Research Article

Supervised Clustering Based on DPclusO: Prediction of Plant-Disease Relations Using Jamu Formulas of KNAPsAcket Database

Sony Hartono Wijaya, Husnawati Husnawati, Farit Mochamad Afendi, Irmanida Batubara, Latifah K. Darusman, Md. Altaf-Ul-Amin, Tetsuo Sato, Naoaki Ono, Tadao Sugiura, and Shigehiko Kanaya

1 Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
2 Department of Computer Science, Bogor Agricultural University, Kampus IPB Dramaga, Jl. Meranti, Bogor 16680, Indonesia
3 Department of Biochemistry, Bogor Agricultural University, Kampus IPB Dramaga, Jl. Meranti, Bogor 16680, Indonesia
4 Department of Statistics, Bogor Agricultural University, Kampus IPB Dramaga, Jl. Meranti, Bogor 16680, Indonesia
5 Biopharmaca Research Center, Bogor Agricultural University, Kampus IPB Taman Kencana, Jl. Taman Kencana No. 3, Bogor 16151, Indonesia

Correspondence should be addressed to Shigehiko Kanaya; skanaya@gtc.naist.jp

Received 30 November 2013; Accepted 18 February 2014; Published 7 April 2014

Academic Editor: Samuel Kuria Kiboi

Copyright © 2014 Sony Hartono Wijaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using the network clustering algorithm DPclusO. By using matching score of a cluster, the dominant disease and high frequency plant associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of previously published results and were found to produce around 90% successful predictions.

1. Introduction

Big data biology, which is a discipline of data-intensive science, has emerged because of the rapid increasing of data in omics fields such as genomics, transcriptomics, proteomics, and metabolomics as well as in several other fields such as ethnomedicinal survey. The number of medicinal plants is estimated to be 40,000 to 70,000 around the world [1] and many countries utilize these plants as blended herbal medicines, for example, China (traditional Chinese medicine), Japan (Kampo medicine), India (Ayurveda, Siddha, and Unani), and Indonesia (Jamu). Nowadays, the use of traditional medicines is rapidly increasing [2, 3]. These medicines consist of ingredients made from plants, animals, minerals, or combination of them. The traditional medicines have been used for generations for treatments of diseases or maintaining health of people and the most popular form of traditional medicine is herbal medicine. Blended herbal medicines as well as single herb medicines include a large number of constituent substances which exert effects on human physiology through a variety of biological pathways. The KNAPsACk Family database systems can be used to comprehensively understand the medicinal usage of plants based upon traditional and modern knowledge [4, 5]. This
ID	Disease	Class of disease
1	Abdominal pain	3
2	Abdominal pain, diarrhea	3
3	Acne	16
4	Acne, skin problems (cosmetics)	16
5	Amenorrhoea, dysmenorrhoea	6
6	Amenorrhoea, irregular menstruation	6
7	Anaemia	1
8	Appendicitis, urinary tract infection, tonsillitis	3
9	Arthralgia	11
10	Arthralgia, arthritis	11
11	Asthma	15
12	Benign prostatic hyperplasia (Bph)	10
13	Breast disorder	6
14	Bronchidrosis	16
15	Bronchitis	15
16	Cancer	2
17	Cancer pain	2
18	Cancer, inflammation	2
19	Colic abdomen, bloating (in infant)	3
20	Common cold	15
21	Common cold, dyspepsia, insect bites	15, 3, 16
22	Common cold, influenza	15
23	Cough	15
24	Degenerative disease	14
25	Dermatitis, urticaria, erythema	16
26	Diabetes	14
27	Diabetic gangrene	16
28	Diarrhea	3
29	Diarrhea, abdominal pain	3
30	Diseases of the eye	5
31	Disorders in pregnancy	6
32	Dysmenorrhoea	6
33	Dysmenorrhoea, irregular menstruation	6
34	Dysmenorrhoea, menstrual syndrome	6
35	Dyspepsia	3
36	Dyspnoea	15
37	Dyspnoea, cough, orthopnoea	15
38	Fatigue	11
39	Fatigue, anaemia, loss appetite	1
40	Fatigue, lack of sexual function	6
41	Fatigue, low back pain	11
42	Fatigue, myalgia, arthralgia	11
43	Fatigue, osteoarthritis	11
44	Fertility problem	6, 10
45	Fever	0
to be the main ingredients of Jamu. The other 275 plants are considered to be supporting ingredients in Jamu because their efficacy has not been established yet.

Network biology can be defined as the study of the network representations of molecular interactions, both to analyze such networks and to use them as a tool to make biological predictions [9]. This study includes modelling, analysis, and visualizations, which holds important task in life science today [10]. Network analysis has been increasingly utilized in interpreting high throughput data on omics information, including transcriptional regulatory networks [11], coexpression networks [12], and protein–protein interactions [13]. We can easily describe relationship between entities in the network and also concentrate on part of the network consisting of important nodes or edges. These advantages can be adopted for analyzing medicinal usage of plants in Jamu and diseases. Network analysis provides information about groups of Jamu that are closely related to each other in terms of ingredient similarity and thus allows precise investigation to relate plants to diseases. On the other hand, multivariate statistical methods such as PLS can assign plants to efficacy by global linear modeling of the Jamu ingredients and efficacy. However, there is still lack of appropriate network based methods to learn how and why many plants are grouped in certain Jamu formula and the combination rule embedding numerous Jamu formulas.

It is needed to explore the relationship between Indonesian herbal plants used in Jamu medicines and the diseases which are treated using Jamu medicines. When effectiveness of a plant against a disease is firmly established, then further analysis about that plant can be proceeded to molecular level to pinpoint the drug targets. The present study developed a network based approach for prediction of plant-disease relations. We utilized the Jamu data from the KNApSAcK database. A Jamu network was constructed based on the similarity of their ingredients and then Jamu clusters were generated using the network clustering algorithm DPClusO [14, 15]. Plant–disease relations were then predicted by determining the dominant diseases and plants associated with selected Jamu clusters.

2. Methods

2.1. Concept of the Methodology. Jamu medicines consist of combination of medicinal plants and are used to treat versatile diseases. In this work we exploit the ingredient similarity between Jamu medicines to predict plant-disease relations. The concept of the proposed method is depicted in Figure 1. In step 1 a network is constructed where a node is a Jamu medicine and an edge represents high ingredient similarity between the corresponding Jamu pair. In Figure 1, the nodes of the same color indicate the Jamu medicines used for the same disease. The similarity is represented by Pearson correlation coefficient [16, 17]; that is,

$$\text{corr}(X, Y) = \frac{\sum_{i=1}^{l} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{l} (x_i - \bar{x})^2 \sum_{i=1}^{l} (y_i - \bar{y})^2}},$$

(1)
Table 2: Distribution of Jamu formulas according to 18 classes of disease (classes of diseases are determined by NCBI in ID1 to ID16 and by the present study in ID17 and ID18 represented by asterisks in Ref. columns).

ID	Class of disease (NCBI)	Ref.	Number of Jamu	Percentage
1	Blood and lymph diseases	NCBI	201	6.41
2	Cancers	NCBI	32	1.02
3	The digestive system	NCBI	457	14.56
4	Ear, nose, and throat	NCBI	2	0.06
5	Diseases of the eye	NCBI	1	0.03
6	Female-specific diseases	NCBI	382	12.17
7	Glands and hormones	NCBI	0	—
8	The heart and blood vessels	NCBI	57	1.82
9	Diseases of the immune system	NCBI	22	0.70
10	Male-specific diseases	NCBI	17	0.54
11	Muscle and bone	NCBI	649	20.68
12	Neonatal diseases	NCBI	0	—
13	The nervous system	NCBI	32	1.02
14	Nutritional and metabolic diseases	NCBI	576	18.36
15	Respiratory diseases	NCBI	313	9.97
16	Skin and connective tissue	NCBI	163	5.19
17	The urinary system	*	90	2.87
18	Mental and behavioral disorders	*	21	0.67
	The number of Jamu classified into multiple disease classes		119	3.79
	The number of Jamu unclassified		4	0.13
	Total Jamu formulas		3138	100.00

where \(x_i\) is the weight of plant-\(i\) in Jamu \(X\), \(y_i\) is the weight of plant-\(i\) in Jamu \(Y\), \(\bar{x}\) is mean of Jamu \(X\), and \(\bar{y}\) is mean of Jamu \(Y\). The higher similarity between Jamu pairs the higher the correlation value. In the present study, \(x_i\) and \(y_i\) are assigned as 1 or 0 in cases the \(i\)th plant is, respectively, included or not included in the formula. Under such condition, Pearson correlation corresponds to fourfold point correlation coefficient; that is,

\[
\text{corr}(X, Y) = \frac{ad - bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}, \quad (2)
\]

where \(a, b, c,\) and \(d\) represent the numbers of plants included in both \(X\) and \(Y\), in only \(X\), in only \(Y\), and in neither \(X\) nor \(Y\), respectively.

In step 2 the Jamu clusters are generated using network clustering algorithm DPClusO. DPClusO can generate clusters characterized by high density and identified by periphery; that is, the Jamu medicines belonging to a cluster are highly cohesive and separated by a natural boundary. Such clusters contain potential information about plant-disease relations. In step 3 we assess disease-dominant clusters based on matching score represented by the following equation:

\[
\text{matching score} = \frac{\text{number of Jamu belonging to the same disease}}{\text{total number of Jamu in the cluster}}. \quad (3)
\]

Matching score of a cluster is the ratio of the highest number of Jamu associated with a single disease to the total number of Jamu in the cluster. We assign a disease to a cluster for which the matching score is greater than a threshold value. In step 4, we determine the frequency of plants associated with a cluster if and only if a disease is assigned to it in the previous step. The highest frequency plant associated to a cluster is considered to be related to the disease assigned to that cluster. True positive rates (TPR) or sensitivity was used to evaluate resulting plants. TPR is the proportion of the true positive predictions out of all the true predictions, defined by the following formula [18]:

\[
\text{TPR} = \frac{\text{TP}}{\text{TP + FN}}, \quad (4)
\]

where true positive (TP) is the number of correctly classified and false negative (FN) is the number of incorrectly rejected entities. We refer to the proposed method as supervised clustering because after generation of the clusters we narrow down the candidate clusters for further analysis based on supervised learning and thus improve the accuracy of prediction of the proposed method.

3. Result and Discussion

3.1. Construction and Comparison of Jamu and Random Networks. We used the same number of Jamu formulas from previous research [6], 3138 Jamu formulas, and the set union
Input: Jamu formulas

Step 1
Constructing ingredient correlation network

Step 2
Extracting highly connected Jamu

Step 3
Supervised analysis for voting utilization

Step 4
Listing ingredients

Output: plant-disease relations

Figure 1: Concept of the methodology: network construction based on ingredient similarity between individual Jamu medicines, network clustering, and classification of medicinal plants to dominant disease.

Figure 2: The network consisting of 0.7% Jamu pairs (correlation value above or equal to 0.596).
Table 3: Statistics of three datasets.

Parameters	0.7%	0.5%	0.3%
Total pairs	34,454	24,610	14,766
Minimum correlation	0.596	0.665	0.718
Number of Jamu formulas	2,779	2,496	2,085
Average degree	24.8	19.7	14.2
(Random network: ER)	(24.8 ± 0.0)	(19.7 ± 0.0)	(14.2 ± 0.0)
(Random network: BA)	(24.7 ± 0.1)	(19.7 ± 0.1)	(14.1 ± 0.1)
(Random network: CNN)	(24.7 ± 0.4)	(19.7 ± 0.4)	(14.0 ± 0.4)
Clustering coefficient	0.521	0.520	0.540
(Random network: ER)	(0.009 ± 0.000)	(0.008 ± 0.000)	(0.007 ± 0.000)
(Random network: BA)	(0.030 ± 0.001)	(0.028 ± 0.001)	(0.026 ± 0.001)
(Random network: CNN)	(0.246 ± 0.008)	(0.239 ± 0.008)	(0.233 ± 0.010)
Number of connected components	69	119	254
(Random networks: ER, BA, CNN)	(1)	(1)	(1)
Network diameter	15	17	20
(Random network: ER)	(4.0 ± 0.0)	(4.0 ± 0.0)	(5.0 ± 0.0)
(Random network: BA)	(10.8 ± 0.8)	(11.2 ± 1.5)	(10.8 ± 0.9)
(Random network: CNN)	(14.6 ± 1.9)	(14.1 ± 1.4)	(14.7 ± 1.3)
Network density	0.008	0.008	0.007
(Random network: ER)	(0.009 ± 0.000)	(0.008 ± 0.000)	(0.007 ± 0.000)
(Random network: BA)	(0.009 ± 0.000)	(0.008 ± 0.000)	(0.007 ± 0.000)
(Random network: CNN)	(0.009 ± 0.000)	(0.008 ± 0.000)	(0.007 ± 0.000)

DPClusO			
Total number of clusters	1,746	1,411	938
Number of clusters with more than 2 Jamu (%)	1,296	873	453
Number of Jamu formulas in the biggest cluster	118	104	89

of all formulas consists of 465 plants. We assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ICD) version 10 from World Health Organization (WHO, Table 1) [19]. Those 116 diseases are mapped to 18 classes of disease, which contains 16 classes of disease from National Center for Biotechnology Information (NCBI) [20] and 2 additional classes. Table 2 shows distribution of 3138 Jamu into 18 classes of disease. According to this classification, most Jamu formulas are useful for relieving muscle and bone, nutritional and metabolic diseases, and the digestive system. Furthermore, there is no Jamu formula classified into glands and hormones and neonatal disease classes. We excluded 4 Jamu formulas which are used to treat fever in the evaluation process because this symptom is very general and almost appeared in all disease classes. Jamu-plant-disease relations can be represented using 2 matrices: first matrix is Jamu-plant relation with dimension 3138×465 and the second matrix is Jamu-disease relation with dimension 3138×18.

After completion of data acquisition process, we calculated the similarity between Jamu pairs using correlation measure. The similarity measures between Jamu pairs were determined based on their ingredients. Corresponding to K (3138 in present case) Jamu formulas, there can be maximum $K \times (K - 1)/2 = (3138 \times (3137/2)) = 4,921,953$ Jamu pairs. We sorted the Jamu pairs based on correlation value using descending order and selected top-n (0.7%, 0.5%, and 0.3%) pairs of Jamu formula to create 3 sets of Jamu pairs. The number of Jamu pairs for 0.7%, 0.5%, and 0.3% datasets is 34,454 pairs, 24,610 pairs, and 14,766 pairs and the corresponding minimum correlation values are 0.596, 0.665, and 0.718, respectively. The three datasets of Jamu pairs can be regarded as three undirected networks (step 1 in Figure 1) consisting of 2779, 2496, and 2085 Jamu formulas, respectively (Table 3). Figure 2 shows visualization of 0.7% Jamu networks using Cytoscape Spring Embedded layout. We verified that the degree distributions of the Jamu networks are somehow close to those of scale-free networks, that is, roughly are of power law type. However, in the high-degree region the power law structure is broken (Figure 3). Nearly accurate relation of power laws between medicinal herbs and the number of formulas utilizing them was observed in Jamu system but not in Kampo (Japanese crude drug system) [4]. The difference of formulas between Jamu and Kampo can be explained by herb selection by medicinal researchers based on the optimization process of selection [4]. Thus, the broken structure of power law corresponding to Jamu networks is associated with the fact that selection of Jamu pairs based on ingredient correlation leads to nonrandom selection. We also constructed random networks according
Figure 3: Degree distributions of three Jamu networks roughly follow power law. The x-axis corresponds to the log of degree of a node in the Jamu network and the y-axis corresponds to the log of the number of Jamu.

We determined five statistical indexes, that is, average degree, clustering coefficient, number of connected component, network diameter, and network density of each Jamu network and also of each random network. The clustering coefficient C_n of a node n is defined as $C_n = 2e_n/(k_n(k_n-1))$, where k_n is the number of neighbors of n and e_n is the number of connected pairs between all neighbors of n. The network diameter is the largest distance between any two nodes. If a network is disconnected, its diameter is the maximum of all diameters of its connected components. A network's density is the ratio of the number of edges in the network over the total number of possible edges between all pairs of nodes (which is $n(n-1)/2$, where n is the number of vertices, for an undirected graph). The average number of neighbors and the network density are the same for the real and random networks of the same size as it is shown in Table 3. In case of 0.7% and 0.5% real networks, the clustering coefficient is roughly the same and in case of 0.3% the clustering coefficient is somewhat larger. The number of connected components and the diameter of the Jamu networks gradually decrease as the network grows bigger by addition of more nodes and edges.
Very different values corresponding to clustering coefficient, connected component, and network diameter imply that the Jamu networks are quite different from all 3 types of random networks. The differences between Jamu networks and ER random networks are the largest. Random networks constructed based on other two models are also substantially different from Jamu networks. Based on the fact that the random networks constructed based on all three types of models are different from the Jamu networks, it can be concluded that structure of Jamu networks is reasonably biased and thus might contain certain information about plant-disease relations. Specially, much higher value corresponding to clustering coefficient indicates that there are clusters in the networks worthy to be investigated. To extract clusters from the Jamu networks (step 2 in Figure 1) we applied DPClusO network clustering algorithm [14] to generate overlapping clusters based on density and periphery tracking.

3.2 Supervised Clustering Based on DPClusO. DPClusO is a general-purpose clustering algorithm and useful for finding overlapping cohesive groups in an undirected simple graph.
Table 4: List of plants assigned to each disease.

Number	Plants name	Hit-miss status
A. Disease: blood and lymph diseases		
1	Tamarindus indica	Hit *
2	Allium sativum	Hit *
3	Tinospora tuberculata	Hit *
4	Piper retrofractum	Hit
5	Syzygium aromaticum	Hit *
6	Bupleurum falcatum	Hit
7	Graptoxyllum pictum	Hit
8	Plantago major	Hit
9	Zingiber officinale	Hit *
10	Cinnamomum burmannii	Hit *
11	Soya max	Miss *
12	Kaempferia galanga	Hit
13	Curcuma longa	Hit *
14	Piper nigrum	Hit
15	Zingiber aromaticum	Hit *
16	Phyllanthus urinaria	Hit *
17	Oryza sativa	Hit
18	Myristica fragrans	Hit *
19	Alstonia scholaris	Hit *
20	Syzygium polyanthum	Miss
21	Andrographis paniculata	Hit *
22	Sida rhombifolia	Miss
23	Cyperus rotundus	Hit
24	Sonchus arvensis	Miss
25	Curcuma aeruginosa	Hit *
26	Curcuma xanthorrhiza	Hit
B. Disease: cancers		
27	Foeniculum vulgare	Hit
28	Imperata cylindrica	Hit
29	Tamarindus indica	Hit
30	Pluchea indica	Hit *
31	Zingiber officinale	Hit
32	Punicia granatum	Hit
33	Uncaria rhynchophylla	Hit
34	Zingiber officinale	Hit
35	Guazuma ulmifolia	Hit *
36	Nigella sativa	Hit
37	Terminalia bellirica	Hit
38	Baeckea frutescens	Hit
39	Phaseolus radiatus	Hit
40	Amomum compactum	Hit *
41	Saurous androgynus	Hit
42	Usnea misaminensis	Hit
43	Cinnamomum burmannii	Hit *
44	Melaleuca leucadendra	Hit
45	Coriandrum sativum	Hit

Table 4: Continued.

Number	Plants name	Hit-miss status
19	Curcuma longa	Hit
20	Zingiber aromaticum	Hit
21	Phyllanthus urinaria	Hit
22	Myristica fragrans	Hit
23	Hydrocotyle asiatica	Hit *
24	Carica papaya	Hit
25	Mentha arvensis	Hit
26	Lepiopirops ternatensis	Hit
27	Helicteres isora	Hit
28	Andrographis paniculata	Hit
29	Symplocos odoratissima	Hit
30	Schisandra chinensis	Hit
31	Blumea balsamifera	Hit
32	Silybum marianum	Hit *
33	Cinnamomum sintoc	Hit
34	Elephantopus scaber	Hit
35	Curcuma aeruginosa	Hit
36	Kaempferia pandurata	Hit
37	Curcuma xanthorrhiza	Hit
38	Curcuma mangga	Hit
39	Curcuma zedoaria	Hit
40	Daucus carota	Hit *
41	Matricaria chamomilla	Hit *
42	Cymbopogon nardus	Hit *

D. Disease: female-specific diseases

Number	Plants name	Hit-miss status
1	Foeniculum vulgare	Hit
2	Imperata cylindrica	Hit
3	Tamarindus indica	Hit
4	Pluchea indica	Hit *
5	Piper retrofractum	Hit
6	Punica granatum	Hit
7	Uncaria rhynchophylla	Hit
8	Zingiber officinale	Hit
9	Guazuma ulmifolia	Hit *
10	Nigella sativa	Hit
11	Terminalia bellirica	Hit
12	Baeckea frutescens	Hit
13	Phaseolus radiatus	Hit
14	Amomum compactum	Hit *
15	Saurous androgynus	Hit
16	Usnea misaminensis	Hit
17	Cinnamomum burmannii	Hit *
18	Melaleuca leucadendra	Hit
19	Parameria laevigata	Hit
20	Parkia roxburghii	Hit
21	Piper cubeba	Hit
22	Kaempferia galanga	Hit

C. Disease: the digestive system
Table 4: Continued.

Number	Plants name	Hit-miss status
23	Coriandrum sativum	Hit
24	Kaempferia angustifolia	Hit
25	Curcuma longa	Hit
26	Zingiber aromaticum	Hit
27	Languas galanga	Hit
28	Galla lusitania	Hit
29	Quercus lusitanica	Hit
30	Hydrocotyle asiatica	Hit
31	Areca catechu	Hit
32	Lepiniopsis ternatensis	Hit
33	Helicteres isora	Hit *
34	Piper betle	Hit
35	Elephantopus scaber	Hit *
36	Kaempferia pandurata	Hit
37	Curcuma xanthorrhiza	Hit
38	Sesbania grandiflora	Hit

E. Disease: the heart and blood vessels

Number	Plants name	Hit-miss status
1	Allium sativum	Hit
2	Curcuma longa	Hit *
3	Morinda citrifolia	Hit *
4	Homalomena occulta	Hit *
5	Hydrocotyle asiatica	Hit
6	Alstonia scholaris	Hit *
7	Syzygium polyanthum	Miss *
8	Andrographis paniculata	Hit *
9	Apium graveolens	Miss
10	Imperata cylindrica	Hit

F. Disease: male-specific diseases

Number	Plants name	Hit-miss status
1	Cucurbita pepo	Miss
2	Serenoa repens	Miss
3	Baeckea frutescens	Hit
4	Phascolus radiatus	Hit
5	Curcuma longa	Hit
6	Elephantopus scaber	Hit

G. Disease: muscle and bone

Number	Plants name	Hit-miss status
1	Foeniculum vulgare	Hit
2	Clavena anisum-olens	Hit *
3	Zingiber purpureum	Hit
4	Allium sativum	Hit
5	Strychnos liguistriana	Hit
6	Tinospora cucurbitula	Hit *
7	Piper retrofractum	Hit
8	Syzygium aromaticum	Hit
9	Cola nitida	Hit *
10	Ginkgo biloba	Hit *
11	Panax ginseng	Hit
12	Equisetum debile	Hit *
13	Zingiber officinale	Hit

Number	Plants name	Hit-miss status
14	Ganoderma lucidum	Hit
15	Nigella sativa	Hit
16	Terminalia bellirica	Hit *
17	Baeckea frutescens	Hit *
18	Amomum compactum	Hit
19	Cinnamomum burmannii	Hit
20	Melaleuca leucadendra	Hit
21	Parameria laevigata	Hit *
22	Psophocarpus tetragonolobus	Hit *
23	Parkia roxburghii	Hit
24	Piper cubeba	Hit *
25	Kaempferia galanga	Hit
26	Coriandrum sativum	Hit
27	Cola acuminata	Hit
28	Coffea arabica	Hit
29	Orthosiphon stamineus	Hit
30	Curcuma longa	Hit
31	Piper nigrum	Hit
32	Alpinia galanga	Hit
33	Vitex trifolia	Hit
34	Zingiber amaricans	Hit *
35	Zingiber zerumbet	Hit
36	Zingiber aromaticum	Hit
37	Languas galanga	Hit
38	Massoia aromatica	Hit
39	Morinda citrifolia	Hit
40	Curcuma copticum	Hit *
41	Panax pseudoginseng	Hit *
42	Oryza sativa	Hit
43	Myristica fragrans	Hit
44	Pandanus amaryllifolius	Hit
45	Eurycoma longifolia	Hit
46	Hydrocotyle asiatica	Hit
47	Areca catechu	Hit *
48	Mentha arvensis	Hit *
49	Lepiniopsis ternatensis	Hit
50	Pimpinella praetan	Hit
51	Andrographis paniculata	Hit
52	Blumea balsamifera	Hit
53	Cymbopogon nardus	Hit
54	Sida rhombifolia	Hit
55	Cinnamomum sinoc	Hit
56	Piper betle	Hit *
57	Talinum paniculatum	Hit
58	Elephantopus scaber	Hit
59	Cyperus rotundus	Hit
60	Curcuma aeruginosa	Hit
61	Kaempferia pandurata	Hit *
Table 4: Continued.

Number	Plants name	Hit-miss status
62	Curcuma xanthorrhiza	Hit
63	Tribulus terrestris	Hit
64	Corydalis yanhusuo	Hit
65	Pausinystalia yohimbe	Hit

H. Disease: nutritional and metabolic diseases

Number	Plants name	Hit-miss status
66	Foeniculum vulgare	Hit
67	Glycyrrhiza uralensis	Hit
68	Zingiber purpureum	Hit
69	Allium sativum	Hit
70	Tinospora tuberculata	Hit
71	Pandanus conoideus	Hit
72	Syzygium aromaticum	Hit
73	Panica granatum	Hit
74	Zingiber officinale	Hit
75	Guazuma ulmifolia	Hit
76	Nigella sativa	Hit
77	Amomum compactum	Hit
78	Cinnamomum burmannii	Hit
79	Parameria laevigata	Hit
80	Caesalpinia sappan	Hit
81	Soya max	Hit
82	Cocos nucifera	Hit
83	Rheum tanguicum	Hit
84	Piper cubeba	Hit
85	Murraya paniculata	Hit
86	Kaempferia galanga	Hit
87	Coffea arabica	Hit
88	Orthosiphon stamineus	Hit
89	Curcuma longa	Hit
90	Piper nigrum	Hit
91	Zingiber aromaticum	Hit
92	Aloe vera	Hit
93	Phaleria papuana	Hit
94	Galla lusitania	Hit
95	Quercus lusitanica	Hit
96	Morinda citrifolia	Hit
97	Myristica fragrans	Hit
98	Momordica charantia	Hit
99	Areca catechu	Hit
100	Lepiniopsis ternatensis	Hit
101	Alstonia scholaris	Hit
102	Hibiscus sabdariffa	Hit
103	Laminaria japonica	Hit
104	Syzygium polyanthum	Hit
105	Andrographis paniculata	Hit
106	Sindora sumatrana	Hit
107	Cassia angustifolia	Hit
108	Woodfordia floribunda	Hit

Number	Plants name	Hit-miss status
109	Piper betle	Hit
110	Spirulina	Hit
111	Stevia rebaudiana	Hit
112	Theae sinensis	Hit
113	Sonchus arvensis	Hit
114	Curcuma heynneana	Hit
115	Curcuma aeruginosa	Hit
116	Kaempferia pandurata	Hit
117	Curcuma xanthorrhiza	Hit
118	Olea europaea	Hit

I. Disease respiratory diseases

Number	Plants name	Hit-miss status
119	Foeniculum vulgare	Hit
120	Clausena anisum-olens	Hit
121	Glycyrrhiza uralensis	Hit
122	Zingiber officinale	Hit
123	Syzygium aromaticum	Hit
124	Gaultheria punctata	Hit
125	Piper retrofractum	Hit
126	Panax ginseng	Hit
127	Amomum compactum	Hit
128	Cinnamomum burmannii	Hit
129	Melaleuca leucadendra	Hit
130	Parkia roxburghii	Hit
131	Cocos nucifera	Hit
132	Zingiber officinale	Hit
133	Nigella sativa	Hit
134	Cocos nucifera	Hit
135	Piper cubeba	Hit
136	Kaempferia galanga	Hit
137	Coriandrum sativum	Hit
138	Curcuma longa	Hit
139	Piper nigrum	Hit
140	Zingiber aromaticum	Hit
141	Coriandrum sativum	Hit
142	Curcuma longa	Hit
143	Piper nigrum	Hit
144	Zingiber aromaticum	Hit
145	Pandanus amaryllifolius	Hit
146	Hydrocotyle asiatica	Hit
147	Mentha arvensis	Hit
148	Myristica fragrans	Hit
149	Oryza sativa	Hit
150	Myristica fragrans	Hit
151	Pandanus amaryllifolius	Hit
152	Hydrocotyle asiatica	Hit
153	Mentha arvensis	Hit
154	Lepiniopsis ternatensis	Hit
155	Helicteres isora	Hit
156	Blumea balsamifera	Hit
157	Cymbopogon nardus	Hit
158	Piper betle	Hit
159	Curcuma xanthorrhiza	Hit
Table 4: Continued.

Number	Plants name	Hit-miss status
37	Salix alba	Hit *
38	Matricaria chamomilla	Miss *

I. Disease: skin and connective tissue

	Plants name	Hit-miss status
1	Strychnos ligustrina	Hit
2	Merremia mamoosa	Hit *
3	Piper retrofractum	Hit *
4	Santalum album	Hit
5	Zingiber officinale	Hit *
6	Citrus aurantium	Hit
7	Citrus hystrix	Hit
8	Cassia siamea	Hit
9	Cocos nucifera	Hit
10	Trigonella foenum-graecum	Hit
11	Orthosiphon stamineus	Hit
12	Curcuma longa	Hit
13	Vettiveria zizanioides	Hit
14	Aloe vera	Hit
15	Rosa chinensis	Hit
16	Jasminum sambac	Hit
17	Phyllanthus urnaria	Hit
18	Mentha piperita	Hit
19	Oryza sativa	Hit
20	Myristica fragrans	Hit *
21	Hydrocotyle asiatica	Hit
22	Lepiopsis ternatensis	Hit
23	Alstonia scholaris	Hit
24	Andrographis paniculata	Hit
25	Cymbopogon nardus	Hit
26	Piper betle	Hit
27	Thea sinensis	Hit
28	Curcuma heyneana	Hit
29	Kaempferia pandurata	Hit *
30	Curcuma xanthorrhiza	Hit
31	Melaleuca leucadendra	Hit
32	Matricaria chamomilla	Miss *

J. Disease: the urinary system

	Plants name	Hit-miss status
1	Foeniculum vulgare	Hit *
2	Imperata cylindrica	Hit *
3	Strychnos ligustrina	Hit *
4	Plantago major	Hit
5	Zingiber officinale	Hit *
6	Cinnamomum burmannii	Hit *
7	Strobilantes crispus	Hit
8	Kaempferia galanga	Hit *
9	Orthosiphon stamineus	Hit
10	Phyllanthus urnaria	Hit
11	Blumea balsamifera	Hit *
12	Sonchus arvensis	Hit
13	Curcuma xanthorrhiza	Hit

* indicates that plant will not assigned if we use matching score >0.7.

![Figure 6](image)

Figure 6: Distribution of 135 plants assigned based on 0.7% dataset with respect to the number of diseases they are assigned to.

for any type of application. It ensures coverage and performs robustly in case of random addition, removal, and rearrangement of edges in protein-protein interaction (PPI) networks [14]. While applying DPClusO, the parameter values of density and cluster property that we used in this experiment are 0.9 and 0.5, respectively [15]. Table 3 shows the summary of clustering result by DPClusO. Because clusters consisting of two Jamu formulas are trivial clusters, for the next steps we only use clusters each of which consists of 3 or more Jamu formulas. The number of total clusters increases along with the larger dataset, although the threshold correlation between Jamu pairs decreases. We evaluated the clustering result using matching score to determine dominant disease for every cluster (step 3 in Figure 1). Matching score of a cluster is the ratio of the highest number of Jamu associated with the same disease to the total number of Jamu in the cluster. Thus matching score is a measure to indicate how strongly a disease is associated to a cluster. Figure 4 shows the distribution of the clusters with respect to matching score from three datasets. All datasets have the highest frequency of clusters at matching score >0.9 and overall most of the clusters have higher matching score, which means most of the DPClusO generated clusters can be confidently related to a dominant disease. Furthermore the number of clusters with matching score >0.9 is remarkably larger compared to the same in other ranges of matching score in case of the 0.3% dataset (Figure 4(c)). If we compare the ratio of frequency of clusters at matching score >0.9 for every dataset, the 0.3% dataset has the highest ratio with 40.84% (of 453), compared to 29.67% (of 873) and 21.91% (of 1296), in case of 0.5% and 0.7% datasets, respectively. Thus, the most reliable species to disease relations can be predicted at matching score >0.9 corresponding to the clusters generated from 0.3% dataset.

Figure 5(a) shows the success rate for all 3 datasets with respect to threshold matching scores. Success rate is defined as the ratio of the number of clusters with matching score larger than the threshold to the total number of clusters. As expected it tends to produce lower success rate if we decrease correlation value to create the datasets. However more clusters are generated and more information can be extracted when we lower the threshold correlation value. The success rate increases rapidly as the matching score decreases...
Table 5: Relation between disease classes in NCBI and efficacy classes reported by Afendi et al. [6].

Class of disease	Ref.	Efficacy class
D1 Blood and lymph diseases	NCBI	E7 Pain/inflammation (PIN)
D2 Cancers	NCBI	E7 Pain/inflammation (PIN)
D3 The digestive system	NCBI	E4 Gastrointestinal disorders (GST)
D4 Ear, nose, and throat	NCBI	E7 Pain/inflammation (PIN)
D5 Diseases of the eye	NCBI	E7 Pain/inflammation (PIN)
D6 Female-specific diseases	NCBI	E5 Female reproductive organ problems (FML)
D7 Glands and hormones	NCBI	E7 Pain/inflammation (PIN)
D8 The heart and blood vessels	NCBI	E7 Pain/inflammation (PIN)
D9 Diseases of the immune system	NCBI	E7 Pain/inflammation (PIN)
D10 Male-specific diseases	NCBI	E6 Musculoskeletal and connective tissue disorders (MSC)
D11 Muscle and bone	NCBI	E6 Musculoskeletal and connective tissue disorders (MSC)
D12 Neonatal diseases	NCBI	E7 Pain/inflammation (PIN)
D13 The nervous system	NCBI	E7 Pain/inflammation (PIN)
D14 Nutritional and metabolic diseases	NCBI	E2 Disorders of appetite (DOA)
D15 Respiratory diseases	NCBI	E4 Gastrointestinal disorders (GST)
D16 Skin and connective tissue	NCBI	E8 Respiratory disease (RSP)
D17 The urinary system	*	E7 Pain/inflammation (PIN)
D18 Mental and behavioural disorders	*	E9 Wounds and skin infections (WND)
		E1 Urinary related problems (URI)
		E3 Disorders of mood and behavior (DMB)

from 0.9 to 0.6 and after that the slope of increase of success rate decreases. Therefore in this study we empirically decide 0.6 as the threshold matching score to predict plant-disease relations.

3.3. Assignment of Plants to Disease. By using DPclusO resulting clusters, we assigned plants to classes of disease. Based on a threshold matching score we assigned dominant disease to a cluster. Then we assign a plant to a cluster by way of analyzing the ingredients of the Jamu formulas belonging to that cluster and determining the highest frequency plant, that is, the plant that is used for maximum number Jamu belonging to that cluster (step 4 in Figure 1). Thus we assign a disease and a plant to each cluster having matching score greater than a threshold. Our hypothesis is that the disease and the plant assigned to the same cluster are related.

The total number of assigned plants depends on matching score value. Figure 5(b) shows the number of predicted plants that can be assigned to diseases in the context of matching score. With higher matching score value, the number of predicted plants assigned to classes of disease is supposed to remain similar or decrease but the reliability of prediction increases. In Figure 5(b) a sudden change in the number of predicted plants is seen at matching score 0.6 which we consider as empirical threshold in this work. Based on the 0.7% dataset, the largest number of plants (135 plants, Table 4) was assigned to diseases. There are 63 plants assigned to only one class of disease, whereas the other 72 plants are assigned to at least two or more classes of disease (Figure 6).

3.4. Evaluation of the Supervised Clustering Based on DPclusO. We used previously published results [6] as gold standard to evaluate our results. The previous study assigned plants to 9 kinds of efficacy whereas we assigned the plants to 18 disease classes (16 from NCBI and 2 additional classes). For the sake of evaluation we got done a mapping of the 18 disease classes to 9 efficacy classes by a professional doctor, which is shown in Table 5. Table 6 shows the prediction result of plant-disease relations for all 3 datasets, corresponding to clusters with matching score greater than 0.6. Table 6 also shows corresponding efficacy, the number of assigned plants, number of correctly predicted plants, and true positive rates (TPR), respectively.

We determined TPR corresponding to a disease/efficacy class by calculating the ratio of the number of correct prediction to the number of all predictions. When a disease corresponds to more than one kind of efficacy, the highest TPR can be considered the TPR for the corresponding disease. For all 3 datasets the TPR corresponding to each disease is roughly 90% or more. The 0.3% dataset consists of Jamu pairs with higher correlation values and based on this dataset 117 plants are assigned to 14 disease classes. The 0.7% dataset contains more Jamu pairs and assigned plants to 11 disease classes, one less disease class compared to 0.5% dataset. The two disease classes covered by 0.3% dataset but not covered by 0.5% and 0.7% datasets are the nervous system (D13) and disease of the immune system (D9). The only disease class covered by 0.3% and 0.5% datasets but not covered by 0.7% dataset is mental and behavioural disorders (D18). The larger dataset network tends to have
lower coverage of disease classes. The number of Jamu pairs, that is, the number of edges in the network, affect the number of DPClassO resulting clusters and number of Jamu formulas per cluster. As a consequence, for the larger dataset networks, the success rate becomes lower and the coverage of disease classes is lower but prediction of more plant-disease relations can be achieved.

4. Conclusions

This paper introduces a novel method called supervised clustering for analyzing big biological data by integrating network clustering and selection of clusters based on supervised learning. In the present work we applied the method for data mining of Jamu formulas accumulated in KNApSACK database. Jamu networks were constructed based on correlation similarities between Jamu formulas and then network clustering algorithm DPClassO was applied to generate high density Jamu modules. For the analysis of the next steps potential clusters were selected by supervised learning. The successful clusters containing several Jamu related to the same disease might be useful for finding main ingredient plant for that disease and the lower matching score value clusters will be associated with varying plants which might be supporting ingredients. By applying the proposed method important plants from Jamu formulas for every classes of disease were determined. The plant to disease relations predicted by proposed network based method were evaluated in the context of previously published results and were found to produce a TPR of 90%. For the larger dataset networks, success rate and the coverage of disease classes become lower but prediction of more plant-disease relations can be achieved.

Conflict of Interests

The authors declare that there is no financial interest or conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Bioscience Database Center in Japan and the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant-in-Aid for Scientific Research on Innovation Areas “Biosynthetic Machinery, Deciphering and Regulating the System for Creating Structural Diversity of Bioactivity Metabolites (2007)”).
References

[1] R. Verpoorte, H. K. Kim, and Y. H. Choi, “Plants as source of medicines,” in Medicinal and Aromatic Plants, R. J. Boger, L. E. Craker, and D. Lange, Eds., chapter 19, pp. 261–273, 2006.

[2] A. Furnharm, “Why do people choose and use complementary therapies?” in Complementary Medicine: An Objective Appraisal, E. Ernst, Ed., pp. 71–88, Butterworth-Heinemann, Oxford, UK, 1996.

[3] E. Ernst, “Herbal medicines put into context,” British Medical Journal, vol. 327, no. 7420, pp. 881–882, 2003.

[4] F. M. Afendi, T. Okada, M. Yamazaki et al., “KNApSAcK family databases: integrated metabolite—plant species databases for multifaceted plant research,” Plant and Cell Physiology, vol. 53, no. 2, p. e1, 2012.

[5] F. M. Afendi, N. Ono, Y. Nakamura et al., “Data mining methods for omics and knowledge of crude medicinal plants toward big data biology,” Computational and Structural Biotechnology Journal, vol. 4, no. 5, Article ID e201301010, 2013.

[6] F. M. Afendi, L. K. Darusman, A. Hirai et al., “System biology approach for elucidating the relationship between Indonesian herbal plants and the efficacy of Jamu,” in Proceedings of the 10th IEEE International Conference on Data Mining Workshops (ICDMW’10), pp. 661–668, Sydney, Australia, December 2010.

[7] F. M. Afendi, L. K. Darusman, A. H. Morita et al., “Efficacy of Jamu formulations by PLS modeling,” Current Computer-Aided Drug Design, vol. 9, pp. 46–59, 2013.

[8] F. M. Afendi, L. K. Darusman, M. Fukuyama, M. Altaf-Ul-Amin, and S. Kanaya, “A bootstrapping approach for investigating the consistency of assignment of plants to Jamu efficacy by PLS-DA model,” Malaysian Journal of Mathematical Sciences, vol. 6, no. 2, pp. 147–164, 2012.

[9] W. Winterbach, P. V. Mieghem, M. Reinders, H. Wang, and D. de Ridder, “Topology of molecular interaction networks,” BMC Systems Biology, vol. 7, article 90, 2013.

[10] C. Bachmaier, U. Brandes, and F. Schreiber, “Biological network,” in Handbook of Graph Drawing and Visualization, pp. 621–651, CRC Press, 2013.

[11] X. Chen, M. Chen, and K. Ning, “BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network,” Bioinformatics, vol. 22, no. 23, pp. 2952–2954, 2006.

[12] P. Langfelder and S. Horvath, “WGCNA: an R package for weighted correlation network analysis,” BMC Bioinformatics, vol. 9, article 559, 2008.

[13] A. Martin, M. E. Ochagavia, L. C. Rabasa, J. Miranda, J. Fernandez-de-Cossio, and R. Bringas, “BisoGenet: a new tool for gene network building, visualization and analysis,” BMC Bioinformatics, vol. 11, article 91, 2010.

[14] M. Altaf-Ul-Amin, M. Wada, and S. Kanaya, “Partitioning a PPI network into overlapping modules constrained by high-density and periphery tracking,” ISRN Biomathematics, vol. 2012, Article ID 726429, 11 pages, 2012.

[15] M. Altaf-Ul-Amin, H. Tsuji, K. Kurokawa, H. Asahi, Y. Shinbo, and S. Kanaya, “DPClus: a density-periphery based graph clustering software mainly focused on detection of protein complexes in interaction networks,” Journal of Computer Aided Chemistry, vol. 7, pp. 150–156, 2006.

[16] S. K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, Radius Press, New York, NY, USA, 1991.