Numerical study of proximity effect on critical field of rectangular type-II superconductor

M Naufal Indriatmoko, Fuad Anwar and Hery Purwanto

1 Physics Department of Sebelas Maret University, Jl. Ir. Sutami 36A Kentariog Jebres Surakarta 57126,

Email: muhammadnaufal@student.uns.ac.id

Abstract. Study of proximity effect on critical field of a rectangular type-II superconductor has been done. It was a numerical study using Time Dependent Ginzburg Landau (TDGL) equations as the basis. The superconductor conditioned in boundary with a non-superconducting material (i.e. metal). A uniform external field was applied to the superconductor in the direction of z-plane. Proximity effect or de Gennes boundary condition via extrapolation length (b) took account the properties caused by superconductor in contact with different material. As input to the simulation, we had three different dimensions each with 12×12, 32×32 and five varying value of b. We found that the lower critical field H_{c1} will decrease as the increasing value of b for all the rectangular superconductor, except for the size of 16×64. Any increment in the proximity effect also triggered a raise in the third higher critical field H_{c3} for every grid size variations. We also concluded that the proximity effect is very effective to a superconductor with high number of circumference to area ratio.

1. Introduction

A lot of studies about magnetic properties of superconductor has done using Time Dependent Ginzburg-Landau equations as their foundation [1-8]. The Time Dependent Ginzburg-Landau equation, abbreviated and also widely known as TDGL equation, first developed by Gor'kov and Eliashberg now very successful in explaining properties and dynamics of superconductor [9]. Due to highly nonlinear nature of TDGL equations, it is common to solve the equation numerically [10]. One of several frequently used numerical solutions is ψU method. The method has been proven and worked great to solve the TDGL equation [1,3,4,5,6,7]. Previous study has succeeded acquiring the lower critical field and the third higher critical field using TDGL equations which were solved with ψU method [2].

In the practical usage of superconductor, it is very often to see that the superconductor is in contact with non-superconducting materials. This condition forces many studies about magnetic properties of superconductor to not abandoning the proximity effect [4,5,6].

The TDGL equations which govern the superconductivity order parameter ψ and the vector potential A in the zero-electric potential gauge are given by [1,6]:

$$\frac{\partial \psi(r,t)}{\partial t} = (\nabla - iA(r,t))^2 \psi(r,t) + \psi(r,t) - [\psi(r,t)]^2 \psi(r,t)$$

(1)

\[
\frac{\partial A(r,t)}{\partial t} - \frac{1}{2i} (\nabla \cdot \psi(r,t)) - \frac{1}{2} |\psi(r,t)\|^2 A(r,t) - \kappa^2 (R \cdot \nabla \times (\nabla \times A(r,t) - H_{\text{ext}}(r,t)))
\]

(2)

There are two equations that hold the boundary condition properties:

\[
\hat{n} \cdot [\nabla - iA]\psi = \frac{1}{b} \psi
\]

(3)

\[
\hat{n} \cdot [\nabla - iA]\psi = 0
\]

(4)

Equation (3) valid with the condition that superconductor is in contact with other materials. While equation (4) act if the superconductor is immersed in a vacuum. The proximity effect occurs when a superconductor is in contact with a normal metal. The proximity effect taken into account via de Gennes extrapolation length \(b \) in equation (3). All variables above are rescaled as: \(\psi \) in unit of \(\psi_0 = (|\alpha(T)|/\beta)^{1/2} \), \(A \) in unit of \(A_0 = \mu_0 H_{c2lin}(T) \xi(T) \), \(H_{\text{ext}} \) in unit of \(H_{c2lin}(T) \), \(\sigma \) in unit of \(\sigma_0 = 1/(\mu_0 \kappa(T)^2 D) \), \(r \) in unit of \(\xi(T) \), \(t \) in unit of \(\tau(T) = \xi(T)^2 / D \). Quantity \(\hat{n} \) is the normal vector of the superconductor boundary, \(\psi \) is order parameter, \(b \) is real number determining the boundary condition, \(\sigma \) is electrical conductivity, \(\alpha(T) \) and \(\beta \) are the Ginzburg-Landau free energy density coefficients, \(A \) is vector potential, \(H_{\text{ext}} \) is the external magnetic field, \(\xi(T) \) is coherence length, \(\kappa(T) \) is Ginzburg-Landau parameter and \(D \) is phenomenological diffusion constant.

The main topic discussed in the paper was proximity effect on the critical fields of the rectangular type-II superconductor. The proximity effect was observed through de Gennes extrapolation length. The critical fields in context are the lower critical field \(H_{c1} \) and the third higher critical field \(H_{c3} \).

2. Numerical Method

This study considered the superconductor as in figure 1. Rectangular shaped superconductor affected by spatially uniform, time-dependent external field pointing in \(z \)-plane direction. A normal metal situated in contact with the superconductor. In \(\psi U \) method, it is assumed that the superconductor contained \(N_x \times N_y \) cells of which have the size of \(\Delta x \times \Delta y \). There are three complex link variables held inside each cell [1,3]. They are introduced to help obtain a better numerical convergence at high magnetic field [10]. These set of conditions were studied with TDGL equations which solved numerically by \(\psi U \) method as have done in other previous studies [1,2,3,8]. A simulation program that has input and would yield desired output then generated based on this case.

![Figure 1. Rectangular shaped superconductor and the three important variables](image)

We set the simulation input with time step of 0.010, mesh spacing 0.5×0.5, \(\kappa = 2.0 \), initial applied external field 0 with increment of \(1 \times 10^{-6} \) and various grid sizes with a basis of 12×12 and
32 × 32. The two basis represent a small and large size superconductor. More details of the grid size input shown in table 1.

Input Name	\(N_x \times N_y \)	Area	Circumference	\(b \)
SA1	9 × 16	144	50	3
SA2	9 × 16	144	50	5
SA3	9 × 16	144	50	10
SA4	9 × 16	144	50	20
SA5	9 × 16	144	50	30
SB1	8 × 18	144	52	3
SB2	8 × 18	144	52	5
SB3	8 × 18	144	52	10
SB4	8 × 18	144	52	20
SB5	8 × 18	144	52	30
SR1	12 × 12	144	48	3
SR2	12 × 12	144	48	5
SR3	12 × 12	144	48	10
SR4	12 × 12	144	48	20
SR5	12 × 12	144	48	30
LA1	16 × 64	1024	160	3
LA2	16 × 64	1024	160	5
LA3	16 × 64	1024	160	10
LA4	16 × 64	1024	160	20
LA5	16 × 64	1024	160	30
LB1	8 × 128	1024	272	3
LB2	8 × 128	1024	272	5
LB3	8 × 128	1024	272	10
LB4	8 × 128	1024	272	20
LB5	8 × 128	1024	272	30
LR1	32 × 32	1024	128	3
LR2	32 × 32	1024	128	5
LR3	32 × 32	1024	128	10
LR4	32 × 32	1024	128	20
LR5	32 × 32	1024	128	30

3. Result and Discussion

The TDGL equations has been solved numerically and we obtained the magnetization, external field, order parameter and other contained quantities. Since our main discussion was the critical fields, we concerned only to \(|\psi|^2\) and \(H_{\text{ext}}\). From plotting those two variables we obtained the critical fields of the superconductor. The first local maximum determined the lower critical field \(H_{\text{C1}}\) and the zero-point determined the third upper critical field \(H_{\text{C3}}\) [2]. After we obtained the critical fields with the corresponding de Gennes extrapolation length \(b\) value, we plotted it to obtain two graphs shown in figure 2 and 3.

From the graphs obtained, we can see several interesting phenomena. In the group of small size superconductor, the lower critical field \(H_{\text{C1}}\) decreases when de Gennes extrapolation length \(b\) is raised. It is valid for either rectangular or square superconductor. However, in the large size group,
H_{C1} increases when b is raised only for the square (32×32) and 16×64. The proximity effect seems to give opposite response to 8×128 in term of H_{C1} value within the group. When it comes to the third higher critical field, all of the grid size variation gives the same response. The value of H_{C3} is increases when the value of proximity is raised. It is true for both square and rectangular superconductor. Regarding the geometry, one can discuss about the circumference to area ratio. The small group superconductor obviously has the bigger ratio over the large group. Here at figure 4 & 5 we shall see that varying value of b has less impact to the H_{C1} value of the large group. It means that the proximity effect is less effective to superconductor with an area much more bigger than its circumference. After all, the simulation is programmed to measure the order parameter ψ with the TDGL equations except for those near the interface which it used the boundary condition equation instead.

Figure 2. Graph of H_{C1} function b

Figure 3. Graph of H_{C3} function b

Figure 4. Value of H_{C1} for the small size group

Figure 5. Value of H_{C1} for the large size group

4. Conclusion
The effect of de Gennes boundary condition (proximity effect) on the critical fields of rectangular shaped type-II superconductor has been examined by numerical simulation. We found that the lower critical field H_{C1} will decrease as the increasing value of b for all the rectangular superconductor, except for the size of 16×64. Any increment in the proximity effect also triggered a raise in the third higher critical field H_{C3} for every grid size variations. We also concluded that the proximity effect is very effective to a superconductor with high number of circumference to area ratio.
References

[1] Buscaglia G C, Bolech C and López A 2000 On The Numerical Solution of The Time-Dependent Ginzburg-Landau Equations In Multiply Connected Domains (Berlin: Springer)

[2] Anwar F, Nurwantoro P and Hermanto A 2013 J. Nat. Sci. Res. 3 99-106

[3] Gropp W D, Kaper H G, Leaf G K, Levine D M, Palumbo M and Vinokur V M 1995 J. Comp. Phys. 123 254-66

[4] Barba-Ortega J, de Souza Silva C C and Aguiar A J 2009 Phys. C 469 852-56

[5] Barba Jose J, Silva C C de Souza, Carbal R E Leonardo and Aguiar A 2008 Phys. C 468 718-721

[6] Barba-Ortega J, Sardella E, Aguiar J A and Brandt E H 2012 Phys. C 479 49

[7] Barba-Ortega J and Joya M R 2012 Dyna 79 46-50

[8] Winiecki T and Adams C S 2002 J. Comp. Phys. 179 127

[9] Gor’kov L P and Eliashberg G M 1968 Sov. Phys. 54 612

[10] Du Q 2005 Journal of Mathematical Physics 46 095109-1-22