SCHUR MULTIPLIERS AND DE BRANGES – ROVNYAK SPACES: THE MULTISCALE CASE

DANIEL ALPAY, AAD DIJKSMA, AND DAN VOLOK

Abstract. We consider bounded linear operators acting on the ℓ_2 space indexed by the nodes of a homogeneous tree. Using the Cuntz relations between the primitive shifts on the tree, we generalize the notion of the single-scale time-varying point evaluation and introduce the corresponding reproducing kernel Hilbert space in which Cauchy's formula holds. These notions are then used in the study of the Schur multipliers and of the associated de Branges – Rovnyak spaces. As an application we obtain realization of Schur multipliers as transfer operators of multiscale input-state-output systems.

1. Introduction

In this paper we consider bounded operators acting on the Hilbert space
\begin{equation}
\ell_2(T) = \{ f : T \to \mathbb{C}; \quad \|f\|_{\ell_2}^2 \overset{\text{def}}{=} \sum_{t \in T} |f(t)|^2 < \infty \},
\end{equation}
where T is a homogeneous tree of order $q \geq 1$, that is, an acyclic, undirected, connected graph such that every node belongs to exactly $q + 1$ edges (see [26], [18]). Such operators arise in the theory of multiscale linear systems and multiscale stochastic processes. Here we would like to mention the works [13], [12], [14], where Basseville, Benveniste, Nikoukhah and Willsky have developed a theory of stationary multiscale systems and stationary multiscale stochastic processes. Connections of their theory with the classical setting when $q = 1$ and the tree T is the tree of integers \mathbb{Z} (what we shall call the single-scale setting) were explored in [8] and [2]. The special case of isotropic processes was considered in [9]; a different approach to isotropic processes uses the theory of Gelfand pairs (see [24], [10]).

In what follows we consider the general multiscale setting, without the assumption of stationarity. Some of the results presented here were announced in [4].

In order to explain our approach, let us recall that in the stationary single-scale setting one considers a function
\[s(z) = s_0 + zs_1 + z^2s_2 + \ldots, \]
analytic and contractive in the open unit disk \mathbb{D} – a Schur function. Then the multiplication by $s(z)$ is a causal contractive operator acting on the Hardy space.

1991 Mathematics Subject Classification. Primary: 93B28; Secondary: 05C05.

Key words and phrases. non-commutative power series, system realization, homogeneous tree.

D. Alpay thanks the Earl Katz family for endowing the chair which supports his research and NWO, the Netherlands Organization for Scientific Research (grant B 61-524).

The research of A. Dijksma was in part supported by the Center for Advanced Studies in Mathematics (CASM) of the Department of Mathematics, Ben–Gurion University.
\(\mathbf{H}_2 \) of the unit disk and the kernel
\[
K_s(z, w) = \frac{1 - s(z)s(w)^*}{1 - zw}
\]
is positive in \(\mathbb{D} \). The associated reproducing kernel Hilbert space \(\mathbf{H}(s) \) has the form
\[
\mathbf{H}(s) = \sqrt{B_s} \mathbf{H}_2; \quad \| \sqrt{B_s} f \|_{\mathbf{H}(s)} = \| (I - \pi) f \|_{\mathbf{H}_2},
\]
where \(B_s = I - M_s M_s^* \) and \(\pi \) is the orthogonal projection in \(\mathbf{H}_2 \) onto \(\ker B_s \). The space \(\mathbf{H}(s) \) is called the de Branges – Rovnyak space associated with the Schur function \(s \); see [16], [15, Appendix], [25]. It is invariant under the action of the backward shift operator \(R_0 \), defined by
\[
(R_0 f)(z) = \frac{f(z) - f(0)}{z}.
\]
Moreover, the formulae
\[
Af = R_0 f, \quad Bc = R_0(s \cdot c),
\]
\[
Cf = f(0), \quad Dc = s(0) \cdot c,
\]
where \(f \in \mathbf{H}(s), c \in \mathbb{C} \), define a coisometry
\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} : \begin{pmatrix} \mathbf{H}(s) \\ \mathbb{C} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{H}(s) \\ \mathbb{C} \end{pmatrix}.
\]
In terms of these operators \(A, B, C, D \) the Schur function \(s(z) \) admits the representation
\[
s(z) = D + zC(I - zA)^{-1}B
\]
and the reproducing kernel \(K_s(z, w) \) can be written as
\[
K_s(z, w) = C(I - zA)^{-1}(I - wA)^{-*}C^*.
\]
Conversely, if \(\mathbf{H} \) is a Hilbert space of functions analytic in the open unit disk such that there exists a coisometry
\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} : \begin{pmatrix} \mathbf{H} \\ \mathbb{C} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{H} \\ \mathbb{C} \end{pmatrix},
\]
where \(A \) and \(C \) are as in (1.4), (1.5) (in particular, the space \(\mathbf{H} \) is \(R_0 \)-invariant), then the formula (1.6) defines a Schur function \(s \), for which the kernel \(K_s \) is given by (1.7) and the associated de Branges – Rovnyak space coincides with \(\mathbf{H} \). For this and more general results in the setting of Pontryagin spaces see [6] Theorem 3.12 p. 85.

The representation (1.6) implies that if a function
\[
u(z) = u_0 + zu_1 + z^2 u_2 + \cdots \in \mathbf{H}_2
\]
is given, then the Taylor coefficients \(y_0, y_1, y_2, \ldots \) of the function
\[
y(z) = s(z) \cdot \nu(z) = y_0 + zy_1 + z^2 y_2 + \cdots \in \mathbf{H}_2
\]
can be recursively determined as follows:
\[
\begin{align*}
x_0 &= 0, \\
x_{n+1} &= Ax_n + Bu_n, \\
y_n &= Cx_n + Du_n,
\end{align*}
\]
where $x_n \in H(s)$. This fact has many important numerical applications; in the language of system theory it means that the representation (1.6) is a coisometric realization of the Schur function $s(z)$ as the transfer function of the input-state-output system (1.8) with the state space $H(S)$.

In the non-stationary single-scale setting, the Hardy space is replaced by the space of upper-triangular Hilbert–Schmidt operators, the Schur functions by upper-triangular contractions, the complex variable by the bilateral shift Z on $\ell_2(\mathbb{Z})$ and the constants by diagonal operators (see e.g. [3], [20]). In particular, any upper-triangular bounded operator S can be written as a power series

$$ S = S_{[0]} + Z S_{[1]} + Z^2 S_{[2]} + \ldots, $$

where $S_{[j]}$ are bounded diagonal operators. In general, a diagonal operator D does not commute with the shift Z. However, they satisfy the commutation relation

$$ ZD = D^{(1)} Z, $$

where $D^{(1)} \overset{\text{def}}{=} ZDZ^*$ is also a diagonal operator. This fact can be used to define a point evaluation of an upper-triangular bounded operator at a diagonal “constant”. At the same time S may be viewed as the input-output operator of a time-varying causal linear system. In order to construct a non-stationary analogue of the realization (1.6), it is necessary to consider square-summable sequences of inputs rather than a single input – in other words, the operator of multiplication by S acting on the space of upper-triangular Hilbert–Schmidt operators.

The multiscale setting considered in this paper can be viewed as the natural multidimensional generalization of the single-scale non-stationary case. Here expansions of the form (1.9) are replaced with non-commutative power series in q primitive shifts, which satisfy the Cuntz relations (see [19], [17]). Just as in the single-scale case, the coefficients of these series do not commute with the primitive shifts but satisfy certain commutation relations. Thus the multiscale setting is different from such multidimensional settings as the classical theory of formal non-commutative power series with the coefficients which commute with the indeterminates (see [22] and [11] for recent developments), the Arveson space of the ball in \mathbb{C}^n (see [21]) and the quaternionic Arveson space (see [5], [7]). In particular, in the last two cases the de Branges–Rovnyak space associated to a Schur multiplier is Gleason-invariant rather than backward shift-invariant.

The paper is organized as follows. Section 2 is of a review nature. It presents the ordering of the homogeneous tree T as introduced by Basseville, Benveniste, Nikoukhah and Willsky and the canonical representation of a bounded linear operator on the Hilbert space $\ell_2(T)$ as developed in [8]. Section 3 discusses causal operators and, in particular, the algebra of constants. In Section 4 we present the point evaluation of a causal operator at a constant. In Section 5 we study the space of causal Hilbert–Schmidt operators which plays here the role of the Hardy space H_2 of the unit disk. In particular, we present the analogue of Cauchy’s formula; see Theorem 5.4. Schur multipliers, associated kernels, de Branges–Rovnyak spaces and input-state-output systems are studied in Section 6. In the last section we present the analogue of a Blaschke factor in the present setting.
2. Power series representation of bounded operators on $\ell_q(\mathcal{T})$

We start with the ordering of the homogeneous tree \mathcal{T} of order $q \geq 1$. Note that, as follows from the definition (see Introduction), the tree \mathcal{T} is infinite. For each node $t \in \mathcal{T}$ we consider infinite paths, which begin at t. These are infinite sequences of nodes
\[(t_0 = t, t_1, t_2, \ldots),\]
where each pair of consecutive nodes t_k, t_{k+1} is connected by an edge and each two consecutive edges are distinct:
\[t_{k+1} \neq t_k \neq t_{k+2}, \quad k = 0, 1, 2, \ldots.\]
Two such paths
\[t_0 = t, t_1, t_2, \ldots \text{ and } s_0 = s, s_1, s_2, \ldots,\]
which begin at the nodes t and s, respectively, are said to be equivalent if they coincide modulo finite number of edges: there exist indices m, n such that
\[t_{m+k} = s_{n+k}, \quad k = 0, 1, 2, \ldots.\]
The equivalence classes of paths with respect to this relation are called the boundary points of the tree \mathcal{T}.

Let us choose and fix some boundary point of \mathcal{T}, which will be denoted by \mathcal{T}_∞. Since the graph \mathcal{T} is connected and does not contain cycles, for each $t \in \mathcal{T}$ there exists a unique representative of the equivalence class \mathcal{T}_∞, which begins at the node t.

For a pair of nodes t, s, let the corresponding representatives of the boundary point \mathcal{T}_∞ be given by (2.1). They coincide modulo finite number of edges, that is, (2.2) holds for some m and n. Let us choose the minimal m and n for which (2.2) holds. Then we denote the node $t_m = s_n$ by $s \land t$ and call the number $m + n$ the distance $\text{dist}(s, t)$ between the nodes s and t.

Using these notations, we define the partial ordering \preceq and the equivalence relation \sim as follows:
\[s \preceq t, \quad \text{if } \text{dist}(s, s \land t) \leq \text{dist}(t, s \land t).\]
\[s \sim t, \quad \text{if } \text{dist}(s, s \land t) = \text{dist}(t, s \land t).\]
The equivalence classes with respect to the relation \sim are called horocycles.

Furthermore, we choose and fix q mappings
\[\alpha_1, \ldots, \alpha_q : \mathcal{T} \rightarrow \mathcal{T}\]
acting on the right
\[\{t\alpha_1, \ldots, t\alpha_q\} = \{s \in \mathcal{T} : t \preceq s, \text{dist}(t, s) = 1\}.\]
The mappings $\alpha_1, \ldots, \alpha_q$ are called primitive shifts.

1In the single scale case, this is $-\infty$.
The induced left action of the primitive shifts $\alpha_1, \ldots, \alpha_q$ on the space $\ell_2(\mathcal{T})$ is given by:

\[(2.5) \quad (\alpha_j f)(t) \overset{\text{def}}{=} f(t\alpha_j), \quad f \in \ell_2(\mathcal{T}), \ t \in \mathcal{T}, \ j = 1, \ldots, q.\]

Thus the primitive shifts $\alpha_1, \ldots, \alpha_q$ can be also viewed as bounded linear operators on $\ell_2(\mathcal{T})$. The adjoint operators are given by

\[(2.6) \quad (\alpha_j^* f)(t) = \begin{cases} f(s), & \text{if } t \text{ is of the form } t = s\alpha_j, \\ 0, & \text{otherwise}. \end{cases}\]

and satisfy the Cuntz relations:

\[(2.7) \quad \alpha_i \alpha_j^* = \delta_{i,j} \cdot I, \quad \sum_{j=1}^q \alpha_j^* \alpha_j = I.\]

In other words, the operator matrix

\[
\alpha \overset{\text{def}}{=} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_q \end{pmatrix} : \ell_2(\mathcal{T}) \longrightarrow \ell_2(\mathcal{T})^q
\]

is unitary:

\[(2.8) \quad \alpha \alpha^* = I_{\ell_2(\mathcal{T})^q}, \quad \alpha^* \alpha = I_{\ell_2(\mathcal{T})}.\]

Since \mathcal{T} is a tree, the shifts α_j form a free semigroup, which we denote by \mathcal{F}_q. Every element $w \in \mathcal{F}_q$ acts on the tree \mathcal{T} on the right:

\[t \mapsto tw,\]

and on the space $\ell_2(\mathcal{T})$ on the left:

\[f \mapsto wf, \quad (wf)(t) = f(tw).\]

The unit element of \mathcal{F}_q will be denoted by \emptyset. For $w \in \mathcal{F}_q$ we also use the notation:

\[(2.9) \quad |w| \overset{\text{def}}{=} \begin{cases} 0, & \text{if } w = \emptyset, \\ n, & \text{if } w = \alpha_{i_1} \ldots \alpha_{i_n}. \end{cases}\]

Definition 2.1. A pair of elements $w_1, w_2 \in \mathcal{F}_q$ is said to be reducible if w_1 and w_2 can be represented as

\[w_1 = \alpha_i v_1, \quad w_2 = \alpha_i v_2\]

for some $v_1, v_2 \in \mathcal{F}_q$ and some primitive shift α_i.

Remark 2.2. Note that a pair of elements $w_1, w_2 \in \mathcal{F}_q$ is irreducible if and only if there exists $t \in \mathcal{T}$ such that

\[(2.10) \quad (tw_1) \wedge (tw_2) = t.\]

In this case \[(2.10)\] holds for all $t \in \mathcal{T}$.

\[\text{See (1.1).}\]
Let $X(T)$ denote the C^*-algebra of bounded linear operators on $\ell_2(T)$. The elements of the semigroup F_q appear in the non-commutative power series representations of elements of $X(T)$. The coefficients of these power series are diagonal operators with respect to the standard basis χ_t of $\ell_2(T)$:

$$\chi_t(s) \overset{\text{def}}{=} \begin{cases} 1, & \text{if } t = s, \\ 0, & \text{otherwise}. \end{cases}$$

The precise result can be formulated as follows:

Theorem 2.3. Every operator $S \in X(T)$ can be represented in the form

$$(2.11) \quad S = \sum_{w_1, w_2 \in F_q} w_1^* w_2 S_{w_1, w_2},$$

where:

(I) S_{w_1, w_2} are elements of $X(T)$ which are diagonal with respect to the standard basis χ_t of $\ell_2(T)$.

(II) The notation

$$\sum_{w_1, w_2 \in F_q}$$

means that the summation is taken over all the irreducible pairs $w_1, w_2 \in F_q$.

(III) Convergence is absolute pointwise: for every $f \in \ell_2(T)$ and $t \in T$ the series

$$\sum_{w_1, w_2 \in F_q} (w_1^* w_2 S_{w_1, w_2} f)(t),$$

is absolutely convergent and its sum is equal to $(Sf)(t)$.

Moreover, the diagonal coefficients S_{w_1, w_2} of the series (2.11) are partially determined by

$$(2.12) \quad (S_{w_1, w_2} \chi_r)(r) = (S\chi_r)(sw_1) \quad \text{if } r \in T \text{ is of the form } r = sw_2$$

The rest of the diagonal entries of S_{w_1, w_2}, that is, the values $(S_{w_1, w_2} \chi_r)(r)$ for $r \notin Tw_2$ can be assigned arbitrarily (as long as they are uniformly bounded).

Proof. Let $S \in X(T)$, $f \in \ell_2(T)$ and $t \in T$ be fixed. Then

$$(Sf)(t) = \sum_{r \in T} (S\chi_r)(t) \cdot f(r),$$

where the series is absolutely convergent because of the Cauchy – Schwarz inequality.

Observe that, in view of Remark 2.2 for each $r \in T$ there exists a unique triple $s \in T, w_1, w_2 \in F_q$ such that

$$t = sw_1, \quad r = sw_2$$

and the pair w_1, w_2 is irreducible. (In particular, $s = t \land r$.) Therefore, we have

$$(Sf)(t) = \sum_{s \in T, w_1, w_2 \in F_q; \quad t = sw_1} (S\chi_{sw_2})(sw_1) \cdot f(sw_2).$$
Let now \(S_{w_1, w_2} \) be elements of \(X(T) \) which are diagonal with respect to the standard basis \(\chi_t \) of \(\ell_2(T) \) and satisfy (2.12). Then one can rewrite the last identity as

\[
(Sf)(t) = \sum_{s \in T, w_1, w_2 \in F_q; t = sw_1} (S_{w_1, w_2}f)(sw_2) = \sum_{s \in T, w_1, w_2 \in F_q; t = sw_1} (w_s^* w_2 S_{w_1, w_2} f)(t).
\]

But, in view of (2.13), for every \(w \in F_q \) and \(g \in \ell_2(T) \) we have

\[
(w_s^* g)(t) = \begin{cases}
 g(s), & \text{if } t \text{ is of the form } t = sw, \\
 0, & \text{otherwise}.
\end{cases}
\]

Hence the identity (2.11) holds in the sense of pointwise absolute convergence.

Furthermore, let \(t, s \in T \) be fixed and let \(S \in X(T) \) admit (in the sense of the pointwise absolute convergence) a representation of the form (2.11), where the coefficients \(S_{w_1, w_2} \in X(T) \) are diagonal with respect to the standard basis \(\chi_t \) of \(\ell_2(T) \). Then

\[
(S\chi_t)(s) = \sum_{w_1, w_2 \in F_2} (w_s^* w_2 S_{w_1, w_2} \chi_t)(s),
\]

but, in view of (2.13), the terms of the series on the right-hand side satisfy the relations

\[
(w_s^* w_2 S_{w_1, w_2} \chi_t)(s) = \begin{cases}
 (S_{w_1, w_2} \chi_t)(t), & \text{if } t = (t \cap s)w_2 \text{ and } s = (t \cap s)w_1, \\
 0, & \text{otherwise},
\end{cases}
\]

hence the series contains at most one non-zero term and (2.12) follows. \(\square \)

Remark 2.4. In order to avoid ambiguity, we shall usually normalize the diagonal coefficients \(S_{w_1, w_2} \) of the representation (2.11) for an operator \(S \in X(T) \) as follows:

\[
S_{w_1, w_2} \chi_r = 0, \quad \text{if } r \notin T w_2.
\]

Since the diagonal coefficients \(S_{w_1, w_2} \) in the expansion (2.11) do not commute, in general, with the shift operators \(w_1^* w_2 \), it is of interest to study the representations (2.11) in the special cases when \(S \) is of the form \(S = Dw^* \) or \(S = Dw \), where \(D \in X(T) \) is a diagonal operator with respect to the standard basis \(\chi_t \) of \(\ell_2(T) \) and \(w \in F_q \).

Lemma 2.5. Let \(D \in X(T) \) be a diagonal operator with respect to the standard basis \(\chi_t \) of \(\ell_2(T) \) and let \(w \in F_q \). Then

\[
Dw^* = w^* D', \quad Dw = wD'',
\]

where \(D', D'' \in X(T) \) are diagonal operators given by

\[
D' \chi_t = (D \chi_tw)(tw) \cdot \chi_t, \quad \forall t \in T
\]

\[
D'' \chi_t = \begin{cases}
 (D \chi_s)(s) \cdot \chi_t, & \text{if } t \in T \text{ is of the form } t = sw, \\
 0, & \text{otherwise}.
\end{cases}
\]

Proof. In view of (2.14), (2.13) we have

\[
(w^* \chi_t = \chi_{tw}, \quad \chi_t = \begin{cases}
 \chi_s, & \text{if } t \text{ is of the form } t = sw, \\
 0, & \text{otherwise}.
\end{cases}
\]

(2.15)
Since the operators D, D', D'' are diagonal, the rest of the proof is straightforward.

3. CAUSAL BOUNDED OPERATORS AND CONSTANTS

Definition 3.1. Let $S \in \mathbf{X}(T)$. S is said to be causal if for every node $s \in T$ and every element $f \in \ell_2(T)$ such that

$$f(t) = 0 \quad \forall t \leq s$$

it holds that

$$(Sf)(t) = 0 \quad \forall t \leq s.$$

Example 3.2. For every $w \in F_q$ the adjoint operator $w^* \in \mathbf{X}(T)$ is causal, as follows from (2.15).

Proposition 3.3. Let $S \in \mathbf{X}(T)$ be represented by the pointwise absolutely convergent series

$$S = \sum_{w_1, w_2 \in F_q} w_1 w_2 S_{w_1, w_2},$$

where $S_{w_1, w_2} \in \mathbf{X}(T)$ are diagonal operators with respect to the standard basis χ_t of $\ell_2(T)$, normalized by (2.14). Then S is causal if and only if

$$S_{w_1, w_2} = 0 \quad \text{whenever} \quad |w_1| < |w_2|.$$

Proof. First let us assume that S is causal. Let $w_1, w_2 \in F_q$ be an irreducible pair such that $|w_1| < |w_2|$ and let $s \in T$. Then, according to (2.3) and (2.4),

$$sw_1 \leq sw_2 \quad \text{and} \quad sw_1 \neq sw_2.$$

Therefore, from Definition 3.1 and the formula (2.12) of Theorem 2.3 it follows that

$$S_{w_1, w_2} \chi_{sw_2} = (S \chi_{sw_2})(sw_1) \cdot \chi_{sw_2} = 0.$$

In view of (2.14), we conclude that $S_{w_1, w_2} = 0$.

Conversely, assume that $S_{w_1, w_2} = 0$ whenever $|w_1| < |w_2|$. Let $s, t \in T$ be such that $t \leq s$ and $t \neq s$. Then there exists a unique pair of elements $w_1, w_2 \in F_q$ such that

$$t = (t \wedge s)w_1, \quad s = (t \wedge s)w_2.$$

By definition of $t \wedge s$, this pair w_1, w_2 is irreducible. In view of (2.3) and (2.4), $|w_1| < |w_2|$. Hence, according to the formula (2.12) of Theorem 2.3

$$(S \chi_s)(t) = (S_{w_1, w_2} \chi_{s})(s) = 0.$$

Thus $(S \chi_s)(t) = 0$ for every pair of nodes $s, t \in T$ such that $t \leq s$ and $t \neq s$. In view of Definition 3.1 this means that S is causal.

We shall denote the algebra of causal operators $S \in \mathbf{X}(T)$ by $\mathbf{H}(T)$. Note that, in view of Definition 3.1, the algebra $\mathbf{H}(T)$ is closed in $\mathbf{X}(T)$ in the pointwise sense: if a sequence S_1, S_2, \ldots of elements of $\mathbf{H}(T)$ and an element $S \in \mathbf{X}(T)$ are such that for every $f \in \ell_2(T)$ and $t \in T$ \(\lim_{n \to \infty} (S_n f)(t) = (S f)(t)\), then $S \in \mathbf{H}(T)$.

In order to study the algebra $\mathbf{H}(T)$ further, we consider its subalgebra

$$\mathcal{C} \overset{\text{def}}{=} \{ S \in \mathbf{X}(T) : S, S^* \in \mathbf{H}(T) \}.$$
Elements of C play the role of constants in the present setting; we note that
\begin{equation}
S ∈ C ⇔ Sχ_t ∈ \overline{\text{span}}\{χ_s : s ≍ t\} \forall t ∈ T,
\end{equation}
where $\overline{\text{span}}$ denotes closed linear span. Thus the subalgebra C is closed in $X(T)$ in the pointwise sense.

Remark 3.4. Note that, according to Proposition 3.3 and Theorem 2.3, an element S of the algebra $X(T)$ belongs to the subalgebra C if and only if it is of the form
\begin{equation}
S = \sum_{w₁, w₂ ∈ F_q} w₁^* w₂ S_{w₁, w₂},
\end{equation}
where $S_{w₁, w₂}$ are diagonal operators with respect to the standard basis $χ_t$ of $ℓ₂(T)$.

Theorem 3.5. Let $S ∈ H(T)$. Then S can be represented as the pointwise absolutely convergent series
\begin{equation}
S = \sum_{w ∈ F_q} w^* S_w,
\end{equation}
where $S_w ∈ C$ are uniquely determined by
\begin{equation}
(S_w)χ_t(s) = \begin{cases} (Sχ_t)(sw), & \text{if } t ≍ s, \\ 0, & \text{otherwise}, \end{cases}
\end{equation}
and satisfy
\begin{equation}
\|S_w\| ≤ \left\| \sum_{v ∈ F_q} v^* S_v \right\| ≤ \|S\|.
\end{equation}

In the proof of Theorem 3.5 we shall use the following lemma:

Lemma 3.6. Let $T ∈ X(T)$ and let
\begin{equation}
T = \sum_{w₁, w₂ ∈ F_q} w₁^* w₂ T_{w₁, w₂}, \text{ where } T_{w₁, w₂} \text{ are diagonal},
\end{equation}
be the pointwise absolutely convergent expansion of T as in Theorem 2.3 Then the series
\begin{equation}
T[0] \overset{\text{def}}{=} \sum_{w₁, w₂ ∈ F_q} w₁^* w₂ T_{w₁, w₂}
\end{equation}
converges pointwise absolutely in C and
\begin{equation}
\|T[0]\| ≤ \|T\|.
\end{equation}

Proof. First we observe that, since the series 3.5 is pointwise absolutely convergent, the series
\begin{equation}
(T[0]f)(t) \overset{\text{def}}{=} \sum_{w₁, w₂ ∈ F_q} (w₁^* w₂ T_{w₁, w₂})f(t)
\end{equation}
converges absolutely for each $f ∈ ℓ₂(T)$ and $t ∈ T$.

Now let
\[f = \sum_{i=1}^{n} f_{i} \chi_{t_{i}}, \quad \text{where} \quad f_{i} \in \mathbb{C}, \]
let \(h_{1}, \ldots, h_{k} \) be horocycles such that
\[\{t_{1}, \ldots, t_{n}\} \subset h_{1} \cup \cdots \cup h_{k} \]
and let \(\pi_{1}, \ldots, \pi_{k} \) denote the corresponding orthogonal projections in \(\ell_{2}(T) \):
\[\pi_{j} = \sum_{t \in h_{j}} \langle \cdot, \chi_{t} \rangle_{\ell_{2}(T)} \chi_{t}. \]
For each \(j \) the relations \eqref{eq:T[0]f} imply
\[(T[0]f)(t) = \begin{cases} \langle \pi_{j}T\pi_{j}f \rangle(t), & \text{if} \quad t \in h_{j}, \\ 0, & \text{otherwise,} \end{cases} \]
hence
\[T[0]f = \pi_{j}T\pi_{j}f \in \text{ran}(\pi_{j}). \]
Since \(f = \sum_{j=1}^{k} \pi_{j}f \),
we observe that \(T[0]f \in \ell_{2}(T) \) and, moreover,
\[\|T[0]f\|_{\ell_{2}(T)}^{2} = \sum_{j=1}^{k} \|T[0]f\|_{\ell_{2}(T)}^{2} \leq \sum_{j=1}^{k} \|\pi_{j}T\pi_{j}f\|_{\ell_{2}(T)}^{2} = \|T\|^{2} \|f\|_{\ell_{2}(T)}^{2}. \]
Since \(\text{span}\{\chi_{t} : t \in T\} \) is dense in \(\ell_{2}(T) \), we conclude that
\[T[0] \in X(T), \quad \|T[0]\| \leq \|T\|. \]
Finally, in view of Remark \[3.4, \] \(T[0] \in \mathcal{C}. \)

Proof of Theorem \[3.5\] According to Theorem \[2.3\] and Proposition \[3.3\] \(S \) admits in the sense of pointwise absolute convergence a representation of the form
\[S = \sum_{w_{1}, w_{2} \in \mathcal{F}_{q}} w_{1}^{*}w_{2}S_{w_{1}, w_{2}}, \quad \text{where} \quad S_{w_{1}, w_{2}} \text{ are diagonal.} \]
Denote
\[S_{[w]} \overset{\text{def}}{=} (wS)[0], \quad w \in \mathcal{F}_{q}. \]
Then, as follows from \[\eqref{eq:T[0]}\], \(S_{[w]} \) admits in the sense of pointwise absolute convergence the representation
\[S_{[w]} = \sum_{w_{1}, w_{2} \in \mathcal{F}_{q}} w_{1}^{*}w_{2}S_{w_{1}, w_{2}}, \quad \text{where} \quad S_{w_{1}, w_{2}} \text{ are diagonal.} \]
Hence S admits the representation (3.2) and the relations (2.12) in Theorem 2.3 imply (3.3).

Finally, we note that, as follows from Lemma 2.5 and (2.7),

$$S[w] = \sum_{v \in \mathcal{F}_q} v^* S[w]$$

Using the identity $ww^* = I$ and the inequality (3.6) in Lemma 3.6, we obtain

$$\|S[w]\| \leq \left| \sum_{v \in \mathcal{F}_q} v^* S[v] \right| = \|S[w]u^*\| \leq \|S\| \leq \|S\|.$$

Thus the inequality (3.4) holds. □

Remark 3.7. Let $c \in \mathcal{C}$, let $S, T \in H(\mathcal{T})$ and let

$$S = \sum_{w \in \mathcal{F}_q} w^* S[w], \quad T = \sum_{w \in \mathcal{F}_q} w^* T[w],$$

be the pointwise absolutely convergent expansions of S, T as in Theorem 3.5. Then

$$Sc + T = \sum_{w \in \mathcal{F}_q} w^* (S[w]c + T[w]),$$

where convergence is again pointwise absolute.

Note that the coefficients $S[w] \in \mathcal{C}$ in the expansion (3.2) do not commute, in general, with the shift operators w^*. The following lemma deals with the special case when S is of the form $S = Cw^*$, where $C \in \mathcal{C}$.

Lemma 3.8. Let $w \in \mathcal{F}_q$ and let $C \in \mathcal{C}$. Then

$$(3.7) \quad Cw^* = \sum_{v \in \mathcal{F}_q} v^* C_v, \quad \text{where} \quad C_v = vCw^* \in \mathcal{C}.$$

Proof. Let $v \in \mathcal{F}_q$ be such that $|v| = |w|$ and consider the operator $C_v = vCw^* \in X(\mathcal{T})$. For each $t \in \mathcal{T}$ the relations (3.1) and (2.15) imply that

$$C_v \chi_t = vC \chi_{tw} \in \text{span}\{v \chi_u : u \succ tw\} = \text{span}\{\chi_s : sv \succ tw\} \subset \text{span}\{\chi_s : s \succ t\}$$

and hence, according to (3.1), $C_v \in \mathcal{C}$.

Furthermore, we note that the Cuntz relations (2.7) imply

$$(3.8) \quad \sum_{v \in \mathcal{F}_q, |v| = n} v^* v = I, \quad n = 0, 1, 2, \ldots$$

Hence

$$Cw^* = \sum_{v \in \mathcal{F}_q, |v| = |w|} v^* vCw^*$$

and (3.7) follows. □
4. The point evaluation of causal operators

In this section we define a point evaluation for the elements of $H(T)$ at the "points" from C.

We consider the set of q-tuples

$$B(T) \overset{\text{def}}{=} \{ c = (c_1 \ldots c_q) \in C^q : \lim_{n \to \infty} \| (c\alpha)^n \|^{\frac{1}{n}} < 1 \},$$

which plays the role of the unit disk in the present setting.

Let $c \in B(T)$ and let $S \in H(T)$. Let

$$S = \sum_{w \in F_q} w^* S_{[w]}, \quad \text{where} \quad S_{[w]} \in C,$$

be the pointwise absolutely convergent expansion of S as in Theorem 3.5. Then, in view of the estimate (3.4), the series

$$S^\wedge(c) \overset{\text{def}}{=} \sum_{n=0}^{\infty} (c\alpha)^n \left(\sum_{w \in F_q \setminus \{w\}=n} w^* S_{[w]} \right)$$

converges absolutely with respect to the operator norm. It follows from Lemma 3.8 and the Cuntz relations (2.7) that each term of the series (4.3) belongs to the algebra of constants C, which is closed in $X(T)$ in the pointwise sense. Hence $S^\wedge(c) \in C$.

In this way we associate with each operator $S \in H(T)$ a mapping $c \mapsto S^\wedge(c)$ from $B(T)$ to the algebra of constants C. We shall refer to this mapping as the point evaluation of S. Its main properties are listed in the following lemma.

Lemma 4.1.

(I) Let $F, G \in H(T)$, $p \in C$, $c \in B(T)$. Then

$$\begin{align*}
(Fp + G)^\wedge(c) &= F^\wedge(c) \cdot p + G^\wedge(c), \\
(FG)^\wedge(c) &= (F^\wedge(c) \cdot G)^\wedge(c).
\end{align*}$$

(II) If $S \in H(T)$ and $S^\wedge(c) = 0$ for every $c \in B(T)$, then $S = 0$.

Proof.

(I). In view of Remark 3.7, the identity (4.4) follows immediately from the definition (4.3) of the point evaluation. Therefore, it suffices to establish the identity (4.5) for F, G of the form

$$F = w_1^*, \quad G = w_2^*, \quad \text{where} \quad w_1, w_2 \in F_q.$$
But Lemma 3.8 implies that
\[(w_1^*w_2^*)^\diamond(c) = (c\alpha)^{|w_1^*|+|w_2^*|}w_1^*w_2^* = (c\alpha)^{|w_2^*|}(w_1^*)^\diamond(c)w_2^*
= \sum_{|w|=|w_2^*|} (c\alpha)^{|w|}w(w_1^*)^\diamond(c)w_2^* = \sum_{|w|=|w_2^*|} (w_1^*)^\diamond(c)w(w_1^*)^\diamond(c)w_2^*)
= \left(\sum_{|w|=|w_2^*|} w_1^*w(w_1^*)^\diamond(c)w_2^* \right)^\diamond(c) = ((w_1^*)^\diamond(c)w_2^*)^\diamond(c).
\]

(II). We prove that \(S_{[w]} = 0\) for each \(w \in \mathcal{F}_q\). We use induction on \(|w|\). First,
\[S_{[\emptyset]} = S^\diamond(0) = 0.\]
Next, assume that
\[S_{[w]} = 0 \quad \forall w : |w| \leq n\]
and let
\[w_{n+1} = \alpha_1 \alpha_2 \cdots \alpha_{n+1}.\]
We shall prove that \(S_{[w_{n+1}]} = 0\).

Denote
\[w_k = \alpha_1 \cdots \alpha_k, \quad 1 \leq k \leq n+1, \quad w_0 = \emptyset.\]
Fix \(t_0 \in \mathcal{T}\) and consider the diagonal operators \(c_j \in \mathcal{C}, 1 \leq j \leq q\), defined as follows:
\[c_j \chi_t = \begin{cases} \chi_{t_0 w_k}, & \text{if } j = i_{k+1} \text{ and } t = t_0 w_k, \quad 0 \leq k \leq n, \\ 0, & \text{otherwise.} \end{cases}\]
We set
\[c = (c_1 \cdots c_q)\]
and observe that, as follows from (2.5),
\[(c\alpha) \chi_t = \begin{cases} \chi_{t_0 w_k}, & \text{if } t = t_0 w_k, \quad 0 \leq k \leq n, \\ 0, & \text{otherwise.} \end{cases}\]
Hence
\[(c\alpha)^{n+1} \chi_t = \begin{cases} \chi_{t_0}, & \text{if } t = t_0 w_n+1, \\ 0, & \text{otherwise,} \end{cases}\]
\[(c\alpha)^{n+2} = 0.\]
In particular, \(c \in \mathcal{B}(\mathcal{T})\).

Furthermore, in view of (2.15), for \(w \in \mathcal{F}_q\) such that \(|w| = n + 1\) we have
\[(c\alpha)^{n+1} w^* \chi_t = (c\alpha)^{n+1} \chi_{t_0} = \begin{cases} \chi_{t_0}, & \text{if } t = t_0 \text{ and } w = w_{n+1}, \\ 0, & \text{otherwise.} \end{cases}\]
Thus by the induction assumption
\[0 = S^\diamond(c) = (c\alpha)^{n+1} w^*_{n+1} S_{[w_{n+1}]},\]
which implies (see (2.13))
\[0 = S^*_{[w_{n+1}]} w_{n+1} (c^* c)^{n+1} \chi_{t_0} = S^*_{[w_{n+1}]} w_{n+1} \chi_{t_0} w_{n+1} = S^*_{[w_{n+1}]} \chi_{t_0}.\]
Since \(t_0 \in \mathcal{T}\) was chosen arbitrarily, \(S_{[w_{n+1}]} = 0.\) \qed
5. The space of causal Hilbert–Schmidt operators

In this section we consider the following spaces of Hilbert–Schmidt operators:

\[H_2(T) \overset{\text{def}}{=} \{ F \in H(T); \| F \|_2^2 \overset{\text{def}}{=} \text{trace}(F^*F) < \infty \}, \]

\[C_2 \overset{\text{def}}{=} C \cap H_2(T). \]

As we shall see from Propositions 5.1 and 5.2 below, the space \(H_2(T) \) of causal Hilbert–Schmidt operators plays the role of the Hardy space of the unit disk in the present setting: elements of the algebra \(H(T) \) act on the space \(H_2(T) \) by multiplication. The space \(C_2 \) is the space of constants which appear in the power series expansions (see Theorem 3.5) of the elements of \(H_2(T) \).

Proposition 5.1.

(I) The space \(H_2(T) \) is a Hilbert space contractively included in \(H(T) \):

\[\forall F \in H_2(T) \quad \langle F, F \rangle_2 \leq \| F \|_2^2. \]

(II) \(C_2 \) is a closed subspace of the Hilbert space \(H_2(T) \).

(III) For every \(F \in H_2(T) \) and \(S \in H(T) \) the operators \(SF \) and \(FS \) belong to \(H_2(T) \) and it holds that

\[\max(\| SF \|_2, \| FS \|_2) \leq \| S \| \| F \|_2. \]

Moreover, the multiplication operators \(M_S, \hat{M}_S \) defined on \(H_2(T) \) by

\[M_S F \overset{\text{def}}{=} SF, \quad \hat{M}_S F \overset{\text{def}}{=} FS, \quad F \in H_2(T), \]

satisfy

\[\| M_S \| = \| \hat{M}_S \| = \| S \|. \]

Proof. It is well known (see, for instance, [23]) that the space of Hilbert–Schmidt operators on a given separable Hilbert space is a Hilbert space. In particular, the space

\[X_2(T) \overset{\text{def}}{=} \{ F \in X(T); \| F \|_2^2 \overset{\text{def}}{=} \text{trace}(F^*F) < \infty \} \]

is a Hilbert space. For every \(F \in X_2(T) \) and \(f \in \ell_2(T) \) it holds that

\[\| Ff \|_{\ell_2(T)}^2 = \sum_{t \in T} | Ff(t) |^2 = \sum_{t \in T} \left(\sum_{s \in T} F \chi_s(t) \cdot f(s) \right)^2 \leq \sum_{t, s \in T} | F \chi_s(t) |^2 \| f \|_{\ell_2(T)}^2 = \| F \|_2^2 \| f \|_{\ell_2(T)}^2, \]

hence the space \(X_2(T) \) is contractively included in \(X(T) \).

The space \(H_2(T) \) is the intersection

\[H_2(T) = X_2(T) \cap H(T). \]

Since the algebra \(H(T) \) is closed in \(X(T) \) in the pointwise sense, it is also closed with respect to the operator norm. It follows that \(H_2(T) \) is a closed (with respect to the Hilbert–Schmidt norm \(\| \cdot \|_2 \) subspace of the Hilbert space \(X_2(T) \), which proves the statement (I).
The proof of the statement (II) is analogous: it uses the fact that the algebra of constants \mathcal{C} is closed in $H(T)$ in the pointwise sense and hence also with respect to the operator norm.

In order to prove the statement (III), we observe that for every $S \in X(T)$ and $F \in X_2(T)$ it holds that

$$\|SF\|_2^2 = \sum_{t \in T} \|S \chi_t\|_{\ell_2(T)}^2 \leq \|S\|^2 \sum_{t \in T} \|F\chi_t\|_{\ell_2(T)}^2 = \|S\|^2 \|F\|_2^2;$$

$$\|FS\|_2^2 = \|S^* F^*\|_2^2 \leq \|S^*\|^2 \|F^*\|_2^2 = \|S\|^2 \|F\|_2^2.$$

In particular, taking into account (5.3) and the fact that $H(T)$ is an algebra, we may conclude that

$$\forall S \in H(T), \forall F \in H_2(T) \quad SF, FS \in H_2(T)$$

and (5.1) holds.

Let $f \in \text{span}\{\chi_t\}$ and choose $t_0 \in T$ such that $f(t) = 0$ for all $t \leq t_0$. Consider the operator F defined by

$$F u = u(t_0) \cdot f, \quad u \in \ell_2(T).$$

Then

$$\|F\|_2^2 = \sum_{t \in T} \|F \chi_t\|_{\ell_2(T)}^2 = \|f\|_{\ell_2(T)}^2,$$

hence $F \in X_2(T)$. According to Definition (3.1), the operator F is causal, hence $F \in H_2(T)$.

Furthermore, let $S \in H(T)$. Then

$$\|SF\|_2^2 = \sum_{t \in T} \|S \chi_t\|_{\ell_2(T)}^2 = \|Sf\|_{\ell_2(T)}^2;$$

Since $\text{span}\{\chi_t\}$ is dense in $\ell_2(T)$, we conclude that the left multiplication operator M_S satisfies $\|M_S\| \geq \|S\|$. On the other hand, (5.1) implies $\|M_S\| \leq \|S\|$, hence $\|M_S\| = \|S\|$.

The proof of the equality $\|\hat{M}_S\| = \|S\|$ for the right multiplication operator \hat{M}_S is analogous. \hfill \Box

Proposition 5.2. Let $F \in H(T)$ and let

$$F = \sum_{w \in \mathcal{F}_q} w^* F[w],$$

where $F[w] \in \mathcal{C}$, be the pointwise absolutely convergent expansion for F, as in Theorem 3.3. Then $F \in H_2(T)$ if and only if

$$\forall w \in \mathcal{F}_q \quad F[w] \in \mathcal{C}_2 \quad \text{and} \quad \sum_{w \in \mathcal{F}_q} \|F[w]\|_2^2 < \infty.$$

In this case the expansion (5.5) converges in the $H_2(T)$-norm and

$$\|F\|_2^2 = \sum_{w \in \mathcal{F}_q} \|F[w]\|_2^2.$$
Proof.

\(\Rightarrow \). Assume that \(F \in H_2(T) \). Then, as follows from the relations (3.3) in Theorem 3.5 and the statement (III) of Proposition 5.1, we have

\[
\|F\|_2^2 = \|w\| \|F\|_2^2 \geq \sum_{t,s \in T} \left| \langle wF \chi_t \rangle(s) \right|^2 = \sum_{t,s \in T} \left| \langle (F[w] \chi_t) \rangle(s) \right|^2 = \|F[w]\|_2^2,
\]

hence \(F[w] \in C_2 \).

Furthermore, since \(F \) is causal,

\[
\|F\|_2^2 = \sum_{s,t \in T} \left| \langle F \chi_s \rangle(t) \right|^2 = \sum_{s,t \in T} \left| \langle F[w] \chi_s \rangle(t) \rangle \right|^2 = \sum_{w \in F_q} \|F[w]\|_2^2,
\]

Thus (5.7) holds.

As a consequence, we obtain the convergence of the expansion (5.5) in the following sense: if we order somehow the countable set \(F_q \), say \(F_q = \{ w_j \}_{j=0}^{\infty} \), then, according to (5.6) and the statement (III) of Proposition 5.1 for each \(n = 0, 1, 2, \ldots \) the finite sum \(\sum_{j=0}^{n} w_j^* F[w_j] \) belongs to \(H_2(T) \) and it holds that

\[
\|F - \sum_{j=0}^{n} w_j^* F[w_j]\|_2^2 = \sum_{j=n+1}^{\infty} \|F[w_j]\|_2^2 \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]

\(\Leftarrow \). Assume that \(F \in H(T) \) and that the coefficients \(F[w] \) of the expansion (5.5) satisfy the conditions (5.6). Then it suffices to reverse the computation (5.8) in order to show that \(F \in H_2(T) \). \(\Box \)

Our next goal is to demonstrate that the space \(H_2(T) \) has a reproducing kernel structure with respect to the point evaluation defined in the previous section (see (4.3)).

Lemma 5.3. Let \(F \in H_2(T) \) have the expansion (5.5), where \(F[w] \in C_2 \), and let \(c \in \mathbb{B}(T) \). Then the series

\[
F^\wedge(c) = \sum_{n=0}^{\infty} (ca)^n \left(\sum_{w \in F_q \{|w|=n \}} w^* F[w] \right)
\]

converges absolutely in \(C_2 \).
Proof. It follows from the identity (5.7) in Proposition 5.2 that
\[
\left\| \sum_{w \in \mathcal{F}} w^* F_{[w]} \right\|_2 \leq \| F \|_2, \quad n = 0, 1, 2, \ldots.
\]
Hence, in view of the definition (4.1) of \(B(T) \) and the estimate (5.1) in Proposition 5.1, the series (5.9) converges absolutely in \(H_2(T) \). Since each term of the series belongs to \(C \), the desired conclusion follows. □

Theorem 5.4. Let \(c \in B(T) \). Then the operator \(I - \alpha^* c^* \) is invertible in \(H(T) \) and its inverse \((5.10) K^c_\wedge \text{def} = (I - \alpha^* c^*)^{-1} \) satisfies
\[
(5.11) \langle F^\wedge(c), k \rangle_2 = \langle F, K_\wedge^c k \rangle_2, \quad \forall F \in H_2(T), \forall k \in C_2.
\]
Proof. In view of the definition (4.1) of \(B(T) \), \(K_\wedge^c \) is the sum of the absolutely convergent series
\[
(5.12) K^c_\wedge = \sum_{n=0}^{\infty} (\alpha^* c^n)^n.
\]
Since each term of the series belongs to \(H(T) \), so does \(K_\wedge^c \). Let us now choose and fix an element \(k \in C_2 \) and an element \(F \in H_2(T) \) with the expansion (5.5), where \(F_{[w]} \in C_2 \). Then, according to the statement (III) of Proposition 5.1
\[
K_\wedge^c k = \sum_{n=0}^{\infty} (\alpha^* c^n)^n k \in H_2(T),
\]
where convergence is absolute with respect to the \(H_2(T) \)-norm. Since, in view of the identity (5.8),
\[
(\alpha^* c^n)^n = \sum_{w \in \mathcal{F}_q} w^* w (\alpha^* c)^n = \sum_{w \in \mathcal{F}_q} w^* (w^*)^\wedge c^*,
\]
Proposition 5.2 and Lemma 5.3 imply that
\[
\langle F, K_\wedge^c k \rangle_2 = \sum_{n=0}^{\infty} \langle F, (\alpha^* c^n)^n k \rangle_2 = \sum_{n=0}^{\infty} \left(\sum_{w \in \mathcal{F}_q} w^* F_{[w]} (\alpha^* c^n)^n k \right)_2
\]
\[
= \sum_{n=0}^{\infty} \left((\alpha c)^n \sum_{w \in \mathcal{F}_q} w^* F_{[w]}, k \right)_2 = \langle F^\wedge(c), k \rangle_2.
\]
□

Remark 5.5. Note that Theorem 5.4 and the statement (II) of Lemma 5.1 imply that
\[
\text{Span}\{ K_\wedge^c k : c \in B(T), k \in C_2 \} = H_2(T).
\]
We close this section with the description of the counterparts of the backward shift operator R_0 in the stationary single-scale setting (see the formula (1.3) in Introduction).

Proposition 5.6. Let operators $A_j : H_2(T) \to H_2(T)$, $j = 1, \ldots, q$, be defined by

$$ A_j F \overset{\text{def}}{=} (F - F^\wedge(0))\alpha_j, \quad F \in H_2(T), \quad j = 1, \ldots, q. \quad (5.14) $$

Then:

(I) The operator A_j is the adjoint of the right multiplication operator \hat{M}_{α_j} in $H_2(T)$:

$$ A_j = \hat{M}_{\alpha_j}^*, \quad j = 1, \ldots, q. \quad (I) $$

(II) For $i, j = 1, \ldots, q$ the following relations hold:

$$ A_j \hat{M}_{\alpha_i} = \hat{M}_{\alpha_i} A_j = \begin{cases} (I - C^*C), & \text{if } i = j, \\ 0, & \text{otherwise,} \end{cases} \quad (II) $$

where

$$ CF \overset{\text{def}}{=} F^\wedge(0). \quad (5.15) $$

(III) Let $F \in H_2(T)$ with the expansion (5.5), where $F_{[w]} \in C_2$, be given. Then for every pair $w, v \in F_q$ such that $|v| = |w|$ it holds that

$$ F_{[w]} = w \cdot (CA^*F) \cdot v^*, \quad (III) $$

where

$$ A_{\alpha_1 \cdots \alpha_k} \overset{\text{def}}{=} A_{i_k} \cdots A_{i_1}, \quad A^0 \overset{\text{def}}{=} I. \quad (5.16) $$

Proof. Consider $F \in H_2(T)$ with the expansion (5.5), where $F_{[w]} \in C_2$. Then, in view of Proposition 5.2,

$$ A_j F = (F - F_{[\emptyset]})\alpha_j = \sum_{w \in F_q, |w| \geq 1} w^* F_{[w]} \alpha_j \in H_2(T) \quad (5.17) $$

and for every $G \in H_2(T)$ it holds that

$$ \langle F, Go_j^* \rangle_2 = \langle F - F_{[\emptyset]}, Go_j^* \rangle_2 = \text{trace}(\alpha_j G^* (F - F_{[\emptyset]})) = \text{trace}(G^* (F - F_{[\emptyset]}) \alpha_j) = \langle A_j F, G \rangle_2. \quad (5.18) $$

This proves the statement (I) of the Proposition.

The statement (II) follows immediately from the Cuntz relations (2.7).

In order to prove the statement (III), let us fix a sequence of indices i_1, i_2, i_3, \ldots, $1 \leq i_n \leq q$. Then

$$ F = F_{[\emptyset]} + (F - F_{[\emptyset]}) = CF + (A_{i_1}F)\alpha_{i_1}^* = \ldots = \sum_{n=0}^m (CA^n F)\nu_n^* + (A^{m+1} F)\nu_{m+1}^*, \quad m = 0, 1, 2, \ldots $$

Proof. Consider $F \in H_2(T)$ with the expansion (5.5), where $F_{[w]} \in C_2$. Then, in view of Proposition 5.2,
where \(v_0 = \emptyset, v_n = \alpha_{i_1} \ldots \alpha_{i_n} \). Now it follows from the identity (3.3) in Theorem 3.5 that
\[
\sum_{|w|=n} w^* F_{|w|} d = (CAv_n F)v_n^* \quad \forall n
\]
and hence
\[
F_{|w|} = w (CA^{|w|} F)v_{|w|}^* \quad \forall w.
\]
Since the sequence of indices \(i_1, i_2, i_3, \ldots \) was chosen arbitrarily, this completes the proof. \(\square \)

6. Schur multipliers and de Branges – Rovnyak spaces

Definition 6.1. Let \(S \in H(T) \) be such that \(\|S\| \leq 1 \). Then \(S \) is said to be a Schur multiplier.

Theorem 6.2. Let a mapping \(s : B(T) \to C \) be given. Then there exists a Schur multiplier \(S \in H(T) \) such that
\[
s(c) = S^\wedge(c) \quad \forall c \in B(T)
\]
if and only if the kernel \(K_s : B(T) \times B(T) \to C \) defined by
\[
K_s(c, d) \overset{\text{def}}{=} \sum_{n=0}^{\infty} (c_0 n(I - s(c)s(d)^*) (d_0 n)^*) c, d \in B(T),
\]
is positive: for any \(m \geq 0, c_0, \ldots, c_m \in B(T), k_0, \ldots, k_m \in C_2 \), it holds that
\[
\sum_{i,j=0}^{m} (K_s(c_i, c_j) k_j, k_i)_2 \geq 0.
\]

In this case \(K_s(c, d) = (K_d^S)^\wedge(c) \), where
\[
K_d^S \overset{\text{def}}{=} (I - SS^\wedge(d)^*) K_d^S \quad d \in B(T).
\]

In the proof of Theorem 6.2 we shall use the following lemma:

Lemma 6.3.

(I) Let \(T : H_2(T) \to H_2(T) \) be a bounded linear operator. Then \(T \) is of the form \(T = MS \) for some \(S \in H(T) \) if and only if
\[
\forall Q \in H(T) \quad TMQ = \hat{M}_Q T.
\]

(II) Let \(P : C_2 \to C_2 \) be a bounded linear operator. Then \(T \) is of the form \(T = MC \) for some \(c \in C \) if and only if
\[
\forall d \in C \quad PMd = \hat{M}_d P.
\]

Proof. We shall prove only the statement (I) of the Proposition; the proof of the statement (II) is completely analogous.

(\(\Rightarrow \)). The "only if" direction is clear: for every \(S, Q \in H(T) \) and \(F \in H_2(T) \) it holds that
\[
MS\hat{M}_Q F = SFQ = \hat{M}_Q MS F.
\]
Assume that an operator T, which commutes with every M_Q, is given. For each $t \in T$ let us consider the projection $\pi_t \in C_2$,
\[
\pi_t u \overset{\text{def}}{=} u(t)\chi_t, \quad u \in \ell_2(T),
\]
and define an operator S on $\text{span}\{\chi_t\}$ by
\[
S\chi_t = (T\pi_t)\chi_t.
\]
Let $f \in \text{span}\{\chi_t\}$ and choose $t_0 \in T$ such that $f(t) = 0 \ \forall t \leq t_0$. Consider $F \in H_2(T)$ defined by
\[
Fu = u(t_0) \cdot f, \quad u \in \ell_2(T),
\]
as in the proof of Proposition 5.1 (see (5.4)). Then
\[
(\pi_k)F^t_0u = u(t_0)\chi_t, \quad u \in \ell_2(T).
\]
Note that $F^{t_0} = \pi_tF^{t_0} = F^{t_0}\pi_0 \in H_2(T)$, hence for every $u \in \ell_2(T)$ we have
\[
(TF)u = u(t_0)\sum_{t \in T} f(t)(TF^{t_0})\chi_{t_0} = u(t_0)\sum_{t \in T} f(t)(T\pi_t)F^{t_0}_t\chi_{t_0} = u(t_0)\sum_{t \in T} f(t)(T\pi_t)\chi_{t_0} = u(t_0)SF = SFu.
\]
It follows that
\[
\|SF\|_{\ell_2(T)} \leq \|TF\| \leq \|TF\|_2 \leq \|T\| \cdot \|F\| = \|T\| \cdot \|f\|_{\ell_2(T)}
\]
and $(SF)(t) = 0 \ \forall t \leq t_0$. Since
\[
\text{span}\{\chi_t : t \in T\} = \ell_2(T) \quad \text{and} \quad \text{span}\{F_t^s : t, s \in T, s \leq t\} = H_2(T),
\]
we conclude that
\[
S \in H(T) \quad \text{and} \quad T = MS.
\]

Proof of Theorem 6.2. Let us assume first that $s(t) = \wedge(c)$, where S is a Schur multiplier. According to Theorem 5.3, for $k \in C_2$ and $F \in H_2(T)$ we have
\[
(K_{\wedge}^d k, SF)_2 = (K_{\wedge}^d k, \wedge(d)F)_2 = (\wedge(d)^*K_{\wedge}^d k, F)_2,
\]
hence
\[
M_S^*(K_{\wedge}^d k) = S^*(d)^*K_{\wedge}^d k, \quad (6.4)
\]
\[
K_{\wedge}^d k = (I - MSMS^*_S)(K_{\wedge}^d k).
\]
Furthermore, it follows from the identities (6.12) and (5.13), the definition (4.3) of the point evaluation and the statement (I) in Lemma 4.1 that
\[
(K_{\wedge}^d)^\wedge(c) = (K_{\wedge}^d)^\wedge(c) - (s(c)s(d)^*K_{\wedge}^d)^\wedge(c)
\]
\[
= \sum_{n=0}^{\infty}(ca)^n(I - s(c)s(d)^*)(\alpha^*d)^n = K_s(c, d).
\]
Now, given $c_0, \ldots, c_m \in \mathbb{B}(T), k_0, \ldots, k_m \in C_2$, we observe that
\[
\sum_{i,j=0}^{m} \langle K_s(c_i, c_j)k_j, k_i \rangle_2 = \left((I - MSMS^*_S) \left(\sum_{j=0}^{m} K_{\wedge}^d k_j \right), \sum_{i=0}^{m} K_{\wedge}^d k_i \right)_2 \geq 0,
\]
because the operator $I - M_S M_S^*$ is positive. Thus the kernel $K_s(c, d)$ is positive.

Conversely, assume that the kernel $K_s(c, d)$ is positive and define on $\text{span}\{K^{d}_s k : d \in \mathcal{B}(T), k \in \mathcal{C}_2\}$ an operator T by

$$T(K_s^d k) = s(d)^* K_s^d k.$$

Then T is a well-defined contraction, because

$$\left\| \sum_{j=0}^{m} K^{c \ell}_{s} k_j \right\|_2^2 = \left\| \sum_{j=0}^{m} K^{c \ell}_{s} k_j \right\|_2^2 - \sum_{i,j=0}^{m} \langle K_s(c_i, c_j) k_j, k_i \rangle_2 \leq \left\| \sum_{j=0}^{m} K^{c \ell}_{s} k_j \right\|_2^2.$$

Hence, in view of Remark 5.5, T can be extended as a contraction on $H_2(T)$.

The adjoint operator has the property

$$\langle T^* F \rangle^\wedge (c) = (s(c) F)^\wedge (c) \quad \forall F \in H_2(T), \forall c \in \mathcal{B}(T).$$

In view of the statement (I) in Lemma 4.1 for every $Q \in H(T)$, $F \in H_2(T)$, $c \in \mathcal{B}(T)$ we have

$$(T^* \hat{M}_Q F)^\wedge (c) = (s(c) F^\wedge (c)) = ((s(c) F)^\wedge (c) Q)^\wedge (c) = (\langle T^* F \rangle^\wedge (c) Q)^\wedge (c) = (\hat{M}_Q T^* F)^\wedge (c),$$

which, according to the statement (II) of the same Lemma 4.1 implies

$$T^* \hat{M}_Q = \hat{M}_Q T^* \forall Q \in H(T).$$

Now it follows from Lemma 6.3 that there exists a Schur multiplier S such that $T^* = M_S$. In view of (6.5) and Lemma 4.1 this Schur multiplier S satisfies

$$S^\wedge (c) = s(c) \quad \forall c \in \mathcal{B}(T).$$

We recognize in kernel (6.1) the analogue of the kernel (1.2), mentioned in Introduction. As in the single-scale case, we consider the associated de Branges–Rovnyak space defined below.

Definition 6.4. Let $S \in H(T)$ be a Schur multiplier, let

$$\mathcal{B}_S \overset{\text{def}}{=} I - M_S M_S^*$$

and let π_S denote the orthogonal projection in $H_2(T)$ onto $\ker \mathcal{B}_S$. The Hilbert space $H(S)$, defined by

$$H(S) = \sqrt{\mathcal{B}_S} H_2(T); \quad \| \sqrt{\mathcal{B}_S} F \|_{H(S)} = \| (I - \pi_S) F \|_{H_2(T)};$$

is said to be the de Branges–Rovnyak space associated with S.

In the sequel we shall use the following terminology:

Definition 6.5. Let H be a Hilbert space of elements of $H_2(T)$. The space H is said to be *right \mathcal{C}-invariant* if for every $F, G \in H$ and $c \in \mathcal{C}$ it holds that

$$Fc \in H, \quad \| Fc \|_H \leq \| F \|_H \| c \|, \quad \langle Fc, G \rangle_H = \langle F, G^* \rangle_H.$$
Proposition 6.6. Let $S \in \mathbf{H}(\mathcal{T})$ be a Schur multiplier. Then the de Branges – Rovnyak space $\mathbf{H}(S)$, associated with S, is a right C-invariant Hilbert space.

Furthermore, for every $F \in \mathbf{H}(S)$, $k \in \mathcal{C}_2$, $c \in \mathbb{B}(\mathcal{T})$ it holds that
\begin{equation}
K^*_ck \in \mathbf{H}(S) \quad \text{and} \quad \langle F, K^*_ck \rangle_{\mathbf{H}(S)} = \langle F^*(c), k \rangle_2,
\end{equation}
where K^*_c is as in (6.2). In particular,
\begin{equation}
\mathbf{H}(S) = \operatorname{span}\{K^*_ck : k \in \mathcal{C}_2, c \in \mathbb{B}(\mathcal{T})\}.
\end{equation}

Proof. Let $c \in \mathcal{C}$. Since the adjoint of the right multiplication operator \hat{M}_c in $\mathbf{H}_2(\mathcal{T})$ is given by $\hat{M}_c^* = \hat{M}_{c^*}$, Lemma 6.3 implies that the operators \hat{M}_c and B_S commute. Hence, in view of Definitions 6.4 and 6.5 the statement (III) of Theorem 6.7 implies the space $\mathbf{H}(S)$ is right C-invariant.

Furthermore, as follows from (6.3) and Definition 6.4 for every $k \in \mathcal{C}_2$ $K^*_ck \in \mathbf{H}(S)$. Moreover, for every $F \in \mathbf{H}(S)$ we have
\begin{equation}
\langle F, K^*_ck \rangle_{\mathbf{H}(S)} = \langle F, K^*_ck \rangle_2.
\end{equation}

Thus the identity (5.11) in Theorem 5.4 implies (6.6) and the statement (II) in Lemma 4.1 implies (6.7). \hfill \Box

Theorem 6.7. Let $S \in \mathbf{H}(\mathcal{T})$ be a Schur multiplier and let $\mathbf{H}(S)$ be the associated de Branges – Rovnyak space. Set
\begin{equation}
A_jF = (F - F^*(0))\alpha_j, \quad B_jd = (S - S^*(0))d\alpha_j, \quad CF = F^*(0), \quad Dd = S^*(0)d,
\end{equation}
where $1 \leq j \leq q$, $F \in \mathbf{H}(S)$, $d \in \mathcal{C}_2$. Then the following statements hold true:

(I) The formulae (6.8) define a bounded linear operator\n\begin{equation}
V_j = \begin{pmatrix} A_j & B_j \\ C & D \end{pmatrix} : \left(\begin{array}{c} \mathbf{H}(S) \\ \mathcal{C}_2 \end{array} \right) \rightarrow \left(\begin{array}{c} \mathbf{H}(S) \\ \mathcal{C}_2 \end{array} \right),
\end{equation}
which satisfies
\begin{equation}
V_jV_j^* = \begin{pmatrix} \hat{M}_{\alpha_j^*}\alpha_j & 0 \\ 0 & I \end{pmatrix}.
\end{equation}

In particular, the space $\mathbf{H}(S)$ is A_j-invariant for $j = 1, \ldots, q$.

(II) The operators A_j, B_j, C, D satisfy the relations
\begin{equation}
A_{j}\ell F = (A_jF)\alpha_{j}\alpha_{\ell}, \quad B_{j}\ell d = (B_jd)\alpha_{j}\alpha_{\ell}, \quad C(Fc) = (CF)c, \quad D(dc) = (Dd)c
\end{equation}
for every $F \in \mathbf{H}(S)$, $c \in \mathcal{C}$, $d \in \mathcal{C}_2$, $1 \leq j, \ell \leq q$.

(III) Let
\begin{equation}
S = \sum_{w \in \mathcal{F}_q} w^*S_{[w]}, \quad \text{where} \quad S_{[w]} \in \mathcal{C}
\end{equation}
be the pointwise absolutely convergent expansion of S as in Theorem 5.3. Then for every $d \in \mathcal{C}_2$ it holds that
\begin{equation}
S_{[w]}d = \begin{cases}
Dd, & \text{if} \quad w = \emptyset, \\
w(CAvB_jd)v^*\alpha_j & \forall w, v \in \mathcal{F}_q : |w| = |v| + 1, \forall j : 1 \leq j \leq q,
\end{cases}
\end{equation}
where
\begin{equation}
A^{\alpha_1 \cdots \alpha_k} \overset{\text{def}}{=} A_{i_k} \cdots A_{i_1}, \quad A^0 \overset{\text{def}}{=} I.
\end{equation}

Proof.

(I). Following the idea of [5, Theorem 2.3], we define a linear operator

\[\hat{V}_j : \text{span} \left\{ \left(\begin{array}{c} K^e_S d \\ e \end{array} \right) : c \in \mathbb{B}(T), d, e \in C_2 \right\} \rightarrow \mathcal{H}(S) \oplus C_2 \]

by

\begin{equation}
\hat{V}_j \left(\begin{array}{c} K^e_S d \\ e \end{array} \right) = \left(\begin{array}{c} \mathcal{B}_S \\ CM^*_S \end{array} \right) (K^e_S d \alpha_j^* + e).
\end{equation}

We claim that the operator \(\hat{V}_j \) is well-defined and contractive; moreover, for every \(F_1, F_2 \in \text{span} \left\{ \left(\begin{array}{c} K^e_S d \\ e \end{array} \right) : c \in \mathbb{B}(T), d, e \in C_2 \right\} \)

\begin{equation}
\langle \hat{V}_j F_1, \hat{V}_j F_2 \rangle_{\mathcal{H}(S) \oplus C_2} = \left\langle \left(\begin{array}{c} \hat{M}_{\alpha_j}^{\alpha_j} \\ 0 \\ I \end{array} \right) F_1, F_2 \right\rangle_{\mathcal{H}(S) \oplus C_2}.
\end{equation}

Indeed, denote for the moment by \(C^* \) the adjoint of \(C \) in \(\mathcal{H}_2(T) \) (that is, the injection of \(C_2 \) into \(\mathcal{H}_2(T) \)). Then, in view of Definition 6.4 and the statements (I) and (II) in Proposition [5.6], we obtain

\begin{align*}
\langle \hat{V}_j \left(\begin{array}{c} K^e_S d_1 \\ e_1 \end{array} \right), \hat{V}_j \left(\begin{array}{c} K^e_S d_2 \\ e_2 \end{array} \right) \rangle_{\mathcal{H}(S) \oplus C_2} &= \\
&= \left\langle \left(\begin{array}{c} \mathcal{B}_S \\ CM^*_S \end{array} \right) (K^{e_1} \alpha_j^* + e_1), \left(\begin{array}{c} \mathcal{B}_S \\ CM^*_S \end{array} \right) (K^{e_2} \alpha_j^* + e_2) \right\rangle_{\mathcal{H}(S) \oplus C_2} \\
&= \langle (I - M_S \hat{M}_{\alpha_j}^{\alpha_j} M_S^* A_j)(K^{e_1} \alpha_j^* + e_1), K^{e_2} \alpha_j^* + e_2 \rangle_2 \\
&= \langle (I - \hat{M}_{\alpha_j}^{\alpha_j} M_S^* M_S \hat{M}_{\alpha_j}^{\alpha_j})(K^{e_1} \alpha_j^* + e_1), K^{e_2} \alpha_j^* + e_2 \rangle_2 \\
&= \langle A_j \hat{M}_{\alpha_j}^{\alpha_j} K^{e_1} d_1, K^{e_2} d_2 \rangle_2 + \langle e_1, e_2 \rangle_2 - \langle A_j \hat{M}_{\alpha_j}^{\alpha_j} M_S^* M_S \hat{M}_{\alpha_j}^{\alpha_j} K^{e_1} d_1, K^{e_2} d_2 \rangle_2 \\
&= \langle \hat{M}_{\alpha_j}^{\alpha_j} \mathcal{B}_S K^{e_1} d_1, K^{e_2} d_2 \rangle_2 + \langle e_1, e_2 \rangle_2 \\
&= \langle \hat{M}_{\alpha_j}^{\alpha_j} K^{e_1} d_1, K^{e_2} d_2 \rangle_{\mathcal{H}(S)} + \langle e_1, e_2 \rangle_2.
\end{align*}

Thus (6.17) holds. Since, according to Proposition [6.6], the space \(\mathcal{H}(S) \) is right \(C \)-invariant and \(\| \alpha_j \| = 1 \), we conclude that \(\hat{V}_j \) is well-defined and contractive. Since the span of \(K^e_S k \) is dense in \(\mathcal{H}(S) \) (see (6.7)), \(\hat{V}_j \) can be extended as a contraction on \(\mathcal{H}(S) \oplus C_2 \), which satisfies

\[\hat{V}_j^* \hat{V}_j = \left(\begin{array}{c} \hat{M}_{\alpha_j}^{\alpha_j} \\ 0 \\ I \end{array} \right). \]

In order to complete the proof of statement (I), it suffices to observe that \(V_j = \hat{V}_j^* \).

(II). The identities (6.10) - (6.12) follow immediately from (6.8) and the Cuntz relations (2.7).
(III). The proof parallels the proof of the statement (III) in Proposition 6.6. Let us fix a sequence of indices \(j = i_0, i_1, i_2, i_3, \ldots \), \(1 \leq i_n \leq q \). Then for \(d \in C_2 \) we have

\[
S_d = Dd + (S - S[\emptyset])d = Dd + (B_j d)\alpha_j^* = Dd + (CB_j d)\alpha_j^* + (A_i B_j d)\alpha_i^* \quad \text{for} \quad m = 0, 1, 2, \ldots
\]

where \(\mu_0 = \emptyset, \mu_n = \alpha_{i_1} \ldots \alpha_{i_n} \). Now it follows from the identity (3.3) in Theorem 3.5 applied to \(S_d \), that

\[
\sum_{|w| = n+1} w^* S[w] d = (CA^n B_j d)\mu_n^* \quad \forall n \geq 0
\]

and hence

\[
S[w] d = w(CA^{n-1} B_j d)\mu_{|w|}^* \quad |w| \geq 1.
\]

Since the sequence of indices \(i_0, i_1, i_2, i_3, \ldots \) was chosen arbitrarily, we obtain (6.14).

\[\square\]

A result which is converse to Theorem 6.8 can be formulated as follows:

Theorem 6.8. Let \(H \) be a right \(C \)-invariant Hilbert space included in \(H_2(\mathcal{T}) \). Assume that for some \(j \), \(1 \leq j \leq q \), there exists a bounded linear operator

\[
V_j = \left(\begin{array}{cc} A_j & B_j \\ C & D \end{array} \right) : \left(\begin{array}{c} H \\ C_2 \end{array} \right) \longrightarrow \left(\begin{array}{c} H \\ C_2 \end{array} \right),
\]

for which the relations (6.11), (6.12) and (6.9) hold true. Then:

(I) The series

\[
S = \sum_{w \in \mathcal{F}_q} w^* S[w],
\]

where the coefficients \(S[w] \in C \) are determined by

\[
\forall d \in C_2 \quad S[w] d = \left\{ \begin{array}{ll} Dd, & \text{if} \quad w = \emptyset, \\
 w(CA^{n-1}_j B_j d)\alpha_j^{*n}, & \text{if} \quad |w| = n \geq 1,
\end{array} \right.
\]

defines (in the sense of pointwise absolute convergence) a Schur multiplier \(S \in H(\mathcal{T}) \).

(II) The series

\[
E_c F = \sum_{n=0}^{\infty} (ca)^n \cdot (CA_j^n F) \cdot \alpha_j^{*n}, \quad F \in H, c \in B(\mathcal{T})
\]

converges absolutely in \(C_2 \) and defines a bounded linear operator \(E_c \) from \(H \) to \(C_2 \). This operator \(E_c \) and the kernel \(K_S \) defined in (6.2) satisfy

\[
(K_S^d)^\wedge (c) k = E_c E_d^* k \quad \forall c, d \in B(\mathcal{T}), k \in C_2.
\]

(III) If the operators \(A_j \) and \(C \) are as in (6.8), then \(H \) is the de Branges – Rovnyak space associated with the Schur multiplier \(S \):

\[
H = H(S).
\]
Proof. Let $c \in \mathcal{B}(T)$. Then, as follows from (6.9) and (11.11), the series (6.20) is absolutely convergent in the C_2-norm and defines a bounded linear operator E_c from H to C_2.

Let us consider the linear operator $s(c) : C_2 \to C_2$, defined by

$$s(c)k = Dk + \sum_{n=1}^{\infty} (ca)^n : (CA_n^{-1}B_n k) \cdot \alpha_j^{n*}, \quad k \in C_2.$$ (6.22)

Here, in view of (6.9) and (4.1), the series is absolutely convergent in the C_2-norm and the operator $s(c)$ is bounded. Moreover, as follows from (6.11) and (6.12), the operator $s(c)$ commutes with M_d for every $d \in C$. Hence, according to the statement (II) of Lemma 6.3, $s(c) \in C$.

Next we observe that

$$\left((M_{ca} \hat{M}_{\alpha_j})E_c I \right)V_j = (E_c s(c)).$$

Note that, as follows from (6.11) and (6.12), the self-adjoint operator \hat{M}_{α_j} commutes with E_d for every $d \in C$. From (6.9) we obtain

$$\left((M_{ca} \hat{M}_{\alpha_j})E_c I \right)V_j V_j^* \left((M_{da} \hat{M}_{\alpha_j})E_d I \right)^* = (M_{ca} \hat{M}_{\alpha_j})E_c \hat{M}_{\alpha_j}^*(M_{\alpha_j} \hat{M}_{\alpha_j}) + I = (M_{ca} \hat{M}_{\alpha_j})E_c E_d^* (M_{\alpha_j} \hat{M}_{\alpha_j}) + I,$$

hence

$$I - s(c)s(d)^* = E_c E_d^* - (M_{ca} \hat{M}_{\alpha_j})E_c E_d^* (M_{\alpha_j} \hat{M}_{\alpha_j}).$$

Therefore, for every $k \in C_2$ the kernel $K_s(c, d)$, which appears in the equation (6.1) of Theorem 6.2, satisfies

$$K_s(c, d)k = \sum_{n=0}^{\infty} (ca)^n (I - s(c)s(d)^*)((\alpha^*d^*)^n k)$$

$$= \sum_{n=0}^{\infty} (ca)^n ((I - s(c)s(d)^*)((\alpha^*d^*)^n k \alpha_j^{n*})) \alpha_j^{n*}$$

$$= \sum_{n=0}^{\infty} (ca)^n (E_c E_d^* (\alpha^*d^*)^n k \alpha_j^{n*}) \alpha_j^{n*} -$$

$$- \sum_{n=0}^{\infty} (ca)^{n+1} (E_c E_d^* (\alpha^*d^*)^{n+1} k \alpha_j^{n*}) \alpha_j^{(n+1)*} = E_c E_d^* k.$$

In particular, the kernel $K_s(c, d)$ is positive. Now, according to Theorem 6.2 there exists a Schur multiplier $S \in H(T)$ such that

$$s(c) = S(c) \quad \forall c \in \mathcal{B}(T)$$

and the identity (6.2) implies (6.21).

Furthermore, in view of (6.22) and the statement (II) of Lemma 4.1, we obtain the formula (6.19) for the coefficients $S_{w|}$ of the pointwise absolutely convergent expansion (6.18) of S. This completes the proof of the statements (I) and (II) of...
the Theorem.

In order to prove the statement (III), we note that if the operators A_j and C are as in (6.8), then, according to the statement (III) of Proposition 5.6 and the definition (4.3) of the point evaluation,

$$E_c F = F^\wedge (c) \quad \forall F \in H, c \in B(T).$$

Therefore, the identity (6.21) implies

$$K^c_k = E^c_k \quad \forall c \in B(T), k \in C_2;$$

$$(F, K^c_k)_H = (F^\wedge (c), k)_2, \quad \forall F \in H, c \in B(T), k \in C_2.$$

In view of Proposition 6.6 and the statement (II) of Lemma 4.1,

$$H = \operatorname{span}\{K^c_k : k \in C_2, c \in B(T)\} = H(S) \quad \text{and} \quad \| \cdot \|_H = \| \cdot \|_{H(S)}.$$

□

The formulae (6.14) in Theorem 6.7 play the role of the backward shift realization (1.6) in the present setting: they allow to represent a given Schur multiplier S as the transfer operator of a multiscale input-state-output system, as described in the following theorem.

Theorem 6.9. Let $S \in H(T)$ be a Schur multiplier and let $H(S)$ be the associated de Branges – Rovnyak space. Let the operators

$$V_j = \begin{pmatrix} A_j & B_j \\ C & D \end{pmatrix} : \left(\begin{array}{c} H(S) \\ C_2 \end{array} \right) \rightarrow \left(\begin{array}{c} H(S) \\ C_2 \end{array} \right), \quad 1 \leq j \leq q,$$

be defined by (6.8) as in Theorem 6.7. Let $U \in H_2(T)$,

$$U = \sum_{w \in F_q} w^* U[w], \quad \text{where} \quad U[w] \in C_2,$$

and let $Y = SU \in H_2(T)$. Then the coefficients $Y[w] \in C_2$ of the expansion

$$Y = \sum_{w \in F_q} w^* Y[w]$$

satisfy the recurrent relations

$$(6.23) \quad \begin{cases} X_\emptyset = 0, \\ X_{w\alpha_j} = A_j X_w + B_j U_w, \\ Y[w] = w(CX_v + DU_v)v^* \quad \forall v \in F_q : |v| = |w|, \end{cases}$$

where

$$U[w] \overset{\text{def}}{=} \sum_{v : |v| = |w|} v^* U[v]w.$$

Proof. The case $w = \emptyset$ is trivial, so let us assume $n = |w| \geq 1$. Let $v = \alpha_i \ldots \alpha_i$ and denote

$$v_k = \alpha_i \ldots \alpha_i, \quad v_k^* = \alpha_{i+k} \ldots \alpha_i, \quad v_0 = v_{\emptyset} = \emptyset.$$
As follows from (6.14),
\[
\sum_{u \in F_q} u^* Y_u = \sum_{\mu, \nu \in F_q, |\mu| + |\nu| = n} \mu^* S_{[\mu]} \nu^* U_{[\nu]}
\]
\[
= \sum_{k=0}^{n-1} \sum_{|u| = k} C A^{v_{k+1}} B_{v_k} (u^* U_{[u]} v_k) v^* + \sum_{|u| = n} D (u^* U_{[u]} v) v^*
\]
\[
= \left(C \sum_{k=0}^{n-1} A^{v_{k+1}} B_{v_k} U_{v_k} + DU_v \right) v^*,
\]
hence, according to (2.7),
\[
Y_{[w]} = w \left(C \sum_{0 \leq k \leq n-1} A^{v_{k+1}} B_{v_k} U_{v_k} + DU_v \right) v^*.
\]

Denote
\[
X_v = \sum_{0 \leq k \leq |v|-1} A^{v_{k+1}} B_{v_k} U_{v_k}, \quad v \in F_q, |v| \geq 1.
\]
Then
\[
X_{v\alpha_j} = \sum_{0 \leq k \leq |v|-1} A_j A^{v_{k+1}} B_{v_k} U_{v_k} + B_j U_v = A_j X_v + B_j U_v.
\]
In the case \(v = \alpha_j\) we have
\[
X_{\alpha_j} = B_j U_0 = A_j X_0 + B_j U_0.
\]
Thus the relations (6.23) hold.

7. The Blaschke factors

In this section we present an important example of Schur multiplier, which plays a role in interpolation. We follow the ideas of [3, p. 86–90]. Let \(c \in B(T)\) and consider the operator
\[
R_c \equiv \sum_{n=0}^{\infty} (c^\alpha)^n (\alpha^* c^*)^n = (K_{\alpha}^c)^\alpha (c) \in C.
\]
Then \(R_c > 0\) and, moreover,
\[
R_c = I + c (\alpha R_c \alpha^*) c^*.
\]
Hence \(R_c > I\). Next we define
\[
L_c \equiv \alpha (R_c - R_c \alpha^* R_c^{-1} \alpha R_c) \alpha^* \in C^{q \times q}.
\]

Proposition 7.1. The following holds:
\[
\begin{align*}
L_c &> 0, \\
L_c^{-1} &\equiv c^* c + \alpha R_c^{-1} \alpha^* = I + c^* c - \alpha c L_c c^* \alpha^*, \\
L_c &\equiv R_c^{-1} \alpha R_c \alpha^*.
\end{align*}
\]
Definition 7.2. Let α_L. The rest of the identities follow from (7.1) analogously. □

Since G the form $B_hence $\exists W$ \begin{align*} &\text{We have } F \\
&\text{First, let us assume that } F(1) = \alpha_L \\
&\text{Proof.} \quad (I - \alpha c L) L_{c}^{-1} (I - L c^* \alpha^*) = \alpha c (\alpha^* - c) (I - \alpha c L)
\end{align*}

\begin{align*}
&\text{hence } B_c = (\alpha^* - c)(I - L c^* \alpha^*)^{-1} \sqrt{L c} \in H(T) \\
&\text{is called the Blaschke factor, corresponding to the constant } c.
\end{align*}

Proposition 7.3. The operator B_c is unitary. In particular, the multiplication operator $M_{B_c} : H_2(T)^q \rightarrow H_2(T)$ is an isometry.

Proof. We have

\begin{align*}
(I - \alpha c L) L_{c}^{-1} (I - L c^* \alpha^*) = \alpha c (\alpha^* - c),
\end{align*}

hence $B_c ^* B_c = I$ and M_{B_c} is an isometry. Furthermore,

\begin{align*}
(\alpha^* - c) = \alpha^* (I - \alpha c)
\end{align*}

has a bounded inverse (not causal), hence B_c is also invertible and unitary. □

Theorem 7.4. Let $F \in H_2(T)$, $c \in \mathbb{B}(T)$. Then $F^\wedge(c) = 0$ if and only if F is of the form

\begin{align*}
F = B_c \cdot G,
\end{align*}

where $G \in H_2(T)^q$, \|G\|_2 = \|F\|_2.

Proof. First, let us assume that $F = B_c \cdot G$, where $G \in H_2(T)^q$. Then $\|F\|_2 = \|G\|_2$ by Proposition 7.3. Furthermore, as follows from Lemma 4.1, $B_{c}^{\wedge}(c) = 0$ and $F^{\wedge}(c) = (B_c G)^{\wedge}(c) = 0$.

Conversely, assume that F has the expansion $F = \sum_{w \in \mathcal{F}_q} w^* F[w]$ and that $F^{\wedge}(c) = 0$. Then F is represented by the series

\begin{align*}
F = F - F^{\wedge}(c) = \sum_{w \in \mathcal{F}_q} (w^* - (w^*)^{\wedge}(c)) F[w].
\end{align*}

Denote $G' \overset{\text{def}}{=} (I - \alpha c)^{-1} \alpha F$. Then $F = (\alpha^* - c) G'$, $G \in X_2(T)^q$ and, moreover,

\begin{align*}
G' = \sum_{w \in \mathcal{F}_q} (I - \alpha c)^{-1} \alpha (w^* - (w^*)^{\wedge}(c)) F[w]
\quad = \sum_{w \in \mathcal{F}_q \atop \mid w \mid \geq 1} \alpha \left(I + \alpha \alpha + (\alpha \alpha)^2 + \cdots + (\alpha \alpha)^{\mid w \mid - 1} \right) w^* F[w].
\end{align*}
Since each term of the last series is causal, $G' \in H_2(T)^q$. It remains to define

$$G \overset{\text{def}}{=} \sqrt{L_c^*(-I - L_c^*c^*)(I - L_c^*c^*)}G'$$

to complete the proof. □

References

[1] D. Alpay. The Schur algorithm, reproducing kernel spaces and system theory. SMF/AMS Texts and Monographs. Vol. 5. American Mathematical Society. 2001.
[2] D. Alpay, H. Attia, and D. Volok. Realization theorems for stationary multiscale systems. Linear Algebra Appl., 412(2-3):326–347, 2006.
[3] D. Alpay, P. Dewilde, and H. Dym. Lossless inverse scattering and reproducing kernels for upper triangular operators. In I. Gohberg, editor, Extension and interpolation of linear operators and matrix functions, volume 47 of Operator theory: Advances and Applications, pages 61–135. Birkhäuser, Basel, 1990.
[4] D. Alpay, A. Dijksma, and D. Volok. Évaluation ponctuelle et espace de Hardy : le cas multi-échelle. C. R. Math. Acad. Sci. Paris, 340:415–420, 2005.
[5] D. Alpay, A. Dijksma, and J. Rovnyak. A theorem of Beurling–Lax type for Hilbert spaces of functions analytic in the ball. Integral Equations Operator Theory, 47:251–274, 2003.
[6] D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo. Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, volume 96 of Operator theory: Advances and Applications. Birkhäuser Verlag, Basel, 1997.
[7] D. Alpay, M. Shapiro, and D. Volok. Rational hyperholomorphic functions in \mathbb{R}^4. J. Funct. Anal., 221(1):122–149, 2005.
[8] D. Alpay and D. Volok. Point evaluation and Hardy space on a homogeneous tree. Integral Equations Operator Theory, 53:1–22, 2005.
[9] D. Alpay and D. Volok. Processus stationnaires sur l’arbre dyadique: prédiction et extension de covariance. C. R. Math. Acad. Sci. Paris, 342(4):237–241, 2006.
[10] J.P. Arnaud. Fonctions sphériques et fonctions définies positives sur l’arbre homogène. C. R. Acad. Sci. Paris Sér. A-B, 290(2):A99–A101, 1980.
[11] J. Ball and V. Vinnikov. Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings. In D. Alpay, editor, Reproducing kernel spaces and applications, volume 143 of Operator theory: Advances and Applications, pages 77–134. Birkhäuser, Basel, 2003.
[12] M. Basseville, A. Benveniste, and A. Willsky. Multiscale statistical signal processing. In Wavelets and applications (Marseille, 1989), volume 20 of RMA Res. Notes Appl. Math., pages 354–367. Masson, Paris, 1992.
[13] A. Benveniste, R. Nikoukhah, and A. Willsky. Multiscale system theory. Rapport de Recherche 1194, INRIA, Mars 1990.
[14] A. Benveniste, R. Nikoukhah, and A. Willsky. Multiscale system theory. IEEE Trans. Circuits Systems I Fund. Theory Appl., 41(1):2–15, 1994.
[15] L. de Branges and J. Rovnyak. Canonical models in quantum scattering theory. In C. Wilcox, editor, Perturbation theory and its applications in quantum mechanics, pages 295–392. Wiley, New York, 1966.
[16] L. de Branges and J. Rovnyak. Square summable power series. Holt, Rinehart and Winston, New York, 1966.
[17] O. Bratteli and P. Jorgensen. Wavelets through a looking glass. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA, 2002. The world of the spectrum.
[18] P. Cartier. Géométrie et analyse sur les arbres. In Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 407, pages 123–140. Lecture Notes in Math., Vol. 317. Springer, Berlin, 1973.
[19] J. Cuntz. Simple C^*-algebras generated by isometries. Comm. Math. Phys., 57(2):173–185, 1977.
[20] P. Dewilde and A.-J. van der Veen. Time-varying systems and computations. Kluwer Academic Publishers, Boston, MA, 1998.
[21] S. W. Drury. A generalization of von Neumann’s inequality to the complex ball. Proc. Amer. Math. Soc., 68(3):300–304, 1978.
[22] M. Fliess. Matrices de Hankel. J. Math. Pures Appl. (9), 53:197–222, 1974.
[23] I. Gohberg and M.G. Krein. *Introduction to the theory of linear nonselfadjoint operators*, volume 18 of *Translations of mathematical monographs*. American Mathematical Society, Rhode Island, 1969.

[24] G. Letac. Problèmes classiques de probabilité sur un couple de Gel’fand. In *Analytical methods in probability theory (Oberwolfach, 1980)*, volume 861 of *Lecture Notes in Math.*, pages 93–120. Springer, Berlin, 1981.

[25] D. Sarason. *Sub–Hardy Hilbert spaces in the unit disk*, volume 10 of *University of Arkansas lecture notes in the mathematical sciences*. Wiley, New York, 1994.

[26] J.P. Serre. *Arbres, amalgames, SL₂*. Société Mathématique de France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.

DEPARTMENT OF MATHEMATICS, BEN–GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA 84105, ISRAEL

E-mail address: dany@math.bgu.ac.il

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GRONINGEN, POB 800, NL 9700AV GRONINGEN, THE NETHERLANDS

E-mail address: dijksma@math.rug.nl

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: danvolok@hotmail.com