Implementation research to improve quality of maternal and newborn health care, Malawi

Stephan Brenner, Danielle Wilhelm, Julia Lohmann, Christabel Kambala, Jobiba Chinkhumba, Adamson S Muula & Manuela De Allegri

Objective To evaluate the impact of a performance-based financing scheme on maternal and neonatal health service quality in Malawi.

Methods We conducted a non-randomized controlled before and after study to evaluate the effects of district- and facility-level performance incentives for health workers and management teams. We assessed changes in the facilities' essential drug stocks, equipment maintenance and clinical obstetric care processes. Difference-in-difference regression models were used to analyse effects of the scheme on adherence to obstetric care treatment protocols and provision of essential drugs, supplies and equipment.

Findings We observed 33 health facilities, 23 intervention facilities and 10 control facilities and 401 pregnant women across four districts. The scheme improved the availability of both functional equipment and essential drug stocks in the intervention facilities. We observed positive effects in respect to drug procurement and clinical care activities at non-intervention facilities, likely in response to improved district management performance. Birth assistants' adherence to clinical protocols improved across all studied facilities as district health managers supervised and coached clinical staff more actively.

Conclusion Despite nation-wide stock-outs and extreme health worker shortages, facilities in the study districts managed to improve maternal and neonatal health service quality by overcoming bottlenecks related to supply procurement, equipment maintenance and clinical performance. To strengthen and reform health management structures, performance-based financing may be a promising approach to sustainable improvements in quality of health care.

Abstracts in العربية Français, Русский и Español at the end of each article.

Introduction

Improving health-care quality is essential to health systems strengthening. Financial, material and human resource limitations challenge low- and middle-income countries to sustain satisfactory health-care quality performance. Health-care quality improvement strategies differ in focus. Some strategies focus more on health workers' performance and the immediate micro-context in which health workers provide care. Other strategies focus more on the health system's macro-context to address financial and fiscal constraints, inefficient resource allocations, limited donor coordination or ineffective health sector regulation.

Performance-based financing schemes are health financing strategies that link economic aspects of health care provision (macro-context) to predefined clinical and/or structural performance measures. Performance-based payments are usually managed and directly invested in further service improvements by facilities. Moving some fiscal decision-making towards front-line providers allows for additional mechanisms to overcome day-to-day limitations in service provision (such as inadequate supplies or low staff motivation) faced by health facilities. Many low- and middle-income countries have adopted performance-based financing schemes because of their potential to optimize both financial management and service quality (micro-context). The schemes may also offer more sustainability to health-care quality improvements by strengthening or redefining responsiveness and accountability across various service providers and health-system actors (macro-context).

Failure to maintain essential service inputs, such as adequate staffing, drug procurement, equipment repair, etc., risks the overall success of health-care quality improvement programmes. Health-care quality depends on adequate human resource and supply chain mechanisms for procurement of drugs and supplies, particularly in systems exposed to extreme resource constraints. In many low- and middle-income countries, central-level health officials are responsible for maintaining drug stocks, essential equipment and adequate staffing across health facilities, and are thus ultimately liable for service quality at the periphery. Therefore, centrally organized health systems may benefit from strategies that introduce more decentralized structures of decision-making, responsiveness and accountability.

While performance-based financing schemes in principle are designed to help health workers and service managers to achieve better health-care quality outcomes, their actual effect in doing so remains unclear. Recent performance-based financing evaluations in Afghanistan and Burundi failed to detect strong effects of their schemes on health facilities' ability to secure essential drugs and supplies. A Tanzanian scheme directly providing incentives for facilities to manage essential drugs and supplies failed to prevent stock-outs of essential equipment, medicines and commodities. The study concluded that incentives provided to facilities to improve quality-of-care performance that are tied to drug and supply management cannot overcome systemic shortcomings, such as inadequate supply chain structures. Conversely, a

* Institute of Public Health, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany.
* College of Medicine, University of Malawi, Blantyre, Malawi.

Correspondence to Stephan Brenner (email: stephan.brenner@uni-heidelberg.de).

Submitted: 28 May 2016 – Revised version received: 28 November 2016 – Accepted: 7 December 2016 – Published online: 22 February 2017)
scheme in Zambia provided incentives to health facilities, which were tied to a programme on essential drug and supply management. The scheme enabled participating facilities to use financial rewards gained for positive performance to purchase additional drugs, which successfully reduced subsequent stock-outs. Yet generalized evidence on performance-based financing schemes’ effects on improving health-care service management processes remains limited. This is partially because many schemes narrowly focus on service utilization or the clinical aspect of health-care quality, often overlooking elements directly tied to the structural aspect.

We evaluated a performance-based financing scheme in Malawi to further understand the potential of such a scheme to improve both clinical (i.e. adherence to obstetric care treatment protocols) and structural (i.e. provision of essential drugs, supplies and equipment) aspects of health-care that have an effect on providing quality care.

Methods

Study Setting

Malawi has a centralized tax-based health system that receives significant external donor support. In 2010, basic emergency obstetric care was provided free of charge by 98 (90%) public and contracted not-for-profit health facilities nationwide. Public health-care facilities receive general budget allocations from the Ministry of Health for infrastructure, equipment and salaries. District health management teams receive additional budget allocations from the Ministry of Local Government and Rural Development to procure drugs and supplies from central medical stores for all public facilities within their districts.

Malawi’s health system faces two major challenges. First, the country has inadequate human resources and suffers from shortages of qualified health workers, poor remuneration, limited career opportunities and insufficient supervision and training opportunities. Second, it has a wide-spread lack of essential equipment at health centres with recurrent stock-outs of drugs and consumables. Consequently, public facilities struggle to provide quality health-care services.

To address some of these limitations and to meet the millennium development goals 4 and 5, to reduce child and maternal mortality, the Malawian Ministry of Health introduced the Results Based Financing for Maternal and Neonatal Health (RBF4MNH) Initiative in 2013 at several emergency obstetric care facilities. Similar to other performance-based incentive schemes, the initiative provides financial rewards for maternal care providers and district health management teams upon meeting defined performance goals (performance-based incentives). It also provides conditional cash transfers (financial rewards) for pregnant women upon meeting defined compliance targets. Details about the initiative and its implementation design are presented in Box 1.

Study design

This paper focuses on the performance-based financing component of the initiative and assesses its effects on maternal and newborn health service quality. The study is part of a larger impact evaluation that uses a non-randomized controlled before and after study design with independent controls. The intervention sample for this study initially consisted of all 18 facilities contracted by the initiative at the beginning of phase I: four public district hospitals, and 14 public health centres providing at least basic emergency obstetric care. The control sample included all health facilities within the same study districts that were not, or not yet, enrolled in the initiative at baseline: one mission hospital, two private and 12 public health centres providing basic emergency obstetric care. Several months prior to the last data collection round, five previous control facilities (a mission hospital, one private and three public health centres) were contracted by the initiative (phase II) and thus moved into the study’s intervention arm. Data were collected at three time-points: before the initiative was implemented (March/April 2013) used as baseline, at mid-point (June/July 2014) and at the end (June/July 2015). In addition, at each time point we identified a small number of pregnant women giving birth per each sampled facility using a convenience-sampling approach.

Outcome indicators

We measured the scheme’s effect on quality using two sets of performance outcomes: structural performance and clinical performance (Box 2). For structural performance, we assessed the availability and functionality of service input elements, such as equipment, drug and supply items included in the initiative’s tracer lists at each sampled facility. To measure effects on clinical performance, we observed the following processes: (i) routine care activities required to identify respective emergency conditions; (ii) the overall number of pregnant women monitored by partograph; (iii) the completeness of partograph documentation; (iv) a set of common routine infection prevention measures; (v) oxytocin ad-

Box 1. Malawi’s Results-Based Financing for Maternal and Neonatal Health Initiative: implementation design

The Results-Based Financing for Maternal and Neonatal Health Initiative was introduced in Malawi in April 2013 to improve the quality of facility-based care provided to women and newborns during and within 48 hours after delivery. The initiative was implemented in selected emergency obstetric care facilities across four districts (Balaka, Dedza, Mchinji and Ntchisi). Similar to other performance-based incentive programmes, the initiative combines financial rewards for maternal care providers and district health management teams upon meeting defined performance goals (performance-based incentives) with conditional cash transfers (financial rewards) for pregnant women upon meeting defined compliance targets. Across the four districts, the initiative contracted 18 health facilities (four hospitals and 14 health centres) during phase I (April 2013–October 2014) and then expanded to include a total of 28 health facilities (5 hospitals and 23 health centres) during phase II (ongoing until 2017). Enrolment of facilities into the initiative was non-random and was based on performance of emergency obstetric care signal functions, functionality of referral system, geographical emergency obstetric care coverage and catchment population size. Each enrolled facility received initial start-up financial support conditional on need related to immediate infrastructural requirements (i.e. potable water, electricity, waste disposal, building structures, etc.). Incentives for facilities are largely tied to clinical and general service management performance; district health management team incentives are largely tied to equipment maintenance and drug supply management across all facilities within each district. At least 30% of received payments are re-invested to further improve health care quality at district and facility levels, while the remaining portion is directly shared among staff as personal bonuses.
Box 2. Performance indicators and related measures of the performance-based financing scheme in Malawi

Clinical performance indicators and process measures

A. Proportion of pregnant women with unknown HIV status giving birth in the facility who are tested and treated (if positive) with PMTCT medicines.
 1. Birth attendant verifies patient’s HIV status using antenatal history review.
B. Proportion of pregnant women giving birth in the facility and show signs of pre-eclampsia or eclampsia who received magnesium-sulfate.
 1. Birth attendant asks patient for symptoms related to pre-eclampsia.
 2. Birth attendant checks for signs of pre-eclampsia.
C. Proportion of partographs completed and appropriately filled among women giving birth in the facility.
 1. Birth attendant monitors partograph during first stage labour
 2. Birth attendant documents record of complete partograph.
D. Implementation of at least one infection control action per reporting period.
 1. Birth attendant performs hand hygiene before patient contact.
 2. Birth attendant correctly uses sterile gloves during vaginal examination and stage 2 labour.
 3. Birth attendant decontaminates perineum before vaginal examination and stage 2 labour.
 4. Birth equipment is set up in sterile manner before the beginning of stage 2 labour.
E. Proportion of pregnant women giving birth in the facility who receive oxytocin in third stage of labour.
 1. Birth attendant performs medical AMTSL.
 2. Birth attendant performs practical AMTSL.
 3. Birth attendant confirms success of AMTSL.

Structural performance indicators and input measures

A. Proportion of facilities with functional operational maternity equipment.
 1. Availability of routine equipment (delivery kits, suturing kits, cord clamps, manual suction device with tubing).
 2. Availability of vital sign assessment equipment (blood pressure machine, stethoscope, thermometer, fetoscope).
 3. Availability of emergency equipment (newborn size bag valve with mask, vacuum extractor).
 4. Availability of ancillary items (urine protein testing strips).
B. Proportion of at least a 1-month supply of essential maternal and newborn health medicines and commodities at all facilities in the district.
 1. Proportion of facilities with stocks of antibiotics (ampicillin, benzyl penicillin, co-trimoxazole).
 2. Proportion of facilities with stocks of emergency obstetric care drugs (magnesium sulfate, diazepam, oxytocin).
 3. Proportion of facilities with stocks of isotonic fluids (Ringer’s lactate, normal saline, dextrose 5% saline).
 4. Proportion of facilities with stocks of pain control (paracetamol, pethidine).
 5. Proportion of facilities with stocks of PMTCT drugs (nevirapine syrup, ART regimen 5A’).
 6. Proportion of facilities with stocks of ancillary items (urine protein testing strips).

AMTSL: active management of third stage labour; ART: anti-retroviral treatment; HIV: human immunodeficiency virus; PMTCT: prevention of mother-to-child transmission of HIV.

a At birth attendant level
b At facility level
c Antiretroviral therapy with tenofovir, disoproxil, fumarate, lamivudine and efavirenz.

Note: Based on indicators for the Results-Based Financing for Maternal and Neonatal Health Initiative.
The model is as follows:

\[Y_i = \beta_0 + \beta_1 t_{1i} + \beta_2 T_{1i} + \beta_3 t_{1i}^* T_{1i} + \beta_4 t_2 + \beta_5 T_2 + \beta_6 t_2^* T_2 + \beta_7 X_{1i} + \rho_{m,c} + \epsilon_i \]

where, \(Y_i \) represents our outcome variables, (structural or clinical performance); \(\beta_0 \) is the average frequency of observations among controls at baseline; \(t \) is a dummy variable indicating the observation time point, with \(t1 \) being observation at mid-term and \(t2 \) being observation at end-term; \(T \) is another dummy variable that indicates the treatment time point, with \(T1 \) being treatment distribution during phase I (April 2013–October 2014) and \(T2 \) being treatment distribution at phase II (from November 2014 onwards). \(T^*t \) denotes the interaction between treatment and time point, where \(T1 \) and \(T2 \) denote interaction at mid-term and \(T2^*t2 \) at end-term; \(X_{1i} \) denotes potential confounders; \(\rho \) is within-cluster correlation; \(m \) is the number of clusters and \(c \) denotes the number of individual observations. The overall effect size estimate at end-term is represented by \(\beta_{m,c} \) which served as overall effect estimate for the entire initiative.

We adjusted all models for potential confounders, i.e. facility type (hospital versus health centre) and ownership (public versus faith-based). Models used in analysing clinical performance were further adjusted for duration of stage 1 labour (accounting for late presenting women unlikely to be monitored by partograph), number of birth attendants available during a case (accounting for workload constraints) and birth attendants’ participation in in-service trainings (accounting for recent skill changes independent of the scheme). We further controlled clinical performance for clustering effects at the level of the facility. Given the relatively small sample sizes, we used bootstrapping to derive more robust estimates of the underlying population parameters. We used Stata version 12.1 (StataCorp. LP, College Station, United States of America) for all statistical analyses.

Ethical approval was obtained from the College of Medicine Research and Ethics Committee at the University of Malawi and the Ethical Committee of the Medical Faculty at the University of Heidelberg.

Results

Table 2 summarizes changes and effect sizes for equipment maintenance. Positive DiD coefficients indicate a comparatively larger increase in availability of operational equipment at intervention facilities. We found statistically significant positive effects for nearly all essential equipment items related to routine obstetric care and vital sign recording. For items related to emergency and ancillary equipment, only a few items showed a significant positive effect (vacuum extractors, sterilizers and examination beds). We observed no significant effects for delivery beds. For blood pressure machines and newborn resuscitation equipment, improvements in both intervention and control facilities over time led to no significant change.

The scheme’s effects on drug and consumable stocks varied greatly (Table 3). We observed statistically significant positive effects for ampicillin, oxytocin, dextrose 5% saline solution, pethidine, and human immunodeficiency (HIV) drugs used for prevention of mother-to-child transmission. We observed significant negative effects for benzyl penicillin, normal saline and Ringer’s solution. In both intervention and control facilities, diazepam and urine testing strip stocks improved but stocks for magnesium sulfate worsened.

The effects on clinical performance were diverse (Table 4). Positive, but non-significant effects were observed for review of pre-eclampsia symptoms and timely set-up of sterile birth equipment. Negative effects were found for partograph monitoring and AMTSL. Initially, parallel improvements across intervention and control facilities occurred for examination of pre-eclampsia signs, partograph documentation, infection prevention techniques during vaginal examinations and births, as well as medical and practical elements of AMTSL.

Discussion

Our findings demonstrate that performance incentives directed to a range of health system actors beyond the actual frontline providers can affect health service quality positively. In our study, direct district level involvement not only improved supply management at intervention facilities, but likely produced additional benefits to control facilities.

Our findings indicate an overall positive impact on both equipment maintenance and drug stocks as a result of the incentives provided through the scheme. Though limited, this evidence suggests that performance-based financing may effectively sustain service inputs and processes once incentives are set across relevant health system levels. Qualitative evidence from interviews with the initiative’s district health and facility managers illustrate that local adoption has led to further decision-making by managers about resource allocation to extend beyond the initiative. The decision allowed facilities not included in the performance-based financing initiative to receive procurement support.

This local adoption effect on equipment availability was also demonstrated by the Salud Mesoamérica initiative – a results-
Table 2. Impact of performance-based financing scheme on equipment maintenance, Malawi, 2013–2015

Observed outcome variable by facility type	Health facilities with equipment item available in operational state at time of visit	Overall effect size			
	Baseline No.* (%)	Mid-term No.* (%)	End-term No.* (%)	DiD (% point)	P
Routine obstetric care equipment					
Delivery kits					
Interventionb	10 (60)	17 (97)	20 (87)	29	<0.01
Control	8 (60)	8 (59)	6 (58)		
Suturing kits					
Interventionb	1 (7)	11 (61)	13 (55)	49	<0.01
Control	3 (25)	3 (2)	4 (45)		
Cord clamps					
Interventionb	8 (48)	9 (49)	14 (60)	24	0.05
Control	8 (58)	6 (48)	5 (45)		
Manual suction device					
Interventionb	17 (9)	4 (23)	13 (55)	43	<0.01
Control	4 (25)	0 (0)	2 (21)		
Vital sign recording equipment					
Blood pressure machine					
Interventionb	11 (62)	14 (75)	18 (80)	−2	0.85
Control	6 (44)	7 (55)	6 (64)		
Stethoscope					
Interventionb	6 (34)	14 (75)	20 (88)	52	<0.01
Control	10 (71)	9 (69)	8 (75)		
Thermometer					
Interventionb	12 (68)	14 (75)	22 (98)	19	0.03
Control	10 (74)	9 (70)	9 (87)		
Fetoscope					
Interventionb	11 (63)	8 (42)	16 (70)	19	0.09
Control	14 (99)	5 (42)	9 (86)		
Emergency obstetric care equipment					
Newborn size bag valve mask					
Interventionb	11 (67)	4 (21)	17 (75)	−6	0.58
Control	8 (56)	0 (1)	7 (71)		
Vacuum extractor					
Interventionb	9 (53)	10 (55)	19 (82)	43	<0.01
Control	8 (58)	2 (14)	4 (43)		
Ancillary equipment					
Sterilizer					
Interventionb	9 (55)	13 (73)	17 (75)	27	0.02
Control	11 (77)	7 (53)	7 (69)		
At least 2 delivery beds					
Interventionb	19 (87)	16 (90)	20 (87)	−6	0.51
Control	11 (81)	10 (77)	9 (87)		
At least 1 obstetric examination bed					
Interventionb	6 (34)	17 (93)	22 (96)	33	0.01
Control	6 (44)	10 (79)	7 (73)		

DiD: difference-in-differences estimate.

* Frequencies are estimates based on the regression analysis.

b The intervention was performance-based financing, a scheme where financial rewards for maternal care providers and district health management teams were provided upon meeting defined performance goals (performance-based incentives), and conditional cash transfers (financial rewards) were provided for pregnant women, upon meeting defined compliance.

Note: DiD estimates are calculated across years 1 and 2.
Table 3. Impact of performance-based financing on availability of essential drug and consumables stocks, Malawi, 2013–2015

Antibiotics	Health facilities with item in stock at time of visit	Overall effect size			
	Baseline, No.* (%)	Mid-term, No.* (%)	End-term, No.* (%)	DiD, (% point)	P
Antibiotics					
Ampicillin					
Interventionb	0 (0)	0 (0)	6 (26)	47	< 0.01
Control	3 (22)	0 (0)	2 (15)		
Benzyl penicillin					
Interventionb	13 (74)	17 (94)	11 (47)		
Control	12 (86)	9 (70)	8 (75)		
Co-trimoxazole					
Interventionb	15 (86)	16 (86)	20 (89)		
Control	11 (79)	10 (73)	9 (89)		
Emergency drugs					
Magnesium sulfate					
Interventionb	16 (92)	13 (71)	17 (75)	9	0.52
Control	10 (71)	8 (63)	5 (46)		
Diazepam					
Interventionb	7 (43)	7 (39)	15 (63)		
Control	5 (37)	4 (28)	7 (67)		
Oxytocin					
Interventionb	17 (99)	10 (57)	23 (100)	31	< 0.01
Control	11 (77)	7 (56)	5 (51)		
Emergency obstetric care equipment					
Ringer’s lactate					
Interventionb	8 (50)	12 (65)	14 (61)		
Control	3 (21)	5 (36)	6 (61)		
Normal saline					
Interventionb	12 (69)	16 (87)	17 (72)		
Control	6 (41)	8 (60)	7 (74)		
Dextrose 5% saline					
Interventionb	10 (56)	15 (84)	23 (100)	38	< 0.01
Control	9 (66)	10 (78)	7 (71)		
Pain/fever control					
Paracetamol					
Interventionb	13 (74)	16 (89)	16 (72)	4	0.74
Control	12 (84)	9 (69)	8 (78)		
Pethidine					
Interventionb	1 (3)	0 (0)	2 (11)		
Control	0 (1)	1 (8)	1 (1)		
PMTCT drugs					
Nevirapine syrup					
Interventionb	12 (68)	15 (82)	20 (86)	24	0.03
Control	12 (84)	7 (57)	7 (72)		
ART regimen 5A					
Interventionb	16 (69)	4 (22)	22 (95)	39	< 0.01
Control	11 (80)	3 (27)	7 (67)		
Ancillary					
Urine protein testing strips					
Interventionb	10 (30)	2 (12)	9 (38)	2	0.63
Control	1 (6)	3 (25)	1 (12)		

ART: anti-retroviral treatment; DiD: difference-in-differences estimate; HIV: human immunodeficiency virus; PMTCT: prevention of mother-to-child transmission of HIV.

* Frequencies are estimates based on regression analysis.

b The intervention was performance-based financing, a scheme where financial rewards for maternal care providers and district health management teams were provided upon meeting defined performance goals (performance-based incentives) with conditional cash transfers (financial rewards) for pregnant women, upon meeting defined compliance.

Note: DiD estimates are calculated across years 1 and 2.
Table 4. Impact of performance based financing on clinical performance of birth attendants, Malawi, 2013–2015

Observed outcome variable by facility type	Labour cases with clinical performance observed	Overall effect size			
	Baseline No.a (%)	Mid-term No.a (%)	End-term No.a (%)	DiD (% point)	P
Routine obstetric care					
Patient’s HIV status checked or reviewed					
Interventionb	46 (73)	65 (61)	77 (59)	−4	0.82
Control	20 (81)	36 (63)	15 (81)		
Patient asked for pre-eclampsia symptomsc					
Interventionb	13 (20)	59 (56)	130 (99)	65	0.12
Control	17 (71)	26 (45)	16 (86)		
Patient is checked for pre-eclampsia signsd					
Interventionb	39 (62)	106 (100)	88 (67)	−1	0.98
Control	24 (100)	58 (100)	19 (100)		
Monitoring of labour progression during stage 1					
Patient monitored by partograph					
Interventionb	42 (66)	65 (61)	80 (61)	−24	0.14
Control	15 (64)	36 (63)	16 (82)		
Complete partograph documentation on monitored cases					
Interventionb	11 (17)	54 (51)	54 (41)	3	0.86
Control	1 (6)	7 (11)	5 (28)		
Infection prevention					
Hand hygiene before each patient contactf					
Interventionb	18 (28)	34 (32)	49 (37)	12	0.59
Control	5 (22)	15 (26)	4 (20)		
Sterile glove use during vaginal exam and stage 2					
Interventionb	34 (53)	67 (63)	95 (72)	12	0.61
Control	13 (56)	38 (65)	12 (63)		
Decontamination of perineum before vaginal exam and stage 2					
Interventionb	21 (33)	34 (32)	66 (51)	8	0.71
Control	5 (20)	12 (21)	6 (29)		
Birth equipment set up in sterile manner before stage 2 beginsg					
Interventionb	43 (68)	77 (73)	114 (87)	21	0.11
Control	19 (79)	44 (76)	15 (78)		
AMTSL					
Medical management of stage 3h					
Interventionb	58 (93)	100 (94)	131 (100)	−18	0.17
Control	16 (68)	51 (87)	18 (94)		
Practical management of stage 3i					
Interventionb	45 (72)	83 (78)	112 (85)	−24	0.16
Control	11 (44)	43 (74)	16 (83)		
Confirmatory management of stage 3j					
Interventionb	41 (65)	42 (40)	91 (70)	−46	0.01
Control	5 (19)	25 (44)	13 (70)		

AMTSL: active management of third stage labour; DiD: difference-in-differences estimate; HIV: human immunodeficiency virus.

a Frequencies are estimates based on regression analysis.

b The intervention was performance-based financing, a scheme where financial rewards for maternal care providers and district health management teams were provided upon meeting defined performance goals (performance-based incentives) with conditional cash transfers (financial rewards) for pregnant women, upon meeting defined compliance.

c Recent history of headache, blurriness, convulsions, pregnancy-induced hypertension.

d Blood pressure check, check for swelling or oedema.

e Defined as documentation of fetal heart rate every 30 minutes, uterine contractions/maternal pulse/maternal blood pressure/fetal descent every 60 minutes.

f Defined as washing of hands with water and soap.

g Includes setting up sterile delivery kit contents, sterile cord clamps, sterile gloves.

h Parenteral administration of oxytocin once stage 3 is entered.

i Controlled cord traction and uterine massage to actively support delivery of placenta.

j Placenta examined for completeness and estimation of overall blood loss during delivery to determine woman's risk of bleeding.

Note: DiD estimates are calculated across years 1 and 2 while controlling for duration of stage 1 labour, number of birth attendants available during a case, number of birth attendants’ participation in service trainings, as well as clustering effects at the level of the facility.
based funding programme that provides incentives to central health system levels to indirectly support front-line service providers.40,41

However, in our study, for some items availability did not improve. The number of delivery beds, for instance, remained unaffected, probably because most facilities counted at least two delivery beds already at baseline. Some drugs also remained unchanged (co-trimoxazole, paracetamol) or declined (benzyl penicillin, magnesium sulfate, isotonic fluids), either indicating increased use (e.g. in case of the incentivized administration of magnesium sulfate) or worsening central drug shortages. A randomized-controlled trial from the Democratic Republic of the Congo comparing performance-based versus fixed payments observed significant decline in essential equipment availability at facilities supported by a performance-based financing scheme.42 However, in this scheme, incentives were provided directly to the facility level without including district or central level entities.

In our study, Malawi’s nationwide economic situation deteriorated before our mid-term data collection which may have had an effect on drug and consumable stocks. Mixed or inconclusive effects were also reported from performance-based financing experimental work in the Democratic Republic of the Congo43 where after the implementation of the scheme, drug stock-outs decreased, though stock-outs of vaccines increased. Findings like these point towards overall political or economic challenges affecting health system and performance-based financing scheme operations. In contexts where availability of medical supplies is negatively affected by performance-based financing schemes, a detailed investigation may provide further understanding of system-wide determinants of performance-based financing implementation.

Among those essential drugs whose observed availability was not strongly affected by the initiative, many (except penicillin and Ringer’s lactate) nevertheless remained in stock in more than 70% of intervention facilities at end-term, which may reflect facilities’ new financial autonomy, such as using reward earnings to purchase additional drugs from private pharmacies. This aligns with findings from another performance-based financing evaluation in the Democratic Republic of the Congo, where facility managers with financial autonomy to use performance rewards to purchase drugs and supplies made decisions resulting in significant improvements in drug availability.44 In our study, as most of these less available drugs are essential to the medical management of obstetric complications (i.e. broad-spectrum antibiotics, crystalloid fluids, anticonvulsants), some shifts in facility stocks towards second-line tracer drugs (i.e. ampicillin, dextrose 5% saline, diazepam) occurred. These shifts likely indicate better strategic procurement decisions by district and facility managers in response to variations in first-line drug availability at central stores.

Improved availability of some items (e.g. blood pressure machines, newborn resuscitation equipment, obstetric examination beds, diazepam, Ringer’s solution) was also observed in control facilities. District-level performance indicators were purposefully designed to introduce spillover benefits to those facilities not yet enrolled. Improved equipment and supply availability in control facilities may represent such programme-induced spillover. In addition, qualitative evidence from interviews with the initiative’s health managers in the study districts demonstrate that the direct involvement of the district health management team led to more frequent performance review meetings at district levels and closer performance supervision across facilities.39

Our findings show few positive effects on clinical processes due to the scheme. For pre-eclampsia assessment and fluid management of obstetric complications (i.e. broad-spectrum antibiotics, crystalloid fluids, anticonvulsants), some shifts in facility stocks towards second-line tracer drugs (i.e. ampicillin, dextrose 5% saline, diazepam) occurred. These shifts likely indicate better strategic procurement decisions by district and facility managers in response to variations in first-line drug availability at central stores.

In respect to infection prevention processes, we observed non-significant positive effects on sterile set-up of birth equipment, but no effects on hand washing, use of gloves and perineal cleansing. This may reflect a complementary effect regarding infection prevention processes between clinical performance and tracked supply incentives, which included sterile delivery packs and functional sterilizers, but not gloves, topical anti-septic solutions or other consumables relevant to infection prevention. The role of complementary use of incentives may also explain findings in a study from Afghanistan,33 which failed to detect significant effects on universal precautions in the absence of relevant equipment and supply improvements.

We further observed significant negative effects on processes related to partograph monitoring and AMTSL. As oxytocin (tracer item) and partograph (not listed as tracer item, but followed by the study’s facility inventory) availability significantly improved in intervention facilities, stock-outs don’t seem to be a likely cause of the negative effects. The negative trends for AMTSL performance might rather relate to district level spillover benefits to control facility performance as indicated by qualitative evidence outlining how district managers reinforced clinical standards, supervision and staff coaching across all facilities.33 In the case of AMTSL, control facilities – starting at a much lower performance level, but rapidly catching up over time – probably benefitted more than facilities in the intervention arm. A recent study from Burundi found that introduction of a performance-based financing scheme encourages guideline adherence through increased supervisory, coaching and technical support by senior staff.40 Regarding labour monitoring, birth attendants at both intervention and control facilities improved partograph documentation, a relatively time-consuming process. Yet, the proportion of overall partograph-monitored cases stagnated in the intervention facilities, which may simply reflect capacity limitations due to staffing constraints once service utilization at intervention facilities increased.

Our study has some methodological limitations. As with other studies on quality of clinical care, our sample sizes for both facilities and observed cases
Maternal and newborn health care, Malawi
Stephan Brenner et al.

were relatively small therefore our study lacked the statistical power to detect additional effects that may have been produced by the scheme. Also, due to logistical and cost considerations, our evaluation design had to rely on control facilities within intervention districts, falling short in conceptually isolating district-level from facility-level effects.

Our study therefore was not able to discern whether improvements in control facilities represent district-level induced spillover or rather resulted from other secular trends.

Acknowledgements
This study was funded by the United States Agency for International Development under Translating Research into Action, Cooperative Agreement No. GHS-A-00-09-00015-00. This study was also funded by the Norwegian Agency for Development Cooperation (NORAD) and the Royal Norwegian Embassy in Lilongwe, Malawi.

Competing interests: None declared.

Research
Maternal and newborn health care, Malawi
Stephan Brenner et al.

were relatively small therefore our study lacked the statistical power to detect additional effects that may have been produced by the scheme. Also, due to logistical and cost considerations, our evaluation design had to rely on control facilities within intervention districts, falling short in conceptually isolating district-level from facility-level effects.

Our study therefore was not able to discern whether improvements in control facilities represent district-level induced spillover or rather resulted from other secular trends.

Acknowledgements
This study was funded by the United States Agency for International Development under Translating Research into Action, Cooperative Agreement No. GHS-A-00-09-00015-00. This study was also funded by the Norwegian Agency for Development Cooperation (NORAD) and the Royal Norwegian Embassy in Lilongwe, Malawi.

Competing interests: None declared.
Цель
Исследования реализации мероприятий по повышению качества оказания медицинских услуг для матерей и новорожденных, Малави

Методы
Мы провели нерандомизированное контролируемое исследование до начала и после завершения программы, чтобы оценить влияние стимулирования медицинских работников и команд управления на уровне участка и на уровне медицинского учреждения. Мы провели оценку изменений в запасах лекарственных препаратов первой необходимости, в проведении технического обслуживания оборудования и в клинических процессах акушерской помощи в медицинских учреждениях. Нами были использованы регрессионные модели “разность разностей” для анализа влияния программы на строгое соблюдение протоколов акушерской помощи и на обеспечение лекарственными препаратами первой необходимости, расходными материалами и оборудованием.

Результаты
В четырех участках мы поставили под наблюдение 33 медицинских учреждения, 23 учреждения, осуществляющих акушерство, 10 контролирующих учреждений и 401 беременную женщину. Программа повысила доступность функционального оборудования и улучшила обеспечение лекарственными препаратами первой необходимости в учреждениях, осуществляющих вмешательство. Мы наблюдали положительный эффект в снабжении лекарственными препаратами, а также в лечебной работе в учреждениях, не осуществляющих вмешательство, что, вероятно, являлось результатом повышения эффективности управления участка.

Conclusión
A pesar de la falta de existencias en todo el país y la extrema escasez de trabajadores sanitarios, los centros de los distritos estudiados lograron mejorar la calidad del servicio sanitario materno y neonatal, pues superaron todos los obstáculos relacionados con la adquisición de productos, el mantenimiento de los equipos y el rendimiento clínico. Para fortalecer y reformar las estructuras de gestión sanitaria, una financiación basada en el rendimiento podría ser un enfoque prometedor para obtener grandes mejoras en la calidad de la atención sanitaria.
39. Wilhelm DJ, Brenner S, Muula AS, De Allegri M. A qualitative study assessing the acceptability and adoption of implementing results-based financing intervention to improve maternal and neonatal health in Malawi. BMC Health Serv Res. 2016 Oct 17;16(1):398. doi: http://dx.doi.org/10.1186/s12913-016-1652-7 PMID: 27534528

40. SM2015 Country profiles [Internet]. Seattle: Institute for Health Metrics and Evaluation. Available from: http://www.healthdata.org/salud-mesoamerica-2015-initiative/country-profiles [cited 2016 May 28].

41. How does Salud Mesoamérica 2015 work [Internet]. Washington: Inter-American Development Bank; 2012. Available from: http://www.saludmesoamerica2015.org/en/salud-mesoamerica-initiative/the-initiative/salud-mesoamerica-2015-result-based-funding,2768.html [cited 2016 May 28].

42. Huillery E, Seban J. Performance-based financing, motivation and final output in the health sector: experimental evidence from the Democratic Republic of Congo. [Sciences Po Economics Discussion Paper]. Paris: SciencesPo, 2014. Available from: http://spire.sciencespo.fr/hdl/2441/4pmv03bmn7m9tiaao2gl0337ip4/resources/2014-12.pdf [cited 2016 May 28].

43. Soeters R, Peerboom PB, Mushagalusa P, Kimanuka C. Performance-based financing experiment improved health care in the Democratic Republic of Congo. Health Aff (Millwood). 2011 Aug;30(8):1518–27. doi: http://dx.doi.org/10.1377/hlthaff.2009.0019 PMID: 21821568

44. Huntington D, Zaky HHM, Shawky S, Fattah FA, El-Hadary E. Impact of a service provider incentive payment scheme on quality of reproductive and child-health services in Egypt. J Health Popul Nutr. 2010 Jun;28(3):273–80. doi: http://dx.doi.org/10.3329/jhpn.v28i3.5556 PMID: 20635638

45. Bertone MP, Meessen B. Studying the link between institutions and health system performance: a framework and an illustration with the analysis of two performance-based financing schemes in Burundi. Health Policy Plan. 2013 Dec;28(8):847–57. doi: http://dx.doi.org/10.1093/heapol/czs124 PMID: 23221122