Retraction

Retraction: An Energy Efficient Path Selection Using Swarm Intelligence in IoT SN (J. Phys.: Conf. Ser. 1916 012102)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
An Energy Efficient Path Selection Using Swarm Intelligence in IoT SN

D Arulanantham 1, C Palanisamy 2, G Pradeepkumar 3, S Kavitha 4
1 Assistant Professor, Nandha Engineering College, Department of Electronics and Communication Engineering, Erode, Tamilnadu, India.
2 Professor, Bannari Amman Institute of Technology, Department of Information Technology, Sathyamangalam, Tamilnadu, India.
3 Assistant Professor (Sr.G), KPR Institute of Engineering and Technology, Department of Electronics and Communication Engineering, Coimbatore, Tamilnadu, India.
4 Professor, Nandha Engineering College, Department of Electronics and Communication Engineering, Erode, Tamilnadu, India.
1 arulananthamme@gmail.com, 2 cpalanisamy@gmail.com, 3 pradeep17ece@gmail.com, 4 gskkavitha@gmail.com

Abstract. IoT is regarded as one of future technology's most important fields and is receiving significant interest from a wide variety of applications. Nowadays, with the emergence of smart objects, the quantity of things that are associated with the web is expanding dramatically. In IoT, there are many critical problems such as scalability, load balancing, tolerance for faults, energy utilization, etc. A few steering conventions have been created to meet the Internet of Things details for various models, for example, energy utilization, load adjusting, multicasting, network life expectancy, unwavering quality, and versatility. Another directing calculation dependent on the insect settlement calculation is proposed to locate the ideal course of information transmission in the IOT. In Swarm Intelligence, Ant-Colony Optimization algorithm is a procedure used to address computational issues that can be utilized to locate an ideal way and subsequently devour less energy. Results of simulation show that the new ant-colony algorithm can successfully saves node energy and broaden the life of the system.

Keywords: Internet of Things, Routing algorithm, Ant-Colony Optimization, energy consumption.

1. Introduction
In a world overwhelmed by computerized advancements, IoT assumes an indispensable part in our lives. It has made an environment that joins numerous frameworks to offer keen exhibitions in each function. The multiplication of the IoT has made a substitution advancement of phones, home and other inserted applications that are totally associated with the web. Presently a-days, the quantity of items being associated with the web is developing quickly, with the appearance of the keen things. For instance, savvy things, for example, sensors are utilized broadly in climate checking and gauging; air contamination observing; environment control of vehicle, mechanical and home cooling; fire checking in smart homes; dampness and water level observing inside the farming; transportation and leaving inside the shrewd urban communities. It’s the most fundamental advancement of the 21st century. These systems use a channel to send information
generated by IoT devices to individuals, that further channel will be the gateway. The general architecture of IoT as shown in figure 1. The gateway is the channel that operates as an entry point for a network that transmits all relevant data through before it has been routed. When information is moved from the routing user’s device, additional energy is consumed. When information is transferred from routing device to internet sever it is consuming extra energy. Continuous sending of data in IoT systems deployed at larger scale drains lots of energy while transmission. This paper presents a new communication protocol for IoT called ant-based energy efficient routing algorithm for sensor network -ARES, which is based on the Ant Colony Optimization (ACO) met heuristic. Energy effective ant based directing calculation utilizes a artificial ants that move through the IoT looking for ways that are both short in span and energy-proficient between the sensor node and the objective node, hence assisting with expanding the IoT’s life expectancy. Every ant picks resulting network node to go to with a likelihood that is an element of the node energy and of the amount of pheromone trail present on the associations between the nodes. At the point when a subterranean ant arrives at the objective node, it ventures in reverse box the path built and refreshes the pheromone trail by a sum that is upheld the energy quality and the quantity of nodes of the way. The energy productive ant based steering calculation convention can fabricate a directing tree with enhanced force branches after certain cycles Figure1.

Figure 1. General Architecture of IoT

The rest of this article gives details about in section 2, reviews the existing methods in brief. In the next section 3, proposed system of design to built sensor node path selection – Ant based routing for the Internet of things Sensor Networks (IoTsn) Section 4 explains the results and discussion that expresses the performance of the proposed system and the concluding section closes the proposal view and its work.

2 Literature Survey
[1] framed a wireless sensor networks enclosed with wireless sensors. It enriched minimum energy adaptive cluster hierarchy (LEACH) algorithm. [2] revealed on locating of mobile sinks over a wireless sensor networks .It used a bunch versatile sink investigation technique for handling information to portable sinks in a efficient manner. [3] used energy aware sink relocation (EASR) algorithm on wireless sensor networks .The EASR was used to enhance mobile sink of a network with longer reliability lifetime. [4] revealed ADCMCST an approximation algorithm. The ADCMCST had used minimum nodes on depth has been prohibited and implementing a tree network for homogeneous wireless sensor. [5] innovated a location aware routing protocol (LARP).The LARP has been used utilized on underwater sensor networks (UWSNs). The LARP on UWSNs was utilized to obtain a efficient transmission of messages along with minimized delay.

[6] had revealed a clustering algorithm in terms of ant colony optimization with an approach of mobile sinks. [7] analyzed and compared Ant Colony Optimization (ACO). The ACO algorithm progress a major advantage by that optimization faults and complexities on design structures can be removed and implementing it as a efficient design structure. [8] designed an improved Ant Colony Optimization (ACO) algorithm by utilizing in Map Reduce technique. This technique enriches and develops methods namely select and update of pheromone respectively. [9] stimulated an improved ant colony algorithm (ACO) has
been fused with genetic algorithm (GA) in order to eliminate failures on route plans. [10] used developed ant colony optimization on remote sensor organizations (WSNs) for better directing of information. ACO Algorithm uses heuristic swarm intelligence.

[11] innovated a Multi state Ant Colony algorithm with adaptive stagnation avoidance strategy (GAACO) and generative adversarial nets (GAN). This strategy was enclosed with 2 blocks namely, information entropy and cooperative game structure. [12] implemented a ant colony optimization in terms of routing protocols over a wireless sensor networks . It described types of algorithms based on routings and along with that revealed a significant ant colony optimization on basis of steering conventions over a remote sensor organizations. [13] designed AI for selecting efficient way on wireless sensor networks (WSNs). It describes basic ant colony optimization earlier with transmission techniques and then describes huge complex ant colony optimization transmission techniques on wireless sensor networks for efficient networks. [14] designed a Swarm Intelligence approach . This Approach was utilized for selecting rendezvous nodes through edge computing over a Mobile Sensor Networks. [15] designed directing bunching conventions for three dimensional remote sensor networks dependent on delicate assortments Ant Colony Algorithm. This Three dimensional remote sensor networks dependent on delicate assortments Ant Colony Algorithm had encased group head (CH) for a bunch of nodes around it. [16] introduced the territory of IoT based remote sensor organizations.

3 Proposed system

3.1. Internet of Things Sensor Networks (IoTSN) Design

Sensors or gadgets accumulate information from their environmental factors first. This might be just about as simple as a perusing of the temperature or as unpredictable as a total video transfer. Next, it transfers the data to the cloud. Via a number of methods, sensors/devices can be linked to the cloud, including: wireless, radio, WiFi, Bluetooth, low-power wide-area networks (LPWAN), or straightforwardly associated with the Internet through ethernet. In the event that the information gets to the cloud, some sort of handling on it is completed by programming. This could be very straightforward, such as confirming that the reading of the temperature is within a reasonable range. Or it may also be very difficult, such as using video computer vision to recognize objects. Next, somehow, the data is made usable to the end-user. This could be achieved by alerting the user to through email, text, notification, etc. The working functions on IoT as shown in figure 2.

![Figure 2. Working of IoT Layers](image)

3.2. Ant Colony Optimization

The ACO has been defined as heuristic swarm intelligence based approach because it evaluates and analysis based on foraging behaviors of a real ant colony. This Approach was an efficient one and it also has capability to deal larger crisis on a combinatorial optimization. The Ant Colony Optimization algorithm analysis and identifies shorter path for user and target focusing nodes. The ACO obtains set of procedures namely, When ant gets progress, it liberates a trail pheromone by that detection another ant’s gets progress
with previous ants. By those cases maximum pheromones gets liberated on passing of path ants as shown in figure 3. The Ants liberates gets progress from one destination to another based on quantity of liberated pheromones, when liberated pheromones are at higher rate over a path decides the progress of ants followed by with one another over path it moved. By these liberated pheromones over a path determines the efficient path from nest to food sources can identified and it can be reached. But traditional Ant Colony Optimization had few disadvantages namely slower convergence rate and it can also fell down into local optimized solution preferably than global solutions. These Disadvantages on ACO degrades to a negative timing delay and convergence rates of a networks Figure 3.

![Flow Diagram of ACO Routing algorithm](image)

Figure 3. Flow Diagram of ACO Routing algorithm

Based on hop distance calculation choose the Minimum N-Hop value and update the forwarding table. The nodes Route Failure Checking is also done in the path identification process and then forwarding the node with minimum energy consumed. The energy aggregation calculation is also done and updating the forwarding table.

3.3. Energy-Efficient Routing Algorithm

In this proposed system, Energy Efficient Ant-Colony Based Routing Algorithm is utilized to select the shortest path to save energy consumption. This algorithm makes the computation be completed inside the nodes as much as possible, reducing the burden in the data transmission in IoT. On the basis of the various tasks of forward ant and backward ant, different data packet structures are built, only carrying some required fields. The "antpath" and "toSinkNode" fields are deleted in the enhanced forward ant packet and the "node all" and "TTL" fields are inserted. During the search process, the ant will be discarded when a forward ant...
visits a node that has been visited, which means that the loop is in the network and the route search fails. However, there are a large number of nodes in a large-scale network, increasing the likelihood of the presence of the routing loop in the network, which implies a lot of energy costs and a low route search success rate. The “node all” field is applied to the packet of the forward ant to solve the problem above. “Node all” is an array of addresses used to store all of the neighboring nodes accessed by the current node. Based on the likelihood, at the point when an ant shows up at an intermediate node, the ant chooses the node that has not been registered in the “node all” as the next hop. The ant can be stopped from going back in this situation, which increases the efficiency of the search. In the backward ant packet, the “Esum” and “Emin” fields are removed; “pt_phe” is added to store the pheromone value. The task of the forward ant is collecting the node information and finding the shortest path from the source node to the destination node. The energy utilization on the way is also considered in a global point of view, which can extend the average lifetime of the network system. The backward ant delivers more pheromones on the node which makes the objective node is bound to be found by ants and velocities up the intermingling pace of the calculation.

For development of plausible arrangement in conventional strategy, each ant is put arbitrarily in a different city, the ants decides the following city to be chatted with a probabilistic choice guideline. An ant k in city I builds up a fractional arrangement, at time t, the likelihood of moving to the following city j adjoining to city I can be dictated by [2].

Here τij(t) addresses the measure of pheromone trail on arc(i, j) at time t, η = 1/dij addresses the heuristic benefit of moving from city I to city j. The allowed k is the visited city set of insect k. The two terms that control the general load of pheromone trail and heuristic worth are α and β.

There are some issues in traditional ant colony optimization algorithm that include decreased convergence rate and falling easily into local optimum solutions. Hence a distance heuristic factor is included in the traditional ACO algorithm that can eliminate the issues and pave a way for enhancing the global search ability, improving the effects on the next node, increasing the convergence rate and eliminating vortex in local optimum result. The impact of base station node to the following node can be expanded and an improvement in ηij is set up by least amount of distance between the current node to the following node, and the following node to the objective node, hence,

\[\eta_{ij} = \frac{1}{\min[\text{dis}(i,j), \text{dis}(j,m)]} \] \hspace{1cm} (1)

here, dis(i,j) = distance from node i to neighbor node j, dis(j,m) = distance from neighbor node j to the target node m. upon substituting the above equation into equation (1). This process will continue till an minimum path is determined. In the wake of seeking after a specific iterations the ideal way will be found and the cycle will end.

4 Performance Evaluation

The designed protocol ARES is compared with the Cluster Routing Path Detection - CRPD protocol. The algorithm's efficiency is simulated and measured. The packet delivery ratio of the proposed algorithm and existing algorithms is represented in Figure 4. The average throughhput and delay of the proposed energy efficient routing algorithm and existing algorithms is shown in Figure 5 & Figure 6. In terms of PDR, throughput the proposed ARES has improved performance than the CRPD.
Figure 4. Number of Nodes Vs Packet Delivery Ratio

Throughput is rate of accurate data transfer over a medium of communication is the throughput. Throughput is usually measured in bits per second (bit/s or bps).

\[
\text{Throughput} = \frac{\text{No of Packet at Receiver}}{\text{Time (Sec)}}
\] \hspace{1cm} (2)

Figure 5. Number of Nodes Vs Throughput
5. Conclusion
The proposed algorithm is implemented in NS2. The performance is evaluated and from the results it is found that there is a decrease in energy consumption of about 50% with the increased number of nodes when compared with the existing algorithm for ACO algorithm based on IoT. The proposed algorithm strengthens the pheromone update strategy: the process of pheromone updating is also performed by the forward ant, and the forward ant update strategy not only takes into account the remaining energy of the neighboring nodes, but also takes into account the entire path's energy consumption, balancing the network's energy utilization, and expanding the average network lifetime. The proposed algorithm shows greater supremacy over the conventional ACO-based protocol for energy utilization and prolonging the life of the network. In the future, with Ant-Colony Optimization to provide a trustworthy network, we will analyze the trust problems in IoT and create a trust-based routing. The IoT sensor networks was successfully created in this proposed system.

References
[1] Saeid Mottaghi, Mohammad Reza Zahabi 2014 Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes, AEU - International Journal of Electronics and Communications, Vol. 69, pp.507-514.
[2] Wei-Cheng Chu, Kuo-Feng Su 2014 Sink discovery in location-free and mobile-sink wireless sensor networks, Computer Networks, vol. 67, pp. 123-140.
[3] C. Wang, J. Shih, B. Pan and T. Wu 2014 A Network Lifetime Enhancement Method for Sink Relocation and Its Analysis in Wireless Sensor Networks, IEEE Sensors Journal, vol.14, no. 6, pp.1932-1943.
[4] S. Xie, Y. Wang 2014 Construction of Tree Network with Limited Delivery Latency in Homogeneous Wireless Sensor Networks, Wireless Personal Communications, pp.78.
[5] Shen, Jian & Tan, Haowen & Wang, Jin & Wang, Jinwei & Sungyoung, Lee 2015 A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks, Journal of Internet Technology, vol.16, pp.171-178.
[6] J. Wang, J. Cao, B. Li, S. Lee and R. S. Sherratt 2015 Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks, IEEE Transactions on Consumer Electronics, vol. 61, no. 4, pp. 438-444.
[7] R. Jangra and R. Kait 2017 Analysis and comparison among Ant System; Ant Colony System and Max-Min Ant System with different parameters setting, 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, pp. 1-4.

[8] Z. Yang, Y. Yu, K. Zhang, H. Kuang and W. Wang 2017 An improved ant colony algorithm for Map Reduce based fleet assignment problem, IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, pp. 104-108.

[9] X. Chen and Y. Dai 2020 Research on an Improved Ant Colony Algorithm Fusion with Genetic Algorithm for Route Planning, IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, pp. 1273-1278.

[10] Y. Sun, W. Dong and Y. Chen 2017 An Improved Routing Algorithm Based on Ant Colony Optimization in Wireless Sensor Networks, in IEEE Communications Letters, vol. 21, no. 6, pp. 1317-1320.

[11] L. Meng, X. You, S. Liu and S. Li 2020 Multi-Colony Ant Algorithm Using Both Generative Adversarial Nets and Adaptive Stagnation Avoidance Strategy, in IEEE Access, vol. 8, pp. 5325053260.

[12] Haldorai, A. Ramu, and S. Murugan, Social Aware Cognitive Radio Networks, Social Network Analytics for Contemporary Business Organizations, pp. 188–202, doi:10.4018/978-1-5225-5097-6.ch010

[13] R. Arulmurugan and H. Anandakumar, Region-based seed point cell segmentation and detection for biomedical image analysis, International Journal of Biomedical Engineering and Technology, vol. 27, no. 4, p. 273, 2018.

[14] X. Liu, T. Qiu, B. Dai, L. Yang, A. Liu and J. Wang 2020 Swarm-IntelligenceBased Rendezvous Selection via Edge Computing for Mobile Sensor Networks, in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9471-9480.

[15] T. Zhang, G. Chen, Q. Zeng, G. Song, C. Li and H. Duan 2020 Routing Clustering Protocol for 3D Wireless Sensor Networks Based on Fragile Collection Ant Colony Algorithm, in IEEE Access, vol. 8, pp. 58874-58888.

[16] D.Aruulantham, C.Palanisamy, G.Pradeepkumar, Dineshkumar Ponnusamy and S.Kavitha 2020 A Location Based Energy Proficient Path Routing for Internet of Things and Its Applications, Innovations in Information and Communication Technology, pp. 006-010.