Supplementary information

Tailoring the Cavities of Hydrogen-bonded Amphidynamic Crystals using Weak Contacts: Towards Faster Molecular Machines

Armando Navarro-Huerta‡, Marcus J. Jellen†, Jessica Arcudia§, Simon J. Teat#, Rubén A. Toscano‡, Gabriel Merino*§ and Braulio Rodríguez-Molina*,‡

‡Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México.

†Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.

#Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States.

§Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, Mérida, 97310, Yucatán, México.

*gmerino@cinvestav.mx

*brodriguez@iquimica.unam.mx
Contents

Materials and methods .. S3
 General procedure for the synthesis of carbazole-based stators via Suzuki coupling .. S3
 3,6-bis(2,4-difluorophenyl)-9H-carbazole (4) .. S4
 3,6-bis(2,5-difluorophenyl)-9H-carbazole (5) .. S4
 3,6-bis(2,3-difluorophenyl)-9H-carbazole (6) .. S5
 3,6-diphenyl-9H-carbazole (7) ... S5
 3,6-diiodo-9H-carbazole (8) ... S6
 General procedure for synthesis of single crystals of cocrystals 1-3I and 7s S6
 General procedure for obtaining of cocrystals 1 to 3I in bulk via mechanochemical synthesis .. S7

Optical Microscopy .. S7

Solution ¹H and ¹³C NMR characterization of compounds .. S8
 ¹H NMR spectra. Recognition experiments ... S17

Crystallographic information tables and X-Ray diffraction studies S21

Solid-state ¹³C CPMAS .. S33

VT ²H Echo-spin experiments .. S35

Computational section .. S37
 Structural parameters .. S37
 Rotational barriers .. S39
 Non-covalent interactions .. S40

VT ¹H and T₁ spin-lattice relaxation experiments .. S42

Voids and Hirshfeld surface analysis ... S47

References .. S53
Materials and methods

Reagents and solvents were purchased from company Sigma-Aldrich® and were used without further purification. Reactions were monitored through TLC using silica gel plates 60 F254 purchased from Merck®. Spots were detected either by UV-light absorption or by using Seebach’s TLC stain. Reactions were carried out in inert atmosphere using nitrogen (N2). Solution ¹H and ¹³C experiments were recorded at room temperature using Bruker Avance III 400 with BBO 400S1 probe or with Jeol Eclipse 300. The spectroscopic data is referenced to CDCl₃ (¹H: δ = 7.26 ppm, s; ¹³C: δ = 77.0 ppm) or DMSO-d₆ (¹H, δ = 2.5 ppm, q; ¹³C: δ = 39.52 ppm). High-Resolution Mass Spectrometry was obtained in a Jeol JMS-AccuTOF JMS-T100LC spectrometer, ionization mode: Direct Analysis in Real Time (DART). FTIR spectra experiments were recorded with Bruker ATR equipped with a diamond tip in the spectral window from 4000 to 500 cm⁻¹. Uncorrected melting points were determined in a Fisher-Johns melting point apparatus, unless otherwise noted.

Synthesis of 1,4-diazabicyclo[2.2.2]octane-d₁₀ (DABCO-d₁₀) was followed as described in a procedure already reported. M.P. 112-114 °C, MS (DART) m/z: [M+H]⁺: 121.15477 (D₈, 11.8%), 122.15622 (D₉, 35.2%), 123.16125 (D₁₀, 74.9%), 124.16953 (D₁₁, 100%), 125.17496 (D₁₂, 87.6%), which account for 93% mean content of ²H.

General procedure for the synthesis of carbazole-based stators via Suzuki coupling

Solid reagents were placed in a two-neck round-bottom flask with magnetic stirrer, connected to a reflux system, then sealed and degassed with N₂ for 20 minutes. Subsequently, solvents and solutions were poured using a syringe. In the reactions to obtain compounds 4 to 7 the system was heated to 85 °C with a heating mantle and left to react for the indicated time. The products were isolated using column chromatography with silica gel as stationary phase and hexanes to remove remaining starting materials, followed by a mixture of hexanes/ethyl acetate (97:3).

Compounds 4 to 6 were synthesized using the following quantities of reagents: 0.500 g of 3,6-diiodo-9H-carbazole (8) (1.0 eq, 1.19 mmol), 0.564 g of the corresponding difluorophenylboronic acid (3.0 eq, 3.58 mmol), 0.042 g of Pd(PPh₃)₂Cl₂ (0.05 eq, 0.06 mmol), 8 mL of toluene, 0.8 mL of ethanol and 1 mL of K₂CO₃ (2 mol L⁻¹).
3,6-bis(2,4-difluorophenyl)-9H-carbazole (4)

Reaction between 3,6-diiodo-9H-carbazole (8) and 3,5-difluorophenylboronic acid. Reaction time of 12 hours. The product was recovered as a white, granular solid (0.260 g, yield 56%, m.p. 165-167). 1H NMR (400 MHz, CDCl$_3$) δ: 8.29 (s, 2H, H4), 8.19 (s, 1H, H9), 7.65 (dd, 2H, $J = 8.5$, 1.8 Hz, H2), 7.51 (d, 2H, $J = 8.4$ Hz, H1), 7.23 (d, 4H, $J = 8.9$, H11), 6.78 (tt, 2H, $J = 8.9$, 2.3 Hz, H13). 13C NMR (100 MHz, CDCl$_3$) δ: 163.6 (C12, dd, $J = 246.5$, 13.6 Hz), 145.3 (C3), 140.1 (C9a), 131.2 (C10), 125.7 (C2), 124.0 (C4a), 119.1 (C4), 111.4 (C1), 110.0 (C11, d, $J = 25.2$ Hz), 101.9 (C13, t, $J = 25.5$ Hz). FTIR (ATR, cm$^{-1}$) ν: 3470, 1623, 1591, 1468, 1288, 1243, 1194, 1190, 868, 848, 803, 616. HRMS (DART) m/z: [C$_{24}$H$_{14}$F$_4$N]$^+$, calculated 392.10624, found 392.10690, difference (ppm): 1.70.

3,6-bis(2,5-difluorophenyl)-9H-carbazole (5)

Reaction between 3,6-diiodo-9H-carbazole (8) and 2,5-difluorophenylboronic acid. Reaction time of 14 hours. The product was recovered as a white, fine solid (0.223 g, yield 48%, m.p. 151-153 °C). 1H NMR (400 MHz, CDCl$_3$) δ: 8.27 (s, 2H, H4), 8.15 (s, 1H, H9), 7.63 (d, 2H, $J = 8.4$ Hz, H2), 7.49 (d, 2H, $J = 8.4$ Hz, H1), 7.29 – 7.24 (m, 2H, H15), 7.15 (td, $J = 9.5$, 4.5 Hz, 2H, H12), 7.03 – 6.97 (m, 2H, H13). 13C NMR (100 MHz, CDCl$_3$) δ: 159.0 (C11, d, $J = 240.7$ Hz), 156.0 (C14, d, $J = 243.6$ Hz), 139.7 (C9a), 131.1 (C10, dd, $J = 24.4$, 7.7 Hz), 127.3 (C2), 126.6 (C3), 123.7 (C4a), 121.1 (C4), 117.4 (C12), 117.1 (C15), 114.6 (C13, dd, $J = 24.0$, 8.4 Hz), 110.9 (C1). FTIR (ATR, cm$^{-1}$) ν: 3428, 1607, 1490, 1240, 1177, 1101, 875, 802, 761, 701, 617. HRMS (DART) m/z: [C$_{24}$H$_{14}$F$_4$N]$^+$, calculated 392.10624, found 392.10699, difference (ppm): 1.92.
3,6-bis(2,3-difluorophenyl)-9H-carbazole (6)

Reaction between 3,6-diiodo-9H-carbazole (8) and 2,3-difluorophenylboronic acid. Reaction time of 10 hours. The product was recovered as a white, fine solid (0.242 g, **yield 52%**, m.p. 144-146 °C). 1H NMR (400 MHz, CDCl$_3$) δ: 8.27 (s, 2H, H4), 8.17 (s, 1H, H9), 7.64 (d, 2H, J = 8.4 Hz, H2), 7.50 (d, 2H, J = 8.4 Hz, H1), 7.33 – 7.30 (m, 2H, H15), 7.18 – 7.10 (m, 4H, H13, H14). 13C NMR (100 MHz, CDCl$_3$) δ: 151.9 (C12, dd, J = 237.3, 12.9 Hz), 148.2 (C11, dd, J = 248.2, 12.7 Hz), 139.7 (C9a), 132.1 (C10, d, J = 10.2 Hz), 127.4 (C2), 126.5 (C3), 125.8 (C15), 124.2 (C14), 123.7 (C4a), 121.1 (C4), 115.5 (C13, d, J = 17.4 Hz), 110.9 (C1). FTIR (ATR, cm$^{-1}$) ν: 3478, 2923, 1609, 1477, 1260, 897, 770. HRMS (DART) m/z: [C$_{24}$H$_{14}$F$_4$N]$^+$, calculated 392.10624, found 392.10818, difference (ppm): 4.95.

3,6-diphenyl-9H-carbazole (7)

Reaction time of 24 hours. Quantities: 0.500 g of 3,6-diiodo-9H-carbazole (8) (1.0 eq, 1.19 mmol), 0.436 g of phenylboronic acid (3.0 eq, 3.58 mmol), 0.042 g of Pd(PPh$_3$)$_2$Cl$_2$ (0.05 eq, 0.06 mmol), 8 mL of toluene, 0.8 mL of ethanol and 1 mL of K$_2$CO$_3$ (2 mol L$^{-1}$). The product was recovered as a white solid (0.192 g, **yield 50%**, m.p. 204-205 °C). 1H NMR (400 MHz, CDCl$_3$) δ: 8.35 (s, 2H, H4), 8.03 (s, 1H, H9), 7.75 (d, J = 7.9 Hz, 4H, H11), 7.71 (d, J = 8.3 Hz, 2H, H2), 7.52 (t, J = 8.0 Hz, 4H, H12), 7.47 (d, J = 8.6 Hz, 2H, H1), 7.38 (t, J = 7.4 Hz, 2H, H13). 13C NMR (100 MHz, CDCl$_3$) δ: 142.1 (C9a), 139.5 (C3), 133.3 (C10), 128.9 (C12), 127.4 (C11), 126.7 (C13), 125.8 (C2), 124.1 (C4a), 119.0 (C4), 111.0 (C1). FTIR (ATR, cm$^{-1}$) ν: 3418, 3032, 2924, 2853, 1601, 1475, 1283, 1238, 822, 761, 697. HRMS (DART) m/z: [C$_{24}$H$_{18}$N]$^+$, calculated 320.14392, found 320.14463, difference (ppm): 2.20.
3,6-diido-9H-carbazole (8)

In a two-neck round-bottom flask attached to a condenser were placed the next quantities of reagents: 0.500 g (1.0 eq., 2.99 mmol) of carbazole, 0.650 g of KIO₃ (1.0 eq., 3.04 eq) and 0.650 g of KI (1.3 eq, 3.91 mmol). The flask was sealed and degassed with N₂ for 15 minutes, then 10 mL of glacial acetic acid were added. The mixture was heated to 85 °C and left to react for 50 minutes. Afterwards, the residue was poured into an ice-bath with Na₂SO₃ and stirred for 20 minutes. The solid formed was vacuum filtered and recrystallized from ethanol to afford a fine, gray, crystalline solid (0.952 g, yield 76%, m.p. 209-211 °C).

¹H NMR (300 MHz, DMSO-d₆) δ: 11.56 (s, 1H), 8.57 (s, 2H), 7.66 (dd, 2H, J = 8.5, 1.7 Hz), 7.35 (d, 2H, J = 8.5 Hz). **¹³C NMR** (75 MHz, DMSO-d₆) δ: 138.8, 134.1, 129.2, 123.9, 113.6, 81.9. **FTIR** (ATR, cm⁻¹) ν: 3410, 1867, 1736, 1560, 818, 418. **HRMS** (DART) m/z: [C₁₂H₈NI₂]⁺, calculated 419.87461, found 419.87560, difference (ppm): 2.36.

General procedure for synthesis of single crystals of cocrystals 1-3I and 7s

In a 6 mL capped vial were placed two equivalents of compounds 4 to 7 by one equivalent of DABCO. Afterwards, to the solution was added 3 mL of a (95:5 v/v%) hexane:ethyl acetate solvent mixture, the vial was sealed and heated for 20 minutes or until all the solids had solubilized. The vial was left to cool down to room temperature with a loose cap to allow the solvent to slowly evaporate. The vial is placed in fridge for a week to allow larger crystals to form.

Table S1. Melting points of cocrystals herein described

Cocrystal	Melting point (°C)
1	157-159
2	156-158
3 (form I)	149-150
7s	154-156
General procedure for obtaining of cocrystals 1 to 3I in bulk via mechanochemical synthesis

For cocrystals 1-3I, two equivalents of the corresponding carbazole moiety were placed in an agate mortar along with one equivalent of DABCO (or DABCO-d10 for deuterated rotors). Then, 4 drops of Na/benzophenone dried THF are poured into the mixture. The resulting paste was manually grinded with the agate pestle for 5 minutes, which produced an off-white pulverized solid.

Optical Microscopy

Optical microscopy images were acquired using an Olympus BX43 microscope with a QImaging MicroPublisher camera (5.0 MP RTV), using freshly grown single crystals of each rotor.

Figure S1. Optical microscopy pictures of freshly grown single crystals described in this work. In this order a) 1, b) 2, c) 3I and d) 7s.
Solution 1H and 13C NMR characterization of compounds

Figure S2. 1H solution NMR spectra of 4 (CDCl$_3$, 400 MHz)

Figure S3. 13C solution NMR spectra of 4 (CDCl$_3$, 100 MHz)
Figure S4. 2D NMR spectra of compound 4 (HSQC, up and HMBC, down).
Figure S5. 1H solution NMR spectra of 5 (CDCl$_3$, 400 MHz)

Figure S6. 13C solution NMR spectra of 5 (CDCl$_3$, 100 MHz)
Figure S7. 2D NMR spectra of compound 5 (HSQC, up and HMBC, down).
Figure S8. 1H solution NMR spectra of 6 (CDCl$_3$, 400 MHz)

Figure S9. 13C solution NMR spectra of 6 (CDCl$_3$, 100 MHz)
Figure S10. 2D NMR spectra of compound 6 (HSQC, up and HMBC, down).
Figure S11. 1H solution NMR spectra of 7 (CDCl$_3$, 400 MHz)

Figure S12. 13C solution NMR spectra of 7 (CDCl$_3$, 100 MHz)
Figure S13. 2D NMR spectra of compound 7 (HSQC, up and HMBC, down).
Figure S14. 1H solution NMR spectra of 8 (DMSO-d_6, 300 MHz)

Figure S15. 13C solution NMR spectra of 8 (DMSO-d_6, 75 MHz)
1H NMR spectra. Recognition experiments

Figure S16. Stacked 1H solution NMR spectra (CDCl$_3$, 300 MHz, both) of pure 4 (top) and mixture 2:1 4+DABCO (bottom)

Figure S17. Stacked 1H solution NMR spectra (CDCl$_3$, 300 MHz, both) of pure 5 (top) and mixture 2:1 5+DABCO (bottom)
Figure S18. Stacked 1H solution NMR spectra (CDCl$_3$, 300 MHz, both) of pure 6 (top) and mixture 2:1 6+DABCO (bottom)

Figure S19. Stacked 1H solution NMR spectra (CDCl$_3$, 300 MHz, both) of pure 7 (top) and mixture 2:1 of 7+DABCO (bottom)
Figure S20. 1H NMR solution spectra of mixture (1:1:1) $4 + \text{DABCO} + 5$ (CDCl$_3$, 400 MHz)

Figure S21. 1H NMR solution spectra of mixture (1:1:1) $4 + \text{DABCO} + 6$ (CDCl$_3$, 400 MHz)
Figure S22. 1H NMR solution spectra of mixture (1:1:1) 5+DABCO+6 (CDCl$_3$, 400 MHz)

Table S2. Chemical shifts of 1H in solution NMR for the recognition experiments with DABCO

Compound	4	5	6	7
4	8.33			
5	8.39, 8.37	8.29		
6	8.40	8.37	8.49	
7	-	-	-	8.33
Crystallographic information tables and X-Ray diffraction studies

X-Ray diffraction data were obtained at variable temperature either from Bruker D8 diffractometer equipped with a PHOTON II CPAD detector with synchrotron radiation ($\lambda = 0.7288$ Å) on beamline 12.2.1 at Advanced Light Source, or from Bruker Smart APEX II CCD52 with graphite monochromatic MoKα radiation ($\lambda = 0.71073$ Å), as noted in the following tables. Cell refinement was carried out using SAINT V8.38A.53 Structure solution, final refinement and data output was carried out using SHELX-201454 through direct methods. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions using a riding model, with isotropic thermal parameters $U_{iso}(H) = 1.2U_{eq}(C)$. Crystal structures were generated with Mercury 4.3.1.55

Powder X-Ray diffraction data were collected at room temperature in a Bruker D2 PHASER diffractometer, using CuKα radiation ($\lambda = 1.5406$ Å), operating at 30 kV and 10 mA with a $\theta-\theta$ configuration in a 2θ interval of 5-45°, step of 0.02°, time 0.250 s.

Figure S23. Asymmetric unit for cocrystal 1 at a) 100, 150 and 200 K (LT), and b) at 300 K (HT). Ellipsoids are drawn at 50% probability level. Colors used account for symmetry equivalent components.
Table S3. Crystallographic parameters for 1

Formula	\(2(C_{24}H_{12}F_3N)_2\)	\(2(C_{24}H_{12}F_3N)_2\)	\(2(C_{24}H_{12}F_3N)_2\)	\(2(C_{24}H_{12}F_3N)_2\)	\(2(C_{24}H_{12}F_3N)_2\)
Formula weight	894.88	894.88	894.88	894.88	894.88
Temperature (K)	100(2)	150(2)	200(2)	250(2)	300(2)
System	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	\(P_2_1\)	\(P_2_1\)	\(P_2_1\)	\(P_2_1\)	\(Cc\)
\(a\) (Å)	14.0179(5)	14.0331(4)	14.0444(4)	14.0592(6)	13.9524(6)
\(b\) (Å)	13.6325(5)	13.6998(4)	13.7744(4)	13.8649(6)	14.0942(5)
\(c\) (Å)	22.7651(7)	22.8049(7)	22.8418(7)	22.8854(9)	22.7794(8)
\(\alpha\) (°)	90	90	90	90	90
\(\beta\) (°)	107.5360(10)	107.5550(10)	107.5900(10)	107.6288(14)	106.4326(15)
\(\gamma\) (°)	90	90	90	90	90
\(\rho\) (g/cm\(^3\))	1.433	1.422	1.411	1.398	1.383
\(V\) (Å\(^3\))	4148.2(2)	4180.1(2)	4212.2(2)	4251.5(3)	4296.5(3)
\(Z\)	4	4	4	4	4
Absorption coefficient (mm\(^{-1}\))	0.114	0.114	0.113	0.112	0.110
\(F(000)\)	1848	1848	1848	1848	1848
Crystal size (mm)	0.100 x 0.090 x 0.030				
Radiation \([\lambda\) (Å)]	Synchrotron (0.7288)				
Collected reflections	148821	145863	144945	*	20394
Independent reflections	23303	22549	22733	*	5794
Data/rest/param	23303/1/1201	22549/1/1201	22733/1/1201	*	5794/2/602
GooF	1.029	1.037	1.025	*	1.047
Final R indexes \([I_o>2\sigma(I_o)]\)	\(R_1=0.0337\)	\(R_1=0.0355\)	\(R_1=0.0412\)	*	\(R_1=0.0372\)
\(wR_2=0.0884\)	\(wR_2=0.0945\)	\(wR_2=0.1098\)	\(wR_2=0.0936\)		
Final R indexes \([all\ data]\)	\(R_1=0.0348\)	\(R_1=0.0372\)	\(R_1=0.0439\)	*	\(R_1=0.0471\)
\(wR_2=0.0896\)	\(wR_2=0.0965\)	\(wR_2=0.1134\)	\(wR_2=0.0993\)		
Largest diff. peak/hole \((eA^-3)\)	0.317/-0.299	0.332/-0.237	0.341/-0.309	*	0.140/-0.165
CCDC number	2022170	2022171	2022172	*	2022173

Table S4. Hydrogen bond parameters in the two crystal phases of the supramolecular rotor 1

Distance D-A (Å)	Angle N-H···N (°)	Distance D-A (Å)	Angle N-H···N (°)		
100 K (P2_1)	**300 K (Cc)**	**100 K (P2_1)**	**300 K (Cc)**		
2.840(2)	177(2)	2.884(3)	164(4)		
2.876(2)	176(2)	2.875(3)	166(4)		
2.826(2)	175(2)	2.875(3)	166(4)		
2.847(2)	174(2)	2.875(3)	166(4)		
Crystallographic parameters for 2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂
---	------------------------	------------------------	------------------------	------------------------	------------------------
Formula weight	894.88	894.88	894.88	894.88	894.88
Temperature (K)	100(2)	150(2)	200(2)	250(2)	302(2)
System	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	P2₁/n	P2₁/n	P2₁/n	P2₁/n	P2₁/n
a (Å)	6.6570(3)	6.6613(3)	6.6696(2)	6.6803(2)	6.6761(5)
b (Å)	14.8520(6)	14.8875(6)	14.9431(5)	15.0128(5)	15.0587(11)
c (Å)	21.2537(8)	21.2797(8)	21.3309(7)	21.3972(7)	21.4293(14)
α (°)	90	90	90	90	90
β (°)	95.7210(10)	95.554(2)	95.362(2)	95.1430(10)	94.9412(17)
γ (°)	90	90	90	90	90
ρ (g/cm³)	1.420	1.415	1.404	1.391	1.385
V (Å³)	2090.88(15)	2100.40(15)	2116.63(12)	2137.29(12)	2146.43(1)
Z	2	2	2	2	2
Absorption coefficient (mm⁻¹)	0.113	0.113	0.112	0.111	0.106
F(000)	922	924	924	924	924
Crystal size (mm)	0.340 x 0.120 x 0.100	0.413 x 0.368 x 0.298			
Radiation	Synchrotron	Synchrotron	Synchrotron	Synchrotron	MoKα
[λ (Å)]	(0.7288)	(0.7288)	(0.7288)	(0.7288)	(0.71073)
Collected reflections	73120	60836	58731	60892	27821
Independent reflections	7264	6418	5448	5759	4923
Data/rest/param	7264/0/338	6418/0/338	5448/0/338	5759/0/338	4923/0/338
GoF	1.066	1.063	1.067	1.068	0.988
Final R indexes [I>2σ(I)]	R₁=0.0474	R₁=0.0526	R₁=0.0492	R₁=0.0588	R₁=0.0542
	wR₂=0.1231	wR₂=0.1318	wR₂=0.1218	wR₂=0.1355	wR₂=0.0895
Final R indexes [all data]	R₁=0.0507	R₁=0.0566	R₁=0.0530	R₁=0.0652	R₁=0.1814
	wR₂=0.1276	wR₂=0.1376	wR₂=0.1266	wR₂=0.1439	wR₂=0.1229
Largest diff. peak/hole (eA⁻³)	0.558/-0.421	0.518/-0.340	0.372/-0.277	0.530/-0.409	0.187/-0.179
CCDC number	2022174	2022175	2022176	2022177	2022178
Table S6. Crystallographic parameters for 3I

Formula	2(C_{24}H_{13}F_{4}N)·C_{6}H_{12}N_{2}	2(C_{24}H_{13}F_{4}N)·C_{6}H_{12}N_{2}	2(C_{24}H_{13}F_{4}N)·C_{6}H_{12}N_{2}
Formula weight	894.88	894.88	894.88
Temperature (K)	100(2)	200(2)	299(2)
System	monoclinic	monoclinic	monoclinic
Space Group	P2_1/n	P2_1/n	P2_1/n
a (Å)	6.7657(3)	6.7928(4)	6.8192(8)
b (Å)	14.4934(9)	14.5649(8)	14.6728(18)
c (Å)	21.3307(10)	21.3902(12)	21.461(3)
α (°)	90	90	90
β (°)	96.1667(13)	95.7754(16)	95.452(4)
γ (°)	90	90	90
ρ (g/cm³)	1.429	1.412	1.390
V (Å³)	2079.54(16)	2105.5(2)	2137.7(5)
Z	2	2	2
Absorption coefficient (mm⁻¹)	0.109	0.108	0.106
F(000)	924	924	924
Crystal size (mm)	0.393 x 0.372 x 0.198	0.386 x 0.267 x 0.208	0.393 x 0.372 x 0.198
Radiation	MoKα	MoKα	MoKα
[λ (Å)]	(0.71073)	(0.71073)	(0.71073)
Collected reflections	49708	29489	28587
Independent reflections	6833	6161	5098
Data/rest/param	6833/15/356	6161/342/356	5098/15/356
Goof	1.131	1.017	1.009
Final R indexes	R₁=0.0613	R₁=0.0596	R₁=0.0572
[I>2σ(Io)]	wR₂=0.1430	wR₂=0.1075	wR₂=0.1092
Final R indexes	R₁=0.0755	R₁=0.1748	R₁=0.1583
[all data]	wR₂=0.1503	wR₂=0.1391	wR₂=0.1405
Largest diff. peak/hole (eÅ⁻³)	0.435/-0.314	0.199/-0.247	0.158/-0.163
CCDC number	2022179	2022180	2022181
Table S7. Crystallographic parameters for 3II

Formula	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂	2(C₂₄H₁₃F₄N)·C₆H₁₂N₂
Formula weight	894.88	894.88	894.88	894.88	447.44
Temperature (K)	100(2)	150(2)	200(2)	250(2)	300(2)
System	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	Pc	P2/c	P2/c	P2/c	P2/c
a (Å)	19.0865(8)	19.1368(8)	19.1580(7)	19.2225(9)	19.2767(6)
b (Å)	6.7670(3)	6.7789(3)	6.7794(3)	6.7835(3)	6.7799(2)
c (Å)	17.3518(7)	17.4066(8)	17.4666(6)	17.5663(8)	17.6615(6)
α (°)	90	90	90	90	90
β (°)	109.3540(10)	109.3730(10)	109.3620(10)	109.337(2)	109.2900(10)
γ (°)	90	90	90	90	90
ρ (g/cm³)	1.406	1.395	1.389	1.375	1.364
ν (Å³)	2114.48(16)	2130.24(16)	2140.25(14)	2161.35(17)	2178.66(12)
Z	2	2	2	2	4
Absorption coefficient (mm⁻¹)	0.112	0.111	0.111	0.110	0.109
F(000)	924	924	924	924	924
Crystal size (mm) x x x	0.300 x 0.300 x 0.030				
Radiation	Synchrotron (0.7288)				
Collected reflections	71153	73488	65803	69239	67379
Independent reflections	12908	6498	6030	5831	5405
Data/rest/param	12908/2/601	6498/75/338	6030/75/338	5831/75/338	5405/75/338
GooF	1.045	1.045	1.034	1.049	1.048
Final R indexes [I₀>2σ(I₀)]	R₁=0.0381	R₁=0.0585	R₁=0.0542	R₁=0.0572	R₁=0.0580
	wR₂=0.0991	wR₂=0.1458	wR₂=0.1407	wR₂=0.1497	wR₂=0.1585
Final R indexes [all data]	R₁=0.0391	R₁=0.0606	R₁=0.0585	R₁=0.0609	R₁=0.0629
	wR₂=0.1005	wR₂=0.1484	wR₂=0.1462	wR₂=0.1549	wR₂=0.1661
Largest diff. peak/hole (eÅ⁻³)	0.498/-0.417	0.863/-0.532	0.666/-0.313	0.462/-0.419	0.375/-0.377
CCDC number	2022182	2022183	2022184	2022185	2022186
Table S8. Crystallographic parameters for 7s

Formula	\(\text{C}_{24}\text{H}_{17}\text{N} \cdot \text{C}_{6}\text{H}_{12}\text{N}_2 \)
Formula weight	431.56
Temperature (K)	100(2)
System	monoclinic
Space Group	\(P2_1/c \)
\(a \) (Å)	9.1480(4)
\(b \) (Å)	22.6374(10)
\(c \) (Å)	11.7158(5)
\(\alpha \) (°)	90
\(\beta \) (°)	105.813(2)
\(\gamma \) (°)	90
\(\rho \) (g/cm\(^3\))	1.228
\(V \) (Å\(^3\))	2334.37(10)
\(Z \)	4
Absorption coefficient (mm\(^{-1}\))	0.075
F(000)	920
Crystal size (mm)	0.250 x 0.110 x 0.005
Radiation	Synchrotron
\([\lambda \text{ (Å)}] \)	(0.7288)
Collected reflections	66651
Independent reflections	7141
Data/rest/param	7141/0/301
GooF	1.027
Final R indexes	\(R_1=0.0409 \)
\([I_0>2\sigma(I_0)] \)	\(wR_2=0.1089 \)
Final R indexes	\(R_1=0.0470 \)
[all data]	\(wR_2=0.1144 \)
Largest diff. peak/hole (eÅ\(^{-3}\))	0.323/-0.265
CCDC number	2022187
Figure S24. Interactions C-H···F-C around DABCO in rotor 1 at different temperatures (ORTEP diagram, 50% level probability). For structures at 100 and 200 K (1-LT) are shown both DABCO fragments in the asymmetric unit, the hydrogen bonded carbazole units were omitted.

Figure S25. Crystal arrangement of cocrystal 3I (ORTEP diagram, 50% level probability). Close interactions C-F···H-C around DABCO are highlighted with blue dotted lines.
Table S9. Close contacts C-H⋯F-C present around DABCO in rotor 1 at several temperatures per unit cell.

Rotor 1	Experimental (100K)	Optimization (100 K)	Experimental (300 K)		
F1-H31A	2.814	F1-H	2.467	F1-H31A	2.855
F1-H31B	2.664	F1-H	2.667	F1-31B	2.667
F41-H34A	2.597	F2-H	2.881	F41-34A	2.665
F41-H36B	2.849	F3-H	2.930	F41-H36B	2.909
F72-H34A	2.604	F3-H	2.930	F72-H34A	2.612
F72-H34B	2.94	F4-H	2.713	F72-H34B	2.969
F73-H33A	2.991	F4-H	2.602	F74-H36A	2.657
F73-H34B	2.955	F5-H	2.578	F112-H31B	2.766
F74-H36A	2.622	F5-H	2.734	F112-H33B	2.892
F113-H33A	2.977	F6-H	2.899	F114-H35B	2.98
F112-H31B	2.742	F7-H	2.667	F4-H109	2.801
F112-H33A	2.868	F7-H	2.467	F2-H101	2.663
F114-H35B	2.958	F8-H	2.489	F4-H112	2.936
F4-H109	2.737	F9-H	2.734	F4-H106	2.981
F2-H101	2.613	F9-H	2.578	F4-H107	2.687
F44-H112	2.898	F10-H	2.61	F4-H107	2.881
F43-H106	2.848	F11-H	2.92	F4-H108	2.649
F43-H107	2.621	F11-H	2.93	F71-H101	2.685
F42-H107	2.836	F12-H	2.518	F71-H102	2.688
F42-H108	2.642	F12-H	2.902	F111-H108	2.892
F71-H101	2.698	F13-H	2.701	F1-H31A	2.855
F71-H102	2.637	F13-H	2.862	F1-31B	2.667
F111-H108	2.857	F14-H	2.548	F41-34A	2.665
F1-H31A	2.814	F14-H	2.763	F41-H36B	2.909
F1-H31B	2.664	F15-H	2.518	F72-H34A	2.612
F41-H34A	2.597	F15-H	2.746	F72-H34B	2.969
F41-H36B	2.849	F16-H	2.714	F74-H36A	2.657
F72-H34A	2.604	F16-H	2.59	F112-H31B	2.766
F72-H34B	2.94	F17-H	2.794	F112-H33B	2.892
F73-H33A	2.991	F18-H	2.63	F114-H35B	2.98
F73-H34B	2.955	F19-H	2.59	F4-H109	2.801
F74-H36A	2.622	F19-H	2.71	F2-H101	2.663
F113-H33A	2.977	F20-H	2.79	F4-H112	2.936
F112-H31B	2.742	F21-H	2.63	F4-H106	2.981
F112-H33A	2.868	F22-H	2.862	F4-H107	2.687
F114-H35B	2.958	F22-H	2.701	F4-H107	2.881
F4-H109	2.737	F23-H	2.549	F4-H108	2.649
F2-H101	2.613	F23-H	2.770	F71-H101	2.685
F44-H112	2.898	F24-H	2.755	F71-H102	2.688
F43-H106	2.848	F24-H	2.51	F111-H108	2.892
F43-H107	2.621				
F42-H107	2.836				
F42-H108	2.642				
F71-H101	2.698				
F71-H102	2.637				
F111-H108	2.857				
Figure S26. Comparative between contacts showed by a) XRD data and b) optimized structures in rotor 1, both at 100 K. For a) the two DABCO units showed are present in the asymmetric unit at that temperature.

Table S10. Close contacts C-H⋯F-C present around DABCO in rotor 2 at several temperatures per unit cell

Rotor 2	Experimental (100 K)	Optimization (100 K)	Experimental (300 K)	
F2-H27B	2.824	F1-H	F2-H29A	2.968
F2-H30A	2.723	F2-H	F2-H29B	2.678
F2-H27B	2.824	F2-H	F2-H30A	2.861
F2-H30A	2.723	F2-H	F2-H30B	2.993
F4-H25B	2.793	F2-H	F3-H27B	2.859
F4-H26A	2.853	F2-H	F2-H25A	2.756
F4-H29B	2.92	F3-H	F2-H28B	2.645
F4-H29A	2.612	F4-H	F3-H30B	2.988
F4-H26B	2.646	F4-H	F2-H26A	2.945
F4-H27A	2.858	F4-H	F2-H29A	2.968
F4-H27B	2.64	F4-H	F2-H29B	2.678
F4-H28A	2.704	F4-H	F2-H30A	2.861
F4-H28B	2.818	F5-H	F2-H30B	2.993
F4-H25B	2.793	F5-H	F3-H27B	2.859
F4-H26A	2.853	F5-H	F2-H25A	2.756
F4-H29B	2.92	F5-H	F2-H28B	2.645
F4-H29A	2.612	F5-H	F3-H30B	2.988
F4-H26B	2.646	F6-H	F2-H26A	2.945
F4-H27A	2.858	F6-H	2.469	
F4-H27B	2.64	F6-H	2.605	
F4-H28A	2.704			
F4-H28B	2.818			
Figure S27. Comparative between contacts showed by a) XRD data and b) optimized structures in rotor 2, both at 100 K.

Table S11. Close contacts C-H⋯F-C present around DABCO in rotor 3I at several temperatures per unit cell

	Experimental (100 K)	Optimization (100 K)	Experimental (300 K)	
F4-H27A	2.671	F1-H	F4-H27A	2.823
F4-H27B	2.735	F1-H	F4-H27B	2.749
F4-H28A	2.619	F1-H	F4-H28A	2.598
F4-H28B	2.524	F1-H	F4-H28B	2.804
F4-H25A	2.676	F2-H	F4-H29B	2.78
F4-H30A	2.628	F3-H	F4-H26B	2.725
F4-H25B	2.816	F4-H	F4-H29A	2.918
F4-H26A	2.863	F4-H	F4-H30A	2.959
F4-H27A	2.671	F4-H	F4-H27A	2.823
F4-H27B	2.735	F5-H	F4-H27B	2.749
F4-H28A	2.619	F6-H	F4-H28A	2.598
F4-H28B	2.524	F7-H	F4-H28B	2.804
F4-H25A	2.676	F8-H	F4-H29B	2.78
F4-H30A	2.628	F8-H	F4-H26B	2.725
F4-H25B	2.816	F8-H	F4-H29A	2.918
F4-H26A	2.863	F8-H	F4-H30A	2.959
F9-H	2.679			
F10-H	2.225			
F11-H	2.630			
				2.724

Figure S28. Comparative between contacts showed by a) XRD data and b) optimized structures in rotor 3I, both at 100 K.
Figure S29. Comparison of Powder X-Ray diffraction patterns: a) 1-\(d_{10}\) experimental, b) 1 experimental and c) Calculated from 1

Figure S30. Comparison of Powder X-Ray diffraction patterns: a) 2-\(d_{10}\) experimental, b) 2 experimental and c) Calculated from 2
Figure S31. Comparison of Powder X-Ray diffraction patterns. a) Calculated from 3II, b) 3I-\(d_{10}\) experimental, c) 3I experimental and d) calculated from 3I.
Solid-state 13C CPMAS

13C NMR CPMAS spectra was recorded according with conditions described using polycrystalline samples of cocrystals in a Bruker Avance 500 with a PH MAS DVT 500S1 BL3.2 probe at spectrometer frequency of 125.78 MHz and room temperature (300 K) for all experiments. In following figures, signals marked “*” are assigned for carbon atoms of DABCO.

Figure S32. 13C CPMAS spectra of a) rotor 1 ($d_1 = 20$ s, $p_{15} = 2.5$ ms, 15 kHz spinning) and b) rotor 1 ($d_1 = 20$ s, $p_{15} = 0.1$ ms, 15 kHz spinning).
Figure S33. 13C CPMAS spectra of a) compound 5 ($d_1 = 20$ s, $p_{15} = 2.5$ ms, 15 kHz spinning), b) rotor 2 ($d_1 = 20$ s, $p_{15} = 2.5$ ms, 15 kHz spinning) and c) rotor 2 ($d_1 = 20$ s, $p_{15} = 0.1$ ms, 15 kHz spinning).

Figure S34. 13C CPMAS spectra of a) compound 6 ($d_1 = 20$ s, $p_{15} = 2.5$ ms, 15 kHz spinning), b) rotor 3I ($d_1 = 20$ s, $p_{15} = 2.5$ ms, 15 kHz spinning) and c) rotor 3I ($d_1 = 20$ s, $p_{15} = 0.1$ ms, 15 kHz spinning).
VT 2H Echo-spin experiments

Solid-state 2H echo-spin experiments were performed on a Bruker AV600 instrument at 92.1 MHz (deuteron resonance frequency) with a 5 mm wideline probe and 90-degree pulse of 2.9 μs. To suppress the undesired artifacts, a quadrupolar-echo sequence with phase recycling was used. An echo delay of 50 μs was used after the refocusing delay of 46 μs, and the recycle delay between pulses was 5 s. In the experiment, about 50 mg of sample was placed in a short borosilicate glass NMR tube. 256 scans were acquired for all temperatures explored. All spectra in this work were obtained using a line broadening of 3.0 kHz in data processing.

Figure S35. Variable temperature 2H quadrupolar echo-spin spectra of rotor 1-d_{10}. In this order: a) 350 K, b) 325 K, c) 300 K, d) 250 K, e) 200 K, f) 175 K and g) 150 K. Experimental data is shown in black and simulated in red dotted lines. For simulated data were used a QCC of 170 kHz, cone angle of 70° and line-broadening of 6 kHz. “*” shows the signal assigned for isotropic motion of free DABCO.
Figure S36. Variable temperature 2H quadrupolar echo-spin spectra of rotor 2-d_{10}. In this order: a) 300 K, b) 250 K, c) 200 K, d) 175 K, e) 150 K. Experimental data is shown in black and simulated in red dotted lines. For simulated data were used a QCC of 170 kHz, cone angle of 70° and line-broadening of 6 kHz.

Figure S37. Variable temperature 2H quadrupolar echo-spin spectra of rotor 3I-d_{10}. In this order: a) 300 K, b) 250 K, c) 200 K, d) 175 K, e) 150 K. Experimental data is shown in black and simulated in red dotted lines. For simulated data were used a QCC of 170 kHz, cone angle of 70° and line-broadening of 6 kHz. "*" shows the signal assigned for isotropic motion of free DABCO.
Computational section

DFT periodic computations were carried out by using the Vienna ab initio simulation package (VASP 5.4.4)8, 9 with the projector augmented wave (PAW) potentials to describe the interaction between ions and electrons.10 The generalized gradient approximation, as proposed by Perdew-Burke-Ernzerhof (PBE-GGA),11 is used for the exchange and correlation potential in conjunction with the Grimme’s D3-dispersion correction approach.12 The plane-wave kinetic-energy cutoff is set at 600 eV. The first Brillouin zone was sampling using Monkhorst-Pack k-grids of $4 \times 2 \times 1$ and $2 \times 2 \times 1$ k-points. The lattice parameters of each system were obtained by direct minimization of the total energy, with the atomic positions fully optimized until the interatomic forces were less than 0.001 eV/Å. Energy barriers were calculated using the Nudged Elastic Band (NEB)13 method implemented in VASP. The calculation was initialized using by seven intermediate images on each path segment, obtained by cubic spline interpolation. All NEB calculations were done for a fixed cell shape and volume.

Structural parameters

![Structural parameters](image)

Figure S38. Atomic representation of optimized rotors a) 1, b) 2 and c) 3I. For the modelling of these structures, single crystal data at 100 K was used.
Table S12. Comparative table of calculated and experimental cell parameters for cocrystals.

Lattice parameter	Method	1-LT (100 K)	1-LT (200 K)	1-HT (300 K)	2 (100 K)	3I (100 K)
a (Å)	Experimental	14.018	14.044	13.952	6.657	6.766
	Calculated	14.013	14.001	13.630	6.605	6.748
	% Error	(0.04 %)	(0.31 %)	(2.31 %)	(0.78 %)	(0.27 %)
b (Å)	Experimental	13.633	13.774	14.094	14.852	14.493
	Calculated	13.733	13.732	14.052	14.904	14.441
	% Error	(0.73 %)	(0.30 %)	(0.30 %)	(0.35 %)	(0.36 %)
c (Å)	Experimental	22.765	22.842	22.779	21.254	21.331
	Calculated	22.479	22.480	22.489	20.869	21.059
	% Error	(1.26 %)	(1.58 %)	(1.27 %)	(1.81 %)	(1.28 %)
α (°)	Experimental	90.0	90.0	90.0	90.0	90.0
	Calculated	90.0	90.0	90.0	90.0	90.0
	% Error	(0.0 %)	(0.0 %)	(0.0 %)	(0.0 %)	(0.0 %)
β (°)	Experimental	107.54	107.6	106.4	95.72	96.2
	Calculated	107.70	107.7	106.4	96.96	97.1
	% Error	(0.15 %)	(0.1 %)	(0.0 %)	(1.30 %)	(0.94 %)
γ (°)	Experimental	90.0	90.0	90.0	90.0	90.0
	Calculated	90.0	90.0	90.0	90.0	90.0
	% Error	(0.0 %)	(0.0 %)	(0.0 %)	(0.0 %)	(0.0 %)
Volume (Å³)	Experimental	4148.216	4212.210	4296.547	2090.882	2079.542
	Calculated	4121.157	4117.928	4133.111	2030.241	2036.345
	% Error	(0.65 %)	(2.24 %)	(3.80 %)	(2.90 %)	(2.08 %)
Rotational barriers

Figure S39. Calculated rotational barriers for rotor 1 at a) 100 K, b) 200 K and c) 300 K. Maximum at 2.5, 2.4 and 2.3 kcal/mol, respectively.

Figure S40. Calculated rotational barrier for rotor 2 at 100 K. Maximum at 1.3 kcal/mol.

Figure S41. Calculated rotational barrier for rotor 3I at 100 K. Maximum at 1.4 kcal/mol.
Non-covalent interactions

Figure S42. Non-covalent interactions (NCIs) analyses. Plots in pairs found in 1-LT.
Figure S43. Non-covalent interactions (NCIs) analyses. Plots in pairs found in 1-HT.

Figure S44. Non-covalent interactions (NCIs) analyses. Plots in pairs found in 2.
Non-covalent interactions (NCIs) analyses. Plots in pairs found in 3I.

VT 1H and T_1 spin-lattice relaxation experiments

T_1 experiments were performed on a Bruker AV600 instrument set at 600 MHz with a saturation-recovery pulse sequence featuring a delay time t between two 90° pulses. The intensity of wideline 1H NMR spectrum was monitored, and a set of delay time was used for each sample at different temperatures to ensure the sufficient recovery of spectrum intensity (approximately $5 \times T_1$). Crystalline powder of the samples was placed in a short borosilicate tube (cut from a regular 5-mm NMR tube) capped with Teflon plugs at both ends. T_1 data was obtained from exponential fitting of the spectrum intensity change as a function of t.

$$I(t) = I_0 \left[1 - e^{-\frac{t}{T_1}} \right]$$

Table S13. Summarized T_1 data for rotors

	$1000/T$	$\ln(T_1^{-1})$	$1000/T$	$\ln(T_1^{-1})$	$1000/T$	$\ln(T_1^{-1})$
1	2.86	-0.774036	3.33333	-2.27187	3.33333	-1.75279
2	3.08	-0.601416	3.63636	-2.27869	3.63636	-1.66055
3	3.33	-0.499259	4	-2.18619	4	-1.48256
4	3.63636	-0.413962	4	-2.0408	4	-1.26805
5	4.44444	-0.937191	5	-1.51978	5	-0.750756
6	4.44444	-1.40984	6.66667	-1.07179	6.66667	-0.512464
Figure S46. Fitting of saturation recovery data for 1 at a) 350, b) 325, c) 300, d) 275, e) 250 and f) 225 K.
Figure S47. Fitting of saturation recovery data for 1 at a) 200 and b) 175 K

Figure S48. Fitting of saturation recovery data for 2 at a) 300, b) 275, c) 250 and d) 225 K
Figure S49. Fitting of saturation recovery data for 2 at a) 200 and b) 175 K

Figure S50. Fitting of saturation recovery data for 3I at a) 300, b) 275, c) 250 and d) 225 K
Figure S51. Fitting of saturation recovery data for 3I at a) 200, b) 175 and c) 150 K
Voids and Hirshfeld surface analysis

Voids were generated with tool integrated in Mercury 4.3.1, according with description in figures. Hirshfeld and shape index surfaces were calculated using TONTO,14 integrated in the software CrystalExplorer 17.15

![Hirshfeld surface analysis](image)

Figure S52. Contributions of intermolecular interactions onto the DABCO Hirshfeld Surface mapped for rotors herein reported.

Table S14. Numerical values for main intermolecular contributions on DABCO surface mapped

Cocrystal	1	2	3I			
Temperature	100 K	300 K	100 K	300 K	100 K	300 K
N···H	6.1%	5.9%	5.6%	5.9%	5.6%	5.6%
H···F	29.1%	29.1%	24.4%	25.3%	31.1%	30.0%
H···H	40.7%	40.9%	64.6%	63.9%	56.5%	58.4%
H···C	24.1%	24.1%	5.3%	4.9%	6.8%	6.0%
Figure S53. Shape index surfaces for cocrystal 1, mapped from -1.0 to 1.0 at a) 100 K (both symmetrically inequivalent DABCO mapped), with mean value of 0.2746, accounting both surfaces and b) 300 K, 0.2781.

Figure S54. Voids in lattice of rotor 1 (300 K) with 0.6 Å probe radius and 0.7 Å grid spacing. The void volume accounts for 5.3%, 229.4 Å³. Ellipsoids plotted at 50% probability level. Hydrogen atoms omitted for better visualization.
Figure S55. Hirshfeld fingerplots for DABCO in cocrystal 1-HT. Blue colored surfaces showed account for contributions of 24.1 (up, left), 29.1 (up, right), 40.9 (down, left) and 5.9% (down, right) of the total mapped surface.

Figure S56. Shape index surfaces for cocrystal 2, mapped from -1.0 to 1.0 at a) 100 K, with mean values of 0.2310, and b) 300 K, 0.2228.
Figure S57. Voids in lattice of rotor 2 (300 K) with 0.6 Å probe radius and 0.7 Å grid spacing. The void volume is 3.3%, 71.13 Å³. Ellipsoids plotted at 50% probability level. Hydrogen atoms omitted for better visualization.

Figure S58. Hirshfeld fingerplots for DABCO in cocrystal 2 at 300 K. Blue colored surfaces showed account for contributions of 4.9 (up, left), 25.3 (up, right), 63.9 (down, left) and 5.9% (down, right) of the total mapped surface.
Figure S59. Shape index surfaces for cocrystal 3I, mapped from -1.0 to 1.0 at a) 100 K, with mean values of 0.2114, and b) 300 K, 0.2172.

Figure S60. Voids in lattice of rotor 3I with 0.6 Å probe radius and 0.7 Å grid spacing. The void volume is 2.1%, 44.0 Å³. Ellipsoids plotted at 50% probability level. Hydrogen atoms omitted for better visualization.
Figure S61. Hirshfeld fingerplots for DABCO in cocrystal 3I at 300 K. Blue colored surfaces showed account for contributions of 6.0 (up, left), 30.0 (up, right), 58.4 (down, left) and 5.6% (down, right) of the total mapped surface.
References

S1 L. Catalano, S. Perez-Estrada, G. Terraneo, T. Pilati, G. Resnati, P. Metrangolo and M. A. Garcia-Garibay, J Am. Chem. Soc., 2015, 137, 49, 15386-15389.

S2 APEX2 Version 2008.3-0/2.2-0, Bruker AXS, Inc., Madison, WI, 2007.

S3 Bruker. (2006b). SAINT, Version 8.38 (Bruker AXS Inc.).

S4 G. M. Sheldrick, Acta Cryst. A., 2008, 64, 112–122.

S5 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Cryst., 2020, 53, 226-235.

S6 Collection of the crystal at this temperature was carried out, however, high twinning resulted in several A-Type alerts during the CHECKCIF validation. Because of this we only report the refined cell parameters.

S7 The diffraction pattern showed twinning and this was solved using the Cell_now tool, from which two orientation matrices were determined. The relationship between these components was determined to be 180 degrees about reciprocal axis 1 0 0. The data were integrated using the two matrices in SAINT. TWINABS was used to produce a merged file, for structure solution, initial refinement and final structure refinement. The resulting file contained the merged reflections first component and those that overlapped with this component, which were split into 2 reflection. TWINABS indicated the twin faction to be 73:27.

S8 G. Kresse and J. Furthmüller, Phys. Rev. B Condens. Matter, 1996, 54, 11169–11186.

S9 G. Kresse and J. Furthmüller, Comput. Mater., 1996, 6, 15–50.

S10 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758–1775.

S11 J.P. Perdew and K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.

S12 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

S13 (a) J G. Mills, H. Jonsson and G. K. Schenter, Surface Science, 1995, 324, 305; (b)H. Jonsson, G. Mills and K. W. Jacobsen, 'Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions', in 'Classical and Quantum Dynamics in Condensed Phase Simulations', ed. B. J. Berne, G. Ciccotti and D. F. Coker (World Scientific, 1998)

S14 D. Jayatilaka, D. J. Grimwood, A. Lee, A. Lemay, A. J. Russel, C. Taylor, S. K. Wolff, P. Cassam-Chenai and A. Whotton, (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/

S15 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia.