PHYSICO-CHEMICAL PROCESSES FROM THE X70 STEEL MAKING AND CONTINUOUS CASTING THAT INFLUENCE ITS PROPERTIES

Gigi STRATa*, Maria VLADa, Gelu MOVILEANUb, Florentina POTECĂȘUa
a“Dunarea de Jos” University of Galati, Faculty of Engineering, Romania
bValahia University of Targoviste, Romania
e-mail: gigistrat1967@gmail.com

ABSTRACT

The paper presents the processes of elaboration and casting that favourably influence the properties of microalloyed steel. High-strength microalloyed steel used to manufacture main oil and gas pipelines must meet, in addition to special technical conditions, economic conditions, which contribute to the protection of the environment. Secondary treatment in LF and RH installations as well as automatically controlled continuous casting can also help improving the physical, mechanical and corrosion properties of the products obtained from these steels. The making of X70 steels at OLD1-(Liberty Steel Group), according to existing technology, is the peak of performance at the current stage.

Blowing oxygen and argon into the converter is done according to a Blowing Pattern that takes into account the gas flow and the distance from the head of the blowing lance to the surface of the metal bath. Deoxidation and microalloying of the X70 steel take place in the casting ladle and during the secondary treatment in LF and RH.

For deoxidation and microalloying, some ferro-alloys which have strictly limited content of harmful elements (P, S) are used. LF microalloying materials such as: Mn-99\%, Al-99\%, FeTi-70\%, FeV-80\%, FeNb-65\%, Cu-99\% or SiCa-60/30\% are introduced into the steel as tubular ferro-alloys and not chunks. In this way, a superior assimilation and homogeneous diffusion of the elements into the metal bath are achieved.

Secondary treatment of the X70 steel for chemical and thermal homogenization of the metal bath is achieved by advanced metal bath desulfurization using synthetic slag, lime and bauxite. Vacuum degassing with RH procedure is done to reduce hydrogen from 8-9 ppm to less than 2 ppm. At the continuous casting of these steel types, the bubbling is not used because it is intended that the floating of inclusions be easier on the surface of the metal bath.

KEYWORDS: properties, deoxidation, microalloying, steel, LD converter

1. Introduction

The launching point in the research and development of high-strength micro-alloy steels was represented by the brands used in the construction of major oil and natural gas pipelines, the steels developed and processed for use in extreme conditions, from the Arctic to the desert areas, from depths greater than 2000 m, to the altitudes necessary to cross mountain ranges, buses that extend thousands of kilometres and which must satisfy, in addition to the special technical conditions that ensure their safety in use, economic conditions and protection of the environment.

By performing the tasks elaborated on the basis of the mathematical models and by optimizing the parameters of the main processes in the elaboration and casting of the high-strength mechanical steels, their properties can be improved. The steel industry has responded to current requirements by developing new steel brands that can be used in different...
industrial sectors and which have a common set of characteristics. These steels are called HSLA - high strength microalloyed steels [1]. All these features are found in high strength microalloyed steels, which are produced and developed under different brands by the major steel producers around the world [2]. This category also includes X70 steel according to API-5L-91.

X70 steel, by its characteristics, is suitable for the manufacture of main pipes in the current state of their technologies. Medium alloy steel would have required a higher consumption of alloying elements and thus higher production prices.

2. The experimental part

The main reference properties for X70 steels:
- high mechanical strength;
- high weldability;
- high resistance even at low temperatures;
- good plasticity characteristics;
- good resistance to atmospheric and marine corrosion;
- high economic efficiency in terms of production costs.

Tables 1-4 present the main mechanical properties and chemical compositions of X70 steel type.

Table 1. Variation of mechanical strength of X70 microalloyed steels according to API-5L / 95

Yield Strength [MPa]	Tensile strength [MPa]	Rp0.2/Ts
485-615	570-700	0.93

Table 2. X70 microalloyed steels, according to API-5L / 95

Chemical analysis	Acceptance limits	Over tolerant limits	Target	Acceptance limits	Over tolerant limits	Target
Element	Max (%)	Max (%)	Target (%)	Max (%)	Max (%)	Target (%)
C	0.09	0.07	Mo	0.09	0.07	0.13
Mn	1.65	1.55	Ni	1.65	1.55	0.20
P	0.02	0.018	Cu	0.02	0.018	0.10
S	0.01	0.05	B	0.01	0.05	0.0005
Si	0.40	0.30	Ca	0.40	0.30	0.0015
Al	0.05	0.04	N	0.05	0.04	0.007
Nb	0.07	0.06	V+Nb+Ti	0.07	0.06	0.15
V	0.10	0.008	V+Nb+Ti	0.10	0.008	0.14
Ti	0.025	0.02	Ce	0.025	0.02	0.39
Cr	0.20	0.20		0.20	0.20	

Table 3. X70-M21 microalloyed steels, according to the Arcelor Mittal Galati-Metallurgical Handbook

Min (%), Max (%)	C	Mn	Si	P	S	Al	N₂	H₂	Cu	Cr	Ni	Mo	Nb	Ti	V	Ca
Min (%)	0.06	1.45	0.25	0.02	0.0	0.02	0.1	0.12	0.045	0.15	0.0005	0.0005	0.0005	0.0008	0.0015	
Max (%)	0.075	1.6	0.4	0.01	0.002	0.05	0.007	2 ppm	0.1	0.2	0.2	0.13	0.055	0.025	0.008	0.0015
2.1. Steelmaking and continuous casting of X70

The following materials, installations and some specific operations are used in the X70 steelmaking process [3-5]:
- Technologically selected scrap iron;
- Desulfurized cast iron at% S = 20 ppm and advanced slag removed;
- Converter with functional bubbling and slag retention, calibrated;
- Clean casting pot with functional bubbling;
- Recycled steel is not inserted in the metal load;
- Bubbling only with argon for the entire duration of the breath;
- Intermediate stop for advanced slag evacuation and resumption of blowing with additional quantity of 1-ton lime [8];
- Minimum 3 minutes post bubble (oxygen activity ≤ 700 ppm and phosphorus ≤ 0.006%);
- The calculation of the necessary alloys is made on the lower limit of each element;
- Electrolytic manganese will be used during the evacuation and the ferroalloys will be administered with 1-minute breaks between them;
- Steel bubbling after evacuation will be done through a porous plug without the discovery of the metal bath;
- LF treatment (advanced steel bubbling, heating and desulfurization);
- Advanced desulfurization with lime, bauxite and synthetic slag;
- Correction of chemical analysis and microalloys with ferroalloys of Nb, V, Ti and SiC;
- HR treatment for 15 minutes minimum vacuum degassing;
- The batches do not bubble for about 15-20 minutes before casting begins to float inclusions in the slag [5].

Table 4. X70-T15 microalloyed steels, according to the Arcelor Mittal Galati-Metallurgical Handbook

Chemical analysis	C	Mn	Si	Al	P	S	N\textsubscript{2}	Mo	Cr	Nb	Ti	Ca	H\textsubscript{2}
T15	min (%)	0.060	1.600	0.200	0.020	0.110	0.25	0.055	0.015	0.0005	max.2		
	max (%)	0.075	1.750	0.350	0.060	0.015	0.007	0.120	0.35	0.065	0.025	0.0015	max.2
Target (%)	0.068	1.680	0.280	0.040	0.012	0.003	0.006	0.115	0.30	0.060	0.020	0.0010	

Table 5. Chemical compositions corresponding to X70 steel making batch (%), according to the ODLJ - Arcelor Mittal Galati spectral laboratory analysis

Cod ACH Element	Desulfurized cast iron	End of blowing	Steel after evacuation	Steel in L.F. first sample	Steel in L.F. second sample	Steel in L.F. third sample	Steel in L.F. fourth sample	Steel in L.F. last sample	Final sample from distributor
C	4.7196	0.0555	0.0524	0.0602	0.0677	0.0761	0.0723	0.0742	0.0728
Mn	0.5105	0.0824	1.2704	1.3102	1.3115	1.5012	1.4937	1.4843	1.4696
Si	0.6787	0.0010	0.2086	0.1661	0.2510	0.2813	0.2631	0.2646	0.2729
P	0.0767	0.0048	0.0052	0.0059	0.0064	0.0069	0.0066	0.0068	0.0070
S	0.0036	0.0090	0.0069	0.0044	0.0030	0.0014	0.0013	0.0013	0.0012
Al	0.0031	0.1753	0.0151	0.0232	0.0308	0.0316	0.0342	0.0393	0.0444
Ni	0.0016	0.0081	0.0086	0.0085	0.0084	0.0086	0.0085	0.0085	0.0085
Cu	0.0063	0.0112	0.0136	0.0136	0.0138	0.0146	0.0146	0.0144	0.0145
Cr	0.0186	0.0063	0.0088	0.0093	0.0097	0.0110	0.0108	0.0112	0.0117
Ti	0.0318	0.0001	0.0006	0.0007	0.0015	0.0209	0.0224	0.0206	0.0166
Mo	0.0010	0.0009	0.1172	0.1184	0.1182	0.1246	0.1251	0.1251	0.1245
Nb	0.0010	0.0003	0.0014	0.0013	0.0016	0.0420	0.0422	0.0451	0.0466
V	0.0072	0.0004	0.0014	0.0015	0.0017	0.0020	0.0019	0.0017	0.0018
Ca	0.0000	0.0166	0.0001	0.0001	0.0033	0.0103	0.0047	0.0039	0.0096
Sn	0.0042	0.0008	0.0010	0.0011	0.0013	0.0014	0.0014	0.0012	0.0015
B	0.0006	0.0000	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0003
N	0.0000	0.0057	0.0024	0.0010	0.0011	0.0009	0.0033	0.0006	0.0004
Pb	0.0010	0.0005	0.0020	0.0022	0.0022	0.0024	0.0028	0.0027	0.0026
Zr	0.0010	0.0003	0.0019	0.0020	0.0020	0.0025	0.0024	0.0024	0.0024
Zn	0.0017	0.0042	0.0060	0.0065	0.0043	0.0028	0.0089	0.0059	0.0029
Co	0.0010	0.0021	0.0024	0.0024	0.0023	0.0026	0.0025	0.0025	0.0025
Fe	93.9087	99.6261	98.2768	98.2643	98.1609	97.8518	97.8813	97.8875	97.8962
Fig. 1. General presentation of the technological flows of making and casting steel [1, 4]

2.2. Physico-chemical processes in steelmaking and casting of X70

In a LD converter with combined oxygen and argon blowing, Fig. 2, the basic reactions that take place are oxidation, and the movement of the metal bath is mainly generated by the energy transmitted by the oxygen jet hitting the metal bath and by the blowing energy, due to carbon monoxide (CO) formation and release [6].

Fig. 2. Linz-Donawitz converter with combined blowing of the O2 - Ar [1, 8]

In the initial phase of the process when the silica oxidation takes place, the formation of CO remains less intense. In the main decarburization phase, the formation of CO in the reaction areas of the oxygen jets and in the immediate vicinity is extremely pronounced. In the marginal areas of the converter, however, there are dead zones where variations of concentrations occur due to the differences in
intensity of the oxidation reactions [7]. In the final phase of the decarburization, the combustion zones are less carbon-fuelled, due to an increased slag of iron and manganese.

In the bubbling process, the inert gas (nitrogen or argon) is injected into the batch through the bottom of the converter. The amount of gas varies depending on the phase of the elaboration process. During de-silica and the main decarburization phase, the gas flow is sufficient to ensure the chemical composition and homogeneous temperature of the metal bath. In the final phase of decarburization and especially in advanced decarburization, the CO formation is too weak to generate the movement of the metal bath. In this period the flow rate of the bubbling gas is increased to ensure the transport of carbon in the reaction areas of the oxygen jets and at the same time to prevent the slag from further oxidation of other elements. In the whole process, the reactions are close to equilibrium, balances that are reached in the post-bubbling phase and the variation of the main elements concentration and of their oxides are shown in Fig. 3.

![Variation of different element and the resulting oxides concentration in the converter](image)

Fig. 3. Variation of different element and the resulting oxides concentration in the converter [4]

![Continuous casting machine](image)

Fig. 4. Continuous casting machine, the main scheme [4, 5]

The bubbling process through the bottom of the converter helps the oxidation and slurry reactions of the formed oxides (oxides of silica, manganese, iron etc.) near the equilibrium state, during the main phase of the decarburization [8]. The equilibrium states between the chemical elements in the metal bath and
the oxygen content are not perfectly achieved during oxygen bubbling. The lime dissolution is accelerated by injecting the inert gas into the metal bath. The addition of fluorine (CaF₂) for the fluidization of the slag is no longer necessary, which leads to increased durability of the refractory lining of the converter.

Examples of the defects types in slabs are presented in Table 7 and Fig. 7, 8.

Table 6. Baumann analysis bulletin according to the Baumann-OLD1 Laboratory Analysis

No. heat	No. slab	Quality	Sleb dimensions	Attack type	Casting machine	Level of segregation
911435	3	M21	250/1900	CuCl₂+NH₄Cl	1/1	Class 2
911435	6	M21	250/1900	CuCl₂+NH₄Cl	1/2	Class 1

Fig. 5. Central segregation and defective core class 2, wire 1

Fig. 6. Central segregation and defective core class 1, wire 2

Table 7. Faults in frames according to API-5L / 95 [4, 5]

Surface defects	Type	Causes
Cracks	longitudinal	longitudinal uneven cooling in the crystallizer
	transversal	transversal adhesion of the steel to the walls of the crystallizer
	lateral	lateral abrasions of the crystallizer walls
	marginal	marginal sealing improper at the beginning
Microcavities and non-metallic inclusions	temperature and high casting speed	
		defective alignment of the supporting rolls
		low temperature of steel
		oxidation of steel in crystallizer
		inadequate dry distributor
incorporations of pouring powder
impure steel with non-metallic inclusions
driving crusts of solidified steel in crystallizer
inadequate deoxidation of steel when making it

Internal defects	
Segregation at the center and defective cores	Improper casting temperature
Non-metallic inclusions	
inclusions of pouring powder	
local inclusions	excessive turbulent local of the steel in the crystallizer
slag inclusions	refractory exfoliated material
inclusions in the form of clouds	slag drive from distributor to crystallizer
inclusions below the surface	

Fig. 7. Surface cracks

Fig. 8. Deep longitudinal cracks

Following some structural analysis presented in Fig. 9, it resulted that the microstructure noted with 1 shows that the analysed steel purity is very good, max. 1 in conformity with the existing standards. The steel is clean and globular inclusions rarely occur (sulphides modified as a result of their interaction with Al_2O_3 and CaO).
Fig. 9. SEM images of X70 steel samples (500x), according to the Central Laboratory analysis of Liberty Steel Group Galati

The microstructures noted with 2 and 3 are fine, with some granulation zones 8-9 and a ferrito-perlitic structure. These structures ensure good deformability [8].

3. Conclusions

For deoxidation and microalloying, iron alloys are used but they have strictly limited content of harmful elements (P, S). LF microalloying materials such as: Mn-99%, Al-99%, FeTi-70%, FeV-80%, FeNb-65%, Ca-99% or SiCa-60/30% are introduced into the steel as tubular iron -alloys and not chunks.

In this way, the superior assimilation and homogeneous diffusion of the elements into the metal bath are achieved.

Secondary treatment of the X70 steel for chemical and thermal homogenization of the metal bath is achieved by advanced metal bath desulfurization using synthetic slag, lime and bauxite. Vacuum degassing with RH procedure is done to reduce hydrogen from 8-9 ppm to less than 2 ppm. At the continuous casting of these steel types, the bubbling is not used because it is intended that the floating of inclusions be easier on the surface of the metal bath.

References

[1]. Toshihiko E. M. I., Steelmaking technology for the last 100 years: Toward highly efficient mass production systems for high quality steels, ISIJ International, vol. 55, no. 1, p. 36-66, 2015.
[2]. Siciliano F., Stalheim D. G., Gray M. J., Modern high strength steels for oil and gas transmission pipelines, Proceedings of the 7th International Pipeline Conference, TMS, 2008.
[3]. Alexandru Rau, Iosif Tripşa, Steel metallurgy, Didactic and Pedagogical Publishing House Bucharest, 1973.
[4]. ***, Working procedures and instructions from OLD1-TC of Arcelor Mittal Galati, 2014.
[5]. Peng Fei, Yi Min, Cheng-jun Liu et al., Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions, International Journal of Minerals metallurgy and materials, vol. 26, no. 2, p.186, 2019.
[6]. Tripşa I., Kraft N., Steelmaking in oxygen converters, Technical Publishing House, Bucharest, 1970.
[7]. Tripşa I., Pumnea C., Steel deoxidation, Technical Publishing House, Bucharest, 1981.
[8]. ***, Technological instructions specific to X60, X65, X70 steelmaking, ArcelorMittal Galati, OLD1, Steel Department, 2016.