Fast Track Communications

Quantum-classical correspondence in circularly polarized high harmonic generation

F Mauger¹, A D Bandrauk¹, A Kamor²,³, T Uzer² and C Chandre³

¹ Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
² School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
³ Centre de Physique Théorique, CNRS—Aix-Marseille Université, Campus de Luminy, case 907, F-13288 Marseille cedex 09, France

E-mail: francois.mauger@usherbrooke.ca

Received 5 December 2013, revised 20 December 2013
Accepted for publication 2 January 2014
Published 29 January 2014

Abstract
Using numerical simulations, we show that atomic high order harmonic generation (HHG) with a circularly polarized laser field offers an ideal framework for quantum-classical correspondence in strong field physics. With an appropriate initialization of the system, corresponding to a superposition of ground and excited state(s), simulated HHG spectra display a narrow strip of strong harmonic radiation preceded by a gap of missing harmonics in the lower part of the spectrum. In specific regions of the spectra, HHG tends to lock to circularly polarized harmonic emission. All these properties are shown to be closely related to a set of key classical periodic orbits that organize the recollision dynamics in an intense, circularly polarized field.

Keywords: high harmonic generation, nonlinear dynamics, quantum-classical correspondence, circular polarization

The interaction of a strong, short laser pulse with atoms/molecules is of great interest to the strong field and attosecond science communities because of the insights it provides in probing matter at the atomic scale [1]. These systems have been investigated from various angles ranging from experimental to numerical and analytical approaches using quantum, semi-classical and classical models (see [1–3] and references therein). Among these, (semi)-classical models offer an insightful trajectory interpretation of the electronic dynamics which often compensates for the loss of purely quantum mechanical effects. A famous example is the recollision mechanism [4–6] which, for linearly polarized fields, explains many events such as nonsequential double (or multiple) ionization [1], high order harmonic generation (HHG) [7, 8] or laser induced electron diffraction [9–11].

The quantum nature of the system at hand raises the question of the applicability of such a classically based interpretation. In this communication we investigate the quantum-classical correspondence in the framework of HHG. Using quantum mechanical simulations, we demonstrate the existence of atomic HHG with an intense circularly polarized laser field and show that some of the harmonics are circularly polarized (see figure 1). The properties of the HHG spectrum are later explained through specific classical electronic trajectories. The perspective offered by nonlinear dynamics allows one to fully interpret the observed HHG spectra and to devise quantitative predictions which are not accessible by standard interpretation [12, 13]. The close connection we reveal between HHG and classical trajectories with circular polarization opens a way for controlling the highly nonlinear radiation spectrum...
an electronic wave packet point of view, such an excited initial condition is obtained with when initialized appropriately. From the quantum mechanical rare gas atoms offer a favourable configuration for recollision we shall see in what follows, tightly bound systems such as for the energy deficiency and make recollision available. As energy, i.e., an excited initial condition, should compensate the same atomic systems, initializing the system with a higher configuration yields ionized electrons with energies too low to manage to recollide thereafter. On the other hand, for the duration of the plateau of the laser pulse (see text).

Classical simulations have shown that not all two electron configurations lead to recollision in a strong, circularly polarized field [15–17]. It has been shown that the absence of recollision for tightly bound atoms is due to the unfavourable energy configuration of the system [17]: the ground state configuration yields ionized electrons with energies too low to manage to recollide thereafter. On the other hand, for the same atomic systems, initializing the system with a higher energy, i.e., an excited initial condition, should compensate for the energy deficiency and make recollision available. As we shall see in what follows, tightly bound systems such as rare gas atoms offer a favourable configuration for recollision when initialized appropriately. From the quantum mechanical point of view, such an excited initial condition is obtained with an electronic wave packet \(|\psi(t = 0)\rangle = |\psi_0\rangle + \sum |\psi_i\rangle \), where \(|\psi_0\rangle \) is the ground state and \(|\psi_i\rangle \), \(i \in \mathbb{N}^* \) label excited states, \(\alpha_i \in \mathbb{C} \) with \(\sum |\alpha_i|^2 = 1 \) for normalization, where \(|\cdot| \) is the Euclidean norm. As we shall see later, the actual choice of the coefficients \(\alpha_i \) is of little importance for observing atomic HHG providing the system initially contains a part of the ground state and a part of the excited state(s) \(0 < |\alpha_0| < 1 \). Yet it is worth noting that computed HHG spectra do not rely on coherence criteria for the preparation of the initial state. All figures reported in this communication correspond to the arbitrary choice \(\alpha_0 = \alpha_i = 1/\sqrt{2} \).

Although the existence of recollision with circular polarization is now established [15–17], it does not necessarily lead to HHG, and specifically circularly polarized HHG: standard electric dipole transition selection rules advocate against it because the transition from a strongly excited electron to the ground state implies a variation of the magnetic quantum number by a large amount. In contrast to linear polarization, the instantaneous amplitude of a circular laser field is constant and never vanishes (see equation (3)). As a consequence, for almost the entire duration of the pulse the Coulomb potential is strongly dressed by the laser electric field. A quick estimate shows that the energy of the first excited state of helium overcomes the field-induced barrier for laser intensities larger than \(10^{13} \text{ W} \cdot \text{cm}^{-2} \), while the ground state energy does so for intensities larger than \(3 \times 10^{15} \text{ W} \cdot \text{cm}^{-2} \). It means that, in the context of strong field physics, atomic HHG with circular polarization corresponds to a transition/interaction from the continuum (over the barrier) to the ground state, rather than state to state. An interesting consequence of the elimination by over the barrier ionization of all excited states is a selection rule for the returning electron which can only recollide/interact with the ground state. The return energy of the electron \(E \) is deduced from the HHG spectrum using the relation

\[
\hbar \omega_{\text{HHG}} = E + \text{Ip},
\]

where \(\omega_{\text{HHG}} = 2\pi \nu_{\text{HHG}} \) is the harmonic radiation frequency and Ip the ionization potential. From equation (1), we deduce the electron return energy \(E = \hbar \omega_{\text{HHG}} - \text{Ip} \). This allows us to compare the return electron energy spectra for various atoms, such as helium and argon, as in figure 2. For both atoms, we obtain a dominant peak (exceeding the height of the displayed box) in the lower part of the spectrum, which corresponds to the fundamental (laser) driving frequency. The peak is followed by a broad band of radiation (dashed curves) with negative energy (\(E \)), and restricted to the ramp-up of the field, which corresponds to transitions from the dressed bound states to the ground state when the effective intensity of the laser is low. As explained before, during the plateau all excited states are
eliminated by over the barrier suppression: indeed, this part of the spectrum vanishes later on and reveals a gap in the electron return energy before a strong revival of the signal. We also notice that in specific regions of the spectra (denoted I and II), HHG tends to lock to circularly polarized emission. In what follows, we focus on the high harmonic part of the spectrum which is generated during the pulse plateau (solid curves, see equation (3)).

In order to simulate the electronic dynamics and compute the associated HHG spectrum, we solve the time-dependent Schrödinger equation numerically for one active electron in two spatial dimensions (2D) given as follows (atomic units are used unless otherwise specified):

\[i\hbar \psi(x, t) = \left(-\frac{\Delta}{2} + V(x) + E(x, t) \right) \psi(x, t). \]

(2)

We use a soft-Coulomb potential \[\psi(x)\] with the softening parameter \(a\) adjusted to model the atom under consideration\(^4\), corresponding to averaging over the dimension perpendicular to the field, \(V(x) = -1/\sqrt{|x|^2 + a^2}\). The nucleus is assumed fixed at the origin. In the dipole approximation, the laser–matter interaction is given by

\[E(x, t) = \frac{E_0}{\sqrt{2}} \left(f(t)(x \cos\omega t + y \sin\omega t) \right), \]

(3)

where \(E_0/\sqrt{2}\) is the peak field amplitude (corresponding to the intensity \(I_0\)) and \(f\) corresponds to the envelope of the field. All figures reported in this communication correspond to a trapezoidal envelope with a 2 laser cycle ramp-up, a 20 laser cycle plateau, and a 2 laser cycle ramp-down. The wavelength is 800 nm. We have checked that the results are robust with the pulse duration and wavelength. Radiation spectra are computed from the Fourier transform of the dipole acceleration \(\{R_{\text{HHG}} = \mathcal{F}\{\langle \psi(t)|\hat{x}(t)|\psi(t)\rangle|^2\}\} \) [13]. The harmonics intensity is defined as the sum of the spectra in the \(x\)- and \(y\)-directions squared (\(I_{\text{HHG}} = |R_{\text{HHG}}|^2\)), while the ellipticity accounts for the relative amplitude and phase between the two components. In order to avoid artefacts in the harmonics spectra due to non-periodic temporal dipole acceleration signals, a Hanning window is used [19].

In figure 1, HHG spectra are displayed for various laser intensities and confirm the characteristics of the spectra observed in figure 2. It shows that HHG is restricted to a narrow band of harmonics, with a gap of missing harmonics in the lower part of the spectra. The polarization of HHG radiation is random apart from two specific regions (I and II) where they tend to lock to circularly polarized emission. All of these properties are closely related to a set of periodic orbits, called recolliding periodic orbits (RPOs) [17], that organize the (classical) recollision dynamics with circular polarization. The close connection between the properties of the quantum HHG spectra and the properties of the RPOs lays the foundations of the quantum-classical correspondence reported in this communication. In short, RPOs are classical periodic orbits observed in a frame rotating with the field [17]. They come in families and are composed of one or several loops that connect the core to ionized regions. They organize recollisions in the sense that a typical recolliding trajectory mimics RPOs in its journey back to the core. As an illustration, we display an RPO family in figure 3 as a function of position and energy of the electron. It has been shown that the determinant factor in RPO properties is the Coulomb tail of the potential (\(-1/|x|\)) rather than its specific shape [17], thus extending its influence on electron trajectories to large distances. In this perspective, it has been noticed that using a hard Coulomb potential \((a = 0)\) provides a very good description of the return process irrespective of the atom. Already, this ‘universal feature’ of RPOs predicts that the energy return (\(\mathcal{E}\), see equation (1)) spectra for helium and argon should be qualitatively the same. This is indeed what is observed in figure 2 where the electron energy spectra between 0.25 and 1.4 au (gray regions) for helium and argon overlap almost perfectly.

Circular polarization clearly attributes a well-identified role to the laser and Coulomb potential: generally speaking, the laser pulls the electron away [20] while the Coulomb potential tends to recall it to the core. This interplay between the laser and Coulomb interactions, both playing an equally important role, is at the core of recollision in CP fields [17]. The importance of the Coulomb potential interaction in HHG has been noticed previously [21–23]. Here, the role of the potential is revealed through the RPOs and it has to be accounted for in the return energy analysis: we define the classical energy of the electron as \(\mathcal{E} = |p|^2/2 - 1/|x|\), where \(p\) is the electron momentum. Recombination/interaction with the ground state is strongest for a returning electron at the closest point to the core. We scan through one of the RPO families (the one considered in [17]), record the energy at this location and compare it to the energy spectrum obtained with quantum simulations. The corresponding energy range is indicated by the dark gray region in figures 2 and 3. We see that it matches well the upper cut-off of the spectra of figure 2 but

\(^4\) The softening parameter \(a\) is adjusted to reproduce the ionization potential of the corresponding (2D) atom. We take \(a = 0.262\) for helium and \(a = 0.623\) for argon.
it misses slightly lower harmonics. Since the ground state is not perfectly localized on the nucleus, an interaction is made possible within a small area around the core. Extending the possibility for recombination to 5 au from the nucleus (the size of the ground state for the helium model) yields a larger range of possible return energies for the electron: it extends the lower return energy limit while the upper one is unchanged (see figure 3), and corresponds to the light gray area in the figures. There, we see that both cut-offs are well predicted by the RPO analysis.

In order to assess the robustness of the proposed mechanism, we investigate the prediction given by the RPO analysis as the laser intensity is varied. Following the RPOs with the laser parameters shows that, globally, they vary energetically like 2 Up. Looking at figures 1 and 2, we see that the 2 Up rule of thumb (dashed curves) indeed provides an accurate overall guide for HHG and electron return energy spectra. In addition, we see in figure 1 that the prediction given by RPOs matches very well the radiation return energy spectra. The maximum return energy provided by the RPO analysis approaches 3 Up curves). The maximum return energy provided by the RPO analysis approaches 3.17 Up (dotted vertical line in figure 2) as the laser intensity is increased, where $U_p = \frac{I_p}{4\pi\omega^2}$ is the ponderomotive energy. For linearly polarized fields, it is well known that 3.17 Up is the maximum return energy for the electron [4] based on the standard recollision picture. Here, the appearance of this number in the RPO analysis is unexpected since the standard recollision picture does not apply for circular polarization [4, 20, 24]. From the energy analysis of the RPOs, we also find a forbidden return energy range to the ground state (see the arrow in figure 3). This gap of forbidden return energy in the RPOs mirrors the gaps observed in HHG and electron energy spectra. A similar range of missing harmonics in the lower part of the spectrum followed by a restricted strip of strong revival of the HHG intensity has been reported for benzene molecule with circular polarization [25], which demonstrates the universality of the mechanism described here, beyond atomic systems.

With CP fields and atomic targets, recollisions and therefore HHG radiation is made possible in all directions. As a consequence, the polarization of emitted radiation is characteristic of the dynamics. Unstructured or unorganized recollisions would be expected to show-up randomly in time, leading to random amplitudes and phases in the x- and y-directions and ultimately random ellipticities. Circularly polarized HHG requires both the relative amplitudes to be equal and the phases to differ by $\pi/2$ [24, 26]. Generally speaking, RPOs are unstable such that they manage to organize the dynamics only over a short period of time, enough to carry out recollision (and thus produce HHG). In order to coherently organize the dynamics over a long period of time, as is required for circularly polarized harmonics, these RPOs have to be very weakly unstable, close to a bifurcation. Such orbits, very weakly unstable, are only observed in the lower and upper parts of the RPO family which we label regions I and II, respectively. Indeed, looking at the polarization analysis of the radiation spectra for helium and argon displayed in figure 2 (dots) we see that, with the exclusion of a few random return energies, CP harmonics are concentrated in the cut-off regions (I and II) of the radiation strip, which correspond to lower and upper extremes of the RPO family, where the orbits are stable or least unstable. This picture is confirmed by figure 1 (inset) as the laser intensity is varied.

Numerical simulations show that the results are very robust with the preparation of the initial (field-free) states, i.e., the symmetry of the excited states (p or s), the phase between the ground and excited states and the relative weights between the two states. All the results converge to the observation that the intensity varies quadratically with the parameters $\alpha_{0,1}$ as $I_{\text{HHG}} \propto |\alpha_0\alpha_1|^2$. The strongest spectrum is obtained for equal populations $|\alpha_0| = |\alpha_1|$, and more generally a strong radiation revival is observed roughly as long as $0.2 \leq |\alpha_0\alpha_1|^2 \leq 0.8$, thus implying an initial superposition of electronic states. The independence of the results with the phase between the states indicate that atomic HHG with circular polarization does not rely on any coherence criterion. This is explained by the fact that all excited states have an energy greater than the barrier and therefore vanish due to the field dressing: no matter which excited state(s) one starts from, all are coupled to the dressed continuum that forms a complex electronic cloud around the nucleus.

To summarize, the existence of atomic HHG, together with the specific properties of the spectra, strengthens the importance of recollision in circularly polarized laser fields. The quantum-classical correspondence between the HHG spectra and the properties of RPOs highlights the pivotal role of the Coulomb interaction in the recollision process. Through this correspondence and the properties of RPOs, we have fully interpreted the HHG spectra, and have shown that (1) atomic HHG with circular polarization is restricted to a narrow band of harmonics and their intensity varies quadratically with the ground and excited state initial composition; (2) the lower part of the spectra exhibits a gap of missing harmonics due to a forbidden range of electron return energies; (3) in two specific regions, harmonics tend to lock to circularly polarized emission. The robustness of the process to laser parameters, target species and initial conditions should allow for experimental verification and extension to molecular systems and to generation of circularly polarized attosecond pulses [24].

Acknowledgments

The authors thank RQCHP and Compute Canada for access to massively parallel computer clusters and the CIPI for financial support in its ultrafast science program. FM and ADB acknowledge financial support from the Centre de Recherches Mathématiques. ADB acknowledges financial support from the Canada Research Chair. AK acknowledges financial support from the Chateaubriand fellowship program of the Embassy of France in the United States. AK and TU acknowledge funding from the NSF. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement 294974.
References

[1] Becker W and Rottke H 2008 Many-electron strong-field physics Contemp. Phys. 49 199–223
[2] de Morisson Faria C F and Liu X 2011 Electron–electron correlation in strong laser fields J. Mod. Opt. 58 1076–131
[3] Becker W, Liu X J, Ho P J and Eberly J H 2012 Theories of photoelectron correlation in laser-driven multiple atomic ionization Rev. Mod. Phys. 84 1011–43
[4] Corkum P B 1993 Plasma perspective on strong field multiphoton ionization Phys. Rev. Lett. 71 1994–7
[5] Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Above threshold ionization beyond the high harmonic cutoff Phys. Rev. Lett. 70 1599–602
[6] Kuchiev M Y 1987 Atomic antenna JETP Lett. 45 404–6
[7] Kling M F and Vrakking M J J 2008 Attosecond electron dynamics Ann. Rev. Phys. Chem. 59 463
[8] Kapteyn H, Cohen O, Christov I and Murnane M 2007 Harnessing attosecond science in the quest for coherent x-rays Science 317 775–8
[9] Zuo T, Bandrauk A D and Corkum P B 1996 Laser-induced electron diffraction: a new tool for probing ultrafast molecular dynamics Chem. Phys. Lett. 259 313–20
[10] Meckel M et al 2008 Laser-induced electron tunneling and diffraction Science 320 1478–82
[11] Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charroen E, Keller A and Atabek O 2011 Ultrafast molecular imaging by laser-induced electron diffraction Phys. Rev. A 83 051403
[12] Frolov M V, Manakov N L, Sarantseva T S and Starace A F 2009 Analytic formulas for high harmonic generation J. Phys. B: At. Mol. Opt. Phys. 42 035601
[13] Haessler S, Caillat J and Salieres P 2011 Self-probing of molecules with high harmonic generation J. Phys. B: At. Mol. Opt. Phys. 44 203001
[14] Huang S, Chandre C and Uzer T 2007 How periodic orbit bifurcations drive multiphoton ionization J. Phys. B: At. Mol. Opt. Phys. 40 F181–7
[15] Mauger F, Chandre C and Uzer T 2010 Recollisions and correlated double ionization with circularly polarized light Phys. Rev. Lett. 105 083002
[16] Wang X and Eberly J H 2010 Elliptical polarization and probability of double ionization Phys. Rev. Lett. 105 083001
[17] Kamor A, Mauger F, Chandre C and Uzer T 2013 How key periodic orbits drive recollisions in a circularly polarized laser field Phys. Rev. Lett. 110 253002
[18] Javanainen J, Eberly J H and Su Q 1988 Numerical simulations of multiphoton ionization and above-threshold electron spectra Phys. Rev. A 38 3430–46
[19] Blackman R B and Tuckey J W 1958 The Measurement of Power Spectra (New York: Dover)
[20] Corkum P B 2011 Recollision physics Phys. Today 64 36
[21] van de Sand G and Rost J M 1999 Irregular orbits generate higher harmonics Phys. Rev. Lett. 83 524–7
[22] Hostetter J A, Tate J L, Schafer K J and Gaarde M B 2010 Semiclassical approaches to below-threshold harmonics Phys. Rev. A 82 023401
[23] Shafir D et al 2012 Role of the ionic potential in high harmonic generation Phys. Rev. Lett. 108 203001
[24] Yuan K J and Bandrauk A D 2012 Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses J. Phys. B: At. Mol. Opt. Phys. 45 074001
Yuan K J and Bandrauk A D 2013 Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media Phys. Rev. Lett. 110 023003
[25] Baer R, Neuhauser D, Ždánská P R and Moiseyev N 2003 Ionization and high-order harmonic generation in aligned benzene by a short intense circularly polarized laser pulse Phys. Rev. A 68 043406
[26] Smirnova O, Patchkovskii S, Mairesse Y, Dudovich N, Villeneuve D, Corkum P B and Ivanov M Y 2009 Attosecond circular dichroism spectroscopy of polyatomic molecules Phys. Rev. Lett. 102 063601