A review of economic and environmental consequences from waste-based power generation: Evidence from Taiwan

Liguo Zhang¹, Yunling Hu¹, Liang Cai¹ and Chih-Chun Kung¹,²

Abstract
Energy sustainability is keyed to social development, and thus finding renewable and clean energy sources is crucial to modern society. Waste to energy technology is of particular interest in recent years because the feedstock supply is relatively stable and the technology is less influenced by climate and geographic conditions. This study first reviews this technology, and then provides a case study to explore the potential investment, economic benefits, and environmental consequences associated with such an application. The results indicate that the energy conversion efficiency and net social benefits are highly dependent on the composition of the wastes, the transportation costs, and the distribution of regional population. The results imply that for the application of waste to energy technology to be efficient and effective, the locations of refuse plants play an important role, as well as the recycled rates of municipal solid wastes. Policy implications regarding these points are also discussed in detail.

Keywords
Energy structure, incineration, municipal solid waste, renewable energy, sustainability

¹School of Economics at Jiangxi University of Finance and Economics, Nanchang, China
²Department of Agricultural Economics at Texas A&M University, College Station, TX, USA

Corresponding author:
Chih-Chun Kung, Jiangxi University of Finance and Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China.
Email: cckung78@hotmail.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Annual electricity consumption in Taiwan is more than 270,000 GWh (or 270 billion kWh) which still grows at a rate of approximately 2.2% per year (TMOEA, 2018). However, since Taiwan is a small island that has minimal natural resources, more than 99% of energy (i.e. coal, natural gas, and petroleum) depends on imports, making Taiwan vulnerable to fluctuation of international energy prices and political conflicts. To insure sustainable development, Taiwan has no choice but to accept such a fragile energy structure and expensive energy.

This situation has been gradually changing in recent years when the government announces to promote nuclear-free homeland before 2025. Currently, nuclear power provides approximately 8.3% of total electricity (or 4.3% of total energy), implying that substantial amount of lost electricity must be replaced by other sources. Based on the “Emission Management Act” promulgated in 2015, Taiwan cannot increase its fossil share and thus this portion of electricity can only be replaced by renewable energy sources. Since the total renewable energy provides only 1.8% of Taiwan’s electricity, an even greater promotion on renewable energy development must be pursued.

Municipal solid waste (MSW) is a renewable and stable supplied source that can generate substantial amount of electricity. The waste to energy (WtE) technology has already been utilized by many countries (Consonni et al., 2005; Couto et al., 2015; Holanda and Balestieri, 2008; Qiu and Hayden, 2009). As shown in Figure 1, more than 7.8 million tons of wastes are generated but only 60.22% are properly recycled and treated (i.e. incinerate, sanitary landfill, etc.).

Since the supply of MSWs is highly dependent on population, which is relatively constant in the short run, electricity generation from this renewable source is more reliable and predictable. However, the efficiency and effectiveness of WtE technology are also keyed to other factors such as components, distribution, and heating values of wastes. Without these

![Waste Generated](image)

Figure 1. Municipal solid waste generated by years (Source: Taiwan Ministry of Economic Affairs (TMOEA, 2018)).
measures, the estimation of the power potential from MSWs utilization would be unreliable, leaving a less useful result to decision makers.

There are many studies analyzing the power potential from MSWs. However, simply borrowing these estimates to calculate power generation in other regions would not be feasible, either due to the different compositions of waste components or due to the unequal capacity of incinerators. Therefore, for Taiwan to explore the reliable power generation potential from MSWs utilization, and to investigate to what extent the impact on electricity shortage resulted from loss of nuclear power can be reduced, this study aims to analyze the Taiwan’s components and compositions of MSWs, investigate the idle capacity of current incinerators, calculate the amount of unutilized MSWs, and estimate the power potential in each region.

This study makes contributions by exploring the energy potential from currently unused energy source and providing detailed estimates to decision-makers. More specifically, the usefulness of the results can be illustrated in flowing ways. First, a county-level temporal analysis on waste resource is conducted so that the sources and stability of such a resource can be predicted. This ensures that the estimations of power generation from every region are based on regional characteristics rather than the country-wide average number. Second, capacities of all currently operating incinerators are accommodated so that the results can reflect the true potential of regional renewable energy production. That is, transporting local MSWs to an incinerator far away from their origins is less economically feasible. By finding the idle capacity of every operating incinerator and determining whether current capacity is sufficient, the most efficient way to utilize these wastes can be achieved using simple economic approaches. Third, the potential power generation from MSWs is depicted in regional level and thus the government would gain knowledge about their energy policies on renewable energy development, in whole or in part. The results thus can be more useful for future promotion policies such as industrial subsidy, tax credit and refund, and emission controls.

Utilization of municipal solid wastes

As global economy and population expands, municipal solid wastes have been generated substantially. This happens not only in developing countries such as China and India but also in developed countries such as the United States and the European Union where higher living standard usually induces more consumption of goods (Couto et al., 2015; Malinauskaite et al., 2017). Simply burning or landfilling these wastes is not efficient either because a large portion of wastes are recyclable and reusable, or because such treatments are considered as non-environmental friendly. Under such a circumstance, many countries have been looking for alternative ways to deal with this unprecedented increase in municipal solid wastes (Heffron and Talus, 2016; Ren et al., 2016).

WtE method

Under the consideration of green development, various renewable energy technologies such as solar PV (Chang, 2009; Morcos, 1994; Yakup and Malik, 2001), wind power (Chang et al., 2015; Gualtieri and Secci, 2012; Kung et al., 2019), and bioenergy (Chen et al., 2010; McCarl et al., 2000) have been intensively studied and applied in the recent decades. Because world energy consumption increases considerably, many countries also consider the alternative use of municipal solid wastes as this resource is combustible and its supply is stable.
Many studies (Asnani, 2006; Chen and Lee, 2014; Ouda et al., 2016) have indicated that the properly utilization of WtE technology could both improve renewable energy production and reduce environmental problems. Up to date, the WtE technology has been employed by many countries. For example, in 2016, several WtE plants that can consume up to 460 tons of waste per day have been operating in India to solve problems of insufficient energy supply (Rezaei et al., 2018). China provides up to 80% subsidy of total cost of the facilities with a low interest rate to promote the WtE technology (Finance, 2016), while the United States (Michaels, 2014; Indrawan et al., 2018), Canada (Shareefdeen et al., 2015), Japan (Finance, 2016), Indonesia (Rawlins et al., 2014), Iran (Rezaei et al., 2018), Saudi Arabia (Ouda et al., 2016), Malaysia (Kadir et al., 2013; Sadeghi et al., 2013), Germany (Finance, 2016), and Turkey (Marktscan, 2013) also have subsidies in similar but different ways.

WtE application worldwide

The WtE technology is a mature technology that has been widely applied. Governments across the world also promote various policies to subsidize the construction of WtE plants. This subsection provides a brief introduction of these policies in Asia, North America, and the Europe.

Asia. To implement WtE projects India, the government provides repayable grants to many entities such as municipal corporations, municipalities, technology providers, and project developers (Misra and Kaushal, 2014; Singh et al., 2011). The Ministry of New and Renewable Energy of India also provides financial incentives to support such developments by providing land, training courses, and low-cost or even interest-free loans (Kalyani and Pandey, 2014). However, the progress of large-scale development of WtE is delayed due to lack of appropriate technology, high labor cost, and delays in project approvals from the government (NREL, 2014). Additionally, the public concern to plant safety also makes the development of the WtE power plant market not as successful as planned (Rezaei et al., 2018).

Other Asian countries such as China and Japan also have promoted such a technology by providing various subsidies. In Japan, approximately 1/3 of the total costs to construct WtE incinerators are supported by the government (Finance, 2016). This amount can be increased to 50% if advanced technology and equipment have been used, and the electricity price generated from these incinerators will be determined on the basis of economic and environmental benefits received by the adjacent companies, municipalities, and citizens. On the contrary, the construction of the incineration facility in China is generally supported by the private sector. Up to 80% of total construction cost can be borrowed with nominal interest rates less than 3.5%. The factors determining the price of electricity in China are also different from that of Japan. Region, transmission costs and environmental impacts such as amount of reduced emissions are taken into account (Finance, 2016).

North America. Since 1960 the amount of municipal solid waste produced in the United States has doubled to more than 250 million tons per year. The rapid increase in wastes has been causing serious environmental problems (USEPA, 2013). To deal with fast growing amount of garbage, the U.S. government creates incentives for companies to implement WtE technology. Michaels (2014) estimates that the installed electric capacity is
approximately 2800 MW and the USEPA indicates that more than 12.9% of electricity is recovered from the 80 operating WtE plants.

In the United States, the price of waste-based electricity varies from state-to-state. The regulations and policies are proposed by state Congress and thus the regional gate fee could differ considerably. Generally, the electricity price of waste-based electricity for different states ranges from $0.105 to $0.16 per kWh (Rezaei et al., 2018). The effective factor of building new incinerators is collectively determined by gate fee and electricity price, and Themelis and Mussche (2013) point out that private companies have more market share of municipal waste management.

Moreover, since the WtE technology is considered as a clean and renewable source, taxes are added to reduce uses of landfilling and to support carbon reduction from WtE. Williams and Helm (2011) also indicate that promotion policies such as direct subsidies and tax credits can offer incentives to invest in waste management and renewable energy generation.

Europe. Most of the waste processing facility in Europe is supported by the government in the form of low-interest loans and higher electricity price (Finance, 2016). In Germany, approximately 0.3 euros per kWh is determined to encourage the development of this industry in the early stage, which is reduced over time to a guaranteed price of 0.2 euros. A slight difference of the waste processing facility promotion in Turkey is that the government sets up a tariff price of electricity generated by WtE facilities to USD$13.3 over a period of 10 years, along with the road map management to help the waste transport and the subsequent sale of electricity to assist this industry (Marktscan, 2013).

Table 1 presents the general information about costs of investment and operation of waste processing facilities and government guaranteed purchase power price in different countries.

MSWs and incinerators in Taiwan

Taiwan has little energy stocks and is interested in increasing energy supply domestically to reduce reliance on foreign energy, improve energy structure, and enhance energy security.

Table 1. Cost and purchase agreement in different countries.

Country	Facility	Investment costa ($/kW)	Operating cost ($/MW)	Power purchaseb ($/kWh)
United States	Incinerator	2000–5400	90,000–200,000	0.05–0.2
	Biomass	3600–6400	90,000–200,000	0.05–0.14
West Europe	Incinerator	2000–5400	90,000–200,000	0.05–0.2
	Biomass	3600–6400	90,000–200,000	0.05–0.14
China	Biomass	830–1200	11,500–266,267	0.11–0.14
India	Incinerator	8312	2765–89,885	0.07–0.09
	Biomass	N.A.	N.A.	0.09
Japan	Biomass	N.A.	N.A.	0.13–0.41
Turkey	Biomass	3600–6400	90,000–200,000	0.05–0.14
Malaysia	Biomass	N.A.	N.A.	0.09
Indonesia	Biomass	N.A.	N.A.	0.1

Source: a: (Finance, 2016), b: (Mendona, 2010).
Utilization of MSWs is an attractive alternative to local government, and since 2006 incineration has become the primary approach to deal with MSWs in Taiwan (Tsai and Chou, 2006; Tsai and Kuo, 2010). There are 29 incinerators which are under operation after 2006 and the total power generation is about 2967 GWh in 2008, and the power generation from wastes has been gradually increased to 3188 GWh in 2017 (TEPA, 2018). However, as shown in Table 2, a substantial amount of received wastes are not used in power generation, implying there is space to increase waste-based electricity.

Compared to the total electricity consumption of 2.7 million GWh in 2017, the net power generation from MSWs is less than 0.6%. Figure 2 shows the power generation from MSW utilization in different years. The power generation from MSWs is considered to be lower than expectation because more than 7.8 million tons of MSWs will be generated annually but only less than half is utilized in WtE technology. Therefore, it is necessary to determine the cause of such a situation so that the government is able to figure out the actual power potential from MSWs.

Table 2. Information of Taiwan’s incineration.

Year	Received WtE Power generation Designed capacity
	(Tons) (Tons) (1000 kWh) (Tons/day)
2008	6,184,083 4,335,770 2,967,218 24,650
2009	6,286,601 4,137,284 2,924,934 24,650
2010	6,406,781 4,036,404 3,026,003 24,650
2011	6,507,763 3,888,641 3,076,345 24,650
2012	6,506,907 3,468,620 3,056,476 24,650
2013	6,471,767 3,277,252 3,131,460 24,650
2014	6,420,400 3,208,721 3,187,484 24,650
2015	6,622,071 3,189,457 3,217,212 24,650
2016	6,441,999 3,143,054 3,245,229 24,650
2017	6,251,196 2,993,435 3,187,516 24,650

Source: Taiwan Environmental Protection Administration (TEPA, 2018).

Figure 2. Power generation from MSW utilization in Taiwan.
Status and nature of Taiwan’s MSWs

The Taiwan Environmental Protection Administration (2018) indicates that the total recycling rate of MSWs is only 60.22%, leaving approximately 40% of MSWs unused. The result implies that Taiwan can further improve its power generation from MSWs by increasing the recycling rates (Table 3).

The cause of the low power generation from MSWs has been identified, but the power potential is still unknown. To explore the power potential from unused MSWs, it is necessary to consider the heterogeneity among wastes because heating valuing from sources to sources would be greatly different. Therefore, verifying the components and compositions of wastes is important to estimate the power generation. Based on the information released by the Taiwan Environmental Protection Administration (TEPA, 2018), the composition of MSWs is presented in Table 4.

Capacity of incinerators and compositions of MSWs by region

Incinerators usually locate in different counties and each of them has different designed capacity. Since it would be economically inefficient to transport local wastes to some incinerators far from their origins, there is a need to explore the capacity of each incinerator to understand whether the incinerator is able to process additional wastes; otherwise, new

Year	Total	Waste recycling	Recyclable waste	Food waste
1996	–	–	–	–
1997	–	–	–	–
1998	1.25	–	1.25	–
1999	1.94	–	1.94	–
2000	9.78	–	9.78	–
2001	12.68	–	12.68	–
2002	15.55	–	15.55	–
2003	20.08	–	17.89	2.19
2004	24.01	–	20.13	3.88
2005	29.42	0.38	23.12	5.93
2006	35.41	0.37	27.72	7.32
2007	38.7	0.39	29.97	8.34
2008	41.97	0.59	32.21	9.17
2009	45.48	0.85	35.32	9.31
2010	48.82	1.01	38.15	9.67
2011	52.2	1.06	40.4	10.74
2012	54.36	1.2	41.88	11.27
2013	54.99	1.14	43	10.84
2014	55.59	0.89	44.92	9.78
2015	55.23	0.88	45.92	8.43
2016	58	0.82	49.47	7.72
2017	60.22	0.71	52.51	7

Source: Taiwan Environmental Protection Administration (TEPA, 2018).
plants must be constructed and investments must be depreciated during the useful life of plants. The information about plant capacity is presented in Table 5.

Table 4 provides the aggregate composition of wastes in Taiwan, but to explore the power potential in county level, investigation of the waste characteristics for each region is required. This information is presented in Table 6, and then the results can be employed to estimate the energy potential in each region.

The characteristic of MSWs in every region has been determined, and the next step is to calculate the available quantity of unused wastes to estimate the regional power potential. To do this, this study first assumes the waste is generated proportional to population distribution, and then estimates the total MSWs amount generated in major cities and counties. The results are shown in Table 7.

Simply knowing the regional availability of MSWs does not tell the power potential because a portion of waste is already incinerated in WtE plants, and the actual energy potential should be based on the amount of unused MSWs. Therefore, there is merit to explore the recycling rate of MSWs to estimate the additional MSWs available in each region. The results are shown in Table 8.

With the regional production and compositions of MSWs (Tables 7 and 8), the following formula can be used to calculate the availability of unused MSWs for region \(i \) and type of wastes \(j \).

\[
\text{Unused } MSW_{ij} = \text{Composition of } MSW_{ij} \times MSW \text{ production}_i \text{ for all } i, j
\]

The results of total and classified amount of unused MSWs are shown in Table 9. Combined with the heating value of each source (Xiong et al., 2016), equation (2) can be deployed to estimate the power potential from unused MSWs in each region.

\[
\text{Power}_{ij} = \text{Lower Heating Value}_j \times \text{Unused } MSW_{ij} \text{ for all } i, j
\]

The available amount of unused MSWs is indicated in Table 9.
Table 10 shows the power generation from all unused MSWs in each region. The results show that the major cities (in terms of population distribution) such as Taipei city, New Taipei city, Taichung city, Taoyuan city, and Kaohsiung city have the higher power potential from MSWs. Collectively, total power generation from unused MSWs can be up to 3683 GWh, given the distribution of waste composition and population unchanged.

In terms of renewable to total energy share, we show that if the municipal solid wastes can be fully utilized in power generation, it could increase Taiwan’s domestic energy production by additional 1.36% and replacing 16.43% of the electricity shortage resulted by loss of nuclear power.

Economic and environmental consequences

Up to date, the incineration of MSWs provides approximately 0.56% of total energy supply in Taiwan, and our results show that the properly utilization of unused MSWs can increase...
Regions	Paper (%)	Textiles (%)	Garden wastes (%)	Food wastes (%)	Plastics (%)	Leather (%)	Others (%)
New Taipei City	32.60	7.37	0.88	42.40	15.85	0.38	0.54
Taipei City	38.26	3.68	1.68	41.96	13.64	0.31	0.47
Taoyuan City	35.26	5.77	0.93	39.98	16.92	0.43	0.72
Taichung City	38.03	3.82	1.29	39.91	15.78	0.37	0.82
Tainan City	35.77	4.07	1.44	38.98	18.70	0.57	0.47
Kaohsiung City	32.66	3.81	2.42	40.85	19.57	0.27	0.43
Yilan County	34.06	5.04	1.86	41.76	16.33	0.47	0.51
Hsinchu County	39.98	3.36	2.28	34.28	18.75	0.71	0.65
Miaoli County	42.39	3.45	1.41	34.65	17.24	0.08	0.78
Changhua County	36.30	4.20	1.55	41.30	16.19	0.30	0.16
Nantou County	40.25	4.92	0.77	36.24	16.50	0.11	1.23
Yunlin County	45.83	5.73	1.44	26.46	19.20	0.57	0.79
Chiayi County	36.36	4.30	0.96	43.22	14.28	0.53	0.36
Pingtung County	27.05	5.11	1.78	47.30	17.29	0.89	0.57
Taitung County	36.71	8.84	3.92	35.02	14.07	0.18	1.28
Hualien County	31.73	4.91	3.30	42.47	16.13	1.17	0.31
Penghu County	41.41	2.94	0.93	37.81	16.06	0.59	0.26
Keelung City	30.90	3.09	0.49	49.38	15.63	0.12	0.41
Kinmen County	36.75	6.51	1.02	40.94	13.74	0.28	0.75
Lienchiang County	49.32	6.35	2.22	23.98	17.23	0.11	0.80

Source: Taiwan Environmental Protection Administration (TEPA, 2018).

Total Garbage	Bulk waste	Recyclable	Food waste		
New Taipei City	1,158,662	390,679	47,834	606,677	113,437
Taipei City	755,026	205,932	14,031	468,299	66,764
Taoyuan City	890,147	379,199	1187	487,301	22,460
Taichung City	863,140	357,187	5165	457,481	43,308
Tainan City	671,386	238,233	20,209	339,573	73,372
Kaohsiung City	969,900	377,711	14,495	496,185	81,510
Yilan County	165,848	70,451	3859	83,769	7770
Hsinchu Aggregate	339,015	138,510	5091	173,287	22,128
Miaoli County	210,528	88,015	3623	106,423	12,466
Changhua County	418,867	191,519	5521	206,098	15,729
Nantou County	179,696	86,576	2800	83,605	16,621
Yunlin County	189,601	86,576	2800	83,605	16,621
Chiayi Aggregate	283,353	113,848	3039	146,347	20,118
Pingtung County	307,994	141,747	8269	146,776	11,202
Taitung County	90,794	35,319	494	47,229	7752
Hualien County	116,202	50,324	380	59,575	5924
Penghu County	39,771	15,725	638	19,042	4365
Keelung City	163,651	63,942	2500	85,461	11,748
Kinmen County	31,282	11,246	571	16,319	3146
Lienchiang County	6743	2052	552	2826	1312
Table 8. Recycling rates of MSWs by regions.

Regions	Garbage (%)	Bulk waste (%)	Recyclable (%)	Food waste (%)
New Taipei City	62.4	0.2	52.4	9.8
Taipei City	72.7	1.9	62.0	8.8
Taoyuan City	57.4	0.1	54.7	2.5
Taichung City	58.4	0.4	53.0	5.0
Tainan City	63.1	1.6	50.6	10.9
Kaohsiung City	59.8	0.3	51.2	8.4
Yilan County	56.2	1.0	50.5	4.7
Hsinchu Aggregate	58.9	1.2	51.1	6.5
Miaoli County	57.9	1.4	50.6	5.9
Changhua County	53.2	0.2	49.2	3.8
Nantou County	51.5	0.5	45.4	5.7
Yunlin County	54.1	1.2	44.1	8.8
Chiayi Aggregate	58.5	0.7	50.8	7.0
Pingtung County	52.7	1.4	47.7	3.6
Taitung County	60.6	0.1	52.0	8.5
Hualien County	56.6	0.3	51.3	5.1
Penghu County	60.4	1.5	47.9	11.0
Keelung City	60.0	0.6	52.2	7.2
Kinmen County	63.9	1.7	52.2	10.1
Lienchiang County	69.6	8.2	41.9	19.5

Table 9. Amount of unused MSWs (tons).

Available MSWs	Paper	Textiles	Food wastes	Plastics	Others	
New Taipei City	586,126	191,088	43,195	248,522	92,912	10,530
Taipei City	308,650	118,099	11,364	129,495	42,115	7608
Taoyuan City	405,171	142,872	23,362	162,002	68,552	8424
Taichung City	409,921	155,877	15,651	163,597	64,671	10,167
Tainan City	341,092	122,014	13,876	132,949	63,775	8443
Kaohsiung City	483,261	157,848	18,406	197,408	94,581	15,068
Yilan County	83,578	28,464	4208	34,902	13,645	2368
Hsinchu Aggregate	167,297	66,885	5614	57,347	31,361	6108
Miaoli County	105,017	44,518	3627	36,384	18,102	2386
Changhua County	215,013	78,049	9039	88,803	34,813	4332
Nantou County	97,437	39,214	4789	35,313	16,077	2,054
Yunlin County	104,402	47,848	5984	27,624	20,048	2920
Chiayi Aggregate	140,929	51,237	6062	60,909	20,120	2615
Pingtung County	162,846	44,057	8315	77,033	28,160	5282
Taitung County	44,160	16,211	3905	15,463	6213	2372
Hualien County	56,857	18,040	2790	24,147	9170	2715
Penghu County	20,674	8561	608	7816	3321	368
Keelung City	79,773	24,652	2462	39,390	12,465	821
Kinmen County	15,256	5607	993	6246	2096	312
Lienchiang County	3829	1889	243	918	660	120

Bold characteristics in the table is the sum of the corresponding column (or row).
domestically generated power by additional 1.36%, and this is a substantial improvement in renewable energy production. Now the question turns into another side: how much is the society going to pay for this change or is such an application economically feasible? The answer must be provided before the government can turn such power potential into real production. This section evaluates the costs and benefits from this transition.

Costs associated with utilization of unused MSWs

To transport million tons of MSWs to incinerators requires a substantial amount of effort. Since the data that show the designed capacity of incinerators is able to burn all MSWs, this study assumes that there is no need to construct new refuse plants and only transport and processing cost are involved. To estimate the transport cost of feedstocks, assuming that the refuse plant is located in the center of a square surrounded by a square grid layout of roads and the effort is provided by regular workforce, the average hauling distance and hauling cost can be estimated by the methods from McCarl et al. (2009):

\[
Hauling\ distance\ (\bar{D}) = 0.4714 \sqrt{\frac{S}{640Y}} \quad (3)
\]

\[
Hauling\ cost\ (H) = (b_1 + 2 \times 0.4714 \times b_2 \bar{D})S/Ld \quad (4)
\]

Table 10. Power generation from unused MSWs (in GWh/year).

	Total	Paper	Textiles	Garden wastes	Food wastes	Plastics	Leather	Others
New Taipei City	555.4	163.1	67.5	6.3	62.9	247.9	3.5	4.2
Taipei City	273.5	100.8	17.8	6.4	32.8	112.4	1.5	1.9
Taoyuan City	393.6	121.9	36.5	4.7	41.0	182.9	2.7	3.8
Taichung City	384.8	133.0	24.4	6.5	41.4	172.6	2.4	4.5
Tainan City	340.8	104.1	21.7	6.1	33.6	170.2	3.0	2.1
Kaohsiung City	485.0	134.7	28.8	14.4	50.0	252.4	2.1	2.7
Yilan County	79.2	24.3	6.6	1.9	8.8	36.4	0.6	0.6
Hsinchu-all	172.1	57.1	8.8	4.7	14.5	83.7	1.9	1.4
Miaoli County	104.2	38.0	5.7	1.8	9.2	48.3	0.1	1.1
Changhua-all	201.7	66.6	14.1	4.1	22.5	92.9	1.0	0.5
Nantou County	95.5	33.5	7.5	0.9	8.9	42.9	0.2	1.6
Yunlin County	114.5	40.8	9.3	1.9	7.0	53.5	0.9	1.1
Chiayi-all	125.8	43.7	9.5	1.7	15.4	53.7	1.2	0.7
Pingtung County	152.3	37.6	13.0	3.6	19.5	75.1	2.3	1.2
Taitung County	43.4	13.8	6.1	2.1	3.9	16.6	0.1	0.7
Hualien County	53.9	15.4	4.4	2.3	6.1	24.5	1.0	0.2
Penghu County	19.6	7.3	1.0	0.2	2.0	8.9	0.2	0.1
Keelung City	69.2	21.0	3.8	0.5	10.0	33.3	0.2	0.4
Kinmen County	13.9	4.8	1.6	0.2	1.6	5.6	0.1	0.2
Lienchiang-all	4.1	1.6	0.4	0.1	0.2	1.8	0.0	0.0
Total	3682.5							

Bold characteristics in the table is the sum of the corresponding column (or row).
where S is the total volume of municipal solid waste needed to fuel the generation plant for one year, and the incinerator with annual capacity of 250,000 tons of waste.

L_d is the truck load size, which is assumed to be 23 tons.

Y is the average annual production in tons of municipal solid waste per acre.

640 is a conversion factor for the number of acres in a square mile.

b_1 is the fixed cost associated one truck load, which is assumed to be NT$2700.

b_2 is the variable cost associated with moving a loaded truck one mile, which is assumed to be NT$66 in this study.

Table 11 shows the results of average hauling distance of wastes to regional incinerators. The increase in transporting these unutilized wastes requires an additional $33 million dollars. However, since a portion of unutilized wastes may still be used in other places, the net cost may be reduced, depending on the amount of recycled wastes with alternative uses.

Other costs associated with the waste utilization such as overtime salary, treatment of recycled wastes, classification of the wastes, and energy consumption may also be included. The estimates of these factors are provided in Table 12. It is obvious that the transportation cost is relatively small to total costs. By allocating the costs to each region and sum them altogether, the net cost associated with the municipal solid wastes is approximately NT$681.1 million dollars per year. Therefore, the large-scale development on WtE technology could be expensive, especially on the feedstock classification and processing.

Table 11. Average hauling cost of MSWs (by region, NT$/year).

Region	Paper	Textiles	Garden wastes	Food wastes	Plastics	Leather	Others
New Taipei City	1,706,021	360,678	41,197	2,257,242	798,520	17,586	25,265
Taipei City	1,026,556	91,991	41,550	1,130,902	351,378	7548	11,601
Taoyuan City	1,254,252	191,838	30,138	1,432,198	581,736	13,823	23,127
Taichung City	1,375,035	127,422	42,234	1,447,118	547,577	12,035	26,906
Tainan City	1,062,321	112,717	39,324	1,162,659	539,707	15,381	12,618
Kaohsiung City	1,393,404	150,339	94,603	1,766,011	813,517	10,493	16,369
Yilan County	234,869	33,623	30,507	483,418	259,431	9451	8637
Miaoli County	372,077	28,934	11,763	302,239	147,806	666	6449
Changhua County	665,778	72,903	26,648	761,681	288,822	5032	2770
Nantou County	326,465	38,318	5925	293,091	130,955	533	9545
Yunlin County	400,843	47,996	11,919	227,760	164,054	4676	6504
Chiayi Aggregate	430,218	48,634	10,692	514,567	164,659	5939	4037
Pingtung County	368,100	66,983	23,084	656,755	232,296	11,484	7375
Taitung County	132,073	31,175	13,719	125,864	49,857	612	4451
Hualien County	147,287	22,210	14,885	198,438	73,981	5254	1365
Penghu County	69,000	4799	1511	62,909	26,470	962	414
Keelung City	202,682	19,575	3102	327,975	101,063	773	2584
Kinmen County	44,939	7850	1221	50,125	16,648	339	893
Lienchiang County	14,987	1912	667	7256	5207	34	241

Total 11,793,953 1,504,886 457,014 13,497,791 5,404,485 126,003 174,397

Bold characteristics in the table is the sum of the corresponding column (or row).
Domestic production of electricity can replace the use of fossil fuel which emits substantial amount of GHGs. Up to 5 million tons of CO₂ emission can be reduced by the utilization of municipal solid wastes, as indicated in Table 13. However, the result of the emission offset from waste-based electricity has not taken the emission from feedstock transportation into account, which may overstate the environmental benefit from MSW application. To deal with this, the average hauling distance of the feedstocks (i.e. equation (3)) again is used to estimate the gasoline requirement and then

Table 13. Emission reduction (1000 t CO₂e) from waste-based electricity.

Region	Total	Paper	Textiles	Garden wastes	Food wastes	Plastics	Leather	Others
New Taipei City	758.1	222.6	92.1	8.7	85.9	338.4	4.7	5.7
Taipei City	373.4	137.6	24.2	8.7	44.7	153.4	2.0	2.6
Taoyuan City	537.2	166.4	49.8	6.4	56.0	249.7	3.7	5.3
Taichung City	525.2	181.6	33.4	8.9	56.5	235.6	3.2	6.1
Tainan City	465.2	142.1	29.6	8.3	45.9	232.3	4.1	2.9
Kaohsiung City	662.0	183.9	39.2	19.7	68.2	344.5	2.8	3.7
Yilan County	108.1	33.2	9.0	2.6	12.1	49.7	0.8	0.8
Hsinchu Aggregate	234.9	77.9	12.0	6.4	19.8	114.2	2.5	2.0
Miaoli County	142.2	51.9	7.7	2.5	12.6	65.9	0.2	1.5
Changhua County	275.3	90.9	19.3	5.6	30.7	126.8	1.4	0.6
Nantou County	130.3	45.7	10.2	1.3	12.2	58.6	0.2	2.2
Yunlin County	156.3	55.7	12.8	2.5	9.5	73.0	1.3	1.5
Chiayi Aggregate	171.7	59.7	12.9	2.3	21.0	73.3	1.6	0.9
Pingtung County	207.9	51.3	17.7	4.9	26.6	102.6	3.1	1.7
Taitung County	59.3	18.9	8.3	2.9	5.3	22.6	0.2	1.0
Hualien County	73.6	21.0	6.0	3.2	8.3	33.4	1.4	0.3
Penghu County	26.7	10.0	1.3	0.3	2.7	12.1	0.3	0.1
Keelung City	94.4	28.7	5.2	0.7	13.6	45.4	0.2	0.6
Kinmen County	19.0	6.5	2.1	0.3	2.2	7.6	0.1	0.2
Lienchiang County	5.6	2.2	0.5	0.1	0.3	2.4	0.0	0.1
Total	**5026.4**	**1587.8**	**393.3**	**96.3**	**534.1**	**2341.5**	**33.8**	**39.8**

Bold characteristics in the table is the sum of the corresponding column (or row).

Environmental consequences

Domestic production of electricity can replace the use of fossil fuel which emits substantial amount of GHGs. Up to 5 million tons of CO₂ emission can be reduced by the utilization of municipal solid wastes, as indicated in Table 13. However, the result of the emission offset from waste-based electricity has not taken the emission from feedstock transportation into account, which may overstate the environmental benefit from MSW application. To deal with this, the average hauling distance of the feedstocks (i.e. equation (3)) again is used to estimate the gasoline requirement and then
calculate the emission released during this stage. In general, additional 1.657 million liters of gasoline is required to transport all wastes to local incinerators, and the associated CO₂ emissions is approximately 3832 tons, which is about 0.76% of total emission reduction. Here the emission factor of per ton waste traveling from home to storage station is ignored because such transportation is inevitable no matter if these wastes are used for electricity generation or other methods. In general, the results show that net emission reduction from fossil fuel replacement may be substantial.

Totality of value

To depict the overall consequences of power generation from municipal solid wastes, it is necessary to aggregate the economic and environmental benefits. The results are presented in Table 14. The results show that the net benefit is approximately NT$3.2 billion dollars, in which the primary attribute comes from the energy sales. The most significant costs of this technology are associated with labor-related components such as classification and processing of wastes. However, the results may be biased due to the assumed labor effort and efficiency and the estimated profitability from energy sale. Additionally, the emission price may also vary under different environmental regulations and policies.

Discussions and policy implications

The results point out that the application of MSW-based power generation can potentially improve environmental quality, enhance domestic energy production, and possibly increase local employment. However, the results are based on a series of assumptions that may not suit for other area or may be biased due to the usual applications of the recycled materials.

Table 14. Aggregate benefit of WtE applications (in million NT$).

Region	Subtotal	Transport cost	Additional labor	Classifying waste	Waste processing	Waste storage	Emission offset	Profit of energy sale
New Taipei City	484.2	1.8	5.7	41.8	62.6	8.8	22.7	582.2
Taipei City	234.4	1.0	3.0	22.0	33.0	4.6	11.2	286.7
Taoyuan City	345.2	1.3	3.9	28.9	43.3	6.1	16.1	412.5
Taichung City	345.6	1.3	3.4	25.4	38.0	5.3	15.8	403.3
Tainan City	316.3	0.9	2.6	19.2	28.8	3.4	14.0	357.3
Kaohsiung City	450.5	1.3	3.7	27.2	40.8	4.8	19.9	508.4
Yilan County	69.0	0.3	0.8	6.0	8.9	1.3	3.2	83.0
Hsinchu Aggregate	153.0	0.5	1.6	11.9	17.9	2.5	7.0	180.4
Miaoli County	94.7	0.3	0.9	6.5	9.7	1.4	4.3	109.2
Changhua County	181.1	0.7	1.8	13.3	20.0	2.8	8.3	211.4
Nantou County	86.5	0.3	0.8	6.0	9.0	1.3	3.9	100.1
Yunlin County	107.9	0.3	0.8	5.9	8.8	1.0	4.7	120.1
Chiayi Aggregate	114.4	0.4	1.1	7.9	11.9	1.4	5.2	131.9
Pingtung County	139.7	0.4	1.2	9.2	13.7	1.6	6.2	159.6
Taitung County	40.7	0.1	0.3	2.3	3.5	0.4	1.8	45.5
Hualien County	50.2	0.2	0.4	3.0	4.5	0.5	2.2	56.5
Net	**3213.4**	**11.1**	**32.1**	**236.3**	**354.5**	**47.2**	**146.4**	**3748.1**

Bold characteristics in the table is the sum of the corresponding column (or row).
For this reason, it is necessary to discuss these results in detail so that the decision-makers may gain more knowledge regarding the application of WtE technology and associated economic and environmental effects.

Environmental policy and residential behavior

For WtE technology to be effectively and efficiently operated, supports from various policies are usually required and recommended. For example, to stabilize the waste supply and reduce the environmental damage, using environmental regulations which enforce the users to classify and dispose the wastes to a designated place can be considered as an effective approach to ensure the stability of feedstock supply. This approach may also reduce the costs associated with waste classification, processing, and incineration.

Economics of MSW utilization

For any technology to have market power profitability must be guaranteed, otherwise private sectors will not get involved if they perceive there is no return (or return below their opportunity cost) from this production. Additionally, since the life cycle of the plants is usually more than 20 years, capitalized investment can be amortized or depreciated among multiple years to reduce the initial capital requirement and smooth the return from such investments.

However, if this WtE project is developed by the government, for which profitability is not the prior concern, effects on waste treatment, environmental quality, and energy generation may attract more attention.

Capacity of incinerators

To effectively utilize the municipal solid wastes, one of the most important issues is to have enough capacity to consume these wastes. If this is not the case, the storage costs and investment requirement would increase, and profits and the total energy generation would decline. One simple solution is to provide some economic incentives such as tax credit and cost subsidy to encourage private sectors to invest in new refuse plants. Another concern regarding plant capacity is the location of the plants. Plant capacity must be distributed efficiently to consume the wastes efficiently; otherwise there may be too much capacity in a region but insufficient in other places, both of which influence the efficiency of WtE application.

Employment and labor force transfer

While recycling, transporting, and processing wastes increase production costs, most of these funds would be received by labors, implying that the employment may be increased. From this viewpoint, such costs improve wealth redistribution and transfer the social wealth to unemployed labors or labor force from lower income sector such as agriculture. For this reason, total costs invested in waste utilization may be uneconomically feasible but the net effect to the society as a whole may be eventually improved. This issue is more complicated and beyond the scope of this study, but it provides a hint to decision-makers to take potential changes in social welfare distribution into account.
Energy structure and energy sustainability

For a region or a country whose energy share relies on crude oil and coal, its energy sustainability is considered to be weak because fossil fuel would be eventually depleted. Therefore, a greater promotion of sustainable energy sources may be necessary to insure the development of the economy, technology innovation, and society. Among renewable energy sources, the waste-based energy generation is more stable than wind power, solar energy and geothermal which are highly dependent on the climate and geographic conditions. However, the overall benefits from the application of waste-based energy should be investigated case by case because the composition of the wastes and energy potential in different area may vary substantially. Decision-makers should design proper promotion policies to adjust these differences to achieve country-specific optimal energy structure.

Concluding remarks

Energy sustainability is important to social development, and utilization of municipal solid wastes is considered as an effective approach to achieve this goal because the constant supply of feedstocks can stabilize the renewable energy generation. The increase in both population and energy demand in many countries makes the application of WtE technology attractive.

This study first reviews the WtE technology applied in different countries, and then provides a case study to explore the potential economic and environmental consequences associated with this application. The results indicate that the efficiency of energy conversion is also highly dependent on the composition of the wastes and the transportation effort. The results imply that the distribution of population should be taken into account for the application of WtE technology to be optimal (in terms of economic and environmental benefits). For places where transportation is difficult or household are living relatively diverse, a substantial cost associated with waste collection and transportation could increase and thus decrease social welfare.

Acknowledgements

The authors thank for the insightful comments from Prof. Bruce A. McCarl at Texas A&M University and Prof. Chi-Chung Chen, the Secretary of Taiwan Council of Agriculture, at National Chung-Hsing University.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors thank for the financial supports from the National Natural Science Foundation (41861042, 71663025), Distinguished Young Scholar Foundation of Jiangxi Province (20171BCB23047), and Science Program of Jiangxi Bureau of Education (GJJ190275).
References

Asnani PU (2006) Solid waste management. *India Infrastructure Report*. 160–189.
Chang TP (2009) Performance evaluation for solar collectors in Taiwan. *Energy* 34: 32–40.
Chang TJ, Chen CL, Tu YL, et al. (2015) Evaluation of the climate change impact on wind resources in Taiwan strait. *Energy Conversion and Management* 95: 435–445.
Chen HH and Lee AHI (2014) Comprehensive overview of renewable energy development in Taiwan. *Renewable and Sustainable Energy Reviews* 37: 215–228.
Chen F, Lu SM, Tseng KT, et al. (2010) Assessment of renewable energy reserves in Taiwan. *Renewable and Sustainable Energy Reviews* 14: 2511–2528.
Consonni S, Giugliano M and Grosso M (2005) Alternative strategies for energy recovery from municipal solid waste. Part A: Mass and energy balances. *Waste Management* 25: 123–135.
Couto ND, Silva VB, Monteiro E, et al. (2015) Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices. *Energy* 93: 864–873.
Finance BNE (2016) New Energy outlook 2016. Long-term projections of the global energy sector. Executive summary.
Gualtieri G and Secci S (2012) Methods to extrapolate wind resource to turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison. *Renewable Energy* 43: 183–200.
Heffron RJ and Talus K (2016) The development of energy law in the 21st century: A paradigm shift? *The Journal of World Energy Law & Business* 9: 189–202.
Holanda MR and Balestieri JAP (2008) Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II – Analysis of waste incineration combined gas/steam cycle. *Energy Conversion and Management* 49: 804–811.
Indrawan N, Thapa S, Bhoi PR, et al. (2018) Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. *Energy* 162: 764–775.
Kadir S, Yin CY, Sulaiman MR, et al. (2013) Incineration of municipal solid waste in Malaysia: Salient issues, policies and waste-to-energy initiatives. *Renewable and Sustainable Energy Reviews* 24: 181–186.
Kalyani KA and Pandey KK (2014) Waste to energy status in India: A short review. *Renewable and Sustainable Energy Reviews* 31: 113–120.
Kung CC, Chen LJ, Lee TJ, et al. (2019) Wind power potential for energy sustainability and climate change mitigation: A case study in Taiwan. *Energy and Environment* 30: 304–321.
McCarl BA, Adams DM, Alig RJ, et al. (2000) Analysis of biomass fueled electrical power plants: Implications in the agricultural and forestry sectors. *Annals of Operations Research* 94: 37–55.
Malinauskaite J, Jouhara H, Czajczynska D, et al. (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. *Energy* 141: 2013–2044.
Marktscan N (2013) Development of sanitary landfills and waste-to-energy from landfill gas in Turkey. NL EVD Internationaal, Handelsafdeling van de Nederlandse Ambassade in Ankara.
McCarl BA, Peacocke C, Chrisman R, et al. (2009) Economics of Biochar Production, Utilization, and GHG Offsets. In Lehmann J and Joseph S (eds) *Biochar for Environmental Management: Science and Technology*. London, UK: Earthscan Publisher, pp.341–357.
Mendonca M (2010) *Powering the Green Economy: The Feed-In Tariff Handbook*. London: Taylor & Francis.
Michaels T (2014) The 2014 ERC directory of waste-to-energy facilities. *Energy Recovery Council*. Available at: http://energyrecoverycouncil.org/wp-content/uploads/2016/01/ERC_2014_Directory.pdf
Misra GP and Kaushal P (2014) Requirement of government support for sustainable waste-to-energy (WtE) projects in India. In: Sanskriti K (ed.) Energy Technology and Ecological Concerns: A Contemporary Approach. New Delhi: Ghazipur Dairy Farms, pp.1–7.

Morcos VH (1994) Optimum tilt angle and orientation for solar collectors in Assiut, Egypt. Renewable Energy 4(3): 291–298.

National Renewable Energy Laboratory (2014) India renewable energy status report. Available at: www.indiaenvironmentportal.org.in/content/319045/indian-renewable-energy-status-report/ (accessed 27 December 2019).

Ouda OKM, Raza SA, Nizami AS, et al. (2016) Waste to energy potential: A case study of Saudi Arabia. Renewable and Sustainable Energy Reviews 61: 328–340.

Qiu K and Hayden ACS (2009) Performance analysis and modeling of energy from waste combined cycles. Applied Thermal Engineering 29: 3049–3055.

Rawlins J, Beyer J, Lampreia J, et al. (2014) Waste-to-energy in Indonesia. Available at: https://www.carbontrust.com/media/512147/etc831-waste-to-energy-in-indonesia.pdf

Ren X, Che Y, Yang K, et al. (2016) Risk perception and public acceptance toward a highly protested waste-to-Energy facility. Waste Management 48: 528–539.

Rezaei M, Ghobadian B, Samadi SH, et al. (2018) Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy 152: 46–56.

Sadeghi O, Fazeli A and Bakhtiarinejad M (2013) Waste to energy in Malaysia. Available at http://akademiabaru.com/wvcarmea/docu/027.pdf

Shareefdeen Z, Elkamel A and Tse S (2015) Review of current technologies used in municipal solid waste-to-energy facilities in Canada. Clean Technologies and Environmental Policy 17: 1837–1846.

Singh RP, Tyagi VV, Allen T, et al. (2011) An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews 15: 4797–4808.

Taiwan Environmental Protection Administration (2018) Yearbook of Environmental Protection Statistics. Taipei: TEPA.

Taiwan Ministry of Economic Affairs (2018) Energy Statistics Handbook – 2017. Taipei: TMOEA.

Taiwan Ministry of Interior (2018) Annual Statistics of Household Registration. Taipei: TMOI.

Themelis NJ and Mussche C (2013) Municipal solid waste management and waste-to-energy in the United States, China and Japan. In: 2nd international academic symposium on enhanced landfill mining, Houthalen-Helchteren, 14–16 October.

Tsai WT and Chou YH (2006) An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renewable and Sustainable Energy Reviews 10: 491–502.

Tsai WT and Kuo KC (2010) An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 35: 4824–4830.

Williams M and Helm A (2011) Waste-to-energy success factors in Sweden and the United States – Analyzing the transferability of the Swedish waste-to-energy model to the United States, pp. 1–23.

Xiong J, Ng TSA and Wang S (2016) An optimization model for economic feasibility analysis and design of decentralized waste-to-energy systems. Energy 101: 239–251.

Yakup M and Malik AQ (2001) Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew Energy 24: 223–234.