A field experiment entitled “Performance of compact cotton genotypes under high density planting system in irrigated condition” was conducted at Agricultural College, Raichur during Kharif 2016-17 and 2017-18 on medium black soil, neutral in nature with low available nitrogen, medium phosphorus and high in potassium. The experiment was laid out in split plot design with three compact cotton genotypes viz., G1: SCS-1206, G2: DSC-99 and G3: Suraj as main plot treatments and three planting geometries viz., S1: 60 cm x 10 cm, S2: 75 cm x 10 cm and S3: 90 cm x 10 cm as sub plot treatments and it was compared with conventional system of cotton cultivation with Bt cotton hybrid ATM with recommended spacing of 90 cm x 60 cm. Among the different compact cotton genotypes, G1: SCS-1206 recorded highest seed cotton yield (2886 kg ha\(^{-1}\)) followed by genotype G3: Suraj (2754 kg ha\(^{-1}\)) which were significantly superior over genotype G2: DSC-99 (2486 kg ha\(^{-1}\)). Among the different planting geometries, a closer row spacing of S1: 60 cm x 10 cm recorded significantly higher seed cotton yield (2896 kg ha\(^{-1}\)) over a medium row spacing of S2: 75 cm x 10 cm (2758 kg ha\(^{-1}\)) and significantly lower seed cotton yield was recorded with a wider row spacing of S3: 90 cm x 10 cm (2472 kg ha\(^{-1}\)). Among the different combinations, the genotype G1: SCS-1206 grown at S1: 60 cm x 10 cm spacing recorded significantly higher seed cotton yield (3096 kg ha\(^{-1}\)) and it was found at par with the combination of same genotype G1: SCS-1206 with S2: 75 cm x 10 cm spacing (2949 kg ha\(^{-1}\)) and genotype G3: Suraj with S1: 60 cm x 10 cm spacing (2923 kg ha\(^{-1}\)). cotton grown under conventional system with Bt cotton hybrid ATM at a recommended spacing of 90 cm x 60 cm recorded significantly lower seed cotton yield (2314 kg ha\(^{-1}\)) when compared with the all the treatment combinations of cotton grown under HDPS except with the combinations of genotype G2: DSC-99 at S2: 75 cm x 10 cm spacing and genotype G2: DSC-99 at S3: 90 cm x 10 cm spacing (2525 and 2263 kg ha\(^{-1}\), respectively).
Introduction

The concept HDPS is widely adopted by several countries such as China, Brazil, Uzbekistan, Australia, Argentina and several other countries where in plant population of 1,00,000 to 2,00,000 per hectare is maintained and high seed cotton yield of 40 to 90 quintals per hectare is realized. HDPS is more relevant to India to establish sustainable production system as the productivity of cotton is low in India. Compact cotton type of genotypes have the advantage of short sympodial branches with reduced inter-nodal length giving morphological feature of compressed habit and clustered boll habit on account of low vertical and horizontal growth it occupies minimum space. The HDPS cotton not only provides scope for double cropping and mechanized harvesting but also has the added advantage of requiring few pickings only. Therefore, which in turn reduces the labour cost as well as seed cost as farmers will use the varietal seeds during next sowing season.

Therefore, the present investigation was undertaken to find out the suitable compact cotton genotypes and planting geometry with a view to achieve high yield levels under irrigated ecosystem of North Eastern Dry zone of Karnataka.

Materials and Methods

A field experiment entitled “Performance of compact cotton genotypes under high density planting in irrigated ecosystem” was conducted at Agricultural College, UAS, Raichur during Kharif 2016-17 and 2017-18 on medium black soil, neutral in nature with low available nitrogen, medium phosphorus, rich in potassium. The climatic condition during experimental period was favorable and regular irrigation was provided to crop during both the years at later part of crop growth stages i.e. from 60 DAS to till first picking.

The experiment was laid out in split plot design with three compact cotton genotypes viz., G1: SCS-1206, G2: DSC-99, G3: Suraj as main plot treatments and three planting geometries viz., S1: 60 cm x 10 cm (1,66,666 plants ha⁻¹), S2: 75 cm x 10 cm (1,33,333 plants ha⁻¹) and S3: 90 cm x 10 cm (1,11,111 plants ha⁻¹) as sub plot treatments along with conventional system of cotton cultivation with Bt cotton hybrid ATM at a recommended spacing of 90 cm x 10 cm (uneven control)

Results and Discussion

Genotypes

Among the different compact cotton genotypes, G1: SCS-1206 recorded higher seed cotton yield (2886 kg ha⁻¹ on pooled basis) followed by genotype G3: Suraj (2754 kg ha⁻¹) and which were significantly higher when compared with genotype G2: DSC-99 (2486 kg ha⁻¹). This difference in seed cotton yield was mainly attributed to significant difference in yield components viz., number of bolls per plant (12.82 and 12.12, respectively on pooled basis), boll weight (3.73 and 3.54 g, respectively on pooled basis) and seed cotton yield per plant (25.98 and 24.40 g, respectively on pooled basis) and which was further due difference in growth attributes. Similar results were also reported by Udikeri and Shashidhara (2017), Ajaykumar et al. (2017) and Sankaryanana et al. (2018).

Planting geometry

Difference in seed cotton yield due to different planting geometry was evident. Among different row spacings, a closer spacing of S1: 60 cm x 10 cm recorded significantly higher seed cotton yield (2896 kg ha⁻¹ on pooled basis) when compared with the medium row spacing of S2: 75 cm x 10 cm (2758 kg ha⁻¹ on pooled basis) and wider row
spacings of S₃: 90 cm x 10 cm (2472 kg ha⁻¹ on pooled basis). This differences in seed cotton yield was attributed to higher plant population per unit area even though the growth and yield attributes were lower when compared to recorded under medium and wider row spacings and increase in the number of plants per unit area could be compensated for decrease in yield components per plant under narrow spacing. Significantly superior seed cotton yield observed was mainly due to higher number of harvested bolls and higher plants population per unit area as supported findings of Alur (2016) and Devi et al. (2018).

Table 1. Plant growth attributing characters of compact cotton genotypes under high density planting system

Treatments	Plant height (cm)	Sympodials/plant	Total dry matter production (g plant⁻¹)						
	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled
Main plots (G)									
G₁	128.96	114.12	121.54	13.00	12.44	12.72	130.52	122.92	126.72
G₂	121.89	95.96	108.92	11.29	10.91	11.10	112.65	103.89	108.27
G₃	133.31	120.51	126.91	12.47	11.98	12.22	125.69	116.88	121.29
S.Em±	2.28	1.78	1.77	0.25	0.23	0.19	1.18	1.82	1.20
Sub plots (S)									
S₁	137.09	120.58	128.83	9.91	9.56	9.73	110.86	101.26	106.06
S₂	129.67	111.84	120.75	11.98	11.64	11.81	121.41	112.93	117.17
S₃	117.40	98.18	107.79	14.87	14.13	14.50	136.60	129.49	133.05
S.Em±	1.78	2.34	2.31	0.36	0.26	0.28	1.52	1.63	1.08
Interactions (G x S)									
G₁S₁	139.13	125.46	132.30	10.33	12.10	12.20	118.08	123.98	113.52
G₁S₂	129.40	114.39	121.90	12.93	12.20	12.57	129.38	121.64	125.51
G₂S₁	118.33	102.52	110.43	15.73	15.00	15.37	144.10	138.16	141.13
G₂S₂	130.80	106.47	118.63	9.47	8.80	9.13	102.30	91.39	96.85
G₃S₁	123.40	97.54	110.47	10.73	10.87	10.80	110.46	102.72	106.59
G₃S₂	111.47	83.86	97.66	13.67	13.07	13.37	125.20	117.57	121.39
G₃S₃	141.33	129.8	135.57	9.93	9.73	9.83	112.21	103.45	107.83
G₁S₃	136.20	123.57	129.89	12.27	11.87	12.07	124.38	114.44	119.41
G₂S₃	122.40	108.16	115.28	15.20	14.33	14.77	140.49	132.75	136.62
S.Em±	3.95	4.05	3.99	0.63	0.45	0.49	2.64	2.83	1.87
Control	119.07	106.30	112.69	20.73	19.27	20.00	180.00	171.06	175.53
S.Em±	3.64	3.72	3.67	0.57	0.44	0.45	2.70	2.89	1.83
CD (P=0.05)	10.82	11.05	10.92	1.69	1.30	1.34	8.01	8.59	5.43
Table 2 Yield attributing characters of compact cotton genotypes under high density planting system

Treatments	Number of bolls/plant	Boll weight (g)	Seed cotton yield/plant (g)						
	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled
Main plots (G)									
G1	13.22^a	12.42^a	12.82^a	3.80^a	3.66^a	3.73^a	26.42^a	25.55^a	25.98^a
G2	11.04^b	10.20^b	10.62^b	3.35^b	3.29^b	3.32^c	22.90^c	21.32^c	22.11^c
G3	12.56^a	11.69^a	12.12^a	3.64^a	3.54^a	3.59^b	24.97^b	23.82^b	24.40^b
S.Em±	0.32	0.20	0.24	0.05	0.05	0.03	0.27	0.33	0.16
Sub plots (S)									
S1	10.42^c	9.40^c	9.91^c	3.36^c	3.25^b	3.30^b	23.18^c	21.61^c	22.40^c
S2	12.07^b	11.29^b	11.68^b	3.49^b	3.44^b	3.46^b	24.47^b	23.39^b	23.93^b
S3	14.33^a	13.62^a	13.98^a	3.95^a	3.80^a	3.88^a	26.64^a	25.68^a	26.16^a
S.Em±	0.21	0.21	0.19	0.03	0.11	0.06	0.35	0.46	0.26
Interactions (G x S)									
G1S1	11.13^c	10.13^c	10.63^c	3.58^{bc}	3.41^{bc}	3.50^{bc}	25.06^d	23.63^{bc}	24.35^{cd}
G1S2	13.07^b	12.33^b	12.70^b	3.71^{bc}	3.69^{ab}	3.70^{ab}	25.94^{bc}	25.40^{ab}	25.67^{bc}
G1S3	15.47^a	14.80^a	15.13^a	4.12^a	3.89^a	4.00^a	28.26^a	27.6^a	27.93^a
G2S1	9.40^d	8.47^d	8.93^d	3.06^e	3.01^c	3.03^d	21.15^f	19.37^d	20.26^f
G2S2	10.73^c	9.93^c	10.33^c	3.27^{de}	3.19^{bc}	3.23^{cd}	22.77^{ef}	21.13^{ed}	21.95^e
G2S3	13.00^b	12.20^b	12.60^b	3.73^b	3.66^{ab}	3.70^{ab}	24.77^{cd}	23.44^{bc}	24.11^d
G3S1	10.73^c	9.60^c	10.17^c	3.44^{cd}	3.32^c	3.38^{bc}	23.34^{de}	21.82^{cd}	22.58^e
G3S2	12.40^b	11.60^b	12.00^b	3.47^{bd}	3.43^{ec}	3.45^{bc}	24.68^{ce}	23.64^b	24.16^d
G3S3	14.53^a	13.8^{7a}	14.20^a	4.02^a	3.86^a	3.94^a	26.89^{ab}	26.00^{ab}	26.45^b
S.Em±	0.37	0.36	0.33	0.08	0.18	0.10	0.60	0.79	0.45
Control	37.07	35.99	36.53	4.32	4.24	4.28	143.45	138.14	140.80
S.Em±	0.50	0.41	0.43	0.09	0.17	0.08	1.37	0.88	0.77
CD (P=0.05)	1.47	1.21	1.26	0.28	0.50	0.24	4.08	2.49	2.29
Table 3: Yield and economics of compact cotton genotypes under high density planting system

Treatments	Seed cotton yield (kg ha⁻¹)	Net returns (₹ ha⁻¹)	B C Ratio												
	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled						
Main plots (G)															
G1	2962⁹	2811⁹	2886⁹	84064⁹	78629⁹	81346⁹	2.81⁹	2.64⁹	2.73⁹						
G2	2584⁹	2388⁹	2486⁹	67407⁹	59609⁹	63508⁹	2.45⁹	2.24⁹	2.35⁹						
G3	2842⁹	2666⁹	2754⁹	78764⁹	72104⁹	75434⁹	2.70⁹	2.51⁹	2.60⁹						
S. Em±	55.58	52.77	53.73	2445	2375	2390	0.06	0.05	0.05						
Sub plots (S)															
S1	2974⁹	2819⁹	2896⁹	83661⁹	78068⁹	80865⁹	2.77⁹	2.60⁹	2.69⁹						
S2	2841⁹	2675⁹	2758⁹	78840⁹	72624⁹	75732⁹	2.71⁹	2.52⁹	2.61⁹						
S3	2573⁹	2371⁹	2472⁹	67734⁹	59650⁹	63692⁹	2.49⁹	2.27⁹	2.38⁹						
S. Em±	42.38	43.68	42.87	1865	1966	1908	0.03	0.05	0.03						
Interactions (G x S)															
G1S1	3156⁹	3035⁹	3096⁹	91669⁹	87803⁹	89736⁹	2.94⁹	2.80⁹	2.87⁹						
G1S2	3020⁹	2879⁹	2949⁹	86706⁹	81810⁹	84263⁹	2.88⁹	2.71⁹	2.80⁹						
G1S3	2711⁹	2518⁹	2615⁹	73816⁹	66265⁹	70041⁹	2.62⁹	2.41⁹	2.52⁹						
G2S1	2761⁹	2579⁹	2670⁹	74304⁹	67283⁹	70793⁹	2.57⁹	2.38⁹	2.48⁹						
G2S2	2621⁹	2428⁹	2525⁹	69180⁹	61524⁹	65352⁹	2.50⁹	2.29⁹	2.39⁹						
G2S3	2368⁹	2157⁹	2263⁹	58739⁹	50020⁹	54379⁹	2.29⁹	2.06⁹	2.18⁹						
G3S1	3005⁹	2842⁹	2923⁹	85010⁹	79118⁹	82064⁹	2.80⁹	2.62⁹	2.71⁹						
G3S2	2882⁹	2717⁹	2799⁹	80634⁹	74529⁹	77582⁹	2.75⁹	2.56⁹	2.65⁹						
G3S3	2639⁹	2438⁹	2539⁹	70648⁹	62665⁹	66657⁹	2.55⁹	2.33⁹	2.44⁹						
S. Em±	73.40	75.65	74.25	3230	3404	33.05	0.07	0.08	0.06						
Control	2419	2208	2314	57848	49195	53522	2.19	1.98	2.09						
S. Em±	77	78	75	3383	3488	3331	0.07	0.07	0.07						
CD (P=0.05)	228	230	222	10052	10364	9898	0.22	0.22	0.21						
Interaction effect

Interaction effect of compact cotton genotypes and planting geometries were found significant. Among the different combinations, interaction of genotype G₁: SCS-1206 with a row spacing of S₁: 60 cm x 10 cm recorded significantly higher seed cotton yield (3096 kg ha⁻¹ on pooled basis) when compared to rest of treatment combination. However, it remained at par with the combination of genotype G₁: SCS-1206 with a row spacing of S₂: 75 cm x 10 cm (2949 kg ha⁻¹ on pooled basis) and genotype G₃: Suraj with a row spacing of S₁: 60 cm x 10 cm (2923 kg ha⁻¹ on pooled basis). Further, cotton grown under conventional system with Bt cotton hybrid ATM at a recommended spacing of 90 cm x 60 cm recorded significantly lower seed cotton yield (2314 kg ha⁻¹ on pooled basis) when compared with all the treatment combinations of cotton grown under HDPS except with the combination of genotype G₂: DSC-99 with a row spacing of S₂: 75 cm x 10 cm (2525 kg ha⁻¹ on pooled basis) and genotype G₂: DSC-99 with a row spacing of S₃: 90 cm x 10 cm (2263 kg ha⁻¹, on pooled basis). The results are in line with the findings of Tuppad (2015) and Parlawar et al. (2017).

Economics

Among the different compact cotton types, genotype G₁: SCS-1206 and G₃: Suraj recorded significantly higher net returns (₹ 81,346 and 75,434 ha⁻¹ respectively on pooled basis) and BC ratio (2.73 and 2.60, respectively on pooled basis). While the genotype G₂: DSC-99 recorded significantly lower net returns (₹ 63,508 ha⁻¹ on pooled basis) and BC ratio (2.35 on pooled bases). Among different planting geometries, a closer row spacing of S₁: 60 cm x 10 cm recorded significantly higher net returns (₹ 80,865 ha⁻¹ on pooled basis) and BC ratio (2.69 on pooled basis) and it was found at par with medium row spacing of S₂: 75 cm x 10 cm (₹ 75,732 ha⁻¹ and 2.61, respectively on pooled basis). While, wider row spacing of S₃: 90 cm x 10 cm recorded significantly lower net returns and BC ratio (₹ 63,692 ha⁻¹ and 2.38, respectively on pooled basis). Among different interactions of cotton grown under HDPS, a combination of genotype G₁: SCS-1206 with row spacing of S₁: 60 cm x 10 cm recorded significantly higher net returns and BC ratio (₹ 89,736 ha⁻¹ and 2.87 , respectively on pooled basis) and found on par with combination of genotype G₁: SCS-1206 with a spacing of S₂: 75 cm x 10 cm (₹ 84,263 ha⁻¹ and 2.80, respectively on pooled basis) and genotype G₃: Suraj with a row spacing of S₁: 60 cm x 10 cm (₹ 82,064 ha⁻¹ and 2.71, respectively on pooled basis). Significantly lower net returns and BC ratio (₹ 54,379 ha⁻¹ and 2.18, respectively on pooled basis) was observed with combination of genotype G₂: DSC-99 with a row spacing of S₃: 90 cm x 10 cm. Cotton grown under conventional system with Bt cotton hybrid ATM with a recommended spacing of 90 cm x 60 cm recorded significantly lower economic values (₹ 53,522 ha⁻¹ and 2.09, respectively on pooled basis) when compared with the cotton grown under HDPS. This result was supported by findings of Tuppad (2015) and UdiKeri (2017).

References

Udikeri, M. and Shashidhar, G. B., 2017, Influence of different planting geometry and fertilizer levels on yield and economics of compact cotton genotypes. Inter. J. Agril. Sci., 9(33): 4482-4485.

Ajayakumar, M. Y., Umesh, M. R., Shivalila and Nidagundi, J. M., 2017, Light interception and yield response of cotton varieties to high density planting and fertilizers in sub-tropical India. J.
Sankarnarayanan, K., Singh, J. and Rajendran, K., 2018, Identification of suitable high density planting system genotypes its response to different levels of fertilizers compared with Bt cotton. *J. Cotton Res. Dev.*, 32(1): 84-96.

Alur A, 2016, Studies on high density planting and nutrient management in compact cotton genotypes. *M. Sc (Agri) Thesis*, Univ. Agric. Sci., Raichur (India).

Devi, B., Bharathi, S., Rekha, S. M. and Jayalalitha, K., 2018, Nutrient uptake and economics of cotton in high density planting system under varied plant spacing and nitrogen levels. *J. Res. ANGRAU*, 46(1): 26-29.

Parlawar, N. D., Jiotode, D. J., Khawle, V. S., Kubde, K. J. and Puri, P. D., 2017, Effect of planting geometry and varieties on morpho-physiological parameters and yield of cotton. *J. Soils and Crops.*, 27(2):152-158.

Tuppad, G. B., 2015, Response of compact cotton genotypes to graded levels of fertilizers under varied planting density and defoliators. *Ph. D. (Agri) Thesis*, Univ. Agric. Sci., Dharwad (India).

How to cite this article:

Mohan Chavan, Satyanarayana Rao, B. K. Desai and Koppalkar, B. G. 2020. Performance of Compact Cotton Genotypes under High Density Planting System in Irrigated Ecosystem. *Int.J.Curr.Microbiol.App.Sci.* 9(02): 166-172. doi: https://doi.org/10.20546/ijcmas.2020.902.020