Exact partition functions for the Ω-deformed $\mathcal{N} = 2^*$ $SU(2)$ gauge theory

Matteo Beccariaa,b Guido Macorinia,b

aDipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, Via Arnesano, 73100 Lecce, Italy
bINFN, Via Arnesano, 73100 Lecce, Italy

E-mail: matteo.beccaria@le.infn.it

ABSTRACT: We study the low energy effective action of the Ω-deformed $\mathcal{N} = 2^*$ $SU(2)$ gauge theory. It depends on the deformation parameters ϵ_1, ϵ_2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane $(\frac{m}{\epsilon_1}, \frac{\epsilon_2}{\epsilon_1})$ looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit $\epsilon_2 \to 0$. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.
1 Introduction and results

In this paper we consider the Ω-deformed $\mathcal{N} = 2^*$ SU(2) gauge theory in four dimensions and present novel closed expressions for its low energy effective action at special values of the deformation parameters. On general grounds, before deformation, the effective action of $\mathcal{N} = 2$ theories is computed by the Seiberg-Witten (SW) curve [1, 2]. It is the sum of a 1-loop perturbative correction and an infinite series of non-perturbative instantonic contributions that are weighted by the instanton counting parameter $q = e^{i\pi \tau}$ where τ is the complexified gauge coupling constant at low energy. Due to $\mathcal{N} = 2$ supersymmetry, the full effective action may be expressed in terms of the analytic prepotential $F(a,m)$ depending on the vacuum expectation value a of the scalar in the adjoint gauge multiplet and on the mass m of the adjoint hypermultiplet [3].

Instead of applying the SW machinery, one may compute the effective action by topological twisting the theory and exploiting localization on the many-instanton moduli spaces [4–6]. Technically, this is made feasible by introducing the so-called Ω-deformation of the theory, i.e. a modification breaking 4d Poincaré invariance and depending on two parameters ϵ_1, ϵ_2 such that the initial theory is recovered when $\epsilon_1, \epsilon_2 \to 0$. The role of
the Ω-deformation is that of a complete regulator for the instanton moduli space integration [7–14]. In this approach, it is natural to introduce a well defined partition function $Z^{\text{inst}}(\epsilon_1, \epsilon_2, a, m)$ and its associated non-perturbative ϵ-deformed prepotential by means of

$$F^{\text{inst}}(\epsilon_1, \epsilon_2, a, m) = -\epsilon_1 \epsilon_2 \log Z^{\text{inst}}(\epsilon_1, \epsilon_2, a, m).$$

(1.1)

It is well established that the quantity in (1.1) is interesting at finite values of the deformation parameters ϵ_1, ϵ_2, i.e. taking seriously the deformed theory. This is because the amplitudes appearing in the expansion $F^{\text{pert}} + F^{\text{inst}} = \sum_{g=0}^{\infty} F^{(g)}(\epsilon_1, \epsilon_2)^{2g} (\epsilon_1 \epsilon_2)^g$ are related to the genus g partition function of the $\mathcal{N} = 2$ topological string [15–21] and satisfy a powerful holomorphic anomaly equation [22–25]. Actually, understanding the exact dependence on the deformation parameters is an interesting topic if one wants to resum the above expansion in higher genus amplitudes. Clearly, this issue is closely related to the Alday-Gaiotto-Tachikawa (AGT) correspondence [26] mapping deformed $\mathcal{N} = 2$ instanton partition functions to conformal blocks of a suitable CFT with assigned worldsheet genus and operator insertions. AGT correspondence may be checked by working order by order in the number of instantons [27–29]. For the $\mathcal{N} = 2^*$ ϵ-deformed $SU(2)$ gauge theory the relevant CFT quantity is the one-point conformal block on the torus, a deceptively simple object of great interest [30, 27, 31, 28, 32–37].

The AGT interpretation emphasizes the importance of modular properties in the deformed gauge theory. Indeed, it is known that SW methods can be extended to the case of non-vanishing deformation parameters ϵ_1, ϵ_2 [38, 39] and modular properties have been clarified in the undeformed case [40, 41] as well as in presence of the deformation [42, 43]. The major outcome of these studies are explicit resummations of the instanton expansion order by order in the large a regime. The coefficients of the $1/a$ powers are expressed in terms of quasi-modular functions of the torus nome q. This approach can be pursued in the gauge theory [44–50], in CFT language by AGT correspondence [34, 35, 51, 36], and also in the framework of the semiclassical WKB analysis [52, 53, 52, 54–57].

An important simpler setup where these problems may be addressed is the so-called Nekrasov-Shatashvili (NS) limit [58] where one of the two ϵ parameters vanishes. In this case, the deformed theory has an unbroken two dimensional $\mathcal{N} = 2$ super-Poincaré invariance and its supersymmetric vacua are related to the eigenstates of a quantum integrable system. Under this Bethe/gauge map, the non-zero deformation parameter ϵ plays the role of \hbar in the quantization of a classically integrable system. Saddle point methods allow to derive a deformed SW curve [59, 60] that can also be analyzed by matrix model methods [33, 52, 53, 61, 62]. In the specific case of the $\mathcal{N} = 2^*$ theory, the relevant integrable system is the elliptic Calogero-Moser system [58] and the associated spectral problem reduces to the study of the celebrated Lamé equation. Besides, if the hypermultiplet mass m is taken to be proportional to ϵ with definite special ratios $\frac{m}{\epsilon} = n + \frac{1}{2}$, where $n \in \mathbb{N}$, the spectral problem is n-gap. Remarkable simplifications occur in the k-instanton prepotential contributions F^{inst}_k [63] that may be obtained by expanding the eigenvalues of a Lamé equation in terms of its Floquet exponent. As a byproduct of this approach, it is possible to clarify the meaning of the poles that appear in the k-instanton prepotential at
special values \(a = \mathcal{O}(\epsilon) \) of the vacuum expectation value \(a \). Indeed, the pole singularities turn out to be an artifact of the instanton expansion.

In this paper, we inquire into similar problems when both the deformation parameters are switched on, i.e. by going beyond the Nekrasov-Shatashvili limit. In particular, we explore the \((a, \beta)\) plane where \(a, \beta \) are real parameters entering the scaling relation

\[
m = a \epsilon_1, \quad \epsilon_2 = \beta \epsilon_1.
\]

(1.2)

In other words, we keep the hypermultiplet mass to be proportional to one deformation parameter with ratio \(a \), but \(\epsilon_1, \epsilon_2 \) are generic (\(\beta \) is just a convenient replacement of \(\epsilon_2 \)). By dimensional scaling, the prepotential is a function \(\tilde{F}(a, \beta)(v) \) of the combination \(v = 2 a / \epsilon_1 \) at the fixed point \((a, \beta)\). \(^1\) The dependence on \(q \) is not written explicitly. After this stage preparation, the claim of this paper is the following

There exists a finite set of \(N \)-poles points \((a, \beta)\) such that the \(k \)-instanton prepotential is a rational function of \(v \) with poles at a fixed set of positions \(v \in \{v_1, \ldots, v_N\} \) independent on \(k \).

This claim is motivated by our previous analysis in the restricted Nekrasov-Shatashvili limit \([63]\) and is far from obvious. Most important, it has far reaching consequences. At the special \(N \)-poles points, we show that the instanton partition function and the perturbative part of the prepotential take the exact form

\[
\tilde{Z}_{\text{inst}}(a, \beta)(v) = \frac{v^{2N} + \sum_{n=1}^{N} v^{2(N-n)} M_{2n}(q)}{(v^2 - v_1^2) \cdots (v^2 - v_N^2)} \left[q^{-\frac{1}{12}} \eta(\tau) \right]^{2(h_m - 1)},
\]

\[
\tilde{F}_{\text{pert}}(a, \beta)(v) = -\beta h_m \log \frac{v}{\Lambda} - \beta \log \prod_{n=1}^{N} \left(1 - \frac{v_n^2}{v^2} \right), \quad h_m = \frac{(\beta + 1)^2 - 4 \alpha^2}{4 \beta},
\]

(1.3)

where \(M_{2n} \) is a polynomial in the Eisenstein series \(E_2, E_4, E_6 \) with total modular degree \(2n \) with coefficients depending on \(a, \beta, \) and \(h_m \in \mathbb{N} \). The total prepotential is thus remarkably simple and reads

\[
\tilde{F}_{(a, \beta)}(v) = -\beta h_m \log \frac{v}{\Lambda} - \beta \log \left(1 + \sum_{n=1}^{N} \frac{M_{2n}(q)}{v^{2n}} \right).
\]

(1.4)

These explicit expressions satisfy the modular anomaly equation expressing S-duality discussed in \([44–49]\). By applying the AGT dictionary, (1.3) and (1.4) predict toroidal blocks in closed form at very specific values of the central charge \(c \) and of the inserted operator conformal dimension \(h_m \) – the perturbative part providing interesting special instances of the 3-point DOZZ Liouville correlation function. These results are derived and tested by giving a complete list of all the \(N \leq 4 \) poles points. These turns out to be 4, 7, 12, and 11 at \(N = 1, 2, 3, 4 \) respectively.

\(^1\) We shall systematically add a tilde to quantities that are considered under (1.2) and expressed in terms of the variable \(v \).
The plan of the paper is the following. In Sec. (2) we determine the 1-pole points by a direct inspection of the instanton prepotential contributions. In Sec. (2.1) we discuss the special features of the instanton partition function at the 1-pole points. The AGT interpretation is analyzed in Sec. (3) where we also provide various explicit CFT tests of the proposed partition functions. In Sec. (4) we discuss the perturbative part of the prepotential at the 1-pole points. In Sec. (5) the analysis is extended to N-poles points and the cases $N = 2, 3$ are fully classified. Finally, Sec. (6) presents a list of special toroidal blocks. Various appendices are devoted to additional comments.

2 Looking for simplicity beyond the Nekrasov-Shatashvili limit

As discussed in the Introduction, we are interested in the scaling limit (1.2). The instanton partition function is $Z_{\text{inst}} = Z_{\text{inst}}(\epsilon_1, \epsilon_2, a, m)$ and it is convenient to introduce

$$\tilde{Z}_{(\alpha, \beta)}(\nu) = Z_{\text{inst}}\left(\epsilon_1, \beta \epsilon_1, \frac{\epsilon_1 v}{2}, \alpha \epsilon_1\right) = Z_{\text{inst}}\left(1, \beta, \frac{v}{2}, \alpha\right),$$

(2.1)

where we used dimensional scaling independence to remove ϵ_1. Similarly, we define

$$F_{\text{inst}} = -\epsilon_1 \epsilon_2 \log Z_{\text{inst}}, \quad \tilde{F}_{(\alpha, \beta)}(\nu) = -\beta \log \tilde{Z}_{(\alpha, \beta)}(\nu).$$

(2.2)

We shall omit the explicit (α, β) index when obvious. Besides, the partition function is even in α and we shall always consider $\alpha > 0$.

According the the claim presented in the Introduction, we now look for special points (α, β) such that the k-instanton Nekrasov function takes the form

$$\tilde{F}_k(\nu) = \frac{P_k(\nu)}{(\nu^2 - \nu_1^2)^k},$$

(2.3)

with a polynomial $P_k(\nu)$ and a single pole $\nu_1 \geq 0$ in the variable $|\nu|$. The Ansatz (2.3) is a non-trivial requirement. It is motivated by the analysis in [63], but its admissibility is actually one of the results of our investigation. To explore the constraints that (2.3) imposes, we begin by looking at the simple one-instanton case. For $k = 1$ we have the explicit expression

$$\tilde{F}_1(\nu) = -\frac{(2\alpha - \beta + 1)(2\alpha + \beta - 1) (4\alpha^2 + 3\beta^2 + 6\beta - 4\nu^2 + 3)}{8(\beta - \nu + 1)(\beta + \nu + 1)},$$

(2.4)

and there is a simple pole $\nu_1 = |\beta + 1|$. At the two-instanton level, $k = 2$, the denominator of $\tilde{F}_2(\nu)$ turns out to vanish at

$$|\nu| = \beta + 1(\text{order 2}), \quad \beta + 2, \quad 2\beta + 1.$$
Special cases occur when one of the poles coincides with those at \(\nu_1 = |\beta + 1| \). This happens for
\[
\beta = -1, -\frac{3}{2}, -\frac{2}{3}.
\] (2.6)

These values must be analyzed separately. Looking at higher values of \(k \) we identify the only non-trivial cases consistent with (2.3) \(^3\)
\[
(\alpha, \beta) = \left(\frac{7}{4}, -\frac{3}{2} \right), \left(\frac{7}{6}, -\frac{2}{3} \right).
\] (2.7)

Finally, if \(\beta \) is not in the set (2.6), one checks that \(\tilde{F}_2 \) takes the form (2.3) if
\[
(\alpha, \beta) = \left(\frac{5}{2}, -2 \right), \left(\frac{5}{4}, -\frac{1}{2} \right).
\] (2.8)

Pushing the calculation up to 12 instantons, we confirm that the points in (2.7) and (2.8) agree with the Ansatz (2.3). Thus, the 1-pole condition (2.3) selects the following distinct 4 special points
\[
X_1 = \left(\frac{5}{2}, -2 \right), \quad X_2 = \left(\frac{7}{4}, -\frac{3}{2} \right), \quad X_3 = \left(\frac{7}{6}, -\frac{2}{3} \right), \quad X_4 = \left(\frac{5}{4}, -\frac{1}{2} \right).
\] (2.9)

2.1 Back to the instanton partition functions

We could analyze further the structure of the prepotential in (2.3) at the special points \(X_i \) in (2.9) by looking for regularities in the polynomials \(P_k(\nu) \). However, it is much more convenient to go back to the instanton partition function. To see why, let us consider \(X_1 \) as a first illustration. We find indeed the simple expansion
\[
\tilde{Z}_{\text{inst}}^{X_1}(\nu) = 1 - \frac{4(\nu^2 - 7)}{\nu^2 - 1} q^2 + \frac{2(\nu^2 - 13) q^4}{\nu^2 - 1} + \frac{8(\nu^2 - 19) q^6}{\nu^2 - 1} - \frac{5(\nu^2 - 25) q^8}{\nu^2 - 1} - \frac{4(\nu^2 - 31) q^{10}}{\nu^2 - 1} - \frac{10(\nu^2 - 37) q^{12}}{\nu^2 - 1} + \frac{8(\nu^2 - 43) q^{14}}{\nu^2 - 1} + \frac{9(\nu^2 - 49) q^{16}}{\nu^2 - 1} + O(q^{22}).
\] (2.10)

After some educated trial and error, we recognize that (2.10) is the expansion of the following expression
\[
\tilde{Z}_{\text{inst}}^{X_1}(\nu) = \frac{\nu^2 - E_2(q)}{\nu^2 - 1} q^{-\frac{1}{2}} \eta(\tau)^4,
\] (2.11)

where
\[
\eta(\tau) = q^{\frac{1}{2}} \prod_{k=1}^{\infty} (1 - q^{2k}), \quad q = e^{i \pi \tau},
\] (2.12)

\(^3\)Here, trivial means a constant \(\tilde{F}_2(\nu) \).
and E_2 is an Eisenstein series. Similar expressions are found at the other three special points. The detailed formulas are

$$
\tilde{Z}_{X_2}^{\text{inst}}(\nu) = \frac{4\nu^2 - E_2(q)}{4\nu^2 - 1} q^{-\frac{3}{2}} \eta(\tau)^2, \\
\tilde{Z}_{X_3}^{\text{inst}}(\nu) = \frac{9\nu^2 - E_2(q)}{9\nu^2 - 1} q^{-\frac{3}{2}} \eta(\tau)^2, \\
\tilde{Z}_{X_4}^{\text{inst}}(\nu) = \frac{4\nu^2 - E_2(q)}{4\nu^2 - 1} q^{-\frac{3}{2}} \eta(\tau)^4.
$$

(2.13)

The associated all-instanton Nekrasov functions are

$$
\tilde{F}_{X_1}^{\text{inst}}(\nu) = 8 \log[q^{-\frac{3}{2}} \eta(\tau)] + 2 \log \left(\frac{\nu^2 - E_2}{\nu^2 - 1}\right), \\
\tilde{F}_{X_2}^{\text{inst}}(\nu) = 3 \log[q^{-\frac{3}{2}} \eta(\tau)] + \frac{3}{2} \log \left(\frac{4\nu^2 - E_2}{4\nu^2 - 1}\right), \\
\tilde{F}_{X_3}^{\text{inst}}(\nu) = \frac{4}{3} \log[q^{-\frac{3}{2}} \eta(\tau)] + \frac{2}{3} \log \left(\frac{9\nu^2 - E_2}{9\nu^2 - 1}\right), \\
\tilde{F}_{X_4}^{\text{inst}}(\nu) = 2 \log[q^{-\frac{3}{2}} \eta(\tau)] + \frac{1}{2} \log \left(\frac{4\nu^2 - E_2}{4\nu^2 - 1}\right).
$$

(2.14)

Equations (2.13) and (2.14) are already remarkable because they are non-trivial closed expressions for the instanton partition function, or prepotential, at all instanton numbers. It is clear that it would be nice to provide some clarifying interpretation for this features at the special points X_i. In the next section, we shall examine the clues coming from AGT correspondence.

3 AGT interpretation

According to the AGT correspondence, the instanton partition function of $\mathcal{N} = 2^* SU(2)$ gauge theory is [26, 28, 27]

$$
Z^{\text{inst}}(q, a, m) = \left[\prod_{k=1}^{\infty} \left(1 - q^{2k}\right) \right]^{-1+2h_m} \mathcal{F}_{h_m}^h(q),
$$

(3.1)

where $\mathcal{F}_{a}^m(q)$ is the 1-point toroidal block of the Virasoro algebra of central charge $c = 1 + 6Q^2$ on a torus whose modulus is q, with one operator of dimension h_m inserted and a primary of dimension h in the intermediate channel. The precise dictionary in terms of the deformation parameters is

$$
b = \sqrt{e_2/e_1}, \quad Q = b + b^{-1}, \\
h_m = \frac{Q^2}{4} - \frac{m^2}{e_1 e_2}, \quad h = \frac{Q^2}{4} - \frac{a^2}{e_1 e_2}.
$$

(3.2)

4 Our convention is

$$
E_2(q) = 1 - 24 \sum_{n=1}^{\infty} \frac{n q^n}{1 - q^n}, \quad E_4(q) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n}, \quad E_6(q) = 1 - 504 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n}.
$$

Modular properties of these quantities may be found, for instance, in [67].
Assuming the scaling relations (1.2), the expressions in (3.2) read
\[
\begin{align*}
b & = \sqrt{\beta}, \\
Q & = \beta \frac{1}{2} + \beta^{-\frac{1}{2}}, \\
h_m & = \frac{(\beta + 1)^2 - 4a^2}{4\beta}, \\
h & = \frac{(\beta + 1)^2 e_1^2 - 4a^2}{4\beta e_1^2},
\end{align*}
\] (3.3)
with central charge
\[
c = 13 + 6 \left(\beta + \frac{1}{\beta} \right). \quad (3.4)
\]
In particular, at the four points \(X_i\) we obtain the following values for \((c, h_m)\)
\[
\begin{array}{c|cccc}
& X_1 & X_2 & X_3 & X_4 \\
\hline
\h_m & 3 & 2 & 2 & 3
\end{array}
\] (3.5)

Of course, points appear in pairs with the same central charge and \(\beta\) values related by \(\beta \rightarrow \beta^{-1}\). More remarkably, the associated values of the parameter \(a\) is always such that \(h_m\) is a positive integer. The toroidal block has a universal prefactor \(q^{\frac{1}{2}}/\eta(\tau)\) that is its value at \(h \rightarrow \infty\). Comparing (3.1) with (2.13) we can write the general form for all four \(X_i\) points as
\[
\tilde{Z}_{(a,b)}(v) = \frac{\nu^2 - \nu_1^2}{\nu^2 - \nu_1^2} E_2(q) [q^{-\frac{1}{2}} \eta(\tau)]^{2(h_m-1)}, \quad \nu_1 = |\beta + 1|,
\]
\[
\tilde{F}_{(a,b)}(v) = -2 \beta (h_m - 1) \log[q^{-\frac{1}{2}} \eta(\tau)] - \beta \log \frac{\nu^2 - \nu_1^2}{\nu^2 - \nu_1^2}. \quad (3.6)
\]
Correspondingly, the net prediction for the toroidal block at the above central charge and insertion dimension is
\[
\mathcal{F}^h_{h_m}(q,c) = \frac{q^{\frac{1}{2}}}{\eta(\tau)} \left[1 + \frac{c - \frac{1}{2} h_m}{24 h} \left. (E_2(q) - 1) \right] \right], \quad (c, h_m) = (0,2) \text{ or } (-2,3). \quad (3.7)
\]

We remark that the above \((c, h_m)\) may well be pathological for a physical CFT. Nevertheless, the toroidal block is defined by the Virasoro algebra for arbitrary values of \(c, h_m,\) and \(h\). Eq. (3.7) must be taken in this sense. We checked (3.7) against Zamolodchikov recursive determination of the toroidal block [68–70] with perfect agreement. Of course, by AGT, this is same as Nekrasov calculation. The remarkably simple form (3.7) is clearly consistent with general results for the torus block. For instance, at leading and next-to-leading order and generic operator dimensions we have [35]
\[
\mathcal{F}^h_{h_m}(c,q) = 1 + \mathcal{F}_1(h,h_m,c) q^2 + \mathcal{F}_2(h,h_m,c) q^4 + \ldots, \quad (3.8)
\]
where
\[
\mathcal{F}_1(h,h_m,c) = 1 + \frac{h_m(h_m-1)}{2h},
\]
\[
\mathcal{F}_2(h,h_m,c) = \left[4h (2h + c + 16h^2 - 10h) \right]^{-1} \quad (3.9)
\]
where we used (3.11). The toroidal block is obtained as our calculation in the language of logarithmic CFT, see for instance \[71, 72\].

may be regarded as the solution to the Zamolodchikov recursion relations. It would be interesting to revisit diagonal descendant decomposition of the \(\phi\)

where the trace is over the descendants of \(\phi\), so strictly speaking, the theory is not conformal any more (since the stress-tensor vanishes identically).

Thus,

\[
\begin{align*}
\mathcal{F}_{h_m=2}^k(c = 0, q) &= 1 + \left(1 + \frac{1}{h}\right) q^2 + \left(2 + \frac{4}{h}\right) q^4 + \ldots, \\
\mathcal{F}_{h_m=3}^k(c = -2, q) &= 1 + \left(1 + \frac{3}{h}\right) q^2 + \left(2 + \frac{12}{h}\right) q^4 + \ldots,
\end{align*}
\tag{3.10}
\]

in full agreement with (3.7) for \(c = 0, -2\). Notice also that (3.7) may be written

\[
\frac{q^\frac{1}{2}}{\eta(\tau)} \left[1 + \frac{c - 1}{24h} (E_2(q) - 1) \right] = \left(1 + \frac{1-c}{2h} q \eta(q)\right) \frac{q^\frac{1}{2}}{\eta(\tau)} = \sum_{k=0}^{\infty} \left(1 + \frac{1-c}{h} k\right) P_k q^{2k},
\tag{3.11}
\]

where \(P_k\) are the coefficients of the expansion of \(\prod_{k=1}^{\infty} (1 - q^{2k})^{-1}\), i.e. the number of unrestricted partitions of \(k\) \((n^m\) means \(m\) copies of \(n)\)

\[
\begin{align*}
P_1 &= \#\{1\} = 1, \\
P_2 &= \#\{(2)\} = 2, \\
P_3 &= \#\{(3), (2,1), (1^3)\} = 3, \\
P_4 &= \#\{(4), (3,1), (2^2), (2,1^2), (1^4)\} = 5, \\
P_5 &= \#\{(5), (4,1), (3,2), (3,1^2), (2^2,1), (2,1^3), (1^5)\} = 7, \text{ and so on.}
\end{align*}
\tag{3.12}
\]

3.1 Explicit CFT computations

The \((c, h_m) = (0, 2)\) conformal block

It is instructive to derive the result (3.7) at \(c = 0\) from a direct CFT calculation. In other words, we want to show that

\[
\mathcal{F}_{h_m=2}^k(q, c = 0) = \frac{q^\frac{1}{2}}{\eta(\tau)} \left[1 - \frac{1}{24h} (E_2(q) - 1) \right] = \sum_{k=0}^{\infty} \left(1 + \frac{1}{h} k\right) P_k q^{2k},
\tag{3.13}
\]

where we used (3.11). The toroidal block is obtained as

\[
\mathcal{F}_{h_m}^k(q, c) = q^{-h + \frac{c}{2h}} \text{Tr}_h \left(q^{L_0 - \frac{c}{2}} \phi_{h_m}(1)\right),
\tag{3.14}
\]

where the trace is over the descendants of \(\phi_h\). The starting point is thus conformal descendant decomposition of the \(\text{diagonal}\) part of the OPE

\[
\phi_{h_m}(x) \phi_h(0) = \sum_{Y} x^{-h_m - |Y|} \beta^Y L_{-Y} \phi_h(0)
\]

where

\[
\phi_{h_m}(x) \phi_h(0) = \sum_{Y} x^{-h_m} (1 + x \beta^{(1)} L_{-1} + x^2 (\beta^{(2)} L_{-2} + \beta^{(1,1)} L_{-1}^2) + \ldots) \phi_h(0),
\tag{3.15}
\]

\footnote{CFT at \(c = 0\) is obviously quite special since the 2-point function of the stress energy tensor is then \(\phi_{h_m}(x) \phi_h(0) = \sum_{Y} x^{-h_m} (1 + x \beta^{(1)} L_{-1} + x^2 (\beta^{(2)} L_{-2} + \beta^{(1,1)} L_{-1}^2) + \ldots) \phi_h(0).\)!
where Y denotes a unrestricted partition of $|Y|$ and L_n are Virasoro generators
\[
Y = \{k_1 \geq k_2 \geq \cdots > 0\}, \quad |Y| = k_1 + k_2 + \ldots , \quad L^{-Y} = L^{-k_1} L^{-k_2} \ldots . \tag{3.16}
\]

The coefficients β in (3.15) are determined by conformal symmetry and are functions of h, h_m, c. As a consequence of unbroken conformal symmetry ($c = 0$) and of the fact that $h_m = 2$ is the same dimension as that of the energy momentum tensor, one finds that the only vanishing β coefficients are those associated with simple L_{-n} descendants. Besides they are all equal
\[
\beta^{(n)} = \frac{1}{h}, \quad \beta^{(n,n')} = 0, \quad \beta^{(n,n',n'')} = 0, \quad \ldots . \tag{3.17}
\]

Just to give an example, the explicit β coefficients at level 2 are
\[
\beta^{(1)} = \frac{h_m}{2h}, \quad \beta^{(2)} = \frac{(1 + 8h - 3h_m) h_m}{c (1 + 2h) + 2h (8h - 5)}, \quad \beta^{(1,1)} = \frac{h_m (c - 16h + (c + 8h) h_m)}{4h (c (1 + 2h) + 2h (8h - 5))}. \tag{3.18}
\]

Computing them at $(c, h_m) = (0, 2)$ we see that indeed
\[
\beta^{(1)} = \beta^{(2)} = \frac{1}{h}, \quad \beta^{(1,1)} = 0. \tag{3.19}
\]

Hence, if we apply (3.15) to the vacuum, we get\(^6\)
\[
\varphi_2(x) |h\rangle = \frac{1}{h} \sum_{n=0}^{\infty} x^{n-2} L_{-n} |h\rangle. \tag{3.20}
\]

Now, to get the torus block, we need to evaluate the diagonal matrix elements of $\varphi_2(x)$. Using
\[
[L_n, \varphi_2(x)] = x^n (x \partial + 2 (n + 1)) \varphi_2(x), \tag{3.21}
\]
we obtain with one index
\[
\varphi_2(x) L_{-k} |h\rangle = -[L_{-k}, \varphi_2(x)] |h\rangle + L_{-k} \varphi_2(x) |h\rangle
= \frac{1}{h} \sum_{n=0}^{\infty} (2k - n) x^{n-k-2} L_{-n} |h\rangle + \frac{1}{h} \sum_{n=0}^{\infty} x^{n-2} L_{-k} L_{-n} |h\rangle
= \cdots + \frac{1}{x^2} \left(1 + \frac{k}{h}\right) L_{-k} |h\rangle + \ldots , \tag{3.22}
\]

where we have shown only the diagonal entry. Adding one index each time, a similar calculation shows that for any number of indices
\[
\varphi_2(x) L_{-Y} |h\rangle = \cdots + \frac{1}{x^2} \left(1 + \frac{|Y|}{h}\right) L_{-Y} |h\rangle + \ldots . \tag{3.23}
\]

Thus the diagonal matrix element of $\varphi_2(x)$ associated with the Y descendant depends only on $|Y|$. The number of Y with fixed $|Y|$ is the number $P_{|Y|}$ of unrestricted partitions of $|Y|$. Summing over Y with $|Y| = k$ we prove (3.13).

\(^6\)Notice that $h_m = 2$ is not enough to achieve such simplification. A vanishing central charge is also needed to remove descendants with multiple applications of Virasoro operators.
The \((c,h_m) = (-2, 3)\) conformal block

A similar computation for \(c = -2\) and \(h_m = 3\) is apparently quite less trivial. The main reason is that the \(\beta\) coefficients in the conformal decomposition (3.15) do not trivialize in this case. This complication forbids us to prove the wanted result in general. Nevertheless, we provide an explicit check at level 4. Of course, one could simply use the recursive definition of the toroidal block, but our brute force calculation is perhaps more transparent. Besides, it emphasizes the difference compared with the previous \((c, h_m) = (0, 2)\) case. The starting point is again the OPE (3.15) that now takes the following form up to level 4 descendants

\[
\varphi_3(x) \varphi_h(0) = x^{-3} (1 + x \beta^{(1)} L_{-1} + x^2 (\beta^{(2)} L_{-2} + \beta^{(1,1)} L_{-1}^2) + x^3 (\beta^{(3)} L_{-3} + \beta^{(2,1)} L_{-2} L_{-1} + \beta^{(1,1,1)} L_{-1}^3) + x^4 (\beta^{(4)} L_{-4} + \beta^{(3,1)} L_{-3} L_{-1} + \beta^{(2,2)} L_{-2}^2 + \beta^{(2,1,1)} L_{-2} L_{-1}^2 + \beta^{(1,1,1,1)} L_{-1}^4 + \ldots) \varphi_h(0),
\]

with the simple but non trivial \(\beta\) coefficients

\[
\begin{align*}
\beta^{(1)} &= \frac{3}{2h}, & \beta^{(2)} &= \frac{12}{8h + 1}, & \beta^{(1,1)} &= \frac{3}{h(8h + 1)}, & \beta^{(3)} &= \frac{24h - 1}{2h(8h + 1)}, \\
\beta^{(2,1)} &= \frac{6h + 1}{h^2(8h + 1)}, & \beta^{(1,1,1)} &= -\frac{1}{2h^2(8h + 1)}, & \beta^{(4)} &= \frac{3(32h^2 - 20h + 1)}{h(8h - 3)(8h + 1)} \\
\beta^{(3,1)} &= \frac{3(16h^2 - 2h - 1)}{h^2(8h - 3)(8h + 1)}, & \beta^{(2,2)} &= \frac{24}{(8h - 3)(8h + 1)}, & \\
\beta^{(2,1,1)} &= -\frac{3(4h + 1)}{h^2(8h - 3)(8h + 1)}, & \beta^{(1,1,1,1)} &= \frac{3}{2h^2(8h - 3)(8h + 1)}.
\end{align*}
\]

As in (3.23), we write

\[
\varphi_3(x) L_{-Y|h} = \cdots + \frac{1}{x^3} M_Y L_{-Y|h} + \ldots,
\]

for certain coefficients \(M_Y\) functions of \(h\). At level 1, we have only

\[
M_1 = 1 + \frac{3}{h}.
\]

At level 2,

\[
M_2 = \frac{8h + 49}{8h + 1}, \quad M_{1,1} = \frac{8h^2 + 49h + 12}{h(8h + 1)}, \\
\sum_{|Y|=2} M_Y = 2 + \frac{12}{h}.
\]

At level 3,

\[
M_3 = \frac{8h^2 + 73h - 3}{h(8h + 1)}, \quad M_{2,1} = \frac{8h^2 + 73h + 3}{h(8h + 1)}, \quad M_{1,1,1} = \frac{8h^2 + 73h + 27}{h(8h + 1)}, \\
\sum_{|Y|=3} M_Y = 3 + \frac{27}{h}.
\]
At level 4

\[M_4 = \frac{64h^3 + 752h^2 - 483h + 24}{h(8h - 3)(8h + 1)}, \quad M_{3,1} = \frac{64h^3 + 752h^2 - 291h - 24}{h(8h - 3)(8h + 1)}, \]

\[M_{2,2} = \frac{64h^3 + 752h^2 - 99h - 24}{h(8h - 3)(8h + 1)}, \quad M_{2,1,1} = \frac{8h^2 + 97h + 48}{h(8h + 1)}, \]

\[M_{1,1,1,1} = \frac{8h^2 + 97h + 48}{h(8h + 1)}, \]

\[\sum_{|Y|=4} M_Y = 5 + \frac{60}{h}. \]

Putting all together we agree with (3.11) at \(c = -2 \). It would be nice to prove the agreement at all levels, possibly working in a definite \(c = -2 \) CFT like the triplet model considered in [73, 74].

4 Perturbative part of the prepotential at the points \(X_i \)

The prepotential has also a perturbative part, related by AGT to the DOZZ 3-point function in the Liouville theory [75, 69, 76]. The general expression for the perturbative part of the prepotential is \((\tilde{m} = m + \frac{c_1 + c_2}{2})\) [4, 5]

\[F_{\text{pert}} = \epsilon_1 \epsilon_2 \left[\gamma_{\epsilon_1,\epsilon_2}(2a) + \gamma_{\epsilon_1,\epsilon_2}(-2a) - \gamma_{\epsilon_1,\epsilon_2}(2a + \tilde{m}) - \gamma_{\epsilon_1,\epsilon_2}(-2a + \tilde{m}) \right], \]

where

\[\gamma_{\epsilon_1,\epsilon_2}(x) = \frac{d}{ds} \left(\frac{N^s}{\Gamma(s)} \int_0^{\infty} dt \frac{t^x e^{-tx}}{t^{c_1}} \right) \bigg|_{s=0}, \]

and \(\Lambda \) is a renormalization scale. Evaluating \(F_{\text{pert}} \) by expanding at small \(\epsilon_1 \) and resumming, we find that at all \(X_i \) points it is possible to write

\[F_{\text{pert}} = \frac{4a^2 - (\beta + 1)^2}{4} \epsilon_1^2 \log \frac{2a}{\Lambda} - \beta \epsilon_1^2 \log \left[1 - (1 + \beta)^2 \frac{\epsilon_1^2}{4a^2} \right]. \]

Again, this appears to be a special feature of the \(X_i \) points because it is not possible to give such a simple expression for \(F_{\text{pert}} \) at generic \(\epsilon_1, \epsilon_2 \) from (4.1). With a redefinition of the UV cutoff, this may be written in the following suggestive form that we shall generalize later

\[\tilde{F}_{\text{pert}}(\nu) = -\beta h_m \log \frac{\nu}{\Lambda} - \beta \log \left(1 - \frac{\nu^2}{v^2} \right). \]

5 Full prepotential and generalization to \(N \)-poles points

If we combine the perturbative (4.4) and instanton (3.6) parts of the prepotential, we obtain the remarkably simple expression

\[\tilde{F} = \tilde{F}_{\text{pert}} + \tilde{F}_{\text{inst}} = -\beta h_m \log \frac{\nu}{\Lambda} - \beta \log \left(1 + \frac{\gamma E_2(q)}{v^2} \right), \]
with a certain coefficient γ. This suggests that it is convenient to organize the total prepotential in the form

$$
\tilde F = -\beta h_m \log \frac{v}{\Lambda} - \beta \log \left(1 + \sum_{n=1}^{\infty} \frac{M_{2n}(q)}{v^{2n}} \right),
$$

(5.2)

where $M_{2n}(q)$ is a polynomial in $E_{2,4,6}$ of (quasi-) modular degree $2n$. We emphasize again that the Ansatz (5.2) is non trivial because $\tilde F_{\text{tot}}$ is a combination of the perturbative and instanton contributions. Our claim is that (5.2) can be truncated at maximum degree $n = N$ for a special set of points (α, β). At such points, the instanton partition function takes the special form, see (1.3)

$$
\tilde Z_{\text{inst}}^{(\alpha,\beta)}(v) = \frac{v^{2N} + \sum_{n=1}^{N} v^{2(N-n)} M_{2n}(q)}{(v^2 - v_1^2) \cdots (v^2 - v_n^2)} \eta^{2(h_m-1)}(\tau).
$$

(5.3)

To see how this works in practice, let us parametrize

$$
M_2 = \gamma_2 E_2, \quad M_4 = \gamma_4 E_4 + \gamma_{2,2} E_2^2,
$$

$$
M_6 = \gamma_6 E_6 + \gamma_{2,4} E_2 E_4 + \gamma_{2,2,2} E_3^2,
$$

$$
M_8 = \gamma_{2,6} E_2 E_6 + \gamma_{4,4} E_4^2 + \gamma_{2,2,2,2} E_4 + \gamma_{2,2,2,2,2} E_4.
$$

(5.4)

Replacing these combinations in (5.3) and comparing with the Nekrasov function at 5 instanton we obtain explicit expressions for the γ coefficients in terms of α, β. The first coefficients are

$$
\gamma_4 = -\frac{1}{23040\beta} (-2\alpha + \beta - 1)(-2\alpha + \beta + 1)(2\alpha + \beta - 1)(2\alpha + \beta + 1)
$$

$$
(-4\alpha^2 + 13\beta^2 + 20\beta + 13),
$$

$$
\gamma_{2,2} = \frac{1}{73728\beta^2} (-2\alpha + \beta - 1)(-2\alpha + \beta + 1)(2\alpha + \beta - 1)(2\alpha + \beta + 1)
$$

$$
(-4\alpha^2 + \beta^2 - 10\beta + 1) (-4\alpha^2 + \beta^2 - 6\beta + 1).
$$

(5.5)

The non trivial solutions of $\gamma_4 = \gamma_{2,2} = 0$ (as always, up to the choice $\alpha > 0$) are

$$(\alpha, \beta) = \left(\frac{7}{6}, -\frac{2}{3} \right), \left(\frac{5}{4}, -\frac{1}{2} \right), \left(\frac{11}{6}, -\frac{2}{3} \right), \left(\frac{5}{2}, -2 \right),
$$

(5.6)

that is precisely the four points X_i. The coefficient γ_2 is also an output of the calculation and its general expression is

$$
\gamma_2 = \frac{(-2\alpha + \beta - 1)(-2\alpha + \beta + 1)(2\alpha + \beta - 1)(2\alpha + \beta + 1)}{192\beta}.
$$

(5.7)

Finally, comparing (5.2) and (5.3) we determine the perturbative part of the prepotential to be, see (1.3)

$$
\tilde F_{\text{pert}}^{(\alpha,\beta)}(v) = -\beta h_m \log \frac{v}{\Lambda} - \beta \log \prod_{n=1}^{N} \left(1 - \frac{v_n^2}{v^2} \right).
$$

(5.8)
that is a nice generalization of (4.4). In all cases, we have confirmed that this is in full agreement with the explicit evaluation of the general expression (4.1). We remark once again that it is remarkable that at the special \(n \)-poles points, it is possible to get such a simple expression.

Performing the above analysis for 2- and 3- poles Nekrasov functions, we find the following complete results. We have four 1- and seven 2-poles Nekrasov functions that are fully characterized by the following tables where we have separated by a horizontal line points with different \((c, h_m)\)

\[
\begin{array}{cccccc}
\alpha & \beta & c & h_m & \gamma_2 & v_1 \\
5/2 & -2 & -2 & 3 & -1 & 1 \\
5/4 & -1/2 & -2 & 3 & -1/4 & 1/2 \\
7/4 & -3/2 & 0 & 2 & -1/4 & 1/2 \\
7/6 & -2/3 & 0 & 2 & -1 & 1/3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\alpha & \beta & c & h_m & \gamma_2 & v_1 \\
4 & -3 & -7 & 5 & -5 & 1/4 & 15 & 1/4 & 1 & 2 \\
4 & -3 & -7 & 5 & -5 & 1/4 & 15 & 1/4 & 1 & 2 \\
7/4 & -1/2 & -2 & 3 & -1/4 & 1/2 \\
13/4 & -5/2 & -22/5 & 4 & -5/2 & 1/2 & 25/48 & 3 & 3 \\
13/10 & -1/5 & -22/5 & 4 & -2/5 & 2/3 & 1/2 & 4 & 5/5 \\
2 & -1 & 1 & 4 & -1 & -1/12 & 1/12 & 0 & 1 \\
11/4 & -3/2 & 0 & 5 & -5/2 & 3/8 & 15/4 & 3 & 3/2 \\
11/6 & -2/3 & 0 & 5 & -10/9 & 2/27 & 5/27 & 1 & 3 \\
\end{array}
\]

Looking for 3-poles points, we identify 12 cases whose full data is collected in the Table in (A.1). With 4-poles, we found 11 solutions collected in the two tables (A.2) and (A.3). Notice that in all presented cases, the parameter \(\beta \) is always rational negative. This implies that central charge takes the form of extended minimal models

\[
c = 1 - 6 \left(\frac{p - q}{pq} \right)^2, \tag{5.10}
\]

with coprime integers \(p, q \). Here, the extension is due to the fact that the minimum value of \(p, q \) is one instead of 2, see also Fig. (1).

5.1 Constraints from the modular anomaly equation

An important test of the expression (5.2) is the validity of the modular anomaly equation expressing S-duality [44–49]. This is a non-trivial constraint capturing the dependence on the quasi-modular series \(E_2 \) and reads [45]

\[
\frac{\partial \tilde{F}}{\partial E_2} + \frac{1}{12} \left(\frac{\partial \tilde{F}}{\partial \nu} \right)^2 - \beta \frac{\partial^2 \tilde{F}}{\partial \nu^2} = 0. \tag{5.11}
\]

An alternative form is obtained by expanding at large \(\nu \) and identifying the coefficients \(h_\ell \) in

\[
\tilde{F} = h_0 \log \frac{\nu}{\Lambda} - \sum_{\ell=1}^{\infty} \frac{h_\ell}{2^{1-\ell} \ell} \frac{1}{\nu^{2\ell}}, \quad h_0 = -\beta h_{m}. \tag{5.12}
\]
Then, (5.11) may be written in the equivalent form

\[
\frac{\partial h_\ell}{\partial E_2} = \frac{\ell}{12} \sum_{n=0}^{\ell-1} h_n h_{\ell-1-n} + \beta \frac{\ell (2 \ell - 1)}{12} h_{\ell-1}.
\]

(5.13)

Just to give a simple example, let us consider a 1-pole function and write the \(\nu \)-dependent part of \(\tilde{F} \) as

\[
\tilde{F}(\nu) = h_0 \log \frac{\nu}{\Lambda} - \beta \log \left(1 + \frac{\gamma_2 E_2}{\nu^2} \right).
\]

(5.14)

Imposing (5.11) or (5.13), we recover the expression (5.7) for \(\gamma_2 \). Besides, we also get the following constraint between \(\alpha \) and \(\beta \) (excluding trivial solutions with constant prepotential)

\[
4 \alpha^2 - \beta^2 + 6 \beta - 1 = 0, \quad \text{or} \quad 4 \alpha^2 - \beta^2 + 10 \beta - 1 = 0.
\]

(5.15)

The condition (5.15) is indeed satisfied by the values in the first table of (5.9). However, there are infinite other pairs \((\alpha, \beta)\) that make (5.14) a solution of (5.11) that is not realized in the gauge theory. Of course, this is because (5.14) predicts all the higher order terms in the large \(\nu \) expansion and this is correct in comparison with the actual Nekrasov formulas only for a finite set of values of \(\alpha \) and \(\beta \). Actually, the admissibility of the Ansatz (5.3) is definitely non trivial. Anyway, we checked the validity of (5.11) for all the solutions we have presented.

As a final comment, we notice that using the explicit expressions for \(\gamma_{2,2} \) and \(\gamma_2 \) it turns out that the constraint (5.15), up to an multiplicative factor, can be expressed as the ratio \(\gamma_{2,2}/\gamma_2 \):

\[
\frac{\gamma_{2,2}}{\gamma_2} \sim (-4 \alpha^2 + (\beta - 10) \beta + 1) \left(-4 \alpha^2 + (\beta - 6) \beta + 1 \right) = 0.
\]

(5.16)

Figure 1. Values of \((c, h_m)\) for 1, 2, 3, and 4 poles points (blue, orange, green, and red).
\(\gamma_{2,2} = 0 \) is of course a necessary condition in the Ansatz (5.3) to truncate the sum at \(N = 1 \). Looking at higher values of \(N \), one gets similar constraints for any \(N \). In fact, since the modular anomaly equation controls the dependence of \(\tilde{F} \) on \(E_2 \), the consistency of our Ansatz with (5.11) imposes relations between all the coefficients of the form \(\gamma_{2,X} \) with \(\gamma_X \). For example, in the 2-poles case we have that
\[
\frac{\gamma_{2,2}}{\gamma_{2,2}} \sim \frac{\gamma_{2,4}}{\gamma_4} \sim (-4a^2 + (\beta - 18)\beta + 1) (-4a^2 + (\beta - 14)\beta + 1),
\]
and the constraint for \(a \) and \(\beta \) ensuring that \(\gamma_{2,2,2} = \gamma_{2,4} = 0 \) is
\[
-4a^2 + \beta^2 - 18\beta + 1 = 0 \quad \text{or} \quad -4a^2 + \beta^2 - 14\beta + 1 = 0.
\]
Similarly for 3-poles we get
\[
\frac{\gamma_{2,2,2}}{\gamma_{2,2,2}} \sim \frac{\gamma_{2,4}}{\gamma_{2,4}} \sim \frac{\gamma_{2,6}}{\gamma_6} \sim (-4a^2 + (\beta - 26)\beta + 1) (-4a^2 + (\beta - 22)\beta + 1),
\]
and so on.

5.2 A worked out 3-pole example

To appreciate the result of our analysis, let us consider in some details the first line of (A.1). The instanton partition function for \(X = (\nu, \beta) = (\frac{11}{2}, -4) \) is up to 12 instantons
\[
\tilde{Z}^\text{inst}_X(\nu) = 1 - \frac{12 (v^2 - 37) q^2}{v^2 - 9} + \frac{54 (v^4 - 69v^2 + 820) q^4}{(v^2 - 9) (v^2 - 4)} (5.20)
\]
\[
- \frac{8 (11v^6 - 1078v^4 + 28679v^2 - 103212) q^6}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} - \frac{9 (11v^6 - 1386v^4 + 3339v^2 + 239956) q^8}{(v^2 - 9) (v^2 - 4) (v^2 - 1)}
\]
\[
+ \frac{540 (v^6 - 154v^4 + 4335v^2 - 16948) q^{10}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} - \frac{2 (209v^6 - 38038v^4 + 1558361v^2 - 15934932) q^{12}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)}
\]
\[
- \frac{648 (v^6 - 210v^4 + 11109v^2 - 61860) q^{14}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} + \frac{54 (11v^6 - 2618v^4 + 225659v^2 - 2870732) q^{16}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)}
\]
\[
+ \frac{4 (209v^6 - 55594v^4 + 3095981v^2 - 36365076) q^{18}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} + \frac{96 (11v^6 - 3234v^4 + 58779v^2 + 2749204) q^{20}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)}
\]
\[
- \frac{216 (19v^6 - 6118v^4 + 538351v^2 - 3592972) q^{22}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} - \frac{(209v^6 - 73150v^4 + 18811121v^2 - 150221700) q^{24}}{(v^2 - 9) (v^2 - 4) (v^2 - 1)} + \ldots
\]
\[
(5.21)
\]

This is far more involved than (2.10) and a brute force guess would not be possible. Nevertheless, it is a straightforward calculation to check that this is the expansion of
\[
\tilde{Z}^\text{inst}_X(\nu) = [q^{-\frac{1}{2}} \eta(\tau)]^2 \frac{v^6 - 14 E_2 v^4 + (140 \frac{E_2^2}{3} + 7 E_4) v^2 - 280 \frac{E_3}{3} E_2 - \frac{14}{3} E_2 E_4 - \frac{2}{3} E_6}{(v^2 - 9) (v^2 - 4) (v^2 - 1)},
\]
in agreement with the data in (A.1). The perturbative part of the prepotential is computed from (4.1) by expanding at large \(a \). This gives, in the \(\nu \) variable
\[
\tilde{F}_X^\text{pert}(\nu) = 28 \log \frac{\nu}{\Lambda} - \frac{56}{v^2} - \frac{196}{v^4} - \frac{3176}{3v^6} - \frac{6818}{5v^{10}} - \frac{240296}{3v^{12}} - \frac{1071076}{v^{14}} - \frac{2742488}{v^{16}} + \ldots
\]
\[
(5.23)
\]
and this is indeed the large \(\nu \) expansion of

\[
\tilde{F}_{X}^{\text{pert}}(v) = 28 \log \frac{v}{\Lambda} + 4 \log \left(1 - \frac{1}{\nu^2} \right) \left(1 - \frac{4}{\nu^2} \right) \left(1 - \frac{9}{\nu^2} \right),
\]

(5.24)

where \(28 = -\beta h_m = -(\pi \times 7) \). Hence, the full quantum prepotential is in this case

\[
\tilde{F} = 28 \log \frac{v}{\Lambda} + 4 \log \left[1 - \frac{14}{\nu^2} E_2 + \frac{7}{3 \nu^4} (20 E_2^2 + E_4) - \frac{2}{9 v^6} (140 E_2^3 + 21 E_2 E_4 + E_6) \right],
\]

(5.25)

and one can check that (5.11) is satisfied.

6 Predictions for the torus 1-block

We have already seen that AGT implies explicit expressions for special torus blocks that we write stripping off the large \(h \) dominant term

\[
\mathcal{F}_{h_m}^{h}(q, c) = \frac{q^h}{\eta(q)} \mathcal{H}_{h_m}^{h}(q, c).
\]

(6.1)

From the 1-pole partition functions, we have obtained

\[
\mathcal{H}_{2}^{h}(q, 0) = 1 + \frac{1 - E_2}{24h}, \quad \mathcal{H}_{3}^{h}(q, -2) = 1 + \frac{1 - E_2}{8h}.
\]

(6.2)

From the 2-poles partition functions, we get similar expressions

\[
\begin{align*}
\mathcal{H}_{2}^{h}(q, -7) &= 1 + \frac{15E_2^2 + E_4 - 80E_2(3h + 1) + 16(15h + 4)}{144h(4h + 1)}, \\
\mathcal{H}_{4}^{h}(q, -\frac{22}{3}) &= 1 + \frac{25E_2^3 + 2E_4 - 30E_2(40h + 9) + 3(400h + 81)}{960h(5h + 1)}, \\
\mathcal{H}_{4}^{h}(q, 1) &= 1 + \frac{E_2^2 - E_4 - 48E_2 h + 48 h}{48h(4h - 1)}, \\
\mathcal{H}_{5}^{h}(q, 0) &= 1 + \frac{3 (5E_2^2 - 2E_4) - 10E_2(24h + 1) + 240h + 1}{192h(3h - 1)}.
\end{align*}
\]

(6.3)

Notice that there are multiple entries in the tables (5.9) and (A.1) with the same value of \((c, h_m)\), but different \((\alpha, \beta)\). Nevertheless, the associated block is consistently the same as soon as \(\nu \) is expressed in terms of \(h \). From the 3-poles partition functions, we get

\[
\begin{align*}
\mathcal{H}_{7}^{h}(q, -\frac{25}{2}) &= 1 + \frac{1}{1152h(2h + 1)(16h + 5)} \left[-2(140 E_2^3 + 21 E_4 E_2 + E_6) + 9(3584 h^2 + 3248h + 729) \\
&\quad - 126 E_2(16h + 9)^2 + 21(20 E_2^2 + E_4)(16h + 9) \right], \\
\mathcal{H}_{6}^{h}(q, -\frac{68}{7}) &= 1 + \frac{1}{32256h(7h + 2)(7h + 3)} \left[-1715 E_2^3 - 294 E_4 E_2 - 16 E_6 \\
&\quad + 9(109760 h^2 + 83496 h + 15625) - 315 E_2(56h + 25)^2 + 63(35 E_2^2 + 2 E_4)(56h + 25) \right].
\end{align*}
\]
\[H_9^7(q, -\frac{22}{7}) = 1 + \frac{1}{23040 h(5 h - 2)(5 h + 1)} \left[-5(875 E_2^2 - 294 E_4 E_2 - 176 E_6) \\
+ 9(56000 h^2 + 14840 h + 729) - 315 E_2(40 h + 9)^2 + 21(125 E_2^2 - 14 E_4)(40 h + 9) \right], \]

\[H_6^8(q, -2) = 1 + \frac{1}{72 h(8 h - 3)(8 h + 1)} \left[-5 E_2^3 + 3 E_4 E_2 + 2 E_6 - 45 E_2(8 h + 1)^2 \\
+ 9(5 E_2^2 - E_4)(8 h + 1) + 9(8 h + 1)(40 h + 1) \right], \]

\[H_6^8(q, \frac{1}{2}) = 1 + \frac{1}{3456 h(2 h - 1)(16 h - 1)} \left[-2(60 E_2^3 - 51 E_4 E_2 + 41 E_6) + 69120 h^2 \\
- 30 E_2(48 h + 1)^2 + 3(60 E_2^2 - 17 E_4)(48 h + 1) - 3312 h + 1 \right], \]

\[H_7^8(q, 0) = 1 + \frac{1}{216 h(8 h - 5)(8 h - 1)} \left[-105 E_2^3 + 63 E_4 E_2 - 22 E_6 + 12096 h^2 \\
- 21 E_2(24 h + 1)^2 + 21(5 E_2^2 - E_4)(24 h + 1) - 1008 h + 1 \right]. \] (6.4)

All these expressions can be re-expanded at small \(q \) and compared with the recursion relations for the toroidal block with full agreement. It would be interesting to understand why such closed expressions are obtained at the special \((c, h_m)\) points, for instance, by extending the results of [77, 78].

Acknowledgments

We thank A. Zein Assi for important comments and D. Fioravanti for clarifying discussions.
A 3- and 4-poles Nekrasov functions data

The 3-poles Nekrasov functions are

\(\alpha \)	\(\beta \)	\(c \)	\(h_m \)	\(\gamma_2 \)	\(\gamma_4 \)	\(\gamma_{2,2} \)	\(\gamma_6 \)	\(\gamma_{2,4} \)	\(\gamma_{2,2,2} \)	\(v_1 \)	\(v_2 \)	\(v_3 \)	
\(\frac{11}{2} \)	\(-4 \)	\(-25 \)	\(7 \)	\(-14 \)	\(\frac{7}{3} \)	\(\frac{140}{3} \)	\(-\frac{9}{2} \)	\(-14 \)	\(\frac{9}{3} \)	1	2	3	
\(\frac{11}{8} \)	\(-1 \)	\(7 \)	\(\frac{8}{7} \)	\(35 \)	\(\frac{1}{192} \)	\(\frac{1}{35} \)	\(-7 \)	\(\frac{35}{1} \)	1	2	3		
\(\frac{19}{4} \)	\(-1 \)	\(-68 \)	\(6 \)	\(\frac{35}{4} \)	\(7 \)	\(\frac{245}{16} \)	\(-\frac{1}{36} \)	\(-\frac{49}{9} \)	\(\frac{1715}{576} \)	1	2	2	
\(\frac{19}{14} \)	\(-2 \)	\(-68 \)	\(6 \)	\(\frac{5}{7} \)	\(\frac{2}{343} \)	\(\frac{47}{5} \)	\(-\frac{16}{1058641} \)	\(\frac{1}{723} \)	\(\frac{5}{3087} \)	1	2	2	
\(\frac{17}{4} \)	\(-3 \)	\(-22 \)	\(\frac{7}{3} \)	\(\frac{35}{4} \)	\(-\frac{49}{24} \)	\(\frac{875}{48} \)	\(\frac{55}{36} \)	\(\frac{245}{96} \)	\(-\frac{4375}{576} \)	1	2	2	
\(\frac{17}{10} \)	\(2 \)	\(-22 \)	\(\frac{7}{3} \)	\(\frac{7}{5} \)	\(1875 \)	\(15 \)	\(\frac{176}{1225} \)	\(\frac{98}{9375} \)	\(-\frac{7}{225} \)	1	2	2	
\(\frac{7}{2} \)	\(-2 \)	-2	-2	-5	-1	5	\(\frac{2}{9} \)	\(\frac{1}{3} \)	\(-\frac{5}{9} \)	0	1	2	
\(\frac{7}{4} \)	\(-1 \)	-2	-2	\(\frac{5}{16} \)	\(-\frac{1}{16} \)	\(\frac{5}{16} \)	\(\frac{1}{256} \)	\(\frac{1}{192} \)	\(-\frac{1}{5} \)	\(\frac{1}{576} \)	0	1	1
\(\frac{17}{6} \)	\(-3 \)	\(\frac{1}{2} \)	\(6 \)	-10	-17	24	\(\frac{82}{9} \)	\(\frac{243}{8} \)	\(-\frac{40}{3} \)	\(\frac{5}{3} \)	\(\frac{3}{5} \)		
\(\frac{17}{8} \)	\(-3 \)	\(\frac{1}{2} \)	\(6 \)	-15	-51	256	\(\frac{45}{64} \)	\(\frac{41}{2048} \)	\(\frac{51}{2048} \)	\(\frac{15}{512} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	
\(\frac{13}{4} \)	\(-3 \)	0	7	-21	-16	105	\(\frac{16}{16} \)	\(-\frac{11}{16} \)	\(\frac{63}{64} \)	\(-\frac{105}{64} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	
\(\frac{13}{6} \)	\(-3 \)	0	7	-3	-7	35	\(\frac{27}{27} \)	\(\frac{22}{81} \)	\(\frac{7}{243} \)	\(\frac{3}{3} \)	\(\frac{3}{3} \)		

The 4-poles data is split in the following two tables. The first contains the values of \((c, h_m)\) and the poles positions for each pair \((\alpha, \beta)\).

\(\alpha \)	\(\beta \)	\(c \)	\(h_m \)	\(v_1 \)	\(v_2 \)	\(v_3 \)
7	\(-5 \)	\(-\frac{91}{3} \)	9	1	2	3
\(\frac{5}{2} \)	\(-5 \)	\(-\frac{91}{3} \)	\(\frac{1}{9} \)	\(\frac{5}{3} \)	\(\frac{5}{9} \)	
\(\frac{25}{4} \)	\(-9 \)	\(\frac{-46}{9} \)	8	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)
\(\frac{25}{18} \)	\(-9 \)	\(\frac{-46}{9} \)	\(\frac{1}{6} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)
\(\frac{23}{14} \)	\(-7 \)	\(\frac{-68}{9} \)	9	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)
5	\(-3 \)	\(-7 \)	8	0	1	2
\(\frac{5}{4} \)	\(-3 \)	\(-7 \)	8	0	\(\frac{1}{2} \)	\(\frac{1}{2} \)
11	\(-5 \)	\(-\frac{3}{5} \)	\(\frac{8}{5} \)	\(\frac{1}{3} \)	\(\frac{1}{3} \)	\(\frac{1}{3} \)
11	\(-5 \)	\(-\frac{3}{5} \)	\(\frac{8}{5} \)	\(\frac{1}{3} \)	\(\frac{1}{3} \)	\(\frac{1}{3} \)
3	\(-1 \)	\(1 \)	9	0	1	1

(A.1)

(A.2)
The next table lists the values of the γ-coefficients.

α	β	γ_2	γ_4	γ_6	γ_7	γ_8	γ_9	γ_{10}	γ_{11}	γ_{12}	γ_{13}	γ_{14}	γ_{15}	γ_{16}	γ_{17}	γ_{18}
7	-5	-30	21	225	-10	-175	875	-325	41	75	97	48	23	28	19	20
7	-1	-6	21	20	-2	9325	1750	-7	7	-7	-7	-7	-7	-7	-7	-7
23/4	-2	-21	21	4924	-1	-89	2835	16	15	4	64	7	6	7	28	1
23/4	-2	-21	21	1029	-3	-1205	4375	-7	-3	12	28	1	21	10	28	1
11/4	-3	-8	7	225	234	40	20	700	2001	236	63	3325	25	3392	60	3392
5	-5	-3	42	275	234	40	20	700	2001	236	63	3325	25	3392	60	3392
3	-1	-6	21	22	-2	9325	1750	-7	7	-7	-7	-7	-7	-7	-7	-7

B On the structure of higher instanton Nekrasov functions

From the analysis in the main text, it is clear that in all the cases the k-instanton contribution to $\tilde{F}_{\text{inst}}(v)$ is a rational function of v; in particular in the 1-pole cases the structure of the $\tilde{F}_{X_{1,k}}(v)$ is in close analogy with the Nekrasov-Shatashvili limit studied in [63]. It can be instructive to repeat some of the steps of the analysis of [63] and highlight various differences. Taking the 1-pole point X_1 case as example, we have

$$\tilde{F}_{X_{1,k}}(v) = \frac{P_k(v)}{(v^2 - 1)^k},$$

where $P_k(v)$ are even polynomials of degree $2k$. The first cases are explicitly

$$P_1(v) = -8 (v^2 - 7),$$
$$P_2(v) = -12 \left(v^4 - 14v^2 + 61\right),$$
$$P_3(v) = -\frac{32}{3} \left(v^6 - 21v^4 + 363v^2 - 1207\right),$$
$$P_4(v) = -2 \left(7v^8 - 196v^6 + 5442v^4 - 51796v^2 + 129487\right),$$
$$P_5(v) = -\frac{48}{5} \left(v^{10} - 35v^8 + 2410v^6 - 44470v^4 + 289205v^2 - 578887\right),$$
$$P_6(v) = -16 \left(v^{12} - 42v^{10} + 2715v^8 - 79580v^6 + 948615v^4 - 4655130v^2 + 7764733\right),$$

\ldots

In the cases treated in [63], the expansion around the poles revealed a selection rule forbidding even poles, i.e. the functions $\tilde{F}_{\text{NS}_{1,k}}(v)$ have always the form

$$\tilde{F}_{\text{NS}_{1,k}}(v) = \frac{d_1^{(k)}}{(v - 1)^{2k-1}} + \frac{d_2^{(k)}}{(v - 1)^{2k-3}} + \cdots + \frac{d_k^{(k)}}{(v - 1)} + \text{regular}.$$
While the structure is extremely similar, the selection rule is no longer true here. At the point X_1, the Laurent expansion of $\tilde{F}_{X_1,k}^\text{inst}(v)$ around $v = 1$ has the generic form

$$\tilde{F}_{X_1,k}^\text{inst}(v) = \frac{d^{(k)}_0}{(v - 1)^k} + \frac{d^{(k)}_1}{(v - 1)^{k-1}} + \cdots + \frac{d^{(k)}_{k-1}}{(v - 1)^1} + \text{regular}, \quad (B.4)$$

where all the coefficients are non vanishing. The same is true for all the other three 1-pole cases X_2, X_3, X_4. As in [63], we can rewrite the k-instanton functions in terms of the $d^{(k)}_p$ in the exact form

$$\tilde{F}_{X_1,k}^\text{inst}(v) = c_k + \sum_{p=0}^{k-1} d^{(k)}_p \left(\frac{(-1)^{k-p}}{(v - 1)^{k-p}} + \frac{1}{(v + 1)^{k-p}} \right). \quad (B.5)$$

The coefficients c_k capture the v independent part (i.e. the term proportional to the logarithms of the Dedekind function. The coefficients $d^{(k)}_p$ can be obtained from the expansion of the exact expressions of $\tilde{F}_{X_1,k}^\text{inst}(v)$. For X_1 they read

$$d^{(k)}_0 = 2 \frac{12^k}{k},$$
$$d^{(k)}_1 = d^{(k)}_0 \times 3k \frac{4}{k},$$
$$d^{(k)}_2 = d^{(k)}_0 \times \frac{1}{288} k(81k - 19),$$
$$d^{(k)}_3 = d^{(k)}_0 \times \frac{k(243k^2 - 171k + 470)}{3456},$$
$$d^{(k)}_4 = d^{(k)}_0 \times \frac{k(2187k^3 - 3078k^2 + 17281k - 9662)}{165888},$$

and so on.

References

[1] N. Seiberg and E. Witten, Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19–52, [hep-th/9407087].

[2] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD, Nucl. Phys. B431 (1994) 484–550, [hep-th/9408099].

[3] E. D’Hoker and D. H. Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, in Theoretical physics at the end of the twentieth century. Proceedings, Summer School, Banff, Canada, June 27–July 10, 1999, pp. 1–125, 1999. hep-th/9912271.

[4] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831–864, [hep-th/0206161].

[5] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525–596, [hep-th/0306238].

[6] H. Nakajima and K. Yoshioka, Lectures on instanton counting, in CRM Workshop on Algebraic Structures and Moduli Spaces Montreal, Canada, July 14-20, 2003, 2003. math/0311058.
[7] R. Flume and R. Poghossian, An Algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, *Int. J. Mod. Phys.* **A18** (2003) 2541, *hep-th/0208176*.

[8] U. Bruzzo, F. Fucito, J. F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, *JHEP* **05** (2003) 054, *hep-th/0211108*.

[9] R. Flume, F. Fucito, J. F. Morales and R. Poghossian, Matone’s relation in the presence of gravitational couplings, *JHEP* **04** (2004) 008, *hep-th/0403057*.

[10] N. Nekrasov and S. Shadchin, ABCD of instantons, *Commun. Math. Phys.* **252** (2004) 359–391, *hep-th/0404225*.

[11] M. Marino and N. Wyllard, A Note on instanton counting for N=2 gauge theories with classical gauge groups, *JHEP* **05** (2004) 021, *hep-th/0404125*.

[12] M. Billò, L. Ferro, M. Frau, L. Gallot, A. Lerda and I. Pesando, Exotic instanton counting and heterotic/type I-prime duality, *JHEP* **07** (2009) 092, [0905.4586].

[13] F. Fucito, J. F. Morales and R. Poghossian, Exotic prepotentials from D(-1)D7 dynamics, *JHEP* **10** (2009) 041, [0906.3802].

[14] M. Billò, M. Frau, F. Fucito, A. Lerda, J. F. Morales and R. Poghossian, Stringy instanton corrections to N=2 gauge couplings, *JHEP* **05** (2010) 107, [1002.4322].

[15] I. Antoniadis, E. Gava, K. S. Narain and T. R. Taylor, Topological amplitudes in string theory, *Nucl. Phys.* **B413** (1994) 162–184, *hep-th/9307158*.

[16] I. Antoniadis, S. Hohenegger, K. S. Narain and T. R. Taylor, Deformed Topological Partition Function and Nekrasov Backgrounds, *Nucl. Phys.* **B838** (2010) 253–265, [1003.2832].

[17] D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory, *Lett. Math. Phys.* **95** (2011) 67–88, [1007.0263].

[18] M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, *Adv. Theor. Math. Phys.* **16** (2012) 805–849, [1009.1126].

[19] I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain and A. Zein Assi, Non-Perturbative Nekrasov Partition Function from String Theory, *Nucl. Phys.* **B880** (2014) 87–108, [1309.6688].

[20] I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain and A. Zein Assi, Worldsheet Realization of the Refined Topological String, *Nucl. Phys.* **B875** (2013) 101–133, [1302.6993].

[21] I. Florakis and A. Z. Assi, $\mathcal{N} = 2^*$ from Topological Amplitudes in String Theory, 1511.02887.

[22] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, *Nucl. Phys.* **B405** (1993) 279–304, *hep-th/9302103*.

[23] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, *Commun. Math. Phys.* **165** (1994) 311–428, *hep-th/9309140*.

[24] A. Klemm, M. Marino and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, *JHEP* **03** (2003) 051, [hep-th/0211216].

[25] M.-x. Huang and A. Klemm, Holomorphicity and Modularity in Seiberg-Witten Theories with Matter, *JHEP* **07** (2010) 083, [0902.1325].

[26] L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, *Lett. Math. Phys.* **91** (2010) 167–197, [0906.3219].
[27] R. Poghossian, Recursion relations in CFT and N=2 SYM theory, JHEP 12 (2009) 038, [0909.3412].
[28] V. A. Fateev and A. V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014, [0912.0504].
[29] V. A. Alba, V. A. Fateev, A. V. Litvinov and G. M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33–64, [1012.1312].
[30] V. A. Fateev, A. V. Litvinov, A. Neveu and E. Onofri, Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks, J. Phys. A42 (2009) 304011, [0902.1331].
[31] L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063, [0911.2353].
[32] P. Menotti, Riemann-Hilbert treatment of Liouville theory on the torus, J. Phys. A44 (2011) 115403, [1010.4946].
[33] A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203–1222, [1011.4491].
[34] A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133, [1212.0722].
[35] M. Piątek, Classical torus conformal block, N = 2∗ twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124, [1309.7672].
[36] A.-K. Kashani-Poor and J. Troost, Quantum geometry from the toroidal block, JHEP 08 (2014) 117, [1404.7378].
[37] K. B. Alkalaev and V. A. Belavin, Holographic interpretation of 1-point toroidal block in the semiclassical limit, 1603.08440.
[38] D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034, [0904.2715].
[39] A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030, [0911.5721].
[40] J. A. Minahan, D. Nemeschansky and N. P. Warner, Instanton expansions for mass deformed N=4 superYang-Mills theories, Nucl. Phys. B528 (1998) 109–132, [hep-th/9710146].
[41] M. Billò, M. Frau, L. Gallot and A. Lerda, The exact 8d chiral ring from 4d recursion relations, JHEP 11 (2011) 077, [1107.3651].
[42] M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid N′ = 2 theories, Annales Henri Poincare 14 (2013) 425–497, [1109.5728].
[43] M.-x. Huang, On Gauge Theory and Topological String in Nekrasov-Shatashvili Limit, JHEP 06 (2012) 152, [1205.3652].
[44] M. Billò, M. Frau, L. Gallot, A. Lerda and I. Pesando, Deformed N=2 theories, generalized recursion relations and S-duality, JHEP 04 (2013) 039, [1302.0686].
[45] M. Billò, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat kernel and S-duality in N = 2 theories, JHEP 11 (2013) 123, [1307.6648].
[46] M. Billò, M. Frau, F. Fucito, A. Lerda, J. F. Morales, R. Poghossian et al., Modular anomaly equations in N′ = 2∗ theories and their large-N limit, JHEP 10 (2014) 131, [1406.7255].
[47] M. Billò, M. Frau, F. Fucito, A. Lerda and J. F. Morales, S-duality and the prepotential in N′ = 2∗ theories (I): the ADE algebras, JHEP 11 (2015) 024, [1507.07709].
[48] M. Billò, M. Frau, F. Fucito, A. Lerda and J. F. Morales, S-duality and the prepotential of $\mathcal{N} = 2^*$ theories (II): the non-simply laced algebras, *JHEP* 11 (2015) 026, [1507.08027].

[49] M. Billò, M. Frau, F. Fucito, A. Lerda and J. F. Morales, Resumming instantons in $\mathcal{N}=2^*$ theories with arbitrary gauge groups, in 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) Rome, Italy, July 12-18, 2015, 2016. 1602.00273.

[50] S. K. Ashok, E. Dell’Aquila, A. Lerda and M. Raman, S-duality, triangle groups and modular anomalies in $\mathcal{N}=2$ SQCD, 1601.01827.

[51] A.-K. Kashani-Poor and J. Troost, Transformations of Spherical Blocks, *JHEP* 10 (2013) 009, [1305.7408].

[52] A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N), *J. Phys.* A43 (2010) 195401, [0911.2396].

[53] A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, *JHEP* 04 (2010) 040, [0910.5670].

[54] W. He and Y.-G. Miao, Magnetic expansion of Nekrasov theory: the SU(2) pure gauge theory, *Phys. Rev.* D82 (2010) 025020, [1006.1214].

[55] W. He and Y.-G. Miao, Mathieu equation and Elliptic curve, *Commun. Theor. Phys.* 58 (2012) 827–834, [1006.5185].

[56] A. V. Popolitov, Relation between Nekrasov functions and Bohr-Sommerfeld periods in the pure SU(N) case, *Theor. Math. Phys.* 178 (2014) 239–252.

[57] W. He, Quasimodular instanton partition function and the elliptic solution of Korteweg–de Vries equations, *Annals Phys.* 353 (2015) 150–162, [1401.4135].

[58] N. A. Nekrasov and S. L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09), 2009. 0908.4052.

[59] R. Poghossian, Deforming SW curve, *JHEP* 04 (2011) 033, [1006.4822].

[60] F. Fucito, J. F. Morales, D. R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, *JHEP* 05 (2011) 098, [1103.4495].

[61] J.-E. Bourgine, Large N limit of beta-ensembles and deformed Seiberg-Witten relations, *JHEP* 08 (2012) 046, [1206.1696].

[62] J.-E. Bourgine, Large N techniques for Nekrasov partition functions and AGT conjecture, *JHEP* 05 (2013) 047, [1212.4972].

[63] M. Beccaria, On the large Ω-deformations in the Nekrasov-Shatashvili limit of $\mathcal{N} = 2^*$ SYM, 1605.00077.

[64] F. Fucito, J. F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, *Nucl. Phys.* B703 (2004) 518–536, [hep-th/0406243].

[65] S. Shadchin, Saddle point equations in Seiberg-Witten theory, *JHEP* 10 (2004) 033, [hep-th/0408066].

[66] M. Billò, M. Frau, F. Fucito, L. Giacone, A. Lerda, J. F. Morales et al., Non-perturbative gauge/gravity correspondence in $\mathcal{N}=2$ theories, *JHEP* 08 (2012) 166, [1206.3914].
[67] N. I. Koblitz, *Introduction to elliptic curves and modular forms*, vol. 97. Springer Science & Business Media, 2012.

[68] A. B. Zamolodchikov, *Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude*, Commun. Math. Phys. 96 (1984) 419–422.

[69] A. B. Zamolodchikov and A. B. Zamolodchikov, *Structure constants and conformal bootstrap in Liouville field theory*, Nucl. Phys. B477 (1996) 577–605, [hep-th/9506136].

[70] E. Perlmutter, *Virasoro conformal blocks in closed form*, JHEP 08 (2015) 088, [1502.07742].

[71] M. Flohr and M. Koehn, *What the characters of irreducible subrepresentations of Jordan cells can tell us about LCFT*, J. Phys. A46 (2013) 494007, [1307.5844].

[72] M. Flohr and M. R. Gaberdiel, *Logarithmic torus amplitudes*, J. Phys. A39 (2006) 1955–1968, [hep-th/0509075].

[73] M. R. Gaberdiel and I. Runkel, *The Logarithmic triplet theory with boundary*, J. Phys. A39 (2006) 14745–14780, [hep-th/0608184].

[74] H. Dorn and H. J. Otto, *Two and three point functions in Liouville theory*, Nucl. Phys. B429 (1994) 375–388, [hep-th/9403141].

[75] J. Teschner, *A Lecture on the Liouville vertex operators*, Int. J. Mod. Phys. A19S2 (2004) 436–458, [hep-th/0303150].

[76] M. R. Gaberdiel and S. Lang, *Modular differential equations for torus one-point functions*, J. Phys. A42 (2009) 045405, [0810.0106].

[77] M. R. Gaberdiel and C. A. Keller, *Differential operators for elliptic genera*, Commun. Num. Theor. Phys. 3 (2009) 593–618, [0904.1831].