GABA_B receptor/HCN channel complexes in VTA dopamine neurons limit synaptic inhibition and prevent anxiety-like behavior

Enrique Pérez-Garci†, Giorgio Rizzi†, Thorsten Fritzius†, Alessandra Porcu†, Valerie Besseyrias†, Martin Gassmann†, Kelly R. Tan‡ and Bernhard Bettler‡

†Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.

‡Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland.

†These authors contributed equally to this work

‡Correspondence should be addressed to K.R.T. (email: kelly.tan@unibas.ch) or B.B. (email: bernhard.bettler@unibas.ch)
Abstract

Aversive stimuli inhibiting dopamine neurons in the ventral tegmental area (DAVTA neurons) induce anxiety-like behaviors. The inhibition of DAVTA neurons is prolonged by GABA\textsubscript{B} receptor (GBR)-activated K+-currents, which exhibit a rapid desensitization of unknown physiological relevance. We now report that GBRs associate via auxiliary KCTD16 subunits with HCN channels, which facilitates activation of hyperpolarization-activated currents (I_h) by GBR-activated K+ currents. Activation of I_h underlies rapid K+ current desensitization in DAVTA neurons and limits GBR-mediated inhibition. Disruption of the GBR/HCN complex in $KCTD16^{-/-}$ mice or blockade of I_h prolongs optogenetically driven inhibition of DAVTA neuron firing. $KCTD16^{-/-}$ mice exhibit an increased anxiety-like behavior in response to stressful stimuli, which is reproduced by \textit{in vivo} CRISPR/Cas9-mediated $KCTD16$ ablation in DAVTA neurons or intra-VTA infusion of HCN antagonist to wild-type mice. Our data reveal that GBR-induced I_h protect DAVTA neurons from prolonged GBR-mediated inhibition in response to stressors, which moderates anxiety-like behaviors.

Introduction

Dopamine neurons of the ventral tegmental area (DAVTA) are implicated in the processing of reward and emotions (Chaudhury et al., 2013; Coque et al., 2011; Tovote, Fadok, & Luthi, 2015; Tye et al., 2013; Zweifel et al., 2011). Aberrant DAVTA neuron activity is associated with psychiatric disorders, including addiction, depression and anxiety (Bellone, Loureiro, & Luscher, 2021; Jennings et al., 2013; Nestler & Carlezon, 2006). In the latter case, environmental stimuli are perceived as threatening or overly aversive. Aversive stimuli that attenuate DAVTA neuron activation induce avoidance and cause a persistent, generalized anxiety-like phenotype in mice (Tan et al., 2012; Ungless, Magill,
Conversely, disinhibition of DAVTA neurons produces rewarding and anxiolytic phenotypes, which are reproduced by direct inhibition of GABAVTA neurons synapsing onto DAVTA neurons (Jennings et al., 2013). Synaptic activation of GABA\textsubscript{B} receptors (GBRs) triggers Kir3-type K+ currents (I_{Kir3}) generating late inhibitory postsynaptic potentials (IPSP) that prolong neuronal inhibition (Edwards et al., 2017; Gassmann & Bettler, 2012; Lecca et al., 2016; Luscher & Slesinger, 2010; Schwenk et al., 2016). In DAVTA neurons, the current activated by the GBR agonist baclofen (I_{bac}) exhibits an atypically rapid and pronounced attenuation compared to neighboring GABAVTA neurons, which was attributed to fast I_{Kir3} desensitization (Arora et al., 2011; Cruz et al., 2004; Labouebe et al., 2007; Lalive et al., 2014; Padgett et al., 2012). Rapid and pronounced I_{bac} attenuation in the continuous presence of baclofen suggests that prolonged GBR-mediated inhibition of DAVTA neurons is harmful. The mechanism underlying rapid I_{bac} attenuation and a causal link to behavior, however, remain elusive.

DAVTA neurons exhibit a tonic firing (Overton & Clark, 1997) that is supported by a mixed inward Na+/K+ current, I_h, gated by hyperpolarization-activated cyclic nucleotide-gated HCN channels (Biel, Wahl-Schott, Michalakis, & Zong, 2009; Seutin, Massotte, Renette, & Dresse, 2001). The depolarizing I_h sets the membrane potential (V_{m}) to more positive voltages, near the threshold of L-type Ca2+ channel activation, to maintain tonic DAVTA neuron firing (Biel et al., 2009; Chan et al., 2007; Nedergaard, Flatman, & Engberg, 1993). Proteomic work surprisingly revealed a physical interaction of GBRs with HCN channels (Schwenk et al., 2016). GBRs additionally assemble with a family of auxiliary KCTD subunits, which regulate signaling kinetics and act as scaffolds for ion channels (Bhandari et al., 2021; Schwenk et al., 2010; Schwenk et al., 2016). However, it is presently unknown how GBRs and HCN channels work together and whether this interaction is behaviorally relevant.
Here we show that GBRs associate via auxiliary KCTD16 subunits with HCN channels, which facilitates I_h activation in DA$^{\text{VTA}}$ neurons through $I_{K_{ir3}}$-mediated hyperpolarization. I_h activation counteracts the $I_{K_{ir3}}$, thus mimicking a strong $I_{K_{ir3}}$ desensitization. Functional interaction of GBR-induced $I_{K_{ir3}}$ and I_h shortens IPSPs and reduces inhibition of DA$^{\text{VTA}}$ neuron firing in vivo. I_h activation in GBR/HCN complexes represents a hitherto unknown feedback mechanism for limiting GBR-mediated inhibition, which in DA$^{\text{VTA}}$ neurons serves to moderate the expression of anxiety-like behaviors in response to stressful stimuli.

Results

KCTD16 scaffolds HCN2 and HCN3 subunits to GBRs

GB1a, GB1b and GB2 subunits assemble heterodimeric GB1a/2 and GB1b/2 receptors that interact via GB2 with pentamers of auxiliary KCTD8, -12 and -16 subunits (Hannan, Wilkins, & Smart, 2012; Pin & Bettler, 2016; Schwenk et al., 2010; Schwenk et al., 2016; Shaye, Stauch, Gati, & Cherezov, 2021; Zheng, Abreu, Levitz, & Kruse, 2019; Zuo et al., 2019). KCTD subunits additionally bind to the G protein $\beta\gamma$ subunits, which accelerates activation and deactivation kinetics of GBR-activated $I_{K_{ir3}}$ (Fritzius et al., 2017; Turecek et al., 2014; Zheng et al., 2019). Proteomic work also indicated that KCTD subunits recruit HCN channels to GBRs (Schwenk et al., 2016). To study the functional consequences of GBR/HCN interactions we first identified the KCTD and HCN channel subunits involved in complex formation. Confirming earlier proteomic data (Schwenk et al., 2016), KCTD16 efficiently co-purified the HCN2 subunit from wild-type (WT) brain membranes (Figure 1A). GBRs co-purified HCN2 in the presence of KCTD16 but none of the other KCTDs from transfected HEK293 cells (Figure 1B). KCTD16 also co-purified HCN2 in the absence of
GBRs, indicating that HCN2 binds via KCTD16 to GBRs (Figure 1 – figure supplement 1A). Indeed, GBRs did not co-purify HCN2 when mutation of Y902A in GB2 (Schwenk et al., 2016; Sereikaite et al., 2019) prevented binding of KCTD16 to the receptor (Figure 1C). Four different subunits assemble homo- and hetero-tetrameric HCN channels (Biel et al., 2009). KCTD16 selectively binds to HCN2 and HCN3 subunits (Figure 1 – figure supplement 1B). We determined that the H2 domain of KCTD16 (Gassmann & Bettler, 2012) binds to the N-terminal intracellular domain of HCN2 (aa1-215, Figure 1D-F). In summary, biochemical data show that KCTD16 recruits HCN channels containing HCN2 or HCN3 to GBRs.

Superimposed \(I_h \) mimics \(I_{Kir3} \) desensitization

DAVTA neurons, which express GBRs, HCN channels and KCTD16 constitute a suitable cellular system to study putative functional interactions between GBRs and HCN channels (Cruz et al., 2004; Metz, Gassmann, Fakler, Schaeren-Wiemers, & Bettler, 2011; Ungless & Grace, 2012) (Figure 1 – figure supplement 1C). For electrophysiological recordings, we typically identified DAVTA neurons in horizontal midbrain slices by their spontaneous firing activity, the presence of \(I_h \) and, occasionally, by staining for tyrosine hydroxylase (TH) (Figure 2A and C) (Cruz et al., 2004; Ungless & Grace, 2012). When clamped at -60 mV, DAVTA neurons exhibited a pronounced \(I_{bac} \) desensitization (46.0 ± 4.0%, mean ± s.e.m. \(n = 9 \) neurons; Fig. 2b, d), as reported earlier (Arora et al., 2011; Cruz et al., 2004; Labouebe et al., 2007; Lalive et al., 2014; Padgett et al., 2012). During \(I_{bac} \) desensitization, the input resistance Ri surprisingly only recovered by 9.4 ± 3.1%, while the Ri strongly increased after GBR inhibition with the antagonist CGP54626 (Figure 2B and D). The small decrease in \(I_{bac} \) conductivity during continuous baclofen application is at odds with the pronounced \(I_{bac} \) desensitization. Because GABAVTA neurons, which do not express
HCN channels, lack the pronounced I_{bac} desensitization observed in DAVTA neurons (Cruz et al., 2004), we tested whether pharmacological blockade of I_h influences the time course of I_{bac} in DAVTA neurons. Indeed, the I_h blocker zatebradine (Bucchi, Baruscotti, & DiFrancesco, 2002) significantly attenuated I_{bac} desensitization in WT DAVTA neurons ($p < 0.001$, Figure 2B and D), showing that I_h contribute to I_{bac} desensitization and that I_{Kir3} exhibit per se little desensitization. $KCTD16^{-/-}$ DAVTA neurons also exhibited a significantly reduced I_{bac} desensitization compared to WT neurons ($p < 0.01$, Figure 2B and D), suggesting that disruption of the GBR/HCN complex reduces desensitization. $KCTD12^{-/-}$ neurons exhibited similar I_{bac} desensitization as WT neurons, showing that KCTD12 does not contribute to I_{bac} desensitization in DAVTA neurons. These findings support that activation of I_h counteracts I_{Kir3} and that superimposed I_h and I_{Kir3} underlie the apparent I_{bac} desensitization. The results additionally indicate that GBRs are more efficient in triggering I_h in WT than in $KCTD16^{-/-}$ neurons, showing that HCN/GBR complex formation promotes I_h activation.

GBR-induced hyperpolarization activates dendritic I_h

For I_{bac} recordings, DAVTA neurons were clamped at -60 mV, which normally should prevent I_h activation by hyperpolarization. We therefore tested whether incomplete space clamp is responsible for hyperpolarization of DAVTA neurons by GBR-activated I_{Kir3} and for activation of I_h (Williams & Mitchell, 2008). Indeed, somatic voltage clamp did not prevent baclofen-induced hyperpolarization of proximal dendrites in dual patch clamp experiments (Figure 2 – figure supplement 1A and B). Dendritic hyperpolarization increased linearly with the distance from the soma (Figure 2 – figure supplement 1C), in line with a decreasing influence of the somatic voltage clamp. The I_{bac} exhibited a strong attenuation without a corresponding increase in R_i (Figure 2 – figure supplement 1B), indicating that...
dendritic hyperpolarization due to incomplete voltage clamp activates dendritic I_h, which opposes the I_{Kv3}. Of note, due to the influence of the somatic voltage clamp, I_{bac}-induced hyperpolarization in the proximal dendrites was slow with maximal hyperpolarization only observed after approximately a minute (Figure 2 – figure supplement 1B).

Blocking I_h with zatebradine in somatic current-clamp recordings resulted in a significantly larger baclofen-induced maximal hyperpolarization (control: -75.2 ± 0.9 mV, $n = 10$ neurons; zatebradine: -85.6 ± 1.4 mV, $n = 6$ neurons; mean ± s.e.m. $p < 0.001$, unpaired Welch’s t-test) (Figure 3A-C). The conductance at maximal hyperpolarization (g_{max}) was significantly reduced in the presence of zatebradine, revealing that g_{HCN} contributes to the conductance induced by GBR activation (control: 15.6 ± 1.7 nS, zatebradine: 5.2 ± 1.6 nS; $p < 0.001$, unpaired Welch’s t-test). Zatebradine also significantly reduced the conductance at steady state (g_{steady}) (Figure 3D), showing that HCN channels largely remain open during GBR activation by baclofen.

The activation kinetics of HCN channels reported in the literature are approximately 100 ms (Biel et al., 2009; Kaupp & Seifert, 2001). Therefore, voltage-dependent activation of I_h appears to be too fast to account for the attenuation of the I_{bac} in DA^VTA neuron ($\tau = 156.4 \pm 19.2$ sec, mean ± s.e.m. $n = 9$ neurons, calculated for the 5 minutes following I_{max}; Figure 2B). We therefore determined I_h activation kinetics in DA^VTA neurons by injecting rectangular voltage commands from -60 (the holding potential in voltage-clamp experiments) to -75 mV (the maximal hyperpolarization induced by baclofen in DA^VTA neuron) (Figure 3E). Fitting a double exponential function to the I_h yielded time constants in the order of tens of seconds ($\tau_1 = 9.5 \pm 2.1$ and $\tau_2 = 58.0 \pm 7.6$ sec, mean ± s.e.m. $n = 8$ neurons, Figure 3F). The non-instantaneous hyperpolarization induced by diffusion of baclofen into the brain slice and the somatic voltage-clamp opposing hyperpolarization will further slow I_h activation kinetics. Therefore, the kinetics of I_h
activation in DAVTA neurons under our experimental conditions are compatible with the kinetics of I_{bac} attenuation.

We further addressed whether GBRs allosterically modulate HCN channels in DAVTA neurons in the absence of Kir3 channel activation. In the presence of the Kir channel-blocker Ba2+ (Alagem, Dvir, & Reuveny, 2001), baclofen did not significantly alter the voltage-sensitivity of I_h currents (Figure 3 – figure supplement 1A). In addition, activation of GBRs with baclofen did not induce any conformational changes between GBRs and HCN2 in bioluminescence resonance energy transfer (BRET) experiments in transfected HEK293 cells (Figure 3 – figure supplement 1B). In line with a recruitment of HCN channels to GBRs by KCTD16, we observed saturating BRET between Rluc-GB1b and YFP-HCN2 in the presence but not in the absence of KCTD16 (Figure 3 – figure supplement 1B). Altogether, these data indicate that GBRs do not allosterically influence HCN channel activity. Therefore, exclusively hyperpolarization-dependent activation of HCN channels accounts for the observed attenuation of GBR-mediated inhibition. Dissociation of HCN channels from GBR-complexes in the absence of KCTD16 impairs this regulatory mechanism, indicating that it relies on the GBR-dependent subcellular localization of HCN channels in the dendrites.

Increased inhibition of KCTD16-/- DAVTA neurons after optogenetic activation of GABAVTA neurons

Inhibitory inputs onto DAVTA neurons can be optogenetically activated in mice expressing ChR2 under the VGAT promoter (ChR2VGAT). Illumination of ChR2VGAT horizontal midbrain slices with blue light via the microscope objective induced intense firing activity in GABAVTA neurons (Figure 4A) and evoked IPSPs in DAVTA neurons (Figure 4B). In WT::ChR2VGAT
mice, these IPSPs were followed by a rebound depolarization (Figure 4B) that has been attributed to I_h activation (Biel et al., 2009). Pharmacological blockade of HCN channels with zatebradine prevented rebound depolarization and prolonged the duration of IPSPs ($p < 0.01$, Figure 4B and C). Similarly, DA^{VTA} neurons from $KCTD16^{-/-}:ChR2^{VGAT}$ mice exhibited longer IPSPs compared to DA^{VTA} neurons from WT::ChR2VGAT mice ($p < 0.05$, Figure 4B and C) and rebound depolarization was observed less frequently (in 2 out of 8 neurons). IPSP amplitudes were similar in all groups (Figure 4B and C).

To study whether $KCTD16$ regulates DA^{VTA} neuron firing in vivo, we performed optogenetic experiments in anesthetized $ChR2^{VGAT}$ mice (Figure 5A). As previously observed (Tan et al., 2012), optogenetic activation of GABAVTA neurons (Figure 5B) resulted in a time-locked decrease of DA^{VTA} neuron firing (Figure 5C). The inhibition of DA^{VTA} neurons was more pronounced in $KCTD16^{-/-}:ChR2^{VGAT}$ mice compared to WT::ChR2VGAT mice, as indicated by a reduced firing rate ($p < 0.05$, Figure 5D) and a longer latency to fire an action potential after the onset of inhibition ($p < 0.05$, Figure 5E). GABAVTA and DA^{VTA} neurons were identified based on validated in vivo electrophysiological properties, such as action potential width and the basal firing frequency (Ungless & Grace, 2012), which were similar between genotypes (Figure 5F and G). In vivo recordings thus corroborate that GBR/HCN complexes serve to limit synaptic inhibition of DA^{VTA} neurons.

$KCTD16^{-/-}$ mice exhibit increased anxiety-like behavior

A decrease in DA^{VTA} neuron excitability was shown to result in an anxiety-like behavior in mice (Zweifel et al., 2011). The increased inhibition of DA^{VTA} neuron firing observed in $KCTD16^{-/-}$ mice in response to GABAVTA activation may therefore increase anxiety-like
behaviors in stressful situations. We used the light/dark chamber test to analyze whether
KCTD16\(^{-/-}\) mice exposed to a mild naturalistic stressor exhibit an exacerbated anxiety-like
behavior. This test relies on the innate aversion of mice to brightly illuminated areas.
However, when presented in a novel environment, mice also have a tendency to explore.
This conflicting situation leads to anxiety-like behaviors (Takao & Miyakawa, 2006). In the
light/dark chamber test, *KCTD16\(^{-/-}\)* mice showed increased anxiety-like behavior, as
indicated by fewer entries (p < 0.05) and less time spent in the light chamber (p < 0.01)
compared to WT littermate mice (Figure 6A and C). *KCTD16\(^{-/-}\)* mice also covered less
distance than WT mice (p < 0.01, Figure 6B). This was not due to a motor impairment, as
both genotypes exhibited similar locomotor behavior in an open arena, when spontaneous
locomotion was decomposed into bouts (number, length, speed and duration) to test for
possible motor differences (Figure 6 – figure supplement 1).

To confirm exaggerated anxiety in response to stressors, we tested mice in a mild
version of the classical fear-conditioning paradigm. The test consisted of one training
session with five auditory stimuli (tones) paired with an aversive foot shock. 24 hours later,
in a novel context (different from the training context), freezing behavior in response to the
context and to the tones in the absence of foot shock was assessed (Figure 6D). At
baseline, both genotypes showed a similar low level of freezing in the test chamber (Figure
6E). However, after the first tone and throughout the entire session, *KCTD16\(^{-/-}\)* mice
displayed significantly more freezing episodes (p < 0.01) and spent more time freezing (p
< 0.05) than WT littermate mice (Figure 6F). These data indicate an increased anxiety-like
behavior in response to the novel context and the predictive tone.

In further experiments we used the elevated zero and plus mazes as non-invasive
tests for anxiety. *KCTD16\(^{-/-}\)* and WT littermate mice spent significantly more time (p <
0.001, Figure 6G, H, K and L) and travelled larger distances (Figure 6 – figure supplement
2A and C) in the closed arms compared to the open arms of the mazes. *KCTD16*\(^{-/-}\) mice explored the open arms significantly less than WT mice, as shown by a decreased dwell time (p < 0.05, Figure 6I and M), decreased number of entries (p < 0.05, Figure 6J and N) and lower travelling speed in the open arms (Figure 6 – figure supplement 2B and D). These data corroborate that *KCTD16*\(^{-/-}\) mice exhibit increased anxiety-like behaviors in stress situations.

CRISPR/Cas9-mediated *KCTD16* ablation in DA\(^{VTA}\) neurons promotes anxiety-like behaviors

AAV-mediated CRISPR/Cas9 technology has recently been established for cell-type specific gene editing in the VTA (DeBaker, Marron Fernandez de Velasco, McCall, Lee, & Wickman, 2021). We applied this approach to ablate *KCTD16* specifically in DA\(^{VTA}\) neurons of adult mice (Figure 7A and B). For efficient targeting we designed two single guide RNAs (sgRNAs) binding in the *KCTD16* open reading frame upstream of the H2 domain mediating interaction with HCN channels. Following *in vitro* validation (Figure 7 – figure supplement 1A), the sgRNAs were cloned individually into AAV vectors expressing mCherry as a fluorescent reporter and subsequently packed into AAV serotype 8 capsids (AAV8-sg*KCTD16*-mCherry). A 1:1 mixture of both AAV8-sg*KCTD16*-mCherry was then injected into the VTA of Cre-dependent LSL-Cas9/EGFP knock-in mice heterozygous for the DA neuron-directed driver DAT-Cre (LSL-Cas9/EGFP::DAT-Cre) to produce mice that are deficient for *KCTD16* specifically in DA\(^{VTA}\) neurons (DA\(^{VTA-}\)\(^{-}\)\(*KCTD16*\(^{-/-}\) mice). As a control, the same AAV8 preparation was injected into LSL-Cas9/EGFP knock-in mice lacking the DAT-Cre driver (Figure 7A). 6 weeks after AAV8 injection, we tested mice for their anxiety levels in the elevated zero and elevated plus mazes (Figure 7C-H). DA\(^{VTA-}\)\(^{-}\)\(*KCTD16*\(^{-/-}\) mice spent significantly less time in the open arms of the mazes compared to
control mice (p < 0.01 and p < 0.05, Figure 7D and G), similar to pan $KCTD16^{-/-}$ mice. Post hoc analysis revealed that 55.7% of TH positive neurons in the VTA of DAVTA-$KCTD16^{-/-}$ mice expressed Cas9/EGFP and where transduced with AAV8-sg$KCTD16$-mCherry (Figure 7 – figure supplement 1C and D). Amplicon deep sequencing of genomic DNA extracted from the VTA confirmed in vivo editing of $KCTD16$ in DAVTA-$KCTD16^{-/-}$ mice, revealing insertion and deletions (indel mutations) near the predicted Cas9 cleavage sites (Figure 7I). Importantly, more than 80% of the editing events resulted in out-of-frame mutations. These data confirm that selective ablation of $KCTD16$ in DAVTA cells is sufficient to exacerbate anxiety-like behaviors in stressful conditions.

11

Intra-VTA inhibition of HCN channels induces an anxiety-like phenotype

Our data support that the increased anxiety-like behavior of $KCTD16^{-/-}$ mice in stress situations relates to a reduced activation of HCN channels in DAVTA neurons. We therefore tested whether zatebradine exhibits anxiogenic properties when infused into the VTA. One group of WT mice was first infused with saline and 24 hrs later with zatebradine. The mice were tested 30 min after each infusion for their anxiety levels in the elevated zero maze and subsequently in the elevated plus maze (Figure 8A). A second group of mice first received zatebradine and 24 hrs later saline before testing in the mazes (Figure 8A). Because the behavioral data in the presence of saline or zatebradine of the two groups of mice were similar, we pooled the data for analysis. After infusion with zatebradine, all mice spent less time in the open arms of the mazes (p < 0.05, Figure 8C-F), thus mimicking the anxiety-like behavior of $KCTD16^{-/-}$ mice in the mazes. The infusion site was validated by infusion of green fluorescent beads and staining for TH in brain slices (Figure 8B). Pharmacological data therefore corroborate that lack of HCN channel activity in DAVTA neurons increases anxiety-like behavior in the elevated mazes.
Discussion

A well-known postsynaptic function of GBRs is the activation of Kir3 channels, which underlie the late phase of IPSPs and prolong the time window of synaptic inhibition (Gassmann & Bettler, 2012; Luscher & Slesinger, 2010). To prevent excessive inhibitory influences on neuronal activity, the gating of Kir3 channels by GBRs must be under stringent temporal control. Endocytosis of GBRs, which typically terminates second messenger signaling, is too slow to terminate Kir3 activity in a timely manner (Gassmann & Bettler, 2012). GBRs therefore use RGS and KCTD12 proteins, which directly interfere with G protein activity, to rapidly terminate signaling to Kir3 channels (Mutneja, Berton, Suen, Luscher, & Slesinger, 2005; Raveh, Turecek, & Bettler, 2015; Schwenk et al., 2010; Turecek et al., 2014; Xie et al., 2010; Zheng et al., 2019). Here, we describe a novel mechanism that allows for rapid inactivation of GBR-activated I_{Kir3}. This mechanism relies on association of HCN channels with GBRs, which facilitates activation of HCN channels through hyperpolarization by I_{Kir3}. In contrast to rapid termination of I_{Kir3} by RGS and KCTD12 acting at the G protein, this novel mode of I_{Kir3} inactivation relies on activation of I_h that counteract I_{Kir3}. GBR-dependent I_h activation provides a straightforward explanation for the more pronounced I_{bac} desensitization observed in DAVTA neurons compared to neighboring GABAVTA neurons, as the latter lack I_h (Cruz et al., 2004).

Pharmacological blockade of HCN channels or disruption of the GBR/HCN complex by genetic removal of KCTD16 prolongs optogenetically induced IPSPs in DAVTA neurons of acute slices, showing that I_h impede the I_{Kir3}-dependent late phase of IPSPs. Likewise, optogenetic activation of GABAVTA neurons in vivo produces a more pronounced and prolonged inhibition of DAVTA neuron firing in KCTD16$^{-/-}$ mice than in WT mice, further supporting that GBR/HCN complex formation is physiologically relevant and serves to limit...
inhibition. Our data are consistent with GBRs capturing HCN channels at postsynaptic sites where they are gated by hyperpolarizing IPSPs. The activation of HCN channels is not dependent on a direct modulation or allosteric regulation by GBRs and simply relies on the spatial co-localization with hyperpolarizing conductances. HCN channels have a propensity to traffic to the distal dendrites (Lorincz, Notomi, Tamas, Shigemoto, & Nusser, 2002). Translocation of HCN channels to distal dendrites therefore likely explains why HCN channels fail to regulate GBR-mediated inhibition in KCTD16−/− mice. \(I_h\) activation explains the small contribution of GBR-activated \(I_{Kir3}\) to IPSPs in DA\(^{VTA}\) neurons during inhibitory activity, for example during reward omission or the presentation of aversive stimuli (Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Cohen, Haesler, Vong, Lowell, & Uchida, 2012; Schultz, 2013; Tan et al., 2012). GBR-dependent \(I_h\) activation may not be limited to DA\(^{VTA}\) neurons and is expected to play a role in shortening the duration of IPSPs in other neurons as well. It is assumed that GBR-mediated slow IPSPs are mostly generated during periods of intense GABAergic activity, when GABA concentrations are high enough to reach extrasynaptic GBRs (Gassmann & Bettler, 2012). Our data imply that postsynaptic GBRs may also be activated during less intense GABAergic activity, but that \(I_h\) occlude GBR-mediated IPSPs.

Our experiments show that lack of \(I_h\) activation in DA\(^{VTA}\) neurons of KCTD16−/− mice correlates with an increased anxiety-like behavior in response to stressful situations and aversive conditioning. This finding is in line with the reported hyper-reactivity of KCTD16−/− mice in response to aversive stimuli (Cathomas et al., 2017). Spontaneous firing frequencies and action potential waveforms were similar in KCTD16−/− and WT DA\(^{VTA}\) neurons, while optogenetic inhibition of DA\(^{VTA}\) neurons by GABA\(^{VTA}\) neurons was increased in KCTD16−/− mice. Since a reduced excitability of DA\(^{VTA}\) neurons is anxiogenic (Zweifel et al., 2011), we expected that increased DA\(^{VTA}\) neuron inhibition in response to
stressors underlies the increased anxiety-like behavior of $KCTD16^{-/-}$ mice. Indeed, cell-type specific ablation of $KCTD16$ in DAVTA neurons is sufficient to promote anxiety phenotypes, supporting that the GBR/HCN interaction in DAVTA neurons is behaviorally relevant. This is corroborated by intra-VTA blockade of I_h in WT mice, which is expected to increase DAVTA neuron inhibition in response to stressors and replicates the anxiety phenotype of $KCTD16^{-/-}$ mice.

DAVTA neurons can be separated into anatomically and functionally distinct subpopulations that interact with specific neural circuits associated with anxiety and reward-seeking behaviors (Morales & Margolis, 2017). The GBR/HCN regulatory mechanism described here will be operational in “conventional” DAVTA neurons characterized by large I_h current densities but not in DAVTA neurons lacking I_h currents (Lammel, Lim, & Malenka, 2014). I_h expressing DAVTA neurons project primarily to the nucleus accumbens (NAc), while DAVTA neurons lacking I_h additionally project to the medial prefrontal cortex and amygdala (Lammel et al., 2008). Recent data show that aversive stimuli inhibit a specific subpopulation of NAc-projecting DAVTA neurons (de Jong et al., 2019). Thus, we speculate that primarily these neurons use the GBR/HCN complex to limit GBR-mediated inhibition and to prevent anxiety-like behaviors. In this context, it is important to note that these DAVTA neurons are directly inhibited by GABAergic projections from the nucleus NAc via the activation of GBRs (Edwards et al., 2017; Yang et al., 2018). However, DAVTA neurons are also under inhibition from GABAVTA neurons that receive inputs from a great number of brain areas associated with anxiety (Jennings et al., 2013; Morales & Margolis, 2017; Tovote et al., 2015). Thus, it is possible that several projections activate GABAVTA neurons in our behavioral experiments.

Increasing I_h activity or stabilizing GBR/HCN interaction in DAVTA neurons may therefore represent a novel concept for the treatment of phobia, panic attacks, post-
traumatic stress disorders or other mental health diseases characterized by pathological responses to negative stimuli. It is interesting to note that lamotrigine, a clinically used mood-stabilizer, enhances \(I_h \) in \(\text{DA}^{\text{VTA}} \) neurons, leading to a resilient phenotype in a mouse model of depression (Friedman et al., 2014).
Materials and Methods

Mice

Experiments with mice (KCTD12⁻⁻ (Turecek et al., 2014), KCTD16⁻⁻ (Turecek et al., 2014), VGAT-ChR2-YFP (JAX#014548 (Zhao et al., 2011)), LSL-Cas9/EGFP (JAX#024857 (Platt et al., 2014)), DAT-Cre (Turiault et al., 2007) were approved by the veterinary office of the canton of Basel-Stadt, Switzerland. No blinding was done.

Biochemistry

Brains were washed in ice-cold PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄) and placed at 100 mg/ml in ice-cold homogenization media containing: 320 mM sucrose, 4 mM HEPES, pH 7.5, 1 mM EDTA, 1 mM EGTA and protease inhibitors (Roche Diagnostics). For homogenization, we used a glass-teflon homogenizer (mouse brain) or a microcentrifuge tube pestle grinder (VTA brain slice) with 30 passes on ice. The homogenized material was cleared by centrifugation at 10³ x g (4°C, 15 min), the membrane-enriched fraction isolated by ultracentrifugation at 4.8 x 10⁴ x g (4°C, 45 min) and solubilized at 2 mg protein/ml for 3 hrs at 4°C in NETN-based solubilization buffer containing: 100 mm NaCl, 1 mm EDTA, 0.5% Nonidet P-40, 20 mm Tris/HCl (pH 7.4) and protease inhibitors. The solubilized fraction was cleared by ultracentrifugation at 10⁵ x g (4°C, 45 min) and directly used for Western blots (input 100 μg of total membrane protein) or precleared for 1 hr using 30 μl dry volume of a 1:1 mixture of protein-A and protein-G agarose (Roche Diagnostics). Solubilized membranes (3 mg of total membrane protein) of WT and KCTD16⁻⁻ mouse brains were incubated overnight at 4°C with 2 μl of affinity-purified guinea pig anti-KCTD16 antibody, followed by 40 min of incubation with 10
μl of a 1:1 mixture of protein-A/-G agarose. After repeated washing, bound proteins were eluted with Laemmli buffer and resolved using standard SDS–PAGE.

HEK293 cells were transfected at 80–90% confluency using PEI transfection reagent (Sigma) with 2 mg/ml PEI per mg of DNA. The total amount of DNA in the transfections was kept constant by supplementing with empty pCI plasmid (Promega). Plasmids encodings HCN1-4, Flag-, Myc- and HA-tagged GB1 and GB2 as well as Flag- and Myc-tagged KCTDs were as described (Schwenk et al., 2010; Seddik et al., 2012; Zolles et al., 2009). All mutant constructs were generated using overlap extension PCR. To generate KCTD16ΔH2 a stop codon was introduced after E279. To generate KCTD16T1 a stop codon was introduced after L118. To generate KCTD16ΔT1 the region between M1 and V119 was excised. To generate KCTD16H1 a stop codon was introduced in KCTD16ΔT1 after E279; in KCTD16H2 the region between M1 and P280 was excised. To generate HCN2 aa1–215 a stop codon was introduced after D215. HEK293 cells were harvested 48 hrs after transfection in NETN lysis buffer (with protease inhibitors added) by rotating them for 10 min at 4°C. Lysates were cleared by centrifugation at 10^3 x g for 20 min at 4°C and directly used for Western blot analysis (input lanes) or precleared as described above and immunoprecipitated for 3 hrs at 4°C with the following antibodies: mouse anti-Myc (9E10, Santa Cruz Biotechnology, 1 μg) or mouse anti-Flag (M2, Sigma, 1 μg), followed by 40 min of incubation with 10 μl of a 1:1 mixture of protein-A/-G agarose. Lysates and immunoprecipitates were resolved using SDS–PAGE and probed with the primary antibodies rabbit anti-KCTD16 (RRID: AB_2631050, 1:2500), rabbit anti-GB1 (AB26, rat aa 857–960, 1:3500), rabbit anti-GB2 (C44A4, #4819, Cell Signaling Technology, RRID: AB_2108339, 1:1500), rabbit anti-Myc (C3956, Sigma, RRID: AB_439680, 1:2500), rabbit anti-Flag (F7425, Sigma, RRID: AB_439687, 1:2500), rabbit anti-HA (RHGT-45A, ICL Lab, RRID: AB_2861135, 1:100), guinea pig anti-HCN1 (AGP-203, Alomone labs,
1:1000), rabbit anti-HCN2 (AGC-030, Alomone labs, 1:1000), rabbit anti-HCN3 (AGC-057, Alomone labs, 1:1000), guinea pig anti-HCN4 (AGP-004, Alomone labs, 1:1000), mouse anti-β-tubulin III (T8660, Sigma, 1:1000), rabbit anti-TH (ab112, Abcam, 1:1000) and peroxidase-coupled secondary antibodies donkey anti-guinea pig (A7289, Sigma, 1:10000), donkey anti-rabbit (NA934, GE Healthcare, 1:10000) and sheep anti-mouse (NA931, GE Healthcare, 1:10000). The guinea-pig anti-KCTD16 antibody was raised against a synthetic peptide derived from mouse KCTD16 (aa7-23) (Metz et al, 2011). The Bradford assay was used to ensure equal protein loading. Antibody incubation was in 5% nonfat dry milk in PBS containing 0.1% Tween-20. The chemiluminescence detection kit SuperSignal West (Thermo Scientific) was used for visualization of proteins on Western blots.

In vitro electrophysiology

Mice (P18-P22) were deeply anesthetized with isoflurane prior decapitation and brain isolation. Acute horizontal brain slices (250 μm thick) from the midbrain were cut with a vibrating microslicer (Leica VT1200S) in ice-cold oxygenated artificial cerebral spinal fluid (ACSF) containing: NaCl (119 mM), 26.2 NaHCO₃ (26.2 mM), KCl (2.5 mM), NaH₂PO₄ (1 mM), MgCl₂ (1.3 mM), CaCl₂ (2.5 mM) and glucose (11 mM), pH 7.4, constantly bubbled with 95% O₂ and 5% CO₂. Slices were maintained at 37°C in ACSF for 15–120 min and continuously perfused with ACSF at 35.0 ± 2.0°C throughout the experiments. Whole-cell recordings from somata and/or from dendrites were obtained using oblique illumination on a Olympus BX51WI equipped with a 60x objective (Olympus LUMPplanFl, NA 0.9). Somatic (4-6 MΩ) and dendritic (10-20 MΩ) recording pipettes were filled with an intracellular solution containing: K-gluconate (140 mM), NaCl (4 mM), MgCl₂ (2 mM), EGTA (1.1 mM), HEPES (5 mM), Na₂ATP (2 mM), Na₂-phosphocreatine (5 mM), Na₃GTP
(0.6 mM), 0.2% biocytin, pH 7.2 (with KOH); 312.3 mOsm. For double patch-clamp recordings, Alexa 594 (10 μM) was added to the intracellular solution. Drugs (TOCRIS Bioscience) were freshly prepared the day of the experiment. Bipolar electrodes (theta glass with a tip diameter of 4-8 μm, located at ~50 μm laterally from distal dendrites). Electrophysiological recordings were obtained using a Multiclamp 700B amplifier and digitized at 10 kHz. For voltage-clamp recordings the series resistance was 15-20 MΩ and uncompensated. In experiments performed with series resistance compensation (40-50%, band width 3.5 kHz) and at holding potentials more depolarized (-45 mV in the presence of tetrodotoxine) than the threshold for \(I_h \) voltage activation, the \(I_{bac} \) desensitized less (18.0 ± 3.5% vs 46.0 ± 4.0% at \(V_{hold} \) -60 mV with uncompensated series resistance and -10 mV test pulses), in keeping with a space-clamp deficit being responsible for \(I_h \) activation. \(I_{bac} \) desensitization and Ri recovery values were calculated as the percentage of \(\Delta I_{steady}/\Delta I_{max} \) and \(\Delta R_{i,steady}/\Delta R_{i,max} \), \(\Delta \) denotes the amplitudes (max and steady) relative to baseline (hold):

\[
\Delta I_{max} = I_{max} - I_{hold}, \quad \Delta I_{steady} = I_{steady} - I_{hold}, \quad \Delta R_{i, max} = R_{i, max} - R_{i, hold}, \quad \Delta R_{i, steady} = R_{i, steady} - R_{i, hold}.
\]

Optogenetic stimulation of brain slices was induced with blue light applied via the microscope objective. Blue light was generated by means of an excitation filter (460 - 495 nm; Olympus filter cube U-MWIBA3) mounted in the light path originating from the mercury lamp-house.

In vivo electrophysiology

Extracellular single unit recordings were performed as described (Tan et al., 2012). In brief, mice were anesthetized with isoflurane (induction, 5%; maintenance, 0.5 to 1.5%) and placed into a stereotaxic frame (World Precision Instruments). The body temperature was maintained at 36°C using a heating pad. A cranial window was opened above the VTA (AP -3.4 to 3.8, ML 0.3 to 1.0) and the dura retracted. Glass recording pipets (GC120F-10
Harvard Apparatus) were back filled with oxygenated ACSF (in mM: NaCl 119, NaHCO3 26.2, KCl 2.5, MgCl2 (6H2O) 1.3, NaHPO4 1, CaCl2 2.5, Glucose 11, pH 7.3) and contained an optic fiber coupled to a blue laser (10-20 mW at the tip). The spontaneous firing rate was continuously recorded while a blue light pulse of 40 Hz was applied for 1 sec every 10 sec. DAVTA neurons have been reported to display larger action potential width (>1.1 msec from the start to the through) and a lower spontaneous average firing rate (<10 Hz) than neighboring GABA∗VTA neurons (Ungless & Grace, 2012). Recordings were analyzed using MATLAB (Mathworks).

AAV-mediated CRISPR/Cas9 editing in vivo

CRISPR/Cas9 target sites in the Mus musculus (mm10/GRCm3) KCTD16 were identified using the ChopChop online tool (http://chopchop.cbu.uib.no/). Two target sequences upstream of the KCTD16 H2 domain with an on-target efficacy score >0.6 were pre-validated with in vitro assembled ribonucleoprotein complexes using Alt-R™ sgRNAs (Integrated DNA Technologies), *Streptococcus pyogenes* Cas9 nuclease V3 (Provider?) and PCR-amplified genomic KCTD16 DNA as a double-stranded target. The two target sequences sg-KCTD16-1 (5′-GCTTTGCTTGACATCCTCGG-3′) and sg-KCTD16-2 (5′-TTCCGCAAACCAAAATCCGG-3′) were then cloned into the AAV-U6-sgRNA-hSyn-mCherry plasmid (RRID: Addgene_87916) using the SapI site 5′ of the gRNA scaffold. For optimal RNA expression from the U6 promoter a guanine nucleotide was added to the 5′ end of the sgKCTD16-2 sequence. AAV8 particles were produced in HEK293T cells using the triple transfection strategy and purified using IDX gradient ultracentrifugation to remove impurities and empty capsids (Vigene Biosciences large-scale AAV packaging service). 500 nl of a 1:1 mixture of AAV8-sgKCTD16-1 (5.6x10¹³ genome copies (GC)/ml) and AAV8-sgKCTD16-2 (3.7x10¹³ GC/ml) were injected into the VTA of LSL-
Cas9/EGFP::DAT-Cre (Fig. S6b) and control Cas9/EGFP mice using a stereotaxic apparatus (from bregma, ML:0.8, AP:3.4, DV:4.4, Paxinos). AAV8-transduction of VTA^DA neurons was assessed by confocal imaging of the AAV-reporter mCherry (expressed under the hSyn promoter) in VTA slices immunostained for TH as described previously (Rizzi, Li, Hogrefe, & Tan, 2021). Cre-mediated activation of Cas9/EGFP in DA neurons was assessed by imaging EGFP. CRISPR/Cas9 editing in vivo was validated by next-generation sequencing of a 375 bp PCR amplicon containing the two sgRNA target sites.

The first-step PCR was performed on genomic DNA extracted from the VTA with the locus-specific forward (5′-TCACCTTCCAGAAAAGAGGAAGG-3′) and reverse (5′-GTGTATCTTTCTGGAGCTCGGT-3′) primers containing the following 5′ tails (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG -3′) and (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′), respectively, required for binding of the second-step PCR primers containing barcode and Illumina adapter sequences. PCR amplifications were performed with Phusion High-Fidelity DNA Polymerase (Thermo Scientific) according to the manufacturers protocol. 2 x 250 bp reads were generated on the Illumina MiSeq/NextSeq Platform (Microsynth). Analysis of genome editing outcomes from deep sequencing data was performed using CRISPResso2 (Clement et al., 2019).

Behavioral tests

To assess spontaneous locomotion in an open field, mice were free to explore a rectangular (30 x 45 cm) arena for a total of 6 min. Automated software (ANY-maze, Stoelting Co) was used to track movements. Data were post hoc analyzed using MATLAB, as described (Ruder, Takeoka, & Arber, 2016). In the light/dark chamber test the apparatus (20 x 60 cm) was divided into a dark and a brightly illuminated chamber. Mice
were allowed to explore and move freely between the chambers for a total of 15 min. The apparatus was elevated 60 cm from the table and mice video tracked using ANY-Maze software. The dark chamber was lit with red LEDs to allow video tracking. The reported parameters were automatically calculated by the software. In the elevated zero maze mice were free to explore for a total of 6 min an O-shaped maze (5 cm width, 25 cm radius) divided into two open arms and two closed arms (15 cm height). The maze was elevated 60 cm from the table. The bottom of the floor of each arm was coated with a semi-transparent paint that allowed video tracking of the mice. In the elevated plus maze mice were placed for 6 min in a plus-shaped maze consisting of two open arms (7.5 width x 30 cm length) and two enclosed arms (7.5 cm width x 30 cm length x 30 cm height) extending from a center platform (7.5 cm width x 7.5 cm length). The maze was elevated 60 cm from the table. ANY-Maze software was used to track movements. For pharmacological inhibition of HCN channels \textit{in vivo}, four WT mice were infused with 500 µl of saline and 24 hrs later with zatebradine (10 µM) via a cannula implanted above the VTA (Plastics One, 5 mm length guide with a 26 gauge, implanted from bregma at AP-3.3, ML-0.8 with a 10° angle, DV-4.1). 30 min after saline or zatebradine infusion mice were tested in the mazes. To avoid that the sequence of the infusions impacts behavioral results, we reversed the order of the infusions such that four additional mice first received zatebradine and 24 hrs later saline. The behavioral results of the eight mice obtained in the presence of zatebradine and saline were pooled. Infusion sites were confirmed on VTA slices after infusion of fluorescent beads. For fear conditionning we used a standard mouse-conditioning chamber (16 x 14 x 12 cm; Med-Associates, Vermont, USA) with the stainless-steel rod floor coupled to a stand-alone aversive stimulator (Med-Associates). The experiment was a simplified version of the classical fear-conditioning task and was divided in two steps with a conditioning session followed by a test session 24 hrs later (10 min each). The conditioning context (17 cm x 26 cm x 17 cm) was patterned with checks
and diagonal stripes whereas the test context (17 cm x 26 cm x 17 cm) exhibited large black dots. During the conditioning session, mice received 5 auditory stimuli (25 sec, 1 Hz pure tone), each paired with a foot shock (2 s, 0.6 mA). On the test session freezing was measured in response to the predictive auditory stimuli in the absence of foot shocks. Freezing was continuously assessed with ANY-Maze.

BRET studies

BRET experiments reporting allosteric changes between Rluc-GB1b and YFP-HCN2 in transfected CHO cells were conducted and analyzed as described (Turecek et al., 2014).

Statistical analysis

All statistical tests and graph preparations were done using Prism (GraphPad, San Diego, CA), and figure assembly was done in Photoshop (Adobe, San Jose, CA). Sample size in all experiments was based on those of similar experiments in previous studies. Samples were randomly allocated to the experimental groups unless they were predefined by the genotype. Masking was not performed for any experiment. Data are presented as mean ± standard error of the mean (s.e.m.) unless indicated otherwise. To determine whether to use parametric or non-parametric statistical tests, Shapiro-Wilk test for normality of residuals was applied. The statistical tests adopted are described in the figure legends. All p values reported are two-tailed, and a p value of < 0.05 was considered statistically significant.
Data availability

All data needed to evaluate the conclusions in this paper are present in the main manuscript and/or the Supplementary Materials. Numerical data that are represented in graphs are also provided as source data excel files.

Acknowledgments: We thank A. Lüthi, J. Bischofberger, H.R. Brenner and C. Lüscher for helpful discussions and N. Nevian for anatomical reconstruction of biocytin filled DA^VTA neurons. Funding: This work was supported by the Swiss National Science Foundation (31003A-152970 to B.B. and BSSGIO-155830 to K.R.T.) and the National Center for Competences in Research (NCCR) ‘Synapsy, Synaptic Bases of Mental Health Disease’.

Author contributions: E.P.-G., G.R., M. G., K.R.T and B.B. conceived the project. E.P.-G., G.R., T.F., A.P., V.B. and M.G. performed experiments. E.P.-G., G.R., K.R.T and B.B. wrote the manuscript with the help of the other authors.

Competing interests: B.B. is a member of the scientific advisory board of Addex Therapeutics, Geneva. All other authors declare no conflict of interest.
References

1. Alagem, N., Dvir, M., & Reuveny, E. (2001). Mechanism of Ba$^{2+}$ block of a mouse inwardly rectifying K$^+$ channel: differential contribution by two discrete residues. *J. Physiol.*, 534(Pt. 2), 381-393. doi:10.1111/j.1469-7793.2001.00381.x

2. Arora, D., Hearing, M., Haluk, D. M., Mirkovic, K., Fajardo-Serrano, A., Wessendorf, M. W., . . . Wickman, K. (2011). Acute cocaine exposure weakens GABA$_B$ receptor-dependent G-protein-gated inwardly rectifying K$^+$ signaling in dopamine neurons of the ventral tegmental area. *J. Neurosci.*, 31(34), 12251-12257. doi:10.1523/JNEUROSCI.0494-11.2011

3. Bellone, C., Loureiro, M., & Luscher, C. (2021). Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. *Cold Spring Harb. Perspect. Med.*, 11(4). doi:10.1101/cshperspect.a039701

4. Bhandari, P., Vandael, D., Fernandez-Fernandez, D., Fritzius, T., Kleindienst, D., Onal, C., . . . Koppensteiner, P. (2021). GABA$_B$ receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. *Elife*, 10. doi:10.7554/eLife.68274

5. Biel, M., Wahl-Schott, C., Michalakis, S., & Zong, X. (2009). Hyperpolarization-activated cation channels: from genes to function. *Physiol. Rev.*, 89(3), 847-885. doi:10.1152/physrev.00029.2008

6. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. *Neuron*, 68(5), 815-834. doi:10.1016/j.neuron.2010.11.022
Bucchi, A., Baruscotti, M., & DiFrancesco, D. (2002). Current-dependent block of rabbit sino-atrial node I\(f\) channels by ivabradine. *J. Gen. Physiol.*, 120(1), 1-13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12084770

Cathomas, F., Sigrist, H., Schmid, L., Seifritz, E., Gassmann, M., Bettler, B., & Pryce, C. R. (2017). Behavioural endophenotypes in mice lacking the auxiliary GABA\(_B\) receptor subunit KCTD16. *Behav. Brain Res.*, 317, 393-400. doi:10.1016/j.bbr.2016.10.006

Chan, C. S., Guzman, J. N., Ilijic, E., Mercer, J. N., Rick, C., Tkatch, T., . . . Surmeier, D. J. (2007). 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. *Nature*, 447(7148), 1081-1086. doi:10.1038/nature05865

Chaudhury, D., Walsh, J. J., Friedman, A. K., Juarez, B., Ku, S. M., Koo, J. W., . . . Han, M. H. (2013). Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. *Nature*, 493(7433), 532-536. doi:10.1038/nature11713

Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., . . . Pinello, L. (2019). CRISPResso2 provides accurate and rapid genome editing sequence analysis. *Nat. Biotechnol.*, 37(3), 224-226. doi:10.1038/s41587-019-0032-3

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. *Nature*, 482(7383), 85-88. doi:10.1038/nature10754

Coque, L., Mukherjee, S., Cao, J. L., Spencer, S., Marvin, M., Falcon, E., . . . McClung, C. A. (2011). Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. *Neuropsychopharmacology*, 36(7), 1478-1488. doi:10.1038/npp.2011.33
Cruz, H. G., Ivanova, T., Lunn, M. L., Stoffel, M., Slesinger, P. A., & Luscher, C. (2004). Bi-directional effects of GABA_B receptor agonists on the mesolimbic dopamine system. Nat. Neurosci., 7(2), 153-159. doi:10.1038/nn1181

de Jong, J. W., Afjei, S. A., Pollak Dorocić, I., Peck, J. R., Liu, C., Kim, C. K., . . . Lammel, S. (2019). A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron, 101(1), 133-151. doi:10.1016/j.neuron.2018.11.005

DeBaker, M. C., Marron Fernandez de Velasco, E., McCall, N. M., Lee, A. M., & Wickman, K. (2021). Differential impact of inhibitory G-protein signaling pathways in ventral tegmental area dopamine neurons on behavioral sensitivity to cocaine and morphine. eNeuro, 8(2). doi:10.1523/ENEURO.0081-21.2021

Edwards, N. J., Tejeda, H. A., Pignatelli, M., Zhang, S., McDevitt, R. A., Wu, J., . . . Bonci, A. (2017). Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat. Neurosci., 20(3), 438-448. doi:10.1038/nn.4482

Friedman, A. K., Walsh, J. J., Juarez, B., Ku, S. M., Chaudhury, D., Wang, J., . . . Han, M. H. (2014). Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science, 344(6181), 313-319. doi:10.1126/science.1249240

Fritzius, T., Turecek, R., Seddik, R., Kobayashi, H., Tiao, J., Rem, P. D., . . . Bettler, B. (2017). KCTD hetero-oligomers confer unique kinetic properties on hippocampal GABA_B receptor-induced K⁺ currents. J. Neurosci., 37(5), 1162-1175. doi:10.1523/JNEUROSCI.2181-16.2016

Gassmann, M., & Bettler, B. (2012). Regulation of neuronal GABA_B receptor functions by subunit composition. Nat. Rev. Neurosci., 13(6), 380-394. doi:10.1038/nrneurosci.2012.8
Hannan, S., Wilkins, M. E., & Smart, T. G. (2012). Sushi domains confer distinct trafficking profiles on GABA\(_B\) receptors. *Proc. Natl. Acad. Sci. USA, 109*(30), 12171-12176. doi:10.1073/pnas.1201660109

Jennings, J. H., Sparta, D. R., Stamatakis, A. M., Ung, R. L., Pleil, K. E., Kash, T. L., & Stuber, G. D. (2013). Distinct extended amygdala circuits for divergent motivational states. *Nature, 496*(7444), 224-228. doi:10.1038/nature12041

Kaupp, U. B., & Seifert, R. (2001). Molecular diversity of pacemaker ion channels. *Annu. Rev. Physiol., 63*, 235-257. doi:10.1146/annurev.physiol.63.1.235

Labouebe, G., Lomazzi, M., Cruz, H. G., Creton, C., Lujan, R., Li, M., . . . Luscher, C. (2007). RGS2 modulates coupling between GABA\(_B\) receptors and GIRK channels in dopamine neurons of the ventral tegmental area. *Nat. Neurosci., 10*(12), 1559-1568. doi:10.1038/nn2006

Lalive, A. L., Munoz, M. B., Bellone, C., Slesinger, P. A., Luscher, C., & Tan, K. R. (2014). Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity. *J. Neurosci., 34*(15), 5107-5114. doi:10.1523/JNEUROSCI.5203-13.2014

Lammel, S., Hetzel, A., Hackel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. *Neuron, 57*(5), 760-773. doi:10.1016/j.neuron.2008.01.022

Lammel, S., Lim, B. K., & Malenka, R. C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. *Neuropharmacology, 76 Pt B*, 351-359. doi:10.1016/j.neuropharm.2013.03.019
Lecca, S., Pelosi, A., Tchenio, A., Moutkine, I., Lujan, R., Herve, D., & Mameli, M. (2016). Rescue of GABA\(_B\) and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. *Nat. Med.*, 22(3), 254-261. doi:10.1038/nm.4037

Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R., & Nusser, Z. (2002). Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. *Nat. Neurosci.*, 5(11), 1185-1193. doi:10.1038/nn962

Luscher, C., & Slesinger, P. A. (2010). Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. *Nat. Rev. Neurosci.*, 11(5), 301-315. doi:10.1038/nrn2834

Metz, M., Gassmann, M., Fakler, B., Schaeren-Wiemers, N., & Bettler, B. (2011). Distribution of the auxiliary GABA\(_B\) receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. *J. Comp. Neurol.*, 519(8), 1435-1454. doi:10.1002/cne.22610

Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. *Nat. Rev. Neurosci.*, 18(2), 73-85. doi:10.1038/nrn.2016.165

Mutneja, M., Berton, F., Suen, K. F., Luscher, C., & Slesinger, P. A. (2005). Endogenous RGS proteins enhance acute desensitization of GABA\(_B\) receptor-activated GIRK currents in HEK-293T cells. *Pflugers Arch.*, 450(1), 61-73. doi:10.1007/s00424-004-1367-1

Nedergaard, S., Flatman, J. A., & Engberg, I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca\(^{2+}\) conductances in guinea-pig substantia nigra pars compacta neurones. *J. Physiol.*, 466, 727-747. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8410714
Nestler, E. J., & Carlezon, W. A., Jr. (2006). The mesolimbic dopamine reward circuit in depression. *Biol. Psychiatry, 59*(12), 1151-1159. doi:10.1016/j.biopsych.2005.09.018

Overton, P. G., & Clark, D. (1997). Burst firing in midbrain dopaminergic neurons. *Brain Res. Brain Res. Rev., 25*(3), 312-334. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9495561

Padgett, C. L., Lalive, A. L., Tan, K. R., Terunuma, M., Munoz, M. B., Pangalos, M. N., . . . Slesinger, P. A. (2012). Methamphetamine-evoked depression of GABA\textsubscript{B} receptor signaling in GABA neurons of the VTA. *Neuron, 73*(5), 978-989. doi:10.1016/j.neuron.2011.12.031

Pin, J. P., & Bettler, B. (2016). Organization and functions of mGlu and GABA\textsubscript{B} receptor complexes. *Nature, 540*(7631), 60-68. doi:10.1038/nature20566

Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., . . . Zhang, F. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. *Cell, 159*(2), 440-455. doi:10.1016/j.cell.2014.09.014

Raveh, A., Turecek, R., & Bettler, B. (2015). Mechanisms of fast desensitization of GABA\textsubscript{B} receptor-gated currents. *Adv. Pharmacol., 73*, 145-165. doi:10.1016/bs.apha.2014.11.004

Rizzi, G., Li, Z., Hogrefe, N., & Tan, K. R. (2021). Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning. *Cell Rep., 34*(11), 108867. doi:10.1016/j.celrep.2021.108867

Ruder, L., Takeoka, A., & Arber, S. (2016). Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability. *Neuron, 92*(5), 1063-1078. doi:10.1016/j.neuron.2016.10.032
Schultz, W. (2013). Updating dopamine reward signals. *Curr. Opin. Neurobiol.*, 23(2), 229-238. doi:10.1016/j.conb.2012.11.012

Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., . . . Bettler, B. (2010). Native GABA_B receptors are heteromultimers with a family of auxiliary subunits. *Nature*, 465(7295), 231-235. doi:10.1038/nature08964

Schwenk, J., Perez-Garci, E., Schneider, A., Kollewe, A., Gauthier-Kemper, A., Fritzius, T., . . . Fakler, B. (2016). Modular composition and dynamics of native GABA_B receptors identified by high-resolution proteomics. *Nat. Neurosci.*, 19(2), 233-242. doi:10.1038/nn.4198

Seddik, R., Jungblut, S. P., Silander, O. K., Rajalu, M., Fritzius, T., Besseyrias, V., . . . Bettler, B. (2012). Opposite effects of KCTD subunit domains on GABA_B receptor-mediated desensitization. *J. Biol. Chem.*, 287(47), 39869-39877. doi:10.1074/jbc.M112.412767

Sereikaite, V., Fritzius, T., Kasaragod, V. B., Bader, N., Maric, H. M., Schindelin, H., . . . Stromgaard, K. (2019). Targeting the γ-aminobutyric acid type B (GABA_B) receptor complex: development of inhibitors targeting the K⁺ channel tetramerization domain (KCTD) containing proteins/GABA_B receptor protein-protein interaction. *J. Med. Chem.*, 62(19), 8819-8830. doi:10.1021/acs.jmedchem.9b01087

Seutin, V., Massotte, L., Renette, M. F., & Dresse, A. (2001). Evidence for a modulatory role of I_NK on the firing of a subgroup of midbrain dopamine neurons. *Neuroreport*, 12(2), 255-258. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11209930

Shaye, H., Stauch, B., Gati, C., & Cherezov, V. (2021). Molecular mechanisms of metabotropic GABA_B receptor function. *Sci. Adv.*, 7(22). doi:10.1126/sciadv.abg3362
Takao, K., & Miyakawa, T. (2006). Light/dark transition test for mice. *J. Vis. Exp.*, (1), 104. doi:10.3791/104

Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouebe, G., . . . Luscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. *Neuron*, 73(6), 1173-1183. doi:10.1016/j.neuron.2012.02.015

Tovote, P., Fadok, J. P., & Luthi, A. (2015). Neuronal circuits for fear and anxiety. *Nat. Rev. Neurosci.*, 16(6), 317-331. doi:10.1038/nrn3945

Turecek, R., Schwenk, J., Fritzius, T., Ivankova, K., Zolles, G., Adelfinger, L., . . . Bettler, B. (2014). Auxiliary GABA\textsubscript{B} receptor subunits uncouple G protein $\beta\gamma$ subunits from effector channels to induce desensitization. *Neuron*, 82(5), 1032-1044. doi:10.1016/j.neuron.2014.04.015

Turiault, M., Parnaudeau, S., Milet, A., Parlato, R., Rouzeau, J. D., Lazar, M., & Tronche, F. (2007). Analysis of dopamine transporter gene expression pattern -- generation of DAT-iCre transgenic mice. *FEBS J.*, 274(14), 3568-3577. doi:10.1111/j.1742-4658.2007.05886.x

Tye, K. M., Mirzabekov, J. J., Warden, M. R., Ferenczi, E. A., Tsai, H. C., Finkelstein, J., . . . Deisseroth, K. (2013). Dopamine neurons modulate neural encoding and expression of depression-related behaviour. *Nature*, 493(7433), 537-541. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23235822

Ungless, M. A., & Grace, A. A. (2012). Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. *Trends Neurosci.*, 35(7), 422-430. doi:10.1016/j.tins.2012.02.003
Ungless, M. A., Magill, P. J., & Bolam, J. P. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. *Science, 303*(5666), 2040-2042. doi:10.1126/science.1093360

Williams, S. R., & Mitchell, S. J. (2008). Direct measurement of somatic voltage clamp errors in central neurons. *Nat. Neurosci., 11*(7), 790-798. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18552844

Xie, K., Allen, K. L., Kourrich, S., Colon-Saez, J., Thomas, M. J., Wickman, K., & Martemyanov, K. A. (2010). Gβ5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling. *Nat. Neurosci., 13*(6), 661-663. doi:10.1038/nn.2549

Yang, H., de Jong, J. W., Tak, Y., Peck, J., Bateup, H. S., & Lammel, S. (2018). Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. *Neuron, 97*(2), 434-449. doi:10.1016/j.neuron.2017.12.022

Zhao, S., Ting, J. T., Atallah, H. E., Qiu, L., Tan, J., Gloss, B., . . . Feng, G. (2011). Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. *Nat. Methods, 8*(9), 745-752. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21985008

Zheng, S., Abreu, N., Levitz, J., & Kruse, A. C. (2019). Structural basis for KCTD-mediated rapid desensitization of GABA$_B$ signalling. *Nature, 567*(7746), 127-131. doi:10.1038/s41586-019-0990-0
Zolles, G., Wenzel, D., Bildl, W., Schulte, U., Hofmann, A., Muller, C. S., . . . Klocker, N. (2009). Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. *Neuron, 62*(6), 814-825. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19555650

Zuo, H., Glaaser, I., Zhao, Y., Kurinov, I., Mosyak, L., Wang, H., . . . Fan, Q. R. (2019). Structural basis for auxiliary subunit KCTD16 regulation of the GABA_B receptor. *Proc. Natl. Acad. Sci. USA, 116*(17), 8370-8379. doi:10.1073/pnas.1903024116

Zweifel, L. S., Fadok, J. P., Argilli, E., Garelick, M. G., Jones, G. L., Dickerson, T. M., . . . Palmiter, R. D. (2011). Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. *Nat. Neurosci., 14*(5), 620-626. doi:10.1038/nn.2808
Figures legends

Figure 1. KCTD16 mediates GBR/HCN channel complex formation. (A) KCTD16 co-immunoprecipitated HCN2 from brain membranes of WT mice. Immunoprecipitation with KCTD16\(^{-/-}\) brain membranes confirmed specificity of the anti-KCTD16 antibody. (B) Immunoblot showing that GB1a/b and GB2 subunits co-immunoprecipitated HCN2 in the presence of KCTD16, but not in the presence of KCTD8 and -12, from membrane preparations of transfected HEK293 cells. (C) GBRs did not co-immunoprecipitate HCN2 when mutation of Y902 in GB2 prevented binding of KCTD16 to GB2. (D) The H2 domain of KCTD16 co-immunoprecipitated the HCN2 subunit. Mutations: KCTD16\(\Delta\)H2 lacks the H2 domain; KCTD16\(\Delta\)T1 lacks the T1 domain; KCTD16T1, KCTD16H1, KCTD16H2 express the T1, H1 or H2 domains in isolation. (E) KCTD16 co-immunoprecipitated the N-terminal peptide containing amino acid residues 1-215 of HCN2. (F) KCTD16 links the N-terminal domain of HCN2 to the C-terminal domain of GB2. GB2 binds to the T1 domain of KCTD16 (Gassmann & Bettler, 2012). HCN2 binds to the H2 domain of KCTD16. Source data for all Western blots are provided in Figure 1 – source data 1.

Figure 2. Pharmacological blockade of \(I_h\) or lack of KCTD16 reduces \(I_{bac}\) desensitization in DA\(^{VTA}\) neurons. (A) Hyperpolarizing steps from -50 to -120 mV applied via the somatic patch pipette evoked \(I_h\) in DA\(^{VTA}\) neurons. Digital subtraction of currents recorded in the absence (control) and presence of the \(I_h\) blocker zatebradine (zb, 30 \(\mu\)M) revealed the \(I_h\). B Top: \(I_{bac}\) traces in DA\(^{VTA}\) neurons induced by bath application of baclofen (300 \(\mu\)M). The GBR antagonist CGP54626 (CGP, 4 \(\mu\)M) fully blocked \(I_{bac}\). From the holding current (\(I_{hold}\)), the \(I_{bac}\) reached an initial peak (\(I_{\text{max}}\)) and desensitized to a steady-state (\(I_{\text{steady}}\)). Recordings are from WT neurons (n = 9, black), WT neurons in the presence
zatebradine (30 μM, n = 6, blue), \(\text{KCTD16}^- \) neurons (n = 8, red) and \(\text{KCTD12}^- \) neurons (n = 8, orange). Traces with similar \(I_{\text{max}} \) values were selected for comparison. Bottom: \(R_i \) time courses of the \(I_{\text{bac}} \) traces shown above. (C) Micrograph of the WT DAVTA neuron (arrowhead) analyzed in the presence of zatebradine shown in (a), labeled with biocytin (green), stained for TH (red) and a cell nuclei marker (DAPI, blue). The merged image confirms that the recorded neuron is a DAVTA neuron. (D) Summary bar graph of \(I_{\text{bac}} \) desensitization and \(R_i \) recovery during desensitization. WT neurons incubated with zatebradine and \(\text{KCTD16}^- \) neurons exhibited reduced \(I_{\text{bac}} \) desensitization. The \(R_i \) recovery during desensitization was similar for all groups. **p < 0.01; ***p < 0.001; ns, not significant; Kruskall-Wallis test followed by Dunn’s multiple comparison test (compared to WT). Data are presented as mean ± s.e.m., n indicates the number of neurons analyzed. Source data for all plots are provided in Figure 2 – source data 1.

Figure 3. \(I_h \) decreases baclofen-induced hyperpolarization of DAVTA neurons. (A) Representative traces of the baclofen (300 μM) induced-changes in \(V_m \) and \(R_i \) in the presence of tetrodotoxin (TTX, 1 μM) in WT DAVTA neurons. \(V_m \) values sampled every 5 seconds during baclofen application. The \(V_m \) hyperpolarized from \(V_{m\text{rest}} \) to \(V_{m\text{max}} \) and gradually repolarized to \(V_{m\text{steady}} \). Application of CGP54626 (4 μM) returned the \(V_m \) to \(V_{m\text{rest}} \). For each recorded sweep (1 second duration), a hyperpolarizing current step of 10 pA and 200 ms duration was injected via the recording pipette to measure the \(R_i \). (B) Recordings from WT DAVTA neurons in the presence of the \(I_h \) blocker zatebradine (zb, 30 μM). (C) Baclofen-induced hyperpolarization was significantly increased in the presence of zatebradine (n = 6 neurons) compared to control (n = 10 neurons). (D) Conductance values for individual neurons before (\(g_{\text{rest}} = 1/R_{i\text{rest}} \)) and at steady-state of GBR activity (\(g_{\text{steady}} = 1/R_{i\text{steady}} \)) for each experimental group. Averages of the baclofen-induced
conductance increase for each group are shown in the bar graph on the right. ***p < 0.001; unpaired Welch’s t-test. Data are represented as mean ± s.e.m. (E) Example trace of I_h evoked in DA$^{\text{VTA}}$ neurons by a voltage command from -60 to -75 mV during 5 minutes. Fitting the activation phase to a double exponential function is shown in red. The dashed line indicates the base line. (F) Summary box plots (interquartile range and median) of the time constants obtained for I_h activation. Whiskers denote the minimum and maximum values (n = 8 neurons). Source data for all plots are provided in Figure 3 – source data 1.

Figure 4. Pharmacological blockade of I_h or lack of KCTD16 prolongs IPSP duration in DA$^{\text{VTA}}$ neurons. (A) Exposure of VTA slices from WT::ChR2$^{\text{VGAT}}$ mice to blue light induced firing activity in GABA$^{\text{VTA}}$ neurons. (B) Top: Examples of averaged IPSPs (5 consecutive sweeps) of WT::ChR2$^{\text{VGAT}}$ (black), zatebradine treated (zb, 30 μM) WT::ChR2$^{\text{VGAT}}$ (blue) and KCTD16$^{-/-}$::ChR2$^{\text{VGAT}}$ (red) DA$^{\text{VTA}}$ neurons evoked by optogenetic stimulation for 1 sec. Spontaneous firing activity in DA$^{\text{VTA}}$ neurons was prevented by current injection via the recording pipette to a V$_{\text{rest}}$ of ~-55 mV. Nonetheless, action potentials were sometimes triggered. The arrow depicts the depolarizing rebound in WT neurons caused by I_h activation. Bottom: Same traces as above scaled to the initial IPSP amplitude. (C) Quantification of IPSP duration and amplitude for each experimental group. Data are represented as mean ± s.e.m. Neurons analyzed per group: WT, n = 9; KCTD16$^{-/-}$, n = 8; WT+zb; n = 6. *p < 0.05, **p < 0.01 (Welch’s ANOVA, F$_{2,7.84}$ = 32.53). Source data for all plots are provided in Figure 4 – source data 1.
Figure 5. *KCTD16^{−/−}* mice show increased inhibition of *DA^{VTA}* neuron firing in response to optogenetic stimulation of *GABA^{VTA}* neurons. (A) Single-unit recordings were performed in anesthetized *KCTD16^{−/−}·ChR2^{VGAT}* and WT·ChR2^{VGAT} mice. Optogenetic stimulation was for 1 sec at 40Hz. (B) Example trace, raster plot and action potential waveform of the *in vivo* activity of a WT GABA^{VTA} neuron before, during and after optogenetic stimulation. (C) Optogenetic stimulation of GABAergic inputs to DA^{VTA} neurons induced a stronger inhibition of DA^{VTA} neuron firing in *KCTD16^{−/−}* (red) than in WT (black) mice. (D) The firing rate ratio (firing frequency during the 1 sec light stimulation divided by firing frequency 1 sec before) was significantly lower in DA^{VTA} neurons of *KCTD16^{−/−}* than WT mice (*p < 0.05, unpaired t-test). (E) The latency to fire an action potential (AP) after light-induced inhibition was increased in *KCTD16^{−/−}* mice (*p < 0.05, unpaired t-test). (F,G) The full width at half maximum (FWHM) of action potential (F) and the spontaneous firing rate (G) were not significantly different between *KCTD16^{−/−}* and WT DA^{VTA} neurons but differed from those of GABA^{VTA} neurons. DA^{VTA} neurons: WT, n = 16; *KCTD16^{−/−}*; n = 12. GABA^{VTA} neurons: WT, n = 11; *KCTD16^{−/−}*; n = 12. FWHM: ***p < 0.001 (ANOVA, F_{3, 47} = 15.90); Firing rate: *p < 0.05 (ANOVA, F_{3, 47} = 2.92). Data are presented as mean ± s.e.m., n indicates the number of neurons analyzed. Source data for all plots are provided in Figure 5 – source data 1.

Figure 6. *KCTD16^{−/−}* mice exhibit an anxiety-like phenotype in response to mild aversive stimuli. (A) Representative tracking traces of a WT (black) and a *KCTD16^{−/−}* (red) mouse in the light/dark chamber test. (B) *KCTD16^{−/−}* mice covered significantly less distance than WT mice (n = 6, **p < 0.01, unpaired t-test). (C) *KCTD16^{−/−}* mice spent significantly less time in the light chamber resulting in a increased Δtime (time spent in dark – time spent in light chamber) compared to WT (***p < 0.01, unpaired t-test).
mice also made less entries to the light chamber than WT mice (*p < 0.05, unpaired t-test).

(D) Experimental design of the mild fear-conditioning paradigm. The training session
consisted of pairing a 1 Hz tone for 25 sec with a 2 sec foot shock. Five pairings were
randomly presented during a 10 min session. During the test session 24 hrs later, the
freezing behavior was assessed in a novel environment, in which five tones were
presented randomly in the absence of foot shock. (E) KCTD16−/− and WT mice showed no
significant difference in baseline freezing in the new environment (n = 6, p = 0.214,
unpaired t-test). (F) KCTD16−/− mice exhibited more freezing episodes and froze
significantly more than WT mice in the new environment throughout the session after
presentation of the first conditioned auditory stimulus (*p < 0.05, **p < 0.01, unpaired t-

(G) Representative tracking traces of a WT (left) and a KCTD16−/− (right) mouse in the elevated zero maze. (H) WT and KCTD16−/− mice spent significant more time in the
closed compared to the open arms, showing that both genotypes exhibit anxiety-like
behavior in the maze (n = 6, ***p < 0.001, 2-way RM ANOVA F1,10 = 372.3, followed by
Bonferroni’s multiple comparisons test). (I) KCTD16−/− mice spent significantly less time in
the open arms of the maze than WT mice, indicating that KCTD16−/− mice exhibit increased

anxiety-like behavior (*p < 0.05 unpaired t-test). (J) KCTD16−/− mice made fewer entries to
both the open and closed arms of the maze compared to WT mice (*p < 0.05, 2-way RM
ANOVA F1,10 = 19.29, followed by a Bonferroni’s multiple comparisons test). (K)
Representative tracking traces of a WT (left) and a KCTD16−/− (right) mouse in the elevated
plus maze. (L) WT and KCTD16−/− mice spent significantly more time in the closed
compared to the open arms of the maze (n = 6, ***p < 0.001, 2-way RM ANOVA F1,10 = 400.8, followed by a Bonferroni’s multiple comparisons test). (M) KCTD16−/− mice spent
significantly less time in the open arms than WT mice (*p < 0.05 unpaired t-test). (N)
KCTD16−/− mice made fewer entries to both the open and closed arms of the maze
oped to WT mice, which however did not reach statistical significance. (2-way RM
ANOVA $F_{1, 10} = 2.701$). Data are represented as mean ± s.e.m., n indicates the number of mice tested. Source data for all plots are provided in Figure 6 – source data 1.

Figure 7. DA$^{\text{VTA}}$ neuron-specific *KCTD16* ablation increased anxiety-like behavior.

(A) Experimental design for Cre-dependent *KCTD16* gene editing in the VTA using CRISPR/Cas9. DA$^{\text{VTA}}$ neuron-specific *KCTD16*−/− (DA$^{\text{VTA}}$-KCTD16−/−) mice were generated by intra-VTA injection of AAV-sgKCTD16-mCherry into LSL-Cas9/EGFP::DAT-Cre mice. Control mice (Ctl) were generated by AAV-sgKCTD16-mCherry injection into LSL-Cas9/EGFP mice lacking the DAT-Cre driver. (B) Viral spread (mCherry fluorescence in magenta) was assessed by confocal imaging of ventral midbrain slices counterstained for TH (green). SNc, substantia nigra pars compacta; SNr substantia nigra pars reticulate; vertical line marks the midline. (C) Representative tracking traces of a control (Ctl) and a DA$^{\text{VTA}}$ neuron-specific *KCTD16*−/− (DA$^{\text{VTA}}$-KCTD16−/−) mouse in the elevated zero maze. (D) DA$^{\text{VTA}}$-KCTD16−/− mice ($n = 8$) spent significant less time in the open arms of the maze than Ctl mice ($n = 7$), indicating an increased anxiety-like behavior in DA$^{\text{VTA}}$-KCTD16−/− mice (**$p < 0.01$, unpaired t-test). (E) The number of entries to the open and closed arms of the maze was not significantly different between DA$^{\text{VTA}}$-KCTD16−/− and Ctl mice (ns, 2-way RM ANOVA $F_{1, 26} = 0.042$, followed by a Bonferroni’s multiple comparisons test). (F) Representative tracking traces of a Ctl and a DA$^{\text{VTA}}$-KCTD16−/− mouse in the elevated plus maze. (G) DA$^{\text{VTA}}$-KCTD16−/− mice ($n = 8$) spent significantly less time in the open arms of the elevated plus maze than Ctl mice ($n = 7$) (*$p < 0.05$ unpaired t-test). (H) DA$^{\text{VTA}}$-KCTD16−/− mice made significantly fewer entries to the open arms compared to the closed arm of the maze (2-way RM ANOVA $F_{1, 26} = 12.36$, followed by a Bonferroni’s multiple comparisons test, ***$p < 0.001$). Data are represented as mean ± s.e.m., n indicates the number of mice tested. (I) *In vivo* editing of *KCTD16* in DA$^{\text{VTA}}$-KCTD16−/− mice. Amplicon
deep sequencing of genomic DNA extracted from the VTA of DAVTA-\textit{KCTD16}-/- mice identified insertions and deletions (indels) near the predicted Cas9 cleavage sites. The most prevalent reads from two DAVTA-\textit{KCTD16}-/- mice are shown below the sgRNA sequences (5’ to 3’) with corresponding insertions (bold letter) and deletions (dashes). Arrowheads mark the predicted Cas9 cleavage sites. The percentage of frameshift (fs) and non-frameshift (nfs) indel mutations is indicated at the bottom. PAM, protospacer adjacent motif. Source data for all plots are provided in Figure 7 – source data 1.

Figure 8. Intra-VTA infusion of zatebradine in WT mice recapitulates the anxiety phenotype of \textit{KCTD16}-/- mice. (A) Scheme depicting behavioral testing of WT mice after saline and zatebradine (10 μM) infusion via a cannula implanted above the VTA. Four WT mice received first saline and then zatebradine. The sequence of the infusions was reversed in four additional mice. The behavioral results of the eight mice were pooled. The infusion sites were confirmed on VTA slices after infusion of fluorescent beads at the end of the experiments. (B) Example of post-hoc confocal image showing green fluorescent beads at the injection site in the VTA, counterstained for TH (red). SN, substantia nigra. Scale bar 500 μm. (C) Example track plots of mice infused with saline (left) or zatebradine (right) in the elevated zero maze. (D) Intra-VTA infusion of zatebradine significantly decreased the time spent in the open arms of the elevated zero maze (n = 8 mice, *p < 0.05, paired t-test). (E) Example track plots of mice infused with saline (left) or zatebradine (right) in the elevated plus maze. (F) Intra-VTA infusion of zatebradine significantly decreased the time spent in the open arms of the elevated plus maze (n = 8 mice, *p < 0.05 paired t-test). Data are represented as mean ± s.e.m., n indicates the number of mice tested. Source data for all plots are provided in Figure 8 – source data 1.
Legends for figure supplements

Figure 1 – figure supplement 1. Specificity of the KCTD16/HCN channel interaction. (A) KCTD16 co-immunoprecipitated HCN2 in the presence and absence of GBRs from membrane preparations of transfected HEK293 cells. (B) KCTD16 co-immunoprecipitated HCN2 and HCN3 but not HCN1 or HCN4. KCTD12 did not co-immunoprecipitate HCN subunits. (C) Left: Immunoblot of membrane preparations of the VTA, cortex, hippocampus and cerebellum demonstrating HCN2, KCTD16 (lower band), TH, GB1a and GB1b expression in the VTA. β-tubulin III served as a loading control. Right: All HCN subunits are expressed in the VTA. (D) Immunoblot of similar amounts of HCN subunits (same amounts of transfected cDNA) expressed in HEK293 cells showed subunit-specificity of the HCN antibodies. Source data for all Western blots are provided in Figure 1 – source data 1.

Figure 2 – figure supplement 1. Incomplete space-clamp of DAVTA neurons. (A) Reconstruction of a biocytin-filled DAVTA neuron showing the positioning of the somatic voltage-clamp (VC) and dendritic current-clamp recording pipettes (CC). (B) Top: VC recording of I_{bac} at the soma in response to baclofen application (300 μM). The I_{bac} was inhibited by CGP54626 (CGP, 4 μM). Middle: R_i measured at the soma. Bottom: CC recording showing membrane hyperpolarization in the dendrite. (C) Hyperpolarization for each dendritic recording ($n=7$ neurons) as a function of the distance between VC and CC pipettes (linear regression fitted to the data; $p<0.05$; f-test of overall significance). The red circle depicts the experiment shown in (B). Source data for all plots are provided in Figure 2 – source data 1.
Figure 3 – figure supplement 1. GBR activity does not allosterically alter biophysical properties of receptor-associated HCN channels. (A) I_h recorded from DAVTA neurons in the presence of 300 µM Ba2+ to block Kir3 channels before (black traces) and during baclofen application (300 µM; red traces). Baclofen did not significant change the I_h voltage-dependency (leak subtracted) ($p = 0.33$, ESS F-test $F_{4, 72} = 1.17$, $n = 5$ neurons), (B) BRET experiments in transfected CHO. cells. BRET titration curves using a fixed amount of Rluc-GB1b and increasing amounts of YFP-HCN2 were performed in the absence (black) or in the presence (red) of baclofen (100 µM). No specific BRET was observed in control cells that were not transfected with KCTD16. Bar graph shows the Bmax BRET values in the presence and absence of KCTD16 (two-way ANOVA $F_{1, 16} = 79.55$ followed by Tukey’s multiple comparison; ***$p < 0.001$; ns, not significant; $n = 5$ independent experiments). Data are represented as mean ± s.e.m. Source data for all plots are provided in Figure 3 – source data 1.

Figure 6 – figure supplement 1. KCTD16-/- mice exhibit normal locomotor activity. (A) Example track plots of spontaneous locomotion in an open rectangular arena of a WT (left) and a KCTD16-/- (right) mouse, color-coded for speed. (B) Example traces of decomposed locomotion bouts for WT (left) and KCTD16-/- (right) mice, color-coded for single bouts, aligned to the start. (C-G) No differences in the total distance traveled (c), the number of bouts (d), bout length (e), the speed of travel (f) or the duration of each bout (g) were found between WT and KCTD16-/- mice ($n = 6$ mice per group). Data are represented as mean ± s.e.m., n indicates the number of mice tested. Source data for all plots are provided in Figure 6 – source data 1.
Figure 6 – figure supplement 2. KCTD16−/− mice exhibit an anxious phenotype in the elevated zero and plus mazes. (A) WT and KCTD16−/− mice travelled significantly larger distances in the closed sections of the elevated zero maze (ANOVA, F1,10 = 80.11). (B) WT mice travelled at higher speed in the open sections of the elevated zero maze than KCTD16−/− mice (ANOVA, F1,10 = 8.539). (C) WT and KCTD16−/− mice travelled larger distances in the closed sections of the elevated plus maze (F1,10 = 29.6). (D) WT mice travelled at higher speed in the open sections of the elevated plus maze than KCTD16−/− mice (F1,10 = 13.59). n = 6 mice per group. Bonferroni’s multiple comparison test was used for post-hoc analysis: *p<0.05, **p<0.01, ***p<0.001. Data are represented as mean ± s.e.m., n indicates the number of mice tested. Source data for all plots are provided in Figure 6 – source data 1.

Figure 7 – figure supplement 1. DA^VTA neuron-specific KCTD16 ablation by AAV-mediated CRISPR/Cas9 editing. (A) In vitro validation of the KCTD16-targeting sgRNAs. In the presence of the sgRNAs, incubation with recombinant Cas9 results in the specific cleavage of PCR products (amplicons) containing the KCTD16 target sites. Uncut amplicons and cleavage products were resolved on 2.5% agarose gels (left). The sequence of the target sites and the PCR primers used to generate the amplicons are shown to the right. (B) Cre-dependent expression of Cas9 in DA neurons in LSL-Cas9/EGFP::DAT-Cre mice. PCR of genomic DNA extracted from midbrain slices reveals deletion of the STOP-cassette, flanked by two loxP sites, in the presence of the DAT-Cre driver (right). The positions of the PCR primers (P1, P2) and the loxP sites (open triangles) are indicated in the scheme to the left. (C) Representative immunofluorescence images of the VTA of DA^VTA-KCTD16−/− mice. Cre-mediated activation of Cas9 in TH-positive neurons (cyan) is revealed by the EGFP reporter (green). AAV8-mediated transduction of the
KCTD16-targeting sgRNAs is visualized by mCherry fluorescence (magenta). (D) Representative immunofluorescence images of the VTA of Ctl mice. Note the absence of Cas9/EGFP expression due to the presence of the STOP cassette in the LSL-Cas9/EGFP locus. mCherry fluorescence reveals AAV8 transduction of TH-positive neurons. Scale bars, 25 μm.
Perez-Garci et al. Figure 1
A. biocytin TH DAPI merged 20 µm

B. Ri recovery (%)

WT + zb
KCTD16-/-
KCTD12-/-

Ri (MΩ)

Time (min)

WT
KCTD16-/-
KCTD12-/-
Perez-Garci et al. Figure 2

0
20
40
60
80
100

Baclofen
CGP

I_{max}
I_{steady}
I_{hold}

Time (min)

WT
KCTD16-/-
KCTD12-/-
Perez-Garci et al. Figure 2

0
20
40
60
80
100

Baclofen
CGP

R_{max}
R_{steady}

Time (min)

WT
KCTD16-/-
KCTD12-/-
Perez-Garci et al. Figure 2

0
20
40
60
80
100

Baclofen
CGP

C. Perez-Garci et al. Figure 2

D. ns

WT
WT + zb
KCTD16-/-
KCTD12-/-
Perez-Garci et al. Figure 2

0
20
40
60
80
100

Baclofen
CGP

R_{max} recovery (%)
Perez-Garcı et al. Figure 3
Perez-Garci et al. Figure 4

5 mV
1 sec
B
1 sec
-60 mV
A
Light
GABAVTA
DAVTA
GABAVTA
Light
20 mV
WT::ChR2VGAT DAVTA
WT::ChR2VGAT DAVTA + zb
KCTD16-/-::ChR2VGAT DAVTA

C
IPSP duration (sec)
***WT
WT + zb
0
5
10
15
IPSP amplitude (mV)
DAVTA
0
5
10
15
20
A

KCTD16^{+/−}::ChR2^{VGAT} or WT::ChR2^{VGAT}

VTA single unit extracellular recording

Light λ 473 nm

B

WT::ChR2^{VGAT} GABA^{VTA}

C

WT::ChR2^{VGAT} DAV^{VTA}

D

Light-induced DAV^{VTA} firing rate ratio

E

Latency to first AP (ms)

F

FWHM (ms)

G

Firing rate (Hz)

Perez-Garcia et al. Figure 5
Figure 7

(A) Schematic diagram showing the generation of LSL-Cas9/EGFP::DAT-Cre mice by crossing LSL-Cas9/EGFP with DAT-Cre mice. The Cre-loxP recombination system is used to delete the EGFP reporter in D4 neurons, resulting in DAVTA-KCTD16− mice.

(B) Confocal images showing the expression of mCherry in VTA neurons after the injection of AAV8-sgKCTD16-mCherry into VTA of DAVTA-KCTD16− and control (Ctl) mice. The images show the expression of mCherry in VTA neurons, specifically in SNc and SNr regions.

(C) Graph showing the time spent in open arms (in %) and number of entries for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in the time spent in open arms and an increase in the number of entries for DAVTA-KCTD16− mice compared to control mice.

(D) Graph showing the speed (in m/sec) for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in speed for DAVTA-KCTD16− mice compared to control mice.

(E) Graph showing the time spent in open arms (in %) and number of entries for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in the time spent in open arms and an increase in the number of entries for DAVTA-KCTD16− mice compared to control mice.

(F) Graph showing the speed (in m/sec) for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in speed for DAVTA-KCTD16− mice compared to control mice.

(G) Graph showing the time spent in open arms (in %) and number of entries for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in the time spent in open arms and an increase in the number of entries for DAVTA-KCTD16− mice compared to control mice.

(H) Graph showing the speed (in m/sec) for control (Ctl) and DAVTA-KCTD16− mice. The data shows a significant decrease in speed for DAVTA-KCTD16− mice compared to control mice.

(I) Indel mutations (%) for sgKCTD16-1 and sgKCTD16-2 in DAVTA-KCTD16− mice. The data shows a higher percentage of indel mutations for sgKCTD16-1 and sgKCTD16-2 in DAVTA-KCTD16− mice compared to control mice.

Perez-Garci, Rizzi et al. Figure 7
Perez-Garci et al. Figure 6 - figure supplement 1
Perez-Garcia et al. Figure 6 - figure supplement 2
A

Perez-Garci et al. Figure 7 - figure supplement 1
– 500 bp
– 300 bp
– 200 bp
– 100 bp
sgKCTD16-1
amplicon (225 bp)

sgKCTD16-2
amplicon (288 bp)

Cas9 + + + + +
sgRNA – + – + M

B

LSL-Cas9/EGFP::DAT-Cre

1161 bp

Cre-dependent STOP excision

DAT-Cre

LSL-Cas9/EGFP

– 1000 bp
– 500 bp
– 300 bp

P1

P2

EGFP

Cas9

STOP

P1

P2

290 bp

C

DA\(^{+/−}\)-KCTD16\(^{−/−}\)
LSL-Cas9/EGFP::DAT-Cre
+ AAV8-sgKCTD16-mCherry

TH

mCherry

EGFP

merge

D

Ctl

LSL-Cas9/EGFP
+ AAV8-sgKCTD16-mCherry

TH

mCherry

EGFP

merge

Perez-Garci et al. Figure 7 - figure supplement 1

sgRNA	target sequence incl. PAM (5' to 3')
sgKCTD16-1	GCTTTGCTTGACATCCTCGGGGG
sgKCTD16-2	TTCCGCAAACAAAAATCCGGGG

primer	sequence (5' to 3')
KCTD16-1-F	TCACCTTCCAGAAAAAGGAAG
KCTD16-1-R	GATCCCCGTAACCAACAG
KCTD16-2-F	TGGGGTTTATTACTTG
KCTD16-2-R	AAAAGATGCTGTAACCGAGGAG