A SHORT ELEMENTARY PROOF OF REVERSED
BRUNN–MINKOWSKI INEQUALITY FOR COCONVEX BODIES

FRANÇOIS FILLASTRE

Abstract. The theory of coconvex bodies was formalized by A. Khovanskii and V. Timorin in [KT14]. It has fascinating relations with the classical theory of convex bodies, as well as applications to Lorentzian geometry. In a recent preprint [Sch17], R. Schneider proved a result that implies a reversed Brunn–Minkowski inequality for coconvex bodies, with description of equality case. In this note we show that this latter result is an immediate consequence of a more general result, namely that the volume of coconvex bodies is strictly convex. This result itself follows from a classical elementary result about the concavity of the volume of convex bodies inscribed in the same cylinder.

Let C be a closed convex cone in \mathbb{R}^n, with non empty interior, and not containing an entire line. A C-cococonvex body K is a non-empty closed bounded proper subset of C such that $C \setminus K$ is convex. The set of C-cococonvex bodies is stable under positive homotheties. It is also stable for the \oplus operation, defined as $K_1 \oplus K_2 = C \setminus (C \setminus K_1 + C \setminus K_2)$, where $+$ is the Minkowski sum. The following reversed Brunn–Minkowski theorem is proved in [Sch17] (see [KT14] for a partial result). We denote by V_n the volume in \mathbb{R}^n.

Theorem 1. Let K_1, K_2 be C-cococonvex bodies, and $\lambda \in (0, 1)$. Then

$$V_n((1 - \lambda)K_1 \oplus \lambda K_2)^{1/n} \leq (1 - \lambda)V_n(K_1)^{1/n} + \lambda V_n(K_2)^{1/n},$$

and equality holds if and only if $K_1 = \alpha K_2$ for some $\alpha > 0$.

Remark 2. What is actually proved in [Sch17] in the analogous of Theorem 1 for C-cococonvex sets instead of C-cococonvex bodies: the set is not required to be bounded but only to have finite Lebesgue measure. So the result of [Sch17] requires a more involved proof than the one presented here.

Actually, we will see that the following result holds.

Theorem 3. The volume is strictly convex on the set of C-cococonvex bodies. More precisely, if K_1, K_2 are C-cococonvex bodies, and $\lambda \in (0, 1)$, then

$$V_n((1 - \lambda)K_1 \oplus \lambda K_2) \leq (1 - \lambda)V_n(K_1) + \lambda V_n(K_2).$$

Moreover, equality holds if and only if $K_1 = K_2$.

The following elementary lemma, together with the fact that V_n is positively homogeneous of degree n (i.e. $V_n(tA) = t^nV_n(A)$ for $t > 0$), shows that Theorem 3 implies Theorem 1.

Lemma 4. Let f be a positive convex function, positively homogeneous of degree n. Then $f^{1/n}$ is convex.

Suppose moreover that f is strictly convex. If there is $\lambda \in (0, 1)$ such that $f^{1/n}((1-\lambda)x + \lambda y)$ equals $(1 - \lambda)f^{1/n}(x) + \lambda f^{1/n}(y)$, then there is $\alpha > 0$ with $x = \alpha y$.

Proof. For $\lambda \in [0, 1]$ and any x, y, we have $f((1 - \lambda)f^{1/n}(x) + \lambda f^{1/n}(y)) \leq 1$, and the result follows by taking, for any $\lambda \in (0, 1)$, $\tilde{\lambda} = \lambda f(y)^{1/n} / ((1 - \lambda)f(x)^{1/n} + \lambda f(y)^{1/n})$.

Let us prove Theorem 3.

Let H be an affine hyperplane of \mathbb{R}^n with the following properties: it has an orthogonal direction in the interior of C, K_1, K_2 and the origin are contained in the same half-space H^+ bounded by H, and $H \cap C = B$ is compact. For $\lambda \in [0, 1]$, let $K_\lambda = (1 - \lambda)K_1 \oplus \lambda K_2$, which is also contained in H^+, and let $\text{cap}_H(K_\lambda) = H^+ \cap (C \setminus K_\lambda)$, see Figure 1.

Date: June 5, 2018.

The author thanks Ivan Izmestiev and Rolf Schneider.

Keywords: coconvex sets, covolume, Brunn–Minkowski.
Also, the quantity \(V_n(K_\lambda) + V_n(\text{cap}_H(K_\lambda)) \) does not depend on \(\lambda \), as it is equal to \(V_n(C \cap H^+) \). Hence Theorem 3 is equivalent to

\[
V_n(\text{cap}_H(K_\lambda)) \geq (1 - \lambda)V_n(\text{cap}_H(K_1)) + \lambda V_n(\text{cap}_H(K_2))
\]

for \(\lambda \in (0, 1) \), with equality if and only if \(K_1 = K_2 \).

This last result itself follows from the following elementary result. Here “elementary” means that the most involved technique in its proof is Fubini theorem (see Chapter 50 in [BF87] or Lemma 3.30 in [BF17]).

Lemma 5. Let \(A_0 \) and \(A_1 \) be two convex bodies in \(\mathbb{R}^n \) contained in \(H^+ \), such that their orthogonal projection onto \(H \) is \(B \). Then, for \(\lambda \in [0, 1] \),

\[
V_n((1 - \lambda)A_0 + \lambda A_1) \geq (1 - \lambda)V_n(A_0) + \lambda V_n(A_1).
\]

Equality holds if and only if either \(A_0 = A_1 + U \) or \(A_1 = A_0 + U \), where \(U \) is some segment whose direction is orthogonal to \(H \).

In our case, if \(K \) is a \(C \)-coconvex body, then \(K \oplus U \) is a \(C \)-coconvex body if and only if \(U = \{0\} \).

Remark 6. In the classical convex bodies case, the Brunn–Minkowski inequality (saying that the \(n \)th-root of the volume of convex bodies is concave) follows from the more general result that the volume of convex bodies is log-concave. This is the genuine analogue of our situation, due to the following implications:

\[
f \text{concave} \implies f \text{ log-concave}
\]

\[
f \text{log convex} \implies f \text{ convex}
\]

If moreover \(f \) is positively homogenous of degree \(n \), we have:

\[
f \text{ log-concave} \implies f^{1/n} \text{ concave}
\]

\[
f \text{ convex} \implies f^{1/n} \text{ convex}
\]

Remark 7. Actually we didn’t use the fact that the convex set \(C \) is a cone, as the only thing that really matters is the stability of \(C \)-coconvex bodies under convex combinations. See e.g. [BF17] for an application to this more general situation. If \(C \) is a cone, the \(C \)-coconvex bodies are furthermore stable under positive homotheties and \(\oplus \), that allows to develop a mixed-volume theory for \(C \)-coconvex sets, see [Fil13, KT14, Sch17].

References

[BF87] T. Bonnesen and W. Fenchel. *Theory of convex bodies*. BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith.

[BF17] F. Bonsante and F. Fillastre. The equivariant Minkowski problem in Minkowski space. *Annales de l’institut Fourier*, 67(3):1035–1113, 2017.

[Fil13] F. Fillastre. Fuchsian convex bodies: basics of Brunn-Minkowski theory. *Geom. Funct. Anal.*, 23(1):295–333, 2013.

[KT14] A. Khovanski˘ı and V. Timorin. On the theory of coconvex bodies. *Discrete Comput. Geom.*, 52(4):806–824, 2014.

[Sch17] R. Schneider. A Brunn-Minkowski theory for coconvex sets of finite volume. *ArXiv e-prints*, June 2017.

Université de Cergy-Pontoise, UMR CNRS 8088, F-95000 CERGY-PONTOISE, FRANCE

E-mail address: francois.fillastre@u-cergy.fr