A NEW AND FLEXIBLE DESIGN CONSTRUCTION FOR ORTHOGONAL ARRAYS FOR MODERN APPLICATIONS

BY YUANZHEN HE¹, C. DEVON LIN²,* AND FASHENG SUN³,†

¹School of Statistics, Beijing Normal University, heyuanzhen@bnu.edu.cn
²Department of Mathematics and Statistics, Queen’s University, devon.lin@queensu.ca
³KLAS and School of Mathematics and Statistics, Northeast Normal University, sunfs359@nenu.edu.cn

Orthogonal array, a classical and effective tool for collecting data, has been flourished with its applications in modern computer experiments and engineering statistics. Driven by the wide use of computer experiments with both qualitative and quantitative factors, multiple computer experiments, multi-fidelity computer experiments, cross-validation and stochastic optimization, orthogonal arrays with certain structures have been introduced. Sliced orthogonal arrays and nested orthogonal arrays are examples of such arrays. This article introduces a flexible, fresh construction method which uses smaller arrays and a special structure. The method uncovers the hidden structure of many existing fixed-level orthogonal arrays of given run sizes, possibly with more columns. It also allows fixed-level orthogonal arrays of nearly strength three to be constructed, which are useful as there are not many construction methods for fixed-level orthogonal arrays of strength three, and also helpful for generating Latin hypercube designs with desirable low-dimensional projections. Theoretical properties of the proposed method are explored. As by-products, several theoretical results on orthogonal arrays are obtained.

1. Introduction. With the exponential growth of computing power, investigators are increasingly employing computer experiments, which stimulate real-world phenomena or complex systems using mathematical models and solving them using numerical methods such as computational fluid dynamics and finite element analysis, to help understand the respective systems. The underlying mechanisms of computer experiments are represented and implemented by computer codes [34, 35]. They frequently involve both qualitative and quantitative factors [32, 22, 4, 50]. For a given system, investigators are often faced with different computer codes because of the proliferation of mathematical models and numerical methods for their solution. As such, multiple computer experiments for the same system are performed [49]. Computer codes can be also executed at various degrees of accuracy, resulting in multi-fidelity computer experiments [10, 7, 42].

In contrast to the traditional physical experiments, greater numbers of input variables are involved and larger numbers of runs are employed in computer experiments. However, often only a few of input variables are thought to be of primary importance. To select important input variables, space-filling designs with desirable low-dimensional projection properties are commonly used. Such designs can be generated using orthogonal array based Latin hypercubes [29, 40]. This calls for orthogonal arrays of strength two, three or higher. To accommodate computer experiments with qualitative and quantitative factors and multiple computer experiments, sliced orthogonal array based Latin hypercubes were employed [33, 11, 23, 24].

MSC2020 subject classifications: Primary 60K35, 60K35; secondary 60K35.

Keywords and phrases: Completely resolvable, difference scheme, fractional factorial design, computer experiment, nested orthogonal array, sliced orthogonal array.
Nested orthogonal array based Latin hypercubes were introduced to choose inputs in multifidelity computer experiments [31]. The objective of this article is to propose a flexible method that allows orthogonal arrays, sliced orthogonal arrays and nested orthogonal arrays to be constructed.

To balance the run size economy and the higher dimensional projection property, we consider a class of designs, called orthogonal arrays of nearly strength three, which, for a given run size, enjoy a higher dimensional projection property than orthogonal arrays of strength two and accommodate more factors than those of strength three [18, 19]. This class of designs is in the same spirit as nearly orthogonal arrays and can be viewed as their generalization [41, 44, 25]. They can be used to generate Latin hypercube designs with desirable low-dimensional projections which have been shown beneficial in several problems such as studying design optimality [39], and mean and variance estimation which further are useful in numerical integration, uncertainty quantification, and sensitivity analysis [12].

Research on orthogonal arrays has been a central part of design theory for decades and there are extensive and numerous results on their construction, optimality criteria, and analysis. For excellent sources of reference for this topic, see, for example, [5, 21, 28, 43, 46]. The applications of orthogonal arrays are pervasive in many areas such as computer experiments, integration, visualization, optimization, and computer science [8, 29, 20]. The proposed method discovers a new design structure that allows orthogonal arrays of strength two, near strength three and exact strength three, resolvable orthogonal arrays, sliced orthogonal arrays and nested orthogonal arrays to be found. We provide new orthogonal arrays of strength three, sliced orthogonal arrays and nested orthogonal arrays.

It has been long since the concept of resolvable orthogonal arrays was introduced [2]. There are scarce results on the construction and the use of such arrays. [9] was the first to discover the use of such arrays in producing orthogonal main-effects plans. Recently, it is shown by [48] and [27] that resolvable orthogonal arrays play a key role in constructing sliced Latin hypercubes and nearly orthogonal arrays that are mappable into fully orthogonal arrays, respectively. A completely resolvable orthogonal array is used for qualitative factors in marginally coupled designs for computer experiments with both qualitative and quantitative factors [3, 13, 14, 15, 47]. Notably, [37] and [21] are the only work that provided construction for resolvable orthogonal arrays with the former focusing on two-level arrays and the latter on multi-level arrays. The proposed method offers an alternative way to construct multi-level resolvable orthogonal arrays.

The remainder of this article is organized as follows. Section 2 provides necessary definitions, notation and background. Design construction and its use in constructing orthogonal arrays of strength two are given in Section 3. Section 4 presents the applications of the proposed method in constructing a number of classes of orthogonal arrays. Conclusion and discussion are given in Section 5. All the proofs are relegated to the Appendix.

2. Definitions, Notation and Background. Consider designs of \(n \) runs with \(m \) factors of \(s \) levels, where \(2 \leq s \leq n \). If for every \(n \times t \) submatrix of the design, say \(D \), each of all possible level combinations appears equally often, design \(D \) is called an orthogonal array of strength \(t \) [21]. We use \(\text{OA}(n, m, s, t) \) to denote such a design. A column is said to be balanced if each level appears equally often. A pair of columns is said to be orthogonal if they form an orthogonal array of strength two. Three columns are said to be 3-orthogonal if they form an orthogonal array of strength three. In addition, an \(\text{OA}(n, m, s, 2) \) is called saturated if \(n = m(s - 1) + 1 \).

Three special classes of orthogonal arrays that are relevant in this article are resolvable orthogonal arrays, sliced orthogonal arrays and nested orthogonal arrays. An \(\text{OA}(n, m, s, t) \) \(D \) is called \(\alpha \)-resolvable if it can be expressed as \(D = (D^T_1, \ldots, D^T_n)_{n/(\alpha s)} \) such that each of
D_1, \ldots, D_{n/(\alpha s)} is an OA(\alpha s, m, s, 1) [21], for t \geq 2. Such an orthogonal array is denoted by ROA(n, m, s, t; \alpha). If \alpha = 1, the corresponding design is known as completely resolvable orthogonal array and denoted by CROA(n, m, s, t). For example, the orthogonal array D = OA(16, 3, 4, 2) in Table 1 is a CROA(16, 3, 4, 2).

Next, we provide the definitions of both sliced orthogonal arrays and nested orthogonal arrays. Both definitions involve certain mapping which we call level-collapsing projection. A mapping \(\delta(\cdot) \) is called level-collapsing projection if the mapping is from a set \(S \) with \(s \) elements into its own subset and satisfies (a) \(S \) can be divided into \(s_0 \) parts \(S_1, \ldots, S_{s_0} \), with each part having \(s/s_0 \) elements, and (b) for any two elements \(x \in S_i, y \in S_j, \delta(x) = \delta(y) \) for \(i = j \), and \(\delta(x) \neq \delta(y) \) otherwise. Table 1 provides an example of the level-collapsing projection \(\delta(0) = \delta(1) = 0 \) and \(\delta(2) = \delta(3) = 1 \). An OA(n, m, s, 2) \(D \) is called sliced orthogonal array if its \(n \) rows can be partitioned into \(v \) subarrays \(D_1, D_2, \ldots, D_v \) such that each \(D_i \) becomes an OA(n_0, m, s_0, 2) with \(n_0 = n/v \) after the \(s \) levels in each column of \(D \) are collapsed to \(s_0 \) levels according to some level-collapsing projection. We denote such an array SOA(n, m, s, 2; v, s_0). Furthermore, if each column in each slice \(D_i \) of a sliced orthogonal array is balanced, that is, having equal frequency of \(s \) levels, it is called balanced sliced orthogonal array [1]. We use BSOA(n, m, s, 2; v, s_0) to denote such an array. An OA(n, m, s, 2) \(D \) is called nested orthogonal array if \(D \) contains a subarray \(D_0 \) which becomes an OA(n_0, m, s_0, 2) after level collapsing each column of \(D \) according to certain level-collapsing projection [30]. We use NOA(n, m, s, 2; n_0, s_0) to denote such an array. As an illustration, Table 1 presents a \(D = BSOA(16, 3, 4, 2; 4, 2) \) which is also an NOA(16, 3, 4, 2; 4, 2) with any given \(D_i \) being the subarray \(D_0 \), for \(i = 1, 2, 3, 4 \). A sliced orthogonal array is also a nested orthogonal array but the reverse does not hold.

\(D \)	\(\delta(D) \)	
\(D_1 \)	0 0 0	0 0 0
\(\quad \)	2 1 3	1 0 1
\(\quad \)	1 3 2	0 1 1
\(\quad \)	3 2 1	1 1 0
\(D_2 \)	2 2 2	1 1 1
\(\quad \)	0 3 1	0 1 0
\(\quad \)	3 1 0	1 0 0
\(\quad \)	1 0 3	0 0 1
\(D_3 \)	1 1 1	0 0 0
\(\quad \)	3 0 2	1 0 1
\(\quad \)	0 2 3	0 1 1
\(\quad \)	2 3 0	1 1 0
\(D_4 \)	3 3 3	1 1 1
\(\quad \)	1 2 0	0 1 0
\(\quad \)	2 0 1	1 0 0
\(\quad \)	0 1 2	0 0 1

A relevant concept for orthogonal arrays is difference scheme. An \(r \times c \) array with entries from a finite abelian group containing \(s \) entries is called a difference scheme if each vector difference between any two distinct columns of the array consists of every element from the finite abelian group equally often [2]. Such an array is denoted by \(D(r, c, s) \).

The proposed construction in Section 3 uses two key operators for matrices. Before reviewing the operators, we review the concept of Galois field. A field is called a Galois field (or finite field) if it contains a finite number of elements and the operations of the addition, subtraction, multiplication, and division on its elements satisfy the rules of arithmetic ([21]). The
order of a Galois field is defined to be the number of elements, and must be a prime power. Let \(GF(s) \) denote the Galois field of order \(s \), and throughout we let \(GF(s) = \{ \alpha_0, \alpha_1, \ldots, \alpha_{s-1} \} \) with \(\alpha_0 = 0 \) and \(\alpha_1 = 1 \). If \(s = p \) is a prime, \(GF(p) = \{0, 1, \ldots, p - 1\} \). If \(s = p^u \) for \(u \geq 2 \) and a prime \(p \), \(GF(p^u) = \{a_0 + a_1x + \cdots + a_{u-1}x^{u-1} : a_0, \ldots, a_{u-1} \in GF(p)\} \). That is, the elements of \(GF(p^u) \) are the polynomials with the degree less than \(u \) and the coefficients from \(GF(p) \). The addition of \(GF(p^u) \) is the ordinary polynomial addition with the coefficients modulo \(p \), and the multiplication is the ordinary polynomial multiplication and then modulo a given irreducible polynomial of degree \(u \), where an irreducible polynomial is a polynomial that cannot be factored into the product of two non-constant polynomials. For examples of the addition and multiplication of a Galois field, readers are referred to [21].

Let \(A = (a_{ij}) \) be an \(n_1 \times m_1 \) matrix and \(B \) be an \(n_2 \times m_2 \) matrix, where both matrices have entries from the Galois field \(GF(s) \). Throughout, we let \(GF(s) = \{ \alpha_0, \alpha_1, \ldots, \alpha_{s-1} \} \) with \(\alpha_0 = 0 \) and \(\alpha_1 = 1 \). The Kronecker sum of \(A \) and \(B \) is an \((n_1n_2) \times (m_1m_2) \) matrix given by

\[
(A \oplus B)_{i,j} = B_{0,j}^{a_{i,0}}
\]

where \(B_{0,j}^{a_{i,0}} = (B + a_{ij}) \) is an \(n_2 \times m_2 \) matrix with + representing the addition in a field. If we partition the rows of \(B \) into \(n_1 \) matrices, \(B_i \)'s, and let \(a_i \) be the \(i \)th row of \(A \), the generalized Kronecker sum of \(A \) and \(B \) is defined as

\[
A \otimes B = [a_i \oplus B_i]_{1 \leq i \leq n_1} = \begin{bmatrix}
 a_1 \oplus B_1 \\
 \vdots \\
 a_{n_1} \oplus B_{n_1}
\end{bmatrix},
\]

where the operator \(\oplus \) is given in (1). Note that the number of runs in \(A \otimes B \) is the same as that of \(B \) and the number of factors in \(A \oplus B \) is \(m_1m_2 \), the product of the number of factors in \(A \) and the number of factors in \(B \). For example, let \(A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \) and

\[
B = \begin{pmatrix}
 B_1 \\
 B_2 \\
 B_3
\end{pmatrix} = \begin{pmatrix}
 0 & 0 & 0 \\
 1 & 1 & 2 \\
 0 & 2 & 1 \\
 1 & 0 & 1 \\
 2 & 1 & 0 \\
 2 & 2 & 1
\end{pmatrix},
\]

then we have \(A \oplus B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \\ 2 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \).

3. Design Construction and Preliminary Results. This section introduces a new construction and presents some preliminary results for the later development. The proposed construction uses an \(n_1 \times m_1 \) matrix \(A \) and \(n_1 \) matrices \(B_1, \ldots, B_{n_1} \), each of size \(n_2 \times m_2 \), where the entries of \(A \) and \(B_i \)'s are from the Galois field \(GF(s) = \{ \alpha_0, \alpha_1, \ldots, \alpha_{s-1} \} \). Assume \(s \) is a prime power throughout. Denote the rows of \(A \) by \(a_1, \ldots, a_{n_1} \), and stack \(B_1, \ldots, B_{n_1} \) row by row and denote the resulting matrix by \(B = (B_1^T, \ldots, B_{n_1}^T)^T \). We define \(s + 1 \) arrays \(D_1, D_2, \ldots, D_{s+1} \) as follows. For \(\alpha_g \in GF(s) \) and \(g = 1, \ldots, s - 1 \), define

\[
D_g = A \oplus (\alpha_g * B) = \begin{bmatrix}
 a_1 \oplus (\alpha_g * B_1) \\
 \vdots \\
 a_{n_1} \oplus (\alpha_g * B_{n_1})
\end{bmatrix},
\]
and

\[(4) \quad D_s = 0_{n_1} \oplus B = \begin{bmatrix} 0 \oplus B_1 \\ \vdots \\ 0 \oplus B_{n_1} \end{bmatrix},\]

as well as

\[(5) \quad D_{s+1} = A \oplus 0_{n_2},\]

where \(*\) in (3) represents the multiplication in a field and \(0_{n_2}\) denotes a column vector with \(n_2\) zeros. Now obtain an array

\[(6) \quad E = [D_1, D_2, \ldots, D_{s+1}],\]

where each \(D_g\) is an \((n_1n_2) \times (m_1m_2)\) array by the definition of the generalized Kronecker sum, \(g = 1, 2, \ldots, s - 1, D_s\) is an \((n_1n_2) \times m_2\) array and \(D_{s+1}\) is an \((n_1n_2) \times m_1\) array, and thus \(E\) is an \((n_1n_2) \times [(s - 1)m_1m_2 + m_1 + m_2]\) array.

To the best of our knowledge, the construction of \(E\) in (6) is a new way of constructing designs. The construction is flexible as it can be used to construct different types of orthogonal arrays with different choices of \(A\) and \(B_i\)'s. It produces a rich, vast class of designs with non-isomorphic \(A\)'s, non-isomorphic \(B_i\)'s, as well as isomorphic \(B_i\)'s up to column permutations and/or level relabeling of one or more columns (For example, [45] demonstrates that the level relabeling of columns improves the design properties). In Section 4.1, we illustrate this strategy to provide new orthogonal arrays of strength three.

To prepare for the detailed and quantitative illustration of the use of the proposed construction, we provide some preliminary results summarized in Lemmas 3.1 and 3.2. Some notations are in order. Let \(a, c, e\) and \(e\) be a column vector of length \(n_1\), respectively, whose entries are from \(GF(s)\). For \(i = 1, \ldots, n_1\), let \(b_i, d_i\) and \(f_i\) be a column vector of length \(n_2\). The entries of \(b_i\)'s, \(d_i\)'s and \(f_i\)'s are also from \(GF(s)\). Stacking all \(b_i\)'s row by row, we obtain \(b = (b_1^T, \ldots, b_{n_1}^T)^T\). Similarly, obtain \(d = (d_1^T, \ldots, d_{n_1}^T)^T\) and \(f = (f_1^T, \ldots, f_{n_1}^T)^T\). Lemma 3.1 provides the sufficient conditions for two columns to be orthogonal when one column is obtained by the generalized Kronecker sum of \(a\) and \(b\) and the other column is obtained by the generalized Kronecker sum of \(c\) and \(d\).

Lemma 3.1. Given \(a, b, c, d\) defined above, the array \((a \oplus b, c \oplus d)\) is an \(OA(n_1n_2, 2, s, 2)\) if one of the following conditions is satisfied, for \(i = 1, \ldots, n_1\) and \(\alpha \in GF(s)\).

(i) \((b_i, d_i)\) is an \(OA(n_2, 2, s, 2)\);

(ii) \(b_i\) is balanced, \(d = \alpha b\), and one of the following four conditions is satisfied: (1) \(\alpha = 1\) and \((a, c)\) is a \(D(n_1, 2, s)\); (2) \((a, c)\) is an \(OA(n_1, 2, s, 2)\); (3) \(c = 0\), \(\alpha \neq 1\), and \(a\) is balanced; and (4) \(a = c\), \(\alpha \neq 1\), and \(a\) is balanced; and

(iii) \(d = 0\), and one of the following two conditions is satisfied: (1) \(b_i\) and \(c\) are balanced; and (2) \(b = 0\) and \((a, c)\) is an \(OA(n_1, 2, s, 2)\).

Lemma 3.2 below provides the sufficient conditions for three columns each obtained by the generalized Kronecker sum to be 3-orthogonal.

Lemma 3.2. Given \(a, b, c, d, e, f\) defined above, the array \((a \oplus b, c \oplus d, e \oplus f)\) is an \(OA(n_1n_2, 3, s, 3)\) if one of the following conditions is satisfied, for \(i = 1, \ldots, n_1\) and \(\alpha, \beta \in GF(s)\).

(i) \((b_i, d_i, f_i)\) is an \(OA(n_2, 3, s, 3)\);

(ii) \((b_i, d_i) = OA(n_2, 2, s, 2), f = \alpha b\), and \((e, \alpha a) = D(n_1, 2, s)\);
(iii) \(\mathbf{d} = \beta \mathbf{b}, \mathbf{f} = \alpha \mathbf{b}, \mathbf{b}_i \) is balanced, \((a, c) = OA(n_1, 2, s, 2)\) and one of the following three conditions is satisfied: (1) \(e = a \) and \(\alpha \neq 1 \); or (2) \(e = \emptyset \) and \(\alpha \neq 0 \); and (3) \((a, c, e) = OA(n_1, 3, s, 3)\); and

(iv) \(\mathbf{b} = \mathbf{d} = \emptyset, \mathbf{f}_i \) is balanced, and \((a, c) = OA(n_1, 2, s, 2)\).

We now present one key result of the proposed construction (6). That is, for a prime power \(s \), if \(\mathbf{A} \) and \(\mathbf{B}_i \)'s in (6) are \(s \)-level orthogonal arrays of strength two, so is the resulting design \(\mathbf{E} \).

Theorem 3.1. If \(\mathbf{A} = OA(n_1, m_1, s, 1) \) for \(m_1 = 1 \) or \(OA(n_1, m_1, s, 2) \) for \(m_1 > 1 \), and \(\mathbf{B}_i = OA(n_2, m_2, s, 2) \), for \(i = 1, \ldots, n_1 \) and a prime power \(s \), then design \(\mathbf{E} \) in (6) is an \(OA(n_1 n_2, (s - 1)m_1 m_2 + m_1 + m_2, s, 2) \).

Theorem 3.1 indicates that an \(s \)-level orthogonal array of strength two can be constructed using only \(s \)-level orthogonal arrays of strength two with smaller sizes. To the best of our knowledge, such a construction is fundamentally different from the existing methods such as direct constructions or those using difference schemes and smaller orthogonal arrays [21]. To help understand Theorem 3.1, one may think the columns of \(\mathbf{E} \) are derived in the following way. Arrays \(\mathbf{A} \) and \(\mathbf{B} \) accommodate \(m_1 \) and \(m_2 \) factors, respectively. The columns of \(\mathbf{D}_{s+1} \) in (5) and those of \(\mathbf{D}_s \) in (4) can be thought of being derived from the main effects of factors in \(\mathbf{A} \) and the main effects of factors in \(\mathbf{B} \), respectively. The columns of \(\mathbf{D}_1, \ldots, \mathbf{D}_{s-1} \) can be viewed as representing the interaction effects of the factors in \(\mathbf{A} \) and those in \(\mathbf{B} \). For example, for \(s = 2 \), \(\mathbf{D}_1 \) constitutes the two-factor interactions between the factors in \(\mathbf{A} \) and those in \(\mathbf{B} \); for \(s = 3 \), \(\mathbf{D}_1 = \mathbf{A} \oplus \mathbf{B} \) and \(\mathbf{D}_2 = \mathbf{A} \oplus (2 \ast \mathbf{B}) \) amount to the linear-by-linear interactions and the linear-by-quadratic interactions, respectively, which together constitute the interaction effects between \(\mathbf{A} \) and \(\mathbf{B} \).

Example 1 is an illustration of the use of Theorem 3.1.

Example 1. Consider constructing three-level orthogonal arrays of 81 runs and strength 2. It is well-known that an \(OA(81, 40, 3, 2) \) can be constructed via the Rao-Hamming construction [21]. The proposed construction (6) can also provide \(OA(81, 40, 3, 2) \)'s using two different ways: (1) using \(\mathbf{A} = OA(3, 1, 3, 1) \) and \(\mathbf{B}_i = OA(27, 13, 3, 2) \) for \(i = 1, 2, 3 \), where \(\mathbf{B}_i \) can be any design that is isomorphic to any of the 68 non-isomorphic \(OA(27, 13, 3, 2) \)'s given on the website [6]; and (2) using \(\mathbf{A} = OA(9, 4, 3, 2) \) and \(\mathbf{B}_i = OA(9, 4, 3, 2) \) for \(i = 1, \ldots, 9 \), where \(\mathbf{A} \) and \(\mathbf{B}_i \)'s can be any design that is isomorphic to the unique \(OA(9, 4, 3, 2) \) given on the website [36].

Next, we apply Theorem 3.1 to obtain some specific classes of orthogonal arrays. Corollaries 3.1 - 3.3 summarize that the proposed construction can provide two-level saturated orthogonal arrays whose run sizes are multiples of 8, \(s \)-level saturated orthogonal arrays of \(s^u \) runs, and \(s \)-level orthogonal arrays of \(2s^u \) runs, where \(u \geq 2 \) is an integer and \(s \) is a prime power. It shall be noted that these three corollaries also hold for a trivial case that \(\mathbf{A} \) is a column vector \((\alpha_0, \ldots, \alpha_{s-1})^T\) for obtaining \(s \)-level orthogonal arrays.

Corollary 3.1. If \(\mathbf{A} = OA(n_1, n_1 - 1, 2, 2) \) and \(\mathbf{B}_i = OA(n_2, n_2 - 1, 2, 2) \), for \(i = 1, \ldots, n_1 \), then design \(\mathbf{E} \) in (6) is an \(OA(n_1 n_2, n_1 n_2 - 1, 2, 2) \).

Corollary 3.2. If \(\mathbf{A} = OA(s^{k_1}, (s^{k_1} - 1)/(s - 1), s, 2) \) and \(\mathbf{B}_i = OA(s^{k_2}, (s^{k_2} - 1)/(s - 1), s, 2) \), for \(i = 1, \ldots, s^{k_1} \) and a prime power \(s \), then design \(\mathbf{E} \) in (6) is an \(OA(s^{k_1+k_2}, (s^{k_1+k_2} - 1)/(s - 1), s, 2) \).
COROLLARY 3.3. If \(A = \text{OA}(s^{k_1}, (s^{k_1} - 1)/(s - 1), s, 2) \) and \(B_i = \text{OA}(2s^{k_2}, 2(s^{k_2} - 1)/(s - 1) - 1, s, 2) \), for \(i = 1, \ldots, s^{k_1} \) and a prime power \(s > 2 \), then design \(E \) in (6) is an \(\text{OA}(2s^{k_1}+k_2, 2(s^{k_1}+k_2 - 1)/(s - 1) - 1 - s(s^{k_1} - 1)/(s - 1), s, 2) \).

REMARK 3.1. The family of \(\text{OA}(2s^k, 2(s^k - 1)/(s - 1) - 1, s, 2) \) can be obtained via the use of difference schemes for a prime power \(s \) and \(k \geq 2 \) (Theorem 6.40 of [21]). Corollary 3.3 reveals that the construction (6) provides \(s(s^{k_1} - 1)/(s - 1) \) fewer columns than the difference schemes method. For a fixed \(k = k_1 + k_2 \), to maximize the number of columns in \(E \), \(k_1 = 1 \) should be chosen.

Table 2 provides examples of orthogonal arrays of strength two constructed via (6). The list is not meant to be exhaustive. Table 2 also lists the maximal number \(m^* \) of columns in an orthogonal array that is obtained by the approaches in the literature. It reveals that in all cases except run sizes being \(2s^k \) with a prime power \(s \), the proposed construction (6) provides orthogonal arrays with the same \(m^* \). We provide some results on the maximal number of columns in \(E \) in (6) for given values of \(n, s \) and \(t \) in the Supplementary Material ([16]).

4. Applications. The versatility of the proposed construction is demonstrated in this section by showing that it can be used to construct many orthogonal arrays including those of strength three, resolvable orthogonal arrays, balanced sliced orthogonal arrays, and nested orthogonal arrays. New orthogonal arrays of strength three, balanced sliced orthogonal arrays and nested orthogonal arrays are obtained. The basic idea is to couple certain types of orthogonal arrays with orthogonal arrays of strength two to generate orthogonal arrays of the same types but with larger run sizes and higher dimensionality. Another key result in this section is, by removing some columns from orthogonal arrays of strength two in the previous section, we get designs that have a very large proportion of 3-orthogonal columns while the numbers of their columns are much larger than the corresponding orthogonal arrays of strength three.

4.1. Construction of orthogonal arrays of strength three. In (3) and (4), we let \(A = \text{OA}(s, 1, s, 1) \) or \(A = \text{OA}(s^2, 2, s, 2) \) and \(B_i \)'s be orthogonal arrays of strength three. Propositions 4.1 and 4.2 summarize the detailed results on the use of the proposed construction for orthogonal arrays of strength three. For a given run size and number of column in an orthogonal array of strength three, there are two different ways of construction via the proposed method. For example, an \(\text{OA}(81, 8, 3, 3) \) can be obtained using either \(A = (0, 1, 2)^T \), \(B_i = \text{OA}(27, 4, 3, 3) \) for \(i = 1, 2, 3 \) in Proposition 4.1 or \(A = \text{OA}(9, 2, 3, 3), B_i = \text{OA}(9, 2, 3, 2) \) for \(i = 1, \ldots, 9 \) in Proposition 4.2.

PROPOSITION 4.1. If for \(i = 1, \ldots, s \) and a prime power \(s \), \(A \) is an \(\text{OA}(s, 1, s, 1) \) and \(B_i \) is an \(\text{OA}(n_2, m_2, 2, 2) \) for \(m_2 = 2 \) or an \(\text{OA}(n_2, m_2, s, 3) \) for \(m_2 \geq 3 \), then for \(1 \leq g \neq g' \leq s \), \((D_g, D_{g'}) \) is an \(\text{OA}(sn_2, 2m_2, s, 3) \), where \(D_g \) is defined in (3) for \(g = 1, \ldots, s - 1 \), and \(D_s \) is defined in (4).

PROPOSITION 4.2. If for \(i = 1, \ldots, s^2 \) and a prime power \(s \), \(A \) is an \(\text{OA}(s^2, 2, s, 2) \), and \(B_i \) is an \(\text{OA}(n_2, m_2, s, 2) \) for \(m_2 = 2 \) or an \(\text{OA}(n_2, m_2, s, 3) \) for \(m_2 \geq 3 \), then

(i) for \(1 \leq g \neq g' \leq s - 1 \), \((D_g, D_{g'}) \) is an \(\text{OA}(s^2n_2, 4m_2, s, 3) \), and
(ii) for \(1 \leq g \leq s - 1 \), \((D_g, D_s) \) is an \(\text{OA}(s^2n_2, 3m_2, s, 3) \), where \(D_g \) is defined in (3) for \(g = 1, \ldots, s - 1 \), and \(D_s \) is defined in (4).
Table 2

Examples of orthogonal arrays of strength two obtained by (6)

s	n	m	n_1	m_1	n_2	m_2	m	Method
2	8	7	2	1	4	3	7	Corollaries 3.1 and 3.2
2	16	15	2	1	8	7	15	Corollaries 3.1 and 3.2
2	16	15	4	3	4	3	15	Corollaries 3.1 and 3.2
2	24	23	2	1	12	11	23	Corollary 3.1
2	32	31	2	1	16	15	31	Corollaries 3.1 and 3.2
2	32	31	4	3	8	7	31	Corollaries 3.1 and 3.2
2	40	39	2	1	20	19	39	Corollary 3.1
2	48	47	2	1	24	23	47	Corollary 3.1
2	48	47	4	3	12	11	47	Corollary 3.1
2	56	55	2	1	28	27	55	Corollary 3.1
2	64	63	2	1	32	31	63	Corollaries 3.1 and 3.2
2	64	63	4	3	16	15	63	Corollaries 3.1 and 3.2
2	64	63	8	7	8	7	63	Corollary 3.1
3	27	26	3	1	9	4	13	Corollary 3.2
3	54	53	3	1	18	7	25	Corollary 3.3
3	81	80	3	1	27	13	40	Corollary 3.2
3	81	80	9	4	9	4	40	Corollary 3.2
3	162	161	3	1	54	25	79	Corollary 3.3
4	64	63	4	1	16	5	21	Corollary 3.2
4	128	127	4	1	32	9	41	Corollary 3.3
4	256	255	4	1	64	21	85	Corollary 3.2
4	512	511	4	1	128	17	145	Corollary 3.3
5	125	124	5	1	25	6	31	Corollary 3.2
5	250	249	5	1	50	11	61	Corollary 3.3
5	625	624	5	1	125	31	156	Corollary 3.2
5	625	624	25	6	25	6	156	Corollary 3.2
7	343	342	7	1	49	8	57	Corollary 3.2
7	686	685	7	1	98	15	113	Corollary 3.3
7	1372	1371	7	1	343	57	400	Corollary 3.2
8	2401	2400	8	1	49	8	400	Corollary 3.2
8	512	511	8	1	64	9	73	Corollary 3.2
8	1024	1023	8	1	128	17	145	Corollary 3.3
8	2048	2047	8	1	512	73	585	Corollary 3.2
8	4096	4095	8	1	512	73	585	Corollary 3.2
8	4096	4095	64	9	64	9	585	Corollary 3.2
9	729	728	9	1	81	10	91	Corollary 3.2
9	1458	1457	9	1	162	19	181	Corollary 3.3
9	6561	6560	9	1	729	91	820	Corollary 3.2
9	6561	6560	81	10	81	10	820	Corollary 3.2

Proposition 4.1 follows by parts (i) and (ii) of Lemma 3.2. Proposition 4.2 requires conditions (i), (ii), (iii.1), and (iii.2) in Lemma 3.2. Both propositions are powerful results in that by repeated applications of these results, many infinite series of orthogonal arrays of strength three can be obtained. For example, by Proposition 4.1, using an OA$(81, 10, 3, 3)$ for B_i yields OA$(243, 20, 3, 3)$’s which in turn can be used to obtain a pool of OA$(729, 40, 3, 3)$’s and so on. The general result is given in Theorem 4.1. In addition, we derive some new results on lower bounds of the maximal number of columns in certain orthogonal arrays of strength three in the Supplementary Material ([16]).

Theorem 4.1. If there exists an OA$(n_2, m_2, s, 3)$ for a prime power s, then OA$(n_2s^k, 2^km_2, s, 3)$’s for $s \geq 2$ can be constructed.
Examples of the application of Theorem 4.1 are obtaining orthogonal arrays of strength three including an OA($2^k, 2^{k-1}, 2, 3$), an OA($3\cdot 2^k, 3\cdot 2^{k-1}, 2, 3$), an OA($2\cdot 3^k, 5\cdot 2^{k-3}, 3, 3$), an OA($3^{k+1}, 10\cdot 2^{k-3}, 3, 3$), and an OA($4^{k+1}, 17\cdot 2^{k-3}, 4, 3$), for $k \geq 3$, with small orthogonal arrays such as an OA($8, 4, 2, 3$), an OA($24, 12, 2, 3$), an OA($54, 5, 3, 3$), an OA($81, 10, 3, 3$), and an OA($256, 17, 4, 3$). Next, we give a detailed example of using the proposed construction to provide new orthogonal arrays of strength three in Example 2.

EXAMPLE 2. Consider constructing OA($243, 20, 3, 3$)'s for which the only available one is provided in [36]. We show how to use Proposition 4.1 to construct new OA($243, 20, 3, 3$)'s using an OA($81, 10, 3, 3$) which is unique and available at [6]. Let B_0 be the OA($81, 10, 3, 3$). In Proposition 4.1, let $A = (0, 1, 2)^T$, B_1, B_2, B_3 be obtained from B_0 by column permutations, and the resulting design $D = (D_1, D_2)$. By using different column permutations for B_1, B_2, B_3, we obtain many different D's some of which are isomorphic while some are non-isomorphic to each other and to the OA($243, 20, 3, 3$) in [36]. To save the space, we only list a few ways of obtaining non-isomorphic OA($243, 20, 3, 3$)'s in Table 3 with the elements being the column permutation of B_0 for the respective OA($243, 20, 3, 3$).

Design 1	Design 2	Design 3	Design 4
B_1	$8 9 2 1 0 3 7 4 1 3 6$	B_1	$3 7 1 9 8 4 1 0 5 6 2$
B_2	$7 4 8 2 6 1 0 9 3 1 5$	B_2	$6 1 0 5 3 4 1 9 8 7 2$
B_3	$6 1 9 4 1 0 3 8 7 2 5$	B_3	$6 8 9 7 1 0 3 5 4 2 1$

Table 3

Examples of column permutations of B_0 to obtain B_1, B_2, B_3 for non-isomorphic OA($243, 20, 3, 3$)'s

4.2. Construction of orthogonal arrays of near strength three. We introduce orthogonal arrays of near strength three. These designs are not of exact strength three, but of strength two. They have the feature that a large proportion of all possible three-column combinations is 3-orthogonal (see the definition of 3-orthogonality in Section 2). By slightly relaxing the exact strength-three orthogonality, these designs are shown to accommodate significantly more columns than orthogonal arrays of strength three with the same run sizes. To measure how close these designs are to orthogonal arrays of strength three in terms of 3-orthogonality, we define the following quantity for an orthogonal array D with m columns,

$$\begin{align*}
p(D) &= \frac{r}{\binom{m}{3}},
\end{align*}$$

where r is the number of three distinct columns that are 3-orthogonal. Note that $0 \leq p \leq 1$. An orthogonal array of strength three has $p = 1$. A larger value of p is preferred.

PROPOSITION 4.3. If $A = OA(s, 1, s, 1)$, $B_i = OA(n_2, m_2, s, 3)$, for $i = 1, \ldots, s$ and a prime power s, and F is obtained by excluding the last column of E in (6), then F is an OA($n_2s, sm_2, s, 2$) and

$$p(F) = 1 - \frac{m_2 \binom{s}{3}}{\binom{sm_2}{3}} = 1 - \frac{(s-1)(s-2)}{(sm_2-1)(sm_2-2)}.$$
Proposition 4.3 can be easily verified by noting that $F = (D_1, \ldots, D_s)$ with D_g in (3) for $g = 1, \ldots, s - 1$ and D_s as in (4), and that any three columns that are not 3-orthogonal satisfy that each of them is from one of D_i, D_j, D_k with distinct values of i, j, k and obtained by the generalized Kronecker sum of the same column of B. The last column of E is removed to increase the value of p. It shall be noted that $p(F) = 1$ when $s = 2$. In addition, it is straightforward to show that $p(F)$ in (8) is greater than $1 - 1/m_2^2$, and thus for a large value of m_2, $p(F)$ is very close to 1. For example, $m_2 = 11$, $p(F)$ is greater than 0.991. Example 3 illustrates the use of Proposition 4.3 and indicates $p(F)$ can be very close to 1.

Example 3. Consider $s = 3, B_3 = OA(81, 10, 3, 3)$ and thus $m_2 = 10$, the resulting F is an OA(243, 30, 3, 2) with $p(F) = 0.989$ while a three-level orthogonal array of strength three with 243 runs can accommodate up to 20 columns (Table 12.2 of [21]). Consider $s = 4, B_4 = OA(64, 6, 4, 3)$ and thus $m_2 = 6$, the resulting F is an OA(256, 24, 4, 2) with $p(F) = 0.988$ while a four-level orthogonal array of strength three with 256 runs can accommodate up to 17 columns (Table 12.6 of [21]).

Proposition 4.4. If $A = OA(s^2, 2, s, 2), B_i = OA(n_i, m_i, s, 3), i = 1, \ldots, s^2$ and a prime power s, and F is obtained by excluding the last two columns of E in (6), then F is an OA$(n_2s^2, (2s - 1)m_2, 2, 2)$ and

$$p(F) = 1 - \frac{2m_2\binom{s}{3}}{(2s-1)m_2} = 1 - \frac{2s(s-1)(s-2)}{(2s-1)(\gamma-1)(\gamma-2)},$$

where $\gamma = (2s-1)m_2$.

Proposition 4.4 can be shown using the same arguments as those for Proposition 4.3, with the help of Proposition 4.2. Noted that $p(F) = 1$ when $s = 2$. For $s \geq 3$, it can be shown that

$$p(F) = \begin{cases}
1 - \frac{2m_2\binom{s-1}{3} + \binom{\gamma-1}{3}}{2(\gamma-1)m_2 + m_2}, & s > 3; \\
1 - \frac{2m_2\binom{\gamma-1}{3}}{2(\gamma-1)m_2 + m_2}, & s = 3.
\end{cases}$$

Thus, $p(F)$ in (9) can be very close to 1 with a large value of m_2. As an illustration, for $s = 4, m_2 = 6, B_4 = OA(64, 6, 4, 3)$, the resulting F of 1024 runs has 42 columns and $p(F) = 0.997$ while the available four-level orthogonal array of 1024 runs can have up to 32 columns (Table 12.3 of [21]).

4.3. Resolvable orthogonal arrays. Proposition 4.5 states that pairing an orthogonal array and resolvable orthogonal arrays, the proposed method constructs resolvable orthogonal arrays of larger sizes.

Proposition 4.5. If $A = OA(n_1, m_1, s, 1)$ for $m_1 = 1$ or $OA(n_1, m_1, s, 2)$ for $m_1 > 1, B_i = ROA(n_i, m_i, s, 2; \alpha)$ for $i = 1, \ldots, n_1$, and a prime power s, and F is obtained by excluding the last m_1 columns of E in (6), then F is a ROA$(n_1n_2, (s-1)m_1m_2 + m_2, 2; \alpha)$.

The last m_1 columns of E are excluded such that the resulting F is the generalized Kronecker sum of $(A, 0_{n_1})$ and the resolvable orthogonal arrays B_i’s and thus it is also resolvable. The orthogonality of F follows by Theorem 3.1. Proposition 4.5 offers a new way to construct resolvable orthogonal arrays which are previously obtained via the difference schemes method [21]. In addition, the result implies an upper bound for the number of columns in a resolvable orthogonal array. To provide the bound, we first review a result, given by [37], in Lemma 4.1 which says the upper bound for the number of columns in an $n/(sr)$-resolvable s-level orthogonal array is $(n - r)/(s - 1)$.
Lemma 4.1. If a resolvable OA\((n, m, s, 2)\) can be partitioned into \(r\) OA\((n/r, m, s, 1)\)'s, then \(m \leq (n - r)/(s - 1)\).

Lemma 4.1 says the maximal value of \(m\) in a ROA\((n, m, s, 2)\) is \([n - n/(as)]/(s - 1)\). If in Proposition 4.5 we let \(A = (0, \ldots, s - 1)^T\) and \(B_i = ROA(n_2, m_2, s, 2; \alpha)\) with \(m_2\) being the upper bound in Lemma 4.1 for a prime power \(s\), namely, \(m_2 = n_2[1 - 1/(as)]/(s - 1)\), we obtain Proposition 4.6 which states that if \(B_i\)'s are \(\alpha\)-resolvable orthogonal arrays of \(n_2\) runs and the number of columns in each \(B_i\) reaches the upper bound, \(\alpha\)-resolvable orthogonal arrays of \(n_2s^k\) runs with the number of columns reaching the corresponding upper bound can be constructed, \(k \geq 1\).

Proposition 4.6. If there exists a ROA\((n_2, m_2, s, 2; \alpha)\) with \(m_2 = n_2[1 - 1/(as)]/(s - 1)\) for a prime power \(s\), then a ROA\((n_2s^k, m, s, 2; \alpha)\) with \(m = n_2s^k[1 - 1/(as)]/(s - 1)\) and \(k \geq 1\) can be constructed.

Applying Proposition 4.6 with \(n_2 = s, m_2 = 1, \alpha = 1\), the proposed construction in (6) provides a CROA\((s^2, s, 2)\) which can be used as \(B_1\) to obtain a CROA\((s^3, s^2, 2)\), and so on. By such repeated applications, a CROA\((s^k, s^k-1, s, 2)\) can be constructed via the construction in (6). The existing method, namely difference schemes method, can also construct a CROA\((s^k, s^k-1, s, 2)\) [21]. The advantage of the construction in (6) over the existing method is that it produces a large pool of such completely resolvable orthogonal arrays which possibly allow designs with better properties to be found.

4.4. Balanced sliced orthogonal arrays. This section shows that using a sliced orthogonal array for \(A\) and an orthogonal array for \(B_i\), the proposed construction in (6) provides a larger balanced sliced orthogonal array of the same levels and number of slices. Proposition 4.7 provides the detailed result. Without loss of generality, the levels of orthogonal arrays in this section and next section are all labeled by the elements in \(GF(s)\) and \(\delta\) is a level-collapsing projection on \(GF(s)\) and satisfies \(\delta(a + b) = \delta(a) + \delta(b)\). The truncation projection and modulus projection defined in [30], and subgroup projection defined in [38] are all level-collapsing projections on \(GF(s)\) and satisfy \(\delta(a + b) = \delta(a) + \delta(b)\).

Proposition 4.7. If \(A = (A_1^T, \ldots, A_v^T)^T\) is an SOA\((n_1, m_1, s, 2; v, s_0)\) where each of \(A_1, \ldots, A_v\) is an OA\((n_0, m_1, s_0, 2)\) after some level-collapsing projection \(\delta\) satisfying \(\delta(a + b) = \delta(a) + \delta(b)\) for any two elements \(a, b \in GF(s)\), and for \(i = 1, \ldots, n_1\), \(B_i = OA(n_2, m_2, s, 1)\) for \(m_2 = 1\) and \(B_i = OA(n_2, m_2, s, 2)\) for \(m_2 \geq 2\), then design \(E\) in (6) is a BSOA\((n_1n_2, (s - 1)m_1m_2 + m_1 + m_2, s, 2; v, s_0)\) that can be expressed as \(E = (E_1^T, \ldots, E_v^T)\) where each of \(E_1, \ldots, E_v\) becomes an OA\((n_0n_2, (s - 1)m_1m_2 + m_1 + m_2, s, 2)\) after the level-collapsing projection \(\delta\).

Proposition 4.7 can be shown using the same arguments as the proof of Theorem 3.1, and the fact that for any design \(D\), \(\delta(D)\) is an OA\((n, m, s_0, 2)\) if \(D\) is an OA\((n, m, s, 2)\), and under the condition \(\delta(a + b) = \delta(a) + \delta(b)\), \(\delta(D)\) is a D\((n, m, s_0)\) if \(D\) is a D\((n, m, s)\). Examples 4 and 5 illustrate the use of the proposed construction for balanced sliced orthogonal arrays of run sizes being a prime power and not being a prime power, respectively.

Example 4. Consider a BSOA\((16, 3, 4, 2; 4, 2)\) listed in Table 4. This array \(A\) can be partitioned into \(A_1, \ldots, A_v\), each of which becomes an OA\((4, 3, 2, 2)\) after the level collapsing \(\delta\), where \(\delta(0) = \delta(x) = 0, \delta(1) = \delta(x + 1) = 1\) and \(\delta\) satisfies \(\delta(a + b) = \delta(a) + \delta(b)\) for any two elements \(a, b \in GF(4)\). Let \(B_i = OA(16, 5, 4, 2)\) for \(i = 1, \ldots, 16\), we obtain an \(E = BSOA(256, 53, 4, 2; 4, 2)\) that can be expressed as \(E = (E_1^T, \ldots, E_{16}^T)\) with the property that each of \(E_1, \ldots, E_4\) becomes an OA\((64, 53, 2, 2)\) after the level-collapsing projection \(\delta\).
EXAMPLE 5. Consider an $A = \text{BSOA}(81, 4, 9, 2; 9, 3)$ provided by [1]. This array A can be partitioned into A_1, \ldots, A_9 each of which becomes an OA$(9, 4, 3, 2)$ after the level collapsing δ, where $\delta(0) = \delta(x + 1) = \delta(2x + 2) = 0, \delta(1) = \delta(x + 2) = \delta(2x) = 1, \delta(2) = \delta(x) = \delta(2x + 1) = 2$ and δ satisfies $\delta(a + b) = \delta(a) + \delta(b)$ for any two elements $a, b \in GF(9)$. Let $B_i = \text{OA}(162, 19, 9, 2)$ for $i = 1, \ldots, 81$, we obtain an $E = \text{BSOA}(13122, 631, 9, 2; 9, 3)$ that can be expressed as $E = (E_T^1, \ldots, E_T^9)^T$ with the property that each of E_1, \ldots, E_9 becomes an OA$(1458, 631, 3, 2)$ after the level-collapsing projection δ.

Table 4
BSOA(16, 3, 4, 2; 4, 2)

A	$\delta(A)$
A_1	0 0 0 0 0 0
x	1 0 1
$x+1$	1 0 1
x	1 1 0
$x+1$	1 1 0
A_2	0 0 0
x	1 0 1
$x+1$	1 0 1
x	1 1 0
$x+1$	1 1 0
A_3	0 0 0
x	1 0 1
$x+1$	1 0 1
x	1 1 0
$x+1$	1 1 0
A_4	0 0 0
x	1 0 1
$x+1$	1 0 1
x	1 1 0
$x+1$	1 1 0

Table 5 lists the examples of balanced sliced orthogonal arrays constructed by the proposed method as in Proposition 4.7 and by [1] without our results. Comparing m_a and m in Table 5, the number of columns in balanced sliced orthogonal arrays constructed by [1] and the proposed method, it can been seen that the proposed construction results in more columns.

Table 5
Examples of balanced sliced orthogonal arrays constructed by [1] and the proposed method

m	s	s_0	s_1	m_a	m	n_1	m_1	n_2	m_2
64	4	2	4	48	16	3	16	4	1
256	4	2	4	48	13	3	16	5	
512	4	2	8	48	53	3	16	5	
1024	4	2	4	192	213	53	4	1	
512	8	2	8	56	57	7	8	1	
4096	8	2	8	448	457	7	64	9	
729	9	3	9	36	37	81	4	9	
656	9	3	3	243	253	81	3	81	10

where m_a and m represent the number of columns obtained by [1] and the proposed method, and n_1, n_2, m_1, m_2 are as defined in Proposition 4.7.

4.5. Nested orthogonal arrays. Proposition 4.8 shows that the proposed construction in (6) provides nested orthogonal arrays of larger run sizes using a nested orthogonal array for A of n_1 runs and an orthogonal array for B_i, for $i = 1, \ldots, n_1$.
PROPOSITION 4.8. If $A = (A_1^T, A_2^T)^T$ is an NOA$(n_1, m_1, s; 2; n_0, s_0)$ where the array after applying a level-collapsing projection δ to A_1 is an OA$(n_0, m_1, s_0, 2)$, and δ satisfies $\delta(a+b) = \delta(a) + \delta(b)$ for any two elements $a, b \in GF(s)$, and for $i = 1, \ldots, n_1$ and a prime power $s > 2$, $B_i = OA(n_2, m_2, s, 1)$ for $m_2 = 1$ and $B_i = OA(n_2, m_2, s, 2)$ for $m_2 \geq 2$, then design E in (6) is an NOA$(n_1n_2, (s-1)m_1m_2 + m_1 + m_2, s; 2; n_0n_2, s_0)$ that can be expressed as $E = (E_1^T, E_2^T)^T$ where E_1 becomes an OA$(n_0n_2, (s-1)m_1m_2 + m_1 + m_2, s_0, 2)$ after the level-collapsing projection δ.

The proof of Proposition 4.8 is similar to that of Theorem 3.1 and thus we omit it. Example 6 gives an illustration of the use of Proposition 4.8.

EXAMPLE 6. Let A be the OA$(16, 3, 4, 2)$ listed in Table 4 and δ defined in Example 4. It is easy to check $\delta(A_1)$ being an OA$(4, 3, 2, 2)$, thus $A = (A_1^T, (A_2^T, A_3^T, A_4^T))^T$ is an NOA$(16, 3, 4, 2; 4, 2)$. For $i = 1, \ldots, 4$, taking $B_i = OA(16, 5, 4, 2)$ from the orthogonal array website [36], we obtain an NOA$(256, 53, 4, 2; 64, 2)$ based on Proposition 4.8, and the array has more columns that an NOA$(256, 48, 4, 2; 64, 2)$ provided by [30]. Another example is, using an NOA$(64, 5, 8, 2; 16, 4)$ and an OA$(64, 9, 8, 2)$, we have an NOA$(4096, 329, 8, 2; 1024, 4)$. However, [30] can only give an NOA$(4096, 320, 8, 2; 1024, 4)$ with an NOA$(64, 5, 8, 2; 16, 4)$ and a D$(64, 64, 8)$.

5. Conclusion and Discussion. We introduce a versatile method for constructing different kinds of orthogonal arrays. Armed with the theoretical results in Sections 3 and 4, we demonstrate that the proposed construction provides countless series of orthogonal arrays of strength two and three. Some examples of such arrays are listed in Table 2 and Example 2. Examples of new sliced orthogonal arrays and nested orthogonal arrays are given in Table 5 and Example 6. It shall be emphasized that, although the proposed method constructs nearly the same orthogonal arrays of strength two and three as the existing approaches in terms of the run sizes and the number of factors, it provides new orthogonal arrays of strength two and three by applying the proposed structure using non-isomorphic A’s, non-isomorphic B’s or isomorphic B’s up to column permutations and/or level relabeling of one or more columns. The same statement applies to resolvable orthogonal arrays. Particularly, for orthogonal arrays of large run sizes, the proposed method provides a new, flexible and efficient way to find good designs. For complete results on new orthogonal arrays of strength two and three, resolvable orthogonal arrays, sliced orthogonal arrays and nested orthogonal arrays offered by the proposed construction, it deserves a comprehensive investigation and thus we do not dwell on this issue here.

The proposed method is shown to construct balanced sliced orthogonal arrays, nested orthogonal arrays, and orthogonal arrays of (near) strength three, the last of which is a new class of orthogonal arrays we introduce. Compared with the existing approaches for constructing balanced sliced orthogonal arrays and nested orthogonal arrays, the proposed method provides new such arrays of run sizes that are not prime powers, noting that [1] only constructs the balanced sliced orthogonal arrays of runs sizes being prime powers, and [31] and [38] only offer the nested orthogonal arrays of run sizes being prime powers.

One direction for future work is to apply the proposed approach to obtain optimal orthogonal arrays in a similar fashion as in [45] which combines the construction with the algorithmic procedure. Another direction is to use this structure to obtain the catalogue of optimal designs [26]. One direction that deserves exploration is the use of the proposed approach for constructing mixed-level orthogonal arrays, and its use in constructing strong orthogonal arrays [17, 51].
APPENDIX: PROOFS

Proof of Lemma 3.1: It is easy to obtain items (i) and (iii). Under item (ii), by row permutations, \((a \oplus b, c \oplus \alpha b)\) can become \(n_2/s\) repetitions of \((\xi \oplus a, \alpha \xi \oplus c)\), where \(\xi = (\alpha_0, \alpha_1, \ldots, \alpha_{s-1})^T\). Then items (ii.1) to (ii.3) follow from this structure. Under item (ii.4), note that \((\xi, \alpha \xi)\) is a \(D(s, 2, s)\) when \(\alpha \neq 1\). In addition, as \(a\) is balanced, then \((\xi \oplus a, \alpha \xi \oplus c)\) is an orthogonal array. Hence the conclusion is true.

Proof of Lemma 3.2: Item (i) is obvious according to the definition of generalized Kronecker sum and orthogonal arrays of strength three. Item (iv) is directly followed by Lemma 3.1. We show that for any level combination \((\alpha_1, \beta^*)\) the rows of \((a \oplus b, c \oplus \beta b)\), the corresponding rows in \(e \oplus f\) form a balanced design. Under item (ii), since \((b_i, c_i) = OA(n_2, 2, s, 2)\), for any pair of \((\alpha_1, \beta^*)\), there are \(n_2/s^2\) rows in \((a_i + b_i, c_i + d_i)\) equal to \((\alpha_1, \beta^*)\), and for the corresponding rows in \(e_i + f_i = e_i + \alpha b_i\) take the value of \(\alpha_1\). Because \((e, \alpha c) = D(n_1, 2, s)\), that implies \(\{\alpha_1 + (e_i - \alpha a_i)\}_{i=1}^{n_1}\) take each value of \(GF(s)\) with the same frequency, and hence those rows in \(e \oplus f\) are balanced. Under item (iii), as \((a, c) = OA(n_1, 2, s, 2)\), we have \((a \oplus b, c \oplus \beta b)\) is \(OA(n_1 n_2, 2, s, 2)\) according to item (ii.2) of Lemma 3.1, and for the rows in \((a_i + b_i, c_i + \beta b_i)\) equal to \((\alpha_1, \beta^*)\), we have \(c_i - \beta a_i = \beta^* - \beta \alpha a_i\). If \(\beta = 0\), it is clear that there are \(n_1/s\) rows in \((\alpha a, c)\) satisfying the relationship \(c_i - \beta a_i = \beta^* - \beta \alpha a_i\). If \(\beta \neq 0\), as \((\alpha a, c) = OA(n_1, 2, s, 2)\), there are \(n_1/s\) rows in \((\beta a, c)\) satisfying the relationship \(c_i - \beta a_i = \beta^* - \beta \alpha a_i\), and both \(a\) and \(c\) are still balanced in such \(n_1/s\) rows. Correspondingly, in \(e \oplus f\), we have \(e_i + \alpha b_i = e_i + \alpha (\alpha^* - a_i) = \alpha \alpha^* + (e_i - \alpha a_i)\) as \(b_i = \alpha^* - a_i\). Under item (iii.1), \(e_i - \alpha a_i = (1 - \alpha) a_i\); or under item (iii.2), \(e_i - \alpha a_i = -\alpha a_i\), both are balanced in the corresponding \(n_1/s\) rows. Therefore, either in item (iii.1) or (iii.2), the corresponding rows in \(e \oplus f\) are balanced. Thus, items (iii.1) and (iii.2) follow. Under item (iii.3), consider \((a \oplus b, c \oplus \beta b, e \oplus \alpha b)\). By row permutations, the array can be arranged as \(n_2/s\) repetitions of \((\xi \oplus a, \beta \xi \oplus c, \alpha \xi \oplus e)\), which is an \(OA(s n_1, 3, s, 3)\) by \((a, c, e) = OA(n_1, 3, s, 3)\), where \(\xi = (\alpha_0, \alpha_1, \ldots, \alpha_{s-1})^T\). Thus, item (iii.3) follows. We complete the proof.

Proof of Theorem 3.1: Theorem 3.1 can be verified by checking the orthogonality of any two columns in \(E\) in (6) according to Lemma 3.1. More specifically, consider any two columns of \(E\), which can be represented by \(u = a_p \oplus (\alpha_j \ast b_q)\) and \(v = a_p' \oplus (\alpha_j' \ast b_{q'}')\). Table 5 lists conditions in Lemma 3.1 used for all combinations of \(u\) and \(v\). Note that \(g = 1, \ldots, s - 1\) in the table.

\(u\) and \(v\)	\((p, q)\) and \((p', q')\)	Condition
\(u \in D_g\) and \(v \in D_g\)	\(q \neq q'\)	(i)
\(u \in D_g\), \(v \in D_g\)	\(p \neq p', q = q'\)	(ii.2)
\(u \in A \oplus 0_{n_2}, v \in A \oplus 0_{n_2}\)	\(q \neq q'\)	(ii.3)
\(u \in D_g\) and \(v \in D_g, g \neq g'\)	\(p \neq p', q = q'\)	(i)
\(u \in D_g\) and \(v \in D_g, g \neq g'\)	\(p = p', q = q'\)	(ii.4)
\(u \in D_g\) and \(v \in D_g\)	\(q = q'\)	(i)
\(u \in D_g\) and \(v \in D_g\)	\(q = q'\)	(ii.3)
\(u \in D_g\), \(v \in A \oplus 0_{n_2}\)	\(q = q'\)	(ii.1)
Acknowledgments. We extend our sincere thanks to the Editor, Associate Editor and several referees for their constructive comments that lead to numerous improvements over the previous versions.

Funding. He was supported by National Natural Science Foundation of China, Grant No. 11701033. Lin was supported by Discovery grant from the Natural Sciences and Engineering Research Council of Canada. Sun is supported by Supported by National Natural Science Foundation of China Grant No. 11701033. Lin was supported by Discovery grant from the Natural Sciences and Engineering Research Council of Canada. Sun is supported by National Natural Science Foundation of China, Grant No. 11971098 and National Key Research and Development Program of China (No. 2020YFA0714102).

SUPPLEMENTARY MATERIAL

Supplement to “A New and Flexible Design Construction for Orthogonal Arrays for Modern Applications”

We provide results on determining the maximal number of columns in E in (6) for given values of n, s and t, and new results on lower bounds of the maximal number of columns in certain orthogonal arrays of strength three.

REFERENCES

[1] AI, M., JIANG, B. and LI, K. (2014). Construction of sliced space-filling designs based on balanced sliced orthogonal arrays. *Statistica Sinica* 24 1685–1702. MR3308657
[2] BOSE, R.C. and BUSH, K.A. (1952). Orthogonal arrays of strength two and three. *Annals of Mathematical Statistics* 23 508–524. MR0051204
[3] DENG, X., HUNG, Y. and LIN, C.D. (2015). Design for computer experiments with qualitative and quantitative factors. *Statistica Sinica* 25 1567–1581. MR3409081
[4] DENG, X., LIN, C.D., LIU, K.W. and ROWE, R.K. (2017). Additive Gaussian process for computer models with qualitative and quantitative factors. *Technometrics* 25 1567–1581. MR3677960
[5] DEY, A. and MUKERJEE, R. (1999). *Fractional factorial plans.* John Wiley & Sons, New York. MR838085
[6] EENDEBAK, P. and SCHOEN, E. (2017). Complete series of non-isomorphic orthogonal arrays. http://pietereendebak.nl/oapage.
[7] GOH, J., BINGHAM, D., HOLLOWAY, J.P., grosskopf, M.J., KURANZ, C.C. and RUTTER, E. (2013). Prediction and computer model calibration using outputs from multifidelity simulators. *Technometrics* 55 501–512. MR3176554
[8] GOPALAKRISHNAN, K., and STINSON, D. R. (2006). Applications of orthogonal arrays to computer science. *Proceeding of ICDM*, 149–164.
[9] GUPTA, V.K., NIGAM, A.K., and DEY, A. (1982). Orthogonal main effect plans for asymmetrical factorials. *Technometrics* 24 135–137. MR0655577
[10] HAALAND, B. and QIAN, P.Z.G (2011). Accurate emulators for large-scale computer experiments. *Annals of Statistics* 39 2974–3002. MR3012398
[11] HE, X. and QIAN, P.Z.G (2016). A central limit theorem for nested or sliced Latin hypercube designs. *Statistica Sinica* 26 1117–1128. MR3176554
[12] HE, X. and QIAN, P.Z.G (2014). A central limit theorem for general orthogonal array based space-filling designs. *Annals of Statistics* 42 1725–1750. MR3559945
[13] HE, Y., LIN, C.D. and SUN, F. (2017). On construction of marginally coupled designs. *Statistica Sinica* 27 665–683. MR3674691
[14] HE, Y., LIN, C.D., SUN, F. and LV, B. (2017). Marginally coupled designs For two-level qualitative factors. *Journal of Statistical Planning and Inference* 187 103–108. MR3638045
[15] HE, Y., LIN, C.D. and SUN, F. (2019). Construction of marginally coupled designs by subspace theory. *Bernoulli* 25 2163–2182. MR3961244
[16] HE, Y., LIN, C.D. and SUN, F. (2021). Supplement to “A new and flexible design construction for orthogonal arrays for modern applications.” DOI. COMPLETED BY THE TYPESETTER. MR3961244
[17] HE, Y. and TANG, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer experiments. *Biometrika* 100 254–260. MR3034340
[18] HEDAYAT, A.S. (1986). Orthogonal arrays of strength t^+ and their statistical applications. *Technical report*, University of Illinois, Chicago.
[19] Hedayat, A. S. (1990) *New properties of orthogonal arrays and their statistical applications*. In S. Ghosh, editor, Statistical Design and Analysis of Industrial Experiments, 407–422, Dekker, New York.

[20] Hedayat, A. S. (2017) *A scientific tour on orthogonal arrays*. In Abualrub T., Jarrah A., Kallel S., Suliman H. (eds) Mathematics Across Contemporary Sciences. AUS-ICMS 2015. Springer Proceedings in Mathematics & Statistics, vol 190. Springer, Cham.

[21] Hedayat, A. S., Sloane, N. J. and Stufken, J. (1999). *Orthogonal arrays: theory and applications*. Springer, New York. MR1693498

[22] Huang, H., Lin, D.K., Liu, M.Q. and Yang, J.F. (2016). Computer experiments with both qualitative and quantitative variables. *Technometrics* **58** 495–507. MR3556617

[23] Hwang, Y., He, X., and Qian, P.Z. (2016). Sliced orthogonal array-based Latin hypercube designs. *Technometrics* **58** 50–61. MR3463156

[24] Kong, X., Ai, M., and Tsui, K. (2018). Flexible sliced designs for computer experiments. *Annals of the Institute of Statistical Mathematics* **70** 631–646. MR3785710

[25] Lekivetz, R., Sitter, R., Bingham, D., Hamada, M.S., Moore, L.M., and Wendelberger, J.R. (2015). On algorithms for obtaining orthogonal and near-orthogonal arrays for main-effects screening. *Journal of Quality Technology* **47** 2–13.

[26] Lin, C.D., Sitter, R.R., and Tang, B. (2012). Creating catalogs of two-level nonregular fractional factorial designs based on the criteria of generalized aberration. *Journal of Statistical Planning and Inference* **142** 445–456. MR2843048

[27] Mukerjee, R., Sun, F., and Tang, B. (2014). Nearly orthogonal arrays mappable into fully orthogonal arrays. *Biometrika* **101** 957–963. MR3286928

[28] Mukerjee, R. and Wu, C.J. (1999). *A modern theory of factorial design*. Springer Science & Business Media. MR2230487

[29] Owen, A.B. (1992). Orthogonal arrays for computer experiments, integration and visualization. *Statistica Sinica* **2** 439–452. MR1187952

[30] Qian, P.Z., Ai, M., and Wu, C.J. (2009). Construction of nested space-filling designs. *Annals of Statistics* **37** 3616-3643. MR2549572

[31] Qian, P.Z., Tang, B., and Wu, C.J. (2009). Nested space-filling designs for computer experiments with two levels of accuracy. *Statistica Sinica* **19** 287–300. MR2487890

[32] Qian, P.Z., Wu, H., and Wu, C.J. (2008). Gaussian process models for computer experiments with quantitative and qualitative factors. *Technometrics* **50** 383–396. MR2457574

[33] Qian, P.Z. and Wu, C.J. (2008). Sliced space-filling designs. *Biometrika* **96** 945–956. MR2767280

[34] Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989). Design and analysis of computer experiments. *Statistical Science* **4** 409–423. MR3176554

[35] Santner, T.J., Williams, B.J. and Notz, W.I. (2018). *The design and analysis of computer experiments*. Springer Science & Business Media. MR3887662

[36] Sloane, N.J.A. (2004). A library of orthogonal arrays. http://neilsloane.com/oadir/.

[37] Suen, C.Y. (1989). Some resolvable orthogonal arrays with two symbols. *Communications in Statistics-Theory and Methods* **18** 3875–3881. MR1040681

[38] Sun, F., Liu, M., and Qian, P.Z. (2014). On the construction of nested space-filling designs. *Annals of Statistics* **42** 1394–1425. MR3226161

[39] Sun, F., Wang, Y., and Xu, H. (2019). Uniform projection designs. *Annals of Statistics* **47** 641–661. MR3909945

[40] Tang, B. (1993). Orthogonal array-based Latin hypercubes. *Journal of the American Statistical Association* **88** 1392–1397. MR1245375

[41] Wang, J.C. and Wu, C.F.J. (1992). Nearly orthogonal arrays with mixed levels and small runs. *Technometrics* **34** 409–422. MR1939683

[42] Wei, Y. and Xiong, S. (2019). Bayesian integrative analysis for multi-fidelity computer experiments. *Journal of Applied Statistics* **11** 1973–1987. MR3963046

[43] Wu, C.F.J. and Hamada, M.S. (2011). *Experiments: planning, analysis, and optimization*. John Wiley & Sons. MR2583259

[44] Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs. *Technometrics* **44** 356–368. MR1939683

[45] Xu, H., Cheng, S.W., and Wu, C.F.J. (2004). Optimal projective three-level designs for factor screening and interaction detection. *Technometrics* **46** 280–292. MR2082498

[46] Xu, H., Phoa, F.K., and Wong, W.K. (2009). Recent developments in nonregular fractional factorial designs. *Statistics Surveys* **3** 18–46. MR2520978

[47] Yang, F., Lin, C.D., Zhou, Y.D. and He, Y. (2021). Doubly coupled designs for computer experiments with both qualitative and quantitative factors, *Statistica Sinica*, online, doi: 10.5705/ss.202020.0317.
[48] YANG, X., CHEN, H., and LIU, M.Q. (2014). Resolvable orthogonal array-based uniform sliced Latin hypercube designs. *Statistics & Probability Letters* 93 108–115. MR3244562

[49] YANG, J.F., LIN, C.D., QIAN, P.Z., and LIN, D.K. (2013). Construction of sliced orthogonal Latin hypercube designs. *Statistica Sinica* 23 1117-1130. MR3114707

[50] ZHANG, Y., TAO, S., CHEN, W., and APLEY, D.W. (2020). A latent variable approach to Gaussian process modeling with qualitative and quantitative factors. *Technometrics*, 62, 291-302. MR4125497

[51] ZHOU, Y.D. and TANG, B. (2019). Column-orthogonal strong orthogonal arrays of strength two plus and three minus. *Biometrika* 4 997–1004. MR4031213