Cabibbo-suppressed non-leptonic B- and D-decays involving tensor mesons

J. H. Muñoz1, A. A. Rojas1 and G. López Castro2

1 Departamento de Física, Universidad del Tolima, A. A. 546, Ibagué, Colombia

2 Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 México, D.F., México

Abstract

The Cabibbo-suppressed non-leptonic decays of B (and D) mesons to final states involving tensor mesons are computed using the non-relativistic quark model of Isgur-Scora-Grinstein-Wise with the factorization hypothesis. We find that some of these B decay modes, as $B \rightarrow (K^*, D^*)D_2^*$, can have branching ratios as large as 6×10^{-5} which seems to be at the reach of future B factories.

PACS number(s): 13.15.Hw, 12.39.Jh, 14.40.Nd
1. Introduction

B meson factories at SLAC and KEK will soon start their operation. Besides the central interest on the study of CP violation in the B system, the precision of many properties of B mesons that have already been measured is expected to be improved there. Some suppressed decays of B mesons, either modes occurring at tree-level and suppressed by CKM factors or modes suppressed by dynamical effects, will certainly be accessible at these experiments for the first time. Another kind of suppressed B decays correspond to the modes containing mesons that are radial or orbital excitations of the $q\bar{q}'$ system. Semileptonic B decays containing orbital excitations of the $c\bar{q}$ system as D_1 and D_2^* mesons have been observed recently by CLEO [1], concluding that they can account for up to 20% of the B semileptonic rate. The study of these decays is interesting to probe the specific predictions for the hadronic matrix elements in the context of phenomenological quark models [2] and heavy quark effective theory [3, 4, 5].

In a recent paper [6] we have computed the Cabibbo-favored non-leptonic decay modes of B mesons of the form $B \rightarrow PT, VT$, where $P(V)$ is a pseudoscalar (vector) meson and the spin-2 tensor meson T corresponds to the p-wave of the quark-antiquark system. We have found [6] that some of these decay modes have branching ratios large enough to be observed in future measurements. Similar conclusions have been reached in refs. [7, 8].

In the present paper we consider the Cabibbo-suppressed two-body non-leptonic decay modes of B mesons that contain a light- or charmed-tensor meson in the final state. Despite additional Cabibbo-suppression factors, the amplitudes for some of these decays can be enhanced because they are favored by contributions proportional to the a_1 QCD coefficient which appears in the effective weak Hamiltonian and/or have more phase-space available. We make use of the non-relativistic quark model of ref. [2] to evaluate the relevant hadronic matrix elements of the $B \rightarrow T$ transitions, where T is a light or heavy (i.e. charmed) tensor meson. For completeness, we also compute the Cabibbo-suppressed two-body non-leptonic D decays involving tensor mesons that are allowed by phase space considerations. The corresponding Cabibbo-favored D decays have been computed in ref. [9].

Let us mention that the $B \rightarrow T$ hadronic matrix element computed in ref. [2] has been used recently to evaluate the semileptonic rate of the $B \rightarrow D_2^*\ell\nu$ [5] decay mode. The heavy quark effective theory also allows a computation of the $B \rightarrow T$ matrix element and has been used to evaluate the decay rates of the $B^- \rightarrow D_2^{*0}\pi^-$ [8] (see also [3]) and $B \rightarrow D_2^*\ell\nu$ [3, 4, 7] decays.

Besides the interest of heavy meson decays to tensor mesons in order to test properties of quark models or symmetries of QCD for heavy quarks, one should mention that tensor
mesons (i.e. $q\bar{q}'$ states with $L = 1$, $S = 1$ and $J^P = 2^+$) belong to one of the better established 16-plet under flavor SU(4). Indeed, according to the compilation of the Particle Data Group [10], the following members of the 16-plet of tensor mesons have already been observed: the isovector $a_2(1320)$ state, the isoscalars $f_2(1270)$, $f_2'(1525)$ and $\chi_{c2}(3556)$, the strange isospinor $K_2^*(1430)$ and the charm isodoublet $D^*_2(2460)$ states. Although there is not compelling evidence yet for the charmed-strange tensor meson, according to ref. [11] the $D^*_sJ(2573)$ has the width and decay modes consistent with a $J^P = 2^+ c\bar{s}$ state.

Despite their low branching fractions, the observation of some non-leptonic Cabibbo-suppressed B and D decays to lowest lying mesons have been reported recently. For example, the following decay modes have been observed: $B^- \rightarrow D^0K^-$ [12], $B^0 \rightarrow D^{*-} + D^*$ [13], $D^0 \rightarrow K^-K^*, \pi^+\pi^-$ [14] and $D^+ \rightarrow (\eta, \eta') \pi^+, (\eta, \eta') \rho^+$ [15]. As will be shown below, some Cabibbo-suppressed B decays to tensor mesons have branching ratios of order $10^{-5} \sim 10^{-6}$ which look not too far from experimental searches at B factories.

The rest of the paper is organized as follows. In section 2 we write the effective non-leptonic weak Hamiltonians for Cabibbo-suppressed B and D decays and provide a classification for these decays. In section 3 we set our convention for mixing of octet and singlet states of SU(3) and provide the numerical values of the parameters required for our calculations. Our conclusions are given in section 4. Let us note that we closely follow the notation and formulae obtained in ref. [6].

2. Effective weak Hamiltonians for Cabibbo-suppressed B and D decays

The B and D decays of our interest are such that only one single Cabibbo suppression factor occurs at a time. The effective weak Hamiltonian for single Cabibbo-suppressed non-leptonic B decays can be written as follows:

$$\mathcal{H}_{\text{eff}}(\Delta b) = \frac{G_F}{\sqrt{2}} \left\{ V_{ub}V_{ud}^*[a_1(\bar{u}b)(\bar{d}u) + a_2(\bar{d}b)(\bar{u}u)]
ight.$$

$$+ V_{ub}V_{cs}^*[a_1(\bar{u}b)(\bar{c}c) + a_2(\bar{c}b)(\bar{u}c)]$$

$$+ V_{cd}V_{cs}^*[a_1(\bar{c}d)(\bar{c}c) + a_2(\bar{c}d)(\bar{c}c)]$$

$$+ V_{ub}V_{us}^*[a_1(\bar{u}b)(\bar{s}u) + a_2(\bar{u}b)(\bar{s}u)] \right\} + \text{h.c.} \quad (1)$$

where $(\bar{q}q')$ is a short notation for the $V - A$ current, G_F denotes the Fermi constant, and V_{ij} are the relevant CKM mixing factors. In this paper we will take the following numerical values for the QCD coefficients: $a_1 = 1.15$, $a_2 = 0.26$ [16].
In order to provide a classification for the wide set of these decays, we will call type I decays those occurring through the first two terms within curly brackets (*i.e.* proportional to V_{ub}) while those proportional to V_{cb} will be called of type II. Based on current values of CKM matrix elements, one would naively expect that type I B decay branching ratios are suppressed by the factor $|V_{ub}/V_{cb}V_{us}|^2 \approx 0.13$ with respect to type II decays. Among type I and II decays we will also distinguish between processes with $\Delta s = 0, 1$ associated to the change of strangeness in the second weak vertex.

In a similar way, the effective weak Hamiltonian for single Cabibbo-suppressed D decays is given by

$$H_{\text{eff}}(\Delta c) = \frac{G_F}{\sqrt{2}} V_{cd} V^{*}_{us} \{a_1(\overline{d}c)(\overline{u}u) + a_2(\overline{u}c)(\overline{d}d)\} + \text{h.c.}$$

where the numerical values for the QCD coefficients will be taken as $a_1 = 1.26$ and $a_2 = -0.51$ \cite{17}. Notice that we have included only the terms relevant for D decays with $\Delta s = 0$ (type I), because type II transitions are very suppressed by phase space considerations. Note that $D \to VT$ are completely forbidden by kinematics.

Observe that due to the vector nature of the effective hadronic weak currents in Eqs. (1,2), the matrix element $\langle P|\overline{q}q'|0\rangle$ vanishes identically. Therefore, as already discussed in ref. \cite{8}, only one operator in the effective weak Hamiltonian will contribute to the decay amplitude of a given process, *i.e.* the amplitudes for our processes become proportional to either a_1 or a_2 alone.

3. Mixing of states, decay constants and results

In this section we provide our convention for SU(3) octet-singlet mixing of states and the numerical values for the decay constants required to describe the $\langle P(V)|(\overline{q}q')|0\rangle$ matrix elements.

As is known, the breaking of SU(3) flavor symmetry produces a mixing between octet and singlet states of SU(3) with $I = 0$. In our convention, this mixing leads to the following expressions for the physical states:

$$\eta = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}) \sin \phi_P - (s\overline{s}) \cos \phi_P,$$

$$\eta' = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}) \cos \phi_P + (s\overline{s}) \sin \phi_P,$$

$$\omega = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}) \cos \phi_V + (s\overline{s}) \sin \phi_V,$$

$$\phi = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}) \sin \phi_V - (s\overline{s}) \cos \phi_V,$$
\[
f_2 = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) \cos \phi_T + (s\bar{s}) \sin \phi_T,
\]
\[
f_2' = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) \sin \phi_T - (s\bar{s}) \cos \phi_T,
\]

where the mixing angle is given by \(\phi_i = \arctan \left(\frac{1}{\sqrt{2}} \right) - \theta_i \) \((i = P, V)\) and the experimental values of \(\theta_i \) are given by \(-20^0, 39^0\) and \(28^0\) \([10]\) for pseudoscalar \((\eta, \eta')\), vector \((\omega, \phi)\) and tensor \((f_2, f_2')\) mesons, respectively.

With the above convention, we have computed the decay amplitudes for type I and II \(B \rightarrow P(V) + T\) decays and the results are given in the third column of Tables 1–4. The analogous results for type I \(D \rightarrow P + T\) transitions are given in the third column of Table 5. As already mentioned, these amplitudes are proportional to only one QCD coefficient appearing in the weak Hamiltonians. The explicit expressions for the functions \(\mathcal{F}^{i\rightarrow f}\) and \(\mathcal{F}^{i\rightarrow f}_{\mu\nu}\) appearing in the decay amplitudes and the properties of the symmetric polarizations tensors \(\epsilon_{\mu\nu}\) describing the spin 2 particles can be found in ref. [6].

In order to provide numerical values of the branching ratios we use the expressions for the decay rates given in Eqs. (9) and (11) of ref. [6] and the following values of the CKM matrix elements \([10]\): \(|V_{ub}| = 3.3 \times 10^{-3}, |V_{ud}| = 0.9740, |V_{cs}| = 0.975, |V_{cb}| = 0.0395, |V_{cd}| = 0.224\) and \(|V_{us}| = 0.2196\). The values for the lifetimes of \(B\) and \(D\) mesons are taken from ref. [11].

The decay constants of pseudoscalar mesons \(f_P\) (given in GeV units) have the following central values: \(f_{\pi^-} = 0.131\) \([10]\), \(f_{\pi^0} = 0.130\) \([10]\), \(f_{\eta} = 0.131\) \([18]\), \(f_{\eta'} = 0.118\) \([18]\), \(f_{D_s} = 0.280\) \([13]\), \(f_D = 0.252\), \(f_{D_s} = 0.393\) \([20]\) and \(f_{K^*} = 0.159\) \([14]\). \(f_D\) is obtained using the theoretical prediction \(f_D/f_{D_s} = 0.90\) \([21]\) and the value for \(f_{D_s}\). On the other hand, the central values for the dimensionless decay constants of vector mesons \(f_V\) are \([20]\): \(f_\rho = 0.281, f_\omega = 0.249, f_\phi = 0.232, f_{D_s^*} = 0.128, f_{D^*} = 0.124, f_{J/\psi} = 0.1307\) and \(f_{K^*} = 0.248\).

The branching ratios for Cabibbo-suppressed \(B\) and \(D\) decays involving tensor mesons are given in the last column of Tables 1–5.

4. Conclusions.

Semileptonic \(B\) decays to final states containing orbital excitations of the \(q \bar{q}'\) system have already been observed in recent experimental searches. These suppressed decay modes are expected to provide additional tests of the QCD dynamics exhibited by phenomenological quark models or the Heavy Quark Effective Theory predictions for the hadronic matrix elements involving higher excitations of the \(q \bar{q}'\) system.

Based on the non-relativistic quark model of ref. \([2]\), in this paper we have computed the Cabibbo-suppressed decay modes of \(B\) (and \(D\)) mesons to final states involving \(J^P = 2^+\)
tensor mesons. As observed in Table 4, some of these B decays as $B^- \rightarrow (D^{*-}, K^{*-})D_2^{*0}$ and $\bar{B}^0 \rightarrow (D^{*-}, K^{*-})D_2^{*+}$ can have branching ratios as large as 6×10^{-5}, which seems to be at the reach of future B factories. Despite the fact that these modes have a Cabibbo-suppression factor, they exhibit branching fractions comparable to some corresponding Cabibbo-allowed B decays (see for example, [3, 4]) because they are proportional to the a_1 coefficients (instead of a_2) and the available phase space is larger. Regarding $D \rightarrow PT$ transitions, the most favored decay modes correspond to $D \rightarrow \pi^+(a_2, f_2)$ with branching fractions in the range $(4 \sim 8) \times 10^{-6}$.

Acknowledgements

J. H. M. is grateful to Colciencias (Colombia) for financial support.

References

[1] CLEO Collaboration, A. Anastassov et al., Phys. Rev. Lett. 80, 4127 (1998).
[2] N.. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D 39, 799 (1989).
[3] A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys. Rev. D57, 308 (1998).
[4] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Lett. B434, 365 (1998).
[5] M. Matsuda and T. B. Suzuki, Phys. Lett. B380, 371 (1996).
[6] G. Lópe Castro and J. H. Muñoz, Phys. Rev. D 55, 5581 (1997).
[7] A. C. Katoch and R. C. Verma, Phys. Rev. D52, 1717 (1995); Erratum: ibid D55, 7316 (1997).
[8] M. Neubert, Phys. Lett. B418, 173 (1998).
[9] A. C. Katoch and R. C. Verma, Phys. Rev. D 49, 1645 (1994); Erratum: ibid D55, 7315 (1997).
[10] Particle Data Group, R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[11] Particle Data Group, C. Caso et al., Eur. Phys. Jour. C3, 1 (1998).
[12] CLEO Collaboration, M. Athanas et al., Phys. Rev. Lett. 80, 5493 (1998).
[13] CLEO Collaboration, D. M. Asner et al., Phys. Rev. Lett. 79, 799 (1997).
[14] E791 Collaboration, E. M. Aitala et al., Phys. Lett. B 421, 405 (1998).
[15] CLEO Collaboration, C. P. Jessop et al., Phys. Rev. D58, 052002 (1998).
[16] CLEO Collaboration, M. S. Alam et al., Phys. Rev. D 50, 43 (1994).
[17] M. Wirbel, Prog. Part. Nucl. Phys. 21, 33 (1988).
[18] M. Neubert and B. Stech, in Heavy Flavours II, Eds. A. J. Buras and M. Lindner, World Scientific, Singapore, (1998) p. 294.
[19] CLEO Collaboration, M. Chadha et al., Phys. Rev. D 58, 032002 (1998).
[20] K. K. Sharma and R. C. Verma, e-print hep-ph/9801202
[21] C. W. Bernard, J. N. Labrenz and A. Soni, Phys. Rev. D 49, 2536 (1994).
Process	Amplitude $\times (V_{ub}V_{cb}^*)$	$Br(B \to PT)$
$B^- \to \pi^- a_2^0$	$a_1 f_{\pi^-} F^{B\to a_2}(m_2^2)/\sqrt{2}$	3.02 x 10^{-7}
$B^- \to \pi^- f_2$	$a_1 f_{\pi^-} \cos \phi_T F^{B\to f_2}(m_2^2)/\sqrt{2}$	3.25 x 10^{-7}
$B^- \to \pi^- f_2'$	$a_1 f_{\pi^-} \sin \phi_T F^{B\to f_2'}(m_2^2)/\sqrt{2}$	3.23 x 10^{-9}
$B^- \to \eta_2 a_2$	$a_2 f_\eta \cos \phi_T F^{B\to a_2}(m_\eta^2)/\sqrt{2}$	1.52 x 10^{-8}
$B^- \to \eta_2 f_2$	$a_2 f_\eta \sin \phi_T F^{B\to a_2}(m_\eta^2)/\sqrt{2}$	1.05 x 10^{-8}
$B^- \to \eta_2 f_2'$	$a_2 f_\eta' \cos \phi_T F^{B\to a_2}(m_\eta^2)/\sqrt{2}$	4.18 x 10^{-9}

Process	Amplitude $\times (V_{ub}V_{cb}^*)$	
$\Delta s = 0$	$a_1 f_{\pi^-} F^{B\to a_2}(m_2^2)/\sqrt{2}$	5.71 x 10^{-7}
$\Delta s = 1$	$a_1 f_{\pi^-} F^{B\to a_2}(m_2^2)/\sqrt{2}$	3.02 x 10^{-7}
$B^- \to D_s^- a_2^0$	$a_1 f_{D_s^-} F^{B\to a_2}(m_{D_s}^2)/\sqrt{2}$	1.45 x 10^{-6}
$B^- \to D_s^- f_2$	$a_1 f_{D_s^-} \cos \phi_T F^{B\to f_2}(m_{D_s}^2)/\sqrt{2}$	1.58 x 10^{-6}
$B^- \to D_s^- f_2'$	$a_1 f_{D_s^-} \sin \phi_T F^{B\to f_2'}(m_{D_s}^2)/\sqrt{2}$	1.43 x 10^{-8}
$B^- \to D_s^- f_2^0$	$a_2 f_{D_s} F^{B\to f_2}(m_{D_s}^2)$	6.38 x 10^{-8}
$B^- \to D_s^- f_2^2$	$a_2 f_{D_s} F^{B\to f_2}(m_{D_s}^2)$	2.75 x 10^{-6}
$B^- \to D_s^- f_2^3$	$a_2 f_{D_s} F^{B\to f_2}(m_{D_s}^2)$	5.90 x 10^{-8}

Table 1. Decay amplitudes and branching ratios for the CKM-suppressed $B \to PT$ channels of the type-I with $\Delta s = 0, -1$. These amplitudes must be multiplied by $(iG_F/\sqrt{2})^e_{\mu\nu} P_B^\mu P_B^\nu$.

8
	Process	Amplitude $\times (V_{cb}V_{ub}^*)$	$Br(B \rightarrow PT)$
$\Delta s = 0$	$B^- \rightarrow D^- D_{2}^{*0}$	$a_1 f_{D^-} \mathcal{F}^{D^- \rightarrow D_{2}^{*0}}(m_{D^-}^2)$	1.76×10^{-5}
	$B^- \rightarrow \eta_c a_2^-$	$a_2 f_{\eta_c} \mathcal{F}^{B \rightarrow a_2}(m_{\eta_c}^2)$	1.44×10^{-6}
	$\overline{B}^0 \rightarrow D^- D_{2}^{*+}$	$a_1 f_{D^-} \mathcal{F}^{D^- \rightarrow D_{2}^{*+}}(m_{D^-}^2)$	1.66×10^{-5}
	$\overline{B}^0 \rightarrow \eta_c a_2^0$	$-a_2 f_{\eta_c} \mathcal{F}^{B \rightarrow a_2}(m_{\eta_c}^2)/\sqrt{2}$	6.80×10^{-7}
	$\overline{B}^0 \rightarrow \eta_c f_2$	$a_2 f_{\eta_c} \cos \phi_T \mathcal{F}^{B \rightarrow f_2}(m_{\eta_c}^2)/\sqrt{2}$	7.77×10^{-7}
	$\overline{B}^0 \rightarrow \eta_c f'_2$	$a_2 f_{\eta_c} \sin \phi_T \mathcal{F}^{B \rightarrow f'_2}(m_{\eta_c}^2)/\sqrt{2}$	5.07×10^{-9}
$\Delta s = -1$	$B^- \rightarrow K^- D_{2}^{*0}$	$a_1 f_{K^-} \mathcal{F}^{K^- \rightarrow D_{2}^{*0}}(m_{K^-}^2)$	2.40×10^{-5}
	$B^- \rightarrow D^0 K_{2}^{*-}$	$a_2 f_{D^0} \mathcal{F}^{B \rightarrow K_{2}^{*-}}(m_{D^0}^2)$	4.56×10^{-7}
	$\overline{B}^0 \rightarrow K^- D_{2}^{*+}$	$a_1 f_{K^-} \mathcal{F}^{K^- \rightarrow D_{2}^{*+}}(m_{K^-}^2)$	2.27×10^{-5}
	$\overline{B}^0 \rightarrow D^0 K_{2}^{*0}$	$a_2 f_{D^0} \mathcal{F}^{B \rightarrow K_{2}^{*0}}(m_{D^0}^2)$	4.22×10^{-7}

Table 2. Decay amplitudes and branching ratios for the CKM-suppressed $B \rightarrow PT$ decays of the type-II with $\Delta s = 0, -1$. The amplitudes must be multiplied by $(iG_F/\sqrt{2})\varepsilon_{\mu\nu}p_B^\mu p_B^\nu$.

Process	Amplitude ×(V_{ub}V_{cb}^*)	Br(B → VT)
\(B^- → ρ^−a_2^0\)	\(a_1 f_ρ m_ρ^2 F_{µν}^{B → a_2}(m_ρ^2)/√2\)	8.66 × 10⁻⁷
\(B^- → ρ^−f_2\)	\(a_1 f_ρ m_ρ^2 \cos Φ T F_{µν}^{B → f_2}(m_ρ^2)/√2\)	9.22 × 10⁻⁷
\(B^- → ω a_2\)	\(a_2 f_ω m_ω^2 \cos Φ V F_{µν}^{B → a_2}(m_ω^2)/√2\)	9.83 × 10⁻⁹
\(B^- → φ a_2\)	\(a_2 f_φ m_φ^2 \sin Φ V F_{µν}^{B → a_2}(m_φ^2)/√2\)	4.43 × 10⁻⁸
\(B^0 → ρ^−a_2^0\)	\(a_1 f_ρ m_ρ^2 F_{µν}^{B → a_2}(m_ρ^2)\)	1.64 × 10⁻⁶
\(B^0 → ρ^0a_2^0\)	\(-a_2 f_ρ m_ρ^2 F_{µν}^{B → a_2}(m_ρ^2)/2\)	2.09 × 10⁻⁸
\(B^0 → ρ^0f_2\)	\(a_2 f_ρ m_ρ^2 \cos Φ T F_{µν}^{B → f_2}(m_ρ^2)/2\)	2.23 × 10⁻⁸
\(B^0 → ω a_2\)	\(-a_2 f_ω m_ω^2 \cos Φ V F_{µν}^{B → f_2}(m_ω^2)/2\)	2.38 × 10⁻¹⁰
\(B^0 → ω f_2\)	\(a_2 f_ω m_ω^2 \cos Φ V F_{µν}^{B → f_2}(m_ω^2)/2\)	1.70 × 10⁻⁸
\(B^0 → ω f_2\)	\(-a_2 f_ω m_ω^2 \cos Φ V F_{µν}^{B → f_2}(m_ω^2)/2\)	2.42 × 10⁻⁸
\(B^0 → ω f_2\)	\(a_2 f_ω m_ω^2 \cos Φ V F_{µν}^{B → f_2}(m_ω^2)/2\)	1.93 × 10⁻¹⁰
\(B^0 → φ a_2\)	\(-a_2 f_φ m_φ^2 \sin Φ V F_{µν}^{B → a_2}(m_φ^2)/2\)	1.09 × 10⁻¹⁰
\(B^0 → φ f_2\)	\(a_2 f_φ m_φ^2 \sin Φ V F_{µν}^{B → f_2}(m_φ^2)/2\)	1.16 × 10⁻¹⁰
\(B^0 → φ f_0\)	\(a_2 f_φ m_φ^2 \sin Φ V F_{µν}^{B → f_2}(m_φ^2)/2\)	1.29 × 10⁻¹²

Table 3. Decay amplitudes and branching ratios for the CKM-suppressed \(B → VT\) modes of the type-I with \(Δs = 0, -1\). The amplitudes must be multiplied by \((G_F/√2)ε^{ςμυ}\).
Process	Amplitude $\times (V_{cb}V_{cd}^*)$	$Br(B \to VT)$
$\Delta s = 0$		
$B^- \to D^{*-}D_2^{*0}$	$a_1 f_{D^{*-}D_2^{*0}} m_{D^{*-}}^2 f^{D^{*-}D_2^{*0}}(m_{D^{*-}}^2)$	6.66×10^{-5}
$B^- \to J/\psi a_2$	$a_2 f_{J/\psi a_2} m_{J/\psi}^2 f^{B^+\to a_2}(m_{J/\psi}^2)$	5.23×10^{-6}
$\bar{B}^0 \to D^{*-}D_2^{*+}$	$a_1 f_{D^{*-}D_2^{*+}} m_{D^{*-}}^2 f^{B^+\to D_2^{*+}}(m_{D^{*-}}^2)$	6.29×10^{-5}
$\bar{B}^0 \to J/\psi a_2^0$	$-a_2 f_{J/\psi a_2^0} m_{J/\psi}^2 f^{B^+\to a_2}(m_{J/\psi}^2)/\sqrt{2}$	2.47×10^{-6}
$\bar{B}^0 \to J/\psi f_2$	$a_2 f_{J/\psi f_2} m_{J/\psi}^2 \cos \phi_T f^{B^+\to f_2}(m_{J/\psi}^2)/\sqrt{2}$	2.56×10^{-6}
$\bar{B}^0 \to J/\psi f'_2$	$a_2 f_{J/\psi f'_2} m_{J/\psi}^2 \sin \phi_T f^{B^+\to f'_2}(m_{J/\psi}^2)/\sqrt{2}$	2.92×10^{-8}
$\Delta s = -1$		
$B^- \to K^{*-}D_2^{*0}$	$a_1 f_{K^{*-}D_2^{*0}} m_{K^{*-}}^2 f^{B^+\to D_2^{*0}}(m_{K^{*-}}^2)$	5.77×10^{-5}
$B^- \to D^{*0}K_2^{*-}$	$a_2 f_{D^{*0}K_2^{*-}} m_{D^{*0}}^2 f^{B^+\to K_2^{*-}}(m_{D^{*0}}^2)$	2.24×10^{-6}
$\bar{B}^0 \to K^{*-}D_2^{*+}$	$a_1 f_{K^{*-}D_2^{*+}} m_{K^{*-}}^2 f^{B^+\to D_2^{*+}}(m_{K^{*-}}^2)$	5.46×10^{-5}
$\bar{B}^0 \to D^{*0}K_2$	$a_2 f_{D^{*0}K_2} m_{D^{*0}}^2 f^{B^+\to K_2}(m_{D^{*0}}^2)$	2.11×10^{-6}

Table 4. Decay amplitudes and branching ratios for the CKM-suppressed $B \to VT$ decays of the type-II with $\Delta s = 0, -1$. The amplitudes must be multiplied by $(G_F/\sqrt{2})\epsilon^\mu\nu$.

11
Table 5. Decay amplitudes and branching ratios for the CKM-suppressed $D \to PT$ channels of the type-I with $\Delta s = 0$. The amplitudes must be multiplied by $(iG_F/\sqrt{2})\varepsilon^\ast_{\mu\nu}p_Dp_P^\nu_D$.

Process	Amplitude $\times (V_{td}V_{ud}^*)$	$Br(D \to PT)$
$D^0 \to \pi^+ a_2^-$	$a_1 f_{\pi^+} \mathcal{F}^{D \to a_2}(m_{\pi^+}^2)$	4.21×10^{-6}
$D^0 \to \pi^0 a_2^0$	$-a_2 f_{\pi^0} \mathcal{F}^{D \to a_2}(m_{\pi^0}^2)/2$	1.72×10^{-7}
$D^0 \to \pi^0 f_2$	$-a_2 f_{\pi^0} \cos \phi_T \mathcal{F}^{D \to f_2}(m_{\pi^0}^2)/2$	2.47×10^{-7}
$D^0 \to \pi^0 f_2'$	$-a_2 f_{\pi^0} \sin \phi_T \mathcal{F}^{D \to f_2'}(m_{\pi^0}^2)/2$	2.18×10^{-10}
$D^+ \to \pi^+ a_2^0$	$-a_1 f_{\pi^+} \mathcal{F}^{D \to a_2}(m_{\pi^+}^2)/\sqrt{2}$	5.55×10^{-6}
$D^+ \to \pi^+ f_2'$	$a_1 f_{\pi^+} \cos \phi_T \mathcal{F}^{D \to f_2'}(m_{\pi^+}^2)/\sqrt{2}$	7.97×10^{-6}
$D^+ \to \pi^+ f_2'$	$a_1 f_{\pi^+} \sin \phi_T \mathcal{F}^{D \to f_2'}(m_{\pi^+}^2)/\sqrt{2}$	7.18×10^{-9}
$D^+ \to \pi^0 a_2^+$	$-a_2 f_{\pi^0} \mathcal{F}^{D \to a_2}(m_{\pi^0}^2)/\sqrt{2}$	9.05×10^{-7}