A Computational Approach on Acetaminophen Drug using Degree-Based Topological Indices and M-Polynomials

Srinivasan Melaiyur Sankarraman 1,*

1 PG & Research Department of Mathematics, Poompuhar College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Melaiyur - 609107, Tamil Nadu, India; mssn84@gmail.com (M.S.S.);
* Correspondence: mssn84@gmail.com (M.S.S.);

Received: 16.09.2021; Revised: 25.10.2021; Accepted: 29.10.2021; Published: 24.11.2021

Abstract: Topological index is a numerical representation of a chemical structure. Based on these indices, physicochemical properties, thermodynamic behavior, chemical reactivity, and biological activity of chemical compounds are calculated. Acetaminophen is an essential drug to prevent/treat various types of viral fever, including malaria, flu, dengue, SARS, and even COVID-19. This paper computes the sum and multiplicative version of various topological indices such as General Zagreb, General Randić, General OGA, AG, ISI, SDD, Forgotten indices M-polynomials of Acetaminophen. To the best of our knowledge, for the Acetaminophen drugs, these indices have not been computed previously.

Keywords: topological index; chemical graph; Acetaminophen; M-polynomial; Zagreb; COVID-19.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this article, all molecular (chemical) graphs are finite, loopless, connected, and with no multiple edges. The graph $G = (V,E)$ with vertex set V and edge set E. The degree of a vertex $u \in V(G)$ is denoted d_u as explained in graph theory [1,2].

1.1. A brief overview on topological indices.

Topological indices (TIs) are molecular descriptors that characterize the structure of the chemical compounds and can be used to predict some physical, chemical, and biological properties such as stability, vaporization enthalpy, boiling point, toxicity, and so on. A molecular graph is a graph-theoretic representation of a chemical compound’s structural formula, where vertices represent atoms and edges represent chemical bonds [3]. Weiner proposed the notion of TIs in chemical graph theory (CGT) in 1947 to predict certain physicochemical properties of alkanes [4]. For predicting the total π electron energy of molecules, Gutman et al. [5] developed a pair of TIs called the first Zagreb ($M_1(G)$) and second Zagreb ($M_2(G)$) indices. A comprehensive discussion on different TIs was given in [6–13].

1.2. Significance of Acetaminophen drug.

The most prominent drug for treating fever and pain is acetaminophen, often known as paracetamol or APAP. Many ailments are treated with acetaminophen, including muscular...
pains, headaches, toothaches, arthritis, fevers, and colds [14]. Fever, along with persistent cough and shortness of breath, are some of the symptoms of COVID-19 [15]. Fever is particularly unpleasant because it is frequently accompanied by shivers, nausea, headaches, and stomach distress. A fever can be brought down by taking an anti-inflammatory medication, especially acetaminophen, along with antivirals and antiretrovirals, which reduce some of the fever molecules [16]. Acetaminophen can be taken with or without food and is harmless for pregnant or breastfeeding women [17,18].

![Figure 1. Chemical structure (a) and Chemical graph (b) of Acetaminophen drug.](image)

Acetaminophen was invented in 1877 [19] and is featured on the WHO’s list of essential drugs, which includes the most efficient and safe medicines that are required for constructing a well-being community. It has a benzene ring core replaced by one hydroxyl group and the nitrogen atom of an amide group in the para (1,4) pattern [19]. Its molecular formula is $C_8H_9NO_2$. The hydroxyl oxygen lone pair, the nitrogen lone pair, the benzene π cloud, the carbonyl oxygen lone pair, and the p orbital on the carbonyl carbon are all conjugated in the structure. The benzene ring is also highly reactive towards electrophilic aromatic substitution due to the existence of two activating groups. Figure 1 depicts the chemical structure and molecular graph of the Acetaminophen drug.

1.3. Proposed work and organization.

This paper primarily focuses on computing various vertex degree-based sum and product connectivity TIs of Acetaminophen drugs. This paper is constructed as follows. The fundamental notions are presented in Section 1. In Section 2, vertex degree-based TIs and M-polynomials are tabulated. In Section 3, we compute certain indices and polynomials of acetaminophen using its molecular graph. In Section 4, there is a conclusion.

2. Materials and Methods

2.1. Additive degree-based TIs.

In 1975, Milan Randić invented the branching index (later known as the Randić index), which is symbolized by $\chi (G)$ and has proven to be a good parameter for quantitative assessment of molecular branching QSAR, and QSPR research [20]. To date, several important additive degree-based TIs have been reported, some of which are enumerated in Table 1. For more insight on these indices, we offer [21-26] for ambitious readers.
Suppose \(uv \) is the edge that connects the vertices \(u \) and \(w \), then the additive degree-based TIs in mathematical chemistry have the general form \(TI = \sum_{uv \in E(G)} F(d_u, d_w) \).

Table 1. Additive degree-based TIs of a graph \(G \).

S.No	TI	Notation	Formula of TI		
1.	First Zagreb Index [5]	\(M_1(G) \)	\(\sum_{uv \in E(G)} (d_u + d_w) \)		
2.	Modified First Zagreb Index [5]	\(M_1^e(G) \)	\(\sum_{w \in V(G)} (d_w)^2 \)		
3.	Second Zagreb Index [5]	\(M_2(G) \)	\(\sum_{uv \in E(G)} (d_u \cdot d_w) \)		
4.	Randić Index [20]	\(R(G) \)	\(\sum_{uv \in E(G)} \sqrt{d_u \cdot d_w} \)		
5.	Third Zagreb Index [25]	\(M_3(G) \)	\(\sum_{uv \in E(G)}	d_u - d_w	\)
6.	First Hyper Zagreb Index [26]	\(HM_1(G) \)	\(\sum_{uv \in E(G)} (d_u + d_w)^2 \)		
7.	Second Hyper Zagreb Index [26]	\(HM_2(G) \)	\(\sum_{uv \in E(G)} (d_u \cdot d_w)^2 \)		
8.	General First Zagreb Index [26] (or) General Sum Connectivity Index [38]	\(M_1^\alpha(G) \)	\(\sum_{uv \in E(G)} (d_u + d_w)^\alpha \)		
9.	General Second Zagreb Index [26]	\(M_2^\alpha(G) \)	\(\sum_{uv \in E(G)} (d_u \cdot d_w)^\alpha \)		
10.	Reduced Second Zagreb Index [27]	\(RM_2(G) \)	\(\sum_{uv \in E(G)} (d_u - 1) \cdot (d_w - 1) \)		
11.	Redefined First Zagreb Index [28]	\(Re M_1(G) \)	\(\sum_{uv \in E(G)} \left(\frac{d_u + d_w}{d_u \cdot d_w} \right) \)		
12.	Redefined Second Zagreb Index [28]	\(Re M_2(G) \)	\(\sum_{uv \in E(G)} \frac{d_u \cdot d_w}{d_u + d_w} \)		
13.	Redefined Third Zagreb Index [28]	\(Re M_3(G) \)	\(\sum_{uv \in E(G)} (d_u \cdot d_w) \cdot (d_u + d_w) \)		
14.	Modified Second Zagreb Index [29]	\(^n M_2(G) \)	\(\sum_{uv \in E(G)} \frac{1}{d_u \cdot d_w} \)		
15.	Nano-Zagreb Index [30]	\(N_{Z}(G) \)	\(\sum_{uv \in E(G)} \left((d_u)^2 - (d_w)^2 \right) \)		
16.	Sum Nano-Zagreb Index [31]	\(\mathcal{N}_{Z}(G) \)	\(\sum_{uv \in E(G)} \left(d_u^2 - d_w^2 \right)^{\frac{1}{2}} \)		
17.	Zeroth order Randić Index [32]	\(R_{-1}^\alpha(G) \)	\(\sum_{w \in V(G)} (d_w)^{-\frac{1}{2}} \)		
18.	Zeroth Order General Randić Index [33]	\(R_{0\alpha}^\alpha(G) \)	\(\sum_{w \in V(G)} (d_w)^{\alpha} \)		
19.	Reciprocal Randić Index [34]	\(RR(G) \)	\(\sum_{uv \in E(G)} \sqrt{d_u \cdot d_w} \)		
20.	Reduced Reciprocal Randić Index [34]	\(RRR(G) \)	\(\sum_{uv \in E(G)} \sqrt{(d_u^{-1}) \cdot (d_w^{-1})} \)		
21.	Inverse Randić Index [35]	\(RR^\alpha(G) \)	\(\sum_{uv \in E(G)} \frac{1}{(d_u \cdot d_w)^{\alpha}} \)		
S.No	TI	Notation	Formula of TI		
------	----	----------	---------------		
22.	Modified Randić Index [36]	$\hat{R}^*(G)$	$\sum_{u,w \in E(G)} \frac{1}{\max\{d_u, d_w\}}$		
23.	Sum Connectivity Index [37]	$\chi(G)$	$\sum_{u,w \in E(G)} \frac{1}{\sqrt{d_u + d_w}}$		
24.	Arithmetic Geometric Index [39]	$AG(G)$	$\sum_{u,w \in E(G)} \frac{d_u + d_w}{2\sqrt{d_u \cdot d_w}}$		
25.	Variable Sum exdeg Index [40,41]	$SEI_{\alpha}(G)$	$\sum_{w \in V(G)} d_w (\alpha)^{d_w}$, and $\alpha \neq 1$		
26.	Harmonic Index [42,43]	$H(G)$	$\sum_{u,w \in E(G)} \frac{2}{d_u + d_w}$		
27.	General Harmonic Index [44]	$H_k(G)$	$\sum_{u,w \in E(G)} \left(\frac{2}{d_u + d_w} \right)^k$		
28.	General Ordinary Geometric Arithmetic Index [45]	$OGA_k(G)$	$\sum_{u,w \in E(G)} \left(\frac{2\sqrt{d_u \cdot d_w}}{d_u + d_w} \right)^k$		
29.	Ordinary Geometric Arithmetic Index [45]	$OGA(G)$	$\sum_{u,w \in E(G)} \frac{2\sqrt{d_u \cdot d_w}}{d_u + d_w}$		
30.	SK Index [46]	$SK(G)$	$\sum_{u,w \in E(G)} \frac{d_u + d_w}{2}$		
31.	SK\(_1\) Index [46]	$SK_1(G)$	$\sum_{u,w \in E(G)} \frac{d_u - d_w}{2}$		
32.	SK\(_2\) Index [46]	$SK_2(G)$	$\sum_{u,w \in E(G)} \left(\frac{d_u + d_w}{2} \right)^2$		
33.	Forgotten Index [47]	$F(G)$	$\sum_{u,w \in E(G)} \left[(d_u)^2 + (d_w)^2 \right]$		
34.	Inverse sum (Indeg) Index [48]	$ISI(G)$	$\sum_{u,w \in E(G)} \frac{d_u \cdot d_w}{d_u + d_w}$		
35.	Symmetric Division (Deg) Index [49]	$SDD(G)$	$\sum_{u,w \in E(G)} \left(\frac{\min\{d_u, d_w\}}{\max\{d_u, d_w\}} + \frac{\max\{d_u, d_w\}}{\min\{d_u, d_w\}} \right)$		
36.	IRM Index [49]	$IRM(G)$	$\sum_{u,w \in E(G)} (d_u - d_w)^2$		
37.	Augmented Zagreb Index [50]	$AZI(G)$	$\sum_{u,w \in E(G)} \left(\frac{d_u \cdot d_w}{d_u + d_w - 2} \right)^3$		
38.	Albertson Index [51,52]	$A(G)$	$\sum_{u,w \in E(G)}	d_u - d_w	$
39.	Atomic Bond Connectivity Index [53]	$ABC(G)$	$\sum_{u,w \in E(G)} \sqrt{\frac{d_u + d_w - 2}{d_u \cdot d_w}}$		
40.	Bell Index [54]	$B(G)$	$\sum_{w \in V(G)} \left(d_w - \frac{2q}{p} \right)^2$		
41.	First Entire Zagreb Index [55]	$M_{1E}^G(G)$	$\sum_{w \in V(G) \setminus E(G)} (d_w)^2$		
42.	Somber Index [56–64]	$SO(G)$	$\sum_{u,w \in E(G)} \sqrt{(d_u)^2 + (d_w)^2}$		
2.2. Multiplicative degree-based TIs.

This subsection tabulated some significant multiplicative degree-based TIs, that can be used to develop our primary results. Narumi and Katayama [65] proposed a multiplicative TI, known as NK(G). After, Wang et al. redefined NK(G) as a general multiplicative index[66]. Kulli et al. have established the multiplicative sum connectivity SCII(G) and multiplicative product connectivity PCII(G) indices to further study of TIs [67]. For more about multiplicative degree-based TIs the following literature [65-76] can be quite helpful.

According to CGT, the generalized form of multiplicative TIs is given below [66],

\[MTI = MTI(G) = \prod_{uw \in E(G)} F(d_u, d_w) \]

Table 2. Multiplicative degree-based TIs of a graph G.

S.No	TI	Notation	Formula of TI
1.	Narumi – Katayama Index [65]	NK(G)	\(\prod_{w \in V(G)} (d_w) \)
2.	First Multiplicative Zagreb Index [68]	\(II_1(G) \)	\(\prod_{w \in V(G)} (d_w)^2 \)
3.	General Multiplicative Index [66]	\(W_1^\alpha(G) \)	\(\prod_{w \in V(G)} (d_w)^\alpha \)
4.	First Multiplicative Generalized Zagreb Index [69]	\(MZ_1^\alpha(G) \)	\(\prod_{uw \in E(G)} (d_u + d_w)^\alpha \)
5.	Second Multiplicative Generalized Zagreb Index [69]	\(MZ_2^\alpha(G) \)	\(\prod_{uw \in E(G)} (d_u \cdot d_w)^\alpha \)
6.	Multiplicative version of First Zagreb Index [70]	\(II'_1(G) \)	\(\prod_{u \in E(G)} (d_u + d_w) \)
7.	Second Multiplicative Zagreb Index [68]	\(II_2(G) \)	\(\prod_{u \in E(G)} (d_u \cdot d_w) \)
8.	Multiplicative First Hyper Zagreb Index [71]	\(HII_1(G) \)	\(\prod_{u \in E(G)} (d_u + d_w)^2 \)
9.	Multiplicative Second Hyper Zagreb Index [71]	\(HII_2(G) \)	\(\prod_{u \in E(G)} (d_u \cdot d_w)^2 \)
10.	Multiplicative Sum Connectivity Index [67]	\(SCII(G) \)	\(\prod_{u \in E(G)} \frac{1}{\sqrt{d_u + d_w}} \)
11.	Multiplicative Product Connectivity Index (or) Multiplicative Randić Index [67]	\(PCII(G) \) or \(RH(G) \)	\(\prod_{u \in E(G)} \frac{1}{\sqrt{d_u \cdot d_w}} \)
12.	Multiplicative Sum Connectivity F–Index [71]	\(SFH(G) \)	\(\prod_{u \in E(G)} \frac{1}{\sqrt{d_u^2 + d_w^2}} \)
13.	Multiplicative Product Connectivity F–Index [71]	\(PFH(G) \)	\(\prod_{u \in E(G)} \frac{1}{\sqrt{d_u^2 \cdot d_w^2}} \)
14.	Multiplicative First F–Index [72]	\(F_1 H(G) \)	\(\prod_{u \in E(G)} \left[(d_u)^2 + (d_w)^2 \right] \)
15.	Multiplicative Second F–Index [73]	\(F_2 H(G) \)	\(\prod_{u \in E(G)} \left[(d_u)^2 \cdot (d_w)^2 \right] \)
Table 3. Degree-based TIs with their polynomial of a graph G.

S.No	TI	Polynomial $P(G,x)$	Derivation from $P(G,x)$	
1.	First Zagreb [75]	$M_1(G,x) = \sum_{w \in V(G)} x^{d_w} + d_w$	$D_x(M_1(G;x)) \big	_{x=1}$
2.	Second Zagreb [75]	$M_2(G,x) = \sum_{w \in V(G)} x^{d_w} d_w$	$D_x(M_2(G;x)) \big	_{x=1}$
3.	Third Zagreb [75]	$M_3(G,x) = \sum_{w \in V(G)} x^{d_w - d_w}$	$D_x(M_3(G;x)) \big	_{x=1}$
4.	Forgotten [47]	$F(G,x) = \sum_{w \in V(G)} x^{d_w^2 + d_w^2}$	$D_x(F(G;x)) \big	_{x=1}$
5.	Modified First Zagreb [78]	$M'_1(G,x) = \sum_{w \in V(G)} d_w x^{d_w}$	$D_x(M'_1(G;x)) \big	_{x=1}$
6.	Harmonic [77]	$H(G,x) = \sum_{w \in V(G)} x^{d_w + d_w - 1}$	$2I_x(H(G;x)) \big	_{x=1}$
7.	Modified Forgotten [47]	$F^*(G,x) = \sum_{w \in V(G)} x^{d_w^3}$	$D_x(F^*(G;x)) \big	_{x=1}$
8.	Inverse Degree [80]	$ID(G,x) = \sum_{w \in V(G)} x^{d_w - 1}$	$I_x(ID(G;x)) \big	_{x=1}$
Where, \(D_x = \frac{d (P(G, x))}{dx} \), \(I_x = \int_0^x P(G, t) \, dt \).

Theorem 2.1. ([79], Theorems 2.1 and 2.2). Let \(G \) be a simple connected graph.

1. If \(I(G) = \sum_{uv \in E(G)} f(d(u), d(v)) \), where \(f(x, y) \) is a polynomial in \(x \) and \(y \), then

\[
I(G) = f(D_x, D_y) \mid_{x=y=1} (M(G; x, y)).
\]

2. If \(I(G) = \sum_{uv \in E(G)} f(d(u), d(v)) \), where \(f(x, y) = \sum_{i, j \in \mathbb{I}} \alpha_{i, j} x^i y^j \), then \(I(G) \) can be obtained from \(M(G; x, y) \) using the operators \(D_x, D_y, S_x, S_y \).

3. If \(I(G) = \sum_{uv \in E(G)} f(d(u), d(v)) \), where

\[
f(x, y) = \frac{x^r y^s}{(x + y + \alpha)^t},
\]

where \(x \) and \(y \) are variables, \(r, s \geq 0 \), \(t \geq 1 \) and \(\alpha \in \mathbb{R} \), then

\[
I(G) = \sum_{x+y} (M(G; x, y)) \mid_{x=y=1}.
\]

M-Polynomial of a chemical graph is defined as

\[
M(G; x, y) = \sum_{I \leq m} (\text{Number of every edges } uv \text{ such that } d_u = l, d_w = m) \cdot x^l y^m
\]

Table 4. Degree-based TIs derived from M-Polynomial of a graph \(G \).

S. No.	TI	\(f(x,y) \)	Derivation from \((M(G; x,y))\)
1.	\(M_1(G) \)	\(x+y \)	\((D_x + D_y) \mid_{x=y=1} \)
2.	\(M_2(G) \)	\(xy \)	\((D_xD_y) \mid_{x=y=1} \)
3.	\(m \, M_2(G) \)	\(\frac{1}{xy} \)	\((S_xS_y) \mid_{x=y=1} \)
4.	\(R_{\alpha}(G) \)	\((xy)^{\alpha} \)	\((D_x^{\alpha}D_y^{\alpha}) \mid_{x=y=1} \)
5.	\(RR_{\alpha}(G) \)	\(\frac{1}{(xy)^{\alpha}} \)	\((S_x^{\alpha}S_y^{\alpha}) \mid_{x=y=1} \)
6.	\(SDD(G) \)	\(\frac{x^2 + y^2}{xy} \)	\((D_xS_y + D_yS_x) \mid_{x=y=1} \)
7.	\(H(G) \)	\(\frac{2}{x+y} \)	\(2S_xJ(M(G; x,y)) \mid_{x=1} \)
8.	\(ISI(G) \)	\(\frac{xy}{x+y} \)	\(S_xJD_xD_y(M(G; x,y)) \mid_{x=1} \)
9.	\(AZI(G) \)	\(\left(\frac{xy}{x+y-2}\right)^3 \)	\(S_x^2Q^{-2}JD_x^2D_y^3(M(G; x,y)) \mid_{x=1} \)
10.	\(P(G) \)	\(x^2 + y^2 \)	\((D_x^2 + D_y^2) \mid_{x=y=1} \)
11.	\(Re \, M_3(G) \)	\(xy(x+y) \)	\(D_xD_y(D_x + D_y) \mid_{x=y=1} \)
12.	\(ABC(G) \)	\(\sqrt{x+y-2} \)	\(S_x^{-1}Q^{-2}JD_x^{-1}D_y^{-1}M(G; x,y) \mid_{x=1} \)
To evaluate the concerned TIs (as given in Table 4) of a graph G from the M(G; x; y), the formulae of derivations in terms of derivative or integral (or both integral and derivative) are listed in Table 2 [79], where

\[
D_x = x \frac{\partial (f(x, y))}{\partial x}, \quad D_y = y \frac{\partial (f(x, y))}{\partial y}, \quad S_x = \int_0^x \frac{f(t, y)}{t} \, dt, \quad S_y = \int_0^y \frac{f(x, t)}{t} \, dt,
\]

\[J(f(x, y)) = f(x, x) \quad \text{and} \quad Q_\alpha(f(x, y)) = x^\alpha f(x, y), \quad \alpha \neq 0\]

2.4. Methodology.

The use of algebraic polynomials to derive TIs of antiviral medication structure is one of our primary findings. Acetaminophen’s chemical structure can be accessed at pubchem.ncbi.nlm.nih.gov. Since the vertices depicting hydrogen atoms have no contribution to graph isomorphism, consider a hydrogen suppressed molecular graph of a compound. To arrive at our main results, we use graph-theoretical tools, combinatorial computation, analytical techniques, edge partition, and degree counting methods. The degree of end vertices is used to generate patterns of edge partitions of the hydrogen deleted molecular graph of the compound above. Expressions of additive and multiplicative degree-based TIs were computed using those partitions along with the formulae presented in Table 1 and Table 2. Similarly, certain closed forms of Zagreb, Forgotten, Harmonic, inverse-degree polynomials, and M-polynomials are derived using Table 3 and Table 4. The surface plotting of the polynomials is done by using GNU-OCTAVE 5.2.0. MATLAB 2017 was employed to compare the numerical results graphically.

3. Results and Discussion

In this section, primary computational results are obtained. Zagreb, Harmonic, ID, and Forgotten polynomials were established as follows.

Theorem 3.1. If G is a chemical graph of acetaminophen (\(C_8H_9NO_2\)) drug then,

1. \(M_1(G, x) = 6x^5 + 5x^4\).
2. \(M_2(G, x) = 6x^6 + 2x^4 + 3x^3\).
3. \(M_3(G, x) = 3x^2 + 6x + 2\).
4. \(F(G, x) = 6x^{13} + 3x^{10} + 2x^8\).
5. \(M_1^*(G, x) = 9x^3 + 10x^2 + 3x\).
6. \(H(G, x) = 6x^4 + 5x^3\).
7. \(F^*(G, x) = 3x^{27} + 5x^8 + 3x\).
8. \(ID(G, x) = 3x^2 + 5x + 3\).

Proof: Consider a chemical graph of acetaminophen (\(C_8H_9NO_2\)) as G (see Figure 1(b)). G has 11 number of vertices and that of edges. Let \(J_m\), the set containing the vertices with given degree m, i.e., \(J_m = \{ w \in V(G) : d_w = m \}\). Let \(j_m\) be the number of vertices in \(J_m\). Let \(K_{l,m}\), the set containing the edges with degrees of terminal vertices l, m, i.e., \(K_{l,m} = \{ u w \in E(G) : d_u = l, d_w = m \}\). \(k_{l,m}\) denotes the number of edges in \(K_{l,m}\). As seen from
Figure 1(b), acetaminophen contains edges of the type $K_{1,3}$, $K_{2,2}$ and $K_{2,3}$. It is observed that, $k_{1,3} = 3$, $k_{2,2} = 2$, $k_{2,3} = 6$, $j_1 = 3$, $j_2 = 5$, $j_3 = 3$.

Using the polynomial expressions given in Table 3, we have,

(i) $M_1 (G, x) = \sum_{u \in E(G)} x^{l+1} = k_{1,3} x^{1+3} + k_{2,2} x^{2+2} + k_{2,3} x^{2+3} = 6x^5 + 5x^4$.

(ii) $M_2 (G, x) = \sum_{u \in E(G)} x^{l,m} = k_{1,3} x^{1k3} + k_{2,2} x^{2k2} + k_{2,3} x^{2k3} = 6x^6 + 2x^4 + 3x^3$.

(iii) $M_3 (G, x) = \sum_{u \in E(G)} x^{l-m} = k_{1,3} x^{1-l-3} + k_{2,2} x^{1-l-2} + k_{2,3} x^{1-l-3} = 3x^2 + 6x + 2$.

(iv) $F(G, x) = \sum_{u \in E(G)} x^{l+m} = k_{1,3} x^{1+l+3} + k_{2,2} x^{2+l+2} + k_{2,3} x^{2+l+3} = 6x^{13} + 3x^{10} + 2x^8$.

(v) $M_1^*(G, x) = \sum_{v \in V(G)} m x^{m} = j_1 (1) x^1 + j_2 (2) x^2 + j_3 (3) x^3 = 9x^3 + 10x^2 + 3x$.

(vi) $H(G, x) = \sum_{u \in E(G)} x^{l+m-1} = k_{1,3} x^{1+l-3-1} + k_{2,2} x^{2+l-2-1} + k_{2,3} x^{2+l-3-1} = 6x^4 + 5x^3$.

(vii) $F^*(G, x) = \sum_{v \in V(G)} m^3 = j_1 x^1 + j_2 x^8 + j_3 x^{27} = 3x^{27} + 5x^8 + 3x$.

(viii) $ID(G, x) = \sum_{v \in V(G)} x^{m-1} = j_1 x^{1-1} + j_2 x^{2-1} + j_3 x^{3-1} = 3x^2 + 5x + 3$.

Using these polynomials, we compute the corresponding TIs as described below.

Theorem 3.2. If G is a chemical graph of acetaminophen ($C_8H_9NO_2$) drug then,

(i) $M_1 (G) = 50$.

(ii) $M_2 (G) = 53$.

(iii) $M_3 (G) = 12$.

(iv) $F(G) = 124$.

(v) $M_1^* (G) = 50$.

(vi) $H(G) = 4.9$.

(vii) $F^* (G) = 124$.

(viii) $ID(G) = 6.5$.

Proof: Using Table 3 and theorem 3.1, we obtain,

(i) $M_1 (G) = D_x (M_1 (G, x)) |_{x = 1} = \frac{d}{dx} \left(6x^5 + 5x^4 \right) |_{x = 1} = 30x^4 + 20x^3 |_{x = 1} = 30 + 20 = 50$.

(ii) $M_2 (G) = D_x (M_2 (G, x)) |_{x = 1} = \frac{d}{dx} \left(6x^6 + 2x^4 + 3x^3 \right) |_{x = 1} = 36x^5 + 8x^3 + 9x^2 |_{x = 1} = 36 + 8 + 9 = 53$.

(iii) $M_3 (G) = D_x (M_3 (G, x)) |_{x = 1} = \frac{d}{dx} \left(3x^2 + 6x + 2 \right) |_{x = 1} = 6x + 6 |_{x = 1} = 6 + 6 = 12$.

(iv) $F(G) = D_x (F(G, x)) |_{x = 1} = \frac{d}{dx} \left(6x^{13} + 3x^{10} + 2x^8 \right) |_{x = 1} = 78x^{12} + 30x^9 + 16x^7 |_{x = 1} = 78 + 30 + 16 = 124$.

(v) $M_1^* (G) = D_x (M_1^* (G, x)) |_{x = 1} = \frac{d}{dx} \left(9x^3 + 10x^2 + 3x \right) |_{x = 1} = 27x^2 + 20x + 3 |_{x = 1} = 27 + 20 + 3 = 50$.

https://biointerfacere search.com/
The following theorem shows the M-Polynomial of some TIs.

Theorem 3.3. Let G be a chemical graph of acetaminophen ($C_8H_9NO_2$) drug. Then,

$$M(G; x, y) = 3x^3 + 2x^2 y^2 + 6x^2 y^3.$$

Proof: From equation (1), The M – Polynomial of G arrives as follows.

$$M(G; x, y) = \sum_{l \leq m} k_{l, m} x^l y^m,$$

where $l, m \in \{1, 2, 3\}$.

Substituting the values of $k_{1, 3}, k_{2, 2},$ and $k_{2, 3},$ we get,

$$M(G; x, y) = 3x^3 + 2x^2 y^2 + 6x^2 y^3.$$

Note, we evaluate some indices for the molecular graph of acetaminophen using M-Polynomials derived in the previous theorem.

Theorem 3.4. Let G be a chemical graph of acetaminophen ($C_8H_9NO_2$) drug. Then, we have,

(i) $M_1(G) = 50.$
(ii) $M_2(G) = 53.$
(iii) $m M_2 (G) = 2.5.$
(iv) $R_\alpha(G) = 3\alpha^4 + 2^2\alpha + 6\alpha + 1.$
(v) $RR_\alpha(G) = \frac{1}{3\alpha^4} + \frac{1}{2^2\alpha^4} + \frac{1}{6^2 \alpha^4}.$
(vi) $SDD(G) = 27.$
(vii) $H(G) = 4.9.$
(viii) $ISI(G) = 11.45.$
(ix) $AZI(G) = 74.125.$
(x) $F(G) = 124.$
(xi) $Re M_3 (G) = 248.$
(xii) $ABC(G) = 8.10634.$

Proof: Let $M(G; x, y) = 3x^3 + 2x^2 y^2 + 6x^2 y^3.$

$$J(\alpha, \beta)(f(x, y)) = 9x y^3 + 8x^2 y^2 + 36x^2 y^3.$$

$$S_\alpha J(\alpha, \beta)(f(x, y)) = \frac{17}{4}x^4 + \frac{36}{5}x^5.$$
Using Table 4 and the above expressions, one can get,

\[
\binom{D_x + D_y}{f(x, y)} = 12x^3 + 8x^2 y^2 + 30x^2 y^3.
\]

\[
\binom{D_x^3 D_y}{f(x, y)} = 81x y^3 + 128x^2 y^2 + 1296x^2 y^3.
\]

\[
J\binom{D_x^3 D_y}{f(x, y)} = 81x^4 + 128x^4 + 1296x^5 = 209x^4 + 1296x^5.
\]

\[
Q - J\binom{D_x^3 D_y}{f(x, y)} = 209x^2 + 1296x^3.
\]

\[
S_x^3 Q - J\binom{D_x^3 D_y}{f(x, y)} = \frac{209}{8}x^2 + \frac{1296}{27}x^3.
\]

\[
\binom{D_x^2 + D_y^2}{f(x, y)} = 30x^3 + 16x^2 y^2 + 78x^2 y^3.
\]

\[
\binom{D_x^3 D_y^3}{f(x, y)} = 3^{a+1}x y^3 + 2^{2a+1}x^2 y^2 + 6^{a+1}x^2 y^3.
\]

\[
\binom{S_x^3 S_y}{f(x, y)} = x y^3 + \frac{1}{2}x^2 y^2 + x^2 y^3.
\]

\[
\binom{D_x^3 D_y}{f(x, y)} = 36x^3 + 32x^2 y^2 + 180x^2 y^3.
\]

\[
\binom{D_x S_y + D_y S_x}{f(x, y)} = 10x y^3 + 4x^2 y^2 + 13x^2 y^3.
\]

\[
\binom{S_x^3 Q - J D_x^3 D_y^3}{f(x, y)} = \sqrt{6}x^2 + \sqrt{2}x^2 + \sqrt{18}x^3.
\]

Using Table 4 and the above expressions, one can get,

\[
M_1(G) = 12x^3 + 8x^2 y^2 + 30x^2 y^3 |_{x=y=1} = 50.
\]

\[
M_2(G) = 9x^3 + 8x^2 y^2 + 36x^2 y^3 |_{x=y=1} = 53.
\]

\[
m M_2(G) = 12x^3 + \frac{1}{2}x^2 y^2 + x^2 y^3 |_{x=y=1} = 2.5.
\]

\[
R_\alpha(G) = 3^{a+1}x y^3 + 2^{2a+1}x^2 y^2 + 6^{a+1}x^2 y^3 |_{x=y=1} = 3^{a+1} + 2^{2a+1} + 6^{a+1}.
\]

\[
RR_\alpha(G) = 12x^3 + \frac{1}{2}x^2 y^2 + x^2 y^3 |_{x=y=1} = \frac{1}{3^{a+1}} + \frac{1}{2^{2a+1}} + \frac{1}{6^{a+1}}.
\]

\[
SDD(G) = 10x y^3 + 4x^2 y^2 + 13x^2 y^3 |_{x=y=1} = 27.
\]

\[
H(G) = 2\left(\frac{5}{4}x^4 + \frac{6}{5}x^5\right) |_{x=1} = 4.9.
\]

\[
ISI(G) = \frac{17}{4}x^4 + \frac{36}{5}x^5 |_{x=1} = 11.45
\]

\[
AZI(G) = \frac{209}{8}x^2 + \frac{1296}{27}x^3 |_{x=1} = 74.125.
\]

\[
F(G) = 30x y^3 + 16x^2 y^2 + 78x^2 y^3 |_{x=y=1} = 124.
\]

\[
Re M_3(G) = 36x y^3 + 32x^2 y^2 + 180x^2 y^3 |_{x=y=1} = 248.
\]

\[
ABC(G) = \sqrt{6}x^2 + \sqrt{2}x^2 + \sqrt{18}x^3 |_{x=1} = 8.10634.
\]

Theorem 3.5. Let G be a chemical graph of acetaminophen (C₆H₉NO₂) drug. Then, we get,
(i) $M_1^\alpha(G) = 5 \times 4^\alpha + 6 \times 5^\alpha$.

(ii) $M_2^\alpha(G) = 3^\alpha + 1 + 2 \times 4^\alpha + 6^\alpha + 1$.

(iii) $HM_1(G) = 230$.

(iv) $HM_2(G) = 275$.

(v) $RM_2(G) = 14$.

(vi) $\text{Re } M_1(G) = 11$.

(vii) $\text{Re } M_2(G) = 11.45$.

(viii) $N_z(G) = 54$.

(ix) $\chi_G = 21.9017$.

(x) $R^0_1(G) = 8.2676$.

(xi) $R_\alpha^0(G) = 3 \alpha + 5(2)\alpha + 3(3)\alpha$.

(xii) $R(G) = 5.182$.

(xiii) $RR(G) = 23.89309$.

(xiv) $RRR(G) = 10.4853$.

(xv) $R(G) = 4$.

(xvi) $SCI(G) = \chi(G) = 5.18328$.

(xvii) $AG(G) = 11.58782$.

(xviii) $\text{SEI } \alpha(G) = 3\alpha + 10\alpha^2 + 3\alpha^3, \alpha \neq 1$.

(xix) $H_k(G) = \frac{5}{2^k} + 6\left(\frac{2}{5}\right)^k$.

(xx) $OGA_k(G) = 3\left(\frac{\sqrt{3}}{2}\right)^k + 6\left(\frac{2\sqrt{6}}{5}\right)^k + 2$.

(xxi) $OAG(G) = 10.476852$.

(xxii) $SK(G) = 25$.

(xxiii) $SK_1(G) = 26.5$.

(xxiv) $SK_2(G) = 57.5$.

(xxv) $M_1^{\alpha}(G) = 115$.

(xxvi) $IRM(G) = 18$.

(xxvii) $A(G) = 12$.

(xxviii) $B(G) = 6$.

(xxix) $SO(G) = 36.777$.

Proof: Let the chemical graph of acetaminophen be taken as G.

(i) $M_1^\alpha(G) = k_{1,3} \times 4^\alpha + k_{2,2} \times 4^\alpha + k_{2,3} \times 5^\alpha = 5 \times 4^\alpha + 6 \times 5^\alpha$.

(ii) $M_2^\alpha(G) = k_{1,3} \times 3^\alpha + k_{2,2} \times 4^\alpha + k_{2,3} \times 6^\alpha = 3^\alpha + 1 + 2 \times 4^\alpha + 6^\alpha + 1$.

Put $\alpha = 2$ in (i) and (ii), we get,
\[HM_1(G) = 230; \quad HM_2(G) = 275. \]

If \(\alpha = \frac{1}{2}, \frac{-1}{2} \),

We obtain \(RR(G) = 23.89309; \ R(G) = 5.182 \) directly from (ii).

\[OGA_k(G) = k_{1,3} \times \left(\frac{2 \sqrt{2} \times 2}{2 + 3} \right)^k + k_{2,2} \times \left(\frac{2 \sqrt{2} \times 2}{2 + 3} \right)^k + k_{2,3} \times \left(\frac{2 \sqrt{2} \times 2}{2 + 3} \right)^k = 3 \left(\frac{\sqrt{3}}{2} \right)^k + 6 \left(\frac{2 \sqrt{6}}{5} \right)^k + 2. \]

\[OGA(G) = 10.476852 \] would be got from \(OGA_k(G) \) when \(k = 1 \).

One can arrive remaining TIs by substituting the values of \(d_u, d_w, j_1 = 3, j_2 = 5, j_3 = 3 \),
\(k_{1,3} = 3, k_{2,2} = 2 \), and \(k_{2,3} = 6 \) in the rules mentioned in Table 1.

We derive the multiplicative TIs of Acetaminophen as follows,

Theorem 3.6. For a chemical graph of acetaminophen (\(C_8H_9NO_2 \)) drug G, we obtain,

(i) \[W^\alpha(G) = 1^{3\alpha} \times 2^{5\alpha} \times 3^{3\alpha}. \]

(ii) \[NK(G) = 864. \]

(iii) \[II_1(G) = 746496. \]

(iv) \[MZ_1^\alpha(G) = 2^{10\alpha} \times 5^{6\alpha}. \]

(v) \[MZ_2^\alpha(G) = 2^{10\alpha} \times 3^{9\alpha}. \]

(vi) \[II'_1(G) = 1.6 \times 10^7. \]

(vii) \[II_2(G) = 2.0155 \times 10^7. \]

(viii) \[HH_1(G) = 2.56 \times 10^{14}. \]

(ix) \[HH_2(G) = 4.0624 \times 10^{14}. \]

(x) \[SCII(G) = 0.00005. \]

(xi) \[PCII(G) = 0.000223. \]

(xii) \[SFII(G) = 1.8 \times 10^{-6}. \]

(xiii) \[PFII(G) = 4.9615 \times 10^{-8}. \]

(xiv) \[F_1II(G) = 5.558 \times 10^{-5}. \]

(xv) \[F_2II(G) = 20155392. \]

(xvi) \[GA^\alpha II(G) = \left(\frac{\sqrt{3}}{2} \right)^{3\alpha} \times \left(\frac{2 \sqrt{6}}{5} \right)^{6\alpha}. \]

(xvii) \[ABCII(G) = 0.03402. \]

(xviii) \[HII(G) = 0.000128. \]

(xix) \[GAII(G) = 0.57465. \]

(xx) \[AZII(G) = 644972544. \]

Proof: Applying the values of degrees \(d_u, d_w \) of vertices u and w, and \(j_1 = 3, j_2 = 5, j_3 = 3 \),
\(k_{1,3} = 3, k_{2,2} = 2, k_{2,3} = 6 \) in the formulae presented in Table 2, one can compute multiplicative TIs.
Figure 2. Plotting (a) M_1, (b) F, (c) F^*, (d) H, (e) ID, (f) M_1^*, (g) M_2, and (h) M_3 polynomials of Acetaminophen (C$_8$H$_9$NO$_2$) drug.
The graphs plotted in Figure 2 represent the various polynomials of Acetaminophen drug, which are self-explanatory to somewhat extent. Interestingly, the Modified Forgotten index progresses rapidly than that of others. The behavior of ID(G,x) and $M_3(G,x)$ polynomials is almost similar. Figure 3 illustrates the 3D surface plot for the M-polynomial of Acetaminophen.

4. Conclusions

For the first time, we have presented the numerical examination of several important sums and product connectivity TIs for the molecular graph of Acetaminophen drug, especially irregularity ($IRM(G)$, $A(G)$, $B(G)$), SK, ABC, SDD and Sombor indices. The Zagreb, Harmonic, Forgotten, and Inverse degree polynomials were also computed with graphical representations. Furthermore, the closed form of M-polynomial of Acetaminophen was successfully initiated, and their accurate expressions were obtained. The computed indices can offer potential applications in pharmaceutical sciences such as the drug designing field, data mining, and chemical documentation studies.

Funding

This research received no external funding.

Acknowledgments

This research has no acknowledgment.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bondy, J.R; Murty, U.S.R. *Graph theory*. 1st ed.; Springer; New York; USA, 2008; pp. 1–655.
2. Balakrishnan, R; Ranganathan, K. *A text book of graph theory*. 2nd ed.; Springer-Verlag; New York; USA, 2012; pp. 1–292. https://doi.org/10.1007/978-1-4614-4529-6.
3. Trinajstić, N. *Chemical graph theory*. 2nd ed.; CRC Press; New York, USA, 1992; pp. 1–352; https://doi.org/10.1201/9781315139111.
4. Wiener, H. Structural Determination of Paraffin Boiling Points. *Journal of the American Chemical Society* **1947**, *69*, 17-20, https://doi.org/10.1021/ja01193a005.

5. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total \(\phi \)-electron energy of alternant hydrocarbons. *Chemical Physics Letters* **1972**, *17*, 535-538, https://doi.org/10.1016/0009-2614(72)85099-1.

6. Gutman, I. Degree-based topological indices. *Croatica chimica acta* **2013**, *86*, 351-361, http://dx.doi.org/10.5562/ccca2294.

7. Nikolić, S.; Kovačević, G.; Miličević, A.; Trinajstić, N. The Zagreb Indices 30 Years After. *Croatica Chimica Acta* **2003**, *76*, 113-124.

8. Idrees, N.; Saif, M.J.; Sadiq, A.; Rauf, A.; Hussain, F. Topological indices of H-naphthalene nanosheet. *Open Chemistry* **2018**, *16*, 1184-1188, http://dx.doi.org/10.1515/chem-2018-0131.

9. Baća, M.; Horváthová, J.; Mokrišová, M.; Semaničová-Feňovčíková, A.; Suhányiová, A. On topological indices of a carbon nanotube network. *Canadian Journal of Chemistry* **2015**, *93*, 1157-1160, https://doi.org/10.1139/cjc-2015-0175.

10. Afzal, H.U.: Fatima, T. On Topological Indices of OT \([m, n]\) Octagonal Tillings and TiO2 Nanotubes. *Acta chimica Slovenica* **2019**, *66*, 435-442.

11. Javaid, M.; Liu, J.-B.; Rehman, M.A.; Wang, S. On the certain topological indices of titania nanotube TiO2 \([m, n]\). *Zeitschrift für Naturforschung A* **2017**, *72*, 647-654, https://doi.org/10.1515/zna-2017-0101.

12. Munir, M.; Nazeer, W.; Rafique, S.; Nizami, A.R.; Kang, S.M. Some Computational Aspects of Boron Triangular Nanotubes. *Symmetry* **2017**, *9*, https://doi.org/10.3390/sym9010006.

13. Deng, F.; Zhang, X.; Alaieyan, M.; Mehbob, A.; Farahani, M.R. Topological Indices of the Pent-Hexagonal Nanosheets \(VC_2C_7\) and \(HC_2C_7\). *Advances in Materials Science and Engineering* **2019**, *12*, https://doi.org/10.1155/2019/9594549.

14. Warwick, C. Paracetamol and fever management. *Journal of the Royal Society for the Promotion of Health* **2008**, *128*, 320-323, https://doi.org/10.1177/1466424008092794.

15. Mondal, S.; De, N.; Pal, A. Topological Indices of Some Chemical Structures Applied for the Treatment of COVID-19 Patients. *Polycyclic Aromatic Compounds* **2020**, 1-15, https://doi.org/10.1080/10406638.2020.1770306.

16. Saragiotto, B.T.; Abdel Shaheed, C.; Mohan, C.G. Paracetamol for pain in adults. *BMJ* **2019**, *367*, https://doi.org/10.1136/bmj.i6693.

17. Black, E.; Khor, K.E.; Kennedy, D.; Chutatape, A.; Sharma, S.; Vancaillie, T.; Demirkol, A. Medication Use and Pain Management in Pregnancy: A Critical Review. *Pain Practice* **2019**, *19*, 875-899, https://doi.org/10.1177/1469909X18810528.

18. Mangus, B.C.; Miller, M.G. Pharmacology application in athletic training. *Philadelphia, Pennsylvania: F.A. Davis* **2005**, *39*.

19. Bales, J.R.; Nicholson, J.K.; Sadler, P.J. Two-dimensional proton nuclear magnetic resonance “maps” of acetaminophen metabolites in human urine. *Clin Chem* **1985**, *31*, 757-762.

20. Randic, M. Characterization of molecular branching. *Journal of the American Chemical Society* **1975**, *97*, 6609-6615, https://doi.org/10.1021/ja00856a001.

21. Balaban, A.T. Chemical graphs. *Theoretica chimica acta* **1979**, *53*, 355-375, https://doi.org/10.1007/BF00555695.

22. Roosthaan, C.C.J.; Mulliken, R.S. Molecular Orbital Treatment of the Ultraviolet Spectra of Benzene and Borazol. *The Journal of Chemical Physics* **1948**, *16*, 118-122, https://doi.org/10.1063/1.1746791.

23. Li, X.; Shi, Y. A survey on the Randic index. *MATCH Commun. Math. Comput. Chem.* **2008**, *59*, 127-156.

24. Dearden, J.C. The Use of Topological Indices in QSAR and QSPR Modeling. Advance in QSAR Modeling, Challenges and Advances in Computational Chemistry and Physics **2017**, *24*, 1–555, https://doi.org/10.1007/978-3-319-56850-8.

25. Astaneh-Asl, A.; Fath-Tabar, G.H. Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs. *Iranian Journal of Mathematical Chemistry* **2011**, *2*, 73-78, https://doi.org/10.22052/ijmc.2011.5177.

26. Shirdel, G.H.; Rezapour, H.; Sayadi, A.M. The Hyper-Zagreb Index of Graph Operations. *Iranian Journal of Mathematical Chemistry* **2013**, *4*, 213-220, https://dx.doi.org/10.22052/ijmc.2013.5294.

27. Furtula, B.; Gutman, I.; Ediz, S. On difference of Zagreb indices. *Discrete Applied Mathematics* **2014**, *178*, 83-88, https://doi.org/10.1016/j.dam.2014.06.011.

28. Ranjini, P.S; Lokesha, V; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. *Int. J. Graph Theory* **2013**, *1*, 116–121.

29. Miličević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. *Molecular Diversity* **2004**, *8*, 393-399, https://doi.org/10.1023/B:MODI.0000047504.14261.2a.

30. Jahanbani, A.; Shooestary, H. Nano-Zagreb Index and Multiplicative Nano-Zagreb Index of Some Graph Operations. *International Journal of Computing Science And Applied Mathematics* **2019**, *5*, 15–22, https://doi.org/10.12962/j24775401.v5i1.4659.

31. Fansury, M.C.; Rinurwati. Sum Nano-Zagreb Index of Some Graph Operations. *Journal of Physics: Conference Series* **2020**, *1490*, https://doi.org/10.1088/1742-6596/1490/1/012040.
32. Manso, F.C.G.; Scatena, H.; Bruns, R.E.; Rubira, A.F.; Muniz, E.C. Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fi index. Journal of Molecular Liquids 2012, 165, 125-132, https://doi.org/10.1016/j.molliq.2011.10.019.

33. Hu, Y.; Li, X.; Shi, Y.; Xu, T. Connected (n,m)-graphs with minimum and maximum zeroth- order general Randic index. Discrete Appl. Math. 2007, 155, 1044–1054.

34. Bollobas, B; Erdos, P. Graphs of extremal weights. Ars Combin. 1998, 50, 225–233.

35. Amić, D.; Bešlo, D.; Lučić, B.; Nikolić, S.; Trinajstić, N. The Vertex-Connectivity index revisited. Journal of Chemical Information and Computer Sciences 1998, 38, 819-822, https://doi.org/10.1021/ci980039b.

36. Dvóřák, Z.; Lidický, B.; Škrekovský, R. Randić index and the diameter of a graph. European Journal of Combinatorics 2011, 32, 434-442, https://doi.org/10.1016/j.ejc.2010.12.002.

37. Zhou, B.; Trinajstić, N. On a novel connectivity index. Journal of Mathematical Chemistry 2009, 46, 1252-1270, https://doi.org/10.1007/s10910-008-9515-z.

38. Zhou, B.; Luo W.W. A note on general Randić index. MATCH Commun. Math. Comput. Chem. 2009, 62, 155–162.

39. Shegehall, V.S.; Kanabar, R. Arithmetic–geometric indices of path graphs. J. Math. Comput. Sci. 2015, 16, 19–24.

40. Vukičević, D. Bond Additive Modeling 4. QSPR and QSAR studies of the variable Adriatic indices. Croat. Chem. Acta. 2011, 84, 87–91.

41. Vukicevic, D. Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index. Croatica Chemica Acta 2011, 84, 93-101, https://doi.org/10.5562/cca1667.

42. Favaron, O.; Mahéo, M.; Saclé, J.F. Some eigenvalue properties in graphs (conjectures of Graffiti — II). Discrete Mathematics 1993, 111, 197-220, https://doi.org/10.1016/0012-365X(93)90156-N.

43. Fajtlowicz, S. On conjectures of graffiti-ii. Congr. Numer. 1987, 60, 187–197.

44. Yan, L.; Gao, W.; Li, J. General Harmonic Index and General Sum Connectivity Index of Polyomino Chains and Nanotubes. Journal of Computational and Theoretical Nanoscience 2015, 12, 3940-3944, https://doi.org/10.1166/jctn.2015.4308.

45. Vukičević, D.; Furtula, B. TI based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376.

46. Shigehall, V.S.; Kanabar, R. Computation of New Degree-Based Topological Indices of Graphene. Journal of Mathematics 2016, 2016, 1–6, https://doi.org/10.1155/2016/4341919.

47. Furtula, B.; Gutman, I. A forgotten topological index. Journal of Mathematical Chemistry 2015, 53, 1184-1190, http://dx.doi.org/10.1007/s10910-015-0480-z.

48. Sedlar, J.; Stevanovic, D.; Vasilyev, A. On the inverse sum indeg index. Discrete Applied Mathematics 2015, 184, 202-212.

49. Vukičević, D.; Gasperov, M. Bond additive modeling I. adriatic indices. Croatica Chemica Acta. 2010, 83, 243–260.

50. Furtula, B.; Graovac, A.; Vukičević, D. Augmented zagreb index. Journal of Mathematical Chemistry 2010, 48, 370–380.

51. Hamzeh, A.; Réti, T. An Analogue of Zagreb Index Inequality Obtained from Graph Irregularity Measures. Match (Mulheim an der Ruhr, Germany) 2014, 72, 669-683.

52. Albertson, M. The irregularity of a graph. Ars. Combin. 1997, 46, 219–225.

53. Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: modelling the enthalpy of formation of alkanes. Indian Journal of Chemistry 1998, 37A, 849–855.

54. Bell, F.K. A note on the irregularity of graphs. Linear Algebra and its Applications 1992, 161, 45-54, https://doi.org/10.1016/0024-3795(92)90004-T.

55. Alwardi, A.; Alqesmah, A.; Rangarajan, R.; Cangul, I.N. Entire Zagreb indices of graphs. Discrete mathematics, algorithms and applications 2018, 10, https://doi.org/10.1515/mgmc-2020-0027.

56. Gutman, I. Geometric approach to degree based topological indices: Sombor indices. MATCH Common, Math. Comput. Chem. 2021, 86, 11–16.

57. Das, K.C.; Çevik, A.S.; Cangul, I.N.; Shang, Y. On Sombor Index. Symmetry 2021, 13, https://doi.org/10.3390/sym13010140.

58. Gutman, I. Some basic properties of Sombor indices. Open Journal of Discrete Applied Mathematics 2021, 4, 1–3.

59. Kulli, V.R. Sombor indices of certain graph operators. International Journal of Engineering Sciences and Research Technology 2021, 10, 127–134, https://doi.org/10.29211/ijesrt.v10i1.2021.12.

60. Kulli, V.R. Multiplicative Sombor indices of certain nanotubes. International Journal of Mathematical Archive 2021, 12.

61. Kulli, V.; Gutman, I. Computation of Sombor Indices of Certain Networks. International Journal of Applied Chemistry 2021, 8, 1-5, https://doi.org/10.14445/23939133/IJAC-V8I1P101.

62. Milovanovic, I.; Milovanovic, E.; Matejic, M. On some mathematical properties of Sombor indices. Bull. Int. Math. Virtual Inst 2021, 11, 341-353.

63. Redzepovic, I. Chemical applicability of Sombor indices. J. Serb. Chem. Soc. 2021, 86, 445-457, https://doi.org/10.2298/JSC201215006R.
64. Reti, T.; Doslic, T.; Ali, A. On the Sombor index of graphs. *Contributions of Mathematics* 2021, 3, 11–18.
65. Narumi, H.; Katayama, M. Simple topological index: a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. *Memoirs of the Faculty of Engineering, Hokkaido University* 1984, 16, 209–214.
66. Wang, S.; Wei, B. Multiplicative Zagreb indices of k-trees. *Discrete applied mathematics* 2015, 180, 168–175, https://doi.org/10.1016/j.dam.2014.08.017.
67. Kulli, V.R. Multiplicative connectivity indices of TUC4C8 [m, n] and TUC4 [m, n] nanotubes. *Journal of computer and mathematical sciences* 2016, 9, 1047–1605.
68. Gutman, I.; Rusci, B.; Trinajstí, N.; Wilcox, C.F.Jr. Graph theory and molecular orbitals. XII. Acyclic polyenes. *Journal of chemical physics* 1975, 62, 3399–3405, https://doi.org/10.1063/1.430994.
69. Kulli, V.R.; Stone, B.; Wang, S.; Wei, B. Generalised multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems. *Z. Naturforsch. A* 2017, 72, 573–576, https://doi.org/10.1515/znan-2017-0104.
70. Eliasi, M.; Irmanansesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. *Match Commun. Math. Comput. Chem.* 2012, 68, 217–230.
71. Kulli, V.R. Multiplicative Hyper–Zagreb indices and coincides of graphs: computing these indices of some nanostructures. *Int. research journal of pure algebra* 2016, 6, 342–347.
72. Bhanumathi, M.; Rani, K.E.J. On multiplicative Harmonic index, multiplicative ISI index and multiplicative F index of TUC4C8 [m, n] and TUC4[m, n] nanotubes. *Int. j. recent trends life sci. math.* 2017, 4, 1–8.
73. Mobia, G. On F–polynomial, multiple and hyper F–index of some molecular graphs. *Bulletin of Mathematical Sciences and Applications* 2018, 20, 36–43, https://doi.org/10.18052/www.scipress.com/BMSA.20.36.
74. Kwon, Y.C.; Virk, A.R.; Nazeer, W.; Rehman, M.A.; Kang, S.M. On the multiplicative degree-based topological indices of silicon-carbon SiC2-I [p,q] and SiC2-II [p,q]. *Symmetry* 2018, 10, https://doi.org/10.3390/sym10080320.
75. Mehdi, E.; Irmanansesh, A. On ordinary generalized geometric-arithmetic index. *Applied Mathematics Letters* 2011, 24, 582–587, https://doi.org/10.1016/j.aml.2010.11.021.
76. Bhanumathi, M.; Rani, K.E.J. On Some Multiplicative Topological Indices. *Int. j. recent trends life sci. math.* 2017, 4, 9–19.
77. Irmanansesh, M.A.; Saheli, M. On the harmonic index and harmonic polynomial of Caterpillars with diameter four. *Iran. J. Math. Chem.* 2014, 5, 35–43, https://dx.doi.org/10.22052/ijmcc.2015.9044.
78. Shuxian, L. Zagreb polynomials of thorn graphs. *Kragujevac J. Sci.* 2011, 33, 33–38.
79. Deutsch, E.; Kavzar, S. M-polynomial and degree-based topological indices. *Iran Journal of Mathematical Chemistry* 2015, 6, 93–102.
80. Hernández, J.C.; Méndez-Bermúdez, J.A.; Rodríguez, J.M.; Sigarreta, J.M. Harmonic Index and Harmonic Polynomial on Graph Operations. *Symmetry* 2018, 10, https://doi.org/10.3390/sym10100456.
81. Mumtaz, H.B.; Javaid, M.; Awais, H.M.; Bonyah, E. Topological Indices of Pent-Heptagonal Nanosheets via M-Polynomials. *Journal of Mathematics* 2021, 2021, 1–13, https://doi.org/10.1155/2021/4863993.
82. Irfan, M.; Rehman, H.U.; Almusawa, H.; Rasheed, S.; Baloch, I. A. M-polynomials and topological indices for line graphs of chain silicate network and h-naphtalenic nanotubes, *Journal of Mathematics, 2021*, 1–11, https://doi.org/10.1155/2021/5551825.
83. Raza Z.; Sukaiti, E. K. M-polynomial and degree based topological indices of some nanostructures, *Symmetry, 2020*, 12, 1–16, https://doi.org/10.3390/sym12050831.
84. Khalaf, A. J. M.; Hussain, S.; Afzal, D.; Afzal, F.; Maqbool, A. M-polynomial and topological indices of book graph. *Journal of Discrete Mathematical Sciences and Cryptography, 2020*, 23, 1217–1237, https://doi.org/10.1080/09720529.2020.1809115.