In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants

Poonam Kumari and Rashmi Rameshwari*

Abstract

Background: Intrinsic pathway of apoptosis is generally mediated by BCL-2 (B cell lymphoma 2) family of proteins; they either induce or inhibit the apoptosis. Overexpression of BCL-2 in cancer cell may lead to delay in apoptosis. BCL-w is the pro-survival member of the BCL-2 family. BCL2L2 gene is present on chromosome number 14 in humans, and it encodes BCL-w protein; BCL-w protein is 193 amino acids residues in length. Interactions among the BCL-2 proteins are very specific. The fate of cell is determined by the ratio of pro-apoptotic proteins to pro-survival proteins. BCL-w promotes cell survival. Studies suggested that overexpression of BCL-w protein is associated with many cancers including DLBCL, BL, colorectal cancers, gastric cancers, and many more. The cause of overexpression is translocations or gene amplification which will subsequently result in cancerous activity.

Process: For in-silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Different tools were used to detect the deleteriousness of the variants.

Result: In silico mutational study reveals how the non-synonymous mutations directly affect the protein’s native structure and its function. Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants, 28 of the missense mutations was probably damaging with a score ranging from 0.9 to 1, while 24 variants were benign with a score ranging from 0 to 0.4.

Conclusions: This in silico work aims to determine how missense mutations in BCL-w protein affect the activity of the protein, the stability of the protein, and to determine the pathogenicity of the variants. Prediction of pathogenicity of variants will reveal if the missense mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.

Keywords: Pro-survival, Pathogenicity, Missense variants, Destabilizing, Deleterious, Stability

Background

BCL-2 family of proteins are associated with mitochondrial-mediated cell death. The proteins of BCL-2 family either inhibits or induces cell death. On the basis of BH domain, members are classified into three groups [1].

*Correspondence: rashmi.fet@mriu.edu.in

Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
the oligomerization of these proteins in the outer membrane of the mitochondria, this oligomerization results in MOMP formation [2, 9]. In cytosol, cytochrome c (released from mitochondria intermembranous space) with Apaf-1, caspase 9, and ATP [10–12] forms a complex also known as apoptosome. This complex cleaves off and activates the caspase 3 that results in apoptosis.

BCL-w is the pro-survival protein in the BCL-2 family. BCL2L2 gene present on chromosome number 14 in humans encodes the BCL-w protein and this protein is 193 amino acids residues in length [2, 13]. BCL-w protein is generally found on the outer membrane of the mitochondria [2, 14]. The BCL-w protein consists of nine α helices with flanking amphipathic helices α1 (10–24 residues), α2 (43–56), α3 (62–68), α4 (76–87), α6 (116–132), α7 (134–141), α8 (144–150), α9 (157–173), and central hydrophobic groove formed by helix, α5 (93–111).

BCL-w is found in the testes, colon, brains, and cells with lymphoid and myeloid origin [2, 13, 15]. Studies suggested that BCL-w is involved in spermatogenesis [2, 15] and is majorly expressed in spermatocytes, Leydig cells, Sertoli cells and spermatogonia, BCL-w also promotes their survival [2, 16, 17]. Experimental studies also suggest that overexpression of this protein might results in spermatocytes degeneracy, decline in the number of spermatogonia and vacuolization of sertoli cells [2, 18]. BCL-w also promotes the survival of gut epithelial cells [2, 15], prevents small intestine cells and mid-colon cells from death [2, 19], it also promotes enterocyte survival and B lymphocyte survival [2, 20]. High level of BCL-w also estimated in some areas of brain such as mature brain, sensory neurons, hippocampus and cerebellum [2, 21, 22]. BCL-w has also been involved in the development of dendrite and it controls the morphogenesis of mitochondria. BCL-w has also been involved in disorders of nervous system such as Alzheimer’s disease and Parkinson’s diseases, the cause of these diseases is the increased level of BCL-w. Overexpression of BCL-w is associated with ischemic brain [2, 23]. Overexpression of the BCL2L2 results in the survival of megakaryocytes and increased platelet formation [2, 24].

Genetic alterations in BCL2L2 contributes to many cancers such as copy number variations in small [2, 25] and non-small [2, 26] lung cancer, high level of BCL-w contributes to gastric carcinomas, and low BCL-w expression contributes to colorectal cancer [2, 27]. Patients with breast cancers significantly have high BCL-w mRNA level [2, 28, 29]. BCL-w has significantly involved with the cancer of urinary system [2, 30]. Overexpression of BCL-w is associated with cervical cancer, prostate cancer, hepatocellular carcinoma (HCC) and leiomyosarcomas. Expression of BCL-w is significantly higher in DLBCL, BL, CML [2, 31], and B-CLL [2, 32].

The interaction of pro-survival protein, i.e., BCL-w with pro-apoptotic proteins initiates the process of apoptosis but any dysregulation in these interactions will block the apoptotic pathway. Any chemical or amino acid alterations in the protein will interrupt the interactions between pro-survival proteins and pro-apoptotic proteins. Understanding of these mutations will help us to understand if the mutation is involved in any disease. This in silico study helps us to define the role of missense variants of BCL-w, which may alter proteins native structure and its function. By examining the role of mutation on biological function, we can determine the correlation between the mutation and the disease. The missense variants retrieved from this study were subjected to some in silico prediction tools such as Polyphen-2, SIFT, Provean, FATHMM, mutation assessor and stability prediction namely I-mutant 2.0, iStable, SAAFEC, SDM, DUET, and mCSM (Table 1).

Method
Data collection—selection of the BCL-w variants

For in silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Among these, neither of the variants were listed in the ClinVar.

Variants pathogenicity prediction

For predicting the deleteriousness of the variants, the in silico pathogenicity prediction tools that were used were Polyphen-2 [33], SIFT [34], Provean [35–37], FATHMM [38], and Mutation Assessor [39].

Protein stability analysis

For predicting the of effect of amino acid change on the native BCL-w protein, I-mutant 2.0 [40], MUpro [41], and iStable [42], SAAFEC [43], SDM [44], DUET [45], and mCSM [46] web servers were used. I-mutant 2.0 is a web server that determines the change in stability due to point mutation or missense mutation. MUpro web server is a program that predicts the protein stability due to alteration in the sequence. Integrated predictor iStable was used for the predicting the stability of the protein, iStable may require both the sequence and the structure as an input. SAAFEC is a web server used to compute the energy changes due to single mutation. SDM (site-directed mutator) is an online server is that is also used for predicting the effect of point mutation on the protein stability. DUET is a web tool for the estimation of consequence of single mutation on proteins stability and its function. mCSM, a web tool used to estimate the impact
Table 1: Stability predictions of missense variants using various prediction tools by using fasta format as input

S.No	Missense mutations	I-Mutant2.0	MUpro	SAAFEC	IStable	
1	A159V	0.78	-0.383	-0.04	Increase	
	Decrease		Decreasing	Destabilizing		
2	G154W	-1.56	-0.332	-0.38	Increase	
	Decrease		Decreasing	Destabilizing		
3	R161H	-0.73	-1.345	-0.80	Decrease	
	Decrease		Decreasing	Destabilizing		
4	E146K	-1.11	-1.300	-0.57	Decrease	
	Decrease		Decreasing	Destabilizing		
5	L180Q	-2.55	-1.839	-1.68	Decrease	
	Decrease		Decreasing	Destabilizing		
6	V178M	-3.82	-0.277	-0.83	Increase	
	Decrease		Decreasing	Destabilizing		
7	A177P	0.87	-1.188	-0.95	Decrease	
	Decrease		Decreasing	Destabilizing		
8	S169P	0.36	-1.818	-0.02	Decrease	
	Increase		Decreasing	Destabilizing		
9	A159P	-0.61	-1.71	-0.41	Decrease	
	Decrease		Decreasing	Destabilizing		
10	A7T	-0.97	-0.700	-0.65	Decrease	
	Decrease		Decreasing	Destabilizing		
11	A7G	-0.98	-1.108	-0.70	Decrease	
	Decrease		Decreasing	Destabilizing		
12	A7V	0.89	-0.458	-0.64	Increase	
	Increase		Decreasing	Destabilizing		
13	P8L	0.57	-0.546	-0.54	Decrease	
	Increase		Decreasing	Destabilizing		
14	A15T	1.37	-1.302	-0.85	Decrease	
	Decrease		Decreasing	Destabilizing		
15	D16H	-1.53	-2.114	-0.22	Decrease	
	Decrease		Decreasing	Destabilizing		
16	R23K	-1.38	-0.717	-0.74	Decrease	
	Decrease		Decreasing	Destabilizing		
17	G34W	-1.01	0.524	-0.70	Increase	
	Decrease		Increasing	Destabilizing		
18	M46T	-0.80	-1.556	-2.46	Decrease	
	Decrease		Decreasing	Destabilizing		
19	M46I	0.25	-0.826	-1.11	Increase	
	Increase		Decreasing	Destabilizing		
20	R47Q	0.07	-0.786	-1.06	Increase	
	Decrease		Decreasing	Destabilizing		
21	G50R	-0.24	-1.055	-0.76	Increase	
	Decrease		Decreasing	Destabilizing		
22	G50V	-0.00	-1.074	-1.05	Decrease	
	Increase		Decreasing	Destabilizing		
23	E54K	-1.96	-1.066	-0.59	Decrease	
	Decrease		Decreasing	Destabilizing		
24	F57S	-1.69	-2.031	-2.68	Decrease	
	Decrease		Decreasing	Destabilizing		
25	R58Q	-0.45	-0.878	-0.71	Decrease	
	Decrease		Decreasing	Destabilizing		
26	R59C	-0.29	-1.086	-0.49	Decrease	
	Decrease		Decreasing	Destabilizing		
27	R59H	-0.90	-1.488	-0.58	Decrease	
	Decrease		Decreasing	Destabilizing		
28	S62F	0.30	-0.682	-0.36	Increase	
	Increase		Decreasing	Destabilizing		
S.No	Missense mutations	I-Mutant2.0	MUpro	SAAFEC	IStable	
------	-------------------	-------------	--------	--------	---------	
29	A66D	Decrease	0.23	0.766	0.66	Increase
30	P72T	Decrease	0.88	0.976	1.10	Decrease
31	S74L	Increase	2.04	0.475	0.48	Decrease
32	Q76K	Decrease	0.13	0.978	0.60	Decrease
33	R78H	Decrease	1.33	0.917	0.86	Decrease
34	S83F	Decrease	1.35	0.158	0.67	Increase
35	D84N	Decrease	0.36	0.895	0.18	Stabilizing
36	N92Y	Increase	0.64	0.137	0.58	Increase
37	R95S	Decrease	1.76	1.048	1.36	Decrease
38	R95H	Decrease	0.69	1.092	1.11	Decrease
39	S110R	Decrease	0.39	0.722	0.80	Increase
40	V111I	Decrease	0.58	0.480	0.33	Decrease
41	V127M	Decrease	1.16	0.536	0.46	Decrease
42	A128V	Decrease	0.55	0.296	0.09	Decrease
43	E131G	Decrease	0.84	1.672	0.81	Decrease
44	Q133R	Decrease	0.06	1.196	0.08	Increase
45	A135V	Decrease	0.77	0.525	0.17	Increase
46	S140C	Decrease	0.23	0.575	0.26	Increase
47	S141I	Decrease	0.91	0.269	0.06	Increase
48	G142E	Decrease	1.09	1.223	1.27	Decrease
49	G152R	Decrease	1.38	0.671	0.94	Decrease
50	R160W	Decrease	0.67	0.744	0.88	Decrease
51	R161L	Decrease	0.12	0.316	0.44	Decrease
52	R163W	Decrease	0.55	0.852	0.06	Decrease
53	R171M	Decrease	0.88	0.328	0.44	Decrease
54	V186A	Decrease	3.07	1.789	1.41	Decrease
55	A188P	Decrease	1.42	1.343	0.76	Increase

Bold represents a destabilizing or decreased mutational effect by all the prediction tools used.
S.No	Position	PolyPhen-2	SIFT	Provean	Fathmm	Mutation assessor	
1	A159V	0.659	1.00	—	1.06	1.39	
		Probably damaging	Tolerant		Neutral	Low	
2	G154W	0.938	0.50	—	0.90	1.39	
		Probably damaging	Not Tolerant		Neutral	Low	
3	R161H	0.993	1.00	—	0.91	1.1	
		Probably damaging	Tolerant		Neutral	Low	
4	E146K	0.365	0.94	—	1.06	0.69	
		Benign	Tolerant		Neutral	Neutral	
5	L180Q	1.00	0.94	—	0.70	1.67	
		Probably damaging	Not tolerant		Neutral	Low	
6	V178M	0.014	1.00	—	0.78	1.5	
		Not Tolerant			Neutral	Low	
7	A177P	0.996	1.00	—	0.90	1.735	
		Probably damaging	Tolerant		Neutral	Low	
8	S169P	0.998	1.00	—	0.97	1.735	
		Probably damaging	Tolerant		Neutral	Low	
9	A159P	0.973	1.00	—	0.97	1.39	
		Probably damaging	Tolerant		Neutral	Low	
10	A7T	0.001	0.38	—	0.98	— 0.205	
		Benign	Tolerant		Neutral	Neutral	
11	A7G	0.003	0.38	—	0.95	0.345	
		Benign	Tolerant		Neutral	Neutral	
12	A7V	0.018	0.38	—	1.04	0	
		Benign	Tolerant		Neutral	Neutral	
13	P8L	0.028	0.38	—	1.09	0.755	
		Benign	Tolerant		Neutral	Neutral	
14	A15T	0.519	0.94	—	1.02	1.78	
		Possibly damaging	Tolerant		Neutral	Low	
15	D16H	0.965	0.94	—	0.64	1.905	
		Probably damaging	Not tolerant		Deleterious	Low	
16	R23K	0.012	0.88	—	0.91	0.205	
		Benign	Tolerant		Neutral	Neutral	
17	G34W	0.999	1.00	—	0.78	0.825	
		Probably damaging	Not tolerant		Neutral	Low	
18	M46T	0.997	1.00	—	0.88	2.215	
		Probably damaging	Not tolerant		Deleterious	Medium	
19	M46I	0.360	1.00	—	1.07	1.87	
		Benign	Not tolerant		Neutral	Low	
20	R47Q	0.562	1.00	—	0.76	1.56	
		Possibly damaging	Tolerant		Deleterious	Low	
21	G50R	1.000	1.00	—	0.51	2.88	
		Probably damaging	Not tolerant		Deleterious	Medium	
22	G50V	1.000	1.00	—	0.60	2.185	
		Probably damaging	Not tolerant		Deleterious	Medium	
23	E54K	1.000	1.00	—	0.99	2.855	
		Probably damaging	Tolerant		Deleterious	Medium	
24	F57S	0.964	1.00	—	0.97	2.215	
		Probably damaging	Not tolerant		Deleterious	Medium	
25	R58Q	0.138	1.00	—	0.93	2.215	
		Benign	Tolerant		Neutral	Medium	
26	R59C	0.001	1.00	—	1.09	0.645	
		Benign	Not tolerant		Deleterious	Neutral	
27	R59H	0.099	1.00	—	1.12	1.65	
		Benign	Not tolerant		Deleterious	Low	
28	S62F	0.993	1.00	—	0.86	2.25	
		Probably damaging	Not tolerant		Deleterious	Medium	
S.No	Position	PolyPhen-2	SIFT	Provean	Fathmm	Mutation assessor	
------	----------	------------	--------	---------	--------	-------------------	
29	A66D	0.001	1.00	—	1.132	1.09	1.055
		Benign	Tolerant		Neutral	Low	
30	P72T	0.986	1.00	—	6.239	0.87	2.805
		Probably damaging	Not tolerant		Deleterious	Medium	
31	S74L	0.557	1.00	—	2.282	0.81	1.795
		Probably damaging	Tolerant		Neutral	Low	
32	Q76K	0.142	1.00	—	1.504	1.00	1.395
		Benign	Tolerant		Neutral	Low	
33	R78H	0.280	1.00	—	2.066	1.20	2.125
		Benign	Tolerant		Neutral	Medium	
34	S83F	0.001	1.00	—	0.852	1.19	1.395
		Benign	Not tolerant		Neutral	Low	
35	D84N	0.073	1.00	—	1.032	1.15	1.48
		Benign	Tolerant		Neutral	Low	
36	N92Y	1.000	1.00	—	7.001	0.43	2.925
		Probably damaging	Not tolerant		Deleterious	Medium	
37	R95S	0.994	1.00	—	5.221	0.14	2.965
		Probably damaging	Not tolerant		Deleterious	Medium	
38	R95H	0.997	1.00	—	4.147	0.15	2.275
		Probably damaging	Not tolerant		Deleterious	Medium	
39	S110R	1.000	1.00	—	3.767	1.18	2.545
		Probably damaging	Not tolerant		Deleterious	Medium	
40	V111I	0.254	1.00	—	0.981	0.84	1.795
		Benign	Tolerant		Neutral	Low	
41	V127M	0.985	1.00	—	1.422	0.84	1.745
		Probably damaging	Not tolerant		Neutral	Low	
42	A128V	0.000	1.00	—	0.721	0.96	0.435
		Benign	Tolerant		Neutral	Neutral	
43	E131G	0.034	1.00	—	2.283	1.08	1.645
		Benign	Tolerant		Neutral	Low	
44	Q133R	0.000	1.00	Error		1.10	0.11
		Benign	Tolerant			Neutral	
45	A135V	0.067	1.00	—	1.765	1.13	1.5
		Benign	Tolerant		Neutral	Low	
46	S140C	0.987	1.00	—	3.590	0.87	2.16
		Probably damaging	Not tolerant		Deleterious	Medium	
47	S141I	0.000	1.00	—	3.534	0.95	1.245
		Benign	Not tolerant		Deleterious	Low	
48	G142E	0.996	1.00	—	6.273	— 1.69	2.875
		Probably damaging	Not tolerant		Deleterious	Medium	
49	G152R	0.999	0.94	—	3.741	0.85	1.445
		Probably damaging	Not tolerant		Deleterious	Low	
50	R160W	1.000	1.00	—	3.749	0.91	1.355
		Probably damaging	Not tolerant		Deleterious	Low	
51	R161L	0.945	1.00	—	2.168	1.00	1.1
		Possibly damaging	Tolerant		Neutral	Low	
52	R163W	1.000	1.00	—	1.314	0.94	0.69
		Probably damaging	Not tolerant		Neutral	Neutral	
53	R171M	0.406	0.75	—	1.019	0.97	0.69
		Benign	Not tolerant		Neutral	Neutral	
54	V186A	0.972	0.62	—	1.041	0.03	1.39
		Probably damaging	Not tolerant		Neutral	Low	
55	A188P	0.264	0.62	—	1.173	0.01	1.795
		Benign	Tolerant		Neutral	Low	
of point mutation on protein stability, protein-protein-binding, and protein-DNA binding.

Result

Pathogenecity prediction of BCL-w missense variants

Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants 28 of the missense mutations was probably damaging with score ranging from 0.9 to 1, while 24 variants were benign with score ranging from 0 to 0.4. PolyPhen-2 evaluates the damaging effect of point mutation by mapping SNPs to gene transcripts. From SIFT analysis, 28 out of 55 variants were deleterious, i.e., not tolerant with score ranging from 0 to 0.76, remaining 27 variants were tolerant (score range 0.76–1). Provean analysis revealed that 34 of the variants were neutral rest 20 were deleterious (one mutation, i.e., Q133R shows error) (Table 2). FATHMM analysis shows that 49 of the variants were deleterious, i.e., with score ≥ 0.67 rest 6 variants were neutral, i.e., no impact on the proteins native structure and function. Mutation assessor tool predicts the impact of point mutation on protein sequence and has revealed that 29 variants have low value while 15 variants have medium effect and 11 mutations have neutral effect.

Note: PolyPhen-v2 score less than 0.5 is considered to be tolerated and more than 0.5 is considered to be deleterious. SIFT score ranges from 0.0 to 0.05 are considered to be deleterious while score near 1.0 are considered to be tolerated; Provean score equals to or below −2.5 are considered to be deleterious while score above −2.5 are considered to be neutral; FATHMM score equals to or above 0.67 are deleterious; mutation assessor score prediction: 0–1 is neutral, 1–2 low, and above 2 medium.

Protein stability analysis

Pathogenic missense mutations cause change in free energy which further leads to alteration in protein stability. Here, BCL-w variants were subjected to various protein stability tools for analyzing change in free energy due to point mutation. I-Mutant 2.0, Mupro, iStable, SAAFEC, SDM, DUET, and mCSM tools were used for determining the protein stability. The tools revealed that the variants decrease the protein stability by showing a destabilizing or decreasing energy as result. I-Mutant 2.0, Mupro, M CSP, SDM, DUET, and SAAFEC tools shows the more negative ΔΔG value (ΔΔG > 0) shows the more destabilizing effect of the mutation, while the more positive ΔΔG value (ΔΔG <0) shows stability decrease in case of iStable tool.

Some of the servers require fasta format while some require PDB structure or PDB ID as an input. I-Mutant 2.0, Mupro, iStable, and SAAFEC use fasta format while SDM, DUET, and mCSM need PDB structure or PDB ID as an input. Some post-translational modifications that takes place during the conversion of peptide sequence to 3D structure may cause deletion of amino acids residue, i.e., some part of the protein may not be included in the crystallographic structure, as small peptide sequence yields a better crystal quality or structure of a protein is extracted from a crystal structure from proteins complex and isolating some proteins from complex of proteins may cause differences in the sequence in fasta format to sequence in PDB structure. Now, the fasta format of BCL-w starts from MATPA, while amino acid sequence in PDB structure starts from ATP, as shown in Fig. 1 for this reason, mutation given in DUET, SDM, and mCSM as A158V instead of A159V, besides this some of the amino acids are not included in the sequence of PDB structure due to these modifications are Q132R, V185A, and A187P as shown in Table 3.

Discussion

Present in silico mutational study reveals how the non-synonymous mutations directly affect the proteins native structure and its function. The activity of the protein complex and its function depends on the complex formed between proteins; the interactions between proteins might be necessary for molecular features like cell signaling and cell regulation. The protein complex formed may be homodimer or heterodimer are formed due to interactions between proteins. The missense mutations at the

Fig. 1 The amino acid sequence of BCL-w protein retrieved from RCSB PDB databank
S.No	Variants	SDM (ΔΔG value in Kcal/mol)	DUET (ΔΔG value in Kcal/mol)	mCSM (ΔΔG value in Kcal/mol)
1	A158V	−0.24	0.108	−0.245
		Destabilizing	Stabilizing	Destabilizing
2	G153W	−0.28	1.013	1.167
		Destabilizing	Stabilizing	Destabilizing
3	R160H	0.05	1.148	1.305
		Stabilizing	Destabilizing	Destabilizing
4	E145K	−0.46	0.072	0.372
		Destabilizing	Stabilizing	Destabilizing
5	S168P	0.09	0.073	0.247
		Stabilizing	Destabilizing	Destabilizing
6	A158P	−3.0	0.587	0.245
		Destabilizing	Stabilizing	Destabilizing
7	A6T	−0.31	0.333	0.623
		Destabilizing	Stabilizing	Destabilizing
8	A6G	−0.24	0.121	0.385
		Destabilizing	Stabilizing	Destabilizing
9	A6V	−0.21	0.255	0.519
		Destabilizing	Stabilizing	Destabilizing
10	P7L	−0.32	0.043	0.308
		Destabilizing	Stabilizing	Destabilizing
11	A14T	−1.97	0.734	0.735
		Destabilizing	Stabilizing	Destabilizing
12	D15H	0.35	0.281	0.546
		Stabilizing	Destabilizing	Destabilizing
13	R22K	−0.26	0.78	1.064
		Destabilizing	Stabilizing	Destabilizing
14	G33W	0.04	0.977	1.242
		Stabilizing	Destabilizing	Destabilizing
15	M45T	−1.8	1.22	1.375
		Destabilizing	Stabilizing	Destabilizing
16	M45I	−0.03	0.273	0.784
		Destabilizing	Stabilizing	Destabilizing
17	R46Q	−0.17	0.262	0.522
		Destabilizing	Stabilizing	Destabilizing
18	G49R	−0.76	0.694	0.91
		Destabilizing	Stabilizing	Destabilizing
19	G49V	0.47	1.008	0.49
		Stabilizing	Destabilizing	Destabilizing
20	E53K	−0.46	0.166	0.46
		Destabilizing	Stabilizing	Destabilizing
21	F56S	−3.23	2.492	2.231
		Destabilizing	Stabilizing	Destabilizing
22	R57Q	−0.44	0.044	0.059
		Destabilizing	Stabilizing	Destabilizing
23	R58C	−0.27	0.319	0.239
		Destabilizing	Stabilizing	Destabilizing
24	R58H	0.29	0.778	0.833
		Stabilizing	Destabilizing	Destabilizing
25	S61F	0.8	0.651	1.042
		Stabilizing	Destabilizing	Destabilizing
26	A65D	−0.04	1.004	1.205
		Destabilizing	Stabilizing	Destabilizing
27	P71T	−0.38	0.346	0.623
		Destabilizing	Stabilizing	Destabilizing
28	S73L	1.24	0.383	0.146
		Stabilizing	Destabilizing	Destabilizing
interface of the protein-protein interaction (PPI) causes disruption in the shape, size, and secondary structure of the complex. For the specific function of the protein complex, there should be presence of stable interaction between proteins. Moreover, mutation of large amino acids into a smaller amino acid causes gaps while mutation of smaller one leads to bumps or inter-molecular clashes. BCL-2, has a pro-survival function, and is also involved in normal as well as diseased cells and disorders of nervous system and cancer. The protein–protein interactions gets disturbed due to non-synonymous mutation which may lead to diseased state. The structure of the protein is directly influenced by its function and its stability. The genetic variations, i.e., amino acid change that represses its property directly

S.No	Variants	SDM (ΔΔG value in Kcal/mol)	DUET (ΔΔG value in Kcal/mol)	mCSM (ΔΔG value in Kcal/mol)
32	Q75K	0.17	0.431	0.054
		Stabilizing	Stabilizing	Destabilizing
33	R77H	-0.22	-1.464	-1.529
		Destabilizing	Destabilizing	Destabilizing
34	S82F	0.64	-0.253	-0.543
		Destabilizing	Destabilizing	Destabilizing
35	D83N	0.31	-0.637	-0.989
		Stabilizing	Destabilizing	Destabilizing
36	N91Y	0.35	-0.403	-0.546
		Stabilizing	Destabilizing	Destabilizing
37	R94S	-3.2	-2.82	-2.249
		Destabilizing	Destabilizing	Destabilizing
38	R94H	-0.82	-2.229	-2.091
		Destabilizing	Destabilizing	Destabilizing
39	S109R	0.15	-0.313	-0.78
		Destabilizing	Stabilizing	Destabilizing
40	V110I	0.36	-0.313	-0.78
		Stabilizing	Destabilizing	Destabilizing
41	V126M	-0.11	-0.015	-0.239
		Destabilizing	Destabilizing	Destabilizing
42	A127V	-1.03	-0.25	-0.395
		Destabilizing	Destabilizing	Destabilizing
43	E130G	-1.53	-0.956	-0.802
		Destabilizing	Destabilizing	Destabilizing
44	Q132R	-1.07	0.359	-0.51
		Destabilizing	Destabilizing	Destabilizing
45	A134V	-0.97	-0.015	-0.225
		Destabilizing	Destabilizing	Destabilizing
46	S139C	0.71	0.227	-0.225
		Stabilizing	Stabilizing	Destabilizing
47	S140I	2.13	0.382	-0.467
		Stabilizing	Stabilizing	Destabilizing
48	G141E	-2.58	-0.705	-0.463
		Destabilizing	Destabilizing	Destabilizing
49	G151R	0.14	-0.177	-0.607
		Stabilizing	Destabilizing	Destabilizing
50	R159W	0.59	-0.531	-0.736
		Stabilizing	Destabilizing	Destabilizing
51	R160L	-0.08	0.142	-0.022
		Destabilizing	Stabilizing	Destabilizing
52	R162W	0.63	-0.757	-1.082
		Stabilizing	Destabilizing	Destabilizing
53	R170M	0.14	-0.186	-0.073
		Stabilizing	Destabilizing	Destabilizing
54	V185A	-	-	-
55	A187P	-	-	-

Bold represents destabilizing or decreased effect of the mutation
influences all other properties. The hydrogen bonds within amino acid residues maintains the protein stability, i.e., reduced H-bonds may cause loss of stability of the protein while higher H-bonds may increase the protein stability. The structural changes caused due to variants corresponds to physicochemical properties of the proteins like size, charge, hydrophobicity, molecular weight, and side chains. These changes further causes alteration in the chemical properties which may be necessary for maintaining secondary, tertiary, and quaternary structure of proteins.

Most pathogenic variants destabilizes the 3D structure, stability, and folding-free energy of the protein, which subsequently results in disruption in proteins function and regulation [47, 48].

Conclusion

Proteins are dynamic in nature as they are flexible in nature due to temperature, pH, and interaction with other molecule may be a ligand. Understanding of proteins native conformation may reveal the role of variants in diseased condition. The activity and function of the protein complex is determined by its interaction with other proteins. However, the stability of a protein complex can disrupt due to mutations in the protein. This in silico study has estimates the efficiency of various pathogenicity prediction tools and stability analysis tools for BCL-w variants and the study may help in characterization of mutations in the protein complex and molecular level. Furthermore, the result indicates that the mis-sense mutation alters the stability of BCL-w.

Abbreviations

MCL-1: Myeloid cell leukemia-1; BCL-w: B cell lymphoma-w; A1/BFL-1: BCL-2-related protein A1/BCL-2 related isolated from fetal liver-11; BAX: BCL-2-associated X protein; BAK: BCL-2 antagonist/killer; BAD: BCL-2-associated agonist of cell death; BIK: BCL-2 interacting killer; BMF: BCL-2-modifying factor; BIM: BCL-2-interacting mediator of cell death; tBID: Truncated form of BH3-interacting domain death agonist; PUMA: p53-upregulated modulator of apoptosis; MOMP: Mitochondrial outer membrane permeabilization; CML: Chronic myeloid leukemia; Apaf-1: Apoptosis protease activating factor 1; B-CLL: B cell chronic lymphocytic leukemia; PolyPhen-2: Polymorphism phenotyping-2; SIFT: Sorting intolerant from tolerant; Provean: Protein variation effect analyzer; FATHMM: Functional analysis through hidden Markov models.

Acknowledgements

I would like to express my sincere gratitude to Dr. Indrakant K Singh, assistant professor, Deshbandhu College, University of Delhi, for giving us the opportunity to work on this topic. It would never be possible for us to take this research work to this level without his innovative ideas and his relentless support and encouragement.

Authors’ contributions

Both authors have contributed in research work and writing the manuscript. The author(s) read and approved the final manuscript.

Funding

No grant has been received.

References

1. Wong RSY (2011) Apoptosis in cancer: From pathology to treatment. J. Exp. Clin. Cancer Res. 30(1):1–14. https://doi.org/10.1186/1756-9966-30-87
2. Hartman ML, Czyz M (2020) BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 11:4. https://doi.org/10.1038/s41419-020-2417-0
3. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20(3):175–193. https://doi.org/10.1038/s41580-018-0089-8
4. Hartman ML, Czyz M (2012) Pro-apoptotic activity of BH3-only Proteins and BH3 Mimetics : from Theory to Potential Cancer Therapy, pp 96–98
5. Hartman ML, Czyz M (2013) Anti-apoptotic proteins on guard of melano-noma cell survival. Cancer Lett. 331(1):24–34. https://doi.org/10.1016/j.cancerlet.2013.01.010
6. Dutta S, Gullà S, Chen TS, Fire E, Grant RA, Keating AE (2010) Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xl. J. Mol. Biol. 398(5):747–762. https://doi.org/10.1016/j.jmb.2010.03.058
7. Knight T, Luedtke D, Edwards H, Taub JW, Ge Y (2019) A delicate balance – The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol. 162:250–261. https://doi.org/10.1016/j.bcp.2019.01.015
8. Shamas-Din A et al (2014) Multiple partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed by tBid. Cell Death Dis. 5(6):e1277–e1277. https://doi.org/10.1038/cddis.2014.234
9. Gama V, Deshmukh M (2015) Life after MOMP. Mol. Cell 58(2):199–201. https://doi.org/10.1016/j.molcel.2015.03.035
10. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autocrine activation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1(7):949–957. https://doi.org/10.1016/S1097-2765(00)80095-7
11. Singh K, Briggs JM (2016) Mutation research / reviews in mutation research functional implications of the spectrum of BCL2 mutations in lymphoma. Mutat. Res. Mutat. Res. 769:1–18. https://doi.org/10.1016/j.mrm.2016.08.001
12. Li P et al (1997) Cytochrome c and dATP-dependent formation of the pro-survival molecule Bcl-w, pp 486–494
13. Gibson L et al (1996) Bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13(4):665–675 [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8761287
14. Lapham A, Adams JE, Paterson A, Lee M, Brimell M, Packham G (2009) The Bcl-w promoter is activated by β- catenin /TCF4 in human colorectal carcinoma cells. Gene 432(1–7):112–117. https://doi.org/10.1016/j.gene.2008.12.002
15. Reilly LAO et al (2001) Tissue expression and subcellular localization of the pro-survival molecule Bcl-w, pp 486–494
16. Yan W, Samson M, Je B, Toppari J (2015) Bcl-w forms complexes with Bax and Bak, and elevated ratios of Bax / Bcl-w and Bak / Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis, pp 682–699
17. Russell LD et al (2001) Spermatogenesis in Bcl-w-deficient mice. J. Biol. Reprod. 65(1):318–332. https://doi.org/10.1095/biolreprod65.1.318
18. Yan Wei et al (2015) Overexpression of Bcl-w in the tests disrupts spermatogenesis: revelation of a role of BCL-W in. Mol Endocrinol 17: 1868–1879. https://doi.org/10.1210/me.2002-0389
19. Pritchard DM, Print C, Reilly LO, Adarns JM, Pottem CS, Hickman JA (2000) Bcl-w is an important determinant of damage-induced apoptosis in epithelia of small and large intestine
20. Stern LE et al (2000) Epidermal growth factor alters the bax:bcl-w ratio following massive small bowel resection. J Surg Res 142(2):38–42. https://doi.org/10.1006/jsre.2000.5897
21. Skoglo Y (1999) Differential expression of bcl-w and bcl-x messenger RNA in the developing and adult rat nervous system. Neuroscience 91(2):673–684
22. Middleton G, Wyatt S, Ninkina N, Davies AM (2001) Reciprocal developmental changes in the roles of Bcl-W and Bcl-x(L) in regulating sensory neuron survival. Development. 128(3):447–57. https://doi.org/10.1242/dev.128.3.447
23. Zhu X et al (2004) Neuroprotective properties of Bcl-W in Alzheimer disease, pp 1233–1240. https://doi.org/10.1111/j.1471-4159.2004.02416.x
24. Pease-raissi SE et al (2017) Article paclitaxel reduces axonal Bclw to initiate IP 3 R1-dependent axon degeneration. Neuron 96(2):373–386.e6. https://doi.org/10.1016/j.neuron.2017.09.034
25. Kim YH et al (2006) Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 2005:130–138. https://doi.org/10.1038/sj.ijc.1208997
26. Kawasaki T et al (2007) BCL2L2 is a probable target for novel 14q11.2 amplification detected in a non-small cell lung cancer cell line. Cancer Sci 98(7):1070–1077. https://doi.org/10.1111/j.1349-7006.2007.00491.x
27. Zhang B et al (2014) Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br. J. Cancer 110(4):946–957. https://doi.org/10.1038/bjc.2013.789
28. Qin Z et al (2019) Single nucleotide polymorphisms in human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet 91(2):673–684
29. Shihab HA et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34(1):L7–65. https://doi.org/10.1002/humu.22225
30. Capriotti E, Farselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(W306–W310. https://doi.org/10.1093/nar/gk375
31. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. 113(2005):1125–1132. https://doi.org/10.1002/prot.20810
32. Kawasaki T et al (2007) BCL2L2 is a probable target for novel 14q11.2 amplification detected in a non-small cell lung cancer cell line. Cancer Sci 98(7):1070–1077 10.1111/j.1349-7006.2007.00491.x
33. Li G, Panday SK, Alexov E (2021) SAAFEC-SEQ: a sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. Int. J. Mol. Sci. 22(2):606. https://doi.org/10.3390/ijms22020606
34. Worth CL, Preissner R, Blundell TL (2011) SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39_supp2 W215–W222. https://doi.org/10.1093/nar/gkr536
35. Pires DEV, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. 42:314–319. https://doi.org/10.1093/nar/gku411
36. Pires DEV, Ascher DB, Blundell TL (2014) Structural bioinformatics mCSM: predicting the effects of mutations in proteins using graph-based signatures. 30(33):335–342. https://doi.org/10.1093/bioinformatics/btt691
37. Ajabnoor MA, Elango R, Banaganapalli B (2019) AC ce pt e cr t. J. Biomol. Struct. Dyn. 0(0):000. https://doi.org/10.1080/07391102.2019.1671899
38. Hjikata A, Tsumi T, Shionyu M, Shirai T (2017) Decoding disease-causing mechanisms of missense mutations from supramolecular structures. Sci. Rep. 7(1):8541. https://doi.org/10.1038/s41598-017-08902-1