How old is this bird? The age distribution under some phase sampling schemes

Sophie Hautphenne1,2 · Melanie Massaro3 · Peter Taylor1

Received: 31 March 2015 / Revised: 12 March 2017 / Published online: 3 April 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In this paper, we use a finite-state continuous-time Markov chain with one absorbing state to model an individual’s lifetime. Under this model, the time of death follows a phase-type distribution, and the transient states of the Markov chain are known as phases. We then attempt to provide an answer to the simple question “What is the conditional age distribution of the individual, given its current phase”? We show that the answer depends on how we interpret the question, and in particular, on the phase observation scheme under consideration. We then apply our results to the computation of the age pyramid for the endangered Chatham Island black robin Petroica traversi during the monitoring period 2007–2014.

Keywords Phase-type distribution · Transient Markov chain · Age distribution · Petroica traversi

Mathematics Subject Classification 60J27 · 92B05 · 92D25

1 Introduction

A random variable has a phase-type (PH) distribution if it corresponds to the time until absorption of a transient Markov chain with one absorbing state. PH distribu-

Sophie Hautphenne
sophiemh@unimelb.edu.au

1 School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
2 Institute of Mathematics, Ecole polytechnique fédérale de Lausanne, Lausanne, Vaud, Switzerland
3 Institute of Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
tions, introduced in the early 1980’s by Neuts (1981, Chapter 2), form a class of distributions with considerable modelling versatility, which results from attractive probabilistic properties. The set of PH distributions is closed under convolutions and finite mixtures, and is dense in the class of all distributions with non-negative support. PH distributions have therefore been extensively used in practice, in particular for modelling lifetime distributions (see for instance Aalen 1995; Gavrilov and Gavrilova 1991; Lin and Liu 2007).

The question addressed in this paper arose initially when modelling the lifetime reproductive success of the black robin *Petroica traversi*, which is an endangered songbird species endemic to the Chatham Islands, an isolated archipelago located 800 kilometers East of New Zealand. By 1980, the population of black robins had declined to five birds, including only a single successful breeding pair (Butler and Merton 1992). Through intensive conservation efforts in 1980–1989 by the New Zealand Wildlife Service (now the Department of Conservation), the population recovered to 93 birds by spring 1990 (Kennedy et al. 2014). Over the next decade (1990–1998), the population was closely monitored, but without human intervention. Nevertheless the population continued to grow rapidly to 197 adults by 1998, but after this period, the population growth slowed considerably and it only reached 239 adults in 2011 (Massaro et al. 2013) and 298 in 2014.

The black robin population is modeled in Hautphenne et al. (2017) using a special class of branching processes called the Markovian binary tree (MBT), in which an underlying transient Markov chain controls the reproduction and death events of each individual in the population. A direct consequence of this model is that each bird lives for a random time which has a PH distribution, in which it progresses through states (also called phases) of a continuous-time Markov chain and dies when the chain moves to an absorbing state. In this application, the phases do not have any particular physical interpretation, their role is to increase the accuracy and realism of the MBT model, as opposed to the simplest linear birth-and-death model. In other real-world applications, the phases may have a physical meaning, such as in Lin and Liu (2007) where they model physiological ages, which can be interpreted as relative health indices, as opposed to chronological age.

MBTs have proved to be powerful stochastic models in population biology and demography (Hautphenne and Latouche 2012). Having fitted an MBT to real data, we can calculate properties of the population, such as the probability that it will become extinct in some time interval [0, t], and the distribution of the population size at time t. In particular, the model allows us to compute the expected number of birds in phase j at time t, and the asymptotic frequency of phase j in the population. However, the latter two quantities may not have significance for biologists, who are likely to be interested in age-specific, rather than phase-specific, properties of individuals. We therefore need to be able to translate information about the phase distribution into information about the age distribution. Once we have an answer to the question “What is the age distribution of a bird, given its phase?”, we can write expression for age-dependent quantities in terms of phase-dependent quantities. For example, Eq. (35) in Sect. 7.2 illustrates how to translate the asymptotic phase frequency into the asymptotic age-frequency.

Note that the reverse exercise of translating information about age into information about phase is much easier since the distribution of the phase at any given age is well
known. The main difference is that age is deterministic, while phase is random and an individual stays in a given phase for an exponentially distributed amount of time.

In fact, defining the event that an individual is in phase \(j \) is already not trivial. It is necessary to describe in more detail how the individual is sampled. We suggest three sampling schemes according to which an observer looks at the phase of an individual:

- first, we assume that individuals are born according to a Poisson process which started infinitely far in the past, and one observes the phase of a randomly-selected individual that is still alive at time 0.

In the second and third schemes, we include the observation process in the lifetime history of each bird, which means that we do not need to make any assumption about the birth process:

- in the second scheme, observations of the phase of the bird occur according to a Poisson process, in which case we allow a single observation or multiple observations;
- in the third scheme, a single observation occurs at a uniformly distributed random time within some time window.

For each observation scheme, we compute the conditional age distribution given the observed phase, as well as related quantities. We show that the age distribution conditional on a single rare Poisson phase observation coincides with the age distribution conditional on a single rare uniform phase observation. Moreover, this age-distribution also corresponds to the age distribution of a randomly selected bird in a given phase at time 0 in the process where individuals are born according to a Poisson process.

The questions addressed in this paper, and their proposed answers, are not restricted to the context of PH distributions and ageing processes; they have a wider interest in Markov chain theory. Indeed, if \(Q \) is the generator of a continuous-time Markov chain \(\{X(t) : t \geq 0\} \), then it is well known that \(P[X(t) = j|X(0) = i] = (e^{Qt})_{ij} \), but the conditional distribution of the time \(t \) elapsed since the start of the Markov chain, given that the chain is observed in phase \(j \) is much less explored. As we mentioned above, the nature of this observation event needs to be described carefully.

The paper is organised as follows. In the next section, we provide some background on PH distributions used to model the ageing process of individuals. In Sect. 3, we compute the conditional age distribution at time 0 in the Poisson birth process, given the observed phase. In Sect. 4, we consider the Poisson phase observation scheme and provide the conditional age distribution with a single observation or multiple observations. In Sect. 5, we consider a uniform observation scheme, and in Sect. 6 we discuss the rare observation limit of the results obtained in Sects. 4 and 5. Finally, in Sect. 7, we illustrate our results on a toy example first, and then on the computation of the age pyramid for the black robin population.

2 The phase-type lifetime distribution

We assume that the lifetime of an individual is a random variable \(L \) which follows a phase-type PH(\(\alpha, Q \)) distribution with \(m \) transient phases \(\{1, 2, \ldots, m\} \) and the absorbing phase 0. This PH distribution is parameterised by an \(1 \times m \) vector \(\alpha \) which
gives us the initial distribution of the underlying Markov chain, and an $m \times m$ matrix Q containing the transition rates between the transient phases. So the assumption is that the lifetime of an individual progresses through phases (which may or may not correspond to some physically-observable characteristics) according to a realisation of the Markov chain, and the individual dies when the chain moves to the absorbing phase 0.

The PH(α, Q) distributed random variable L has a density and a distribution function respectively given by

$$
f_L(x) = \alpha e^{Qx} q_0, \\
F_L(x) = P[L \leq x] = 1 - \alpha e^{Qx} 1,
$$

(1)

where $q_0 = (-Q)1$ is the absorption rate vector, and 1 is a column vector of ones. Let $\varphi(x)$ denote the phase of the individual at age x, and let j be any transient phase. Another basic result on PH random variables tells us that the probability that an individual is in phase j when its age is x is

$$
P[\text{phase} = j \mid \text{age} = x] = P[\varphi(x) = j] = (\alpha e^{Qx})_j = \alpha e^{Qx} e_j,$$

where e_j is the jth unit (column) vector. Our question is the reverse of this: “If we observe an individual in phase j, what can we say about its age?” Bayes’ Theorem gives us

$$
P[\text{age} \leq x \mid \text{phase} = j] = \frac{P[\text{phase} = j \mid \text{age} \leq x] P[\text{age} \leq x]}{P[\text{phase} = j]}.
$$

The problem is that we do not yet have anything in the model to make sense of $P[\text{age} \leq x]$ and $P[\text{phase} = j]$. Our aim in this paper is to find satisfying answers to the above question.

For further use, we denote the age of the individual at the time of observation as A_o and the observed phase as φ_o. We are therefore interested in computing

$$
P_s[A_o \leq x \mid \varphi_o = j],
$$

(2)

where the subscript in P_s corresponds to the observation scheme that we shall consider: $s = pb$ for the Poisson birth process (Sect. 3), $s = po$ for the Poisson observation scheme (Sect. 4), and $s = uo$ for the uniform observation scheme (Sect. 5).

3 A Poisson birth process

One assumption that we might make is that individuals have been born at the epochs of a Poisson process with parameter β over the time interval $(-\infty, 0)$, and that we observe the phase of a randomly-selected individual alive at time 0.

Lemma 3.1 For any $x \geq 0$,

$$
P_{pb}[A_o \leq x \mid \varphi_o = j] = 1 - \frac{\alpha e^{Qx} (-Q)^{-1} e_j}{\alpha (-Q)^{-1} e_j}.
$$

(3)
How old is this bird? The age distribution under some...

Proof For any $T > 0$,

- the number N_T of individuals born in the time interval $[-T, 0)$ has a Poisson distribution with parameter βT,
- conditional on $N_T = n$, the birthtimes of the n individuals are uniformly and independently distributed on the interval $[-T, 0)$,
- an individual born at time $u \in [-T, 0)$ will be alive at time 0 with probability $\alpha^{-1} e^{Q(u)}e_j$ by (1), independently of the event that any other individual is alive at time 0.

So, an individual born in the interval $[-T, 0)$ will be alive at time 0 with probability $(1/T) \int_{-T}^{0} \alpha e^{Q(u)}e_j du$. It will be alive and in phase j at time 0 with probability $(1/T) \int_{-T}^{0} \alpha e^{Q(u)}e_j du$, and it will be alive, in phase j and older than x at time 0 with probability $(1/T) \int_{-T}^{x} \alpha e^{Q(u)}e_j du$, again independently of what happens to any other individual born in $[-T, 0)$. So the probability that an individual in phase j at time 0 is older than x is

$$\frac{\int_{-T}^{x} \alpha e^{Q(u)}e_j du}{\int_{-T}^{0} \alpha e^{Q(u)}e_j du}.$$

The fact that any PH distribution has a finite mean allows us to let $T \to \infty$ and, changing the variable of integration, we arrive at the conclusion that the probability that a randomly-selected individual in phase j at time 0 is older than x is

$$\frac{\int_{x}^{\infty} \alpha e^{Qx(-u)}e_j du}{\int_{0}^{\infty} \alpha e^{Qx(-u)}e_j du} = \frac{\alpha e^{Qx}(-Q)^{-1}e_j}{\alpha(-Q)^{-1}e_j},$$

which completes the proof. \qed

Note that this model corresponds to an $M/PH/\infty$ queue, and (3) gives the distribution of the age of a randomly selected individual in steady state. Also observe that $P_{pb}[A_o \leq x | \varphi_o = j]$ does not depend on the rate β of the Poisson birth process.

The above analysis provides a neat formula for the age distribution conditional on the observed phase. However the birth process in an MBT is not Poisson and, more generally, there is no reason to believe that a Poisson process is a good model for births. In the next three sections, we shall follow an alternative approach: without making any assumption on the birth process, we look at just a single individual and proceed by explicitly putting the observation process into the model.

4 The Poisson observation scheme

In this section, we assume that, following its birth, the phase of an individual is observed according to a Poisson process with rate γ. We first compute the age distribution given the phase at the first observation time. Then we generalise our results to the age distribution at the time of the last observation, given that the observer records the phases at $k \geq 2$ successive time events of the Poisson process.
4.1 Single observation

By the properties of Poisson processes, the rate at which an individual is observed when it is in phase \(j \) is \(\gamma \), for any \(j \). A slight modification of the underlying phase process then allows us to compute the conditional age distribution of the individual at the first observation time, given that the individual is in phase \(1 \leq j \leq m \) at that time. It suffices to add \(m \) absorbing phases \(1', 2', \ldots, m' \) (one per transient phase), to the process so that phase \(j' \) is reached when the individual is observed in phase \(j \). The initial distribution \(\alpha \) stays unchanged, but now the transition rate matrix becomes

\[
T(\gamma) = Q - \gamma I,
\]

and there are \(m + 1 \) absorption rate vectors

\[q_0, t_{1'}(\gamma), \ldots, t_{m'}(\gamma), \]

where \(q_0 = -Q1 \) records the rates of absorption into phase 0 (corresponding to the death of the individual), and for \(1' \leq j' \leq m' \), \(t_{j'}(\gamma) = \gamma e_j \) records the rates of absorption into phase \(j' \) (corresponding to the observation of the individual in phase \(j \)). For the sake of clarity of the presentation, we shall drop the dependence on \(\gamma \) in \(T(\gamma) \) and \(t_{j'}(\gamma) \) and use the simpler notation \(T \) and \(t_{j'} \) in the sequel.

For any phase \(j \) (transient or absorbing), let

\[
B(j) = \inf\{t \geq 0 : \varphi(t) = j\}
\]

be first time the individual enters phase \(j \), with \(B(j) = \infty \) if the individual never enters phase \(j \). Then, with probability one, precisely one of the random variables

\[
\{B(0), B(1'), B(2'), \ldots, B(m')\}
\]

is finite, and the age distribution conditional on the observed phase being \(j \) can be rewritten as

\[
P_{po}[A_0 \leq x | \varphi_0 = j] = P[B(j') \leq x | B(j') < \infty]. \quad (4)
\]

Based on this observation, the next proposition provides an expression for the conditional age distribution.

Proposition 4.1 The age distribution of the individual at the first observation (event) time of a Poisson(\(\gamma \)) process, conditional on the observed phase being \(j \), is given by

\[
P_{po}[A_0 \leq x | \varphi_0 = j] = 1 - \frac{\alpha e^{Tx} (-T)^{-1}e_j}{\alpha(-T)^{-1}e_j}. \quad (5)
\]
Proof We have
\[
P[B(j') \leq x | B(j') < \infty] = 1 - P[B(j') > x | B(j') < \infty] = 1 - \frac{P[x < B(j') < \infty]}{P[B(j') < \infty]}.
\]

On the one hand,
\[
P[x < B(j') < \infty] = \int_x^\infty \alpha e^{Tt} t_j^j du = \alpha e^{Tx} (-T)^{-1}\gamma e_j,
\]
and on the other hand, since \(P[B(j') > 0] = 1\),
\[
P[B(j') < \infty] = P[0 < B(j') < \infty] = \alpha (-T)^{-1}\gamma e_j,
\]
which, with (4), completes the proof.

The age at the observation time, conditional on the observed phase being \(j\), can be written as the sum of two random variables,
\[
A_o = Y_j + Z_j,
\]
where \(Y_j\) denotes the last time that the Markov chain entered phase \(j\) before observation, and \(Z_j\) denotes the sojourn time in phase \(j\) between this time and observation, both random variables being conditionally independent given \(\phi_o = j\). The random variables \(A_o, Y_j,\) and \(Z_j\) are illustrated in Fig. 1. Besides purely theoretical interest, the distribution of \(Y_j\) and \(Z_j\) may have practical interest when the phases have

![Fig. 1](image)

Fig. 1 A Possible trajectory of the phase process until absorption. The observation process is a Poisson process with rate \(\gamma\) (denoted as \(\text{PP}(\gamma)\)), where the filled inverted triangle symbols represent the events, and the phase is \(j = 1\) at the first observation event.
some physical interpretation (such as physiological ages), and an observer who sees an individual in phase \(j \) is interested in knowing the chronological age at which the individual entered that particular phase (\(Y_j \)), or for how long he/she has been in that phase (\(Z_j \)). The respective distributions of \(Y_j \) and \(Z_j \) are computed in the next two propositions.

Proposition 4.2 The conditional distribution of \(Y_j \), given \(\varphi_o = j \), has a point mass at zero given by

\[
P_{po}[Y_j = 0 | \varphi_o = j] = \frac{\alpha_j}{\lambda_j + \gamma} \alpha (-T)^{-1} e_j,
\]

and for \(y > 0 \),

\[
P_{po}[Y_j \leq y | \varphi_o = j] = 1 - \frac{\alpha e^{T_y}(-T)^{-1}(Q + \lambda_j I)e_j}{\lambda_j + \gamma} (\lambda_j + \gamma) e_j,
\]

where \(\lambda_j = -Q_{jj} \).

Proof First, recall from (6) that

\[
P[\varphi_o = j] = P[B(j') < \infty] = \alpha (-T)^{-1} \gamma e_j.
\]

Let \(T_o \) be the time at which the individual is observed, the clock being set at the individual’s birth time. Thanks to the memoryless property of exponential random variables, \(T_o \) has the same distribution as the interarrival time in the Poisson observation process, that is, \(T_o \) is exponentially distributed with parameter \(\gamma \). Then, for any \(y > 0 \), by conditioning on the value of \(T_o \), we have

\[
P[Y_j \in [y, y + dy], \varphi_o = j] = \int_0^\infty P[Y_j \in [y, y + dy], \varphi(u) = j | T_o \in [u, u + du]] \gamma e^{-\gamma u} du
\]

\[
= \int_y^\infty \sum_{k \neq j} \alpha e^{Qy} k Q_{kj} e^{-\lambda_j (u-y)} du \gamma e^{-\gamma u} du.
\]

Next, observe that since \(Q_{jj} = -\lambda_j \), we have

\[
\sum_{k \neq j} \alpha e^{Qy} k Q_{kj} = \alpha e^{Qy} (Q + \lambda_j I)e_j.
\]

As

\[
\int_y^\infty e^{-\lambda_j (u-y)} \gamma e^{-\gamma u} du = \frac{\gamma e^{-\gamma y}}{\lambda_j + \gamma},
\]

and \(T = Q - \gamma I \), we have

\[
P[Y_j \in [y, y + dy], \varphi_o = j] = \frac{\alpha e^{T_y} (Q + \lambda_j I)e_j \gamma dy}{\lambda_j + \gamma}.
\]
Similarly,
\[P[Y_j = 0, \varphi_o = j] = \int_0^\infty \alpha_j e^{-\lambda_j u} \gamma e^{-\gamma u} du = \frac{\alpha_j \gamma}{\lambda_j + \gamma}, \]
which leads to (7). Finally, (8) follows from (7) and (9) since
\[P[Y_j \leq y | \varphi_o = j] = P[Y_j = 0 | \varphi_o = j] + \int_0^y P[Y_j \in [u, u + du], \varphi_o = j], \]
for any \(y > 0 \).

Proposition 4.3 The conditional distribution of \(Z_j \), given \(\varphi_o = j \), is exponential with parameter \(\gamma + \lambda_j \).

Proof Let \(S_j \) denote the sojourn time of the underlying Markov chain in phase \(j \), and let \(E_{j \rightarrow j'} \) denote the event that upon leaving phase \(j \), the chain moves to phase \(j' \). We have \(P[E_{j \rightarrow j'}] = \gamma / (\lambda_j + \gamma) \), and
\[P[S_j > z, E_{j \rightarrow j'}] = e^{-(\lambda_j + \gamma)z} \frac{\gamma}{\lambda_j + \gamma}, \]
therefore
\[P[Z_j > z | \varphi_o = j] = \frac{P[S_j > z, E_{j \rightarrow j'}]}{P[E_{j \rightarrow j'}]} = e^{-(\lambda_j + \gamma)z}, \]
which proves the statement of the proposition.

4.2 Multiple observations

In practice, a multiple observation scheme would record a schedule of observation times \(t_1, t_2, \ldots \), and observed phases \(j_1, j_2, \ldots \). In that case, the only randomness in the individual’s age would lie in the unknown first time \(t_1 \) of observation as the inter-observation times in the rest of the sample path are known. So the age distribution at the time of the last observation can be obtained directly from the age distribution at the time of the first observation. Furthermore the Markov property ensures that the sample path after time \(t_1 \) can tell us no more about the sample path before \(t_1 \) than the knowledge of phase \(j_1 \) at \(t_1 \).

In this section, we consider the possibly less realistic scenario where we know the observed phases but not the observation times, beyond the fact that they are points of a Poisson process. In this case, the distribution of the age at the last observation depends on all the observed phases. More precisely, we assume that the observer makes \(k \geq 2 \) observations of an individual according to a Poisson process with rate \(\gamma \). We further assume that the individual is still living at the time of the last (\(k \)th) observation. We shall compute the age distribution at the time of the \(k \)th observation, given the sequence of phases observed at the observation times.
For that purpose, we consider the same process as in the single observation case, with absorbing phases 0, 1', ..., m'. Every observation event corresponds to a phase absorption in one of the phases 1', ..., m'. After a phase absorption in j' (which corresponds to an observation of phase j), the process instantaneously starts again in phase j, that is, with the initial distribution vector e^T_j, until the next absorption event.

In order to properly define the quantities of interest, we need to redefine the random variables $B(j)$ as follows: for any initial phase distribution θ and for any phase j,

$$B_\theta(j) = \inf\{t \geq 0 : \varphi(t) = j, \varphi(0) \sim \theta\} \quad (10)$$

is the first time the process reaches phase j, given that the initial phase follows the distribution θ. For the sake of clarity, we shall write $B_\ell(j)$ instead of $B_{e^T_\ell}(j)$ when the process starts in phase ℓ with probability one. Let j_1, \ldots, j_k be the k successive observed phases. The age of the individual at the last observation time conditional on the observed phases, denoted by $A_\omega(j_1, \ldots, j_k)$ (or by A_ω when there is no confusion), is then given by

$$A_\omega(j_1, \ldots, j_k) = B_\alpha(j'_1) + \sum_{i=2}^k B_{j_{i-1}}(j'_i).$$

The age distribution at the time of the last observation conditional on the sequence of observed phases can then be written as

$$P_{po}[A_\omega \leq x | B_\alpha(j'_1) < \infty, B_{j_1}(j'_2) < \infty, \ldots, B_{j_{k-1}}(j'_k) < \infty].$$

In order to compute this distribution, we need the following lemma, which is a particular case of Theorem 1 in Carbonell et al. (2008):

Lemma 4.4 For $2 \leq i \leq k$, define the $m \times m$ matrix

$$B_{1i}(x) = \int_{u_1=0}^x \int_{u_2=0}^{x-u_1} \cdots \int_{u_{i-1}=0}^{x-u_1-\cdots-u_{i-2}} e^{A_{11}u_1} e^{A_{22}u_2} A_{i-1,i} A_{i-2,i} \cdots A_{11,i} e^{A_{kk}(x-u_1-\cdots-u_{i-1})} du,$$

where $x > 0$ and A_{ij} are constant $m \times m$ matrices. If the $km \times km$ block-structured matrix $A^{(k)}$ is defined by

$$A^{(k)} = \begin{bmatrix}
A_{11} & A_{12} & 0 & 0 & \cdots & 0 \\
0 & A_{22} & A_{23} & 0 & \cdots & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & \cdots & 0 & 0 & A_{(k-1)(k-1)} & A_{(k-1)k} \\
0 & \cdots & 0 & 0 & 0 & A_{kk}
\end{bmatrix},$$

then

$$B_{1i}(x) = (f_{k,i}^T \otimes I_m)e^{A^{(k)}x}(f_{k,i} \otimes I_m), \quad (11)$$
where \(f_{k,i} \) is a \(k \times 1 \) unit vector such that \((f_{k,i})_j = \delta_{ij}\).

For the purpose of computing the conditional distribution of \(A_o \), we define the \(km \times km \) matrix \(A^{(k)} \) for any \(k \geq 2 \) as

\[
A^{(k)} = \begin{bmatrix}
T & e_{j_1}e_{j_1}^\top & 0 & 0 & \ldots & 0 \\
0 & T & e_{j_2}e_{j_2}^\top & 0 & \ldots & 0 \\
& & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & 0 & T & e_{j_{k-1}}e_{j_{k-1}}^\top \\
0 & \ldots & 0 & 0 & 0 & T
\end{bmatrix}.
\]

(12)

Proposition 4.5 For an arbitrary \(k \geq 2 \), the age distribution of the individual at the \(k \)th observation time, conditional on the successive observed phases being \(j_1, j_2, \ldots, j_k \), is given by

\[
P_{po}[A_o \leq x | B_{\alpha}(j_1^\prime) < \infty, B_{j_1}(j_2^\prime) < \infty, \ldots, B_{j_{k-1}}(j_k^\prime) < \infty] = \frac{N_k(x)}{D_k},
\]

(13)

where

\[
N_k(x) = \alpha(I - e^\top x)(-T)^{-1} e_{j_1^\prime} \prod_{i=1}^{k-1} e_{j_i^\top}(-T)^{-1} e_{j_{i+1}^\prime},
\]

(14)

\[
D_k = \alpha(-T)^{-1} e_{j_1^\prime} \prod_{i=1}^{k-1} e_{j_i^\top}(-T)^{-1} e_{j_{i+1}^\prime},
\]

(15)

where \(B_{li}(s) \) is defined in (11) and \(A^{(k)} \) is given in (12).

The proof of Proposition 4.5 is given in the “Appendix”.

Using (11), the expressions for \(N_k(x) \) and \(D_k \) can be rewritten as

\[
N_k(x) = \alpha u_k - \alpha e^\top x u_k - v_k e^{A^{(k)}x} w_k,
\]

(16)

\[
D_k = \alpha u_k
\]

(17)

where

\[
u_k = (-T)^{-1} e_{j_1^\prime} \prod_{i=1}^{k-1} e_{j_i^\top}(-T)^{-1} e_{j_{i+1}^\prime}
\]

(18)

\[
v_k = (f_{k,1}^\top \otimes \alpha)
\]

\[
w_k = \sum_{i=2}^{k} (f_{k,i} \otimes I_m)(-T)^{-1} e_{j_i^\prime} \prod_{\ell=i}^{k-1} e_{j_{\ell}^\top}(-T)^{-1} e_{j_{\ell+1}^\prime}.
\]

(19)
In the expression for w_k, an empty product (when $i = k$) is interpreted as the scalar 1. Note that it is also possible to express $N(k)$ and $D(k)$ recursively as follows: for $k \geq 3$,

$$N_k(x) = [N_{k-1}(x) e_{j_{k-1}} - (f_{k,1}^T \otimes \alpha)e^{A^{(k)x}}(f_{k,k} \otimes I_m)](-T)^{-1}t_{j_k}'$$

$$D_k = D_{k-1}e_{j_{k-1}}(-T)^{-1}t_{j_k}'$$

where $N_2(x)$ and D_2 are given in (38) and (37) respectively.

We now assume that the individual is still alive at the time of the kth observation, but is discovered dead (that is, in phase 0) at the time of the $(k+1)$st observation. We are then interested in the conditional lifetime distribution of the individual, given the sequence of observed phases. Indeed, the lifetime L is then given by the age at the kth observation plus the time until absorption from the last observed phase j_k to phase 0, conditional on this time being less than the time between the kth and the $(k+1)$st observation. We shall need the following lemma:

Lemma 4.6 Let $X \sim PH(\theta, T)$ and $Y \sim Exp(\gamma)$. The conditional distribution of X, given that $X \leq Y$, is given by

$$P[X \leq x \mid X \leq Y] = \frac{1 - \gamma \theta(\gamma I - T)^{-1}1 + \theta e^{(T-\gamma I)x}(\gamma I - T)^{-1}1}{1 - \gamma \theta(\gamma I - T)^{-1}1},$$

and the density is given by

$$f_{X \mid X \leq Y}(x) = \frac{\theta e^{(T-\gamma I)x}(-T)1}{1 - \gamma \theta(\gamma I - T)^{-1}1}.$$

Proof The distribution is obtained by conditioning on the value of Y. The expression for the conditional density then follows. \hfill \Box

The conditional lifetime distribution is computed in the next proposition.

Proposition 4.7 The lifetime distribution of an individual, conditional on the sequence of observed phases being $j_1, j_2, \ldots, j_k, 0$, is given by

$$P_{po}[L \leq x \mid B \alpha(j_1) < \infty, \ldots, B_{j_{k-1}}(j_k') < \infty, B_{j_k}(0) < \infty] = C_k \left\{ \alpha u_k e_{j_k}^T [e^{(T-\gamma I)x} - I](\gamma I - T)^{-1}1 + \alpha \mathcal{I}_{12}(x) + v_k \mathcal{J}_{1k}(x) \right\} T1,$$

where u_k and v_k are given in (18) and (19) respectively, and

$$C_k = [\alpha u_k (1 - \gamma e_{j_k}^T(\gamma I - T)^{-1}1)]^{-1},$$

$$\mathcal{I}_{12}(x) = (f_{2,1}^T \otimes I_m) e^{B^{(k)x}}(f_{2,2} \otimes I_m),$$

$$\mathcal{J}_{1k}(x) = [I_{mk}, 0_{mk \times m}] e^{C^{(k)x}}[0_{m \times mk}, I_m]^T.$$

\hfill \copyright Springer
with
\[
B^{(k)} = \begin{bmatrix} T & u_k e_{jk}^\top \\ 0 & T - \gamma I \end{bmatrix}, \quad C^{(k)} = \begin{bmatrix} A^{(k)} & w_k e_{jk}^\top \\ 0 & T - \gamma I \end{bmatrix}.
\]

Proof We have

\[
P[L \leq x \mid B_a(j_1') < \infty, \ldots, B_{jk-1}(j_k') < \infty, B_{jk}(0) < \infty] = P[(B_a(j_1') + \sum_{i=2}^k B_{jk(i-1)}(j_i')) + X \leq x \mid B_a(j_1') < \infty, \ldots, B_{jk}(0) < \infty]
\]

where \(X \sim PH(e_{jk}^\top, T)\) and \(X\) is taken conditionally on \(X \leq Y\), where \(Y\) is the interarrival time in the Poisson observation process, which is exponentially distributed with parameter \(\gamma\). Since the age at the \(k\)th observation, given by \(B_a(j_1') + \sum_{i=2}^k B_{jk(i-1)}(j_i')\), and the residual life time, \(X\), are conditionally independent given the phase at the \(k\)th observation, \(j_k\), we can use (13)–(15), together with Lemma 4.6 and the convolution formula, to compute the conditional lifetime distribution. In order to simplify the notation we define \(C_k\) as in (21). By conditioning on the value of \(X\) and using (16), we then obtain

\[
P[L \leq x \mid B_a(j_1') < \infty, \ldots, B_{jk-1}(j_k') < \infty, B_{jk}(0) < \infty] = \int_0^x \frac{N_k(x-u)}{D_k} \frac{e^{(T-\gamma)u}(-T\mathbf{1})}{(1-\gamma e_{jk}^\top(\gamma I - T)^{-1})} du
\]

\[
= C_k \left\{ \alpha u_k e_{jk}^\top [I - e^{(T-\gamma)u}] (\gamma I - T)^{-1} - \alpha \int_0^x e^{T(x-u)} u_k e_{jk}^\top e^{(T-\gamma)u} du \right\}
\]

\[
- \nu_k \left\{ \int_0^x e^{A^{(k)}(x-u)} w_k e_{jk}^\top e^{(T-\gamma)u} du \right\} (-T\mathbf{1})
\]

\[
= C_k \left\{ \alpha u_k e_{jk}^\top [I - e^{(T-\gamma)u}] (\gamma I - T)^{-1} - \alpha \mathcal{I}_{12}(x) - \nu_k \mathcal{J}_{1k}(x) \right\} (-T\mathbf{1}),
\]

where, by Lemma 4.4,

\[
\mathcal{I}_{12}(x) = (f_{2,1}^\top \otimes I_m)e^{B^{(k)x}}(f_{2,2} \otimes I_m), \quad \mathcal{J}_{1k}(x) = [I_{mk}, 0_{mk \times m}] e^{C^{(k)x}}[0_{m \times mk}, I_m]^\top
\]

with

\[
B^{(k)} = \begin{bmatrix} T & u_k e_{jk}^\top \\ 0 & T - \gamma I \end{bmatrix}, \quad C^{(k)} = \begin{bmatrix} A^{(k)} & w_k e_{jk}^\top \\ 0 & T - \gamma I \end{bmatrix}.
\]

\(\square\)

5 The uniform observation scheme

In this section, we assume that an observer samples an individual in a population at a single random time \(T_\alpha\) in accordance with a uniform distribution on \([0, t]\), for
some time $t > 0$, where the clock is set at the birth of the individual. We then ask the
same questions as in the Poisson observation scheme, but we expect different answers.
The three random variables of interest A_o, Y_j, and Z_j are illustrated in Fig. 2. Their
respective conditional distribution, under the uniform observation scheme, is provided
in the next three propositions.

Proposition 5.1 The conditional age distribution of the individual at a random obser-
vation time uniformly distributed on $[0, t]$, given $\varphi_o = j$, is given by

$$P_{uo}[A_o \leq x \mid \varphi_o = j] = \begin{cases} 1 - \frac{\alpha(e^{Qx} - e^{Qt})(-Q)^{-1}e_j}{\alpha(1 - e^{Qt})(-Q)^{-1}e_j} & \text{for } x \leq t, \\ 1 & \text{for } x > t. \end{cases}$$

(23)

Proof By conditioning on the value of the observation time T_o, we have

$$P[\varphi_o = j] = (1/t) \int_0^t \alpha e^{Qu} e_j du = (1/t) \alpha(1 - e^{Qt})(-Q)^{-1}e_j,$$

(24)

and

$$P[A_o \leq x, \varphi_o = j] = (1/t) \int_0^t \alpha e^{Qu} e_j 1_{[u \leq x]} du$$

$$= (1/t) \int_0^{\min(x,t)} \alpha e^{Qu} e_j du$$

$$= (1/t) \alpha(1 - e^{Q\min(x,t)}) (-Q)^{-1}e_j.$$

(25)

The conditional distribution given in (23) then follows by dividing (25) by (24), separ-
ating the case where $x \leq t$ from that where $x > t$.

□
Proposition 5.2 The conditional distribution of Y_j, given $\varphi_o = j$, has a point mass at zero given by

$$P_{uo}[Y_j = 0 \mid \varphi_o = j] = \frac{\alpha_j(1 - e^{-\lambda_j t})}{\lambda_j \alpha(I - e^{Q^t})(-Q)^{-1}e_j},$$

(26)

and for $0 < y \leq t$,

$$P_{uo}[Y_j \leq y \mid \varphi_o = j] = 1 - \frac{\lambda_j \alpha(e^{Q^y} - e^{Q^t})(-Q)^{-1}e_j + \alpha e^{Q^y}e_j(e^{-\lambda_j(t-y)} - 1)}{\lambda_j \alpha(I - e^{Q^t})(-Q)^{-1}e_j},$$

(27)

where $\lambda_j = -Q_{jj}$. Finally, $P_{uo}[Y_j \leq y \mid \varphi_o = j] = 1$ for $y > t$.

Proof The proof follows exactly the same lines as in the Poisson observation case. For any $0 < y \leq t$,

$$P[Y_j \in [y, y + dy], \varphi_o = j] = (1/t) \int_0^t P[Y_j \in [y, y + dy], \varphi(u) = j \mid T_o \in [u, u + du)] du$$

$$= (1/t) \int_y^t \sum_{k \neq j} (\alpha e^{Q^y})_k Q_{kj} dy e^{-\lambda_j(u-y)} du$$

$$= (1/t) \alpha e^{Q^y}(Q + \lambda_j I)e_j dy \int_y^t e^{-\lambda_j(u-y)} du$$

$$= (1/t) \alpha e^{Q^y}(Q + \lambda_j I)e_j dy \frac{1 - e^{-\lambda_j(t-y)}}{\lambda_j}.$$

(28)

Similarly,

$$P[Y_j = 0, \varphi_o = j] = (1/t) \int_y^t \alpha_j e^{-\lambda_j(u-y)} du = (1/t) \frac{\alpha_j(1 - e^{-\lambda_j(t-y)})}{\lambda_j}.$$

which, together with (24), leads to (26). Finally, from (26), (28), and (24) we obtain (27). \qed

Proposition 5.3 The conditional distribution of Z_j, given $\varphi_o = j$, is given by

$$P_{uo}[Z_j \leq z \mid \varphi_o = j] = 1 - \frac{\alpha(I - e^{Q^y})(-Q)^{-1}e_j e^{-\lambda_j z}}{\alpha(I - e^{Q^t})(-Q)^{-1}e_j} \text{ for } z \leq t,$$

(29)

and $P_{uo}[Z_j \leq z \mid \varphi_o = j] = 1$ for $z > t$.

☆ Springer
Proof} By the usual arguments,
\[
P[Z_j \in [z, z + dz], \varphi_o = j] = \left(1/t\right) \left[\alpha_j e^{-\lambda_j z} + \int_z^t \sum_{k \neq j} (\alpha e^{Q(u-z)})_k Q_{kj} e^{\lambda_j u} du \right] dz,
\]
where the first term in the bracket accounts for the case where “\(T_o = z\)”, that is, the individual is observed in her/his initial phase. We then have
\[
P[Z_j \in [z, z + dz], \varphi_o = j] = \left(1/t\right) \left[\alpha_j e^{-\lambda_j z} + \alpha \int_z^t e^{Q(u-z)} du (Q + \lambda_j I)e^{\lambda_j u} \right] dz
\]
and the conditional density function of \(Z_j\), given \(\varphi_o = j\), is obtained by dividing (30) by (24) and rearranging the terms in the numerator:
\[
f_{Z_j|\varphi_o=j}(z) = \frac{\alpha \left[\lambda_j e^{-\lambda_j z} - e^{Qt} e^{-\lambda_j z} (Q + \lambda_j I) \right] (-Q)^{-1} e_j}{\alpha [I - e^{Qt}] (-Q)^{-1} e_j}.
\]
Then, as \(P[Z_j \leq z | \varphi_o = j] = \int_0^z f_{Z_j|\varphi_o=j}(u) du\), we obtain (29). \(\Box\)

6 Rare observation limit

In practice, individuals of an animal population are usually observed very seldom. This is particularly true for endangered wild populations such as the Chatham Island black robins \textit{Petroica traversi}, which are observed once or twice per year (per individual) on average. We are therefore interested in the limit of the conditional age distribution as \(\gamma \to 0\) in the Poisson observation scheme, or as \(t \to \infty\) in the uniform observation scheme. First, observe that
\[
T_{\gamma \to 0} \to Q, \quad \text{and} \quad e^{Qt} \xrightarrow{t \to \infty} 0.
\]

An interesting consequence of Propositions 4.1 and 5.1 is that the rare observation limit of the age distribution is identical for the Poisson and uniform observation schemes,
\[
\lim_{\gamma \to 0} P_{po}[A_o \leq x | \varphi_o = j] = \lim_{t \to \infty} P_{uo}[A_o \leq x | \varphi_o = j].
\]

In addition, the limiting age distribution corresponds to the age distribution \(P_{pb}[A_o \leq x | \varphi_o = j]\) that we derived in Lemma 3.1 under the assumption that the birth process is Poisson.
Corollary 6.1 The rare observation limit of the conditional age distribution, given \(\varphi_o = j \), corresponds to \(P_{pb}[A_o \leq x \mid \varphi_o = j] \) whose expression is given by (3).

Actually, not only is the rare observation limit of the age distribution identical for the Poisson and the uniform observation schemes, but this holds for the conditional distribution of \(Y_j \) and \(Z_j \) too, as shown in the next two corollaries. These results are direct consequences of Propositions 4.2 and 5.2, and Propositions 4.3 and 5.3, respectively.

Corollary 6.2 The rare observation limit of the conditional distribution of \(Y_j \), given \(\varphi_o = j \), has a point mass at zero and is given by

\[
P[Y_j = 0 \mid \varphi_o = j] = \frac{\alpha_j}{\lambda_j \alpha(-Q)^{-1}e_j}
\]

(31)

and for \(y > 0 \),

\[
P[Y_j \leq y \mid \varphi_o = j] = 1 - \frac{\alpha e^{Qy}(-Q)^{-1}(Q + \lambda_j I)e_j}{\lambda_j \alpha(-Q)^{-1}e_j},
\]

(32)

where \(\lambda_j = -Q_{jj} \).

\(\square \)

Corollary 6.3 The rare observation limit of the conditional distribution of \(Z_j \), given \(\varphi_o = j \), is exponential with parameter \(\lambda_j \).

\(\square \)

7 Numerical illustrations

We illustrate the results of the previous sections on a toy example first, and then on the real-world example of the Chatham Island black robin \(Petroica traversi \) population.

7.1 Toy example with five phases

We consider a PH(\(\alpha \), \(Q \)) lifetime distribution with \(m = 5 \) transient phases and transition rate matrix

\[
Q = \begin{bmatrix}
-3 & 2 & -5 & 3 & 1 \\
1 & -4 & 2 & -6 & 3 \\
1 & 1 & -2
\end{bmatrix},
\]

where a blank space represents a zero entry. We shall consider two initial distribution vectors:

\(\alpha^{(1)} = [1, 0, 0, 0, 0] \), and \(\alpha^{(2)} = [1/5, 1/5, 1/5, 1/5, 1/5] \).
In the first case, the process starts in phase 1 almost surely, while in the second case, the initial phase is chosen uniformly on the transient phase space. As we show below, the initial distribution vector can affect the shape of the various conditional distributions. We choose to represent densities (rather than distribution functions) as they better capture the features of the distributions.

We first assume a single observation, and we condition on the observed phase being \(j = 4 \). Figure 3 shows the conditional age densities obtained under the different observation schemes, for different values of the parameters \(\gamma \) and \(t \), as well as the rare observation limit. Observe the discontinuity of the density at \(x = t \) in the uniform case (while the distribution function given in (23) is continuous at \(x = t \)). This comes from the fact that an individual observed in the time window \([0, t] \) cannot be older than \(t \), and suggests that the Poisson observation scheme is more natural than the uniform observation scheme on a finite time interval. We see that for \(\alpha^{(1)} \), the mode of the

Fig. 3 Conditional age density at the observation time, given that phase \(j = 4 \) is observed, for the two observation schemes with different parameter values, and the rare observation limit, as \(\alpha = [1, 0, 0, 0, 0] \) (top) and \(\alpha = [1/5, 1/5, 1/5, 1/5, 1/5] \) (bottom)
How old is this bird? The age distribution under some... 1337

Fig. 4 Conditional density of Y_j, given that phase $j = 4$ is observed, for the two observation schemes with different parameter values, and the rare observation limit, as $\alpha = [1, 0, 0, 0, 0]$ (top) and $\alpha = [1/5, 1/5, 1/5, 1/5, 1/5]$ (bottom). The point mass at zero is clear when $\alpha = [1/5, 1/5, 1/5, 1/5, 1/5]$

distribution is positive and tends to increase as the observation becomes rare, while for $\alpha^{(2)}$, the mode is clearly at age zero.

Figures 4 and 5 illustrate the conditional densities of Y_4 and Z_4 respectively. The initial distribution affects the shape of the density of Y_4, which has a point mass at zero for $\alpha^{(2)}$, but has negligible effect on the shape of the density of Z_4. Also note that in the uniform observation case, the density of Y_j is continuous at $y = t$, but similar to the age density in Fig. 3, the density of Z_j is discontinuous at $z = t$.

Finally, we consider the multiple Poisson observation scheme with $k = 5$ observations, for different values of the parameter γ, and different sequences of observed phases: 1, 2, 3, 4, 5 (Sequence 1) and 2, 3, 1, 4 (Sequence 2, which is less likely than Sequence 1). In Fig. 6 we compare the age distribution at the 5th observation, and the lifetime distribution given that the individual is dead at the 6th observation, for
Fig. 5 Conditional density of Z_j, given that phase $j = 4$ is observed, for the two observation schemes with different parameter values, and the rare observation limit, as $\alpha = [1, 0, 0, 0, 0]$ (top) and $\alpha = [1/5, 1/5, 1/5, 1/5, 1/5]$ (bottom).

$\alpha^{(1)}$ (there is not much difference for $\alpha^{(2)}$). The graph illustrates how a change in the sequence of observed phases affects the related conditional distributions. We see that the tail of the distributions corresponding to Sequence 2 is fatter than for Sequence 1, that is, an individual is more likely to be older at the time of the last observation when Sequence 2 is observed.

In a last experiment, we compare the rare observation limit of the age distribution with the empirical distribution computed by simulating 5000 trajectories of the PH distribution and assuming that we observe the phases just before the next transition (that is, at the end of the exponential sojourn time interval). The result is illustrated in Fig. 7 for $j = 4$ and for the two initial distributions α. We clearly see that the two distributions coincide, which supports the use of the rare observation limiting distribution in practical applications.
7.2 How old are the Chatham Island black robins *Petroica traversi*?

In this last section, we come back to our original objective, and illustrate the usefulness of our results to compute the age pyramid for the black robin population during the monitoring period between 2007 and 2014.

A first step of the analysis consists of modelling the female bird population using a branching process called the Markovian binary tree (MBT), which is described in detail in Hautphenne et al. (2017). In an MBT, the lifetime of individuals is phase-type distributed, and individuals reproduce during their lifetime with a rate dependent...
Table 1 Female age-specific mortality and fertility rates estimated from the raw data on the Chatham Island black robin population during the monitoring period 2007–2014

Age-class $[x, x + 1)$	Mortality rate \hat{d}_x	Fertility rate \hat{b}_x
[0, 1)	0.70	0.00
[1, 2)	0.16	1.15
[2, 3)	0.15	1.29
[3, 4)	0.17	1.46
[4, 5)	0.09	1.30
[5, 6)	0.29	1.00
[6, 7)	0.23	1.10
[7, 8)	0.25	1.38
[8, 9)	0.60	0.63
[9, 10)	0.33	0.50
[10, 11)	0.33	0.50

The rates are defined as follows: \hat{d}_x is the probability that a female who reached age x dies within the year, and \hat{b}_x is the expected number of female offspring per year from a female of age x.

The rates are estimated from the unique dataset collected between 2007 and 2014. They are shown for the first eleven age-classes in Table 1, where the total fertility rates have been divided by two to account for female offspring only, given a 50:50 sex-ratio on Rangatira Island where these data were collected (Cubrinovska et al. 2016). As we describe below, these age-specific rates are used to estimate the parameters of an MBT that optimally fit the data, and this model can then be used to study demographic properties of the population.

In this particular case, the $PH(\alpha, Q)$ lifetime distribution is assumed to have the following Coxian structure

$$\alpha = \begin{bmatrix} 1 & 2 & \cdots & m \\ 1 & 0 & \cdots & 0 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 2 & 3 & \cdots & m \\ -\lambda_1 & \lambda_1 s_1 & -\lambda_2 & \lambda_2 s_2 & \cdots \\ \vdots & & & & \\ -\lambda_m \end{bmatrix} ; \quad (33)$$

that is, an individual starts its life in phase 1 and moves through successive phases until it dies; in this case, a transition from a transient phase j can only be to the next phase $j + 1$ (with probability s_j), or to the absorbing phase 0 (with probability $1 - s_j$). This particular PH distribution has a minimal number of parameters ($2m - 1$), which makes it more convenient for parameter estimation. In addition to the lifetime parameters, an additional $m \times 1$ vector $b = [b_1, \ldots, b_m]^\top$ records the phase-specific birth rates of each individual in the MBT.

The model parameters are estimated following a weighted nonlinear regression approach based on the estimated age-specific mortality rates \hat{d}_x and fertility rates \hat{b}_x provided in Table 1. To summarize, the method consists of minimising the sum of weighted squared errors

$$F = \sum_{x=0}^{11} \left[(\hat{d}_x - \bar{d}(x))^2 + (\hat{b}_x - \bar{b}(x))^2 \right] \hat{S}_x, \quad (34)$$

Table 2: The parameters of the MBT modelling the female Chatham Island black robin population

Phase i	λ_i	s_i	b_i
1	4.79	0.30	0.01
2	0.94	0.92	0.01
3	1.96	0.91	0.08
4	1.53	0.88	4.53
5	1.03	0.89	0.47
6	0.95	0.90	1.40
7	0.98	0.91	2.83
8	0.69	–	0.15

where $\hat{S}_X = (1 - \hat{d}_0)(1 - \hat{d}_1) \cdots (1 - \hat{d}_{X-1})$ is the estimated probability of survival until age-class $[x, x+1)$, and the functions $\hat{d}(x)$ and $\hat{b}(x)$ are the model equivalent to \bar{d}_X and \bar{b}_X, respectively, and are given by

$$
\bar{d}(x) = \frac{\alpha e^{Qx}(I - e^{Q})1}{\alpha e^{Qx}1},
$$

$$
\bar{b}(x) = \frac{\alpha e^{Qx}(I - e^{Q})(-Q)^{-1}b}{\alpha e^{Qx}1};
$$

we refer to Hautphenne et al. (2017, Section 3) for the details.

Statistical validation tests conclude that taking $m = 8$ phases in the model provides a good balance between goodness of fit and complexity (see Hautphenne et al. (2017, Section 5)). The resulting optimal rates λ_i, b_i, and probabilities s_i, are provided in Table 2. Figure 8 shows the estimated age-specific mortality and fertility rates \hat{d}_X (stars) together with the mortality and fertility functions $\bar{d}(x)$ and $\bar{b}(x)$ corresponding to the optimal MBT model (plain line). We see that the model curves smooth the point estimates in a satisfactory way.

Among other useful properties, the MBT model allows us to compute the asymptotic phase frequency in the population, that is, the proportion of birds in each of the 8 phases if we let the population evolve for a long period of time with the same demographic rates. The asymptotic frequency of phase j, denoted by f^p_j, is given by

$$
f^p_j = \frac{v_i}{v1},
$$

where v is the left Perron-Frobenius eigenvector of the matrix $\Omega := Q - \alpha \otimes b$ (Hautphenne and Latouche 2012). The values f^p_j, $1 \leq j \leq 8$, are shown in Fig. 9. Since the phases do not have any physical interpretation, the asymptotic phase frequency does not have much biological interest in its own right. However, it can be used in combination with the results developed in this paper to compute the asymptotic age-frequency (also called the age-pyramid), which cannot be obtained directly from the MBT model.

We consider the following eleven age-classes: $[0, 1), [1, 2), \ldots, [9, 10), [10, +)$, and we denote the asymptotic frequency of the age-class starting at age x as f^a_x, $0 \leq x \leq 10$. We can then compute f^a_x as
Fig. 8 Estimated age-specific mortality and fertility rates \(\textit{(stars)} \), and the age-specific mortality and fertility curves computed with the optimal Markovian model fitting the data \(\textit{(plain lines)} \).

Fig. 9 The asymptotic phase frequency in the MBT modelling the Chatham Island black robin population, if the population evolves with the demographic rates of 2007–2014

\[
 f^a_x = \sum_{1 \leq j \leq 8} f^p_j \, P[\text{age} \in [x, x+1) \mid \text{phase} = j]. \tag{35}
\]

We approximate the probability \(P[\text{age} \in [x, x+1) \mid \text{phase} = j] \) using the rare limit conditional age distribution provided in Corollary 6.1.

The resulting age pyramid for the black robins is depicted in Fig. 10. From its shape, we see that a considerable number of offspring do not survive their first year in life, and
although some individuals are known to live up to 16 years of age in this species, only a small fraction of individuals reach an age beyond 5 years. By comparison, Fig. 11 shows the real age frequency in the female population in 2014. Even if the number of data per year is relatively small (there were only 93 female adults and 120 “female” eggs laid in 2014), the two pyramids exhibit similar shapes.

Given that the current black robin population is restricted to only two small islands and includes fewer than 300 individuals, the species remains endangered (Massaro et al. 2013). Hence, knowing the age frequency of this population, and the associated fertility and mortality rates of different aged birds, is highly relevant to the future conservation management of this species.

Remark 7.1 In the particular case of an ageing process with structure (33), and conditionally on phase \(j \) being observed, any trajectory of the phase process before observation is restricted to the phases \(1, 2, \ldots, j \). Therefore, for \(j < m \), it is sufficient to consider the process restricted to the smaller phase space \(\{1, 2, \ldots, j\} \), with initial distribution vector and generator

\[
\alpha^{(j)} = \begin{bmatrix} 1 & 2 & \ldots & j \end{bmatrix}, \quad Q^{(j)} = \begin{bmatrix} 1 & 2 & 3 & \ldots & j \\ -\lambda_1 & \lambda_1 s_1 & & & \\ 1 & -\lambda_2 & \lambda_2 s_2 & & \\ \vdots & \vdots & \ddots & \ddots & \\ j & & & -\lambda_j \end{bmatrix}.
\]

We further define the matrix \(T^{(j)} = Q^{(j)} - \gamma I \) where the identity matrix is \(j \times j \), and \(e_i^{(j)} \) as the truncation of \(e_i \) after its \(j \)th entry, for \(i \leq j \). The matrix ingredients \(\alpha, Q, T \), and \(e_j \) used in the lemmas, propositions, and corollaries in the previous sections can then be replaced by their smaller counterpart \(\alpha^{(j)}, Q^{(j)}, T^{(j)} \), and \(e_j^{(j)} \).
Finally, observe that with the particular ageing structure \((33)\), in the Poisson observation scheme, the random variable \(Y_j\) has the same distribution as the time until the process with generator \(T^{(j)}\) reaches phase \(j\) for the first time, \(B(j)\), conditionally on \(B(j) < \infty\).

Acknowledgements The authors are supported by the Australian Research Council Laureate Fellowship FL130100039. The first author has also conducted part of the work under the Discovery Early Career Researcher Award DE150101044. Field-based research on black robins from 2007–2014 was funded by a New Zealand Foundation for Research, Science and Technology fellowship to MM (UOCX0601), and the University of Canterbury, the Brian Mason Scientific and Technical Trust and the Mohamed bin Zayed Species Conservation Fund.

Appendix: Proof of Proposition 4.5

We have

\[
P[A_o \leq x \mid B_{\alpha}(j'_1) < \infty, B_{j_1}(j'_2) < \infty, \ldots, B_{j_{k-1}}(j'_k) < \infty] = \frac{P[A_o \leq x, B_{\alpha}(j'_1) < \infty, \ldots, B_{j_{k-1}}(j'_k) < \infty]}{P[B_{\alpha}(j'_1) < \infty, B_{j_1}(j'_2) < \infty, \ldots, B_{j_{k-1}}(j'_k) < \infty]} =: \frac{\bar{N}_k(x)}{\bar{D}_k}.
\]

We shall prove using induction on \(k\) that

\[
\frac{\bar{N}_k(x)}{\bar{D}_k} = \frac{N_k(x)}{D_k},
\]

\((36)\)
where \(N_k(x) \) and \(D_k \) satisfy (14) and (15), respectively. Recall that \(t_{j'} = \gamma e_j \) for any absorbing phase \(1' \leq j' \leq m' \). When \(k = 2 \),

\[
\hat{D}_2 = P[B_\alpha(j_1') < \infty, B_{j_1}(j_2') < \infty] \\
= \alpha(-T)^{-1} t_{j_1'} e_{j_1}^T (-T)^{-1} t_{j_2'} \\
= \gamma^2 D_2. \tag{37}
\]

Further, by (10) and by conditioning on the value of the absorption times \(B_\alpha(j_1') \) and \(B_{j_1}(j_2') \), we have

\[
\tilde{N}_2(x) = P[(B_\alpha(j_1') + B_{j_1}(j_2')) \leq x, B_\alpha(j_1') < \infty, B_{j_1}(j_2') < \infty] \\
= \int_0^x \alpha e^{Tu} t_{j_1'} \int_0^{x-u} e_{j_1}^T e^{Tv} t_{j_2'} \, dv \, du \\
= \gamma^2 \int_0^x \alpha e^{Tu} e_{j_1}^T (I - e^{T(x-u)}(-T)^{-1} e_{j_2'}) \, du \\
= \gamma^2 \{\alpha (I - e^{Tx})(-T)^{-1} e_{j_1}^T (\hat{e}_{j_1}^T (-T)^{-1} e_{j_2'}) \} \\
= \gamma^2 N_2(x), \tag{38}
\]

where

\[
B_{12}(x) = \int_0^x e^{Tu} e_{j_1} e_{j_1}^T e^{T(x-u)} \, du.
\]

Using Lemma 4.4, this matrix integral can be evaluated explicitly by defining the \(2m \times 2m \) block-structured matrix

\[
A^{(2)} = \begin{bmatrix} T & e_{j_1} e_{j_1}^T \\ 0 & T \end{bmatrix},
\]

so that

\[
B_{12}(x) = (f_{2,1}^T \otimes I_m) e^{A^{(2)}x} (f_{2,2} \otimes I_m).
\]

Therefore (36) holds for \(k = 2 \).

We now assume that (36) holds for \(k \), and we need to prove that is still holds for \(k+1 \). We can decompose the conditional age at the \((k+1)\)st observation, \(A_\alpha(j_1, \ldots, j_{k+1}) \), into the sum of the random variables \(B_\alpha(j_1') \) and \(A_\alpha(j_2, \ldots, j_{k+1}) \), which are conditionally independent given \(j_1 \). Note that \(A_\alpha(j_2, \ldots, j_{k+1}) \) is now conditional on the phase process starting with initial distribution vector \(e_{j_1}^T \) rather than \(\alpha \), and the first observed phase is \(j_2 \) rather than \(j_1 \), etc. To avoid confusion, we shall use the notation \(\hat{A}_\alpha(j_2, \ldots, j_{k+1}) \) (or \(\hat{A}_\alpha \) for short), \(\tilde{N}_k(x), \hat{D}_k, \hat{B}_{11}(x) \) whenever we will be in that situation.

We use the convolution formula for the sum of the two conditionally independent variables \(B_\alpha(j_1') \) and \(\hat{A}_\alpha \), together with the conditional distribution of \(B_\alpha(j_1') \) given in (5) and the induction assumption, to obtain

\[
\hat{D}_k = P[B_\alpha(j_1') < \infty, B_{j_1}(j_2') < \infty] \\
= \alpha(-T)^{-1} t_{j_1'} e_{j_1}^T (-T)^{-1} t_{j_2'} \\
= \gamma^2 D_k. \tag{39}
\]
P[(B_\alpha(j'_1) + \hat{A}_o) \leq x \mid B_\alpha(j'_1) < \infty, B_{j_1}(j'_2) < \infty, \ldots, B_{j_k}(j'_k+1) < \infty] \\
= \int_0^x \frac{\alpha e^{Tu} t_j}{\alpha(-T)^{-1} t_j} P[\hat{A}_o \leq x - u | B_{j_1}(j'_2) < \infty, \ldots, B_{j_k}(j'_k+1) < \infty] \, du \\
= \int_0^x \frac{\alpha e^{Tu} e_j}{\alpha(-T)^{-1} e_j} \frac{\hat{N}_k(x-u)}{\hat{D}_k} \, du.

We immediately see that the denominator of the above expression, \(D_{k+1} := \alpha(-T)^{-1} e_j \hat{D}_k\), corresponds to (15) for \(k + 1\). It remains to show that the numerator, \(N_{k+1}(x) := \int_0^x \alpha e^{Tu} e_j \hat{N}_k(x-u) \, du\), corresponds to (14) for \(k + 1\). Using (14) and letting \(r_{i,k} = (-T)^{-1} t_{j_{i+1}} \prod_{\ell=i}^{k-1} e_{j_{\ell+1}} (-T)^{-1} t_{j_{\ell+2}}\), we have

\[
\int_0^x \alpha e^{Tu} t_{j'_1} \hat{N}_k(x-u) \, du \\
= \int_0^x \alpha e^{Tu} t_{j'_1} \{ e_{j'_1}(I - e^{T(x-u)})r_{1,k} - e_{j'_1} \sum_{i=2}^k \hat{B}_{1i}(x-u)r_{i,k} \} \, du \\
= \alpha(I - e^{Tx})(-T)^{-1} t_{j'_1} e_{j'_1} r_{1,k} - \alpha \hat{B}_{12}(x)r_{1,k} \\
- \alpha \sum_{i=2}^k \int_0^x e^{Tu} t_{j'_1} e_{j'_1} \hat{B}_{1i}(x-u) \, du \, r_{i,k}.
\]

Using Lemma 4.4 and (11), we can show that

\[
\int_0^x e^{Tu} t_{j'_1} e_{j'_1} \hat{B}_{1i}(x-u) \, du = \hat{B}_{1,i+1}(x),
\]

so that by properly redefining the indices we finally obtain what we need. \(\square\)

References

Aalen OO (1995) Phase-type distributions in survival analysis. Scand J Stat 22(4):447–463
Butler D, Merton D (1992) The Black Robin: saving the world’s most endangered bird. Oxford University Press, Auckland
Carbonell F, Jimenez JC, Pedroso LM (2008) Computing multiple integrals involving matrix exponentials. J Comput Appl Math 213(1):300–305
Cubrinovska I, Massaro M, Hale ML (2016) Assessment of hybridisation between the endangered Chatham Island black robin (Petroica traversi) and the Chatham Island tomtit (Petroica macrocephala chathamensis). Conserv Genet 17:259–265
Gavrilov LA, Gavrilova NS (1991) The biology of life span: a quantitative approach
Hautphenne S, Latouche G (2012) The Markovian binary tree applied to demography. J Math Biol 64(7):1109–1135
Hautphenne S, Massaro M, Turner K (2017) Fitting Markovian binary trees using global and individual demographic data. Submitted for publication. Preprint available on https://arxiv.org/abs/1702.04281
Kennedy ES, Grueber CE, Duncan RP, Jamieson IG (2014) Severe inbreeding depression and no evidence of purging in an extremely inbred wild species—the Chatham Island black robin. Evolution 68(4):987–995
Lin XS, Liu X (2007) Markov aging process and phase-type law of mortality. N Am Actuar J 11(4):92–109
Massaro M, Sainudiin R, Merton D, Briskie JV, Poole AM, Hale ML (2013) Human-assisted spread of a maladaptive behavior in a critically endangered bird. PLoS ONE 8(12):e79066
Massaro M, Stanbury M, Briskie JV (2013) Nest site selection by the endangered black robin increases vulnerability to predation by an invasive bird. Anim Conserv 16(4):404–411
Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. Courier Dover Publications, Mineola