Role of MicroRNAs in the Development of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease

CHENG ZHANG,1 PING WANG,2 YONGQIANG LI,1 CHANGXIN HUANG,1 WEI NI,1 YIDAN CHEN,1 JUNPING SHI,1 GONGYING CHEN,1 XIANGRONG HU,1 MENG YE,2 SHIWEI DUAN,2* AND KAIFENG WANG1*

1Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
2School of Medicine, Ningbo University, Ningbo, Zhejiang, China

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent liver malignancy that can be developed from nonalcoholic fatty liver disease (NAFLD). Numerous pathophysiological alterations, including insulin resistance, specific cytokine release, oxidative stress, and mitochondrial damage, are involved in the transition of NAFLD to cirrhosis and HCC. MicroRNAs, as post-transcriptional modulators, play a critical role in the pathogenesis of NAFLD-related HCC by regulating lipid metabolism, glucose homeostasis, cell proliferation, apoptosis, migration, and differentiation. This review summarizes the current progress of microRNAs in the risk and prognosis of NAFLD-related HCC.

Key words: nonalcoholic fatty liver disease; hepatocellular carcinoma; microRNA; therapy

Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the fifth leading cause of cancer-related mortality in men in the United States (Siegel et al., 2017). Although the recent progress in early diagnosis, detection techniques, surgical treatments, and drug therapies have increased patient’s survival time, HCC remains a major clinical challenge due to its high prevalence, poor prognosis and limited treatment options (Fujisawa et al., 2017). The development of HCC is caused by the interaction of environmental, genetic, and epigenetic factors (Tian et al., 2013; Riordan et al., 2018), including aflatoxin exposure, alcohol consumption, hepatitis virus infection, and familial tendency (Arzumanyan et al., 2013; Suh et al., 2015; Zheng et al., 2017).

ABBREVIATIONS: AKT = serine/threonine kinase; BMI = body mass index; CDA = choline-deficient and amino acid-defined; HBP1 = HMG-box transcription factor 1; ECM = extracellular matrix; ERK = extracellular signal-regulated kinase; Glu/Ins = glucose and insulin; HCC = hepatocellular carcinoma; HFD = high-fat diet.; HOXD10 = Homeobox D10; HSCs = hepatic stellate cells; IKKβ = inhibitor of kappa-B kinase β; IL-6 = interleukin-6; IR = insulin resistance; JNK = c-Jun N-terminal kinase; MMP = matrix metalloproteinase; NAFLD = nonalcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis; NF-κB = nuclear factor-κB; PI3K = phosphatidylinositol-3-kinase; RhoC = Ras homolog family member C; RLPP = reactive lipid peroxidation products; RNS = reactive nitrogen species; ROS = reactive oxygen species; SIRT1 = sirtuin 1; STAT3 = signal transducer and activator of transcription 3; TNF-α = tumor necrosis factor-α; uPAR = plasminogen activator, urokinase receptor; VLDL = very low-density lipoprotein.

Grant sponsor: National Natural Science Foundation of China; Grant number: 81570524; Grant sponsor: the Scientific Innovation Fund of the Affiliated Hospital of Hangzhou Normal University; Grant sponsor: the Specialized Research Fund for the Social Development of Hangzhou; Grant number: 20160533B21; Grant sponsor: Ningbo Natural Science Foundation; Grant number: 2017A610185.

*Correspondence to: Kaifeng Wang, E-mail: wangkfw2000@163.com; Shiwei Duan, E-mail: duanshiwei@nbu.edu.cn

Received 10 August 2017; Revised 24 February 2018; Accepted 9 March 2018.

DOI: 10.1002/ar.23954
Published online 12 October 2018 in Wiley Online Library (wileyonlinelibrary.com).
However, the quantitative proportion of HCC associated with nonalcoholic fatty liver disease (NAFLD) is rapidly increasing in the Western countries (Dyson et al., 2014), and socioeconomic transformations toward Westernized diet also render Asian populations highly susceptible to these rising epidemics (Fan et al., 2017).

NAFLD is characterized by hepatic fat accumulation, which is tightly associated with over-nutrition, central obesity, insulin resistance and other features of the metabolic syndrome (Gluchowski et al., 2017; Tilg et al., 2017). Although most NAFLD patients remain asymptomatic, the strongest predictor of fibrotic progression in NAFLD is nonalcoholic steatohepatitis (NASH), which may further develop into cirrhosis and HCC (Eslam et al., 2017). Since obesity and type 2 diabetes mellitus are growing at alarming rates globally, there is a compelling need to understand the molecular pathways that contribute to liver cancer arising from metabolic syndromes.

MicroRNAs are small noncoding RNAs of 19–24 nucleotides in length that often bind to the 3'-untranslated regions (UTRs) of messenger RNAs to regulate the expression of their target genes (Anastasiadou et al., 2017; Chou et al., 2018). The binding of their target mRNAs can induce cleavage and degradation of mRNAs, contributing to the silencing of mRNA species and the repression of protein synthesis (Nishimura and Fabian, 2016). Biological functions of microRNAs affect many cellular processes, such as metabolism, proliferation, apoptosis, metastasis, and differentiation (Di Leva et al., 2014). Recent studies have demonstrated that microRNAs may contribute to hepatocarcinogenesis of NAFLD (Guo et al., 2016; Tessitore et al., 2016). In this review, we summarized the current studies on microRNAs in NAFLD-related HCC and discussed its biological effects and clinical implications.

EPIDEMIOLOGY OF NAFLD-RELATED HCC

NAFLD, the most common chronic hepatic disorder, refers to accumulation of hepatic steatosis for more than 5%–10% of the overall weight of the liver tissue or macrosteatosis of the same extent, which is not induced by excessive alcohol consumption (women ≤20 g/day, men ≤30 g/day; Weiss et al., 2014). NAFLD has two principal clinical-histological phenotypes: nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH), and the latter is characterized by inflammation of the liver tissue within fat deposition. NAFLD is increasingly becoming the most common liver disease that affects a high proportion of the world's population. The prevalence of NAFLD in adults and children are approximately 30% and 10% in Western countries, respectively (Sanyal et al., 2015). In China, the community prevalence of NAFLD is about 15% and has doubled in the past decade approximately (Fan, 2013; Wang et al., 2014).

NAFLD is a hepatic manifestation of metabolic syndrome which defines a series of complications including obesity, diabetes, hyperlipidemia, iron deposition, hypertension, and inflammation (Younossi et al., 2016). Some epidemiological studies indicate that overweight and obesity are associated with higher incidence and mortality rate of HCC (Kerr et al., 2017). In a population-based cohort study, high BMI and obesity have been shown to be associated with increased risk of HCC (Hagstrom et al., 2017). NAFLD might affect 20%–25% of diabetes mellitus patients, in which the prevalence of NASH might be more than 30%–40% (Okanoue et al., 2011). Diabetes is considered as the risk factor for HCC, especially in males (Hagstrom et al., 2017; Simon et al., 2017). In randomly selected cases from the Veterans Health Administration databases (2005–2015), the incidences of NAFLD, fibrosis, and HCC among diabetic patients were significantly higher than those without diabetes (Patel et al., 2018). Besides, hyperlipidemia is also a common metabolic risk factor for NAFLD. About 66.8% of NAFLD patients have dyslipidemia, and hepatic triglyceride accumulation is probably a consequence of saturation of fatty acid oxidation and VLDL secretion (Cotrim et al., 2011; Gaggini et al., 2013).

NAFLD comprises a spectrum of disorders from simple steatosis to NASH, and the fibrotic form of NAFLD may progress to cirrhosis and even HCC (Santhekadur et al., 2018). In general, 57.5%–74% of obese population may suffer from hepatic steatosis, which could develop into NASH (19%), cirrhosis (3%–5%), and HCC (0.3%–2%) (Kawamura et al., 2012; McPherson et al., 2015; Cholankeril et al., 2016; Rinella and Sanyal, 2016). NAFLD is a major risk factor for HCC in the United States and the proportion of HCC induced by NAFLD has risen to 14.1%. In addition, NAFLD-related HCC is relevant to shorter survival time, more advanced tumor stage and lower possibility of receiving a liver transplant (Younossi et al., 2015).

PATHOGENESIS OF NAFLD-RELATED HCC

HCC develops from NAFLD through a multistep process that results from the progressive accumulation of numerous alterations, such as activation of insulin-mediated proliferative pathways, specific cytokine release, oxidative stress, and mitochondrial damage (Fig. 1; Zhang et al., 2014; Ma et al., 2016; Inoue-Yamauchi et al., 2017).

Mechanisms of insulin-mediated proliferative pathways in NAFLD-related HCC involve the epigenetic regulation of histone deacetylase HDACs which promotes insulin resistance and stimulates β-catenin-dependent cell proliferation to drive hepatocarcinogenesis (Tian et al., 2015). What’s more, glucose and insulin (Glu/Ins) significantly stimulate proliferation, adhesion, invasion, and extracellular matrix (ECM) production in hepatic stellate cells (HSCs). Tetramethylpyrazine could inhibit Glu/Ins-stimulated HSCs activation and ECM production by inhibiting insulin receptor-mediated PI3K/AKT and ERK pathways (Zhang et al., 2014).

Cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), play an important role in the carcinogenesis of NAFLD (Duan et al., 2014). TNF-α is highly significant in NAFLD and induces inflammation and insulin resistance through JNK and IKKβ/NF-κB pathways (Chen et al., 2015; Wu et al., 2017a). Moreover, TNF-α can increase expression of IL-6 which involves a complex network of signaling pathways including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase and activator of transcription 3 pathways, thus regulating cell proliferation, apoptosis and metastasis (Miller et al., 2011; Yang et al., 2013; Duan et al., 2014; Hassan et al., 2014; Wu et al., 2017a).

Oxidative stress may participate in the pathogenesis of HCC from NAFLD and cirrhosis. It can stimulate the
production of reactive oxygen species (ROS) causing increased hepatic oxidative DNA damage in NASH patients who may develop HCC (Tanaka et al., 2013). Oxidative stress can promote pathological polyploidization which is an early event in the pathogenesis of NAFLD-related HCC (Gentric et al., 2015). In addition, accumulation of oxidative DNA damage can induce DNA methylation of tumor suppressor genes responsible for hepatocarcinogenesis (Nishida et al., 2016).

Mitochondrial dysfunction induced by TNF-α, ROS, reactive lipid peroxidation products (RLPP) and reactive nitrogen species (RNS) can promote free radical production, block respiratory chain components, and alter mitochondrial DNA, leading to mitochondrial ROS formation and causing the “second hit” which may further cause inflammatory response in liver tissues and progression of NAFLD to cirrhosis and HCC (Satapati et al., 2015; Ma et al., 2016; Sunny et al., 2017). In particular, the permeabilization of mitochondrial membranes can be induced by TNF-α-mediated apoptosis, which may contribute to fibrosis and increase the risk of HCC through the stimulation of cell proliferation and the selection of apoptosis-resistant clones (Pagadala et al., 2012).

MICRONAS IN NAFLD-RELATED HCC

The process of pathogenesis from NAFLD to HCC includes the regulation of microRNAs which can modulate transcription and translation of target genes (Afonso et al., 2016; Guo et al., 2016; Tessitore et al., 2016). MicroRNAs play an important role in lipid metabolism, glucose homeostasis, cell proliferation, apoptosis, migration, and differentiation to promote the progression of NAFLD (Fig. 2, Table 1; Benhamouche-Trouillet and Postic, 2016; Wu et al., 2016; Wu et al., 2017b).

MicroRNAs in Lipid Metabolism

MicroRNAs play a key role in cholesterol and fatty acid metabolism, and the serum levels of microRNAs, such as microRNA-122, microRNA-21, microRNA-34a, and microRNA-451, have been shown to be higher in NAFLD patients (Yamada et al., 2013). Inhibition of microRNA-122 can lead to reduce plasma cholesterol levels, decrease synthesis rates of hepatic fatty acid and cholesterol, and increase hepatic fatty-acid oxidation (Clarke et al., 2014). NASH is associated with altered hepatic microRNA expression. Repression of microRNA-122 potentially alters lipid metabolism and contributes to the pathogenesis of NASH (Thakral and Ghoshal, 2015). MicroRNA-21 has been demonstrated to be overexpressed in livers of mice on a high-fat diet and HepG2 cells incubated with high levels of fatty acid. Knockdown of microRNA-21 can lead to reduce lipogenesis and inhibit the growth of xenograft tumor. Furthermore, microRNA-21 contributes to hepatic lipid accumulation and hepatocarcinogenesis through the Hbp1-p53-Srebp1c pathway (Wu et al., 2016).

MicroRNAs in Glucose Homeostasis

MicroRNA-375, a novel evolutionarily conserved microRNA, can inhibit glucose-induced insulin secretion, while suppression of microRNA-375 can enhance insulin secretion. The secretion mechanism modified by microRNA-375 is independent of glucose metabolism but associated with insulin exocytosis, indicating that microRNA-375 may be a new pharmacological target for metabolic diseases, such as diabetes and NAFLD (Poy et al., 2004). MicroRNA-23a was up-regulated in NASH-related HCC mouse model fed with a choline-deficient diet, and overexpression of microRNA-23a was activated by the IL-6/STAT3 signaling pathway leading to a decrease in glucose
In addition, obesity-induced overexpression of microRNA-143 which is associated with insulin resistance can inhibit insulin-stimulated AKT activation and impair glucose metabolism (Jordan et al., 2011). Wu et al. (2017b) showed that microRNA-206 could reduce levels of lipid and glucose in human hepatic cells and livers of dietary obese mice through regulation of lipogenesis and insulin signaling, indicating that microRNA-206 had diagnostic and therapeutic potential for NAFLD and hyperglycemia.

Fig. 2. Role of microRNAs in the pathogenesis of NAFLD-related HCC.

MicroRNA	Expression	Biological functions
microRNA-10b	Up-regulation/down-regulation	Lipid metabolism and migration
microRNA-21	Up-regulation	Lipid metabolism and proliferation
microRNA-23a	Up-regulation	Glucose homeostasis
microRNA-26a	Down-regulation	Proliferation and apoptosis
microRNA-34a	Up-regulation	Apoptosis
microRNA-122	Down-regulation	Lipid metabolism, proliferation, and differentiation
microRNA-130a-3p	Down-regulation	Proliferation and apoptosis
microRNA-143	Up-regulation	Glucose homeostasis, lipid metabolism, migration, and differentiation
microRNA-155	Up-regulation	Proliferation
microRNA-206	Down-regulation	Glucose homeostasis and lipid metabolism
microRNA-296-5p	Up-regulation	Apoptosis
microRNA-375	Up-regulation	Glucose homeostasis
MicroRNAs in Proliferation

MicroRNA-155 has an important function at early stages of choline-deficient and amino acid-defined (CDAO) diet-induced hepatocarcinogenesis. Activation of NF-κB induced by CDAO diet can upregulate hepatic microRNA-155 and overexpression of microRNA-155 can accelerate the growth of Hep3B and HepG2 cells, but depletion of endogenous microRNA-155 can inhibit the growth of SNU-182 cells (Wang et al., 2009). MicroRNA-21 is highly expressed in hepatocytes, and can lead to reduced proliferation, delayed G1/S transition and repressed growth of xenograft tumor. HBPI is a direct target of microRNA-21, and microRNA-21 knockdown by targeting HBPI can prevent hepatocarcinogenesis (Wu et al., 2016). In addition, microRNA-122 is associated with not only lipid metabolism but also hepatocyte proliferation. Overexpression of microRNA-122 can reduce cell proliferation, while deletion of microRNA-122 may lead to hepatosteatosis, hepatic fibrosis, and HCC (He et al., 2015; Jin et al., 2017).

MicroRNAs in Apoptosis

MicroRNA-34a is a putative mediator in apoptosis and its expression in severe NAFLD is more than mild one (Castro et al., 2013; Shan et al., 2015). The expression of microRNA-34a can be activated by p53 to induce hepatocyte apoptosis through the microRNA-34a/SIRT1/p53 signaling pathway (Castro et al., 2013; Ferreira et al., 2014). MicroRNA-296-5p is considered as a negative regulator of PUMA (a proapoptotic protein) expression during hepatocyte lipoprotein metabolism, and increasing microRNA-296-5p expression may become a novel strategy for inducing apoptosis in NAFLD (Cazanave et al., 2011). It has been shown that adeno-associated virus-mediated microRNA-26a could induce apoptosis specifically in HCC cells without causing the death of normal hepatocytes (Kota et al., 2009). Wang et al. showed that the expression of microRNA-130a-3p was decreased in the mice and patients with nonalcoholic fibrosing steatohepatitis. In addition, microRNA-130a-3p could inhibit proliferation and promote caspase-mediated apoptosis of HSCs to contribute to the development of nonalcoholic fibrosing steatohepatitis (Wang et al., 2017).

MicroRNAs in Migration

MicroRNAs are associated with metastasis of HCC and can become biomarkers for prediction of survival and recurrence of HCC (Zhou et al., 2016). MicroRNA-10b is an active regulator to induce liver steatosis by promoting the accumulation of intracellular lipids and triglycerides (Tsiloulis et al., 2017). Serum level of circulating microRNA-10b was decreased in NAFLD (Celikbilek et al., 2014), but was overexpressed in HCC to promote HCC cell migration and invasion through the HOXD10/RhoC/uPAR/MMPs pathway (Liao et al., 2014). Zhang et al. showed that microRNA-143 was dramatically increased in metastatic HCC patients and promoted HepG2 cells migration by transactivation of the NF-κB signaling pathway. Besides, blocking microRNA-143 could inhibit local liver metastasis and distant lung metastasis (Zhang et al., 2009, 2017).

MicroRNAs in Differentiation

MicroRNA-143 is an important regulator of adipocyte differentiation. Expression levels of microRNA-143 rise in differentiating adipocytes and inhibition of microRNA-143 can cause decrease in triglyceride accumulation, suggesting that microRNA-143 is a potential therapeutic target for obesity and NAFLD (Esau et al., 2004). MicroRNA-122a is also involved in the pathological process of steatohepatitis, fibrosis, and HCC by restoring hepatocyte differentiation. This microRNA may participate in the liver cancer stem cell self-renewal and adjust the balance between cell differentiation and proliferation. The re-expression of microRNA-122a can reduce hepatic disease manifestation and HCC incidence in Mirt122a−/− mice (Laudadio et al., 2012; Tsai et al., 2012).

MICRORNAS-BASED POTENTIAL THERAPY FOR NAFLD-RELATED HCC

Proper diet and exercise are the basic lifestyle interventions in the early stage of NAFLD patients. However, when NAFLD may deteriorate and even progress to cirrhosis and HCC, the effective pharmacological interventions are needed. Due to the effect of microRNAs on lipid metabolism and hepatocarcinogenesis, microRNAs have been considered as novel therapeutic targets for metabolic disorders and HCC. The functions of microRNAs can be modulated by antisense oligonucleotides (Biglino et al., 2017; Meng et al., 2017). Inhibition of microRNA-122 resulted in the decline of plasma cholesterol to improve liver steatosis, and down-regulation of microRNA-122 level in the liver did not produce any adverse effects (Clarke et al., 2014). In addition, the restoration of microRNA-122 can diminish the incidence of HCC, thus showing a new approach for the treatment of HCC by increasing the level of microRNA-122 (Tsai et al., 2012). On the other hand, decrease in the microRNA level also represents a potential therapeutic strategy for NAFLD-related HCC. For example, depletion of endogenous microRNA-155 can inhibit the growth of HCC cells to prevent NASH-induced hepatocarcinogenesis (Wang et al., 2009).

Although microRNAs highlight potential promise for therapeutic interventions, there are some obstacles to their clinical applications, such as low cellular uptake, instability of structure, and degradation by nucleases (Wang et al., 2015). In the future, more studies are needed to explore the mechanisms of microRNAs in NAFLD-related HCC to contribute to the development of microRNAs-based therapy.

CONCLUSIONS

NAFLD-related HCC is a liver malignancy derived from metabolic disorders. The molecular regulatory mechanisms are the complex multiple processes from NAFLD to HCC, attributing to the accumulation of pathophysiologic alterations, such as activation of insulin-mediated proliferative pathways, specific cytokine release, oxidative stress, and mitochondrial damage. MicroRNAs play a key role in the pathogenesis of NAFLD-related HCC by the regulation of lipid metabolism, glucose homeostasis, cell proliferation, apoptosis, migration, and differentiation. The effects of microRNAs on these biological functions
are diverse and interrelated, and numerous microRNAs form a complex signaling network. Metabolic disorders of lipid and glucose can induce hepatic cell proliferation, apoptosis, migration, and differentiation, so normal homeostasis of lipid and glucose can prevent the development of NAFLD-related HCC. However, there is still a long way to understand the comprehensive molecular mechanisms of NAFLD-related HCC pathogenesis and progression. The application of microRNAs for the diagnosis and therapy of NAFLD-related HCC is in the early stage and more research is needed to understand the function and significance of microRNAs in NAFLD-related HCC.

CONFLICT OF INTEREST

The authors have declared that no competing interests exist.

LITERATURE CITED

Afonso MB, Rodrigues PM, Simao AL, Castro RE. 2016. Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J Clin Med 5:30.

Anastasiadou E, Jacob LS, Slack FJ. 2017. Non-coding RNA networks in cancer. Nat Rev Cancer 18:5–18.

Arzumanyan A, Reis HM, Feitelson MA. 2013. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135.

Benhamouche-Trouillet S, Postic C. 2016. Emerging role of miR-21 in non-alcoholic fatty liver disease. Gut 65:1781–1783.

Biglino G, Caputo M, Rajakaruna C, Angelini G, van Rooij E, Cazanave SC, Mott JL, Elmi NA, Bronk SF, Masuoka HC, Emanueli C. 2017. Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities? Pharmacol Ther 170:192–204.

Castro RE, Ferreira DM, Afonso MB, Borrinal PM, Machado MV, Cortez-Pinto H, Rodrigues CM. 2013. miR-34a/SIRT1/p53 is suppressed in NAFLD/miR-34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 34:1100–1120.

Carnasevic SC, Mott JL, Elmi NA, Bronk SF, Masuoka HC, Charlton MR, Gores GJ. 2011. A role for miR-296 in the regulation of lipoapoptosis by targeting PUMA. J Lipid Res 52:1517–1525.

Celikbilek M, Baskol M, Taheri S, Deniz K, Dogan S, Zararsiz G, Gursoy S, Guven K, Ozbakir O, Dundar M, et al. 2014. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol 6:613–620.

Chen L, Chen R, Wang H, Liang F. 2015. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol 2015:508409.

Cholankeril G, Perumpail RB, Pham EA, Ahmed A, Harrison SA. 2016. Nonalcoholic Fatty Liver Disease: Epidemiology, Natural History, and Diagnostic Challenges. Hepatology 64:954.

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. 2018. miR TarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:296–302.

Clarke JD, Sharapova T, Lake AD, Blomme E, Maher J, Cherrington NJ. 2014. Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis. J Appl Physiol 118:728–732.

Cotrim HP, Parise ER, Oliveira CP, Leite N, Martinelli A, Galizzi J, Silva Rde C, Mattos A, Pereira L, Amorim W, et al. 2011. Nonalcoholic fatty liver disease in Brazil. Clinical and histological profile Ann Hepatol 10:33–37.

Di Leva G, Garofalo M, Croce CM. 2014. MicroRNAs in cancer. Annu Rev Pathol 9:287–314.

Duan XY, Qiao L, Yan SY, Ding WJ, Fan JG, Qiao L. 2014. High-saturation-fat diet delays initiation of diethylnitrosamine-induced hepatocellular carcinoma. BMC Gastroenterol 14:195.

Dyson J, Jaques B, Chattopadhyay D, Lochan R, Graham J, Das D, Aslam T, Patanawala I, Gaggero S, Cole M, et al. 2014. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 61:135–147.

Esaú C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, et al. 2004. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365.

Estam M, Valenti L, Romeo S. 2017. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol 68:268–279.

Fan JG. 2013. Epidemiology of alcoholic and non-alcoholic fatty liver disease in China. J Gastroenterol Hepatol 28(Suppl):1–11–17.

Fan JG, Kim SU, Jung W, Kong Yf, 2016. New trends on obesity and NAFLD in Asia. J Hepatol 67:862–873.

Ferreira DM, Afonso MB, Rodrigues PM, Simao AL, Pereira DM, Borrinal PM, Rodrigues CM, Castro RE. 2014. c-Jun N-terminal kinase 1/c-Jun activation of the p53/miRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 34:1100–1120.

Fujikawa N, Friedman SL, Goessens N, Yoshida Y. 2013. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 68:526–549.

Gaggin M, Morelli M, Buzigoli E, DeFranzo RA, Bugianesi E, Gastaldelli A. 2013. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5:1544–1560.

Gentic G, Maillet V, Paradis V, Couton D, L’Hermitte A, Panasyuk Y, Fromenty B, Cetron-Morziz S, Desdouets C. 2015. Oxidative stress promotes pathologic polyolipidization in nonalcoholic fatty liver disease. J Clin Invest 125:381–392.

Gluchowski NL, Becue M, Walther TC, Farese RV Jr. 2017. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14:343–355.

Guo Y, Xiong Y, Sheng Q, Zhao S, Wattacheril J, Flynn CR. 2016. A micro-RNA expression signature for human NAFLD progression. J Gastroenterol Hepatol 51:1022–1030.

Hagstrom H, Tynell P, Rasmussen F. 2017. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma: a national, population-based cohort study in 1.2 million men. Gut 67:1536–1542.

Hassan W, Ding L, Gao RY, Liu J, Shang J. 2014. Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders. Cytokine 66:133–142.

He J, Zhao K, Zheng L, Xu Z, Gong W, Chen S, Shen X, Huang G, Gao M, Zeng Y, et al. 2015. Upregulation of microRNA-122 by farnesoid X receptor suppresses the growth of hepatocellular carcinoma cells. Mol Cancer 14:163.

Inoue-Yamauchi A, Itagaki H, Oda H. 2017. Eicosapentaenoic acid attenuates obesity-related hepatocellular carcinogenesis. Carcinogenesis 39:28–35.

Jin Y, Wang J, Han J, Luo D, Sun Z. 2017. MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Snail1 and Snail2 and suppressing WNT/beta-cadherin signaling pathway. Exp Cell Res 360:210–217.

Jordan SD, Kruger M, Willnes DM, Redemann N, Wunderlich FT, Bronneke HS, Merkwirth C, Kashkar H, Olkoken VM, Bottger T, et al. 2011. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13:434–446.

Kawamura Y, Imae K, Ikeda K, Seko Y, Imai N, Hosaka T, Kobayashi M, Saitoh S, Sezaki H, Akuta N, et al. 2012. Large-scale genetic analysis of NAFLD in Asia. J Hepatol 67:873–883.

Kota J, Chivukula RR, O’Donnell KA, Wentez EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al. 2009. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017.
Laudadio I, Manford I, Achouri Y, Schmidt D, Wilson MD, Cordi S, Thorrez L, Knoops L, Jacquemin P, Schuit F, et al. 2012. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 142:119–129.

Liao CG, Kong LM, Zhou P, Yang XL, Huang JG, Zhang HL, Lu N. 2014. miR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J Transl Med 12:234.

Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Strote DF, Terabe M, Kapoor V, ElGindi M, et al. 2016. NAFLD causes selective CD4(-) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531:253–257.

McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. 2016. Nonalcoholic Fatty Liver Disease. J Hepatol 68:230–246.

Meng L, Liu C, Lu J, Zhao Q, Deng S, Wang G, Qiao J, Zhang C, Zhen L, Lu Y, et al. 2017. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun 8:13964.

Miller AM, Wang H, Bertola A, Park O, Horiguchi N, Ki SH, Yin S, Meng L, Liu C, Lu J, Qiao J, Zhang C, Zhen L, Lu Y, et al. 2017. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun 8:13964.

Okanoue T, Umemura A, Yasui K, Itoh Y. 2011. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol 26(Suppl 1):153.

Patel YA, Gifford EJ, Glass LM, McNeil R, Turner MJ, Han B, Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Santhekadur PK, Kumar DP, Sanyal AJ. 2018. Preclinical Models of Riddhima D, Feddersen CR, Tschida BR, Jackson P, Keng VW, Nishimura T, Fabian MR. 2016. Scanning for a universal pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease. Cell Death Dis 6:1833.

Siegel RL, Miller KD, Jemal A. 2017. Cancer Statistics, 2017. CA Cancer J Clin 67:7–30.

Simon TG, King LY, Chong DQ, Nguyen L, Ma Y, VoPham T, Giovannucci EL, Fuchs CS, Meyerhardt JA, Corey KE, et al. 2017. Diabetes, metabolic comorbidities and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology 67:1797–1806.

Suh B, Yun JM, Park S, Shin DW, Lee TH, Yang HK, Ahn E, Lee H, Park JH, Cho B. 2015. Prediction of future hepatocellular carcinoma incidence in moderate to heavy alcohol drinkers with the FIB-4 liver fibrosis index. Cancer 121:3818–3825.

Sunny NE, Bril F, Cusi K. 2017. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol Metab 28:250–260.

Takase H, Ghashoul K. 2015. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther 15:142–150.

Tian Y, Yang W, Song J, Wu Y, Ni B. 2013. Hepatitis B virus protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 33:2815–2816.

Tian Y, Wang VW, Wong GL, Yang W, Sun H, Shen J, Tong JH, Go MY, Cheung YS, Lai PB, et al. 2015. Histone deacetylase HDAC8 promotes insulin resistance and beta-catenin activation in NAFLD-associated hepatocellular carcinoma. Cancer Res 75:4803–4816.

Tigil H, Moschen AR, Roden M. 2017. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14:32–42.

Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al. 2012. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122:2884–2897.

Tsiboulis T, Pike J, Powell D, Rossello FJ, Cannay BJ, Meex RC, Watt MJ. 2017. Impact of endurance exercise training on adipocyte microRNA expression in overweight men. FASEB J 31:161–171.

Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. 2009. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 50:1152–1161.

Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST. 2012. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 56:186–197.

Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. 2014. The global burden of liver disease: the major impact of China. Hepatology 60:2099–2108.

Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. 2015. Recent progress in microRNA delivery for cancer therapy beyond non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160.

Wang Y, Du J, Niu X, Fu N, Wang R, Zhang Y, Zhao S, Sun D, Nan Y. 2017. miR-1430a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. Cell Death Disc 8:e2792.

Weiss J, Rau M, Geier A. 2014. Non-alcoholic fatty liver disease: epidemiology, clinical course, investigation, and treatment. Dtsch Arztebl 111:447–452.

Wei H, Ng R, Chen X, Steer CJ, Song G. 2016. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBPy-p53-SrebP1 pathway. Gut 65:1850–1860.

Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. 2017a. Prion protein is required for tumor necrosis factor alpha (TNFalpha)-triggered...
nuclear factor kappa B (NF-kappaB) signaling and cytokine production. J Biol Chem 292:18747–18759.

Wu H, Zhang T, Pan F, Steer CJ, Li Z, Chen X, Song G. 2017b. MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis. J Hepatol 66:816–824.

Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, et al. 2013. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424: 99–103.

Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, Gao XM, Qiao P, Zheng Y, Sheng YY, et al. 2013. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58:158–170.

Zhang X, Liu S, Hu T, He Y, Sun S. 2009. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50:490–499.

Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, et al. 2013. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424: 99–103.

Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, Gao XM, Qiao P, Zheng Y, Sheng YY, et al. 2013. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58:158–170.

Zhang J, Lin H, Wang XY, Zhang DQ, Chen JX, Zhuang Y, Zheng XL. 2017. Predictive value of microRNA-143 in evaluating the prognosis of patients with hepatocellular carcinoma. Cancer Biomark 19:257–262.

Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y, Fan J, Huang XW, Zhou J. 2016. miR-28-5p–IL-34–macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 63:1560–1575.