Pim kinases in hematological malignancies: where are we now and where are we going?
Patrizia Mondello1,2*, Salvatore Cuzzocrea2 and Michael Mian3,4

Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoforms: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorigenesis, to enhance tumor growth and to induce chemoresistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.

Keywords: Pim kinases, Target therapy, Hematologic malignancies, Pim inhibitors

Introduction
The proviral insertion in murine (Pim) lymphoma family proteins, whose gene locus was discovered as a proviral integration site for Moloney murine leukemia virus infection, consists of three serine/threonine kinase isoforms: Pim-1, Pim-2 and Pim-3 [1]. These proto-oncogenic kinases are constitutively active and they are mainly regulated at the transcriptional and translational level [2,3] by cytokines and growth factors involved in hematopoiesis, such as interleukin (IL)-2, IL-3 [4,5], IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF) [6]. Furthermore, the stability and function of Pim kinases depend on their interaction with heat shock protein (Hsp) 90, a chaperone protein involved in folding and stabilizing different molecules [7]. Hsp90 showed not only to protect Pim-1 from ubiquitin-26S-proteasomal degradation, but also to maintain the proper conformation of Pim-1 [8].

Pim kinases play a critical role in the control of cell proliferation and survival. They are downstream effectors of important oncogenes, such as Ableson (ABL) [9], Janus Kinase 2 (JAK2) [10] and FMS-like tyrosine kinase 3 (FLT3) [11]. Although Pim kinases exert similar functions, they have different tissue distributions [12,13]. While Pim-1 and Pim-2 are predominantly expressed in hematopoietic cells [12,14], Pim-3 expression is high in brain, kidney, and epithelia [12,15]. Due to their aberrant expression in human tumors [16-19], they could be important contributors in the pathogenesis of neoplasias including lymphomas, gastric, colorectal and prostate cancers [20].

The oncogenic potential of Pim kinases has been studied on transgenic mouse models. In the Eμ-pim1 model only 5–10% of mice developed T-cell lymphoma, suggesting that Pim-1 alone is not able to induce a massive proliferation [21]. Interestingly, infection of these transgenic mice with murine leukemia virus (MuLV) promoting the integration of the provirus in the Pim-1 locus [22] enhanced dramatically the incidence of tumors and reduced the latency of T-cell lymphoma development [21]. The activation of either c-Myc or N-Myc was involved in every tumor, suggesting an oncogenic collaboration between Myc and Pim-1 genes in lymphomagenesis [21,23]. Co-expression of both Eμ–Pim1 and Eμ–Myc was incompatible with life, leading the transgenic mice to succumb to lymphomas in utero or around birth. Conversely, Eμ–Myc/Eμ–Pim1 mice with low expression of c-Myc were viable and with low tumor incidence [24].

* Correspondence: patriziamondello@hotmail.it
1Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
2Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
Full list of author information is available at the end of the article

© 2014 Mondello et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The oncogenic role of Pim-1 and its cooperation with c-Myc have also been studied in prostatic cancer. Pim-1 demonstrated to promote prostate tumorigenesis by enhancing the transcriptional activity of androgen receptors. Notably, Pim1-expressing cells presented an increased c-Myc transcriptional activity as well. Treatment with the c-Myc inhibitor 10058-F4 reduced Pim-1 protein and suppressed the tumorigenicity of the prostate cancer cells [25]. In addition, Pim kinases have been demonstrated to cooperate with other oncogenes, such as bcl2 [26], bcl6 [27], runx2 [28], E2a-pbx1 [29], frat1 [30].

PIM knock-out studies have shown that mice deficient in all three Pim kinases are viable and fertile, supporting the tolerability of pan-Pim inhibition [12]. Mikkers et al. demonstrated that the lack of these kinases resulted in only a decrease of erythrocyte mean cell volume (MCV) [12]. However, a recent study has proved that the triple PIM knock-out affected multiple lineages of hematopoietic cells as well as the self-renewal of hematopoietic stem cells (HSCs) [31]. Based on these results a careful monitoring of potential hematological side effects is recommended with the Pim inhibitors treatment.

In this review we provide an overview of the biological background of Pim kinases, their role in hematologic malignancies and a summary of possible drugs targeting theses enzymes.

The oncogenic potential of PIM kinases

Pim kinases are critical components of distinct pathways that play an important role in cell proliferation and survival [32-34] (Figure 1) and especially in apoptosis, cell cycle regulation, cell proliferation and cell migration.

Apoptosis

Pim kinases prevent cells from apoptosis by phosphorylating the proapoptotic Bcl-2-associated agonist of cell death (Bad). Phosphorylation of Bad on Serine (Ser) 112 and Ser136, respectively by Pim-1 and Pim-2, induces 14-3-3 binding, which results in loss of the binding with the anti-apoptotic protein Bcl-2 and, consequently, in cell survival [35-37]. Similarily, phosphorylation of Bad on Ser155 by Pim-3 was found to prevent Bad from binding to the anti-apoptotic protein Bcl-xL [38]. In addition, the pro-survival activity of Pim kinases seems to depend also on direct phosphorylation of the apoptosis signaling kinase 1 (ASK1) [39], which decreases significantly ASK1 activity and inhibits ASK1-mediated phosphorylation of JNK and p38. Ultimately this phosphorylation event leads to blocking caspase-3 activation and decreasing apoptosis levels [39].

Pim kinases usually phosphorylate Mdm2 on Ser166 and 186, an E3 ubiquitin ligase which mediates ubiquitylation and proteasome-dependent degradation of p53 [40]. Notably, these residues are targets of other signaling pathways including Akt [41-46]. When Pim kinases are over-expressed, such as in tumors, they block the degradation of both p53 and Mdm2 in a Mdm2-independent manner, leading to an increase of p53. In addition, Pim-1 enhances p14ARF activity [40], a Mdm2 inhibitor well known to arrest the degradation of both p53 and Mdm2 itself [47,48].

![Figure 1](http://www.jhoonline.org/content/7/1/95)
Finally, Pim-2 maintains high levels of NFκB required for its anti-apoptotic function. Indeed, transcriptional targets of the NF-κB include many genes associated with survival, such as Bcl-2 and Bcl-xL. Hammerman et al. demonstrated that Pim-2 activates NFκB by inducing phosphorylation of Cot, a serine/threonine kinase downstream to both MAPK/ERK and NF-κB signaling pathways [49]. Furthermore, Pim-1 phosphorylates RelA/p65, the main subunit of NF-κB, preventing its degradation from ubiquitin-mediated proteolysis. Knocking down Pim-1 severely impaired cell survival, at least in part, by interfering RelA/p65 activation [50].

Cell cycle regulation

Pim kinases are involved in cell proliferation through the phosphorylation of the cyclin-dependent kinase inhibitors p21 at Threonine (Thr145 and Ser146) [51,52], p27 at Thr157 and Thr198 [53]. Phosphorylation of p21 induces its translocation from the nucleus to the cytoplasm, resulting in cell proliferation and survival [54,55]. Overexpression of Pim-2 leads to enhanced levels and stability of p21, while knockdown of Pim-2 results in reduced levels of p21 [52]. Notably, treatment with pan-Pim inhibitor lowered not only Pim-2 kinase activity, but also p21 phosphorylation [56]. An inverse relation seems to exist between Pim and p27 levels. Morishita et al. have demonstrated that phosphorylation of p27 by Pim kinases prompts its binding to 14–3–3 proteins and subsequent nuclear exclusion and degradation of p27. Furthermore, Pim kinases seem to down-regulate p27 at the transcriptional level by inactivating Forkhead transcription factors [53]. In addition, Pim-1 seems to influence cell cycle phase transition by phosphorylating critical tyrosine phosphatases: Cdc25A for the G1/S and Cdc25C, and the Cdc25C-associated kinase (C-TAK)1 for the G2/M [57,58].

In further support of its role in the cell cycle, Pim-1 showed to phosphorylate the nuclear mitotic apparatus protein (NuMA), that is essential for mitotic spindle formation and aids in chromosome separation. Pim-1 seems to contribute to maintenance of a stable connection between NuMA, dynein/dynactin and the pericentric protein HP1β, a complex that is necessary for mitosis. Notably, the ‘kinase-dead’ mut-Pim-1-GFP fusion protein hinders the progression of mitosis and results in rapid cell death by apoptosis [59].

Cell Proliferation

Pim-1 and/or Pim-2 are significant downstream targets of transcription factors STAT 3 and STAT 5 [60]. Pim kinases in turn are able to influence the JAK/STAT pathway through their direct interaction and phosphorylation of Suppressor of Cytokine Signalling (SOCS)-1, a well-known regulator of this signaling pathway [61,62]. The modulation of SOCS1 by Pim kinases seems to have a critical role in v-Abl-induced tumorigenesis. In the xenograft model v-Abl was not able to transform bone marrow deficient in the Pim-1/Pim-2 model, but it partially succeeded in its transformation activity combining the triple knockout of Pim-1, Pim-2 and SOCS1 [63]. Although Pim kinases are pro-oncogenic proteins, they are not sufficient to initiate disease [64] and therefore a cooperation between Pim-1 and c-Myc is required for promoting STAT3-mediated cell cycle progression [65]. Both Pim-1 and Pim-2 phosphorylate c-Myc, increasing its stability and consequently its transcriptional activity [66]. Recently, it has been demonstrated that this cooperation takes place also at the transcriptional level through Pim-mediated phosphorylation of preacetylated histone H3 on Ser10 (H3S10) [67]. The H3S10 phosphorylation is required to mediate the interaction with 14–3–3 proteins [68] and the ensuing recruitment of the histone acetyltransferase MOF, which acetylates histone H4, generating a nucleosome platform for bromodomain-containing protein 4 (BRD4) binding. Thereafter, the positive transcription elongation factor b (P-TEFb) is recruited inducing the phosphorylation of RNA polymerase II (Pol II) and the release of stalled Pol II, which activates transcriptional elongation [69]. However, Pim kinases contribute for about 20% of Myc-induced gene expression [67]. c-Myc stability is mainly controlled by the ubiquitin–proteasome system, in particular by Fbxw-7 [70]. An inverse proportion exists between Fbxw-7 and c-Myc levels [71,72], consequently Fbxw-7 deletion was associated with c-Myc accumulation and aberrant cell cycle entry [73,74]. Mutation of Fbxw-7 has been found in solid [75-78] and blood malignancies [79]. In addition, also the control of miRNA expression plays an important role in Myc-mediated tumorigenesis. Several studies found that c-Myc repressed a wide range of miRNAs by directly binding the promoter of these miRNAs [80,81], favoring Myc-mediated tumorigenesis and conferring a more aggressive feature.

Pim activity is synergistic with another independent pro-survival pathway, phosphoinositide-3-Kinase/Akt/mammalian (PI3K/Akt/mTOR) [82]. Pim-2, but not Pim-1, has been identified as the principal kinase that phosphorylates the translational repressor 4E-BP1 and p70S6 independently of the PI3K/Akt/mTOR pathway [2]. Indeed, the activation of Pim-2 revealed an important role in cell growth resistant to rapamycin, an mTOR inhibitor [83]. Therefore, suppressing Pim-2 is important to treat rapamycin-resistant tumors.

Cell migration

The Pim proteins also revealed an involvement in signaling pathways that control cell migration. Pim-1 plays a significant role on MET expression, the receptor for hepatocyte growth factor (HGF) involved in signaling normal and tumor cell migration and invasion. Pim-1 controls the
translation of MET by phosphorylation of eukaryotic initiation factor 4B (eIF4B) at Ser406 and the use of Pim inhibitor has been associated with a significant decrease of MET expression [84].

In addition, Pim-1 showed an influence on the chemokine ligand 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) expression, a ligand/receptor system with a crucial role in normal homeostasis [85], especially in the hematopoietic stem cells grafting [86,87]. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) [88,89], PI3K [90] and Syk [91] transduction pathways showed to be differently implicated in CXCR4-mediated migration and proliferation. The imbalance of CXCL12/CXCR4 axis is implicated in cancer progression and spreading of tumor-initiating cells [92]. In vitro experiments suggested that Pim-1 might regulate CXCR4 expression through phosphorylation of the Ser339 in the intracellular domain involved in receptor internalization [93]. Pim-1 overexpression has proved to correlate with CXCR4 levels also in leukemic blasts. Interestingly Pim inhibitor treatment led to downregulation of CXCR4 surface expression in primary cells, inducing impairment of Pim-mediated cell survival and block of CXCR4-mediated interaction of cells with their protective microenvironment [93,94].

Expression levels of PIM kinases in hematologic cancer

Overexpression of Pim kinases has been observed in different human cancers, but mainly in haematological malignancies [20]. Initially, overexpression of Pim-1 was found in human myeloid and lymphoid leukemias [33,34]. In acute myeloid leukemia (AML) increased levels of Pim-1 have been associated with aberrant expression of the mixed-lineage leukemia (MLL) gene [95] as a consequent activation of tyrosine-kinase receptor FLT3 or the transcriptional regulator Hoxa9 [11,96-98].

Almost half of diffuse large B-cell lymphoma (DLBCL) tissues showed an increased expression of Pim kinases [99,83], which is even more frequent in the activated B-cell (ABC) subtype due to the constitutive activation of JAK/STAT3 signaling [14]. Brault et al. proved a strong correlation between level expression of Pim kinases, STAT signaling, higher proliferative rate, and more advanced disease stage. Therefore, these findings suggest the possible role of Pim kinases as markers for DLBCL progression [100].

Increased levels of Pim-2 were also found in mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal zone lymphoma-MALT type (MZL-MALT), chronic lymphocytic leukemia (CLL), nodal marginal zone lymphoma (NMZL) [17,101,102] and multiple myeloma [103].

Pim kinases as therapeutic targets

Pim kinases are attractive therapeutic targets since they are often aberrantly expressed in several hematologic disorders and because they contribute to cellular proliferation and migration. A large number of new molecules have been produced so far. While most of them are specific inhibitors of Pim-1, only few are able to inhibit all Pim isoforms [104,105] (Table 1). However, because of the overlapping functions of these kinases, a pan-Pim inhibitor resulted to be more effective than a selective one [106].

A first generation of Pim-inhibitors (SGI-1773, SGI-1776) demonstrated high antitumor activity both in vitro and in vivo in different hematological tumors [107-109]. SGI-1776 is an imadizaopyridazine with nanomolar activity not only on the three Pim kinases, but also on Flt3 and Haspin. Therefore, the real contribution of Pim inhibition to the efficacy of this compound is unclear. In contrast to SGI-1773, SGI-1776 has shown to induce an almost complete suppression of Cyclin D1, CMYC and MCL1. In addition, SGI-1776 has been demonstrated to overcome Pim2-mediated rapamycin resistance without increased toxicities in a mouse model [110]. Based on these positive results, a phase I clinical trial recruiting castration-resistant prostate cancer or relapsed/refractory non-Hodgkin lymphoma patients was conducted. However, due to unexpected severe cardiotoxicity the trial was ended.

Table 1 Novel Pim-Inhibitors in hematologic malignancies
Compound
SGI-1776
SMI4a
LGB321
AZD1897
SEL24-B58
AZD1208
Pim-2 and Pim-3 with a low nanomolar activity in cells after 17 days of treatment and no toxicity [117].

Second generation Pim-inhibitors were designed to increase specificity and to eliminate cardiotoxicity. SMI4a is a benzylidene-thiazolidene-2,4-dione inhibiting PIM1 (24 nM) and PIM2 (100 nM) [113]. This molecule is able to induce G1 arrest through a marked increase of p27 and consequently inhibition of cdk2. In a mouse model SMI4a induced a delay in tumor growth without important toxicity [113]. SMI4a demonstrated synergy with the mTOR inhibitor rapamycin by downregulating p4EBP1 and blocking proliferation in AML cells [114]. Since SMI4a increases phosphorylation of ERK1/2, its association with a MEK1/2 inhibitor also showed a good synergistic activity leading to a higher death rate of precursor T-cell lymphoblastic lymphoma cells [113].

LG3B321 is a 3- (S)-amino-piperidine pyridyl carboxamide, ATP-competitive inhibitor of all three Pim kinases with a 50% inhibitory concentration (IC50) for Pim-1, Pim-2 and Pim-3 of 0.001, 0.002 and 0.0008 nM, respectively. LG3B321 was tested in different hematologic cell lines such as ALL, AML, multiple myeloma and B-cell NHL. Among all studied cell lines, the multiple myeloma subtype was the most sensitive with IC50 values in the picomolar range. LG3B321 efficacy and safety profiles were also confirmed in vivo models [106]. Based on these data, a phase I clinical trial evaluating the LG3B321 activity in relapse/refractory myeloma is ongoing (NCT02144038).

AZD1897 is an ATP-competitive pan-Pim-inhibitor with IC50 of 3 nM against Pim-1, 2 and 3 [115], recently evaluated in treatment of AML. In vitro studies demonstrated a limited activity of AZD1897 as a single agent, but a strong synergy in combination with the AKT-inhibitor AZD5363. This association led to a greater cytotoxic activity as well as a decreased downstream mTOR-targets (p4EBP1, p56 kinase) and MCL1 levels with respect to the single agent therapy [116]. Based on the remarkable anti-leukemic activity of AZD1897 combined with AKT inhibition future clinical trials are warranted.

SEL24-B58 is able to inhibit all three Pim kinases already at picomolar dose (IC50 values are: Pim-1 31 nM, Pim-2 154 nM and Pim-3 152 nM). In vitro SEL24-B58 reduced Mcl-1 levels, demonstrating synergy in combination with the Bcl2-family inhibitor ABT-737 in leukemic monocyte cells. The combination with JAK1/2 inhibitor (Cyt387) in lymphoblastic leukemia cells resulted in a synergistic antiproliferative activity as well. A Xenograft model confirmed the efficacy of SEL24-B58 at a concentration of 150 mg/kg with a completed arrest of tumor growth after 17 days of treatment and no toxicity [117].

AZD1208 is a thiazolidene, highly selective for Pim-1, Pim-2 and Pim3 with a low nanomolar activity in cells (IC50 of 0.4 nM for Pim-1, 5.0 nM for Pim-2, and 1.9 nM for Pim-3) [115]. AZD1208 demonstrated in vitro and in vivo activity against AML. A significant growth inhibition was evident in a dose-dependent manner. Indeed, AZD1208 led to decreased phosphorylation of Bad, 4EBP1, p70S6K, and S6, as well as increased cleaved caspase 3 and p27 [32]. Notably, it showed to be active in Flt3-ITD primary tumor cells without the off-target inhibition activity [118] unlike previous PIM inhibitors [108,109,119]. Based on these interesting data, AZD1208 is currently being evaluated in phase 1 clinical trials. (NCT01489722, NCT01588548).

Conclusion

Pim kinases create a wide interest in oncology due to their overexpression in cancer and association with enhanced tumor growth and chemo-resistance. Given the close advent of Pim inhibitors in clinic, it is important to find their most efficient application. First of all biomarker identification might allow to select the patients and follow the course of treatment. So far, no genetic markers have been established to guide therapeutic decision. Therefore, it may be worth improving the knowledge of Pim-dependent gene expression and verify the existence of a correlation between high levels of different subsets of Pim-regulated genes and increased sensitivity to treatment. Another open question is whether Pim kinase inhibitors should be used as monotherapy or in combination. Preclinical data have shown that Pim inhibitors are effective drugs when used as single agents. However, their positive effect was even more pronounced when they were combined with chemo- or other target-therapies (Pi3k/AKT/mTOR inhibitor). In addition, these inhibitors demonstrated to significantly reverse drug resistant phenotypes in preclinical models. It is necessary to wait until the conclusion of clinical trials using Pim kinases inhibitors to see if tumor cells will develop resistance through other signaling pathways. Finally, evaluation of toxicity will be important as well due to the difficulty in finding the right balance between sufficient inhibition and acceptable toxicity when multiple signaling inhibitors are combined.

In the near future research should focus on the activity of Pim kinases and their involvement in resistance mechanisms in order to allow for a more efficient treatment and application.

Abbreviations

PIM: Proviral insertion in murine; IL: Interleukin; GM-CSF: Granulocyte-macrophage colony-stimulating factor; G-CSF: Granulocyte-colony stimulating factor; ABL: Abelson; JAK2: Janus Kinase 2; FLT3: FMS-like tyrosine kinase 3; MuLV: Murine leukemia virus; MCV: Mean cell volume; HSCs: Hematopoietic stem cells; Bad: Bcl2-associated agonist of cell death; Ser: Serine; ASK1: Apoptosis signal transduction protein 1; Thr: Threonine; C-TAK: Cdc25C-associated kinase; SOCS: Suppressor of Cytokine Signalling; H3S10: Histone H3 phosphorylated at Ser10; BRD4: Bromodomain-containing protein 4; P-TEFB: Positive transcription elongation factor b; Pol II: Polymerase II; Pi3k/Akt/mTOR: Phosphoinositide-3 Kinase/Akt/mammalian; eIF-4B: Eukaryotic initiation factor 4B; CXCL12/
CXCR4; Chemokine ligand 12/chemokine C-X-C motif receptor 4; ERK1/2; Extracellular signal-regulated protein kinase 1/2; MLL: Mixed-lineage leukemia; ABC: Activated B-cell; MCL: Mantle cell lymphoma; FL: Follicular lymphoma; MZL-MALT: Marginal zone lymphoma-MALT type; CLL: Chronic lymphocytic leukemia; NM2L: Nodal marginal zone lymphoma; IC50: 50% inhibitory concentration.

Competing interests

The authors have no conflicts of interest regarding the publication of this article.

Authors’ contributions

MP revised the literature and wrote the manuscript; CS and MM were involved in revising the manuscript critically for important intellectual content. All authors read and approve the final manuscript.

Acknowledgements

This article did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author details

1. Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125 Messina, Italy. 2. Department of Biological and Environmental Sciences, University of Messina, Messina, Italy. 3. Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. 4. Department of Internal Medicine; Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.

Received: 22 September 2014 Accepted: 4 December 2014

Published online: 10 December 2014

References

1. Nawijn MC, Aalderen A, Berns A: For better or for worse: the role of Pim oncoproteins in tumorigenesis. Nat Rev Cancer 2011, 11:23–34.
2. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB: The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003, 17:1841–1854.
3. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronikats A, Li J, White A, Mische S, Farmer B: Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 2005, 280:6130–6137.
4. Allen JD, Verhoefen E, Domen J, van der Valk M, Berns A: Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 1997, 15:1133–141.
5. Dautry F, Weil D, Yu J, Dautry-Varsat A: Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. J Biol Chem 1988, 263:17615–17620.
6. Lilly M, Le T, Holland P, Hendrickson SJ: Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. Oncogene 1992, 7:272–732.
7. Pratt WB: The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 1997, 37:297–332.
8. Mizuno K, Shirogane T, Shinohara I, Iwamatsu A, Hirano T: The serine/threonine kinase Pim-1 proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas in transgenic mice. Oncogene 1995, 11:1729–1736.
9. Baron BW, Anastasi J, Hyek EM, Bies J, Reddy PL, Dong J, Joseph L, Therman MJ, Wolskeviel K, Wolff L, Baron JM: Pim1 gene cooperates with human BCL6 gene to promote the development of lymphomas. Proc Natl Acad Sci U S A 2012, 109:5735–5740.
10. Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE, Mischak MM, Roh M, Abdulkadir SA: Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2004, 45:951–955.
11. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M, Small D, Berns A: Identification of cooperating oncogenes in E mu-myc transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989, 56:73–82.
12. Mikes M, Grunewald A, Mornar D, Magounus NS: Pim-1 proto-oncogene expression in anti-CD3-mediated T-cell activation is associated with the progression of thymic lymphomas in transgenic mice: rapamycin-resistant T cell survival and activation. J Exp Med 2001, 193:1729–1735.
13. Eichmann A, Yuan L, allergies C, Alitalo K, Koskinen PJ: Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene 2000, 19:1215–1224.
14. Bachmann M, Motro T: The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 2005, 37:726–730.
15. Feldman JD, Vician M, Tocco G, Marcheselli VL, Bazan NG, Baudry M, Hershman HR: KDR, a protein kinase induced by depolarization in brain. J Biol Chem 1998, 273:16335–16343.
16. Alizadeh AA, Eisen MB, Davis RE, Ma C, Ross L, Lossos IS, Rosenwald A, Boldrick JC, Saratovets D, Luthra R, Chu K, Siebert R, Van Ness F, Yeoh EK, Wilson W, Greiner TC, Nettastic B, Amstegate JD, Wertz R, Levy Y, Wilson W, Greiner MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nat Genet 2000, 24:595–610.
17. Cohen AM, Grinblat B, Bessel H, Krütt D, Kremer A, Schwartz A, Halpertin M, Shalom S, Mckel K, Dorn J: Increased expression of the Pim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2004, 45:951–955.
18. Wingett D, Long A, Kelleher D, Magounus NS: Pim-1 proto-oncogene expression in anti-CD3-mediated T-cell activation is associated with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989, 56:73–82.
19. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaskievicz T, Berns A: Predisposition to lymphomagenesis in Pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989, 56:73–82.
20. Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly M, Salto-Tellez M, Berns A: Potential role of the Pim1 kinase in human cancer - a molecular and therapeutic appraisal. Eur J Cancer 2008, 44:2144–2151.
21. van Lohuizen M, Verbeek S, Scheeren B, Goed J, Glaedt L, van der Gulden H, Berns A: Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991, 66:375–382.
22. Berns A: Tumorigens in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem 1991, 47:30–135.
23. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A: Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 1991, 11:176–178.
24. Kim J, Roh M, Abdulkadir SA: Pim1 promotes human prostate cancer cell tumorigenesis and c-MYC transcriptional activity. BMC Cancer 2010, 10:248.
25. Shirato Y, Morimoto M, Katsumata M, Uchida A, Azazaka K, Okamoto M, Kuwasawa T, Ochi T, Greene M, Tsumoto M, Moloney murine leukemia virus infection accelerates lymphomagenesis in E mu-bc-2 transgenic mice. Oncogene 1995, 11:1729–1736.
26. Baron BW, Anastasi J, Hyek EM, Bies J, Reddy PL, Dong J, Joseph L, Therman MJ, Wolskeviel K, Wolff L, Baron JM: Pim1 gene cooperates with human BCL6 gene to promote the development of lymphomas. Proc Natl Acad Sci U S A 2012, 109:5735–5740.
27. Blyth K, Terry A, Mackay N, Valliant F, Bell M, Cameron ER, Neil JC, Stewart M: Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene 2001, 20:295–302.
28. Feldman BJ, Reid TR, Cleary ML: Pim1 cooperates with E2a-Pbx1 to facilitate the progression of thymic lymphomas in transgenic mice. Oncogene 1997, 15:2735–2742.
29. Jenkins K, Korswagen HC, Acton D, Breuer M, Berns A: Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas. EMBO J 1997, 16:441–450.
30. An N, Kraft A, Kang Y: Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol 2013, 295–12.
31. Fox CJ, Hammerman PS, Thompson CB: The Pim kinases control rapamycin-resistant T cell survival and activation. J Exp Med 2005, 201:259–266.
32. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS: Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2001, 2:167–20.
33. Cuypers HT, Selten G, Berns A, van Kessel AH G: Assignment of the human homologue of Pim-1, a mouse gene implicated in leukemogenesis, to the pter-q12 region of chromosome 6. Hum Genet 1986, 72:262–265.
35. Aho TL, Sandholm J, Peltoja KJ, Mankonen HP, Lilly M, Koskinen PJ: Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEMS Lett 2004, 57:143–49.

36. Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS: Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 2005, 6:1.

37. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ, Lilly M: The Pim-2 kinase phosphorylates Bad on serine 112 and reverses BAD-induced cell death. J Biol Chem 2003, 278:43538–43567.

38. Li YY, Popivanova BK, Nagai Y, Ishikura H, Fuji C, Mukaida N: Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res 2006, 66:6741–6747.

39. Gu JJ, Wang Z, Reeves R, Magnuson NS: PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene 2009, 28:4261–4271.

40. Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N, Meek D: Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008, 283:18802–18803.

41. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p35 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001, 3:793–792.

42. Mayo LD, Donner DB: A phosphotyrosinolost 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001, 98:11598–11603.

43. Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ, Ashcroft M: The Pim-2 kinase phosphorylates Mdm2 and interacts with p53. J Biol Chem 2002, 277:19099–12.

44. Jackson MW, Patt LE, LaRusch GA, Donner DB, Stark GR, Mayo LD: Mdm2 nuclear export, regulated by insulin-like growth factor-I/ MAPK/p90Rsk signaling, mediates the transformation of human cells. J Biol Chem 2006, 281:16181–16182.

45. Weber HO, Ludwig RL, Morrison D, Kotlyarov A, Gaestel M, Vossen KH: Mdm2 phosphorylation by MAPK kinase 2. Oncogene 2005, 24:1865–1972.

46. Stoff JT, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palermo I, Ryan K, Hara E, Vossen KH, Peters G: The alternative protein from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998, 17:5001–5007.

47. Lianos S, Clark PA, Rowe J, Peters G: Stabilization of p53 by p14ARF without relaxation of MDM2 to the nucleosol. Nat Cell Biol 2001, 3:445–452.

48. Hammerman PS, Fox CJ, Ginalli RW, Xu A, Wagner JD, Linten T, Thompson CB: Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation. Cancer Res 2004, 64:1834–1848.

49. Nihira K, Ando Y, Yamaguchi T, Kamiyama K, Miya K, Yoshida K: Pim-1 controls NF-kappaB signaling by stabilizing RELA/p65. Cell Death Differ 2010, 17:569–598.

50. Wang Z, Bhattacharya N, Minter PF, Wei W, Sedivy J, Magnuson NS: Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochem Biophys Acta 2002, 1599:45–55.

51. Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS: Phosphorylation of p21Cip1/WAF1 promotes its stability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol 2010, 42:1030–1038.

52. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N: Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 2008, 68:5076–5085.

53. Xia W, Chen JS, Zhou X, Sun PR, Lee OF, Liao Y, Zhou BP, Hung MC: Pim-2 phosphorylation co-localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2003, 10:3815–3824.

54. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001, 3:245–252.

55. Murnemheimer SM, Ng PY, Hodge A, Bears D, Berk G, Kanekal S, Redkar S, Taverna P, Agus DB, Jain A: Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resestizes chemoresistant cells to taxanes. Mol Cancer Ther 2009, 8:2882–2893.

56. Mochizuki T, Kitakata C, Noguchi T, Muramatsu T, Asai A, Kuchino Y: Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 1999, 274:18659–18666.

57. Bachmann M, Hennemann H, Xing PX, Hoffmann I, Money T: The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (Ctak1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 2004, 279:48319–48328.

58. Bhattacharya N, Wang Z, Davitt C, Mckenzie IF, Xing PX, Magnuson NS: Pim-1 associates with protein complexes necessary for mitosis. Chromosoma 2002, 111:80–95.

59. Yip-Schneider MT, Horie M, Brommeyer HE: Transcriptional induction of pim-1 kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor. Blood 1995, 85:3949–3952.
87. Rajagopalan H, Jallepalli PV, Rago C, Veleculescu VE, Kinzler KW, Vogelstein B, Lengauer C: Inactivation of HCD4 can cause chromosomal instability. Nature 2004, 428:77–81.

89. Siu KT, Xu Y, Swartz KL, Bhattacharyya M, Gurbuxani S, Hua Y, Minella AC: Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Mol Cell Biol 2014, 34:3264–3268.

90. Chang TC, Yu D, Lee SY, Wentzell EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008, 40:43–50.

91. Liu L, Wang S, Chen R, Wu Y, Zhang B, Huang S, Zhang J, Xiao F, Wang M, Liang Y: Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun 2012, 425:368–373.

92. Hammerman PS, Fox CJ, Brinbaum MJ, Thompson CB: Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005, 105:4477–4483.

93. Schatz JH, Orlichio E, Wolfe AL, Jiang M, Linkov I, Maragula J, Shi W, Zhang R, Rajarekha VR, Pagano NC, Porco JA Jr, Tenen DA, Rosen N, Zelenetz AD: Pim kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br J Cancer 2010, 102:491–500.

94. Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J: K67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: A Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2009, 50:2861–2800.

95. Pasqualetti L, Neumeister P, Goossens T, Nangiandj T, Chaganti RS, Kuppers R, Dalla-Favera R: Hypermutation of multiple proto-oncogenes in B-cell diffuse large lymphoma. Nature 2001, 412:341–346.

96. Claudio JO, Mash-Khan E, Tang H, Goncalves J, Voitila M, Li ZH, Nadeem V, Cukenman E, Francisco-Pabalum O, Liew CC, Woodgett JR, Stewart AK: A molecular compendium of genes expressed in multiple myeloma. Blood 2002, 100:2175–2186.

97. Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Cassier C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J: Structural analysis identifies imidazolo[1,2-b]pyridazines as Pim kinase inhibitors with in vitro antileukemic activity. Cancer Res 2007, 67:6916–6924.

98. Biondo A-P, Collazo AM, Oyarzabal J, Leal JF, Miranda RN, Gandhi V, Neelapu SS, Medeiros LJ, Gandhi V: Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinases. Blood 2008, 111:2687–2692.

99. Read J, Wu AJ, Zhang T, Zheng X: PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukemia cells. Blood 2009, 114:4150–4157.

100. Chen LS, Redkar S, Bears D, Wiera WD, Gandhi V: Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2009, 114:15–20.

101. Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V: SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Exp Cell Res 2011, 317:165–175.
myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br J Haematol 2014, 167:69–79.

117. Brzózka K, Windak R, Guratowska M, Krawczyńska K, Klosowska-Wardega A, Zurawska M, Trębacz E, Sabiniarz A, Czardybon W, Cholody M, Horvath R, Szamborska-Gibor A, Prymula K, Millik M, Kowalczyk P, Rymski T, Beuzen N: Preclinical development of a Pim kinase inhibitor for cancer treatment. [abstract]. Cancer Res 2012, 72(s1).

118. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR, Kaur S, Wang S, Chen Y, Wu A, Shen M, Gibbons FD, Lamb ML, Zheng X, Stone RM, Deangelio DJ, Platania LA, Chen H, Lyne PK, Huszar D: AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2014, 123:905–913.

119. Fathi AT, Arowojolu O, Swinnen I, Sato T, Rajkhova T, Small D, Marmater F, Robinson JE, Gross SD, Martinson M, Allen S, Kallan NC, Lewis M: A potential therapeutic target for FLT3-ITD AML: PIM1 kinase. Leuk Res 2012, 36:224–231.

<ref id="doi:" value="10.1186/s13045-014-0095-z">doi:10.1186/s13045-014-0095-z</ref>
Cite this article as: Mondello et al: Pim kinases in hematological malignancies: where are we now and where are we going? Journal of Hematology & Oncology 2014 7:95.