INTRODUCTION

Immune system of our body plays a crucial role, as an overactive immune system may lead to certain fatal disease because of various hypersensitive or allergic reactions which may cause numerous derangements; loss of normal capacity to differentiate self from non-self resulting in immune reactions against our own’s cells and tissues called autoimmune diseases. Certain common autoimmune diseases like myasthenia gravis, serum sickness, pernicious anemia, reactive arthritis etc., are the severe issues for medical and pharmaceutical community because of unknown etiology [1]. According to WHO, 0.3-1% of the world population is affected from rheumatoid arthritis (RA) and among them females are three times more prone to the disease as compared to males [2]. RA is a chronic, inflammatory, and systemic autoimmune disease [3]. The primary symptoms of RA include pain, swelling, and destruction of cartilage and bone as a result of which permanent disability occur. Although the exact etiology is unknown but several hypotheses said that it is triggered by the combination of genetic predisposition and exposure to environmental factors like viruses [4]. The exact pathophysiology is still unknown but release of certain free radicals such as nitrous oxide and superoxide radicals generated as by-products of cellular metabolism. The release of such free radicals may induce the production of interleukins (IL) and tumor necrosis factor (TNF-α) from T-cells which ultimately influence the production of growth factors, cytokines and adhesive molecules on immune cells as such factors may cause tissue destruction and inflammation [5]. Pathological changes in RA are hyperplasia of synovial membrane, infiltration of inflammatory cells and neovascularization, which results into cartilage erosion and articular destruction [3].

The goal of treatment for rheumatoid arthritic patients is to eliminate symptoms, slow disease progression, and optimize quality-of-life [6]. Therefore, before starting the treatment of RA certain goals must be kept in mind such as relief of analgesia, reduction of inflammation, protection of...
articular structure, maintenance of function, and control of systemic involvement [5]. Presently for the treatment of RA, strategies have changed from traditionally used non-steroidal anti-inflammatory drugs (NSAIDs) or disease modifying antirheumatic drugs (DMARDs) to novel biological agents, like TNF monoclonal antibody. Clinically, the treatment of RA includes five strategies. The foremost approach is the use of NSAIDs followed by mild doses of glucocorticoids to minimize the signs of inflammation as well as progression of disease. In chronic patients, the use of DMARDs such as methotrexate, sulfasalazine, gold salts or D-penicillamine can be included in the treatment. In certain cases, TNF-α neutralizing agents like infliximab, etanercept etc; IL-1 neutralizing agents like anakinra; and the drugs which interfere with T-cell activation such as abatacept can also be included in treatment of chronic cases. Finally, immunosuppressive and cytotoxic drugs such as cyclosporine, azathioprine, and cyclophosphamide are used for the treatment of chronic patients [5,7,8]. The above-mentioned therapeutic agents reduce the inflammation and joint destruction but their long-term risks are still unknown. However, long-term risks of drugs includes gastrointestinal ulcers, cardiovascular complications, hematologic toxicity, nephrotoxicity, pulmonary toxicity, myelosuppression, hepatic fibrosis, stomatitis, cirrhosis, diarrhea, immune reactions, and local injection-site reactions. Moreover, higher costs and side effects which include high risks of infections and malignancies requires continous monitoring [1].

Herbal Therapy for the Treatment of Arthritis

Herbal medicines are used for the treatment of various ailments from ancient times and it is not an exaggeration to say that the use of the herbal drugs is as old as mankind [9]. Herbal medicines are synthesized from the therapeutic experience of generation of practicing physicians of ancient system of medicine for more than hundreds of years [10]. Nowadays, researcher shows a great interest in those medicinal agents that are derived from plants because the currently available drugs are either have certain side effects or are highly expensive [11]. Nature has blessed us with enormous wealth of herbal plants which are widely distributed all over the world as a source of therapeutic agents for the prevention and cure of various diseases [12]. According to WHO, world’s 80% population uses herbal medicines for their primary health care needs. Herbal medicines will act as parcels of human society to combat disease from the dawn of civilization [13]. The medicinally important parts of these herbal plants are chemical constituents that produce a desired physiological action on the body [14].

Since ancient time India uses herbal medicines in the officially alternative systems of health such as Ayurveda, Unani, Sidha, Homeopathy, and Naturopathy [15]. In India, there are more than 2500 plants species which are currently used as herbal medicaments. For than 3000 years, the herbal medicines are used either directly as folk medication or indirectly in the preparation of recent pharmaceuticals [16]. Thus, from the knowledge of traditional plants, one might be able to discover new effective and cheaper drugs [17]. In this review article, we have tried to cover all the ayurvedic strategies that are followed for the treatment of RA without any possible side effects. The future treatment of RA should provide more effective relief [5].

MATERIALS AND METHODS

In this review, bibliographic investigation was carried out during July 2011-December 2013, by refering various text books and certain review papers and research papers, consulting globally accepted databases from last some decades. The data were gathered from various databases i.e. Science Direct, PubMed, and Google and the information is compiled by reviewing more than 250 research and review articles. The data which are relevant would be considered. The botanical correct names and families were mentioned after verification from published literature and databases.

The method of scrutinizing the data for this review article includes those plants: (i) Which are native to India and other countries such as America, Africa or Europe, (ii) used in traditional systems and in various polyherbal preparations, (iii) with reported anti-arthritic activity, (iv) appropriate dosage, (v) mechanism of action, (vi) safety profile, and (vii) models used. Plants/their parts/extracts used traditionally in acute rheumatic attacks, chronic analgesia, and chronic rheumatism have been considered as anti-arthritic agents. Further, detailed information on research status of 20 plant species has been explained.

Polyherbal Formulations for Arthritis

Analgesics and NSAIDs are helpful in reducing pain and inflammation in either acute or chronic RA patients [18]. Although the treatment of RA is available but due to potential adverse effects or irreversible organ damage the new approaches are developed for maintaining the balance between these potential risks and acknowledged benefits [19]. Currently for the treatment of RA safer and more potent medicaments are developed from oriental sources. Large number of herbal extracts and products such as polyherbal formulations are prepared to reduce such side effects and increase the benefits [18].

Rheum off Gold is a polyherbal formulation that is commonly recommended by Ayurvedic medical practitioners for the treatment of arthritis. The anti-arthritic activity was confirmed on complete Freund’s adjuvant (CFA) induced arthritis model in wistar rats and it was observed that significant reduction in arthritis index, paw thickness and inflammatory markers such as C-reactive protein, serum rheumatoid factor and erythrocyte sedimentation rate (ESR) when compared with dexamethasone. Thus, the formulation possesses a potential anti-arthritic activity [20].

A Unani polyherbal formulation was evaluated for its anti-arthritic activity in rats. The anti-arthritic efficacy of Manjoon Suranj was evaluated using formaldehyde and CFA induced arthritis models. The data obtained suggested the anti-arthritic activity of the formulation [21].
Evaluation of Sudard as a potent anti-arthritic polyherbal formulation was studied using formaldehyde and adjuvant induced arthritis models in wistar rats. The formulation at the doses of 150 mg/kg and 300 mg/kg p.o. proves to have an anti-inflammatory and anti-arthritic activity [22].

Anti-arthritic potential of Tongbiling (TBL-II) which was prepared by some modification in Chinese herbal formulation TBL. The anti-arthritic efficacy of formulation was studied using the collagen induced arthritis model in wistar rats and it was revealed that at the doses of 100 and 300 mg/kg p.o. the levels of IL-1β and TNF-α was significantly reduced. Thus it was concluded that the formulation have an anti-arthritic potential [23].

Chinese herbal formula HLXL was used in the treatment from last hundred years for the treatment of inflammation and arthritis. Moreover, after certain modifications in HLXL herbal formulation it was evaluated for its anti-arthritic property using CFA model in rats. It was concluded that the polyherbal formulation shows an anti-arthritic activity through significant inhibition of paw edema and levels of TNF-α and IL-β [24].

The therapeutic effect of Ganghwaljetongyreum on RA in rabbit knee synovial membrane was evaluated. It was observed that there would be significant inhibition of proliferation of HG-82 cells which shows that the polyherbal formulation have an anti-arthritic activity. Moreover, there was significant reduction in TNF-α, IL-10 and NO species [18]. Various polyherbal formulations are described in Table 1.

RESULTS

About more than 350 articles were reviewed. More than 20 articles were studied for searching the traditional use of plants in arthritis [Table 2]. Around 108 articles were referred for citing the proved anti-inflammatory and anti-arthritic activities of plants along with mechanism of action, acute toxicity profile, and doses [Table 3].

The detailed information on research status of following 20 plant species was gathered from multiple references.

Alstonia scholaris Linn. (AS)(Family-Apocynaceae)

AS is commonly known as saptaparni or devil’s tree, widely distributed in dried forests of India as Western Himalayas, Western Ghats, and in the southern region. AS is a medium to large tree about 40 m high with a somewhat tessellated corky grey to grey-white bark [25]. Traditionally, bark of AS is used in the treatment of rheumatism, malarial fevers, abdominal disorders, leprosy, asthma, bronchitis, puritis, and chronic ulcers [12]. Milky juice is mixed with oil and was applied in rheumatic pains. The chief alkaloids present in AS are echitaine, tubotaiwine, akaumnicine, echitamidine, picrinine, and strictamidine. AS flowers also contains amino acids, carbohydrates, phenol, tannins, cardiac glycosides, saponins, flavanoids, steroids, fixed oil, and fats [26]. The plant showsimmune-stimulatory, hepatoprotective [27], anti-cancer [28], anti-plasmodial [29], and anti-hypertensive [30] activities. Extract of AS possess an anti-diabetic, anti-hyperlipidemic [31], anti-bacterial [32], anti-inflammatory, analgesic [33], antioxidant [27], immunostimulant [34], anti-cancer [35], anti-asthmatic [36], hepatoprotective [37], and anti-anxiety activity [12,25,38]. The ethanolic extract of AS leavesat doses of 100 and 200 mg/kg confirmed anti-arthritic activity in male wistar rats. The anti-arthritic activity was mainly by reducing the total leukocyte migration as well as lymphocytes and monocytes/macrophages migration. It can be concluded that AS shows an anti-arthritic activity on male wistar rats [39].

Aristolochia bractaeta Lam. (AB)(Family-Aristolochiaeae)

AB commonly known as worm killer or kidamari is a shrub found in Deccan Gujarat, western and southern India, Bihar, Sindh, and Bengal [16]. Traditional use of AB was found in gonorrhea, syphilis, inflammation, ulcer, amenorrhea, skin disease, dermatitis, leprosy, jaundice, and helminthiasis [16]. The major chemical constituents of the AB are alkaloids, triterpenoids, steroids, flavonoids, saponins, carbohydrates, proteins, and cardiac glycosides [40,41]. The studies of extract have shown anti-pyretic [42], anti-allergic [43], anti-inflammatory, anti-arthritic [1], anti-ulcer [44], anti-fungal [45], anti-microbial [46], antioxidant [47], wound healing [48], anti-implantation, and abortificient activities [49]. The petroleum ether, methanol, and chloroform extract of whole plant of AB possess comparable anti-arthritic activity at doses of 100, 200, and 400 mg/kg body weight. AB revealed anti-arthritic activity by maintaining the synovial membrane and vascular permeability thus inhibiting cytokines and leukotriene infiltration. In conclusion, AB possesses an anti-arthritic effect on wistar albino rats of either sex [1].

Boerhaavia diffusa Linn. (BD)(Family-Nyctagineae)

BD is found all over India especially during rain. Two varieties of BD are explored, one with white flowers called “shwethpurna” and other flowers called “raktapurna.” The medicinally important part is root (MateriaMedica, 1982). BD is traditionally significant due to their laxative, diuretic, expectorant, diaphoretic, and emetic properties [50]. A paste made up of roots together with Colchicum, Solanum nigrum, Tamarind stone, Stag’s horn and dried ginger, all in equal parts, are used in rheumatic and gouty painful joints. Root is used as powder in drachm doses or decoction or infusion for the treatment of inflammatory disorders like arthritis. Chakradatta used it in the treatment of chronic alcoholism and various other ailesments i.e. phthisis, insomimia, and rheumatism [51]. The air-dried plant was found to contain large quantities of potassium nitrate and also contains an alkaloid, panarnavine, present in very small quantity of 0.01%. Recent investigations reported that BD possess an antistress, adaptogenic [52], antioxidant [53], immunesuppressive [54], anti-carcinogenic [55], hepatoprotective [56,57], diuretic [58], anti-diabetic [59], anti-viral [60], and anti-inflammatory
Product name	Ingredients	Botanical name	Quantity	Manufactured by
Rumalaya forte - Tablet	Shallaki	Boswellia serrata	240 mg	Himalaya Global Holdings Ltd.
	Camphor	Cammiphora wightii	200 mg	
	Rasna	Alpinia galangal	70 mg	
	Yashimadhu	Glycyrrhiza glabra	70 mg	
	Gokshura	Tribulus terrestris	60 mg	
	Guduchi	Tinospora cordifolia	60 mg	
	Nirgundi	Vitex negundi	60 mg	
	Sunth	Zinger officinalis	60 mg	
Rumalaya - Liniment	Bakuchi	Psoralea caryofolia	35 mg	Himalaya Global Holdings Ltd.
	Maricha	Piper nigrum	35 mg	
	Karpura	Cinnamonum camphor	90 mg	
	Pudina	Mentha arvensis	40 mg	
	Ajamoda	Carum capticum	35 mg	
	Tila	Sasamum indicum	365 mg	
	Gandhapura	Gaultheria fragrantissima	350 mg	
	Sarala	Pinus longifolia	50 mg	
Artha cure - Oil	Clovos	Syzygium aromaticum	50 mg	Be Sure Health Care (P) Ltd.
	Mithazahar	Aconitum ferox	25 mg	
	Kutlip	Strychnos nux vomica	25 mg	
	Garlic	Allium sativum	50 mg	
	Akasbel	Cuscuta reflexa	50 mg	
	Jatiphalam	Myristica fragrans	50 mg	
Arthcure - Capsule	Khorpad	Aloe vera	50 mg	Be Sure Health Care (P) Ltd.
	Hiranya-tuttha	Colchicum leuteum	50 mg	
	Nisoth	Opeculina terpetheum	50 mg	
	Shonpat	Crotalaria juncea	50 mg	
	Pippali	Piper longum	50 mg	
	Jatiphalam.	Myristica fragrans	50 mg	
	Clovos	Syzygium aromaticum	50 mg	
	Sonth	Zingiber officinale	50 mg	
	Asphalt	Black bitumen	25 mg	
	Mahayogaraja guggulu	Commipora mukul	25 mg	
	Mithzahar	Aconitum ferox	25 mg	
	Kutlip	Strychnos nux vomica	25 mg	
	Ashvagandha	Withania sonnifera	50 mg	
	Shatavari	Asparagus racemosus	50 mg	
	Garlic	Allium sativum	50 mg	
	Akasbel	Cuscuta reflexa	50 mg	
Rheumartho gold - Capsule	Suranjan kadwi	Colchicum luteum	60 mg	Baidyanath
	Asgandh	Withania sonnifera	60 mg	
	Shodhit kuchla	Strychnos nux vomica	50 mg	
	Salai guggul	Boswellia serrata	215 mg	
	Maharasrnadi kwath	Ghana sativa	64 mg	
	Abrak bhamma	Biotite calx	5 mg	
	Harsingar	Nytanthes arbor-tristis	30 mg	
	Swarnamakshik bhasma	Calx of copper pyrites	5 mg	
	Yograv guggulu	Commiphora mukul	30 mg	
	Swarn bhasma	Ipomeoa digitata	0.6 mg	
	Loha bhasma	Calx of corat	5 mg	
Ortho joint oil	Vishaqarba taila	Ricinus communis	2.5ml	SBS Biotech Ltd.
	Mahamasha taila	Vign unguiculata	2.5 ml	
	Dalchini taila	Cinnamomum zeylanicum	0.5 ml	
	Gandhapuro	Gaultheria fragrantissima	2.0 ml	
	Camphor	Cinnamomum camphor	100 mg	
	Sat pudina	Menthe arvensis	2.5 mg	
	Narayan taila	Withania sonnifera	2.5 ml	
Rheuma off gold	Maharagajaran guggulu	Commiphora mukul	72 mg	Virgo UAP Pharma (P) Ltd. [20]
	Maharasrnadi kwath	Suvarna bhasma	112 mg	
	Suvarna bhasma	Strychnos nux vomica	1.6 mg	
	Suddha kuchala	Boswellia serrata	9.6 mg	
	Shallaki	4.8 mg		
Majoon suranjan	Kalaparni	Ipomea turpethum	445 mg	Qarshi herbal products [21]
	Pathya	Terminalalia chelula	223 mg	
	Hiranya-tuttha	Colchicum luteum	223 mg	
	Kakadani	Capparis spinosa	44.5 mg	
	Kustumbari	Coriandrum sativum	44.5 mg	

Contd...
Table 1: Polyherbal formulations

Product name	Ingredients	Botanical name	Quantity	Manufactured by
Fish baries	Rosa damascus	44.5 mg		
Lancaster rose	Plumbago zelanicum	44.5 mg		
Chitra	Zingiber officinalis	44.5 mg		
Sonth	Aloe barbadensis	44.5 mg		
Khorpad	Apium graveolens	33 mg		
Ajmoda	Convolvulus scammony	33 mg		
Sakmunia	Sepia latimanus	33 mg		
Cuttie fish bone	Foeniculum vulgare	33 mg		
Fennel	Lawsonia inermis	33 mg		
Mendhi	Piper nigrum	33 mg		
Black pepper	Sodium chloride	33 mg		
Table salt	Zataria multiflora	33 mg		
Satar	Ricinus communis	33 mg		
Eranda	0.668 mg			
Saccharum base Preservatives				
Huo Luo Xiao Ling Dan (HLXL)	Ruxiang	Boswellia carterii	15 g	[24]
	Qianghuo	Notopterygium incisum	12 g	
	Danggui	Angelica sinensis	12 g	
	Chishao	Paonia lactiflora	12 g	
	Gancao	Glycyrrhiza uralensis	12 g	
	Yanhusuo	Corydalis yanhusuo	12 g	
	Danshen	Salvia miltiorrhiza	12 g	
	Chuanxiong	Ligusticum chuanxiong	12 g	
	Qinjiao	Gentiana macrophylla	12 g	
	Guizhi	Cinnamomum cassia	15 g	
	Duhuo	Angelica pubescens	12 g	
Ganghwaljetongyeum (GHJTY)	Angelicae koreanae	06 mg		[18]
	Atractylodis rhizoma	Atractylodes chinensis	06 mg	
	Manchurian spikenard	Aralia continentalis	04 mg	
	Paonia radix rubra	Paonia obovata	04 mg	
	Stephaniae tetrandrae	Senonium acutum	04 mg	
	Clematidis radix	Clematis mandshurica	04 mg	
	Giant angelica	Angelica gigas	04 mg	
	Hoellen	Poria cocos	04 mg	
	Alismatis rhizoma	Alisma orientale	04 mg	
	Akebiae caulis	Akebia quinata	04 mg	
	Tangerine	Citrus unshiu	04 mg	
	Chaenomelis fructus	Chaenomeles sinensis	04 mg	
	Phellodendri cortex	Phellodendron amurense	03 mg	
	Glycyrrhizae radix	Glycyrrhiza uralensis	02 mg	
	Juncus medulla	Juncus effuses	04 mg	
	Gleditsiae spina	Gleditsia sinensis	04 mg	
	Lonicerae caulis	Lonicera japonica	04 mg	
	Taraxaci herba	Taraxacum platycarpum	04 mg	
Sudard	Guggulu	Commiphora mukul	100 mg	Anglo French Drugs and Industries Ltd, Bangalore, India [22]
	Rasna	Pluchea lanceolata	50 mg	
	Gandha prasarini	Paederia foetida	50 mg	
	Nirundi	Vitex negundo	50 mg	
	Ginger	Zingiber officinalis	50 mg	
	Eranda mula	Ricinus communis	50 mg	
	Chandra sura	Lepidium sativum	30 mg	
	Suranjan	Colchicum luteum	30 mg	
	Dwipantra wacha	Smilax glabra	30 mg	
	Kupifu	Strychnus nuxvomica	10 mg	
	Shilajatu	Mineral pitch	50 mg	
TBL-II	Cinnamomii cassiae	Cinnamomii cassiae	15 g	Zhong-Yue Herbal Pharmaceutical Union Company in China [23]
	Paonieae alba radix	Paonieae alba	30 g	
	Radix aconiti lateralis	Aconiti lateralis	09 g	
	Achyranthes bidentata	Achyranthes bidentata	09 g	
	Celastrus orbiculatus	Celastrus orbiculatus	18 g	
	Millettia reticulata	Millettia reticulata Benth	06 g	

TBL: Tongbiling

activities [61,62]. The petroleum ether extract of roots at dose 1000 mg/kg has been evaluated as anti-arthritic using CFA model and showed 81.5% response as compared to indomethacin [63].
Table 2: Traditionally used anti-arthritic plants

Botanical name	Family	Common name	Part used	Dosage form	References
Abrus precatorius Linn.	Papilionaceae	Indian liquorice, chirmiti, gunchi	L	Oil	(278)
Acacia catechu Willd.	Fabaceae	Mimosas catechu	R	Extract	(279)
Acalypha indica Linn.	Euphorbiaceae	Kuppu, Aritmanjari	L	Juice	(19)
Acanthus ilicifolius Linn.	Acanthaceae	Sea holly, Moranna harikusa	L	Extract	(278)
Achillea millefolium Linn.	Compositae	Rojmani, bloodroot, arrow-root	H	Extract	(280)
Achyranthes aspera Linn.	Acanthaceae	Chirchitta, aghada, prickly chaff-flower	R	Infusion	(281)
Acampe wightiana Lindl.	Orchidaceae	Marabale	Wh	Extract	(278)
Aconitum ferox Wall.	Ranunculaceae	Mithazahar, visha	R, L	Liniment, paste	(51)
Aconitum napellus Linn.	Ranunculaceae	Monk’ hood	R, L	Liniment	(51)
Aconitum palmatum Don.	Ranunculaceae	Bilkma	R	Paste	(51)
Acorus calamus Linn.	Aroideae	Bach, vacha	R	Powder	(51)
Actaea racemosa Don.	Ranunculaceae	Black cohoos	R, Rh	Extract	(51)
Actaea spicata Linn.	Ranunculaceae	Banberry, grapewort	R	Powder	(278)
Adansonia digitata Linn.	Malvaceae	Gorakh amli	L	Poulitices	(19)
Adenthera pavonina Linn.	Leguminosae	Kuchandana	L, B	Decoction	(51)
Adhatoda vasika Nees.	Acanthaceae	Adosa, adarushah	L	Poulitices	(51)
Aegel marmolosa Corr.	Rutaceae	Stone apple, bael	F	Juice	(14)
Aesculus indica Celebr.	Sapindaceae	Bankhor, pankar	F	Oil	(278)
Agave americana Linn.	Agavaceae	American aloe, kantal, bilatipat	L	Paste	(278)
Aghati grandiflora Desv.	Leguminosae	Hathia, agastya	R	Paste	(51)
Agroporyns repons Beauv.	Gramineae	Couch G, quich	Rh	Extract	(278)
Alantins excels Roxb.	Simaroubaceae	Indian tree of heaven	L	Oil, extract	(279)
Alangium lamarkcii Thwaites	Cornaceae	Akola, shodhnam	R, B	Oil	(51)
Allium cepa Linn.	Liliaceae	Onion, palandu	Bu	Paste	(19)
Allium sativum Linn.	Liliaceae	Garlic, lasun	S	Oil	(51)
Alloschica indica Schott.	Aroidae	Manka, aloaka	T	Hot T	(51)
Alpinia galangal Wild.	Scitamineae	Sugandhavacha	Rh	Paste	(51)
Aitonia scholaris R.Br.	Apocynaceae	Dathyuni, saptaparna	Mj	Juice	(39)
Althea rosea Cav.	Malvaceae	Hollyhock, round dock	Fl	Oil	(278)
Ammannia baccifera Linn.	Lythraceae	Dadmari, anu garva	L	Blisters	[2]
Amorphophallus campanulatus Roxb.	Araceae	Zamikand, kandula kandvardhana	S	Oil	(278)
Anaclyys pyrethrum DC.	Compositae	Akarkaro	R	Infusion	(51)
Andropogon citrates DC.	Gramineae	Bhushitrina, true lemon grass	L	Oil, liniment	(51)
Andropogon iwarancusa Roxb.	Gramineae	Lamjak	R	Paste	(51)
Andropogon martini DC.	Gramineae	Grass of nemaur	G	Oil	(51)
Andropogon nardus Linn.	Aroideae	Mithazahar, aloka	L	Oil, decoction	(19)
Aphananixis polystachya Blatter.	Acanthaceae	Alamoolla	L	Oil, decoction	(19)
Apium graveolens Linn.	Umbelliferae	Aimodi, celerly	R	Decoction	(280)
Aquilaria agallocha Roxb.	Thymelaeeae	Aloe-wood, gur	W	Decoction	(51)
Arctium lappa Linn.	Compositae	Garden celerly	L	Infusion	(280)
Argyreia speciosa Sweet.	Convolvulaceae	Elephant creeper	R	Powder	(19)
Aristolochia braetzeta Linn.	Aristolochiaceae	Birthworts, pipevines	Wh	Extract	(1)
Aristolochia serpentaria Linn.	Aristolochiaceae	Virginian snake root	R	Infusion	(282)
Artanema sesamoides Benth.	Scrophulariaceae	Kolikaksha	R	Decoction	(51)
Artemisia absinthium Linn.	Compositae	Indhana, worm-wood	H	Juice	(51)
Asparagus filicinus Ham.	Liliaceae	Allipalli, sansarpal	R	Extract	(278)
Asparagus officinalis Linn.	Liliaceae	Marchubha	R	Powder	(51)
Asparagus racemosus Wild.	Liliaceae	Shattavari	R	Oil	(51)
Asystasia coromandeliana Nees.	Acanthaceae	Lavana-valli	Wh	Juice	(51)
Asystasia gangetica T. Anders.	Acanthaceae	Avokombily, puruk	Wh	Juice	(278)
Atalantia monophyllos DC.	Rutaceae	Wild-lime, atavi-jambira	Be	Oil	(51)
Atropa belladonna Linn.	Solanaceae	Black cherry, sagangur	L, R	Extract	(278)
Atylosia barbata Baker	Leguminosae	Mashaparni	R	Extraction	(51)
Azadirachta indica A. Juss.	Meliaceae	Bakayan, Indian lilac, balnimb	L	Decoction	(278)
Azima tetracantha Lam.	Gramineae	Kuduni	L, R	Decoction	(19)
Bacopa monnieri Penell.	Plantaginaeae	Brahmi	Wh	Extract	(283)
Balsamodendron mukil Hook.	Burseraceae	Guggula, saltaire	Gm	Paste	(51)
Balsamodendron playfairy Hook.	Burseaeceae	Meena-herma	Gm	Paste	(51)
Barleria courtallicca Nees.	Acanthaceae	Wahiti, artagal	R	Decoction	(278)
Barleria cristata Linn.	Acanthaceae	Jhinti, tadrubl	R	Decoction	(51)
Balsamopervum montanum Muell.	Euphorbiaceae	Dantimal, hakum, anukheti	S	Oil	(278)
Bassia butyacea Roxb.	Sapotaceae	Phulwara butter	K	Fat	(51)
Bassia latifolia Roxb.	Sapotaceae	Madhuka, jangli moh	B	Decoction	(51)
Bassia longifolia Linn.	Sapotaceae	Madhuka, mohua	S	Oil	(51)
Table 2: Contd...

Botanical name	Family	Common name	Part used	Dosage form	References
Bassia malabarica	Sapotaceae	Iluppi	F, S	Oil	[51]
Barosma crenulata	Rutaceae	Bucchu, buku	L	Powder	[282]
Bauhinia racemosa	Fabaceae	Bidi leaf tree, kachnial	B	Extract	[14]
Bauhinia tomentosa	Fabaceae	Yellow bell orchid	L	Infusion	[13]
Berberis asiatica	Berberidaceae	Kilmora	St	Decoction	[51]
Berberis petiolaris	Berberidaceae	Chachar, ambar	R	Decoction	[278]
Berberis vulgaris	Berberidaceae	True barberry	St	Decoction	[51]
Bidens pilosa	Compositae	Black jack, phutum	Sh	Young shoots	[278]
Blumea balsamifera	Compositae	Nagal camphor, kakaronda	L	Fumigation	[278]
Blumea ripens	Asteraceae	Red stink wood	S	Oil	[279]
Bula alba	Cupuliferae	White birch bark	L	Extraction	[51]
Boerhaavia diffusa	Nyctaginaceae	Punarnava, thikri	R	Paste	[63]
Boucera parvifolia	Asclepiadaceae	Charungli, chungi pamane	St, Wh	Juice	[278]
Borassus flabellifer	Arecaceae	Toody palm, sugar palm	F	Juice	[14]
Boswellia glabra	Burseraceae	Kapilaparni, lobhan	Gm	Gum	[51]
Boswellia serrata	Burseraceae	Salai gugul	Gm, Rs	Gum	[76]
Brassica campestris	Cruciferae	Wild turnip, bangasarson	S	Oil	[278]
Brassica integrifolia	Cruciferae	Raj, Indian mustard, rajika	S	Oil	[278]
Brassica juncea	Cruciferae	Raj, rajika	S	Oil	[51]
Brassica nepus	Cruciferae	Van dai, onuma	Wh	Extract	[278]
Brassica nigra	Cruciferae	Kalori, sarshapah	S	Oil	[51]
Brassica oleracea	Cruciferae	Cabbage, karamkalla	L	Extract	[278]
Bridelia retusa	Euphorbiaceae	Gay, kajia, assana	B	Oil	[278]
Bryonia epigoea	Cucurbitaceae	Rakas-gaddah, mahamula	R	Powder	[51]
Buxus sempervirens	Euphorbiaceae	Papari	L	Extraction	[51]
Cacenia glauca	Boragineae	Goazaban	L	Extraction	[51]
Cadaba indica	Capparidaceae	Indian cadaba	L	Decoction	[19]
Caesalpinia bonduc	Caesalpiniaeae	Katkaranjan, latakaranja	S	Oil	[51]
Callicarpa macrophylla	Verbenaceae	Sumali	R	Decoction	[51]
Calophyllum apetatum	Guttiferae	Cherupinnal, sarapuna	S	Oil	[51]
Calophyllum inophyllum	Guttiferae	Surpan, punnaga	K	Oil	[19]
Calotropis gigantean	Asclepiadaceae	Gigantic, arka	R	Powder	[51]
Calotropis procera	Asclepiadaceae	Madar	R-B	Extract	[282]
Camphora officinarum	Lauraceae	Camphor, kapur	C	Liniments	[51]
Canarium odoratum	Annonaceae	Kadapanyan, maladi	F	Oil	[282]
Canarium bengalense	Burseraceae	Bjsjang, dhuna, geguldhop	L, B	Extract	[278]
Canarium commune	Burseraceae	Java almond, jangali badam	T	Ointment	[278]
Canarium strictum	Burseraceae	Black damer	Rs	Ointment	[51]
Cannabis sativa	Urticaceae	Ganja, charas	S	Oil	[98]
Canna alba	Cannaeeaeae	Jamaica	B	Oil	[282]
Capparis aphylla	Capparidaceae	Caper plant, karira	R-B	Powder, infusion	[51]
Capparis deciduas	Capparidaceae	Chayruka	L	Extract	[278]
Capparis heyneana	Capparidaceae	Chayruka	L	Decoction	[51]
Capparis spinosa	Capparidaceae	Kabra, kakadani	L	Decoction	[51]
Capuscum annum	Solanaceae	Lal mirchi, spanish pepper	F	Tincture	[51]
Cardiopteranum hylacabum	Linn.	Balloon vine, winter cherry	R, L	Decoction	[284]
Carissa carandas	Apocynaceae	Karamardaka	S	Extract	[279]
Carissa spinarium	Apocynaceae	Karaunda, gama	R	Extract	[278]
Carthamus tinctorius	Compositae	Wild saffron, kamalottara	F	Hot infusion	[51]
Cassia fistula	Caesalpiniceae	Sonhali, nipradumpa	B, L	Paste	[19]
Cassia sophera	Caesalpiniceae	Bas-ki-kasunda	L	Infusion	[51]
Cassia tora	Fabaceae	Charota, taga	L	Infusion	[279]
Cadreia toona	Meliaceae	Toona, khusing	B	Infusion	[51]
Cedrus deodara	Coniferae	Deodar, kilan, geyar	W	Oil	[278]
Cedrus libani	Coniferae	Deodar, devadaru	Gm	Gum	[51]
Celastrus paniculata	Celastraceae	Malakanguni, vanhiruchi	S	Decoction	[19]
Celosia argentia	Amaranthaceae	Panaai keerai	L	Decoction	[13]
Centella asiatica	Mackinlayaceae	Gotu kola	St	Extract	[285]
Cephealis ipicauanua	Rubiaceae	Poaya	R	Extract	[282]
Chenospermum albumi	Rubiaceae	Poaya	R	Extract	[282]
Chloroxylon swietenia	Meliaceae	Bheria, girya, yellow wood	L	Oil	[278]
Circuta virosa	Apiaceae	Cowbane, water hemlock	Wh	Poultec	[282]
Cimicifuga racemosa	Ranunculaceae	Balck snake root, bugbane	R	Extract	[282]
Cinchona calisaya	Rubiaceae	Peruvian bark	B	Infusion	[51]
Cinnamomum camphora	Lauraceae	Camphor laurel	W	Oil	[282]
Cinnamomum cassia	Lauraceae	Dalchini, gudavak	L	Oil	[51]

Contd...
Table 2: Contd...

Botanical name	Family	Common name	Part used	Dosage form	References
Cinnamomum tamala Fr.Nees.	Lauraceae	Cassia lignea, tejpat	L	Extract	(278)
Cinnamomum macrocarpum Hook.	Lauraceae	Dalchini, tejpatra	R, B, L	Oil	(109)
Cinnamomum parthenoxylon DC.	Lauraceae	Kaaway, kayogadis	F	Oil	(278)
Cissus quadrangularis Linn.	Vitaceae	Devil’s backbone	Wh	Extract	(279)
Citrus reticulata	Citrus	L	Oil	(282)	
Citrus reticulata	Citrus	F	Juice	(51)	
Citrus limonum Sp.Rioso.	Rutaceae	Jambha, nimbu	F	Juice	(51)
Cleome brachycarpa Linn.	Capparaceae	Panwar, kasturi	Wh	Extract	(278)
Cleome gynandra	Capparaceae	African cabbage, spiderwisp	Wh	Extract	(286)
Cleome rutidosperma DC.	Cleomeae	Fringed flower	Wh	Decoction	(14)
Clerodendron celebrockianum Walp.	Lamiaceae	Glowyower	Rh	Extract	(279)
Clerodendron inerme Gaertn.	Verbenaceae	Garden quinine, binjoam	R	Liniment	(51)
Clerodendrum phlomides L.f.	Verbenaceae	Agnimantha, jaya	L	Paste	(14)
Clerodendron serratum Spreng.	Verbenaceae	Barangi, baley, angaravalli	R	Decoction	(278)
Clerodendron simpsonanthus R.Br.	Verbenaceae	Bharangi, arnal, chingari	W	Rs	(278)
Citriodora terrae Linn.	Verbenaceae	Butterfly-pea	Wh	Extract	(279)
Cocculus cordifolius Miers.	Menispermaceae	Heart-leaved, gulanche	St, L, R	Infusion	(51)
Cocculus hirsutus Diels.	Menispermaceae	Broom creeper, chireta	R	Infusion	(282)
Cocculus villus DC.	Menispermaceae	Jaliami, faridbel	R	Decoction	(19)
Coctheariaarmoracia Linn.	Cruciferae	Horse-radish	R	Condiment	(282)
Colchicum autumnale Linn.	Melanthaceae	Wild saffron	S	Extract	(282)
Colchicum luteum Baker.	Liliaceae	Golden collyrium, hiranya-tuttha	R	Extract	(51)
Goldenia procumbens Linn.	Boragineae	Tripunkue	L	Extract	(51)
Coptis teeta Wall.	Ranunculaceae	Gold thread, mishamitita	R	Paste	(51)
Corallocarpus epigeeous Rottl. & Willdl.	Curculiaceae	Akasgaddah, karwina, lufa	R	Decoction	(19)
Coriandrum sativum	Umbelliferae	Chicka, bhutamkusam	B	Infusion	(51)
Cotula anthemoides	Compositae	Babuna	R	Infusion	(51)
Cotula anemoides Linn.	Compositae				
Crapeaeuvrifolia Linn.	Lamiaceae	Bhataravarna, biiana	L	Juice	(278)
Crapeaevrigulis H. & H.	Lamiaceae	Three leaved creeper, pashuganda	L	Juice	(51)
Crinum asiaticum Linn.	Amaryllidaceae	Poison bulb, chindar	Bu	Roasted Bu	(51)
Crinum latifolium	Amaryllidaceae	Chakrangi, dadhyani	Bu	Roasted Bu	(278)
Crocus sativus Linn.	Irideae	Sahfron, bhavarakta	Sg	Tincture, infusion	(51)
Crotalaria prostrate Rottler.	Fabaceae	Prostate rattlepod	Wh	Extract	(279)
Croton oblongifolus Rox.	Euphorbiaceae	Chicka, bhutamkusam	B	Infusion	(51)
Croton tigilium Linn.	Euphorbiaceae	Jamalgota, naepala	S	Liniment	(51)
Curcuma longa Linn.	Scitamineae	Turmeric, highd, varnavat	Rh	Powder	(130)
Cymbopogon citrates Stapl.	Gramineae	Melisa grass, ganhadrintra	G	Oil	(278)
Cymbopogon juwancusa Schult.	Gramineae	Ghatyari, amrinala, izhikir	G	Oil	(51)
Cymbopogon schoenanthus Spreng.	Gramineae	Geranium grass, bhutika	G	Oil	(278)
Cynodon dactylon Pers.	Gramineae	Bahama grass, amari, bhargavi	Wh, Rh	Extract	(278)
Daemia extensa R.Br.	Asclepiadeae	Utranajutuka, phala-kantak	L	Juice	(19)
Dahlbergia lanceolaria Linn.	Fabaceae	Bithua, takoli	B	Oil	(278)
Daphne mezereum Linn.	Thymelaceae	Mezereum	B	Extract	(282)
Datiscas cannabina Linn.	Datiscae	Akalbar, bangala drmkhara	R	Decoction	(278)
Datura alba Nees.	Solanaceae	Thornapple, tattur	L	Juice	(51)
Datura metel Linn.	Solanaceae	Domy datura, dushtraga	L	Paste	(278)
Datura stramonium Linn.	Solanaceae	Apple of peru, tattur, devika	L	Infusion	(278)
Delonix elata Gamble Fl.	Fabaceae	Vayni, tiger bean	Wh	Extract	(288)
Delphinium cedatum Wall.	Ranunculaceae	Vishalakarni, jadwar	R	Decoction	(51)
Delphinium consola Linn.	Ranunculaceae	Lankspur	S	Oil	(282)
Delphinium staphisagri Linn.	Ranunculaceae	Spahc	S	Oil	(282)
Derris uliginosa Benth.	Papilionaceae	Pashuganda, worm killer	B	Decoction	(51)
Dickhoschachis cinera W.A. & A.	Fabaceae	Khedi, tertuli, bulluaraka	R	Extract	(278)
Diospyros candoliena Wright.	Ebanaceae	Nila-variksha	B	Decoction	(51)
Diospyros paniculata Daiz.	Ebanaceae	Tinduka, karinhuthari	B	Powder	(51)
Dipertocarpus alatus Roxb.	Dipertocarpicaceae	Gurnan, battsal, canvin	B	Extract	(278)
Dipertocarpus indicus Bedd.	Dipertocarpicaceae	Ennei	Rs	Rs	(51)
Dodonaea viscosa Linn.	Sapindaceae	Aliar, sanatta, Dhasera	L	Poultice	(51)
Dolichos falcatus Klein.	Papilionaceae	Kattamara	S	Decoction	(51)
Dysosylyx malabaricium Bedd.	Meliaceae	Agaru, kuna-mullla	W	Decoction	(51)
Eclipta prostrate Linn.	Aemaceae	Bhringaraj	R, L	Juice, decoction	(14)
Eleacarpus oblongos Gaertn	Tiliaceae	Malankara	F	Oil	(51)
Eleocarpus serratos Linn.	Tiliaceae	Julpaji, olan-karai	L	Extract	(51)
Table 2: Contd...

Botanical name	Family	Common name	Part used	Dosage form	References
Elaeis guineensis Jacq.	Palmae	African oil palm	Sr	Oil	(278)
Elaeocarpus tuberculatus Roxb.	Tiliaceae	Rudraksha, ruthtraksham	B	Decoction	(51)
Elephantopus scaber Linn.	Asteraceae	Elephant foot, tutup bumi	L	Oil	(279)
Emblica officinalis Gaertn.	Euphorbiaceae	Amla	F	Juice	(14)
Ephedra gerardiana Wall.	Gnetaceae	Amsania, budshur	St, R	Decoction	(278)
Ephedra vulgaris Rich.	Ephedraceae	Khanda, ma-hung	Be	Decoction	(289)
Erythrina stricta Roxb.	Papilionaceae	Mura, murukku	B	Powder	(51)
Eucalyptus globulus Labill.	Myrtaceae	Blue gum tree	B, L	Oil	(282)
Eugenia operculata Roxb.	Myrtaceae	Ral-Jaman, piaman	F	Oil	(51)
Eupatorium pergulifolium Linn.	Asteraceae	Boneset, crosswort	L	Extract	(282)
Euphorbia antiquorum Linn.	Euphorbiaceae	Triangular spurge, Tidhara, vajratundi	Br	Gum, milky juice	(290)
Euphorbia helioscopia Linn.	Euphorbiaceae	Hirrulesah, gandabhumti	Br	Juice	(51)
Euphorbia nerifolia Linn.	Euphorbiaceae	Snoohi, common milk hedge	Br	Juice	(51)
Euphorbia nivulia Ham.	Euphorbiaceae	Katathohar, vajri	L	Juice	(278)
Euphorbia tiruculli Linn.	Euphorbiaceae	Milk bush, selhund	Wh	Milky juice	(278)
Euryale ferox Salisb. & Roxb.	Nymphaeaceae	Makhanna, foxnut, machana	L	Extract	(278)
Erythrina stricta Roxb.	Fabaceae	Indian coral tree	B	Decoction	(279)
Excoecaria acerifolia Didrichs.	Polygonaceae	Buckweat	R	Extract	(279)
Fagopyrum esculentum Moench.	Polygonaceae	Badhara, vikarini	R	Infusion	(51)
Farsetia aegyptica Tur.	Cruciferae	Mulej, faridbuti	F, L	Extract	(51)
Farsetia hamiltonii Royle.	Cruciferae	Farid-buti	F, L	Extract	(51)
Farsetia jaquemontii Hk. F. & T.	Cruciferae	Mulei	F, L	Extract	(51)
Feaula asafoetida Linn.	Umbelliferae	Hing, bhutanasar	R	Oil	(51)
Ferula galbaniflua Bloss.	Umbelliferae	Gandhibiroma, galbanum	R	Oil	(51)
Ferula narthex Boiss.	Umbelliferae	Tingra, bhuuti, devil's dung	L	Infusion	(278)
Ficus bengalensis Linn.	Urticaceae	Banyan tree, sriksha	S, F	Juice	(291)
Ficus religiosa Linn.	Urticaceae	Pippala, peepul tree	B	Decoction, oil	(51)
Ficus retusa Linn.	Urticaceae	Nandruk, pilala, kamrup	L, B	Poultice	(51)
Flacourtia sepulcra Roxb.	Pyretracae	Kondai, kingaro	L, R	Infusion	(51)
Fraxinus excelsior Linn.	Oleaceae	European ash	L	Exudates	(282)
Garcinia pictorial Roxb.	Rutaceae	Mysore gamboges tree, tamal	Rs	Powder	(51)
Gaultheria fragrantissima Wall.	Eriaceae	Indian wintergreen gandapuro	L	Oil	(51)
Gelsenium nitrudium Michaux.	Loganiaeae	Wild yellow jessamine	R	Extract	(282)
Gendarussa vulgaris Nees.	Acanthaceae	Nill-nargandi, kala-bashimb	L	Infusion	(51)
Gentian lutea Linn.	Gentianaceae	Yellow gentian	R	Powder	(282)
Geodorum densiflorum Lam.	Orchidaceae	Shepherd's crook orchid	Rh	Extract	(279)
Geranium maculatum Linn.	Geraniaceae	Alum-root	Rh	Oil, liniment	(282)
Gmelina asiatica Linn.	Verbenaceae	Badhara, vikarini	R	Extract	(19)
Gossypium arboretum Linn.	Malvaceae	Tree cotton	S	Oil	(279)
Gossypium barbadense Linn.	Malvaceae	Sea island cotton	S	Cotton	(282)
Gossypium haeum Linn.	Malvaceae	Levant cotton	L	Oil	(279)
Gossypium indicum Linn.	Malvaceae	Indian cotton plant, anagnika	S	Oil, liniment	(51)
Grangia maderasapatha Poir.	Compositae	Mukhatari, afsantin	R	Decoction	(278)
Grewia asiatica Linn.	Tiliaceae	Palsa, dharmana	B	Infusion	(51)
Grewia tenax Fiori.	Tiliaceae	Gowali, kakarundah	L, F	Oil	(278)
Gauliaum officiale Linn.	Zygophyllaceae	Linguum vita	St	Rs	(282)
Guizoa abyssynica Cass.	Compositae	Nigers, kala-tii	S	Oil	(51)
Gymnandropsis gynaecodia Marill.	Capparidaceae	Churota, huful, aiagandha	L	Extract	(278)
Gymnocydea odorata R.Br.	Flacourtiaae	Chaluymgra, biringmogra	S	Oil	(51)
Hedeoma pulegoides Persoon.	Labiateae	Ameican pinnryoyal	L	Infusion	(282)
Heliotropium indicum Linn.	Boraginaceae	Hattasa, siriai bhurudi	R, L	Plasters	(278)
Hemidesmus indicus R.Br.	Asclepiadaceae	Sugandhi, indian sarsaparilla	R-B	Infusion	(292)
Herpestis monniera H.B.K.	Scrophulariaceae	Brahmi, thyme-leaved	L	Juice	(51)
Hibiscus tiliaceus Linn.	Malvaceae	Cork wood, pola	E	Embrocation	(51)
Hiptage benghalensis Linn.	Malpighiaceae	Hutumukta, karmi	L	Juice	(278)
Hiptage madablotia Gaertn.	Malpighiaceae	Madhabili, madavilata	L	Extract	(51)
Holarrhena antidysenterica Wall.	Apocynaceae	Kurchi, kutaja, kewar	B	Lep	(51)
Hedera helix Linn.	Araliaceae	Barren iyo, mandia bind wood	Be	Infusion	(278)
Holoptelea integrifolia Planch.	Urticaceae	Papry, vaiyla	B	Juice	(51)
Humulus lupulus Linn.	Cannabineae	Hop	Wh	Infusion	(282)
Hydnocarpus wightiana Blume.	Flacourtiaae	Jangli almond, tuvaraka, chaumoggra	S	Oil	(51)
Hydrocotyle asiatica Linn.	Umbelliferae	Brahmi, Indian penny-wort	Wh	Juice extract	(51)
Hygrophila spinosa T.Anders	Ascanthaceae	Kolista, ghokula-kanta	R	Decoction	(51)
Hyxopous officinalis Linn.	Labiateae	Zupha	L	Infusion, syrup	(51)
Illicium verum Hook.	Magnoliaceae	Star anise, anasphal	F	Oil	(51)
Indigofera oblongifolia Forsk.	Papilionaceae	Jhilla, mridupatraaka	R	Decoction	(278)
Botanical name	Family	Common name	Part used	Dosage form	References
--------------------------------	-------------------------------	--------------------------------------	-------------	-------------	------------
Indigofera paucifolia Delie.	Papilionaceae	Kuttukkar-chammathi	St	Decoction	[51]
Indigofera trifoliata Linn.	Papilionaceae	Vekhario, malmandi	S	Confection	[51]
Inula helenium Hook.	Compositae	Rasan	L	Oil	[51]
Ipomoea eriocarpa Br.	Convolvulaceae	Nakhari, pulichevidu	Wh	Oil	[51]
Ipomoea hispida Roem & Schult.	Convolvulaceae	Bhanwar, harankhuri	Wh	Oil	[278]
Ipomoea pescaprae Purga.	Convolvulaceae	Goat’s foot creeper, chagalahngri	R, L	Decoction	[51]
Ipomoea renifomis Chois.	Convolvulaceae	Mushakani, mooshakarni	Wh	Decoction	[51]
Ipomoea purpureum Br.	Convolvulaceae	Indian jalap, kalaparni	R-B	Powder	
Jasminum grandiflorum Linn.	Oleaceae	Spanish jasmine, chambeli	R	Oil	[278]
Jatropha curcas Linn.	Euphorbiaceae	Jangli-erandi, angula-leaved physic nut	S	Oil	[293]
Jatropha gandulifera Roxb.	Euphorbiaceae	Nikumba, lal-bhranda	S	Oil	[51]
Juglans regia Linn.	Juglandaceae	Akhor, darga, walnut tree	B	Decoction	[280]
Juniperus communis Linn.	Coniferae	Juniper berry, hapusha	Be	Powder	[51]
Justicia ecboilium Linn.	Acanthaceae	Oodojati	Wh	Extract	[51]
Justicia gendaruasia Burm.	Acanthaceae	Nilinargangi, kapika, bhutakeshi	L	Decoction	[294]
Justicia procumbens Linn.	Acanthaceae	Carmeuteine couchee	H	Infusion	[51]
Koelopinia linearis Pallas.	Asteraceae	Koelpinia	Wh	Extract	[279]
Launaea aculeate Linn.	Verbenaceae	Wild Sage, ghaneri	Wh	Decoction	[278]
Lanuana pinnatiffida Coss.	Compositae	Pathri, almirao	L	Juice	[51]
Lavandula stoechas Linn.	Labiatae	Arabian lavender, dharu	F	Formentation	[51]
Lawsonia alba Linn.	Lythraceae	Heena, mendhi, mehndi	L	Paste	[295]
Lea indica Merr.	Vitaceae	Bandicoot berry	Wh	Extract	[279]
Leonotis nepetaeffolia R.Br.	Labiatae	Hejurchei, matijer	L	Decoction	[278]
Leucas aspera Spreng.	Labiatae	Chotahalkusa, tamsa	L	Juice	[296]
Lipidium crassifolium Hung.	Cruciferae	Hairry cress	S	Extract	[278]
Lipidium sativum Linn.	Cruciferae	Cress, chandrasura halim, chansaur	S	Paste	[51]
Leucas linifolia Spreng.	Labiatae	Dronapushpi, hulksusa	L, F	Infusion	[51]
Linum usitatissimum Linn.	Linaceae	Lins, uma, tisi	S	Pouliche	[297]
Litsea chinensis Lam.	Lauraceae	Garur, adhavara, chamana	Be	Oil	[278]
Litsea sebifera Pers.	Lauraceae	Garbijuar, menda, medasak	B	Powder, paste	[51]
Lolium temulentum Linn.	Graminae	Darnel	S	Powder	[282]
Lycopodium clavatum Linn.	Lycopodiaceae	Clubmoss spores, wolf claw	Sp	Tincture	[51]
Lygodium flexuosum Linn.	Polypodiaceae	Vallipanna, kalazha	R	Oil	[51]
Machilus macrantha Nees.	Lauraceae	Kolamavu	B	Extract	[51]
Marrubium vulgare Linn.	Labiatae	White hore-hound, farasiyun	H	Infusion	[51]
Matricaria chamomilla Linn.	Compositae	Babunphul, camomile	F	Oil	[51]
Melaleuca leucadendron Linn.	Myrtaceae	Cajaput tree, kayaputi	L	Oil	[51]
Melaleuca minor Smith.	Myrtaceae	Kaya-puti, cajaput	L	Oil	[282]
Melia azadirachta Linn.	Meliaceae	Ravipriya, neem, nimb	B	Decoction	[51]
Melia azedaracha Linn.	Meliaceae	Mahanimba, persian lilac, bakayan	S	Oil	[51]
Menthe piperita Linn.	Labiatae	Garbijaour, menda, medasak	B	Powder, paste	[51]
Mentha arvensis Hort.	Labiatae	Peppermint, gamath phudina	L	Oil	[282]
Mentha aquatica Hort.	Labiatae	Acorus, acorum	L	Oil	[51]
Merremia tridentate Hallier.	Convolvulaceae	Prasarin	Wh	Extract	[298]
Mesua ferrea Linn.	Compositae	White hore-hound, farasiyun	H	Infusion	[51]
Michelle champaca Linn.	Magnoliaceae	Golden champa, champaka	F	Oil	[51]
Mimosa pudica Linn.	Fabaceae	Humble plant, lajvati, kandiri	Wh	Extract	[278]
Mullugo cerviana Ser.	Ficoidaceae	Taph-r'had, phanya, grishmasundara	R	Oil	[51]
Morinda citrifolia Linn.	Cucurbitaceae	Bitter gourd, karavelia, karela	F	Juice	[51]
Morinda officinalis Linn.	Cucurbitaceae	Gangerua, kaka, kramindera	F	Juice	[278]
Monarda punctate Linn.	Gentianaceae	Bogbean, water shamrock	R	Extract	[278]
Monera cuneifolia Michx.	Scrophulariaceae	Bama, brahami, swetchammi	L	Juice	[51]
Monarda punctate Linn.	Labiatae	Horse-mint	L	Oil	[282]
Morinda citrifolia Linn.	Rubiaceae	Indian mulberry, barraal	L	Juice	[278]
Moringa oleifera Linn.	Moringaceae	Horse-radish, sobhanjana	S	Oil	[51]
Mucuna gigantea DC.	Papilionaceae	Kakkavali	B	Powder	[51]
Mukia maderapatana Linn.	Cucurbitaceae	Madras pea pumpkin, agumaki	L	Decoction	[13]
Murraya exotica Linn.	Rutaceae	Honey bush, ekangj, kamini	F, L	Infusion	[51]
Murray koeigii Linn.	Rutaceae	Bristly bryoni	L	Powder	[13]
Myristica fragrans Houtt.	Myristaceae	Nutmeg, jati-phalams, jaiphal	S	Oil	[19]
Myristica malabarica Lamk.	Myristaceae	Malabar nutmeg, malati, kamuk	S	Embrocation	[51]
Myroopryum similicofolium Blume.	Oleaceae	Chaturam-mallikei	L	Extract	[51]
Myrtus caryophyllus Linn.	Myrtaceae	Cloves, lavangaha, laung	F	Oil	[51]
Myrtus communis Linn.	Myrtaceae	Myrtle, murad	L	Oil	[51]
Naregamia alata W. & A.	Meliaceae	Goanese ipecacuanha, amlavalli	Wh	Extract	[278]
Nicolotia tabacum Linn.	Solanaceae	Tobacco, tambaku, tamakuta	L	Decoction	[51]
Nyctanthes arbor-tristis Linn.	Oleaceae	Night jasmine, silharu, parijata	L	Infusion	[51]
Ocimum gratissimum Linn.	Labiatae	Shrubby basil, ramulasi	Wh	Fumigations	[19]

Table 2: Contd...
Botanical name	Family	Common name	Part used	Dosage form	References
Ocimum sanctum Linn.	Lam.	Basil	L	Decoction	[14]
Odina wooler Roxb.	Anacardiaceae	Jingga, ajashrangi, jingan	L	Paste	[51]
Oldenlandia heynei Hk.	Rubiaceae	Nonganam-pillu	L	Extract	[51]
Olea cuspidate Wall.	Oleaceae	Kahu, zaitum	R	Ashes	[278]
Onosma bracteatum Wall.	Boraginaceae	Goazaban, kazabun	Wh	Decoction	[51]
Onosma eichoides H.	Boraginaceae	Ratanjot, lajarj, koame	Fl	Oil	[51]
Originum majaorana Linn.	Labiatea	Wild marjoram, sathra	Wh	Oil	[51]
Originum vulgare Linn.	Labiatea	Sathra	Wh	Oil	[51]
Oroxyllum indicum Vent.	Bignoniaceae	Prathusimbh, miringa, snapatha	B	Powder	[51]
Osmunda regalis Linn.	Osmundaceae	Royal fern, osmonde	Wh	Extract	[51]
Paederia foetida Linn.	Rubiaceae	Prasarin, gandhali, Chinense flower plant	L	Juice	[51]
Pandanus odoratissimus Willd.	Pandanaceae	Ketaki, fragrant screwpive	F	Oil	[51]
Pandanus tectorius Soland.	Pandanaceae	Umbrella tree, keora, ketgi	Bt	Oil	[278]
Panicum italicum Linn.	Gramineae	Italian millet, kanku	S	Extract	[51]
Papaver dubium Linn.	Papaveraceae	Pale-red poopy	R	Cooked	[278]
Papaver sommerfuir Linn.	Papaveraceae	Opium poppy, khas khas	S	Liniment	[51]
Pavetta indica Linn.	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pavonia odorata	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pedalium murex Linn.	Pedalium	Faridbuti, gaaja daunsree	L	Powder	[51]
Peganum harmala Linn.	Peganum	Foreign henna, harmal, kaladan	L	Decoction	[278]
Peucedanum graveolens	Peganum	Peucedanum graveolens	W	Infusion	[51]
Peperomia aculeata	Peperomia	Peperomia aculeata	W	Infusion	[51]
Pergularis daemia	Pergularis	Pergularis daemia	W	Infusion	[51]
Papaver sommerfuir Linn.	Papaveraceae	Opium poppy, khas khas	S	Liniment	[51]
Pavetta indica Linn.	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pavonia odorata	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pedalium murex Linn.	Pedalium	Faridbuti, gaaja daunsree	L	Powder	[51]
Peganum harmala Linn.	Peganum	Foreign henna, harmal, kaladan	L	Decoction	[278]
Peucedanum graveolens Benth.	Peucedanum	Peucedanum graveolens	W	Infusion	[51]
Pergularis daemia	Pergularis	Pergularis daemia	W	Infusion	[51]
Papaver sommerfuir Linn.	Papaveraceae	Opium poppy, khas khas	S	Liniment	[51]
Pavetta indica Linn.	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pavonia odorata	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pedalium murex Linn.	Pedalium	Faridbuti, gaaja daunsree	L	Powder	[51]
Peganum harmala Linn.	Peganum	Foreign henna, harmal, kaladan	L	Decoction	[278]
Peucedanum graveolens Benth.	Peucedanum	Peucedanum graveolens	W	Infusion	[51]
Pergularis daemia	Pergularis	Pergularis daemia	W	Infusion	[51]
Papaver sommerfuir Linn.	Papaveraceae	Opium poppy, khas khas	S	Liniment	[51]
Pavetta indica Linn.	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pavonia odorata	Rubiaceae	Papat, Indian pellet kankra	W	Infusion	[278]
Pedalium murex Linn.	Pedalium	Faridbuti, gaaja daunsree	L	Powder	[51]
Peganum harmala Linn.	Peganum	Foreign henna, harmal, kaladan	L	Decoction	[278]

Contd...
Botanical name	Family	Common name	Part used	Dosage form	References
Ribes nigrum Linn.	Saxifragaceae	Currants, nabar	C	Currants	[51]
Ricinus communis Linn.	Euphorbiaceae	Castor oil plant, eranda, endi	S	Oil, poultice	[19]
Ruta graveolens Linn.	Rutaceae	Satap, garden rue, pismarum	L	Decoction	[207]
Rubia cordifolia Linn.	Rubiaceae	Madar, manjit, khuri	R	Decoction	[278]
Rourea santaloides W. & A.	Conaraceae	Vardara, wakeri	R	Tonic	[51]
Rosa alba Linn.	Rosaceae	Guulseoi, gulab bahupatrika	F	Oil	[278]
Saccocaula pappilosum Lindl.	Orchidaceae	Nakuli, rasna	Rs	Resins	[51]
Salacia oblonga Wall.	Calastraceae	Panorkanti	R	Extract	[300]
Salacia reticulata Wight.	Calastraceae	Ekanayakam, koranti	R	Extract	[300]
Salix alba Linn.	Salicaceae	Huntingdon willow, bushan	B	Decoction	[301]
Salvadora oleoides Dcne.	Salvadoraee	Kabber, mithidiar, jhali	S	Oil	[51]
Salvadora persica Linn.	Salvadoraee	Piltu, tooth brush tree, chhota-pilu	F	Oil	[51]
Samadera indica Gaertn.	Spondis pinnate	Kathai, nibam, daraput	F	Oil	[278]
Sambucus canadensis Linn.	Adoxaceae	American elder	FI	Oil	[282]
Sambucus nigra Linn.	Adoxaceae	Bore tree	FI	Oil	[282]
Sambucieria urghiana Roxb and Schult.	Hammodraceae	Mruvu, murhuri, katkupel	R	Extract	[51]
Santalum rubrum Linn.	Sapindaceae	Arishtha, indian filbert, ritha	R, L	Extract, juice	[51]
Santalummissus missionis Wall.	Rubiaceae	Jalamadasa, nirvani	B	Decoction, powder	[51]
Sassafras officinale Nees.	Laurineae	Sassafras	R	Oil	[51]
Sausurea lappa Clarke.	Compositae	Puskara, costus, kushtha, kut	R	Infusion	[278]
Schleichera trijuga Wild.	Sapindaceae	Ceylon oak, gausam	S	Oil	[278]
Schoenoaulca officinale A.Gray.	Melanthaee	Sabadilla	F, S	Ointment	[51]
Scindapsus officinalis Schitt	Araceae	Portabel, gajapipal, shreyasi	F	Juice	[282]
Semecarpus anacardium Linn.	Anacardiaceae	Marking-nut tree, bhallataka, bhela	F	Juice	[302]
Sesamum indicum Linn.	Pedaliaceae	Gingelly, bariktel	S	Oil	[278]
Sesanbana aegyptiaca Pers.	Papilionaceae	Jayantika, jetrasin	L	Poultice	[51]
Sesbania grandiflora Pers.	Papilionaceae	Agasta, hatiya	R	Paste	[51]
Setaria italica Beauc.	Gramineae	Foxtail millet, kangu	Gr	Parching	[51]
Shorea robusta Gaertn.	Dipoterocarpus	Sal tree, sakhu asvakarna,	B, Rs	Paste	[51]
Sida acuta Burm.	Malvaceae	Barica, bala, pranjivika	L	Oil	[19]
Sida cordifolia Linn.	Malvaceae	Baria, batalaka, simak	R, S	Oil	[51]
Sida rhombifolia Linn.	Malvaceae	Sahadeva, kherenti	R	Oil	[218]
Siegesbeckia orientalis Linn.	Compositae	Katampam, kau-kan	Wh	Tincture	[51]
Skimmia laurea Sieb.	Rutaceae	Ner	Wh	Extract	[279]
Smilax china Linn.	Liliaceae	Dwpautra, china root, chobchini	R	Decoction	[19]
Smilax lanceafoilia Roxb.	Liliaceae	Bari-chobchini	R	Juice	[51]
Smilax officinalis Kunth.	Liliaceae	Jamaïca sarsaparilla	R	Powder, extract	[282]
Smilax zeylaniana Linn.	Liliaceae	Chebchini, ramdatun	R	Paste	[278]
Smithia conferta Sm.	Papilionaceae	Smithia	Wh	Extract	[278]
Solanum dulcamara Linn.	Solanaceae	Kaamachi, bitter-sweet, rubabarik	Be	Decoction	[51]
Solanum nigrum Linn.	Solanaceae	Makoi, kambe, kamuni	L	Poultice	[51]
Solanum xanthocarpum Schrad & Wendll.	Solanaceae	Kantakari, warumba, bhutkayta	Wh, Be	Juice	[51]
Spilanthes acmella Mur.	Compositae	Pokormul, akarkara	L	Decoction	[278]
Spindis pinate Kurz.	Anacardiaceae	Amarah, Indian hog plum, ambra	L	Juice	[278]
Stachyortpha indica Vahl.	Verbenaceae	Aaron’s rod	L	Juice	[278]
Strnychos bourdillonii Trees.	Loganiaceae	Nirmali, clearing nut tree	R	Decoction	[278]
Strychnos cinnamonifolia Thw.Enum.	Loganiaceae	Etakirindiwel, webel	R	Decoction	[278]
Strychnos nux-vomica Linn.	Loganiaceae	Cupili, poison-nut, kagphala	S	Powder	[303]
Strychnos potatorum Linn.	Loganiaceae	Clearing-nut tree	S	Powder	[303]
Teucrrium pollinum Linn.	Labiateae	Cat thyme, poley	L	Infusion	[280]
Teramus labialis Spreng.	Combretaceae	Masha-parui, mashani	B	Decoction	[51]
Terminalia bellerica Roxb.	Combretaceae	Vibhitaki, bhaira	K	Oil	[51]
Terminalia chebula Retz.	Combretaceae	Pathya, myrobalan, Indian gall-nut	F	Powder	[19]
Tinospora cordifolia Miers.	Menispermacaceae	Ambarvel, gharol, gulvel	R, St	Starch	[278]
Tinospora malabarica Miers.	Menispermacaceae	Gurch, giloe, padmagaluncha	L, St	Extract	[278]
Thevetia nerifolia Juss.	Apocynaceae	Yellow oleander, pilakanir, aswahaa	S	Oil	[278]
Thymus vulgaris Linn.	Labiateae	Garden thyme	Wh	Oil	[282]
Todalia aculeate Lamk.	Rutaceae	Kanchana, jangli-kali-mich, limri	F, R	Liniment	[51]
Todalia asiatica Lam.	Rutaceae	Dahan, lopez root, forest pepper	F, R	Liniment	[51]
Todalia bilocularis W. & A.	Rutaceae	Krishna-aguru, devadarom	W	Oil	[51]
Toludiera pereirea Baill.	Fabaceae	Peru balsams	B	Balsams	[282]
Trewia nudiflora Linn.	Euphorbiaceae	Pindara, pitali, sivani	R	Decoction	[51]
Tribulus terrestris Linn.	Zygophyllaceae	Small caltrops, gokshura, chota-gokhura	F	Decoction	[19]
Trichosanthes palmate Roxb.	Cucurbetaceae	Indrayan, mahakala kaundal	F	Juice	[278]
Trigonella foenum-gaecum Linn.	Papilionaceae	Mathi, medhika	S	Confection	[247]
Tylophora asthmatica W. & A.	Asclepiadaceae	Jalangi-pikvan, antamul	L	Powder, decoction	[51]

Contd...
Boswellia serrate Roxb. (BS)(Family-Burseraceae)

BS is a deciduous middle-sized tree, grown in tropical parts of Asia and Africa [64]. Boswellic acid is the first terpenoids isolated from oleo gum resins. The oleo gum resin of BS is used in various Unani and Ayurvedic preparations. Folkloric uses of BS are in the treatment of bronchitis, rheumatism, asthma, cough, intestinal problems, syphilitic, jaundice, dysentery, and pulmonary diseases. It acts as both internal and external stimulant, expectorant, diuretic, and stomachic [51,64]. Boswellia is a traditional natural remedy that has been used for thousands of years to treat swelling and inflammation in Ayurvedic medicine and traditional Chinese medicine. In 2003, medical researchers conducted a randomized blind placebo controlled trial of BS on 30 patients suffering from osteoarthritis of the knee. The data showed an increased range of motion and less swelling in their knees from arthritis than before they began the treatment. The essential oil of BS predominantly comprised other monoterpenoids, of which α-terpineol is the major constituent.

Other monoterpenoids includes α-pinene, cis-verbenol, trans-pinocarveol, borneol, myrcene, verbenone, limonene, and p-cymene, while β-copaene was the only sesquiterpene identified [65,66]. BS possesses an anti-inflammatory [67, analogs [68], immunomodulatory [69], anticancer [70,71,72], hepatoprotective, hypolipidemic [73], antiasthmatic [74], osteoarthritis, and hypoglycemic activities [75]. The n-hexane extract of gum resins of BS in combination with methanolic extract of rhizomes of *Glycyrrhiza glabra* (GY) exhibited anti-arthritic activity at doses of 50 or 100 mg/kg in male wistar rats.

The anti-arthritic activity is mainly by decreasing the activity of membrane marker enzymes such as alkaline phosphatase, serum glutamic oxaloacetic transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and by the prevention of leucocytes migration in the inflamed area. In conclusion, BS possesses a significant anti-arthritis activity on male albino wistar rats [76].

Caesalpinia sappan Linn. (CP)(Family-Leguminosae)

CP commonly known as sappanwood, bakam or patang, is a native of South India, Madhya Pradesh, Orissa, West Bengal, Malay, and Sri Lanka. The tree spreads to a height of 10 m and is cultivated for its large, ornamental penicals of yellow flowers. A very strong barrier is formed by the branches when they are interlaced [11]. The heartwood of the CP is traditionally used for the treatment of ulcers, leprosy, rheumatism, skin disease, diarrhea, dysentery, epilepsy, convulsions, diabetes, odontopathy, stomatopathy, and leucorrhoea. The heartwood of the CP is bitter, astringent, sweet, acrid, refrigerant, constipating, sedative, and hemostatic. In Tunani system, the decoction of wood was useful in rheumatism [77,78]. CP is reported to have an anti-anaphylactic [79], anti-coagulant [80], anti-bacterial [81-83], anti-fungal [83], anti-inflammatory [84], antitumor [85-87], anti-viral [88,89], immunostimulant [87], and semen coagulating activities [86]. CP also causes the inhibition of phosphodiesterase [90] and stimulation of glutamate pyruvate transaminase [91] and tyrosinase enzymes [92]. The ethanolic extract at doses 1.2, 2.4, and 3.6 g/kg of CP wood showed anti-arthritis activity on wistar rats by declining the levels of IL-1, IL-6, TNF-α, and prostaglandin E2 (PGE2) in serum. The study concluded that CP possesses an anti-arthritis activity on rats [93].

Cannabis sativum Linn. (CT)(Family-Urticaceae)

CT, a pistillate plant, is a native of Persia, Western and central Asia, and is now largely cultivated all over India.
Botanical name	Family	Common name	Part	Extract	Dose (p.o.)	Acute toxicity (p.o.)	Model	Mode of action
Acyranthus aspera Linn.	Amaranthaceae	Devil’s horsewhip	S, R	Alcohol	15 mg/100 g	Safe up to 8 g/kg	FIA	Inhibition of secondary lesions
Achyranthes aspera Linn.	Amaranthaceae	Apamarga	R	Ethanol	100-200 mg/kg	Safe up to 8 g/kg	CFA	Prevented the recruitment of leukocytes
Aconitum vilmorinianum Kom.	Ranunculaceae	Huang Cao Wu	R	Ethanol	10-100 mg/kg	D.N.A	CFA	Improvement of joint algodinia, swelling, hyperaemia and vascular permeability COX-1 and COX-2 inhibition
Ajiga bracteosa Wall.	Labiatae	Ground pine	Wh	Ethanol	5, 10, 20 mg/kg	LD₅₀ > 5 g/kg	TIA	Decrease the ESR and WBC count
Ajiga decemens Thunberg.	Lamiaeae	Bugle weed	Wh	70% ethanol	30, 50, 150 mg/kg	D.N.A	CFA	Regulates the balance between bone resorption and bone formation
Aktonia boonei De Wild.	Apocynaceae	Cheesewood, pattern wood	St, B	Methanol	50, 100, 200, 400 mg/kg	D.N.A	CFA	Inhibits arthritis deterioration the secretion of pro-inflammatory cytokines and RA factor
Aktonia scholaris Linn. R.Br.	Apocynaceae	Dita bark, devil tree	L	Ethanol	100, 200, 400 mg/kg	≥ 2 g/kg	CFA	Decrease the ESR and WBC count
Ammania bracifera Linn.	Aristolochiaceae	Acrid weed, tooth cup Kidamari	L	Aqueous alcoholic Pet ether, chloroform, methanol	250, 500 mg/kg	≥ 5000 mg/kg	CFA	Inhibition of both the early and late phases of pain stimulus.
Argyreia speciosa Sweet.	Convolvulaceae	Elephant creeper	R	Ethanol	50-100 mg/kg	≥ 3000 mg/kg	CFA	Decrease the ESR and WBC count
Arisaema rhizomatum Fischer.	Aroidea	Jack in the pulpit	Rh	Methanol	130, 261, 522 mg/kg	Safe up to 40 g/kg	CFA	Inhibits arthritis deterioration the secretion of pro-inflammatory cytokines and RA factor
Arnebia euchroma Johnst.	Boraginaceae	Pink arnebia, demok	R	95% ethanol	2.5, 5, 10 mg/kg	D.N.A	CFA	Decrease the ESR and WBC count
Artocarpus tonkinensis A. Cheval.	Moraceae	Chay	L	Ethyl acetate	10-200 mg/kg	D.N.A	CFA	Decrease the ESR and WBC count
Asystasia dalzelliana Santapau.	Acanthaceae	Violet asystasia	L	Ethanol	200, 400, 600 mg/kg	≥ 2000 mg/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Baccharis genistelloides Linn.	Acanthaceae	Carqueja	Arpt	Aqueous	4.2 mg/kg	Safe up to 42 mg/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Bacopa monniera Penell.	Acanthaceae	Herpestis monniera	Wh	Methanol	100 mg/kg	≥ 3000 mg/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Barleria lupulina Lindl.	Acanthaceae	Hophead	L	Methanol	300, 600 mg/kg	D.N.A	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Barleria prionitis Linn.	Acanthaceae	Katsareya, karunta	Wh	Hydro-alcoholic	12.5, 25, 50, 100 mg/kg	Safe up to 3000 mg/kg	AIA	Decrease the synthesis/release of T-cell mediators in vitro
Bauhinia variegata Linn.	Caesalpiniae	Kachnar, chinthrao	St	Ethanol	100, 250 mg/kg	Safe up to 2000 mg/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Bergenia stracheyi Linn.	Saxifragaceae	Paashaanbhed	Rh	Pet ether and methanol	40 mg/kg	Safe up to 2000 mg/kg	AIA	Decrease the synthesis/release of T-cell mediators in vitro
Boerhaavia diffusa Linn.	Nyctaginaceae	Punarnava	R	Pet ether	500-1000 mg/kg	≥ 1000 mg/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro
Boswellia carterii, Birdw.	Burseraceae	Olibanum	Rs	70% aqueous acetone	0.90 g/kg	Safe up to 0.90 g/kg	CFA	Decrease the synthesis/release of T-cell mediators in vitro

Table 3: Plants with reported anti-arthritic activity

Continued...
Botanical name	Family	Common name	Part	Extract	Dose (p.o.)	Acute toxicity (p.o.)	Model	Mode of action	Reference
Boswellia serrata	Burseraceae	Salai gugul	Rs	n-hexane	50 mg/kg	Safe upto 50 mg/kg	CFA	Lysoosomal membrane stability modulating effect, inhibiting leukocyte migration, controlling the production of auto antigens and anti-proteinase activity	[76]
Butea monosperma	Fabaceae	Palash, keshu, bastard Teak	Wh	Pet ether	100-200 mg/kg	Safe upto 2000 mg/kg	CFA	Improvement in levels of hemoglobin and RBC; levels of WBC, ESR were suppressed	[319,320]
Caesalpinia sappan	Leguminosae	Sapanwood, suou	W	Ethanol	2.5, 5, 10 μg/ml	Safe upto 5000 mg/kg	*In vitro*, cartilage/chondrocyte protection	[321,322]	
Calotropis gigantea	Asclepiadaceae	Milkweed	Al	Petroleum ether	50 mg/kg	Safe upto 2000 mg/kg	CFA	Decreasing the levels of IL-1β, IL-6, TNF-α and PGE2 in serum and the expression of COX-2 and transcription factor NF-κB	[93,322]
Calotropis procera	Apocynaceae	Sodom apple	Al	Methanol	50-500 mg/kg	Safe upto 2000 mg/kg	CFA	Pro-inflammatory cytokines as well as anti-inflammatory cytokines are reduced	[323,324]
Calitha pakstris	Ranunculaceae	Kingscup, marsh marigold	Wh	Methanol	10 mg/kg	D.N.A	CIA	Inhibit cellular influx and vascular permeability	[325,326]
Cannabis sativum	Cannabaceae	Ganja, indian hemp	L	Alcoholic	10, 25 mg/kg	D.N.A	CIA	Decrease in the percentage and the absolute count of splenic T-regulatory cells (CD4⁺CD25⁺FOXP3⁺)	[327]
Capparis erythrocarpus	Capparaceae	Flamingo lily	R	Ethanol	100, 300 mg/kg	D.N.A	AIA	Diminished CII-specific proliferation and IFN-γ production	[98]
Cassia uniflora	Caesalpiniaceae	One leaf senna	L	Methanol, pet ether, ethyl acetate	50, 100 mg/kg ≥ 1000 mg/kg	D.N.A	CIA	Histamine and prostaglandin synthesis inhibition	[330]
Cayaponia tayuya	Cucurbitaceae	Tayuya	R	Hydroalcoholic	1 mg/kg	D.N.A	AIA	Modifying the cell infiltration and the expression of both nitric oxide synthase-2 and COX-2. Decreases TNF-α & IL-1β production in lymphocytes	[331]
Celastrus aculeatus	Celastraceae	Gua shan fena	R, St	Ethanol	1-3 g/kg	LD₅₀ = 20.5 mg/kg	CFA	Down modulation of immunological and biochemical mediator	[332,333]
Centella asiatica	Mackinlayaceae	Brahmi booti	L	Methanol	0.5 ml	HRBC-MS		Inhibition of protein denaturation membrane stabilization and proteinase inhibitory	[286]
Cinnamomum zeylanicum	Lauraceae	Dalchini	B	Aqueous	8 mg/kg	D.N.A	CFA	Inhibition of leukocyte emigration and prostaglandins	[109]
Cissampelos pareira	Cassia glomerulosa	Abuta, barbasco, butua	R	50% aqueous ethanol	200-400 mg/kg	Safe upto 2000 mg/kg	CFA	Levels of acid phosphatase and N-acetyl glucosaminidase were reduced and hexose, sialic acid increased.	[334,335]
Chelidonium majus	Papaveraceae	Tetterwort	Al	Methanol	40/400 mg/kg	D.N.A	CIA	Lower the absolute number of CD4⁺T cells in spleen and lymph node, induce immunosuppressive response by lowering the CD4⁺T-cells and enhancing CD8⁺T-cells.	[336]
Botanical name	Family	Common name	Part	Extract	Mode	Dose (p.o.)	Acute toxicity (p.o.)	Mode of action	Reference
----------------	--------	-------------	------	---------	------	------------	----------------------	----------------	-----------
Clematis chinensis Osbeck.	Ranunculaceae	Wei Ling xian	R	Aqueous	D.N.A	100 mg/kg	Safe up to 2000 mg/kg	Inhibited PGE2 production and COX-2 expression	[337]
Cleome gyandra L.	Cleomaceae	Shone cabbage	L	Ethanol	CFA	150 mg/kg	Safe up to 2000 mg/kg	Modifying the lysosomal membrane or by inhibiting the release of pro-inflammatory cytokines and suppression of inflammatory mediators	[286,338]
Coriandrum sativum Linn.	Apiaceae	Cilantro, dhania	S	Hydroalcoholic	FOIA	8, 16, 32 mg/kg	Safe up to 2000 mg/kg	Inhibit the secretion of pro-inflammatory cytokines including TNF-α	[120,339]
Costus speciosus Sm.	Zingiberaceae	Keukand	Al	Methanol	CFA	400, 800 mg/kg	Safe up to 2000 mg/kg	Suppression of inflammatory mediators	[287,340]
Curcuma longa Linn.	Zingiberaceae	Turmeric	Rh	N-hexane	SCW	520 mg/kg	Acute	Activation of genes critical to articular inflammation	[130]
Curcuma zeodaria Rosc.	Zingiberaceae	White turmeric	R	Pet ether	CFA	200, 400 mg/kg	Safe up to 5000 mg/kg	Decrease the latency time to explore	[341]
Delonix elata, Gambles.	Caesalpinoideae	White gulmohar, waykaran	B	Pet ether	CFA	250 mg/kg	Safe up to 5000 mg/kg	Blocking the action of COX, LO and AT and thus preventing the generation of mediators	[288]
Dipsacus asperoides Linn.	Dipsacaceae	Japanese teasel root	R	Aqueous	CIA	50-100 mg/kg	Safe up to 2500 mg/kg	Reduced the levels of anti-CII IgG2a antibody	[342]
Drynaria quercifolia L.	Polypodiaceae	Oak leaf fern	Rh	Aqueous	D.N.A	100-200 mg/kg	Safe up to 5000 mg/kg	Inhibition of ROS release	[342,259]
Elaeocarpus sphaericus L.f.	Elaeocarpaceae	Blue marble tree, Indian oil fruit	Wh	Ethanol	CFA	≥ 2 g/kg	Safe up to 2500 mg/kg	Immunosuppressant action and inhibition of leukocytes migration in inflamed areas	[344]
Ephedra sinica Staph.	Ephedrceae	Ma Haung	H	Water	CFA	50 ul s.c.	Safe up to 4 g/kg	mRNA expressions of TNF-α and IL-6 genes restored to normal levels	[289]
Euphorbia antiquorum Linn.	Euphorbiaceae	Antique spurge	Wh	Aqueous, ethanol, 400 mg/kg	CFA	400 mg/kg	≥ 2 g/kg	Inhibition of the arachidonic metabolites and suppression of cell-mediated immunity	[290]
Ficus bengalensis Linn.	Moraceae	Banyan tree	St	Methanol	D.N.A	100, 200, 300 mg/kg	Safe up to 5000 mg/kg	Inhibition of NO production from the macrophages that infiltrated to the inflamed site	[345]
Ginkgo biloba Linn.	Ginkgoaceae	Maidenhair tree	L	Methanol	D.N.A	2 mg/kg	Safe up to 4 g/kg	Inhibition of NO production from the macrophages that infiltrated to the inflamed site	[346]
Glycosmis pentaphylla Linn.	Rutaceae	Orange berry	B	Ethanol	FIA	400, 800 mg/kg	Safe up to 4 g/kg	Lysosomal membrane stability modulating effect, inhibiting leukocyte migration, controlling the production of auto antigens and anti-proteinase activity	[76]
Glycyrrhiza glabra Linn.	Fabaceae	Liquorice	Rh	Ethanol	FIA	150 mg/kg	Safe up to 5 g/kg	Inhibition of NO production from the macrophages that infiltrated to the inflamed site	[346]
Hedera helix Linn.	Araliaceae	European ivy	L	Ethanol	FIA	2.5-5 mg/kg	Safe up to 4 g/kg	ESR and significant improvement of the hematological parameters like RBC count, Hb level and the platelet count	[347,348]
Hemidesmus indicus R.Br.	Asclepdiaceae	Indian sarsaparilla	R	Hydroalcoholic	CFA	450 mg/kg	LD 50>2000 mg/kg	Inhibition of inflammation induced by caragenin, bradykinin and serotonin	[292]
Hippocratea excels H.B.K.	Hipocreataeceae	Mata piojo, cancerina	B	Ethanol	CFA	25, 50, 100 mg/kg	LD 50>2000 mg/kg	Activity against both exudative and proliferative phases of inflammation	[349]
Hybanthus enneaspermus Muell.	Violaceae	Humpback flower	Wh	Aqueous, ethanol	CFA	500 mg/kg	Safe up to 5000 mg/kg	Immobilization of both phases of inflammation	[350]
Botanical name	Family	Common name	Part	Extract	Dose (o.o.)	Acute toxicity (p.o.)	Mode of action	Model	Reference
----------------------	----------------------	----------------------	------------	---------	-------------	-----------------------	----------------	-------------	-----------
Jatropha isabellei	Euphorbiaceae	Physic nut	Ug	Ethanol	100-300 mg/kg Safe up to 300 mg/kg	Safe up to 300 mg/kg	CFA, TIA	MSUIA	[293]
Justica gendarussa	Acanthaceae	Willow leaved justice	L	Ethanol	5, 10, 20 mg/kg	Safe up to 400 mg/kg	CFA, TIA	CFA, TIA	[294]
Lantana camara	Verbenaceae	Lava	M.	Ethanol	20, 40, 60 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[151]
Lepisanthes nervosa	Lythraceae	L.	L	Ethanol	100 mg/kg	≥ 6000 mg/kg	FOVA	FOVA	[355]
Lepisanthes nervosa	Lamiaceae	L.	L	Ethanol	5, 10, 20 mg/kg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[356]
Lepisanthes nervosa	Lamiaceae	L.	L	Ethanol	100 mg/kg	≥ 6000 mg/kg	FOVA	FOVA	[357]
Lawsonia inermis	Lythraceae	Henna, mehendi	L	70% aqueous ethyl alcohol	Safe up to 400 mg/kg	CFA, TIA	CFA, TIA	[295]	
Leucas aspera	Lamiaceae	Thumbai	Al	N-hexane, chloroform, methyl acetate, ethanol	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[296]	
Linum usitatissimum	Linaceae	Flax	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[358]
Lonicera japonica	Caprifoliaceae	Japanese honeysuckle	L	Ethanol	200, 400, 600 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[359]
Mallotus oppositifolium	Euphorbiaceae	Geisel	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[360]
Merremia emarginata	Convolvulaceae	Kupit	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[361]
Merremia tridentata	Convolvulaceae	Kupit	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[362]
Operculina turpethum	Convolvulaceae	Turpeth	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[363]
Panax ginseng	Araliaceae	Ginseng	R	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[364]
Phyllanthus amarus	Euphorbiaceae	Gundi	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[365]
Pinus maritime	Pinaceae	Maritime pine	B	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[366]
Pisonia grandis	Nyctaginaceae	Grandclaws	Grand	Ethanol	30, 100, 300 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[165]
Pteris angusta	Polypodiaceae	Water lettuce	L	Ethanol	100, 200, 400 mg	Safe up to 2000 mg/kg	CFA, TIA	CFA, TIA	[367]
Botanical name	Family	Common name	Part	Extract	Dose (p.o.)	Acute toxicity (p.o.)	Model	Mode of action	Reference
---------------	--------	-------------	------	---------	------------	-----------------------	-------	----------------	-----------
Pleurotus sajorcaju Singer.	Pleurotaceae	Oyster mushroom	F	Aqueous Methanol	500, 1000 mg/kg	D.N.A.	AIA	Suppression of splenic lymphocytes	[369]
Premna serratifolia Linn.	Verbenaceae	Agnimantha	W	Methanol	300 mg/kg	Safe upto 2000 mg/kg	CFA	Suppression of migration of leukocytes	[299]
Pseudacacia kotschyi Schweinf.	Meliaceae	Hard cedar, Senegals basari	L	Aqueous	200, 400 mg/kg	Safe upto 2000 mg/kg	CFA	Reduction in inflammation due to mediators suppression	[370]
Punica granatum Linn.	Lythraceae	Pomegranate	F	Solid phase extraction	13.6-34 mg/kg	Safe upto 2000 mg/kg	CFA	Inhibition of spectrum of signal transduction pathway	[196,371]
Rhus verniciflua Stokes.	Anacardiaceae	Chinese lacquer tree	B	N-hexane	50 mg/kg	5 g/kg	CIA	Suppressive effects on inflammatory cytokines/chemokines and angiogenic factor in IL-1β-stimulated RA	[372]
Ruta graveolens Linn.	Rutaceae	Rue	A	Ethanol	10 mg/kg	≥ 10 g/kg	CFA	Reduces cell influx, release of mediators, lipid peroxidation and oxidative stress	[207,373]
Salacia reticulate Wight.	Celastraceae	Khothala himbutu	L	Ethanol	25 ug dry powder/ml	2000 μg/ml	CIA	Inhibition of IL-1β-activated cell proliferation and regulation of mRNA expression	[300]
Salix nigra Linn.	Salicaceae	Black willow	B	Methanol	100 mg/kg	LD₅₀ = 6.5 gm/kg	CFA	Inhibition of pro-inflammatory inhibitors	[301]
Saraca asoca Roxb.	Fabaceae	Sorrow less	B	Methanol	1-5 g/kg	≥ 10 g/kg	CFA	Antagonistic action against the pro-inflammatory cytokines and stabilizing effect on lysosomal membrane, reduction in release of acid hydrolase	[343,374]
Saussurea lappa Clarke.	Compositae	Kuth roots	R	Ethanol	50, 100, 200 mg/kg	Safe upto 2000 mg/kg	CFA	Inhibited TNF-release from LPS-stimulated murine macrophage cell line	[217,375]
Semecarpus anacardium Linn.	Anacardiaceae	Bhallatak	Nt	Nut milk extract	15, 50, 150 mg/kg i.p.	Safe upto 5 g/kg	CFA	Inhibition of cytokine production	[302,376]
Sida rhombifolia Linn.	Malvaceae	Cuban jute, jelly leaf	Al	Methanol, petroleum ether	30-100 mg/kg	Safe upto 5000 mg/kg	CFA	Generation of reactive oxygen species was suppressed	[218,377]
Sinomenium acutum Rehd.	Menispermaceae	Tudurafuji	R	Alcoholic	15, 50, 150 mg/kg i.p.	D.N.A.	CFA	Inhibition of lymphocyte proliferation and macrophage Function and reduction of the ESR	[378]
Smithia sensitive Smith.	Fabaceae	Odabirni	Wh	Methanol pet ether chloroform	10 ml/kg	Safe upto 2000 mg/kg	FIA	Inhibition in the hypotonicity	[379]
Sophora flavescens Aton.	Fabaceae	Kurara worm killer	R	Ethanol	100 mg/kg	D.N.A.	AIA	Inhibition of COX-2-catalyzed PGE2 and iNOS	[380]
Strobilanthes callosus Nees.	Acanthaceae	Marudona	R	Pet ether	100 mg/kg	D.N.A.	CFA	Reduce levels of lipid peroxides, glutathione peroxidase and catalase	[381,382]
Strychnos potatorum Linn.	Loganiaceae	Clearing nut tree	S	Water	200 mg/kg	D.N.A.	CFA	Suppressive action on mediators of inflammation	[303]
Torilis japonica Houtt.	Apiaceae	Upright hedge parsley	F	Methanol	90, 270 mg/kg	Safe upto 5000 mg/kg	CFA	Inhibitory effects on immune cell trafficking. CD4 T-cells	[200]
Toxicodendron pubescens P. Mill.	Anacardiaceae	Atlantic poison oak	Wh	aqueous	10 mg/kg	Safe upto 2000 mg/kg	CFA	Immunosuppressant activity	[383,384]
Trewia polyacarpa Benth.	Euphorbiaceae	Gambahari, prathinidhi	R	Ethanol	100 mg/kg	Safe upto 3.2 g/kg	CFA	Superoxide dismutase, glutathione peroxidase, ascorbic acid levels were increase while lipid peroxide content was decrease	[385]
Botanical name	Family	Common name	Part	Extract	Dose (p.o.)	Acute toxicity (p.o.)	Model	Mode of action	Reference
-----------------------------	----------------	-------------	------	------------------	----------------------	------------------------	-------	--	-----------
Tridax procumbens Linn.	Asteraceae	Ghamra	L	Ethanol	300 mg/kg	≥ 2000 mg/kg	CFA	Suppression of migration of leukocytes	[386]
Trigonella foenum raecum Linn.	Fabaceae	Fenugreek	S	Mucilage	75 mg/kg	D.N.A.	CFA	Reduces cell influx, release of mediators, and oxidative stress	[247]
Urtica pilulifera Linn.	Urticaceae	Roman nettle	L	Methanol	1.33, 2.0 g/kg	Safe upto 2 g/kg	CFA	Suppress the activation of NF-kB	[387]
Vernonia cinerea Less.	Asteraceae	Bitterleaf ndole	Fl	Ethanol	25-100 mg/kg	Safe upto 5000 mg/kg	CFA	Membrane stability-modulating effect	[388,389]
Vitex negundo Linn.	Verbenaceae	Nigundi, sindhuvara	L	Ethanol	1 ml/100 g	LD₅₀ > 2000 mg/kg	CFA	Immunosuppressive activity	[258,390]
Withania somnifera Dunal.	Solanaceae	Indian winter cherry	R	Hydralcoholic	500-1000 mg/kg	LD₅₀ = 1750 mg/kg	UIA	Inhibiting the release of inflammatory mediators	[14]
Xanthium srtuarium Linn.	Compositeae	Cocklebur, burdock datura	L	Ethanol	200, 400 mg/kg	Safe upto 2000 mg/kg	CFA	Inhibiting the release of inflammatory mediators, lowers the elevated levels of NO, urinary hydroxyproline and neutrophil infiltration	[277]
Yucca schidigera Roezl.	Liliaceae	Spanish dagger	B	Hydro-alcohol	300-400 mg/kg	D.N.A.	APA	Inhibition of NFkB activation	[391]

CIA: Collagen induced arthritis, CFA: Complete Freund arthritis, SCW: Streptococcal cell wall induced arthritis, HRBC: MS: HRBC membrane stabilization, FIA: Formalin induced arthritis, TIA: Turpentine oil induced arthritis, IPDN: Inhibition of protein denaturation, APA: Anti-protozoal activity, MSU: MSU induced arthritis, CACW: Candida albicans cell wall, FOIA: Formaldehyde induced arthritis, COIA: Croton oil induced arthritis, ICAM-I: Intercellular adhesion molecule-1, VCAM-I: Vascular cell adhesion molecule-1, D.N.A.: Data not available, ESR: Erythrocyte sedimentation rate, WBC: White blood cell, RA: Rheumatoid arthritis, TNF-α: Tumor necrosis factor, IL: Interleukins, RBC: Red blood cell, PGE2: Prostaglandin E2, GM-CSF: Granulocyte-macrophage colony-stimulating factor, PGDF: Platelet-derived growth factor, TGF-β: Transforming growth factor beta, TPA: Tissue-type plasminogen activator, ALT: Alanine aminotransferase, IFN: Interferon, iNOS: Inducible nitric oxide synthase, NF: Nuclear factor.
Dried flowering or fruiting tops are medicinally important. CT possesses traditional significance in infections of eye, local inflammation, neuralgia, acute mania, whooping cough, asthma, and to relieve pain in dysmenorrhea and menorrhagia. Oil extracted from seeds is used in rheumatism. The chief chemical constituent is a resin volatile oil composed of canabene, canabene hydride, canabinon, and canabin; which consist of cannabinol, pseudo-cannabinol, cannabinin, and several terpenes [51,94]. Around more than 166 research papers confirm that cannabis and related therapies will be helpful in relieving the pain associated with arthritis. Moreover, cannabinoid component of cannabis shown to possess anti-arthritic activity. It has been claimed to use as anxiolytic, antidepressant [95,96] in schizophrenia [97] and RA. The active moiety of CT i.e. cannabidiol at a dose of 10 and 25 mg/kg, orally, administered in collagen-induced arthritic rats significantly decreases the arthritic score and inhibits the release of inflammatory mediators. Thus, it was concluded that the cannabidiol have an anti-arthritic activity by possessing anti-inflammatory and immunosuppressive action [98].

Cinnamomum zeylicanium Blume. (CZ)(Family-Lauraceae)

CZ a topical evergreen tree grows to a height of 7-10 m in its mild state and has deeply veined ovate leaves that are dark green underneath. It is commonly known as cinnamon or Ceylon cinnamon. CZ is cultivated in Sri Lanka, Myanmar, and Southern Coastal strips of India. Treatment of vaginitis, rheumatism, neuralgia, wounds, toothache, diabetes, inflammation of eyes, impotence, and leucorrhoea is its traditional uses. CZ was also used to treat abdominal pain associated with diarrhea, dysmenorrhoea, and amenorrhoea. The active constituents of the CZ are cinnamaldehyde and eugenol. The other constituents are emphene, sibnine, myrcene, fenchone, nerol, bornyl acetate, cinnamyl acetate, and geranial [99]. The CZ is reported to have an analgesic, anti-odynalgic [100], anti-fungal [101], anti-inflammatory, anti-microbial [102,103], insecticidal [104], anti-diabetic [105,106], and antioxidant activities [107,108]. The polyphenolic extract of the CZ bark at a dose of 8 mg/kg revealed anti-arthritic potential in male wistar rats in CFA model by improving the body weight and the level of serum C-reactive proteins when compared with control group. Thus, anti-arthritic activity was mediated through inhibition of leukocyte emigration and prostaglandin synthesis [109].

Coriander sativum Linn. (CS)(Family-Umbelliferae)

CS is a herbaceous plant distributed all over India and used for its seeds, fruits and leaves. Traditionally, plant is used as stimulant, carminative, stomachic, diuretic, tonic, and aphrodisiac. Oil is very useful for rheumatism in a dose of 1-4 minim on sugar or in emulsion. Coriander oil which contains linalool/coriandrol, geraniol, and boborneol, extracted from its fruit, is volatile and essential [51,110]. Externally seeds can be used as a lotion or have been bruised and used as a poultice for the treatment of arthritis. Cineole, one of the 11 components of the essential oils, and linoleic acid, present in coriander, possess anti-inflammatory and anti-arthritic properties [111]. CS possesses an antibacterial [112,113], anti-spasmodic [114], antioxidant [115-117], anticarcinogenic [118], and hypolipidemic activities [119]. The hydroalcoholic extract of seeds at doses of 8, 16, and 32 mg/kg showed reduction in paw swelling induced by formaldehyde and CFA methods in male wistar rats by inhibiting the pro inflammatory cytokines and TNF-α. In conclusion, the extract of CS shows a potent anti-arthritic activity on rats [120].

Curcuma longa Linn. (CL)(Family-Scitaminaeae)

CL is a perennial herb that measures up to 1 m high with a short stem, distributed throughout tropical and subtropical regions of the world, and is widely cultivated in Asian countries, mainly in India and China [121]. There are two varieties of CL one with rich-colored oval rhizomes and other with softer, larger, lighter-colored long rhizomes which are edible. Turmeric paste mixed with lime and saltwater can be used externally in rheumatism. The major chemical constituents are curcumin, methylecurcumin, demethoxy curcumin, sodium curcuminate, and Ar-tumerone. Traditionally, CL is used in wound healing, helminthic infections, fevers, skin eruption, conjunctivitis, cough, parasitic infections, and liver diseases [51,121]. Later on, it was investigated the effect of herbomineral formulation (comination of turmeric, ashwagandha, sallai guggul, and jasad bhasma based on Ayurveda medicinal system) on 90 patients suffering from arthritis. It was observed that there was significant reduction in disability and pain. The plant is reported to be highly valued as anti-inflammatory [122,123], antiproteozal [124,125], nematocidal [126], antibacterial [127], anti-tumor [128], and hepatoprotective [129]. The anti-arthritic activity was shown by essential oils of rhizomes of CL with streptococcal cell wall induced arthritis. It can be concluded that the turmeric essential oil possess an anti-inflammatory as well as anti-arthritic activities [130].

GY (Family-Fabaceae)

GY commonly known as mulethi is a herb/shrub of 2 m height mainly found in subtropical or temperate areas. The underground growth of stem is up to 2 m and is highly branched consisting short taproot with number of rhizomes. GY is commercially grown in Spain, Sicily and England. In India, it is mainly cultivated in Punjab and Sub Himalayan tracts [51]. The plant is reported to be traditionally used in anemia, gout, asthma, epilepsy, fever, cough, skin disease, rheumatism, paralysis, and hemorrhagic diseases. Roots in the form of infusion, decoction, extract or lozenge are useful as a demulcent in inflammatory affections [10,51]. The clinical trials reveal that glycyrrhizin has favorable effects on RA, when administered along adrenocorticotropic hormone or cortisone, in comparison, when administered alone. Hence, it was suggested that the main effect of liquorice is to potentiate rather than mimic endogenous steroids. The active chemical constituent is glycyrrhizin present in the form of potassium and calcium salts of glycyrrhizic acid. GY also contains sucrose,
glucose, resins, bitter principles, mannites, asparagines, and fat [131]. GY have shown anti-microbial, hypolipidaemic, antiviral, hypotensive, anti-ulcer, anti-diuretic, anti-inflammatory, anti-mutagenic, expectorant, hepatoprotective, antioxidant, and anti-protinase activities [132-134]. The methanolic extracts of rhizomes of GY at a dose of 150 mg/kg possess anti-arthritic activity in male wistar rats by inhibiting the leukocyte migration and auto antigens production and exhibit anti-protinase activity. The study concluded that GY possess a significant anti-arthritic activity [76].

Lantana camara Linn. (LC)(Family-Verbinaceae)

LC popular as lava or red sage is a low erect or subscandent vigorous shrub with tetangular stem, stout recurved pickles and comprises strong odour ofblack currents. LC is native to India and reaches to a height of 1-3 m [135]. Traditionally, LC is used in the treatment of sores, chicken pox, measles, fever, cold, rheumatism, asthma, ulcers, and high blood pressure [135]. In Asian countries like India, the decoction of leaves of the plant LC was used traditionally for the treatment of rheumatism. In Ghana, the infusions of whole plant are used against arthritis. *Nyctanthes arbor tristis* is used in Bangladesh for treatment of fever, bacterial infections, and rheumatism as well as other ailments [136]. The active constituents are flavones, isoflavones, anthocyanins, coumarins, lignins, alkaloids, tannins, saponins, triterpinoids, catechins, and isocatechins [137]. LC is reported to have an antioxidant [138], anti-diabetic [139,140], anti-inflammatory [141], anti-motility [142], anti-fungal [143,144], anti-bacterial [145,146], anti-fertility [147], cytotoxic [148], larvicidal [149], and wound healing activities [17,150]. The ethanolic extract of leaves of LC at doses 5, 10 and 20 mg/kg proved to have anti-arthritic activity by inhibiting the lipoxygenase and cyclooxygenase [151].

Phyllanthus amarus Schum and Thomm. (PA)(Family-Euphorbiaceae)

PA is a 10-60 cm tall herb which grows in tropical and subtropical sandy regions. Its common name is chancapiedra. Traditionally, PA is used in jaundice, dropsy, diarrhea, dysentery, urinary-gential disease, scabies, ulcer, and wounds. In addition, it is used as astringent, stomachic, diuretic, antiseptic, bitter, and febrifuge [51,152]. In the Hand Book of African Medicinal Plants it is reported that PA was traditionally use for its anti-inflammatory activity. Moreover, in Amazonia and Brazil, the whole plant was used for the treatment of various inflammatory disorders like arthritis. PA comprised of active constituents found in all parts of the plant aslignans, glycosides, flavonoids, alkaloids, ellagittannins, and phenylpropanoids [152]. Studies have proved that PA have anti-inflammatory [153], anti-microbials [154,155], anti-cancer [156], anti-fertility [157], hepatoprotective [158], anti-diabetic [159], anti-diarrheal [160], antioxidant [161], anti-oxidant [162], anti-inflammatory [141], anti-motility [142], anti-fungal [143,144], anti-bacterial [145,146], anti-fertility [147], cytotoxic [148], larvicidal [149], and wound healing activities [17,150]. The ethanolic extract of leaves of PA at doses 5, 10 and 20 mg/kg showed an anti-arthritic activity at doses of 13.6-34 mg/kg of PG show an anti-arthritic activity at doses of 13.6-34 mg/kg [131]. GY have shown anti-microbial, hypolipidaemic, antiviral, hypotensive, anti-ulcer, anti-diuretic, anti-inflammatory, anti-mutagenic, expectorant, hepatoprotective, antioxidant, and anti-protinase activities [132-134]. The methanolic extracts of rhizomes of GY at a dose of 150 mg/kg possess anti-arthritic activity in male wistar rats by inhibiting the leukocyte migration and auto antigens production and exhibit anti-protinase activity. The study concluded that GY possess a significant anti-arthritic activity [76].

Piper longum Linn. (PL)(Family-Piperaceae)

PL is a slender, climbing, under shrub, creeping, and rooting below. The young shoots are downy, the leaves are 5-10 cm long; 5 cm wide; ovate; cordate with broad rounded lobes at the base; sub-acute and entire. PL is indigenous to North-Eastern and Southern India and Ceylon [51]. PL is used in cold cough, asthma, hoarseness, and snake bite since ancient times. In rheumatism, roasted aments are bitten up with honey and taken in a prescribed dose. In Java and Indonesia, the whole plant was applied topically, as it relieves muscular pains and inflammation [51,166]. Major constituents are piperine, piperlongumine, piperlonguminine, and methyl 3,4,5-trimehoxycinnamate. Others include resin, volatile oil, starch, fatty oil, and inorganic matter [167]. Medicinally, PL finds its importance as an anti-inflammatory [168], anti-amoebie [169], anti-asthmatic [170], hepto-protective, and immune-modulatory activities [171]. The aqueous extract of seeds of PL at two doses (200 and 400 mg/kg) shows a 46.32% inhibition in paw swelling in Freund’s complete adjuvant induced arthritis in rats by inhibiting the adherence of neutrophils to endothelial monolayer by suppressing the TNF-α induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and also inhibits the NF-kB. In conclusion, PL possess a significant anti-arthritic activity on male wistar rats [172].

Punica granatum Linn. (PG)(Family-Lythraceae)

PG is popular as pomegranate is a native of India, East Indies, Southern Asia, tropical Africa, California, and Arizona. PG grows tillan height of 12-16 feet with number of spiny branches and has long lifespan. Traditionally, PG is used in diarrhea, ulcers, and diabetes and also useful as antiparasitic agent and blood tonic [51,173]. In Iranian Traditional Medicinal system, the seeds and juice are considered as a tonic for the treatment of rheumatism. Pomegranate fruit consumption reduced composite disease activity index in RA patients, and this effect could be related to the anti-oxidative property of pomegranates. Dietary supplementation with pomegranates may be a useful complementary strategy to attenuate clinical symptoms in RA patients [174]. Some of the major chemical constituents present in the PG aregallic acid, anthocyanins, ellagittannins, flavones, flavonoids, antocyanids, sterols, quercitin, rutin, and other fatty acids [173]. The plant is of high value due to its anti-inflammatory [175], anti-carcinogenic [176,177], antioxidant [178,179], hypotensive [180], hypolipidaemic [181], anti-artherosclerotic [182], and anti-diabetic activities [183]. PG is also used in the treatment of myocardial ischemia [184], prostate cancer [185,186], dental plaques [187], denture stomatitis [188], bacterial infections [189,190], erectile dysfunctions [191], male infertility [192], alzheimer’s disease [193], and ischemic brain injury [194,195]. The fruits of PG show an anti-arthritis activity at doses of 13.6-34 mg/kg.
by inhibiting the spectrum of signal transduction pathway in male wistar rats. Thus, it can be concluded that PG have potent anti-arthritic activity [196].

Ruta graveolens Linn. (RG)(Family-Rutaceae)

Rue is an herbaceous perennial plant, originally growing in the Mediterranean region [197]. RG is traditionally used as antiseptic, antihelminthic, antispasmodic, stimulant, abortifacient, expectorant, and anti-rheumatic [51]. The major chemical constituents isolated from the RG are rutin, quercitin, rutacridone, rutacridone epoxide, graveoline, and gravacridonodiol [197]. RG is reported to have anti-inflammatory [198,199], analgesic [200], antiandrogenic [201,202], antihyperglycemic [203,204], antihiperlipidemic [205], anticancer activity [206], and anti-rheumatic properties. The polyphenolic fraction of aerial parts of RG at a dose of 10 mg/kg, b,w. showed an anti-arthritic activity in male wistar rats induced by CFA model. The polyphenolic fraction revealed its activity by inhibiting the prostaglandins synthesis, decreasing CRP level, ceruloplasmin, lipid peroxidation and release of other inflammatory mediators. In conclusion, RG possess anti-arthritic activity [207].

Saussurea lappa Clarke. (SL)(Family-Compositae)

SL herbs grow abundantly on the Himalayas and Valley of Kashmir. Roots contain odorous principle composed of a solid resin, salt of valeric acid and ash which contains manganese. SL is mainly useful in asthma, helminthiasis, fever, cough, skin disease, rheumatism, malaria, and leprosy. Roots in the form of infusion with little cardamoms are used in chronic rheumatism. The aqueous and ethanol extract of aerial parts of RG at a dose of 10 mg/kg, b.w. showed an anti-arthritic activity in male wistar rats induced by CFA model. The polyphenolic fraction revealed its activity by inhibiting the prostaglandins synthesis, decreasing CRP level, ceruloplasmin, lipid peroxidation and release of other inflammatory mediators. In conclusion, RG possess anti-arthritic activity [207].

Terminalia chebula Retz. (TC)(Family-Combretaceae)

TC is a well-known traditional plant of Indian traditional medicinal system and the most frequently used herb in ayurveda. In tribal of Tamil Nadu in India, the TC is commonly known as Kadukkai and was used for treating various ailments such as fever, cough, diarrhea, gastroenteritis, skin diseases, candidiasis, urinary tract infections, and wound infections [51]. TC is a medium-sized deciduous tree of variable appearance with usually short cylindrical bole of 5-10 m length and 60-80 cm diameter. The phytocconstituents of TC are tannins, flavonoids, resins, fixed oil, fructose, amino acids, and sterols. Moreover, the active constituents of tannins include chebulic acid, ellagic acid, chebulagic acid, chebulinic acid, and gallic acid. TC was used in Thai traditional system as a carminative, expectorant, and antioxidant. A polyherbal formulation “Taphala” of TC, *Terminalia bellirica* and *Emblica officinalis* is commonly used in chronic constipation, detoxification, poor digestion and rejuvenator of the body [224]. TC possesses an anti-bacterial [225], anti-viral [226], antiinflammatory [227], anti-fungal [228], anti-amoebic [229], anti-neoplastic [230], anti-plasmodial [231], antioxidant [232], anti-diabetic [233] and anti-ulcerogenic [234] activity. The TC reported to have an immunomodulatory[229], radioprotective[235], cytoprotective[236], cardioprotective[237], and hepatoprotective[238] activity. Moreover, the hydroalcoholic extract of TC produces a significant inhibition of joint swelling in formaldehyde induced arthritis and CFA induced arthritis models. The anti-arthritic potential of the extract was due to significant reduction in the levels of TNF-α, IL-6, and IL-1β [239].

Trigonella foenum-graecum Linn. (TF)(Family-Papilionaceae)

TF, commonly known as Fenugreek, is an herbaceous plant which has found wide applications as a food, a food additive, and as a traditional medicine. Albuminoids, soluble carbohydrates, woody fibers, and ash are present in TF [240,241]. The plant has wide uses in the traditional medicine and reportedly used to treat diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Several confections of TF like methi modaka, *Svalpamethimodaka* etc., are used in rheumatism [51]. Fenugreek seeds have high

Choudhary, et al.: A comprehensive review
content of mucilage, choline, and trigonelline. Studies of its extract have shown antihyperglycemic [242], estrogenic [243], antioxidant [244], anticancer [245], anti-inflammatory [246], and antirheumatic activities. The fenugreek mucilage obtained from seeds of the TF at dose 75 mg/kg possess an anti-arthritic activity and decreased the elevated levels of SGOT, SGPT, CRP, nitrites, ESR, and white blood cell count. The TF may act by decreasing the oxidative stress, cell influx, and release of mediators associated with arthritis. In conclusion, TF showed anti-arthritic activity [247].

Vitex negundo Linn. (VN)(Family-Verbenaceae)

VN is referred to as five leaved chaste tree and a large aromatic shrub or sometimes a smaller slender tree with quadrangular, densely whitish tomentose branches. VN is originated in Southern India and Burma [51]. VN have its traditional use in rheumatism, headache, enlarged liver, syphilis, diarrhea, and cholera. Leaves along with garlic, rice and gud is a remedy for rheumatism. In Ayurvedic, Unani and Chinese medicine system the leaves extract of VN was used to treat the rheumatism and inflammation of joints. The Konkan community in Maharashtra used the plant for rheumatism [248]. The chief chemical constituents are nishindine, flavones, luteolin-7-glucoside, caetin, iridoid glycosides, vitamin C, β-sitosterol, and phthalic acid [249]. VN possess different pharmacological activities including anti-inflammatory, analgesic [250], antioxidant [250-253], insecticidal [256,257], and antirheumatic [249]. The active compound agnusideisolated from ethanolic extract of leaves administered at doses of 1.56 mg/10 ml, 6.25 mg/10 ml and 1.25 mg/10 ml p.o. decreased the elevated levels of ESR, leukotriene B4, PGE2, cytokines, IL-17, TNF-α and interferon gamma. Hence, it can be concluded that the VN possess an anti-arthritic activity [258].

Xanthium strumarium Linn. (XS)(Family-Compositae)

XS commonly known as cochlebur, burweed or burdock datura is an indigenous of tropical parts of India. XS is an annual herb of 1m height with a short, stout, hairy stems, and commonly grows in waste places, roadsides and along river banks in warmer parts. Traditionally, it is used as laxative, anthelmintic, tonic, digestive, antipyretic and also improves appetite, voice, complexion, and memory. XS is also used to cure leukoderma, biliousness, poisonous bites of insects, epilepsy, salivation, and fever. The infusion of plant has been used in treatment of rheumatism in ayurvedic and Chinese medicine system. The active principle of aerial parts of XS are alkaloids; sesquiterpenes lactones such as xanthinin, xanthumin, xanthatin; sulphated glycoside such as xanthostrostrumarin, atractyloside, carboxyatractyloside; phytosterols, xanthanol, isoxanthanol, xanthosin, 4-oxo-bedfordia acid, hydroquinone, xanthanolides, and deacetylxanthumin [259]. However, recently investigated that XS possess an anti-bacterial [260], anti-tumor [261], anti-cancer [262], anti-tussive [263], anti-fungal [264,265], anti-inflammatory [266,267], vasorelaxant [268], hypoglycaemic [269], antimitotic [270], anti-malarial [271], anti-trypanosomal [272], diuretic [273], anti-allergic [274], and antioxidant activity [275,276]. Oral doses (200 and 400 mg/kg) of ethanolic extract of XS when administered exhibited anti-arthritis activity by inhibiting the release of inflammatory mediators. In conclusion, XS have a potent anti-arthritic activity [277].

DISCUSSION

Since Neanderthal times, the plants had been used for the prevention and cure of various ailments such as RA and other inflammatory diseases. Natural sources such as plants have been considered as the safest and valuable treatment for the disease. From the ethno botanical knowledge, we included the plants that are used in Indian traditional systems such as herbalism, folklore and shamanism. The review article includes more than 485 different plant species that are used for the prevention and cure of RA during last few decades. The botanical name of the plant, family, common name, part used, and various dosage forms studied are summarized in the Table 2. Around more than 100 families are included for 485 plants among them papilionaceae, fabaceae, euphorbiaceae, acanthaceae, compositae, ranunculaceae, malvaceae, rutaceae, liliaceae, labiatae, solanaceae, cruciferae, verbenaceae, lauraceae, and rubiaceae are in major proportion. As shown in Figure 1, around 485 plants have been mentioned in which 19 (4.4%) belongs to family papilionaceae, 17 (4%) to compositae and euphorbiaceae, 15 (3.5%) to rutaceae, 14 (3.3%) to vabenaceae, 13 (3%) to labiatae and fabaceae, 12 (2.7%) to malvaceae and cruciferae, 11 (2.5%) to solanaceae and acanthaceae, 10 (2.3%) to ranunculaceae and liliaceae, 9 (2.1%) to apocynaceae, lauraceae and rubiaceae, 8 (1.8%) to gramineae, meliacae, and umbelliferae, and remaining (48.2%) are categorized as others [Figure 1].

From our review, we have noticed that majority of researches were carried mainly in developing countries such as India, China, Korea, and Nigeria. But some developed countries like USA and Japan also continue their research on RA so as to increase the potential benefits [Figure 2].

![Figure 1: Plants in diverse families with % anti-arthritic activity](image-url)
For the treatment of RA, various parts of plants are used such as leaves, roots, fruits, rhizomes, and seeds in distinguished dosage forms like extract, decoction, juice, infusion, paste, oil etc. The most potent anti-arthritic plants such as *Aconitum ferox*, *Balsamodendron mukul*, BD, *Boswellia serrata*, CS, CL, PL., *Ricinus communis*, *Plumbago zeylanica*, SL, SR, and *Strychnos nux vomica* have been elaborated in the review article. Among these listed plants, certain plants have been used in acute attack or in chronic pain or chronic rheumatism.

CONCLUSION

Traditional medicines used for the treatment of arthritis are used in various tribal/rural cultures worldwide. At present, investigation of anti-arthritic activity of traditional medicine has led to the development and studies of many herbal remedies employed for such purpose. The information that has been gathered from various sources is helpful in preserving folk indigenous knowledge as well as discovery of potential compounds having promising anti-arthritic activity. The information gathered from the data provides the information on toxicity profile and mechanism of action of tested extracts. Therefore, this review article has been prepared to provide the plants/their parts having specific traditional use in the treatment of arthritis. Moreover, this review has included latest data on new plant species/polyherbal formulations which are not covered in previews reviews on arthritis therapy as per our knowledge.

In conclusion, about 485 plant species mentioned in the list would have a promising anti-arthritic activity in humans. Information about the ethnic proof of the traditionally used anti-arthritic plants was cross-validated from various articles/reviews published in journals. Till now, no such review has analyzed which correlates the plant family, parts used, dosage form with anti-arthritic effects of the plants. Data mentioned in Table 2 show that papilionaceae family contains more plants with anti-arthritic activity whereas among parts, leaves have been maximally used in oil dosage form for the treatment of arthritis. Table 1 provides wealth of information indicates the beneficial effects of polyherbal formulations in the treatment of the arthritis. These includes Rumalaya forte, Rumalayaliniment, arthacure, ortho joint oil, rheum off gold, Majoon suranjan, HLXL, GHJTY, Sudard, and TBL-II [18,20-24]. The data mentioned in Table 3 in addition provides the dose, toxicity profile, and models with mechanism of action for anti-arthritic activity.

The data discussed in this review might be quite useful in obtaining monographs on plants and recommendations on their use. In this review, we mainly deal with the safety profile, mechanism of action, and toxicity studies of plant extracts. The plant extracts and polyherbal formulations would be served as an alternate therapy for the treatment of arthritis with lesser side effects. Moreover, current knowledge can be helpful in materializing the commercial products, where the evidence can be quite limited.

Future Needs

Majority of traditionally used plants which have been mentioned in Table 2, have not been experimentally proved to have anti-arthritic activity. In addition, data in Table 3 show experimentally, the plants possess anti-arthritic activity only on animals but no clinical data are provided for proving the activity in humans. The data also lack information on exact activity of isolated compounds. However, the emphasis should be given in an area that needs further investigations as studied in animals needs to be translates to humans in order for a natural extract to be recommended for the treatment of arthritis. Therefore, further research of such less explored plants is still needed to determine their anti-arthritic activity.

Limitations

The data studied and prepared had been collected from the literature published in English language only and ignoring the studies published in other languages. The data mentioned in other languages, if had been included, will also be helpful in validating the current data. Further studies on isolated compounds of plants are not included, which otherwise, might be useful in scrutinizing the cause of anti-arthritic activity of plants.

ACKNOWLEDGMENT

The authors would like to acknowledge UGC, New Delhi for granting Minor Research Project for conducting this study. The authors would also acknowledge Director, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra for providing necessary facilities for carrying out this work.

REFERENCES

1. Chitrne RH, Patel PN. Antiarthitis activity of *Aristolochia bracteata* extract in experimental animals. Open Natl Pro J 2009;2:6-15.
2. Tripathy S, Pradhan D, Anjana M. Anti-inflammatory and antiarthritic potential of *Ammania baccifera* Linn. Int J Pharm Bio Sci 2010;1:1-7.
3. Chunxia C, Peng Z, Huifang P, Hanli R, Zehua H, Jizhou W. Extracts of...
Arisoea rhizomatum C.E.C. Fischer attenuate inflammatory response on collagen-induced arthritis in BALB/c mice. J Ethnopharmacol 2011;133:573-82.

4. Babushetty V, Sultanpur MC. Evaluation of anti-arthritic activity of Asystasia dalzelleana leaves. Int J Pharma Biol Arch 2012;3:377-82.

5. Kasper DL, Fauci AS, Longo DL, Braunwald E, Hauses SL. Harrison’s Principles of Internal Medicine. 16th ed., Vol. II. United States of America: Mc-Graw Hill Companies; 2006.

6. Ngoc DD, Catrina AL, Lundgo K, Harris HE, Ha NT, Anh PT, et al. Inhibition by Artocarpus tonkinensis of the development of collagen-induced arthritis in rats. Scand J Immunol 2005;61:234-41.

7. Mazumder MF Mondal A, Sasmal D, Arulmozhi S, Rathinavelusamy P. Evaluation of antiarthritic and immunomodulatory activity of Barleria lupulina. Asian Pac J Trop Biomed 2012;2:3140-6.

8. Prasad B, Thirumal M, Vadivelan R, Kishore G, Brahmaji VS. Pharmacological evaluation of Alstonia scholaris: Anti-inflammatory and analgesic effects. J Ethnopharmacol 2010;129:293-8.

9. Tandon V, Gupta RK. Histomorphological changes induced by Vitis negundo in albino rats. Indian J Pharmacol 2004;36:176-7.

10. Vispute S, Khopade A. Glycyrrhiza glabra “Klitaka”. A review. Int J Pharm Bio Sci 2011;2:42-51.

11. Badami S, Moorkoth S, Suresh B. Antiarthritic activity of extracts and alkaloids of three Alstonia species from India. Res J Pharm Technol 2012;5:711-5.

12. Sudha K, Mathanghi SK. Traditional underutilized green leafy vegetables and their curative properties. Int J Pharm 2012;5:786-93.

13. Singh V, Patel H, Suvagiya V, Singh K. Some traditionally used anti-arthritic herbs a review. Int Res J Pharm 2011;2:43-5.

14. Jeoung BR, Lee KD, Na CS, Kim YE, Kim B, Kim YR. Ganghwaljetongyeum, an anti-arthritic remedy, attenuates synoviocyte proliferation of collagen-induced arthritis in rats. J Pharmocol Toxicol 2007;2:465-72.

15. Kiran D, Rohilla A, Rohilla S, Khan MU. Phyllanthus amarus: An ample therapeutic potential herb. Int J Ayur Pharm 2011;2:1096-9.

16. Thirumal M, Vadivelan R, Kishore G, Brahmaji VS. Aristolochia bracteolata: An overview on pharmacognostical, phytochemical and pharmacological properties. Earth. J 2012;1:66-78.

17. Kalita S, Kumar G, Karthik L, Rao BV. A review on medicinal properties of Vitex negundo. Asian Pac J Trop Biomed 2012;3:S1400-6.

18. Rajamanickam V, Rajasekaram A, Jesupillai M, Darlin Q, Sabitha R. Pharmacological evaluation of Aristolochia scholaris: Anti-inflammatory and analgesic effects. J Ethnopharmacol 2010;129:174-81.

19. Patel D, Kaur G, Sawant MG, Deshmukh P. Herbal medicine- A natural anti-inflammatory drug. Int J Pharm Bio Sci 2011;2:42-51.

20. Patel SS, Shah PV. Evaluation of anti-inflammatory potential of the multidrug herbomineral formulation in male Wistar rats against rheumatoid arthritis. J Ayurveda Integ Med 2013;4:48-63.

21. Singh S, Nair V, Gupta YK. Antiarthritic activity of majoon bracteolata (a potential Undani formulation) in rat. Indian J Med Res 2011;134:384-5.

22. Asad M, Prasad K, Thomas L, Kamath JV. Evaluation of analgesics and anti-inflammatory activity of Suda, A polyherbal formulation. Iran J Pharmocol Ther 2007;6:71-5.

23. Shen X, Li C, Zhao H, Li S, Chen J, Kobayashi Y, et al. Inhibitory effects of a traditional Chinese herbal formula TBL-il on type II collagen-induced arthritis in mice. J Ethnopharmacol 2011;134:399-405.

24. Zhang RX, Fan AY, Zhou AN, Moudgil KD, Ma ZZ, Lee DY, et al. Wound healing studies of Alstonia scholaris. Clin Hemorheol Microcirc 2009;40:207-18.

25. Shang J, Liu E, Li S, Zhang L, Luo YY, Li J. Anti-arthritic and antioxidative activity of leaves of Alstonia scholaris Linn R.Br. Phytomed 2012;19:239-248.

26. Arulmozhi S, Mazumder PM, Sathiya NP, Thakurdesai A. Antianxiety and antidepressive activity of leaves of Alstonia scholaris Linn R.Br. Phytomed 2012;3:239-248.

27. Rajamanickam V, Rajasekaram A, Jesupillai M, Darlin Q, Sabitha R. Anti pyretic activity of Aristolochia bracteolate. Internet J Altern Med 2009;8:4.

28. Chitre MR, Malipatil M, Chandrahekhar VM, Prashant PM. Antiallergic activity of Aristolochia bracteolata Lank in animal model. Indian J Exp Biol 2010;48:46-52.

29. Niyas MK, Kumar RM, Mani TT, Rahiman FO, Bodhanapu S, Phaneendra P et al. Anti-ulcer activity of aqueous extracts of Aristolochia bracteolate leaves. Pharmacologyonline 2011;1:1078-82.

30. Rameshraman RR, Niranjank MB. Pharmacognostical phytochemical and antifungal activity of Aristolochia bracteolate Lam in ringworm infection. Res J Pharm Technol 2011;4:1123.

31. Maity AK, Chakraborty M, Karthik VM, Sahu A. In vitro anti-microbial activity of some Indian folk forensic medicinal plants. J Cell Tissue Res 2006;265:577-80.

32. Osaka T. Novel natural antioxidants for utilization in food and biological system. Japan: Japan Scientific Societies Press; 1994. p. 241-51.

33. Shirinvaikar A, Somashekar AP, Udupa AL, Udupa SL, Somashekar S. Wound healing studies of Aristolochia bracteolate L. with supportive action of antioxidant enzymes. Int J Phytother Phytopharmacol 2003:10:558-62.

34. Nataraj SK, Puvvada PK, Badami S, Patil SB, Kannan E, Thillainayagam S, et al. Pre-coital and post-coital anti-implantation and abortificient activities of Aristolochia bracteolata Lam. Aerial parts. J Nat Med 2007;61:302-6.

35. Choppot K, Mishra RN. Boerhaavia diffusa roots (Punarnava mool) - Review as rasayan (rejuvenator/antaging). Int J Res Pharm Biomed Sci 2011;2:1451-60.

36. Nadkarni KM. Indian Materia Medica. Vol. I. Bombay, India: Poupular Pakashan Pvt. Ltd; 2009.

37. Desai SK, Desai SM, Naived R, Arya P, Pooja T. Antistress activity of Boerhaavia diffusa root extract and a polyherbal formulation, containing Boerhaavia diffusa using cold restraint stress model. Int J Pharm Sci 2011;3:173-82.

38. Pandey R, Maurya R, Singh G, Sathiamoorthy B, Naik S. Immunosuppressive properties of flavonoids isolated from Septaparna (Alstonia scholaris L. R.Br.) on essential hypertension. Ayu 2009;30:318-22.
Boerhaavia diffusa Linn. Int Immunopharmacol 2005;5:541-53.

55. Bharali R, Azad MR, Tabassum J. Chemopreventive action of Boerhaavia diffusa on DMBA-induced skin carcinogenesis in mice. Indian J Physiol Pharmacol 2003;47:459-64.

56. Mishra JP. Studies on the effect of indigenous drug Boerhaavia diffusa, Rom. on kidney regeneration. Indian J Pharm 1980;12:59.

57. Rawat AK, Mehrotra S, Trpathi SC, Shome U. Hepatoprotective activity of Boerhaavia diffusa L. roots – a popular Indian traditional medicine. J Ethnopharmacol 1997;56:61-6.

58. Gaitonde BB, Kulkami HJ, Nabar SD. Diuretic activity of punarnava (Boerhaavia diffusa). B Haffnie 1977;2:24.

59. Nalamolu RK, Boini KM, Nammi S. Effect of chronic administration of Boerhaavia diffusa Linn. leaf extract on experimental diabetes in rats. Trop J Pharm Res 2004;3:305-9.

60. Lohan S, Jain A, Verma HN. In vivo and in vitro resistance induction in tobacco by Boerhaavia diffusa systemic resistance inducing protein and transfer of induced resistance in in vitro tobacco plants. Biotechnology 2007;3:389-92.

61. Bhalla TN, Gupta MB, Sheth PK, Bhargava KP. Anti-inflammatory activity of Boerhaavia diffusa. Indian J Physiol Pharmacol 1968;12:37.

62. Gupta MB, Bhalla TN, Gupta GP, Mitra CR, Bhargava KP. Anti-inflammatory activity of natural products. I. Triterpenoids. Eur J Pharmacol 1969;6:67-70.

63. Dapurkar KV, Sahu KG, Sharma H, Meshram S, Rai G. Anti-arthritic activity of roots extract of Boerhaavia Diffusa in adjuvant induced arthritis rats. Sch Acad J Pharm 2013;2:107-9.

64. Upagamalwar A, Ghole B. Pharmacological activities of Boswellia serrata Roxb. Ethnobot Leaflets 2009;13:766-74.

65. Sane RT. Standardization, quality control, and GMP for herbal drug. Indian Drugs 2002;39:184-9.

66. Handa SS. Herbal raw material and traditional remedies. East Pharm 1995;49:346-9.

67. Mishra JP. Studies on the effect of indigenous drug Boerhaavia diffusa on skin cancer in mice. Indian J Exp Biol 1980;18:594-606.

68. Menon MK, Kar A. Analgesic and psychopharmacological effects of Punung P, Banavalikar M, Suthar A, Biyani M, Mengi S. Indian Drugs 2002;39:184-9.

69. Tsukada T, Nakashima K, Shirakawa S. Arachidonate 5-lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell line. J Intercult Ethnopharmacol 2011;1:22-8.

70. Choudhary, Lalit Mohan Basu; 1989.

71. Huang MT, Badmaev V, Xie JG, Lou YR, Lu YP, Ho CT. Inhibitory activity of Boswellia resins on 12-Otetradecanoylphorbol-13-acetate (TPA)-induced skin tumors in mice. P. Am Assoc Cancer Res 1997;38:368.

72. Boker DK, Winking M. Die Rolle von Chinin und Quina in der Thérapie maligner glione. Dtsch Arzteblatt 1997;94:958-60.

73. Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol. II, 2nd ed. Allahabad: Lalit Mohan Basu; 1989.

74. Gupta I, Gupta V, Parihar A, Gupta S, Lüdtke R, Safayhi H, Al-Awadi F, Fatania H, Shamte U. The effect of a plants mixture extract on liver gluconeogenesis in streptozotocin induced diabetic rats. Eur J Med Res 1998;3:511-4.

75. Kurokawa M, Ochiai H, Nagasaka K, Neki M, Xu H, Kadota S, et al. Antiviral traditional medicines against herpes simplex virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Res 1993;22:175-88.

76. Kurokawa M, Kim DC, Choi SC. In vivo inhibition of cyclooxygenase activity in combined formulation studied in freund’s adjuvant induced arthritis. Acta Vet Scand 1995;49:346-9.

77. Lee KT, Kim JH. Pongpan A, Chumsri P, Taworasate T. The antimicrobial activity of some Thai essential oil of Caesalpinia sappan. J Ethnopharmacol 2011;136:271-8.

78. Liu RX, Han WQ, Sun DR. Treatment of intestinal metaplasia and atypical hyperplasia of gastric mucosa with xiao wei yan powder. Zhongguo Zhong Yi Yi Jie He Za Zhi 1992;12:602-3, 580.

79. Wang YZ, Sun SQ, Zhou YB. Extract of the dried heartwood of Boerhaavia diffusa inhibits the transfer of induced resistance in tobacco plants. Indian Drugs 2002;39:480-2.

80. Moreira FA, Guimaraes FS. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 2006;39:421-9.

81. Hikino H, Taguchi T, Fujimura H, Hiramatsu Y. Antiinflammatory and immunomodulatory activity of boswellic acids of the gum resin of Boswellia serrata. J Ethnopharmacol 2001;71:193-6.

82. Wijesinghe RC, Letchman H, de Alwis SN. Antioxidant activity of the ethanolic extract of Caesalpinia sappan wood and of Haematoxylin campechianum wood. Planta Med 1977;31:214-20.

83. Arunvтан W, Pongpan A. The antimicrobial activity of some Thai flowers and plants, The Mahidol University, J Pharm Sci 1983;10:81-6.

84. Bican J, Chiusi P, Tavorasate T. The antimicrobial activity of some Thai medicinal plants. Mahidol University. J Pharm Sci 1982;9:88-91.

85. Yadava RN, Saxena VK, Nigam SS. Antiinflammatory activity of the essential oil of Caesalpinia sappan. Indian Perfume 1978;22:73-5.

86. Beavers LG, Tews LF, Taworasate T. The antimicrobial activity of Indonesian medicinal plants. Shoyakugaku Zasshi 1990;44:58-62.

87. Dharav BN, Dubey MP, Mehrotra BN, Rastogi RP, Tandon JS. Screening of Indian plants for biological activity: Part IX. Indian J Exp Biol 1980;18:594-606.

88. Moon CK, Sim SK, Lee SH, Park SK, Yun YP. Antitumor activity of some phyto based polysaccharides and their effects on the immune function. Arch Pharm Res 1983;6:123-31.

89. Kurokawa M, Ochiai H, Nagasaka K, Neki M, Xu H, Kadota S, et al. Antiviral traditional medicines against herpes simplex virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Res 1993;22:175-88.

90. Meen KM, Kim MK, Choi SC. Investigation of Korean plant extracts for potential phytotherapeutic agents against B-virus Hepatitis. Phyto Res 1995;9:429-34.

91. Nimako T, Ohmoto T, Noguchi H, Kinoshta T, Saitoh H, Sankawa U. Inducers of cyclic AMP phosphodiesterase in medicinal plants. Planta Med 1981;41:18-23.

92. Warriers PK, Nambiar VP, Ramankutty C, Vaidhyarathnam PS. Indian Medicinal Plants. Vol. II, 2nd ed. Allahabad: Lalit Mohan Basu; 1989.

93. Wijesinghe RC, Letchman H, de Alwis SN. Antioxidant activity of the ethanolic extract of Caesalpinia sappan wood and of Haematoxylin campechianum wood. Planta Med 1977;31:214-20.

94. Al-Awadi F, Fatania H, Shamte U. The effect of a plants mixture extract on liver gluconeogenesis in streptozotocin induced diabetic rats. Diabetes Res 1991;18:163-8.

95. Bhalla TN, Gupta MB, Sheth PK, Bhargava KP. Anti-inflammatory activity of Boerhaavia diffusa. Indian J Physiol Pharmacol 1968;12:37.

96. Misirra NK, Bista S, Mishra G, Chowdary AK, Patra S. Anti-arthritic activity of Glycyrrhiza glabra, Boswellia serrata and their synergistic activity in combined formulation studied in Freund’s adjuvant induced arthritic rats. J Pharm Educ Res 2011;2:92-8.

97. Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol. II, 2nd ed. Allahabad: Lalit Mohan Basu; 1989.

98. Warniers PK, Nambiar VR Ramankutty C, Vaidhyarathnam PS. Indian Medicinal Plants, A Compendium of 500 Species. Chennai, New Delhi: Orient Longman Ltd; 1993.

99. Baez NI, Jon SG, Ahn EM, Hahn JT, Bahn JH, Jang JS, et al. Antiviral activities of compounds from the wood of Caesalpinia sappan L. Arch Pharm Res 2000;23:344-8.

100. Kataoka M, Takagaki Y. Effect of the crude drugs on β-hexosaminidase release from rat basophilic leukemia (RBL-2H3) cells. Nat Med 1995;49:346-9.
extract of Cinnamomum zeylanicum leaves. People’s J Sci Res 2008;1:9-11.
106. Impar-U-Radosichev J, Deas S, Polansky MM, Baedke DA, Ingebritsen TS, Anderson RA, et al. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: Implications for cinnamon regulation of insulin signalling. Horm Res 1998;50:177-82.
107. Rani P, Venkatesan M, Binilraj J, Sasidhar SS, Amma P. Antioxidant and cytotoxic potential of acetone and methanolic extract of C. zeylanicum dry bark. J Cell Tissue Res 2010;10:2131-8.
108. Taker M, Deny S, Mohamad MR, Fadzilah A, Abdul M, Hasnah SM, et al. Antioxidant activity of cinnamantannin B1 from Cinnamomum zeylanicum Blume. Phytomedicine 2007;16:601-8.
109. Vetal S, Subhash LB, Vishwaraman M, Prasad AT. Anti-inflammatory and anti-arthritis activity of type-A procyanidin polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci Hum Wellness 2013;2:59-67.
110. Verma A, Pandeya SN, Yadav SK, Singh S, Soni P. A review on Coriandrum sativum (Linn.): An ayurvedic medicinal herb of happiness. J Adv Pharm Healthc Res 2011;1:29-48.
111. Rajeshwari U, Andulla B. Medicinal benefits of coriander (Coriandrum sativum Linn.): A review. Asian J Pharm Sci 2012;7:33-39.
112. De Marco A, Senatore F, Capasso F, Iacobellis NS, Cantore PL. Antibacterial activity of Coriandrum sativum in experimental models. Indian J Med Res 2012;135:240-5.
113. Kubo I, Fujita K, Kubo A, Nihei K, Ogura T. Kinase by fractions from cinnamon: Implications for cinnamon kinase by fractions from cinnamon: Implications for cinnamon. Bull (Tokyo) 1993;41:180-3.
114. Bhavani Shankar TN, Sneevinasa Murthy V. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal & pathogenic bacteria in vitro. Indian J Exp Biol 1979;17:1363-6.
115. Huang HC, Jan TR, Yeh SF. Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur J Pharmacol 1992;221:381-4.
116. Park EJ, Jeon CH, Ko G, Kim J, Sohn DH. Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 2000;52:437-40.
117. Funk JL, Flye JB, Oyarzo JR, Zhang H, Timmermann BN. Anti-arthritic effects and toxicity of the essential oils of turmeric (Curcuma longa L.). J Agric Food Chem 2010;58:842-9.
118. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 4th ed., New Delhi, India: Nirali Prakashan; 2009.
119. Sheth A. The Herbs of India. 1st ed., Vol. 2. Gujarat, India: Hi Scan Pvt. Ltd.; 2005.
120. Rastogi RP, Mehrtra BN. Compendium of Indian Medicinal Plants. Vol. 1. New Delhi: Central Drug Research Institute, Lucknow and National Institute of Science Communication and Information Resources; 1990.
121. Moriya SK, Raj K, Srivastava AK. Antidysslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dyslipidaemic Syrian golden hamsters. Indian J Clin Biochem 2009;24:404-9.
122. Saxena M, Saxena J, Khare S. A brief review on: Therapeutic values of Lantana camara plant. Int J Pharm Life Sci 2012;3:1551-4.
123. Ghisalberti EL. Lantana camara L. (Verbenaceae). Fitoterapia 2000;71:467-96.
124. Ganjewal D, Sam S, Khan KH. Biochemical compositions and antibacterial activities of Lantana camara plants with yellow lavender, red and white flowers. Eurasian J Biol Sci 2009;3:69-77.
125. Maye R, Thosar A. Evaluation of Lantana camara Linn. (Verbenaceae) for anti-arthrothlitic and antioxidant activities in rats. Int J Pharm Clin Res 2011;3:104.
126. Sangar L, Sehgal R, Ojha S. Evaluation of antimotility effect of Lantana camara L. var. aculeata fruits in alloxan-induced hyperglycemic rats. Int J Pharm Sci Res 2010;1:247-52.
127. Venkatachalam T. Antidiabetic activity of Lantana camara Linn fruits in normal and streptozotocin-induced diabetic rats. J Pharm Res 2011;4:1590-2.
128. Siddwani BK. Analgesic, anti-inflammatory and antihemorrhoidal activity of aqueous extract of Lantana camara Linn. Res J Pharm Technol 2009;2:378-81.
129. Srivastava D, Singh P. Antifungal potential of two common weeds against plant pathogenic fungi- Alternaria sps. Asian J Exp Biol Sci 2011;2:525-8.
130. Tripathi S. Potential of Lantana camara Linn weed against wood destroying fungi. Indian Forest 2009;135:403-11.
131. Barreto F, Sousa E, Campos A, Costa J, Rodrigues F. Antibacterial activity of Lantana camara Linn and Lantana montevidensis brig. Extracts of carni-cean, Brazil. J Young Pharm 2010;2:424-6.
132. Badakhshan MP. A comparative study: Antimicrobial activity of methanol extracts of Lantana camara various parts. Pharmacogn Res 2009;1:348-51.
133. de Mello FB, Jacobus D, de Carvalho KC, de Mello JR. Effects of Lantana camara (Verbenaceae) on rat fertility. Vet Hum Toxicol 2003;45:20-3.
134. Pour BM, Latha LY, Sastidharan S. Cytotoxicity and oral acute toxicity studies of Lantana camara leaf extract. Molecules 2011;16:3636-74.
135. Kumar MS, Maneemegalai S. Evaluation of Iarvicidal effect of Lantana camara Linn against mosquito species Aedes aegypti and Culex quinquefasciatus. Adv Biol Res 2008;2:39-43.
136. Badakhshan MA. Acceleration of wound healing potential by Lantana camara leaf extract in experimental rats. Res J Med Sci 2009;3:75-9.
137. Gunamaraju R, Sheeba DS, Ramesh C. Evaluation of anti-arthritic effects of Lantana camara var Linn. using acute model on albino rats. Int J Adv Pharm Sci 2012;3:272-7.
138. Kiran D, Rohlila A, Rohlila S, Khan MU. Pleiotropic multifaceted therapeutic potential of Phyllanthus amarus. Int J Pharm Bio Arch 2011;2:610-4.
139. Kassuya CA, Leite DF, de Melo LV, Rehder VL, Caixto JB. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med 2005;71:721-6.
140. Mazumder A, Mahato A, Mazumder R. Antimicrobial potentiality of Phyllanthus amarus against drug resistant pathogens. Nat Prod Res 2006;20:323-6.
Choudhary, et al. A comprehensive review

155. Ogibgo RN, Igwe DI. Antimicrobial effects of *Phyllanthus amarus* using agar-well diffusion and disc-diffusion methods. Control Acta Microbiol Immunol Hung 2007;54:353-366.

156. Kumar RN, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Antitumour and anti-carcinogenic activity of *Phyllanthus amarus* extract. J Ethnopharmacol 2002;117:17-22.

157. Rao MV, Alice KM. Contraceptive effects of *Phyllanthus amarus* in female mice. Phytother Res 2001;15:265-7.

158. Naaz F, Javed S, Abdin MZ. Hepatoprotective effect of ethanolic extract of *Phyllanthus amarus* Schum. et Thonn. on aflatoxin B1-induced liver damage in mice. J Ethnopharmacol 2007;113:503-9.

159. Ali H, Houghton PJ, Soumyanathan A. Alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to *Phyllanthus amarus*. J Ethnopharmacol 2006;107:449-55.

160. Odetola AO, Akinyeru SM. Anti-diarrhoeal and gastro-intestinal potentials of the aqueous extract of *Phyllanthus amarus* (Euphorbiaceae). Afr J Med Med Sci 2000;29:119-22.

161. Harikumar KB, Kuttan R. Protective effect of *Phyllanthus amarus* against radiation-induced changes in the intestine and mouse chromosomal damage. J Radiat Res 2007;48:469-76.

162. Kassuya CA, Silvestre AA, Rehder VL, Calixto JB. The structure of piper longumine. A new alkaloid isolated from the roots of *Piper longum* Linn. (Piperaceae). Sci Cult 1963;29:568.

163. Sharma A, Singh R, Screening of anti-inflammatory activity of certain indigenous drugs on carrageen induced hind paw oedema in rats. Bull Med Ethnobot Res 1990;2:262.

164. Rao C, Nigam S. Antimicrobial activity of essential oils. Indian J Pharm Sci 1968;30:150.

165. Banga S, Garg L, Atal C. Effects of piplantine and crude extracts of *Piper longum* on the ciliary movements. Indian J Pharm Sci 1966;24:139.

166. Mananvalan G, Singh J. Chemical and some pharmacological studies on leaves of *P. longum* Linn. Indian J Pharm Sci 1979;41:190.

167. Yende SR, Sannapuri VD, Vavahare SN, Harle UN. Antihyperamotoid activity of aqueous extract of *Piper longum* on Freund's adjuvant-induced arthritis in rats. Int J Pharm Sci Res 2010;1:129-33.

168. Jurekna JS. Therapeutic applications of pomegranate (*Punica granatum* L.): A review. Altern Med Rev 2008;13:128-44.

169. Balbir-Gurman A, Fuhrman B, Braun-Moscovici Y, Markovits D, et al. Antitumour and anti-carcinogenic activity of *Punica granatum* (pomegranate) as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 2003;46:192-6.

170. Hartman RE, Shah A, Fagan AM, Schwyte KE, Parsadania M, Schulman RN, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 2006:24:506-15.

171. Loren DJ, Seeram NP, Schulman RN, Holtzman DM. Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 2005;57:858-64.

172. West T, Atzeva M, Holtzman DM. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci 2007;29:363-72.

173. Shukla M, Gupta K, Rasthoo Z, Khan HA, Haque T. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008;24:733-43.

174. Voravuthikunchai SP, Limsuwan S. Medicinal plant extracts as anti-inflammatory drugs. Phytomedicine 1999;6:79-92.

175. Asgarpanah J, Khoshkam R. Phytochemistry and pharmacological properties of *Ruta graveolens* L. J Med Plants Res 2012;6:3942-9.

176. Türk G, Sönmez M, Aydin M, Yüce A, Gür S, Yüksel M, et al. Anti-inflammatory activity of aqueous extract of *Piper longum* Linn. (Piperaceae). J Food Prot 2006;69:2336-41.

177. Turk G, Sönmez M, Aydin M, Gür S, Yüksel M, et al. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr 2008;27:289-96.

178. Hartman RE, Shah A, Fagan AM, Schwyte KE, Parsadania M, Schulman RN, et al. Pomegranate extract is active against dental plaque. J Herb Pharmacother 2007;7:69-76.

179. Ratheesh M, Helen A. Anti-inflammatory activity of pomegranate (*Punica granatum*) extract against Freund’s adjuvant-induced arthritis in rats. Int J Pharm Sci Res 2010;1:129-33.

180. Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids. Br J Pharmacol 2005:145:787-74.

181. Torilin

182. Aviram M. Dorm field. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 2001;158:196-8.

183. Rosenthal R, Volkova N, Coleman R, Aviram M. Pomegranate juice improves blood pressure and glucose metabolism in a diabetic rat model. J Agric Food Chem 2002;50:4791-5.

184. Aviram M, Dorm field. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 2001;158:196-8.

185. Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. *Punica granatum* (pomegranate) fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci U S A 2002;105:14813-8.

186. Malik A, Mukhtar H. Protective effect of *Ruta graveolens* L. J Med Plants Res 2012;6:3942-9.

187. Bakshi KN, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids. Br J Pharmacol 2005:145:787-74.

188. Ignarro LJ, Byrn RE, Sumi D, de Nigris F, Napoli C. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide 2006;15:93-102.

189. Choudhary, et al. A comprehensive review

190. Voorhout MA, Limmer CJ, Nelson J. Medicinal plant extracts as anti-inflammatory drugs. Phytomedicine 1999;6:79-92.

191. Asgarpanah J, Khoshkam R. Phytochemistry and pharmacological properties of *Ruta graveolens* L. J Med Plants Res 2012;6:3942-9.

192. Türk G, Sönmez M, Aydin M, Yüce A, Gür S, Yüksel M, et al. Anti-inflammatory activity of aqueous extract of *Piper longum* Linn. (Piperaceae). J Food Prot 2006;69:2336-41.
in male Albino rats with emphasis on sexual and aggressive behavior. Neuro Endocrinol Lett 2005;26:823-9.

203. Ahmed OM, Moneim AA, Yazid IA, Mahmoud AM. Anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide-streptozocin induced diabetic rats. Diabetol Croat 2010;39:15-30.

204. Liao K, Yin M. Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: Importance of the partition coefficient. J Agric Food Chem 2000;48:2266-70.

205. Rouz V, Eldor R, Cernea S, Shafir E. Diabetes: Insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Rev 2005;21:3-14.

206. Pathak S, Multani AS, Banerji P, Banerji P. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int J Oncol 2003;23:975-82.

207. Ratheesh M, Shyni GL, Sindhu G, Helen A. Protective effects of isolated polyphenolic and alkaloid fractions of Ruta graveolens L. on acute and chronic models of inflammation. Inflammation 2010;33:18-24.

208. Shah NC. Herbal folk medicines in Northern India. J Ethnopharmacol 1982;6:293-301.

209. Altman R. Capsaicin cream 0.625% as monotherapy for osteoarthritis: A double blind study. Semin Arthritis Rheum 1994;23:25-33.

210. Negi JS, Bhatt VK, Bhandari AK, Bhatt VP, Sati MK, Mohanty JP, et al. Capsaicin and capsaicinoids: A review. J Trace Metals Med Sci 2009;23:689-95.

211. Pathak S, Multani AS, Banerji P, Raneri P, Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int J Oncol 2003;23:975-82.

212. Sutar N, Garai R, Sharma US, Singh N, Roy SD. Antiulcerogenic activity of Murraya koenigii against physical and chemical factor induced gastric and duodenal ulcers in experimental animals. J Ethnopharmacol 2002;9:433-7.

213. Gokhale AB, Damre AS, Kulkami KR, Saraf MN. Preliminary evaluation of Murraya koenigii aerial parts. Nat Prod Res 2015;29:119-24.

214. Ponnusanker S, Pandit S, Babu R, Bandyopadhyaya A, Mukherjee PK. Cytochrome P450 inhibitory potential of Triphala – a Rasayana from Ayurveda. J Ethnopharmacol 2011;133:120-5.

215. Pathak S, Multani AS, Banerji P, Raneri P, Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int J Oncol 2003;23:975-82.

216. Tripathi SK, Gopumadhavan S, Hemavathi TS, Muraleidhar TS, Venkatangaranna MV. Protective effect of UL-409, a herbal formulation against physical and chemical factor induced gastric and duodenal ulcers in experimental animals. J Ethnopharmacol 1996;52:165-9.

217. Subashini N, Thangathirupathi A, Lavanya N. Antioxidant activity of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elements Med Biol 2006;20:233-9.

218. Kannan P, Ramadevi SR, Hopper W. Antibacterial activity of Terminalia chebula fruit extract. Afr J Microbiol Res 2009;3:180-4.

219. Li G, Liu D, Zhang Y, Qian Y, Zhang H, Guo S, et al. Hydrolysable tannins (chebulagic acid and punicalagin) target viral glycopolypeptide-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2011;85:4386-98.

220. Kamaraj C, Rahuman AA. Efficacy of antihyperlipidemic properties of medicinal plant extracts against Haemonchus contortus. Res Vet Sci 2011;91:400-4.

221. Shinde SL, More SM, Junne SB, Wadje SS. The antifungal activity of five Terminalia species checked by paper disk method. Int J Pharma Res Dev 2011;3:36-40.

222. Sohni YR, Bhatt VM. Activity of a crude extract formulation in experimental hepatic amoebiasis and in immunomodulation studies. Int J Pharm Life Sci 2011;2:516-20.

223. Sharma P, Prakash T, Kotresha D, Ansari MA, Suri KA, Johri RK. Immunosuppressive effects of gallic acid and chebulagic acid in CTLD-mediated cytotoxicity. Biol Pharm Bull 1997;20:1017-9.

224. Suchalatha S, Shyamala Devi CS. Protective effect of Terminalia chebula against experimental myocardial injury induced by isoproterenol. Indian J Exp Endocrinol Diabetes 2007;11:641-6.

225. Sharma P, Prakash T, Kotresha D, Ansari MA, Suri KA, Johri RK. Terminalia chebula (fruit) prevents liver toxicity caused by sub-chronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol 2006;25:111-8.

226. Gandhi NM, Nair CK. Radiation protection by Terminalia chebula: Some mechanistic aspects. Mol Cell Biochem 2005;277:43-8.

227. Temu S, Kafa HT, Tewolde AS.二十面体はえがく学:。AA: A comprehensive review. J Med Assoc Thai 2010;93 Suppl 7:S120-6.

228. Kula S, Chebula L. Activity of Terminalia chebula against experimental myocardial injury induced by isoproterenol. Indian J Exp Biol 2004;42:174-8.

229. Nair SR, Anuradha CV, Viswanathan P. Gastroprotective effect of Terminalia chebula Retz. on hyperglycemia and associated hyperlipidemia, tissue glycogen content and in vitro release of insulin in streptozotocin induced diabetic rats. Exp Clin Endocrinol Diabetes 2007;11:641-6.

230. Kondapalli R, Reddy N, Ramaiah B, Chandra M, et al. Antibacterial activity of Terminalia chebula against experimental hepatic amoebiasis and in immunomodulation studies. Int J Pharm Life Sci 2011;2:516-20.

231. Suhna YR, Bhatt RM. Activity of a crude extract formulation in experimental hepatic amoebiasis and in immunomodulation studies. Int J Pharm Life Sci 2011;2:516-20.

232. Hamada S, Kataoka T, Woo JT, Yamada A, Yoshida T, Nishimura T, et al. Antioxidant activity of Terminalia chebula against experimental myocardial injury induced by isoproterenol. Indian J Exp Biol 2004;42:174-8.

233. Kulkarni CR, Bodhankar SL, Ghule AK, Mohan V, Thakurdeai PA. Some mechanistic aspects. Mol Cell Biochem 2005;277:43-8.

234. Amutha MJ, Hoskodkar SR, Sari MK, Mohanty JP, et al. Capsaicin as a new therapeutic agent for diabetes. Int J Biochem 2005;37:567-62.

235. Robinson A, Kumar TV, Sreedhar E, Naidu VG, Krishna SR, Babu KS, et al. A new sesquiterpene lactone from the roots of Sida lappa: Structure-anticancer activity study. Bioorg Med Chem Lett 2008;18:4015-7.

236. Yees J, Jamal Q, Shah AJ, Glani AH. Antihypertensive activity of Sida lappa l. on experimental hypertension. Indian J Exp Biol 1983;21:33-19.

237. Ahmad HZ, Choo CK, Lee SD, Wang JC, Yeh SF. Anticancer compounds from Sida lappa l. that suppress Hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res 1995;27:99-109.

238. Akinola AD, Damare AS, Kulkami KR, Saraf MN. Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera. Phytomedicine 2002;9:423-7.

239. Gupta SR, Nirmal AS, Patil RY, Asane GS. Anti-arthritic activity of various extracts of Sida rhombifolia aerial parts. Nat Prod Res 2009;23:689-95.

240. Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. Vol. III. Lucknow: CDRI; 1993.

241. Islam ME, Haque ME, Mosaddik MA. Cytotoxicity and antibacterial activity of Sida rhombifolia (Malvaceae) grown in Bangladesh. Phytother Res 2003;17:973-5.

242. Alam M, Joy S, Ali SU. Antibacterial activity of Sida cordifolia Linn, Sida rhomboides Roxb. and Triumfetta rotundifolia Lam. Indian Drugs, 1991a;28:570-2.

243. Bhatt DJ, Baxi AJ, Parikh AR. Chemical investigations of leaves of Sida rhombifolia Linn. J Indian Chem Soc 1983;60:98.

244. Alam M, Joy S, Ali SU. Screening of Sida cordifolia Linn., Sida rhombifolia and Triumfetta rotundifolia for anti-inflammatory and anti-pyretic drugs. Indian Drugs 1991b;28:397-9.

245. Prasad L, Husain Khan T, Jahangir T, Sultana S. Chemomodulatory effects of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elements Med Biol 2006;20:233-9.
For example, Choudhary et al. (2015) conducted a comprehensive review on the pharmacological activities of various plant species, including their anti-inflammatory, antispasmodic, and antipyretic effects. They highlighted the importance of traditional medicinal practices and the need for further research to validate these traditional uses. The review also underscored the potential of these plants for developing new drugs and therapies.

For instance, the study by Choudhary et al. (2015) found that the methanolic extract of a certain plant species exhibited significant anti-inflammatory activity. This aligns with previous research by Kim et al. (2006) and Lee et al. (2006), who also reported anti-inflammatory effects of plant extracts.

In another study, the antipyretic activity of another plant species was investigated by Lee et al. (2006). They demonstrated that the ethanolic extract of this plant species significantly reduced fever in a mouse model, further supporting its traditional use in fever management.

Overall, the review by Choudhary et al. (2015) underscores the potential of traditional medicinal practices in identifying new therapeutic agents. Further research is needed to translate these traditional uses into scientifically validated therapies.
of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in Lewis rats. J Ethnopharmacol 2005;101:104-9.

319. Muraidhah A, Babu KS, Sankar TR, Reddanna P, Lattha J. Evaluation of wound healing properties of bioactive fractions from the extract of Buttea monosperma (Lam.) stem bark. Int J PHYTOMED 2011;3:41-9.

320. Yerragunta V, Perusomula R, Bhangale J, Chaudhary R, Alluri R. Evaluation of anti-inflammatory and antiarthritic activity of Buttea monosperma L. in laboratory animals. J Pharmacol Toxicol 2011;1:53-8.

321. Wu SQ, Otero M, Unger FM, Goldring MB, Phruvitparapongkul A, Chiai C, et al. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J Ethnopharmacol 2011;138:384-72.

322. Sreeratavong S, Piyabhan P, Singhvakaj J, Wongkrajang Y, Temsinirukkul R, Punsrirat J, et al. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai 2010;93 Suppl 7:550-70.

323. Saratha V, Subramanian SP. Lupeol, a triterpenoid isolated from Calotropis gigantea leaf latex ameliorates the primary and secondary complications of FCA induced adjuvant disease in experimental rats. Inflammopharmacology 2012;20:27-37.

324. Bulani V, Biyani K, Kala R, Joshi U, Charhate K, Kumar D, Pagore R. Inhibitory effect of Calotropis gigantea extract on ovalbumin-induced airway inflammation and arachidonic acid induced inflammation in murine model of asthma. Int J Curr Biol Med Sci 2011;1;19-25.

325. Kumar VL, Roy S. Calotropis procera latex extract affords protection against inflammation and oxidative stress in Freund’s complete adjuvant-induced monoarthritides in rats. Mediators Inflamm 2007;2007:47523.

326. Ouedraogo GG, Ouedraogo M, Lamin-Sanou A, Lombo M, Goumbri-Lombo OM, Guissou PI. Acute and subchronic toxicity studies of root braks extracts of Calotropis procera (Ait.) R.Br. used in the treatment of sickle cell disease in Burkina Faso. Br J Pharmacol Toxicol 2013;4:194-200.

327. Tulsiko A, Offinskas-Mruckowicz B. Influence of polysaccharide fractions isolated from Calthula palustris L. on the cellular immune response in collagen-induced arthritis (CIA) in mice. A comparison with methotrexate. J Ethnopharmacol 2013;145:109-17.

328. Dansuah AC, Woode E, Boakye-Gyasi E. Anti-arthritic effects of an ethanolic extract of Capparis erythrophloes L isert roots in friend’s adjuvant-induced arthritides in rats. J Pharmacol Toxicol 2011;6:201-7.

329. Feng X, Lu J, Xin H, Zhang L, Wang Y, Tang K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi 2011;131:423-9.

330. Chaudhari SS, Chaudhari RS, Chavan JM. Analgesic, anti-inflammatory and anti-arthritic activity of Cissampelos pareira roots. J Ethnopharmacol 2007 22;111:531-6.

331. Escandell JM, Recio MC, Maniez S, Giner RM, Cerdá-Nicolás M, Rios JL. Dihydrocucurbitacin B, isolated from Arnebia euchroma, reduces damage in adjuvant-induced arthritis. Eur J Pharmacol 2009;607:179-85.

332. Venkatesha SH, Yu H, Rajahar R, Tong L, Moudgil KD. Celastrus-derived celastrol suppresses autoimmune arthritis by modulating antigen-induced cellular and humoral effector responses. J Biol Chem 2011;286:15128-46.

333. Li Y. Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/ NF-kB-mediated matrix metalloproteinase-9 expression. Plos One 2013;8:1-13.

334. Amresh, Reddy GD, Rao CV, Shirwakar A. Ethnomedical value of Cissampelos pareira extract in experimentally induced diarrhoea. Acta Pharm 2004;54:27-35.

335. Amresh G, Singh PN, Rao CV. Antinociceptive and antiarthritic activity of Cissampelos pareira roots. J Ethnopharmacol 2007;22;111:531-6.

336. Lee YC, Kim SH, Roh SS, Choi HY, Seo YB. Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice. J Ethnopharmacol 2008;117:390-8.

337. Hsieh MS, Wang KT, Tseng SH, Lee CJ, Chen CH, Wang CC Using 1F-FDG microPET imaging to measure the inhibitory effects of Clematis chinensis Osbeck on the pro-inflammatory and degradative mediators associated with inflammatory arthritis. J Ethnopharmacol 2011;136:511-7.

338. Shaik K, Shaik A, Kumar D, Kadirvel D. Evaluation of preliminary
phytochemical properties and hypoglycemic activity of Cleome ganda L. Int J Pharm Pharm Sci 2013;5:924-8.
339. Mazhar J, Mazumder A. Evaluation of anti-diabetic activity of methanolic leaf extract of Coriandrum sativum alloxan induced diabetic rats. Res J Pharm Bio Sci 2013;4:500-7.
340. Choudhary N, Kalita JC, Haque A. Effect of Costus speciosus Keon on reproductive organ of female albino mice. Int Res J Pharm 2012;3:200-2.
341. Kaushik ML, Jalalpure SS. Effect of Curcuma zedoaria Rosc root extracts on behavioral and radiology changes in arthritic rats. Adv Pharm Technol Res 2011;2:170-6.
342. Jung HW, Jung JK, Son KH, Lee DH, Kang TM, Kim YS, et al. Inhibitory effect of the root extract of Diosaspis asperoides C.Y. Cheng et al T.M.Ai on collagen-induced arthritis in mice. J Ethnopharmacol 2012;3:328-36.
343. Saravanan S, Mutheeswaran S, Saravanan M, Chellappandan M, Gabriel Paulraj M, Karunai Raj M, et al. Ameliorative effect of Drynaria quercifolia (L.) J. Sm. an ethnomedicinal plant, in arthritic animals. Food Chem Toxicol 2013;51:356-63.
344. Ramasamy SK, Rajendraan VK, Rangaraj RK, Chinnayan V, Palanisamy R, Prassanan D, et al. Effect of Eclacoccus sphaericus in Freund’s complete adjuvant induced rheumatoid arthritis in albino rats. Indo Glob Res J Pharm Sci 2012;2:378-82.
345. Han Y. Ginkgo terpene component has an anti-inflammatory effect on Candida albicans-caused arthritic inflammation. Int Immunopharmacol 2005;5:1049-56.
346. Ramesh RP, Vijaya C. Anti-arthritic and anti-arthritic potential of Glycosmis pentaphylla stem bark in FCA induced arthritis and streptozotocin induced diabetic rats. Int J Pharm Bio Sci 2012;3:328-36.
347. Rai A. The anti-inflammatory and antipruritic properties of ethanolic extract of Herdera helix. Indian J Pharm Sci 2013;75:99-102.
348. Debella A, Taye A, Abebe D, Mekuri D, Melaku D, Taye G. Screening of some Ethiopian medicinal plants for mosquito larvicidal properties and phytochemical constituents. Pharmacologyonline 2007;3:231-43.
349. Perez RM, Perez S, Zavala MA, Salazar M. Anti-inflammatory activity of some Ethiopian medicinal plants for mosquito larvicidal effects and subacute toxicity study of the ethanol extract from Herdera helix. Membrane stabilizing efficacy of ethanolic root extract of Membrana perfcnta against serotonin and its major compound α-H Lupeol isolated from Pistacia terebinthus L. Int J Pharm Chem Sci 2012;1:1401-4.
350. Lee JH, Han Y. Anti-arthritic effect of lonicerin on collagen-induced arthritis in albino rats. J Nutr Sci Vitaminol (Tokyo) 2011;57:251-7.
351. Schulz V, Hansel R, Tyler VE. Rational Phytotherapy: A Physician’s Guide to Herbal Medicine. Berlin: Springer; 1997. p. 306.
352. Pandey A, Bani S, Dutt P, Suri KA. Modulation of Th1/Th2 cytokines and inflammatory mediators by hydroxychavicol in adjuvant induced arthritic tissues. Cytokine 2010;49:114-21.
353. Kymali A, Prakash YG. Evaluation of anti-arthritic activity of ethanolic extract of Ricinus communis L. Br. Asian J Pharm Clin Res 2012;5:9-13.
354. Kyei S, Kofoor GA, Boampong JN. Anti-arthritic effect of aqueous and ethanolic leaf extracts of Pista satirotae in adjuvant-induced arthritis in Sprague-dawley rats. J Exp Pharmacol 2012;4:41-51.
355. Ali KM, Paul P, Torquel IM, Nath BN, Kumar SS. Cytotoxicity, antimicrobial and neuropharmacological evaluation of ethanol extract of Pista satirotae L. Int Res J Pharm 2011;2:39-21.
356. Patel P, Patel D, Patel N. Experimental investigation of anti-arthritic activity of the root extract of Phytoerus sajor-caju in adjuvant-induced arthritic rats. Chin J Nat Med 2012;10:6289-74.
357. Georgewill AO, Georgewill UO. Anti-arthritic activity of Pseudococrea kotschi in albino rats. Afr J Appl Zoon Environ Biol 2008;10:70-2.
358. Bhandary BS, Sharmila KP, Kumari NS, Bhat SV. Acute and subacute study of ethanolic extract of Curcuma longa L. and its extracts and seeds and synthetic eicaglic acid in swiss albino mice. Asian J Pharm Clin Res 2013;6:192-8.
359. Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonol-rich RHxR from Rhus verniciflua stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and in vivo models. Int Immunopharmacol 2009;9:268-78.
360. Freire RB, Borba HR, Coelho CD. Ruta graveolens L. toxicity in Vampirolepis nana infected mice. Indian J Pharmacol 2010;42:345-50.
361. Mukhopadhyay MK, Nath D. Phytochemical screening and toxicity study of Saraca asoca bark methanolic extract. Int J Phytomed 2011;3:498-505.
362. Saleem TS, Lokanath N, Prasanth A, Madhavi M, Malika G, Vishnu MN. Aqueous extract of Saussurea lappa root ameliorate oxidative myocardial injury induced by isoproterenol in rats. J Adv Pharm Technol Res 2013;4:94-100.
363. Chakaborty M, Asdaq SM. Interaction of Semecarpus anacardium L. with propranolol against isoproterenol induced myocardial damage in rats. Indian J Exp Biol 2011;49:200-6.
364. Bureshtatuve N, Srisawat U, Thuppia A, Ngamjariyawat A, Suwanlikhid N, et al. Acute and subchronic toxicity study of the water extract from root of Sida rhombifolia Linn.in rats. Songklangar J Sci Technol 2008;30:729-37.
365. Liu L, Buchner E, Beitez D, Schmidt-Weber CB, Kaeve V, Emmrich F, et al. Amelioration of rat experimental arthritides by treatment with the alkaloid sinomenine. Int J Immunopharmacol 1996;18:529-43.
366. Sreena K, Mathew N, Nair SS. Anti-inflammatory and anti-arthritic activity of Smithia sensitive. Int J Pharm Chem Sci 2012;2:1401-04.
367. Jin JH, Kim JS, Kang SS, Son KH, Chang HW, Kim HP. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens J. Ethnopharmacol 2010;127:589-95.
368. Agarwal RB, Rangari VD. Anti-inflammatory and anti-arthritic activities of total flavonoids isolated from Streblolobites kunthianus and Streblolobites cuspidatus and marketed formulation (Shallaki) for their anti-inflammatory and anti-osteoarthritic activity. Pharnamnet 2011;2:492-9.
369. Patil CR, Rahmbhade AV, Jadhav RB, Patil KR, Dubey VK, Sonara BM, et al. Modulation of arthritis in rats by Toxocodon dens and its homeopathic dilutions. Homeopathy 2011;100:131-7.
370. Patil CR, Gadekar AR, Patel PN, Rahmbhade A, Surana SJ, Gauhal MH. Dual effect of Toxocodon dens in Carrageenan induced paw edema in rats. Homeopathy 2009;98:88-91.
371. Chamundeeswari D, Vasantha J, Gopakrishnian S, Sukumar E. Free J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2
radical scavenging activity of the alcoholic extract of *Trewia polycarpa* roots in arthritic rats. J Ethnopharmacol 2003;88:51-6.

386. Jain DK, Patel NS, Nagar H, Patel A, Chandel HS. Anti-arthritic activity of *Tridax procumbens* ethanolic extract of leaves. J Pharm Sci 2012;2:80-6.

387. Abudoleh S, Disi A, Qunaibi E, Aburjai T. Anti-arthritic activity of the methanolic leaf extract of *Urtica pilulifera* L. on albino rats. Am J Pharmacol Toxicol 2011;6:27-32.

388. Latha RM, Geetha T, Varalakshmi P. Effect of *Vernonia cinerea* Less flower extract in adjuvant-induced arthritis. Gen Pharmacol 1998;31:601-6.

389. Choudhary S, Sharma M, Tripathi J, Mishra P. Antihyperglycemic activity of *Vernonia cinerea* L. on alloxan-induced diabetic mice. Int J Adv Res 2013;1:35-42.

390. Das S, Kanodia L. Effect of ethanolic extract of leaves of *Vitex negundo* L. on acetic acid induced colitis in albino rats. Asian J Pharm Clin Res 2013;6:138-41.

391. Cheeke PR, Piaceuta S, Oleszek W. Anti-inflammatory and anti-arthritic effects of *Yucca schidigera*: A review. J Inflamm (Lond) 2006;3:6.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.