The Marshall-Olkin-Gompertz-G family of distributions: properties and applications

Fastel Chipepaa,b,*, Broderick Oluyedea

aDepartment of Mathematical Statistics, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana.
bDepartment of Applied Mathematics and Statistics, Midlands State University, P. Bag 9055, Gweru, Zimbabwe.

Abstract

We develop a new generalized family of the Gompertz-G distribution, namely, the Marshall-Olkin-Gompertz-G distribution. Statistical properties of the new proposed model are presented. Some special cases of the new family of distributions are presented. Maximum likelihood estimates of the model parameters are also determined. A simulation study was conducted to assess the performance of the maximum likelihood estimates. Applications to demonstrate the usefulness of the Marshall-Olkin-Gompertz-Weibull distribution to real data examples are provided.

Keywords: Gompertz-G distribution, Marshall-Olkin-G distribution, maximum likelihood estimation.

2020 MSC: 62E99, 60E05.

1. Introduction

There is remarkable increase in the acceptability of generalized distributions over the past two decades. The motivation for the development of generalized distributions is their applicability to model heavy tailed data which is a prevalent phenomena in many lifetime analysis. Other areas of application of generalized distributions include finance, economics, hydrology and physics. Several attempts for generalizing classical distributions have been made. Earlier attempts include work by Gurvich et al. [22], Marshall and Olkin [26], Gupta and Kundu [21] and Eugene et al. [17].

Consequently, many generators for generalizing classical distributions have been proposed, these include gamma-G type I, type 2 and type 3 by Zografos and Balakrishnan [36], Ristić and Balakrishnan [30], Torabi and Hedesh [34], respectively, Weibull-G by Bourguignon et al. [6], Kumaraswamy-G (Kw-G) by Cordeiro et al. [14], type I half logistic-G family by Cordeiro et al. [12], odd log-logistic-G by Gleaton and Lynch [18], Gompertz-G by Alizadeh et al. [2], to mention a few.

Of interest in this paper are the generalized distributions by Alizadeh et al. [2], and Marshall and Olkin [26]. The Gompertz-G (Gom-G) distribution have cumulative distribution function (cdf) and probability density function (pdf) given by

\[F_{\text{Gom-G}}(x; \theta, \gamma, \xi) = 1 - e^{\xi(1 - G(x; \xi))^{-\gamma}} \] (1.1)
and

\[f_{\text{Gom-G}}(x; \theta, \gamma, \xi) = \theta g(x; \xi)[1 - G(x; \xi)]^{-\gamma - 1} e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}, \]

(1.2)

respectively, for \(\theta, \gamma > 0 \), and parameter vector \(\xi \). The Marshall-Olkin-G distribution by Marshall and Olkin [26] have cdf given by

\[F_{\text{MO-G}}(x; \xi) = \frac{G(x; \xi)}{1 - \delta G(x; \xi)}, \]

(1.3)

where \(\delta \) is the tilt parameter, \(\bar{G}(x; \xi) = 1 - G(x; \xi) \) is the survival function, and parameter vector \(\xi \) from the baseline distribution.

We generalize the Gom-G distribution via the Marshall-Olkin generator to produce a new family of distributions called the Marshall-Olkin-Gompertz-G (MO-Gom-G) family of distributions. The MO-Gom-G distribution gives improved flexibility in data fitting (i.e., the model applies to heavy tailed, right or left-skewed data sets) and improved shapes of the hazard rate function (monotonic, bathtub, upside bathtub followed by bathtub shapes) compared to the Gompertz-G distribution. The proposed distribution has a desirable tractability property and can be expressed as an infinite linear combination of the exponentiated-G distribution. This property makes the derivation of the other statistical properties possible. Other generalizations of the Gompertz distribution available in the literature includes the exponentiated Gompertz generated family by Cordeiro et al. [13], beta-Gompertz distribution by Jafari et al. [23], odd log-logistic Gompertz and odd log-logistic generalized Gompertz distributions by Alizadeh et al. ([1, 3]) and new extended generalized Gompertz distribution by Karamikabir et al. [24].

The paper is organized as follows. Section 2, presents the proposed model and some statistical properties. Estimation is presented in Section 3. Some special cases of the new family of distributions are presented in Section 4. A simulation study is presented in Section 5. Section 6 provides some applications to show the usefulness of the new proposed model followed by concluding remarks in Section 7.

2. The model and statistical properties

In this section, we develop the MO-Gom-G family of distributions. We use the generalizations by Marshall and Olkin [26] and Alizadeh et al. [2] given respectively by equations (1.3) and (1.1). The cdf, pdf, and hrf of the MO-Gom-G family of distributions are given by

\[F_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) = \frac{1 - e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}{1 - \delta e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}, \]

\[f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) = \frac{\delta \theta g(x; \xi)[1 - G(x; \xi)]^{-\gamma - 1} e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}{(1 - \delta e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})})^2}, \]

(2.1)

\[h(x; \theta, \gamma, \delta, \xi) = \frac{\delta \theta g(x; \xi)[1 - G(x; \xi)]^{-\gamma - 1} e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}{(1 - \delta e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})})^2} \times \left[1 - \frac{1 - e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}{1 - \delta e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}} \right]^{-1}, \]

respectively, for \(\theta, \gamma, \delta > 0 \), \(\delta = 1 - \delta \) and a parameter vector \(\xi \). If a random variable \(X \) has the MO-Gom-G distribution, we write \(X \sim \text{MO - Gom - G}(\theta, \gamma, \delta, \xi) \).

2.1. Quantile function

We invert the cdf of the MO-Gom-G family of distributions to obtain the quantile function as follows:

\[\frac{1 - e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}}{1 - \delta e^{\frac{\theta}{\gamma}(1 - [1 - G(x; \xi)]^{-\gamma})}} = u, \]
for $0 < u < 1$. Note that
\[
\log \left[\frac{1 - u}{1 - u^\theta} \right] = \frac{\theta}{\gamma} (1 - [1 - G(x; \xi)]^{-\gamma})
\]
so that
\[
G(x; \xi) = 1 - \left(1 - \frac{\gamma}{\theta} \log \left[\frac{1 - u}{1 - u^\theta} \right] \right)^{-1/\gamma}.
\]
Therefore, the solution to the non-linear equation
\[
Q_X(u) = G^{-1} \left[1 - \left(1 - \frac{\gamma}{\theta} \log \left[\frac{1 - u}{1 - u^\theta} \right] \right)^{-1/\gamma} \right]
\]
gives the quantile values of the MO-Gom-G family of distributions.

2.2. Stochastic orders

In this subsection, we present stochastic orders for the MO-Gom-G family of distributions. Suppose we have two random variables X and Z with distribution functions $F_X(r)$ and $F_Z(r)$, respectively, and $F_X(r) = 1 - F_X(r)$ the survival function, X is stochastically smaller than Z if $F_X(r) \leq F_Z(r)$ for all r or $F_X(r) \geq F_Z(r)$ for all r. This is denoted by $X <_s Z$. Hazard rate order and likelihood ratio order are stronger and are given by $X <_{hr} Z$ if $h_X(r) \geq h_Z(r)$ for all r, and $X <_{lr} Z$ if $Z^{-1}(r)$ is decreasing in r. From Shaked and Shanthikumar [31], we know that $X <_{lr} Z \Rightarrow X <_{hr} Z \Rightarrow X <_s Z$.

Theorem 2.1. Let $X_1 \sim MO - Gom - G(\theta, \gamma, \delta_1, \xi)$ and $X_2 \sim MO - Gom - G(\theta, \gamma, \delta_2, \xi)$. If $\delta_1 \leq \delta_2$, then $f_{(x; \theta, \gamma, \delta_1, \xi)}(x)$ is decreasing.

Proof. Note that
\[
\frac{f(x; \theta, \gamma, \delta_1, \xi)}{f(x; \theta, \gamma, \delta_2, \xi)} = \frac{\delta_1}{\delta_2} \left(\frac{1 - \bar{G}_1(\theta, \gamma, \delta_1, \xi)}{1 - \bar{G}_2(\theta, \gamma, \delta_2, \xi)} \right)^2,
\]
so that
\[
\frac{\partial}{\partial x} \left(\frac{f(x; \theta, \gamma, \delta_1, \xi)}{f(x; \theta, \gamma, \delta_2, \xi)} \right) = \frac{\delta_1}{\delta_2} (\delta_1 - \delta_2) \frac{1 - \bar{G}_1(\theta, \gamma, \delta_1, \xi)}{1 - \bar{G}_2(\theta, \gamma, \delta_2, \xi)} \times \theta g(x; \xi) [1 - G(x; \xi)]^{-1} G(\theta, \gamma, \delta_1, \xi) \gamma - 1 \theta G(\theta, \gamma, \delta_1, \xi) - \gamma,
\]
which is ≤ 0 if $\delta_1 \leq \delta_2$. Therefore, $X_1 <_{lr} X_2$, $X_1 <_{hr} X_2$ and $X_1 <_s X_2$. Hence, the random variables X_1 and X_2 are stochastically ordered.

2.3. Linear representation

We derive the linear representation of the MO-Gom-G family of distributions in this subsection. We make use of the general results by Barreto-Souza et al. [5]. Considering
\[
f_{MO-Gom-G}(x; \theta, \gamma, \delta, \xi) = \frac{\delta f_{Gom-G}(x; \theta, \gamma, \xi)}{1 - \delta F_{Gom-G}(x; \theta, \gamma, \xi)}^2,
\]
we can write equation (2.1) as
\[
f_{MO-Gom-G}(x; \theta, \gamma, \delta, \xi) = \frac{f_{Gom-G}(x; \theta, \gamma, \xi)}{\delta [1 - \delta F_{Gom-G}(x; \theta, \gamma, \xi)]^2}.
\]
where \(f_{\text{Gom-G}}(x; \theta, \gamma, \xi) \) and \(F_{\text{Gom-G}}(x; \theta, \gamma, \xi) \) are as given in equations (1.2) and (1.1), respectively. We also apply the series expansion

\[
(1 - z)^{-k} = \sum_{j=0}^{\infty} \frac{\Gamma(k + j)}{\Gamma(k)} z^j,
\]

which is valid for \(|z| < 1\) and \(k > 0\). If \(\delta \in (0, 1)\), we obtain

\[
f_{\text{MO-Gom-G}}(x; \theta, \delta, \gamma, \xi) = f_{\text{Gom-G}}(x; \theta, \gamma, \xi) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} w_{j,k} F_{\text{Gom-G}}(x; \theta, \gamma, \xi)^{j-k},
\]

where \(w_{j,k} = w_{j,k}(\delta) = \delta(j + 1)(1 - \delta)^j(1 - k)^{-1}(j)_k \). For \(\delta > 1\), we have

\[
f_{\text{MO-Gom-G}}(x; \theta, \delta, \gamma, \xi) = f_{\text{Gom-G}}(x; \theta, \gamma, \xi) \sum_{j=0}^{\infty} v_j \Gamma_{\text{Gom-G}}(x; \theta, \gamma, \xi),
\]

where \(v_j = v_j(\delta) = \frac{(j+1)(1-\delta)}{\delta} \). Thus, for \(\delta \in (0, 1)\), equation (2.1) becomes

\[
f_{\text{MO-Gom-G}}(x; \theta, \delta, \gamma, \xi) = \theta g(x; \xi) [1 - G(x; \xi)]^{-\gamma - 1} e^{\frac{\theta}{\gamma} (1 - [1 - G(x; \xi)]^{-\gamma})} \times \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} w_{j,k}[1 - e^{\frac{\theta}{\gamma} (1 - [1 - G(x; \xi)]^{-\gamma})}]^{j-k}.
\]

Using the following series expansions

\[
[1 - e^{\frac{\theta}{\gamma} (1 - [1 - G(x; \xi)]^{-\gamma})}]^{j-k} = \sum_{m=0}^{\infty} (-1)^m \binom{j-k}{m} e^{\frac{\theta}{\gamma} m(1 - [1 - G(x; \xi)]^{-\gamma})},
\]

\[
e^{\frac{\theta}{\gamma} (m+1)(1 - [1 - G(x; \xi)]^{-\gamma})} = \sum_{n=0}^{\infty} \frac{(\frac{\theta}{\gamma})^n (m+1)^n (1 - [1 - G(x; \xi)]^{-\gamma})^n}{n!},
\]

\[
(1 - [1 - G(x; \xi)]^{-\gamma})^n = \sum_{p=0}^{\infty} (-1)^p \binom{n}{p} [1 - G(x; \xi)]^{-\gamma p},
\]

\[
[1 - G(x; \xi)]^{-\gamma(p+1)-1} = \sum_{q=0}^{\infty} \left(-\gamma(p+1)-1 \right)^q G_q(x; \xi),
\]

we have for \(\delta \in (0, 1)\),

\[
f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) = \sum_{j,m,n,p,q=0}^{\infty} \frac{(-1)^{p+m} \theta^{n+1} (m+1)^n}{\gamma^n n!} w_{j,k} \left(\frac{j-k}{m} \right) \left(\frac{n}{p} \right) \left(-\gamma(p+1)-1 \right)^q g(x; \xi) G_q(x; \xi) = \sum_{q=0}^{\infty} w_q^* g_q(x; \xi).
\]

It follows that for \(\delta \in (0, 1)\), the MO-Gom-G family of distributions can be expressed as a linear combination of the exponentiated-G (Exp-G) distribution with power parameter \(q\) and linear component

\[
w_q^* = \sum_{j,m,n,p=0}^{\infty} \frac{(-1)^{p+m} \theta^{n+1} (m+1)^n}{(q+1)\gamma^n n!} w_{j,k} \left(\frac{j-k}{m} \right) \left(\frac{n}{p} \right) \left(-\gamma(p+1)-1 \right)^q.
\]
and \(g_q(x; \xi) = (q + 1)g(x; \xi)G^q(x; \xi) \).

Furthermore, for \(\delta > 1 \), equation (2.1) can be written as

\[
f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) = 0g(x; \xi)[1 - G(x; \xi)]^{-\gamma-1}e^{\theta(1-[1-G(x;\xi)]^{-\gamma})} \sum_{j=0}^{\infty} v_j[1 - e^{\theta(1-[1-G(x;\xi)]^{-\gamma})}]^j.
\]

Using the series expansion

\[
[1 - e^{\theta(1-[1-G(x;\xi)]^{-\gamma})}]^j = \sum_{m=0}^{\infty} (-1)^m e^{\theta(1-[1-G(x;\xi)]^{-\gamma})} m^j \binom{m}{j},
\]

equations (2.3), (2.4), and (2.5), yields

\[
f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) = \sum_{j,m,n,p,q=0}^{\infty} \frac{(-1)^{m+p} q^{n+1}(m+1)^n}{\gamma^n n!} v_j \binom{n}{m} \binom{m}{p} \times \left(-\delta(p+1) - 1\right)\gamma q g(x; \xi)G^q(x; \xi) = \sum_{q=0}^{\infty} v_q^* g_q(x; \xi).
\]

Also, for \(\delta > 1 \), the MO-Gom-G family of distributions can be expressed as a linear combination of the Exp-G distribution with power parameter \(q \) and linear component

\[
v_q^* = \sum_{j,m,n,p,q=0}^{\infty} \frac{(-1)^{m+p} q^{n+1}(m+1)^n}{(q+1)\gamma^n n!} v_j \binom{n}{m} \binom{m}{p} \left(-\delta(p+1) - 1\right).
\]

2.4. Moments and generating function

Let \(X \sim \text{MO-Gom-G}(\theta, \gamma, \delta, \xi) \), then the \(r \)th moment can be obtained from equations (2.6) and (2.8), since the MO-Gom-G family of distributions can be expressed as a linear combination of Exp-G distribution.

- For \(\delta \in (0, 1) \),
 \[
 E(X^r) = \sum_{q=0}^{\infty} w_q^* E(H_q^r),
 \]
 where \(w_q^* \) is as defined in equation (2.7) and \(E(H_q^r) \) denotes the \(r \)th moment of \(H_q \) which follows an Exp-G distribution with power parameter \(q \).

- For \(\delta > 1 \)
 \[
 E(X^r) = \sum_{q=0}^{\infty} v_q^* E(H_q^r),
 \]
 where \(v_q^* \) is as defined in equation (2.9) and \(E(H_q^r) \) denotes the \(r \)th moment of \(H_q \) which follows an Exp-G distribution with power parameter \(q \). The incomplete moments can be obtained as follows:

- For \(\delta \in (0, 1) \)
 \[
 I_X(t) = \int_{0}^{t} x^r f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) dx = \sum_{q=0}^{\infty} w_q^* I_q(t),
 \]
 where \(I_q(t) = \int_{0}^{t} x^r g_q(x; \xi) dx \) and \(w_q^* \) is as defined in equation (2.7).

- For \(\delta > 1 \)
 \[
 I_X(t) = \int_{0}^{t} x^r f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, \xi) dx = \sum_{q=0}^{\infty} v_q^* I_q(t),
 \]
where \(I_q(t) = \int_0^t x^q g_q(x; \xi) \, dx \) and \(v_q^* \) is as defined in equation (2.9). The moment generating function (mgf) of \(X \) is given by:

- For \(\delta \in (0, 1) \)

\[
M_X(t) = \sum_{q=0}^{\infty} w_q^* E(e^{tH_q}),
\]

where \(E(e^{tH_q}) \) is the mgf of the Exp-G distribution with power parameter \(q \) and \(w_q^* \) is as defined in equation (2.7).

- For \(\delta > 1 \)

\[
M_X(t) = \sum_{q=0}^{\infty} v_q^* E(e^{tH_q}),
\]

where \(E(e^{tH_q}) \) is the mgf of the Exp-G distribution with power parameter \(q \) and \(v_q^* \) is as defined in equation (2.9).

2.5. Entropy

Entropy is a measure of variation of uncertainty for a random variable \(X \) with pdf \(g(x) \). The two common measures of entropy are Shannon entropy [32] and Rényi entropy [29]. Shannon entropy is a special case of Rényi entropy. So in this paper we derive Rényi entropy of the MO-Gom-G family of distributions. By definition, Rényi entropy is given by

\[
I_R(\nu) = (1 - \nu)^{-1} \log \left[\int_0^{\infty} g^\nu(x) \, dx \right],
\]

where \(\nu > 0 \) and \(\nu \neq 1 \). Using generalized binomial expansion (2.2), we get, for \(\delta \in (0, 1) \)

\[
f_{MO-Gom-G}^\delta(x; \theta, \delta, \gamma, \xi) = \frac{\delta^\nu f_{Gom-G}^\nu(x; \theta, \gamma, \xi)}{\Gamma(2\nu)} \sum_{j=0}^{\infty} (1 - \delta)^j \Gamma(2\nu + j) \frac{1 - F_{Gom-G}(x; \theta, \gamma, \xi)^j}{j!}
\]

and for \(\delta > 1 \)

\[
f_{MO-Gom-G}^\delta(x; \theta, \delta, \gamma, \xi) = \frac{\delta^\nu f_{Gom-G}^\nu(x; \theta, \gamma, \xi)}{\delta^\nu \Gamma(2\nu)} \sum_{j=0}^{\infty} (\delta - 1)^j \Gamma(2\nu + j) \frac{F_{Gom-G}(x; \theta, \gamma, \xi)^j}{j!}.
\]

Thus, Rényi entropy for \(\delta \in (0, 1) \) and \(\delta > 1 \) are given by

\[
I_R(\nu) = (1 - \nu)^{-1} \log \left(\sum_{j=0}^{\infty} e_j \int_0^{\infty} f_{Gom-G}^\nu(x; \theta, \gamma, \xi)(1 - F_{Gom-G}(x; \theta, \gamma, \xi))^j \, dx \right)
\]

and

\[
I_R(\nu) = (1 - \nu)^{-1} \log \left(\sum_{j=0}^{\infty} h_j \int_0^{\infty} f_{Gom-G}^\nu(x; \theta, \gamma, \xi) F_{Gom-G}(x; \theta, \gamma, \xi) \, dx \right),
\]

where

\[
e_j = e_j(\delta) = \frac{\delta^\nu (1 - \delta)^j \Gamma(2\nu + j)}{\Gamma(2\nu)!} \quad \text{and} \quad h_j = h_j(\delta) = \frac{\Gamma(2\nu + j)}{(\delta^\nu + 1) \Gamma(2\nu)!}.
\]

Now, for \(\delta \in (0, 1) \),

\[
f_{Gom-G}^\nu(x; \theta, \gamma, \xi)(1 - F_{Gom-G}(x; \theta, \gamma, \xi))^j = \theta^\nu g^\nu(x, \xi)[1 - G(x, \xi)]^{(j-1)(-\gamma - 1)} e^{\nu(j+\nu)(1-[1-G(x;\xi)]^{-\gamma})}.
\]
Using the series expansion
\[e^{\frac{\theta}{\gamma}(1+\nu)(1-[1-G(x;\xi)]^{-\gamma})} = \sum_{n=0}^{\infty} \frac{(\frac{\theta}{\gamma})^n (j+\nu)^n (1-[1-G(x;\xi)]^{-\gamma})^n}{n!}, \]
as well as equations (2.4) and (2.5), we get
\[f_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi)(1-F_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi))^\gamma = \sum_{n,p,q=0} \frac{(-1)^p \theta^{\gamma+v}(j+\nu)^n}{\gamma^n n!} \left(\frac{n}{p} \right) \left(-\delta(p+\nu) - \nu \right) g(x;\xi) G^q(x;\xi). \]
Therefore, for \(\delta \in (0,1) \),
\[I_R(\nu) = (1-\nu)^{-1} \log \left[\sum_{j,n,p,q=0} \frac{(-1)^p \theta^{\gamma+v}(j+\nu)^n}{\gamma^n n!} \left(\frac{n}{p} \right) \left(-\delta(p+\nu) - \nu \right) \int_0^{\infty} g(x;\xi) G^q(x;\xi) dx \right] = (1-\nu)^{-1} \log \left[\sum_{q=0}^{\infty} \eta_q e^{(1-\nu)I_{\text{REG}}} \right], \]
for \(\nu > 0, \nu \neq 1 \), where \(I_{\text{REG}} = \frac{1}{1-\nu} \log \left[\int_0^{\infty} \left[\frac{q}{\nu} + 1 \right] (G(x;\xi))^{\delta} g(x;\xi) dx \right] \) is Rényi entropy of Exp-G distribution with power parameter \((\frac{q}{\nu}) \), and
\[\eta_q = \sum_{j,n,p=0} \frac{(-1)^p \theta^{\gamma+v}(j+\nu)^n}{\gamma^n n!} \left(\frac{n}{p} \right) \left(-\delta(p+\nu) - \nu \right) \frac{1}{\left[1+\frac{q}{\nu} \right]^\nu}. \]
Also, for \(\delta > 1 \),
\[f_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi) F_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi) = \theta^{\gamma} g^{\gamma}(x;\xi)[1-G(x;\xi)]^{-\gamma-1} \]
\[\times e^{\frac{\theta}{\gamma}(1-[1-G(x;\xi)]^{-\gamma})} \left[1 - e^{\frac{\theta}{\gamma}(1-[1-G(x;\xi)]^{-\gamma})} \right]. \]
Using equations (2.3), the series expansion
\[e^{\frac{\theta}{\gamma}(m+v)(1-[1-G(x;\xi)]^{-\gamma})} = \sum_{n=0}^{\infty} \left(\frac{\theta}{\gamma} \right)^n (1-[1-G(x;\xi)]^{-\gamma})^n, \]
as well as equations (2.4) and (2.5), we get
\[f_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi) F_{\text{Gem}-\text{G}}(x;\theta,\gamma,\xi) = \sum_{m,n,p,q=0} \frac{(-1)^m \theta^{\gamma+v}(m+v)^n}{\gamma^n n!} \left(\frac{n}{m} \right) \left(\frac{m}{p} \right) \left(-\gamma(p+\nu) - \nu \right) g^{\gamma}(x;\xi) G^q(x;\xi). \]
Hence, for \(\delta > 1 \),
\[I_R(\nu) = (1-\nu)^{-1} \log \left[\sum_{j,m,n,p,q=0} \frac{(-1)^m \theta^{\gamma+v}(m+v)^n}{\gamma^n n!} \left(\frac{n}{m} \right) \left(\frac{m}{p} \right) \left(-\gamma(p+\nu) - \nu \right) \int_0^{\infty} g^{\gamma}(x;\xi) G^q(x;\xi) dx \right] = (1-\nu)^{-1} \log \left[\sum_{q=0}^{\infty} \eta_q e^{(1-\nu)I_{\text{REG}}} \right]. \]
for $\nu > 0$, $\nu \neq 1$, where $I_{REG} = \frac{1}{1-\nu} \log \left[\int_0^\infty \left(\frac{\nu}{\nu + 1} \right) |G(x; \xi)|^\nu g(x; \xi) \right] dx$ is Rényi entropy of Exp-G distribution with power parameter $\left(\frac{\nu}{1-\nu} \right)$, and

$$\eta_q = \sum_{j,m,n,p=0}^{\infty} (-1)^m p q^{n+1}(m+\nu)^n \left(\frac{j}{n} \right) \left(\frac{n}{p} \right) \frac{1}{1+q}.$$

It follows that Rényi entropy of the MO-Gom-G family of distributions can be derived directly from Rényi entropy of the Exp-G distribution.

2.6. Distribution of order statistics

Suppose that X_1, X_2, \ldots, X_n are independent and identically distributed (i.i.d) random variables distributed according to equation (2.1), then the pdf of the ith order statistic is given by

$$f_{i:n}(x) = \delta_n f_{\text{Gom-G}}(x; \theta, \gamma, \xi) \sum_{j=0}^{\infty} \sum_{l=0}^{n-i} \sum_{k=0}^{l} U_{j,l,k} f_{\text{Gom-G}}^{l+i-k+i-1}(x; \theta, \gamma, \xi),$$

where

$$U_{j,l,k} = U_{j,l,k}(\delta) = \frac{\delta^i(-1)^{i}(1-\delta)\frac{1}{j+1}(-\frac{1}{j+1}-\frac{1}{j})}{(i-1)! (n-i)!} \left(\begin{array}{c} j+i+j \cr j \end{array} \right).$$

For $\delta > 1$,

$$f_{i:n}(x) = \delta_n f_{\text{Gom-G}}(x; \theta, \gamma, \xi) \sum_{j=0}^{\infty} \sum_{l=0}^{n-i} \sum_{k=0}^{l} c_{j,l} f_{\text{Gom-G}}^{l+i-k+i-1}(x; \theta, \gamma, \xi),$$

where

$$c_{j,l} = c_{j,l}(\delta) = \frac{\delta^i(-1)^{i} \delta^1 i!}{\delta^{i+1} i! (n-i)!} \left(\begin{array}{c} j+i+j \cr j \end{array} \right).$$

Therefore, for $\delta \in (0,1)$, we get

$$f_{i:n} = \delta_n g(x; \xi) [1 - G(x; \xi)]^{-\gamma-1} e^{\frac{\theta}{\gamma} [1 - G(x; \xi)]^{-\gamma}} \times \sum_{j=0}^{\infty} \sum_{l=0}^{n-i} \sum_{k=0}^{l} U_{j,l,k} (1 - e^{\frac{\theta}{\gamma} [1 - G(x; \xi)]^{-\gamma}})^{j+l-k+i-1}.$$

Using the generalized binomial series expansion

$$(1 - [1 - G(x; \xi)]^{-\gamma})^{j+l-k+i-1} = \sum_{m=0}^{\infty} (-1)^m \left(\begin{array}{c} j+l-k+i-1 \cr m \end{array} \right) e^{\frac{\theta m}{\gamma} [1 - G(x; \xi)]^{-\gamma}},$$

as well as equations (2.3), (2.4), and (2.5), we can write

$$f_{i:n}(x) = \sum_{j,m,n,p,q=0}^{\infty} \sum_{l=0}^{n-i} \sum_{k=0}^{l} (-1)^m p q^{n+1}(m+1)^n \gamma^n n! \left(\begin{array}{c} j+l-k+i-1 \cr m \end{array} \right) U_{j,l,k} \left(\begin{array}{c} n \cr p \end{array} \right) \times \left(\frac{-\gamma(p+1)-1}{q} \right) g(x; \xi) [G(x; \xi)]^q = \sum_{q=0}^{\infty} U_q g_q (x; \xi),$$
where \(g_q(x; \xi) = (q + 1)g(x; \xi)[G(x; \xi)]^q \) is an Exp-G distribution with power parameter \(q \) and

\[
U_q^* = \sum_{j,m,n,p=0}^{\infty} \sum_{i=0}^{n-i} \sum_{k=0}^{j} \frac{(-1)^{m+p}q^{n+1}(m+1)^n}{(q+1)^{\gamma n!}} U_{j,i,k} \left(\frac{j+1-k+i-1}{m} \right) \left(\frac{n}{p} \right) \left(-\gamma(p+1)-1 \right) .
\]

Furthermore, for \(\delta > 1 \), we write

\[
f_{1:n}(x) = \theta g(x; \xi)[1 - G(x; \xi)]^{-\gamma-1} e^{\frac{\theta}{\gamma}(1-[1-G(x; \xi)]^{-\gamma})} \sum_{j=0}^{\infty} \sum_{l=0}^{n-i} c_{j,l} (1 - e^{\frac{\theta}{\gamma}(1-[1-G(x; \xi)]^{-\gamma})})^{j+l+i-1}.
\]

By applying the generalized binomial series expansion

\[
(1 - [1 - G(x; \xi)]^{-\gamma})^{j+l+i-1} = \sum_{m=0}^{\infty} (-1)^m \left(\begin{array}{c} j+1+i-1 \\ m \end{array} \right) e^{\frac{\theta m}{\gamma}(1-[1-G(x; \xi)]^{-\gamma})},
\]

as well as equations (2.3), (2.4), and (2.5), we get

\[
f_{1:n}(x) = \sum_{j,m,n,p,q=0}^{\infty} \sum_{i=0}^{n-i} \frac{(-1)^{m+p}q^{n+1}(m+1)^n}{(q+1)^{\gamma n!}} C_{j,i,l} \left(\frac{j+1+i-1}{m} \right) \left(\frac{n}{p} \right) \left(-\gamma(p+1)-1 \right) \cdot
\]

where \(g_q(x; \xi) = (q + 1)g(x; \xi)[G(x; \xi)]^q \) is an Exp-G distribution with power parameter \(q \) and

\[
C_q^* = \sum_{j,m,n,p=0}^{\infty} \sum_{i=0}^{n-i} \frac{(-1)^{m+p}q^{n+1}(m+1)^n}{(q+1)^{\gamma n!}} C_{j,i,l} \left(\frac{j+1+i-1}{m} \right) \left(\frac{n}{p} \right) \left(-\gamma(p+1)-1 \right).
\]

3. Estimation

Let \(X_i \sim \text{MO} - \text{Gom} - G(\gamma, \delta, \theta, \xi) \) with the parameter vector \(\Psi = (\gamma, \delta, \theta, \xi)^T \), then the log-likelihood function \(\ell = \ell(\Psi) \) from a random sample of size \(n \) is given by

\[
\ell(\Psi) = n \log(2\delta) + \sum_{i=1}^{n} \log[g(x_i; \xi)] - (\gamma + 1) \sum_{i=1}^{n} \log[1 - G(x_i; \xi)]
\]

\[
\quad + \frac{\theta}{\gamma} \sum_{i=1}^{n} (1 - [1 - G(x_i; \xi)]^{-\gamma}) - 2 \sum_{i=1}^{n} \log[1 - \delta e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}].
\]

The elements of the score vector \(U(\Psi) \) are given by

\[
\frac{\partial \ell}{\partial \delta} = \frac{n}{\delta} - 2 \sum_{i=1}^{n} \frac{e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}}{1 - \delta e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}},
\]

\[
\frac{\partial \ell}{\partial \theta} = \frac{n}{\gamma} + \frac{1}{\gamma} \sum_{i=1}^{n} (1 - [1 - G(x_i; \xi)]^{-\gamma}) + 2 \sum_{i=1}^{n} \frac{\delta(1 - [1 - G(x_i; \xi)]^{-\gamma})e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}}{\gamma (1 - \delta e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}),}
\]

\[
\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{n} \frac{\theta (1 - G(x_i; \xi))^{-\gamma} \log[1 - G(x_i; \xi)] - (1 - (1 - G(x_i; \xi))^{-\gamma})}{\gamma^2}
\]

\[\frac{\partial \ell}{\partial \theta} = \frac{n}{\gamma} + \frac{1}{\gamma} \sum_{i=1}^{n} (1 - [1 - G(x_i; \xi)]^{-\gamma}) + 2 \sum_{i=1}^{n} \frac{\delta(1 - [1 - G(x_i; \xi)]^{-\gamma})e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}}{\gamma (1 - \delta e^{\frac{\theta}{\gamma}(1-[1-G(x_i; \xi)]^{-\gamma})}),}
\]
where \(J \) model parameters for specified baseline cdf \(G \) is asymptotically normal distributed, that is \(\hat{F} \). Chipepa, B. Oluyede, J. Nonlinear Sci. Appl., 14 (2021), 250–267. 259

respectively. We use software such as R, MATLAB to find numerical solutions of these partial derivatives for specified baseline cdf \(G(x; \xi) \). Furthermore, to obtain the estimates of the confidence intervals for the model parameters \(\Psi = (\gamma, \delta, \theta, \xi) \), we use the Fisher information matrix

\[
J(\Psi) = \begin{pmatrix}
J_{\gamma\gamma}(\Psi) & J_{\gamma\delta}(\Psi) & J_{\gamma\theta}(\Psi) & J_{\gamma\xi}(\Psi) \\
J_{\delta\gamma}(\Psi) & J_{\delta\delta}(\Psi) & J_{\delta\theta}(\Psi) & J_{\delta\xi}(\Psi) \\
J_{\theta\gamma}(\Psi) & J_{\theta\delta}(\Psi) & J_{\theta\theta}(\Psi) & J_{\theta\xi}(\Psi) \\
J_{\xi\gamma}(\Psi) & J_{\xi\delta}(\Psi) & J_{\xi\theta}(\Psi) & J_{\xi\xi}(\Psi)
\end{pmatrix},
\]

where \(J_{ij} = -\frac{\partial^2 \ell(\Psi)}{\partial \psi_i \partial \psi_j} \), for \(i, j = (\gamma, \delta, \theta, \xi) \), where \(\xi \) is a \(p \) component vector, \(J_{\xi\xi}(\Psi) \) is a \(p \times p \) matrix, \(J_{\gamma\gamma}(\Psi), J_{\delta\delta}(\Psi) \) and \(J_{\theta\theta}(\Psi) \) has \(p \times 1 \) components, respectively. Under the usual regularity conditions \(\Psi \) is asymptotically normal distributed, that is \(\Psi \sim N(0, I^{-1}(\Psi)) \) as \(n \to \infty \), where \(I(\Psi) \) is the expected information matrix. The asymptotic behavior remains valid if \(I(\Psi) \) is replaced by \(J(\Psi) \), the information matrix evaluated at \(\Psi \).

4. Some special cases

In this section, we present some special cases for the MO-Gom-G family of distributions by considering the Weibull, Kumaraswamy and Burr XII distributions as baseline distributions.

4.1. Marshall-Olkin-Gompertz-Weibull (MO-Gom-W) distribution

If we take the Weibull distribution as the baseline distribution with pdf and cdf given by \(g(x; \lambda) = \lambda x^{\lambda-1}e^{-x^\lambda} \) and \(G(x; \lambda) = 1 - e^{-x^\lambda} \), respectively, for \(\lambda > 0 \), we obtain the MO-Gom-W distribution with cdf, pdf and hrf given by

\[
F(x; \theta, \gamma, \delta, \lambda) = \frac{1 - e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}}{1 - \delta e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}},
\]

\[
f(x; \theta, \gamma, \delta, \lambda) = \frac{\delta \theta \lambda x^{\lambda-1} e^{-x^\lambda} |x^{-\lambda}|^{\gamma-1} e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}}{(1 - \delta e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}})^2}
\]

\[
h(x; \theta, \gamma, \delta, \lambda) = \frac{\delta \theta \lambda x^{\lambda-1} e^{-x^\lambda} |x^{-\lambda}|^{\gamma-1} e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}}{(1 - \delta e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}})^2} \left[1 - \frac{1 - e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}}{1 - \delta e^{\frac{\gamma}{\delta} (1-|x^\lambda|)^{-\gamma}}} \right]^{-1},
\]

respectively, for \(\theta, \gamma, \delta \) and \(\lambda > 0 \).

Figure 1 shows plots of the pdfs and hrfs for the MO-Gom-W distribution. The pdf apply to heavy tailed data and with varying kurtosis. The hrf takes decreasing, increasing and bathtub shapes.
4.2. Marshall-Olkin-Gompertz-Kumaraswamy (MO-Gom-Kw) distribution

By taking the baseline distribution to be a Kumaraswamy distribution with pdf and cdf given by
\[g(x; a, b) = abx^{a-1}(1-x^a)^{b-1} \]
and
\[G(x; a, b) = 1 - (1-x^a)^b, \]
respectively, for \(a, b > 0 \), we obtain the MO-Gom-Kw distribution with cdf, pdf and hrf given by

\[
F_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, a, b) = 1 - \frac{e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)}}{1 - \delta (e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)})},
\]

\[
f_{\text{MO-Gom-G}}(x; \theta, \gamma, \delta, a, b) = \frac{\delta \theta abx^{a-1}(1-x^a)^{b-1}[(1-x^a)^b]-\gamma-1}{(1 - \delta (e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)})^2},
\]

\[
h(x; \theta, \gamma, \delta, a, b) = \frac{\delta \theta abx^{a-1}(1-x^a)^{b-1}[(1-x^a)^b]-\gamma-1}{(1 - \delta (e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)})^2}
\times \left[1 - \frac{1 - e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)}}{1 - \delta (e^{\theta \gamma (1-[(1-x^a)^b]-\gamma)})} \right]^{-1},
\]
respectively, for \(\theta, \gamma, \delta, a, b > 0 \).

Figure 2 shows plots of the pdfs and hrfs for the MO-Gom-Kw distribution. The pdf can apply to left
or right-skewed data sets. The hrf exhibits increasing, bathtub and upside bathtub followed by bathtub shapes.

4.3. Marshall-Olkin-Gompertz-Burr XII (MO-Gom-BXII) distribution

If we consider the baseline distribution to be Burr XII distribution with pdf and cdf given by \(g(x; c, k) = c k x^{c-1}(1 + x^c)^{-k-1} \) and \(G(x; c, k) = 1 - (1 + x^c)^{-k} \), respectively, we obtain the MO-Gom-BXII distribution with cdf, pdf, and hrf given by

\[
F(x; \theta, \gamma, \delta, c, k) = \frac{1 - e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}}{1 - \delta e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}},
\]
\[
f(x; \theta, \gamma, \delta, c, k) = \frac{\delta \theta^c c k x^{c-1}(1 + x^c)^{-k-1}[1 + x^c]^{-k} - \gamma - 1 e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}}{(1 - \delta e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma})^2},
\]
\[
h(x; \theta, \gamma, \delta, c, k) = \frac{\delta \theta^c c k x^{c-1}(1 + x^c)^{-k-1}[1 + x^c]^{-k} - \gamma - 1 e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}}{(1 - \delta e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma})^2}
\times \left[1 - \frac{1 - e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}}{1 - \delta e^{\theta \delta x^{k+1}\gamma^{-1} - \gamma}} \right]^{-1},
\]
respectively, for \(\theta, \gamma, \delta, c, k > 0 \). We obtain the MO-Gom-Log-Logistic (MO-Gom-LLoG) and MO-Gom-Lomax (MO-Gom-Lx) from the MO-Gom-BXII distribution by setting \(k = 1 \) and \(c = 1 \), respectively.

![Figure 3: Plots of the pdf and hrf for the MO-Gom-BXII distribution.](image)

Pdfs and hrfs plots for the MO-Gom-BXII distribution are shown in Figure 3. The pdf applies to heavy tailed data sets. The hrf exhibits decreasing, increasing, bathtub and upside bathtub shapes.

5. Simulation study

In this section, we present results of simulation study for the MO-Gom-W distribution. We fix the parameter \(\theta = 1 \) in the following sets of parameter values (I: \(\gamma = 0.05, \delta = 1.0, \lambda = 0.5 \)), (II: \(\gamma = 1.0, \delta = 0.5, \lambda = 0.01 \)), (III: \(\gamma = 0.01, \delta = 1.1, \lambda = 0.5 \)), (IV: \(\gamma = 0.01, \delta = 1.0, \lambda = 0.01 \)), (V: \(\gamma = 1.0, \delta = 0.5, \lambda = 0.01 \)), and (VI: \(\gamma = 0.01, \delta = 1.1, \lambda = 1.1 \)). We consider sample sizes \(n = 25, 50, 100, 200, 400, \) and 800, for \(N = 1000 \) for each sample. We estimate the mean, average bias and root mean square error (RMSE). The bias and RMSE for the estimated parameter, say, \(\hat{\Delta} \), say, are given by:

\[
\text{Bias}(\hat{\Delta}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{\Delta}_i - \Delta), \quad \text{and} \quad \text{RMSE}(\hat{\Delta}) = \sqrt{\frac{\sum_{i=1}^{N} (\hat{\Delta}_i - \Delta)^2}{N}},
\]
respectively. From the results in Table 1, the mean values approximate the true parameter values, RMSE and bias decay towards zero for all the parameter values. We therefore, conclude that our model give consistent maximum likelihood estimates (MLEs).

Table 1: Monte Carlo simulation results for MO-Gom-W distribution: mean, RMSE, and average bias

n	Mean	RMSE	Bias	Mean	RMSE	Bias	Mean	RMSE	Bias
25	0.089236	0.038568	0.09236	1.83823	4.276884	0.83823	0.016832	0.021484	0.006832
50	0.065115	0.038402	0.05115	1.36213	2.389007	0.303212	0.012038	0.006697	0.002038
100	0.056817	0.022569	0.06817	1.14846	0.225353	0.148946	0.018059	0.004961	0.000859
200	0.035699	0.015359	0.035699	1.071162	0.172782	0.077162	0.010629	0.003327	0.000629
400	0.051052	0.009684	0.001052	1.050306	0.102636	0.050306	0.010233	0.002036	0.000233
800	0.056612	0.007122	0.000612	0.980394	0.039606	-0.019606	0.001135	0.000135	0.000135

6. Applications

In this section, we present two real data examples to demonstrate the flexibility of the MO-Gom-W distribution in data fitting. The maximum likelihood estimation technique is used to estimate the model parameters via the nlm package in R software [28]. The AdequacyModel package in R software [28] is used to assess model performance. We consider the following goodness-of-fit statistics: Cramer-von-Mises (W*), and Anderson-Darling (A*), as well as -2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S) statistic (and it’s p-value), and sum of squares (SS). The model with the smallest values of the goodness-of-fit statistics and a bigger p-value for the K-S statistic is regarded as the best model.

We present data analysis results in Tables 2 and 3, parameter estimates (standard errors in parentheses) and the goodness-of-fit statistics for the various models considered in this paper. We also provide fitted densities and probability plots (as described by Chambers et al. [7]) to demonstrate the flexibility of the MO-Gom-W distribution in data fitting compared to the selected competing models (see Figures 4 and 5, for details).

We compare the MO-Gom-W distribution to the following models: Gompertz distribution by Gompertz [19], generalized Gompertz (G-Gom) distribution by El-Gohary et al. [16], Marshall-Olkin log-logistic (MO-LLoG) distribution by Wenhao [20], Marshall-Olkin extended inverse Weibull (MO-IW) by...
Pakungwati et al. [27], Marshall-Olkin extended Weibull (MO-EW) by Barreto-Souza and Baukoch [4], exponentiated half logistic odd Weibull-Topp-Leone-log logistic (EHLOW-TL-LLoG) by Chipepa et al. [11], odd generalized half logistic Weibull-Weibull (OGHLW-W) by Chipepa et al. [8], Kumaraswamy Weibull (KwW) by Cordeiro et al. [15], the exponential Lindley odd log-logistic Weibull (EOLLOW) by Korkmaz et al. [25], Kumaraswamy odd Lindley-log logistic (KOL-LLoG) by Chipepa et al. [10] and beta odd Lindley-exponential (BOL-E) by Chipepa et al. [9]. The pdfs of the non-nested models are

\[
f_{G-Gom}(x; \alpha, \beta, \lambda) = \alpha \beta e^{\lambda x} (1 - e^{-\theta x} e^{-\lambda x^\alpha})^{\alpha-1},
\]
for \(\alpha, \beta, \lambda > 0, \)

\[
f_{MO-EW}(x; \alpha, \gamma, \lambda) = \frac{\alpha \gamma \lambda \gamma^{\gamma-1} e^{-\lambda x^\gamma}}{(1 - \alpha e^{-\lambda x^\gamma})^2},
\]
for \(\alpha, \gamma, \lambda > 0, \)

\[
f_{MO-LW}(x; \alpha, \theta, \lambda) = \frac{\alpha \lambda \theta^{-\lambda x^{-\lambda^2}} e^{-\lambda x^\theta}}{(\alpha - (\alpha - 1) e^{-\lambda x^\theta})^2},
\]
for \(\alpha, \theta, \lambda > 0, \)

\[
f_{MO-LLoG}(x; \alpha, \beta, \gamma) = \frac{\alpha \beta \gamma x^{\beta-1}}{(x^\beta + \alpha \beta \gamma)^2},
\]
for \(\alpha, \beta, \gamma > 0, \)

\[
f_{EHLOW-\text{TL-ExII}}(x; \alpha, \beta, \delta, \lambda, \gamma) = \frac{4 \alpha \beta \delta \lambda \gamma x^{\lambda-1} (1 + x^\lambda)^{-\gamma} [1 - (1 + x^\lambda)^{-\gamma}]^{\alpha\beta-1}}{(1 - [1 - (1 + x^\lambda)^{-\gamma}]^{\alpha\beta})^2 \cdot \exp(-t) (1 + \exp(-t))^{-2}}.
\]
where \(t = \left[\frac{[1 - (1 + x^\lambda)^{-\gamma}]^{\alpha\beta}}{1 - [1 - (1 + x^\lambda)^{-\gamma}]^{\alpha\beta}} \right] \), for \(\alpha, \beta, \delta, \lambda, \gamma > 0, \)

\[
f_{OHGW-W}(x; \alpha, \beta, \lambda, \gamma) = \frac{2 \alpha \beta \gamma x^{\gamma-1} e^{-\lambda x^\gamma} (1 - e^{-\lambda x^\gamma})^{\beta-1} \exp \left\{ -\alpha \left[\frac{1 - e^{-\lambda x^\gamma}}{e^{-\lambda x^\gamma}} \right] \beta \right\} e^{-\lambda x^\gamma} \left(1 + \exp \left\{ -\alpha \left[\frac{1 - e^{-\lambda x^\gamma}}{e^{-\lambda x^\gamma}} \right] \beta \right\} \right)^2}{\exp(-\beta + 1) \lambda x^\gamma},
\]
for \(\alpha, \beta, \lambda, \gamma > 0, \)

\[
f_{KwW}(x; \alpha, \beta, \theta) = ab \alpha \beta x^{\beta-1} e^{-(\alpha x)\beta} (1 - e^{-(\alpha x)\beta}) a^{-1} (1 - (1 - e^{-(\alpha x)\beta}) a) b^{-1},
\]
for \(\alpha, \beta, \theta > 0, \)

\[
f_{ELLOW}(x; \alpha, \beta, \gamma, \theta, \lambda) = \frac{\alpha \theta^{2} \lambda \gamma x^{\gamma-1} e^{-(\lambda x)^\theta} (1 - e^{-(\lambda x)^\theta})^{\alpha \beta-1}(1 - e^{-(\lambda x)^\theta})^{\alpha-1}}{((\theta + \beta)(1 - e^{-(\lambda x)^\theta}))^{\alpha+\theta} e^{-\lambda x^{\theta}}},
\]
for \(\alpha, \beta, \gamma, \theta, \lambda > 0, \)

\[
f_{KOL-LLoG}(x; \alpha, \beta, \lambda, c) = ab \left[\frac{\lambda^2}{(1 + \lambda)(1 + x^c)} \right] e^{c x^{c-1}} \exp(-\lambda x) \left[1 - \frac{\lambda + ((1 + x^c)^{-1})}{(1 + \lambda)((1 + x^c)^{-1} - 1)} \exp(-\lambda x) \right] a^{-1} \times \left(1 - \frac{\lambda + ((1 + x^c)^{-1})}{(1 + \lambda)((1 + x^c)^{-1} - 1)} \exp(-\lambda x) \right) b^{-1},
\]
where \(z = \frac{(1 - (1 + x^c)^{-1})}{(1 + x^c)^{-1}}, \) \(a, b, \lambda, c > 0, \) and

\[
f_{BOL-E}(x; \alpha, \beta, \lambda, \theta) = \frac{1}{B(a, b)} \left[\frac{1 - \lambda + e^{-\theta x}}{(1 + \lambda)e^{-\theta x}} \exp \left\{ \frac{-\lambda (1 - e^{-\theta x})}{e^{-\theta x}} \right\} \right] a^{-1}.
\]
and the 95% confidence intervals for the model parameters are given by
\[
\begin{align*}
(1.61, 1.63, 1.67, 1.70, 1.78, 1.89),
\end{align*}
\]
for \(a, b, \lambda, \theta > 0\). We get the Gompertz distribution from G-Gom distribution by setting \(\alpha = 1\). Also, we obtain the EHLow-TL-LLoG distribution from the EHLow-TL-BXII distribution by setting \(\gamma = 1\). For the ELOLLOW distribution we considered the case when \(\alpha = 1\).

6.1. Strengths of 1.5 cm glass fibres data

The first data set represents strengths of 1.5 cm glass fibres. The data set was also analyzed by Bourguignon et al. [6] and Smith and Naylor [33]. The data are 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

The estimated variance-covariance matrix for the MO-Gom-W model based on glass fibres data set is

\[
\begin{bmatrix}
10.0655 \times 10^{-6} & 8.8229 \times 10^{-8} & 3.2278 \times 10^{-5} & -3.1485 \times 10^{-7} \\
8.8229 \times 10^{-8} & 7.3053 \times 10^{-9} & 2.6726 \times 10^{-6} & -2.6071 \times 10^{-8} \\
3.2278 \times 10^{-5} & 2.6726 \times 10^{-6} & 9.7776 \times 10^{-4} & -9.5380 \times 10^{-6} \\
-3.1485 \times 10^{-7} & -2.6071 \times 10^{-8} & -9.5380 \times 10^{-6} & 1.0402 \times 10^{-7}
\end{bmatrix}
\]

and the 95% confidence intervals for the model parameters are given by \(\gamma \in [8.3180 \pm 0.40020], \delta \in [21.4720 \pm 0.0002], \lambda \in [0.3134 \pm 0.0613]\) and \(\theta \in [0.0018 \pm 0.0006]\). We observe from the results presented in Table 2 that the MO-Gom-W distribution fits the glass fibres data set better than the other models since it has the lowest values for the goodness-of-fit statistics \(A^*, W^*\) and K-S (and the largest p-value for the K-S statistic).

Model	\(\gamma\) Estimates	\(\lambda\)	\(\theta\)	\(-2\log L\)	AIC	AICC	BIC	W*	A*	K-S	p-value	
MO-Gom-W	(8.3180)	21.4720	0.3134	0.0018	24.1	32.1	32.8	40.6	0.0868	0.5016	0.0970	0.5937
Gompertz	\(\alpha\)	\(b\)	\(\beta\)	\(\gamma\)	29.6	33.6	33.8	37.9	0.1442	0.8424	0.1268	0.2636
G-Gom	1.6060	0.0356	\(\lambda\)	-	28.3	34.3	34.7	40.7	0.1626	0.9153	0.1318	0.2240
MO-LLoG	10.2977	7.9260	3.6163	-	177.4	51.6	52.0	58.0	0.4969	2.7490	0.1537	0.1019
MO-EW	16.4343	-	3.2018	0.8925	24.1	30.1	30.5	36.5	0.1057	0.5911	0.0999	0.5548
MO-IW	5.3050 \times 10^6	7.9261	2.5853	-	45.6	51.6	52.0	58.0	0.4975	2.7512	0.1538	0.1015
EHLow-TL-LLoG	1.1293	0.1464	4.3716	7.8796	34.9	42.9	43.6	51.4	0.3373	1.8409	0.1868	0.0246
OGHLLW	3.0734 \times 10^{-5}	0.5007	16.9910	0.4785	27.1	35.1	35.8	43.6	0.1372	0.7816	0.1284	0.2500
KwW	291.2500	1382.6000	492.3000	0.1962	35.9	43.9	44.6	52.5	0.3536	1.9343	0.1769	0.0388
ELOLLOW	1.6045	0.7082	0.8581	4.9441	28.4	36.4	37.1	45.0	0.1953	1.0753	0.1367	0.1895
KOL-LLoG	0.5532	25.4210	0.0399	5.9116	27.4	35.4	36.1	44.0	0.1507	0.8450	0.1293	0.2429
BOL-E	1.2000	0.7577	0.2277	1.9749	28.1	36.1	36.8	44.7	0.1550	0.8753	0.1301	0.2367
6.2. Turbocharger failure times data

The data represents failure times \((10^3 \text{h})\) of turbocharger of one type of engine as report by Xu et al [35]. The data is 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.7, 7.0, 7.1, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.

The estimated variance-covariance matrix is

\[
\begin{bmatrix}
0.0018 & 0.0058 & -0.0384 & 1.5976 \times 10^{-4} \\
0.0058 & 1.0817 & -0.3088 & 5.6079 \times 10^{-3} \\
-0.0384 & -0.3088 & 0.8593 & -4.3962 \times 10^{-3} \\
0.0001 & 0.0056 & -0.0043 & 4.0375 \times 10^{-5}
\end{bmatrix}
\]

and the 95% confidence intervals for the model parameters are given by \(\gamma \in [0.0181 \pm 0.0832]\), \(\delta \in [0.7477 \pm 2.0386]\), \(\lambda \in [2.3312 \pm 1.8169]\) and \(\theta \in [0.0030 \pm 0.0125]\).
Table 3: MLEs and goodness-of-fit statistics.

Model	Estimates	Statistics											
	γ	δ	λ	θ	$-2\log L$	AIC	AICC	BIC	W^*	A^*	K-S	p-value	
MO-Gom-W	0.0181	0.7477	2.3312	0.0030	158.3	166.3	167.4	173.0	0.0230	0.1704	0.0821	0.9501	
Gompertz	α	0.4908	-	γ	0.7553$\times 10^{-10}$	302.4	306.4	306.7	309.8	0.1896	1.2707	0.7401	$< 2.2000 \times 10^{-16}$
		(0.0914)			(0.094)								
G-Gom	9.5146	0.4498	-	-	2.9039$\times 10^{-4}$	180.3	186.3	187.0	191.4	0.2757	1.7601	0.1542	0.2976
	(5.2499)	(0.2038)		(0.035)	(0.094)								
MO-LLoG	4.6678	4.8416	3.9474	-	177.4	183.4	184.1	188.5	0.2142	1.4072	0.1437	0.3807	
	(0.3149)	(0.6536)	(0.0722)		(0.094)								
MO-EW	4.8588	-	2.7877	0.1887	162.6	168.6	169.3	173.7	0.0496	0.3766	0.0918	0.8889	
	(5.6658)		(0.8728)	(0.0468)									
MO-IW	4.8362$\times 10^{3}$	4.8391	0.9275	-	177.4	183.4	184.1	188.5	0.2153	1.4131	0.1438	0.3800	
	(8.4147$\times 10^{-6}$)	(0.6512)	(0.2203)		(0.094)								
ELOW-TL-LLoG	29.7753	4.7226	0.2243	0.8263	159.1	167.1	168.2	173.8	0.0319	0.2646	0.1021	0.7985	
	(13.9088)	(2.5254)	(0.1387)	(0.1261)									
OGHLW-W	0.0062	0.1375	9.8384	0.7102	160.6	168.6	169.8	175.4	0.0353	0.2524	0.0856	0.9310	
	(0.0198)	(0.0213)	(0.0527)	(0.4516)									
KwW	0.3778	21.9782	0.0630	9.9157	164.3	172.3	173.5	179.1	0.0727	0.5442	0.1091	0.7278	
	(0.2433)	(0.0873)	(0.0667)	(6.3940)									
ELOLOW	3.2768	0.1209	2.9438	3.4997	163.8	171.8	172.9	178.5	0.0606	0.4815	0.1017	0.8027	
	(1.7673)	(0.0285)	(1.9669)	(6.0303)									
KOL-LLoG	0.6799	64.6120	0.0002	2.8882	165.1	173.1	174.2	179.8	0.0770	0.5729	0.1038	0.7821	
	(0.0896)	(1.1962$\times 10^{-5}$)	(9.0536$\times 10^{-5}$)	(0.0194)									
BOL-E	0.2105	0.3251	0.0003	1.1911	159.0	167.0	168.1	173.7	0.0343	0.2175	0.0832	0.9449	
	(0.0271)	(0.2604)	(0.0002)	(0.0088)									

7. Concluding remarks

We developed a new generalized distribution called the Marshall-Olkin-Gompertz-G (MO-Gom-G) family of distributions. We derived the statistical properties of the MO-Gom-G family of distributions. Maximum likelihood estimates of the model parameters were also derived. A simulation study was conducted to evaluate the consistency of the maximum likelihood estimates. A special case (MO-Gom-W) was applied to two real data examples to demonstrate the flexibility of the MO-Gom-G family of distributions.

Acknowledgment

We are grateful to the editor and referees for the improved version of this paper.

References

[1] M. Alizadeh, L. Benkhelifa, M. Rasekhi, B. Hosseini, The odd log-logistic generalized Gompertz distribution: Properties, applications and different methods of estimation, Commun. Math. Stat., 8 (2020), 295–317.
[2] M. Alizadeh, G. M. Cordeiro, L. G. Bastos Pinho, I. Ghosh, The Gompertz-G family of distributions, J. Stat. Theory Pract., 11 (2017), 179–207.
[3] M. Alizadeh, S. Tahmasebi, M. R. Kazemi, H. S. A. Nejad, G. H. G. Hamedani, The odd log-logistic Gompertz lifetime distribution, Statistics, 47 (2013), 465–476.
[4] W. Barreto-Souza, H. S. Bakouch, A New Lifetime Model with Decreasing Failure Rate, Statistics, 47 (2013), 465–476.
[5] W. Barreto-Souza, A. J. Lemonte, G. M. Cordeiro, General results for the Marshall and Olkin’s family of distributions, An. Acad. Brasil. Ciênc., 85 (2013), 293–297.
[6] M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull-G family of probability distributions, J. Data Sci., 12 (2014), 53–68.
[7] J. M. Chambers, W. S. Cleveland, B. Kleiner, P. A. Tukey, Graphical Methods of Data Analysis, Interscience, 40 (1984), 567–568.
[8] F. Chipepa, B. Oluyede, B. Makubate, The Odd Generalized Half-Logistic Weibull-G Family of Distributions: Properties and Applications, Journal of Statistical Modelling: Theory and Applications, 2020, 1–25.
Appendix

The following url contains the simulation algorithm for the MO-Gom-W distribution https://drive.google.com/file/d/1e3yWmmg0HxzYlrMUnFVJ7BjNjIubnLg/view?usp=sharing.