A NOTE ON ARITHMETIC BREUIL-KISIN-FARGUES MODULES

HENG DU

Abstract. Let K be a discrete valuation field, we combine the construction of Fargues-Fontaine of G_K-equivariant modifications of vector bundles over the Fargues-Fontaine curve X_{FF} using weakly admissible filtered (φ, N, G_K)-modules over K, with Scholze and Fargues’ theorems that relate modifications of vector bundles over the Fargues-Fontaine curve with mixed characteristic shtukas and Breuil-Kisin-Fargues modules. We give a characterization of Breuil-Kisin-Fargues modules with semilinear G_K-actions that produced in this way and compare those Breuil-Kisin-Fargues modules with Kisin modules.

1. Introduction

1.1. Review of the work of Fargues-Fontaine and Scholze. Fargues and Fontaine in [FF] construct a complete abstract curve X_{FF}, the Fargues-Fontaine curve (constructed using the perfectoid field \mathbb{C}_p^\flat and p-adic field \mathbb{Q}_p). For any p-adic field K, they show $\mathcal{O}_X = \mathcal{O}_{X_{FF}}$ carries an action of G_K, and they define \mathcal{O}_X-representations of G_K as vector bundles over X_{FF} that carries a continuous \mathcal{O}_X-semilinear action of G_K. They can show \mathcal{O}_X-representations of G_K are related to p-adic representations of G_K in many aspects. For example, Fargues-Fontaine show that X_{FF} is complete in the sense that there is a Harder-Narasimhan theorem holds for coherent \mathcal{O}_X-modules over X_{FF}, and they prove that the category of \mathcal{O}_X-representations of G_K such that the underlying vector bundles over X_{FF} are semistable of pure slope 0 is equivalence to the category of p-adic representations of G_K over \mathbb{Q}_p. Moreover, they give an explicit construction of slope 0 \mathcal{O}_X-representations from weakly admissible filtered (φ, N)-modules D over K. Their construction is that: first using D and the (φ, N)-structure, they construct an \mathcal{O}_X-representation $\mathcal{E}(D, \varphi, N)$ of G_K whose underlying vector bundle is not semistable in general, then using the filtration structure of D_K, they constructed a G_K-equivariant modification $\mathcal{E}(D, \varphi, N, \text{Fil}^*)$ of $\mathcal{E}(D, \varphi, N)$ along a special closed point called ∞ on X_{FF}. They can show if D is weakly admissible, then $\mathcal{E}(D, \varphi, N, \text{Fil}^*)$ is pure of slope 0, and the \mathbb{Q}_p representation corresponds to $\mathcal{E}(D, \varphi, N, \text{Fil}^*)$ is nothing but the log-crystalline representation corresponds to the data $(D, \varphi, N, \text{Fil}^*)$. By going through such a construction, they give new proofs of some important theorems in p-adic Hodge theory, for instance, they give a lovely proof of the fact that being admissible is the same as being weakly admissible.
The abstract curve X_{FF} also plays a role in Scholze’s work. In his Berkeley lectures on p-adic geometry [SW], Scholze defined a mixed characteristic analog of shtukas with legs. To be more precise, he introduced the functor $\text{Spd}(\mathbb{Z}_p)$ which plays a similar role of a proper smooth curve in the equal characteristic story, and for any perfectoid space S in characteristic p, he was able to define shtukas over S with legs. If we restrict us to the case that when $S = \text{Spa}(C)$ is just a point, with $C = \mathbb{C}_p^\flat$ an algebraically closed perfectoid field in characteristic p, and assume there is only one leg which corresponds to the untilt C_p, then he can realize shtukas over S as modifications of vector bundles over X_{FF} along ∞. Here ∞ is the same closed point on X_{FF} as we mentioned in the work of Fargues-Fontaine. Fargues and Scholze also show that those shtukas can be realized using some commutative algebra data, called the (free) Breuil-Kisin-Fargues modules, which are modules over $A_{\text{inf}} = \text{W}(\mathcal{O}_C)$ with some additional structures.

1.2. Arithmetic Breuil-Kisin-Fargues modules and our main results. If we combine the construction of Fargues and Fontaine of modifications of vector bundles over X_{FF} from log-crystalline representations and the work of Fargues and Scholze that relates modifications of vector bundles over X_{FF} with shtukas and Breuil-Kisin-Fargues modules, one can expect that if starting with a weakly admissible filtered (φ, N)-module over K, one can produce a free Breuil-Kisin-Fargues module (actually only up to isogeny if we do not specify an integral structure of the log-crystalline representation) using the modification constructed by Fargues-Fontaine. Moreover, since the modification is G_K-equivariant and all the correspondences of Fargues and Scholze we have mentioned are functorial, we have the Breuil-Kisin-Fargues module produced in this way carries a semilinear G_K-action that commutes with all other structures of it. In this paper, we will give a naive generalization of Fargues-Fontaine’s construction of G_K-equivariant modifications of vector bundles over X_{FF} when the inputs are weakly admissible filtered (φ, N, G_K)-modules over K, which is also mentioned in the work of Fargues-Fontaine but using descent. Fix a p-adic field K, and we make the following definition.

Definition 1. A Breuil-Kisin-Fargues G_K-module is a free Breuil-Kisin-Fargues module with a semilinear action of G_K that commutes with all its other structures. A Breuil-Kisin-Fargues G_K-module is called arithmetic if, up to isogeny, it comes from the construction mentioned above using a weakly admissible filtered (φ, N, G_K)-module.

If $\mathfrak{M}_{\text{inf}}$ is a free Breuil-Kisin-Fargues module, then one defines its étale realization $T(\mathfrak{M}_{\text{inf}})$ as

$$T(\mathfrak{M}_{\text{inf}}) = (\mathfrak{M}_{\text{inf}} \otimes_{A_{\text{inf}}} W(C))^{\varphi = 1}$$

which is a finite free \mathbb{Z}_p-module, and recall the following theorem of Fargues and Scholze-Weinstein:
Theorem 1. The functor
\[\mathfrak{M}^{\inf} \to (T(\mathfrak{M}^{\inf}), \mathfrak{M}^{\inf} \otimes_{A^{\inf}} B^{+}_{dR}) \]
defines an equivalence of the following categories
\[\{ \text{free Breuil-Kisin-Fargues modules over } A^{\inf} \} \]
and
\[\{ (T, \Xi) \mid T : \text{finite free } \mathbb{Z}_p\text{-modules, } \Xi : \text{full } B^{+}_{dR}\text{-lattice in } T \otimes_{\mathbb{Z}_p} B_{dR} \} \]

The category of pairs \((T, \Xi)\) is what Fargues called Hodge-Tate modules in [Far]. Note that if \(\mathfrak{M}^{\inf}\) is a Breuil-Kisin-Fargues \(G_K\)-module, then the Hodge-Tate module corresponds to \(\mathfrak{M}^{\inf}\) carries a \(G_K\) action by functoriality. Using the Hodge-Tate module description of Breuil-Kisin-Fargues modules, we give the following easy characterization of arithmetic Breuil-Kisin-Fargues modules.

Proposition 1. A Breuil-Kisin-Fargues \(G_K\)-module \(\mathfrak{M}^{\inf}\) is arithmetic if and only if its \(\acute{e}tale\) realization \(T = T(\mathfrak{M}^{\inf})\) is potentially log-crystalline as a representation of \(G_K\) over \(\mathbb{Z}_p\), and there is a \(G_K\)-equivariant isomorphism of
\[(T(\mathfrak{M}^{\inf}), \mathfrak{M}^{\inf} \otimes_{A^{\inf}} B^{+}_{dR}) = (T, (T \otimes_{\mathbb{Q}_p} B_{dR})^{G_K} \otimes_{K} B^{+}_{dR}). \]
Moreover, if the isogeny class of \(\mathfrak{M}^{\inf}\) corresponds the \(G_K\)-equivariant modification coming from a weakly admissible filtered \((\varphi, N, G_K)\)-module \(D\) over \(K\), then \(T(\mathfrak{M}^{\inf}) \otimes_{\mathbb{Q}_p}\) is the potentially log-crystalline representation of \(G_K\) corresponds to the weakly admissible filtered \((\varphi, N, G_K)\)-module \(D\).

Remark 1.

1. We want to remind the readers that \(p\)-adic monodromy theorem for de Rham representations, which was first proved in the work of Berger [Ber], tells us that if a \(p\)-adic representation is de Rham, then it is potentially log-crystalline (and the converse is true and actually much easier to prove). We will use the equivalence of being de Rham and potentially log-crystalline through out this paper.

2. From the work of [BMS], we know there is a large class of Breuil-Kisin-Fargues \(G_K\)-modules comes from geometry: start with a proper smooth formal scheme \(\mathfrak{X}\) over \(\mathcal{O}_K\), and let \(\mathfrak{X}\) be its base change to \(\mathcal{O}_{\mathbb{C}_p}\). Then there is a \(A^{\inf}\)-cohomology theory attaches to \(\mathfrak{X}\) which is functorial in \(\mathfrak{X}\), so all the \(A^{\inf}\)-cohomology groups \(H^i_{\text{rig}}(\mathfrak{X})\) carry natural semi-linear \(G_K\)-actions that commute with all other structures. If we take the maximal free quotients of the cohomology groups, then they are all arithmetic automatically from the \(\acute{e}tale\)-de Rham comparison theorem. So being arithmetic is the same as to ask an abstract Breuil-Kisin-Fargues \(G_K\)-module to satisfy \(\acute{e}tale\)-de Rham comparison theorem.
(3) The terminology of being arithmetic was first introduced in the work of Howe in [How §4], the above proposition shows our definition are the same. The advantage of our definition is that it enables us to see how arithmetic Breuil-Kisin-Fargues behavior over \(\text{Spa}(A_{\text{inf}})\) instead of only look at the stalks at closed points \(\mathcal{O}_C\) and \(\mathcal{O}_{C_p}\).

As we mentioned in the above remark, if we study the behavior of arithmetic Breuil-Kisin-Fargues modules at the closed point corresponds to \(W(k)\) of \(\text{Spa}(A_{\text{inf}})\), we will have:

Corollary 1. Let \(\mathfrak{M}_{\text{inf}}\) be an arithmetic Breuil-Kisin-Fargues module \(\mathfrak{M}_{\text{inf}}\) then

1. \(T(\mathfrak{M}_{\text{inf}})\) is log-crystalline if and only if the inertia subgroup \(I_K\) of \(G_K\) acts trivially on \(\mathfrak{M}_{\text{inf}} = \mathfrak{M}_{\text{inf}} \otimes_{A_{\text{inf}}} W(\overline{k})\).
2. \(T(\mathfrak{M}_{\text{inf}})\) is potentially crystalline if and only if there is a \(\varphi\) and \(G_K\) equivariant isomorphism \(\mathfrak{M}_{\text{inf}} \otimes_{A_{\text{inf}}} B_{\text{cris}}^+ \cong \mathfrak{M}_{\text{inf}} \otimes_{W(k)} B_{\text{cris}}^+\).
3. \(T(\mathfrak{M}_{\text{inf}})\) is crystalline if and only if it satisfies the conditions in (1) and (2).

Remark 2. We continue the discussion in Remark (2), in [BMS] Theorem 14.1] one can see the \(A_{\text{inf}}\)-crystalline comparison theorem should give us condition (1) in Corollary (1). And Proposition 13.21. of loc.cit. shows that there is a canonical isomorphism

\[
\widetilde{H}^i_{\text{crys}}(\mathcal{X}_{O_p/p}/A_{\text{cris}})[1/p] \cong \widetilde{H}^i_{\text{crys}}(\mathcal{X}_{\overline{F}/W(\overline{k})}) \otimes_{W(k)} B_{\text{cris}},
\]

which means the condition in Corollary (2) is always satisfied. And we know their étale realizations are crystalline since [BMS] is in the good reduction case. \(A_{\text{inf}}\)-crystalline comparison theorem were extended to the case of semistable reduction by Česnavičius-Koshikawa in [CK] and Zijian Yao in [Yao], and one can show (1) in Corollary is satisfied in the semistable reduction case.

Another natural question is if one starts with a potentially log-crystalline representation \(T\) of \(G_K\) over \(\mathbb{Z}_p\), one can construct a Hodge-Tate module \((T, (T \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{G_K} \otimes B_{\text{dR}}^+)\) which corresponds to an arithmetic Breuil-Kisin-Fargues module \(\mathfrak{M}_{\text{inf}}(T)\) as in Proposition 1. On the other hand, the theory of Kisin in [Kis] shows that if \(L\) is a finite Galois extension of \(K\) such that \(T|_{G_L}\) is log-crystalline, fixing a Kummer tower \(L_{\infty}\) over \(L\), then there is a finite free module \(\mathfrak{M}(T)\) over a subring \(\mathfrak{S}\) of \(A_{\text{inf}}\) with a \(\varphi\)-structure that captures many properties of \(T\). We have the following proposition that enables us to compare \(\mathfrak{M}(T)\) with \(\mathfrak{M}_{\text{inf}}(T)\).
Proposition 2. Let $\mathcal{M}_0^{\text{inf}}(T) = \mathcal{M}(T) \otimes_{\mathcal{O}, \varphi} A_{\text{inf}}$, then $\mathcal{M}_0^{\text{inf}}(T)$ is a Breuil-Kisin-Fargues module with a semilinear action of G_{L_∞} by construction. There is a unique way to extend the G_{L_∞}-action to G_K such that the étale realization of $\mathcal{M}_0^{\text{inf}}(T)$ is exactly the G_K-representation T. Moreover, $\mathcal{M}_0^{\text{inf}}(T)$ with such G_K action is isomorphic to $\mathcal{M}^{\text{inf}}(T)$. In particular, $\mathcal{M}_0^{\text{inf}}(T)$ is arithmetic.

The above proposition is related to one of the main results in [GL], and we will give another proof in this paper. We want to emphasize that the above proposition can be proved nothing but by comparing the construction of the \mathcal{O}-module by Kisin, and the construction of arithmetic Breuil-Kisin-Fargues module by Fargues-Fontaines. One easy consequence of this proposition is that one observe that $\mathcal{M}^{\text{inf}}(T)$ is defined only using the datum T while the $\mathcal{M}(T)$ is defined with respect to the choice of the Kummer tower L_∞, so $\mathcal{M}_0^{\text{inf}}(T)$ is independent of the choice of the tower L_∞. In [EG], they use the terminology of admitting all descents over K for a Breuil-Kisin-Fargues G_K-module, and they can prove that the condition of admitting all descents over K is equivalence to that the étale realization of the Breuil-Kisin-Fargues G_K-module is log-crystalline. To compare with their result, we have the following proposition:

Proposition 3. A Breuil-Kisin-Fargues G_K-module \mathcal{M}^{inf} admits all descents over K if and only if it is arithmetic and satisfies the condition (1) in Corollary [GL].

We want to mention that in the proof of [GL Theorem F.11], they use the following criterion of the author about arithmetic Breuil-Kisin-Fargues modules.

Lemma 1. [GL F.13.] A Breuil-Kisin-Fargues G_K-module \mathcal{M}^{inf} is arithmetic if and only if $\mathcal{M}^{\text{inf}} \otimes_{A_{\text{inf}}} B^{+}_{\text{dR}}/(\xi)$ has a G_K-stable basis.

Remark 3. (1) The terminology of admitting all descents over a K, as been mentioned in [EG], is very likely to be related to the prismatic-A_{inf} comparison theorem of Bhatt-Scholze [BS], while our condition seems only relates to A_{inf}-cohomology as we mentioned in Remark [GL].

(2) It is natural to ask if one can make sense of “moduli space of arithmetic shtukas”, and compare it with the Emerton-Gee stack defined in [EG].

1.3. Structure of the paper. In section 2 we will first review Scholze’s definition of shtukas in mixed characteristic and how to relate shtukas with Breuil-Kisin-Fargues modules. Then we will give a brief review on how to realize Scholze’s shtukas using Fargues-Fontaine curve. For readers familiar with their theories, they can skip this section. In section 3 we will give an explicit construction of G_K-equivariant modifications of vector bundles over X_{FF} using data come from weakly admissible filtered (φ, N, G_K)-modules following Fargues-Fontaine’s method, and we will give a characterization...
of Breuil-Kisin-Fargues G_K-modules come from modifications constructed in this way. In section 4 we will study the relationship between arithmetic Breuil-Kisin-Fargues modules and Kisin modules, and also prove some propositions relate to the work of [EG].

1.4. Notions and conventions. Throughout this paper, k_0 will be a perfect field in characteristic p and $W(k_0)$ the ring of Witt vectors over k_0. Let K be a finite extension of $W(k_0)[\frac{1}{p}]$. Let \mathcal{O}_K be the ring of integers of K, ϖ be any uniformizer and let $k = k_K = \mathcal{O}_K/(\varpi)$ be the residue field. Define $K_0 = W(k)[\frac{1}{p}]$. By a compatible system of p^n-th roots of ϖ, we mean a sequence of elements $\{\varpi_n\}_{n \geq 0}$ in \overline{K} with $\varpi_0 = \varpi$ and $\varpi_{n+1}^p = \varpi_n$ for all n.

Define \mathbb{C}_p as the p-adic completion of \overline{K}, there is a unique valuation v on \mathbb{C}_p extending the p-adic valuation on K. Let $\mathcal{O}_{\mathbb{C}_p} = \{x \in \mathbb{C}_p | v(x) \geq 0\}$ and let $\mathfrak{m}_{\mathbb{C}_p} = \{x \in \mathbb{C}_p | v(x) > 0\}$. We will have $\mathcal{O}_{\mathbb{C}_p}/\mathfrak{m}_{\mathbb{C}_p} = \overline{K}$.

Let C be the tilt of \mathbb{C}_p, then by the theory of perfectoid fields, C is algebraically closed of characteristic p, and complete with respect to a nonarchimedean norm. Let \mathcal{O}_C be the ring of the integers of C, then $\mathcal{O}_C = \mathcal{O}_{\mathbb{C}_p} = \varprojlim \mathcal{O}_{\mathbb{C}_p}/p$. Define $A_{\inf} = W(\mathcal{O}_C)$, there is a Frobenius $\varphi_{A_{\inf}}$ acts on A_{\inf}. There is a surjection $\theta : A_{\inf} \rightarrow \mathcal{O}_{\mathbb{C}_p},$ whose kernel is principal and let ξ be a generator of $\text{Ker}(\theta)$. Let $\tilde{\xi} = \varphi(\xi)$ as in [BMS]. There is a G_K action on A_{\inf} via its action on $C = \mathbb{C}_p^\times$, one can show θ is G_K-equivariant.

In this paper, we will use the notion log-crystalline representations instead of semistable representations to make a difference to the semistability of vector bundles over complete regular curves.

A filtered (φ, N)-module over K is a finite dimensional K_0-vector space D equipped with two maps

$$\varphi, N : D \rightarrow D$$

such that

(1) φ is semi-linear with respect to the Frobenius φ_{K_0}.
(2) N is K_0-linear.
(3) $N\varphi = p\varphi N$.

And a decreasing, separated and exhaustive filtration on the K-vector space $D_K = K \otimes_{K_0} D$.

Let L be a finite Galois extension of K and let $L_0 = W(k_L)\mathbb{Q}$. A filtered $(\varphi, N, \text{Gal}(L/K))$-module over K is a filtered (φ, N)-module D' over L together with a semilinear action of $\text{Gal}(L/K)$ on the L_0 vector space D', such that:

(1) The semilinear action is defined by the action of $\text{Gal}(L/K)$ on L_0 via $\text{Gal}(L/K) \rightarrow \text{Gal}(k_L/k) = \text{Gal}(L_0/K_0)$.
(2) The semilinear action of $\text{Gal}(L/K)$ commutes with φ and N.
(3) Define diagonal action of $\text{Gal}(L/K)$ on $D' \otimes_{L_0} L$, then the filtration on $D' \otimes_{L_0} L$ is stable under this action.
If L' is another finite Galois extension of K containing L, then one can show there is a fully faithful embedding of the category of filtered $(\varphi, N, \text{Gal}(L/K))$-modules into the category of filtered $(\varphi, N, \text{Gal}(L'/K))$-modules. One defines the category of filtered (φ, N, G_K)-modules to be the limit of filtered $(\varphi, N, \text{Gal}(L/K))$-modules over all finite Galois extensions L of K.

2. Shtukas in mixed characteristic, Breuil-Kisin-Fargues modules and modifications of vector bundles

2.1. Shtukas in mixed characteristic and Breuil-Kisin-Fargues modules. In this subsection we briefly review Scholze’s definition of shtukas (with one leg) in mixed characteristic and its relation with Breuil-Kisin-Fargues modules following Scholze’s Berkeley notes [SW] and Kedlaya’s AWS notes [Ked1].

Definition 2. [SW, Definition 11.4.1] Let Pfd be the category of perfectoid spaces of characteristic p, for any $S \in \text{Pfd}$, a shtuka with one leg over S is the following data:

- A morphism $x : S \to \text{Spd}(\mathbb{Z}_p)$, (the leg)
- \mathcal{E} a vector bundle over $\text{Spd}(\mathbb{Z}_p) \times S$ together with
 \[\varphi_\mathcal{E} : \text{Fr}^*_{\mathcal{E}}(\mathcal{E})|_{\text{Spd}(\mathbb{Z}_p) \times S \setminus \Gamma_x} \to \mathcal{E}|_{\text{Spd}(\mathbb{Z}_p) \times S \setminus \Gamma_x} \]

Here Γ_x denotes the graph of x and \to means $\varphi_\mathcal{E}$ is an isomorphism over $(\text{Spd}(\mathbb{Z}_p) \times S) \setminus \Gamma_x$ and meromorphic along Γ_x.

The most revolutionary part in Scholze’s definition is he came up with the object “$\text{Spa}\mathbb{Z}_p$” (as well as the $\text{Spd}(\mathbb{Z}_p)$ we use in the definition) which he used as the replacement of the curve \mathcal{C}/\mathbb{F}_p in the equal characteristic case. Instead of go into the details in the definition, we will unpack concepts in this definition when $S = \text{Spa}(C)$ is just a point, i.e., we assume C is a perfectoid field in characteristic p. Then for the first datum in the definition of shtukas, we have:

Lemma 2. [SW, Proposition 11.3.1] For $S = \text{Spa}(C)$ is a perfectoid field in characteristic p, the following sets are naturally identified:

- A morphism $x : S \to \text{Spd}(\mathbb{Z}_p)$.
- The set of isomorphism classes of untilts of S, or more precisely of pairs (F, i) in which F is a perfectoid field and $i : (S^\#)^{\flat} \to S$ is an isomorphism and isomorphism classes are taken from $F \simeq F'$ that commutes with i and i'.
- Sections of $S^\diamond \times \text{Spd}\mathbb{Z}_p \to S^\diamond$

Here S^\diamond denotes the diamond associated with S by identifying S with the functor it represents as a pro-étale sheaf of sets. Again, instead of go into Scholze’s definition of diamonds, we unpack the concept with the following lemma in the case of $S = \text{Spa}(C)$ a perfectoid field.
Lemma 3. [Ked1, Lemma 4.3.6.] For $S = \text{Spa}(C)$, let ϖ be a (nonzero) topological nilpotent element in C and put $A_{\text{inf}} = W(\mathcal{O}_C)$. Let

$$U_S = \{v \in \text{Spa}(A_{\text{inf}}, A_{\text{inf}})|v([\varpi]) \neq 0\},$$

Then for any $Y \in \text{Pfd}$, there is a natural identifacation of

- morphisms of $Y \to S^0 \times \text{Spd}\mathbb{Z}_p$,
- pairs of (X, f) in which f is an isomorphism class of untilts of Y and $f : X \to U_S$ is a morphism of adic spaces.

Remark 4. By tilt equivalence in the relative setting, we have that if S is a perfectoid space (not necessary in Pfd), and $Y \in \text{Pfd}$, then $S^\phi(Y)$ is naturally isomorphic to pairs (X, f) where X is an isomorphism class of untilts of Y and $f : X \to S$ is a morphism of perfectoid spaces. Scholze generalize this notion and define S^ϕ for any analytic adic spaces S on which p is topologically nilpotent as be the functor that for $Y \in \text{Pfd}$,

$$S^\phi(Y) = \{(X, f)|X \text{ is an isomorphism class of untilts of } Y \text{ and } f : X \to S\}$$

Using the terminology in the above remark, Lemma[8] says $(S^0 \times \text{Spd}\mathbb{Z}_p)(Y)$ is naturally isomorphic to $U^\phi_S(Y)$, so if we go back to the definition of shtuka, the second data can be taken as a vector bundle over U_S, note that over U_S there is a natural Frobenius induced for the Frobenius on \mathcal{O}_C.

Now let’s restrict to the case that the leg of the shtuka correspondence to an untilt of C in characteristic 0, then we will have the following lemma:

Lemma 4. [Ked1, Lemma 4.5.14.] For $S = \text{Spa}(C)$ be a perfectoid space in characteristic p, and let

$$Y_S = \{v \in \text{Spa}(A_{\text{inf}}, A_{\text{inf}})|v([\varpi]) \neq 0, v(p) \neq 0\}.$$

Then a shtukas over S with leg x correpondence to an untilt of C in characteristic 0, is the same as the following data

$$\mathcal{E}_0 \to \mathcal{E}_1$$

- \mathcal{E}_0 is a φ-equivariant vector bundle over U_S,
- \mathcal{E}_1 is a φ-equivariant vector bundle over Y_S.
- $\mathcal{E}_0 \to \mathcal{E}_1$ is an isomorphism of \mathcal{E}_0 with \mathcal{E}_1 over $Y_S \setminus \cup_{n \in \mathbb{Z}} \Gamma_{\varphi^n(x)}$.

Remark 5. Here Γ_x is Cartier divisor correspondence to the leg x, and the assumption x correspondence to an untilt of C in characteristic 0 is the same as Γ_x is inside Y_S. Instead of proving the lemma, we just recall that \mathcal{E}_0 (resp. \mathcal{E}_1) comes from restricting \mathcal{E} in Definition[2] to a “neighborhood” of $V(p)$ (resp. $V([\varpi])$), and use the Frobenius to extend it to U_S (resp. Y_S).

If we further assume $S = \text{Spa}(C)$ with C an algebraically closed non-archimedean field in characteristic p, then we have the following lemma:

Lemma 5. [Ked1, Lemma 4.5.17.] Let $S = \text{Spa}(C)$ with C an algebraically closed non-archimedean field in characteristic p, and let

$$Y^+_S = \{v \in \text{Spa}(A_{\text{inf}}, A_{\text{inf}})|v([\varpi]) \neq 0, v(p) \neq 0\}.$$
Then any φ-equivariant vector bundle over Y_S extends uniquely to a φ-equivariant vector bundle over Y_S°.

Let x_k be the unique closed point of $\text{Spa}(A_{\text{inf}})$, then combine all the lemmas, we will have the following theorem of Fargues and Scholze-Weinstein:

Theorem 2. [SW, Theorem 14.1.1][Ked1, Theorem 4.5.18] Let $S = \text{Spa}(C)$ with C an algebraically closed non-archimedean field in characteristic p, the following categories are canonically equivalent:

1. a shtuka with one leg x over S such that x corresponds to an untilt in characteristic 0,
2. a vector bundle E over $\text{Spa}(A_{\text{inf}})\{x_k\}$ together with an isomorphism $\varphi_E : \varphi^*(E) \cong E|_{\text{Spa}(A_{\text{inf}})\{x_k\}}(x)$,
3. a finite free module M over A_{inf} together with $\varphi_M : (\varphi^*M)[\frac{1}{z}] \cong M[\frac{1}{z}]$, where z generate the primitive ideal in A_{inf} correspondence to the untilt x.

Proof. (sketch) For the equivalence between (1) and (2), by Lemma 4, we have a shtukas over S with leg x correspondence to an untilt of C, then we construct a vector bundle over $\text{Spa}(A_{\text{inf}})\{x_k\}$ by gluing E_0 with E_1^+ over a rational subdomain “between x and $\varphi(x)$”, where E_1^+ is the unique φ-equivariant vector bundle over Y_S° extending E_1 under Lemma 5. The “gluing” process makes sense because of the fact the presheaf over $\text{Spa}(A_{\text{inf}})\{x_k\}$ defined by rational subspaces and their Tate algebras is actually a sheaf.

For the equivalence between (2) and (3), one refers to the following theorem of Kedlaya. \hfill \square

Theorem 3. [Ked2, Theorem 3.6] There is an equivalence of categories between:

1. Finite free modules M over A_{inf},
2. Vector bundle E over $\text{Spa}(A_{\text{inf}})\{x_k\}$

2.2. Fargues-Fontaine curve and Breuil-Kisin-Fargues modules.

In this subsection, we will review Fargues-Fontaine’s construction of the p-adic fundamental curve, and its relation to Scholze’s definition of Shtukas in mixed characteristic.

Keep all the notions as in [14]. Let $S = \text{Spa}(C)$ with $C = \mathbb{C}_p$, we also fix the leg $x = \varphi^{-1}(x_{C_p})$ of shtukas over S to make it corresponds to the untilt $\theta \circ \varphi^{-1} : A_{\text{inf}} \to \mathcal{O}_{C_p}$. Recall we have a Frobenius φ acts on the space Y_S, we define:

Definition 3. Let $B = H^0(Y_S, \mathcal{O}_{Y_S})$ and the schematic Fargues-Fontaine curve is the scheme:

$$X_{FF} = \text{Proj} \oplus_{n \geq 0} B[\varphi^n].$$

We also define the adic Fargues-Fontaine curve to be quotient:

$$X_{FF} = Y_S/\varphi^Z.$$
We have θ induces a map $B \to \mathbb{C}_p$, and this defines a closed point ∞ on X_{FF}.

Theorem 4. [FF] Fargues-Fontaine

1. X_{FF} is a regular noetherian scheme of Krull dimension 1, or an abstract regular curve in the sense of Fargues and Fontaine.
2. The set of closed points of X_{FF} is identified with the set of characteristic 0 untilts of C modulo Frobenius equivalence. Under this identification, ∞ sends to the untilt \mathbb{C}_p of C. The stalk of X_{FF} at ∞ is isomorphic to B^+_{dR}.
3. $X_e = X_{FF} \setminus \{\infty\}$ is an affine scheme $\text{Spec}B_e$ with $B_e = B^{p^\infty}$ being a principal ideal domain.
4. Vector bundles E over X_{FF} are equivalence to B-pairs (M_e, M^{+}_{dR}, ι) in the sense of Berger. Here $M_e = \Gamma(X_e, E)$ are finite projective modules over B_e and M^{+}_{dR} are the completion of E at ∞ which are finite free over B^+_{dR}, ι is an isomorphism of M_e and M^{+}_{dR} over B_{dR}.
5. The abstract curve X_{FF} is also complete in the sense that $\deg(f) := \sum_{x \in |X_{FF}|} v_x(f)$ is 0 for all rational functions on X_{FF}.

Fargues-Fontaine shows that there is a Dieudonné-Manin classification for vector bundles over X_{FF}.

Theorem 5. [FF] Let (D, φ) be an isocrystal over k, then (D, φ) defines a vector bundle $E(D, \varphi)$ over X_{FF} which associated with the graded module

$$\bigoplus_{n \geq 0} (D \otimes K_0 B)^{p^n}.$$

Moreover, every vector bundle over X_{FF} is isomorphic to $E(D, \varphi)$ for some (D, φ).

Let E be a vector bundle over X_{FF}, assume $E \cong E(D, \varphi)$ under the above theorem, and if $\{-\lambda_i\}$ are the slopes of (D, φ) in the Dieudonné-Manin classification theorem, then λ_i are called the slopes of E. Moreover E is called semistable of slope λ if and only if E corresponds a semisimple isocrystal of slope $-\lambda$. We define $\mathcal{O}(n) = E(K_0, p^{-n})$, one can show $\mathcal{O}(1)$ is a generator of the Picard group of X_{FF} (which is isomorphic to \mathbb{Z}). A simple corollary of Dieudonné-Manin classification is:

Corollary 2. The category of finite-dimensional \mathbb{Q}_p-vector spaces is equivalent to the category of vector bundles over X_{FF} that are semistable of slope 0 under the functor

$$V \to V \otimes_{\mathbb{Q}_p} \mathcal{O}_X.$$

The inverse of this functor is given by:

$$E \to H^0(X_{FF}, E).$$

Note there is a morphism of locally ringed spaces from $X_{FF} \to X_{FF}$, and pullback along this morphism induces a functor from the category of vector bundles over X_{FF} to vector bundles over X_{FF}, we have the following GAGA theorem for the Fargues-Fontaine curve.
Theorem 6. Vector bundles over X_{FF} and vector bundles over X_{FF} are equivalent under the above functor.

We have, by the definition of X_{FF}, vector bundles over X_{FF} is the same as φ-equivariant vector bundles over Y_S. So by the theorem of GAGA one can make sense of slopes of φ-equivariant vector bundles over Y_S. We have the following theorem of Kedlaya:

Theorem 7. [KL, Theorem 8.7.7] A φ-equivariant vector bundle F over Y_S is semistable of slope 0 if and only if it can be extended to a φ-equivariant vector bundle over U_S. The set of such extensions is the same as the set of \mathbb{Z}_p-lattices inside the \mathbb{Q}_p-vector space $H^0(X_{FF}, \mathcal{E})$, where \mathcal{E} is the vector bundle over X_{FF} corresponds to F under GAGA.

Remark 6. One can also rewrite the above theorem in terms of (étale) φ-modules over B and B^+, where $B^+ = H^0(Y_S^+, \mathcal{E})$, one can show that (when C is algebraically closed) the category of vector bundles over X_{FF} is equivalence to all the following categories [FF, Section 11.4]:

- φ-modules over B.
- φ-modules over B^+.
- φ-modules over B^+_{cris}.
- Vector bundles over X_{FF}.

Combine Lemma 6, Theorem 6 and Theorem 7 we have:

Theorem 8. Let $S = \text{Spa}(C)$ with $C = \mathbb{C}_p$, then a shtuka with one leg $\varphi^{-1}(x_{\mathbb{C}_p})$ over S which corresponds to the untilt $\theta \circ \varphi^{-1} : A_{\text{inf}} \rightarrow \mathcal{O}_{C_p}$ is the same as a quadruple (F_0, F_1, β, T) where

- F_0 is a vector bundle over X_{FF} that is semistable of slope 0,
- F_1 is a vector bundle over X_{FF},
- β is an isomorphism of F_0 and F_1 over $X_{FF} \backslash \{\infty\}$,
- T is a \mathbb{Z}_p-lattice of the \mathbb{Q}_p vector space $H^0(X_{FF}, \mathcal{E})$.

Using part (4) of Theorem 4, we have the first three data in the above theorem is the same as a \mathbb{Q}_p vector space V together with a B_{dR}^+ lattice inside $V \otimes B_{\text{dR}}$. Note also we have $V \otimes \mathbb{Q}_p B_{\text{dR}} = T \otimes \mathbb{Z}_p B_{\text{dR}}$ for any \mathbb{Z}_p-lattice T inside V. So we have:

Corollary 3. Let $S = \text{Spa}(C)$ and x as above, then a shtuka with one leg x over S is the same as a pair (T, Ξ) where T is a \mathbb{Z}_p-lattice and Ξ is a B_{dR}^+ lattice inside $T \otimes B_{\text{dR}}$.

Definition 4. The pair (T, Ξ) as above is called a Hodge-Tate module. And we define a free Breuil-Kisin-Fargues module as a finite free module \mathcal{M}_{inf} over A_{inf} with an isomorphism

$$\varphi_{\mathcal{M}_{\text{inf}}} : \mathcal{M}_{\text{inf}} \otimes_{A_{\text{inf}}} \varphi A_{\text{inf}} \left[\frac{1}{\xi}\right] \simeq \mathcal{M}_{\text{inf}} \left[\frac{1}{\xi}\right]$$

Where $\tilde{\xi} = \varphi(\xi)$ as we defined in [4]
Corollary 4. (Fargues, Scholze-Weinstein) Let $S = \text{Spa}(C)$ and $\varphi^{-1}(x_{C_p})$ as above, then the following categories are equivalence:

- Shtukas with one leg $\varphi^{-1}(x_{C_p})$ over S.
- Hodge-Tate modules.
- Free Breuil-Kisin-Fargues modules.

3. p-adic representations and vector bundles on the curve

Now let us briefly recall how Fargues-Fontaine construct G_K-equivariant modifications of vector bundles over X_{FF} from potentially log-crystalline representations of G_K in \cite{FF §10.3.2}.

Keep the notions as in 1.4, let D' be a filtered $(\varphi, N, \text{Gal}(L/K))$-modules, Fargues-Fontaine first define the O_X-representation $E(D', \varphi, G_K)$ of G_K whose underlying vector bundle is $E(D', \varphi)$ (as we defined in Theorem 5) and the semilinear G_K-action coming from the diagonal action of G_K on $D' \otimes_{F_0} B$. Note that this construction is functorial, so the relation $N \varphi = p \varphi N$ tells that N defines a G_K-equivariant map

$$E(D', \varphi, G_K) \rightarrow E(D', p \varphi, G_K) = E(D', \varphi, G_K) \otimes O(-1).$$

Let $\varpi \in C$ be any element such that $v(\varpi) = 1$, and for any $\sigma \in G_K$ define $\log_{\varpi, \sigma} = \sigma(\log(\varpi)) - \log(\varpi)$. One can show $(\sigma \mapsto \log_{\varpi, \sigma})$ defines an element in $Z^1(G_K, B^{\varphi=p}) = Z^1(G_K, H^0(O(1)))$. So we know the composition:

$$E(D', \varphi) \xrightarrow{N} E(D', \varphi) \otimes O(-1) \xrightarrow{\text{Id} \otimes \log_{\varpi, \sigma}} E(D', \varphi) \otimes O = E(D', \varphi),$$

defines an element in $Z^1(G_K, \text{End}(E(D', \varphi)))$ whose image actually lies in the nilpotent elements of $\text{End}(E(D', \varphi))$. So we can define

$$\alpha = (\alpha_\sigma)_\sigma = (\exp(-\text{Id} \otimes \log_{\varpi, \sigma} \circ N))_\sigma \in Z^1(G_K, \text{Aut}(E(D', \varphi))),$$

Fargues-Fontaine define the G_K-equivariant vector bundle associated with a (φ, N, G_K)-module D' to be the vector bundle:

$$E(D', \varphi, N, G_K) = E(D', \varphi, G_K) \wedge \alpha,$$

i.e., $E(D', \varphi, N, G_K)$ is isomorphic to $E(D', \varphi)$ as vector bundle, and the G_K action on $E(D', \varphi, N, G_K)$ is given by twisting the G_K-action of $E(D', \varphi, G_K)$ with the 1-cocycle α.

Lemma 6. We have

1. α becomes trivial when completes at ∞.
2. If the data (D', φ, N, G_K) comes from a potentially log-crystalline representation V of G_K, then the completion of $E(D', \varphi, N, G_K)$ at ∞ together with its G_K-action is isomorphic to $D_{\text{dr}}(V) \otimes_K B^{\text{dr}_\infty}$.
3. If we rewrite the above construction in terms of φ-modules over B^+ as in Remark 4 then α becomes trivial after the base change $B^+ \rightarrow W(k)[\frac{1}{p}]$.
Proof. (1) is [FF, Proposition 10.3.18, Remark 10.3.19]. For (3), if we rewrite the above construction in terms of \(\varphi \)-modules over \(B^+ \), then \(\mathcal{E}(D', \varphi) \) corresponds to the \(\varphi \)-module \(D' \otimes_{L_0} B^+ \) and the \(\varphi \)-equivariant map
\[
N \otimes \log_{\varphi, \sigma} : D' \otimes_{L_0} B^+ \to D' \otimes_{L_0} B^+
\]
corresponds to the map
\[
\mathcal{E}(D', \varphi) \xrightarrow{\alpha} \mathcal{E}(D', \varphi) \otimes \mathcal{O} \xrightarrow{-1} \mathcal{E}(D', \varphi) \otimes \mathcal{O} = \mathcal{E}(D', \varphi),
\]
In order to show \(\alpha \) becomes trivial after the base change \(B^+ \to W(\mathbb{F}_p)[1/p] \), one just need to show that \(\log_{\varphi, \sigma} \in B^+ \) maps to 0 under \(B^+ \to W(\mathbb{F}_p)[1/p] \), while this can be seen from the fact \(\log_{\varphi, \sigma} \in (B^+)^{\varphi = p} \), but \(W(\mathbb{F}_p)[1/p]^{\varphi = p} = 0 \).

For (2), if \(D' \) is a weakly admissible filtered \((\varphi, N, G_K) \)-module and we are assuming \(D' = (V \otimes B_{\mathrm{st}})^{G_L} \) with \(V \) a potentially log-crystalline representation that becomes log-crystalline over the finite Galois extension \(L \) over \(K \). Since \(\alpha \) becomes trivial at the stalk \(\infty \), one has
\[
\mathcal{E}(D', \varphi, N, G_K) = \mathcal{E}(D', \varphi, G_K) = (V \otimes B_{\mathrm{st}})^{G_L} \otimes_{L_0} B^+_{\mathrm{dR}}
\]
with the diagonal action of \(G_K \). We have \(V|_{G_L} \) is log-crystalline representation of \(G_L \), so it is de Rham and satisfies:
\[
(V \otimes B_{\mathrm{st}})^{G_L} \otimes_{L_0} L = (V \otimes B_{\mathrm{dR}})^{G_L}
\]
And since \(V \) is a de Rham representation of \(G_K \). We have:
\[
(V \otimes B_{\mathrm{dR}})^{G_L} = (V \otimes B_{\mathrm{dR}})^{G_K} \otimes_K L.
\]
Tensoring everything with \(B^+_{\mathrm{dR}} \), we get what we want to prove. \(\square \)

From now on, we will always assume the data \((D', \varphi, N, G_K) \) comes from a potentially log-crystalline representation \(V \) that becomes log-crystalline over a finite Galois extension \(L \) over \(K \). Using the \(G_K \)-equivariant filtration on \(D_L \), Fargues-Fontaine construct a \(G_K \)-equivariant modification \(\mathcal{E}(D', \varphi, N, \Fil^\bullet, G_K) \) of \(\mathcal{E}(D', \varphi, N, G_K) \) by letting:
\[
\mathcal{E}(D', \varphi, N, \Fil^\bullet, G_K)|_{X_{FF}\setminus \infty} = \mathcal{E}(D', \varphi, N, G_K)|_{X_{FF}\setminus \infty}
\]
and
\[
\mathcal{E}(D', \varphi, N, \Fil^\bullet, G_K) = \Fil^0(\mathcal{E}(D', \varphi, N, G_K)) = \Fil^0(D_L \otimes \Fil^\bullet(B_{\mathrm{dR}}))
\]
where the filtration on \(D_L \otimes \Fil^\bullet(B_{\mathrm{dR}}) \) is given by
\[
\Fil^k(D_L \otimes \Fil^\bullet(B_{\mathrm{dR}})) = \sum_{i+j=k} \Fil^i(D_L) \otimes \Fil^j(B_{\mathrm{dR}}).
\]

Proposition 4. If the filtered \((\varphi, N, G_K) \)-module \(D' \) is weakly admissible, then \(\mathcal{E}(D', \varphi, N, \Fil^\bullet, G_K) \) is semistable of slope 0. Moreover, there is a \(G_K \)-equivariant isomorphism
\[
V = H^0(X_{FF}, \mathcal{E}(D', \varphi, N, \Fil^\bullet, G_K)),
\]
where V is the potentially log-crystalline representation corresponds to the data $(D', \varphi, N, \text{Fil}^\bullet, G_K)$.

Proof. This is stated as [FF, §10.5.3, Remark 10.5.8] and the proof also works for potentially log-crystalline representations. Actually, let V be the potentially log-crystalline representation corresponds to $(D', \varphi, N, \text{Fil}^\bullet, G_K)$ and let $E_V = V \otimes_{\mathbb{Q}_p} \mathcal{O}_X$ be corresponded slope 0 \mathcal{O}_X-representation of G_K. The theorem is equivalence to show

$$E_V = \mathcal{E}(D', \varphi, N, \text{Fil}^\bullet, G_K)$$

and we can prove it by comparing the B-pairs of $\mathcal{E}(D', \varphi, N, \text{Fil}^\bullet, G_K)$ and \mathcal{E}_V by (4) of Theorem 4. While we have the B_e-part of the \mathcal{O}_X-representation $\mathcal{E}(D', \varphi, N, \text{Fil}^\bullet, G_K)$ is the same as the B_e-part of the \mathcal{O}_X-representation $\mathcal{E}(D', \varphi, N, G_K)$ by construction, and which is equal to

$$(D' \otimes_{B_{st}} L_0)^{\varphi=1, N=0}$$

by Corollary 10.3.17 of *loc.cit.* The B_{dR}^+-part of $\mathcal{E}(D', \varphi, N, \text{Fil}^\bullet, G_K)$ is the B_{dR}^+-representation

$$\text{Fil}^0(D_L' \otimes_{B_{dR}} B_{dR})$$

by definition.

On the other hand, the B-pair correspond to \mathcal{E}_V is

$$(V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{dR}^+)$$.

Since V is potentially log-crystalline, so we have $V \otimes_{\mathbb{Q}_p} B_e$ is potentially log-crystalline as a B_e-representation, which means there is a G_K-equivariant isomorphism

$$V \otimes_{\mathbb{Q}_p} B_e = \left((V \otimes_{\mathbb{Q}_p} B_e) \otimes_{B_{st}} B_{st} \right)^{G_L} \otimes_{L_0} B_{st}^{\varphi=1, N=0}$$

by Proposition 10.3.20 of *loc.cit.* And $V \otimes_{\mathbb{Q}_p} B_e \otimes_{B_{st}} B_{st}^{G_L}$ is nothing but D'. Since V is de Rham, so the B_{dR}^+-representation $V \otimes_{\mathbb{Q}_p} B_{dR}^+$ is generically flat in the sense of Definition 10.4.1 of *loc.cit.*, so Proposition 10.4.4 of *loc.cit.* shows that there is a G_K-equivariant isomorphism

$$V \otimes_{\mathbb{Q}_p} B_{dR}^+ = \text{Fil}^0(D_{dR}(V) \otimes_{K} B_{dR})$$.

The proposition follows from the fact $D_{dR}(V) \otimes_K L = D_{L}'$, and the G_K-equivariant filtration on D_{dR}' descents to the filtration $D_{dR}(V)$ by the definition of weakly admissibility filtered (φ, N, G_K)-modules.

Definition 5. If the filtered (φ, N, G_K)-module D' is weakly admissible, and let V be the corresponded potentially log-crystalline representation, then the G_K-equivariant modification

$$\mathcal{E}(D', \varphi, N, \text{Fil}^\bullet, G_K) \longrightarrow \mathcal{E}(D', \varphi, N, G_K)$$

together with a G_K-stable lattice T inside V defines a shtuka with one leg at $\varphi^{-1}(x_{C_p})$ over $S = \text{Spa}(C)$. Moreover, since the correspondence in
A NOTE ON ARITHMETIC BREUIL-KISIN-FARGUES MODULES

Theorem 8 is functorial, the shtuka constructed in this way carries a natural G_K-action.

A shtuka (resp. Hodge-Tate module or Breuil-Kisin-Fargues module) is called arithmetic if it (resp. the corresponded shtuka with one leg at $\varphi^{-1}(x_{C_p})$ over $\Spa(C)$) carries a G_K-action arisen as above.

Proposition 5. A Hodge-Tate module (T, Ξ) together with a semilinear G_K-action is arithmetic if and only if T is de Rham as a G_K-representation over \mathbb{Z}_p and there is a G_K-equivalence isomorphism

$$(T, \Xi) \cong (T, (T \otimes \mathbb{Z}_p B_{dR})^{G_K} \otimes_K B_{dR}^+).$$

A Breuil-Kisin-Fargues module $\mathfrak{M}^{\text{inf}}$ is arithmetic if and only if its $\acute{\text{e}}$tale realization $T = (\mathfrak{M}^{\text{inf}} \otimes W(C))^{\varphi=1}$ is de Rham as a G_K-representation over \mathbb{Z}_p and $\mathfrak{M}^{\text{inf}} \otimes B_{dR}^+$ has a B_{dR}^+-basis fixed by the G_K-action.

Proof. First, $(T, (T \otimes B_{dR})^{G_K} \otimes B_{dR}^+)$ is a Hodge-Tate module since T is potentially log-crystalline so de Rham, we have $(T \otimes B_{dR})^{G_K} = D_{dR}(T \otimes \mathbb{Q}_p)$ is of full rank.

The rest of the proposition comes from Lemma 6 (2) and the correspondence in Corollary 4. \square

Corollary 5. Let $\mathfrak{M}^{\text{inf}}$ be an arithmetic Breuil-Kisin-Fargues module $\mathfrak{M}^{\text{inf}}$ then

1. $T(\mathfrak{M}^{\text{inf}})$ is log-crystalline if and only if the inertia subgroup I_K of G_K acts trivially on $\mathfrak{M}^{\text{inf}} \otimes A_{\text{inf}} W(\overline{k})$.
2. $T(\mathfrak{M}^{\text{inf}})$ is potentially crystalline if and only if there is a φ and G_K equivariant isomorphism

$$\mathfrak{M}^{\text{inf}} \otimes A_{\text{inf}} B^+ \cong \mathfrak{M}^{\text{inf}} \otimes_{W(\overline{k})} B^+.$$

3. $T(\mathfrak{M}^{\text{inf}})$ is crystalline if it satisfies the conditions in (1) and (2).

Proof. Keep the notions as in the proof of Lemma 5. For (1), recall we have the fact that T is log-crystalline if and only if $T|_{I_K}$ is log-crystalline, so we can assume \overline{k} is algebraically closed and $L_0 = K_0$. And we have since α becomes trivial after $B^+ \to W(\overline{k})[\frac{1}{p}] = K_0$ from Lemma 5 (3), we have $\overline{\mathfrak{M}^{\text{inf}}}[\frac{1}{p}]$ with its G_K-action is nothing but D' with the G_K-action coming from the G_K-structure of the filtered (φ, N, G_K)-module D', and it is log-crystalline if and only if the filtered (φ, N, G_K)-module D' is a filtered (φ, N)-module D', i.e. G_K acts trivially on D'.

For (2), again we can restrict our statement to I_K, and (2) means the shtuka comes from just modifying the vector bundle $E(D', \varphi, G_K)$ (there is not a twist by α), i.e., $N = 0$. \square

4. Kisin modules and arithmetic shtukas

Let K and O_K as before, fix a uniformizer ϖ of O_K and $k = O_K/\varpi$ the residue field. We also fix a compatible system $\{\varpi^n\}$ of p^n-th roots of ϖ,
we define $K_\infty = \bigcup_{n=1}^{\infty} K(\varpi_n)$. The compatible system $\{\varpi_n\}$ also defines an element $([\varpi_n])$ in $\mathcal{O}_C = \varprojlim \mathcal{O}_{C_\varphi}/p$ and so an element $u = ([\varpi_n])$ in A_{\inf}. We have $k = \mathcal{O}_K/\varpi$ and we have $k = \varprojlim \mathcal{O}_K/\varpi \sim \varprojlim \mathcal{O}_{C_\varphi}/\varpi = \varprojlim \mathcal{O}_{C_\varphi}/p = \mathcal{O}_C$ by [BMS] Lemma 3.2, so $W(k)$ is a subring of A_{\inf}. Define \mathcal{S} as the sub-$W(k)$-algebra of A_{\inf} generated by u. One can check $\varphi_{A_{\inf}}(u) = u^p$, so in particular \mathcal{S} in stable under $\varphi_{A_{\inf}}$, let $\varphi_{\mathcal{S}} = \varphi_{A_{\inf}}|\mathcal{S}$. We also have G_{K_∞} fix u so G_{K_∞} acts trivially on \mathcal{S}. And we have the following commutative diagram:

\[
\begin{array}{ccc}
\mathcal{S} & \xrightarrow{\varphi_{\mathcal{S}}} & \mathcal{O}_K \\
\downarrow & & \downarrow \\
A_{\inf} & \xrightarrow{\varphi} & \mathcal{O}_{C_\varphi}
\end{array}
\]

the vertical arrows are faithful flat ring extensions by [BMS] and moreover, $\varphi|_{\mathcal{S}}$ is surjective and the kernel is generated by $E(u)$, which is an Eisenstein polynomial. All arrows in this diagram are G_{K_∞}-equivalent.

Let T be a log-crystalline representation of G_K over \mathbb{Z}_p with nonnegative Hodge-Tate weights, then Kisin in [Kis] can associate T with a free Kisin module, i.e. a finite free \mathcal{S}-module \mathcal{M} together a $\varphi_{\mathcal{S}}$-semilinear endomorphism $\varphi_{\mathcal{M}}$ such that the cokernel of the \mathcal{S}-linearization $1 \otimes \varphi_{\mathcal{M}} : \varphi_{\mathcal{S}} \mathcal{M} \to \mathcal{M}$ is killed by a power of $E(u)$. Moreover, if we define $\mathcal{M}_{\inf}(T) = \mathcal{M} \otimes_{\mathcal{S}, \varphi} A_{\inf}$ then one can show $\mathcal{M}_{\inf}(T)$ is a Breuil-Kisin-Fargues module as in Definition 4, it carries a natural G_{K_∞}-semilinear action. We claim that there is an unique way to define a G_K-semilinear action on $\mathcal{M}_{\inf}(T)$ commutes with $\varphi_{\mathcal{M}_{\inf}(T)}$ extending the G_{K_∞}-semilinear action such that

$$\left(\mathcal{M}_{\inf}(T) \otimes W(C)\right)^{\varphi = 1} = T.$$

In the case when T is a potentially log-crystalline representation of G_K over \mathbb{Z}_p with nonnegative Hodge-Tate weights, and assume L/K is a finite Galois extension such that $T|_{G_L}$ is log-crystalline. Then as before, $\mathcal{M}_{\inf}(T|_{G_L})$ carries a natural G_{L_∞}-semilinear action for a choices of L_∞. We make the claim:

Proposition 6. There is a unique way to extends the G_{L_∞}-semilinear action on $\mathcal{M}_{\inf}(T) := \mathcal{M}_{\inf}(T|_{G_L})$ to an action of G_K, such that it commutes with $\varphi_{\mathcal{M}_{\inf}(T)}$ and

$$\left(\mathcal{M}_{\inf}(T) \otimes W(C)\right)^{\varphi = 1} = T.$$

Proof. As we mentioned in the introduction, we will prove this proposition by comparing the construction of Kisin of the \mathcal{S}-module and Fargues-Fontaine’s construction.

First, we need a brief review of the construction of Kisin module from log-crystalline representation: let T is a potentially log-crystalline representation of G_K over \mathbb{Z}_p, L/K be a finite Galois extension such that $T|_{G_L}$ becomes log-crystalline, and let $L_0 = W(k_L)[\frac{1}{p}]$ and define $D' = (T \otimes B_{st})^{G_L}$.
as the filtered \((\varphi, N, G_K)\)-module associated with \(T \otimes \mathbb{Q}_p\). Then we obtain a filtered \((\varphi, N)\)-module \(D'\) over \(L\) or \((D', \varphi, N, \text{Fil}^\bullet)\) by forgetting the \(G_K\)-action. \(D'\) corresponds to the log-crystalline representation \(T \otimes \mathbb{Q}_p|_{G_L}\). Now let \(\mathcal{O}\) be the ring of rigid analytic functions over the open unit disc over \(L_0\) in the variable \(u\). Let \(\mathfrak{S} = W(k_L)[[u]]\), then one has \(\mathfrak{S}[1/p] \subset \mathcal{O}\) and there is a \(\varphi\O\) extending \(\varphi\mathfrak{S}\). Fix \((\varphi, N, \text{Fil}^\bullet)\) any choice of compatible system of \(p^n\)-th roots of a uniformizer \(\varpi_{L,0}\) of \(L\), then one can easily show that the the inclusion \(\mathfrak{S}[1/p] \rightarrow \mathfrak{A}_{\inf}[1/p]\) with \(u \mapsto [(\varpi_{L,n})]\) extends to an inclusion \(\mathcal{O} \rightarrow B^+\). Geometrically, \(\mathcal{O}\) (resp. \(B^+\)) is the locus \(\{p \neq 0\}\) of \(\text{Spa}(\mathfrak{S})\) (resp. \(\text{Spa}(\mathfrak{A}_{\inf})\)), and restrict the covering map \(\text{Spa}(\mathfrak{A}_{\inf}) \rightarrow \text{Spa}(\mathfrak{S})\) to these loci will give \(\mathcal{O} \rightarrow B^+\).

Given \((D', \varphi, N, \text{Fil}^\bullet)\), Kisin constructs a finite free module \(\mathcal{M}(D')\) over \(\mathcal{O}\) together with a \(\varphi\O\)-semilinear action [Kis §1.2].

To be more precise, for every \(n \geq 0\) consider the composition:

\[
\theta_n : \mathcal{O} \longrightarrow B^+ \xrightarrow{\varphi^{-n}} B^+ \xrightarrow{\theta} \mathbb{C}_p
\]

and let \(x_n\) be the closed points on the rigid open unit disc defined by \(\theta_n\). Now define

\[
\log u = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(u/\varpi_{L,0} - 1)^i}{i}
\]

One can check \(\log u \in B^+_{\text{dR}}\) and let \(\mathcal{O}_{st} = \mathcal{O}[\log u]\), the \(\mathcal{O}\)-algebra generated by \(\log u\) in side \(B^+_{\text{dR}}\). And extend the \(\varphi\) action to \(\log u\) by \(\varphi(\log u) = \nu \log u\) and define a \(\mathcal{O}\)-derivation \(N\) on \(\mathcal{O}_{st}^+\) by letting \(N(\log u) = -\lambda\) for some \(\lambda \in \mathcal{O}\). Kisin defines \(\mathcal{M}(D')\) as a modification of the vector bundle

\[
(\mathcal{O}[\log u] \otimes_{L_0} D)^{N=0}
\]

over \(\mathcal{O}\) along all the stalks at \(x_n\) for \(n \geq 0\). And the modifications are defined using the filtration on \(D_L\). As a result, the stalks of \(\mathcal{M}(D')\) away from \(\{x_n\}\) are isomorphic to those of \((\mathcal{O}[\log u] \otimes_{L_0} D')^{N=0}\). If we base change \(\mathcal{M}(D')\) to \(B^+\), and consider the closed points \(x_{-1}\) corresponds to

\[
B^+ \xrightarrow{\varphi} B^+ \xrightarrow{\theta} \mathbb{C}_p.
\]

We know the completion of \(B^+\) at \(x_{-1}\) is isomorphic to \(B^+_{\text{dR}}\) and the above arguments tell us that:

\[
\mathcal{M}(D') \otimes_{\mathcal{O}, \varphi} B^+_{\text{dR}} = (\mathcal{O}[\log u] \otimes_{L_0} D')^{N=0} \otimes_{\mathcal{O}, \varphi} B^+_{\text{dR}}.
\]

Moreover, Kisin shows there is a natural isomorphism [Kis Proposition 1.2.8.]:

\[
(\mathcal{O}[\log u] \otimes_{L_0} D')^{N=0} = (L_0[\log u] \otimes_{L_0} D')^{N=0} \otimes_{L_0} \mathcal{O} \xrightarrow{\eta \otimes id} D' \otimes_{L_0} \mathcal{O}.
\]

This tells us the stalk \((\mathcal{M}(D') \otimes_{\mathcal{O}} B^+) \otimes_{B^+, \varphi} B^+_{\text{dR}}\) is isomorphic to

\[
(D' \otimes_{L_0, \varphi} L_0) \otimes_{L_0} B^+_{\text{dR}} \cong D' \otimes_{L_0} B^+_{\text{dR}}.
\]
Moreover, using the theory of slope of Kedlaya, Kisin was able to prove that the \(\varphi \)-module \(\mathcal{M}(D') \) over \(\mathcal{O} \) descents to a Kisin module \(\mathfrak{M} \) over \(\mathcal{G} \) when \(D' \) is weakly admissible, i.e., \(\mathfrak{M} \otimes \mathcal{O} = \mathcal{M}(D') \). So we have
\[
\mathfrak{M} \otimes_{\mathcal{G}, \varphi} B^+ = \mathcal{M}(D') \otimes_{\mathcal{O}, \varphi} B^+.
\]
In particular, one has:
\[
\mathfrak{M} \otimes_{\mathcal{G}, \varphi} B_{\text{dR}}^+ = \mathcal{M}(D') \otimes_{\mathcal{O}, \varphi} B_{\text{dR}}^+ = D' \otimes_{L_0} B_{\text{dR}}^+.
\]
A theorem of Fontaine says that the ways of descent \(\mathcal{M}(D') \) to \(\mathfrak{M} \) are canonically corresponded with \(G_{L_0} \)-stable \(\mathbb{Z}_p \)-lattices in \(T \otimes \mathbb{Q}_p \), where \(L_0 = \bigcup_{n=1}^{\infty} L(\varpi_{L,n}) \). Then Kisin define \(\mathfrak{M} \) to be the \(\mathcal{G} \)-module descents \(\mathcal{M}(D') \) using the lattice \(T|_{G_{L_0}} \). This is the same as saying that
\[
(\mathfrak{M} \otimes_{\mathcal{G}} W(C))^{\varphi=1} = T|_{G_{L_0}}.
\]
Note that
\[
(\mathfrak{M} \otimes_{\mathcal{G}, \varphi} W(C))^{\varphi=1} = (\mathfrak{M} \otimes_{\mathcal{G}} W(C))^{\varphi=1}
\]
since \(W(C)^{\varphi=1} = \mathbb{Z}_p \). Now if we let \(\mathfrak{M}_{\text{inf}}(T) = \mathfrak{M} \otimes_{\mathcal{G}, \varphi} A_{\text{inf}} \), then the Hodge-Tate module of \(\mathfrak{M}_{\text{inf}}(T) \) is
\[
(T|_{G_{L_0}}, D' \otimes_{L_0} B_{\text{dR}}^+).
\]
To finish the proof, we let \(\mathfrak{M}_c^{\text{inf}} \) be the Breuil-Kisin-Fargues module corresponds to the constant Hodge-Tate module \((T, T \otimes B_{\text{dR}}^+) \), then \(\mathfrak{M}_c^{\text{inf}} \) is equipped with an unique semilinear \(G_K \)-action coming from the action on \(T \). It is enough to show that there is an injection \(\mathfrak{M}_{\text{inf}}(T) \to \mathfrak{M}_c^{\text{inf}} \) such that \(\mathfrak{M}_{\text{inf}}(T) \) is stable under \(G_K \). From the construction in Corollary 4, it is enough to show the Hodge-Tate module corresponds to \(\mathfrak{M}_{\text{inf}}(T) \) injects to \((T, T \otimes B_{\text{dR}}^+) \) and stable under \(G_K \) (the functor is left exact). But we have computed the the Hodge-Tate module corresponds to \(\mathfrak{M}_{\text{inf}}(T) \). Using the fact
\[
D' \otimes_{L_0} L = D_{\text{st}}(T \otimes \mathbb{Q}_p|_{G_L}) \otimes_{L_0} L = D_{\text{dR}}(T \otimes \mathbb{Q}_p|_{G_L}),
\]
and
\[
D_{\text{dR}}(T \otimes \mathbb{Q}_p) = D_{\text{dR}}(T \otimes \mathbb{Q}_p|_{G_L})^{G_K} = (D' \otimes_{L_0} L)^{G_K}.
\]
Then the proposition follows from that \(D_{\text{dR}}(T \otimes \mathbb{Q}_p) \otimes B_{\text{dR}}^+ \) injects into \(T \otimes B_{\text{dR}}^+ \). And when we extends the \(G_{L_0} \) action on \(T|_{G_{L_0}} \) to \(G_K \) by \(T \), \(D' \otimes_{L_0} B_{\text{dR}}^+ \) which equals to \(D_{\text{dR}}(T \otimes \mathbb{Q}_p) \otimes_K B_{\text{dR}}^+ \) is automatically stable under \(G_K \) inside \(T \otimes B_{\text{dR}}^+ \).

From the proof of the above proposition, we have

Corollary 6. Let \(T \) be a log-crystalline representation of \(G_K \) over \(\mathbb{Z}_p \) with nonnegative Hodge-Tate weights, and let \(\mathfrak{M}_{\text{inf}}(T) \) be the Breuil-Kisin-Fargues module with the semilinear \(G_K \)-action described as in the pervious proposition. Then \(\mathfrak{M}_{\text{inf}}(T) \) is arithmetic. Moreover, \(\mathfrak{M}_{\text{inf}}(T) \) corresponds to the shtuka associate with the \(G_K \)-equivariant modification:
\[
\mathcal{E}(D, \varphi, N, \text{Fil}^\bullet, G_K) \twoheadrightarrow \mathcal{E}(D, \varphi, N, G_K)
\]
together with the G_K-stable \mathbb{Z}_p-lattice T, where $(D, \varphi, N, \Fil^*, G_K)$ is the filtered (φ, N, G_K)-module corresponds to $T \otimes \mathbb{Q}_p$.

Proof. We have showed that the Hodge-Tate module of $\mathcal{M}^\inf(T)$ together with the G_K-action defined in the previous proposition is isomorphic to $(T, D_{\text{dR}}(T \otimes \mathbb{Q}_p) \otimes_K B_{\text{dR}}^+)$. Then use Proposition 5. □

Definition 6. [GL, F.7. Definition] Let \mathcal{M}^\inf be a Breuil-Kisin-Fargues G_K-module. Then we say that \mathcal{M}^\inf admits all descents over K if the following conditions hold.

1. For any choice ϖ of uniformizer of O_K and any compatible system $\varpi^b = (\varpi_n)$ of p^n-th roots of ϖ, there is a Breuil-Kisin module \mathcal{M}_{ϖ^b} defined using ϖ^b such that $\mathcal{M}_{\varpi^b} \otimes_{\Phi, \varpi} A^\inf$ is isomorphic to \mathcal{M}^\inf and \mathcal{M}_{ϖ^b} is fixed by $G_{K, \varpi^b, \infty}$ under the above isomorphism, where $K_{\varpi^b, \infty} = \cup_n K(\varpi_n)$

2. Let $u_{\varpi^b} = [(\varpi_n)]$, then $\mathcal{M}_{\varpi^b} \otimes_{\Phi, \varpi} (\mathcal{S} / u_{\varpi^b} \mathcal{S})$ is independent of the choice of ϖ and ϖ^b as a $W(k)$-submodule of $\mathcal{M}^\inf \otimes_{A^\inf} W(k)$.

3. $\mathcal{M}_{\varpi^b} \otimes_{\Phi, \varpi} (\mathcal{S} / E(u_{\varpi^b}) \mathcal{S})$ is independent of the choice of ϖ and ϖ^b as a O_K-submodule of $\mathcal{M}^\inf \otimes_{A^\inf} (A^\inf / \xi A^\inf)$.

Remark 7. From Corollary 6 and if we further assume that the étale realization T of an arithmetic Breuil-Kisin-Fargues module \mathcal{M}^\inf is log-crystalline, we observe

$$\mathcal{M}^\inf = \mathcal{M}^\inf(T) = \mathcal{M} \otimes_{\Phi, \varpi} A^\inf.$$ We have \mathcal{M} depends on the choice of $\{\varpi_n\}$, while the left hand side only depends on T from Corollary 6.

Proposition 7. Let \mathcal{M}^\inf be a Breuil-Kisin-Fargues G_K-module. Then \mathcal{M}^\inf admits all descents over K if and only if \mathcal{M}^\inf is arithmetic and satisfies the condition (1) in Corollary 5, i.e., the inertia subgroup I_K of G_K acts trivially on $\mathcal{M}^\inf = \mathcal{M}^\inf \otimes_{A^\inf} W(k)$.

Proof. The if part of the proposition comes from Corollary 5 (1), Corollary 6 and Remark 7.

For the only if part of the proposition, one uses the lemma about Kummer extensions as stated in [GL, F.15. Lemma,]. Then it will imply that the submodules defined in (2) and (3) of Definition 6 are G_K-stable.

Then (3) in Definition 6 together with Lemma 1 will imply that \mathcal{M}^\inf is arithmetic. And similarly, (2) in Definition 6 will force I_K acts trivially on $\mathcal{M}^\inf = \mathcal{M}^\inf \otimes_{A^\inf} W(k)$. □

Remark 8. As been mentioned in [GL, F.12. Remark,], it is plausible that (2) and (3) in Definition 6 are actually consequences of (1). And one observes in the proof of Proposition 7, (2) + (3) implies \mathcal{M}^\inf is arithmetic and $T(\mathcal{M}^\inf)$ is log-crystalline, so by Remark 7, \mathcal{M}^\inf satisfies (1).
Corollary 7. (2) + (3) implies (1) in Definition 6.

References

[Ber] Berger L., Représentations p-adiques et équations différentielles. Invent. Math. 148 (2002), 219-284.

[BMS] Bhatt, B., Morrow, M., Scholze, P.: Integral p-adic Hodge theory. Publ. Math. de l’IHS 128 (2018), 219–397.

[BS] Bhatt, B, Scholze, P.: Prisms and prismatic cohomology. arXiv:1905.08229

[CK] K. Česnavičius and T. Koshikawa. The A_{inf}-cohomology in the semistable case. arXiv:1710.06145

[EG] Matthew Emerton and Toby Gee. Moduli stacks of étale (φ, Γ)-modules and the existence of crystalline lifts. arXiv:1908.07185

[Far] L. Fargues, L. Quelques résultats et conjectures concernant la courbe. Astérisque, 369 (2015), 325-374.

[FF] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque, 406(2018).

[GL] Toby Gee and Tong Liu, Appendix to “Moduli stacks of étale (φ, Γ)-modules and the existence of crystalline lifts”) Breuil-Kisin-Fargues modules and potentially semistable representations. arXiv:1908.07185

[How] Sean Howe, Transcendence of the Hodge-Tate filtration. Journal de théorie des nombres de Bordeaux, 30 no. 2 (2018), p. 671-680.

[Ked1] K. S. Kedlaya, Sheaves, stacks, and shtukas, http://kskedlaya.org/papers/aws-notes.pdf, to appear in Proceedings of Arizona Winter School 2017

[Ked2] K. S. Kedlaya, Some ring-theoretic properties of A_{inf}, arXiv:1602.09016.

[Kis] Mark Kisin, Crystalline representations and F-crystals – Algebraic Geometry and Number Theory, Drinfeld 50th Birthday volume, 459-496.

[KL] K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory: foundations, Astérisque (2015), no. 371, 239

[SW] P. Scholze, J. Weinstein: Berkeley lectures on p-adic geometry, available at http://www.math.unibonn.de/people/scholze/, to appear in Annals of Math Studies.

[Yao] Zijian Yao, The log crystalline specialization of A_{inf}-cohomology in the semistable case. Preprint. (2018)

(Heng Du) Department of Mathematics, Purdue University

E-mail address: du136@purdue.edu