REVIEW

Beginning at the ends: telomeres and human disease [version 1; referees: 4 approved]

Sharon A. Savage

Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA

Abstract
Studies of rare and common illnesses have led to remarkable progress in the understanding of the role of telomeres (nucleoprotein complexes at chromosome ends essential for chromosomal integrity) in human disease. Telomere biology disorders encompass a growing spectrum of conditions caused by rare pathogenic germline variants in genes encoding essential aspects of telomere function. Dyskeratosis congenita, a disorder at the severe end of this spectrum, typically presents in childhood with the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other medical problems. In contrast, the less severe end of the telomere biology disorder spectrum consists of middle-age or older adults with just one feature typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone marrow failure. In the common disease realm, large-scale molecular epidemiology studies have discovered novel associations between illnesses, such as cancer, heart disease, and mental health, and both telomere length and common genetic variants in telomere biology genes. This review highlights recent findings of telomere biology in human disease from both the rare and common disease perspectives. Multi-disciplinary collaborations between clinicians, basic scientists, and epidemiologist are essential as we seek to incorporate new telomere biology discoveries to improve health outcomes.

Keywords
telomere, dyskeratosis congenita, telomere biology disorder, cancer, Coats plus, Hoyeraal Hreidsarsson syndrome, epidemiology
Introduction

Telomeres are the nucleoprotein complex at chromosome ends with essential roles in maintaining chromosomal integrity. They shorten with each cell division because of incomplete replication of the 3′ ends of DNA and thus are markers of cellular aging. Over the last decade, there has been remarkable growth in the breadth and depth of understanding the multiple roles of telomere biology in human disease. At one end of the spectrum, very rare pathogenic germline genetic variants in telomere biology genes cause exceedingly short telomeres, resulting in dyskeratosis congenita (DC) and its related telomere biology disorders. The other end of the spectrum consists of large-scale population-based studies seeking to determine associations between telomere length human disease, environmental exposures, or common genetic variants as well as the interactions between these factors.

The complexity of these interactions requires an integrated understanding of telomere basic science, clinical medicine, and epidemiology (Figure 1). Each of these topics is worthy of an in-depth critical review beyond the scope of this article. Instead, I will highlight some key findings and methodologic considerations and discuss where additional research is needed to aid in understanding the contribution of telomere biology to both rare and common human diseases.

Dyskeratosis congenita – a direct connection between germline telomere biology and human disease

DC was first described in a 1906 case report of males with the mucocutaneous triad of abnormal skin pigmentation, nail dys trophy, and oral leukoplakia (Figure 2). Additional similar cases were reported, including the first female case in 1963. Patients with DC also have very high rates of bone marrow failure; stenosis of the esophagus, urethra, or lacrimal ducts (or a combination of these); head and neck squamous cell carcinoma (HNSCC); myelodysplastic syndrome (MDS); acute myeloid leukemia (AML); pulmonary fibrosis; liver disease; avascular necrosis of the hips; and other medical problems (Table 1). DC is inherited in X-linked recessive, autosomal dominant, or autosomal recessive patterns.

Figure 1. Factors associated with human disease are integrally connected to telomere biology. This schematic illustrates the complex relationships between telomere biology, disease, aging, genetics, and environmental exposures, all of which should be considered in studies of telomeres and human disease.

Figure 2. Mucocutaneous features of dyskeratosis congenita of an adult male whose disease is due to a DKC1 mutation. (A) Dystrophic and ridged fingernails. (B) Hyper- and hypo-pigmented skin of neck and upper chest. (C) Irregular leukoplakia of the tongue.
The first DC genetic locus was mapped to Xq28 in 1996 and specifically to mutations in dyskerin (encoded by DKC1) in 1999–10. The seminal work by Mitchell and Collins was the first to show a connection between telomere biology and human disease through aberrant dyskerin function and the resultant very short telomeres now well known in patients with DC11. Currently, DKC1 mutations account for about 25% of classic DC cases. A combination of candidate gene sequencing, genetic linkage studies, and whole exome sequencing occurring over the last 15 years has since identified at least 14 telomere biology genes associated with DC or DC-like phenotypes: telomerase holoenzyme complex (DKC1, TERC, TERT, NOP10, and NHP2), shelterin telomere protection complex (ACD, TINF2, and POT1), telomere capping proteins (CTC1 and STN1), and other proteins that directly or indirectly interact with these key cellular processes (RTEL1, NAF1, WRAP53, and PARN) (Figure 3 and Table 2) (reviewed in 6).

The germline mutations in DC-associated telomere biology genes result in very short telomere lengths for age (Figure 4). This knowledge made it possible to develop a diagnostic test for DC, flow cytometry with fluorescent in situ hybridization (flow FISH), in leukocyte subsets12. Lymphocyte telomeres less than the first percentile for age are more than 95% sensitive and specific for differentiating patients with DC from their unaffected relatives or patients with other inherited bone marrow failure syndromes13,14. In addition to aiding diagnosis, using telomeres less than the first percentile for age has greatly added in discovering the genetic causes of DC15.

Telomere biology disorders – many names connected by pathophysiology
The discovery of the multiple genetic causes and modes of inheritance has led to a growing appreciation that there is a wide range of clinical phenotypes associated with mutations in telomere biology genes. This started with the identification of TERT and TERC mutations in patients with apparently isolated aplastic anemia or pulmonary fibrosis6–10. As defined above, classic DC is a complex multi-system disorder, but variable penetrance and expressivity of the clinical manifestations have identified a growing number of patients with one or a few features of DC as well as germline mutations in telomere biology genes and short telomeres (Table 1 and Table 2). This spectrum of illnesses has been termed telomeropathy, short telomere syndromes, or telomere biology disorders (TBDs)8–22. The last of these, TBD, was proposed and is favored because it is more descriptive and reflective of the underlying biology that unites these disorders8–22.

Table 1. Clinical features of telomere biology disorders.

Disorder	Key clinical features*
Dyskeratosis congenita (DC)	Mucocutaneous triad of nail dysplasia, abnormal skin pigmentation (hyper/hypopigmented, lacy, reticular pigmentation), and oral leukoplaia. BMF, PF, PAVM, liver disease, avascular necrosis of hips or shoulders (or both), urethral stenosis, lacrimal duct stenosis, esophageal stenosis, HNSCC, MDS, AML, and/or developmental delay. Traditional diagnosis of DC: classic triad or one of the triad, BMF, and two other findings.5
Revesz syndrome	Features of DC plus bilateral exudative retinopathy. Intracranial calcifications and developmental delay also reported.
Hoyeraal Hreidarsson syndrome	Features of DC plus cerebellar hypoplasia. Immunodeficiency has been reported as presenting problem.
Coats plus	Bilateral retinopathy, intracranial calcifications, leukodystrophy, anemia, osteopenia, and poor bone healing
Aplastic anemia	Progressive multi-lineage cytopenias, non-immune mediated. May occur in the absence of DC-associated features.
Myelodysplastic syndrome	Cytopenias with cellular dysplasia or clonal chromosomal translocations or both. May occur in the absence of DC-associated features.
Acute myeloid leukemia	May progress from MDS or aplastic anemia. May occur in the absence of DC-associated features.
Pulmonary fibrosis	May occur in the absence of DC-associated features.
Liver fibrosis	Non-alcoholic, non-infectious liver disease. May occur in the absence of DC-associated features.
Familial melanoma	Multiple family members with melanoma, often early age at onset
Familial lymphoproliferative disease	Multiple-affected family members with chronic lymphocytic leukemia, or non-Hodgkin lymphoma
Li-Fraumeni-like syndrome	Cancer family history notable for angiosarcoma and other cancers

*Key references are noted in Table 2. AA, aplastic anemia; AML, acute myeloid leukemia; BMF, bone marrow failure; DC, dyskeratosis congenital; HNSCC, head and neck squamous cell carcinoma; MDS, myelodysplastic syndrome; PAVM, pulmonary arteriovenous malformation; PF, pulmonary fibrosis.
Table 2. Germline genetics of telomere biology disorders.

Gene	Protein name(s)	Disorder(s)	Mode of inheritance	Year gene first associated with any disease, relevant reference(s)
DKC1	DKC1, dyskerin	DC, HH	XLR	1998\(^{23}\)
TERC	hTr, telomerase RNA component (encodes an RNA)	DC, AA, PF	AD	2001\(^{16,18,24}\)
TERT	TERT, telomerase	DC, AA, MDS, AML, PF, LD, FM	AD	2005\(^{16,17,25–27}\)
NOP10	NOP10, NOLA3, nucleolar protein family A, member 3	DC	AR	2007\(^{28}\)
NHP2	NHP2, NOLA2 nucleolar protein family A, member 2	DC	AR	2008\(^{29}\)
TINF2	TIN2, TERF1 (TRF1)-interacting nuclear factor 2	DC, HH, RS	AD	2008\(^{15}\)
WRAP53	TCA81, telomere cajal body associated protein 1	DC, HH	AR	2011\(^{30,31}\)
CTC1	CTC1, conserved telomere maintenance component 1	CP, DC	AR	2012\(^{32–34}\)
RETL1	RETL1, regulator of telomere elongation helicase 1	PF, AA	AD	2013\(^{35–40}\)
TERF2IP	RAP1, TERF2-interacting protein	FM	AD	2015\(^{41}\)
PARN	PARN, poly(A)-specific ribonuclease	PF	AD	2015\(^{42–45}\)
ACD	TPP1, telomere protection protein 1	AA, FM, FLPD	AD	2014\(^{46,47}\)
STN1	STN1, CST-complex subunit	CP	AR	2016\(^{48}\)
POT1	POT1, protection of telomeres 1	FM, FLPD, LFL	AD	2014\(^{47,50–52}\)
NAF1	NAF1, nuclear assembly factor 1 ribonucleoprotein	PF	AD	2016\(^{44}\)

AA, aplastic anemia; AD, autosomal dominant; AML, acute myeloid leukemia; AR, autosomal recessive; CP, Coats plus; DC, dyskeratosis congenita; FLPD, familial lymphoproliferative disease; FM, familial melanoma; HH, Hoyeraal-Hreidarsson syndrome; LD, liver disease; LFL, Li-Fraumeni-like syndrome; MDS, myelodysplastic syndrome; PF, pulmonary fibrosis; RS, Revesz syndrome; XLR, X-linked recessive.
The most complex TBDs are those disorders presenting very early in childhood, namely Hoyeraal Hreidarsson syndrome (HH), Revesz syndrome (RS), and Coats plus.55–60 In addition to having features of DC, patients with HH have cerebellar hypoplasia and immunodeficiency, whereas those with RS also have bilateral exudative retinopathy. Coats plus, a disorder characterized by retinal and gastrointestinal vascular abnormalities, poor bone healing, leukodystrophy, and cerebellar calcifications, joined the TBD spectrum when its primary cause was identified as autosomal recessive CTC1 mutations.32,33,59

The other end of the clinical spectrum includes patients with middle or later age at onset of pulmonary fibrosis, liver disease, or bone marrow failure and heterozygous germline mutations in NAFI, TERT, TERC, PARN, or RTEL1.17,18,42,41 Additionally, it is important to note that most patients do not have all of the DC-associated medical complications. The mucocutaneous triad is diagnostic but varies with the age of onset and is usually progressive over time. Many patients, even members of the same family, may present with just one feature but develop more over time because of variable penetrance and expressivity of germline telomere biology defects.

There is also a growing role of mutations in the shelterin complex and cancer-prone families without DC-related clinical manifestations. Heterozygous rare, pathogenic variants in POT1 resulting in longer telomeres have been reported in familial melanoma, familial chronic lymphocytic leukemia (CLL), and a Li-Fraumeni-like syndrome family.50–52 POT1 somatic mutations in CLL have also been associated with CLL outcomes.62–65 Familial melanoma has also been associated with germline mutations in ACD (TPP1) and TERF2IP (RAP1).41 These studies suggest an interesting dichotomy in clinical phenotypes resulting from long versus short telomeres.

Telomeres and cancer

Telomeres are closely connected to cancer biology because of the role they play in chromosomal stability. There is a

Figure 4. Schematic representation of the connections between age, telomere length, and human disease. Clinically significant telomeres associated with telomere biology disorders are generally at or below the first percentile for age (blue shape). Many association studies of telomere length and human phenotypes, including cancer, have identified statistically significant, but perhaps not clinically significant, differences in telomere length between cases and controls (represented by yellow and red). Some studies have identified rare families with germline mutations in components of the shelterin telomere protection complex as associated with longer telomeres (green shape). AA, aplastic anemia; CLL, chronic lymphocytic leukemia; CP, Coats plus; DC, dyskeratosis congenita; FM, familial melanoma; HH, Hoyeraal Hreidarsson syndrome; LD, liver disease; LFL, Li-Fraumeni-like syndrome; MDS, myelodysplastic syndrome; PF, pulmonary fibrosis; RS, Revesz syndrome.
detailed body of work in this realm and only a few of the key features will be highlighted herein as they have been reviewed in detail elsewhere.66–73

The primary hypotheses connecting telomeres and cancer are based on the fact that telomeres shorten with each cell division3. In general, cellular senescence or apoptosis is triggered when telomeres reach a critically short state. It likely takes just one critically short telomere on one chromosome arm to trigger these events as suggested in a TERC mouse model by Hemann et al.75. A cellular survival advantage is gained through bypassing apoptosis or senescence through the upregulation of telomerase, inactivation of TP53 or RB or both, initiation of alternative lengthening of telomeres (ALT), and other key biological pathways76–80. The continued division of cells originally destined for death is hypothesized to lead to continued accumulation of mutations, and sticky chromosome ends due to abnormal telomeres can contribute to chromosomal aneuploidy. Unchecked cellular growth can occur if these genetic aberrations result in a growth advantage.

Activating somatic mutations in the TERT promoter have been described in melanoma, bladder, thyroid, and some central nervous system cancers81–84. These somatic mutations in the TERT promoter result in increased telomerase expression and suggest that this activation could convey a growth advantage as cancer cells continue to divide despite the presence of aberrant telomeres.

Patients with DC/TBD have significantly increased risks of MDS, AML, HNSCC, and other malignancies14–16. The 2017 update of cancer in the National Cancer Institute Inherited Bone Marrow Failure Syndrome cohort reported that cancer in patients with DC occurs at an approximately four-fold higher incidence and a younger age than the general population67. MDS and AML occurred at 578- and 24-fold higher incidence, respectively, than the general population. There was also an excess of solid cancers in patients with DC with observed/expected ratios of 74 for any HNSCC and 216 for tongue HNSCC57. The mechanisms by which cancer develops in patients with DC/TBDS is unknown and represents an important research opportunity.

Cells of patients with TBD already have a “first hit” in a key component of telomere biology. Studies of the next steps in carcinogenesis in patient-derived cells could lead to important insights into the carcinogenic process.

The advent of telomere molecular epidemiology

Telomere molecular epidemiology has emerged with the development of high-throughput telomere length measurement methods, genome-wide genotyping platforms, and keen interest in the role of telomere biology in human disease68,69. These large, often population-based studies seek to determine (1) whether telomere length is associated with disease, (2) whether common genetic variants (that is, single-nucleotide polymorphisms, or SNPs) are associated with telomere length, (3) the degree to which SNPs contribute to telomere biology, and (4) interactions between telomere length, SNPs, and disease or phenotypes (Figure 1 and Table 3). Although a great deal of excitement has been generated by these studies, it is important to point out that differences in telomere length between cases and controls in large population-based studies may be statistically significant but not clinically relevant. “Short telomeres” in a large case-control or cohort study are still within the clinically “normal” range and not nearly as short as telomeres of patients with TBDs (Figure 4).

Robust and accurate telomere length measurement is at the crux of all telomere length association studies. Blood or buccal cell DNA telomere length has been evaluated in a wide array of association studies, including cancer, cardiovascular disease, mental health, inflammatory diseases, environmental exposures, and many other settings. There are numerous methods to determine telomere length in tissues, single cells, and DNA preparations, each appropriate for different applications and reviewed extensively90,91. Quantitative polymerase chain reaction (qPCR) is amenable to large studies because it uses very small amounts of DNA and can be scaled up rapidly32,92. However, qPCR telomere assays generate a relative telomere length and are very sensitive to DNA extraction methods and storage84. These challenges have led to significant challenges in reproducing data in case-control or cohort studies of qPCR relative telomere length and phenotypes95,96. The telomere restriction fragment

Table 3. Features of robust telomere length association studies.

Feature
Strong \textit{a priori} hypothesis of why telomere biology might be important in disease of interest
Comprehensive clinical phenotyping
Accurately measured exposure of interest
Large sample size with power calculations reported
Collection of samples prior to disease onset
Detailed information on how samples were collected, processed, and stored
Telomere length measurement methods described in detail, especially if any adaptations to published methods
Accurate and reproducible telomere length measurement
Strong statistical justification of association findings
method uses restriction enzymes to cut the subtelomeric ends of chromosomes in a DNA preparation and is most widely used in basic science laboratories, although a few groups use it in population-based studies.80,81

Blood or buccal cell telomere length association studies

This section highlights just a few key topics within the growing literature of telomere length association studies. For example, individuals of African ancestry have longer telomeres than those of European ancestry and thus ancestry should be accounted for in analyses.82,83 Since self-reported ancestry can be quite variable, genomic approaches may be helpful in classifying cases and controls in order to appropriately adjust for ancestry.

There is also a growing understanding of associations between environmental exposures and telomere length. Smokers have shorter telomeres than non-smokers and thus it is important to adjust for smoking in association analyses.84 Associations between prenatal exposures to smoking and air pollution as well as exposure to certain occupational chemicals have also been explored but with varying results.85-87 In each of these studies, it is essential to precisely quantify the exposure of interest in addition to using a robust and reproducible telomere length measurement.

Early cancer-telomere length association studies suggested shorter telomeres as a cancer risk factor88,89 but studies of other cancers were not consistent.90-92 Meta-analyses found that most studies with blood or buccal cell DNA collected prior to cancer diagnosis were null but that case-control studies were more likely to find associations.93,94 Similarly, a direct comparison of prospectively and retrospectively collected DNA samples from patients with breast or colorectal cancer reported that telomere shortening occurred primarily after cancer diagnosis.95 Many of these inconsistencies have been attributed to reverse causation bias due to the presence of cancer, underlying inflammation, or prior therapy at the time of sample collection.96,97 Currently, the most consistent studies are those of longer telomeres in pre-diagnostic samples of patients with lung cancer and melanoma.98-101 Interestingly, shorter leukocyte telomeres were associated with overall cancer mortality but not with cancer in a large prospective study of 64,637 individuals who developed 2,420 cancers.102

There is a growing body of telomere length association studies and different aspects of mental health, including measures of perceived stress in caregivers, exposure to early life adversity, and in patients with schizophrenia, bipolar disorder, and depression.103-105 The biological mechanisms underlying these findings are unknown but current hypotheses include stress responses inducing oxidative stress, resulting in DNA damage and telomere shortening. Notably, abnormalities in brain development are present in patients with HH (cerebellar hypoplasia), RS (intracranial calcifications), and Coats plus (leukodystrophy and intracranial calcifications).106-108 The only study to date of neuropsychiatric complications in DC found higher-than-expected occurrence of developmental delay and psychiatric disorders.109

Studies of DC/TBD patients by psychiatrists and neuropsychiatrists constitute an understudied area highly likely to generate important insights into telomere biology and brain development.

There is also a great deal of interest in using telomere length as a measure of biological age and even in modulating telomere length through lifestyle interventions. Numerous studies suggest associations between lifestyle, exercise, and telomere lengths.110-113 However, a recent review suggests that telomere length in and of itself is not sufficient as a specific aging biomarker.114

Current data consistently report shorter leukocyte telomeres in individuals with atherosclerotic cardiovascular disease than in unaffected controls.115-117 The biology underlying this association is thought to be related to chronic inflammation and oxidative stress coupled with aging of the vasculature. This prompted Aviv et al. to propose a model whereby age-dependent telomere shortening varies on the basis of the replicative needs of the specific tissue.118,119 They hypothesize that skeletal muscle (a minimally replicative cell type) may represent telomere length closer to the time of birth and that the gap between skeletal muscle and leukocyte (a rapidly dividing cell type) telomere length attrition could serve to aid understanding of the associations between telomere length and human disease with each patient, in effect, serving as their own control. The first such study testing this hypothesis showed that increased attrition of telomeres in leukocytes was associated with atherosclerotic cardiovascular disease.120

Single-nucleotide polymorphisms, telomere biology genes, and disease

The advent of genome-wide association studies (GWAS) opened the door to understanding associations between common genetic variants (that is, greater than 1% minor allele frequency, SNPs) and human disease or phenotypes (Figure 5) (reviewed in 141). GWAS genotype hundreds of thousands of SNPs in thousands of cases and controls and use methods to fine-tune risk estimates through large-scale replication studies and polygenic risk score computation.121

Numerous GWAS of cancer etiology have identified variants in telomere biology genes as being associated with cancer risk or outcomes. SNPs in the TERT-CLPTM1L locus on chromosome 5p15.33 are associated with multiple cancer types, including lung, pancreatic, breast, bladder, ovarian, prostate, and testicular germ cell cancers as well as glioma, melanoma, and non-melanoma skin cancers.122-124 There are specific regions of this locus associated with different cancers, but these variants do not specifically encode deleterious coding alleles in TERT. They do, however, appear to be connected to telomere length through long-range regulation of this locus.125

SNPs in RTEL1 are associated with glioma in large GWAS of this rare brain cancer. The glioma-associated RTEL1 SNPs are intronic, but functional studies have not yet been completed to understand their potential functions.126-128 These findings are intriguing because patients with DC or HH due to autosomal recessive RTEL1 mutations often have abnormal brain development
in the form of cerebellar hypoplasia15-17,153. Although the specific genetic loci are different, it is intriguing to speculate that there could be an important biological connection between these findings.

In addition to GWAS of cancer or other illnesses, several GWAS have been conducted to identify novel loci associated with telomere length. SNPs in known telomere biology genes, including \textit{TERT}, \textit{OBFC1} (encodes STN1), \textit{CTC1}, \textit{TERC}, \textit{NAF1}, and \textit{RTEL1}, as well as genes not previously known to be associated with telomere biology have been discovered154-157. These studies illustrate the complexities of telomere length regulation by showing that even common genetic variants, and especially combinations of common genetic variants, are associated with telomere length in the general population.

The existence of telomere length GWAS in various populations set the stage for even larger studies using Mendelian randomization methods in which telomere length–associated SNPs serve as surrogates for telomere length158. One such study used nine telomere length–associated SNPs to create a telomere length surrogate score and found longer telomere length scores associated with lung adenocarcinoma but not the other cancers159. Renal cell carcinoma, one of the cancers with reproducible telomere length association data, was also studied using nine telomere length surrogate SNPs and it was found that genetically longer telomeres were associated with renal cell carcinoma160.

In 2017, a Mendelian randomization study of 16 telomere length–associated SNPs from 103 GWAS with summary data on 35 cancers and 48 non-neoplastic diseases found that genetically longer telomeres associated with elevated risk of many cancers, including glioma, ovarian cancer, lung cancer, neuroblastoma, bladder, skin, testicular germ cell cancer and kidney cancer, and endometrial cancer161. That study also found an association between genetically shorter telomeres and the risk of interstitial lung disease, celiac disease, abdominal aortic aneurysm, and coronary heart disease but not of other inflammatory or psychiatric diseases161.

Although several studies suggest that telomere length is associated with depression, one study using Mendelian randomization and three SNPs—one each in \textit{TERT}, \textit{TERC}, and \textit{OBFC1}—as surrogates for telomere length in 67,000 individuals did not find an association between depression and genetically shorter telomeres162. These investigators used the same three SNPs to investigate genetically predicted telomere length and risk of depression. However, the use of these three SNPs as surrogates for telomere length was not supported by other studies. Figure 5 shows the relationship between telomere length, variant allele frequency, and human disease.
ischemic heart disease. They found small but statistically significant associations in a dataset of 60,837 ischemic heart disease cases compared with controls.

The studies briefly described above have generated a great deal of enthusiasm but are not without limitations. In many instances, qPCR was used to measure the telomere lengths in GWAS and this assay can be variable between studies. The sensitivity of the assay telomere length measurement and relatively small contributions of SNPs to telomere length should be considered in interpreting large-scale telomere length Mendelian randomization studies.

The way forward
The connections between telomere biology and human disease are complex and myriad and require a multi-disciplinary approach to truly understand the clinically relevant data, important basic science questions, and implications of epidemiologic analyses (Figure 1). As protectors of chromosome ends, telomeres are clearly integral to all aspects of cell biology. They are markers of biological aging and are regulated by a wide range of proteins.

Both very rare and very common germline genetic variants in telomere biology genes are associated with human disease, although the specific clinical phenotypes comprise a wide-ranging disease spectrum. Inheritance of telomere length inheritance and epigenetic regulation are also important aspects of telomere biology and should be incorporated into collaborative studies of rare and common telomere phenotypes. Additionally, optimization of telomere length measurement methods and improved understanding of environmental factors contributing to telomere biology will be essential in order to thoroughly understand these complexities. It is of the utmost importance for clinicians, epidemiologists, and basic scientists, all of whom study telomeres for a wide variety of different yet important reasons, to work together to build upon the expertise each possess and incorporate that into improved understanding of telomere biology in human disease. This multi-disciplinary approach will enable the discovery of therapeutics and disease prevention modalities effective for patients with TBDs and for the general population.

Abbreviations
AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DC, dyskeratosis congenita; GWAS, genome-wide association study; HH, Hoyeraal Hreidarsson syndrome; HNSCC, head and neck squamous cell carcinoma; MDS, myelodysplastic syndrome; qPCR, quantitative polymerase chain reaction; RS, Revesz syndrome; SNP, single-nucleotide polymorphism; TBD, telomere biology disorder.

Competing interests
The author declares that she has no competing interests.

Grant information
This work was supported by the intramural research program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
The author acknowledges the invaluable contributions of all patients and their families who have taught us so much about the complexities of telomere biology disorders in all their forms.

References

1. Zinsser F. Atropha cutis reticularis cum pigmentatione, dystrophia unguium et leukoplakia oris. Ikonr Dermatol (Hyoto). 1906; 8: 219–223.
2. Engman MF. A unique case of reticular pigmentation of the skin with atrophy. Arch Derm Syph. 1926; 13: 685–687.
3. COLE HN, RAUSCHKOLB JE, TOOMEY J: DYSKERATOSIS CONGENITA WITH PIGMENTATION, DYSTROPHIA UNGUIS AND LEUKOKERATOSIS ORIS. Arch Dermatol. 1930; 21(1): 71–95.
4. COSTELLO MJ, BUNCKE CM. Dyskeratosis congenita, AMA Arch Derm. 1956; 73(2): 123–32.
5. SORROW JM Jr, HITCH JM: DYSKERATOSIS CONGENITA. FIRST REPORT OF ITS OCCURRENCE IN A FEMALE AND A REVIEW OF THE LITERATURE. Arch Dermatol. 1963; 88(3): 340–7.
6. Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016; 13(8): 696–706.
7. Vulliamy TJ, Marrone A, Knight SW, et al.: Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood. 2006; 107(7): 2680–6. PubMed Abstract | Publisher Full Text
8. Knight SW, Vulliamy T, Forni GL, et al.: Fine mapping of the dyskeratosis congenita locus in Xq28. J Med Genet. 1996; 33(10): 993–5. PubMed Abstract | Publisher Full Text | Free Full Text
9. Knight SW, Vulliamy TJ, Heiss NS, et al.: 1.4 Mb candidate gene region for X-linked dyskeratosis congenita defined by combined haplotype and X chromosome inactivation analysis. J Med Genet. 1998; 35(12): 993–6. PubMed Abstract | Publisher Full Text | Free Full Text
10. Knight SW, Heiss NS, Vulliamy TJ, et al.: X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet. 1999; 65(1): 50–8. PubMed Abstract | Publisher Full Text | Free Full Text
11. Mitchell JR, Wood E, Collins K: A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999; 402(6761): 551–5. PubMed Abstract | Publisher Full Text | F1000 Recommendation
12. Baerlocher GM, Mak J, Tien T, et al.: Telomere length measurement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls.
Pohl A, Linnikivi T, Kvieti T, et al.: Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebrorenal microangiopathy with calcifications and cysts. Am J Hum Genet. 2012; 90(3): 549–59.

PubMed Abstract | Publisher Full Text | Free Full Text

Keller RB, Gagne KE, Usmani GN, et al.: CTC1 Mutations in a Patient with dyskeratosis congenita. Pediatr Blood Cancer. 2012; 59(2): 311–4.

PubMed Abstract | Publisher Full Text | Free Full Text

Ballew BJ, Yeager M, Jacobs K, et al.: Germline mutations of regulator of telomere elongation helicase 1, RETL1, in dyskeratosis congenita. Hum Genet. 2013; 132(4): 473–80.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Deng Z, Glouquer G, Molcan A, et al.: Inherited mutations in the helicase RETL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci U S A. 2013; 110(36): E3408–16.

PubMed Abstract | Publisher Full Text | Free Full Text

Palma M, Almeida AM, Wang HS, et al.: Pancreatic beta-cell failure in CTC1-associated microangiopathy. Am J Hum Genet. 2015; 97(4): 664–73.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Le Guen T, Julien L, Touzot F, et al.: Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with telomeres and genome instability. Hum Mol Genet. 2013; 22(16): 3239–49.

PubMed Abstract | Publisher Full Text | Free Full Text

Ichida S, Katoh S, Shinohara A, et al.: Loss-of-function mutations in the RNA helicase gene RTEL1 cause Hoyeraal-Hreidarsson syndrome. Am J Hum Genet. 2014; 94(4): 555–64.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Tummalala H, Walne A, Collyer L, et al.: Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest. 2015; 125(2): 2151–60.

PubMed Abstract | Publisher Full Text | Free Full Text

Moon DH, Segal M, Boyraz B, et al.: Loss-of-function mutations in the RNA helicase gene RTEL1 cause Hoyeraal-Hreidarsson syndrome. Am J Hum Genet. 2014; 94(4): 555–64.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Cogan JD, Kropski JA, Zhao M, et al.: Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med. 2015; 191(6): 646–55.

PubMed Abstract | Publisher Full Text | Free Full Text

Deng Z, Glouquer G, Molcan A, et al.: Inherited mutations in the helicase RETL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci U S A. 2013; 110(36): E3408–16.

PubMed Abstract | Publisher Full Text | Free Full Text

For each citation, the following information is provided: authors, title, journal, volume, issue, pages, year, and PubMed identifiers (abstract, full text, free full text, f1000 recommendation).
telomere length: Underlying mechanisms linking mental illness with cellular aging, Neurosci Biobehav Rev. 2017; 70: 11–26.

Published Abstract | Publisher Full Text | Free Full Text

123. Shalev I, Entrup S, Wadhwa PD, et al.: Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013; 38(9): 1835–42.

Published Abstract | Publisher Full Text | Free Full Text

124. Mathur MB, Epel E, Kind S, et al.: Perceived stress and telomere length: A systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain Behav Immun. 2016; 54: 139–48.

Published Abstract | Publisher Full Text | Free Full Text

125. Hoen PW, de Jonge P, Na BY, et al.: Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study. Psychosom Med. 2011; 73(3): 247–53.

Published Abstract | Publisher Full Text | Free Full Text

126. Révézé D, Verhoeven JE, Mincelli Y, et al.: Depressive and anxiety disorders and short leukocyte telomere length: mediating effects of metabolic stress and lifestyle factors. Psychol Med. 2016; 46(11): 2337–49.

Published Abstract | Publisher Full Text | Free Full Text

127. Rackley S, Pao M, Serati GF, et al.: Neuropsychiatric conditions among patients with dyskeratosis congenita: a link with telomere biology? Psychosomatics. 2012; 53(2): 236–45.

Published Abstract | Publisher Full Text | Free Full Text

128. Mundstock E, Zatti H, Louzada FM, et al.: Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res Rev. 2015; 22: 72–80.

Published Abstract | Publisher Full Text | Free Full Text

129. Ludlow AT, Ludlow LW, Roth SM: Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int. 2013; 2013: 610368.

Published Abstract | Publisher Full Text | Free Full Text

130. Mathur S, Ardestani A, Parker B, et al.: Telomere length and cardiorespiratory fitness in marathon runners. J Investig Med. 2013; 61(3): 613–5.

Published Abstract | Publisher Full Text | Free Full Text

131. Óshush IB, Sgura A, Berardinelli F, et al.: Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS One. 2012; 7(12): e57269.

Published Abstract | Publisher Full Text | Free Full Text

132. García-Calzón S, Martínez-González MA, Razquin C, et al.: Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016; 35(6): 1399–405.

Published Abstract | Publisher Full Text | Free Full Text

133. Sun Q, Shi L, Prescott J, et al.: Healthy lifestyle and leukocyte telomere length in U.S. women. PLoS One. 2012; 7(5): e38374.

Published Abstract | Publisher Full Text | Free Full Text

134. Chilton W, O'Brien B, Charchar F: Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci. 2017; 18(12): pii: E2573.

Published Abstract | Publisher Full Text | Free Full Text

135. Haycock PC, Heydon EE, Kaptoge S, et al.: Leukocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014; 349: g2227.

Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

136. D’Mello MJ, Ross SA, Briel M, et al.: Association between exposure to social stress and telomere length in blood cells from women with sporadic and familial breast cancer compared with age-matched healthy controls. Cancer Epidemiol Biomarkers Prev. 2010; 19(4): 605–13.

Published Abstract | Publisher Full Text | Free Full Text

137. de Vivo I, Prescott J, Wong JV, et al.: A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2009; 18(4): 1152–6.

Published Abstract | Publisher Full Text | Free Full Text

138. Shen J, Terry MB, Guivich I, et al.: Short telomere length and breast cancer risk: a study in sister sets. Cancer Res. 2007; 67(11): 5538–44.

Published Abstract | Publisher Full Text | Free Full Text

139. Weitzensern M, Misrabello L, Pfeffer RM, et al.: The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011; 20(6): 1238–50.

Published Abstract | Publisher Full Text | Free Full Text

140. Ma H, Zhou Z, Wei S, et al.: Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011; 6(6): e20466.

Published Abstract | Publisher Full Text | Free Full Text

141. Polley KA, Sandberg TL, Tysnes J, et al.: Telomere length in peripheral blood mononuclear cells: a prospective and retrospective case-control studies. Cancer Res. 2010; 70(8): 3170–6.

Published Abstract | Publisher Full Text | Free Full Text

142. Zhu X, Han W, Xue W, et al.: The association between telomere length and cancer risk in population study. Cancer Epidemiol. 2016; 45:343.

Published Abstract | Publisher Full Text | Free Full Text

143. Seow WJ, Cawthon RM, Purdue MP, et al.: Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 2016; 74(15): 4090–9.

Published Abstract | Publisher Full Text | Free Full Text

144. Sanchez-Espiridion B, Chen M, Chang JY, et al.: Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 2014; 74(9): 2476–86.

Published Abstract | Publisher Full Text | Free Full Text

145. Rods L, Nordestgaard BG, Bojesen SE: Long telomeres and cancer risk among 95,968 individuals from the general population. Int J Epidemiol. 2016; 45(3): 1634–43.

Published Abstract | Publisher Full Text | Free Full Text

146. Hørsholm M, Nordestgaard BG, Cawthon RM, et al.: Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst. 2013; 105(7): 459–68.

Published Abstract | Publisher Full Text | Free Full Text

147. Oster M, Bendix L, Rask L, et al.: Stressful life events and leukocyte telomere length: Do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. Brain Behav Immun. 2016; 58: 248–53.

Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

148. Lindqvist D, Epel ES, Melton SH, et al.: Psychiatric disorders and leukocyte telomere length.
144. Wang Z, Zhu B, Zhang M, et al.: Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Hum Mol Genet. 2014; 23(24): 6616–33. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

145. Kote-Jarai Z, Saunders EJ, Leongamornlert DA, et al.: Fine-mapping identifies multiple prostate cancer risk loci at 5p16, one of which associates with TERT expression. Hum Mol Genet. 2013; 22(12): 2520–8. Published Abstract | Publisher Full Text | Free Full Text

146. Bojesen SE, Pooley KA, Johnatty SE, et al.: Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet. 2013; 45(4): 371–84, 384e1-2. Published Abstract | Publisher Full Text | Free Full Text

147. Fang J, Jia J, Makowski M, et al.: Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat Commun. 2017; 8: 15034. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

148. Melin B, Dahlin AM, Andersson U, et al.: Known glioma risk loci are associated with glioma with a family history of brain tumours – a case-control gene association study. Int J Cancer. 2013; 132(10): 2464–8. Published Abstract | Publisher Full Text | Free Full Text

149. Jin TB, Zhang JY, Li G, et al.: RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population. Tumour Biol. 2013; 34(6): 3659–66. Published Abstract | Publisher Full Text

150. Shete S, Hosking FJ, Robertson LB, et al.: Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009; 41(8): 899–904. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

151. Wrensch M, Jenkins RB, Chang JS, et al.: Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009; 41(8): 905–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

152. Delgado DA, Zhang C, Chen LS, et al.: Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal. J Med Genet. 2018; 55(1): 64–71. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

153. Ballew BJ, Joseph V, De S, et al.: A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal-Hreidarsson syndrome. PLoS Genet. 2013; 9(6): e1003695. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

154. Pooley KA, Bojesen SE, Weischer M, et al.: A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum Mol Genet. 2013; 22(24): 5056–64. Published Abstract | Publisher Full Text | Free Full Text

155. Mangino M, Huang SJ, Spector TD, et al.: Genomewide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet. 2012; 21(24): 5385–94. Published Abstract | Publisher Full Text | Free Full Text

156. Mirabello L, Yu K, Kraft P, et al.: The association of telomere length and genetic variation in telomere biology genes. Hum Mutat. 2010; 31(9): 1050–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

157. Prescott J, Kraft P, Chasman DI, et al.: Genomewide association study of relative telomere length. PLoS One. 2011; 6(5): e19635. Published Abstract | Publisher Full Text | Free Full Text

158. Endin CA, Kherra AV, Kathiresan S: Mendelian Randomization. JAMA. 2017; 318(19): 1925–6. Published Abstract | Publisher Full Text

159. Zhang C, Doherty JA, Burgess S, et al.: Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum Mol Genet. 2015; 24(18): 5356–66. Published Abstract | Publisher Full Text | Free Full Text

160. Machiela MJ, Hofmann JN, Carreras-Torres R, et al.: Genetic Variants Related to Longer Telomere Length Are Associated with Increased Risk of Renal Cell Carcinoma. Eur Urol. 2017; 72(5): 747–54. Published Abstract | Publisher Full Text | Free Full Text

161. Telomeres Mendelian Randomization Collaboration, Haycock PC, Burgess S, et al.: Association Between Telomere Length and Risk of Common Neoplastic Diseases: a Mendelian Randomization Study. JAMA Oncol. 2017; 3(5): 636–651. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

162. Wium-Andersen MK, Ørsted DD, Rode L, et al.: Telomere length and depression: prospective cohort study and Mendelian randomisation study in 67 306 individuals. Br J Psychiatry. 2017; 210(1): 31–8. Published Abstract | Publisher Full Text

163. Schellier Madrid A, Rode L, Nordestgaard BG, et al.: Short Telomere Length and Ischemic Heart Disease: Observational and Genetic Studies in 290 022 individuals. Clin Chem. 2016; 62(8): 1140–9. Published Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔️ ✔️ ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. **Fadi Charchar** School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Ballarat, Victoria, Australia
 Competing Interests: No competing interests were disclosed.

2. **Steven E. Artandi** Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
 Competing Interests: No competing interests were disclosed.

3. **Tracy Bryan** Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia
 Competing Interests: No competing interests were disclosed.

4. **Dirk Hockemeyer** Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
 Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com