A Study on Integer Additive Set-Graceful Graphs

N K Sudev * and K A Germina †

Abstract

A set-labeling of a graph G is an injective function $f : V(G) \rightarrow \mathcal{P}(X)$, where X is a finite set and a set-indexer of G is a set-labeling such that the induced function $f^{\oplus} : E(G) \rightarrow \mathcal{P}(X) - \{\emptyset\}$ defined by $f^{\oplus}(uv) = f(u) \oplus f(v)$ for every $uv \in E(G)$ is also injective. An integer additive set-labeling is an injective function $f : V(G) \rightarrow \mathcal{P}(\mathbb{N}_0)$, \mathbb{N}_0 is the set of all non-negative integers and an integer additive set-indexer is an integer additive set-labeling such that the induced function $f^+ : E(G) \rightarrow \mathcal{P}(\mathbb{N}_0)$ defined by $f^+(uv) = f(u) + f(v)$ is also injective. In this paper, we extend the concepts of set-graceful labeling to integer additive set-labelings of graphs and provide some results on them.

Key words: Set-indexers, integer additive set-indexers, set-graceful graphs, integer additive set-graceful labeling, integer additive set-graceful graphs.

AMS Subject Classification : 05C78

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [18] and for more about graph labeling, we refer to [13]. Unless mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

All sets mentioned in this paper are finite sets of non-negative integers. We denote the cardinality of a set A by $|A|$. We denote, by X, the finite

*Department of Mathematics, Vidya Academy of Science & Technology, Thalakkottukara, Thrissur - 680501, India. email: sudevnk@gmail.com

†Department of Mathematics, School of Mathematical & Physical Sciences, Central University of Kerala, Kasaragod, India. email:srgerminaka@gmail.com
ground set of non-negative integers that is used for set-labeling the elements of G and cardinality of X by n.

The research in graph labeling commenced with the introduction of β-valuations of graphs in [20]. Analogous to the number valuations of graphs, the concepts of set-labelings and set-indexers of graphs are introduced in [1] as follows.

Let G be a (p,q)-graph. Let X, Y and Z be non-empty sets and $P(X)$, $P(Y)$ and $P(Z)$ be their power sets. Then, the functions $f : V(G) \rightarrow P(X)$, $f : E(G) \rightarrow P(Y)$ and $f : V(G) \cup E(G) \rightarrow P(Z)$ are called the set-assignments of vertices, edges and elements of G respectively. By a set-assignment of a graph, we mean any one of them. A set-assignment is called a set-labeling or a set-valuation if it is injective.

A graph with a set-labeling f is denoted by (G, f) and is referred to as a set-labeled graph. For a (p,q)- graph $G = (V, E)$ and a non-empty set X of cardinality n, a set-indexer of G is defined as an injective set-valued function $f : V(G) \rightarrow P(X)$ such that the function $f^\oplus : E(G) \rightarrow P(X) - \{\emptyset\}$ defined by $f^\oplus(uv) = f(u) \oplus f(v)$ for every $uv \in E(G)$ is also injective, where $P(X)$ is the set of all subsets of X and \oplus is the symmetric difference of sets.

Theorem 1.1. [1] Every graph has a set-indexer.

Analogous to graceful labeling of graphs, the concept of set-graceful labeling of a graph is defined in [1] as follows.

Let G be a graph and let X be a non-empty set. A set-indexer $f : V(G) \rightarrow P(X)$ is called a set-graceful labeling of G if $f^\oplus(E(G)) = P(X) - \{\emptyset\}$. A graph G which admits a set-graceful labeling is called a set-graceful graph.

Let N_0 be the set of all non-negative integers. An integer additive set-labeling (IASL, in short) is an injective function $f : V(G) \rightarrow P(N_0)$. A graph G which admits an IASL is called an IASL graph. An integer additive set-indexer f is an integer additive set-indexer (IASI, in short) if the induced function $f^+ : E(G) \rightarrow P(N_0)$ defined by $f^+(uv) = f(u) + f(v)$ is injective. A graph G which admits an IASI is called an IASI graph.

The cardinality of the set-label of an element (vertex or edge) of a graph G is called the set-indexing number of that element. An IASL (or an IASI) is said to be a k-uniform IASL (or k-uniform IASI) if $|f^+(e)| = k$ \forall $e \in E(G)$. The vertex set $V(G)$ is called l-uniformly set-indexed, if all the vertices of G have the set-indexing number l.

In this paper, we extend the concepts of set-graceful labelings to integer additive set-labels of a given graph G and establish some results on them.
2 Integer Additive Set-Graceful Graphs

Note that under an integer additive set-labeling, no element of a given graph can have ∅ as its set-labeling. Hence, we need to consider only non-empty subsets of X for set-labeling the elements of G.

Remark 2.1. Let X be a finite set of non-negative integers and let $f : V(G) \to \mathcal{P}(X) - \{\emptyset\}$ be an integer additive set-labeling on a graph G. Note that, here the induced function $f^+ : E(G) \to \mathcal{P}(X) - \{\emptyset\}$ defined by $f^+(uv) = f(u) + f(v)$, is the sum set of the sets $f(u)$ and $f(v)$. Hence, \{0\} can not be the set-label of any edge of G.

In view of Remark 2.1 we introduce the following notion.

Definition 2.2. Let G be a graph and let X be a non-empty set. An integer additive set-indexer $f : V(G) \to \mathcal{P}(X) - \{\emptyset\}$ is called a integer additive set-graceful labeling (IASGL, in short) of G if $f^+(E(G)) = \mathcal{P}(X) - \{\emptyset, \{0\}\}$. A graph G which admits an integer additive set-graceful labeling is called an integer additive set-graceful graph (in short, iasg-graph).

An iasg-graph is illustrated in Figure 1.

![Figure 1](image-url)
Proposition 2.3. If \(f : V(G) \to \mathcal{P}(X) - \{\emptyset\} \) is an integer additive set-graceful labeling on a given graph \(G \), then \(\{0\} \) must be a set-label of one vertex of \(G \).

Proof. If possible, let \(\{0\} \) is not the set-label of a vertex in \(G \). Since \(X \) is the set of non-negative integers, it contains at least one element, say \(x \) which is not the sum of any two elements in \(X \). Hence, \(\{x\} \) can not be the set-label of any edge of \(G \). This is a contradiction to the hypothesis that \(f \) is an integer additive set-graceful labeling.

Remark 2.4. If \(f : V(G) \to \mathcal{P}(X) - \{\emptyset\} \) is an integer additive set-graceful labeling on a given graph \(G \), then the ground set \(X \) must contain the element 0.

Observation 2.5. Let \(f : V(G) \to \mathcal{P}(X) - \{\emptyset\} \) be an integer additive set-graceful labeling on a given graph \(G \). Then, the vertices of \(G \), whose set-labels, containing the element 0, are not the sumsets of subsets of \(x \) must be adjacent to the vertex \(v \) that has the set-label \(\{0\} \).

Proof. let \(A_i \subset X \), containing the element 0, is the set-label of a vertex say \(v_i \) of \(G \). If \(A_i \) is not a sumset of two subsets of \(X \), then \(A_i \) is a set-label of a vertex of \(G \) if it is adjacent to the vertex \(v \) with set-label \(\{0\} \).

Proposition 2.6. Let \(x_i \) be a non-zero element of \(X \), which is not the sum of two elements in \(X \). Then, the vertex with the set-label \(\{x_i\} \) must be adjacent to the the vertex having the set-label \(\{0\} \).

Proof. Let \(x_i \in X \) is not the sum of any two elements in \(X \). Since, \(f \) is an integer additive set-graceful labeling, \(\{x_i\} \) must be the set-label of one edge, say \(e \) of \(G \). This possible only when one end vertex of \(e \) has the set-label \(\{0\} \) and the other end vertex has the set-label \(\{x_i\} \).

Corollary 2.7. Let \(f : V(G) \to \mathcal{P}(X) - \{\emptyset\} \) be an integer additive set-graceful labeling on a given graph \(G \) and let \(x_1 \) and \(x_2 \) be the minimal and second minimal non-zero element of \(X \). Then, the vertices of \(G \) that have the set-labels \(\{x_1\} \) and \(\{x_2\} \), must be adjacent to the vertex \(v \) that has the set-label \(\{0\} \).

Proof. Since \(x_1 \) and \(x_2 \) are the two minimal elements of \(X \), they are not the sum of any two elements in \(X \). Then by Proposition 2.6, the vertices of \(G \) that have the set-labels \(\{x_1\} \) and \(\{x_2\} \), must be adjacent to the vertex \(v \) that has the set-label \(\{0\} \).
Proposition 2.8. Let G be an iasg-graph. Then, there are at least $1 + 2^{n-1}$ vertices of G adjacent to the vertex having the set-label $\{0\}$, where n is the cardinality of the ground set X. That is, at least $2^{|X|-1} + 1$ edges incident on the vertex that is labeled by $\{0\}$.

Proof. Let G be an integer additive set-graceful graph. Then, by Proposition 2.5, the vertices of G whose set-labels contain the element 0 must be adjacent to the vertex, say v, having set-label $\{0\}$.

Let $X_i \subset X$ which contains the element 0 and $X_i \neq \{0\}$. Then, X_i is a set-label of an edge e of G if and only if one end vertex of e is v and the other end vertex has the set-label X_i. Note that the number of subsets of X that contain 0 is $2^n - 1$. Hence, the number of vertices whose set-labels contain 0 and are adjacent to the vertex with set-label $\{0\}$ is $2^n - 1$. Also, by Proposition 2.7, the vertex with set-label $\{x_1\}$ and the vertex with set-label $\{x_2\}$, where x_1 and x_2 are the minimal and the second minimal non-zero elements of X, are also adjacent to v. Therefore, the minimum number of edges that are adjacent to v is $2 + (2^n - 1) = 1 + 2^{n-1}$.

Proposition 2.9. Let $f : V(G) \rightarrow P(X) - \{\emptyset\}$ be an integer additive set-graceful labeling on a given graph G and let x_n be the maximal element of X. Then, x_n is an element of the set-label of a vertex v of G if v is a pendant vertex that is adjacent to the vertex labeled by $\{0\}$.

Proof. Let v be a vertex of G that has a set-label containing x_n. If v is adjacent to a vertex, say u, with a set-label containing a non-zero element, say x_1, then $f^+(uv)$ contains the element $x_n + x_1$ which is not an element of X, which is a contradiction to the hypothesis that G is an iasg-graph.

Proposition 2.10. Let A_i and A_j are two distinct subsets of the ground set X and let x_i and x_j be the maximal elements of A_i and A_j respectively. Then, A_i and A_j are the set-labels of two adjacent vertices of an iasg-graph G is that $x_i + x_j \leq x_n$, the maximal element of X.

Proof. Let v be a vertex of G that has a set-label A_i whose maximal element x_i. If v is adjacent to a vertex, say u, with a set-label A_j whose maximal element is x_j, then $f^+(uv)$ contains the element $x_i + x_j$. Therefore, $x_i + x_j \in X$. Hence, $x_i + x_j \leq x_n$.

Corollary 2.11. If G is a graph without pendant vertices, then no vertex of G can have a set-label consisting of the maximal element of the ground set X.

5
Remark 2.12. Invoking the above results, we note that the vertex with the set-label \{0\} has the maximum degree in \(G\).

The following results establish the relation between the size of an iasg-graph and the cardinality of its ground set.

Theorem 2.13. A graph \(G\) admits an integer additive set-graceful labeling, then it has even number of edges.

Proof. Let \(f\) be an integer additive set-graceful labeling defined on \(G\). Then, \(f^+(E(G)) = \mathcal{P}(X) - \{\emptyset, \{0\}\}\). Therefore, \(|E(G)| = |\mathcal{P}(X)| - 2 = 2^{|X|} - 2 = 2(2^{|X| - 1} - 1).\)

Theorem 2.14. Let \(G\) be an iasg-graph, with an integer additive set-graceful labeling \(f\). Then, the cardinality of the ground set \(X\) is \(\log_2(|E(G)| + 2)\).

Proof. Let \(G\) be an iasg-graph. Due to theorem \[2.13\]

\[
|E(G)| = 2^{|X|} - 2 \\
|E(G)| + 2 = 2^{|X|} \\
\therefore \log_2(|E(G)| + 2) = |X|
\]

This completes the proof.

The conditions for certain graphs and graph classes to admit a integer additive set-graceful labeling are established in following discussions.

Theorem 2.15. A star graph \(K_{1,m}\) admits an integer additive set-graceful labeling if and only if \(m = 2^n - 2\) for any integer \(n > 1\).

Proof. Let \(v\) be the vertex of degree greater than 1. Let \(m = 2^n - 2\) and \(\{v_1, v_2, \ldots, v_m\}\), be the vertices in \(K_{1,m}\) which are adjacent to \(v\). Let \(X\) be a set of non-negative integers containing 0.

First, assume that \(K_{1,m}\) admits an integer additive set-graceful labeling, say \(f\). Then, by Theorem \[2.13\] \(|E(G)| = m = 2^{|X|} - 2\). Therefore, \(m = 2^n - 2\), where \(n = |X| > 1\).

Conversely, assume that \(m = 2^n - 2\) for some integer \(n > 1\). Label the vertex \(v\) by the set \(\{0\}\) and label the remaining \(m\) vertices of \(K_{1,m}\) by the remaining \(m\) distinct non-empty subsets of \(X\). Clearly, this labeling is an integer additive set-graceful labeling for \(K_{1,m}\).
Figure 2 illustrates the admissibility of the star graph $K_{1,6}$.

The following theorem checks whether a tree can be an iasg-graph.

Proposition 2.16. If a tree on m vertices admits an integer additive set-graceful labeling, then $1 + m = 2^n$, for some positive integer $n > 1$.

Proof. Let G be a tree on m vertices. Then, $|E(G)| = m - 1$. Assume that G admits an integer additive set-graceful labeling, say f. Then, by Theorem 2.13 for a ground set X of cardinality n,

\begin{align*}
 m - 1 &= 2^{|X|} - 2 \\
 m + 1 &= 2^{|X|} \\
 m + 1 &= 2^n.
\end{align*}

\[\square\]

Corollary 2.17. Let G be a tree on m vertices. For a ground set X, let $f : V(G) \to \mathcal{P}(X)$ be an integer additive set-graceful labeling on G. Then, $|X| = \log_2(n + 1)$.

Proof. By Theorem 2.16, $m + 1 = 2^{|X|} \Rightarrow |X| = \log_2(n + 1)$.

\[\square\]

Theorem 2.18. A tree G is an iasg-graph if and only if it is a star $K_{1,2^n-2}$, for some positive integer n.

7
Proof. If $G = K_{1,2^n-2}$, then by Theorem 2.15, G admits an integer additive set-graceful labeling. Conversely, assume that the tree G on m vertices admits an integer additive set-graceful labeling, say f with respect to a ground set X of cardinality n. Therefore, all the $2^n - 1$ non-empty subsets of X must be required for labeling the vertices of X. Also, note that $0 \in X$ and $\{0\}$ can not be a set-label of any edge of G. Hence, all the remaining $2^n - 2$ non-empty subsets of X are required for the labeling the edges of G.

Clearly, the vertices, whose set-labels containing 0, must be adjacent to the vertex v which has the set-label $\{0\}$. The number of vertices of G that have set-labels containing 0 is $2^n - 1$.

Also, by Proposition 2.9, the vertices, whose set-labels containing the maximal element x_n of X must also be adjacent to the vertex labeled by $\{0\}$. Also, note the number of vertices of G that have set-labels containing x_n is $2^n - 1$.

The number of set-labels that have both 0 and x_n is $2^n - 2$. Hence, the number of vertices that must be adjacent to v is $2^{n-1} + 2^{n-1} - 2^{n-2} = 2^{n-2}$. Let X_i be a subset of X which contains either 0 or x_n and let v_i be the vertex of G that has the set-label X_i. Then, the set-label of the edge vv_i is also X_i. Let X_j be a subset of X that contains neither 0 nor x_n. Then, if we label a vertex v_j, not adjacent to v, by X_j, subject to the condition provided in 2.10, no edge of G can have the set-label X_j. Hence, all vertices of G with non-empty subsets of X as set-labels must be adjacent to the vertex v. Hence G is a star graph $\deg(v) = 2^n - 2$.

We now check the admissibility of integer additive set-graceful labeling by path graphs and cycle graphs.

Corollary 2.19. For a positive integer $m > 2$, the path P_m does not admit an integer additive set-graceful labeling.

Proof. Every path is a tree and no path other than P_2 is a star graph. Hence, by Theorem 2.18, P_m, $m > 2$ is not an iasg-graph.

Proposition 2.20. For any positive integer $m > 3$, the cycle C_m does not admit an integer additive set-graceful labeling.

Proof. Let X be a ground set with n elements. Since C_m has m edges, by Theorem 2.13,

$$m = 2^n - 2 \quad (2.0.1)$$

Since C_m has no pendant vertices, by Proposition 2.9, the maximal element, say x_n, will not be an element of any set-label of the vertices of C_m. Therefore,
only \(2^{n-1} - 1\) non-empty subsets of \(X\) are available for labeling the vertices of \(C_m\). Hence,

\[m \leq 2^{n-1} - 1 \quad (2.0.2) \]

Clearly, Equation \(2.0.1\) and Equation \(2.0.2\) do not hold simultaneously. Hence, \(C_m\) does not admit an integer additive set-graceful labeling.

An interesting question we need to address here is whether complete graphs admit integer additive set-graceful labeling. We investigate the conditions for a complete graph to admit an integer additive set-graceful labeling and based on these conditions check whether the complete graphs are \(iasg\)-graphs.

Theorem 2.21. A complete graph \(K_m\), does not admit an integer additive set-indexer.

Proof. Since \(K_2\) has only one edge and \(K_3\) has three edges, by Theorem \(2.13\) \(K_1\) and \(K_2\) do not have an integer additive set-graceful labeling. So we need to consider the complete graphs on more than three vertices.

Assume that a complete graph \(K_m, m > 3\) admits an integer additive set-graceful labeling. Then, by Theorem \(2.13\)

\[|E(G)| = \frac{m(m-1)}{2} \]

\[2^{|X|} - 2 = \frac{m(m-1)}{2} \]

\[2^{|X|-1} - 1 = \frac{m(m-1)}{4}. \]

Since \(|X| > 1\), \(2^{|X|-1} - 1\) is a positive integer. Hence, \(m(m-1)\) is a multiple of 4. This is possible only when either \(m\) or \((m-1)\) is a multiple of 4.

Since \(|X| > 1\), \(2^{|X|-1} - 1\) is a positive odd integer. Hence, for an odd integer \(k\), either \(m = 4k\) or \(m - 1 = 4k\). Therefore, \(2^{|X|-1} - 1 = \frac{4k(4k-1)}{4} = k(4k-1)\) or \(2^{|X|-1} - 1 = \frac{4k(4k-1)}{4} = k(4k+1)\). That is, \(2^{|X|-1} = 1 + k(4k \pm 1)\).

That is, a complete graph \(K_m\) admits an integer additive set-graceful labeling, if, there exist an integral solution for the equation

\[4k^2 \pm k + 1 = 2^n \quad (2.0.3) \]

where \(k\) is an odd non-negative integer and \(n > 3\) be a positive integer.

Since we can not find an odd integer \(k\) satisfying Equation \(2.0.3\), \(K_m\) does not admit an integer additive set-graceful labeling. \(\square\)
Since all graphs are not iasg-graphs in general, it is necessary to find the condition for a graph to admit an integer additive set-graceful labeling. The following results answers the questions regarding the admissibility of an integer additive set-graceful labeling by a graph.

Theorem 2.22. An iasg-graph \(G \) has at least \(2^{|X|} - 1 - \mu \) pendant vertices which are adjacent to the vertex having the set-label \(\{0\} \) and degree \(1 + 2^{n_1 - 1} \), \(\mu \) is the number of subsets of \(X \) containing the maximal element of \(X \), which are sumsets of two subsets of \(X \).

Proof. By Proposition 2.9 the vertices of \(G \), whose set-labels contain the maximal element \(x_n \) of \(X \), are pendant vertices and must be adjacent to the vertex having set-label \(\{0\} \). The number of subsets containing the elements \(x_n \) is \(2^{n_1 - 1} \). But all the subsets of \(X \) containing \(x_n \) need not be the set-labels of the vertices of \(G \).

Let \(X_r \) be a subset of \(X \) that contains the element \(x_n \). \(X_r \) need not be the set-label of any vertex of \(G \) if there exist two set-labels \(X_i \) and \(X_j \) of two vertices \(v_i \) and \(v_j \) respectively, such that the sumset \(X_i + X_j = X_r \). Let \(\mu \) be the number of subsets of \(X \) containing \(x_n \), which are sumsets of two subsets of \(X \). Hence, the minimum number of pendant vertices in \(G \) is \(2^{n_1 - 1} - \mu \).

The converse of Theorem 2.22 is also true. Hence, we have,

Theorem 2.23. A graph \(G \) admits an integer additive set-graceful labeling if and only if it has at least \(2^{|X|} - 1 - \mu \) pendant vertices which are adjacent to the vertex having the set-label \(\{0\} \) and degree \(d(V) = 1 + 2^{n_1 - 1} \), where \(\mu \) is the number of subsets of \(X \) containing the maximal element of \(X \), which are sumsets of two subsets of \(X \).

Proof. Necessary part of the theorem follows from Theorem 2.22.

Conversely, assume that a graph \(G \) has \(2^{|X|} - 1 - \mu \) pendant vertices which are adjacent to the vertex \(v \), where \(\mu \) is the number of subsets of \(X \) containing the maximal element of \(X \), which are sumsets of two subsets of \(X \). Label the vertex \(v \) by \(\{0\} \).

Now, \(X \) has \(2^{|X|} - 1 \) subsets containing the maximal element \(x_n \) of \(X \) among which \(\mu \) are sumsets of some subsets of \(X \). Hence, assign subsets of \(X \) containing \(x_n \), that is not a sumset of two subsets of \(X \), to the pendant vertices of \(G \) which are adjacent to \(v \). Now, label other vertices of \(G \) satisfying the conditions mentioned in Propositions 2.10, 2.9, and 2.5. This labeling is an integer additive set-graceful labeling for \(G \).
3 Conclusion

In this paper, we have discussed an extension of set-graceful labeling of graphs to sum-set labelings and have done a characterisations based on this labeling. Certain problems in this area are still open.

We note that the admissibility of integer additive set-indexers by the graphs by the graphs depends upon the nature of elements in X. A graph may admit an IASGL for some ground sets and may not admit an IASGL for some other ground sets. Hence, choosing a ground set is very important to discuss about $iasg$-graphs.

Some of the areas which seem to be promising for further studies are listed below.

Problem 3.1. Characterise different graph classes which admit integer additive set-graceful labelings.

Problem 3.2. Verify the existence of integer additive set-graceful labelings for different graph operations and graph products.

Problem 3.3. Analogous to set-sequential labelings, define integer additive set-sequential labelings of graphs and its properties.

Problem 3.4. Characterise different graph classes which admit integer additive set-sequential labelings.

Problem 3.5. Verify the existence of integer additive set-sequential labelings for different graph operations and graph products.

The integer additive set-indexers under which the vertices of a given graph are labeled by different standard sequences of non negative integers, are also worth studying. All these facts highlight a wide scope for further studies in this area.

References

[1] B D Acharya, Set-Valuations and Their Applications, MRI Lecture notes in Applied Mathematics, The Mehta Research Institute of Mathematics and Mathematical Physics, New Delhi, 1983.

[2] B D Acharya, Set-Indexers of a Graph and Set-Graceful Graphs, Bull. Allahabad Math. Soc., 16(2001), 1-23.
[3] B D Acharya and K A Germina, *Strongly Indexable Graphs: Some New Perspectives*, Adv. Modeling and Optimisation, *15*(1)(2013), 3-22.

[4] B D Acharya, K A Germina, K L Princy and S B Rao, (2008). *On Set-Valuations of Graphs*, In *Labeling of Discrete Structures and Applications*, (Eds.: B D Acharya, S Arumugam and A Rosa), Narosa Publishing House, New Delhi.

[5] B D Acharya, K A Germina and Kumar Abhishek and P J Slater, (2012). *Some New Results on Set-Graceful and Set- Sequential Graphs*, Journal of Combinatorics, Information and System Sciences, *37*(2-4), 145-155.

[6] B D Acharya and S M Hegde, (1985). *Set-Sequential Graphs*, Nat. Acad. Sci. Letters, *8*(12)(1985), 387-390.

[7] Tom M Apostol, *Introduction to Analytic Number Theory*, Springer-Verlag, New York, (1989).

[8] J A Bondy and U S R Murty, (2008). *Graph Theory*, Springer.

[9] A Brandstädt, V B Le and J P Spinard, (1999). *Graph Classes:A Survey*, SIAM, Philadelphia.

[10] D M Burton, *Elementary Number Theory*, Tata McGraw-Hill Inc., New Delhi, (2007).

[11] G Chartrand and P Zhang, (2005). *Introduction to Graph Theory*, McGraw-Hill Inc.

[12] N Deo, (1974). *Graph Theory with Applications to Engineering and Computer Science*, PHI Learning.

[13] J A Gallian, (2011). *A Dynamic Survey of Graph Labelling*, The Electronic Journal of Combinatorics (DS 16).

[14] K A Germina, (2011). *Set-Valuations of a Graph & Applications*, Final Technical Report, DST Grant-In-Aid Project No.SR/S4/277/05, The Dept. of Science and Technology (DST), Govt. of India.

[15] K A Germina and Kumar Abhishek, (2012). *Set-Valued Graphs I*, IS-PACS Journal of Fuzzy Set Valued Analysis, 2012, Article IDjfsva-00127, 17 pages.

[16] K A Germina and T M K Anandavally, (2012). *Integer Additive Set-Indexers of a Graph: Sum Square Graphs*, Journal of Combinatorics, Information and System Sciences, *37*(2-4), 345-358.
[17] K A Germina, N K Sudev, *Some New Results on Strong Integer Additive Set-Indexers*, Communicated.

[18] F Harary, (1969). *Graph Theory*, Addison-Wesley Publishing Company Inc.

[19] S M Hegde, *On Set-Valuations of Graphs*, Nat. Acad. Sci. Letters, Vol. 14(4)(1991), 181-182.

[20] A Rosa, (1967). *On certain valuation of the vertices of a graph*, In *Theory of Graphs*, Gordon and Breach, New York and Dunod, Paris, [Proceedings of the International Symposium held in Rome].

[21] S B Rao and K A Germina, (2011). *Graph Labelings and Complexity Problems: A Review* in *Graph Theory Research Directions* (Eds: Pratima Panigrahi and S B Rao), Narosa Publishing House, New Delhi.

[22] N K Sudev and K A Germina, (2014). *On Integer Additive Set-Indexers of Graphs*, Int. J. Math. Sci.& Engg. Applications, 8(2), .

[23] R J Trudeau, (1993). *Introduction to Graph Theory*, Dover Pub., New York.

[24] D B West, (2001). *Introduction to Graph Theory*, Pearson Education Inc.