Multiple Cell Surface Receptors for the Short Arms of Laminin:
α1β1 Integrin and RGD-dependent Proteins Mediate Cell Attachment only to Domains III in Murine Tumor Laminin

Simon L. Goodman,* Monique Aumailley,† and Helga von der Mark*

*Max-Planck Society Clinical Research Group for Rheumatology at the University of Erlangen/Nürnberg, Schwabachanlage 10, 8520, Erlangen, Germany; and †Max-Planck Institute for Biochemistry, 8033 Martinsried, Germany

Abstract. Cell surface molecules that interact with the cross formed by the three short arms of murine tumor laminin were studied using thermal perturbation, antibody and peptide blocking, and affinity chromatography. Several potential receptors for the laminin short arms were revealed that differed from those mediating cell attachment to the E8 (long arm) fragment.

Two cell lines, Rugli and L8 attached well to E1-X (short arm) fragments of laminin. This attachment was blocked by antibodies against α1 integrin chains. Other cells were unable to attach strongly to E1-X, but attached to P1. This attachment was unaffected by anti-β1 integrin antibodies, but specifically blocked by the peptide GRGDS. By contrast, binding of Rugli cells was RGD independent and blocked by anti-β1 integrin antibodies. G7 and C2C12 myoblasts were very sensitive to GRGDS (ID₅₀ 2 µg.ml⁻¹) for attachment to P1 which implied that a non-β1 series integrin, possibly αVβ3, was involved. On heat denaturation of P1, attachment remained sensitive to RGDS and ID₅₀ was unchanged. On heat denaturation of E1-X, attachment remained sensitive to RGDS but the ID₅₀ increased to 200 µg.ml⁻¹.

Cellular β1 integrins were retained on laminin affinity columns. A β1 integrin with an ~190 kD α-chain could be isolated from Rugli cells whose attachment could be blocked by anti-α1 antibodies and not from cells blocked by RGDS peptides. Anti-α1 antibodies blocked Rugli attachment to native laminin, but only when the E8 cell binding sites on laminin were also blocked. Thus, a receptor related to α1β1 integrin can function simultaneously with a receptor for E8. Anti-α1 also blocked attachment to heated laminin, suggesting that the heat-stable attachment activity in laminin involved the E1-X binding site.

Thus, at least two putative receptors mediate attachment to the short arms of laminin. One, related to α1β1 integrin, recognizes RGDS-independent sites in E1-X defined by P1 (within domains III, IIIa, IIIb), and one is an RGD-dependent molecule recognizing sites in P1, and is not a β integrin.

© The Rockefeller University Press, 0021-9525/91/05/931/11 $2.00
The Journal of Cell Biology, Volume 113, Number 4, May 1991 931-941 931
Here we focus on the nature of the EI-X and P1 binding sites. A cell binding site, cryptic on the native molecule, has been assigned to a sequence LGDPN (cf. fibronectin attachment sequence GRGDSP [Ruoslahti and Pierschbacher, 1987]) COOH-terminal of residue 1121 in the A-chain (Sasaki et al., 1988), on the domain IIIa/IVa boundary (Aumailley et al., 1990a). Cells bind this site only after pepsin digestion of laminin (Aumailley et al., 1987; Aumailley et al., 1990a), but others can bind to a site in EI-X (Goodman et al., 1987), a region identified earlier as a cell binding domain (Liotta et al., 1981; Terranova et al., 1983). The binding activity of EI-X is stable over a wide temperature range (Goodman et al., 1987). But there is conflict as to whether the “overt” attachment sites in EI-X are artifacts of preparation (Sonnenberg et al., 1990), and in particular if they are due to contamination of EI-X by laminin, E8, or P1 fragments.

Here we investigate whether the EI-X cell attachment site is artifactual or present in native laminin. We illuminate the relationship between the EI-X and P1 cell attachment sites and demonstrate that cells simultaneously use both the EI-X and the E8 attachment sites.

Several members of the integrin superfamily (Tamkun et al., 1986; Hynes, 1987; Reichardt et al., 1989; Albelda and Buck, 1990) may act as receptors for laminin. Integrins are transmembrane heterodimers that interact with matrix components or with other cells, and in the cytoplasm with the cytoskeleton. They provide a transmembrane signaling system by which cells may respond to their insoluble environment. Integrins including $\alpha_5\beta_1$ (Ignatius and Reichardt, 1988; Turner et al., 1989; Ignatius et al., 1990), $\alpha_5\beta_2$ (Langgino et al., 1989), $\alpha_5\beta_3$ (Gehlsen et al., 1988; Gehlsen et al., 1989) and $\alpha_6\beta_1$ (Sonnenberg et al., 1990), and a novel $\alpha_5\beta_1$ complex (Kramer and Marks, 1989; Kramer et al., 1989a,b), have been implicated as laminin receptors.

We show here that (a) there are two distinct attachment sites in EI-X one of which is present and available in intact EHS-laminin; (b) one is apparently recognized by integrins related to $\alpha_5\beta_1$, the other uses receptors that are RGD-dependent and non-β_1-series integrins; and (c) cells can simultaneously use the $\alpha_5\beta_1$-like binding site in EI-X and the E8 site. Thus, there appear to be at least two mechanisms by which cells can attach to the three short arms of laminin, and at least two regions in the short arms used for attachment.

Materials and Methods

Unless otherwise stated, all chemicals were obtained from Sigma Chemicals (Deisenhofen, Germany). Laminin-nidogen complex was extracted from the EHS tumour as previously described (Paulsson et al., 1987). The P1 fragment was produced by pH 1.9 pepsin digestion of laminin (Aumailley et al., 1990a). The EI-X fragment (Timpl et al., 1983; Paulsson et al., 1985; Goodman et al., 1987) was from Dr. R. Deutzmann (University of Regensburg, Germany). Peptides Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP: $\alpha_5\beta_1$ integrin fibronectin recognition site [Pytela et al., 1985a]; Boehringer-Mannheim, Mannheim, Germany), Gly-Arg-Gly-Asp-Phe-Pro (GRGFSPL: control peptide; Bachem Chemicals, Bubendorf, Switzerland) and Tyr-Ile-Gly-Ser-Arg (YIGSR; “68K specific sequence”; [Graf et al., 1987] Bachem Chemicals), were stored at -20°C in sterile distilled water at >20 mg • ml$^{-1}$.

Murine (G7, C2C12) and rat (L8) myoblasts and human fibrosarcoma cells (HT1080) were obtained from American Tissue Culture Collection (Rockville, MD) and cultured as recommended. Rugini rat glioblastoma has been previously described (Goodman et al., 1987; Gehlsen et al., 1988, 1989).

Anti-integrin Antibodies

Polyclonal antibodies against a 39-mer peptide from the cytoplasmic domain...
of the β_1 integrin subunit ("anti-β_1 antibodies") were from Dr. R. O. Hynes (Howard Hughes Cancer Institute, Massachusetts Institute of Technology, Boston, MA) or were prepared as described previously (Marcantonio and Hynes, 1988). Polyclonal antibody against rat β_1 integrin was from Dr. D. Gullberg (University of Uppsala, Sweden [Gullberg et al., 1989]). β_1 antibodies react in Western blots of Rugli, C2C12, G7, L8, and HT1080 cells with a single band at ≈ 110 kD/≈ 130 kD (nonreduced/reduced [red/red]) on SDS-PAGE, and comigrate with the β_1 subunit of purified VLA2 (see for example, Fig. 6). Murine monoclonal antibodies against rat α_1 integrin (3A3; Turner et al., 1989) were provided by Dr. S. Carbenet (Montreal General Hospital, Montreal, Canada), rat monoclonal antibodies against human and mouse α_6 (GOH3; Sonnenberg et al., 1988, 1990) were from Dr. A. Sonnenberg (Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands).

Attachment Assays
These were as described previously (Goodman et al., 1987; Ocalan et al., 1988). Proteins (usually at $30 \mu\text{g} \cdot \text{ml}^{-1}$ in PBS) were coated onto 96-well tissue culture plates for 1 h at 37°C. Residual protein binding sites were blocked with heat-denatured BSA (2% [wt/vol] in PBS: overnight at 4°C). Cells in attachment buffer (0.5% [wt/vol] BSA, DME, HEPES-NaOH [50 mM: pH 7.4]) at 37°C were added to the 96-well plate (~$50,000$ cells in $50 \mu\text{l}$ attachment buffer). After 1 h at 37°C, the plate was washed on an ELISA-plate washer (Tittertek plate washer 88; Flow Laboratories; Meckenheim, Germany) with PBS, absolute numbers of cells attached were quantitated using a lysosomal hexosaminidase assay (Landegren, 1984) with reference to serially diluted external standards.

The binding of cells to BSA-blocked wells (taken as nonspecific background and subtracted from the data presented here) was consistently under 0.2% of the maximum specific binding (excepting B16F10 where the background was subtracted from the data presented here). Experiments were repeated at least three times, and the results shown are from typical representative experiments. Error bars show twice the standard deviation of (usually) four replicate measurements. Rare exceptions are noted in the figure legends.

For P1, the highest activity was obtained when ELISA plates were used (Maxisorp; cat. 442404; Nunc, Wiesbaden-Biebrich, Germany). Other tissue culture plastics from Nunc and Falcon Labware gave variable results. For laminin, fibronectin, and other laminin fragments all plates gave similar results.

For EI-X, the number of cells attaching at a given coating concentration under standard conditions varied between EI-X preparations (see for example, Figs. 3 and 4). This may be due to heterogeneity in EI-X (see Introduction). The absolute numbers of cells attaching in different experiments need not be directly comparable. However the relative effects (induced by heat or by blocking reagents) are completely consistent.

Thermal Inactivation Experiments
These were as described previously (Goodman et al., 1987). Protein solutions (500 ml; $10 \mu\text{g} \cdot \text{ml}^{-1}$ in PBS) stored on ice in Eppendorf microcentrifuge tubes (Brinkman Instruments, Inc., Palo Alto, CA) were transferred to a heating block. After 10 min at the desired temperature, the tubes were transferred to ice until used for coating and cell attachment assays.

Antibody and Peptide Blocking Experiments
In these experiments P1 and EI-X were used heated or native at a coating concentration of $30 \mu\text{g} \cdot \text{ml}^{-1}$. (a) Antibody blocking experiments were performed by preincubating cells with diluted purified antibody or with diluted hybridoma supernatant, or with diluted serum ascites (1 h at 37°C), before transfer to protein coated plates and attachment assays. The final concentration of the antibodies used was $100 \mu\text{g} \cdot \text{ml}^{-1}$ (anti-β_1, external and internal domains [Gullberg et al., 1989]), $10 \mu\text{g} \cdot \text{ml}^{-1}$ (3A3; anti-α_1 [Turner et al., 1989]), 1:100 diluted ascites (GOH3; anti-α_6 [Sonnenberg et al., 1990]). (b) For substrate blocking assays, protein coated plates were preincubated (1 h at 37°C) with serially diluted anti-E8 rabbit polyclonal antisera (Goodman et al., 1987), before washing with PBS and use in attachment assays. An antibody concentration giving $>95\%$ inhibition of attachment to E8 was selected (1:75 dilution of serum), protein coated plates were preincubated (1 h at 37°C) with this concentration of anti-E8 antiserum and of control anti-β_1, integrin (cytoplasmic domain) antiserum, before antibody blocking experiments as described in (a). For peptide blocking assays, cells were transferred for attachment assay onto plates containing peptides diluted (at least 1:50) with attachment buffer. Rare variations in these dilutions are given in the figure legends.

Affinity Chromatography
Divalent cation-dependent laminin and collagen binding proteins were isolated essentially according to Gehlsen et al. (1988). Cells in roller bottles were harvested by scraping with a rubber policeman, and washed with serum-free medium. The cell pellet (5-10 g wet weight) was extracted twice (1 h × 4°C) with 2 vol of detergent buffer (buffer A: 50 mM octylglucoside, 1 mM MnCl$_2$, 150 mM NaCl, 1 mM NEM, 1 mM PMSE, 0.1% [wt/vol] sodium azide, 50 mM Tris, pH 7.4). After clearing by high speed centrifugation the supernatant was passed via a guard column of Sepharose CL-4B (Pharmacia, Uppsala) over murine tumor laminin-coupled Sepharose or over human collagen I-coupled Sepharose (both columns CNBr-Sepharose; ≈ 1-2 mg protein ml$^{-1}$ packed bed; 1 × 6 cm) preequilibrated in buffer B (buffer A but containing 25 mM octylglucoside and 0.1 mM NEM and PMSE). After washing with buffer B, the columns were eluted with buffer B containing 10 mM EDTA and lacking MnCl$_2$, and the EDTA eluant immediately "neutralized" with excess MnCl$_2$. All columns were run at 20°C. Eluants were concentrated (Centricron; Amicon Corp., Danvers, MA) and stored at -20°C, before analysis by SDS-PAGE (Laemmli, 1970) on 7% gels, and Western blotting (Towbin et al., 1979).

Iodination
Cells were iodinated in situ or in suspension after EDTA treatment (5 mM in PBS, 10 min at 37°C) by the coupled lactoperoxidase/glucose oxidase method (Hubbard and Cohn, 1972) to ≈ 6 dpm/cell, before detergent extraction as described above for affinity chromatography.

Figure 2
Figure 2. The E8 binding sites of laminin are thermally sensitive. The P1 and EI-X sites are stable. Laminin (circles), E8 (squares), P1 (diamonds), and EI-X (triangles) were diluted to 10 $\mu\text{g} \cdot \text{ml}^{-1}$ before heating to the temperature shown for 10 min. Coating and attachment assays with G7 myoblasts (top) or Rugli cells (bottom) were in duplicate for 1 h at 37°C. The mean of the duplicate is shown. The activity of E8 drops precipitously between 60 and 65°C, while P1 and EI-X activity remains stable.
proteins in buffer A were iodinated for 2 min at 0°C to \(\sim 2 \times 10^6 \) dpm/μg by the iodogen method (Fraker and Speck, 1978), and free iodine was removed by passage over a Sepharose-G-25 column (1 x 5 cm) preequilibrated in buffer A.

Results

Cell Attachment Site in Laminin-E8 is Heat Labile in P1 and E1-X Heat Stable

Rugli attached and spread on laminin, E8, P1, and on E1-X. G7 attached and spread on laminin, E8 and P1 but not on E1-X. The attachment activity of P1 was heat stable as was that of E1-X (Fig. 2). By contrast, the activity of E8 was abolished by heating to between 60 and 65°C. The attachment activity of laminin for G7 myoblasts also disappeared between 60 and 65°C. The activity of laminin for Rugli dropped (at between 60 and 65°C) to a constant value, 20–40% of the activity of intact laminin.

Two Patterns of Cell Attachment to P1 and E1-X

Cell response to P1 and E1-X fell into two classes (Fig. 3). In one, cells recognized P1 well and E1-X poorly; for C2C12 and G7 mouse myoblasts 25–50% added cells attached to P1 and <10% attached to E1-X. The other class, B16F10, Rugli, and L8 (Fig. 3; Fig. 7), bound both fragments strongly (i.e., consistently >20% added cells attached). On E1-X, Rugli flattened and spread well within 45 min (Fig. 9). By contrast, on P1, the cells attached but were more rounded. As some cell lines that attached to P1 could not bind to E1-X while others could bind both, we speculated that cells could attach using at least two regions in E1-X.

Multiple cell receptors for E1-X were revealed by observing attachment after heat treatment. There were two classes of cellular response. Heat treatment of E1-X either increased its cell attachment-promoting activity (i.e., for myoblasts; see also Fig. 5), or left it unchanged (i.e., for Rugli, B16F10); it did not increase or decrease P1-dependent attachment activities (Fig. 3). We next investigated the relationship between the sites in E1-X and P1, and the receptors that bound them.

The Recognition of P1 and E1-X Can Be Mediated by RGD-dependent Receptor(s)

Recognition of RGD sequences characterizes cell attach-
Unchanged Sensitivity of Myoblast RGDS-dependent Receptors for Native and Heated PI: E1-X Receptors Become Less Sensitive to RGDS

To identify if the same RGDS-dependent receptors were being used by cells attaching to heated and unheated PI and E1-X we examined the concentration dependence of the inhibition of attachment on these substrates (Fig. 4).

For C2C12 myoblasts attachment to E1-X, P1, and heated P1 was blocked by GRGDS (concentration for 50% maximum inhibition (ID₅₀) ~2 μg · ml⁻¹), suggesting that similar receptors were being used. On heating E1-X, the sensitivity to GRGDS dropped by 2 orders of magnitude (ID₅₀ ~200 μg · ml⁻¹), suggesting that a different RGDS-dependent receptor was being used, or that the RGDS sequence conformation was changed on heating and thus altered its affinity for the "native PI" receptor. Rugli attachment to E1-X was essentially insensitive to GRGDS (ID₅₀>>10 mg · ml⁻¹), while attachment to P1 was only partially inhibited (~50%: ID₉₀ ~2 μg ml⁻¹). There was minimal inhibition (ID₉₀>>10 mg · ml⁻¹) with the control peptides GRGFSP and YIGSR (not shown) (see Basson et al., 1990). Thus, at least two different attachment specificities were expressed on the cells we studied, one RGD dependent, and one RGD independent.

Recognition of PI and E1-X by β₁ Series Integrins: Dependence on Cell Type

We next examined whether cell attachment to PI and E1-X was mediated by β₁ series integrins (Fig. 5). On the E1-X fragment, anti-β₁-extracellular antibodies strongly blocked (>80%) the attachment of Rugli and B16 cells; for Rugli, blocking was weaker on heated E1-X. By contrast, on P1 fragment (Fig. 5), of the five cells tested, only attachment of Rugli and HT1080 (not shown) was reduced by the β₁ extracellular-specific antibody. With control antibody directed against the cytoplasmic domain of the β₁-subunit there was no blocking.

In spite of their specificity by immunoblotting and immunoprecipitation (see Fig. 6), for G7 and C2C12, experimental protein A-purified antibodies stimulated attachment to E1-X, but not to P1, over control. We presume the effect is nonspecific but its basis is not clear. Others have reported such stimulation by anti-α₂ and α₅ antibodies (Languino et al., 1989; Sonnenberg et al., 1990).

In summary, anti-β₁ antibodies had no effect on attachment of mouse muscle cells to P1, but strongly blocked attachment of Rugli and B16 to E1-X and P1.

Affinity-isolated Laminin Binding Proteins are β₁ Integrins

We isolated proteins whose binding to immobilized laminin depended on divalent cations (Fig. 6) (Turner et al., 1987; Gehlsen et al., 1989). Major protein complexes eluted with
affinity chromatography (Gehlsen et al., 1988) and SDS-PAGE under nonreducing conditions (lane i). Only two bands are visible (arrowheads), migrating at the same positions as the β1 integrin (lower) and as the upper band of the rat collagen binding integrin (upper). An α-chain from myoblasts runs as a closely spaced doublet over β1 (nonreduced) and ~95 kD (reduced; open arrowhead). VLA-2 from human platelets (lane d), and collagen I-binding integrin from Rugli (lane e; probably rat VLA-1 homologue [Ignatius et al., 1990; Tawil et al., 1990]) were markers for rat α1 (upper arrow), α2 (middle arrow), and β1 (bottom arrow) integrin. All eluants are rich in β1 integrins. However, only in Rugli eluants are bands characteristic of α1 visible. The position of C14 molecular weight standards (Amersham, Büchler, Germany) are shown (left).

EDTA from laminin columns, that were identifiable as β1 series integrins. Western blots with β1 integrin–specific antibodies of the C2C12, G7, and Rugli EDTA eluants detected one band (Fig. 6, lanes a–c). GRGDSP (100 μg·ml–1) failed to elute material from these columns (not shown).

After iodination of the affinity purified receptors, SDS-PAGE, and prolonged autoradiography of the gels to amplify the detection of eluted proteins, no bands migrating over the β1 chain were visible under nonreducing conditions (Fig. 6, lanes f–h). For Rugli an additional band of varying intensity at ~190 kD (Fig. 6, lane f) was seen. This band comigrated with the upper band of a β1 integrin affinity-purified from Rugli over collagen I (Fig. 6, lane e) i.e., VLA-1-α1, and distinct from the α-chain of platelet α2β1 integrin ~165 kD/ ~150 kD (nred/red). The band at ~190 kD comigrated with the Rugli collagen I–binding integrin upper band under both reducing and nonreducing conditions (Fig. 6). Each EDTA-eluant in silver stained gels gave a band migrating around 110 kD/130 kD (nred/red). This band comigrated with the species blotted by β1-specific antibodies. This was the major band visible for myoblasts C2C12 and G7 (attaching weakly to El-X). The β1 band resolved as a clear doublet in silver gels.1 C2C12, G7 and Rugli eluants under reducing conditions revealed in addition to a 130 kD β1 integrin band, a band migrating ~95 kD (Fig. 6, lanes l–n), believed to be a novel α-chain.1

Surface-iodinated Rugli cells passed over the laminin column yielded the β1-chain, and the upper ~190 kD band (Fig. 6, lane i). The affinity-purified preparations were an estimated ~70% pure. Although Rugli, G7, and C2C12 variously express α2β1, α3β1, α6β1, and a little α3β1, these alpha chains are not in affinity-purified laminin receptor preparations from these cells. Only the ~130–95 kD (red) β1 integrin, but not the ~130–190 kD (red) β1 integrin are retained on E8 fragment affinity columns.1

αβ1-like Integrin Mediates Rat Cell Attachment to El-X and to P1

The 3A3 antibody, specific for rat α1 integrin, blocked (>90%) Rugli and L8 (rat) cell attachment to El-X. It also blocked Rugli, but not L8 attachment to P1 (Fig. 7). By contrast, control antibodies against α6 integrin subunits (GOH3; (Sonnenberg et al., 1988)) had no effect on attachment of Rugli, L8, C2C12, G7, HT1080, or B16, either to P1, El-X or to their heated analogues (not shown) (note that GOH3 does not cross-react with rat).

As β1-specific antibodies also blocked Rugli attachment to El-X and P1 (Fig. 5), it seemed plausible that integrin chains related to α1β1 were involved in Rugli attachment to P1 and El-X.

The Cell Attachment Sites Remaining in Laminin after Heating Are Recognized by α1 Integrins

We assumed that residual cell attachment activity in heated laminin (Fig. 2) corresponded to the thermally stable sites in El-X. We were able to demonstrate this by challenging Rugli attachment to laminin and to heated laminin with the 3A3 anti-α1 antibody.

3A3 inhibited cell attachment to heated laminin (>85%; Figs. 8 and 9), but on native laminin (and on E8) there was little inhibition, and the cells attached and spread well (Fig. 9). This supports the view that on destruction of the terminally labile E8 attachment sites, the residual attachment ac-
activity for Rugli in laminin is mediated by the same attachment site found in El-X, an αβ₁ integrin target.

The morphology of spread cells on laminin in the presence of 3A3 indicated that an αβ₁-like integrin was involved in recognition of intact laminin. Rugli spread with well-defined lamellae and close cell–cell contacts on laminin, with few cells showing branching “neurite-like” processes (Fig. 9 A, ∼9%). On heated laminin, although cells were less well spread, a similar fraction had this morphology (Fig. 9 C, ∼11%). By contrast, on laminin in the presence of 3A3 many attached cells bore branching, neurite-like processes (Fig. 9 B, ∼40%). Thus, 3A3 evidently manipulated a cell–substrate interaction, presumably over αβ₁ integrin, as cells were attaching to laminin.

Rugli Cells Use an αβ₁-like Integrin While Attaching to Native Laminin

It was possible that binding sites for an αβ₁-like integrin had been generated artifically in laminin by heating or by the protease treatment necessary to produce El-X and Pl. We tested this by preblocking the laminin–E8 region before Rugli attachment to laminin (Fig. 10). Preincubation of E8 substrates with an anti-E8 antisera blocked attachment of Rugli (ID₅₀ ∼300-fold dilution of serum). By contrast, laminin substrates could not be blocked >25% by the antisera (similar ID₅₀: Fig. 10, A and B). As previously discussed (Goodman et al., 1987), this indicates the presence of Rugli cell attachment sites distant from E8 within laminin. Anti-E8 antisera had no effect on Rugli attachment on El-X, nor did control antisera affect attachment to laminin, E8 or to El-X (Fig. 10 B). 3A3, directed against the α₁ integrin chain, completely abolished cell attachment onto El-X, but had little effect on attachment on control antisera-treated E8 and laminin. By marked contrast, Rugli attachment onto laminin was abolished by 3A3 when the substrates were pretreated with the anti-E8 antisera. These results indicate that Rugli used two sites for attachment to laminin, one in El-X region of the molecule recognized by the α₁ integrin chain, and one in E8 which will be described in detail elsewhere.

Discussion

In this work we consider cell attachment to the three short arms of laminin. We and others have suggested cryptic (Aumailley et al., 1987, 1990) and noncryptic (Terranova et al., 1983; Goodman et al., 1987, 1989) binding sites for cells exist in the three short arms, but their interrelationship has not been clear. By comparing the blocking activities of anti-integrin antibodies and RGD peptides with laminin affinity chromatograms of cell surface receptors, we have now been able to unequivocally distinguish two classes of receptors recognizing two regions of the short arms. We show (a) that there is a nonartifactual cell binding site in the El-X region of native EHS laminin, (b) that this site and a site in E8 can be simultaneously used by a cell attaching to intact laminin, and (c) that the cryptic Pl site and the El-X cell attachment site are indeed distinct.

One receptor is related to the α₁β₁ integrin because: (a) antibody that recognizes rat α₁ (Turner et al., 1989) blocks rat cell attachment to El-X, to Pl, to heated laminin, but to whole laminin only when the E8 site has been blocked; (b) antibodies directed against β₁ integrin block attachment in α₁-sensitive cells on El-X and Pl; (c) in laminin affinity isolates from Rugli, but not from G7 or C2C12 (i.e., only from cells attaching in an α₁-dependent manner to El-X) is a β₁ integrin found with a noncovalently associated band at ∼190kD/190kD (red/red), a characteristic of the α₁ chain of VLA-1 (Ignatious and Reichardt, 1988; Turner et al., 1989; Ignatious et al., 1990); (d) immunoprecipitation of cell lysates with β₁-specific antibodies also coprecipitates this band. The anti-α₁ antibody used, 3A3, has been used to clone the rat VLA-1-α₁ homologue (Ignatious et al., 1990). It specifies rat α₁β₁ by antibody affinity chromatography, immunoprecipitation, and cell attachment studies (Turner et al., 1989; this study).

The α₁β₁-dependent site in El-X is distinct from the cryptic Pl site (Nurcombe et al., 1989) because only the cryptic Pl site is sensitive to RGD-containing peptides. The cryptic site is not created by heating El-X or laminin; attachment to heated El-X and Pl remains either anti-α₁β₁ sensitive, or RGD sensitive, but does not change sensitivity. RGD-sensitivity characterizes several integrins notably α5β₁ and α5β₁ (Pierschbacher and Ruoslahti, 1984; Ruoslahti and Pierschbacher, 1987). The molecular context of RGD affects its recognition (Akiyama et al., 1985; Akiyama and Yamada, 1985; Yamada and Kennedy, 1987). Thus the RGD target receptors we report here are probably integrins. β₁ rather
than β_1 series integrins may be involved because of the following. (a) The high sensitivity to RGD (ID$_{50} \sim 2 \mu g\text{-ml}^{-1}$ GRGDS) are characteristic of β_1 integrins (Pierschbacher and Ruoslahti, 1987; Cheresh et al., 1989) (sensitivity of $\alpha_5\beta_1$: ID$_{50} \sim 100-500 \mu g\text{-ml}^{-1}$ [Yamada and Kennedy, 1987; Aumailley et al., 1990a]). (b) Anti-β_1-antibodies have no effect on RGD-dependent cell attachment to P1. Cells attaching RGD dependently on P1 express β_1 series integrins (von der Mark, H., unpublished observations), yet only β_1 integrins can be isolated on laminin affinity columns. This correlates with the cryptic nature of the RGD-dependent P1 attachment site of laminin: it is only revealed by proteolysis. (c) The most likely receptor is $\alpha\beta_3$, the vitronectin receptor, because we find that heating P1 (that may change P1 conformation and so the molecular context of the RGDN sequence) reduces the sensitivity to RGD of cell attachment (Pierschbacher and Ruoslahti, 1987; Perris et al., 1989). Some cell attachment to P1 can only be blocked by combining antibodies to β_1- and β_3-chains (Sonnenberg et al., 1990; Aumailley, M., manuscript in preparation). Attachment characteristics suggest that B16 and L8 cells may be in this class. Weak attachment of C2C12 and G7 on E1-X that is blocked by RGDS may be due to E1-X forms lacking all globular domains (and resembling P1; see Introduction for a description of E1-X).

E1-X attachment sites are not artifacts of proteolysis or purification. Antibodies that block the E8 sites do not affect attachment on E1-X or on laminin when the cell bears E1-X receptors. Conversely, antibodies that block the E1-X site do not affect attachment on E8 or on laminin when the cell bears E8 receptors. Heating, which destroys the E8 sites, leaves E1-X and P1 still active. Reports that there is no cell attachment activity in intact E1-X (Sonnenberg et al., 1990) may thus have been greatly exaggerated due to variations in the coating or proteolysis protocols. Other workers confirm that E1-X can support cell attachment (Perris et al., 1989; Hall et al., 1990). Different plastic surfaces can evoke different cell attachment activities from the same fragments. This is not due to different amounts of protein adsorption (Goodman, S. L., unpublished observations). We speculate that different plastics may selectively alter the conformation of the adsorbed protein (Eirich, 1977).

The 3A3 antibody blocks Rugli and L8 rat cell attachment to E1-X and binds a rat VLA-1 α-chain homologue in a β_1 integrin (Turner et al., 1989). We isolated a β_1 integrin with an ~ 190-kD (red/red) α-chain from Rugli cell extracts on both laminin and collagen affinity columns. VLA-1 (α-chain ~ 190 kD (red/red)) is described as a laminin and collagen receptor (Turner et al., 1989; Hall et al., 1990), however, we have as yet been unable to isolate sufficient ~ 190 kD for microsequencing to confirm its identity as the rat α_1-homologue (Tawil et al., 1990). It will be interesting to discover whether there is heterogeneity in the "VLA-1-like" collagen and laminin binding populations. A β_1-associated band at 95 kD (red) in laminin affinity eluants may be the α-chain mediating Rugli and muscle cell attachment to E8. This band but not the ~ 190-kD (red/red) α-chain are retained on E8 affinity columns. It has been reported that murine B16 cells express a VLA-1 that is weakly retained on laminin affinity columns, but apparently it is not used in attachment on laminin (Ramos et al., 1990), which our results tend to support.

Recent reports suggest that regulation of attachment to laminin may be yet more complex. Rat hepatocytes use $\alpha_1\beta_1$ to attach both to P1 and E8 (Forsberg et al., 1990); we
ceptors can function simultaneously during attachment to binding site independent of the RGDN site of the A-chain is not yet clear.

Although both RGD-dependent and αβ1-dependent binding sites are in P1, domains III, IIIa, and IIIb (see Fig. 1). Thus, four regions of E1-X may influence cell attachment, an αβ1 binding site independent of the RGDN site of the A-chain (Aumailley et al., 1990; this study), YIGSR (Graf et al., 1988; Basson et al., 1990), and the F9 peptide (Charonis et al., 1990). Aumailley et al., 1990, and Sonnenberg et al., 1990, and another β3-series integrin (Kramer et al., 1989a,b) mediate attachment (summarized in Table I).

Table I. Partial Binding Specificities of β1 and β3 Series Integrins

LN	FN	E8	E1-X	P1	V	IIIcs	Coll	CollIV	VN
α	β1	**							
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								
α	β1								

* This study.
† Turner et al., 1989.
∥ Languino et al., 1989; Elices and Henler, 1989.
¶ Guan and Hynes, 1990.
** Pytela et al., 1985a; Tamkan et al., 1986.
†† Aumailley et al., 1990b; Sonnenberg et al., 1990.
§§ See footnote 1.
¶¶ Kramer et al., 1989a,b.
**** Languino et al., 1990.
Sonnenberg et al., 1990.
††† Pytela et al., 1985a.
†† Hall et al., 1990.
†††† Tentative assignment of the α chain.

Our data suggest that both αβ1 integrin and the E8 receptors can function simultaneously during attachment to laminin. We can eliminate the possibility that two populations of cells, one bearing only E8 and one only E1-X-specific receptors exist. If this were the case the effects of combined blocking antibodies should be additive, but in fact they are synergistic (Fig. 10). This seems to imply for attachment that the αβ1 and the E8 receptors are functionally equivalent and thus redundant, and deviates from the prevailing view that the E8 domain is necessary the primary cell attachment target (Aumailley et al., 1987, 1990; Goodman et al., 1987; Sonnenberg et al., 1990). The activities we describe may be important in recognition of laminin degradation products arising during development or basement membrane remodeling (Liotta et al., 1984), or in recognition of laminin isoforms (Hunter et al., 1989; Leivo et al., 1989; Paulsson and Saladin, 1989).

At least four sites in laminin can be used for cell attachment, one in the P1 region of E1-X, one only revealed in P1 itself, one in E8 and one in E3 (Sonnenberg et al., 1990). At least six members of the integrin family, αβ1 (this study; Ignatius and Reichardt, 1988; Turner et al., 1989), αβ3 (Languino et al., 1989; Elices and Henler, 1989), αβ3 (Gehlsen et al., 1988; Wayner and Carter, 1987), αβ3 (Sonnenberg et al., 1990; Aumailley et al., 1990), αβ3 (Sonnenberg et al., 1990), and another β3-series integrin (Kramer et al., 1989a,b) mediate attachment (summarized in Table I). Six laminin receptors (so far) is a surprise. Presumably, cell response to laminin depends on the receptor(s) used. For example, E8 but not other fragments promote locomotion (Goodman et al., 1989; Perris et al., 1989), while P1 promotes growth (Panayotou et al., 1989; Engel, 1989); these fragments are recognized by different receptors. Thus, multiple receptors may allow cells to respond uniquely to a homogeneous matrix environment (e.g., to locomote or stop, to differentiate or grow). Another possibility is that spatially restricted isoforms of laminin may only express a subgroup of integrin binding sites. They could thus mark matrix domains for cells bearing a subset of laminin receptors (Languino et al., 1989; Korhonen et al., 1990; Sanes et al., 1990). In other words, laminin isoforms and laminin receptor expression may play a role in pattern formation. More precise definition of both matrix and receptors in situ may answer these questions. While this work was in a late stage of preparation, we learned of another cell type, the JAR choriocarcinoma line, that also attaches in an αβ1-dependent manner to E1 (the elastase-derived P1 analogue [Hall et al., 1990]), and to E1-X, but their attachment requires high coating concentrations of E1-X (~120 μg·ml⁻¹ vs. ~30 μg·ml⁻¹). This may reflect differences in the E1-X

Figure 10: Rugli cells use an αβ1-like integrin in attachment to intact laminin. (A) Laminin (open circles) or E8 (solid circles) substrates were incubated with the indicated dilutions of anti-E8 antisera before washing and cell attachment assay with Rugli. Binding to E8 is abolished by the antisera, binding to laminin is only little affected. (B) Laminin (open bars), E8 (solid bars) or E1-X (hatched bars) coated substrates were incubated with 75-fold dilution of antisera against the cytoplasmic domain of β1 integrin (Control; +anti-α1) or against the E8 fragment (+anti-E8; +anti-α1 +anti-E8) (as used in A). Cells were preincubated with GOH3 ascites (Control; +anti-E8) or with 3A3 antibody (+anti-α1; +anti-α1 +anti-E8). Attachment assays were performed using these cells and the washed substrates. Error bars show 95% confidence limits (n = 7).
preparation (which can be heterogeneous), or quantitative and qualitative variations in the surface expression of VLA-1 (i.e., species-dependent differences in its structure; JAR cells are human, Rugli and L8 are from rat).

In conclusion, α(β3) integrin and at least one other RGD-dependent receptor mediate attachments to domains III of laminin. These integrins do not regulate attachment to the E8 fragment. The subsequent functions of these receptors and the reasons for their differential expression must await further experiments.

We thank Joachim Dött, Drs. Rupert Timpl (Max-Planck-Institute, Martinsried, Germany), Arnold Sonnenberg (Red Cross Blood Transfusion Service, Amsterdam, The Netherlands), Rainer Deutzmann (University of Regensburg, Germany), Sal Carbenet (Montreal General Hospital, Canada), and D. Gullberg (University of Upsala, Sweden) for access to unpublished data, helpful discussions, and to all the above, and Dr. R. O. Hynes (Massachusetts Institute of Technology, Boston, MA) for their gifts of important reagents. Barbara Reiß and Klara Lauerer provided excellent technical support. Sister Ilse Buchmann (Erlangen, Blood Transfusion Centre, Germany) and her colleagues generously collected thrombocytes. We thank Bernhard Neidiger for photographic work. This work was continuously supported and encouraged by Dr. Klaus von der Mark.

This work was supported by the Max-Planck society.

References

Akiyama, S. K., and K. M. Yamada. 1985. Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell binding domain of fibronectin. J. Biol. Chem. 260:10402--10405.

Akiyama, S. K., E. Hasegawa, T. Hasegawa, and K. M. Yamada. 1985. The interaction of fibronectin fragments with fibroblastic cells. J. Biol. Chem. 260:13256--13260.

Hall, E. L., F. Reichardt, E. Crowley, B. Holley, H. Moezzi, A. Sonnenberg, and C. H. Dansky. 1990. The alpha-1/beta-1 and alpha-6/beta-1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol. 110:2175--2184.

Ignaitus, M. J., and L. A. Cohn. 1977. Externally disposed plasma membrane proteins: I. Enzymatic iodination of mouse L cells. Recent Adv. Res. 188:61--69.

Engel, J. 1989. EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation. FEBS (Fed. Eur. Biochem. Soc.) Lett. 251:1--7.

Kramer, R. H., L. A. Mcdonald, and M. P. Vu. 1989/). Human melanoma cells express a novel integrin receptor for laminin. J. Cell Biol. 110:2175--2184.

Korhonen, M., J. Yli-neinne, L. Laitinen, and I. Vitanen. 1990. The alpha 1-alpha 5 subunits of integrins are characteristic in distinct segments of developing and adult human nephron. J. Cell Biol. 111:1245--1254.

Kramer, R. H., and N. Marks. 1989. Identification of integrin collagen receptors on human melanoma cells. J. Biol. Chem. 264:4684--4688.

Kramer, R. H., K. A. Mcdonald, E. Crowley, D. E. Ramos, and C. H. Dansky. 1989a. Melanoma cell adhesion to basement membrane mediated by integrin-related complexes. Cancer Res. 49:393--402.

Kramer, R. H., K. A. Mcdonald, and M. P. Vu. 1989b. Human melanoma cells express a novel integrin receptor for laminin. J. Biol. Chem. 264:15642--15649.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680--685.

Landegren, U. 1984. Measurement of cell numbers by means of the endogenous signals for growth and differentiation. J. Cell Biol. 110:789--801.

Beck, K., J. Hunter, and J. Engel. 1990. Structure and function of laminin: anatomy of a multidomain glycoprotein. FEBS (Fed. Am. Soc. Exp. Biol.) 14:418--1460.

Charonis, A. S., A. P. N. Skubitz, G. G. Kolakos, L. A. Reger, J. Dege, A. M. Vogel, R. Wohlteter, and L. T. Furcht. 1988. A novel synthetic peptide from a mouse embryonal carcinoma-derived cell line. Biochim. Biophys. Res. Commun. 78:859--867.

Damen, M. 1982. Laminin provides a better substrate than fibronectin for attachment, growth, and differentiation of 1003 embryonal carcinoma cells. In Vitro Cell. Dev. Biol. 18:997--1002.

Diller, L., K. Dickerson, M. Manthorpe, E. Ruooslaiti, and E. Engvall. 1988. The neurite-promoting activity of human laminin promotes attachment and induces characteristic morphology in non-neuronal cells. Exp. Cell Res. 177:185--198.

Engel, J. 1990. EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation. FEBS (Fed. Eur. Biochem. Soc.) Lett. 251:1--7.

Goodman, S. L., R. Deutzmann, and K. von der Mark. 1987. Two independent cell binding domains in laminin react with differentially expressed cell surface receptors. J. Cell Biol. 105:589--598.

Hynes, R. O. 1987. Integrin alpha-6 beta-1 integrin and alpha-4 beta-1 integrin receptors on human melanoma cells. J. Cell Biol. 110:789--801.

Ignaitus, M. J., and L. F. Reichardt. 1988. Identification of an alternatively spliced segment of fragment III of the integrin receptor-alpha 4-beta 1. Cell 54:53--61.

Gullberg, D., L. Terracio, T. K. Borg, and K. Rubin. 1989. Identification of integrin-like matrix receptors with affinity for interstitial collagens. J. Biol. Chem. 264:12686--12694.

Gullick, D., L. F. Reichardt, E. Crowley, B. Holley, H. Moezzi, A. Sonnenberg, and C. H. Dansky. 1990. The alpha-1/beta-1 and alpha-6/beta-1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol. 110:2175--2184.

Hubbard, A. L., and Z. A. Cohn. 1972. Externally disposed plasma membrane proteins: I. Enzymatic iodination of mouse L cells. J. Cell Biol. 48:438--460.

Hunter, D. D., V. Shah, J. P. Merlie, and J. R. Sanes. 1989. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature (Lond.). 338:229--234.

Hynes, R. O. 1987. Integrins: a family of cell surface receptors. Cell. 48:543--545.

Ignaitus, M. J., and L. F. Reichardt. 1988. Identification of a neuronal laminin receptor: an Mr 200K/120K integrin heterodimer that binds laminin in a divalent-cation-dependent manner. Neuron. 1:713--725.

Ignaitus, M. J., T. H. Large, M. Houde, J. W. Tawil, A. Barton, F. Esch, S. Carbonetto, and L. F. Reichardt. 1990. Molecular cloning of the rat integrin alpha 1/beta 1 subunit: a receptor for laminin and collagen. J. Cell Biol. 111:709--720.

Korbonen, M., J. Yli-neinne, L. Laitinen, and I. Vitanen. 1990. The alpha 1-alpha 6 subunits of integrins are characterized in different segments of developing and adult human nephron. J. Cell Biol. 111:1245--1254.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680--685.

Landegren, U. 1984. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphocytes and cell surface antigens. J. Immunol. Methods. 67:379--388.

Linguino, L. R., K. R. Gehslen, E. Wayner, W. G. Carter, E. Engvall, and E. Ruooslaiti. 1989. Endothelial cell use of alpha 2-beta 1 integrin as a laminin receptor. J. Cell Biol. 109:2455--2462.

Leivo, I., P. Laurila, T. Wahlstrom, and E. Engvall. 1989. Expression of merosin, a tissue-specific basement membrane protein, in the intermediate tuinophoblast cells of choriovitellus and placenta. J. Cell Biol. 108:783--790.

Lioita, L., A. R., H. Goldfarb, and V. P. Terranova. 1981. Cleavage of laminin by thrombin and plasmin: alpha thrombin selectively cleaves the beta chains of laminin. Thromb. Res. 2:661--673.

Received for publication 11 June 1990 and in revised form 4 February 1991.
Liotta, L. A., C. N. Rao, and S. H. Barsky. 1984. Tumor cell interaction with the extracellular matrix. In The role of the extracellular matrix in development. R. L. Tristead, editor. Alan R. Liss, Inc., New York. 357-371.

Maccarontonio, E. E., and R. O. Hynes. 1988. Antibodies to the conserved cytoplasmic domain of the integrin β1 subunit react with proteins in vertebrates, invertebrates, and fungi. J. Cell Biol. 106:1765-1772.

Nurcombe, V., M. Aumailley, R. Timpl, and D. Edgar. 1989. The high-affinity binding of laminin to cells. Assignment of a major cell-binding site to the long arm of laminin and of a latent cell binding site to its short arms. Eur. J. Biochem. 180:9-14.

Öcalan, M., S. L. Goodman, U. Kühli, S. D. Hauschka, and K. von der Mark. 1988. Laminin alters the cell shape and stimulates motility and proliferation of skeletal myoblasts. Dev. Biol. 125:158-169.

Ott, U., E. Odermatt, J. Engel, H. Furthmayr, and R. Timpl. 1982. Protease resistance and conformation laminin. Eur. J. Biochem. 123:63-72.

Panayotou, G., P. End, M. Aumailley, R. Timpl, and J. Engel. 1989. Domains of laminin with growth-factor activity. Cell. 56:93-101.

Paulsson, M., and K. Saladin. 1989. Mouse heart laminin. J. Biol. Chem. 264:18726-18732.

Paulsson, M., R. Deutzmann, R. Timpl, D. Dalzoppo, E. Odermatt, and J. Engel. 1985. Evidence for coiled alpha-helical regions in the long arm of laminin. EMBO (Eur. Mol. Biol. Organ.) J. 4:309-316.

Paulsson, M., M. Aumailley, R. Deutzmann, R. Timpl, K. Beck, and J. Engel. 1987. Laminin-nidogen complex extraction with chelating agents and structural characterization. Eur. J. Biochem. 166:11-19.

Perris, R., M. Paulsson, and M. Bronner-Fraser. 1989. Molecular mechanisms of avian neural crest cell migration on fibronectin and laminin. Dev. Biol. 136:222-238.

Pierschbacher, M. D., and E. Ruoslabri. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature (Lond.). 309:30-33.

Pierschbacher, M. D., and E. Ruoslabri. 1987. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262:17294-17298.

Pytela, R., M. D. Pierschbacher, and E. Ruoslabri. 1985a. Identification and isolation of a 140kd cell surface glycoprotein with the properties expected of a fibronectin receptor. Cell. 40:191-198.

Pytela, R., M. D. Pierschbacher, and E. Ruoslabri. 1985b. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc. Natl. Acad. Sci. USA. 82:5766-5770.

Ramos, D. M., E. D. Berston, and R. H. Kramer. 1990. Analysis of integrin receptors for laminin and type IV collagen on metastatic B16 melanoma cells. Cancer Res. 50:728-734.

Reichardt, L. F., L. L. Bixby, D. E. Hall, M. J. Ignatius, K. M. Neugebauer, and K. J. Tomasielli. 1989. Integrins and cell adhesion molecules: neuronal receptors that regulate axon growth on extracellular matrices and cell surfaces. Dev. Neurosci. 11:332-347.

Ruoslabri, E., and M. D. Pierschbacher. 1987. New perspectives in cell adhesion: RGD and integrins. Science (Wash. DC.). 238:491-497.

Sanes, J. R., E. Engvall, R. Butkowski, and D. D. Hunter. 1990. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J. Cell Biol. 111:1685-1699.

Sasaki, M., H. K. Kleinman, H. Huber, R. Deutzmann, and Y. Yamada. 1988. Laminin, a multidomain protein: the A-chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B-chains. J. Biol. Chem. 263:16536-16544.

Sonnenberg, A., P. W. Modderman, and F. Hogervorst. 1988. Laminin receptor on platelets is the integrin VLA-6. Nature (Lond.). 336:487-489.

Sonnenberg, A., C. J. T. Linders, P. W. Modderman, C. H. Damsky, M. Aumailley, and R. Timpl. 1990. Integrin recognition of different cell-binding fragments of laminin (P1,E3,E8) and evidence that alpha-6 beta-1 but not alpha-6 beta-4 functions as a major receptor for fragment E8. J. Cell Biol. 110:2145-2155.

Tammus, J. W., D. W. DeSimone, D. Fonda, C. Buck, A. F. Horwitz, and R. O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 46:271-282.

Tawil, N. J., M. Houde, R. Blachier, P. Esch, L. F. Reichardt, D. C. Turner, and S. Carbonetto. 1990. Alpha-1 beta-1 Integrin Heterodimer functions as a dual laminin/collagen receptor in neural cells. Biochemistry. 29:6540-6544.

Terranova, V. P., D. H. Rohrbach, and G. R. Martin. 1980. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 22:719-726.

Terranova, V. P., C. N. Rao, T. Kalebic, I. M. Margulies, and L. A. Liotta. 1983. Laminin receptor on human breast carcinoma cells. Proc. Natl. Acad. Sci. USA. 80:444-448.

Timpl, R., H. Rohde, P. G. Robey, S. I. Rennard, J.-M. Foidart, and G. R. Martin. 1979. Laminin: a glycoprotein from basement membranes. J. Biol. Chem. 254:9933-9937.

Timpl, R., S. Johansson, V. van Delden, I. Oberbäumer and M. Hölk. 1983. Characterization of protease resistant fragments of laminin mediating attachment and spreading of rat hepatocytes. J. Biol. Chem. 258:8922-8927.

Trowb, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350-4354.

Turner, D. C., L. A. Flier, and S. Carbonetto. 1987. Magnesium-dependent attachment and neurite outgrowth by PC12 cells on collagen and laminin substrata. Dev. Biol. 121:510-525.

Turner, D. C., L. A. Flier, and S. Carbonetto. 1989. Identification of a cell-surface protein involved in PC12 cell-substratum adhesion and neurite outgrowth on laminin and collagen. J. Neurosci. 9:3287-3296.

Wayner, E. A., and W. G. Carter. 1987. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J. Cell Biol. 105:1873-1884.

Yamada, K. M., and D. W. Kennedy. 1987. Peptide inhibitors of fibronectin, laminin, and other adhesion molecules: unique and shared features. J. Cell. Physiol. 130:21-28.