Comparison of orally exhaled nitric oxide in allergic versus nonallergic rhinitis

A. Fusun Kalpaklioglu, M.D., and Ilkay K. Kalkan, M.D.

ABSTRACT

Background: Fractional exhaled nitric oxide (FeNO), a well-known marker of airway inflammation, is rarely evaluated in rhinitis of different etiology. We aimed to compare the eNO levels in allergic rhinitis (AR) and nonallergic rhinitis (NAR) with/without asthma, as well as the contributing factors that interfere with elevated FeNO.

Methods: Patients were enrolled based on chronic nasal symptoms. Orally exhaled NO was measured with the single exhalation method at 50 mL/s. All subjects underwent a panel of tests: skin-prick tests, asthma control test, blood sampling, spirometry, and health-related quality-of-life questionnaires.

Results: The study group consisted of mainly women (130 women/41 men), with a mean age of 32.6 ± 13.2 years. AR was diagnosed in 122 (78.2%) patients compared with NAR controls (32.2 parts per billion (ppb) versus 27 and 19.4 ppb), with no difference between genders. AR + asthma had higher FeNO than those without asthma (40.5 ppb versus 14.9 ppb; p < 0.03), whereas accompanying asthma did not affect FeNO levels in the AR group. AR + asthma had significantly higher FeNO levels than the NAR-only group (p < 0.01). Among AR + asthma, perennial sensitization caused higher FeNO levels than did seasonal allergens (48.5 ± 33.9 and 19.5 ± 13.6; p = 0.003), whereas FeNO was significantly higher during the allergen season. Nasally inhaled corticosteroids insignificantly reduced FeNO levels in all groups. Severity and seasonality of rhinitis, asthma, and ocular symptoms, but not gender, age, body mass index, Total IgE, forced expiratory volume in 1 second, and smoking, were associated with FeNO.

Conclusion: Rhinitis and comorbid asthma are responsible for increased FeNO, irrespective of atopy. However, NAR without asthma may not be considered as a strong risk factor for airway inflammation.

© 2012, OceanSide Publications, Inc., U.S.A.
were used for determining generic and specific health-related QoL (HRQoL).

The protocol for this study was approved by the hospital ethics committee.

Statistical Analysis

Statistical analyses were performed using SPSS Version 18 (SPSS, Chicago, IL). Normality of the distribution for the data was tested with Kolmogorov-Smirnov test. Comparisons between more than two groups for nonparametric variables were performed by the Kruskal-Wallis test and Mann-Whitney U test was used for subgroup analysis. The group characteristics were compared using the “Fisher exact test” and the chi-square test. A value of $p < 0.05$ was considered statistically significant.

RESULTS

The Characteristics of the Study Population

A total of 171 participants (130 women/41 men) were assessed: 15 healthy controls and 156 patients, 122 with AR (78.2%) and 34 with NAR (21.8%). All the rhinitis patients underwent a stepwise diagnostic approach of rhinitis according to the Allergic Rhinitis and Its Impact on Asthma, resulting in the following subgroup diagnosis: AR only, NAR only, AR + asthma, and NAR + asthma.

Among patients with NAR the prevalence of asthma was significantly higher (47%) than in patients with AR (22.1%; $p < 0.04$). Demographic characteristics were similar in all groups (Table 1). Patients with AR compared with NAR had more severe disease ($p = 0.01$). Duration of rhinitis in coexisting asthma cases was significantly longer than in patients without asthma ($p = 0.03$).

In general, patients with AR (AR only and AR + asthma) had insignificantly higher FeNO levels compared with patients with NAR (NAR only and NAR + asthma) and controls (32.2 parts per billion [ppb] versus 27 and 19.4 ppb), with no difference between genders. In subgroup analysis FeNO levels (ppb) were 19.4 ± 10.7 (C, control), 30.3 ± 23.8 (AR), 38.8 ± 31.6 (AR + asthma), 44.1 ± 41.1 (NAR + asthma; Fig. 1). Patients with asthma had FeNO values significantly higher than patients without asthma in the NAR group ($p < 0.03$), whereas accompanying asthma did not affect FeNO levels in the AR group. AR ± asthma had significantly higher FeNO levels than the NAR only group ($p < 0.01$). Among AR with asthma, patients sensitized to perennial allergens had significantly higher FeNO levels than did seasonal allergens (48.5 ± 33.9 and 19.5 ± 13.6; $p = 0.003$; Fig. 2 A). Moreover, in atopic patients, FeNO measurement during the allergen season was significantly higher compared with off-season values (AR, $p = 0.01$; asthma + AR, $p = 0.005$; Fig. 2 B). The difference between AR + asthma and NAR + asthma in terms of inhaled steroid use was not significant, because the first-line treatment in chronic rhinitis is similar between two groups of patients. Nasal steroids caused a reduction in FeNO levels in all patient groups, with no statistical significance (Fig. 3).

A significant correlation was found between FeNO levels and atopic sensitization and total rhinitis symptom score (congestion, rhinorrhea, sneezing, and itching; $r = 0.215$ and $p = 0.007$ and $r = 0.170$ and $p = 0.03$, respectively), but not with increasing age, Total IgE, percent predicted of forced expiratory volume in 1 second, and/or smoking history. FeNO was not correlated with asthma symptom scores and ACT in patients with rhinitis. In a multivariate linear regression analysis, FeNO levels were positively associated with severity and seasonality of rhinitis, asthma comorbidity, and ocular symptoms (Table 2). Furthermore, no significant correlations were found between FeNO and HRQoL, as stated by generic (36-Item Short-Form Health Survey) and specific (minirhinitis QoL and miniasthma QoL) questionnaires (results not shown).

DISCUSSION

Airway inflammation appears to be the most important cause of increased FeNO. Because the factors triggering upper airways may

Table 1 Characteristics of the study group

	AR	AR + Asthma	NAR	NAR + Asthma	Controls	Total
	$n = 95$	$n = 27$	$n = 18$	$n = 16$	$n = 15$	$n = 171$
Female/male gender	65/30	22/5	16/2	15/1	12/3	140/31
Age, yr	30.1 ± 12.7	37.9 ± 13.7	31.6 ± 13.1	43 ± 13.1	32.4 ± 8	32.6 ± 13.2
Body mass index, kg/m²	24.1 ± 5.2	26 ± 5.7	24.9 ± 5.1	28.3 ± 5.7	25.3 ± 6.6	24.9 ± 5.5
FEV₁, (% predicted)	83.4 ± 15.8	84.3 ± 15.8	79.2 ± 14.4	—	81.8 ± 15.2	
Total IgE, kU/L	281.8 ± 355.6	599.4 ± 633.4	96.9 ± 120.3	73.4 ± 63.4	—	299.2 ± 418.2

AR = allergic rhinitis; FeNO = fractional exhaled nitric oxide; FEV₁ = forced expiratory volume in 1 s; NAR = nonallergic rhinitis; ppb = parts per billion.
also influence lower airways, this favors a strong evidence of a causal relationship between rhinitis and asthma.12,13

The aim of the present study was to investigate FeNO levels in patients with rhinitis of different etiology (allergic versus nonallergic), as well as the influencing factors. We also evaluated the impact of asthma on rhinitis in airway inflammation, measured as FeNO.

Generally, in all AR patients, FeNO was slightly but not significantly higher than in all patients with NAR. However, when subgroup analysis was performed AR with/without asthma had significantly higher FeNO levels than only patients with NAR without asthma. Subjects with NAR and asthma exhibited elevated FeNO levels, similar to AR. Our study has a limitation, because the distribution of different subpopulations is not homogeneous concerning the number of patients. However, this is the first investigation—to our knowledge—that compares the airway inflammation between atopic and nonatopic patients by means of FeNO values, in an adult population with chronic rhinitis. Copenhagen Prospective Study on Asthma in Childhood birth cohort showed that only children with AR had elevated FeNO.3 Our findings of elevated FeNO levels in patients with AR is not in accordance with findings of children consistently showing a higher FeNO measurement in AR (with or without asthma) compared with NAR. Jouaville et al. have not only shown that nonasthmatic atopic subjects had higher eNO than nonatopic subjects, but also among nonatopic children, the eNO level increased in atopic patients who had rhinitis.14

FeNO was usually found to be implicated in allergic inflammatory mechanisms. Increased expression of inducible NO synthase was shown to have a role both in the development of allergic inflammation in upper and lower airways and in comorbidity of AR and asthma.15–17 In contrast, Giannessi et al. found a relationship between the increase in NO synthase expression and the damage in the nasal mucosa of NAR patients.18 As was shown in our recent study, NAR was around one-fifth of the population with chronic rhinitis.19 In our present study, higher asthma comorbidity in NAR patients may have been responsible for the insignificant difference compared with AR, using a validated marker of asthma-related inflammation, FeNO. Previous studies showed that those with rhinitis and asthma had significantly higher FeNO values compared with those without asthma.9,16,20 In this study, patients with AR but no asthma were still shown to have elevated FeNO levels, as was observed in the Copenhagen Prospective Study on Asthma in Childhood birth cohort.3 Elevated FeNO in patients with AR, irrespective of asthma comorbidity, suggests an increased airway inflammation even in the absence of asthma, whereas the presence of asthma significantly contributes to increased FeNO levels in NAR.

The single exhalation flow rate of 50 mL/s, as recommended by the American Thoracic Society/European Respiratory Society standardizations, is low enough to cause the NO concentration to be predominantly of central airway origin.21 However, reference values and determinants of FeNO levels are defined in only certain populations. The geometric mean of FeNO was found to be 17.9 ppb with a 90% confidence interval, in the interpretation of FeNO measurements in white adults.22

The power of the present study is that many variables are considered in the same cohort. Because spirometry appears to reduce eNO
levels, we performed FeNO measurements before spirometry. Multiple potential influencing factors that can modify FeNO were also evaluated. Although duration of rhinitis does not seem to be an important factor in determining elevated FeNO, severity and seasonality of rhinitis as well as coexisting asthma and ocular symptoms were found to be associated with FeNO, in our atopic and nonatopic patients. Dressel et al. suggested that respiratory allergy, smoking, respiratory tract infection, male gender, and height are independent factors of increased FeNO levels, and others explained the association between FeNO and gender by differences in height. Conversely, gender, but not height, has been reported as a determinant of FeNO in adults. Likewise, there are conflicting data regarding the age effect on FeNO levels. In our study population, no difference was observed for FeNO values in terms of age, smoking history, gender, and body mass index.

We also documented reliable information whether subjects with seasonal allergies were examined in their respective season. This is of interest, because FeNO values that were lower in AR compared with asthma were shown to reach similar levels after allergen exposure. Natural pollen exposure was found to cause a significant FeNO elevation in allergic individuals. Thus, IgE-mediated allergy has been reported to be responsible for elevated FeNO. We have shown that a significant increase of eNO during the pollen season in atopic rhinitis patients influences the impact of inflammation on the upper airways. Our results are consistent with earlier reports by Henriksson et al. They found that an increase in eNO on allergen exposure, particularly in hyperresponsive subjects, may be suggestive of airway inflammation and an increased risk for developing asthma in AR. Moreover, elevated FeNO in the nonpollen season, especially in perennially sensitized subjects, increased further in the pollen season, in their study. The effects of topical nasal glucocorticoids in FeNO are controversial, although most investigations showed that nasal NO levels were significantly lower in treated patients, when compared with untreated groups. Okhura et al. found that eNO was not a risk factor for longitudinal decline in forced inspiratory volume in 1 second in asthma patients even if their asthma was stable and well controlled by ICSs. However, in difficult-to-treat asthma, use of eNO measurement to guide asthma management, and maintenance would be beneficial in improving asthma control and would result in reduced cost as well. In an adult study, FeNO could be decreased in a dosedependent manner by inhaled corticosteroids, but nasal corticosteroid treatment was not found to lower airway inflammation in a pediatric population. The short duration of pharmacotherapy may have explained such conflicting effects. On the contrary, neither antihistamines nor leukotriene antagonists have effect on FeNO in allergic rhinitis patients. Our observation of insignificant reduction in FeNO measurements after nasal steroids is in agreement with other reports that could not detect any decrease in airway inflammation. The patients may have had a moderate-to-severe degree of rhinitis, which did not give enough response to ICSs. Another explanation is that no improvement in airway inflammation after nasal glucocorticoids treatment in patients with comorbid asthma suggests a bidirectional link between upper and lower respiratory tract, because a majority of our patients with asthma were already under treatment with inhaled steroids.

Although impairment in QoL was also found to be significantly associated with FeNO in a pediatric population, QoL was not found to be directly related in our group of adult patients. Likewise, we did not find an association between FeNO and ACT results, as was reported by Quaedvlieg et al. in uncontrolled asthma. Our results emphasize the determination of FeNO levels in rhinitis with nonallergic etiology may provide an early diagnosis of comorbid asthma, because both allergic and NAR have been associated with increased prevalence of asthma. The functions exerted by NO release require further investigation. Thus, elevated levels of FeNO can therefore be regarded as a noninvasive potential clinical tools to monitor not only asthma, but also rhinitis of different etiology. Such advances will probably enable to more appropriately exploit NO for the diagnosis, treatment, and monitoring of relevant upper respiratory disorders, as well as lower respiratory diseases.

REFERENCES
1. Rolla G, Guida G, Heffler E, et al. Diagnostic classification of persistent rhinitis and its relationship to exhaled nitric oxide and asthma. A clinical study of a consecutive series of patients. Chest 131:1345–1352, 2007.
2. Chiron R, Vacher I, Khanbabaee G, et al. Impact of rhinitis on asthma control in children: Association with FeNO. J Asthma 47:604–608, 2010.
3. Chaves BLK, Bonnelykke K, Kreiner-Moller E, et al. Children with allergic and nonallergic rhinitis have a similar risk of asthma. J Allergy Clin Immunol 126:567–573, 2010.
4. Kim SH, Kim TH, Sohn JW, et al. Reference values and determinants of exhaled nitric oxide in healthy Korean adults. J Asthma 47:563–567, 2010.
5. Bakteheiem E, Mowinkel P, van Carlsen KH, et al. Altered oxidative state in school children with asthma and allergic rhinitis. Pediatr Allergy Immunol 22:178–185, 2011.
6. Cordero D, Rudolphus A, Snoey E, et al. Utility of nitric oxide for the diagnosis of asthma in an allergy clinic population. Allergy Asthma Proc 32:119–126, 2011.
7. Perdolleti C, Lundahl J, Alving K, et al. Effect of nasal steroid treatment on airway inflammation determined by exhaled nitric oxide in allergic school children with perennial rhinitis and asthma. Pediatr Allergy Immunol 19:219–226, 2008.
8. Makinen T, Lehtimaki L, Kinnunen H, et al. Bronchial diffusing capacity of nitric oxide is increased in patients with allergic rhinitis. Int Arch Allergy Immunol 148:154–160, 2009.
9. Tufvesson E, Aronsson D, Ankerst J, et al. Periperal nitric oxide is increased in rhinitic patients with asthma compared to bronchial hyperresponsiveness. Respir Med 101:2321–2326, 2007.
10. Bousquet J, Khaltaev N, Cruz AA, et al.; World Health Organization; GA(2)LEN; and AllerGen. Allergic Rhinitis and Its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 63(suppl 86):8–160, 2008.
11. Silkoff PE, Carlsson M, Bourke T, et al. The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. J Allergy Clin Immunol 114:1241–1256, 2004.
12. Ragab A, Clement P, and Vincken W. Objective assessment of lower airway involvement in chronic rhinosinusitis. Am J Rhinol 18:15–21, 2004.
13. Kharitonov SA, Yates D, and Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 8:295–297, 1995.
14. Jouaville LF, Annesi-Maesano I, Nguyen LT, et al. Interrelations among asthma, atopy, rhinitis and exhaled nitric oxide in a population-based sample of children. Clin Exp Allergy 33:1506–1511, 2003.
15. Aronsson D, Tufvesson E, and Bjerner L. Allergic rhinitis with or without concomitant asthma: Difference in perception of dyspnoea and levels of fractional exhaled nitric oxide. Clin Exp Allergy 35:1457–1461, 2005.
16. Ciprandi G, Tosca MA, and Capasso M. Exhaled nitric oxide in children with allergic rhinitis and/or asthma: A relationship with bronchial hyperreactivity. J Asthma 47:1142–1147, 2010.
17. Scadding G, and Scadding GK. Update on the use of nitric oxide as a noninvasive measure of airways inflammation. RhenoIgy 47:115–120, 2009.
18. Giannessi F, Fattori B, Ursino F, et al. Ultrastructural and ultracytochemical study of the human nasal respiratory epithelium in vaso-motor rhinitis. Acta Otolaryngol 120:943–949, 2003.
19. Kalpaklioglu AF, and Kavut AB. Allergic and nonallergic rhinitis: Can we find the differences/similarities between the two pictures? J Asthma 46:481–485, 2009.
20. Yuksel H, Kirmaz C, Yilmaz O, et al. Nasal mucosal expression of nitric oxide synthases in patients with allergic rhinitis and its relation to asthma. Ann Allergy Asthma Immunol 100:12–16, 2008.
21. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 171:912–930, 2005.
22. Travers J, Marsh S, Aldington S, et al. Reference ranges for exhaled nitric oxide derived from a random community survey of adults. Am J Respir Crit Care Med 176:238–242, 2007.

23. Dressel H, de la Motte D, Reichert J, et al. Exhaled nitric oxide: Independent effects of atopy, smoking, respiratory tract infection, gender and height. Respir Med 108:962–969, 2008.

24. Olin AC, Rosengren A, Thelle DS, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest 130:1319–1325, 2006.

25. Olivieri M, Talamini G, Corradi M, et al. Reference values for exhaled nitric oxide (reveno) study. Respir Res 7:94, 2006.

26. Bergmann-Hugg K, Wirth R, Henseler M, et al. Effect of natural pollen exposure and repeated nasal allergen provocation on elevation of exhaled nitric oxide. Allergy 64:1629–1634, 2009.

27. Lopuhaä CE, Koopmans JG, Jansen HM, et al. Similar levels of nitric oxide in exhaled air in non-asthmatic rhinitis and asthma after bronchial allergen challenge. Allergy 58:300–305, 2003.

28. Henriksen AH, Sue-Chu M, Holmen TL, et al. Exhaled and nasal NO levels in allergic rhinitis: Relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur Respir J 13:301–306, 1999.

29. Sandrini A, Ferreira IM, Jardim JR, et al. Effect of nasal triamcinolone acetonide on lower airway inflammatory markers in patients with allergic rhinitis. J Allergy Clin Immunol 111:313–320, 2003.

30. Ohkura N, Fujimura M, Tokuda A, et al. Evaluation of airway hyperresponsiveness and exhaled nitric oxide as risk factors for airway remodeling in patients with stable asthma. Allergy Asthma Proc 30:419–423, 2009.

31. Burkstein D, Luskin AT, and Brooks EA. Exhaled nitric oxide as a tool in managing and monitoring difficult-to-treat asthma. Allergy Asthma Proc 32:185–192, 2011.

32. Sippel JM, Holden WE, Tilles SA, et al. Exhaled nitric oxide levels correlate with measures of disease control in asthma. J Allergy Clin Immunol 106:645–650, 2000.

33. Gelfand EW. Inflammatory mediators in allergic rhinitis. J Allergy Clin Immunol 114:S135–S138, 2004.

34. Michils A, Baldassarre S, and Van Muylem A. Exhaled nitric oxide and asthma control: A longitudinal study in unselected patients. Eur Respir J 31:539–546, 2008.

35. Roberts G, Mylonopoulou M, Hurley C, et al. Impairment in quality of life is directly related to the level of allergen exposure and allergic airway inflammation. Clin Exp Allergy 35:1295–1300, 2005.

36. Quaedvlieg V, Sele J, Henket M, et al. Association between asthma control and bronchial hyperresponsiveness and airways inflammation: A cross-sectional study in daily practice. Clin Exp Allergy 39:1822–1829, 2009.