Mean convergence of Fourier-Dunkl series

Óscar Ciaurria,1, Mario Pérezb,1,2,*, Juan Manuel Reyesc, Juan Luis Varonaa,1

aCIME and Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
bIUMA and Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
cDepartament de Tecnologia, Universitat Pompeu Fabra, 08003 Barcelona, Spain

Abstract

In the context of the Dunkl transform a complete orthogonal system arises in a very natural way. This paper studies the weighted norm convergence of the Fourier series expansion associated to this system. We establish conditions on the weights, in terms of the A_p classes of Muckenhoupt, which ensure the convergence. Necessary conditions are also proved, which for a wide class of weights coincide with the sufficient conditions.

Keywords: Dunkl transform, Fourier-Dunkl series, orthogonal system, mean convergence

2000 MSC: Primary 42C10; Secondary 33C10

1. Introduction

For $\alpha > -1$, let J_α denote the Bessel function of order α:

$$J_\alpha(x) = \left(\frac{x}{2}\right)^\alpha \sum_{n=0}^{\infty} \frac{(-1)^n(x/2)^{2n}}{n! \Gamma(\alpha + n + 1)}$$

(a classical reference on Bessel functions is [17]). Throughout this paper, by $\frac{J_\alpha(z)}{2^\alpha}$ we denote the even function

$$\frac{1}{2^\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n(z/2)^{2n}}{n! \Gamma(\alpha + n + 1)}, \quad z \in \mathbb{C}. \quad (1)$$

In this way, for complex values of z, let

$$I_\alpha(z) = 2^\alpha \Gamma(\alpha + 1) \frac{J_\alpha(iz)}{(iz)^\alpha} = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(z/2)^{2n}}{n! \Gamma(\alpha + n + 1)};$$

the function I_α is a small variation of the so-called modified Bessel function of the first kind and order α, usually denoted by I_α. Also, let us take

$$E_\alpha(z) = I_\alpha(z) + \frac{z}{2(\alpha + 1)} I_{\alpha+1}(z), \quad z \in \mathbb{C}.$$

These functions are related with the so-called Dunkl transform on the real line (see [6] and [7] for details), which is a generalization of the Fourier transform. In particular, $E_{-1/2}(x) = e^x$ and the Dunkl transform

*Corresponding author

Email addresses: oscar.ciaurri@unirioja.es (Óscar Ciaurri), mperez@unizar.es (Mario Pérez), reyes.juanmanuel@gmail.com (Juan Manuel Reyes), jvarona@unirioja.es (Juan Luis Varona)

1Supported by grant MTM2009-12749-C03-03, Ministerio de Ciencia e Innovación, Spain
2Supported by grant E-64, Gobierno de Aragón, Spain

This paper has been published in J. Math. Anal. Appl. 372 (2010), 470–485; doi:10.1016/j.jmaa.2010.07.029
of order $\alpha = -1/2$ becomes the Fourier transform. Very recently, many authors have been investigating the
behaviour of the Dunkl transform with respect to several problems already studied for the Fourier transform;
for instance, Paley-Wiener theorems [1], multipliers [4], uncertainty [16], Cowling-Price’s theorem [11],
transplantation [14], Riesz transforms [15], and so on. The aim of this paper is to pose and analyse in this
new context the weighted L^p convergence of the associated Fourier series in the spirit of the classical scheme
which, for the trigonometric Fourier series, can be seen in Hunt, Muckenhoupt and Wheeden’s paper [10].

The function \mathcal{I}_α is even, and $E_\alpha(ix)$ can be expressed as

$$E_\alpha(ix) = 2^\alpha \Gamma(\alpha + 1) \left(\frac{J_\alpha(x)}{x^{\alpha+1}} + \frac{J_{\alpha+1}(x)}{x^{\alpha+1}} \right).$$

Let $\{s_j\}_{j \geq 1}$ be the increasing sequence of positive zeros of $J_{\alpha+1}$. The real-valued function
$\text{Im} E_\alpha(ix) = \frac{2^\alpha}{2(\alpha+1)} \mathcal{I}_{\alpha+1}(ix)$ is odd and its zeros are $\{s_j\}_{j \in \mathbb{Z}}$ where
$s_{-j} = -s_j$ and $s_0 = 0$. In connection with the Dunkl transform on the real line, two of the authors introduced
the functions $e_j, j \in \mathbb{Z},$ as follows:

$$e_0(x) = 2^{(\alpha+1)/2} \Gamma(\alpha + 2)^{1/2},$$

$$e_j(x) = \frac{2^{\alpha/2} \Gamma(\alpha + 1)^{1/2}}{[\mathcal{I}_\alpha(is_j)]} E_\alpha(is_j), \quad j \in \mathbb{Z} \setminus \{0\}.$$

The case $\alpha = -1/2$ corresponds to the classical trigonometric Fourier setting: $\mathcal{I}_{-1/2}(z) = \cos(iz),$ $\mathcal{I}_{1/2}(z) = \frac{e^{iz}}{iz},$ $s_j = \pi j,$ $E_{-1/2}(is_j) = e^{\pi j},$ and $\{e_j\}_{j \in \mathbb{Z}}$ is the trigonometric system with the appropriate
multiplicative constant so that it is orthonormal on $(-1, 1)$ with respect to the normalized Lebesgue measure
$(2\pi)^{-1/2} dx$.

For all values of $\alpha > -1$, in \mathbb{R} the sequence $\{e_j\}_{j \in \mathbb{Z}}$ was proved to be a complete orthonormal system
in $L^2((-1, 1), d\mu_\alpha), \ d\mu_\alpha(x) = (2^{\alpha+1} \Gamma(\alpha + 1))^{-1/2} |x|^{2\alpha+1} dx.$ That is to say

$$\int_{-1}^{1} e_j(x) e_k(x) d\mu_\alpha(x) = \delta_{jk}$$

and for each $f \in L^2((-1, 1), d\mu_\alpha)$ the series

$$\sum_{j=-\infty}^{\infty} \left(\int_{-1}^{1} f(y) e_j(y) d\mu_\alpha(y) \right) e_j(x),$$

which we will refer to as Fourier-Dunkl series, converges to f in the norm of $L^2((-1, 1), d\mu_\alpha)$. The next step
is to ask for which $p \in C(1, \infty), \ p \neq 2,$ the convergence holds in $L^p((-1, 1), d\mu_\alpha)$. The problem is equivalent,
by the Banach-Steinhaus theorem, to the uniform boundedness on $L^p((-1, 1), d\mu_\alpha)$ of the partial sum
operators $S_n f$ given by

$$S_n f(x) = \int_{-1}^{1} f(y) K_n(x, y) d\mu_\alpha(y),$$

where $K_n(x, y) = \sum_{j=-n}^{n} e_j(x) e_j(y)$. We are interested in weighted norm estimates of the form

$$\|S_n(f)U\|_{L^p((-1, 1), d\mu_\alpha)} \leq C \|fV\|_{L^p((-1, 1), d\mu_\alpha)},$$

where C is a constant independent of n and f, and U, V are nonnegative functions on $(-1, 1)$.

Before stating our results, let us fix some notation. The conjugate exponent of $p \in (1, \infty)$ is denoted by p'. That is,

$$\frac{1}{p} + \frac{1}{p'} = 1,$$

or

$$p' = \frac{p}{p-1}.$$
For an interval \((a, b) \subseteq \mathbb{R}\), the Muckenhoupt class \(A_p(a, b)\) consists of those pairs of nonnegative functions \((u, v)\) on \((a, b)\) such that
\[
\left(\frac{1}{|I|} \int_I u(x) \, dx \right) \left(\frac{1}{|I|} \int_I v(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} \leq C,
\]
for every interval \(I \subseteq (a, b)\), with some constant \(C > 0\) independent of \(I\). The smallest constant satisfying this property is called the \(A_p\) constant of the pair \((u, v)\).

We say that \((u, v) \in A^\delta_p(a, b)\) (where \(\delta > 1\)) if \((u^\delta, v^\delta) \in A_p(a, b)\). It follows from Hölder’s inequality that \(A^\delta_p(a, b) \subseteq A_p(a, b)\).

If \(u \equiv 0\) or \(v \equiv \infty\), it is trivial that \((u, v) \in A_p(a, b)\) for any interval \((a, b)\). Otherwise, for a bounded interval \((a, b)\), if \((u, v) \in A_p(a, b)\) then the functions \(u\) and \(v^{-\frac{1}{\delta-1}}\) are integrable on \((a, b)\).

Throughout this paper, \(C\) denotes a positive constant which may be different in each occurrence.

2. Main results

We state here some \(A_p\) conditions which ensure the weighted \(L^p\) boundedness of these Fourier-Dunkl orthogonal expansions. For simplicity, we separate the general result corresponding to arbitrary weights in two theorems, the first one for \(\alpha \geq -1/2\) and the second one for \(-1 < \alpha < -1/2\).

Theorem 1. Let \(\alpha \geq -1/2\) and \(1 < p < \infty\). Let \(U, V\) be weights on \((-1, 1)\). Assume that
\[
\left(U(x)^p |x|^{(\alpha + \frac{1}{2})(2-\delta)} , V(x)^p |x|^{(\alpha + \frac{1}{2})(2-\delta)} \right) \in A^\delta_p(-1, 1)
\]
for some \(\delta > 1\) (or \(\delta = 1\) if \(U = V\)). Then there exists a constant \(C\) independent of \(n\) and \(f\) such that
\[
\|S_n(f)U\|_{L^p((-1, 1), d\mu_\alpha)} \leq C\|fV\|_{L^p((-1, 1), d\mu_\alpha)}.
\]

Theorem 2. Let \(-1 < \alpha < -1/2\) and \(1 < p < \infty\). Let \(U, V\) be weights on \((-1, 1)\). Let us suppose that \(U, V\) satisfy the conditions
\[
\left(U(x)^p |x|^{(2\alpha + 1)(1-\delta)} , V(x)^p |x|^{(2\alpha + 1)(1-\delta)} \right) \in A^\delta_p(-1, 1),
\]
\[
\left(U(x)^p |x|^{2\alpha+1} , V(x)^p |x|^{3\alpha+1} \right) \in A^\delta_p(-1, 1)
\]
for some \(\delta > 1\) (or \(\delta = 1\) if \(U = V\)). Then there exists a constant \(C\) independent of \(n\) and \(f\) such that
\[
\|S_n(f)U\|_{L^p((-1, 1), d\mu_\alpha)} \leq C\|fV\|_{L^p((-1, 1), d\mu_\alpha)}.
\]

As we mentioned in the introduction, the case \(\alpha = -1/2\) corresponds to the classical trigonometric case. Accordingly, \(2\) reduces then to \((U^p, V^p) \in A^\delta_p(-1, 1)\). It should be noted also that taking real and imaginary parts in these Fourier-Dunkl series we would obtain the so-called Fourier-Bessel series on \((0, 1)\) (see [18, 2, 3, 14]), but the known results for Fourier-Bessel series do not give a proof of the above theorems. Also in connection with Fourier-Bessel series on \((0, 1)\), Lemma \(3\) below can be used to improve some results of \(2\).

Theorems \(4\) and \(2\) establish some sufficient conditions for the \(L^p\) boundedness. Our next result presents some necessary conditions. To avoid unnecessary subtleties, we exclude the trivial cases \(U \equiv 0\) and \(V \equiv \infty\).

Theorem 3. Let \(-1 < \alpha, 1 < p < \infty, \text{ and } U, V \text{ weights on } (-1, 1), \text{ neither } U \equiv 0 \text{ nor } V \equiv \infty. \text{ If there exists some constant } C \text{ such that, for every } n \text{ and every } f,
\]
\[
\|S_n(f)U\|_{L^p((-1, 1), d\mu_\alpha)} \leq C\|fV\|_{L^p((-1, 1), d\mu_\alpha)},
\]
then $U \leq CV$ almost everywhere on $(-1, 1)$, and
\[
U(x)p^{|x|^{(\alpha+\frac{1}{2})(2-p)}} \in L^1((-1, 1), dx),
\]
\[
\left(V(x)p^{|x|^{(\alpha+\frac{1}{2})(2-p)}}\right)^{-\frac{1}{(2-p)}} = V(x)^{-p'}|x|^{(\alpha+\frac{1}{2})(2-p')} \in L^1((-1, 1), dx),
\]
\[
U(x)p^{|x|^{2\alpha+1}} \in L^1((-1, 1), dx),
\]
\[
\left(V(x)p^{|x|^{(2\alpha+1)(1-p)}}\right)^{-\frac{1}{(1-p)}} = V(x)^{-p'}|x|^{2\alpha+1} \in L^1((-1, 1), dx).
\]

Notice that the first two integrability conditions imply the other two if $\alpha \geq -1/2$, while the last two imply the other if $-1 < \alpha < -1/2$.

When U, V are power-like weights, it is easy to check that the conditions of Theorem 3 are equivalent to the A_p conditions 2, 3, 11. By power-like weights we mean finite products of the form $|x-t|^\gamma$, for some constants t, γ. For these weights, therefore, Theorems 1, 2 and 3 characterize the boundedness of the Fourier-Bessel expansions. For instance, we have the following particular case:

Corollary. Let $b, A, B \in \mathbb{R}$, $1 < p < \infty$, and
\[
U(x) = |x|^b(1-x)^A(1+x)^B.
\]

Then, there exists some constant C such that
\[
\|US_n f\|_{L^p((-1,1),d\mu_\alpha)} \leq C\|f\|_{L^p((-1,1),d\mu_\alpha)}
\]
for every f and n if and only if $-1 < Ap < p - 1$, $-1 < Bp < p - 1$ and
\[
-1 + p\left(\alpha + \frac{1}{2}\right)_+ < bp + 2\alpha + 1 < p - 1 + p(2\alpha + 1) - p\left(\alpha + \frac{1}{2}\right)_+,
\]
where $(\alpha + \frac{1}{2})_+ = \max\{\alpha + \frac{1}{2}, 0\}$.

In the unweighted case ($U = V = 1$) the boundedness of the partial sum operators S_n, or in other words the convergence of the Fourier-Dunkl series, holds if and only if
\[
\frac{4(\alpha + 1)}{2\alpha + 3} < p < \frac{4(\alpha + 1)}{2\alpha + 1}
\]
in the case $\alpha \geq -1/2$, and for the whole range $1 < p < \infty$ in the case $-1 < \alpha < -1/2$.

Remark. These conditions for the unweighted case are exactly the same as in the Fourier-Bessel case when the orthonormal functions are $2^{1/2}|J_{\alpha+1}(s_n)|^{-1}J_{\alpha}(s_n x) x^{-\alpha}$ and the orthogonality measure is $x^{2\alpha+1} dx$ on the interval $(0, 1)$.

Other variants of Bessel orthogonal systems exist in the literature, see [2, 3, 18]. For instance, one can take the functions $2^{1/2}|J_{\alpha+1}(s_n)|^{-1}J_{\alpha}(s_n x)$, which are orthonormal with respect to the measure $x dx$ on the interval $(0, 1)$. The conditions for the boundedness of these Fourier-Bessel series, as can be seen in [2], correspond to taking $A = B = 0$ and $b = \alpha - \frac{2\alpha+1}{p}$ in our corollary. Another usual case is to take the functions $(2x)^{1/2}|J_{\alpha+1}(s_n)|^{-1}J_{\alpha}(s_n x)$, which are orthonormal with respect to the measure dx on $(0, 1)$. Passing from one orthogonality to another consists basically in changing the weights. Then, from the weighted L^p boundedness of any of these systems we easily deduce a corresponding weighted L^p boundedness for any of the other systems.

In the case of the Fourier-Dunkl series on $(-1, 1)$ we feel, however, that the natural setting is to start from $J_{\alpha}(z) z^{-\alpha}$, since these functions, defined by [11], are holomorphic on \mathbb{C}; in particular, they are well defined on the interval $(-1, 1)$. 4
3. Auxiliary results

We will need to control some basic operator in weighted L^p spaces on $(-1,1)$. For a function $g : (0,2) \to \mathbb{R}$, the Calderón operator is defined by

$$Ag(x) = \frac{1}{x} \int_0^x |g(y)| \, dy + \int_x^2 \frac{|g(y)|}{y} \, dy,$$

that is, the sum of the Hardy operator and its adjoint. The weighted norm inequality

$$\|Ag\|_{L^p((0,2),u)} \leq C\|g\|_{L^p((0,2),v)}$$

holds for every $g \in L^p((0,2),v)$, provided that $(u,v) \in A_0^\delta((0,2))$ for some $\delta > 1$, and $\delta = 1$ is enough if $u = v$ (see [12, 13]). Let us consider now the operator J defined by

$$Jf(x) = \int_{-1}^1 \frac{f(y)}{2-x-y} \, dy$$

for $x \in (-1,1)$ and suitable functions f. With the notation $f_1(t) = f(1-t)$, we have

$$|Jf(x)| = \left| \int_0^2 \frac{f(1-t)}{1-x+t} \, dt \right| \leq A(f_1)(1-x)$$

and a simple change of variables proves that the weighted norm inequality

$$\|Jf\|_{L^p((-1,1),u)} \leq C\|f\|_{L^p((-1,1),v)}$$

holds for every $f \in L^p((-1,1),v)$, provided that $(u,v) \in A_0^\delta((-1,1))$ for some $\delta > 1$ (or $\delta = 1$ if $u = v$).

The Hilbert transform on the interval $(-1,1)$ is defined as

$$Hg(x) = \int_{-1}^1 \frac{g(y)}{x-y} \, dy.$$

The above weighted norm inequality holds also for the Hilbert transform with the same $A_0^\delta((-1,1),1)$ condition (see [12, 13]). In both cases, the norm inequalities hold with a constant C depending only on the A_0^δ constant of the pair (u,v).

Our first objective is to obtain a suitable estimate for the kernel $K_n(x,y)$. With this aim, we will use some well-known properties of Bessel (and related) functions, that can be found on [17]. For the Bessel functions we have the asymptotics

$$J_\nu(z) = \frac{z^\nu}{2^{\nu+1} \Gamma(\nu+1)} + O(z^{\nu+2}), \quad (5)$$

if $|z| < 1$, $|\arg(z)| \leq \pi$; and

$$J_\nu(z) = \sqrt{\frac{2}{\pi z}} \left[\cos \left(z - \frac{\nu \pi}{2} - \frac{\pi}{4} \right) + O(e^{-\text{Im}(z)} z^{-1}) \right], \quad (6)$$

if $|z| \geq 1$, $|\arg(z)| \leq \pi - \theta$. The Hankel function of the first kind, denoted by $H^{(1)}_\nu$, is defined as

$$H^{(1)}_\nu(z) = J_\nu(z) + iY_\nu(z),$$

where Y_ν denotes the Weber function, given by

$$Y_\nu(z) = \frac{J_\nu(z) \cos \nu \pi - J_{-\nu}(z)}{\sin \nu \pi}, \quad \text{if } \nu \notin \mathbb{Z},$$

$$Y_n(z) = \lim_{\nu \to n} \frac{J_\nu(z) \cos \nu \pi - J_{-\nu}(z)}{\sin \nu \pi}, \quad \text{if } n \in \mathbb{Z}.$$
From these definitions, we have

\[H_{\nu}^{(1)}(z) = \frac{J_{\nu}(z) - e^{-\nu i \pi} J_{\nu}(z)}{i \sin \nu \pi}, \quad \text{if} \ \nu \notin \mathbb{Z}, \]

\[H_{n}^{(1)}(z) = \lim_{\nu \to n} \frac{J_{\nu}(z) - e^{-\nu i \pi} J_{\nu}(z)}{i \sin \nu \pi}, \quad \text{if} \ n \in \mathbb{Z}. \]

For the function \(H_{\nu}^{(1)} \), the asymptotic

\[H_{\nu}^{(1)}(z) = \sqrt{\frac{2}{\pi z}} e^{(z-\nu^2/2-\nu/4)} [C + O(z^{-1})] \tag{7} \]

holds for \(|z| > 1, -\pi < \arg(z) < 2\pi\), with some constant \(C \).

As usual for the \(L^p \) convergence of orthogonal expansions, the results are consequences of suitable estimates for the kernel \(K_n(x, y) \). The next lemma contains an estimate for the difference between the kernel \(K_n(x, y) \) and an integral containing the product of two \(E_n \) functions. This integral can be evaluated using Lemma 1 in [5]. Next, to obtain the estimate we consider an appropriate function in the complex plane having poles in the points \(s_j \) and integrate this function along a suitable path.

Lemma 1. Let \(\alpha > -1 \). Then, there exists some constant \(C > 0 \) such that for each \(n \geq 1 \) and \(x, y \in (-1, 1) \),

\[|K_n(x, y) - \int_{-M_n}^{M_n} E_\alpha(izx) E_\alpha(izy) \, d\mu_\alpha(z)| \leq C \left(\frac{|xy|^{(\alpha+1)/2}}{2 - x - y} + 1 \right), \]

where \(M_n = (s_n + s_{n+1})/2 \).

Proof. Using elementary algebraic manipulations, the kernel \(K_n(x, y) \) can be written as

\[K_n(x, y) = 2^{\alpha+1} \Gamma(\alpha + 2) + \frac{2^{\alpha+1} \Gamma(\alpha + 1)}{(xy)^{\alpha}} \sum_{j=1}^{n} J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y). \tag{8} \]

Let us find a function whose residues at the points \(s_j \) are the terms in the series, so that this series can be expressed as an integral. The identities

\[-J'_{\alpha+1}(z) H_{\alpha+1}^{(1)}(z) + J_{\alpha+1}(z) (H_{\alpha+1}^{(1)})'(z) = \frac{2i}{\pi z} \]

(see [19, p. 76]), and

\[z J'_{\alpha+1}(z) + (\alpha + 1) J_{\alpha+1}(z) = -z J_{\alpha}(z), \]

give

\[-J'_{\alpha+1}(s_j) H_{\alpha+1}^{(1)}(s_j) = \frac{2i}{\pi s_j} \]

and

\[J_{\alpha+1}(s_j) = -J_{\alpha}(s_j) \]

for every \(j \in \mathbb{N} \). Then,

\[
-\frac{2i}{\pi} |xy|^{1/2} \frac{J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y)}{J_\alpha(s_j)^2} \\
= -\frac{2i}{\pi} |xy|^{1/2} \frac{J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y)}{J_{\alpha+1}(s_j)^2} \\
= |xy|^{1/2} s_j H_{\alpha+1}^{(1)}(s_j) \frac{J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y)}{J'_{\alpha+1}(s_j)} \\
= \lim_{z \to s_j} (z - s_j) H_{x,y}(z) = \text{Res}(H_{x,y}, s_j),
\]
where we define

\[H_{x,y}(z) = |xy|^{1/2} z H^{(1)}_{α+1}(z) \frac{J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)}{J_α+1(z)} \]

(the factor $|xy|^{1/2}$ is taken for convenience). The fact that $J_α(-z) = e^{πi}J_α(z)$ gives $\text{Res}(H_{x,y}, s_j) = \text{Res}(H_{x,y}, -s_j)$.

Since the definition of $H^{(1)}_{α+1}(z)$ differs in case $α ∈ Z$, for the rest of the proof we will assume that $α ∉ Z$; the other case can be deduced by considering the limit.

The function $H_{x,y}(z)$ is analytic in $C \setminus \{(-∞, -M_n] ∪ [M_n, ∞) ∪ \{±s_j : j = 1, 2, \ldots\}\}$. Moreover, the points $±s_j$ are simple poles. So, we have

\[\int_{S_α} H_{x,y}(z) \, dz = 0, \]

where $S(ε)$ is the interval $[-M_n, M_n]$ warped with upper half circles of radius $ε$ centered in $±s_j$, with $j = 1, \ldots, n$ and S is the path of integration given by the interval $M_n + i[0, ∞)$ in the direction of increasing imaginary part and the interval $-M_n + i[0, ∞)$ in the opposite direction. The existence of the integral is clear for the path $S(ε)$; for this fact can be checked by using (4), (6) and (7). Indeed, on S one has

\[|xy|^{1/2} z J_α(zx)J_α(zy) \leq Ce^{π(α+2)}e^{-2Im(z)}H^{(α)}_{x,y}(|z|) \]

where

\[h^{(α)}_{x,y}(|z|) = \max\{|xz|^{α+1}/2, 1\} \max\{|yz|^{α+1}/2, 1\} \]

for $-1 < α < -1/2$, and

\[h^{(α)}_{x,y}(|z|) = 1 \]

for $α \geq -1/2$. Thus

\[|H_{x,y}(z)| \leq C \left(h^{(α)}_{x,y}(|z|) + h^{(α+1)}_{x,y}(|z|) \right) e^{-π(2-x-y)}, \]

and the integral on S is well defined.

From the definition of $H_{x,y}(z)$, we have

\[\int_{S(ε)} H_{x,y}(z) \, dz = \int_{S(ε)} \frac{|xy|^{1/2} z J_{α-1}(z) J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)}{i sin(α+1)π} \, dz \]

\[- |xy|^{1/2} e^{-i(α+1)π} \int_{S(ε)} z (J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)) \, dz. \]

The function in the first integral is odd, and the function in the second integral has no poles at the points s_j.

Then, the first integral equals the integral over the symmetric path $-S(ε) = \{z : -z ∈ S(ε)\}$. Putting $|z-s_j| = ε$ for the positively oriented circle, this gives

\[\lim_{ε→0} \int_{S(ε)} H_{x,y}(z) \, dz = \lim_{ε→0} \frac{1}{2} \sum_{|s_j|<M_n} \int_{|z-s_j| = ε} \frac{|xy|^{1/2} z J_{α-1}(z) J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)}{i sin(α+1)π} \, dz \]

\[- |xy|^{1/2} e^{-i(α+1)π} \int_{-M_n}^{M_n} z (J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)) \, dz \]

\[= -πi \sum_{|s_j| < M_n} \text{Res}(H_{x,y}, s_j) \]

\[- |xy|^{1/2} e^{-i(α+1)π}(1 - e^{2πiα}) \int_0^{M_n} z (J_α(zx)J_α(zy) + J_α+1(zx)J_α+1(zy)) \, dz \]
\[
\begin{align*}
&= -4|xy|^{1/2} \sum_{j=1}^{n} \frac{J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y)}{J_\alpha(s_j)^2} \\
&\quad + 2|xy|^{1/2} \int_0^{M_n} z \left(J_\alpha(zx) J_\alpha(zy) + J_{\alpha+1}(zx) J_{\alpha+1}(zy) \right) dz.
\end{align*}
\]

This, together with (10), gives
\[
\sum_{j=1}^{n} \frac{J_\alpha(s_j x) J_\alpha(s_j y) + J_{\alpha+1}(s_j x) J_{\alpha+1}(s_j y)}{J_\alpha(s_j)^2} = \frac{1}{4|xy|^{1/2}} \int_\mathbf{S} H_{x,y}(z) \, dz + \frac{1}{2} \int_0^{M_n} z \left(J_\alpha(zx) J_\alpha(zy) + J_{\alpha+1}(zx) J_{\alpha+1}(zy) \right) dz.
\]

Then, it follows from (8) that
\[
K_n(x, y) = 2^{\alpha+1} \Gamma(\alpha + 2) + \frac{2^{\alpha+1} \Gamma(\alpha + 1)}{(xy)^\alpha |xy|^{1/2}} \int_\mathbf{S} H_{x,y}(z) \, dz + 2^{\alpha+1} \Gamma(\alpha + 1) \frac{M_n}{(xy)^\alpha} | \int_0^{M_n} z \left(J_\alpha(zx) J_\alpha(zy) + J_{\alpha+1}(zx) J_{\alpha+1}(zy) \right) dz |.
\]

Now, it is easy to check the identity
\[
\frac{2^\alpha \Gamma(\alpha + 1)}{(xy)^\alpha} \int_0^{M_n} z \left(J_\alpha(zx) J_\alpha(zy) + J_{\alpha+1}(zx) J_{\alpha+1}(zy) \right) dz = \int_{-M_n}^{M_n} E_\alpha(ixz) E_\alpha(izy) d\mu(z),
\]
so that
\[
\left| K_n(x, y) - \int_{-M_n}^{M_n} E_\alpha(ixz) E_\alpha(izy) d\mu(z) \right| \leq 2^{\alpha+1} \Gamma(\alpha + 2) + \frac{2^{\alpha+1} \Gamma(\alpha + 1)}{|xy|^{\alpha+1/2}} \int_\mathbf{S} H_{x,y}(z) \, dz.
\]

We conclude showing that
\[
\left| \int_\mathbf{S} H_{x,y}(z) \, dz \right| \leq C \left(\frac{1}{2 - x - y} + |xy|^{\alpha+1/2} \right), \tag{11}
\]
for \(-1 < x, y < 1\). For \(\alpha \geq -1/2\), the bound (11) follows from (10). Indeed, in this case
\[
\left| \int_\mathbf{S} H_{x,y}(z) \, dz \right| \leq C \int_0^{\infty} e^{-t(2-x-y)} \, dt = \frac{C}{2 - x - y}.
\]

For \(-1 < \alpha < -1/2\), we have \(|H_{x,y}(z)| \leq C|x|^{\alpha+1/2} e^{-1/2-y(z)(2-x-y)}\) if \(z \in \mathbf{S}\). With this inequality we obtain (11) as follows:
\[
\left| \int_\mathbf{S} H_{x,y}(z) \, dz \right| \leq C|x|^{\alpha+1/2} \int_0^{\infty} e^{-t(2-x-y)} \, dt = C \frac{|xy|^{\alpha+1/2}}{2 - x - y} \leq C \left(|xy|^{\alpha+1/2} + \frac{1}{2 - x - y} \right).
\]

From the previous lemma and the identity (see [5])
\[
\int_{-1}^{1} E_\alpha(ixz) E_\alpha(izy) d\mu(z) = \frac{1}{2^{\alpha+1} \Gamma(\alpha + 2)} \frac{x\mathcal{I}_{\alpha+1}(ix)\mathcal{I}_{\alpha}(iy) - y\mathcal{I}_{\alpha+1}(iy)\mathcal{I}_{\alpha}(ix)}{x - y},
\]
which holds for \(\alpha > -1, x, y \in \mathbb{C},\) and \(x \neq y\), we obtain that
\[
|K_n(x, y) - B(M_n, x, y) - B(M_n, y, x)| \leq C \left(\frac{|xy|^{-(\alpha+1/2)}}{2 - x - y} + 1 \right) \quad \tag{12}
\]
with
\[B(M_n, x, y) = \frac{M_n^{2(\alpha+1)}}{2^{\alpha+1}\Gamma(\alpha+2)} \frac{xT_{\alpha+1}(iM_n x)J_{\alpha}(iM_n y)}{x-y} \]
or, by the definition of \(T_{\alpha} \) and the fact that \(\frac{J_{\alpha}(z)}{z^{\alpha+n}} \) is even,
\[B(M_n, x, y) = 2^\alpha \Gamma(\alpha+1) \frac{M_n xJ_{\alpha+1}(M_n|x|)J_{\alpha}(M_n|y|)}{|x|^{\alpha+1}|y|^\alpha (x-y)}. \]

4. Proof of Theorem 1

We can split the partial sum operator \(S_n \) into three terms suitable to apply (12):
\[
S_n f(x) = \int_{-1}^{1} f(y)B(M_n, x, y)\,d\mu_{\alpha}(y) + \int_{-1}^{1} f(y)B(M_n, y, x)\,d\mu_{\alpha}(y) + \int_{-1}^{1} f(y)\left[K_n(x, y) - B(M_n, x, y) - B(M_n, y, x) \right] \,d\mu_{\alpha}(y)
\]
\[=: T_{1,n} f(x) + T_{2,n} f(x) + T_{3,n} f(x), \tag{13} \]

With this decomposition, the theorem will be proved if we see that
\[
\|UT_{j,n} f\|_{L^p((-1,1),d\mu_{\alpha})}^p \leq C\|V f\|_{L^p((-1,1),d\mu_{\alpha})}^p, \quad j = 1, 2, 3,
\]
for a constant \(C \) independent of \(n \) and \(f \).

4.1. The first term

We have
\[
T_{1,n} f(x) = \frac{1}{2^{\alpha+1}\Gamma(\alpha+1)} \int_{-1}^{1} f(y)B(M_n, x, y)|y|^{2\alpha+1} \,dy
\]
\[= \frac{M_n^{1/2} xJ_{\alpha+1}(M_n|x|)}{2|x|^{\alpha+1}} \int_{-1}^{1} \frac{f(y)M_n^{1/2} J_{\alpha}(M_n|y|)|y|^\alpha}{x-y} \,dy. \]

According to (5) and (6) and the assumption that \(\alpha \geq -1/2 \), we have
\[|J_{\alpha}(z)| \leq Cz^{-1/2}, \quad |J_{\alpha+1}(z)| \leq Cz^{-1/2}, \]
for every \(z > 0 \). Using these inequalities and the boundedness of the Hilbert transform under the \(A_p \) condition (2) gives
\[
\|UT_{1,n} f\|_{L^p((-1,1),d\mu_{\alpha})}^p = C \int_{-1}^{1} \int_{-1}^{1} \frac{f(y)M_n^{1/2} J_{\alpha}(M_n|y|)|y|^\alpha}{x-y} \,dy \,dx
\]
\[\leq C \int_{-1}^{1} \int_{-1}^{1} \frac{f(y)M_n^{1/2} J_{\alpha}(M_n|y|)|y|^\alpha}{x-y} \,dy \,dx
\]
\[\leq C \int_{-1}^{1} \int_{-1}^{1} f(x)|x|^{\alpha+1} \left| V(x) \right|^{\alpha+1} \,dx \]
\[\leq C \int_{-1}^{1} |f(x)|^p V(x)^p |x|^{2\alpha+1} \,dx = C\|V f\|_{L^p((-1,1),d\mu_{\alpha})}^p.
\]
4.2. The second term

This term is given by

\[T_{2,n}f(x) = \frac{1}{2^{\alpha+1}\Gamma(\alpha+1)} \int_{-1}^{1} f(y) B(M_n, y, x) |y|^{2\alpha+1} dy \]

\[= \frac{M_n^{1/2} J_\alpha(M_n|x|)}{2|x|^\alpha} \int_{-1}^{1} f(y) y M_n^{1/2} J_{\alpha+1}(M_n|y|) |y|^\alpha dy \]

and everything goes as with the first term.

4.3. The third term

According to (12),

\[|T_{3,n}f(x)| \leq C |x|^{-(\alpha+1/2)} \int_{-1}^{1} \frac{f(y)|y|^{\alpha+1/2}}{2 - x - y} dy + C \int_{-1}^{1} |f(y)| |y|^{2\alpha+1} dy \]

so it is enough to have both

\[\int_{-1}^{1} \left| \int_{-1}^{1} f(y) dy \right|^p \frac{|x|^{2\alpha+1-p(\alpha+1/2)}}{U(x)^p} dx \]

and

\[\left| \int_{-1}^{1} f(x) dx \right| |x|^{2\alpha+1} \int_{-1}^{1} U(x)^p |x|^{2\alpha+1} dx \]

bounded by

\[C \int_{-1}^{1} |f(x)|^p V(x)^p |x|^{2\alpha+1} dx. \]

For the boundedness of (14) it suffices to impose

\[\left(U(x)^p |x|^{2\alpha+1-p(\alpha+1/2)}, V(x)^p |x|^{2\alpha+1-p(\alpha+1/2)} \right) \in A_p^f(-1, 1), \]

but this is exactly (2). By duality, the boundedness of (15) is equivalent to

\[\left(\int_{-1}^{1} U(x)^p |x|^{2\alpha+1} dx \right)^{-\frac{1}{p-1}} \left(\int_{-1}^{1} V(x)^{-p/(p-1)} |x|^{2\alpha+1} dx \right)^{p-1} < \infty. \]

Now, it is easy to check that

\[\left(\int_{-1}^{1} U(x)^p |x|^{2\alpha+1} dx \right) \left(\int_{-1}^{1} V(x)^{-p/(p-1)} |x|^{2\alpha+1} dx \right)^{p-1} \]

\[\leq \left(\int_{-1}^{1} U(x)^p |x|^\alpha dx \right) \left(\int_{-1}^{1} \left(V(x)^p |x|^\beta \right)^{-\frac{1}{p-1}} dx \right)^{p-1} \leq C, \]

the last inequality following from the \(A_p \) condition (2).
5. Proof of Theorem 2

We begin with a simple lemma on A_p weights.

Lemma 2. Let $1 < p < \infty$, $(u, v) \in A_p(-1, 1)$, $(u_1, v_1) \in A_p(-1, 1)$. Let w, ζ be weights on $(-1, 1)$ such that either

$$w \leq C(u + u_1) \quad \text{and} \quad \zeta \geq C_1(v + v_1)$$

or

$$w^{-1} \geq C(u^{-1} + u_1^{-1}) \quad \text{and} \quad \zeta^{-1} \leq C_1(v^{-1} + v_1^{-1})$$

for some constants C, C_1. Then $(w, \zeta) \in A_p(-1, 1)$ with a constant depending only on C, C_1 and the A_p constants of (u, v) and (u_1, v_1).

Proof. Assume that $w \leq C(u + u_1)$ and $\zeta \geq C_1(v + v_1)$. For any interval $I \subseteq (-1, 1)$,

$$\left(\frac{1}{|I|} \int_I \zeta^{-\frac{1}{p-1}} \right)^{p-1} \leq \frac{1}{C_1} \min \left\{ \left(\frac{1}{|I|} \int_I v^{-\frac{1}{p-1}} \right)^{p-1}, \left(\frac{1}{|I|} \int_I v_1^{-\frac{1}{p-1}} \right)^{p-1} \right\}.$$

Therefore,

$$\left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I \zeta^{-\frac{1}{p-1}} \right)^{p-1} \leq \frac{C}{C_1} \left(\frac{1}{|I|} \int_I u \right) \left(\frac{1}{|I|} \int_I v^{-\frac{1}{p-1}} \right)^{p-1} + \frac{C}{C_1} \left(\frac{1}{|I|} \int_I u_1 \right) \left(\frac{1}{|I|} \int_I v_1^{-\frac{1}{p-1}} \right)^{p-1}.$$

This proves that $(w, \zeta) \in A_p(-1, 1)$ with a constant depending on C, C_1 and the A_p constants of (u, v) and (u_1, v_1).

Assume now that $w^{-1} \geq C(u^{-1} + u_1^{-1})$ and $\zeta^{-1} \leq C_1(v^{-1} + v_1^{-1})$. Then

$$\frac{1}{|I|} \int_I w \leq \frac{1}{C_1} \min \left\{ \frac{1}{|I|} \int_I u, \frac{1}{|I|} \int_I u_1 \right\} \quad \text{(16)}$$

for any interval $I \subseteq (-1, 1)$. On the other hand, the inequality

$$\frac{1}{2}(a^\lambda + b^\lambda) \leq (a + b)^\lambda \leq 2^\lambda (a^\lambda + b^\lambda), \quad a, b \geq 0, \quad \lambda > 0 \quad \text{(17)}$$

gives

$$\zeta^{-\frac{1}{p-1}} \leq C_1^{-1} (v^{-1} + v_1^{-1})^{\frac{1}{p-1}} \leq C_1^{\frac{1}{p-1}} 2^{\frac{1}{p-1}} (v^{-\frac{1}{p-1}} + v_1^{-\frac{1}{p-1}}),$$

and

$$\left(\frac{1}{|I|} \int_I \zeta^{-\frac{1}{p-1}} \right)^{p-1} \leq 2^p C_1 \left(\frac{1}{|I|} \int_I v^{-\frac{1}{p-1}} \right)^{p-1} + 2^p C_1 \left(\frac{1}{|I|} \int_I v_1^{-\frac{1}{p-1}} \right)^{p-1}.$$

This, together with (16), proves that $(w, \zeta) \in A_p(-1, 1)$ with a constant depending on C, C_1 and the A_p constants of (u, v) and (u_1, v_1). \qed

Now, we use the following estimate for the Bessel functions, which is a consequence of (5), (6) and $-1 < \alpha < -1/2$:

$$|z^{1/2} J_{\alpha}(z)| \leq C(1 + z^{\alpha + 1/2}), \quad z \geq 0,$$

and

$$|z^{1/2} J_{\alpha+1}(z)| \leq C(1 + z^{\alpha + 1/2})^{-1}, \quad z \geq 0.$$

In particular, there exists a constant C such that, for $x \in (-1, 1)$ and $n \geq 0$, we have

$$M_n^{1/2} |J_{\alpha}(M_n|x|)| \leq C|x|^{-1/2}(1 + |M_nx|^{\alpha + 1/2}).$$
and
\[M_{n}^{1/2}|J_{n+1}(M_{n}|x|)| \leq C \frac{|x|^{-1/2}}{1 + |M_{n}x|^{\alpha+1/2}}. \]

Moreover, the inequality (17) gives
\[2^{\alpha+1/2}|x|^{\alpha+1/2}(|x| + M_{n}^{-1})^{-(\alpha+1/2)} \leq 1 + |M_{n}x|^{\alpha+1/2} \leq 2|x|^{\alpha+1/2}(|x| + M_{n}^{-1})^{-(\alpha+1/2)} \]
so that we get
\[M_{n}^{1/2}|J_{n}(M_{n}|x|)| \leq C|x|^{-\alpha}(|x| + M_{n}^{-1})^{-(\alpha+1/2)} \tag{18} \]
and
\[M_{n}^{1/2}|J_{n+1}(M_{n}|x|)| \leq C|x|^{-\alpha+1}(|x| + M_{n}^{-1})^{\alpha+1/2}. \tag{19} \]

To handle these expressions, the following result will be useful:

Lemma 3. Let \(1 < p < \infty \), a sequence \(\{M_{n}\} \) of positive numbers that tends to infinity, two nonnegative functions \(U \) and \(V \) defined on the interval \((-1, 1)\), \(-1 < \alpha < -1/2\) and \(\delta > 1 \) (\(\delta = 1 \) if \(U = V \)). If \((3) \) and \((4) \) are satisfied, then
\[
(U(x)^p(|x| + M_{n}^{-1})^{p(\alpha+1/2)}|x|^{2\alpha+1}(1-p), V(x)^p(|x| + M_{n}^{-1})^{p(\alpha+1/2)}|x|^{2\alpha+1}(1-p)) \in A_{p}^\delta(-1, 1), \tag{20}
\]
\[
(U(x)^p(|x| + M_{n}^{-1})^{-p(\alpha+1/2)}|x|^{2\alpha+1}, V(x)^p(|x| + M_{n}^{-1})^{-p(\alpha+1/2)}|x|^{2\alpha+1}) \in A_{p}^\delta(-1, 1), \tag{21}
\]
“uniformly”, i.e., with \(A_{p}^\delta \) constants independent of \(n \).

Proof. As a first step, let us observe that \((3) \) and \((4) \) imply
\[
(U(x)^p|x|^{(2\alpha+1)(1-\frac{1}{2}p)}, V(x)^p|x|^{(2\alpha+1)(1-\frac{1}{2}p)}) \in A_{p}^\delta(-1, 1).
\]
To prove this, just put
\[
U(x)^p|x|^{(2\alpha+1)(1-\frac{1}{2}p)} = \left(U(x)^p|x|^{(2\alpha+1)(1-p)} \right)^{1/2} \left(U(x)^p|x|^{(2\alpha+1)} \right)^{1/2}
\]
(the same with \(V \)) and check the \(A_{p}^\delta \) condition using the Cauchy-Schwarz inequality and \((3), (4) \).

Now, \((17) \) yields
\[
\left[U(x)^p(|x| + M_{n}^{-1})^{p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)} \right]^{-\delta} \leq \frac{1}{2} \left[U(x)^p|x|^{(2\alpha+1)(1-\frac{1}{2}p)} \right]^{-\delta} + \frac{1}{2} \left[V(x)^pM_{n}^{-p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)} \right]^{-\delta}
\]
and
\[
\left[V(x)^p(|x| + M_{n}^{-1})^{p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)} \right]^{-\delta} \leq 2^{-p\delta(\alpha+\frac{1}{2})} \left[V(x)^p|x|^{(2\alpha+1)(1-\frac{1}{2}p)} \right]^{-\delta} + 2^{-p\delta(\alpha+\frac{1}{2})} \left[V(x)^pM_{n}^{-p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)} \right]^{-\delta}.
\]
Thus, Lemma \(2 \) gives \((20) \) with an \(A_{p}^\delta \) constant independent of \(n \), since the \(A_{p}^\delta \) constant of the pair
\[
(U(x)^pM_{n}^{-p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)}, V(x)^pM_{n}^{-p(\alpha+1/2)}|x|^{(2\alpha+1)(1-p)})
\]
is the same constant of the pair
\[
(U(x)^p|x|^{(2\alpha+1)(1-p)}, V(x)^p|x|^{(2\alpha+1)(1-p)})
\]
12
i.e., it does not depend on n. The proof of (21) follows the same argument, since

\[\left[U(x)^p (|x| + M_n^{-1})^{-p(\alpha + \frac{3}{2})} |x|^{2\alpha + 1} \right]^\delta \]

\[\leq 2^{-\delta(\alpha + \frac{3}{2})} \left[U(x)^p |x|^{(2\alpha + 1)(1 - \frac{\delta}{2})} \right]^\delta + 2^{-\delta(\alpha + \frac{3}{2})} \left[U(x)^p M_n^{p(\alpha + \frac{1}{2})} |x|^{2\alpha + 1} \right]^\delta \]

and

\[\left[V(x)^p (|x| + M_n^{-1})^{-p(\alpha + \frac{3}{2})} |x|^{2\alpha + 1} \right]^\delta \geq \frac{1}{2} \left[V(x)^p |x|^{(2\alpha + 1)(1 - \frac{\delta}{2})} \right]^\delta + \frac{1}{2} \left[V(x)^p M_n^{p(\alpha + \frac{1}{2})} |x|^{2\alpha + 1} \right]^\delta. \]

We already have all the ingredients to start with the proof of Theorem 2. Let us take the same decomposition $S_n f = T_{1,n} f + T_{2,n} + T_{3,n} f$ as in (13) in the previous section and consider each term separately.

5.1. The first term

As in the proof of Theorem 1, by using (19) we have

\[\| U T_{1,n} f \|_{L^p((-1,1), d\mu_n)} = \int_{-1}^{1} \left[\int_{-1}^{1} \frac{f(y) M_n^{1/2} J_\alpha(M_n |y|) |y|^{\alpha + 1}}{x - y} dy \right]^p U(x)^p M_n^{p/2} |J_{\alpha + 1}(M_n |x|)|^p dx \]

\[\leq C \int_{-1}^{1} \left[\int_{-1}^{1} \frac{f(y) M_n^{1/2} J_\alpha(M_n |y|) |y|^{\alpha + 1}}{x - y} dy \right]^p U(x)^p (|x| + M_n^{-1})^{p(\alpha + 1/2)} |x|^{(2\alpha + 1)(1 - p)} dx. \]

Now, by the A_p condition (20), this is bounded by

\[C \int_{-1}^{1} f(x)^p V(x)^p |x|^{2\alpha + 1} dx = C \| V f \|_{L^p((-1,1), d\mu_n)}^p. \]

5.2. The second term

The definition of $T_{2,n}$ and (18) yield

\[\| U T_{2,n} f \|_{L^p((-1,1), d\mu_n)} = \int_{-1}^{1} \left[\int_{-1}^{1} \frac{f(y) y M_n^{1/2} J_{\alpha + 1}(M_n |y|) |y|^{\alpha}}{y - x} dy \right]^p U(x)^p M_n^{p/2} |J_\alpha(M_n |x|)|^p |x|^{2\alpha + 1 - \alpha p} dx \]

\[\leq C \int_{-1}^{1} \left[\int_{-1}^{1} \frac{f(y) y M_n^{1/2} J_{\alpha + 1}(M_n |y|) |y|^{\alpha}}{y - x} dy \right]^p U(x)^p (|x| + M_n^{-1})^{-p(\alpha + 1/2)} |x|^{2\alpha + 1} dx. \]

Now, by the A_p condition (21), this is bounded by

\[C \int_{-1}^{1} f(x) x M_n^{1/2} J_{\alpha + 1}(M_n |x|) |x|^\alpha \left[V(x)^p (|x| + M_n^{-1})^{-p(\alpha + 1/2)} |x|^{2\alpha + 1} \right] dx, \]

which, by (19) is in turn bounded by

\[C \int_{-1}^{1} f(x)^p V(x)^p |x|^{2\alpha + 1} dx = C \| V f \|_{L^p((-1,1), d\mu_n)}^p. \]
5.3. The third term

Taking limits when \(n \to \infty \) in Eq. (20), we get (22), so the proof of the boundedness of the third summand in Theorem 1 is still valid for Theorem 2.

6. Proof of Theorem 3

The following lemma is a small variant of a result proved in [8]. We give here a proof for the sake of completeness.

Lemma 4. Let \(\nu > -1 \). Let \(h \) be a Lebesgue measurable nonnegative function on \([0, 1]\), \(\{\rho_n\} \) a positive sequence such that \(\lim_{n \to \infty} \rho_n = +\infty \) and \(1 \leq p < \infty \). Then

\[
\lim_{n \to \infty} \int_0^1 |\rho_n^{1/2} J_\nu(\rho_n x)|^p h(x) \, dx \geq M \int_0^1 h(x)x^{-p/2} \, dx
\]

(in particular, that limit exists), where \(M \) is a positive constant independent of \(h \) and \(\{\rho_n\} \).

Proof. We can assume that \(h(x)x^{-p} \) is integrable on \((0, \delta)\) for some \(\delta \in (0, 1) \), since otherwise

\[
\int_0^1 |\rho_n^{1/2} J_\nu(\rho_n x)|^p h(x) \, dx = \infty
\]

for each \(n \), as follows from Eq. (5), and (22) is trivial. Assume also for the moment that \(h(x)x^{-p/2} \) is integrable on \((0, 1)\). For each \(x \in (0, 1) \) and \(n \), let us put

\[
\varphi(x, n) = (\rho_n x)^{1/2} J_\nu(\rho_n x) - \sqrt{\frac{2}{\pi}} \cos \left(\frac{\nu \pi}{2} - \frac{\pi}{4} \right).
\]

The estimate (6) gives

\[
\lim_{n \to \infty} \varphi(x, n) = 0
\]

for each \(x \in (0, 1) \). Moreover, in case \(\rho_n x \geq 1 \) the same estimate gives

\[
|\varphi(x, n)| \leq \frac{C}{\rho_n x} \leq C
\]

with a constant \(C \) independent of \(n \) and \(x \), while for \(\rho_n x \leq 1 \) it follows from (5) that

\[
|\varphi(x, n)| \leq C \left((\rho_n x)^{\nu+1/2} + 1 \right).
\]

Without loss of generality we can assume that \(\rho_0 \geq 1 \). Then, (23) and (24) give \(|\varphi(x, n)| \leq C(x^{\nu+1/2} + 1) \) with a constant \(C \) independent of \(x \) and \(n \), so that, by the dominate convergence theorem,

\[
\lim_{n \to \infty} \int_0^1 (\rho_n x)^{1/2} J_\nu(\rho_n x) - \sqrt{\frac{2}{\pi}} \cos \left(\frac{\nu \pi}{2} - \frac{\pi}{4} \right) \left| h(x)x^{-p/2} \right. dx = 0.
\]

Therefore,

\[
\lim_{n \to \infty} \int_0^1 |\rho_n^{1/2} J_\nu(\rho_n x)|^p h(x) \, dx = \lim_{n \to \infty} \int_0^1 \left| \sqrt{\frac{2}{\pi}} \cos \left(\frac{\nu \pi}{2} - \frac{\pi}{4} \right) \right|^p h(x)x^{-p/2} \, dx.
\]

Now we use Fejér’s lemma: if \(f \in L^1(0, 2\pi) \), and \(g \) is a continuous, \(2\pi \)-periodic function, then

\[
\lim_{\lambda \to \infty} \frac{1}{2\pi} \int_0^{2\pi} g(\lambda t) f(t) \, dt = \hat{g}(0) \hat{f}(0) = \frac{1}{2\pi} \int_0^{\pi} g(t) \, dt \frac{1}{2\pi} \int_0^{\pi} f(t) \, dt
\]

14
where \hat{f}, \hat{g} denote the Fourier transforms of f, g. After a change of variables, Fejér’s lemma applied to the right hand side of (26) gives

$$
\lim_{n \to \infty} \int_0^1 |\rho_n^{1/2} J_\nu(\rho_n x)|^p h(x) \, dx = M \int_0^1 h(x)x^{-p/2} \, dx
$$

for some constant M, thus proving (22).

Finally, in case $h(x)x^{-p/2}$ is not integrable on $(0, 1)$, let us take the sequence of increasing measurable sets

$$
K_j = \{x \in (0, 1) : h(x)x^{-p/2} \leq j\}, \quad j \in \mathbb{N},
$$

and define $h_j = h$ on K_j and $h_j = 0$ on $(0, 1) \setminus K_j$. Applying (22) to each h_j and then the monotone convergence theorem proves that

$$
\lim_{n \to \infty} \int_0^1 |\rho_n^{1/2} J_\nu(\rho_n x)|^p h(x) \, dx = \infty,
$$

which is (22). \qed

We can now prove Theorem 3.

Proof of Theorem 3. The first partial sum of the Fourier expansion is

$$
S_0 f = e_0 \int_{-1}^1 f(x) \, d\mu_\alpha = (\alpha + 1) \int_{-1}^1 f(x)|x|^{2\alpha+1} \, dx,
$$

so that the inequality $\|S_0(f)U\|_{L^p((-1,1),d\mu_\alpha)} \leq C\|fV\|_{L^p((-1,1),d\mu_\alpha)}$ gives, by duality,

$$
U(x)^p|x|^{2\alpha+1} \in L^1((-1,1), dx), \quad V(x)^{-p'}|x|^{2\alpha+1} \in L^1((-1,1), dx).
$$

In fact, this is needed just to ensure that the partial sums of the Fourier expansions of all functions in $L^p(U^p \, d\mu_\alpha)$ are well defined and belong to $L^p(U^p \, d\mu_\alpha)$. These are the last two integrability conditions of Theorem 3.

Now, if

$$
\|S_n(f)U\|_{L^p((-1,1),d\mu_\alpha)} \leq C\|fV\|_{L^p((-1,1),d\mu_\alpha)}
$$

then the difference

$$
S_n f - S_{n-1} f = e_n \int_{-1}^1 f \, d\mu_\alpha - e_{n-1} \int_{-1}^1 f \, d\mu_\alpha
$$

$$
= e_n \int_{-1}^1 f \, d\mu_\alpha + e_n \int_{-1}^1 f \, d\mu_\alpha
$$

is bounded in the same way. Taking even and odd functions, and using that Re e_n is even and Im e_n is odd, gives

$$
\|U \text{Re } e_n\|_{L^p((-1,1),d\mu_\alpha)} \leq C \|fV\|_{L^p((-1,1),d\mu_\alpha)}
$$

and the same inequality with Im e_n. Recall that

$$
\text{Re } e_n(x) = 2^{\alpha/2} \Gamma(\alpha + 1)^{1/2} \frac{|s_n|^\alpha}{|J_\alpha(s_n)|} \frac{J_\nu(s_n x)}{(s_n x)^\alpha}.
$$

Taking into account that $|J_\nu(x)|$ is an even function (recall that $J_\alpha(z)/z^\alpha$ is taken as an even function) and $|J_\alpha(s_n)| \leq C s_n^{-1/2}$ (this follows from (5)), Lemma 11 gives

$$
\lim_{n \to \infty} \inf \int_{-1}^1 \left| \frac{1}{J_\alpha(s_n)} J_\nu(s_n x) \right|^p h(x) \, dx \geq C \int_{-1}^1 h(x)|x|^{-p/2} \, dx
$$
for every measurable nonnegative function h. Therefore,

$$\liminf_{n \to \infty} |U \operatorname{Re} e_n|_{L^p((-1,1), d\mu_\alpha)} \geq C \left(\int_{-1}^1 U(x)^p |x|^{-p\alpha - \frac{d}{2} + 2\alpha + 1} dx \right)^{\frac{1}{p}}$$

and the corresponding lower bound for $\liminf_n \|V^{-1} \operatorname{Re} e_n\|_{L^{p'}((0,1), d\mu_\alpha)}$ holds. The same bounds hold for $\operatorname{Im} e_n$. Thus, (27) implies

$$\left(\int_{-1}^1 U(x)^p |x|^{-p\alpha - \frac{d}{2} + 2\alpha + 1} dx \right)^{\frac{1}{p}} \left(\int_{-1}^1 V(x)^{p'} |x|^{-p'\alpha - \frac{d}{2} + 2\alpha + 1} dx \right)^{\frac{1}{p'}} \leq C$$

or, in other words, the first two integrability conditions of Theorem 3.

Take now $f = U/(1 + V + UV)$ and any measurable set $E \subseteq (-1,1)$. Then $f \in L^2(d\mu_\alpha)$ by Hölder’s inequality, the obvious inequality $|f| \leq UV^{-1}$ and the integrability conditions $U \in L^p(d\mu_\alpha)$, $V^{-1} \in L^{p'}(d\mu_\alpha)$, already proved. Since $(e_j)_{j \in \mathbb{Z}}$ is a complete orthonormal system in $L^2((-1,1), d\mu_\alpha)$, we have $S_n(f|_E) \to f|_E$ in the $L^2(d\mu_\alpha)$ norm. Therefore, there exists some subsequence $S_{n_j}(f|_E)$ converging to $f|_E$ almost everywhere. Fatou’s lemma then gives

$$\int_{-1}^1 |f|_E|^p U^p d\mu_\alpha \leq \liminf_{j \to \infty} \int_{-1}^1 |S_{n_j}(f|_E)|^p U^p d\mu_\alpha.$$

Under the hypothesis of Theorem 3 each of the integrals on the right hand side is bounded by

$$C^p \int_{-1}^1 |f|_E|^p U^p d\mu_\alpha$$

(observe, by the way, that $fV \in L^p(d\mu_\alpha)$, since $|fV| \leq 1$). Thus,

$$\int_{-1}^1 |f|_E|^p U^p d\mu_\alpha \leq C^p \int_{-1}^1 |f|_E|^p U^p d\mu_\alpha$$

for every measurable set $E \subseteq (-1,1)$. This gives $fU \leq CfV$ almost everywhere, and $U \leq CV$.

Acknowledgment

We thank the referee for his valuable suggestions, which helped us to make the paper more readable.

References

[1] N. B. Andersen and M. de Jeu, Elementary proofs of Paley-Wiener theorems for the Dunkl transform on the real line, Int. Math. Res. Not. 30 (2005), 1817–1831.
[2] A. Benedek and R. Panzone, On mean convergence of Fourier-Bessel series of negative order, Studies in Appl. Math. 50 (1971), 281–292.
[3] A. Benedek and R. Panzone, Mean convergence of series of Bessel functions, Rev. Un. Mat. Argentina 26 (1972/73), 42–61.
[4] J. J. Betancor, Ó. Ciaurri and J. L. Varona, The multiplier of the interval $[-1,1]$ for the Dunkl transform on the real line, J. Funct. Anal. 242 (2007), 327–336.
[5] Ó. Ciaurri and J. L. Varona, A Whittaker-Shannon-Kotel’nikov sampling theorem related to the Dunkl transform, Proc. Amer. Math. Soc. 135 (2007), 2939–2947.
[6] C. F. Dunkl, Integral kernels with reflections group invariance, Canad. J. Math. 43 (1991), 1213–1227.
[7] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.
[8] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Two notes on convergence and divergence a.e. of Fourier series with respect to some orthogonal systems, Proc. Amer. Math. Soc. 116 (1992), 457–464.
[9] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Mean and weak convergence of Fourier-Bessel series, J. Math. Anal. Appl. 173 (1993), 370–389.
[10] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.
[11] H. Mejjaoli and K. Trimèche, A variant of Cowling-Price’s theorem for the Dunkl transform on \mathbb{R}, J. Math. Anal. Appl. 345 (2008), 593–606.
[12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
[13] C. J. Neugebauer, Inserting A_p weights, Proc. Amer. Math. Soc. 87 (1983), 644–648.
[14] A. Nowak and K. Stempak, Relating transplantation and multipliers for Dunkl and Hankel transforms, Math. Nachr. 281 (2008), 1604–1611.
[15] A. Nowak and K. Stempak, Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), 539–556.
[16] M. Rösler and M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc. 127 (1999), 183–194.
[17] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944.
[18] G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792–808.
[19] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1952.