Let (X, d) be a bounded metric space. The object of the investigation is the metric invariant

$$\delta(X) = \inf_{p \in X} \sup_{q \in X} d(p, q)$$

arising in approximation theory. In the case when X is a regular closed curve Γ in the plane \mathbb{R}^2, it is conjectured that $L(\Gamma) \geq \pi \delta(\Gamma)$, where $L(\Gamma)$ is the length of Γ and d is the standard restricted Euclidean metric. The author proves this conjecture in the case when Γ is a convex curve of class C^2 and all curvature centers of Γ lie in the interior of Γ. In this case, it is shown that the equality $L(\Gamma) = \pi \delta(\Gamma)$ holds if and only if Γ is of constant breadth. Approximation of Γ by polygons is also studied and the related estimates of $\delta(\Gamma)$ are obtained, including numerical experiments.

Reviewer: Boris Rubin (Baton Rouge)

MSC:

51K05 General theory of distance geometry
52A10 Convex sets in 2 dimensions (including convex curves)
52A40 Inequalities and extremum problems involving convexity in convex geometry
53A04 Curves in Euclidean and related spaces
57Q55 Approximations in PL-topology
52A27 Approximation by convex sets
51E21 Blocking sets, ovals, k-arcs

Keywords:
metric invariant; relative Chebyshev radius; isoperimetric inequality

Full Text: arXiv Link