NUTS AND BOLTS

A modular map of Bradykinin-mediated inflammatory signaling network

D. A. B. Rex¹ · K. Deepak¹ · Neelanchal Vaid¹ · Shobha Dagamajalu¹ · Richard Kumaran Kandasamy²,³ · Trude Helen Flo² · T. S. Keshava Prasad¹

Received: 8 August 2021 / Accepted: 3 October 2021 / Published online: 29 October 2021
© The International CCN Society 2021

Abstract
Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαi1, Gαq/Gα11, Gα11, and Gβ1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca²⁺ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132. The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.

Keywords Bradykinin storm · Post-translational modifications · Protein–protein interactions · Signaling pathways

Abbreviations
BK Bradykinin
KKS Kallikrein-kinin system
RAS Renin-angiotensin system
B1R Bradykinin receptor B1
B2R Bradykinin receptor B2
PK Plasma kallikrein
GPCR G-protein coupled receptor
PIP2 Phosphatidylinositol 4, 5-bisphosphate
ACE Angiotensin-converting enzyme
NO Nitric oxide

Shobha Dagamajalu
shobha_d@yenepoya.edu.in

T. S. Keshava Prasad
keshav@yenepoya.edu.in

D. A. B. Rex
rexprem@yenepoya.edu.in

K. Deepak
news27deepak@gmail.com

Neelanchal Vaid
vneelanchal@gmail.com

Richard Kumaran Kandasamy
richard.k.kandasamy@ntnu.no

Trude Helen Flo
trude.flo@ntnu.no

¹ Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
² Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
³ College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
Introduction

Bradykinin is a potent, short-lived vasoactive peptide, which acts as an inflammatory mediator. It is a constituent of the kallikrein-kinin system (KKS). Kinins are released from high molecular weight kininogens (HMWK) and low molecular weight kininogens (LMWK) by the action of plasma kallikrein (PK) or tissue kallikrein (TK). HMWK and LMWK are the two components of KKS and play a major role in the synthesis of bradykinin (Leeb-Lundberg et al. 2005; Vandell et al. 2008; Hofman et al. 2016a, b; Nokkari et al. 2018). The LMWK is cleaved by tissue kallikrein into a 10-amino-acid peptide, lysyl-bradykinin (kallidin), with a sequence Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (Kaplan et al. 2002). The action of a plasma amino-peptidase on kallidin cleaves the N-terminal Lys and liberates bradykinin as a 9-amino-acid peptide. The other arm of the cascade comprises factor XII, an initiating protein that binds to charged surface macromolecules and forms factor XIIa, which converts prekallikrein into active plasma kallikrein. Further, HMWK is cleaved by plasma kallikrein into nonapeptide bradykinin (Kaplan et al. 2002; Kenniston et al. 2014). Degradation of bradykinin occurs by the action of kininase I and kininase II enzymes. Kininase I, also known as plasma carboxypeptidase, removes the C-terminal Arg from bradykinin and kallidin to form Des-Arg9-bradykinin and Des-Arg10-kallidin, respectively. Kininase II is similar to angiotensin-converting enzyme (ACE) in function and metabolizes bradykinin into two C-terminal dipeptides and a heptapeptide (Kaplan et al. 2002).

Bradykinin is released in pathological conditions such as trauma and inflammation, which binds to its kinin receptors. It is encoded by exon 10 of the kininogen gene located on chromosome 3 (3q26) in humans (Fong et al. 1991). Bradykinin activates several second messenger systems, thereby regulating blood–brain barrier permeability, blood pressure, pain perception, glutamate release from astrocytes, neuronal differentiation, and nitric oxide production (Whalley et al. 2012).

The action of bradykinin is mediated through an interaction with cell surface bradykinin receptors. Bradykinin Receptor B1 (B1R) and Bradykinin Receptor B2 (B2R) are the two subtypes of bradykinin receptors, which belong to the GPCR family (Leeb-Lundberg et al. 2005; Marceau et al. 2020). B1R encoded by the gene BDKRB1 has minimal expression in healthy tissues, and its expression is induced only under special conditions such as injury and inflammation (Couture et al. 2001; Qadri and Bader 2018). In most cases, bradykinin acts through the B2R, which is encoded by the gene BDKRB2. B2R is ubiquitously expressed and implicated in vasodilation, osmoregulation, smooth muscle contraction, and nociceptors’ activation (Leeb-Lundberg et al. 2005). B2R expression upregulated under pathological conditions of tissue injury due to oxidative stress, pro-inflammatory stimuli such as exposure to lipopolysaccharides, endotoxins, cytokines (IL-1beta and TNF-alpha) and vasoactive peptide stimuli as it is seen in the renin-angiotensin system (RAS) (Marceau et al. 2002; Tschope et al. 2002; Bossi et al. 2009; Jaffa et al. 2012; Naffah-Mazzacoratti Mda et al. 2014).

Bradykinin stimulates B2R coupled with G proteins and activates signaling molecules such as protein kinase C (PKC), phospholipase C (PLC), mitogen-activated protein kinases (MAPKs), phosphoinositide-3 kinase (PI3K)/AKT and second messengers IP3 (inositol triphosphate), diacylglycerol (DAG) and Ca2+ ions (Kakoki and Smithies 2009; Dong et al. 2015; Wang et al. 2017). These second messengers mediate signaling mechanisms (e.g., nitric oxide or prostaglandin production) (Kakoki and Smithies 2009). Besides, bradykinin is also known to be involved in the activation of inflammatory cytokines. Previous studies have demonstrated that bradykinin-induced activation of MAPKs is involved in the upregulation of several cytokines such as IL-6, IL-1β, IL-8 and IL-2 (Paegelow et al. 1995; Pan et al. 1996; Huang et al. 2003; Meini et al. 2011; Yang et al. 2018) which are implicated in inflammation, respiratory, gastrointestinal, cardiac, neuronal, ophthalmologic and dermatological problems. Recent reports have shown that bradykinin storm may be responsible for the more severe symptoms of Coronavirus disease (COVID-19) (Garvin et al. 2020; Roche and Roche 2020; Wilczynski et al. 2021). Some reports suggest that B2R forms a complex with ACE, and this is thought to play a role in cross-talk between the RAS and the KKS (da Costa et al. 2014). Accumulation of bradykinin is implicated in angioedema by genetic defects and ACE inhibitors (Bas et al. 2007). Besides, bradykinin also plays a major role in cancer progression mechanisms (Stewart et al. 2002), for instance, with increased lung cancer risks (Kmietowicz 2018) and proliferation and migration in gastric cancers (Wang et al. 2017), in addition to allergic rhinitis, asthma, and anaphylaxis (Kaplan et al. 2002).

Recent computational analyses suggested that genes related to the bradykinin were up-regulated in bronchoalveolar lavage (BAL) samples of COVID-19 patients. The system implicates the core of the mechanisms triggering the adverse array of symptoms such as muscle pain, fatigue, nausea, vomiting, diarrhoea, headaches, and reduced cognitive function (Garvin et al. 2020). Recent reports show that SARS-CoV-2 employs its spike protein (S) antigen to interact with ACE2 and invade target cells (Astuti and Ysrafil 2020; Zhang et al. 2020). The loss of ACE2 activity and subsequent rise in Angiotensin-II
leads to a fall in ACE function through a negative feedback loop, ultimately resulting in raised bradykinin levels (Zhu et al. 2010). The increase of bradykinin may be due to the increases in the density of mast cells in the lungs of COVID-19 patients (Motta Junior et al. 2020). Even though several studies have been conducted at the molecular level to deduce the bradykinin signaling pathways, an organized network of molecular reactions induced by bradykinin is not publicly available. Therefore, we curated bradykinin-induced reactions from the literature and organized them into a dataset of molecular reactions. We developed a resource of signaling events mediated by bradykinin, similar to the previously published signaling pathways of IL-18, IL-10, IL-33, endothelin, oncostatin M and AXL, available in the NetPath and Wikipathways database (Dey et al. 2013; Soman et al. 2013; Verma et al. 2016; Pinto et al. 2018; Rex et al. 2020; Dagamajalu et al. 2021a, 2021b).

Methodology

We carried out a literature survey of articles related to bradykinin-mediated signaling. The articles were fetched from PubMed using query terms ("Bradykinin" OR "BK" OR "BK receptor" OR "B1" receptor OR "BK receptor B1" OR "BDKR1" OR "B1R" OR "B2" receptor OR "BK receptor B2" OR "BDKR2" OR "B2R") AND ("pathway" OR "signaling" OR "induced pathway" OR "induced signaling" OR "induced signalling"). The research articles were screened manually to evaluate the presence of bradykinin-induced signaling events. The systematic manual curation of signaling events was done based on the previously described PathBuilder tool, NetSlim and NetPath annotation criteria (Kandasamy et al. 2009, 2010; Raju et al. 2011). Accordingly, molecular events induced or influenced by bradykinin were included in the pathway. Further, curated downstream molecules were categorized into activation/inhibition, post-translational modifications (PTMs), translocation, molecular association, gene regulation and protein expression events. Additionally, information about cell lines used in the experiment, type of experiment, gene and protein regulation type (upregulation/downregulation) and PTMs (site and residue wherever available) were also curated. The curated information was further subjected to quality control through an internal review by a couple of experienced curators. Each described signaling event in the pathway was hyperlinked to the abstracts of corresponding articles from where it was retrieved.

PathVisio software used to depict pathway map of bradykinin mediated molecular signaling events (Kutmon et al. 2015).

Description of the bradykinin signaling pathway

Bradykinin, a pro-inflammatory nonapeptide, is released by the action of plasma or tissue kallikreins on kininogens (Drouin et al. 1979; Kakoki and Smithies 2009). Signaling by bradykinin is mainly mediated through B2R, a receptor of the seven-transmembrane GPCR family, which are capable of generating a broad spectrum of physiological responses such as vasodilation, fluid balance and retention, smooth muscle contraction, and algesia on target cells (Khasar et al. 1995; Virych et al. 2017). Bradykinin/B2R induces the activation of MAPK1/3 via PKC and c-Src pathways, which up-regulates matrix metalloproteinase (MMP)-9 and increases the conventional outflow facility in human trabecular meshwork cells (Webb et al. 2011). Furthermore, bradykinin enhance cell proliferation by the activation of cytosolic calcium, PKC-alpha (α), -beta (β), -delta (δ), -epsilon (ε) and -eta (η) and MAPK1/3 mediated signaling in primary culture of breast cancer cells, pheochromocytoma PC12 cells and ventricular myocytes (Clerk et al. 1996; Granos et al. 1997; Greco et al. 2005). In addition, c-Src phosphorylates FRS2 at Tyr196, leading to the activation of MAPK1/3 and nuclear translocation of STAT3, which ultimately results in the release of FGF-2 protein. The release of FGF-2 mediates various biological effects, including permeability, migration and inflammation in human HREC and HUVEC cell lines (Terzueli et al. 2018).

Bradykinin mediates signaling modules in various cells such as cardiomyocytes, epithelial cells, fibroblasts and...
Fig. 1 Schematic representation of bradykinin mediated signaling pathway. The signaling pathway map represents molecules involved in ligand-receptor interactions and bradykinin-activated downstream molecular events including molecular association, catalysis, translocation, and gene regulation events. Information regarding the post-translational modification site and the residue is also shown in the pathway.
neuroblastoma cells. In synovial fibroblasts, bradykinin stimulates B2R and activates IKKa/β (IKK alpha/beta) via the activation of PLC, PKC-δ (PRKCD) and increases the binding of RELA and NFKB1 to the NF-κB element, which leads to the increased production of IL-6 in rheumatoid arthritis (Lee et al. 2008). In addition, B2R stimulation by bradykinin activates EGFR mediated PI3K activation and translocation of PRKCD from the cytoplasm to the plasma membrane to induce MAPK1/3 activation and FOS protein expression, which lead to cell proliferation in human breast epithelial cells (Greco et al. 2004). In human cardiac c-kit+ progenitor cells, B2R activation by bradykinin releases Ca²⁺ from the endoplasmic reticulum and influx through store-operated Ca2+ entry (SOCE) complex activates AKT, MAPK1/3 phosphorylation and cyclin D1 protein expression leads to cell proliferation and migration to promote myocardial repair (Li et al. 2017). In human neuroblastoma SH-SY5Y cells, bradykinin promotes neurite outgrowth through rapid transient MARCKS phosphorylation through PKC dependent RhoA/ROCK pathway followed by dephosphorylation with the help of protein phosphatase 2A (PP2A) (Tanabe et al. 2012). Bradykinin stimulates myofibroblast migration through Hsp27 phosphorylation and cyclooxygenase 2 (COX2) expression via PKD in the CCD-18Co cell line (Chu et al. 2017). In human ciliary muscle (CM) cells, bradykinin/B2R leads to expression of COX1, and COX2 via MAPK signaling pathway. Subsequent release of PGE2 and PGF2α to the extracellular space is involved in the modulation of intraocular pressure (IOP) (Sharif et al. 2013).

In addition to MAPK activation, PI3K/AKT/mTOR/GSK3β is another major signal transducer involved in bradykinin mediated signaling. In human cardiac c-Kit+ progenitor cells, PLC-mediated Ca²⁺ influx through the SOCE channel initiates AKT phosphorylation and CCND1 expression, leading to cell cycle progression and migration (Li et al. 2018). In human retinal pigment epithelial (ARPE) cells, bradykinin stimulates PI3K/AKT pathway via B1R and B2R to activate PLA2/COX2-mediated up-regulation of SLCA6 and SLCA1, which triggers glutamate uptake (Lim et al. 2008). Bradykinin/B2R/PI3K/eNOS signaling exerts a potent chemotactic activity on CD133(+) and CD34(+) circulating angiogenic progenitor cells (CPCs) associated with neovascularization potential (Krankel et al. 2008).

Bradykinin signaling pathway in diseases

Bradykinin is a potent pro-inflammatory mediator, neutrophil chemotactic and angiogenic factor, which acts through B1R and B2R in many inflammatory diseases such as chronic pain, vasculopathy, asthma, allergic rhinitis, neuropathy, obesity, rheumatoid arthritis, diabetes, cancer and infectious disease (Barnes 1992; Couture et al. 2001; Wang et al. 2008; Dagnino et al. 2020; Lau et al. 2020). Lys–des[Arg9]-bradykinin/B1R induces the epidermal growth factor receptor (EGFR) and downstream signaling via the MAPK1/3 activation mechanism modulate neutrophils migration by upregulating MMP-2 and MMP-9 in estrogen-sensitive and -insensitive breast cancer cells (Ehrenfeld et al. 2011). B1R activation upregulates chemokine CXCL5A expression involved in neutrophil recruitment at sites of inflammation (Duchene et al. 2007).

Inflammation

Bradykinin induced pro-survival and proliferative intra-cellular signaling in human hepatic stellate cells and rat hepatocytes through AKT mediated NF-κB translocation and downregulation of TGFβ1 and COLIA1 expression attenuate liver damage and fibrosis (Sancho-Bru et al. 2007). Further, in human airway epithelial cells, bradykinin activates the Ras/Raf-1/MAPK pathway, which in turn leads to the activation of IKKa/β and NF-κB and up-regulation of COX2, which is involved in the transition of acute allergic reactions to chronic airway inflammatory diseases, such as asthma (Chen et al. 2004).

Bradykinin triggers the activation of TRPA1 via the PLC and PKA pathways in response to tissue inflammation, which might trigger the sensation of pain in rat DRG neurons (Wang et al. 2008). Bradykinin receptors induce the overexpression of inflammatory cytokines, including TNF-α and IL-10, which are involved in inflammation in the human salivary gland cells (Lee et al. 2017). Bradykinin induces the expression of IL-8 via the binding of transcription factors AP-1, nuclear factor (NF)-IL-6 and NF-κB to the IL-8 promoter via prostaglandin E2 dependent and independent activation in human airway smooth muscle cells (Zhu et al. 2003). Recent studies have reported that bradykinin-induced COX-2 expression and PGE2 release via PKC-δ-dependent activation of MAPK1/3 and NF-κB pathways may lead to brain injury and inflammatory diseases in human CM cells, podocytes, rat astrocytes and A549 cells (Chen et al. 2004; Hsieh et al. 2007; Sharif et al. 2013; Saoud et al. 2020). In vulvar vestibule fibroblasts, bradykinin/B2R induces NF-κB activation, which increases the IL-6 release and causes pain (Falsetta et al. 2016). In human articular chondrocytes and renal epithelial cells, bradykinin induces the release of inflammatory cytokines such as IL-6 and IL-8 via NF-κB signaling mechanism (Meini et al. 2011; Yang et al. 2018).

Cancer

The bradykinin-mediated B2R triggers NF-κB activation via Gαq, Gβ1γ2, PI3K, AKT and IKK2 pathway in HeLa cells (Xie et al. 2000). In A549 lung epithelial cells, bradykinin
Bradykinin has an important role in angiogenesis in HUVEC cells (Moraes et al. 2014). MAPK1/3 and up-regulates VEGF protein expression leading and S-nitrosylation of RAS and EGFR, which activates and the progression of the cytokine storm mediated by IL-6 positive bradykinin feedback loop has been suspected in the symptoms of the SARS-CoV-2 infection. A vicious dysregulated bradykinin signaling is at the core of most injury in the host (Rex et al. 2021). Recent studies reported inflammatory cytokine storm, which leads to multi-organ damage and contribution to invasion and migration (Wang et al. 2017). In various breast cancer cells, bradykinin-induced pro-proliferation through PKC mediated MAPK, PI3K and AKT pathways (Greco et al. 2004, 2005, 2006). Bradykinin/ B2R induced PI3K activation mediates the translocation of PRKCE from the cytosol to plasma membrane in the human colon carcinoma cell line SW-480 (Graness et al. 1998). In human prostate cancer cells, bradykinin/B2R signaling induces VEGF expression leads to angiogenesis through AKT/mTOR/NF-kB/AP-1 pathway (Yu et al. 2014). In the human colorectal cancer cell line SW480, bradykinin increases IL-6 production via B2R and the MAPK pathway, contributing to invasion and migration (Wang et al. 2014).

Other diseases

In mesangial cells, c-Src/MAPK activation by bradykinin induces CTGF, TGF-beta RI, and collagen I expression, which contributes to the development of diabetic nephropathy (Tan et al. 2005). SARS-CoV-2 infection activates inflammatory cytokine storm, which leads to multi-organ injury in the host (Rex et al. 2021). Recent studies reported that dysregulated bradykinin signaling is at the core of most of the symptoms of the SARS-CoV-2 infection. A vicious positive bradykinin feedback loop has been suspected in the progression of the cytokine storm mediated by IL-6 and IL-8 (Garvin et al. 2020; Roche and Roche 2020). The bradykinin/B2R mediated signaling induces NO production and S-nitrosylation of RAS and EGFR, which activates MAPK1/3 and up-regulates VEGF protein expression leading to angiogenesis in HUVEC cells (Moraes et al. 2014).

Several studies reported that bradykinin has an important role in a broad range of human diseases. Therefore, an organized integrative pathway map of bradykinin will provide a platform for accelerating scientific investigation on the role of bradykinin in various diseases.

Drugs that target Bradykinin signaling

Bradykinin is known to play a role in certain cardiovascular conditions (Blaes and Girolami 2013). In such a state, B2R agonists or ACE inhibitors are employed to enhance bradykinin lifetime and its downstream effects (Jalowy et al. 1998; Campbell et al. 2004). However, the pathological state of chronic inflammation witnessed in Alzheimer’s disease due to the elevated levels of bradykinin (Singh et al. 2020a, 2020b). Similarly, overexpression of bradykinin was observed in hereditary angioedema, asthma and COVID-19 patients (Hofman et al. 2016a, 2016b; Ricciardolo et al. 2018; Garvin et al. 2020). In such conditions, bradykinin effects countered using antagonists like Hoe140, which competitively antagonizes B2R (Wirth et al. 1991). Alternatively, kallikrein inhibitors such as Lanadelumab, Gara-dacimab, Ecallantide (DX-88), and Berotralstat were used to interfere with PK activity, which hinder HMWK cleavage (Farkas and Varga 2011; Davoine et al. 2020; Manning and Kashkin 2021; Wedner et al. 2021; Zuraw et al. 2021). A recent study reported that a new chemical, compound 3, can antagonize B2R even at a picomolar concentration (Lesage et al. 2020).

Conclusions

Bradykinin-mediated signaling implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. However, the role of the bradykinin-mediated signaling pathway in inflammatory diseases is still unclear. In-depth data mining and depiction of molecular reactions induced by bradykinin into a spatiotemporally organized signaling network will help the future biomedical investigation in bradykinin signaling. The comprehensive network map of bradykinin signaling will provide several peripheral novel proteins with undefined functionality in the signaling pathway, providing new hypotheses for future research. In addition, an increase in the number of proteins in the bradykinin signaling network will make this pathway linked to various new physiological events when future datasets subjected to gene set enrichment analyses.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12079-021-00652-0.

Acknowledgements We acknowledge a research grant from Olav Thon Foundation entitled “Discovering new therapeutic targets and drugs to combat AMR tuberculosis: proteomics characterization and drug

 Springer
screening of mycobacterium-infected macrophages.” We also thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support to the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme in Multi-Omics Technology (BiSEPO ITD 02 MDA 2017). RDAB is a recipient of a Senior Research Fellowship from the Indian Council of Medical Research (ICMR), Government of India.

Declarations

Conflict of interest The authors report no conflicts of interest.

References

Astuti I and Ysratif (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr 14(4):407–412
Barnes PJ (1992) Bradykinin and asthma. Thorax 47(11):979–983
Bas M, Adams V, Suvorova T, Niehtus T, Hoffmann TK, Kojda G (2007) Nonallergic angioedema: role of bradykinin. Allergy 62(8):842–856
Blaes N, Girolami JP (2013) Targeting the “Janus face” of the B2-bradykinin receptor. Expert Opin Ther Targets 17(10):1145–1166
Bossi F, Fischetti F, Regoli D, Durigutto P, Frossi B, Gobeil F Jr, Greco S, Elia MG, Muscella A, Romano S, Storelli C, Marsigliante DW, Xu X, Tu L (2015) Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/Phosphoinositide 3-Kinase/Akt signaling pathway. Cell Physiol Biochem 37(4):1592–1606
Davone C, Bouckaert C, Fillet M, PocheT L (2020) Factor XII/XIIa inhibitors: their discovery, development, and potential indications. Eur J Med Chem 208:112753
Dey G, Radhakrishnan A, Syed N, Thomas JK, Nadig A, Srikumar K, Mathur PP, Pandey A, Lin SK, Raju R, Prasad TS (2013) Signaling network of oncostatin M pathway. J Cell Commun Signal 7(2):103–108
Dong R, Chen W, Feng W, Xia C, Hu D, Zhang Y, Yang W, Wang DW, Xu X, Tu L (2015) Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/Phosphoinositide 3-Kinase/Akt signaling pathway. Cell Physiol Biochem 37(4):1592–1606
DrobnajN, St-Pierre SA, Regoli D (1979) Receptors for bradykinin and kallidin. Can J Physiol Pharmacol 57(4):375–379
Duchene J, Lecomte F, Ahmed S, Cayla C, Pesquero J, Bader M, Perretti M, Ahluwalia A (2007) A novel inflammatory pathway involved in leukocyte recruitment: role for the kinin B1 receptor and the chemokine CXCL5. J Immunol 179(7):4849–4856
Ehrenfeld P, Conejeros I, Pavicic MF, Matus CE, Gonzalez CB, Quest AF, Bhoola KD, Poblete MT, Burgos RA, Figueroa CD (2011) Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells. Cancer Lett 301(1):106–118
Falsetta ML, Foster DC, Woeller CF, Pollock SJ, Bonham AD, Haidaris CG, Pipps RP (2016) A role for bradykinin signaling in chronic vulvar pain. J Pain 17(11):1183–1197
Farkas H, Varga L (2011) Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency. Clin Cosmet Investig Dermatol 4:61–68
Fong D, Smith DJ, Hsieh WT (1991) The human kininogen gene (KNG) mapped to chromosome 3q26-qter by analysis of somatic cell hybrids using the polymerase chain reaction. Hum Genet 87(2):189–192
Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, Mast AE, Justice A, Aronow B, Jacobson D (2020) A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 9:e59177. https://doi.org/10.7554/eLife.59177
Graness A, Adomeit A, Ludwig B, Muller WD, Kaufmann R, Liebmann C (1997) Novel bradykinin signaling events in PC-12 cells: stimulation of the cAMP pathway leads to cAMP-mediated translocation of protein kinase Cepsilin. Biochem J 327(Pt 1):147–154
Graness A, Adomeit A, Heinze R, Wetzker R, Liebmann C (1998) A novel mitogenic signaling pathway of bradykinin in the human colon carcinoma cell line SW-480 involves sequential activation of a Gq/11 protein phosphatidylinositol 3-kinase β and protein kinase Ce. J Biol Chem 273(48):32016–32022. https://doi.org/10.1074/jbc.273.48.32016
Greco S, Muscella A, Elia MG, Romano S, Storelli C, Marsigliante S (2004) Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. J Cell Physiol 201(1):84–96
Greco S, Elia MG, Muscella A, Romano S, Storelli C, Marsigliante S (2005) Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 186(2):291–301
Greco S, Storelli C, Marsigliante S (2006) Protein kinase C (PKC)-delta/-epsilon mediate the PKC/Akt-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 in MCF-7 cells stimulated by bradykinin. J Endocrinol 188(1):79–89
Hofman Z, de Maat S, Hack CE, Maas C (2016a) Bradykinin: inflammatory product of the coagulation system. Clin Rev Allergy Immunol 51(2):152–161
Hofman ZL, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE (2016b) Angioedema attacks in patients with hereditary
angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol 138(2):359–366

Hsieh HL, Wang HH, Wu CY, Jou MJ, Yen MH, Parker P, Yang CM (2007) BK-induced COX-2 expression via PKC-delta-dependent activation of p42/p44 MAPK and NF-kappaB in astrocytes. Cell Signal 19(2):330–338

Huang CD, Tibia O, Panettieri RA Jr, Amrani Y (2003) Bradykinin induces intercellular-6 production in human airway smooth muscle cells: modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol 28(3):330–338

Izumi S, Higa-Nakamine S, Nishi H, Torihara H, Uehara A, Sugarahara K, Kakinohana M, Yamamoto H (2018) Phosphorylation of epidermal growth factor receptor at serine 1047 in cultured lung alveolar epithelial cells by bradykinin B2 receptor stimulation. Pulm Pharmacol Ther 48:53–61

Jaffa MA, Koebeissy F, Al Hariri M, Chalhoub H, Eid A, Ziyadeh FN, Jaffa AA (2012) Global renal gene expression profiling analysis in B2-kinin receptor null mice: impact of diabetes. PLoS ONE 7(9):e44714

Jalowy A, Schulz R, Dorge H, Behrends M, Heusch G (1998) Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32(6):1787–1796

Kakoki M, Smithies O (2009) The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 75(10):1019–1030

Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder—open source software for annotating and developing pathway resources. Bioinformatics 25(21):2860–2862

Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Peccquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahas H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R

Kopacz KJ, Conley GP, Chen J, Viswanathan M, Kastrapeli A, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard KB, Yoon KC, Han HJ, Park SH (2008) Bradykinin stimulates glutamate uptake via both B1R and B2R activation in a human retinal pigment epithelial cells. Life Sci 83(23–24):761–770

Manning ME, Kashkin JM (2021) Berotralstat (BCX7353) is a novel oral prophylactic treatment for hereditary angioedema: Review of phase II and III studies. Allergy Asthma Proc 42(4):274–282

Marceau F, Sabourin T, Houle S, Fortin JP, Petitclerc E, Molinaro G, Adam A (2002) Kinin receptors: functional aspects. Int Immunopharmacol 289(34):23596–23608

Moraes MS, Costa PE, Batista WL, Paschoalin T, Curcio MF, Borges Motta Junior JDS, Miggiolaro A, Nagashima S, de Paula CBV, Baena CP, Scharfstein J, de Noronha L (2020) Mast cells in alveolar septa of COVID-19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front Immunol 11:574862

Motta Junior JDS, Miggialoro A, Nagashima S, de Paula CBV, Baena CP, Scharfstein J, de Noronha L (2020) Mast cells in alveolar septa of COVID-19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front Immunol 11:574862

Naffah-Mazzacoratti Mda G, Gouveia TL, Simoes PS, Perosa SR (2014) What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders? World J Biol Chem 5(2):130–140

Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Koebeissy F (2018) Implication of the Kallikrein–Kinin system in neurological disorders: quest for potential biomarkers and mechanisms. Prog Neurobiol 165–167:26–50
Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD (1996) Bradykinin stimulates NF-kappaB activation and inter-leukin 1beta gene expression in cultured human fibroblasts. J Clin Invest 98(9):2042–2049

Pinto SM, Subbannayya R, Dab AB, Jairaj R, Advani J, Radhakrishnan A, Keshava Prasad TS, Wani MR, Pandey A (2018) A network map of IL-33 signaling pathway. J Cell Commun Signal 12(3):615–624

Qadri F, Bader M (2018) Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets 22(1):31–44

Raju R, Nonnappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T, Sekhar NR, Muthusamy B, Goel R, Subbannayya Y, Telikicherla D, Bhattacharjee M, Pinto SM, Syed N, Srikanth MS, Sathe GJ, Ahmad S, Chavan SN, Kumar GS, Marimuthu A, Prasad TS, Harsha HC, Rahman BA, Obara H, Bader GD, Suzatha Mohan S, Schemann WP, Pandey A (2011) NetSlim: high-confidence curated signaling maps. Database (oxford) 2011:bae032

Rex DAB, Agarwal N, Prasad TSK, Kandasamy RK, Subbannayya Y, Pinto SM (2020) A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 14(2):257–266

Rex DAB, Dagamajalu S, Kandasamy RK, Raju R, and Prasad, TSK (2021) SARS-CoV-2 signaling pathway map: A functional landscape of molecular mechanisms in COVID-19. J Cell Commun Signal

Ricciardolo FLM, Folkerts G, Folino A, Mognetti B (2018) Bradykinin B1 receptors as a therapeutic target for inflammation. Can J Physiol Pharmacol 39(4):478–487

Sancho-Bru P, Bataller R, Fernandez-Varo G, Moreno M, Ramalho LN, Colmenero J, Mari M, Claria J, Jimenez W, Arroyo V, Brenner DA, Gines P (2007) Bradykinin stimulates NF-kappaB activation and intercellular damage and fibrosis in rats with chronic liver injury. Gastroenterology 133(6):2019–2028

Santos R, Jaffa MA, Habib A, Zhao J, Al Hariri M, Zhu R, Hasan A, Ziyadeh FN, Kobeissy F, Mechref Y, Jaffa AA (2020) Modulation of proteomic and inflammatory signals by Bradykinin in podocytes. J Adv Res 24:409–422

Sharif NA, Xu S, Li L, Katoli P, Kelly CR, Wang Y, Cao S, Patil R, Husain S, Klekar L, Scott D (2013) Protein expression, biochemical pharmacology of signal transduction, and relation to intraocular pressure modulation by bradykinin B(2) receptors in ciliary muscle. Mol vis 19:1356–1370

Singh PK, Chen ZL, Ghosh D, Strickland S, Norris EH (2020a) Increased plasma bradykinin level is associated with cognitive impairment in Alzheimer’s patients. Neurobiol Dis 139:104833

Singh PK, Chen ZL, Strickland S, Norris EH (2020b) Increased contact system activation in mild cognitive impairment patients with impaired short-term memory. J Alzheimer’s Dis 77(1):59–65

Soman S, Raju R, Sandhya VK, Advani J, Khan AA, Harsha HC, Prasad TS, Sudhakaran PR, Pandey A, Adishesha PK (2013) A multicellular signal transduction network of AGE/RAGE signaling. J Cell Commun Signal 7(1):19–23

Stewart JM, Gera L, Chan DC, Bunn PA Jr, York EJ, Simkевичiene V, Herrlich B (2002) Bradykinin-related compounds as new drugs for cancer and inflammation. Can J Physiol Pharmacol 80(4):275–280

Tan Y, Wang B, Keum JS, Jaffa AA (2005) Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am J Physiol Renal Physiol 288(3):F483–F492

Tanabe A, Shiraishi M, Negishi M, Saito N, Tanabe M, Sasaki Y (2012) MARCKS dephosphorylation is involved in bradykinin-induced neurite outgrowth in neuroblastoma SH-SY5Y cells. J Cell Physiol 227(2):618–629

Teresauoli E, Corti F, Nannelli G, Giachetti A, Donnini S, Ziche M (2018) Bradykinin B2 receptor contributes to inflammatory responses in human endothelial cells by the transactivation of the fibroblast growth factor receptor FGFR-1. Int J Mol Sci 19(9):2638

Tschop C, Schulteiss HP, Walther T (2002) Multiple interactions between the renin-angiotensin and the kallikrein-kinin systems: role of ACE inhibition and AT1 receptor blockade. J Cardiovasc Pharmacol 39(4):478–487

Vandell AG, Larson N, Laxmikanthan G, Panos M, Blaber SL, Blaber M, Scarsbrick JA (2008) Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J Neurochem 107(3):855–870

Verma R, Balakrishnan L, Sharma K, Khan AA, Advani J, Gowda H, Tripathy SP, Suur M, Pandey A, Gandotra S, Prasad TS, Shankar S (2016) A network map of Interleukin-10 signaling pathway. J Cell Commun Signal 10(1):61–67

Vircich PA, Shelyuk OV, Kabanova TA, Khalimova EL, Martynyuk VS, Pavlovsky VI, Andronati SA (2017) Effect of 3-substituted 1,4-benzodiazepin-2-ones on bradykinin-induced smooth muscle contraction. Ukr Biochem J 89(1):31–37

Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Ohata K, Cui X, Tominaga M, Noguchi K (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131(Pt 5):1241–1251

Wang G, Ye Y, Zhang X, Song J (2014) Bradykinin stimulates IL-6 production and cell invasion in colorectal cancer cells. Oncol Rep 32(4):1709–1714

Wang G, Sun J, Liu G, Fu Y, Zhang X (2017) Bradykinin promotes cell proliferation, migration, invasion, and tumor growth of gastric cancer through ERK signaling pathway. J Cell Biochem 118(12):4444–4453

Wang W, Zhou Y, Wei R, Jiang G, Li F, Chen X, Wang X, Ma D, Xi L (2019) Bradykinin promotes proliferation migration and invasion of cervical cancer cells through STAT3 signaling pathways. Oncol Rep https://doi.org/10.3892/or.2019.7380

Webb JG, Yang X, Crosson CE (2011) Bradykinin activation of extracellular signal-regulated kinases in human trabecular meshwork cells. Exp Eye Res 92(6):495–501

Wedner HJ, Aygoren-Pursun E, Bernstein J, Craig T, Gower R, Jacobs JK, Johnston DT, Lumry WR, Zuraw BL, Best JM, Iocca HA, Murray SC, Desai B, Nagy E, Sheridan WP, Khani-Alikhan S (2021) Randomized trial of the efficacy and safety of berotralstat (BCX7353) as an oral prophylactic therapy for hereditary angi- oedema: results of aPEx-2 through 48 weeks (Part 2). J Allergy Clin Immunol Pract 96(6):2305-2314e4

Whalley ET, Figueroa CD, Gera L, Bhoola KD (2012) Discovery and therapeutic potential of kinin receptor antagonists. Expert Opin Drug Discov 7(12):1129–1148

Wilczynski SA, Wenceslau CF, McCarthy CG, Webb RC (2021) A cytokine/bradykinin storm comparison: What is the relationship between hypertension and COVID-19? Am J Hypertens 34(4):304–306

Wirth K, Hock FJ, Albus U, Linz W, Alpermann HG, Anagnostopoulos H, Henk S, Breipohl G, Konig W, Knolle J et al (1991) Hoe 140 a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol 102(3):774–777

Xie P, Browning DD, Hay N, Mackman N, Ye RD (2000) Activation of NF-xb by bradykinin through a GoS- and GbY-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem 275(32):24907–24914. https://doi.org/10.1074/jbc.M0010

https://doi.org/10.1074/jbc.M0010
Yang W-H, Jung-Tzu, Chang Sheng-Feng, Hsu Te-Mao, Li Der-Yang, Cho Chun-Yin, Huang Yi-Chin, Fong Chih-Hsin, Tang (2009) Bradykinin enhances cell migration in human chondrosarcoma cells through BK receptor signaling pathways. J Cell Biochem https://doi.org/10.1002/jcb.22383
Yang L, Zhang J, Li N, Xie H, Chen S, Wang H, Shen T, Zhu QX (2018) Bradykinin receptor in immune-mediated renal tubular injury in trichloroethylene-sensitized mice: impact on NF-kappaB signaling pathway. J Immunotoxicol 15(1):126–136
Yu HS, Lin TH, Tang CH (2013) Bradykinin enhances cell migration in human prostate cancer cells through B2 receptor/PKCdelta/c-Src dependent signaling pathway. Prostate 73(1):89–100
Yu HS, Wang SW, Chang AC, Tai HC, Yeh HI, Lin YM, Tang CH (2014) Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells. Biochem Pharmacol 87(2):243–253
Zhang W, Bhola N, Kalyankrishna S, Gooding W, Hunt J, Seethala R, Grandis JR, Siegfried JM (2008) Kinin b2 receptor mediates induction of cyclooxygenase-2 and is overexpressed in head and neck squamous cell carcinomas. Mol Cancer Res 6(12):1946–1956
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46(4):586–590

Zhu YM, Bradbury DA, Pang L, Knox AJ (2003) Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J Biol Chem 278(31):29366–29375
Zhu L, Carretero OA, Liao TD, Harding P, Li H, Sumners C, Yang XP (2010) Role of prolylcarboxypeptidase in angiotensin II type 2 receptor-mediated bradykinin release in mouse coronary artery endothelial cells. Hypertension 56(3):384–390
Zuraw B, Lumry WR, Johnston DT, Ayyoren-Pursun E, Banerji A, Bernstein JA, Christiansen SC, Jacobs JS, Sitz KV, Gower RG, Gagnon R, Wedner HJ, Kinaciyan T, Hakl R, Hanzlikova J, Anderson JT, McNeil DL, Fritz SB, Yang WH, Tachdjian R, Busse PJ, Craig TJ, Li HH, Farkas H, Best JM, Clemons D, Cornpropst M, Dobo SM, Iocca HA, Kargl D, Nagy E, Murray SC, Collis P, Sheridan WP, Maurer M, Riedl MA (2021) Oral once-daily berotralstat for the prevention of hereditary angioedema attacks: a randomized, double-blind, placebo-controlled phase 3 trial. J Allergy Clin Immunol 148(1):164–1729

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.