ORIGINAL RESEARCH

Time-Dependent Impact of Sex on the Long-Term Outcomes After Left Main Revascularization

Yong-Hoon Yoon, MD, PhD*; Jung-Min Ahn, MD, PhD*; Jung Bok Lee, PhD; Do-Yoon Kang, MD, PhD; Hanbit Park, MD, PhD; Yeong Jin Jeong, MD; Junghoon Lee, MD; Ju Hyeon Kim, MD; Yu Jin Jeong, MD; Junho Hyun, MD; Pil Hyung Lee, MD, PhD; Duk-Woo Park, MD, PhD; Seung-Jung Park, MD, PhD

BACKGROUND: There are still limited data about the differential effect of sex on long-term outcomes after percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) for left main coronary artery disease. This extended follow-up study of the MAIN-COMPARE (Ten-Year Outcomes of Stents Versus Coronary-Artery Bypass Grafting for Left Main Coronary Artery Disease) registry evaluated clinical outcomes beyond 10 years.

METHODS AND RESULTS: Of 2240 patients with unprotected left main coronary artery disease (PCI=1102 and CABG=1138), all-cause mortality, the composite of death, Q-wave myocardial infarction, or stroke, and target vessel revascularization were separately evaluated in both sexes. Of 2240 patients, 631 (28.2%) were women and 1609 (71.8%) were men. Women had lower 10-year incidences of death and serious composite outcomes than men. The adjusted 10-year risks of adverse outcomes were similar in men. However, the adjusted 10-year risks were different according to a prespecified period in women. In the short-term (0–1 year) period, PCI had a significantly lower risk for serious composite outcomes (adjusted hazard ratio [HR], 0.41; 95% CI, 0.19–0.91; \(P=0.03\)) compared with CABG. The adjusted risks for death and serious composite outcomes were significantly higher after PCI than after CABG, during the midterm (1–5 years) period (death; adjusted HR, 3.99; 95% CI, 2.01–7.92; \(P<0.001\) and composite outcome; adjusted HR, 2.93; 95% CI, 1.59–5.39; \(P=0.001\)). Beyond 5 years, adjusted risks were similar after PCI and CABG in women.

CONCLUSIONS: In this 10-year extended follow-up study of patients undergoing left main coronary artery revascularization, we observed a time-dependent impact of sex on the long-term outcomes after PCI and CABG, especially in women, with significant interactions. However, these results warrant confirmation on larger series of studies.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02791412.

Key Words: coronary artery bypass surgery ■ left main coronary artery disease ■ outcomes ■ percutaneous coronary intervention ■ sex

See Editorial by Malick et al.

Over the past 2 decades, percutaneous coronary intervention (PCI) has been accepted as an effective revascularization strategy for selected patients with left main coronary artery (LMCA) disease attributable to improved devices, accumulation of experiences, and proper long-term medications after procedures.\(^1,2\) Although there are still ongoing debates about the relative long-term outcomes of PCI and coronary artery bypass grafting (CABG) for LMCA disease,\(^3-7\) the decision making for optimal revascularization strategy is of paramount importance considering several clinical profiles, comorbidity, anatomic
Yoon et al Impact of Sex on Left Main Revascularization

complexity, physical performance, and preference of patients."8,9 Among several important clinical factors, sex-specific differences in baseline characteristics and outcomes have been recognized,10 and several clinical trials and registries reported the differential effect of sex on the relative treatment patterns and the effects of PCI and CABG for multivessel or LMCA disease.11–15 Given that the difference in treatment effect of 2 competing revascularization strategies in both men and women were discordant according to period, geography, and ethnicity of the study subjects, there is no uniform consensus with regard to the interaction between sex and periprocedural complications or long-term cardiovascular events after PCI or CABG. In addition, a recent SYNTAXES (Synergy Between PCI With Taxus and Cardiac Surgery Extended Survival) report revealed time-dependent interaction of sex with treatment effect of PCI or CABG in patients with multivessel disease.16 Herein, we investigated the association between sex and long-term (beyond 10 years) outcomes of PCI versus CABG for patients with LMCA disease.

METHODS

Data Sources

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Study Design and Population

The study design, characteristics, primary results, and final 10-year outcomes of the MAIN-COMPARE study (NCT02791412) have been reported previously.5,17,18 In brief, the MAIN-COMPARE study included consecutive patients with significant LMCA disease who underwent PCI or CABG in 12 major centers in Korea between January 2000 and June 2006. Patients with previous CABG, concomitant valve or aortic surgery, or ST-segment-elevation myocardial infarction (MI) or cardiogenic shock at
presentation were excluded. The use of clinical data for this study was approved by the institutional review committees at each hospital, and all patients provided written informed consent.

Detailed information on PCI and CABG procedures were reported. Selection of either PCI or CABG as treatment strategy for LMCA disease was at the discretion of attending cardiologists or cardiac surgeons, with careful consideration of clinical and anatomic factors and patient preference. Bare-metal stents and drug-eluting stents were exclusively used from January 2000 to May 2003 and from May 2003 to June 2006, respectively, in the study, because of the availability of those devices. The methods for data acquisition and management during the extended follow-up period have been described previously. Follow-up was performed in accordance with the local law and regulations of each participating institution, and it was extended through December 31, 2016 to ensure the availability of 10-year follow-up for all study subjects. Complete information on vital status was also reconfirmed from the National Population Registry of the Korea National Statistical Office.

Study Outcomes

The key study outcomes were all-cause death; the composite of death, Q-wave MI, or stroke; and target vessel revascularization (TVR) 10 years after index revascularization. In the current study, all-cause mortality was assessed, which was the most unbiased method to report deaths in a clinical trial or observational study. Q-wave MI was defined as periprocedural or spontaneous MI accompanied with any new pathologic Q wave. Stroke was confirmed by neurologists with clinical symptoms and neurologic imaging. TVR was defined as any repeat revascularization of the target vessels including any segments in LMCA, the left anterior descending artery, and/or left circumflex artery. All clinical outcomes were confirmed by the source documentation obtained from each hospital, and central adjudication was performed for all clinical events by an independent group of clinicians.

Statistical Analysis

The study methods have been described in detail previously. The primary objective was to evaluate whether female and male patients would respond to revascularization differently during an extended long-term follow-up. Patient demographics and procedural characteristics are presented as mean with standard deviation in continuous variables and as number with percentage in categorical variables. Comparisons between groups were performed using the Pearson χ^2 test for categorical variables and the Student t test for continuous variables.

To compensate for the nonrandomized design of this study, primary analysis was performed using inverse probability treatment weighting (IPTW) based on propensity scores. The propensity score was defined as the conditional probability of receiving PCI relative to CABG on the basis of available variables, and it was estimated with a multiple logistic regression model. All prespecified variables were included in the respective models (Table 1). Separate propensity scores were used to adjust differences in the baseline characteristics of both treatment groups (PCI versus CABG) in women and men. Appropriateness of adjustment was evaluated using standardized mean differences after IPTW. The cumulative event curves were estimated using the Kaplan-Meier method in time-to-first-event analyses with IPTW. The weighted Cox proportional hazard model was used to assess the relative risk of differential outcomes between the CABG and PCI arms. The assumption of proportional hazards in the Cox model for all-cause mortality and composite outcomes were not met in log of negative log of estimated survivor functions. Thus, we performed logistic regression for clinical outcomes, with follow-up time as a log-transformed offset variable. Piecewise hazard models were used separately for 0 to 1 year, 1 to 5 years, and 5 to 10 years to assess short-term, midterm, and long-term effects of different treatment modalities (PCI versus CABG), respectively, in women and men. This time period separation was made for the following reasons: (1) to avoid a significant bias toward positive results for the selection of time period based on relevant outcomes, (2) in accordance with a prespecified time point of 5 years in the previous report of the MAIN-COMPARE registry that divided 10 years into 0 to 5 and 5 to 10 years, and (3) to show differential effect of PCI and CABG in women that showed dramatic changes during the early period, 0 to 1 year was additionally included as the EXCEL (Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) extended follow-up trial assessed. Interactions of sex and the 2 treatment arms were evaluated using the separate periods and the entire follow-up period. Patients with missing vital status and clinical events were included in the analysis and censored at the last date of contact or observation. All reported P values were 2-sided, and values <0.05 were considered statistically significant. No adjustments were made for multiple comparisons. Because of the potential for type I error attributable to multiple comparisons, all findings of this study should be interpreted as exploratory. All statistical analyses were performed with the use of statistical software.
RESULTS

Study Population and Baseline Characteristics

Of the 2240 patients enrolled in the MAIN-COMPARE registry, 631 (28.2%) were women and 1609 (71.8%) were men; women were treated with either PCI (323 patients [51.2%]) or CABG (308 patients [48.8%]), and men were treated with either PCI (779 patients [48.4%]) or CABG (830 patients [51.6%]). In general, compared with men, women had higher prevalence rates of hypertension and dyslipidemia, and the rate of current smokers was low (Table S1). On procedural or operative characteristics, women were treated with shorter total stent length in the PCI arm and received fewer conduits in the CABG arm compared with men (Table S2).

Baseline demographics, clinical, and anatomic characteristics between the CABG and PCI groups stratified by sex are summarized in Table 1. In both female and male groups, patients who underwent CABG were more likely to have a higher risk for clinical and anatomic risk factor profiles than those who underwent PCI. After adjustment for the use of IPTW, all of the clinical covariates were well balanced (Table 2). The standard mean differences were <0.1 for almost all variables, indicating that the PCI and CABG arms in both sexes were balanced after adjustment.

Table 1. Baseline Characteristics of Patients According to Sex and Revascularization Strategies

Characteristics	Women	Men	P value	Women	Men	P value
Wave						
BMS era, Jan 2000–May 2003	117 (38.0)	95 (29.4)	0.028	331 (39.9)	223 (28.6)	<0.001
DES era, May 2003–Jun 2006	191 (62.0)	228 (70.6)		499 (60.1)	556 (71.4)	
Age, y	63.5 ± 9.3	59.8 ± 13.4	<0.001	62.7 ± 9.4	62.0 ± 10.8	0.133
Diabetes	101 (32.8)	99 (30.7)	0.622	294 (35.4)	228 (29.3)	0.010
Hypertension	168 (54.5)	177 (64.8)	>0.99	394 (47.5)	369 (47.4)	>0.99
Dyslipidemia	112 (36.4)	107 (33.1)	0.441	259 (31.2)	208 (26.7)	0.053
Current smoker	23 (7.5)	14 (4.3)	0.132	316 (38.1)	268 (34.4)	0.139
Previous PCI	36 (11.7)	49 (15.2)	0.244	89 (10.7)	151 (19.4)	<0.001
Previous MI	24 (7.8)	17 (5.3)	0.260	108 (13.0)	72 (9.2)	0.020
Previous CHF	6 (1.9)	10 (3.1)	0.507	32 (3.9)	17 (2.2)	0.071
Chronic lung disease	3 (1.0)	5 (1.5)	0.773	20 (2.4)	17 (2.2)	0.891
Cerebrovascular disease	11 (3.6)	23 (7.1)	0.072	72 (8.7)	55 (7.1)	0.268
Peripheral arterial disease	11 (3.6)	1 (0.3)	0.007	51 (6.1)	15 (1.9)	<0.001
Renal failure	9 (2.9)	7 (2.2)	0.727	25 (3.0)	23 (3.0)	>0.99
Ejection fraction	59.7 ± 10.9	62.1 ± 9.7	0.003	56.7 ± 12.2	60.1 ± 11.0	<0.001
Clinical indication			0.161			<0.001
Silent ischemia	2 (0.6)	7 (2.2)	0.003	23 (2.8)	26 (3.3)	
Chronic stable angina	70 (22.7)	90 (27.9)	156 (18.8)	263 (33.8)		
Unstable angina	209 (67.9)	201 (62.2)	566 (68.2)	407 (52.2)		
NSTEMI	27 (8.8)	25 (7.7)	85 (10.2)	83 (10.7)		
Left main disease location			0.005	0.642		
Left main only	152 (49.4)	196 (60.7)	374 (45.1)	361 (46.3)		
Distal bifurcation	156 (50.6)	127 (39.3)	456 (54.9)	418 (53.7)		
Extent of diseased vessel			<0.001	<0.001		
Left main only	22 (7.1)	107 (33.1)	49 (5.9)	171 (22.0)		
Left main plus 1-vessel disease	37 (12.0)	65 (20.1)	82 (9.9)	199 (25.5)		
Left main plus 2-vessel disease	70 (22.7)	78 (24.1)	229 (27.6)	209 (26.8)		
Left main plus 3-vessel disease	179 (58.1)	73 (22.6)	470 (56.6)	200 (25.7)		
Restenotic lesion	7 (2.3)	12 (3.7)	0.408	7 (0.8)	20 (2.6)	0.013

Values are n (%) or mean±SD.
BMS indicates bare-metal stent; CABG, coronary artery bypass grafting; CHF, congestive heart failure; DES, drug-eluting stent; MI, myocardial infarction; NSTEMI, non–ST-segment-elevation myocardial infarction; and PCI, percutaneous coronary intervention.

of R software version 3.4.4 (The R Foundation for Statistical Computing) and SAS (SAS Institute).
Comparative 10-Year Clinical Outcomes in Women and Men

The median follow-up duration was 11.9 years (interquartile range, 10.3–13.4 years) for the study population. The follow-up status for major clinical events was ascertained for 2211 patients (98.7%) of the overall population. In general, women had lower crude rates of all-cause mortality and serious composite outcomes at 10 years compared with men, in which the significant difference at 10 years was driven mainly by a higher event rate in men during the late period between 5 and 10 years (Figure S1 and Table S3). The crude rate of TVR at 10 years was not significantly different between women and men. However, after adjustment for baseline characteristics, there were no significant differences in clinical outcomes between women and men (Figure S2 and Table S3).

The unadjusted Kaplan-Meier event rates and curves after PCI and CABG stratified by sex group are shown in Figure 1 and Table 3. The observed 10-year rates of mortality and the composite of death, Q-wave MI, or stroke were similar between the PCI and CABG groups for both sexes. However, there was a crossover in outcomes after PCI versus CABG over time in women but not in men (Figure 1). The rate of TVR was consistently higher after PCI than after CABG, irrespective of the sex. The IPTW-adjusted Kaplan-Meier event rates and curves for clinical outcomes are shown in Figure 2 and Table 3. In men, the adjusted rates of
all-cause mortality and composite outcome of death, Q-wave MI, or stroke were not significantly different between the PCI and CABG groups during the 10-year follow-up. On the contrary, in women, the adjusted 10-year rates of death and serious composite outcomes were higher after PCI than they were after CABG (death: 24.4% in PCI versus 17.0% in CABG, and composite outcome: 26.2% in PCI versus 20.8% in CABG). In addition, there was a crossover in the adjusted outcomes after PCI versus CABG over time in women but not in men (Figure 2). Especially, over time, the risks for death and composite outcomes have diverged during the late period of follow-up, favoring CABG over PCI in women.

Differential effects of PCI and CABG were observed in women in the piecewise Cox models over 3 periods. In the short-term (0- to 1-year) period, after undergoing PCI, women had a significantly lower risk for serious composite outcomes compared with women after undergoing CABG (adjusted hazard ratio [HR], 0.41; 95% CI, 0.19–0.91; P = 0.028). On the other hand, significantly higher risks for death and serious composite outcomes were observed in women who underwent PCI than in women who underwent CABG during the midterm (1 to 5 years) period (for death: adjusted HR, 3.99; 95% CI, 2.01–7.92, P < 0.001, and for serious composite outcome: adjusted HR, 2.93; 95% CI, 1.59–5.39; P = 0.001) with significant interactions between sex and treatment modalities (for death: P < 0.001, for serious composite outcome: P = 0.002). There were no significant differences in these outcomes beyond 5 years after PCI and CABG in women (Table 4 and Figure 3). Male patients experienced similar adverse events in all clinical outcomes regardless of time.
The rate of TVR was consistently higher in the PCI group, irrespective of sex.

DISCUSSION

In this longest follow-up cohort study of patients with unprotected LMCA disease who underwent PCI or CABG, we performed an analysis to assess the long-term prognostic effect of sex on the relative clinical outcomes of 2 competing revascularization modalities. The major findings of the study are: (1) Compared with women, men experienced higher rates of mortality and serious composite of death, Q-wave MI, or stroke at 10 years. (2) In men, there were no differences between PCI and CABG arms on mortality and serious composite outcomes over time up to 10 years. (3) In women, the adjusted 10-year risks of death and composite outcomes were significantly lower up to 1 year after PCI than they were after CABG, whereas they were significantly higher after PCI over CABG from 1 year to 5 years. This trend has emerged during the late period of follow-up. (4) TVR rates were consistently higher after PCI than they were after CABG, regardless of sex.

Women and men who developed atherosclerotic coronary artery disease are different in terms of genetics, hormonal effect, prevalence of comorbidity, and anatomic complexity. Traditionally, female sex has been considered as a disadvantage in risk-assessment scoring systems developed for cardiac surgery, but the relationship between cardiac surgery and sex on clinical outcomes are still controversial. The 10-year results of the STICH (Surgical Treatment for Ischemic Heart Failure) trial showed no disadvantage during the early period after CABG in women, and thus, sex should not influence treatment decisions about CABG in these patients. The results from other large-sized registries showed inconsistent results of worse clinical outcomes in women than in men. Also, several studies elucidated differential effect of sex on PCI outcomes, and the results are conflicting; some studies showed similar outcomes of PCI in women and men, other studies reported higher periprocedural risk but lower long-term mortality in women than in men, and recent pooled analysis of patient-level data showed that women had a higher risk of major adverse cardiac events and target-lesion revascularization compared with men 5 years after undergoing PCI.

On the decision-making for optimal revascularization strategy for patients with multivessel or LMCA disease, there has been a continuing debate on biological sex being considered as one of the key factors for discriminating treatment modalities. The relative treatment effect of PCI or CABG can differ between women and men. However, data on the interaction between

Table 3. Clinical Outcomes at 10 y

Unadjusted outcomes	Adjusted outcomes with the use of inverse probability treatment weighting					
	CABG	PCI	P-int*	CABG	PCI	P-int*
Death	0.096	0.088	0.030	0.405	0.303	0.207
Death, Q-wave MI, or stroke	0.379	0.096	0.030	0.405	0.303	0.207
TVR	0.774	0.422	0.422	0.422	0.422	0.422

*Event rates (percent) shown are the incidences estimated using the Kaplan-Meier survival analysis.
†P-value for the interaction between women vs men and revascularization strategy (PCI vs CABG).
sex and those 2 revascularization modalities are limited to date, especially in patients with LMCA disease. Most randomized studies showed similar outcomes between CABG and PCI, regardless of sex.\(^6,12–14\) The 10-year follow-up report of the PRECOMBAT (Premier of Randomized Comparison of Bypass Surgery Versus Angioplasty Using Sirolimus-Eluting Stent in Patients With Left Main Coronary Artery Disease) trial showed no significant interaction between sex and PCI with first-generation drug-eluting stents or CABG (\(P\) for interaction=0.95). The EXCEL trial revealed that women undergoing PCI with second-generation drug-eluting stents had a trend toward worse outcomes, a finding related to associated clinical comorbidities and increased periprocedural complications.\(^14\) In the 5-year report of the NOBLE (Nordic–Baltic–British Left Main Revascularization) trial, treatment effect favoring CABG over PCI was more prominent in women than in men, without significant interaction (\(P\) for interaction=0.22).\(^4\) The meta-analysis of 10 randomized trials showed that 5-year mortality was lower after CABG than it was after PCI, which was consistent in both sexes (\(P\) for interaction=0.82).

Because of the late catch-up phenomenon of CABG over PCI after midterm follow-up (3–5 years), the analysis of an extended follow-up period >5 years is important to provide a relevant massage on the effect of PCI and CABG in LMCA disease. An early report of the SYNTAX (Synergy Between PCI With Taxus and Cardiac Surgery) trial for up to 5 years showed worse outcomes after PCI in women, and a lower anatomical SYNTAX score was required to achieve similar

Figure 2. Adjusted 10-year Kaplan-Meier curves for clinical events stratified by sex and revascularization strategies in the overall cohort. **A**, Death. **B**, Death, Q-wave myocardial infarction (MI), or stroke. **C**, Target vessel revascularization. CABG indicates coronary artery bypass grafting; and PCI, percutaneous coronary intervention.
outcomes between PCI and CABG in women.10,33 Thus, SYNTAX score II added female sex to the original SYNTAX score I, as a factor favoring CABG over PCI.10 However, a recent 10-year report from SYNTAXES demonstrated the interaction between sex and treatment with PCI or CABG that was observed at the 5-year follow-up (P for interaction=0.03) was no longer present at 10 years (P for interaction=0.95), in which the significant mortality benefit of CABG observed in women at 5 years disappeared at 10 years.16 Similarly, our study showed that treatment effect could be different over a long-term period after PCI or CABG, according to sex. Especially in women, the risks of mortality and serious composite outcomes were different during

Table 4. Crude and Adjusted Risks Over Prespecified 3 Time Periods After PCI or CABG, According to Sex Category

Outcomes at 1 year	Unadjusted Outcomes	Adjusted outcomes with the use of inverse probability treatment weighting								
	CABG	PCI	HR (95% CI)*	P value	P-int*	CABG	PCI	HR (95% CI)*	P value	P-int*
Death										
Women	12 (3.9)	5 (1.6)	0.39 (0.14–1.11)	0.077	3.8	2.4	0.65 (0.27–1.61)	0.355		
Men	23 (2.8)	15 (1.9)	0.69 (0.36–1.32)	0.265	3.5	3.4	0.95 (0.56–1.62)	0.863		
Death, Q-wave MI, or stroke										
Women	18 (5.8)	6 (1.9)	0.31 (0.12–0.78)	0.013	6.5	2.8	0.41 (0.19–0.91)	0.028		
Men	25 (3)	16 (2.1)	0.68 (0.36–1.27)	0.224	4.3	3.5	0.79 (0.48–1.31)	0.363		
TVR										
Women	6 (2)	26 (8.1)	4.14 (1.70–10.05)	0.002	1.3	9.2	7.34 (2.53–21.28)	<0.001		
Men	8 (1)	71 (9.1)	9.79 (4.71–20.33)	<0.001	1.2	11.0	9.46 (4.94–18.13)	<0.001		
Outcomes from 1–5 y										
Death										
Women	14 (4.6)	30 (9.3)	2.08 (1.10–3.92)	0.024	3.4	12.9	3.99 (2.01–7.92)	<0.001		
Men	70 (8.4)	51 (6.6)	0.77 (0.54–1.11)	0.157	7.8	7.3	0.94 (0.65–1.34)	0.711		
Death, Q-wave MI, or stroke										
Women	19 (6.2)	30 (9.3)	1.52 (0.86–2.70)	0.154	4.6	12.9	2.93 (1.59–5.39)	0.001		
Men	78 (9.4)	62 (8.0)	0.84 (0.61–1.18)	0.318	8.9	8.8	1.00 (0.72–1.39)	<0.99		
TVR										
Women	9 (2.9)	21 (6.5)	2.27 (1.04–4.96)	0.040	2.9	6.5	2.37 (1.07–5.24)	0.034		
Men	18 (2.2)	47 (6.1)	2.80 (1.62–4.82)	<0.001	2.0	6.5	3.24 (1.87–5.62)	<0.001		
Outcomes from 5–10 y										
Death										
Women	30 (9.8)	28 (8.7)	0.89 (0.53–1.49)	0.657	9.8	8.9	0.90 (0.54–1.52)	0.700		
Men	101 (12.3)	98 (12.7)	1.04 (0.79–1.38)	0.764	12.8	13.8	1.09 (0.83–1.43)	0.547		
Death, Q-wave MI, or stroke										
Women	36 (11.7)	34 (10.8)	0.90 (0.57–1.44)	0.672	11.5	10.6	0.92 (0.58–1.49)	0.745		
Men	113 (13.8)	113 (14.7)	1.08 (0.83–1.40)	0.588	12.8	13.8	1.11 (0.86–1.44)	0.412		
TVR										
Women	1 (0.3)	12 (3.7)	11.65 (1.52–89.61)	0.018	0.2	3.0	12.29 (1.14–132.26)	0.039		
Men	17 (2.1)	38 (4.9)	2.42 (1.36–4.26)	0.003	2.1	4.6	2.14 (1.21–3.80)	0.009		

CABG indicates coronary artery bypass grafting; HR, hazard ratio; MI, myocardial infarction; PCI, percutaneous coronary intervention; and TVR, target vessel revascularization.

*HR is the risk of different outcomes in PCI compared with CABG.

†P value for the interaction (P-int) between sex (women vs men) and revascularization strategy (PCI vs CABG).
early and midterm periods, with favorable outcomes in PCI during the early period but favoring CABG over PCI during the midterm period. The main mechanism of this observed finding is unclear. In women undergoing CABG who were older and had lower ejection fraction and more extensive coronary disease, the beneficial effect of CABG over PCI has been gradually manifested during the late follow-up period, which was not evident in the early period. Although the reasons for some discordant observations between SYNTAXES and this study are not fully understood, differences in genetic and hormonal factors, and the sizes of coronary arteries, as well as the differences in patient profiles, and procedural and operative characteristics, have been mentioned as possible explanations. In addition, a recent meta-analysis suggested the presence of the heterogeneous sex–treatment interaction in trials across Asian and Western regions. Moreover, another possible difference is that we only accounted Q-wave MI during the periprocedural or long-term follow-up period for the serious composite end points. This is a strict definition of MI compared with that in other observational and randomized studies. This could be a reason for the differences in the result of our study and other clinical trials.

Limitations

There are several limitations in our study. First, although the present analysis was prespecified in the protocol, all observed findings should be interpreted as hypothesis generating only because of the inherent limitations of subgroup analyses without adjustment of multiple testing. Second, because this was a nonrandomized observational study, there might be inherent limitations and bias in treatment selection. Although IPTW analysis was used to adjust potential selection bias, unmeasured confounders that have affected the results cannot be excluded. Third, the MAIN-COMPARE registry was conducted.
between 2000 and 2006, with mixture of bare-metal stents and predominant use of first-generation drug-eluting stents for treatment with PCI, which might limit the generalizability of our findings to the contemporary clinical practice. In addition, because the study was performed in Korea, the direct application of observed findings to other ethnic groups or countries might be limited. Fourth, unfortunately, medical treatment data during the follow-up period were not exactly assessed. Concurrent clinical practice guidelines, such as target blood pressure, lipid profile, and other optimal medical therapy, have changed over time and could affect the observed outcomes in this study. Finally, considering the relatively small number of patients and clinical events and the inherent nature of the observational registry, the relative treatment effect differences of CABG or PCI by sex should be further investigated in large-sized clinical trials and meta-analyses of individual patient-level data.

CONCLUSIONS

In this extended follow-up of patients who underwent PCI or CABG for LMCA disease, differential treatment effect was observed between women and men. The adjusted 10-year mortality rates and serious composite outcomes were similar without time-dependent changes between the CABG and PCI arms in men. In contrast, CABG was more beneficial than PCI in women with regard to a reduction of mortality rates and composite outcomes, especially in the late period (beyond at least 1 year) of long-term follow-up. Because the study was observational and vulnerable to selection bias, the results should be considered only hypothesis generating, highlighting the need for further large-sized research.

ARTICLE INFORMATION

Received April 12, 2021; accepted September 28, 2021.

Affiliations

Department of Cardiology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea (Y.Y.); Department of Cardiology (J.A., D.K., H.P., S.P.) and Department of Clinical Epidemiology & Biostatistics (J.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Acknowledgments

The authors thank the staff of the MAIN-COMPARE trial, the members of the cardiac catheterization laboratories and cardiovascular surgery departments at the participating centers, and the study coordinators for their efforts in collecting clinical data and ensuring the accuracy and completeness of the data.

Sources of Funding

This study was partly supported by the Cardiovascular Research Foundation (Seoul, Korea). The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the article; and decision to submit the article for publication.

Disclosures

None.

Supplementary Material

Tables S1–S3
Figures S1–S2

REFERENCES

1. Lee PH, Ahn J-M, Chang M, Baek S, Yoon S-H, Kang S-J, Lee S-W, Kim Y-H, Lee CW, Park S-W, et al. Left main coronary artery disease: secular trends in patient characteristics, treatments, and outcomes. J Am Coll Cardiol. 2016;68:1233–1246. doi: 10.1016/j.jacc.2016.05.089

2. Park DW, Ahn JM, Park SJ, Taggart DP. Percutaneous coronary intervention in left main disease: SYNTAX, PRECOMBAT, EXCEL and NOBLE—combined cardiology and cardiac surgery perspective. Ann Cardiothorac Surg. 2018;7:521–526. doi: 10.21037/acts.2018.04.04

3. Stone GW, Kappetein AP, Sabik JF, Pocock SJ, Morice M-C, Puskas J, Kandzari DE, Karmpaliotis D, Brown WM, Lembo NJ, et al. Five-year outcomes after PCI or CABG for left main coronary disease. N Engl J Med. 2019;381:1820–1830. doi: 10.1056/NEJMoa1909406

4. Holm NR, Mäkkiallo T, Lindsay MM, Spence MS, Erglis A, Menown IBA, Tovvik T, Kallerd T, Kalinauskas G, Mogensen LJH, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: updated 5-year outcomes from the randomised, non-inferiority noble trial. Lancet. 2020;395:191–199. doi: 10.1016/S0140-6736(19)32972-1

5. Park DW, Ahn JM, Yun SC, Yoon YH, Kang DY, Lee PH, Lee SW, Park SW, Seung KB, Gwon HC, et al. 10-year outcomes of stents versus coronary artery bypass grafting for left main coronary artery disease. J Am Coll Cardiol. 2018;72:2813–2822. doi: 10.1016/j.jacc.2018.09.012

6. Park D-W, Ahn J-M, Park H, Yun S-C, Kang D-Y, Lee PH, Kim Y-H, Lim D-S, Rha S-W, Park G-M, et al. Ten-year outcomes after drug-eluting stents versus coronary artery bypass grafting for left main coronary disease: extended follow-up of the PRECOMBAT trial. Circulation. 2020;141:1437–1446. doi: 10.1161/CIRCULATIONAHA.120.046039

7. Thuijs DJFM, Kappetein AP, Serruys PW, Mohr F-W, Morice M-C, Mack MJ, Holmes DR, Curzen N, Davierwala P, Noack T, et al. Percutaneous coronary revascularisation versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet. 2019;394:1325–1334. doi: 10.1016/S0140-6736(19)31997-X

8. Ruel M, Falk V, Farkouh ME, Freemantle N, Gaudino MF, Glineur D, Cameron DE, Taggart DP. Myocardial revascularization trials. Circulation. 2018;138:2943–2961. doi: 10.1161/CIRCULATIONAHA.118.035970

9. Park DW, Park SJ. Percutaneous coronary intervention of left main disease: pre- and post-EXCEL evaluation of XIENCE everolimus eluting stent versus coronary artery bypass surgery for effectiveness of left main revascularization) and (those) (Nordic-Baltic-British left main revascularization study) era. Circ Cardiovasc Interv. 2017;10:e004792. doi: 10.1161/CIRCINTERVENTIONS.117.004792

10. Farooq V, van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A, Kappetein AP, Colombo A, Holmes DR, Mack M, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet. 2013;381:639–650. doi: 10.1016/S0140-6736(13)60108-7

11. Farooq V, Serruys PW, Bourantas C, vanSvick P, Diletti R, Garcia Garcia HM, Holmes DR, Kappetein AP-P, Mack M, Feldman T, et al. Incidence and multivariable correlates of long-term mortality in patients treated with surgical or percutaneous revascularization in the synergy between percutaneous coronary intervention with Taxus and Cardiac Surgery (SYNTAX) trial. Eur Heart J. 2012;33:3105–3113. doi: 10.1093/eurheartj/ehs367

12. Sotomi Y, Onuma Y, Cavalcante R, Ahn J-M, Lee CW, van Klaveren D, de Winter RJ, Wykrzykowska J, Farooq V, Morice M-C, et al. Geographical difference of the interaction of sex with treatment strategy in patients with multivessel disease and left main disease: a meta-analysis from syntax (synergy between PCI with TAXUS and cardiac surgery), PRECOMBAT (bypass surgery versus angioplasty using Sirolimus-Eluting stent in patients with left main coronary artery disease), and best (Bypass Surgery and Everolimus-Eluting Stent implantation in
the treatment of patients with Multivessel Coronary Artery Disease) randomized controlled trials. Circ Cardiovasc Interv. 2017;10:e005027. doi: 10.1161/CIRCINTERVENTIONS.117.005027

13. Head SJ, Milojevic M, Daemen J, Ahn J-M, Boersma E, Christiansen EH, Domanski MJ, Farkouh ME, Flather M, Fuster V, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet. 2018;391:339–948. doi: 10.1016/S0140-6736(18)30423-9

14. Serruys PW, Cevalcante R, Collet C, Kappetein AP, Sabik JF, Banning AP, Taggart DP, Sabate M, Pomer J, Boonstra PW, et al. Outcomes after coronary stenting or bypass surgery for men and women with unprotected left main disease: the excel trial. JACC Cardiovasc Interv. 2018;11:1234–1243. doi: 10.1016/j.jcin.2018.03.051

15. Park H, Ahn J-M, Yoon Y-H, Kwon O, Lee K, Kang D-Y, Lee PH, Lee S-W, Park S-W, Park D-W, et al. Effect of age and sex on outcomes after stenting or bypass surgery in left main coronary artery disease. Am J Cardiol. 2019;124:678–687. doi: 10.1016/j.amjcard.2019.05.061

16. Hara H, Takahashi K, van Klaveren D, Wang R, Garg S, Ono M, Kawashima H, Gao C, Mack M, Holmes DR, et al. Sex differences in all-cause mortality in the decade following complex coronary revascularization. J Am Coll Cardiol. 2020;76:889–899.

17. Seung KB, Park D-W, Kim Y-H, Lee S-W, Lee CW, Hong M-K, Park S-W, Yun S-C, Gwon H-C, Jeong M-H, et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N Engl J Med. 2008;358:1781–1792. doi: 10.1056/NEJMoa0801441

18. Park D-W, Seung KB, Kim Y-H, Lee J-Y, Kim W-J, Kang S-J, Lee S-W, Lee CW, Park S-W, Yun S-C, et al. Long-term safety and efficacy of stenting versus coronary artery bypass grafting for unprotected left main coronary artery disease: 5-year results from the main-compare registry. J Am Coll Cardiol. 2010;55:117–124. doi: 10.1016/j.jacc.2010.04.004

19. Taggart DP, Gaudino M. PCI or CABG for left main coronary artery disease. N Engl J Med. 2020;382:290–291. doi: 10.1056/NEJMc2006465

20. Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387–394. doi: 10.1080/01621459.1987.10478441

21. Cole SR, Hormann MA. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed. 2004;75:45–49. doi: 10.1016/j.cmpb.2003.10.004

22. Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 2011;124:2145–2154. doi: 10.1161/CIRCULATIONNAHA.110.968792

23. Nashef SA, Rocques F, Michel P, Gauduchau E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardio-Thorac Surg. 1999;16:9–13. doi: 10.1016/S1010-7940(99)00134-7

24. Shroyer AL, Coombs LP, Peterson ED, Eiken MC, DeLong ER, Chen A, Ferguson TB Jr, Grover FL, Edwards FH. The society of thoracic surgeons: 30-day operative mortality and morbidity risk models. Ann Thorac Surg. 2003;75:1856–1865; discussion 1864–1855. doi: 10.1016/S0003-4975(03)00179-6

25. Piña IL, Zheng Qi, She L, Szwed H, Lang IM, Farsky PS, Castelvecchio S, Biernat J, Parafaras O, Kosevic D, et al. Sex difference in patients with ischemic heart failure undergoing surgical revascularization: results from the stich trial (surgical treatment for ischemic heart failure). Circulation. 2018;137:771–780. doi: 10.1161/CIRCULATIO NAHA.117.030526

26. Anderson ML, Peterson ED, Brennan JM, Rao SV, Dai D, Anstrom KJ, Pina II, Popescu A, Sedrakyan A, Messenger JC, et al. Short- and long-term outcomes of coronary stenting in women versus men: results from the national cardiovascular data registry centers for medicaid and medicare services cohort. Circulation. 2012;126:2190–2199. doi: 10.1161/CIRCULATIONAHA.112.111369

27. Cosmido I, Leon MB, Zhang Y, Serruys PW, von Birgelen C, Smits PC, Ben-Yehuda O, Redfors B, Madhavan MV, Maehara A, et al. Long-term outcomes in women and men following percutaneous coronary intervention: results from the stich trial (surgical treatment for ischemic heart failure). Circulation. 2015;132:2935–2945. doi: 10.1161/CIRCULATIONAHA.115.021278

28. Shroyer AL, Coombs LP, Peterson ED, Eiken MC, DeLong ER, Chen A, Ferguson TB Jr, Grover FL, Edwards FH. The society of thoracic surgeons: 30-day operative mortality and morbidity risk models. Ann Thorac Surg. 2003;75:1856–1865; discussion 1864–1855. doi: 10.1016/S0003-4975(03)00179-6

29. Piña IL, Zheng Qi, She L, Szwed H, Lang IM, Farsky PS, Castelvecchio S, Biernat J, Parafaras O, Kosevic D, et al. Sex difference in patients with ischemic heart failure undergoing surgical revascularization: results from the stich trial (surgical treatment for ischemic heart failure). Circulation. 2018;137:771–780. doi: 10.1161/CIRCULATIO NAHA.117.030526

30. Stefanini GG, Kalesan B, Pilgrim T, Raber L, Onuma Y, Silber S, Serruys PW, Meier B, Juni P, Windecker S. Impact of sex on clinical and angiographic outcomes among patients undergoing revascularization with drug-eluting stents. JACC Cardiovasc Interv. 2012;5:301–310. doi: 10.1016/j.jcin.2011.11.011

31. Anderson ML, Peterson ED, Brennan JM, Rao SV, Dai D, Anstrom KJ, Pina II, Popescu A, Sedrakyan A, Messenger JC, et al. Short- and long-term outcomes of coronary stenting in women versus men: results from the national cardiovascular data registry centers for medicaid and medicare services cohort. Circulation. 2012;126:2190–2199. doi: 10.1161/CIRCULATIONAHA.112.111369

32. Kosmidou I, Leon MB, Zhang Y, Serruys PW, von Birgelen C, Smits PC, Ben-Yehuda O, Redfors B, Madhavan MV, Maehara A, et al. Long-term outcomes in women and men following percutaneous coronary intervention: results from the stich trial (surgical treatment for ischemic heart failure). Circulation. 2015;132:2935–2945. doi: 10.1161/CIRCULATIONAHA.115.021278

33. Stefanini GG, Kalesan B, Pilgrim T, Raber L, Onuma Y, Silber S, Serruys PW, Meier B, Juni P, Windecker S. Impact of sex on clinical and angiographic outcomes among patients undergoing revascularization with drug-eluting stents. JACC Cardiovasc Interv. 2012;5:301–310. doi: 10.1016/j.jcin.2011.11.011

34. Anderson ML, Peterson ED, Brennan JM, Rao SV, Dai D, Anstrom KJ, Pina II, Popescu A, Sedrakyan A, Messenger JC, et al. Short- and long-term outcomes of coronary stenting in women versus men: results from the national cardiovascular data registry centers for medicaid and medicare services cohort. Circulation. 2012;126:2190–2199. doi: 10.1161/CIRCULATIONAHA.112.111369

35. Aggarwal NR, Patel HN, Mehta LS, Sanghani RM, Lundberg GP, Lewis SJ, Mendelson MA, Wood MJ, Volgman AS, Mieres JH. Sex differences in ischemic heart disease: advances, obstacles, and next steps. Circ Cardiovasc Qual Outcomes. 2018;11:e004437. doi: 10.1161/CIRCQUALOUTCOMES.117.004437
| Characteristics | Women (N=631) | Men (N=1,609) | p Value |
|---|---------------|---------------|---------|
| Wave | | | 0.745 |
| BMS era (Jan 2003 – May 2006) | 212 (33.6) | 554 (34.4) | |
| DES era (May 2007 – June 2006) | 419 (66.4) | 1055 (65.6) | |
| Age, yr | 61.6 ± 11.7 | 62.3 ± 10.1 | 0.179 |
| Diabetes | 200 (31.7) | 522 (32.4) | 0.772 |
| Hypertension | 345 (54.7) | 763 (47.4) | 0.002 |
| Dyslipidemia | 219 (34.7) | 467 (29.0) | 0.010 |
| Current smoker | 37 (5.9) | 584 (36.3) | <0.001 |
| Previous PCI | 85 (13.5) | 240 (14.9) | 0.420 |
| Previous MI | 41 (6.5) | 180 (11.2) | 0.001 |
| Previous CHF | 16 (2.5) | 49 (3.0) | 0.612 |
| Chronic lung disease | 8 (1.3) | 37 (2.3) | 0.162 |
| Cerebrovascular disease | 34 (5.4) | 127 (7.9) | 0.048 |
| Peripheral arterial disease | 12 (1.9) | 66 (4.1) | 0.015 |
| Renal failure | 16 (2.5) | 48 (3.0) | 0.666 |
| Ejection fraction | 60.9 ± 10.3 | 58.4 ± 11.8 | <0.001 |
| Clinical indication | | | 0.039 |
| Silent ischemia | 9 (1.4) | 49 (3.0) | |
| Chronic stable angina | 160 (25.4) | 419 (26.0) | |
| Unstable angina | 410 (65.0) | 973 (60.5) | |
| NSTEMI | 52 (8.2) | 168 (10.4) | |
| Left main disease location | | | <0.001 |
| Ostium or shaft | 348 (55.2) | 735 (45.7) | |
| Distal bifurcation | 283 (44.8) | 874 (54.3) | |
| Extent of diseased vessel | | | 0.001 |
| Left main only | 129 (20.4) | 220 (13.7) | |
| Left main plus 1-vessel | 102 (16.2) | 281 (17.5) | |
| Disease | BMS | CABG |
|-------------------------------|------|------|
| Left main plus 2-vessel | 148 (23.5) | 438 (27.2) |
| Left main plus 3-vessel | 252 (39.9) | 670 (41.6) |
| Restenotic lesion | 19 (3.0) | 27 (1.7) | 0.066 |

Values are n (%) or mean ± SD.

BMS = bare-metal stent; CABG = coronary artery bypass grafting; CHF = congestive heart failure; DES = drug-eluting stent; MI = myocardial infarction; NSTEMI = non–ST-segment elevation myocardial infarction; PCI = percutaneous coronary intervention; SYNTAX = Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery.
Table S2. Procedural or Operative Characteristics, Stratified by Sex.

Characteristics	Women (N=631)	Men (N=1,609)	p Value
PCI Procedures			
Total stent number in LMCA	1.2 ± 0.4	1.2 ± 0.5	0.269
Total stent length in LMCA	25.4 ± 20.0	29.1 ± 20.9	0.006
Total stent number per patient	1.9 ± 1.2	2.0 ± 1.1	0.198
Average stent diameter in LMCA, mm	3.5 ± 0.5	3.5 ± 0.4	0.584
Type of stent			
BMS	95 (29.4)	223 (28.6)	0.850
DES	228 (70.6)	556 (71.4)	
Sirolimus-eluting stents	177 (54.8)	436 (56.0)	
Paclitaxel-eluting stents	51 (15.8)	120 (15.4)	
Intravascular ultrasound-guided PCI	245 (75.9)	574 (73.7)	0.500
Bifurcation treatment			0.152
Single-stent technique	271 (83.9)	623 (80.0)	
Two-stent technique	52 (16.1)	156 (20.0)	
CABG Procedures			
Number of grafts per patient	2.7 ± 0.9	2.9 ± 1.0	0.004
Number of arterial grafts	2.1 ± 0.9	2.2 ± 0.9	0.006
Number of vein graft	0.7 ± 0.8	0.7 ± 0.8	0.802
Use of left internal mammary artery	294 (95.5)	815 (98.2)	0.017
Off-pump surgery	126 (40.9)	352 (42.4)	0.698

CABG, coronary-artery bypass grafting; LMCA, left main coronary artery; PCI percutaneous coronary intervention.
Table S3. Crude and Adjusted Risks for 10-Year Outcomes, Stratified by Sex.

Unadjusted Outcomes	Adjusted Outcomes with the Use of IPTW							
	Crude event rates at 10 years, n (%)	Adjusted event rates at 10 years, %						
	Women	Men	HR (95% CI)*	P	Women	Men	HR (95% CI)*	P
Death	119 (18.9)	378 (23.8)	0.78 (0.64-0.96)	0.019	20.8	24.4	0.85 (0.7-1.04)	0.111
Death, Q-wave MI, or stroke	139 (22.1)	422 (26.5)	0.82 (0.68-0.99)	0.042	23.5	26.7	0.88 (0.73-1.06)	0.186
TVR	75 (12.6)	207 (14.0)	0.91 (0.7-1.18)	0.475	12.4	14.4	0.87 (0.67-1.14)	0.314

*HR is the risk of different outcomes for women compared with men. †P value for interaction between sex (women vs. men) and revascularization strategy (PCI vs. CABG).

CABG = coronary artery bypass grafting; CI = confidence interval; HR = hazard ratio, IPTW = Inverse-Probability Treatment Weighting, MI = myocardial infarction; PCI = percutaneous coronary intervention; TVR = target-vessel revascularization; other abbreviations as in Table 1.
Figure S1. Crude 10-Year Kaplan-Meier Curves for Clinical Events, stratified by sex.

A) Death

B) Death, Q-wave MI, or stroke

C) Target vessel revascularization
Figure S2. Adjusted 10-Year Kaplan-Meier Curves for Clinical Events, stratified by sex.