Formation of ammonia–helium compounds at high pressure

Jingming Shi¹, Wenwen Cui¹, Jian Hao¹,², Meiling Xu¹, Xianlong Wang³ & Yinwei Li¹

Uranus and Neptune are generally assumed to have helium only in their gaseous atmospheres. Here, we report the possibility of helium being fixed in the upper mantles of these planets in the form of NH₃–He compounds. Structure predictions reveal two energetically stable NH₃–He compounds with stoichiometries (NH₃)₂He and NH₃He at high pressures. At low temperatures, (NH₃)₂He is ionic with NH₃ molecules partially dissociating into (NH₂)⁻ and (NH₄)⁺ ions. Simulations show that (NH₃)₂He transforms into intermediate phase at 100 GPa and 1000 K with H atoms slightly vibrate around N atoms, and then to a superionic phase at ~2000 K with H and He exhibiting liquid behavior within the fixed N sublattice. Finally, (NH₃)₂He becomes a fluid phase at temperatures of 3000 K. The stability of (NH₃)₂He at high pressure and temperature could contribute to update models of the interiors of Uranus and Neptune.
Knowledge of the interior compositions of planets is crucial to understanding the processes of their formation and evolution. Various methods have been used to investigate the Earth’s interior, while studies of the composition and structure of the solar system’s ice giants, Uranus and Neptune, are limited by using only global observable properties such as gravitational and magnetic moments. Uranus and Neptune are generally assumed to have a three-layer structure: a rocky core, an ice mantle (contains an upper mantle and a lower mantle), and a gas atmosphere. Although many studies have focused on the interiors of Uranus and Neptune, their internal compositions remain to be fully understood. A widely accepted model for each of these planets is that the upper mantle comprises a mixture of ionized H$_2$O, NH$_3$, and CH$_4$, whereas the lower mantle consists of metallic H$_2$O, NH$_3$. Much effort has been devoted to determine the ratio of the components in the interior of the ice planets, however, no consensus was reached.

To understand realistic compositions of Uranus and Neptune, researchers have focused on high-pressure and high-temperature phases of NH$_3$ and H$_2$O, and mixtures of the two. Cavazzoni et al. performed molecular dynamic simulations to estimate the phase diagram of water and ammonia at pressures and temperatures in the range of 30–300 GPa and 300–7000 K. They found that water and ammonia exhibited a superionic phase (at about 100 GPa, 1500 K) between the ionic solid phase and ionic fluid phase. However, for the component CH$_4$, the results of equation of state have shown that it would dissociate into hydrocarbons at the extreme conditions. A computational search undertaken by Pickard and Needs in 2008 found that ammonia transformed into an ionic phase consisting of ionized H$_2$O, NH$_3$, and CH$_4$, whereas the lower mantle consists of metallic H$_2$O, NH$_3$. Much effort has been devoted to determine the ratio of the components in the interior of the ice planets, however, no consensus was reached.

Results

Stable NH$_3$–He compounds at high pressure. The formation enthalpies of the energetically most-stable structures of (NH$_3$)$_x$He$_y$ (x = 1–3, y = 1–3) as compared to mixtures of NH$_3$ and He at selected pressures are summarized in Fig. 1. The phases lying on the convex hull are thermodynamically stable against decomposition into other compositions. The figure also shows the effects of zero-point vibrational energy (ZPE). The positive formation enthalpies show that, as expected, no thermodynamically stable compositions were found at ambient pressure. However, static-lattice enthalpy calculations revealed three stable compositions at high pressures: (NH$_3$)$_2$He at 10 and 300 GPa, NH$_3$He at 50, 100, and 150 GPa, and NH$_3$He$_2$ at 300 GPa (Supplementary Fig. 1). The inclusion of ZPE alters significantly the stability of (NH$_3$)$_2$He and NH$_3$He$_2$, i.e., (NH$_3$)$_2$He becomes energetically stable also at 150 and 300 GPa, while NH$_3$He$_2$ turns to be unstable at all pressures.

For a 2:1 mixture of NH$_3$ and H$_2$O, Robinson et al. predicted a novel ionic compound, O$_2$–(NH$_3$)$_2$, to form at pressures above 65 GPa. Recent theoretical and experimental studies have shown that NH$_3$H$_2$O decomposes into ammonia and water at 120 GPa. Bethkenhagen et al. used an evolutionary random structure search code to propose a superionic phase of NH$_3$H$_2$O at 800 GPa and high temperature (1000–6000 K). An unusual layered ionic phase of NH$_3$(H$_2$O)$_2$ was predicted for a 1:2 mixture of NH$_3$ and H$_2$O; it was then modeled to transform into a superionic phase at high pressure and high temperature (41 GPa and 600 K). These findings contribute to our understanding of the interiors of the giant ice planets.

The above results have led to the assumption that the elements (i.e., C, H, and N) in the ice giants’ gaseous atmospheres except He appear in their solid mantles. Helium is generally considered likely to remain only in the atmosphere and not form solid compounds in the mantle, because it is the most chemically inert element due to its stable closed-shell electronic configuration. In fact, Nettelmans et al. proposed a three-layer structure model, in which the considering of small amount of He/H in the outer core of the planets reproducing well the gravitational moments of the ice giants. Recent studies have indicated that high pressure can induce He to form compounds such as HeN$_3$, Na$_2$He, FeHe, MgOHe, H$_2$OHe, and FeO$_2$He. Specifically, the compound of H$_2$OHe$_2$ exhibited a superionic property under high pressure and high temperature and then transformed into fluid. These results inspired us to explore whether some of the abundant elemental He from the planets’ atmospheres could be trapped inside the mantles of Uranus and Neptune. Therefore, we carried out calculations to search for stable compounds in NH$_3$–He systems at high pressure and high temperature. Our results show that He can react with NH$_3$ to form (NH$_3$)$_2$He under extreme conditions, to a certain extent corresponding to the upper mantles of Uranus and Neptune, thereby providing information essential to the understanding of the interior models of these planets.
He\textsubscript{42,43} at all pressures. Calculations adopted the cubic \textit{Pmma} and \textit{Pnma} structures at 10 GPa, the \textit{P2\textsubscript{1}/3} structure41 at 10 GPa, the \textit{P2\textsubscript{1}/2\textsubscript{1}} phase at 50 GPa, and the \textit{Pmna} structure at 100, 150, and 300 GPa for \textit{NH}\textsubscript{3}\textsubscript{He} and \textit{hcp-He}42,43 at all pressures.

NH\textsubscript{3}He composition becomes energetically stable at 35 GPa, as shown in Fig. 2, adopting an orthorhombic \textit{Pmma} structure. The \textit{Pmma} phase is the most stable configuration over a large pressure range up to 180 GPa for NH\textsubscript{3}He, above which it transforms into the \textit{P2\textsubscript{1}/2\textsubscript{1}/2\textsubscript{1}} structure. The \textit{P2\textsubscript{1}/2\textsubscript{1}/2\textsubscript{1}}−NH\textsubscript{3}He phase will remain stable up to 300 GPa, which is the maximum pressure considered in this study. Both the \textit{Pmma} and the \textit{P2\textsubscript{1}/2\textsubscript{1}/2\textsubscript{1}} structures of NH\textsubscript{3}He are composed of isolated NH\textsubscript{3} molecules and He atoms, and there is no evidence of dissociation of NH\textsubscript{3} in the whole pressure range studied here. The calculated phonon dispersions confirm the dynamical stability of all these structures in their energetically stable pressure ranges (Supplementary Fig. 3).

Electronic properties. To examine the interactions among N, H, and He atoms in the two compounds, we calculate electronic properties including the electronic localization function (ELF) and Bader charges. The ELF is a quantum chemistry tool to visualize covalent bonds; values close to 1 corresponding to strong covalent bonding. The ELF results rule out covalent bonds between N–H units (NH\textsubscript{3}, (NH\textsubscript{2})−, (NH\textsubscript{3})−) and He atoms, given the absence of any ELF local maxima between them (Supplementary Fig. 5). Interestingly, Bader analysis indicates a slight charge transfer from N–H units to He atoms. Table 1 lists the Bader charge of one He atom in \textit{I\textsubscript{4}−(NH\textsubscript{3})\textsubscript{2}He} as \(-0.02\) e− at 10 GPa, which increases to \(-0.03\) e− when the \textit{Fmm2} structure is adopted at 120 GPa. Similar to that in (NH\textsubscript{3})\textsubscript{2}He, each He atom in NH\textsubscript{3}He and NH\textsubscript{3}He\textsubscript{2} gains nearly 0.03 e− from the NH\textsubscript{3} molecules. The Bader charge of a He atom in the three NH\textsubscript{3}−He compounds is similar to the charges predicted for H\textsubscript{2}O−He, MgF\textsubscript{2}−He, MgOHe, and FeO\textsubscript{2}−He (between \(-0.02\) e− and \(-0.07\) e−)36−38,40. The current results indicate the three compounds have an ionic nature and that He atoms could serve as a Coulomb shield in stabilizing them at high pressure. Electronic band structures show that all three compounds are insulators (Supplementary Fig. 4). At the PBE-GGA level, the band gap of (NH\textsubscript{3})\textsubscript{2}He is calculated to be 6.0 eV at 10 GPa, which increases to 7.5 eV at 180 GPa. For NH\textsubscript{3}He, the band gaps is calculated to be 7.2 eV at 35 GPa.

Superionic phases of (NH\textsubscript{3})\textsubscript{2}He. The stable pressure and temperature regions of \textit{Fmm2}−(NH\textsubscript{3})\textsubscript{2}He cover the geotherms in the upper mantle of Neptune and Uranus. We, therefore, performed ab initio molecular dynamics simulations at the pressure of 100 GPa, 200 GPa, and 300 GPa, respectively, to examine the formation of \textit{Fmm2}−(NH\textsubscript{3})\textsubscript{2}He inside Neptune and Uranus. The calculated mean squared displacement (MSD) of the atomic positions and the behaviors of three different atoms of \textit{Fmm2}−(NH\textsubscript{3})\textsubscript{2}He are shown in the Fig. 4. At \textit{P} = 100 GPa and \textit{T} = 200 K, \textit{Fmm2}−(NH\textsubscript{3})\textsubscript{2}He is a solid phase with all atoms vibrating around their lattice positions and with diffusion coefficients (\textit{D}\textsubscript{H} = \textit{D}\textsubscript{He} = \textit{D}\textsubscript{N} = 0). When the temperature increasing to 1000 K, the H atoms seems diffusive with...
atoms in NH₃ units become considerable vibrate with a fixed N position at this condition. With the temperature further increased to 2000 K, Fmm2–(NH₃)₂He transforms into a real superionic phase with fully diffusive H atoms ($D^H = 2.0 \times 10^{-4} \text{cm}^2 \text{s}^{-1}$) within the fixed N and He framework. With the temperature increased to 3000 K, all atoms including N, He, and H are diffusive with high diffusion coefficients ($D^N = 4.4 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$, $D^He = 2.1 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$ and $D^H = 4.5 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$). This result reveals that at this conditions the superionic Fmm2–(NH₃)₂He phase transformed into a fluid phase. Here, we found the diffusion of H atoms occurs prior to that of He atom, which is opposite to that found for He₂(H₂O)₃⁹, where He atoms diffuse firstly. Generally, lighter atoms are easier to diffuse. The abnormal diffusive behavior in He₂(H₂O) was explained by that the H atoms has higher diffusion barrier than He atoms because of the strong covalent H-O bonds. In fact, He atoms in He₂(H₂O) share large space that allows the free diffusion, as shown in Supplementary Fig. 6. As compared to He₂(H₂O), although form weak interaction with N–H units, He atoms are trapped in cages formed by NH₄⁺(NH₃)⁻ and (NH₄)₂⁻ units, this makes helium atoms are more difficult to diffuse.

While for $P = 200$ GPa and $T = 300$ K, Fmm2–(NH₃)₂He keeps its solid property. With the temperature increasing to 1000 K and up to 4000 K, Fmm2–(NH₃)₂He becomes to a superionic phase and then turns in to a fluid when the temperature is above 4200 K, as shown in Supplementary Fig. 7. Under pressure of 300 GPa, the trend is similar to that under 200 GPa, but the critical point of the superionic phase to fluid is at the temperature of 4600 K, as shown in Supplementary Fig. 8. Figure 5 presents the pressure–temperature (P–T) phase diagram for the mixture of NH₃ and He, showing the (NH₃)₂He and NH₃He phases. Temperature has a significant effect on the system: I₄–(NH₃)₂He and NH₃He decompose at high temperature (Fig. 5 and Supplementary Fig. 2). Their maximum temperatures of stability vary, being >700 K for I₄–(NH₃)₂He (which decomposes fully to NH₄⁺ and He), >1000 K for NH₃He (for full decomposition to NH₄⁺ and He at $P < 100$ GPa and decomposition into Fmm2–(NH₃)₂He and He at $P > 100$ GPa). In contrast, Fmm2–(NH₃)₂He has a large stability field and thermodynamically stable in pressure range of 80–300 GPa and at any temperature in the tested range (0–5000 K). Figure 5 also presents estimated geotherms for the interiors of Uranus and Neptune. We also pointed the phase states of Fmm2–(NH₃)₂He in the Fig. 5. Our calculation show that the Fmm2–(NH₃)₂He phase presents superionic and fluid properties at the condition which is close to the geotherms in the upper mantle of Neptune and Uranus. This suggests that He could be trapped as superionic (NH₃)₂He inside the upper mantles of these planets with the mixture of superionic and fluid forms during their formation.

Previous studies have assumed the presence of NH₃, CH₄, H₂O, and H₂ inside the giant ice planets. Our predicted stability of superionic (NH₃)₂He as well as the recent reported superionic H₂OHe₃⁹ under the P–T conditions corresponding to the ice giants’ upper mantles indicate that helium could be remained inside the planets during their formation. Coincidently, the stability of NH₃–He and H₂O–He compounds provide an evidence to support the new three-layer model suggested by Nettelmann, in which helium was considered as a small component in outer core of the planets. Therefore, the current results are essential to the understanding of the interior models of these planets. Moreover, CH₄ and H₂ are another two main components in upper mantle of these planets, therefore, there is a high possibility that helium could react with CH₄ or H₂ at high pressures to form new compounds, which deserves further investigation.

Fig. 3 Structural configurations. a, b The I₄ structure of (NH₃)₂He at 10 GPa along the a-axis and c-axis, respectively. c, d The Fmm2 structure of (NH₃)₂He at 180 GPa in the direction of b-axis and a-axis, respectively. e The Pnma structure of NH₃He at 30 GPa, and f the P2₁2₁2₁ structure of NH₃He at 180 GPa. The light blue, pink, and cream-colored atoms represent N, H, and He, respectively. Blue, light blue, and purple spheres in c, d are used to distinguish the N atoms in (NH₃)⁻, NH₃, and (NH₄)⁺, respectively.

Table 1 Bader charges.

Phase	Pressure (GPa)	Atom/Unit	Charge (e⁻)
I₄–(NH₃)₂He	10	NH₃	0.01
		He	-0.02
Fmm2–(NH₃)₂He	120	NH₂	-0.57
		NH₃	0.05
		NH₄	0.53
		He	-0.03
		NH₃	0.03
		He	-0.03
Pnma–NH₃He	40	NH₃	0.03
		He	-0.03
P2₁2₁2₁–NH₃He	180	NH₃	0.03
		He	-0.03

Bader charges of the I₄ phase of (NH₃)₂He at 10 GPa, the Fmm2 phase of (NH₃)₂He at 120 GPa, the Pnma phase of NH₃He at 40 GPa, and the P2₁2₁2₁ phase of NH₃He at 180 GPa. A positive (positive) sign indicates an electron gain (loss) for the particular atom or molecule.

$D^H = 1.4 \times 10^{-6} \text{cm}^2 \text{s}^{-1}$. However, from the atomic trajectories shown in Fig. 4b, one can find that H atoms in NH₃ become diffuse while H atoms in (NH₄)⁻ and (NH₄)⁺ keep vibrating around their lattice positions. This means that the H
Three different atoms (N, H, and He) in the molecular dynamics simulations are shown in different conditions. The light blue, pink, and cream-colored atoms correspond to the pressure of 100 GPa and the temperatures of 200 K, 1000 K, and 3000 K. The behaviors of different units (\(\text{NH}_2^-\), \(\text{NH}_3\), and \(\text{NH}_3^+\)) or three different atoms (N, H, and He) in the molecular dynamics simulations are shown in different conditions. The light blue, pink, and cream-colored atoms represent N, H, and He, respectively.

Fig. 4 Dynamical behavior and atomic trajectories. The calculated mean squared displacement (MSD) of the atomic positions of \(\text{Fmm}2\)-\((\text{NH}_3)_2\text{He}\) phase at the pressure of 100 GPa and the temperatures of a 200 K, b 1000 K, c 2000 K, and d 3000 K. The behaviors of different units (\(\text{NH}_2^-\), \(\text{NH}_3\), and \(\text{NH}_3^+\)) or three different atoms (N, H, and He) in the molecular dynamics simulations are shown in different conditions. The light blue, pink, and cream-colored atoms represent N, H, and He, respectively.

Fig. 5 Pressure–temperature phase diagram. Solid lines represent the stability field of each composition. Dashed lines indicate planetary geotherms estimated for the interiors of Uranus (black) and Neptune (magenta).\(^{55}\) Molecular dynamic calculations are performed under different extreme conditions and the results are marked in the figure: The red circle, purple square, and green triangle represent solid phase, superionic phase and fluid, respectively. Black arrows indicate the stable pressure–temperature regions associated with the arrowhead pointing phases.

In our submission process, we were aware of the work by Liu et al.\(^{46}\) predicting plastic and superionic helium-ammonia compounds at extreme condition. They predicted three stable stoichiometries and eight new stable phases of He–NH\(_3\) compounds under pressures up to 500 GPa and found that the predicted He–NH\(_3\) compounds exhibit superionic behavior at high pressure and high temperature. These similar results further provide knowledge for our understanding of the composition of the planet’s interior.

In summary, a combination of first-principles calculations and crystal structure predictions was carried out to search for stable compounds in the NH\(_3\)–He systems under high-P–T conditions. Calculations at 0 K revealed two compounds ((NH\(_3\))\(_2\)He and NH\(_3\)He) that are energetically stable relative to the equivalent mixture of solid NH\(_3\) and He at high pressures. Specially, (NH\(_3\))\(_2\)He remains energetically stable under the extreme conditions corresponding to the upper mantles of Uranus and Neptune. The current results provide evidence that He could be trapped inside these planets as NH\(_3\)–He compounds with the mixture of superionic and fluid properties, in contrast to the current view that He occurs only in their atmospheres. Molecule dynamic simulations results show that the \(\text{Fmm}2\)-\((\text{NH}_3)_2\text{He}\) phase will transform into a superionic solid and then to a fluid with the increasing temperature.

Methods

Structural predictions. Structure predictions for NH\(_3\)–He compounds were performed using a particle-swarm optimization algorithm implemented in CALYPSO code\(^{47,48}\). This method is unbiased, not using any known structural information, and has successfully been used to predict various systems under high pressure\(^{45,47}\). We performed structural searches on (NH\(_3\))\(_x\)He\(_y\) (\(x, y = 1, 2, 3\)) at 0–300 GPa with maximum simulation cells up to four formula units. Each generation of structures was evolved by selecting the 60% lowest-enthalpy structures in the last step and randomly producing the remaining 40%. The structure searches were considered converged when ~1000 successive structures were generated without finding a new lowest-enthalpy structure.

Ab initio calculations. Density functional theory calculations were performed using VASP code\(^{58}\) combined with the generalized gradient approximation (GGA)\(^{59}\) for the exchange-correlation potential in the form of the Perdew–Burke–Ernzerhof\(^{56}\) (PBE) functional. The electronic wave functions were expanded in a plane wave basis set with a cutoff energy of 1000 eV. The electronic interaction was described by means of projector augmented wave\(^{61}\) pseudopotentials with valence electrons of 1s\(^1\), 2s\(^2\)2p\(^3\) and 1s\(^2\) for H, N, and He atoms, respectively. Monkhorst-Pack k-point\(^{62}\) meshes with a grid density of 0.03 Å\(^{-1}\) were chosen to achieve a total energy convergence of better than 1 meV per atom. The phonon dispersion curves were computed by direct supercell calculation\(^{63}\), as implemented in the PHONOPY program\(^{54}\).

Molecular dynamics. The molecular dynamics simulations were also carried out to explore the superionic property of (NH\(_3\))\(_x\)He compound at high pressures and high temperatures. The simulation supercells contain 32 NH\(_3\) molecules and 16 helium atoms and the Brillouin zone was sampled by I point. Each simulation consists of 10,000 time steps with a time step of 0.5 fs.

Data availability

The authors declare that the main data supporting the findings of this study are contained within the paper and its associated Supplementary Information. All other relevant data are available from the corresponding author upon reasonable request.

Received: 17 March 2020; Accepted: 28 May 2020; Published online: 22 June 2020
References

1. Guillot, T. Interiors of giant planets inside and outside the solar system. Science 286, 72–77 (1999).
2. Hubbard, W. B. In Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S.) 539–563 (Univ. of Arizona Press, Tucson, AZ, 1989).
3. Stevenson, D. Interiors of the giant planets. Annu. Rev. Earth Planet. Sci. 10, 257–289 (1982).
4. Hubbard, W. B., M. P., Pearl, J. C. & Stevenson, D. J. In Neptune and Triton, D. P. Cruikshank, Ed. 109–138 (Univ. of Arizona Press, Tucson, AZ, 1995).
5. Hubbard, W. B. Interiors of the giant planets. Science 214, 145–149 (1981).
6. Hubbard, W. B. & MacFarlane, I. J. Structure and evolution of uranus and neptune. J. Geophys. Res. 85, 225–234 (1980).
7. Andrew, W. M., Eric, G. & Megan, A. Spectro-thermometry of m dwarfs and their candidate planets: too hot, too cool, or just right? Astrophys. J. 779, 261–268 (2013).
8. Bethkenhagen, M. E. Planetary icers and the linear mixing approximation. Astrophys. J. 848, 67 (2017).
9. Transtrum, M. K. et al. Perspective: Sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 143, 072801 (2015).
10. Chau, R., Hamel, S. & Nells, W. I. Chemical processes in the deep interior of Uranus. Nat. Commun. 2, 203 (2011).
11. Nettelmann, N. et al. Uranus evolution models with simple thermal boundary layers. Icarus 275, 107–116 (2016).
12. Heil, R., Anderson, J. D., Podolak, M. & Schubert, G. Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2010).
13. Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).
14. Palasyuk, T. et al. Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nat. Commun. 5, 3460 (2014).
15. Nitschke, S. et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).
16. Cavozzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).
17. Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 1288–1290 (1997).
18. Ninet, S., Datchi, F. & Saïta, A. M. Proton disorder and superconductivity in hot dense ammonia. Phys. Rev. Lett. 108, 165702 (2012).
19. Laniel, D., Svitlyk, V., Weck, G. & Loubeyre, P. Pressure-induced chemical reactions in the N₂(H₂) compound: from the N₂ and H₂ species to ammonia and back down into hydrazine. Phys. Chem. Chem. Phys. 20, 4050–4057 (2018).
20. Petrenko, V. F., Whitworth, R. W. Physics of ice (OUP Oxford, 1999).
21. Salzmann, C. G., Radaelli, P. G., Mayer, E. & Finney, J. L. Ice XV: a new thermodynamically stable phase of ice. Phys. Rev. Lett. 103, 105701 (2009).
22. Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297 (2018).
23. Benot, M., Bernasconi, M., Focher, P. & Parrinello, M. New high-pressure phase of ice. Phys. Rev. Lett. 76, 2934 (1996).
24. Militzer, B. & Wilson, H. F. New phases of water ice predicted at megabar pressures. Phys. Rev. Lett. 105, 195701 (2010).
25. Wang, Y. et al. High pressure partially ionic phase of water ice. Nat. Commun. 5, 563 (2013).
26. Pickard, C. J., Martinez-Canales, M. & Needs, R. J. Decomposition and terapascal phases of water ice. Phys. Rev. Lett. 110, 245701 (2013).
27. Millot, M. et al. Nanoscond x-ray diffraction of shock-compressed superionic water ice. Nature 569, 251 (2019).
28. Huang, P. et al. Stability of H₂O at extreme conditions and implications for the magnetic fields of Uranus and Neptune. Proc. Natl Acad. Sci. USA 117, 5638–5643 (2020).
29. Robinson, V. N., Wang, Y., Ma, Y. & Hermann, A. Stabilization of ammonia-rich hydrate inside icy planets. Proc. Natl Acad. Sci. USA 114, 9003–9008 (2017).
30. Shi, J., Cui, W., Botti, S. & Marques, M. A. Nitrogen-hydrogen- oxygen ternary phase diagram: New phases at high pressure from structural prediction. Phys. Rev. Mater. 2, 023604 (2018).
31. Liu, C. et al. Topologically frustrated ionisation in a water-ammonia ice mixture. Nat. Commun. 8, 1065 (2017).
32. Bethkenhagen, M., Ceibulla, D., Redmer, R. & Hamel, S. Superionic phases of the I-I water-ammonia mixture. J. Phys. Chem. A 119, 10582–10583 (2015).
33. Jiang, X., Wu, X., Zheng, H., Huang, Y. & Zhao, J. Ionic and superionic phases in ammonia dihydrate NH₂H₂O under high pressure. Phys. Rev. B 95, 144104 (2017).
34. Li, Y. et al. Route to high-energy density polymeric nitrogen t-N via He-nitrogen compounds. Nat. Commun. 9, 722 (2018).
35. Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440 (2017).

36. Monserrat, B., Martinez-Canales, M., Needs, R. J. & Pickard, C. J. Helium-iron compounds at terapascal pressures. Phys. Rev. Lett. 121, 015501 (2018).
37. Liu, Z. et al. Reactivity of he with ionic compounds under high pressure. Nat. Commun. 9, 951 (2018).
38. Liu, H., Yao, Y. & Klug, D. D. Stable structures of He and H₂O at high pressure. Phys. Rev. B 91, 014102 (2015).
39. Cui, W. et al. Multiple superionic states in helium-water compounds. Nat. Phys. 15, 1065–1070 (2019).
40. Zhang, J. et al. Rare helium-hemming compound FeO₂H. He stabilized at deep-earth conditions. Phys. Rev. Lett. 121, 255703 (2018).
41. Datchi, F. et al. Solid ammonia at high pressure: a single-crystal x-ray diffraction study to 123 GPa. Phys. Rev. B 73, 174111 (2006).
42. Loubeyre, P. et al. Equation of state and phase diagram of solid 4He from single-crystal x-ray diffraction over a large P-T domain. Phys. Rev. Lett. 71, 2272–2275 (1993).

Acknowledgements
The authors acknowledge funding from the NSFC under grant No. 11804129, No. 11722433, No. 11804142 and No. 11704329. X.W. acknowledges project No. TZ2016001 of Science Challenge. All the calculations were performed at the High Performance Computing Center of the School of Physics and Electronic Engineering of Jiangsu Normal University. Crystal structures were visualized with VESTA.85

NATURAL COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16835-z | www.nature.com/naturecommunications
Author contributions
J.S. and Y.L. designed the project. J.S. and W.C. performed the calculations. J.S., W.C., X.W., M.X., J.H., and Y.L. analyzed the data. J.S., W.C., X.W., and Y.L. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-16835-z.

Correspondence and requests for materials should be addressed to X.W. or Y.L.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020