Personalized targeted therapy for esophageal squamous cell carcinoma

Xiaozheng Kang, Keneng Chen, Yicheng Li, Jianying Li, Thomas A D'Amico, Xiaoxin Chen

Abstract

Esophageal squamous cell carcinoma continues to heavily burden clinicians worldwide. Researchers have discovered the genomic landscape of esophageal squamous cell carcinoma, which holds promise for an era of personalized oncology care. One of the most pressing problems facing this issue is to improve the understanding of the newly available genomic data, and identify the driver-gene mutations, pathways, and networks. The emergence of a legion of novel targeted agents has generated much hope and hype regarding more potent treatment regimens, but the accuracy of drug selection is still arguable. Other problems, such as cancer heterogeneity, drug resistance, exceptional responders, and side effects, have to be surmounted. Evolving topics in personalized oncology, such as interpretation of genomics data, issues in targeted...
therapy, research approaches for targeted therapy, and future perspectives, will be discussed in this editorial.

Key words: Cancer heterogeneity; Cultured tumor cells; Driver mutation; Drug side effects; Esophageal squamous cell carcinoma; Exceptional responder; High-throughput nucleotide sequencing; Neoplasm drug resistance; Personalized medicine; Xenograft model

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Esophageal squamous cell carcinoma represents a heavy burden on clinicians worldwide. Recently, researchers have discovered the genomic landscape of this cancer, which holds promise for an era of personalized oncology care. Evolving topics in personalized oncology, such as interpretation of genomics data, critical issues in targeted therapy, research approaches, and future perspectives, are discussed in this editorial.

Kang X, Chen K, Li Y, Li J, D’Amico TA, Chen X. Personalized targeted therapy for esophageal squamous cell carcinoma. *World J Gastroenterol* 2015; 21(25): 7648-7658 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i25/7648.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i25.7648

INTRODUCTION

Esophageal cancer is the eighth most common cause of cancer-related death worldwide[1]. Esophageal squamous cell carcinoma (ESCC) remains the predominant histology. Surgery is still the mainstay of treatment throughout the world, and an up to 50% five-year survival rate and < 5% surgical mortality rate can be achieved in select Asian centers[2]. Notwithstanding, multimodal treatment may achieve a better outcome, as overall survival improves modestly[3]. Most patients with localized disease will develop metastatic disease, with a minimal effects from combination chemotherapy[4]. After disease progression on first-line chemotherapy, there is no standard second-line treatment[5]. The unsatisfactory outcome in ESCC is mainly due to late diagnosis, the aggressiveness of this cancer, and lack of effective treatment strategies[6].

Recently, tremendous progress has been made in cancer genomics and epigenomics with the advent of high-throughput techniques, such as next-generation sequencing. Three groups have reported the genetic landscape of human ESCC with whole genome sequencing and whole exome sequencing[7-9]. Genomic alterations include: (1) single nucleotide variants of many genes with a relatively significant frequency (≥ 5%), such as p53, KMT2D, Notch1/2/3, FAT1/3, SynE1, EP300, Rb1, Nfe2l2, Cdkn2a, Ajuba, Crebbp, Kdm6A, Fbxw7, MLL2/3, Pik3ca, Pten, Arid2, Pbrm1, etc; (2) copy number alterations of many genes with a relatively significant frequency (≥ 5%), such as CCND1, FGFS, CDKN2A, CDKN2B, Pik3ca, Dvl3, LRPS/6, KRas/MRas, EGFR, Akt1, Bcl2l1, Notch1/2/3, E2F1, SFRP4, SOS1/2, Birc5, Yap1, Sox2, Myc, IL7R, etc; and (3) alterations in multiple signaling pathways, such as cell cycle regulation, apoptosis regulation, DNA damage control, histone modifications, as well as RTK-Ras-MAPK-Pi3K-Akt, Hippo, Notch, Wnt, and Nfe2l2/Keap1 pathways. The overall mutation pattern appears similar to that of head and neck squamous cell carcinoma[6,11] but different from that of esophageal adenocarcinoma[6,13] and lung squamous cell carcinoma[14].

In addition to these descriptive data, smoking was not found to be related with signature mutations[7], but the lack of alcohol consumption was associated with a cluster of gene mutations[8]. Viral integration was not found in the genomes of 88 subjects[9]. Trinucleotide signature analysis suggested DNA cytidine deamination (APOBEC3B)-induced deamination was mainly responsible for mutations[8,15]. Moreover, mutations of single genes or gene clusters were associated with patient survival, for example, EP300 mutation[7,9]. Certain genes, for example, XPO1, were explored as a therapeutic target[10].

These landmark studies provided the research community with an enormous amount of information to better understand the molecular mechanisms of ESCC. This editorial is aimed to gain insights from such studies, and propose personalized and targeted therapy as a research direction in the future.

INTERPRETATION OF GENOMICS DATA

Driver genes and mutations

Currently available bioinformatics tools have been designed to prioritize gene mutations at the nucleotide, gene, pathway, and network levels. The number of nonsynonymous somatic mutations per ESCC averaged > 80. If a solid tumor ordinarily requires 5-8 hits (not necessarily 5-8 mutations) as suggested by classical epidemiologic studies, most of these mutations should be “passengers” instead of “drivers”, which can offer selective growth advantage to the tumor cell[16]. Therefore, it is critical to identify which gene mutations are cancer drivers.

As driver mutations may occur at high or low frequencies[17], it may not be safe to prioritize driver mutations according to their frequencies. However, as a clinically relevant parameter, a high frequency of a mutation does support its potential significance in carcinogenesis. In addition to mutated drivers, Epi-drivers are a class of driver genes that are not frequently mutated but aberrantly expressed in tumors through epigenetic alterations in DNA methylation or chromatin modification. Although epigenetics in ESCC has been studied for many years[18,19], it is still
not clear how to differentiate epigenetic alterations that bring forth a selective growth advantage from those that do not[16]. According to Vogelstein et al[26], only 125 mutated-driver genes of human cancers have been discovered to date, and the number is nearing saturation. Tamborero et al[20] reported a list of 291 high-confidence cancer-driver genes and 144 candidate genes from 12 different types of cancer. Several databases have become available. For example, Network of Cancer Genes (NCG 4.0) contains 537 experimentally supported genes and 1463 candidate genes inferred using statistical methods[21]. The Candidate Cancer Gene Database contains cancer-driver genes from forward genetic screens in mice[22]. Considering tissue specificity of ESCC, there is a need to compile a cancer-driver gene list to support future research on ESCC therapy. However, it should be pointed out that cancer-driver genes may contain both driver mutations and passenger mutations in cancer. For example, APC mutations truncating the N-terminal amino acids are driver mutations, while those affecting other regions are passenger mutations. Even for the same driver gene (e.g., K-Ras), different driver mutations (e.g., mutations at codons 12, 13, and 61) have different impacts on carcinogenesis and clinical behaviors[23-25]. Because of these complexities, efforts need to be made in order to identify personalized driver genes in cancer[26].

Pathways and network
Increasing evidence suggests that dysregulation of cellular signaling pathways, rather than individual mutations, contributes to the pathogenesis of ESCC[23-29]. Driver genes usually do not work in isolation, but often function together to alter cellular processes[30]. There is a growing consensus that pathways rather than single genes are the primary target of mutations[31]. It is interesting that mutations in various components of a single pathway tend to be mutually exclusive[32]. Once driver genes or driver mutations are identified, the next step is to focus on driver pathways with genes grouped together according to the biochemical pathways that they play functional roles in. Pathway activity may be further validated by the downstream readouts, e.g., mRNA and protein expression, morphology, and function. Incorporation of immunohistochemistry data, or even proteomics data, may help in evaluation of the pathway activity[33,34].

One major challenge in analyzing genomics data of ESCC is the lack of information of esophageal-specific pathways. Pathway databases, e.g., KEGG, are fairly incomplete and lack tissue and cell specificities. Applying such pathway information in analyzing ESCC data may generate misleading outcomes. For example, using ChIP-seq analyses, Sox2-regulated genes in ESCC cells are different from those in embryonic stem cells because in ESCC, Sox2 tends to interact with p63 as opposed to Oct4 in embryonic stem cells[35]. Identifying bona fide target genes and using expression profiles of these genes to infer pathway activity in ESCC will be critical in the future[36].

Few bioinformatics methods involve a procedure for taking account of pathway interactions, i.e., pathways that are mutated in the same sample, and that are mutated together across a large subset of samples[8]. Similar to expression-based stratification, network-based stratification of tumor mutations can identify cancer subtypes to guide treatment and prognosis[37]. Categorizing ESCC into multiple subtypes according to its molecular alterations may be a practical step leading to final personalization of ESCC therapy. In fact, subtyping has been shown to be a successful approach in managing other cancers[38].

Drug selection
Selecting drugs according to genomics data has led to promising results in early studies on personalized and targeted therapy[39]. To date, most clinically approved targeted drugs are directed against kinases. Some of these have been utilized against ESCC (Table 1). Gefitinib, an epidermal growth factor receptor inhibitor, has been tested as a second-line treatment for esophageal cancer. In unselected patients it does not improve overall survival, but has palliative benefits in a subgroup of difficult-to-treat patients with a short-life expectancy[40]. Unfortunately, only a few cancer drivers have enzymatic activities that are targetable in this fashion, and whether a target is druggable becomes a research question[41]. Once a drug target is verified, drugs or experimental compounds may be developed. Several databases are available for search, including the Therapeutic Target Database[42] and DrugBank 4.0[43].

If the target is not druggable, its regulatory proteins or functional pathway may be targeted. For example, cyclin D1 amplification is commonly seen in human ESCC. As cyclin D1 mainly functions through CDK activation, CDK4 and CDK6 can be targeted instead of cyclin D1[44]. TP53, which encodes p53, is the most commonly mutated gene in human ESCC. Instead of targeting TP53, many strategies have been tested to restore the functions of p53 by delivering wildtype TP53, targeting the MDM2-p53 interaction, restoring the functions of mutant p53, targeting p53 family proteins, or eliminating the mutation in p53[45,46].

In addition to selecting drugs for targeted therapy, analysis of drug-metabolism genes in germ-line DNA can also optimize dosing and identify drug toxicity risk[47,48]. With the help of a database, such as Pharmacogenetics and Pharmacogenomics Knowledge Base, genetic variations can be associated with drug response[49].

ISSUES IN TARGETED THERAPY

Cancer heterogeneity
Various combinations of drivers and pathways result in intratumoral, intermetastatic, intrametastatic, or
interpatient heterogeneities. It may explain why the same treatment brings about either a favorable response or resistance in different patients, and why a patient that responds well initially can develop resistance over time. Intratumoral heterogeneity has been validated using single-cell RNA-seq of primary glioblastomas. As the majority of cancer gene mutations appear in multiple regions of the same tumor, single-region sequencing may be inadequate to identify the majority of cancer gene mutations. It can be predicted that most cancer cells in the same tumor may share the major alterations. If this is proven true in ESCC, it will make treatment more predictable.

Drug resistance

If carcinogenesis is regarded as an evolutionary process with successive new mutations driven by natural selection, chemotherapy, radiotherapy, and target therapy may all provide a potent source of artificial selection to alter clonal dynamics. Consequently, the antitumor therapy may lead to resistance. Indeed, targeted therapy is associated with a high rate of resistance at the very beginning when vemurafenib, a BRAF inhibitor, was clinically used for melanoma. Combination of a BRAF inhibitor (dabrafenib) and a MEK inhibitor (trametinib) resulted in better response, yet did not prevent resistance from occurring. Distinct mechanisms include mutations in the target, reactivation of the targeted pathway, hyperactivation of alternative pathways, and cross-talk with the microenvironment. Resistant cells may undergo a process called phenotype switching under the selection of targeted therapy. Understanding these mechanisms has led to additional efforts in finding new therapies targeting the same target, the same pathway, or alternative pathways.

Three strategies are feasible measures in the handling of drug resistance. Before treatment, both bioinformatics and experimental modeling can provide information concerning heterogeneity. There is a need to develop clinically useful measures of heterogeneity. Secondly, during treatment, limited success can be achieved with a single agent. The combination strategy may be the best way to refrain from the inevitable development of resistance to single drug-targeted therapies. Thirdly, longitudinal tumor sampling will be essential to decipher the impact of tumor heterogeneity on cancer evolution, and developing minimally invasive methods to profile heterogeneous tumor genomes will play a major part in following clonal dynamics in real time. For ESCC, repeated biopsy, circulating tumor DNA analysis and exfoliative cells are all valid options for this purpose.

Exceptional responders

As opposed to drug resistance, exceptional responders

Table 1 National clinical trials on targeted therapy of esophageal squamous cell carcinoma

Target	Agent	NCT number (phase)
EGFR	Erlotinib	NCT00045526 (II), NCT00103049 (I), NCT00397384 (I), NCT00524121 (II), NCT01013831 (I), NCT01561014 (I), NCT01752205 (II)
Gefitinib	NCT00925734 (I), NCT00282927 (II), NCT00285323 (II), NCT00268346 (II), NCT00290719 (I)	
Icotinib	NCT01973725 (II)	
Lapatinib	NCT00239200 (I), NCT01666431 (II)	
Nimotuzumab	NCT02272699 (II/III), NCT01232374 (II), NCT01386409 (II), NCT01402180 (II/III), NCT01486992 (II), NCT01680700 (II), NCT01993576 (I/II), NCT02011959 (II), NCT02034968 (II), NCT02041819 (II)	
Panitumumab	NCT01077999 (II), NCT01262187 (II), NCT01627379 (III)	
PF00299804	NCT01608022 (II)	
Cetuximab	NCT01232381 (I), NCT01019850 (II), NCT0165490 (II), NCT0381706 (II), NCT00397384 (I), NCT03979904 (II), NCT042525 (I/II), NCT0448561 (I/II), NCT0850681 (II/III), NCT0544362 (I), NCT00658376 (III), NCT01755749 (II), NCT0815398 (II), NCT01034189 (II), NCT01107639 (III)	
IGF1R	Cixutumumab	NCT01142388 (II)
PI3K	BMK120	NCT01626629 (I), NCT01886649 (II)
BYL719	NCT01822613 (I/II)	
Rigosertib	NCT01807546 (II)	
HDAC	Enzastaurin	NCT00320579 (I)
HER3	Vorinostat	NCT0037121 (I), NCT01244943 (I)
LJM716	NCT01598077 (I), NCT01326213 (I/II)	
VEGFR	Vandetanib	NCT00732745 (I)
Sorafenib	NCT00917462 (II)	
VEGFA	Bevacizumab	NCT01212822 (II)
PD-L1	MED4736	NCT01938612 (I)
Bcl-2 mRNA	Olimersen	NCT0005103 (I/II)
CDK9	Alvocidib	NCT00080245 (II)
CRMI	Selinexor	NCT02213133 (I/II)
FGF	AZD4547	NCT01975968 (II)
KIF11	Litonexib	NCT01598643 (II)
TACSTD2	IMMU-132	NCT01631552 (I/II)

Esophageal squamous cell carcinoma was searched at the website (www.clinicaltrials.gov). Targeted therapy has been or is being tried in 62/204 studies. Some of these agents target multiple molecules, for example, lapatinib (EGFR and ErbB2), rigosertib (PI3K and PLK), vandetanib (VEGFR, EGFR, and RET), and sorafenib (VEGFR, PDGFR and RAF).
are patients who have a unique response to treatments that are not effective for most other patients. The National Cancer Institute has embarked on the Exceptional Responders Initiative to understand the molecular underpinnings of exceptional responses to treatment in cancer patients. In the past, exceptional responders led to clinical breakthroughs in treatments of certain types of cancer, and understanding of novel molecular mechanisms of carcinogenesis. It is foreseeable that careful characterization and follow-up of these exceptional responders will be of great value in the future practice of personalized and targeted therapy of ESCC.

Side effects
As compared with traditional chemotherapy, targeted therapy is better tolerated. However, it does produce toxicities based on several major mechanisms, including on-target, off-target, hypersensitivity-related, and metabolite-induced toxicities. Vascular endothelial growth factor receptor inhibitors cause hypertension, and epidermal growth factor receptor inhibitors cause toxicities in tissues where they normally play an important functional role in tissue maintenance (e.g., skin and gastrointestinal epithelia). Some of these on-target toxicities may serve as surrogate biomarkers for clinical response. Considering these potential side effects, clinical oncologists should be prepared to educate the patients and undertake respective preventive and therapeutic measures.

RESEARCH APPROACHES FOR TARGETED THERAPY
For genomics-guided research, cell line-based platforms have become an indispensable tool. Clarification of genetic and epigenetic alterations of established ESCC cell lines would be great tools for preclinical drug development, in particular, the KYSE series of ESCC cell lines that have been sequenced. Patient-derived ESCC cells can be used for selection of potential individualized therapy. These cells are particularly useful in identifying effective drug combinations for acquired resistance.

Several models have been put into preclinical research and even clinical applications. A patient-derived xenograft model of ESCC is created when cancerous tissue from a patient’s primary tumor is implanted directly into immunodeficient mice. This model provides solutions to the translational challenges that researchers and clinicians face in cancer drug research and selection. Carcinogen-induced models, for example, the N-nitrosomethylbenzylamine-induced model, represent classical models for ESCC research. They mimic human ESCC in not only etiology and histopathology, but also in molecular alterations (e.g., TP53 mutations). However, exactly how well this model can mimic human ESCC at the genomics level has not been well studied. Whole exome sequencing has already shown that carcinogen-induced and genetically engineered models lead to carcinogenesis through different routes. A carcinogen-induced model is particularly important in understanding the complex mutation spectra seen in human cancers. It is encouraging that genomic alterations in 4-nitroquinoline 1-oxide-induced mouse tongue cancer are well preserved.

Genetically engineered mouse models of human cancers have proven essential to dissect the molecular mechanisms behind carcinogenesis and provide robust preclinical platforms for investigating drug efficacy and resistance. As an example, transgenic overexpression of Sox2, an amplified oncogene in ESCC, drives the complete process of carcinogenesis in mice. This model can readily be used for preclinical drug development for Sox2-overexpressing ESCC. Although it may be difficult to target Sox2 itself, its downstream genes or pathways, such as the Akt/mTOR pathway, can be targeted. Biochemical outcomes may be used for assessment of the efficacy of a Sox2-targeting therapy even when it does not reduce tumor incidence or size in mice. Genome engineering with CRISPR-Cas9 in vivo is an extremely promising technique in identifying cancer-driver genes and testing drug targets. It may ultimately be used for human gene therapy in the future.

As a hallmark of human cancer and a crucial determinant of variable response to treatment, genomic heterogeneity calls for revision of clinical trial design currently in use in order to implement personalized therapy. The majority of traditional prospective clinical trials are disease or histopathology based. Genomics-driven trials, for example, mutation-, pathway-, and subtype-based trials, will be more widely used in drug development. Two genomics-based study designs are currently being utilized to develop targeted therapies, and for exploratory and multi-agent sequential design. ESCC fits both study designs very well because the esophagus can be biopsied before and after treatment.

FUTURE PERSPECTIVES
The biggest challenge in ESCC treatment is the translation of genomic discoveries into personalized therapies based on strategies sketched from patients’ individual profiles. The evasiveness of cancer cells has been a frustrating observation of clinical oncologists. Vogelstein et al. proposed that “there is order in cancer,” pointing to the need to tackle ESCC as a disease status with its own homeostatic mechanisms. From the perspective of ten hallmarks of human cancer, Hanahan proposed three strategically distinct “battlespace-guided plans” for cancer treatment: disruption of the enemy’s many capabilities, defense against cancer’s armed forces,
and integration of the geographies of the battlefields. It is clear that combination therapy targeting multiple mechanisms would be the only option in the future. Using immunotherapy as an example, tremelimumab (anti-CTLA4) has been tested as a second-line therapy for esophageal cancer. Although the clinical response was not impressive, its biologic effect on T-cell activation seemed to be associated with clinical response\(^9\). Recent development of immunotherapy based on ERBB2IP mutation-specific CD4\(^+\) T cells\(^100\) and programmed-death ligand 1 (PD-L1) suppression is also quite promising. For patients in which pre-existing immunity is suppressed by PD-L1, blocking PD-L1 enhanced anti-cancer immunity (including one case of esophageal cancer)\(^101\). A realistic option in the near future can be a combination of target drugs and traditional chemoradiotherapy for ESCC. Target drugs are expected to kill cancer cells with specific genomic alterations, while traditional therapy acts in a much broader manner. Technical issues continue to represent large hurdles for next-generation sequencing and bioinformatics, and they prevent us from gaining full insights into the mechanisms of carcinogenesis and metastasis of ESCC. Nonetheless, whole genome sequencing correlates with incomplete coverage of inherited disease genes, low reproducibility of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable sequencing findings\(^102\). Whole exome sequencing is particularly prone to errors, as only 61% of the mutated genes in ESCC are transcribed\(^9\). This is similar to what has been observed in pancreatic cancer: only 63% of the expected 251 driver-gene mutations were identified, suggesting a 37% false-negative rate. Marked discrepancies in the detection of missense mutations in identical cell lines (57.38%) have been reported due to inadequate sequencing of GC-rich areas of the exome\(^103\). The protein-coding genes account for only about 1.5% of the total genome. Although the vast majority of the alterations in noncoding regions are presumably passengers, some of these may be drivers, for example, mutations in the Tert promoter\(^104,105\).

New computational and bioinformatics tools still need to be developed and improved due to low concordance of multiple variant-calling pipelines\(^106,107\). Directly comparing genome sequence reads may improve data quality as compared with initial alignment of reads to a reference genome\(^108\).

Apart from the logistic challenges, financial, social and ethical challenges are also posed by personalized and targeted therapy\(^39\). In addition to viewing a patient’s cancer as a biologic phenomenon waiting for medical attention alone, personalized therapy emphasizes biopsychosocial care by including communication and information giving, psychologic and emotional well-being, enhancement of function, addressing financial and spiritual concerns, and providing symptom control and social support\(^109\). If we look at one specific patient’s ESCC from all these perspectives, a tumor board should involve not only medical staff but also supporting staff (Figure 1).
MD, Datto MB, Kelley M, Mathey-Prevot B, Poti A, Neve RS. A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA 2010; 107: 6994-6999 [PMID: 20335537 DOI: 10.1073/pnas.0912701107.

29 Bild AH, Yao G, Chang JT, Wang Q, Poti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA, Marks JR, Dressman HK, West M, Neve RS. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353-357 [PMID: 16273092 DOI: 10.1038/nature04296.

30 Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GR, Creixell P, Karchin R, Vazquez M, Finch J, Kassahn KS, Pearson JV, Bader GD, Boutros PC, Multisammy L, Ouettel BF, Reinand J, Linding R, Shibata T, Valencia A, Butler A, Dronov S, Flicek P, Shannon NB, Carter H, Ding L, Sander C, Stuart JM, Stein LD, Lopez-Bigas N. Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods 2013; 10: 723-729 [PMID: 23900255 DOI: 10.1038/nmeth.2562.

31 Long GV, Stroyakovskiy D, Gogas H, Levenchek E, de Braud F, Larkin J, Garbe C, Joary U, Hauschild A, Grob J, Chiorion Sileni V, Lebbe C, Mandala M, Millward M, Arance A, Bondarenko I, Hansen JN, Hansen JN, Untalan M, Ferrari S, Kovalen N, Mohr P, Probash B, Schadradow D, Nathan P, Robas A, DeMarini DJ, Irani JG, Casey M, Ouettel D, Martin AM, Le N, Patel K, Flaherty K. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 2014; 371: 1877-1888 25256542 [DOI: 10.1056/NEJMoa1406037.

32 Cirillo G, Cerami E, Sander C, Schultz N. Mutational exclusivity analysis identifies oncogenic network modules. Genome Res 2012; 22: 398-406 [PMID: 21908773 DOI: 10.1101/gr.125567.111.

33 Shang L, Liu HJ, Hao JJ, Jiang YY, Shi F, Zhang Y, Cai Y, Xu X, Jia XM, Zhao QM, Wang MR. A panel of overexpressed genes for prognosis in esophageal squamous cell carcinoma. PLoS One 2014; 9: e111045 [PMID: 25337715 DOI: 10.1371/journal.pone.0111045.

34 Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman JJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJ, Carr SA, Tabb DL, Coffey RJ, Slebos RJ, Liebler DC. Analysis identifies oncogenic network modules. PLoS One 2014; 9: e1003154 [PMID: 25043054 DOI: 10.1371/journal.nature13438.

35 Watanabe H, Ma Q, Peng S, Adelantam G, Swanid D, Song W, Fox C, Francis JM, Pedamallu CS, DeLuca DS, Brooks AN, Wang S, Que J, Rastegi AK, Wong KK, Ligon KL, Liu XS, Marta JO, Meyerson M, Bass AJ. SOX2 and p63 colocatalize at genetic loci in squamous cell carcinomas. J Clin Invest 2014; 124: 1636-1645 [PMID: 24592920 DOI: 10.1172/JCI71455.

36 Verhaegh W, van Ooijen H, Ina MA, Hatzis P, Verveen E, Smith EN, Martens J, Foekens J, van de Wiel P, Clevers H, van de Stolpe A, Karchin R, Vazquez M, Fink JL, Kassahn KS, Pearson SR, Julier P, Jankowski J, Kerr R, Petty RD. Gefitinib for esophageal cancer progressing after chemotherapy (COG): a phase 3, multizentrum, double-blind, placebo-controlled randomised trial. Lancet Oncol 2014; 15: 894-904 [PMID: 24590987 DOI: 10.1016/S1470-2045(14)70024-5.

37 Chen Y, McGee J, Chen X, Domon TN, Gong X, Zhang Y, Hammad N, Oh J, Xing RE, Bhagwat SV, Buchanen S, Peng SB, Staszke KA, Yadav Y, Yue Y, Kounos-Mehr H. Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS One 2014; 9: e8293 [PMID: 24874471 DOI: 10.1371/journal.pone.0092893.

38 Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P, Li YH, Yang SY, Wei YQ, Tao L, Chen YZ. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 2014; 42: D1118-D1123 [PMID: 24265219 DOI: 10.1093/nar/gkt1129.

39 Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Ambd D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adanier S, Dame ZT, Han B, Zhou Y, Wishart DS. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42: D1091-D1097 [PMID: 24203711 DOI: 10.1093/nar/gkt1068.

40 Musgrove EA, Caldon CE, Barracough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558-572 [PMID: 21734724 DOI: 10.1038/ncoms2090.

41 Hong B, van den Heuvel AP, Prabhoo VV, Zhang S, El-Deirwis Y. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 2014; 15: 80-89 [PMID: 24373333.

42 Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014; 13: 217-236 [PMID: 24577402 DOI: 10.1038/nrd4236.

43 McLeod HL. Cancer pharmacogenomics: early promise, but concerted effort needed. Science 2013; 339: 1563-1566 [PMID: 23535956 DOI: 10.1126/science.1234139.

44 Harper AR, Topol EJ. Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 2012; 30: 1117-1124 [PMID: 23138311 DOI: 10.1038/nbt.2424.

45 Thorn CF, Kleen TE, Altmann RB. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol 2005; 311: 179-191 [PMID: 16100408 DOI: 10.3233/9529-957-5.179.

46 Patel AP, Tirosi I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahlil DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Stav ML, Geave S, Bernstein KE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344: 1396-1401 [PMID: 24925914 DOI: 10.1126/science.1245257.

47 Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, Seth C, Chow CW, Cao Y, Gumbs C, Gold KA, Kalhorn N, Little L, Mahadeshwar H, Morin C, Popoviov A, Sun H, Tang J, Wu X, Ye Y, William WN, Lee JJ, Heymach JV, Hong WK, Swisher S, Wistuba II, Futreal PA. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014; 346: 256-259 [PMID: 25301631 DOI: 10.1126/science.1256930.

48 Komori J, Boone L, DeWard A, Hoppo T, Lagasse E. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat Biotechnol 2012; 30: 976-983 [PMID: 23000933 DOI: 10.1038/nbt.23579.

49 Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Bog A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Els R, Eyfjord JE, Foekens JA, Greaves M, Hossoda F, Hutter B, Illic T, Imbeaud S, Iemiinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R.
van Buuren MM, van ’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Fattat PA, McDermott U, Lichter P, Meyerson M, Grimmer SM, Siebert R, Campo E, Shibata T, Pfister SM, Campanell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature 2013; 508: 415–421. DOI: 10.1038/nature13092

54 Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481: 306–313. DOI: 10.1038/nature10762

55 Ramos P, Bentires-Alj M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 2014; Epub ahead of print. DOI: 10.1038/onc.2014.314

56 Kemper K, de Goede PL, Peever JS, van Arumengen R. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res 2014; 74: 5937–5941. DOI: 25320006. DOI: 10.1158/0008-5472.CAN-14-1174

57 Crystal AS, Shaw AT, Sequist LV, Fruhboelet L, Niederje M, Stockholm EI, Frias RL, Gainor JF, Amallal A, Grenier P, Lee D, Kalsa G, Amezzi-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Abad MM, Ramaswamy V. Mino-Kenadon M, Inafjate AJ, Benes CH, Engelmann PA. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 2014; 346: 1466–1469. DOI: 10.1126/science.1254721

58 Jurie D, Castel P, Grifflith M, Grifflith OL, Won HH, Ellis H, Ebbesen SH, Ainsbough JC, Ramu A, Iyer G, Shah RH, Hynth T, Mino-Kenadon M, Sgroi D, Iskoff S, Thabet A, Elamine L, Solt DB, Lowe SW, Quant C, Peters M, Derti A, Schegel R, Huang A, Mardis ER, Berger MB, Baselga J, Schlegel T. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 2015; 518: 240–244. DOI: 25409150. DOI: 10.1038/nature13948

59 Mertz CA, Otinna KA, Singleton KR, Jasper JS, Wardell SE, Peraza­Penton A, Anderson GR, Winter PS, Wang T, Alley HM, Kwon LN, Cooper TA, Tetzlaff M, Chen PL, Rathemell JC, Flaherty KT, Wargo JA, McDonnell DP, Sabatin DA, Wood KC. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal 2014; 7: ral121. DOI: 10.1126/scisignal.aaa7877

60 Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wullis JW, Harris CC, McEwan DA, Fullon RS, Fulton LL, Abbott RM, Hoj J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wend MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vicker TL, Apelbaum EA, Descherry K, Davies S, Giuntoli T, Lin L, Crowder R, Tso Y, Snider JE, Smith SM, Dukes AF, Anderson GE, Pohl CS, Delechaut HD, Kronic FC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wichert ME, Eldred JM, Peck JB, Oberfell JK, Lofolitz JF, Du F, Hawkes Comments. O’Laughlin MD, Bernard KA, Cunningham MA, Elliott G, Mason MD, Thompson DM, Ivanovick JG, Goodfellow PJ, Perou CM, Weinstock GM, Aff R, Watson M, Ley TJ, Wilson RK, Mardis ER. Genome remodelling in a basal-like breast cancer confer anticancer drug resistance. Science 2014; 346: 999–1005. DOI: 20395555. DOI: 10.1126/science0809899

61 Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Vogelstein DB, Lowe SW, Quadt C, Peters M, Derti A, Schlegel T. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 2014; 518: 240–244. DOI: 25409150. DOI: 10.1038/nature13948

62 Lemoine N, Haspinger ER, Molino L, Di Cosimo S, Maeda M, Watanabe G, Yamasaki S, Komoto I, Kurzrock R. Toxicity of targeted therapy: Implications looking glass for cancer? Crit Rev Oncol Hematol 2014; 87(2): 225–228. DOI: 22522843. DOI: 10.1016/j.ctrrev.2013.11.008

63 Kreso A, Saperas P, Fitzgerald RC. Developing a nonendoscopic screening test for Barrett’s esophagus. Biomol Med 2011; 5: 397–404. DOI: 21657849. DOI: 10.2217/bmm.11.40

64 Sepehr A, Razavi P, Said F, Salehian P, Rahmani M, Shamsi­Shabati A. Esophageal exfoliative cytology samplers. A comparison of three types. Acta Cytol 2000; 44: 797–804. DOI: 11015982

65 Suppiah SM, Subbiah V. Exceptional responders: in search of the science behind the miracle cancer cures. Future Oncol 2015; 11: 1–4. DOI: 25577758. DOI: 10.2217/fon.14.204

66 Liu S, Kurzrock R. Toxicity of targeted therapy: Implications for response and impact of genetic polymorphisms. Cancer Treat Rev 2014; 40: 833–891. DOI: 24867380. DOI: 10.1016/ j.ctrv.2014.05.003

67 Pessi MA, Zemlo N, Haspinger ER, Molino L, Di Cosimo S, Garassino M, Rappaport CI. Targeted therapy-induced diarrhoea: A review of the literature. Crit Rev Oncol Hematol 2014; 90: 165–179. DOI: 24373918. DOI: 10.1016/j.crirevonc.2013.11.008

68 Jensen SB, Peterson DE. Oral mucosal injury caused by cancer therapies: current management and future frontiers in research. J Oral Pathol Med 2014; 43: 81–90. DOI: 24261541. DOI: 10.1111/j.opj.12135

69 Macdonald JB, Macdonald B, Golitze LO, Russo P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol 2015; 72: 221–226. DOI: 25592339. DOI: 10.1016/j.jaad.2014.10.07.013

70 Macdonald JB, Macdonald B, Golitze LO, Russo P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol 2015; 72: 203–218. DOI: 2192220. DOI: 25592338. DOI: 10.1016/j.jaad.2014.07.032

71 Abaan OD, Polley EC, Davis SR, Zhu YJ, Billek S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, Holbeck SL, Simon RM, Doroshov JH, Pommier Y, Meltzer PS. The enzymes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 2013; 73: 4372–4382. DOI: 23856246. DOI: 10.1158/0008-5472.CAN-12-3342

72 Sharma SV, Haber DA, Settlement J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 2010; 10: 241–253. DOI: 20306105. DOI: 10.1038/mc2820

73 Ahmed E, Eide PW, Eilertsen IA, Danielen SA, Eknaes M, Hektoen A, Lind GE, Lothe RA. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogene 2013; 3: 19. DOI: 24042735. DOI: 10.1038/oncsis.2013.35

74 Martin D, Abba MC, Molinolo AA, Vitala-Cross L, Wang Z, Zaida M, Delic NC, Samuels Y, Lyons JG, Guttik SD. The head and neck cancer cell oncogene: a platform for the development of precision molecular therapies. Oncotarget 2014; 5: 8906–8923. DOI: 25275989

75 Shimada Y, Maeda M, Watanabe G, Yamasaki S, Komoto I, Kaganoi J, Tan T, Hashimoto Y, Imoto I, Inazawa J, Immamura M. Cell culture in esophageal squamous cell carcinoma and the association with molecular markers. Clin Cancer Res 2003; 9: 243–249. DOI: 12538476

76 Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci 2013; 104: 810–816. DOI: 23510069. DOI: 10.1111/
Wu X, Zhang J, Zhen R, Lv J, Zheng L, Su X, Zhu G, Gavine PR, Xu S, Lu S, Hou J, Liu Y, Xu C, Tan Y, Xie L, Yin H, Wu D, Ji Q, Hou Y, Ge D. Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (POECC) mouse models. J Transl Med 2012; 10: 180 [PMID: 22923582 DOI: 10.1186/1479-5876-10-180]

Zhang J, Jiang D, Li X, Lv J, Xie L, Zheng L, Gavine PR, Hu Q, Shi Y, Tan L, Ge D, Xu S, Li L, Zhou L, Hou Y, Wang Q. Establishment and characterization of esophageal squamous cell carcinoma patient-derived xenograft mouse models for preclinical drug discovery. Lab Invest 2014; 94: 917-926 [PMID: 24999713 DOI: 10.1038/labinvest.2014.77]

Wang D, Weghorst CM, Calvert RJ, Stoner GD. Mutation in the p53 tumor suppressor gene in rat esophageal papillomas induced by N-nitrosomethylbenzylamine. Carcinogenesis 1996; 17: 625-630 [PMID: 8625469]

Onken MD, Winkler AE, Kanchi KL, Chalivendra V, Law JH, Rickert CG, Kalloggeri D, Judd NP, Dunn GP, Piccirillo JF, Lewis JS, Mardis ER, Uppaluri R. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease. Clin Cancer Res 2014; 20: 2873-2884 [PMID: 24668645 DOI: 10.1158/1078-0432.CCR-14-0205]

Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, Delrosario R, Jen KY, Gurlay KE, Kemp CJ, Fredlund E, Quigley DA, Adams DJ, Balmain A. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Curr Opin Genet Dev 2015; 31: 489-492 [PMID: 25367367 DOI: 10.10138/nature13898]

Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 2002; 12: 105-110 [PMID: 11790563]

Sharpless NE, Depinho RA. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 2006; 5: 741-754 [PMID: 16915232 DOI: 10.1038/nrd2110]

Pirazzoli V, Nebhan C, Song X, Wurtz A, Walther Z, Cai G, Zhao Z, Jia P, de Stanchina E, Shapiro EM, Gale M, Yin R, Horn L, Carbone DP, Stephens PJ, Miller V, Gettinger S, Miller V, Gazdar AF, Zhu CQ, Brose MS, Baptista V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Bass AJ, Fonseca RP, Sperling RS, Stemke-Hale K. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus chemotherapy resistance of mammary tumors in a conditional model. Proc Natl Acad Sci USA 2014; 111: 6929-6934 [PMID: 24981326 DOI: 10.1073/pnas.1405565111]

Horn L, Lawrence DP, Rost S, Leubman M, Xiao Y, Makarim A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in advanced gastric and esophageal adenocarcinoma. Cancer Res 2014; 74: 1662-1672 [PMID: 2579239 DOI: 10.1158/1078-0432.CCR-14-0205]

Ralph C, Elkind E, Burt DJ, O'Dwyer JF, Austin EB, Stern PL, Hawkins RE, Thistlethwaite FC. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res 2010; 16: 1662-1672 [PMID: 2072939 DOI: 10.1158/1078-0432.CCR-09-2870]

Tran T, Turcott S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinzrichs CS, Parkhurst MR, Yang JC, Rosenberg SA. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014; 344: 641-645 [PMID: 24812403 DOI: 10.1126/science.1251102]

Herbst RS, Soria JC, Kowaranet M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kronghe H, Horn L, Lawrence DP, Rost S, Leubman M, Xiao Y, Makarim A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in patients with cancer. Nat Rev Cancer 2014; 14: 557-567 [PMID: 25428854 DOI: 10.1038/nature14101]

Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chad H, Merker JD, Goldfeder RL, Enns GM, David SP, Pakdaman N, Ormond PF, Caleshu K, Kingham K, Klein TE, Whirl-Consello M, Sakamoto K, Wheeler MT, Butte AJ, Ford JM, Boxer L, Ioannidis JP, Yeung AC, Altman RB, Assimes TL, Snyder M, Ashley EA, Quertermous T. Clinical interpretation and implications of whole-genome sequencing. JAMA 2014; 311: 1035-1045 [PMID: 24681895 DOI: 10.1001/jama.2014.1717]

Hudson AM, Yates T, Li Y, Trotter EW, Fawdar S, Chapman P, Lorigan P, Binkan A, Miller CJ, Brogna J. Disparities in cancer genomic sequencing highlight opportunities for driver mutation discovery. Cancer Res 2014; 74: 6390-6396 [PMID: 25256751 DOI: 10.1158/0008-5472.CAN-14-1020]

Zhao Y, Gao Y, Chen Z, Hu X, Zhou F, He J. Low frequency of TERT promoter somatic mutation in 31 sporadic esophageal squamous cell carcinomas. Int J Cancer 2014; 134: 493-494 [PMID: 23818232 DOI: 10.1002/ijc.28360]

Killela PJ, Reitman ZJ, Yao Y, Bettgehowa C, Agrawal N, Diaz LA, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK, Mertens F, Netto GJ, Rasheed BA, Riggins GJ, Rosenquist TA, Schiffman M, Shah IE, Thodorescu D, Torbenson MS, Velecuse VE, Wang TL, Weghorst C,etcode N, Wood LD, Zhang M, McLendon RE, Bignard DD, Kizilber KW, Vogelstein B, Papadopoulos N, Yan H. TERT promoter mutations occur frequently in glioma subtypes and in a subset of glioblastomas and meningiomas. Nat Commun 2014; 5: 1090 [PMID: 25020749 DOI: 10.1038/ncomms1090]

Kang X et al. Therapy for esophageal squamous cell carcinoma

WJC | www.wjgnet.com
Kang X et al. Therapy for esophageal squamous cell carcinoma

2014; 15: 556-570 [PMID: 25001846 DOI: 10.1038/nrg3767]

107 O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L, Hakonarson H, Johnson WE, Wei Z, Wang K, Lyon GJ. Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med 2013; 5: 28 [PMID: 23537139 DOI: 10.1186/gm432]

108 Moncunill V, Gonzalez S, Beia S, Andrieux LO, Salaverria I, Royo C, Martinez L, Puiggrós M, Segura-Wang M, Stütz AM, Navarro A, Royo R, Gelpi JL, Gut IG, López-Otin C, Orozco M, Korbel JO, Campo E, Puente XS, Torres D. Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads. Nat Biotechnol 2014; 32: 1106-1112 [PMID: 25344728 DOI: 10.1038/nbt.3027]

109 Cherny NI, de Vries EG, Emanuel L, Fallowfield L, Francis PA, Gabizon A, Piccart MJ, Sidransky D, Soussan-Gutman L, Tziraki C. Words matter: distinguishing “personalized medicine” and “biologically personalized therapeutics”. J Natl Cancer Inst 2014; 106: dju321 [PMID: 25293984 DOI: 10.1093/jnci/dju321]

P- Reviewer: Hsu PK, Sato Y S- Editor: Yu J L- Editor: AmEditor E- Editor: Wang CH
