INTRODUÇÃO

A reperfusão é um passo fundamental no tratamento da isquemia. No entanto, evidências clínicas e experimentais mostram que os principais eventos que levam à disfunção celular e tecidual estão relacionados à reperfusão²,¹². O fígado recebe todo o sangue do sistema esplânncico, de modo que isquemia aórtica ou de seus ramos principais certamente levarão à chegada das espécies reativas de oxigênio (ERO) a este órgão e podem causar lesão hepática intensa à distância e disfunção de múltiplos órgãos². Com o objetivo de abordar as várias situações de isquemia evitando lesões de reperfusão, um grande número de substâncias e procedimentos foram estudados, incluindo seus efeitos locais e remotos. Algumas das propostas publicadas obtiveram bons resultados experimentais, mas sem sucesso comprovado na prática clínica¹²,¹³.

Em 2003 Zhao et al.¹³ propuseram tratamento alternativo de isquemia e reperfusão (IR), o pós-condicionamento isquêmico (PCI), que consiste em realizar um}

ABCD Arq Bras Cir Dig 2017;30(3):197-200
ou mais ciclos de reperfusão seguidos por um ou mais ciclos de isquemia, antes da fase de reperfusão, demonstrando efeito protetor na isquemia miocárdica em animais. Em 2012, Onody et al.15 descobriram que o PCI era capaz de prevenir a lesão de reperfusão hepática à distância, realizando IR mesentérica, mas em 2016, Santos et al.17 não mostraram os mesmos resultados e, portanto, há uma questão a ser esclarecida quanto à capacidade real do PCI para prevenir tais lesões hepáticas.

Muito tem sido estudado sobre a fisiopatologia da lesão de reperfusão e alguns mecanismos já foram bem elucidados, como o papel dos radicais livres, disfunção endotelial vascular e lesão mediada por neutrófilos2. Recentemente, tem havido aumento no interesse pelas estatinas, drogas conhecidas pelo seu efeito anti-dislipidêmico, desta vez devido ao seu efeito pleiotrópico, que se caracteriza por propriedades anti-inflamatórias, imunomoduladoras, ações antitrombogênicas e melhora da função endotelial20. Estudos experimentais recentes1 relataram resultados promissores com o uso de estatinas demonstrando seu papel na proteção contra lesões de IR, o que leva a inquirir sobre seus benefícios frente à lesão de reperfusão, objetivando avaliar a capacidade do PCI associado ao uso de estatinas na redução da lesão tecidual do fígado.

Assim, o objetivo do presente estudo foi avaliar o efeito do pós-condicionamento isquêmico e atorvastatina, isoladamente e em associação, na prevenção da lesão de reperfusão no fígado de ratos submetidos à isquemia e reperfusão por clampamento aórtico.

MÉTODOS

O estudo foi aprovado pelo Comitê de Ética em Experimentação Animal da Universidade Anhanguera - Uniderp. Foram utilizados 41 ratos Wistar, machos, pesando 250-300 g, provenientes do biotério da Universidade. Os animais foram mantidos em gaiolas em temperatura ambiente de aproximadamente 23ºC, com ciclos luminosos de 12 h e receberam água e alimentação ad libitum. Foram distribuídos nos seguintes grupos: 1) grupo isquemia e reperfusão (I/R): nove animais submetidos à isquemia por 70 min por pinçamento aórtico, seguido de reperfusão de 70 min; 2) grupo pós-condicionamento isquêmico (PCI): nove ratos com o procedimento de isquemia por 70 min por pinçamento aórtico e reperfusão por 70 min e entre isquemia e reperfusão foram realizados quatro ciclos de reperfusão (30 s cada), intercalados por quatro ciclos de isquemia (30 s cada); 3) grupo pós-condicionamento isquêmico + estatina (PCI+E): nove ratos receberam 3,4 mg/dia de atorvastatina, uma dose por dia pelo método de gavagem, por sete dias e foram submetidos ao procedimento de isquemia por 70 min por pinçamento aórtico e reperfusão durante 70 min, e entre a isquemia e a reperfusão, foram realizados quatro ciclos de reperfusão (30 s cada), intercalados por quatro ciclos de isquemia (30 s cada); 4) grupo estatina (E): nove ratos receberam 3,4 mg/dia de atorvastatina, uma dose por dia através do método de gavagem, durante sete dias e, em seguida, foram submetidos ao procedimento de isquemia por 70 min por pinçamento aórtico e reperfusão por 70 min; 5) grupo SHAM: cinco animais submetidos à laparotomia, dissecação e isolamento da aorta infrarenal.

Os animais foram anestesiados por injeção intraperitoneal de solução 2,5% de cloridrato de cetamina (Cetamin®) 50 mg/ml e cloridrato de xilasina (Xilazin®) 20 mg/ml, respectivamente, com dose de 0,1 ml/100 g. Após a anestesia, foram submetidos à laparotomia mediana longitudinal de aproximadamente 4 cm, exteriorização do intestino delgado, identificação e dissecação da artéria aorta abdominal infrarenal.

Em todos os grupos, exceto o SHAM, a aorta abdominal foi ocluida por pinça vascular atraumática que permaneceu por 70 min (fase de isquemia). Em seguida, o intestino delgado foi reaproximado na cavidade abdominal e a ferida cirúrgica foi fechada com sutura contínua da pele com náilon monofilamentado 4-0. Após a fase de isquemia, a parede abdominal foi reaberta por remoção da sutura e nos grupos I/R e E o clame vascular foi removido, iniciando a fase de reperfusão, com duração de 70 min. Nos grupos PCI e PCI+E, precedendo a fase de reperfusão, o pós-condicionamento isquêmico foi realizado por quatro ciclos de reperfusão (remoção do clame vascular da aorta abdominal) com duração de 30 s cada, intercalados por quatro ciclos de isquemia (oclusão da artéria aorta abdominal por clame vascular), também com duração de 30 s cada.

Em todos os grupos, após o início da fase de reperfusão, o abdome foi novamente fechado por sutura contínua da pele com fio de náilon monofilamentado 4-0 até o final do experimento. No grupo SHAM, realizou-se apenas laparotomia mediana longitudinal de aproximadamente 4 cm, exteriorização do intestino delgado, identificação e dissecação da artéria aorta abdominal infra-renal. Após a fase de reperfusão, todos os animais foram submetidos à ressecção do lobo hepático esquerdo, sendo estes espécimes lavados com solução salina e colocados em solução de formaldeído 10% para análise histológica. A eutanásia foi realizada por administração intraperitoneal de uma dose letal de cetamina+cloridrato de xilazina (0,4 ml/100 g). As lâminas foram preparadas com o material colhido coradas com H&E e analisadas por microscopia óptica por um único observador, sem conhecimento prévio quanto ao grupo pertencente de cada ratão.

As amostras foram classificadas de acordo com o grau de lesão tecidual de acordo com Rhoden et al.16, levando-se em conta o achado de congestão vascular (sinusoidal, centrolobular e espaço portal), necrose e estesatose hepática em: 0: ausência de alterações; 1: alterações de intensidade leve (menos de 25% do campo analisado); 2: alterações de intensidade moderada (25% a 50% do campo analisado); 3: alterações de intensidade severa (mais de 50% do campo analisado).

Análise estatística

Após a análise dos dados, os resultados foram submetidos ao tratamento estatístico, utilizando-se o teste não-paramétrico de Kruskal-Wallis, considerando p<0,05.

RESULTADOS

As médias dos graus de lesão tecidual foram 3 no grupo I/R, 1,5 no grupo PCI, 1,2 nos grupos PCI+E e E e 0 no grupo SHAM (Tabela 1 e Figura 1).

TABELA 1 - Graus de lesão histológica do fígado dos animais por grupo estudado
discussão

A isquemia seguida de reperfusão pode induzir apoptose e resposta inflamatória que afeta a reparação tecidual. Como resultado, muitos avaliaram o impacto do PCI em respostas apoptóticas e inflamatórias subsequentes. Em modelos experimentais de IR em ratos com 30 min de isquemia e 3 h de reperfusão houve diminuição significativa na necrose tecidual com PCI. Há também diminuição na geração de ERO e proteção da integridade mitocondrial, sugerindo que o efeito protetor do PCI pode ser o resultado da redução na resposta inflamatória. No entanto, poucos estudos avaliaram diretamente o impacto do PCI sobre a inflamação. O PCI pode limitar a expressão da P-selectina, que é necessária para o suporte de neutrófilos e seu recrutamento. Além disso, pode reduzir o acúmulo de neutrófilos na região afetada, diminuir a adesão ao endotélio vascular isquêmico e atenuar a disfunção endotelial do vaso envolvido, eventos que normalmente ocorrem na IR.

No presente estudo observou-se proteção do fígado com o PCI, demonstrando a eficácia do método contra este modelo de IR, o que pode ser justificado pelo fato de que os ERO, independente de onde sejam produzidos, quando ocorre reperfusão, são espalhados pelo organismo causando a lesão de reperfusão remota, tanto que no grupo I/R observou-se lesão acentuada no fígado. Atuando como um moderador da produção de ERO, PCI pode atenuar a lesão local e à distância. Onody et al.15 demonstraram a mesma eficácia com PCI na proteção remota do fígado por meio da realização de IR intestinal. No entanto, como método de avaliação, estes autores utilizaram a dosagem de transaminases, diferente da aqui utilizada. Santos et al.17 também fizeram análise histológica, não confirmando a eficácia do método. A diferença entre o bom resultado observado aqui e a publicação de Santos et al.12 pode ser devido ao fato de que esses autores realizaram IR intestinal, enquanto que aqui utilizou-se clampamento aórtico. Também os períodos de IR foram diferentes entre esta pesquisa e a de Santos et al.17 (30 e 60 min de IR, respectivamente). Talvez a isquemia produzida diretamente no intestino, cujo sangue é totalmente drenado para o fígado leve à sobrecarga ERO, enquanto que na IR aórtica isso pode ser abrandado.

Não há estudos com desenho similar ao utilizado aqui que permitam comparação direta; mas Seifi et al.16 também verificaram a proteção hepática remota com IR renal em ratos, assim como Costa et al.1 que aplicaram IR ao membro trasero de ratos também observando proteção com PCI no fígado dos animais. Assim, embora haja poucas publicações, há boa evidência da eficácia do PCI na proteção remota do fígado. Contudo, teoricamente haveria vantagem maior em método não intervencionista que obtivesse resultados tão bons ou melhores do que o PCI, como um fármaco conhecido e seguro. Isto leva ao grande interesse no estudo das estatinas para este fim.

No presente estudo, a proteção do fígado foi obtida com o uso de atorvastatina, na mesma intensidade que com o PCI. Como não existem estudos com o mesmo desenho utilizado aqui, ou seja, clampamento aórtico e uso de atorvastatina, a comparação com a literatura também é prejudicada. Além disso, uma vez que a utilização de estatinas para a prevenção de lesões por reperfusão é relativamente nova, a avaliação de resultados que obtivesse resultados tão bons ou melhores do que o PCI, como um fármaco conhecido e seguro. Isto leva ao grande interesse no estudo das estatinas para este fim.

As estatinas foram testadas com êxito para este fim em várias situações. Wu et al.11 realizaram IR renal em ratos e demonstraram que a atorvastatina diminuiu a lesão tecidual no grupo controle. Os mesmos resultados foram obtidos por Cusomano et al.14 na IR renal de ratos utilizando atorvastatina. Kocak et al.11 também confirmaram a eficácia da simvastatina na proteção hepática em ratos, mas estes autores aplicaram IR diretamente no fígado hepático, não configurando assim um estudo de seu efeito à distância, como aqui apresentado. Estes autores também aplicaram a simvastatina por única injeção intraarteriolar, enquanto que na presente pesquisa usou-se gavagem durante uma semana. Considerando os bons resultados iniciais das estatinas em condições de IR em animais e a segurança desses fármacos, Sarim et al.18 avaliaram sua eficácia em humanos em estudo no qual pacientes submetidos à ressecções hepáticas graves haviam feito uso prévio de atorvastatina por pelo menos três dias. A dosagem de transaminases no pós-operatório foi menor nesses pacientes do que no grupo controle. Novamente, deve-se notar que não foi um estudo de efeito remoto, uma vez que a IR foi realizada diretamente no fígado hepático.

As estatinas também protegem outros tecidos na presença de IR, tais como coração4,5,10 sistema nervoso4 e pulmão16. O mecanismo de proteção da estatina frente a situações de IR deve-se ao seu efeito pleiotrópico. Inibindo a conversão de HMG-CoA em L-mevalonato, as estatinas impedem a síntese de isoprenóides, que são precursores da biossíntese de colesterol, que servem como importantes ligantes lipídicos para modificação pós-transcendencial de proteínas intracelulares tais como GTPases,
Rho, Rac e Ras. Esta isoprenilação protéica permite a localização subcelular adequada e o tráfego intracelular de proteínas, que controlam diversas funções celulares, sendo que a inibição dessas vias pode determinar importantes componentes dos efeitos pleiotrópicos das estatinas. A via Rho está relacionada ao estresse oxidativo, aterosclerose e pressão arterial elevada, sinalizando o caminho entre os dois mecanismos cruciais, como o remodelamento do citoesqueleto e a síntese de ERO. No desenvolvimento deste projeto não se sabia que os métodos terapêuticos aplicados apresentariam os resultados aqui apresentados, de modo que foi criado um grupo de associação (PCI+E) com o objetivo de melhorar a proteção tecidual. Contudo, não houve vantagem na associação, uma vez que isoladamente estes métodos terapêuticos obtiveram lesão tecidual média estatisticamente semelhante aos grupos PCI e E. Assim, verifica-se que a atorvastatina tem a capacidade de proteger o fígado em situações de reperfusão à distância, na mesma intensidade do IPC, e é possível investir em pesquisas que confirmem o melhor método de uso dessas terapias para aplicá-las na prática clínica.

CONCLUSÃO

O pós-condicionamento isquêmico e a atorvastatina foram capazes de minimizar a lesão de reperfusão hepática, isoladamente ou em combinação.

REFERÊNCIAS

1. Bian B, Yu X, Wang Q, Teng T, Nie J. Atorvastatin protects myocardium against ischemia-reperfusion arrhythmia by increasing Connexin 43 expression: A rat model. Eur J Pharmacol 2015; 768: 13-20.
2. Collange O, Charles AL, Boutibir J, Chenard MP, Zoll J, Diemunsch P, Thaveau F, Chakfè N, Piquard F, Gery B. Methylene blue protects liver oxidative capacity after gut ischemia-reperfusion in the rat. Eur J Vasc Endovasc Surg 2013; 45(2): 168-75.
3. Costa FL, Teixeira RK, Yamaki VN, Valente AL, Silva AM, Brito MV, Percário S. Remote ischemic conditioning temporarily improves antioxidant defense. J Surg Res 2016; 200(1): 105-9.
4. Cusumano G, Romagnoli J, Liuzzo G, Ciavarella LP, Severino A, Copponi G, Manchi M, Giubilato S, Zannoni GF, Stigliano E, Caristo ME, Crea F, Citterio F. N-Acetylcysteine and high-dose atorvastatin reduce oxidative stress in an ischemia-reperfusion model in the rat kidney. Transplant Proc 2015; 47(9): 2757-62.
5. Fang X, Tao D, Shen J, Wang Y, Dong X, J.X. Neuroprotective effects and dynamic expressions of MMP9 and TIMP1 associated with atorvastatin pretreatment in ischemia-reperfusion rats. Neurosci Lett 2015; 603: 60-5.
6. Han QF, Wu L, Zhou YH, Wang LH, Zhang DY, Liu T, Yao HC. Simvastatin protects the heart against ischemia-reperfusion injury via inhibiting HMGB1 expression through PI3K/Akt signal pathways. Int J Cardiol 2015; 201: 568-9.
7. Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: new strategies for cardioprotection. Diabetes Obes Metab 2008; 10(6): 451-9.
8. Jivraj N, Liew F, Marber M. Ischaemic postconditioning: cardioprotection after the event. Anaesthesia 2015; 70(5): 598-612.