Everyday the Same Picture: Popularity and Content Diversity

Alessandro Bessi
IUSS Pavia, Italy

Fabiana Zollo
IMT Lucca, Italy

Michela Del Vicario
IMT Lucca, Italy

Antonio Scala
ISC CNR, Rome, Italy

Bruno Gonçalves
Aix Marseille, France

Fabio Petroni
Sapienza University of Rome, Italy
walter.quattrociocchi@imtlucca.it

Abstract

Facebook is flooded by diverse and heterogeneous content, from kittens up to music and news, passing through satirical and funny stories. Each piece of that corpus reflects the heterogeneity of the underlying social background. In the Italian Facebook we have found an interesting case: a page having more than 40K followers that every day posts the same picture of a popular Italian singer. In this work, we use such a page as a control to study and model the relationship between content heterogeneity on popularity. In particular, we use that page for a comparative analysis of information consumption patterns with respect to pages posting science and conspiracy news. In total, we analyze about 2M likes and 190K comments, made by approximately 340K and 65K users, respectively. We conclude the paper by introducing a model mimicking users selection preferences accounting for the heterogeneity of contents.

Introduction

Online social networks such as Facebook foster the aggregation of people around common interests, narratives, and worldviews. Indeed, the World Wide Web caused a shift of paradigm in the production and consumption of contents that increased volume and heterogeneity of available contents. Users can express their attitudes by producing and consuming heterogeneous information — e.g., conspiracists avoid mainstream news and follow their own information sources, whereas debunkers try to inhibit the diffusion of false claims. Images of kittens and pets, political memes, gossip, scandals spread on Facebook. By liking, commenting, and sharing their preferred contents, users can express their passions and emotions — and, among these latter, sarcasm in no exception. Indeed, not rarely we can find pages promoting parodic and sarcastic imitations of online social dynamics — e.g., Ebola and Kittens [2] or In favor of chem-trails [2]. An interesting case in the Italian Facebook is a page [3] with more than 40K followers that posts everyday the exactly alike picture of Toto Cutugno, a famous Italian pop-singer.

Background and Related Works

A large body of literature addresses the study of social dynamics on socio-technical systems from social contagion up to social reinforcement [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]. Among these, one of the most defining topic of computational social science is the understanding of driving forces behind the popularity of contents [23]. Such a challenge has been addressed looking at the sentiment of comments, contents, or users’ attention [24] [25] [26] [27] [28] [29] [30] [31] [32]. However, the mechanisms behind popularity remain largely unexplored [32] [33] [34]. In [35] the authors address such a challenge experimentally by measuring the impact of content quality and social influence on the eventual popularity or success of cultural artifacts. The effects of specific contents on the formation of communities of interest, their permeability to false information, and the resistance to changes have been recently characterized in [37] [38] [39] [40]. In particular, in [41] the authors point out that connectivity patterns of the Facebook social network are prominently driven by homophily of users — i.e., the tendency of individuals to associate with similar others — towards specific kinds of contents. Microblogging platforms such as Facebook and Twitter [42] have lowered the cost of information production and broadcasting, boosting the potential reach of each idea or meme [38] [44].
i.e., content or concepts that spread rapidly on the Web. Still, the abundance of information to which we are exposed through online social networks and other socio-technical systems is exceeding our capacity to consume it [45]. As a result, the dynamics of information is driven more than ever before by the economy of attention [46, 47, 48]. We address this challenge by studying the interlink between contents diversity and popularity. More specifically, we investigate the effects of sources producing always the same information on users’ activity, consumption, and attention patterns.

Data Description

In this work, we aim at investigating the role of content diversity on the dynamics of information consumption in online social networks. To this end, we use a set of Facebook pages promoting heterogeneous contents and a Facebook page promoting always the same picture. The set of pages promoting heterogeneous contents is composed by 73 public Facebook pages, whereof 34 are about scientific news and 39 about conspiratorial news; we refer to the former as science pages and to the latter as conspiracy pages. The page promoting homogeneous contents is called “La stessa foto di Toto Cutugno ogni giorno” (“Everyday the same photo of Toto Cutugno”), a well-known Italian pop singer-songwriter); such a page, by publishing everyday the same picture of the Italian singer — and nothing else —, represents the perfect control for studying content diversity; we refer to this page as the baseline page. Starting from these pages, we downloaded all the posts, we collected all the likes and comments to the posts, and we counted the number of shares. Data related to science and conspiracy pages have been collected from August 22, 2013 to December 31, 2013, whereas data related to the baseline page have been collected from August 22, 2014 (birthdate of the page) to December 31, 2014. In total, we collected around 2M likes and 190K comments, made by about 340K and 65K users, respectively. In Table 1 we summarize the details of our data collection. Likes, shares, and comments have a different meaning from the user viewpoint. Most of the times, a like stands for a positive feedback to the post; a share expresses the will to increase the visibility of a given information; and a comment is the way in which online collective debates take form. Comments may contain negative or positive feedbacks with respect to the post.

Table 1: Dataset breakdown. The number of pages, posts, likes, comments, shares, likers, and commenters for science pages, conspiracy pages, and the baseline page.

	Total	Science	Conspiracy	Baseline
Pages	34,354	13,028	36,169	157
Posts	2,095,677	614,078	1,184,084	297,515
Likes	192,967	40,608	138,138	14,221
Comments	3,782,480	477,457	3,297,687	7,336
Shares	344,367	162,146	159,524	22,697
Likers	64,903	18,358	41,666	4,875
Commenters	297	875	608	218

Results and Discussion

In this section, we first present the statistical signatures characterizing users activity on pages with diversified content on specific topics (science and conspiracy news) against the case of the page posting every day the same picture (baseline). Then we derive a model of information consumption mimicking user preferences with respect to contents.

Figure 1: Users’ activity patterns. Probability density function (PDF) for the normalized number of likes by each user.

In Figure 2 we show the PDF of the users’ lifetime in terms of their liking activity — i.e. the temporal interval between the first and the last like of the user on a given page. We find a slight difference in the lifetime of the baseline users with respect to science and conspiracy users.

These figures show that users activity patterns are similar and present heavy–tailed distributions despite the different nature of the contents, and we can not find any significant difference between the users inter-

1We performed the unity–based normalization to bring all values in the range [0, 1].
action patterns induced by heterogeneous or homogeneous contents.

Conversely, by analyzing consumption patterns related to posts, we find a significant difference in the information consumption dynamics. Figure 3 shows the PDF for the number of likes received by posts belonging to science pages, conspiracy pages, and the baseline page. The number of likes received by posts are heavy-tailed distributed if the posts belong to pages promoting heterogeneous contents (science and conspiracy pages); whereas they are approximately distributed according to a Gaussian if the posts belong to a page promoting homogeneous content.

Summarizing, users’ activities always present heavy-tailed distributions resolving in heavy-tailed distributed consumption patterns on posts in the heterogeneous contents case. Still, when the content promoted by a page is homogeneous – i.e., always the same – we find that the heavy-tailed distributed users’ activities resolve in posts’ consumption patterns that are approximately Gaussian.

Modeling Contents Consumption

Here we introduce a model of pattern consumption that exploits the Beta distribution properties to generate different levels of posts’ attractiveness, thus varying content–heterogeneity in the simulated collection of posts.

The Beta distribution is a family of continuous probability distributions defined in the interval [0, 1] and characterized by two real parameters, \(\alpha > 0 \) and \(\beta > 0 \), which control the shape of the distribution. In particular, for \(\alpha = 1 \) and \(\beta = 1 \) the Beta distribution \(B(\alpha, \beta) \) is equivalent to the Uniform distribution \(U(0, 1) \). Conversely, if \(\alpha = 1 \) and \(\beta \geq 20 \), the Beta distribution \(B(\alpha, \beta) \) is a right heavy-tailed distribution. Figure 4 shows the Beta probability density function with respect to the two shape parameters \(\alpha \) and \(\beta \).

In our model, each post has a value drawn from a Beta distribution \(v \sim B(1, \beta) \), with \(\beta \) ranging between 1 and 1,000,000, indicating its attractiveness. We let the parameter \(\beta \) assume those extreme values in order to obtain different distributions for posts’ attractiveness. Indeed, notice that when \(\beta = 1 \) the Beta distribution \(B(1, \beta) \) is equivalent to a uniform distribution \(U(0, 1) \), so that we have a collection of homogeneous–content posts — i.e., each post has the same degree of attractiveness; whereas when \(\beta \to \infty \) the Beta distribution \(B(1, \beta) \) is equivalent to a right heavy–tailed distribution, so that we have a collection of heterogeneous–content posts — i.e., there are few posts with a high level of attractiveness, while the vast majority of the posts is characterized by a low level of attractiveness.

Moreover, each user is characterized by two parameters randomly drawn from power law distributions: her volume of activity, \(a \sim p(x) \); and her fixed–preference about the posts, \(b \sim p(x) \), where \(p(x) = x^{-\gamma} \) with
patterns generated by a simulation of the model with $\beta = 1$ — i.e., in the case of homogeneous–content posts. Notice that users’ activity is heavy–tailed, whereas posts’ consumption is approximately Gaussian. Such a result is consistent with empirical data shown in the previous section: if the content promoted by a page is always the same, the heavy–tailed users’ activity resolves in approximately Gaussian posts consumption’s patterns.

Concluding Remarks

Facebook is overflowed by different and heterogeneous contents, from the latest news up to satirical and funny stories. Each piece of that corpus reflects the heterogeneity of the underlying social background. Indeed, the World Wide Web caused a shift of paradigm in the production and consumption of information that increased the amount and heterogeneity of contents available to users. On online social networks such as Twitter and Facebook, people can express their attitudes, passions, and emotions by producing and consuming heterogeneous information.

In the Italian Facebook, we have found a fascinating case of contents’ homogeneity: a page with more than 40K followers that every day posts the same picture of Toto Cutugno, a popular Italian singer. In this work, we use such a page as a benchmark to investigate and model the effect of contents heterogeneity on popularity. In particular, we use that page for a comparative analysis of information consumption patterns with respect to pages posting heterogeneous contents related to science and conspiracy.

We show that there are not remarkable differences in user activity patterns, whereas we find significant dissimilarities between post consumption patterns of the page promoting homogeneous contents and those of the pages producing heterogeneous contents. Finally, we derive a model of information consumption that accounts for the heterogeneity of contents. Hence, we show that the proposed model is able to reproduce the phenomenon observed from empirical data.

Acknowledgments

Funding for this work was provided by EU FET project MULTIPLEX nr. 317532 and SIMPOL nr. 610704. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We want to thank Prof. Guido Caldarelli for precious insights and contribution on the data analysis. Special thanks to Josif Stalin, Stefano Alpi, Michele Degani for giving access to the Facebook page of *La stessa foto di Toto Cutugno ogni giorno*.

References

[1] Ebola e gattini. https://www.facebook.com/ebolagattini Jan 2015. Facebook Page.
Figure 5: Users activity and post consumption patterns with extremely heterogenous–content posts. Probability density function (PDF) of the users activity and the posts consumption patterns generated by a simulation of the model with $\beta = 1,000,000$. If the content promoted by a page is heterogeneous, the heavy–tailed users’ activity resolves in skewed posts consumption’s patterns.

Figure 6: Users activity and post consumption patterns with homogeneous–content posts. Probability density function (PDF) of the users activity and the posts consumption patterns generated by a simulation of the model with $\beta = 1$. If the content promoted by a page is always the same, the heavy–tailed users’ activity resolves in approximately Gaussian posts consumption’s patterns.
[2] A favore delle scie chimiche. https://www.facebook.com/afavoredellesciechimiche, Jan 2015. Facebook Page.

[3] La stessa foto di toto cutugno ogni giorno. https://www.facebook.com/totocutugno666, Jan 2015. Facebook Page.

[4] Jukka-Pekka Onnela and Felix Reed-Tsochas. Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences, 107(43):18375–18380, October 2010.

[5] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. Structural diversity in social contagion. Proceedings of the National Academy of Sciences, 2012.

[6] Kevin Lewis, Marco Gonzalez, and Jason Kaufman. Social selection and peer influence in an online social network. Proceedings of the National Academy of Sciences, 109(1):68–72, January 2012.

[7] Delia Mocanu, Andrea Baronchelli, Bruno Gonçalves, Nicola Perra, Qian Zhang, and Alessandro Vespignani. The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PloS One, 8(4):e61981, 2013.

[8] Lada Adamic and Natalie Glance. The Political Blogosphere and the 2004 U.S. Election: Divided They Blog. In LinkKDD ’05: Proceedings of the 3rd international workshop on Link discovery, pages 36–43, 2005.

[9] Jon Kleinberg. Analysis of large-scale social and information networks. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 2013.

[10] M. Paolucci, T. Eymann, W. Jager, J. Sabater-Mir, R. Conte, S. Marmo, S. Picascia, W. Quattrociocchi, T. Balke, S. Koenig, T. Broekhuizen, D. Trampe, M. Tuk, I. Brito, I. Pinyol, and D. Villatoro. Social Knowledge for e-Governance: Theory and Technology of Reputation. Roma: ISTC-CNR, 2009.

[11] Walter Quattrociocchi, Rosaria Conte, and Elena Lodi. Opinions Manipulation: Media, Power and Gossip. Advances in Complex Systems, 14(4):567–586, 2011.

[12] Walter Quattrociocchi, Mario Paolucci, and Rosaria Conte. On the effects of informational cheating on social evaluations: image and reputation through gossip. IJKL, 5(5/6):457–471, 2009.

[13] Robert M. Bond, Christopher J. Fariss, Jason J. Jones, Adam D. I. Kramer, Cameron Marlow, Jaime E. Settle, and James H. Fowler. A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415):295–298, September 2012.

[14] Sandra Gonzalez-Bailon, Javier Borgholthoefer, Alejandro Rivero, and Yamir Moreno. The Dynamics of Protest Recruitment through an Online Network. Scientific Report, 2011.

[15] Damon Centola. The Spread of Behavior in an Online Social Network Experiment. Science, 329(5996):1194–1197, September 2010.

[16] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics. Reviews of Modern Physics, 81(2):591+, June 2009.

[17] Walter Quattrociocchi, Guido Caldarelli, and Antonio Scala. Opinion dynamics on interacting networks: media competition and social influence. Scientific Reports, 4, May 2014.

[18] E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner. Unity and discord in opinion dynamics. Physica A, 2003.

[19] Adrien Friggeri, Lada Adamic, Dean Eckles, and Justin Cheng. Rumor Cascades. AAAI Conference on Weblogs and Social Media (ICWSM), 2013.

[20] Aniko Hannak, Drew Margolin, Brian Keegan, and Ingmar Weber. Get Back! You Don’t Know Me Like That: The Social Mediation of Fact Checking Interventions in Twitter Conversations. In Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM’14), Ann Arbor, MI, June 2014.

[21] Justin Cheng, Lada Adamic, Alex P. Dow, Jon M. Kleinberg, and Jure Leskovec. Can Cascades Be Predicted? In Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, pages 925–936, Republic and Canton of Geneva, Switzerland, 2014. International World Wide Web Conferences Steering Committee.

[22] J. Ratkiewicz, M.D. Conover, M. Meiss, B. Gonçalves, A. Flammini, and F. Menczer. Detecting and tracking political abuse in social media. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, 2012.

[23] Alexandru Tatar, Marcelo Dias de Amorim, Serge Fdida, and Panayotis Antoniadis. A survey on predicting the popularity of web content. Journal of Internet Services and Applications, 5(1):1–20, 2014.

[24] Alexandru Tatar, Jérémie Leguay, Panayotis Antoniadis, Arnaud Limbourg, Marcelo Dias de Amorim, and Serge Fdida. Predicting the popularity of online articles based on user comments. In Proceedings of the International Conference on Web Intelligence, Mining and Semantics, page 67. ACM, 2011.

[25] Flavio Figueiredo, Jussara M Almeida, Fabrício Benevenuto, and Krishna P Gummadi. Does content determine information popularity in social
media?: a case study of youtube videos’ content and their popularity. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems, pages 979–982. ACM, 2014.

[26] Amir Hassan Zadeh and Ramesh Sharda. Modeling brand post popularity dynamics in online social networks. Decision Support Systems, 2014.

[27] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Alessandro Flammini, and Filippo Menczer. Detecting and tracking political abuse in social media. In ICWSM, 2011.

[28] Roja Bandari, Sitaram Asur, and Bernardo A Huberman. The pulse of news in social media: Forecasting popularity. In ICWSM, 2012.

[29] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. Statistical analysis of the social network and discussion threads in slashdot. In Proceedings of the 17th international conference on World Wide Web, pages 645–654. ACM, 2008.

[30] Gabor Szabo and Bernardo A Huberman. Predicting the popularity of online content. Communications of the ACM, 53(8):80–88, 2010.

[31] Kristina Lerman and Tad Hogg. Using a model of social dynamics to predict popularity of news. In Proceedings of the 19th international conference on World Wide Web, pages 621–630. ACM, 2010.

[32] Kristina Lerman and Rumi Ghosh. Information contagion: An empirical study of the spread of news on digg and twitter social networks. ICWSM, 10:90–97, 2010.

[33] Michael H. Goldhaber. The attention economy and the net. First Monday, 2(4), 1997.

[34] Duncan J. Watts. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences, 99(9):5766–5771, 2002.

[35] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 497–506. ACM, 2009.

[36] Matthew J Salganik, Peter Sheridan Dodds, and Duncan J Watts. Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311(5762):854–856, 2006.

[37] Alessandro Bessi, Antonio Scala, Qian Zhang, Luca Rossi, and Walter Quattrociocchi. The economy of attention in the age of (mis)information. Journal of Trust Management, to appear.

[38] Andrew Rojecki and Sharon Meraz. Rumors and factitious informational blends: The role of the web in speculative politics. New Media & Society, May 2014.

[39] Alessandro Bessi, Guido Caldarelli, Michela Del Vicario, Antonio Scala, and Walter Quattrociocchi. Social Determinants of Content Selection in the Age of (Mis)Information. In Luca Maria Aiello and Daniel McFarland, editors, Social Informatics, volume 8851 of Lecture Notes in Computer Science, pages 259–268. Springer International Publishing, 2014.

[40] Alessandro Bessi, Mauro Coletto, George A. Davidescu, Antonio Scala, and Walter Quattrociocchi. Science vs Conspiracy: collective narratives in the age of misinformation. PloS One, to appear.

[41] Aris Anagnostopolos, Alessandro Bessi, Guido Caldarelli, Michela Del Vicario, Fabio Petroni, Antonio Scala, Fabiana Zollo, and Walter Quattrociocchi. Viral misinformation: the role of homophily and polarization. arXiv.

[42] D. Tapscott and A. D. Williams. Wikinomics: How Mass Collaboration Changes Everything. Portfolio Hardcover, 2006.

[43] R. Dawkins. The selfish gene. Oxford University Press, 1989.

[44] Christian Bauckhage. Insights into Internet Memes. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pages 42–49. AAAI, 2011.

[45] L. Weng, A. Flammini, A. Vespignani, and F. Menczer. Competition among memes in a world with limited attention. Scientific Reports, 2012.

[46] H. Simon. Designing organizations for an information-rich world. In Computers, Communication, and the Public Interest, pages 37–52, 1971.

[47] Reuven Dukas and Alan C Kamil. Limited attention: the constraint underlying search image. Behavioral Ecology, 12(2):192–199, 2001.

[48] Janette Lehmann, Bruno Gonçalves, José J. Ramasco, and Ciro Cattuto. Dynamical classes of collective attention in twitter. In Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pages 251–260, New York, NY, USA, 2012. ACM.

[49] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference, WebSci ’12, pages 33–42, New York, NY, USA, 2012. ACM.