The practice of pilot/feasibility studies in informing the conduct of HIV related clinical trials in sub-Saharan Africa: A scoping review

Sylvia Nalubega, Lawrence Obado Osuwat, Poku Brenda Agyeiwaa, Catrin Evans, John Bosco Matovu Junior

Introduction

Pilot/feasibility studies represent a fundamental phase of the research process and play a vital role in the preliminary planning of a full size HIV clinical trial. Published HIV clinical trial protocols were reviewed to establish the extent to which the proposed HIV clinical trials are informed by a prior pilot/feasibility study.

Methods: The JBI methodology for scoping reviews was followed. Six databases were systematically searched to identify articles for inclusion.

Results: Thirty two (32) published HIV study protocols were included. Articles were in the English language and were published in the past 10 years (2011-2020). The review results showed that the majority of HIV-related clinical trials in sub-Saharan Africa were not informed by pilot/feasibility studies. The results further indicated that the number of HIV clinical trials informed by a pilot/feasibility study have been on the increase in the 8 years' period since 2012, a trend that indicates positive uptake of pilot studies in HIV related studies. A few select countries (South Africa, Uganda, Zimbabwe, Malawi and Kenya) comprised more than 70% of all clinical trials that were informed by a pilot/feasibility study, conducted in sub-Saharan Africa.

Conclusions: Although there is an increasing interest among researchers to integrate pilot/feasibility studies in HIV related research, limited countries in sub-Saharan Africa appear to have embraced this trend. Strategies that can motivate researchers to engage in a culture of incorporating pilot/feasibility studies in HIV related research should be implemented.

ARTICLE INFO

Keywords:
Pilot studies
Feasibility studies
HIV/AIDS
Clinical trials
Sub-Saharan Africa
Scoping review

ABSTRACT

Introduction: Pilot/feasibility studies represent a fundamental phase of the research process and play a vital role in the preliminary planning of a full size HIV clinical trial. Published HIV clinical trial protocols were reviewed to establish the extent to which the proposed HIV clinical trials are informed by a prior pilot/feasibility study.

Methods: The JBI methodology for scoping reviews was followed. Six databases were systematically searched to identify articles for inclusion.

Results: Thirty two (32) published HIV study protocols were included. Articles were in the English language and were published in the past 10 years (2011-2020). The review results showed that the majority of HIV-related clinical trials in sub-Saharan Africa were not informed by pilot/feasibility studies. The results further indicated that the number of HIV clinical trials informed by a pilot/feasibility study have been on the increase in the 8 years' period since 2012, a trend that indicates positive uptake of pilot studies in HIV related studies. A few select countries (South Africa, Uganda, Zimbabwe, Malawi and Kenya) comprised more than 70% of all clinical trials that were informed by a pilot/feasibility study, conducted in sub-Saharan Africa.

Conclusions: Although there is an increasing interest among researchers to integrate pilot/feasibility studies in HIV related research, limited countries in sub-Saharan Africa appear to have embraced this trend. Strategies that can motivate researchers to engage in a culture of incorporating pilot/feasibility studies in HIV related research should be implemented.
It has been reported that while many pilot or feasibility studies aim to inform future research, it is possible that many do not reach their intended goal. A review by Arain and colleagues that aimed to ascertain the practice of pilot/feasibility studies in informing clinical trial design and conduct reported that only 8 out of 90 pilot studies led to subsequent main studies [8], while Blatch-Jones and colleagues [5], in their cross-sectional study to ascertain the role of feasibility and pilot studies in randomised clinical trials, reported that even though many (81%) of the studies suggested the need for further research, it was not clear if these resulted into full-sized randomised clinical trials. Adequate reporting of endpoints of pilot/feasibility studies could be helpful in ascertaining if, and to what extent, pilot studies contribute to the conduct of larger clinical trials, to provide a rationale for such to be supported and funded.

Despite the likely benefits of conducting pilot/feasibility trials as part of larger HIV clinical trials, the practice of undertaking these as a pre-requisite for conducting HIV clinical trials in sub-Saharan Africa is not well documented, yet as stated by In [3], pilot studies are justified because evidence from their conduct informs whether or not the main study is feasible. Such information can be used to modify the clinical trial protocol hence improving the quality and efficiency of the main study. Thus, the conduct of pilot studies is not only ethical, but helps to reduce waste of efforts by researchers and study participants and provides clues on how research resources can be better spent [2].

We aimed to conduct a scoping review of published HIV clinical trial protocols, to establish how the intended trials have been informed by a prior pilot/feasibility study. We focused on pilots for HIV related clinical trials because there was scarcity of data on this topic, but also, worldwide, the sub-Saharan Africa region has the highest HIV prevalence hence many HIV-related clinical trials do take place in this region. The review had the following specific objectives.

1. To estimate the proportion of clinical trial protocols whose proposed clinical trials are informed by a pilot/feasibility study
2. To characterise protocols whose proposed clinical trials are informed by a pilot/feasibility study by time, person and place.

2. Methods

This was a scoping review of protocols of HIV related clinical trials to be undertaken in sub-Saharan Africa. We defined HIV-related clinical trials as any clinical trials that are conducted to find better ways to prevent, detect or treat HIV/AIDS or health states that arise due to HIV infection or AIDS. We defined a protocol of HIV related clinical trials as a document that describes how a clinical trial will be conducted (the objective(s), design, methodology, statistical considerations and organization of a clinical trial,) and ensures the safety of the trial subjects and the integrity of the data collected [9]. Being a relatively new area of study, a scoping review (the purpose of which is to provide an overview rather than a synthesis of the available research evidence) will provide initial insights into the area of study and a direction for further research [10]. The scoping review was rigorously conducted following the JBI scoping review methodology guideline and checklist [11–13].

2.1. Inclusion criteria

Types of participants/population: The review included published and/or un-published study protocols that were designed for conducting human based HIV clinical trials. In this review, the clinical trial was eligible for inclusion if it was HIV related.

Context: We included all protocols whose proposed HIV related clinical trials were/would be undertaken in sub-Saharan Africa. Studies that indicated multiple settings but which also included sub-Saharan Africa were included. We excluded study protocols whose settings were not indicated or were not very clear, or were conducted outside sub-Saharan Africa.

Types of studies: Sources of data included published/unpublished protocols for HIV related clinical trials. We only included individual protocols and not review articles. Additionally, protocols for pilot studies (and not for full clinical trials) were excluded. Protocols that reported ongoing or completed clinical trials were included.

2.2. Search strategy

The search aimed to identify both published and unpublished (Gray or difficult to locate) primary sources of evidence that reported on using pilot/feasibility studies to inform their HIV clinical trials. A three-step search strategy was utilized. First we carried out an initial limited search of two databases including: Medline (Ovid) and CINAHL. The initial search was then followed by an analysis of the text words contained in the titles and abstracts of retrieved papers, and of the index terms used to describe the articles. A second search using all identified keywords and index terms was then undertaken across all included databases: MEDLINE (OVID), CINAHL, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL) databases, and African Index Medicus (AIM). Thirdly, the reference list of identified articles were searched for additional sources. Where necessary, we contacted authors of primary sources for further information or clarification. Gray literature was searched from Google, Google Scholar, ClinicalTrials.gov, Protocol Exchange, and UK Clinical Research Network (UKCRN) Portfolio Database. We included all HIV clinical trial protocols published in the previous 10 years (2011–2020). We theorised that there would be many clinical trials in sub-Saharan Africa during the last 10 year period to provide sufficient evidence for the review. Because of time and resource constraints, only studies published in the English language were considered for inclusion in this review. Keywords that were used to search for articles included: pilot*, feasibility, clinical trial*, study, HIV, Human Immunodeficiency Virus, AIDS, protocol, proposal, sub-Saharan Africa, Africa, low income setting and low income country*. A search done from CINAHL is provided as Appendix I.

2.3. Study selection

All articles retrieved through the systematic search and from Gray literature were imported into Endnote reference management software for screening. Selection of documents was performed by two independent reviewers. Any disagreements that arose were resolved by consensus. The selection of articles was done at three levels. First articles were screened at title level, followed by abstract review and finally full text documents were retrieved and screened for eligibility. The article screening process and reporting of results were aligned to the PRISMA flow diagram from the PRISMA-ScR statement (Appendix II) [14]. A list of excluded sources at full text review with reasons for exclusion plus details about eligible articles are presented in appendices III and IV respectively.

2.4. Data extraction

Data was extracted using a structured tool adapted for this study from the JBI scoping review methodology guideline [11] (Appendix V). Extracted data included: Author(s), Year of publication, clinical trial characteristics, year published, country(s) hosting the trial, population, sample size, methodology/methods, intervention (and comparator), duration of the intervention, and funding agency. Finally data related to the main study outcome, by indicating yes or no to the question of whether the proposed trial was informed or not by a pilot or feasibility study, was extracted. The extraction process was carried out by two independent reviewers, after which the entire team reviewed the extracted results until consensus was reached.
2.5. Data analysis

Data analysis was done in the Microsoft excel software. Following data extraction, we computed the proportion of the protocols that were informed by a pilot/feasibility study. We also compared how other variables such as study setting, year of publication and trials duration were associated with the primary outcome. Data were analysed and interpreted using simple descriptive statistics, illustrated in figures and tables, and summarized in a narrative [15] using excel and Statistical Package for the Social Sciences version 25 (SPSS) software.

3. Results

A total of 286 articles were identified from the database searches and an additional five (5) were identified from references of studies. A total of 36 duplicates were automatically removed from the retrieved references. After reviewing the titles and abstracts of 291 papers, a full text review of 46 articles was done, of which 14 of them were excluded, leaving a total of 32 papers that were included in the review (Fig. 1).

3.1. Main review findings

This scoping review aimed to establish how pilot/feasibility studies are integrated in HIV related clinical trial research by informing the conduct of larger clinical trials. The review findings are presented below as per review objectives.

1. To estimate the proportion of clinical trial protocols whose proposed clinical trials are informed by a pilot/feasibility study

A total of 32 clinical trial protocols met the selection criteria. Of these, 44% (14/32) [16–29] were informed by a pilot/feasibility study while the majority [56% (18/32)] [30–47] were not informed by a pilot/feasibility study (Fig. 2).

Whereas the aggregate data above shows that fewer clinical trials were informed by a pilot/feasibility, stratifying the clinical trials by year revealed that the number of articles that met the selection criteria increased from 1 in 2012 to 8 in 2020. There was an increase in the number of clinical trials that were informed by a pilot/feasibility from 1 in 2012 to 5 in 2020 (Table 1).

2. To characterise protocols whose proposed clinical trials are informed by a pilot/feasibility study by time, person and place.

To address this objective, we used the CONSORT checklist of information to include when reporting a pilot trial, which among others, includes “results of any other analyses performed including subgroup analyses” [48]. Two dimensions of time were determined. The first related to the year in which a protocol was published while the second related to the length of the proposed clinical trial. The ‘person’ characteristic related to the participants in the proposed clinical trial dis-aggregated by gender, while ‘place’ related to the countries in sub Saharan Africa to host the proposed clinical trial.

3.2. Clinical trial participants by gender

The 32 clinical trials targeted all gender categories. In 72% (23/32), the trials involved both males and females, followed by females alone [25% (8/32)] and lastly males alone [3% (1/32)]. There was no significant association of gender to the primary outcome (Table 2).

All the 14 clinical trials that were informed by a pilot came from 5 countries; 8 from South Africa, 3 from Uganda, and 1 from Zimbabwe,
Malawi and Kenya. Noteworthy, these 5 countries contributed 72% (25/32) of all the protocols that met the selection criteria (Table 3).

It was revealed that 6 of the 7 community trials were informed by a pilot followed by 5 of the 16 clinical sites based trials. The other 3 clinical trials that were informed by a pilot were those conducted at ANC primary health care clinics, designated project area and midwife obstetric unit each contributing 1 trial (Table 4).

Trials (journal) scored the highest articles published and informed by a pilot and this could be attributed to the fact that the journal is a focus for many trials and trial protocols, also shown to have the highest protocols that were not informed by a pilot.

The majority of trials informed by a pilot study were those that lasted for 3 years (5), followed by those that lasted for 2 years (3). Trials that lasted for a 1 year, 4 and 5 years contributed 2 eligible protocols. None of the trials that lasted for less than 1 year was informed by a pilot study (Table 5).

It is however not well understood if the trials with no documented pilot study were actually not informed by pilot study. This could not be verified during our study period and call for an expanded study in the area.

4. Discussion

This scoping review aimed to establish how pilot/feasibility studies are integrated in the conduct of HIV related clinical trials in SSA. The review results showed that the majority of proposed HIV related clinical

Fig. 2. Proportion of scoping review protocols that were informed by pilot as a function of the total protocols which met the inclusion criteria, March 2021.
Due to sparse research in the area, we could not compare our results with responsible for the increase observed in the current review. However, interest in the use of pilot/feasibility studies [49] and could be research undertaken in SSA. The increased adoption of implementation that were informed by a pilot/feasibility study have been on the increase for clinical trials that are not informed by pilot/feasibility studies. Hence we recommend research to evaluate human subject protection on actual outcomes of HIV related pilot/feasibility which could have suggested the need for further research, it was not clear if these resulted into full-sized randomised clinical trials. In contrast to the above authors [5, 8] whose focus was on the end points of pilot/feasibility studies, we think that by reviewing of full RCT protocols (instead of pilot/feasibility studies in themselves), our study provided better certainty that a particular pilot/feasibility study informed further research (rather than only providing recommendations which may not be implemented). Our review thus provides more reliable evidence on the extent to which pilot/feasibility studies may inform full sized clinical trials. Additionally, the two studies [5,8] assessed broader contexts both geographically and clinically. Our review provides more contextualised data on how pilot/feasibility studies inform HIV related clinical trials undertaken in sub-Saharan Africa, which can guide focused follow up/interventions.

Reasons for low utilisation of pilot/feasibility studies in informing the conduct of larger clinical trials are not well documented but could imply an underreporting of how three respective pilot/feasibility studies inform the conduct of a subsequent clinical trial. Arain et al. [8], asserted that the low reporting in their study could be as a result of the outcomes of the respective pilot/feasibility which could have suggested that further/larger clinical trials may not be useful if they are not likely to be feasible, cost effective, safe or necessary, if tangible results have already been achieved. These insights further emphasise the need for more focused research on actual outcomes of HIV related pilot/feasibility studies, which we feel will be understood better through reviewing of clinical trial protocols or actual clinical trials informed by the pilot/feasibility study. We also recommend further research on the factors that hinder the integration of pilot/feasibility studies in the conduct of HIV related clinical trials. Further still, low utilisation of pilot/feasibility studies in research could be risky to study participants, hence we recommend research to evaluate human subject’s protection for clinical trials that are not informed by pilot/feasibility studies.

Our review revealed that the number of HIV related clinical trials that were informed by a pilot/feasibility study have been on the increase in 8 years’ period since 2012. This trend highlights an increasing interest among researchers to incorporate pilot/feasibility studies in HIV research undertaken in SSA. The increased adoption of implementation research in recent years to assess feasibility of interventions has elevated interest in the use of pilot/feasibility studies [49] and could be responsible for the increase observed in the current review. However, due to sparse research in the area, we could not compare our results with other literature and we recommend that more research be conducted in the area.

Only five countries (South Africa, Uganda, Zimbabwe, Malawi and Kenya) contributed to the more than 70% of all proposed clinical trials informed by a pilot/feasibility study. These results correlate with the prevalence of HIV in sub-Saharan Africa, with Southern (e.g. South Africa and Zimbabwe) and Eastern (e.g. Kenya and Uganda) African countries ranking high in HIV prevalence [50].

4.1. Strengths and limitations

This is the first review that has assessed how pilot/feasibility studies inform the conduct of HIV related clinical trials in SSA by reviewing actual clinical trial protocols. Our review therefore provides novel insights in the field of HIV related trial conduct. Being a new research area though, we were unable to relate adequately our results with other literature, which limits comparison of the conclusions made. This review reported low utilisation of pilot/feasibility studies in HIV related clinical trials. It is however not well understood if the trial protocols with no documented pilot/feasibility studies were actually not informed by these. We were unable in the current review to expose such information. We also acknowledge that we could have missed out unpublished protocols that would fit our inclusion criteria. This bias affects the credibility of our results and limits their ability to inform improvements in clinical trial practice. Further still, it would be necessary to understand the final outcome of the proposed trials in the reviewed protocols and derive more understanding of any differences between those that are informed by a pilot/feasibility study and those that are not. We were unable to achieve this in the current study. We recommend more expanded research to address the above identified gaps. A mixed methods empirical study to interact with actual researchers and assess uptake and factors associated with use or non-use of pilot/feasibility studies in the conduct of HIV related clinical trials would be enlightening.

5. Conclusions

This scoping review is the first to assess how proposed HIV related clinical trials are informed by pilot/feasibility studies and provides novel insights in the field. Despite the likely benefits associated with use of pilot/feasibility studies, the review revealed very minimal uptake of these among SSA researchers. The review further revealed that although there is an increasing interest among researchers to integrate pilot/feasibility studies in HIV related research, limited countries appear to have embraced this trend. Strategies that can motivate researchers to engage in a culture of incorporating pilot/feasibility studies in HIV related research should be embraced. Policies should focus at routinizing the integration of pilot/feasibility studies in HIV related clinical trials, as a way of reaping the numerous likely benefits of pilot/feasibility studies. Further research, preferably using an empirical mixed methods approach can uncover more insights on factors facilitating and hindering use of pilot/feasibility studies in the conduct of HIV related clinical trials in SSA.

Ethics approval and consent to participate

Not applicable as this is a review article.

Consent for publication

Not applicable.

Funding

The current review was funded by the MRC-NIHR Trial Methodology Research Partnership 2020, and was administered by the University of Liverpool.

Table 5

Duration of Clinical Trial trials in relation to being informed by a pilot/feasibility study.

Duration of intervention (in years)	Trial informed by pilot	Trial not informed by pilot	Total
5	2	0	2
4	2	0	2
3	5	4	9
2	3	7	10
1	2	4	6
0	0	3	3
Total	**14**	**18**	**32**
Authors' contributions

SN conceived the research idea and wrote the research concept, searched for articles, participated in the data analysis and spearheaded writing of the manuscript. LOO contributed to the concept development, data analysis and writing of the manuscript. BAP contributed to literature searching and writing of the manuscript. CE contributed to the analysis of the data and writing of the manuscript. JBM contributed to development of the concept, spearheaded the data analysis process and contributed to writing of the manuscript. All authors read and approved the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

I have shared a supplementary file.

Acknowledgements

The authors wish to acknowledge the MRC-NIHR Trial Methodology Research Partnership, 2020, United Kingdom for funding the current research. The authors also wish to thank the management of Soroti University for rendering technical support during the conduct of the study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.conctc.2022.100959.

Appendix 1. Search strategy (CINAHL) searched on 28/12/2020

Search ID#	Search Terms	Actions
S18	S3 AND S6 AND S10 AND S13 AND S17	(40)
S17	S14 OR S15 OR S16	(88,228)
S16	(MH “Low and Middle Income Countries”) OR “low income countr”	(4197)
S15	(MH “Low and Middle Income Countries”) OR “low income setting”	(1679)
S14	(MH “Africa”) OR “sub-Saharan Africa”	(85,089)
S13	S11 OR S12	(119,148)
S12	“proposal”	(9834)
S11	“protocol” OR (MH “Protocols”) OR (MH “Research Protocols”)	(109,671)
S10	S7 OR S8 OR S9	(150,888)
S9	“AIDS”	(68,063)
S8	(MH “Human Immunodeficiency Virus”) OR “Human Immunodeficiency Virus”	(23,312)
S7	“HIV”	(114,598)
S6	S4 OR S5	(2,027,528)
S5	“study” OR (MH “Pilot Studies”)	(1,842,631)
S4	(MH “Clinical Trials”) OR “clinical trial”	(370,985)
S3	S1 OR S2	(139,482)
S2	(MH “Pilot Studies”) OR “feasibility”	(111,433)
S1	“pilot”	(111,250)

Appendix 2. Table of Excluded articles with reasons for exclusion

#	Article	Reason for Exclusion
1	Dzinamarira, T. and T. P. Mashamba-Thompson (2020). “Adaptation of a Health Education Program for Improving the Uptake of HIV Self-Testing by Men in Rwanda: a Study Protocol.” Medicina (Kaunas, Lithuania) 56(4).	Protocol for a pilot and not a full RCT
2	Grarup, J. et al. (2015). “Challenges, successes and patterns of enrolment in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial.” HIV Medicine 16(1): 14-23.	Not RCT
3	Grover, S. et al. (2019). “Building research capacity through programme development and research implementation in resource-limited settings: the Ipbalele study protocol: observational cohort studies determining the effect of HIV on the natural history of cervical cancer in Botswana.” BMJ open 9(12): e031103.	Not an RCT
4	Reynolds, N. R. et al. (2016). “MAHILA: a protocol for evaluating a nurse-delivered mHealth intervention for women with HIV and psychosocial risk factors in India.” Jmc Health Services Research 16a: 352.	Not an RCT
5	Sued, O. et al. (2018). “Physician-delivered motivational interviewing to improve adherence and retention in care among challenging HIV-infected patients in Argentina (COPA2): study protocol for a cluster randomized controlled trial.” Trials 19(1).	Not RCT
6	Kamal, A. K. et al. (2015). “Improving medication adherence in stroke patients through Short Text Messages (SMS4stroke)-study protocol for a randomized, controlled trial.” BMC neurology 15: 157.	Not RCT
7	Kane, J. C. et al. (2020). “Common Elements Treatment Approach (CETA) for unhealthy alcohol use among persons with HIV in Zambia: study protocol of the ZCAP randomized controlled trial.” Addictive Behaviors Reports 12: 100,278.	Protoc for a pilot and not a full RCT
8	Vaccher, S. et al. (2016). “Protocol for an open-label, single-arm trial of HIV pre-exposure prophylaxis (PrEP) among people at high risk of HIV infection: the NSW Demonstration Project PRELUDE.” Bmj Open 6(6): e012179.	Not an RCT
9	Fan, X. et al. (2020). “Evaluation of smartphone APP-based case-management services among antiretroviral treatment-naive HIV-positive men who have sex with men: a randomized controlled trial protocol.” BMC Public Health 20(1): 85.	Not an RCT
10	Warren, C. F. et al. (2012). “Study protocol for the Integra Initiative to assess the benefits and costs of integrating sexual and reproductive health and HIV services in Kenya and Swaziland.” BMC Public Health 12(1): 973-973.	Non RCT, Quasi experimental study
11		Not RCT, not HIV related
References

[1] A.C. Leon, L.L. Davis, H.C. Kraemer, The role and interpretation of pilot studies in clinical research, J. Psychiatr. Res. 45 (5) (2011) 626–629.
[2] L. Thabane, et al., A tutorial on pilot studies: the what, why and how, BMC Med. Res. Methodol. 10 (1) (2010) 1.
[3] J. In, Introduction of a pilot study, Korean j. anesthesio. 70 (6) (2017) 601–605.
[4] N. Feeley, et al., The importance of piloting an RCT intervention, Can. J. Nurs. Res. 41 (2) (2009) 85–99.
[5] A.J. Blatch-Jones, et al., Role of feasibility and pilot studies in randomised controlled trials: a cross-sectional study, BMJ Open 8 (9) (2018), e022233.
[6] M.L. Bell, A.L. Whitehead, S.A. Jullious, Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes, Clin. Epidemiol. 10 (2018) 153–157.
[7] C. Pinnock, K. Yarnell, A. Taylor, et al., A feasibility study to examine the acceptability and implementation of a peer-led peer-delivered intervention to promote uptake of pre-exposure prophylaxis among Black, Asian and minority ethnic groups in London, Trials 21 (1) (2020) 710.
[8] F.J. Walsh, et al., Impact of early initiation versus national standard of care of antiretroviral therapy in Malawi: protocol for a randomized controlled trial, Trials 19 (1) (2018) 359, 359.
[9] B.M. Wamuti, et al., Assisted partner notification services to augment HIV testing and linkage to care in Tshwane, South Africa: study protocol for a randomised controlled implementation trial, BMC Public Health 20 (1) (2020).

[10] A. Masuquillier, et al., Sinako, a study on HIV competent households in South Africa: a cluster-randomised controlled trial protocol, Trials 21 (1) (2020).
[11] E. Nakimuli-Mpungu, et al., The effect of group support psychotherapy delivered by trained lay health workers for depression treatment among people with HIV in Uganda: protocol of a pragmatic, cluster randomised trial, JMIR res. protoc. 6 (12) (2017) e250.
[12] F. Palitto, et al., Testing a counselling intervention in antenatal care for women experiencing partner violence: a study protocol for a randomized controlled trial in Johannesburg, South Africa, BMC Health Serv. Res. 16 (1) (2016) 630.
[13] S. Shamu, et al., Social franchising of community-based HIV counselling and testing services to increase HIV testing and linkage to care in Tshwane, South Africa: study protocol for a non-randomised implementation trial, BMC Public Health 20 (1) (2020).
[14] K. Goggin, et al., Study protocol of “Our Choice”: a randomized controlled trial in rural Malawi: study protocol for a cluster-randomized control trial from EQUIP Health 20 (1) (2020).
[15] T. Mathenjwa, et al., Home-based intervention to test and start (HITS) protocol: a cluster-randomized controlled trial to reduce HIV-related mortality in men and women experiencing partner violence: a study protocol for a cluster randomized trial, Trials 21 (1) (2020).
[16] G. Donald, A brief summary of pilot and feasibility studies: exploring terminology, aims, and methods, Europ. J. Integr. Med. 24 (2018) 65–70.
[17] M. Aziz, et al., What is a pilot or feasibility study? A review of current practice and editorial policy, BMC Med. Res. Methodol. 10 (2010) 67.
[18] D.L.N. Jere, et al., A hybrid design testing a 3-step implementation model for the integration of safer conception counseling to transform HIV family planning systems to improve choice and demand for family planning services in Uganda, Implement. Sci. 14 (2019) 141.
[19] A.C. Tricco, et al., PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation, Ann. Intern. Med. 169 (7) (2018) 467–473.
[20] C.T. Perciani, et al., Protocol of a randomised controlled trial characterising the mobile phone text messaging plus positive sexual intention interviewing in promotion of breastfeeding among women living with HIV in South Africa: study protocol for a randomized controlled trial., Trials 18(1): 331.
[21] C. Onu, et al., Interpersonal psychotherapy for depression and posttraumatic stress disorder among adults newly diagnosed with HIV in Mozambique: study protocol for a site-randomized implementation science study, BMC Infect. Dis. 14 (2014) 549.
[22] K. Goggin, et al., ‘Not an RCT’ Considerations for preparing a randomized population health intervention trial: lessons from a South African-randomized controlled trial of an adapted interactive weekly mobile phone text messaging plus positive sexual intention interviewing in promotion of breastfeeding among women living with HIV in South Africa: a cluster-randomised controlled trial protocol, Trials 21 (1) (2020).
[23] E. Nakimuli-Mpungu, et al., The effect of group support psychotherapy delivered by trained lay health workers for depression treatment among people with HIV in Uganda: protocol of a pragmatic, cluster randomised trial, JMIR res. protoc. 6 (12) (2017) e250.
[24] F. Palitto, et al., Testing a counselling intervention in antenatal care for women experiencing partner violence: a study protocol for a randomized controlled trial in Johannesburg, South Africa, BMC Health Serv. Res. 16 (1) (2016) 630.
[25] S. Shamu, et al., Social franchising of community-based HIV counselling and testing services to increase HIV testing and linkage to care in Tshwane, South Africa: study protocol for a non-randomised implementation trial, BMC Public Health 20 (1) (2020).
[26] K. Goggin, et al., ‘Not an RCT’ Considerations for preparing a randomized population health intervention trial: lessons from a South African-randomized controlled trial of an adapted interactive weekly mobile phone text messaging plus positive sexual intention interviewing in promotion of breastfeeding among women living with HIV in South Africa: a cluster-randomised controlled trial protocol, Trials 21 (1) (2020).
[27] E. Nakimuli-Mpungu, et al., The effect of group support psychotherapy delivered by trained lay health workers for depression treatment among people with HIV in Uganda: protocol of a pragmatic, cluster randomised trial, JMIR res. protoc. 6 (12) (2017) e250.
[28] F. Palitto, et al., Testing a counselling intervention in antenatal care for women experiencing partner violence: a study protocol for a randomized controlled trial in Johannesburg, South Africa, BMC Health Serv. Res. 16 (1) (2016) 630.
[29] S. Shamu, et al., Social franchising of community-based HIV counselling and testing services to increase HIV testing and linkage to care in Tshwane, South Africa: study protocol for a non-randomised implementation trial, BMC Public Health 20 (1) (2020).
[30] K. Goggin, et al., ‘Not an RCT’ Considerations for preparing a randomized population health intervention trial: lessons from a South African-randomized controlled trial of an adapted interactive weekly mobile phone text messaging plus positive sexual intention interviewing in promotion of breastfeeding among women living with HIV in South Africa: a cluster-randomised controlled trial protocol, Trials 21 (1) (2020).
[31] O.I. Ekumune, et al., Conditional economic incentives and motivational interviewing to improve adolescents’ retention in HIV care and adherence to antiretroviral therapy in Southeast Nigeria: study protocol for a cluster randomized trial, Trials 19 (1) (2018) 498.
[32] B. Elul, et al., A combination strategy for enhancing linkage to and retention in HIV care among adults newly diagnosed with HIV in Mozambique: study protocol for a site-randomized implementation science study, BMC Infect. Dis. 14 (2014) 549.
[33] I.O. Fatuyi, et al., Outcomes of community-based differentiated models of multi-month dispensing of antiretroviral medication among stable HIV-infected patients in Lesotho: a cluster randomised non-inferiority trial protocol, BMC Public Health 18 (1) (2018). N.PAG-N.PAG.
[34] A. Gupta-Wright, et al., Rapid urine-based screening for tuberculosis to reduce AIDS-related mortality in hospitalized patients in Africa (the STAMP trial): study protocol for a randomised controlled trial, BMC Infect. Dis. 16 (1) (2016).
[35] B. Hoffman, et al., Varying intervals of antiretroviral medication dispensing to improve outcomes for HIV patients (the INTERVAL Study): study protocol for a randomized controlled trial, Trials 18 (1) (2017) 476.
[36] T. Muthenjwa, et al., Home-based intervention to test and start (HITS) protocol: a cluster-randomized controlled trial to reduce HIV-related mortality in men and women experiencing partner violence: a study protocol for a cluster randomized trial, BMC Infect. Dis. 19 (1) (2019) 969.
[37] S.T. Meloni, et al., The role of point-of-care viral load monitoring in achieving the target of 90% suppression in HIV-infected patients in Nigeria: study protocol for a randomized controlled trial, BMC Infect. Dis. 19 (1) (2019) 368.
[38] S. Nash, et al., Combined HIV Adolescent Prevention Study (CHAPS): comparison of HIV pre-exposure prophylaxis regimens for adolescents in South Africa: study protocol for a mixed-methods study including a randomised controlled trial, Trials 21 (1) (2020) 900.
[39] C. Onu, et al., Interpersonal psychotherapy for depression and posttraumatic stress disorder among HIV-positive women in Kinshasa, Kenya: study protocol for a randomized controlled trial, Trials 17 (2016) 64.
[40] C.T. Perciani, et al., Protocol of a randomised controlled trial characterising the immune responses induced by varicella-zoster virus (VZV) vaccination in healthy Kenyan women: setting the stage for a potential VZV-based HIV vaccine, BMJ Open 7 (9) (2017), e017391.
[41] D. Sando, et al., Evaluation of a community health worker intervention and the World Health Organization’s Option B versus Option A to improve antenatal care and PMTCT outcomes in Dar es Salaam, Tanzania: study protocol for a cluster-randomized controlled health systems implementation trial, Trials 15 (11) (2014) 359, 359.
[42] E.A. Taneue, et al., Improving retention in care and promoting adherence to HIV treatment: protocol for a multisite randomized controlled trial of mobile phone test messaging, JMIR Res. Protoc. 9 (8) (2020), e15680.
[43] M. Udedi, et al., The effectiveness of depression management for improving HIV care outcomes in Malawi: protocol for a quasi-experimental study, BMC Public Health 19 (1) (2019) 387.
[44] B.M. Wamuti, et al., Assisted partner notification services to augment HIV testing and linkage to care in Kenya: study protocol for a cluster randomized trial, Implement. Sci. : IS 15 (2015) 23.
[46] C.E. Warren, et al., Study protocol for the Integra Initiative to assess the benefits and costs of integrating sexual and reproductive health and HIV services in Kenya and Swaziland, BMC Publ. Health 12 (1) (2012) 973, 973.

[47] W.M. Wechsberg, et al., An implementation science protocol of the Women’s Health CoOp in healthcare settings in Cape Town, South Africa: a stepped-wedge design, BMC Wom. Health 17 (1) (2017) 85.

[48] S.M. Eldridge, et al., CONSORT 2010 statement: extension to randomised pilot and feasibility trials, BMJ 355 (2016) i5239.

[49] S.P. Taylor, M.A. Kowalkowski, Using implementation science-guided pilot studies to assess and improve the informativeness of clinical trials, J. Gen. Intern. Med. 36 (2) (2021) 533–536.

[50] L. Dwyer-Lindgren, et al., Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017, Nature 570 (7760) (2019) 189–193.