ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction

Jiahao Bu1; Lei Ren1; Shuang Zheng1,2; Yang Yang1; Jingang Wang1,†; Fuzheng Zhang1, Wei Wu1
1Meituan, Beijing, China
2School of Economics and Management, Dalian University of Technology, Dalian, China
{bujiahao, renlei04, zhengshuang04, yangyang113}@meituan.com
{wangjingang02, zhangfuzheng, wuwei30}@meituan.com

Abstract

Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitations of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46,730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.

1 Introduction

With the rapid development of e-commerce, massive user reviews available on e-commerce platforms are becoming valuable resources for both customers and merchants. Aspect-based sentiment analysis (ABSA) on user reviews is a fundamental and challenging task which attracts interests from both academia and industries (Hu and Liu, 2004; Ganu et al., 2009; Jo and Oh, 2011; Kiritchenko et al., 2014). According to whether the aspect terms are explicitly mentioned in texts, ABSA can be further classified into aspect term sentiment analysis (ATSA) and aspect category sentiment analysis (ACSA), we focus on the latter which is more widely used in industries. Specifically, given a review ”Although the fish is delicious, the waiter is horrible!”, the ACSA task aims to infer the sentiment polarity over aspect category food is positive while the opinion over the aspect category service is negative.

The user interfaces of e-commerce platforms are more intelligent than ever before with the help of ACSA techniques. For example, Figure 1 presents the detail page of a coffee shop on a popular e-commerce platform in China. The upper aspect-based sentiment text-boxes display the aspect categories (e.g., food, sanitation) mentioned frequently in user reviews and the aggregated sentiment polarities on these aspect categories (the orange ones represent positive and the blue ones represent negative). Customers can focus on corresponding reviews effectively by clicking the aspect-based sentiment text-boxes they care about (e.g., the orange filled text-box “卫生条件好” (good sanitation)). Our user survey based on 7,824 valid questionnaires demonstrates that 80.08% customers agree that the aspect-based sentiment text-boxes are helpful to their decision-making on restaurant choices. Besides, the merchants can keep track of their cuisines and service qualities with the help of the aspect-based sentiment text-boxes. Most Chinese e-commerce platforms such as Taobao1, Dianping2, and Koubei3 deploy the similar user interfaces to improve user experience.

Users also publish their overall 5-star scale ratings together with reviews. Figure 1 displays a sample of 5-star rating to the coffee shop. In comparison to fine-grained aspect sentiment, the overall review rating is usually a coarse-grained synthesis of the opinions on multiple aspects. Rating pre-

1https://www.taobao.com/
2https://www.dianping.com/
3https://www.koubei.com/
diction(RP) (Jin et al., 2016; Li et al., 2018; Wu et al., 2019a) which aims to predict the “seeing stars” of reviews also has wide applications. For example, to promise the aspect-based sentiment text-boxes accurate, unreliable reviews should be removed before ACSA algorithms are performed. Given a piece of user review, we can predict a rating for it based on the overall sentiment polarity underlying the text. We assume the predicted rating of the review should be consistent with its ground-truth rating as long as the review is reliable. If the predicted rating and the user rating of a review disagree with each other explicitly, the reliability of the review is doubtful. Figure 2 demonstrates an example review of low-reliability. In summary, RP can help merchants to detect unreliable reviews.

Therefore, both ACSA and RP are of great importance for business intelligence in e-commerce, and they are highly correlated and complementary. ACSA focuses on predicting its underlying sentiment polarities on different aspect categories, while RP focuses on predicting the user’s overall feelings from the review content. We reckon these two tasks are highly correlated and better performance could be achieved by considering them jointly.

As far as we know, current public datasets are constructed for ACSA and RP separately, which limits further joint explorations of ACSA and RP. To address the problem and advance the related researches, this paper presents a large-scale Chinese restaurant review dataset for Aspect Category Sentiment Analysis and rating Prediction, denoted as ASAP for short. All the reviews in ASAP are collected from the aforementioned e-commerce platform. There are 46,730 restaurant reviews attached with 5-star scale ratings. Each review is manually annotated according to its sentiment polarities towards 18 fine-grained aspect categories. To the best of our knowledge, ASAP is the largest Chinese large-scale review dataset towards both ACSA and RP tasks.

We implement several state-of-the-art (SOTA) baselines for ACSA and RP and evaluate their performance on ASAP. To make a fair comparison, we also perform ACSA experiments on a widely used SemEval-2014 restaurant review dataset (Pontiki et al., 2014). Since BERT (Devlin et al., 2018) has achieved great success in several natural language understanding tasks including sentiment analysis (Xu et al., 2019; Sun et al., 2019; Jiang et al., 2019), we propose a joint model that employs the fine-to-coarse semantic capability of BERT. Our joint model outperforms the competing baselines on both tasks.

![Figure 1](https://example.com/image1.png)

Figure 1: The user interface of a coffee shop on a popular e-commerce App. The top aspect-based sentiment text-boxes display aspect categories and sentiment polarities. The orange text-boxes are positive, while the blue ones are negative. The reviews mentioning the clicked aspect category (e.g., good sanitation) with ratings are shown below. The text spans mentioning the aspect categories are also highlighted.

![Figure 2](https://example.com/image2.png)

Figure 2: A content-rating disagreement case. The review holds a 2-star rating while all the mentioned aspects are super positive.

Our main contributions can be summarized as follows. (1) We present a large-scale Chinese review dataset towards aspect category sentiment analysis and rating prediction, named as ASAP, including as many as 46,730 real-world restaurant reviews annotated from 18 pre-defined aspect categories. Our dataset has been released at https://github.com/Meituan-Dianping/asap. (2) We explore the performance of widely used models for ACSA and RP on ASAP. (3) We propose a joint learning model for ACSA and RP tasks. Our model achieves the best results both on ASAP and SemEval RESTAURANT datasets.

2 Related Work and Datasets

Aspect Category Sentiment Analysis.

ASCA (Zhou et al., 2015; Movahedi et al., 2019; Ruder et al., 2016; Hu et al., 2018) aims to predict sentiment polarities on all aspect categories mentioned in the text. The series of SemEval datasets consisting of user reviews from e-commerce websites have been widely used and
pushed forward related research (Wang et al., 2016; Ma et al., 2017; Xu et al., 2019; Sun et al., 2019; Jiang et al., 2019). The SemEval-2014 task-4 dataset (SE-ABSA14) (Pontiki et al., 2014) is composed of laptop and restaurant reviews. The restaurant subset includes 5 aspect categories (i.e., Food, Service, Price, Ambience and Anecdotes/Miscellaneous) and 4 polarity labels (i.e., Positive, Negative, Conflict and Neutral). The laptop subset is not suitable for ACSA. The SemEval-2015 task-12 dataset (SE-ABSA15) (Pontiki et al., 2015) builds upon SE-ABSA14 and defines its aspect category as a combination of an entity type and an attribute type (e.g., Food#Style_Options). The SemEval-2016 task-5 dataset (SE-ABSA16) (Pontiki et al., 2016) extends SE-ABSA15 to new domains and new languages other than English. MAMS (Jiang et al., 2019) tailors SE-ABSA14 to make it more challenging, in which each sentence contains at least two aspects with different sentiment polarities.

Compared with the prosperity of English resources, high-quality Chinese datasets are not rich enough. “ChnSentiCorp” (Tan and Zhang, 2008), “IT168TEST” (Zagibalov and Carroll, 2008), “Weibo”4, “CTB” (Li et al., 2014) are 4 popular Chinese datasets for general sentiment analysis. However, aspect category information is not annotated in these datasets. Zhao et al. (2014) presents two Chinese ABSA datasets for consumer electronics (mobile phones and cameras). Nevertheless, the two datasets only contain 400 documents (~ 4000 sentences), in which each sentence only mentions one aspect category at most. BDCT5 automobile opinion mining and sentiment analysis dataset (Dai et al., 2019) contains 8,290 user reviews in automobile industry with 10 predefined categories. Peng et al. (2017) summarizes available Chinese ABSA datasets. While most of them are constructed through rule-based or machine learning-based approaches, which inevitably introduce additional noise into the datasets. Our ASAP excels above Chinese datasets both on quantity and quality.

Rating Prediction. Rating prediction (RP) aims to predict the “seeing stars” of reviews, which represent the overall ratings of reviews. In comparison to fine-grained aspect sentiment, the overall review rating is usually a coarse-grained synthesis of the opinions on multiple aspects. Ganu et al. (2009); Li et al. (2011); Chen et al. (2018) form this task as a text classification or regression problem. Considering the importance of opinions on multiple aspects in reviews, recent years have seen numerous work (Jin et al., 2016; Cheng et al., 2018; Li et al., 2018; Wu et al., 2019a) utilizing the information of the aspects to improve the rating prediction performance. This trending also inspires the motivation of ASAP.

Most RP datasets are crawled from real-world review websites and created for RP specifically. Amazon Product Review English dataset (McAuley and Leskovec, 2013) containing product reviews and metadata from Amazon has been widely used for RP (Cheng et al., 2018; McAuley and Leskovec, 2013). Another popular English dataset comes from Yelp Dataset Challenge 20176, which includes reviews of local businesses in 12 metropolitan areas across 4 countries. Openrice7 is a Chinese RP dataset composed of 168,142 reviews. Both the English and Chinese datasets don’t annotate fine-grained aspect category sentiment polarities.

3 Dataset Collection and Analysis

3.1 Data Construction & Curation

We collect reviews from one of the most popular O2O e-commerce platforms in China, which allows users to publish coarse-grained star ratings and writing fine-grained reviews to restaurants (or places of interest) they have visited. In the reviews, users comment on multiple aspects either explicitly or implicitly, including ambience, price, food, service, and so on.

First, we retrieve a large volume of user reviews from popular restaurants holding more than 50 user reviews randomly. Then, 4 pre-processing steps are performed to promise the ethics, quality, and reliability of the reviews. (1) User information (e.g., user-ids, usernames, avatars, and post-times) are removed due to privacy considerations. (2) Short reviews with less than 50 Chinese characters, as well as lengthy reviews with more than 1000 Chinese characters are filtered out. (3) If the ratio of non-Chinese characters within a review is over 70%, the review is discarded. (4) To detect the low-

4http://tcci.ccf.org.cn/conference/2014/pages/page04_dq.html
5https://www.datafountain.cn/competitions/310
6http://www.yelp.com/dataset_challenge/
7https://www.openrice.com
quality reviews (e.g., advertising texts), we build a BERT-based classifier with an accuracy of 97% in a leave-out test-set. The reviews detected as low-quality by the classifier are discarded too.

3.2 Aspect Categories
Since the reviews already hold users’ star ratings, this section mainly introduces our annotation details for ACSA. In SE-ABSA14 restaurant dataset (denoted as RESTAURANT for simplicity), there are 5 coarse-grained aspect categories, including food, service, price, ambiance and miscellaneous. After an in-depth analysis of the collected reviews, we find the aspect categories mentioned by users are rather diverse and fine-grained. Take the text “...The restaurant holds a high-end decoration but with location we summarize the frequently mentioned aspects we find the aspect categories mentioned by users (denoted as RESTAURANT). Three rounds of annotation are conducted sequentially. First, we randomly split the whole dataset into 10 groups, and every group is assigned to 2 assessors to annotate independently. Second, each group is split into 2 subsets according to the annotation results, denoted as Sub-Agree and Sub-Disagree. Sub-Agree comprises the data examples with agreement annotation, and Sub-Disagree comprises the data examples with disagreement annotation. Sub-Agree will be reviewed by assessors from other groups. The controversial examples during the review are considered as difficult cases. Sub-Disagree will be reviewed by the 2 project managers independently and then discuss to reach an agreement annotation. The examples that could not be addressed after discussions are also considered as difficult cases. Third, for each group, the difficult examples from two subsets are delivered to the expert reviewer to make a final decision. More details of difficult cases and annotation guidelines during annotation are demonstrated in Table 2.

Finally, ASAP corpus consists of 46, 730 pieces of real-world user reviews, and we split it into a training set (36, 850), a validation set (4, 940) and a test set (4, 940) randomly. Table 3 presents an example review of ASAP and corresponding annotations on the 18 aspect categories.

3.4 Dataset Analysis
Figure 3 presents the distribution of 18 aspect categories in ASAP. Because ASAP concentrates on the domain of restaurant, 94.7% reviews mention Food#Taste as expected. Users also pay great attention to aspect categories such as Service#Hospitality, Price#Level and Ambience#Decoration. The distribution proves the advantages of ASAP, as users’ fine-grained preferences could reflect the pros and cons of restaurants more precisely.

The statistics of ASAP are presented in Table 4. We also include a tailored SE-ABSA14 RESTAURANT dataset for reference. Please note that we remove the reviews holding aspect categories with sentiment polarity of “conflict” from the original RESTAURANT dataset.

Compared with RESTAURANT, ASAP excels in the quantities of training instances, which supports the exploration of recent data-intensive deep neural models. ASAP is a review-level dataset, while RESTAURANT is a sentence-level dataset. The average length of reviews in ASAP is much longer, thus the reviews tend to contain richer aspect information. In ASAP, the reviews contain...
Aspect category	Definition	Aspect category	Definition
Food#Taste	Food taste	Location#Easy_to_find	Whether the restaurant is easy to find
Food#Appearance	Food appearance	Service#Queue	Whether the queue time is acceptable
Food#Portion	Food portion	Service#Hospitality	Waiters/waitresses’ attitude/hospitality
Food#Recommend	Whether the food is worth being recommended	Service#Parking	Parking convenience
Price#Level	Price level	Service#Timely	Order/Serving time
Price#Cost_effective	Discount strength	Ambience#Noise	Whether the restaurant is noisy
Location#Downtown	Whether the restaurant is located near downtown	Ambience#Space	Dining Space and Seat Size
Location#Transportation	Convenient public transportation to the restaurant	Ambience#Sanitary	Sanitary condition

Table 1: The full list of 18 aspect categories and definitions.

5.8 aspect categories in average, which is 4.7 times of Restau.

4 Methodology

4.1 Problem Formulation

Given a user review, ACSA focuses on predicting its underlying sentiment polarities on different aspect categories, while RP focuses on predicting the user’s overall feelings from the review content. We reckon these two tasks are highly correlated and better performance could be achieved by considering them jointly.

The advent of BERT has established the success of...
of the “pre-training and then fine-tuning” paradigm for NLP tasks. BERT-based models have achieved impressive results in ACSA (Xu et al., 2019; Sun et al., 2019; Jiang et al., 2019). Review rating prediction can be deemed as a single-sentence classification (regression) task, which could also be addressed with BERT. Therefore, we propose a joint learning model to address ACSA and RP in a multi-task learning manner. Our joint model employs the fine-to-coarse semantic representation capability of the BERT encoder. Figure 4 illustrates the framework of our joint model.

ACSA As shown in Figure 4, the token embeddings of the input review are generated through a shared BERT encoder. Briefly, let $H \in \mathbb{R}^{d \times Z}$ be the matrix consisting of token embedding vectors $\{h_1, \ldots, h_Z\}$ that BERT produces, where d is the size of hidden layers and Z is the length of the given review. Since different aspect category information is dispersed across the content of R, we add an attention-pooling layer (Wang et al., 2016) to aggregate the related token embeddings dynamically for every aspect category. The attention-pooling layer helps the model focus on the tokens most related to the target aspect categories.

$$M^a_i = \tanh(W^a_i \ast H)$$ \hspace{1cm} (1)

$$a_i = \text{softmax}(\omega^T_i \ast M^a_i)$$ \hspace{1cm} (2)

$$r_i = \tanh(W^r_i \ast H \ast a^T_i)$$ \hspace{1cm} (3)

Where $W^a_i \in \mathbb{R}^{d \times d}$, $M^a_i \in \mathbb{R}^{d \times Z}$, $\omega_i \in \mathbb{R}^d$, $\alpha_i \in \mathbb{R}^d$, $W^r_i \in \mathbb{R}^{d \times d}$, and $r_i \in \mathbb{R}^d$. α_i is a vector consisting of attention weights of all tokens which can selectively attend the regions of the aspect category related tokens, and r_i is the attentive representation of review with respect to the ith aspect category a_i, $i \in \{1, 2, \ldots, N\}$. Then we have

$$\hat{y}_i = \text{softmax}(W^\gamma_i \ast r_i + b^\gamma_i)$$ \hspace{1cm} (4)

Where $W^\gamma_i \in \mathbb{R}^{C \times d}$ and $b^\gamma_i \in \mathbb{R}^C$ are trainable parameters of the softmax layer. C is the number of labels (i.e., 3 in our task). Hence, the ACSA loss for a given review R is defined as follows,

$$\text{loss}_{ACSA} = \frac{1}{K} \sum_{i=1}^{N} p_i \sum_{C} y_i \ast \log \hat{y}_i$$ \hspace{1cm} (5)

If the aspect category a_i is not mentioned in S, y_i is set as a random value. The p_i serves as a gate function, which filters out the random y_i and ensures only the mentioned aspect categories can participate in the calculation of the loss function.
We perform an extensive set of experiments to evaluate the performance of our joint model on ASAP.

\[
\hat{g} = \beta^T \cdot \tanh(W^r \cdot h_{[cls]} + b^r)
\]

Hence the RP loss for a given review \(R \) is defined as follows,

\[
loss_{RP} = |g - \hat{g}|
\]

Where \(W^r \in \mathbb{R}^{d,d}, b^r \in \mathbb{R}^d, \beta \in \mathbb{R}^d \) are trainable parameters.

The final loss of our joint model becomes as follows.

\[
loss = loss_{ACSA} + loss_{RP}
\]
Table 4: The statistics and label/rating distribution of ASAP and RESTAURANT. The review length are counted by Chinese characters and English words respectively. The sentences are segmented with periods in ASAP, while RESTAURANT is a sentence-level dataset.

Dataset	Split	Reviews	Average sentences per review	Average aspects per review	Average length	Positive	Negative	Neutral	1-star	2-star	3-star	4-star	5-star	
ASAP	Train	36,850	8.6	5.8	345.8	144.4	27.2	425	52.225	1.272	1.250	8.241	13.962	16.720
	Dev	4,940	8.7	5.9	319.9	18.176	3.733	317.1	7.192	1.514	1.495	7.026	16.737	1.867
	Test	4,940	8.3	5.7	317.1	17.523	3.813	7.262	1.643	1.653	7.198	1.748	2.081	
RESTAURANT	Train	2,555	1	1.2	15.2	21.05	8.22	498	-	-	-	-	-	
	Test	749	1	1.3	15.6	6.45	211	94	-	-	-	-	-	

and RESTAURANT (Pontiki et al., 2014). Ablation studies are also conducted to probe the interactive influence between ACSA and RP.

5.1 ACSA

Baseline Models We implement several ACSA baselines for comparison. According to the different structures of their encoders, these models are classified into Non-BERT based models or BERT-based models. Non-BERT based models include TextCNN (Kim, 2014), BiLSTM+Attn (Zhou et al., 2016), ATAE-LSTM (Wang et al., 2016) and CapsNet (Sabour et al., 2017). BERT-based models include vanilla BERT (Devlin et al., 2018), QA-BERT (Sun et al., 2019) and CapsNet-BERT (Jiang et al., 2019).

Implementation Details of Experimental Models In terms of non-BERT-based models, we initialize their inputs with pre-trained embeddings. For Chinese ASAP, we utilize Jieba\(^8\) to segment Chinese texts and adopt Tencent Chinese word embeddings (Song et al., 2018) composed of 8,000,000 words. For English RESTAURANT, we adopt 300-dimensional word embeddings pre-trained by Glove (Pennington et al., 2014).

In terms of BERT-based models, we adopt the 12-layer Google BERT Base\(^9\) to encode the inputs.

The batch sizes are set as 32 and 16 for non-BERT-based models and BERT-based models respectively. Adam optimizer (Kingma and Ba, 2014) is employed with $\beta_1 = 0.9$ and $\beta_2 = 0.999$. The maximum sequence length is set as 512. The number of epochs is set as 3. The learning rates are set as 0.001 and 0.00005 for non-BERT-based models and BERT-based models respectively. All the models are trained on a single NVIDIA Tesla 32G V100 Volta GPU.

Evaluation Metrics Following the settings of RESTAURANT, we adopt Macro-F1 and Accuracy (Acc) as evaluation metrics.

Experimental Results & Analysis We report the performance of aforementioned models on ASAP and RESTAURANT in Table 5. Generally, BERT-based models outperform Non-BERT-based models on both datasets. The two variants of our joint model perform better than vanilla-BERT, QA-BERT, and CapsNet-BERT, which proves the advantages of our joint learning model. Given a user review, vanilla-BERT, QA-BERT, and CapsNet-BERT treat the pre-defined aspect categories independently, while our joint model combines them together with a multi-task learning framework. On one hand, the encoder-sharing setting enables knowledge transferring among different aspect categories. On the other hand, our joint model is more efficient than other competitors, especially when the number of aspect categories is large. The ablation of RP (i.e., joint model(w/o RP)) still outperforms all other baselines. The introduction of RP to ACSA brings marginal improvement. This is reasonable considering that the essential objective of RP is to estimate the overall sentiment polarity instead of fine-grained sentiment polarities.

We visualize the attention weights produced by our joint model on the example of Table 3 in Figure 5. Since different aspect category information is dispersed across the review of R, we add an attention-pooling layer (Wang et al., 2016) to aggregate the related token embeddings dynamically for every aspect category. The attention-pooling layer helps the model focus on the tokens most related to the target aspect categories. Figure 5 visualizes attention weights of 3 given aspect categories. The intensity of the color represents the magnitude of attention weight, which means the relatedness of tokens to the given aspect category. It’s obvious that our joint model focuses on the tokens most related to the aspect categories across the review of R.

\(^8\)https://github.com/fxsjy/jieba
\(^9\)https://github.com/google-research/bert
Table 5: The experimental results of ACSA models on ASAP and RESTAURANT. Best scores are boldfaced.

Category	Model	ASAP	RESTAURANT		
		Macro-F1	Acc.	Macro-F1	Acc.
Non-BERT-based models	TextCNN (Kim, 2014)	60.41%	71.10%	70.56%	82.29%
	BiLSTM+Attn (Zhou et al., 2016)	70.53%	77.78%	70.85%	81.97%
	ATEA-LSTM (Wang et al., 2016)	76.60%	81.94%	70.15%	82.12%
	CapsNet (Sabour et al., 2017)	75.54%	81.66%	71.84%	82.63%
BERT-based models	Vanilla-BERT (Devlin et al., 2018)	79.18%	84.00%	79.22%	87.65%
	QA-BERT (Sun et al., 2019)	79.44%	83.92%	80.89%	88.89%
	CapsNet-BERT (Jiang et al., 2019)	78.92%	83.74%	80.94%	89.00%
	Joint Model (w/o RP)	80.75%	85.15%	82.01%	89.62%
	Joint Model	80.78%	85.19%	-	-

5.2 Rating Prediction

We compare several RP models on ASAP, including TextCNN (Kim, 2014), BiLSTM+Attn (Zhou et al., 2016) and ARP (Wu et al., 2019b). The data pre-processing and implementation details are identical with ACSA experiments.

Evaluation Metrics. We adopt Mean Absolute Error (MAE) and Accuracy (by mapping the predicted rating score to the nearest category) as evaluation metrics.

Experimental Results & Analysis The experimental results of comparative RP models are illustrated in Table 6.

Table 6: Experimental results of RP models on ASAP. Best scores are boldfaced.

Model	ASAP	RESTAURANT
	MAE	Acc.
TextCNN (Kim, 2014)	58.14	52.99%
BiLSTM+Attn (Zhou et al., 2016)	57.37	54.38%
ARP (Wu et al., 2019b)	56.20	54.76%
Joint Model (w/o ACSA)	41.21	60.08%
Joint Model	4266	61.26%

Our joint model which combines ACSA and RP outperforms other models considerably. On one hand, the performance improvement is expected since our joint model is built upon BERT. On the other hand, the ablation of ACSA (i.e., joint model(w/o ACSA)) brings performance degradation of RP on both metrics. We can conclude that the fine-grained aspect category sentiment prediction of the review indeed helps the model predict its overall rating more accurately.

This section conducts preliminary experiments to evaluate classical ACSA and RP models on our proposed ASAP dataset. We believe there still exists much room for improvements to both tasks, and we will leave them for future work.

6 Conclusion

This paper presents ASAP, a large-scale Chinese restaurant review dataset towards aspect category sentiment analysis (ACSA) and rating prediction (RP). ASAP consists of 46,730 restaurant user reviews with star ratings from a leading e-commerce platform in China. Each review is manually annotated according to its sentiment polarities on 18 fine-grained aspect categories. Besides evaluations of ACSA and RP models on ASAP separately, we also propose a joint model to address ACSA and RP synthetically, which outperforms other state-of-the-art baselines considerably. We hope the release of ASAP could push forward related researches and applications.
References

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional rating regression with review-level explanations. In Proceedings of the 2018 World Wide Web Conference, pages 1583–1592.

Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan Kankanhalli. 2018. Aspect-aware latent factor model: Rating prediction with ratings and reviews. In Proceedings of the 2018 world wide web conference, pages 639–648.

Zehui Dai, Wei Dai, Zhenhua Liu, Fengyun Rao, Huajie Chen, Guangpeng Zhang, Yadong Ding, and Jiayang Liu. 2019. Multi-task multi-head attention memory network for fine-grained sentiment analysis. In CCF International Conference on Natural Language Processing and Chinese Computing, pages 609–620. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Gayatree Ganu, Noemie Elhadad, and Amélie Marian. 2009. Beyond the stars: improving rating predictions using review text content. In WebDB, volume 9, pages 1–6. Citeseer.

Mengting Hu, Shiwan Zhao, Li Zhang, Keke Cai, Zhong Su, Renhong Cheng, and Xiaowei Shen. 2018. CAN: constrained attention networks for multi-aspect sentiment analysis. CoRR, abs/1812.10735.

Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168–177.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and Min Yang. 2019. A challenge dataset and effective models for aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6281–6286.

Zhipeng Jin, Qiudan Li, Daniel D Zeng, YongCheng Zhan, Ruoruan Liu, Lei Wang, and Hongyuan Ma. 2016. Jointly modeling review content and aspect ratings for review rating prediction. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 893–896.

Yohan Jo and Alice H Oh. 2011. Aspect and sentiment unification model for online review analysis. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 815–824. ACM.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and Saif Mohammad. 2014. Nrc-canada-2014: Detecting aspects and sentiment in customer reviews. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 437–442.

Changliang Li, Bo Xu, Gaowei Wu, Saike He, Guanhua Tian, and Hongwei Hao. 2014. Recursive deep learning for sentiment analysis over social data. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 2, pages 180–185. IEEE.

Fangtao Li, Nathan Nan Liu, Hongwei Jin, Kai Zhao, Qiang Yang, and Xiaoyan Zhu. 2011. Incorporating reviewer and product information for review rating prediction. In Twenty-second international joint conference on artificial intelligence.

Junjie Li, Haitong Yang, and Chengqing Zong. 2018. Document-level multi-aspect sentiment classification by jointly modeling users, aspects, and overall ratings. In Proceedings of the 27th International Conference on Computational Linguistics, pages 925–936, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. 2017. Interactive attention networks for aspect-level sentiment classification. In International Joint Conference on Artificial Intelligence, pages 4068–4074.

Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pages 165–172.

Sajad Movahedi, Erfan Ghadery, Heshaam Faili, and Azadeh Shakery. 2019. Aspect category detection via topic-attention network.

Haiyun Peng, Erik Cambria, and Amir Hussain. 2017. A review of sentiment analysis research in chinese language. Cognitive Computation, 9(4):423–435.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou, Suresh Manandhar, and Ion Androutsopoulos. 2015. Semeval-2015 task 12: Aspect based sentiment
analys. In *International Workshop on Semantic Evaluation (SemEval 2015)*.

Maria Pontiki, Dimitrios Galanis, John Pavlopoulos, Haris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. 2014. Semeval-2014 task 4: Aspect based sentiment analysis. In *International Workshop on Semantic Evaluation (SemEval 2015)*.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, AL-Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, et al. 2016. Semeval-2016 task 5: Aspect based sentiment analysis. In *Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016)*, pages 19–30.

Sebastian Ruder, Parsa Ghaffari, and John G. Breslin. 2016. A hierarchical model of reviews for aspect-based sentiment analysis.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing between capsules. In *Advances in neural information processing systems*, pages 3856–3866.

Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. 2018. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 175–180.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence. *arXiv preprint arXiv:1903.09588*.

Songbo Tan and Jin Zhang. 2008. An empirical study of sentiment analysis for chinese documents. *Expert Systems with applications*, 34(4):2622–2629.

Yequan Wang, Minlie Huang, and Li Zhao. 2016. Attention-based lstm for aspect-level sentiment classification. In *Empirical Methods in Natural Language Processing*, pages 606–615.

Chuhan Wu, Fangzhao Wu, Junxin Liu, Yongfeng Huang, and Xing Xie. 2019a. Arp: Aspect-aware neural review rating prediction. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 2169–2172.

Chuhan Wu, Fangzhao Wu, Junxin Liu, Yongfeng Huang, and Xing Xie. 2019b. Arp: Aspect-aware neural review rating prediction. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 2169–2172.

Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. Bert post-training for review reading comprehension and aspect-based sentiment analysis. *arXiv preprint arXiv:1904.02232*.

Taras Zagibalov and John A Carroll. 2008. Unsupervised classification of sentiment and objectivity in chinese text. In *Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I*.

Yanyan Zhao, Bing Qin, and Ting Liu. 2014. Creating a fine-grained corpus for chinese sentiment analysis. *IEEE Intelligent Systems*, 30(1):36–43.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. 2016. Attention-based bidirectional long short-term memory networks for relation classification. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 207–212.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2015. Representation learning for aspect category detection in online reviews. In *Twenty-ninth Aaai Conference on Artificial Intelligence*.