V_{N\textsubscript{B}} C\textsubscript{B} defect as source of single photon emission from hexagonal boron nitride

Sajid, A; Thygesen, Kristian S.

Published in:
2D materials

Link to article, DOI:
10.1088/2053-1583/ab8f61

Publication date:
2020

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Sajid, A., & Thygesen, K. S. (2020). V\textsubscript{N\textsubscript{B}}\textsubscript{C\textsubscript{B}} defect as source of single photon emission from hexagonal boron nitride. *2D materials*, 7(3), [031007]. https://doi.org/10.1088/2053-1583/ab8f61
V_NC_B defect as source of single photon emission from hexagonal boron nitride

A. Sajid1,* and Kristian S. Thygesen1

1CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

*Corresponding Author: sajal@dtu.dk

Abstract: Single photon emitters in 2D hexagonal boron nitride (hBN) have attracted a considerable attention because of their highly intense, stable, and strain-tunable emission. However, the precise source of this emission, in particular the detailed atomistic structure of the involved crystal defect, remains unknown. In this work, we present first-principles calculations of the vibrationally resolved optical fingerprint of the spin-triplet (2) 3B_1 to (1) 3B_1 transition of the V_NC_B point defect in hBN. Based on the excellent agreement with experiments for key spectroscopic quantities such as the emission frequency and polarization, the photoluminescence (PL) line shape, Huang-Rhys factor, Debye-Waller factor, and re-organization energy, we conclusively assign the observed single photon emission at \textasciitilde2eV to the V_NC_B defect. Our work thereby resolves a long-standing debate about the exact chemical nature of the source of single photon emission from hBN and establishes the microscopic understanding necessary for controlling and deploying such photons for quantum technological applications.

Keywords: Single photon emission, defects in h-BN, PL line shape, Huang Rhys factor

Introduction:

The discovery 1-4 of single-photon emission (SPE) from defects in hexagonal boron nitride (hBN) has stimulated significant experimental and theoretical research in an effort to identify the chemical origin of this emission. Much of the motivation stems from the possibility of using such SPEs as the basis for novel nanophotonic- or quantum information technologies 5-8. Their exploitation, however, depends on a thorough understanding of the chemical nature of the colour centres in hBN and the ability to control and tune their structural arrangements and spectroscopic properties. While various colour centres have been proposed as potential sources
of SPEs in hBN \(^9-12 \), only a few defects have been conclusively identified \(^{10, 13-14} \). Many attempts have been made to predict the exact nature of the defect causing emission in the visible part of the spectrum, i.e. in the vicinity of 2 eV \(^4, 9-11, 13, 15-16 \). However, no conclusive evidence for the nature of the defect in the form of theoretically predicted properties matching the experimental data, has so far been presented \(^{10} \).

The emission frequencies of SPEs observed in hBN can be spread over a considerable spectral range from 1.4 to 2.2 eV. The spectra overall consist of a relatively sharp spectral line separated from a smaller broader feature, typically 150–200 meV lower in energy. These features are usually assumed to be the zero phonon line (ZPL) and associated phonon side bands (PSB), respectively, originating from a localized emission source, most likely involving at least one defect level lying deep within the semiconductor band gap. The PL spectra for a particular type of emitter is signature of specific chemical structure of the defect. Therefore, one can identify the nature of an emitting center by calculating its PL spectra and comparing it to the experiment.

In an initial survey study employing density functional theory (DFT) with a gradient corrected (GGA) functional, a carbon based defect \(V_{\text{N}}C_{\text{B}} \) was proposed as source of the observed emission. This assignment was based upon a comparison of calculated spectral quantities, e.g. the Huang Rhys (HR) factor, photoluminescence (PL) line shape and zero phonon line (ZPL) energies \(^4 \), with experimental data. However, the hBN community could not conclusively agree on this prediction and the source of the observed emission remained under considerable debate \(^{10} \). The dissensus was partly due to a lack of experimental studies of controlled incorporation of carbon impurities in hBN. Another reason was the, after all, rather poor agreement between theoretical calculations and experiment (both quantitatively e.g. ZPL energies and qualitatively e.g. PL line shape) \(^{10} \).

In a recent experimental study, the observation of an increased density of emitters with ZPL close to 2 eV following controlled incorporation of carbon into hBN is reported \(^{17} \). The work tentatively assigns the emission to a \(V_{\text{N}}C_{\text{B}} \) defect based upon previous theoretical reports \(^4, 10, 13, 15-16, 18 \), none of which, however, provide key spectroscopic observables in agreement with the new experiments.
In this work, we present conclusive evidence that the photons emitted in the 2 eV spectral range and reported in Ref. [17] are due to transitions between triplet states of the V\textsubscript{N}C\textsubscript{B} point defect. Our first-principles calculations employing the HSE06 range separated hybrid functional show an excellent agreement with the recent experimental results for the luminescence line shape, Huang-Rhys factor, Debye-Waller factor and the reorganization energy. We emphasize that despite of numerous previous theoretical investigations of the V\textsubscript{N}C\textsubscript{B} defect, this is the first time that convincing agreement between theory and experiment is obtained for the 2 eV SPE in hBN.

Theory and Results:

The intensity $I(h\nu)$ of a photo-luminescence (PL) emission spectrum under the Frank-Condon approximation (i.e. the transition dipole moment (\(\vec{d}\)) is similar in the initial and final configurations), are given by the following expression

$$I(h\nu) = \frac{64\pi^4 \nu^3}{3hc^3} [\vec{d}]^2 |\langle \Psi_i | \Psi_f \rangle|^2 \delta(E_f - E_i - h\nu). \hspace{1cm} (1)$$

Here Ψ_i and Ψ_f are the vibrational states of the initial and final configurations involved in the emission process (localized defect states in our case) as shown in Fig 1.

![One-dimensional configuration coordinate diagram depicting different quantities used to describe the process of light emission from defect states.](image)

Fig. 1. One-dimensional configuration coordinate diagram depicting different quantities used to describe the process of light emission from defect states.
Fig. 1 illustrates the process of light absorption and emission due to transitions between two localized electronic states. Incoming photons with an average energy, ΔE_v^A, produce the excited state. Excess energy equal to the absorption reorganization energy λ^A is then dissipated as heat through energy transfer into the vibrational modes of the hBN lattice followed by the emission process of interest. This emission occurs at average energy ΔE_v^E, followed by heat loss equal to the emission reorganization energy λ^E and return to the original equilibrium state. The sum of the two reorganization energies $\lambda^A + \lambda^E$ equals the energy difference between the average absorption and emission energies $\Delta E_v^A - \Delta E_v^E$ and is known as the Stokes shift, with the average transition energies ΔE_v^A and ΔE_v^E usually referred to as vertical transition energies. The latter are readily calculated using DFT by evaluating the energies of both states at the two equilibrium geometries and can be compared directly with values extracted from photoluminescence spectra.

The difference in energy between the two equilibrium geometries, i.e. the vertical distance between the minima of the two parabolas in Figure 1, is called the adiabatic transition energy ΔE_0. When corrected for the zero-point motion of each state, this gives the energy of the ZPL, ΔE_{00}. This zero phonon line along with the phonon side bands associated with emission or absorption of a phonon, are the quantities measured experimentally in PL or resonance excitation spectra. The PL spectrum thus provides a unique signature of a defect and, in principle, comparison of the calculated spectrum with the experimentally measured one can help to identify the source of emission.

In order to calculate the luminescence from Eq. (1) the vibrational overlap integrals $\langle \Psi_i | \Psi_f \rangle$, known as Frank-Condon Integrals, must be evaluated. In general, this poses a significant challenge due to the large number of atoms involved in the vibrations that can couple to the electronic transitions, and the fact that normal modes in the ground- and excited states are generally different [19,20]. To overcome the problem we apply the linear transformation approach of Duschinsky [19], in which the normal modes in the initial state are related to the normal modes in the final state via the affine transformation,

$$ Q_i = J Q_f + K_{i,f} \quad (2) $$

In this expression, the Duschinsky matrix $J = (L_i)^{-1} L_f$, is composed of the transformation matrices from normal coordinates to mass-weighted Cartesian coordinates and the vector $K_{i,f}$.
contain the displacement between the initial and final states expressed in the basis of initial state
normal modes. It is given by \(K_{i,f} = \left(L_{i,f} \right)^{-1} M \Delta X_{i,f} \), where \(M \) is diagonal matrix of atomic
masses and \(\Delta X_{i,f} \) is a vector representing the shift of nuclear Cartesian coordinates between the
initial and final states. By utilizing the Duschinsky transformation, the Frank-Condon integral
\(\langle \Psi_i | \Psi_f \rangle \) can be determined using the well-known expression for the wave function overlap of
displaced 1D harmonic oscillators. In practice, the displacements \(K_{i,f} \) are expressed in units of
the zero-point lengths of each mode. A displacement of 1 in any mode raises the re-organization
energy \(\lambda_j \) (subscript \(j \) represents the mode number) by \(\frac{\hbar \omega_j}{2} \) according to the following
equation.

\[
\lambda_j = \frac{K_{i,f}^2}{2} \hbar \omega_j
\]

The total re-organization energy \(\lambda \) and Huang-Rhys factor \(S^{E,A} \) (\(S^E \) for HR factor during
emission and \(S^A \) for absorption) are then given by

\[
\lambda = \sum_{j=1}^{3n-3} \lambda_j , \quad S^{E,A} = \sum_{j=1}^{3n-3} \frac{K_{i,f}^2}{2}
\]

We have used the theory outlined above to calculate the PL line shape for the \(\text{V}_N\text{C}_B \) defect.
Before presenting our results, we briefly discuss the basic atomic and electronic structure of
\(\text{V}_N\text{C}_B \).

Fig. 2. (a) Defect \(\text{V}_N\text{C}_B \) with \(C_2v \) symmetry embedded in a periodic h-BN sheet. (b) Schematic energy level
structure of \(\text{V}_N\text{C}_B \). This defect has a singlet ground state, with the emission observed around \(\sim 2\text{eV} \) here assigned to
the \((2) \ 3B_1 \) to \((1) \ 3B_1 \) transition.
Fig. 2(a) shows the atomic structure of the V\textsubscript{N}C\textsubscript{B} point defect in an hBN sheet. This defect has previously been studied in detail and many of its properties, e.g. symmetry, dipole allowed transitions, and allowed inter-system crossing due to spin-orbit coupling, have been discussed16. However, conclusive evidence for this defect being the source of SPE in the visible frequency range is still missing. The defect has C\textsubscript{2v} symmetry and a singlet (1) \textit{A}\textsubscript{1} ground state. After excitation from the ground state to the phonon sideband of the optically bright (2) \textit{A}\textsubscript{1} state, the system can relax back to the (1) \textit{A}\textsubscript{1} ground state by radiative emission of an in-plane polarized photon or vibronically to the (1) \textit{B}\textsubscript{1} state and then back to the (1) \textit{A}\textsubscript{1} via emission of an out-of-plane polarized photon. Alternatively, inter-system crossing enabled by the spin-orbit coupling can take place resulting in decay of (2) \textit{A}\textsubscript{1} population to (2) \textit{B}\textsubscript{1}10, 16. The population of (2) \textit{B}\textsubscript{1} can then decay to (1) \textit{B}\textsubscript{1}. It is the transition from (2) \textit{B}\textsubscript{1} to (1) \textit{B}\textsubscript{1} that we propose is responsible for the observed emission around \textasciitilde2eV. The transition into the triplet channel depends on the competition between the radiative transitions within the singlet manifold i.e. (2) \textit{A}\textsubscript{1} to (1) \textit{A}\textsubscript{1} and the inter-system crossing, respectively. Detailed calculations of these rates along with a closer study of anti-bunching, temperature-dependent broadening and coherence properties of the defect V\textsubscript{N}C\textsubscript{B} are subjects of our on-going research project.

To quantify the effect of electron-phonon coupling on the (2) \textit{B}\textsubscript{1} to (1) \textit{B}\textsubscript{1} transition, we calculate the Huang-Rhys factor \(S^E \) (Eq. 4), which is a measure of the average number of phonons emitted during an optical transition. The Huang-Rhys factor is related to the Debye-Waller factor \(\alpha^E \) (the fraction of light emitted into the ZPL) via \(\alpha^E \approx e^{-S^E} \). Our calculated values for the (2) \textit{B}\textsubscript{1} to (1) \textit{B}\textsubscript{1} transition for the adiabatic energy (\(\Delta E_0 \)), Huang Rhys factor (\(S^E \)), Debye-Waller factor (\(\alpha^E \)) and re-organization energy (\(\lambda^E \)) are shown in Table 1, along with the corresponding values extracted from the experimental spectra in Fig. 1(d) of Ref.17. A detailed description of the procedure used to extract the experimental values is provided in the supporting information (S.I.) section S. 1.

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
 & \(\Delta E_0 \) / eV & \(S^E \) & \(\alpha^E \) & \(\lambda^E \) / eV \\
\hline
This work & 1.75 & 1.50 & 0.21 & 0.11 \\
Experiment17 & 2.10 & 1.45 & 0.23 & 0.11 \\
\hline
\end{tabular}
\end{table}
Table 1 reveals an excellent agreement between calculations and experiment, essentially confirming that the emission observed in the experiment is associated with the $(2) \, ^3B_1$ to $(1) \, ^3B_1$ transition of the defect V_NCB. The difference between our calculated values and previous works may be assigned to the use of different xc-functionals (HSE06 vs. PBE) and numerical parameters (higher energy cut offs and more stringent convergence criteria are used in this work). Our calculated luminescence line shape for the 2^3B_1 to 1^3B_1 transition is shown in Fig. 3 together with the experimental PL spectrum from Ref. 17. Taking into account that no fitting parameters, other than a spectral broadening of 0.02eV and a rigid shift of 0.35 eV to match the ZPL peaks, have been used to obtain the luminescence spectrum, the excellent agreement with experiment further supports that this emission is indeed produced by the $(2) \, ^3B_1$ to $(1) \, ^3B_1$ transition of the V_NCB defect. We stress that the absolute energy difference of 0.35 eV lies within the expected accuracy limits of the applied DFT methodology, in particular when taking into account the correlated nature of typical localized defect states in h-BN.

Since the defect V_NCB maintains its C_{2v} symmetry in both the triplet $(1) \, ^3B_1$ ground state and the $(2) \, ^3B_1$ excited state, only fully symmetric a_1 modes (i.e. the modes that do not distort the C_{2v} symmetry of the defect) contribute to the luminescence spectrum because only these modes yield non-zero Franck-Condon integrals in Eq. (1). The dominant contribution to the phonon side bands (PSB) stems from the defect breathing modes. Since the modes contributing to the PSB change the electronic polarizability of the system, these are Raman-active modes. We note in passing that it would be interesting to explore whether effects from C-based defects are visible in the h-BN Raman spectrum, particularly if these defects are to be utilized in practical applications.

Overall, the phonon modes that contribute to photoluminescence are not very localized at the V_NCB defect and there is a major contribution from bulk-like modes to the PSB (Fig S.1 shows some modes with large contribution to the PSB). This is an interesting feature, and further studies should be directed towards understanding the physics of electron-phonon coupling in this material, to be able to utilize these emitters in practical applications.
Fig. 3. Calculated photoluminescence spectrum compared to the experimental spectrum17. The calculated spectrum with adiabatic ZPL energy $\Delta E_0 = 1.75\text{eV}$ has been shifted rigidly by 0.35 eV to match the high intensity peak of the experimental spectrum at 590 nm (2.10eV). Considering the correlated nature of the localized defect states in h-BN15 this energy difference lies within the expected accuracy of the applied DFT methodology for predicting absolute transition energies.

We have also calculated the absorption spectrum of the triplet transition in the V_{NCB} defect, see the S.I. Section S. 4. (We note that this absorption spectrum should not be compared to the experimental absorption spectrum of the defect, which is determined by transitions between the singlet states, see Fig. 2(b). It is, however, instructive to consider the absorption between the triplet states). An important feature to note is that the calculated absorption spectrum is not a perfect mirror image of the emission spectrum. The cause of some asymmetry between absorption and emission spectrum is associated with the Duschinsky matrices. Duschinsky matrices J, for (2) $^3B_1 \rightleftharpoons (1) ^3B_1$ are not unitary matrices. In other words, one cannot make the simple assumption that modes in the ground and excited state are similar for the case of (2) $^3B_1 \rightleftharpoons (1) ^3B_1$ transition. This assumption has previous been made for calculation of the emission spectrum of this transition, and hence a poor agreement with the experiment was seen4.

Fig. 4. Calculated PL spectrum of the defect $V_N C_B$ for $(2)\ ^3B_1$ to $(1)\ ^3B_1$ transition as a functional of compressive (negative) and tensile (positive) strain.

Since strain tunability is a major feature of quantum emitters in h-BN10,18, we simulate the vibrationally resolved PL spectra for the $(2)\ ^3B_1$ to $(1)\ ^3B_1$ transition in $V_N C_B$ at different values of compressive and tensile strain, see Fig. 4. One can note that the strain not only modifies the ZPL energy, but also changes the shape of PSB (although only slightly, larger strain can, however, cause a large change) and hence the Huang-Rhys factors. We thus predict that along with the ZPL energies, the Huang-Rhys factors of these emitters can also be changed with applied strain and future experiments should be directed to explore this feature. Our calculated values of Huang-Rhys factors as a function of applied strain are provided in S.I table S.6.

Finally, a word on why we exclude other carbon related (and intrinsic) defect species as the possible source of the observed SPE. The intrinsic $V_N N_B$ defect was previously proposed as the source of the observed emission on the basis of preliminary PBE ground state calculations1. However, our HSE calculated emission re-organization energy for the proposed transition is 0.73eV, which is much larger than the one deduced from the experimental spectrum. Therefore, this defect cannot be the source of the observed emission. This fact has also been mentioned in a recent experimental study17. Defect species such as C_B and C_N in both neutral and charged states do not feature energy levels in the band gap with the right energy separation to produce an emission around ~2eV12. Similarly, the defect $V_B C_N$ can be excluded as its adiabatic transition has dipole orientation (d_\perp) perpendicular to the h-BN plane, therefore should emit light in the
plane of h-BN sheet in contrast to the experimental findings. We have also investigated Stone-Wall type defects involving a carbon atom namely S_{WC} and S_{WCN}^{21}. Only S_{WC} can produce an in-plane polarized transition in the right energy window. However, its re-organization energy is too large to match the observed narrow PL line shape and relatively large Debye-Waller factor. Specifically, our calculated adiabatic energy for S_{WC} is 1.9eV while we obtain a re-organization energy for this transition of 0.4eV making it unlikely to be the source of the observed emission.

We also considered the positive and negative charge states of the defect V_{NCB} and found that only V_{NCB}^{+1} has a transition $(1)^2B_2 \rightarrow (1)^2A_1$ in the desired energy window, but re-organization energy for this transition is too high to match the experiment. A table of re-organization energies and adiabatic transition energies of the most relevant transitions in a select set of defect candidate systems is presented in the S.I. section S. 5. From this overview, it follows that among all the carbon related defects, only the defect V_{NCB} in the triplet channel present an adiabatic energy and re-organization energy consistent with the experimental data, and must therefore be considered to be the most likely source of the observed emission.

Conclusion: Based on an excellent agreement between our first-principles calculations and recent experimental photoluminescence data for carbon-containing defects in hBN, we have identified the detailed atomic structure of the color center responsible for the highly intense 2 eV photons emitted from hBN. Our calculated transition energy, Huang-Rhys factor Debye-Waller factor and re-organization energy for the triplet transition of the defect V_{NCB} are all found to be in very good quantitative agreement with the experimental data. In addition, the calculated PL lineshape for this transition shows a high similarity with the measured spectrum. We have traced the origin of the high intensity and narrow line shape of the V_{NCB} emitter to the delocalized nature of the vibrational modes coupling to the electronic transition, which result in a strongly reduced reorganization energy. Our results resolve a long-standing debate about the chemical nature of these color centers, and establishes the basic microscopic understanding of the photophysical properties of these emitters thereby paving the way to their future deployment for e.g. quantum technological applications.
Computational parameters:
Calculations are performed for periodically replicated defects in 2-D h-BN monolayer. For calculation of total energy, electronic structure and ground state geometry we used version 5.3.3 of the Vienna Ab Initio Simulation Package (VASP)22-23. For accurate calculation of electron spin density close to the nuclei, the projector augmented wave method (PAW)24-25 was applied together with a plane wave basis set. We utilized the standard PAW-projectors provided by the VASP package. Pristine single-layer h-BN was first geometrically optimized using the conventional cell and a $27\times27\times1$ Monkhurst-Pack reciprocal space grid. A large vacuum region of 30 Å width was used to separate a single layer of h-BN from its periodic images and to ensure that interaction between periodic images is negligible. The optimized bond length of pristine h-BN is 1.452 Å. All the defects were then realized in a 9x9x1 supercell and allowed to fully relax using a plane wave cut-off of 700 eV for a maximum force of 0.001 eVÅ-1. K-point convergence was check and finally a k-point mesh of 3x3x1 was used for all calculations. The normal modes and dynamical matrices were calculated at Gamma point of the BZ. The total energies of the excited states were calculated within the ΔSCF method that provides somewhat accurate zero-phonon-line (ZPL) energy and Stokes-shift for the optical excitation spectra for triplet manifold16. The PL line shape was calculated using Duschinsky linear transformation method19, 26. Further details of our calculation of vibrationally resolved PL spectra are provided in the S.I. section S. 2.

Acknowledgment
This work was supported by the Center for Nanostructured Graphene (CNG) under the Danish National Research Foundation (project DNRF103) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 773122, LIMA). Authors thank Noah Mendelson and Igor Aharonovich for useful discussion.

References:
1. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I., Quantum Emission from Hexagonal Boron Nitride Monolayers. Nature Nanotechnology 2015, 11, 37.
2. Tran, T. T.; Elbadawi, C.; Totonjian, D.; Lobo, C. J.; Grosso, G.; Moon, H.; Englund, D. R.; Ford, M. J.; Aharonovich, I.; Toth, M., Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331-7338.
3. Tran, T. T.; Zachreson, C.; Berhane, A. M.; Bray, K.; Sandstrom, R. G.; Li, L. H.; Taniguchi, T.; Watanabe, K.; Aharonovich, I.; Toth, M., Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride. *Physical Review Applied* 2016, 5.

4. Sajid, A.; Tawfik, S. A. E.; Fronzi, M.; Kianinia, M.; Tran, T. T.; Stampfl, C.; Aharonovich, I.; Toth, M.; Ford, M. J., First-Principles Investigation of Quantum Emission from Hbn Defects. *Nanoscale* 2017, 9, 13575-13582.

5. Awschalom, D. D.; Bassett, L. C.; Dzurak, A. S.; Hu, E. L.; Petta, J. R., Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors. *Science* 2013, 339, 1174-1179.

6. Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A., Two-Dimensional Material Nanophotonics. *Nature Photonics* 2014, 8, 899.

7. Aharonovich, I.; Englund, D.; Toth, M., Solid-State Single-Photon Emitters. *Nature Photonics* 2016, 10, 631-641.

8. Lohrmann, A.; Johnson, B.; McCallum, J.; Castelletto, S., A Review on Single Photon Sources in Silicon Carbide. *Reports on Progress in Physics* 2017, 80, 034502.

9. Abdi, M.; Chou, J.-P.; Gali, A.; Plenio, M. B., Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis. *ACS Photonics* 2018, 5, 1967-1976.

10. Sajid, A.; Ford, M. J.; Reimers, J. R., Single Photon Emitters in Hexagonal Boron Nitride: A Review of Progress. *Reports on Progress in Physics, in press* https://doi.org/10.1088/1361-6633/ab6310.

11. Turiansky, M. E.; Alkauskas, A.; Bassett, L. C.; Van de Walle, C. G., Dangling Bonds in Hexagonal Boron Nitride as Single-Photon Emitters. *Physical Review Letters* 2019, 123, 127401.

12. Weston, L.; Wickramaratne, D.; Mackoit, M.; Alkauskas, A.; Van de Walle, C., Native Point Defects and Impurities in Hexagonal Boron Nitride. *Physical Review B* 2018, 97, 214104.

13. Sajid, A.; Thygesen, K. S.; Reimers, J. R.; Ford, M. J., Identification of Defects Responsible for Optically Detected Magnetic Resonance in Hexagonal Boron Nitride. *arXiv preprint arXiv:1912.07816* 2019.

14. Ivády, V.; Barcza, G.; Thiering, G.; Li, S.; Hamdi, H.; Legeza, Ö.; Chou, J.-P.; Gali, A., Ab Initio Theory of Negatively Charged Boron Vacancy Qubit in Hbn. *arXiv preprint arXiv:1910.07767* 2019.

15. Reimers, J. R.; Sajid, A.; Kobayashi, R.; Ford, M. J., Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride. *Journal of chemical theory and computation* 2018, 14, 1602-1613.

16. Sajid, A.; Reimers, J. R.; Ford, M. J., Defect States in Hexagonal Boron Nitride: Assignments of Observed Properties and Prediction of Properties Relevant to Quantum Computation. *Physical Review B* 2018, 97, 064101.

17. Mendelson, N.; Chugh, D.; Cheng, T. S.; Gottscholl, A.; Long, H.; Mellor, C. J.; Zettl, A.; Dyakonov, V.; Beton, P. H.; Novikov, S. V., Identifying Carbon as the Source of Visible Single Photon Emission from Hexagonal Boron Nitride. *arXiv preprint arXiv:2003.00949* 2020.

18. Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D. K.; Furchi, M. M.; Jarillo-Herrero, P.; Ford, M. J.; Aharonovich, I.; Englund, D.; Tunable and High-Purity Room Temperature Single-Photon Emission from Atomic Defects in Hexagonal Boron Nitride. *Nat Commun* 2017, 8, 705.

19. Duschnisky, F., *Acta Physicochimica URSS* 1937, 7.

20. ul Ahmad, A.; Liang, H.; Ali, S.; Abbas, Q.; Farid, A.; Ali, A.; Iqbal, M.; Pan, L.; Abbas, A.; Farooq, Z., Cheap, Reliable, Reusable, Thermally and Chemically Stable Fluorinated Hexagonal Boron Nitride Nanosheets Coated Au Nanoparticles Substrate for Surface Enhanced Raman Spectroscopy. *Sensors and Actuators B: Chemical* 2020, 304, 127394.

21. Wang, R.; Yang, J.; Wu, X.; Wang, S., Local Charge States in Hexagonal Boron Nitride with Stone–Wales Defects. *Nanoscale* 2016, 8, 8210-8219.

22. Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B* 1993, 47, 558-561.
23. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci. 1996, 6, 15-50.
24. Blöchl, P. E., Projector Augmented-Wave Method. Physical review B 1994, 50, 17953.
25. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758.
26. Reimers, J. R., A Practical Method for the Use of Curvilinear Coordinates in Calculations of Normal-Mode-Projected Displacements and Duschinsky Rotation Matrices for Large Molecules. The Journal of Chemical Physics 2001, 115, 9103-9109.
27. Huang, K.; Rhys, A.; Mott, N. F., Theory of Light Absorption and Non-Radiative Transitions in <I>F</I>-Centres. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1950, 204, 406-423.

Supporting Information:

VNC_B defect as source of single photon emission from hexagonal boron nitride

A. Sajid^{1,2,3,*} and Kristian S. Thygesen¹

Corresponding Author: *sajal@dtu.dk

S.1. Equations used to extract the re-organization energies, Huang-Rhys factors and Debye-Waller factors from experimental PL spectra¹⁷.

From experimental data, the reorganization energies are usually extracted as

\[\lambda^A = \hbar \int_0^\infty \frac{A(\nu) d\nu}{\nu A(\nu) / \nu d\nu} - \Delta E_{00}, \quad \lambda^E = \Delta E_{00} - \hbar \int_0^\infty \frac{E(\nu) / \nu^2 d\nu}{E(\nu) / \nu^3 d\nu}, \]

to provide the simplest measures of the spectral bandwidths.

Observed spectra are fitted using the Huang-Rhys model²⁷. Experimental spectra at 0 K can be characterized by their total Huang-Rhys factors

\[S^A = \frac{\int_{1-0 \, \text{lines}} A(\nu - \Delta E_{00} / \hbar) / \nu d\nu}{\int_{0-0 \, \text{line}} A(\nu - \Delta E_{00} / \hbar) / \nu d\nu}, \quad S^E = \frac{\int_{0-1 \, \text{lines}} E(\Delta E_{00} / \hbar - \nu) / \nu^3 d\nu}{\int_{0-0 \, \text{line}} E(\Delta E_{00} / \hbar - \nu) / \nu^3 d\nu}. \]

These factors tell the total number of phonons excited by vertical absorption and emission, respectively, and stem from partitioning the total absorption and emission into contributions arising from the ZPL (0-0) and parts of the PSBs associated with an increase of one phonon (0-1 in emission, 1-0 in absorption) of vibrational excitation. Note that absorption and emission can also involve the excitation of overtone modes involving multiple phonons (0-n in emission, n-0 in absorption). The total Huang-Rhys factors are simply related to the Debye-Waller factors \(\alpha \) that tell the fraction of absorption/emission that occurs through the ZPL:
\[\alpha^A = \frac{\int_{0-0 \text{ line}} A(v) (\nu - \Delta E_{00}/h)/\nu \, dv}{\int_{\infty} A(v) (\nu - \Delta E_{00}/h)/\nu \, dv} = e^{-S^A}, \quad \alpha^E = \frac{\int_{0-0 \text{ line}} E(\Delta E_{00}/h - \nu)/\nu^3 \, dv}{\int_{\infty} E(\Delta E_{00}/h - \nu)/\nu^3 \, dv} = e^{-S^E}. \]

S.2. Detailed information of the calculation of emission spectra of the defect VN$_2$C$_B$

The projection of the displacement in geometry between the (1) 3B_1 and (2) 3B_1 states onto the normal modes (first set of columns) of (1) 3B_1 and (second set of columns) 3B_1 is given below. These specify the emission spectrum and absorption spectrum, respectively. The data set contains mode no., its symmetry, it’s frequency, it’s displacement (The displacements are in terms of the zero-point lengths of each mode.) and the re-organization energy.

Mode	Sym.	Freq(cm$^{-1}$)	Projn	Energy	Mode	Sym.	Freq(cm$^{-1}$)	Projn	Energy
40	A1	272	-0.2763	10.4	42	A1	271	0.2590	9.1
52	A1	304	1.0236	159.4	53	A1	305	-1.0138	156.5
57	A1	341	0.0722	0.9	58	A1	341	-0.0148	0.0
58	A1	353	-0.4551	36.6	59	A1	358	0.4687	39.3
60	A1	378	-0.0921	1.6	60	A1	378	-0.0871	1.4
61	A1	398	-0.1046	2.2	62	A1	403	0.0583	0.7
66	A1	459	0.4982	56.9	67	A1	458	0.5014	57.6
68	A1	483	0.1923	8.9	69	A1	482	0.1802	7.8
70	A1	496	0.0521	0.7	72	A1	494	0.0311	0.2
71	A1	507	-0.4280	46.4	74	A1	514	-0.4470	51.3
76	A1	526	-0.0305	0.2	78	A1	525	0.0959	2.4
77	A1	528	0.0528	0.7	79	A1	528	0.1859	9.1
79	A1	542	0.2795	21.2	80	A1	541	0.2786	21.0
82	A1	550	0.0000	0.0	83	A1	550	0.0001	0.0
86	A1	558	0.0572	0.9	87	A1	558	-0.0802	1.8
89	A1	576	-0.2279	14.8	89	A1	569	-0.2115	12.7
97	A1	617	0.0858	2.3	98	A1	616	0.1498	6.9
101	A1	623	0.2181	14.8	102	A1	625	0.1507	7.1
110	A1	641	-0.2474	19.6	110	A1	640	-0.2568	21.1
115	A1	654	0.0599	0.3	117	A1	657	0.0446	0.7
121	A1	667	0.1457	7.1	123	A1	677	0.2267	17.4
124	A1	691	-0.0689	1.6	124	A1	690	-0.1056	3.8
134	A1	716	-0.0342	0.4	135	A1	715	0.0783	2.2
136	A1	720	-0.1482	7.1	136	A1	721	-0.0950	3.2
138	A1	729	0.1548	8.7	138	A1	729	0.1565	8.9
142	A1	743	-0.0703	1.8	143	A1	742	0.0345	0.4
145	A1	749	0.1579	9.3	145	A1	747	0.1528	8.7
150	A1	760	0.0958	3.5	151	A1	761	0.0843	2.7
156	A1	778	0.1019	4.0	157	A1	779	0.0854	2.8
159	A1	821	0.0151	0.1	159	A1	822	0.0541	1.2
162	A1	859	-0.1351	7.8	162	A1	857	-0.1443	8.9
164	A1	868	-0.0465	0.9	164	A1	869	-0.0462	0.9
---	---	---	---	---					
165	A1	905	-0.0521	1.2					
166	A1	956	-0.1562	11.7					
171	A1	976	-0.1285	8.1					
172	A1	979	-0.1483	10.8					
173	A1	983	-0.1374	9.3					
175	A1	991	-0.0317	0.5					
176	A1	1003	-0.2258	25.6					
177	A1	1023	-0.2213	25.1					
179	A1	1043	-0.2743	39.2					
182	A1	1060	0.0212	0.2					
184	A1	1072	0.0030	0.0					
186	A1	1080	-0.1514	12.4					
187	A1	1095	0.1302	9.3					
189	A1	1127	-0.2142	25.9					
191	A1	1148	-0.2127	26.0					
193	A1	1160	0.0311	0.6					
195	A1	1174	-0.1767	18.3					
196	A1	1195	0.1812	19.6					
197	A1	1203	0.0494	1.5					
199	A1	1233	-0.0254	0.4					
203	A1	1257	-0.1484	13.8					
206	A1	1265	0.0166	0.2					
207	A1	1266	0.0581	2.1					
210	A1	1270	0.0446	1.3					
211	A1	1273	-0.1060	7.2					
214	A1	1275	-0.1620	16.7					
216	A1	1278	-0.0456	1.3					
219	A1	1280	0.0216	0.3					
220	A1	1282	0.0017	0.0					
222	A1	1286	-0.1497	14.4					
223	A1	1288	-0.0170	0.2					
227	A1	1292	-0.0096	0.1					
228	A1	1295	-0.0134	0.1					
230	A1	1297	-0.0160	0.2					
232	A1	1298	-0.0820	4.4					
235	A1	1304	0.0940	5.8					
237	A1	1308	0.0880	5.1					
239	A1	1313	0.1057	7.3					
240	A1	1314	0.0842	4.7					
245	A1	1326	-0.0209	0.3					
246	A1	1327	0.0441	1.3					
248	A1	1330	0.0643	2.8					
251	A1	1338	-0.0957	6.1					
253	A1	1346	0.0288	0.6					
254	A1	1350	-0.0656	2.9					
257	A1	1362	-0.0068	0.0					
261	A1	1378	0.0574	2.3					
262	A1	1388	-0.0388	1.0					
264	A1	1395	0.0072	0.0					
265	A1	1398	0.0885	5.5					
Each set contains the mode number, its symmetry, its frequency, and then projection. The displacements are in terms of the zero-point lengths of each mode. A displacement of 1.0 in any mode raises the energy by $\frac{\hbar \nu_i}{2}$. The total reorganization energy is the calculated energy difference between vertical and adiabatic (relaxed) excitation, a quantity that is typically easy to measure. The number here is the harmonic approximation to the reorganization energy. Below we present the values of re-organization energy, total and average Huang-Rhys factors for the states.

Table S.1

Reorganization energy (eV)	0.11	0.115
Total Huang-Rhys factors	1.45	1.49
Average frequency (lambda/Huang-Rhys)(cm$^{-1}$)	573.8	622.9
S. 3. Some important modes in (1) 3B_1 and (2) 3B_1 state of the defect V_{NCB}

![Diagram of vibrational modes](image_url)

Fig. S.1. A schematic diagram of the force vectors of four vibrational modes, which have considerable contribution to the HR factor of emission spectra (1) 3B_1 state) of the defect V_{NCB}. Frequency in cm$^{-1}$ and symmetry of each mode is marked on the top of each mode.
Fig. S.2. A schematic diagram of the force vectors of four vibrational modes, which have considerable contribution to the HR factor of emission spectra \((2) \, ^3B_1\) state of the defect \(V_{NCB}\). Frequency in cm\(^{-1}\) and symmetry of each mode is marked on the top of each mode.
S. 4. Absorption spectra for the (1) 3B_1 to (2) 3B_1 transition of defect V_NC_B.

Fig S. 3. Calculated absorption spectrum (1) 3B_1 to (2) 3B_1 transition for the defect V_NC_B.

S. 5. Table of Adiabatic Transition Energies and re-organization energies of some other transitions in carbon related defects.

Defect	Transition	Calculated Adiabatic Transition Energy (eV)	Re-organization Energy (eV)
V_NC_B	(2) 1A_1 to (1) 1A_1	2.46	1.15
$V_NC_B^+$	(1) 2B_2 to (1) 2A_1	2.01	1.09
$V_NC_B^-$	(1) 2B_2 to (1) 2A_1	1.17	-
V_BCN	Spin-up channel	1.54	1.2
$SwCB$	Spin-up channel	1.90	0.4
$SwCN$	Spin-down channel	3.00	-
$SwCB$	Spin-up channel	2.90	-
$SwCN$	Spin-down channel	1.01	-
V_{NNB}	(2) 2B_1 to (1) 2B_1	2.39	0.73

S. 6. Huang-Rhys factors as a function of applied strain.

%Strain	HR factor for (1) 3B_1	HR factor for (2) 3B_1
2%	1.50	1.55
1%	1.42	1.47
0%	1.45	1.49
-1%	1.39	1.45
-2%	1.50	1.53