Supporting information for article:

On the correlation between hydrogen bonding and melting points in the inositols

Sándor L. Bekö, Edith Alig, Martin U. Schmidt and Jacco van de Streek
Electronic Supporting Information

S1. Elemental analysis

Calculated for C₆H₁₂O₆ (%): C, 40.00; H, 6.71.
Found for D-1-A: C, 39.74; H, 6.37.
Found for rac-1: C, 39.70; H, 6.72.
Found for 2-A: C, 40.08; H, 6.80.
Found for 5-E: C, 39.76; H, 6.58.
Found for 7-C: C, 39.92; H, 6.61.

S2. Rietveld refinements

The isostructurality (bar a reflection) of the crystal structure of D-(+)-chiro-inositol with that of L-(-)-chiro-inositol was confirmed through comparison of the experimental powder diffraction pattern of D-1-A with the powder pattern simulated from the single crystal structure of L-1-A. A crystal structure for D-1-A was obtained by starting from the single crystal structure of L-1-A and multiplying all atomic coordinates by -1. The resulting crystal structure was Rietveld refined with TOPAS-Academic 4.1. The positions of the hydrogen atoms were energy-optimised with a dispersion-corrected density functional theory method keeping the positions of the non-hydrogen atoms and the unit cell fixed.

The Rietveld plot for D-1-A is given in Fig. S1. The cif file for the crystal structure is part of the ESI of this paper.
Figure S1 Rietveld plot of D-1-A: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.
Figure S2 Rietveld plot of rac-1: observed (black), calculated (red) and difference (blue) profiles and tick marks for rac-1 (green) and D/L-1·⅓H₂O (magenta). At about 32° in 2θ the scale changes by a factor of 3.
Figure S3 Rietveld plot of 5-A: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.
Figure S4 Rietveld plot of 5-D: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 7.
Figure S5 Rietveld plot of 5-E: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.
Figure S6 Rietveld plot of 7-C: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 10.

S3. Pawley refinements on the rotator phases L-1-B, D-1-B, 5-C, 6-B and 5-B

All phases were measured with Cu-Kα1 radiation (λ = 1.5406 Å) in the range 2θ = 2-80° (the mixture of 5-C and 5-B was measured in the range 2-60°). All phases have chemical formula C₆H₁₂O₆, Mᵣ = 180.16 g/mol. The Pawley fits, carried out with TOPAS 4.1, converged well for D-1-B: \(F^* \), \(a = 9.31568 \) Å, \(V = 808.432 \) Å³, \(Z = 4 \), measurement at 500 K, \(R_{wp} = 0.0304 \), \(R_p = 0.0233 \), \(R_{exp} = 0.0280 \) (before background subtraction), \(R'_{wp} = 0.1584 \), \(R'_p = 0.1925 \), \(R'_{exp} = 0.1460 \) (after background subtraction), \(\chi^2 = 1.085 \), for L-1-B: \(F^* \), \(a = 9.31210 \) Å, \(V = 807.501 \) Å³, \(Z = 4 \), measurement at 500 K, \(R_{wp} = 0.0254 \), \(R_p = 0.0190 \), \(R_{exp} = 0.0190 \) (before background subtraction), \(R'_{wp} = 0.2013 \), \(R'_p = 0.2191 \), \(R'_{exp} = 0.1506 \) (after background subtraction), \(\chi^2 = 1.786 \), for 5-C: \(F^* \), \(a = 9.33440 \) Å, \(V = 813.316 \) Å³, \(Z = 4 \), measurement at 500 K, \(R_{wp} = 0.0601 \), \(R_p = 0.0461 \), \(R_{exp} = 0.0635 \) (before background subtraction), \(R'_{wp} = 0.2018 \), \(R'_p = 0.2947 \), \(R'_{exp} = 0.2132 \) (after background subtraction), \(\chi^2 = 0.947 \) and for 6-B: \(F^* \), \(a = 9.26836 \) Å, \(V = 796.175 \) Å³, \(Z = 4 \), measurement at 473 K, \(R_{wp} = 0.0404 \), \(R_p = 0.0304 \), \(R_{exp} = 0.0344 \) (before background subtraction), \(R'_{wp} = 0.1925 \), \(R'_p = 0.2689 \), \(R'_{exp} = 0.1624 \) (after background subtraction), \(\chi^2 = 1.185 \). For 5-B: \(P3^*/P6^* \), \(a = 6.57509 \) Å, \(c = 10.5818 \) Å, \(V = 396.181 \) Å³, \(Z = 2 \), measurement at 473 K, \(R_{wp} = \)
0.0296, $R_p = 0.0225$, $R_{exp} = 0.0263$ (before background subtraction), $R'_{wp} = 0.1369$, $R'_p = 0.1663$, $R'_{exp} = 0.1214$ (after background subtraction), $\chi^2 = 1.127$.

The Pawley plots for D-1-B, L-1-B, 5-C, 6-B and 5-B are given in Fig. S7, Fig. S8, Fig. S9, Fig. S10 and Fig. S11, respectively.

Figure S7 Pawley plot of D-1-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).
Figure S8 Pawley plot of L-1-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).
Figure S9 Pawley plot of 5-C with 5-B present: observed (black), calculated (red) and difference (blue) profiles and tick marks for 5-B (green) and 5-C (magenta).
Figure S10 Pawley plot of 6-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).
Figure S11 Pawley plot of 5-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).

S4. Stability of 7-C

XRPD measurements after one, two and three months revealed that 7-C is not stable at room temperature and slowly transforms back to 7-A (see Fig. S12). As shown in Fig. S12 there are four clearly free reflections (021 reflection at 15.4°, 111 at 17.4°, 102 at 18.7° and 112 at 20.1°) which indicate the increase of 7-A in 7-C over a period of three months. After one month a ratio of approximately 7:1 between 7-C and 7-A can be observed, after two months the ratio increases to 3:1 and after three months the ratio increases to 1:5. Therefore it can be assumed that after a longer period of time 7-C converts back to 7-A completely and that 7-C is a meta-stable polymorph of 7. Therefore no thermal effect could be observed during the cool-down process in the DSC (see Fig. 18 in the paper). Additional DSC and T-XRPD measurements on 7 up to 250 °C yielded only a partial conversion of 7-A to 7-C. Therefore the crystal structure of 7-C was determined with a sample from DSC measurements heated up to 280 °C and cooled down to 20 °C.
Figure S12 Overlay of the X-ray powder diffraction traces of myo-inositol, 7, showing the reference trace of 7-C (black) and 7-A (red), 7-C after one month (blue), two months (green) and three months (violet) stored at room temperature. Black asterisks indicate the reflections of interest.
Figure S13 DSC trace of myo-inositol, 7, measured from 280 down to 20 °C showing the recrystallisation of 7-A from the melt at 186 °C.