ANALOGUES OF LEHMER’S PROBLEM IN POSITIVE CHARACTERISTIC

AMÍLCAR PACHECO

Abstract. Let C be a smooth projective irreducible curve defined over a finite field \mathbb{F}_q and $K = \mathbb{F}_q(C)$. We show that every non-torsion element $\alpha \in \overline{K}$ of degree d over K of a Drinfeld A-module ϕ defined over K has canonical height $\hat{h}_\phi(\alpha)$ at least $1/d$. Similarly, if E/K is a non-constant elliptic curve defined over a function field $K = l(C)$ of a curve C defined over an algebraically closed field l of characteristic 0 or $p > 3$, we show that every point of infinite order $P \in E(\overline{K})$ of degree d over K has canonical height $\hat{h}_E(P)$ at least c/d, where c depends only on the degree of the j-map associated to E/K.

1. Introduction

Let α be an algebraic number of degree d over \mathbb{Q} and suppose it is not a root of unity. Let $h : \mathbb{Q} \to \mathbb{R}$ be the absolute logarithmic height. Lehmer’s conjecture consists in asking for an absolute real constant $c > 0$ such that $h(\alpha) \geq \frac{c}{d}$.

Although this question remains open, analogues of this conjecture have been considered in other contexts. Let E be an elliptic curve defined over a number field K, j_E its j-invariant, \overline{K} the algebraic closure of K, $P \in E(\overline{K})$ a point of infinite order and $\hat{h}_E : E(\overline{K}) \to \mathbb{R}$ its canonical height. Let $K(P)$ be the field generated over K by the coordinates of P, $d = [K(P) : K]$ and $D = [K : \mathbb{Q}]$. In [4 Corollary 0.2] it is shown that if j_E is non-integral, then there exists $c > 0$ depending on E/K such that $\hat{h}_E(P) \geq \frac{c}{d(\log d)^2}$. Let $h = \max\{1, h(j_E)\}$. This result was improved in [4 Corollary 1.4], where it was proved that there exist absolute effective computable real constants $c_5, c_6 > 0$ such that $\hat{h}_E(P) \geq c_5 h(dD)^{-3} \left(1 + \frac{\log(dD)}{h}\right)^{-2}$, if j_E is integral, and $\hat{h}_E(P) \geq c_6 D^{-3} d^{-15/8} h^{-2} \left(1 + \frac{\log(dD)}{h}\right)^{-2}$, otherwise. In section 3 we prove an analogue of this result for non-constant elliptic curves over function fields over algebraically closed fields of characteristic 0 or $p > 3$.

Let C be a smooth irreducible projective curve defined over a finite field \mathbb{F}_q of q elements and $K = \mathbb{F}_q(C)$. The direct translation of Lehmer’s conjecture to K is trivial, because the requirement that α is not a root of unity is equivalent to $\alpha \in K - \mathbb{F}_q$, thus there is a discrete valuation $v : K \to \mathbb{Z} \cup \{\infty\}$ of K such that $v(\alpha) < 0$ and therefore $h(\alpha) \geq \frac{1}{d}$.

Another instance of the Lehmer problem is to consider the canonical height $\hat{h}_\phi : \overline{K} \to \mathbb{R}$ of a Drinfeld A-module $\phi : A \to K\{\tau\}$ of rank r defined over a $K = \mathbb{F}_q(C)$. We also have a notion of torsion elements in this context and we ask for a constant c depending on ϕ such that for every non-torsion element $\alpha \in \overline{K}$

Date: March 1, 2022.

This work was partially supported by CNPq research grant 300896/91-3 and Pronex #41.96.0830.00.
with \([K(\alpha) : K] = d\) we have \(\hat{h}_\phi(\alpha) \geq \frac{1}{d}\). We prove this in section 2 starting with
the case where \(K = \mathbb{F}_q(T)\) is the rational function field over \(\mathbb{F}_q\) and \(A = \mathbb{F}_q[T]\).

The general result is then deduced from this case. Analogues of this type of result
were proved in [3].

2. DRINFELD MODULES

Let \(A = \mathbb{F}_q[T]\) be the polynomial ring in one variable over the finite field \(\mathbb{F}_q\) of \(q\) elements, \(k = \mathbb{F}_q(T)\) its field of fractions and \(\phi : A \to \text{End}_k(\mathbb{G}_a) \cong k\{\tau\}\) a Drinfeld
\(A\)-module of rank \(r\) defined over \(k\) with respect to the inclusion \(A \subset k\). Denote
\(\phi_T = T + a_1 \tau + \ldots + a_r \tau^r\).

Let \(\overline{k}\) be the algebraic closure of \(k\) and \(h : \overline{k} \to \mathbb{R}\) the absolute logarithmic Weil
height. The global height of the Drinfeld module \(\phi\) at \(\alpha \in \overline{k}\) is defined by (cf. [2] §2)

\[
\hat{h}_\phi(\alpha) = \lim_{n \to \infty} \frac{h(\phi_T^n(\alpha))}{q^{nr}}.
\]

Analogously to the case of elliptic curves this global height decomposes in a sum of
local heights which are defined as follows. Let \(L = k(\alpha)\) and \(M_L\) the set of places
of \(L\) normalized so that they correspond to discrete valuations \(v : L \to \mathbb{Z} \cup \{\infty\}\). Let
\(d_v\) be the degree of \(v\) and \(d = [L : k]\). The local height of \(\alpha\) at \(v\) with respect
to \(\phi\) is defined by (cf. [2] §4)

\[
\hat{h}_{\phi,v}(\alpha) = -\frac{d_v}{d} \lim_{n \to \infty} \min \{0, v(\phi_T^n(\alpha))\}/q^{nr}.
\]

It follows from the above definitions that

\[
(2.1) \quad \hat{h}_\phi(\alpha) = \sum_{v \in M_L} \hat{h}_{\phi,v}(\alpha).
\]

An element \(\alpha \in \overline{k}\) is called a torsion element of \(\phi\) if there exists \(f \in A - \{0\}\) such
that \(\phi_f(\alpha) = 0\).

Theorem 2.1. Let \(\alpha \in \overline{k}\) be a non-torsion element of \(\phi\) and \(d = [k(\alpha) : k]\). Then

\[
\hat{h}_\phi(\alpha) \geq \frac{1}{d}.
\]

Proof. Let \(S \subset M_L\) be the set consisting of the poles of \(T = a_0, a_1, \ldots, a_r\) and
the zeros of \(a_r\). Suppose there exists \(v \notin S\) such that \(v(\alpha) < 0\). Then, for every
\(0 \leq i < d\),

\[
q^i v(\alpha) + v(a_i) = q^i v(\alpha) < q^i v(\alpha) + v(a_i),
\]

hence \(v(\phi_T(\alpha)) = q^r v(\alpha)\). By induction, for every \(n \geq 1\), we also have \(v(\phi_T^n(\alpha)) = q^{nr} v(\alpha)\), thus \(\hat{h}_{\phi,v}(\alpha) = -\frac{d_v}{d} v(\alpha) \geq \frac{1}{d} = \frac{1}{d}\).

Assume now that all the poles of \(\alpha\) lie in \(S\). Let \(v \in S\) be a pole of \(\alpha\). Let

\[
M_{\phi,v} = \min_{0 \leq i < r} \frac{v(a_i) - v(a_r)}{q^r - q^i}.
\]

Suppose \(v(\alpha) < M_{\phi,v}\) and \(v(a_r) \leq 0\). The first inequality implies \(v(\phi_T(\alpha)) = v(a_r) + q^r v(\alpha)\). The two inequalities imply

\[
q^r (q^r - q^i) v(\alpha) < (q^r - q^i) v(\alpha) < v(a_i) - v(a_r) \leq v(a_i) - v(a_r) - (q^r - q^i) v(a_r),
\]

for every \(0 \leq i < r\), i.e.,

\[
q^r v(\alpha) + (q^r + 1) v(a_r) < q^r v(\alpha) + q^r v(a_r) + v(a_i),
\]
such that

\[H \leq \frac{q^{2r} - 1}{q^r - 1} v(a_r). \]

Hence,

\[\psi \]

The general case.

2.1. The general case. The Lehmer problem for Drinfeld modules can be formulated in a more general set-up and its proof is reduced to that of Theorem 2.1.

Let \(C \) be a smooth projective irreducible curve defined over a finite field \(\mathbb{F}_q \) of \(q \) elements. Let \(\infty \) be a fixed place of \(K = \mathbb{F}_q(C) \), the ring of functions in \(K \) which are regular everywhere except at \(\infty \), \(v_\infty : K \to \mathbb{Z} \cup \{ \infty \} \) the normalized discrete valuation associated to \(\infty \) and \(d_\infty \) the degree of \(\infty \). For any \(a \in A \), let \(\deg(a) = -d_\infty v_\infty(a) \). The field \(K \) is an \(A \)-module with respect to the inclusion \(A \subset K \). A Drinfeld \(A \)-module of rank \(r \) defined over \(K \) is a ring homomorphism

i.e.,

\[v(\phi_T^r(a)) = q^{2r}v(a) + (q^r + 1)v(a_r) = q^{2r}v(a) + \frac{q^{2r} - 1}{q^r - 1} v(a_r). \]

Suppose we have proved that for every integer \(1 \leq m < n \) we have

\[v(\phi_T^m(a)) = q^{mr}v(a) + \frac{q^{mr} - 1}{q^r - 1} v(a_r). \]

Then

\[q^r(q^r - q^i)v(\phi_{T^r - 2}(a)) \]

\[= q^r(q^r - q^i)(q^{(n-2)r}v(a) + (q^{(n-3)r} + \ldots + q^r + 1)v(a_r)) \]

\[\leq q^{(n-1)r}(q^r - q^i)v(a) < (q^r - q^i)v(a) < v(a_i) - v(a_r) \]

\[\leq v(a_i) - v(a_r) - (q^r - q^i)v(a_r). \]

Thus,

\[v(\phi_{T^r}(a)) = q^{nr}v(a) + (q^{(n-1)r} + \ldots + q^r + 1)v(a_r) \]

\[< q^{(n-1)r} + v(a) + (q^{(n-2)r} + \ldots + q^r + q^i)v(a_r) + v(a_i), \]

i.e.,

\[v(\phi_{T^r}(a)) = q^{nr}v(a) + (q^{(n-1)r} + \ldots + q^r + 1)v(a_r) = q^{nr}v(a) + \frac{q^{mr} - 1}{q^r - 1} v(a_r). \]

Hence,

\[\hat{h}_{\phi,v}(\alpha) = -\frac{d}{d} \left(v(\alpha) + \frac{1}{q^r - 1} v(a_r) \right) \geq \frac{1}{d}. \]

Suppose now that \(v(\alpha) < M_{\phi,v} \), but \(v(a_r) > 0 \). Let \(\xi \) be a sufficiently negative power of a local parameter at \(v \) so that \(v(\xi q^{-1} a_r) \leq 0 \). The Drinfeld module \(\psi = \xi^{-1} \phi \xi \) is isomorphic to \(\phi \) and by [2] Proposition 2 \(\hat{h}_{\psi,v} = \hat{h}_{\psi,v} \). Note that

\[\psi_T = T + \xi q^{-1} \alpha_1 \tau + \ldots + \xi q^{-1} \alpha_r \tau^r. \]

Then for every \(0 \leq i < r \) we have

\[(q^r - q^i)v(a) < v(a_i) - v(a_r) < v(a_i) - v(a_r) - v(\xi)(q^r - q^i) = v(\xi^{-1} a_i) - v(\xi^{-1} a_r), \]

in particular, \(v(\alpha) < M_{\psi,v} \). By the argument of the last paragraph we conclude that \(\hat{h}_{\psi,v}(\alpha) = \hat{h}_{\psi,v}(\alpha) \geq \frac{1}{d} \).

If \(v(\alpha) \geq M_{\phi,v} \), let \(\xi \) be a sufficiently positive power of a local parameter at \(v \) such that

\[M_{\psi,v} = \min_{0 \leq i < r} \frac{v(a_i \xi^{-1} q^i) - v(a_r \xi^{-1} q^i)}{q^r - q^i} = \min_{0 \leq i < r} \left(\frac{v(a_i) - v(a_r)}{q^r - q^i} + v(\xi) \right) > v(\alpha). \]

Once again we take the Drinfeld module \(\psi = \xi^{-1} \phi \xi \) which is isomorphic to \(\phi \). By the two last cases and [2] Proposition 2 we conclude that \(\hat{h}_{\psi,v}(\alpha) = \hat{h}_{\psi,v}(\alpha) \geq \frac{1}{d} \).

By the non-negativity of the local canonical heights we conclude that \(\hat{h}_{\psi,v}(\alpha) \geq \frac{1}{d} \).
ϕ : A → \text{End}_K(G_a) \cong K}\{τ\} such that for every a ∈ A, deg(ϕ_a) = q^{r \deg(a)} and the constant term of \(\phi_a\) is a itself.

Let a ∈ A − \mathbb{F}_q. The global height of a ∈ K is defined as (cf. [2 §2])

\[
\hat{h}_\phi(α) = \lim_{n \to \infty} \frac{h(\phi_{\alpha^n}(α))}{\deg(\phi_{\alpha^n})}.
\]

Let L = K(α) and d = [L : K]. For every discrete valuation \(v : L \to \mathbb{Z} \cup \{\infty\}\) of degree \(d_v\) the local height is defined as (cf. [9 §4])

\[
\hat{h}_{\phi,v}(α) = \lim_{n \to \infty} -\frac{d_v}{d} \min\{0, v(\phi_{\alpha^n}(α))\}.
\]

As observed in [9 Proposition 3] these heights are independent of the choice of a ∈ A − \mathbb{F}_q.

The Dedekind domain A is a finitely generated \(\mathbb{F}_q\)-algebra. Let \(A\) the the set of generators of A as an \(\mathbb{F}_q\)-algebra, \(T \in A\), \(\deg(T) = d_T\) and \(ϕ_T = T + a_1(T)τ + \cdots + a_rτ^r\). Let α ∈ K be a non-torsion element for φ with \([K(α) : K] = d\). Replacing the \(a_i\)'s in the proof of Theorem 2.1 by the \(a_i(T)\)'s the proof of Theorem 2.1 shows that

\[
(2.2) \quad \hat{h}_\phi(α) \geq \frac{1}{d}.
\]

3. Elliptic curves

Let C be a smooth irreducible projective curve defined over an algebraically closed field l of characteristic 0 or \(p > 3\), let K = l(C) be its function field and \(\overline{K}\) its algebraic closure. Let E/K be a non-constant semistable elliptic curve defined over K, \(ϕ_E : E → C\) its minimal semi-stable regular model, \(j_E : C → \mathbb{P}^1\) the j-map induced by \(ϕ_E\) and \(\hat{h}_E : E(\overline{K}) → \mathbb{R}\) its canonical height.

Let \(P \in E(\overline{K})\) and \(L = K(P)\) the field generated by K and the coordinates of P. Let \(d = [L : K]\), \(M_L\) the set of places v of L which are normalized so that \(v : L → \mathbb{Z} \cup \{∞\}\) is the corresponding discrete valuation. Let \(L_v\) be the completion of L with respect to v and \(λ_v : E(K_v) → \mathbb{R}\) its local Néron function [11 Chapter VI]. Let \(w = v_k, e(v|w)\) the ramification index of v over w, \(w' = e(v|w)w : K → \mathbb{Z} \cup \{∞\}\) the normalization of w, \(K_w\) the completion of K with respect to w and \(n(v|w) = [L_v : K_w]\). Then

\[
(3.1) \quad \hat{h}_E(P) = \frac{1}{d} \sum_{v \in M_L} n(v|w)λ_v(P),
\]

[11] VI, Theorem 2.1].

Let \(D_{E/K}\) be the minimal discriminant of E/K and \(d_{E/K} = \text{deg}(D_{E/K})\). Since E/K is semi-stable, it follows from [10] Chapter VII, Proposition 5.1 that \(w'(D_{E/K}) = -w'(j_E)\) for every pole \(w'\) of \(j_E\), thus \(\text{deg}(j_E) = d_{E/K}\). For every v ∈ \(M_L\), let \(v^+ = \max\{v, 0\}\).

Lemma 3.1. [5 Proposition 1.3] Let A, N ≥ 1 be integers, \(Q_0, \cdots, Q_{6AN} ∈ E(L_v)\) distinct points. Then there exists \(P_0, \cdots, P_N \in \{Q_0, \cdots, Q_{6AN}\}\) such that for each i = l,

\[
λ_v(P_i - P_l) ≥ \frac{1 - A^{-1}}{12} v^+(j_E^{-1}).
\]

Proposition 3.2. \#\{Q \in E(L) | \hat{h}_E(Q) < \frac{d_{E/K}}{96d}\} ≤ 24.
Proof. Denote \(S = \{ Q \in E(L) \mid \hat{h}_E(Q) < \frac{d_{E/K}}{96d} \} \) and suppose \(\# S > 24 \). Let \(A = 2 \) and \(N + 1 = \left\lceil \frac{\# S}{12} \right\rceil > 1 \) the integral part of \(\frac{\# S}{12} \), then \(1 < N + 1 \leq \frac{\# S}{12} \). So we can choose \(12N + 1 \) distinct points \(P_0, \cdots, P_{12N+1} \in S \). By Lemma 5.1 there exist \(P_0, \cdots, P_N \in \{ Q_0, \cdots, Q_{12N+1} \} \) such that \(\lambda_v(P_i - P_l) \geq \frac{1}{24} v^{-}(j_E^{-1}) \) for \(i \neq l \). It follows from the triangle inequality that

\[
(3.2) \quad H = \max_{Q \in S} \hat{h}_E(Q) \geq \max_{1 \leq i \leq N} \hat{h}(P_i) \geq \frac{1}{4N(N+1)} \sum_{i \neq l} \hat{h}_E(P_i - P_l).
\]

Hence, by (3.1) and (3.2),

\[
(3.3) \quad H \geq \frac{1}{4N(N+1)d} \sum_{i \neq l} \sum_{v \in M_{K}} n(v|w) \lambda_v(P_i - P_l) \geq \frac{1}{96d} \sum_{v \in M_{K}} n(v|w) v^{+}(j_E^{-1})
\]

\[
= \frac{1}{96d} \sum_{w' \in M_{K}} \sum_{v|w} \frac{n(v|w)}{e(v|w)} w'^{+}(j_E^{-1}) \geq \frac{1}{96d} \sum_{w' \in M_{K}} w'^{+}(j_E^{-1}) = \frac{d_{E/K}}{96d}.
\]

\[\square \]

Remark 3.3. We used the fact that \(l \) is algebraically closed just to ensure that the poles of \(j_E \) have all degree 1.

As a consequence of Proposition 3.2 we obtain a theorem which simultaneously deals with the Lehmer and the Lang problems for elliptic curves over function fields. Recall that the Lang problem is to find a constant \(c > 0 \) depending on \(E/K \) such that for every non-torsion point \(P \in E(K) \) we have \(\hat{h}_E(P) \geq cd_{E/K} \).

Theorem 3.4. Let \(P \in E(K) \) be a non-torsion point of \(E/K \) and \(d = [K(P) : K] \). Then there exists an absolute real constant \(c > 0 \) such that \(\hat{h}_E(P) \geq c d_{E/K} \).

Proof. Suppose \(\hat{h}_E(P) < \frac{d_{E/K}}{96d} \). Then for every \(1 \leq n \leq 25 \), \(\hat{h}_E(nP) = n^2 \hat{h}_E(P) < \frac{d_{E/K}}{96d} \), which contradicts Proposition 3.2. So we take \(c = \frac{1}{96000} \).

\[\square \]

Remark 3.5. The constant for the Lehmer problem is \(\frac{d_{E/K}}{96000} \) so it depends only on \(\deg(j_E) = d_{E/K} \), in the semi-stable case.

Remark 3.6. In [6] Theorem 0.2] Hindry and Silverman proved Lang’s conjecture for function fields over algebraically closed fields of characteristic 0. In the case where \(d_{E/K} \geq 24(g - 1) \), where \(g \) denotes the genus of \(K \), they obtained an absolute constant \(c \). However, our constant is greater than theirs, thus improving the result. In the case where \(d_{E/K} < 24(g - 1) \), their constant depends exponentially on \(g \), whereas ours is absolute and improves the constant part of their bound. Nevertheless, we have just proved Lang’s conjecture in the case of semi-stable elliptic curves. Inspired on [6] Theorem 0.2] we had previously proved Lang’s conjecture for semi-stable elliptic curves over function fields of positive characteristic [7] Theorem 5] using [5] Proposition 1.2]. First, the bounds we obtained there do not have absolute constants, they depended not only on \(g \) but also on the inseparable degree of \(j_E \). Furthermore, the present bound improves their constant parts. The reason for obtaining an absolute constant is that [5] Proposition 1.3] gives a lower bound which depends only on the choice of a positive integer \(A \), however the lower bound of [5] Proposition 1.2] depends on the number \(N + 1 \) of points \(P_0, \cdots, P_N \) chosen in \(E(L_v) \) (cf. [7] proof of Proposition 3)].
Another consequence of Proposition 3.2 is a bound for the order of the torsion group \(E(K)_{\text{tor}} \).

Corollary 3.7. \(\#E(K)_{\text{tor}} \leq 24 \).

Remark 3.8. Previous bounds for the torsion of elliptic curves over function fields in characteristic 0 were obtained in [6] Theorem 7.2 and in the case of characteristic \(p \), Goldfeld and Szpiro treated the case where \(C \) is defined over a finite field [4] Theorem 13, but the result extends to algebraically closed fields of characteristic \(p > 3 \) and we also obtained a bound (cf. [7] Theorem 7) using [4] Proposition 3. In the case of characteristic 0, the upper bound depended on \(d_{E/K} \). Using Szpiro’s theorem on the minimal discriminant of elliptic curves over function fields [13] Théorème 1, i.e., \(d_{E/K} \leq 6p^e(2g - 2 + f_{E/K}) \), where \(p^e \) is the inseparable degree of \(j_E \) and \(f_{E/K} \) is the degree of the conductor divisor of \(E/K \), it follows an upper bound whose constant part is worse than the bound of Corollary 3.7. The bounds in characteristic \(p \) (in the semi-stable case) were \(\sigma_{E/K}^2 \), respectively \(2\sigma_{E/K}^2 \), where \(\sigma_{E/K} = \frac{d_{E/K}}{f_{E/K}} \). If \(d_{E/K} \geq 24p^e(g - 1) \), then (using again [13] Théorème 1) \(\sigma_{E/K} \leq 12p^e \) and otherwise \(\sigma_{E/K} \leq d_{E/K} < 24p^e(g - 1) \). Not only is the bound of Corollary 3.7 absolute, but also it is better than the estimates for \(\sigma_{E/K}^2 \).

3.1. Integral points

Theorem 3.4 and Corollary 3.7 imply as in [6] §8 an upper bound for the number of integral points of an \(S \)-minimal Weierstrass equation of \(E/K \).

Let \(S \) be a finite set of places of \(K \) and \(R_S \subset K \) the ring of \(S \)-integers. For every \(a \in K \) let \(h_K(a) = [K : l(a)] \). A Weierstrass equation \(y^2 = x^3 + Bx + C \) with discriminant \(\Delta \) is called \(S \)-minimal if \(h_K(\Delta) \) is minimal subject to \(f(x) \in R_S[x] \). Let \(\delta = \min \{ h_E(P) \mid P \in E(K) \cap E(R_S) \} \) and \(\epsilon = \max \{ h_E(P) \mid P \in E(R_S) \} \). In [12] Lemma 1.2 (a) it is shown that \(\#E(R_S) \leq \#E(K)_{\text{tor}}(1 + 2\sqrt{\epsilon})^r_E \), where \(r_E \) denotes the rank of \(E(K) \). It follows from [7] Remark 14 that

\[
\epsilon \leq p^e(12g + 4\#S + 5d_{E/K}).
\]

Theorem 3.9. Let \(y^2 = x^3 + Bx + C \) be an \(S \)-minimal Weierstrass equation for \(E/K \). If \(d_{E/K} \geq 24p^e(g - 1) \), then \(\#E(R_S) \leq 24(2299\sqrt{p^e\#S})^r_E \), otherwise \(\#E(R_S) \leq 24(2021\sqrt{p^e\#S})^r_E \).

Proof. By Theorem 3.4 \(\delta \geq \frac{d_{E/K}}{60000} \). If \(d_{E/K} \geq 24p^e(g - 1) \), then \(g \leq \frac{d_{E/K}}{24p^e} + 1 \). Thus, since \(\#S \geq 1 \),

\[
\frac{\epsilon}{\delta} \leq 60000 \frac{p^e}{d_{E/K}}(12g + 4\#S + 5d_{E/K})
\]

\[
\leq 60000p^e \left(12 \left(\frac{1}{24p^e} + 1 \right) + 9\#S \right)
\]

\[
\leq 1320000p^e\#S.
\]

The first statement follows from (3.5) and Corollary 3.7.

Suppose now that \(d_{E/K} < 24p^e(g - 1) \). In this case, since \(\#S \geq 1 \) and \(g \geq 2 \), we have

\[
\frac{\epsilon}{\delta} \leq 60000 \frac{p^e}{d_{E/K}}(12g + 4\#S + 5d_{E/K}) \leq 60000p^e(12g + 9\#S)
\]

\[
\leq 1020000p^e g\#S.
\]
The second statement follows from (3.6) and Corollary 3.7.

Remark 3.10. The bound of Theorem 3.9 improves the bounds of [8, Theorem 8.1] in the case of characteristic 0 when $d_{E/K} \geq 24(g - 1)$. When $d < 24(g - 1)$ we also have an improvement of the constant part (which does not depend on the rank r_E of $E(K)$) if $g \geq 3$. Note that in this latter case, the constant part of their bound depends on g, whereas ours does not. In both cases the bound of Theorem 3.9 improves that of [7, Theorem 15].

3.2. Lehmer problem : the general case. If we no longer suppose that E/K is a semi-stable elliptic curve, then $\deg(j_E) < d_{E/K}$ (cf. [10, Chapter VII, Proposition 5.1]). In this case, instead of Proposition 3.2, we need to bound the cardinality of a smaller set

$$\# \left\{ Q \in E(L) ; \hat{h}_E(Q) < \frac{\deg(j_E)}{96d} \right\} \leq 24.$$

As a consequence, Theorem 3.9 is replaced by: for every non-torsion point P of E of degree d over K we have $\hat{h}_E(P) \geq \frac{c'}{d}$, where $c' = \frac{\deg(j_E)}{6000}$. We cannot obtain Lang’s conjecture as in Theorem 3.4, because Lemma 3.1 involves $v^+(j_E^{-1})$, hence the proof of Proposition 3.2 only gives $\deg(j_E)$ and not $d_{E/K}$.

3.3. Integral points : the general case. The bound of (3.7) also implies that $\#E(K)_{\text{tor}} \leq 24$. Note that in the general case

$$f_{E/K} < 2\#\{\text{poles of } j_E\} \leq 2\deg_s(j_E),$$

where $\deg_s(j_E)$ denotes the separable degree of j_E.

Theorem 3.11. Let $y^2 = x^3 + Bx + C$ be an S-minimal Weierstrass equation for E/K. If $d_{E/K} \geq 24p^e(g - 1)$, then $\#E(R_S) \leq 24(13788\sqrt{gp^eS})^{r_E}$, otherwise $\#E(R_S) \leq 24(12121g\sqrt{gp^eS})^{r_E}$.

Proof. If $d_{E/K} \geq 24p^e(g - 1)$, then

$$\frac{\epsilon}{\delta} \leq 60000 \frac{p^e}{\deg(j_E)} (12g + 4\#S + 5d_{E/K})$$

$$\leq 60000 \frac{p^e}{\deg(j_E)} \left(\frac{d_{E/K}}{2p^e} + 12 + 9d_{E/K} \#S \right)$$

$$\leq 132000 \frac{p^e}{\deg(j_E)} d_{E/K} \#S.$$

Szpiro’s discriminant theorem [13, Théorème 1] was first proved in the case of semi-stable elliptic curves. However, this result was extended by Pesenti and Szpiro to any elliptic curve [8, Théorème 0.1]. It follows from [8, Théorème 0.1], (3.8) and $f_{E/K} < 2\deg_s(j_E)$ that

$$\frac{\epsilon}{\delta} \leq 7920000 \frac{p^{2e}}{\deg(j_E)} (2g - 2 + f_{E/K}) \#S$$

$$\leq 23760000 \frac{p^{2e}}{\deg(j_E)} f_{E/K} \#S \leq 47520000p^e g \#S.$$

The result now follows from (3.9) and $\#E(K)_{\text{tor}} \leq 24$.

Suppose now that \(d_{E/K} < 24p^e(g - 1)\), then
\[
\frac{\epsilon}{\delta} \leq 60000 \frac{p^e}{\deg(j)} (12g + 4\#S + 5d_{E/K}) \leq 1020000 \frac{p^e}{\deg(j)} gd_{E/K} \#S
\]
\[
\leq 6120000 \frac{p^{2e}}{\deg(j)} g(2g - 2 + f_{E/K}) \#S \leq 18360000 \frac{p^{2e}}{\deg(j)} g^2 f_{E/K} \#S
\]
\[
\leq 36720000 p^e g^2 \#S.
\]

The result now follows from (3.10) and \(#E(K)_{\text{tor}} \leq 24\). \(\square\)

Remark 3.12. Observe that the bounds of Theorem 3.11 are worse than those of Theorem 3.9.

References

[1] S. David, *Points de petite hauteurs sur les courbes elliptiques*, J. Number Th. 64 (1997), 104-129.

[2] L. Denis, *Hauteurs canoniques et modules de Drinfeld*, Math. Ann. 294 (1992), 213-223.

[3] L. Denis, *Problème de Lehmer en caractéristique finie*, Compositio Math. 98 (1995), 167-175.

[4] D. Goldfeld, L. Szpiro, *Bounds for the Tate-Shafarevich group*, Compositio Math. 86 (1995), 71-87.

[5] M. Hindry, J. Silverman, *On Lehmer’s conjecture for elliptic curves*, in Sémin. Th. Nombres Paris, 1988-1989, Prog. Math. 91 (1990), 103-166.

[6] M. Hindry, J. Silverman, *The canonical height and integral points on elliptic curves*, Invent. Math. 91 (1998), 419-450.

[7] A. Pacheco, *Integral points on elliptic curves over function fields of positive characteristic*, Bull. Aust. Math. Soc. 58 (1998), 353-357.

[8] J. Pesenti, L. Szpiro, *Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques*, Compositio Math. 120 (2000), 83-117.

[9] B. Poonen, *Local height functions and the Mordell-Weil theorem for Drinfeld modules*, Compositio Math. 97 (1995), 349-368.

[10] J. Silverman, *The Arithmetic of Elliptic Curves*, Springer-Verlag, 1986.

[11] J. Silverman, *Advanced Topics on the Arithmetic of Elliptic Curves*, Springer-Verlag, 1994.

[12] J. Silverman, *A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves*, J. Reine Angew. Math. 378 (1987), 60-100.

[13] L. Szpiro, *Discriminant et conducteur d’une courbe elliptique*, Astérisque 86 (1990), 7-18.