Investigation of isoenzyme α-esterase in *Aedes aegypti* from two municipalities of Mato Grosso

Cristina Márcia de Menezes Butakka*
Leiliane dos Santos Nova Siqueira*
Fabiana Aparecida Caldart Rodrigues**
Rosina Djunko Miyazaki***
Sandra Mariotto ****
Lenicy Lucas de Miranda Cerqueira***
Walkiria Shimoya Bittencourt*

Abstract

Esterases are groups of enzymes that increase the mechanism of action of insect vectors in their metabolic activity while under environmental pressure. The aim of this study was to analyze the level of α-esterase expression in *Aedes aegypti* populations in the municipalities of Cuiabá and Várzea Grande, MT as a way to contribute to vector research. Samples were collected through ovitraps in each municipality and allele results were analyzed by factorial ANOVA between months, locations and seasonal phase. The alleles of 385 *Ae. aegypti* individuals demonstrated the highest expressions during the ebb period, significantly between months (F7,377=6.89; p<0.01) and between sites (F1,383=11.01). Expressed and superexpressed alleles decreased in Mar/2016, during the “peak water” period and resumed from May/2016 to Nov/2016. Regarding the frequency, expressed alleles increased in Várzea Grande, during the flood period with the highest precipitation. There was an increasing tendency of the expressed alleles with precipitation and the frequency values between Oct/2015 (30±88) and Feb/2016 (89±55%); meanwhile, for the superexpressed alleles, this occurred during the ebb period (42±91%). Várzea Grande specimens reached a higher frequency of expressed alleles (75±41.36%), but there was a reduction of overexpressed alleles in both municipalities (F2,13=12.39; p<0.01). The results obtained in this study indicate that the esterase isoenzyme method was sensitive enough to detect variations in allele frequency in natural *Ae. aegypti* populations, which implies an increased metabolic activity over the period examined.

Keywords: Mosquitoes, ovitraps, esterases.

INTRODUCTION

Aedes aegypti Linnaeus, 1762, the mosquito vector of the Zika-, chikungunya-, urban yellow fever- and dengue-causing viruses, is today one of the major public health problems in many regions¹. There are difficulties in controlling it due to the movement of people in different places, which eventually contributes to the dispersal of arboviruses spreading across different countries²,³,⁴,⁵.

There is an assumption that this species was introduced in Brazil in the colonial period, between the 16th and 19th centuries, during the slave trade. Although the species is not normally found in areas above 1,000 meters altitude, its presence has already been detected at heights of more than 2,000 meters in India.
Chikungunya epidemics have been reported since the 1960s and the Zika virus was first isolated in 1947 in a monkey (Macaca mulatta) inhabiting the Ugandan forest, which was used as a “sentinel” in a yellow fever study. The emergence of Zika occurred in 2014 in Brazil and has been the subject of epidemiological studies that seek to understand the dynamics of viruses in the human organism. In Brazil, in recent years, this virus has already caused severe epidemics in a large number of Brazilian municipalities.

The scientific investigation of the populations of Ae. aegypti would increase the knowledge concerning the prevention of problems that directly affect the health of the human population. This fact shows the need to establish monitoring networks to control the vector through environmental or mechanical management strategies, which are the most used by the municipalities. These networks seek to eliminate the mosquito by monitoring spaces and environments so that favorable points for its reproduction are not produced. Another practice is to use appropriate containers, often in the form of traps, whose presence, under field conditions, identifies the presence of the vector and reduces the eggs that would be deposited on the breeding grounds.

The knowledge of the expression of enzyme groups such as genetically distinct non-specific esterases, classified as carboxylesterases and cholinesterases, makes it possible to identify the mechanism of action of vectors by increasing their metabolic activity which make them resistant to chemical control. In the organism of Ae. aegypti, esterases play a role in the central nervous system as they develop their ability to detoxify their body from molecules of chemical compounds (such as insecticides), which result in their deactivation. As a result, the followings generations of the insects become more resistant to these compounds. Ae. aegypti performs the detoxification process using esterases (α- and β-) or glutathione S-transferases (GSTs) present in its body.

In Brazil, the studies by Braga and Valle on the monitoring and surveillance of Ae. aegypti, and from Guirado and Bicudo, have contributed to elucidate some of these biological mechanisms of how insects act during their proliferation and this type of resistance.

The objective of this work was to evaluate Aedes aegypti populations from biomonitors, as a way to contribute to vector research in Cuiabá and Várzea Grande, MT, and their present state. The enzymatic variability of adults and their spatial and seasonal distribution were analyzed to identify the esterase enzyme expressions and their frequency in different municipalities and sampling periods. It was hypothesized that: 1) esterase bands (light and dark) differ in their expression between sampling sites and seasonal periods; 2) there is a difference in the degree of expression and frequency of alleles in different populations and in the variability of precipitation (rainy season) in the environments.

MATERIALS AND METHODS

The municipality of Cuiabá is located on the left bank of the Cuiabá river and forms an urban network with the municipality of Várzea Grande, both located in the Midwest region of Brazil, in the Southcentral state of Mato Grosso. The information of the geographic coordinates of the sampling points, altitude, estimated number of inhabitants and demographic density agree with the IBGE information and are listed in Table 1.

The collections were performed in both municipalities for a period of 08 months; from October 2015 to November 2016. Samples were established at 3 points in Cuiabá (CB-01, CB-02 and CB-03) and Várzea Grande (VG-01, VG-02 and VG-03), as shown in Figure 1. Precipitation climate data (mm), relative humidity (%), and maximum and minimum temperatures were obtained from the Meteorological Institute.
For the collection and biomonitoring of *Ae. aegypti*, the entomological investigation method was the ovitrap (Figure 2), which is an oviposition trap devised by Fay and Perry and has been shown to be a more sensitive, inexpensive and fast method for monitoring *Aedes* colonizers in breeding sites. It consists of a 9x12 cm black 580 mL plastic container with a 13.5x2.5 cm Eucatex reed, whose rough part is facing outward for oviposition. 270 mL of an aqueous solution and 30 mL of straw infusion are added for female attraction and subsequent oviposition.

The ovitraps were installed every 15 days at a...
1.5 m height with 3 traps at each sampling point (with a total of 9 traps for each municipality) in strategic locations with a greater circulation of people. The estimated insect population was determined by the number of eggs deposited on the straws.

Five days after installation, the traps were collected, and the material was taken to the laboratory for analysis. The eggs collected in these traps allowed for estimating the abundance of adults after its emergence and, later, the expression and frequency of alleles in infested areas.

Figure 2– Ovitrap model with an Eucatex reed and straw infusion for oviposition of Aedes aegypti specimens. Source: Photo by Rodrigues, 2019.

The work in the laboratory consisted primarily of counting the eggs performed on the straw through a stereoscopic microscope. To certify the presence of Ae. aegypti, the rearing was done in small aquariums (500 mL of water), with a quantity of 5 to 100 larvae in each one. The reeds were immersed in these aquariums, covered with a phyllo and were properly identified. The taxonomic identification of larvae was made to quantify their abundance in each ovitrap. 100 mg of fish feed was placed as food until the pupae developed. After passing through the four stages of development, pupation, and subsequent emergence of the adults, they were identified and packaged in polypropylene tubes, labeled and frozen in a freezer at a temperature of approximately -20°C.

The use of the electrophoresis technique aims to investigate the expression of esterase in biological samples by evaluating the total extract of macerated mosquitoes. This technique consists of exposing proteins to an electric current, causing the molecules to migrate through the gel towards the less anodic pole, separating according to their molecular weight and/or electric charge. The polyacrylamide gel expresses the esterase through electrophoresis by means of isoenzyme separation, a method applicable to the model adapted by Paiva et al.

The polyacrylamide gel preparation consisted of a 10% Gel composition associated with 29% acrylamide, 1% bis-acrylamide and tris gel buffer at 8.8 alkaline pH. TEMED (N, N, N, N, tetramethyl ethylenediamine) and 10% ammonium persulfate were added to polymerize to give a final volume of 25 mL of gel. After placing the polyacrylamide gel plates in the apparatus, samples of 8 to 12 loci were added to each electrophoresis plate.

To verify isoenzyme expression (light band) or superexpression (dark band), the following procedure was used: 1) after running, the gels were immersed in preincubated dye solution for 30 minutes in 100 mL of phosphate buffer (0.2 M NaH₂PO₄ and 0.2 M Na₂HPO₄) at pH 6.0 and with the addition of 4 mL of β-naphthyl acetate and 15 mL of isopropyl alcohol; 2) then, 600 mg of dye (RR-Salt) dissolved in 30 ml isopropyl alcohol and 50 ml phosphate buffer were added; 3) 30 minutes of agitation was needed to reveal the polyacrylamide gel; 4) finally, it the result was observed after resting in an incubator at 37°C for one hour revealing isoenzyme expression or superexpression.

The 8-month sampling results were analyzed for formatting and statistics of the two sampling sites (Cuiabá and Várzea Grande). Data on the expression of esterase enzyme and frequency of alleles at locations and periods (and their relationship to precipitation) were analyzed using the Statistic 7.0 program using ANOVA - Factorial Analysis of Variance. From the number of copies of Ae. aegypti (n) identified during the months and sampling sites (municipalities), the “months” or “location” factor was considered as the independent predictor variable while the esterase factor was the dependent variable.

To use ANOVA, data were adjusted to logx. Subsequently, their normality was tested by the Shapiro-Wilk test with the significance factor set at p<0.05. Levene's test confirmed that the variances were homogeneous after adjustments.
The results of the “expressed alleles” and the climate precipitation variable were important descriptors for the dependent variables: 1. expressed alleles and 2. superexpression alleles; which are arbitrarily defined units to estimate allelic changes over the analyzed periods and environments.

RESULTS

Average precipitation values are available on the box plots chart in Figure 3 from Oct/2015 to Nov/2016. Factorial ANOVA identified significant differences between the sampling periods (Figure 3a; \(F_{13,14}=11.31; \ p<0.01 \)) and the seasonal phases (Figure 3b; \(F_{3,24}=11.48; \ p<0.01 \)) for this variable. The flood peak was recorded in Feb/2016, with the highest rainfall (297±56 mm) and relative humidity (83±4%). The periods with little or no rain were recorded between Jun/2016 (5±4 mm) and Aug/2016 (0±0 mm), due to the strong drought. The average values of the maximum temperature occurred in Oct/2015 (35.79±0.65°C) and the lowest values were in Jun/2016 (29.21±0.97°C); meanwhile the minimum temperature reached the lowest value in Jul/2016 (15.52±1.18°C).

A total of 385 specimens of *Ae. aegypti* was analyzed for differential expression (minimum=1, light-band – expressed alleles; maximum=2, dark-band – superexpression alleles) at both sampling sites (Cuiabá: n=191; Várzea Grande: n=194).

Figure 4 shows the distinction in the intensity of the expressed and superexpressed alleles with a characteristic expression of lighter bands and darker bands of the isoenzyme, respectively. The degree of coloration of the bands in the gels reflected the degree of synthesis or activity of esterases (\(\alpha \)-esterases), having for each individual *Ae. aegypti* analyzed at each locus.

Factorial ANOVA identified highly significant differences in the frequency of expressed and superexpressed alleles between the considered periods (Figure 5A; \(F_{7, 377}=6.89; \ p<0.01 \)) and between seasonal phases (Figure 5B, \(F_{3, 381}=14.74; \ p<0.01 \)). Both declined in Mar/2016 (Figure 5a) during the “peak water” period and resumed to increase from May to November/2016. An upward trend in the frequency of alleles expressed between Oct/2015 (30±88%) and Feb/2016 (89±55%) was recorded. Meanwhile, superexpressed alleles demonstrated populations with higher metabolic activities in Jun/2016 (42±91%) during the ebb period (Figure 5b).
The average frequency values of the expressed and superexpressed alleles also varied among the municipalities. Expressed alleles increased slightly in the Várzea Grande specimens (75±41.36%) and superexpressed alleles decreased in both municipalities (Figure 6). There was a slight upward trend in Cuiabá (46±24%), significant between sampling sites (F2, 13=12.39; p<0.01).

Figure 4—Polyacrylamide gel with Aedes aegypti showing the results of the expressed alleles (1, 4, 6, 7, 8, 10) and superexpressed alleles (2, 3, 5, 9, 11, 12) at each locus.

Figure 5—Average values of alleles expressed between sampling periods (A) and seasonal phases (B), from Oct/2015 to Nov/2016 of the municipalities of Cuiabá and Várzea Grande, state of Mato Grosso.

Figure 6—Valores médios da frequência de alelos entre os locais de amostragem (municípios de Cuiabá e Várzea Grande) - período de out/2015 a nov/2016.
Figure 7 represents the variation of mean precipitation values (mm) and frequency of significantly expressed alleles between periods (F14, 14=4.22; p<0.01). With the absence of rainfall in Oct/2015, the average values of precipitation and frequency of alleles expressed were reduced (63±50 mm; 30±42%, respectively) and from Nov/2015 (174±86 mm; 52±68%; flood) to Feb/2016 (185±48 mm; full) there was an increase in alleles together with precipitation. Peculiarly, the opposite was recorded in Mar/2016 (197±26 mm), with a reduction in the allele frequency (0±0%).

DISCUSSION

The highly significant differences in the frequency values of alleles expressed in the populations studied between the periods and seasonal phases showed the complexity involved in the peculiarities of the vector and revealed the difficulty of maintaining a single control model that is used throughout the year.

The reduction in allele expression during the Mar/2016 flood was probably related to the availability of a larger number of breeding sites adjacent to the sampling site, or the presence of other substrates in microhabitats that attract females to lay their eggs in places other than the traps, consequently reducing vector abundance in the ovitraps. However, it was observed that in the preceding periods, even during the flooding (Feb/2016), the ovitraps were sensitive for capturing adults and detecting the presence of mosquito eggs after their oviposition in the straws. Thus, the allele frequency increased by 89% for that period. Their registration in biomonitored areas in both municipalities showed that these traps were important tools for surveillance and detection in risk areas with the presence of Ae. Aegypti; even though abundance has been sporadically reduced in some places and periods.

The variability in the expression of esterase bands between sampling sites and between periods was significantly supported the first hypothesis, especially in relation to seasonal precipitation. Therefore, there were significant differences in frequency of the esterase bands. These results showed that, in general, the variability of allele expression responded to the rainfall regime in a given period of increased rainfall (Feb/2016), and consequent increase of expressed alleles. The rainfall regime determines the population growth of Ae. aegypti, as was recorded for allele expression in the results.
of this study. On the other hand, the influence of environmental factors, especially precipitation and temperature, was notable within the population dynamics of the species in question. The analysis of esterase isoenzymes provides important data regarding the studied populations. The results of superexpressed allele gels showed an increase in metabolic mechanisms of some Ae. aegypti, probably pertinent to the reduction of the use of insecticides in drought/ebb periods or resulting from older populations that left few individuals with the highest allele expressions. The increase of esterase in dry periods (Jun/2016) and the highest average values of enzyme expression in Várzea Grande (75±41.36%) may be related to some biological characteristics of mosquitoes, and even their reproductive fitness in face of the disease and environmental pressure with the use of insecticides by public agencies or particularly by people residing near the breeding sites. Many vector organisms favor the development of their resistance to this pressure through chemical compounds, incorporating higher concentration of esterases in their organisms in the next generations as a form of adaptation. Their descendants may support the greater number of alleles expressed for this factor (resistance). Thus, chemical compounds will not produce the expected toxic effect on their body. Box plot results showed that “superexpressed” alleles reached around 30% in the populations analyzed in their frequency in the city of Cuiabá, and the vectors left a greater allele expression to their offspring adapted to risk areas.

Genetic differentiation of populations was observed in the first genetic structure studies carried out in Ae. aegypti in Brazil. The second hypothesis was relevant to the variability of the expression degree and frequency of alleles in the different vector populations. When rainfall decreased during the ebb period, there was a slight increase in superexpressed alleles either in response to processes that may generate environmental adaptability, or these variations are due to chance. Souza-Polezzi and Bicudo suggested that the replacement of alleles due to environmental pressure or even genetic oscillation would be a factor in this uncertainty.

Zara et al. stated that egg quiescence allows the maintenance of the cycle in the wild during seasonal climatic variations, since the viability of Ae. aegypti lasts up to about 492 days in drought, hatching after contact with water. The lack of sustainability in the fight against the mosquitoes ends up favoring the species, which goes through the most critical phase in the form of resistant eggs.

The results of the present study with the variability of α-esterase observed in adult populations through the average frequency values between municipalities and between seasonal phases. The frequency ratio of expressed and superexpressed alleles in the sites revealed the need for more and more punctual and temporal programs and interventions. The number of insects, periodic distribution and metabolic characteristics change much from one space to another, this may denote the most appropriate type of biomonitoring in the management of its resistance.

Muthusamy and Shivakumar showed that a population of Ae. Aegypti from Namakkal (India) had a change in their susceptibility status. Meanwhile the other populations were moderately susceptible to insecticides and showed increased local α-β-esterase activity as well as evidence of acetylcholinesterase insensitivity. However, Alvarez et al. found susceptible larval populations in western Venezuela with low resistance rates and no enzyme superexpression. Most works with Ae. aegypti focused on the analysis of the esterase profiles refers to the quantification of total esterase, evaluated in the extract of whole macerated mosquitoes, the information from which helps in obtaining resources for management focused on the use of insecticides. This study with the ovitraps helped in the capture and surveillance of vectors in the two biomonitored municipalities and the use of the collected samples identified the presence/absence of specific enzymes, investigating their local and temporal metabolic activity.

The record and the increase of the esterase variability in the analyzed samples proved that the populations were metabolically active using the primarily used mechanisms. As pointed out by Vasconcelos, it is a consensus among researchers that combating the vector requires a growing effort from the scientific community to verify...
mutation and adaptation processes, as well as the rapid spread of new viruses; as had occurred in Brazil at the end of 2015, when a large number of cases of microcephaly caused by Zika virus were reported. All necessary efforts must be made to combat this arbovirus, and the various public health sectors are responsible for carrying out surveillance actions in Brazil.

CONCLUSION

Investigation of the resistance mechanism of Ae. aegypti in the municipalities of Cuiabá and Várzea Grande, shown by the results of the expressed and overexpressed alleles, consisted in obtaining esterase levels. The results recorded in this study indicated that the method of using ovitraps and the markers of esterase isoenzymes was sensitive enough to detect variations in the frequency of expressed alleles in natural populations of this vector in both municipalities. In general, the frequency of the resistance allele was different between the two municipalities studied, which may indicate an effect of selecting different environments upon the alleles, such as the presence of breeding sites.

ACKNOWLEDGMENTS: The authors thank the team of the Laboratory of Entomology and Genetics of the Federal University of Mato Grosso for the space granted for laboratory analysis and to the University of Cuiabá. This work was funded by FAPEMAT (Mato Grosso State Research Support Foundation) according to FAPEMAT Universal Call Notice No. 005-2015. 222796/2015 in partnership with UNEMAT (State University of Mato Grosso) and IFMT (Federal Institute of Mato Grosso).

REFERENCES

1. Souza KR, Santos MLR, Guimarães ICS, Ribeiro, GS, Silva LK. Saberes e práticas sobre controle do Aedes aegypti por diferentes sujeitos sociais na cidade de Salvador, Bahia, Brasil. Caderno de Saúde Pública. 2018; 34(5):e00078017
2. Lima-Camara TN. Arbovirus emergentes e novos desafios para a saúde pública no Brasil. Revista de Saúde Pública 2016; 50:36.
3. Braga IA, Valle D. Aedes aegypti: histórico de controle no Brasil. Epidemiologia e Serviços de Saúde. Brasília, 2007a. 16: 113-118.
4. Cesarino MB, Diabo MR, Zöllner Ianni AM, Vicentini ME, Ferraz AA. Chiaravalloti-Neto F. The difficult interface between vector control and primary care: insertion of dengue fever vector control agents into health teams at the primary health centers in São José do Rio Preto, São Paulo, Brazil. Saúde Soc. São Paulo, 2014; v.23, n.3, p.1018-1032.
5. Miyazaki RD, Ribeiro ALM, Pignatti MG, Campelo Júnior JH e Pignati M. Monitoramento do mosquito Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), por meio de ovitrampas no Campus da Universidade Federal de Mato Grosso, Cuiabá, Estado de Mato Grosso. Revista da Sociedade Brasileira de Medicina Tropical. 2009 jul-ago; 42(4):392-397.
6. Braga IA, Valle D. Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços de Saúde, Brasília, 2007a; 16: 179-293.
7. Dick GW, Kitchen SF, Haddow AG. Zika virus. I. Isolations and serologicalspecificity. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1952; 46:509-20.
8. Forattini OP. Culicidologia médica: identificação, biologia e epidemiologia [Internet]. São Paulo: EDUSP; 2002. 864 p.
9. Depoli PAC, Zequi JAC, Nascimento KLC, Lopes J. Eficácia de Ovitrampas com Diferentes Atrativos na Vigilância e Controle de Aedes. EntomoBrasilis (Vassouras), 2016; v. 9, p. 51-54.
10. Rodrigues, FAC. Ecogenotoxicologia dos agrotóxicos: avaliação comparativa entre ecossistema agrícola e área de proteção ambiental. 97 f. Tese (Doutorado em Patologia Molecular) - Universidade de Brasília. 2006.
11. Lima-Catelan AR, Ceron CR, Bicudo HEMC. Genetic variation during development, revealed by esterase patterns of Aedes aegypti (Diptera: Culicidae). Biochemical Genetics, New York, 2004; 42: 69-84.
12. Souza-Polezi RC, Bicudo HEMC. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetic, Dordrecht, 2005; 125 (1): 43-53.
13. Zara ALSA, Santos SM, Carvalho R G, Coelho GE. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde. Brasília, 2016; 25 (2):391-404.
14. Paiva, MHS, Lovin DD, Mori, A, Melo-Santos MAV, Severson DW, Ayres CJF. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti. Genomics. Bethesda, 2016; 107: 40-48.
15. Gambbarra WPT, Martins WFS, Lucena FML, Albuquerque IMC, Apolinário OKS, Beserra EB. Spatial distribution and esterase activity in populations of Aedes (Stegomyia) aegypti (Linnaeus) (Diptera: Culicidae) resistant to temephos. Rev. Soc. Bras. Med. Trop. 2013; 46(2):178-184.
16. Guirado MM, Bicudo, HEMC. Alguns aspectos do controle populacional e da resistência a inseticidas em Aedes aegypti (Diptera, Culicidae). Boletim Epidemiológico Paulista, São Paulo, 2009; 6(64):5-14.
17. IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Áreas territoriais. Rio de Janeiro. 2017a. Disponível em <http://www.ibge.gov.br/home/geociencias/areateritorial/area.shtm>.
18. IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades. Rio de Janeiro: IBGE, 2017b. Disponível em <https://cidades.ibge.gov.br/v4>.

19. Fay RW, Perry S. Laboratory studies of ovipositional preferences of Aedes aegypti. Mosquito News. 1965; 25:276-281.

20. Alarcon E P., Segura AM, Rúa-Uríbe G, Parra-Henao G. Ovitraps evaluation for surveillance and control of Aedes aegypti in two urban settlements of Uraba, Antioquia. Biomedica. 2014; 34(3): 409-424.

21. Depoli PAC, Zequi JAC, Nascimento KLC, Lopes J. Eficácia de Ovitrampas com Diferentes Atrativos na Vigilância e Controle de Aedes. EntomôBrasílis (Vassouras), 2016; v. 9, p. 51-54.

22. Tilak R, Gupta V, Suryam V, Yadav JD, Dutta Gupta KK. Laboratory investigation into oviposition responses of Aedes aegypti to some common household substances and water from conspecific larvae. Medical Journal Armed Forces, New Delhi, 2005; 61: 227-229.

23. Bisset JA, Roríguez MM, Fernandez D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera, Culicidae) from Santiago de Cuba. Journal of Medical Entomology. Lanham, 2006; 43: 1185-1189.

24. Chadee DD, Ritchie SA. Efficacy of sticky and standard ovitraps for Aedes aegypti in Trinidad, West Indies. Journal of Vector Ecology, 2010; 35(2):395-400.

25. Natal, D. Bioecologia do Aedes aegypti. Biológico, São Paulo, 2002 jul/dez; 64(2): 205-207.

26. Belinato TA, Martins AJ. Insecticide resistance and fitness cost. In: TRDAN, S. (Ed.). Insecticides resistance. Botswana: InTech, 2016; p. 243-261.

27. Monteiro AM, Shama R, Martins AJ, Gloria-Soria, A, Brown JE, Powell JR. Genetic diversity of Brazilian Aedes aegypti: patterns following an eradication program. PLOS Neglected Tropical Diseases, San Francisco, 2014; 8(9): 3167.

28. Muthusamy R, Shivakumar MS. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India. J Vector Borne Dis. June 2015; 52: 159–165.

29. Alvarez, LC, Ponce G, Oviedo M, Lopez B, Flores AE. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela. Pest Manag Sci, 2014; 70:1262-1266.

30. Vasconcelos P. Febre amarela: reflexões sobre a doença, as perspectivas para o século XXI e o risco da reurbanização. Revista Brasileira de Epidemiologia, São Paulo, 2002; 5: 244-258.

31. Zammarchi L, Tappe D, Fortuna C, Remoli MF, Günther S, Venturi G, Bartoloni A, Schmidt-Chanasit J. Zika virus infection in a traveller returning to Europe from Brazil, March 2015. Euro Surveillance: Bulletin European Sur Les Maladies Transmissibles, European Communicable Disease Bulletin, v. 20, n. 23, 2015.

32. Donalisio, MR., Glasser, CM. Vigilância entomológica e controle de vetores da Dengue. Revista Brasileira de Epidemiologia, 2002; 5(3): 259-272.

Received in april 2019.
Accepted in october 2019.
Investigação da isoenzima α-esterase em *Aedes aegypti* de dois municípios de Mato Grosso

Cristina Márcia de Menezes Butakka*
Leiliane dos Santos Novaes Siqueira*
Fabiana Aparecida Caldart Rodrigues**
Rosina Djuoko Miyazaki***
Sandra Mariotto ****
Lenicy Lucas de Miranda Cerqueira***
Walkiria Shimoya Bittencourt*

Resumo

As esterases são grupos de enzimas que aumentam o mecanismo de ação dos insetos vetores em sua atividade metabólica frente à pressão ambiental. O objetivo deste trabalho foi analisar o nível de expressão da α-esterase em populações de *Aedes aegypti* nos municípios de Cuiabá e Várzea Grande/MT como forma de contribuir na investigação vetorial. As coletas foram realizadas através de ovitrampas em cada município e os resultados dos alelos foram analisados pela ANOVA fatorial entre os meses, locais e fase estacional. Os alelos de 385 indivíduos de *Ae. aegypti* apresentaram sua maior expressão no período de vazante, significativos entre os meses ($F_{7,377}=6.89; p<0.01$) e entre os locais ($F_{1,383}=11.01$). Alelos expressos e superexpressos reduziram em mar/2016, no período de “pico das águas” e retomaram de mai/2016 a nov/2016. Em relação à frequência, alelos expressos incrementaram em Várzea Grande, durante o período de cheia com a maior precipitação. Houve uma tendência de incremento dos alelos expressos com a precipitação e os valores de frequência entre out/2015 (30%±88) e fev/2016 (89%±55), enquanto que dos alelos superexpressos no período de vazante (42%±91). Espécimes de Várzea Grande alcançaram uma maior frequência de alelos expressos (75%±41,36), porém com uma redução dos alelos superexpressos nos dois municípios ($F_{2,13}=12.39; p<0.01$). Os resultados obtidos neste estudo indicaram que o método de isoenzimas esterásicas foi sensível o suficiente para detectar variações na frequência dos alelos em populações naturais de *Ae. aegypti*, o que conferiu incremento de suas atividades metabólicas com o período.

Palavras-chave: Mosquitos, ovitrampas, esterases.

INTRODUÇÃO

O *Aedes aegypti* Linnaeus, 1762, mosquito vetor dos vírus causadores do Zika, chikungunya, febre amarela urbana e dengue, é hoje um dos principais problemas de saúde pública em muitas regiões¹, pois há dificuldades para seu controle pertinente ao movimento de pessoas em diferentes pontos do mundo, que acaba contribuindo para a dispersão de arboviroses, espalhadas por diferentes países²,³,⁴,⁵.

Há uma suposição de que esta espécie foi introduzida no Brasil no período colonial, entre os séculos XVI e XIX, durante o tráfico de escravos. Embora a espécie não seja normalmente encontrada em zonas acima de 1.000 metros de altitude, sua presença já foi detectada a alturas de mais de 2.000 metros, na Índia e na Colômbia⁶.

DOI: 10.15343/0104-7809.20194304976995

¹Universidade de Cuiabá – UNIC. Cuiabá/ MT, Brasil.
**Universidade do Estado do Mato Grosso - UNEMAT. CELBE – Caceres/MT, Brasil.
***Universidade Federal de Mato Grosso - UFMT. Cuiabá, MT, Brasil.
****Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso. Cuiabá - MT, Brasil.
E-mail: cristinabutakka@yahoo.com.br
Epidemias de chikungunya têm sido relatadas desde os anos 1960 e o vírus Zika foi isolado pela primeira vez no ano de 1947, em um macaco (Macaca mulatta) habitante da floresta do Uganda, utilizado como “sentinela” num estudo sobre febre amarela. O surgimento do Zika ocorreu em 2014 no Brasil, e têm sido objeto de estudos epidemiológicos que buscam compreender a dinâmica dos vírus no organismo humano. No Brasil, nos últimos anos, estes já causaram epidemias graves em um grande número de municípios brasileiros.

A investigação científica das populações de Ae. aegypti permite um conhecimento da prevenção de problemas que afetam diretamente a saúde da população humana. Tal fato mostra a necessidade de se estabelecer redes de monitoramento para controlar o vetor por meio de estratégias de manejo ambiental ou mecânico, as quais são as mais utilizadas pelos municípios. Estas buscam eliminar o mosquito com o monitoramento de espaços e ambientes para que não sejam gerados pontos favoráveis à sua reprodução. Outra prática é usar recipientes apropriados, muitas vezes na forma de armadilhas, cuja presença, em condições de campo, identificam a presença do vetor e reduzem os ovos que seriam depositados nos criadouros.

O conhecimento da expressão de grupos de enzimas como as esterases não específicas, geneticamente distintas, classificadas como carboxilesterases e colinesterases, torna possível identificar o mecanismo de ação dos vetores em aumentar sua atividade metabólica, tornando-os resistentes ao controle químico. No organismo do Ae. aegypti, as esterases desempenham um papel no sistema nervoso central, pois desenvolvem sua maior capacidade para desintoxicar seu corpo diante das moléculas de compostos químicos (como por exemplo, os inseticidas), que resultam na não ação destas moléculas. Em consequência, as próximas gerações do inseto tornar-se-ão mais resistentes a estes compostos. Ae. aegypti realiza o processo de desintoxicação utilizando-se de esterases (α e β) ou glutatona S-transferases (GSTs) presentes em seu organismo.

No Brasil, os estudos de Braga e Valle sobre o monitoramento e vigilância de Ae. aegypti, e de Guirado e Bicudo, contribuíram para elucidar alguns destes mecanismos biológicos de como os insetos agem na sua proliferação e nesta resistência.

O objetivo deste trabalho foi avaliar as populações de Aedes aegypti a partir do biomonitoramento como forma de contribuir para a investigação vetorial em Cuiabá e Várzea Grande, e seu estado atual. A variabilidade enzimática de adultos e sua distribuição espacial e sazonal foram analisadas para identificar as expressões da enzima esterase e sua frequência em municípios distintos e períodos de amostragem. Foi levantada a hipótese de que: 1) as bandas de esterase (claras e escuras) diferem em sua expressão entre os locais de amostragem e entre os períodos sazonais; 2) Existe uma diferença no grau de expressão e frequência dos alelos em diferentes populações e na variabilidade da precipitação (período chuvisco) nos ambientes.

MATERIAL E MÉTODOS

O município de Cuiabá está localizado na margem esquerda do rio Cuiabá e forma uma rede urbana com o município de Várzea Grande, ambos situados na região Centro-Oeste do Brasil, ao centro-sul do estado de Mato Grosso. As informações das coordenadas geográficas dos pontos de amostragem, altitude, número estimado de habitantes e densidade demográfica estão em acordo com as informações do IBGE e listadas na Tabela 1.

As coletas foram realizadas nos dois municípios por um período de 08 meses, de outubro de 2015 a novembro de 2016. As amostragens foram estabelecidas em 3 pontos em Cuiabá (CB-01, CB-02 e CB-03) e Várzea Grande (VG-01, VG-02 e VG-03), como apresentado na Figura 1. Dados climáticos de precipitação (mm), umidade relativa (%) e temperaturas máximas e mínimas foram obtidos através do Instituto de Meteorologia.
Tabela 1– Coordenadas geográficas, altitude (m), número estimado de habitantes e densidade demográfica (hab/km²) dos municípios de Cuiabá e Várzea Grande (IBGE, 2017), estado de Mato Grosso.

Código	Coordenadas	Altitude (m)	Número estimado de habitantes	Densidade Demográfica (hab/km²)
CBA-01	15°36’36” S 56°03’76” W			
CBA-02	15°40’18” S 56°02’30” W	176	590.118	157,66
CBA-03	15°34’48” S 56°03’42” W			
VG-01	15°42’36” S 56°08’30” W			
VG-02	15°39’56” S 56°08’06” W	198	274.013	240,98
VG-03	15°39’12” S 56°08’01” W			

Subtitle: CBA-01; CBA-02; CBA-03 (Cuiabá); VG-01; VG-02; VG-03 (Várzea Grande).

Figura 1– Representação gráfica e sítios da Área de Estudo Monitorado nos municípios de Cuiabá e Várzea Grande do Estado do Mato Grosso. Escala 1: 400,000.

Para a coleta e biomonitoramento de *Ae. aegypti*, o método de investigação entomológica foi a forma de captura por meio da ovitrampa (Figura 2), uma armadilha de oviposição idealizada por Fay e Perry19 e tem revelado ser um método mais sensível, barato e rápido para monitoramento de colonizadores de *Aedes* em criadouros artificiais3,20,21. Consiste em um recipiente de plástico preto de 9x12 cm de 580 mL, com uma palheta de Eucatex de 13,5 x 2,5 cm, cuja parte áspera é voltada para fora para a oviposição. Coloca-se 270 mL de solução aquosa e adição de 30 mL de infusão de feno, para a atração e posterior oviposição pela
As ovitrampas foram instaladas a cada 15 dias a 1,5 m de altura com 3 armadilhas em cada ponto de amostragem (com um total de nove armadilhas para cada município), em locais estratégicos de grande circulação de pessoas. A estimativa da população de insetos foi determinada pelo número de ovos depositados nas palhetas.

Cinco dias após a instalação, as armadilhas foram coletadas e o material foi levado ao laboratório para análise. Os ovos coletados nestas armadilhas permitiram estimar a abundância de adultos após a emergência e, posteriormente, a expressão e frequência dos alelos em áreas infestadas.

O trabalho no laboratório consistiu primeiramente na contagem dos ovos realizada na palheta através de um microscópio estereoscópico. Para certificar a presença de Ae. aegypti, a criação foi feita em pequenos aquários (500 mL de água), com uma quantidade de 5 a 100 larvas em cada um. As palhetas foram imersas nestes aquários, cobertos por um filó e devidamente identificados. A identificação taxonômica das larvas foi feita para quantificar sua abundância em cada ovitrampa. Foi colocado 100 mg de ração de peixe como alimento até desenvolverem-se as pupas. Após passarem pelos quatro estádios de desenvolvimento, pupação e posterior emergência dos adultos, estes foram identificados e acondicionados em tubos de polipropileno, rotulados e congelados em freezer a uma temperatura de aproximadamente -20º C.

O uso da técnica de eletroforese objetiva investigar a expressão da esterase nas amostras biológicas, da avaliação de extrato total de mosquitos macerados. Esta técnica consiste na exposição de proteínas a uma corrente elétrica, por migração das moléculas através do gel em direção ao polo menos anódico, de acordo com seu peso molecular e/ou carga elétrica. O gel de poliacrilamida permite visualizar a esterase a partir da eletroforese, por meio da separação da isoenzima, método este aplicável no modelo adaptado por Paiva et al.

A preparação de gel de poliacrilamida consistiu em uma composição de 10% de Gel associado a 29% de acrilamida, 1% bis acrilamida e tampão de tris gel, a pH alcalino de 8,8. Foi adicionado TEMED (N, N, N, N, tetrametil-enodiamina) e 10% de persulfato de amônia para polimerizar, obtendo um volume final de 25 mL de gel. Após a colocação das placas com o gel de policrilamida nos módulos tub, foram adicionadas amostras de 8 a 12 loci em cada placa de eletroforese.

Para verificar a expressão (banda clara) ou superexpressão (banda escura) da isoenzima, utilizou-se o seguinte procedimento: 1) após a corrida os géis foram imersos em solução corante pré-incubada por 30 minutos em 100 mL de tampão fósfato (NaH₂PO₄ 0,2 M e Na₂HPO₄ 0,2 M) a pH 6,0 e com adição de 4 mL de acetato de h-naftilo e 15 mL de álcool isopropílico; 2) em seguida adicionou-se 600 mg de corante (RR- Salt) dissolvido em 30 ml de álcool isopropílico e 50 ml de tampão fósfato; 3) 30 minutos de agitação para revelar a gel de poliacrilamida; 4) disponibilizou-se em uma estufa a temperatura de 37ºC por uma hora para revelar a expressão ou superexpressão da isoenzima.

Os resultados de 8 meses de amostragem foram analisados para formatação e estatística nos dois locais de amostragem (Cuiabá e Várzea...
Os dados da expressão da enzima esterase e 2) e freqüência de alelos em locais e períodos (e sua relação com a precipitação) foram analisados pelo Programa Statistic 7.0 usando a ANOVA – Análise fatorial de Variância. A partir do número de exemplares de Ae. aegypti (n) identificado durante os meses e locais de amostragem (municípios), considerou-se o fator “meses” ou “locais” como variável preditora independente e o fator esterase como variável dependente.

Para utilizar a ANOVA, os dados foram logaritimizados para log(x). Posteriormente, foi testada sua normalidade por meio do teste de Shapiro-Wilk com fator significativo para p<0,05. O teste de Levene confirmou que as variâncias foram homogêneas após logaritimização.

Os resultados dos “alelos expressos” e a variável climatológica precipitação foram importantes descritores nas variáveis dependentes: 1. Alelos expressos e 2. Alelos superexpressos, que são unidades arbitrariamente definidas para estimar as mudanças alélicas ao longo dos períodos e ambientes analisados.

RESULTADOS

Os valores médios de precipitação estão disponíveis no gráfico box plots da Figura 3, de out/2015 a nov/2016. A ANOVA fatorial identificou diferenças significativas entre os períodos de amostragem (Figura 3a; F13, 14=11.31; p<0.01) e as fases estacionais (Figura 3b; F3, 24=11.48; p<0.01) para esta variável. O pico da enchente foi registrado em fev/2016, com a maior precipitação (297 mm ± 56) e umidade relativa do ar (83% ± 4). Os períodos com pouca ou nenhuma chuva estiveram registrados entre jun/2016 (5 mm ± 4) e ago/2016 (0 mm ± 0), pertinente à forte estiagem. Os valores médios da temperatura máxima ocorreram em out/2015 (35,79°C ± 0,65) e os menores valores em jun/2016 (29,21°C ± 0,97), enquanto que a temperatura mínima alcançou os menores valores em jul/2016 (15,52 ± C ± 1,18).

Um total de 385 espécimes de Ae. aegypti foi analisado para a expressão diferencial (mínimo =1, alelos expressos-bandas claras; máximo =2, alelos superexpressos-bandas escuras), nos dois locais de amostragem (Cuiabá: n = 191; Várzea Grande: n = 194).

Na Figura 4, observa-se a distinção na intensidade dos alelos expressos e superexpressos com uma característica expressão das bandas mais claras e bandas escuras da isoenzima, respectivamente. O grau de coloração das bandas, nos géis, refletiu o grau da síntese ou atividade das esterases (α-esterases), tendo para cada indivíduo de Ae. aegypti analisado em cada locus.

A ANOVA fatorial identificou diferenças altamente significativas na frequência dos alelos expressos e superexpressos entre os períodos considerados (Figura 5A; F7,377 = 6.89; p<0.01) e entre as fases sazonais (Figura 5B, F3, 381 = 14.74; p <0.01). Ambos diminuíram em mar/2016 (Figura 5a), no período de “pico das águas” e retomaram um aumento de maio a novembro de 2016. Uma tendência de aumento na frequência dos alelos expressos entre out/2015 (30%±88) e fev/2016 (89%±55) foi registrada, enquanto que alelos superexpressos apresentaram populações com maiores atividades metabólicas em jun/2016 (42%±91), em período de vazante (Figura 5b).
Os valores médios da frequência dos alelos expressos e superexpressos variaram também entre os municípios. Alelos expressos aumentaram ligeiramente nos espécimes de Várzea Grande (75%±41,36) e os alelos superexpressos reduziram nos dois municípios (Figura 6), com uma leve tendência de aumento em Cuiabá (46%±24), significativo entre os locais de amostragem (F2, 13 = 12.39; p <0,01).
Figura 6– Valores médios da freqüência de alelos entre os locais de amostragem (municípios de Cuiabá e Várzea Grande) - período de out/2015 a nov/2016.

A figura 7 representa a variação dos valores médios da precipitação (mm) e da frequência dos alelos expressos significativos entre os períodos (F14, 14=4.22; p<0.01). Com a ausência de chuvas em out/2015, os valores médios de precipitação e da frequência dos alelos expressos estiveram reduzidos (63 mm ± 50; 30% ± 42, respectivamente) e a partir de nov/2015 ((174 mm ± 86; 52% ± 68; enchente) a fev/2016 (185 mm± 48; cheia), houve um incremento dos alelos com a precipitação. Peculiarmente, o oposto foi registrado em mar/2016 (197 mm ± 26), com redução da frequência alélica (0% ± 0).

Figura 7– Valores médios de Precipitação (mm) e frequência de alelos expressos, no período de out/2015 a nov/2016 dos municípios de Cuiabá e Várzea Grande, estado de Mato Grosso.
DISCUSSÃO

As diferenças altamente significativas dos valores da frequência dos alelos expressos nas populações estudadas entre os períodos e as fases sazonais mostraram a complexidade envolvida nas peculiaridades do vetor e revelaram a dificuldade de manter um único modelo de controle que é utilizado ao longo do ano.

A redução da expressão alélica durante a cheia de mar/2016 provavelmente esteve relacionada à disponibilidade de um maior número de criadouros às áreas adjacentes ao local de amostragem, ou a presença de outros substratos nos microhábitats que atraem as fêmeas para oviposição extrínseca às armadilhas, com uma consequente redução da abundância dos vetores nas ovitrampas. Entretanto, observou-se que nos períodos antecedentes, mesmo durante a cheia (fev/2016), as ovitrampas mostraram-se sensíveis para captura de adultos e detecção da presença dos ovos dos mosquitos após sua oviposição nas palhetas. Desta forma, a frequência alélica aumentou em 89% para aquele período. O seu registro nas áreas biomonitoradas nos dois municípios mostrou que estas armadilhas foram importantes ferramentas para vigilância e detecção em áreas de risco com a presença de Ae. aegypti, mesmo que a abundância tenha sido reduzida esporadicamente em alguns locais e períodos.

A variabilidade na expressão das bandas de esterases entre os locais de amostragem e entre os períodos foi verificada em acordo com a primeira hipótese, com alta significância, principalmente em relação à precipitação sazonal. Houve, portanto, diferenças significativas de frequência nas bandas esterásicas, cujos resultados demonstraram que, em geral, a variabilidade da expressão alélica respondeu ao regime de chuva em determinado período de incremento da precipitação (fev/2016), e consequente aumento dos alelos expressos. O regime de chuvas determina o crescimento populacional de Ae. aegypti, como registrado para a expressão dos alelos nos resultados desta pesquisa. De outra sorte, a influência de fatores ambientais, principalmente a precipitação e temperatura, foi marcante na dinâmica populacional da espécie em questão.

A análise das isoenzimas esterásicas fornece dados importantes a respeito das populações estudadas. Os resultados dos géis com alelos superexpressos denotaram aumento de mecanismos metabólicos de alguns exemplares de Ae. aegypti, provavelmente pertinente à redução do emprego de inseticidas em período de estiagem/vazante, ou resultantes de populações mais antigas que deixaram poucos indivíduos com a maior expressão alélica. O incremento da esterase nos períodos de seca (jun/2016) e os maiores valores médios de expressão da enzima em Várzea Grande (75%±41,36) pode estar relacionado a algumas características biológicas dos mosquitos, e mesmo seu fitness reprodutivo diante da pressão ambiental com o uso de inseticidas pelos órgãos públicos ou particularmente pelas pessoas residentes próximo aos locais dos criadouros. Muitos organismos vetores favorecem o desenvolvimento de sua resistência frente a essa pressão via compostos químicos, incorporando a maior concentração de esterases em seus organismos nas próximas gerações como forma de adaptação, cujos descendentes poderão sustentar o maior número de alelos expressos para este fator (resistência).

Assim, compostos químicos não produzirão o efeito tóxico esperado em seu organismo. Os resultados do box plot mostraram que alelos “superexpressos” alcançaram em torno de 30% nas populações analisadas em sua frequência no município de Cuiabá, e os vetores deixaram uma maior expressão alélica a seus descendentes adaptados às áreas de risco.

Diferenciação genética de populações foram observadas nos primeiros estudos de estrutura genética realizados em Ae. aegypti no Brasil. A segunda hipótese mostrou-se pertinente à variabilidade do grau de expressão e frequência dos alelos nas diferentes populações vetoriais. Quando as chuvas diminuíram no período de vazante, houve um ligeiro aumento nos alelos superexpressos ou em resposta a processos que possam gerar adaptabilidade ambiental ou que a maioria dessas variações seja pertinente ao acaso. Souza-Polezzi e Bicudo sugeriram que a substituição de alelos decorrente da pressão ambiental ou mesmo na oscilação genética seria
A investigação do mecanismo de resistência das populações de Ae. aegypti nos municípios de Cuiabá e Várzea Grande, exposto pelos resultados dos alelos expressos e superexpressos, consistiu na obtenção dos níveis de esterases. Os resultados registrados neste estudo indicaram que o método de uso de ovitrampas e os marcadores de isoenzimas esterásicas foi sensível o suficiente para detectar variações na frequência dos alelos expressos, em populações naturais deste vetor nos dois municípios. De uma maneira geral, a frequência do alelo de resistência foi diferente entre os dois municípios estudados, o que pode indicar um efeito de seleção de distintos ambientes sobre os alelos, até como a presença de criadouros.

CONCLUSÃO

AGRADECIMENTOS: Os autores agradecem à equipe do Laboratório de Entomologia e Genética da Universidade Federal de Mato Grosso pelo espaço concedido para análise laboratorial e à Universidade de Cuiabá. Este trabalho foi financiado pelo FAPEMAT (Fundação de Amparo à Pesquisa do Estado de Mato Grosso) de acordo com o Edital de Convocação Universal FAPEMAT nº 005-2015. 222796/2015 em parceria com a UNEMAT (Universidade do Estado de Mato Grosso) and IFMT (Instituto Federal de Mato Grosso).
