One-loop partition function from normal modes for $\mathcal{N} = 1$ supergravity in AdS$_3$

Hongbao Zhang1 and Xiangdong Zhang2

1 Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
2 Department of Physics, Beijing Normal University, 100875 Beijing, People's Republic of China

E-mail: hzhang@physics.uoc.gr and zhangxiangdong@mail.bnu.edu.cn

Received 14 March 2012, in final form 16 May 2012
Published 25 June 2012
Online at stacks.iop.org/CQG/29/145013

Abstract

With the recently discovered formula, which relates the off-shell Euclidean one-loop determinant to the on-shell quantities such as normal and quasinormal modes in real spacetime, we work out the one-loop partition function for $\mathcal{N} = 1$ supergravity in AdS$_3$ from scratch. In passing, we also provide the explicit expression for the one-loop determinant of a field with an arbitrary spin in AdS$_3$. To achieve this, we first derive the determinant expression for the one-loop partition function in question using the powerful decomposition technique, and then we construct the normal modes in a purely algebraic way by demonstrating that the space of normal modes falls into the representation of SL(2,R) Lie algebra associated with AdS$_3$. The whole procedure developed here turns out to be much simpler than the previous strategy.

PACS numbers: 04.70.Dy, 04.60.−m

1. Introduction

AdS/CFT correspondence, as an explicit implementation of holographic principle, relates a $(d + 1)$-dimensional gravitational theory to a d-dimensional quantum field theory, where the black hole in the bulk is dual to the boundary field theory at a finite temperature. Most of checks and applications of this duality have restricted attention to the large N limit of boundary field theory, where gravity is treated as a classical object in the bulk. In order to capture a $1/N$ correction to the boundary field theory by holography, one is required to calculate the one-loop partition function for a quantum field propagating around the classical gravitational background mentioned above in the bulk.

Although it is technically challenging to compute the one-loop partition function in a nontrivial gravitational background, there have been various methods developed to approximate it if the one-loop partition function cannot be determined explicitly. Among others, with the heat kernel method, the one-loop partition can be calculated out explicitly for pure gravity in AdS$_3$ [1]. Later on, such a heat kernel method is simplified by using the group theoretical approach and the explicit expression is obtained for the one-loop determinant of a
field with an arbitrary spin in AdS$_3$ [2]. This is supposed to be not too surprising from both bulk and boundary perspectives in the context of AdS$_3$/CFT$_2$ as there are sufficient symmetries on both sides to guarantee the integrability.

On the other hand, recently the authors in [3] have derived a new formula to evaluate the one-loop bulk partition function in terms of normal or quasinormal modes, which arise as the solutions to the equation of motion for the field in question with the appropriate boundary conditions. This result is highly impressive because as alluded to above it relates the off-shell object to the on-shell quantities somehow. On the other hand, in the context of AdS/CFT correspondence, the concept of normal and quasinormal modes is of interest in its own right. These modes correspond to the excitations on the boundary, as by the holographic recipe they arise as the poles of the retarded Green function of the dual operator.

Now with the above new formula for the one-loop partition function, the task boils essentially down to the determination of normal or quasinormal modes, depending on whether the bulk has horizon or not. The approximate expressions for these modes offer a method for one to approximate the one-loop partition function. In particular, the one-loop partition function can be exactly evaluated through this new formula in those cases where the complete spectrum of normal or quasinormal modes can be nailed down. One such case is AdS$_3$. Actually, as shown in [4] and [5], the spectrum of normal modes can be obtained as an infinite tower of descendants of the highest weight mode associated with the SL(2,\mathbb{R}) Lie algebra of Killing fields for a scalar field in AdS$_3$.

The purpose of this paper is twofold. One is to construct the spectrum of normal modes in a similar way for any other higher spin field in AdS$_3$ by demonstrating that the space of solutions to the equation of motion for the field in question falls into the representation of SL(2, \mathbb{R}) Lie algebra. To achieve this, we shall employ the simplified computational strategy by sticking to the covariant derivative and introducing a pair of intrinsic tensor fields associated with the SL(2,\mathbb{R}) symmetry [6]. The other is to demonstrate the advantage of the above new formula by working out the one-loop partition function from normal modes for $\mathcal{N} = 1$ supergravity in AdS$_3$, where instead of resorting to the Faddeev–Popov trick we shall derive the determinant expression for the one-loop partition function in question by the decomposition technique, which turns out to be extremely efficient.

The rest of the paper is organized as follows. In the next section, we shall provide a brief review of the SL(2,\mathbb{R}) Lie algebra of Killing fields in AdS$_3$ as well as the two types of intrinsic tensor fields associated with the SL(2,\mathbb{R}) quadratic Casimir operator. Then, we describe the dynamics of $\mathcal{N} = 1$ supergravity in AdS$_3$ in section 3, where in particular we show how the corresponding one-loop partition function can be worked out in terms of Laplace-like determinants by the powerful decomposition technique. In section 4, we will demonstrate how the spectrum of normal modes can be constructed in the algebraic manner as simple as possible by working explicitly on the case of gravitino field. In section 5, as an application of the one-loop determinant expression derived from normal modes for a field with an arbitrary spin in AdS$_3$, we evaluate the one-loop partition function for $\mathcal{N} = 1$ supergravity, which turns out to be exactly the same as that obtained by the heat kernel method. We end up with some discussions in section 6 and relegate various additional details to the four appendices.

Notation and conventions follow [7] unless specified otherwise.

2. AdS$_3$ and its SL(2,\mathbb{R}) symmetries

Start from the metric for AdS$_3$:

\[ds^2 = -\cosh^2(\rho) \, dt^2 + \sinh^2(\rho) \, d\phi^2 + d\rho^2, \]

(2.1)
where \(0 \leq \rho \leq \infty, -\infty \leq t \leq \infty\) and \(-\pi \leq \phi \leq \pi\). Whence the corresponding curvature reads

\[
R_{abcd} = g_{ad}g_{bc} - g_{ac}g_{bd}, \quad R_{ab} = -2g_{ab}, \quad R = -6,
\]

whereby AdS_3 is a space of constant curvature and, thus, admits six Killing fields. We denote these six Killing fields by \(L_k\) and \(\bar{L}_k\) with \(k = 0, \pm 1\). In particular, \(L_0\) is given by

\[
L_0^a = i \left(\frac{\partial}{\partial u} \right)^a,
\]

\[
L_{-1}^a = ie^{-iu} \left[\frac{\cosh(2\rho)}{\sinh(2\rho)} \left(\frac{\partial}{\partial u} \right)^a - \frac{1}{2} \left(\frac{\partial}{\partial v} \right)^a + i \left(\frac{\partial}{\partial \rho} \right)^a \right],
\]

\[
L_{+1}^a = ie^{iu} \left[\frac{\cosh(2\rho)}{\sinh(2\rho)} \left(\frac{\partial}{\partial u} \right)^a - \frac{1}{2} \left(\frac{\partial}{\partial v} \right)^a - i \left(\frac{\partial}{\partial \rho} \right)^a \right],
\]

where we have employed another coordinate system, namely \(\{\rho, u = t + \phi, v = t - \phi\}\). \(\bar{L}_k\) can be similarly defined as (2.6) except switch \(u\) and \(v\) therein. Then, it can be shown that their Lie commutators satisfy two sets of the SL(2,R) Lie algebra:

\[
[L_0, L_{\pm 1}] = \mp L_{\pm 1}, \quad [L_{+1}, L_{-1}] = 2L_0, \quad [L_0, \bar{L}_{\pm 1}] = \mp \bar{L}_{\pm 1},
\]

\[
[\bar{L}_{+1}, \bar{L}_{-1}] = 2\bar{L}_0, \quad [\bar{L}_k, \bar{L}_l] = 0.
\]

Note that the Lie derivative observes \([L_X, L_Y] = L_{[X,Y]}\) and \(L_{aX} = \alpha L_X\) for the arbitrary Killing vector fields \(X\) and \(Y\) with the arbitrary constant \(\alpha\). Thus, the above Lie algebra can be naturally represented by the Lie derivative. In particular, the quadratic Casimir operators can be realized by the Lie derivative as

\[
\mathcal{L}^2 = \mathcal{L}_{L_0} - \frac{1}{2}(\mathcal{L}_{L_0}^2 + \mathcal{L}_{L_{-1}}^2 - \mathcal{L}_{L_{+1}}^2), \quad \mathcal{L}^2 = \mathcal{L}_{L_0} - \frac{1}{2}(\mathcal{L}_{\bar{L}_0}^2 + \mathcal{L}_{\bar{L}_{-1}}^2 - \mathcal{L}_{\bar{L}_{+1}}^2),
\]

which commute with both \(L_{L_k}\) and \(\bar{L}_{\bar{L}_k}\).

As advocated in [6], it turns out to be convenient for tensor and spinor analysis related to the above quadratic SL(2,R) Casimir if one constructs the two types of auxiliary tensor fields as follows:

\[
H^{ab} = L_0^a L_0^b - \frac{1}{2}(L_{+1}^a L_{-1}^b + L_{-1}^a L_{+1}^b), \quad \bar{H}^{ab} = \bar{L}_0^a \bar{L}_0^b - \frac{1}{2}(\bar{L}_{+1}^a \bar{L}_{-1}^b + \bar{L}_{-1}^a \bar{L}_{+1}^b),
\]

and

\[
Z_{abc} = L_0^a \nabla_b L_0^c - \frac{1}{2}(L_{+1}^a \nabla_b L_{-1}^c + L_{-1}^a \nabla_b L_{+1}^c), \quad \bar{Z}_{abc} = \bar{L}_0^a \nabla_b \bar{L}_0^c - \frac{1}{2}(\bar{L}_{+1}^a \nabla_b \bar{L}_{-1}^c + \bar{L}_{-1}^a \nabla_b \bar{L}_{+1}^c).
\]

The essential reason is that they possess the following nice properties:

\[
H^{ab} = \bar{H}^{ab} = \frac{1}{4} g^{ab}
\]

and

\[
Z_{abc} = \frac{1}{2} \varepsilon_{abc}, \quad \bar{Z}_{abc} = -\frac{1}{4} \varepsilon_{abc},
\]

where \(g\) and \(\varepsilon\) are the metric and the volume element of our AdS_3 respectively.

3 Although the whole construction is built up for the BTZ black hole in [6], it can be readily translated into AdS_3 because AdS_3 is related to the BTZ black hole in [6] by the change of coordinates as \([t \rightarrow i\phi, \phi \rightarrow u, \rho \rightarrow \rho]\).
3. $\mathcal{N} = 1$ supergravity and its determinant expression for the one-loop partition function

3.1. Graviton

Let us start to consider the dynamics of graviton h_{ab} on top of AdS$_3$ by focusing on the perturbative expansion of the Einstein–Hilbert action with a negative cosmological constant $\Lambda = -1$, i.e.

$$S = \frac{1}{16\pi G} \int d^3x \sqrt{-g} (R - 2\Lambda),$$

(3.1)

to the quadratic order around the background. Note that the zero-order term is irrelevant to our purpose and the first-order one vanishes due to the fact that the background metric arises as a solution to the above action. So what we need to know is merely the quadratic term, which is proven to be more efficient [8]. To achieve this, let us first decompose the metric as follows:

$$S_h = \frac{1}{64\pi G} \int d^3x \sqrt{-g} h^{ab} (\nabla_a \nabla_b h^c + \nabla_b \nabla_c h^a - \nabla^c \nabla_c h_{ab} - \nabla_a \nabla_b h) - 2h_{ab} - g_{ab} \nabla^d h_{cd} + g_{ab} \nabla^d \nabla_d h,$$

(3.2)

whereby the equation of motion can be obtained by the variational principle as

$$\nabla_a \nabla_b h^c + \nabla_b \nabla_c h^a - \nabla^c \nabla_c h_{ab} - \nabla_a \nabla_b h = 0$$

(3.3)

with h being the trace of h_{ab}. Note that the dynamics of graviton has the gauge freedom inherited from the diffeomorphism invariance of full theory. So with the transverse traceless gauge conditions $\nabla^a h_{ab} = 0$ and $h = 0$, the equation of motion can be reduced to

$$(\nabla^c \nabla_c + 2)h_{ab} = 0.$$

(3.4)

Conventionally, one uses the Faddeev–Popov trick to work out the determinant expression for the one-loop partition function. Here, we would like to employ the alternative approach, which is proven to be more efficient [8]. To achieve this, let us first decompose the metric as follows:

$$h_{ab} = h_{ab}^T + \frac{1}{2} g_{ab} \alpha + \nabla_a \xi_b + \nabla_b \xi_a,$$

(3.5)

where h_{ab}^T satisfies the transverse traceless condition, and the last two terms come from the diffeomorphism contribution

$$\int Dh_{ab} e^{i\xi} = \int Z_{\text{ghost}} D h_{ab}^T D\alpha D\xi_a e^{-\frac{i}{16\pi G} \int d^3x \sqrt{-g} h^{ab} (\nabla_a \nabla_b h - 2h_{ab} + \frac{1}{2} a (\nabla \nabla - 3) h)},$$

$$= \int Z_{\text{ghost}} D\alpha [\det_1 (\nabla \nabla - 2)]^{-\frac{1}{2}} [\det_0 (\nabla \nabla - 3)]^{-\frac{1}{2}},$$

(3.6)

which implies that the one-loop partition function is given by throwing away the whole volume of diffeomorphism as

$$Z_{\text{graviton}} = Z_{\text{ghost}} [\det_1 (\nabla \nabla - 2)]^{-\frac{1}{2}} [\det_0 (\nabla \nabla - 3)]^{-\frac{1}{2}},$$

(3.7)

where Z_{ghost} arises as the Jacobian corresponding to the change of variables from h_{ab} to $\{h_{ab}^T, \alpha, \xi_a\}$. Obviously, in order to nail down the one-loop partition function for graviton, we are required to work out the specific expression for Z_{ghost}, which can be accomplished in appendix B as

$$Z_{\text{ghost}} = [\det_1 (-\nabla^a \nabla_a + 2)]^{\frac{1}{2}} [\det_0 (-\nabla^a \nabla_a + 3)]^{\frac{1}{2}}.$$

(3.8)

4 It is necessary to preserve the degrees of freedom when one performs such a decomposition as we do here, namely the degrees of freedom is 6 on both sides. Otherwise, one would run into a wrong determinant expression for the one-loop partition function by using such an alternative approach at the end of the day. Put it another way, this sort of decomposition can be regarded as sort of change of variables, which is well defined only with the degrees of freedom preserved. Otherwise, the corresponding Jacobian would be degenerate somehow.
Thus, the determinant expression for the one-loop partition function of graviton reads
\[Z_{\text{graviton}} = [\det_2(-\nabla^2 \nabla_\varepsilon - 2)]^{-\frac{1}{2}}[\det_1(-\nabla^2 \nabla_\alpha + 2)]^{\frac{1}{2}}. \]

(3.9)

3.2. Gravitino

Start from the gravitino action
\[S_\psi = -\int d^3x \sqrt{-g} \bar{\psi}_a \{ \gamma^{abc} \partial_b \psi_c + \hat{m} \gamma^{ab} \psi_b \} = -\int d^3x \sqrt{-g} \bar{\psi}_a \{ \gamma^{abc} \partial_b \psi_c + \hat{m} \gamma^{ab} \psi_b \}. \]

(3.10)

Here, \(\hat{m}^2 = \frac{i}{2} \bar{\psi} \gamma^a \psi^a \), \(\gamma^{ab} = \gamma^a \gamma^b \) and \(\gamma^{abc} = \gamma^a \gamma^b \gamma^c \) with \(\gamma^a = e_i^a \gamma^i \), where \(e_i^a \) form a set of orthogonal normal vector bases, and gamma matrices are defined as \(\gamma^a \gamma^b = \eta^{ab} \) with the requirement \(\gamma^a \gamma^a \gamma^a = 1 \). Then, the equation of motion for gravitino field can be obtained by the variational principle as
\[\gamma^{abc} \partial_b \psi_c + \hat{m} \gamma^{ab} \psi_b = 0. \]

(3.11)

Note that the above action is invariant under the gauge transformation \(\delta \psi_a = \nabla_a \xi - \hat{m} \gamma_a \xi \) as
\[e^{abc}(\nabla_b \delta \psi_c - \hat{m} \gamma_a \delta \psi_b) = e^{abc}(\nabla_b \nabla_a \xi + \hat{m} \gamma_a \xi) = e^{abc}(\frac{1}{2} R_{bcde} \gamma^{de} \xi + \hat{m}^2 \gamma_a \xi) = 0. \]

(3.12)

So we can always impose the covariant gauge condition on the gravitino field as \(\gamma^a \psi_a = \nabla^a \psi_a = 0 \), which gives rise to
\[\gamma^{abc} \partial_b \psi_c = \gamma^a \gamma^b \gamma^c \partial_b \psi_c + (-g^{ab} \gamma^c + g^{ac} \gamma^b - g^{bc} \gamma^a) \nabla_b \psi_c = \gamma^a \gamma^b \partial_a \psi_c. \]

(3.13)

and
\[\hat{m} \gamma^{ab} \psi_b = \hat{m} \gamma^a \gamma^b - g^{ab} \psi_b = -\hat{m} \psi_a. \]

(3.14)

Thus, the equation of motion can be simplified as
\[(\gamma^a \gamma^b - \hat{m}) \psi_a = 0. \]

(3.15)

On the other hand, in order to obtain the determinant expression for the one-loop partition function of gravitino field, let us first decompose the gravitino field as
\[\psi_a = \psi_a^T + \frac{i}{2} \gamma_a \chi + \nabla_a \xi - \hat{m} \gamma_a \xi, \]

(3.16)

where \(\psi_a^T \) satisfies the covariant gauge condition. With such a decomposition, we have
\[\int D\psi \ e^{S_\psi} = \int Z_{\text{ghost}} [D\psi^T D\chi D\xi \ e^{-\int d^3x \sqrt{-g} \bar{\psi}_a \{ \gamma^{abc} \partial_b \psi_c + \hat{m} \gamma^{ab} \psi_b \}} = \int Z_{\text{ghost}} \chi \det_2 (\gamma^a \nabla_a - \hat{m}) \det_2 (\gamma^a \nabla_a + \hat{m}), \]

(3.17)

where \(Z_{\text{ghost}} \) is obtained in appendix B as
\[Z_{\text{ghost}} = [\det_2 (-\nabla^2 \nabla_\alpha + \frac{3}{4})]^{-1}. \]

(3.18)

Thus, the one-loop partition function for the gravitino field is given by
\[Z_{\text{gravitino}} = \det_2 (\gamma^a \nabla_a - \hat{m}) \det_2 (\gamma^a \nabla_a + \hat{m}) \]

(3.19)

Here, we have used the following facts:
\[\det_2 (-\nabla^2 \nabla_\alpha + \frac{3}{4}) = \det_2 (-\nabla^2 \nabla_\alpha + \frac{3}{4}) - \hat{m} \]

(3.20)

and
\[\det_2 (\gamma^a \nabla_a + \hat{m}) \det_2 (\gamma^a \nabla_a - \hat{m}) = \det_2 (\gamma^a \nabla_a + \hat{m}) (\gamma^a \nabla_a - \hat{m}) = \det_2 (\gamma^a \nabla_a - \hat{m}^2 + s + 1), \]

(3.21)

where the proof of the former can be found in appendix C, and the latter will be demonstrated in the next section.
4. Normal modes for gravitino and other fields

In this section, we will construct the spectrum of normal modes for the gravitino field around our AdS3 in an algebraic way. In addition, for later computation, we also include the relevant result for other fields in the end.

Let us start by acting on both sides of the equation of motion for the gravitino field (3.15) with \(\gamma^a \nabla_a + \hat{m} \), which gives rise to

\[
0 = (\gamma^c \nabla_c + \hat{m})(\gamma^b \nabla_b - \hat{m}) \varphi_a = (\gamma^b \gamma^c \nabla_b \nabla_c - \hat{m}^2) \varphi_a
\]

Note that

\[
\nabla_c \gamma^c \varphi_a = \frac{1}{2} R_{b d e} \gamma^{d e} \varphi_a + \frac{1}{2} R_{b d} \gamma^d \varphi_a
\]

Thus, we can further have

\[
0 = (\nabla^b \nabla_b + \frac{1}{2} R_{b c d e} \gamma^{d e} \gamma^{b c} - \hat{m}^2) \varphi_a + \frac{1}{2} \gamma^b R_{b c d} \gamma^d \varphi_a
\]

which can be reduced to

\[
(\nabla^b \nabla_b + \frac{5}{2} - \hat{m}^2) \varphi_a = 0
\]

on our AdS3.

On the other hand, by the definition of Lie derivative acting on \(\varphi_a \), i.e.

\[
\mathcal{L}_g \varphi_a = \xi^b \nabla_b \varphi_a - \frac{1}{2} \gamma^d \varphi_a \nabla_d \xi + \varphi_a \nabla_d \xi^b,
\]

we have

\[
\mathcal{L}_X \mathcal{L}_Y \varphi_f = X^a \nabla_a Y^b \varphi_f - \frac{1}{2} \gamma^{a b} \mathcal{L}_Y \varphi_f \nabla_b X_a + \mathcal{L}_Y \varphi_a Y^b \nabla_b X^a
\]

whence it is not hard to show

\[
\mathcal{L}^2 \varphi_f = Z_{a c} \nabla_a \varphi_f + H^{a c} \nabla_a \varphi_f - \frac{1}{2} Z^{a c d} \gamma^{d c} \nabla_a \varphi_f - \frac{1}{2} \gamma^d \varphi_f R_{d a b} H^{a b}
\]

\[
+ Z^a \nabla_a \varphi_c + \varphi_a R_{a b c d} H^{b c d} - \frac{1}{2} Z_{a b c} \gamma^{a b} \nabla_c \varphi_f
\]

\[
+ \frac{1}{16} \gamma^{a b} \gamma^{c d} \varphi_f \nabla_a Z_{b c} - R_{a b c d} H^{b c d} - \frac{1}{2} \gamma^{a b} \varphi_c (\nabla_a Z_{b c} - R_{a b c d} H^{b c d})
\]

\[
+ Z^c \nabla_c \varphi_f - \frac{1}{2} \gamma^d \varphi_c (\nabla_a Z_{b c} - R_{a b c d} H^{b c d}) + \varphi_c (\nabla_c Z^e - R^{e a} H^{a d})
\]

\[
\frac{1}{2} \nabla^c \nabla_c \varphi_f - \frac{1}{2} \epsilon^a_{d c e} \gamma^d \nabla_a \varphi_f + \epsilon^a_{d c e} \nabla_a \varphi_f - \frac{1}{2} \epsilon^a_{d c e} \gamma^d \nabla_a \varphi_f
\]

\[
- \frac{1}{16} R_{a b c d} \gamma^{a b} \gamma^{c d} \varphi_f + \frac{1}{2} R_{a b c d} \gamma^{a b} \varphi_f + \epsilon^a_{d c e} \nabla_a \varphi_c + \frac{1}{2} R_{a d e c} \gamma^{a b} \varphi_a - R^{c d}_{a b c d} \varphi_f
\]

\[
\frac{1}{4} \left(\nabla^b \nabla_a \varphi_f + \frac{1}{2} \epsilon^a_{d c e} \gamma^d \nabla_a \varphi_f - 2 \epsilon^a_{d c e} \nabla_a \varphi_c + \frac{1}{2} R_{a b c d} \gamma^{a b} \varphi_c - R f \varphi_f \right).
\]
where we have used the identity $\nabla_a \nabla_b \xi_c = R_{abcd} \xi^d$ satisfied by any Killing vector field ξ.

Now by substituting (4.3) into the above equation, we can obtain

$$\mathcal{L}^2 \psi_f = \frac{1}{4} \left(\hat{m}^2 \psi_f + \frac{1}{2} \xi^a \nabla_a \psi_f - 2 \xi^a \psi_f - \frac{1}{16} R_{abcd} \gamma^{cd} \psi_f - R_f \psi_f \right)$$

Similarly, one can have

$$\tilde{\mathcal{L}}^2 \psi_f = \frac{1}{4} \left(\hat{m}^2 + 3 \hat{m} + \frac{5}{2} \right) \psi_f.$$ \hfill (4.9)

Together with the fact that the Lie derivative via Killing vector fields commutes with the covariant derivative and gamma matrices as well, the above result implies that the space of solutions to the equation of motion for the gravitino field forms one representation of $\text{SL}(2,R)$ Lie algebra, which is characterized by the value of the Casimir. Actually, the same situation occurs for other fields. Moreover, the whole result can be cast into a uniform pattern. Namely as a field Φ with spin s satisfying the Laplace-equation

$$(\nabla^a \nabla_a - \hat{m}^2 + s^2 + 1) \Phi = 0,$$ \hfill (4.10)

one can have

$$\mathcal{L}^2 \Phi = \frac{\hat{m}^2 - 2\hat{m} + s^2 - 1}{4} \Phi, \quad \tilde{\mathcal{L}}^2 \Phi = \frac{\hat{m}^2 + 2\hat{m} + s^2 - 1}{4} \Phi.$$ \hfill (4.11)

Then, we can construct the corresponding spectrum of normal modes in an algebraic way by starting with the highest weight mode that obeys the condition as follows:

$$\mathcal{L}_{L_+} \Phi^{(0,0)} = 0, \quad \mathcal{L}_{L_-} \Phi^{(0,0)} = 0, \quad \mathcal{L}_{\hat{L}_0} \Phi^{(0,0)} = w_+ \Phi^{(0,0)}, \quad \mathcal{L}_{\hat{L}_0} \Phi^{(0,0)} = w_- \Phi^{(0,0)},$$ \hfill (4.12)

where $\Phi^{(0,0)}$ can be always expressed as

$$\Phi^{(0,0)} = e^{-i w_+ \varphi + i w_- \varphi} \Phi^{(0,0)}(\rho)$$ \hfill (4.13)

with $\mathcal{L}_{\hat{L}_0} \Phi^{(0,0)}(\rho) = \mathcal{L}_{\hat{L}_0} \Phi^{(0,0)}(\rho) = 0$. Then, the resultant normal modes can be obtained as the infinite tower of descendant modes:

$$\Phi^{(p,q)} = (\mathcal{L}_{L_-})^p (\mathcal{L}_{L_+})^q \Phi^{(0,0)},$$ \hfill (4.14)

with $p, q = 0, 1, 2, \ldots$. Note that $\hat{L}_0 + L_0$ and $L_0 - L_0$ represent the energy and angular momentum, respectively. So the corresponding frequencies and angular momentum can be calculated out as

$$\omega^{(p,q)} = w_- + w_+ + p + q, \quad j^{(p,q)} = w_- - w_+ + p - q.$$ \hfill (4.15)

Using the commutation relation (2.5), one can show that the conformal weight is given by

$$w_+ = \frac{1 \pm (\hat{m} - s)}{2}, \quad w_- = \frac{1 \pm (\hat{m} + s)}{2}.$$ \hfill (4.16)
As expected, the whole result is in good agreement with the prediction from the two-dimensional CFT, where the conformal dimension and spin of dual primary operator to the bulk field are given by:

$$\Delta = w_+ + w_- = 1 \pm \hat{m}, \quad s = |w_+ - w_-|. \quad \text{(4.17)}$$

5. Determinant of Laplace-like operator from normal modes and one-loop partition function for $\mathcal{N} = 1$ supergravity

This section is to show how the determinant of Laplace-like operator can be evaluated through the spectrum of normal modes, we obtained in the last section and work out the one-loop partition function for $\mathcal{N} = 1$ supergravity as an application.

To proceed, let us recall the fact that the Euclidean determinant of Laplace-like operator in equation (4.10), i.e.

$$D_s(\Delta) = \text{det}_s(\nabla^a \nabla_a - \hat{m}^2 + s + 1), \quad \text{(5.1)}$$

depends on the boundary condition, which is specified in terms of the conformal dimension Δ by the holographic recipe. Then, as shown in [3], by continuing to complex Δ and matching poles as well as zeros, one can determine $D_s(\Delta)$ through the spectrum of normal modes as follows:

$$D_s(\Delta) = e^{\text{Pol}(\Delta)} \prod_{p,q} \left(\frac{2 \sinh \frac{\omega(p,q)}{2T}}{\text{Pol}(\Delta)} \prod_{k \geq 0} \left(\frac{1 - e^{-\frac{\Delta_{k+1}}{T}}}{e^{-\frac{\Delta}{T}}} \right)^{2n(k+1)} \right)$$

for bosonic fields and

$$D_s(\Delta) = e^{\text{Pol}(\Delta)} \prod_{p,q} \left(\frac{2 \cosh \frac{\omega(p,q)}{2T}}{\text{Pol}(\Delta)} \prod_{k \geq 0} \left(\frac{1 + e^{-\frac{\Delta_{k+1}}{T}}}{e^{-\frac{\Delta}{T}}} \right)^{2n(k+1)} \right)$$

for fermionic fields, where T denotes the temperature for the thermal AdS, n is the number of degrees of freedom of integrated fields, and Pol(Δ) represents the polynomial function of Δ. Furthermore, by absorbing various terms legitimately into Pol(Δ), we end up with

$$D_s(\Delta) = e^{\text{Pol}(\Delta)} \prod_{k \geq 0} (1 - q^{\Delta + k} 2n(k+1)) \quad \text{(5.4)}$$

for bosonic fields and

$$D_s(\Delta) = e^{\text{Pol}(\Delta)} \prod_{k \geq 0} (1 + q^{\Delta + k} 2n(k+1)) \quad \text{(5.5)}$$

Note that the relevant result is symmetric with respect to \hat{m} and $-\hat{m}$. So in what follows, we shall work solely on one of them, say the case in which the value of \hat{m} is positive. On the other hand, to have the modes normalizable as it stands, both w_+ and w_- are required to be non-negative, which is reasonable also from the boundary point of view, since otherwise the dual operator would possess the correlation functions increasing with the distance.

The specific form of this polynomial function is irrelevant to our current purpose, though it can be fixed by taking the large Δ limit indeed [3].
for fermionic fields, where
\[q = e^{2\pi i \tau} \]
with \(\tau = \frac{i}{\pi T} \).

Now it is time for us to evaluate the one-loop determinant for \(\mathcal{N} = 1 \) supergravity. To proceed, let us first read off the conformal dimension for spin-2 and spin-1 fields from (3.9) as
\[\Delta_2 = 2, \quad \Delta_1 = 3, \]
where (4.10) and (4.17) are used. Furthermore, by taking into account the fact that the number of degrees of freedom is 2 for both integrated spin-2 and spin-1 fields, we have
\[Z_{\text{graviton}} = \prod_{k \geq 0} \left(1 - q^{2+k} \right)^{2(k+1)} \prod_{k' \geq 0} \left(1 - q^{3+k'} \right)^{2(k'+1)} \]
\[= \prod_{k \geq 0} (1 - q^{2+k})^{2(k+1)} \prod_{k' \geq 1} (1 - q^{3+k'})^{2k'} \]
\[= \prod_{k \geq 0} \frac{1}{(1 - q^{2+k})^2}, \]
where we have thrown away the irrelevant polynomial term \(e^{\text{Pol}(\Delta)} \).

Similarly, we can read off the conformal dimension for spin-3/2 and spin-1/2 fields from (3.19) as
\[\Delta_{\frac{3}{2}} = \frac{5}{2}, \quad \Delta_{\frac{1}{2}} = \frac{1}{2}, \]
whereby the one-loop partition function for the gravitino field is given by
\[Z_{\text{gravitino}} = \prod_{k \geq 0} \left(1 + q^{\frac{1}{2}+k} \right)^{2(k+1)} \prod_{k' \geq 0} \left(1 + q^{\frac{1}{2}+k'} \right)^{2(k'+1)} \]
\[= \prod_{k \geq 0} (1 + q^{\frac{1}{2}+k})^{2(k+1)} \prod_{k' \geq 1} (1 + q^{\frac{1}{2}+k'})^{2k'} \]
\[= \prod_{k \geq 0} (1 + q^{\frac{1}{2}+k})^2. \]
Combine (5.8) with (5.10), we end up with the one-loop partition function for \(\mathcal{N} = 1 \) supergravity as
\[Z = \prod_{k \geq 0} \frac{(1 + q^{\frac{1}{2}+k})^2}{(1 - q^{2+k})^2}, \]
which reproduces the result obtained by the heat kernel method in [2].

6. Concluding remarks

We have evaluated the one-loop partition function for \(\mathcal{N} = 1 \) supergravity in AdS\(_3\) from scratch. In passing, we have also provided an explicit expression of one-loop determinant for a field with an arbitrary spin in AdS\(_3\). Although the relevant result is in good agreement with the previous one in the literature, the method we have employed here is not only essentially new but also amazingly powerful, which makes the whole calculation as simple as possible. For one thing, instead of the conventional Faddeev–Popov trick, we work out the determinant expression for the one-loop partition function of \(\mathcal{N} = 1 \) supergravity by the decomposition technique, which simplifies the involved calculation very much. For another, with the recently discovered formula, the off-shell one-loop determinant can be remarkably expressed in terms
of on-shell quantities like normal modes, which turns out to be easy to construct in a purely algebraic way. In all, the whole procedure demonstrated here seems much simpler than the heat kernel method developed in [2], though there may be a close relation between them since the heat kernel is derived also by a group theoretical approach in [2].

We conclude with various generalizations of our work. First, taking into account that the higher spin supergravity has recently been proposed in [9], one is tempted to exploit the procedure developed here to address the analogous issue for this theory in AdS3. Second, when the black hole is present, the normal modes will be replaced by the quasinormal modes. As shown in [6], the spectrum of quasinormal modes can also be constructed in a purely algebraic way, namely by the infinite tower of descendants of the chiral highest weight mode in the BTZ black hole. So, it is highly interesting to see how the one-loop determinant can be derived explicitly from quasinormal modes in the BTZ black hole, although it can also been obtained by a modular transformation from that in AdS3 on general grounds8. We hope to address these issues elsewhere in the near future.

Acknowledgments

It is our pleasure to thank Thomas Creutzig, Matthias R Gaberdiel, Daniel Grumiller, Rajesh Gopakumar, Dmitri Vassilevich and Xi Yin for their helpful correspondences on various issues related to our project. HZ is also grateful to Elias Kiritsis, Rene Meyer and Andy O’Bannon for their valuable discussions. HZ is supported by the European Union grants FP7-REGPOT-2008-1-CreteHEP Cosmo-228644 and PERG07-GA-2010-268246 as well as EU program ‘Thalis’ ESF/NSRF 2007-2013. XZ is supported by NSFC (no 10975017) and the Fundamental Research Funds for the Central Universities.

Appendix A. Some properties of gamma matrices

By definition of gamma matrices, we have

\[\gamma^a \gamma^b = g^{ab} + \gamma^{ab}, \]
\[\gamma^a \gamma^b \gamma^c = \gamma^{abc} + g^{ab} \gamma^c - g^{ca} \gamma^b + g^{bc} \gamma^a. \]

(A.1)

On the other hand, special to the three dimension, we have

\[\gamma^{ab} = \epsilon^{abc} \gamma^c, \]

(A.2)

whereby we can further have

\[\epsilon_{cda} \gamma^{ab} = \epsilon_{cda} \epsilon^{abc} \gamma^c = -2 \delta_d^c \gamma^c = -2 \gamma_d \]

(A.3)

and

\[\epsilon_{cda} \gamma^{ab} \gamma^d = \epsilon_{cda} \epsilon^{abd} \gamma^d = -2 \gamma_d \gamma^d = -6. \]

(A.4)

where the latter implies

\[\gamma^{abc} = \epsilon^{abc}. \]

(A.5)

In addition, we can also have

\[\gamma_{ab} \gamma^{ab} = \epsilon_{abc} \gamma^c \epsilon^{abd} \gamma^d = -2 \delta_c^d \gamma^c \gamma^d = -2 \gamma_d \gamma^d = -6. \]

(A.6)

8 It is noteworthy that such an investigation has been recently made for higher spin fields in [10] and [11], where nevertheless the relevant construction involves a little bit a posteriori arguments.
Appendix B. Explicit calculations for Z_{ghost}

Let us first define the path integral measures for scalar, vector and tensor fields by requiring

$$
\int D\beta e^{-\langle \beta, \beta \rangle} = 1, \\
\int D\mu_a e^{-\langle \mu, \mu \rangle} = 1, \\
\int D
v_{ab} e^{-\langle v, v \rangle} = 1,
$$

with

$$
\langle \beta, \beta' \rangle = \int d^3x \sqrt{-g} \beta \beta', \\
\langle \mu, \mu' \rangle = \int d^3x \sqrt{-g} \mu^a \mu_a', \\
\langle v, v' \rangle = \int d^3x \sqrt{-g} v_{ab} v_{ab}'.
$$

Now decompose the vector field ξ^a as

$$
\xi^a = \xi^T a + \nabla_a \lambda,
$$

with $\nabla_a \xi^T a = 0$, then the corresponding Jacobian can be obtained as follows:

$$
1 = \int D\xi_a e^{-\langle \xi, \xi \rangle} = \int D\xi_a D\lambda e^{-\int d^3x \sqrt{-g} \xi^T a \xi_a - \lambda \nabla_a \lambda}
= \int D\lambda J_1 \left[\det \frac{1}{2} \left(\nabla_a \nabla_a + 2 \right) \right]^{-\frac{1}{2}},
$$

where as we have done throughout our paper any total derivative term is always thrown away.

On the other hand, with the above decomposition, we have

$$
h_{ab} = h_{ab}^T + \frac{1}{3} g_{ab} \alpha' + \nabla_a \xi^T b + \nabla_b \xi^T a + 2 \nabla_a \nabla_b \lambda,
$$

which gives rise to

$$
1 = \int Dh_{ab} e^{-\langle h, h \rangle}
= \int D\xi_a D\alpha' D\xi_a D\lambda e^{-\int d^3x \sqrt{-g} \xi^T a \xi_a + \frac{1}{2} \alpha' + 2 \xi^T a (-\nabla^a \nabla_a + 2) \xi_a + \frac{1}{2} \lambda (-\nabla^a \nabla_a + 3) (-\nabla^a \nabla_a) \lambda}
= J_2 \left[\det \frac{1}{2} \left(-\nabla^a \nabla_a + 2 \right) \right]^{\frac{1}{2}} \left[\det \frac{1}{2} \left(-\nabla^a \nabla_a + 3 \right) \right]^{\frac{1}{2}},
$$

where $\alpha' = \alpha + 2 \nabla^a \nabla_a \lambda$. Combining (B.4) with (B.6) and taking into account $D\alpha' = D\alpha$ at the same time, we end up with

$$
Z_{\text{ghost}} = J_2 J_1 \left[\det \frac{1}{2} \left(-\nabla^a \nabla_a + 2 \right) \right]^{\frac{1}{2}} \left[\det \frac{1}{2} \left(-\nabla^a \nabla_a + 3 \right) \right]^{\frac{1}{2}}.
$$

Similarly, let us define the path integral measures for fermion fields as

$$
\int D\psi e^{-\langle \psi, \psi \rangle} = 1, \\
\int D\varsigma_a e^{-\langle \varsigma, \varsigma \rangle} = 1,
$$

with

$$
\langle \psi, \psi' \rangle = \int d^3x \sqrt{-g} \bar{\psi} \psi', \\
\langle \varsigma, \varsigma' \rangle = \int d^3x \sqrt{-g} \bar{\varsigma} a \varsigma_a'.
$$
Then, we have
\[
1 = \int D\psi_a e^{-(\psi,\phi)} = \int Z_{\text{ghost}} D\psi_a^T D\chi D\zeta e^{-(\psi,\phi)}
\]
\[
= \int Z_{\text{ghost}} D\psi_a^T D\chi D\zeta e^{-\int d^3x \sqrt{-\delta} \phi^2 \partial_\chi \bar{\chi} \partial_{\chi} \bar{\chi} + \int d^3x \sqrt{-\delta} \phi \bar{\chi} \gamma_{\phi} \phi (\partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi}) (\bar{\chi} \gamma_{\phi} \phi (\partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi}))}
\]
\[
= \int Z_{\text{ghost}} D\zeta e^{-\int d^3x \sqrt{-\delta} \phi \bar{\chi} \gamma_{\phi} \phi \partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi}}
\]
\[
= \int Z_{\text{ghost}} D\zeta e^{-\frac{1}{2} \int d^3x \sqrt{-\delta} \phi \bar{\chi} \gamma_{\phi} \phi \partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi}} = Z_{\text{ghost}} \det \left(-\bar{\chi} \gamma_{\phi} \phi \partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi} + \frac{3}{4} \right), \quad (B.10)
\]
where \(\chi' = \chi - 3\phi \). So we end up with
\[
Z_{\text{ghost}} = \left[\det \left(-\bar{\chi} \gamma_{\phi} \phi \partial_{\chi} \bar{\chi} \partial_{\chi} \bar{\chi} + \frac{3}{4} \right) \right]^{-1}. \quad (B.11)
\]

Appendix C. Proof of \(\det(\gamma^a \nabla_a + \hat{m}) = \det(\gamma^a \nabla_a - \hat{m}) \)

In order to prove the above identity, we are only required to show the eigenvalues of \(\gamma^a \nabla_a \) always come in pairs as \(\{C, -C\} \), which can be demonstrated by acting on \(\phi_b \) in the following way. Namely, assume \(\gamma^a \nabla_a \phi_b(t, \phi, \rho) = C\phi_b(t, \phi, \rho) \) and \(\phi'_b(t, \phi, \rho) = \phi_b(t, -\phi, \rho) \). Then, the following way. Namely, assume \(\gamma^a \nabla_a \phi_b(t, \phi, \rho) = C\phi_b(t, \phi, \rho) \) and \(\phi'_b(t, \phi, \rho) = \phi_b(t, -\phi, \rho) \). Then, we have
\[
\gamma^a \nabla_a \gamma^b \phi'_b(t, \phi, \rho) = \gamma^a \nabla_a \gamma^b \phi_b(t, -\phi, \rho) + \frac{3}{4} \gamma^a \omega_{1a} \gamma^b \gamma^c \phi'_c(t, \phi, \rho) + \gamma^a \Gamma'_{ab} \gamma^b \phi'_b(t, \phi, \rho)
\]
\[
= -\gamma^a \nabla_a \phi_b(t, \phi', \rho) |_{\phi' = -\phi} = -C \gamma^a \phi_b(t, \phi', \rho) |_{\phi' = -\phi}
\]
(\[C.1\])

where we have used the fact that the non-vanishing Christoffel symbols as well as non-vanishing spin connections are given by
\[
\Gamma_{02}^i = \frac{\sinh(\rho)}{\cosh(\rho)}, \quad \Gamma_{12}^i = \frac{\cosh(\rho)}{\sinh(\rho)}, \quad \Gamma_{20}^i = \sinh(\rho) \cosh(\rho),
\]
\[
\Gamma_{11}^i = -\sinh(\rho) \cosh(\rho), \quad \omega_{02a} = -\sinh(\rho) \partial_t a, \quad \omega_{12a} = \cosh(\rho) \partial_e a \quad (C.2)
\]
with the choice of the orthogonal normal bases as \(\{ e_0^a = \frac{1}{\cosh(\rho)} (\hat{a})^a, e_1^a = \frac{1}{\sinh(\rho)} (\hat{\phi})^a, e_2^a = (\bar{a})^a \} \) in the coordinate system \([t, \phi, \rho] \).

So we have accomplished our proof by showing that \(\gamma^a \phi'_b \) is the eigenvector with eigenvalue \(-C\) if \(\phi_b \) is the eigenvector with eigenvalue \(C \).

Appendix D. Some properties of Killing vector fields

A Killing vector field \(\xi^a \), by definition, is a vector field satisfying
\[
\mathcal{L}_\xi g_{ab} = \nabla_a \xi_b + \nabla_b \xi_a = 2\nabla_{[a} \xi_{b]} = 0. \quad (D.1)
\]
Whence one can show such a Killing vector field also has the following nice properties:
\[
\mathcal{L}_\xi \epsilon = 0, \quad \mathcal{L}_\xi \nabla_a = \nabla_a \mathcal{L}_\xi, \quad \mathcal{L}_\xi \gamma^a = \gamma^a \mathcal{L}_\xi. \quad (D.2)
\]

\(^9\) Actually this can be regarded as the analogous version of parity operation in the AdS\(_3\) background.
Now let us prove the first one by working on the three-dimensional case as follows:
\[
\mathcal{L}_\xi \epsilon_{abc} = \xi^d \nabla_d \epsilon_{abc} + \epsilon_{a bc} \nabla_d \xi^d + \epsilon_{adb} \nabla_b \xi^d + \epsilon_{abd} \nabla_a \xi^d = \epsilon_{dbc} \nabla_d \xi^d + \epsilon_{adc} \nabla_b \xi^d + \epsilon_{abd} \nabla_a \xi^d.
\]
(D.3)

To achieve our proof, we only need to show that the quantity \(\epsilon_{abc} \mathcal{L}_\xi \epsilon_{abc} \) vanishes. This is the case because
\[
\epsilon_{abc} (\epsilon_{d ab} \nabla_b \xi^d + \epsilon_{ade} \nabla_b \xi^d + \epsilon_{abd} \nabla_c \xi^d) = -6 \nabla_d \xi^d = 0.
\]
(D.4)

Next let us demonstrate why the Lie derivative via Killing vector fields commutes with both the covariant derivative and the gamma matrices by acting on the spinor field in the following way:
\[
\mathcal{L}_\xi \nabla_a \psi - \nabla_a \mathcal{L}_\xi \psi = \xi^b \nabla_b \nabla_a \psi + \nabla_a \nabla_b \psi \xi^b - \frac{1}{2} \gamma^{cd} \nabla_a \psi \nabla_d \xi^c - \nabla_a (\xi^b \nabla_b \psi - \frac{1}{2} \gamma^{cd} \psi \nabla_d \xi^c)
\]
\[
= \xi^b (\nabla_b \nabla_a - \nabla_a \nabla_b) \psi + \frac{1}{2} \gamma^{cd} \psi \nabla_a \nabla_d \xi^c
\]
\[
= \frac{1}{2} \xi^b R_{bcd} \gamma^{cd} \psi + \frac{1}{2} \gamma^{cd} \psi R_{bdc} \xi^b
\]
\[
= \frac{1}{2} \xi^b R_{bad} \gamma^{cd} \psi + \frac{1}{2} \gamma^{cd} \psi R_{bad} \xi^b = 0,
\]
(D.5)

and
\[
\mathcal{L}_\xi \gamma^a \psi - \gamma^a \mathcal{L}_\xi \psi = \xi^b \nabla_b (\gamma^a \psi) - \gamma^b \psi \nabla_b \xi^a - \frac{1}{2} \gamma^{cd} \gamma^a \psi \nabla_d \xi^c - \gamma^a (\xi^b \nabla_b \psi - \frac{1}{2} \gamma^{cd} \psi \nabla_d \xi^c)
\]
\[
= -\gamma^b \psi \nabla_b \xi^a - \frac{1}{2} (\gamma^cd \gamma^a \psi - \gamma^a \gamma^{cd} \psi) \nabla_d \xi^c = -\gamma^b \psi \nabla_b \xi^a + g^{[cd] \gamma^a} \gamma^{cd} \psi \nabla_d \xi^c
\]
\[
= -\gamma^b \psi \nabla_b \xi^a + g^{[cd] \gamma^a} \gamma^{cd} \psi = 0.
\]
(D.6)

References

[1] Giombi S, Maloney A and Yin X 2008 One-loop partition functions of 3D gravity J. High Energy Phys. JHEP08(2008)007 (arXiv:0804.1773)
[2] David J R, Gaberdiel M R and Gopakumar R 2010 The heat kernel on AdS3 and its applications J. High Energy Phys. JHEP04(2010)125 (arXiv:0911.5085)
[3] Denef F, Hartnoll S A and Sachdev S 2010 Black hole determinants and quasinormal modes Class. Quantum Grav. 27 125001 (arXiv:0908.2657)
[4] Maldacena J and Strominger A 1998 AdS3 black holes and a stringy exclusion principle J. High Energy Phys. JHEP12(1998)005 (arXiv:hep-th/9804085)
[5] Balasubramanian V, Kraus P and Lawrence A 1999 Bulk versus boundary dynamics in anti-de Sitter spacetime Phys. Rev. D 59 046003 (arXiv:hep-th/9805171)
[6] Zhang H 2011 SL(2,R) symmetry and quasi-normal modes in the BTZ black hole J. High Energy Phys. JHEP03(2011)009 (arXiv:1102.4721)
[7] Wald R M 1984 General Relativity (Chicago, IL: University of Chicago Press)
[8] Gaberdiel M R, Grumiller D and Vassilevich D 2010 Graviton 1-loop partition function for three-dimensional massive gravity J. High Energy Phys. JHEP11(2010)094 (arXiv:1007.5189)
[9] Creutzig T, Hikida Y and Ronne P B 2012 Higher spin AdS3 supergravity and its dual CFT J. High Energy Phys. JHEP02(2012)109 (arXiv:1111.2139)
[10] Datta S and David J R 2012 Higher spin quasinormal modes and one-loop determinants in the BTZ black hole J. High Energy Phys. JHEP03(2012)079 (arXiv:1112.4619)
[11] Datta S and David J R 2012 Higher spin fermions in the BTZ black hole arXiv:1202.5831