Grid-based minimization at scale: Feldman-Cousins corrections for SBN

Holger Schulz
Department of Physics, University of Cincinnati
Cincinnati, Ohio, USA

Wes Ketchum
Jim Kowalkowski
Marc Paterno
Saba Sehrish
Marianette Wospakrik
Fermi National Accelerator Laboratory
Batavia, IL, USA

Guanqun Ge
Georgia Karagiorgi
Mark Ross-Lonergan
Department of Physics, Columbia University
New York, NY, USA

ABSTRACT
We present a computational model for the construction of Feldman-Cousins (FC) corrections frequently used in High Energy Physics (HEP) analysis. The program contains a grid-based minimization and is written in C++. Our algorithms exploit vectorization through Eigen3 [6], yielding a single-core speed-up of 350 compared to the original implementation, and achieve MPI data parallelism by using DIY [7]. We demonstrate the application to scale very well at HPC sites. We use HDF5 [10] in conjunction with HighFive [9] to write results of the calculation to file.

KEYWORDS
HEP, HPC

CONVENTIONS
In this work, mathematical vectors are denoted as lower-case bold variables. Similarly, we use upper-case bold variables to denote matrices. We are using the Cori machines at the National Energy Research Scientific Computing Center (NERSC) [8], and refer to them and their chips as Cori phase 1 (Haswell) or Cori phase 2 (KNL). (See Table 1 for details.)

Machine	Cori phase 1 (Haswell)	Cori phase 2 (KNL)
CPU	Intel Xeon E5-2698 v3	Intel Xeon Phi 7250
Clockspeed	2.3 GHz	1.4 GHz
Cores per node	32	68

Table 1: Processors used in this work.

The task at hand is to perform a parameter scan in a D-dimensional parameter space to find regions that are compatible with a central data vector \(c \) of length \(N \), which represents the experimentally observed data. Each point \(p \) is associated with a vector of length \(N \), representing \(N \) predicted observations; we refer to this vector as signal or \(S(p) \). The goal of the scan is to build, through repeated fits to "fake experimental data," a distribution of a statistical measure (\(\Delta \chi^2 \)) for each \(p \), which effectively describes the number of degrees of freedom in the fit in the vicinity of that point. The effective number of degrees of freedom subsequently determine associated critical values for the statistical measure used to quantify compatibility of any given \(p \) from a fit performed to "real experimental data".

The procedure to build the distribution of \(\Delta \chi^2 \) is performed using a multi-universe approach, where, in each universe, the input data is fluctuated around its mean following established techniques. The number of universes to simulate is a program parameter that we will refer to as \(N_{\text{univ}} \). An example distribution of \(\Delta \chi^2 \) along with an illustration of critical values can be found in Fig. 1.

At the heart of the computation is the calculation of a quantity called \(\chi^2 \). The inputs are two vectors \(a \) and \(b \) of size \(N \) and a symmetric, positive definite matrix \(M \), of size \(N \times N \), representing the inverse of a "covariance matrix." The covariance matrix encapsulates systematic and statistical uncertainties on the prediction.
vector. The χ^2 measure allows for a statistical interpretation of the
numerical similarity of a and b taking into account uncertainties and
correlations encoded in M:

$$\chi^2 = (a - b)^T \cdot M \cdot (a - b)$$

where c is the central prediction (experimentally measured data).

This means that the computational complexity, and therefore the
program run time, can be expected to scale $\propto N_{\text{univ}} \cdot N_{\text{gridpoints}}$.

Measurements of the scaling are given in more detail in Section 4.

An example distribution of $\Delta \chi^2$ along with an illustration of critical
values can be found in Fig. 1. This procedure follows the fit methodology of [1] as a typical HEP implementation of the F.C. correction.

Algorithm 1 Building the $\Delta \chi^2$ distribution for a single $p \in G$ and
a central prediction vector c. In principle there can be an additional
loop around lines 7 to 14 aimed at updating the matrix M. We chose
to omit this here for clarity.

1. function buildDeltaChi2(p, c, M, N_{univ})
2. s = $S(p)$ \triangleright prediction at p
3. for $i \in [0, N_{\text{univ}})$ do
4. $\chi^2_{\min} \leftarrow \inf$;
5. $p_{\min} = p$
6. $a = \text{fluctuation of } s$
7. for $q \in G$ do \triangleright Iterate over all grid points
8. $b = S(q)$
9. $\chi2 = \text{calcChi2}(a, b, M) \triangleright$ using Algorithm 2
10. if $\chi2 < \chi^2_{\min}$ then
11. $\chi^2_{\min} \leftarrow \chi2$;
12. $p_{\min} = q$
13. end if
14. end for
15. deltaChi2 = $\text{calcChi2}(a, c, M) \cdot \chi^2_{\min}$
16. end for
17. The deltaChi2 values are aggregated and written to disk.
18. end function

Algorithm 2 χ^2 calculation

1. function calcChi2(a, b, M)
2. $d \leftarrow a - b$
3. $\chi^2 = d^T \cdot M \cdot d$
4. return χ^2
5. end function

3 COMPUTATIONAL CHALLENGES AND SOLUTIONS

Listing 1: Implementation of (1) using Eigen3

```cpp
double calcChi(VectorXd const & a, 
                 VectorXd const & b, 
                 MatrixXd const & M ) 
{
    auto const & diff = a-b; 
    return diff.transpose() * M * diff ;
}
```

Listing 2: Original implementation of (1)

```cpp
double calcChi(vector< double > & a, 
                vector< double > & b, 
                vector< vector< double > > & M, 
                int N)
```
The calculation of $\Delta \chi^2$ at a single $p \in \mathcal{G}$ requires the knowledge of the signal $S(p)$ for all $p \in \mathcal{G}$. In the original implementation the calculation of $S(p)$ was computationally expensive due to the code not being vectorized, frequent access of the file-system and the coming and going of objects. This is why the original implementation resorted to precomputing and caching $S(p)$ — ultimately leading to severe limitations on the problem size due to memory exhaustion. The re-implementation, which is heavily based on Eigen3, solves all these issues and completely offsets⁴ the performance gain from caching meaning that the limitation on the size of problem that can be solved is solely due to the available compute time.

The computational complexity of the program is dependent on two factors. One being the number of multiverses, N_{univ}, that are simulated. We find the computational cost to be linearly dependent on N_{univ}. The other factor being the number of points, $N_{\text{gridpoints}}$, in the grid, which the run time depends on quadratically.

Algorithm 3 Original implementation of computation of $S(p)$

```c++
{
  double chi2 = 0;
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      chi2 += (a[i] - b[i]) * M[i][j] * (a[j] - b[j]);
    }
  }
  return chi2;
}
```

The major obstacle for an MPI-parallel version of the code that scales well on an HPC system was the frequent access of the file system in the original implementation. The same data was read from file any time objects were created. This put an undue burden on the file system, ultimately leading to poor performance and scaling. The solution was to read any of the input files only once during the program life-time and to use collective MPI operations to copy data to all ranks through memory. In the original implementation, each calculation of the $S(p)$ required the opening of two ROOT files and the traversal and manipulation of the objects therein, which is very expensive. Given that the $S(p)$ need to known for all $p \in \mathcal{G}$ to compute the desired quantities, a caching of the $S(p)$ was present in the original implementation. Albeit improving the performance of the program significantly, this approach ultimately lead to a restriction on the problem size that could be tackled as the amount of memory needed grows with $N_{\text{gridpoints}}$, ultimately exhausting the system memory.

Further, the coming and going of ROOT objects, such as TH1D histograms, turned out to be a major performance bottleneck. These ROOT histogram objects have many mathematical operations associated with them. Performance issues were eliminated by substituting these histograms objects with data types and operations from Eigen3. The histogram methods turned out to be a non-optimal choice for necessary mathematical manipulations in this program, as the bulk of the computations are matrix-vector multiplications and array operations. Eigen3’s VectorXd and MatrixXd are simply much better suited for these operations, as they inherently make use of the vectorisation and thus grant a significant performance benefit — so much so that the original gain from caching the computations of the $S(p)$ in memory could completely be offset. A comparison of signal prediction rates is shown in Table 2. These changes effectively transform the program from one limited by available memory into a one limited only by CPU.

	Frequency of $S(p)$
Original, Haswell	30 Hz
New, Haswell	10 MHz
New, KNL	2 MHz

Table 2: Comparison of single-core signal prediction rates.

The achieved speed-up allows to avoid having to cache $S(p)$ and thus eliminate the memory-limitation of the problem size.

Further, the use of HDF5 as output file format. We are using the MPI-capable file objects for writing to disk which reduces necessary MPI communications to a minimum. This is especially suitable for the problem at hand as the information written do disk is comprised of trivial data types. Further, the amount of data written by every rank as well as their target location within the HDF5 datasets is completely deterministic and thus known upon start of the program.

The final revised application utilizes DIY⁷ for data parallelism across processes and nodes, and Eigen3 for linear algebra and vectorized calculations. The application is now parameterized on number of universes, the number of grid points, and the standard MPI option for number of ranks.

4 Performance and Scaling

In this section we measure the overall program execution time as a function of N_{univ} and $N_{\text{gridpoint}}$ to test our initial hypothesis that the run time should scale $\propto N_{\text{univ}} \cdot N_{\text{gridpoint}}^2$. We further demonstrate strong scaling of the application and make an attempt at predicting the maximum size problem that can be solved when running on all of NERSC’s Cori for a full day.

4.1 Scaling with N_{univ} and $N_{\text{gridpoint}}$

To collect the data, we used a fixed number of Haswell nodes (and therefore ranks) and varied N_{univ} and $N_{\text{gridpoint}}$ independently. Fig. 2 show the scaling of the program time for a fixed number

⁴In fact, the reimplementation is already 350 times faster than the original code when run on a single core.
$N_{\text{gridpoint}}$ as a function of N_{univ}. The data is overlayed with a linear fit and there is no visible deviation from a linear scaling.

Similarly, in Fig. 3 we fix the number of universes and measure the program execution time as function of $N_{\text{gridpoint}}$. The quadratic fit to the data again shows no visible deviation from the expected behavior.

Figure 2: Scaling of the program run time with the number of universes, demonstrating a linear dependence on N_{univ}.

Figure 3: Scaling of the program run time with the number of grid points, demonstrating a quadratic dependence on $N_{\text{gridpoint}}$.

4.2 Single node scaling

We measure the program execution time as a function of the number of ranks in order to see in how far the program benefits from using multiple MPI ranks. Haswell nodes allow to run on up to two ranks per core, leading to a maximum of 64 ranks per node. On the KNL nodes it is possible to utilize up to four hardware threads per processor, resulting in a maximum number of ranks of 272 per node (See also Table 1).

We select a fixed size problem, distribute the work among the ranks as evenly as possible, and record the time spent in the main part of the program for each rank separately. For this application, the work is number of points from the parameter space and number of universes to generate. The data is shown in Fig. 4 for Haswell nodes and in Fig. 5 for KNL. The most relevant quantity in terms of throughput is of course the amount of time the slowest rank spends (t_{max}). For Haswell nodes we find the best performance when using 32 ranks, meaning our program does not benefit from threading. We also find that when using e.g. 33 or 34 ranks, i.e. effectively oversubscribing 1 and 2 cores respectively, the performance in terms of the total run time drops almost by a factor of two. The effect can be seen in Fig. 4. When utilizing 33 ranks, we are in a situation where two ranks are competing for resources on the same core. Similarly, when running with 34 ranks, we observe 4 ranks that are slower than the rest since they are visibly competing with each other. We repeat the measurements on a KNL node and find a similar picture. Again, using non-integer multiples of the number of cores (68) leads to an overall worse performance due to ranks competing for resources in an unbalanced way. In contrast to Haswell, however, we observe a gain in performance in terms of t_{max} from using 2 and 4 ranks per core of 16% and 24% respectively.

Table 3: Total run time of a fixed problem on a single KNL node demonstrating that there is a mild benefit in using hardware threading.

Ranks	68	136	272
t_{max} [s]	87	75	70
Gain w.r.t. 68 ranks	16%	24%	

4.3 Multi node scaling

For any distributed computing program it is crucial to know whether using N times as many computing resources yields a program execution time that is N times faster. In order to study this, we define a reasonable large problem of a fixed size and measure the time it takes to complete the main part of the program as a function of the number of Haswell nodes used (N_{nodes}). Following the finding in the previous section, we use 32 ranks per node in this study.

We further define the program execution efficiency as

$$\varepsilon = N_{\text{nodes}} \cdot \frac{t(N_{\text{nodes}})}{t(1)},$$

(2)
We observe generally good scaling up to the point where the amount of work per rank becomes relatively small. Eventually the amount of work to be done per rank becomes relatively small and the drop to about 80\% efficiency at 32 nodes (1024 ranks) indicates that the compute time of individual tasks may not be completely uniform.

Figure 6: Strong scaling measurements on Haswell nodes. We observe generally good scaling up to the point where the amount of work per rank becomes relatively small.

4.4 Estimation of what is possible

In order to estimate the size of problem that can be tackled with a machine like Cori, we define the computation of $S(q)$ and successive execution of calcChi (lines 8 and 9 of Algorithm 1) as core computation as it is a quantity that is independent of $N_{\text{gridpoint}}$ and N_univ. We then measure the numbers of core computations per second as a function of the number of nodes. We find the scaling to be linear in the number of nodes for our measurements. This allows to estimate an upper limit of of core computations if the whole machine were available. For Cori phase 1 (Haswell) we estimate an upper boundary of 6×10^5 s^{-1} from a linear extrapolation to the entirety of 2388 nodes. Similarly, we find an upper boundary of 1.8×10^6 s^{-1} when using all 9688 nodes of Cori phase 2 (KNL). The data and linear fits are shown in Fig. 7. It should be noted that the linear scaling assumption should be considered optimistic and be interpreted as an upper limit of the performance of the program.

We can use these numbers to estimate the size of, G, that could possibly be solved with our implementation of the Feldman-Cousins method. A commonly occurring measure of statistical accuracy in that method is a significance level expressed in multiples of σ. For instance, 3σ and 5σ correspond to $N_\text{univ} = 10^4$ and $N_\text{univ} = 10^5$, respectively. In Table 4 we provide numbers of maximally possible grid sizes under the assumption of running on the entirety of Cori phase 1/2 for a full day. We find that for the 5σ significance level, which is typically applied to claim scientific discovery, only comparatively small problem sizes of about 10 thousand grid points can be solved. This translates into two-dimensional problems of fairly good resolution of 100 points per axis. In three dimensions, the resolution drops to about 20 points per axis. For higher dimensions the application of this method becomes computationally intractable.

5 CONCLUSIONS

The goal of this work has been to reconstruct the existing SBN application and algorithms that calculate Feldman-Cousins corrections to run efficiently on current state-of-the-art processor architectures and systems available at HPC facilities. We transformed a High Energy Physics problem common within neutrino physics from a serial-execution program limited by machine memory into an MPI-parallel application that scales up to available compute power of a facility. We obtain node-level and thread-level parallelism through DIY, and obtain significant performance improvements by restructuring algorithms to use Eigen3 for matrix multiplications and array manipulations.

An interesting side-effect of this work is the calculations performed within functions such as calcChi2 better represent the actual mathematical operations being performed on the data. Eigen provides a higher-level abstraction that greatly improves the readability of the code. This will allow for physics-developers to understand what is happening in this code if and when problems arise. It also provides better opportunities for the compiler and library to optimize the executable for specific platforms and architectures. This ought to be of great benefit to the experiment. Since the algorithms and procedures in this analysis application are so similar to experiments other than SBN, we believe the techniques employed here

N_univ	N_univ
10^4 (3σ)	10^5 (5σ)

Table 4: Upper boundaries on grid sizes that can be processed when running a full day on all of Cori phase 1/2.
will provide similar benefits in terms of performance and design for the broader neutrino physics program.

5.1 Future work

For this round of improvements, we chose to stay with more traditional large-core libraries and techniques for vectorization within a compute node. Our next phase will explore changes necessary for evaluating the performance of GPU accelerators to further reduce the program execution time. For this future work, we will target Kokkos as a replacement for Eigen3.

We find that in spite of the achieved improvements, the computational complexity of the Feldman-Cousins approach coupled with SBN design choices for the current implementation severely limit the dimensionally of the problem that can be handled. The current “brute-force” method of scanning a regular grid becomes prohibitive after two or perhaps three dimensions. An alternative scanning approach will need to be developed to move towards the seven or more dimensions that the experiment would like to probe, which falls outside of our scope. Nevertheless, our work ought to provide the machinery to greatly improve, for example, design parameters such as how much data will be necessary for the experiment to collect in order to achieve any given future physics goals.

CONCLUSIONS

Incorporation of the new capabilities enabled by this work into the SBN experiment analysis workflow is underway. The reorganization of this application and efficient use of computational resources opens the door to incorporating more dimensions into the problem space that SBN aims to address. Replacement of the well-established and validated grid-scan procedure will require additional consideration and study within the SBN collaboration. Providing an alternative procedure and comparison study is part of our future work; the physics study and impact within SBN, however, falls outside of our scope. Nevertheless, our work ought to provide the machinery to greatly improve, for example, design parameters such as how much data will be necessary for the experiment to collect in order to achieve any given future physics goals.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program, grant “HEP Data Analytics on HPC”, No. 1013935. It was supported by the U.S. Department of Energy under contracts DE-AC02-76SF00515 and DE-AC02-07CH11359 and used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. GG, GK and MRL are supported by the National Science Foundation under Grant No. PHY-1707971.

REFERENCES

[1] A. A. Aguilar-Arevalo et al. 2013. Improved Search for $\mu \rightarrow e$ Oscillations in the MiniBooNE Experiment. Phys. Rev. Lett. 110 (2013), 161801. https://doi.org/10.1103/PhysRevLett.110.161801 arXiv:hep-ex/1303.2588

[2] M. Antonello et al. 2015. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. (2015). arXiv:physics.ins-det/1503.01520

[3] Davio Cianci, Andy Furmanski, Georgia Karagiorgi, and Mark Ross-Lonergan. 2017. Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility. Phys. Rev. D96, 5 (2017), 055001. https://doi.org/10.1103/PhysRevD.96.055001 arXiv:hep-ph/1702.01758

[4] FASTmath Institute. [n.d.]. FASTmath is a program of the Office of Science within the Department of Energy. https://fastmath-scidac.llnl.gov/

[5] Gary J. Feldman and Robert D. Cousins. 1998. A Unified approach to the classical statistical analysis of small signals. Phys. Rev. D57 (1998), 3873–3889. https://doi.org/10.1103/PhysRevD.57.3873 arXiv:physics.data-an/physics/9711021

[6] Gael Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

[7] Dmitriy Morozov and Tom Peterka. 2016. Block-Parallel Data Analysis with DIY2. (2016). https://github.com/diatomic/diy.

[8] National Energy Research Scientific Computing Center. [n.d.]. The Cori System at the NERSC. https://docs.nersc.gov/systems/cori/

[9] The Blue Brain Project. 2016-NNNN. HighFive. https://github.com/BlueBrain/HighFive.

[10] The HDF Group. 1997-NNNN. Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/.

Figure 7: “Velocity” plot showing the “speed” of core computations on different architectures as function of the number of nodes.