Microscopia urinária como biomarcador de lesão renal aguda após cirurgia cardíaca com circulação extracorpórea

Resumo

Introdução: Lesão renal aguda (LRA) ocorre em cerca de 22% dos pacientes submetidos a cirurgia cardíaca e 2,3% necessitam de terapia renal substitutiva (TRS). Os atuais critérios diagnósticos para LRA fundamentados no aumento dos níveis de creatinina sérica apresentam limitações e novos biomarcadores estão sendo testados. O sedimento urinário é um biomarcador que pode ajudar a diferenciar a LRA pré-renal (funcional) da LRA renal (intrínseca). Objetivos: Investigar a urinálise microscópica no diagnóstico de LRA em pacientes submetidos a cirurgia cardíaca com circulação extracorpórea. Métodos: Um total de 114 pacientes com idade média de 62,3 anos, 67,5% do sexo masculino e níveis médios de creatinina de 0,91 mg/dL (DP 0,22) tiveram amostras de urina examinadas nas primeiras 24 horas após a cirurgia. A identificação de células epiteliais tubulares renais (CETR) e cilindros granulares (GC) foi associada a desfechos de desenvolvimento de LRA conforme os critérios do KDIGO. Resultados: Vinte e três pacientes (20,17%) desenvolveram LRA pelo critério de creatinina sérica e 76 (66,67%) pelo critério de diurese. Quatro pacientes necessitaram de TRS. A mortalidade foi de 3,51%. O uso da creatinina urinária como critério preditivo para LRA mostrou sensibilidade de 34,78% e especificidade de 86,81%; razão de verossimilhança positiva de 2,64 e razão de verossimilhança negativa de 0,75; e ASC-COR de 0,584 (IC 95%: 0,445-0,723). Para o critério de diurese, a sensibilidade foi de 23,68% e a especificidade de 92,11%; e ASC-COR foi 0,573 (IC 95%: 0,465-0,680). Conclusão: A identificação de CETR e GC em amostras de urina por microscopia representa um biomarcador altamente específico para o diagnóstico precoce de LRA após cirurgia cardíaca.

Palavras-chave: Lesão renal aguda; Cirurgia Torácica; Biomarcadores.

Resumo

Introduction: Acute kidney injury (AKI) occurs in about 22% of the patients undergoing cardiac surgery and 2.3% requires renal replacement therapy (RRT). The current diagnostic criteria for AKI by increased serum creatinine levels have limitations and new biomarkers are being tested. Urine sediment may be considered a biomarker and it can help to differentiate pre-renal (functional) from renal (intrinsic) AKI. Aims: To investigate the microscopic urinalysis in the AKI diagnosis in patients undergoing cardiac surgery with cardiopulmonary bypass. Methods: One hundred and fourteen patients, mean age 62.3 years, 67.5 % male, with creatinine 0.91 mg/dL (SD 0.22) had a urine sample examined in the first 24 h after the surgery. We looked for renal tubular epithelial cells (RTEC) and granular casts (GC) and associated the results with AKI development as defined by KDIGO criteria. Results: Twenty three patients (20.17 %) developed AKI according to the serum creatinine criterion and 76 (66.67 %) by the urine output criterion. Four patients required RRT. Mortality was 3.51 %. The use of urine creatinine criterion to predict AKI showed a sensitivity of 34.78 % and specificity of 86.81 %, positive likelihood ratio of 2.64 and negative likelihood ratio of 0.75, AUC-ROC of 0.584 (95%CI: 0.445-0.723). For the urine output criterion sensitivity was 23.68 % and specificity 92.11 %, AUC-ROC was 0.573 (95%CI: 0.465-0.680). Conclusion: RTEC and GC in urine sample detected by microscopy is a highly specific biomarker for early AKI diagnosis after cardiac surgery.

Keywords: Acute Kidney Injury; Thoracic Surgery; Biomarkers.
INTRODUÇÃO
A lesão renal aguda (LRA) é uma síndrome frequente, principalmente em pacientes hospitalizados. A LRA associa-se a maior morbidade e mortalidade a curto e longo prazo. A enfermidade é atualmente definida como declínio abrupto na taxa de filtração glomerular (TFG) resultante de lesão que causa alteração funcional ou estrutural nos rins. Os fatores levados em conta em seu reconhecimento são elevação dos níveis de creatinina sérica e diurese inferior a 0,5 mL/kg/h. A LRA ocorre em diversos contextos e pode variar de elevações mínimas na creatinina sérica à insuficiência renal anúrica e, consequentemente, à necessidade de terapia renal substitutiva (TRS). A LRA é uma das possíveis complicações da cirurgia cardíaca. Pickering et al. relataram frequência de LRA de 18,2% e necessidade de TRS de 2,1% em pacientes submetidos à cirurgia cardíaca com circulação extracorpórea. Foi também identificada associação entre LRA e morbimortalidade significativa, independentemente de todos os outros fatores. Outra metanálise que incluiu pacientes adultos relatou incidência de LRA em 22,3% do grupo analisado, sendo 13,6% com doença estágio I, 3,8% estágio II e 2,7% estágio III. TRS foi administrada para 2,3% dos pacientes.

Contudo, os critérios atuais de LRA têm sido criticados em função de suas limitações, insensibilidade para detecção precoce de lesão renal e falta de especificidade. De modo a superar tais limitações, vários biomarcadores foram avaliados para o diagnóstico precoce e a estratificação do risco de LRA, como o método que combina interleucina-18 (IL-18) e molécula-1 de lesão renal (KIM-1)⁴.

Recentemente, uma combinação de dois biomarcadores, o inibidor tecidual de metaloproteinases-2 (TIMP-2)⁵ e a proteína de ligação a fator de crescimento semelhante à insulina 7 (IGFBP7)⁵, foi aprovada como teste para detecção precoce de LRA e sua utilização no diagnóstico de LRA é amplamente conhecida. Esses marcadores são marcadores de parada do ciclo celular e foram escoados entre mais de 300 candidatos.

O sedimento urinário é um indicador biológico objetivo para processos renais normais ou patológicos que pode ser utilizado como biomarcador de LRA. A descrição clássica da microscopia urinária de pacientes com necrose tubular aguda (NTA) inclui a presença de células epiteliais tubulares renais (CETR), cilindros de células epiteliais renais, cilindros granulares (CG) ou mistos. Por outro lado, os sedimentos de pacientes com LRA pré-renal apenas ocasionalmente apresentam cilindros hialinos⁸,⁹,¹⁰.

Perazella et al. avaliaram sedimentos urinários para diferenciar NTA de LRA pré-renal e mostraram que a presença de CETR e CG foram preditores de NTA¹¹,¹²,¹³. Os autores também avaliaram 249 pacientes com LRA e propuseram um sistema de pontuação baseado nos níveis de CG e CETR associados aos estágios de LRA no momento da consulta e do seguimento⁴.

O presente trabalho avaliou a urinálise microscópica como critério diagnóstico para LRA nas primeiras 24 horas de pós-operatório em pacientes submetidos à cirurgia cardíaca com circulação extracorpórea.

PACIENTES E MÉTODOS
O presente estudo observacional prospectivo foi realizado na Santa Casa de Misericórdia de Porto Alegre. Tomando por base uma frequência de LRA de 30%, foi necessária uma amostra de 110 pacientes para proporcionar ao estudo o poder estadístico de 80% para detectar uma razão de chances de 3 com alfa bicaudal de 0,05. Os dados foram colhidos de julho de 2015 a março de 2016.

Foram incluídos participantes com idade acima de 18 anos submetidos à cirurgia cardíaca eletriva com circulação extracorpórea. O critério de exclusão foi presença de doença renal crônica definida como taxa de filtração glomerular estimada inferior a 60 mL ou presença de proteinúria ou hematuria na urinálise pré-operatória.

A creatinina sérica foi medida pelo método cinético automático. Para a urinálise, amostras de urina frescas foram obtidas nas primeiras 24 horas após a cirurgia e examinadas em menos de uma hora. Todas as amostras foram colhidas de cateteres urinários. As amostras (10 mL) foram centrifugadas a 1500 rpm por cinco minutos numa centrífuga padrão. O sobrenadante (9,5 mL) foi decantado e o resíduo (0,5 mL) ressuspensão por agitação manual suave de tubos de ensaio. Uma única gota de sedimento urinário foi pipetada em uma lâmina de vidro e uma lamínula foi aplicada. Não houve variação no tipo de lâminas e lamínulas utilizadas no estudo. O sedimento urinário foi analisado para ausência ou presença de CETR e CG. Quando presente, a quantificação foi realizada por microscopia de campo claro e de contraste de fase com lentes de baixa (x10) e alta potência (x40).

Outros elementos como células epiteliais, eritrócitos, leucócitos, outros tipos de cilindros urinários e cristais também foram registrados. As leituras da urinálise foram cegadas para o diagnóstico de LRA. O equipamento analítico utilizado foi o Clinitek Advantus da Siemens. Tirás de reagentes Multistix 10SG da Siemens (Siemens Healthneers, Alemanha) foram utilizadas.

Foi utilizado um sistema de pontuação baseado na soma dos escores atribuídos ao número de CETR e/ou
Papel da microscopia urinária na LRA após cirurgia cardíaca

CG presentes no sedimento. Zero CG em ampliação de baixa potência ou zero CETR em ampliação de alta potência = 0 pontos; 1 a 5 CG em ampliação de baixa potência ou 1 a 5 CETR em ampliação de alta potência = 1 ponto; mais de 6 CG em ampliação de baixa potência ou mais de 6 CETR em ampliação de alta potência = 2 pontos. A pontuação final variou de 0 a 4.

Dados sobre creatinina, diurese, tempo de internação em unidade de terapia intensiva e duração da internação hospitalar foram extraídos dos prontuários dos pacientes. Variáveis perioperatoriais (idade, sexo, peso, altura e comorbidades) e duração da cirurgia, tempo de pinçamento aórtico e tempo de perfusão também foram registrados.

O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos.

Os dados categóricos foram apresentados como percentuais. As variáveis contínuas foram descritas na forma de médias ou medianas, conforme o caso. Sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo, razão de verossimilhança positiva, razão de verossimilhança negativa, razão de chances diagnóstica, índice de Youden, acurácia e ASC-COR foram calculados de modo a avaliar as propriedades diagnósticas do sedimento urinário como biomarcador de LRA. A análise estatística foi realizada no SPSS versão 22 com o auxílio da calculadora de avaliação do teste MedCal Diagnostic (versão gratuita online).

RESULTADOS

Um total de 114 pacientes submetidos a cirurgia cardíaca com circulação extracorpórea foram avaliados. Os pacientes tinham idade média de 62,3 anos (DP 11,2) e 67,5% eram do sexo masculino. A creatinina sérica (CrS) média no pré-operatório foi 0,91 mg/dL (DP 0,22). A Tabela 1 descreve os pacientes e as características da cirurgia.

Segundo o critério da KDIGO para CrS, 23 pacientes (20,17%) apresentavam LRA, sendo 16 com doença estágio I, três com LRA estágio II e quatro com LRA estágio III. Setenta e seis pacientes (66,67%) tinham LRA pelo critério de diurese, 20 dos quais também satisfaziam o critério de CrS. Considerando CrS e/ou diurese, 79 (69,3%) indivíduos apresentavam LRA. Quatro pacientes (3,51%) necessitaram de TRS, três foram a óbito e um recuperou a função renal. Um paciente classificado como estágio II foi a óbito. A taxa de mortalidade foi de 3,51% entre todos os pacientes com LRA.

Escores de sedimento urinário de 0, 1 e 2 foram identificados em 94, 13 e seis pacientes, respectivamente. Um paciente tinha escore de sedimento urinário de 4. Os escores de sedimento para cada estágio de LRA encontram-se na Tabela 2. Uma vez que o número de pacientes com escores 2 e 4 foi baixo, tivemos que analisar a capacidade preditiva do sedimento urinário para LRA através de qualquer escore maior que um, como mostrado na Tabela 3. Os cálculos fundamentados nos critérios de CrS, diurese e ambos foram realizados separadamente.

TABELA 1 PACIENTES E CARACTERÍSTICAS CIRÚRGICAS

Idade média, anos (DP)	62,3 (11,2)
Sexo masculino	67,5 %
Índice de massa corporal (kg/m²)	27,99 (4,82)
Hipertensão	81,58 %
Diabetes	30,70 %
DPOC	7,89 %
Doença vascular periférica	8,77 %
Histórico de infarto do miocárdio	20,07 %
Outras comorbidades	6,14 %
Tipo de cirurgia	
Revascularização coronariana válvula	67,55 %
Revascularização coronariana e válvula aórtica	13,16 %
Áortica e válvula	9,65 %
Áortica e revascularização coronariana	4,39 %
Mixoma atrial	1,75 %
CrS pré-operatório (mg/dL), média (DP)	0,91 (0,22)
Tempo de perfusão (min), média (DP)	88,29 (36,06)
Tempo pinçamento aórtico (min), média (DP)	68,22 (23,67)
Duração cirurgia (min), média (DP)	314,31 (76,52)

DP: desvio padrão; DPOC: doença pulmonar obstrutiva crônica.
Papel da microscopia urinária na LRA após cirurgia cardíaca

Tabela 2: Escor de Microscopia Urinária em Cada Estágio de LRA

Microscopia urinária	Sem LRA N (%)	LRA Estágio	Estágio I N (%)	Estágio II N (%)	Estágio III N (%)	Total N (%)
Escore 0	78 (85,7)	12 (75)	3 (100)	1 (25)	94 (82,5)	
Escore 1	9 (9,9)	2 (12,5)	0	2 (50)	13 (11,4)	
Escore 2	4 (4,4)	1 (6,3)	0	1 (25)	6 (5,3)	
Escore 4	0 (0)	1 (6,3)	0	0 (0)	1 (0,9)	
Total (%)	91 (79,8)	16 (14)	3 (2,6)	4 (3,5)	114 (100)	

Tabela 3: Escor de Sedimento Urinário 1 ou Maior e Desenvolvimento de LRA

	Critério LRA creatinina (IC 95%)	Critério LRA diurese (IC 95%)	Critério LRA creatinina e/ou diurese (95%IC)
Sensibilidade	34,78 % (16,38 - 57,27)	23,68 % (14,68 - 34,82)	22,78% (14,10 - 33,60)
Especificidade	86,81 % (78,10 - 93,00)	92,11 % (88,62 - 98,34)	94,29% (80,84 - 99,30)
Valor preditivo positivo	40,00 % (19,12 - 63,95)	85,71 % (63,66 - 96,95)	90,00% (68,82 - 97,35)
Valor preditivo negativo	84,04 % (75,05 - 90,78)	37,63 % (27,79 - 48,28)	35,11% (31,88 - 38,47)
Razão de verossimilhança positiva	2,64 (1,22 - 5,69)	3,00 (0,94 - 9,56)	3,99 (0,98 - 16,26)
Razão de verossimilhança negativa	0,75 (0,55 - 1,02)	0,83 (0,71 - 0,97)	0,87 (0,71 - 0,95)
Acurácia	74,56% (65,55 - 82,25)	45,61% (36,26 - 55,21)	44,74% (35,74 - 54,34)
Razão de chance diagnóstica	2,62 (0,90 - 7,61)	3,36 (0,92 - 12,29)	4,86 (1,06 - 22,28)
Índice de Youden	0,2159	0,1579	0,1707
ASC-COR	0,584 (0,445 - 0,723)	0,573 (0,465 - 0,680)	0,583 (0,477 - 0,693)

A área sob a curva COR é mostrada na Figura 1. A média do pico de creatinina sérica entre pacientes com LRA foi 1,71 mg/dL (DP 0,57). A mesma média para pacientes sem LRA foi 0,92 mg/dL (DP 0,23). Os valores para indivíduos com LRA estágios I, II e III foram 1,52 mg/dL (SD 0,37), 1,41 mg/dL (0,24) e 2,68 mg/dL (0,33), respectivamente. O tempo médio até o pico de creatinina sérica foi 27,5 h (DP 18,31) com mediana de 19 h. A Crs dos pacientes com LRA estágio I retornou a níveis basais após 24 h.

Figura 1. Área sob a curva de características de operação do receptor do escore de sedimento urinário para diferenciação de LRA.
Papel da microscopia urinária na LRA após cirurgia cardíaca

Discussão
A incidência de LRA e a necessidade de TRS foram semelhantes aos percentuais relatados na literatura\(^2\)\(^,\)\(^3\)\(^,\)\(^1\)\(^5\)\(^,\)\(^6\). A diferença na incidência demonstrada pelos critérios de CR\(\text{S}\) e diurese foi semelhante à descrita por McIlroy et al.\(^7\). Tal diferença é problemática para a atual definição do KDIGO, particularmente no tocante a oligúria\(^8\).

Em nosso estudo, o sedimento urinário mostrou baixa sensibilidade e alta especificidade. Schinstock et al. consideraram a identificação de cilindros positiva e relataram sensibilidade de 29,6\% (IC 95\%: 15,9 - 48,5) e especificidade de 89,9\% (IC 95\%: 86,2 - 92,7). Os autores concluíram que mesmo a presença de um CETR ou CG por campo de alta potência resulta em mais de 90\% de especificidade para o diagnóstico de LRA, apesar de não apresentar sensibilidade para tal fim\(^9\).

Uma revisão sistemática identificou cinco estudos a respeito do papel da microscopia urinária no diagnóstico diferencial de LRA e na predição de desfechos em pacientes internados. Todos os estudos confirmaram que a microscopia urinária é um subsídio valioso no diagnóstico diferencial de LRA\(^2\). Contudo, sete artigos sobre LRA relacionada a sepse que conjuntamente incluíram 174 pacientes não chegaram a uma conclusão\(^10\).

Hall et al. estudaram 249 pacientes com LRA e compararam biomarcadores tradicionais e novos. Os autores concluíram que os biomarcadores de proteínuria e microscopia aprimoraram significativamente a determinação clínica do prognóstico. O sedimento urinário apresentou uma ASC-COR de 0,66 (IC 95\%: 0,57-0,75) semelhante a NGAL, KIM-1 e IL-18\(^1\)\(^9\)\(^,\)\(^1\)\(^9\)\(^,\)\(^2\)\(^0\)\(^,\)\(^2\)\(^1\)\(^,\)\(^2\)\(^2\)\(^,\)\(^2\)\(^3\). Outra metanálise que incluiu 28 estudos de biomarcadores de LRA em cirurgia cardíaca concluiu que tais marcadores apresentavam uma discreta discriminação e relatou valores compostos de ASC-COR entre 0,63 e 0,72\(^2\)\(^0\).

Chawla et al. desenvolveram e avaliaram a precisão de um índice de escore para presença de cilindros. A concordância interobservador foi de 99,8\% (DP 0,29) com coeficiente de variação de 1,24\%. O índice considerou CG e cilindros de células epiteliais por percentual de campos de baixa potência com pelo menos um cilindro\(^2\)\(^1\). Ainda não há definição sobre se o primeiro critério ou o número de CG por campo de baixa potência e células epiteliais renais por campo de alta potência, como proposto, devem ser utilizados\(^2\)\(^2\).

O delineamento prospectivo, a homogeneidade da coorte e LRA definida pelos critérios do KDIGO são fortes vantagens deste estudo. Além disso, os examinadores de urina foram cegados para o diagnóstico. O pequeno número de casos, o fato de ter sido realizado em um único centro, bem como a inexistência de comparação com outros índices urinários ou biomarcadores são as limitações do presente estudo.

Conclusão
A microscopia urinária é um exame facilmente disponível, não invasivo, acessível e que requer equipamentos simples. Em nosso estudo, a presença de células epiteliais tubulares renais e cilindros granulares resultou em elevada especificidade para o diagnóstico precoce de LRA. A microscopia urinária pode ser usada em conjunto com outros biomarcadores de LRA precoce de forma a aprimorar o poder discriminatório do método.

Agradecimentos
Agradecemos a equipe de Terapia Intensiva Cardiológica do Hospital São Francisco da Santa Casa de Misericórdia de Porto Alegre pelas contribuições para o presente estudo.

Referências
1. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO Clinical Practice Guideline for Acute Kidney Injury. Improving Global Outcomes. 2012. Available at: http://www.kdigo.org/KidneyDisease/GlobalOutcomes/AcuteKidneyInjuryGuideline/Introduction/2012GuidelineAPR15.pdf.
2. Pickering J, James M, Palmer S. Acute Kidney Injury and Prognosis After Cardiopulmonary Bypass: A Meta-analysis of Cohort Studies. Am J Kidney Dis. 2015 Feb; 65(2):283-93.
3. Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global Incidence and Outcomes of Adult Patients with Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-Analysis. J Cardiothorac Vasc Anesth. 2016, 30(1):82-89.
4. Arthur J, Hill E, Alje J, Lewis E, Neely B, Janich M, Tumlin J, Chawla L, Shaw A, for the SAKNet Investigators. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. 2014; 85(2):431-438.
5. Perazella MA, Coca SG, Hall IE, Iyam U, Koraishy M, Pari-kh CR. Urine Microscopy Is Associated with Severity and Worsening of Acute Kidney Injury in Hospitalized Patients. Clin J Am SocNephrol. 2010; 5: 402-408.
6. Vijayan A, Faubel S, Askenazi D, Cerda, Fissell W, Heung M, Humphreys B, Kovern J, Liu K, Mour G, Nolin T, Bihorac A. Clinical Use of the Urine Biomarker (TIMP-2) x (IGFBP7) for Acute Kidney Injury Risj Assessment. Am J Kidney Dis. 2016;68(1):19-28.
7. Perazella M, The Urine Sediment as a Biomarker of Kidney Disease. Am J Kidney Dis 2015, 66(3):747-755.
8. Schentag J, Gengo F, Plaut M, Danner D, Mangione A e Jusko W. Urinary Casts as an Indicator of Renal Tubular Damage in Patients Receiving Aminoglycosides. Antimicrob Agents Chemother. 1979; 16(4): 468-474.
9. Kanbay M, Kaspoglu, Perazella M. Acute tubular necrosis and pre-renal acute kidney injury: utility of urine microscopy in...
their evaluation – a systematic review. Int Urol Nephrol. 2010; 42:425-433.
10. Bagshaw S, Gibney R. Clinical value of urine microscopy in acute kidney injury. Nature Reviews Nephrology. 2009; 5:185-186.
11. Perazella M, Coca SG, Kanbay M, Brewster UC, Parikh C. Diagnostic Value of Urine Microscopy for Differential Diagnosis of Acute Kidney Injury in Hospitalized Patients. Clin J Am Soc Nephrol. 2008; 3:1615-1619.
12. Perazella MA, Parikh CR. How Can Urine Microscopy Influence the Differential Diagnosis in AKI? Clin J Am Soc Nephrol. 2009; 4: 691-693.
13. Bagshaw S, Haase M, Haase-Fielitz A, Bennet M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol Dial Transplant. 2012; 27:582-588.
14. Ray P, Le Manach Y, Riou B, Houle TT. Statistical Evaluation of a Biomarker. Anesthesiology 2010; 112:1023-40.
15. Rosner M, Okusa M. Acute Kidney Injury Associated with Cardiac Surgery. Clin J Am Soc Nephrol. 2006; 1:19-32.
16. McIlroy D, Argenziano M, Farkas D, Umann T, Sladen R. Incorporating Oliguria Into the Diagnostic Criteria for Acute Kidney Injury After On-Pump Cardiac Surgery: Impact on Incidence and Outcomes. J Cardiothorac Vasc Anesth. 2013; 27(6):1145-1152.
17. MdRalib A, Pickering J, Shaw G, Endre Z. The urine output definition of acute kidney injury is too liberal. Critical care 2013, 17: R112.
18. Schinstock C, Semret M, Wagner S, Borland T, Bryant S, Kashanu KB et al. Urinalysis is more specific and urinary neutrophil gelatinase – associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol Dial Transplant. 2013; 28: 1175-1185.
19. Hall I, Coca S, Perazella M, Eko U, Luciano R, Peter P, Han W, Parikh C. Risk of Poor Outcomes with Novel and Traditional Biomarkers at Clinical AKI Diagnosis. Clin J Am Soc Nephrol 2011; 6:2740-2749.
20. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, Gill K, Walker S, MacDonald K, Hiebert B, Arora R, Rigatto C. Urinary Plasma and Serum Biomarkers Utility for Predicting Acute Kidney Injury Associated with Cardiac Surgery in Adults: A Meta-analysis. Am J kidney Dis. 2015; 66(6); 993-1005.
21. Chawla L, Dommu A, Berger A, Shih S, Patel S. Urinary Sediment Cast Score for Acute Kidney Injury: A Pilot Study. Nephron Clin Pract. 2008; 110:c145-c150.
22. Granado RC, Macedo E, Mehta RL. Urine Microscopy in Acute Kidney Injury: Time for a Change. Am J Kidney Dis. 2011; 57 (5): 657-660.