Development of a process resource balancing method based on integration of network planning and multi-agent approach

Konstantin Aksyonov1,*, Olga Aksonova1, Polina Ziomkovskaya1 and Wang Kai2

1Ural Federal University n. a. the first President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
2Institute of Quantitative and Technical, Economics, Beijing, China

* wiper@mail.ru

Abstract. The article discusses the method of balancing multi-agent resource conversion processes based on the analysis and elimination of bottlenecks, compression procedures and expansion procedures, network planning. A multi-agent process of resource conversion model is used to model and optimize technological, logistic and organizational (business) processes. The method of balancing the multi-agent process of resource conversion is programmatically implemented in an automated system for the release of metallurgical products.

1. Introduction

A multi-agent model of the resource conversion process (RCP) is used [1-4] for formalization and subsequent simulation of [5] technological [6-8], logistic and organizational (business) processes in the automated system for the output of metallurgical products (AS MPP) [9]. The main elements of the RCP model include the following [9]: operations, agents, sources and receivers of resources, resources, funds, applications. The following information describes the principles of construction and modification of the RCP model, based on compression / expansion procedures.

The compression procedure is a procedure for reducing the dimensionality of the dynamic process model. Under the compression procedure, we mean the procedure of structural and / or parametric synthesis (change) of the model of resource conversion processes, which leads to a decrease in the structure and / or in model parameters [9]. The development of model compression algorithms is an urgent scientific and practical task, the solution of which leads to a reduction in experiment time and a decrease in computing resources.

In order to solve the problem of eliminating bottlenecks – to find the most efficient process model, the model extension procedure should also be applied along with the compression procedure. Model expansion procedure (inverse compression procedure) is a procedure for increasing the dimension of a dynamic process model, which allows to increase the throughput of the process model.

2. Principles of building a model of multi-agent resource conversion process

During the constructing of the enterprise process simulation model (in the module for creating process models (CPM)), the following submodels are built:

- the generation of objects (units of production (UP) / projects / orders), such an object in the RCP model will be presented as an instance of an application (transaction) with a set of attributes;
- processes of passing objects (technological, logistic and organizational (business) processes associated with the processing of units of products on machines and equipment, transportation of UPs and the execution of orders / stages of the project / production operations, in the RCP model, the application processing route is formed by a chain of blocks consisting of converters (operations and agents);
- supplies of consumed resources (raw materials, materials and semi-finished products), in the RCP model, the supply route of resources is formed by a chain of blocks consisting of operations and agents;
- work tools (machines, equipment, units, transport, staff).

These subject areas for modeling a set of objects (orders for the production of UP, a portfolio of projects, a portfolio of production orders) dictate the following specific requirements and the corresponding rules for constructing a simulation model:

a) a restriction on the volume of consumed resources in the production process (for example, energy). If the limit on total costs is exceeded, this object (unit of production or order) will become unprofitable;

b) a restriction on the amount of funds used (limited qualified personnel, production capacities of machine tools, units, equipment, transport units, and handling equipment);

c) the strategy of processing objects “first come first out” should be used. Delays in processing (production / execution) of an individual object (UP / order) lead to a number of additional costs (time, energy, material), and can also lead to spoilage and premature wear of equipment and assemblies (breakdowns). In this regard, model blocks must apply a push strategy for the application “object unit of production” (order) (the priority of model blocks increases from the initial stages of processing (execution) to the final);

d) metallurgical production is characterized by the parallel execution of the stages of various work on the output of units of products included in the order. Works (operations / corresponding blocks of the simulation model), related to the critical path, should have a higher priority than parallel works.

These requirements of the subject area and the rules for constructing a simulation model are also in good agreement with Davis's conclusions [10]: "... the ordering rule, according to which the first one is performed with the least reserve, on average gives the best result." The application of the developed principles for constructing simulation models and the method of analysis and elimination of bottlenecks of the multi-agent process of resource conversion [9] allows us to solve the problems of balancing resources.

The multi-agent approach is used to build models of decision-making processes, models of decision-makers. Agents can be of 4 types;

1) reactive (based on the model of the machine);
2) reactive-intelligent (based on the production knowledge base);
3) intelligent (based on the frame expert system);
4) hybrid.

Based on the basic principles of business process reengineering (BPR), the meaning of compression procedures can consist of horizontal and vertical compression of investigated process, deployment procedures can increase the throughput of the system (reduce the processing time of production units / documents, fulfill orders, reduce queues, etc.).

The conceptual model of the domain (CMD) of analysis and elimination of bottlenecks of multi-agent process models contains the following elements:

\[
\text{CMD} = \{\text{MPPR, Exp, ExpOut, Analysis, AnalysisOut, Synthesis, SynthesisOut}\}
\]

(1)

\textit{RCP} - many elements of the RCP model; \textit{Exp} - a lot of experiments with the RCP model; \textit{Analysis} - many rules for the analysis of models; \textit{AnalysisOut} - many elements of the analysis results; \textit{Synthesis} - many rules for the synthesis of models; \textit{SynthesisOut} - many elements of the synthesis result.
From the point of view of applying the operational analysis of probability networks to the RCP model when analyzing and eliminating bottlenecks, it is necessary to analyze the following parameters:

1. The utilization rate of the node (nodes correspond to operations and agents, it is also necessary to analyze the utilization rate of the funds).
2. The average duration of an application in the queue for the operation, for the agent (the size of the queue of applications for the operation QOp_{cp}, the average queue of applications for the agent rule $QAgr_{cp}$).
3. The site attendance coefficient and the average processing time of a request in a site.

Figure 1 shows a block diagram of a method for analyzing and eliminating bottlenecks in the RCP process supported by the following modules of the AS MPP:

1. Integration of models (IM).
2. Query Designer (QD).
3. Optimization of enterprise processes (OEP).
4. Creation of process models (CPM).

The results of the method by a typical permanent business process of a metallurgical enterprise are used to change production processes.

![Diagram](image-url)

Figure 1. General method schema of bottleneck analysis of multi agent resources conversion process model.
As a result of the experiment, statistics are formed on the implementation of operations, the functioning of agents, the expenditure and formation of resources and applications, and the use of funds in operations of the RCP process. According to the results of the analysis of the statistics of experiments, bottlenecks are diagnosed and a decision is made on the change (convolution / unfolding) of the RCP process. A criterion for stopping the method can also be a decrease in the waiting time to acceptable values for all blocks of the model.

3. Comparison of principles of building models and the method of analysis and elimination of bottlenecks of the multi-agent process of resource conversion with the critical path method

For the analysis of bottlenecks in project management and construction, the network model is the most often used, which, together with the critical path method (CPM) [10]), allows to determine the reserves of the time required to complete individual works. The use of a simulation model, with a push strategy of operation priorities, leads to the effect of the fastest “pushing” of work.

When building a multi-agent simulation model of projects and/or project portfolios, it is necessary to classify operations into 3 types with the corresponding usage of priority types:

- critical path operations (highest priority group) - affects the overall calendar duration of the project;
- operations and chains of operations preceding critical path operations (medium priority group);
- other operations not preceding critical path operations (lower priority group).

Formulation of the problem:

Consider the case of simultaneous execution of two projects for the case when 2 different works can be performed in parallel in time (2 resources are available) and the highest priority is assigned to works related to the critical path (and these priorities are the same for different projects (objects)).

The following situations are possible related to the start time of projects (Figure 2):

Object 1	Object 2
Op1	Op1
0	12
8	19
Op2	Op2
8	15
12	24
Op3	Op3
17	25
21	29
Op4	Op4
21	29
28	36
Op5	Op5
0	0
13	13
Op6	Op6
13	13
17	17
Op7	Op7
17	25
19	27
Op8	Op8
19	27
23	31
Op9	Op9
0	12
3	15
Op10	Op10
3	15
9	21
Op11	Op11
9	21
12	25

Figure 2. A. Initial view of projects.
Network diagram of projects for 4 resources, without a bias in the launch of Object 2 and the launch of O2.Op1 (on day 11); O2.Op9 (on day 11); O2.Op3 (on day 24); launch O2.Op7 (on day 24). Work is forbidden to interrupt (Total duration 36 days).

Object 2 incurred a fine of 8 days for Op3 critical path operations. By that time, when the whole complex of works should be completed, the workshop has just started the main stage of work.

What caused this penalty? At the stage from day 17 to day 25, all resources were occupied with preparatory and basic work. At each object, 2 parallel operations were carried out.

This network diagram allows to visually see how you can allocate resources in order to complete the full range of work at Objects 1,2 on time. Moreover, in addition to the allocation of resources, this graph clearly shows that the process has drawbacks. Total, thanks to the network diagram of Figure A, we clearly saw that potentially, by optimizing the process, it is potentially possible to save 5 days.

It is also possible to organize a combination of certain operations as an optimization of resources (work of teams).

Network diagram of projects for 4 resources (Figure 3), with the launch of O1.Op10 (on day 12), O1.Op7 (on day 21), O1.Op8 (on day 24). Without a delay in starting Object 2 and starting O2.Op1 (on day 3), O2.Op9 (on day 15), starting O2.Op7 (on day 23) and interrupting Op7 for 2 days (total duration 32 days), O2.Op8 (on 28 day). Object 2 incurred a fine of 4 days for of Op8 non-critical path operations.

Object 1		
Op1	0	8
Op2	8	12
Op3	17	21
Op4	21	28
Op5	0	13
Op6	13	17
Op7	21	23
Op8	24	28
Op9	0	3
Op10	12	18
Op11	18	21

Object 2		
Op1	3	11
Op2	11	15
Op3	17	21
Op4	21	28
Op5	0	13
Op6	13	17
Op7	23	25
Op8	28	32
Op9	15	18
Op10	18	24
Op11	24	27

Figure 3. B. Improved view of projects.

Conclusion: Complex distribution of works in Figure 3 B, but, compared with A, there are no penalties for delaying the work of the critical path.

From the calculation results, it is clear that the uniformity of the use of resources can be exerted by both the structure of the network diagram and approaches to balancing resources (including the
selection and fixing of a certain operation to a resource). The shape of the “tail” of the consumption
function of the network graph resource (and, accordingly, the utilization coefficient) is affected by the
proportionality of the number of parallel operations to the amount of resources. When balancing the
distribution of resources between the tails of network schedules of different objects (orders for the
production of UPs), the effect of an increase in the terms of individual objects can be observed and,
thereby, the penalty time of an individual object can increase.

It is also worth noting the existence for the subject area of the processes of a metallurgical
enterprise of specific objects (consumed resources and applications) with a very short useful life,
which include a unit of product that left after processing at the unit and which must be processed at the
next unit. Meanwhile, temperature and its corresponding physical parameters must be maintained in a
given range according to technology.

The results of the comparison of the methods are presented in Table 1. The word “YES” in the
table means that the method supports the corresponding functionality indicated in the column
“Comparison criterion”. These principles of building models have also been tested on the task of
analysis and modeling of building processes [9].

Table 1. Comparison of the new method and the critical path method

Comparison criterion	CPM	RCP
Usage of funds Accounting	YES	YES
Resource accounting	NO	YES
Resource Supply Accounting	NO	YES
Accounting for the lifetime of a consumed resource	NO	YES
Balancing funds	YES	YES

4. Conclusion
In this paper, the following additional principles (in terms of setting priorities for operations
processing applications) for constructing simulation models for subject areas of technological, logistic
and organizational (business) processes are determined by examples of network diagram calculations:

1) when constructing a simulation model of a process or portfolio of orders for the output of units
of products, it is necessary to classify all operations according to three types of priorities: the highest -
for critical path operations; medium - for operations preceding critical path operations; lower - for
other operations;

2) if the subject area and technological operations allow the use of interruptions of operations, then
when constructing a model, relative and absolute priority can be used for operations, otherwise, the
prohibition of interruptions is established;

3) the use of “push” strategy (FIFO) when modeling the processes of fulfilling orders for the
manufacture of units of products.

The obtained theoretical results (the method of balancing the multi-agent process of resource
conversion) and the developed principles for constructing models made it possible to implement
software for the process optimization module of the enterprise of an automated metallurgical
production system, which uses expert, simulation and multi-agent modeling, network planning as its
basis.
Acknowledgment
This work is supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.

References
[1] Solovyeva I, Sokolov B and Ivanov D 2015 Analysis of position optimization method applicability in supply chain management problem Proc. Int. Conf. Stability and Control Processes pp 498-500
[2] Rzevski G, Himoff J and Skobelev P 2006 Int. Conf. on Multi-Agent Systems (Heidelberg) vol 4659 (German: Springer, Berlin, Heidelberg) pp 303–13
[3] Zhou, X., Wang, W., Wang, T. Patrolling task planning for the multi-layer multi-agent system based on sequential allocation method. Simulation Series, vol. 50, issue 5 (2018)
[4] Klebanov B, Antropov T and Riabkina E 2016 Bases of imitation model of artificial society construction accounting of the agents’ needs recursion 16th Int. Conf. SGEM vol 1, pp 101-108
[5] Dhanrajshyam, S., Kowsalya, M. Zero current switching high frequency isolated DC-DC converter. Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017, vol. 2018- (2018)
[6] Borodin A, Mirvoda S, Kulikov I and Porshnev S 2017 Optimization of memory operations in generalized search trees of PostgreSQL Proc. Int. Conf. BDAS pp 224–232
[7] Borodin A, Kiselev Y, Mirvoda S and Porshnev S 2015 On design of domain-specific query language for the metallurgical industry Proc. Int. Conf. BDAS pp 505–515
[8] Kondratiev A, Aksenova K, Antonova A and Medvedev S 2015 Investigation of the work of the processing shop with the help of a multiagent model of resource conversion processes pp 17-25
[9] Aksyonov K, Bykov E and Aksyonova O 2012 Application of Multi-agent Simulation for Decision Support in a Construction Corporation and its Comparison with Critical Path Method Proc. Int. Conf. on Mechatronics and Control Engineering pp 2244-2247
[10] Handbook of Operations Research. V.2. New York: Van Nostrand Reinhold Company, 1978 p 677