Reviews on Progress in Physics

Holographic systems far from equilibrium: a review

Hong Liu and Julian Sonner

1 Center for theoretical physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
2 Department of theoretical physics, Université de Genève, 24 quai Ernest–Ansermet, 1211 Genève 4, Switzerland

E-mail: julian.sonner@unige.ch and hong_liu@mit.edu

Received 26 November 2018, revised 7 March 2019
Accepted for publication 21 October 2019
Published 4 December 2019

Abstract

In this paper we give an overview of some recent progress in using holography to study various far-from-equilibrium condensed matter systems. Non-equilibrium problems are notoriously difficult to deal with, not to mention at strong coupling and when including quantum effects. Remarkably, using holographic duality one can describe and follow the real-time evolution of far-from-equilibrium systems, including those which are spatially inhomogeneous and anisotropic, by solving partial differential gravity equations. We sample developments in two broad classes of question which have recently been of much interest to the condensed matter community: non-equilibrium steady states, and quantum systems undergoing a global quench. Our discussion focuses on the main physical insights obtained from the gravity approaches, rather than comprehensive treatment of each topic or detailed descriptions of gravity calculations. The paper also includes an overview of current numerical techniques, as well as the holographic Schwinger–Keldysh approach to real-time correlation functions.

Keywords: holographic duality, non-equilibrium physics, quantum quenches, non-equilibrium steady states

(Some figures may appear in colour only in the online journal)
5.3. Scaling laws for finite-rate quenches and holographic turbulence

6. Numerical techniques for AdS/CMT away from equilibrium

6.1. The Cauchy scheme

6.1.1. Summary

6.1.2. The Cauchy method for AdS gravity

6.2. The characteristic scheme

6.2.1. Intuition from the wave equation

6.2.2. Characteristic method for Maxwell in AdS

6.2.3. Summary

6.2.4. The characteristic method for AdS gravity

Acknowledgments

Appendix. Kruskal extension of eternal AdS black hole

References

1. Introduction

Holographic duality is an equivalence between a quantum gravity system in an asymptotic \((d+1)\)-dimensional anti-de Sitter \((AdS_{d+1})\) spacetime and a \(d\)-dimensional quantum many-body system living on its boundary \([1–3]\). This is reminiscent of an optical hologram, where a three-dimensional object is encoded in terms of data living on a two-dimensional surface. Below we will refer to the gravity and the many-body system in a duality relation as bulk and boundary systems respectively. A striking implication of the duality is that the classical gravity regime of the bulk theory turns out to correspond to the strong coupling and large number of degrees of freedom limit of the boundary system, thus providing powerful new tools for studying strongly correlated quantum matter using classical gravity techniques. Important insights into many aspects of quantum many-body systems have been obtained; see, for example, \([4–12]\) for reviews.

In this paper we give a short overview of some recent progress in using holography to study various far-from-equilibrium condensed matter systems. Non-equilibrium problems are notoriously difficult to deal with, not to mention at strong coupling and when including quantum effects. Remarkably, using the duality, one is able to describe and follow the real-time evolution of far-from-equilibrium systems, including those which are spatially inhomogeneous and anisotropic, by solving gravitational partial differential equations (PDEs). While solving gravitational PDEs is often a non-trivial task, it is much more manageable than explicitly following the time evolution of a wave function (or density matrix) of a system consisting of large numbers of constituents. Furthermore, the gravity description provides new ways to organize the physics of a system which could be particularly valuable in non-equilibrium contexts. For example, the extra spatial dimension in the bulk, often referred to as the radial direction, can be considered as a geometrization of the renormalization group (RG) flow of a boundary theory. By analyzing the gravity geometry at different radial locations, one can learn about the boundary system at different scales.

Using holographic duality to study non-equilibrium problems is now a big subject with many applications. For example, deep connections between Einstein’s equations and hydrodynamics have been uncovered, leading to new understandings of hydrodynamics for systems with quantum anomalies. Thermalization from various homogeneous and inhomogeneous non-equilibrium states has been extensively studied with the motivation of understanding the creation and thermalization of the quark–gluon plasma following heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). Interesting new dynamical insights have been gained. For example, it was found that local thermalization (i.e. non-conserved quantities becoming locally equilibrated) can happen extremely fast for strongly coupled systems, at timescales of the order \(1/T\) with \(T\) being the final equilibrium temperature. It was also found that hydrodynamics can become valid much earlier than expected, before a system isotropizes. Extensive reviews \([4, 11, 13]\) on these topics exist and will not be recounted here.

In this review we focus on two broad classes of question which have attracted much recent interest in condensed matter communities.

The first is concerned with characterizations of various newly discovered non-equilibrium steady states (NESS). NESS arise for systems subject to external forcing, for example an applied electric field or a heat gradient, or the gradient of a chemical potential. If the system is able to adjust itself in such a way as to establish a balance between the resulting currents and the applied forcing it will settle into a stationary state. More generally, one can view such a steady state as an intermediate-time description of a system, on scales that are small compared to the ultimate equilibration time. If the latter can be made parametrically large then the steady state persists. A particularly interesting question concerning a NESS is whether there could exist some effective thermodynamic description. We will discuss one example of each of the three main types of steady state, namely current-driven, heat-driven and momentum-driven NESS.

The second class of question concerns the dynamics after a system has undergone a quench, i.e. a non-adiabatic change of certain parameter(s) of the system. These could include temperature, energy density, external fields such as a magnetic field, or some parameter in the Hamiltonian such as a mass or a coupling constant. One is interested in the subsequent dynamics as well as the properties of the asymptotic state approached at late time. Quenches are of great interest as they provide the simplest ways, both theoretically and experimentally, to drive a system out of equilibrium, while yielding rich dynamics and a wide range of phenomena. We will discuss three topics: entanglement propagation after a global quench of energy density, sudden driving of the order parameter of a superfluid, and defect production across a critical point.

Due to length limitations, our discussion of these questions will focus on the main physical insights obtained from gravity approaches, rather than comprehensive treatments of each topic or detailed descriptions of gravity calculations.
We have also included several sections discussing techniques of gravity approaches. Again this is a vast subject with many reviews and books. Our choice is based on relevance for non-equilibrium problems and (un)availability in other reviews. In section 3 we discuss how to compute real-time correlation functions on a Schwinger–Keldysh contour using gravity. In section 6 we give an overview of existing numerical methods. In section 2 we highlight some basic aspects of the duality which will be used in subsequent sections. Again these sections are not meant to be comprehensive, but rather emphasize key conceptual elements.

There are many other exciting topics which we will not be able to go into. One is holographic turbulence, which we will just briefly describe here. Turbulent flows are ubiquitous in fluid motions. It is thus a natural question to ask what the gravity dual of a turbulent flow looks like. Such a turbulent gravity solution has been constructed numerically in [14] for a \((2 + 1)\)-dimensional boundary system. As appropriate for \((2 + 1)\)-dimensions, the authors observed an inverse energy cascade with energy being transferred from short to large distances through merging of vortices, and the \(- \frac{5}{3}\) Kolmogorov scaling law of the energy spectrum. Furthermore, they provided support for and argued more generally that the gravity geometry for a turbulent fluid is a black hole whose event horizon is fractal with fractal dimension \(D = d + 4/3\), where \(d\) is the boundary spacetime dimension, and the extra \(4/3\) is related to the \(- \frac{5}{3}\) Kolmogorov scaling law. Other discussions of holographic turbulent fluids include [15].

Holography furnishes us with a formalism whose hydrodynamic limit is well understood, while at the same time comprising a fully UV complete description of physics on all length scales. This allows one to capture turbulent effects beyond hydrodynamics within a well-defined framework amenable to numerical and analytical analysis. This is particularly valuable for studying superfluid turbulence which is concerned with chaotic dynamics of a large number of superfluid vortices and whose description goes beyond the framework of superfluid hydrodynamics. Surprisingly, it was found in [16] that two-dimensional holographic superfluids show turbulent \(k^{-\frac{5}{3}}\) Kolmogorov scaling with a direct energy cascade, in contrast to the inverse energy cascade of ordinary fluid turbulence in two spatial dimensions. It was found that energy is transferred from long wavelengths to short wavelengths until they reach the size of a typical vortex core where energy is dissipated. This also has a very nice geometric interpretation in terms of gravity description: the field theory vortext extends as a vortex line into the bulk, where it punctures a hole through the condensate shielding the horizon. Energy can then flow through the core of a vortex line all the way to the horizon and gets dissipated. See also [17].

Another area that has seen significant progress in recent years is the theory of transport of inhomogeneous systems without quasiparticles8. By this we mean (holographic) field theories whose preferred ground state has inhomogeinities or otherwise exhibits some form of momentum dissipation. Examples of such ground states involve spatial modulation of some kind, for example stripes [18], helical phases [19], or checkerboards [20], as well as holographic systems with an explicit lattice deformation [21] (including Q-lattices [22]). Remarkably, it was shown that one can determine the DC conductivities (and other transport coefficients) in terms of a simple hydrodynamic system of equations [23–25], which is located at the dual black hole horizon. In fact, intuition gleaned from strongly coupled transport in holography has already found fruitful application in the theory of bad metals, as described for example in [26, 27] and reviewed in [12]. Furthermore, an interesting perspective on holographic conductivity with momentum dissipation is afforded by considering massive gravity in the bulk, [28], which may morally be seen as an effective theory of broken spatial translation invariance [29–31].

2. Aspects of the duality

We first quickly highlight certain aspects of the duality which will be central to subsequent sections of the review. We will take the boundary spacetime dimension to be \(d\), with the bulk gravity spacetime being \(d + 1\)-dimensional. For more detailed expositions of the duality see, for example, [32–35]. Readers who are already familiar with the basic ideas of holography may safely skip this section.

2.1. Some basic elements of the dictionary

Holographic duality is an equivalence between two quantum systems. Clearly, the symmetries of the two systems must coincide. Furthermore, there should be a one-to-one correspondence between quantum states. On the bulk side, in the classical gravity regime, states are represented by solutions to equations of motion which satisfy appropriate boundary conditions. Thus each such bulk solution/geometry corresponds to some quantum state of the boundary system. More explicitly, we can write the action for the bulk theory as

\[
S_{\text{bulk}} = S_{\text{grav}} + S_{\text{matter}} \quad \text{(2.1)}
\]

with \(S_{\text{grav}}\) being the gravitational action in AdS

\[
S_{\text{grav}} = \frac{1}{16\pi G_N} \int d^{d+1}x \sqrt{-g} \left(R + \frac{d(d-1)}{\ell^2} \right) \quad \text{(2.2)}
\]

and \(S_{\text{matter}}\) that for possible matter fields. In (2.2), \(\ell\) is the AdS radius. Newton’s constant \(G_N\) is inversely proportional to the number of degrees of freedom \(N\) of the boundary theory. Thus gravity is weak if \(N\) is large. The spectrum of matter fields and the specific form of \(S_{\text{matter}}\) vary with the specific dual boundary system, while the gravity action \(S_{\text{grav}}\) is universal to all systems with an Einstein gravity dual.

As an illustration let us look at some simple solutions to (2.1) with no matter excited (which then reduce to solutions of (2.2)). The simplest and most symmetric solution is the AdS spacetime,

\[
ds^2 = \frac{\ell^2}{z^2} \left(-dr^2 + dz^2 + \sum_{i=1}^{d-1} dx_i^2 \right). \quad \text{(2.3)}
\]

\(^8\)A more general review of transport in systems without quasiparticles is given in [12].
It corresponds to the vacuum of a dual field theory which is conformally invariant, i.e. a conformal field theory (CF). Below we will use the notation $x^M = (z, x^\mu)$ where $x^\mu = (t, x_i)$ runs over the coordinates of the boundary theory. $z \in (0, +\infty)$ is the extra ‘holographic’ coordinate, with the AdS boundary lying at $z = 0$, and a large value of z can be considered as the ‘interior’ of AdS (see figure 1).

The metric (2.3) has a large number of isometries (i.e. coordinate transformations which leave the metric invariant), which are in one-to-one correspondence with conformal transformations of the boundary system.

Among all the isometries of (2.3) we would like to draw particular attention to the following scaling symmetry

$$z \rightarrow \lambda z, \quad x^\mu \rightarrow \lambda x^\mu. \quad (2.4)$$

We see that as we scale the boundary coordinates x^μ we must accordingly scale the holographic coordinate z. This indicates that z represents the length scales of the boundary theory: we scale to short distances (UV) in x^μ as z scales to 0, and to long distances (IR) in x^μ as z scales to ∞. In other words, going from the boundary $z = 0$ to some large values of z in the radial direction may be considered as going from UV to IR in the boundary system. This turns out to be a general feature of all bulk geometries, including those for which (2.4) is no longer an isometry. Recall that the central idea of RG theory is to organize the physics of a many-body system in terms of scales, and thus the radial direction of AdS can be considered as a geometrization of the RG flow of a boundary theory!

Another simple solution to (2.2) is the Schwarzschild black hole

$$ds^2 = \frac{\ell^2}{z^2} \left(-f(z)dt^2 + \frac{dz^2}{f(z)} + dx_i^2 \right), \quad (2.5)$$

where $f(z) = 1 - \left(\frac{z}{\bar{z}_h} \right)^d$ and \bar{z}_h is a constant. Equation (2.5) has an event horizon at $z = \bar{z}_h$ with topology \mathbb{R}^{d-1}. From the discoveries of Hawking and Bekenstein in the 1970s, black holes are known to be thermodynamic objects. Thus it is natural to identify the solution (2.5) with a thermal state of the boundary system, with the Hawking temperature

$$T_H = \frac{d}{4\pi \bar{z}_h} \quad (2.6)$$

identified with the boundary system temperature. Note that as $z \rightarrow 0$, $f(z) \rightarrow 1$, and equation (2.5) reduces to (2.3). This is consistent with the above discussion of z as representing length scales: as $z \rightarrow 0$ we go to short distances and recover vacuum physics, while the whole geometry (2.5) tells us how the system flows from vacuum physics at short distances (UV) to thermal physics at IR scales. The presence of an event horizon at some finite value of $z = \bar{z}_h$ can be considered as an IR ‘cutoff’ representing the inverse temperature scale. In contrast, in (2.3) the values of z extend all the way to $+\infty$, reflecting that near the vacuum, there exist excitations of arbitrarily low energies.

Now let us turn to another crucial aspect of the duality dictionary: correspondence of operators. On the gravity side, the operators are fields living in AdS spacetime, each of which is mapped to an operator in the boundary system. Clearly the dual pair must have the same quantum numbers under symmetries of the theory. For example, a scalar boundary operator should be dual to some bulk scalar field. Since different boundary theories have different operator spectra, the precise dictionary depends on specific systems. Nevertheless, there are some common elements universal to all theories: (i) the boundary stress tensor $T^{\mu\nu}$ is dual to spacetime metric g_{MN}; (ii) a conserved boundary current J^μ is dual to a bulk gauge field A_μ.

Solving the equations of motion of a bulk field ϕ (say, dual to some boundary operator O), one finds that near the boundary a general solution can be written as a superposition of two independent powers of z

$$\phi(z \rightarrow 0, x^\mu) = a(x)z^{\alpha_1} + b(x)z^{\alpha_2}, \quad \alpha_1 < \alpha_2 \quad (2.7)$$

where $a(x), b(x)$ are ‘integration constants’ and $\alpha_{1,2}$ are some constants which depend on the mass and spin of ϕ. Here we have suppressed possible spacetime indices in ϕ, a, b, which could be tensors or spinors. As $z \rightarrow 0$, the first term in (2.7) dominates and is often referred to as the non-normalizable term, while the second term is the normalizable term.
Various quantities in (2.7) turn out to have important physical interpretations in the boundary system:

- \(a(x) \) can be identified as the source for \(\mathcal{O} \). More explicitly, a non-zero \(a(x) \) corresponds to deforming the boundary CFT by a term
 \[S_{\text{CFT}} \to S_{\text{CFT}} + \int d^dx a(x) \mathcal{O}(x). \]
 In other words, the presence of a non-normalizable term modifies the boundary theory itself.

- \(b(x) \) can be identified with the expectation value of the operator \(\mathcal{O}(x) \) in the corresponding state described by the bulk geometry, i.e.
 \[\langle \mathcal{O}(x) \rangle \propto b(x), \]
 where we have suppressed the possible proportionality constant (which can depend on the scaling dimension of \(\mathcal{O} \) and the tensor structure). Thus the \(b \) for different \(\phi \) tell us important information about the state of the system.

- \(\alpha_{1,2} \) are related to the conformal dimension \(\Delta \) of \(\mathcal{O} \)
 \[\alpha_1 = d - \Delta - n, \quad \alpha_2 = \Delta - n \]
 where \(n \) is the number of tensor indices of \(\phi \). Thus from the boundary behavior (2.7) of a bulk field one could read the boundary conformal dimension of the corresponding operator.

- For a scalar field of mass square \(m^2 \), by solving the associated bulk equations one finds that \(\alpha_1 = d - \Delta \) and \(\alpha_2 = \Delta \) with
 \[\Delta = \frac{d}{2} + \nu, \quad \nu = \sqrt{\frac{d^2}{4} + m^2 \ell^2}. \]
 Note that in an AdS spacetime \(m^2 \) can in fact be negative so long as it is not so negative that the square root in (2.11) becomes complex. For \(m^2 < 0 \), we have \(\Delta < d \), i.e. the corresponding operator \(\mathcal{O} \) is relevant, while \(m^2 = 0 \) corresponds to a marginal operator, and \(m^2 > 0 \) to an irrelevant operator. For a scalar, the precise version of (2.9) is
 \[\langle \mathcal{O}(x) \rangle = 2 \nu b(x). \]
 An interesting subtlety arises when the bulk mass satisfies
 \[-\frac{d^2}{4} < m^2 < -\frac{d^2}{4} + 1. \]
 For an operator that is dual to a bulk field in this range, there exists a second allowed prescription, called ‘alternative quantization’, where the roles of source and expectation value above are exchanged. This is described in detail in [37].

- A conserved current \(J^\mu \) is dual to a bulk gauge field \(A_M \) whose action at quadratic level is simply the Maxwell action
 \[S_{\text{Max}} = -\frac{1}{4e^2} \int dz \, d^dx \sqrt{-g} F_{MN} F^{MN}. \]
 One finds \(\alpha_1 = 0, \alpha_2 = d - 2 \), i.e.
 \[A_\mu(z \to 0, x) = a_\mu(x) + b_\mu(x) z^{d-2}, \]
 which implies \(\Delta = d - 1 \) and is indeed consistent with the scaling dimension of a conserved current. The proportional constant in (2.9) is
 \[\langle J_\mu \rangle = -\frac{\rho^d}{e^2} (d-2) b_\mu. \]
 - For metric perturbations, one finds \(\alpha_1 = -2, \alpha_2 = d - 2 \), i.e.
 \[\delta g_{\mu\nu}(z \to 0, x) = a_{\mu\nu}(x) (z^{-2} + \cdots) + b_{\mu\nu}(x) (z^{d-2} + \cdots) \]
 which is consistent with \(\Delta = d \) for the stress tensor, and (2.9) has the form
 \[\langle T_{\mu\nu} \rangle = cb_{\mu\nu}, \]
 where, given the canonical normalization of the Einstein–Hilbert action, the constant \(c \) takes on the value
 \[c = \frac{d^{d-1}}{16\pi G_N}. \]

We are ignoring the subtleties of holographic renormalization, such as a possible contribution from the Weyl anomaly in even dimensions (see [38] for details). A non-zero \(a_{\mu\nu} \) implies that the boundary metric is deformed to \(\eta_{\mu\nu} + a_{\mu\nu} \) with \(\eta_{\mu\nu} \) being the flat Minkowski metric.

- For any relevant operator, the backreaction of the corresponding non-normalizable term to the spacetime geometry always goes to zero as \(z \to 0 \). This can be seen, for example, from that for a scalar \(\alpha_1 = d - \Delta > 0 \), while for \(A_M \) it becomes \(z \)-independent.

There are also systematic procedures for finding higher point functions of boundary operators. We describe how to compute retarded two-point functions in the next subsection and general real-time multiple-point functions defined on a Schwinger–Keldysh contour in section 3.

Now consider a CFT deformed by a relevant operator \(\mathcal{O} \), i.e. by adding to the action a term \(\lambda \int \mathcal{O} \). As we go to larger distances or lower energies, the system will move farther and farther away from the UV fixed point, and eventually to some other IR fixed point or a gapped phase. On the gravity side, this amounts to finding the gravity solution in which the bulk field \(\phi \) dual to \(\mathcal{O} \) satisfies \(\alpha(x) = \lambda \), but the corresponding \(a(x) \) for other fields must all vanish. Near the boundary, the geometry is close to (2.3) (see the last item above), but as \(z \) increases the deviation becomes larger and larger, and eventually transitions to the geometry representing the IR state (see figure 1).

As a simple example, let us consider turning on a chemical potential for a conserved \(U(1) \) charge, i.e. adding a term \(\mu \int J^t \) to the boundary action, with \(J^t \) the time component of a conserved current \(J^\mu \). Since \(J^t \) has dimension \(\Delta = d - 1 \), this is a relevant perturbation. On the gravity side, in the simplest
situation, only A_M is excited and one needs to find a solution to $S_{\text{grav}} + S_{\text{Max}}$ (i.e. combining (2.2) and (2.14)) which satisfies the boundary condition $A_i(z \to 0) = \mu$. The most general solution satisfying the boundary condition has the form (2.5) but with a different f and a non-zero A_i given by
\[f = 1 + Q^2 z^{2d-2} - M z^d, \quad A_i = \mu \left(1 - \frac{z^{d-2}}{z_0} \right), \] (2.20)
where Q, M and z_0 are constants. This solution again has an event horizon located at $z = z_h$ where z_h is the largest root of $f(z_h) = 0$. The geometry (2.20) describes a CFT at finite chemical potential μ, and a finite temperature which is again identified with the Hawking temperature of (2.20).

2.2. Linear responses and quasinormal modes

In preparation for our discussion of far-from-equilibrium systems, here we briefly mention some key aspects concerning near-equilibrium systems.

When a weak external field is applied to an equilibrium system, the resulting displacement from the equilibrium state is small, and at lowest order can be treated as linear in the external source. For example, turning on a source $a(x)$ coupled to a Hermitian operator \mathcal{O} (whose expectation values are taken to be zero in equilibrium), we have
\[\langle \mathcal{O} \rangle (\omega, \mathbf{k}) = G^R(\omega, \mathbf{k}) a(\omega, \mathbf{k}), \] (2.21)
where $G^R(\omega, \mathbf{k})$ is the retarded Green function
\[G^R(x) = i \theta(x^0) [\langle \mathcal{O}(x), \mathcal{O}(0) \rangle] \] (2.22)
in momentum space. The linear responses of a system under various external fields are the most commonly used experimental probes and contain a wealth of dynamical information:

1. The static susceptibility is obtained as
\[\chi = \lim_{\mathbf{k} \to 0} \lim_{\omega \to 0} G^R(\omega, \mathbf{k}). \] (2.23)

2. When \mathcal{O} in (2.21) is the current for a conserved quantity, various transport coefficients can be obtained from the zero momentum and zero frequency limit. For example, the DC conductivity σ along some direction i, is obtained by taking $\mathcal{O} = J^i$ where J^i is the ith component of the conserved current:
\[\sigma = \lim_{\omega \to 0} \lim_{\mathbf{k} \to 0} \frac{1}{i \omega} G^R(\omega, \mathbf{k}). \] (2.24)

3. The imaginary part of G^R gives the spectral function,
\[\rho(\omega, \mathbf{k}) = \text{Im} G^R, \] (2.25)
which encodes the spectral weight of \mathcal{O}.

4. For a general non-conserved operator \mathcal{O}, G^R generically has singularities such as poles or branch points in the lower half ω-plane which are a finite distance away from the real ω-axis as $\mathbf{k} \to 0$. The nearest singularity controls the relaxation times of \mathcal{O}. More explicitly, suppose G^R has a pole at $\omega = \omega_q(\mathbf{k}) = i\omega_q(\mathbf{k})$, the contribution of the pole to $\langle \mathcal{O}(t, \mathbf{k}) \rangle$ is then given by
\[\langle \mathcal{O}(t, \mathbf{k}) \rangle \propto e^{-i\omega_q(\mathbf{k}) t} \propto e^{-i\omega_q(\mathbf{k}) t} e^{-i\omega_q(\mathbf{k}) t}. \] (2.26)
The late-time behavior is thus dominated by the pole with the smallest ω_q. Note that for a stable state, ω_q of any pole must be positive. A negative ω_q leads to exponential growing behavior in (2.26) and signals instability.

5. For \mathcal{O} given by a conserved quantity such as energy, momentum or charge densities, G^R exhibits poles in the complex ω-plane which approach the origin as $\mathbf{k} \to 0$. These are hydrodynamical modes such as sound and diffusion modes, reflecting that conserved quantities relax much more slowly than the typical timescales of microscopic interactions.

The response function G^R for an operator \mathcal{O} in a thermal equilibrium state can be obtained as follows [39]. One solves the linearized equation of motion for the bulk field ϕ corresponding to \mathcal{O} in the black hole geometry for the thermal state. In a classical black hole geometry, things can only fall into a black hole, and cannot come out. Otherwise causality is violated. Thus to obtain the retarded function, which is causal, one should choose the solution for which there is only the ingoing behavior at the horizon. For a second-order differential equation, this fixes the asymptotic behavior (2.7), i.e. b and a up to an overall multiplicative factor. From (2.21) and the identification of b and a respectively as the expectation value and the source, we then conclude that, for example for a scalar,
\[G^R(\omega, \mathbf{k}) = \frac{2 \nu b(\omega, \mathbf{k})}{a(\omega, \mathbf{k})}. \] (2.27)
where $b(\omega, \mathbf{k})$ and $a(\omega, \mathbf{k})$ are the Fourier transform in the t- and x_i-directions. This prescription can also be derived by analytic continuation from the Euclidean signature or the more elaborate real-time formalism discussed in section 3.

As reviewed in the above, key information regarding G^R is its pole structure in the complex ω-plane. From (2.27) we see that poles of G^R correspond to ϕ
\[a(\omega, \mathbf{k}) = 0. \] (2.28)
Equation (2.28) in turn implies that the non-normalizable part of equation (2.7) vanishes, i.e. the solution should be normalizable. To summarize, the poles of G^R correspond to bulk solutions which are in-falling at the horizon and normalizable at infinity. Since this involves two-sided boundary conditions, for a given k the allowed values of ω should be discrete, i.e. (2.28) has a discrete spectrum $\omega_n(\mathbf{k}), n = 1, 2, \ldots$. Furthermore, the spectral problem defined by studying modes with ingoing boundary conditions is not self-adjoint, and the corresponding eigenfrequencies are in general complex.

The eigenmodes $\omega_n(\mathbf{k})$ have long been studied in the general relativity community, and are known as quasinormal modes (often abbreviated to QNMs). QNMs play an important role in gravitational dynamics, as they describe how a

\[\text{From the structure of the bulk equation one can show that } b \] cannot have poles.
small normalizable perturbation around a black hole evolves with time, and thus characterize the long-time behavior of dynamical black holes. A black hole formed from collapse, for example, after an initial non-equilibrium phase, displays a characteristic ring-down at late times. This ring-down is directly related to the QNMs. Holography thus translates the question of the analytic structure of retarded correlation functions into the study of QNMs of the dual black hole geometry. Note that any perturbation will eventually fall into the black hole, which implies that, unless there is an instability, the imaginary parts of \{\omega_n(k)\} should all be negative, which is consistent with the general boundary theory expectation discussed below (2.26).

2.3. A simple example

As an illustration of the discussion in the last subsection we work out the small \(\omega, k\) behavior of the thermal retarded two-point function of a conserved \(U(1)\) current \(J^\mu\) in \((2+1)\)-dimensions. The calculation recovers the expected diffusion behavior and computes explicitly the conductivity in (2

We have rescaled the radial coordinate by \(z \rightarrow z/z_h\) which means that we now have \(f(z) = 1 - z^2\) with a horizon at \(z = 1\), while \(\omega = \omega z\) and \(q = q z\) are frequency and momentum measured in units of \(1/z_h\) which is in turn proportional to the Hawking temperature (2.6).

It can be directly verified that the solutions to these equations indeed have the asymptotic behavior (2.15), i.e.

\[
A_\mu(z, \omega, k) = a_\mu(\omega, k) + b_\mu(\omega, k)z + O(z^2) .
\]

Thus from (2.16), we find

\[
\langle J_\mu(\omega, k) \rangle = -\frac{1}{\epsilon^2} b_\mu(\omega, k) = -\frac{1}{\epsilon^2} A_\mu' (z = 0) .
\]

Now notice that equation (2.30) contains only the first derivative in \(z\), and thus should be considered as a constraint equation for the \(z\)-evolution. Using (2.35) we see that, when evaluated at the boundary, it is simply the conservation equation \(\partial_\mu J^\mu = 0\) in Fourier space. This is a general feature: conservation laws of the boundary correspond to constraint equations in the bulk. Note that the \(A_t\) equation (2.32) decouples from the rest. This is again expected on general grounds; with \(k\) aligned in the \(y\)-direction, \(J_x\) decouples from the rest of the current in the conservation equation. Thus we will focus on the sector \(\{A_t, A_y\}\).

The equations for \(A_t, A_y\) can be reduced to a single second-order differential equation

\[
E_z'' + \frac{f}{f} E_z' + \frac{1}{f} \left(\frac{\omega^2}{f} - q^2 \right) E_z = 0,
\]

with \(E_z \equiv A_t'\) and

\[
A_y = \frac{f}{q^2} A_y'' - \frac{q}{f} A_t .
\]

Near the horizon \(z = 1, f \rightarrow 0\), one finds (2.36) can be written as

\[
\partial_z^2 E_z + w^2 E_z = 0
\]

where \(w_+ = -\frac{f}{\epsilon} = -\frac{1}{\epsilon} \log(1 - z) + \cdots\) (as \(z \rightarrow 1\)) is the so-called tortoise coordinate. Thus \(E_z\) behaves as a plane wave in \(z_+\)

\[
E_z \sim e^{\pm i w_+ z_+} \sim (1 - z)^{\pm \frac{i}{\epsilon} w_+} , z \rightarrow 1 .
\]

Note that as \(z \rightarrow 1, z_+ \rightarrow -\infty\). Including \(t\)-dependence (2.29), the \(+\) \((-\) sign in (2.39) then describes a wave moving away from (going toward) the horizon. As mentioned around (2.27), to find the retarded Green function we need to take the solution which goes into the horizon, i.e. \(-\) sign in (2.39).

Now our task is to find the solution to (2.36) which behaves at the horizon with the \(-\) sign in (2.39), expand the solution at the boundary \(z \rightarrow 0\), and then read from (2.34) and (2.35) the explicit expression for \(\langle J_\mu \rangle\) with any given \(a_\mu\). The components of the retarded Green functions can be read from

\[
\langle J_\mu(\omega, k) \rangle = G^R_\mu(\omega, k) a_\mu(\omega, k) .
\]

While (2.36) cannot be solved analytically for general \(\omega, q\), it can be solved analytically for small \(\omega, q\) which is enough to extract transport behavior. Expanding in small \(w_+, q\) one finds that

\[
\langle J_t \rangle = \frac{1}{\epsilon^2} \frac{q^2}{\omega} + \frac{w_+ q}{\omega} - q^2
\]

with \(\epsilon^2\) being the dimensionless bulk gauge coupling.

\[
G^R_\mu = \langle J_t(\omega, q) J_t(\omega, -q) \rangle = \frac{1}{\epsilon^2} \frac{q^2}{\omega^2 - Dq^2} .
\]
\[G_{\omega}^{\pm} = \langle J_\omega \rho \rangle = \frac{1}{e^{i\omega D} - q} \] (2.43)

where \(D = \frac{3}{4\pi} \). As expected, the above expression exhibits a pole at \(\omega = -iDq^2 \), corresponding to the physics of charge diffusion with diffusion constant \(D \). Note that \(D \propto \frac{1}{l} \) as expected for a scale invariant theory. Similarly, one finds that

\[G_{\omega}^{\pm} = \langle J_\omega \rho \rangle = \frac{1}{e^{i\omega D} - q^2} \] (2.44)

from which we can extract the conductivity

\[\sigma = \lim_{\omega \to 0} \frac{1}{\omega D} G_{\omega}^{\pm} = \frac{1}{e^2} \] (2.45)

which is a constant in 2 + 1-dimensions [41].

2.4. Entanglement entropy

So far we have been discussing local operators. A theory can also contain nonlocal observables. For example, in a gauge theory one can have Wilson loops. When the Hilbert space of a quantum system has a tensor product structure, one can also define the entanglement entropy associated with a subset of degrees of freedom. Here, we briefly review the prescription for computing the entanglement entropy associated with a region, also called geometric entropy, using gravity.

Consider a spatial subregion \(A \) of a boundary system. Imagine a UV regularization (say putting the system on a lattice) such that the Hilbert space factorizes into \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_\bar{A} \), where \(\bar{A} \) denotes the complement of \(A \). The entanglement entropy of subregion \(A \), \(S(A) \), is then defined as the von Neumann entropy of the reduced density matrix \(\rho_A \)

\[\rho_A = \text{tr}_{\bar{A}} \rho \quad \Rightarrow \quad S(A) = -\text{tr}_{\rho_A} \log \rho_A. \] (2.46)

In a many-body system (even including non-interacting systems!), computing \(S(A) \) is a very difficult task. One typically proceeds by computing first the Renyi entropy

\[S_n := \frac{1}{1-n} \log \text{tr} \rho_A^n \quad \Rightarrow \quad S(A) = \lim_{n \to 1} S_n, \] (2.47)

where \(S_n \) for \(n \in \mathbb{Z} \) is computed using the so-called replica trick [42, 43], and the limit \(n \to 1 \) is taken formally by analytically continuing the result away from integer values.

In holographic duality \(S(A) \) can be directly obtained without using the replica trick. It involves a beautiful geometric formula first proposed by Ryu and Takayanagi [44] and later generalized to time-dependent situations in [45]. More explicitly, \(S(A) \) for the system in a given state is obtained by

\[S(A) = \frac{\text{area} \Sigma}{4G_N}. \] (2.48)

In the above equation \(\Sigma \) is an extremal surface homologous to \(A \) in the corresponding bulk geometry for the state, with the boundary of \(\Sigma \) ending on the boundary of region \(A \) (see figure 2). When there is more than one extremal surface satisfying the boundary conditions, one should choose the one with the smallest area. In the AdS context, equation (2.48) generalizes the Bekenstein–Hawking formula for the entropy of a black hole which may now be considered as a special example of (2.48).

The prescription (2.48) entirely bypasses the computation of the Renyi entropies, which turn out to be much more complicated to determine. To compute \(S_n \) for general \(n \), one needs to find the bulk gravity geometry dual to the boundary theory on a multi-sheeted cover of the original spatial manifold, and then compute its partition function, which is much more involved than finding an extremal surface.

3. Holographic Schwinger–Keldysh formulation

In this section we discuss how to compute real-time correlation functions defined on a Schwinger–Keldysh contour using gravity. The formulation for an equilibrium state is essentially complete, but finding a prescription applicable to general non-equilibrium situations is still an open problem.

3.1. General remarks

In the standard formulation of quantum many-body physics, real-time response and fluctuation functions in a state given by a density matrix \(\rho_0 \) can be obtained from path integrals on a Schwinger–Keldysh contour (or closed time path) as indicated in figure 3. The central object is the generating functional

\[e^{iW[\phi_1, \phi_2]} = \text{Tr} \left[\rho_0 \mathcal{P} \exp \int dt \left(\mathcal{O}_1(t) \phi(t) \mathcal{O}_2(t) \phi(t) \right) \right], \] (3.1)

where \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) denote generic operators and \(\phi_1 \) and \(\phi_2 \) their corresponding sources. Note that \(\mathcal{O}_{1i} \) and \(\mathcal{O}_{2i} \) are the same operator, with subscripts 1, 2 only indicating the segments of the contour in which they are inserted, while \(\phi_1 \) and \(\phi_2 \) are distinct fields. The minus sign in the second term comes from the reversed time integration for the second (lower) segment.
Given a time-dependent gravity solution, there does not yet exist a fully general procedure to compute (3.1). When the state ρ_0 can be prepared by a Euclidean path integral, one can write (3.1) as a path integral involving some Euclidean and some Lorentzian segments. In this case one can obtain a corresponding gravity spacetime by patching together different pieces: one associates with each real-time branch of the contour a Lorentzian spacetime, and with each imaginary-time branch a Euclidean spacetime. Different branches are joined together using patching conditions, roughly, and the bulk fields and their derivatives should be continuous. With the full path integration contour represented on the gravity side, the generating functional (3.1) can then be obtained using the standard procedure of integrating over the bulk fields with sources as boundary conditions. See [46, 47] for discussions, as well as figure 4 for more detail on a specific example of such a construction. This approach is conceptually straightforward, but is in practice tedious to carry out even for a thermal equilibrium computation. For a general non-equilibrium state, it is not clear how to set up ρ_0 as initial/final conditions even when the corresponding bulk gravity solution is known.

Fortunately, for many questions of interest, there exist methods which take advantage of the analytic structure of the relevant gravity solutions. We first discuss the computation of (3.1) in a thermal ensemble [48, 49], and then a more general proposal which applies to any spacetime with an analytic horizon (which does not have to be thermal) [50].

3.2. Momentum space formulation for two-point functions in a thermal state

Let us now restrict to a thermal ensemble with

$$\rho_0 = \frac{1}{Z} e^{-\beta H}, \quad Z = \text{Tr} e^{-\beta H},$$

(3.2)

which is time-translation invariant. In addition to the contour of figure 3 one could move part of the Euclidean segment which represents $e^{-\beta H}$ to other times, such as $t = \infty$ as indicated in figure 5 with a general $\sigma \in [0, \beta]$. Correlation functions obtained using different choices of σ are different, but they can be related by simple analytic continuations, and thus encode the same physical information.

Figure 4. Bulk geometry corresponding to the Schwinger–Keldysh contour in figure 5. The top left geometry is the upper part of the Lorentzian eternal black hole (see figure 6) that has been cut along the moment of time symmetry indicated by the dashed line piercing the bifurcation surface at the bottom. The part of this slice we are interested in is the region shaded in gray, located entirely in the right exterior region. The diagram on the top right depicts the Euclidean version of the eternal black hole geometry, which also has the slice of (Euclidean) time symmetry indicated. We glue one copy each of the gray-shaded Lorentzian region to the Euclidean section, gluing as indicated one along the red and and one along the green curve. For each gluing we impose that all metric fields as well as any propagating matter extend to C^1 functions on the whole geometry [46, 47, 51]. We similarly glue the two Lorentzian parts together at the dashed curve which starts out from the bifurcation surface just hugging the future horizon. The latter operation has the effect of ‘folding over’ the Lorentzian geometry, as suggested by the folded form of the Schwinger–Keldysh contour itself. The blue boundary curve represents exactly the Schwinger–Keldysh contour of figure 5.
On the gravity side, (3.2) is described by an eternal black hole geometry, with a metric
\[ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2d\Omega^2. \]
(3.3)

The detailed form of function \(f \) is not important except that it has a simple zero at some \(r = r_0 \), which is the location of the event horizon, and the inverse Hawking temperature is
\[\beta = \frac{4\pi}{c f(r_0)}. \]
(3.4)

The coordinates \(r \) and \(t \) are appropriate for \(r > r_0 \) and become singular at the horizon \(r = r_0 \). By using the so-called Kruskal coordinates, one could extend the black hole geometry past \(r = r_0 \), with the Penrose diagram of maximally extended spacetime geometry\(^7\) shown in figure 6.

More explicitly, we introduce the tortoise coordinates,
\[r_* = \int \frac{dr}{f}, \]
(3.5)

which has the near-horizon behavior (as \(r \to r_0 \))
\[r_* = \frac{\beta}{4\pi} \log(r - r_0) + \cdots. \]
(3.6)

Define
\[v = t + r_*, \quad u = t - r_*, \]
(3.7)

then for the R region we have
\[U = e^{-\frac{\beta}{2\pi}u}, \quad V = e^{\frac{\beta}{2\pi}v}, \]
(3.8)

while for the L region
\[U = e^{\frac{\beta}{2\pi}u}, \quad V = e^{-\frac{\beta}{2\pi}v}. \]
(3.9)

Writing \(U = T - X, V = T + X \), we may view \(T \) as a 'global time' which covers all regions of the black hole spacetime. Note that under \(t \to t + c, c > 0 \) we have
\[U \to e^{-\frac{\beta}{2\pi}c}U, \quad V \to e^{\frac{\beta}{2\pi}c}V \]
(3.10)

which has opposite effects in the R and L regions: in the R region it increases \(T \) while in L it decreases \(T \). Thus \(t \) runs in the same direction as \(T \) in the R region and in the opposite direction as \(T \) in the L region.

Now observe that the L region expression (3.9) can be obtained from (3.8) by taking \(t \to t - \frac{\beta}{2} \), and given that \(t \)

\footnote{While this section gives all necessary details needed for the present purpose, for completeness we provide more details on the Kruskal construction in an appendix.}

Figure 5. Standard Schwinger–Keldysh contour for thermal field theory correlation functions.

Figure 6. Penrose–Carter diagram of the eternal Schwarzschild AdS black hole. The red thickened lines at the top and bottom represent the singularities, while the solid lines at 45° angles are the horizons which meet at the bifurcation surface at the center of the diagram. The two asymptotic regions outside the black hole are indicated by L and R. For convenience a review of the construction of this geometry is given in the appendix. As reviewed there, the global Kruskal time runs in the same direction as \(t_0 \), but opposite to \(t_L \), as indicated along the two constant \(r \)-slices in each quadrant above.

\[e^{iW[\phi_1, \phi_2]} = \langle HH, +\infty | HH, -\infty \rangle_{\phi_1, \phi_2}, \]
(3.11)

where the subscript \(\phi_1, \phi_2 \) on the right-hand side denotes the boundary conditions to be specified below. As an illustration, let us consider a scalar operator \(\mathcal{O} \) dual to a massive scalar field \(\chi \) to quadratic level in sources \(\phi_{1,2} \). For this purpose it is enough to consider the bulk quadratic action for \(\chi \)
\[S = -\frac{1}{2} \int d^{d+1}x \left((\partial \chi)^2 + m^2 \chi^2 \right). \]
(3.12)

Using (3.11) we then find that
\[W[\phi_1, \phi_2] = S[\chi_\epsilon], \]
(3.13)

where \(\chi_\epsilon \) is the solution to the equation of motion of (3.12) which satisfies the boundary conditions (up to some factors of \(r^{\alpha_1} \), which we suppress here)
\[\lim_{r \to \infty} \chi_\epsilon(r, x)|_{r} = \phi_1(x), \quad \lim_{r \to \infty} \chi_\epsilon(r, x)|_{l} = \phi_2(x). \]
(3.14)

Such a solution can be expanded as
\[\chi_\epsilon(r, k) = a(k)\chi_1(r, k) + b(k)\chi_2(r, k). \]
(3.15)
where \(\chi_1, \chi_2 \) denote a basis of independent solutions to the wave equation of (3.12). They should be considered as defined on the fully extended black hole spacetime, and can be obtained by patching together the solutions in the L and R quadrants [48, 49].

It is convenient to write an independent basis of solutions to the corresponding wave equation in the R region in terms of their near-horizon behavior

\[
\chi_1 = e^{-i\omega r}, \quad \chi_2 = e^{-i\omega r}, \quad (3.16)
\]

where \(\chi_1 (\chi_2) \) describes a wave coming out of (falling into) the horizon (see figure 6). To obtain a global solution defined on a full Cauchy slice of the Kruskal geometry, we need to analytically continue (3.16) to the L region, with the help of Kruskal coordinates \(U, V \). Since in the R region, \(u = -\frac{\delta}{\pi} \log(-U) \) and \(v = \frac{\delta}{2\pi} \log V \), solutions (3.16) have branch points at the future \((U = 0) \) and past \((V = 0) \) horizons respectively. To perform analytical continuation to the L quadrant with (3.9) one has to decide whether to go around the branch points along the upper or lower half complex planes of \(U \) and \(V \). Going around in the lower (upper) half-plane means ‘negative’ (‘positive’) frequency solutions with respect to global time \(T \).

The solution (3.15) can be considered as a propagator connecting one boundary point to another through the bulk. The right-hand side of (3.11) means that it should behave as

\[
\chi_{\mu} = \lim_{r \to \infty} \chi_{\mu}(r) = \rho^{\Delta - 2} \chi_{\mu}(k) . \quad (3.21)
\]

where the extra factor \(e^{i\sigma \omega} \) for \(\chi_1 \) comes from analytically continuing \(U \) in the upper half-plane. The above prescription can also be understood in coordinate space as follows. From

\[
u = v - 2r_+ = v - \frac{\beta}{2\pi} \log(r - r_0) + \cdots \quad (3.23)
\]

we have

\[
\chi_1 = e^{-i\omega (v - \frac{\beta}{2\pi} \log(r - r_0))}, \quad \chi_2 = e^{-i\omega r_0}, \quad (3.24)
\]

and the analytic continuation procedure (3.22) may be phrased in coordinate language as taking \(v \to v - i\sigma \) while at the same time continuing \(r - r_0 \to e^{-2\pi i}(r - r_0) \).

Let us conclude by mentioning another construction of relevance to the discussion of this section. In [46, 47] the authors advocate a gluing procedure which allows one to construct bulk spacetimes dual to general contours with both Euclidean and Lorentzian sections. This prescription is illustrated on the example of the standard thermal Schwinger–Keldysh contour (illustrated in figure 5) in figure 4.

3.3. A non-equilibrium prescription

We will now discuss a proposal [52] which generalizes the prescription in the previous subsection to a general time-dependent gravity geometry which has an analytic horizon. Note that due to lack of time-translation symmetry, one should consider the contour of figure 3.

For \(\sigma = 0 \), the analytic continuation procedure discussed at the end of the last subsection for a thermal state can be phrased as in figure 7: we treat the radial coordinate \(r \) as a complex variable, and analytically continue \(r \) around \(r_0 \). The part of the contour below the real \(r \)-axis is identified with the first (upper) segment of the Schwinger–Keldysh contour of figure 3, while the part above the real \(r \)-axis is identified with the second (lower) Schwinger–Keldysh segment. The two slices are connected by a circle going around \(r_0 \) in a counterclockwise manner. The arrows in figure 7 denote the orientations of the \(r \)-direction, where the lower segment has the standard orientation and the upper segment has the opposite orientation. For the full complexified spacetime to have the same orientation, such a procedure also effectively reverses the orientation of the \(v \)-direction in the second copy.

Now note that such analytic continuation can be defined for a general spacetime with a future horizon, describing a general non-equilibrium state. More explicitly, such a metric can be written as

\[
d^2s = -f(r, x^\mu) dt^2 + 2dx^i dx^j + \lambda_{ij}(r, x^\mu) dx^i dx^j, \quad (3.25)
\]

with \(x^\mu = (v, \nu) \) and

\[
f(r \to \infty) \to r^2, \quad \lambda_{ij}(r \to \infty) \to \delta_{ij} r^2. \quad (3.26)
\]

\(f \) and \(\lambda_{ij} \) are assumed to be smooth functions of \(r \) and \(x^\mu \), with \(f(r, x^\mu) \) having a simple zero at some \(r_0(x^\mu) \). The metric (3.25) should now be understood as that on the full complexified spacetime of figure 7. Note that one does no analytic continuation in Eddington–Finkelstein time \(v \) which is already regular at the future horizon. Correlation functions
in the first example and the remaining $N-2$ scalar fields Φ^f in the latter. If N is taken to be very large, we arrive at a situation where the ‘rest of the system’ can absorb momentum and energy from the probe sector at a rate of $O(1)$, while the reverse processes are suppressed by inverse powers of N. Then at large N the ‘rest of the system’ will act as a bath for the probe sector. As a result, even if the whole system is in a pure state, we shall recover an effective thermal description of the NESS. We shall see that the probe system, subject to the continuous drive, despite being out of equilibrium shows aspects of equilibrium thermodynamics, such as an effective temperature T, seen by all fluctuations, complemented by a detailed fluctuation–dissipation relation. It would be extremely non-trivial to understand this situation purely from a many-body perspective as it involves balancing the current, the production of Schwinger pairs and the scattering, leading to a relaxation into a steady state.

However, we will now explore how this extremely complicated interplay of scattering, dissipation and conductivity can be studied analytically with the help of holographic duality in a simple manner. As a prototypical example, we will consider the D3D5 brane intersection [54], and will then briefly describe how to abstract these insights into a more general framework. In the probe limit, this brane intersection gives rise to a $2+1$-dimensional theory of fundamental fermions coupled to an adjoint sector [55, 56]; in other words we have an explicit example of the first kind we mentioned above. It is this $2+1$-dimensional theory that we will analyze. Let us first define our system more precisely.

In the relevant limit ($N_f \ll N$) this system is described as follows: we let the D3 branes backreact and take the near-horizon limit, resulting in the metric of a black hole in $AdS_5 \times S^5$,

$$\text{d} s^2 = \frac{u^2}{L^2} \left(-f(u) \text{d} r^2 + \text{d} x^2 \right) + \frac{\ell^2}{f(u)} \text{d} r^2 + \ell^2 \text{d} \Omega_5^2 \quad (4.1)$$

where $\text{d} s^2 = G_{ab} \text{d} X^a \text{d} X^b$, with $f(u) = 1 - \frac{u^2}{L^2}$, recognizing the black hole metric introduced in (2.5). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1). The dynamics of the N_f D5 branes is then described by the Dirac–Born–Infeld action, essentially a non-linear generalization of standard $U(1)$ electromagnetism in terms of a gauge potential A and its field strength $F = \text{d} A$, living in the background (4.1). There is also a so-called Wess–Zumino contribution to the action, which does not play a role and so we can safely ignore it in this analysis. From the point of view of the field theory the gauge field gives rise to an electric field with respect to a background (4.1).

Let us assume that a certain system of interest can be divided into two sectors, for example one sector of N_f flavors of quarks\footnote{I.e. fermions in the fundamental representation of the gauge group.} and a second one consisting of $SU(N)$ gluons. We then imagine applying an external field to only one of the two components, say the quarks. It is not even necessary to assume that the two sectors are different in nature, as in the aforementioned case. For example, the paper [53] considers minimally coupling two scalar fields $\Psi = \Phi^1 + i \Phi^2$ in an $O(N)$ model to a $U(1)$ gauge potential $\nabla \Psi \rightarrow (\nabla - i e A) \Psi$.

In such cases the system naturally splits up into the probe sector, the quarks in the former and the charged field Ψ in the latter example, and the rest of the system, namely the gluons
equations have a first integral, introducing a constant of integration, which turns out to be essentially the boundary current expectation value. Using the precise relation between the expectation value of the current and this integration constant allows us to deduce the conductivity relation

\[E = \sigma_{(2+1)} \langle \dot{J} \rangle \]

(4.3)

with \(\sigma_{(2+1)} \) a constant. It is important to note that no restriction was made on the smallness of the applied field, so that this result represents the full non-linear response to an arbitrary field. The fact that the response is linear in the source is an accident of the two-dimensional setup. As we shall see below, more generally the current response to an arbitrarily strong electric field is a non-linear function.

In fact the holographic dual geometry emerging from the above analysis turns out to hold the key to a simple intuitive understanding of the response of the system to a strong applied field. The fact that the response is linear in the source allows us to deduce the conductivity relation

\[\Phi = \Phi_{\text{steady}} + \varphi \]

(4.4)

to find that its equation of motion, formally from an action of the type

\[S_{\text{steady}} = \int d^2 \xi \sqrt{-S^{ab}} \partial_a \varphi \partial_b \varphi, \]

(4.5)

where \(S^{ab} \) is an effective metric, and not the background metric introduced in (4.1). Said differently, the NESS gives rise to an effective geometry, different from the background, leading directly to an effective thermodynamic description of the non-equilibrium physics of the system. As we have seen before, the dual geometry, and thus the metric, encode a great deal of non-trivial physical information about the field theory, and this is no different for the effective metric \(S_{ab} \). It is thus natural to proceed by elaborating the properties of this object. Technically speaking, it is the so-called open string metric (OSM), defined as \(\gamma_{ab} = P[G]_{ab} + F_{ab} \) with \(P[G]_{ab} \) being the pull back of the ambient metric onto the brane, and \(\gamma_{ab} = S^{(ab)} + A^{(ab)} \), having separated symmetric, \(S^{(ab)} \), and antisymmetric, \(A^{(ab)} \), parts of the inverse of \(\gamma^{ab} \).

Since fluctuations see the metric \(S_{ab} \) and not the background metric \(G_{ab} \), their correlation functions are determined by the properties of this effective metric. This has important physical consequences. While this mechanism occurs rather widely, with the precise form of the metric in various cases presented in [54, 57–60], we will content ourselves with the specific example of the D3D5 system at hand, giving some important physical expression for the general case at the end. In this case, the effective metric takes the simple form [53]

\[d\xi^2 |_{\text{eff}} = \frac{u^4 - u_*^4}{(u^2 - u_*)^2} ds^2 + \frac{(u^2)^2}{u^4 - u_*^4} d\sigma^2 + d\Sigma^2 |_{\text{trans}}, \]

(4.6)

suppressing, as indicated, the transverse directions. This metric has a horizon at \(u = u_* \) of temperature

\[\pi T_* = [(\pi T)^4 + E^2 \ell^{-4}]^{1/4}, \]

(4.7)

different from the background temperature \(T \) of the metric (4.1). In particular it can be non-zero even if \(T = 0 \). It follows from the fluctuation action (4.5) that two-point functions of the brane excitations will be thermal at temperature \(T_* \). This temperature, however, has more far-reaching consequences, namely that fluctuations in the NESS satisfy an exact fluctuation–dissipation relation with respect to \(T_* \):

\[G_{\text{sym}}(\omega, k) = -(1 + 2 n_s) \Im G_R(\omega, k), \]

(4.8)

where \(G_{\text{sym}} \) is the symmetric (‘Keldysh’) Green function and \(G_R \) the usual retarded Green function. The symbol \(n_s \) denotes the Bose–Einstein distribution function at the effective temperature \(T_* \). Thus, despite the far-from-equilibrium nature of the NESS, certain observables are exactly thermal with respect to an effective temperature \(T_* \) determined by the applied field. Schematically:

\[\text{equilibrium geometry} \leftrightarrow \text{thermodynamics} \]
\[\text{effective geometry} \leftrightarrow \text{effective thermodynamics}. \]

As an illustration of the power of this relation, [54] derived an expression for the current noise in the NESS valid for any value of the applied field,

\[S_J = \int_{-\infty}^{\infty} d\omega \omega |\tilde{G}_{R}(\omega)|^2 \Im \left(\frac{\tilde{G}_{R}(\omega)}{\omega} \right) \]

\[= 4 \sigma_{(2+1)} T_* \cdot \]

(4.9)

It should be noted that in the integrand we have used the fluctuation–dissipation relation to express the Keldysh correlation function in terms of the imaginary part of the retarded current–current correlation function, and thus have made crucial use of the properties of the horizon of the effective metric. Furthermore, [58] determined the distribution of momentum fluctuations in certain cases, demonstrating explicitly that they were thermal at temperature \(T_* \). The interpretation of the horizon entropy of the OSM appears to be more subtle. Several authors have proposed it to be related to entanglement, for example between Schwinger pairs created from the vacuum [61], or between fundamental and adjoint degrees of freedom [62], or a combination of both. Recently [60] has argued that there is simply no entropic interpretation for the open string horizon. The full physical interpretation of the open string horizon constitutes an interesting open problem for the future.

The analysis here can be carried out rather generally for a \(D(q + 1 + n) \) brane embedded in the background created by \(N \) Dp (\(p < 7 \)) branes [58]. This has the interesting property that the temperature of the world-volume horizon is not necessarily higher than that of the background. For example a single D2 brane probing a stack of D4 branes \((n = 0, q = 1) \) has \(T_* < T \) for any \(E \neq 0 \). In all cases a detailed fluctuation dissipation relation of the form of equation (4.8) can be established for the appropriate \(T_* \).

4.2. Non-equilibrium heat flow

A different class of steady states involves systems driven away from equilibrium by a temperature differential. One can imagine setting up such a situation by bringing two
CFTs in contact\(^9\), each thermalized at its own temperature \(T_K \neq T_L\). One is then interested in the heat flow, and in particular whether a steady state with nonvanishing heat current can be established in the interface region \([64-69]\). This question has a beautifully simple answer in two-dimensional CFT, where relativistic hydrodynamics together with conformal invariance dictate the energy flow. Under these conditions a universal form of the heat current, namely \([64]\)

\[
\langle T^\mu \rangle_s = \frac{\pi c}{12} (T_L^2 - T_R^2), \tag{4.10}
\]

follows from the above-mentioned constraints subject to the initial conditions. In more than one spatial dimension conformal symmetry alone is no longer powerful enough to establish a similar result. However, under certain assumptions it can be argued that a steady state region forms, with current \([66]\) argue that a steady state region with nonvanishing heat current can be established in the interface region \([64]\). Here the boundary metric is sourced by a time-dependent deformation of the Hamiltonian.

An intriguing alternative scenario arising from coupling to two heat baths at different temperatures is elaborated in \([63]\). Here the boundary metric is non-trivial, sourced by a time-dependent deformation of the Hamiltonian. The system nevertheless approaches a conformal, self-similar steady state in the late-time limit.

\[u_{L,R} = \frac{1}{d} \sqrt{\frac{x + d^{-1}}{x + d^1}}, \tag{4.12}\]

These higher dimensional results follow from combining conformal relativistic hydrodynamics with the holographic insight that the only regular solutions with a constant and homogeneous stress tensor are the boosted black branes \([66]\). In field theory terms, this means that the NESS region is described by a boosted density matrix

\[
\rho_s = e^{-\beta \cosh \theta H + \beta \sinh \theta P^\mu}, \tag{4.13}
\]

where temperature \(T = \beta^{-1}\) and rapidity \(\theta\) can be shown to be given by

\[
T = \sqrt{T_L T_R}, \quad \theta = \frac{\chi - 1}{\sqrt{(\chi + d)/(x + d^{-1})}}. \tag{4.14}
\]

In fact, the holographically motivated assumption that the NESS is described by the boosted density matrix \([4.13]\) allows one to get control over arbitrary connected correlations of the energy current \(c_a = \langle J^a_{\text{tot}} T^t \rangle_{|z=a}\) in the NESS region. This is achieved by showing that the generating function \(F(z) = \sum c_a z^a / a!\) satisfies the simple equation

\[
\frac{dF(z)}{dz} = J_E (\beta_L - z, \beta_R + z), \quad J_E = \langle T^t \rangle_s, \tag{4.15}
\]

which allows one to extract the full fluctuation spectrum of the strongly coupled NESS in arbitrary dimension. This again generalizes a two-dimensional CFT result \([64]\) to higher dimensions. We emphasize again that the crucial step was to appeal to holographic duality, and in particular to properties of the bulk Einstein equations to argue for the boosted form \((4.13)\) of the density matrix in the steady state region. The original work was performed on the assumption that the steady state region forms after the local quench in between two shock waves that emanate from the interface, but some later treatments corrected this picture slightly by replacing the shock moving towards the hotter reservoir with a rarefaction wave, as required by entropic considerations \([70, 71]\), as had been appreciated in previous hydrodynamic work \([72]\). It was found numerically that the analytic predictions for the NESS region do not get drastically modified, given that the temperature differential between the two reservoirs is not very large, and given that the rarefaction region does not eliminate the steady state region entirely. The interested reader can find a more detailed review of the above-mentioned developments in \([73]\).

It is also interesting to remark that since the publication of \([66]\), the work \([74]\) has given a general classification of holographic spacetimes with constant homogeneous stress tensor, extending the range of candidate NESS beyond boosted black branes. This opens up the exciting possibility of exploring the properties of the steady states associated with these new solutions, along the lines of \([66]\).

4.3. Flows over obstacles

Many interesting NESS arise in situations where a fluid, specifically here a quantum liquid, is forced to flow in the presence of an obstacle. Familiar, albeit classical, examples include the flow of air around an airfoil, the bow of a ship, or even the flow of a gas through a gravitational well, as is often relevant in astrophysical settings. In this section we review universal aspects of flows of quantum liquids for theories with holographic duals \([75-77]\). We imagine the field theory subject to boundary conditions at spatial infinity, prescribing a simple, homogeneous flow at temperature \(T_L\) and with flow velocity \(u_\mu^L\). This sets up a non-zero, momentum-carrying, flow, which is then disturbed by an obstacle, which we place at some finite position in the downstream region. The flow will then approach a second asymptotic, homogeneous flow far downstream from the obstacle, with parameters \(T_R\) and \(u_\mu^R\).

The main point of interest is the case of a stationary flow, which will be simple asymptotically far from the obstacle, but strongly non-linearly disturbed in its vicinity. The spatial transition between these two behaviors is universal and elegantly described in holography. A particularly simple picture results for co-dimension one obstacles, when, as emphasized in figure 8, one can view the flow as a kind of spatial quench \([75]\). This was analyzed in detail in \([76, 77]\) and we now summarize the salient features. In analogy with temporal relaxation in holography, where as we have mentioned (and shall see explicitly in subsequent sections), universal late-time behavior can be efficiently
accessed via the QNMs of the system, the NESS of this section approach the asymptotic spatial equilibria at a rate governed by a spatial version of the QNMs\(^{10}\), termed `spatial collective modes’ (SCMs) in [76, 77]. In fact, similar modes have been encountered in the context of plasma absorption [78], as well as holographic superconductors [79, 80] and hydrodynamic shocks [81, 82]. This appearance of SCM physics can be summarized as follows.

1. A system is set up with an asymptotic flow velocity \(v_L\) far away on the left of a co-dimension one obstacle.
2. In some region the flow is disturbed by an obstacle.
3. Downstream from the obstacle, the disturbed flow approaches again a steady homogeneous flow with generically different parameters. The spatial profile of how the flow connects the two homogeneous asymptotic flows to the strongly non-linear region in the vicinity of the obstacle is described universally by the leading SCM \(k^{*}_{0,L/R}\) on either side of the obstacle.

The SCMs introduced here are solutions to the linearized bulk equations around backgrounds describing homogeneous and isotropic flows, in other words boosted black branes. The obstacle will excite perturbations of energy density, flow velocity field, etc (depending on the conserved quantities present in the setup), for example \(\varepsilon(x') = \varepsilon + \delta\varepsilon e^{i(x-vt)}\) with zero frequency, i.e. \(\kappa^0 = (0, k)\). These correspond to bulk modes that are regular at the future horizon, but which also have the novel feature that they obey regularity conditions as one or other of the spatial asymptotic regions is approached. Such solutions typically fall into a discrete set of modes

\[
k = k^*_n(v; \omega) \in \mathbb{C}, \quad (n \in \mathbb{Z})\tag{4.16}
\]

which show up as analytic properties of correlation functions in the complex momentum plane, where poles in the upper half-plane define modes that describe the spatial equilibrium as one asymptotic region is approached (in the conventions of [76, 77] to the right), while poles in the lower half-plane give modes that describe the decay from the obstacle toward the other spatial asymptotic region. The physics of this spatial relaxation is universal, i.e. it depends on the theory one is interested in, but not on the shape of the obstacle, and it encodes physically interesting information. For example, the spatial decay of the shear mode obeys the dispersion relation [76]

\[
k = -is/\eta v \cdot k + \ldots\tag{4.17}
\]

where \(v\) is the asymptotic background flow velocity that is approached. What is interesting is that a spatial feature of the system, for example the decay to the right asymptotic region in figure 8 is given by the shear viscosity over entropy density ratio \(\eta/s\). This suggests that NESS would be attractive experimental setups to quantitively determine this quantity in the lab. Typical scales for graphene at charge neutrality can be estimated, resulting in values of \(\sim 1\mu m\) at standard temperature for the parameters reported by [83].

5. Quantum quenches

Probing the coherent dynamics of many-body quantum systems which were initially in far-from-equilibrium states has become both experimentally accessible and a theoretically fruitful area of study\(^{11}\). The simplest way to set up such a state is a quantum quench, which describes a non-adiabatic process of disturbing a quantum many-body system using an external force or by changing its parameters. Despite its simplicity, the post-quench evolution yields rich dynamical behavior. We will review several canonical holographic examples below, focusing on global quenches. Local quenches also contain a plethora of interesting physics, as described, for example, in [86–94].

5.1. Thermalization, AdS dynamics, and entanglement growth

Thermal equilibrium states in AdS are described by stationary black branes as discussed earlier in section 2. The study of thermalization therefore maps to the dynamics of black hole formation and equilibration. From general properties of the black hole formation we can delineate a number of qualitative phases of non-equilibrium dynamics:

\[^{10}\text{Here we are considering stationary systems which depend non-trivially on space, but it may be helpful to anticipate a close analogy between what is being developed here and the temporal relaxation of generic holographic systems via their QNMs, as described in section 5 below: essentially the former are related to the latter by exchanging the roles of} \omega \text{ and } k.\]

\[^{11}\text{For reviews on this topic the reader may consult, for example, [84, 85].}\]
1. A given initial state is disturbed, for example by abruptly changing boundary conditions, producing a far-from-equilibrium initial state.

2. As a result of strong gravitational dynamics, an (apparent) horizon is formed in the bulk, or a previously existing horizon is deformed. From the boundary perspective, the horizon formation may be interpreted as local equilibration, where non-conserved quantities equilibrate locally, while conserved quantities and nonlocal correlations have not yet settled into their equilibrium values.

3. At late times the (new) horizon equilibrates via quasi normal ring-down and eventually settles to the new stationary state. From the boundary theory perspective, at this stage expectation values of boundary theory physical observables (i.e one-point functions) will have settled into their equilibrium values.

4. Even after one-point functions have reached equilibrium values, the system could still be far from equilibrium when we probe it using nonlocal quantum observables such as correlation functions involving widely separated spatial points or the entanglement entropy for a large region. For a noncompact system, such equilibration of nonlocal observables essentially persists for ever as one increases the ‘size’ of a nonlocal observable to infinity.

For a global quench, where the initial non-equilibrium state is spatially homogeneous, there is no energy or momentum flow in its subsequent evolution, and thus naively nothing happens after local equilibration. But studies of nonlocal quantum observables, which were initiated by Calabrese and Cardy in [95, 96], have revealed striking insights into the quantum dynamics of the system (item 4 above). By tuning a parameter of a (1 + 1)-dimensional gapped system to criticality, Calabrese and Cardy found that [84, 95, 96] the entanglement entropy for a segment of size 2R grows with time linearly as

$$\Delta S(t, R) = 2t_{eq}, \quad t < R \quad(5.1)$$

and saturates at the equilibrium value at a sharp saturation time $t_{eq} = R$. In (5.1), ΔS denotes the difference of the entanglement entropy from that at $t = 0$ and t_{eq} is the equilibrium thermal entropy density.

The simplicity and elegance of (5.1) motivated many studies on holographic systems; see, for example, [89, 97–120], especially in higher dimensions.

A particularly simple example of a global quench is the Vaidya solution, which describes the gravitational collapse of a uniform shell of null matter, i.e. a thin shell of matter collapsing at the speed of light. From the boundary perspective, the solution describes the thermalization process following a sudden injection of uniform energy density into the system. In ingoing Eddington coordinates the corresponding metric can be written as

$$ds^2 = \frac{L^2}{v^2} (-f(v, z) dv^2 - 2dvdz + dx^2), \quad(5.2)$$

where v is a null coordinate and $f(v, z)$ is a general profile function, which depends on the details of the quench protocol, described by the mass function $m(v)$,

$$f(v, z) = 1 - m(v)z^d. \quad(5.3)$$

In the limit that the boundary source giving rise to this metric is applied for an infinitesimally short time, this function takes the form of a step function $m(v) = \frac{d}{2}[1 + \tanh(v/v_0)]$. Another frequently used protocol is $m(v) = \frac{d}{2}[1 + \theta(v/v_0)]$.

From the prescription of computing holographic entanglement entropy discussed in section 2.4, in order to calculate the entanglement entropy of a subregion Σ in the boundary theory dual to the Vaidya geometry, one needs to find the extremal co-dimension two surfaces of the metric (5.2). Denoting the characteristic size of the region as R, one finds that for R much larger than the local equilibration time ℓ_{eq} (which is roughly of the order of the inverse temperature), the time evolution of entanglement entropy is characterized by four different scaling regimes [110, 111]:

1. Pre-local-equilibration growth: for $t \ll \ell_{eq}$,

$$\Delta S_{\Sigma}(t) = \frac{\pi}{d^2} \mathcal{E} A_{\Sigma} t^2 + \cdots \quad(5.4)$$

where \mathcal{E} is the energy density and A_{Σ} is the area of Σ. This result is independent of the shape of Σ and the spacetime dimension d.

2. Post-local-equilibration linear growth: for $R \gg t \gg \ell_{eq}$, we find a universal linear growth [109, 110]

$$\Delta S_{\Sigma}(t) = vt_{eq} A_{\Sigma} t + \cdots \quad(5.5)$$

where v_{eq} has dimensions of velocity, often referred to as the entangling velocity or tsunami velocity. v_{eq} is independent of the shape of Σ, but does depend on the nature of the final equilibrium state. For an equilibrium state with no chemical potential, one finds that

$$v_{\Sigma}^{(s)} = \left(\frac{\eta - 1}{\eta^d}\right), \quad v_{eq}^{(s)} \equiv \frac{2(d - 1)}{d}. \quad(5.6)$$

Turning on a chemical potential tends to reduce v_{eq}. Note that $v_{\Sigma}^{(s)} = 1$ for $d = 2$ and monotonically decreases with d.

3. A saturation regime in which the entanglement entropy saturates at its equilibrium value. The saturation can be either ‘continuous’ or ‘discontinuous’ depending on whether the time derivative of the entanglement entropy is continuous at saturation. In the large R limit, the saturation time t_{Sat} can be written as

$$t_{Sat} = \frac{R}{v_{Sat}} \quad(5.7)$$

where v_{Sat} is a constant depending on the shape of Σ. v_{Sat} is often referred to as the saturation velocity. For example, where Σ is a spherical region $v_{Sat} = v_{Sat}$ where v_{Sat} is the so-called butterfly velocity, while for a parallel strip region $v_{Sat} = v_{Sat}$.

4. In the $R \rightarrow \infty$ limit, there exists another scaling regime between the linear growth and saturation, in which the evolution of the entanglement entropy becomes insensitive to the shape and size of the region.
These results are generic for all holographic systems in the sense that they are insensitive to the specific details of the system as well as those of the quench. The scaling regimes were obtained by identifying various geometric regimes for the bulk extremal surface. An important observation was the existence of a family of ‘critical extremal surfaces’ which lie behind the horizon and separate extremal surfaces that reach the boundary from those which fall into the black hole singularity. In the large size limit, one finds that the time evolution of entanglement entropy is controlled by these critical extremal surfaces [110, 111, 116, 120, 121].

Collectively, these regimes suggest that the evolution of entanglement entropy can be captured by the picture of an entanglement wave propagating inward from the boundary of the entangled region, which was called an ‘entanglement tsunami’ (see also [122]). In other words, entanglement propagates ballistically even in systems without quasiparticles.

Quantum quenches have also been discussed in a variety of other contexts, see for example [123–127], which initially numerically observed interesting scaling results in the limit of fast but smooth quenches. In fact, by developing a near-boundary expansion adapted to the rapid quench problem, these results can be analytically shown to reflect the UV conformal fixed point of the dual theory, giving an excellent match with the numerically observed behavior. This motivated the authors [124–127] to establish analogous results purely from a field theory perspective, in the context of CFTs and free theories.

More generally, whether given initial states will eventually thermalize and, if so, how fast and in what manner, depends both on the nature of the system of interest (for example, many-body localized versus ergodic, or integrable versus chaotic) and on the properties of the initial state itself. In holographic contexts, there are general theorems saying that sufficiently massive and compact objects will collapse to form a black hole, implying that sufficiently excited non-equilibrium states generically thermalize. This is consistent with the standard lore regarding thermalization for a non-integrable quantum system. If instead we focus on initial states which are represented by small bulk initial data, the process of eventual thermalization becomes more intricate. This crucially involves the physics and geometry of AdS and in particular the presence of the time-like boundary which reflects outgoing modes back into the bulk. In this way small initial disturbances can be non-linearly amplified by successive reflections and eventually lead to the formation of a horizon [128, 129]. This reflects a more intricate path to thermalization of the field theory, and it is interesting to speculate what physics of the dual field theory corresponds to this behavior. The presence of stable regions within the space of initial data suggests a possible relation to a quantum many-body version of the classical KAM theorem, in the sense that not all initial data immediately become fully ergodic.

5.2. Dynamics of superconductors and superfluids

Phases in condensed matter systems can often be characterized by symmetry breaking patterns. Many studies have been devoted to the thermodynamic properties of various symmetry breaking phases [18, 130–132]. But it is also of great interest to investigate their dynamics. We now review work on dynamical aspects of various holographic superfluids and superconductors using the duality.

5.2.1. Quenches of holographic superfluids. The order parameter translates, via the holographic dictionary, into a charged matter field propagating in the bulk spacetime, \(\psi \), while the \(U(1) \) current is represented by a Maxwell field, \(A \), as outlined in the introductory sections of this review. The model action, also known as the bottom-up holographic superfluid [130], is thus given as

\[
S = S_{\text{grav}} + S_{\text{Max}} + \int d^{d+1}x \sqrt{-g} \left(-|D \psi|^2 - V(|\psi|) \right),
\]

where \(S_{\text{grav}} \) and \(S_{\text{Max}} \) were given in (2.2) and (2.14) respectively. Hence, in order to study the dynamics of a holographic superconductor, one is led to study the time development of Einstein’s equations with negative cosmological constant, sourced by an energy momentum tensor made up from the field strength \(F \) as well as the complex scalar \(\psi \).

5.2.2. Rapid quenches and dynamics of symmetry breaking. Interesting phenomena arise when systems whose ground state involves a broken symmetry are displaced far from equilibrium by a sudden quench. In this case an immediate question of interest concerns the subsequent behavior of the order parameter in the long-time limit. By studying the dynamics following a coupling quench of the integrable BCS Hamiltonian (the ‘Richardson model’) [133–136] identified a regime of persistent oscillations of the order parameter, followed by a regime of damped oscillations for stronger quenches. The analysis is valid in the collisionless regime at timescales shorter than the energy relaxation scale. In [137] rapid quenches of superfluids were studied holographically, capturing the time evolution in its entirety. The starting point is the action (5.8) for \(d = 3 \), and for the simple potential \(V(\psi) = m^2|\psi|^2 \) with \(m^2\ell^2 = -2 \). In order to utilize a characteristic solution scheme (see section 6.2 for more details), the metric is chosen as

\[
ds^2 = \frac{\ell^2}{z^2} \left[-F dt^2 - 2dtdz + S^2(dz^2 + dx^2) \right],
\]

where \(F(t,z) \) and \(S(t,z) \) are non-trivial metric functions depending on time and the holographic bulk direction \(z \), while \(\psi = \psi(t,z) \) and \(A_t = A_t(t,z) \). Near the Ads boundary the matter fields have an expansion

\[
\psi = z\psi_1(t) + z^2\psi_2(t)
\]
\[
A_t = \mu(t) - z\rho(t) + \cdots.
\]

Here, \(\psi_1(t) \) denotes the time-dependent source of the order parameter, while \(\mu \) is the chemical potential. Then the expectation value of the charge density can be found by holographically renormalizing the asymptotic behavior of the bulk fields resulting in the expressions
\[(J_t(t)) = \frac{\mu(t) - \mu(t)}{2\kappa^2} \]
\[\langle O(t) \rangle = \psi_2(t) + \psi_1(t) + 2i\mu(t)\psi_1(t). \]

We note that the second expression given here corrects a typographical error in [137].

The order parameter field starts in an equilibrium state and is then quenched at time zero by applying a Gaussian profile to the source
\[\psi_1(t) = \delta \exp \left(-\tau t^2 \right) \]
where \(\delta \) characterizes the strength of the quench, and \(\tau \) the timescale. In order to explore the non-equilibrium phase diagram, \(\delta \) is varied, while \(\tau \) is kept fixed at a scale. Since the system fully thermalizes at late times, one can characterize each quench by the final temperature \(T_f \) it attains asymptotically. The resulting dynamics falls into one of three regimes. Two of them (I & II) lie on either side of a non-equilibrium phase transition, characterized by an emergent temperature \(T_c \). This behavior is strikingly similar to that observed in the Richardson model [133–136]. In more detail, we have

I Weak quench \((T_f < T_\ast < T_c)\): the order parameter relaxes to a non-zero value with damped oscillation.

II Intermediate quench \((T_\ast < T_f < T_c)\): the order parameter relaxes to a non-zero value via pure exponential decay.

III Strong quench \((T_f > T_c)\): the order parameter relaxes to zero via pure exponential decay.

But in this case the full power of holography allows us to physically characterize this system from a complementary perspective and identify the physical mechanism behind the transition. Having identified the emergent final temperature, \(T_f \), one may decompose the dynamics in terms of damped collective oscillations of the many-body system. These manifest themselves as poles in thermal correlation functions, and are encoded holographically in terms of the QNMs of the final-state black hole. It was demonstrated in [137] that the transition at \(T_c \) can be seen in the collective excitation spectrum, as the exchange of dominance of the leading poles in the two-point correlation function of the order parameter \(G(\omega, k) = \langle O^\dagger(\omega)O(-\omega) \rangle \). Related results have been obtained using the \(\varepsilon \)-expansion in [138, 139].

This, together with the exchange of dominance of poles (see figure 9), makes the transition from one phase to the other clear. In fact the on-axis pole giving rise to this phenomenon is the so-called amplitude or Higgs mode of the superfluid, recently measured at the SI transition, as reported in [140]. It is interesting to note that a study of the many-body dynamics of the relaxation of antiferromagnetic order in the XXZ model yields results with striking resemblance to those discussed here [141], with the order parameter undergoing exponentially damped decay or exponentially damped decaying oscillations, towards its final equilibrium state.

Above we noted that despite the generally intricate nature of non-equilibrium dynamics, sometimes scaling results can be obtained, for example in the limit of very fast quenches [124–126, 142]. In fact, obtaining scaling laws as a function of quench parameters is a subject with a venerable history, and we will now explore this issue for symmetry breaking quenches. Indeed a paradigmatic non-equilibrium phenomenon manifests itself if symmetry breaking critical points are crossed at a finite rate \(\tau_0 \) [143, 144]. The critical point can be either a thermal phase transition, or a quantum critical point [145, 146]. In such situations the symmetry breaking order parameter will take uncorrelated expectation values in regions separated by more than a certain distance, and their eventual resolution results in the creation of topological defects—under the condition that the vacuum manifold allows them. The number and distribution of topological defects has been proposed to follow a scaling relation, the so-called Kibble–Zurek (KZ) scaling [143, 144], whose form is determined by equilibrium critical exponents. When a second-order critical point (or a quantum critical point) is approached at the finite

![Figure 9. Three regimes, I, II, III, of the non-equilibrium phase diagram of a holographic superfluid. The location of the poles of the two-point function in each regime is shown in the bottom row. On the gravity side these correspond to the QNMs of the complex order parameter field. Figure taken from [137].](image-url)
rate τ_0, the instantaneous correlation length $\xi(t)$ and relaxation time $\tau(t)$ evolve as
\[
\xi(t) = \frac{\xi_0}{|\epsilon(t)|^\nu}, \quad \tau(t) = \frac{\tau_0}{|\epsilon(t)|^\nu},
\]
where $\epsilon(t) = t/\tau_0$ parametrizes the distance to the relevant critical point as a function of time. One then posits that the system will lose its ability to adiabatically follow the externally imposed change at the instant t where the remaining time to cross the critical point equals the equilibration timescale τ_0, i.e. $\tau[\epsilon(t)] = \tau_0$. The system will then be effectively frozen during the interval $(-\hat{t}, \hat{t})$, where
\[
\hat{t} \sim (\tau_0 \tau_0^{\nu})^{\frac{1}{\nu}}, \quad \text{with} \quad \xi \sim \xi_0 \left(\frac{\tau_0}{\tau_0^{\nu}}\right)^{\frac{1}{\nu}}.
\]
Since different parts of the system of size $\sim \hat{\xi}$ are no longer able to communicate, one expects that the order parameter will take on uncorrelated values on patches of size $\sim \hat{\xi}$ and thus that the density d of topological defects after the quench through the critical point will scale approximately as
\[
d \sim \xi^{n-D},
\]
where D is the spatial dimension of the system and n is the spatial dimension of the defect. Following on from the general scaling theory [143, 144], the KZ mechanism has been studied in a variety of model systems [147]. The study of dynamical defect formation necessitates a solution of many-body dynamics far from equilibrium, often hopelessly out of reach, but, as we have seen many times above, a task for which holography is well suited [80, 148–153]. The study of winding-number statistics of a superfluid ring (see figure 10), while [153] investigates vortex formation in a two-dimensional superfluid, where in both cases the quench is produced by cooling the background solution at a rate τ_0. These works were able to confirm the validity of the predicted scaling laws, establishing the applicability of the KZ scaling law for strongly coupled systems without quasiparticles. However, [80, 153] were also able to extract accurate values for the prefactor, which under certain conditions can deviate significantly from the KZ prediction [153].

We have argued that holographic duality allows us to extract a simple intuitive picture of the complicated many-body dynamics, by thinking about the quasinormal and spatial-conformal modes of the system. Whenever the deviations of the order parameter from its equilibrium value (at the instantaneous value of $\epsilon(t)$) are small, we can investigate the system using bulk linear equations. The response is then governed by the leading poles in the complex frequency plane. When the frozen system enters the parameter regime where the broken symmetry is favored, one finds an exponential growth regime governed by the timescale $[153] \left| \Im(\omega_0) \right|^{-1} > 0$ of the leading unstable QNM $\omega_0(q, k)$, computed about the supercooled uncondensed state. This leads to the exponentially growing contribution,
\[
C(t, q) = \zeta \int \frac{d^3 \mathbf{r}}{2} e^{i q \mathbf{r}} \Im \langle \epsilon(t') \rangle \langle C \rangle, \quad (5.16)
\]
to the Fourier transform of the correlation function $C(t, r) := \langle \psi^\ast(t, \mathbf{x} + \mathbf{r}), \psi(t, \mathbf{x}) \rangle$, where $H(q)$ is a slowly varying function of momentum whose details we will not need, and ζ parametrizes the typical amplitude of the noise correlation in the system. Translated into real space, the leading QNM analysis predicts
\[
C(t, r) = \tilde{\epsilon}(t) e^{i R \xi_0^{\beta} \frac{r}{\tau_0^{\nu\beta}}} e^{-\frac{r}{\hat{\xi}^{\beta} \tau_0^{\nu\beta}}} \quad (5.17)
\]
in terms of the reduced time $\hat{t} := t/\tau$, and where $\xi_0 \sim 1^{1/(2+\beta)}$ is the time-dependent coarsening length. The $O(1)$ parameter α_2 is not universal, but the results below do not depend on its precise form. This result has interesting consequences, namely, it predicts that the system may undergo a parametrically large amount of coarsening already before a well-defined condensate forms. Let us denote this latter timescale as τ_{eq}. A large amount of early coarsening happens whenever the timescales \hat{t} and τ_{eq} are parametrically different, which concretely means that the parameter
\[
R \gg 1 \quad \text{with} \quad R \sim \zeta^{-1} \tau_{eq}^{\frac{1}{\nu\beta} - \frac{\beta - 2 \nu}{\nu\beta}} \quad (5.18)
\]
where β is the condensate critical exponent and $|\psi|^2 \sim \epsilon^{2\beta}$ near the phase transition. Holographic systems have $\zeta \sim 1^\beta$ and thus fall into the class of theories that are expected to undergo a parametrically large amount of coarsening before τ_{eq}. This was numerically confirmed in [153]. A general lesson emerging from these explicit holographic results on finite-rate quenches is the good agreement with the scaling form (5.15) predicted by KZ, even in the strongly coupled regime, whereas the numerical prefactor following from general KZ arguments (see [147] for a discussion) clearly has to be taken with a grain of salt, as illustrated by the detailed comparison in [80] and [153].
6. Numerical techniques for AdS/CMT away from equilibrium

In the semi-classical large-\(N\) limit, the task of studying the exact time-dependent physics of a quantum field theory is translated into the task of solving a set of Einstein-matter equations (5.8) from a given initial configuration, subject to suitable boundary conditions. General relativity, as the name suggests, is a generally covariant theory, and it is non-trivial to understand how it gives rise to a system of equations that propagate given initial configurations forward in time. This is, however, necessary, not least from the point of view of numerically solving the Einstein equations. Given the rich and complicated gauge structure of the theory, it is no surprise that there are different schemes for doing so, several of which have found successful application in past years.

Here, we review two different classes of schemes which have been successfully employed in the context of AdS/CMT, namely

1. The characteristic method, which propagates data given on a light-like slice.
2. The (generalized) harmonic scheme, which propagates initial data given on a space-like slice.

While the latter has seen widespread application in asymptotically flat gravity, notably in the first stable evolution of the inspiral problem [154], the former has seen much success in the context of non-equilibrium holography, i.e. largely in AdS space. While giving rise to very efficient solution methods, choosing to evolve along characteristics comes with a price: in the presence of focusing, these characteristics can converge, eventually forming what are known as caustics. In such cases the characteristic ‘time’ variable is no longer single-valued, leading to a breakdown of the method. Despite this limitation the approach has proved very fruitful in non-equilibrium AdS simulations, since in the cases of physical interest no such caustics have formed outside of apparent horizons, and therefore can be excised from the computational domain. This is essentially the case because physically interesting situations, from the AdS/CMT point of view, almost always involve so-called ‘large’ black holes, with an in-fall time that is short on the typical timescales of the evolution. Caustics are thus almost guaranteed to form only behind any horizons.

Another major advantage of the characteristic scheme over the Cauchy scheme is the ease with which the singularity can be excised. Excision can be achieved by letting the numerical grid end somewhere just inside the horizon, essentially by specifying free boundary conditions at a regular point behind the horizon, and stopping the radial integration. This is equivalent to specifying the Cauchy scheme is the ease with which the singularity can converge, essentially the case because physically interesting situations, i.e. loci where several null rays intersect, and at such points characteristic evolution is ill-defined. After these general remarks, let us now start by explaining Cauchy evolution schemes starting with the example of Maxwell theory. The evolution equations are second-order PDEs. One therefore expects that initial data should correspond to a set of functions at the initial time, as well as their first derivatives. We shall see that this expectation is correct, up to an important detail, namely that the initial data themselves are not completely free, but rather must satisfy certain constraints.

Let us write the metric of the asymptotically AdS\(_{d+1}\) space-time in the (‘Schwarzschild-like’) form

\[
\text{ds}^2 = \frac{\ell^2}{z^2} \left(\frac{dz}{f(z)} - f(z)\text{dr}^2 + \sum_i \text{d}x^i\text{d}x^i \right),
\]

(6.1)

where \(f(z) = 1 - (z/z_h)^d\). Initial data are specified on a constant time surface \(\Sigma_{t_0}\) at \(t = t_0 = 0\) with time-like unit normal \(n_a = \sqrt{-g} \delta_{ar}\). Maxwell’s equations with a source then take the form

\[
\mathcal{E}^b = \nabla_a F^{ab} - j^b = 0,
\]

(6.2)

although for simplicity we will from now on use the source-free equations \(\mathcal{E}^b = 0\). Adding back the sources is straightforward. At this point it is convenient to introduce the notation \(\{x^a\} = \{z, x^i\}\) for the coordinates on the space-like \(\Sigma_0\). If the equations in the present decomposition are to propagate the degrees of freedom contained in \(\Lambda^a\), we immediately run into a problem: the component equation along the unit normal \(n_a\mathcal{E}^a\) does not contain second time derivatives, while all other orthogonal components do have second time derivatives. This means that we only have \(d\) dynamical equations for \(d + 1\)

\[\text{One is of course free, in principle, to allow for the freedom to dynamically adapt the gauge also within the class of choices suitable for characteristic evolution, and this may indeed be interesting to pursue. However, as of writing this review, this has not been explored in numerical holography.}\]
evolution variables. As is well known this is not a fundamental problem, but merely a complication in the formulation of the evolution equations due to gauge invariance.

In fact, as we shall see now, the time-like component of Maxwell’s equation \(n_\mu \mathcal{E}^\mu \) gives precisely the constraint equation on \(\Sigma_0 \), which must be satisfied by admissible initial data. This constraint equation is nothing but the differential form of the Gauss Law on \(\Sigma_0 \):

\[
\nabla_i (\nabla^i A^i - \nabla^i A^i) = 0 \quad \iff \quad D \cdot \mathbf{E} = 0, \quad (6.3)
\]

where \(D \) is the covariant derivative on \(\Sigma_0 \) and \(\mathbf{E} \) is the electric field, whose components are defined by the round brackets in the equation above. We remark in passing that the magnetic constraint \(D \cdot \mathbf{B} = 0 \) is satisfied identically. Since we have already stated that the problem of the time-like component is related to gauge invariance, it is not surprising that one way to proceed from here is to pick a specific gauge. In the case at hand a standard choice is the covariant Lorenz gauge

\[
\nabla_\mu A^\mu = 0, \quad (6.4)
\]

but more general gauge conditions where the right-hand side is an arbitrary source function,

\[
C := \nabla_\mu A^\mu - \Phi(A^\mu) = 0, \quad (6.5)
\]

are possible. The analogous choice in the case of the Einstein equations is at the heart of the (generalized) harmonic scheme. An example of the scheme (6.5) has been implemented in the works of [20, 157], who numerically solved the Einstein–Maxwell system using the so-called DeTurck approach. Let us first choose the standard Lorenz gauge, \(\Phi = 0 \). With this choice we can formulate a well-posed initial value problem as follows: start with the Maxwell equation (6.2), written as

\[
\nabla_\mu A^\mu = R_\mu^\nu A^\nu + \nabla^\mu \nabla_\nu A^\nu, \quad (6.6)
\]

where the last term vanishes in Lorenz gauge. The curvature term on the right-hand side is present in our chosen AdS background. It is equations of this form which can be shown to have well-posed initial value formulations on globally hyperbolic background spaces (see, for example, [156]). Of course, AdS is not globally hyperbolic, so one needs to specify in addition suitable boundary conditions. We shall return to this issue below.

For the case at hand one specifies initial data \((A_\mu, \partial_\mu A_\mu) \) on \(\Sigma_0 \), subject to the initial value constraint \(D \cdot \mathbf{E} = 0 \). By a gauge transformation we may bring these initial data into the Lorenz gauge. Alternatively one can specify initial data only for the ‘physical components’, \((A_\mu, \partial_\mu A_\mu) \), and then determine the remaining components from the others, via the gauge condition. The evolution equations in hyperbolic form can be used to time-evolve the initial data—again subject to suitable boundary conditions in the case of AdS. One can show that the solution stays in the Lorenz gauge if and only if the initial data satisfy the gauge condition on \(\Sigma_0 \), and if \(\partial_\mu (\nabla_\mu A^\mu) \big|_{\Sigma_0} = 0 \).

The latter condition is equivalent to the initial value constraint

\[
0 = \nabla^a F_{ab}, \quad \text{as can be seen from (6.6)}.
\]

It is instructive to count how many degrees of freedom (per spatial point) are actually propagated in this way. Naively we have \(d + 1 \) Klein–Gordon-type equations, but the initial data constraint immediately eliminates one degree of freedom reducing the total to \(d \). The gauge invariance introduces another free function, the gauge parameter, removing one further degree of freedom, so that in effect the Maxwell equations propagate \(d - 1 \) degrees of freedom.

Let us now allow for a general source \(\Phi \), assumed for the time being \(^1\) to be a specified function. A convenient trick in order to proceed is to add a term \(\nabla^a C \) to Maxwell’s equations to obtain

\[
\nabla_b F^{ba} + \nabla^a C = 0. \quad (6.7)
\]

This evidently reduces to Maxwell’s equations when the gauge condition is satisfied, \(C = 0 \). By similar manipulations as above, one sees that the principal part of (6.7) is \(\nabla^2 A_\mu \), i.e. all components of \(A_\mu \) satisfy hyperbolic equations, as desired. One can now show that \(C = 0 \) everywhere, if \(C \) vanishes on \(\Sigma_0 \) and \(\partial_\mu C \big|_{\Sigma_0} = 0 \). The latter condition is, again, equivalent to the initial data constraint. In other words, the initial value problem is well posed, given that the initial data satisfy the constraint, and that the gauge function \(C \) vanishes on \(\Sigma_0 \).

In AdS, however, we still need to consider the issue of suitable conditions at the time-like boundary. In general the precise form of the asymptotic boundary condition depends on the dimension of the spacetime, and on the requirements of the physical problem under study \(^2\), so here we will be schematic. Suppose a function, for example one of the components of \(A_\mu \) or a component of some other matter field, has asymptotic behavior (see (2.7))

\[
\phi(z, \ldots) = \phi_0 + \phi_1 z + \phi_2 z^2 + \cdots, \quad (6.8)
\]

which for simplicity we assume to proceed in integer powers. These asymptotics encode source and expectation value behavior as described in section 2, so that the field theory source corresponds to a term \(a(x^\mu) \omega^{x^\mu} = \phi_0(x^\mu) \) in the expansion above. Then our goal typically is to set the first few terms (those which depend on the data \(a(x^\mu) \) alone) in this series to zero, so that the leading-order boundary behavior is given by the ‘vev’ term \(\phi_0(x^\mu) \omega^{x^\mu} \). This can be achieved by defining a rescaled function \(\tilde{\phi} = \phi^{\mu = 1} \) and imposing a homogeneous Dirichlet boundary condition on the rescaled field \(\tilde{\phi}(z = 0) = 0 \). In AdS/CFT terms, such a boundary condition is equivalent to demanding that the source of the dual operator vanish, while its expectation value will be determined by the dynamics. A similar approach, with rescaling by appropriate powers, would impose inhomogeneous Dirichlet boundary conditions to specify a non-trivial source function, \(\phi_0(x^\mu) \equiv a(x^\mu) \), if so desired. It is essential to ensure that the gauge function \(\Phi(A^\mu) \) is chosen in such a way as not to interfere with the prescribed boundary behavior. While this is solved on a case by case basis in the existing literature, to the best of our knowledge no systematic study of this issue has

\(^1\) Later in section 6.1.2 we shall allow such sources to obey their own dynamical equations.

\(^2\) For example, one may choose to have all sources turned off, or one may want to specify a given profile for a certain source, as described in section 2.
been undertaken. It would be useful to investigate this important issue further, in particular for the case of gravitational dynamics to be addressed below.

Boundary conditions in the interior are usually determined by regularity conditions on fields at the various degenerate points of the background, such as horizons, or axes of symmetry. The position of a horizon can straightforwardly be inferred from the form of the background metric in the present case. This issue is more subtle in the full gravitational problem, and is described in detail in the literature, for example in [158].

6.1.1. Summary. Thus the Cauchy method proceeds as follows:

1. At the initial surface Σ_0, i.e. at $t = t_0$ one sets up initial data consisting of the fields A_a and their derivatives $\partial_t A_a$, subject to the initial data constraint $D \cdot E = 0, D \cdot B = 0$.
2. By a gauge transformation on Σ_0 one brings the initial data into the desired form, (6.5). As explained above, the form of the evolution equations now guarantees that the solution remains in the chosen gauge for all time, given that the initial data satisfy the constraint equation.
3. The Maxwell equations in this gauge form a set of hyperbolic differential equations, which can be stepped forward in time using any finite difference approximation scheme, such as fixed-order Runge–Kutta, for example, making sure that appropriate boundary and regularity conditions are imposed at each step (see for example [159, 160]).

We have thus constructed a second-order evolution scheme along a time-like direction t, starting from constrained initial data. We now explain how an analogous scheme can be formulated for the Einstein equations in AdS, again starting from constrained initial data.

6.1.2. The Cauchy method for AdS gravity. We are now interested in solving Einstein’s equations

$$0 = \mathcal{E}_{ab} := G_{ab} + \Lambda R_{ab} - T_{ab}$$

(6.9) in asymptotically AdS spacetimes. A Cauchy scheme for AdS gravity was numerically implemented in [158], based on the seminal work of [154], and we largely follow their treatment here. The authors of [161] also present a Cauchy-like scheme for dynamics in AdS, and use it to study Bjorken flow in the strongly coupled field theory. Strictly speaking, the name Cauchy scheme is a misnomer, since AdS has no Cauchy surface due to its time-like boundary. One has instead an initial-boundary value problem. The method we describe here most closely resembles Cauchy schemes in flat space, and so we follow the naming convention of [158]. We recommend the treatment in [156] (Chapter 10) as a pedagogical introduction to the Cauchy problem in general relativity.

The idea is to choose an initial time surface Σ_0—roughly speaking a generalization of the notion of the $t = t_0$ hypersurface above—and specify initial data for the Einstein equations, in the same sense as was done above for Maxwell. Let us denote the time-like normal to this surface as n_a. The natural object to consider as initial data is then the functional form of the metric at the initial time. That is to say, one specifies a Riemannian metric h_{AB} and its derivative away from Σ_0, $\partial_t h_{AB}$, which in fact is nothing but the extrinsic curvature K_{AB} of Σ_0. In the full, evolved, spacetime with metric g_{ab}, the Riemannian metric on Σ_0 will be thought of as the induced metric $h_{AB} = g_{AB} + n_A n_B$. Evidently these data leave the remaining $d + 1$ components of the metric undetermined. Luckily these are balanced by the $d + 1$ free functions to specify the extrinsic curvature (diffeomorphisms), suggesting again that the apparent problem lies in the gauge freedom of the equations. Moreover, the components $n_a E^{ab}$ of Einstein’s equations do not contain any second time derivatives and thus do not serve to propagate any physical degrees of freedom. Instead they give rise to constraints on initial data. Since, compared to the Maxwell case above, there is a further free index in the projection $n_a E^{ab}$, there are now two kinds of constraint: one along n_a and d perpendicular to it. The former is called the Hamiltonian constraint, while the latter are often called the momentum constraints. With the help of the Gauss–Codazzi relations these can be expressed as

$$(d) R + K^2 - K_{ab} K^{ab} - 2 \Lambda = \rho_E,$$

(6.10) for the Hamiltonian constraint and

$$D_b K^{ba} - h^{ab} D_b K = J^a,$$

(6.11) for the momentum constraints. The right-hand sides, $\rho_E = T_{ab} h^a h^b$ and $J^a = -T_{ab} h^a h^b$, vanish for pure gravity, and otherwise take on the corresponding values appropriate for sources of energy-momentum that make up T_{ab} projected on Σ_0.

Since, again, the source of the complications is diffeomorphism invariance, one should construct evolution equations in a suitable gauge, the analog of the Lorenz gauge procedure described above. This is exactly what is achieved in the (generalized) harmonic scheme.

This scheme renders the Einstein equations hyperbolic in the following way. One chooses coordinates x^a, satisfying the wave equation with some specific source,

$$C^a := H^a - \nabla^2 x^a = 0,$$

(6.12) where H^a can either be a known function, in which case the original harmonic scheme [162] is included as the special case $H^a = 0$, or we specify separate evolution equations for the sources. Schematically

$$\mathcal{L}_a [H^a] = 0 \text{ [no summation].}$$

(6.13)

To see how this renders the Einstein equations hyperbolic, we use the same trick as in equation (6.7) above. That is, we start with the fundamental equations (for the sake of convenience, the trace-removed Einstein equations, $R_{ab} = T_{ab}$), and subtract a constraint term

$$R_{ab} - \nabla (\alpha C_0) - T_{ab} = 0.$$

(6.14) Evidently, when the coordinates satisfy the gauge condition $C_0 = 0$, this is equivalent to the Einstein equations. The presence of the $\nabla (\alpha C_0)$ term serves to subtract an unwanted $\nabla (\alpha \nabla^2 x_0)$ term from the Ricci tensor, so that the principal part of the equations becomes
\[
\mathbf P \left[R_{ab} - \nabla_{(a} C_{b)} \right] = -\frac{1}{2} g^{ab} g_{cd} \nabla_c \nabla_d \nabla \theta,
\]
(6.15)

showing that we have a hyperbolic system, of the type that admits a well-posed initial value problem, amenable to numerical solution techniques.

The art of such schemes consists in choosing an appropriate set of source functions, or more generally an evolution equation for \(H^a \) to achieve stable numerical evolution [154, 163]. Typically this is done in such a way as to choose evolution equations for the constraints which ensure that any potential growing modes which would violate the constraints are instead damped [164]. However, this could potentially be subtle in empty AdS space, where small constraint-violating modes can be amplified by successive reflections off the time-like boundary.

Appropriate boundary conditions are specified, as we saw above, by rescaling the evolution variables to eliminate unwanted asymptotic components via the imposition of Dirichlet conditions at the boundary. Internal boundary conditions follow from regularity. A detailed description of boundary conditions for evolution of AdS gravity are given in [158] and may be used as a guide for other dimensional setups as well. The mathematically rigorous state of the art concerning the well-posedness of AdS evolution can be found, for example, in [165–167].

6.2. The characteristic scheme

6.2.1. Intuition from the wave equation. In this approach we use an ingoing null direction as the evolution variable. Furthermore, and in distinction to the Cauchy scheme of section 6.1, we fix the gauge explicitly. In gravity (see below), this means that we choose a global set of coordinates for the entire evolution. Consequently this characteristic scheme is less adaptable than the generalized harmonic scheme, and in particular breaks down for spacetimes which contain caustics, an issue which we will return to below. For the time being we mention that these disadvantages are very often compensated for by improvements in performance and stability [159].

We first describe the ideas somewhat schematically before going on to fill in the details and explicit equations. Let us start with a simple analogy, the wave equation in 1 + 1 flat space,

\[
\partial_t^2 \phi = \partial_x^2 \phi,
\]
(6.16)

This equation has the general solution

\[
\phi(t,x) = f(t-x) + g(t+x),
\]
(6.17)

where \(f \) and \(g \) are arbitrary functions. The former describes an arbitrary right-moving or ‘in-going’ wave, while the latter describes a general left-moving or ‘out-going’ wave. The curves \(\chi_{\pm}(t,x) = t \pm x \) are known as in/out-going characteristics. In fact the wave operator factorizes along these characteristics into

\[
\partial_t^2 - \partial_x^2 = (\partial_t + \partial_x)(\partial_t - \partial_x),
\]
(6.18)

and each of \(f, g \) satisfies a first-order equation. One can convince oneself that the full solution of the wave equation on a causal diamond in Minkowski spacetime can be constructed by combining a left-moving solution \(f(\chi^-) \) and a right-moving solution \(g(\chi^+) \) in the way shown in figure 11, so that effectively one only ever solves first-order equations in \(\chi^\pm \), respectively. It is thus possible to construct an efficient scheme taking advantage of the factorization of the wave operator along characteristics, which is also at the core of the characteristic approach on AdS. Since AdS has a time-like boundary it actually turns out to be more convenient to work in terms of a single null coordinate, \(u \), instead of the double-null formulation in terms of \(\chi^\pm \) we just outlined.

6.2.2. Characteristic method for Maxwell in AdS. Let us now proceed to a more detailed description of the characteristic scheme in AdS using ingoing Eddington coordinates. Characteristics of equation (6.1) are given by

\[
u = \int f^{-1} dz - t, \quad \nu = \int f^{-1} dz + t.
\]
(6.19)

Since we are interested in characteristic evolution, we rewrite the metric in terms of \(u \), the so-called ingoing Eddington–Finkelstein form

\[
ds^2 = \frac{\ell^2}{z^2} \left[-f(z) du^2 - 2du dz + \sum_{i,j=1}^{d-1} q_{ij} d\ell_i d\ell_j \right].
\]
(6.20)

Poincaré AdS is the special case \(z_0 \to \infty \) and \(q_{ij} \) can parameterize the metric on a \(d - 1 \) sphere or \(d - 1 \) flat space and \(q_{ij} = \delta_i^j \). For a finite value of \(z_0 \) this background describes a black brane. This spacetime has a conformal boundary \(\mathcal{B} \) at \(z \to 0 \) with unit normal \(n_{\alpha} = \frac{\delta_{\alpha} z}{z^2} \). For simplicity we will from now on set \(\ell = 1 \) by a choice of units. We define an initial null surface \(\mathcal{N}_{u=u_0} := \mathcal{N}_0 \) via the coordinate

Figure 11. Characteristic (double-null) versus Cauchy formulation of the wave equation in Minkowski space. The gray area is determined by data given on the null cone \(C = C_- \cup C_+ \). Data on the timeslice \(\Sigma_0 \) determine the solution on the entire triangular region whose base is \(\Sigma_0 \). However, one can see that the gray area only depends on purely ingoing data \(g(\chi^-) \) on one half of the Cauchy slice \(\Sigma_0 \) and purely outgoing data \(f(\chi^+) \) on the other half, in other words on exactly half the amount of data specified on \(\Sigma_0 \). This cutting in half of the necessary data is already a sign of the improved efficiency of characteristic methods (so long as one is in fact only interested in the region inside the development of \(C = C_- \cup C_+ \)).
condition \(u = u_0 \). We have the normal \(k_\alpha = K k_\alpha \) with arbitrary prefactor. This surface is spanned by the null rays \(x^\alpha \) and the coordinate \(z \) varying along the null rays. By convention we give the set of coordinates \(\{ u, x^\alpha \} \) the label \(\{ \mu \} \), while the total coordinate, including the radial \(z \)-direction is labeled \(x^\alpha \). We are interested in the Maxwell equations (6.2), where \(j \) includes the sources in the theory, such as the charged scalar in equation (5.8). For the purpose of the present analysis we need not concern ourselves with their own dynamics, as all the subtleties and techniques we want to illustrate reside in the gauge sector.

In order to have a well-posed problem it is necessary to choose a gauge. We will pick the axial gauge

\[
A_\mu = 0,
\]

which, as we shall see, is both convenient from a holographic perspective and well suited for the characteristic evolution scheme. There is still some residual gauge freedom, as a gauge transformation whose parameter does not depend on \(z \) preserves equation (6.21). That is, we may still make a transformation

\[
A_\mu \to A_\mu + \partial_\mu \lambda(x).
\]

We will fix this residual gauge freedom by giving a condition on a single \(z \)-slice.

The equations then decompose as follows. Firstly we have the scalar auxiliary equation

\[
\mathcal{E}^\mu = 0,
\]

which will impose a condition on a given \(z \)-slice. One can show that the auxiliary equation is satisfied if it is satisfied at a single \(z \)-slice, and the evolution equations for the other components are satisfied. It is convenient to choose the boundary slice to impose equation (6.23), where it will be identically satisfied if the fields have regular behavior at \(z = 0 \). Secondly we have the main equations

\[
\mathcal{D}_\nu A_\mu = 0,
\]

which in turn decompose into a scalar hypersurface equation on \(\mathcal{N}_0 \), namely \(\mathcal{E}^\mu = 0 \),

\[
\mathcal{D}_\nu (A_\mu) = H_\mu \left[A_i, D_j^{(n)} A_j \right],
\]

where \(\mathcal{D}_\nu \) is a second-order differential operator whose details depend on the dimension \(d \) as does the precise structure of \(H_\mu \). We also have the remaining vector evolution equations, \(\mathcal{E}^\mu = 0 \),

\[
\mathcal{D}_\nu \partial_\mu A_\lambda = H_\lambda \left[A_\nu, A_{\mu z}, A_i, D_j^{(n)} A_j \right],
\]

where \(\mathcal{D}_\nu \) is a first-order differential operator whose details depend on the dimension \(d \), as does \(H_\lambda \). In \(d = 3 \), i.e. for \(\text{AdS}_4 \), it is simply \(\partial_\nu \). From equation (6.26) we can determine the first \(u \) – derivatives of \(A_i \) away from \(\mathcal{N}_0 \) and therefore the evolution of the system. An extremely useful aspect of the characteristic scheme is the nested structure of the equations, which we now explain on the Maxwell example.

We note that \(H_\nu \) in equation (6.25) only depends on the components \(A_i \) and their derivatives in the hypersurface direction \(D_j^{(n)} A_j \). Similarly, equations (6.26) depend on the aforementioned quantities, as well as quantities like \(A_\mu z \) which are determined by equation (6.25). That is, after solving equation (6.25), equations (6.26) can be evaluated from knowledge of the functions \(A_i \) solely on \(\mathcal{N}_0 \) by integration along \(z \). Once \(A_\mu \) has been determined, it can be substituted into \(H_i \) in equation (6.26) which determines the time derivatives of \(A_i \) by integrating \(H_i \) along \(z \). Given this knowledge we can use a finite difference approximation to progress to the next null surface \(\mathcal{N}_1 \) and so on. This convenient nested evolution structure is a general feature of characteristic schemes, and appears again in the characteristic formulation of Einstein’s equations [159, 168]. The reader may wonder why this scheme seems to make do with less initial data than the generalized harmonic scheme, where we need to specify a function and its derivative for each degree of freedom. This is related to the fact, illustrated in figures 11 and 12, that half the initial data specified on a Cauchy surface \(\Sigma_0 \) does not influence the region, which is fully determined in the characteristic scheme and shaded in gray in both figures.

This structure, together with the convenient global choice of gauge, makes such schemes very efficient as compared to the generalized harmonic evolution. On the other hand, the latter is more adaptable as it allows one to adjust the gauge choice dynamically during evolution, which for certain kinds of problem may even become a necessity.

Finally, returning to the issue of boundary conditions, we note that each integration of equation (6.26) along a \(z \)-slice leaves the freedom to add an arbitrary function of \(\{ u, x^\alpha \} \). This allows us to set boundary conditions for the fields. Let us now investigate the structure of the equations in more detail to explicitly see how this works. We start by focusing on the auxiliary equation. Considering the covariant derivative \(0 = \nabla_\mu \mathcal{E}^\mu \), current conservation, and imposing \(\mathcal{E}^\mu = 0 \), implies the relation
Thus, if \(\mathcal{E}^i = 0 \) on some \(z \)-slice, it is zero throughout as claimed above. Writing out \(\mathcal{E}^i \) explicitly in the background (6.20), one obtains

\[
\mathcal{E}^i = \frac{\ell^2}{z^2} (\partial_u F_{i\nu} + \partial_o q^o (f F_{i\mu} - F_{i\mu})) - \ddot{f}. \tag{6.28}
\]

We see that if fields are regular, meaning the term in parentheses grows at most as \(z^{-2} \) as \(z \to 0 \), and if the current vanishes as \(O(z^2) \) in the same limit, the condition \(\partial_u \mathcal{E}^i = 0 \) is met identically at \(z = 0 \). The former condition is manifestly obeyed, while the implied decay condition on the sources making up \(\dot{f} \) can be phrased in field theory terms by saying that the operator dual to the matter sources must be marginal or relevant in the field theory (recall our discussion in section 2).

We conclude this section with a summary of the characteristic evolution scheme for electromagnetism, before turning to the gravity case.

6.2.3. Summary. As described above, the characteristic method proceeds as follows:

1. At the initial surface \(u = u_0 \) one sets up arbitrary initial data for the dynamical fields \(A_i \). By a choice of gauge we arrange for \(A_i = 0 \).

2. Using the hypersurface equation one determines \(A_u \) on the initial surface data by radial integration. The function \(h(x) \) is used to fix the remaining gauge freedom, while \(g(x) \) is used to prescribe boundary data for \(A_u \).

3. Using the null evolution equations the time derivatives \(A_{ik} \) are determined from the data of \(A_i \) and \(A_u \) on the initial surface via radial integration. The functions \(g_i(x) \) are used to prescribe boundary data for \(A_i \).

4. The fields \(A_i \) are propagated to the next surface \(u = u_0 + \delta u \) using a suitable time evolution scheme, such as Runge–Kutta finite difference integration.

5. The procedure is repeated at the \(u_0 + \delta u \) surface and so on.

We have thus constructed an evolution scheme along null characteristics with a boundary value constraint, but no constraints on initial data \(A_i \) at \(u = u_0 \).

6.2.4. The characteristic method for AdS gravity. We now apply a characteristic evolution scheme to Einstein’s equations (6.9). We emphasize conceptual points and in particular build on the analogy with the Maxwell case we treated above. A more detailed technical treatment can be found in [159], which we follow closely. As mentioned above, the characteristic method for gravity evolution takes the approach of making a global choice of the coordinate system (gauge fixing). The metric takes the form

\[
dx^2 = \frac{\ell^2}{z^2} g_{\mu\nu}(x,z) dx^\mu dx^\nu + 2w_\mu(x) dx^\mu dz. \tag{6.29}
\]

Just as with the choice of radial gauge in the Maxwell example, this choice of metric leaves some residual gauge freedom. The first is the direct analog of (6.22) above, that is we may still transform by diffeomorphisms which depend on \(x \) only:

\[
x^\mu \to f^\mu(x). \tag{6.30}
\]

Again this condition can be fixed on a single \(z \)-slice, and one often uses it to set \(w_\mu = -\delta_\mu^0 \), although other choices are possible. We still have a further freedom, not present in the Maxwell case, namely, we may send

\[
z \to z - \frac{\ell^2}{z^4} \delta \lambda(x). \tag{6.31}
\]

In cases where an apparent horizon exists, it is computationally convenient to use this remaining gauge freedom to set its coordinate radius to a fixed position \(z_h \) [159].

We can then decompose the equations in a manner similar to the case above, according to their index symmetries, i.e. into scalar \((2A := -\frac{\ell^2}{z^4} g_{00}) \), vector \((F_i := -\frac{\ell^2}{z^4} g_{ii}) \) and tensor \((G_{ij} := \frac{\ell^2}{z^4} g_{ij}) \) components. These tensor components can be further decomposed into the trace part, which is itself a scalar, and a traceless tensor part by writing

\[
G_{ij} = \Sigma^2 \hat{g}_{ij} \tag{6.32}
\]

and imposing \(\hat{g}_{ij} \) to have unit determinant. The Einstein equations then take the form of a set of linear radial ODEs, which we show here schematically. The precise form of the equations, including the source terms, can be found in [159], but we would like to particularly emphasize their nested form

\[
\mathcal{D}_{z\Sigma} \Sigma = H_{\Sigma}[\hat{g}] \tag{6.33}
\]

\[
(\mathcal{D}_{z\Sigma})^{\Sigma}, F_j = H^{\Sigma}_{ij}[\hat{g}, \Sigma] \tag{6.34}
\]

\[
\mathcal{D}_{z\Sigma} A_{ij} = H_{ij}[\hat{g}, \Sigma, F, d_+ \Sigma, d_+ \hat{g}_{ij}]. \tag{6.35}
\]

In addition there are linear first-order radial ODEs for the null time derivatives of \(\Sigma, \hat{g}_{ij}, F_j \):

\[
\mathcal{D}_u d_+ \Sigma = H_{d_+ \Sigma}[\hat{g}, \Sigma, F] \tag{6.36}
\]

\[
(\mathcal{D}_u)^{\Sigma}, d_+ \hat{g}_{ij} = H_{d_+ \hat{g}_{ij}}[\hat{g}, \Sigma, F, d_+ \Sigma]. \tag{6.37}
\]

\[
(\mathcal{D}_u)^{\Sigma}, d_+ F_j = H_{d_+ F_j}[\hat{g}, \Sigma, F, d_+ \Sigma, d_+ \hat{g}, A]. \tag{6.38}
\]

As above, we have adopted the shift-invariant derivative of [159], such that \(d_+ = \partial_u - \frac{\ell^2}{z^4} A \partial_z \). Note the nested structure of Equations (6.33)–(6.38), whereby we can successively solve for the unknown function on a given \(z \)-slice, using the function known up to a given point, in order to compute the right-hand side terms of the next equation in the nested sequence of integrations.

Lastly, there is a second-order (in null derivatives) ODE for \(\Sigma \):

\[
d_+ (d_+ \Sigma) = H_{d_+ \Sigma}[\hat{g}, \Sigma, F, d_+ \Sigma, d_+ \hat{g}, A]. \tag{6.39}
\]

It is convenient to regard \(A \) as an auxiliary field and \(\Sigma, F_j \) and \(\hat{g} \) as the dynamical propagating degrees of freedom. With this choice, equation (6.35) determines, via radial integration,
the field A from the knowledge of $\tilde{g}_{ij}, \Sigma, F$ and their null derivatives at a given (null) hypersurface.

If equations (6.33) and (6.34) are satisfied on the initial (null) timeslice, then they are satisfied everywhere, given that the dynamical equations (6.36)–(6.38) are satisfied. They are thus initial data constraints.

If equation (6.39) is imposed on a single z-slice, it holds throughout the bulk, again assuming the remaining equations hold. This can be shown from the gravitational Bianchi identities, together with the conservation of the gravitational energy-momentum tensor, in direct analogy with the

$$ \Box^2 A = \frac{1}{4} R (A) + \frac{1}{8} S (A). $$

This metric covers the exterior region of a black hole in AdS, but has a coordinate singularity at $r = r_0$, where $f(r_0) = 0$. To explore the geometry beyond this locus one defines a new set of coordinates. To this end, we start by defining the tortoise coordinate

$$ r_* = \int \frac{dr}{f(r)} \tag{A.2} $$

in terms of which we set $u = t - r_*$ and $v = t + r_*$. In terms of u and v the metric is still degenerate at the point $r = r_0$, but we are only one step from defining a coordinate system in which this apparently singular behavior is removed. Let

$$ U = e^{-\frac{i \beta}{2} u}, \quad V = e^{\frac{i \beta}{2} v}, \tag{A.3} $$

so that

$$ ds^2 = -\left(\frac{\beta}{2 \pi} \right)^2 f e^{-\frac{i \beta}{2} r_*} dUdV + r^2 d\Omega^2, \tag{A.4} $$

which is now completely regular at the horizon. By taking the usual range $r \in [0, \infty)$ and $t \in \mathbb{R}$, we have $r_* \in \mathbb{R}$, and thus

$$ U \in (-\infty, 0], \quad V \in [0, \infty) \quad \text{‘Right’}. \tag{A.5} $$

We have labeled this range of coordinates as the right region of the spacetime, as it covers precisely the triangular region labeled R in the diagram of figure 6. However, there is absolutely nothing preventing us from considering (i.e. extending) the metric (A.4) for all real values $U, V \in \mathbb{R}$. This is precisely what is referred to as the Kruskal extension of the Schwarzschild solution and was used explicitly in section 3.2. In addition to the right exterior region we started with, this extended spacetime also contains a left exterior region for which

$$ U \in [0, \infty), \quad V \in (-\infty, 0] \quad \text{‘Left’}. \tag{A.6} $$

This is the triangular region labeled L in figure 6. In addition to these two regions there are also the two interior regions

$$ U \in [0, \infty), V \in [0, \infty) \quad \text{FutureInterior} $$

$$ U \in (-\infty, 0], V \in (-\infty, 0] \quad \text{PastInterior}. \tag{A.7} $$

Finally, since U and V are null directions, one often uses time-like and space-like combinations

$$ T = \frac{1}{2} (V + U), \quad X = \frac{1}{2} (V - U). \tag{A.8} $$

section has some redundant elements which were already covered in the main part of this review.

We remind the reader that the manifold depicted in figure 6 serves as the geometric dual of the thermal state at inverse temperature β of the field theory. The fact, as we review here, that this manifold has a maximal extension with two asymptotic boundaries (see figure 6) is the simplest manifestation of a Schwinger–Keldysh-like doubled contour within AdS/CFT. The starting point is the metric (3.3), which we repeat here for convenience

$$ ds^2 = -f(r)dr^2 + \frac{1}{f(r)} dr^2 + r^2 d\Omega^2. \tag{A.1} $$

The starting point is the metric (3.3), which we repeat here for

$$ \text{FutureInterior}. \quad U \in [0, \infty), V \in [0, \infty) $$

$$ \text{PastInterior}. \quad U \in (-\infty, 0], V \in (-\infty, 0] $$

and thus

$$ \text{‘Right’}. \tag{A.5} $$

We have labeled this range of coordinates as the right region of the spacetime, as it covers precisely the triangular region labeled R in the diagram of figure 6. However, there is absolutely nothing preventing us from considering (i.e. extending) the metric (A.4) for all real values $U, V \in \mathbb{R}$. This is precisely what is referred to as the Kruskal extension of the Schwarzschild solution and was used explicitly in section 3.2. In addition to the right exterior region we started with, this extended spacetime also contains a left exterior region for which

$$ U \in [0, \infty), \quad V \in (-\infty, 0] \quad \text{‘Left’}. \tag{A.6} $$

This is the triangular region labeled L in figure 6. In addition to these two regions there are also the two interior regions

$$ U \in [0, \infty), V \in [0, \infty) \quad \text{FutureInterior} $$

$$ U \in (-\infty, 0], V \in (-\infty, 0] \quad \text{PastInterior}. \tag{A.7} $$

Finally, since U and V are null directions, one often uses time-like and space-like combinations

$$ T = \frac{1}{2} (V + U), \quad X = \frac{1}{2} (V - U). \tag{A.8} $$

Acknowledgments

We would like to thank Benjamin Withers for his comments on a preliminary version of this draft. The work of J S has been supported by the Fonds National Suisse de la Recherche Scientifique (Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung) through Project Grant 200021 162796 as well as the NCCR 51NF40-141869 ‘The Mathematics of Physics’ (SwissMAP). HL is partially supported by the Office of High Energy Physics of the US Department of Energy under Grant Contract Number DE-SC0012567. H L would also like to thank the Galileo Galilei Institute for Theoretical Physics for hospitality during the workshop ‘Entanglement in Quantum Systems’ and the Simons Foundation for partial support during the completion of this work.

Appendix. Kruskal extension of eternal AdS black hole

For completeness we review in this appendix the notion of the maximal extension of the eternal Schwarzschild black hole in AdS, which was used in section 3.2 above. In particular we wish to give a more geometric perspective than in the bulk, explaining in more detail how the full geometry depicted in figure 6 is constructed. For convenience to the reader this
References

[1] Maldacena J M 1998 The large \mathcal{N} limit of superconformal field theories and supergravity *Adv. Theor. Math. Phys.* **2** 231–52

[2] Gubser S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from noncritical string theory *Phys. Lett.* **B 428** 105–14

[3] Witten E 1998 Anti-de Sitter space and holography *Adv. Theor. Math. Phys.* **2** 253–91

[4] Casalderrey-Solana J, Liu Y, Mateos D, Rajagopal K and Wiedemann U 2014 Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge: Cambridge University Press)

[5] Zaanen J, Liu Y, Sun Y-W and Schalm K 2015 *Holographic Duality in Condensed Matter Physics* (Cambridge: Cambridge University Press)

[6] Son D T and Starinets A O 2007 Viscosity, black holes and quantum field theory *Annu. Rev. Nucl. Part. Sci.* **57** 95–118

[7] Hartnoll S A 2009 Lectures on holographic methods for condensed matter physics *Class. Quantum Grav.* **26** 224002

[8] Herzog C P 2009 Lectures on holographic superfluidity and superconductivity *J. Phys. A: Math. Theor.* **42** 343401

[9] McGreevy J 2010 Holographic duality with a view toward many-body physics *Adv. High Energy Phys.* **2010** 723105

[10] Adams A, Carr L D, Schfer T, Steinberg P and Thomas J E 2012 Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality *New J. Phys.* **14** 115009

[11] DeWolfe O, Gubser S S, Rosen C and Teaney D 2014 Heavy ions and string theory *Prog. Part. Nucl. Phys.* **75** 86–132

[12] Hartnoll S A, Lucas A and Sachdev S 2018 *Holographic Quantum Matter* (Cambridge, MA: MIT Press)

[13] Hubeny V E and Rangamani M 2010 A holographic view on physics out of equilibrium *Adv. High Energy Phys.* **2010** 297916

[14] Adams A, Chesler P M and Liu H 2014 Holographic turbulence *Phys. Rev.* **Lett.** **112** 151602

[15] Green S R, Carrasco F and Lehner L 2014 Holographic path to the turbulent side of gravity *Phys. Rev.* **X 4** 011001

[16] Adams A, Chesler P M and Liu H 2013 Holographic vortex liquids and superfluid turbulence *Science* **341** 368–72

[17] Ewerz C, Gasenzer T, Karl M and Samberg A 2015 Non-thermal fixed point in a holographic superfluid *J. High Energy Phys.* **JHEP05(2015)070**

[18] Donos A and Gauntlett J P 2011 Holographic striped phases *J. High Energy Phys.* **JHEP08(2011)140**

[19] Donos A and Gauntlett J P 2012 Black holes dual to helical current phases *Phys. Rev.* **D 86** 064010

[20] Withers B 2014 Holographic checkerboards *J. High Energy Phys.* **JHEP09(2014)102**

[21] Horowitz G T, Santos J E and Tong D 2012 Optical conductivity with holographic lattices *J. High Energy Phys.* **JHEP07(2012)168**

[22] Donos A and Gauntlett J P 2014 Holographic Q-lattices *J. High Energy Phys.* **JHEP04(2014)040**

[23] Davison R A and Goutéraux B 2015 Momentum dissipation and effective theories of coherent and incoherent transport *J. High Energy Phys.* **JHEP01(2015)039**

[24] Lucas A 2015 Conductivity of a strange metal: from holography to memory functions *J. High Energy Phys.* **JHEP03(2015)071**

[25] Donos A and Gauntlett J P 2015 Navier–Stokes equations on black hole horizons and DC thermoelectric conductivity *Phys. Rev. D* **92** 121901

[26] Lucas A and Sachdev S V 2015 Memory matrix theory of magnetotransport in strange metals *Phys. Rev.* **B 91** 195122

[27] Lucas A and Fong K C 2018 Hydrodynamics of electrons in graphene *J. Phys.: Condens. Matter* **30** 053001

[28] Vegh D 2013 Holography without translational symmetry (arXiv:1301.0537)

[29] Blake M and Tong D 2013 Universal resistivity from holographic massive gravity *Phys. Rev.* **D 88** 106004

[30] Blake M, Tong D and Vegh D 2014 Holographic lattices give the graviton an effective mass *Phys. Rev. Lett.* **112** 071602

[31] Davison R A 2013 Momentum relaxation in holographic massive gravity *Phys. Rev.* **D 88** 086003

[32] Aharony O, Gubser S S, Maldacena J M, Ooguri H and Oz Y 2000 Large \mathcal{N} field theories, string theory and gravity *Phys. Rep.* **323** 183–386

[33] D’Hoker E and Freedman D Z 2002 Supersymmetric gauge theories and the AdS/CFT correspondence *Proc. Strings, Branes and Extra Dimensions: TASI 2001* pp 3–158

[34] Nastase H 2015 Introduction to the AdS/CFT Correspondence (Cambridge: Cambridge University Press)

[35] Ammon M and Erdmenger J 2015 *Gauge/Gravity Duality: Foundations and Applications* (Cambridge: Cambridge University Press)

[36] Witten E 1998 Anti-de Sitter space, thermal phase transition and confinement in gauge theories *Adv. Theor. Math. Phys.* **2** 505–32

Witten E 1998 *Adv. Theor. Math. Phys.* **2** 89

[37] Klebanov I R and Witten E 1999 AdS/CFT correspondence and symmetry breaking *Nucl. Phys.* **B 556** 89–114

[38] de Haro S, Solodukhin S N and Skenderis K 2001 Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence *Commun. Math. Phys.* **217** 595–622

[39] Son D T and Starinets A O 2002 Minkowski space correlators in AdS/CFT correspondence: recipe and applications *J. High Energy Phys.* **JHEP09(2002)042**

[40] Policastro G, Son D T and Starinets A O 2002 From AdS/CFT correspondence to hydrodynamics *J. High Energy Phys.* **JHEP09(2002)043**

[41] Herzog C P, Kovtun P, Sachdev S and Son D T 2007 Quantum critical transport, duality and M-theory *Phys. Rev.* **D 75** 085020

[42] Holzhey C, Larsen F and Wilczek F 1994 Geometric and renormalized entropy in conformal field theory *Nucl. Phys.* **B 424** 443–67

[43] Calabrese P and Cardy J L 2004 Entanglement entropy and quantum field theory *J. Stat. Mech.* **081601**

[44] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from AdS/CFT *Phys. Rev. Lett.* **96** 181602

[45] Hubeny V E, Rangamani M and Takayanagi T 2007 A covariant holographic entanglement entropy proposal *J. High Energy Phys.* **JHEP07(2007)062**

[46] Skenderis K and van Rees B C 2008 Real-time gauge/gravity duality: prescription, renormalization and examples *J. High Energy Phys.* **JHEP04(2009)085**
Hong Liu received Ph.D. in 1997 from Case Western Reserve University. He was a postdoctoral fellow at Imperial College and New High Energy Theory Center of Rutgers University, before joining the faculty at MIT in 2003. He was an Alfred Sloan Fellow, an Outstanding Junior Investigator of the Department of Energy, a Simons Fellow, and a Guggenheim Fellow. He has been an editor of Journal of High Energy Physics since 2010. He has long been interested in issues in quantum gravity, such as the quantum nature of black holes and the Big Bang singularity, using the framework of string theory. During the last decade, his interests also branched into understanding dynamics of exotic quantum matter, including the quark-gluon plasma and strongly correlated electron systems.

Julian obtained his PhD in theoretical physics at the University of Cambridge and remained there after graduation, as a Fellow of Trinity College splitting his time between DAMTP in Cambridge and the Theory Group of Imperial College in London. He subsequently spent three years in the other Cambridge, as a postdoc at MIT, before joining the faculty at the University of Geneva. His research interests span the disciplines of strongly correlated matter and gravitational physics, with holography providing the unifying perspective. In recent years Julian has been studying non-equilibrium physics both as it pertains to strongly correlated electron systems, as well as quantum aspects of black holes.