ON BLOW-UPS OF THE QUINTIC DEL PEZZO 3-FOLD AND VARIETIES OF POWER SUMS OF QUARTIC HYPERSURFACES

HIROMICHI TAKAGI AND FRANCESCO ZUCCONI

ABSTRACT. We construct new subvarieties in the varieties of power sums for certain quartic hypersurfaces. This provides a generalization of Mukai’s description of smooth prime Fano threefolds of genus twelve as the varieties of power sums for plane quartics. In fact in [TZ08] we show that these quartics are exactly the Scorza quartics associated to general pairs of trigonal curves and ineffective theta characteristics and this enables us to prove there the main conjecture of [DK93].

CONTENTS

1. Introduction 2
1.1. Varieties of power sums 2
1.2. Mukai’s result 2
1.3. Generalization 3
1.4. Structure of the paper 3
1.5. Forthcoming paper 4

2. Rational curves on the quintic del Pezzo threefold \(B \)
2.1. Lines on \(B \) 6
2.2. Conics on \(B \) 7
2.3. Construction of rational curves \(C_d \) of degree \(d \) on \(B \) 7
2.4. Relations of \(C_d \) with lines and conics 8
2.5. On irreducibility of families of rational curves on \(B \) 9

3. Various projections of \(B \)
3.1. Projection of \(B \) from a line or a conic 11
3.2. Double projection of \(B \) from a point 12

4. Lines and conics on \(A \)
4.1. Curve \(\mathcal{H}_1 \) parameterizing marked lines 12
4.2. Surface \(\mathcal{H}_2 \) parameterizing marked conics 14

5. Varieties of power sums for special quartics \(F_4 \)
5.1. Finiteness of \(\bar{\psi} : \bar{\mathcal{U}}_2 \to \bar{A} \) 15
5.2. Intersection of conics and conics on \(A \) 16
5.3. Construction of the special quartics 17
5.4. Proof of the main theorem 18

6. Relation with Mukai’s result 20

Date: 8.14, 2008.
1991 Mathematics Subject Classification. Primary 14J45; Secondary 14N05, 14H42.
Key words and phrases. Waring problem, Variety of power sums, Fano threefold.
1. INTRODUCTION

1.1. Varieties of power sums.

The problem of representing a homogeneous form as a sum of powers of linear forms has been studied since the last decades of the 19th century. This is called the Waring problem for a homogeneous form. We are interested in the study of the global structure of a suitable compactification of the variety parameterizing all such representations of a homogeneous form. A precise definition of the claimed compactification is the following:

Definition 1.1.1. Let V be a $(v+1)$-dimensional vector space and let $F \in S^m \hat{V}$ be a homogeneous forms of degree m on V, where \hat{V} is the dual vector space of V. Set

$$\text{VSP} (F, n)^o := \{ ([H_1], \ldots, [H_n]) \mid H_1^m + \cdots + H_n^m = F \} \subset \text{Hilb}^n (\mathbb{P}^* \hat{V}).$$

The closed subset $\text{VSP} (F, n) := \text{VSP} (F, n)^o$ is called the varieties of power sums of F.

Sometimes $\mathbb{P}^* \hat{V}$ will be denoted by $\hat{\mathbb{P}}^v$.

As far as we know, the first global descriptions of positive dimensional VSP’s were given by Mukai.

1.2. Mukai’s result.

Let A_{22} be a smooth prime Fano threefold of genus twelve, namely, a smooth projective threefold such that $-K_{A_{22}}$ is ample, the class of $-K_{A_{22}}$ generates $\text{Pic} A_{22}$, and the genus $g(A_{22}) := (-K_{A_{22}})^3 + 1$ is equal to twelve. The linear system $| - K_{A_{22}}|$ embeds A_{22} into \mathbb{P}^{13}.

Mukai discovered the following remarkable theorem ([Muk92], [Muk04]):

Theorem 1.2.1. Let $\{ F_4 = 0 \} \subset \mathbb{P}^2$ be a general plane quartic curve. Then

1. $\text{VSP} (F_4, 6) \subset \text{Hilb}^6 \hat{\mathbb{P}}^2$ is an A_{22}; and conversely,
2. every general A_{22} is of this form.

His motivation to discover this result was a characterization of a general A_{22}. For this purpose, he noticed that the Hilbert scheme of lines on a general $A_{22} \subset \mathbb{P}^{13}$ is isomorphic to a smooth plane quartic curve $\mathcal{H}_1 \subset \mathbb{P}^2$ (the notation \mathbb{P}^2 will be compatible with $\hat{\mathbb{P}}^2$ in Theorem 1.2.1). He wanted to recover A_{22} by \mathcal{H}_1; for this, one more data was necessary. In fact he proved that the correspondence on $\mathcal{H}_1 \times \mathcal{H}_1$ defined by intersections of lines on A_{22} gives an ineffective theta characteristic θ on \mathcal{H}_1. More precisely, θ is constructed so that the following two sets in $\mathcal{H}_1 \times \mathcal{H}_1$ coincide:

$$\{ ([l], [m]) \mid l \cap m \neq \emptyset, l \neq m \} = \{ ([l], [m]) \mid h^0(\theta + [l] - [m]) > 0 \}.$$

Now a deep and beautiful result of G. Scorza asserts that, associated to the pair (\mathcal{H}_1, θ), there exists another plane quartic curve $\{ F_4 = 0 \}$ in the same ambient plane as \mathcal{H}_1. (By saluting Scorza, $\{ F_4 = 0 \}$ is called the Scorza quartic.) Then, finally, Mukai proved that A_{22} is recovered as $\text{VSP} (F_4, 6)$. This is the result (2) of theorem 1.2.1. We recall also that since the number of the moduli of A_{22} is equal to $\dim \mathcal{M}_4 = 6$, (1) follows from (2).
Moreover, Mukai observed that conics on A_{22} are parameterized by the plane \mathcal{H}_2 and \mathcal{H}_2 is naturally considered as the plane \mathbb{P}^2 dual to \mathbb{P}^2 since, for a conic q on A_{22}, the lines intersecting q form a hyperplane section of \mathcal{H}_1.

Further, he showed that the six points $[H_1], \ldots, [H_6]$ such that $([H_1], \ldots, [H_6]) \in \text{VSP}^o(F_4,6)$ correspond to six conics through one point of A_{22}.

To sum up, even if it is not evident from the statement, the content of Mukai’s theorem is a new interpretation of the geometry of lines and conics on A_{22}.

1.3. Generalization.

We study the relation between the concept of varieties of power sums and the geometry of lines and conics of other classes of 3-folds.

To do that, consider the smooth quintic del Pezzo threefold B namely, a smooth projective threefold such that $-K_B = 2H$, where H is the ample generator of Pic B and $H^3 = 5$. It is well known that the linear system $|H|$ embeds B into \mathbb{P}^6.

Now, following Iskovskih we doubly project A_{22} from a general line, that is we consider the following diagram:

$$
\begin{array}{cccc}
A' & \rightarrow & A & \rightarrow \\
\downarrow & & \downarrow & \\
A_{22} & & B, & \\
\end{array}
$$

where

- f' is the blow-up along a general line l,
- $A' \rightarrow A$ is a flop,
- f is the blow-up along a smooth rational curve of degree five, where the degree is measured by H. We consider $B \subset \mathbb{P}^6$ by $\Phi|_H$.

(See also the section 6 for more information).

It is known that a general line on A_{22} is mapped to a general line on B intersecting C, and a general conic on A_{22} is mapped to a general conic on B intersecting C twice. These facts are easy to see since the exceptional divisor of f is the strict transform of the unique hyperplane section vanishing along l with multiplicity 3.

This situation is generalizable by considering a general smooth rational curve C of degree d on B, where d is an arbitrary integer greater than or equal to 5 (mainly $d \geq 6$) and the sets of the secant lines of C and of the multi-secant conics of C respectively. This led to the following definition:

Definition 1.3.1. (1) A pair (l, t) of a line l on B and a point $t \in C \cap l$ is called a marked line.

(2) A pair of a conic q on B and a zero-dimensional subscheme $\eta \subset C$ of length two contained in $q|_C$ is called a marked conic.

We can prove:

Proposition 1.3.2. Marked lines are parameterized by a smooth trigonal canonical curve \mathcal{H}_1 of genus $d - 2$.

See the subsection 4.1 for the proof. Here is a sketch of the proof. It is known that there are three lines (counted with multiplicities) through a point of B (see the subsection 2.1). This
gives the triple cover $\mathcal{H}_1 \to C$ such that $(l, t) \mapsto t$. Moreover, points where ‘special lines’ pass through form a divisor $E \in |2H|$ and the intersection of this divisor and C is nothing but the branch locus of this triple cover. We can show that all ramifications are simple. Thus it holds

$$2g(\mathcal{H}_1) - 2 = 3(-2) + 2d,$$

namely, $g(\mathcal{H}_1) = d - 2$.

As Mukai did, we can define an ineffective theta characteristic θ on \mathcal{H}_1 and construct the Scorza quartic hypersurface $\{F_4 = 0\}$ associated to this in the sense of [DK93, §9]. This quartic hypersurface lives in the projective space \mathbb{P}^d rather indirect, hence we give a more direct construction of the Scorza constructed in this paper is actually Scorza in the forthcoming paper [TZ08].

For the construction of the quartic $\{F_4 = 0\}$, we make use of marked conics, which we study in the subsection 4.2 in detail. Among other things, we prove the following:

Proposition 1.3.3. If $d \geq 6$, then marked conics are parameterized by a so-called White surface \mathcal{H}_2 obtained by blowing up $S^2C \simeq \mathbb{P}^2$ at $\binom{d-2}{2}$ points. \mathcal{H}_2 is embedded by $|d-3)H - \sum_{i=1}^6 e_i|$ into \mathbb{P}^{d-3}, where h is the pull-back of a line, e_i are the exceptional curves of $\mathcal{H}_2 \to \mathbb{P}^2$ and $s := \binom{d-2}{2}$.

Here we use the notation \mathbb{P}^{d-3} since the ambient projective spaces of \mathcal{H}_1 and \mathcal{H}_2 are recdually dual as in the Mukai’s case. If $d = 6$, then \mathcal{H}_2 is a cubic surface. In general, Gimigliano [Gim99] shows that \mathcal{H}_2 is the intersection of cubics.

The proof of this proposition is more involved than that of Proposition 1.3.2. See Corollary 4.2.10 and Theorem 4.2.15 for the proof. Here is a sketch of the proof. The morphism $\mathcal{H}_2 \to \mathbb{P}^2$ is just a natural one $\mathcal{H}_2 \to S^2C \simeq \mathbb{P}^2$ mapping $(g, \eta) \mapsto \eta$. Let β_i be a bi-secant line of C. It is shown that there exist $s := \binom{d-2}{2}$ bi-secant lines of C (see Corollary 4.1.2). Then for the length two subscheme $\beta_{i_1}C$, there exist infinitely many marked conics $(\beta_i \cup \alpha, \beta_{i_1}C)$, where α are lines intersecting β_i, and it is known that such α’s form one-dimensional family (see Proposition 2.1.3 (5)). This indicates why $\mathcal{H}_2 \to S^2C$ is the blow-up at s points, which are $[\beta_{i_1}C] \in S^2C$. Moreover, birationality of $\mathcal{H}_2 \to \mathbb{P}^{d-2}$ follows from the fact that there exists a unique conic on B through two points t_1 and t_2 if there is no line on B through t_1 and t_2. This can be seen by the double projection from t_1 (see Corollary 3.2.3).

 Actually we consider the curves on A called lines and conics on A corresponding one to one to marked lines and conics respectively.

In [DK93, §9], the quartic F_4 is constructed for (\mathcal{H}_1, θ), which is a data of intersections of marked lines. Here to construct F_4 we need data of intersections of marked conics.

In fact assume that $d \geq 6$. Consider the locus $D_l \subset \mathcal{H}_2$ parameterizing marked conics which intersect a fixed marked line l. The locus D_l turns out to be a divisor linearly equivalent to $(d - 3)H - \sum_{i=1}^6 e_i$ on \mathcal{H}_2. Moreover, $|D_l|$ is very ample and embeds \mathcal{H}_2 in \mathbb{P}^{d-3} (see Theorem 4.2.15 (1)). Set $D_2 := \{([q_1], [q_2]) \in \mathcal{H}_2 \times \mathcal{H}_2 \mid q_1 \cap q_2 \neq \emptyset\}$ and denote by D_q the fiber of $D_2 \to \mathcal{H}_2$ over a point $[q]$. It is easy to verify $D_q \sim 2D_l \simeq O_{\mathcal{H}_2}(2)$. By the seesaw theorem, it holds that $D_2 \sim p_1^*D_q + p_2^*D_q$. Since \mathcal{H}_2 is projectively Cohen-Macaulay and is not contained in a quadric (Theorem 4.2.15 (4)), it holds $H^0(\mathcal{H}_2 \times \mathcal{H}_2, D_2) \simeq H^0(\mathbb{P}^{d-3} \times \mathbb{P}^{d-3}, O_{(2, 2)})$. Thus D_2 is the restriction of a unique $(2, 2)$-divisor D'_2 on $\mathbb{P}^{d-3} \times \mathbb{P}^{d-3}$. Since D'_2 is symmetric, we may assume its equation D_2 is also symmetric. By restricting D_2 to the diagonal, we obtain a quartic hypersurface $\{F_4 = 0\}$ in \mathbb{P}^{d-3}. We can show that F_4 is non-degenerate in the sense of
Varieties of power sums

Dol04 (see the appendix). Then there exists a unique quartic hypersurface \(\{ F_4 = 0 \} \) in \(\mathbb{P}^{d-3} \) called the quartic form dual to \(\tilde{F}_4 \).

Now we can state our main result, which generalizes (2) of Theorem 1.2.1:

Theorem 1.3.4. Let \(f: A \to B \) be the blow-up along \(C \), and let \(\rho: \tilde{A} \to A \) be the blow-up of \(A \) along the strict transforms \(\beta_i^\prime \) of \(\binom{d-2}{2} \) bi-secant lines \(\beta_i \) of \(C \) on \(B \). Then there exists an injection from \(\tilde{A} \) to \(\text{VSP}(F_4, n) \), where \(n := \binom{d-1}{2} \). Moreover the image is uniquely determined by the incident variety \(D_2 \) and is an irreducible component of

\[
\text{VSP}(F_4, n; \mathcal{H}_2) := \{(\{[H_1], \ldots, [H_n]\} \mid [H_i] \in \mathcal{H}_2) \subset \text{VSP}(F_4, n)\}.
\]

See Theorem 5.4.1 and Proposition 5.4.3.

Actually, the number \(n \) is equal to the number of multi-secant conics of \(C \) through a general point of \(B \) (see Corollary 3.2.8). Moreover, rather importantly,

\begin{equation}
(1.1) \quad n \text{ is equal to the dimension of quadric forms on } \mathbb{P}^{d-3}.
\end{equation}

We give an outline of the proof of the main result. Let \(\mathcal{U}_2 \to \mathcal{H}_2 \) be the universal family of conics on \(A \), and consider the natural projection \(\psi: \mathcal{U}_2 \subset A \times \mathcal{H}_2 \to A \). The morphism \(\psi \) is not finite (see Proposition 1.2.12). Nevertheless the blow-up \(\tilde{\mathcal{U}}_2 \to \mathcal{U}_2 \) along \(\cup \beta_i^\prime \times \mathcal{H}_2 \) \(\cap \mathcal{U}_2 \) is Cohen-Macaulay and the natural projection \(\tilde{\psi}: \tilde{\mathcal{U}}_2 \to \tilde{A} \) is finite of degree \(n \) (Proposition 5.1.3). Therefore, since \(\tilde{\mathcal{U}}_2 \subset \tilde{A} \times \mathcal{H}_2 \), \(\tilde{\psi} \) is a flat family of 0-dimensional subschemes \(\subset \mathcal{H}_2 \) of length \(n \) parameterized by \(\tilde{A} \). Geometrically, the fiber over a general point \(\tilde{a} \in \tilde{A} \) corresponds to \(n \) conics through the image of \(\tilde{a} \) on \(A \). The morphism \(\tilde{\psi} \) defines \(\tilde{A} \to \text{Hilb}^n \mathbb{P}^{d-3} \) which is the one claimed in the main theorem. To understand its image, we need to understand the double polars of the special quartic \(F_4 \).

By the construction of \(\tilde{F}_4 \) and the theory of polarity (see the appendix), it holds that, for a conic \(q \) on \(A \) and the hyperplane section \(\{ H_q = 0 \} \subset \mathbb{P}^{d-3} \) corresponding to the point \([q] \in \mathbb{P}^{d-3} \), the locus \(D_q \) is equal to \(\{ \tilde{D}_q := P_{H_q^2}(\tilde{F}_4) = 0 \} \cap \mathcal{H}_2 \). By definition of the dual quartic form \(F_4 \), it holds

\begin{equation}
(1.2) \quad P_{\tilde{D}_q}(F_4) = H_q^2.
\end{equation}

Moreover, by definition of \(D_q \), it holds that, for \(n \) conics \(q_1, \ldots, q_n \) on \(A \) corresponding to a general fiber of \(\tilde{\psi} \),

\begin{equation}
(1.3) \quad \tilde{D}_{q_i}([q_i]) \neq 0 \text{ and } \tilde{D}_{q_j}([q_j]) = 0 \ (i \neq j).
\end{equation}

Now the main theorem follows from a more or less formal argument of the theory of polarity from (1.1), (1.2), and (1.3).

We believe that, even by reading the proof of Theorem 5.4.1 after reading only this introduction and possibly the appendix, the readers can understand at least the reason why the variety of power sums appears.

1.4. **Structure of the paper.**

We add some explanations about the structure of the paper.

In the section 2, we construct smooth rational curves \(C_d \) of degree \(d \) on \(B \) and study in detail the relation of general \(C_d \) with lines and conics on \(B \).
In the section 3, we describe the projection of B from a line or a conic, and the double projection of B from a point. These operations are useful for counting the number of multi-secant conics of C satisfying various pre-specified geometric conditions. For example, using double projection from a general point of B, we can show that the number of multi-secant conics of C through a general point of B is equal to n (see Corllary 3.2.8).

Sections 2 and 3 are rather technical as far as the proofs it concerns but the results are really easy to be understood by a general reader and at least one of them, we mean Proposition 3.2.5 is of unexpected geometrical content; Proposition 3.2.5 or its restatement Corollary 3.2.6 shows that the number of multi-secant conics of C through any point of B outside C is finite. This will be refined to finiteness results contained into Propositions 4.2.12 and 5.1.3.

In the section 4, we mostly study marked lines and conics, and lines and conics on the blow-up A of B along a smooth rational curve C of degree d as we mentioned in the subsection 1.3.

In the section 5, we show the main theorem.

In the section 6, we explain Mukai’s result from our viewpoint.

Finally we add an appendix which forms the section 7, where we explain some very basic facts on the theory of polarity for the readers’ convenience.

1.5. Forthcoming paper.

This work lays the foundations for the results of [TZ08].

As we mentioned in the abstract, there we show that the quartic $\{F_4 = 0\}$ coincides with the Scorza quartic associated to (H_1, θ) and the theta charasteristic θ is constructed explicitely.

Following [DK93], we also study other geometric objects associated to (H_1, θ). As an amazing application, we show the existence of the Scorza quartics for any general pairs of curves and ineffective theta characteristics. This is an affirmative answer to the conjecture stated by Dolgachev and Kanev in [DK93, §9].

Moreover, we can study the moduli spaces of spin curves, especially of trigonal spin curves relating this with the Hilbert schemes of smooth rational curves on B. In fact we prove that H_1 is a general trigonal curve if C is general.

Acknowledgment. We are thankful to Professor S. Mukai for valuable discussions and constant interest on this paper. We received various useful comments from K. Takeuchi, A. Ohbuchi, S. Kondo, to whom we are grateful. The first author worked on this paper partially when he was staying at the Johns Hopkins University under the program of Japan-U.S. Mathematics Institute (JAMI) in November 2005 and at the Max-Planck-Institut für Mathematik from April, 2007 until March, 2008. The authors worked jointly during the first author’s stay at the Università di Udine on August 2005, and the Levico Terme conference on Algebraic Geometry in Higher dimensions on June 2007. The authors are thankful to all the above institutes for the warm hospitality they received.

2. Rational curves on the quintic del Pezzo threefold B

Let V be a vector space with $\text{dim}_C V = 5$. The Grassmannian $G(2, V)$ embeds into \mathbb{P}^9 and we denote the image by $G \subset \mathbb{P}^9$. It is well-known that the quintic del Pezzo 3-fold, i.e., the Fano 3-fold B of index 2 and of degree 5 can be realized as $B = G \cap \mathbb{P}^6$, where $\mathbb{P}^6 \subset \mathbb{P}^9$ is transversal to G (see [Fuj81], [Isk77, Thm 4.2 (iii), the proof p.511-p.514]).
First we collect basic known facts on lines and conics on B almost without proof. Let \mathcal{H}_1^B and \mathcal{H}_2^B be the Hilbert scheme, respectively, of lines and of conics on B.

2.1. Lines on B.

Let $\pi: \mathbb{P} \to \mathcal{H}_1^B$ be the universal family of lines on B and $\varphi: \mathbb{P} \to B$ the natural projection. By [FN89a, Lemma 2.3 and Theorem 1], \mathcal{H}_1^B is isomorphic to \mathbb{P}^2 and φ is a finite morphism of degree three. In particular the number of lines passing through a point is three counted with multiplicities. We recall some basic facts about π and φ which we use in the sequel.

Before that, we fix some notation.

Notation 2.1.1. For an irreducible curve C on B, denote by $M(C)$ the locus $\subset \mathbb{P}^2$ of lines intersecting C, namely, $M(C) := \pi(\varphi^{-1}(C))$ with reduced structure. Since φ is flat, $\varphi^{-1}(C)$ is purely one-dimensional. If $\deg C \geq 2$, then $\varphi^{-1}(C)$ does not contain a fiber of π, thus $M(C)$ is a curve. See Proposition 2.1.3 for the description of $M(C)$ in case C is a line.

Definition 2.1.2. A line l on B is called a special line if $N_{l/B} \simeq \mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$.

Remark. If l is not a special line on B, then $N_{l/B} = \mathcal{O}_l \oplus \mathcal{O}_l$.

Proposition 2.1.3. It holds:

1. for the branched locus B_φ of $\varphi: \mathbb{P} \to B$ we have:
 1. $B_\varphi \subset |-K_B|$, and
 2. $\varphi^*B_\varphi = R_1 + 2R_2$, where $R_1 \simeq R_2 \simeq \mathbb{P}^1 \times \mathbb{P}^1$, and $\varphi: R_1 \to B_\varphi$ and $\varphi: R_2 \to B_\varphi$ are injective,

2. R_2 is contracted to a conic Q_2 by $\pi: \mathbb{P} \to \mathcal{H}_1^B$. Moreover Q_2 is the branched locus of the finite double cover $\pi|_{R_1}: R_1 \to \mathcal{H}_1^B$,

3. Q_2 parameterizes special lines,

4. if l is a special line, then $M(l)$ is the tangent line to Q_2 at $[l]$. If l is not a special line, then $\varphi^{-1}(l)$ is the disjoint union of the fiber of π corresponding to l, and the smooth rational curve dominating a line on \mathbb{P}^2. In particular, $M(l)$ is the disjoint union of a line and the point $[l]$.

By abuse of notation, we denote by $M(l)$ the one-dimensional part of $M(l)$ for any line l. Vice-versa, any line in \mathcal{H}_1^B is of the form $M(l)$ for some line l, and

5. the locus swept by lines intersecting l is a hyperplane section T_l of B whose singular locus is l. For every point b of $T_l \setminus l$, there exists exactly one line which belongs to $M(l)$ and passes through b. Moreover, if l is not special, then the normalization of T_l is \mathbb{F}_1 and the inverse image of the singular locus is the negative section of \mathbb{F}_1, or, if l is special, then the normalization of T_l is \mathbb{F}_3 and the inverse image of the singular locus is the union of the section and a fiber.

Proof. See [FN89a, §2] and [Hi94a, §1]. □

By the proof of [FN89a] we see that B is stratified according to the ramification of $\varphi: \mathbb{P} \to B$ as follows:

$$B = (B \setminus B_\varphi) \cup (B_\varphi \setminus C_\varphi) \cup C_\varphi,$$

where C_φ is a smooth rational normal sextic and if $b \in B \setminus B_\varphi$ exactly three distinct lines pass through it, if $b \in (B_\varphi \setminus C_\varphi)$ exactly two distinct lines pass through it, one of them is special, and finally C_φ is the loci of $b \in B$ through which it passes only one line, which is special.
2.2. Conics on B.

Proposition 2.2.1. The Hilbert scheme \mathcal{H}_2^B of conics on B is isomorphic to $\mathbb{P}^4 = \mathbb{P}_s \mathbb{V}$. The support of a double line is a special line and the double lines are parameterized by a rational normal quartic curve $\Gamma \subset \mathbb{P}_s \mathbb{V}$ and the secant variety of Γ is a singular cubic hypersurface which is the closure of the loci parameterizing reducible conics.

Proof. See [Ili94, Proposition 1.2.2].

The identification in the first statement is given by the map $sp: \mathcal{H}_2^B \to \mathbb{P}_s \mathbb{V}$ with $[c] \mapsto \langle Gr(c) \rangle = \mathbb{P}^3_\mathbb{c} \subset \mathbb{P}_s \mathbb{V}$, where for a general conic $c \subset B$ we set $Gr(c) := \bigcup \{ r \in \mathbb{P}_s \mathbb{V} \mid [r] \in c \} \simeq \mathbb{P}^1 \times \mathbb{P}^1$.

2.3. Construction of rational curves C_d of degree d on B.

We construct smooth rational curves of degree d on B by smoothing the union of a smooth rational curve of degree $d-1$ and one of its uni-secant lines.

Definition 2.3.1. Let C and γ be smooth curves on B. We say that γ is a secant curve of C if $C \cap \gamma \neq \emptyset$. Moreover, we say that γ is a k-secant curve (resp. a multi-secant curve) if $\gamma|_C$ is a 0-dimensional subscheme of length k (resp. of length greater than or equal to 2). For $k = 1, 2, \ldots$, we say uni-secant, bi-secant, \ldots, instead.

Proposition 2.3.2. There exists a smooth rational curve C_d of degree d on B such that

(a) a general line on B intersecting C_d is uni-secant,

(b) C_d is obtained as a smoothing of the union of a smooth rational curve C_{d-1} of degree $d-1$ on B and a general uni-secant line of it on B, and

(c) $\mathcal{N}_{C_d/B} \simeq \mathcal{O}_{p_1}(d-1) \oplus \mathcal{O}_{p_1}(d-1)$. In particular $h^1(\mathcal{N}_{C_d/B}) = 0$ and $h^0(\mathcal{N}_{C_d/B}) = 2d$.

Proof. We argue by induction on d.

If $d = 1$, we have the assertion since $\mathcal{N}_{C_1/B} \simeq \mathcal{O}_{p_1} \oplus \mathcal{O}_{p_1}$ for a general line C_1.

Now assume that C_{d-1} is a smooth rational curve of degree $d-1$ on B constructed inductively. By induction, a general secant line l of C_{d-1} on B is uni-secant. Set $Z := C_{d-1} \cup l$ and $\mathcal{N}_{Z/B} := \mathcal{Hom}_{\mathcal{O}_B}(\mathcal{I}_Z, \mathcal{O}_B)$. By induction, the normal bundle of C_{d-1} satisfies (c). Thus, by $\mathcal{N}_{l/B} \simeq \mathcal{O}_{p_1} \oplus \mathcal{O}_{p_1}$ and [HHS5 Theorem 4.1 and its proof], it holds $h^1(\mathcal{N}_{Z/B}) = 0$, and moreover $Z := C_{d-1} \cup l$ is strongly smoothable, namely, we can find a smoothing C_d of Z with the smooth total space. By the upper semi-continuity theorem, $h^1(\mathcal{N}_{C_d/B}) = 0$ and, by the Riemann-Roch theorem, $h^0(\mathcal{N}_{C_d/B}) = 2d$.

We check the form of the normal bundle of C_d. Set $\mathcal{N}_{C_d/B} := \mathcal{O}_{p_1}(a_d) \oplus \mathcal{O}_{p_1}(b_d)$ ($a_d \geq b_d$) for the smoothing C_d of Z. We show that $a_d = b_d = d-1$. It suffices to prove $h^0(\mathcal{N}_{Z/B}(-d)) = 0$. In fact, then, by the upper semi-continuous theorem, we have $h^0(\mathcal{N}_{C_d/B}(-d)) = 0$ and $a_d, b_d \leq d-1$. Thus, by $a_d + b_d = 2d-2$, it holds $a_d = b_d = d-1$. By noting $\mathcal{N}_{C_{d-1}/B} = \mathcal{O}_{p_1}(d-2) \oplus \mathcal{O}_{p_1}(d-2)$, the equality $h^0(\mathcal{N}_{Z/B}(-d)) = 0$ easily follows from the following three exact sequences, where $t := C_{d-1} \cap l$:

$$0 \to \mathcal{N}_{Z/B} \to \mathcal{N}_{Z/B|C_{d-1}} \oplus \mathcal{N}_{Z/B|l} \to \mathcal{N}_{Z/B} \otimes \mathcal{O}_t \to 0.$$ $$0 \to \mathcal{N}_{C_{d-1}/B} \to \mathcal{N}_{Z/B|C_{d-1}} \to T^1_t \to 0.$$
0 \to \mathcal{N}_{1/B} \to \mathcal{N}_{Z/B}\ell \to T^1_\ell \to 0.

We can inductively show that a general line \(m\) intersecting \(C_{d-1}\) does not intersect \(l\), thus \(m\) is a uni-secant line of \(C_{d-1} \cup l\). This implies (a) for \(C_d\) by a deformation theoretic argument. \(\square\)

Corollary 2.3.3. Let \(C_d\) be a smooth rational curve of degree \(d\) constructed as in Proposition 2.3.2. The Hilbert scheme of smooth rational curves on \(B\) of degree \(d\) is smooth at \([C_d]\) and is of dimension \(2d\).

Proof. The assertion follows from Proposition 2.3.2 (c). \(\square\)

2.4. Relations of \(C_d\) with lines and conics.

We study multi-secant lines and conics of \(C_d\).

Proposition 2.4.1. A general \(C_d\) as in Proposition 2.3.2 satisfies the following conditions:

1. there exist no \(k\)-secant lines of \(C_d\) on \(B\) with \(k \geq 3\),
2. there exist at most finitely many bi-secant lines of \(C_d\) on \(B\), and any of them intersects \(C_d\) simply,
3. bi-secant lines of \(C_d\) on \(B\) are mutually disjoint,
4. neither a bi-secant line nor a line through the intersection point between a bi-secant line and \(C_d\) is a special line, and
5. there exist at most finitely many points \(b\) outside \(C_d\) such that all the lines through \(b\) intersect \(C_d\), and such points exist outside bi-secant lines of \(C_d\).

Proof. We can prove the assertions by simple dimension counts based upon Proposition 2.3.2. We assume that \(d \geq 4\) since otherwise we can verify the assertion easily.

1. Let \(D\) be the closure of the set

 \[
 \{([C_d], [l]) \mid C_d \cap l \text{ consists of 3 points}\} \subset \mathcal{H}^B_d \times \mathcal{H}^B_1.
 \]

 Let \(\pi_d: D \to \mathcal{H}^B_d\) and \(\pi_1: D \to \mathcal{H}^B_1\) be the natural morphisms induced by the projections. The claim follows if we show that \(\dim C D \leq 2d - 1\) since \(\dim \mathcal{H}^B_1 = 2d\).

 Thus we estimate \(\dim C \text{Hom}^{2d}(\mathbb{P}^1, B; p_i \mapsto s_i, i = 1, 2, 3)\) at \([\pi]\), where \(p_i, i = 1, 2, 3\) are fixed points of \(\mathbb{P}^1\), \([\pi]\) is a general point and the degree is measured by \(-K_B\). By \(d \geq 4\) and Proposition 2.3.2 (c), it holds that \(h^0(\mathbb{P}^1, \pi^*T_B(-p_1 - p_2 - p_3)) = 2d - 6\) and \(h^1(\mathbb{P}^1, \pi^*T_B(-p_1 - p_2 - p_3)) = 0\). Then

 \[
 \dim C \text{Hom}^{2d}(\mathbb{P}^1, B, p_i \mapsto s_i, i = 1, 2, 3)[\pi] = h^0(\pi^*T_B(-p_1 - p_2 - p_3)) = 2d - 6.
 \]

 This implies that \(\dim C \pi^{-1}([l]) \leq 2d - 6 + 3 = 2d - 3\) since the three points can be chosen arbitrarily. Then \(\dim C D \leq 2d - 1\) since \(\dim C \mathcal{H}^B_1 = 2\).

2. Now let \(D\) be the closure of the set

 \[
 \{([C_d], [l]) \mid C_d \cap l \text{ consists of 2 points}\} \subset \mathcal{H}^B_d \times \mathcal{H}^B_1.
 \]

 As before, let \(\pi_d: D \to \mathcal{H}^B_d\) and \(\pi_1: D \to \mathcal{H}^B_1\) be the natural morphisms induced by the projections. By \(d \geq 4\) and Proposition 2.3.2 (c), it holds that \(h^0(\mathbb{P}^1, \pi^*T_B(-p_1 - p_2)) = 2d - 3\) and \(h^1(\mathbb{P}^1, \pi^*T_B(-p_1 - p_2)) = 0\). Then

 \[
 \dim C \text{Hom}^{2d}(\mathbb{P}^1, B, p_i \mapsto s_i, i = 1, 2)[\pi] = h^0(\pi^*T_B(-p_1 - p_2)) = 2d - 3.
 \]
Since \(\dim \text{Aut}(\mathbb{P}^1, p_1, p_2) = 1 \) it holds that \(\dim \pi_1^{-1}([l]) \leq 2d - 3 + 2 - 1 = 2d - 2 \). Hence \(\dim D = 2d \). Hence \(C_d \) has only a finite number of bi-secant lines.

We now show that the loci where \(C_d \) has a tangent bi-secant is a codimension one loci inside \(\mathcal{H}_B^d \). Let \(B_t \) be the blow-up of \(B \) in a point \(t \in C_d \) and let \(l \) be a bi-secant which is tangent to \(C_d \) at \(t \) (if it exists). Let \(E \) be the exceptional divisor, and \(C' \) and \(l' \) the strict transforms of \(C \) and \(l \) respectively. By hypothesis there exists a unique point \(s \in E \cap C' \cap l' \). We estimate \(\dim \text{Hom}_d^d(\mathbb{P}^1, B_t, p \mapsto s)_{[\pi]} \), where \(p \) is a fixed point of \(\mathbb{P}^1 \), \([\pi] \) is a general point, and the degree is measured by \(-K_{B_t} \). In this case \(h^0(\pi^*T_{B_t}(-p)) = 2d - 2 \) hence \(\dim \pi_1^{-1}([l]) \leq 2d - 2 + 1 - 2 = 2d - 3 \). This implies the claim.

The cases (3), (4) and (5) are similar. Thus we only give few comments for (5). Set \(D \) be the closure of the set

\[
\{(\{\{C_d\}, [l_1], [l_2], [l_3]\}) \mid C_d \cap l_i \neq \emptyset \quad (i = 1, 2, 3), \\
l_1 \cap l_2 \cap l_3 \neq \emptyset, l_1 \cap l_2 \cap l_3 \notin C_d, l_i \text{ are distinct}\}
\subset \mathcal{H}_B^1 \times \mathcal{H}_B^1 \times \mathcal{H}_B^1.
\]

For the former half of (5), we have only to prove that \(\dim D \leq 2d \). This can be carried out by a similar dimension count as above. For the latter half of (5), we use the inductive construction of \(C_d \) besides dimension count.

We can prove the following by a similar method hence we omit the proof.

Proposition 2.4.2. A general \(C_d \) as in Proposition 2.3.2 satisfies the following conditions:
1. there exist no \(k \)-secant conics of \(C_d \) with \(k \geq 5 \),
2. there exist at most finitely many quadri-secant conics of \(C_d \) on \(B \), and no quadri-secant conic is tangent to \(C_d \), and
3. \(q_{C_d} \) has no point of multiplicity greater than two for any multi-secant conic \(q \).

Notation 2.4.3. The bisecant lines of \(C_d \) are denoted by \(\beta_i \) where \(i = 1, \cdots, s \).

In the following proposition, we describe some more relations of \(C_d \) with lines on \(B \) which can be translated into the geometry of \(\mathcal{H}_B^1 \). More explicitly, we prove that \(M(C_d) \) is sufficiently general if \(C_d \) is general (recall the notation of the subsection 2.1).

Proposition 2.4.4. A general \(C_d \) as in Proposition 2.3.2 satisfies the following conditions:
1. \(C_d \) intersects \(B_\varphi \) simply,
2. \(M_d := M(C_d) \) intersects \(Q_2 \) simply,
3. \(M_d \) is an irreducible curve of degree \(d \) with only simple nodes (recall that in Proposition 2.1.3 (4), we abuse the notation by denoting the one-dimensional part of \(\pi(\varphi^{-1}(C_1)) \) by \(M(C_1) \)),
4. for a general line \(l \) intersecting \(C_d \), \(M_d \cup M(l) \) has only simple nodes as its singularities, and
5. \(M_d \cup M(\beta_i) \) has only simple nodes as its singularities.

Proof. We show the assertion inductively using the smoothing construction of \(C_d \) from the union of \(C_{d-1} \) and a general uni-secant line \(l \) of \(C_{d-1} \).

In case of \(d = 1 \), by letting \(C_1 \) be a general line, the assertion follows from Proposition 2.1.3.

By induction on \(d \) assume that we have a smooth \(C_{d-1} \) (\(d \geq 2 \)) satisfying (1)–(5). We verify
Proof. Let \(C_{d-1} \subseteq H \) intersect \(B \), simply by (1) for \(C_{d-1} \) and generality of \(l \).

(1) \(C_{d-1} \subseteq H \) intersects \(B \).

(2) \(M_{d-1} \subseteq M(l) \) intersects \(Q_2 \) simply by (2) for \(C_{d-1} \) and generality of \(l \).

(3) \(M_{d-1} \subseteq M(l) \) is not irreducible but is of degree \(d \) and has only simple nodes by (4) for \(C_{d-1} \).

(4) \(M_{d-1} \subseteq M(l) \cup M(m) \) has only simple nodes as its singularities for a general line \(m \) intersecting \(C_{d-1} \).

Indeed, since \(m \) is also general, \(M_{d-1} \subseteq M(m) \) has only simple nodes by (4) for \(C_{d-1} \). Thus we have only to prove that \(M_{d-1} \cap M(l) \cap M(m) = \emptyset \), namely, there is no secant line of \(C_{d-1} \) intersecting both \(l \) and \(m \). Fix a general \(l \) and move \(m \). If there are secant lines \(r_m \) of \(C_{d-1} \) intersecting both \(l \) and \(m \) for general \(m \)'s, then \(r_m \) moves whenever we have \(M(l) \subseteq M_{d-1} \), a contradiction.

(5) For a bi-secant line \(\beta \) of \(C_{d-1} \subseteq H \) except the lines through \(C_{d-1} \cap l \), the curve \(M_{d-1} \subseteq M(l) \cup M(\beta) \) has only simple nodes as its singularities.

Indeed, if \(\beta \) is a bi-secant line of \(C_{d-1} \), then the assertion follows from (5) for \(C_{d-1} \) by a similar way to the proof of (4). Suppose that \(\beta \) is a uni-secant line of \(C_{d-1} \) intersecting \(l \). We have only to prove that there is no secant line of \(C \) intersecting both \(l \) and \(\beta \). If there is such a line \(r \), then \(l, \beta \) and \(r \) pass through one point. This does not occur for general \(l \) and \(\beta \) by Proposition 2.4.1 (5).

Thus, by a deformation theoretic argument, we see that \(C_d \) satisfies (1)–(5). \qed

2.5. On irreducibility of families of rational curves on \(B \).

We discuss about irreducibility of the Hilbert scheme of smooth rational curves on \(B \) of a fixed degree though we do not need it fully.

For a smooth projective variety \(X \) in some projective space, let \(\mathcal{H}_d^0(X) \) be the Hilbert scheme of smooth rational curves on \(X \) of degree \(d \). By [Per02], \(\mathcal{H}_d^0(G(a,b)) \) is non-empty and irreducible, where \(G(a,b) \) is the Grassmannian parameterizing \(a \)-dimensional subvector spaces in a fixed \(b \)-dimensional vector space.

Let \(\mathcal{H}_d^0(X) \) be the open subset of \(\mathcal{H}_d^0(X) \) parameterizing smooth rational curves on \(X \) of degree \(d \) with linear hull of maximal dimension.

Let \(\mathcal{H}_d^B \) be the Hilbert scheme of general smooth rational curves on \(B \) of degree \(d \) obtained inductively as in Proposition 2.3.2.

We can show inductively that \(\mathcal{H}_d^B \subseteq \mathcal{H}_d^0(B) \), thus we can ask the following:

Question 2.5.1. \(\overline{\mathcal{H}_d^B} = \overline{\mathcal{H}_d^0(B)} \) ? (here we take the closure in the Hilbert scheme.) Are they irreducible ?

We have a partial answer to this question as follows:

Proposition 2.5.2. \(\mathcal{H}_d^B \) with any \(d \) and \(\mathcal{H}_d^0(B) \) with \(d \leq 6 \) are irreducible. \(\overline{\mathcal{H}_d^0(B)} = \mathcal{H}_d^B \) for \(d \leq 6 \).

Proof. The claim is true for \(d = 1 \) since \(\overline{\mathcal{H}_1^0(B)} = \overline{\mathcal{H}_1^B} \simeq \mathbb{P}^2 \).

First we prove \(\overline{\mathcal{H}_d^B} \) is irreducible for any \(d \). By induction let us assume that \(\overline{\mathcal{H}_{d-1}^B} \) is irreducible. Let \([C_{d-1}] \in \overline{\mathcal{H}_{d-1}^B} \) be a generic element. The family of lines \([l] \in \mathcal{H}_1^B \) which intersect a generic element of \(\overline{\mathcal{H}_{d-1}^B} \) is irreducible by Proposition 2.4.1 (3). This implies that the family \(\mathcal{H}_{d-1,1}^B \) of reducible curves \(C_{d-1}^0 = C_{d-1}^0 \cup l \) such that \([C_{d-1}^0] \in \mathcal{H}_{d-1}^B \), \([l] \in \mathcal{H}_1^B \) and length \(C_{d-1}^0 \cap l = 1 \) is
irreducible. As in the proof of Proposition 2.3.2, the Hilbert scheme is smooth at the point \([C_d^0]\). Thus \(\mathcal{H}_d^B\) is irreducible.

Second we prove \(\mathcal{H}_d^0(B)\) with \(d \leq 6\) is irreducible. Let \(\mathcal{B}\) be the irreducible family of del Pezzo 3-folds \(B = G(2,5) \cap \mathbb{P}^6\), where \(\mathbb{P}^6 \subset \mathbb{P}^9\) is transversal to \(G(2,5)\). Let

\[
J = \{([C_d^0], [B]) \in \mathcal{H}_d^0(G(2,5)) \times \mathcal{B} \mid C_d^0 \subset B\}.
\]

If \(d \leq 6\), then it is known that a general smooth rational curve of degree \(d\) on \(G(2,5)\) is a normal rational curve, and is contained in a smooth 3-dimensional linear section of \(G(2,5)\), namely, a smooth quintic del Pezzo 3-fold. Indeed, we can construct such a rational curve with \(d \leq 5\) explicitly on a smooth quintic del Pezzo surface, which is contained in a smooth quintic del Pezzo 3-fold. For \(d = 6\), \(C_6\) as in the subsection 2.1 is an example of such a rational curve \(C_6\) on a smooth quintic del Pezzo 3-fold.

Thus a general fiber \(J \to \mathcal{B}\) is equal to \(\mathcal{H}_d^0(B)\) and is non-empty. Moreover, any fiber of \(J \to \mathcal{H}_d^0(G(2,5))\) is isomorphic to \(G(\mathbb{P}^d, \mathbb{P}^6)\). Since \(\mathcal{H}_d^0(G(2,5))\) is irreducible and \(\mathcal{H}_d^0(G(2,5))\) is an open subset of \(\mathcal{H}_d^0(G(2,5))\), it holds \(J\) is irreducible. By the argument of [MT01, Proof of Theorem 3.1 p.17], we have only to show that there is one particular component of a general fiber \(J \to \mathcal{B}\) invariant under monodromy. Actually, this is nothing but \(\mathcal{H}_d^B\).

Corollary 2.5.3. Let \(C_d\) be a general smooth rational curve constructed as in Proposition 2.3.2.

(1) If \(d = 5\), then \(C_5\) is a normal rational curve and is contained in a unique hyperplane section \(S\), which is smooth. If \(d \geq 6\), then \(C_d\) is not contained in a hyperplane section.

3. VARIOUS PROJECTIONS OF \(B\)

3.1. Projection of \(B\) from a line or a conic.

Proposition 3.1.1. (1) Let \(l\) be a line on \(B\). Then the projection of \(B\) from \(l\) is decomposed as follows:

\[
\begin{array}{c}
B_l \\
\downarrow \pi_{1l} \\
B \\
\downarrow \\
\pi_{2l} \\
Q,
\end{array}
\]

where \(\pi_{1l}\) is the blow-up along \(l\) and \(B \longrightarrow Q\) is the projection from \(l\) and \(\pi_{2l}\) contracts onto a rational normal curve of degree 3 the strict transform of the loci swept by the lines of \(B\) touching \(l\). Moreover

\[
-K_{B_l} = H + H_Q,
\]

where \(H\) and \(H_Q\) are the pull backs of general hyperplane sections of \(B\) and \(Q\) respectively. We denote by \(E_l\) the \(\pi_{1l}\)-exceptional divisor.

(2) Let \(q\) be a smooth conic on \(B\). Then the projection of \(B\) from \(q\) behaves as follows:

\[
\begin{array}{c}
B_q \\
\downarrow \pi_{1q} \\
B \\
\downarrow \\
\pi_{2q} \\
\mathbb{P}^3,
\end{array}
\]
where \(\pi_{1q} \) is the blow-up of \(B \) along \(q \) and \(\pi_{2q} \): \(B_q \to \mathbb{P}^3 \) is the divisorial contraction of the strict transform \(T_q \) of the loci swept by the lines touching \(q \). Moreover

\[
(3.4) \\
-K_{B_q} = H + H_{\mathbb{P}},
\]

where \(H \) and \(H_{\mathbb{P}} \) are the pull backs of general hyperplane sections of \(B \) and \(\mathbb{P}^3 \) respectively.

Proof. These results are more or less well-known. For (1), refer [Fu81], and for (2) and (1), refer [MM81], No. 22 for (2) (No. 26 for (1)). See also [MM85], p.533 (7.7) for a discussion. \(\square \)

We give several applications of the projection of \(B \) from a line or a conic.

Let \(C := C_d \) be a general rational curve of degree \(d \) constructed as in Proposition 2.3.2 and \(l_1 \) and \(l_2 \) two general secant lines of \(C \) such that \(l_1 \cap l_2 = \emptyset \). We need to count the number of multi-secant conics of \(C \) intersecting \(l_1 \) and \(l_2 \) in the proof of Theorem 4.2.15.

Lemma 3.1.2. Assume that \(d \geq 3 \). Let \(B \to Q \to \mathbb{P}^2 \) be the successive linear projections from \(l_1 \) and then the strict transform of \(l_2 \) on \(Q \). Let \(l \) be another general secant line of \(C \), and \(C'' \) and \(l' \subset \mathbb{P}^2 \) be the images of \(C \) and \(l \) respectively. Then \(C \cup l \to C'' \cup l' \) is generically one to one and \(\deg C'' \cup l' = d - 1 \). Moreover, \(C'' \cup l' \) has only simple nodes as its singularities. In particular (since \(\deg C'' = d - 2 \) and \(C'' \) is rational) \(C'' \) has \(\frac{(d-3)(d-4)}{2} \) simple nodes, equivalently, there exist \(\frac{(d-3)(d-4)}{2} \) bi-secant conics of \(C \) intersecting both \(l_1 \) and \(l_2 \).

Remark. The line \(l \) is needed for the inductive proof as below.

Proof. We show the assertion using the inductive construction of \(C = C_d \). The assertion follows for \(d = 3 \) directly. Consider a smoothing from \(C_{d-1} \cup m \) to \(C_d \). Let \(m_1 \) and \(m_2 \) two general secant lines of \(C_{d-1} \) such that \(m_1 \cap m_2 = \emptyset \). Let \(B \to Q \to \mathbb{P}^2 \) be the successive linear projections from \(m_1 \) and then from the strict transform of \(m_2 \) on \(Q \). Let \(r \) be another general secant line of \(C_{d-1} \), and \(C'_d \), \(m' \) and \(r' \subset \mathbb{P}^2 \) be the images of \(C_{d-1} \), \(m \) and \(r \) respectively. Then we have only to show that \(C_{d-1} \cup m \cup r \to C'_d \cup m' \cup r' \) is generically one to one, \(\deg C'_d \cup m' \cup r' = d - 1 \) and \(C'_d \cup m' \cup r' \) has only simple nodes as its singularities assuming \(C_{d-1} \cup r \to C'_d \cup r' \) is generically one to one, \(\deg C'_d \cup r' = d - 2 \) and \(C'_d \cup r' \) has only simple nodes as its singularities.

Since \(m \) is also general, \(C_{d-1} \cup m \to C'_d \cup m' \) is generically one to one, \(\deg C'_d \cup m' = d - 2 \) and \(C'_d \cup m' \) has only simple nodes as its singularities. Thus \(C_{d-1} \cup m \cup r \to C'_d \cup m' \cup r' \) is generically one to one and \(\deg C'_d \cup m' \cup r' = d - 1 \). To show \(C'_d \cup m' \cup r' \) has only simple nodes as its singularities, it suffices to prove that there are no secant conics of \(C_{d-1} \) intersecting all the \(m_1 \), \(m_2 \), \(m \) and \(r \). This follows from the fact that a secant conic \(q \) of \(C_{d-1} \) intersects finitely many secant lines of \(C_{d-1} \) by \(M(q) \not\subseteq M(C_{d-1}) \).

The last statement follows from that, by generality of \(l_1 \) and \(l_2 \), any multi-secant conic of \(C \) intersecting \(l_1 \) and \(l_2 \) is bi-secant. \(\square \)

The following is a variant of Lemma 3.1.2 which is also need in the proof of Theorem 4.2.15.

Lemma 3.1.3. Assume that \(d \geq 4 \). Let \(l_0 \) be a general uni-secant line of \(C \). Let \(B \to Q \to \mathbb{P}^2 \) be the successive linear projections from \(l_0 \) and then the strict transform of a bi-secant line \(\beta_i \) on \(Q \). Let \(l \) be another general uni-secant line of \(C \), and \(C' \) and \(l' \subset \mathbb{P}^2 \) be the images of \(C \) and \(l \) respectively. Then \(C \cup l \to C' \cup l' \) is generically one to one, \(\deg C' \cup l' = d - 2 \), and \(C' \cup l' \) has only simple nodes as its singularities. In particular (since \(\deg C' = d - 3 \) and \(C' \) is
rational) C' has $\frac{(d-4)(d-5)}{2}$ simple nodes, equivalently, there exist $\frac{(d-4)(d-5)}{2}$ bi-secant conics of C intersecting β_i and l_0 except conics containing β_i.

Proof. Similarly to the previous lemma, we show the assertion using the inductive construction of $C = C_d$. The assertion follows for $d = 4$ directly. Consider a smoothing from $C_{d-1} \cup m$ to C_d. Let m_0 be a general uni-secant line of C_{d-1}, and β a bi-secant line of $C_{d-1} \cup m$ different from any of the remaining two lines through $C_{d-1} \cap m$. Let $B \dashrightarrow Q \dashrightarrow \mathbb{P}^2$ be the successive linear projections from m_0 and then the strict transform of β on Q. Let r be another general uni-secant line of C_{d-1}, and C'_{d-1}, m' and $r' \subset \mathbb{P}^2$ be the images of C_{d-1}, m and r respectively.

First we suppose that β is a bi-secant line of C_{d-1}. Then we have only to show that $C_{d-1} \cup m \cup r \dashrightarrow C'_{d-1} \cup m' \cup r'$ is generically one to one, deg $C'_{d-1} \cup m' \cup r' = d - 2$, and $C'_{d-1} \cup m' \cup r'$ has only simple nodes as its singularities assuming $C_{d-1} \cup r \dashrightarrow C'_{d-1} \cup r'$ is birational and $C'_{d-1} \cup r'$ has only simple nodes as its singularities. The proof is the same as that of Lemma 3.1.2 so we omit it.

Next suppose that β is a uni-secant line of C_{d-1} intersecting m outside $C_{d-1} \cap m$. Note that, by the projection $B \dashrightarrow \mathbb{P}^2$, m is contracted to a point. Moreover, β is a general uni-secant line since so is m. Thus, by Lemma 3.1.2, $C_{d-1} \cup m \cup r \dashrightarrow C'_{d-1} \cup m' \cup r'$ is generically one to one, deg $C'_{d-1} \cup m' \cup r' = d - 2$, and $C'_{d-1} \cup m' \cup r'$ has only simple nodes as its singularities.

Let $f: A \to B$ be the blow-up of B along a general smooth rational curve C_d. The following lemma can be regarded as the assertion of generality of C_d. We need this in the subsection 5.1.

Lemma 3.1.4. Let $\beta'_i \subset A$ be the strict transform of a bi-secant line β_i of C_d. It holds:

$$N_{\beta'_i/A} = O_{\beta'_i}(-1) \oplus O_{\beta'_i}(-1).$$

Proof. We prove the assertion by using the inductive construction of C_d. The assertion is clear for $d = 1$ since C_1 has no bi-secant line.

Suppose the assertion holds for C_{d-1}. Choose a general uni-secant line $l \subset B$ of C_{d-1}. Let m_1, \ldots, m_{d-2} be the lines on B intersecting both C_{d-1} and l outside $C_{d-1} \cap l$. By generality of C_{d-1} we can assume that m_1, \ldots, m_{d-2} are uniseant of C_{d-1}.

Let $A' \to B$ be the blow-up along $C_{d-1} \cup l$. Note that the smoothing $C_{d-1} \cup l$ to C_d induces that of A' to A. Let \tilde{m}_i be the strict transform of m_i on A'. By the smoothing construction of C_d from $C_{d-1} \cup l$ and the assumption on induction, we have only to prove $N_{\tilde{m}_i/A'} = O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(-1)$. Let $A'_1 \to B$ be the blow-up along l and $A'_2 \to A'_1$ the blow-up along the strict transform of C_{d-1}. Denote by m'_i and m''_i the strict transform of m_i on A'_1 and A'_2 respectively. Then $N_{\tilde{m}_i/A'} = N_{m''_i/A'_2}$. We consider the projection of B from the line l as in Proposition 3.1.1 (2). Since m'_i is a fiber of $A'_1 \to Q$, we have $N_{m'_i/A'_1} = O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}(-1)$. Let F be the exceptional divisor of $A'_1 \to Q$ and F' the strict transform of F on A'_2. We may suppose F and C'_{d-1} intersect transversely, thus $F' \to F$ is the blow-up at $d - 2$ points $m''_i \cap C''_{d-1}$ ($i = 1, \ldots, d - 2$). Thus $F' \cdot m''_i = -1$ and $N_{m''_i/F'} = O_{\mathbb{P}^1}(-1)$, and this implies the assertion.

3.2. Double projection of B from a point.

Definition 3.2.1. Let b be a point of B. We call the rational map from B defined by the linear system of hyperplane sections singular at b the double projection from b.

Proposition 3.2.2. Let b be a point of B. Then
(1) the target of the double projection from b is \mathbb{P}^2, and the double projection from b and the projection $B \rightarrow \overline{B}_b$ from b fit into the following diagram:

\[
\begin{array}{ccc}
\pi_{1b} & \rightarrow & B_b \\
 & \searrow & B \\
 & \swarrow & B_b \\
 & \nearrow & \overline{B}_b \\
\pi_{2b} & \rightarrow & \mathbb{P}^2,
\end{array}
\]

where π_{1b} is the blow-up of B at b, $B_b \rightarrow B'_b$ is the flop of the strict transforms of lines through b, and $\pi_{2b}: B'_b \rightarrow \mathbb{P}^2$ is a (unique) \mathbb{P}^1-bundle structure. Moreover, $\overline{B}_b \rightarrow \mathbb{P}^2$ is the projection from the plane which is the image of π_{1b}-exceptional divisor.

We denote by E_b the π_{1b}-exceptional divisor and by E'_b the strict transform of E_b on B'_b.

\[
L = H - 2E'_b \quad \text{and} \quad -K_{B'_b} = H + L,
\]

where H is the strict transform of a general hyperplane section of B, and L is the pull back of a line on \mathbb{P}^2.

(3) Case (a)

If $b \not\in B_\varphi$, then the strict transforms l'_i of three lines l_i through b on B_b have the normal bundle $O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(-1)$. The flop $B_b \rightarrow B'_b$ is the Atiyah flop. In particular, $E'_b \rightarrow E_b$ is the blow-up at the three points $E_b \cap l'_1$.

Case (b)

If $b \in B_\varphi \setminus C_\varphi$, then $E_b \rightarrow E'_b$ can be described as follows: let l and m be two lines through b, where l is special, and m is not special. Let l' and m' be the strict transforms of l and m on B_b. First blow up E_b at two points $t_1 := E_b \cap l'$ and $t_2 := E_b \cap m'$ and then blow up at a point t_3 on the exceptional curve e over t_1. Finally, contract the strict transform of e to a point. Then we obtain E'_b (this is a degeneration of the case (a)).

Case (c)

See [FN89] in case of $b \in C_\varphi$, and

(4) a fiber of π_{2b} not contained in E'_b is the strict transform of a conic through b, or the strict transform of a line $\not\in b$ intersecting a line through b.

The description of the fibers of π_{2b} contained in E'_b is as follows:

Case (a)

If $b \not\in B_\varphi$, then $\pi_{2b}: E'_b \rightarrow \mathbb{P}^2$ is the blow-down of the strict transforms of three lines connecting two of $E_b \cap l'_i$, namely, $E_b \rightarrow \mathbb{P}^2$ is the Cremona transformation.

Case (b)

Assume that $b \in B_\varphi \setminus C_\varphi$. Then $\pi_{2b}: E'_b \rightarrow \mathbb{P}^2$ is the blow-down of the strict transforms of two lines, one is the line connecting t_1 and t_2, the other is the line whose strict transform passes through t_3. $E_b \rightarrow \mathbb{P}^2$ is a degenerate Cremona transformation.

Case (c)

See [FN89] in case of $b \in C_\varphi$.

Proof. This is a standard result in the birational geometry of Fano 3-folds but is less known than Proposition 3.1.1. We have only found the paper [FN89], in which they deal with the most difficult case (c). Here we sketch the construction of the flop in the middle case (b) to intend the reader to get a feeling of birational maps from B.
Let \(b \) be a point of \(B_2 \setminus C_\gamma \). We use the notation of the statement of (3). The flop of \(m' \) is the Atiyah flop. We describe the flop of \(l' \). By \(\mathcal{N}_{l/B} \simeq \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1) \), it holds that \(\mathcal{N}_{l/B_0} \simeq \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-2) \). Hence the flop of \(l' \) is a special case of Reid’s one [Rei83, Part II]. We show that the width is two in Reid’s sense. Let \(T_1 \) be the normalization of \(T_1 \). By Proposition 2.1.3 (5), \(T_1 \simeq \mathbb{F}_3 \) and the inverse image of the singular locus of \(T_1 \) is the union of the negative section \(C_0 \) and a fiber \(r \). Let \(\mu: \tilde{B}_b \rightarrow B_b \) be the blow-up along \(l' \) and \(F \) the exceptional divisor. Let \(T_2 \) be the strict transform of \(T_1 \) on \(\tilde{B}_b \). Then \(T_2 \) is the blow-up of \(T_1 \) at two points \(s_1 \in C_0 \) and \(s_2 \in r \). Denote by \(C'_0 \) and \(r' \) the strict transforms of \(C_0 \) and \(r \). We prove that \(\mathcal{N}_{r'/\tilde{B}_b} \simeq \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2} \). Note that \(F \cap T_2 = C'_0 \cup r' \). The curves \(C'_0 \) and \(r' \) are two sections on \(F \). Let \(T'_1 \) be the image of \(T_2 \) on \(B_b \). By \(\mathcal{N}_{r'/B_b} \simeq \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-2) \) and \(T_2 = \mu^*T'_1 - 2F \), it holds \(F \simeq \mathbb{F}_2 \), and \(T_2|_{F} \sim 2G_0 + 3\gamma \), where \(G_0 \) is the negative section of \(F \) and \(\gamma \) is a fiber of \(F \rightarrow l' \). Note that \(F \cdot C'_0 = (F|_{T'_2} \cdot C'_0)|_{T_2} = -3 \) and \(F \cdot r' = (F|_{T_2} \cdot r')|_{T_2} = 0 \), and \(F \cdot G_0 = 0 \) and \(F \cdot (G_0 + 3\gamma) = -3 \). Thus we have \(C'_0 \sim G_0 + 3\gamma \) and \(r' = G_0 \) on \(F \). Now we see that \(-K_{\tilde{B}_b} \cdot r' = (\mu^*(-K_{B_b}) - F) \cdot r' = 0 \). Therefore, by \((r')^2 = -1 \) on \(T_2 \), it holds that \(\mathcal{N}_{r'/\tilde{B}_b} \simeq \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2} \).

It is easy to see that we can flop \(r' \). Let \(\tilde{B}_b \rightarrow \tilde{B}'_b \) be the flop of \(r' \) (now we consider locally around \(r' \)). Let \(F'' \) be the strict transform of \(F \) on \(\tilde{B}'_b \). By [Rei83], \(F'' \simeq F \) and there is a blow-down \(\tilde{B}_b \rightarrow \tilde{B}''_b \) of \(F'' \) such that \(\tilde{B}''_b \) is smooth. \(\tilde{B}_b \rightarrow \tilde{B}''_b \) is the flop of \(l' \).

By this description of the flop, we can easily obtain (3).

As a first application of the above operations, we have the following result, which we often use:

Corollary 3.2.3. Let \(b_1 \) and \(b_2 \) be two (possibly infinitely near) points on \(B \) such that there exists no line on \(B \) through them. Then there exists a unique conic on \(B \) through \(b_1 \) and \(b_2 \).

Proof. We project \(B \) from \(b_1 \) as in (3.5). Then the assertion follows by the description of fibers of \(\pi_{2b} \), as in Proposition 3.2.2 (4). \(\square \)

Notation 3.2.4. Consider the double projection from \(b \), see proposition 3.2.2. Throughout the paper, we denote by \(C'_b, C''_b \) and \(C_b \) the strict transforms of \(C := C_d \) on \(B_b, B'_b \) and \(\mathbb{P}^2 \) respectively.

The following result is one of the key results for the proof of the main result. Its importance and difficulty lies in the actual fact that it holds not only for a general \(b \in B \) but also for every \(b \in B \).

Proposition 3.2.5. Let \(C_d \) be a general smooth rational curve of degree \(d \) on \(B \) constructed as in Proposition 2.3.2. Assume that \(d \geq 5 \). Then, for any point \(b \in B \), the restriction of \(\pi_b \) to \(C_d \) is birational.

Proof. We prove the assertion by induction based on the construction of \(C_d \) from \(C_{d-1} \cup l \), where \(l \) is a general uni-secant line of \(C_{d-1} \) on \(B \).

First we prove the assertion for \(d = 5 \). Assume by contradiction that \(\pi_{b|C_b} \) is not birational for a point \(b \). Then, since \(C \rightarrow C_b \) is a composite of linear projections, \(C_b \) is a line or conic in \(\mathbb{P}^2 \). Let \(S \) be the pull-back of \(C_b \) by \(\pi_{2b} \). If \(C_b \) is a line, then \(C_5 \) is contained in a singular hyperplane section, which is the strict transform of \(S \) on \(B \) (recall that \(B \rightarrow \mathbb{P}^2 \) is the double projection
from b). This contradicts Corollary 2.5.3. Assume that C_b is a conic. The only possibility is that $L \cdot C_b'' = 4$ and $C_b'' \to C_b$ is a double cover since $L \cdot C_b'' = 1$ and $\deg(C_b'' \to C_b) \leq 5$. Since the flop does not change the intersection numbers between the canonical divisor and curves, we have $-K_{B_b'} \cdot C_b'' = -K_{B_b} \cdot C_b'$. If $b \in C$, then we have $-K_{B_b'} \cdot C_b'' = 8$. Thus, by Proposition 3.2.2 (2) and $L \cdot C_b'' = 4$, it holds $H \cdot C_b'' = 4$. By $L = H - 2E_b''$, this shows that $E_b' \cdot C_b'' = 0$. This is, however, a contradiction since $E_b' \cap C_b'' \neq \emptyset$. Thus $b \not\in C$, and, by Proposition 3.2.2 (2), it holds $H \cdot C_b'' = 6$. By $L = H - 2E_b''$, we have $E_b' \cdot C_b'' = 1$. We compute $E_b'^2S$. Note that $-K_{B_b'} = 2H - 2E_b'' = 2(L + 2E_b'') - 2E_b'' = 2(L + E_b'')$. We have

$$E_b'^2L = \frac{1}{4}(-K_{B_b'} - 2L)^2L = \frac{1}{4}(-K_L - L|_L)^2 = 1.$$

Thus we have $E_b'^2S = 2E_b'^2L = 2$. The surface S is a Segre-del Pezzo scroll. Let C_b be the negative section of S and l is a fiber of $S \to C_b$ and set $e := -C_b^2$. We can write $E_{b|S} = C_0 + pl$ and $C_b'' \sim 2C_0 + ql$ ($p, q \geq 0$). By $E_b' \cdot C_b'' = 1$ and $E_b'^2S = 2$, we have $q + 2p - 2e = 1$ and $2p - e = 2$. Thus $e = 2p - 2$ and $q = 2p - 3$. Since C_b'' is irreducible, $q \geq 2e$, whence $2p - 3 \geq 2(2p - 2)$, i.e., $p = 0$ and $q = -3$, a contradiction.

Assume that $d \geq 6$. Let $C \to \Delta$ be the one-parameter smoothing of $C_{d-1} \cup l$ such that C is smooth (as we saw in the proof of Proposition 2.3.2 this is possible). We consider the trivial family of the double projections $B \times \Delta \to \mathbb{P}^2 \times \Delta$ from $b \times \Delta$. Denote by C_b', C_b'' and C_b the strict transforms of C on $B_b \times \Delta, B_b' \times \Delta$ and $\mathbb{P}^2 \times \Delta$ respectively. We also denote by $C_{d-1, b}, C_{d-1, b}'$, and $C_{d-1, b}$ the strict transforms of C_{d-1} on B_b, B_b' and \mathbb{P}^2 respectively. To prove the proposition, it suffices to show that, for any b, there exists at least one point on $C_{d-1, b}$ over which $C \to C_b$ is isomorphic. First, admitting this claim, we finish the proof of the proposition. Indeed, set

$$N := \{(b, t) \in B \times \Delta \mid C \to C_b \text{ is not isomorphic over any point of } C_{b, t}\}$$

and let $\Delta' \subset \Delta$ be the image of N by the projection to Δ. N is a closed subset, and so is Δ' since $B \times \Delta \to \Delta$ is proper. Thus Δ' consists of finitely many points since the origin is not contained in Δ' by admitting the above claim. Therefore, for a point $t \in \Delta$ sufficiently near the origin, $C_t \to C_{t, b}$ is birational for any b, which implies the proposition.

Now we show the above claim. By induction, we may assume that $C_{d-1} \to C_{d-1, b}$ is birational for any b. Note that $C_{d-1, b}$ is not a line since otherwise C_{d-1} is contained in a singular hyperplane section as we see above in the case of C_5, a contradiction. We investigate the image of l on \mathbb{P}^2. Recall the description of the fibers of π_{2b} (Proposition 3.2.2 (4)). If $b \not\in l$, then the image of l is a line or a point on \mathbb{P}^2. If $b \in l$, then the strict transform of l on B_b is a flopping curve. Thus C_b contains the image of the flopped curve, which is a line. We investigate the other possible irreducible components of the central fiber $C_{b, 0}$ of $C_b \to \Delta$. If $b \not\in C_{d-1} \cup l$, then the only possibility is that $C_{b, 0}$ contains the image of a flopped curve, which is a line on \mathbb{P}^2. Suppose $b \in C_{d-1} \cup l$. Let m_b' be the exceptional curve for $C_b' \to C$. Since C is a smooth surface, m_b' is a line on E_b. The curve $C_{b, 0}$ contains the strict transform m_b of m_b'. This is the only possibility of the other components of $C_{b, 0}$. Let l_b' be the strict transform of l on B_b. If $b \in l$, then by the description of $E_b \to \mathbb{P}^2$, m_b is a line since l_b' is a flopping curve. Suppose that $b \in C_{d-1} \setminus l$. If m_b' intersects a flopping curve, m_b is a line or a point. In the other case, m_b is a conic. If $b \not\in l \cup \beta_1$, then deg $C_{d-1, b} = d - 3$ by Proposition 3.2.2 (2). By $d \geq 6$, $C_{d-1, b}$ is not a conic. Thus $C_{d-1, b} = m_b$. Assume $b \in \beta_i$. Then deg $C_{d-1, b} = d - 4$. Thus, if $d \geq 7$,
then $C_{d-1,b} \neq m_b$. We show that even if $d = 6$, it holds $C_{d-1,b} \neq m_b$. By Proposition 2.4.1 (4), the flop $B_b \to B'_b$ is of type (a) in Proposition 3.2.2 (3). The strict transform m''_b of m'_b on B''_b intersects the three fibers of π_b contained in E''_b, which are the strict transforms of three lines on E_b. On the other hand, by $E'_b \cdot C''_{d-1,b} = 2$, the curve $C''_{d-1,b}$ intersects at most two fibers of π contained in E'_b. Thus it holds $C_{d-1,b} \neq m_b$.

The above investigation shows that $\mathcal{C} \to \mathcal{C}_b$ is isomorphic over a point of $C_{d-1,b}$. □

We restate the proposition in terms of the relation between C_d and multi-secant conics of C_d on B as follows:

Corollary 3.2.6. Let b be a point of B not in any bi-secant line of C_d on B. If $d \geq 5$, then there exist finitely many k-secant conics of C_d on B through b with $k \geq 2$ if $b \notin C_d$ (resp. with $k \geq 3$ if $b \in C_d$).

Proof. For a point $b \in B$ outside bi-secant lines of C_d on B, there exist a finite number of singular multi-secant conics of C_d through b since the number of lines through b is finite, and the number of lines intersecting both a line through b and C_d is also finite by Proposition 2.4.4 (3). Therefore we have only to consider smooth multi-secant conics q of C_d through b. By Proposition 3.2.2 (4), the strict transform q' of such a conic q on B'_b is a fiber of π_{gb}. If $b \notin C_d$, then q' intersects C'_b twice or more counted with multiplicities, thus by Proposition 3.2.5 the finiteness of such a q follows. We can prove the assertion in case of $b \in C_d$ similarly, thus we omit the proof. □

Remark. We refine this statement in Lemmas 4.2.12 and 5.1.3.

Lemma 3.2.7. Let l be a general uni-secant line of C and $l_b \subset \mathbb{P}^2$ the image of l by the double projection from a point b. For a general point $b \notin C$, $\deg C_b = d$ and $C_b \cup l_b$ has only simple nodes. Assume that $d \geq 3$. For a general point b of C, $\deg C_b = d - 2$ and $C_b \cup l_b$ has only simple nodes.

Proof. The claim for $\deg C_b$ follows from Propositions 3.2.2 (2) and 3.2.3. As for the singularity of $C_b \cup l_b$, the claim follows from simple dimension count. For simplicity, we only prove that for a general point $b \notin C$, the curve C_b has only simple nodes. By Proposition 2.4.2, we may assume that any multi-secant conic through b is smooth, bi-secant and intersects C simply. Let q be a smooth bi-secant conic through b. We may assume that $\mathcal{N}_{q/B} \simeq \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus 2}$. Let q' be the strict transform of q on B'_b. Let $\tilde{B}' \to B'_b$ be the blow-up along q', $E_{q'}$ the exceptional divisor and \tilde{C}'' the strict transform of C''_b. Note that $E_{q'} \simeq \mathbb{P}^1 \times \mathbb{P}^1$ since $\mathcal{N}_{q/B'_b} \simeq \mathcal{O}_{\mathbb{P}^1}^{\oplus 2}$. Then C_b has simple nodes at the image of q' if and only if the two points in $E_{q'} \cap \tilde{C}''$ does not belong to the same ruling with the opposite direction to a fiber of $E_{q'} \to q'$. Let $\tilde{B}_q \to B$ be the blow-up along q, E_q the exceptional divisor and \tilde{C} the strict transform of C. It is easy to see that a ruling of E_q with the opposite direction to a fiber of $E_q \to q$ corresponds to that of $E_{q'}$ with the opposite direction to a fiber of $E_{q'} \to q'$. Thus C_b has simple nodes at the image of q' if and only if the two points in $E_q \cap \tilde{C}$ does not belong to the same ruling with the opposite direction to a fiber of $E_q \to q$. We can show that this is the case for a general b by simple dimension count. □

Corollary 3.2.8. (1) The number of multi-secant conics of C through a general point of B is $n := \frac{(d-1)(d-2)}{2}$.

(2) The number of k-secant conics of C with $k \geq 3$ through a general point of C is $\frac{(d-3)(d-4)}{2}$.

(3) Let l be a general uni-secant line of C. Then the number of multi-secant conics of C intersecting l and passing through a general point of C is $d - 3$.

Proof. We only prove (1) since the other statement can be proved similarly.

Let $b \not\in C$ be a general point of B. Recall that, by Corollary 3.2.6, there exist only finitely many multi-secant conics of C through b. Moreover, since C_b is a nodal rational curve of degree d by Lemma 3.2.7, the number of its nodes is exactly $\frac{(d-3)(d-4)}{2}$.

As we saw in Corollary 3.2.8 (1), a general point of B gives n multi-secant conics of C through it. Conversely, we ask whether mutually intersecting n multi-secant conics of C actually pass through one point or not. The next lemma partially answer this question and it is sufficient for our purpose in the proof of Theorem 4.4.1. We remark that the case $d = 5$ is treated in Dol04 4.3.

Lemma 3.2.9. Let q_1, \ldots, q_n be mutually intersecting n distinct multi-secant conics of C such that

1. all q_i are smooth,
2. no two of q_i intersect at a point of $C \cup \cup_i \beta_i$, and
3. if three of q_i pass through a point b, then any other q_i does not intersect a line through b outside b.

Then all q_i pass through one point.

Remark. The set of n conics through a general point satisfies the conditions of the lemma.

Proof.

Step 1. Let $b \in B$ be a point such that five of q_i, say, q_1, \ldots, q_5 pass through b. Then all the q_i pass through b.

By the double projection from b, q_1, \ldots, q_5 are mapped to points p_1, \ldots, p_5 on \mathbb{P}^2. Suppose by contradiction that a smooth conic q_j does not pass through b. Let q'_j, q''_j and \tilde{q}_j be the strict transforms of q_j on B_b, B'_b and \mathbb{P}^2, and set $S := \pi_{2b}^{-1} \tilde{q}_j$. By the assumption (3), q_j does not intersect a line through b. Thus \tilde{q}_j is a smooth conic through p_1, \ldots, p_5. The conic \tilde{q}_j is unique since a conic through five points is unique. It holds that $-K_{B_b} \cdot q'_j = 4$ and $S \cdot q''_j = 4$, thus $S \simeq \mathbb{F}_2$ and q''_j is the negative section. This implies that q_j is also unique. By reordering, we may assume that $j = n$. We have the configuration such that all the conics pass through b except q_n. Denote by p_i the image of q_i ($i \neq n$). Then \tilde{q}_n and C_b intersect at p_i. By $d \geq 6$, it holds deg $C_b \geq 3$, thus $\tilde{q}_n \not\in C_b$. By the assumption (2), $b \not\in C$. Therefore \tilde{q}_n and C_b intersect at $n - 1$ singular points of C_b. Since deg $C_b \leq d$, it holds $2(n - 1) \leq 2d$, a contradiction.

Step 2. If four conics q_1, \ldots, q_4 pass through one point b, then all the conics pass through b.

By contradiction and Step 1, we may assume that all the conics except q_1, \ldots, q_4 do not pass through b. Pick up two any conics, say, q_5 and q_6, not passing through b. Considering the double projection from b as in Step 1. Denote by \tilde{q}_j ($j \geq 5$) the image of q_j on \mathbb{P}^2. By the assumption (3), q_5 and q_6 do not intersect a line through b, thus \tilde{q}_5 and \tilde{q}_6 are conics on \mathbb{P}^2. Therefore $q_5 \cap q_6$ lies on one of q_1, \ldots, q_4 since otherwise \tilde{q}_5 and \tilde{q}_6 would intersect at five points and this is a contradiction as in Step 1. Thus any two conics intersect on q_1, \ldots, q_4. Let p_i be the intersection $q_i \cap q_5$ for $i = 1, \ldots, 4$. Then q_j ($j \geq 5$) pass through one of p_i. Thus one of
We start the study of the geometry of lines. A contradiction to Corollary 2.5.3. A of curves on H. 4.1.1 and Theorem 4.2.15 for a quick view of their properties.

Curve 4.1. Construction of H. Then by Steps 1 and 2, points are different. Thus

$$q$$

Correction of H.

m points or more by the assumption (2). But 2

Construction 4.1.1. We complete the proof.

Assume by contradiction that q_1, \ldots, q_n do not pass through one point on B. If $d \geq 7$, then, by Steps 1 and 2,

$$(3.6) \quad \text{at most three of } q_i \text{'s pass through any intersection point.}$$

Let m be the number of conics in a maximal tree T of q_i's such that two conics in T pass through any intersection point. Note that T is connected since q_i's mutually intersect. The number of the intersection points of q_i's contained in T is $\frac{m(m-1)}{2}$.

By the maximality of T, a conic not belonging to T passes through one of the intersection points of conics in T. By (3.6), no two conics not belonging to T pass through one of the intersection point of conics in T. Hence it holds $\frac{m(m-1)}{2} + m \geq n$. This implies that $m \geq d - 2$ by $n = \frac{(d-1)(d-2)}{2}$. By reordering, we assume that q_1, \ldots, q_m belong to T. If $d = 6$, then we take q_1, \ldots, q_4 as in the last part of Step 2. Consider the projection $B \rightarrow \mathbb{P}^3$ from the conic q_1. Then q_2, \ldots, q_m are mapped to lines l_2, \ldots, l_m intersecting mutually on \mathbb{P}^3 and the intersection points are different. Thus l_2, \ldots, l_m span a plane, which in turn shows that q_1, \ldots, q_m span a hyperplane section H on B. Since C intersects q_i at two point or more, C intersects H at $2m$ points or more by the assumption (2). But $2m \geq 2(d-2) > d$, C must be contained in H, a contradiction to Corollary 2.5.3.

4. Lines and Conics on A

We fix a general $C := C_d$ as in the subsection 2.3. Let $f: A \rightarrow B$ be the blow-up along C. We start the study of the geometry of A. In the subsections 4.1 and 4.2, we study the families of curves on A of degree one or two with respect to the anti-canonical sheaf of A (we call them lines and conics on A respectively). The curve H_1 parameterizing lines on A and the surface H_2 parameterizing conics on A are two of the main characters in this paper. See Corollary 4.1.1 and Theorem 4.2.15 for a quick view of their properties.

4.1. Curve H_1 parameterizing marked lines.

4.1.1. Construction of H_1 and marked lines.

Set $H_1 := \varphi^{-1}C \subset \mathbb{P}$ and $M := M_d$. We begin with a few corollaries of Proposition 2.4.4.

Corollary 4.1.1. If $d \geq 2$, then H_1 is a smooth curve of genus $d-2$ with the triple cover $H_1 \rightarrow C$. In particular, if $d \geq 5$, then H_1 is a smooth non-hyperelliptic trigonal curve of genus $d-2$.

Proof. By Propositions 2.1.3 (1) and 2.4.4 (1), it holds that H_1 is smooth and the ramification for $H_1 \rightarrow C$ is simple. Since $B_\varphi \in |-K_B|$ and $d = \deg C$, we can compute $g(H_1)$ by the Hurwitz formula:

$$2g(H_1) - 2 = 3 \times (-2) + d \times 2,$$

equivalently, $g(H_1) = d - 2$.

\[\square\]
Corollary 4.1.2. The number of nodes of \(M \) is \(s := \frac{(d-2)(d-3)}{2} \), whence \(C \) has \(\frac{(d-2)(d-3)}{2} \) bi-
secant lines on \(B \).

Proof. By Proposition 2.4.4 (3), we see that \(\pi|_{\mathcal{H}_1} : \mathcal{H}_1 \to M \) is birational and \(p_0(M) = \frac{(d-1)(d-2)}{2} \).
Then by \(g(\mathcal{H}_1) = d - 2 \), the number of nodes of \(M \) is \(\frac{(d-1)(d-2)}{2} - (d - 2) = \frac{(d-2)(d-3)}{2} \).
The latter half follows since a bi-secant line of \(C \) corresponds to a node of \(M \). \(\square \)

Now we select some lines on \(B \) which we use in the sequel. Note that
\[
\mathcal{H}_1 = \{([l], t) | [l] \in M, t \in C \cap l \} \subset M \times C,
\]
and the elements of \(\mathcal{H}_1 \) deserve a name:

Definition 4.1.3. A pair of a secant line \(l \) of \(C \) on \(B \) and a point \(t \in C \cap l \) is called a marked line.

Let \((l, t) \) be a marked line. If \(C \cap l \) is one point, then \(\{t\} = C \cap l \) is uniquely determined.
For a bi-secant line \(\beta_i \) of \(C \), there are two choices of \(t \). Thus \(\mathcal{H}_1 \) parameterizes marked lines.

4.1.2. Lines on the blow-up \(A \) of \(B \) along \(C \).

We prove that each marked line corresponds to a curve of anticanonical degree 1 on the blow-up \(A \) of \(B \) along \(C \). This gives us a suitable notion of line on \(A \).

Notation 4.1.4.
(1) Let \(f : A \to B \) be the blowing up along \(C \) and \(E_C \) the \(f \)-exceptional divisor,
(2) \(\{p_{11}, p_{12}\} = C \cap \beta_i \subset B \),
(3) \(\zeta_{ij} = f^{-1}(p_{ij}) \subset E_C \subset A \), and
(4) \(\beta_i \cap \zeta_{ij} = p'_{ij} \subset E_C \subset A \),
where \(i = 1, \ldots, s \) and \(j = 1, 2 \).

Definition 4.1.5. We say that a connected curve \(l \subset A \) is a line on \(A \) if \(-K_A \cdot l = 1 \) and \(E_C \cdot l = 1 \).

We point out that since \(-K_A = f^*(-K_B) - E_C \) and \(E_C \cdot l = 1 \) then \(f(l) \) is a line on \(B \) intersecting \(C \). More precisely:

Proposition 4.1.6. A line \(l \) on \(A \) is one of the following curves on \(A \):

(i) the strict transform of a uni-secant line of \(C \) on \(B \), or
(ii) the union \(l_{ij} = \beta_i' \cup \zeta_{ij} \), where \(i = 1, \ldots, s \) and \(j = 1, 2 \).

In particular \(l \) is reduced and \(p_0(l) = 0 \).

Notation 4.1.7. For a line \(l \) on \(A \), we usually denote by \(\overline{l} \) its image on \(B \).

Corollary 4.1.8. The curve \(\mathcal{H}_1 \subset \mathbb{P} \) is the Hilbert scheme of the lines of \(A \).

Proof. Let \(\mathcal{H}'_1 \) be the Hilbert scheme of lines on \(A \), which is a locally closed subset of the Hilbert scheme of \(A \). By the obstruction calculation of the normal bundles of the components of lines on \(A \), it is easy to see that \(\mathcal{H}'_1 \) is a smooth curve. Denote by \(\mathcal{U}_1 \to \mathcal{H}'_1 \) the universal family of the lines on \(A \) and let \(\overline{\mathcal{U}}_1 \) be the image of \(\mathcal{U}_1 \) on \(B \times \mathcal{H}'_1 \) (with induced reduced structure).

Claim 4.1.9. \(\overline{\mathcal{U}} \to \mathcal{H}'_1 \) is a \(\mathbb{P}^1 \)-bundle.
Proof of the claim. Let \mathcal{L} be the pull-back of the ample generator of $\text{Pic} \ B$ by

$$U_1 \hookrightarrow A \times \mathcal{H}'_1 \to B \times \mathcal{H}'_1 \to B.$$

Since $\varphi : U_1 \to \mathcal{H}'_1$ is flat and $h^0(l, \mathcal{L}|l) = 2$ for a line l on B, $\mathcal{E} := \varphi_* \mathcal{L}$ is a locally free sheaf of rank two. $\mathbb{P}(\mathcal{E})$ is nothing but the \mathbb{P}^1-bundle contained in $B \times \mathcal{H}'_1$ whose fiber is the image of a line on A. This implies that $\mathbb{P}(\mathcal{E}) = \overline{U}$ as schemes and \overline{U} is a \mathbb{P}^1-bundle. □

By the claim, we have a natural morphism $\mathcal{H}'_1 \to \mathbb{P}^2$, whose image is M. By Proposition 4.1.6 $\mathcal{H}'_1 \to M$ is birational and surjective. Since \mathcal{H}'_1 and \mathcal{H}_1 are smooth, they are both normalizations of M, hence $\mathcal{H}'_1 \simeq \mathcal{H}_1$. □

Remark. For a bi-secant line β_i, we have two choices of marking, p_{i1} or p_{i2}. We describe which line on A corresponds to (β_i, p_{ij}). Denote by $U_1 \to \mathcal{H}_1$ the universal family of the lines on A and consider the following diagram:

$$
\begin{array}{ccc}
U_1 & \subset & A \times \mathcal{H}_1 \\
\downarrow & & \downarrow \\
\overline{U}_1 & \subset & B \times \mathcal{H}_1.
\end{array}
$$

Then $U_1 \to \overline{U}_1$ is the blow-up along $(C \times \mathcal{H}_1) \cap \overline{U}_1$, which is the union of a section of $\overline{U}_1 \to \mathcal{H}_1$ consisting markings and finite set of points $(p_{i,3-j}, [\beta_i, p_{ij}])$. Thus the marked line (β_i, p_{ij}) corresponds to the line $l_{i,3-j}$.

4.2. Surface \mathcal{H}_2 parameterizing marked conics.

Now we define a notion of conic on A. We proceed as in the case of lines, first defining the notion of marked conic.

4.2.1. Construction of \mathcal{H}_2 and marked conics.

Definition 4.2.1. A pair of a multi-secant conic q on B and a zero-dimensional subscheme $\eta \subset C$ of length two contained in $q_\mathcal{C}$ is called a marked conic.

From now on, we assume that $d \geq 3$.

Marked conics are parameterized by

$$\mathcal{H}_2' := \{(\beta, \eta) \mid \beta \in \overline{\mathcal{H}_2}, \eta \subset q_\mathcal{C}\} \subset \overline{\mathcal{H}_2} \times S^2 C$$

with reduced structure, where $\overline{\mathcal{H}_2} \subset \mathbb{P}^4$ is the locus of multi-secant conics of C on B.

By Corollary 3.2.3 and $d \neq 1$, the natural projection of $\mathcal{H}_2' \to S^2 C$ is one to one outside $[\beta_{i|C}]$ and the diagonal of $S^2 C$.

We denote by \mathcal{E}_i' the fiber of $\mathcal{H}_2' \to S^2 C$ over a $[\beta_{i|C}]$. Since B is the intersection of quadrics, any conic cannot intersect a line twice properly. Thus any conic $\supset [\beta_{i|C}]$ contains β_i. This implies that $\mathcal{E}_i' \simeq \mathbb{P}^1$, and \mathcal{E}_i' parameterizes marked conics of the form

$$\{(\beta_i \cup \alpha, [\beta_{i|C}]) \mid \alpha \text{ is a line such that } \alpha \cap \beta_i \neq \emptyset\}.$$

Over the diagonal of $S^2 C$, $\mathcal{H}_2' \to S^2 C$ is finite since for $t \in C$, there exist a finite number of reducible conics with t as a singular point or conics tangent to C at t.

Hence \mathcal{H}_2' is the union of the unique two-dimensional component, which dominates $S^2 C$, and possibly lower dimensional components mapped into the diagonal of $S^2 C$ or \mathcal{E}_i'. Note that
$\mathcal{H}'_2 \rightarrow \overline{\mathcal{H}}_2$ is finite since choices of markings of a multi-secant conic of C is finitely many by $d \geq 3$.

Claim 4.2.2. e'_i is contained in the unique two-dimensional component of \mathcal{H}'_2.

Proof. We have only to prove that $\overline{\mathcal{H}}_2$ is two-dimensional near the generic point of the image of e'_i since $\mathcal{H}'_2 \rightarrow \overline{\mathcal{H}}_2$ is one to one near the generic point of the image of e'_i. Let $\mathcal{V}_2 \rightarrow \mathcal{H}'_2 \cong \mathbb{P}^4$ be the universal family of conics on B and $\overline{\mathcal{H}}'_2$ the inverse image of $C \times C$ by $\mathcal{V}_2 \times_{\mathbb{P}^4} \mathcal{V}_2 \rightarrow B \times B$. Since the morphism $\mathcal{V}_2 \times_{\mathbb{P}^4} \mathcal{V}_2 \rightarrow \mathcal{V}_2 \rightarrow \mathbb{P}^4$ is flat, $\mathcal{V}_2 \times_{\mathbb{P}^4} \mathcal{V}_2$ is purely six-dimensional. Thus any component of $\overline{\mathcal{H}}'_2$ has dimension greater than or equal to two. Though the inverse image of the diagonal of $C \times C$ is three-dimensional, any other component of $\overline{\mathcal{H}}'_2$ is at most two-dimensional by a similar investigation to \mathcal{H}'_2. Thus $\overline{\mathcal{H}}_2$ is two-dimensional near the generic point of the image of e'_i since $\overline{\mathcal{H}}_2$ is the image of the two-dimensional part of $\overline{\mathcal{H}}'_2$ by $\mathcal{V}_2 \times_{\mathbb{P}^4} \mathcal{V}_2 \rightarrow \mathbb{P}^4$ near the generic point of the image of e'_i. \(\square\)

Notation 4.2.3. Let \mathcal{H}_2 be the normalization of the unique two-dimensional component of \mathcal{H}'_2 and $\overline{\mathcal{H}}_2 \subset \overline{\mathcal{H}}_2$ the image of \mathcal{H}_2. Denote by η the natural morphism $\mathcal{H}_2 \rightarrow S^2C$. Set

$$c_i := [\beta_i|C] \in S^2C \cong \mathbb{P}^2,$$

and

$$e_i := \eta^{-1}(c_i),$$

where $i = 1, \ldots, s$.

By the above consideration, $\eta: \mathcal{H}_2 \rightarrow S^2C$ is isomorphic outside $[\beta_i|C]$ by the Zariski main theorem, and $\mathcal{H}_2 \rightarrow \overline{\mathcal{H}}_2$ is the normalization. Thus we see that \mathcal{H}_2 parameterizes marked conics in one to one way outside the inverse image of c_i. We need to understand the inverse image by η of the diagonal.

Claim 4.2.4. Assume that $([q], [2b]) \in \mathcal{H}_2$ for $b \in C$ and a conic q. Then

(1) q is reduced,

(2) if q is smooth at b, then q is tangent to C at b, and

(3) if q is singular at b, then the strict transform of q is connected on A. Moreover, $b \not\in \beta_i$ nor B_φ.

Proof. We use the double projection from b. By Proposition [3.2.2] (4) and a degeneration argument, q corresponds to the fiber of π_{2b} through the point t' in $C''_b \cap E'_b$ coming from $t := C'_b \cap E_b$.

(1) Assume by contradiction that q is non-reduced. By Proposition [2.2.1] q is a multiple of a special line l. By Proposition [2.4.1] (4), l is a uni-secant line of C. Let m be the other line through b (by generality of C, we have $l \neq m$). Let l' and m' be the strict transforms of l and m on B_b respectively. By Proposition [3.2.2] (4), the fiber of π_{2b} through t' is the strict transform of the line in E_b joining $l' \cap E_b$ and $m' \cap E_b$. Hence by the assumption, $l' \cap E_b$, $m' \cap E_b$ and $C'_b \cap E_b$ are collinear. By dimension count similar to the proof of Proposition [2.4.1] we can prove that a general C does not satisfy this condition.

(2) This follows from the previous discussion.

(3) Set $q = l_1 \cup l_2$, where l_1 and l_2 are the irreducible components of q, and let l'_i be the strict transform of l_i on B_b. By (1), it holds $l_1 \neq l_2$. Then the fiber of π_{2b} corresponding to q is the
strict transform of the line on \(E_b \) through \(E_b \cap l'_1 \) and \(E_b \cap l'_2 \). Note that \(A \) is obtained from \(B_b \) by blow-up \(B_b \) along \(C'_b \) and then contracting the strict transform of \(E_b \). Thus the former half of the assertion follows. The latter half follows again by simple dimension count. \(\square \)

4.2.2. Conics on \(A \).

Definition 4.2.5. We say that a connected and reduced curve \(q \subset A \) is a conic on \(A \) if \(-K_A \cdot q = 2\) and \(E_C \cdot q = 2 \).

Using this definition, we can classify conics on \(A \) similarly to Proposition 4.1.6.

Proposition 4.2.6. Let \(q \) be a conic on \(A \). Then \(\overline{q} := f(q) \subset B \) is a multi-secant conic of \(C \). Moreover one of the following holds:

(a) \(\overline{q} \) is smooth at \(\overline{q} \cap C \), \(q \) is the union of the strict transform \(q' \) of \(\overline{q} \) and \(k - 2 \) distinct fibers \(\zeta_1, \ldots, \zeta_{k-2} \) of \(E_C \) such that \(\zeta_i \cap q' \neq \emptyset \),

(b) \(\overline{q} \) is the union of the two uni-secant lines \(\overline{l} \) and \(\overline{m} \) such that \(C \cap \overline{l} \cap \overline{m} \neq \emptyset \). \(q \) is the union of the strict transforms \(l \) and \(m \) of \(\overline{l} \) and \(\overline{m} \) respectively (we assume that \(l \cap m \neq \emptyset \)), or

(c) \(\overline{q} \) is the union of \(\beta_i \) and a line \(\overline{r} \) through a \(p_{ij} \). \(q \) is the union of the fiber \(\zeta_{ij} \) over \(p_{ij} \) and the strict transforms \(\beta'_i \) and \(r' \) of \(\beta_i \) and \(\overline{r} \) respectively.

Notation 4.2.7. We usually denote by \(\overline{q} \subset B \) the image of a conic \(q \) on \(A \).

Let \(\mathcal{H}_2^A \) be the normalization of the two-dimensional part of the Hilbert scheme of conics on \(A \), which is a locally closed subset of the Hilbert scheme of \(A \). Let \(\mu : U_2 \to \mathcal{H}_2^A \) be the pull-back of the universal family of conics on \(A \).

Lemma 4.2.8. Let \(\overline{U}_2 \) be the image of \(U_2 \) on \(B \times \mathcal{H}_2^A \) (with induced reduced structure) then \(\overline{U}_2 \to \mathcal{H}_2^A \) is a conic bundle.

Proof. The proof is similar to that of Claim 4.1.9.

Let \(\mathcal{L} \) be the pull-back of the ample generator of Pic \(B \) by

\[
U_2 \hookrightarrow A \times \mathcal{H}_2^A \to B \times \mathcal{H}_2^A \to B.
\]

Since \(\mu : U_2 \to \mathcal{H}_2^A \) is flat and \(h^0(q, \mathcal{L}|_q) = 3 \) for a conic \(q \) on \(A \) (recall that \(q \) is reduced), then \(\mathcal{E} := \mu_* \mathcal{L} \) is a locally free sheaf of rank 3. Letting \(\mathbb{P}^6 = \langle B \rangle \), \(\mathbb{P}(\mathcal{E}) \) is the \(\mathbb{P}^2 \)-bundle contained in \(\mathbb{P}^6 \times \mathcal{H}_2^A \) whose fiber is the plane spanned by the image of a conic on \(A \). Let \(Q := (B \times \mathcal{H}_2^A) \cap \mathbb{P}(\mathcal{E}) \), where the intersection is taken in \(\mathbb{P}^6 \times \mathcal{H}_2^A \). A scheme theoretic fiber of \(Q \to \mathcal{H}_2^A \) is the image of a conic of \(A \) since \(B \) is the intersection of quadrics. Then \(Q = \overline{U}_2 \) as schemes and \(\overline{U}_2 \) is a conic bundle. \(\square \)

Proposition 4.2.9. There exists a natural bijection between the set of marked conics belonging to \(\mathcal{H}_2 \) and the set of conics on \(A \). Moreover, the two surfaces \(\mathcal{H}_2^A \) and \(\mathcal{H}_2 \) are isomorphic.

Proof. The first assertion follows from Claim 4.2.4 (1) and (3), and Proposition 4.2.6.

By Lemma 4.2.8, there exists a natural morphism \(\overline{\nu} : \mathcal{H}_2^A \to \overline{\mathcal{H}}_2 \). By Proposition 4.2.6, \(\overline{\nu} \) is finite and birational, hence \(\overline{\nu} \) lifts to the morphism \(\nu : \mathcal{H}_2^A \to \mathcal{H}_2 \) since \(\mathcal{H}_2 \to \overline{\mathcal{H}}_2 \) is the normalization. By the Zariski main theorem, \(\nu \) is an inclusion. By Claim 4.2.4 (1) and (3), and Proposition 4.2.6, \(\nu \) is also surjective. \(\square \)
By Proposition 4.2.9 we can pass freely from conics on A, that is elements of \mathcal{H}_2^A to marked conics and vice-versa according to the kind of argument we will need. In particular we can speak of the universal family $\mu: \mathcal{U}_2 \to \mathcal{H}_2$ of marked conics meaning $\mathcal{U}_2 := \mathcal{U}_2^A$ and \mathcal{H}_2^A identified to \mathcal{H}_2 via ι.

Corollary 4.2.10. The Hilbert scheme of conics on A is an irreducible surface (and \mathcal{H}_2 is the normalization). The normalization is injective, namely, \mathcal{H}_2 parameterizes conics on A in one to one way.

Proof. By Proposition 4.2.6, the image of \mathcal{H}_2 in the Hilbert scheme of A parameterizes all the conics on A, thus the first part follows.

For the second part, we have already seen that \mathcal{H}_2 parameterizes marked conics belonging to \mathcal{H}_2 in one to one way outside $\cup_i e_i$. Thus, by Proposition 4.2.9 \mathcal{H}_2 parameterizes conics on A in one to one way outside $\cup_i e_i$. Let α be a general line intersecting β_i, and α' the strict transform of α on A. By easy obstruction calculation, we see that the Hilbert scheme of conics on A is smooth at $[\beta_i \cup \alpha']$. Thus general points of e_i also parameterizes conics on A in one to one way. Then, however, since $e'_i \simeq \mathbb{P}^1$, where e'_i is the inverse image of $[\beta_i|C]$ by $\mathcal{H}_2' \to S^2C$, it holds that $e_i \simeq e'_i \simeq \mathbb{P}^1$ ($\mathcal{H}_2 \to S^2C$ has only connected fibers). This implies the assertion. \(\Box\)

In subsection 4.2.5 we complete the description of \mathcal{H}_2. In 4.2.3 and 4.2.4, we give some preliminary results for this purpose.

4.2.3. Quasi-finiteness of $\psi: \mathcal{U}_2 \to A$.

Notation 4.2.11. For a point $b \in C$, set

$$L_b := \{[q] \in \mathcal{H}_2 | \exists b' \neq b, f(q) \cap C = \{b, b'\}\}.$$

By Corollary 3.2.3, $\eta(L_b)$ is a line in $S^2C \simeq \mathbb{P}^2$.

Let $\psi: \mathcal{U}_2 \to A$ be the morphism obtained via the universal family $\mu: \mathcal{U}_2 \to \mathcal{H}_2$. The following result refines Proposition 3.2.5. Here we need this result technically for the discussion in 4.2.4 but this is important for the proof of the main result and is refined again in 5.1 (Proposition 5.1.3).

From now on in this paper, we assume that $d \geq 5$.

Proposition 4.2.12. The morphism ψ is finite of degree $n = \frac{(d-1)(d-2)}{2}$ and flat outside $\cup_{i=1}^s \beta'_i$.

Proof. Let $a \in A \setminus \cup_{i=1}^s \beta'_i$ and set $b := f(a)$. If $b \not\in C$, then the finiteness of ψ over a follows from Corollary 3.2.6. Moreover, by Corollary 3.2.8, the number of conics through a general a is n. Thus $\deg \psi = n$. We will prove that ψ is finite over $a \in E_C \setminus \cup_{i=1}^s \beta'_i$. Once we prove this, the assertion follows. Indeed, \mathcal{U}_2 is Cohen-Macaulay since \mathcal{H}_2 is smooth and any fiber of $\mathcal{U}_2 \to \mathcal{H}_2$ is reduced, thus ψ is flat.

Let $a \in E_C \setminus \cup_{i=1}^s \beta'_i$. The assertion is equivalent to that only finitely many conics belonging to L_b pass through a. If $b \not\in \cup_{i=1}^s \beta_i$, then L_b is irreducible. If $b \in \cup_{i=1}^s \beta_i$, then $L_b = L'_b \cup e_i$, where L'_b is the strict transform of $\eta(L_b)$ whence is irreducible. Note that almost all the conics belonging to e_i does not pass through a $b \not\in \cup_{i=1}^s \beta'_i$. Let $S_b \subset A$ be the locus swept by the conics of the family L_b if $b \not\in \cup_{i=1}^s \beta_i$, or the locus swept by the conics of the family L'_b if $b \in \cup_{i=1}^s \beta_i$. Then S_b is irreducible. Let $\overline{S}_b := f(S_b)$, \overline{S}'_b and \overline{S}''_b the strict transforms of \overline{S}_b on B_b and B'_b.
respective. Then \(S'_b = \pi_{2b'} S_b \). Let \(d_b := \deg C_b \). By Proposition \[3.2.2\] (2), \(d_b = d - 2 \) if \(b \not\in \cup^n {i=1} \beta_i \), or \(d = 3 \) if \(b \in \cup^n {i=1} \beta_i \). Since \(S'_b \sim d_b L \) and \(L = H - 2E_b \), we have \(S'_b|E_b \) is a curve of degree \(2d_b \) in \(E_b \simeq P^2 \).

Since \(A \) is obtained from \(B_b \) by blowing up \(C'_b \) and then contracting the strict transform of \(E_b \), a point \(a \) over \(b \) corresponds to a line \(l_a \) in \(E_b \) through \(t := E_b \cap C'_b \). The image on \(B_b \) of the strict transform of a conic on \(A \) through a intersects \(E_b \) at a point of \(l_a \cap S'_b \). If \(C''_b \) does not intersect fibers of \(\pi_{2b} \) contained in \(E'_b \), then \(S''_b|E'_b \) is irreducible. Thus no \(l_a \) is contained in \(S''_b|E'_b \) and we are done. Assume that \(C''_b \) intersects a fiber \(l' \) of \(\pi_{2b} \) contained in \(E'_b \). This is a situation as in Claim \[4.2.4\] (3), hence \(b \not\in B_\varphi \) nor \(b \not\in \cup^n {i=1} \beta_i \) for a general \(C \). Since \(L_b \) is irreducible by \(b \not\in \cup^n {i=1} \beta_i \), it suffices to prove the finiteness and nonemptyness of the set of conics through a general point \(a \) over \(b \). Equivalently, we have only to show that a general \(l_a \) intersects \(S''_b|E'_b \) outside \(t \). Since \(l' \) intersects \(C''_b \) simply at one point, \(C_b \) is smooth at the image \(t' \) of \(l' \) on \(\mathbb{P}^2 \). Thus \(S''_b|E'_b = C''_b + l \), where \(C''_b \) and \(l \) are the strict transforms of \(C_b \) and \(l' \). Note that \(C''_b \) is smooth at \(t \) and \(\deg C''_b = 2d_b - 1 = 2d - 5 \geq 5 \) by \(d \geq 5 \). Thus a general \(l_a \) intersect \(C''_b \) outside \(t \).

Remark. Though we do not need it later, we describe the fiber of \(\psi \) over a general point \(a \in C \setminus \cup^n {i=1} \beta_i \) for reader’s convenience.

Set \(b := f(a) \). As in the proof of Proposition \[4.2.12\] a point \(a \) over \(b \) corresponds to a line \(l_a \) in \(E_b \) passing through \(E_b \cap C'_b \). By Lemma \[3.2.7\] it holds that \(\deg C_b = d - 2 \) and \(C_b \) has \(\frac{(d - 3)(d - 4)}{2} \) simple nodes for a general \(b \in C \). This means that \(\frac{(d - 3)(d - 4)}{2} \) tri-secant conics pass through \(b \). By Proposition \[4.2.6\] corresponding to a tri-secant conic \(\mathfrak{q} \), there is a unique conic \(q \) on \(A \) containing the fiber of \(E_C \) over \(b \) and such a conic on \(A \) contains \(a \). Thus we obtain \(\frac{(d - 3)(d - 4)}{2} \) conics through \(a \). By definition of \(L_b \), these conics do not belong to \(L_b \).

We need more \(n - \frac{(d - 3)(d - 4)}{2} = 2d - 5 \) conics through \(a \). We show that there exist \(2(d - 2) - 1 \) conics through \(a \) on \(A \) coming from the family parameterized by \(L_b \). We use the notation of the proof of Proposition \[4.2.12\]. For a general \(b \in C \), \(C'_b \) does not intersect fibers of \(\pi_{2b} \) contained in \(E'_b \). Thus \(S'_b|E'_b \) is an irreducible curve of degree \(2(d - 2) \) on \(E_b \). Thus there are \(2(d - 2) \) intersection points of \(S'_b|E'_b \) and \(l_a \). Among those, the intersection point \(C'_b \cap E_b \) does not correspond to a conic on \(A \) through \(a \) since it comes from the tangent of \(C \). Thus we have \(2(d - 2) - 1 \) conics as desired.

4.2.4. Intersection of lines and conics on \(A \).

To understand better \(\eta: \mathcal{H}_2 \rightarrow \mathbb{P}^2 \) we need to find special loci inside \(\mathcal{H}_2 \). A natural step is to study the locus of conics which intersect a fixed line. This locus turn out to be a good divisor of \(\mathcal{H}_2 \).

Let \(U_1' \subset U_2 \times \mathcal{H}_1 \) be the pull-back of \(U_1 \) via the following diagram:

\[(4.1) \]

\[
\begin{array}{ccc}
U_1' & \subset & U_2 \times \mathcal{H}_1 \\
\downarrow & & \downarrow \\
\mathcal{D}_1 & \subset & \mathcal{H}_2 \times \mathcal{H}_1 \\
& \longrightarrow & \mathcal{H}_1,
\end{array}
\]

where \(\mathcal{D}_1 \) is the image of \(U_1' \) on \(\mathcal{H}_2 \times \mathcal{H}_1 \).
By definition
\[\hat{D}_1 = \{ ([q], [l]) \mid q \cap l \neq \emptyset \} \subset H_2 \times H_1. \]

First we need to know which component of \(\hat{D}_1 \) is divisorial or dominates \(H_1 \). For this purpose, we study mutual intersection of a conic and a line in special cases. Let \(F \subset H_2 \times H_1 \) be the image in \(H_2 \times H_1 \) of the inverse image of \(((\cup \beta'_i) \times H_1) \cap U_1 \); that is
\[F := \{ ([q], [l]) \mid q \cap \beta'_i \cap l \neq \emptyset \}. \]

A point \(([q], [l]) \in F \) iff i) \(l = l_{ij} := \beta'_i \cup \zeta_{ij} \) and \(q \cap \beta'_i \neq \emptyset \) or ii) \(l \neq l_{ij} \), and \(q \cap \beta'_i \cap l \neq \emptyset \). For every \(i = 1, \ldots, s, j = 1, 2 \) the family of those \(([q], [l]) \) which satisfies i) or ii) has dimension one and clearly does not dominate \(H_1 \).

Corollary 4.2.13. Any component of \(\hat{D}_1 \) which is not contained in \(F \) dominates \(H_1 \). Moreover, any non-divisorial component of \(\hat{D}_1 \) outside \(F \) (if it exists) is a one-dimensional component whose generic point parameterizes reducible conics, namely, a one-dimensional component of
\[\{ ([q], [l]) \mid l \subset q \}. \]

Remark. Here we leave the possibility that a one-dimensional component whose generic point parameterizes reducible conics is contained in a divisorial component of \(\hat{D}_1 \). We, however, prove that this is not the case in Corollary 4.2.17. Hence, finally, the fiber of \(\hat{D}_1 \to H_1 \) over a general \([l] \in H_1 \) parameterizes conics which properly intersect \(l \).

Proof. By Proposition 4.2.12, \(U_2 \to A \) is finite and flat outside \(\cup \beta'_i \). Then \(U_2 \times H_1 \to A \times H_1 \) is flat outside \((\cup \beta'_i) \times H_1 \). By base change, \(U'_1 \to U_1 \) is flat and finite outside \((\cup \beta'_i) \times H_1 \cap U_1 \). Every irreducible component of \(U'_1 \) which is not mapped to \((\cup \beta'_i) \times H_1 \cap U_1 \) is two-dimensional, and dominates \(U_1 \), hence dominates \(H_1 \). Therefore any component of \(\hat{D}_1 \) which is not contained in \(F \) dominates \(H_1 \).

We find a possible non-divisorial component of \(\hat{D}_1 \) outside \(F \). Let \(\gamma \subset U'_1 \) be a curve mapped to a point, say, \(([q], [l]) \) on \(H_2 \times H_1 \). The image of \(\gamma \) on \(A \) is an irreducible component of \(q \), say, \(q_1 \). The image of \(\gamma \) on \(U_1 \) is \(q_1 \times [l] \), thus \(q_1 \) is also an irreducible component of \(l \). We have the following three possibilities:

1. \(l \) is irreducible, hence \(q_1 = l \) and \(q = l \cup m \), where \(m \) is another line. Such \(([q], [l]) \) form the one-dimensional family of reducible conics,
2. \(l = l_{ij} \) and \(\beta'_i \subset q \). Namely \([q] \in e_i \), or \(q \supset \beta'_i \cup \alpha \cup \zeta_{ik} \), where \(\alpha \) is the strict transform of a line on \(B \) intersecting \(\beta_i \) and \(C \) outside \(\beta_i \cap C \), or
3. \(l = l_{ij} \) and \(\zeta_{ij} \subset q \) and \(f(q) \) is a tri- or quadri-secant conic of \(C \) such that \(p_{ij} \in f(q) \).

Thus we have the second assertion. \(\square \)

Notation 4.2.14. Let \(D_1 \subset H_2 \times H_1 \) be the divisorial part of \(\hat{D}_1 \). Since \(H_1 \) is a smooth curve \(D_1 \to H_1 \) is flat. Let \(D_1 \) be the fiber of \(D_1 \to H_1 \) over \([l] \in H_1 \). Clearly we can write \(D_1 \hookrightarrow H_2 \).

4.2.5. Description of \(H_2 \).

Now we reach the precise description of \(H_2 \).

Theorem 4.2.15. (1) The morphism \(\eta: H_2 \to \mathbb{P}^2 \) is the blow-up at \(c_1, \ldots, c_s \) and \(e_i \) are \(\eta \)-exceptional curves. It holds:
\[D_1 \sim (d - 3)h - \sum_{i=1}^{s} e_i, \]
where h is the strict transform of a general line on \mathbb{P}^2.

\begin{equation}
(2) \quad h^1(\mathcal{H}_2, \mathcal{O}_{\mathcal{H}_2}((d - 4)h - \sum_{i=1}^{s} e_i)) = 0.
\end{equation}

(3) $|D_l|$ is base point free. In case of $d = 5$, the image of $\Phi|_{D_l}$ is \mathbb{P}^2. In case of $d \geq 6$, D_l is very ample and $|D_l|$ embeds \mathcal{H}_2 into \mathbb{P}^{d-3}.

Here we use the dual notation \mathbb{P}^{d-3} for later convenience.

(4) If $d \geq 6$, then $\mathcal{H}_2 \subset \mathbb{P}^{d-3}$ is projectively Cohen-Macaulay, equivalently,

\begin{equation}
\begin{aligned}
(3) \quad h^i(\mathbb{P}^{d-3}, \mathcal{I}_{\mathcal{H}_2}(j)) = 0 & \quad \text{for } i = 1, 2 \text{ and } j \in \mathbb{Z}, \\
\end{aligned}
\end{equation}

where $\mathcal{I}_{\mathcal{H}_2}$ is the ideal sheaf of \mathcal{H}_2 in \mathbb{P}^{d-3}. Moreover, \mathcal{H}_2 is the intersection of cubics.

Remark. If $d \geq 6$, then $\mathcal{H}_2 \subset \mathbb{P}^{d-3}$ is so called the White surface (see [Whi21] and [Gim89]). In [Man01], the White surface attains the maximal degree among projectively Cohen-Macaulay rational surfaces in a fixed projective space.

Proof. (1) First we compute the intersection number $D_l \cdot L_b$ for general l and b (this intersection number will be well-defined since the intersection points of D_l and L_b are contained in the smooth locus of \mathcal{H}_2). We prove that D_l and L_b intersect simply. Indeed, let $\pi_C : C \times C \to S^2C$ be the natural projection and L_b a ruling of $C \times C \to C$ in one fixed direction such that $\pi_C(L_b) = \eta(L_b)$. By applying the Bertini theorem to $|L_b|$, we see that $\pi_C^*\eta(D_l)$ and L_b intersect simply for a general $b \in C$ whence $\eta(D_l)$ intersects $\eta(L_b)$ simply since π_C is etale at $\pi_C^*\eta(D_l) \cap L_b$. Then D_l intersects L_b simply since η is isomorphic at $D_l \cap L_b$. Thus we have only to count the number of points in $D_l \cap L_b$, which is $d - 3$ by Corollary 3.2.8 (3). Now we see $D_l \cdot L_b = d - 3$ whence $\eta(D_l)$ is a curve of degree $d - 3$.

Second, we compute the intersection number $D_{l_1} \cdot D_{l_2}$ for two general lines l_1 and l_2 on A. The images $\overline{l}_1 := f(l_1)$ and $\overline{l}_2 := f(l_2)$ be two general secant lines of C such that $\overline{l}_1 \cap \overline{l}_2 = \emptyset$. By Lemma 3.1.2, $\#(D_{l_1} \cap D_{l_2}) = \frac{(d - 3)(d - 4)}{2}$. This immediately gives for the intersection product $D_{l_1} \cdot D_{l_2} \geq \frac{(d - 3)(d - 4)}{2}$. Unfortunately, we cannot show the intersection is simple apriori so we need some argument. On the other hand, $D_l \cap e_i \neq \emptyset$ for a general l since $D_l \cap e_i$ contains the point corresponding to a marked conic $(\beta_i \cup \alpha, \beta_{\iota(C)})$, where α is the unique line intersecting β_i and l. Moreover, for two general l_1 and l_2, $D_{l_1} \cap D_{l_2} \cap e_i = \emptyset$, and $D_{l_1} \cap e_i$ and $D_{l_2} \cap e_i$ are contained in the smooth locus of \mathcal{H}_2. Thus, by taking the minimal resolution of \mathcal{H}_2 near e_i if necessary, we can see that $D_{l_1} \cdot D_{l_2} \leq (d - 3)^2 - s = \frac{(d - 3)(d - 4)}{2}$. Therefore $D_{l_1} \cdot D_{l_2} = \frac{(d - 3)(d - 4)}{2}$. Moreover $e_i^2 = -1$ and since $e_i \cap e_j = \emptyset$ we obtain that $\eta : \mathcal{H}_2 \to \mathbb{P}^2$ is the blow-up at e_1, \ldots, e_s. Consequently, $D_l \sim (d - 3)h - \sum e_i$ for a general $[l] \in \mathcal{H}_1$, and, by the flatness of $\mathcal{D}_1 \to \mathcal{H}_1$, that holds for any $[l] \in \mathcal{H}_1$.

(2) Let $L'_{p_{i,j}} = L_{p_{i,j}} - e_i$ (note that $e_i \subset L_{p_{i,j}}$). We see that $L'_{p_{i,j}} \subset D_{t_{i,j}}$ and $D_{t_{i,i}} - L'_{p_{i,1}} = D_{t_{i,2}} - L'_{p_{i,2}}$, which we denote by $D_{t_{i}i}$. Note that

\begin{equation}
D_{t_{i}i} \sim (d - 4)h - \sum_{k \neq i} e_k.
\end{equation}
It is easy to see that D_{β_i} have the following properties:

\begin{align}
(4.2) && D_{\beta_i} \cap e_i = \emptyset. \\
(4.3) && D_{\beta_i} \cap D_{\beta_j} \cap D_{\beta_k} = \emptyset.
\end{align}

We only prove (4.2). Since $D_{\beta_i} \cap e_i \neq \emptyset$ would imply that e_i is a component of D_{β_i}, it suffices to prove that, for a general l, $D_{\beta_i} \cap D_l$ does not contain a point of e_i. By Lemma 3.1.3, $D_{\beta_i} \cap D_l$ contains $\frac{(d-4) (d-5)}{2}$ points corresponding to bi-secant conics intersecting β_i and l except conics containing β_i. On the other hand, we have $D_l \cdot D_{\beta_i} = \frac{(d-4) (d-5)}{2}$, thus the conics we count in Lemma 3.1.3 correspond to all the intersection of $D_{\beta_i} \cap D_l$. Consequently, $D_{\beta_i} \cap D_l$ does not contain a point of e_i.

By (4.2) and the trivial equality

$$
(d-4) h - \sum_{i \geq k+1} e_i = D_{\beta_k} + e_1 + \cdots + e_{k-1},
$$

we obtain $e_k \not\in \text{Bs}|(d-4) h - \sum_{i \geq k+1} e_i|$. By Lemma 3.1.3, $D_{\beta_i} \cap D_l$ contains $\frac{(d-4) (d-5)}{2}$ points corresponding to bi-secant conics intersecting β_i and l except conics containing β_i. On the other hand, we have $D_l \cdot D_{\beta_i} = \frac{(d-4) (d-5)}{2}$, thus the conics we count in Lemma 3.1.3 correspond to all the intersection of $D_{\beta_i} \cap D_l$. Consequently, $D_{\beta_i} \cap D_l$ does not contain a point of e_i.

$$
H^0(\mathcal{O}_2, (d-4) h - \sum_{i \geq k+1} e_i) \to H^0(\mathcal{O}_2, e_k)
$$

is surjective. Hence by the exact sequence

$$
0 \to \mathcal{O}_2((d-4) h - \sum_{i \geq k} e_i) \to \mathcal{O}_2((d-4) h - \sum_{i \geq k+1} e_i) \to \mathcal{O}_e \to 0,
$$

we have $H^1(\mathcal{O}_2, ((d-4) h - \sum_{i=1} e_i)) \simeq H^1(\mathcal{O}_2, \mathcal{O}_2((d-4) h))$. Since it is easy to see that $h^1(\mathcal{O}_2, \mathcal{O}_2((d-4) h)) = 0$, we have (2).

(3) Since no conic on A intersects all the line on A, $|D_l|$ has no base point. In case $d = 5$, the image of $\Phi|D_l|$ is \mathbb{P}^2 by $(D_l)^2 = 1$.

Assuming $d \geq 6$, we prove that D_l is very ample. By (2) and [DGSS, Theorem 3.1], it suffices to prove that

$$
h^0(\mathcal{O}_2, (h - \sum_{j=1}^{d-3} e_{i_j})) = 0
$$

for any set of $d-3$ exceptional curves $e_{i_1}, \ldots, e_{i_{d-3}}$. Assume by contradiction that there exists an effective divisor $L \in |h - \sum_{j=1}^{d-3} e_{i_j}|$ for a set of $d-3$ exceptional curves $e_{i_1}, \ldots, e_{i_{d-3}}$.

By $\frac{(d-2)(d-3)}{2} - (d-3) \geq 3$, we find at least three e_i such that $i \not\in \{j_1, \ldots, j_{d-3}\}$. For an $i \not\in \{j_1, \ldots, j_{d-3}\}$, noting $D_l \sim D_{\beta_i} + h - e_i$, $D_l \cdot L = 0$, and $L \cdot (h - e_i) > 0$, we have $L \subset D_{\beta_i}$. This contradicts (4.3) since the number of i such that $i \not\in \{j_1, \ldots, j_{d-3}\}$ is at least 3.

We show that $h^0(\mathcal{O}_2(D_l)) = d - 2$. By the Riemann-Roch theorem, $\chi(\mathcal{O}_2(D_l)) = d - 2$. Since $h^2(\mathcal{O}_2, \mathcal{O}_2(D_l)) = h^0(\mathcal{O}_2, \mathcal{O}_2(-D_l + K_{\mathbb{P}^2})) = 0$, we see that $h^0(\mathcal{O}_2, \mathcal{O}_2(D_l)) = d - 2$ is equivalent to $h^1(\mathcal{O}_2, \mathcal{O}_2(D_l)) = 0$. Since $|D_l|$ has no base point, so is $|(d-3) h - \sum_{i \geq k+1} e_i|$. Thus the proof that $h^1(\mathcal{O}_2, \mathcal{O}_2(D_l)) = 0$ is almost the same as the above one showing (2) and we omit it.

(4) follows from [Gim89, Proposition 1.1].
Corollary 4.2.16. \(H^0(\mathcal{H}_2, \mathcal{O}_{\mathcal{H}_2}(i)) \simeq H^0(\mathbb{P}^{d-3}, \mathcal{O}_{\mathbb{P}^{d-3}}(i))\) for \(i = 1, 2\).

Proof. The assertion follows from Theorem 4.2.15 (4).

Corollary 4.2.17. For a general \([l] \in \mathcal{H}_1\), \(D_l\) does not contain any point corresponding to the line pairs \(l \cup m\) with \([m] \in \mathcal{H}_1\), and hence \(D_l\) parameterizes all conics which properly intersect \(l\).

Proof. Fix \([m] \in \mathcal{H}_1\) such that \(l \cup m\) is a line pair. If \((\overline{m}, b)\) is the marked line given by \(m\), then we have \(d - 2\) line pairs \(l \cup m, l_1 \cup m, \ldots, l_{d-3} \cup m\). Since \(L_0 \sim h\) then \(h \cdot D_l = d - 3\) and definitely \([l_1 \cup m], \ldots, [l_{d-3} \cup m] \in D_l\). Thus \([l \cup m] \notin D_l\).

5. VARIETIES OF POWER SUMS FOR SPECIAL QUARTICS \(F_4\)

In Proposition 4.2.12 we have seen that \(\psi: \mathcal{U}_2 \to A\) is finite and flat outside \(\cup_{i=1}^s \beta_i\). We can modify the morphism \(\psi: \mathcal{U}_2 \to A\) to obtain a finite one. See Proposition 5.1.3 which is the goal of the subsection 5.1.

5.1. Finiteness of \(\tilde{\psi}: \tilde{\mathcal{U}}_2 \to \tilde{A}\)

Let \(\rho: \tilde{A} \to A\) be the blow-up along \(\cup_{i=1}^s \beta_i\). We add the following piece of notation:

Notation 5.1.1. (1) \(E_i := \rho^{-1}(\beta_i)\). By Lemma 3.1.4 \(E_i \simeq \mathbb{P}^1 \times \mathbb{P}^1\), (2) \(\tilde{E}_C := \) the strict transform of \(E_C\), and (3) \(\tilde{\eta}_{ij}\) := the strict transform of the fiber \(\eta_{ij}\) of \(E_C\) over \(p_{ij} \in C \cap \beta_i\), where \(i = 1, \ldots, s\) and \(j = 1, 2\).

The domain of the finite morphism is \(\tilde{\mathcal{U}}_2 := \mathcal{U}_2 \times_A \tilde{A}\); in other words, \(\tilde{\mathcal{U}}_2\) is the blow-up of \(\mathcal{U}_2\) along \(\Gamma := \mathcal{U}_2 \cap (\cup_{i=1}^s \beta_i \times \mathcal{H}_2)\). We obtain that the natural morphism \(\tilde{\mathcal{U}}_2 \to \tilde{A}\) is finite after a local analysis of the morphism \(\mathcal{U}_2 \to A\) in the neighborhood of \(\Gamma\).

It is easy to describe \(\Gamma\) set-theoretically. Note that, by Proposition 2.4.4 (5), there are \(d - 4\) lines \(\alpha_{i1}, \ldots, \alpha_{id-4}\) distinct from \(\beta_i\) and intersecting both \(C\) and \(\beta_i\) outside \(C \cap \beta_i\). Set \(t_{ik} := \alpha_{ik} \cap C\). Corresponding to \(\alpha_{ik}\), there are two marked conics \((\alpha_{ik} \cup \beta_i; p_{ik}, t_{ik})\) and \((\alpha_{ik} \cup \beta_i; p_{ik}, t_{ik})\). We denote by \(\xi_{ijk}\) the conics on \(A\) corresponding to \((\alpha_{ik} \cup \beta_i; p_{ij}, t_{ik})\), where \(i = 1, \ldots, s, j = 1, 2, k = 1, \ldots, d - 4\). Let \(D_{\beta_i}\) be as in the proof of Theorem 4.2.15. Now we can state that \(\Gamma\) is set-theoretically the union of \(\beta_i \times e_i\),

\[\Gamma_i := \{(x, [q]) \mid [q] \in D_{\beta_i}, x = q \cap \beta_i\},\]

which is a section of \(\mu\) over \(D_{\beta_i}\), and

\[\Gamma_{ijk} := \beta_i \times [\xi_{ijk}] (i = 1, \ldots, s, j = 1, 2, k = 1, \ldots, d - 4).\]

The conic \(\xi_{ijk}\) does not belong to \(e_i\) by the choice of marking. Moreover, we have the following:

Lemma 5.1.2. The conic \(\xi_{ijk}\) does not belong to \(D_{\beta_i}\).
Proof. We consider the projection of B from a bi-secant line β_i (see Proposition 3.1.1 (1)). Let $C' \subset Q$ be the image of C by this projection and p'_{ij} the point of C' corresponding to p_{ij}, where p_{ij} is one of the two points of $C \cap \beta_i$. By this projection, the line α_{ik} maps to a point, which we denote by s_{ik}. Let F be the exceptional divisor of the blowing up along β_i, and F' the image of F on Q. We say a ruling of $F' \simeq \mathbb{P}^1 \times \mathbb{P}^1$ is horizontal if it does not come from a fiber of $F \to \beta_i$. Note that the image $q' \subset Q$ of a general conic q belonging to D_{β_i} is a bi-secant line of C'. Thus, if $[\xi_{ijk}] \in D_{\beta_i}$, then ξ_{ijk} would also correspond to a bi-secant line of C', which must be the horizontal ruling of F' through p'_{ij} and s_{ik}. By inductive construction of C, however, we can prove that p'_{ij} and s_{ik} do not lie on a horizontal ruling (cf. the proof of Lemma 3.1.4). Thus we have the claim. \qed

We can conclude that all of $\beta_i' \times e_i$, Γ_i and Γ_{ijk} are disjoint ($i = 1, \ldots, s$, $j = 1, 2$, $k = 1, \ldots, d - 4$).

The next proposition contains the final finiteness result we need.

Proposition 5.1.3. \widetilde{U}_2 is Cohen-Macaulay and the natural morphism $\tilde{\psi}: \widetilde{U}_2 \to \tilde{A}$ is finite (of degree $n := \frac{(d-1)(d-2)}{2}$). In particular, $\tilde{\psi}$ is flat.

Lemma 5.1.4. Γ is a reduced scheme and U_2 is smooth along Γ.

First we finish the proof of Proposition 5.1.3 by admitting this lemma:

Proof of Proposition 5.1.3. By Lemma 5.1.4, the morphism $\bar{U}_2 \to U_2$ is the blow-up along the reduced subscheme Γ contained in the smooth locus of U_2. The subscheme $\beta_i' \times e_i$ is a Cartier divisor of U_2, thus $\bar{U}_2 \to U_2$ is isomorphic over $\beta_i' \times e_i$. The curve Γ_{ijk} is smooth and the curve Γ_i has only planar singularities since so is D_{β_i}. Thus \bar{U}_2 is Cohen-Macaulay since so is U_2.

We have only to prove that $\tilde{\psi}$ is finite. By Proposition 4.1.12 $\tilde{\psi}$ is finite outside $\cup E_i$. Note that $\tilde{\psi}^{-1}(E_i)$ is nothing but the inverse images of $\beta_i' \times e_i$, Γ_i and Γ_{ijk} by $\bar{U}_2 \to U_2$, all of which are \mathbb{P}^1-bundles over curves and are mapped to E_i finitely. Hence we are done. \qed

Proof of Lemma 5.1.4. We study U_2 locally along Γ.

Let q be a conic on A belonging to D_{β_i}. Then, by Proposition 4.1.1 (4), Lemma 5.1.3 and the fact that $D_{\beta_i} \cap e_i = \emptyset$ (see the proof of Theorem 4.2.15 (4.2)), we see that q is smooth near β_i' and intersects β_i' transversely. This implies that U_2 is smooth along Γ_i. Note that, near Γ_i, the morphism $\psi: U_2 \to A$ is finite, hence flat. Since Γ is the pull-back of β_i' near Γ_i and Γ_i is not contained in the ramification locus of ψ, it holds that Γ is reduced along Γ_i.

Let q be the fiber of $U_2 \to H_2$ given by $[\xi_{ijk}]$ or a point of e_i. Note that q is a conic on A and has only nodes as its singularities. We show that $h^1(N_{q/A}) = 0$ and the natural map $H^0(N_{q/A}) \to H^0(T^1_p) \simeq C$ is surjective, where p is any node of q and T^1_p is the local deformation space of p. As in the proof of [HH85] Proposition 1.1], this implies that H_2 coindices with the Hilbert scheme of conics on A at $[\xi_{ijk}]$ or a point of e_i, and U_2 is smooth near q.

First we treat the case where $q = \xi_{ijk} = \alpha'_{ik} \cup \beta'_i \cup \zeta_{i,3-j}$. Note that $\mathcal{N}_{\alpha'_{ik}/A} \simeq \mathcal{O}_{P_1} \oplus \mathcal{O}_{P_2}(-1)$, $\mathcal{N}_{\beta'_i/A} \simeq \mathcal{O}_{P_1}(-1)^{\oplus 2}$, and $\mathcal{N}_{\zeta_{i,3-j}/A} \simeq \mathcal{O}_{P_1} \oplus \mathcal{O}_{P_2}(-1)$. We apply [HH85] Theorem 4.1] by setting $X = \xi_{ijk}$, $C = \beta'_i$ and $D = \alpha'_{ik} \cup \zeta_{i,3-j}$. We check the conditions a) and b) of [ibid.]. The condition a) clearly holds. The condition b) follows from the following two facts:

1. Let F be the exceptional divisor of the blow up of B along α_{ik}. Note that $F \simeq \mathbb{P}^1 \times \mathbb{P}^1$.

We call a fiber of $F \to \mathbb{P}^1$ in the other direction to $F \to \alpha_{ik}$ a horizontal fiber. Then the
intersection points of the strict transform of C and F, and the strict transform of β_i and F do not lie on a common horizontal fiber.

This can be proved by the inductive construction of $C = C_d$ in a similar fashion to the proof of Lemma [3.1.4] or by a straightforward dimensional computation as the one of Proposition [2.4.4] (2), and

(2) let G be the exceptional divisor of the blow up of A along $\zeta_{i,3-j}$. Note that $G \cong \mathbb{P}_1$. Then the intersection points of the strict transform of β'_i and G does not lie on the negative section of G.

Indeed, since $E_C \cdot \zeta_{i,3-j} = -1$, the intersection of G and the strict transform of E_C is the negative section of G. On the other hand, the strict transforms of E_C and β'_i are disjoint. Thus, by [HH85, Theorem 4.1], ξ_{ijk} satisfies the desired properties.

Secondly, we treat the case q is a fiber over a point of e_i. Note that $\bar{q} = \beta_i \cup \alpha$, where α is a line intersecting β_i. Denote by α' the strict transform of α. We make the following case division:

(a) $\alpha \cap C = \emptyset$ and $N_{\alpha/B} = \mathcal{O}_{\mathbb{P}_1}^{\oplus 2}$.
(b) $\alpha \cap C = \emptyset$ and $N_{\alpha/B} = \mathcal{O}_{\mathbb{P}_1}(-1) \oplus \mathcal{O}_{\mathbb{P}_1}(1)$.
(c) $\alpha = \alpha_{ik}$ for some k.
(d) α passes through a point of $\beta_i \cap C$.

In the case (a) or (b), it is easy to see the proof of [HH85, Theorem 4.1] works as above by setting $X = q, C = \beta'_i$ and $D = \alpha'$. In the case (c) or (d), we need to modify the proof of [ibid.]. We only treat the case (c) since we can treat the case (d) similarly. Note that $q = \beta'_i \cup \alpha_{ik}' \cup \gamma_{ik}$, where γ_{ik} is the fiber of E_C over t_{ik}. Note that C is smooth. By [HH85, Corollary 3.2] and simple dimension count, we can describe the restrictions of the normal bundle $N_{q/A}$ to the components of q as follows:

$$N_{q/A|\beta'_i} = \mathcal{O}_{\mathbb{P}_1} \oplus \mathcal{O}_{\mathbb{P}_1}(-1), N_{q/A|\alpha_{ik}'} = \mathcal{O}_{\mathbb{P}_1} \oplus \mathcal{O}_{\mathbb{P}_1}(1), \text{ and } N_{q/A|\gamma_{ik}} = \mathcal{O}_{\mathbb{P}_1}^{\oplus 2}.$$

Set $C = \beta'_i \cup \gamma_{ik}$ and $D = \alpha_{ik}'$. As in [HH85, Theorem 4.1], set $S := C \cap D$. By the description of $N_{q/A|\beta'_i}, \ N_{q/A|\alpha_{ik}'}$, and $N_{q/A|\gamma_{ik}}$, it holds that $H^1(N_{q/A|C}) = H^1(N_{q/A|D}) = \{0\}$. Moreover, considering the tautological linear systems of $\mathbb{P}(N_{q/A|\beta'_i}), \mathbb{P}(N_{q/A|\alpha_{ik}'}), \mathbb{P}(N_{q/A|\gamma_{ik}})$, and $\mathbb{P}(N_{q/A})$, we see that $H^0(N_{q/A|C}) \oplus H^0(N_{q/A|D}) \to H^0(N_{q/A|S})$ is surjective. Thus $h^1(N_{q/A}) = 0$ holds. By [HH85, Corollary 3.2] again, we have the following exact sequences (cf. [HH85, (3) in the proof of Theorem 4.1]):

$$0 \to \mathcal{O}_{\mathbb{P}_1}(-1) \oplus \mathcal{O}_{\mathbb{P}_1}(-2) \to N_{q/A|\beta'_i} \to N_{q/A|S} \to 0,$$

$$0 \to \mathcal{O}_{\mathbb{P}_1}(-1) \oplus \mathcal{O}_{\mathbb{P}_1}(-2) \to N_{q/A|\alpha_{ik}'} \to N_{q/A|S} \to 0,$$

$$0 \to \mathcal{O}_{\mathbb{P}_1}^{\oplus 2}(-1) \to N_{q/A|\gamma_{ik}} \to N_{q/A|S} \to 0.$$

Thus we can consider that $H^0(N_{q/A|C})$ and $H^0(N_{q/A|D})$ is a subspace of $H^0(N_{q/A|S})$. By [HH85, (2) in the proof of Theorem 4.1], we see that $H^0(N_{q/A|C}) \to H^0(T_p)$ and $H^0(N_{q/A|D}) \to H^0(T_p)$ are surjective. Moreover, considering the tautological linear systems of $\mathbb{P}(N_{q/A|\beta'_i}), \mathbb{P}(N_{q/A|\alpha_{ik}'}), \mathbb{P}(N_{q/A|\gamma_{ik}})$, and $\mathbb{P}(N_{q/A})$, we see that the kernels of $H^0(N_{q/A|C}) \to H^0(T_p)$ and $H^0(N_{q/A|D}) \to H^0(T_p)$ does not coincide for any $p \in S$. Thus any non-zero element of $H^0(T_p) \cong \mathbb{C}$ comes from that of $H^0(N_{q/A|C}) \cap H^0(N_{q/A|D})$ as in the end of the proof of [HH85, Theorem 4.1]. This implies that the natural map $H^0(N_{q/A}) \to H^0(T_p)$ is surjective for any $p \in S$.

32 Takagi and Zucconi
Note that, near e_i, the family $\mathcal{U}_2 \to \mathcal{H}_2$ is locally a deformation of a node with smooth discriminant locus e_i. Thus a local computation shows that Γ is reduced along $\beta'_i \times e_i$.

Now we prove that Γ is reduced along Γ_{ijk}. We have only to prove that $\mathcal{U}_2 \to A$ is unramified along Γ_{ijk} since then Γ is the étale pull-back of β'_i near Γ_{ijk}, hence is reduced.

Recall that we set $S = (\alpha'_k \cap \beta'_l) \cup (\zeta_{i,j} \cap \beta'_l)$. By simple dimension count and the following exact sequence:

$$0 \to N_{\beta'_i/A} \to N_{\xi_{ijk}/A}|_{\beta'_i} \to T_S^1 \to 0,$$

we can prove that $N_{\xi_{ijk}/A}|_{\beta'_i} \simeq \mathcal{O}_{\mathbb{P}^1}$. Thus $H^0(N_{\xi_{ijk}/A}) \otimes \mathcal{O}_{\xi_{ijk}} \to N_{\xi_{ijk}/A}$ is surjective at a point of Γ_{ijk} since it factor through the surjection $H^0(N_{\xi_{ijk}/A}|_{\beta'_i}) \otimes \mathcal{O}_{\beta'_i} \to N_{\xi_{ijk}/A}|_{\beta'_i}$. Thus $\mathcal{U}_2 \to A$ is unramified along Γ_{ijk}.

From now on we assume that $d \geq 6$ and we consider $\mathcal{H}_2 \subset \bar{\mathbb{P}}^{d-3}$.

Consider the following diagram:

(5.1)

\[
\begin{array}{ccc}
\mathcal{H}_2 & \xrightarrow{\tilde{\mu}} & \mathcal{U}_2 \\
\downarrow & & \downarrow \tilde{\psi} \\
\tilde{\mathcal{A}} & & \\
\end{array}
\]

Definition 5.1.5. Let \tilde{a} be a point of \tilde{A}. We say that $[\tilde{\psi}^{-1}(\tilde{a})] \in \text{Hilb}^n[\bar{\mathbb{P}}^{d-3}]$ is the cluster of conics attached to \tilde{a} and denote it by $[Z_{\tilde{a}}]$. A conic q such that $[q] \in \text{Supp} Z_{\tilde{a}}$ is called a conic attached to \tilde{a}.

Remark. Though we do not need it later, we describe the fiber of $\tilde{\psi}$ over a general point $\tilde{a} \in E_i$ for some i for reader’s convenience. In other words, we exhibit n conics attached to \tilde{a}.

Set $a := \rho(\tilde{a}) \in A$ and $b := f(a) \in \beta_i$. We use notations of Proposition 4.2.12 Since $\deg C_b = d - 2$, the number of bi-secant conics through b not belonging to the family e_i is given by the number of double points of C_b, which is $\frac{(d-3)(d-4)}{2}$. Moreover $2(d-4)$ conics ξ_{ijk} through a.

The number of remaining conics is $3 = n - \frac{(d-3)(d-4)}{2} - 2(d-4)$. Such conics will belong to e_i. We look for three such conics. Let S_i be the strict transform on \tilde{A} of the locus of lines intersecting β_i. Then it is easy to see that $S_i|_{E_i}$ does not contain any fiber γ_i of the second projection $\sigma_i: E_i \to \bar{\mathbb{P}}^1$. Moreover $S_i|_{E_i} \sim 2\gamma_i + 3f_i$, where f_i is a fiber of $E_i \to \beta'_i$. Let γ'_i be the fiber of σ_i through \tilde{a}. Then γ'_i intersect S_i at three points. Corresponding to these three points, there are three lines on B intersecting β_i. Denote by l_1, l_2 and $l_3 \subset A$ the strict transforms of these three lines. Then $\beta'_i \cup l_j$ ($j = 1, 2, 3$) are the conics on A what we want.

By Proposition 5.1.3 and the universal property of Hilbert schemes, we obtain a naturally defined map $\Psi: \tilde{A} \to \text{Hilb}^n[\bar{\mathbb{P}}^{d-3}]$. This is clearly injective because n conics attached to a point $\tilde{a} \in \tilde{A}$ uniquely determines \tilde{a}.

To understand the image of Ψ, we construct the special quartic hypersurface which live in the dual projective space to the ambient of \mathcal{H}_2.

5.2. Intersection of conics and conics on A.

To construct the special quartic hypersurface, we need the incidence variety defined by the intersections of conics.
Similarly to (4.1), we consider the following diagram:

\[\begin{array}{ccc}
\mathcal{U}'_2 \subset \mathcal{U} \times \mathcal{H}_2 & \xrightarrow{(\psi, \text{id})} & A \times \mathcal{H}_2 \supset \mathcal{U}_2 \\
\downarrow & & \downarrow \\
\hat{\mathcal{D}}_2 \subset \mathcal{H} \times \mathcal{H}_2 & \xrightarrow{} & \mathcal{H}_2,
\end{array} \]

where \(\mathcal{U}'_2 \subset \mathcal{U} \times \mathcal{H}_2 \) is the base change of \(\mathcal{U}_2 \) and \(\hat{\mathcal{D}}_2 \) the image of \(\mathcal{U}'_2 \) on \(\mathcal{H} \times \mathcal{H}_2 \). Similarly to the investigation of the diagram (4.1), we see that the image \(F' \) in \(\mathcal{H}_2 \times \mathcal{H}_2 \) of the inverse image of \(\cap_{i=1}^n \mathcal{D}'_i \times \mathcal{H}_2 \) is not divisorial nor does not dominate \(\mathcal{H}_2 \). Moreover, any component of \(\hat{\mathcal{D}}_2 \) outside \(F' \) dominates \(\mathcal{H}_2 \), and is divisorial or possibly the diagonal of \(\mathcal{H}_2 \times \mathcal{H}_2 \). Note that dislike the diagram (4.1), there is no other non-divisorial component in this case. Compare the proof of Corollary 4.2.13. Here we leave the possibility that the diagonal of \(\mathcal{H}_2 \times \mathcal{H}_2 \) is contained in the divisorial component of \(\hat{\mathcal{D}}_2 \). We, however, prove this is not the case in Lemma 5.3.2.

Let \(D_2 \subset \mathcal{H}_2 \times \mathcal{H}_2 \) be the union of the divisorial components of \(\hat{\mathcal{D}}_2 \) with reduced structure. \(D_2 \) is Cartier since \(\mathcal{H}_2 \times \mathcal{H}_2 \) is smooth. \(D_2 \to \mathcal{H}_2 \) is flat since \(D_2 \) is Cohen-Macaulay, \(\mathcal{H}_2 \) is smooth and \(D_2 \to \mathcal{H}_2 \) is equi-dimensional. Let \(D_q \) be the fiber of \(D_2 \to \mathcal{H}_2 \) over \([q] \in \mathcal{H}_2 \) via the projection to the second factor.

5.3. Construction of the special quartics.

Lemma 5.3.1. \(D_q \sim 2(d-3)h - 2 \sum_{i=1}^e e_i \) for a conic \(q \). \(D_q \) is a quadric section of \(\mathcal{H}_2 \subset \mathbb{P}^{d-3} \).

Proof. The proof of the former half is almost identical to the one of Theorem 4.2.13 (1). The latter half follows from Corollary 4.2.16. \(\square \)

Now we proceed to construct the quartic hypersurface.

From now on, we write \(\mathbb{P}^{d-3} = \mathbb{P}_s V \), where \(V \) is the \(d - 2 \)-dimensional vector space. The crucial point in the following considerations is the equality:

\[n = \dim S^2 V. \]

By the seesaw theorem, it holds that \(D_2 \sim p_1^* D_q + p_2^* D_q \). Consider the morphism \(\mathcal{H}_2 \times \mathcal{H}_2 \) into \(\mathbb{P}^{d-2} \times \mathbb{P}^{d-3} \) defined by \(|p_1^* D_1 + p_2^* D_1| \), which is an embedding since \(d \geq 6 \). By Corollary 4.2.16 it holds

\[H^0(\mathcal{H}_2 \times \mathcal{H}_2, D_2) \simeq H^0(\mathbb{P}^{d-3} \times \mathbb{P}^{d-3}, O(2, 2)). \]

Therefore \(D_2 \) is the restriction of a unique \((2, 2)\)-divisor on \(\mathbb{P}^{d-3} \times \mathbb{P}^{d-3} \), which we denote by \(\{ \tilde{D}_2 = 0 \} \). Since \(\{ \tilde{D}_2 = 0 \} \) is symmetric, we may assume the equation \(\tilde{D}_2 \) is also symmetric. Actually, the desired quartic is obtained by restricting \(\tilde{D}_2 \) to the diagonal and taking the dual in the sense of Dolgachev (see the appendix), but we need more argument for the proof of the main theorem.

For \([q] \in \mathcal{H}_2 \), we denote by \(\tilde{D}_q \) the restriction of \(\tilde{D}_2 \) to the fiber over \([q] \). Note that \(\tilde{D}_2 \in S^2 V \otimes S^2 V \), so \(\tilde{D}_2 \) defines a linear map \(\lambda : S^2 V \otimes S^2 V \to S^2 V \). Let \(H_q \) be a linear form on \(V \) corresponding to \(q \). It holds that \(\lambda(H_q^2) = \tilde{D}_q \) up to scalar, so we may choose \(H_q \) such that \(\lambda(H_q^2) = \tilde{D}_q \) holds. We prove that \(\lambda \) is an isomorphism.
Lemma 5.3.2. \(D_2 \) does not contain the diagonal of \(\mathcal{H}_2 \times \mathcal{H}_2 \). In particular we have the following:

Let \(\tilde{a} \) be a general point of \(\tilde{A} \) and \(q_1, q_2, \ldots, q_n \in \mathcal{H}_2 \) the conics attached to \(\tilde{a} \). Then

\[
D_{q_i}([q_i]) \neq 0
\]

for \(1 \leq i \leq n \).

Proof. Here we assume \(d \geq 3 \). It suffices to prove that \(D_q([q]) \neq 0 \) for a general \([q] \in \mathcal{H}_2 \). This is equivalent to that the image \(D_q^\flat \) on \(\mathcal{H}_2 \) of \(D_q \) does not contain \([\mathcal{H}]\). Note that \(D_q^\flat \) is the closure of the locus of multi-secant conics of \(C \) intersecting properly \([\mathcal{F}]\). Now the assertion follows from the inductive construction of \(C_d \) from \(C_{d-1} \cup \mathcal{J} \). From now on, we denote \(D_q^\flat \) for \(C_d \) by \(D_{q,d}^\flat \). If \(d = 3 \), then \(D_q \sim 0 \), thus the assertion trivially true. If \(D_{q,d-1}^\flat([\mathcal{F}]) \neq 0 \) for a general multi-secant conic \(\mathcal{F} \) of \(C_{d-1} \), then \(D_{q,d}^\flat([q]) \neq 0 \) for a general multi-secant conic \(\mathcal{F} \) of \(C_d \). \(\square \)

Let \(\tilde{a} \) be a general point of \(\tilde{A} \) and \(q_1, \ldots, q_n \) are the conics attached to \(\tilde{a} \). By the definition of \(\tilde{D}_{q_i} \) and generality of \(\tilde{a} \), we have the following:

\[
\text{(5.4)} \quad \tilde{D}_{q_j}([q_i]) = 0 \quad (j \neq i) \quad \text{and} \quad \tilde{D}_{q_i}([q_i]) \neq 0.
\]

(5.4) implies \(\tilde{D}_{q_1}, \ldots, \tilde{D}_{q_n} \) are linearly independent, and, by (5.3), they span the vector space \(S^2\mathcal{V} \). Thus \(\lambda \) is an isomorphism.

The inverse \(\lambda^{-1}: S^2\mathcal{V} \rightarrow S^2\tilde{\mathcal{V}} \) defines an element \(\tilde{D}_2 \in S^2\tilde{\mathcal{V}} \otimes S^2\tilde{\mathcal{V}} \). We consider the polarization map \(\text{pl}_2: S^2\mathcal{V} \rightarrow \text{Sym}_2\mathcal{V} \) (see the appendix). We show that \(\tilde{U} := \text{pl}_2 \otimes \text{pl}_2(\tilde{D}_2) \in \text{Sym}_2\mathcal{V} \otimes \text{Sym}_2\mathcal{V} \subset \mathcal{V}^{\otimes 4} \) is actually contained in \(\text{Sym}_4\mathcal{V} \). This will implies that \(\text{pl}_2 \otimes \text{pl}_2(\tilde{D}_2) \) is the image of a quartic form \(\in S^4\mathcal{V} \) by \(\text{pl}_4 \).

The following argument is almost identical with the proof of [DK93, Theorem 9.3.1] (The identification will be clearer by constructing the theta characteristic on \(\mathcal{H}_2 \) in the forthcoming paper). Let \(\ell \) be a general line on \(A \) and \(l_1, \ldots, l_{d-2} \) the lines intersecting \(\ell \). Note that \(l_1, \ldots, l_{d-2} \) correspond to lines on \(B \) intersecting both \(C \) and the image \(\mathcal{J} \) of \(\ell \) on \(B \) except those through \(C \cap \mathcal{J} \). Thus the number of such lines is \(d - 2 \). Since \(\ell \) is general, so are \(l_1, \ldots, l_{d-2} \). We have \(d - 2 \) reducible conics \(r_1 := \ell \cup l_1, \ldots, r_{d-2} := \ell \cup l_{d-2} \). It holds that \(D_{r_i} = D_\ell + D_{l_i} \). By Corollary 4.2.16 \(\tilde{D}_\ell \) and \(\tilde{D}_{l_i} \) are defined by linear forms \(L \) and \(L_i \). We may assume that \(\lambda(H^2_{r_i}) = D_{r_i} = L_i L \). By Corollary 4.2.17 \(L_i([r_i]) \neq 0 \) and \(L_i([r_j]) = 0 \) for \(i \neq j \). In other words, it holds \(\langle L_i, H_i \rangle \neq 0 \) and \(\langle L_i, H_j \rangle = 0 \) for \(i \neq j \), where \(\langle, \rangle \) is the natural dual pairing. Thus \(L_1, \ldots, L_{d-2} \) and \(H_1, \ldots, H_{d-2} \) span \(\tilde{\mathcal{V}} \) and \(\mathcal{V} \), respectively since dim \(\mathcal{V} = d - 2 \). Moreover, \(\{H_i\} \) and \(\{L_i\} \) are dual to each other. Choose coordinates of \(\mathcal{V} \) and \(\tilde{\mathcal{V}} \) such that \(H_i \) and \(L_i \) are coordinate hyperplanes \(\{x_i = 0\} \) and \(\{u_i = 0\} \) respectively. Set \(L = \sum a_iu_i \). For any \(y = (y_1, \ldots, y_{d-2}) \in \mathcal{V} \), we have \(\lambda(\sum y_ix_i^2) = (\sum a_iu_i)(\sum y_iu_i) \) by \(\lambda(H^2_{r_i}) = L_i L \). Considering \(\tilde{U} \in \mathcal{V}^{\otimes 4} \), this implies that \(\tilde{U}(L, y, x, x) = \sum y_ix_i^2 = P_y(\sum x_i^2) \), where \(x = (x_1, x_2, \ldots, x_{d-2}) \) and \(P_y \) is the polar with respect to \(y \) (see the appendix). Thus we have \(\tilde{U}(L, y, x, z) = \sum y_ix_iz_i \) for \(z = (z_1, z_2, \ldots, z_{d-2}) \), hence \(\tilde{U}(L, y, x, z) \) is symmetric for \(y, x \) and \(z \). Since \(\tilde{U} \in \text{Sym}_2\mathcal{V} \otimes \text{Sym}_2\mathcal{V} \) and \(\tilde{D}_2 \) is symmetric, we have shown that \(\tilde{U} \in \text{Sym}_4\mathcal{V} \).
Let \(F_4 \) be the quartic form associated to \(\tilde{U} \), namely, \(F_4 := \tilde{U}(x, x, x, x) \). By the construction, it holds
\[
P_{D_q}(F_4) = H_q^2.
\]
By the theory of polarity (see the appendix), we can interpret what we have done as follows: \(\lambda^{-1} = \text{ap}_{F_4} \). Since \(\lambda^{-1} \) is an isomorphism, \(F_4 \) is non-degenerate.

5.4. Proof of the main theorem.

Theorem 5.4.1. \(\text{Im } \Phi \) is an irreducible component of
\[
\text{VSP}(F_4, n; \mathcal{H}_2) := \{(H_1, \ldots, H_n) \mid [H_i] \in \mathcal{H}_2 \} \subset \text{VSP}(F_4, n).
\]

Proof. Set
\[
Z := \{(H_1, \ldots, H_n) \in \text{Hilb}^{n}\mathbb{P}^{d-3} \mid H_1^4 + \ldots + H_n^4 = F_4, [H_i] \in \mathcal{H}_2 \}.
\]

For a general point \(\tilde{a} \) and conics \(q_1, \ldots, q_n \) attached to \(\tilde{a} \), we have (5.4). Conversely, \(n \) conics \(q_i \) satisfying (5.4) and the assumptions (1)–(3) of Lemma 3.2.9 determine a point of \(\tilde{A} \). Note that the assumptions (1)–(3) of Lemma 3.2.9 are open conditions. Thus we have only to prove that (5.4) is equivalent to
\[
\alpha_1 H_{q_1}^4 + \ldots + \alpha_n H_{q_n}^4 = F_4 \quad \text{with some nonzero } \alpha_i \in \mathbb{C}.
\]

We see that (5.6) is equivalent to
\[
(5.7) \quad \text{If } \{G = 0\} \subset \mathbb{P}^{d-3} \text{ is any quartic through } [q_1], \ldots, [q_n], \text{ then } P_{F_4}(G) = 0.
\]

Indeed, by the apolarity pairing, \(\langle G, H_q^4 \rangle = 0 \Leftrightarrow G([q_i]) = 0 \), thus the assumption on \(G \) is equivalent to \(G \in \langle H_{q_1}^4, \ldots, H_{q_n}^4 \rangle^\perp \). Therefore (5.6) is equivalent to \(\langle H_{q_1}^4, \ldots, H_{q_n}^4 \rangle^\perp \subset \langle F_4 \rangle^\perp \). Since \(F_4 \) is non-degenerate, this is equivalent to (5.6).

We show (5.4) implies (5.7). If (5.4) holds, then \(\tilde{D}_{q_i} \) (\(i \neq 1 \)) generate the space of quadric forms passing through \([q_1]\), we may write \(G = Q_2 \tilde{D}_{q_2} + \ldots + Q_n \tilde{D}_{q_n} \), where \(Q_i \) are quadratic forms on \(\mathbb{P}^{d-3} \). By \(G([q_i]) = 0 \) for \(i \neq 1 \), we have \(Q_i([q_i]) \tilde{D}_{q_i}([q_i]) = 0 \). \(\tilde{D}_{q_i}([q_i]) \neq 0 \) implies that \(Q_i([q_i]) = 0 \). Thus \(Q_i \) is a linear combination of \(\tilde{D}_{q_i} \) (\(j \neq i \)). Consequently, \(G \) is a linear combination of \(\tilde{D}_{q_i} \tilde{D}_{q_j} \) (\(1 \leq i < j \leq n \)). Thus \(P_{F_4}(G) = 0 \) follows from that
\[
P_{F_4}(\tilde{D}_{q_i} \tilde{D}_{q_j}) = P_{H_{q_i}}(\tilde{D}_{q_j}) = \tilde{D}_{q_j}([q_i]) = 0.
\]

Finally we show (5.6) implies (5.4). By (5.6), it holds
\[
H_{q_i}^2 = P_{D_{q_i}}(F_4) = \sum \alpha_j(\tilde{D}_{q_i}, H_{q_j}^4) H_{q_j}^2.
\]

Since \(\tilde{D}_{q_i} \) are linearly independent, so are \(H_{q_j}^2 \). Thus (5.4) holds.

Definition 5.4.2. We say \(\text{Im } \Phi \) is the main component of \(\text{VSP}(n, F_4; \mathcal{H}_2) \).

The following proposition characterizes the main component of \(\text{VSP}(n, F_4; \mathcal{H}_2) \):
Proposition 5.4.3. Let $(\mathcal{H}_2^k)^o$ and $(\text{Hilb}^k\mathbb{P}^{d-3})^o$ ($k \in \mathbb{N}$) be the complements of all the small diagonals of \mathcal{H}_2^k (k times product of \mathcal{H}_2) and $\text{Hilb}^k\mathbb{P}^{d-3}$ respectively. Set

$$\text{VSP}^o(F_4, n; \mathcal{H}_2) := \{([H_1], \ldots, [H_n]) \mid [H_i] \in \mathcal{H}_2, H_1^m + \cdots + H_n^m = F_1\}.$$

Let V^o be the inverse image of $\text{VSP}^o(F_4, n; \mathcal{H}_2)$ by the natural projection $(\mathcal{H}_2^o)^o \to (\text{Hilb}^o\mathbb{P}^{d-3})^o$. Let $(\mathcal{H}_2^2)^o \to (\mathcal{H}_2^2)^o$ be the projection to any of two factors. Then a component of V^o dominating \mathcal{D}_2 dominates the main component of $\text{VSP}(F_4, n; \mathcal{H}_2)$. In particular, the main component is uniquely identified from \mathcal{D}_2.

Proof. Let $([q_1], [q_2]) \in \mathcal{D}_2 \cap (\mathcal{H}_2^2)^o$ be a general point and $\{q_i\}$ ($i = 1, \ldots, n$) any set of mutually conjugate n conics including q_1 and q_2. Since q_1 and q_2 are general, we may assume that all the q_i are general. By Lemma 3.2.9 and Theorem 5.4.1, it suffices to prove that q_1, \ldots, q_n satisfies the conditions (1)–(3) of Lemma 3.2.9

(1). Let τ_1 and τ_2 are mutually intersecting smooth conics on B and τ_3 a line pair on B intersecting both τ_1 and τ_2. Since the Hilbert scheme of conics on B is 4-dimensional, the pair of τ_1 and τ_2 depends on 7 parameters. If we fix τ_1 and τ_2, then τ_3 depends on 1 parameter. Thus the configuration τ_1, τ_2, τ_3 depends on 8 parameters. Fix τ_1, τ_2 and τ_3. We count the number of parameters of C_4 such that C_4 intersects each of τ_i ($i = 1, 2, 3$) twice. The number of parameters is $h^0((\mathcal{O}_{\mathbb{P}^2}(d-1) \oplus \mathcal{O}_{\mathbb{P}^2}(d-1)) \otimes \mathcal{O}_{\mathbb{P}^1}(-6)) + 6 = 2d - 12 + 6 = 2d - 6$, where $+6$ means the sum of the numbers of parameters of two points on τ_i ($i = 1, 2, 3$). By $2d - 6 + 8 = 2d + 2$, a general C_d has 2-dimensional pairs of mutually intersecting bi-secant conics which intersect at least one bi-secant line pair of C_d. Thus general pairs of mutually intersecting bi-secant conics of C_d, which form a 3-dimensional family, do not intersect a bi-secant line pair of C_d.

(2). Assume by contradiction that τ_i, τ_j and τ_k pass through a point b, and τ_i does not pass through b but intersects a line through b. Then by the double projection from b, τ_i is mapped to a line through the three singular points of the image of C_b corresponding to τ_i, τ_j and τ_k. Thus we have only to prove that for a general point of b on B, three double points of the image of C_b do not lie on a line.

Fix a general point $b \in B$. Let τ_1, τ_2, τ_3 be three conics on B through b such that by the double projection from b, they are mapped to three colinear points on \mathbb{P}^2. The number of parameters of C_d’s intersecting each of τ_i twice is $h^0((\mathcal{O}_{\mathbb{P}^1}(d-1) \oplus \mathcal{O}_{\mathbb{P}^1}(d-1)) \otimes \mathcal{O}_{\mathbb{P}^1}(-6)) = 2d - 12$ since $h^1((\mathcal{O}_{\mathbb{P}^2}(d-1) \oplus \mathcal{O}_{\mathbb{P}^2}(d-1)) \otimes \mathcal{O}_{\mathbb{P}^1}(-6)) = 0$. Note that the number of parameters of τ_1, τ_2, τ_3 is 5 since that of lines in \mathbb{P}^2 is 2, and that of three points on a line is 3. Thus the number of parameters of C_d’s such that its image of the double projection from b has three colinear double points is at most $2d - 1$. Hence a general C_d does not satisfy this property.

(3). Let r_1 and r_2 be a general pair of mutually conjugate conics on A such that τ_1 and τ_2 are smooth, and τ_1 and τ_2 intersect at a point on $C \cup \cup_i \beta_i$. Such general pairs of conics r_1 and r_2 form a two-dimensional family since $\dim C \cup \cup_i \beta_i = 1$ and if one point t of $C \cup \cup_i \beta_i$ is fixed, then such pairs of conics such that $t \in \tau_1 \cap \tau_2$ form a one-dimensional family. For a general pair of r_1 and r_2, the number of the sets of n mutually conjugate conics including r_1 and r_2 is finite since D_{r_1} and D_{r_2} has no common component. Thus $\{q_i\}$ does not contain such a pair by generality whence $\{q_i\}$ satisfies (3). \qed
6. Relation with Mukai’s result

Here we sketch how the argument goes on if $d = 5$ and explain a relation of our result with Theorem 1.2.1.

Assume that $d = 5$. Associated to the birational morphism $\mathcal{H}_2 \to \mathbb{P}^2$, there exists a nonfinite birational morphism

$$\Phi: \tilde{A} \to A_{22} := \operatorname{VSP}(F_4, 6) \subset \operatorname{Hilb}^6 \mathbb{P}^2,$$

which fits into the following diagram:

\[\begin{array}{ccc}
\tilde{A} & \xrightarrow{\Phi} & A_{22} \\
\downarrow{\rho} & & \downarrow{f'} \\
A & \xrightarrow{f} & A' \\
\downarrow{\rho'} & & \downarrow{f'} \\
B & & A_{22},
\end{array} \]

where

- A_{22} is a smooth prime Fano threefold of genus twelve,
- ρ' is the blow-down of the three ρ-exceptional divisors E_i ($i = 1, 2, 3$) over the strict transforms β'_i in the other direction. In other words, $A \dashrightarrow A'$ is the flops of β'_1, β'_2 and β'_3 (cf. Lemma 3.1.4), and
- the morphism f' contracts the strict transform of the unique hyperplane section S containing C (see Corollary 2.5.3) to a general line on A_{22}.

The rational map $A_{22} \dashrightarrow B$ is the famous double projection of A_{22} from a general line m first discovered by Iskovskih (see [Isk78]).

We explain how f' and ρ' are interpreted in our context. As we remarked after the proof of Theorem 4.2.15, the morphism $\mathcal{H}_2 \to \mathbb{P}^2$ defined by $|D_i|$ contracts three curves D_{e_i} which parameterize conics intersecting β'_i. By noting S is covered by the images of such conics, this corresponds to that the morphism f' contracts the strict transform of S.

We can see that any conic on A except one belonging to D_{e_i} corresponds to that on A_{22} in the usual sense, and the component of Hilbert scheme of A_{22} parameterizing conics is naturally isomorphic to \mathbb{P}^2. The three conics on A_{22} corresponding to the images of D_{e_i} are $\beta''_i \cup m$, where β''_i are the images of the flopped curve corresponding to β'_i.

Let $a \in E_i$. Then six conics on A attached to a are ξ_{ij1} ($j = 1, 2$), a conic q_a from D_{e_i} and three conics from e_i (see the remark at the end of 5.1). Moreover, if a moves in a fiber γ of the other projection $E_i \to \mathbb{P}^1$, then only the conic q_a from D_{e_i} varies. By the contraction $\mathcal{H}_2 \to \mathbb{P}^2$, there is no difference among points on γ. This is the meaning of the contraction ρ' of E_i in the other direction.

Finally we remark that \mathcal{H}_1 is also naturally isomorphic to the component of Hilbert scheme of A_{22} parameterizing lines.

7. Appendix

We give a quick review of basic facts on the theory of polarity. The main references are [DK93, §1 and §2] and [Dol04, §2].
• Denote by $\text{Sym}_m V$ the image of the linear map

\[
\tilde{V}^\otimes m \rightarrow \tilde{V}^\otimes m \quad t \mapsto \sum_{\sigma \in S_m} \sigma(t).
\]

The map $\tilde{V}^\otimes m \rightarrow \text{Sym}_m V$ is decomposed as $\tilde{V}^\otimes m \xrightarrow{s_m} \text{Sym}_m V \xrightarrow{p_m} \text{Sym}_m V$, where s_m is the natural quotient map. Denote by $p_m: \text{Sym}_m V \rightarrow \tilde{V}^\otimes m$ the map obtained from p_m by dividing $m!$. This is called the polarization map. Let $r_m: \text{Sym}_m V \hookrightarrow \tilde{V}^\otimes m \xrightarrow{s_m} \text{Sym}_m V$ be the natural map. Then it holds that $p_m \circ r_m = r_m \circ pl_m = \text{id}$.

• For $F \in \text{Sym}_m \tilde{V}$, set $\tilde{F} := pl_m(F)$. Then $F(x) = \tilde{F}(x,x,\ldots,x)$ for $x \in V$.

• For $F \in \text{Sym}_m \tilde{V}$ and $a \in V$, set $P_a(F)(x) := \tilde{F}(a,x,\ldots,x)$. It is easy to verify

\[
P_a(F) = \frac{1}{m} \sum_i a_i \frac{\partial F}{\partial x_i},
\]

where a_i and x_i are coordinates of a_i, and on V respectively. Similarly, by setting $P_{a,b,\ldots,c}(F) := \tilde{F}(a,b,\ldots,c,x,\ldots,x)$ (the number of a,b,\ldots,c is k), it holds

\[
P_{a,b,\ldots,c,x,\ldots,x}(F) = \frac{(m-k)!}{m!} \sum_{i_1,\ldots,i_k} a_{i_1} b_{i_2} \cdots c_{i_k} \frac{\partial^k F}{\partial x_{i_1} \cdots \partial x_{i_k}}.
\]

This is called the mixed polar of F with respect to a,b,\ldots,c.

It is possible to regard this as the pairing between $F \in \text{Sym}_m \tilde{V}$ and $ab\cdots c \in \text{Sym}_k V$. By extending this pairing, we have

\[
\text{Sym}_k V \times \text{Sym}_m \tilde{V} \rightarrow \text{Sym}^{m-k} \tilde{V}
\]

\[
(G,F) \mapsto P_G(F).
\]

Further, by fixing F, we can write

\[
ap_F: \text{Sym}_k V \rightarrow \text{Sym}^{m-k} \tilde{V}
\]

\[
G \mapsto P_G(F).
\]

This is called the apolarity map.

When $m = k$, this pairing is sometimes denoted by $\langle G, F \rangle$ and is called the apolarity pairing.

• The following is a basic property of the apolarity pairing:

\[
\langle F, ab\cdots c \rangle = \tilde{F}(a,b,\ldots,c),
\]

where the number of a,b,\ldots,c is m. In particular,

\[
\langle F, a^m \rangle = \tilde{F}(a,a,\ldots,a) = F(a).
\]

• If $m = 2k$, then F is said to be non-degenerate if

\[
ap_F^k: \text{Sym}_k V \rightarrow \text{Sym}_k \tilde{V}
\]

is an isomorphism. In this case, there is $\bar{F} \in \text{Sym}_k V$ such that

\[
ap_F^{k-1} = \bar{F}.
\]

\bar{F} is called the form dual to F.
Usually, we consider the apolarity maps in the projective setting. Namely, we consider $a \in \mathbb{P}^* \mathcal{V}$ rather than $a \in \mathcal{V}$, etc. In this situation, we denote by $H_a \in \mathcal{V}$ an element corresponding to $a \in \mathbb{P}^* \mathcal{V}$, which is unique up to scalar. By abuse of notation, we sometimes continue to write $P_a(F)$ rather than $P_{H_a}(F)$.

References

[DG88] E. Davis and A. Geramita, *Birational morphisms to \mathbb{P}^2: an ideal-theoretic perspective*, Math. Ann. **279** (1988), 435–448.

[DK93] I. Dolgachev and V. Kanev, *Polar covariants of plane cubics and quartics*, Adv. Math. **98** (1993), no. 2, 216–301.

[Dol04] I. Dolgachev, *Dual homogeneous forms and varieties of power sums*, Milan J. of Math. **72** (2004), no. 1, 163–187.

[FN89a] M. Furushima and N. Nakayama, *The family of lines on the Fano threefold V_5*, Nagoya Math. J. **116** (1989), 111–122.

[FN89b], *A new construction of a compactification of \mathbb{C}^3*, Tohoku Math. J. **41** (1989), no. 4, 543–560.

[Fuj81] T. Fujita, *On the structure of polarized manifolds with total deficiency one, part II*, J. Math. Soc. of Japan **33** (1981), 415–434.

[Gim89] A. Gimigliano, *On Veronesean surfaces*, Nederl. Akad. Wetensch. Indag. Math. **51** (1989), no. 1, 71–85.

[HH85] R. Hartshorne and A. Hirschowitz, *Smoothing algebraic space curves*, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer-Verlag, Berlin-New York, 1985, pp. 98–131.

[Ili94] A. Iliev, *The Fano surface of the Gushel threefold*, Comp. Math. **94** (1994), no. 1, 81–107.

[Isk77] V. A. Iskovskih, *Fano 3-folds* (Russian), Izv. Akad. Nauk SSSR Ser. Mat. **41** (1977), English transl. in Math. USSR Izv. 11 (1977), 485–527.

[Isk78], *Fano 3-folds* 2 (Russian), Izv. Akad. Nauk SSSR Ser. Mat. **42** (1978), 506–549, English transl. in Math. USSR Izv. 12 (1978), 469–506.

[Man01] M. Mancini, *Rational projectively Cohen-Macaulay surfaces of maximum degree*, Collect. Math. **52** (2001), no. 2, 117–126.

[MM81] S. Mori and S. Mukai, *Classification of Fano 3-folds with $b_2 \geq 2$*, Manuscripta Math. **36** (1981), 147–162.

[MM85] , *Classification of Fano 3-folds with $b_2 \geq 2$, I*, Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1985, to the memory of Dr. Takehiko MIYATA, pp. 496–545.

[MT01] D. Markushevich and A. S. Tikhomirov, *The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold*, J. Algebraic Geom. **10** (2001), no. 1, 37–62.

[Muk92] S. Mukai, *Fano 3-folds*, London Math. Soc. Lecture Notes, vol. 179, Cambridge Univ. Press, 1992, pp. 255–263.

[Muk04] , *Plane quartics and Fano threefolds of genus twelve*, The Fano Conference, Univ. Torino, Turin, 2004, pp. 563–572.

[Per02] N. Perrin, *Courbes rationnelles sur les variétés homogènes*, Ann. Inst. Fourier (Grenoble) **52** (2002), no. 1, 105–132.

[Rei83] M. Reid, *Minimal models of canonical 3-folds*, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180.

[TZ08] H. Takagi and F. Zucconi, *Spin curves and Scorza quartics*, preprint. (2008), 1–16.

[Wli24] M. P. White, *On certain nets of plane curves*, Proc. Cambridge Phil. Soc. **22** (1924), 1–11.

Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, 153-8914, Japan, takagi@ms.u-tokyo.ac.jp

D.I.M.I., the University of Udine, Udine, 33100 Italy, francesco.zucconi@dimi.uniud.it