n-H-CLOSED SPACES

FORTUNATA AURORA BASILE, MADDALENA BONANZINGA, NATHAN CARLSON, AND JACK PORTER

Abstract. In this paper we extend the theory of H-closed extensions of Hausdorff spaces to a class of non-Hausdorff spaces, defined in [2], called n-Hausdorff spaces. The notion of H-closed is generalized to an n-H-closed space. Known construction for Hausdorff spaces X, such as the Katetov H-closed extension κX, are generalized to a maximal n-H-closed extension denoted by $n-\kappa X$.

Keywords: n-Hausdorff spaces; H-closed spaces; Katetov H-closed extension.

AMS Subject Classification: 54D10, 54D20, 54D35, 54D80.

1. Introduction

A Hausdorff space that is closed in every Hausdorff space in which it is embedded is called H-closed - short for Hausdorff-closed. H-closed spaces were introduced in 1924 by Alexandroff and Urysohn [1] and characterized as those Hausdorff spaces in which every open cover has a finite subfamily whose union is dense. It is straightforward to show that every open cover of a space X has a finite subfamily whose union is dense iff for every open filter F on X, $aF \neq \emptyset$ iff for every open ultrafilter U on X, $aU \neq \emptyset$ (Hausdorff is not needed). Most of the basic properties of H-closed spaces appear in [3].

The theory of H-closed extensions of a non H-closed Hausdorff space X is well developed (see [3]). The Katetov H-closed extension κX defined on the set $X \cup \{U : U$ is a free open ultrafilter on $X\}$ is the projective maximum among all H-closed extensions of X. The Fomin extension σX is $\sigma X = (\kappa X)^\#$, where $Y^\#$ is the strict extension defined in §3, is another important H-closed extension of X.

In 2013, Bonanzinga [2] expanded the property of Hausdorff to n-Hausdorff where $n \in \omega$, $n \geq 2$ by defining a space to be n-Hausdorff if for each distinct points $x_1, ..., x_n \in X$, there exist open subsets U_i of
X containing \(x_i\) for every \(i = 1, ..., n\) such that \(x_i \in U_i\) and \(\bigcap_{i=1}^{n} U_i = \emptyset\). Clearly, we have Hausdorff when \(n = 2\).

In this study, we develop the theory of \(n\)-H-closed spaces, for every \(n \in \omega, n \geq 2\) that generalizes the theory of H-closed spaces. This theory is developed within the context of \(n\)-Hausdorff spaces, as H-closed spaces are studied within the class of Hausdorff spaces. A maximal \(n\)-H-closed extension \(n\)-\(\kappa X\) is constructed as well as the related Fomin extension \(n\)-\(\sigma X = (n\)-\(\kappa X)^\#\).

In §2, \(n\)-qH-closed spaces are defined and characterized in terms of filters and covering properties, likewise with \(n\)-H-closed spaces. In §3, dense embeddings are constructed for \(n\)-Hausdorff spaces, and in §4 we study maximal extensions, denoted by \(n\)-\(\kappa X\), and look at the partitions of \(n\)-\(\sigma X \setminus X\). We use standard notation as in [3].

2. \(n\)-qH-CLOSED SPACES AND \(n\)-H-CLOSED SPACES

We recall the following.

Definition 1. Let \(\mathcal{F}\) be a filter on a space \(X\). The set \(\{\text{cl}_X(F) : F \in \mathcal{F}\}\) is called the adherence of \(\mathcal{F}\) and it is denoted by \(a\mathcal{F}\). The set \(\{G \in \mathcal{P}(X) : G \supseteq F\text{ for some } F \in \mathcal{F}\}\) is denoted by \(\langle \mathcal{F} \rangle\). We say that \(\mathcal{F}\) converges to \(p \in X\) if \(N_p\) (the family of all the neighborhoods of \(p\)) is contained in \(\langle \mathcal{F} \rangle\). Let \(c(\mathcal{F})\) denote the set of all convergent points of \(\mathcal{F}\).

Definition 2. [2] Let \(n \in \omega, n \geq 2\). A space \(X\) is \(n\)-Hausdorff if for each distinct points \(x_1, ..., x_n \in X\), there exist open subsets \(U_i\) of \(X\) containing \(x_i\) for every \(i = 1, ..., n\) such that \(x_i \in U_i\) and \(\bigcap_{i=1}^{n} U_i = \emptyset\). Clearly, we have Hausdorff when \(n = 2\).

Proposition 1. [2] A space \(X\) is 3-Hausdorff iff \(\Delta_3\) is closed in \(Y \cup \Delta_3\), where \(\Delta_3\) is the diagonal in \(X^3\) and \(Y = \{(x, y, z) : x, y, z\text{ are distinct points of } X\}\).

The following theorem gives some characterizations of \(n\)-Hausdorffness and also represents a generalization of the previous proposition.

Theorem 1. Let \(n \in \omega, n \geq 2\), and \(X\) be a space. The following are equivalent:

(a) \(X\) is \(n\)-Hausdorff

(b) if \(\mathcal{U}\) is an open ultrafilter on \(X\), then \(|a\mathcal{U}| \leq n - 1\)
(c) if \mathcal{F} is an open filter base on X, $c(\mathcal{F})$ contains at most $n - 1$ points

(d) Δ_n is closed in $Y \cup \Delta_n$, where Δ_n is the diagonal in X^n and $Y = \{(x_1, x_2, ..., x_n) : x_1, x_2, ..., x_n$ are distinct points of $X\}$.

Proof. (a) ⇒ (b): Assume that $|a\mathcal{U}| \geq n$, then by (a), there are open sets $\{U_a : a \in a\mathcal{U}\}$ such that $\cap_{a\in a\mathcal{U}} U_a = \emptyset$. By the ultrafilter property of \mathcal{U}, $U_a \in \mathcal{U}$, and \mathcal{U} has the finite intersection property (fip). So, $\cap_{a\in a\mathcal{U}} U_a \neq \emptyset$, a contradiction. Hence, $|a\mathcal{U}| \leq n - 1$.

(b) ⇒ (c): Let \mathcal{F} be an open filter base on X. Then \mathcal{F} extends to an open ultrafilter \mathcal{U}. By (b), $|a\mathcal{U}| \leq n - 1$. Let $x \in c(\mathcal{F})$. Then $N_x \subseteq \mathcal{F} \subseteq \mathcal{U}$, so $x \in a\mathcal{U}$. Then $|c(\mathcal{F})| \leq |a\mathcal{U}| \leq n - 1$.

(c) ⇒ (d): Let $x_1, x_2, ..., x_n$ be distinct points of X. If $N_{x_1} \cup \cdots \cup N_{x_n}$ has the finite intersection property, we have that $N_{x_1} \cup \cdots \cup N_{x_n}$ is a filter converging to $x_1, x_2, ..., x_n$, contradicting (c). So there are $N_i \in N_{x_i}$, where $i \in \{1, ..., n\}$ such that $\cap_{i=1}^n N_i = \emptyset$. Then $N_1 \times ... \times N_n$ is a neighbourhood of $(x_1, ..., x_n)$ and $(N_1 \times ... \times N_n) \cap \Delta_n = \emptyset$.

(d) ⇒ (a): Similar to (c) ⇒ (d). □

Definition 3. Let $n \in \omega$, $n \geq 2$. An extension Y of X is said to be n-Hausdorff except for X if for points $p \in Y \setminus X$ and $q_1, ..., q_{n-1} \in Y$, there are open sets $U, V_1, ..., V_{n-1}$ in Y such that $p \in U$ and $q_i \in V_i$, $i = 1, ..., n - 1$ and $U \cap V_1 \cap ... \cap V_{n-1} = \emptyset$.

Theorem 2. Let $n \in \omega$, $n \geq 2$. The following are equivalent for any space X:

(a) For every open filter \mathcal{F} on X, $|a\mathcal{F}| \geq n-1$;

(b) For every $A \in [X]^{<n-1}$ and for family of open subsets \mathcal{U} of X such that $X \setminus A \subseteq \bigcup \mathcal{U}$, there exists $\mathcal{V} \in \mathcal{U}^{<\omega}$ such that $X = \bigcup_{V \in \mathcal{V}} V$.

(c) X is closed in every extension of X that is n-Hausdorff except for X.

Proof. (a) ⇒ (b) Let $A \in [X]^{<n-1}$. Suppose there exists \mathcal{C} a family of open subsets of X containing $X \setminus A$ such that for every finite subfamily \mathcal{V} of \mathcal{C}, $X \neq \bigcup_{V \in \mathcal{V}} V$. $F = \{U : U$ is open and $U \supseteq X \setminus \bigcup_{V \in \mathcal{V}} V$ for some finite subfamily \mathcal{V} of $\mathcal{C}\}$ is an open filter. As $a\mathcal{F} = \bigcap_{U \in \mathcal{C}} U \subseteq \bigcap_{V \in \mathcal{C}^{<\omega}} X \setminus \bigcup_{V \in \mathcal{V}} V \subseteq \bigcap_{V \in \mathcal{V}^{<\omega}} X \setminus V \subseteq X \setminus \mathcal{C} = X \setminus (X \setminus A) = A$, we have $|a\mathcal{F}| < n-1$. A contradiction.
Proposition 2. Clearly we have:

Definition 5. one (and hence all) of the conditions of Theorem 2.

is open in \(X \) is Hausdorff (hence

Proposition 3. \((c) \) Assume every filter \(F \) has \(|\alpha F| \geq n - 1 \). By the way of contradiction, let \(Y \) be an extension of \(X \) such that \(X \neq \text{cl}_Y(X) \) and \(Y \) is \(n \)-Hausdorff except for \(X \). Let \(p \in \text{cl}_Y(X) \setminus X \). Then \(F = \{ U \cap X : p \in U \in \tau(Y) \} \) is an open filter on \(X \). Extend \(F \) to an open ultrafilter \(U \). Then \(|\text{cl} U| \geq n - 1 \). Let \(x_1, \ldots, x_{n-1} \in \text{cl} U \). As \(Y \) is \(n \)-Hausdorff except for \(X \), there exists open sets in \(Y U_i, U \) such that \(x_i \in U_i, i = 1, \ldots, n - 1, p \in U \) and \(\bigcap_{i=1}^{n} U_i \cap U = \emptyset \). We can observe that \(X \cap U_i \in U \) for every \(i = 1, \ldots, n - 1 \) and \(U \cap X \in U \), then \(\bigcap_{i=1}^{n-1} (X \cap U_i) \cap (U \cap X) \in U \). Therefore \(\bigcap_{i=1}^{n-1} U_i \cap U \neq \emptyset \); a contradiction.

(a) \(\Rightarrow \) (c) Assume every filter \(F \) has \(|\alpha F| \geq n - 1 \). By the way of contradiction, let \(Y \) be an extension of \(X \) such that \(X \neq \text{cl}_Y(X) \) and \(Y \) is \(n \)-Hausdorff except for \(X \). Let \(p \in \text{cl}_Y(X) \setminus X \). Then \(F = \{ U \cap X : p \in U \in \tau(Y) \} \) is an open filter on \(X \). Extend \(F \) to an open ultrafilter \(U \). Then \(|\text{cl} U| \geq n - 1 \). Let \(x_1, \ldots, x_{n-1} \in \text{cl} U \). As \(Y \) is \(n \)-Hausdorff except for \(X \), there exists open sets in \(Y U_i, U \) such that \(x_i \in U_i, i = 1, \ldots, n - 1, p \in U \) and \(\bigcap_{i=1}^{n} U_i \cap U = \emptyset \). We can observe that \(X \cap U_i \in U \) for every \(i = 1, \ldots, n - 1 \) and \(U \cap X \in U \), then \(\bigcap_{i=1}^{n-1} (X \cap U_i) \cap (U \cap X) \in U \). Therefore \(\bigcap_{i=1}^{n-1} U_i \cap U \neq \emptyset \); a contradiction.

(c) \(\Rightarrow \) (a) Let \(F \) be an open filter such that \(|\alpha F| < n - 1 \), consider the extension \(Y = X \cup \{ \emptyset \} \), and define a set \(U \subseteq Y \) to be open if \(U \cap X \) is open in \(X \) and \(F \in U \) implies \(U \cap X \in F \). It is easy to prove that \(Y \) is Hausdorff (hence \(n \)-Hausdorff) except for \(X \) but \(X \) is not closed in \(Y \) (see also Proposition 4.8 (b) in [3].)

Definition 4. Let \(n \in \omega, n \geq 2 \). A space is \(n \)-qH-closed if \(X \) satisfies one (and hence all) of the conditions of Theorem 2.

Definition 5. 2-qH-closed spaces are called qH-closed spaces.

Clearly we have:

Proposition 2. Let \(n \in \omega, n \geq 2 \). Every \((n+1) \)-qH-closed space is \(n \)-qH-closed.

We can notice the following behaviour of \(n \)-qH-closedness with respect to regular closed subsets.

Proposition 3. Let \(n \in \omega, n \geq 2 \). If \(X \) is a \(n \)-qH-closed space and \(U \) is an open subset of \(X \) then \(\text{cl}_X(U) \) is \(n \)-qH-closed.

Proof. We put \(A = \text{cl}_X(U) \) and let \(F \) be an open filter of \(A \). As \(\mathcal{G} = \{ W \subseteq X : W \text{ is an open subset of } X, W \supseteq F \cap U, \forall F \in F \} \) is an open filter on \(X \), we have \(|\alpha X \mathcal{G}| \geq n - 1 \). We have \(A X \mathcal{G} \subseteq A A F \) then \(|\alpha A F| \geq n - 1 \). By Theorem 2 \(A \) is \(n \)-qH-closed.

The following represents a generalization of the concept of H-closedness.
Definition 6. Let $n \in \omega$, $n \geq 2$. An n-Hausdorff space X is called n-H-closed if X is closed in every n-Hausdorff space Y in which X is embedded.

Clearly a space X is 2-H-closed iff X is H-closed.

Obviously, for every $n \in \omega$, $n \geq 2$, every n-Hausdorff space is $n + 1$-Hausdorff. In Example 4 in \cite{2}, a $(n + 1)$-Hausdorff non n-Hausdorff space is given, for every $n \in \omega$. Also we have the following

Example 1. An H-closed non 3-H-closed space.

Let $Y = 3 \cup (\omega \times 3)$, where $3 = \{0, 1, 2\}$, be the space topologized as follows: all points from $\omega \times 3$ are isolated; a basic neighborhood of $i \in 3$ takes the form $U(i, N) = \{i\} \cup \{(m, j) : j \neq i, m \geq N\}$, where $N \in \omega$. Y is 3-Hausdorff non Hausdorff. Consider the subspace $X = 2 \cup (\omega \times 2) \subset Y$. X is compact and Hausdorff, then H-closed but X is not closed in Y.

The following is easy to verify.

Proposition 4. An n-Hausdorff space X is n-H-closed iff X is closed in every n-Hausdorff space Y in which X is embedded where $|Y \setminus X| = 1$.

Now we consider some characterizations of n-H-closed spaces.

Theorem 3. Let $n \in \omega$, $n \geq 2$. For a n-Hausdorff space X the following are equivalent

(a) X is n-H-closed

(b) for each open ultrafilter \mathcal{U} on X, $|a(\mathcal{U})| = n - 1$

(c) X is n-qH-closed

(d) for every $\mathcal{F}_1, \ldots, \mathcal{F}_{n-1}$ open filters on X such that $\bigcup_{i=1}^{n-1} \mathcal{F}_i$ has the finite intersection property, we have $|a(\mathcal{F}_1 \lor \ldots \lor \mathcal{F}_{n-1})| \geq n - 1$

Proof. (b) \Rightarrow (a) Suppose for each open ultrafilter \mathcal{U} on X, $|a(\mathcal{U})| = n - 1$, and X is embedded in an n-Hausdorff space Y such that $Y \setminus X = \{p\}$. Assume $p \in cl_Y X$. Let $\mathcal{B}_p = \{U \cap X : p \in U \in \tau(Y)\}$ and \mathcal{U}_p be an open ultrafilter in X containing \mathcal{B}_p. By hypothesis, $|a_X(\mathcal{U}_p)| = n - 1$. Let \mathcal{W}_p be the unique open ultrafilter in $cl_Y(X)$ containing \mathcal{U}_p and $T \in \mathcal{W}_p$. If $p \in V \in \tau(Y)$, then $V \cap X \in \mathcal{B}_p$ and $(V \cap X) \cap (T \cap X) \neq \emptyset$ for each $T \in \mathcal{W}_p$. Thus, $V \cap T \neq \emptyset$. This shows that $p \in a(\mathcal{W}_p)$ and $|a(\mathcal{W}_p)| = n$, a contradiction.
(a) ⇒ (b) Suppose \(X \) is \(n \)-H-closed and assume there is an open ultrafilter \(\mathcal{U} \) on \(X \) such that \(|a\mathcal{U}| < n-1 \). Let \(Y = X \cup \{p\} \) where \(p \notin X \).

We define the topology on \(Y \) by \(U \) is open in \(Y \) if \(U \cap X \) is open in \(X \) and if \(p \in U \), then \(U \cap X \) is also open in \(Y \). Thus, \(p \in cl_Y(X) \). To obtain a contradiction, we will show that \(Y \) is \(n \)-Hausdorff. Let \(A \subseteq Y \) such that \(|A| = n \).

If \(A \subseteq X \), there are open sets \(U_a \) in \(X \) for each \(a \in A \) such that \(\bigcap_{a \in A} U_a = \emptyset \) and as \(X \) is open in \(Y \), \(A \) is also open in \(Y \). Otherwise, \(p \in A \) and \(|A \setminus \{p\}| = n-1 \). As \(|a\mathcal{U}| < n-1 \), there is \(q \in V \) and \(V \cap U = \emptyset \). Both \(V \) and \(\{p\} \cup U \) are disjoint open sets in \(Y \) and \(\{p,q\} \subseteq A \). This completes the proof that \(Y \) is \(n \)-Hausdorff, a contradiction.

(a) ⇒ (c) Let \(F \) be an open filter on \(X \). As \(F \) is contained in some open ultrafilter \(\mathcal{U} \) on \(X \), we have \(aF \supseteq a\mathcal{U} \) and by (a) we have \(|aF| \geq n-1 \).

(c) ⇒ (a) Let \(\mathcal{U} \) be an open ultrafilter on \(X \), by (b) we have \(|\mathcal{U}| \geq n-1 \). By Theorem 1, \(|\mathcal{U}| \leq n-1 \) and \(|\mathcal{U}| = n-1 \).

(b) ⇒ (d) The open filter \(F_1 \vee \ldots \vee F_{n-1} \) is contained in an open ultrafilter \(\mathcal{U} \) and \(|a\mathcal{U}| = n-1 \) by (b). As \(|a(F_1 \vee \ldots \vee F_{n-1})| \geq |a\mathcal{U}| \), it follows that \(|a(F_1 \vee \ldots \vee F_{n-1})| \geq n-1 \).

(d) ⇒ (c) is obvious. \(\square \)

Note that the space \(X \) of Example 1 is an H-closed not 3-H-closed space. We can also observe that an H-closed space \(X \) is not \(n \)-H-closed for \(n > 2 \). As every open ultrafilter on an \(n \)-H-closed space \(X \) has \(n-1 \) adherence points but in an H-closed space, every open ultrafilter has an unique adherent point.

Remark 1. Let \(n \in \omega, n \geq 2 \). For a \(n \)-Hausdorff space \(X \), an open ultrafilter \(\mathcal{U} \) on \(X \) is said to be full if \(|a\mathcal{U}| = n-1 \). So, by Theorem 1, a \(n \)-Hausdorff space \(X \) is \(n \)-H-closed iff every open ultrafilter on \(X \) is full. Consider the simple space \(X = \omega \cup \{a,b\} \) where a set \(U \subseteq X \) is defined to be open if \(a \in U \) or \(b \in U \), then \(U \cap \omega \) is cofinite in \(\omega \), and each point \(n \in \omega \) is isolated. The compact space \(X \) is \(3 \)-Hausdorff but not \(3 \)-H-closed for if \(\mathcal{U} \) is an open ultrafilter containing the open set \(\{1\} \), then \(a\mathcal{U} = \{1\} \) and \(\mathcal{U} \) is not full.

3. **Embeddings**

In 1924, Alexandroff and Urysohn asked if every Hausdorff space can be embedded densely in an H-closed space. Katětov and Stone answered
Let Y be an extension of a space X. For $p \in Y$, let $O^p = \{ U \cap X : p \in U \in \tau(Y) \}$ and for $U \in \tau(X)$, let $oU = \{ p \in Y : U \in O^p \}$. Note that for $U, V \in \tau(X)$, $o(U \cap V) = oU \cap oV$, $o(\emptyset) = \emptyset$, and $oX = Y$. So, $\{ oU : U \in \tau(X) \}$ forms a basis for a topology, denoted as $\tau^+(Y)$, on Y. Denote by $\tau^+(Y)$ the topology on Y generated by the base $B = \{ U \cap \{ p \} : U \in O^p$ and $p \in Y \}$. We have $\tau^+(Y) \subseteq \tau(Y) \subseteq \tau^+(Y)$, and $Y^\#$ (resp. Y^+) is used to denote the set Y with $\tau^+(Y)$ (resp. $\tau^+(Y)$). Y^+ is called simple extension of the space X and $Y^\#$ is called strict extension of the space X.

Proposition 5. Let Y be an extension of a space X. Then Y^+ and $Y^\#$ are extensions of X with the following properties:

(a) $(Y^+)^+ = Y^+$ and $(Y^\#)^+ = Y^\#$;

(b) Y is qH-closed iff Y^+ is qH-closed iff $Y^\#$ is qH-closed;

(c) Y is Hausdorff iff Y^+ is Hausdorff if $Y^\#$ is Hausdorff;

(d) If $U \in \tau(X)$, $cl_Y U = cl_{Y^+} U = cl_{Y^\#} U$;

(e) If $p \in Y$, $O^p_Y = O^p_{Y^+} = O^p_{Y^\#}$;

(f) If σ is a topology on the set Y, (Y, σ) is an extension of X, and $O^p_Y = O^p_{Y^\#}$ for all $p \in Y$, then $\sigma = \tau^+(Y)$;

(g) The subspace $Y^+ \setminus X$ is discrete.

Proposition 6. Let Y be an extension of a space X, \mathcal{U} an open ultrafilter on X, and $\mathcal{U}^e = \{ V \in \tau(Y) : V \cap X \in \mathcal{U} \}$. Then:

(a) \mathcal{U}^e is an open ultrafilter on Y,

(b) if \mathcal{V} is an open ultrafilter on Y such that $\{ V \cap X : V \in \mathcal{V} \} \subseteq \mathcal{U}$, then $\mathcal{U}^e = \mathcal{V}$ and $\mathcal{V} = \bigcap V cl_Y U \supseteq \mathcal{U}$.

Proposition 7. Let $n \in \omega$, $n \geq 2$, and Y be a n-Hausdorff extension of a space X. Then both the simple extension Y^+ and strict extension $Y^\#$ of X are n-Hausdorff as well as X.

This (see page 307 in [3]). We ask a similar question: can every n-Hausdorff space be densely embedded in an n-H-closed space? We will use open ultrafilters in answering this question in the affirmative. We start the construction of an extension of X by adding one open ultrafilter that is not full. This is a modification of the proof of (a) \iff (b) in Theorem 3.
Proof. As $\tau(Y) \subseteq \tau(Y^+)$, it is immediate that Y^+ is also n-Hausdorff. Likewise, it is easy to verify that X is also n-Hausdorff. To show that $Y^\#$ is n-Hausdorff, let $A \subseteq Y^\#$ such that $|A| = n$. As Y is n-Hausdorff extension, there is a family of open sets $\{V_a : a \in A\}$ such that $a \in V_a$ and $\bigcap_{a \in A} V_a = \emptyset$. So, $\bigcap_{a \in A} (V_a \cap X) = \emptyset$. Thus, $\emptyset = o(\emptyset) = o(\bigcap_{a \in A} (V_a \cap X)) = \bigcap_{a \in A} o(V_a \cap X)$. This shows that $Y^\#$ is n-Hausdorff. \hfill \Box

Proposition 8. Let $n \in \omega$, $n \geq 2$. If Y is an extension of X, then Y is n-H-closed iff $Y^\#$ is n-H-closed.

Proof. This is an application of Proposition\[\ref{prop:extension-properties}\], Proposition\[\ref{prop:n-h-closed}\] and Proposition\[\ref{prop:n-h-closed-extension}\].\hfill \Box

Extension Construction Technique 1. Let $n \in \omega$, $n \geq 2$, and X be an n-Hausdorff space and \mathcal{U} an open ultrafilter on X such that $|\mathcal{U}| < n - 1$. Let $k = n - 1 - |\mathcal{U}|$, and $Y = X \cup \{p_1, p_2, \ldots, p_k\}$ where $\{p_1, p_2, \ldots, p_k\} \cap X = \emptyset$. A set V is defined to be open in Y if $V \cap X$ is open in X and if $p_i \in V$ for $1 \leq i \leq k$, $V \cap X \in \mathcal{U}$. Now, $Y \setminus X = \{p_1, p_2, \ldots, p_k\}$, and a basic open set containing p_i is $\{p_i\} \cup T$ where $T \in \mathcal{U}$. It is straightforward to verify the following result using the technique developed in the proof of Theorem\[\ref{thm:n-h-closed-extension}\].

Lemma 1. Let $n \in \omega$, $n \geq 2$, X be an n-Hausdorff space and Y the space defined in the above construction. The space Y is an n-Hausdorff space that contains X as a dense subspace and if \mathcal{V} is the unique open ultrafilter on Y containing \mathcal{U}, $|\mathcal{V}| = n - 1$. \mathcal{W} is an open ultrafilter on Y iff $\mathcal{W} = \mathcal{V}$ or \mathcal{W} is an open ultrafilter on X other than \mathcal{U}.

Extension Construction Technique 2. Let $n \in \omega$, $n \geq 2$, X be an n-Hausdorff space and $\mathcal{U} = \{\mathcal{U} : \mathcal{U}$ is an open ultrafilter such that $|\mathcal{U}| < n - 1\}$. That is, \mathcal{U} is the set of open ultrafilters on X that are not full. We indexed \mathcal{U} by $\mathcal{U} = \{\mathcal{U}_\alpha : \alpha \in |\mathcal{U}|\}$. For each $\alpha \in |\mathcal{U}|$, let $k\alpha = n - 1 - |\mathcal{U}_\alpha|$ and $\{p_{\alpha i} : 1 \leq i \leq k\alpha\}$ a set of distinct points disjoint from X. Let $Y = X \cup \{p_{\alpha i} : 1 \leq i \leq k\alpha, \alpha \in |\mathcal{U}|\}$. A set V is defined to be open in Y if $V \cap X$ is open in X and if $p_{\alpha i} \in V$ for $1 \leq i \leq k\alpha$, $V \cap X \in \mathcal{U}_\alpha$. The space Y is an extension of X such that Y is an n-Hausdorff space in which every open ultrafilter on Y is full. That is, Y is n-H-closed. These properties are summarized in the following result.

Theorem 4. Let $n \in \omega$, $n \geq 2$. An n-Hausdorff space can be densely embedded in an n-H-closed space.
In the next result, we present the basic extension properties of O^p and oU and $cl_Y U$ for $U \in \tau(X)$ for this particular extension Y.

Proposition 9. Let $n \in \omega$, $n \geq 2$, X be n-Hausdorff space and Y the construction of an n-H-closed simple extension of X. Then:

(a) For $p = p_{a\alpha} \in Y \setminus X$, $O^{p_{a\alpha}} = \{ V \cap X : p \in V \in \tau(Y) \} = \mathcal{U}_\alpha$;

(b) For $p \in X$, $O^p = \{ V \cap X : p \in V \in \tau(Y) \} = \{ U \in \tau(X) : p \in U \}$;

(c) For $U \in \tau(X)$, $oU = \{ p \in Y : U \in O^p \} = U \cup \{ p_{a\alpha} : U \in \mathcal{U}_\alpha, 1 \leq i \leq k\alpha \}$;

(d) For $U \in \tau(X)$, $cl_Y U = cl_X U \cup oU$.

Proof. The proof of (a), (b), and (c) are straightforward and left to the reader. To show (d), let $p_{a\alpha} \in cl_Y U \setminus X$. Then $V \cap U \neq \emptyset$ for each $V \in \mathcal{U}_\alpha$ implying $U \in \mathcal{U}_\alpha$ and that $p_{a\alpha} \in oU$ by (a) and (c). Note that $cl_Y U \cap X = cl_X U$. Thus, $cl_Y U \subseteq cl_X U \cup oU$. Clearly, $cl_X U \subseteq cl_Y U$ and by (a) and (c), $oU \subseteq cl_Y U$. This completes the proof of (d). \qed

Remark 2. Let $n \in \omega$, $n \geq 2$. The above construction of an n-H-closed extension works whenever X is n-Hausdorff. Consider the example of a 3-Hausdorff space $X = \omega \cup \{ a, b \}$ described in Remark 1 that is not 3-H-closed. Notice that every open ultrafilter on X containing only infinite subsets is an open ultrafilter \mathcal{U} on ω and $a\mathcal{U} = \{ a, b \}$. The only open ultrafilters remaining are those containing a single point set like $\{ n \}$. To construct a 3-H-closed space Y that contains X as a dense subspace let $Y = X \cup \{ c_n : n \in \omega \}$. A set $U \subseteq Y$ is defined to be open if $U \cap X$ is open in X and if $c_n \in U$, then $n \in U$. The space Y is 3-Hausdorff, and X is dense in Y. Let U be an open ultrafilter on X and $V = \{ U : U$ is open in Y and $U \cap X \in \mathcal{U} \}$ the unique open ultrafilter on Y that contains \mathcal{U}. If U is infinite for each $U \in \mathcal{U}$, then $\{ a, b \} = aV$. If some U is finite for $U \in \mathcal{U}$, then there is an unique $n \in \omega$ such that $U = \{ n \}$, and it follows that $\{ c_n, n \} = aV$. Thus, Y is a 3-H-closed space. The space Y provides an example that shows the size of $a\mathcal{F}$ can be quite large. For $n \in \omega$, the open ultrafilter $\mathcal{U}_n = \{ U \in \tau(Y) : n \in U \}$ has the property that $|a\mathcal{U}_n| = 2$. However, the open filter $\mathcal{F} = \bigcap_{1 \leq i \leq n} \mathcal{U}_n$ on Y has the property that $|a\mathcal{F}| = 2n$. This shows that the adherence of an open filter \mathcal{F} in an n-H-closed space can be large.
4. Theory of n-H-closed Extensions.

Theorem 5. Let $n \in \omega$, $n \geq 2$, X be n-Hausdorff space and Y the simple, n-H-closed extension of X constructed in Extension Construction Technique 2. If Z is an n-H-closed extension of X, there is a continuous surjection $f : Y \to Z$ such that $f(x) = x$ for all $x \in X$.

Proof. Let $\hat{u} = \{ \mathcal{U} : \mathcal{U} \text{ is an open ultrafilter on } X \text{ such that } |a| < n - 1 \}$. For $\mathcal{U} \in \hat{u}$, the collection $\mathcal{V}_\mathcal{U} = \{ V \in \tau(Z) : V \cap X \in \mathcal{U} \}$ is an open ultrafilter on Z. Note that $a_Z \mathcal{V}_\mathcal{U} \setminus X = a_Z \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U} = \{ p_1, p_2, \ldots, p_k \}$ where $k = n - 1 - |a_X \mathcal{U}|$ and $Z = X \cup \bigcup_{u \in \hat{u}} a_Z \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U}$.

For $\mathcal{U} \in \hat{u}$, let $\mathcal{V}_\mathcal{U} = \{ V' \in \tau(Y) : V' \cap X \in \mathcal{U} \}$ be an open ultrafilter on Y. The set $a_Y \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U} = \{ q_1, q_2, \ldots, q_k \}$ where $k = n - 1 - |a_X \mathcal{U}|$. Note that $Y = X \cup \bigcup_{u \in \hat{u}} a_Y \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U}$.

Define $f_{\mathcal{U}}(q_i) = p_i$ for $1 \leq i \leq k$; $f_{\mathcal{U}}$ is a bijection. Define $f : Y \to Z$ as follows: for $x \in X$, $f(x) = x$ and for $q_i \in \mathcal{V}_\mathcal{U}$, $f(q_i) = f_{\mathcal{U}}(q_i) = p_i$. The function f is onto, $f(x) = x$ for $x \in X$, but not necessarily one-to-one. As X is open in Y, f is continuous for $x \in X$. For $\mathcal{U} \in \hat{u}$ and $q_i \in a_Y \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U}$, $f(q_i) = f_{\mathcal{U}}(q_i) = p_i$; let $p_i \in V$ for some V open in Z. Then $V \cap X \in \mathcal{U}$ and $f([q_i] \cup (V \cap X)) \subseteq V$. As $\{ q_i \} \cup (V \cap X)$ is open in Y, it follows that f is continuous at q_i. □

Remark 3. Let $n \in \omega$, $n \geq 2$, S and T be n-H-closed extensions of an n-Hausdorff space X. We say S is **projectively larger** than T if there is a continuous surjection $f : S \to T$ such that $f(x) = x$ for $x \in X$. This projectively larger function may not be unique.

The proof of Theorem 5 shows that the n-H-closed extension Y of X is projectively larger than every n-H-closed extension of X. The space Y from Theorem 5 has an interesting uniqueness property as noted in the next result.

Theorem 6. Let $n \in \omega$, $n \geq 2$, X be an n-Hausdorff space and Y the n-H-closed extension of X described in Theorem 5. Let $f : Y \to Y$ be a continuous surjection such that $f(x) = x$ for all $x \in X$. Then f is a homeomorphism.

Proof. From Theorem 5 we have that $Y = X \cup \bigcup_{u \in \hat{u}} a_Y \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{U}$ where if \mathcal{S}, $\mathcal{T} \in \hat{u}$ are distinct open ultrafilters on X, then $(a_Y \mathcal{V}_\mathcal{U} \setminus a_X \mathcal{S}) \cap (a_Y \mathcal{V}_\mathcal{T} \setminus a_X \mathcal{T}) = \emptyset$. Let $\mathcal{U} \in \mathcal{P}$ and \mathcal{V} be the unique open ultrafilter on Y such that $\mathcal{U} \subseteq \mathcal{V}$. Then $f[a \mathcal{V}] = f[\bigcap_{V \in \mathcal{V}} \operatorname{cl}_Y V] \subseteq \bigcap_{V \in \mathcal{V}} f[\operatorname{cl}_Y V] = \bigcap_{V \in \mathcal{V}} f[\operatorname{cl}_Y (V \cap X)] \subseteq \bigcap_{V \in \mathcal{V}} \operatorname{cl}_Y f[V \cap X] = \bigcap_{V \in \mathcal{V}} \operatorname{cl}_Y V = a \mathcal{V}$. Now, $f[a \mathcal{V}] = f[a \mathcal{V}] \cap a \mathcal{U} = f[a \mathcal{V}] \cap a \mathcal{U} \subseteq a \mathcal{V} \cap a \mathcal{U} \subseteq a \mathcal{V} \cap a \mathcal{U} \cap a \mathcal{U}$. If $\mathcal{T} \in \hat{u}$,
$\mathcal{T} \neq \mathcal{U}$, and \mathcal{V} is the unique open ultrafilter on Y such that $\mathcal{T} \subseteq \mathcal{V}$, then $f[a\mathcal{V}] \subseteq a\mathcal{V}\setminus a\mathcal{T} \cup a\mathcal{T}$. But $a\mathcal{V}\setminus a\mathcal{T} \cap a\mathcal{V}\setminus a\mathcal{T} = \emptyset$. Thus, if f is onto, $f[a\mathcal{V}\setminus a\mathcal{T}] = a\mathcal{V}\setminus a\mathcal{T}$. Since $a\mathcal{V}\setminus a\mathcal{T}$ is finite, then $f|_{a\mathcal{V}\setminus a\mathcal{T}} : a\mathcal{V}\setminus a\mathcal{T} \to a\mathcal{V}\setminus a\mathcal{T}$ is also one-to-one. This completes the proof that f is a bijection. To show that f is open first note that for an open set $V \subseteq X$, $f[V] = V$ is open. Let $p \in a\mathcal{V}\setminus a\mathcal{T}$ and $p \in V \in \mathcal{V}$. Then $\{p\} \cup V \cap X$ is a basic open set in Y containing p. Now, $f[\{p\} \cup V \cap X] = \{f(p)\} \cup f[V \cap X] = \{f(p)\} \cup (V \cap X)$ is a basic open set in Y containing $f(p)$. This completes the proof that f is open.

Remark 4. In the setting of Hausdorff spaces, projective maximums and projectively larger functions (defined in [3]) are unique. Sometimes this is a problem in non-Hausdorff spaces. From Theorem 6 we see that a form of uniqueness for the class of n-H-closed extensions is possible. We extend the definition of projective maximum in [3] as follows: Let $\mathcal{E}(X)$ be a collection of extensions of a space X. We say $Y \in \mathcal{E}(X)$ is a projective maximum of X if Y is projective larger than each $Z \in \mathcal{E}(X)$ and if $f : Y \to Y$ is a continuous surjection such that $f(x) = x$ for each $x \in X$, then f is a homeomorphism. By Theorem 6 the n-H-closed space Y constructed in Theorem 5 for a n-Hausdorff space X is a projective maximum. We denote this projective maximum by n-κX and call it the n-Katětov extension of X.

4.1. Fomin H-closed Extension. Let $n \in \omega$, $n \geq 2$, X be a n-Hausdorff space and Y denote n-κX from Theorem 5. In the setting of Hausdorff spaces, the combination of the Katětov and Fomin extensions provide the major support for the theory of H-closed extensions. In the class of n-Hausdorff spaces, the Fomin extension is defined as $Y^\#$ and denoted as n-σX. By Proposition 8 n-σX is H-closed, and by Proposition 5(f), the identity function $id : n$-$\kappa X \to n$-σX is a continuous bijection such that $id(x) = x$ for all $x \in X$. Recall that for spaces S, T, a function $f : S \to T$ is θ-continuous if for each $p \in S$ and open set $V \in \tau(T)$ such that $f(p) \in V$, there is an open set $U \in \tau(S)$ such that $f[cl_S U] \subseteq cl_T V$. By Proposition 5(d), it follows that $id : n$-$\sigma X \to n$-κX is θ-continuous. If Z is an n-H-closed extension of X, there is a continuous surjection $f : n$-$\kappa X \to Z$ such that $f(x) = x$ for $x \in X$. So, the composition $f \circ id : n$-$\sigma X \to Z$ is θ-continuous, onto, and $(f \circ id)^{-1}[Z \setminus X] = n$-$\sigma X \setminus X$. The next result presents some interesting properties of n-$\sigma X \setminus X$.

Theorem 7. Let $n \in \omega$, $n \geq 2$, X be an n-Hausdorff space and $Y^\#$ denote the Fomin extension n-σX of X. Then:

(a) For $U \in \tau(X)$, $cl_{Y^\#} o U = cl_{Y^\#} U = cl_X U \cup o U$ and $cl_{Y^\#} U \setminus X =$
Proof. For (a), let $U \in \tau(X)$. Then $\text{cl}_{Y^\#} U = \text{cl}_Y U = \text{cl}_X U \cup oU$ by Propositions \[d\] and \[d\]. (b) and (c) follow from (a). To show (d), let $\{o(U_a) : a \in A\}$ be an open cover of K. As K is closed in n-σX, there is a family of basic open sets $\{o(U_b) : b \in B\}$ such that $o(U_b) \cap K = \emptyset$ for each $b \in B$. As n-σX is n-H-closed by Proposition \[h\] then n-σX is qH-closed by Theorem \[i\]. There are finite families $A' \subseteq A$ and $B' \subseteq B$ such that n-$\sigma X = \bigcup_{a \in A'} \text{cl}_{Y^\#} o(U_a) \cup \bigcup_{b \in B'} \text{cl}_{Y^\#} o(U_b) = \bigcup_{a \in A'} \text{cl}_X U_a \cup o(U_a) \cup \bigcup_{b \in B'} \text{cl}_X U_b \cup o(U_b)$. As $K \subseteq n$-$\sigma X \setminus X$, we have that $K \subseteq \bigcup_{a \in A'} \text{cl}_X o(U_a)$. To show (e), first note that $X \setminus A$ is open and dense in X. So, $o(X \setminus A) = (X \setminus A) \cup n$-$\sigma X \setminus X$, and n-$\sigma X \setminus o(X \setminus A) = n$-$\sigma X \setminus (X \setminus A) \cap n$-$\sigma X \setminus (n$-$\sigma X \setminus X) = n$-$\sigma X \setminus (X \setminus A) \cap X = A$. \(\square\)

Remark 5. Let $n \in \omega$, $n \geq 2$, and X be an n-Hausdorff space. By Theorem 9(c), the space n-$\sigma X \setminus X$ is completely regular (Tychonoff without being Hausdorff) in addition to being zero-dimensional. In fact, by Theorem 9(b), n-$\sigma X \setminus X$ is close to being extremally disconnected for if $V \in \tau(Y^\#)$, $\text{cl}_{Y^\#} X$ is clopen in $Y^\# \setminus X$.

4.2. Partitions of n-$\sigma X \setminus X$. The theory of H-closed extensions starts with these two results that distinguish it from the theory of Hausdorff compactifications.

Let X be a Hausdorff space and Z an H-closed extension of X. Let $f : \kappa X \rightarrow Z$ be the continuous surjection such that $f(x) = x$ for $x \in X$. From \[j\] we have the following facts:

(a) Then $\mathcal{P} = \{f^{-1}(p) : p \in Z \setminus X\}$ is a partition of $\sigma X \setminus X$ into nonempty compact spaces.

(b) If \mathcal{P} is a partition of $\sigma X \setminus X$ into nonempty compact spaces, there is an H-closed extension Z of X such that if $f : \kappa X \rightarrow Z$ such that $f(x) = x$ for $x \in X$, then $\mathcal{P} = \{f^{-1}(p) : p \in Z \setminus X\}$.

The question is whether this can be done with n-H-closed extensions. We give a partial answer to this problem considering the n-H-closed extensions that are Hausdorff except for X. The following Lemma \[k\] Theorems \[k\] and \[l\] show that it works in this very restricted setting.
Lemma 2. Let $n \in \omega$, $n \geq 2$, and Z be an extension of a space X.

(a) If U and V are open in Z, then $U \subseteq o(U \cap X)$ and if $U \cap V = \emptyset$, then $o(U \cap X) \cap o(V \cap X) = \emptyset$.

(b) If Z is Hausdorff except for X, then $Z^\#$ is Hausdorff except for X.

(c) If Z is Hausdorff except for X and \mathcal{U} is an open ultrafilter on X, then $|a_\mathcal{U} \setminus a_X \mathcal{U}| \leq 1$.

(d) If Z is Hausdorff except for X and Z is n-H-closed, then n-κX is Hausdorff except for X.

Proof. The proof of (a) is straightforward. For (b), let $p, q \in Z \setminus X$. There are open sets U, V such that $p \in U$, $q \in V$, and $U \cap V = \emptyset$. Then $U \subseteq o(U \cap X)$, $V \subseteq o(V \cap X)$, $p \in o(U \cap X)$, $q \in o(V \cap X)$, and $o(U \cap X) \cap o(V \cap X) = \emptyset$. Similar proof for $p \in Z \setminus X$.

(c) If $p, q \in a_\mathcal{U} \setminus a_X \mathcal{U}$, there are disjoint open sets U, V in Z such that $p \in U$ and $q \in V$. Then $U \cap X, V \cap X \in \mathcal{U}$, a contradiction as $U \cap V = \emptyset$.

(d) Let $p, q \in n$-$\kappa X \setminus X$. Suppose $p, q \in \mathcal{U}$, an open ultrafilter on X. Then $a_X \mathcal{U} \leq n - 3$. However, by (c), $a_X \mathcal{U} \geq n - 2$, a contradiction. So, $p \in a_X \mathcal{U}$ and $q \in a_X \mathcal{U}$ where \mathcal{U} and \mathcal{V} are distinct. There are $U \in \mathcal{U}$ and $V \in \mathcal{V}$ such that $U \cap V = \emptyset$. Thus, points of n-$\kappa X \setminus X$ can be separated by disjoint open sets. For a point $p \in n$-$\kappa X \setminus X$ and a point $x \in X$, $f(p)$ and x can be separated by disjoint open sets. As f is continuous, it follows that p and x can be separated by disjoint open sets.

Definition 7. A partition \mathcal{P} of a subset of a space X is said to be Hausdorff if $A, B \in \mathcal{P}$, $A \neq B$, there are open sets U, V in X such that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$.

Theorem 8. Let $n \in \omega$, $n \geq 2$, and Z be an n-H-closed extension of a space X that is Hausdorff except for X and $f : n$-$\kappa X \to Z$ a continuous surjection such that $f(x) = x$. Then $\mathcal{P} = \{f^{-1}(p) : p \in Z \setminus X\}$ is a Hausdorff partition of compact subsets of n-$\sigma X \setminus X$ with the property that each $f^{-1}(p)$ in \mathcal{P} is Hausdorff separated from each point in X.

Proof. Fix $p \in Z \setminus X$, and let $K = f^{-1}(p)$. First, we show that K is closed in n-σX. Let $r \in n$-$\sigma X \setminus K$. As Z is Hausdorff except for X, there are open sets $U, V \in \tau(Z)$ such that $f(r) \in V$ and $p \in U$ and $U \cap V = \emptyset$. As f is θ-continuous, there is an open set $T \in \tau(n$-$\sigma X)$ such that $f[cl(T)] \subseteq cl(V)$ and $r \in T$. As $p \in U$, $f(r) \in f[cl(T)] \subseteq cl(V)$ and $U \cap cl(V) = \emptyset$, $cl(T) \cap K = \emptyset$. A similar proof works when $r \in X$.

This shows that K is closed in n-σX and that K is Hausdorff separated
from each point in X. By Theorem 7(e), K is compact as well as closed in $n\sigma X$. \hfill \square

Theorem 9. Let $n \in \omega$, $n \geq 2$, and X be an n-Hausdorff space. Let \mathcal{P} be a Hausdorff partition of compact subsets of $n\sigma X \setminus X$ that are closed in $n\sigma X$ and Hausdorff separated from each point of X.

There is an n-H-closed extension Z of X that is Hausdorff except for X and a continuous surjection $f : n\sigma X \to Z$ such that $f(x) = x$ and $\mathcal{P} = \{f^{-1}(p) : p \in Z \setminus X\}$.

Proof. Let $\mathcal{P} = \{P_a : a \in A\}$ and $Z = X \cup A$ where $X \cap A = \emptyset$. Define $f : n\sigma X \to Z$ by $f(x) = x$ for $x \in X$ and if $p \in P_a$, $f(p) = a$. The function f is onto.

We define $U \subseteq Z$ to be open if $U \cap X$ is open in X and if $f(p) = a \in U$, $\{p\} \cup (U \cap X)$ is open in $n\sigma X$ for each $p \in P_a$. Note that Z is a simple extension of X, f is continuous, and if V is open in X and $\{p\} \cup (V)$ is open in $n\sigma X$ for each $p \in P_a$, $\{a\} \cup V$ is open in Z. Conversely, if $\{a\} \cup V$ is open in Z, then $\{p\} \cup (V)$ is open in $n\sigma X$ for each $p \in f^{-1}(a)$.

Next, we show that Z is Hausdorff except for X: Let $a, b \in Z \setminus X$. There are open sets U, V in $n\sigma X$ such that $P_a \subseteq U$, $P_b \subseteq V$, and $U \cap V = \emptyset$. Then $\{a\} \cup U \cap X$ and $\{b\} \cup V \cap X$ are open and disjoint in Z. A similar proof shows that $a \in A$ and $x \in X$ can be separated by disjoint disjoint open sets in Z using the hypothesis that P_a and x can be separated by disjoint open sets in $n\sigma X$.

Next, we will show that Z is n-Hausdorff. Let $A \subseteq Z$ such that $|A| = n$. If $A \setminus X \neq \emptyset$, then there is a $a \in A \setminus X$. Now a can be separated by disjoint open sets from any point in $A \setminus X \cup \{a\}$ and any point in X.

The only remaining case is when $A \subseteq X$. As X is n-Hausdorff, there are open sets $\{U_a : a \in A\}$ in X such that $a \in U_a$ and $\bigcap_{a \in A} U_a = \emptyset$.

Finally, we will show that Z is n-H-closed. Let \mathcal{U} be an open ultrafilter on Z, by Theorem 3 it suffices to show that $|aZ\mathcal{U}| = n - 1$. Let $\mathcal{V} = \{U \cap X : U \in \mathcal{U}\}$ is an open ultrafilter on X. Then $|aZ\mathcal{U}| = |aZ\mathcal{V}|$. The goal is to show that $|a_{n\sigma X}\mathcal{V}| = |a\mathcal{V}|$, more precisely, that $|a_{n\sigma X}\mathcal{V}\setminus a_X\mathcal{V}| = |aZ\mathcal{V}\setminus a_X\mathcal{V}|$. Let $p \in a_{n\sigma X}\mathcal{V}\setminus a_X\mathcal{V}$ and $f(p) = a \in Z \setminus X$. As $p \in a_{n\sigma X}\mathcal{V}\setminus a_X\mathcal{V}$, $O_P^n_{n\sigma X} = \mathcal{V}$. As $f(p) = a$ and f is continuous, $O^a_Z \subseteq O_P^n_{n\sigma X} = \mathcal{V}$. Thus, $f(p) = a \in a\mathcal{V}\setminus a_X\mathcal{V}$. Conversely, suppose $a \in a\mathcal{V}\setminus a_X\mathcal{V}$. As Z is n-Hausdorff, $|a\mathcal{V}| \leq n - 1$. Thus $|a_X\mathcal{V}| \leq n - 2$. But, $|a_{n\sigma X}\mathcal{V}| = n - 1$. So, there is some $p \in a_{n\sigma X}\mathcal{V}\setminus a_X\mathcal{V}$. \hfill \square
ACKNOWLEDGMENT

The third author was supported by the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA-INdAM).

REFERENCES

[1] P. Alexandroff and P. Urysohn, Zur theorie der topologischen Räume, Math Ann 92(1924), 258-262.
[2] M. Bonanzinga, On the Hausdorff Number of a Topological Space, Houston J. Math 39 (2013), 1013-1030.
[3] J. Porter and R. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin (1988).

(Basile) UNIVERSITY OF MESSINA
E-mail address: basilef@unime.it

(Bonanzinga) UNIVERSITY OF MESSINA
E-mail address: mbonanzinga@unime.it

(Carlson) CALIFORNIA LUTHERAN UNIVERSITY
E-mail address: ncarlson@callutheran.edu

(Porter) UNIVERSITY OF KANSAS
E-mail address: porter@ku.edu