Supplementary Information

Facile Preparation of Flexible Binder-Free Graphene Electrodes for High-Performance Supercapacitors

Shiqi Lina,b, Jie Tanga,b,*, Wanli Zhanga,b, Kun Zhanga, Youhu Chena, Runsheng Gaoa, Hang Yina,b, Xiaoliang Yua, Lu-Chang Qinc

a National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

b University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

c Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA

Corresponding author: Jie Tang, tang.jie@nims.go.jp
Fig. S1. Schematic illustration of hydrogen bonds in graphene oxide (GO).

Fig. S2. Optical and SEM (inset) images of (a) GO film and (b) Reduced GO film prepared by thermal treatment at 500 °C.
Table S1 Raman Peaks of GO film, GO/TRGO film and reduced-GO/TRGO film.

Sample	Peak Index	Raman Shift (cm\(^{-1}\))	\(\frac{I_D}{I_G}\) Central Peak Ratio
GO film	D	1364	0.93
	G	1584	
GO/TRGO film	D	1370	0.96
	G	1588	
reduced-GO/TRGO film	D	1359	0.98
	G	1586	

Fig. S3. Raman spectrum of TRGO.
Fig. S4. (a) XPS survey spectra and (b) XPS high-resolution C 1s spectra of TRGO.

Fig. S5. FTIR spectra of GO, GO/TRGO, and reduced-GO/TRGO films.

Table S2 Specific surface area of GO/TRGO films before and after reduction.
GO/TRGO Film

GO/TRGO (Mass ratio)	Specific Surface Area (m2/g)
1:0	8.9
3:1	97.5
1:1	218.0
1:3	253.1
0:1	357

Fig. S6. Pore size distribution of GO film and GO/TRGO films with different composition (1:0, 3:1, 1:1, 1:3).
Fig. S7. CV curves of supercapacitors with (a) free-standing reduced-GO/TRGO (1:1) film and (b) filtered TRGO film electrodes at various scanning rate from 10 to 200 mV s\(^{-1}\).

Fig. S8. Galvanostatic charge–discharge curves of supercapacitors with (a) free-standing reduced-GO/TRGO (1:1) film and (b) filtered TRGO film electrodes at different current densities from 0.2 to 10 A g\(^{-1}\).
Fig. S9. Cross-sectional SEM image of filtered TRGO film.

Fig. S10. (a) Nitrogen adsorption/desorption isotherms and (b) Pore size distribution of filtered TRGO film.
Fig. S11. Photograph of fabricated solid state supercapacitor.

Fig. S12. Capacitance retention of solid state supercapacitor with free-standing reduced-GO/TRGO (1:1) film at bend angle of 180° under different bending cycle.
Table S3 Comparison of electrochemical performance with relevant graphene-based materials reported in literature.

Material	Electrolyte	Test Condition	Specific Capacitance (F g⁻¹)	Energy Density (Wh kg⁻¹)	Reference
RGO/AC/CNT	Organic (1M LiClO₄ EC/DEC)	0.2 A/g	101	30	Ref. 2
N-doped holey graphene aerogel	EMIMTFSI	1 A/g	142.3	60.5	Ref. 3
PCSG-60	TEABF₄	1 A/g	221	38.2	Ref. 4
IL-induced RGO	BMIMPF₆	0.5 A/g	150	25.3	Ref. 5
EDA/RGO	BMIMBF₄	2 mV/s	119	51	Ref. 6
N-doped graphene	BMIMBF₄	1 A/g	137	55	Ref. 7
N/O co-doped hierarchical porous carbon	EMIBF₄	1 A/g	51.9	22.1	Ref. 8
UHFG	TEABF₄	1 A/g	182	46	Ref. 9
Flexible graphene	EMIBF₄	0.2 A/g	180	85.6	This work

References
1 V. Sedlakova, J. Sikula, J. Majzner, P. Sedlak, T. Kuparowitz, B. Buergler and P. Vasina, *J. Power Sources*, 2015, 286, 58–65.
2 X. Li, Y. Tang, J. Song, W. Yang, M. Wang, C. Zhu, W. Zhao, J. Zheng and Y. Lin, *Carbon*, 2018, 129, 236–244.
3 P. Xu, G. Gao, L. Ma, Z. Li, H. Zhang, H. Xiao, X. Liang, T. Zhang, X. Tian and C. Liu, *Carbon*, 2019, 149, 452–461.
4 D. Yan, N. Cui, F. Liu, X. F. Hao, Y.-H. Li, Y.-B. Zhang, Z.-Z. Pan, N. Wu and C. Hao, *J. Alloys Compd.*, 2019, 776, 22–30.
5 B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu, Z. Geng, D. Chen, Y. Ding, K. Moon, M. Liu and C.-P. Wong, *Nano Energy*, 2017, 31, 183–193.
6 D. Dai, Z. Liu, B. Zhao, J. Zheng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang and M. Liu, *J. Power Sources*, 2018, 387, 43–48.
7 Y. Zhou, J. Ren, L. Xia, Q. Zheng, J. Liao, E. Long, F. Xie, C. Xu and D. Lin, *Electrochim. Acta*, 2018, 284, 336–345.
8 Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C. A. Howard, D. J. L. Brett, I. P. Parkin, F. Li and Z. Guo, *Energy Storage Mater.*, 2019, 17, 12–21.