A NOTE ON INTERMEDIATE SUBFACTORS OF KRISHNAN-SUNDER
SUBFACTORS

BINA BHATTACHARYYA

Abstract. A Krishnan-Sunder subfactor $R_U \subset R$ of index k^2 is constructed from a permutation
biunitary matrix $U \in M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, i.e. the entries of U are either 0 or 1 and both U and
its block transpose are unitary. The author previously showed that every irreducible Krishnan-
Sunder subfactor has an intermediate subfactor by exhibiting the associated Bisch projection. The
author has also shown in a separate paper that the principal and dual graphs of the intermediate
subfactor are the same as those of the subfactor $R_\Gamma \subset R_H$, where $H \subset \Gamma$ is an inclusion of finite
groups with an outer action on R. In this paper we give a direct proof that the intermediate
subfactor is isomorphic to $R_\Gamma \subset R_H$.

1. Background and Introduction

There is a well-known way of constructing subfactors of the hyperfinite II$_1$ subfactor R from certain
squares of finite-dimensional C*-algebras algebras. Since we will use this construction repeatedly,
we review it briefly. Suppose we have a square of finite-dimensional C*-algebras,

\[(1) \quad B_0 \subset B_1 \cup \cup \quad \cup \quad A_0 \subset A_1\]

along with a nondegenerate trace on B_1. Given any inclusion of algebras $A \subset B$ with a nonde-
generate trace on B, let E^B_A denote the unique trace preserving conditional expectations from B
to A. The square (1) is a commuting square if $E^B_A(B_0) = A_0$. The square is symmetric if B_1
is linearly spanned by B_0A_1. There are many equivalent conditions to these; see [7], [8] for details. An
inclusion of finite-dimensional C*-algebras $A \subset B$ is connected if its Bratteli diagram is connected
(equivalently, the centers of B and A have trivial intersection). Assume (1) is a symmetric com-
muting square with connected inclusions, and the trace is the unique Markov trace of the inclusion
$B_0 \subset B_1$. We can construct a ladder of symmetric commuting squares:

\[(2) \quad B_0 \subset B_1 \subset B_2 \subset \cdots \subset B_n \subset \cdots \]

\[\cup \quad \cup \quad \cup \quad \cdots \quad \cup \quad \cdots \]

\[A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \]

by iterating the basic construction to the right, i.e. do the basic construction to the right on the top row
and adjoin the Jones projection to the bottom row (see [8], [7], [10]). Then we may complete
the inclusion of algebras $\bigcup_n A_n \subset \bigcup_n B_n$ with respect to the unique trace on $\bigcup_n B_n$ to obtain a
hyperfinite II$_1$ subfactor (8).

Fix integers k and p. We will consider squares of the form (1). Index the rows and columns of
matrices in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$ by the set $\{1, 2, \ldots, p\} \times \{1, 2, \ldots, k\}$ in the natural way. Following the
notation in [4], we denote elements of $\{1, 2, \ldots, p\}$ with Greek letters and elements of $\{1, 2, \ldots, k\}$
with Roman letters. For F in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, denote the entry of F in row (α, a) and column
(β, b) by $F^{\beta b}_{\alpha a}$.

1991 Mathematics Subject Classification. Primary 46L37.
Let U be a permutation matrix in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, i.e., its entries are either 0 or 1. U is a permutation biunitary if the block transpose \bar{U} of U, defined by

$$U_{\beta \alpha}^{\beta'} = U_{\alpha \alpha'}^{\beta \beta'} = U_{\alpha \beta}^{\alpha' \beta'} = U_{\beta \alpha}^{\beta' \alpha'}$$

is also a permutation matrix. Equivalently, U is a permutation biunitary if

$$U(1 \otimes M_k(\mathbb{C}))U^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$$

is a commuting square. We may then construct a subfactor as described above, which we denote $R_U \subset R$. In [9], Krishnan and Sunder list all the nonequivalent subfactors of this type with $k = p = 3$ and compute the principal graphs of all the finite depth ones.

2. The Intermediate Subfactor

In Proposition 2.2, we show that if U is a permutation biunitary then the commuting square (4) may be decomposed into two adjacent symmetric commuting squares,

$$U(1 \otimes M_k(\mathbb{C}))U^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$$

is a commuting square. Consequently, there are permutations ν, λ exist permutations (ν, λ) in Lemma 2.1 that

$$U(1 \otimes M_k(\mathbb{C}))U^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$$

are symmetric commuting squares.

An essential ingredient in our analysis of Krishnan-Sunder subfactors is the following result of [9].

Lemma 2.1 (Krishnan-Sunder). If U is a permutation biunitary in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, then there exist permutations $\lambda_1, \lambda_2, \ldots, \lambda_p$ in S_k and permutations $\rho_1, \rho_2, \ldots, \rho_p$ in S_p, such that

$$U_{\alpha \alpha}^{\beta \beta} = \delta_{\beta, \rho_1(a)} \delta_{\beta, \lambda_1(a)}$$

Consequently, there are permutations $\nu_1, \nu_2, \ldots, \nu_p$ in S_k and permutations $\theta_1, \theta_2, \ldots, \theta_k$ in S_p, such that

$$(U^*)_{\alpha \alpha}^{\beta \beta} = \delta_{\beta, \theta_1(a)} \delta_{\beta, \nu_1(a)}$$

(In Krishnan and Sunder’s notation [9], $\nu = \psi^{-1}$ and $\theta = \phi^{-1}$).

Proposition 2.2. If U is a permutation biunitary in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, then $U(1 \otimes \Delta_k)U^* \subset M_p(\mathbb{C}) \otimes \Delta_k$, and the two small squares in (3) are symmetric commuting squares.

Proof. To simplify notation, in this proof we denote $\lambda_a(a)$ and $\rho_a(a)$ in Lemma 2.1 by $a(a)$ and $a(a)$, respectively. Let $\{e_{\alpha, \beta}\}$ and $\{f_{a,b}\}$ be the natural sets of matrix units for $M_p(\mathbb{C})$ and $M_k(\mathbb{C})$, respectively. Then $\{1 \otimes f_{a,a}\}$ is a basis of $1 \otimes \Delta_k$, and

$$U(1 \otimes f_{a,a})U^* = U \left(\sum_{a=1}^{p} e_{\alpha,a} \otimes f_{a,a} \right) U^* = \sum_{a=1}^{p} e_{\alpha(a),a(a)} \otimes f_{\alpha(a),a(a)}$$

which is contained in $M_p(\mathbb{C}) \otimes \Delta_k$. Hence, $U(1 \otimes \Delta_k)U^* \subset M_p(\mathbb{C}) \otimes \Delta_k$.

Since (3) is a symmetric commuting square, it suffices to prove that the upper square is commuting and the lower square is symmetric.
A NOTE ON INTERMEDIATE SUBFACTORS OF KRISHNAN-SUNDER SUBFACTORS

The trace-preserving conditional expectation E from $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$ to $M_p(\mathbb{C}) \otimes \Delta_k$, is given by

$$E(e_{\alpha,\beta} \otimes f_{a,b}) = \delta_{a,b}(e_{\alpha,\beta} \otimes f_{a,a})$$

So,

$$E(U(1 \otimes f_{a,b})U^*) = E \left(\sum_{\alpha=1}^{p} e_{\alpha(a),\beta(a)} \otimes f_{\alpha(a),\alpha(b)} \right)$$

$$= \delta_{a,b} \sum_{\alpha=1}^{p} (e_{\alpha(a),\alpha(a)} \otimes f_{\alpha(a),\alpha(a)})$$

$$= \delta_{a,b} U(1 \otimes f_{a,a})U^*$$

Therefore, the upper square of (3) is commuting.

It remains to prove that the lower square is symmetric. For any $b \in \{1, 2, \ldots, k\}$ and $\beta \in \{1, 2, \ldots, p\}$ there exists a, α such that $U^{\beta,\alpha}_{a,a} = 1$, because U is a permutation matrix. By (1) and the fact that ρ_a is a permutation,

$$e_{\alpha(a),\gamma} \otimes f_{\alpha(a),\alpha(a)} \in (U(1 \otimes \Delta_k)U^*)(M_p(\mathbb{C}) \otimes 1)$$

for all $\gamma \in \{1, 2, \ldots, p\}$. Since $\beta = a(\alpha)$ and $b = \alpha(\alpha)$ were chosen arbitrarily, $M_p(\mathbb{C}) \otimes \Delta_k$ is linearly spanned by $(U(1 \otimes \Delta_k)U^*)(M_p(\mathbb{C}) \otimes 1)$. □

Note that the inclusion $U(1 \otimes \Delta_k)U^* \subset M_p(\mathbb{C}) \otimes \Delta_k$ is not necessarily connected. Proposition 2.2 immediately implies,

Corollary 2.3. If U is a permutation biunitary in $M_p(\mathbb{C}) \otimes M_k(\mathbb{C})$, then $R_U \subset R$ has an intermediate von Neumann subalgebra $R_U \subset P_U \subset R$, i.e. the subalgebra constructed from the lower symmetric commuting square in (3). In particular, if $R_U \subset R$ is irreducible then $R_U \subset P_U \subset R$ is an intermediate subfactor.

Recall \tilde{U} in (3). We will show in Proposition 2.3 that $R_U \subset P_U$ and $P_U \subset R$ are dual (by symmetry so are $R_U \subset P_U$ and $P_U \subset R$) and can be constructed from a biunitary permutation matrix $\Lambda \in \Delta_R \otimes M_k(\mathbb{C})$.

Let the permutations λ, ρ, ν, and θ be as in Lemma 2.1. Define permutation matrices $\Lambda \in \Delta_R \otimes M_k(\mathbb{C})$ and $P \in M_p(\mathbb{C}) \otimes \Delta_R$ by:

$$\Lambda^{ab} = \delta_{b,\lambda(a)} \delta_{\lambda(a),a} \quad P^{ab} = \delta_{b,\rho(a)} \delta_{\rho(a),a}$$

and permutation matrices $N \in \Delta_R \otimes M_k(\mathbb{C})$ and $\Theta \in M_p(\mathbb{C}) \otimes \Delta_R$ by:

$$N^{ab} = \delta_{b,\nu(a)} \delta_{\nu(a),a} \quad \Theta^{ab} = \delta_{b,\theta(a)} \delta_{\theta(a),a}.$$

It is easy to check that

$$U = \Theta^* \Lambda = N^* P$$

and

$$\tilde{U} = \Theta N^* = \Lambda P^*.$$

The following lemma shows that we may replace U in the commuting squares that engender $R_U \subset P_U$ and $P_U \subset R$, by the simpler unitaries N^* and Λ.

Lemma 2.4. Let $\Lambda, N \in \Delta_p \otimes M_k(\mathbb{C})$ and $P, \Theta \in M_p(\mathbb{C}) \otimes \Delta_k$ be permutation matrices satisfying (7) and (3). Then

\[(9)\quad U(1 \otimes \Delta_k)U^* \subset M_p(\mathbb{C}) \otimes \Delta_k = N^*(1 \otimes \Delta_k)N \subset M_p(\mathbb{C}) \otimes \Delta_k\]

and

\[(10)\quad U(1 \otimes M_k(\mathbb{C}))U^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C}) \cong \Lambda(1 \otimes M_k(\mathbb{C}))\Lambda^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C})\]

Proof. Note that conjugation by any permutation matrix in $M_p(\mathbb{C}) \otimes \Delta_k$ (such as P) stabilizes $1 \otimes \Delta_k$. So substituting N^*P for U yields (9). Similarly, substitute $U = \Theta^*\Lambda$ in left-hand side of (10), and then conjugate the entire square by Θ to obtain the right-hand side. \(\Box\)

Proposition 2.5. $P_U \subset R$ and $R_{U^*} \subset P_U$ are dual inclusions.

Proof. Clearly $\tilde{U} = U$. So by symmetry, Lemma 2.4 implies

\[(11)\quad \tilde{U}(1 \otimes \Delta_k)\tilde{U}^* \subset M_p(\mathbb{C}) \otimes \Delta_k \cong \Lambda(1 \otimes \Delta_k)\Lambda^* \subset M_p(\mathbb{C}) \otimes \Delta_k\]

Let $e \in M_k(\mathbb{C})$ be the usual Jones projection of the Jones extension $\mathbb{C} \subset \Delta_k \subset M_k(\mathbb{C})$. Conjugation by Λ fixes $1 \otimes e$, hence (10) is the upward basic construction of (11). Since both squares are symmetric, doing the basic contraction to the right yields dual inclusions. \(\Box\)

3. The Subgroup Subfactor

Fix a permutation biunitary U. Let ν_α, $1 \leq \alpha \leq p$, and θ_a, $1 \leq a \leq k$, be the permutations defined before Lemma 2.4.

Let Γ be the subgroup of S_k generated by elements of the form $\nu_\alpha \nu_\beta^{-1}$, i.e.,

$\Gamma = \Gamma_U = \langle \nu_\alpha \nu_\beta^{-1} : \alpha, \beta \in \{1, 2, \ldots, p\} \rangle$

For each $a \in \{1, 2, \ldots, k\}$ let $H_a \subset \Gamma$ be the subgroup that fixes a. If Γ acts transitively on $\{1, 2, \ldots, k\}$, then the subgroups H_a are all conjugate. In this case set $H = H_1$. In general, let Ω be the set of orbits in $\{1, 2, \ldots, k\}$, and for each $r \in \Omega$ set $H_r = H_a$ for an arbitrary representative a in r.

Remark 3.1. Krishnan and Sunder use the group $\langle \nu_\alpha^{-1} \nu_\beta : \alpha, \beta \in \{1, 2, \ldots, p\} \rangle$ instead of Γ in [9]. However, the two groups, as well as their fixed point subgroups, are equivalent via conjugation by ν_γ for any $\gamma \in \{1, 2, \ldots, p\}$. We depart from [9] for notational convenience in the proof of the following theorem.
Theorem 3.2. Let \(\Gamma \) act on \(R \) by outer automorphisms. There is a canonical isomorphism of \(Z(P_U) \) with \(\mathbb{C}^\Omega \). If \(q_r \) is the minimal projection in \(Z(P_U) \) corresponding to \(r \in \Omega \), then \(q_r R_U \subset q_r P_U \) is isomorphic to \(R^r \subset R^{H^r} \). In particular, if \(\Gamma \) acts transitively on \(\{1, 2, \ldots, k\} \) then \(R_U \subset P_U \) is a subfactor, and \(R_U \subset P_U \) is isomorphic to \(R^U \subset R^{H^U} \).

Proof. By construction of \(\Gamma \), the cosets \(\nu^{-1}_a \Gamma \) are the same for all \(\alpha \in \{1, 2, \ldots, p\} \). Denote this coset by \(\Gamma' \). Given a set \(S \), let \(\Delta_S \) denote the algebra of functions \(S \to \mathbb{C} \) with pointwise multiplication and the trace \(f \mapsto \frac{1}{|S|} \sum_{s \in S} f(s) \). Denote the characteristic function of \(s \in S \) by \(x_s \). Define an inclusion map \(i: \Delta_\Gamma \to M_p(\mathbb{C}) \otimes \Delta_{\Gamma'} \) by \(i(x_g) = \sum_\alpha x_\alpha \otimes x_{\nu^{-1}_a g} \). It is straightforward to check that

\[
\Delta_\Gamma \subset i \ M_p(\mathbb{C}) \otimes \Delta_{\Gamma'} \quad U \quad U
\]

\[
\mathbb{C} \subset \ M_p(\mathbb{C}) \cup \ 2 \ 3 \ \cdots \ B
\]

is a symmetric commuting square with connected inclusions, if we take the trace on \(M_p(\mathbb{C}) \otimes \Delta_{\Gamma'} \) to be the product trace.

Then we can construct a hyperfinite \(\Pi_1 \) subfactor \(B \subset A \) by iterating the basic construction to the right in the usual way.

\[
\Delta_\Gamma \subset^G M_p(\mathbb{C}) \otimes \Delta_{\Gamma'} \subset^{G'} A_2 \subset^{G'} A_3 \subset^{G'} \cdots \ A
\]

\[
\mathbb{C} \subset \ M_p(\mathbb{C}) \cup \ 2 \ 3 \ \cdots \ B
\]

Note that the Bratteli diagram \(G \) as marked in \(\boxed{[13]} \) is the bipartite graph with even vertices labeled by \(\Gamma \), odd vertices labeled by \(\Gamma' \), and an edge for each pair \((g, \alpha) \in \Gamma \times \{1, 2, \ldots, p\} \) going from \(g \) to \(\nu^{-1}_a g \). We denote the reflection of \(G \) by \(G' \). For each \(n \), \(B_n \subset A_n \) is isomorphic to \(M_{p^n}(\mathbb{C}) \otimes 1 \subset M_{p^n}(\mathbb{C}) \otimes \Delta_\Gamma \), where \(\tilde{\Gamma} = \Gamma \) or \(\Gamma' \) according to whether \(n \) is even or odd. We claim that \(B \subset A \) is irreducible. By Ocneanu compactness, \(B' \cap A = M_p(\mathbb{C})' \cap \Delta_\Gamma = \Delta_\Gamma \cap (1 \otimes \Delta_{\Gamma'}) \). Suppose \(\sum_{g \in \Gamma} k_g x_g \in 1 \otimes \Delta_{\Gamma'} \), where \(k_g \in \mathbb{C} \). Then

\[
\sum_{g \in \Gamma} k_g x_g = \sum_{g' \in \Gamma'} \sum_{\nu^{-1}_a g = g'} k_g (f_{\alpha, \alpha} \otimes x_{g'})
\]

Since \(\sum k_g x_g \in 1 \otimes \Delta_{\Gamma'} \), we must have that \(k_g \) is constant over all \(g \in \{\nu^{-1}_a g\}_a \). Since this is holds for all \(g' \), it follows that \(k_g \) is constant over all \(g \in \Gamma' = \Gamma \). Therefore, \(\sum k_g x_g \in \mathbb{C} \). This proves the claim.

For each \(g \in \Gamma \), let \(\mu_g \) be the automorphism of \(G \) that maps each vertex \(g' \in \Gamma \cup \Gamma' \) to \(g' g^{-1} \) and each edge \((g', \alpha) \) to the edge \((g' g^{-1}, \alpha) \). The morphism is well defined since the endpoints of the edge \((g', \alpha) \) are mapped to the endpoints of \((g' g^{-1}, \alpha) \). Moreover, \(\mu_g \) obviously preserves the trace weights of \(G \). Clearly \(g \mapsto \mu_g \) is a group action of \(G \) on \(\mathbb{K} \). Now extend \(\mu \) to the chain of Bratteli diagrams of the top row of inclusions in \(\boxed{[13]} \). For each \(n \), \(\mu \) implements an action \(\mu^n \) of \(\Gamma \) on \(A_n \) by trace preserving automorphisms. The family of actions \(\{\mu^n : \Gamma \to \text{Aut}(A_n)\}_n \) are consistent, i.e. \(\mu^n |_{A_{n-1}} = \mu^{n-1} \), and thus extend to an action of \(\Gamma \) on \(A \). We denote this action again by \(\mu \). Note that the action of \(\Gamma \) on \(A \) is outer since \(B \subset A \) is irreducible. Therefore \(B \subset A \) is isomorphic to \(R \subset R^H \) as in the statement of the theorem.

Let \(E^\Gamma \) be the group averaging maps from \(A \) onto the fixed point algebra \(A^\Gamma \). The action of \(\mu_g \) on \(A_n = M_{p^n}(\mathbb{C}) \otimes \Delta_\Gamma \) is given by \(\mu_g (F \otimes x'_g) = F \otimes x_{g' g^{-1}} \), hence \(E^\Gamma(A_n) = B_n \) for each \(n \). Therefore, \(A^\Gamma = B \).

We first assume that \(\Gamma \) acts transitively on \(\{1, 2, \ldots, k\} \). Define an inclusion \(\Delta_{\Gamma/H} \to \Delta_\Gamma \) by \(x_{gH} \mapsto \sum_{g' \in gH} x_{g'} \). Similarly define \(\Delta_{\Gamma'/H} \to \Delta_{\Gamma'} \). For each \(n \), let \(C_n = A_n^H \). Clearly \(C_n = B_n \otimes \Delta_{\Gamma/H} \)
where $\tilde{\Gamma}$ is Γ or Γ' according to whether n is even or odd. Thus we have an intermediate chain of algebras

\[
\begin{array}{cccccccc}
\Delta_{\Gamma} & \subset & M_p(\mathbb{C}) & \otimes & \Delta_{\Gamma'} & \subset & A_2 & \subset & A_3 & \subset & \cdots & \subset & A \\
\cup & & \cdots & & \cup \\
\Delta_{\Gamma/H} & \subset & M_p(\mathbb{C}) & \otimes & \Delta_{\Gamma'/H} & \subset & C_2 & \subset & C_3 & \subset & \cdots & \subset & C \\
\cup & & \cdots & & \cup \\
\mathbb{C} & \subset & M_p(\mathbb{C}) & \subset & B_2 & \subset & B_3 & \subset & \cdots & \subset & B \\
\end{array}
\]

where $C = A^H$. Since the group averaging map E^H from A onto A^H is the conditional expectation from A_n onto C_n for each n, it follows that the upper-left-most square of (14) is commuting. It is straightforward to verify that the lower-left-most square of (14) is symmetric, hence both of the left-most squares are symmetric commuting squares. For $n \geq 2$, C_n contains the Jones projection of the inclusion $A_{n-2} \subset A_{n-1}$, hence the chain $(C_n)_n$ contains the Jones tower of $C_0 \subset C_1$. Moreover, the Bratteli diagram of $C_{n-1} \subset C_n$ is the transpose of $C_{n-2} \subset C_{n-1}$ for $n \geq 2$, hence by dimension considerations, the chain $(C_n)_n$ is no more than the Jones tower. Therefore, both the upper and the lower ladders are the ones obtained by iterating the basic construction in the usual way from the left-most square.

Now consider the lower left square (\ast) of (14). We claim that (\ast) is isomorphic to (14) via the identification of Γ/H and Γ'/H with $\{1,2,\ldots,k\}$, by $gH \mapsto g(1)$. Let $(\hat{a})_{\alpha}^{p} \subset \Delta_{\Gamma}$ be the minimal projections in Δ_{Γ}, and define an isomorphism $M_p(\mathbb{C}) \otimes \Delta_{\Gamma'/H} \to M_p(\mathbb{C}) \otimes \Delta_{\Gamma}$ by $F \otimes x_{gH} \to F \otimes g(1)$. Fix a and choose $f \in \Gamma$ such that $f(1) = a$. Then $N^* (1 \otimes \hat{a})N \subset M_p(\mathbb{C}) \otimes \Delta_{\Gamma}$ is the image of $\sum_{\alpha} c_{a,\alpha} \otimes x_{\nu_{\alpha}^{-1}(a)}$ is the image of $\sum_{\alpha} c_{a,\alpha} \otimes x_{\nu_{\alpha}^{-1}(a)}$. Therefore, (\ast) is isomorphic to (14), and $R_U \subset P_U$ is isomorphic to $A^F \subset A^H$. This proves $R_U \subset P_U$ is isomorphic to $R^F \subset R^H$, as in the statement of the theorem.

If Γ does not act transitively, then $N^* (1 \otimes \Delta_{\Gamma})N \subset M_p(\mathbb{C}) \otimes \Delta_{\Gamma}$ is not a connected inclusion; its connected components correspond to the orbits of Γ in $\{1,2,\ldots,k\}$. Given an orbit $r \in \Omega$, let $q_r = N^* \sum_{\alpha \in \Omega} \hat{a}_\alpha$. Clearly q_r is central in P_U and $q_r R_U \subset q_r P_U$ can be obtained by iterating the basic construction on $q_r N^* (1 \otimes \Delta_{\Gamma})N \subset q_r (M_p(\mathbb{C}) \otimes \Delta_{\Gamma})$ by \cup. By an identical above argument (using the group H_r instead of H), $q_r R_U \subset q_r P_U$ is isomorphic to $A^F \subset A^{H_r}$. This proves $q_r R_U \subset q_r P_U$ is isomorphic to $R^F \subset R^{H_r}$, as in the statement of the theorem. Then, $q_r R_U \subset q_r P_U$ is a subfactor for each r, which implies that $Z(P_U) = \bigoplus_{r \in \Omega} C_q_r$.

\[\square\]

Corollary 3.3. Let $H \subset \Gamma$ be any inclusion of finite groups, and let Γ act on the hyperfinite Π_1 factor R by an outer action. Let $k = |\Gamma/H|$. Suppose the action of Γ on Γ/H can be generated by p' elements of Γ. Then there exists a permutation biunitary $U \in \Delta_{\Gamma}^{p'} \otimes M_k(\mathbb{C})$ such that $R_U \subset P_U$ (as defined in Corollary 2.3) is isomorphic to $R^F \subset R^H$.

Proof. Let $U_1, U_2, \ldots, U_{p'}$ be $k \times k$ permutation matrices that generate the action of Γ on Γ/H. Set U_0 to be the identity matrix. Let $\{e_{\alpha}\}_{0 \leq \alpha \leq p'}$ be a basis of $\Delta_{\Gamma}^{p'+1}$, and set $U = \sum_{\alpha} e_{\alpha} \otimes U_{\alpha}$. Obviously $G_U = \Gamma$ and the fixed point subgroup of Γ’s action on $\{1,2,\ldots,k\}$ is H. By Theorem 3.2, this U does the job. \[\square\]
4. The Bisch Projection

We now show that the Bisch projection defined in [1] (see also [3]) corresponds to the intermediate sub-von Neumann algebra $R_U \subset P_U$.

The upward basic construction of $M_p(C) \otimes 1 \subset M_p(C) \otimes M_k(C)$ in [4] is $M_p(C) \otimes M_{k^2}(C)$. The matrix rows and columns of its subalgebra $1 \otimes M_{k^2}(C)$ are indexed naturally by the set $\{1, 2, \ldots, k\} \times \{1, 2, \ldots, k\}$ ([4] ([3]). Given $x \in 1 \otimes M_{k^2}(C)$, denote by $x_{\alpha \beta}^{cd}$ the entry of x in row $\{\alpha, \beta\}$ and column $\{c, d\}$. The first relative commutant of $R_U \subset R$ is the subalgebra of $1 \otimes M_{k^2}(C)$ satisfying the Ocneanu compactness condition [3].

Define $p \in 1 \otimes M_{k^2}(C)$ by

$$ p_{ab}^{cd} = \begin{cases} 1, & \text{if } a = b = c = d; \\ 0, & \text{otherwise} \end{cases} $$

Proposition 4.1. The projection p defined above is contained in the first relative commutant of $R_U \subset R$; and p is a Bisch projection, that is, $pndp$ implements the conditional expectation from R to $(p) \cap R$ with respect to the trace.

Proof. This is proved in somewhat different notation in Lemma 6.4.1 of [1]. For the convenience of the reader we give a proof here. We first show that p is in the first relative commutant using Jones’ diagrammatic formulation of the higher relative commutants of $R_U \cap R$ [8].

We claim that for $a, b \in \{1, 2, \ldots, k\}$ and $\alpha, \beta \in \{1, 2, \ldots, p\}$:

$$
\begin{array}{c}
\text{b} \\
\downarrow \\
\text{a}
\end{array}
\begin{array}{c}
\text{\beta} \\
\downarrow \\
\text{\alpha}
\end{array}
= \begin{cases}
\delta_{\alpha, \beta} \cdot \delta_{b, b'} \cdot \delta_{a, \nu_\beta(b)}, & \text{if } a = a' \\
\delta_{\alpha, \beta} \cdot \delta_{a, a'} \cdot \delta_{a, \nu_\beta(b)}, & \text{if } b = b'
\end{cases}
$$

The claim is obvious from Section 5 of [3], but here is a direct proof. The left-hand side of (11) is by definition $\sum_{\gamma \in \{1, 2, \ldots, p\}} U_{\gamma a}^{\beta b} \gamma_{\alpha b}$. Note that in our case entries of U are either 0 or 1, so $U = U$.

We have:

$$
\sum_{\gamma \in \{1, 2, \ldots, p\}} U_{\gamma a}^{\beta b} \gamma_{\alpha b} = \sum_{\gamma} \delta_{\beta, \rho_\alpha(\gamma)} \delta_{b, \lambda_\gamma(\alpha)} \delta_{\alpha, \rho_\alpha(\gamma)} \delta_{b', \lambda_\gamma(a')} = \delta_{\alpha, \beta} \delta_{b, b'} \delta_{a, \nu_\beta(a)} = \delta_{\alpha, \beta} \delta_{b, b'} \delta_{a, \nu_\beta(a)} (\text{Lemma 5 of [3]})
$$

and

$$
\sum_{\gamma \in \{1, 2, \ldots, p\}} U_{\gamma a}^{\beta b} \gamma_{\alpha b} = \sum_{\gamma} (U^*)_{\gamma a}^{\beta b} (U^*)_{\alpha b}^{\gamma a'} = \sum_{\gamma} \delta_{\gamma, \beta(\beta)} \delta_{a, \nu_\beta(b)} \delta_{\gamma, \theta_\gamma(\alpha)} \delta_{a', \nu_\beta(b')} = \delta_{\alpha, \beta} \delta_{a, a'} \delta_{a, \nu_\beta(b)} (\text{Lemma 5 of [3]})
$$

This proves the claim. Using (10), it is easy to verify that p satisfies the diagrammatic condition for p to be in $R_U \cap R_1$ (see Theorem 6.1.4 and the preceding discussion in [3]).

Let $q \in M_{k^2}(C)$ be the projection identified with p, that is, $p = 1 \otimes q \in M_p(C) \otimes M_{k^2}(C)$. Define $p_n = 1 \otimes 1 \otimes \cdots \otimes 1 \otimes q \in M_p(C) \otimes M_{k^{n+2}}(C)$, for $n = 0, 1, 2, \ldots$. The same argument as above shows that p_n is contained in $(n - 1)$st relative commutant of $R_U \subset R$. It is easy to verify that the sequence of projections (p_n) along with the sequence of Jones projections (e_n) of $R_U \subset R$ satisfies

the Bisch-Jones relations of the Fuss-Catalan algebras with $\alpha = \beta = k$. It follows by \[\] that p implements the conditional expectation from R to $\{p\}' \cap R$ with respect to the trace \square

Proposition 4.2. Let p be the Bisch projection defined above and let E_p be the conditional expectation from R to $\{p\}' \cap R$ implemented by p (by Proposition [\ref{prop:bisch_projection}]). Then $P_U = E_p(R)$.

Proof. Let e be the Jones projection of the extension $R_U \subset R \subset R_1$. Let (A_m), (C_m), and (B_m), $m = 0, 1, 2, \ldots$, be the chains of algebras obtained by iterating the basic construction on $\text{\ref{example:bratteli_diagram}}$ to the right, and let $D_m = (B_m, e)$:

\begin{equation}
D_0 \subset D_1 \subset D_2 \subset D_3 \subset \cdots \subset R_1
\end{equation}

\begin{equation}
U(1 \otimes M_k(\mathbb{C}))U^* \subset M_p(\mathbb{C}) \otimes M_k(\mathbb{C}) \subset A_2 \subset A_3 \subset \cdots \subset R
\end{equation}

\begin{equation}
U(1 \otimes \Delta_k)U^* \subset M_p(\mathbb{C}) \otimes \Delta_k \subset C_2 \subset C_3 \subset \cdots \subset P_U
\end{equation}

\begin{equation}
\mathbb{C} \subset M_p(\mathbb{C}) \subset B_2 \subset B_3 \subset \cdots \subset R_U
\end{equation}

The type of construction above is well-known (\[\text{\ref{example:bratteli_diagram}},\] also see Ocneanu compactness in \[\text{\ref{example:ocneanu_compactness}}\]), and in particular has the property that the chain $B_m \subset C_m \subset A_m \subset D_m$ has the same Bratteli diagram for all odd m. In other words, $B_m \subset C_m \subset A_m \subset D_m$ is isomorphic to $B_m \subset B_m \otimes \Delta_k \subset B_m \otimes M_k(\mathbb{C}) \subset B_m \otimes M_k(\mathbb{C})$ for all odd m.

By definition, p is a projection in $1 \otimes M_{k^2}(\mathbb{C}) \subset D_1 = M_p(\mathbb{C}) \otimes M_{k^2}(\mathbb{C})$. Let $q \in M_{k^2}(\mathbb{C})$ be the projection identified with p, that is, $p = 1 \otimes q \in M_p(\mathbb{C}) \otimes M_{k^2}(\mathbb{C})$. Using (\[\ref{example:ocneanu_compactness}\]), it is easy to check:

\begin{equation}
q(M_k(\mathbb{C}) \otimes 1)q = (\Delta_k \otimes 1)q.
\end{equation}

It follows that $p \in C_1' \cap D_1$ and $pA_1p = C_1p$, hence $C_1 = E_p(A_1)$.

By Proposition \[\text{\ref{example:flat}}\], p is contained in $R_1' \cap R_1$, hence p is flat \[\text{\ref{example:flat}}\]. By flatness, p, as an element of $B_m \otimes M_{k^2}(\mathbb{C}) \cong D_m$, for m odd, is identified with $1_{B_m} \otimes q \in B_m \otimes M_{k^2}(\mathbb{C})$. Recalling that $B_m \subset C_m \subset A_m \subset D_m$ is isomorphic to $B_m \subset B_m \otimes \Delta_k \subset B_m \otimes M_k(\mathbb{C}) \subset B_m \otimes M_{k^2}(\mathbb{C})$, we have by \[\text{\ref{example:ocneanu_compactness}}\] and \[\text{\ref{example:flat}}\] that $p \in C_m' \cap D_m$ and $pA_m p = C_m p$ for all odd m. Hence, $C_m = E_p(A_m)$ for all odd m. Then by weak continuity of E_p, $P_U = E_p(R)$. \square

We restate Proposition 4.2 and Proposition 3.2 as follows:

Corollary 4.3. The intermediate sub-von Neumann algebra of $R_U \subset R$ corresponding to the Bisch projection p is $R_U \subset P_U$, as defined in Corollary \[\ref{example:corollary}\.\]

References

[1] Bina Bhattacharyya, *Krishnan-Sunder subfactors and a new countable family of subfactors related to trees*, Ph.D. thesis, University of California at Berkeley, 1998.

[2] ______, *Group actions on graphs related to Krishnan-Sunder subfactors*, Trans. Amer. Math. Soc. 355 (2003), no. 2, 433–463.

[3] Bina Bhattacharyya and Zeph Landau, *Intermediate standard invariants and intermediate planar algebras*, to appear.

[4] D. Bisch, *A note on intermediate subfactors*, Pacific J. Math. 163 (1994), no. 2, 201–216.

[5] D. Bisch and V. F. R. Jones, *Algebras associated to intermediate subfactors*, Invent. Math. 128 (1997), no. 1, 89–157.
[6] A. Ocneanu (Lecture Notes by Y. Kawahigashi), *Quantum symmetry, differential geometry of finite graphs and classification of subfactors*, 1990, University of Tokyo Seminar Notes.

[7] F. Goodman, P. de la Harpe, and V. F. R. Jones, *Coxeter graphs and towers of algebras*, MSRI Publications, vol. 14, Springer, 1989.

[8] V. F. R. Jones and V. S. Sunder, *Introduction to subfactors*, London Mathematical Society Lecture Note Series, vol. 234, Cambridge University Press, 1997.

[9] U. Krishnan and V. S. Sunder, *On biunitary permutation matrices and some subfactors of index 9*, Trans. Amer. Math. Soc. **348** (1996), no. 12, 4691–4736.

[10] S. Popa, *Orthogonal pairs of \ast-subalgebras in finite von Neumann algebras*, J. Operator Theory **9** (1983), no. 2, 253–268.

Deephaven, 4699 Old Ironsides Dr., #210, Santa Clara, CA 94054, US

E-mail address: Bina_Bhattacharyya_91@post.harvard.edu