CALN1 hypomethylation as a biomarker for high-risk bladder cancer

Kimiaki Takagi1*, Azumi Naruse2, Kazutoshi Akita1, Yuka Muramatsu-Maekawa1, Kota Kawase2, Takuya Koie3, Masanobu Horie1 and Arizumi Kikuchi2

Abstract
Background: DNA methylation in cancer is considered a diagnostic and predictive biomarker. We investigated the usefulness of the methylation status of CALN1 as a biomarker for bladder cancer using methylation-sensitive restriction enzyme (MSRE)-quantitative polymerase chain reaction (qPCR).

Methods: Eighty-two bladder cancer fresh samples were collected via transurethral resection of bladder tumors. Genomic DNA was extracted from the samples, and MSRE-qPCR was performed to determine the CALN1 methylation percentage. Reverse transcription-qPCR was performed to assess the correlation between CALN1 methylation and mRNA expression. The association between CALN1 methylation percentage and clinicopathological variables of all cases and intravesical recurrence of non-muscle-invasive bladder cancer (non-MIBC) cases were analyzed.

Results: Of the 82 patients, nine had MIBC and 71 had non-MIBC who had not undergone total cystectomy. The median CALN1 methylation percentage was 79.5% (interquartile range: 51.1–92.6%). The CALN1 methylation percentage had a negative relationship with CALN1 mRNA expression (Spearman’s ρ = −0.563 and P = 0.012). Hypomethylation of CALN1 was associated with advanced tumor stage (P = 0.0007) and histologically high grade (P = 0.018). Furthermore, multivariate analysis revealed that CALN1 hypomethylation was an independent risk factor for intravesical recurrence in non-MIBC patients (hazard ratio 3.83, 95% confidence interval; 1.14–13.0, P = 0.031).

Conclusion: Our findings suggest that CALN1 methylation percentage could be a useful molecular biomarker for bladder cancer.

Keywords: Bladder cancer, CALN1, Methylation analysis, Methylation-sensitive restriction enzyme (MSRE), Molecular diagnosis technique, Transurethral resection of bladder tumor (TURBT)

Background
Bladder cancer is common worldwide. According to the GLOBOCAN 2018 estimates of cancer incidence and mortality, there were 549,000 new cases of bladder cancer and 200,000 associated deaths worldwide [1]. Generally, the 5-year survival rate of patients with non-muscle-invasive bladder cancer (non-MIBC) is 96%. However, if the patients have distant metastasis, the 5-year survival rate is 6% [2]. Even though non-MIBC has a relatively good prognosis, 31–78% patients with non-MIBC show recurrence and 1–45% patients show progression to MIBC within 5 years of diagnosis [3].

Cystoscopy is the most effective technique for diagnosing bladder cancer recurrence but is highly invasive. Urine cytopathology is currently widely used for diagnosis, but its sensitivity for detecting bladder cancer is low and reportedly depends on the skill of the cytopathologist [4]. Although other methods, using several biomarkers and nucleic acid probes such as bladder tumor antigen

*Correspondence: ktakagi@daiyukai.or.jp
1 Department of Urology, Daiyukai Daiichi Hospital, 1-6-12 Hagoromo, Ichinomiya, Aichi 491-0025, Japan
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
nuclear matrix protein 22 [6], and UroVysion™ fluorescence in situ hybridization [7], have been developed, the robustness of these methods for the early detection of bladder cancer and risk stratification in clinical practice has not been established. Thus, there is an urgent need to establish new biomarkers.

DNA methylation is one of the epigenetic mechanisms that regulate gene expression without changing the base sequence. In recent years, DNA methylation status in bladder cancer has been widely studied [8]. Inactivation of gene expression due to promoter methylation could be a useful biomarker for bladder cancer [9–11].

We previously conducted a preliminary experiment focused on calneuron 1 (CALN1), using the Ion AmpliSeq™ Methylation Panel for Cancer Research, and found that CALN1 is associated with the clinicopathological features of bladder cancer (unpublished data). CALN1 encodes a protein that is highly similar to the calcium-binding proteins of the calmodulin family [12]. Calcium signaling is an important regulator in various cellular processes and has been implicated in important activities related to cancer progression, such as proliferation and infiltration [13, 14]. We hypothesized that the regulation of calcium signal transduction through methylation of CALN1 is involved in the development and progression of bladder cancer. In this study, we investigated the usefulness of determining CALN1 methylation status as a biomarker for bladder cancer.

Methods

Study population

Eighty-two patients who underwent transurethral resection of bladder tumor (TURBT) between April 2019 and June 2021 at Diyukai Daiichi Hospital were enrolled in this study. Data on age; sex; presence or absence of hematuria at diagnosis; smoking status; Brinkman index; and tumor stage, grade, number, size, and type (primary/recurrent) were collected. The study was performed following approval from the Ethics Committee of the Shakai Iryo Hojin Daiyukai (approval no.2,019,002) and was conducted in accordance with the Declaration of Helsinki.

Genomic (g)DNA isolation

Tissues collected from the patients were washed with saline and stored immediately at −80 °C. Genomic DNA was extracted using the High Pure PCR Template Preparation Kit (Roche Molecular Systems, Pleasanton, CA, USA) according to the instruction manual, and the eluate (100 µL of elution buffer) was used for further analysis.

Restriction enzyme treatment

The isolated DNA (100 ng gDNA) was treated with Hap II (Takara Bio, Shiga, Japan), a methylation-sensitive restriction enzyme, and/or Msp I (Takara Bio), a methylation-independent restriction enzyme, according to the manufacturer’s instruction. Hap II and Msp I are isoschizomers of each other. Hap II does not cleave the methylated recognition sequence, whereas Msp I cleaves regardless of the methylation status.

Quantitative polymerase chain reaction (qPCR)

Following enzymatic treatment, a quantitative DNA methylation analysis was performed using qPCR. Primers were designed using the intron 2 sequence of CALN1 with the GenBank accession number NC_000007.14 (Fig. 1). The reaction was carried out in the format of a hydrolyzed probe using the following primers and probe: forward: 5′-TCACGTTGGAGCCACAG-3′, reverse: 5′-TCCTGTTGAGTAGAAGTG-3′; Universal Probe Library Probes Number 20 (Roche Molecular Systems). Using a 4 µL restriction enzyme-treated

Fig. 1 The primers were designed using the intron 2 sequence of CALN1 with the GenBank accession no. NC_000007.14
gDNA solution, each primer and probe were added to 10 µL of Essential Probe Master Mix (Roche Molecular Systems) at 0.4 µM, and analysis was performed in a total volume of 20 µL. The cycling conditions included initial denaturation at 95 °C for 10 min, followed by cycles of 95 °C for 10 s, 4.4 °C/s, 60 °C for 30 s, 2.2 °C/s annealing. PCR was performed using the LightCycler 96 and data were analyzed using the LightCycler 96 software 1.1 (Roche Molecular Systems).

The methylation percentage was calculated using the formula shown in Fig. 2. gDNA extracted from the T24 cell line was used as the unmethylated control (UMcontrol), and EpiScope Methylated HeLa cell gDNA (Takara Bio) was used as the methylated control (Mcontrol). The nucleic acid extraction solution was adjusted to concentrations of 0, 6.25, 12.5, 25, 50, and 100% and the reaction of the measurement system was confirmed. The methylation percentage was determined from the Cp value of each sample.

Assessment of mRNA expression via reverse transcription (RT)-qPCR
To investigate the correlation between CALN1 methylation and mRNA expression, we performed an RT-qPCR-based assessment for the objective quantification of CALN1 mRNA levels. Of the 82 patients, 19 who were quantitatively and qualitatively suitable for assays were used in this analysis. RNA was extracted from fresh frozen TURBT tissue using the High Pure RNA Isolation Kit (Roche Molecular Systems) according to the manufacturer’s instructions. cDNA synthesis was performed under the following reaction conditions: 25 °C for 10 min, 55 °C for 60 min, and 85 °C for 5 min. The reaction product was diluted 5-fold with TE buffer and used for subsequent reactions. Primer sequences for CALN1 and the internal reference gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), are shown in Table 1. RT-qPCR was carried out using the LightCycler 96 (Roche Molecular Systems), and the average value of duplicate measurements was determined using the LightCycler 96 software 1.1 (Roche Molecular Systems). The comparative C(T) method in relation to GAPDH was used for CALN1 expression analysis, and the correlation between CALN1 expression and the methylation percentage was analyzed.

Follow-up study
In our institute, cystoscopy is performed every three months after TURBT for the first two years, then every six months until five years. Intravesical recurrence of bladder cancer was defined as a tumor identified by cystoscopy and confirmed by pathological diagnosis. Intravesical BCG therapy after TURBT was performed at the discretion of the attending physician. Follow-up was conducted in November 2021. The time point of entry was defined as the date when TURBT data were obtained. The primary endpoint was the intravesical recurrence of bladder cancer.

Statistical analyses
Because the variables were non-normally distributed, they are expressed as median and interquartile range. Differences between groups were assessed using Mann–Whitney U test. Fisher’s exact test was used to analyze categorical variables. We used Cox proportional hazards regression to examine the predictive value of CALN1 methylation percentage for intravesical recurrence in patients with non-MIBC. The covariates included CALN1 methylation percentage, age, sex, BCG therapy, tumor stage, tumor grade, tumor number, tumor size,

Table 1

Genes	Forward Primer	Reverse Primer
CALN1	5′-GAAGAGTGCAATCCCAG-3′	5′-GCTGCAATCAGCATGACA-3′
GAPDH	5′-AGCCACATCGCTAGACA-3′	5′-GCCAATTACGACCAATTC-3′

Fig. 2 As CpH2O did not contain enzymes, amplified Cp value could be obtained regardless of methylation. On the contrary, because CpHapII was treated with HapII, which is a methylation-sensitive restriction enzyme, the amplified Cp value of only methylated sample were obtained. In addition, as CpMspI was treated with MspI, which is a methylation-independent restriction enzyme, cleaved Cp value can be obtained regardless of methylation. The methylation percentage was calculated using ∆a obtained by subtracting CpHapII from CpH2O as an index of 2, and corrected using ∆b obtained by subtracting CpMspI from control gDNA or CpH2O. Cp value obtained using real time PCR analysis of sample without added enzyme, CpHapII, Cp value obtained using real time PCR analysis of sample after HapII treatment, CpMspI, Cp value obtained using real time PCR analysis of sample after MspI treatment.

Methylation percentage (%) = \(2^{(\Delta a - \text{Mcontrol}\Delta a)} \times (1 - 2^{(\Delta b - \text{UMcontrol}\Delta b)}) \times 100\)
Patient characteristics according to \textit{CALN1} methylation percentage are shown in Table 2 (Additional file 1). Of the 82 patients, 73 had non-MIBC and 9 had MIBC. Total cystectomy was performed in two patients with non-MIBC that was difficult to cure by TURBT during the follow-up period. Patients in the low group were significantly older than those in the high group and had a higher proportion of females and non-smokers. In addition, the low group tended to have significantly advanced tumor stages and more histologically high-grade tumors than the high group.

To identify the association between the \textit{CALN1} methylation percentage and intravesical recurrence, a Kaplan–Meier analysis was performed in 71 patients with non-MIBC whose bladders were preserved. There was a significant difference between the groups in terms of intravesical recurrence-free survival ($P=0.0084$). At the one-year follow-up, the Kaplan–Meier survival rates of patients with intravesical recurrence were 48.2% and 86.3% in the low and high groups, respectively (Fig. 3). The results of the univariate and multivariate Cox regression analyses to explore the prognostic factors of intravesical recurrence are shown in Table 3. A low \textit{CALN1} methylation percentage remained an independent prognostic factor after adjusting for tumor size in the multivariate analysis. The C-index increased, but did not reach statistical significance (0.744, $P=0.27$). However, the net reclassification improvement and integrated discrimination improvement for the intravesical recurrence rate significantly improved after adding the \textit{CALN1} methylation percentage to the baseline model with established risk factors (0.57 and 0.07, $P=0.021$ and $P=0.025$, respectively, Table 4). In the analysis of the correlation between \textit{CALN1} methylation and the mRNA expression level, a significant negative correlation was observed (Fig. 4, Additional file 2).

Discussion

We analyzed the relationship between the \textit{CALN1} methylation percentage and clinicopathological data of patients with bladder cancer. We found that \textit{CALN1} hypomethylation was significantly associated with advanced tumor stage, more histologically higher-grade tumors, and an increased risk of intravesical recurrence. To the best of our knowledge, this is the first study to show that \textit{CALN1} methylation percentage is associated with the clinicopathological features and prognosis of bladder cancer.

The association between DNA methylation and various biological phenomena such as carcinogenesis have been identified [15, 16]. Methylation analysis could provide information that cannot be obtained using conventional...
tests, such as prediction of drug sensitivity or prognosis [17, 18].

Cao et al. used microarray analysis to show that calcium signal transduction was associated with the development of bladder cancer via the mitogen-activated protein kinase pathway [19]. In addition, intron 2 of CALN1 is a DNase I hypersensitive site that is strongly associated with transcriptional activity [20]. Therefore, we suspected that CALN1 methylation was involved in the action of a DNase I hypersensitive site and, as a result, may affect the expression of CALN1. Regarding the relationship between bladder cancer and methylation, various analytical reports have centered on CpG sites [21, 22], and testing systems such as Bladder EpiCheck [23] have been established. Although various trials have been conducted regarding the diagnosis and treatment of bladder cancer, methylation analysis of CALN1 and its association with bladder cancer has not been probed before.

Bisulfite sequencing is widely used for methylation analysis. In this study, we performed methylation analysis using methylation-sensitive restriction enzyme (MSRE)-qPCR. This technique enables the analysis of a small amount of sample obtained by TURBT without bisulfite treatment. Bisulfite treatment involves the process of incubating the DNA solution at 50–70 °C. There is a problem that the yield of DNA is extremely low because the DNA is cleaved during the heating process. Recently, high-yield methods have been developed, but DNA fragmentation has not been avoided completely [24]. In addition, because bisulfite sequencing requires a large number of cells, it is not feasible for clinical specimens with a low amount of DNA such as cell-free DNA or circulating tumor cells. In contrast, one of the advantages of MSRE-qPCR is the side-by-side comparison between control and experimental samples, even for very low amounts of DNA. In addition, MSRE-qPCR can be completed in less time than other methods with the same level of accuracy [25]. Comprehensive analysis using next-generation sequencing is also useful but less practical owing to high costs. MSRE-qPCR is useful

Table 2 Clinicopathological features according to CALN1 methylation percentage

Variable	All n = 82	CALN1 methylation	\(P \)	
	Low n = 51	High n = 31		
CALN1 methylation percentage	79.5 (51.1, 92.6)	63.1 (40.7, 78.1)	97.8 (90.6, 100)	<0.0001
Follow-up period, month (range)	11.5 (0–29)	12 (0–29)	11 (0–29)	0.21
Age (range)	76 (52–93)	79 (53–93)	73 (52–85)	<0.0001
Sex Female, n (%)	19 (23)	17 (33)	2 (6)	0.0062
Hematuria Yes, n (%)	39 (48)	24 (47)	15 (48)	0.91
Smoking history Yes, n (%)	45 (55)	23 (45)	22 (71)	0.039
Brinkman index (IQR)	200 (0–700)	0 (0–490)	640 (0–990)	0.0073
BCGb therapy Yes, n (%)	11 (13)	7 (13)	4 (13)	1
Total cystectomy	9 (11)	5 (10)	4 (13)	0.72
Tumor stage, n (%)				0.0007
Ta	54 (66)	27 (53)	27 (87)	
T1	19 (23)	18 (35)	1 (3)	
T2+	9 (11)	6 (12)	3 (10)	
Tumor grade, n (%)				0.018
Low	62 (76)	34 (67)	28 (90)	
High	20 (24)	17 (33)	3 (10)	
Tumor number, n (%)				0.65
Single	41 (50)	24 (47)	17 (55)	
Multiple	41 (50)	27 (53)	14 (45)	
Tumor size, n (%)				0.12
< 30 mm	70 (85)	41 (80)	29 (94)	
\(\geq 30 \) mm	12 (15)	10 (20)	2 (6)	
Sample type, n (%)				0.65
Primary	50 (61)	30 (59)	20 (65)	
Recurrent	32 (39)	21 (41)	11 (35)	

* IQR Interquartile range; ** BCG Bacillus Calmette-Guérin
for targeted analysis owing to its simple workflow. Further investigation exploring this diagnostic method with high sensitivity and specificity in combination with other diagnostic markers is necessary and will contribute to the development of new diagnostic systems for bladder cancer.

The current study has some limitations. First, there were no criteria for intravesical BCG immunotherapy, though there was no difference in BCG therapy between the low- and high-methylation groups. Second, required sample size was not calculated before the study. However, based on the results obtained, the required sample size for comparison of the survival curves between the groups was calculated to be 20 patients per group. The sample size of this study was sufficient to meet this requirement. Nevertheless, the sample size was small and the follow-up period was short. Therefore, the findings of this study need to be validated in a larger study.

Conclusion

We performed methylation analysis of intron 2 of \textit{CALN1} using gDNA extracted from samples collected by TURBT. We found that low \textit{CALN1} methylation percentage is consistent with the occurrence of advanced tumor stages, high-grade tumors, and higher intravesical recurrence rates. Therefore, we suggest that \textit{CALN1} methylation percentage may be an indicator

Table 3 Prognostic value of \textit{CALN1} methylation percentage for intravesical recurrence of bladder cancer

Variables	Univariate	Multivariate		
	HR\(^a\) (95% CI\(^b\))	P	HR (95% CI)	P
\textit{CALN1} methylation percentage	0.98 (0.97–1.00)	0.011	0.98 (0.97–1.00)	0.018
Age	1.03 (0.99–1.09)	0.15		
Sex (male)	0.63 (0.25–1.60)	0.33		
Smoking history (yes)	0.50 (0.23–1.11)	0.087		
BCG\(^c\) therapy (yes)	0.41 (0.10–1.75)	0.23		
Stage (Ta)	0.56 (0.24–1.32)	0.19		
Grade (low)	0.63 (0.25–1.61)	0.34		
Number (single)	1.02 (0.47–2.26)	0.95		
Size (≥ 30 mm)	4.25 (1.50–12.1)	0.0065	3.75 (1.33–10.6)	0.012
Recurrent tumor	0.84 (0.38–1.88)	0.68		

\(^a\) Hazard ratio, \(^b\) Confidence interval, \(^c\) BCG Bacillus Calmette-Guérin

Table 4 Discrimination of each predictive model for intravesical recurrence using C-index, net reclassification improvement (NRI), and integrated discrimination improvement (IDI)

Predictive models	C-index	P	NRI	P	IDI	P
Established risk factors\(^a\)	0.67 (0.53–0.82)	Reference	Reference	Reference		
+ \textit{CALN1} methylation percentage	0.74 (0.61–0.87)	0.27	0.57	0.021	0.07	0.025

\(^a\) Established risk factors included tumor stage, grade, number, size, and sample type
of high-risk bladder cancer and could be considered a useful biomarker for accurately predicting intravesical recurrence of non-MIBC.

Abbreviations
MSRE: Methylation-sensitive restriction enzyme; qPCR: Quantitative polymerase chain reaction; MIBC: Muscle-invasive bladder cancer; TURBT: Transurethral resection of bladder tumor; gDNA: Genomic DNA; RT-qPCR: Reverse transcription-qPCR; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; ROC: Receiver operating characteristic; HR: Hazard ratio; CI: Confidence interval.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12894-022-01136-y.

Additional file 1. Demographicaland clinical information of the subject-participating in this study.

Additional file 2. Raw dataf relationship between CALN1 mRNA expression and CALN1 methylation percentage.

Acknowledgements
The authors would like to thank Takahiro Sawamura for technical assistance with the experiments and Hiroshi Takahashi for technical assistance with statistical analysis.

Author contribution
AK and AN conceived the idea of the study. KT developed the statistical analysis plan and conducted statistical analyses. KT and TK contributed to the interpretation of the results. KT drafted the original manuscript. AK and MH supervised the conduct of this study. KA, YM, and KK contributed to data curation. All authors reviewed the manuscript draft and revised it critically on intellectual content. All authors approved the final version of the manuscript to be published.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information files.

Declarations
Ethics approval and consent to participate
The study was approved by the Ethics Committee of the Shaka i Iryo Hojin Daiyukai (approval number: 2019002) and written informed consent was obtained from all patients.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Urology, Daiyukai Daiichi Hospital, 1-6-12 Hagoromo, Ichinomiya, Aichi 491-0025, Japan. 2Department of Research and Development, Daiyukai Research Institute for Medical Science, 25 Azachō, Ichinomiy a, Aichi 491-0113, Japan. 3Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan.

Received: 11 February 2022 Accepted: 29 October 2022
Published online: 09 November 2022

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.
2. Cancer. Net. Bladder cancer: statistics. Cancer.Net, Doctor-approved patient information from ASCO website. 2022. https://www.cancer.net/cancer-types/bladder-cancer/statistics. Accessed 15 Aug 2022.
3. van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009;56:430–42. https://doi.org/10.1016/j.eururo.2009.06.028.
4. Pajor G, Somogyi L, Melegh B, Alpar D, Kajtar B, Farkas L, et al. UroVysion: considerations on modifying current evaluation scheme, including immunophenotypic targeting and locally set, statistically derived diagnostic criteria. Cytometry A. 2011;79:375–82. https://doi.org/10.1002/cyto.a.21065.
5. Raitanen MP, Marttila T, Nurmi M, Ala-Opas M, Nieminen P, Aine R, et al. Human complement factor H related protein test for monitoring bladder cancer. J Urol. 2001;165:374–7. https://doi.org/10.1097/00005392-200102000-00005.
6. Landman J, Chang Y, Kaval er E, Droller MJ, Liu BC. Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer. Urology. 1998;52:398–402. https://doi.org/10.1016/s0090-4295(98)00219-2.
7. Pajor G, Sule N, Alpar D, Kajtar B, Kneif M, Bollmann D, et al. Increased efficiency of detecting genetically aberrant cells by UroVysion test on voided urine specimens using automated immunophenotypic pre-selection of uroepithelial cells. Cytom A. 2008;73:259–65. https://doi.org/10.1002/cyto.a.20528.
8. Robertson AG, Kim J, Al-Ahmadi H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171:540-56.e25. https://doi.org/10.1016/j.cell.2017.09.007.
9. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003. https://doi.org/10.1056/NEJMoa043331.
10. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Dixler J, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55:1337–46. doi:https://doi.org/10.1373/clinchem.2008.115808.
11. Querós AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia. 2015;29:598–605. https://doi.org/10.1038/leu.2014.252.
12. Wu YQ, Lin X, Liu CM, Jamrich M, Shaffer LG. Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Mol Genet Metab. 2001;72:343–50. https://doi.org/10.1006/mgme.2001.3160.
13. Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75. https://doi.org/10.1038/nrc2374.
14. Shapovalov G, Ritaine A, Skryma R, Prevarskaya N. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol. 2016;38:357–69. https://doi.org/10.1007/s00281-015-0525-1.
15. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66. https://doi.org/10.1038/nrc1045.
16. Bock C. Epigenetic biomarker development. Epigenomics. 2009;1:99–110. https://doi.org/10.2217/epi.09.6.
17. Ohmura H, Ito M, Uchino K, Okada C, Tanishima S, Yamada Y, et al. Methylation of drug resistance-related genes in chemotherapy-sensitive Epstein–Barr virus-associated gastric cancer. FEBS Open Bio. 2020;10:147–57. https://doi.org/10.1002/2211-5463.12765.
18. Yu Y, Cao H, Zhang M, Shi F, Wang R, Liu X. Prognostic value of DNA methylation for bladder cancer. Clin Chim Acta. 2018;484:207–12. https://doi.org/10.1016/j.cca.2018.05.056.
19. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941–60. https://doi.org/10.18632/oncotarget.12146.
20. Wang YM, Zhou P, Wang LY, Ji ZH, Zhang YN, Zhang YX. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. PLoS One. 2012;7:e42414. https://doi.org/10.1371/journal.pone.0042414.
21. Guo RQ, Xiong GY, Yang KW, Zhang L, He SW, Gong YQ, et al. Detection of urothelial carcinoma, upper tract urothelial carcinoma, bladder carcinoma, and urothelial carcinoma with gross hematuria using selected urine-DNA methylation biomarkers: a prospective, single-center study. Urol Oncol. 2018;36:342.e15-23. https://doi.org/10.1016/j.urolonc.2018.04.001.
22. Reinert T, Modin C, Castano FM, Lam P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17:5382–92. https://doi.org/10.1158/1078-0432.CCR-10-2659.
23. van der Heijden AG, Mengual L, Ingelmo-Torres M, Lozano JJ, van Rijn-vanWesterlo CCM, Baixauli M, et al. Urine cell-based DNA methylation classifier for monitoring bladder cancer. Clin Epigenet. 2018;10:71. https://doi.org/10.1186/s13148-018-0496-x.
24. Millar D, Christova Y, Holliger P. A polymerase engineered for bisulfite sequencing. Nucleic Acids Res. 2015;43:e155. https://doi.org/10.1093/nar/gkv798.
25. Perry N, Wasko K, Cheng J, Tabbaa D, Marco E, Giannoukos G, et al. Methylation-sensitive restriction enzyme quantitative polymerase chain reaction enables rapid, accurate, and precise detection of methylation status of the regulatory T cell (Treg)-specific demethylation region in primary human Tregs. J Immunol. 2021;206:446–51. https://doi.org/10.4049/jimmunol.1901275.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.