Original Article

Phase I study of alvocidib plus cytarabine/mitoxantrone or cytarabine/daunorubicin for acute myeloid leukemia in Japan

Takayuki Ikezoe¹ | Kiyoshi Ando² | Masahiro Onozawa³ | Takahisa Yamane⁴ | Naoko Hosono⁵ | Yasuyoshi Morita⁶ | Toru Kiguchi⁷* | Hiromi Iwasaki⁸ | Toshihiro Miyamoto⁹ | Keisuke Matsubara¹⁰ | Saori Sugimoto¹⁰ | Yasushi Miyazaki¹¹ | Masahiro Kizaki¹² | Koichi Akashi⁹

SUPPORTING INFORMATION

TABLE S1 List of participating medical institutions

Institution name	Principal investigator
Tokai University Hospital, Tokyo, Japan	Kiyoshi Ando
University of Tsukuba Hospital, Tsukuba, Japan	Shigeru Chiba
University of Fukui Hospital, Fukui, Japan	Naoko Hosono
Fukushima Medical University Hospital, Fukushima, Japan	Takayuki Ikezoe
National Hospital Organization Kyushu Medical Center, Fukuoka, Japan	Hiromi Iwasaki
Chugoku Central Hospital, Fukuyama, Japan	Toru Kiguchi
Kindai University Hospital, Sakai, Japan	Itaru Matsumura
Kyushu University Hospital, Fukuoka, Japan	Toshihiro Miyamoto
Hokkaido University Hospital, Sapporo, Japan	Masahiro Onozawa
NTT Medical Center Tokyo, Tokyo, Japan	Kensuke Usuki
Osaka City General Hospital, Osaka, Japan	Takahisa Yamane
TABLE S2 Summary of pharmacokinetic parameters for cytarabine, mitoxantrone, and daunorubicin (pharmacokinetic population)

	C_{max} (ng/mL)	t_{max} (h)	AUC_{0-last} (h*ng/mL)	t_{1/2} (h)
Cytarabine (cohort R1): day 6				
n	3	3	3	3
Arithmetic mean^a	1401	71.920	23063.12	2.28
SD	1100	0.119	13503.93	0.95
Min, max	164, 2270	71.75, 71.98	7521.4, 31928.6	1.3, 3.2
Cytarabine (cohort R2): day 6				
n	3	3	3	3
Arithmetic mean^a	769.7	71.950	27402.21	1.85
SD	453.7	27.563	6685.38	0.38
Min, max	412, 1280	24.22, 71.97	19791.6, 32327.0	1.6, 2.3
Mitoxantrone (cohort R1): day 9 or 10				
n	3	3	3	3
Arithmetic mean^a	196.6	1.970	354.44	5.39
SD	113.3	0.068	178.75	2.74
Min, max	79.7, 306	1.87, 2.00	159.9, 511.5	3.3, 8.5
Mitoxantrone (cohort R2): day 9 or 10				
n	3	3	3	3
Arithmetic mean^a	1006	2.000	1877.46	20.46
SD	1104	0.137	2013.46	10.61
Min, max	342, 2280	1.90, 2.17	712.0, 4202.4	10.4, 31.5
Daunorubicin (cohort F1): day 5

	3	3	3	3
n	3	3	3	3
Arithmetic mean\(^a\)	257.7	0.500	423.26	7.28
SD	136.3	0.053	139.35	2.87
Min, max	101, 349	0.48, 0.58	272.7, 547.7	5.6, 10.6

Abbreviations: AUC\(_0\)-\(t_{\text{last}}\), area under the concentration-time curve up to the last measurable concentration; \(C_{\text{max}}\), maximum plasma concentration; \(t_{\frac{1}{2}}\), elimination half-life; \(t_{\text{max}}\), time to maximum plasma concentration.

\(^a\)Median is shown for \(t_{\text{max}}\).
FIGURE S1 Illustration of the mode of action of alvocidib (Sumitomo Dainippon Pharma, data on file).

MCL-1 is an anti-apoptotic protein with a key role in promoting cell survival and its overexpression conveys resistance to apoptosis. Alvocidib potently inhibits CDK9 which, in turn, is able to downregulate MCL-1. This results in sensitization of tumor cells to apoptotic signals.

Abbreviations: BRD4, bromodomain-containing protein 4; CDK9, cyclin-dependent kinase 9; CycT, cyclin T; CTD, C-terminal domain; MCL-1, myeloid cell leukemia-1; P-TEFb, positive transcription elongation factor b.