effect that is applied to unit \(i \) during periods \(\tau_i \subset \{1, \ldots, T\} \) and is not present during pre- and post-treatment periods. Moreover, suppose that there is a matched control group that never receives the treatment and so satisfies
\[Y_{j(i),t} = \alpha_{j(i)} + \gamma_t + \varepsilon_{j(i),t}, \]
(S.3)
where \(j(i) \) denotes the unit in the control group which is matched with \(i \). This setting is similar to that considered in Boneva et al. (2018) who evaluate the effects of the UK government’s corporate bond purchase scheme on market quality measures such as liquidity. The treatment in this study is continuously distributed and applied during an 18-month-period to a subset of all UK listed corporate bonds. The authors assume a linear homogeneous treatment effect in the baseline model and apply difference-in-difference methods to estimate the effect. However, one could easily allow for more general nonlinear and heterogeneous effects \(m_i \) as in equation (S.2) and impose a group structure on them. Notice that for \(t \in \tau_i \) and \(s \in \tau_s \), we have
\[(Y_{it} - Y_{j(i),t}) - (Y_{is} - Y_{j(i),s}) = m_i(X_{it}) + \varepsilon_{it} - \varepsilon_{j(i),t} - \varepsilon_{is} + \varepsilon_{j(i),s}, \]
(S.4)
which is essentially a nonparametric regression equation for each \(i \). We could thus apply our methods to the difference-in-difference equation (S.4).

Alternatives to hierarchical clustering

In order to estimate the unknown group structure in model (2.1)–(2.2), we have combined the multiscale statistics \(\hat{d}_{ij} \) with a hierarchical clustering algorithm. It is also possible to combine them with other distance-based clustering approaches. In particular, they can be employed as distance statistics in the thresholding algorithm of Vogt and Linton (2017) which proceeds as follows: For each pair of time series \(i \) and \(j \), let \(D_{ij} \) be a generic distance measure between \(m_i \) and \(m_j \) that is computed from the data. Suppose we want to estimate the unknown group \(G \in \{G_1, \ldots, G_{K_0}\} \) to which some given time series \(i^* \) belongs. Vogt and Linton (2017) propose to estimate \(G \) by \(\hat{G} = \{j : D_{i^*j} \leq \tau_{n,T}\} \), where \(\tau_{n,T} \) is some properly chosen threshold. The unknown group \(G \) to which \(i^* \) belongs thus gets approximated by the cluster \(\hat{G} \) of time series \(j \) whose distance \(D_{i^*j} \) to the time series \(i^* \) is smaller than the threshold \(\tau_{n,T} \). An estimator of the whole group structure \(\{G_1, \ldots, G_{K_0}\} \) is obtained by iterating this thresholding procedure in a specific way.
Vogt and Linton (2017) used a simple bandwidth-dependent L_2-type statistic (denoted by $\hat{\Delta}_{ij}$) as a distance measure D_{ij} when developing their clustering methods. However, their approach can also be applied with other measures D_{ij}. In particular, we may set $D_{ij} = \hat{d}_{ij}/\sqrt{Th_{\max}}$ and thus use a rescaled version of the multiscale statistic \hat{d}_{ij} as a distance measure D_{ij}. This leads to estimators \hat{K}_0 and $\hat{G}_1, \ldots, \hat{G}_{\tilde{K}_0}$ which, unlike those constructed in Vogt and Linton (2017), are free of classical bandwidth parameters. Under regularity conditions very similar to those from Section 6, we can derive some basic theoretical properties of the estimators \hat{K}_0 and $\hat{G}_1, \ldots, \hat{G}_{\tilde{K}_0}$

Suppose that the threshold parameter $\tau_{n,T}$ fulfills Condition 6 from Vogt and Linton (2017), that is, $\tau_{n,T} \to 0$ such that $\max_{i,j \in G_k} D_{ij} \leq \tau_{n,T}$ with probability tending to 1 for all k, where $D_{ij} = \hat{d}_{ij}/\sqrt{Th_{\max}}$. Then it can be shown that $P(\hat{K}_0 = K_0) \to 1$ as well as $P(\{\hat{G}_1, \ldots, \hat{G}_{\tilde{K}_0}\} = \{G_1, \ldots, G_{K_0}\}) \to 1$.

To implement the estimators \hat{K}_0 and $\hat{G}_1, \ldots, \hat{G}_{\tilde{K}_0}$ in practice, we need to choose the threshold level $\tau_{n,T}$. In view of Condition 6 from Vogt and Linton (2017), we would like to tune $\tau_{n,T}$ such that $\max_{i,j \in G_k} \hat{d}_{ij}/\sqrt{Th_{\max}} \leq \tau_{n,T}$ holds with high probability for all k. According to our heuristic arguments from Section 5.2, this may be achieved by setting $\tau_{n,T} = \hat{g}_n(\alpha)/\sqrt{Th_{\max}}$ with α close to 0. We thus suggest to choose the threshold parameter $\tau_{n,T}$ in the same way (up to rescaling) as the dissimilarity level $\pi_{n,T}$ at which we cut the dendrogram to estimate K_0.

Even though we suggest to tune $\tau_{n,T}$ similarly as $\pi_{n,T}$, it is important to note that the threshold $\tau_{n,T}$ plays a quite different role in the procedure of Vogt and Linton (2017) than $\pi_{n,T}$ in the clustering algorithm of this paper. In our approach, the unknown groups are estimated by a hierarchical clustering algorithm which does not involve any threshold parameter. In particular, the tree of partitions $\{G_1^{[n-K]}, \ldots, G_K^{[n-K]}\}$ produced by the algorithm does not depend on the threshold parameter $\tau_{n,T}$. The parameter $\pi_{n,T}$ is only used to pick a specific partition from this tree and thus to estimate the unknown number of groups K_0. The threshold parameter $\tau_{n,T}$, in contrast, is used to estimate both K_0 and the unknown groups G_1, \ldots, G_{K_0} themselves.

Letting K_0 grow with the sample size

Throughout the paper, we have assumed that the number of classes K_0 is fixed. We now allow K_0 to grow with the number of time series n, that is, we admit of $K_0 = K_{0,n} \to \infty$ as $n \to \infty$. To deal with this situation, we require the group-specific regression functions g_k to fulfill the following additional condition:

$$
(C10) \text{ The functions } g_k \text{ as well as their first and second derivatives are uniformly bounded in absolute value, that is, } |g_k^{(\ell)}(x)| \leq C \text{ for all } x \in [0,1] \text{ and } \ell = 0,1,2, \text{ where } g_k^{(\ell)} \text{ denotes the } \ell\text{-th derivative of } g_k \text{ and the constant } C < \infty \text{ does not depend on } k. \text{ Moreover, there exist real numbers } r_{n,T} \text{ with } r_{n,T} \gg
$$
\[\sqrt{\log n + \log T} + \sqrt{Th_{\max}^5} \] such that
\[\min_{1 \leq k < k' \leq K_0} \max_{\{x : (x,h_{\max}) \in G_T\}} |g_k(x) - g_{k'}(x)| = \frac{r_{n,T}}{\sqrt{Th_{\max}}}. \] (S.5)

As in the paper, the expression \(a_{n,T} \gg b_{n,T} \) means that \(b_{n,T} = o(a_{n,T}) \) and the notation \(a_{n,T} \ll b_{n,T} \) is used analogously. (S.5) essentially says that the regression functions \(g_k \) and \(g_{k'} \) of two different classes do not approach each other too quickly as \(n \to \infty \). If condition (C10) is fulfilled, a slightly modified version of Theorem 6.1 can be proven. In particular, with the help of the technical arguments from Section S.3, it is not difficult to show that
\[\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \hat{d}_{ij} = O_p(\sqrt{\log n + \log T}) \]
\[\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij} \geq r_{n,T} + o_p(r_{n,T}). \]

These two statements immediately imply that Theorem 4.1 remains to hold true. Moreover, Theorem 5.1 remains valid as well if the threshold level \(\pi_{n,T} \) satisfies a strengthened version of condition (5.1), namely the condition that \(\sqrt{\log n + \log T} \ll \pi_{n,T} \ll r_{n,T} \).

S.3 Technical details

Preliminaries and notation

In this section, we provide the technical details and proofs omitted in the paper. We restrict attention to the random design case (RD) as the arguments for the fixed design case (FD) are very similar. The section is structured as follows: To start with, we prove a formal result on the identification of the functions \(m_i \), which complements the discussion in Section 2.3. The remaining part of the section is dedicated to the proof of Theorem 6.1. We first derive some auxiliary results on uniform convergence and then move on to the actual proof of the theorem.

We use the following notation: The symbol \(C \) denotes a universal real constant which may take a different value on each occurrence. In addition, the symbols \(C_0, C_1, \ldots \) are used to denote specific real constants that are defined in the course of the section. Unless stated differently, the constants \(C, C_0, C_1, \ldots \) depend neither on the dimensions \(n \) and \(T \), nor on the indices \(i \in \{1, \ldots, n\} \) and \(t \in \{1, \ldots, T\} \), nor on the location-bandwidth points \((x, h) \in G_T \). To emphasize that the constants \(C, C_0, C_1, \ldots \) do not depend on any of these parameters, we refer to them as absolute constants in many places.
Identification of the functions m_i

To start with, we formulate and prove a rigorous result on identification of the functions m_i.

Proposition S.1. Let the identification constraint (2.4) be satisfied and suppose that the regularity conditions (C1)–(C6) from Section 6 are fulfilled. Then the functions m_i in model (2.1) are identified. More precisely, let m_i and \tilde{m}_i be two functions for some $i \in \{1, \ldots, n\}$ which satisfy the model equation (2.1) for any t and which are normalized such that $\int m_i(w)f_i(w)dw = \int \tilde{m}_i(w)f_i(w)dw = 0$. Then $m_i(x) = \tilde{m}_i(x)$ must hold for all $x \in [0, 1]$.

Proof of Proposition S.1. Let \overline{Y}_i, $\overline{Y}_t^{(i)}$ and $\overline{\bar{Y}}^{(i)}$ be the sample averages introduced in (3.1), that is,

$$
\overline{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}, \quad \overline{Y}_t^{(i)} = \frac{1}{n-1} \sum_{j=1}^{n} Y_{jt} \quad \text{and} \quad \overline{\bar{Y}}^{(i)} = \frac{1}{(n-1)T} \sum_{j=1}^{n} \sum_{t=1}^{T} Y_{jt}.
$$

Define ε_i, $\varepsilon_t^{(i)}$ and $\overline{\bar{\varepsilon}}^{(i)}$ analogously and set $\overline{m}_i = T^{-1} \sum_{t=1}^{T} m_i(X_{it})$, $\overline{m}_t^{(i)} = (n-1)^{-1} \sum_{j=1, j \neq i}^{n} m_j(X_{jt})$ and $\overline{\bar{m}}^{(i)} = ((n-1)T)^{-1} \sum_{j=1, j \neq i}^{n} \sum_{t=1}^{T} m_j(X_{jt})$. Straightforward calculations yield that

$$
Y_{it} - \overline{Y}_i - \overline{Y}_t^{(i)} + \overline{\bar{Y}}^{(i)} = m_i(X_{it}) - \overline{m}_i - \overline{m}_t^{(i)} + \overline{\bar{m}}^{(i)} + \varepsilon_{it} - \varepsilon_{t}^{(i)} + \overline{\bar{\varepsilon}}^{(i)}.
$$

(S.6)

Hence, by adding/subtracting the sample averages \overline{Y}_i, $\overline{Y}_t^{(i)}$ and $\overline{\bar{Y}}^{(i)}$ from Y_{it}, we can eliminate the fixed effects α_i and γ_t from the model equation (2.1). We now consider the transformed model equation (S.6) for arbitrary but fixed indices i and t and examine the following two cases separately: (a) $n = n(T) \to \infty$ as $T \to \infty$, and (b) $n = n(T)$ remains bounded as $T \to \infty$.

(a) Under the normalization constraint (2.4) and the assumptions of Proposition S.1, it holds that for any fixed i and t, $\varepsilon_i = O_p(T^{-1/2})$ and $\overline{m}_i = O_p(T^{-1/2})$, $\varepsilon_t^{(i)} = O_p(n^{-1/2})$ and $\overline{m}_t^{(i)} = O_p(n^{-1/2})$ as well as $\overline{\bar{\varepsilon}}^{(i)} = O_p(\{nT\}^{-1/2})$ and $\overline{\bar{m}}^{(i)} = O_p(\{nT\}^{-1/2})$. Using these facts in equation (S.6) for a fixed pair of indices i and t, we obtain that

$$
Y_{it}^{\infty} = m_i(X_{it}) + \varepsilon_{it} \quad \text{a.s.,}
$$

(S.7)

where Y_{it}^{∞} denotes the limit of $\hat{Y}_{it} = Y_{it} - \overline{Y}_i - \overline{Y}_t^{(i)} + \overline{\bar{Y}}^{(i)}$ in probability, that is, $\hat{Y}_{it} \overset{P}{\to} Y_{it}^{\infty}$. From (S.7), it follows that $\mathbb{E}[Y_{it}^{\infty}|X_{it}] = m_i(X_{it})$ almost surely, which identifies m_i.

8
(b) Now suppose that \(n = n(T) \) remains bounded as \(T \to \infty \). Let us assume for simplicity that \(n = n(T) \) is non-decreasing in \(T \), implying that \(n \) is a fixed number for sufficiently large \(T \). (Without this assumption, we would have to consider a subsequence of time series lengths \(T_k \) for \(k = 1, 2, \ldots \) such that \(n(T_k) \) is non-decreasing.) Similar to the previous case, we have that \(\bar{Z}_t = O_p(T^{-1/2}) \) and \(\overline{m}_t = O_p(T^{-1/2}) \) as well as \(\bar{Z}_t^{(i)} = O_p(T^{-1/2}) \) and \(\overline{m}_t^{(i)} = O_p(T^{-1/2}) \). Using these facts in equation (S.6), we arrive at

$$ Y_{it}^\infty = m_i(X_{it}) + \varepsilon_{it} - \{ \overline{m}_t^{(i)} + \bar{Z}_t^{(i)} \} \quad \text{a.s.,} \quad (S.8) $$

where \(Y_{it}^\infty \) is defined as before and, slightly abusing notation, we let \(\bar{Z}_t^{(i)} = (N - 1)^{-1} \sum_{j=1,j\neq i}^N \varepsilon_{jt} \) and \(\overline{m}_t^{(i)} = (N - 1)^{-1} \sum_{j=1,j\neq i}^N m_j(X_{jt}) \) with \(N = \lim_{T \to \infty} n(T) \). Since \(\mathbb{E}[\bar{Z}_t^{(i)}|X_{it}] = \mathbb{E}[\bar{Z}_t] = 0 \) and \(\mathbb{E}[\overline{m}_t^{(i)}|X_{it}] = \mathbb{E}[\overline{m}_t] = 0 \) under the normalization constraint (2.4) and the assumptions of Proposition S.1, we get that \(\mathbb{E}[Y_{it}^\infty|X_{it}] = m_i(X_{it}) \) almost surely, which once again identifies \(m_i \).

\[\Box \]

A general result on uniform convergence

In this and the following subsection, we derive some uniform convergence results needed for the proof of Theorem 6.1. The multiscale statistics \(\hat{d}_{ij} \) are composed of kernel estimators whose building blocks are kernel averages of the form

$$ \Phi_i(x, h) = \frac{1}{T} \sum_{t=1}^T K_h(X_{it} - x) \left(\frac{X_{it} - x}{h} \right)^\ell Z_{it,T}, \quad (S.9) $$

where \(\ell \) is a fixed natural number and \(X_{it} \) are the regressor variables from model (2.1). Moreover, \(Z_{it,T} \) are general real-valued random variables that may depend on the sample size parameter \(T \). For each \(i \), the variables \((Z_{it,T}, X_{it}) \) form a triangular array \(\mathcal{A}_i = \{ \mathcal{A}_{i,T} \}_{T=1}^\infty \), where \(\mathcal{A}_{i,T} = \{(Z_{it,T}, X_{it}) : 1 \leq t \leq T \} \). We make the following assumptions on the random variables \((Z_{it,T}, X_{it}) \):

(P1) For each \(i \) and \(T \), the collection of random variables \(\mathcal{A}_{i,T} \) is strongly mixing. The mixing coefficients \(\alpha_{i,T}(\ell) \) of \(\mathcal{A}_{i,T} \) are such that \(\alpha_{i,T}(\ell) \leq n \alpha(\ell) \) for all \(i, T \) and \(\ell \), where the coefficients \(\alpha(\ell) \) decay exponentially fast to zero as \(\ell \to \infty \).

(P2) There exist a real number \(\theta > 2 \) and a natural number \(\ell^* \) such that for any \(\ell \in \mathbb{Z} \) with \(|\ell| \geq \ell^* \) and some absolute constant \(C < \infty \),

$$ \max_{1 \leq t \leq T} \max_{1 \leq l \leq n} \sup_{x \in [0,1]} \mathbb{E}[|Z_{it,T}|^\theta|X_{it} = x] \leq C < \infty $$

$$ \max_{1 \leq t \leq T} \max_{1 \leq l \leq n} \sup_{x, x' \in [0,1]} \mathbb{E}[(Z_{it,T}Z_{it+\ell,T})|X_{it} = x, X_{it+\ell} = x'] \leq C < \infty. $$
The following lemma characterizes the convergence behaviour of the kernel average $\Phi_i(x,h)$ uniformly over i, x and h.

Proposition S.2. Let (P1) and (P2) be satisfied. Moreover, assume that (C2) and (C7)–(C9) are fulfilled. Then it holds that

$$
\mathbb{P}\left(\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{Y}_T} \sqrt{Th} | \Phi_i(x,h) - \mathbb{E}\Phi_i(x,h) | > C_0 \sqrt{\gamma_{n,T}} \right) = o(1),
$$

where $\gamma_{n,T} = \log n + \log T$ and C_0 is a sufficiently large absolute constant.

Proof of Proposition S.2. To prove the proposition, we modify standard arguments to derive uniform convergence rates for kernel estimators, which can be found e.g. in Masry (1996), Bosq (1998) or Hansen (2008). These arguments were originally designed to derive the convergence rates of kernel averages such as $\Phi_i(x,h) - \mathbb{E}\Phi_i(x,h)$ uniformly over x but pointwise in h and i. In contrast to this, we aim to derive the convergence rate of $\Phi_i(x,h) - \mathbb{E}\Phi_i(x,h)$ uniformly over x, h and i. Related results can be found e.g. in Einmahl and Mason (2005) and Vogt and Linton (2017) (see in particular Lemma S.1 therein).

We now turn to the proof of the proposition. For simplicity of notation, we let $\ell = 0$ in (S.9), the arguments being completely analogous for $\ell \neq 0$. To start with, we define

$$
Z^{\leq}_{it,T}(x,h) = Z_{it,T} 1 \left(|Z_{it,T}| \leq (nT)^{\frac{1}{1+\delta}} \right),
$$

$$
Z^{>}_{it,T}(x,h) = Z_{it,T} 1 \left(|Z_{it,T}| > (nT)^{\frac{1}{1+\delta}} \right),
$$

where $\delta > 0$ is an absolute constant that can be chosen as small as desired. Moreover, we write

$$
\sqrt{Th} \{ \Phi_i(x,h) - \mathbb{E}\Phi_i(x,h) \} = \sum_{t=1}^{T} Z^{\leq}_{it,T}(x,h) + \sum_{t=1}^{T} Z^{>}_{it,T}(x,h),
$$

where

$$
Z^{\leq}_{it,T}(x,h) = \frac{1}{\sqrt{Th}} \left\{ K\left(\frac{X_{it} - x}{h} \right) Z^{\leq}_{it,T} - \mathbb{E} \left[K\left(\frac{X_{it} - x}{h} \right) Z^{\leq}_{it,T} \right] \right\},
$$

$$
Z^{>}_{it,T}(x,h) = \frac{1}{\sqrt{Th}} \left\{ K\left(\frac{X_{it} - x}{h} \right) Z^{>}_{it,T} - \mathbb{E} \left[K\left(\frac{X_{it} - x}{h} \right) Z^{>}_{it,T} \right] \right\},
$$

With this notation at hand, we get that

$$
\mathbb{P}\left(\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{Y}_T} \sqrt{Th} | \Phi_i(x,h) - \mathbb{E}\Phi_i(x,h) | > C_0 \sqrt{\gamma_{n,T}} \right) \leq P^{\leq} + P^{>},
$$
where
\[
P^\leq = \mathbb{P}\left(\max_{1 \leq i \leq n} \max_{(x,h) \in G_T} \left| \sum_{t=1}^{T} Z_{it,T}^\leq(x,h) \right| > \frac{C_0}{2} \sqrt{\gamma_{n,T}} \right)
\]
\[
P^\geq = \mathbb{P}\left(\max_{1 \leq i \leq n} \max_{(x,h) \in G_T} \left| \sum_{t=1}^{T} Z_{it,T}^\geq(x,h) \right| > \frac{C_0}{2} \sqrt{\gamma_{n,T}} \right).
\]

In what follows, we show that \(P^\leq = o(1)\) and \(P^\geq = o(1)\), which implies the statement of Proposition S.2.

We first have a closer look at \(P^\geq\). It holds that
\[
P^\geq \leq \sum_{i=1}^{n} \mathbb{P}\left(\max_{(x,h) \in G_T} \left| \sum_{t=1}^{T} Z_{it,T}^\geq(x,h) \right| > \frac{C_0}{2} \sqrt{\gamma_{n,T}} \right) \leq P_1^\geq + P_2^\geq,
\]
where
\[
P_1^\geq = \sum_{i=1}^{n} \mathbb{P}\left(\max_{(x,h) \in G_T} \left| \frac{1}{\sqrt{Th}} \sum_{t=1}^{T} K\left(\frac{X_{it} - x}{h} \right) Z_{it,T}^\geq \right| > \frac{C_0}{4} \sqrt{\gamma_{n,T}} \right)
\]
\[
P_2^\geq = \sum_{i=1}^{n} \mathbb{P}\left(\max_{(x,h) \in G_T} \left| \frac{1}{\sqrt{Th}} \sum_{t=1}^{T} E\left[K\left(\frac{X_{it} - x}{h} \right) Z_{it,T} \right] \right| > \frac{C_0}{4} \sqrt{\gamma_{n,T}} \right).
\]

With the help of (P2), we obtain that
\[
P_1^\geq \leq \sum_{i=1}^{n} \mathbb{P}\left(|Z_{it,T}| > (nT)^{\frac{1}{\theta - \delta}} \text{ for some } 1 \leq t \leq T \right)
\]
\[
\leq \sum_{i=1}^{n} \sum_{t=1}^{T} \mathbb{P}\left(|Z_{it,T}| > (nT)^{\frac{1}{\theta - \delta}} \right)
\]
\[
\leq C(nT)/(nT)^{\theta - \delta} = o(1).
\]

Once again exploiting (P2), we can further infer that
\[
\left| \frac{1}{\sqrt{Th}} \sum_{t=1}^{T} E\left[K\left(\frac{X_{it} - x}{h} \right) Z_{it,T}^\geq \right] \right| \leq \frac{1}{\sqrt{Th}} \sum_{t=1}^{T} E\left[K\left(\frac{X_{it} - x}{h} \right) \frac{|Z_{it,T}|^\theta}{(nT)^{\theta - 1}} \right]
\]
\[
\leq \frac{C \sqrt{Th}/(nT)^{\theta - 2}}{\theta - 1} = o\left(\sqrt{\gamma_{n,T}} \right),
\]
which immediately implies that \(P_2^\geq = 0\) for sufficiently large \(T\). Putting everything together, we arrive at the result that \(P^\geq = o(1)\).
We now turn to the analysis of P^\leq. In what follows, we show that

$$\max_{1 \leq t \leq n} \max_{(x,h) \in \mathcal{G}_T} \mathbb{P}\left(\left|\sum_{t=1}^{T} Z_{it,T} \leq (x,h) \right| > \frac{C_0}{2} \sqrt{\gamma n_T}\right) \leq CT^{-r}, \quad (S.10)$$

where the constant $r > 0$ can be chosen as large as desired. From (S.10), it immediately follows that $P^\leq = o(1)$, since

$$P^\leq \leq \sum_{i=1}^{n} P\left(\sum_{(x,h) \in \mathcal{G}_T} \left|\sum_{t=1}^{T} Z_{it,T} \leq (x,h) \right| > \frac{C_0}{2} \sqrt{\gamma n_T}\right).$$

To complete the proof of Proposition S.2, it thus remains to verify (S.10). To do so, we split the term $\sum_{t=1}^{T} Z_{it,T}(x,h)$ into blocks as follows:

$$\sum_{t=1}^{T} Z_{it,T}(x,h) = \sum_{s=1}^{[N_T]} B_{2s-1} + \sum_{s=1}^{[N_T]} B_{2s}$$

with

$$B_s = B_{ns}(x,h) = \min\{sL_{T,T}\} \leq \sum_{t=(s-1)L_T+1}^{sL_{T,T}} Z_{it,T}(x,h),$$

where $L_T = L_{T,h} = \sqrt{Th/\gamma n_T (nT)^{-1/(\theta - \delta)}}$ is the block length and $2N_T$ with $N_T = [T/L_T]/2$ is the number of blocks. Note that under condition (6.1), it holds that $cT^{\xi} \leq L_{T,h} \leq CT^{1-\xi}$ for any h with $h_{\min} \leq h \leq h_{\max}$ and some sufficiently small $\xi > 0$, where c, C and ξ are absolute constants that in particular do not depend on h.

With this notation at hand, we obtain that

$$\mathbb{P}\left(\left|\sum_{t=1}^{T} Z_{it,T} \leq (x,h) \right| > \frac{C_0}{2} \sqrt{\gamma n_T}\right) \leq \mathbb{P}\left(\left|\sum_{s=1}^{[N_T]} B_{2s-1}\right| > \frac{C_0}{4} \sqrt{\gamma n_T}\right)$$

$$+ \mathbb{P}\left(\left|\sum_{s=1}^{[N_T]} B_{2s}\right| > \frac{C_0}{4} \sqrt{\gamma n_T}\right). \quad (S.11)$$

As the two terms on the right-hand side of (S.11) can be treated analogously, we focus attention to the first one. By Bradley’s strong approximation theorem (see Theorem 3 in Bradley (1983)), we can construct a sequence of random variables B_1^*, B_3^*, \ldots such that (i) B_1^*, B_3^*, \ldots are independent, (ii) B_{2s-1}^* and B_{2s-1}^* have the same distribution for each s, and (iii) for $0 < \mu \leq \|B_{2s-1}\|_\infty$, $\mathbb{P}(\|B_{2s-1} - B_{2s-1}\| > \mu) \leq 18(\|B_{2s-1}\|_\infty/\mu)^{1/2} n \alpha(L_T)$. With the variables B_{2s-1}^*, we can construct the bound

$$\mathbb{P}\left(\left|\sum_{s=1}^{[N_T]} B_{2s-1}\right| > \frac{C_0}{4} \sqrt{\gamma n_T}\right) \leq P_1^* + P_2^*, \quad (S.12)$$
where

\[P_1^* = \mathbb{P} \left(\left| \sum_{s=1}^{[N_T]} B_{2s-1}^* \right| > \frac{C_0}{8} \sqrt{\gamma_{n,T}} \right) \]

\[P_2^* = \mathbb{P} \left(\left| \sum_{s=1}^{[N_T]} (B_{2s-1} - B_{2s-1}^*) \right| > \frac{C_0}{8} \sqrt{\gamma_{n,T}} \right), \]

Using (iii) together with the fact that the mixing coefficients \(\alpha(\cdot) \) decay to zero exponentially fast, it is not difficult to see that \(P_2^* \leq CT^{-r} \), where the constant \(r > 0 \) can be picked as large as desired. To deal with \(P_1^* \), we make use of the following three facts:

(a) For a real-valued random variable \(B \) and \(\lambda > 0 \), Markov’s inequality yields that

\[\mathbb{P}(\pm B > \delta) \leq \mathbb{E}\exp(\pm \lambda B)/\exp(\lambda \delta). \]

(b) Since \(|B_{2s-1}| \leq \{CL_T(nT)^{1/(\theta-\delta)}\}/\sqrt{T h} \), it holds that \(\lambda_{n,T} |B_{2s-1}| \leq 1/2 \), where we set \(\lambda_{n,T} = \sqrt{T h}/\{2CL_T(nT)^{1/(\theta-\delta)} \} \). As \(\exp(x) \leq 1 + x + x^2 \) for \(|x| \leq 1/2 \), we get that

\[\mathbb{E}\left[\exp \left(\pm \lambda_{n,T} B_{2s-1} \right) \right] \leq 1 + \lambda_{n,T}^2 \mathbb{E}\left[(B_{2s-1})^2 \right] \leq \exp \left(\lambda_{n,T}^2 \mathbb{E}\left[(B_{2s-1})^2 \right] \right) \]

along with

\[\mathbb{E}\left[\exp \left(\pm \lambda_{n,T} B_{2s-1}^* \right) \right] \leq \exp \left(\lambda_{n,T}^2 \mathbb{E}\left[(B_{2s-1}^*)^2 \right] \right). \]

(c) Standard calculations for kernel estimators yield that \(\sum_{s=1}^{[N_T]} \mathbb{E}\left[(B_{2s-1}^*)^2 \right] \leq C_2 \).

Using (a)–(c), we obtain that

\[P_1^* \leq \mathbb{P} \left(\sum_{s=1}^{[N_T]} B_{2s-1} > \frac{C_0}{8} \sqrt{\gamma_{n,T}} \right) + \mathbb{P} \left(- \sum_{s=1}^{[N_T]} B_{2s-1} > \frac{C_0}{8} \sqrt{\gamma_{n,T}} \right), \]

where

\[\mathbb{P} \left(\pm \sum_{s=1}^{[N_T]} B_{2s-1} > \frac{C_0}{8} \sqrt{\gamma_{n,T}} \right) \]

\[\leq \exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} \right) \mathbb{E}\left[\exp \left(\pm \lambda_{n,T} \sum_{s=1}^{[N_T]} B_{2s-1} \right) \right] \]

\[\leq \exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} \right) \prod_{s=1}^{[N_T]} \mathbb{E}\left[\exp \left(\pm \lambda_{n,T} B_{2s-1} \right) \right] \]

\[\leq \exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} \right) \prod_{s=1}^{[N_T]} \exp \left(\lambda_{n,T}^2 \mathbb{E}\left[(B_{2s-1}^*)^2 \right] \right). \]
\[\exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} \right) \exp \left(\lambda_{n,T}^2 \sum_{s=1}^{[N_T]} \mathbb{E} \left[(B_{2s-1}^*)^2 \right] \right) \leq \exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} + C_2 \lambda_{n,T}^2 \right). \]

From the definition of \(\lambda_{n,T} \), it follows that \(\lambda_{n,T} = C_3 \sqrt{\gamma_{n,T}} \) with some absolute constant \(C_3 > 0 \). Hence,

\[P_1^* \leq 2 \exp \left(- \frac{C_0}{8} \lambda_{n,T} \sqrt{\gamma_{n,T}} + C_2 \lambda_{n,T}^2 \right) = 2 \exp \left(- \frac{C_0 C_3}{8} \{ \log n + \log T \} + C_2 C_3 \{ \log n + \log T \} \right) \leq C T^{-r}, \]

where the constant \(r > 0 \) can be made arbitrarily large by picking \(C_0 \) large enough.

To summarize, we have shown that \(P_1^* \leq C T^{-r} \) and \(P_2^* \leq C T^{-r} \) with some arbitrarily large \(r > 0 \). This together with the bounds from (S.12) and (S.11) yields (S.10), which in turn completes the proof.

Auxiliary results on uniform convergence

We now use Proposition S.2 from the previous subsection to derive the uniform convergence rates of some kernel estimators of interest. To start with, we consider the kernel averages

\[S_{i,\ell}(x, h) = \frac{1}{T} \sum_{t=1}^{T} K_h(X_{it} - x) \left(\frac{X_{it} - x}{h} \right)^\ell, \tag{S.13} \]

\[S_{i,\ell}^+(x, h) = \frac{1}{T} \sum_{t=1}^{T} K_h(X_{it} - x) \left| \frac{X_{it} - x}{h} \right|^\ell \tag{S.14} \]

\[S_{i,\ell}^e(x, h) = \frac{1}{T} \sum_{t=1}^{T} K_h(X_{it} - x) \left(\frac{X_{it} - x}{h} \right)^\ell e_{it} \tag{S.15} \]

\[S_{i,\ell}^m(x, h) = \frac{1}{T} \sum_{t=1}^{T} K_h(X_{it} - x) \left(\frac{X_{it} - x}{h} \right)^\ell \{ m_i(X_{it}) - m_i(x) \} \tag{S.16} \]

for \(0 \leq \ell \leq 3 \).

\textbf{Lemma S.3.} Under (C1), (C2) and (C5)–(C9), it holds that

\[\max_{1 \leq i \leq n} \max_{(x,h) \in [0,T]} \sqrt{Th} \left| S_{i,\ell}(x, h) - \mathbb{E}[S_{i,\ell}(x, h)] \right| = O_p(\sqrt{\gamma_{n,T}}) \tag{S.17} \]

\[\max_{1 \leq i \leq n} \max_{(x,h) \in [0,T]} \sqrt{Th} \left| S_{i,\ell}^+(x, h) - \mathbb{E}[S_{i,\ell}^+(x, h)] \right| = O_p(\sqrt{\gamma_{n,T}}) \tag{S.18} \]

\[\max_{1 \leq i \leq n} \max_{(x,h) \in [0,T]} \sqrt{Th} |S_{i,\ell}^e(x, h)| = O_p(\sqrt{\gamma_{n,T}}) \tag{S.19} \]
\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \sqrt{Th} \left| S_{i,i}^m(x,h) - \mathbb{E}[S_{i,i}^m(x,h)] \right| = O_p(\sqrt{nT}) \quad \text{(S.20)}
\]

with \(\gamma_{n,T} = \log n + \log T \).

Proof of Lemma S.3. The terms \(S_{i,i}(x,h) \) and \(S_{i,i}^e(x,h) \) can be written in the form \(T^{-1} \sum_{t=1}^T K_h(X_{it} - x)\{(X_{it} - x)/h\}^\ell Z_{it,T} \) with \(Z_{it,T} = 1 \) and \(Z_{it,T} = \varepsilon_{it} \), respectively. In addition, \(S_{i,i}^m(x,h) \) can be expressed as \(S_{i,i}^m(x,h) = T^{-1} \sum_{t=1}^T K_h(X_{it} - x)\{(X_{it} - x)/h\}^\ell Z_{it,T}^A - m_i(x) T^{-1} \sum_{t=1}^T K_h(X_{it} - x)\{(X_{it} - x)/h\}^\ell Z_{it,T}^B \) with \(Z_{it,T}^A = m_i(X_{it}) \) and \(Z_{it,T}^B = 1 \). Hence, the statements (S.17), (S.19) and (S.20) are simple consequences of Proposition S.2. Moreover, it is trivial to modify the proof of Proposition S.2 to apply to the expression \(S_{i,i}^e(x,h) \) and thus to derive statement (S.18). \(\square \)

The terms \(S_{i,i}(x,h) \), \(S_{i,i}^e(x,h) \) and \(S_{i,i}^m(x,h) \) are the building blocks of the local linear kernel averages

\[
Q_i(x,h) = \frac{1}{T} \sum_{t=1}^T W_{it}(x,h) \quad \text{(S.21)}
\]

\[
Q_i^1(x,h) = \frac{1}{T} \sum_{t=1}^T W_{it}(x,h)\varepsilon_{it} \quad \text{(S.22)}
\]

\[
Q_i^m(x,h) = \frac{1}{T} \sum_{t=1}^T W_{it}(x,h)\{m_i(X_{it}) - m_i(x)\}. \quad \text{(S.23)}
\]

In particular, it holds that

\[
Q_i(x,h) = S_{i,2}(x,h)S_{i,0}(x,h) - S_{i,1}^2(x,h)
\]

\[
Q_i^1(x,h) = S_{i,2}(x,h)S_{i,0}^e(x,h) - S_{i,1}(x,h)S_{i,1}^e(x,h)
\]

\[
Q_i^m(x,h) = S_{i,2}(x,h)S_{i,0}^m(x,h) - S_{i,1}(x,h)S_{i,1}^m(x,h).
\]

The uniform convergence rates of \(Q_i(x,h) \), \(Q_i^1(x,h) \) and \(Q_i^m(x,h) \) can be easily derived with the help of Lemma S.3 and some additional straightforward arguments. Defining

\[
Q_i^*(x,h) = \mathbb{E}[S_{i,2}(x,h)]\mathbb{E}[S_{i,0}(x,h)] - \mathbb{E}[S_{i,1}(x,h)]^2
\]

\[
Q_i^{m,*}(x,h) = \mathbb{E}[S_{i,2}(x,h)]\mathbb{E}[S_{i,0}^m(x,h)] - \mathbb{E}[S_{i,1}(x,h)]\mathbb{E}[S_{i,1}^m(x,h)],
\]

we in particular obtain the following result.

Lemma S.4. Under (C1), (C2) and (C5)–(C9), it holds that

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \sqrt{Th} \left| Q_i(x,h) - Q_i^*(x,h) \right| = O_p(\sqrt{nT}) \quad \text{(S.24)}
\]

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \sqrt{Th} \left| Q_i^*(x,h) \right| = O_p(\sqrt{nT}) \quad \text{(S.25)}
\]
\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{Th} \left| Q_i^m(x, h) - Q_i^{m,*}(x, h) \right| = O_p \left(\sqrt{n/T} \right)
\tag{S.26}
\]

with \(\gamma_{n,T} = \log n + \log T \).

In addition to \(Q_i(x, h) \), \(Q_i'(x, h) \) and \(Q_i^{m,*}(x, h) \), we consider the kernel average

\[
Q_i^e(x, h) = \frac{1}{T} \sum_{t=1}^{T} W_t(x, h) \left\{ \varepsilon_t^{(i)} + \tilde{m}_t^{(i)} \right\},
\]

whose uniform convergence rate is specified by the following lemma.

Lemma S.5. Under (C1), (C2) and (C5)–(C9), it holds that

\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{Th} \left| Q_i^e(x, h) \right| = O_p \left(\sqrt{\log n + \log T} \right).
\]

Proof of Lemma S.5. Defining

\[
S_{i,\ell}(x, h) = \frac{1}{T} \sum_{t=1}^{T} K_h(X_{it} - x) \left(\frac{X_{it} - x}{h} \right)^\ell Z_{it,T}
\]

with \(Z_{it,T} = \varepsilon_t^{(i)} + \tilde{m}_t^{(i)} \), we can write \(Q_i^e(x, h) = S_{i,2}(x, h)S_{i,0}(x, h) - S_{i,1}(x, h)S_{i,1}(x, h) \).

From (C1) and Theorem 5.1(a) in Bradley (2005), it follows that the collection of random variables \(A_{i,T} = \{(X_{it}, Z_{it,T}) : 1 \leq t \leq T\} \) is strongly mixing for any \(i \) and \(T \). In particular, the mixing coefficients \(\alpha_{i,T}(\ell) \) of \(A_{i,T} \) are such that \(\alpha_{i,T}(\ell) \leq n \alpha(\ell) \), where the coefficients \(\alpha(\ell) \) are defined in (C1) and decay exponentially fast to zero. According to this, the variables \((Z_{it,T}, X_{it}) \) satisfy condition (P1). Since the collection of random variables \(\{Z_{it,T} : 1 \leq t \leq T\} \) is independent from \(\{X_{it} : 1 \leq t \leq T\} \) for any \(i \) under (C1), it is straightforward to verify that the variables \((Z_{it,T}, X_{it}) \) fulfill condition (P2) as well. Hence, we can apply Proposition S.2 to get that

\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{Th} \left| S_{i,\ell}(x, h) \right| = O_p \left(\sqrt{\log n + \log T} \right).
\]

With this and Lemma S.3, it is straightforward to complete the proof. \(\square \)

With the help of the kernel averages defined and analyzed above, the local linear kernel smoothers \(\hat{m}_{i,h} \) can be expressed as

\[
\hat{m}_{i,h}(x) - m_i(x) = \frac{Q_i^e(x, h) + Q_i^{m,*}(x, h) - Q_i^e(x, h)}{Q_i(x, h)} - \left\{ \tilde{m}_i + \varepsilon_i \right\} + \left\{ \tilde{m}_i^{(i)} + \varepsilon_i^{(i)} \right\}.
\]

We now use this formulation to derive two different uniform expansions of the term \(\sqrt{Th}\{\hat{m}_{i,h}(x) - m_i(x)\} \), which are required to prove different parts of Theorem 6.1.
Proposition S.6. Let the conditions of Theorem 6.1 be satisfied. Then it holds that

\[
\sqrt{T}\{\hat{m}_{i,h}(x) - m_i(x)\} = \sqrt{T}\frac{Q_i^{m,*}(x,h)}{Q_i^*(x,h)} + R^{(a)}_i(x,h),
\]

where the remainder \(R^{(a)}_i(x,h) \) has the property that

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} |R^{(a)}_i(x,h)| = O_p\left(\sqrt{\log n + \log T}\right).
\]

Proposition S.7. Under the conditions of Theorem 6.1, it holds that

\[
\sqrt{T}\{\hat{m}_{i,h}(x) - m_i(x)\} = \sqrt{T}\frac{\kappa(x,h)m_i''(x)}{2} + R^{(b)}_i(x,h),
\]

where we use the shorthand \(\kappa(x,h) = \{\kappa_2(x,h)^2 - \kappa_1(x,h)\kappa_3(x,h)\}/\{\kappa_2(x,h)\kappa_0(x,h) - \kappa_1(x,h)^2\} \) with \(\kappa_i(x,h) = \int_{-x/h}^{(1-x)/h} u_i K(u)du \) and the remainder \(R^{(b)}_i(x,h) \) is such that

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} |R^{(b)}_i(x,h)| = O_p\left(\sqrt{\log n + \log T + \sqrt{T}h_{\max}}\right).
\]

Proof of Proposition S.6. Simple algebra yields that

\[
\sqrt{T}\{\hat{m}_{i,h}(x) - m_i(x)\} = \sqrt{T}\frac{Q_i^{m,*}(x,h)}{Q_i^*(x,h)} + R^{(a)}_i(x,h),
\]

where \(R^{(a)}_i(x,h) = R^{(a)}_{i,1}(x,h) + \ldots + R^{(a)}_{i,6}(x,h) \) with

\[
R^{(a)}_{i,1}(x,h) = \sqrt{T}\frac{Q_i^{m}(x,h) - Q_i^{m,*}(x,h)}{Q_i(x,h)},
\]

\[
R^{(a)}_{i,2}(x,h) = \sqrt{T}\frac{Q_i'(x,h)}{Q_i(x,h)},
\]

\[
R^{(a)}_{i,3}(x,h) = \sqrt{T}\frac{Q_i^{(e)}(x,h)}{Q_i(x,h)},
\]

\[
R^{(a)}_{i,4}(x,h) = -\sqrt{T}\frac{Q_i^{(e)}(x,h)}{Q_i(x,h)}
\]

as well as \(R^{(a)}_{i,5}(x,h) = -\sqrt{T}\{\hat{m}_i + \varepsilon_i\} \) and \(R^{(a)}_{i,6}(x,h) = \sqrt{T}\{\hat{m}_i^{(e)} + \varepsilon_i^{(e)}\} \). To complete the proof, we show that

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} |R^{(a)}_{i,\ell}(x,h)| = O_p\left(\sqrt{\log n + \log T}\right) \quad (\text{S.27})
\]

for \(1 \leq \ell \leq 6 \): By standard bias calculations, we obtain that

\[
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} |Q_i^{m,*}(x,h)| = O(h_{\max}) \quad (\text{S.28})
\]
\begin{align}
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \left| Q_i'(x,h) - \left\{ \kappa_2(x,h)\kappa_0(x,h) - \kappa_1(x,h)^2 \right\} f_i^2(x) \right| = O(h_{\max}), \quad (S.29)
\end{align}

where under our assumptions, the term \(Q_i''(x,h) = \left\{ \kappa_2(x,h)\kappa_0(x,h) - \kappa_1(x,h)^2 \right\} f_i^2(x) \) is bounded away from zero and infinity uniformly over \(i \) and \((x,h) \), that is, \(0 < c \leq Q_i''(x,h) \leq C < \infty \) with some constants \(c \) and \(C \) that are independent of \(i \) and \((x,h) \). With the help of these observations and Lemmas S.4 and S.5, it is straightforward to derive (S.27) for \(1 \leq \ell \leq 4 \). Next, note that \(\max_{1 \leq i \leq n} |\tilde{m}_i| \leq \max_{1 \leq i \leq n} |\bar{m}_i| \) and \(\max_{1 \leq i \leq n} |\bar{\varepsilon}_i| \leq \max_{1 \leq i \leq n} |\varepsilon_i| \). Arguments similar to but simpler than those for Proposition S.2 yield that \(\max_{1 \leq i \leq n} |\tilde{m}_i| = O_p(\sqrt{\log n + \log T} / T) \) and \(\max_{1 \leq i \leq n} |\varepsilon_i| = O_p(\sqrt{\log n + \log T} / T) \). From this, (S.27) immediately follows for \(\ell = 5 \) and \(\ell = 6 \).

Proof of Proposition S.7. Straightforward calculations yield that

\[\sqrt{Th} \{ \tilde{m}_{i,h}(x) - m_i(x) \} = \sqrt{Th} \kappa(x,h)m''_i(x) + R^{(b)}_{i,h}(x,h), \]

where \(R^{(b)}_{i,h}(x,h) = R^{(b)}_{i,1}(x,h) + \ldots + R^{(b)}_{i,5}(x,h) \) with

\[R^{(b)}_{i,1}(x,h) = \sqrt{Th} \left\{ \frac{Q_i''m(x,h)}{Q_i(x,h)} - h^2 \frac{\kappa(x,h)m''_i(x)}{2} \right\} \]

and \(R^{(b)}_{i,\ell}(x,h) = R^{(a)}_{i,\ell+1}(x,h) \) for \(2 \leq \ell \leq 5 \). In order to prove Proposition S.7, it suffices to show that

\begin{align}
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \left| R^{(b)}_{i,1}(x,h) \right| = O_p\left(\sqrt{Th_{\max}} \right) + o_p\left(\sqrt{\log n + \log T} \right) \quad (S.30) \\
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \left| R^{(b)}_{i,\ell}(x,h) \right| = O_p\left(\sqrt{\log n + \log T} \right) \quad (S.31)
\end{align}

for \(2 \leq \ell \leq 5 \). (S.31) has already been verified in the proof of Proposition S.6. To prove (S.30), we make use of the following two facts:

(a) From Lemma S.4 and (S.29), it follows that

\begin{align}
\max_{1 \leq i \leq n} \max_{(x,h) \in \mathcal{G}_T} \sqrt{Th} \left| Q_i(x,h) - Q_i''(x,h) \right| = O_p\left(\sqrt{\log n + \log T + \sqrt{Th_{\max}^3}} \right) \quad (S.32)
\end{align}

with \(Q_i''(x,h) = \left\{ \kappa_2(x,h)\kappa_0(x,h) - \kappa_1(x,h)^2 \right\} f_i^2(x) \). As already noted in the proof of Proposition S.6, the term \(Q_i''(x,h) \) is bounded away from zero and infinity uniformly over \(i \) and \((x,h) \).

(b) A second-order Taylor expansion of \(m_i \) yields that

\[\sqrt{Th}Q_i''(x,h) = \sqrt{Th}Q_i''(x,h) + R_i''(x,h), \]

\[(S.33) \]
We now proceed as follows: Simple algebra yields that
\[Q_i^{m,**}(x, h) = h^2 m''_i(x) f_i^2(x) \left(\kappa_2(x, h)^2 - \kappa_1(x, h) \kappa_3(x, h) \right). \]

The remainder term \(R_i^m(x, h) \) has the form \(R_i^m(x, h) = R_{i,1}^m(x, h) + R_{i,2}^m(x, h) \), where
\[
R_{i,1}^m(x, h) = \sqrt{Th} \frac{m''_i(x)}{2} \left\{ \left[S_{i,2}(x, h)^2 - S_{i,1}(x, h)S_{i,3}(x, h) \right] - \left[\kappa_2(x, h)^2 - \kappa_1(x, h) \kappa_3(x, h) \right] f_i^2(x) \right\}
\]
\[
R_{i,2}^m(x, h) = \frac{\sqrt{Th}^3}{2T} \sum_{t=1}^{T} K_h(x_{it} - x) \left[S_{i,2}(x, h) - \left(\frac{X_{it} - x}{h} \right) S_{i,1}(x, h) \right]
\times \left\{ m''_i(\xi_{it}) - m''_i(x) \right\} \left(\frac{X_{it} - x}{h} \right)^2
\]
with \(\xi_{it} \) denoting an intermediate point between \(X_{it} \) and \(x \). By Lemma S.3 and standard bias calculations, we obtain that
\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} |R_{i,1}^m(x, h)| = O_p \left(h_{\text{max}}^2 \sqrt{\log n + \log T} + \sqrt{Th_{\text{max}}^7} \right). \tag{S.34}
\]
As \(m''_i \) is Lipschitz continuous by (C6), we further get that \(|R_{i,2}^m(x, h)| \leq C \sqrt{Th} \) \{ \(S_{i,2}(x, h)^2 + S_{i,1}^+(x, h)S_{i,3}^+(x, h) \). Applying Lemma S.3 together with standard bias calculations to this upper bound, we can infer that
\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} |R_{i,2}^m(x, h)| = O_p \left(h_{\text{max}}^3 \sqrt{\log n + \log T} + \sqrt{Th_{\text{max}}^7} \right). \tag{S.35}
\]
Finally, by combining (S.34) and (S.35), the remainder term \(R_i^m(x, h) \) is seen to have the property that
\[
\max_{1 \leq i \leq n} \max_{(x, h) \in \mathcal{G}_T} |R_i^m(x, h)| = O_p \left(h_{\text{max}}^2 \sqrt{\log n + \log T} + \sqrt{Th_{\text{max}}^7} \right). \tag{S.36}
\]
We now proceed as follows: Simple algebra yields that
\[
\sqrt{Th} \left(\frac{Q_i^m(x, h)}{Q_i(x, h)} - \frac{Q_i^{m,**}(x, h)}{Q_i^{**}(x, h)} \right)
= \frac{R_i^m(x, h)}{Q_i(x, h)} + \sqrt{Th}Q_i^{m,**}(x, h) \left\{ \frac{1}{Q_i(x, h)} - \frac{1}{Q_i^{**}(x, h)} \right\}.
\]
Since \(Q_i^{m,**}(x, h)/Q_i^{**}(x, h) = h^2 \kappa(x, h)m''_i(x)/2 \), this implies that
\[
R^{(b)}_{i,1}(x, h) = \frac{R_i^m(x, h)}{Q_i(x, h)} + \sqrt{Th}Q_i^{m,**}(x, h) \left\{ \frac{1}{Q_i(x, h)} - \frac{1}{Q_i^{**}(x, h)} \right\}.
\]
Using this representation of $R^{(b)}_{i,1}(x, h)$ together with (S.32), (S.36) and the fact that $Q^*_i(x, h)$ is bounded away from zero and infinity uniformly over i and (x, h), it is straightforward to verify (S.30).

The final result of this subsection is concerned with the normalization term

$$\hat{\nu}_{ij}(x, h) = \left\{ \frac{\tilde{\sigma}^2_{i,h}}{f_{i,h}(x)} + \frac{\tilde{\sigma}^2_{j,h}}{f_{j,h}(x)} \right\} s(x, h), \quad (S.37)$$

where

$$s(x, h) = \frac{\int_{-x/h}^{(1-x)/h} K^2(u)[\kappa_2(x, h) - \kappa_1(x, h)a]^2du}{\kappa_0(x, h)\kappa_2(x, h) - \kappa_1(x, h)^2}$$

with $\kappa_\ell(x, h) = \int_{-x/h}^{(1-x)/h} u^\ell K(u)du$ for $0 \leq \ell \leq 2$, $\tilde{f}_{i,h}(x) = \{\kappa_0(x, h)T\}^{-1} \sum_{t=1}^T K_h(X_{ut} - x)$ and $\tilde{\sigma}^2_{i,h} = T^{-1} \sum_{t=1}^T \{\hat{Y}_{it} - \hat{m}_{i,h}(X_{ut})\}^2$.

Proposition S.8. Let the conditions of Theorem 6.1 be satisfied. Then there exist absolute constants $0 < c_\nu \leq C_\nu < \infty$ such that

$$\min_{1 \leq i \leq n} \min_{(x, h) \in G_T} \sqrt{\hat{\nu}_{ij}(x, h)} \geq c_\nu + o_p(1)$$

$$\max_{1 \leq i \leq n} \max_{(x, h) \in G_T} \sqrt{\hat{\nu}_{ij}(x, h)} \leq C_\nu + o_p(1).$$

Proof of Proposition S.8. The proposition is a straightforward consequence of the following three observations:

(a) Under our conditions, the term $s(x, h)$ is bounded away from zero and infinity uniformly over (x, h), that is, $0 < c_s \leq s(x, h) \leq C_s < \infty$ for some absolute constants c_s and C_s.

(b) It holds that

$$\max_{1 \leq i \leq n} \max_{(x, h) \in G_T} |\hat{f}_{i,h}(x) - f_i(x)| = O_p\left(\sqrt{\frac{\log n + \log T}{T h_{\text{min}}} + h_{\text{max}}}\right),$$

where the densities f_i are uniformly bounded away from zero and infinity by (C2).

(c) It holds that

$$\tilde{\sigma}^2_{i,h} = \sigma^2_i + b^\sigma_i + R^\sigma_{i,h} \quad \text{with} \quad \max_{1 \leq i \leq n} \max_{\{h; (x, h) \in G_T\}} |R^\sigma_{i,h}| = o_p(1),$$

where $b^\sigma_i = E[(\hat{m}^{(i)}_t + \hat{e}^{(i)}_t)^2]$ and the error variances σ^2_i are uniformly bounded away from zero and infinity according to (C3). Note that $0 \leq b^\sigma_i \leq C_b < \infty$ for some sufficiently large absolute constant C_b and that $\max_{1 \leq i \leq n} b^\sigma_i = o(1)$ in the case that n tends to infinity as $T \to \infty$.
Moreover, slightly modifying the proof of Proposition S.7, we can infer that $\sigma_t^2 + b_t^2 + R_t^g$ with $R_t^g = R_{t,1}^g + \ldots + R_{t,5}^g$, where

\[
R_{t,1}^g = \frac{1}{T} \sum_{l=1}^{T} \{ \varepsilon_{lt}^2 - \mathbb{E}[\varepsilon_{lt}^2] \}
\]

\[
R_{t,2}^g = \frac{1}{T} \sum_{l=1}^{T} \{ (\bar{m}_t^{(i)} + \varepsilon_t^{(i)})^2 - \mathbb{E}[(\bar{m}_t^{(i)} + \varepsilon_t^{(i)})^2] \}
\]

\[
R_{t,3}^g = \frac{1}{T} \sum_{l=1}^{T} \{ \hat{\alpha}_{t,h}(X_{lt}) - (\bar{m}_t + \bar{\varepsilon}_t) + (\bar{m}_t + \bar{\varepsilon}_t) \}^2
\]

\[
R_{t,4}^g = -\frac{2}{T} \sum_{l=1}^{T} \{ \bar{m}_t^{(i)} + \varepsilon_t^{(i)} \} \{ \hat{\alpha}_{t,h}(X_{lt}) - (\bar{m}_t + \bar{\varepsilon}_t) + (\bar{m}_t + \bar{\varepsilon}_t) \}
\]

\[
R_{t,5}^g = \frac{2}{T} \sum_{l=1}^{T} \varepsilon_{lt} \{ \hat{\alpha}_{t,h}(X_{lt}) - (\bar{m}_t + \bar{\varepsilon}_t) - (\bar{m}_t^{(i)} + \varepsilon_t^{(i)}) + (\bar{m}_t + \bar{\varepsilon}_t) \}
\]

with the shorthand $\hat{\alpha}_{t,h}(X_{lt}) = m_t(X_{lt}) - \hat{m}_{t,h}(X_{lt})$. A simplified version of Proposition S.2 yields that

\[
\max_{1 \leq t \leq n} \left| \frac{1}{T} \sum_{l=1}^{T} \{ \varepsilon_{lt}^2 - \mathbb{E}[\varepsilon_{lt}^2] \} \right| = O_p\left(\sqrt{\frac{\log n + \log T}{T}} \right). \quad (S.38)
\]

By (C1) and Theorem 5.1(a) in Bradley (2005), the collection of random variables $\mathcal{A}_{i,T} = \{(\varepsilon_{lt}, \varepsilon_t^{(i)}, \bar{m}_t^{(i)}) : 1 \leq t \leq T\}$ is strongly mixing for any i and T, where the mixing coefficients $\alpha_{i,T}(\ell)$ of $\mathcal{A}_{i,T}$ are such that $\alpha_{i,T}(\ell) \leq n \alpha(\ell)$ with $\alpha(\ell)$ decaying to zero exponentially fast. For this reason, we can once again apply a simplified version of Proposition S.2 to obtain that

\[
\max_{1 \leq t \leq n} \left| \frac{1}{T} \sum_{l=1}^{T} \varepsilon_{lt} (\bar{m}_t^{(i)} + \varepsilon_t^{(i)}) \right| = O_p\left(\sqrt{\frac{\log n + \log T}{T}} \right) \quad (S.39)
\]

\[
\max_{1 \leq t \leq n} \left| \frac{1}{T} \sum_{l=1}^{T} \{ (\bar{m}_t^{(i)} + \varepsilon_t^{(i)})^2 - \mathbb{E}[(\bar{m}_t^{(i)} + \varepsilon_t^{(i)})^2] \} \right| = O_p\left(\sqrt{\frac{\log n + \log T}{T}} \right). \quad (S.40)
\]

Moreover, slightly modifying the proof of Proposition S.7, we can infer that

\[
\max_{1 \leq t \leq n} \max_{(x,h) \in \partial_t} \left| \hat{\alpha}_{t,h}(x) \right| = O_p\left(\sqrt{\frac{\log n + \log T}{T h_{\min}} + h_{\max}^2} \right). \quad (S.41)
\]
Finally, as already seen in the proof of Proposition S.6,

\[\max_{1 \leq i \leq n} |m_i + \varepsilon_i| = O_p(\sqrt{\frac{\log n + \log T}{T}}) \]
\[\max_{1 \leq i \leq n} |(m(i) + \varepsilon(i))| = O_p(\sqrt{\frac{\log n + \log T}{T}}). \]
(S.42)

(S.43)

With the help of (S.38)–(S.43), it is not difficult to infer that

\[\max_{1 \leq i \leq n} \max_{(h,x) \in G_T} |R_{i,h,\ell}| = o_p(1) \]
(S.44)

for \(1 \leq \ell \leq 5\), which implies (c).

\[\square \]

Proof of Theorem 6.1

Proof of (6.2). From Proposition S.6, it follows that

\[\sqrt{T_h} \{ \hat{m}_{i,h}(x) - \hat{m}_{j,h}(x) \} = \sqrt{T_h} \{ m_i(x) - m_j(x) \} \]

\[+ \sqrt{T_h} \left\{ \frac{Q_i^{m,*}(x,h)}{Q_i^*(x,h)} - \frac{Q_j^{m,*}(x,h)}{Q_j^*(x,h)} \right\} + R_{ij}(x,h), \]

where \(\max_{1 \leq i \leq j \leq n} \max_{(x,h) \in G_T} |R_{ij}(x,h)| = O_p(\sqrt{\log n + \log T}) \). Since \(Q_i^{m,*}(x,h) = Q_j^{m,*}(x,h) \) and \(Q_i^*(x,h) = Q_j^*(x,h) \) for any two time series \(i \) and \(j \) in the same group \(G_k \) under our conditions, this implies that

\[\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \max_{(x,h) \in G_T} \sqrt{T_h} |\hat{m}_{i,h}(x) - \hat{m}_{j,h}(x)| = O_p(\sqrt{\log n + \log T}). \]
(S.45)

Moreover, by Proposition S.8,

\[\min_{1 \leq i \leq j \leq n} \min_{(x,h) \in G_T} \sqrt{\hat{\nu}_{ij}(x,h)} \geq c_\nu + o_p(1), \]

where \(c_\nu > 0 \) is a sufficiently small absolute constant. As a result, we arrive at

\[\max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \hat{d}_{ij} \leq \max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \left\{ \max_{(x,h) \in G_T} |\hat{\psi}_{ij}(x,h)| \right\} \]

\[\leq \max_{1 \leq k \leq K_0} \max_{i,j \in G_k} \max_{(x,h) \in G_T} \sqrt{T_h} |\hat{m}_{i,h}(x) - \hat{m}_{j,h}(x)| \]

\[\leq \min_{1 \leq i \leq j \leq n} \min_{(x,h) \in G_T} \sqrt{\hat{\nu}_{ij}(x,h)} \]

\[= O_p(\sqrt{\log n + \log T}), \]

which completes the proof.
\[\square \]
Proof of (6.3). By Proposition S.7, it holds that
\[
\sqrt{T_h} \left\{ \hat{m}_{i,h}(x) - \hat{m}_{j,h}(x) \right\} = \sqrt{T_h} \left\{ m_i(x) - m_j(x) \right\} + \sqrt{T_h^5} \frac{\kappa(x, h)}{2} \left\{ m''_i(x) - m''_j(x) \right\} + R_{ij}(x, h),
\]
where \(\max_{1 \leq i \leq j \leq n} \max_{(x, h) \in \mathcal{G}_T} |R_{ij}(x, h)| = O_p(\sqrt{\log n + \log T} + \sqrt{T_h \max}) \). With the help of this expansion, we can infer that
\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_{k}} \max_{j \in G_{k'}} \sqrt{T_h} \left| \hat{m}_{i,h}(x) - \hat{m}_{j,h}(x) \right|
\geq \min_{1 \leq k < k' \leq K_0} \min_{i \in G_{k}} \max_{j \in G_{k'}} \sqrt{T_h} \left| m_i(x) - m_j(x) \right|
- \max_{1 \leq i \leq j \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{T_h^5} \frac{\kappa(x, h)}{2} \left| m''_i(x) - m''_j(x) \right|
- \max_{1 \leq i \leq j \leq n} \max_{(x, h) \in \mathcal{G}_T} |R_{ij}(x, h)|
= \min_{1 \leq k < k' \leq K_0} \min_{i \in G_{k}} \max_{j \in G_{k'}} \sqrt{T_h} \left| m_i(x) - m_j(x) \right|
+ O_p(\sqrt{T_h^5} + \sqrt{\log n + \log T})
\geq \sqrt{T_h \max} + o_p(\sqrt{T_h \max}),
\]
where \(c > 0 \) is a sufficiently small absolute constant. Moreover, by Proposition S.8,
\[
\max_{1 \leq i \leq j \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{\hat{\nu}_{ij}(x, h)} \leq C_{\nu} + o_p(1)
\]
with \(C_{\nu} > 0 \) being an absolute constant that is chosen sufficiently large. As a consequence, we get that
\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_{k}} \max_{j \in G_{k'}} \left| \hat{\psi}_{ij}(x, h) \right|
\geq \min_{1 \leq k < k' \leq K_0} \min_{i \in G_{k}} \max_{j \in G_{k'}} \sqrt{T_h} \left| \hat{m}_{i,h}(x) - \hat{m}_{j,h}(x) \right|
\geq \max_{1 \leq i \leq j \leq n} \max_{(x, h) \in \mathcal{G}_T} \sqrt{\hat{\nu}_{ij}(x, h)}
\geq c_0 \sqrt{T_h \max} + o_p(\sqrt{T_h \max}) \quad (S.46)
\]
with some sufficiently small absolute constant \(c_0 \). Since \(\lambda(2h_{\min}) = O(\sqrt{\log T}) \) by the
conditions on the bandwidth h_{min} in (C8), we finally obtain that

\[
\min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \hat{d}_{ij} \geq \min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \left\{ \max_{(x, h) \in G_T} |\hat{\psi}_{ij}(x, h)| \right\} - \lambda(2h_{\text{min}})
\]

\[
= \min_{1 \leq k < k' \leq K_0} \min_{i \in G_k, j \in G_{k'}} \left\{ \max_{(x, h) \in G_T} |\hat{\psi}_{ij}(x, h)| \right\} + O(\sqrt{\log T})
\]

\[
\geq c_0 \sqrt{Th_{\text{max}}} + o_p(\sqrt{Th_{\text{max}}}),
\]

the last line following from (S.46). \qed

References

Boneva, L., Elliott, D., Kaminska, I., Linton, O., McLaren, N. and Morley, B. (2018). The impact of QE on liquidity: evidence from the UK corporate bond purchase scheme. Preprint.

Bosq, D. (1998). Nonparametric statistics for stochastic processes. Springer.

Bradley, R. C. (1983). Approximation theorems for strongly mixing random variables. Michigan Mathematical Journal, 30 69–81.

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys, 2 107–144.

Calinski, R. B. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3 1–27.

Einmahl, U. and Mason, D. M. (2005). Uniform in bandwidth consistency of kernel-type function estimators. Annals of Statistics, 33 1380–1403.

Hansen, B. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory, 24 726–748.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley & Sons.

Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis, 17 571–599.

Robinson, P. M. (1988). Root-n consistent semiparametric regression. Econometrica, 56 931–954.

Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20 53–65.

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B, 63 411–423.

Vogt, M. and Linton, O. (2017). Classification of non-parametric regression functions in longitudinal data models. Journal of the Royal Statistical Society: Series B, 79 5–27.