Physical determinants of the self-replication of protein fibrils

Andela Šarić1,2,*, Alexander K. Buell3, Georg Meisl16, Thomas C. T. Michaels1, Christopher M. Dobson1, Sara Linse4, Tuomas P. J. Knowles1 and Daan Frenkel1

The ability of biological molecules to replicate themselves is the foundation of life, requiring a complex cellular machinery. A particularly common form of protein self-assembly is that leading to linear filaments. These structures are widely used in nature, for instance as the basis of the cytoskeleton. Once formed, the vast majority of functional protein assemblies typically fulfil their biological function but do not directly catalyse the formation of further ‘daughter’ complexes. However, certain protein structures possess the intriguing ability to promote their own replication. This phenomenon came to prominence in the context of prions, where specific supra-molecular protein assemblies were observed to be able to multiply effectively once taken up into a variety of organisms, ranging from humans to yeast1-3. Such propensity to self-replicate has emerged as a more general feature of pathological protein self-assembly, observed in the context of sickle cell anaemia4, as well as for amyloid fibrils implicated in medical disorders5,6, such as Alzheimer’s disease (Aβ peptide)7-10, type II diabetes (islet amyloid peptide, IAPP)11-13, and Parkinson’s disease (α-synuclein)14,15. Strikingly, all of these structures are able to catalyse their replication under certain conditions. The initial fibrils are produced spontaneously from solution through primary nucleation, followed by proliferation via heterogeneous, fibril-dependent, secondary nucleation16. In this type of self-replication the information about the protein conformation is transferred to the replicas, although they are not necessarily exactly identical to the parent aggregates. Spontaneous fibril formation is inherently slow, while fibril self-replication can be many orders of magnitude faster17; yet a detailed microscopic understanding of either processes is currently lacking. Autocatalytic replication intrinsically introduces positive feedback into the self-assembly process that renders it challenging to control once assembly has started. As such, most functional protein complexes and fibrils do not have self-replicating properties. This finding therefore motivates a question about the fundamental ingredients necessary for fibril self-replication to occur, or indeed to be avoided.

Here, we develop a minimal computer model that is able to capture both spontaneous fibril formation in solution, and fibril self-replication. We study the necessary conditions required for self-replication to dominate over spontaneous formation, and find that strong bounds on inter-protein interactions exist for efficient self-replication that result in the high sensitivity of self-replication to environmental conditions. Indeed, it has been reported experimentally that the existence of secondary nucleation in α-synuclein, insulin, and the Aβ peptide strongly depends on pH14,16,17, while secondary nucleation in Aβ also varies dramatically with salt concentration18. The emergence of a narrow regime that supports self-replication sheds light on why it is a relatively rare property of protein self-assembly in vivo, and possibly provides a physical criterion to distinguish functional from pathological assembly. Moreover, these results suggest that even pathological self-assembly, in principle, can be suppressed by moderate changes to the system to move it away from the narrow parameter space supporting efficient self-replication. Our results further infer that the secondary nucleus has to be energetically different from the primary one, pointing to two distinctive pathways.

Taking the aggregation of the Alzheimer’s Aβ peptide into amyloid fibrils as a model for experimental comparison, in combination with kinetic and biosensing experiments, we show that the major characteristics of secondary nucleation can be explained in terms of the adsorption of monomeric peptides onto the surface of fibrils, and the level of surface coverage. We then demonstrate, in simulations and in experiments, that self-replication can be

1Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. 2Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK. 3Institute of Physical Biology, University of Duesseldorf, 40225 Duesseldorf, Germany. 4Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden. *These authors contributed equally to this work.

e-mail: a.saric@ucl.ac.uk; tpjk2@cam.ac.uk
modulated by controlling the fibril surface coverage. Through the powerful combination of coarse-grained simulations and physical measurements, our results offer microscopic insights into the mechanism of the autocatalytic replication of protein fibrils.

Computer model
As the basis for our model we take the aggregation of peptides and proteins into amyloid fibrils, which have a common structure rich in β-sheet content. A minimal model that reproduces homogeneous fibril nucleation allows an amyloidogenic protein to exist in two states: a soluble state (denoted ‘s’) that can form finite oligomers, and a state with higher free energy that can form the β-sheet enriched fibrils (denoted ‘f’). Simply considering the interaction of soluble proteins with the surface of existing fibrils captures the binding of monomers to the fibrils, but does not lower the free energy barrier for nucleation, thus does not result in efficient catalysis. To achieve a self-replication rate that is significantly faster than spontaneous formation, the structure and energy of the species involved necessarily have to differ from those observed in the absence of fibrils (Supplementary Section IC). The self-replication cycle in the Aβ system has been shown to generate predominately small prefibrillar oligomers, whose structures differ from that of the mature fibrils (Methods, refs 10,21). Although an ensemble of such intermediate structures could exist in reality, here we consider the simplest possible case: we include one additional, intermediate (‘i’), conformation, which can form on the fibril surface. This conformation is in between the soluble and the β-state, and its self-interaction is stronger than its interaction with the fibril, which leads to detachment of oligomers from the parent fibril, as observed in experiments.

Amyloidogenic protein molecules in our model are represented as hard spherocylinders with attractive patches (Fig. 1). The attractive interactions account for generic features of inter-protein interactions, such as hydrophobic interactions, hydrogen bonding, and screened electrostatic interactions. The soluble state of the protein is modelled as a spherocylinder with an attractive tip (Fig. 1a), whose self-attraction is given by the parameter ɛs. Such particles are able to generate finite oligomers (Fig. 1b). The attractive tip can also adsorb onto the outer surface of the fibril, with interaction strength ɛf (Supplementary Fig. 1). The fibril-forming, β-sheet-prone, configuration is a hard spherocylinder with an attractive side patch (Fig. 1a). The β-prone proteins pack parallel to one another with the maximal interaction strength ɛsf, leading to fibril-like aggregates (Fig. 1b). We performed dynamic Monte Carlo (MC) simulations, allowing for the interconversion between the three protein conformations with a small probability at every MC step. The s → i → β conversion is thermodynamically unfavourable, reflecting the loss of the internal conformational entropy of the protein molecule. Throughout the text k denotes the Boltzmann’s constant and T is the temperature; further details are given in the Methods.

Spontaneous formation versus self-replication
The first question we address involves the identification of those conditions that lead to secondary nucleation being dramatically dominant over spontaneous, primary, nucleation. We have performed a series of computer experiments, in which a capped preformed fibril (incapable of further growth) was inserted into a solution of monomeric proteins, and nucleation processes were monitored. Primary nucleation takes place in two steps, whereby protein oligomers first form in solution, and then convert into β-sheet nuclei, which continue growing by monomer addition (Fig. 1c). In the secondary nucleation process, proteins first adsorb onto the surface of the fibril, forming local clusters that keep growing and shrinking while still being attached to the fibril surface, as depicted in Fig. 1d. Once the oligomer of a critical size is formed, the proteins within change their conformation.

Figure 1 | The coarse-grained model and the nucleation processes in the system. a, A protein is allowed to exist in three conformations. From top to bottom: soluble state (‘s’), intermediate conformation (‘i’), and the β-sheet-prone state (‘f’). b, Aggregated proteins. From top to bottom: oligomer made of soluble proteins, oligomer made of proteins in the intermediate state, and the fibril made of proteins in the β-sheet-prone state. c, Primary nucleation takes place in two steps. Soluble proteins form finite oligomers (top), which can convert into a nucleus rich in β-sheet (bottom) that continues growing. d, Fibril self-replication (secondary nucleation). From top to bottom: soluble protein monomers adsorb onto the surface of a preformed fibril, locally forming oligomers. Once protein molecules within an oligomer convert into the intermediate conformation (depicted with red attractive tips, accentuated with the red arrow), they become more prone to self-aggregation, which in turn leads to oligomer detachment. Finally, the detached oligomer converts into a nucleus of β-sheets, and continues growing. Snapshots were taken at ɛs = 4kT, ɛsf = 8kT, and c = 50μM.
Figure 2 | Conditions supporting fibril self-replication. a, Fraction of self-replication events, $b_{\text{self-replication}}$, in the total number of nucleation events, as a function of the protein concentration c and the interaction strength between soluble protein molecules ϵ_{sf}. The protein-fibril interaction is kept constant at $\epsilon_{sf} = 8kT$. b, Fraction of self-replication events as a function of the protein concentration c and the difference between the protein-fibril interaction and the protein self-interaction ($\epsilon_{sf} - \epsilon_{ss}$), exhibiting a narrow regime where self-replication can be a dominant mechanism of formation. Data collected at $\epsilon_{ss} = 5kT$.

Figure 3 | Strong bounds for self-replication. a, Dependence of the rate of self-replication, r, on the protein–fibril affinity, ϵ_{sf}. b, Fractional coverage of the surface of the fibril (θ) as a function of ϵ_{sf}. Red arrows in a and b point to the area of the fastest self-replication, when the fibril is well covered with monomers. Inset: the free energy cost (ΔF_c) for the conversion of an oligomer of size N from the ‘γ’ conformation, that is attached onto the fibril, into the ‘γ’ conformation that detaches from the fibril surface. ΔF_c increases with increasing protein–fibril affinity. Data in a and b were collected at $\epsilon_{ss} = 4kT$ and $c = 0.15$ mM.

into the intermediate form. The oligomer then detaches into the solution, converts into the β-sheet protofibril, and grows further by monomer addition (Fig. 1d).

To investigate possible scenarios for different aggregating proteins, under various solution conditions, we measured the rates of primary and secondary nucleation at different protein concentrations and inter-protein interactions. From these measurements we calculated the fraction of self-replication events in the system for a given set of external conditions (Supplementary Sections IA and IB), Fig. 2a. Clearly, self-replication dominates over spontaneous fibril formation at low protein concentrations and low inter-protein interactions. Indeed, proteins are typically below their critical micelle concentration at physiological conditions, which corresponds to the regime of low inter-protein interactions and low protein concentrations, where self-replication can dominate.

The reason for the dramatic dominance of self-replication in this regime is two-fold. The first contribution arises from the aided collocation of proteins on the one-dimensional surface of the fibril. This contribution is particularly important at low protein concentrations, where the probability of proteins meeting in solution and forming oligomers is very low. The second contribution lies in the decreased barrier for the secondary nucleation formation on the fibril surface, via the intermediate state (Supplementary Section IC). Essentially, for self-replication to dominate, the secondary nucleus has to be different from the primary one.

Strong environmental bounds for self-replication

Modulating environmental conditions and introducing protein mutations not only changes the properties of proteins interacting in solution, but also the strength of the adsorption of proteins onto the surface of fibrils, given by ϵ_{sf} in our simulations. We find that changing the protein–fibril affinity only by a few kT, the fraction of self-replication events changes non-monotonically, exhibiting a distinct region of optimal self-replication, Fig. 2b. This result is in agreement with the high sensitivity of fibril self-replication to solution composition, and can explain why it has so far been observed only in a limited number of systems. Comparably, in a recent simulation, secondary nucleation of Lennard-Jones particles...
at a crystalline surface, when exposed to mechanical agitation, was reported to take place only in the regime of intermediate supersaturation24.

Figure 3a analyses this effect in depth, at constant protein concentration. At low protein–fibril interaction strengths, proteins cover only a small fraction of the fibril surface, and the protein adsorption and oligomer formation on the fibril surface determine the reaction rate. Figure 3b depicts the Langmuir-type isotherm for the fibril surface coverage, \(\theta\), as a function of \(\epsilon_\phi\) (Supplementary Section 1D), indicating that the increase in the surface coverage follows the increase in the rate of self-replication in Fig. 3a. At high \(\epsilon_\phi\), the fibril is substantially covered by proteins; however, the oligomer detachment becomes unfavourable. Nucleation will happen only after the oligomer has reached a certain size, when the energy gain due to the stronger inter-protein interactions after the conformational change overcomes the loss in the protein–fibril adsorption energy. Stronger binding to the surface hence requires larger oligomers to overcome the loss in the favourable adsorption energy. For very large oligomers, due to the geometric constraints, this requirement cannot be satisfied. Therefore, the conformational change will become unfavourable as the binding to the surface increases further (inset in Fig. 3b and Supplementary Section 1E). In reality, in the regime of high adsorption, proteins are likely to distribute themselves evenly on fibrils to increase their contact area with the surface, and could form multiple layers, additionally hampering secondary nucleation. The narrow region of inter-protein interactions supporting self-replication is therefore the outcome of the balance between sufficient fibril coverage, and unhindered conformational change.

Simulated and experimental kinetics of self-replication

Our model can make a range of predictions that can be tested experimentally. Here, we seek to relate our simulations to kinetic measurements of self-replication of A\(\beta\)40 amyloid fibrils, one of the two major isoforms of the A\(\beta\) peptide associated with Alzheimer’s disease. Kinetic experiments provide the dependence of the reaction rate on monomer concentration, \(r\sim c^n\), where the scaling exponent \(n\) is in our case the reaction order of self-replication. It reflects the monomer dependence of the dominant aggregation processes, therefore carrying information about the reaction mechanism.

Figure 4a depicts a double logarithmic plot of the rate of secondary nucleation for the A\(\beta\)40 system, versus the initial monomer concentration, where the slope corresponds to the scaling exponent. The scaling exponent is highly dependent on the concentration of the monomeric peptide in solution, suggesting a possible change in the nucleation mechanism over the concentration range25. Figure 4b shows the same quantities, collected in simulations, at a moderate protein–fibril affinity. The reaction order varies with the protein concentration, with a high value at low monomer concentrations (\(n\approx 3.3\)), and a low value at
high monomer concentrations ($\gamma_s \approx 0.5$), as observed in the Aβ40 experimental data.

Due to our microscopic modelling we are able to pinpoint the processes underlying the switch in kinetic behaviour. Figure 4d shows that the change in the reaction order follows the trend in the change of fibril coverage. Hence, the nonlinear increase in surface coverage, due to surface saturation, is connected to the continuous decrease in reaction order. We find from our data that the rate of self-replication follows the surface saturation as $\ln(r) \sim N^+ \ln(Kc/(1+Kc))$, where K is the monomer–surface binding constant ($K \sim \epsilon_{ss}$) and N^+ is a constant (see Methods and Supplementary Section II for details). The reaction order, γ_s, then continuously changes between N^+ at infinite dilution and 0 at full saturation. Interestingly, in models of nucleation where the aggregation number is the slow degree of freedom, N^+ would be simply equal to the size of the nucleating oligomer, which is found to be constant over the concentration range in our simulations (inset in Fig. 4b). Experimental verification of surface saturation

To test experimentally the prediction that the change in the reaction order is governed by the change in the surface coverage, and not by a change in the nucleation mechanism, we designed a series of surface plasmon resonance (SPR) biosensing experiments that allow direct measurement of the binding of monomeric peptide molecules to the surface of amyloid fibrils, under the same conditions as the kinetic experiments. This enabled us to obtain the Langmuir absorption isotherm of Aβ40 peptides onto its fibrils (Fig. 4c and Supplementary Fig. 6). Indeed, surface saturation takes place in the micromolar regime (with an equilibrium binding constant of $K^{-1} = 15\mu M$), which is exactly the regime where the change in the reaction order takes place in aggregation experiments (Fig. 4a). Furthermore, this value of K is of the same order of magnitude as the value obtained from the kinetic fit to the experimental aggregation data (Methods and Supplementary Section II), and therefore strongly supports the hypothesis that the change in the scaling exponent is due to surface saturation.

Surface saturation controls the reaction order

Finally, we show that by controlling the surface coverage by varying the strength of the inter-protein interactions at constant monomer concentration, one can further modulate the kinetics of fibril self-replication. At constant protein concentration, the surface coverage is determined by the magnitude of protein–fibril affinity and inter-protein interactions. It is likely that both of these interaction strengths will be affected when altering experimental conditions, due to their similar physical origins. We observe that the surface coverage increases when both of these interactions are strengthened in simulations, resulting in a weaker dependence of self-replication on monomer concentration. The average scaling exponent γ from the simulations, as a function of ε_{ss} and ε_{sf}, is shown in Fig. 5a,b. We compare this behaviour to aggregation of Aβ42 at a range of salt concentrations in Fig. 5c. It is important to note that, in the context of our physical model, the two isoforms of Aβ, Aβ40 and Aβ42, share mechanistic similarities. An increase in ionic strength shields the electrostatic interactions and leads to an increased attraction between the negatively charged Aβ42 monomers and fibrils, as well as between the monomers themselves. Hence variation of the ionic strength offers an experimental way to vary in a controlled way the value of ε_{ss} and ε_{sf}. Indeed, the trend in the behaviour of the scaling exponents for the aggregation of Aβ42 with increasing salt concentration agrees well with that found in our simulations. Therefore the large effect of ionic strength on the aggregation behaviour is in agreement with a variation of the adsorption of proteins onto their fibrils, offering a direct way to influence the self-replication process in a controlled manner.

Discussion

By developing a minimal model of protein self-replication, we have identified its dominant physical determinant to be the adsorption of monomeric proteins onto the surface of protein fibrils. Strong limits on inter-protein interactions are found for efficient self-replication, originating from the fact that changes in the interaction strength have opposing effects on the two key steps in the nucleation mechanism: oligomer formation and oligomer detachment. A narrow region of ‘ideal’ interaction values supporting self-replication (Fig. 2b) results in its high specificity and sensitivity to environmental conditions.

An additional conformational change taking place on the fibril surface is a minimal requirement for the catalysis and detachment of oligomers from the parent fibril, which, in the context of many amyloid diseases, is a crucial step in the proliferation of pathological species. The conformational change is at the origin of the formation of amyloid fibrils; the aggregating protein necessarily undergoes a change from its soluble form into the characteristic β-hairpin conformation. Models which attempt to achieve self-replication in (nearly) minimal colloidal systems require an external dynamical change to permit detachment of the replicas from the
parents\(^{28,30}\). Amyloidogenic proteins naturally possess this dynamic characteristic.

A direct practical conclusion from our analysis is the ability to relate the reaction order measured in experiments to the underlying microscopic mechanism. We have found that the changes in the reaction order can be related to the change in the fibril surface coverage by the protein molecules, which we have confirmed by directly measuring the binding isotherm of monomers to the fibril surface. The characteristic concentration dependence of the reaction order, observed in experiments, is consistent with a scheme where the rate-limiting step takes place on the fibril surface, further confirming that primary and secondary nucleation are indeed distinct processes. Whether the change in the reaction order is experimentally measurable will depend on the concentration range that can be explored, as experiments might be limited to a concentration range where it appears locally constant. By measuring the fibril coverage and the apparent kinetic reaction order separately, the information about the critical size of oligomers produced via secondary nucleation may become accessible, for any protein system which exhibits this behaviour.

As a proof of principle, we have shown that by varying in a controlled manner the fibril surface coverage, by modulating the inter-protein interactions with ionic strength, one can control the kinetics of fibril self-replication. Hence, modulating the adsorption of monomeric proteins onto the surface of protein fibrils may represent a fruitful strategy for limiting the proliferation of protein aggregates in a disease context.

Methods

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.

Received 23 October 2015; accepted 15 April 2016; published online 18 July 2016

References

1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).
2. Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit model of prion/amylloid formation and infection. J. Mol. Biol. 336, 775–786 (2004).
3. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).
4. Ferrone, F. A., Horfrichter, J. & Eaton, W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J. Mol. Biol. 183, 611–631 (1985).
5. Eaton, W. A. & Horfrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem. 40, 263–279 (1990).
6. Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).
7. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).
8. Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nature Rev. Mol. Cell Biol. 15, 384–396 (2014).
9. Hortschansky, P., Schroechk, V., Christopetl, T., Zandomeneghi, G. & Fändrich, M. The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation. Protein Sci. 14, 1753–1759 (2005).
10. Cohen, S. I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).
11. Padrick, S. B. & Miranker, A. D. Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41, 4694–4703 (2002).
12. Ruschak, A. M. & Miranker, A. D. Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc. Natl Acad. Sci. USA 104, 12341–12346 (2007).
13. Schlamadinger, D. E. & Miranker, A. D. Fiber-dependent and -independent toxicity of islet amyloid polypeptide. Biophys. J. 107, 2559–2566 (2014).
14. Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA 111, 7671–7676 (2014).
15. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nature Chem. Biol. 11, 229–234 (2015).
16. Foderà, V., Librizzi, F., Groenning, M., Van De Weert, M. & Leone, M. Secondary nucleation and accessible surface in insulin amyloid fibril formation. J. Phys. Chem. B 112, 3853–3858 (2008).
17. Meisl, G., Yang, X., Frohm, B., Knowles, T. P. & Linse, S. Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Sci. Rep. 6, 18728 (2016).
18. Meisl, G., Yang, X., Dobson, C. M., Linse, S. & Knowles, T. P. J. A general reaction network unifies the aggregation behaviour of the Aβ42 peptide and its variants. Preprint at http://arXiv.org/abs/1604.00828 (2016).
19. Bieler, N. S., Knowles, T. P., Frenkel, D. & Vácha, R. Connecting microscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations. PLoS Comput. Biol. 8, e1002692 (2012).
20. Šarić, A., Chebaro, Y. C., Knowles, T. P. & Frenkel, D. Crucial role of nonspecific interactions in amyloid nucleation. Proc. Natl Acad. Sci. USA 111, 17869–17874 (2014).
21. Cohen, S. I. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nature Struct. Mol. Biol. 22, 207–213 (2015).
22. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).
23. Serto, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).
24. Anwar, J., Khan, S. & Lindors, L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. 127, 14894–14897 (2015).
25. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).
26. Buccioni, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).
27. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).
28. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).
29. Zeravcic, Z. & Brenner, M. P. Self-replicating colloidal clusters. Proc. Natl Acad. Sci. USA 111, 1748–1753 (2014).
30. Wang, T. et al. Self-replication of information-bearing nanoscale patterns. Nature 478, 225–228 (2011).
31. Zhang, J. & Muthukumar, M. Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130, 035102 (2009).
32. Ilie, I. M., den Otter, W. K. & Briels, W. J. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation. J. Chem. Phys. 144, 085103 (2016).
33. Ruff, K. M., Khan, S. J. & Pappu, R. V. A coarse-grained model for polyglutamine aggregation modulated by amphipathic flanking sequences. Biophys. J. 107, 1226–1235 (2014).
34. Ruff, K. M., Harmon, T. S. & Pappu, R. V. Camelot: a machine learning approach for coarse-grained simulations of aggregation of block-copolymer protein sequences. J. Chem. Phys. 143, 243123 (2015).
35. Fitzpatrick, A. W. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).
36. Serpell, L. C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30 (2000).
37. Davis, C. H. & Berkowitz, M. L. A molecular dynamics study of the early stages of amyloid-β (1–42) oligomerization: the role of lipid membranes. Proteins 78, 2533–2545 (2010).
38. Buell, A. K. et al. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem. Int. Ed. 51, 5247–5251 (2012).
39. Vácha, R. & Frenkel, D. Relation between molecular shape and the morphology of self-assembling aggregates: a simulation study. Biophys. J. 101, 1432–1439 (2011).
40. Fandrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin—even an ordinary globular protein can assume a rogue guise if conditions are right. Nature 410, 165–166 (2001).
41. Allison, J. R., Varnai, P., Dobson, C. M. & Vendruscolo, M. Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J. Am. Chem. Soc. 131, 18314–18326 (2009).
42. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications Vol. 1 (Academic, 2001).
Acknowledgements

We acknowledge support from the Human Frontier Science Program and Emmanuel College (A.S.), the Leverhulme Trust and Magdalene College (A.K.B.), St John’s College (T.C.T.M.), the Biotechnology and Biological Sciences Research Council (T.P.J.K. and C.M.D.), the Frances and Augustus Newman Foundation (T.P.J.K.), the European Research Council (T.P.J.K., T.C.T.M., S.L. and D.F.), and the Engineering and Physical Sciences Research Council (D.F.).

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.S. or T.P.J.K.

Competing financial interests

The authors declare no competing financial interests.
Methods
The coarse-grained model and the choice of parameters. We use the model developed in ref. 20, extended to capture secondary nucleation. In spirit, this model is similar to the multisite Potts model of Zhang and Muthukumar37, and the recent coarse-grained inter-protein interactions onto patchy colloids for the purpose of studying protein aggregation by Ruff and colleagues10,34.

In our model each protein is represented by a spherocylinder that is $\sigma = 2 \text{ nm}$ wide and $L = 4\sigma = 8 \text{ nm}$ long. The hard core repulsion forbids any distance between any two spherocylinders to be smaller than σ. The interaction between two proteins in the soluble ζ-form is implemented as:

$$V_{ss}(r) = \begin{cases} -\epsilon_a \left(\frac{\sigma}{r}\right)^6 & \text{if } r \leq 1.5\sigma \\ 0 & \text{if } r > 1.5\sigma \end{cases}$$

(1)

where r is the distance between the centres of the attractive tips located at the spherocylinders’ ends. An attractive patch is added only at one spherocylinder pole to ensure formation of finite aggregates like those observed in experiments. This potential drives the formation of micellar-like oligomers, where tips of participating proteins are in contact in the oligomer centre (Fig. 1b). The parameter ϵ_a controls the strength of the nonspecific interactions between the soluble proteins. Using atomistic simulations we estimated ϵ_a to be relatively small, on the order of $5kT$ (ref. 20). To explore the influence of different solution conditions, we varied ϵ_a between $3kT$ and $8kT$, as indicated in the text.

The interaction between two proteins in the intermediate conformation ζ' and between the soluble and the intermediate conformation, is implemented using the same potential as in equation (1), with $\epsilon_a \rightarrow \epsilon_s$ and $\epsilon_a \rightarrow \epsilon_r$, respectively. The intermediate state is designed to be between the soluble and the β-sheet-forming state, corresponding to a conformation with more β-content than the soluble state, but not yet a fully folded β-hairpin. Hence, the relative strength of interactions was always preserved, with $\epsilon_s < \epsilon_r < \epsilon_a$. Their values were chosen such that nucleation is achieved within a reasonable computer time (see Supplementary Fig. 2), while preserving their relative strength; ϵ_s is kept constant at $\epsilon_s = 16kT$, and ϵ_r is kept constant at $\epsilon_r = 8kT$.

The attractive side patch of the β-sheet-forming configuration is designed as:

$$V_{ss}(r) = \begin{cases} -\epsilon_s \cos(\varphi) - \epsilon_r \left(\frac{\sigma}{r}\right)^6 & \text{if } d \leq 1.5\sigma \\ 0 & \text{if } d > 1.5\sigma \end{cases}$$

(2)

where φ is the angle between the axes of the particles, d is the shortest distance between the axes of the patches, and r is distance between the centres of the patches. The first term ensures that proteins in the β-sheet-proteins form packs parallel to each other, mimicking the hydrogen-bond interactions between β-sheets, while the second term ensures compactness of the fibril29,30,34. To drive the formation of thermodynamically stable fibrils, ϵ_r has to be the strongest of all the interactions in the system. In this study we choose $\epsilon_r = 60kT$ (refs 37,38). General aggregation of patchy spherocylinders has been studied in detail in our previous work9.

The cross-interaction between the soluble and the β-sheet-forming configuration is designed as:

$$V_{sd}(d) = \begin{cases} -\epsilon_d & \text{if } d \leq 1.5\sigma \\ 0 & \text{if } d > 1.5\sigma \end{cases}$$

(3)

where d is the shortest distance between the centre of the attractive tip and the axis of the β-patch, and $\epsilon_d = \epsilon_a + 1kT$. The ζ-β interaction is described in the same way, with $\epsilon_d \rightarrow \epsilon_s$, and $\epsilon_d = \epsilon_s + 1kT$.

Protein adsorption onto the preformed fibril is given by:

$$V_{ps}(d) = \begin{cases} -\epsilon_p \left(\frac{\sigma}{d}\right)^6 & \text{if } r \leq 1.5\sigma \\ 0 & \text{if } r > 1.5\sigma \end{cases}$$

(4)

where d is the shortest distance between the centre of the attractive tip of the soluble protein and the body of the β-sheet protee protein (there is no other angular dependence). Adsorption of the intermediate ζ' configuration onto the fibril is described in the same way as in equation (4) with $\epsilon_s \rightarrow \epsilon_r$, and $\epsilon_d = 1kT$. The β-sheet protee protein interacts with the preformed fibril only via volume exclusion. The model parameters are summarized in Supplementary Fig. 1.

MC scheme. MC simulations were performed with small translational and rotational moves, to approach the realistic dynamics of the system. The interconversion between the three states discussed above was carried out with a small probability $P = 0.0002$, which mimics the slow conversion of the soluble protein into a fibril-forming β-sheet protee configuration. Every conversion from

the soluble to the β-state is penalized with a change in the excess chemical potential of magnitude $\Delta\mu = 20kT$, and the $\rightarrow i$ and the $\rightarrow \beta$ with $0.53\Delta\mu$ (Fig. 1a). These values are chosen to reflect the fact that amyloidogenic proteins with small- to mid-β-propensity, such as αB, are typically not found in the β-sheet-prone conformation in solution46,47.

Simulations were performed in a periodic cubic box in a grand-canonical ensemble, where the chemical potential of non-adSORbed soluble proteins was kept constant. This scheme was chosen to avoid the depletion of monomers from the solution due to the adsorption onto the surface of the preformed fibril. For this purpose, we do not distinguish between the monomeric soluble species, and the soluble species that are part of an oligomer in solution. The number of soluble proteins in the beginning of each simulation was set to ~ 600, and the box size was adjusted to match the targeted protein concentration. Soluble proteins are added or removed from anywhere in the simulation box, according to the grand-canonical scheme48, excluding the $r = 5\sigma$ region around the capped preformed fibril. All simulations were performed with the same size of the preformed fibril, which consists of $N = 92$ β-sheet prone proteins and is unable to grow further. We were monitoring only the first generation of replicas, and have allowed the soluble proteins to adsorb only onto the preformed fibril, and not onto its replicas.

Kinetics of self-replication. In bulk experimental systems, the overall kinetics are determined by the processes of spontaneous nucleation in solution, elongation and secondary nucleation, all of which we use in our model. To compare bulk kinetic measurements to the modelling of nucleation on a single, growth-incompetent fibril used in simulations, it is necessary to dissect the macroscopic behaviour into its constituent processes. This can be achieved by developing a theoretical kinetic model and global fitting to the experimental kinetic data. We have adopted a theoretical kinetic model for the aggregation of αB40 (ref. 25) to include the Langmuir-like adsorption of peptide molecules onto the growing fibril, and fit to bulk experimental kinetic data to obtain the rate of secondary nucleation at various peptide concentrations. The details of the kinetic model as well as the global fits used to obtain this rate of self-replication are shown in Supplementary Section II and Supplementary Fig. 4.

Experimental exploration of intermediate oligomers in self-replication of αB42. If the oligomers generated through secondary nucleation were of the same structure as the fibrils, their concentration, [O], could be estimated from the known rate parameters for the fibrillar growth as $[O] = (k_{1}\mu_{c}^{2}(C_{s}/C_{ex})^{2} + k_{2})$, where k_{1} is the rate constant for secondary nucleation, k_{2} is the fibril elongation rate constant, μ_{c} is the total protein concentration, and c_{ex} is the reaction order for secondary nucleation52. Using the values for the rate constants extracted from kinetic measurements of αB42 aggregation ($k_{1} \sim 10^{10} M^{-1} s^{-1}$, $k_{2} \sim 10^{5} M^{-1} s^{-1}$ and $\mu_{c} = 3\muM$ ref. 10), we find this concentration to be $[O] \approx 0.01 \muM$. This value is at least five orders of magnitude smaller than the experimentally measured concentration of oligomers in the same system (nanomolar range53), indicating that the structure of oligomers generated via such a secondary pathway is necessarily different from that of the fibrils.

Model for the change of the rate of self-replication with surface coverage. We recall that the conformational change, and the subsequent fibril nucleation, is favourable only for oligomers above a certain critical size. The free energy of formation of an oligomer of size N on a finite surface, $\Delta F(N)$, scales as $\Delta F(N) \sim -N \ln(Kc/(1 + Kc))$, where K is the monomer–surface binding constant ($K \sim c$) and c is the free monomer concentration (Supplementary Section IF). Supplementary Fig. 5 shows $\Delta F(N)$ measured from the size distribution of oligomers adsorbed onto the fibril in our simulations. As predicted, this quantity decreases with increasing protein concentration, reaching a plateau at high concentrations. If the aggregation number is the slow degree of freedom, and hence an appropriate reaction coordinate, as is the case for example in classical nucleation theory, the rate of nucleation then depends exponentially on the negative magnitude of the free energy change for the critical oligomer size formation ($N = N^*$):

$$\ln(r) \sim -\Delta F(N^*) \sim N^{*} \ln(Kc/(1 + Kc))$$

(5)

An arrow in Supplementary Fig. 3 marks the lowest concentration range at which we observe nucleation ($\ln(c) \sim -8.5$). The slope at that point (≈ 0.6, multiplied by the monomer concentration,~6, inset in Fig. 4b), should match the expected reaction order in the kinetic plot $\gamma \approx 3.6$. The measured reaction order at the same concentration range in Fig. 4b is $\gamma \approx 3.3$, which agrees well with the predicted value within the error of our scaling theory and measurements.

SPR experiments. αB40 amyloid fibrils were attached to the surface of an SPR biosensor and exposed to a solution containing monomeric αB40. In solution, monomers simultaneously attach to both the fibril ends and to their surfaces. However, due to their very different kinetics and thermodynamics, the two
processes can readily be distinguished (Supplementary Section III). The elongation of fibrils will lead to a linear increase in mass, while the rate of attachment of peptide to the surface of fibrils is expected to decrease exponentially with time as the available binding sites become occupied. Conversely, on washing the fibrils, the surface-bound peptide molecules are expected to show an exponential detachment behaviour at high rates due to their relatively low binding free energy, while the rate of loss from the fibril ends by monomer dissociation is expected to be linear and very slow, due to the high thermodynamic stability of the β-sheet rich fibrils. By following the kinetic data of monomer detachment, we can distinguish the fast exponential from the slow linear dissociation steps (Supplementary Fig. 5), and obtain the amplitude of the exponential signal resulting from attachment to the surfaces of the fibrils, at various concentrations of the free monomers.

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding authors on request and https://www.repository.cam.ac.uk/handle/1810/255082.