SPECIAL FEATURE

Data rescue—collection of precious and laborious in situ observed data

Traits database of tidal flat macrobenthos along the Northwest Pacific coast of Japan

Takehisa Yamakita¹ | Katsumasa Yamada² | Hiroyuki Yokooka³ | Gen Kanaya⁴

¹Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
²Aitsu Marine Station, Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University, Kumamoto, Japan
³IDEA Consultants, Inc., Institute of Environmental Ecology, Yaizu, Japan
⁴Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), Tsukuba, Japan

Correspondence
Takehisa Yamakita, Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan.
Email: yamakitat@jamstec.go.jp

Funding information
Ministry of Environment, Grant/Award Numbers: ERTDF S15 (JPMEEF16S1509); ERTDF S9; the University of Tokyo Ocean Alliance, Nippon Foundation; JSPS KAKENHI, Grant/Award Number: 17K07580; Ministry of Education, Culture, Sports, Science and Technology, Grant/Award Number: Tohoku Ecosystem-Associated Marine Sciences (TEAMS); JPMXD1111105260

Abstract
We collected information on the functional traits of the macrobenthos that inhabit mainly tidal flats along the Northwest Pacific coast of Tohoku, Japan, based on the species that were present during a survey after the Great East Japan Earthquake of 2011. The dataset contains information on 33 traits of 246 species and includes their taxonomic position, distribution, body length, habitat, reproduction type, and other characteristics such as diet type, migratory type, and invasiveness. Information about most basic traits such as body length, distribution, and habitat characteristics is complete, and more than 50% of trait information is complete for over 100 species, but information about reproduction is relatively limited. Although we did not limit our study to specific taxa and even included vegetation in the database, the majority of the taxa are Arthropoda, Mollusca, and Annelida. This file also has a table that compares the traits data to the existing traits database BIOTIC (Biological Traits Information Catalogue) to facilitate transformation and reuse of the data. Because the area of this survey was very adversely impacted by the Great East Japan Earthquake and Tsunami of March 11, 2011 and by post-disaster anthropogenic activities, this database will be relevant to assessments of post-disaster changes of the benthic community due to both the tsunami and human activities. The database is expected to fill the gap between the identification of species and assessments of community composition. The detailed Metadata for this abstract published in the Data Paper section of the journal is available in MetaCat in JaLTER at http://db.cger.nies.go.jp/JaLTER/metacat/metacat/ERDP-2020-23.1/jalter-en.

KEYWORDS
benthic organisms (benthos), biological traits, body size, life history, taxonomy

1 INTRODUCTION

The Great East Japan Earthquake of 2011 caused extensive damage to many coastal ecosystems. Several studies have been conducted of benthic organisms before and after the earthquake and of the process of recovery of the organisms after the earthquake (e.g., Kanaya, Nakamura, Higashi, & Maki, 2013; Kitahashi et al., 2014;...
Yamakita, 2018; Yamakita et al., 2018; Yamakita, Fujiwara, Tsuchida, et al., 2016; Yamakita, Matsuoka, & Iwasaki, 2017). As a result, there is evidence of not only a decrease in the total biomass and numbers of organisms in the coastal area, but also of an increase or decrease in the abundance of particular species, depending on the species and location. Although it is common to evaluate the change of a community after such impacts by comparing species richness and biomass as well as by calculating community similarities, these indices will not directly reflect the identity of the species that respond to such disturbances. A better way to group species is to assign them to guilds or trophic levels in the case of food web research. More general ways of grouping individual species are needed to capture the characteristics and trends of changes in organisms after such disasters.

There have been a number of previous studies of terrestrial plant ecosystems that compared community characteristics using functional groups based on trait databases (Daz, Kattge, Cornelissen, et al., 2016). The larger numbers of higher taxonomic groups among marine versus terrestrial organisms makes it more difficult to obtain standardized data. However, at small spatial scales and for small taxonomic groups, the importance of considering individual functional groups has been pointed out, even for marine organisms (e.g., Yamada, Hori, Tanaka, Hasegawa, & Nakaoka, 2010). It is not unusual to show the importance of functional characteristics qualitatively, even in wide spatial comparisons (Wahl et al., 2011). However, there has been no comprehensive information on the various functions and taxa of benthic organisms that would enable an assessment of the entire community affected by this disaster.

Traits data make it possible to understand changes in communities at a higher level than individual species but in more detail than is likely to be provided by community indices. For example, functional diversity is a better indicator than species diversity for evaluating characteristics of a community that have responded to environmental change (Mouillot, Graham, Villéger, Mason, & Bellwood, 2013). It is also believed that functional redundancy improves the ability of the entire ecosystem to compensate for the loss of individual species. Thus, this dataset can also be used to evaluate the relationship between compensatory effects in the responses of species and communities to environmental changes (Elmqvist, Bengtsson, Angelstam, et al., 2003; Mori, Furukawa, & Sasaki, 2013).

A trait database for such purposes has already been assembled for the major vascular plants, for which there is much well-organized information about specimens and lineages (Daz et al., 2016). In the case of aquatic species, progress has been made mainly on fish (Albouy et al., 2015; Stuart-Smith et al., 2013). Recently, a database dealing with benthic organisms has been initiated. For example, the BIOTIC database includes data from more than 680 species (Costello et al., 2015). In the case of specific taxa, the Polytraits database has been actively archiving information mainly about nematode and other meiofauna including polychaetes (Faulwetter et al., 2014). In recent years, progress has been made on a database of the functional traits of deep-sea hydrothermal organisms (sFDvent https://peerj.com/preprints/26627/). In this way, the assembling of databases and advancement of understanding of the functions of marine organisms other than fish have begun.

To contribute to the tidal flat survey along the northeastern coast of the Japanese archipelago, which was very adversely impacted by the Great East Japan Earthquake, we collected information on the functional traits of benthic organisms that inhabit mainly tidal flats. Our survey was not limited to specific taxa. As with other benthic databases that have been initiated in recent years (Costello et al., 2015; Daz et al., 2016; Faulwetter et al., 2014), this database is characterized by information on the distribution, body length, life history, and physiological characteristics of organisms across taxa.

2 | DATA DESCRIPTION

2.1 | Identifier

ERDP-2020-23

2.2 | Contributor

2.2.1 | Dataset owner

Takehisa Yamakita
Marine Environmental Impact Assessment Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
Tel.: +81(46)-867-9727
E-mail: yamakitat@jamstec.go.jp

2.2.2 | Contact person

Takehisa Yamakita
Marine Environmental Impact Assessment Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
Tel.: +81(46)-867-9727
E-mail: yamakitat@jamstec.go.jp
2.3 | Projects

2.3.1 | Title

1. Tohoku Ecosystem-Associated Marine Sciences (TEAMS)
2. KAKENHI (17K07580) JSPS
3. U Tokyo Ocean Alliance

2.3.2 | Personnel

Projects 1 and 3
Takehisa Yamakita
Marine Environmental Impact Assessment Research Group (M-EIA), Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
Tel.: +81(46)-867-9727
E-mail: yamakitat@jamstec.go.jp

Project 2
Gen Kanaya
National Institute for Environmental Studies (NIES) 16-2 Onogawa, Tsukuba-City, Ibaraki, 305-8506, Japan

2.3.3 | Funding

A. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
B. KAKENHI (17K07580) JSPS

2.4 | Geographic coverage

2.4.1 | Geographic description

Coastal areas of Iwate and Miyagi prefectures, Japan.

2.4.2 | Geographic position

From 38.42°N, 141.42°E to 37.82°N, 140.98°E (WGS 84).

2.5 | Temporal coverage

Best available data prior to May 1, 2017.

2.6 | Methods

2.6.1 | Study sites

We focused on the major species observed on tidal flats along the Northwestern Pacific coast of Tohoku, Japan, based mainly on the locations sampled as a part of the Survey of the Natural Environment in the Pacific coast of the Tohoku district, part of the “Monitoring 1000” project of the Ministry of the Environment (Biodiversity Center Nature Conservation Bureau, Ministry of the Environment, 2012, 2013). We also made use of several other publications that have described monitoring of ecosystems after the earthquake (Hayasaka, Yamada, & Uchida, 2016; Kanaya, Suzuki, Maki, et al., 2012; Urabe, Suzuki, Nishita, & Makino, 2013). The study included 20 locations from Aomori Prefecture to Chiba Prefecture (Figure 1): Takahoko Numa Lagoon, the Takase River, Osuka Coast, Kuji Coast, Tofugaura Coast, Akedo Coast, the Tsugaruishi River, the Orikasa River, the Unosumai River, the Kitakami River, Nagatsuraura Lagoon, Mangokuura Lagoon, Matsushima Lagoon.
Bay, Gamou Lagoon, Idoura Lagoon, the Hiroura tidal flat, Torinoumi Lagoon, Matsukawaura Lagoon, the Ichinomiya River, and the Isumi River. These study sites can be characterized as western Pacific temperate ecosystems. The study sites are mainly lagoons and river-mouth tidal flats.

2.6.2 List of the species

The species in the database are summarized in Figure 2. The data are based mainly on research conducted in 2011 and 2012 during the year after the earthquake (Biodiversity Center Nature Conservation Bureau, Ministry of the Environment, 2012, 2013; Hayasaka et al., 2016; Kanaya et al., 2012; Urabe et al., 2013). We selected 246 species that we deemed appropriate for evaluating macrobenthos communities in the region focused mainly around Sendai Bay. For this selection, we considered the number of occurrences in the data and generality of the distribution in our study region based on expert opinion. After the selection, the availability of trait information reduced the number of species. Figure 2 shows the taxonomic distribution of the dataset. The majority of the phyla were Arthropoda, Mollusca, and Annelida;

![Figure 2: Taxonomic distribution in this dataset. (a) Phylum level, (b) class level](wileyonlinelibrary.com)
each of those phyla accounted for more than 10% of the species. The remaining species, which accounted for <15% of the total species, came from a variety of taxa. The majority of the species belonged to the classes Malacostraca, Polychaeta, Gastropoda, and Bivalvia. Although the original list of species contained several species that could not be identified, those specimens were eliminated because of the limitations of the traits data.

2.6.3 Taxonomy and systematics

The species names were checked by the authors, who are experts of some of these benthic organisms. If we could not obtain sufficient information for species identification from a specimen, we recorded the taxon at a higher taxonomic level (e.g., order or class) that could be specified with certainty. Scientific names followed Okutani (2017), the latest information in Furota and Taru (2016), the WORMS database (http://www.marinespecies.org), and the Catalogue of Life database (http://www.catalogueoflife.org/), in that order of priority. However, we modified Sipuncula and Echiura into Annelida (Sipuncula) and Annelida (Echiura) from the WORMS. Polychaeta was not modified from WORMS because the polyphyletic groups in this class are still not orderd in the WORMS.

2.7 Data structure

2.7.1 Data files

A list of data files is shown in Table 1.

2.7.2 File format

The data files are saved in comma-delimited (csv) text files with UTF-8 encoding.

2.7.3 Definitions and extraction of traits data

The traits are defined in Table 2. The list includes the best available biological and ecological traits from over 40 potential traits identified at the beginning of the study. The traits were ordered as follows: taxonomic position, geographical distribution, body length, habitat, mode of reproduction, and other characteristics such as diet type and migratory type. After an initial draft of this information was produced, the BIOTIC database was published, and we refined our categories to make them consistent in most cases with the BIOTIC database. Some categories that we considered to reflect our thought on traits were retained from the first draft without considering their compatibility with the BIOTIC database (Costello et al., 2015; Nagai, Shibata, Osawa, et al., in press). Those traits included Abundance of the population, Depth of habitat in the substrate, Dispersion type, Egg type, Types of larvae, Feeding devices, Fertilization or pollination methods, Sexual expressions, Fishing pressure, and Alien species. About 20 traits in the BIOTIC database were not adapted because of data limitations and overlap with other categories such as Food type, Flexibility, Habitat, Growth rate, Dispersal potential of adults, Sociability, Regeneration per year, Toxicity, Generation time, Larval settlement period, Fecundity, Egg size, Fertilization type, Larval settling Time, Reproduction Location, Biozone, Growth form, Reproduction type, Water flow, and Wave exposure. These differences are also listed in Table 2.

We input the information about each trait from the literature survey. Base data, in particular, were input based on the references Masuda (1984), Abe (1987), Zukan.com.co.ltd. (2018) mainly for fish, Japan River Front research Center (1996) mainly for vegetation, and Japan Fisheries Resource Conservation Association (1983, 1986, 1992), Miyake (1983) Marine Ecology Research Institute (1991), Nishimura (1992, 1995), Imajima (1996, 2001, 2007), Watanabe (2014), Suzuki, Kimura, Kimura, Mori, & Taru (2014), Furota and Taru (2016), Okutani (2017), Sato (2017) for other benthic organisms. The Japan Fisheries Resource Conservation Association (1992) was especially useful for mapping the feeding method and habits, feeding devices. For the species-specific data, we obtained information from the literature cited in each of the reference columns. Before using online information, we conducted a double check using ourselves as experts.

We also made use of our expert knowledge and estimated the traits of some species for which there were inadequate literature data. Expert knowledge did not

Table 1	List of data files
Datafile name	Description
Traits_Tidal Flat_Benthos_NW_Pacific_Japan_traitdatabase_v9_clean.csv	List of the values of the trait’s species by species.
Traits_DB_Benthos_NW_Pacific_Ja_ref_v5.txt	List of the references that were used to produce the database
TABLE 2 Definitions and categorizations of traits (Comparison with the BIOTIC database is also included)

ID	Trait name	Definition	BIOTIC ID	Trait name in BIOTIC database	Summary of definition in BIOTIC database
1045	SpeciesID	Identical number in this data set			
1047	WORMS_AphiaID	Aphia ID used in the WORMS			
1060	Kingdom				
1070	Phylum	Phylum names based in WORMS. Sipuncula was modified to Annelida (Sipuncula)	1050	Phylum	
1080	Class	Class names based in WORMS. Although Polychaeta contains multiple class the name Polychaeta was used as is	1060	Class	
1090	Order				
1100	Family				
1110	Species name				
1170	Biogeographic distribution (global)	1. Cosmopolitan, 2. Western Pacific			
1171	Geographic distribution N-S	(Edge of approx. S–N)			
1171	Geographic distribution E-W	(Edge of approx. W–E)			
1310	Depth	Numerical value of average or range from low to high	1360	Depth range	(expressed as meters below chart datum)
1330	Abundance	1. Frequently dominant; 2. Sometimes dominant; 3. Not dominant, but numerous; 4. Rare; 5. Very rare			
1390	Body length	Estimated average from any of latter size information 1. <1 cm; 2. 1–2.5 cm; 3. 2.5–5 cm; 4. 5–10 cm; 5. >10 cm; 6. >50 cm	1120	Size	Six categories from Very small (<1 cm) to Large (>50 cm)
1372	(maximum)	1. <1 cm; 2. 1–2.5 cm; 3. 2.5–5 cm; 4. 5–10 cm; 5. >10 cm; 6. >50 cm			
1374	(minimum adult)	1. <1 cm; 2. 1–2.5 cm; 3. 2.5–5 cm; 4. 5–10 cm; 5. >10 cm; 6. >50 cm			
1376	(average)	1. <1 cm; 2. 1–2.5 cm; 3. 2.5–5 cm; 4. 5–10 cm; 5. >10 cm; 6. >50 cm			
1378	Body length [sentence]	Original data extracted from papers and books			
1480	Habitat position	Category (1. Terrestrial; 2. Water surface; 3. Water column; 4. Bottom surface; 5. Shallow substratum; 6. Deep substratum)	1400	Envpos	Fourteen categories, for example, Epibenthic, Infaunal, Interstitial, Pelagic, Demersal
1520	Depth in habitat substrate	The depth at the habitat substrate for benthic species (category): 1. 0 cm; 2. 1–10 cm; 3. 10–30 cm; 4. >30 cm			
1530	Mobility	1. Permanent attachment/basically attached; 2. Burrower; 3. Drifter; 4. Swimmer; 5. Crawler; 6. Temporary attachment	1430	Mobility	Swimmer, Crawler, Burrower, Drifter, Attached (permanent, temporary)

(Continues)
ID	Trait name	Definition	BIOTIC ID	Trait name in BIOTIC database	Summary of definition in BIOTIC database
1560	Habitat landscape	Type of habitat landscape (category): 1. Tidal flats; 2. Rocky reef; 3. Sandy beach; 4. Seagrass or seaweed bed; 5. Subtidal; 6. Estuary; 7. Salt marsh; 8. Swamp; 9. River (freshwater)	1440	Physpref	Nine categories for example, e.g., Open coast, Strait/sound, Sea loch, Ria/Voe, Estuary
1590	Substratum types	Substratum types (category): 1. Rock; 2. Boulders; 3. Gravel; 4. Sand; 5. Sand-mud; 6. silt; 7. Mud; 8. Seagrass; 9. Biogenic reef; 10. Algae; 11. Terrestrial plant; 12. Salt marsh	1470	Substratum	Thirty-eight categories, for example, b Bedrock, Boulders, Mud, Gravel, Mixed, Other
1640	Disturbance resistance	Resistance to disturbances caused by waves and wind. It was assumed by the waves and wind strength the habitat: 1. Highly sensitive; 2. Moderately sensitive; 3. Tolerant	1140	Fragility	Fragile, intermediary, robust
1660	Salinity	Suitable salinity (based on Venice System): 1. Mixoeuhaline (30–40); 2. Polyhaline (18–30); 3. Mesohaline (5–18); 4. Oligohaline (0.5–5); 5. Fresh water or terrestrial (0)	1460	Salinity	Full (30–40), variable (18–40), reduced (18–30), low (<18)
1700	Reproduction frequency	Category (1. Opportunistic; 2. Several per year; 3. Annual [once a year] or less)	1260	ReprodFreq	Seven categories for example, Semelparous, annual episodic, biannual protracted
1720	Mature years	Life of up to breeding: Category (1. >1 year; 2. <1 year)	1240	Maturity	Eight categories from <1 year, to 100+ years
1740	Lifespan	Maximum life span in natural environment: 1. <1 year; 2. 1–5 years; 3. >5 years	1230	LifeSpan	Eight categories from <1 year, to 100+ years
1760	Dispersion type	Type of egg or larvae dispersion: 1. Direct development; 2. Floating occurs (eggs); 3. Floating occurs (larvae); 4. Benthic (eggs, fry); 5. Benthic (larvae); 6. Egg embryonic			
1770	Egg type	1. Separate eggs; 2. Egg sac			
1810	Reproduction season	1. Spring; 2. Summer; 3. Autumn; 4. Winter; 5. Not fixed, 1:3. Spring and Autumn (*Spring: March–May; summer: June–August; fall: September–November; winter: December–February)	1270	ReprodSeason	Seven categories, for example, Semelparous, Annual episodic, Biannual protracted
1790	Types of larvae	1. Veliger; 2. Zoa larvae; 3. Trochophore larvae; 4. Other types of larvae			
1930	Food method and habits	1. Primary producer; 2. Predator; 3. Surface deposit feeder (sediments are prey); 4. Deep deposit feeder (lower sediment prey); 5. Grazer; 6. Filtration; 7. Parasitic; 8. Scavenger; 9. Herbivore; 10. Omnivore/generalist	1410	feedingmethod	Nineteen categories, for example, aAutotroph, Detritivore, Grazer, Predator
include traits described in quantitative terms, including our unpublished field measurements (labeled as EX: for which we have some reliable information based on personal observations, although values were not formally measured). Unknown values of traits were also assumed based on our expert opinion (AS: predicted value based on our empirical observations). Other values were left blank (NA). To reduce the variance of the data, almost all of the data were categorized, even in the case of data with continuous categories. Table 2 includes a list of the categorization rules.

Table 3 shows the distributions among species of the traits for which we were able to obtain information. Most of basic information about body length, distribution, and habitats was complete, and more than 50% of the traits were complete for >100 species, but information about reproduction was relatively limited. Information about reproductive ecology was relatively limited, especially for the Polychaeta and rare taxa.

2.8 | Accessibility

2.8.1 | License

This dataset is provided under a Creative Commons Attribution 4.0 International license (CC-BY-SA 4.0) (https://creativecommons.org/licenses/by/4.0/).
2.8.2 | Location of storage

The published data were provided by latter web site: http://db.cger.nies.go.jp/JaLTER/metacat/metacat/ERDP-2020-23.1/jalter-en.

ACKNOWLEDGMENTS

We are grateful to Dr. Sachiko Ono, Dr. Yuki Ishiwata, Ms. Erika Fukaya and Ms. Mikiko Yokokawa for their help prior to the survey and for data input and preparation of the literature list. We also would like to gratefully acknowledge the support and suggestions of Dr. Nobuyuki Yagi, Dr. Daisuke Hayakawa, Dr. Takashi Noda and presenters at Symposium T11 of the 60th meeting of the Ecological Society of Japan held on March 6, 2012. We would especially like to thank the audience at the poster presentation at the 2017 Joint Meeting of the Plankton Society of Japan and the Japan Society of
Biodiversity. We thank the anonymous reviewers for providing valuable comments on the manuscript. This work was financially supported by the research program on Tohoku Ecosystem-Associated Marine Sciences (TEAMS; JPMXD1111105260), which was subsidized by the Ministry of Education, Culture, Sports, Science and Technology (MEXT); the University of Tokyo Ocean Alliance, which was funded by the Nippon Foundation; a JSPS KAKENHI Grant (Number 17K07580); and Environment Research and Technology Development Fund grants (S-9 and S-15 Predicting and Assessing Natural Capital and Ecosystem Services [PANCES];JPMEERF16S11509) from the Ministry of the Environment, Japan.

ORCID

Takehisa Yamakita © https://orcid.org/0000-0002-5451-1231
Katsumasa Yamada © https://orcid.org/0000-0003-2136-0366

REFERENCES

Abe, T. (1987). Illustrated fishes in colour. Tokyo: Hokuryukan.
Albouy, C., Lasram, F. B. R., Velez, L., Guilhaumon, F., Meynard, C. N., Boyer, S., … Mouillot, D. (2015). FishMed: Traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology, 96, 2312–2313. https://doi.org/10.1890/14-2279.1
Biodiversity Center Nature Conservation Bureau, Ministry of the Environment. (2012). 2011 survey report of the monitoring sites 1000 rocky shores, tidal flats, seagrass beds, and algal beds. Tokyo: Ministry of the Environment.
Biodiversity Center Nature Conservation Bureau, Ministry of the Environment. (2013). 2012 survey of the natural environment in the Pacific coast of Tohoku district. Tokyo: Ministry of the Environment.
Costello, M. J., Claus, S., Dekeyzer, S., Vandepitte, L., Tuama, É. Ô., Lear, D., & Tyler-Walters, H. (2015). Biological and ecological traits of marine species. PeerJ, 3, e1201.
Diaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489
Elmqvist, T., Bengtsson, J., Angelstam, P., Emanuelsson, U., Folke, C., Ihse, M., … Nyström, M. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488–494.
Faulwetter, S., Markantonatou, V., Pavloudi, C., Papageorgiou, N., Keklikoglou, K., Chatzinikolaou, E., … Arvanitidis, C. (2014). Polyptraits: A database on biological traits of marine polychaetes. Biodiversity Data Journal, 2, e1024. https://doi.org/10.3897/BDJ.2.e1024
Furuta, T., & Taru, M. (2016). A picture book for biological observation at tidal flats. Tokyo: Seibundo Shinkosha.
Hayasaka, D., Yamada, K., & Uchida, T. (2016). Susceptibility of sandy beach flora to the Great East Japan Earthquake and tsunami in northern Tohoku, Japan. In J. Urabe & T. Nakashizuka (Eds.), Ecological impacts of tsunamis on coastal ecosystems (pp. 271–288). Tokyo: Springer.
Imajima, M. (1996). Annelida, polychaeta I. Tokyo: Seibutsu Kenkyusha.
Imajima, M. (2001). Annelida, polychaeta II. Tokyo: Seibutsu Kenkyusha.
Imajima, M. (2007). Annelida, Polychaeta III. Tokyo: Seibutsu Kenkyusha.
Japan Fisheries Resource Conservation Association. (1993). Ecological data of aquatic life. Tokyo: Japan Fisheries Resource Conservation Association.
Japan Fisheries Resource Conservation Association. (1986). Life history and ecology of fishery organisms (a sequel). Tokyo: Japan Fisheries Resource Conservation Association.
Japan Fisheries Resource Conservation Association. (1992). Report of the project quantify fishing ground conservation functions. Tokyo: Japan Fisheries Resource Conservation Association.
Japan River Front Research Center. (1996). Cyclopaedia: River biological picture book. Tokyo: Sankaido.
Kitahashi, T., Jenkins, R. G., Nomaki, H., Shimana, M., Fujikura, K., & Kojima, S. (2014). Effect of the 2011 Tohoku earthquake on deep-sea meiofaunal assemblages inhabiting the landward slope of the Japan Trench. Marine Geology, 358, 128–137.
Marine Ecology Research Institute. (1991). Ecological findings of marine organisms in the coastal area. Tokyo: Marine Ecology Research Institute.
Masuda, H. (1984). The fishes of the Japanese archipelago (commentary). Hiratsuka: Tokai University Press.
Miyake, S. (1983). Japanense crustacean, decapods and stomatopods in color Vol.II. Tokyo: Hoikusha.
Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88, 349–364. https://doi.org/10.1111/brv.12004
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167–177.
Nagai S., Shibata H., Osawa T., Yamakita T., Nakamura M., Kenta T. (2020). Toward more data publication of long-term ecological observations. Ecological Research, 35(5), 700–707. http://dx.doi.org/10.1111/1440-1703.12115.
Nishimura, S. (1992). Guide to seashore animals of Japan with color pictures and keys (Vol. I). Osaka: HOIKUSHA Publishers Co., Ltd.
Nishimura, S. (1995). Guide to seashore animals of Japan with color pictures and keys (Vol. II). Osaka: HOIKUSHA Publishers Co., Ltd.
Okutani, T. (2017). Marine mollusks in Japan (2nd ed.). Hiratsuka: Tokai University Press.

Sato, M. (2017). Nereididae (Annelida) in Japan, with special reference to life-history differentiation among estuarine species. In Species diversity of animals in Japan (pp. 477–512). Tokyo: Springer.

Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., ... Edgar, G. J. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539–542.

Suzuki, T., Kimura, S., Kimura, T., Mori, K., & Taru, M. (2014). Benthos of the tidal flat. Tokyo: Wetlands International Japan.

Urabe, J., Suzuki, T., Nishita, T., & Makino, W. (2013). Immediate ecological impacts of the 2011 Tohoku earthquake tsunami on intertidal flat communities. PLoS One, 8, e62779. https://doi.org/10.1371/journal.pone.0062779

Wahl, M., Link, H., Alexandridis, N., Thomason, J. C., Cifuentes, M., Costello, M. J., ... Lenz, M. (2011). Re-structuring of marine communities exposed to environmental change: A global study on the interactive effects of species and functional richness. PLoS One, 6, e19514. https://doi.org/10.1371/journal.pone.0019514

Watanabe, T. (2014). The handbook of seashore decapod crustaceans. Tokyo: Bun-ichi Sogo Shuppan.

Yamada, K., Hori, M., Tanaka, Y., Hasegawa, N., & Nakaoka, M. (2010). Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan. Estuarine, Coastal and Shelf Science, 86, 71–82. https://doi.org/10.1016/j.ecss.2009.10.015

Yamakita, T. (2018). Change of the ocean after the Great East Japan earthquake—utilization of geographic information system and GIScience. E-Research in Species Biology, 2. Retrieved from http://www.speciesbiology.org/eShuseibutsu/evol2/front.html.

Yamakita, T., Fujiwara, Y., Tsuchida, S., Kawato, M., Uemura, T., Yokooaka, H., ... Kitazato, H. (2016). Use of bottom image mapping by a new underwater camera system and apply of 3D mosaicking to observe spatial distribution of benthic organisms off Sanriku. In K. Kogure, M. Hirose, H. Kitazato, & A. Kijima (Eds.), Marine ecosystems after great East Japan Earthquake in 2011 our knowledge acquired by TEAMS (pp. 141–142). Hiratsuka: Tokai University Press.

Yamakita, T., Matsuoka, Y., & Iwasaki, S. (2017). Impact of the 2011 Tohoku earthquake on the use of marine areas: A case study in inner Tokyo Bay. Journal of Environmental Information Science, 2017(1), 25–36. https://doi.org/10.11492/ceispapersen.2017.1_25.

Yamakita, T., Yokooaka, H., Fujiwara, Y., Kawato, M., Tsuchida, S., Ishibashi, S., ... Fujikura, K. (2018). Image dataset of ophiuroid and other deep sea benthic organisms in 2015 extracted from the survey off Sanriku, Japan, by the research following the Great East Japan Earthquake 2011. Ecological Research, 33, 285–285. https://doi.org/10.1007/s11284-018-1571-7

Zukan.com.co.ltd. (2018) Web fish picture book. Available from https://zukan.com/.

How to cite this article: Yamakita T, Yamada K, Yokooaka H, Kanaya G. Traits database of tidal flat macrobenthos along the Northwest Pacific coast of Japan. Ecological Research. 2020;35:1062–1072. https://doi.org/10.1111/1440-1703.12183