Pointwise convergence for the elastic wave equation

CHU-HEE CHO, SEONGYEON KIM, YEHYUN KWON, AND IHYEOK SEO

Abstract. We study pointwise convergence of the solution to the elastic wave equation to the initial data which lies in the Sobolev spaces. We prove that the solution converges along every line to the initial data almost everywhere whenever the initial regularity is greater than one half. We show this is almost optimal.

Mathematics Subject Classification. Primary 35L05; Secondary 42B25.

Keywords. Elastic wave equation, Maximal estimate, Pointwise convergence.

1. Introduction. We consider the Cauchy problem for the elastic wave equation
\[
\begin{aligned}
\partial_t^2 u - \Delta^* u &= 0, \quad (x, t) \in \mathbb{R}^n \times \mathbb{R}, \\
u(x, 0) &= f(x), \quad \partial_t u(x, 0) = 0,
\end{aligned}
\]
(1.1)
where \(\Delta^*\) denotes the Lamé operator defined by
\[
\Delta^* u = \mu \Delta u + (\lambda + \mu) \nabla \text{div} u.
\]
The Laplacian \(\Delta\) acts on each component of a vector field \(u\). Moreover, the following standard condition on the Lamé constants \(\lambda, \mu \in \mathbb{R}\) is imposed to guarantee the ellipticity of \(\Delta^*\):
\[
\mu > 0, \quad \lambda + 2\mu > 0.
\]
(1.2)
The equation in (1.1) has been widely used as a model of wave propagation in an elastic medium, where \(u\) denotes the displacement field of the medium (see, e.g., [5,6]). In particular, it is the classical wave equation if \(\lambda + \mu = 0\).

This work was supported by NRF-2020R1I1A1A01072942 (C. Cho), a KIAS Individual Grant (MG082901) at Korea Institute for Advanced Study (S. Kim), a KIAS Individual Grant (MG073702) at Korea Institute for Advanced Study and NRF-2020R1F1A1A01073520 (Y. Kwon), and NRF-2022R1A2C1011312 (I. Seo).
In this paper, we are concerned with determining the optimal regularity $s > 0$ such that
\[
\lim_{t \to 0} e^{it\sqrt{-\Delta}} f(x) = f(x) \quad \text{for a.e. } x
\]
for all $f \in H^s(\mathbb{R}^n)$. The elastic wave propagator $e^{it\sqrt{-\Delta}}$ provides the solution $u = \frac{1}{2}(e^{it\sqrt{-\Delta}} f + e^{-it\sqrt{-\Delta}} f)$ for the problem (1.1) (see [3]).

For the classical wave equation, the pointwise convergence has been studied by means of the maximal estimate
\[
\left\| \sup_{t \in (0,1)} \left| e^{it\sqrt{-\Delta}} f(x) \right| \right\|_{L^2(\mathbb{R}^n)} \leq C \| f \|_{H^s(\mathbb{R}^n)} \tag{1.3}
\]
which implies the convergence. Cowling [2] proved (1.3) for $s > 1/2$. On the other hand, it was shown by Walther [9] that (1.3) fails for $s \leq 1/2$. (See also [7] for maximal estimates in L^p.) While the convergence is rather well understood for the wave equation, to the best of the authors’ knowledge, there does not seem to be any corresponding literature for the elastic wave equation. In this regard, it would be interesting to ask whether the results for the wave equation are still valid for the elastic case. We obtain the following.

Theorem 1.1. Let $\theta \in S^{n-1}$ and $v \geq 0$. If $f \in H^s(\mathbb{R}^n)$ with $s > 1/2$, then
\[
\left\| \sup_{t \in (-1,1)} \left| e^{it\sqrt{-\Delta}} f(x + vt\theta) \right| \right\|_{L^2(\mathbb{R}^n)} \leq C \| f \|_{H^s(\mathbb{R}^n)} \tag{1.4}
\]
uniformly in θ. Furthermore, this estimate fails if $s < 1/2$.

By a standard argument, Theorem 1.1 implies that
\[
\lim_{t \to 0} e^{it\sqrt{-\Delta}} f(x + vt\theta) = f(x) \quad \text{for a.e. } x \tag{1.5}
\]
for $f \in H^s(\mathbb{R}^n)$ with $s > 1/2$. If $s < 1/2$, it follows from Stein’s maximal principle [8] that (1.5) fails. The convergence (1.5) says that the solution converges to the initial data along the line $\{(x + vt\theta, t): t \geq 0\}$ on the light cone with speed v; see Figure 1. The convergence along lines on the light cone is new even for the wave equation (the case $\lambda + \mu = 0$).

Notations. We denote by S^{n-1} the unit sphere in \mathbb{R}^n centered at the origin. We use $\| f \|_{L^2(\mathbb{R}^n)} = \| \{ f_j \} \|_{L^2 L^2}$ for a vector-valued function $f = (f_1, \ldots, f_n)$, and $|M| = \left(\sum_{i,j=1}^n |M_{ij}|^2 \right)^{1/2}$ for a matrix $M = (M_{ij})$. The letter C stands for a positive constant which may be different at each occurrence. Also, $A \lesssim B$ denotes $A \leq CB$ for a constant $C > 0$, and $A \sim B$ denotes $A \lesssim B \lesssim A$.

2. Diagonalization of Δ^*. Recently, three of the authors and Lee [4] diagonalized the Lamé operator so that $\Delta^* = P \Delta P^{-1}$ with a certain invertible matrix P to study the elastic wave equation. We utilize the diagonalization to prove Theorem 1.1 in the following sections.

Let us recall from [4, Section 2] the diagonalization process and notations to make this article self-contained (the readers are encouraged to refer to [4] for details; also see Figure 2). For the unit vector $e_1 = (1, 0, \ldots, 0)^t \in \mathbb{R}^n$, let
Figure 1. The light cone with speed v

$S_\pm = \{ \omega \in S^{n-1} : -1/\sqrt{2} \leq \omega \cdot (\pm e_1) \leq 1 \}$ and $\mathbb{R}_\pm^n = \{ \xi \in \mathbb{R}^n \setminus \{0\} : \xi/|\xi| \in S_\pm \}$. For every $\omega \in S_\pm \setminus \{\pm e_1\}$, we define the arc $C_\pm(\omega) = S_\pm \cap \text{span}\{e_1, \omega\}$, which is the intersection of S_\pm and the great circle on S^{n-1} passing through e_1 and ω. Now we take $\rho_\pm(\omega) \in SO(n)$ so that its transpose $\rho_\pm(\omega)^t$ is the unique rotation mapping ω to $\pm e_1$ along the arc $C_\pm(\omega)$ and satisfying $\rho_\pm(\omega)^t y = y$ whenever $y \in \text{span}\{e_1, \omega\}^\perp$. When $\omega = \pm e_1$, we set $\rho_\pm(\omega)^t = I_n$. We define the maps $R_\pm : \mathbb{R}_\pm^n \to SO(n)$ and the projections P_\pm by

$$R_\pm(\xi) = \rho_\pm(\xi/|\xi|) \quad \text{and} \quad \hat{P}_\pm f(\xi) = \varphi_\pm(\xi/|\xi|) \hat{f}(\xi), \quad \xi \in \mathbb{R}_\pm^n,$$

where $\{\varphi_+, \varphi_-\}$ is a smooth partition of unity on S^{n-1} subordinate to the covering $\{\text{int}S_+, \text{int}S_-\}$. We also set $D = -i\nabla$ and denote by $m(D)f = (m\hat{f})^\vee$ the Fourier multiplier defined by a bounded (matrix-valued) function m.

Lemma 2.1 ([4]). Let $L(\xi)$ be the $n \times n$ matrix-valued multiplier associated to $-\Delta^*$ and let $\Lambda(\xi) = \text{diag}(\lambda + 2\mu|\xi|^2, \mu|\xi|^2, \ldots, \mu|\xi|^2)$. Then

$$-\Delta^* = L(D) = \sum_\pm L(D)P_\pm = \sum_\pm R_\pm(D)\Lambda(D)R^t_\pm(D)P_\pm. \quad (2.1)$$

The positive square root of Λ exists by the condition (1.2), so we have

$$\sqrt{-\Delta^*} = \sqrt{L(D)} = \sum_\pm R_\pm(D)\sqrt{\Lambda(D)}R^t_\pm(D)P_\pm \quad (2.2)$$

with $\sqrt{\Lambda}(\xi) = \text{diag}(\sqrt{\lambda + 2\mu|\xi|^2}, \sqrt{\mu}|\xi|^2, \ldots, \sqrt{\mu}|\xi|^2)$. Furthermore, it follows that

$$e^{it\sqrt{-\Delta^*}} = \sum_\pm e^{it\sqrt{L}(D)}P_\pm = \sum_\pm R_\pm(D)e^{it\sqrt{\Lambda}(D)}R^t_\pm(D)P_\pm, \quad (2.3)$$

where

$$e^{it\sqrt{\Lambda}(D)} = \text{diag}(e^{it\sqrt{-(\lambda+2\mu)\Delta}}, e^{it\sqrt{-\mu\Delta}}, \ldots, e^{it\sqrt{-\mu\Delta}}).$$
3. Proof of Theorem 1.1: the necessity of $s \geq 1/2$. In this section, we construct an example to show that the maximal estimate (1.4) implies $s \geq 1/2$. We need only to consider $\theta = e_1$. By (2.3), write

$$e^{it\sqrt{-\Delta}} f(x + vte_1) = \sum_{\pm} \int_{\mathbb{R}^n} R_\pm(\xi) e^{i((x + vte_1) \cdot \xi I_n + t\sqrt{\Lambda}(\xi))} R_\pm^t(\xi) \mathcal{P}_\pm f(\xi) d\xi.$$

(3.1)

We represent the $n \times n$ orthogonal matrix $R_\pm = (r_{ij})_{1 \leq i,j \leq n}$ as the block matrix

$$R_\pm = \begin{pmatrix} A_\pm & B_\pm \\ C_\pm & D_\pm \end{pmatrix},$$

where $A_\pm = r_{11}^\pm, B_\pm = (r_{1j}^\pm)_{2 \leq j \leq n}, C_\pm = (r_{ij}^\pm)_{2 \leq i \leq n},$ and $D_\pm = (r_{ij}^\pm)_{2 \leq i,j \leq n}$. Then

$$R_\pm(\xi) e^{i((x + vte_1) \cdot \xi I_n + t\sqrt{\Lambda}(\xi))} R_\pm^t(\xi) = \begin{pmatrix} A_\pm(\xi) & B_\pm(\xi) \\ C_\pm(\xi) & D_\pm(\xi) \end{pmatrix} \begin{pmatrix} e^{i\Phi(x,\xi)} & 0 \\ 0 & e^{i\Psi(x,\xi) I_{n-1}} \end{pmatrix} \begin{pmatrix} A_\pm(\xi) & C_\pm(\xi)^t \\ B_\pm(\xi)^t & D_\pm(\xi)^t \end{pmatrix}$$

(3.2)
Lemma 3.1. If $\xi \in F$, then
\[|1 - A_+(\xi)| \lesssim N^{-\frac{1}{2}} \quad \text{and} \quad |B_+(\xi)| \lesssim N^{-\frac{1}{2}}. \]
Proof. Let us write $\omega = \xi/|\xi|$ for $\xi \in F$ and recall from Section 2 that $\rho_+(\omega)t\omega = e_1$ and $\rho_+(e_1) = I_n$. We observe that
\[
(r_+(\omega)^t - I_n)e_1 = (r_+(\omega)^t - I_n)\omega + (r_+(\omega)^t - I_n)(e_1 - \omega)
\]
\[
= e_1 - \omega + (r_+(\omega)^t - I_n)(e_1 - \omega)
\]
which leads us to
\[
|(A_+(\xi) - 1, B_+(\xi))| = |(r_+(\omega)^t - I_n)e_1| = |e_1 - \omega| \leq \angle(e_1, \xi) \lesssim (\alpha N)^{-\frac{1}{4}}.
\]
This completes the proof (3.6).

By the estimates (3.6), we have
\[
A_+(\xi)^2 \gtrsim 1 - N^{-1} \quad \text{and} \quad B_+(\xi)B_+(\xi)^t \lesssim N^{-1}.
\]
Combining these with (3.4), we see that (3.5) is estimated by
\[
\gtrsim (1 - N^{-1}) \sup_{t = t(x)} \int_F \cos \Phi(x, \xi)d\xi - \int_F N^{-1}d\xi \gtrsim |F|
\]
for every N large enough. Thus, we obtain
\[
\left\| \sup_{t \in (-1, 1)} \left| e^{it\sqrt{-\Delta}} f_F(x + vte_1) \right| \right\|_{L^2(\mathbb{R}^n)} \gtrsim |F||E|^{\frac{1}{2}}.
\]
(3.8)

On the other hand,
\[
\|f_F\|_{H^s(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^s \hat{f}_F(\xi)d\xi \right)^{\frac{1}{2}} \lesssim |F|^\frac{1}{2} N^s.
\]
(3.9)

By (3.8) and (3.9), the maximal estimate (1.4) implies
\[
N^s \gtrsim |F|^\frac{1}{2}|E|^{\frac{1}{2}} \sim N^{\frac{3}{4}}
\]
for all N large enough. Therefore we conclude that the estimate (1.4) does not hold for $s < 1/2$.

4. Proof of the estimate (1.4). Let us fix a cutoff function $\phi \in C_0^\infty(\mathbb{R})$ such that $\phi(t) = 1$ for $|t| \leq 1$ and $\phi(t) = 0$ for $|t| \geq 2$, and denote
\[
T_{v, \theta}f(x, t) = \phi(t)e^{it\sqrt{-\Delta}} f(x + vt\theta).
\]
In order to prove (1.4), we need only to show the following:
\[
\|T_{v, \theta}f\|_{L^2_x(L^{n+1}_t(\mathbb{R}^n))} \lesssim \|f\|_{L^2(\mathbb{R}^n)}, \quad (4.1)
\]
\[
\|\partial_t T_{v, \theta}f\|_{L^2_x(L^{n+1}_t(\mathbb{R}^n))} \lesssim \|f\|_{H^1(\mathbb{R}^n)}, \quad (4.2)
\]
Indeed, the estimates imply
\[
\|T_{v, \theta}f\|_{L^2_x(L^{n+1}_t(\mathbb{R}^n); H^s(\mathbb{R}^n))} \lesssim \|f\|_{H^1(\mathbb{R}^n)}. \quad (4.3)
\]
Furthermore, by complex interpolation (see [1]), it follows from (4.1) and (4.3) that, for $0 < s < 1$,
\[
\|T_{v, \theta}f\|_{L^2_x(L^{n+1}_t(\mathbb{R}^n); H^s(\mathbb{R}^n))} \lesssim \|f\|_{H^s(\mathbb{R}^n)}. \quad (4.4)
\]
By the Sobolev embedding $H^s(\mathbb{R}) \hookrightarrow L^\infty(\mathbb{R})$ for $s > 1/2$, we conclude
$$\| T_{v, \theta} f \|_{L^2_x(L^\infty_t(\mathbb{R}))} \lesssim \| f \|_{H^s(\mathbb{R}^n)},$$
which completes the proof of (1.4).

Now let us show (4.1) and (4.2). Using the diagonalization (2.3), we write
$$T_{v, \theta} f(x, t) = \phi(t) \sum_{\pm} \int_{\mathbb{R}^n} e^{ix \cdot \xi I_n} R_{\pm}(\xi) e^{it(v \cdot \xi I_n + \sqrt{\Lambda}(\xi))} R_{\pm}(\xi)^t \widetilde{\mathcal{P}}_{\pm} f(\xi) d\xi. \quad (4.5)$$
Then, by the Plancherel theorem,
$$\| T_{v, \theta} f \|_{L^2_x(L^{n+1})}^2 \lesssim \sum_{\pm} \int_{\mathbb{R}^{n+1}} \left| \phi(t) R_{\pm}(\xi) e^{it(v \cdot \xi I_n + \sqrt{\Lambda}(\xi))} R_{\pm}(\xi)^t \widetilde{\mathcal{P}}_{\pm} f(\xi) \right|^2 d\xi dt \lesssim \| f \|_{L^2(\mathbb{R}^n)}^2.$$
On the other hand, $| \partial_t T_{v, \theta} f(x, t) |$ is estimated by
$$\left| \phi'(t) \sum_{\pm} \int_{\mathbb{R}^n} e^{ix \cdot \xi I_n} R_{\pm}(\xi) e^{it(v \cdot \xi I_n + \sqrt{\Lambda}(\xi))} R_{\pm}(\xi)^t \widetilde{\mathcal{P}}_{\pm} f(\xi) d\xi \right|$$
$$+ \left| \phi(t) \sum_{\pm} \int_{\mathbb{R}^n} e^{ix \cdot \xi I_n} R_{\pm}(\xi) (v \cdot \xi I_n + \sqrt{\Lambda}) e^{it(v \cdot \xi I_n + \sqrt{\Lambda}(\xi))} R_{\pm}(\xi)^t \widetilde{\mathcal{P}}_{\pm} f(\xi) d\xi \right|.$$
Then, by the Plancherel theorem, we obtain (4.2).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)
[2] Cowling, M.: Pointwise behavior of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Mathematics, vol. 992, pp. 83–90. Springer, Berlin (1983)
[3] Kim, S., Kwon, Y., Seo, I.: Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete Contin. Dyn. Syst. 41, 1897–1911 (2021)
[4] Kim, S., Kwon, Y., Lee, S., Seo, I.: Strichartz and uniform Sobolev inequalities for the elastic wave equation. Proc. Amer. Math. Soc. (to appear)
[5] Landau, L.D., Pitaevskii, L.P., Kosevich, A.M., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Butterworth-Heinemann, London (2012)
[6] Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Corrected reprint of the 1983 original. Dover Publications, Inc., New York (1994)
[7] Rogers, K.M., Villarroya, P.: Sharp estimates for maximal operators associated to the wave equation. Ark. Mat. 46, 143–151 (2008)
[8] Stein, E.M.: On limits of sequences of operators. Ann. of Math. (2) 74, 140–170 (1961)

[9] Walther, B.G.: Some $L^p(L^\infty)$- and $L^2(L^2)$-estimates for oscillatory Fourier transforms. In: Analysis of Divergence (Orono, ME, 1997). Applied and Numerical Harmonic Analysis, pp. 213–231. Birkhäuser Boston, Boston (1999)

CHU-HEE CHO
Department of Mathematical Sciences and RIM
Seoul National University
Seoul 08826
Republic of Korea
e-mail: akilus@snu.ac.kr

SEONGYEON KIM AND YEHYUN KWON
School of Mathematics, Korea Institute for Advanced Study
Seoul 02455
Republic of Korea
e-mail: synkim@kias.re.kr

YEHYUN KWON
e-mail: yhkwon@kias.re.kr

IHYEOK SEO
Department of Mathematics
Sungkyunkwan University
Suwon 16419
Republic of Korea
e-mail: ihseo@skku.edu

Received: 9 March 2022

Accepted: 1 May 2022.