Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells

Gerardo M. Oresti,* Juan G. Reyes,† Jessica M. Luquez,* Nelson Osses,† Natalie E. Furland,* and Marta I. Aveldaño†,*

Instituto de Investigaciones Bioquímicas de Bahía Blanca,* Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; and Instituto de Química,† Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Abstract In rat seminiferous tubules (ST), cells that contain polar and neutral lipids with long chain polyenoic fatty acids (PUFA) and sphingomyelins (SM) and ceramides (Cer) with very long chain (VLC) PUFA of the n-6 series coexist. In this study, pachytene spermatocytes and round spermatids were isolated to determine how these lipids change during spermatogenesis. As the amount per cell of PUFA-rich glycerophospholipids (GPL) decreased with cell size, the 22:5/20:4 ratio increased with cell differentiation. The elovl2 and elovl5 genes, required for 22:5 formation, were expressed (mRNA) in both cell types. Residual bodies—particles with compacted organelles and materials discarded from late spermatid-concentrated cholesterol, 22:5-rich triacylglycerols, and GPL, including plasmalogens and phosphatidylserine. Species of SM and Cer with nonhydroxylated (n-) VLCPUFA (28:4, 30:5, and 32:5) predominated in pachytene spermatocytes, whereas species with the corresponding 2-hydroxy (2-OH) VLCPUFA prevailed in round spermatids. Thus, a dramatic increase in the 2-OH/n-VLCPUF ratio in SM and Cer was a hallmark of differentiation. A substantial decrease of 2-OH SM occurred between spermatids and mature spermatozoa and 2-OH SM species were collected in residual bodies “en route” to Sertoli cells. Notably, spermatids and spermatozoa gained a significant amount of ceramides devoid of n-VLCPUFA but having 2-OH VLCPUFA as their main fatty acids.—Oresti, G. M., J. G. Reyes, J. M. Luquez, N. Osses, N. E. Furland, and M. I. Aveldaño. Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells. J. Lipid Res. 51: 2909–2921.

Mammalian spermatogenesis is an extraordinary cell transformation process. It includes asymmetric division of spermatogonia, rapid proliferation and differentiation into primary spermatocytes, a meiotic phase in which the genetic material in spermatocytes is recombined and segregated to produce haploid cells, a postmeiotic phase in which secondary spermatocytes develop into round spermatids, and differentiation of the latter into late spermatids and spermatozoa (1). During this last stage, known as spermiogenesis, spermatids undergo relevant cytological transformations, with changes in nuclear shape, chromatin condensation, formation of acrosome and flagellum, and disposal of surplus organelles and materials by production and release of membrane-enclosed remnants known as “residual bodies” (2, 3). These minute, densely packed particles are then engulfed by Sertoli cells (4).

The sphingomyelin (SM) (5) and ceramide (Cer) (6) of cells located in mammalian seminiferous tubules are rich in very long chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) of the n-6 or the n-3 series, the main ones being 28:4n-6 and 30:5n-6, followed by 32:5n-6 in the rat. These lipids belong to spermatogenic cells, as indicated by the facts that i) in the prepubertal rat testis, VLCPUFA-containing species of SM and Cer are not detected; ii) in

Supplementary key words ceramides • elongases • glycerophospholipids • pachytene spermatocytes • spermatids • triacylglycerols • residual bodies • sphingomyelins • very long chain fatty acids

This work was supported by funds from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción de la Ciencia y la Tecnología (ANPCyT), and Universidad Nacional del Sur (UNS), Argentina, and by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Chile.

Manuscript received 25 February 2010 and in revised form 7 July 2010.

Published, JLR Papers in Press, July 7, 2010
DOI 10.1194/jlr.M006429

Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 51, 2010 2909

Abbreviations: ADG, triglyceride with an ether bond; CE, cholesterol ester; Cer, ceramide; CGP, choline glycerophospholipid; DPG, diposphatidylglycerol; EGP, ethanolamine glycerophospholipid; Elov, fatty acid elongase; GC, gas chromatography; GPL, glycerophospholipid; LPC, lysophosphatidylcholine; PL, phosphatidylcholine; PL, phosphatidylserine; Ptd, pachytene spermatocyte; RB, residual body; RS, round spermatid; SM, sphingomyelin; SPZ, spermatozoa; ST, seminiferous tubule; TAG, triacylglycerol; VLCPUFA, very long-chain polyunsaturated fatty acid. Please note that n- and 2-OH are used as prefixes to denote nonhydroxy and 2-hydroxy VLCPUFA, respectively.

†To whom correspondence should be addressed.
e-mail: avelda@criiba.edu.ar

The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of three figures.
conditions like cryptorchidism, administration of specific antitumoral drugs, and X-ray irradiation, which result in the selective death of spermatogenic cells from the testes of adult fertile rats, these species are lost (6); and iii) SM (7) and Cer (8) with VLCPUFA are quantitatively major components of mature spermatozoa in several species.

In addition to the “normal” (nonhydroxylated) VLCPUFA (n-VLCPUFA), the SM (9) and, more recently, the Cer (S. R. Zanetti, M. I. Aveldaño et al., unpublished observations) of rat testis and spermatozoa were shown to contain 2-hydroxylated versions of these unique fatty acids (2-OH VLCPUFA). In vivo exposure of the adult rat testis to a single dose of X rays damages germ cell precursors, leading to interruption of spermatogenesis. Those germ cells that survive irradiation are able to complete their differentiation and gradually leave the testis as spermatozoa, until only Sertoli cells remain in seminiferous tubules. This continuing germ cell depletion, taking a number of weeks, is concomitant to the exhaustion of SM and Cer species with both types of VLCPUFA (10). Species with n-VLCPUFA and with 2-OH VLCPUFA disappeared from the testis four and six weeks after irradiation, respectively, the former with the last spermatocytes, the latter with the last spermatids and spermatozoa. These in vivo transformations suggested an association between germ cell differentiation and SM and Cer species with each type of VLCPUFA. In the present study, rat pachytene spermatocytes and round spermatids were isolated to directly assess this possibility.

In isolated cells from rat (11) and mouse (12) testes, the proportion of 22:5n-6 increases, while that of 20:4n-6 decreases in glycerophospholipids (GPL) from spermatogonia to spermatids. Whereas the amount of 22:5n-6 in GPL progressively increases in the testis with spermatogenic cell growth and differentiation (13), it falls with the involution the mature organ undergoes as it gradually loses its germ cells as a long-term consequence of damaging stem spermatogonia after treatment with a single dose of X-ray irradiation (10). In the present study, the main GPL classes and subclasses that contribute to these differentiation-related changes were analyzed in pachytene spermatocytes, round spermatids, and residual bodies to contrast them as germ cell products with the VLCPUFA-containing SM and Cer.

Whether developing germ cells synthesize their own 22:5n-6 or depend on Sertoli cells for this matter has not been established. The biosynthesis of 22:5n-6 in cells has been shown to occur through a complex mechanism that requires i) the formation of 24:4n-6 in the endoplasmic reticulum; ii) transport of this product to peroxisomes; and iii) 5-6 desaturation to 24:5n-6, followed by one round of β-oxidation of the latter to 22:5n-6 (14). The two key elongation steps, namely 20:4n-6 → 22:4n-6 and 22:4n-6 → 24:4n-6 are catalyzed by the products of the Elovl2 and Elovl5 genes, respectively, which have been located in the human and mouse genomes and found to be actively expressed in the testis (15). In the present study, the mRNA produced from these genes was evaluated in rat pachytene spermatocytes and round spermatids.

In addition to membrane lipids, a group of intracellular neutral lipids is produced in cells located in rat seminiferous tubules that contain 22:5n-6 and VLCPUFA of diverse lengths: triacylglycerols (TAG), alkyl-diacylglycerols (ADG), and cholesterol esters (CE) (16). In vivo, after a single exposure to X rays, species of CE with 22:5n-6 steadily accumulate in the testis as it loses its germ cells, whereas 22:5n-6-rich TAG are virtually unchanged as long as spermatids continue to develop into spermatozoa (10). This observation suggested an association of CE with Sertoli cells and TAG with germ cells. By including in the present study the CE and TAG of pachytene spermatocytes, round spermatids, and residual bodies, the different cellular origin and, therefore, the different function of these two main neutral lipids are confirmed.

Thus, from a primary interest in the PUFA- and VLCPUFA-containing lipids of developing germ cells, investigation of the same lipids in residual bodies revealed several biologically relevant peculiarities of the spermatogenic cycle. The known function of these particles is to transport superfluous materials that are compacted and shed from differentiating spermatids, destined to be phagocytized and then utilized by Sertoli cells. The peculiarities of their PUFA- and VLCPUFA-rich lipids open new questions to solve in the dynamic picture of lipid involvement in germ cell differentiation. The inclusion of mature spermatozoa in this study further surprised us with additional differentiation-related changes in SM and Cer.

MATERIALS AND METHODS

Seminiferous tubules and cell fractions

Preparation of rat spermatogenic cells. Sixty day-old Wistar rats were employed. The animals were sacrificed by cervical dislocation after a brief exposure to CO2 and used immediately. Seminiferous tubules were isolated from testes in a Krebs-Henseleit (KH) medium supplemented with 0.5 mM of CaCl2 and 10 mM of DL (+) -Lactate (KHz) and type I collagenase (0.5 mg/ml) and DNase (20 µg/ml) (KHz medium) to separate tubules from interstitial cells. Two major cellular fractions were separated in bulk from the tubules (17). Pachytene spermatocytes and round spermatids fractions were identified by size and the typical aspect of their nuclei stained with H33342 (18) (supplementary Fig. I). Owing to the large size of pachytene spermatocytes (cell diameter 17 ± 2 µm; range, 15–20 µm), their volume was calculated to be nearly 95% of the total cell volume in this fraction (88 ± 4% purity). The 12% cells contaminating this preparation were smaller cells (9.6% Sertoli cells; 1.8% round spermatids; and 0.6% leptotene and zygotene spermatocytes). The round spermid fraction (cell diameter 11 ± 2 µm; range, 8–13 µm) had a calculated volume of round spermatids corresponding to approximately 98% of the total cell volume in this fraction (96 ± 2% purity). Contaminants were 0.8% late spermatids and 3.2% residual bodies. Additionally, a fraction enriched in residual bodies was obtained (size range, 3–5 µm, 77 ± 5% purity). The main contaminating cells and cell parts in this fraction were round spermatids (7%), condensed spermatids (13%), and sperm heads (15%).

The integrity of cell and residual body membranes was estimated by incubating suspensions containing 5 µM ethidium bromide and examining the cells under a fluorescence microscope. The cell membrane integrity was >95% under all conditions.
tested in this study. Protein content was determined in suspensions of cells and residual bodies using Bradford’s reagents.

Rat epididymal spermatozoa

Cauda epididymis were excised, freed of their visible fat and blood vessels, and transferred to small dishes containing PBS. To allow release and diffusion of spermatozoa, a few incisions were made with a scalpel blade in the epididymal cauda, which were gently incubated in PBS under a 95% O₂-5% CO₂ atmosphere for 15 min at 34°C in a shaking water bath operated a 70 cycles per min. Sperm cells were recovered from supernatants by centrifugation at 600 g. They were then resuspended in 65% (w/v) sucrose at 4°C and purified in a discontinuous sucrose density gradient. As previously described (8), all media contained 2.5 mM EDTA to inhibit bivalent cation-dependent reactions, including the acrosomal reaction, which could affect spermatozoon lipids.

Lipid droplet detection

Rat testes were dissected, immersed in fixative, rinsed in PBS containing 30% sucrose overnight at 4°C for cryoprotection, and placed in a small amount of OCT (optimal cutting temperature) compound (Cryoplast®, Biopack) on plastic stubs. The preparations were frozen, cut into 5–7 µm sections using a cryostat, and processed for Nile red staining as previously described (10). To stain lipid droplets in isolated cell fractions, suspensions were placed in small dishes with KH₂PO₄ medium and incubated for 5 min in the presence of Nile red. All samples were observed in a Nikon fluorescence microscope equipped with 40× NA 1.0 objective.

Elovl2 and Elovl5 expression

Total RNA was extracted from enriched fractions of pachytene spermatocytes and round spermatids using Trizol (Invitrogen, Carlsbad, CA). Equal amounts of RNA (2 µg) were reverse-transcribed with Ready-To-Go You-Prime First-Strand Beads kit (GE Healthcare, Piscataway, NJ) using oligo-dT as primers. For PCR, paired primers were designed for rat Elovl2 5′-CAG CAC ACA GGC ACC AGG-3′ / 5′-GAC TTC AGT GGC TCT CAC GG-3′ (568 base pair), rat Elovl5 5′-ACC ACC ATG CCA CTA TGC T-3′ / 5′-GTG TCC ATT GAC GGC AGT-3′ (407 base pair), and β-actin 5′-ATG GAT GAC GAT ATC GCT GCT-3′ / 5′-ATG AGG TAG TCT GTC AGG-3′ (369 base pair). Samples were denatured at 94°C for 5 min, followed by amplification rounds consisting of denaturing at 94°C for 30 s, annealing at 60°C for 30 s and extension at 72°C for 30 s for 30 cycles and 72°C for 10 min.

Lipid separation and analysis

After collecting germ cells, residual bodies and spermatozoa by centrifugation, lipid extracts were prepared and partitioned according to Bligh and Dyer (19). After lipid extraction, the organic solvents were evaporated under N₂ and the samples dissolved in chloroform-methanol (2:1 v/v). Aliquots were taken for total lipid phosphorus, phospholipid composition, and total lipid fatty acid analyses.

For phospholipid class composition, aliquots of the extracts were spotted on HPTLC plates (Merck, Germany), along with commercial standards, and resolved with chloroform:methanol:acetic acid:water (50:37.5:3.5:2 by vol) (20). Phospholipids were located with iodine vapors; the silica gel containing the lipid spots was carefully transferred to tubes, and phosphorus was measured after digestion with perchloric acid (21).

Most of the rest of the lipid extracts were spotted on preparative TLC plates (500 µm, silica gel G) under N₂, along with commercial standards (Sigma Chemical, MO). The neutral lipids were resolved in two steps. Chloroform:methanol:aqueous ammonia (90:10:2 by vol) was run up to the middle of the plates to separate the ceramides. The plates were removed, the solvents were evaporated, and a mixture of n-hexane:diethyl ether (80:20 by vol) was allowed to run up to near the top of the plates to resolve free and esterified cholesterol, ether-linked triglycerides, and triacylglycerols. The total polar lipid fraction was recovered from the origin of these plates and subjected to further separations and analyses. Aliquots were taken to study total GPL fatty acid composition. Part of the rest was used to preparatively isolate the GPL, on the one hand, and SM, on the other.

Fatty acid analysis

The fatty acid composition of all lipid classes was determined by gas-chromatography (GC) after conversion of the eluted, dried lipids into fatty acid methyl esters (FAME). These were prepared by transesterification with 0.5N H₂SO₄ in anhydrous methanol under N₂ (overnight at 45°C) in Teflon®-lined, screw-capped tubes (22). Before GC, FAME were routinely purified by TLC on silica gel G plates that had been preswashed with methanol:ethyl ether (75:25 by vol) and dried. Hexane:ether (95:5 by vol) was used to separate FAME, which were located with 2,7′-dichlorofluorescein and the zones containing the lipids were scraped into tubes for elution. This was performed by three successive extractions with chloroform:methanol:water (90:10:2 by vol), thoroughly mixing, centrifuging, collecting the solvents, and partitioning with 4 vol of water to recover the lipids in the chloroform phase. After elution, free cholesterol was measured using an enzymatic standard method.

Germ cell differentiation and lipids

This study shows the importance of lipid metabolism during germ cell differentiation. The fatty acid composition of all lipid classes was determined by gas-chromatography (GC) after conversion of the eluted, dried lipids into fatty acid methyl esters (FAME). These were prepared by transesterification with 0.5N H₂SO₄ in anhydrous methanol under N₂ (overnight at 45°C) in Teflon®-lined, screw-capped tubes (22). Before GC, FAME were routinely purified by TLC on silica gel G plates that had been preswashed with methanol:ethyl ether (75:25 by vol) and dried. Hexane:ether (95:5 by vol) was used to separate FAME, which were located with 2,7′-dichlorofluorescein as described for other lipids. To elute FAME from the silica, this support was transferred to tubes and thoroughly agitated with water:methanol:hexane (1:1:1 by vol), followed by centrifugation.
to recover the upper hexane layer, repeating three times the hexane extraction, combining the upper phases, and drying under \(\text{N}_2 \).

The methyl esters of n-VLCPUFA and 2-OH VLCPUFA derived from SM and Cer were separated by running hexane:ether (50:20 v/v) up to the middle of the plates, followed by hexane/ether (95:5 v/v) up to the top, and methyl heptacosanoate and methyl 2-OH lignocerate had been added as internal standards (S. R. Zanetti, M. I. Aveldaño et al., unpublished observations).

The ordinary nonhydroxy FAME from all lipids, including n-VLCPUFA from SM and Cer, were directly analyzed by GC. The 2-OH FAME from SM and Cer were converted into O-trimethylsilyl (O-TMS) derivatives by dissolving the samples from 50 µl hexane and adding 100 µl of a mixture of N,O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich, Fluka reagent). The samples were kept overnight in small conical silanized tubes with Teflon-lined caps (Sigma-Aldrich, Fluka reagent). The samples were kept at 45°C under \(\text{N}_2 \) with the reactants. The latter were evaporated overnight in small conical silanized tubes with Teflon-lined caps (Sigma-Aldrich, Fluka reagent).

Statistical analyses

One-way ANOVA was used to determine differences among mean values, which were compared using Tukey’s multiple comparison test. All figures are mean values ± standard deviation, from four different samples obtained in independent isolations of seminiferous tubules, germ cells, and spermatozoa.

RESULTS

The amounts of protein, phospholipids (PL), free cholesterol, and other neutral lipids per cell (or particle) in the pachytene spermatocyte, round spermatid, and residual body preparations employed in this study are compared in Table 1. Although average cell size disparity was mostly responsible for these differences, the preparations showed interesting variations in main lipid concentrations and ratios. The PL/protein ratio (mg/mg) was higher in pachytene spermatocytes (0.25) than in round spermatids (0.19) and highest in residual bodies (0.40). Similarly, the free cholesterol/protein ratio (mg/mg) (× 10\(^{-1}\)) was 0.21, 0.18, and 0.45, and the TAG/protein ratio (on the same basis) was 0.12, 0.11, and 0.62, respectively. Total PL, free cholesterol, and TAG were the main lipid classes in the three preparations, with a similar ratio among them in the two types of germ cells (87:7:4) but with a higher proportion of cholesterol and, notably, TAG in residual bodies (77:9:12), as estimated per mg of protein or per unit of cell volume. Other neutral lipids (diacylglycerols, cholesterol esters, triglycerides with an ether bond), represented not more than 2% of the total lipid in the three preparations, with residual bodies showing a significantly larger proportion of diacylglycerols than germ cells.

Phospholipid classes, subcategories, and main PUFA

The two cell types of this study had the same PL composition, with choline glycerophospholipid (CGP) and ethanolamine glycerophospholipid (Egp) being the main lipid classes (55% and 30% of the total PL, respectively), followed by nearly 4% each of SM, PI, and PS, and the remaining 25% the sum of diphosphatidylglycerol, lysophospholipids, and other minor lipids (Fig. 1). The total seminiferous tubules had more SM (7%) than each germ cell type or residual bodies, which may be attributed to Sertoli cells, as the latter contain twice as much SM as germ cells (23). One interesting peculiarity of residual bodies was that, compared with germ cells, they had more than twice the proportion of PS (8.5%).

Within CGP, phosphatidylcholine (1,2-diacylsn-glycero-3-phosphocholine) was the main subcategory of germ cells with a small percentage (2%) of plasmalogenylcholine (the 1-alkyl,2-acylsn-glycero-3-phosphocholine subclass) (Fig. 1). Within EGP, phosphatidylethanolamine was the main subcategory with a higher, but similar, proportion (15%) of plasmalogenyl-ethanolamine in the cells. Interestingly, residual bodies were almost twice as rich as germ cells in choline and ethanolamine plasmalogens (4% and 24% of the total CGP and EGP, respectively).

The percentages with respect to the total fatty acids of 20:4n-6 and 22:5n-6 in the subclasses of CGP and EGP (Fig. 1) showed that both fatty acids were more abundant in the lipids of germ cells than in those of whole seminiferous tubules. Both were major PUFA of the major phosphatidylcholines and phosphatidylethanolamines of pachytene spermatocytes. The proportion of 20:4n-6 decreased while that of 22:5n-6 increased with the progression

Table 1. Main components of cellular fractions

	Pachytene Spermatocytes	Round Spermatids	Residual Bodies
Proteins (mg per 10^9 cells or particles)	199 ± 22^a	110 ± 17^a	25 ± 4^a
Phospholipids (mg per 10^9 cells or particles)	51 ± 3^a	21 ± 1	10 ± 0.5
Free cholesterol (mg per 10^9 cells or particles)	4.2 ± 0.1^a	1.9 ± 0.1	1.2 ± 0.1
Cholesterol esters (mg per 10^9 cells or particles)	0.15 ± 0.02^a	0.05 ± 0.01^b	0.02 ± 0.004^b
Ether-linked triglycerides (mg per 10^9 cells or particles)	0.41 ± 0.03^a	0.08 ± 0.003^b	0.03 ± 0.004^b

The amounts of protein, phospholipids, free cholesterol, and other neutral lipids (mg) are compared among pachytene spermatocytes, round spermatids, and residual bodies. The content of cholesterol esters, diacylglycerols, glyceroylcerols, and ether-linked triglycerides was estimated from their fatty acids. ANOVA and Tukey’s multiple comparison test was used for statistical analysis. Chol, cholesterol (free); PL, phospholipid; TAG, triacylglycerol. Row values with different superscript letters (a-c) point to significantly different values (P < 0.05).
of differentiation to spermatids in the phosphatidyl- and especially in the plasmenyl-subclasses of both GPL. The 22:5n-6/20:4n-6 ratio in pachytene spermatocytes, round spermatids, and residual bodies, respectively, was 0.5, 1.0, and 4.0 in phosphatidylcholines; 2, 4, and 8 in plasmenylcholines; 0.8, 1.0, and 1.2 in phosphatidylethanolamines; and 4.0, 10, and 60 in plasmenylethanolamines, respectively. The residual body fraction displayed the largest plasmenyl/phosphatidyl subclass ratio in both GPL classes and the largest 22:5n-6/20:4 ratio in the four subclasses.

Elovl2 and Elovl5 expression in germ cells

The results point out that 22:5n-6 is the major PUFA of rat testis because it abounds in the major GPL of both premeiotic and postmeiotic germ cells as well as residual bodies, collectively much more numerous than Sertoli cells. The biosynthesis of 22:5n-6 has been shown to require elongations of 20 and 22 carbon tetraenoic fatty acids to form 24:4n-6 in the endoplasmic reticulum; this product is then 6-desaturated to 24:5n-6, which is in turn β-oxidized to 22:5n-6, in peroxisomes (14). The (microsomal) elongation steps involved in such reactions are catalyzed by the products of the *Elovl2* and *Elovl5* genes. In rat pachytene spermatocytes and round spermatids, as isolated in the present study, the mRNA transcripts of both elongases were evidently expressed (Fig. 2).

Neutral lipids and their fatty acids

The three main neutral lipids present in rat seminiferous tubules—CE, ADG, and TAG—contained large amounts of 22:5n-6, low amounts of 20:4n-6, dissimilar proportions of C 24 polyenes (24:4n-6 and 24:5n-6), and a collection of C 26-C 32 VLCPUFA (Fig. 3), the rest accounted for by ordinary saturated, monoenoic, and other PUFA (e.g., 18:2n-6). The individual PUFA constituents are shown in supplementary Fig. II. In CE, species with C 26-C 32 VLCPUFA predominated, followed by species with 22:5n-6. In ADG, the amount of 22:5n-6 was greater than the amount of C 24 polyenes, and the amount of C 24 polyenes was greater than the amount of C 26-C 32 polyenes. In TAG, there was a net predominance of 22:5n-6 over the other polyenes.

Fig. 1. Upper and middle panel: Phospholipids of germ cells and residual bodies and their main PUFA. Pachytene spermatocytes (PtS), round spermatids (RS), and residual bodies (RB) (white, hatched, and black bars, respectively) are compared with each and with seminiferous tubules (ST, gray bars) from which they were obtained. Lower panel: Proportions of 20:4n-6 and 22:5n-6 in different CGP and EGP species (Ptd and Psm) of germ cells and ST are compared. Values with different letters (a-d) are significantly different, P < 0.05. Abbreviations: CGP, choline glycerophospholipid; DPG, diphosphatidylglycerol; EGP, ethanolamine glycerophospholipid; LPC, lysophosphatidylcholine; PI, phosphatidylinositol; Plsm-Chol, plasmenylcholine (choline plasmalogen); Plsm-Et, plasmenylethanolamine (ethanolamine plasmalogen); PS, phosphatidylserine; SM, sphingomyelin.

Fig. 2. *Elovl* mRNA expressions in pachytene spermatocytes and round spermatids. RNA was obtained from round spermatid- and pachytene spermatocyte-enriched fractions. After reverse transcription using Oligo-dTs, the cDNA was amplified using specific primers for rat *Elovl5* (407 bp predicted size), *Elovl2* (568 bp predicted size) and β-actin (569 predicted size). 100 bp DNA ladder are shown on the left lane. Results are representative of at least three separate experiments giving similar results. Abbreviation: *Elovl*, fatty acid elongase.

Germ cell differentiation and lipids
pacted into residual bodies in the form of TAG and membrane-bound GPL, is destined to be eventually incorporated into Sertoli cells.

Neutral lipid droplets

The use of Nile red as a fluorophore pointed to the existence of two populations of lipid inclusions in rat seminiferous epithelium (Fig. 4). One was a collection of small lipid droplets facing the luminal duct in nearly 70% of the tubules. These lipid inclusions abounded at stages with elongated spermatids in differentiation to spermatozoa, and the fluorescent dye evidently marked the lipid-laden residual bodies. The other was a population of larger lipid droplets appearing in about 30% of the tubules, accumulating in Sertoli cells in cytoplasmic areas close to their nuclei and proximal to the basal membrane. In different sections of the seminiferous tubules, there were mostly one or the other type of lipid droplets, suggesting association with specific stages of the spermatogenic cycle.

When Nile red was employed in isolated germ cells, no lipid droplets were detected in pachytene spermatocytes or round spermatids (Fig. 4). These cells stained faintly with the fluorophore, in contrast to the intense dot-shaped fluorescence displayed by residual bodies. Because the latter were extremely rich in TAG whereas they had barely detectable amounts of CE and ADG (Fig. 3), it is apparent that TAG are the main components of the neutral lipid inclusions present in these particles.

In fractions that contained Sertoli cells, large and small lipid droplets were observed, in some cases coexisting (Fig. 4). One may infer that the larger and the smaller type of droplets may contain mostly CE and TAG, respectively. The larger ones were observed concomitantly with the highest concentrations of CE in seminiferous tubules having only Sertoli cells (germ-cell deprived) from rat testis (10). Considering their size, the smaller ones may represent (TAG-rich) residual bodies recently endocytosed by Sertoli cells.

Germ cell sphingomyelins, ceramides, and their VLCPUFA

As shown by their total and individual fatty acids (Fig. 3), the concentrations of CE and ADG were considerably higher in STs than in the two germ cell types isolated from STs and residual bodies, suggesting that these two neutral lipids may be mainly products of Sertoli cells. At least for CE, this interpretation agrees with the observation that, in vivo, lipid droplets and CE accumulate in these cells after the testis is deprived of germ cells by X-ray irradiation (10).

Regarding TAG, although their concentration was also higher in STs than in the two germ cell types, in this case, residual bodies (Fig. 3) were major contributors to the total TAG found in STs.

From pachytene spermatocytes to round spermatids to residual bodies, the concentration of species of TAG with 20:4n-6 was unchanged, whereas that of species with 22:5n-6 increased significantly. The 22:5n-6/20:4n-6 ratio increased in TAG in the same direction as in GPL. Thus, a considerable amount of fatty acids from germ cells, com-
Germs cell differentiation and lipids

Germ cell differentiation and lipids

Fig. 4. Fluorescence microscopy of testicular lipid droplets, as revealed by Nile red. (A) Frozen section of a rat testis, showing the intense concentration of small lipid droplets near the lumen (L) of some seminiferous tubules and the more disperse and larger lipid droplets located near the basal (b) membrane of other tubules (bar = 100 µm). Fractions prepared from seminiferous tubules: Sertoli cells (B), pachytene spermatocytes (C), round spermatids (D), and residual bodies (E) (bar = 20 µm). Note the faint staining of the two germ cell fractions in contrast with the bright lipid droplets of Sertoli cells and especially of residual bodies.

Cer with VLCPUFA was even higher (about 80% of the Cer fatty acids in both germ cell types).

The most dramatic change associated with germ cell differentiation on membrane-associated lipids was observed in SM and Cer VLCPUFA (Fig. 5). Species with n-VLCPUFA predominated extremely in pachytene spermatocytes (90% and 80% of the total VLCPUFA of SM and Cer, respectively). Their proportion was several-fold smaller in round spermatids and barely detectable in residual bodies. Conversely, while minor in the SM and Cer of pachytene spermatocytes, species with 2-OH VLCPUFA prevailed in round spermatids (65% and 80% of the total VLCPUFA of

Fig. 5. Sphingomyelin and ceramide fatty acids in germ cells. Pachytene spermatocytes (PtS), round spermatids (RS), and residual bodies (RB) (white, hatched, and black bars, respectively) are compared with each and with the seminiferous tubules (ST, gray bars) from which they were derived. The lipids were quantified by their fatty acids and expressed as µg per a fixed amount of total lipid phosphorus (TLP). Left panels: amounts of total fatty acids; middle panels, amounts of main fatty acids, grouped into saturated (S), monoenoic (M), dienoic (D), and total VLCPUFA (V); right panels: percentage (%) contribution of nonhydroxy (n-V) and 2-hydroxy (2-OH V) VLCPUFA to the total fatty acids present in the VLCPUFA (V) fraction. Values with different letters (a-d) are significantly different, $P < 0.05$.
SM and Cer, respectively). This trend continued with differentiation, as inferred from the fact that 2-OH VLCPUFA were virtually the only VLCPUFA present in the SM of residual bodies.

Data in Fig. 5 and Fig. 6 indicate that the 2-OH VLCPUFA/n-VLCPUFA ratio increased several fold in SM and Cer with germ cell differentiation. In addition, the value attained for this ratio in the SM of round spermatids was virtually the same as that present in the SM of spermatid predecessors. Consistently, virtually no Cer was disposed of in residual bodies.

It must be pointed out that in this study spermatozoa were isolated from cauda epididymi in the presence of a bivalent ion chelator to minimize the possibility that part of their SM would hydrolyze to Cer during their preparation (8). The gametes did thus contain a high endogenous amount of Cer with 2-OH VLCPUFA.

Figure 7 depicts how the described changes affect the main individual species with VLCPUFA of SM and Cer. The three major n-VLCPUFA of both lipids, 28:4n-6, 30:5n-6, and 28:4n-6, were highest in pachytene spermatocytes and tended to decrease almost proportionally to the increased proportions of 2-OH 28:4n-6, 2-OH 30:5n-6, and 2-OH 32:4n-6 with differentiation to round spermatids. Eventually, virtually no species of Cer with n-VLCPUFA remained in mature spermatozoa, which had SM species with 28:4n-6 as the main, and virtually the only, n-VLCPUFA (Fig. 7). In contrast, species with 2-OH VLCPUFA clearly predominated in both sperm lipids but remarkably in Cer (Fig. 6), with 2-OH 30:5n-6, 2-OH 28:4n-6, and 2-OH 32:5n-6 being the main sperm Cer fatty acids (Fig. 7).

DISCUSSION

The presented results show that, concomitantly with cell size reduction and increased number associated with spermatogenesis, germ cell differentiation implies a reduction in the amount per cell of membrane phospholipids, with a marked increase in the proportion of 22:5n-6 in GLP and of 2-OH VLCPUFA in SM. The virtually exclusive presence of n-VLCPUFA in the SM and Cer of pachytene spermatocytes and the net preponderance of species with 2-OH VLCPUFA in spermatids and spermatozoa pinpoint a novel hallmark of germ cell differentiation, even more radical than the increase of 22:5n-6 at the expense of 20:4n-6 observed in GLP. Several biologically relevant peculiarities in the lipids of residual bodies were disclosed: a higher proportion than germ cells of cholesterol; 22:5n-6-rich GLP; certain phospholipid classes, like phosphatidylserine and ethanolamine plasmalogens; an over-abundance of TAG as the only neutral lipid class present in their lipid inclusions; and a predominance of species with 2-OH VLCPUFA in their SM. Purified spermatozoa from the epididymis exhibited further cell differentiation-related changes, such as the presence of SM with both n-VLCPUFA and 2-OH VLCPUFA and abundant ceramides with only 2-OH VLCPUFA. Because residual bodies are engulfed by Sertoli cells as they are formed from condensing spermatids during spermiogenesis, the present results, showing that these tiny but numerous particles carry with them a lot of 22:5n-6-rich GLP and TAG, as well as 2-OH VLCPUFA-rich SM species, call attention to the fact that the next steps in the metabolism of these lipids and fatty acids must take place in Sertoli cells.
Germ cell differentiation and lipids

As germ cells differentiate from the premeiotic pachytene spermatocytes to the postmeiotic round spermatids, the number of cells increases while their size (volume) decreases, with the amount per cell of total phospholipids decreasing in this maturational passage. In this process, part of the membrane phospholipids of the smaller daughter cells are “inherited” from their larger predecessors. Most of the de novo lipid biosynthetic activity probably occurs during the several days the cells stay as pachytene spermatocytes. In addition, a dynamic replacement of lipid molecules, or their parts, probably occurs with differentiation. The increased proportions of plasmalogens in spermatids with respect to spermatocytes may be due to these phospholipids decreasing less than others with differentiation. The increased proportion of 22:5n-6 in all GPL in the same direction may be contributed by spermatids synthesizing an extra amount of 22:5n-6 (from 20:4n-6) while conserving part of the original 22:5n-6. As differentiation progresses, GPL may be actively modified at their sn-2 positions by acyltransferases that introduce newly synthesized 22:5n-6. These enzymes are ubiquitous in tissues; their activity in rat pachytene spermatocytes and round spermatids has been revealed by the net incorporation of [14C]labeled C20-C22 PUFA these cells display, mostly into choline and ethanolamine GPL (24–26). The differentiation-related changes in main GPL species profiles may be expected to have an impact on the functional properties of germ cell membranes whose purpose is so far unknown.

It has been known for decades that plasmalogens are important, in some cases being the main, lipid constituents of spermatozoa. The enzymes that initiate the synthesis of ether-linked lipids—dihydroxyacetonephosphate acyltransferase (GNPAT) and alkyl-dihydroxyacetonephosphate synthase—are known to be located in the peroxisomal membrane. In the testis, the presence of peroxisomes has been demonstrated in somatic as well as in all germ cell types, except mature spermatozoa (27). Germ cells present marked differences in structure, abundance, and localization of peroxisomes, with a strong heterogeneity in peroxisomal protein type and content, in accordance to the multiple biosynthetic and catabolic functions located to these organelles. In mice with a knockout in the Gpapt gene, a spermatogenic arrest ensues, with apoptosis of pachytene spermatocytes and complete absence of elongated spermatids and mature spermatozoa (28), emphasizing the importance of ether-linked lipids for spermatogenesis.

Because residual bodies are formed from a portion of the membrane that buds from condensing spermatids that are ready to be released as spermatozoa, the significantly higher proportion of 22:5n-6-rich phospholipids, including plasmalogens, found in these remnant particles may reflect a general characteristic of the membranes of these late spermatids. Alternatively, it may be speculated that a clustering of specific phospholipids and free cholesterol may occur in the particular area of these spermatids where residual bodies are formed, favoring their detachment from ready-to-emerge spermatozoa.

The present observation that residual bodies are far richer in phosphatidyserine (PS) than are germ cells is a biologically relevant fact. Sertoli cells phagocytize apoptotic bodies from germ cells (hundreds of these cells normally die daily by apoptosis in the course of spermatogenesis) by recognizing, through their scavenger receptor type I (SR-I), the PS located on the surface of apoptotic fragments (29). The SR-I is expressed on both the lateral and the apical surfaces of Sertoli cells, such expression changing with the phases of the spermatogenic cycle (30). Sertoli cells could thus use the same mechanism for phagocytizing PS-exposing, germ cell-derived apoptotic bodies and residual bodies.

Regarding the specific and major PUFA of the major rat germ cell GPL, we showed that isolated pachytene spermatocytes and round spermatids expressed the Elovl2 and Elovl5 genes. This finding supports the notion that germ cells may be capable of synthesizing their quantitatively major PUFA, 22:5n-6, as concluded in previous work (25, 26) showing that both germ cell types are able to trans-
form [1-14C]20:4, added as precursor, into labeled 22:4, 24:4, 22:5, and 24:5. Further work is still needed to reconcile this possibility with the fact that isolated germ cells have a low 8-6-desaturase activity (26) and mRNA expression (31) compared with isolated Sertoli cells. Considering that germ cells are far richer in 22:5n-6 than Sertoli cells, it was suggested (26, 31) that the latter could biosynthesize 22:5n-6 and supply it to germ cells. Although this possibility is attractive in view of the well-known structural and metabolic supporting roles Sertoli cells play in sustaining germ cell development, our results allow us to see “the other side of the coin.” Whereas transport of 22:5n-6 from Sertoli cells to germ cells remains to be demonstrated, Sertoli cells certainly receive abundant amounts of preformed fatty acids from spermatogenic cells in the form of 22:5-rich lipids enclosed in apoptotic and residual bodies. Thus, spermatogenic cells may be devoted to mostly anabolic tasks, generating at their own pace lipids with PUFA and VLCPUFA destined to become sperm components, whereas Sertoli cells may be busy most of the time with catabolic tasks regarding this type of lipid.

Germ cell-neutral lipids

An important result of the present study was the identification of the cellular origin and, thus, the likely different function of CE and TAG, two neutral lipid classes present in rat seminiferous tubules. With the aid of Nile red, residual bodies were detectable as numerous luminally located, brightly fluorescent, uniformly-sized minute dots within seminiferous tubules, precisely at stages at which fully developed spermatids evolve into spermatozoa. TAG were intensely concentrated in such structures and, therefore, were produced in the latest stages of spermiogenesis by the most differentiated members of the spermatogenic lineage. Residual bodies contained TAG as virtually their only neutral lipid but no CE. Thus, TAG were primarily germ cell products, whereas the CE that abound in seminiferous tubules were not, supporting the previous conclusion, derived from germ cell depletion studies in vivo (10), that CE are mostly Sertoli cell products.

The fact that the concentration of TAG progressively increased as that of GPL did not change from pachytene spermatocytes to round spermatids to residual bodies, suggests that it is in the last steps of spermiogenesis that TAG synthesis is most stimulated, with high specificity for the esterification of C22-24 PUFA. Regarding TAG synthesis in germ cells, previous work in cultures of mouse-derived germ cells showed that (i) [13C]20:4n-6 can be elongated and desaturated (to 22:4, 22:5, 24:4, and 24:5) and (ii) pachytene spermatocytes incorporate lower percentages and absolute amounts of radioactivity into their TAG fatty acids derived from 20:4 by elongation-desaturation (22:4, 24:4) than do spermatids (round and condensing types) (25), in agreement with our observations. Interestingly, distributions of mass and radioactivity in these TAG showed that 22 or 24 carbon PUFA were incorporated with a high degree of specificity at the sn-3 position.

Accumulating spare fatty acids in the form of TAG is a universal room-saving strategy for storing these energy-rich substrates in cells. Part of the TAG shown here to be confined into residual bodies may represent a form of disposal of no longer needed GPL from the progressively smaller elongating-condensing spermatids. Once surplus membranes containing 22:5n-6-rich GPL are incorporated into the residual bodies in formation in such spermatids, removal of GPL phosphoryl base may produce diacylglycerols, while part of their ester-bound fatty acids may become free fatty acids; after further conversion of the former into the corresponding acyl-CoA derivatives, these products may easily combine, in part perhaps within the residual bodies themselves, to produce 22:5-rich TAG.

Because Sertoli cells are known to phagocytize residual bodies almost at the same rate as the latter are shed from condensing spermatids during spermiogenesis, the next steps in the metabolism of the (lipid and nonlipid) materials these particles transport is one among many metabolic “responsibilities” of Sertoli cells. The present results call attention on the fact that these particles transport a lot of 22:5n-6-rich GPL and TAG, as well as 2-OH VLCPUFA-rich species of SM, from developing germ cells to Sertoli cells.

After endocytosis, Sertoli cells may be expected to perform diverse forms of metabolic processing of each of the mentioned lipids before disposal and/or reutilization of the fatty acids. Sertoli cell lysosomes are good candidates for a first step of hydrolysis of the membrane-associated phospholipids incorporated with residual bodies. In the case of TAG, a form of hormone-sensitive lipase (HSL) has been detected by its immunoreactivity in the luminally-facing part of the Sertoli cell cytoplasm, precisely at stages in which residual bodies are phagocytosed (32). This HSL could remove the fatty acids from the ingested TAG, allowing their FA to be immediately converted to CoA esters and utilized in these cells.

Taking into account that residual bodies also carry into Sertoli cells abundant GPL as potential sources of free fatty acids as well as of free cholesterol, both of which are toxic to cells, one may envisage these cells playing an important role in forming CE (in their endoplasmic reticulum) at spermatogenic stages at which they are loaded with these lipid materials, collecting these CE temporarily in the form of cytoplasmic lipid droplets. This could account for the 22:5n-6- and VLCPUFA-rich CE shown in this study to be abundant in seminiferous tubules, scanty in germ cells, and negligible in residual bodies.

SM and Cer

The present study shows that the type of species that contain VLCPUFA in germ cells changes dramatically with their differentiation. From SM and Cer species with nonhydroxylated VLCPUFA predominating in pachytene spermatocytes, species with 2-OH VLCPUFA prevailed in round spermatids. This is consistent with previous results in vivo, showing that after a single exposure of the rat testis to X-rays, in which depletion of spermatocytes precedes in two weeks that of spermatids and spermatozoa, SM and Cer species with n-VLCPUFA disappear from the testis two weeks before species with 2-OH VLCPUFA (10).
Further differences between round spermatids and fully mature spermatozoa let us see that a significant amount per cell of SM species with 2-OH VLCPUFA is shed from developing spermatids and is recovered in the form of an almost equivalent amount per particle of the same type of SM species in residual bodies. This suggests that these species are made in excess of the amount required in the final gametes. Concurrently, in round spermatids, an important amount per cell of endogenous Cer (on a mole basis, larger than the total SM) is formed that remains high in mature spermatozoa but is negligible in residual bodies. This suggests that such Cer are produced early in postmeiotic cells and become components of the mature gametes. Further research is needed to establish the role of these unique ceramides in sperm functions.

Regarding fatty acids, the selective decrease in the n-VLCPUFA/2-OH VLCPUFA ratio with differentiation is reflected in the final product of this process, spermatozoa, in which 28:4n-6 remains as virtually the only n-VLCPUFA of SM, whereas 2-OH VLCPUFA not only predominate in SM but also become the almost exclusive type of VLCPUFA of Cer.

Of the six ceramide synthase (CerS) isoforms expressed in rat tissues, CerS3 is almost exclusively expressed in the testis (33). In the mouse testis, CerS3 is almost exclusively expressed in germ cells (34), Cer3 expression increasing concomitantly with the appearance of the first spermatocytes during postnatal development. This enzyme is thus responsible for the de novo formation of the ceramides of spermatozoa during postnatal development. This enzyme was suggested to play a role in acrosome formation and the plasma membrane restructuring that occurs between late round spermatids and early elongating spermatids. This could be the SMS2 of round spermatids producing the 2-OH VLCPUFA-rich SM that at later developmental phases concentrate in residual bodies and spermatozoa.

The fact that spermatozoa endogenously carry from their origin high levels of Cer specifically containing 2-OH VLCPUFA is a striking finding of this study. The generation of such Cer from SM as precursor requires either (i) a form of SMase that is specific for 2-OH VLCPUFA-containing species of SM, or (ii) an ordinary SMase that expresses itself in a cell-specific manner in spermatids. Mice deficient in acid SMase in their lysosomes (a model of the human Niemann-Pick disease), accumulate SM in their tissues, including testes (mostly as lipid inclusions in Sertoli cells), and produce spermatozoa that develop an abnormal motility (40–42). The latter of these defects correlated with an excess of surface area in the midpiece of the sperm tail in late spermatids and spermatozoa, with the mature gametes showing a rigid bending of their tails that preclude normal motility. Taken together with the present results showing that (normally motile) rodent spermatozoa endogenously contain a significant amount of Cer with specific fatty acids, one may conclude that the sperm defects in acid SMase-deficient mice may have been that their spermatids were unable to produce the required Cer from their own SM during spermiogenesis.

The finding that 2-OH VLCPUFA-rich species of SM localize in residual bodies found no antecedent in the literature. One of the many questions that arise from this fact is what the biophysical or biochemical basis may be for the segregation of such species in residual bodies. One could speculate that a surplus of these SM concentrate on the specific surface areas of spermatids where residual bodies “sprout.” As these structures contained a relatively high amount of cholesterol compared with germ cells, a form of “lateral separation” of these SM species into cholesterol-rich domains (rafts) on the spermatid surface could be involved.

Once residual bodies are phagocytized by Sertoli cells, these cells may be expected to metabolize the SM thus incorporated. A first obvious step is to hydrolyze this lipid to Cer in Sertoli cell lysosomes. That this occurs through an acid SMase is evident from the accumulation of SM and abnormal lipid inclusions (probably SM-laden lysosomes) observed in Sertoli cells of mice deficient in this enzyme (42). Provided an acid ceramidase activity follows, the next question that arises is what Sertoli cells do with the resulting 2-OH VLCPUFA. They are probably rapidly converted into acyl-
CoA derivatives as they are released from lysosomes and directed to other subcellular organelles for further utilization. Because biosynthesizing 2-OH VLCPUFA is energetically quite costly, it is tempting to speculate that it would be convenient if Sertoli cells spared these fatty acids from oxidation and had a strategy of recycling, making these fatty acids available to their endlessly developing fostered neighbor cells. However, this possibility is challenged by the fact that transport of any form of lipid from Sertoli cells to germ cells remains to be demonstrated and that Sertoli cells contain peroxisomes (27) with active peroxisomal enzymes (43) as well as acetyl-CoA dehydrogenase, a key enzyme in the β-oxidation of fatty acids, including PUFA, as well as the production of ATP, are both much lower in any testicular cell than in Sertoli cells, both increasing markedly in the latter after phagocytosis of apoptotic bodies from germ cells (45). The mass of spermatid-derived long-chain and very-long-chain fatty acids incorporated in Sertoli cells after phagocytosis of lipid-laden residual bodies could have the same fate: a source of the large amount of energy that supporting spermatogenesis imposes on these cells. The present results, showing that these remnant particles contain SM with only 2-OH VLCPUFA, may inspire future research to discern the metabolic fate of these molecular species.

REFERENCES

1. Russell, L., and B. Frank. 1978. Ultrastructural characterization of nuage in spermatocytes of the rat testis. Anat. Rec. 190: 79–97.
2. Lalli, M., and Y. Clermont. 1981. Structural changes of the head components of the rat spermatid during late spermiogenesis. Am. J. Anat. 160: 419–434.
3. Sprando, R. L., and L. D. Russell. 1987. Comparative study of cytoplasmic elimination in spermatids of selected mammalian species. Am. J. Anat. 178: 72–80.
4. Kerr, J. B., and D. M. De Kretser. 1974. Proceedings: the role of the Sertoli cell in phagocytosis of the residual bodies of spermatids. J. Reprod. Fertil. 36: 439–440.
5. Pouls, A., D. W. Johnson, K. Beckman, I. G. White, and C. Easton. 1987. Occurrence of unusual molecular species of sphingomyelin containing 28:34 carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 248: 961–964.
6. Furland, N. E., S. R. Zanetti, G. M. Oresti, E. N. Maldonado, and M. I. Avedano. 2007. Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J. Biol. Chem. 282: 18141–18150.
7. Pouls, A., P. Sharp, D. Johnson, I. White, and A. Fellenberg. 1986. The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem. J. 240: 891–895.
8. Furland, N. E., G. M. Oresti, S. S. Antollini, A. Venturizzo, E. N. Maldonado, and M. I. Avedano. 2007. Very long-chain polyunsaturated fatty acids are the major acyl groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. J. Biol. Chem. 282: 18151–18161.
9. Robinson, B. S., D. W. Johnson, and A. Pouls. 1992. Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J. Biol. Chem. 267: 1746–1751.
10. Oresti, G. M., P. L. Ayuza-Aresti, G. Gigola, L. E. Reyes, and M. I. Avedano. 2010. Sequential depletion of rat testicular lipids with long-chain and very-long-chain polyenoic fatty acids after X-ray induced interruption of spermatogenesis. J. Lipid Res. Epub ahead of print. June 7, 2010; doi:10.1194/jlr.M006395.
11. Beckman, J. K., M. E. Gray, and J. G. Coniglio. 1978. The lipid composition of isolated rat testicular spermatids and spermatoocytes. Biochim. Biophys. Acta 530: 367–374.
12. Proshan, W. M., W. F. Farnham, and B. A. Szopiak. 1981. Long chain polyenoic acid levels in viable, highly enriched mouse testes cells. Lipids. 16: 401–410.
13. Davis, J. T., R. B. Bridges, and J. G. Coniglio. 1966. Changes in lipid composition of the maturing rat testis. Biochem. J. 98: 342–346.
14. Sprecher, H., Q. Chen, and F. Q. Yin. 1999. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process. Lipids. 34(Suppl): S153–S156.
15. Leonard, A. E., E. Kelders, G. Bobik, L. T. Chuang, C. J. Lewis, J. J. Kopchick, P. Murerji, and T. S. Huang. 2002. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids. 37: 733–740.
16. Furland, N. E., E. N. Maldonado, and M. I. Avedano. 2003. Very long chain PUFA in murine testicular triglycerides and cholesterol esters. Lipids. 38: 73–80.
17. Romrell, L. J., A. R. Bells, and D. W. Fawcett. 1976. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev. Biol. 49: 119–131.
18. Reyes, J. G., A. Diaz, N. Osses, C. Opazo, and D. J. Benos. 1997. On stage single cell identification of rat spermatogenic cells. Biol. Cell. 89: 53–66.
19. Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.
20. Holub, B. J., and C. M. Skeaff. 1987. Nutritional regulation of cellular phospholipid synthesis. Methods Enzymol. 141: 234–244.
21. Rouser, G., S. Fekesich, and A. Yamamoto. 2007. Two dimensional layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 5: 497–496.
22. Christie, W. W. 1982. Lipid Analysis. 2nd edition. Pergamon Press, Oxford, UK.
23. Beckman, J. K., and J. G. Coniglio. 1979. A comparative study of the lipid composition of isolated rat Sertoli and germinal cells. Lipids. 14: 262–267.
24. Grognon, W. M., and J. W. Lam. 1982. Fatty acid synthesis in isolated spermatocytes and spermatozoa of mouse testis. Lipids. 17: 604–611.
25. Grognon, W. M., and E. G. Huth. 1983. Biosynthesis of long-chain polyenoic acids from arachidonic acid in cultures of enriched spermatoocytes and spermatozoa from mouse testis. Lipids. 18: 275–284.
26. Rutterstol, K., T. N. Tran, T. B. Haugen, and B. O. Christophersen. 2001. Metabolism of very long chain polyunsaturated fatty acids in isolated rat germ cells. J. Biol. Chem. 276: 601–606.
27. Nenincu, A., G. H. Luers, W. Kovacs, M. David, A. Zimmer, M. Bergmann, and E. Baumgart-Vogt. 2007. Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ and somatic distinctive cell types of the testis. Biol. Reprod. 77: 1060–1072.
28. Rodemer, C., T. P. Thai, B. Brugger, T. Kaercher, H. Werner, K. A. Nave, F. Wieland, K. Georgas, and W. W. Just. 2003. Inactivation of either lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12: 1881–1895.
29. Kasai, Y., A. Nakagawa, K. Nagaosa, A. Shiraizuki, and Y. Nakashiki. 2002. Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular sertoli cells. J. Biol. Chem. 277: 27559–27566.
30. Nakagawa, A., K. Nagaosa, T. Hirose, K. Tsuda, K. Hasegawa, A. Shiraizuki, and Y. Nakashiki. 2004. Expression and function of class B scavenger receptor type I on both apical and basolateral sides of the plasma membrane of polarized testicular Sertoli cells of the rat. Dev. Growth Differ. 46: 283–298.
31. Saether, T. N., T. Tran, H. Rootwell, B. O. Christophersen, and T. B. Haugen. 2003. Expression and regulation of delta(5)-desaturase, delta(6)-desaturase, stearoyl-coenzyme A (CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis. Biol. Reprod. 69: 117–124.
32. Kabaj, O., C. Holm, M. L. Vitale, and R. M. Pelletier. 2001. Expression, activity, and subcellular localization of testicular hormone-sensitive lipase during postnatal development in the guinea pig. Biol. Reprod. 65: 601–612.
33. Mizutani, Y., A. Kihara, H. Chiba, H. Tojo, and Y. Igarashi. 2008. 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. J. Lipid Res. 49: 2356–2364.

34. Rabionet, M., A. C. van der Spoel, C. C. Chuang, B. von Tumpling-Radosta, M. Lijens, D. Boumeester, C. C. Hellbusch, C. Korner, H. Wiegandt, K. Gorgas, et al. 2008. Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J. Biol. Chem. 283: 13357–13369.

35. Eckhardt, M., A. Yaghootfam, S. N. Fewou, I. Zoller, and V. Gieselmann. 2005. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem. J. 388: 245–254.

36. Uchida, Y., H. Hama, N. L. Alderson, S. Douangpanya, Y. Wang, D. A. Crumrine, P. M. Elias, and W. M. Holleran. 2007. Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. J. Biol. Chem. 282: 13211–13219.

37. Tafesse, F. G., P. Ternes, and J. C. Holthuis. 2006. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281: 29421–29425.

38. Tafesse, F. G., K. Huitema, M. Hermansson, S. van der Poel, J. van den Dikkenberg, A. Uphoff, P. Somerharju, and J. C. M. Holthuis. 2007. Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J. Biol. Chem. 282: 17537–17547.

39. Lee, N. P., D. D. Mruk, W. Xia, and C. Y. Cheng. 2007. Cellular localization of sphingomyelin synthase 2 in the seminiferous epithelium of adult rat testes. J. Endocrinol. 192: 17–32.

40. Butler, A., X. He, R. E. Gordon, H. S. Wu, S. Gatt, and E. H. Schuchman. 2002. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am. J. Pathol. 161: 1061–1075.

41. Butler, A., R. E. Gordon, S. Gatt, and E. H. Schuchman. 2007. Sperm abnormalities in heterozygous acid sphingomyelinase knockout mice reveal a novel approach for the prevention of genetic diseases. Am. J. Pathol. 170: 2077–2088.

42. Otala, M., M. O. Pentikainen, T. Mattikainen, L. Suomalainen, J. K. Hakala, G. I. Perez, M. Tenhunen, K. Erkkila, P. Kovanen, M. Parvinen, et al. 2005. Effects of acid sphingomyelinase deficiency on male germ cell development and programmed cell death. Biol. Reprod. 72: 86–96.

43. Huyghe, S., H. Schmalbruch, G. K. De, G. Verhoeven, F. Guillou, P. P. Van Veldhoven, and M. Baes. 2006. Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice. Endocrinology 147: 2228–2236.

44. Fukasawa, M., K. Asuzuwa, K. Mizutani, A. Nakazawa, and N. Usuda. 2010. Immunohistochemical localization of mitochondrial fatty acid [beta]-oxidation enzymes in rat testis. J. Histochem. Cytochem. 58: 195–206.

45. Xiong, W., H. Wang, H. Wu, Y. Chen, and D. Han. 2009. Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction 137: 469–479.