Measurements of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay amplitudes and the Λ_b^0 polarisation in pp collisions at $\sqrt{s} = 7$ TeV

The LHCb collaboration

Abstract
An angular analysis of $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decays is performed using a data sample corresponding to 1.0 fb$^{-1}$ collected in pp collisions at $\sqrt{s} = 7$ TeV with the LHCb detector at the LHC. A parity violating asymmetry parameter characterising the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay of $0.05 \pm 0.17 \pm 0.07$ and a Λ_b^0 transverse production polarisation of $0.06 \pm 0.07 \pm 0.02$ are measured, where the first uncertainty is statistical and the second systematic.

Submitted to Physics Letters B
© CERN on behalf of the LHCb collaboration, license [CC-BY-3.0]

†Authors are listed on the following pages.
M. Szczekowski, P. Szczyoka, T. Szumlak, S. T’Jampens, M. Teklishyn,
E. Teodorescu, F. Teubert, C. Thomas, E. Thomas, J. van Tilburg, V. Tisserand,
M. Tobin, S. Tolk, D. Tonelli, S. Topp-Jørgensen, N. Torr, E. Tourneier,
S. Tourneur, M.T. Tran, M. Tresch, A. Tsaregorodtsev, P. Tsopelas, N. Tuning,
M. Ubeda García, A. Ukleja, D. Urner, U. Uwer, V. Vagnoni, G. Valenti,
R. Vazquez Gomez, P. Vazquez Regueiro, S. Vecchi, J.J. Velthuis, M. Veltri,
G. Veneziano, M. Vesterinen, B. Vialla, D. Vieira, X. Vilasis-Cardona,
A. Vollhardt, D. Volyanskyy, D. Voong, A. Vorobyev, V. Vorobyev, C. Voss,
R. Wallace, S. Wandernoth, J. Wang, D.R. Ward, N.K. Watson, A.D. Webber,
D. Websdale, M. Whitehead, J. Wicht, J. Wiechczynski, D. Wiedner, L. Wiggers,
G. Wilkinson, M.P. Williams, M. Williams, F.F. Wilson, J. Wishahi, M. Witek,
S.A. Wotton, S. Wright, M. Whitehead, X. Xie, K. Wyllie, Z. Xing, Z. Yang,
R. Young, X. Yuan, O. Yushchenko, M. Zangoli, A. Ukleja, Y. Zhang,
L. Zhang, W.C. Zhang, Y. Zhang, A. Zhelezov, A. Zhokhov, M. Zavertyaev,
A. Tsaregorodtsev, D.R. Ward, J. Wang, D. Urner, J. Wiechczynski,
B. Viaud, P. Szczypka, A. Tisserand, M. Tresch, D. Rüber, D. Rüber,
J. Vagner, V. Valdny, A. Vollhardt, D. Volyanskyy, D. Voong, A. Vorobyev,
V. Vorobyev, C. Voss, R. Wallace, S. Wandernoth, J. Wang, D.R. Ward,
N.K. Watson, A.D. Webber, D. Websdale, M. Whitehead, J. Wicht,
J. Wiechczynski, D. Wiedner, L. Wiggers, G. Wilkinson, M.P. Williams,
M. Williams, F.F. Wilson, J. Wishahi, M. Witek, S.A. Wotton,
S. Wright, M. Whitehead, X. Xie, K. Wyllie, Z. Xing, Z. Yang,
R. Young, X. Yuan, O. Yushchenko, M. Zangoli, A. Ukleja, Y. Zhang,
L. Zhang, W.C. Zhang, Y. Zhang, A. Zhelezov, A. Zhokhov, L. Zhong,
A. Zvyagin, A. Vollhardt, D. Volyanskyy, D. Voong, A. Vorobyev,
V. Vorobyev, C. Voss, R. Wallace, S. Wandernoth, J. Wang, D.R. Ward,
N.K. Watson, A.D. Webber, D. Websdale, M. Whitehead, J. Wicht,
J. Wiechczynski, D. Wiedner, L. Wiggers, G. Wilkinson, M.P. Williams,
M. Williams, F.F. Wilson, J. Wishahi, M. Witek, S.A. Wotton,
S. Wright, M. Whitehead, X. Xie, K. Wyllie, Z. Xing, Z. Yang,
R. Young, X. Yuan, O. Yushchenko, M. Zangoli, A. Ukleja, Y. Zhang,
L. Zhang, W.C. Zhang, Y. Zhang, A. Zhelezov, A. Zhokhov, L. Zhong,
A. Zvyagin.
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
Syracuse University, Syracuse, NY, United States
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
University of Cincinnati, Cincinnati, OH, United States, associated to

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
b Università di Bari, Bari, Italy
c Università di Bologna, Bologna, Italy
d Università di Cagliari, Cagliari, Italy
e Università di Ferrara, Ferrara, Italy
f Università di Firenze, Firenze, Italy
g Università di Urbino, Urbino, Italy
h Università di Modena e Reggio Emilia, Modena, Italy
i Università di Genova, Genova, Italy
j Università di Milano Bicocca, Milano, Italy
k Università di Roma Tor Vergata, Roma, Italy
l Università di Roma La Sapienza, Roma, Italy
m Università della Basilicata, Potenza, Italy
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
o IFIC, Universitat de Valencia-CSIC, Valencia, Spain
p Hanoi University of Science, Hanoi, Viet Nam
q Università di Padova, Padova, Italy
r Università di Pisa, Pisa, Italy
s Scuola Normale Superiore, Pisa, Italy
1 Introduction

For $Λ^0_b$ baryons originating from energetic b-quarks, heavy-quark effective theory (HQET) predicts a large fraction of the transverse b-quark polarisation to be retained after hadronisation [1,2], while the longitudinal polarisation should vanish due to parity conservation in strong interactions. For $Λ^0_b$ baryons produced in $e^-e^+ \rightarrow Z^0 \rightarrow b \bar{b}$ transitions, a substantial polarisation is measured [3-5], in agreement with the $Z^0b\bar{b}$ coupling of the Standard Model (SM). There is no previous polarisation measurement for $Λ^0_b$ baryons produced at hadron colliders. The transverse polarisation is estimated to be $\mathcal{O}(10\%)$ in Ref. [6] while Ref. [7] mentions it could be as large as 20%. However, for $Λ^b$ baryons produced in fixed-target experiments [8-10], the polarisation was observed to depend strongly on the Feynman variable $x_F = 2p_L/\sqrt{s}$, p_L being the $Λ$ longitudinal momentum and \sqrt{s} the collision centre-of-mass energy, and to vanish at $x_F \approx 0$. Extrapolating these results and taking into account the very small $x_F \approx 0.02$ value for $Λ^0_b$ produced at the Large Hadron Collider (LHC) at $\sqrt{s} = 7$ TeV, this could imply a polarisation much smaller than 10%.

In this Letter, we perform an angular analysis of $Λ^0_b \rightarrow J/ψ(\rightarrow \mu^+\mu^-)Λ(\rightarrow p\pi^-)$ decays using 1.0 fb$^{-1}$ of pp collision data collected in 2011 with the LHCb detector [11] at the LHC at $\sqrt{s} = 7$ TeV. Owing to the well-measured $Λ \rightarrow p\pi^-$ decay asymmetry parameter ($α_Λ$) [12] and the known behaviour of the decay of a vector particle into two leptons, the final state angular distribution contains sufficient information to measure the $Λ^0_b$ production polarisation and the decay amplitudes [13]. The asymmetry of the $Λ$ decay ($α_Λ$) is much less precisely measured [12], however by neglecting possible CP violation effects, which are predicted to be very small in the SM [14, 15], $α_Λ$ and $-α_Λ$ can be assumed to be equal. Similarly, CP violation effects in $Λ^0_b$ decays are neglected, and the decay amplitudes of the $Λ^0_b$ and $Λ^0$ are therefore assumed to be equal. Inclusion of charge-conjugated modes is henceforth implied. The asymmetry parameter $α_Λ$ in $Λ^0_b \rightarrow J/ψΛ$ decays, defined in Sec. 2, is calculated in many publications as summarised in Table 1. Most predictions lie in the range from -21% to -10% while Ref. [7] obtains a large positive value using HQET. Note that the theoretical predictions depend on the calculations of the form-factors and experimental input that were available at the time they were made.

It should be noted that $Λ^0_b$ baryons can also be produced in the decay of heavier

Method	Value	Reference
Factorisation	-0.1	[16]
Factorisation	-0.18	[17]
Covariant oscillator quark model	-0.208	[18]
Perturbative QCD	-0.17 to -0.14	[19]
Factorisation (HQET)	0.777	[7]
Light front quark model	-0.204	[20]
b baryons [21-23], where the polarisation is partially diluted [6]. These strong decays are experimentally difficult to distinguish from \(\Lambda_0^b \) that hadronise directly from a \(pp \) collision and therefore contribute to the measurement presented in this study.

A sufficiently large \(\Lambda_0^b \) polarisation would allow the photon helicity in \(\Lambda_0^b \to J/\psi \gamma \) and \(\Lambda_0^b \to \Lambda^* \gamma \) decays to be probed [6,24,25]. The photon helicity is sensitive to contributions from beyond the SM.

2 Angular formalism

The \(\Lambda_0^b \) spin has not yet been measured but the quark model prediction is spin \(\frac{1}{2} \). The \(\Lambda_0^b \to J/\psi \Lambda \) mode is therefore the decay of a spin \(\frac{1}{2} \) particle into a spin 1 and a spin \(\frac{1}{2} \) particle. In the helicity formalism, the decay can be described by four \(M_{\lambda_1\lambda_2} \) helicity amplitudes (\(M_{+\frac{1}{2}0} \), \(M_{-\frac{1}{2}0} \), \(M_{-\frac{1}{2}-1} \) and \(M_{+\frac{1}{2}+1} \)) where \(\lambda_1 \) (\(\lambda_2 \)) is the helicity of the \(\Lambda \) (\(J/\psi \)) particle. The angular distribution of the decay \((d\Gamma/d\Omega) \) is calculated in Ref. [13] and reported in Ref. [26]. It depends on the five angles shown in Fig. 1. The first angle, \(\theta \), is the polar angle of the \(\Lambda \) momentum in the \(\Lambda_0^b \) rest-frame with respect to \(\vec{n} = (\vec{p}_{\Lambda^0} \times \vec{p}_{\text{beam}})/|\vec{p}_{\Lambda^0} \times \vec{p}_{\text{beam}}| \), a unit vector perpendicular to the production plane. The second and third angles are \(\theta_1 \) and \(\phi_1 \), the polar and azimuthal angles of the proton in the \(\Lambda \) rest-frame and calculated in the coordinate system defined by \(\vec{z}_1 = \vec{p}_A/|\vec{p}_A| \) and \(\vec{y}_1 = (\vec{n} \times \vec{p}_A)/|\vec{n} \times \vec{p}_A| \). The remaining angles are \(\theta_2 \) and \(\phi_2 \), the polar and azimuthal angles of the positively-charged muon in the \(J/\psi \) rest-frame and calculated in the coordinate system defined by \(\vec{z}_2 = \vec{p}_{J/\psi}/|\vec{p}_{J/\psi}| \) and \(\vec{y}_2 = (\vec{n} \times \vec{p}_{J/\psi})/|\vec{n} \times \vec{p}_{J/\psi}| \). The angular distribution also depends on the four \(M_{\lambda_1\lambda_2} \) amplitudes, on the \(\alpha_A \) parameter, and on the transverse polarisation parameter \(P_b \), the projection of the \(\Lambda_0^b \) polarisation vector on \(\vec{n} \).

Assuming that the detector acceptance over \(\phi_1 \) and \(\phi_2 \) is uniformly distributed, the

[Diagram of five angles used to describe the \(\Lambda_0^b \to J/\psi (\to \mu^+\mu^-) \Lambda (\to p\pi^-) \) decay.]

Figure 1: Definition of the five angles used to describe the \(\Lambda_0^b \to J/\psi (\to \mu^+\mu^-) \Lambda (\to p\pi^-) \) decay.
analysis can be simplified by integrating over the two azimuthal angles

\[
\frac{d\Gamma}{d\Omega}(\cos \theta, \cos \theta_1, \cos \theta_2) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d\Gamma}{d\Omega_3}(\theta, \theta_1, \theta_2, \phi_1, \phi_2) \, d\phi_1 \, d\phi_2 \\
= \frac{1}{16\pi} \sum_{i=0}^{7} f_i(|M_{+1,0}^b|^2, |M_{-1,0}^b|^2, |M_{-1,-1}^b|^2, |M_{+1,-1}^b|^2) \\
g_i(P_b, \alpha_b) \, h_i(\cos \theta, \cos \theta_1, \cos \theta_2).
\]

The functions describing the decay only depend on the magnitudes of the \(M_{\lambda_1,\lambda_2} \) amplitudes, on \(P_b \) and \(\alpha_b \), and on \(\cos \theta \), \(\cos \theta_1 \), and \(\cos \theta_2 \). Using the normalisation condition \(|M_{+1,0}^b|^2 + |M_{-1,0}^b|^2 + |M_{-1,-1}^b|^2 + |M_{+1,-1}^b|^2 = 1 \), the \(f_i \) functions can be written in terms of the following three parameters: \(\alpha_b \equiv |M_{+1,0}^b|^2 - |M_{-1,0}^b|^2 + |M_{-1,-1}^b|^2 - |M_{+1,-1}^b|^2 \), \(r_0 \equiv |M_{+1,0}^b|^2 + |M_{-1,0}^b|^2 \) and \(r_1 \equiv |M_{+1,0}^b|^2 - |M_{-1,0}^b|^2 \). The functions used to describe the angular distributions are shown in Table 2. Four parameters \((P_b, \alpha_b, r_0 \) and \(r_1) \) have to be measured simultaneously from the angular distribution. The \(\alpha_b \) parameter is the parity violating asymmetry characterising the \(\Lambda_b^0 \to J/\psi \Lambda \) decay.

3 Detector, trigger and simulation

The LHCb detector [11] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), designed for the study of particles containing \(b \) or \(c \) quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system provides a momentum measurement with relative uncertainty that varies from...
0.4% at 5\,GeV/c to 0.6% at 100\,GeV/c, and three-dimensional impact parameter (IP) resolution of 20\,µm for tracks with high transverse momentum. Charged hadrons are identified using two ring-imaging Cherenkov detectors (RICH) [27]. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [28]. The trigger [29] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

The hardware trigger selects events containing a muon with a transverse momentum, $p_T > 1.48\,\text{GeV}/c$ or two muons with a product of their p_T larger than $(1.3\,\text{GeV}/c)^2$. In the subsequent software trigger, we require two oppositely-charged muons having an invariant mass larger than 2800\,MeV/c^2 and originating from the same vertex, or a single muon with $p_T > 1.3\,\text{GeV}/c$ and being significantly displaced with respect to all the primary pp interaction vertices (PVs) in the event, or a single muon with $p > 10\,\text{GeV}/c$ and $p_T > 1.7\,\text{GeV}/c$. Displaced muons are identified by means of their IP and χ^2_{IP}, where the χ^2_{IP} is the χ^2 difference when the PV is fitted with or without the muon track. Finally, we require two oppositely-charged muons with an invariant mass within 120\,MeV/c^2 of the nominal J/ψ mass [12] forming a common vertex which is significantly displaced from the PVs. Displaced J/ψ vertices are identified by computing the vertex separation χ^2, the χ^2 difference between the PV and the J/ψ vertex. In the $A^0_b \rightarrow J/\psi \Lambda$ selection described below, we use the muon pairs selected by the trigger.

Simulation is used to understand the detector efficiencies and resolutions and to train the analysis procedure. Proton-proton collisions are generated using PYTHIA 6.4 [30] with a specific LHCb configuration [31]. Decays of hadronic particles are described by EVTGEN [32] in which final state radiation is generated using PHOTOS [33]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [34] as described in Ref. [35].

4 Signal selection and background rejection

A first set of loose requirements is applied to select $A^0_b \rightarrow J/\psi \Lambda$ decays. Charged tracks are identified as either protons or pions using information provided by the RICH system. Candidate Λ baryons are reconstructed from oppositely-charged proton and pion candidates. They are reconstructed either when the Λ decays within the VELO (“long Λ”), or when the decay occurs outside the VELO acceptance (“downstream Λ”). The latter category increases the acceptance significantly for long-lived Λ decays. In both cases, the two tracks are required to have $p > 2\,\text{GeV}/c$, to be well separated from the PVs and to originate from a common vertex. In addition, protons are required to have $p_T > 0.5\,\text{GeV}/c$ and pions to have $p_T > 0.1\,\text{GeV}/c$. Finally, the invariant mass of the Λ candidates is required to be within 15\,MeV/c^2 of the nominal Λ mass [12]. To form J/ψ candidates, two oppositely-charged muons with $p_T(\mu) > 0.5\,\text{GeV}/c$ are combined and their invariant mass is
required to be within 80 MeV/c^2 of the nominal J/ψ mass. Subsequently, \(\Lambda^0_b \) candidates are formed by combining the \(\Lambda \) and J/ψ candidates. To improve the \(\Lambda^0_b \) mass resolution, the muons from the J/ψ decay are constrained to come from a common point and to have an invariant mass equal to the J/ψ mass. We constrain the \(\Lambda \) and J/ψ candidates to originate from a common vertex and to have an invariant mass between 5120 and 6120 MeV/c^2. Moreover, \(\Lambda^0_b \) candidates must have their momenta pointing to the associated PV by requiring \(\cos \theta_d > 0.99 \) where \(\theta_d \) is the angle between the \(\Lambda^0_b \) momentum vector and the direction from the PV to the \(\Lambda^0_b \) vertex. The associated PV is the PV having the smallest \(\chi^2_{IP} \) value.

To reduce the combinatorial background, a multivariate selection based on a boosted decision tree (BDT) \(^{36, 37}\) with eight variables is used. Five variables are related to the \(\Lambda^0_b \) candidate: \(\cos \theta_d \), the \(\chi^2_{IP} \), the proper decay time, the vertex \(\chi^2 \) and the vertex separation \(\chi^2 \) between the PV and the vertex. Here, the vertex separation \(\chi^2 \) is the difference in \(\chi^2 \) between the nominal vertex fit and a vertex fit where the \(\Lambda^0_b \) is assumed to have zero lifetime. The proper decay time is the distance between the associated PV and the \(\Lambda^0_b \) decay vertex divided by the \(\Lambda^0_b \) momentum. Two variables are related to the J/ψ candidate: the vertex \(\chi^2 \) and the invariant mass of the two muons. The last variable used in the BDT is the invariant mass of the \(\Lambda \) candidate. The BDT is using simulation for signal and sideband data (\(M(J/\psi \Lambda) > 5800 \) MeV/c^2) for background in its training. The optimal BDT requirement is found separately for downstream and long candidates by maximising the signal significance \(N_{\text{sig}}/\sqrt{N_{\text{sig}} + N_{\text{bkg}}} \), where \(N_{\text{sig}} \) and \(N_{\text{bkg}} \) are the expected signal and background yields in a tight signal region around the \(\Lambda^0_b \) mass. These two yields are estimated using the signal and background yields measured in data after the first set of loose requirements and using the BDT efficiency measured with the training samples. The BDT selection keeps about 90% of the signal while removing about 80% (90%) of the background events for the downstream (long) candidates. Less background is rejected in the downstream case due to larger contamination from misreconstructed \(B^0 \to J/\psi K^0 \) background decays. Candidates with 5550 < \(M(J/\psi \Lambda) \) < 5700 MeV/c^2 are used for the final analysis. In this mass range, the \(B^0 \to J/\psi K^0 \) background is found to have a similar shape as the combinatorial background.

5 Fitting procedure

An unbinned extended maximum likelihood fit to the mass distribution of the \(\Lambda^0_b \) candidates is performed. The likelihood function is defined as

\[
L_{\text{mass}} = e^{-\sum_j N_j} \frac{1}{N!} \times \prod_i^{N} \left(\sum_j N_j P_j(M_i(J/\psi \Lambda)) \right),
\]

where \(i \) runs over the events, \(j \) runs over the different signal and background probability density functions (PDF), \(N_j \) are the yields and \(P_j \) the PDFs. The sum of two Crystal Ball functions \(^{38}\) with opposite side tails and common mean and width parameters is used to describe the signal mass distribution. The mean and width parameters are left free in the
fit while the other parameters are taken from the simulated signal sample. The background is modelled with a first-order polynomial function. The candidates reconstructed from downstream and long Λ combinations are fitted separately taking into account that the resolution is worse for the downstream signal candidates. The results of the fits to the mass distributions are shown in Fig. 2. We obtain 5346 ± 96 (5189 ± 95) downstream and 1861 ± 49 (761 ± 36) long signal (background) candidates. Using the results of this fit, $sWeights (w_{mass})$ are computed by means of the $sPlot$ technique [39], in order to statistically subtract the background in the angular distribution.

To ensure accurate modelling of the signal, corrections to the p_T and rapidity (y) spectra are obtained by comparing the simulation with data by means of the $sPlot$ technique. For the Λ_b^0 and Λ particles, the simulated data is corrected using two-dimensional (p_T, y) distributions in order to better reproduce the data. These distributions do not depend on the polarisation and the decay amplitudes but have an impact on the reconstruction acceptance. The same procedure is used on the pion of $B^0 \rightarrow J/\psi K_S^0$ decays and is subsequently used to calibrate the (p_T, y) spectrum of the pion of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay.

Since the detector acceptance depends on the three decay angles, the acceptance is modelled with a sum of products of Legendre polynomials (L_i)

$$f_{acc} = \sum_{i,j,k} c_{ijk} L_i(\cos \theta) L_j(\cos \theta_1) L_k(\cos \theta_2),$$

(3)

where i and k are chosen to be even or equal to one. Unbinned maximum likelihood fits to the simulated signal candidates are performed, separately for downstream and long candidates. The simulated is produced using a phase-space model and unpolarised Λ_b^0 baryons. The three angular distributions are therefore uniformly generated. Acceptances of the Λ_b^0 and $\Lambda_b^{0'}$ decays are found to be statistically consistent. A common acceptance function is therefore used. The maximum orders of the Legendre polynomials are chosen by comparing the fit probability. The requirements $i < 5$, $j < 4$, $k < 5$ and $i + j + k < 9$ are chosen. The results of the fit to the acceptance distributions are shown in Fig. 3.

![Figure 2: Mass distribution for the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ mode for the (left) downstream and (right) long candidates. The fitted signal component is shown as a solid blue curve while the background component is shown as a dashed red line.](image)
Figure 3: Projections of the acceptance function together with the simulated signal data for (top) downstream and (bottom) long candidates.

We then perform an unbinned likelihood fit to the \((\cos \theta, \cos \theta_1, \cos \theta_2)\) distribution. Each candidate is weighted with \(w_{\text{tot}} = w_{\text{mass}} \times w_{\text{acc}}\) where \(w_{\text{mass}}\) subtracts the background and \(w_{\text{acc}} = 1/f_{\text{acc}}(\cos \theta, \cos \theta_1, \cos \theta_2)\) corrects for the angular acceptance \([40]\). The sum of the \(w_{\text{mass}}\) weights over all the events is by construction equal to the signal yield, and \(w_{\text{tot}}\) is normalised in the same way. Since the weighting procedure performs background subtraction and corrects for acceptance effects, only the signal PDF has to be included in the fit of the angular distribution. The detector resolution is neglected in the nominal fit as it is found to have little effect on the results. It will be considered as source of systematic uncertainty. The likelihood is therefore

\[
\mathcal{L}_{\text{ang}} = \prod_{i=1}^{N} w_{\text{tot}}^{i} \frac{d\Gamma}{d\Omega_{3}}(\cos \theta^{i}, \cos \theta_{1}^{i}, \cos \theta_{2}^{i}),
\]

where \(i\) runs over all events. A simultaneous fit to the angular distributions of the downstream and long samples is performed. The \(\alpha_A\) parameter is fixed to its measured value, \(0.642 \pm 0.013\) \([12]\).

The accurate modelling of the acceptance is checked with a similar decay, \(B^0 \to J/\psi K^0_s\). Here, the angular distribution is known, and \(B^0\) mesons are unpolarised. These decays are selected in the same way as signal, and the fitting procedure described above is performed. Agreement with the expected \((\cos \theta, \cos \theta_1, \cos \theta_2)\) distribution is obtained.
6 Results

The results of the fits to the angular distributions of the weighted $\Lambda_0^b \to J/\psi \Lambda$ data are shown in Fig. 4. We obtain the following results: $P_b = 0.06 \pm 0.06$, $\alpha_b = 0.00 \pm 0.10$, $r_0 = 0.58 \pm 0.02$ and $r_1 = -0.58 \pm 0.06$, where the uncertainties are statistical only.

The polarisation could be different between Λ_0^b and Λ_0^b baryons due to their respective production mechanisms. The data are separated according to the Λ_0^b flavour and fitted using the same amplitude parameters but different parameters for the Λ_0^b and Λ_0^b polarisations. As compatible results are obtained within statistical uncertainties, the polarisations of Λ_0^b and Λ_0^b baryons are assumed to be equal.

A possible bias is investigated by fitting samples of generated experiments with sizes and parameters close to those measured in data. We generate many samples varying α_b between -0.25 to 0.25 while keeping r_0 equal to $-r_1$, thus keeping $|M_{+1/2,1/2}|^2$ and $|M_{+1/2,0}|^2$ equal to zero. We find that the fitting procedure biases all parameters toward negative values, slightly for P_b and r_0 ($\sim10\%$ of their respective statistical uncertainties) and more significantly for α_b and r_1 ($\sim40\%$ of their respective statistical uncertainties). For P_b and r_0, the biases do not change significantly when changing the value of α_b used to generate the simulated samples. On the other hand, the biases on α_b and r_1 do change, and the observed discrepancies are treated as systematic uncertainties. Moreover, the statistical uncertainties on the four fit parameters are underestimated: again slightly for P_b and r_0 and significantly, by a factor of ~1.7, for α_b and r_1.

We correct the measured values and statistical uncertainties of the four fit parameters.
The corrected statistical uncertainties are obtained by multiplying the covariance matrix with a correction matrix obtained from the study of the simulated samples. This correction matrix contains on its diagonal the squares of the widths of the pull distributions of the four fit parameters. The remaining entries of this matrix are set to zero as the correlation matrix computed with the results of the fits of the generated samples is found to be very close to the correlation matrix calculated when fitting the data.

Finally, the corrected result is \(P_b = 0.06 \pm 0.07, \alpha_b = 0.05 \pm 0.17, r_0 = 0.58 \pm 0.02, r_1 = -0.56 \pm 0.10 \), where the uncertainties are statistical only. The corrected statistical correlation matrix between the four fit parameters \((P_b, \alpha_b, r_0, r_1)\) is

\[
\begin{pmatrix}
1 & 0.10 & -0.07 & 0.13 \\
0.10 & 1 & -0.63 & 0.95 \\
-0.07 & -0.63 & 1 & -0.56 \\
0.13 & 0.95 & -0.56 & 1
\end{pmatrix}
\]

Large correlations are not seen between the polarisation and the amplitude parameters. On the other hand, the amplitude parameters are strongly correlated with respect to each other, \(\alpha_b\) and \(r_1\) being almost fully correlated.

7 Systematic uncertainties and significance

The systematic uncertainty on each measured physics parameter is evaluated by repeating the fit to the data varying its input parameters assuming Gaussian distributions and taking into account correlations when possible. The systematic uncertainties are summarised in Table 3. They are dominated by the uncertainty arising from the acceptance function, the calibration of the simulated signal sample and the fit bias. The uncertainty related to the acceptance function is obtained by varying the coefficients of the Legendre function within their uncertainties and taking into account their correlations. For the calibration of our simulated data, the uncertainty is obtained when changing the \((p_T, y)\) calibrations of the \(\Lambda_0\), \(\Lambda\) and pion particles within their uncertainties and obtaining a new acceptance function. The function that is used to fit the data does not include the effect of the angular resolution. The angular resolution, obtained with simulated samples, is negligible for \(\theta\) and \(\theta_2\). However, it is large, up to \(\sim 70\%\), for small values of \(\theta_1\). The systematic uncertainty is obtained by fitting simulated samples in which the resolution effect is introduced. Effects of the deviation from an uniform acceptance in \(\phi_1\) and \(\phi_2\) assumed in Eq. (1) are found to be negligible. The simplification to use only one component to describe the background is found not to bias the result. Other systematic uncertainties are small or negligible. These are related to the signal mass PDF parameters, the background subtraction and \(\alpha_A\). The uncertainty related to the background subtraction are obtained when varying the obtained result of the mass fit and computing the \(w_{mass}\) weights again. The \(\alpha_A\) parameter is varied within its measurement uncertainties [12].

To compare our results with a prediction on a parameter \(p\), we compute the significance with respect to a \(p_{test}\) value using a profile along \(p\) of the likelihood function, \(i.e.\) the
Table 3: Absolute systematic uncertainties on the measured parameters.

Source	P_b	α_b	r_0	r_1
Acceptance	0.02	0.04	0.006	0.03
Simulated data calibration	0.01	0.04	0.006	0.03
Fit bias	0.004	0.04	0.001	0.02
Angular resolution	0.002	0.01	<0.001	0.005
Background subtraction	0.001	0.006	0.001	0.005
α_A	0.002	<0.001	<0.001	0.01
Total (quadratic sum)	0.02	0.07	0.01	0.05

The likelihood value obtained when varying p and minimising with respect to the other parameters. A Monte Carlo integration is performed to include the systematic uncertainties in the likelihood profiles. We perform the fit to the data when varying all systematic uncertainties and obtain a likelihood profile for each fit of the data. The likelihood profile which includes all systematic uncertainties is then the average of all the obtained profiles. The significance is defined as $S(p = p_{\text{test}}) = \sqrt{2(\log L(p_{\text{test}}) - \log L(p_0))}$, where $L(p_0)$ is the likelihood value of the nominal fit. Significances are given in the concluding section of this Letter.

8 Conclusion

We have performed an angular analysis of about 7200 $A_0^b \rightarrow J/\psi (\rightarrow \mu^+\mu^-)\Lambda (\rightarrow p\pi^-)$ decays. The $A_0^b \rightarrow J/\psi \Lambda$ decay amplitudes are measured for the first time, and the A_0^b production polarisation for the first time at a hadron collider. The results are

\[
P_b = \ 0.06 \pm 0.07 \pm 0.02, \]
\[
\alpha_b = \ 0.05 \pm 0.17 \pm 0.07, \]
\[
r_0 = \ 0.58 \pm 0.02 \pm 0.01, \]
\[
r_1 = -0.56 \pm 0.10 \pm 0.05, \]

which correspond to the four helicity amplitudes

\[
|\mathcal{M}_{\frac{1}{2},0}|^2 = \ 0.01 \pm 0.04 \pm 0.03, \]
\[
|\mathcal{M}_{-\frac{1}{2},0}|^2 = \ 0.57 \pm 0.06 \pm 0.03, \]
\[
|\mathcal{M}_{\frac{1}{2},-1}|^2 = \ 0.51 \pm 0.05 \pm 0.02, \]
\[
|\mathcal{M}_{\frac{1}{2},+1}|^2 = \ -0.10 \pm 0.04 \pm 0.03, \]

where the first uncertainty is statistical and the second systematic. The reported polarisation and amplitudes are obtained for the combination of A_0^b and Λ_0^b decays. More data are required to probe any possible difference.
Our result cannot exclude a transverse polarisation at the order of 10%\footnote{G. Hiller, M. Knecht, F. Legger, and T. Schietinger, Photon polarization from helicity suppression in radiative decays of polarized Λ^0_b to spin-3/2 baryons, Phys. Lett. B649 (2007) 152, arXiv:hep-ph/0702191.}. However, a value of 20\% as mentioned in Ref.\footnote{T. Mannel and G. A. Schuler, Semileptonic decays of bottom baryons at LEP, Phys. Lett. B279 (1992) 194.} is disfavoured at the level of 2.7 standard deviations.

For the Λ^0_b asymmetry parameter, our result is compatible with the predictions ranging from -21% to -10%\footnote{A. F. Falk and M. E. Peskin, Production, decay, and polarization of excited heavy hadrons, Phys. Rev. D49 (1994) 3320, arXiv:hep-ph/9308241.} but does not agree with the HQET prediction of 77.7%\footnote{ALEPH collaboration, D. Buskulic et al., Measurement of Λ^0_b polarization in Z^0 decays, Phys. Lett. B365 (1996) 437.} at 5.8 standard deviations.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

References

[1] T. Mannel and G. A. Schuler, Semileptonic decays of bottom baryons at LEP, Phys. Lett. B279 (1992) 194.

[2] A. F. Falk and M. E. Peskin, Production, decay, and polarization of excited heavy hadrons, Phys. Rev. D49 (1994) 3320, arXiv:hep-ph/9308241.

[3] ALEPH collaboration, D. Buskulic et al., Measurement of Λ^0_b polarization in Z^0 decays, Phys. Lett. B365 (1996) 437.

[4] OPAL collaboration, G. Abbiendi et al., Measurement of the average polarization of b baryons in hadronic Z^0 decays, Phys. Lett. B444 (1998) 539, arXiv:hep-ex/9808006.

[5] DELPHI collaboration, P. Abreu et al., Λ^0_b polarization in Z^0 decays at LEP, Phys. Lett. B474 (2000) 205.

[6] G. Hiller, M. Knecht, F. Legger, and T. Schietinger, Photon polarization from helicity suppression in radiative decays of polarized Λ^0_b to spin-3/2 baryons, Phys. Lett. B649 (2007) 152, arXiv:hep-ph/0702191.
[7] Z. Ajaltouni, E. Conte, and O. Leitner, \(\Lambda_b^0 \) decays into \(\Lambda \)-vector, Phys. Lett. B614 (2005) 165, arXiv:hep-ph/0412116

[8] E799 collaboration, E. Ramberg et al., Polarization of \(\Lambda \) and \(\Lambda \) produced by 800-GeV protons, Phys. Lett. B338 (1994) 403

[9] NA48 collaboration, V. Fanti et al., A measurement of the transverse polarization of \(\Lambda \)-hyperons produced in inelastic pN reactions at 450 GeV proton energy, Eur. Phys. J. C6 (1999) 265

[10] HERA-B collaboration, I. Abt et al., Polarization of \(\Lambda \) and \(\Lambda \) in 920 GeV fixed-target proton-nucleus collisions, Phys. Lett. B638 (2006) 415, arXiv:hep-ex/0603047

[11] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005

[12] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.

[13] R. Lednicky, On evaluation of polarization of the charmed baryon \(\Lambda_c^+ \), Sov. J. Nucl. Phys. 43 (1986) 817.

[14] J. F. Donoghue, X.-G. He, and S. Pakvasa, Hyperon decays and \(\text{CP} \) nonconservation, Phys. Rev. D34 (1986) 833.

[15] J. F. Donoghue, B. R. Holstein, and G. Valencia, \(\text{CP} \) violation in low-energy in \(pp \) reactions, Phys. Lett. B178 (1986) 319.

[16] H.-Y. Cheng, Nonleptonic weak decays of bottom baryons, Phys. Rev. D56 (1997) 2799, arXiv:hep-ph/9612223.

[17] Fayyazuddin and Riazuddin, Two-body nonleptonic \(\Lambda_b^0 \) decays in quark model with factorization ansatz, Phys. Rev. D58 (1998) 014016, arXiv:hep-ph/9802326

[18] R. Mohanta et al., Hadronic weak decays of \(\Lambda_b^0 \) baryon in the covariant oscillator quark model, Prog. Theor. Phys. 101 (1999) 959, arXiv:hep-ph/9904324

[19] C.-H. Chou, H.-H. Shih, S.-C. Lee, and H.-n. Li, \(\Lambda_b^0 \to J/\psi \Lambda \) decay in perturbative QCD, Phys. Rev. D65 (2002) 074030, arXiv:hep-ph/0112145.

[20] Z.-T. Wei, H.-W. Ke, and X.-Q. Li, Evaluating decay rates and asymmetries of \(\Lambda_b^0 \) into light baryons in LFQM, Phys. Rev. D80 (2009) 094016, arXiv:0909.0100.

[21] CDF collaboration, T. Aaltonen et al., First observation of heavy baryons \(\Sigma_b \) and \(\Sigma_b^* \), Phys. Rev. Lett. 99 (2007) 202001, arXiv:0706.3868

[22] CDF collaboration, T. Aaltonen et al., Measurement of the masses and widths of the bottom baryons \(\Sigma_b^{**-} \) and \(\Sigma_b^{*-} \), Phys. Rev. D85 (2012) 092011, arXiv:1112.2808
[23] LHCb collaboration, R. Aaij et al., *Observation of excited Λ₀ b baryons*, Phys. Rev. Lett. 109 (2012) 172003, arXiv:1205.3452.

[24] T. Mannel and S. Recksiegel, *Flavor changing neutral current decays of heavy baryons: the case Λ₀ b → Λγ*, J. Phys. G24 (1998) 979, arXiv:hep-ph/9701399.

[25] F. Legger and T. Schietinger, *Photon helicity in Λ₀ b → pKγ decays*, Phys. Lett. B645 (2007) 204, arXiv:hep-ph/0605245.

[26] J. Hrivnac, R. Lednicky, and M. Smizanska, *Feasibility of beauty baryon polarization measurement in the Λ₀ J/ψ decay channel with the pp collider experiment*, J. Phys. G21 (1995) 629, arXiv:hep-ph/9405231.

[27] M. Adinolfi et al., *Performance of the LHCb RICH detector at the LHC*, arXiv:1211.6759 submitted to Eur. Phys. J. C.

[28] A. A. Alves Jr et al., *Performance of the LHCb muon system*, JINST 8 (2013) P02022, arXiv:1211.1346.

[29] R. Aaij et al., *The LHCb trigger and its performance in 2011*, JINST 8 (2013) P04022, arXiv:1211.3055.

[30] T. Sjöstrand, S. Mrenna, and P. Skands, *PYTHIA 6.4 Physics and manual*, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[31] I. Belyaev et al., *Handling of the generation of primary events in GAUSS, the LHCb simulation framework*, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.

[32] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Meth. A462 (2001) 152.

[33] P. Golonka and Z. Was, *PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays*, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[34] GEANT4 collaboration, J. Allison et al., *Geant4 developments and applications*, IEEE Trans. Nucl. Sci. 53 (2006) 270; GEANT4 collaboration, S. Agostinelli et al., *GEANT4: A simulation toolkit*, Nucl. Instrum. Meth. A506 (2003) 250.

[35] M. Clemencic et al., *The LHCb simulation application, GAUSS: design, evolution and experience*, J. of Phys: Conf. Ser. 331 (2011) 032023.

[36] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, *Classification and regression trees*, Wadsworth international group, Belmont, California, USA, 1984.

[37] R. E. Schapire and Y. Freund, *A decision-theoretic generalization of on-line learning and an application to boosting*, Jour. Comp. and Syst. Sc. 55 (1997) 119.
[38] T. Skwarnicki, *A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances*, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[39] M. Pivk and F. R. Le Diberder, *sPlot: a statistical tool to unfold data distributions*, Nuclear Instruments and Methods in Physics Research A555 (2005) 356, arXiv:physics/0402083.

[40] Y. Xie, *sFit: a method for background subtraction in maximum likelihood fit*, arXiv:0905.0724.