Research on filter parameter optimization method of grid-connected photovoltaic system

ZhuoqunZhao1,*, HongjunWang2, Hui Zhao3
1School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin, 300350, China
2School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, China
3College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
azhuoqunzhao@tju.edu.cn
e-mail:zhaohui3379@126.com

Abstract: With a large number of distributed energy and nonlinear loads such as photovoltaic and wind power are connected to the power grid, while improving the energy structure of the grid, it also greatly increases the harmonic content in the power grid, resulting in the decline of power supply quality and stability. In this paper, based on the analysis of the working principle of photovoltaic power generation system and the characteristics of the filter connected to the power grid, taking the inverter composed of high-frequency power electronic devices as an example, the principle of high-order harmonic generation is analyzed. According to this, a T-type filter is designed to suppress harmonics. The relationship between thd and filter parameters is studied, and the optimization method of T-type filter parameters is proposed Law.

1. Introduction
In the photovoltaic grid connected system, grid connected inverter is the core component. At present, the research of grid connected system mainly focuses on DC-DC and DC-AC two-stage energy conversion structure. Among them, the DC-DC converter adjusts the working point of PV array to track the maximum power; the DC-AC inverter mainly makes the output current in phase with the grid voltage, and obtains the unit power factor. DC-AC is the key link of the system. The structure of photovoltaic grid connected system is shown in Figure 1.

![Figure 1 The structure of photovoltaic grid connected system](image-url)
With the development of new power electronic devices, the rectifier and inverter in photovoltaic grid connected system are composed of a large number of nonlinear high-speed components, which are easy to cause grid current waveform distortion. When PWM control is used, power electronic devices work at a high switching frequency, which will produce a large number of high-order harmonics in the power grid, resulting in the decline of power supply quality[1]. The effective way to eliminate higher harmonic and reduce total harmonic distortion is to connect harmonic filter between power grid and inverter circuit. The structure and parameters of pure inductance filter and inductor capacitor filter are simple, but the high frequency harmonic attenuation effect is poor and the harmonic suppression effect is not ideal due to the uncertainty of the grid impedance. The effective way to solve this problem is to use T-type filter. Because of the characteristics of both passband and stopband, it can effectively filter out the high-frequency harmonics in the grid current without requiring large inductance and capacitance, so that the inverter can obtain high-quality grid connected current at low switching frequency[2].

2. The harmonic problem of inverter with high frequency power electronic devices

Take an inverter circuit with single inductor filter as an example, as shown in Figure 2. the following results can be obtained according to fig 2.

\[V_L = V_{dc} - V_e = L \frac{\Delta i}{\Delta t} \]
(1)

Where, \(V_e = U_m \cos \omega t \), represents the instantaneous value of the grid voltage. \(\Delta t \) represents SPWM pulse width. According to the pulse theorem, If the carrier period is \(T \), narrow pulse time is \(\Delta t \), Then the switching frequency \(f_k \) of the inverter is as follows[3].

\[V_{dc}\Delta t = U_m T \cos \omega t = \frac{U_m \cos \omega t}{f_k} \]
(2)

From equation (2), we can get:

\[\Delta t = \frac{U_m \cos \omega t}{V_{dc} \pi f_k} \]
(3)

Substitute formula (3) into formula (1), the current variation during the inductor current rising phase, namely: variation during the switch tube conduction. Ripple current expression can be obtained.

\[\Delta i = \left(U_m \cos \omega t - \frac{U_m^2 \cos^2 \omega t}{V_{dc}} \right) / L f_k \]
(4)

It can be concluded from equation (4): The ripple current is related to the higher harmonic which is determined by the switching frequency \(f_k \), AC side inductance L and DC side voltage. The value of inductance affects ripple current and power system loss, and The ripple current and its related loss decrease with the increase of inductance L. But the volume and loss of the inductor will increase with the increase of the inductance. Therefore, the influence of various factors should be taken into account in the selection of inductors, so as to achieve a balance between the conflicting factors. In engineering design, the ripple value of output current is determined first, and then the value of inductor L is determined. The ripple value is generally about 20% of the output current. \(\Delta I_L = 20\% I_o \), where, \(I_o \) is the grid current[4].
3. Design of T-type filter based on harmonic control

The inverter works in unipolar modulation mode. The switching period is \(T_k \), and the on time in each switching cycle is \(d(t)T_k \). DC bus voltage is \(V_{dc} \), capacitor voltage is \(V_c(t) \), inductor voltage is \(V_L \), so:

\[
\Delta I_L = \frac{V_{dc} - V_c(t)}{L} \times d(t)T_k = \frac{V_{dc} - V_c(t)}{L} \times \frac{d(t)}{f_k}
\]

\(V_c(t) = d(t)V_{dc} + (1 - d(t)) \times 0 \) \(\quad \quad \quad \quad (5) \)

Formula (6) is substituted into formula (5), and the following formula is obtained:

\[
\Delta I_L = \frac{V_{dc} - V_c(t)}{L} \times \frac{V_c(t)}{V_{dc} \times f_k} = \frac{V_{dc} \times V_c(t) - V_c^2(t)}{L \times V_{dc} \times f_k}
\]

\(\Delta P_L = \frac{V_{dc} - 2V_c(t)}{L \times V_{dc} \times f_k} \) \(\quad \quad \quad \quad (6) \)

Differentiating \(\Delta I_L \) with respect to time yields.

\[
\Delta P_L = \frac{V_{dc} - 2V_c(t)}{L \times V_{dc} \times f_k}
\]

Because the grid voltage and current have the same frequency and phase, therefore, when \(V_{dc} = 2V_c(t) \), \(\Delta I_L \) has a maximum value, namely:

\[
\Delta I_L = \frac{V_{dc} - 2V_c(t)}{4L \times f_k}
\]

And because: \(\Delta I_L = 20\% I_o \), therefore,

\[
\Delta I_L = \frac{V_{dc}}{4L \times f_k} = 20\% I_o
\]

The minimum inductance is:

\[
L_1 \geq \frac{V_{dc}}{80\% f_k}
\]

It can be seen that when the fundamental current flows through, the capacitance of T filter is in open circuit state, and the equivalent total inductance is \(L = L_1 + L_2 \), Inductance voltage \(V_L = I_L \omega L, \omega = 2\pi f, f = 50Hz \).

According to the three vector relation:

\[
V_{dc} = \sqrt{V_L^2 + V_e^2}
\]

Because the phase of current and voltage is not synchronous, the influence of phase angle between them should be considered. According to cosine law, the following equation can be obtained:

\[
V_{dc} \geq \sqrt{V_L^2 + V_e^2 - 2V_L V_e \cos \theta}
\]

Assuming that the phase difference between the inductance voltage and the grid voltage is \(\theta \), the following results can be obtained from equation (12).

\[
V_L \leq \sqrt{V_{dc}^2 - V_e^2}
\]

\(V_L = I_L \omega L \), by substituting formula (14), we can get the following results:

\[
L \leq \frac{V_{dc}^2 - V_e^2}{\omega I_L}
\]

If \(L_1 = L_2 = \frac{1}{2} L \), from equations (11) and (15), the value range of \(L_1 \) can be obtained as follows:

\[
\frac{V_{dc}}{80\% f_k} \leq L_1 \leq \frac{\sqrt{V_{dc}^2 - V_e^2}}{2\omega I_L}
\]
The larger the filter capacitance is, the greater the output reactive power will be, and the overall efficiency of the inverter will be reduced; if the filter capacitance value is reduced, the inductance value needs to be increased to obtain the same filtering effect, which will lead to larger inductance volume. In order to achieve the compromise effect[6], the general reactive power is 15% of the total power. Therefore, the value range of capacitance is calculated as follows[7]:

\[C \leq 15\% \times \frac{P}{2\pi f v_{e}} \]

(17)

4. Analysis of simulation results

The total harmonic distortion (THD) is related to the inductance \(L_2 \), the THD value decreases with the increase of \(L_2 \) value. Saber is used to simulate the filter. The modulation of the inverter is \(M=0.8 \). The simulation circuit of the filter is shown in Fig. 4[8,9].

![Schematic diagram of T-filter simulation circuit](image)

The total harmonic distortion (THD) is related to the inductance \(L_2 \), the THD value decreases with the increase of \(L_2 \) value. Saber is used to simulate the filter. The modulation of the inverter is \(M=0.8 \). The simulation circuit of the filter is shown in Fig. 4[8,9].

![Simulation waveform of T-filter output](image)

When the capacitance value is \(C = 10\mu F \), the total inductance constant \(L = 1.5mH \), the ratio of \(L_1/L_2 \) under different circumstances, the simulation results of the filter are summarized as shown in table 1.

\(L_1+L_2(\mu H) \)	\(L_1/L_2 \)	\(L_1(\mu H) \)	\(L_2(\mu H) \)	\(C(\mu F) \)	THD(%)
1500	1	750	750	10	0.7460
1500	2	1000	500	10	0.8021
The simulation results are shown in Table 1. When the total inductance and capacitance of the filter are constant, THD will increase with the increase of L_1/L_2. If the total inductance and L_1/L_2 are constant, the capacitance gradually increases, the simulation results of the filter are shown in Table 2.

Table 2 THD changes with C

L$_1$+ L$_2$(μH)	L$_1$/ L$_2$	L$_1$ (μH)	L$_2$(μH)	C(μF)	THD(%)
1500	1	750	750	47	0.7890
1500	1	750	750	33	1.0245
1500	1	750	750	22	1.5360
1500	1	750	750	10	4.8010

Table 2 simulation results show that when the total inductance is constant and L_1 / L_2 is constant, the larger the capacitance value, the smaller the THD. The simulation results are shown in Fig. 5. When the filter resonates, equivalent to short circuit between inverter and grid side, the capacitance and inductance L_2 are connected in parallel and then connected in series with the inductance L_2 to form a resonant circuit. The resonant frequency is calculated as follows:

$$f_{res} = \frac{1}{2\pi} \sqrt{\frac{L_1+L_2}{L_1L_2C}}$$ \hspace{1cm} (18)

$L_1 = 1250\mu H$, $L_2 = 250\mu H, C = 10\mu F$, and substituting them into equation (18), the calculated resonance frequency is far away from the harmonic frequency of the grid output voltage.

5. Conclusions

On the basis of in-depth analysis of the causes of power grid harmonics, Taking T-type filter as an example, this paper studies and analyzes the relevant parameters and calculation formula of T-type filter. In order to ensure the filtering effect, the value range of T-type filter parameters is determined. The simulation results show that the filter can significantly eliminate the ripple and improve the quality of power supply.

Acknowledgments

The work is supported by Tianjin Key Technologies R&D Program (19YFZCSN00360).

References

[1] Yufei Zhou, Wenxin Huang, Ping Zhao. (2015) A transformerless photovoltaic grid-connected system of three-phase single-state boost inverter with coupled inductor. Transactions of china electrotechnical society, 30(6):190-199.

[2] Suying Wang. (2015) Design of the output filter of a photovoltaic generation system. Electric switchgear, 4:78-84.

[3] Yan Xu, Jiao Wang. (2012) Design of filter in photovoltaic power generation system. Chinese Journal of Power Sources, 11:24-30.
[4] Guanda Lu, Chong Chen, Dongyi Chen. (2014) Research on active power filter with photovoltaic grid-connected power generation function. Journal of Fuzhou university. Natural science edition, 6: 864-869.

[5] Yingde Wang, Shude Wang, Qin Su. (2018) Parameter optimization design of LLCL filter for grid-connected inverter based on NSGA III multi-objective optimization algorithm. Electrical appliances and energy efficiency management technology, 24: 22-28.

[6] Bao Xie, Lin Zhou, Tiantian Liu, Mingxuan Mao. (2020) Harmonic resonance analysis and stability improvement for grid-connected inverters. Journal of Power Electronics, 20: 221-235.

[7] Jinping Xu, Shaojun Xie. (2018) LCL-resonance damping strategies for grid-connected inverters with LCL filters: a comprehensive review. Journal of Modern Power Systems and Clean Energy, 6(2): 292–305.

[8] Liu X, Cramer AM, Liao Y. (2015) Reactive power control methods for photovoltaic inverters to mitigate short-term voltage magnitude fluctuations. Electr Power Syst Res, 127: 213–220.

[9] Zheng X, Xiao L, Lei Y et al. (2015) Optimisation of LCL filter based on closed-loop total harmonic distortion calculation model of the grid-connected inverter. IET Power Electron, 8(6): 860–868.