Perturbations of Schwarzschild black holes in laboratories

E Abdalla, R A Konoplya and A Zhidenko
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo-SP, Brazil
E-mail: eabdalla@fma.if.usp.br, konoplya@fma.if.usp.br and zhidenko@fma.if.usp.br

Received 18 July 2007, in final form 29 September 2007
Published 21 November 2007
Online at stacks.iop.org/CQG/24/5901

Abstract
It is well known that the perturbations of Schwarzschild black holes are governed by a wave equation with some effective potential. We consider perturbations of a gas in a tube called the de Laval nozzle, which is narrow in the middle and has a sonic point in the throat. By equating the wave equation in a de Laval nozzle of an arbitrary form with the wave equation of spin-s perturbations of Schwarzschild black holes, we find the exact expression for the form of the de Laval nozzle, for which acoustic perturbations of the gas flow correspond to the general form of perturbations of Schwarzschild black holes. This allows observation, in a laboratory, of the acoustic waves, which are analog of damping quasinormal oscillations of Schwarzschild black holes. The found exact acoustic analog allows us to also observe some other phenomena governed by the wave equation, such as the wave scattering and tunneling.

PACS numbers: 04.30.Nk, 04.50.+h

1. Introduction

One of the most essential characteristics of black holes is the resonant frequencies of the response to external perturbations, called quasinormal frequencies [1]. Being an analog of normal modes for open systems, they do not depend on the way in which the system is perturbed, but only on the parameters of a system. Quasinormal modes are expected to be observed in the near future with the help of a new generation of gravitational antennas. It is well known that the non-rotating astrophysical black hole can be described by the Schwarzschild solution, implying the importance of the quasinormal modes of this background [2].

In addition to the still elusive possibility of observing quasinormal modes (QNMs) of black holes with the help of a new generation of gravitational antennas, there is a window for observation of the acoustic analog of a black hole in laboratories. This is the well known Unruh analog of black holes [3], which are the apparent horizons appearing in a fluid with
a space-dependent velocity, in the presence of sonic points. The supersonic waves cannot propagate back beyond the sonic point, thereby mimicking the effect of the horizon at sonic points in a membrane paradigm. The Unruh discovery stimulated active investigation of quasinormal modes of different analog black holes [6]. First, the quasinormal spectrum of the analog black holes given by the metrics:

\[ds^2 = -(1 - C/r^2) dt^2 + \left(1 - C/r^2\right)^{-1} dr^2 - 2B d\phi dr + r^2 d\phi^2 \]

and

\[ds^2 = -(1 - r_0/r^4) dt^2 + \left(1 - r_0/r^4\right)^{-1} dr^2 + r^2 d\Omega^2 \]

was considered [6]. These are the two models for rotating analog black holes in ‘draining bathtub’ and for a canonical analog non-rotating black hole. Recently, interesting acoustic analogs of brane-world black holes have been suggested [7, 8].

We can see from the above formulae that these metrics, even being very useful as analogs with apparent horizons, do not represent a true solution of the Einstein or other gravity dynamical equations. If one had a complete analogy with some known solution of Einstein equations, say, the Schwarzschild solution, he could see in the acoustic experiments not only qualitative, but also, up to an experimental accuracy, exact numerical coincidence with a prototype characteristic. Namely, for quasinormal modes, which are governed by the form of the wave equation, this numerical correspondence would mean that the effective potential of the perturbations of some hydrodynamic system coincides with an effective potential of a black hole. Fortunately, recent consideration of the perturbations of a gas in a de Laval nozzle [4] gives us such an opportunity of finding a system that is related to the same effective potential as a Schwarzschild black hole.

The canonical de Laval nozzle is a convergent–divergent tube, narrow in the middle. It allows us to accelerate the gas until the sonic speed in its throat, reaching supersonic speeds after passing the throat. The perturbations of the gas in a de Laval nozzle can be considered as one-dimensional if the section of the nozzle does not change too quickly. Here we show that the corresponding effective potential of perturbations in a canonical de Laval nozzle can be made equal to the potential for perturbations of Schwarzschild black holes, if choosing some specific form of the nozzle. In addition, we suggest another, approximate, way to get quasinormal modes of Schwarzschild black holes in a de Laval nozzle. For this, one needs to mimic the form of the effective potential for Schwarzschild metric with the help of a de Laval nozzle of a simple form suggested in [4].

This paper is organized as follows: section 2 gives all basic equations of the one-dimensional motion in a de Laval nozzle we shall use. Section 3 is devoted to reproducing the exact expression for the form of the nozzle which corresponds to the potential of the Schwarzschild black holes. In the discussions, we sketch the open questions and possible generalizations of the suggested technique.

2. Calculation of the nozzle cross section \(A \) in terms of \(g \)

We assume that a gas in the nozzle can be described by equations of motion for a perfect fluid and that the flow is quasi-one-dimensional:

\[
\partial_t (\rho A) + \partial_x (\rho v A) = 0, \quad (1) \\
\partial_t (\rho v A) + \partial_x [(\rho v^2 + p) A] = 0, \quad (2) \\
\partial_t (\epsilon A) + \partial_x [(\epsilon + p) v A] = 0. \quad (3)
\]

We assume that a gas in the nozzle can be described by equations of motion for a perfect fluid and that the flow is quasi-one-dimensional:
Here \(\rho \) is the density, \(v \) is the fluid velocity, \(p \) is the pressure, \(A \) is the cross section of the nozzle and
\[
\epsilon = \frac{1}{2} \rho v^2 + \frac{p}{\gamma - 1}
\]
is the energy density. The heat capacity ratio is \(\gamma = 1 + 2/n = 7/5 = 1.4 \) for di-atomic molecules of air \((n = 5) \). We shall assume that the flow has no entropy discontinuity, then the fluid is isentropic:
\[
p \propto \rho^\gamma.
\]
Instead of equation (2), we can use Euler’s equation
\[
\rho (\partial_t v + v \partial_x v) = -\partial_x p.
\]
For an isentropic fluid equation (6) is reduced to the Bernoulli equation
\[
\partial_t \Phi + \frac{1}{2} (\partial_x \Phi)^2 + h(\rho) = 0,
\]
where \(h(\rho) = \int \rho^{-1} \, dp \) is the specific enthalpy and \(\Phi = \int v \, dx \) is the velocity potential.

According to [4], the perturbation equations in such a nozzle can be reduced to
\[
\left[\frac{d^2}{dx^2} + \kappa^2 - V(x^*) \right] H_\omega = 0,
\]
\[
\kappa = \frac{\omega}{c_{s0}},
\]
\[
V(x^*) = \frac{1}{g^2} \left[g \frac{d^2 g}{2 \, dx^2} - \frac{1}{4} \left(\frac{dg}{dx^*} \right)^2 \right].
\]

Here \(c_{s0} \) is the stagnation sound speed, and \(x^* \) is an acoustic analog of the tortoise coordinate which satisfies \(x^*(x = +\infty) = +\infty, x^*(x = 0) = -\infty \), namely,
\[
x^* = c_{s0} \int \frac{dx}{c_s(1 - M(x)^2)},
\]
where \(M(x) \) is the Mach number [5], which, by the definition, is the current flow speed divided by the sound speed. In our notations \(M = v/c_s \). The function \(H_\omega \) represents small perturbations of gas flow,
\[
H_\omega(x) = g^{1/2} \int dt \, e^{i\omega(t - f(x))} \Phi(t, x),
\]
\[
g = \frac{\sigma}{c_s},
\]
\[
f(x) = \int \frac{|v| \, dx}{c_s^2 - v^2}.
\]

Here, according to [4], the small perturbations are defined as follows:
\[
\rho = \bar{\rho} + \delta \rho, \quad \bar{\rho} \gg |\delta \rho|,
\]
\[
\Phi = \bar{\Phi} + \phi, \quad |\partial_x \Phi| \gg |\partial_x \phi|.
\]

Our starting point is the calculation of the configuration of de Laval nozzle, i.e. its cross section as a function of the transversal nozzle coordinate. Since we know the effective
potential, we can calculate in some way the function \(g(x) \). By definition equation (15) of [4] reads
\[
g = \frac{\sigma}{c_s} = \frac{\rho A}{\sqrt{\gamma p/\rho}}.
\]
Taking (5) into account we find
\[
g \propto \frac{\rho A}{\rho^{(y-1)/2}}. \tag{17}
\]
We can choose dimensionless quantities for \(\rho(x) \) and \(A(x) \) by measuring them in units of \(\rho_0 \) and \(A_0 \) respectively [5]. Then equation (5.3) of [5] reads
\[
A^{-1} \propto (1 - \rho^{y-1})^{1/2} \rho. \tag{18}
\]
Since (8) is invariant with respect to re-scaling of \(g \), we can fix the coefficients in (17) and (18) arbitrarily:
\[
g = \frac{\rho A}{2\rho^{(y-1)/2}}, \quad A^{-1} = (1 - \rho^{y-1})^{1/2} \rho. \tag{19}
\]
We find
\[
g = \frac{\rho^{(1-y)/2}}{2(1 - \rho^{y-1})^{1/2}} = \frac{\rho^{(1-y)}}{2(\rho^{(1-y)} - 1)^{1/2}}. \tag{20}
\]
Hence it follows that
\[
\rho^{1-y} = 2g^2(1 \pm \sqrt{1 - g^{-2}}). \tag{21}
\]
The sign should be chosen in order that \(\rho \) be a monotonous function with respect to the transverse coordinate. As we will show later, the function \(g \) for the Schwarzschild black hole can be chosen also monotonous in the \(R \) region, finite at the horizon and infinite at the spatial infinity. Therefore, we choose the minus sign,
\[
\rho^{1-y} = 2g^2(1 - \sqrt{1 - g^{-2}}). \tag{22}
\]
Note that \(g \) must always be larger than unity in our consideration.

In our notations, the Mach number is connected with \(\rho \) as
\[
M^2 = \frac{2(\rho^{1-y} - 1)}{(\rho^{1-y} + 1)} = \frac{2}{\gamma - 1} \frac{2g^2(1 - \sqrt{1 - g^{-2}}) - 1}{(2g^2(1 - \sqrt{1 - g^{-2}}) - 1)}. \tag{23}
\]
Since \(M = 1 \) at the event horizon, \(g \) must be finite there, and
\[
g \bigg|_{e.h.} = \frac{\sqrt{2} \sqrt{\gamma + 1}}{\sqrt{\gamma - 1}} = \frac{3}{\sqrt{3}} > 1. \tag{24}
\]
This requirement fixes both constants of integration.

Substituting (23) into (19) we find the cross-section area as a function of \(g \):
\[
A = \frac{2g^2(1 - \sqrt{1 - g^{-2}})^{1/(y-1)}}{\sqrt{1 - \sqrt{1 - g^{-2}}}}. \tag{25}
\]
3. The de Laval nozzle for the Schwarzschild black hole

Our starting point is the calculation of the configuration of the de Laval nozzle, i.e. its cross section as a function of the transversal nozzle coordinate. Since we know the effective potential, we can calculate in some way the function $g(x)$.

After separation of the angular and time variables, scalar field perturbations in the Schwarzschild background can be reduced to the wave-like equation

$$
\left(\frac{d^2}{dr^2} + \omega^2 - V(r^*) \right) \Psi(r^*) = 0,
$$

where putting the event horizon to be unity we find

$$
f(r) = 1 - \frac{1}{r}, \quad dr^* = \frac{dr}{f(r)}, \quad V(r) = f(r) \left(\frac{\ell(\ell + 1)}{r^2} + \frac{1 - s^2}{r^3} \right).
$$

To find g that produces the same potential we identify the ‘tortoise’ coordinates of the black hole solution and of the de Laval nozzle

$$
dr^* = dx^* = \frac{c_0 dx}{c_i(1 - M^2)} = \frac{\rho^{(1 - \gamma)/2} dx}{1 - M^2} = \frac{\sqrt{2g^2(1 - \sqrt{1 - g^2})}}{1 - \frac{1}{1 - \frac{2}{\sqrt{2}}}(2g^2(1 - \sqrt{1 - g^2} - 1)).
$$

Here x is the real coordinate along the de Laval nozzle. Then we can find the equation for $g(r)$,

$$
\frac{f(r)f'(r)g'(r) + f(r)^2g''(r)}{2g(r)} - \frac{f(r)^2g'(r)^2}{4g(r)^2} = V(r).
$$

This implies that the from of the de Laval nozzle is parameterized by the parameter r and $x^*(r) = r^*(r)$. Note that as we chose the radius of the event horizon to be unity, the nozzle coordinate x is measured in the units of the radius of the event horizon.

The general solution of the equation (30) contains two arbitrary constants. They can be found in a unique way by the condition (25). Namely, the requirement that the solution must be finite at $r = 1$ fixes one of the constants. Then the other constant re-scales the solution of (30), and must be fixed by its value at $r = 1$. Finally, the solution of (30) for arbitrary ℓ and s, which satisfies (25) is given by the following formula:

$$
g(r) = \frac{\gamma + 1}{2\sqrt{2}/\sqrt{\gamma - 1}} \sum_{n=0}^\ell \left(\frac{(-1)^{s+1}(\ell + n)!}{(n + s)!(n - s)!(\ell - n)!} \right)^2 \left(\frac{\Gamma(1 + \ell + s)\mathbf{F}_1(s - \ell, s + \ell + 1, 1 + 2s, r)}{\Gamma(1 + \ell - s)\Gamma(1 + 2s)} \right)^2.
$$

One can easily check that the above solution indeed satisfies the equation (25), for any fixed ℓ and s.

From (29) we find the dependence of the transversal nozzle coordinate x on the parameter r:

$$
x = \int_1^r \frac{(\gamma + 1 - 4g(r)^2(1 - \sqrt{1 - g(r)^2})) dr}{f(r)(\gamma - 1)\sqrt{2g(r)^2(1 - \sqrt{1 - g(r)^2})}}.
$$

The integration constant is chosen in order to x be zero at the sonic point.
the transverse nozzle coordinate x. The function $A(x)$ is shown in figures 1–4. Note that the canonical de Laval nozzle diverges at the end of the flow trajectory, so that $A(r=\infty) = \infty$ (see pages 53 and 124 in [5]). Indeed, our formula (31) implies divergence at least as $\sim r^{-2}$. The diverging of the nozzle nevertheless does not give any going beyond the one-dimensional representation of the motion, because the function $\sqrt{A(x)}$ is measured in units of black hole mass, i.e. one can ‘pull’ the nozzle along the transverse coordinate x in order to make the area of the nozzle change as slowly as one wishes. Such a ‘pulling’ simply means that we are getting the correspondence with a black hole of larger mass. Since the quasinormal modes are inversely proportional to the mass of the black hole, this means just some determined multiplication by a coefficient when coming from the frequencies observed in experiment to the QNMs of a black hole.

As can be seen from [9], the values of the quasinormal modes are determined by the behavior of the effective potential in some region near black hole. The form of the effective potential (and thereby of the de Laval nozzle) far from black hole is less significant for the QNMs problem. Therefore, we expect that experimental phenomena such as surface friction and reflection of waves from boundaries will not have considerable influence on the observed picture.
Now we discuss the isospectrality and the effective potential for the polar and axial gravitational perturbations. We consider the effective potential for the gravitational perturbation of the polar type,

$$V(r) = f(r) \frac{9(1 + \lambda r) + \lambda^2 r^3 + \lambda^3 r^2(3 + 2r)}{r^3(3 + \lambda)^2},$$

(33)

where $\lambda = (\ell + 2)(\ell - 1)$.

For the above polar type gravitational perturbations we can also obtain the exact solution for the function $g(r)$, i.e. the form of de Laval nozzle. The function $g(r)$ is given in the following table for $\ell = 2, 3, 4$ and 5 and in formula (34):

$$g(r, \ell) = \frac{\gamma + 1}{2\sqrt{2}\sqrt{\gamma - 1}} \frac{r^2 p(r, \ell)^2}{(3 + (\ell + 2)(\ell - 1)r)^2}$$

(34)

ℓ	$p(r, \ell)$
2	$3 - 6r^2 - 4r^3$
3	$3 - 30r^2 - 20r^3 + 60r^4$
4	$3 - 90r^2 - 60r^3 + 630r^4 - 504r^5$
5	$3 - 210r^2 - 140r^3 + 3570r^4 - 6552r^5 + 3360r^6$

Apparently there exists a solution for general ℓ, yet it is probably quite cumbersome. Analysis of figures 3 and 4 shows that the forms of the nozzles for modeling polar and axial gravitational perturbations are almost the same. The difference cannot be seen explicitly, although not vanishing. As the effective potentials for the axial and polar types also differ only slightly, this may mean that the forms of the nozzles also differ only slightly.

4. Discussion

The suggested solution of the inverse problem for the correspondence of the form of de Laval nozzle to the general form of perturbations of the Schwarzschild black holes (i.e. for perturbations with spin s and multipole ℓ) can be generalized in many ways. First, it would be very interesting to consider the massive vector [11] and scalar [10] field perturbations, because of quite unusual behavior of massive perturbations. Thus the so-called quasi-resonances, infinitely long lived modes, for a massive scalar field [12] could be observed in a de Laval nozzle of some form as almost non-damping sound waves. These waves would certainly be reflected from the boundary of the nozzle and, thereby, would break the quasinormal mode boundary conditions. Even though in a real experiment one cannot obtain perfect QNM
Another possible generalization is to consider more general black hole backgrounds: Reissner–Nordström, Schwarzschild–de Sitter or higher dimensional Schwarzschild black holes [13] with charge, A-term and Gauss–Bonnet term [15], including the brane-world black holes [14]. The Gauss–Bonnet black hole ringing [15] would be especially interesting to model in a nozzle because there exists the instability in some region of values of the black hole parameters [15]. In the approach considered in this paper, we are limited only by a spherical symmetry, i.e. by \(\omega \) independence of the effective potential. In addition, one could consider the flow of gas with a time-dependent initial speed at the compressor, which probably could model the perturbations of the Vaidya evaporating black holes [16, 17]. We cannot be sure that in all these cases the differential equation for the form of de Laval nozzle will be exactly integrable, yet one can always find some numerical solution. We believe that further research will solve these interesting problems.

It should be recalled also that the precise acoustic analogy is only established for a scalar field. To be able to reproduce the potential \(V(r) \) for fields of different spins certainly does not mean that one can reproduce all the characteristics of those equations in an acoustic model.

Finally, let us note that the obtained acoustic analog for the perturbations of the Schwarzschild black holes is not limited by quasinormal mode problems only, but allows general investigation of propagation of classical and quantum fields, including processes such as scattering and tunneling of waves and particles.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

References

[1] Kokkotas K D and Schmidt B G 1999 Living Rev. Rel. 2 2
[2] Zhu J M S, Wang B and Abdalla E 2001 Phys. Rev. D 63 124004 (Preprint hep-th/0101133)
 Kao H C 2007 Preprint 0704.0284
 Pan Q Y and Jing J L 2006 Mod. Phys. Lett. A 21 2671
 Ma C, Gui Y, Wang W and Wang F 2006 Preprint gr-qc/0611146
 Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141 (Preprint gr-qc/0612010)
 Musiri S and Siopsis G 2006 Preprint hep-th/0610170
 Konoplya R A 2004 J. Phys. Stud. 8 93
 Birmingham D 2003 Phys. Lett. B 569 199 (Preprint hep-th/0306004)
 Konoplya R A 2003 Phys. Rev. D 68 024018 (Preprint gr-qc/0303052)
 Mott L 2003 Adv. Theor. Math. Phys. 6 1135 (Preprint gr-qc/0212096)
[3] Unruh W G 1995 Phys. Rev. D 51 2827
 Unruh W G 1981 Phys. Rev. Lett. 46 1351
[4] Okuzumi S and Sakagami M A 2007 Preprint gr-qc/0703070
[5] Liepmann H W and Roshko A 1957 Elements of Gasdynamics (New York: Wiley) chapter 5
[6] Cardoso V, Lemos J P S and Yoshida S 2004 Phys. Rev. D 70 124032 (Preprint gr-qc/0410107)
 Berti E, Cardoso V and Lemos J P S 2004 Phys. Rev. D 70 124006 (Preprint gr-qc/0408099)
 Barcelo C, Cano A, Garay L J and James G 2007 Phys. Rev. D 75 084024 (Preprint gr-qc/0701173)
 Saavedra J 2006 Mod. Phys. Lett. A 21 1601 (Preprint gr-qc/0508040)
 Cherubini C, Federici F, Succi S and Tosoi M P 2005 Phys. Rev. D 72 084016 (Preprint gr-qc/0504048)
 Nakano H, Kurita Y, Ogawa K and You C M 2005 Phys. Rev. D 71 084006 (Preprint gr-qc/0411041)
 Lepe S and Saavedra J 2005 Phys. Lett. B 617 174 (Preprint gr-qc/0410074)
[7] Ge X H and Kim S W 2007 Preprint 0705.1396
Perturbations of Schwarzschild black holes in laboratories

[8] Ge X H and Kim S W 2007 Preprint 0705.1404
[9] Konoplya R A and Zhidenko A 2007 Phys. Lett. B 648 236 (Preprint hep-th/0611226)
Konoplya R A and Zhidenko A 2007 Phys. Lett. B 644 186 (Preprint gr-qc/0605082)
[10] Simone L E and Will C M 1992 Class. Quantum Grav. 9 963
Konoplya R A 2002 Phys. Lett. B 550 117 (Preprint gr-qc/0210105)
Jana T and Roy P 2007 Preprint 0705.3304
[11] Konoplya R A and Molina C 2007 Phys. Rev. D 75 084004 (Preprint gr-qc/0602047)
Konoplya R A 2006 Phys. Rev. D 73 024009 (Preprint gr-qc/0509026)
[12] Ohashi A and Sakagami M A 2004 Class. Quantum Grav. 21 3973
[13] Cardoso V, Dias O J C and Lemos J P S 2003 Phys. Rev. D 67 064026
Konoplya R A and Zhidenko A 2007 Preprint hep-th/0703231
Konoplya R A 2003 Phys. Rev. D 68 124017 (Preprint hep-th/0309030)
Lopez-Ortega A 2006 Gen. Rel. Grav. 38 1565
Saa A 2007 Preprint gr-qc/0701153
Cho H T, Cornell A S, Doukas J and Naylor W 2007 Preprint hep-th/0701193
[14] Kanti P, Konoplya R A and Zhidenko A 2006 Phys. Rev. D 74 064008 (Preprint gr-qc/0607048)
Shen J y, Wang B and Su R K 2006 Phys. Rev. D 74 044036
Kanti P and Konoplya R A 2006 Phys. Rev. D 73 044002 (Preprint hep-th/0512257)
Abdalla E, Cunatros-Melgar B, Pavan A B and Molina C 2006 Nucl. Phys. B 752 40 (Preprint gr-qc/0604033)
[15] Dotti G and Gleiser R J 2005 Phys. Rev. D 72 044018
Konoplya R 2005 Phys. Rev. D 71 024038 (Preprint hep-th/0410057)
Abdalla E, Konoplya R A and Molina C 2005 Phys. Rev. D 72 084006 (Preprint hep-th/0507100)
Gleiser R J and Dotti G 2005 Preprint gr-qc/0510069
Chakrabarti S K 2007 Gen. Rel. Grav. 39 567
Moura F and Schiappa R 2007 Class. Quantum Grav. 24 361
Daghigh R G, Kunstatter G and Zaprick J 2007 Class. Quantum Grav. 24 1981
Konya K 2007 Phys. Rev. D 75 104003 (Preprint hep-th/0701257)
[16] Abdalla E, Chirenti C B M and Saa A 2007 Preprint gr-qc/0703071
[17] Abdalla E, Chirenti C B M and Saa A 2006 Phys. Rev. D 74 084029 (Preprint gr-qc/0609036)