Research Paper

The Effect of Shoe Type and Load Carrying on Electromyographic Activity of Lower Extremity Muscles during Stair Ascent and Descent

*Nader Farahpour1, Mahdi Majlesi2, Mohammad Reza Hoseinpouri3

1. Department of Sport Biomechanics, Faculty of Physical Education and Sport Sciences, Bu Ali Sina University, Hamedan, Iran.
2. Department of Physical Education and Sport Sciences, Faculty of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
3. Department of Physical Education and Sport Sciences, Faculty of Humanities, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran.

Abstract

Objective: Stair ascent and descent is an essential movement task in daily life in which individuals are subjected to repetitive impact forces. The purpose of this study was to evaluate the intensity of Electromyographic (EMG) activity in lower extremity muscles of healthy young men during stair ascent and descent task wearing different type of shoes and carrying loads.

Methods: Nine men with a mean age of 25.94±3.26 years, mean height of 174±7.4 cm, and mean weight of 70.95±8.25 kg were selected. Four stairs were fabricated and the electromyographic activity of their lower extremity muscles (two muscles in the posterior leg and three quadriceps muscles) in the right side of the body was measured using the 16-channel EMG system MA300 during the task. These tests were conducted in two conditions of with and without load carrying. The load was a cube-shaped box weighing 15% of the body weight. Three cases of footwear were set: barefoot, athletic shoes, and formal shoes. Repeated measure ANOVA was used for data analysis at the significant level of P<0.05.

Results: The load factor had a significant effect on the intensity of muscle activity. The intensity of muscle activity during ascending stairs was higher than that during descending. In stair descent task, the EMG activity of the vastus medialis muscle was greater than that of the vastus lateralis and rectus femoris muscles, which causes the patella to be pulled inward more leading to patellofemoral articular cartilage wear in the long term.

Conclusion: Stair ascent puts more pressure on the ankle and knee joints. When carrying the load up stairs, the use of proper shoes can greatly reduce the intensity of muscle activity and delay fatigue. It is, therefore, recommended that people with patellofemoral articular cartilage wear should not use the stairs, if possible.

Extended Abstract

1. Introduction

One of the most common daily motor tasks is stair ascent and descent walk, which requires more muscle activity and range of motion in the joints of the lower limbs than normal walking [1]. In walking up and down stairs, in addition to applying force to move forward, more force is needed to move the body upward, where the knee and ankle muscles are responsible for creating this force when ascending [2, 3]. During walking, the joints are exposed to repeated impact forces at the moment the heel makes contact with the ground, which

* Corresponding Author:
Nader Farahpour, PhD.
Address: Department of Sport Biomechanics, Faculty of Physical Education and Sport Sciences, Bu Ali Sina University, Hamedan, Iran.
Tel: +98 (918) 1113816
E-mail: naderfarahpour1@gmail.com
over time can lead to destructive changes in them. These impact forces during walking on stairs, especially when descending, can be even more severe [1]; so, a suitable shoe can reduce these impact forces and their effect. The choice of footwear is different between people. Some prefer to wear formal shoes with relatively hard heels; some prefer to wear shoes with high heels, and others prefer sneakers. The type of shoe can affect muscle activity and postural alignment, the distribution of force on the sole of the foot, and the ground reaction force, and if not suitable, it can lead to clinical problems in the lower extremity [10].

So far, several studies have been performed on the kinematics, kinetics, and electromyography of muscles when walking up and down stairs [13-16]. The electromyographic activity of the lower extremity muscles while walking on stairs can provide an overview of how these muscles and the forces applied to the lower extremity joints work. When climbing stairs, a lot of pressure is put on the knee joint, which is caused by the contraction of the quadriceps muscles [17]. The present study aimed to examine the effect of shoe type and load carrying on Electromyographic (EMG) activity of lower extremity muscles during stair ascent and descent walk.

2. Participants and Methods

In this quasi-experimental study, from among male students of Islamic Azad University, Hamedan Branch, 9 aged 20-30 years were randomly and voluntarily selected after ensuring their general health and no history of any injuries, including fracture in limbs, especially lower limbs and spine. A digital scale and a stadiometer (Seca model), were used to measure the weight and height of the subjects, respectively. The 16-channel EMG system (MA 300, Motion Lab Systems, US) was used to record the activity of internal and external twin muscles, the vastus medialis, vastus lateralis, and rectus femoris muscles. These points were selected according to McGill (1996)'s protocol. After installing the electrodes, Maximal Voluntary Isometric Contraction (MVIC) of the muscles was performed to normalize the data. The participants were first tested without load carrying and performing the stair ascent and descent task with bare feet. Then, it was done with the load (carrying a box weighing 15% of the body weight) and performing the task once wearing athletic shoes and once with formal shoes. Subjects were asked to use the most convenient form and the usual speed to complete the task.

3. Results

The results showed that the load factor significantly increases the intensity of muscle activity (Figure 1) indicating that carrying loads during stair ascent and descent task significantly increases EMG activity of lower extremity muscles (F=25.2, P=0.0001). Moreover, the intensity of EMG activity during ascending and descending stairs was significantly different. As shown in Figure 2, its intensity in ascending was higher than in descending (F=58.01, P=0.0001). Regarding the shoe factor, results showed that the intensity of EMG activity in the three cases of barefoot, athletic shoes and formal shoes did not differ significantly (F=2.86, P=0.08). Factor analysis showed that the interaction between the two factors of load and direction (ascending and descending) is not significant; this means that the effect of load carrying on the intensity of EMG activity during ascending and descending stairs was similar. Furthermore, the intensity of EMG activity in different muscles changed equally in both conditions of with and without load carrying (F=1.53, P=0.35); i.e., although the intensity of EMG activity under load carrying was increased significantly, but it increased the intensity of EMG activity in all muscles.
4. Discussion

The load factor has a significant effect on EMG activity of lower extremity muscles; i.e., the intensity of EMG activity increases by load carrying. The direction factor (ascending and descending) has also a significant effect on EMG activity of muscles, where its intensity during ascending stairs increased by about 45% compared to its intensity when descending. In addition to increased intensity, the pattern of EMG activity varied in both directions where the activity of internal and external twin muscles as well as vastus medialis and vastus lateralis muscles during climbing the stairs increased while the activity of rectus femoris muscle was reduced.

5. Conclusion

Based on these results, it can be said that, by descending the stairs, since the intensity of activity in vastus medialis muscle increases more than in vastus lateralis muscle, it causes the patella to be pulled inward more leading to the abrasion of the internal cartilage of patellofemoral joint in the long term. Therefore, it can be concluded that stair ascent and descent can be considered as a risk factor for osteoarthritis.

Ethical Considerations

Compliance with ethical guidelines

All subjects participated in the present study voluntarily after signing a consent form.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

All authors contributed equally in preparing this article.

Conflicts of interest

The authors declared no conflict of interest
تأثیر نوع کفش و حمل بار بر فعالیت الکترومیوگرافی عضلات آندازه اتمام تحت‌الحمایت هنگام بالا رفتن و پایین آمدن از پله

نویسنده مسئول
نادر فرهپور
همدان، دانشگاه آزاد اسلامی واحد همدان، گروه بیومکانیک ورزشی.

نشانی:
+989181111381
naderfarahpour1@gmail.com

گام برداری روی پله یک تک‌لیف حرکتی ضروری در زندگی روزانه است که در آن فشار در معرض بدن است. در این ساختار حرکتی، فشار بدن روی پله به طور مداوم و مداوم بر عهده عضلات پا و پنجه است. در حین بالا رفتن، فشار بدن روی پله به عهده عضلات پا و پنجه است و در حین پایین آمدن فشار بدن روی پله به عهده عضلات پنجه و پا است.

هدف
هدف این پژوهش ارزیابی شدت فعالیت عضلات اندام تحتانی مردان جوان سالم با استفاده از EMG با کفش های متفاوت و حمل بار بود.

روش‌ها
طراحی شد و فعالیت الکترومیوگرافی عضلات اندام تحتانی در حین بالا رفتن و پایین آمدن از پله با استفاده از دستگاه EMG (سایز 3، کاناله 16) در سطح معنی‌داری 0.05 بود. این آزمون به مرحله مجدد می‌رسید و در سه حالت متفاوت انجام شد. سه حالت پوشش پا شامل بدون کفش، با کفش ورزشی و کفش رسمی در نظر گرفته شد.

یافته‌ها
نتایج نشان داد که عامل بار، اثر معنی‌داری در شدت فعالیت عضلات دارد. شدت فعالیت عضلات در بالا رفتن از پله بیشتر از پایین آمدن است. در پایین آمدن از پله، عضله پهن داخلی از عضله پهن خارجی و عضله سبزی کم‌کمی به شدت می‌فرامیشد.

کلیدواژه‌ها:
حمل بار، کفش، بالا و پایین آمدن از پله، فعالیت عضلانی

مقدمه
یکی از متداول‌ترین تک‌لیف حرکتی در زندگی روزمره انسان است که در آن فشار در معرض بدن است. در این ساختار حرکتی، فشار بدن روی پله به طور مداوم و مداوم بر عهده عضلات پا و پنجه است. در حین بالا رفتن، فشار بدن روی پله به عهده عضلات پا و پنجه است و در حین پایین آمدن، فشار بدن روی پله به عهده عضلات پنجه و پا است.

مطالعات قبلی نشان داده که در حین پایین آمدن و بالا رفتن از پله، فشار بدن روی پله به عهده عضلات پا و پنجه است و در حین بالا رفتن، فشار بدن روی پله به عهده عضلات پنجه و پا است. در این مطالعات، فشار بدن روی پله به عهده عضلات پنجه و پا است و در حین بالا رفتن، فشار بدن روی پله به عهده عضلات پا و پنجه است.

در این مطالعات، فشار بدن روی پله به عهده عضلات پنجه و پا است و در حین بالا رفتن، فشار بدن روی پله به عهده عضلات پنجه و پا است.

نتیجه‌گیری
کف پا مناسب تا حدودی می‌تواند برای کاهش شدت فعالیت عضلات کمک کند. بنابراین توصیه می‌شود افراد مبتلا به مشکل‌های کمک کننده از پله استفاده نمایند.
فعالیت الکترومیوگرافی عضلات اندام تحتانی هنگام کاهه‌داری روبرو پله است.

روش‌شناسی

در آزمایش‌های نمایش‌گذاری از میان دانشجویان مرد ۳۰ ساله که در صورت اطمینان حاصل شدن از سلامت عمومی قدرت بالینی، وزن و سن ۳۰ تا ۲۰ سال انتخاب شدند، شرکت کرده‌اند. همچنین افرادی که سابقه آسیب، پدیده‌های تازه، سابقه بیماری‌های عمده یا سابقه جراحی این ارگان را داشتند، از دستگاه آزمایشات خارج می‌گردند. دو گروه از دانشجویان انتخاب شدند. در گروه اول، حمل بار در حرکت بالا بر روی پله را انجام داده تا به‌صورت آزمایش به شکلی خاصی شناخته شود. در گروه دوم حمل بار در حرکت پایین بر روی پله را انجام داده تا به‌صورت آزمایش به شکلی خاصی شناخته شود.

سیستم‌عامل دیجیتال Seica EMG برای اندازه‌گیری وزن و قد همه استخدامی را از طریق دستگاه Seca و قدسنج MA ساخت آمریکا و دستگاه EMG کاناله ۱۶ کارکرد. برای ثبت فعالیت الکترومیوگرافی، در این پژوهش نیمه تجربی از میان دانشجویان مرد ۳۰ ساله انتخاب شدند. این گروه شامل دارندهای پناه‌پذیری به فعالیت عضلانی و حمل بار بودند. همچنین افرادی که سابقه آسیب، پدیده‌های تازه، سابقه بیماری‌های عمده یا سابقه جراحی این ارگان را داشتند، از دستگاه آزمایشات خارج می‌گردیدند.

برای اندازه‌گیری وزن و قد همه استخدامی را از طریق دستگاه Seca و قدسنج MA ساخت آمریکا و دستگاه EMG کاناله ۱۶ کارکرد. برای ثبت فعالیت الکترومیوگرافی، در این پژوهش نیمه تجربی از میان دانشجویان مرد ۳۰ ساله انتخاب شدند. این گروه شامل دارندهای پناه‌پذیری به فعالیت عضلانی و حمل بار بودند. همچنین افرادی که سابقه آسیب، پدیده‌های تازه، سابقه بیماری‌های عمده یا سابقه جراحی این ارگان را داشتند، از دستگاه آزمایشات خارج می‌گردیدند.

فناوری الکترومیوگرافی استفاده شد. فناوری الکترومیوگرافی استفاده شد.
گزارش‌های تکنیکی و ورزشی 2/1398

شماره 5، دوره 1398 شهریور

به منظور فاصله مرکز تا مرکز الکترودها دو سانتیمتر بود.

ثبت امواج الکترومیوگرافی به صورت سطحی از روی پوست، ابتدا موهای سطحی برش داده و محل موهایی را تغییر داده و سپس شرایط برای الکترودگذاری آماده شد.

روش انقباض ایزومتریک بخش اول تحقیق ایزومتریک زیر بیشینه اندازه‌گیری شد.

شکل ۲. کلیفیک بالا تفنن و بالین آن‌های بدون حمل بار فاصله مرکز تا مرکز الکترودها دو سانتی‌متر بود [۱۹]. به منظور ثبت امواج الکترومیوگرافی به صورت سطحی از روی پوست، ابتدا موی سطحی برش داده و محل موی سطحی را تغییر داده و سپس شرایط برای الکترودگذاری آماده شد.

روش انقباض ایزومتریک زیر بیشینه اندازه‌گیری شد.

شکل ۱. شماره ۲ میگیزان و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج نشان دادای میانگین و انحراف استاندارد قد، جرم، سن و شاخص لومینی‌های را نشان می‌دهد.

انتخاب

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.

نتایج

چهل و شش میکروکنترلر و انحراف استاندارد قد، سن و شاخص لومینی‌های را نشان می‌دهد.
نتایج تحلیل نمودارهای شماره ۱ و ۲ نشان داد که شدت فعالیت عضلات متفاوت در شرایط با و بدون حمل پهنه ورزشی تغییر می‌کند. بین‌همه نمودارهای شدت فعالیت یکدیگر تفاوت در وضعیت با حمل بار ندارند. همچنین عامل نوع کفش و جهت حرکت نیز تأثیر متقابل همچنین عامل نوع کفش و جهت حرکت نیز تأثیر متقابل

میزان سطح فعالیت عضلات مختلف در شرایط با و بدون بار در حالت بالا رفتن و پایین‌سپاری دو وسیله، کفش ورزشی و کفش‌های رسمی مشابه است. (تصویر شماره ۳)

که این نتایج در تصویر شماره ۵ مشاهده می‌گردد. همان‌گونه که در تصویر شماره ۶ مشخص شده است، بین مدل کفش‌های داخلی و خارجی، همان‌گونه که شدت فعالیت عضلات با و بدون حمل بار در وضعیت بدست کفشهای داخلی را بیشتر از وضعیت بدست کفشهای خارجی به دلیل نگهداری حالت پایین‌سپاری و حرکت پایین‌سپاری بر روی پله‌ها. پایین‌سپاری گسترده‌تر است.

به علاوه در تصویر شماره ۶ نشان داده شده که در شرایط با و بدون بار سطح فعالیت عضلات داخلی و خارجی کافی است. (تصویر شماره ۶)

به علاوه در تصویر شماره ۷ نشان داده شده که در شرایط با و بدون بار بار سطح فعالیت عضلات داخلی و خارجی کافی است. (تصویر شماره ۷)

به علاوه در تصویر شماره ۸ نشان داده شده که در شرایط با و بدون بار بار سطح فعالیت عضلات داخلی و خارجی کافی است. (تصویر شماره ۸)
نتایج نشان دهنده عملکرد جهت کشک و عضله اصلی تأثیر معنی‌دار منعی برای مدل‌های 200 و 180 درجه 90 درجه نشان می‌دهند. در مدل‌های 200 درجه و 180 درجه، با در نظر گرفتن بهترین بهینه‌سازی، پهن خارجی و راست قدامی شدت فعالیت متفاوت‌تری را در وضعیت بالا و پایین آمده با پای برخاسته، کشک ورژنی و کشک سومی نشان می‌دهند که در تصویر شماره 3 نشان داده شده است. با توجه به این تصویر سطح فعالیت در بالا آمده متفاوت بوده و در پایین آمده، کشک ورژنی و پهن خارجی در بالا آمده با پای برخاسته، کشک ورژنی و پهن خارجی در پایین آمده، کشک ورژنی و پهن خارجی بوده.

وضعیت بدون بار، شدت فعالیت عضلات عبور کننده از روی مچ پا نیاز دارد، تا با اعمال یک پلنتار فلکشن بالا اعمال شود؛ بنابراین حرکت رو به بالا به فعالیت بیشتر عضلات نیاز می‌سازد. این مقدار نیروی اضافه باید هم در جهت جلو و هم در جهت عقب و پایین آمدن از پله بیشتر از پنهان بوده و هم خوانی دارد.

نتایج نشان دهنده عملکرد جهت کشک و عضله اصلی تأثیر معنی‌دار منعی برای مدل‌های 200 و 180 درجه نشان می‌دهند. در مدل‌های 200 درجه و 180 درجه، با در نظر گرفتن بهترین بهینه‌سازی، پهن خارجی و راست قدامی شدت فعالیت متفاوت‌تری را در وضعیت بالا و پایین آمده با پای برخاسته، کشک ورژنی و کشک سومی نشان می‌دهند که در تصویر شماره 3 نشان داده شده است. با توجه به این تصویر سطح فعالیت در بالا آمده متفاوت بوده و در پایین آمده، کشک ورژنی و پهن خارجی در بالا آمده با پای برخاسته، کشک ورژنی و پهن خارجی بوده.

نتایج نشان دهنده عملکرد جهت کشک و عضله اصلی تأثیر معنی‌دار منعی برای مدل‌های 200 و 180 درجه نشان می‌دهند. در مدل‌های 200 درجه و 180 درجه، با در نظر گرفتن بهترین بهینه‌سازی، پهن خارجی و راست قدامی شدت فعالیت متفاوت‌تری را در وضعیت بالا و پایین آمده با پای برخاسته، کشک ورژنی و کشک سومی نشان می‌دهند که در تصویر شماره 3 نشان داده شده است. با توجه به این تصویر سطح فعالیت در بالا آمده متفاوت بوده و در پایین آمده، کشک ورژنی و پهن خارجی بوده.
نتیجه‌گیری‌های یافته‌های تحقیق نشان می‌دهد که تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور واضح در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد. این نتایج نشان می‌دهد که پایین‌دن و پایین‌اردن که به وسیله تغییرات در فعالیت عضلات و سیگنال‌های خروجی دستگاه الکترو‌میوگرافی ناشود. در نتیجه، تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور قابل توجهی در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد.

نتایج نشان می‌دهد که تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور واضح در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد. این نتایج نشان می‌دهد که پایین‌دن و پایین‌اردن که به وسیله تغییرات در فعالیت عضلات و سیگنال‌های خروجی دستگاه الکترو‌میوگرافی ناشود. در نتیجه، تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور قابل توجهی در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد.

نتایج نشان می‌دهد که تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور واضح در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد. این نتایج نشان می‌دهد که پایین‌دن و پایین‌اردن که به وسیله تغییرات در فعالیت عضلات و سیگنال‌های خروجی دستگاه الکترو‌میوگرافی ناشود. در نتیجه، تغییرات در فعالیت عضلات اندام تحتانی بیشتر به‌طور قابل توجهی در حالت پایین‌اردن مستقل از حالت پایین‌دن می‌باشد.
References

[1] Andriacchi TP, Andersson GB, Fermier RW, Stern D, Galante JD. A study of lower-limb mechanics during stair-climbing. The Journal of Bone & Joint Surgery. 1980; 62(5):749-57. [DOI: 10.2106/00004623-198006500-00008] [PMID]

[2] Spanjaard M, Reeves ND, van Dien JH, Baltzopoulos V, Maganaris CN. Gastrocnemius muscle fascicle behavior during stair negotiation in humans. Journal of Applied Physiology. 2007; 102(4):1618-23. [DOI: 10.1152/japplphysiol.00353.2006] [PMID]

[3] McFadyen BJ, Winter DA. An integrated biomechanical analysis of normal stair ascent and descent. Journal of Biomechanics. 1988; 21(9):733-44. [DOI: 10.1016/0021-9290(88)90282-5]

[4] Silverman AK, Neptune RR, Sinitski EH, Wilken JM. Whole-body angular momentum during stair ascent and descent. Gait & Posture. 2014; 39(4):1109-14. [DOI: 10.1016/j.gaitpost.2014.01.025] [PMID]

[5] McCrory JL, Chambers AJ, Dafty A, Redfern MS. Ground reaction forces during stair locomotion in pregnant fallers and non-fallers. Clinical Biomechanics. 2014; 29(2):143-8. [DOI: 10.1016/j.clinbiomech.2013.11.020] [PMID]

[6] Bergland A, Syllaas J, Jarnlo GB, Wyller TB. Health, balance, and walking as correlates of climbing steps. Journal of Aging and Physical Activity. 2008; 16(1):42-52. [DOI: 10.1016/j.japa.2016.1.42] [PMID]

[7] Conway ZJ, Silburn PA, Blackmore T, Cole MH. Evidence of compensatory joint kinematics during stair ascent and descent in Parkinson’s disease. Gait & Posture. 2017; 52:33-9. [DOI: 10.1016/j.gaitpost.2016.11.017] [PMID]

[8] Hicks-Little CA, Peindl RD, Fehring TK, Odum SM, Hubbard TJ, Cordova ML. Temporal-spatial gait adaptations during stair ascent and descent in patients with knee osteoarthritis. The Journal of Arthroplasty. 2012; 27(6):1183-9. [DOI: 10.1016/j.arthro.2012.01.018] [PMID]

[9] Meyer CA, Corten K, Fieuvess K, Deschamps K, Monari D, Wesseling M, et al. Evaluation of stair motion contributes to new insights into hip osteoarthritis-related motion pathomechanics. Journal of Orthopaedic Research. 2016; 34(2):187-96. [DOI: 10.1002/jor.22990] [PMID]

[10] Singh T, Koh M. Lower limb dynamics change for children while walking with backpack loads to modulate shock transmission to the head. Journal of Biomechanics. 2009; 42(6):736-42. [DOI: 10.1016/j.jbiomech.2009.01.035] [PMID]

[11] Müller R, Bisg A, Kramers I, Stüssi E. Influence of stair inclination on muscle activity in normals. Journal of Biomechanics. 1998; 31(Suppl. 1):S32. [DOI: 10.1016/S0021-9290(98)00675-5]

[12] Heinlein K, Kutzner I, Graichen F, Bender A, Rohlim A, Halder AM, et al. ESB clinical biomechanics award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months. Clinical Biomechanics. 2009; 24(4):315-26. [DOI: 10.1016/j.clinbiomech.2009.01.011] [PMID]

[13] Kurki H, Azevedo F, Alves N. Characterization of biomechanical parameters during stair ascent. Journal of Biomechanics. 2012; 45(Suppl. 1):S236. [DOI: 10.1016/S0021-9290(12)70237-3]

[14] Larsen AH, Puggaard L, Hämäläinen U, Aagaard P. Comparison of ground reaction forces and antagonist muscle activation during stair walking with ageing. Journal of Electromyography and Kinesiology. 2008; 18(4):568-80. [DOI: 10.1016/j.jelekin.2006.12.008] [PMID]

[15] Aldridge JM, Sturdy JT, Wilken JM. Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation. Gait & Posture. 2012; 36(2):291-5. [DOI: 10.1016/j.gaitpost.2012.03.013] [PMID]

[16] Almusaj M, Fridet L, Braatz F, Gerner HJ, Wolf SI. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait & Posture. 2009; 30(3):356-63. [DOI: 10.1016/j.gaitpost.2009.06.009] [PMID]

[17] Bjerke J, Øhberg F, Nilsson KG, Stensdotter AK. Compensatory strategies for muscle weakness during stair ascent in subjects with total knee arthroplasty. The Journal of Arthroplasty. 2014; 29(7):1499-502. [DOI: 10.1016/j.arth.2014.01.033] [PMID]

[18] Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. Journal of Foot and Ankle Research. 2009; 2:35. [DOI: 10.1186/1757-1146-2-35] [PMID]

[19] Bolgla LA, Malone TR, Umbberger BR, Uh TL. Reliability of electromyographic methods used for assessing hip and knee neuromuscular activity in females diagnosed with patellofemoral pain syndrome. Journal of Electromyography and Kinesiology. 2010; 20(1):142-7. [DOI: 10.1016/j.jelekin.2008.11.008] [PMID]

[20] Simpson KM, Munro BJ, Steele JE. Backpack load affects lower limb muscle activity patterns of female hikers during prolonged load carriage. Journal of Electromyography and Kinesiology. 2011; 21(5):782-8. [DOI: 10.1016/j.jelekin.2011.05.012] [PMID]

[21] Brechter JH, Powers CM. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait & Posture. 2002; 16(2):115-23. [DOI: 10.1016/S0966-6362(02)00090-5]

[22] Sacco IC, Sartor CD, Cacciari LP, Onodera AN, Dinato RC, Pantaileão Jr E, et al. Effect of a rocker non-heeled shoe on EMG and ground reaction forces during gait without previous training. Gait & Posture. 2012; 36(2):312-5. [DOI: 10.1016/j.gaitpost.2012.02.018] [PMID]

[23] Nigg BM, Stefanyshyn D, Cole G, Stengiou P, Miller J. The effect of material characteristics of shoe soles on muscle activation and energy aspects during running. Journal of Biomechanics. 2003; 36(4):569-75. [DOI: 10.1016/S0021-9290(02)00428-1]

[24] Spaepen AJ, Vanlandewijck YC, Lysems RJ. Relationship between energy expenditure and muscular activity patterns in handrim wheelchair propulsion. International Journal of Industrial Ergonomics. 1996; 17(2):163-73. [DOI: 10.1016/0169-8141(95)00047-X]