Circular RNAs in hepatocellular carcinoma: Recent advances

Zhao-Shan Niu, Wen-Hong Wang

Circular RNAs (circRNAs) have covalently closed loop structures at both ends, exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict the prognosis of HCC. Therefore, circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights for the early diagnosis and targeted therapy of HCC.

Key Words: Hepatocellular carcinoma; Circular RNAs; Function; Diagnosis; Biomarkers; Targeted therapy

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Early hepatocellular carcinoma (HCC) usually lacks specific symptoms, and most patients have missed the opportunity for effective treatment because they are diagnosed at middle-to-advanced stages. The emergence of novel therapeutic strategies for HCC, such as immunotherapy and molecularly targeted therapies[1], can prolong the survival of HCC patients. Unfortunately, patients with advanced HCC are prone to metastasis and recurrence, and long-term prognosis remains poor[2]. Therefore, identifying new biomarkers for early diagnosis and effective therapeutic targets of HCC is critical.

Circular RNAs (circRNAs) are covalently closed loops generated by the back splicing of precursor mRNA (pre-mRNA) molecules, which exist widely in mammalian cells and are characterized by stability, conservative evolution, and cell or tissue specificity. These characteristics endow circRNAs with many biological functions, such as acting as microRNA (miRNA) sponges, regulating the transcription of parental genes, binding RNA binding proteins (RBPs), and encoding proteins and peptides[3]. CircRNAs exert their biological functions mainly at the epigenetic, transcriptional and posttranscriptional levels[4,5]. Dysregulated circRNAs play crucial roles in various diseases, particularly with respect to the occurrence and development of tumors and tumor proliferation, apoptosis and metastasis[6-8]. Currently, aberrantly expressed circRNAs are closely associated with the proliferation, cell cycle, apoptosis, migration, epithelial-mesenchymal transition (EMT), invasion, metastasis, cancer stem cells (CSCs), glycolysis, microvascular invasion (MVI), angiogenesis, immune surveillance, immune escape, chemoresistance, and immunotherapy resistance of HCC. Thus, circRNAs may be promising biomarkers for the diagnosis and prognosis of HCC as well as effective therapeutic targets. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights into the early diagnosis and targeted therapy of HCC.

CHARACTERISTICS, CATEGORIES AND GENERATION OF CIRCARNAS

Characteristics of circRNAs

Most circRNAs have the following characteristics: (1) High abundance: The abundance of circRNA expression varies greatly; in some cases, the abundance of circRNAs exceeds 10 times that of their linear RNA counterparts[9]; (2) Stability: The stability of circRNAs is 2.5-5 times higher than that of linear transcripts because the unique covalently closed loop of circRNAs lacks 3' and 5' ends, resulting in the absence of ribonuclease binding targets; therefore, circRNAs are not easily degraded[10]; (3) Conservation: CircRNAs are widely present in different species and are evolutionarily conserved. Some studies suggest that most circRNAs in different species are evolutionarily conserved, while a few are not conserved[11]; and (4) Specificity: CircRNAs have tissue and cell specificity, with differential expression in different stages of ontogeny and disease progression[12].

Categories and generation of circRNAs

CircRNAs are categorized into four classes based on their origins: Exon circRNAs (ecircRNAs), intron circRNAs (icircRNAs), exon-ciRNAs (ElciRNAs), and intergenic circRNAs[13] (Figure 1). EcircRNAs are predominant and are mainly located in the cytoplasm. GiRNAs and ElciRNAs are located in the nucleus. The generation mechanism of circRNAs is very complex and has not yet been understood. Current studies have shown that the cyclization of circRNAs is principally driven by intron pairing, RBPs or transcription factors and lariat[14].

Intron pairing-driven cyclization or “direct back splicing” is the most common cyclization mode of ecircRNA and ElciRNA, where the special premRNA containing ALU repeats is sheared to form ecircRNA after reverse base complementary pairing[11]. Lariat-driven cyclization or “exon skipping” connects exons at both ends through donor and acceptor sites provided by spliceosomes to form lariat selective splicing to generate ecircRNA[11]. In RBP-driven cyclization, RBPs bound to the complementary sequences on both sides of the intron of premRNA interact with each other to form a circular structure and promote the terminal connection at both ends of the head and tail to form ecircRNA[15]. ElciRNAs can be formed if introns are retained between exons during the above three mechanisms[16]. Self-cyclization of introns: When pre-mRNA has a 7 nt guanine (G)- and uracil (U)-rich sequence near an exon and an 11 nt cytosine (C)-rich sequence near another exon, the introns escape branching and degradation during the splicing reaction to produce an intron lariat structure and cyclize to form a stable ciRNA[17].

Citation: Niu ZS, Wang WH. Circular RNAs in hepatocellular carcinoma: Recent advances. World J Gastrointest Oncol 2022; 14(6): 1067-1085
URL: https://www.wjgnet.com/1948-5204/full/v14/i6/1067.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i6.1067
BIOLOGICAL FUNCTIONS OF CIRC RNAs

CircRNAs serve in regulatory roles in different biological behaviors through different mechanisms, including acting as sponges of miRNAs, interacting with RBPs, and regulating gene transcription and translation (Figure 2). A recent review analyzed the functions of circRNAs in HCC, of which acting as miRNA sponges accounted for 79.6% [18].

Acting as miRNA sponges

As molecular sponges of miRNAs, circRNAs harbor many miRNA binding sites, which can competitively bind to and restrain the activity of miRNAs [19], thereby regulating the expression of downstream target genes posttranscriptionally. Currently, clinical studies have mainly focused on circRNAs as miRNA molecular sponges [20]. Compared with other types of competing endogenous RNAs, circRNAs have the following advantages. First, circRNAs are not easily degraded by RNA enzymes (RNAse or RNA exonucleases) [21,22], which makes the circRNA structure stable and enables the possibility to stably inhibit the performance of miRNA function, with a stronger adsorption capacity for miRNAs than linear mRNAs and long noncoding RNAs. Second, existing studies have shown that the majority of circRNAs are highly expressed and that they can contain substantial miRNA response elements in a single molecule [23-25]; therefore, circRNAs are able to instantly bind or release large amounts of miRNAs to efficiently exert their regulatory roles. For example, cirs-7, also known as CDR1as, is a circRNA containing more than 70 miR-7 binding sites [26], which can bind to miR-7 and act downstream of its mRNA. This molecular axis is widely expressed in various malignancies, including oral squamous cell carcinoma and lung cancer [27,28]. In addition, circRNAs may store and transport miRNAs [29]. For example, CDR1as has both miR-7 and miR-671 binding sites [30], and CDR1as first binds to miR-7 and is transported to subcellular locations, where CDR1as is then degraded by miR-671 to eventually release miR-7 [26].

It is worth noting that only circRNAs meeting specific stoichiometric requirements can act as endogenous miRNA sponges, where the abundance of circRNAs as miRNA sponges must match that of miRNAs [31]. Thus, circRNAs as miRNA sponges may not be a universal phenomenon, but one unique to some circRNAs. Only ecircRNAs can act as miRNA sponges, while EIciRNAs and ciRNAs contain few miRNA binding sites that are relatively scattered; thus, ElciRNA and ciRNA may lack the miRNA sponge action ability possessed by ecircRNA [17]. The dysregulation of the circRNA-miRNA-mRNA axis, whether manifesting a promoting or inhibitory role, has been confirmed in many cancers. However, the specific biological mechanism of the circRNA-miRNA-mRNA axis in the occurrence and development of tumors and whether molecular targeted therapy can be improved by intervention in this approach remain to be further studied.

Regulating parental gene transcription

Although most circRNAs are located in the cytoplasm, a fraction exists in the nucleus and participate in regulating RNA transcription. CiRNAs are abundantly expressed in the nucleus and interact with...
phosphorylated RNA polymerase II to change its transcriptional activity, thereby playing a role in transcriptional regulation[32]. For example, a circRNA (ci-ankrd52), derived from the intron of the ankyrin repeat domain 52 gene, can enhance the expression of its parent gene ankrin52 by interacting with the RNA polymerase II elongation complex[17]. EciRNAs are intron-preserving circRNAs located near the promoter of their parent genes and bind to RNA polymerase II to improve transcription efficiency by interacting with the 5’ splicing site preserved in introns, thereby promoting the expression of their parent genes[33]. Interestingly, EciRNAs can act as RBP sponges, like ecircRNAs, and regulate parental gene expression[34]. Additionally, circRNAs can also regulate the expression of parent genes through epigenetic modification. Recently, it has been found that certain circRNAs have N6-methyl-adenosine (m6A) modifications, and these circRNAs will affect the stability of the parent gene[35].

Interacting with RBPs

RBPs are an important class of proteins that participate in posttranscriptional regulation. RBPs interact with circRNAs and play a role in circRNA splicing, replication, stabilization, and localization. The combination of RBPs and circRNAs fulfills roles mainly in the following two ways: (1) RBPs are involved in the action of ceRNA: CircRNAs serve as miRNA “sponges” to modulate mRNA translation, and the potential of these “sponges” is higher than that of their linear counterparts because RBPs participate in the miRNA competition process[36]; and (2) CircRNAs competitively bind to RBPs: CircRNAs play biological roles by binding to RBPs through their specific sequence binding sites[37]. Here we present the most extensively studied RBP, human antigen R (HuR), as an example. HuR, as an RBP, can bind guanylate-rich elements in the 3’ untranslated region (UTR) to prevent mRNA from being degraded and accomplishes the function of stabilizing RNA structure[38,39]. HuR is widely expressed in eukaryotic tissues[40], and circE2F2 binds to HuR and enhances the stability of the mRNA of the HuR target gene E2F2[41]. In contrast, circRHOBTB3 binds to HuR and reduces the stability of the mRNA of HuR target gene PTBP1[42]. In addition, circBACH1 can bind to HuR, facilitate HuR translocation to the cytoplasm and inhibit p27 translation[43].

Encoding proteins and peptides

CircRNAs were previously considered to be noncoding RNAs that cannot be translated into proteins. However, emerging evidence suggests that circRNAs can also be translated into proteins and peptides[44-46]. Some circRNAs initiate protein translation by binding to ribosomes via the internal ribosome
entry site (IRES) sequence or after modifying m\(^\text{6}A\) in the 5'UTR\[45,47\]. In addition, some circRNAs with an open reading frame (ORF) can initiate small proteins or micropeptides\[48\]. The 40S subunit of eukaryotic ribosomes binds to circRNA and directly initiates \textit{in vitro} translation\[49\]. Furthermore, unlike other noncoding RNAs, a few circRNAs in the cytoplasm can be translated into functional proteins\[11\]. Thus, the elements required for circRNA translation are IRES and an m\(^\text{6}A\) sequence or ORF. Although circRNAs have translation ability, the translation efficiency is not high because of the influence of their special ring structure, and the functions of circRNA translation products (proteins and peptides) must be further explored.

ROLE OF CIRCNRNAS IN HCC

Recent studies have confirmed the different critical roles of aberrantly expressed circRNAs in HCC (Figure 3). Here, we summarize the roles of certain circRNAs in HCC (Table 1).

Proliferation, cell cycle and apoptosis

Aberrant cell cycle regulation, uncontrolled cell proliferation and blocked apoptosis are considered the main causes of malignant tumors. Accumulating studies have highlighted the important regulatory roles of circRNAs in HCC proliferation, the cell cycle and apoptosis, among which oncogenic circRNAs accelerate HCC proliferation and suppress cell cycle arrest and apoptosis. For example, circRNA ZFR serves as an oncogene to facilitate the proliferative ability of HCC by upregulating mitogen-activated protein kinase kinases 1 (MAP2K1), a promoter of tumor cell proliferation\[50,51\]. Similarly, c-Myc, a promoter of cell proliferation\[52\], and hsa_circ_0091581, as an oncogene, facilitates the proliferation of HCC cells by promoting c-Myc expression through sponging miR-526b\[53\]. Furthermore, TXNDC5, a promoter of tumor cell proliferation and survival\[54\], and circ_0000517, an oncogene in HCC, promotes tumor growth and inhibits cell cycle arrest and apoptosis by upregulating TXNDC5 through sponging miR-1296–5p\[55\]. Conversely, the roles of tumor suppressive circRNAs are opposite those of oncogenic circRNAs. For example, MAPK14, a suppressor of cell proliferation in HCC cells\[56\], and circSETD3, a tumor suppressor of HCC, enhances MAPK14 expression by sponging miR-421 in HCC, thereby inhibiting proliferation and inducing G1/S arrest\[57\]. Similarly, exosomal circ-0051443, another tumor suppressor of HCC, upregulates the expression of BRII-associated kinase 1, a regulator of cell death, by sponging miR-331-3p, stimulating apoptosis and impeding the cell cycle\[58,59\]. The above findings reveal the importance of circRNAs in regulating HCC cell proliferation, the cell cycle and apoptosis.

Migration, EMT, invasion, and metastasis

EMT is an important phenomenon in the occurrence and development of tumors and can promote the migration, infiltration and metastasis of tumor cells. Invasion and metastasis of tumor cells are the main characteristics of malignant tumors and together constitute the primary cause of death in patients with malignant tumors. Elucidating their molecular mechanisms will help to develop effective interventions for cancer. Recently, many circRNAs have been reported to regulate the progression of HCC cells by affecting migration, EMT, invasion and metastasis. For example, circ-101368 promotes high-mobility group (HMG) box 1 protein/advanced glycation end products signaling by sponging miR-200a, facilitating HCC cell migration\[60\]. Additionally, circ-CCND1 enhances HMGA2 expression by sponging miR-497-5p, thus promoting HCC proliferation, migration and invasion\[61\]. Similarly,
circRNAs	Dysregulation	Mechanism by competitively binding miRNAs/RBP or m^6^A modification/mRNA braking	Targets/signaling pathways	Biological functions	Ref.
circRNA ZFR	Up-regulated	N/A	MAP2K1	Promotes HCC proliferation	Cedric et al[50]
		miR-3619-5p	CTNNB1 Wnt/β-catenin pathway	Promotes HCC proliferation and EMT	Tan et al[59]
hsa_circ_0091581	Up-regulated	miR-526b	c-Myc	Promotes HCC proliferation	Wei et al[53]
circ_0000517	Up-regulated	miR-1296-5p	TXNDC5	Promotes HCC growth and inhibits cell cycle arrest and apoptosis	Zang et al[55]
		miR-326	SMAD6	Promotes HCC invasion and metastasis	He et al[67]
circSETD3	Down-regulated	miR-421	MAPK14	Inhibits HCC proliferation and induces G1/S arrest	Xu et al[57]
Exosomal circ-0051443	Down-regulated	miR-331-3p	BAK1	Predicts MVI of HCC	Wang et al[85]
circRNA_101368	Up-regulated	miR-200a	HMG1B/RAGE pathway	Promotes HCC cell migration	Li et al[60]
circ-CCND1	Up-regulated	miR-497-5p	HMGA2	Promotes HCC proliferation, migration and invasion	Zheng et al[61]
		miR-877-5p	PIK3R3	Promotes HCC proliferation, migration and invasion	Yu et al[62]
		miR-656-3p	SERBP1	Facilitates HCC migration, invasion and EMT	Li et al[63]
		miR-377-3p	FGFR1/ERK	Promotes HCC metastasis	Zhan et al[64]
		miR-1270	PLAGL2	Promotes HCC metastasis	Cao et al[65]
		miR-136-5p	MMP2	Promotes self-renewal of HCC stem cells	Liu et al[68]
		miRNA braking	PAX5	Inhibits malignant differentiation of human liver CSCs	Chen et al[69]
		miR-6887-3p	JAK2	Inhibits HCC stem cell activity	Zhu et al[70]
		RBP: FMRP	CCAR1, Wnt/β-catenin pathway	Inhibits HCC growth and inhibits cell cycle arrest and apoptosis	Jiang et al[71]
		m^6^A-METTL3	HULC and Cbf5	Enhances HCC glycolysis	Liu et al[72]
		FOXK1		Predicts hepatic MVI	Xu et al[83]
		miR-1294 and miR-186-5p	HK2	Enhances HCC glycolysis	Ding et al[79]
		miR-375	HMGA2	Promotes HCC glycolysis	Xu et al[75]
		miR-338-3p	PKM2	Predicts hepatic MVI	Li et al[77]
		miR-188-5p	HK2	Predicts hepatic MVI	Xu et al[81]
		miR-942-5p	ALX4	Predicts hepatic MVI	Xu et al[83]
		miR-7	PIK3CD/p70S6K/mTOR	Predicts hepatic MVI	Xu et al[83]
CircRNA	Regulation	miRNA Target	Pathway	Function	Reference
---------	------------	--------------	---------	----------	-----------
hsa_circ_0068669	Down-regulated	N/A	N/A	Predicts hepatic MVI	Yao et al[84]
circCRIM1	Up-regulated	miR-378a-3p	SKP2	Promotes HCC angiogenesis	Ji et al[86]
hsa_circ-0046600	Up-regulated	miR-640	HIF-1α	Promotes HCC angiogenesis	Zhai et al[97]
hsa_circ_0000092	Up-regulated	miR-338-3p	HN1	Promotes HCC angiogenesis	Pu et al[89]
circGFRA1	Up-regulated	miR-149	N/A	Promotes HCC angiogenesis	Yu et al[91]
circARSP91	Down-regulated	N/A	ULBP1	Enhances HCC innate immune surveillance	Ma et al[93]
circTRIM33-12	Down-regulated	miR-685-3p	ICAM-1	Inhibits HCC immune escape	Shi et al[97]
hsa_circ_104348	Up-regulated	miR-187-3p	RTKN2 Wnt/β-catenin pathway	Promotes HCC resistance to sorafenib	Huang et al[100]
circβ-catenin	Up-regulated	Translation	Wnt/β-catenin pathway	Facilitates HCC cell growth	Lian et al[101]
hsa_circ_004018	Down-regulated	miR-626	DKK3 Wnt/β-catenin pathway	Restrains HCC proliferation and migration	Zhu et al[102]
circRNA-ITCH	Down-regulated	miR-7 or miR-214	c-myc and cyclinD1 Wnt/β-catenin	Inhibits HCC proliferation and apoptosis	Yang et al[103]
circ-0003418	Down-regulated	miR-7 and miR-383	Wnt/β-catenin pathway	Increases HCC sensitivity to cisplatin	Chen et al[104]
circ-IGFIR	Up-regulated	N/A	P38K/AKT pathway	Promotes HCC cell proliferation	Fu et al[106]
hsa_circ_0079299	Down-regulated	N/A	CCN1/PI3K/AKT/mTOR pathway	Inhibits HCC growth	Zheng et al[107]
circSOD2	Up-regulated	miR-502-5p	DNMT3A JAK2/STAT3 pathway	Promotes HCC growth, cell migration and cell cycle progression	Zhao et al[108]
circ_0004913	Down-regulated	miR-184	HAMP/JAK2/STAT3/Akt pathway	Inhibits HCC proliferation, migration, invasion, EMT and glycolysis	Wu et al[109]
hsa_circ_0031242	Up-regulated	miR-924	POU3F2	Enhances HCC resistance to cisplatin	Fan et al[112]
circARNT2	Up-regulated	miR-155-5p	PDK1	Promotes HCC resistance to cisplatin	Li et al[115]
circ-G004213	Down-regulated	miR-513b-5p	PRPF39	Facilitates HCC sensitivity to cisplatin	Qin et al[117]
circUBE2D2	Up-regulated	miR-889-3p	LDHA	Promotes HCC resistance to sorafenib	Huang et al[121]
circFN1	Up-regulated	miR-1205	E2F1	Facilitates HCC resistance to sorafenib	Yang et al[122]
circRNA-SORE	Up-regulated	RBP: YBX1	AKT, Raf1, ERK, c-Myc, and TGF-β1	Promotes HCC resistance to sorafenib	Xu et al[124]
circMEMO1	Down-regulated	miR-106b-5p	TCF21	Increases HCC sensitivity to sorafenib	Dong et al[126]
circUHRF1	Up-regulated	miR-449C-5p	TIM-3	Promotes HCC resistance to PD1 immunotherapy	Zhang et al[131]
circRNA	Regulation	miRNA/s	Function	Source(s)	
------------------	-------------	---------	--	-----------------	
circMET	Up-regulated	miR-30-5p	Snail/DPP4/CXCL10 axis	Promotes HCC	
				resistance to PD1 immunotherapy	Huang et al[133]
Exosomal circ_0070396	Up-regulated	N/A		Serves as a biomarker of early diagnosis of HCC	Lyu et al[139]
circ_104075	Up-regulated	miR-582-3p	YAP	Serves as a biomarker of early diagnosis of HCC	Zhang et al[140]
has_circ_00224 and hsa_circ_00520	Up-regulated	N/A		Serves as biomarkers of early diagnosis of HCC with HCV infection	Mathboli et al[141]
hsa_circ_000976	Up-regulated	N/A		Serves as biomarkers of early diagnosis of HCC with HBV infection	Yu et al[142]
hsa_circ_0007750	Up-regulated	N/A		Predicts poorer prognosis of HCC	Zhang et al[144]
hsa_circ_0139897	Up-regulated	N/A		Predicts poorer prognosis of HCC	Guo et al[148]
hsa_circ_0091579	Down-regulated	N/A	GPc3	Predicts better prognosis of HCC	Zhang et al[149]
hsa_circ_0000798	Down-regulated	N/A		Predicts better prognosis of HCC	Xu et al[150]
hsa_circ_0000267	Up-regulated	mir-646		Predicts poorer prognosis of HCC	Pan et al[146]
circASAPI	Up-regulated	mir-326, miR-532-5p	MAPK1	Predicts poorer prognosis of HCC	Hu et al[147]
circ-ZNF652	Up-regulated	miR-203/miR-502-5p	Snail-mediated EMT	Predicts poorer prognosis of HCC	Guo et al[148]
hsa_circ_0001649	Down-regulated	N/A		Predicts better prognosis of HCC	Xie et al[151]
hsa_circ_0036683	Down-regulated	N/A		Predicts better prognosis of HCC	Sunagawa et al[152]

HCC: Hepatocellular carcinoma; ceRNA: Competitive endogenous RNA; CircRNAs: Circular RNAs; miRNAs: MicroRNAs; RBPs: RNA binding proteins; m6A: N6-methyladenosine; EMT: Epithelial-mesenchymal transition; MAPK2: Mitogen-activated protein kinase 1; CTNNB1: Beta-catenin 1; Wnt/beta-catenin; Wingless/beta-catenin; TXNDC5: Thioredoxin domain-containing 5; SMAD6: SMAD family member 6; MAPK14: Mitogen-activated protein kinase 14; MVI: Microvascular invasion; BAK1: BRII-associated kinase 1; HMGB1/RAGE: High-mobility group box 1 protein; advanced glycation end products; HMGA2: High mobility group A2; PIK3R3: Phosphoinositide-3-kinase regulatory subunit 3; SERBP1: SERPINE1 mRNA binding protein 1; FGFRI/ERK: Fibroblast growth factor receptor 1/extracellular signal-regulated kinase; PLAGL2: PLAG1 like zinc finger 2; MMP2: Matrix metalloproteinase 2; PAX5: Paired box protein 5; AU1: AU-rich binding factor 1; FMRP: Fragile X mental retardation protein; CCAR1: Cell division cycle and apoptosis regulator 1; METTL3: Methyltransferase-like 3; HULC: Highly upregulated in liver cancer; ChF5: Centromere-binding factor 5; CSCs: Cancer stem cells; FOXK1: Forkhead box K1; PKM2: Pyruvate kinase M2; HK2: Hexokinase 2; ALX4: Aristaless-like homeobox 4; PIK3CD/p70S6K/mTOR: PI3Kdelta catalytic p110delta; Ribosomal protein S6 kinase/mammalian target of rapamycin; SKP2: S-phase kinase-associated protein 2; HIF-1α: Hypoxia inducible factor-a; HN1: Hematological and neurological expressed 1; UBP1: UL16-binding protein 1; TET1: Ten-eleven translocation 1; ICAM-1: Intercellular adhesion molecule-1; RTK2: Rhoetin 2; DKK3: Dickkopf-3; PIK3/akt: Phosphoinositide-3-kinase/protein kinase B; CCNB1: Cyclin B1; DNMT3A: DNA methyltransferase 3A; JAK/STAT: Janus kinases/signal transducer and activator of transcription; JAK2/Stat3: Janus kinase 2/signal transducers and activators of transcription; HAMP: Heparin; POU5F2: POU class 3 homeobox 2; PDGK1: Pyruvate dehydrogenase kinase 1; PRPF39: Pre-mRNA splicing factor 39; LDHA: Lactate dehydrogenase A; E2F1: E2F transcription factor 1; YB1: Y-box-binding protein 1; Raf1: Proto-oncogene; TIM3: Tim-3: T cell immunoglobulin and mucin domain 3; PD1: Programmed cell death protein 1; DPP4: Dipeptidyl peptidase 4; CXCL10: Chemokine C-X-C ligand 10; Yap: Yes-associated protein; HCV: Hepatitis C virus; HBV: Hepatitis B virus; GPC3: Glypican-3 protein; MAPK1: Mitogen-activated protein kinase 1; MMP1: Matrix metalloproteinase 1; MAPK1: Mitogen-activated protein kinase 1; ALF: Alpha fetoprotein; ALF-L3: Alpha-fetoprotein variants; DCP: Des-carboxy prothrombin; OS: Overall survival; RFS: Recurrence-free survival; PFS: Progression-free survival; N/A: Not applicable.

hsa_circ_0061395 up-regulates the expression of PIK3R3 and SERBP1 by sponging mir-877-5p and mir-656-3p, respectively, promoting HCC proliferation, invasion and migration[62,63]. Furthermore, circRNA-103809 up-regulates the expression of FGFRI/extracellular signal-regulated kinase and PLAGL2 by sponging miR-377-3p and miR-1270, respectively, and facilitates HCC migration, EMT and invasion[64,65]. Additionally, circ_0000517, another oncogenic circRNA, is related to poor HCC prognosis[66]. Another subsequent study has investigated the possible mechanism of action of circ_0000517 by enhancing the expression of SMAD6 by sponging miR-326 to promote HCC cell invasion and metastasis[67]. Circ_matrix metalloproteinase (MMP) 2 can also promote HCC metastasis, which is the result of enhancing MMP2 expression by sponging mir-136-5p[68]. Thus, circRNAs are...
critical for regulating HCC migration, EMT, invasion and metastasis.

CSCs

CSCs are considered the root cause of tumor occurrence, invasion, metastasis, recurrence, and resistance to radiotherapy and chemotherapy because of their self-renewal ability, sustained proliferation potential and therapeutic resistance. CircRNAs and tumor stem cells are closely related to cancer. For example, the high expression of circ-MALAT1 in HCC CSC samples mediated by RBP AU-rich binding factor 1 is closely associated with the regeneration of HCC CSCs. Mechanistically, circ-MALAT1 blocks paired box protein 5 mRNA translation on the ribosome and forms a trimer with the ribosome and mRNA to facilitate self-renewal of CSCs. This blocking mechanism is known as “circRNA braking” and has become another posttranscriptional regulatory mechanism in addition to the function of circRNA subsponges[69]. Additionally, circZKSCAN1 inhibits HCC stem cell activity by mediating the function of fragile X mental retardation protein (FMRP). Regarding the mechanism, circZKSCAN1 competes with FMRP, which serves as RBP, for the target gene cell division cycle and apoptosis regulator 1 (CCAR1), thereby inactivating the Wingless (Wnt) pathway[70]. Similarly, circMEG3 inhibits malignant differentiation of CSCs by restraining highly upregulated in liver cancer and centromere-binding factor 5 in HCC CSCs[71]. The above findings indicate that circRNAs may provide novel treatment strategies for HCC by targeting CSCs.

Glycolysis

Aberrant glucose metabolism is the most prominent feature of tumor metabolism. In recent years, numerous studies have shown that circRNAs regulate glucose metabolism, among which oncogenic circRNAs promote glycolysis in HCC cells. For example, Forkhead box K1 (FOXK1) is an inducer of aerobic glycolysis[72], and circ-PRKCI promotes HCC glycolysis by enhancing FOXK1 expression by sponging miR-1294 and miR-186-5p[73]. Similarly, HMG2A promotes HCC tumor growth and metastasis[74], and circZFR promotes glycolysis in HCC cells by inhibiting miR-375 and increasing HMG2A expression[75]. Furthermore, PKM2 serves as a mediator of aerobic glycolysis of cancer cells [76], and circMAT2B facilitates HCC glycolysis by strengthening PKM2 expression by acting as a sponge of miR-338-3p[77]. Hexokinase 2 (HK2) is also a regulator of aerobic glycolysis in HCC[78], and circ-PRMT5 promotes HCC glycolysis by sponging miR-188-5p to increase HK2 expression[79]. In contrast, tumor suppressive circRNAs impede HCC glycolysis. For example, aristless-like homeobox 4 (ALX4) inhibits HCC proliferation and invasion[80], and circ_0001445, a tumor suppressor, enhances ALX4 expression by sponging miR-942-5p, thus inhibiting HCC glycolysis[81]. Collectively, circRNAs have become important regulatory factors in glycolysis in HCC cells, but the specific mechanism of their regulation of metabolism remains to be elucidated. Considering the characteristics of circRNAs in regulating glycolysis in HCC cells, it is possible to interfere with the abnormal expression of downstream genes and some key action sites of specific circRNAs, thereby altering the metabolic pathways of HCC cells and opening up novel therapeutic approaches for HCC.

MVI

MVI is a characteristic of HCC and an independent risk factor affecting the prognosis of HCC patients. The exact mechanism by which MVI occurs in HCC has not been fully elucidated. Emerging evidence suggests that circRNAs play important roles in the MVI process of HCC. For example, ciRS-7 (Cdr1as), an oncogene in HCC[82], facilitates HCC MVI by competitively inhibiting miR-7 and interfering with the PI3Kdelta catalytic p110delta/ribosomal protein S6 kinase/mammalian target of rapamycin (mTOR) pathway[83]. Conversely, the downregulation of hsa_circ_0086669, a tumor suppressor, is correlated with HCC MVI[84]. Similarly, low expression of circSETD3, another tumor suppressor, in HCC is associated with the existence of MVI[85]. In summary, circRNAs are associated with the occurrence of MVI in HCC and can be used as indicators for the early detection of MVI and clinical intervention to reduce recurrence and improve the survival rate of patients with HCC.

Angiogenesis

HCC is a solid tumor rich in blood vessels with obvious vascular hyperplasia and vascular abnormalities in HCC. Tumor angiogenesis refers to tumor-induced capillary angiogenesis and the formation of microcirculation networks within the tumor. Tumor angiogenesis is responsible for HCC proliferation, invasion and metastasis. Nevertheless, the regulatory mechanism underlying HCC angiogenesis is unclear, although multiple studies have found that circRNAs can regulate angiogenesis. For example, circCRIM1 can promote HCC angiogenesis by upregulating SKP2 expression via sponging miR-378a-3p[86]. Additionally, hsa-circ_0046600 affects malignant angiogenesis in HCC cells by sponging miR-640 to facilitate the expression of hypoxia inducible factor-1α, a promoter of angiogenesis[87,88]. Similarly, hsa_circ_000092 facilitates HCC angiogenesis by competitively binding to miR-338-3p to elevate the expression of hematological and neurological expressed 1, a promoter of tumor growth and invasion[89, 90]. Furthermore, circGFRα1 promotes the angiogenic activity of HCC by binding to miR-149[91]. Taken together, the above findings confirm that circRNAs play an essential role in HCC angiogenesis, thus contributing to clarification of the regulatory mechanism of HCC angiogenesis and highlighting the
usefulness of circRNAs in targeted therapy for HCC angiogenesis.

Immune surveillance and immune escape

Abnormal circRNAs may act as tumor antigens in immunocytes to activate antitumor immunity[92]. Natural killer (NK) cells play a pivotal role in tumor immune surveillance. CircAR5P91 increases the cytotoxicity of NK cells by elevating UL16-binding protein 1 in HCC, thereby enhancing innate immune surveillance[93].

The immune system monitors and kills tumor cells through specific and nonspecific pathways. When malignant cells appear in the body, the immune system recognizes and eliminates these cells specifically through the immune mechanism to resist the occurrence and development of tumors. However, in some cases, malignant cells can escape the recognition and attack of the immune system through various mechanisms to achieve immune escape in order to survive and proliferate in the body[94]. Current studies have shown that circRNAs play a critical role in tumor immune escape, which is closely associated with drug resistance and tumor recurrence[95]. For example, the low expression of tumor suppressive circTRIM33-12 promotes the immune escape ability of HCC cells by upregulating ten-eleven translocation 1 expression through sponging miR-191[96]. Similarly, hsa_circ0007456, another tumor suppressor, shows low expression in HCC and can promote tumor immune escape by regulating the expression of intercellular adhesion molecule-1 by sponging miR-6852-3p[97]. These findings indicate that circRNAs that regulate immune escape are promising immunotherapeutic targets for HCC.

Modulating the malignant progression of HCC by mediating signaling pathways

Various circRNAs mediate the Wnt/beta-catenin (Wnt/β-catenin), phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) or Janus kinase 2/signal transducers and activators of transcription (JAK2/Stat3) pathways by sponging miRNAs to modulate the malignant progression of HCC. In addition to circRNA-miRNA regulation, no study has investigated circRNAs modulating these signaling pathways through direct regulation of processes such as gene transcription and protein translation.

Wnt/β-catenin pathway: Aberrant activation of this pathway is prevalent in HCC occurrence and progression, and this is considered the most frequently activated carcinogenic pathway in HCC[98]. Emerging evidence suggests that circRNAs affect the malignant progression of HCC by mediating the Wnt/β-catenin pathway, among which oncogenic circRNAs can promote HCC progression by triggering the Wnt/β-catenin pathway. For example, circZFR upregulates beta-catenin and activates the Wnt/β-catenin pathway by sponging miR-3619-5p to promote the proliferation and EMT of HCC cells[99]. Similarly, hsa_circ_104348 facilitates HCC proliferation, migration, and invasion by sponging miR-187-3p to elevate rhotekin 2 expression and activate the Wnt/β-catenin pathway[100]. In particular, circβ-catenin, an oncogenic circRNA in HCC, facilitates HCC cell growth by activating the Wnt/β-catenin pathway[101]. Instead, tumor suppressive circRNAs can restrain HCC progression by inhibiting the Wnt/β-catenin pathway. For example, hsa_circ_0004018 enhances Dickkopf-3 expression and inhibits the Wnt/β-catenin pathway by sponging miR-626, thereby restraining HCC proliferation and migration[102]. Similarly, circRNA-ITCH represses the Wnt/β-catenin pathway and decreases c-myc and cyclin D1 expression by sponging miR-7 or miR-214, thereby inhibiting HCC proliferation and apoptosis[103]. Intriguingly, circ-0003418 plays a tumor suppressor role in HCC and enhances cisplatin sensitivity of HCC cells by restraining the Wnt/β-catenin pathway[104].

PI3K/Akt/mTOR pathway: Aberrant activation of this pathway frequently occurs in HCC and is closely related to HCC growth[105], invasion and metastasis. Current studies support that circRNAs mediate the PI3K/Akt or PI3K/AKT/mTOR pathway to modulate HCC progression. For example, circ-insulin-like growth factor 1 receptor promotes HCC cell proliferation by activating the PI3K/Akt pathway[106]. Additionally, the overexpression of tumor-suppressive hsa_circ_0079299 inhibits HCC growth and retards cell cycle progression partly by mediating the PI3K/Akt/mTOR pathway[107].

JAK2/STAT3 pathway: As a signal transduction pathway stimulated by cytokines, activation of the JAK/STAT pathway is closely related to tumor cell proliferation, apoptosis and differentiation. The JAK2/STAT3 pathway, an important component of the JAK/STAT pathway, is activated in diverse malignant tumors, including HCC. For example, circSOD2 enhances DNA methyltransferase 3A expression and activates the JAK2/STAT3 pathway by sponging miR-502-5p, thereby promoting the growth, migration and cell cycle progression of HCC cells[108]. Additionally, CIRC_0004913 upregulates hepcidin expression and inhibits the JAK2/STAT3/Akt pathway by sponging miR-184 and suppressing HCC proliferation, migration, invasion, EMT and glycolysis[109]. Taken together, the above findings demonstrate that circRNAs medulate the malignant progression of HCC by mediating signaling pathways, such as the Wnt/β-catenin, PI3K/Akt/mTOR and JAK2/Stat3 pathways. These pathway-associated circRNAs may serve as novel therapeutic targets in HCC.

Chemoresistance

Chemotherapy is a comprehensive treatment for advanced HCC, although the drug resistance of HCC cells considerably limits its efficacy. Multidrug resistance is the principal factor leading to the failure of
chemotherapy for HCC, and its mechanism is extremely complex. Therefore, clarifying the mechanisms of drug resistance to improve the drug resistance of patients with HCC is critical. Recent evidence has prioritized the importance of abnormally expressed circRNAs in the chemotherapy resistance of HCC.

Cisplatin resistance: Cisplatin is one of the few most common chemotherapy drugs used to treat HCC. However, thus far, the drug resistance of HCC cells during chemotherapy has been revealed to be the main factor affecting chemotherapy failure[110,111]. Therefore, how to control the occurrence of cisplatin resistance in HCC cells and improve drug sensitivity and therapeutic effects are critical to prolonging the survival of patients with advanced HCC. Current studies have confirmed that circRNAs impact HCC cisplatin resistance. For example, circ_0031242 enhances cisplatin resistance in HCC by sponging miR-924 to enhance the expression of POU class 3 homeobox 2, a promoter of tumor progression and metastasis[112,113]. Additionally, pyruvate dehydrogenase kinase 1 (PDK1), a glycolytic enzyme, is closely associated with chemotherapy resistance[114]. As an oncogene, circARNT2 promotes cisplatin resistance in HCC cells, an activity mechanistically achieved by upregulating PDK1 through sponging miR-155-5p[115]. Analogously, PRPF39 is closely associated with cisplatin sensitivity[116], circ-G004213 promotes HCC cisplatin sensitivity by sponging miR-513b-5p to increase PRPR39 expression[117].

Sorafenib resistance: Sorafenib is an oral multikinase multitarget inhibitor and an important targeted therapy for advanced HCC[118]. However, sorafenib resistance is a common problem in clinical applications, substantially limiting its application[119]. The mechanism leading to sorafenib resistance remains incompletely understood. Therefore, further research on the possible mechanisms of sorafenib resistance and reducing its resistance are crucial for the treatment of HCC. CircRNAs also affect sorafenib resistance in HCC. For example, overexpression of lactate dehydrogenase A (LDHA), an oncogene, facilitates cancer cell invasion and metastasis[120]. CircUBE2D2 promotes sorafenib resistance to HCC, possibly because of the upregulation of LDHA by sponging miR-889-3p[121]. Additionally, circFN1 contributes to sorafenib resistance in HCC cells by elevating the expression of E2F1, a transcription factor associated with cancer chemotherapy resistance, by acting as a miR-1205 sponge[122,123]. Analogously, circRNA-SORE induces sorafenib resistance in HCC by binding to Y-box-binding protein 1, a regulator of EMT in cancer cells[124,125]. In particular, circMEMO1 promotes the sensitivity of HCC to sorafenib by upregulating transcription factor 21 (TCF21) expression by sponging miR-106b-5p[126].

Although the existing evidence partially reveals the critical role of circRNAs in HCC chemotherapy resistance, it suggests that circRNAs associated with chemotherapy resistance offer potential value in predicting and monitoring the efficacy of HCC and even reversing chemotherapy resistance. However, further clinical samples and in vivo experiments are needed to validate the relevant molecular mechanisms involved.

Immunotherapy resistance

Immunotherapy is currently an effective therapeutic modality for advanced HCC. Immunotherapy enhances antigen presentation, activates the immune response and improves the immunosuppressive status of the tumor microenvironment in different ways, thus improving survival benefits. However, increasing clinical evidence indicates that only 20%-30% of patients treated with programmed death 1 (PD1) and programmed death-ligand 1 are sensitive to immunotherapy, and 70%-80% of patients show an ineffective response because of drug resistance[127]. Therefore, further exploration and understanding of the mechanism of immunotherapy resistance may provide important insight to guide clinical practice. T cell immunoglobulin and mucin domain 3 (TIM-3) is an immunoregulatory receptor that binds to NK cell-dominated ligands in tumor cells and the microenvironment to inhibit NK cell-mediated antitumor immunity in various cancers, including HCC[128-130]. CircUHRF1, an exosome derived from HCC, upregulates TIM-3 expression in NK cells by sponging miR-449C-5p in patients’ resistant to PD1 immunotherapy, leading to NK cell dysfunction and driving HCC resistance to PD1 [131]. Additionally, circMET is an oncogene in the chromosome 7q21-7q31 region, and the amplification of this region is considered to be related to HCC prognosis[132]. CircMET overexpression induces the development and immune tolerance of HCC through the miR-30-5p/Snail/dipeptidyl peptidase (DPP) 4/chemokine C-X-C ligand (CXCL) 10 axis, while DPP4 inhibitors such as sitagliptin block the progression of the pathway, which can enhance the efficacy of PD1 inhibitors in the treatment of HCC [133]. Taken together, the above findings demonstrate that circRNAs participate in regulating HCC immunotherapy resistance, and that intervention by circRNAs may be an effective means to improve the immunotherapy tolerance of HCC cells.

BIOMARKERS FOR HCC DIAGNOSIS AND PROGNOSIS

CircRNAs are characterized by high abundance, stability and conservatism. CircRNAs are not easily degraded by RNA enzymes and stably exist in human tissues, serum, saliva and urine. Additionally, the expression profiles of circRNAs in HCC patients are significantly different from those of normal
controls. Thus, abnormally expressed circRNAs may be utilized as biomarkers to diagnose and predict the prognosis of HCC patients[134-136].

Biomarkers of the early diagnosis of HCC

There are certain limitations of commonly used clinical diagnostic markers for HCC, such as alpha-fetoprotein (AFP), AFP variants (AFP-L3) and Des-carboxy prothrombin (DCP), and only approximately 1/3 of patients can be diagnosed early[137,138]. The high mortality rate of HCC indicates that exploring new biomarkers for the early diagnosis of HCC is the most reliable strategy to improve the survival rate of HCC patients.

Emerging evidence thus far supports the possibility of utilizing circRNAs as ideal biomarkers to diagnose HCC. For example, exosome CIRC_0070396 has better diagnostic accuracy than AFP with respect to HCC patients[139]. Analogously, the sensitivity (96.0%) and specificity (98.3%) of serum circ_104075 to predict HCC are higher than those of AFP, DCP and AFP-L3, indicating the possibility of employing circ_104075 as an effective serum biomarker for HCC diagnosis[140]. Additionally, compared with AFP, hsa_circ_00224 and hsa_circ_00520 show higher sensitivity and specificity in diagnosing HCC patients with hepatitis C virus infection[141]. Furthermore, the accuracy of plasma hsa_circ_0000976, hsa_circ_0007750, and hsa_circ_0139897 is superior to AFP in diagnosing HCC patients with hepatitis B virus infection[142].

Although the existing evidence supports the feasibility of using specific circRNAs as noninvasive circulating diagnostic biomarkers for the early detection and screening of HCC, further analysis of their sensitivity and specificity and suitable patient populations is warranted. The pathogenesis of HCC is extremely complex and varies among ethnic and regional populations, and circRNAs that can be used as biomarkers in single-center studies may not be applicable to other ethnic and regional populations. Therefore, multicenter trials and large-scale studies are required to verify the performance of serum or plasma circRNAs as biomarkers. Additionally, it is necessary to establish accepted standards, unified detection and analysis methods and to use a rigorous experimental design with the best clinical samples to determine universally representative and practical diagnostic circRNA molecules.

Prognostic biomarkers of HCC

Because of the delay in diagnosis and the high rates of postoperative recurrence and metastasis, the prognosis of HCC patients remains poor[143]. Therefore, exploring more effective HCC markers for prognosis assessment is crucial. Existing evidence has shown the feasibility of circRNAs as biomarkers to predict HCC prognosis. Among these circRNAs, oncogenic circRNAs are associated with worse overall survival (OS) or worse OS and recurrence-free survival (RFS). For example, high expression of hsa_circ_0091579 or circ_0000798 is correlated with shorter OS of HCC patients[144,145]. Similarly, high expression of circ_0000267 or circASAP1 is closely related to poorer OS in HCC patients[146,147]. Additionally, high circ-ZNF652 (hsa_circ_0003258) expression indicates shorter OS and RFS of HCC patients[148]. Conversely, tumor suppressive circRNAs are associated with better OS and RFS or better OS and progression-free survival (PFS). For example, high expression of hsa_circ_0001649 or circ_0004913 signifies longer OS in HCC patients[149,150]. Furthermore, high circSETD3 or hsa_circ_0036683 expression indicates better OS and RFS in HCC patients[151]. Moreover, high hsa_circ_0005986 expression implies better OS and PFS in HCC patients[152]. The above findings support the feasibility of the use of circRNAs as biomarkers for predicting HCC prognosis.

CONCLUSION

In conclusion, circRNAs play important roles in HCC and are expected to be ideal diagnostic biomarkers and therapeutic targets for HCC. However, problems persist that must be solved. First, determining the exact mechanism underlying certain circRNAs in pathogenesis is challenging because of the different nomenclatures of circRNAs, mechanisms of action and tumorigenicities. Second, current studies on circRNAs mainly focus on the function of circRNAs as molecular sponges. We should further explore the biological functions of circRNAs, such as regulating the transcription of parental genes, binding RBPs, and encoding proteins and peptides, in the context of the malignant behavior of HCC. Third, some studies have only investigated circRNA expression in HCC cell lines without detection in clinical samples, and the clinical value of such circRNAs is uncertain. Fourth, most of the studies only knocked down the expression level of circRNAs but did not perform reverse verification by overexpression of circRNAs. Fifth, presently, studies on the pathogenesis of circRNAs in HCC remain in the preliminary stage. The pathogenesis of HCC is complex and heterogeneous, and the disease states of different HCC patients may involve different primary pathogenetic pathways and pathogenic molecules. Exploring the pathogenesis of a certain class of HCC patients with stronger homogeneity at the beginning of the experimental design is crucial to obtain more reproducible conclusions. In summary, we must improve these issues to better clarify the roles and mechanisms of circRNAs in HCC so that circRNAs can become useful diagnostic indicators and therapeutic targets for HCC.
FOOTNOTES

Author contributions: Niu ZS wrote, revised and proofread this paper; Wang WH consulted the relevant literature in this field.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Zhao-Shan Niu 0000-0002-6627-6566; Wen-Hong Wang 0000-0002-0641-3792.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

REFERENCES

1 Ghavimi S, Apfel T, Azimi H, Persaud A, Pyrosopoulos NT. Management and Treatment of Hepatocellular Carcinoma with Immunotherapy: A Review of Current and Future Options. J Clin Transl Hepatol 2020; 8: 168-176 [PMID: 32832397 DOI: 10.14218/ JCTH.2020.00061]

2 Toh TB, Lim JJ, Hooi L, Rashid MBMA, Chow EK. Targeting Jak/Stat pathway as a therapeutic strategy against SP/C DA4+ tumorigenic cells in Akt/p-catenin-driven hepatocellular carcinoma. J Hepatol 2020; 72: 104-118 [PMID: 31541681 DOI: 10.1016/j.jhep.2019.08.035]

3 Peng Z, Fang S, Jiang M, Zhao X, Zhou C, Gong Z. Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta 2020; 510: 264-271 [PMID: 32710944 DOI: 10.1016/j.cca.2020.07.042]

4 Wang F, Li X, Li Z, Wang S, Fan J. Functions of Circular RNAs in Regulating Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020: 3763069 [PMID: 3202080 DOI: 10.1155/2020/3763069]

5 Momen-Heravi F, Bala S. Emerging role of non-coding RNA in oral cancer. Cell Signal 2018; 42: 134-143 [PMID: 29056050 DOI: 10.1016/j.cellsig.2017.10.009]

6 Chen L, Shan G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett 2021; 505: 49-57 [PMID: 33690610 DOI: 10.1016/j.canlet.2021.02.004]

7 Chen Q, Chen Z, Cao S, Guo B, Chen Y, Feng Z, Wang J, Guo G, Chen X, Huang X. Role of CircRNAs_100395 in Proliferation and Metastases of Liver Cancer. Med Sci Monit 2019; 25: 6181-6192 [PMID: 31421050 DOI: 10.12659/jms.915963]

8 Zhang X, Zhang Q, Zhang K, Wang F, Qiao X, Cui J. Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta 2020; 510: 264-271 [PMID: 32710944 DOI: 10.1016/j.cca.2020.07.042]

9 Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of Circular RNAs Come into Focus. Trends Cell Biol 2020; 30: 226-240 [PMID: 31973951 DOI: 10.1016/j.tcb.2019.12.004]

10 Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 2016; 44: 1370-1383 [PMID: 26657629 DOI: 10.1093/nar/gkv1367]

11 Jeck WR, Sorrentino JA, Wang K, Slevin MK, Purvis CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2014; 19: 141-157 [PMID: 23249747 DOI: 10.1261/rna.035677.112]

12 Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi F, Yousefi B, Mansournia MA, Aserni Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14: 563-571 [PMID: 32462914 DOI: 10.2217/bmm-2019-0567]

13 Zhao X, Cai Y, Xu J. Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. Int J Mol Sci 2019; 20 [PMID: 3142353 DOI: 10.3390/ijms2013926]

14 Li P, Zhu K, Mo Y, Deng X, Jiang X, Shi L, Guo C, Zhang W, Li G, Xiong W, Zhang S, Gong Z. Research Progress of circRNAs in Head and Neck Cancers. Front Oncol 2021; 11: 616202 [PMID: 33996542 DOI: 10.3389/fonc.2021.616202]

15 Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance. PLoS One 2016; 11: e0148407 [PMID: 26848835 DOI: 10.1371/journal.pone.0148407]

16 Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22: 256-264 [PMID: 25667228 DOI: 10.1038/nsmb.2959]

17 Zhang Y, Zhang XQ, Chen T, Xiang JF, Yin OF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell 2013; 51: 792-806 [PMID: 24053947 DOI: 10.1016/j.molcel.2013.08.017]

18 Cheng D, Wang J, Dong Z, Li X. Cancer-related circular RNA: diverse biological functions. Cancer Cell Int 2021; 21: 11
Niu ZS et al. CircRNAs in HCC

CircRNAs in HCC

Diallo LH cells.

Theranostics circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer.

Chen J by upregulating the expression of E2F2 protein in Head and Neck Carcinomas.

Zhang M in Development- and Synaptic Plasticity-Associated Genes.

ternary complexes with p21 and CDK2.

Du WW (Maywood)

Hsiao KY Noncoding RNA

Sarkar D, Diermeier SD. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer.

Memczak S, Jens M, Elefsonioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Giegler HG, Lehmann H, Munschauer M, Maier L, Mackowiak S, Wolf A, Filipchyk A, Klironomos F, Cerda Piwecka M, Díaz-Moreno I. RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate.

Mishot M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal noncoding RNA with novel functions.

Memczak S, Jens M, Elefsonioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Giegler HG, Lehmann H, Munschauer M, Maier L, Mackowiak S, Wolf A, Filipchyk A, Klironomos F, Cerda Piwecka M, Díaz-Moreno I. RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate.

Mishot M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal noncoding RNA with novel functions.

Memczak S, Jens M, Elefsonioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Giegler HG, Lehmann H, Munschauer M, Maier L, Mackowiak S, Wolf A, Filipchyk A, Klironomos F, Cerda Piwecka M, Díaz-Moreno I. RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate.

Mishot M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal noncoding RNA with novel functions.

Memczak S, Jens M, Elefsonioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Giegler HG, Lehmann H, Munschauer M, Maier L, Mackowiak S, Wolf A, Filipchyk A, Klironomos F, Cerda Piwecka M, Díaz-Moreno I. RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate.
translated by non-canonical initiation mechanisms? Biochimie 2019; 164: 45-52 [PMID: 31265859 DOI: 10.1016/j.bioch.2019.06.015]

46 Prats AC, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B, Lacazez E. Circular RNA, the Key for Translation. Int J Mol Sci 2020; 21 [PMID: 33202659 DOI: 10.3390/ijms21228591]

47 Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z. Extensive translation of circular RNAs driven by N'-methyladenosine. Cell Res 2017; 27: 626-641 [PMID: 28281539 DOI: 10.1038/cr.2017.31]

48 Chekulaeva M, Rajevsky N. Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harb Perspect Biol 2019; 11 [PMID: 30082465 DOI: 10.1101/cshperspect.a032680]

49 Shi Y, Jia X, Xu J. The new function of circRNA: translation. Clin Transl Oncol 2020; 22: 2162-2169 [PMID: 32449127 DOI: 10.1007/s12094-020-02371-1]

50 Cedric BC, Souraka TDM, Feng YL, Kiseombo P, Tu JC. CircRNA ZFR stimulates the proliferation of hepatocellular carcinoma through upregulating MAP2K1. Eur Rev Med Pharmacol Sci 2020; 24: 9924-9931 [PMID: 33000396 DOI: 10.26355/eurrev_202010_23203]

51 Schneider BL, Cortes-Santiago N, Schady DA, Krishnamoorthy S, Thevananthan S, Rajapakse K, Perera D, Huang S, Cao S. Constitutive activation of mitogen-activated protein kinase (MEK1) in ileal enterocytes leads to dysplasia and a predisposition to cancer. Am J Physiol Gastrointest Liver Physiol 2021; 320: G366-G379 [PMID: 33470189 DOI: 10.1152/ajpgi.00065.2020]

52 Mastronikolis N, Ragos V, Kyrodimos E, Chrysosvergis A, Papanikolaou V, Mastronikolis S, Stamatiopoulou A, Tsiambus E. Mechanisms of C-myc oncogenic activity in head and neck squamous cell carcinoma. J BUON 2019; 24: 2242-2244 [PMID: 31983089]

53 Wei X, Zheng W, Tian P, He Y, Liu H, Peng M, Li X, Liu X. Oncogenic hsa_circ_0015811 promotes the malignancy of HCC cell through blocking mir-526b from degrading e-MYC mRNA. Cell Cycle 2020; 19: 817-824 [PMID: 32116112 DOI: 10.1080/15384101.2020.1731945]

54 Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thyroidoeX domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis 2018; 5: 312-322 [PMID: 30591932 DOI: 10.17216/j.gendis.2018.09.003]

55 Zang H, Li Y, Zhang X, Huang G. Circ_000517 contributes to Hepatocellular Carcinoma Progression by Upregulating TXNDC5 via Sponging mir-1296-5p. Cancer Manag Res 2020; 12: 3457-3468 [PMID: 32523376 DOI: 10.2147/CMAJ.S244024]

56 Fang Z, Wu L, Dai H, Hu P, Wang B, Han Q, Xu Y, Lv S, Zhu Y, Gan M, Zhou W, Zhang W. The role of vesicular overexpressed in cancer pro-survival protein 1 in hepatocellular carcinoma proliferation. Cancer Biomark 2020; 28: 9-20 [PMID: 32083568 DOI: 10.2333/CBM-190574]

57 Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, Li L, Ren S, Zhang M, Xu M. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J Exp Clin Cancer Res 2019; 38: 98 [PMID: 30795787 DOI: 10.1186/s13046-019-1014-2]

58 Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P, Ye Y. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett 2020; 475: 119-128 [PMID: 32014458 DOI: 10.1016/j.canlet.2020.02.022]

59 Kim SY, Shang Y, Joo SH, Kim SK, Nam KH. Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes. Biochem Biophys Res Commun 2017; 484: 781-786 [PMID: 28153720 DOI: 10.1016/j.bbrc.2017.01.166]

60 Li S, Gu H, Huang Y, Peng Q, Zhou R, Yi P, Chen R, Huang Z, Hu X, Tang D. Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HGMB1/RAGE signaling. Cell Cycle 2018; 17: 2349-2359 [PMID: 30265210 DOI: 10.1080/15384101.2018.1526599]

61 Zheng S, Hou J, Chang Y, Zhao D, Yang H, Yang J. CircRNA Circ-CCND1 Aggravates Hepatocellular Carcinoma Tumorigenesis by Regulating the miR-497-5p/HMGA2 Axis. Mol Biotechnol 2022; 64: 178-186 [PMID: 34564768 DOI: 10.1007/s12033-021-00391-y]

62 Yu Y, Bian L, Liu R, Wang Y, Xiao X. Circular RNA hsa_circ_0061395 accelerates hepatocellular carcinoma progression via regulation of the miR-877-5p/PIK3R3 axis. Cancer Cell Int 2021; 21: 10 [PMID: 33407443 DOI: 10.1186/s12935-020-01695-w]

63 Li Q, Di P, He J, Li Y. CircRNA circBACH1 (hsa_circ_0061395) serves as a miR-656-3p sponge to facilitate hepatocellular carcinoma progression through increasing SERBP1 expression. Biochem Biophys Res Commun 2021; 566: 1-8 [PMID: 33831787 DOI: 10.1016/j.bbrc.2021.03.136]

64 Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, Wang W, Hu Q. Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J Cell Physiol 2020; 235: 1733-1745 [PMID: 31317555 DOI: 10.1002/jcp.29092]

65 Cao Y, Tao Q, Kao X, Zhu X. Hsa-circRNA-103809 Promotes Hepatocellular Carcinoma Development via MicroRNA-1270/PLAG1 Like Zinc Finger 2 Axis. Dig Dis Sci 2021; 66: 1524-1532 [PMID: 32683589 DOI: 10.1007/s10620-020-06416-x]

66 Wang X, Wang X, Li W, Zhang Q, Chen J, Chen T. Up-Regulation of hsa_circ_000517 Predicts Adverse Prognosis of Hepatocellular Carcinoma. Front Oncol 2019; 9: 1105 [PMID: 31750237 DOI: 10.3389/fonc.2019.01105]

67 He S, Guo Z, Kang Q, Wang X, Han X. Circular RNA hsa_circRNA_000517 modulates hepatocellular carcinoma advancement via the miR-326/SMA6 axis. Cancer Cell Int 2020; 20: 360 [PMID: 32774154 DOI: 10.1186/s12935-020-01447-w]

68 Liu D, Kang H, Gao M, Jin L, Zhang F, Chen D, Li M, Xiao L. Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2. Mol Oncol 2020; 14: 1365-1380 [PMID: 31944556 DOI: 10.1002/1878-0261.12637]

69 Chen L, Kong R, Wu C, Wang S, Liu Z, Liu S, Li S, Chen T, Mao C. Circ-MALAT1 Functions as Both an mRNA
Translation Brake and a microRNA Sponge to Promote Self-Renewal of Hepatocellular Cancer Stem Cells. *Adv Sci (Weihin)* 2020; 7: 1900049 [PMID: 3209753] DOI: 10.1002/advs.201900049

Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu YX, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, Liu XL, Wu R, Liu JF, Ge Y, Yang L, Wang HY, Chen L. Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. *Theranostics* 2019; 9: 3526-3540 [PMID: 31281495 DOI: 10.2217/tro.19.3279]

Jiang X, Xing L, Chen Y, Qin R, Song S, Li Y, Xie S, Wang L, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. CircMEG3 inhibits telomerase activity by reducing Chfs in human liver cancer stem cells. *Mol Ther Nucleic Acids* 2021; 23: 310-323 [PMID: 33425389 DOI: 10.1016/j.omtn.2020.11.009]

Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglin M, Foyun H, Betz MJ, Nilsson D, Lidell ME, Naumann J, Haufs-Brusberg S, Palmgren H, Mondal T, Beg M, Jedrychowski MP, Taskén K, Pfeifer A, Peng XR, Kanduri C, Enerbäck S. FOXX1 and FOXK2 regulate aerobic glycolysis. *Nature* 2019; 566: 279-283 [PMID: 30700909 DOI: 10.1038/s41586-019-0990-z]

Chen W, Li Y, Zhong J, Wen G. circ-PKRCl targets miR-1294 and miR-186-5p by downregulating FOXX1 expression to suppress glycolysis in hepatocellular carcinoma. *Mol Med Rep* 2021; 23 [PMID: 33880589 DOI: 10.3892/mmr.2021.12103]

Cui H, Song R, Wu J, Wang W, Chen X, Yin J. MicroRNA-337 regulates the PI3K/AKT and Wnt/beta-catenin signaling pathways to inhibit hepatocellular carcinoma progression by targeting high-mobility group AT-hook 2. *Am J Cancer Res* 2018; 8: 405-421 [PMID: 29636997]

Xu R, Yin S, Zheng M, Pei X, Ji X. Circular RNA circZFR Promotes Hepatocellular Carcinoma Progression by Regulating miR-375/HMGAA2 Axis. *Dig Dis Sci* 2021; 66: 4361-4373 [PMID: 33433801 DOI: 10.1007/s00412-020-08680-5]

Fu J, Xiong Z, Huang C, Li J, Yang W, Han Y, Paiboonrungruang C, Major MB, Chen KN, Kang X, Chen X. Hypermethylation of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus. *J Biol Chem* 2019; 294: 327-340 [PMID: 30409900 DOI: 10.1074/jbc.RA118.005963]

Li Q, Pan X, Zhu D, Deng Z, Jiang R, Wang X. Circular RNA MAT2B Promotes Glycolysis and Malignancy of Hepatocellular Carcinoma Through the miR-338-3p/PKM2 Axis Under Hypoxic Stress. *Hepatology* 2019; 70: 1298-1316 [PMID: 31004447 DOI: 10.1002/hep.30671]

Liu Z, Ning F, Cai Y, Sheng H, Zheng R, Yin X, Lu Z, Su L, Chen X, Zeng C, Wang H, Liu L. The EGFRI-P38 MAPK axis up-regulates PD-L1 through miR-675-5p and down-regulates HLA-ABC via hexokinase-2 in hepatocellular carcinoma cells. *Cancer Commun (Lond)* 2021; 41: 62-78 [PMID: 34236149 DOI: 10.1002/cac.212117]

Ding Z, Guo L, Deng Z, Li P. Circ-PRM5T enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. *Ann Hepatol* 2020; 19: 269-279 [PMID: 32089501 DOI: 10.1016/j.aohep.2020.01.002]

ZhaO J, Chen HQ, Yang HF, Li Y, Chen DJ, Huang YJ, He LX, Zheng CF, Wang LQ, Wang J, Zhang N, Cao J, Liu JY, Shu WQ, Liu WB. Epigenetic silencing of ALX4 regulates microcystin-LR induced hepatocellular carcinoma through the P53 pathway. *Sci Total Environ* 2019; 683: 317-330 [PMID: 31132711 DOI: 10.1016/j.scitotenv.2019.05.144]

Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, Zhang L. Overexpression of circ_0001445 decreases hepatocellular carcinoma progression by regulating miR-942-5p/ALX4 axis. *Biotechnol Lett* 2020; 42: 2735-2747 [PMID: 32856218 DOI: 10.1007/s10529-020-02985-z]

Chen J, Yang J, Fei W, Wang X, Wang K. Circular RNA circS7-7: a Novel Oncogene in Multiple Cancers. *Int J Biol Sci* 2021; 17: 379-389 [PMID: 33390837 DOI: 10.7150/ijbs.45292]

Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA circS7-7 (Cdr1as) acts as a risk factor of hepatic revascularization in hepatocellular carcinoma metastasis. *J Clin Lab Anal* 2018; 32: e2257 [PMID: 29785842 DOI: 10.1111/jcla.22572]

Wang P, Xu LL, Zheng XB, Hu YT, Zhang JF, Ren SS, Hao XY, Li L, Zhang M, Xu MQ. Correlation between the expressions of circular RNAs in peripheral venous blood and clinicopathological features in hepatocellular carcinoma. *Ann Trans Med* 2020; 8: 338 [PMID: 32355782 DOI: 10.21037/atm.2020.02.134]

Ji Y, Yang S, Yan X, Zhu L, Wang W, Yang X, Yu F, Shi L, Zhu X, Yu L, Zhang C, Lu H, Zhang F. CircCRM1 Promotes Hepatocellular Carcinoma Proliferation and Angiogenesis by Sponging miR-378a-3p and Regulating SKP2 Expression. *Front Cell Dev Biol* 2021; 9: 796686 [PMID: 34869339 DOI: 10.3389/fcell.2021.796686]

Zhai F, Fu Q, Liu C, Zhang X, Jia P, Xia P, Liu P, Liao S, Qin T, Zhang H. Emerging Roles Of hsa-circ-0046600 Targeting The miR-640-HIF-1a Signalling Pathway In The Progression Of HCC. *OncoTargets Ther* 2019; 12: 9921-9301 [PMID: 31807069 DOI: 10.2147/OTT.S229514]

Farhadi P, Yarani R, Kiani S, Mansouri K. Perfluorocarbon as an adjuvant for tumor anti-angiogenic therapy: Relevance to hypoxia and HIF-1. *Med Hypotheses* 2021; 146: 110357 [PMID: 32082240 DOI: 10.1016/j.mehy.2020.11.0357]

Pu J, Wang J, Li W, Lu Y, Wu X, Long X, Luo C, Wei H. hsa_circ_0000992 promotes hepatocellular carcinoma progression through up-regulating HN1 expression by binding to microRNA-338-3p. *J Cell Mol Med* 2021 [PMID: 32077624 DOI: 10.1111/jcmm.15010]

Liu Z, Yang D, Li Y, Jiao Y, Li G. HN1 as a diagnostic and prognostic biomarker for liver cancer. *Biosci Rep* 2020; 40 [PMID: 32700728 DOI: 10.1242/BRR.2020316]

Yu YX, Ge TW, Zhang P. Circular RNA circGIFR1A promotes angiogenesis, cell proliferation and migration of hepatocellular carcinoma by combining with miR-149. *Eur Rev Med Pharmacol Sci* 2020; 24: 11058-11064 [PMID: 33215421 DOI: 10.26355/eurev.202101.2359]

Xu Z, Li P, Fan L, Wu M. The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. *Front Immunol* 2018; 9: 9 [PMID: 29403493 DOI: 10.3389/fimmu.2018.00009]

Ma Y, Zhang C, Zhang B, Yu H, Yu Q. circRNA of AR-suppressed PABP2C1 91 bp enhances the cytotoxicity of natural killer cells against hepatocellular carcinoma via upregulating UL16 binding protein 1. *OncoLett* 2019; 17: 388-397 [PMID: 30655779 DOI: 10.3892/ol.2018.9066]
target in cancer therapy. Feng Y mediated sorafenib resistance in hepatocellular carcinoma. Demir T Suppressed the Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Targeting the miR-155-5p/PDK1 Axis. Li Y sensitivity of gastric cancer cell to cisplatin. Zhao G, Fan W, Zhao G, Zeng T, Zheng H, Fu HW, Sun EJ, Yang B, 9364 [PMID: 30836160 DOI: 10.1016/j.phrs.2019.03.001] 96 Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, Gao DM, Shi GM, Ke AW, Fan J. Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer 2019; 18: 105 [PMID: 31153371 DOI: 10.1186/s12935-019-1031-i-1] 97 Shi M, Li ZY, Zhan LM, Wu XY, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Manag Res 2021; 13: 943-454 [PMID: 34829868 DOI: 10.3390/biomedicines9111639] 98 Li ZY, Guo Y. MicroRNA-107 is a novel tumor suppressor targeting POU3F2 in melanoma. Mol Cancer 2021; 20: 84 [PMID: 31027518 DOI: 10.1186/s13059-019-1685-4] 99 Yang B, Zhao J, Hao T, Zhang M, Wu X. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/beta-catenin signaling pathway. J BUON 2020; 25: 1368-1374 [PMID: 32862578] 100 Chen H, Liu S, Li M, Huang P, Li X. circ_000418 Inhibits Tumorigenesis And Cisplatin Chemoresistance Through Wnt/β-Catenin Pathway In Hepatocellular Carcinoma. Onco Targets Ther 2019; 12: 9539-9549 [PMID: 31807029 DOI: 10.2147/OTT.S229507] 101 Sun EJ, Wankell M, Palamutluoglu P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR Pathway In Hepatocellular Carcinoma. Biomedicines 2021; 9 [PMID: 34829868 DOI: 10.3390/biomedicines9111639] 102 Fu HW, Lin X, Zhu YX, Lan X, Kuang Y, Wang YZ, Ke ZG, Yuan T, Chen P. Circ-IGF1R has pro-proliferative and anti-apoptotic effects in HCC by activating the PI3K/AKT pathway. Gene 2019; 716: 144031 [PMID: 10.1016/j.gene.2019.144031] 103 Zheng H, Chen T, Li C, Xu C, Ding C, Chen J, Ju S, Zhang Z, Li, Z, Cui Z, Zhao J. A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag Res 2019; 11: 443-454 [PMID: 30655696 DOI: 10.2147/CAMAR.S189338] 104 Zhao Z, Song J, Tang B, Fang S, Zhang D, Zheng L, Wu F, Gao Y, Chen Y, Hu X, Weng Q, Yang L, Tu J, Li J, CircSO2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res 2020; 39: 259 [PMID: 33234142 DOI: 10.1186/s13046-020-01709-7] 105 Wu M, Sun T, Xing L. Circ_0004913 Inhibits Cell Growth, Metastasis, and Glycolysis by Absorbing microRNA-184 to Regulate HAMP in Hepatocellular Carcinoma. Cancer Biother Radiopharm 2020; 33212399 DOI: 10.1080/cbr.2020.3779] 106 Zeng T, Luo L, Huang Y, Ye X, Lin J. Upregulation of miR-138 Increases Sensitivity to Cisplatin in Hepatocellular Carcinoma by Regulating EZH2. Biomed Res Int 2021; 2021: 6665918 [PMID: 33748276 DOI: 10.1155/2021/6665918] 107 Zhao G, Zhang A, Sun S, Ding Y. Long non-coding RNA LINC00173 enhances cisplatin resistance in hepatocellular carcinoma via the microRNA-641-RAB14 axis. Oncol Lett 2021; 21: 371 [PMID: 33777195 DOI: 10.3892/ol.2021.12632] 108 Fan W, Chen L, Wu X, Zhang Z. Circ_0031242 Silencing Mitigates the Progression and Drug Resistance in DDP-Resistant Hepatoma Cells by the miR-924/POU3F2 Axis. Cancer Manag Res 2021; 13: 743-755 [PMID: 33531841 DOI: 10.2147/CAMAR.S272851] 109 Zhao G, Wei Z, Guo Y. MicroRNA-107 is a novel tumor suppressor targeting POU3F2 in melanoma. Biol Res 2020; 53: 11 [PMID: 32169117 DOI: 10.1186/s40659-020-02027-3] 110 Qian Y, Wu X, Wang H, Hou G, Han X, Song W. MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. Braz J Med Biol Res 2020; 53: e9330 [PMID: 32321153 DOI: 10.1590/1414-431X20209330] 111 Li Y, Zhang Y, Zhang S, Huang D, Li B, Liang G, Wu Y, Jiang Q, Li L, Lin C, Wei Z, Meng L. circRNA circARNT2 Suppressed the Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Targeting the miR-155-5p/PDK1 Axis. Mol Ther Nucleic Acids 2021; 23: 244-254 [PMID: 33425483 DOI: 10.1038/s41397-020-00817] 112 Stark AL, Delaney SM, Wheeler HE, Im HK, Dolan ME. Functional consequences of PRPF39 on distant genes and cisplatin sensitivity. Hum Mol Genet 2012; 21: 4348-4355 [PMID: 22777337 DOI: 10.1002/hmg2.266] 113 Qiu L, Zhan Z, Wei C, Li X, Zhang T, Li J, HsacircRNA004213 promotes cisplatin sensitivity by regulating miR3135b-3p/PRPF39 in liver cancer. Mol Med Rep 2021; 23 [PMID: 33864606 DOI: 10.3892/mmr.2021.12060] 114 Demir T, Lee SS, Kaseb AO. Systemic therapy of liver cancer. Adv Cancer Res 2021; 149: 257-294 [PMID: 33579425 DOI: 10.1016/bs.acr.2020.12.001] 115 Yu J, Wang N, Gong Z, Liu L, Yang S, Chen GG, Lai PBS. Cytochrome P450 1A2 overcomes nuclear factor kappa B-mediated sorafenib resistance in hepatocellular carcinoma. Oncogene 2021; 40: 492-507 [PMID: 33184472 DOI: 10.1002/cam4.1820]
Huang H, Peng J, Yi S, Ding C, Ji W, Huang Q, Zeng S. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis. Am J Transl Res 2021; 13: 6076-6086 [PMID: 34363466]

Yang C, Dong Z, Hong H, Dai B, Song F, Geng L, Lu J, Yang J, Sui C, Xu M. circFN1 Mediates Sorafenib Resistance of Hepatocellular Carcinoma Cells by Sponging miR-1205 and Regulating EZF2 Expression. Mol Ther Nucleic Acids 2020; 22: 421-433 [PMID: 33224466 DOI: 10.1016/j.omtn.2020.08.039]

Fang Z, Lin M, Li C, Liu H, Gong C. A comprehensive review of the roles of EZF2 in colon cancer. Am J Cancer Res 2020; 10: 757-768 [PMID: 32266989]

Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, Gorskih K, Sun Q, Lin H, Zheng X, Chen J, Jin RA, Liang X, Cai X. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 2020; 5: 298 [PMID: 33361760 DOI: 10.1038/s41392-020-00375-5]

Kwon E, Todorova K, Wang J, Horos R, Lee KK, Neel VA, Negri GL, Sorensen PH, Lee SW, Hentze MW, Mandinova A. The RNA-binding protein YBX1 mediates proapoptotic contributions at a posttranscriptional level. Nat Commun 2018; 9: 1734 [PMID: 29712925 DOI: 10.1038/s41467-018-04092-0]

Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM, Fan J. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer 2021; 20: 75 [PMID: 33985545 DOI: 10.1186/s12943-021-01361-3]

Salmaninejad A, Vallilou SF, Shabagah AG, Aslani S, Ailimardani M, Pasdar A, Sahebkar A. PD-1/PD-L1 pathway: Basic role and biology in cancer immunotherapy. J Cell Physiol 2019; 234: 1684-16837 [PMID: 30784805 DOI: 10.1002/jcp.28358]

Zha KL, Yu G, Han Q, Cui C, Zhang B. TIM-3: An emerging target in the liver diseases. Scand J Immunol 2020; 91: e12825 [PMID: 31486085 DOI: 10.1111/sjji.12825]

Tan S, Xu Y, Wang Z, Tang T, Du X, Song X, Guo X, Peng J, Zhang J, Liang Y, Lu J, Gao C, Wu Z, Li C, Li N, Gao L, Liang X, Ma C. Tim-3 Hampers Tumor Surveillance of Liver-Resident and Conventional NK Cells by Disrupting PI3K Signaling. Cancer Res 2020; 80: 1130-1142 [PMID: 31848194 DOI: 10.1158/0008-5472.CAN-19-2332]

Sanchez-Correa B, Lopez-Sejas N, Duran E, Labella F, Alonso C, Solana R, Tarazona R. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother 2019; 68: 861-870 [PMID: 30953117 DOI: 10.1007/s00262-019-02336-6]

Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB, Ke AW. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020; 19: 110 [PMID: 32935303 DOI: 10.1186/s12943-020-01222-5]

Li Y, Zhai Y, Song Q, Zhang H, Cao P, Ping J, Liu X, Guo B, Liu G, Song J, Zhang Y, Yang A, Yuan H, Yang L, Cui Y, Ma Y, Xing J, Shen X, Liu T, An J, Bei JX, Jia W, Kang L, Liu L, Yuan D, Hu Z, Shen H, Lu L, Wang X, Li H, He F, Zhou G. Genome-Wide Association Study Identifies a New Locus at 7q21.13 Associated with Hepatitis B Virus-Related Hepatocellular Carcinoma. Clin Cancer Res 2018; 24: 906-915 [PMID: 29246937 DOI: 10.1158/1078-0432.CCR-17-2537]

Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, Cai JB, Yang X, Fan J, Ke AW, Zhou J, Shi GM. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/sna1/DPP4 axis. Mol Cancer 2020; 19: 92 [PMID: 32430013 DOI: 10.1186/s12943-020-01213-6]

Seimiya T, Otsuka M, Iwata T, Shibata C, Tanaka E, Suzuki T, Koike K. Emerging Roles of Exosolary Circular RNAs in Cancer. Front Cell Dev Biol 2020; 8: 568366 [PMID: 33117799 DOI: 10.3389/fcell.2020.568366]

Moldogazieva NT, Zavadskiy SP, Terentiev AA. Genomic Landscape of Liquid Biopsy for Hepatocellular Carcinoma Personalized Medicine. Cancer Genomics Proteomics 2021; 18: 369-383 [PMID: 33994362 DOI: 10.21873/cgp.20266]

Sukowati CHC, Cabral LKD, Tribelli C, Fascut D. Circulating Long and Circular Noncoding RNA as Non-Invasive Diagnostic Tools of Hepatocellular Carcinoma. Biomolecules 2021; 9 [PMID: 33477833 DOI: 10.3390/biom9100909]

Debes JD, Romagnoli PA, Prieto J, Arrese M, Mattos AZ, Boonstra A; On Behalf Of The Escalon Consortium. Serum Biomarkers for the Prediction of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13 [PMID: 33918270 DOI: 10.3390/cancers13071681]

Ozgor D, Otaan E. HCC and Tumor Biomarkers: Does One Size Fits All? J Gastrointest Cancer 2020; 51: 1122-1126 [PMID: 32827068 DOI: 10.1007/s12930-020-00485-x]

Lyu L, Yang W, Yao J, Wang H, Zhu J, Jin A, Liu T, Wang B, Zhou J, Fan J, Yang X, Guo W. The diagnostic value of plasma exosomal hsa_circ_0070396 for hepatocellular carcinoma. Biomark Med 2021; 15: 359-371 [PMID: 33666515 DOI: 10.21277/bmm-2020-0476]

Zhang X, Xu Y, Qian Z, Zheng W, Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, Xu W, Zhang Y, Sun F, Pan Q, Wang J, Du L, Yu Y. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis 2018; 9: 1091 [PMID: 30631504 DOI: 10.1038/s41419-018-1132-6]

Mattholi M, Shafiei AE, Ali MA, Ashry AM, Kamal KM, Agag MA, Reda I, Tash EF, Ali M. circRNAs (hsa_circ_00156, hsa_circ_000224, and hsa_circ_000520) are novelpotential biomarkers in hepatocellular carcinoma. J Cell Biochem 2018 [PMID: 30426540 DOI: 10.1002/jcb.28045]

Yu J, Ding WB, Wang MC, Guo XG, Jia X, Ju XQ, Yang Y, Sun SH, Liu JF, Qin LX, Liu H, Yang F, Zhou WP. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: A large-scale, multicenter study. Int J Cancer 2020; 146: 1754-1763 [PMID: 31456215 DOI: 10.1002/ijc.32647]

Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Goldani F, Parizadeh SMR, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. MicroRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Curr Drug Targets 2019; 20: 1129-1140 [PMID: 30848198 DOI: 10.2174/1389450120666190307095720]

Zhang C, Zhang C, Lin J, Wang H. Circular RNA Hsa_Circ_0091579 Serves as a Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. Cell Physiol Biochem 2018; 51: 290-300 [PMID: 30453307 DOI: 10.1159/000495230]

Lei B, Zhou J, Xuan X, Tian Z, Zhang M, Gao W, Lin Y, Ni B, Pang H, Fan W. Circular RNA expression profiles of...
Peripheral blood mononuclear cells in hepatocellular carcinoma patients by sequence analysis. *Cancer Med* 2019; 8: 1423-1433 [PMID: 30714679 DOI: 10.1002/cam4.2010]

Pan H, Tang L, Jiang H, Li X, Wang R, Gao J, Li Q. Enhanced expression of circ_0000267 in hepatocellular carcinoma indicates poor prognosis and facilitates cell progression by sponging miR-646. *J Cell Biochem* 2019 [PMID: 30719761 DOI: 10.1002/jcb.28411]

Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, Mao L, Luo CB, Yu SY, Huang XW, Cao Y, Fan J, Zhou J. Circular RNA Sequencing Identifies CircASAP1 as a Key Regulator in Hepatocellular Carcinoma Metastasis. *Hepatology* 2020; 72: 906-922 [PMID: 31838741 DOI: 10.1002/hep.31069]

Guo J, Duan H, Li Y, Yang L, Yuan L. A novel circular RNA circ-ZNF652 promotes hepatocellular carcinoma metastasis through inducing snail-mediated epithelial-mesenchymal transition by sponging miR-203/miR-502-5p. *Biochem Biophys Res Commun* 2019; 513: 812-819 [PMID: 31000195 DOI: 10.1016/j.bbrc.2019.03.214]

Zhang X, Qiu S, Luo P, Zhou H, Jing W, Liang C, Tu J. Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis. *Cancer Biomark* 2018; 22: 135-142 [PMID: 29630526 DOI: 10.3233/CBM-171109]

Li X, Yang J, Yang X, Cao T. Dysregulated circ_0004913, circ_0008160, circ_0000517, and their potential as biomarkers for disease monitoring and prognosis in hepatocellular carcinoma. *J Clin Lab Anal* 2021; 35: e23785 [PMID: 34018640 DOI: 10.1002/jcla.23785]

Sunagawa Y, Yamada S, Sonohara F, Kurimoto K, Tanaka N, Suzuki Y, Inokawa Y, Takami H, Hayashi M, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Genome-wide identification and characterization of circular RNA in resected hepatocellular carcinoma and background liver tissue. *Sci Rep* 2021; 11: 6016 [PMID: 33727578 DOI: 10.1038/s41598-021-85237-y]

Kim G, Han JR, Park SY, Tak WY, Kweon YO, Lee YR, Han YS, Park JG, Kang MK, Lee HW, Lee WK, Kim D, Jang SY, Hur K. Circular noncoding RNA hsa_circ_0005986 as a prognostic biomarker for hepatocellular carcinoma. *Sci Rep* 2021; 11: 14930 [PMID: 34294754 DOI: 10.1038/s41598-021-94074-y]
