HPV sampling options for cervical cancer screening: preferences of urban-dwelling Canadians in a changing paradigm

G.D. Datta ScD MPH,* M.H. Mayrand MD PhD,* S. Qureshi MScPH,* N. Ferre MD MPH,* and L. Gauvin PhD*

ABSTRACT

Introduction Of women in Canada diagnosed with invasive cervical cancer, 50% have not been screened according to guidelines. Interventions involving self-collected samples for human papillomavirus (HPV) screening could be an avenue to increase uptake. To guide the development of cervical cancer screening interventions, we assessed

- preferred sample collection options,
- sampling preferences according to previous screening behaviours, and
- preference for self-sampling among women not screened according to guidelines, as a function of their reasons for not being screened.

Methods Data were collected in an online survey (Montreal, Quebec; 2016) and included information from female participants between the ages of 21 and 65 years who had not undergone hysterectomy and who had provided answers to survey questions about screening history, screening interval, and screening preferences (n = 526, weighted n = 574,392).

Results In weighted analyses, 68% of all women surveyed and 82% of women not recently screened preferred screening by self-sampling. Among women born outside of Canada, the United States, or Europe, preference ranged from 47% to 60%. Nearly all women (95%–100%) who reported fear or embarrassment, dislike of undergoing a Pap test, or lack of time or geography-related availability of screening as one of their reasons for not being screened stated a preference for undergoing screening by self-sampling.

Conclusions The results demonstrate a strong preference for self-sampling among never-screened and not-recently-screened women, and provides initial evidence for policymakers and researchers to address how best to integrate self-sampling HPV screening into both organized and opportunistic screening contexts.

Key Words Cervical cancer, HPV, self-sampling

INTRODUCTION

Of women in Canada diagnosed with invasive cervical cancer, 50% have not been screened according to guidelines1. That burden is disproportionately borne by women who are immigrants or who have a low socioeconomic status2–5. Several barriers to screening have been identified, including not having access to a primary care physician, perceived absence of a need for screening6–8, and test-related emotional and physical discomfort6–8. Interventions addressing those barriers could improve uptake, reduce inequalities, and lower the burden of cervical cancer.

Oncogenic human papillomaviruses (HPVs) have been identified as a necessary cause of cervical cancer9. Screening by HPV testing is more sensitive than screening by cytology, and thus some jurisdictions, such as the Netherlands, England, Australia, and New Zealand, are phasing in HPV testing as their primary screening method10–14, and the U.S. Preventive Services Task Force recommendations now include HPV testing as a primary screening modality15.
In addition to HPV tests that use samples collected by clinicians, tests based on self-collected samples have been explored in some jurisdictions as a way to increase uptake\(^{10,16}\). Compared with cytologic tests, which are currently the primary screening modality in many jurisdictions, self-sampled HPV tests have greater sensitivity\(^{17}\), and a recent meta-analysis reported that self-sampled tests that are analyzed using polymerase chain reaction–based techniques have a sensitivity and specificity comparable to those for HPV tests using clinician-collected samples\(^{18}\).

The Canadian Task Force on Preventive Health Care recommends that women 25–69 years of age receive Pap tests every 2–3 years\(^ {19}\). However, given that health care is administered provincially, each jurisdiction implements its own guidelines and cancer prevention programs\(^ {20}\). Many provinces have implemented organized screening programs, and some are also now moving toward screening that, instead of cytology, uses HPV tests with clinician-collected samples\(^ {20}\). At least one province, Manitoba, is moving toward integrating HPV testing with self-collected samples. A recent pilot study within CervixCheck, the Manitoba organized cervical cancer screening program, found that participation increased when self-sample HPV tests were sent to women who had not responded to screening reminder letters\(^ {21}\).

Quebec is the 2nd most populous province in Canada\(^ {22}\), and the only one in which cervical cancer screening is conducted completely opportunistically\(^ {23}\). In Quebec, screening is recommended every 2–3 years for women 21–65 years of age\(^ {23}\). A recent study reported that, of women residing in the greater Montreal metropolitan area (where half the Quebec population resides), 14% had never been screened, and 12% had not recently been screened, placing them at higher risk of a diagnosis of invasive cancer\(^ {5}\). Consistent with other studies\(^ {4,5}\), that risk is most pronounced among recent immigrants, 44% of whom had never been screened\(^ {5}\). Interventions involving self-collected samples could be a promising avenue to increase HPV screening uptake not only among women who have never been screened, but also among those who have been screened at longer-than-optimal intervals.

The acceptability of self-sampling as an HPV screening modality for women in Quebec has not previously been investigated. To guide the development of cervical cancer screening interventions, we assessed

- preferred sample collection options,
- sampling preferences according to previous screening behaviours, and
- preference for self-sampled screening tests among women not screened according to guidelines, as a function of their reasons for not being screened.

METHODS

Data Collection

Data were collected in 2016 as part of a study designed to assess the acceptability of several health-promoting activities among residents on the Island of Montreal. We used a recognized polling firm to create an online survey (available in English and French) offered to an existing panel of Internet users who regularly participate in Web-based surveys. The participants were initially recruited to the panel in a probabilistic sampling approach conducted by telephone. Invitations were sent to 2956 potential participants in total, and 1183 male and female participants completed the entire survey. Panel members accessed the survey at a secured Web site where a full institutional consent form could be read before the survey began. Our analysis included data from female participants between the ages of 21 and 65 years who had not had a hysterecomy and who had provided answers to survey questions about their screening history, screening interval, and screening preferences (\(n = 526\)). Weights were applied to better represent the general population in terms of age, first language, educational attainment, and living alone (weighted \(n = 574,392\)). Because it was not within the scope of this pilot project to produce sampling weights in addition to population weights, we present unweighted estimates that provide realistic confidence intervals, together with weighted point estimates.

Outcomes

The primary outcome of interest was women’s preference for cervical cancer screening by self-sample kit rather than by standard clinician sampling during a clinic visit. That outcome was measured using the question “If an easy-to-use kit was available to do the screening test at home, would you prefer this option rather than having the Pap test (test used to screen for cervical cancer) done in a health centre by a professional?” Response options were “yes,” “no,” and “I don’t know/prefer not to answer.” We assessed that outcome overall, according to previous screening behaviours, and according to reasons for not being screened (among women who had never been screened or who had not been screened in the preceding 3 years).

Covariates

The survey additionally requested information about previous screening behaviours. Women who reported never being screened were considered “never screened.” Women who reported not being screened in the preceding 3 years, but who reported being screened in their lifetime, were considered “not screened according to guidelines”\(^ {23}\). Several sociodemographic characteristics were collected in the survey or were available because of membership in the online panel. Characteristics assessed in relation to the outcome included age, immigrant status, place of birth, family income, and educational attainment. Four categories were used to describe age (21–34, 35–44, 45–54, and 55 years of age and older). Immigrant status was categorized according to place of birth (Canada; United States or Europe; other country). Annual family income was classified in 5 categories: less than $25,000, $25,000–$54,999, $55,000–$99,999, $100,000 or more, and no response provided. Educational attainment was categorized as secondary or less, college, and university. “Missing indicator” categories were used for nonresponse to survey questions eliciting education, income, birthplace, or reasons for not being screened.

Women who had never been screened or who had not been screened in the preceding 3 years were asked to select
the 3 most important reasons for not being screened, with the possible options being adopted from a similar question in the Canadian Community Health Survey24. We created two classifications:

- Respondents who reported each reason on the list as any of their 3 reasons ("all reasons")
- Respondents who reported each reason as the most important reason for not being screened in the preceding 3 years ("primary reason")

The study protocol was approved by the research ethics committee of the Centre hospitalier de l’Université de Montréal.

Analyses

Chi-square statistics were calculated to assess the statistical significance of associations between sociodemographic characteristics and screening behaviours (ever vs. never, recent vs. non-recent). The proportion of women who reported a preference for self-sampling and confidence intervals—by Clopper–Pearson (exact) calculations with continuity—were generated according to sociodemographic characteristics and screening history. Weights were applied to better represent the general population in terms of age, first language, educational attainment, and living alone. Cross-tabulations of preference for self-sampling according to sociodemographic characteristics were generated separately for women who had never been screened and for women who were not screened according to guidelines. The proportion of women who reported a preference for self-sampling was calculated separately for women who had not been screened or not screened according to guidelines, according to the reported reasons for not being screened. Analyses were conducted in the SAS software application (version 9.4: SAS Institute, Cary, NC, U.S.A.).

RESULTS

The analytic sample consisted of 526 women (weighted \(n = 574,392 \)). In weighted analyses, 15% of women overall reported never having been screened, and 14% reported not having been screened in the preceding 3 years; 71% had been screened according to guidelines (Table i). Compared with women who had been screened in their lifetime, those who had never been screened were more likely to be younger, to have a lower income, and to be born outside of Canada (Table i). Compared with women who had been screened in the preceding 3 years, those who had been screened in their lifetime, but not in the preceding 3 years, were older and had a lower income.

Overall, 68% of women reported that participating in screening by self-sampling at home would be their preferred screening modality compared with screening by a professional in a clinical setting (Table ii). Of women who had never been screened, 66% reported that self-sampling would be a preferable screening method. Of women who had not been screened in the preceding 3 years, but who had been screened in their lifetime, 82% reported that self-sampling would be a preferable screening modality. Of women who had been screened according to guidelines, the proportion was 66%.

Of women who had never been screened, preference for self-sampling varied with certain demographic characteristics (Table ii). However, because of small sample sizes, confidence intervals for all estimates are wide. Compared with women born in other countries (51%), greater proportions of women born in Canada (76%) or in the United States or Europe (77%) reported a preference for self-sampling. Of women who had not recently been screened, an even smaller proportion of women who had been born outside of Canada, the United States, or Europe reported a preference for self-sampling (44% vs. 84% for those born in Canada and vs. 90% for those born in the United States or Europe). Among women who had never been screened, differences in screening preferences were observed in terms of household income, with 47% of women in the lowest income category and 78% of those in the highest income category reporting a preference for HPV screening by self-sampling. Differences in screening preferences were not observed according to educational attainment in any screening history category.

Among women who had not been screened or not screened according to guidelines (\(n = 113 \), weighted \(n = 124,426 \)), we assessed preference for self-sampling by the reported reasons for not being screened in the preceding 3 years (Table iii). All women who reported, as one of the 3 most important reasons for not being screened, a lack of availability in the region or at the time it was necessary, a communication or language issue, immobility because of health problems, or fear and embarrassment indicated a preference to undergo screening by self-sampling (100%). Almost all women who reported, as one of the 3 most important reasons for not being screened, that they did not like undergoing cervical screening indicated a preference for screening by self-sampling (95%). Of women who indicated that time constraint was the most important reason for not being screened, 75% reported that they would prefer to be screened by self-sampling.

DISCUSSION AND CONCLUSIONS

Our study addresses the lack of literature about the self-sampling preferences of women for HPV testing in an opportunistic screening setting in which screening is offered free of charge in a publicly financed health care system—a critical step toward informing the development of potential interventions. We found that 68% of all women surveyed would prefer screening by self-sampling, with a greater proportion of women who have not been screened recently, but who have been screened sometime during their life, expressing a preference for self-sampling (82%). Of women born outside of Canada, the United States, and Europe, the preference for self-sampling ranged from 44% to 64%. Nearly all women (95%–100%) who reported fear or embarrassment, not liking undergoing a Pap test, or lack of time or geography-related unavailability of screening as one of their reasons for not being screened stated a preference for undergoing screening by self-sampling.

Our findings are consistent with those from international studies. A recent meta-analysis of thirty-seven studies, synthesizing data from 24 countries and 18,516 participants, showed that 97% of women (95%–98%) found...
TABLE I Participant characteristics by history of screening for cervical cancer, Montreal, 2016 (weighted \(n = 574,392 \))

Characteristic	Screening status	(n)	(%)								
	All										
	Never										
	Recently										
	Missing										

	Overall	574,392	100	87,140	15	82,028	14	405,224	71	40,373	7
	Weighted	526	100	53	10	89	17	384	73	35	
	Unweighted	526	100	53	10	89	17	384	73	35	

	Age group										
	21–34 Years										
	Weighted	200,394	35	44,807	51	15,324	19	140,263	35	25,781	
	Unweighted	102	19	16	30	9	10	77	20	12	
	35–44 Years										
	Weighted	126,493	22	23,531	27	17,419	21	85,542	21	4,166	
	Unweighted	138	26	17	32	17	19	104	27	7	
	45–54 Years										
	Weighted	128,673	22	8,811	10	19,041	23	100,820	25	4,856	
	Unweighted	137	26	11	21	22	25	104	27	8	
	≥55 Years										
	Weighted	118,830	21	9,989	11	30,242	37	78,598	19	5,568	
	Unweighted	149	28	9	17	41	46	99	26	8	

	Education										
	Secondary or less										
	Weighted	177,302	31	33,206	38	33,665	41	110,430	27	9,482	
	Unweighted	94	18	14	26	20	22	60	16	5	
	College										
	Weighted	115,148	20	20,867	24	16,215	20	78,066	19	5,610	
	Unweighted	117	22	14	26	22	25	81	21	6	
	University										
	Weighted	259,572	45	32,350	37	32,147	39	195,075	48	25,279	
	Unweighted	307	58	24	45	47	53	236	61	24	
	Missing										
	Weighted	22,368	4	716	1	0	0	21,653	5	0	
	Unweighted	8	2	1	2	0	0	7	2	0	

	Annual household income	<0.0001	0.01								
	<$25,000										
	Weighted	67,841	11	25,038	29	16,069	20	26,733	7	9,573	
	Unweighted	37	7	11	21	11	12	15	4	4	
	$25,000–$54,999										
	Weighted	136,696	24	25,083	29	15,508	19	96,105	24	5,787	
	Unweighted	117	22	21	40	17	19	79	21	6	
	$55,000–$99,999										
	Weighted	131,693	23	15,818	18	17,372	21	98,503	24	9,285	
	Unweighted	133	25	7	13	18	20	108	28	8	
	≥$100,000										
	Weighted	106,105	18	6,557	8	13,090	16	86,456	21	3,438	
	Unweighted	129	25	7	13	19	21	103	27	7	
	No response										
	Weighted	132,054	23	14,642	17	19,987	24	97,425	24	12,288	
	Unweighted	110	21	7	13	24	27	79	21	10	
HPV screening by self-sampling to be acceptable, and 59% (48%–69%) preferred self-collected to physician-collected samples. Randomized studies of screening non-attenders have similarly shown that women are more likely to participate in screening using self-sampled tests than to respond to an invitation to receive screening from a medical professional. In a meta-analysis of sixteen randomized studies, Verdoord et al. found, in intention-to-treat analyses, that pooled participation in screening was 23.6% for women sent a self-sampled test for HPV and 10.3% for women who were sent reminder letters to be screened. Different results were observed depending on the method used to deliver self-sampled tests, with screening participation being only 9.7% among women who were asked to opt in to receive a self-sampling kit.

The results from the current study are also consistent with other Canadian studies reporting that self-sampling for HPV is either an acceptable or a preferable screening modality for women from vulnerable groups. In a study of urban-dwelling Muslim women in Ontario, researchers observed that more than half expressed a preference for screening by self-sampling than by clinical sampling, citing convenience and privacy as barriers that self-sampling overcomes. That finding is of particular relevance to our results because 28% of recent immigrants to Quebec self-report as being Muslim and a recent study in Montreal showed that 37% of women from Africa—the geographic origin for many Muslim immigrants—have never been screened for cervical cancer. Lofters et al. also noted that, with respect to barriers to participating in self-sampling for HPV testing, women in their study expressed concern that they might not obtain a sufficient sample. That concern was similar to concerns expressed by participants in other studies of Ontario women and should be addressed as a part of the development of any intervention using self-sampling.

Just as international studies have reported, randomized studies in Canada have observed that, for increasing screening uptake, sending a self-sampling kit is more effective than sending an invitation letter. One trial, conducted in rural southwestern Ontario, found that 35% of women in the self-sampling arm, 15% of women in the invitation arm, and 8.5% of women in the standard-of-care (opportunistic screening) arm participated in screening. Additionally, 80% of women in the self-sampling arm reported that they would likely participate in screening by self-sampling in the future. A randomized study of women living in the Robinson–Superior Treaty First Nations also reported somewhat higher screening uptake when women were offered screening by self-collected test than by Pap test (20.6% vs. 16% in an intention-to-treat analysis) again indicating that self-collection can be an effective tool in increasing screening among vulnerable women. A community-based cohort study in Newfoundland and Labrador, where population-level screening rates were as low as 43% in 2007–2009, reported that increases in screening participation were statistically significantly greater in communities where screening by self-sampled test was offered (15.2%) than in communities where only education (2.9%) or no intervention (8.5%) was offered.

Consistent with studies conducted in organized screening contexts, studies examining the use of self-sampled screening tests in opportunistic settings such as those in Switzerland, Australia, the United States, and Argentina have reported similar results. Most of the studies have shown that distributing self-sampling kits increases screening uptake, including among vulnerable women. However, one study in Switzerland indicated that uptake...
TABLE II Proportion of women who prefer HPV self-sampling according to screening history and sociodemographic characteristics, Montreal, 2016 (weighted \(n = 574,392 \))

Characteristic	Screening status	Overall					
		(n)c (%) 95% Cl\[d\]	(n) (%) 95% Cl\[d\]	(n) (%) 95% Cl\[d\]	(n) (%) 95% Cl\[d\]		
		Weighted	Unweighted	Weighted	Unweighted		
		391,204 68	358 68 64 to 72	57,508 66	36 68 54 to 80		
		66,917 82			77 87 78 to 93		
		266,778 66			245 64 59 to 69		
Overall							
Age group							
21–34 Years							
Weighted		122,454 61	63 62 52 to 71	28,801 64	9 56 30 to 80		
Unweighted		9,099 40	6 67 30 to 93	16,848 97	19 86 65 to 97		
35–44 Years							
Weighted		92,565 73	93 68 59 to 76	17,408 74 57 to 96	16 94 71 to 100		
Unweighted		68 65 55 to 74			67 64 54 to 74		
45–54 Years							
Weighted		89,645 70	89 68 49 to 79	4,999 57	16,865 89		
Unweighted		67,781 67			58,308 68		
55 Years							
Weighted		86,538 73	86,538 73	87,553 62	16 94 71 to 100		
Unweighted		53,134 68			62 63 52 to 72		
Education							
Secondary or less							
Weighted		126,675 71	66 70 60 to 79	24,842 75	18 90 68 to 99		
Unweighted		25,662 76			93 65 52 to 77		
College							
Weighted		73,417 64	79 68 58 to 76	11,398 55	21 95 77 to 100		
Unweighted		15,644 96			46,374 59		
University							
Weighted		176,030 68	206 67 62 to 72	20,551 64	38 81 67 to 91		
Unweighted		129,868 67			151 64 58 to 70		
Missing							
Weighted		15,081 67	15,081 67	27,104 90	19 86 65 to 97		
Unweighted		14,365 66			62 63 52 to 72		
Annual household income							
<$25,000							
Weighted		35,867 53	98 74 65 to 81	11,772 47	35 91 40 to 50		
Unweighted		8,066 50			16,028 60		
$25,000–$54,999							
Weighted		94,491 69	80 68 59 to 77	18,231 73	14,539 94		
Unweighted		14,539 94			61,719 64		
$55,000–$99,999							
Weighted		100,967 77	100,967 77	10,434 66	17,059 98		
Unweighted		73,473 75			73,473 75		
≥$100,000							
Weighted		68,992 64	85 66 57 to 74	5,108 78	11,318 86		
Unweighted		51,665 60			63,891 66		
No response							
Weighted		91,786 70	85 66 57 to 74	11,960 82	15,934 80		
Unweighted		63,891 66			63,891 66		

\(\text{CI} \) = \text{Confidence Interval}
was similar among women offered self-sampled screening and women offered cytologic screening, potentially because of already-elevated screening rates in Switzerland. Although trials investigating the use of self-sampled HPV screening tests have, up to now, focused on screening non-attendees, it is interesting to note that most women in the present study stated a preference for self-sampled screening tests regardless of their prior screening behaviour. Preference for self-sampled screening tests was, in fact, highest among women who had been screened, but not in the preceding 3 years. A recent study in the Netherlands comparing performance for high-risk HPV screening between self-sampled and physician-sampled tests for screening attendees reported 98.6% concordance between the sampling techniques for the prevalence of high-risk HPV. The use of self-sampled HPV screening tests carries potential advantages in terms of resource use and cost savings. Thus, as improvements in self-sampling devices and HPV tests make self-sampled and clinician-sampled HPV tests increasingly similar in terms of performance, it is possible that self-sampled tests could, in some contexts, ultimately replace clinician-sampled tests for population-level screening.

Even with population-level HPV vaccination programs, experts recommend that population-level screening programs be continued for the foreseeable future. Additionally, in Quebec, HPV vaccine coverage is lower in geographic areas with higher concentrations of immigrants and of people with lower educational attainment. Given that women who are immigrants and who have lower educational attainment have been shown to have lower screening rates, women from certain social groups are both less likely to be vaccinated and less likely to be screened by conventional methods. Screening by self-sampled HPV tests might provide a means to reach some of those groups.

More research is necessary to assess the optimal method for distributing HPV test kits, within organized and opportunistic screening settings alike. Frequently-used methods include clinic distribution, direct mailing, or opt-in mailing. More work should also be done to assess efficacious ways to provide pertinent information which ensures that women are comfortable with self-collection and their ability to collect a testable sample.

The present study has some limitations. We used an existing online panel of willing participants from which to draw our sample. By definition, that group includes only individuals who use the Internet. In 2016, 86% of adults residing in Quebec used the Internet every day. Still, the women in our sample might be different from those in the general population. However, after weighting the sample, we observed only slight differences in the distribution of respondent characteristics in our sample compared with those observed in a recent study using data from the Canadian Community Health Survey. The proportions of participants reporting each outcome were similar (never-screened: 15% current sample vs. 14% in Datta et al.; no recent screening: 14% current sample vs. 12% in Datta et al.). The proportion born in Canada was also similar in the two samples (79% vs. 77% respectively). However, the proportion who reported postsecondary education appeared different (65% vs. 72% respectively). Notably, both telephone- and Internet-based surveys rarely included the most vulnerable women, who, in Canada, might be women who speak neither English nor French, the two languages in which our survey was available. Additionally, although we were able to capture information about several important sociodemographic indicators, our survey was limited with respect to the amount of health-related data it collected. Another limitation is the amount of education about self-sampling that survey responders received. Other than the information provided in the question, no additional information was available. Some studies have shown that sampling education increases the likelihood of women finding self-sampling to be acceptable. However, the association between sampling education and

TABLE II Continued

Characteristic	Screening status												
	All	(%)	95% CI	Never	(%)	95% CI	Not recently	(%)	95% CI	Recently	(%)	95% CI	
Birthplace	(n)c	(%)	95% CI	(n)	(%)	95% CI	(n)	(%)	95% CI	(n)	(%)	95% CI	
Canada													
Weighted	316,074	70		37,124	76		58,993	90		219,957	65		
Unweighted	308	66	55	26	79	51	71	89	80	95	211	64	58 to 69
United States or Europe													
Weighted	25,420	75		2,937	77		1,496	84		20,987	74		
Unweighted	24	71	53 to 85	3	60	15 to 95	3	75	19 to 99	18	72	51 to 88	
Other country													
Weighted	49,709	56		17,447	51		6,428	44		25,833	64		
Unweighted	26	55	40 to 70	7	47	21 to 73	3	60	15 to 95	16	59	39 to 78	

a Women reported being screened in their lifetime, but not in the preceding 3 years.
b Women reported being screened in the preceding 3 years.
c “Unweighted” row has missing values for screening status, screening interval, or self-sampling acceptability (n = 35).
d Clopper–Pearson (exact) confidence interval with continuity correction.
HPV = human papillomavirus; CI = confidence interval.
TABLE III Proportion of women who prefer HPV self-sampling according to screening history and reasons for not being screened in the preceding 3 years, Montreal, 2016 (weighted n = 124,426)

Reason	Screening status	All 3 reasons given^a	Primary reason given^b				
		All (n) (%)	Never (n) (%)	Not recently (n) (%)	All (n) (%)	Never (n) (%)	Not recently (n) (%)
I have not had the time to take care of it	Weighted	36,432 74	21,849 71	14,583 80	13,714 75	8,019 84	5,694 65
	Unweighted	38 79	17 77	21 81	17 74	8 80	9 69
It is not necessary in my opinion	Weighted	37,719 79	18,711 66	19,008 96	12,360 88	6,522 80	5,837 100
	Unweighted	32 82	12 67	20 95	14 93	5 83	9 100
I did not know where to go or I was misinformed	Weighted	34,430 76	26,959 72	7,470 93	10,832 59	8,756 81	2,076 19
	Unweighted	23 77	14 70	9 90	5 56	3 50	2 67
It is not necessary according to my doctor	Weighted	23,667 73	13,301 68	10,366 81	17,096 68	11,473 67	5,622 33
	Unweighted	22 73	7 64	15 79	14 67	5 56	9 75
The wait time is too long	Weighted	17,010 64	3,208 100	13,802 81	9,457 76	1,236 48	8,221 84
	Unweighted	20 74	4 57	16 80	10 77	2 67	8 80
I do not like undergoing this test	Weighted	17,487 95	3,357 100	14,130 94	4,486 100	1,448 100	3,037 100
	Unweighted	20 95	3 100	17 94	6 100	1 100	5 100
Too many personal or family responsibilities	Weighted	22,705 88	8,308 88	14,397 89	9,344 100	0 0	9,344 100
	Unweighted	14 82	3 75	11 85	5 100	0 0	5 100
The service was not available when required	Weighted	9,267 100	0 0	9,267 100	2,865 100	0 0	2,865 100
	Unweighted	12 100	0 0	12 100	4 100	0 0	4 100
Because of fear or embarrassment	Weighted	25,514 100	19,725 100	5,788 100	13,562 100	9,762 100	3,799 100
	Unweighted	12 100	7 100	5 100	6 100	3 100	3 100
The service was not available in the region	Weighted	826 100	0 0	826 100	0 0	0 0	0 0
	Unweighted	2 100	0 0	2 100	0 0	0 0	0 0
I cannot leave my home because of a health problem	Weighted	2,386 100	716 100	1,670 100	2,386 100	716 100	1,670 100
	Unweighted	3 100	1 100	2 100	3 100	1 100	2 100
The cost of the test is too high	Weighted	2,164 52	2,164 52	0 0	0 0	0 0	0 0
	Unweighted	2 67	2 67	0 0	0 0	0 0	0 0
HPV self-sampling acceptability is not consistent across studies. Determining how much of an effect the lack of specific education about sampling had on our findings is therefore difficult.

Most women in the present study, set in Montreal and including women from groups who have historically had low screening uptake, stated a preference for cervical cancer screening by self-sampled test. Additionally, more than half the women who had not been screened in the preceding 3 years and who reported reasons for not being screened that could be addressed by the use of self-collected samples, stated a preference for screening by self-sampling. Future studies should assess the efficacy of various methods of providing self-sampled HPV tests to women. Policymakers and researchers should also consider whether self-sampled tests should be offered primarily to never- or infrequently-screened women, or be rolled out to all eligible women, and how best to integrate screening by self-sampled HPV tests into both organized and opportunistic screening contexts.

ACKNOWLEDGMENTS
This study was supported by the Centre hospitalier de l’Université de Montréal Development Fund and the Canadian Cancer Society (grant no. 703946).

CONFLICT OF INTEREST DISCLOSURES
We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS
*Research Centre of the Centre hospitalier de l’Université de Montréal, Université de Montréal, Montreal, QC.

REFERENCES
1. Spence AR, Goggin P, Franco EL. Process of care failures in invasive cervical cancer: systematic review and meta-analysis. *Prev Med* 2007;45:93–106.
2. Maxwell CJ, Bancej CM, Snider J, Vik SA. Factors important in promoting cervical cancer screening among Canadian women: findings from the 1996–97 National Population Health Survey (NPHS). *Can J Public Health* 2001;92:127–33.
3. Woltman KJ, Newbold KB. Immigrant women and cervical cancer screening uptake: a multilevel analysis. *Can J Public Health* 2007;98:470–5.
4. Lofert E, Glazier RH, Agha MM, Creatore MI, Moineddin R. Inadequacy of cervical cancer screening among urban recent immigrants: a population-based study of physician and laboratory claims in Toronto, Canada. *Prev Med* 2007;44:536–42.
5. Datta GD, Blair A, Sylvester MP, Gauvin L, Drozin M, Mayrand MH. Cervical cancer screening in Montreal: building evidence to support primary care and policy interventions. *Prev Med* 2018;111:265–71.
6. Senkomago V, Saraiya M. Examining acceptability of self-collection for human papillomavirus testing among women and healthcare providers with a broader lens. J Womens Health (Larchmt) 2017;26:597–9.

7. Nelson EL, Maynard BR, Loux T, Fatla J, Gordon R, Arnold LD. The acceptability of self-sampled screening for HPV DNA: a systematic review and meta-analysis. Sex Transm Infect 2017;93:56–61.

8. Braz NS, Lorenzi NP, Sorpreso IC, Aguiar LM, Baracat EC, Soares-Junior JM. The acceptability of vaginal smear self-collection for screening for cervical cancer: a systematic review. Clinics (Sao Paulo) 2017;72:183–7.

9. Bosch FX, Lorincz A, Munoz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002;55:244–65.

10. Van der Veen N, Carpay MEM, van Delden JA, Verdondt F, Jentschke M, Hilleman M, Racey CS, Snijders PJ, Arbyn M. Reaching women who do not participate in the regular cervical cancer screening programme by offering self-sampling kits: a systematic review and meta-analysis of randomised trials. Eur J Cancer 2015;51:2375–85.

11. The U.K. National Screening Committee. The UK NSC recommendation on cervical screening in women [Web page]. London, U.K.: The U.K. National Screening Committee; 2019. [Available at: https://legacyscreening.phe.org.uk/cervicalcancer; cited 19 February 2020]

12. Obermair HM, Dodd RH, Bonner C, Jansen J, McCaffery K. “It has saved thousands of lives, so why change it?” Content analysis of objections to cervical screening programme changes in Australia. BMJ Open 2018;8:e019171.

13. Government of Australia, Department of Health. National Cervical Screening Program [Web page]. Canberra, Australia: Women’s Health Committee; 2017. [Available at: http://www.cancerscreening.gov.au/internet/screening/publishing.nsf/Content/cervical-screening; cited 19 February 2020]

14. New Zealand, Ministry of Health, National Screening Unit. HPV primary screening [Web page]. Wellington, N.Z.: National Screening Unit; 2017. [Available at: https://www.hsr.govt.nz/health-professionals/national-cervical-screening-programme/hpv-primary-screening; cited 19 February 2020]

15. Curry SJ, Krist AH, Owens DK, et al. on behalf of the U.S. Preventive Services Task Force. Screening for cervical cancer: US Preventive Services Task Force recommendation statement. JAMA 2018;320:674–86.

16. Arbyn M, Castle PE. Offering self-sampling kits for HPV testing to reach women who do not attend in the regular cervical cancer screening program. Cancer Epidemiol Biomarkers Prev 2015;24:769–72.

17. Arbyn M, Verdondt F, Snijders PJ, et al. Accuracy of human papillomavirus testing self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol 2014;15:172–83.

18. Arbyn M, Smith SB, Temin S, Sultana F, Castle P on behalf of the Collaboration on Self-Sampling and HPV Testing. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses. BMJ 2018;363:k4823.

19. Canadian Task Force on Preventive Health Care. Recommendations on screening for cervical cancer. CMAJ 2013;185:35–45.

20. Canadian Partnership Against Cancer (CPAC). Cervical Cancer Screening in Canada: Monitoring and Evaluation of Quality Indicators. Toronto, ON: CPAC; 2016. [Available online at: https://s22457.pcdn.co/wp-content/uploads/2019/01/Cervical-Cancer-Screen-Report-2016-EN.pdf; cited 8 April 2020]

21. Jalili F, O’Conaill C, Templeton K, et al. Assessing the impact of mailing self-sampling kits for human papillomavirus testing to unscreened non-responder women in Manitoba. Curr Oncol 2019;26:167–72.

22. Statistics Canada. CANSMS Table 051-0001. Estimates of Population, by Age Group and Sex for July 1, Canada, Provinces and Territories (Persons). Ottawa, ON: Statistics Canada; 2017.

23. Goggin P, Mayrand MH. Recommendations on optimizing cervical cancer screening in Quebec [Web page]. Quebec City, QC: Institut national de la santé publique du Québec; 2009. [Available at: https://www.inspq.qc.ca/en/publications/1081; cited 21 February 2020]

24. Statistics Canada. Canadian Community Health Survey (CCHS) – PAP smear test [archived Web page]. Ottawa, ON: Statistics Canada; 2015. [Available at: https://www23.statcan.gc.ca/imdbp/p3!strplf?function=assembleInstr&f=1&lang=en&itemId=152567#pj159834; cited 8 April 2020]

25. Zehbe I, Jackson R, Wood B, et al. Community-randomised controlled trial embedded in the Anishinaabe Cervical Cancer Screening Study: human papillomavirus self-sampling versus Papanicolaou cytology. BMJ Open 2016;6:e011754.

26. Zehbe I, Moeller H, Severini A, et al. Feasibility of self-sampling and human papillomavirus testing for cervical cancer screening in First Nation women from Northwest Ontario, Canada: the role of self-collected HPV testing. J Rural Health 2016;32:136–45.

27. Zehbe I, Jackson R, Wood B, et al. Community-randomised controlled trial embedded in the Anishinaabe Cervical Cancer Screening Study: human papillomavirus self-sampling versus Papanicolaou cytology. BMJ Open 2016;6:e011754.

28. Racey CS, Gesink DC. Barriers and facilitators to cervical cancer screening among women in rural Ontario, Canada: the role of self-collected HPV testing. J Rural Health 2016;32:136–45.

29. Ogilvie G, Krajden M, Maginley J, et al. Feasibility of self-collection of specimens for human papillomavirus testing in hard-to-reach women. CMAJ 2007;177:480–3.

30. Howard M, Lytwyn A, Lohfeld L, Redwood-Campbell L, Fowler N, Karwalajtys T. Barriers to acceptance of self-sampling for human papillomavirus across ethnocultural groups of women. Can J Public Health 2009;100:365–9.

31. Racey CS, Gesink DC, Burchell AN, Trivers S, Wong T, Rebprapagada A. Randomized intervention of self-collected sampling for human papillomavirus testing in under-screened rural women: uptake of screening and acceptability. J Womens Health (Larchmt) 2016;25:489–97.

32. Duke P, Godwin M, Ratnam S, et al. Effect of vaginal self-sampling on cervical cancer screening rates: a community-based study in Newfoundland. BMC Womens Health 2015;15:47.

33. Arrossi S, Thouyaret L, Herrero R, et al. Effect of self-collection of HPV DNA offered by community health workers at home visits on uptake of screening for cervical cancer (the EMA study): a population-based cluster-randomised trial. Lancet Glob Health 2015;3:e85–94.

34. Smith JS, Des Marais AC, Deal AM, et al. Mailed human papillomavirus self-collection with Papanicolaou test referral for infrequently screened women in the United States. Sex Transm Dis 2018;45:42–8.

35. Sultana F, English DR, Simpson JA, et al. Home-based HPV self-sampling improves participation by never-screened and under-screened women: results from a large randomized trial (iPap) in Australia. Int J Cancer 2016;139:281–90.
39. Viviano M, Catarino R, Jeannot E, et al. Self-sampling to improve cervical cancer screening coverage in Switzerland: a randomised controlled trial. Br J Cancer 2017;116:1382–8.
40. Ketelaars PJW, Bosgraaf RP, Siebers AG, et al. High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study. Prev Med 2017;101:96–101.
41. Velentzis LS, Caruana M, Simms KT, et al. How will transitioning from cytology to HPV testing change the balance between the benefits and harms of cervical cancer screening? Estimates of the impact on cervical cancer, treatment rates and adverse obstetric outcomes in Australia, a high vaccination coverage country. Int J Cancer 2017;141:2410–22.
42. Drolet M, Deeks SL, Kliewer E, Musto G, Lambert P, Brisson M. Can high overall human papillomavirus vaccination coverage hide sociodemographic inequalities? An ecological analysis in Canada. Vaccine 2016;34:1874–80.
43. Bernier M. L'utilisation d'Internet chez les Québécois. Québec, QC: Institut de la statistique du Québec; 2017. [Available online at: https://www.stat.gouv.qc.ca/statistiques/science-technologie-innovation/bulletins/sti-bref-201711-2.pdf; cited 8 April 2020]
44. Crofts V, Flahault E, Tebeu PM, et al. Education efforts may contribute to wider acceptance of human papillomavirus self-sampling. Int J Womens Health 2015;7:149–54.
45. Sossauer G, Zbinden M, Tebeu PM, et al. Impact of an educational intervention on women's knowledge and acceptability of human papillomavirus self-sampling: a randomized controlled trial in Cameroon. PLoS One 2014;9:e109788.