Usuf, E; Bottomley, C; Adegbola, RA; Hall, A; (2014) Pneumococcal carriage in sub-Saharan Africa—a systematic review. PloS one, 9 (1). e85001. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0085001

Downloaded from: http://researchonline.lshtm.ac.uk/1496185/

DOI: https://doi.org/10.1371/journal.pone.0085001

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Pneumococcal Carriage in Sub-Saharan Africa—A Systematic Review

Effua Usuf1*, Christian Bottomley2, Richard A. Adegbola3, Andrew Hall4

1 Child Survival, Medical Research Council The Gambia Unit, Fajara, The Gambia, 2 Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom, 3 GlaxoSmithKline Vaccines, Wavre, Belgium, 4 Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, United Kingdom

Abstract

Background: Pneumococcal epidemiology varies geographically and few data are available from the African continent. We assess pneumococcal carriage from studies conducted in sub-Saharan Africa (sSA) before and after the pneumococcal conjugate vaccine (PCV) era.

Methods: A search for pneumococcal carriage studies published before 2012 was conducted to describe carriage in sSA. The review also describes pneumococcal serotypes and assesses the impact of vaccination on carriage in this region.

Results: Fifty-seven studies were included in this review with the majority (40.3%) from South Africa. There was considerable variability in the prevalence of carriage between studies (I-squared statistic = 99%). Carriage was higher in children and decreased with increasing age, 63.2% (95% CI: 55.6–70.8) in children less than 5 years, 42.6% (95% CI: 29.9–55.4) in children 5–15 years and 28.0% (95% CI: 19.0–37.0) in adults older than 15 years. There was no difference in the prevalence of carriage between males and females in 9/11 studies. Serotypes 19F, 6B, 6A, 14 and 23F were the five most common isolates. A meta-analysis of four randomized trials of PCV vaccination in children aged 9–24 months showed that carriage of vaccine type (VT) serotypes decreased with PCV vaccination; however, overall carriage remained the same because of a concomitant increase in non-vaccine type (NVT) serotypes.

Conclusion: Pneumococcal carriage is generally high in the African continent, particularly in young children. The five most common serotypes in sSA are among the top seven serotypes that cause invasive pneumococcal disease in children globally. These serotypes are covered by the two PCVs recommended for routine childhood immunization by the WHO. The distribution of serotypes found in the nasopharynx is altered by PCV vaccination.

Introduction

The human nasopharynx is the main reservoir for pneumococci. The bacteria which adhere to pharyngeal epithelial cells through epithelial receptor molecules may be acquired very early in life [1,2], and in most children the pneumococcus is present in the nasopharynx at some point in the first few years of life [3]. Carriage is generally higher in developing countries and among economically deprived populations [4,5]. The prevalence of carriage might also vary between developing countries. In one study, Abdullahi et al suggested that colonisation prevalence in East and Southern Africa is substantially lower than in the Gambia [6]. High prevalence have however been reported in Ethiopia and Mozambique.

Carriage is a prerequisite for disease [3,7] and because it is much more common than a disease outcome, it may be a valuable measure of the efficacy of new pneumococcal vaccines [8]. The relation between carriage and disease was first demonstrated in a cohort of infants [9]. Subsequent studies showed that carriage is a risk factor for acute and recurrent otitis media in children [10,11]. Other studies have shown that bacterial carriage densities may be related to the risk of disease in adults and children [12,13], and O’Brien et al have suggested that PCV may reduce carriage density in children [14].

Since the introduction of PCV, several studies have reported a reduction in invasive pneumococcal disease (IPD). However, this is frequently accompanied by a change in the distribution of circulating serotypes. A decrease in vaccine type (VT) IPD and
an increase in non-vaccine type (NVT) IPD have been reported in America [15], Spain [16], Canada [17] and Australia [18]. In particular, serotype 19A has been isolated more frequently after the introduction of PCV 7 [19–22].

This review of pneumococcal carriage in sSA aims to: 1) describe the variability in carriage prevalence across countries in sSA; 2) describe the distribution of serotypes, and 3) assess the impact of pneumococcal vaccination on carriage of VT and NVT serotypes.

Methods
A comprehensive literature search strategy was developed to identify published articles describing pneumococcal carriage in sSA (Appendix S1). The search was conducted in December 2011 using the electronic databases MEDLINE (from 1950), EMBASE (from 1947) and African Index Medicus (AIM). To ensure the retrieval of relevant articles, the search was performed by exploring and combining medical subject headings (MeSH) and free search terms relating to carriage, nasopharyngeal, oropharyngeal, etc.

Figure 1. Flow chart for eligible articles.
doi:10.1371/journal.pone.0085001.g001
First author,(ref)	Country	Year	Age	Population	Swab type	Route	Swabs/person
Central Africa							
Rowe, [47]	CAR	1995	2 m–58 m	opd^	c.alginate	NPS	single
Ndip, [48]	Cameroon	2004	10 y–21 y	school^	ns	OPS	single
East Africa							
Ringertz, [49]	Ethiopia	1987	< 5 y	comm	c.alginate	NPS	single
Rusen, [50]	Kenya	1990	< 5 y	opd^	c.alginate	NPS	single
Joloba, [51]	Uganda	1995	< 3 y	opd^	c.alginate	NPS	single
Batt, [52]	Tanzania	2000	< 7 y	comm	cotton	OPS	single
Scott, [53]	Kenya	2000	< 7 y	comm/hosp	dacron	NPS	single
Nyandiko, [54]	Kenya	2003	< 42 m	opd^	dacron	NPS	single
Abdullahi, [6]	Kenya	2004	all	comm	rayon	NPS	twice
Blossom, [55]	Uganda	2004	20 y–55 y	HIV	BBL	OPS	single
Abdullahi, [56]	Kenya	2006	< 5 y	opd^	rayon	NPS	single/multiple^a
Haug, [57]	Ethiopia	2003/6	1 y–5 y	comm	ns	NPS	single
Skalet, [58]	Ethiopia	2006	< 10 y	comm	ns	NPS	single
Scott, [27]	Kenya	2004/7	< 1 y	EPI	rayon	NPS	single
Southern Africa							
Jacobs, [59]	South Africa	1977	all	hosp^	c.alginate	NPS	single
Klugman, [60]	South Africa	1977	< 5 y	DCC	c.alginate	NPS	single
Robins-Browne, [61]	South Africa	1981	< 12 y	hosp	c.alginate	NPS	single
Oppenheim, [62]	South Africa	1983	< 10 y	hosp	c.alginate	NPS	multiple
Frederiksen, [63]	Zambia	1986	< 10 y	opd^	cotton	OPS	single
Woolfson, [64]	Zambia	1994	< 6 y	opd^	c.alginate	NPS	single
Mthwalo, [65]	Lesotho	1995	< 5 y	comm	c.alginate	NPS	single
Yomo, [66]	Malawi	1995	< 5 y	MCH	cotton	both	multiple
Feikin, [67]	Malawi	1997	2 w–59 m	opd^	ns	NPS	single
Feikin, [68]	Malawi	1997	2 w–59 m	opd^	ns	NPS	multiple
Huebner, [69]	Botswana	1997	2 m–5 y	opd/ward	c.alginate	NPS	single
Gordon, [70]	Malawi	1998	all	ns	cotton	NPS	single
McNally, [36]	South Africa	2001	1 m–59 m	hosp^	wire	NPS	single
Cotton, [71]	South Africa	2002	8 w–5 y	HIV	wire	NPS	single
Pembra, [45]	South Africa	2002	adults	HIV	c.alginate	Both	twice
Gill, [45]	Zambia	2003	6 w–18 m	HIV+ve/–ve	c.alginate	NPS	single/multiple^a
Valles, [72]	Mozambique	2003	< 5 y	opd^	c.alginate	NPS	Single
von Gottberg, [73]	South Africa	2006	all	hosp^	dacron	NPS	single
Mbelle, [28]	South Africa	1999	< 1 y	comm	c.alginate	NPS	multiple
Huebner, [74]	South Africa	2000	2 m–5 y	clinic^d	c.alginate	NPS	single
Mwenya, [75]	Zambia	2002	6 m–14 y	HIV	rayon	NPS	single
Marcus, [76]	South Africa	1993	3 m–8 y	school	c.alginate	NPS	single
West Africa							
Hansman, [77]	Nigeria	1977	ns	opd^	ns	NPS	single
Lloyd- Evans, [78]	Gambia	1989	all	comm/hosp	cotton	NPS	single/multiple^a
Obaro, [30]	Gambia	1995	2 y	comm	ns	NPS	single
Denno, [79]	Ghana	1996	< 1 y	opd^	wire	NPS	single
Kacou-Ndouba, [80]	Ivory Coast	1997	< 5 y	EPI	c.alginate	NPS	single
Obaro, [25]	Gambia	2000	< 1 y	EPI	cotton	NPS	twice
Darboe, [81]	Gambia	2001	all	comm	c.alginate	NPS	multiple
Adegbola, [82]	Gambia	2001	3–4 y	comm	c.alginate	NPS	single
Hill, [83]	Gambia	2003/4	all	comm	c.alginate	NPS	single
ryngal, *Streptococcus pneumoniae*, serotypes, pneumococcal vaccine and specific names of the African countries. Titles and abstracts were reviewed and duplicates, non-relevant studies, and those involving streptococcal infections other than *S. pneumoniae* were excluded (Figure 1). The full texts of potential papers were then screened for eligibility.

Inclusion and exclusion criteria

The review was limited to studies from countries within the sSA region that reported the prevalence of carriage with or without serotyping of the pneumococcal isolates. We used data from both hospital and community based studies that collected swabs from either the nasopharynx or oropharynx. The search was limited to human subjects but there was no restriction on the age of participants, study design or language of publication. Bibliographies of relevant papers and review papers were searched to identify articles that may have been missed in the electronic search.

Data analysis

Data were obtained for the following variables: prevalence of *S. pneumoniae*, country, first author, year the study was conducted (or year of publication if the study year was not reported), age of participants, number of swabs collected per individual, health of the population swabbed, rural or urban setting, and season or months of the year when the study was conducted. The data entered in an Excel spread sheet and Stata version 12 was used for all analyses. For studies with multiple swabs per individual, only results from the first swab were included in the analysis and for those with interventions, either PCV or other interventions such as antibiotics, only the control arm was included in the analysis. To assess the impact of PCV we used data from randomised trials where PCV was the intervention. The extracted data were reviewed independently by a second reviewer who checked the data to ensure completeness using the template prepared for data extraction. To describe the prevalence of carriage by age, the studies were grouped as: <5 years (children), 5–15 years (children), and >15 years (adults). Studies that recruited children in both age groups were assigned to the age group 5–15 years. Studies where participants were recruited across child and adult age groups, and where suitable stratified results were unavailable were excluded from the analysis of carriage by age. A random-effects model was used to summarise carriage by age group across the different studies. Studies where the standard error of the prevalence could not be computed were excluded from this analysis. The effects of region, season and urban/rural location on carriage were examined by comparing between studies using random effects model (meta-regression). For each study that reported carriage by gender, the absolute difference in prevalence between males and females (risk difference) was calculated and statistical significance was determined using Fisher’s exact test.

Table 1.

First author,(ref)	Country	Year	Age	Population	Swab type	Route	Swabs/person
Hill, [2]	Gambia	2008	<1 y	comm	c.alginate	NPS	multiple
Nwachukwu, [37]	Nigeria	2008	2–59 m	EPI	ns	NPS	single
Bere, [84]	Burkina Faso	2000	<5 y	MCH	c.alginate	NPS	single
Cheung, [29]	Gambia	2003	9–27 m	comm	ns	NPS	multiple
Kandakai-Olukemi, [85]	Nigeria	2009	15–25 y	school	cotton	NPS	single
Mureithi, [86]	Gambia	2009	19–50 y	comm	ns	NPS	single
Darboe, [1]	Gambia	2010	<1 y	clinic	c.alginate	NPS	multiple
Donkor, [87]	Ghana	2006	<13 y	hosp	ns	NPS	single
Hill, [88]	Gambia	2010	All	comm	ns	NPS	multiple
Racou-N'douba, [89]	Ivory Coast	2010	<5 y	ns	ns	ns	single
Ota, [26]	Gambia	2011	<1 y	EPI	c.alginate	NPS	single
Roca, [24]	Gambia	2006/8	All ages	comm	c.alginate	NPS	single

Ref- reference, N-number of individuals, ns- not stated; NPS- Nasopharyngeal swab; OPV- Oropharyngeal swab; c.alginate- Calcium Alginate; w-week, m-months, y-years, comm- community, opd-outpatient department, hosp-hospital, EPI -Expanded programme on immunisation clinic, DCC- day care centre, MCH- mother & child clinic, any illness,

1 with respiratory tract infection,

2 perinatal follow up HIV clinic used control group,

3 routine check or immunisation,

4 medical conditions as well as routine checks,

5 minor illnesses no hospitalisations,

6 some swabbed once others swabbed more than once,

7 children and carers sick and well,

8 adults also swabbed age not specified,

9 other severe pneumonia,

10 tuberculosis patients,

11 year published,

12 patients returning for review after minor illness.

doi:10.1371/journal.pone.0085001.t001
Table 2. Pneumococcal carriage prevalence in sub Saharan Africa by age.

A

First author, year	Country	Prevalence	95% CI	% Wt
Hansman, 1977	Nigeria	44.4	34.6-54.2	2.50
Jacobs, 1977	South Africa	41.8	37.6-45.9	2.58
Klugman, 1977	South Africa	58.2	54.6-61.8	2.59
Ringerz, 1987	Ethiopia	89.8	88.0-91.6	2.60
Lloyd-Evans, 1989	Gambia	85.1	83.0-87.2	2.60
Rusen, 1990	Kenya	22.5	13.5-31.6	2.51
Wolfson, 1994	Zambia	71.9	66.4-77.4	2.57
Mthwalo, 1995	Lesotho	59.6	55.4-63.8	2.58
Yomo, 1995	Malawi	47.5	40.6-54.4	2.55
Rowe, 1995	CAR	71.2	66.8-75.6	2.58
Joloba, 1995	Uganda	61.8	54.9-68.7	2.55
Obaro, 1995	Gambia	93.8	90.1-97.5	2.59
Denno, 1996	Ghana	51.4	45.8-57.0	2.57
Racou-Ndouba, 1997	Ivory Coast	63.3	56.9-69.7	2.56
Feikin, 1997	Malawi	87.0	84.8-89.2	2.59
Huebner, 1997	Botswana	69.1	63.6-74.5	2.57
Feikin, 1997	Malawi	84.0	81.6-86.4	2.59
Gordon, 1998	Malawi	42.0	35.4-48.1	2.56
Mbelle, 1999	South Africa	61.0	54.8-67.2	2.56
Huebner, 2000	South Africa	39.9	34.4-45.4	2.57
Obaro, 2000	Gambia	92.1	88.4-95.8	2.59
Bere, 2000	Burkina Faso	50.7	47.4-54.0	2.59
Adegbola, 2001	Gambia	87.0	80.5-93.5	2.55
McNally, 2001	South Africa	47.6	42.4-52.8	2.57
Darboe, 2001	Gambia	81.0	73.2-88.3	2.53
Cotton, 2002	South Africa	22.2	16.5-27.9	2.56
Hill, 2003	Gambia	93.4	88.7-98.1	2.58
Cheung, 2003	Gambia	86.1	84.0-88.2	2.60
Gill, 2003	Zambia	25.8	23.6-28.1	2.59
Nyandiko, 2003	Kenya	35.9	25.2-46.5	2.48
Valles, 2003	Mozambique	87.0	83.1-90.9	2.58
Haug, 2003	Ethiopia	93.3	88.8-97.8	2.58
Scott, 2004	Kenya	78.0	73.0-83.0	2.57
Abdullahi, 2004	Kenya	57.0	52.4-61.6	2.58
Abdullahi, 2006	Kenya	76.0	65.4-86.6	2.48
Hill, 2008	Gambia	86.0	81.6-90.4	2.58
Nwachukwu, 2008	Nigeria	69.0	58.2-79.8	2.47
Kacou-N’douba, 2010	Ivory Coast	27.5	24.7-30.3	2.59
Darboe, 2010	Gambia	21.0	15.3-26.7	2.56

Overall prevalence: 63.2, 55.6, 70.8, 100.00

I² (%), p-value: 99.33, <0.001

B

First author, year	Country	Prevalence	95% CI	% Wt
Robins-Browne, 1981	South Africa	31.0	27.2-34.8	7.80
Oppenheim, 1983	South Africa	24.5	23.0-25.9	7.85
Frederiksen, 1986	Zambia	16.0	11.4-20.6	7.78
Lloyd-Evans, 1989	Gambia	63.0	56.9-69.1	7.72
Data from four of the studies were pooled to assess the impact of PCV on overall carriage and the carriage of VT and NVT serotypes among children 9 to 24 months. In all four studies children who received no PCV were compared with children who received at least three doses of PCV. Random effects models were used to estimate the average effect of PCV (DerSimonian-Laird estimate) across studies and to assess the degree of heterogeneity between studies.

Serotypes isolated in each study were ranked in order of prevalence and the five most prevalent serotypes in each study were identified. For each serotype, we determined the proportion of studies in which it was among five most prevalent serotypes.

Quality of the studies
The studies were reviewed for quality using the WHO guidelines for conducting nasopharyngeal studies. The guidelines are for the material used for sample collection, the technique of sample collection, and the transport media [23]. For each study, we identified potential sources of bias in the method of selection of study subjects.

Results
Characteristics of the studies
A total of 57 studies were included in this review (Table 1). Southern Africa contributed the most studies, 23(40.3%). Twenty studies (35.1%) were from West Africa with more than half of these from The Gambia. There were 12(21.1%) and 2(3.5%) studies from East and Central Africa respectively.

The majority of the studies (87.7%) collected nasopharyngeal swabs, only 4(7.0%) collected oropharyngeal swabs, and 2(3.5%) studies collected both. In one study, the anatomical site of sampling was not reported. Calcium alginate was the most
common type of swab 26 (45.6%). Other types used were cotton 7 (12.3%), Dacron 3 (5.3%), Rayon 4 (7.0%), BBL 1 (1.8%) and wire 3 (5.3%). Thirteen studies (22.8%) did not report the type of swab that was used.

The majority of the studies (75.4%) were conducted in children, 11 (19.3%) involved both children and adults and only 3 (5.3%) studies exclusively recruited adults. Most studies (53.0%) were in healthy individuals, 14.0% had both healthy and sick patients, 24.5% were conducted in outpatients, 6.9% in HIV positive populations and in 1.7% the population was not stated. In 15 (26.3%) studies, participants were swabbed more than once.

Pneumococcal carriage by age and geographic region

Carriage was highest for children less than 5 years and decreased with age (Table 2 and Figures S1, S2 & S3). High prevalence (≥83%) in children were recorded in Ethiopia, Mozambique (only one study) and The Gambia. The Gambia also had the highest prevalence in adults (Table 2). The prevalence of carriage varied considerably between studies. The I^2 index, which assesses heterogeneity between studies, was greater than 99% in all the age categories. In children less than 5 years the prevalence was higher in studies conducted in a rural, rather than urban setting. Carriage was not associated with season, population health, swab type or year (Table 3).

Table 3. Differences in the prevalence of pneumococcal carriage in sub Saharan Africa.

Region	Prevalence (95%CI)	N₊	Children <5 years	pvalue	N	Children 5–15 years	pvalue	N	Adults >15 years	pvalue
East	64.5 (43.5–85.5)	8	0.73	4	0.72	2	0.06			
Central	71.2	1								
Southern	56.4 (44.8–67.9)	15								
West	68.8 (55.3–82.2)	15								
Rural	80.2 (70.5–89.9)	16								
Urban	53.4 (45.2–61.7)	15								
Dry	64.7 (54.8–74.6)	13	0.54	5	0.31	4	0.57			
Rainy	58.4 (31.1–85.9)	6								
Well	69.2 (59.5–78.9)	21	0.11	8	0.09	9	0.33			
Sick^a	64.3 (50.2–78.4)	10								
HIV	22.2	1								
Before 2000	63.7 (54.4–72.9)	19								
After 2000	62.8 (50.4–75.3)	20								
NPS	64.6 (57.1–72.2)	37								
OPS		0								
WHO^d	60.9 (50.5–71.3)	21								
Others	59.9 (44.1–75.8)	10								

na- not applicable,
^aexcluded studies with both sick and well when prevalence was not available by category.
^ball illnesses including pneumonia & upper respiratory tract infections.
^cPCV first licensed 2000,
^dWHO recommended calcium alginate & Dacro; p-values and prevalences based on meta-regression; N₊ = no. of studies;
Data were used from N = 55 studies. Three studies contributed data to all three age groups, five studies contributed to <5 yrs and >15 yrs, 31 studies contributed to <5 yrs only, 10 studies contributed to 5–15 yrs only, and five studies contributed to >15 yrs only. Settlement, season, population, swab route and swab type were not recorded in all studies, and for these variables we have used studies where data were available.
doi:10.1371/journal.pone.0085001.t003

Pneumococcal carriage in Sub-Saharan Africa

Eleven studies reported the prevalence of carriage by gender. Three of these studies reported no association, one study reported a higher prevalence in males compared to females ($p = 0.05$), and one study reported a higher prevalence in females ($OR = 0.61; 95% CI: 0.39–0.95; p = 0.02$). From our analysis, there was no significant difference in the risk of carriage between males and females in any of the remaining six studies (Table 4).

Pneumococcal carriage and gender

Carriage was highest for children less than 5 years and decreased with age (Table 2 and Figures S1, S2 & S3). High prevalence (≥83%) in children were recorded in Ethiopia, Mozambique (only one study) and The Gambia. The Gambia also had the highest prevalence in adults (Table 2). The prevalence of carriage varied considerably between studies. The I^2 index, which assesses heterogeneity between studies, was greater than 99% in all the age categories. In children less than 5 years the prevalence was higher in studies conducted in a rural, rather than urban setting. Carriage was not associated with season, population health, swab type or year (Table 3).
Table 4. Prevalence of pneumococcal carriage in Africa by gender.

Country	Ref	Age grp	Prevalence % (n/N)	RD	95%CI	Pvalue	
			Male	Female			
Uganda	[51]	Children	62.3 (66/106)	61.2 (52/85)	0.01	−0.13,0.15	0.88
Uganda	[55]	Adults	25.9 (28/108)	18.3 (80/438)	0.08	−0.01,0.17	0.08
South Africa\(^a\)	[36]	Children	ns	ns	-	0.02	
South Africa\(^b\)	[45]	Adults	8.8 (75/854)	0.0 (0/2)	0.09	na	1.00
Ghana	[79]	Infants	47.5 (75/158)	49.7 (76/153)	−0.02	−0.13,0.09	0.73
Nigeria	[37]	Children	ns/55	(ns/45)	-	0.05	
Zambia	[64]	Children	70.9 (93/131)	71.9 (92/128)	−0.01	−0.12,0.10	0.88
Kenya\(^a\)	[6]	All ages	ns	ns	-	-	nd
Kenya	[54]	Children	32.3 (11/34)	39.5 (17/43)	−0.07	−0.29,0.14	0.64
Gambia	[83]	All ages	ns	ns	-	-	nd
Malawi	[66]	Children	48.9 (ns)	46.3 (ns)	0.03	-	nd

RD: Risk difference, ns: not stated, nd: no difference reported in paper, na – not applicable, Ref-reference.

\(^a\)OR = 0.61 (95% CI: 0.39, 0.95), \(^b\)HIV infected mineworkers 99.8% male, p-value based on Fisher’s exact test.

doi:10.1371/journal.pone.0085001.t004

PCV and pneumococcal carriage

Seven studies from three countries (The Gambia, Kenya and South Africa) assessed the association between PCV and carriage. One study from the Gambia was a village cluster randomised trial with adults and older children in 10 villages receiving one dose of PCV 7, and adults and older children in 11 control villages receiving meningococcal serogroup C vaccine. In both arms of the trial, infants aged between 2 and 11 months received three doses of the vaccine given at monthly intervals, and children aged between 12 and 30 months received two doses at one month interval between doses. Infants born during the study received three doses of the vaccine given monthly at the ages 2, 3, and 4 months [24]. The other six studies compared carriage in vaccinated and unvaccinated children using data from individually randomised control trials (RCTs). Four of these studies collected carriage data on all children that participated in the trial [25–28] while two studies used data from a subsample of children enrolled in the original trial [29,30] (Table 5).

The participants in all the PCV studies were children from the general population presenting at infant welfare clinics for immunisation, except for the village cluster randomized trial which recruited children and adults in the community. Carriage of vaccine type (VT) serotypes was reduced by vaccination, while carriage of non-vaccine type serotypes was greater among vaccinated children (Figure 2 & Table 5). The prevalence of overall carriage was not affected by vaccination.

Pneumococcal carriage serotypes in Africa

Twenty eight (49.1%) of the studies had collected data on serotypes and in total 6904 isolates were serotyped in these studies. The seven studies with PCV intervention were excluded from this analysis. There were 70 serotypes and serogroups. Serotype 19F was among the five most prevalent serotypes in 14/21 studies, serotype 6B in 13/21, serotype 14 in 13/21, serotype 6A in 11/21 and serotype 23F in 9/21 studies. Some studies only described serogroups, and in these studies serogroups 19 and 6 were the most common. In the PCV 9 vaccine trial in South Africa, serotypes 6B, 19F and 23F were the most common vaccine serotypes in both vaccinated (6B 3.3%, 19F 7.8%, 23F 2.9%) and control (6B 11.7%, 19F 13.4%, 23F 5.8%) groups, and serotype 6B and 19F were significantly less frequent in the PCV 9 vaccinated children. 15 (9.1%), 6A (5.8%) and 19A (2.9%) were the most common NVT serotypes/serogroup in the vaccines, with serogroup 15 significantly increased in vaccinated compared to control children (9.1% versus 3.8%, p value 0.017) [28].

In The Gambia, the carriage study during the PCV 9 trial found that serotype 19F (11.5%) was again the most common VT serotype isolated and serogroup 15 was the most common NVT, and more prevalent in the PCV 9 vaccinated children (11.8% versus 8.5%, P<0.05). When the study children were swabbed a second time about 10 months later, NVT serotypes 10, 21 and 35B were isolated more frequently from PCV 9 vaccinated children than controls. There was no longer any difference between the groups for carriage of serotype 19F [29]. In the cluster randomised trial conducted in The Gambia, serotypes 23F, 6A, 6B, 3, 11 and 7C were the most common serotypes before vaccination and serotypes 3, 11, 19F and 6A were the most common serotypes after vaccination [24].

Discussion

This systematic review of pneumococcal carriage in sSA summarises the prevalence of carriage, distribution of serotypes and the effect of PCV on carriage. The majority of the studies were from Southern and West Africa, particularly South Africa and the Gambia. There were only two studies from Central Africa. We found that the prevalence of pneumococcal carriage in sSA is generally high but there is much variation between countries, particularly among older age groups. Carriage was higher in children than adults as reported outside sSA [31,32]. A small number of studies conducted outside sSA have reported a higher prevalence of carriage in males compared to females [33–35]. However, in this review gender was not associated with
Table 5. Studies of pneumococcal conjugate vaccination and carriage in Africa (n = 9,549).

1st Author	Year	Country	Valency, Study design	Age PCV administered (w/m/y)	Age swabbed (w/m/y)	Serotypes PCVb⁺c	RD	pvalue
SK Obaro	1995	Gambia	PCV 5	2, 3, 4 w		PCV2⁻¹		
PPV	18 m					Control		
RCT^a			24 m	Overall	22/26(84.6)	150/160(93.8)	−0.09	0.112
VT			13/26(50.0)		144/160(90.0)	−0.40 <0.001		
NVT			20/26(76.9)		68/160(42.5)	0.34 0.001		
N.Mbelle	1999	S. Africa	PCV 9	6, 10, 14 w		PCV3		
RCT			6 w	Overall	64/250(25.6)	74/250(29.6)	−0.04	0.368
VT			10 w	Overall	110/249(44.2)	109/249(43.8)	0.004	1.000
NVT			14 w	Overall	115/246(46.7)	127/247(51.4)	−0.05	0.322
VT^c			9 m	Overall	130/242(53.7)	145/239(60.7)	−0.07	0.140
NVT					43/242(17.8)	86/239(36.0)	−0.18	<0.001
SK Obaro	2000	Gambia	PCV 9	2, 3, 4 m		PCV2		
RCT			5 m	Overall	92/100(92.0)	94/102(92.2)	−0.002	1.000
VT					54/100(54.0)	64/102(62.7)	−0.09	0.253
NVT					45/100(45.0)	33/102(32.4)	0.13	0.083
VT^d			9 m	Overall	83/98(84.7)	87/99(87.9)	−0.03	0.541
NVT					61/98(62.2)	74/99(74.7)	−0.13	0.067
Y.B.Cheung	2003	Gambia	PCV 9	2, 3, 4 m		PCV2		
nested			9–15 m	Overall	943/1078(87.5)	914/1061(86.1)	0.01	0.371
Cohort					237/1051(22.5)	416/1041(40.0)	−0.17	<0.001
RCT					449/1051(42.7)	280/1041(26.9)	0.16	<0.001
VT			21–27 m	Overall	793/967(82.0)	813/961(84.6)	−0.03	0.143
NVT					230/922(24.9)	381/925(41.2)	−0.16	<0.001
VT^e			11 m	Overall	373/922(40.5)	242/925(26.2)	0.14	<0.001
NVT					28/98(28.6)	16/99(16.2)	0.12	0.041
J. A Scott*	2004/7	Kenya	PCV 7	0 or 6 & 10, 14 w		PCV2⁻¹		
PPV/PCV7	36 w					PCV7/PPV⁻¹		
RCT	n.s(50)				n.s(31.0)	−0.06 0.280		
NVT	n.s(62)				n.s(51.0)	0.11 0.250		
M.Ota*	2011	Gambia	PCV 7	2, 3, 4 m		PCV2⁻¹		
PPV	10 m					PCV2⁻¹		
RCT								
VT								
NVT								
N.V.T								
A.Roca*	2003/8	Gambia	PCV 7	All ages		PCV2		
clustered								
2–5 y^f			2–5 y^f	Overall	79/90(87.8)	53/59(89.8)	−0.02	0.796
The five serotypes that were most common in this review are among the seven that cause most global IPD in children; PCV 10 and PCV 13 will cover at least 70% of the cases of IPD caused by these serotypes [38,39]. The other two serotypes, serotypes 1 and 5, are rarely isolated from carriage studies, although they are often associated with pneumococcal disease epidemics [40–42]. Serotypes also differ in their ability to cause invasive pneumococcal disease [43].

It has been suggested that the impact of PCV on disease can be determined by pneumococcal carriage studies because it is newly acquired serotypes that lead to disease [9]. In this review, studies that assessed the impact of PCV on carriage generally showed a decrease in carriage of VT and an increase in NVT serotypes, with no change in the overall prevalence of carriage. One study in this review, and one in native Indians have shown a gradual decrease in overall carriage following vaccination [24,35]. Continuous surveillance of circulating serotypes will be important as countries introduce PCV. Nasopharyngeal swabs are more sensitive for S.pneumoniae than the oral swabs [44,45]. The prevalence of carriage is therefore likely to be underestimated in the four studies that used oral swabs. The different lab methods used might also have been responsible for some of the variability in the prevalence of carriage reported in this review. WHO recommends calcium alginate or Dacron polyester swabs since cotton swabs suppress the pneumococcus [23]. However, only half of the studies (50.9%) followed the WHO guidelines, and in 13 (22.4%) the type of swab was not stated.

Nasopharyngeal swabs are more sensitive for S.pneumoniae than the oral swabs [44,45]. The prevalence of carriage is therefore likely to be underestimated in the four studies that used oral swabs. The different lab methods used might also have been responsible for some of the variability in the prevalence of carriage reported in this review. WHO recommends calcium alginate or Dacron polyester swabs since cotton swabs suppress the pneumococcus [23]. However, only half of the studies (50.9%) followed the WHO guidelines, and in 13 (22.4%) the type of swab was not stated.

Another source of variation between studies is the prevalence of antibiotic use, since antibiotics might reduce carriage [46]. Some studies excluded those individuals who had taken antibiotics from their analysis. However, even when these individuals were excluded, often different periods were used to define prior use.

We have combined results from all available published studies irrespective of the study population (unpublished studies were not included in this review). Study participants were recruited from the community, day care centres, schools and outpatient clinics and hospital wards. Hospital patients may have higher carriage than the rest of the population, particularly if they were admitted for pneumonia. Generally, we expect selection bias to be less in studies conducted in the community compared with studies that use outpatient clinics. In this review, 57.9% of the studies were conducted in hospital/clinic settings and 35.1% of the studies in the community.

We have summarised available data on pneumococcal carriage in sub Saharan Africa. There remain unexplained differences in carriage within the region, and multi centre studies may provide reasons for some of the differences seen. Pneumococcal carriage studies can show indirect effects of PCV by showing changes in unvaccinated age groups and can supplement disease surveillance studies as PCV is introduced in the region.

Table 5. Cont.

1st Author	Year	Country	Valency, Study design	Age PCV administered (w/m/y)	Age swabbed (w/m/y)	Serotypes	PCVb,c RD pvalue
RCT	VT	18/90(20.0)	17/59(28.8)	-0.09	0.239		
VT	NVT	61/90(67.6)	39/59(66.1)	0.02	0.860		
Overall	2–5 yi	23/30(76.7)	30/38(78.9)	-0.02	1.000		
VT	4/30(13.3)	9/38(23.7)	-0.10	0.360			
NVT	19/30(63.0)	23/38(60.5)	0.03	1.000			

w-weeks, m-months, y-years, RD- Risk difference- Risk in the PCV vaccinated group minus the risk in the control group calculated in Stata, PPV-Polyvalent polysaccharide vaccine, ns- not stated.

aChildren who received PCV 5 in an RCT and controls matched with age and place of residence who did not receive PCV, PCV$^{b+c}$ received b+c doses of PCV doses with

bfor the primary series and

cfor booster dose,

dincludes vaccine associated serotypes.

ereceived PCV7 at 6, 10 and 14 weeks,

freceived PCV7 at 6, 10 and 14 weeks or at 0, 10 and 14 weeks,

gOverall carriage for both groups,

h4–6 months after vaccination,

i22 months after vaccination;

jthese three studies were not included in the meta-analysis (in these 3 studies, both groups received PCV). P-value obtained using Fisher's exact test.

doi:10.1371/journal.pone.0085001.t005
The meta-analysis includes a subset of data from four individually randomized studies where children in the vaccinated arm received at least three doses of PCV and children in the control arm were not vaccinated. Only children less than 2 years were included in this analysis-PCV9; Mbelle(1999) carriage at 9 months (vaccine type serotypes includes vaccine associated serotypes), Obaro(1995) carriage at 24months-PCV 5, Obaro(2000) carriage at 9 months- PCV 9 and Cheung carriage at 9-15months- PCV 9

Figure 2. A comparison of pneumococcal carriage in vaccinated and unvaccinated children aged 9–24 months. A positive risk difference indicates higher prevalence in the vaccinated arm. doi:10.1371/journal.pone.0085001.g002

Supporting Information

Figure S1 Pneumococcal carriage in children <5 years. (Forest plot). (TIF)

Figure S2 Pneumococcal carriage in children 5–15 years. (Forest plot). (TIF)

Figure S3 Pneumococcal carriage in adults >15 years. (Forest plot). (TIF)

Checklist S1 Prisma checklist. (DOC)

Appendix S1 Search terms. (DOCX)
Protocol S1 Study Protocol.

(SCRIPT)

Acknowledgments
Sincere thanks to Sara Thomas at the London School of Hygiene and Tropical Medicine for assistance with the development of the search strategy.

References
1. Darboe MK, Fulford AJ, Secka O, Pennyce AM (2010) The dynamics of nasopharyngeal streptococcus pneumoniae carriage among rural Gambian mother-infant pairs. BMC Infect Dis 10:195.
2. Hill PC, Yin BC, Akintanya A, Sankareh K, Lahai G, et al. (2000) Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: A longitudinal study. Clinical Infectious Diseases 46:807–14.
3. Gray BM, Turner ME, Dillon HC Jr. (1982) Epidemiologic studies of Streptococcus pneumoniae in infants. The effects of season and age on nasopharyngeal acquisition and carriage in the first 24 months of life. J Pediatr 100:692–703.
4. Huang SS, Finkelstein JA, Rijals-Shiman SL, Kleinman K, Platt R (2004) Community-level predictors of pneumococcal carriage and resistance in young children. Am J Epidemiol 159:643–54.
5. Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, et al. (2004) Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis 38:632–9.
6. Abdullahi O, Nyoro J, Leswa P, Slack M, Scott JAG (2008) The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kīlīfī District, Kenya. Pediatr Infect Dis J 27:59–64.
7. Bogart D, De Groot R, Hemsas PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–54.
8. Rinta-Kokko H, Dagan R, Givon-Lavi N, Auranen K (2009) Estimation of vaccine efficacy against acquisition of pneumococcal carriage. Vaccine 27:3031–7.
9. Gray BM, Converse GM 3rd, Dillon HC Jr (1980) Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis 142:923–33.
10. Faden H, Duffy L, Waiselreld R, Wolf J, Krystofil D, et al. (1997) Relationship between nasopharyngeal colonization and the development of otitis media in children. Tonawanda/Williamsville Pediatrics. J Infect Dis 175:1440–5.
11. Syrjanen RK, Kilpi TM, Kaajalainen TH, Herva EE, Takala AK (2001) Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Pediatr 138:151–9.
12. Vu HT, Yoshida LM, Suzuki M, Nguyen HA, Nguyen CD, et al. (2011) Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children. Pediatr Infect Dis J 30:11–8.
13. Yang S, Lin S, Khalil A, Gaydos C, Nuemberger E, et al. (2005) Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. J Clin Microbiol 43:226–30.
14. O'Brien KL, Millar EV, Zell ER, Bronsdon MA, Reid R, et al. (2009) Systematic evaluation of serotypes causing invasive pneumococcal disease in the United States, 1995–1998: update from the Calgary-area Streptococcus pneumoniae research trial. J Infect Dis 196:1211–20.
15. Trotter CL, Waight P, Andrews NJ, Slack M, Efstratiou A, et al. (2010) Pneumococcal meningitis in children before and after the introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 28:e1–11.
16. Millar EV, O'Brien KL, Zell ER, Bronsdon MA, Reid R, et al. (2009) Nasopharyngeal carriage and carriage of pneumococci after pneumococcal vaccination. Lancet 373:1449–53.
17. Robinson KA, Baughman W, Rothrock G, Barrett NL, Pass M, et al. (2001) Epidemiology of invasive pneumococcal pneumonia in the United States, 1995–1998: Opportunities for prevention in the conjugate vaccine era. JAMA 285:1299–305.
18. Trottier CL, Waight P, Andrews NJ, Slack M, Efstratiou A, et al. (2010) Epidemiology of invasive pneumococcal pneumonia in the United States, 1995–1998: Opportunities for prevention in the conjugate vaccine era: England and Wales, 1996–2006. J Infect Dis 200:60–8.
19. Millar EV, O'Brien KL, Zell ER, Bronsdon MA, Reid R, et al. (2009) Nasopharyngeal carriage of Streptococcus pneumoniae in Navajo and White Mountain Apache children before and after the introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 28:711–6.
20. Mackenzie GA, Leach AJ, Carapetis JR, Fisher J, Morris PS (2010) Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infect Dis 10:304.
21. Scott JR, Millar EV, Lipitch M, Moulton LH, Weatherholtz R, et al. (2012) Impact of more than a decade of pneumococcal conjugate vaccine use on carriage and invasive potential in Native American communities. J Infect Dis 205:280–8.
22. McNally LM, Jerna PM, Gajee K, Burrow AM, Tomkins AM, et al. (2006) Lack of association between the nasopharyngeal carriage of Streptococcus pneumoniae and Staphylococcus aureus in HIV-1-infected South African children. Journal of Medical Microbiology 55:1040–4.
23. Nwachukwu NOA (2008) Streptococcus Pneumoniae carriage rates among infants in

Author Contributions
Conceived and designed the experiments: EU AH RA. Performed the experiments: EU AH RA. Analyzed the data: EU AH CB. Contributed reagents/materials/analysis tools: EU AH CB RA. Wrote the paper: EU CB RA AH.
64. Woolfson A, Huebner R, Wasas A, Chola S, Godfrey-Faussett P, et al. (1997) Nasopharyngeal carriage and antimicrobial resistance in isolates of Streptococcus pneumoniae and Haemophilus influenzae from healthy Filipino infants. J Clin Microbiol 33:3077-9.

65. Penha L, Charalambous S, von Gottberg A, Moloi V, et al. (2008) Antimicrobial resistance of nasopharyngeal isolates of Streptococcus pneumoniae and Haemophilus influenzae from children in the Central African Republic.

66. Ndiri RN, Ntie EA, Ndip LM, Nkeweng G, Akaoche JF, et al. (2008) Antimicrobial resistance of bacterial agents of the upper respiratory tract of school children in Bamenda, Cameroon.

67. Ringertz S, Muhe I, Kranz I, Hathaway A, Shamebo D, et al. (1993) Prevalence of potential respiratory disease bacteria in children in Ethiopia. Antimicrobial susceptibility of the pathogens and use of antibiotics among the children.

68. Ruse ND, Fraser-Roberts L, Slaney L, Ombette J, Lovgren M, et al. (1997) Impact of cotrimoxazole on non-susceptibility to antibiotics in Streptococcus pneumoniae carriage isolates among HIV-infected miners in South Africa.

69. Varon E, Levy G, De La Rocco F, Boubelet M, Dufere D, et al. (2000) Impact of antimicrobial therapy on nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, and Biafranella catarrhalis in children with respiratory tract infections. Clin Infect Dis 31:477-81.

70. Rowe AK, Deming MS, Schwartz B, Wasas A, Rolka D, et al. (2000) Impact of azithromycin administration for trachoma control on the carriage of antibiotic-resistant Streptococcus pneumoniae.

71. Scott JAG, Hall AJ, Hanington A, Edwards R, Mwarumba S, et al. (1998) Serotype distribution and prevalence of resistance to benzylpenicillin in three respiratory pathogenic species of Streptococcus pneumoniae isolates from the coast of Kenya. Clinical Infectious Diseases 27:1442-50.

72. Nyandiko WM, Greenberg D, Shany E, Yianoutsos CT, Musick B, et al. (2007) Nasopharyngeal Streptococcus pneumoniae among under-five year old children at the Mos Teaching and Referral Hospital, Eldoret, Kenya.

73. Bello MB, Bajaksouzian S, Palavecino E, Whalen C, Jacobs MR (2001) High prevalence of carriage of antibiotic-resistant Streptococcus pneumoniae in children in Kampala Uganda.

74. Bart SL, Charalambous BM, Solomon AW, Knirsch G, Massae PA, et al. (2003) Impact of levofloxacin on susceptibility to antibiotics in Streptococcus pneumoniae.

75. Mwenya DM, Charalambous BM, Phillips PP, Mwansa JC, Bart SL, et al. (2001) Impact of cotrimoxazole on carriage and antibiotic resistance of Streptococcus pneumoniae and Haemophilus influenzae in HIV-infected children in Zambia. Antimicrob Agents Chemother. 2001;55:3756-73.

76. Marou I, van Dyk JC (1996) Incidence of asymptomatic carriage of potentially pathogenic respiratory organisms among preschool Pretoria children. S Afr Med J 86:1132-4, 7.

77. Hanum D (1978) Chrompenicol-resistant pneumococci in West Africa. Lancet 1:102.

78. Lloyd-Evans N, O'Dempsey TJD, Baldwin I, Secka O, Demba E, et al. (1996) Nasopharyngeal carriage of pneumococci in Gambian children and in their families. Pediatr Infectious Disease Journal 15:866-71.

79. De Roux DM, Fruminger G, Gregory M, Steele RW (2002) Nasopharyngeal carriage and susceptibility patterns of Streptococcus pneumoniae in Kumasi, Ghana.

80. Kacou-N'Douha A, Bouzid SA, Guesseml KN, Kouassi-M'Bengue AG, Fayet-Kette AY, et al. (2001) Antimicrobial resistance of nasopharyngeal isolates of Streptococcus pneumoniae in healthy children: report of a study in 5-year-olds in Marcory, Abidjan, Cote d'Ivoire.

81. Darboe MK, Thurnham DI, Morgan G, Adegbola RA, Secka O, et al. (2007) Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study [see comment].

82. Huelnner RE, Wasas AD, Klugman KP (2000) Prevalence of nasopharyngeal antibiotic-resistant pneumococcal carriage in children attending private paediatric practices in Johannesburg. S Afr Med J 90:1116-21.

83. Mwanya DM, Charalambous BM, Phillips PP, Mwansa JC, Bart SL, et al. (2010) Impact of cotrimoxazole on carriage and antibiotic resistance of Streptococcus pneumoniae, Haemophilus influenzae in HIV-infected children in Zambia. Antimicrob Agents Chemother. 2010;54:3756-73.

84. Marcou I, van Dyk JC (1996) Incidence of asymptomatic carriage of potentially pathogenic respiratory organisms among preschool Pretoria children. S Afr Med J 86:1132-4, 7.

85. Mansan D (1978) Chrompenicol-resistant pneumococci in West Africa. Lancet 1:102.

86. Mureithi MW, Finn A, Ota MO, Zhang Q, Davenport V, et al. (2009) T-cell response to pneumococcal polysaccharides of high-dose vitamin A versus standard WHO protocol in Gambian mothers and infants: a randomised controlled trial [see comment].

87. Adegbola RA, Oluboro SK, Biney E, Greenwood BM (2001) Evaluation of Bimux new pneumococcal antigen urinary antigen test in children in a community with a high carriage rate of pneumococci.

88. Hill PC, Aikinsa A, Sankareh K, Cheung BY, Saaka M, et al. (2006) Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian villagers. Clinical Infectious Diseases 43:673-9.

89. Bere LC, Simpore J, Karou SD, Zeba B, Bere AP, et al. (2009) Antimicrobial resistance and serotype distribution of Streptococcus pneumoniae strains causing childhood infection in Burkina Faso. Pediatr Infect Dis Soc 12:1822-3.

90. Kandasai-Olukemi YT, Dido MS (2009) Antimicrobial resistance profile of Streptococcus pneumoniae isolated from the nasopharynx of secondary school students in Jos, Nigeria. Ann Afr Med 8:10-3.

91. Murechhi MW, Finn A, Ota MO, Zhang Q, Young V, et al. (2009) T cell memory response to pneumococcal polysaccharides in an area of high pneumococcal carriage and disease. J Infect Dis 200:783-93.

92. Donkor ES, Newman MJ, Oliver-Commey J, Bannerman E, Dayie NT, et al. (2009) Oropharyngeal colonization by Streptococcus pneumoniae among under-five year old children at the Mos Teaching and Referral Hospital, Eldoret, Kenya.

93. Haug S, Lakew T, Habtemariam G, Alemayehu W, Cevallos V, et al. (2010) Nasopharyngeal Streptococcus pneumoniae among under-five year old children in Ethiopia. European J Clin Microbiol Infect Dis 33:3077-9.

94. Kette AY, et al. (2001) Antimicrobial resistance of nasopharyngeal isolates of Streptococcus pneumoniae and Haemophilus influenzae among Malawian children after treatment for malaria with sulfadoxine/pyrimethamine.

95. Feikin DR, Davol SW, Nwanyanwu OC, Klugman KP, Kazembe PN, et al. (2000) Increased carriage of trimethoprim/sulfamethoxazole-resistant Streptococcus pneumoniae in Malawian children after treatment for malaria with sulfadoxine/pyrimethamine.

96. Feikin DR, Davis M, Nwanyanwu OC, Kazembe PN, Barat LM, et al. (2003) Antibiotic resistance and serotype distribution of Streptococcus pneumoniae among rural Malawian children.

97. Klugman KP, Koornhof HJ, Kuhnle V (1998) Clinical and nasopharyngeal sampling and culture techniques for detection of Streptococcus pneumoniae type b in children under 3 years of age in Botswana.

98. Gordon SB, Kanyanda S, Walsh AL, Godfard K, Chaponda M, et al. (2003) Poor potential coverage for 7-valent pneumococcal conjugate vaccine, Malawi.

99. Cotton MF, Wasserman E, Smil J, Whelan A, Zar HJ (2008) High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South Africa.

100. Valles X, Flannery B, Roca A, Mandomando I, Siquaire B, et al. (2006) Serotype distribution and antibiotic susceptibility of invasive and nasopharyngeal isolates of Streptococcus pneumoniae in children in rural Mozambique. Trop Med Int Health 11:530-6.

101. von Gottberg A, Klugman KP, Cohen C, Wolter N, de Gouveia L, et al. (2008) Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study [see comment].

102. Huelnner RE, Wasas AD, Klugman KP (2000) Prevalence of nasopharyngeal antibiotic-resistant pneumococcal carriage in children attending private paediatric practices in Johannesburg. S Afr Med J 90:1116-21.

103. Jacobs MR, Koornhof HJ, Dhooeke R, et al. (1984) Antibiotic-resistant pneumococcal carriage and disease. J Infect Dis 200:783-93.