Redox Regulation of β-Actin during Integrin-mediated Cell Adhesion*

Received for publication, March 30, 2006, and in revised form, May 30, 2006 Published, JBC Papers in Press, June 5, 2006 DOI 10.1074/jbc.M603040200

Tania Fiaschi†§¹, Giacomo Cozzi†¹, Giovanni Raugei†§¹, Lucia Formigli†, Giampietro Ramponi§¹, and Paola Chiarugi†§¹²

From the †Department of Biochemical Sciences, §Center of Excellence for Scientific Research DENOTHE, ‡Department of Anatomy, University of Florence, and the ‡Istituto Interuniversitario di Miologia, Viale Morgagni 50, 50134 Florence, Italy

Redox sensitivity of actin toward an exogenous oxidative stress has recently been reported. We report here the first evidence of in vivo actin redox regulation by a physiological source of reactive oxygen species, specifically those species generated by integrin receptors during cell adhesion. Actin oxidation takes place via the formation of a mixed disulfide between cysteine 374 and glutathione; this modification is essential for spreading and for cytoskeleton organization. Impairment of actin glutathionylation, either through GSH depletion or expression of the C374A redox-insensitive mutant, greatly affects cell spreading and the formation of stress fibers, leading to inhibition of the disassembly of the actinomyosin complex. These data suggest that actin glutathionylation is essential for cell spreading and cytoskeleton organization and that it plays a key role in disassembly of actinomyosin complex during cell adhesion.

Actin is the main component of the cytoskeleton and exists as monomeric G-actin, able upon extracellular stimuli to polymerize into filamentous F-actin. Different structures of F-actin are produced by elongation of preformed filaments by accessory proteins, such as profilin, actin-related protein 2/3, actin-depolymerizing factor/cofilin complexes, and many others. These actin-interacting proteins may act through different mechanisms, as forming transversal branching filaments or blocking the extensive elongation at the cell margins (1, 2).

Actin cytoskeleton is modified by integrin signal in response to extracellular matrix (ECM) transforming actin architecture from a cortical ring to a plain structure of stress fibers in complete adherent cells. Integrin-mediated cell adhesion proceeds in a step-like program: cells contact the substratum, integrins ligate to the ECM proteins and clusterize, focal contacts form, the cell spreads and finally organizes the actin filaments in stress fibers for mechanical resistance. The control of cytoskeleton organization is mainly due by the action of the members of the family of the small GTPases Rho like Cdc42, Rho, and Rac. In response to growth or chemotactic factors and cell-cell or cell-matrix interaction, Rho is activated thus inducing the formation of actin stress fibers. In contrast, activated Rac provokes actin-dependent membrane ruffling and Cdc42 causes protrusion of actin-rich microspikes from the cell surface (1).

Much evidence supports the idea that reactive oxygen species (ROS) act as second messengers thus modulating the activity of signaling proteins upon growth factors and cytokines stimulation. The downstream effect of ROS production is the reversible oxidation of redox-sensitive proteins through a direct modification of the thiol group of reactive cysteines (3). Redox-regulated proteins include tyrosine phosphatases, several transcription factors, p53, and the p21Ras family of proto-oncogenes (4). Recently, Chiarugi et al. (5) proposed a redox regulation of integrin signaling during cell adhesion. In this new model, integrin activation is joined to generation of ROS specifically acting on cytoplasmic target proteins as low molecular weight-phosphotyrosine phosphatase (5) and the tyrosine kinase Src (6). The reversible oxidation of both these proteins has profound effect on cell spreading onto ECM, through indirect activation of both Focal Adhesion Kinase and the small GTPase Rho (5, 7), thus suggesting that ROS act as second messengers in the organization of cytoskeleton in response to integrin engagement.

Herein, we report evidence that ROS produced by integrins upon ECM contact are essential mediators for actin fibers formation during cell spreading. In particular, ROS acts on mixed disulfide with glutathione which is a key step for actin stress fibers.

EXPERIMENTAL PROCEDURES

Assay of Intracellular H2O2—Three minutes before assaying 2′,7′-dichlorofluorescein diacetate (Molecular Probes) was added to a final concentration of 5 μM. Cells were lysed in 1 ml of RIPA buffer containing 1% Triton X-100 and analyzed immediately by fluorescence spectrofotometric analysis using a Perkin Elmer Fluorescence Spectrofotometer 650-10S equipped with a xenon power supply (excitation wavelength: 488 nm, emission wavelength: 510 nm).

Cell Culture and Transfection—Murine fibroblasts NIH-3T3 (from American Type Culture Collection) were routinely cultured in Dulbecco’s modified Eagle’s medium supplemented...
Redox Regulation of Actin
with 10% calf serum at 37 °C in a 5% CO₂ humidified atmosphere. For transfection experiments, confluent cells were transfected with 4 μg of plasmid using Lipofectamine 2000 reagent (Invitrogen) according to manufacturer’s instruction. The pSG5-FLAG-β-actin and pSG5-FLAG-β-actin C374A was a generous gift of Prof. C. Stournaras.

Cell Adhesion Assay—Cells were serum-starved for 24 h and then detached with 0.25% trypsin for 1 min. Trypsin digestion was then blocked by the use of 0.5 mg/ml soybean trypsin inhibitor (Sigma). Cells were centrifuged, diluted in fresh culture medium, incubated for 30 min in gentle agitation at 37 °C, and finally seeded for 45 min on polylysine (PL)-treated or fibronectin (FN)-treated dishes for the period indicated. For N-(biotinoyl)-N’-(iodoacetyl)ethylenediamine (BIAM) (Molecular Probes) labeling of proteins, cells were lysed in RIPA lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton, 2 mM EGTA) supplemented with BIAM (100 μM final concentration) and protease inhibitors mixture (Sigma). Lysates were then maintained on ice for 15 min and then centrifuged at 13,000 rpm for 15 min. For the binding of BIAM-labeled proteins with immobilized avidin (Pierce), 30 μl of resin were added to the clarified samples and maintained overnight at 4 °C in gentle agitation. The resin was then washed four times with RIPA buffer and then resuspended in Laemmli sample buffer. The pattern of BIAM-labeled proteins were visualized by a Western blot using horseradish peroxidase-avidin conjugate (Bio-Rad), washed, and developed with the enhanced chemiluminescence kit.

Immunoprecipitation—PL- or FN-plated cells were lysed for 20 min on ice in 500 μl with RIPA lysis buffer. Lysates were clarified by centrifugation and immunoprecipitation was performed for 4 h at 4 °C with 1–2 μg of the specific antibodies. Immunocomplexes were collected on protein A-Sepharose, separated by SDS-PAGE, and transferred onto polyvinylidene difluoride membrane. Immunoblots were incubated in 2% milk and 0.1% Tween 20 in PBS buffer for 1 h at room temperature, probed first with specific antibodies and then with secondary antibodies. Quantity-One software (Bio-Rad) was used to perform quantitative analysis.

MALDI-TOF Analysis—BIAM-labeled lysates were run on SDS-PAGE. The gel was then stained by Coomassie Blue solution, subjected to destain solution for 24 h and finally washed in water until completely equilibrated. The bands of interest were excised, transferred to an Eppendorf tube, and then washed twice with 50 mM NH₄HCO₃/acetonitrile (1:1) and shrunk with acetonitrile. After drying, samples were subjected to a reduction reaction in a buffer containing 10 mM dithiothreitol, 25 mM NH₄HCO₃ for 45 min at 56 °C followed by an alkylaation step in a buffer containing 55 mM iodoacetic acid, 25 mM NH₄HCO₃ for 30 min at room temperature in the dark. After a final washing step, samples were dried up and trypsin digested for 24 h at 37 °C. The peptides were then extracted from gel bands by sonification and by supplementing 50% acetonitrile and 1% trifluoroacetic acid (1:1 proportion with sample), and the supernatants were recovered and then dried. Spectrometric analysis was conducted on an Ultraflex MALDI-TOF (Bruker Daltonics) using a Scout ion source and operating in a positive reflectron mode. Samples were mixed with α-cyano-4-hydroxycinnamic acid (1:1). An 0.8 picomol/μl sample was deposed with the dry droplet technique on an AnchorChip target. Peptides were identified within an error of 120 parts/million.

Confocal Microscopy—Presuspended NIH-3T3 were seeded onto coverslips, washed with phosphate-buffered saline and
then fixed in 3% paraformaldehyde for 20 min at 4 °C. Fixed cells were permeabilized with three washes with TBST (50 mm Tris-HCl, pH 7.4, 150 mm NaCl, 0.1% Triton X-100) and then blocked with 5.5% horse serum in TBST for 1 h at room temperature. Cells were then incubated with specific primary antibodies or fluorescent phallolidin, diluted 1:100 in TBS (50 mm Tris-HCl, pH 7.4, 150 mm NaCl) overnight at 4 °C. When necessary, cells were incubated with secondary antibodies (diluted 1:100) for 1 h at room temperature in TBST with 3% bovine serum albumin. After extensive washes in TBST cells were mounted with glycerol plastine and observed under a laser scanning confocal microscope (Bio-Rad MRC 1024 Es) equipped with a krypton/argon laser source for fluorescence imaging and with differential interference contrast optics. The argon (488 nm) and krypton (568 nm) laser lines were used to simultaneously excite the cells, and the emitted fluorescence signals were collected with a Nikon Plan Apo 60 ×/1.4 oil immersion objective. A series of optical sections (512 × 512 pixels) were taken through the depth of the cells with a thickness of 1 μm at intervals of 0.2 μm.

RESULTS

Actin Is Oxidized by ROS Produced by Integrin Receptors during Cell Adhesion—Besides our identification of low molecular weight-phosphotyrosine phosphatase and the tyrosine kinase c-Src as two target proteins of the integrin-induced ROS (5, 6), we now have continued with a further screening for redox-sensitive proteins during integrin receptor signaling, using BIAM, which is a sulfhydryl-modifying reagent that selectively probes the thiolate form of reactive cysteine residues (8). ECM adhesion of NIH-3T3 murine fibroblasts was assayed 45 min after seeding onto coated dishes, in accordance with the peak of ROS during ECM-induced cell spreading (5) (Fig. 1A). Western blot analysis of affinity-purified BIAM-labeled lysates of PL- and FN-adhering cells shows an integrin-dependent redox sensitivity of a protein of about 47 kDa, which was identified by MALDI-TOF analysis as β-actin (Fig. 1, B and C). This identification was confirmed by anti-β-actin immunoblot analysis (Fig. 1D).

Parallel to previous findings indicating actin as a redox-sensitive protein during induced oxidative stress (9), we aimed to investigate the function of integrin-elicited ROS on the organization of the overall actin cytoskeleton. Previous studies indicated that, following engagement of integrin receptors, the small GTPase Rac-1 plays a key role in ROS production though the activation of 5-lypoxigenase (LOX) (5). We now find that the depletion of oxidants using specific inhibitor for LOX, nordihydroguaretic acid (NDGA), greatly affects actin organization during cell spreading (Fig. 2A). FN-spreading cells treated with this inhibitor display a morphology very similar to PL-adhering cells, with a disorganized peripheric actin ring and a rounded shape. Administration of this antioxidant when the spreading is completed does not affect the overall actin cytoskeletal architecture (Fig. 2B), suggesting that ROS play a role in actin organization only during the dynamic process of cell spreading in response to binding to ECM proteins.

Cells Spreading and Cytoskeleton Rearrangements Require Actin Glutathionylation—Mild oxidation can result in the formation of mixed disulfides between protein sulfhydryl groups and glutathione (GSH), giving rise to S-glutathionylated proteins. Furthermore, actin has already been indicated as a glutathionylated protein during epidermal growth factor stimulation (10). With the goal to analyze whether during integrin-mediated cell adhesion actin undergoes glutathionylation upon oxidation, we investigated its binding to GSH during a time course experiment. Anti-GSH immunoblot analysis of actin revealed that there is a transient increase in actin glutathionylation upon engagement of integrin receptors (Fig. 3A). Moreover, we find that GSH is greatly implicated in actin regulation during cytoskeleton rearrangement due to cell spreading. Actually, depletion of GSH causes a dramatic impairment of actin cytoskeleton organization leading to a rounded cell shape, similar to the effect observed in adhering cells treated with NDGA. In addition, the effect of buthionine sulfoximide (BSO) on actin cytoskeletal organization and cell shape can be relieved by re-administration of GSH (Fig. 3, B and C), thus indicating the reversibility of the inhibition of actin organization upon GSH depletion. Although we cannot exclude that BSO affects the glutathionylation of other cytoskeletal proteins, we speculate an effect on β-actin glutathionylation. We thereafter checked the level of actin glutathionylation in the above conditions (Fig. 3D). Actually, glutathionylated actin correlates with a normal cell shape (untreated and BSO + GSH-treated cells), while complete loss of actin glutathionylation is linked to an unusual cell shape (BSO-treated cells).

Involvement of Cysteine 374 of Actin in Cytoskeleton Organization during Cell Spreading—ROS modify protein function by the specific alteration of the redox state of reactive cysteine residues (3). Although actin contains six highly conserved cysteine residues, the three-dimensional structure reveals that only the thiol of cysteine in position 374 is exposed on the surface of the protein, giving rise to its glutathionylation. To test this hypothesis, we first investigated the possible glutathionylation of a putative target protein in NIH-3T3 cells, namely actin. As previously demonstrated, the glutathionylation of actin upon oxidation, we investigated its binding to GSH during a time course experiment. Anti-GSH immunoblot analysis of actin revealed that there is a transient increase in actin glutathionylation upon engagement of integrin receptors (Fig. 3A). Moreover, we find that GSH is greatly implicated in actin regulation during cytoskeleton rearrangement due to cell spreading. Actually, depletion of GSH causes a dramatic impairment of actin cytoskeleton organization leading to a rounded cell shape, similar to the effect observed in adhering cells treated with NDGA. In addition, the effect of buthionine sulfoximide (BSO) on actin cytoskeletal organization and cell shape can be relieved by re-administration of GSH (Fig. 3, B and C), thus indicating the reversibility of the inhibition of actin organization upon GSH depletion. Although we cannot exclude that BSO affects the glutathionylation of other cytoskeletal proteins, we speculate an effect on β-actin glutathionylation. We thereafter checked the level of actin glutathionylation in the above conditions (Fig. 3D). Actually, glutathionylated actin correlates with a normal cell shape (untreated and BSO + GSH-treated cells), while complete loss of actin glutathionylation is linked to an unusual cell shape (BSO-treated cells).

FIGURE 3. Role of actin glutathionylation in cytoskeleton rearrangements and cell spreading. NIH-3T3 cells are serum-deprived for 24 h, maintained in suspension for 30 min, and then plated on PL or FN matrix for the period indicated. A, specific antibodies anti-GSH (Virogen) were used for the quantification of glutathionylated actin in PL- or FN-plated cells at different times of adhesion; the bar plot below indicates the normalized glutathionylation level of actin. Wb, Western blot; B, cytoskeleton organization as revealed by TRITC-phallloidin. Where indicated, an inhibitor of GSH synthesis, BSO 40 μM, was added when cells were serum-depleted and maintained during the experiment. Where indicated, GSH 5 mM was added to BSO-treated cells during the suspension phase and maintained during the adhesion period. C, three-dimensional view of the cells in A showing a different ability to adhere on FN matrix. D, lysates of untreated and BSO- and BSO + GSH-treated cells were used in an immunoblot analysis using antibodies against GSH to detect the glutathionylation level of actin 45 min after adhesion on FN-coated dishes.

AUGUST 11, 2006•VOLUME 281•NUMBER 32 JOURNAL OF BIOLOGICAL CHEMISTRY 22987

Redox Regulation of Actin
Redox Regulation of Actin

Actin cysteine 374 is involved in actin reorganization and cell spreading. NIH-3T3 cells were transiently transfected with the plasmid expressing the wild-type form of FLAG-β-actin (FLAG-wt) or with the mutant C374A (FLAG-C374A). At 24 h after transfection cells were serum-deprived for 24 h, detached, maintained in suspension for 30 min, and then seeded on FN-treated cover dishes for 45 min. A, the amount of glutathionylated FLAG-actin was revealed by a Western blot (WB) using anti-GSH antibodies on anti-FLAG immunoprecipitates; the bar plot beside indicates the normalized glutathionylation level of actin. B, the experiment was performed as described in A; then, after plating the cells on FN-treated coverslips, double-labeling was performed with Alexa 488 secondary fluorescent antibodies and fluorescein isothiocyanate-phalloidin. C, wound healing assay of NIH-3T3 cells transiently transfected with the plasmids expressing the wild-type (FLAG-wt) or the mutant C374A (FLAG-C374A) of actin. When the cell cultures have reached a saturation density, the cells were scratched. Wound regions were then allowed to heal by cell migration in the presence of platelet-derived growth factor for 8 h. Transfected cells were visualized by a colorimetric reaction using Vectastain ABC kit. The histogram shows the number of migrated cells expressing wild-type actin or C374A mutant obtained by the mean of three independent experiments. This parameter was calculated by the ratio between the transfection efficiency and the number of transfected cells that migrated in the wound.

Redox Regulation of Actin Is Essential for Actinomyosin Complex Disassembly—Cytoskeleton contractility of both muscle and non-muscle cells is guaranteed by the actinomyosin complex which, in response to extracellular signals, can be rapidly assembled or disassembled to allow cell shape changes (11). We therefore analyzed the redox sensitivity of the association between actin and non-muscle myosin heavy chain (nmMHC) in cell spreading due to ECM contact. Fig. 5A shows...
that successful and completed cell adhesion is associated with the disassembly of the actinomyosin complex, as indicated by the disappearance of the association between myosin and actin upon FN contact. GSH depletion and ROS removal both impede the dissociation between actin and nmMHC, confirming a role for integrin-induced ROS production and GSH content in the dynamics of actinomyosin complex. Moreover, this association is greatly enhanced in C374A-expressing cells, suggesting that glutathionylation of cysteine 374 is involved in the disassembly of the actinomyosin complex upon completion of cell spreading. The ROS-dependent association between actin and nmMHC is further confirmed by confocal analysis performed on endogenous actin (Fig. 5B).

Hence, whatever the methods used for impeding or limiting actin glutathionylation (PL seeding, antioxidant treatment, GSH depletion, or mutation of actin glutathionylation site) the effect on actinomyosin complex is the inhibition of its disassembly.

DISCUSSION

We report here that: (i) during integrin-mediated cell adhesion actin is a redox-sensitive protein and undergoes a direct redox regulation by a physiological source of ROS; (ii) inhibition of 5-LOX-driven oxidants completely impedes actin fiber formation during cell adhesion leading to a ring-like actin cytoskeleton; (iii) actin undergoes glutathionylation on Cys\(^{374}\) during cell adhesion and the impairment of this redox modification leads to the inability of cells to spread and to organize the ROS can regulate protein tyrosine phosphorylation through a direct action on protein-tyrosine kinases. We recently reported a direct redox regulation of the tyrosine kinase Src, which undergoes a strong activation mediated by an intramolecular disulfide bond formation in response to integrin receptor engagement (6). The results described herein correspondingly support the novel idea that ROS regulate cytoskeleton dynamics through both indirect and direct systems. Indirect regulation is translated through soluble redox-sensitive enzymes, as low molecular weight-phosphotyrosine phosphatase or Src, whose oxidation gives rise to a signal culminating in cytoskeleton rearrangement (5, 6). Besides this indirect regulation, ROS can act on actin cytoskeleton through a shorter way, i.e. the direct oxidation of a cytoskeletal protein as actin.

Previous studies indicated that, following engagement of integrin receptors, the small GTPase Rac-1 plays a key role in ROS production though the activation of 5-LOX (5). We now find that the depletion of 5-LOX driven oxidants greatly affects actin organization and hence cell spreading. ECM-spreading cells treated with this inhibitor display a morphology very similar to PL-adhering cells showing a round profile. Herein we report that ROS produced during integrin-mediated cell adhesion affect the ability to spread of ECM-seeded cells targeting the actin cytoskeleton. Indeed, antioxidant-treated cells display chaotic actin fibers and a disorganized peripheral actin ring.

4 M. L. Taddei, personal communication.
Redox Regulation of Actin

We therefore reasoned that ROS are not involved in actin oxidation as housekeeping mediators, in agreement with their role as inducible second messengers of integrin receptor signaling. In fact, administration of this antioxidant when cell spreading is completed does not influence the whole cytoskeletal structure, signifying that ROS participate in actin reorganization only during the dynamic process of ECM-induced cell spreading.

We highlight that ROS are not merely by-products of 5-LOX during leukotriene synthesis and may be included among primary products of this enzyme. Actually, based on several preliminary reports describing leukotrienes produced by LOX as key molecules involved in cell adhesion regulation (13, 14), we can speculate that both lipid and oxidant LOX products synergize in the regulation of cell adhesion.

Intracellular oxidation can result in the formation of mixed disulfides between protein sulfhydryl groups and GSH resulting in S-glutathionylated proteins. Actin glutathionylation has been already reported during epidermal growth factor (10) and in hepatocytes and hepatoma cells exposed to oxidative stress (15). The present findings indicate an increase in actin glutathionylation upon engagement of integrin receptors, suggesting that GSH is heavily involved in actin regulation during cytoskeleton rearrangement due to cell spreading. Indeed, GSH-depleted cells show lesser spreading and great impairment of cytoskeleton organization, similar to cells treated with NDGA. In particular, the effect of BSO on cytoskeletal organization and cell spreading can be relieved by re-administration of GSH, suggesting that the inhibition of cell spreading in response to GSH depletion, and hence to the induced oxidative stress, is reversible. Hence we correlated actin glutathionylation with cell spreading and the impairment of this glutathionylation, due to GSH depletion, to a rounded shape and a ring-like actin cytoskeleton. This statement is in keeping with the previous findings of Wang et al. (10), describing that cell rounding upon growth factor-induced mitosis is correlated with actin de-glutathionylation.

In vivo actin glutathionylation is a simple way in which oxidants exert their role in protein post-translational modification. It has been reported in vivo and in vitro that the oxidation of a sulfhydryl group to sulfenic acid (SOH) rapidly and spontaneously leads to further oxidation products such as sulfinic and sulfonic acid (SO$_2$ and SO$_3$) (16). These further S-oxidation states are probably terminal products on which cellular reduction systems cannot operate, leading to permanently modified proteins. In intracellular systems with low oxidation grade to redox-sensitive proteins, the formation of disulfides, either between intra- or intermolecular protein cysteines or with a mixed disulfide with GSH, retains a key role (16). This post-translational modification has been recently suggested as a possible means of redox regulation of protein function and activity and, therefore, one of the mechanisms whereby oxidants exert a regulatory effect on cell function (17–19). In this light actin glutathionylation may be a mechanism that protects cells against irreversible organization of microfilaments, regulating actin polymerization and preserving microfilaments dynamics.

Although actin contains six highly conserved cysteine residues, the three-dimensional structure reveals that only the thiol of cysteine in position 374 is exposed on the surface of the molecule, so as to be accessible to solvents and highly mobile (20). In addition, surface exposure of Cys374 is not influenced by actin polymerization into F-actin (21). Our findings suggest that in vivo actin oxidation involves cysteine 374 and that this residue probably plays a key role in GSH disulfide formation upon integrin engagement and in cell spreading. In fact, the removal of cysteine 374 causes redox insensitivity of actin and completely impedes actin fiber formation and cell spreading but not cell motility. These results support the idea that cysteine 374 plays a role only during cell spreading and whole actin cytoskeleton organization but not during the dynamic of cytoskeleton reorganization of a moving cells, thus suggesting that actin dynamics are dissimilar during adhesion of cells or during cell movement. Furthermore, the key role of Cys374 in actin polymerization is further indicated by its ability to act as an in vivo dominant negative mutant, since it is able to almost completely suppress the organization of endogenous actin, obstructing filament formation. On the other side we exclude that the C374A mutant affects actin function as a result of a conformational change, as indicated by its ability to completely support cell motility.

Although actin has already been indicated as a redox-sensitive protein during induced oxidative stress (9), we report here the first evidence of an in vivo actin oxidation by a physiological source of ROS. Exogenous oxidative stress has been implied in the disruption of cytoskeleton both during diameide treatment and in fibroblasts of Friederich ataxia patients, a disease correlated with the C-terminal keratin (20, 22–24). In both reports the exogenous oxidative stress is correlated with a stable high level of actin glutathionylation and impairment of cytoskeleton function. On the contrary, our data propose actin glutathionylation as a key signaling event downstream of integrin receptor engagements. In this context ROS act as physiological messengers transiently increasing upon ECM contact and peaking in concomitance of cell spreading. The transitory redox regulation of actin during integrin receptor engagement
leads to cytoskeleton organization and cell spreading. We suggest that a continuous oxidative stress, as in diamide-treated or ataxia cells, can greatly differ from a transient signaling event, and this can account for the different effect observed on actin cytoskeleton organization.

Myosin II is the major motor protein in both muscle and non-muscle cells, and its main role is to regulate contraction in association with actin filaments. nmMHCII is a part of the actomyosin cytoskeleton, which is subject to continuous remodeling in response to ECM contact to allow cell shape changes (25–28). We report herein that glutathionylation of actin causes the disassembly of the actinomyosin complex. Although a high resolution structure of the actomyosin interface is not yet available, we suggest that the redox modification to which actin undergoes during cell spreading negatively regulates the binding between actin and myosin, thus exerting a crucial effect on the dynamic cycles of assembly/disassembly of the contractile machinery. We further speculate that the disassembly of the actinomyosin complex caused by actin glutathionylation could strongly contribute to impairment of microfilament function in diamide treated or Friederich ataxia cells (24).

Cytoskeleton dynamics leading to cell spreading through loss of contractility and organization of actin fibers involve the two antagonistic small GTPases Rho and Rac through three synergistic pathways, two of which are redox-based. First, activation of Rac-1 regulates the phosphorylation of myosin heavy chain and actinomyosin disassembly, leading to loss of contractility and to cell spreading (29). Second, the Rac-mediated ROS production during cell adhesion leads to a down-regulation of Rho activity finally culminating in loss of contractility and permitting cell spreading (7). Our herein presented data point to a third mechanism regulating cytoskeleton assembly in response to ECM contact, through a redox-based actin reorganization due to glutathionylation (Fig. 6). We emphasize the role of a direct regulation through oxidation of actin function, but the precise mechanism by which oxidants change the structure and the spatial organization of actin filaments remains to be elucidated.

REFERENCES
1. Winder, S. J. (2003) Curr. Opin. Cell Biol. 15, 14–22
2. Mullins, R. D. (2000) Curr. Opin. Cell Biol. 12, 91–96
3. Finkel, T. (2000) FEBs Lett. 476, 52–54
4. Chiarugi, P., and Cirri, P. (2003) Trends Biochem. Sci. 28, 509–514
5. Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., Symons, M., Borrello, S., Gazzotti, T., and Ramponi, G. (2003) J. Cell Biol. 161, 933–944
6. Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., and Chiarugi, P. (2005) Mol. Cell. Biol. 25, 6391–6403
7. Nimnual, A. S., Taylor, L. J., and Bar-Sagi, D. (2003) Nat. Cell Biol. 5, 236–241
8. Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R., and Rhee, S. G. (2000) Anal. Biochem. 283, 214–221
9. Laragione, T., Bonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., and Ghezzi, P. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 14737–14741
10. Wang, J., Boja, E. S., Tan, W., Tekle, E., Fales, H. M., English, S., Mieyal, J. J., and Chock, P. B. (2001) J. Biol. Chem. 276, 47763–47766
11. Small, J. V., and Resch, G. P. (2005) Curr. Opin. Cell Biol. 17, 517–523
12. Chiarugi, P., Cirri, P., Taddei, L., Giannoni, E., Camici, G., Manao, G., Raugei, G., and Ramponi, G. (2000) J. Biol. Chem. 275, 4640–4646
13. Massoumi, R., Nielsen, C. K., Azemovic, D., and Sjolander, A. (2003) Exp. Cell Res. 289, 342–351
14. Nagata, M., Saito, K., Tsuchiya, K., and Sakamoto, Y. (2002) J. Allergy Clin. Immunol. 109, 676–680
15. Fratelli, M., Demol, H., Puyre, M., Casagrande, S., Eberini, I., Salmona, M., Bonetto, V., Mengozzi, M., Duffieux, F., Miclet, E., Bachi, A., Vandenckhove, J., Gianazza, E., and Ghezzi, P. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 3505–3510
16. Claiborne, A., Yeh, J. I., Mallett, T. C., Luba, J., Crane, E. J., III, Charrier, V., and Parsonage, D. (1999) Biochemistry 38, 15407–15416
17. Ghezzi, P., Bonetto, V., and Fratelli, M. (2005) Antioxid. Redox. Signal. 7, 964–972
18. Giustarini, D., Rossi, R., Milzani, A., Colombo, R., and Dalle-Donne, I. (2004) J. Cell Mol. Med. 8, 201–212
19. Huang, K. P., and Huang, F. L. (2002) Biochem. Pharmacol. 64, 1049–1056
20. Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., and Colombo, R. (2001) Free Radic. Biol. Med. 31, 1624–1632
21. Orlova, A., Galkin, V. E., VanLoock, M. S., Kim, E., Shvetsov, A., Reisler, E., and Egelman, E. H. (2001) J. Mol. Biol. 312, 95–106
22. Liu, S. M., and Sundqvist, T. (1995) Exp. Cell Res. 217, 1–7
23. Rosado, J. A., Gonzalez, A., Salido, G. M., and Pariente, J. A. (2002) Cell. Signal. 14, 547–556
24. Pastore, A., Tozzi, G., Gaeta, L. M., Bertini, E., Serafini, V., Di Cesare, S., Bonetto, V., Casoni, F., Carozzo, R., Federici, G., and Piemonte, F. (2003) J. Biol. Chem. 278, 42588–42595
25. Piekny, A., Werner, M., and Glotzer, M. (2005) Trends Cell Biol. 15, 651–658
26. Burgess, D. R. (2005) Curr. Biol. 15, R310–R311
27. Guha, M., Zhou, M., and Wang, Y. L. (2005) Curr. Biol. 15, 732–736
28. Murthy, K., and Wadsworth, P. (2005) Curr. Biol. 15, 724–731
29. van Leeuwen, F. N., van Delft, S., Kain, H. E., van der Kammen, R. A., and Collard, J. G. (1999) Nat. Cell Biol. 1, 242–248