Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence

Pasanen, Miia; Waleron, Malgorzata; Schott, Thomas; Cleenwerck, Ilse; Misztak, Agnieszka; Waleron, Krzysztof

Published in:
International Journal of Systematic and Evolutionary Microbiology

DOI:
10.1099/ijsem.0.004057

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Pasanen, M., Waleron, M., Schott, T., Cleenwerck, I., Misztak, A., Waleron, K., Pritchard, L., Bakr, R., Degefu, Y., van der Wolf, J., Vandamme, P. & Pirhonen, M. (2020). Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.004057

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence

Miia Pasanen†‡, Malgorzata Waleron‡†, Thomas Schott‡, Ilse Cleenwerck‡, Agnieszka Misztak‡, Krzysztof Waleron‡, Leighton Pritchard‡, Ramadan Bakr§, Yeshitila Degefu†, Jan van der Wolf§, Peter Vandamme‡ and Minna Pirhonen†,*

Abstract

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, putative distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421† (CFBP 8630®=LMG 30828®) is suggested as a type strain.

Plant pathogenic bacteria in the genera Pectobacterium and Dickeya belonging to the soft rot Pectobacteriaceae [1] family are causing disease problems in about half of the plant orders worldwide [2]. They are important plant pathogens that cause significant yield losses in storage and field [3]. The taxonomy of the genus Pectobacterium has been re-evaluated several times and new species have been designated. Recently, subspecies of Pectobacterium carotovorum have been elevated to the species level as Pectobacterium carotovorum, Pectobacterium odoriferum, Pectobacterium actinidiae and Pectobacterium brasiliense [4]. Pectobacterium polonicum isolated from groundwater collected from vegetable fields was recently characterized in Poland [5]. Pectobacterium punjabense was isolated in Pakistan from potato plants showing blackleg symptoms [6] and Pectobacterium aquaticum was isolated from waterways in France [7]. Pectobacterium polaris was described as a new species with high tuber maceration capacity after its isolation from potato tubers in Norway [8]. The novel species Pectobacterium peruviense was proposed for misclassified P. carotovorum strains isolated from potato
tubers at high altitudes in Peru, based on data from additional analyses [9]. The species classification Pectobacterium parmentieri was created for potato isolates that were originally classified as P. carotovorum subsp. carotovorum, then as Pectobacterium wasabiae [10, 11], and finally identified as a separate species after comparison of the strains from wasabi root and potato [12]. Furthermore, Pectobacterium strains isolated from infected potato and cabbage plants in Russia were proposed as Candidatus Pectobacterium maceratum, with the Finnish Pectobacterium strain SCC1 [13] as the type strain [14]. Recently this taxon was renamed as Pectobacterium versatilis and given an official status [4].

Some atypical Pectobacterium isolates showing low production of homoserine lactones and small colony size were identified in a survey conducted in Finland 2004–2005 and later published as atypical P. carotovorum subsp. carotovorum [15]. Although the isolates originated from rotten potato stems, subsequent field experiments conducted with artificially inoculated seed tubers suggested that they were not able to cause blackleg [15]. When these strains were tested with Pectobacterium and Dickeya primers (Table S1, available in the online version of this article) used for diagnostics of soft rot bacteria in the Potato Disease Laboratory at Natural Resources Institute in Oulu, Finland, no amplification was obtained. This suggested that the tested strains do not belong to any of the tested Pectobacteriaceae species. New blastn analyses of the sequences published previously [15] showed the highest identity to sequences of P. polaris, suggesting that the Finnish isolates belonged to this species. In order to classify the atypical Finnish strains, genomic sequences of two Finnish isolates, s0416 and s0421, were obtained and compared to genomes of verified and tentative P. polaris isolates. A set of verified and tentative P. polaris isolates, obtained from culture collections or from collaborators, were subsequently compared through a polyphasic approach. The strains and/or their genomes used in these polyphasic analyses correspond to isolates collected from potato in Norway (NICBIO1006 and NICBIO1392), Finland (s0416, s0417, s0421, s0424 and s0425), Poland (IFB220, IFB222 and IFB5252), The Netherlands (NCBBP 3395, IPO1606, IPO3720, IPO3841 and IPO3842), Morocco (S4.16.03.2B) and Pakistan (SS28). In addition, strain IFB5223, isolated from Solanum dulcamara in Poland, and Y1, isolated from diseased Brassica rapa subsp. chinensis in PR China, were included in the comparisons. Used isolates and/or their genome sequences are listed in Table S2, including the genome sequences of P. parvum sp. nov. isolates s0421T (OANP00000000), s0416 (OANO00000000) and IFB5220 (PHSP00000000), and P. polaris isolates IFB5222 (PHSV00000000), IFB5223 (PHSY00000000), IFB5252 (PHSX00000000), IPO1606 (CABFUY010000), IPO1948 (CABHY010000), IPO3720 (CABFUOV010000), IPO3841 (CABFUX010000) and IPO3842 (CABFUW010000) generated in this work.

Verified and tentative P. polaris isolates for which genomic sequences were available were compared in a phylogenomic analysis based on 382 core proteins in a PhyloPhAn analysis (https://butenhoefer.sph.harvard.edu/phylophlan) designed to assign microbial taxonomy based on proteins optimized from among 3737 genomes [16]. The results suggested that most of the analysed P. polaris-like isolates clustered with the P. parvum type strain suggesting they belonged clearly to this species. However, five isolates, s0416, s0421, IFB5220, NCBBP3395 and Y1, could be separated from P. polaris in the PhyloPhAn analysis with 100% bootstrap support indicating they could form a new taxon (Fig. 1). In the present work, a new taxon named P. parvum is proposed for these atypical isolates.

In average nucleotide analysis counted using MUMmer (ANIm) calculated with Pyani (https://github.com/widdowquinn/pyani) (Table 1 and S3), the values between P. polaris and P. parvum ranged between 96.0–96.2 %, which is just above the generally recommended cut-off for species delineation (95–96 %) [17]. However, these values were based on low alignment coverages, 81.8–86.5 % of P. parvum genomes and 77.2–81.9 % of P. polaris genomes, suggesting a considerable difference between these two groups of bacteria (Table 1, Table S4). Furthermore, high similarity among the P. parvum genomes, more than 99.3 % in ANIm, and an alignment coverage of 96.4 % or higher, showed that they are more similar to each other than to the P. polaris isolates. In silico DNA–DNA hybridizations (isDDH), performed with the Genome-to-Genome Distance Calculator (GGDC 2.1; http://ggdc.dsmz.de/distcalc2.php) using the blast + alignment and formula 2 (identities/HSP length) [18], showed values ranging from 66.1–68.4 % between P. parvum and P. polarum isolates (Table 1 and S5), which is just below the generally recommended cut-off for species delineation (70%) [19]. Because of the discrepancy between the ANIm results and GGDC results, the former suggesting identification of the atypical isolates as P. polaris and the latter suggesting they are not members of P. polaris, the isolates and their genomes where studied further to clarify their taxonomic position. The genome sizes of the five P. parvum isolates appeared somewhat shorter, 4.5–4.6 Mb, which is 0.1–0.2 Mb shorter when compared to most of the other Pectobacterium strains. This suggests a reduced genome size of the P. parvum isolates. Furthermore, the genome size of Y1 is even smaller, 3.9 Mb, which according to NCBI is too small to be acceptable and thus it is excluded from RefSeq, suggesting that it may lack part of the genome rendering it unsuitable for genomic comparisons. G+C contents of the isolates showed that the P. parvum isolates had lower G+C content, 51%, when compared to P. polaris strains that had a G+C content at or close to 52 % (Table S2). When inferred from genome sequences, within-species differences in the G+C content are most often below 1 % [20]. The G+C differences between the P. polaris type strain NIBIO1006 and the P. parvum isolates is 1.0 % and close to 1 % in the other comparisons, which places P. polaris and P. parvum in the borderline of belonging to separate species.

Patristic distances between and within the core genomes of Pectobacterium species (Table S6) were calculated with PATRISTIC version 1.0 software [21]. The core genome was calculated with BPGA version 1.3 software and consisted of 1294 core proteins of 63 genomes representing all known
Fig. 1. Phylogenomic analysis of *Pectobacterium parvum* sp. nov. strains s0416, s0421, IFB5220, NCPPB3395 and Y1 and members of the genus *Pectobacterium*, based on 382 core proteins. The maximum-likelihood tree was reconstructed using the PhyloPhlAn computational pipeline (https://huttenhower.sph.harvard.edu/phylophan).
Pectobacterium species and P. parvum isolates. The results showed that the patristic distances among P. parvum isolates were 0.003–0.010 and among P. polaris isolates 0.010–0.016, which are in line with the patristic distances observed within the other Pectobacterium species. When patristic distances were compared between P. parvum and P. polaris isolates, higher values of 0.017–0.026 were observed. Patristic values in P. polaris/P. parvum comparisons are in line with the distances observed between closely related Pectobacterium species, such as between P. carotovorum/P. odoriferum (0.020–0.025), P. carotovorum/P. versatilis (0.021–0.027), P. polonicum/P. punjabense (0.020) and P. wasabiae/P. parmentieri (0.024–0.026) (Table S6). Thus, the patristic distances between P. parvum and P. polaris exceed the distances observed within the other Pectobacterium species, and coincide with the distances observed in comparisons between closely related Pectobacterium species, which suggests that P. parvum and P. polaris are closely related species rather than representatives of the same species.

Comparison of the 16S sequences of the P. parvum isolates to each other showed that they had identical 16S sequences, which were 99.55 % similar to the 16S sequence of the P. polaris type strain, and 99.22, 99.09, 99.03, 98.96, 98.83, 98.83 and 98.70 % similar to 16S sequences of type strains of P. versatilis, P. carotovorum, P. brasiliense, P. aquaticum, P. odoriferum, P. actinidiae and P. wasabiae, respectively.

To further characterize the differences between the P. parvum and P. polaris isolates, they were subjected to amplified fragment length polymorphism (AFLP) DNA fingerprinting (Keygene NV) along with the type strains of the most closely related Pectobacterium species, as observed in ANI and 16S rRNA gene sequence analysis. DNA for this application, was extracted using a Maxwell 16 Tissue DNA Purification Kit and a Maxwell 16 instrument. AFLP DNA fingerprinting was performed as reported previously [22], except that the restriction enzymes EcoRI and TaqI and the primer combination E01-6-carboxyfluorescein (6-FAM) and T11 [23] were used. The Gene Mapper 4.0 software (Applera Co.) was used to normalize the resulting electrophoretic patterns and convert part of the patterns (namely the fragments of 20 to 600 bp) into text files that were subsequently used as input files for the BioNumerics 7.6.3 software package (Applied Maths). Peak-based data analysis of the AFLP DNA fingerprints was performed using the Dice coefficient (tolerance value of 0.15 %) and the unweighted pair-group method with arithmetic mean (UPGMA) cluster algorithm. For numerical analysis, the zone from 40 to 580 bp was used. AFLP DNA fingerprinting revealed that the P. parvum isolates tested formed a single cluster separate from the related species including P. polaris, which confirms their unique taxonomic position (Fig. 2). In addition, a detailed comparison of the AFLP DNA fingerprints of the P. parvum isolates revealed six distinct DNA fingerprint types (NCPBP 3395 and s0416 have identical profiles), indicating that they represent at least six different strains.

Species	GGDC result (%)	ANIm identity (%)	ANIm coverage (%)
P. parvum (5)	95.2–99.6	99.3–99.8	96.3–100
P. polaris (13)	66.1–68.4	96.0–96.2	81.8–86.5
Pectobacterium sp* (15)	35.3–55.6	89.0–94.1	65.9–81.8

*JJU01000000 (Y1) was not included in the coverage comparison because the sequence is short and may lack a substantial part of the genome.

Genome comparisons between the P. parvum and P. polaris isolates performed with BRIG analysis [24] showed differences between the genomes. The results showed that genome of Y1 appeared fragmented, possibly due to missing sequence data. Furthermore, BRIG analysis suggested that P. parvum isolates harbour genomic islands. The largest identified island was 0.1 Mb and present only in s0421 (Fig. 3). Similarity search with BLASTX suggested it codes mainly for replication proteins, transposases and conjugative DNA transfer proteins. Of its sequence, 36 % had 98 % identity to P. parmentieri strain IFB5427 plasmid pPAR01, and 28–38 % of its length had 73–74 % identity to plasmids in Erwinia amylovora, Pantoea ananatis, P. vagans and Rahmella sp., but also to genomic sequences of several E. amylovora strains. Mash screen search in PLSDB plasmid sequence database [25], with maximum p-value 0.1 and minimum identity 0.90, revealed similarity of s0421 sequence to 89 plasmids, mostly in Enterobacteriaceae isolates, the best hit being pPAR01. No plasmids were identified in the other P. parvum isolates with the same settings.

Genes that are present in P. parvum but missing from P. polaris, and vice versa, were identified using OrthoMCL [26] with a BLAST E-value cut-off of 1.0 e-6 and an inflation parameter of 1.5 as described by Lara-Ramirez et al. [27] (Table S7). A second analysis was performed with get_homologues version 07112016 (https://github.com/eead-csic-ctbio/get_homologues) determining orthology based on all-versus-all Best Bidirectional BLASTP Hits, using the COGOMCL and COG algorithms (Table S8). Y1 was omitted from both analyses because some genes may be absent due to issues with sequencing, and are thus not biologically informative in comparisons. The results of the comparisons were verified with BLASTP and BLASTN analyses to identify the corresponding genes and their genomic neighbours. The analysis revealed that isolates s0416, s0421, IFB5220 and NCPPB3395 had a large gene cluster coding for Type III secretion (T3SS) machinery that is similar in sequence and in gene organization with Salmonella SPI-1-like Inv-Mxi-Spa T3SS present in some Pantoea ananatis, P. stewartii subsp. stewartii, Erwinia amylovora, E. pyrifolia and E. tasmaniensis isolates (Fig. S1). Salmonella enterica has been shown to need SPI-1 T3SS to be able to persist inside leaf hopper [28], P. stewartii...
subsp. stewartii has been shown to use the SPI-1-like T3SS to colonize its insect vector [29], and also in other bacterial pathogens this type of T3SS has been linked to persistence in insects [30]. *P. parvum* is the first example among *Pectobacterium* species that harbours SPI-1-like T3SS. Among the *P. parvum*-specific proteins were also nematicidal protein 2 that was 59 % identical and 70 % similar to *Serratia proteomaculans* antifeeding protein Afp18 lethal to beetle larva [31]. Also a small protein similar to *Burkholderia cenocepacia* AidA that is required for slow killing of nematodes [32] was identified in *P. parvum* isolates. OmpT outer membrane protease similar to protein that is involved in killing of nematodes by *Yersinia pestis* [33] was identified as *P. parvum*-specific protein. Also proteins annotated as chitinase and chitin binding protein were among the identified *P. parvum*-specific proteins. Soft rot *Pectobacteriaceae* have been identified in numerous insect species [34] and in slugs [35], and they can also be vectored by free living [36] and root-knot nematodes [37]. The characteristics of the *P. parvum*-specific genes may suggest that it forms a more intimate relationship with a vector when compared to *P. polaris* or other *Pectobacteriaceae* species.

P. parvum isolates harboured a gene cluster that is similar in gene organization and sequence to the gene cluster coding for proteins involved in production of phenazine antibiotic d-alanylgriseoluteic acid by *Enterobacter agglomerans* (syn. *Erwinia herbicola*, *Pantoea agglomerans*) Eh1087 [38]. The corresponding cluster was not identified in *P. polaris* isolates or any other *Pectobacterium* strains by BLASTN analysis. Phenazines are involved in toxicity of bacteria to their animal and plant hosts and bacterial and fungal competitors, and contribute to biofilm formation and gene regulation in bacteria [39]. *P. parvum*, but not the *P. polaris* isolates, produce a small, diffusible molecule that is toxic to Dickeya solani s0432-1 (Fig. S2), suggesting that *P. parvum* produces an antibacterial metabolite that may enhance its ecological fitness in plant or vector tissues.

Many proteins were identified as missing from *P. parvum* but present in *P. polaris* in the genome comparisons, many of them known virulence determinants in plant tissue. All but two *P. polaris* isolates, IPO3720 and 16.3.2B, had a typical *Pectobacterium hrp/hrc* T3SS (Fig. S1). *Pectobacterium hrp/hrc* T3SS has been shown to be necessary in the early phase of the infection in leaf tissue, probably due to secretion of DspE effector [40]. The ability of most *P. polaris* isolates but not the *P. parvum* isolates to cause HR response in *Nicotiana benthamiana* leaf tissue was verified with infiltration of the bacterial cells into leaf tissue (data not shown). Also Type VI secretion system (T6SS) genes needed for virulence in tuber tissue [11] and a neighbouring lipase gene were identified in *P. polaris* but not in *P. parvum*. A large phn operon, needed for utilization of phosphonates as phosphorous source, and previously shown to be upregulated in *P. atrosepticum* by host extracts [41], was absent from *P. parvum* genomes. Several genes, involved in utilization of citrate (citDEFXG) or uptake of iron–dicitrate complex (fecCDE) were absent from *P. parvum*, suggesting that

Fig. 2. AFLP fingerprints of *Pectobacterium parvum* sp. nov. strains and their closest phylogenetic relatives. The dendrogram is derived from unweighted pair-group method with arithmetic mean (UPGMA) cluster analysis of the fingerprints with levels of linkage expressed as Dice similarity coefficients.
Fig. 3. Circular representation of genome sequences of *Pectobacterium parvum* and *Pectobacterium polaris* isolates. The inner ring portrays the reference *P. parvum* s0421 genome with corresponding genetic coordinates. The coloured rings (from inner to outer ring) portray: G+C% skew, G+C content skew and whole-genome sequences of *P. parvum* strains NCPPB 3395, S0416, IFB5220 and Y1, and *P. polaris* strains, IFB5222, NIBIO1392, NIBIO1006, IFB5223, S528, S4.16.03.2B, F109, IPO3720, IPO1606, IFB5252, IPO1948, IPO3841 and IPO3842. Comparison created using the BRIG platform application [24].
Table 2. Phenotypic characters that differentiate Pectobacterium parvum, Pectobacterium polaris and Pectobacterium species commonly present in potatoes in Central and Northern Europe

Ppar (P. parvum, four strains, s0416, s0417, s0421 and NCPPB 3395), Ppol (P. polaris NIBIO10067), Pv (P. versatilis SCC1), Pc (P. carotovorum CFBP 20467), Pb (P. brasiliense CFBP 66177), Pa (P. atrosepticum ICMP 15267), Prpm (P. parmentieri SCC3193) and Ds (D. solani s0432-1)

Test	Ppar	Ppol	Pv	Pc	Pb	Pa	Prpm	Ds
Growth at 37 °C	+	+	+	+	+	−	−	+
Growth in 5 % NaCl	+	+	+	+	+	−	−	−
Utilization of α-methyl glucoside	−	−	−	−	−	+	−	−
Reducing sugars from sucrose	−	−	−	−	+	+	+	−
Utilization of:								
Citrate	−	+	+	+	+	+	+*	+
Lactose	+	+	+	+	+	+	+	+
Melibiose	+	+	+	+	+	+	+	+
Raffinose	+	+	+	+	+	+	+	+

*Slow reaction for citrate utilization by P. parmentieri strains.

P. parvum isolates are not able to utilize citrate. Citrate-negative phenotype has been linked previously to low virulence in soft rot bacteria [42]. Furthermore, P. polaris isolates seem to lack several small operons containing genes involved in stress responses in various bacteria. Among them were ter operon coding for tellurite resistance genes [43], potABC involved in spermidine/putrescine polyamine uptake [44], kdpBCDE coding for two-component regulators and ATPases involved in potassium uptake [45] and pectin lyase pntlA gene activated during UV stress and cell lysis [46]. Pectin lyase production [47] and potassium [48] and putrescine uptake [49] have been linked previously to virulence or cell–cell communication in soft rot bacteria. In addition, P. parvum lacked several small operons coding for PTS transporters with adjacent aldolase or sugar kinase, suggesting that P. parvum may not be able to fully utilize all sugars and polysaccharides present in plant tissues.

Further comparison of P. parvum and P. polaris isolates was performed with Biolog analysis using GEN III plates. The results showed that all tested P. parvum isolates included in the analysis were unable to utilize citrate (Table 2, Fig. S3). The negative citrate phenotype of P. parvum was verified with Simmons citrate agar test (Merck) according to the supplier’s instructions. In these tests, all seven tested P. parvum isolates were citrate negative and the 12 tested P. polaris isolates, including the type strain, we found citrate positive. Furthermore, growth at +37 °C and in 5 % NaCl, utilization of α-methyl glucoside, reducing sugars from sucrose and utilization of lactose, melibiose and raffinose were manually compared between P. parvum isolates s0416, s0417, s0417 and NCPPB 3395 and P. polaris type strain NIBIO10067 and type strains of Pectobacterium species commonly present in potatoes in Europe using standard tests and conditions used for the characterization of Pectobacterium and Dickeya species [50, 51], but no additional differences were observed between the tested species (Table 2). Because P. parvum isolates appeared to lack several known virulence determinants needed for successful colonization of plant tissues, virulence phenotypes of all available P. parvum and P. polaris strains were compared in potato tuber maceration assay. Several P. polaris isolates had high ability to macerate potato tuber tissue, as originally published [8], whereas the P. parvum isolates had low virulence in the potato maceration test (Fig. S4).

The P. parvum isolates characterized in this work originate from four countries, the Netherlands, Finland, Poland and China. NCPPB 3395 was isolated in the Netherlands from Solanum tuberosum by H. Maas-Geesteranus, supposedly sometime during 1970s as the first publication mentioning it (as strain 196) was published in 1979 [52]. Finnish isolates s0416, s0417, s0421, s0424 and s0425 were isolated 2004 from diseased potato stems of five cultivars originating from three locations in Finland, Y1 was isolated in China 2013 from Brassica rapa subsp. chinensis, and IFB5220 was isolated in 1996 in Poland from potato stem. After completion of the experiments described in the present work, LMG 2402 isolated from rotten Helianthus annuus stalk in former Yugoslavia in 1969 was tentatively identified as P. parvum at the BCCM/LMG culture collection by AFLP analysis (Ilse Cleenwerck, personal communication), making it the ninth known isolate and third host plant species. In spite of the different host plants and wide geographical and time span between the isolation of P. parvum strains, they appear very similar on phenotypic and genomic levels, which may suggest a narrow ecological niche or an interaction with a vector. To conclude, based on the presented genomic and phenotypic data, we propose that these isolates form a separate species named P. parvum.
DESCRIPTION OF PECTOBACTERIUM PARVUM SP. NOV.

Pectobacterium parvum (parvum L. neut. adj. parvum small).

Cells are Gram-negative, rod-shaped and facultatively anaerobic. They form small, round-shaped, white, opaque and flat colonies on nutrient agar with 0.5–1 mm in diameter after 17 h. Like other Pectobacterium species, they are catalase-positive, oxidase-negative and pectinolytic. They grow at +37 °C and on Luria–Broth with 5 % NaCl. They can utilize sucrose, lactose, melibiose and raffinose as well as many other sugars, but are negative on citrate and many amino acids and sugars on Biolog plates. Pectobacterium parvum isolates have a low maceration ability on potato tuber tissue and inhibit sugarcane, but are negative on citrate and many amino acids and sugars. They are catalase-positive, oxidase-negative and pectinolytic. They grow at +37 °C and on Luria–Broth with 5 % NaCl. They can utilize sucrose, lactose, melibiose and raffinose as well as many other sugars, but are negative on citrate and many amino acids and sugars on Biolog plates. Pectobacterium parvum type strain is s0421T (CFBP 8630=LMG 30828).

Funding information

Financial support from Emil Aaltonen foundation, the Finnish National Foundation and Ministry of Agriculture and Forestry in Finland (1966/03.01.01./2015) is gratefully acknowledged. This work was supported also by The National Science Centre, Poland, project Opus 9 (2015/17/B/NZ9/01730) and by the Ministry of Science and Higher Education Republic of Poland from the quality-promoting subsidy under the Leading National Research Centre (KNOW) programme 2012–2017 Faculty of Pharmacy with Subfaculty of Laboratory Medicine –[dec. MNISW-DS-6002-4693-23/WA/12]. The work performed by the BCCM/LMG Bacteria Collection was supported by the Federal Public Planning Service - Science Policy, Belgium.

Acknowledgements

We are thankful for Dr Denis Faure and Jérémy Cigna for the P. polariis strains S4.16.03.2B and SS28.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Adeolu M, Alnajer S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the Enterobacteriales: proposal for Enterobacteriales ord. nov. divided into the families Enterobacteriaceae, Erwiniaaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66:5575–5599.
2. Ma B, Habling ME, Kim H-S, Reedy RM, Yedidia I et al. Host range and molecular phylogenies of the soft rot entorhizal genera Pectobacterium and Dickeya. Phytopathology 2007;97:1150–1163.
3. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rot entorhizal plant pathogens. Analytical Methods 2016;8:12–24.
4. Portier P, Pétron J, Taghouti G, Fischer-Le Saux M, Caulthaire E et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasilienne sp. nov. and Pectobacterium actiniariae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatilis sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 2019;69:3207–3216.
5. Waléron M, Miszta A, Waléron M, Jonca J, Furmaniak M et al. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int J Syst Evol Microbiol 2019;69:1751–1759.
6. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al. Pectobacterium punjabense sp. nov. isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 2018;68:3551–3556.
7. Pétron J, Bertrand C, Taghouti G, Portier P, Barny MA. Pectobacterium aquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol 2019;69:745–751.
8. Dees MW, Lysee E, Rossmann S, Perminow J, Brurberg MB. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2017;67:5222–5229.
9. Waléron M, Misztak A, Waléron M, Franczuk M, Wielgomab B et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruvianum sp. nov. Syst Appl Microbiol 2018;41:85–93.
10. Pitman AR, Harrow SA, Visnovsky SB. Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur J Plant Pathol 2010;126:433–435.
11. Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M et al. Revised phylogeny and novel, horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012;8:e1002031.
12. Khayi S, Cigna J, Chong TM, Guétou-Laurent A, Chan KG et al. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 2016;66:5379–5383.
13. Niemi O, Laine P, Koskinen P, Pasanen M, Pennanen V et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Stand Genomic Sci 2017;12:87.
14. Shishikov FV, Korzhenkov AA, Miroshnikov KK, Kabanov AP, Barannik AP et al. Draft genome sequences of new genomospecies “Candidatus Pectobacterium maceratum” strains, which cause soft rot in plants. Genome Announce 2018;6:e00260–18–18.
15. Pasanen M, Laurila J, Brader G, Paiva ET, Ahola V et al. Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Ann Appl Biol 2013;163:403–419.
16. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013;4:2304.
17. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351.
18. Meier-Kolthoff JP, Auch AF, Klenk HP, Gőker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60.
19. Auch AF, van Jan M, Klenk HP, Gőker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134.
20. Meier-Kolthoff JP, Klenk H-P, Gőker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356.
21. Fournier M, Gibbs MJ. PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol 2006;6:1.
22. Chimetto LA, Cleenwerck I, Brocchi M, Willems A, De Vos P et al. Marinomonas brasiliensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas baldasi as a later heterotypic synonym of Marinomonas communis. Int J Syst Evol Microbiol 2011;61:1170–1175.
23. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P et al. Enteroxoccus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2012;62:1314–1320.
24. Alikanh NF, Petty NK, Ben Zakour NL, Beaton SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402.
25. Galata V, Fehlmann T, Backes C, Keller A. PLISDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019;47:0195–D202.
26. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13:2178–2189.
27. Lara-Ramírez EE, Segura-Cabrera A, Guo X, Yu G, García-Pérez CA et al. New implications on genomic adaptation derived from the Helicobacter pylori genome comparison. PLoS One 2011;6:e17300.
28. Dundore-Arias JP, Groves RL, Barak JD. Influence of prgH on the Persistence of Ingested Salmonella enterica in the Leafhopper Macrosteles quadrilineatus. Appl Environ Microbiol 2015;81:6345–6354.
29. Correa VR, Majerczak DR, Ammar E-D, Merighi M, Pratt RC et al. The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl Environ Microbiol 2012;78:6327–6336.
30. Egan F, Barret M, O’Gara F. The SPI-1-like type III secretion system: more roles than you think. Front Plant Sci 2014;5:34.
31. Hurst MRH, Beattie A, Jones SA, Laugraud A, van Koten C et al. Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailcoin) with Activity against Grass Grub (Costelytra zealandica) and Manuka Beetle (Pyronota Species) Larvae. Appl Environ Microbiol 2018;84.10.
32. Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J et al. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 2004;72:7220–7230.
33. Styer KL, Hopkins GW, Bartra SS, Planz GV, Frothingham R et al. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep 2005;6:992–997.
34. Rossmann S, Dees MW, Perrinow J, Meadow R, Brurberg MB. Soft rot Enterobacteriaceae are carried by a large range of insect species in potato fields. Appl Environ Microbiol 2018;84:pii:00281–18.
35. Joyson R, Swamy A, Bou PA, Chapuis A, Ferry N. Characterization of cellulolytic activity in the gut of the terrestrial land slug Arion ater: Biochemical identification of targets for intensive study. Comp Biochem Physiol B Biochem Mol Biol 2014;177:179–29–35.
36. Nykyri J, Feng X, Dorati F, Bakr R, Pasanen et al. Evidence that nematodes may vector the soft rot-causing entrobacterial phytopathogens. Plant Pathology 2014;63:747–757.
37. Mongae A, Kubheka GC, Moleleki N, Moleleki LN. The use of fluorescent reporter protein tagging to study the interaction between Root-Knot Nematodes and Soft Rot Enterobacteriaceae. Leti Appl Microbiol 2013;5:258–263.
38. Giddens SR, Feng Y, Mahanty HK. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol Microbiol 2002;45:769–783.
39. Pierson LS, Pierson EA. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 2010;86:1659–1670.
40. Hogan CS, Moie BM, Grant SR, Willis DK, Charkowski AO. The type III secreted effector DspE is required early in solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)/D/E motifs. PLoS One 2013;8:e65534.
41. Mattinen L, Somervuo P, Nykyri J, Nissinen R, Kouvonen P et al. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology 2008;154:2387–2396.
42. Urbany C, Neuhaus HE. Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. Mol Plant Microbe Interact 2008;21:547–554.
43. Turkovicova L, Smidak R, Jung G, Turna J, Lubec G et al. Proteomic analysis of the TERC interactome: novel links to tellurite resistance and pathogenicity. J Proteomics 2016;136:167–173.
44. Espinell IC, Guerra PR, Jelsbak L. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium. Microb Pathog 2016;95:117–123.
45. Freeman ZN, Dorus S, Waterfield NR. The KdpD/KdpE two-component system: integrating K′ homeostasis and virulence. PLoS Pathog 2013;9:e1003201.
46. Chatterjee A, McEvoy JL, Chambost JP, Blasco F, Chatterjee AK. Nucleotide sequence and molecular characterization of pNH1, the structural gene for damage-inducible pectin lyase of Erwinia carotovora subsp. carotovora 71. J Bacteriol 1991;173:1765–1769.
47. Pirhonen M, Saarihalhi T, Karlsson MB, Palva ET. Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by Transposon Mutagenesis. MPMI 1991;4:276–283.
48. Valente RS, Xavier KB. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae. J Bacteriol 2016;198:248–255.
49. Shi Z, Wang Q, Li Y, Liang Z, Xu L et al. Putrescine Is an Intraspecies and Interkingdom Cell-Cell Communication Signal Modulating the Virulence of Dickeya zeae. Front Microbiol 2019;10:10.
50. De Boer SH, Kelman A. Erwinia soft rot group. In: Schaad NW, Jones JB (editors). Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd edn. St. Paul, MN, USA: American Phytopathological Society; 2002. pp. 56–57.
51. Hyman LJ, Toth IK, Pérombelon MCM. Isolation and identification. In: Pérombelon MCM, Van der Wolf JM (editors). Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on Potatoes: A Laboratory Manual. Dundee, Scotland, UK: Scottish Crop Research Institute Occasional Publication No. 10; 2002. pp. 66–71.
52. Watanabe T, Copeman R, Vruggink H. Serogroups of Erwinia carotovora potato strains determined with diffuse somatic antigens. Phytopathology 1979;69:316–319.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.