RESEARCH ARTICLE

Micro-epidemiological structuring of *Plasmodium falciparum* parasite populations in regions with varying transmission intensities in Africa. [version 1; referees: 4 approved]

Irene Omedo, Polycarp Mogeni, Teun Bousema, Kirk Rockett, Alfred Amambua-Ngwa, Isabella Oyier, Jennifer C. Stevenson, Amrish Y. Baidjoe, Etienne P. de Villiers, Greg Fegan, Amanda Ross, Christina Hubbart, Anne Jeffreys, Thomas N. Williams, Dominic Kwiatkowski, Philip Bejon

1KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
2Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
3London School of Hygiene and Tropical Medicine, London, UK
4Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
5Medical Research Council Unit, Fajara, Gambia
6Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
7Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
8Department of Public Health, Pwani University, Kilifi, Kenya
9Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
10Department of Medicine, South Kensington Campus, Imperial College London, London, UK
11Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
12Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK

Abstract

Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites. Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametrize such models.

Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 *P. falciparum* isolates from two Kenyan sites and one Gambian site to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and relatedness in space and time for parasite pairs.

Results: We show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes. Genetic relatedness of sample pairs is predicted by relatedness in space and time.
Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population.

Corresponding author: Irene Omedo (iomedo@kemri-wellcome.org)

Competing interests: No competing interests were disclosed.

How to cite this article: Omedo I, Mogeni P, Bousema T et al. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa. [version 1; referees: 4 approved] Wellcome Open Research 2017, 2:10 (doi: 10.12688/wellcomeopenres.10784.1)

Copyright: © 2017 Omedo I et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: Sample collection at the Rachuonyo South site was supported by the Bill and Melinda Gates Foundation, under the Malaria Transmission Consortium, Grant No.45114 and the Grand Challenge Grant No. OPP1024438. Thomas N. Williams is funded by the Wellcome Trust, grant number 091758. Philip Bejon, Polycarp Mogeni and Irene Omedo are funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement. Polycarp Mogeni is funded by the Gottfried und Julia Bangerter-Rhyner Stiftung and the Novartis Foundation for Medical Biological Research project 13A13. Sample collection in Kilifi was supported by core funding from the Wellcome Trust to the Kenya Programme.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 14 Feb 2017, 2:10 (doi: 10.12688/wellcomeopenres.10784.1)
Introduction

The earliest models of malaria transmission assumed a completely mixed and homogenous parasite population\(^1\). However, malaria transmission is highly heterogeneous, and follows the Pareto principle where 80% of infections occur in only about 20% of the population\(^2\). Consequently, there is increasing interest in models allowing for spatial heterogeneity and variably mixed populations of parasites\(^3-5\). There are now several epidemiological studies describing spatial heterogeneity of malaria on varying geographical scales\(^6-10\). This heterogeneity is characterized by infection hotspots which usually persist even after transmission has been reduced in surrounding areas\(^11,20-23\), and thus act as reservoirs of infection\(^11,26\). Achieving any meaningful reduction in transmission in regions containing malaria hotspots will require a scale up of control activities, including repeated mass administration of Artemisinin Combination Therapy (ACT) drugs, increased coverage of long lasting insecticide treated nets (LLINs) and intensive indoor residual spraying (IRS). These measures are very costly and may not be realistic for universal coverage in most of the resource-poor endemic countries. Thus, targeted control may be more important, and is likely to be required to eliminate malaria\(^11,27,28\).

Mathematical models show that targeting hotspots may reduce transmission in surrounding areas\(^11,22\). These models, however, assume that hotspots are stable and that mosquito mixing in the community is homogeneous\(^22\). Studies have shown that certain species of mosquitoes exhibit some level of site fidelity, where they return to the same homesteads to feed\(^29\). If such behaviour is the norm with very little mixing, then this would greatly reduce the community-wide impact of targeted interventions, and interventions would be beneficial only to individuals within the targeted region. If, however, transmission networks operate freely over large geographical areas, then these interventions would likely have an impact beyond the targeted region. Furthermore, parasite evolution takes place in a micro-epidemiological context and the spread of drug resistance or new antigenic variants through the population will also be critically dependent on the degree of mixing of parasite populations.

Few studies currently provide empiric evidence on the mixing of parasites over space and time, yet this evidence is important as parasite mixing is likely to affect the outcome of targeted control interventions\(^23\). The community-wide impact of targeted control has not been studied extensively, although early controlled trials showed that bed nets were effective at reducing child morbidity and mortality associated with malaria, in villages or communities randomised to the intervention in The Gambia\(^2\) and Kilifi\(^1\). More recent studies have shown that the use of bed nets in a village randomized to intervention in Asembo, western Kenya, also protected individuals just outside the intervention village who were themselves not using bed nets\(^27\). A cluster-randomized controlled trial on the impact of targeting integrated control measures to hotspots showed temporally limited effect on reducing transmission in areas surrounding the targeted hotspots\(^25\). In order to inform future targeted control strategies more precise empiric data on parasite mixing is required.

We hypothesized that by genotyping parasites with fine-scale temporal and spatial data we would be able to determine fine-scale structure to the population and infer the degree of parasite mixing over small geographical areas which are likely to be the focus of targeted malaria control programs\(^23,27\). We used SNP genotyping of Plasmodium falciparum field isolates from three African sites and analysed the genetic relatedness among parasites within individual sites, in order to determine the level of parasite mixing on micro-epidemiological scales in each population. Principal Component Analysis (PCA) was used to detect parasite subpopulations in each site, and tests of spatial autocorrelation including Moran’s I and spatial scan statistics were used to test for autocorrelation among parasite genotypes. The analyses were carried out at different spatial scales ranging from intensive within-village surveillance through to county-wide surveillance.

Materials and methods

Study sites

P. falciparum infected blood samples were collected from individuals at three sites in two African countries: Kombo coastal districts of The Gambia on the West African coast; Kilifi, Kenya on the East African coast, and Rachuonyo South District in the Western Kenyan highlands. The Gambia has a subtropical climate with a single rainy season between the months of June and October\(^10,34\), while Kenya has two rainy seasons, experiencing short rains between October and December and long rains between April and August\(^35\). In all three sites, _P. falciparum_ is the main causative agent of malaria\(^22,0,8\) and transmission occurs almost exclusively during and immediately after the rainy seasons\(^33,36\). The common vectors in The Gambia are _Anopheles gambiae_ s.s., _Anopheles arabiensis_ and _Anopheles melas\(^37\)_ while the common vectors in the Kenyan coast have historically been _A. gambiae_ s.s. and _A. funestus_, but a recent shift to _A. arabiensis_ and _A. merus_ has been detected along the coast\(^35\). In Rachuonyo South district, the main vectors transmitting malaria are _A. gambiae_ s.l. and _A. funestus\(^38\)_ Temporal trends show declining malaria transmission in The Gambia and Coastal Kenya\(^13,33,34,40\), although not in Western Kenya\(^41\). Asymptomatic parasite prevalence is lowest in The Gambia at 8.7%\(^42\), intermediate in Kilifi at 14%\(^43\) and slightly higher in Rachuonyo South at 16%\(^44\).

Ethics statement

Ethical approval for this study was obtained from Kenya Medical Research Institute (KEMRI) Ethical Review Committee (under SSC No. 2239). Written informed consent was obtained from parents/guardians of the study participants. The study methods were carried out in accordance with the approved guidelines.

Sample collection, DNA extraction and Genotyping

5199 _P. falciparum_ infected blood samples were collected during hospital admissions and community surveys over a 14-year period from 1998 to 2011. The Gambian samples were collected at Fajara and Brikama health facilities from children aged 8 months to 16 years who were living in the Kombo coastal districts and who were part of a clinical malaria study in 2007–2008\(^39\). The Kilifi samples came from children aged 1 to 6 years who had been recruited into a
phase 2b randomized trial looking at the efficacy of the Candidate Malaria Vaccines FP9 ME-TRAP (multiple epitope–thrombospondin-related adhesion protein) and MVA ME-TRAP in 2005\cite{5}, as well as clinical malaria studies looking at antibody responses to Merozoite Surface Protein 2 (MSP2) among individuals 3 weeks to 85 years old\cite{6}; the effect of declining transmission on mortality and morbidity in children up to 14 years old\cite{7} and definitions of clinical malaria endpoints\cite{8}. The Rachuonyo south samples were collected during a community survey conducted in 2011 as part of a trial looking at the impact of hotspot targeted control interventions on reducing malaria transmission in the wider community\cite{9}. Prior to genotyping, DNA was extracted from these samples using either ABI prism 6100 Nucleic Acid prepstation (Applied Biosystems, Waltham, Massachusetts, USA) or Chelex Extraction.

276 SNPs in 177 genes were typed in the three parasite populations (Dataset 1\cite{10}). The SNPs were selected from a panel of 384 SNPs previously designed for a study on population structure of *P. falciparum* parasites from Africa, Southeast Asia and Oceania\cite{11} and were chosen based on three criteria:

a) polymorphic among three of the most studied and well characterized *P. falciparum* strains (3D7, HB3 and IT).

b) uniformly distributed across the parasite genome.

c) ease of typing on the sequenom platform.

Genes typed included antigen-encoding, housekeeping and hypothetical genes. 52 and 9 SNPs were typed in the antigen-encoding parasite ligands Erythrocyte Binding Antigen 175 (EBA-175) and Apical Membrane Antigen 1 (AMA-1), respectively. In the Kilifi parasite population, between 158 and 226 SNPs were typed in each sample, while in The Gambia and Rachuonyo south populations, 131 and 111 SNPs were typed in 143 and 2744 samples, respectively. Genotyping was done on the Sequenom MassARRAY iPLEX platform, which allows multiplexing of up to 40 SNPs in a single reaction well and differentiates alleles based on variations in their mass\cite{12}. Locus specific PCR and iPLEX extension primers were designed with the sequenom MassARRAY designer software (Version 3.1) using 3D7 as the reference genome (PlasmoDB release 9.0) (Dataset 2\cite{13}). A multiplexed PCR reaction was performed by pooling locus-specific primers, and un-incorporated dNTPs were dephosphorylated enzymatically using shrimp alkaline phosphatase. Extension primers binding immediately adjacent to the SNP site of interest were then extended by a single nucleotide base, using mass-modified dideoxynucleotides. The extended products were resin cleaned to remove excess salts and the mass of the different alleles determined using MALDI-TOF mass spectrometry.

Sample and SNP cut-off selection criteria
Genotype data was aggregated to determine genotyping success rates for individual samples and SNPs. Samples where >40% of SNP typing failed were excluded from analysis, and among the remaining samples, SNP typing for which >30% of samples failed were further excluded from analysis. The criteria for successful SNP typing were based on the SNP intensity values (r) and allelic intensity ratios (theta). Alleles were called as successful if they were above an intensity cut-off value ranging between 0.5 and 1.0, set depending on the performance of the individual SNP assay, and were classified as failed if they were below this cut-off. For those SNPs that were above the cut-off, allelic intensity ratios ranging between 0 and 1 were used to classify them as homozygous or heterozygous. Theta values nearing 0 and 1 indicate different homozygous alleles, while intermediate values indicate heterozygous SNPs, representing mixed parasite populations. Where mixed parasite populations were identified, we took the majority SNP calls at each position to indicate the dominant genotype.

Statistical analyses
All statistical analyses of genotype data were conducted in R statistical software (version 3.0.2)\cite{14}, except for the spatial scan statistics which were computed using SaTScan software (version 9.3)\cite{15}. Analyses were carried out separately for each parasite population, except for the Fixation index (FST) analyses which by definition involve the comparison of populations and so were carried out between samples in the different sites.

In each population, genotype data for all samples was aggregated and analysed collectively. Separate analyses were also carried out for subsets of SNPs typed in EBA 175 and AMA1. In the Kilifi population, we ran additional analyses for samples collected from community surveys (asymptomatic infections) and hospital admissions (symptomatic infections).

Calculating pairwise time, distance and SNP differences. Analysis was carried out separately for each of the three sites. Each parasite was compared to every other parasite in that site (i.e. a pairwise analysis), noting the time, distance and SNP differences between the parasite pair (Dataset 3–Dataset 5\cite{16}). We took half the lower limit of detection of temporal and spatial differences for parasite pairs collected on the same day and/or at the same location. Parasite pairs collected on the same day were assigned a difference of 0.5 days. For older samples in Kilifi (i.e. collected prior to 2004) where location was known to a 5 km accuracy, pairs collected at the same location were assigned a difference of 2.5km. We had precise geospatial co-ordinates for recent samples in Kilifi (i.e. collected after 2004) as well as all samples from The Gambia and Rachuonyo South, so parasite pairs in these three groups collected from the same location were assigned a difference of 0.02km.

SNP differences were computed by comparing genotype data for parasite pairs within each population and counting the number of SNPs between them. Missing SNP data for each parasite was replaced with the major allele in the respective population, after excluding SNP typing where >30% of assays failed as described above.

Population genetics analyses. Minor allele frequencies were computed for SNPs in each population. Principal components analysis (PCA) was performed using singular value decomposition on a covariance matrix of pairwise SNP differences between
parasites in individual populations. To detect inter-population genetic differentiation and within-population genetic diversity, we restricted analysis to 33 SNPs that had been successfully typed in all three populations.

Spatial autocorrelation. Moran’s I was calculated using geographical coordinates to specify location and scores for the first 3 principal components to specify associated attribute values. Moran’s I was computed at distance classes of 1 km, 2 km and 5 km, using 100 bootstrap resampling steps to determine statistical significance.

Spatial scan statistics were calculated using SaTScan software. Analysis was purely spatial using a normal probability distribution model on continuous variables. During the analysis, a scanning window moves over the geographical space and computes observed and expected principal component values for different locations and window sizes. The locations with the greatest ratios of observed to expected values were noted as clusters and their statistical significance was determined using random permutations to account for multiple comparisons.

Raster analysis. To identify possible spatial barriers to parasite movement and mixing over short distances, each study area was divided into pixels of varying sizes which were then scored with 1 or 0, based on whether or not a straight line linking any two parasites crossed their boundaries. These pixels were then used as independent variables in a multivariable linear regression analysis that had the number of SNP differences as the dependent variable. Significance of the coefficient estimates were determined using non-parametric bootstrapping with 100 resampling steps.

To test for correlations between transmission intensity and population genetics at fine scale, each pixel was assigned the mean of the PC scores and either Malaria Positive Fraction (for Kilifi data) or asymptomatic parasite prevalence by PCR (for Rachuonyo) for all samples found within that pixel. The correlation between PC score and MPF or between PC score and parasite prevalence was tested by Spearman’s rank ordered correlation coefficient.

Results

Study populations

5199 *P. falciparum* parasite isolates were collected from the Kombo coastal districts in The Gambia, and Kilifi County and Rachuonyo South district in Kenya (Figure 1) between 1998 and 2011. 107, 177 and 82 SNPs were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively (Table 1). 26, 57 and 49 SNPs were present at frequencies of 5% and above in The Gambia, Kilifi and Rachuonyo, respectively. In each of the populations, there was a positive correlation between SNP assay performance and parasite density.
Table 1. Summary of information on P. falciparum infected blood samples collected from The Gambia, Kilifi and Rachuonyo South study sites.

Study site	Contributing study	Study period	Average parasite density	Samples genotyped	Samples analysed	SNPs genotyped	SNPs analysed
The Gambia (Kombo Coastal Districts)	Clinical malaria study	Sep '07 – Dec '08	406,093	143	133	131	107
Kilifi	Community surveys	Feb – Oct ’05	4562	748	195	240	177
Kilifi	Clinical malaria surveys	Jul ’98 – Apr ’10	352,428	1564	1407	240	177
Rachuonyo South	Community surveys	2011	NA	2744	1034	111	82
In each study site, we found similar results when we analysed the EBA 175 and AMA1 SNP subsets separately, and when we analysed the aggregated SNP data. Only the results of the aggregated analyses are presented here. In the Kilifi population, results were similar between the community surveys and hospital admissions. Here we present the results of the combined analyses of these data subsets.

Parasite genetic diversity and population differentiation

Weir and Cockerham’s fixation index (F_{ST}) estimates showed that the level of differentiation amongst the three populations was 0.046, comparable with results of other studies of African populations\(^52\),\(^53\). Pairwise population analysis gave F_{ST} values of 0.041 between Kilifi and Rachuonyo South, 0.078 between The Gambia and Kilifi and 0.108 between The Gambia and Rachuonyo South, showing the greatest genetic differentiation between The Gambia and Rachuonyo South parasite populations.

Analysis of within-population genetic diversity (π), based on a set of 33 SNPs that had been typed in samples from all three populations, showed that parasites in Rachuonyo South had the highest genetic diversity with an average of 3.384 (95% CI: 3.380 – 3.388) SNP differences per parasite pair. Those in The Gambia had the lowest SNP differences per parasite pair at an average of 2.867 (95% CI: 2.836 – 2.898) SNPs, while Kilifi had intermediate genetic diversity at 3.229 (95% CI: 3.226 – 3.231) SNP differences per parasite pair.

Principal Component Analysis (PCA) was carried out separately for each population using the 107, 177 and 82 SNPs that were successfully typed in The Gambian, Kilifi and Rachuonyo South parasite populations. Cumulatively, the first three principal components accounted for 36.1% (PC1=18.4%, PC2=10.4%, PC3=7.3%) of the variability seen in The Gambia, 13.2% (PC1=51.1%, PC2=4.4%, PC3=3.7%) of the variability seen in Kilifi and 12.7% (PC1=4.4%, PC2=4.3%, PC3=4%) of the variability seen in Rachuonyo South. We were unable to resolve parasite populations into distinct sub-populations using principal component analysis (Figure 2 and Figure 3, Supplementary Figure 1).

Global and local spatial autocorrelation analysis

Having not seen sub-populations by PCA alone, we then included spatial analyses to test for spatial structure to the principal component values. Moran’s I analysis for spatial autocorrelation showed slight positive correlations for parasites that were statistically significant for at least one principal component at 2 km and below in The Gambia, 5 km and below in Kilifi, and 1 km and below in Rachuonyo South (Figure 4).

Spatial scan statistics using SaTScan identified statistically significant ($p\leq0.01$) clusters of different sizes in Kilifi and Rachuonyo South parasite populations. In Kilifi, one cluster with a radius of 1.54 km ($p=0.01$) was detected, while in Rachuonyo South, a smaller cluster of genetically distinct parasites was detected with a radius of 0.5 km ($p=0.001$). No clusters were detected in The Gambian population.

Spatio-temporal variations in genetic differences between parasite isolates

We examined the effect of distance and time separating parasite pairs on genetic relatedness to determine the spatial extent and rate of parasite mixing. We used linear regression models where the number of SNP differences between parasite pairs was an outcome predicted by the distance between parasite pairs and the time between parasite pairs. Time was not included for the

Figure 2. Plots of Principal Component Analysis scores for *P. falciparum* parasite populations in the study sites. Each point represents one of 133 parasites in The Gambia (a), 1602 parasites in Kilifi (b) and 1034 parasites in Rachuonyo South (c). Genetic structuring was not observed for any of the parasite populations based on these three principal components. Cumulatively, the first three principle components accounted for 36.1% (PC1=18.4%, PC2=10.4%, PC3=7.3%), 13.2% (PC1=5.1%, PC2=4.4%, PC3=3.7%) and 12.7% (PC1=4.4%, PC2=4.3%, PC3=4%) of the variability seen in The Gambia, Kilifi and Rachuonyo South populations, respectively.
Figure 3. Geographic distribution of *P. falciparum* parasite genotypes based on scores for the first principal component. Each point represents the location of an individual parasite isolate and the colour shading represents distinct genotypes for parasites in (a) The Gambia, (b) Kilifi and (c) Rachuonyo South study sites.

Figure 4. Moran's *I* spatial autocorrelation analysis for the first three principal components. Coefficients were computed at distance classes of 2 km for (a) The Gambia and (b) Kilifi, and 1 km for (c) Rachuonyo South parasite populations. Asterisks indicate distances at which parasites have significant (p<0.01) autocorrelations. In The Gambia and Kilifi populations, only a few samples were collected from the same location, so Moran's *I* was not computed at this distance (0 km).
Rachuonyo South population as the samples were collected in a single cross-sectional survey taken over a few days. Across all three datasets, distance was independently associated with increasing variation in genotype, i.e. the further apart in space any two parasites were, the greater the number of SNP differences between them. In The Gambia and Kilifi populations, time was also shown to be associated with increasing variation in genotype, with parasite pairs collected further apart in time having greater number of genetic differences. Additionally, in The Gambia and Kilifi populations, time interacted antagonistically with distance to attenuate the effect of distance on genotype relatedness (Figure 5). This means that the genetic differences between any two parasites increased with distance, but at a decreasing rate when time between these samples increased. We observed that in The Gambian population, parasites acquired SNP differences over distance at a slower rate than in the Kilifi and Rachuonyo populations.

Bootstrapping the analyses (to take into account the linked nature of pairwise observations) gave statistically significant effects of distance, time and the interaction between distance and time (Table 2).

Identification of geographical barriers to parasite movement

We conducted raster analysis by pixels to examine a) the spatial relationship between distinct parasite genotypes as represented by the principal component analysis and either malaria positive fraction (MPF) data (in Kilifi) or PCR positive data (in Rachuonyo South) and b) the presence of possible spatial barriers to parasite movement that would act as factors. The analysis of principal components did not show any consistent or statistically strong associations with markers of transmission intensity (i.e. malaria positive fraction and prevalence of asymptomatic parasitaemia by PCR) (Supplementary Figure 2).

Bootstrapping the multivariable linear regression analysis of pairwise comparisons of samples for SNP differences using 189, 703 and 340 pixels for The Gambia, Kilifi and Rachuonyo South,

![Figure 5](image_url)
respectively, showed that the majority of pixels were not significant influences on SNP differences (Supplementary Figure 3). The few pixels that were significant (p<0.05) were non-significant after applying Bonferroni correction to account for multiple testing. Furthermore the distribution of p values was uniform for each dataset (mean p value ~0.5 in each population).

Discussion

As malaria transmission declines, targeted control at the micro-epidemiological scale is likely to be important in eliminating malaria in any remaining transmission foci. The effectiveness of such targeted measures will depend on the extent of parasite mixing in and around these foci(23). In the current analysis, we did not identify any population structure by simple inspection of the Principal components derived from SNP genotyping in The Gambia, Kilifi and Rachuonyo South (Figure 2 and Figure 3), indicative of a parasite population that is well mixed. However we did not conclude that there was no structure to the population, only that we could not identify it in the absence of spatial data. We therefore went on to analyse the genotype data using spatio-temporal data, and identified spatial autocorrelation using Moran’s I in all three populations, with statistical significance (p<0.01) for the first principal component in The Gambia and Kilifi and the third principal component in Rachuonyo South (Figure 4). Overall, the consistent pattern observed in the Moran’s I analyses was that of spatial autocorrelation at close proximity (i.e. at a range of a few km), and little or no auto-correlation at larger distances. The auto-correlation was modest in effect size but statistically significant with p values ranging from 0.01 to 0.001 at < 1 km. However, using scan statistics we identified only two specific clusters of parasites, one in Kilifi and another in Rachuonyo South. The limited evidence of specific local clusters of parasite populations in the face of evidence of spatial auto-correlation over the whole study site implies that there is a high degree of mixing among parasites within the study sites, leading to limited clustering of parasites into genetically distinct sub-populations.

We further looked at the effect of time, distance and time-distance interaction on the variation in SNP differences between parasite pairs within individual study sites. We found that time and distance were independently associated with increasing variation between parasite genotypes (i.e. the further apart in time or space two parasites were, the greater the genetic differences observed between them). However, in the case of The Gambia and Kilifi populations we had longitudinal data, time was shown to interact antagonistically with distance, with an increase in time reducing the variations in genetic differences between parasites as distance between the parasites increased (Figure 5). This implies that distance between samples was no longer predictive of genetic variation when there were longer time periods between samples, indicating that, given enough time, even parasites that are separated by large distances would get a chance to interact and recombine, especially if they are not geographically isolated.

Lack of genetic structuring of parasite populations observed in this study is indicative of a population that is well mixed. This observation of a highly mixing parasite population is in agreement with results of similar studies using microsatellites(52,54,55), immune selected genes(56,57) and SNPs(58). However, other studies have shown population structure when looking at the same population(83,94-96), although these analyses were carried out on larger geographical scales than those analysed here.

On an international level, for example, some studies have been able to distinguish between Senegalese and Thai parasite isolates using a 24-SNP barcode(92), and another study using 4 SNPs out of a set of 384 SNPs was able to resolve East and West African parasites(94), showing that parasite populations can be resolved on a large geographical scale. A study in Senegal was also able to identify population structure among parasites using a 24 SNP barcode, despite a high level of similarity among the parasites analysed(93).

It is possible that more detailed genotyping using a larger number of markers, for instance by whole genome sequencing, would start to identify mutations that are private to particular sub-populations at a finer geographical scale, although the degree of mixing observed here suggests that discrete populations are unlikely.

We identified spatial autocorrelation among parasites in the different study areas. However, most of these correlations were found over short distances, pointing to the existence of parasite sub-populations over small spatial scales. This indicates the presence of clusters of genetically distinct parasites at micro-epidemiological scales within the study sites. Previous studies have identified parasite sub-populations based on clustering of serological responses to the important antigen Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) in children in Kilifi(85), supporting our observations of parasite sub-populations at this site. In Papua New Guinea, sub-populations of parasites have also been identified at a micro-epidemiological scale using PfEMP1(85), indicating that this may be a good marker for population differentiation at the micro-epidemiological level.

Studies on hotspots of symptomatic malaria infection have identified hotspots or clusters of infections down to the level of individual homesteads in Kilifi(7). The lack of consistent correlations between parasite genotypes and infection prevalence shown through raster analysis of pixels in this study (Supplementary Figure 2) indicate that infections within higher incidence areas are likely not caused by distinct parasite sub-populations. Instead, such infections are likely caused by parasites that are well mixed within the general population. Our inability to detect barriers to parasite movement over short distances indicates that parasites move freely within the study areas, and the spatial extent of such parasites may be limited only by the ecology and dispersal range of mosquito vectors. Furthermore, recent examination of the epidemiology of hotspots shows that they occur at the full range of spatial scales, with a pattern of spatial auto-correlation that does not show a discontinuity at any scale (i.e. a smooth semi-variogram)(8). This further argues against the existence of discrete “units” of transmission with sub-populations of parasites.

This has implications for public health interventions that may target transmission hotspots. If hotspots consist of distinct parasite populations that do not mix with parasite populations in the wider parasite
community, the impact of hotspot-targeted interventions beyond the hotspot boundaries can be expected to be limited. If parasites mix freely, as suggested by our data, the impact of hotspot-targeted interventions may affect community-wide malaria transmission. This assumes that hotspots can be detected, are stable in time and the spread of parasite populations indeed primarily occurs from hotspots to the surrounding community.

This study had some limitations. First, the number of SNPs typed was relatively small, and this would have limited our power to detect genetic structuring among the highly similar parasite populations, especially in The Gambia. Detecting structuring in highly similar parasite populations may require either a much larger panel of SNPs or the use of more informative SNPs, as shown in the study by Campino et al., 2011. However, despite the small SNP panel used in this study, we were still able to detect population structuring on a micro-epidemiological scale. Our analysis suggests that this structure was a uniform spatial and temporal auto-correlation rather than driven by discrete clusters of parasites at specific locations. Despite the limitations of our SNP typing and sample size we can therefore conclude that any specific clustering is less prominent as a feature than the auto-correlations in space and time that we can detect.

A second limitation is that we conducted our study in only two sites in Kenya, and one site in the Gambia. It may be premature to generalize our results more widely and an analysis of more sites will be required to make confident generalizations. On the other hand the three sites selected do demonstrate differing transmission intensities typical of many endemic Sub Saharan African countries, and this was reflected in the level of genetic diversity observed in the populations. Furthermore, our findings are consistent across all three sites. Nevertheless, patterns of parasite mixing may differ between populations based on distinctive features such as geographic isolation and patterns of human movement. Further data are required to make more general conclusions.

In conclusion, we have shown that Plasmodium falciparum parasite populations mix evenly within The Gambia, Kilifi and Rachuonyo South and there appear to be no detectable geographical barriers to parasite movement over short distances within these sites. That said, autocorrelations of genotype were detected at the micro-epidemiological level. We would conclude that control strategies that efficiently target hotspots will likely benefit the wider community outside the hotspots at the District/County level (we are however unable to comment on larger geographical scales), although this is likely to be affected by factors such as the underlying transmission level, heterogeneity of transmission, and patterns of human movement. On the other hand, following mass-treatment campaigns we would predict that if residual foci of transmission are retained this will rapidly lead to re-infection of the wider community, and that parasites acquiring mutations conferring drug resistance or immunological escape will be rapidly spread at a micro-epidemiological level.

Data availability

Figshare: Dataset 1: Information on the 276 SNPs genotyped in 177 genes in P. falciparum parasite populations from The Gambia, Kilifi and Rachuonyo South, doi: http://dx.doi.org/10.6084/m9.figshare.4640707

Figshare: Dataset 2: Sequenom assay design information, doi: http://dx.doi.org/10.6084/m9.figshare.4640719

Figshare: Dataset 3: SNP, distance and time differences between P. falciparum parasite pairs in The Gambia population, doi: http://dx.doi.org/10.6084/m9.figshare.4640722

Figshare: Dataset 4: SNP, distance and time differences between P. falciparum parasite pairs in the Kilifi population, doi: http://dx.doi.org/10.6084/m9.figshare.4640725

Figshare: Dataset 5: SNP and distance differences between P. falciparum parasite pairs in the Rachuonyo South population, doi: http://dx.doi.org/10.6084/m9.figshare.4640728

Author contributions

P.B, D.K and T.B conceived and designed the study. T.B, A.A, J.C., S, A.Y.B, T.N.W, K.R, D.K. were involved in sample and/or data collection. C.H, A.J, K.R genotyped the SNPs. I.A.O, P.B, P.M., A.R, E.V, I.O and G.F analysed the data. I.A.O wrote the first draft manuscript. All authors reviewed, edited and approved the final manuscript.

Competing interests

No competing interests were disclosed.

Grant information

Sample collection at the Rachuonyo South site was supported by the Bill and Melinda Gates Foundation, under the Malaria Transmission Consortium, Grant No.45114 and the Grand Challenge Grant No. OPP1024438. Thomas N. Williams is funded by the Wellcome Trust, grant number 091758. Phillip Bejon, Polycarp Mogeni and Irene Omedo are funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement. Polycarp Mogeni is funded by the Gottfried und Julia Bangerter-Rhyner Stiftung and the Novartis Foundation for Medical Biological Research project 13A13. Sample collection in Kilifi was supported by core funding from the Wellcome Trust to the Kenya Programme.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

The paper is published with the permission of the Director of KEMRI.
Supplementary material

Supplementary Figure 1. Geographical distribution of *P. falciparum* parasite genotypes based on scores for the second (PC2) and third (PC3) principal components. Each point represents an individual parasite isolate and the colour shading represents distinct genotypes for parasites in The Gambia (d and g), Kilifi (e and h), and Rachuonyo South (f and i) study sites.

Click here to access the data.

Supplementary Figure 2. Raster analysis by pixels. This was carried out to determine the spatial relationship between distinct parasite genotypes as represented by principal component analysis and either malaria positive fraction (MPF) or PCR positive fraction (PPF) data. (a) and (b) show the distribution of scores for the first principal component (PC1) and MPF over a 1 km × 1 km grid area of Kilifi. (d) and (e) show the distribution of scores for the first principal component and PPF over a 1 km × 1 km grid area of Rachuonyo South. Spearman’s correlation coefficients computed to show the relationship between parasite genotypes and either MPF (e) or PPF (f) showed no strong associations between genotypes and the two markers of transmission.

Click here to access the data.

Supplementary Figure 3. Raster analysis by pixels to examine the presence of spatial barriers to parasite movement. The pixel plots represent *p* values of bootstrapped linear regression correlation coefficients and show the significance of different geographical locations in acting as barriers to parasite mixing. Individual grid sizes were of approximately 1 km × 1 km in (a) Kilifi and (c) The Gambia and 0.5 km × 0.5 km in (b) Rachuonyo South. The colour key in each case indicates the range of *p* values from 0.0001 to 1. Significant *p* values shown on the plot were non-significant after applying Bonferroni correction to account for multiple testing.

Click here to access the data.

References

1. Smith DL, Battle KE, Hay SI, et al.: Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. *PLoS* pathog. 2012; 8(4): e1002588. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

2. Rorer RC Jr, Perkins TA, Barker CM, et al.: A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. *J R Soc Interface*. 2013; 10(81): 20120921. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

3. Woolhouse ME, Dye C, Etard JF, et al.: Heterogeneties in the transmission of infectious agents: implications for the design of control programs. *Proc Natl Acad Sci U S A*. 1997; 94(1): 338–342. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

4. Perkins TA, Scott TW, Le Menach A, et al.: Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. *PLoS Comput Biol*. 2013; 9(12): e1003272. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

5. Prosper O, Ruktanonchai N, Martcheva M: Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. *J Theor Biol*. 2012; 303: 1–14. *PubMed Abstract* | *Publisher Full Text*

6. Acevedo MA, Prosper O, Lopiano K, et al.: Spatial heterogeneity, host movement and mosquito-borne disease transmission. *PLoS One*. 2015; 10(6): e0127952. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

7. Rumpho SF, Smith T, Abdulla S, et al.: Modelling heterogeneity in malaria transmission using large sparse spatio-temporal entomological data. *Glob Health Action*. 2014; 7: 22682. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

8. Baidoo AY, Stevenson J, Knight P, et al.: Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. *Malar J*. 2016; 15: 307. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

9. Bejon P, Williams TN, Nyundo C, et al.: A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. *elife*. 2014; 3: e02130. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

10. Bhatt S, Weiss DJ, Cameron E, et al.: The effect of malaria control on *Plasmodium falciparum* in Africa between 2000 and 2015. *Nature*. 2015; 526(7572): 207–211. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

11. Bousema T, Drakeley C, Gesase S, et al.: Identification of hot spots of malaria transmission for targeted malaria control. *J Infect Dis*. 2010; 201(11): 1764–1774. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

12. Cook J, Reid H, Iavo J, et al.: Using serological measures to monitor changes in malaria transmission in Vanuatu. *Malar J*. 2010; 9: 169. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

13. Cook J, Speybroeck N, Sochanta T, et al.: Sero-epidemiological evaluation of changes in *Plasmodium falciparum* and *Plasmodium vivax* transmission patterns over the rainy season in Cambodia. *Malar J*. 2012; 11: 86. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

14. Gething PW, Casey DC, Weiss DJ, et al.: Mapping *Plasmodium falciparum* Mortality in Africa between 1990 and 2015. *N Engl J Med*. 2016; 375(25): 2435–2445. *PubMed Abstract* | *Publisher Full Text*

15. Gething PW, Patil AP, Smith DL, et al.: A new world malaria map: *Plasmodium falciparum* endemicity in 2010. *Malar J*. 2011; 10: 378. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

16. Machault V, Vignolles C, Pagès F, et al.: Spatial heterogeneity and temporal evolution of malaria transmission risk in Dakar, Senegal, according to remotely sensed environmental data. *Malar J*. 2015: 8: 252. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

17. Noor AM, Kinyoki DK, Mundia CW, et al.: The changing risk of *Plasmodium falciparum* malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity. *Lancet*. 2014; 383(9903): 1739–1747. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

18. Odoro AR, Conway DJ, Schellingberg D, et al.: Sero-epidemiological and parasitological evaluation of the heterogeneity of malaria infection in the Gambia. *Malar J*. 2013; 12: 222. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

19. Okebe J, Alfara M, Correa S, et al.: School-based countrywide seroprevalence survey reveals spatial heterogeneity in malaria transmission in the Gambia. *PLoS One*. 2014; 9(10): e110926. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

20. Bejon P, Williams TN, Ljinder A, et al.: Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. *PLoS Med*. 2010; 7(7): e1000304. *PubMed Abstract* | *Publisher Full Text* | *Free Full Text*

21. Bousema T, Griffin JT, Sauerwein RW, et al.: Hitting hotspots: spatial targeting
of malaria for control and elimination. PLoS Med. 2012; 9(1): e1001165.
23. Bozeman T, Stevenson J, Baidjoe A, et al.: The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials: 2013; 14: 36.
24. Dolgin E: Targeting hotspots of transmission promises to reduce malaria. Nat Med 2010; 16(10): 1055.
25. Kangoye DT, Noor A, Midega J, et al.: Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast. Malar J. 2016; 15: 213.
26. Smith DL, McKenzie FE, Snow RW, et al.: Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007; 5(3): e42.
27. Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000; 78(12): 1401–1411.
28. Ruktanonchai NW, DeLeenheer P, Tatem AJ, et al.: Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Comput Biol. 2016; 12(4): e1004946.
29. McCall PJ, Moshah FW, Nuwaha KJ, et al.: Evidence for memorized site-fidelity in Anopheles arabiensis. Trans R Soc Trop Med Hyg. 2001; 95(6): 587–590.
30. Alonso PL, Lindsay SW, Armstrong JR, et al.: Ongoing malaria transmission in The Gambia despite high coverage of control interventions: a nationwide cross-sectional survey. Malar J. 2015; 14: 314.
31. Hawley WA, Phillips-Howard PA, ter Kule FO, et al.: Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg. 2003; 68(4 Suppl): 121–127.
32. Ceasey SJ, Casals-Pascual C, Nwakama DC, et al.: Decline of malaria in The Gambia with implications for elimination. PLoS One. 2010; 5(8): e12242.
33. Ceasey SJ, Casals-Pascual C, Erskine J, et al.: Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008; 371(9608): 1545–1550.
34. Scott JA, Bauni E, Moisi JC, et al.: Profile: The Kilifi Health and Demographic Surveillance System (KHDDS), Int J Epidemiol. 2012; 41(3): 650–657.
35. Mwesigwa J, Okebe J, Alfara M, et al.: On-going malaria transmission in The Gambia despite high coverage of control interventions: a nationwide cross-sectional survey. Malar J. 2015; 14: 314.
36. Caputo B, Nwakama D, Jawara M, et al.: Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s. Malar J. 2008; 7: 168.
37. Mwangangi JM, Mbogo CM, Orindi BO, et al.: Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013; 12: 13.
38. Stevenson J, St Laurent B, Lotso NF, et al.: Novel vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis. 2012; 18(9): 1547–1549.
39. Okiro EA, Alegana VA, Noor AM, et al.: Malaria paediatric hospitalization between 1999 and 2008 across Kenya. BMC Med. 2009; 7: 75.
40. O’Meara WP, Bejon P, Mwangi TW, et al.: Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet. 2008; 372(9649): 1555–1562.
41. Okiro EA, Alegana VA, Noor AM, et al.: Malaria paediatric hospitalization between 1999 and 2008 across Kenya. BMC Med. 2009; 7: 75.
42. Sonko ST, Jaitleh M, Jafali J, et al.: Does socio-economic status explain the differentials in malaria parasite prevalence? Evidence from The Gambia. Malar J. 2014; 13: 449.
43. Midega JT, Smith DL, Otuto A, et al.: Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun. 2012; 3: 674.
44. Stevenson JC, Stremsen GH, Gitonga CW, et al.: Reliability of school surveys in estimating geographic variation in malaria transmission in the western Kenyan highlands. PLoS One. 2013; 8(10): e77640.
45. Bejon P, Mwacharo J, Kai O, et al.: A phase 2b randomised trial of the candidate malaria vaccines F99 ME-TRAP and NVA ME-TRAP among children in Kenya. PLoS Clin Trials. 2006; 16(6): 528.
46. Polley SD, Conway DJ, Cavanagh DR, et al.: High levels of serum antibodies to a merozoite surface protein of Plasmodium falciparum are associated with reduced risk of clinical malaria in coastal Kenya. Vaccine. 2006; 24(19): 4233–4246.
47. Otolo A, Fegan G, Williams TN, et al.: Defining clinical malaria: the specificity and incidence of endpoints from active and passive surveillance of children in rural Kenya. PLoS One. 2010; 5(12): e15569.
48. Campsio S, Aubum S, Kivinen K, et al.: Population genetic analysis of Plasmodium falciparum parasites using a customized Illumina GoldenGate genotyping assay. PLoS One. 2011; 6(6): e20251.
49. Gabriel S, Ziaura L, Tabbaa D: SNP genotyping using the sequent MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009; Chapter 2: Unit 2.12.
50. Kulmlof M: SAbscan v3.3: Software for the spiked and space-time scan statistics. 2014.
51. Anderson TJ, Haubold B, Williams JT, et al.: Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000; 17(10): 1467–1482.
52. Bansal M, Camara S, Campos S, et al.: Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012; 487(7407): 375–379.
53. Andseder AM, Abdel-Muhsein AM, Elzeini SE, et al.: Plasmodium falciparum population structure in Sudan post artemisinin-based combination therapy. Acta Trop. 2015; 148: 97–104.
54. Nyebola MK, Iwoji ET, Nyang H, et al.: Microsatellite markers reveal low levels of population sub-structuring of Plasmodium falciparum in southwestern Nigeria. Malar J. 2014; 13: 493.
55. Bertocchini F, MacLennan IC, et al.: Genetic diversity of VARPSCA ID1-DBL2X in worldwide Plasmodium falciparum populations: impact on vaccine design for plasmodial malaria. Infect Genet Evol. 2014; 25: 81–92.
56. Duan J, Mu J, Thera MA, et al.: Population structure of the genes encoding the polymorphic Plasmodium falciparum apical membrane antigen 1: implications for vaccine design. Proc Natl Acad Sci U S A. 2008; 105(22): 7857–7862.
57. Mogebi VA, Dufy CW, Amambua-Ngwa A, et al.: Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol. 2014; 31(6): 1490–1499.
58. Bogreau H, Renaud F, Bouchiba H, et al.: Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas. Am J Trop Med Hyg. 2006; 74(6): 953–959.
59. Pumplou T, Amathu C, Durand P, et al.: Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar J. 2009; 8: 155.
60. Anderson TJ, Nair S, Sudmack D, et al.: Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites. Mol Biol Evol. 2005; 22(12): 2362–2374.
61. Daniels RF, Schaffner SF, Wenger EA, et al.: Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A. 2015; 112(22): 7067–7072.
62. Daniels R, Volkman SK, Milner DA, et al.: A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J. 2008; 7: 223.
63. Bejon P, Turner L, Lavstsen T, et al.: Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites. PLoS One. 2011; 6(6): e21711.
65. Tessema SK, Monk SL, Schultz MB, et al.: Phylogeography of var gene repertoires reveals fine-scale geospatial clustering of Plasmodium falciparum populations in a highly endemic area. *Mol Ecol.* 2015; 24(2): 484–497. [PubMed Abstract](#) [Publisher Full Text](#)

66. Omedo I, Mogeni P, Bousema T, et al.: Dataset 1: Information on the 276 SNPs genotyped in 177 genes in *P.* falciparum parasite populations from The Gambia, Kilifi and Rachuonyo South. [Figshare.](#) 2017. [Data Source](#)

67. Omedo I, Mogeni P, Bousema T, et al.: Dataset 2: Sequenom assay design information. [Figshare.](#) 2017. [Data Source](#)

68. Omedo I, Mogeni P, Bousema T, et al.: Dataset 3: SNP, distance and time differences between *P.* falciparum parasite pairs in The Gambia population. [Figshare.](#) 2017. [Data Source](#)

69. Omedo I, Mogeni P, Bousema T, et al.: Dataset 4: SNP, distance and time differences between *P.* falciparum parasite pairs in the Kilifi population. [Figshare.](#) 2017. [Data Source](#)

70. Omedo I, Mogeni P, Bousema T, et al.: Dataset 5: SNP and distance differences between *P.* falciparum parasite pairs in the Rachuonyo South population. [Figshare.](#) 2017. [Data Source](#)
Open Peer Review

Current Referee Status: ✅ ✅ ✅ ✅

Version 1

Referee Report 19 June 2017
doi:10.21956/wellcomeopenres.11628.r23565

Liwang Cui
Department of Entomology, Pennsylvania State University, State College, PA, USA

This study analyzed large sample sets of malaria parasites taken from the western and eastern coasts of Africa (The Gambia and Kenya) and genotyped at 276 SNPs. For two of the sample sets, parasites were collected at different time points, allowing identification of population changes over time and space. Overall, the analysis was sound and results were well explained. The authors also notified the limitations of the study. For example, inclusion of additional parasite samples between these western and eastern sites, and use of more SNP markers would validate whether the conclusions drawn here represent the whole African continent.

Comments:
1. The assumption for comparing the temporally collected samples is that malaria case numbers have been reduced, which might lead to genetic isolation and structuring of parasite populations. It would be great if malaria epidemiology at the beginning and end of sample collection in the sites where samples were collected is clearly stated. It is possible that despite the overall reduction in malaria cases, some of the sites may represent hotspots where malaria epidemiology remained more or less unchanged over the time. As a result, this would make the parasite populations and genetics relatively stable over the time.

2. The inclusion of numerous SNPs for this type of analysis is a nice practice. However, the authors may want to separate those that are clearly under selection (such as EBA175 and AMA1), since these mutations are subject to strong immune selection and will have different evolutionary trajectories as compared to more neutral SNPs.

3. More detailed comparison of the two Kenyan sites might be interesting to see whether gene flow between these sites exists, given that these sites are relatively closely located, yet separated by potential gene flow barriers (such as the rift valley).

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: Molecular epidemiology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Christopher Delgado-Ratto
Global Health Institute, University of Antwerp, Antwerp, Belgium

This is a study that used SNP genotyping data finely analysed to describe the geographic structuring of Plasmodium falciparum parasites at micro-epidemiological level in three regions from Gambia and Kenya.

The authors were not able to compare the parasite populations among the study sites due to the samples were originally obtained for studies with different study designs (differences in sampling time, study population and design). The genetic diversity and clustering may not only be affected by geographic location and time but also by different ways of sampling the data. Say so, I appreciated that the authors focused in the population dynamics within the study sites.

Regarding the hypothesis that exists gene flow within the study sites, gene flow models could be also useful to prove such genetic exchange of parasites. There are various software that may help on this matter, i.e. Migrate-n.

Specific remarks:

Conclusions section:
• This paragraph is not fully justified on basis of the results: “following mass-treatment campaigns we would predict that if residual foci of transmission are retained this will rapidly lead to reinfection of the wider community, and that parasites acquiring mutations conferring drug resistance or immunological escape will be rapidly spread at a micro-epidemiological level.”

Is the work clearly and accurately presented and does it cite the current literature?
Partly
Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: Molecular epidemiology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Referee Report 11 April 2017

doi:10.21956/wellcomeopenres.11628.r21345

Cristian Koepfli

University of California, Irvine, Irvine, CA, USA

This is a relevant study, assessing the ability to identify small-scale foci of transmission and parasite gene flow to surrounding areas based in SNP-typing. While it is overall clearly presented and well written, more detail, in particular in the results section, would help to better understand the data, and to assess its power.

Specific comments:

Abstract:

1. Please state how many samples and SNP markers were included in the final analysis.

2. I wonder whether “relatedness in space and time” is the correct term, or “distance in space and time” would be more appropriate.

Results:

1. In the part on “Identification of geographical barriers to parasite movement” it would be useful to include the range of prevalence or MPF per pixel analyzed.

 The second paragraph of this part is difficult to follow, as the term ‘cluster’ is used consistently, without further indication on what the clusters represent. It would help to include a sentence describing that spatial clusters were analyzed based on the PCA values of all isolates found within the cluster. Thus, clusters of isolates differing from all other isolates were identified. The same is
the case in the discussion. What sizes were the clusters identified, and how many haplotypes were included per cluster?

2. Figure 5: Given that for almost every pair of samples the number of days differs, how were the days for the different curves calculated? I assume each color represents a range, yet only a point estimate is given.

Also, please indicate in brackets for each curve the number of samples included. For example, how many samples were available for the 1-day and 31-days analysis in The Gambia? Could the apparent reduction in SNP difference at 10 km be a chance finding due to limited sample size?

Including the number of SNPs analyzed in each population would further help to interpret the data. E.g. it is interesting that in Rachuonyo South the proportion of different SNPs is approx. twice as high as in the other sites, yet this is only evident when Figure 5 is compared to Table 1.

Would it be possible to include confidence intervals for the 1-day curves in the figure? This would help to understand the power of the data. For example, the statement in the abstract “Genetic relatedness of sample pairs is predicted by relatedness in space and time” suggests that genetic relatedness can be inferred, once the distance by space and time is known. This is however difficult to assess without more detail on the variance of the data.

3. In Table 2, what is the unit of the results showed? I assume it is SNP-difference/day (or SNP-difference/km), with days and distance log-transformed. Please state if/how data was transformed.

Discussion:

1. Paragraph 3 of the discussion could be expanded. At what spatial scales was population structure found in previous studies (as compared to the approx. 50 km range of the present study)? Have any of these studies included relatedness? This information would help to assess the feasibility to identify foci of higher transmission, and to estimate the level of gene flow to surrounding areas in different transmission settings.

2. The number of SNP differences plateaus at approx. 1 km in The Gambia, 3 km in Kilifi, and increases up to 10 km in Rachuonyo South. Are there possible explanations for these differences due to the characteristics of the local parasite populations?

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Referee Report 29 March 2017

doi:10.21956/wellcomeopenres.11628.r21178

Michel Tibayrenc
Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France
This is a fine population genetic analysis of 3 samples taken in Gambia and Kenya, relying on the typing of 5199 samples by 276 SNPs. I have little to say about this work, which uses sound approaches and yields clear conclusions. A few remarks:

1. How can heterozygous genotypes be detected in haploid populations of the parasite?

2. As noted by the authors themselves, using 276 SNPs is rather limited. Genetic studies dealing with human populations at nowadays routinely rely on 500000 SNPs or more. One main feature of such studies is that microgeographical structures are detected mostly from low frequency variants and rare variants, which of course are undetectable when using a limited set of markers. Moreover, these low frequency and rare variants are supposed to be highly relevant for phenotypic expression, in particular disease susceptibility and are largely responsible for recent and localized evolution in human populations. (see for example Leslie et al. (2015)\(^1\)). It is most probable that these patterns exist in parasite populations too. The authors should discuss this point more, since it is probably one of the main avenues of future researches in microbiology.

References
1. Leslie S, Winney B, Hellenthal G, Davison D, Boumerit A, Day T, Hutnik K, Royrvik EC, Cunliffe B, Wellcome Trust Case Control Consortium 2, International Multiple Sclerosis Genetics Consortium, Lawson DJ, Falush D, Freeman C, Pirinen M, Myers S, Robinson M, Donnelly P, Bodmer W: The fine-scale genetic structure of the British population. *Nature*. 2015; 519 (7543): 309-14 PubMed Abstract | Publisher Full Text

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.