Genotypic identification of extended spectrum β-lactamase producing *Escherichia coli* in dairy supply chain

Amarjeet Kumar1, Rashmi Hogarehalli Mallappa2, Avinash Jaswal1, Brijesh Kumar1, Naresh Kumar1 and Raghu Hirikyathanahalli Vishweswaraiah1

Received: 02 November 2020 / Accepted: 06 December 2020 / Published online: 28 February 2021
© Indian Dairy Association (India) 2021

Abstract: Foodborne illnesses due to antibiotic-resistant bacteria represents a major public health problem in both developed and developing countries. Among 190 samples, 139 *Escherichia coli* positive isolates from raw milk, pasteurized milk, and human handlers were identified by phenotypic methods and genotypic methods. All *E. coli* isolates were found to be resistance to penicillin, oxacillin, erythromycin and clindamycin. The dominant type of resistance to cefotaxime and amoxiclave identically detected in 18.7% isolates followed by ampicillin in 17.98%, trimethoprim 15.82%, tetracycline 10.79%, nalidixic acid 7.91%, and piperacillin 7.79%. Four isolates have shown resistance (2.87%) to Ceftriaxone and ceftazodime, Cefotaxime and one isolate has shown resistance to Cefepime. Further, all four isolates were confirmed as extended spectrum β-lactamase (ESBL) producer by double disc diffusion test and ESBL chromogenic medium. Later, all four isolates were evaluated by PCR and they are observed as carrier of blaCTX M gene which is responsible for ESBL antibiotic resistance in *E. coli* but blaTEM and blaSHV genes were absent in all four ESBL isolates. Based on the above findings, it is concluded that ESBL antibiotic resistance in *E. coli* were more prevalent in milk and this may due to spread and acquisition of antibiotics resistance gene by plasmid and mobile genetic elements.

Keyword: Antibiotic resistance, *E. coli*, Milk, ESBL

Introduction

The enzyme responsible for degradation of oxyimino-β-lactam antibiotics is Extended-spectrum β-lactamases (ESBL) and these antibiotics are used in the treatment of various serious humans and animal infections (Palmeira and Ferreira, 2020). ESBL were first identified in the year 1983 in the family Enterobacteriaceae and they are responsible for serious risk to human health may be due to treatment failure in various severe cases of infections in 2013 (Adeolu et al. 2016). These enzymes are encoded by plasmids that confer resistance to the penicillins; to first-, second-, third- and fourth-generation cephalosporin’s; and to aztreonam but not to carbapenems (EFSA, 2011). The enzyme for ESBL-producing bacterial pathogens have been demonstrated in public hospital settings, representing that human colonization is a pool for dissemination (Liebana et al. 2013). Furthermore, various reports are available for the isolation and identification of ESBL-producing bacteria from foods and food animals, suggesting the likely role of the food production chain as a pool for this group of pathogenic bacteria (EFSA, 2019, Odenthal et al. 2016). There are various data’s are available regarding robust correlation between the incidence of ESBL-producing bacteria in foods (Algeria et al. 2020) and the prevalence of infections in humans may be anticipated that food obtained from animals may be infected with ESBL producers which contributing to the transmission within the population (EFSA, 2011). Furthermore, ESBL producers also can the resistant bacteria can fetch additional genes having some virulence property; it is notable that strains of *Escherichia coli* (STEC) are known to be food-borne pathogens, have been confirmed as ESBL-producers, representing that the transference of the extracellular DNA from commensals to foodborne pathogenic strains is possible (Torpdahl et al. 2013).

The occurrence of ESBL-producing *Escherichia coli* is extensively growing throughout India. These pathogens pose a major threat to the treatment of infection and may cause tricky in the management of infections. This may create unnecessary problem with the widespread use of second- or third-generation antibiotics for the monitoring and treatment of bacterial infections (Van Hoek et al. 2015). ESBL *E. coli* is typically unaffected to routinely used antibiotics instigating a surge in the use of almost
all antimicrobials (i.e., carbapenems) in treatment. The *E. coli* strains harboring those resistance genes can easily spread to other pathogens leading to the spread of resistance (Odenthal et al. 2016). Hence, the presence of ESBL-producing *E. coli* in the dairy supply chain maybe arriving from healthy animals is the fact which has to be suitably premeditated. Therefore, in our present study, we are evaluating the occurrence of ESBL-producing *E. coli* in dairy supply chain.

Materials and Methods

Procurement and Maintenance of culture

The standard culture used in our study was *Escherichia coli* ATCC 25922 was purchased from American Type Culture collection. The culture was activated in nutrient broth followed by streaking on Violet red bile (VRBA) agar followed by incubation for overnight at 37°C. A single pure colony from VRBA after microscopic examination was picked up and maintained on nutrient agar slant by routine sub-culturing after every fortnight. All the experiments were conducted using overnight grown cultures. All media chemicals including Muller Hinton Agar and antimicrobial agents including discs were procured from Himedia lab (Mumbai, India).

Detection of *E. coli* using PCR

Species specific primers were used in Colony polymerase chain reaction (PCR) includes forward: GGTAAACGTTCACGAGGTTTG / Reversed: CAGGTTGGTACACTGTCA TTACG, target gene of *E. coli* as phoA with a size of 468 bp (Shome et al. 2011) using a protocol given by Godambe et al. (2017).

Antimicrobial susceptibility tests (AST)

Antimicrobial susceptibility tests was carried out on Mueller-Hinton Agar (Hi-media, Mumbai, India) using the Kirby-Bauer disk diffusion method (Bauer et al. 1996). The data were evaluated and inferred according to National Committee for Clinical Laboratory Standards (NCCLS 1993). Reference strain of *E. coli* ATCC 25922 was used as a quality control strain for studying AST (CLSI 2007). The resistance strains were evaluated for minimum inhibitory concentration (MIC) using micro-dilution methods followed data inferred as per CLSI guidelines (CLSI 2007).

Extended Spectrum β-lactamase (ESBL) confirmatory test

The double disc synergy test (DDST) was performed for ESBL using amoxicillin/clavulanate, ceftazidime, ceftriaxone, aztreonam, and cefotaxime (Jarlier et al. 1988; Drieux et al. 2008). Further, phenotypic confirmation of ESBL positive isolates was carried out using CLSI (2012) guidelines. The test is considered as positive when a decreased susceptibility to cefotaxime is combined with a clear-cut enhancement of the inhibition zone of cefotaxime in front of the clavulanate-containing disk, often resulting in a characteristic shape-zone referred to as ‘champagne-cork’ or ‘keyhole’ (Drieux et al. 2008). A ratio of ceftazidime or cefotaxime MIC to ceftazidime or cefotaxime-clavulanic acid MIC equal to or greater than eight indicated the presence of ESBL (Drieux et al. 2008).

Phenotypic identification of ESBL in *E. coli*

An overnight grown culture of ESBL +ve isolate whose turbidity was adjusted to 0.5 McFarland solutions (Himedia Lab, Mumbai, India) was streaked on the Hicrome ESBL agar plates followed by incubation at 37°C for 24 h. The development of pink or purple colored colonies on the Hicrome ESBL agar plates considered as positive for ESBL.

Identification of ESBL by PCR

The following ESBLs resistance determinants were investigated by PCR for bla-CTXM, bla-TEM and bla-SHV gene (Karczmarczyk et al. 2011). Colony PCR were performed as per protocol given by Godambe et al. (2017) by targeting ESBL encoding genes [Primer Sequence (5’-3’) such as CTX-M universal- F- CGATGTCAGTACAGTTA; CTX-M universal-R-T G A T G A C C A G A T C A G C G G, b l a S H V - F- T T A T C T C C C T G T A G C C A C C ; b l a T E M - R- G A T T T G C T G A T T T C G C T C G G, b l a T E M - F- G C G G A A C C C C T A T T G a n d b l a T E M - R- ACCAATGCTTTACAGTGAG] (Olesen et al. 2004) with a genome size of 585 bp for CTX-M (Batchelor et al. 2005) and 795 bp for blaSHV (Weill et al. 2004).

Results and Discussion

Detection of *E. coli* in dairy supply chain

In our study, the prevalence of *E. coli* in raw milk samples were found to be 57.27%, 20% in pasteurized milk samples, and 25% in swab of human handler working in dairy farms and plants by biochemical identification test such as Indole, Methyl red, Vogues Prausker test and citrate utilization test. From the above, 139 isolates were selected and confirmed as *E. coli* using specific enzyme substrate interaction using two stage enzyme assay and Hichrome ECD agar wherein all isolates have shown characteristic blue colored colonies on the Hicrome ECD agar plates considered as positive for ESBL.
prevalence rate of \(E. coli\) may be attributed to lapses in clean milk production, different geographic location and season, fecal contamination of milk, and due to poor hygiene and sanitary practices followed while milking and further handling (Thaker et al. 2013). The prevalence of \(E. coli\) in pasteurized milk may be due to post processing contamination and poor hygienic management subsequently the milk is pasteurized (Ali and Abdelgadir, 2011).

Antibiotic susceptibility test

Among 139 \(E. coli\) isolates, all isolates have shown resistance towards penicillin (P), oxacillin (OX) and erythromycin (E), respectively based on inhibition zone diameter by AST followed by 26 isolates have shown resistance towards amoxicillin (MC) and Cefotaxime (CTX), 25 isolates to ampicillin (AMP), 22 isolates to trimethoprim (TR), 15 isolates to tetracycline (TET), 11 isolates to nalidixic acid (NA), 10 isolates to piperacillin (PI), 5 isolates to gentamycin (GEN) and chloramphenicol (C), 4 isolates ceftriaxone (CTR) and cefepime (CPM), 3 isolates to nitrofurantoin (NIT) and amikacin (AK), 1 isolate has shown resistance towards ceftazidime (CAZ) and ofloxacin (OF), and none of the isolates have shown resistance towards ampicillin-sulbactam (A/S), meropenem (MRP), ertapenem (ERP) and netilmicin (NET), respectively (Table 1). Based on the AST, it was clear that four isolates were showed resistance towards ESBL and none were showing resistance to carbapenem group of antibiotics. The

![Fig. 1. Rapid detection of \(E. coli\) isolates on Hichrome ECD/MUG agar](image)
dominant types of resistance was observed in our results are in close association with the result of Rasheed et al. (2014) wherein he was reported 14.7% of the isolate from raw milk were showing resistance towards ESBL. This may be due acquiring of mobile genetic element such as plasmids, transposons, and Class 2 integrons (Singh et al. 2005).

ESBL E. coli

Based on diameter of zone of inhibition by AST methods four isolates of *E. coli* have found positive for ESBL. Further, these 4 positive isolates were confirmed phenotypically as ESBL using double disk diffusion test (DDDT) and Hi-Chrome ESBL agar base (Fig. 2). All four ESBL positive isolates have shown an inhibition zone diameter of ≤ 27 mm for CTX and CTR, followed by three isolates have shown a inhibition zone diameter of ≤ 22 mm for CAZ and CPM (Table 2). Overall prevalence of ESBL positive *E. coli* in raw milk samples was 3.27%. No ESBL positive isolates were obtained from pasteurized milk and human handlers swab samples. All the ESBL positive isolates by DDDT and Chromogenic ESBL medium have shown identical resistance towards (P, AMP, PI, CTX, CTR, CAZ, and CPM) and (P, PI, CTR, CPM, TE) by 4 and 2 *E. coli* isolates, respectively. Duan et al. (2006) reported a 3.1% prevalence of ESBL producers among *E. coli* isolates from dairy cattle. In a Turkish study reported by Kucukbasmaci et al. (2008) reported 2.1% prevalence of ESBL producing Enterobacteriaceae isolated from dairy cattle. Gundogan and Avci (2013) reported 10% (2/20) prevalence of ESBL positive *E. coli* in milk which is slightly higher than current study. The prevalence rate of ESBL producing *E. coli* was 29.3% (17/22) in raw milk which is much higher than the current study (Badri et al. 2017).

PCR identification of ESBL in E. coli

All four ESBL positive isolates were further confirmed as ESBL *E. coli* by genotypic methods using colony PCR wherein all 4 isolates have shown bands for bla CTXM gene yielded 885 bp ampiclon on agarose gel (Fig. 3). However, no amplified products were obtained with bla-SHV and bla-TEM primer. This indicates

Table 1 Prevalence of antibiotics resistant pattern of *E. coli*

Name of antibiotics	No of Resistance isolates	No of Intermediate isolates	No of Susceptible isolates
P	139 (100%)	0	0
AMP	25 (17.98)	1 (0.71%)	113 (81.29%)
OX	139 (100%)	0	0
PI	10 (7.19%)	16 (11.51%)	113 (81.29%)
AMC	26 (18.7%)	40 (28.77%)	73 (52.51%)
A/S	0	8 (5.75%)	131 (94.24%)
CTX	4 (2.87%)	35 (25.17%)	100 (71.94%)
CPM	4 (2.87%)	35 (25.17%)	100 (71.94%)
CTR	4 (2.87%)	0	135 (97.12%)
CAZ	1 (0.71%)	8 (5.75%)	130 (93.52%)
NA	11 (7.91%)	24 (17.26%)	104 (74.82%)
CIP	2 (1.43%)	4 (2.87%)	133 (95.68%)
OF	1 (0.71%)	0	138
TR	22 (15.82%)	1 (0.71%)	116 (83.45%)
C	5 (3.59%)	2 (1.43%)	132 (94.96%)
NIT	3 (2.15%)	0	136 (97.84%)
CD	139 (100%)	0	0
TE	15 (10.79%)	3 (2.15%)	121 (87.05%)
C	139 (100%)	0	0
AK	3 (2.15%)	24 (17.26%)	112 (80.57%)
GEN	5 (3.59%)	6 (4.31%)	128 (92.08%)
MRP	0	0	139 (100%)
ETP	0	0	139 (100%)
NET	0	0	139 (100%)

P: Penicillin-G, AMP: Ampicillin, OX: Oxacillin, PI: Piperacillin, AMC: Amoxicillin, A/S: Amoxicillin-sulbactam, CTX: Cefotaxime, CPM: Cefepime, CTR Ceftriaxone, CAZ: Ceftazidime, NA: Nalidixic Acid, CIP: Ciprofloxacin, OF: Ofloxacin, TR: Trimethoprim, C: Chloramphenicol, NIT: Nitrofurantoin, CD: Clindamycin, TE: Tetracycline, E: Erythromycin, AK: Amikacin, GEN: Gentamycin, MRP: Meropenam, ETP: Erthaapenem, NET: Netilimycin
that all four ESBL producing isolates were harboring bla-CTX-M gene which encodes ESBL in *E. coli* isolates. Similar findings were reported by Batabyal et al. (2018) regarding the prevalence of bla-CTX-M gene in 12 ESBL *E. coli* among 22 isolates obtained from West Bengal. Ghatak et al. (2013) have reported a one isolate was harboring New Delhi metallo-β-lactamase gene (*bla*_{NDM}) and another isolate was carrying ESBL gene – *bla*_{CTX-M}. Further, Dhara and Tripathi (2014) has reported ESBL *E. coli* were found positive for bla CTX M-3 gene (18 nos), bla CTX M-9 gene (6 nos), bla SHV gene: (5 nos) and bla TEM gene: (5 nos) and may cause

![ESBL Positive E. coli on Hicrhome ESBL agar](image1)

![Confirmation of ESBL +ve E.coli isolates by DDDT and ESBL chromogenic agar](image2)

Fig. 2 Confirmation of ESBL +ve *E. coli* isolates by DDDT and ESBL chromogenic agar. a. double disc diffusion test b. ESBL +ve *E. coli* on Hicrhome ESBL agar c. Diameter of zone of inhibition in ESBL +ve silates by DDDT.

Fig. 3 ESBL producing isolates with primers specific for *bla*-CTXM and *bla*-SHV gene. Lane 1 to 4: ESBL producing isolates with *bla*-CTXM primer; Lane 5 to 9: ESBL producing isolates with *bla*-SHV primer; Lane 10: Negative control for *bla*-CTXM primer; Lane 11: Negative control for *bla*-SHV primer
health risk to consumers due to contamination by ESBL producing *E. coli*, their pathogenicity and treatment failure as a result of antibiotic resistant.

Conclusions

Based on the above findings it is concluded that four *E. coli* isolates have shown resistance to ESBL antibiotics like CTX, CTR, CAZ and CPM may indicate presence of multiple drug resistance gene on same mobile genetic elements. Further, all four ESBL positive *E. coli* isolates were harboring CTX-M gene which is linked with dairy animal. It also concluded that the prevalence of ESBL *E. coli* in raw milk may due to transmission and acquisition of antibiotics resistance gene by plasmid and mobile genetic elements.

Acknowledgment

AK is the recipient of Junior Research Fellow scholarship from Indian Council of Agriculture Research, DARE, and Government of India. Director, ICAR-NDRI, Deemed University for furnishing the required research facility for conducting the study on AMR in *E. coli*. Indian Network Fishery and Animals antimicrobial resistance (INFAAR), ICAR and FAO are highly acknowledged for their help in undergoing a training program on antimicrobial resistance in bacterial pathogens. The project was initially supported by Science and Engineering Research Board, DST, GOI, New Delhi under the Grant number: SERB/ECR/2017/002333.

References

Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniafam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66: 5575-5599

Alegria Á, Arias-Temprano M, Fernández-Natal I, Rodríguez-Calleja JM, García-López ML, Santos Jan (2020) Molecular diversity of ESBL-producing *E. coli* from foods of animal origin and human patients. Int J Environ Res Public Health 17:1312.

Ali AA, Abdelgadir WS (2011) Incidence of *Escherichia coli* in raw cow's milk in Khartoum state, British. J Dairy Sci 2:23–26

Badri AM, Ibrahim IT, Mohamed SG, Garbi MI, Kabbashi AS (2017) Prevalence of Extended Spectrum β-Lactamase (ESBL) Producing *E. coli* and *Klebsiella pneumonia* Isolated from Raw Milk Samples in Al Jazirah State, Sudan. Mol Biol 7: 2

Batabyal K, Banerjee A, Pal S, Dey S, Joardar SN, Samanta I, Isore DP, Singh AD (2018) Detection, characterization, and antibiogram of extended-spectrum β-lactamase *E. coli* isolated from bovine milk samples in West Bengal, India. Vet World 10:1423

Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, Liebana E (2005) blaCTX-M genes in clinical *Salmonella* isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49: 1319-1322

Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496

CLSI (2007) Performance standards. In: Institute CaLS, editor. M100-S17. vol. ISBN 1-56238-625-5, 1 edn. 940 West Valley Road, Suite 1400, Wayne 19087-1898 USA; 2007.

CLSI (2012) Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute (M100eS22). 2012 (s22nd Informational Supplement).

Dhara L, Tripathi A (2014) Genetic and structural insights into plasmid-mediated extended-spectrum β-lactamase activity of CTX-M and SHV variants among pathogenic Enterobacteriaceae infecting Indian patients. Int J Antimicrob Agents 43: 518-26.

Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14: 90-103.

Duan RS, Sit TH, Wong SS, Wong RC, Chow KH, Mak GC, Ho PL (2006) *Escherichia coli* producing CTX-M-β-lactamases in food animals in Hong Kong. Microb Drug Resist 12: 145-148

EFSA (2011) BIOHAZ Panel Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J 9: 2322

EFSA (2019) ECDC. The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 17: 5598.

Ghatak S, Singha A, Sen A, Guha C, Ajuha A, Bhattacharjee U, Das S, Pradhan NR, Puro K, Jana C, Dey TK (2013) Detection of New Delhi Metallo β Lactamase and Extended Spectrum Lactamases genes in *E. coli* isolated from mastitic milk amplexes. Transbound Emerg Dis 60: 385-389

Godambe LP, Bandekar J, Shashidhar R (2017) Species specific PCR based detection of *Escherichia coli* from Indian foods. 3 Biotech 7: 1–5

Gundogan N, Avci E (2013) Prevalence and antibiotic resistance of extended-spectrum β-lactamase (ESBL) producing *E. coli* and *Klebsiella* species isolated from foods of animal origin in Turkey. Afr J Microbiol Res 7: 4059-4064

Jarlier V, Nicolas MH, Fournier G, Philippin A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Clin Infect Dis 10: 867-878

Karzecmarczyk M, Abbott Y, Walsh C, Leonard N, Fanning S (2011) Characterization of multidrug-resistant *Escherichia coli* isolates from animals presenting at a university veterinary hospital. Appl Environ Microbiol 77: 7104-7112

Kucukbasmaci O, Ciftcioglu G, Midilli K, Issa G (2008) Detection of extended-spectrum β-lactamase producing *Escherichia coli* from food animals in Turkey. Revue Méd Vét 159: 586-592

Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Tornke K (2013) Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56: 1030-1037

NCCLS (National Committee for Clinical Laboratory Standards) (1993) Tentative Guidelines, M26-TNCCLS. Villanova, PA: 1993. Methods for determining bactericidal activity of antimicrobial agents

Odenhall S, Akineden Ö, Usleber E (2016) Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int J Food Microbiol 238: 72–78

Olesen I, Hasman H, Möller Aarestrup F (2004) Prevalence of β-lactamases among ampicillin-resistant *E. coli* and *Salmonella* isolated from food animals in Denmark. Microb Drug Resist 10: 334-340
Palmeira DJ, Ferreira, H (2020) Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon 6: e03206.
Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K (2014) Antimicrobial drug resistance in strains of E.coli isolated from food sources. Rev Inst Med Trop Sao Paulo 56: 341-346
Shome BR, Das Mitra S, Bhuvana M, Krithiga N, Velu D, Shome R, Isloor S, Barbu dde SB, Rahman H (2011) Multiplex PCR assay for species identification of bovine mastitis pathogens. J Appl Microbiol 111: 1349-1356
Singh R, Schroeder CM, Meng J, White DG, McDermott PF, Wagner DD, Yang H, Simjee S, DebrRoy C, Walker RD, Zhao S (2005) Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing E. coli recovered from humans and food animals. J Antimicrob Chem 56:216-219
Soomro AH, Arain MA, Khaskheli M, Bhutto B (2002) Isolation of E. coli from raw milk and milk products in relation to public health sold under market conditions at Tandojam. Pak J Nutr 1: 151-152
Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF (2012) Antimicrobial drug resistance in E. coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis 18: 741
Thaker HC, Brahmbhatt MN, Nayak JB, Thaker HC (2013) Isolation and identification of Staphylococcus aureus from milk and milk products and their drug resistance patterns in Anand, Gujarat. Vet World 6: 10-13
Torpdahl M, Nielsen EM, Scheutz F, Olesen B, Hansen DS, Hasman H (2013) Detection of a Shiga toxin- and extended-spectrum-β-lactamase-producing E. coli O157:H7 human clinical isolate. J Antimicrob Chemother 68: 1203–1204
Van Hoek AHAM, Veenman C, van Overbeek WM, Lynch G, de Roda Husman AM, Blaak H (2015) Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int J Food Microbiol 204: 1–8
Weill FX, Demartin M, Tandé D, Espié E, Rakotoarivony I, Grimont PA (2004) SHV-12-like extended-spectrum-β-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J clin Microbiol 42: 2432-2437