Supplementary Material

Tris(2-Pyridylmethylamine)V(O)\textsubscript{2} complexes as counter ions of diprotonated decavanadate anion: Potential antineoplastic activity

Nidia D. Corona-Motolinia1, Beatriz Martínez-Valencia1, Lisset Noriega2, Brenda L. Sánchez-Gaytán1, Francisco J. Meléndez-Bustamante2, Amalia García-García3, Duane Choquesillo-Lazarte4, Antonio Rodríguez-Diéguez3, María Eugenia Castro1* and Enrique González-Vergara1*

1Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur and Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, Mexico

2Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur and Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, Mexico

3Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva S/N, 18071 Granada, Spain

4Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain

Figure S1. FTIR spectrum of Compound 1.
Figure S2A and S2B. 51VNMR spectrum of Compound 1
Table S1. Bond distances for [VO$_2$(tpma)$_2$][H$_2$V$_{10}$O$_{28}$]$^-$•4H$_2$O (1).
Table S2. Bond valence calculations for oxygen atoms in [H$_2$V$_{10}$O$_{28}$]$^-$ for Compound 1.
Checkcif of the deposited structure.
Figure S1. FTIR Spectrum of Compound 1 from 1000-400 cm\(^{-1}\) in the region of decavanadate vibrations V=O, and V-O-V.
Figure S2A. ^{51}V NMR of Compound 1 dissolved in D$_2$O (pH 6.8) at 25°C. Typical signals of decavanadate and a peak at -509 that could be assigned to the [VO$_2$(tpma)] complex.

Figure S2B. After one week ^{51}V NMR of Compound 1 dissolved in D2O (pH 6.8) at 25°C. Typical signals of decavanadate have decreased, the peaks of V1 and V4 have increased and a peak at -509 that could be assigned to the [VO$_2$(tpma)] complex remained.
Table S1. Bond distances for [VO$_2$(tpma)]$_4$[H$_2$V$_{10}$O$_{28}$]·4H$_2$O (1)

Bond	Length (Å)	Bond	Length (Å)
V1-V2	3.0983(6)	N3A-C12A	1.342(4)
V1-V3(i)	3.0171(6)	N4A-C14A	1.335(4)
V1-V4	3.1053(6)	N4A-C18A	1.346(4)
V2-V5	3.0586(6)	C1A-C2A	1.487(5)
V3-V4	3.0939(7)	C2A-C3A	1.387(5)
V3-V5	3.0988(6)	C3A-C4A	1.372(6)
V4-V5	3.0587(6)	C4A-C5A	1.368(7)
V1-O1	2.2268(17)	C5A-C6A	1.370(6)
V1-O2	2.0670(17)	C7A-C8A	1.490(5)
V1-O3	1.7576(18)	C8A-C9A	1.382(5)
V1-O6	1.6111(18)	C9A-C10A	1.379(6)
V1-O10	1.9463(18)	C10A-C11A	1.359(7)
V1-O14	1.9203(17)	C11A-C12A	1.386(6)
V2-O1(i)	2.1390(16)	C13A-C14A	1.493(4)
V2-O1	2.1147(16)	C14A-C15A	1.389(4)
V2-O2	1.9162(17)	C15A-C16A	1.367(5)
V2-O5	1.6873(17)	C16A-C17A	1.370(6)
V2-O9	1.6876(17)	C17A-C18A	1.371(5)
V2-O14(i)	1.9465(17)	V1B-O1B	1.630(2)
V3-O1	2.2884(17)	V1B-O2B	1.624(2)
V3-O2(i)	1.9343(17)	V1B-N1B	2.258(2)
V3-O4	1.7987(18)	V1B-N2B	2.111(3)
V3-O8	1.6063(18)	V1B-N3B	2.277(2)
V3-O12	1.9045(17)	V1B-N4B	2.123(2)
V3-O14(i)	2.0186(17)	N1B-C1B	1.490(4)
V4-O1	2.3271(16)	N1B-C7B	1.485(4)
V4-O3	1.9436(18)	N1B-C13B	1.486(4)
V4-O4	1.8657(18)	N2B-C2B	1.354(4)
V4-O5(i)	2.0867(18)	N2B-C6B	1.342(4)
V4-O7	1.6099(19)	N3B-C8B	1.340(3)
V4-O11	1.7798(18)	N3B-C12B	1.341(4)
V5-O1	2.3064(16)	N4B-C14B	1.351(3)
V5-O9	2.0398(18)	N4B-C18B	1.339(4)
V5-O10	1.9998(18)	C1B-C2B	1.495(4)
V5-O11	1.8649(18)	C2B-C3A	1.383(4)
V5-O12	1.7716(18)	C3B-C4B	1.375(5)
V5-O13	1.6033(19)	C4B-C5B	1.379(5)
V1A-O1A	1.631(2)	C5B-C6B	1.377(5)
V1A-O2A	1.624(2)	C7B-C8B	1.491(4)
V1A-N1A	2.250(2)	C8B-C9B	1.382(4)
V1A-N2A	2.090(3)	C9B-C10B	1.373(5)
V-O Bond	V-O length (R)	$s = (R/1.791)^{-0.1}$	Σs
----------	----------------	-------------------------	-----------
V1-O1	2.2268	0.32932	1.98708
V2-O1(i)	2.1390	0.40431	
V2-O1	2.1147	0.42857	
V3-O1	2.2884	0.28653	
V4-O1	2.3271	0.26305	
V5-O1	2.3064	0.27531	
V1-O2	2.0670	0.48145	
V2-O2	1.9162	0.70849	1.86528
V3-O2(i)	1.9343	0.67533	
V1-O3	1.7576	1.10077	1.75978
V4-O3	1.9436	0.65901	
V3-O4	1.7987	0.97836	1.79024
V4-O4	1.8657	0.81188	
V2-O5	1.6873	1.35552	1.81424
V4-O5(i)	2.0867	0.45871	
V1-O6	1.6111	1.71578	1.71578
V4-O7	1.6099	1.72232	1.72232
V3-O8	1.6063	1.74209	1.74209
V2-O9	1.6876	1.35429	1.86939
V5-O9	2.0398	0.51509	
V1-O10	1.9463	0.65436	1.22421
V5-O10	1.9998	0.56984	
V4-O11	1.7798	1.03251	1.84617
V5-O11	1.8649	0.81366	
V3-O12	1.9045	0.73098	1.78809
V5-O12	1.7716	1.05712	
V5-O13	1.6033	1.75878	1.75878
V1-O14	1.9203	0.70082	1.89813
V2-O14(i)	1.9465	0.65402	
V3-O14(i)	2.0186	0.54329	

Symmetry codes: (i) 1-x, -y, 1-z
Supplementary Material

1. **checkCIF/PLATON report**

1.1.1 **Structure factors have been supplied for datablock(s) decatpa**

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors were found.

Datablock: decatpa

Bond precision:	C-C = 0.0053 Å	Wavelength=0.71073

Cell:	a=11.6736(10)	b=23.7172(17)	c=16.5914(12)
Temperature:	300 K		
Volume	Calculated	4570.1(6)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	H2 O28 V10, 4(C18 H18 N4 O2 H2 O28 V10, 4(C18 H18 N4O2	V), 4(H2 O)	
Sum formula	C72 H82 N16 O40 V14	C72 H82 N16 O40 V14	V), 4(H2 O)
Mr	2524.70	2524.69	
Dx, g cm⁻³	1.835	1.835	
Z	2	2	
Mu (mm⁻¹)	1.457	1.457	
F000	2536.0	2536.0	
F000’	2545.51		
h,k,lmax	15,32,22	15,32,22	
Nref	11920	11854	
Tmin,Tmax	0.840, 0.864	0.660, 0.746	
Tmin’	0.840		

Correction method=# Reported T Limits: Tmin=0.660 Tmax=0.746 AbsCorr = NONE
Data completeness = 0.994

Theta(max) = 28.797

R(reflections) = 0.0393 (8572)

wR2(reflections) = 0.0917 (11854)

S = 1.049

Npar = 640
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C
- PLAT260_ALERT_2_C: Large Average Ueq of Residue Including O2W 0.170 Check
- PLAT355_ALERT_3_C: Long O-H (X0.82,N0.98A) O10 - H10 . 1.05 Ang.
- PLAT910_ALERT_3_C: Missing # of FCF Reflections Below Theta(Min). 5 Note
- PLAT911_ALERT_3_C: Missing FCF Refl Between Thmin & STh/L= 0.600 6 Report
- PLAT976_ALERT_2_C: Check Calcd Resid. Dens. O2W 0.57A From O2W -0.51 eA-3
- PLAT977_ALERT_2_C: Check Calcd Resid. Dens. O2W 0.83A From O2W -0.50 eA-3

Alert level G
- PLAT007_ALERT_5_G: Number of Unrefined Donor-H Atoms 5 Report
- PLAT083_ALERT_2_G: SHEXL Second Parameter in WGHT Unusually Large 6.40 Why ?
- PLAT720_ALERT_4_G: Number of Unusual/Non-Standard Labels 12 Note
- PLAT764_ALERT_4_G: Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
- PLAT794_ALERT_5_G: Tentative Bond Valency for V1 (V) . 5.03 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V1A (V) . 5.36 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V1B (V) . 5.28 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V2 (V) . 4.98 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V3 (V) . 5.00 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V4 (V) . 4.98 Info
- PLAT794_ALERT_5_G: Tentative Bond Valency for V5 (V) . 5.02 Info
- PLAT883_ALERT_1_G: No Info/Value for _atom_sites_solution_primary . Please Do !
- PLAT912_ALERT_4_G: Missing # of FCF Reflections Above STh/L= 0.600 56 Note
- PLAT933_ALERT_2_G: Number of OMIT Records in Embedded .res File ... 1 Note
- PLAT978_ALERT_2_G: Number C-C Bonds with Positive Residual Density. 1 Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
15 ALERT level G = General information/check it is not something unexpected

1 ALERT type 1: CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2: Indicator that the structure model may be wrong or deficient
3 ALERT type 3: Indicator that the structure quality may be low
3 ALERT type 4: Improvement, methodology, query or suggestion
8 ALERT type 5: Informative message, check

Validation response form

1.1.2 Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form _vrf_PLAT260_decatpa
```
PROBLEM: Large Average Ueq of Residue Including O2W 0.170 Check
RESPONSE: ...
_vrf_PLAT355_decatpa

PROBLEM: Long O·H (X0.82, N0.98A) O10 - H10 . 1.05 Ang.
RESPONSE: ...

_vrf_PLAT910_decatpa

PROBLEM: Missing # of FCF Reflection(s) Below Theta(Min). 5 Note
RESPONSE: ...

_vrf_PLAT911_decatpa

PROBLEM: Missing FCF Refl Between Thmin & STh/L= 0.600 6 Report
RESPONSE: ...

_vrf_PLAT976_decatpa

PROBLEM: Check Calcd Resid. Dens. 0.57A From O2W -0.51 eA-3
RESPONSE: ...

_vrf_PLAT977_decatpa

PROBLEM: Check Negative Difference Density on H2WB -0.50 eA-3
RESPONSE: ...

end Validation Reply Form
1.1.3 It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

1.2 Publication of your CIF in other journals

1.2.1 Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/07/2021; check.def file version of 13/07/2021
Datablock decatpo - ellipsoid plot

Prob = 50
Temp = 300

PLATON-Sep 28 02:19:12 2021 - (130721)

Z 162 decatpo P 1 21/c 1 R = 0.04 RES= 0 -37 X