This is a repository copy of *Early land plant phytodebris*.

White Rose Research Online URL for this paper:  
http://eprints.whiterose.ac.uk/171463/

Version: Published Version

**Article:**  
Wellman, C.H. orcid.org/0000-0001-7511-0464 and Ball, A.C. (2021) Early land plant phytodebris. Geological Society, London, Special Publications, 511. ISSN 0305-8719  
https://doi.org/10.1144/sp511-2020-36

**Reuse**  
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:  
https://creativecommons.org/licenses/

**Takedown**  
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Early land plant phytodebris

Charles H. Wellman¹* and Alexander C. Ball¹, ²

¹Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
²Department of Earth Sciences, Natural History Museum (London), South Kensington, London SW7 5BD, UK

*Correspondence: c.wellman@sheffield.ac.uk

Abstract: Historically, phytodebris (often considered a type of non-pollen palynomorph – NPP) has played a prominent role in research into the fossil record of early land plants. This phytodebris consists of cuticles and cuticle-like sheets, various tubular structures (including tracheids and tracheid-like tubes) and sundry other enigmatic fragments. Initial research focused on elucidating their morphology, attempts to identify them in situ in plant megafossils and comparisons with potentially homologous structures in extant plants. The fragmentary nature of these remains, and associated difficulties in positively identifying their presence in fossil/extant plants, resulted in vigorous debate regarding what many of these microfossils actually represented and their relevance to early land plant studies. More recently a wider array of analytical techniques has been applied (e.g. ultrastructural analysis, geochemistry and taphonomic experiments). However, positive identification of the affinities of at least some of these enigmatic fossils remained elusive. Ongoing investigations based on exceptionally preserved material from Lagerstätten (charcoalified and silicified) seem to have finally demonstrated that the more enigmatic of these remains derive from nematophytes that probably represent fungi and possibly also lichenized fungi.

Land plants (embryophytes) produce potentially fossilizable parts both throughout their lives and upon their death. During life, they naturally shed (including abscission) organs such as roots, branches and leaves, and propagules such as seeds and spores/pollen. Upon death they begin to disintegrate, whereupon all of their structures become potential fossils. Many plant parts have a high fossilization potential because they are composed of, or at least contain, highly resistant organic macromolecules (for example, the lignin of woody tissues, the cutan of cuticles and the sporopollenin of spore and pollen walls).

Palaeobotanists generally study fossils of relatively large plant organs (that may or may not be preserved in organic connection with other plant organs). Typically, these have been little transported and rapidly buried, except in the cases of leaves and seeds that can undergo considerable transportation before being incorporated into sediment relatively intact. Plant megafossils are most commonly preserved as standard coals, although they can be charcoalified. General reviews of the taphonomy of fossil palynomorphs are provided in Jansoni and McGregor (1996) and Traverse (2007). The terminology used to describe dispersed fragments of land plants is somewhat confused. Here we use the term phytodebris (sensu Gensel et al. 1991). But other terms have been utilized, such as palynodebris (particularly in palynofacies classifications) and nematoclasts (when referring specifically to fragments derived from an enigmatic group of ‘plants’ called nematophytes). However, when excluding dispersed spores and pollen and considering only dispersed fragments, we are dealing with that what is often considered to be a discrete group of non-pollen palynomorphs (NPP). This paper is concerned solely with phytodebris and is confined to that produced by the earliest land plants. Consequently, it is stratigraphically circumscribed between the Middle Ordovician and Early Devonian (Fig. 1).
Examples of early land plant phytodebris are illustrated in Figures 2 & 3.

The origin and early evolution of land plants

The origin of land plants was one of the most important events in the history of life on Earth. From a biological perspective land plants (embryophytes) represent one of the main kingdoms of multicellular life. Ecologically, their colonization of the land opened up the continents and subaerial world for the aquatic animals that followed the plants on to the land, be that from the saline oceans or freshwater bodies such as lakes, rivers and marshes (Shear and Selden 2001). Furthermore, they had enormous effects on the actual environment of planet Earth due to their actions involving: (i) weathering and soil formation; and (ii) photosynthetic carbon-capture, resulting in biomass accumulation and carbon burial. This not only created soils and affected sedimentation patterns in many other ways, but also changed atmospheric composition leading to, inter alia, climate change.

As a consequence of the above, much research activity has been dedicated to exploring the origin and early evolution of land plants. Whilst numerous lines of scientific enquiry have been explored, the fossil record of early land plants has, of course, always featured prominently. Initially this concentrated on early land plant megafossils recovered from late Silurian–Early Devonian deposits (e.g.
Fig. 2. Phytodebris recovered from Late Silurian–Early Devonian ‘Lower Old Red Sandstone’ sediments from the Ross-Spur M50 motorway succession of the Anglo-Welsh Basin (for details see Edwards 1986). Scale bar (top right-hand corner) is 75 µm. (a) Banded tube. Freshwater West Formation, Sample 19M5001.1, Specimen (M22). (b) Banded tube. Moor Cliffs Formation, Sample 19M5009.1, Specimen (U30/2). (c) *Constrictitubulus*. Freshwater West Formation, Sample 19M5001.3, Specimen (G36/2). (d) Banded tube. Freshwater West Formation, Sample...
Lang 1937). The advent of palynological techniques through the 1950s–60s saw new evidence become available in the form of dispersed palynomorphs and phytodebris. Indeed, it is clear that dispersed land plant microfossils began to play an increasingly prominent role in research into the earliest land plants from this time. Early reviews of the palynological evidence include those of Chaloner (1960, 1970) and, more recently, reviews of both the microfossil and megafossil evidence include those of Wellman and Gray (2000), Edwards and Wellman (2001), Gensel (2008), Kenrick et al. (2012), Wellman et al. (2013) and Meyer-Berthaud et al. (2016a, b).

By the 1970s Jane Gray and colleagues (Gray and Boucot 1971; Gray et al. 1974) had proposed a critical role for early land plant phytodebris, revealing an early hidden history of land plant evolution not represented in the megafossil record. Fierce debate ensued as to the authenticity and relevance of this dispersed microfossil record (Banks 1975a, b; Gray and Boucot 1977). By the 1980s many of these debates had essentially been resolved. It became widely accepted that by the Middle Ordovician a rather cryptic period of early land plant evolution was represented by dispersed microfossils (including phytodebris) (Pratt et al. 1978; Strother and Traverse 1979; Gray 1985; Johnson 1985) which existed prior to, and later complemented, the late Silurian appearance of plant megafossils (Edwards et al. 1979; Libertin et al. 2018; Morris et al. 2018).

Early land plant spores

Initial research on land plant dispersed microfossils concentrated on their dispersed spores/pollen and, over the succeeding decades, a vast literature emerged on the subject (reviewed in Jansonius and McGregor 1996; Traverse 2007). It was soon realized that the land plant (embryophyte) megafossil record is rather poor compared to the rich dispersed spore record. This is because the latter are produced in vast numbers, readily transported long distances by wind and water and have high fossilization potential. Research into early land plants also relied heavily on the dispersed spore record, particularly as megafossils are so rare. To date less than 25 megafossil localities are known worldwide from the entire Silurian and these are almost exclusively of allochthonous plant remains transported into marine environments (Edwards and Wellman 2001; Wellman et al. 2013). Furthermore, the dispersed spore record appears to extend back further in time than the plant megafossil record. This almost certainly reflects the facts that: (i) dispersed spores have higher preservation potential than plant megafossils; and (ii) the earliest land plants may have been very small and lacking in preservable resistant tissues and consequently lost to the fossil record.

Early land plant phytodebris

Somewhat lagging behind the study of land plant dispersed spores/pollen was the study of the phytodebris they produce. However, due to the paucity of early land plant megafossils, studies of phytodebris became increasingly important for research into these earliest plants (e.g. Gray and Boucot 1977). These other ‘bits-and-pieces’ (rather endearingly termed ‘Hooker’s “Waifs and strays”’ by Gensel et al. 1991) began to feature prominently because it was considered that they may represent disarticulated fragments of the earliest land plants that lacked a megafossil record. However, interpretation of early land plant dispersed phytodebris (Figs 1 & 2) was often problematic, owing to: (i) multiple organisms producing similar, morphologically simple structures, of which the original biological affinities are difficult to trace; and (ii) difficulties in reconciling these fragmentary structures with equivalent material produced by extant land plants.

Dispersed cuticles and ‘cuticle-like sheets’

Some bryophytes (non-vascular plants) and the vast majority of tracheophytes (vascular plants) produce a cuticular covering composed primarily of cutan

Fig. 2. Continued. 19M5001.1, Specimen (E44/3). (e) Banded tube. Freshwater West Formation, Sample 19M5001.1, Specimen (O34). (f) Banded tube. Freshwater West Formation, Sample 19M5001.3, Specimen (P50/4). (g) Laevigate tube. Freshwater West Formation, Sample 19M5001.3, Specimen (O42/1). (h) Banded tube. Freshwater West Formation, Sample 19M5002.3, Specimen (W44/1). (i) Banded tube. Freshwater West Formation, Sample 19M5002.1, Specimen (K43). (j) Constrictorbitubus. Freshwater West Formation, Sample 19M5001.1, Specimen (O51/3). (k) Banded tube. Freshwater West Formation, Sample 19M5001.1, Specimen (N24). (l) Banded tube. Freshwater West Formation, Sample 19M5002.3, Specimen (M44). (m) Laevigate tube. Freshwater West Formation, Sample 19M5001.1, Specimen (M50/4). (n) Sporangial cuticle of ‘Cryptosporophytic origin. Freshwater West Formation, Sample 19M50026.3, Specimen (N451). (o) Embryophyte cuticle. Freshwater West Formation, Sample 19M5001.3, Specimen (E35/1). (p) Nematophyte cuticle. Freshwater West Formation, Sample 19M5001.3, Specimen (S30/3). (q) Nematophyte cuticle. Freshwater West Formation, Sample 19M5001.3, Specimen (N31). (r) Nematophyte cuticle. Freshwater West Formation, Sample 19M5001.1, Specimen (N42/3). (s) Nematophyte cuticle. Freshwater West Formation, Sample 19M5001.3, Specimen (E35/1).
Early land plant phytodebris
and waxes. As leaves, axes and other cuticle-covered structures decompose, the cuticle can be shed and fragment. The organic macromolecule cutan is highly resistant and readily fossilized. Thus, fragments of cuticle can undergo extensive transportation before finally being deposited and incorporated into sediment and, as such, these cuticle fragments frequently occur in palynological preparations. Cuticles preserve the patterning of the epidermal cells underlying the cuticle and often indicate from which part of the plant the cuticle is derived. For example, axial cuticles often have elongate cells whereas those from leaves may be more equidimensional (e.g. Edwards et al. 1981, 1996; Guo and Wang 2015). Cuticles are often also of taxonomic value, particularly when considered alongside characters of stomata that are preserved in the dispersed cuticles of stomatiferous plants (Edwards et al. 1998b). The distribution of these stomata can also be used to calculate the stomatic density/index, which can be used as proxies for past atmospheric CO₂ levels (e.g. McElwain and Chaloner 1995). The earliest unequivocal stomata reported from plant megafossils are from rhyniophytoïd plants from the upper Silurian (Pridoli) of Ludford Lane in the Anglo-Welsh Basin (Jeram et al. 1990). The earliest dispersed cuticles with stomata have been reported from the Lower Devonian (Lochkovian) of the same basin (Edwards and Axe 1992; Edwards et al. 1996).

Early research highlighted the presence of ‘cuticle-like sheets’ that were very similar to the cuticles of land plants, although they differed from many in that they lacked stomata. Gray and Boucot (1977) argued that these were most likely cuticles of early land plants, and called them ‘cuticle-like remains’, although other workers urged caution (e.g. Banks 1975a, b). Detailed taxonomic studies were undertaken (Edwards 1982, 1986; Edwards and Rose 1984), and these authors interpreted many of the cuticles as representing the covering of nematophytes (see below), with Edwards (1986) including formal systematic naming of some of the cuticles.

Enigmatic megafossils that co-occurred with early land plants in Silurian–Devonian non-marine strata were called nematophytes by Lang (1937). These strange, so-called ‘plants’, had an anatomy based on various different forms and combinations of tubular structure with some, Lang believed, possessing a cuticular covering. The unfamiliar anatomy appeared to have no counterpart among the living world and Lang suggested that nematophytes may represent a new phylum that had experimented with life on land before going extinct. Subsequently much attention was paid to these enigmatic remains and other workers suggested affinities with algae, fungi, lichens and other groups represented in the living biota. As noted above, Dianne Edwards was firmly of the opinion that at least some of the dispersed cuticle-like sheets represented fragments of nematophyte coverings (Edwards 1982, 1986; Edwards and Rose 1984).

One line of enquiry that has been pursued regarding the affinities of the cuticles is their geochemistry. Various techniques have been utilized, such as flash pyrolysis–gas chromatography–mass spectrometry (Ewbank et al. 1996), Fourier transform IR (FTIR; e.g. Abbott et al. 1998) and 13C solid-state nuclear magnetic resonance (NMR; e.g. Edwards et al. 1997), on both dispersed cuticles, fragments of vascular land plant and nematophyte megafossils. These authors reported the presence of cutan in some early vascular land plants, which presumably derived from their cuticle covering (reviewed in Edwards et al. 1996, 1998a). Furthermore, it was shown that cuticles of Nematothallus had a distinctly different geochemical profile than those from vascular plants (Edwards et al. 1998c). As geochemical techniques improve and new technique emerge this line of enquiry has the potential to be explored further. However, limitations due to taphonomic effects, including thermal maturity, need to be fully appreciated.

In the 1990s Linda Graham and co-workers began reporting on a series of taphonomic experiments relevant to the debate regarding the affinities

Fig. 3. Phytodebris recovered from sediments hosting the Early Devonian (late Pragian–earliest Emsian) Rhynie cherts from Scotland (for details of palynological investigation see Wellman 2006). Scale bar (top right-hand corner) is 60 µm (a–j), 125 µm (k–m), 80 µm (n–o) and 140 µm (p). (a) Tracheid. Sample 97/2 (39.0)/4. (b) Tracheid. Sample 97/2 (39.0)/4. (c) Tracheid. Sample 97/2 (39.0)/4. (d) Two attached tracheids. Sample 97/2 (39.0)/4. (e) Banded tube associated with a cluster of narrow laevigate tubes. Sample 97/2 (32.5)/2, Specimen (N39.1). (f) Wide laevigate tube in association with narrow laevigate tubes (Prototaxites spp.). Sample 97/9 (24.0)/2, Specimen (W44.4). (g) Two attached banded tubes. Sample 97/2 (34.8)/2, Specimen (G38). (h) Fungal hypha. Sample 97/2 (94.0)/2, Specimen (V29.2). (i) H-shaped branching in a laevigate tube. Sample 97/8 (14.5)/2, Specimen (W28.4). (j) Fungal hypha. Sample 97/2 (39.0)/4, Specimen (H29). (k) Cuticle-like sheet (Nematothallus). Sample 97/2 (36.2)/3, Specimen (S41). (l) Cuticle of a stomatous plant (note the hole where a stoma was situated). Sample 97/9 (24.0)/2, Specimen (Q44.2). (m) Cuticle of a stomatous plant (note the stoma with the guard cells in place). Sample 97/2 (36.2)/3, Specimen (F35.2). (n) Fragment of arthropod cuticle. Sample 97/2 (89.0)/6, Specimen (O29). (o) Fragment of arthropod cuticle. Sample 97/2 (94.0)/2, Specimen (E35). (p) Spiny ?tube of unknown affinity. Sample 97/2 (34.8)/2, Specimen (Q43).
of early land plant phytodebris. They selected repre-
sentatives of living plants considered to be basal 
(phylogenetically early diverging) and acetylated 
them. The process of acetylation mimics the results 
of natural rotting, stripping out labile components 
and leaving only those composed of or containing 
resistant parts (i.e. those parts that are most likely 
to survive in the fossil record). When acetylating 
various bryophytes they recovered fragments remi-
niscent of Middle Ordovician–Early Devonian 
cuticle-like sheets and suggested that some may 
derive from ancient bryophytes (Kroken et al. 
1996; Cook and Graham 1998; Graham et al. 
2004). However, it has been suggested that some 
of these resemblances are only superficial with 
such basic morphological structures produced by a 
variety of organisms (e.g. Edwards et al. 1998a).

The debate around the origin of the cuticle-like 
sheets seemingly found a solution in the exquisitely 
preserved charcoalified plants from the late Silurian– 
Early Devonian of the Anglo-Welsh Basin (Edwards 
1996). These contained spectacularly preserved 
nematophytes described in detail by Edwards et al. 
(2013, 2018). Some of these have a clear ‘cuticular’ 
covering associated with their internal tubular anat-
omy. The superior preservation of the charcoalified 
forms, compared to those preserved as coali-
tracheids they argued that they represented conduct-
ing tissues and called them ‘tracheid-like tubes’ not-
ing that those with internal annular and spiral 
thickenings bore a resemblance to the tracheids of 
vascular plants. Banks and others again urged cau-
tion (e.g. Banks 1975a, b; Schopf 1978). Clearly, 
many of the tubular structures resembled those 
known in situ from nematophytes (Lang 1937; 
Høeg 1942; Lyon 1962) and both parties agreed 
that at least some of these tubular structures may 
derive from the nematophytes (Gray and Boucot 
1977; Gray 1985). Subsequently, Burgess and 
Edwards (1991) erected a formal taxonomic system 
for naming and classifying the dispersed tubular 
structures (see also Wellman 1995).

The taphonomic acetylation experiments under-
taken by Graham and co-workers (see above) also 
produced various structures that they related to the 
dispersed tubular structures. For example, Kodner 
and Graham (2001) reported on tubes produced by 
acetylation of bryophytes. However, it has been sug-
gested that these resemblances are also in this case 
only superficial (e.g. Edwards et al. 1998a).

Again, the exquisitely preserved charcoalified megafossils from the upper Silurian–Lower Devo-

The debate around the origin of the cuticle-like sheets seemingly found a solution in the exquisitely preserved charcoalified plants from the late Silurian–Early Devonian of the Anglo-Welsh Basin (Edwards 1996). These contained spectacularly preserved nematophytes described in detail by Edwards et al. (2013, 2018). Some of these have a clear ‘cuticular’ covering associated with their internal tubular anatomy. The superior preservation of the charcoalified forms, compared to those preserved as coalesced compressions, revealed structures that Edwards and co-workers interpreted as fungal and lichen affinities (Edwards and Axe 2012; Edwards et al. 2013, 2018; Honegger et al. 2013, 2017).

Dispersed ‘tubular structures’

Co-occurring with the ‘cuticle-like sheets’ in palynological preparations are usually a variety of tubular structures existing either as individual tubes of varying morphology, or as associations of tubes, either of one or a mixture of morphologies. The conducting tissues of tracheophytes comprise xylem (tracheids and their equivalents) and phloem. Tracheids themselves are lignified and, as such, have a high preservation potential. When a plant disintegrates after death, individual tracheids (or more usually bundles of tracheids) may be extensively transported prior to deposition as phytodebris. The earliest reported in situ tracheids in plant megafossils are found in rhy-

Dispersed ‘tubular structures’

Co-occurring with the ‘cuticle-like sheets’ in palynologi-
cal preparations are usually a variety of tubular 
structures existing either as individual tubes of vary-
ing morphology, or as associations of tubes, either 
of one or a mixture of morphologies. The conducting 
tissues of tracheophytes comprise xylem (tracheids 
and their equivalents) and phloem. Tracheids them-
selves are lignified and, as such, have a high preser-
vation potential. When a plant disintegrates after 
death, individual tracheids (or more usually bundles 
of tracheids) may be extensively transported prior to 
deposition as phytodebris. The earliest reported in 
situ tracheids in plant megafossils are found in rhy-
iophytoidean plants from the upper Silurian (Ludlow) 
(Edwards and Davis 1976) and Lower Devonian 
(Lochkovian) (Edwards et al. 1992) of the Anglo-
Welsh Basin. Meanwhile, dispersed tracheids are 
first reported from the Lower Devonian (Pragian) 
(e.g. Gensel et al. 1991).

Gray and Boucot (1977) postulated that many of 
the tubular structures that occur dispersed in non-marine deposits of this age are thus likely derived from disintegrated cyanobacterial mats.

The debate around the origin of the cuticle-like sheets seemingly found a solution in the exquisitely preserved charcoalified plants from the late Silurian–Early Devonian of the Anglo-Welsh Basin (Edwards 1996). These contained spectacularly preserved nematophytes described in detail by Edwards et al. (2013, 2018). Some of these have a clear ‘cuticular’ covering associated with their internal tubular anatomy. The superior preservation of the charcoalified forms, compared to those preserved as coalesced compressions, revealed structures that Edwards and co-workers interpreted as fungal and lichen affinities (Edwards and Axe 2012; Edwards et al. 2013, 2018; Honegger et al. 2013, 2017).

Dispersed ‘tubular structures’

Co-occurring with the ‘cuticle-like sheets’ in palynologi-
cal preparations are usually a variety of tubular 
structures existing either as individual tubes of vary-
ing morphology, or as associations of tubes, either 
of one or a mixture of morphologies. The conducting 
tissues of tracheophytes comprise xylem (tracheids 
and their equivalents) and phloem. Tracheids them-
selves are lignified and, as such, have a high preser-
vation potential. When a plant disintegrates after 
death, individual tracheids (or more usually bundles 
of tracheids) may be extensively transported prior to 
deposition as phytodebris. The earliest reported in 
situ tracheids in plant megafossils are found in rhy-
iophytoidean plants from the upper Silurian (Ludlow) 
(Edwards and Davis 1976) and Lower Devonian 
(Lochkovian) (Edwards et al. 1992) of the Anglo-
Welsh Basin. Meanwhile, dispersed tracheids are 
first reported from the Lower Devonian (Pragian) 
(e.g. Gensel et al. 1991).

Gray and Boucot (1977) postulated that many of 
the tubes that could not be positively identified as trac-
cheids of vascular plants were derived from early 
land plants. Although these were clearly not genuine
mats. These are equivalent to the simple tubes common in Precambrian palynological preparations that represent the sheaths of cyanobacteria, such as those described from one-billion-year-old non-marine deposits from the Torridonian of Scotland (Strother et al. 2011). Tomescu et al. (2010) reported on taphonomic simulation experiments on various modern taxa, including cyanobacteria that demonstrated that similar structures might survive in the fossil record.

Ultrastructural and geochemical analysis of dispersed tubular structures has also been undertaken with a view to better understanding them. Taylor and Wellman (2009) reported on a transmission electron microscope (TEM) ultrastructural analysis of both banded tubes and early land plant dispersed tracheids. They noted marked differences between the two in terms of gross structure, concluding that the banded tubes most likely derived from nematophytes.

The geochemistry of various types of tubular structure and fragments of vascular plant and nematophyte megafossils has also been analysed. Edwards et al. (1997) reported the presence of a signal for degraded lignin from the xylem of early vascular land plants, but unequivocal evidence for lignin was not forthcoming (Edwards et al. 1998a). Boyce et al. (2003) analysed conducting tissues in silicified plants preserved in the Rhynie chert Lagerstätte; following this, they suggested that some Rhynie chert plants lacked lignin in their vascular thickenings. Associations of tracheid-like tubes were analysed by Niklas and Pratt (1980) who interpreted their results as indicating the presence of lignin-like constituents. Regarding nematophyte megafossils, Niklas (1976) reported cutin and suberin derivatives from Prototaxites. However, following their geochemical analyses, Abbott et al. (1998, p. 1416) concluded that Prototaxites might contain ‘an extinct polyphenolic structural biomacromolecule that was a failed experiment during terrestrialisation’. Overall the various geochemical investigations that have been undertaken, utilizing various techniques, have provided rather ambiguous and inconclusive results thus far. This is probably a consequence of taphonomy, with many of the coalified and permineralized remains being of rather high thermal maturity and the charcoalfied remains certainly being of very high thermal maturity. Again, as geochemical techniques improve and new techniques are developed, this may prove a fruitful line of enquiry in the future.

The nematophyte story

We have previously encountered the nematophytes, an enigmatic group of so-called ‘plants’. Lang (1937) proposed the group Nematophytales based on his analysis of Nematothallus and Prototaxites recovered from the upper Silurian–Lower Devonian of the Anglo-Welsh Basin. Lang’s concept of Nematothallus was of a thalloid organism with tubular anatomy covered by a cuticle and with spores produced among the tubes. Subsequently Strother (1988) described further specimens from North America and reported on a re-examination of Lang’s material (Strother 1993). Also included in the nematophytes by Lang was Prototaxites that had long been known from Silurian–Devonian localities worldwide. Prototaxites occurred as ‘trunks’, and fragments thereof, composed of associations of tubes (Hueber 2001). Subsequently further nematophyte taxa were established by Lyon (1962) describing Nematoplexus and Burgess and Edwards (1988) later erecting a new genus, very similar to Prototaxites, called Nematosketum.

The nematophytes have a most peculiar anatomy, making comparisons with extant organisms difficult and, as such, a large literature debating their affinities has accumulated. When initially establishing the Nematophytales, Lang (1937, p. 287) noted that ‘[w]hat is required, however, is not discussion, but an increase in our knowledge of these plants, which appear to have had a very general distribution in Siluro-Devonian times’. Fortunately, new information on the anatomy of these plants became available following the discovery of material in three Lagerstätten: the Rhynie chert and the charcoalfied plant assemblages from Ludford Lane and Hudwick Dingle. The charcoalfied plant remains from the upper Silurian–Lower Devonian of the Welsh Borderland yielded nematophyte specimens with exquisitely preserved anatomical detail. Following anatomical examination of the specimens, Edwards and Axe (2012) concluded that Nematosketum was of fungal affinity. Edwards et al. (2013, 2018) reported that the anatomy of Nematothallus was indicative of lichenized fungi. Silicified specimens of Prototaxites from the Early Devonian Rhynie chert, alongside charcoalfied specimens from the upper Silurian–Lower Devonian of the Anglo-Welsh Basin, demonstrated an anatomy indicative of fungal affinities. Subsequently, Honegger et al. (2013) also described cyanobacterial and algal lichens among the assemblages of charcoalfied fossil plants.

Whilst some of the phytodebris recovered from Middle Ordovician–Lower Devonian terrestrial deposits may be derived from land plants, it seems likely that many of the tubular structures and cuticle-like sheets derive from nematophytes. The current picture that might be drawn of these embryonic terrestrial environments appears to be that the earliest land plants shared the terrestrial surface with fungi/?lichens belonging to the Nematophytales, the latter of which may have formed a significant component of the biota.
Early land plant phytodebris

The fungal story

The remit of this review is early land plant phytodebris. However, it seems prudent to discuss fungal phytodebris because it has historically played a significant role in discussions of early land plant phytodebris and because the nematophytes, as discussed, have now been shown to be of probable fungal/lichen affinity. Often co-occurring with early land plant phytodebris in palynological preparations are fungal remains in the form of dispersed spores and fragments of hyphae. The spores and hyphae of most extant fungi are constructed of the resistant macromolecule chitin, and Graham et al. (2017) recently reported on taphonomic acetylosis experiments on extant fungi, confirming that some fungal structures are indeed resistant and likely to survive in the fossil record. The earliest reported dispersed fungal spores are from the upper Silurian (Ludlow) (Sherwood-Pike and Gray 1985), with fragmented hyphae being reported from the same deposits. However, older hyphae have been reported, for example, from the lower Silurian (Llandovery) (Pratt et al. 1978; Johnson 1985) and possibly uppermost Ordovician (e.g. Thusu et al. 2013). Some of these early fossil fungi are from unequivocal non-marine deposits (e.g. Pratt et al. 1978; Wellman 1995). These remains are generally accepted as fungal in origin, although more precise taxonomic assignments are problematic due to a lack of morphological characters (e.g. Auxier et al. 2016; Smith 2016). We know from phylogenetic analyses and molecular clock studies that fungi originated early in the Mesoproterozoic (e.g. Parfrey et al. 2011), but it is entirely unclear when they first appeared on the land and if this was before, during or after the invasion of the land by plants. However, it seems highly likely that symbiotic relationships between multicellular green algae and fungi were intimately related to the origin of land plants and their invasion of the land. An excellent review of our current understanding of the earliest terrestrial fungi is provided by Taylor et al. (2015).

Early terrestrial animals

The colonization of the land by plants paved the way for aquatic animals to invade subaerial habitats (reviewed by Shear and Selden 2001; Kenrick et al. 2012). Phylogenetic analysis reveals that many different animal groups invaded the land on many different occasions. In some cases, this may have been directly from marine environments and, in others, it may have been via ‘half-way houses’ such as estuaries or continental freshwater rivers, lakes and waterlogged land. Non-marine animal-derived palydodebris from the Middle Ordovician–Lower Devonian consists predominantly of fish scales (the organic component survives palynological preparation techniques) and fragments of the chitinous exoskeleton of arthropods (Shear and Selden 2001). Whilst the fish remains are clearly aquatic, it is difficult to know if the arthropod cuticle derives from aquatic or truly terrestrial forms, unless positive taxonomic assignments can be made. The earliest fragments of arthropod that are known to be of non-marine origin (because they derive from terrestrial deposits) are from the early Silurian (Llandovery) deposits of the Tuscarora Formation in North America (Gray and Boucot 1993) and the late Silurian (early Wenlock) deposits of the Silurian inliers of the Midland Valley of Scotland (Wellman and Richardson 1993; Wellman 1995). However, it is unclear if these represent animals that inhabited aquatic freshwater environments or the land.

Conclusions

It is clear that non-pollen palynomorphs (phytodebris) continue to play an important role in research into the earliest land plants and their co-inhabitants of the land. Whilst recent years have witnessed a dramatic increase in knowledge regarding the affinities and nature of many of their producers, particularly regarding the nematophytes, there is still much to learn concerning this ‘smorgasbord’ of fossil remains.

Acknowledgement ACB would like to thank his PhD supervisors Paul Kenrick, John Richardson, Stephen Stukins and Charles Wellman.

Author contributions CHW: writing – original draft (equal); ACB: writing – original draft (equal).

Funding This research was supported by a NERC grant NE/R001324/1 to CHW and a NERC-funded ACCE (Adapting to Challenges of a Changing Environment) Doctoral Training Partnership PhD studentship NE/L002450/1, which is a CASE partnership with the Natural History Museum, London, to ACB.

Data availability All materials and datasets generated during the current study are housed in and available from the Centre for Palynology of the University of Sheffield repository.

References

Abbott, G.D., Ewbank, G., Edwards, D. and Wang, G.-Y. 1998. Molecular characterisation of some enigmatic Lower Devonian fossils. Geochemica et Cosmochimica
C. H. Wellman and A. C. Ball

Acta, 62, 1407–1418, https://doi.org/10.1016/S0016-7037(98)00078-7

Auxier, B., Bazzicalupi, A. et al. 2016. No place among the living: phylogenetic considerations place the Palaeozoic fossil T. protuberans in Fungi but not in Dikarya. A comment on M. Smith (2016). Botanical Journal of the Linnean Society, 182, 723–728, https://doi.org/10.1111/bij.12479

Banks, H.P. 1975a. Early vascular land plants: proof and conjecture. BioScience, 25, 730–737, https://doi.org/10.2307/1297453

Banks, H.P. 1975b. The oldest vascular land plants: a note of caution. Review of Palaeobotany and Palynology, 20, 13–25, https://doi.org/10.1016/0034-6667(75)90004-4

Boyce, K.C., Cody, G.D., Fogel, M.L., Hazen, R.M., Alexander, C.M.O’D. and Knoll, A.H. 2003. Chemical evidence for cell wall lignification and the evolution of tracheids in Early Devonian plants. International Journal of Plant Sciences, 164, 691–702, https://doi.org/10.1086/377113

Burgess, N.D. and Edwards, D. 1988. A new Palaeozoic plant closely allied to Prototaxites Dawson. Botanical Journal of the Linnean Society, 97, 189–203, https://doi.org/10.1111/j.1095-8339.1988.tb02461.x

Burgess, N.D. and Edwards, D. 1991. Classification of uppermost Ordovician to Lower Devonian tubular and filamentous macerals from the Anglo-Welsh Basin. Botanical Journal of the Linnean Society, 106, 41–66, https://doi.org/10.1111/j.1095-8339.1991.tb02282.x

Chaloner, W.G. 1960. The origin of vascular plants. Science Progress, 191, 524–534.

Chaloner, W.G. 1970. The rise of the first land plants. Biological Reviews, 45, 353–377, https://doi.org/10.1111/j.1469-185X.1970.tb01645.x

Cleal, C.J. and Thomas, B.A. 2009. An Introduction to Fossil Plants. Cambridge University Press, Cambridge.

Cook, M.E. and Graham, L.E. 1984. Stomata in early land plants: a palaeoecophysiological evaluation. In: Kerstiens, G. (ed.) Plant Cuticles. BIOS Scientific, Oxford, 1–31.

Edwards, D., Ewbank, G. and Abbott, G.D. 1997. Flash pyrolysis of the outer cortical tissues in Lower Devonian Psilophyton Dawsonii. Botanical Journal of the Linnean Society, 124, 345–360.

Edwards, D., Wellman, C.H. and Axe, L. 1998a. The fossil record of early land plants and interrelationships between primitive embryophytes: too little too late? In: Bates, J.W., Ashton, N.W. and Duckett, J.G. (eds) Bryology for the Twenty-First Century. British Bryological Society, 15–43.

Edwards, D., Kerp, H. and Hass, H. 1998b. Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany, 49, 255–278, https://doi.org/10.1093/jxb/49.Special_Issue.s255

Edwards, D., Axe, L. and Honegger, R. 2013. Contributions to the diversity of in cryptogamic covers in the mid-Palaeozoic: Nematosotton revisited. Botanical Journal of the Linnean Society, 173, 505–534, https://doi.org/10.1111/bij.12119

Edwards, D., Honegger, R., Axe, L. and Morris, J.L. 2018. Anatomically preserved Silurian ‘nematophytes’ from the Welsh Borderland (UK). Botanical Journal of the Linnean Society, 187, 272–291, https://doi.org/10.1093/botlinnean/boy022

Ewbank, G., Edwards, D. and Abbot, D. 1996. Chemical characterization of Lower Devonian vascular plants. Organic Geochemistry, 25, 461–473, https://doi.org/10.1016/S0146-6380(96)00140-4

Gansel, P.G. 2008. The earliest land plants. The Annual Review of Ecology, Evolution, and Systematics, 39, 459–477, https://doi.org/10.1146/annurev.ecolsys.39.110707.173526

Gansel, P.G., Johnson, N.G. and Struther, P.K. 1991. Early land plant debris (Hooker’s ‘Waisfs and strays’). Paloeios, 5, 520–547, https://doi.org/10.2307/3514860

Graham, L.E., Wilcox, L.W., Cook, M.E. and Gansel, P.G. 2004. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Palaeozoic...
Early land plant phytodebris

Kodner, R.B. and Graham, L.E. 2001. High-temperature, acid hydrolysed remains of Polytrichium (Musci, Polytrichaceae) resemble enigmatic Silurian–Devonian tubular microfossils. American Journal of Botany, 88, 462–466, https://doi.org/10.2307/2657111

Kroken, S.B., Graham, L.E. and Cook, M.E. 1996. Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. American Journal of Botany, 83, 1241–1254, https://doi.org/10.1002/j.1537-2197.1996.tb13908.x

Lang, W.H. 1937. On the plant-remains from the Downtonian of England and Wales. Proceedings of the Royal Society of London. Series B Biological Sciences, 227, 245–291.

Libertín, M., Kvaček, J., Bek, J., Žásk, V. and Štork, P. 2018. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autotrophic. Nature Plants, 4, 269–271, https://doi.org/10.1038/s41477-018-0140-y

McElwain, J.C. and Chaloner, W.G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany, 76, 389–395, https://doi.org/10.1006/anbo.1995.1112

Meyer-Berthaud, B., Servais, T., Vecoli, M. and Gerrienne, P. 2012. A timeline for terrestrialisation: considerations for land plant evolution. Philosophical Transactions of the Royal Society of London B, 367, 519–536, https://doi.org/10.1098/rstb.2011.0271
C. H. Wellman and A. C. Ball

In: Gensel, P.G. and Edwards, D. (eds) Plants Invade the Land. Columbia University Press, New York, 29–51.

Sherwood-Pike, M.A. and Gray, J. 1985. Silurian fungal remains: probable records of the class Ascomycetes. Lethaia, 18, 1–20, https://doi.org/10.1111/j.1502-3951.1985.tb00680.x

Smith, M.R. 2016. Cord-forming Palaeozoic fungi in terrestrial assemblages. Botanical Journal of the Linnean Society, 180, 452–460, https://doi.org/10.1111/boj.12389

Strother, P.K. 1988. New species of Nematothallus from the Silurian Bloomsburg formation of Pennsylvania. Journal of Palaeontology, 62, 967–982, https://doi.org/10.1017/S0022336000030237

Strother, P.K. 1993. Clarification of the genus Nematothallus Lang. Journal of Palaeontology, 67, 1090–1094, https://doi.org/10.1017/S002233600025476

Strother, P.K. 2010. Thalloid carbonaceous incrustations and the asynchronous evolution of the embryophyte characters during the Early Palaeozoic. International Journal of Coal Geology, 83, 154–161, https://doi.org/10.1016/j.coal.2009.10.013

Strother, P.K. and Traverse, A. 1979. Plant microfossils from Llandovery and Wenlockian rocks of Pennsylvania. Palynology, 3, 1–21, https://doi.org/10.1080/01916122.1979.9989181

Strother, P.K., Battison, L., Brasier, M.D. and Wellman, C.H. 2011. Earth’s earliest non-marine eukaryotes. Nature, 473, 505–509, https://doi.org/10.1038/nature09943

Taylor, E.L., Taylor, T.N. and Kring, M. 2009. Paleobotany: the Biology and Evolution of Fossil Plants. Academic Press.

Taylor, T.N., Krings, M. and Taylor, E. 2015. Fungal diversity in the fossil record. In: McLaughlin, D.J. and Spatafora, J.W. (eds) The Mycota VII Part B, Systematics and Evolution, 2nd edn. Springer-Verlag.

Taylor, W.A. and Wellman, C.H. 2009. Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian-Lower Devonian: evidence for affinities and role in early terrestrial ecosystems. Palaios, 24, 167–180, https://doi.org/10.2110/palo.2008.p08-046r

Thusu, B., Raszl, S., Paris, F., Meinhold, G., Howard, J.P., Abutarruna, Y. and Whitham, A.G. 2013. Latest Ordovician–earliest Silurian acritarchs and chitinozoans from subsurface samples in Jebel Asba, Kufr basin, SE Libya. Review of Palaeobotany and Palynology, 197, 90–118, https://doi.org/10.1016/j.revpalbo.2013.05.006

Tomescu, A.M.F. and Rothwell, G.W. 2006. Wetlands before tracheophytes: Thalloid terrestrial communities of the Early Silurian Passage Creek biota. Geological Society of America, Special Paper, 399, 41–56, https://doi.org/10.1130/2006.2399(02)

Tomescu, A.M.F., Rothwell, G.W. and Honegger, R. 2006. Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Massanutton Sandstone, Virginia, USA. Lethaia, 39, 329–338, https://doi.org/10.1080/00241160600876719

Tomescu, A.M.F., Honegger, R. and Rothwell, G.W. 2008. Earliest fossil record of bacterial–cyanobacterial mat consortia: the Early Silurian Passage Creek biota (440 Ma, Virginia, USA). Geobiology, 6, 120–124, https://doi.org/10.1011/j.1472-4669.2007.00143.x

Tomescu, A.M.F., Rothwell, G.W. and Honegger, R. 2009. A new genus and species of filamentous microfossil of cyanobacterial affinity from Early Silurian fluvial environments (lower Massanutton Sandstone, Virginia, USA). Botanical Journal of the Linnean Society, 160, 284–289, https://doi.org/10.1111/j.1095-8339.2009.00980.x

Tomescu, A.M.F., Tate, R.W., Mack, N.G. and Calder, V.J. 2010. Simulating fossilization to resolve the taxonomic affinities of thalloid fossils in Early Silurian (ca. 425 Ma) terrestrial assemblages. In: Nash, III, T.H. (ed.) Biology of Lichens – Symbiosis, Ecology, Environmental Monitoring, Systematics, Cyber Applications. Bibliotheca Lichenologica, 105, 183–190.

Walker, J.D., Geissman, J.W. and Bowling, S.A. 2018. Geologic Time Scale v. 5.0 (Babcock, L.E. compiler). Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C

Traverse, A. 2007. Paleopalynology. Springer, Dordrecht.

Wellman, C.H. 1995. ‘Phytovegetes’ from Scottish Silurian and Lower Devonian continental deposits. Review of Paleobotany and Palynology, 84, 255–279, https://doi.org/10.1016/0034-6667(94)00115-Z

Wellman, C.H. 2006. Spore assemblages from the Lower Devonian ‘Lower Old Red Sandstone’ deposits of the Rhynie outlier, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 167–206, https://doi.org/10.1017/S0265393300001449

Wellman, C.H. and Gray, J. 2000. The microfossil record of early land plants. Philosophical Transactions of the Royal Society London B, 355, 717–732, https://doi.org/10.1098/rstb.2000.0612

Wellman, C.H. and Richardson, J.B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology, 36, 155–193.

Wellman, C.H., Osterloff, P.L. and Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature, 425, 282–284, https://doi.org/10.1038/nature01884

Wellman, C.H., Steemans, P. and Vecoli, M. 2013. Palaeoecology and the asynchronous evolution of the embryophyte characters during the Early Palaeozoic. International Journal of Coal Geology, 83, 154–161, https://doi.org/10.1016/j.coal.2009.10.013