Online Supplement

Spatio-Temporal Models with Space-Time Interaction and Their Applications to Air Pollution Data

Soudeep Deb and Ruey S Tsay

University of Chicago

1. Additional figures

Figure 1: Scatter plots of the square roots of the PM$_{2.5}$ observations, with respect to relative humidity (left) and temperature (right)
Figure 2: (Top) Standardized residuals are plotted against fitted values; (Bottom) Standardized residuals are plotted corresponding to different months

2. Proof of Theorem 1

Note that the set-up of our problem is similar to a generalized least squares (GLS) problem, where $Y = X\theta + \epsilon$, such that $\epsilon \sim N(0, \sigma^2\Omega)$. Following our previous notations, $\Omega = (\Sigma_v + D)$, where D is a diagonal matrix with diagonal elements equal to some τ_j^2.

Now, for proving the required result, we define three different estimators of θ. Below, $\hat{\theta}$ is the estimator we are considering.
2. PROOF OF THEOREM 1

In this study, \(\hat{\theta}_G \) denotes the usual GLS estimator, and \(\hat{\theta}_F \) is a feasible GLS estimator.

\[
\hat{\theta} = (X'\hat{\Omega}^{-1/2}W\hat{\Omega}^{-1/2}X)^{-1}(X'\hat{\Omega}^{-1/2}W\hat{\Omega}^{-1/2}Y)
\]

\[
\hat{\theta}_G = (X'\Omega^{-1}X)^{-1}(X'\Omega^{-1}Y)
\]

\[
\hat{\theta}_F = (X'\hat{\Omega}^{-1}X)^{-1}(X'\hat{\Omega}^{-1}Y)
\]

In the above, \(W \) is the weight matrix as defined in Section 3.2 of the main paper and \(\hat{\Omega} \) is our estimate of the covariance matrix. For convenience, we use \(N = nT \) hereafter. Following Baltagi [2011, Chapter 9], we know that \(\sqrt{N}(\hat{\theta}_G - \theta) \) and \(\sqrt{N}(\hat{\theta}_F - \theta) \) have the same asymptotic distribution \(N(0, \sigma^2Q^{-1}) \), where \(Q = \lim(X'\Omega^{-1}X/N) \) as \(N \to \infty \), if \(X'(/\hat{\Omega}^{-1} - \Omega^{-1})X/N \overset{P}{\to} 0 \) and \(X'(\hat{\Omega}^{-1} - \Omega^{-1})\varepsilon/N \overset{P}{\to} 0 \). Further, a sufficient condition for this to hold is that \(\hat{\Omega} \) is a consistent estimator for \(\Omega \) and that \(X \) has a satisfactory limiting behavior.

Let us now assume that the estimate \(\hat{\tau}_j^2 \) is consistent for \(\tau_j^2 \), for all \(j \). That would automatically ensure the consistency of \(\hat{\Omega} \) and thereby we can conclude that \(\hat{\theta}_F \) and \(\hat{\theta}_G \) have same asymptotic distribution. Further, note that \(X'\hat{\Omega}^{-1/2}W\hat{\Omega}^{-1/2}X - X'\hat{\Omega}^{-1}X = X'\hat{\Omega}^{-1/2}(W - I)\hat{\Omega}^{-1/2}X \). Taking any appropriate norm (2-norm, for example) on both sides, we can argue that

\[
\left\|X'\hat{\Omega}^{-1/2}W\hat{\Omega}^{-1/2}X - X'\hat{\Omega}^{-1}X\right\| \to 0
\]

as \(N \to \infty \), in view of the fact that \(\|W - I\| = 2/\log N \), and that \(\hat{\Omega} \) is a consistent estimator for \(\Omega \), the population covariance matrix. In a similar fashion, we can show that

\[
\left\|X'\hat{\Omega}^{-1/2}W\hat{\Omega}^{-1/2}\varepsilon - X'\hat{\Omega}^{-1}\varepsilon\right\| \to 0
\]

as \(N \to \infty \), and thus we can conclude that \(\sqrt{N}(\hat{\theta} - \theta) \) and \(\sqrt{N}(\hat{\theta}_F - \theta) \) have the same asymptotic distribution.

Clearly, all we need to prove is that \(\hat{\tau}_j^2 \) is a consistent estimator for \(\tau_j^2 \) for all \(j \). To this end, recall that \(\hat{\tau}_j^2 \) is the maximum likelihood estimator (MLE) of \(\tau_j^2 \) for the problem \(\hat{\varepsilon}_j \sim N(0, (\Sigma^{(j)} + \tau_j^2I)) \), where \(\hat{\varepsilon}_j \) is the vector of scaled residuals corresponding to the \(j \)th season and \(\Sigma^{(j)} \) is the submatrix of \(\Sigma \) corresponding to the same. It is known that MLE is a consistent estimator for such problems. Let \(n_j \) be the length of \(\varepsilon_j \). Since \(T \to \infty \), it is clear that the number of observations per season will also approach infinity, and thus \(n_j \to \infty \). Hence, \(\hat{\tau}_j^2 \) is consistent for \(\tau_j^2 \) and that ends our proof for the asymptotic normality of \(\hat{\theta} \). The consistency result follows automatically from the above.
Badi H. Baltagi. *Econometrics*. Springer Texts in Business and Economics. Springer, Heidelberg, fifth edition, 2011. URL https://doi.org/10.1007/978-3-642-20059-5.

Department of Statistics, University of Chicago

E-mail: sdeb@uchicago.edu

University of Chicago Booth School of Business

E-mail: ruey.Tsay@chicagobooth.edu