The Iteration Number of the Weisfeiler-Leman Algorithm

Martin Grohe (RWTH Aachen)
Moritz Lichter (TU Darmstadt)
Daniel Neuen (Bremen University)
The colour refinement algorithm iteratively computes a colouring of the vertices of a graph G. The colours represent local structural information about the vertices.
The colour refinement algorithm iteratively computes a colouring of the vertices of a graph G. The colours represent local structural information about the vertices.

Initialisation All vertices get the same colour.
The **colour refinement algorithm** iteratively computes a colouring of the vertices of a graph G. The colours represent local structural information about the vertices.

Initialisation All vertices get the same colour.

Refinement Step Vertices v, w get different colours if there is some colour c such that v and w have different numbers of neighbours of colour c.

Remark Colour refinement is essentially the same as the 1-dimensional Weisfeiler-Leman algorithm.
The colour refinement algorithm iteratively computes a colouring of the vertices of a graph G. The colours represent local structural information about the vertices.

Initialisation All vertices get the same colour.

Refinement Step Vertices v, w get different colours if there is some colour c such that v and w have different numbers of neighbours of colour c.

Refinement is repeated until colouring stays stable.
The colour refinement algorithm iteratively computes a colouring of the vertices of a graph G. The colours represent local structural information about the vertices.

Initialisation All vertices get the same colour.

Refinement Step Vertices v, w get different colours if there is some colour c such that v and w have different numbers of neighbours of colour c.

Refinement is repeated until colouring stays stable.

Remark
Colour refinement is essentially the same as the 1-dimensional Weisfeiler-Leman algorithm.
Higher-Dimensional Weisfeiler-Leman

The Weisfeiler-Leman algorithm generalises the idea of aggregating local structural information in a colouring from vertices to tuples of vertices.
The Weisfeiler-Leman algorithm generalises the idea of aggregating local structural information in a colouring from vertices to tuples of vertices. k-WL iteratively colours k-tuples of vertices.
Higher-Dimensional Weisfeiler-Leman

The Weisfeiler-Leman algorithm generalises the idea of aggregating local structural information in a colouring from vertices to tuples of vertices.

k-WL iteratively colours k-tuples of vertices.

(Weisfeiler and Leman 1968, Babai ∼1980)
Atomic Types and Partial Isomorphisms

Let G, H be graphs and $\mathbf{v} = (v_1, \ldots, v_k) \in V(G)^k$, $\mathbf{w} = (w_1, \ldots, w_k) \in V(H)^k$.
Atomic Types and Partial Isomorphisms

Let G, H be graphs and $v = (v_1, \ldots, v_k) \in V(G)^k$, $w = (w_1, \ldots, w_k) \in V(H)^k$.

The atomic type $\text{atp}(v)$ of v in G is the isomorphism type of the labelled induced subgraph $G[\{v_1, \ldots, v_k\}]$.
Atomic Types and Partial Isomorphisms

Let G, H be graphs and $\mathbf{v} = (v_1, \ldots, v_k) \in V(G)^k$, $\mathbf{w} = (w_1, \ldots, w_k) \in V(H)^k$.

The atomic type $\text{atp}(\mathbf{v})$ of \mathbf{v} in G is the isomorphism type of the labelled induced subgraph $G[\{v_1, \ldots, v_k\}]$.

Example

(v_1, v_2, v_3) and (w_1, w_2, w_3) have the same atomic type.
Atomic Types and Partial Isomorphisms

Let G, H be graphs and $\mathbf{v} = (v_1, \ldots, v_k) \in V(G)^k$, $\mathbf{w} = (w_1, \ldots, w_k) \in V(H)^k$.

The atomic type $\text{atp}(\mathbf{v})$ of \mathbf{v} in G is the isomorphism type of the labelled induced subgraph $G[\{v_1, \ldots, v_k\}]$.

Example

\begin{itemize}
 \item (v_1, v_2, v_3) and (w_1, w_2, w_3) have the same atomic type.
 \item So do (v_1, v_2, v_3, v_1) and (w_1, w_3, w_2, w_1).
\end{itemize}
The Weisfeiler Leman Algorithm

Initial Colouring wl_0

$\text{wl}_0(v) = \text{wl}_0(w)$ iff $\text{atp}(v) = \text{atp}(w)$.

Refinement Step

$\text{wl}_i \rightarrow \text{wl}_{i+1}$

$\text{wl}_{i+1}(v) = \text{wl}_i(v)$ iff for all atomic types a and all colours c_1, \ldots, c_k in the range of wl_i,

$\#v \in V(G)$ such that $\text{atp}(v_1, \ldots, v_k) = a$

$\#w \in V(G)$ such that $\text{atp}(w_1, \ldots, w_k) = a$

$\text{wl}_i(v_1, \ldots, v_k) = c_1$

$\text{wl}_i(w_1, \ldots, w_k) = c_1$

...

$\text{wl}_i(v_1, \ldots, v_{k-1}) = c_k$

$\text{wl}_i(w_1, \ldots, w_{k-1}) = c_k$

Refinement is repeated until colouring stays stable.
The Weisfeiler Leman Algorithm

Initial Colouring wl_0

$wl_0(v) = wl_0(w)$ iff $atp(v) = atp(w)$.

Refinement Step $wl_i \rightarrow wl_{i+1}$

$wl_{i+1}(v) = wl_{i+1}(w)$ iff for all atomic types a and all colours c_1, \ldots, c_k in the range of wl_i,

$$\# v \in V(G) \text{ such that } atp(v_1, \ldots, v_k, v) = a = \# w \in V(G) \text{ such that } atp(w_1, \ldots, w_k, w) = a$$

$$wl_i(v, v_2, v_3, \ldots, v_k) = c_1 = wl_i(w, w_2, w_3, \ldots, w_k) = c_1$$

$$wl_i(v_1, v, v_3, \ldots, v_k) = c_2 = wl_i(w_1, w, w_3, \ldots, w_k) = c_2$$

$$\vdots$$

$$wl_i(v_1, \ldots, v_{k-1}, v) = c_k = wl_i(w_1, \ldots, w_{k-1}, w) = c_k$$

Refinement is repeated until colouring stays stable.
The Weisfeiler Leman Algorithm

Initial Colouring wl_0

\[wl_0(v) = wl_0(w) \iff \text{atp}(v) = \text{atp}(w). \]

Refinement Step $wl_i \rightarrow wl_{i+1}$

\[wl_{i+1}(v) = wl_{i+1}(w) \iff \text{for all atomic types } a \text{ and all colours } c_1, \ldots, c_k \text{ in the range of } wl_i, \]

\[
\begin{align*}
\# v \in V(G) \text{ such that } \text{atp}(v_1, \ldots, v_k, v) &= a \\
wl_i(v, v_2, v_3 \ldots, v_k) &= c_1 \\
wl_i(v_1, v, v_3 \ldots, v_k) &= c_2 \\
&\vdots \\
wl_i(v_1, \ldots, v_{k-1}, v) &= c_k
\end{align*}
\]

\[
\begin{align*}
\# w \in V(G) \text{ such that } \text{atp}(w_1, \ldots, w_k, w) &= a \\
wl_i(w, w_2, w_3 \ldots, w_k) &= c_1 \\
wl_i(w_1, w, w_3, \ldots, w_k) &= c_2 \\
&\vdots \\
wl_i(w_1, \ldots, w_{k-1}, w) &= c_k
\end{align*}
\]

Refinement is repeated until colouring stays stable.
WHY?

- WL was originally designed as a graph isomorphism heuristic.

Besides isomorphism testing, it has applications in combinatorial optimisation and machine learning.
WHY?

- WL was originally designed as a graph isomorphism heuristics.
- It has characterisations in terms of logic, algebra, and graph neural networks.
WHY?

- WL was originally designed as a graph isomorphism heuristics.
- It has characterisations in terms of logic, algebra, and graph neural networks.
- Besides isomorphism testing, it has applications in combinatorial optimisation and machine learning.
Key Question

What is the *iteration number* of k-WL?

That is, how many refinement rounds does k-WL need until it reaches a stable colouring?
Known Results

\(n = \text{number of vertices}, \ k = \text{dimension} \)

Upper Bounds

- **Trivial:** \(n^k - 1 \)
- **Kiefer, Schweitzer 2017:** \(O\left(\frac{n^2}{\log n}\right) \) for \(k = 2 \)
- **Lichter, Ponomarenko, Schweitzer 2019:** \(O(n \log n) \) for \(k = 2 \)
- **G., Verbitsky 2006; G., Kiefer 2021, van Bergerem, G., Kiefer, Oeljeklaus 2023 (next talk):** \(O(\log n) \) iterations on bounded tree width, planar, interval graphs

Lower Bounds

- **Fürer 2001:** \(\Omega(n) \)
- **Kiefer, McKay 2020:** \(n - 1 \) for \(k = 1 \)
- **Berkholz, Nordström 2016:** \(n \Omega(k \log k) \) on \(k \)-ary relational structures
Known Results

\[n = \text{number of vertices}, \quad k = \text{dimension} \]

Upper Bounds

- **Trivial:** \(n^k - 1 \)
- **Kiefer, Schweitzer 2017:** \(O \left(\frac{n^2}{\log n} \right) \) for \(k = 2 \)
- **Lichter, Ponomarenko, Schweitzer 2019:** \(O(n \log n) \) for \(k = 2 \)
- **G., Verbitsky 2006; G., Kiefer 2021, van Bergerem, G., Kiefer, Oeljeklaus 2023 (next talk):** \(O(\log n) \) iterations on bounded tree width, planar, interval graphs

Lower Bounds

- **Fürer 2001:** \(\Omega(n) \)
- **Kiefer, McKay 2020:** \(n - 1 \) for \(k = 1 \)
- **Berkholz, Nordström 2016:** \(n^{\Omega \left(\frac{k}{\log k} \right)} \) on \(k \)-ary relational structures
Theorem

The iteration number of k-WL is $O(kn^{k-1} \log n)$ on all relational structures.

Proof idea.

Algebraic:

- Translate sequence of colourings to increasing sequence of finite-dimensional semi-simple algebras of $n^{k-1} \times n^{k-1}$-matrices.
- Use known fact from representation theory that such a sequence cannot be much longer than the dimension of the matrices.

Based on (Lichter, Ponomarenko, Schweitzer 2019).
Theorem

The iteration number of k-WL is $O(kn^{k-1} \log n)$ on all relational structures.

Proof idea.

Algebraic:

- Translate sequence of colourings to increasing sequence of finite-dimensional semi-simple algebras of $n^{k-1} \times n^{k-1}$-matrices.

- Use known fact from representation theory that such a sequence cannot be much longer than the dimension of the matrices.

Based on (Lichter, Ponomarenko, Schweitzer 2019).
Theorem

Let $k' \geq k \geq 1$. For all sufficiently large n there are k-ary relational structures A, B of size n such that

- k-WL distinguishes A and B;
- even k'-WL needs $n^{\Omega(k)}$ iterations to distinguish A, B.

Proof idea. Based on (Berkholz, Nordström 2016): CFI-type construction combined with a compression technique from proof complexity due to (Razborov 2016).

Corollary

The iteration number of k-WL is $n^{\Omega(k)}$ on k-ary relational structures.
Theorem
Let $k' \geq k \geq 1$. For all sufficiently large n there are k-ary relational structures A, B of size n such that

- k-WL distinguishes A and B;
- even k'-WL needs $n^{\Omega(k)}$ iterations to distinguish A, B.

Proof idea.
Based on (Berkholz, Nordström 2016):
CFI-type construction combined with a compression technique from proof complexity due to (Razborov 2016).
Theorem
Let \(k' \geq k \geq 1 \). For all sufficiently large \(n \) there are \(k \)-ary relational structures \(A, B \) of size \(n \) such that
- \(k \)-WL distinguishes \(A \) and \(B \);
- even \(k' \)-WL needs \(n^{\Omega(k)} \) iterations to distinguish \(A, B \).

Proof idea.
Based on (Berkholz, Nordström 2016):
CFI-type construction combined with a compression technique from proof complexity due to (Razborov 2016).

Corollary
The iteration number of \(k \)-WL is \(n^{\Omega(k)} \) on \(k \)-ary relational structures.
Recent Improvement

Theorem (G., Lichter, Neuen, Schweitzer 2023+)

The iteration number of k-WL is $\Omega(n^{k/2})$ on graphs.
Conjecture

The iteration number of k-WL is $\Omega(n^{k-1-o(1)})$ on graphs.