Linear magnetotransport in monolayer MoS$_2$

C. M. Wang and X. L. Lei

Phys. Rev. B 92, 125303 — Published 3 September 2015

DOI: 10.1103/PhysRevB.92.125303
Linear magnetotransport in monolayer MoS$_2$

C. M. Wang*

School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China

X. L. Lei

Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
(Dated: August 21, 2015)

A momentum balance equation is developed to investigate the magnetotransport properties in monolayer molybdenum disulphide when a strong perpendicular magnetic field and a weak in-plane electric field are applied simultaneously. At low temperature, in the presence of intravalley impurity scattering Shubnikov de Haas oscillation shows up accompanying by a beating pattern arising from large spin splitting and its period may halve due to high-order oscillating term at large magnetic field for samples with ultrahigh mobility. In the case of intervalley disorders, there exists a magnetic-field range where the magnetoresistance almost vanishes. For low-mobility layer, a phase-inversion of oscillating peaks is acquired in accordance with recent experiment. At high temperature when Shubnikov de Haas oscillation is suppressed, the magnetophonon resonances induced by both optical phonons (mainly due to homopolar and Fröhlich modes) and acoustic phonons (mainly due to intravalley transverse and longitudinal acoustic modes) emerge for suspended system with high mobility. For the single layer on a substrate, another resonance due to surface optical phonons may occur, resulting in a complex behavior of the total magnetoresistance. The beating pattern of magnetophonon resonance due to optical phonons can also be observed. However, for nonsuspended layer with low mobility, the magnetoresistance oscillation almost disappears and the resistivity increases with field monotonously.

PACS numbers: 75.47.-m, 72.20.-i, 81.05.Hd

I. INTRODUCTION

The rise of graphene,1,2 showing outstanding mechanical and electronic properties, launched the era of monolayer material. However, pristine graphene does not have a band gap, a property essential for electronic applications. Although, it is possible to open small band gap in graphene by some method,3,4 it will inevitably lead to increased fabrication complexity and reduced performance of devices.5,6 This produces great limitations on its becoming a perfect candidate for the next generation nanoelectronic material. In contrast to graphene, the transition metal dichalcogenides are semiconductors with naturally occurring band gap, which overcomes this problem directly. A prominent representative in this dichalcogenide family is molybdenum disulphide (MoS$_2$). Bulk MoS$_2$ has an indirect gap, while monolayer MoS$_2$, which can be isolated by exfoliation techniques similar to graphene, is a direct-gap semiconductor with a gap of 1.9 eV.7 Due to the large carrier mobility,8 high current carrying capacity,9 strong spin-orbit coupling, and coupling of spin and valley degrees of freedom, monolayer MoS$_2$ may become a replacement of graphene or even a candidate for the exploitation of novel valleytronic devices. 10

On the aspect of transport investigation of monolayer MoS$_2$, the linear mobility is close to 200 cm2/Vs at low temperature where a high-n gate dielectric was used to suppress the charged-impurity scattering strongly.11 This value is still lower than the theoretical prediction, where the highest phonon-limited mobility in n-type monolayer MoS$_2$ is 410 cm2/Vs at room temperature.12 On the other hand, the single layer MoS$_2$ device grown by chemical vapor deposition shows low temperature mobility up to 500 cm2/Vs, where the leading scattering mechanism is believed to be the short-range scatterers at high carrier density.13 Hence, the main scatterings determining the linear mobility is still open question. Further, looking at all theoretical studies on electric transport,12,14,15 the strong spin-orbit coupling in n-type monolayer MoS$_2$, which can lead to interesting coupled-spin-valley physics,10,16,17 is omitted completely and the energy band is chosen to be a simple parabolic one.

Especially, in magnetotransport the spin-orbit coupling is important, which may result in the beating pattern of Shubnikov de Haas oscillation (SdHO)18 and induce direct magnetoresistance oscillation.19 Due to the spin-valley coupling, the magnetic control of the valley degree of freedom in monolayer MoS$_2$ in the presence of normal magnetic field has been achieved.20 The magneto-optical properties21 and magnetocapacitances22 have been analyzed in this system. However, even the basic SdHO considering all kinds of scattering mechanisms in this single layer has not been seriously involved either in theoretical or in experimental works. Only recently, the SdHO was observed experimentally for the first time in monolayer and few-layer MoS$_2$. In this paper, we apply a momentum balance equation to investigate the linear magnetotransport at both low and high temperatures including SdHO and magnetophonon resonance (MPR) effect induced by optical and acoustic phonons for both suspended and nonsuspended samples.
II. BASIC FORMULATION

We consider a monolayer of transition metal dichalcogenide MoS$_2$ having large number N carriers in the x-y plane. These carriers, in addition to interacting with each other, are scattered by the random impurities and coupled with phonons in MoS$_2$ and substrate. There exists an external magnetic field \(\mathbf{B} = (0, 0, B) \) applied along the z direction and a uniform electric field \(\mathbf{E} \) in the monolayer plane. The total Hamiltonian of the system is given by

\[
\mathcal{H} = \mathcal{H}_c + \mathcal{H}_{ph} + \mathcal{H}_{ei} + \mathcal{H}_{ep}. \tag{1}
\]

Here the carrier part \(\mathcal{H}_c = \sum_j (\mathbf{p}_j + e\mathbf{A}(\mathbf{r}_j) \cdot \mathbf{E}) + \sum_{i<j} V_c(\mathbf{r}_i - \mathbf{r}_j) \) with \(\mathbf{r}_j = (x_j, y_j) \) being the in-plane coordinate for the \(j \)th carrier and \(-e \) denoting its charge, and \(V_c(\mathbf{r}_i - \mathbf{r}_j) \) standing for the Coulomb coupling potential between the \(i \)th and \(j \)th carriers, which, though depends solely on \(\mathbf{r}_i - \mathbf{r}_j \) for the thin-layer system, may vary with the spatial (z-direction) dielectric environment around the layer. The single-carrier low-energy Hamiltonian near \(K \) (\(-K \)) point in the Brillouin zone for the \(j \)th carrier in the presence of magnetic field is given by\(^{10,17}\)

\[
h_j = at(\tau_j \pi_{jx} \sigma_{jz} + \pi_{jy} \sigma_{jy}) + \frac{\Delta}{2} \sigma_{jz} - \lambda \tilde{\sigma}_{jz} \otimes \sigma_{jz} - \frac{1}{2}. \tag{2}
\]

Here \(a \) is the lattice constant, \(t \) is the hopping integral, \(\Delta \) is the energy gap, \(\lambda \) is the spin-orbit coupling parameter, \(\tau_j = \pm 1 \) is the valley index of the \(j \)th carrier referring to \(\pm K \) valley, \(\mathbf{\pi}_j \equiv \mathbf{p}_j + e\mathbf{A}(\mathbf{r}_j) = (\pi_{jx}, \pi_{jy}) \) is the canonical momentum with \(\mathbf{p}_j = (p_{jx}, p_{jy}) \) being the momentum of the \(j \)th carrier and the vector potential in the Landau gauge \(\mathbf{A}(\mathbf{r}_j) = (-B y_j, 0) \), \(\mathbf{\sigma}_j = (\mathbf{\sigma}_{jx}, \mathbf{\sigma}_{jy}, \mathbf{\sigma}_{jz}) \) is its pseudospin operator acting on the orbit \((d_{x^2}-d_{y^2}^2 + i\tau_j d_{xy})/\sqrt{2} \) and \(\tilde{\sigma}_{jz} \) is the \(z \)-component of its real spin operator. There are \(Q \) valleys locating near the halfway points along the \(\Gamma-K \) axes, which may introduce additional intervalley scattering process, and thus influence the carrier transport.\(^{15}\) However, the accurate value of the energy separation between the \(K \) and \(Q \) points is still unsettled\(^{12,15,24}\) with the estimate larger than 50 meV. In the present calculation, the Fermi energy of this discussed system is far below \(Q \) valleys. Hence, we can safely neglect the limited effect of \(Q \) valleys and assume the system in the \(K \)-valley dominated carrier transport regime. \(\mathcal{H}_{ph}, \mathcal{H}_{ei} \) and \(\mathcal{H}_{ep} \) are phonon Hamiltonian, carrier-impurity and carrier-phonon interaction, whose forms can be found in the textbook\(^{25}\) and Refs. 26 and 27.

In terms of the center-of-mass (c.m.) momentum and coordinate defined as \(\mathbf{P} = \sum_j \mathbf{p}_j \) and \(\mathbf{R} = N^{-1} \sum_j \mathbf{r}_j \) for the whole system of \(N \) carriers and the relative-carrier momentum and coordinate \(\mathbf{p}'_j = \mathbf{p}_j - \mathbf{P}/N \) and \(\mathbf{r}'_j = \mathbf{r}_j - \mathbf{R} \) of the \(j \)th carrier,\(^{27,28}\) the carrier Hamiltonian \(\mathcal{H}_c \) of this coupled many-body system can be written as the sum of a c.m. part \(\mathcal{H}_{cm} \) and a relative carrier part \(\mathcal{H}_{er} \),

\[
\mathcal{H}_c = \mathcal{H}_{cm} + \mathcal{H}_{er}, \quad \text{with} \quad \mathcal{H}_{cm} = \frac{1}{N} \sum_j at(\tau_j \Pi_x \sigma_{jx} + \Pi_y \sigma_{jy}) + NeE \cdot \mathbf{R},
\]

\[
= V \cdot \Pi + NeE \cdot \mathbf{R}, \tag{3}
\]

\[
\mathcal{H}_{er} = \sum_j \left[at(\tau_j \pi'_{jx} \sigma_{jz} + \pi'_{jy} \sigma_{jy}) + \frac{\Delta}{2} \sigma_{jz} - \lambda \tau_j \tilde{\sigma}_{jz} \otimes \sigma_{jz} \right] + \sum_{i<j} V_c(r'_i - r'_j). \tag{4}
\]

Here \(\Pi \equiv P + Ne\mathbf{A}(\mathbf{R}) = (\Pi_x, \Pi_y) \) is the c.m. canonical momentum of the total system, \(\pi'_j = p'_j + e\mathbf{A}(r'_j) = (\pi'_{jx}, \pi'_{jy}) \) is the canonical momentum for the \(j \)th relative carrier, and

\[
V = \dot{\mathbf{R}} = -i[\mathbf{R}, \mathcal{H}] = \frac{1}{N} \sum_j at(\tau_j \sigma_{jx} \dot{l} + \sigma_{jy} \dot{j}) \tag{5}
\]

is the c.m. velocity operator of the carrier system.

Note that, the commutation relation between the c.m. part \(\mathcal{H}_{cm} \) and the relative-carrier part \(\mathcal{H}_{er} \) is of order of \(1/N \). Hence for a macroscopically large \(N \) system the c.m. motion and the relative motion of carriers are truly separated from each other. A spatially uniform electric field \(\mathbf{E} \) shows up only in the c.m. part \(\mathcal{H}_{cm} \), and \(\mathcal{H}_{er} \) is just the Hamiltonian of a monolayer MoS$_2$ subject to a perpendicular magnetic field \textit{without the electric field}. The coupling of two parts appears only through the carrier-impurity and carrier-phonon interactions.

To proceed the calculation of transport properties in monolayer MoS$_2$ in the presence of magnetic field, we can write down all the physical quantities in the Landau representation. The Landau levels of the single-particle Hamiltonian \(h \) is labeled by a band index \(\alpha = \pm 1 \) for conduction and valence band, valley index \(s = \pm 1 \) for \(K \) and \(-K \) valley, and spin index \(s = \pm 1 \) for spin up and spin down in addition to the Landau index \(n \) with the form

\[
\varepsilon_{\alpha ns} = ts\tilde{\lambda} + \alpha \sqrt{(\Delta - ts\tilde{\lambda})^2 + n\omega_c^2}, \tag{6}
\]

for \(n = 1, 2, 3 \cdots \), while for \(n = 0 \)

\[
\varepsilon_{\tau 0s} = -\tau (\Delta - s\tilde{\lambda}) + s\tilde{\lambda}, \tag{7}
\]

with \(\Delta = \Delta/2, \tilde{\lambda} = \lambda/2 \), and the cyclotron frequency \(\omega_c = \sqrt{2}at/B \). One should take account of the fact that the zero level (\(n = 0 \)) for \(K \) valley (\(\tau = +1 \)) is in the valence band, while the zero level (\(n = 0 \)) for \(-K \) valley (\(\tau = -1 \)) is in the conduction band. The corresponding eigenstates, including zero levels (\(n = 0 \)), are expressed as \(\Psi_{\alpha ns} = \chi_s \otimes \phi^*_{n\alpha s}(\mathbf{r}, k_x) \), with \(\chi_s \) standing for the eigenstate of \(s \) and

\[
\phi^*_{n\alpha s}(\mathbf{r}, k_x) = \frac{e^{ik_x x}}{\sqrt{\Theta_{n\alpha s}^{(1)}}} \left(\Lambda_{n\alpha s}^{(1)} \phi_{n-1\alpha s}(y) \right), \tag{8}
\]
\[\varphi_{n,s}^{-1}(r, k_x) = \frac{e^{i k_x x}}{\sqrt{\Theta_{n,s}^{-1}}} \left(\Lambda_{n,s}^{\alpha, \tau} \phi_n, k_x (y) \right). \] (9)

Here \(k_x \) is the \(x \)-component of wave vector \(k \), the coefficient \(\Lambda_{n,s}^{\alpha, \tau} = \frac{\sqrt{n \omega_n}}{(\Delta - \tau s \lambda) - \alpha \tau \sqrt{(\Delta - \tau s \lambda)^2 + n \omega_n^2}} \) (10) and \(\Theta_{n,s}^{-1} = (\Lambda_{n,s}^{\alpha, \tau})^2 + 1 \). Note that for \(K \) valley \(\tau = +1 \) (\(-K \) valley \(\tau = -1 \)), only the valence band \(\alpha = -1 \) (conduction band \(\alpha = +1 \)) is allowed when \(n = 0 \). \(\phi_n, k_x (y) \) is the harmonic oscillator eigenfunction giving by

\[\phi_n, k_x (y) = \frac{1}{\sqrt{2 n! l_B}} \exp \left[-\left(\frac{y - y_c}{2 l_B} \right)^2 \right] H_n \left(\frac{y - y_c}{l_B} \right), \] (11)

with \(H_n(x) \) the Hermite polynomial, and \(y_c = k_x / (\epsilon B) \). In the Landau representation, the carrier-impurity and carrier-phonon Hamiltonians including both intravalley and intervalley interactions have the following forms:

\[\mathcal{H}_{ei} = \sum_{q, \alpha} \sum_{n, n', s'} U_{\tau, \nu}(q) J^{\alpha, \tau' n' s'}_{\alpha, n, s} (q) e^{i q \cdot (R - r_n)} \times e_{\alpha, n, s}^{\dagger} c_{\alpha', n', s'}, \] (12)

\[\mathcal{H}_{ep} = \sum_{q, \nu} \sum_{n, n', s'} M_{\nu, \tau}(q, \nu) J^{\alpha, \tau' n' s'}_{\alpha, n, s} (q) \phi_{\nu q} e^{i q \cdot R} \times e_{\alpha, n, s}^{\dagger} c_{\alpha', n', s'}. \] (13)

Here \(U_{\tau, \nu}(q) \) and \(M_{\nu, \tau}(q, \nu) \) are the intravalley or intervalley carrier-impurity scattering potential with \(r_n \) being the impurity position and carrier-phonon coupling matrix of \(\nu \) branch, respectively; \(c_{\alpha, n, s} \) and \(e_{\alpha, n, s}^{\dagger} \) are the annihilation and creation operators of carrier; \(\phi_{\nu q} = b_{\nu q} + b_{\nu q}^{\dagger} \) is the phonon field operator with \(b_{\nu q} \) and \(b_{\nu q}^{\dagger} \) being the annihilation and creation operators for a two-dimensional (2D) phonon of wave vector \(q \) in the branch \(\nu \) having frequency \(\Omega_{\nu q} \); and the integral

\[J^{\alpha, \tau' n' s'}_{\alpha, n, s} (q) = \int d r' \left(\varphi_{\alpha, \tau'} n' s' (r', k_x) e^{i q \cdot r'} \varphi_{\alpha, \tau n' s}^{\dagger} (r', k_x) \right). \] (14)

The derivation of momentum balance equation starts from the rate of change of the c.m. canonical momentum \(\Pi = -i \{ \mathcal{H}, \mathcal{P} \} \). To linear order in the carrier-impurity and carrier-phonon couplings, the statistical average of this operator equation can be obtained by using the initial density matrix \(\rho_0 = Z^{-1} e^{-H_0 + H_{\nu q}} / T \) at temperature \(T \) in the case of weak in-plane electric field \(E \). In the dc steady state, \(\langle \Pi \rangle = 0 \), the momentum balance equation for a system of unit area (\(N \) is thus understood as the carrier number density) reads

\[0 = -N e v \times B - N e E + f_{ei} + f_{ep}, \] (15)

with \(v = (V) \) being the averaged carrier drift velocity. The frictional forces experienced by the center of mass due to impurity and phonon scatterings, \(f_{ei} \) and \(f_{ep} \), have the following form:

\[f_{ei} = n_i \sum_{\nu, \tau, \tau'} |U_{\tau, \nu}(q)|^2 q \Pi_2^{\tau, \tau'} (q, \Omega_{\nu q}), \] (16)

\[f_{ep} = \sum_{\tau, \tau', \nu} |M_{\nu, \tau}(q, \nu)|^2 q \Pi_2^{\tau, \tau'} (q, \Omega_{\nu q} + \Omega_{\nu q}) \times \left[n \left(\frac{\Omega_{\nu q}}{T} \right) - n \left(\frac{\Omega_{\nu q} + \Omega_{\nu q}}{T} \right) \right]. \] (17)

In the above expressions, \(n_i \) is an effective impurity density; \(n(x) = (e^x - 1)^{-1} \) is the Bose distribution function; \(\Omega_{\nu q} \equiv q \cdot \nu; \Pi_2^{\tau, \tau'} (q, \omega) \) is the imaginary part of the Fourier spectrum of the valley-dependent relative-carrier density correlation function, defined by

\[\Pi^{\tau, \tau'} (q, t - t') = -i \eta (t - t') \left\langle \left[\rho_{\tau q}^{\tau' q'} (t), \rho_{\tau' q}^{\tau q} (t') \right] \right\rangle_0, \] (18)

where \(\rho_{\tau q}^{\tau' q'} (t) = e^{i \mathcal{H}_{\nu q} t} \rho_{\tau q}^{\tau' q'} e^{-i \mathcal{H}_{\nu q} t} \) with

\[\rho_{\tau q}^{\tau' q'} = \sum_{\alpha, n, s} J^{\alpha, \tau' n' s'}_{\alpha, n, s} (q) c_{\alpha, n, s}^{\dagger} c_{\alpha', n', s'}. \] (19)

and \(\langle \cdots \rangle_0 \) stands for the statistical averaging with respect to the initial density matrix \(\rho_0 \).

In most cases the electron density-correlation function in the presence of intercarrier coupling, \(\Pi_2^{\tau, \tau'} (q, \omega) \), can be obtained in the random-phase approximation through the density-correlation function \(\Pi_2^{02} (q, \omega) \) in the absence of intercarrier coupling,

\[\Pi_2^{02} (q, \omega) = \frac{\Pi_2^{02} (q, \omega)}{|\Pi_2^{02} (q, \omega)|^2}, \] (20)

where \(\epsilon_{\tau, \tau'} (q, \omega) \) is the carrier-coupling related RPA screening function or carrier screening function, which may vary with the dielectric environment of two-dimensional (2D) monolayer. Therefore, in Eqs. (16) and (17) \(\Pi_2^{\tau, \tau'} (q, \omega) \) function can be replaced by \(\Pi_2^{02} (q, \omega) \) function, as long as the impurity and phonon scattering potentials are considered screened by the intercarrier coupling: \(U_{\tau, \nu}(q)/\epsilon_{\tau, \tau'} (q, \omega) \) and \(M_{\nu, \tau}(q, \nu)/\epsilon_{\tau, \tau'} (q, \omega) \).

The \(\Pi_2^{02} (q, \omega) \) function can be expressed as

\[\Pi_2^{02} (q, \omega) = \frac{1}{2 n l_B^2} \sum_{\alpha, n, s, \alpha', n', s'} C^{\alpha, \alpha' n' s'}_{\alpha, n, s} (z) \times \Pi_2^{02} (\alpha, n, s; \alpha', n', s'; \omega). \] (21)

Here

\[\Pi_2^{02} (\alpha, n, s; \alpha', n', s'; \omega) = -\frac{1}{\pi} \int_0^{\infty} \frac{\mathrm{d} \varepsilon}{\varepsilon - f (\varepsilon - \omega)} \times \text{Im} G_{\alpha, \tau n', s'} (\varepsilon + \omega) \text{Im} G_{\alpha', \tau n', s'} (\varepsilon), \] (22)
with \(\text{Im} G_{\alpha n s}(\epsilon) \) standing for the imaginary part of retarded Green’s function \(G_{\alpha n s}(\epsilon) \) and the form factor for intravalley case is given by

\[
C_{\alpha n s}^{\alpha'n's'}(z) = \delta_{ss'} \frac{1}{\Theta_{n,s} \Theta_{n',s'}} e^{-z} \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2-m_1}(z) \right]^2 + \left(\frac{m_1!}{m_2!} \right) \left[L_{m_1}(z) \right]^2 + 2 \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2}(z) \right]^2 + 2 \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2-m_1}(z) \right]^2 \cos(s_1(m_2 - m_1) - s_2(k_2 - k_1)) \theta_q \right],
\]

while for intervalley case it has a more complex form

\[
C_{\alpha n s}^{\alpha'n's'}(z) = \delta_{ss'} \frac{1}{\Theta_{n,s} \Theta_{n',s'}} e^{-z} \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2-m_1}(z) \right]^2 + \left(\frac{m_1!}{m_2!} \right) \left[L_{m_1}(z) \right]^2 + 2 \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2}(z) \right]^2 + 2 \left(\frac{m_1!}{m_2!} \right) \left[L_{m_2-m_1}(z) \right]^2 \cos(s_1(m_2 - m_1) - s_2(k_2 - k_1)) \theta_q \right),
\]

with \(L_n(z) \) being associated Laguerre polynomials, \(z = -\frac{\epsilon}{\hbar^2 \alpha} / 2, n_1 = \min(n, n'), n_2 = \max(n, n'), m_1 = \min(n-1, n'), m_2 = \max(n-1, n'), k_1 = \min(n, n'-1), k_2 = \max(n, n'-1), \theta_q \) is the polar angle of wave vector \(\mathbf{q} \), and

\[
s_1 = \begin{cases} 1, & n - 1 < n' \\ -1, & n - 1 \geq n' \end{cases},
\]

\[
s_2 = \begin{cases} 1, & n < n' - 1 \\ -1, & n \geq n' - 1 \end{cases}.
\]

In the presence of carrier-impurity, carrier-phonon, and carrier-carrier scatterings, the Landau level of monolayer MoS\(_2\) is broadened. The imaginary part of the retarded Green’s function \(\text{Im} G_{\alpha n s}(\epsilon) \) or the density of state of the \(\alpha \)th Landau level is modeled using a Gaussian form: \(^{31} \)

\[
\text{Im} G_{\alpha n s}(\epsilon) = -\frac{\sqrt{2\pi}}{\Gamma_{\alpha n s}} \exp \left[-\frac{(\epsilon - \epsilon_{\alpha n s})^2}{\Gamma_{\alpha n s}^2} \right],
\]

with \(\Gamma_{\alpha n s} \) denoting the half width.

The chemical potential \(\epsilon_f \) at temperature \(T \) is determined by the carrier density (electron density \(N_+ \) or hole density \(N_- \)) of the system by the following equation

\[
\left\{ \begin{array}{c} N_+ \\ N_- \end{array} \right\} = \frac{1}{2\pi^2 \hbar^2} \int_{-\infty}^{\infty} \exp \left[\int_{-\infty}^{\epsilon_f} \left[f(\epsilon) \text{Im} G_{\alpha n s}(\epsilon) - [1 - f(\epsilon)] \text{Im} G_{\alpha^{-n} s}(\epsilon) \right] d\epsilon \right],
\]

Here \(f(\epsilon) = \left\{ \exp[(\epsilon - \epsilon_f)/T] + 1 \right\}^{-1} \) is the Fermi distribution function. For electron conduction case, the summation index \(n \) in the above equation is taken over \(1, 2, 3, \cdots \) for \(K \) valley \((\tau = +1) \), but \(0, 1, 2, \cdots \) for \(K \) valley \((\tau = -1) \). However, for hole conduction, it is taken over \(0, 1, 2, \cdots \) for \(K \) valley, but \(1, 2, 3, \cdots \) for \(K \) valley.

The momentum balance equation (15) combining with equation of carrier density (25) describes the steady-state magnetotransport of monolayer MoS\(_2\), which can determine either the drift velocity (charge current density) for given electric field or the electric field for given current. In the Hall configuration, e.g., with the charge current \(\mathbf{J} \) (or drift velocity) in the x direction, \(\mathbf{J} = (J, 0) = (-Ne_v, 0) \), the momentum balance equation (15) gives a transverse magnetoresistance \(R_{xy} = -E_f/Ne_v = -B/(Ne) \) and a longitudinal magnetoresistance \(R_{xx} = -(f_{ei} + f_{ep})/(N^2 e^2 v) \).

III. NUMERICAL RESULTS AND DISCUSSION

For numerical calculation, we concentrate on the n-doped case, i.e., carrier is electron, \(N = N_+ \) and we only need to consider \(\alpha = \alpha' = +1 \). In the following, the index \(\alpha \) or \(\alpha' \) will be omitted. The half-width \(\Gamma_{\alpha n s} \) should vary with the band indices generally. However, for simplicity, we neglect the effect of spin-orbit interaction, and take it with the form: \(^{32,33} \)

\[
\Gamma = \sqrt{\frac{\epsilon_{\alpha n s} \Gamma_{\alpha n s}}{\pi m^* \mu}}.
\]

Here \(\mu \) is the zero-field mobility at temperature \(T \), \(\omega_{\alpha 0} = eB/m^* \) is the cyclotron frequency with effective mass \(m^* = \Delta/(a^2 l^2) \), and \(\alpha_{\Gamma} \) is a phenomenological parameter to relate the single-particle lifetime to the transport scattering time. \(^{32,33} \) In the following numerical evaluation, we will set \(\alpha_{\Gamma} = 3 \), except otherwise specified.

The intravalley electron-impurity scattering potential is considered due to charged impurities distributed at a distance \(d \) from the layer: \(^{34} \)

\[
U_{\tau}(q) = \frac{Z e^2}{2\pi \hbar \kappa q} e^{-qd},
\]
with \(Z_f \) standing for the effective impurity charge number, \(\kappa \) for the dielectric constant of MoS\(_2\), and \(\sigma \) where \(g \) field, which may play important role in transport (SOPs) couple to the electrons via an effective electric with 2D carriers can be written as found in Ref. 12. The polar longitudinal optical phonons are not sensitive to the detailed form of the scattering potential or screening.

In addition to above intravalley impurity scattering, we also include intervalley disorder scattering, which can be induced by lattice vacancy in a two-dimensional honeycomb lattice and by defects raised from ion irradiation as in graphene.\(^{37}\) The scattering potential is usually modeled by a \(\delta \)-function form, i.e., a constant \(U_\tau(q) = u_0 \).

For intrinsic electron-phonon couplings in suspended layer, we consider both intravalley and intervalley acoustic deformation potential interactions. In the case of optical deformation potential, both zero-order and first-order couplings are taken into account and the homopolar mode is also included. The relevant formulas can be found in Ref. 12. The polar longitudinal optical phonons are also important and their coupling matrix element with 2D carriers can be written as\(^{12,38}\)

\[
M_{\tau\tau}(q, \text{Fr}) = g_{\text{Fr}} \text{erfc}(q\sigma/2),
\]

where \(g_{\text{Fr}} \) is the Fröhlich coupling constant, \(\text{erfc} \) is the complementary error function, and \(\sigma \) is the effective width of the electronic envelope function.

For MoS\(_2\) on a substrate, the surface optical phonons (SOPs) couple to the electrons via an effective electric field, which may play important role in transport\(^{35,39}\) just like graphene.\(^{34,40,41}\) The coupling matrix element is expressed as\(^{40}\)

\[
|M_{\tau\tau}(q, \text{SO})|^2 = \frac{e^2\Omega_{\tau,\text{so}}}{2\varepsilon_0\kappa q} \left(\frac{1}{1 + \kappa_\infty^2} - \frac{1}{1 + \kappa_0^2} \right) e^{-2qd},
\]

with \(\Omega_{\tau,\text{so}} \) the frequency of SOP, and \(\kappa_\infty^2 (\kappa_0^2) \) denoting the high (low) frequency dielectric constant of substrate.

Unlike the case of the static impurity scattering, the carrier screening for phonon scattering is dynamic, i.e., it is the screening function \(\varepsilon(q, \Omega_{\tau\tau}) \) at phonon frequency \(\Omega_{\tau\tau} \) rather than the static function \(\varepsilon(q, 0) \), should be used in the equation with phonon scattering. It has been shown\(^{27,42}\) that optic (as well as acoustic) phonon induced 2D resistivity with dynamic screening are essentially equivalent to those without screening at temperature \(T > 100 \text{ K} \), when phonon scatterings play important roles. Therefore, in the numerical calculation of phonon-related magnetotransport at higher temperatures we will not include screening in the electron-phonon matrix element.

The relevant parameters used in the numerical calculation are listed in Table I, except otherwise specified.

A. Shubnikov de Haas oscillation

In this subsection we consider the magnetotransport of suspended MoS\(_2\) at low temperatures. First, the impurity scattering is assumed to be only the intravalley Coulombic scattering \((d = 0) \). In Fig. 1, the longitudinal magnetoresistance \(R_{xx} \) is calculated versus average filling factor \(\nu_0 = \omega^{-2}\left[\frac{\varepsilon_F^2}{\Omega_{\text{Fermi}}} - \Delta^2\right] \) with \(\varepsilon_F \) denoting the Fermi energy. The electron density is set to be \(N = 7 \times 10^{12} \text{ cm}^{-2} \) and the zero-field linear mobility \(\mu_0 = 4000 \text{ cm}^2/\text{Vs} \) at zero temperature. This value of mobility, though one order larger than those currently obtained experimentally,\(^{11,13}\) is consistent with the theoretical work.\(^{15}\) Higher linear mobility at low temperature can be achieved via the gate dielectric engineering to effectively screen charge impurities,\(^{44}\) and doping and strain modulations already realized a mobility higher than 1000 cm\(^2/\)Vs at room temperature,\(^{45}\) we thus expect this zero-temperature mobility will be reached in the near
TABLE I: Material parameters for monolayer MoS₂ used for calculation. The Γ/K subscripts represent intra/intervalley phonons.

Parameter	Symbol	Value
Lattice constant¹⁰	a	3.193 Å
Hopping integral¹⁰	t	1.1 eV
Energy gap⁷	∆	1.9 eV
Spin splitting energy¹⁰	λ	75 meV
Mass density¹²	ρ	3.1 × 10⁻⁷ g/cm²
Effective Layer thickness¹²	σ	4.41 Å
dielectric constant of MoS₂⁴³	κ	7.6
dielectric constant of ZrO₂⁴¹		
low frequency	κ_e	24
high frequency	κ_∞	4
Transverse sound velocity¹²	v_{TA}	4200 m/s
Longitudinal sound velocity¹²	v_{L,A}	6700 m/s
Acoustic deformation potentials¹²	D_{L,A}	1.6 eV
TA	D_{K,TA}	2.8 eV
LA	D_{K,L,A}	5.9 eV
Optical deformation potentials¹²	D_{K,TO}	4.0 eV
TO	D_{K,LO}	1.9 eV
LO	D_{K,HP}	2.6 × 10⁶ eV/cm
Homopolar	D_{K,HP}	4.1 × 10⁶ eV/cm
Fröhlich coupling³⁶	g_{Fr}	286 meVÅ
Phonon energies¹⁵		
TA	Ω_{K,TA}	23.1 meV
LA	Ω_{K,L,A}	29.1 meV
TO	Ω_{K,TO}	48.6 meV
LO	Ω_{K,LO}	46.4 meV
Homopolar	Ω_{K,HP}	48.0 meV
SO energies of ZrO₂⁴¹		
1st mode	Ω_{F,so}⁽¹⁾	25.02 meV
2nd mode	Ω_{F,so}⁽²⁾	70.8 meV

FIG. 2: (Color online) Curves of analytical expressions for magnetoresistance versus average filling factor ν₀. The blue solid line is obtained from Eq. (33), while the red solid line is directly calculated from Eq. (32) for the maximum κ_{max} = 2. The other parameters are the same as Fig. 1.

conventional 2D electron gas with spin-orbit coupling.¹⁸
Further, at large magnetic fields or small fillings, the period of oscillation in monolayer MoS₂ halves, which can be seen clearly in the inset of Fig. 1. With an increase of temperature, the amplitude of SdHO decreases rapidly.

At these low temperatures shown, contribution to the frictional force mainly originates from electron-impurity scattering, and thus resistivity R_{xx} ≃ −f_{ni}/N² e_cv_F. For δ-form intravalley short-range scattering potential U_{ττ}(q) = u₀, the zero-temperature magnetoresistivity R_{xx} can be expressed as

\[
R_{xx} = \frac{n_1 u_0^2}{N^2 e^2} \sum_{\tau s} \frac{\partial \Pi_{\tau\tau}(q, \omega)}{\partial \omega} \bigg|_{\omega=0}
\]

\[
= \frac{n_1 u_0^2}{N^2 e^2} \sum_{\tau s} g_{\tau\tau}(\varepsilon_F) g_{\tau\tau}(\varepsilon_F) \int d z C_{\tau\tau}(z) C_{\tau\tau}(z)
\]

in which the density of states of electrons in the τth valley with spin s at Fermi energy \(\varepsilon_F\), \(g_{\tau\tau}(\varepsilon_F) = -\sum_{\text{int}} \text{Im} G_{\tau\tau}(\varepsilon_F)/(2\pi N^2 e^2)\), can be rewritten, by means of Poisson summation formula, as

\[
g_{\tau\tau}(\varepsilon_F) = \frac{\varepsilon_F}{\pi N^2 e^2 \omega_c^2} \left(1 + 2 \sum_{k=1}^{\infty} \cos(2\pi k \nu_{\tau\tau}) \right)
\]

\[
- k\beta \sin(2\pi k \nu_{\tau\tau}) \exp\left(-2k^2 \beta^2 \varepsilon_F^2 / T^2 \right)
\]

where \(\nu_{\tau\tau} = \omega_c^2(\varepsilon_F - \Delta_\tau)(\varepsilon_F + \Delta - \tau s \lambda)\) is the filling factor of electrons in \(\tau\)th valley with spin \(s\), and \(\beta = \pi \Gamma^2 / \omega_c^2\). For monolayer MoS₂ even with low mobility \(\mu \sim 10\,\text{cm}^2/\text{Vs}\), the coefficient \(\beta \ll 1\), therefore, the term with sine function could be omitted safely. In the future.

As can be seen from Fig. 1, the magnetoresistivity versus filling factor \(\nu_0\) or magnetic field \(B\), exhibits marked SdHO with a beating pattern, having approximate period \(\Delta \nu_0 \approx 1\) at large fillings or low magnetic fields. The resistivity peaks or valleys locate at integer fillings. There is a phase inversion, i.e., a change from the integer fillings for peaks to the ones for valleys. These features are in vivid contrast to graphene^{46,47} where the SdHO valleys locate in the vicinity of half-integer filling factors without beating patterns, but analogous to the behavior of
case of high filling factor ν_τ, the integral
\[\int_0^{\pm\infty} dz z C_{\tau \nu_{\tau^\prime} \nu_{\tau^\prime}}(z) = 2\nu_\tau \delta_{\nu_{\tau^\prime} \nu_\tau}, \]
and the linear magnetoresistance can be written as
\[R_{xx} = \frac{n_i u_0^2}{2\pi N^2 e^2} \frac{e_F^2}{\Gamma a^4 l^4} \sum_{\nu_{\tau^\prime}} \nu_\tau \left[1 + 2 \sum_{k=1}^{k_{\max}=\infty} \cos(2\pi k \nu_\tau) \right. \]
\[\left. \times \exp \left(-2k^2 \frac{\beta^2 e_F^2}{\Gamma^2} \right) \right]^2. \quad (32) \]

Usually, on the account of the rapid decay of the exponential function, one only needs to keep terms with $k = 1$ in the summation, leading to
\[R_{xx} = \frac{n_i u_0^2}{N^2 e^2} \frac{e_F^2}{\pi a^6 l^6} \left[1 + 4 \cos(2\pi \nu_0) \right. \]
\[\left. \times \cos \left(2\pi \nu_0 \frac{\lambda}{\epsilon_F + \Delta} \right) \exp \left(-2\frac{\beta^2 e_F^2}{\Gamma^2} \right) \right]. \quad (33) \]

This represents that the amplitude of oscillation is modulated by the second cosine function due to the spin-splitting and there are nodes at $\lambda \nu_0/(\epsilon_F + \Delta) = l \pm 1/4$ with l being an integer. Note that three smallest nodes in positive regime corresponds to $\lambda \nu_0/(\epsilon_F + \Delta) = 0.25, 0.75, 1.25$ or $\nu_0 = 6.4, 19.1, 31.9$, in agreement with the numerical calculation (see Fig. 1). However, the oscillating peaks at high magnetic field or small filling factor obey $\Delta(\nu_0) \simeq 0.5$ in the figure, which cannot be explained by the above equation and is due to terms of higher frequency. Because of the small value of β, the product $(\beta e_F/\Gamma)^2$ may not be considerably larger than one and the oscillating terms with $k \geq 1$ also may somewhat contribute to the total resistivity. Fig. 2 demonstrates the results from the approximate expression (33) and from (32) with k summing up to 2. It is clear that the oscillation part of high frequency comes from the terms with $k = 2$. It is noteworthy that this feature is irrespective of the half-integer filling in graphene due to the electron-hole symmetry of zero Landau level for massless electrons. In the absence of magnetic field, the resistivity R_{xx} reduces to
\[R_0 = \frac{n_i u_0^2}{N^2 e^2} \frac{e_F^2 (e_F^2 - \Delta^2)}{\pi a^6 l^6} = \frac{n_i u_0^2}{N e^2} \frac{\pi a^2 l^2 N + \Delta^2}{a^4 l^4}. \quad (34) \]

Despite the linear dispersion on momentum, this resistivity depends on the electron density owing to its massive property, in contrast to the result of graphene. The corresponding density N is 58×10^{12} cm$^{-2}$ when $\pi a^2 l^2 N$ equals Δ^2 for the present parameters. Hence, for small density resistivity R_0 is inversely proportional to density similar to the case of conventional 2D electron gas, while for very large density R_0 becomes independent of electron density.

FIG. 3: (Color online) Normalized magnetoresistance versus filling factor ν_0 for the case $\lambda = 54$ meV (black solid line) and $\lambda = 0$ (red dash line) at temperature $T = 0.3$ K. Here electron density $N = 9.69 \times 10^{12}$ cm$^{-2}$, linear mobility $\mu_0 = 600$ cm2/Vs, and $\alpha_F = 8$. The inset shows the corresponding experimental results, which are replotted as function of ν_0.

To compare our theoretical result with recent experimental observation, Fig. 3 presents the normalized resistivity versus filling factor for another monolayer MoS$_2$ with electron density $N = 9.69 \times 10^{12}$ cm$^{-2}$ and linear mobility $\mu_0 = 600$ cm2/Vs at $T = 0.3$ K. The curves for the cases with spin-orbit coupling $\lambda = 54$ meV and without spin-orbit coupling are plotted, respectively, as solid and dash lines. Here the factor $\alpha_F = 8$. In the inset, we replot the experimental result taken from Fig. 4(b) in Ref. 23, as a function of average filling factor. For the experimental sample having low mobility, the Landau level broadening is so large that the beating pattern can not be observed. Nevertheless, the phase inversion of SdHO peaks still shows clearly. As can be seen, $\nu_0 = 5$ corresponds to a position of SdHO peak, while $\nu_0 = 12$ is for valley. The numerical calculation agrees with the experimental observation well. The red dash line for the case of $\lambda = 0$, where the peaks always locate at integer filling factors, is also plotted for comparison. We can see that the spin-orbit splitting is very important for magnetotransport in monolayer MoS$_2$, even for low-mobility sample in which the full beating pattern of SdHO is not easy to observe.

To investigate the intervalley scattering effect on the SdHO, in Fig. 4 we plot the oscillating magnetoresistance induced solely by the short-range intervalley disorder at various lattice temperatures $T = 0.5, 1.0, 1.5, 2.0, 8.0$ K. Here the relaxation time $\tau_\gamma = 1/(m^* n_i u_0^2)$ is set to be 1 ps. For the purpose of comparison, the SdHO induced by intravalley short-range electron-impurity scattering is also plotted in the inset of Fig. 4(a) for the same value of relaxation time at $T = 0.5$ K. It is seen that the magne-
energy, for a fixed Landau index \(n \) the level separation of different \(\nu \) is almost independent of the magnetic field, while the distance between Landau levels having same \(\nu \) but different Landau indexes \(n \) and \(n' \) is proportional to the magnetic field. Hence, at large magnetic fields two contributory Landau levels of different \(\nu \) must have the same Landau index \(n \). At low magnetic fields, the Landau indexes of two contributory Landau levels may not be equal to each other and their difference increases with decreasing magnetic field. In Fig. 4(b) the magnetoresistance \(R_{xx}^{(m)} \), contributed from electron transitions between two Landau levels with Landau-index difference of \(m \) near Fermi energy, are plotted as functions of average filling factor \(\nu_0 \) at 0.5 K. At low filling factors or large magnetic fields, the energy distance between levels with same Landau and spin indexes but different valley indexes is smaller compared with that between Landau levels with different Landau indexes, and we only need to consider the transition between levels of different valleys but having same Landau index \(\nu_0 \), leading to \(R_{xx}^{(0)} \). For low magnetic fields, contributions of electron transitions between levels having different Landau indexes dominate. Here, \(R_{xx}^{(1)} \) stands for contribution from the transitions between \(\nu_0 \) and \(\nu_0 - 1 \) levels and those between \(\nu_0 \) and \(\nu_0 + 1 \) levels. \(R_{xx}^{(2)} \) stands for contribution from electron transitions between \(\nu_0 + 1 \) and \(\nu_0 - 1 \) levels, and \(R_{xx}^{(3)} \) for contribution from transitions between \(\nu_0 + 2 \) and \(\nu_0 - 1 \) levels and those between \(\nu_0 - 2 \) and \(\nu_0 + 1 \) levels. It is found that \(R_{xx}^{(0)} + R_{xx}^{(1)} + R_{xx}^{(2)} + R_{xx}^{(3)} \) almost equals the total magnetoresistance \(R_{xx} \) shown in Fig. 4(a).

\(R_{xx}^{(0)} \) becomes quite small when \(\varepsilon_{\nu_0 + 1} - \varepsilon_F \gtrsim \Gamma \) and/or \(\varepsilon_F - \varepsilon_{\nu_0 - 1} \gtrsim \Gamma \), i.e., it is almost zero for magnetic fields lower than a certain value. On the other hand, with the increase of the magnetic field, the level distance of different Landau indexes enlarges, leading to \(R_{xx}^{(1)} \) almost vanishing for magnetic fields larger than a certain value, which is determined by \(\varepsilon_{\nu_0 - 1} - \varepsilon_{\nu_0 - 1} \gtrsim \Gamma \) (so do for \(R_{xx}^{(2)} \) and \(R_{xx}^{(3)} \)). In the range between these two magnetic fields, the total magnetoresistance appears very small. For the present parameters (set \(\varepsilon_{\nu_0 + 1} - \varepsilon_F = 1.3\Gamma \)), this range is \(8.8 \, T < B < 23.3 \, T \) or \(3.1 < \nu_0 < 8.2 \), as indicated \(AB \) in the Fig. 4.

B. Magnetophonon resonance

Now we concentrate on the case of higher temperature up to room temperature. First, we consider the suspended MoS\(_2\). The total magnetoresistances \(R_{xx} \) induced by the intravalley scattered Coulombic electron-impurity scattering (\(d = 0 \)) and all above-mentioned intravalley and intervalley electron-phonon couplings except SOP mode, are plotted as functions of magnetic field at various high temperatures in Fig. 5(a). The \(R_{xx} \) increases with the increment of magnetic field, accompanying an oscillation at large fields. The behavior of
resistivity increase with increasing magnetic field is due to impurity-induced resistivity R_{im} as shown in Fig. 5(b). Since SdHO almost disappears at this temperature, the small oscillation in R_{xx} originates from phonon scatterings. With ascending temperature, R_{im} descends, while the total R_{xx} increases because of the increasing contributions from electron-phonon scatterings. It is found that, in addition to the electron-impurity scattering, the contributions of the intravalley transverse and longitudinal acoustic phonons, R_{TA} and R_{LA}, and those of homopolar and Fröhlich coupling optical phonons, R_{HP} and R_{FR}, play a dominant role in the total resistivity. The inset of Fig. 5(a) shows that the oscillation arises mainly from the optical contribution $R_{op} = R_{HP} + R_{FR}$. The acoustic one $R_{ac} = R_{TA} + R_{LA}$ gives almost a constant value at room temperature.

Actually, the acoustic contributions R_{TA}, R_{LA} also oscillate with magnetic field, especially at relatively low temperature, exhibiting the so called MPR induced by acoustic phonons.\(^{34,51-53}\) The magnetoresistance peaks occur when the energy of the optimum phonons $\omega_0 = 2k_F v_{ac}$ equals an integral multiple of the inter-Landau level distance $\omega_2 B$ near Fermi surface. Here $v_{ac} = v_{TA}$ or v_{LA} is the sound velocity for the transverse or longitudinal mode. The energy distance $\omega_2 B$ between two intravalley Landau levels with same spin around Fermi energy ε_F is given by

$$\omega_2 B \approx \frac{\omega_2}{2(\Delta - \pi \lambda)^2 + \frac{\nu_s \omega_2^2}{c^2}} \approx \frac{\omega_2^2}{\Delta}.$$ \(35\)

Fig. 5(c) indeed shows the oscillation of magnetoresistance for both R_{TA} and R_{LA} with inverse magnetic field having period $\Delta(\omega_0/\omega_2) \approx 1$. With increasing temperature, the peaks at high ratio ω_0/ω_B tend to disappear gradually. Further, the peak slightly shifts to smaller ω_0/ω_B position and the magnetoresistance due to longitudinal mode R_{LA} becomes larger than the transverse one R_{TA} in view of enlarged phonon energy with the rise of temperature. In the present case with relatively low mobility, the MPR induced by acoustic phonons has little influence on the total magnetoresistance. However, for monolayer MoS\(_2\) having ultrahigh mobility, the acoustic electron-phonon coupling contributes dominantly at low temperature, hence this MPR could be observable.

With further increase in lattice temperature, the electron-optic phonon coupling becomes more and more important in comparison with other scattering mechanisms. Due to the large coupling coefficients, the resistivities induced by the homopolar and Fröhlich interactions have largest values. It is well known that the resistivity exhibits MPR when the energy of optical phonons ω_0 equals the distance of Landau levels. In monolayer MoS\(_2\) for $\varepsilon_F - \Delta \ll \Delta$, the intravalley Landau levels are almost evenly spaced and the level distance approximately equals ω_2. In Fig. 5(d) the magnetoresistance R_{HP} or R_{FR} is plotted versus the ratio ω_0/ω_B, where $\omega_0 = \Omega_{TF,HP}$ or $\Omega_{TF,LO}$ is respectively the frequency for homopolar or Fröhlich coupling. It is true that the magnetoresistances show peaks or valleys at $\omega_0/\omega_B = l$, i.e. magnetoresistance oscillates with inverse magnetic field having period $\Delta(\omega_0/\omega_B) \approx 1$. However, in contrast to the usual MPR induced by optical phonons in two-dimensional electron gas, the oscillating resistivity in MoS\(_2\) is modulated due to the spin splitting by an approximate factor $\cos\left(2\pi \frac{\omega_0}{\omega_B} \frac{\lambda}{\omega_2} \right)$ analogous to the SdHO. Hence, there are nodes at $\frac{\omega_0}{\omega_B} = \frac{\lambda}{\omega_2} = l \pm \frac{1}{4}$. This leads to the nodes appearing at $\omega_0/\omega_B = 19.1, 31.9, \ldots$ in accordance with Fig. 5(d).

Now we study the MPR for MoS\(_2\) on a ZrO\(_2\) substrate. It is found that the frequencies of SOPs for ZrO\(_2\) are so small that they play an important role in electron transport.\(^{35}\) Hence, in Fig. 6 magnetoresistances for MoS\(_2\) on ZrO\(_2\) are plotted versus magnetic field. In the calculation, the elastic scattering is assumed to be the intravalley remote-impurity scattering distributing at $d = 1$ nm from the single layer, the inelastic scatterings are due to all the intrinsic modes mentioned above and
the intravalley SOPs. $\Omega_{T,\text{SO}}^{(1)}$ used in the screening of elastic scattering is estimated to be $0.3\nu_{\text{BF}}$ from Fig.2 in Ref.35. Two samples with different zero-field mobilities are considered for comparison. For the clean system, the remote impurity scattering weakens the quick increase of impurity-induced resistivity with magnetic field in contrast to suspended case, leading to more evident MPR in the total magnetoresistance. On the other hand, in comparison to suspended MoS$_2$, the MPR behavior becomes more complex because of the crucial influence of SOPs, especially the mode with low frequency $\Omega_{T,\text{SO}}^{(1)}$. The resistivity $R_{\text{SO}}^{(1)}$ induced by the first SOP mode is plotted in Fig.6(b) versus $\Omega_{T,\text{SO}}^{(1)}/\omega_B$. The resonant feature of $R_{\text{SO}}^{(1)}$ is similar to other intrinsic modes. However, for another sample with low mobility in heavily overlapping-Landau-level regime, the MPR almost disappear. The magnetoresistance increases monotonously with magnetic field, and only a small oscillation occurs at very large field. In Fig.6(d), contributions of three important optical modes are plotted.

The effect of a SiO$_2$ substrate on the MPR of MoS$_2$ is also tested and it is found that this dielectric plays negligible role due to its large frequencies of SOPs.

IV. SUMMARY

In summary, we have studied the linear magnetotransport in single layer MoS$_2$ employing a balance equation analysis by including spin-orbit coupling and all kinds of intravalley and intervalley electron-impurity and electron-phonon scatterings.

The existence of an energy gap between the conduction and valence bands, or lack of electron-hole symmetry of the zero Landau level in MoS$_2$, makes its magnetotransport behavior more like a conventional 2D electron gas than graphene: the resistivity peaks or valleys of its low-temperature SdHO, resulting either from intravalley or from intervalley elastic scatterings, locate at integers of filling factor ν_0.

The large spin-orbit coupling in the system, however, gives rise to a significant modulation or beating of the magnetoresistance oscillation, or a phase inversion of the oscillation peaks. The agreement between theoretical prediction and recent experiment on the phase inversion of SdHO peaks demonstrates the importance of the spin-orbit splitting in magnetotransport even for systems of low-mobility. The clear beating pattern of the oscillating magnetoresistance should appear in the well-separated Landau-level regime in high-mobility systems.

On the other hand, the behavior of magnetoresistance oscillation at large magnetic fields or small filling factors appears different for intravalley and intervalley scatterings: the period of oscillation associated with intravalley scattering may halve due to the weak decay of the second-order oscillating term, while in the case of intervalley disorder much stronger spin-orbit induced SdHO modulation shows up that there exists a magnetic-field range in which the magnetoresistivity almost vanishes. Of course, intervalley elastic scattering contributes only a much smaller part to the total magnetoresistance than that from intravalley ones.

At high temperatures, the magnetoresistance oscillation arising from MPR may show up in the smooth impurity-induced resistivity background both for suspended and nonsuspended samples with high mobility. Both acoustic phonons (mainly intravalley transverse and longitudinal acoustic modes) and optic phonons (mainly homopolar and Fröhlich modes) can induce MPR. A beating pattern with the same frequency as in the SdHO also appears in the optical-phonon-induced MPR due to spin-orbit coupling. For the single layer on a substrate, another resonance due to SOPs may occur, resulting in a complex behavior of the total magnetoresistance. However, for nonsuspended layer with low mobility, the mag-
netoresistance oscillation almost disappears and the resistivity increases with field monotonously.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research Program of China (Grant No. 2012CB927403) and the National Science Foundation of China (Grant No. 11474005).

* cmwang@jtu.edu

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
3. T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P. Jauho, and K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008).
4. L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007).
5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dui, Science 319, 1229 (2008).
6. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458, 877 (2009).
7. A. Scholz, T. Stauber, and J. Schliemann, Phys. Rev. B 88, 035135 (2013).
8. B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Nano Lett. 13, 4212 (2013).
9. D. Lemké and A. Kis, ACS Nano 6, 10070 (2012).
10. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
11. B. Radisavljevic and A. Kis, Nature Mater. 12, 815 (2013).
12. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 85, 115317 (2012).
13. H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, and E. G. Gok, Nano Lett. 14, 1909 (2014).
14. K. Kaasbjerg, K. S. Thygesen, and A.-P. Jauho, Phys. Rev. B 87, 235312 (2013).
15. X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, and K. W. Kim, Phys. Rev. B 87, 115418 (2013).
16. W. Feng, Y. Yao, W. Zhu, J. Zhou, W. Yao, and D. Xiao, Phys. Rev. B 86, 165108 (2012).
17. W.-Y. Shan, H.-Z. Lu, and D. Xiao, Phys. Rev. B 88, 125301 (2013).
18. X. F. Wang and P. Vasilopoulos, Phys. Rev. B 78, 053313 (2003).
19. C. M. Wang and X. L. Lei, J. Phys.: Condens. Matter 26, 235801 (2014).
20. T. Cai, S. A. Yang, X. Li, F. Zhang, J. Shi, W. Yao, and Q. Niu, Phys. Rev. B 88, 115140 (2013).
21. F. Rose, M. O. Goerbig, and F. Pliéchon, Phys. Rev. B 88, 125438 (2013).
22. X. Zhou, Y. Liu, M. Zhou, H. Shao, and G. Zhou, Appl. Phys. Express 7, 021201 (2014).
23. X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jensen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Nature Nanotech. 10, 534 (2015).
24. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012).
25. G. D. Mahan, Many-Particle Physics (Plenum, NY, 1990).
26. X. L. Lei and N. J. M. Horing, Phys. Rev. B 35, 6281 (1987).
27. X. L. Lei, Balance equation approach to electron transport in semiconductors (World Scientific, Singapore, 2008).
28. X. L. Lei and C. S. Ting, Phys. Rev. B 32, 1112 (1985).
29. X. L. Lei, J. L. Birman, and C. S. Ting, J. Appl. Phys. 58, 2270 (1985).
30. C. S. Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. B 16, 5394 (1977).
31. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
32. X. L. Lei and S. Y. Liu, Phys. Rev. Lett. 91, 226805 (2003).
33. X. L. Lei and S. Y. Liu, Phys. Rev. B 72, 075345 (2005).
34. C. M. Wang and X. L. Lei, Phys. Rev. B 87, 235403 (2013).
35. N. Ma and D. Jena, Phys. Rev. X 4, 011043 (2014).
36. H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002).
37. J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009).
38. K. Kaasbjerg, K. S. Bhargavi, and S. S. Kubakaddi, Phys. Rev. B 90, 165436 (2014).
39. L. Zeng, Z. Xin, S. Chen, G. Du, J. Kang, and X. Liu, Appl. Phys. Lett. 103, 113505 (2013).
40. S. Fratini and F. Guinea, Phys. Rev. B 77, 195415 (2008).
41. A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010).
42. X. L. Lei, J. Phys. C: Solid State Phys. 18, 593 (1985).
43. S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nature Commun. 3, 1011 (2012).
44. Z.-Y. Ong and M. V. Fischetti, Phys. Rev. B 88, 165316 (2013).
45. Y. Ge, W. Wan, W. Feng, D. Xiao, and Y. Yao, Phys. Rev. B 90, 035414 (2014).
46. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
47. Z. Tan, C. Tan, L. Ma, G. T. Liu, L. Lu, and C. L. Yang, Phys. Rev. B 84, 115429 (2011).
48. The linear resistivity in the presence of short-range elastic electron-impurity scattering without magnetic field can be obtained with the help of Eqs. (3.3) and (3.23) in the Ref. 84: \(R_{xx} = \frac{\pi n_i u_F^2}{e^2 2\pi F} \), independent of electron density. Here \(u_F \) denotes the Fermi velocity.
49. Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011).
50. K. Košmider, J. W. González, and J. Fernández-Rossier, Phys. Rev. B 88, 245436 (2013).
51. M. A. Zudov, I. V. Ponomarev, A. L. Efros, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. Lett. 86, 3614 (2001).

52. W. Zhang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 100, 036805 (2008).

53. X. L. Lei, Phys. Rev. B 77, 205309 (2008).

54. S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).