DIFFERENTIAL IDENTITIES OF FINITE DIMENSIONAL ALGEBRAS AND POLYNOMIAL GROWTH OF THE CODIMENSIONS

CARLA RIZZO, RAFAEL BEZERRA DOS SANTOS, AND ANA CRISTINA VIEIRA

Abstract. Let A be a finite dimensional algebra over a field F of characteristic zero. If L is a Lie algebra acting on A by derivations, then such an action determines an action of its universal enveloping algebra $U(L)$. In this case we say that A is an algebra with derivation or an L-algebra.

Here we study the differential L-identities of A and the corresponding differential codimensions, $c_n^L(A)$, when L is a finite dimensional semisimple Lie algebra. We give a complete characterization of the corresponding ideal of differential identities in case the sequence $c_n^L(A)$, $n = 1, 2, \ldots$, is polynomially bounded. Along the way we determine up to PI-equivalence the only finite dimensional L-algebra of almost polynomial growth.

1. Introduction

This paper deals with the differential identities of algebras over a field F of characteristic zero. Recall that if A is an associative algebra over F and L is a Lie algebra of derivations of A then the action of L on A can be extended to the action of its universal enveloping algebra $U(L)$ and in this case, we say that A is an algebra with derivations or an L-algebra.

When studying the polynomial identities of an L-algebra A, one is lead to consider $\text{var}^L(A)$, the L-variety of algebras with derivations generated by A, that is, the class of L-algebras satisfying all differential identities satisfied by A. Also, as in the ordinary case, for every $n \geq 1$, we consider the space $P_n^L(A)$ of multilinear differential polynomials in n fixed variables modulo $\text{Id}^L(A)$, the ideal of differential identities of A. The dimension $c_n^L(A)$ of $P_n^L(A)$ is called the nth differential codimension of A and the growth of $\mathcal{V} = \text{var}^L(A)$ is the growth of the sequence $c_n^L(\mathcal{V}) = c_n^L(A)$, $n = 1, 2, \ldots$. If A is a finite dimensional L-algebra, in [6] it was proved by Gordienko that $c_n^L(A)$ is exponentially bounded and also no intermediate growth is allowed.

We say that \mathcal{V} has almost polynomial growth if $c_n^L(\mathcal{V})$ cannot be bounded by any polynomial function but every proper subvariety \mathcal{U} of \mathcal{V} has polynomial growth, i.e., $c_n^L(\mathcal{U})$ is polynomially bounded. An example of algebra with derivations generating an L-variety with almost polynomial growth is UT^2_F, the algebra of 2×2 upper triangular matrices with $F\varepsilon$-action, where ε is the inner derivation induced by $2^{-1}(e_{11} - e_{22})$ where e_{ij}’s are the usual matrix units (see [8]).

Our purpose here is to characterize L-varieties having polynomial growth and we reach our goal in the setting of varieties generated by finite dimensional L-algebras.
A where \(L \) is a finite dimensional semisimple Lie algebra. In this situation, we prove that \(\mathcal{V} \) has almost polynomial growth if and only if \(UT_\mathbb{Z} \notin \mathcal{V} \). As a consequence, there is only one variety with derivations generated by a finite dimensional algebra with almost polynomial growth. We also give three different characterizations of \(L \)-varieties \(\mathcal{V} \) of polynomial growth: the first one in terms of the \(L \)-exponent of \(\mathcal{V} \), the second in terms of the decomposition of the \(n \)th cocharacter of \(\mathcal{V} \) and the last one in terms of the structure of an algebra generating \(\mathcal{V} \).

We remark that our characterizations are motivated by the results obtained by Giambruno et al. in [2] concerning the graded case and also by the results obtained by Giambruno and Mishchenko in [1] concerning the involution case.

2. Preliminaries

Throughout this paper \(F \) will denote a field of characteristic zero. Let \(A \) be an associative algebra over \(F \). Recall that a derivation of \(A \) is a linear map \(\partial : A \to A \) such that

\[
\partial(xy) = \partial(x)y + x\partial(y), \quad \forall x, y \in A.
\]

In particular an inner derivation induced by \(x \in A \) is the derivation \(\text{ad } x : A \to A \) of \(A \) defined by \((\text{ad } x)(y) = [x, y] \), for all \(y \in A \). The set of all derivations of \(A \) is a Lie algebra denoted by \(\text{Der}(A) \), and the set \(\text{ad}(A) \) of all inner derivations of \(A \) is a Lie subalgebra of \(\text{Der}(A) \).

Let \(L \) be a Lie algebra over \(F \) acting on \(A \) by derivations. If \(U(L) \) is its universal enveloping algebra, the \(L \)-action on \(A \) can be naturally extended to an \(U(L) \)-action. In this case we say that \(A \) is an algebra with derivations or an \(L \)-algebra.

Given a basis \(B = \{ h_i : i \in I \} \) of \(U(L) \), we let \(F\langle X|L \rangle \) be the free associative algebra over \(F \) with free formal generators \(x_{h_i}^j, \, i \in I, \, j \in \mathbb{N} \). We write \(x_i = x_i^1, \, 1 \in U(L) \), and then we set \(X = \{ x_1, x_2, \ldots \} \). We let \(U(L) \) act on \(F\langle X|L \rangle \) by setting

\[
h(x_{j_1}^{h_{i_1}}x_{j_2}^{h_{i_2}} \cdots x_{j_n}^{h_{i_n}}) = x_{j_1}^{h_{i_1}}x_{j_2}^{h_{i_2}} \cdots x_{j_n}^{h_{i_n}} + \cdots + x_{j_1}^{h_{i_1}}x_{j_2}^{h_{i_2}} \cdots x_{j_n}^{h_{i_n}},
\]

where \(h \in L \) and \(x_{j_1}^{h_{i_1}}x_{j_2}^{h_{i_2}} \cdots x_{j_n}^{h_{i_n}} \in F\langle X|L \rangle \). The algebra \(F\langle X|L \rangle \) is called the free associative algebra with derivations on the countable set \(X \) and its elements are called differential polynomials (see [3, 7, 10]).

A polynomial \(f(x_1, \ldots, x_n) \in F\langle X|L \rangle \) is a polynomial identity with derivation of \(A \), or a differential identity of \(A \), if \(f(a_1, \ldots, a_n) = 0 \) for all \(a_i \in A \), and, in this case, we write \(f \equiv 0 \). We denote by

\[
\text{Id}^L(A) = \{ f \in F\langle X|L \rangle : f \equiv 0 \text{ on } A \},
\]

the \(T_L \)-ideal of differential identities of \(A \), i.e., \(\text{Id}^L(A) \) is an ideal of \(F\langle X|L \rangle \) invariant under the \(U(L) \)-action. In characteristic zero \(\text{Id}^L(A) \) is completely determined by its multilinear polynomials and for every \(n \geq 1 \) we denote by

\[
P_n^L = \text{span}\{x_1^{h_{i_1}}x_2^{h_{i_2}} \cdots x_n^{h_{i_n}} : \sigma \in S_n, h_1 \in B\}
\]

the space of multilinear differential polynomials in the variables \(x_1, \ldots, x_n, \, n \geq 1 \).

The non-negative integer

\[
c_n^L(A) = \dim_F \frac{P_n^L}{P_n^L \cap \text{Id}^L(A)}, \quad n \geq 1,
\]

is called the \(n \)th differential codimension of \(A \).
Recall that the symmetric group S_n acts on the left on the space P^L_n as follows: for $\sigma \in S_n$, $\sigma(x^h_i) = x^{h}_{\sigma(i)}$. Since $P^L_n \cap \text{Id}^L(A)$ is stable under this S_n-action, the space $\frac{P^L_n}{P^L_n \cap \text{Id}^L(A)}$ is a left S_n-module and its character, denoted by $\chi^L_n(A)$, is called the nth differential cocharacter of A. Since char $F = 0$, we can write

$$\chi^L_n(A) = \sum_{\lambda \vdash n} m^L_{\lambda} \chi_{\lambda},$$

where λ is a partition of n, χ_{λ} is the irreducible S_n-character associated to λ and $m^L_{\lambda} \geq 0$ is the corresponding multiplicity.

We denote by P_n, the space of multilinear ordinary polynomials in x_1, \ldots, x_n and by $\text{Id}(A)$ the T-ideal of the free algebra $F(X)$ of polynomial identities of A. We also write $c_n(A)$ for the nth codimension of A and $\chi_n(A)$ for the nth cocharacter of A. Since the field F is of characteristic zero, we have $\chi_n(A) = \sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}$, where $m_{\lambda} \geq 0$ is the multiplicity of χ_{λ} in the given decomposition.

Since $U(L)$ is an algebra with unit, we can identify in a natural way P_n with a subspace of P^L_n. Hence $P_n \subseteq P^L_n$ and $P_n \cap \text{Id}(A) = P_n \cap \text{Id}^L(A)$. As a consequence we have the following relations.

Remark 1. For all $n \geq 1$,

1. $c_n(A) \leq c^L_n(A)$;
2. $m_{\lambda} \leq m^L_{\lambda}$, for any $\lambda \vdash n$.

Recall that if A is an L-algebra then the variety of algebras with derivations generated by A is denoted by var$^L(A)$ and is called L-variety. The growth of $\mathcal{V} = \text{var}^L(A)$ is the growth of the sequence $c^L_n(\mathcal{V}) = c^L_n(A)$, $n = 1, 2, \ldots$. We say that \mathcal{V} has polynomial growth if $c^L_n(\mathcal{V})$ is polynomially bounded and \mathcal{V} has almost polynomial growth if $c^L_n(\mathcal{V})$ is not polynomially bounded but every proper subvariety of \mathcal{V} has polynomial growth.

Let A and B be L-algebras. We say that A is L-PI-equivalent to B, and we write $A \sim_{L^T} B$, if $\text{Id}^L(A) = \text{Id}^L(B)$. Notice that given an L-algebra A, A is L-PI-equivalent to B if and only if var$^L(A) = \text{var}^L(B)$.

In [3], Giambruno and Rizzo introduced an algebra with derivations generating a variety of almost polynomial growth. They considered UT_2^L to be the algebra of 2×2 upper triangular matrices with F-action, where ε is the inner derivation induced by $2^{-1}(e_{11} - e_{22})$, i.e.

$$\varepsilon(a) = 2^{-1}[e_{11} - e_{22}, a], \text{ for all } a \in UT_2,$$

where e_{ij}’s are the usual matrix units. The authors proved the following.

Theorem 2. [3 Theorem 5]

1. $\text{Id}^\varepsilon(UT_2) = \langle [x, y] + [x, y], x^2y, x^3 - x^\varepsilon \rangle_{T_L}$.
2. $c^\varepsilon_n(UT_2) = 2^{n-1}n - 1$.

Theorem 3. [3 Theorem 15] The algebra UT_2^L generates a variety of algebras with derivations of almost polynomial growth.

It is easy to check that the varieties of algebras with derivations satisfy the following properties.

Remark 4. Let L be a Lie algebra over F and A an L-algebra.
(1) If L_1 is a Lie algebra over F such that $L \subseteq L_1$, then $\text{var}^L(A) \subseteq \text{var}^{L_1}(A)$.
(2) If B is an associative L-algebra such that $A \subseteq B$, then $\text{var}^L(A) \subseteq \text{var}^L(B)$.

3. On finite dimensional algebras with derivations

Let L be a Lie algebra over F and A an L-algebra over F. We recall some definitions. An ideal (subalgebra) I of A is an L-ideal (subalgebra) if it is an ideal (subalgebra) such that $I^L \subseteq I$. We denote by $J(A)$ the Jacobson radical of A. It is well known that $J(A)$ is an L-ideal of A [9, Theorem 4.2].

The algebra A is L-simple if $A^2 \neq \{0\}$ and A has no non-trivial L-ideals.

In order to describe a Wedderburn-Malcev decomposition for algebras with derivations, we first present the structure of a semisimple L-algebra.

Lemma 5. [7, Lemma 1] Let B be a finite dimensional semisimple algebra and let L be a Lie algebra acting on B by derivations. Then

$$B = B_1 \oplus \cdots \oplus B_m$$

where B_i are L-simple algebras.

Lemma 6. [7, Lemma 7] Let $B = B_1 \oplus \cdots \oplus B_m$ be a semisimple algebra, where each B_i is a simple algebra. If L is a Lie algebra acting on B by derivations, then B_i is an L-ideal of B, for all $i = 1, \ldots, m$.

Lemma 7. [7, Lemma 9] If B is a finite dimensional L-simple algebra, then B is a simple algebra.

With these 3 lemmas, we have the following theorem.

Theorem 8. Let A be a finite dimensional L-algebra where L is a finite dimensional semisimple Lie algebra over an algebraically closed field F of characteristic zero. If $J = J(A)$ is the Jacobson radical of A, then A/J is a semisimple L-subalgebra of A such that

$$A/J = B_1 \oplus \cdots \oplus B_m,$$

where $B_i \cong M_{n_i}(F), n_i \geq 1$, for all $i = 1, \ldots, m$.

In [7], Gordienko and Kochetov proved that if A is a finite dimensional L-algebra, then the sequence of differential codimensions $c_n^L(A)$ is exponentially bounded. Moreover, in case L is finite dimensional and semisimple, the authors proved that the limit $\lim_{n \to \infty} \sqrt[n]{c_n^L(A)}$ exists and is a positive integer. In this case, this limit is called the L-exponent of A and is denoted by $\exp^L(A)$. In particular, we have the following.

Theorem 9. [7, Theorem 7] Let A be a finite dimensional algebra over a field of characteristic zero. If L is a finite dimensional semisimple Lie algebra acting on A by derivations, then there exist constants $C_1, C_2, r_1, r_2, C_1 > 0$, and a positive integer d such that

$$C_1 n^{r_1} d^m \leq c_n^L(A) \leq C_2 n^{r_2} d^m, \text{ for all } n \in \mathbb{N}.$$

Hence, $\exp^L(A) = d$. Moreover, if $A = A_1 \oplus \cdots \oplus A_n + J(A)$ is a Wedderburn-Malcev decomposition of A as an L-algebra, then

$$d = \max\{\dim(A_{i_1} \oplus A_{i_2} \oplus \cdots \oplus A_{i_s}) : A_{i_1} J(A) A_{i_2} J(A) \cdots J(A) A_{i_s} \neq \{0\}\},$$

$i_r \neq i_s, 1 \leq r, s \leq n$.

The outcome of Theorems 8 and 9 is that the exponential rate of $c_n(A)$ and $c_n^L(A)$ are the same, that is, $\exp(A) = \exp^L(A)$, where $\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$.

As an immediate consequence of the above and Theorem 9 we have the following.

Corollary 10. Let A be a finite dimensional L-algebra over a field F of characteristic zero where L is a finite dimensional semisimple Lie algebra. Then the following conditions are equivalent:

1. $c_n^L(A)$ is polynomially bounded;
2. $\exp^L(A) \leq 1$;
3. $c_n(A)$ is polynomially bounded;
4. $\exp(A) \leq 1$.

4. Varieties of polynomial growth

In this section we shall characterize the varieties of algebras with derivations of polynomial growth generated by finite dimensional algebras.

First we consider a Lie algebra L and establish some terminology. If A and B are L-algebras, we say that $\varphi : A \to B$ is an L-isomorphism if φ is an isomorphism of algebras such that $\varphi(a^\delta) = \varphi(a)^\delta$, for all $\delta \in L$.

Next we describe the Lie algebra of all derivation of the algebra $M_2(F)$ of 2×2 matrices over F. Consider the basis $\{e_{11} + e_{22}, e_{11} - e_{22}, e_{12} + e_{21}, e_{12} - e_{21}\}$ of $M_2(F)$, where the e_{ij}'s are the usual matrix units, and define the following inner derivations on $M_2(F)$:

$$
v(a) = 2^{-1}[e_{11} - e_{22}, a], \quad \delta(a) = 2^{-1}[e_{12} + e_{21}, a], \quad \gamma(a) = 2^{-1}[e_{12} - e_{21}, a],
$$

for all $a \in M_2(F)$.

Since any derivation of $M_2(F)$ is inner, the Lie algebra $\text{Der}(M_2(F))$ of all derivations of $M_2(F)$ is a 3-dimensional semisimple Lie algebra generated by $\{v, \delta, \gamma\}$ and it is isomorphic to the Lie algebra \mathfrak{sl}_2 of 2×2 traceless matrices over F. We recall the following theorem about the Lie algebra \mathfrak{sl}_2.

Theorem 11. [8 Proposition 8.3] If L is a finite dimensional semisimple Lie algebra over an algebraically closed field F of characteristic zero, then L contains a Lie subalgebra isomorphic to \mathfrak{sl}_2.

Notice that UT_2 is an $F\mathfrak{sl}_2$-subalgebra of $M_2(F)$, hence $UT_2 \in \var^\mathfrak{sl}_2(M_2(F))$. Also, by using Remark 4 and the previous theorem, we have the following.

Remark 12. Let A be an \mathfrak{sl}_2-algebra. For every finite dimensional semisimple Lie algebra L, $\var^\mathfrak{sl}_2(A) \subseteq \var^L(A)$.

Next theorem gives us a characterization of the varieties of algebras with derivations of polynomial growth in terms of the algebra UT_2.

Theorem 13. Let L be a finite dimensional semisimple Lie algebra over a field F of characteristic zero and let A be a finite dimensional L-algebra over F. Then the sequence $c_n^L(A)$, $n = 1, 2, \ldots$, is polynomially bounded if and only if $UT_2 \notin \var^L(A)$.

Proof. First suppose that $c_n^L(A)$ is polynomially bounded. Since, by Theorem 2 the algebra UT_2 generates a variety of exponential growth, we have $UT_2 \notin \var^L(A)$.

Now assume $UT_2 \notin \var^L(A)$. Using an argument analogous to that used in the ordinary case (see [5] Theorem 4.1.9), we can prove that the differential codimensions do not change upon extension of the base field and so we may assume F is
algebraically closed. Thus by Theorem 8 we can write

\[A = A_1 \oplus \cdots \oplus A_m + J(A), \]

where \(A_i \cong M_{n_i}(F) \), for \(i = 1, \ldots, m \) and \(J = J(A) \) is an \(L \)-ideal of \(A \).

If \(n_i > 1 \), for some \(i \), by Remarks 1 and 12 and Theorem 11 we get

\[\text{var}^a(L(M_2(F))) \subseteq \text{var}^L(M_2(F)) \subseteq \text{var}^L(M_{n_i}(F)). \]

This implies that \(UT_2^\varepsilon \in \text{var}^L(M_{n_i}(F)) \), as we have remarked above. Hence \(A \) contains a copy of \(UT_2^\varepsilon \), a contradiction. Thus, for every \(i \), we must have \(A_i \cong F \).

To finish the proof, we use Theorem 9 and so it is enough to guarantee that \(A_iJ A_k = 0 \), for all \(i, k \in \{1, \ldots, m\}, i \neq k \). Suppose to the contrary that there exist \(A_i, A_k, i \neq k \), such that \(A_iJ A_k \neq 0 \). If \(1_i \) and \(1_k \) are the unit elements of \(A_i \) and \(A_k \), respectively, it follows that there exists \(j \in J \) such that \(1_i j 1_k \neq 0 \).

Let \(B \) be the subalgebra of \(A \) generated by \(1_i, 1_k \) and \(1_i j 1_k \). Clearly there is an algebra isomorphism \(\varphi \) between \(B \) and \(UT_2 \) given by \(\varphi(1_i) = e_{i1}, \varphi(1_k) = e_{22} \) and \(\varphi(1_i j 1_k) = e_{12} \). Moreover, the inner derivation \(\varepsilon \) defined on \(UT_2 \) induces the inner derivation \(\bar{\varepsilon} = \text{ad}(1_i - 1_k) \) on \(B \) and we get an \(L \)-isomorphism between the \(F\bar{\varepsilon} \)-algebra \(B \) and the \(F\varepsilon \)-algebra \(UT_2 \). It follows that \(\text{var}^L(UT_2^\varepsilon) \subseteq \text{var}^L(A) \), a contradiction. So, by Corollary 10 we conclude that \(c_2^L(A) \) is polynomially bounded.

As a consequence we have the following.

Corollary 14. The algebra \(UT^\varepsilon \) is the only finite dimensional algebra with derivations generating an \(L \)-variety of almost polynomial growth.

Next we shall give other characterizations of \(L \)-varieties of polynomial growth. We recall the following theorem.

Theorem 15. [9] Let \(A = B + J \) be an algebra over \(F \), where \(B \) is a semisimple subalgebra and \(J = J(A) \) is its Jacobson radical. Suppose \(\delta \) is a derivation of \(A \). Then \(\delta = \text{ad} a + \delta' \) where \(a \in A \) and \(\delta' \) is a derivation of \(A \) such that \(\delta'(B) = 0 \).

Next lemma will be useful to establish a structural result about \(L \)-varieties of polynomial growth.

Lemma 16. Let \(F \) be a field of characteristic zero, \(\bar{F} \) the algebraic closure of \(F \) and \(A \) a finite dimensional \(L \)-algebra over \(\bar{F} \), where \(L \) is a Lie algebra over \(\bar{F} \) acting on \(A \) by derivations. Suppose that \(\dim_{\bar{F}} A/J(A) \leq 1 \). Then \(A \sim_{T_L} B \) for some finite dimensional \(L \)-algebra \(B \) over \(F \) with \(\dim_{\bar{F}} B/J(B) \leq 1 \).

Proof. Since \(\dim_{\bar{F}} A/J(A) \leq 1 \), it follows that either \(A \cong \bar{F} + J(A) \) or \(A = J(A) \) is a nilpotent algebra. Now we take an arbitrary basis \(\{v_1, \ldots, v_p\} \) of \(J(A) \) over \(\bar{F} \) and we let \(B \) be the algebra over \(F \) generated by \(B = \{1_F, v_1, \ldots, v_p\} \) or \(B = \{v_1, \ldots, v_p\} \) according as \(A \cong \bar{F} + J(A) \) or \(A = J(A) \), respectively.

Since \(A \) is finite dimensional over \(\bar{F} \) and \(J(A) \) is a nilpotent \(L \)-ideal of \(A \), \(B \) is finite dimensional over \(F \). Also, by Theorem 15 for any \(\delta \in L \), \(\delta(1_F) \in J(A) \). Therefore, since \(J(A) \) is an \(L \)-ideal, \(B \) is an \(L \)-algebra and \(\dim_{\bar{F}} B/J(B) = \dim_{\bar{F}} A/J(A) \leq 1 \). Now notice that, as \(F \)-algebras, \(\text{Id}^L(A) \subseteq \text{Id}^L(B) \). On the other hand, if \(f \) is a multilinear differential identity of \(B \) then \(f \) vanishes on \(B \). But \(B \) is a basis of \(A \) over \(\bar{F} \). Hence \(\text{Id}^L(B) \subseteq \text{Id}^L(A) \) and \(A \sim_{T_L} B \).
Theorem 17. Let L be a finite dimensional semisimple Lie algebra over a field F of characteristic zero and let A be a finite dimensional L-algebra over F. Then $c^L_n(A)$, $n = 1, 2, \ldots$, is polynomially bounded if and only if $A \sim_{T_L} B_1 \oplus \cdots \oplus B_m$, where B_1, \ldots, B_m are finite dimensional L-algebras over F such that $\dim B_i / J(B_i) \leq 1$, for all $i = 1, \ldots, m$.

Proof. Suppose first that $A \sim_{T_L} B$ where $B = B_1 \oplus \cdots \oplus B_m$, with B_1, \ldots, B_m finite dimensional L-algebras over F such that $\dim B_i / J(B_i) \leq 1$, for all $i = 1, \ldots, m$. Then, by Theorem 8, $c^L_n(B_i)$ is polynomially bounded, for all $i = 1, \ldots, m$, and

$$c^L_n(A) = c^L_n(B) \leq c^L_n(B_1) + \cdots + c^L_n(B_m).$$

Thus $c^L_n(A)$ is polynomially bounded.

Conversely, suppose that $c^L_n(A)$ is polynomially bounded. Assume first that F is algebraically closed. By Theorem 8, we may assume that $A = A_{ss} + J$ where A_{ss} is a semisimple subalgebra and $J = J(A)$ is the Jacobson radical of A. By Theorem 6, it follows that $A_{ss} = A_1 \oplus \cdots \oplus A_l$ with $A_1 \cong \cdots \cong A_l \cong F$ and $A_iA_k = A_iJA_k = \{0\}$, for all $1 \leq i, k \leq l$, $i \neq k$.

Set $B_1 = A_1 + J, \ldots, B_l = A_l + J$. By Theorem 11, $\delta(A_i) \subseteq J = J(B_i)$, for all $1 \leq i \leq l$, for all $\delta \in L$. Hence B_i is an L-subalgebra of A, for all $1 \leq i \leq l$. We claim that

$$\text{Id}^L(A) = \text{Id}^L(B_1 \oplus \cdots \oplus B_l + J).$$

Clearly $\text{Id}^L(A) \subseteq \text{Id}^L(B_1 \oplus \cdots \oplus B_l + J)$. Now let $f \in \text{Id}^L(B_1 \oplus \cdots \oplus B_l + J)$ and suppose that f is not a differential identity of A. We may clearly assume that f is multilinear. Moreover, by choosing a basis of A as the union of a basis of B and a basis of J, it is enough to evaluate f on this basis. Let u_1, \ldots, u_l be elements of this basis such that $f(u_1, \ldots, u_l) \neq 0$. Since $f \in \text{Id}^L(J)$, at least one element, say u_k, does not belong to J. Then $u_k \in B_i$, for some i. Recalling that $A_iA_k = B_iA_k = B_iJA_k = \{0\}$, for all $i \neq k$, we must have that $u_1, \ldots, u_k \in A_i \cup J$. Thus $u_1, \ldots, u_l \in A_i + J = B_i$ and this contradicts the fact that f is a differential identity of B_i. This prove the claim. The proof is completed by noticing that $\dim B_i / J(B_i) = 1$.

In case F is arbitrary, we consider the algebra $\tilde{A} = A \otimes_F \tilde{F}$, where \tilde{F} is the algebraic closure of F and $\tilde{A} = A \otimes_F \tilde{F}$ is endowed with the induced L-action $(a \otimes \alpha)^\delta = a^\delta \otimes \alpha$, for $\delta \in L$, $a \in A$ and $\alpha \in \tilde{F}$. Clearly, over F, $\text{var}^L(A) = \text{var}^L(\tilde{A})$. Moreover, the differential codimensions of A over F coincide with the differential codimensions of \tilde{A} over \tilde{F}. Thus, by hypothesis, it follows that the differential codimensions of \tilde{A} are polynomially bounded. But then, by the first part of the proof, $\tilde{A} \sim_{TL} B_1 \oplus \cdots \oplus B_m$, where B_1, \ldots, B_m are finite dimensional L-algebras over F such that $\dim F B_i / J(B_i) \leq 1$, for all $i = 1, \ldots, m$. By Lemma 3 there exist finite dimensional L-algebras C_1, \ldots, C_m over F such that, for all i, $C_i \sim_{TL} B_i$ and $\dim F C_i / J(C_i) \leq 1$. It follows that $\text{Id}^L(A) = \text{Id}^L(A) = \text{Id}^L(B_1 \oplus \cdots \oplus B_m) = \text{Id}^L(C_1 \oplus \cdots \oplus C_m)$ and we are done. \hfill \Box

In next theorem, we give another characterization of L-varieties V of polynomial growth through the behaviour of their sequences of cocharacters.

Theorem 18. Let L be a finite dimensional semisimple Lie algebra over a field F of characteristic zero and let A be a finite dimensional L-algebra over F. Then $c^L_n(A)$, $n = 1, 2, \ldots$, is polynomially bounded if and only if there exists a constant
such that
\[\chi_n^L(A) = \sum_{|\lambda|-\lambda_1 < q} m_{\lambda}^L \chi_{\lambda} \]
and \(J(A)^q = \{0\} \).

Proof. Suppose first that \(m_{\lambda}^L = 0 \), whenever \(|\lambda| - \lambda_1 \geq q\). By Remark 1 it follows that \(n_{\lambda} = 0 \), if \(|\lambda| - \lambda_1 \geq q\). Thus, by [4, Theorem 3], we get that \(c_n(A) \) is polynomially bounded and by Corollary 10 we are done.

Conversely, suppose that \(c_n^L(A), n = 1, 2, \ldots \), is polynomially bounded. Notice that the decomposition of \(\chi_n^L(A) \) into irreducible characters does not change under extensions of the base field. This fact can be proved following word by word the proof given in [5, Theorem 4.1.9] for the ordinary case. Also if \(\overline{F} \) is the algebraic closure of \(F \) and \(J(A)^q = \{0\} \), then \(J(A \otimes_F \overline{F})^q = \{0\} \). Therefore we may assume, without loss of generality, that \(F \) is an algebraically closed field. Now the theorem can be proved following closely the proof of [4, Theorem 3] for the ordinary case, taking into account the due changes. \(\square \)

As a consequence of Theorems 13, 17, 18 and Corollary 10 we get the following theorem which gives a characterization of the \(L \)-variety generated by a finite dimensional algebras with derivations of polynomial growth.

Theorem 19. Let \(L \) be a finite dimensional semisimple Lie algebra over a field \(F \) of characteristic zero and let \(A \) be a finite dimensional \(L \)-algebra over \(F \). Then the following conditions are equivalent:

1. \(c_n^L(A) \leq \alpha n^t \), for some constant \(\alpha, t \);
2. \(\exp^L(A) \leq 1 \);
3. \(c_n(A) \leq \beta n^p \), for some constant \(\beta, p \);
4. \(\exp(A) \leq 1 \);
5. \(UT_2 \notin \var(L) \);
6. \(A \sim_{T_2} A_1 \oplus \cdots \oplus A_m \), with \(A_1, \ldots, A_m \) finite dimensional \(L \)-algebras over \(F \) such that \(\dim A_i/J(A_i) \leq 1 \), for all \(i = 1, \ldots, m \);
7. There exists a constant \(q \) such that
\[\chi_n^L(A) = \sum_{|\lambda|-\lambda_1 < q} m_{\lambda}^L \chi_{\lambda} \]
and \(J(A)^q = \{0\} \).

References

[1] A. Giambruno, S. Mishchenko, *On star-varieties with almost polynomial growth*, Algebra Colloq. 8 (2001) 33–42.
[2] A. Giambruno, S. Mishchenko, M. Zaicev, *Polynomial identities on superalgebras and almost polynomial growth*, Comm. Algebra 29 (9) (2001) 3787–3800 (Special issue dedicated to Alexei Ivanovich Kostrikin).
[3] A. Giambruno, C. Rizzo, *Differential identities, 2×2 upper triangular matrices and varieties of almost polynomial growth*, J. Pure Appl. Algebra 223 (2019), no. 4, 1710–1727.
[4] A. Giambruno, M. Zaicev, *A characterization of algebras with polynomial growth of the codimensions*, Proc. Amer. Math. Soc. 129 (2001), 59–67.
[5] A. Giambruno and M. Zaicev, Polynomial identities and asymptotic methods, Math. Surv. Monogr., AMS, Providence, RI, 122 (2005).
[6] A.S. Gordienko, *Asymptotics of H-identities for associative algebras with an H-invariant radical*, J. Algebra 393 (2013), 92–101.
[7] A.S. Gordienko, M.V. Kochetov, Derivations, gradings, actions of algebraic groups, and codimension growth of polynomial identities, Algebr. Represent. Th. 17 (2014), no. 2, 539–563.

[8] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

[9] G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), no. 1, 677–694.

[10] V.K. Kharchenko, Differential identities of semiprime rings, Algebra Logic 18 (1979), 86–119.

Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
E-mail address: carla.rizzo@unipa.it

Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31123-970 Belo Horizonte, Brazil
E-mail address: rafael.santos23@ufmg.br

Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31123-970 Belo Horizonte, Brazil
E-mail address: anacris@ufmg.br