A study of attention-based Neural Machine Translation models on Indian Languages

Ayan Das, Pranay Yerra, Ken Kumar, Sudeshna Sarkar
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, WB, India
ayan.das@cse.iitkgp.ernet.in
ypranay.hasan@cse.iitkgp.ernet.in
ken@iitkgp.ac.in
sudeshna@cse.iitkgp.ernet.in

Abstract

Neural machine translation (NMT) models have recently been shown to be very successful in machine translation (MT). The use of LSTMs in machine translation has significantly improved the translation performance for longer sentences by being able to capture the context and long range correlations of the sentences in their hidden layers. The attention model based NMT system has become state-of-the-art, performing equal or better than other statistical MT approaches. In this paper, we studied the performance of the attention-model based NMT system on the Indian language pair, Hindi and Bengali. We analysed the types of errors that occur in morphologically rich languages when there is a scarcity of large parallel training corpus. We then carried out certain post-processing heuristic steps to improve the quality of the translated statements and suggest further measures.

1 Introduction

Deep Neural Network has been successfully applied to machine translation. The work of (Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014) have shown that it is possible to build an end-to-end machine translation system using neural networks by introducing the encoder-decoder model. NMT systems have several advantages over the existing phrase-based statistical machine translation (SMT) systems (Koehn et al., 2007). The NMT systems do not assume any domain knowledge or linguistic features in source and target language sentences. Secondly, the entire encoder-decoder models are jointly trained to maximize the translation quality as opposed to the phrase-based SMT systems in which the individual components needs to be trained and tuned separately for optimal performance.

Although the NMT systems have several advantages, their performance is restricted in case of low-resource language pairs for which sufficiently large parallel corpora is not available and the language pairs whose syntaxes differ significantly. Morphological richness of language pairs poses another challenge for NMT systems that do not have any prior knowledge of the languages as it tends to increase the number of surface forms of the words due to inflectional attachments resulting in an increased vocabulary of the languages. Moreover, the inflectional forms have their semantic roles that have to be interpreted for proper translation. In order to enable the NMT systems to learn the roles of the inflectional forms automatically we need sufficiently large data. However, sufficiently large parallel data may not be available for low-resource morphologically rich language pairs. Most of the Indian languages are morphologically rich and there is lack of sufficiently large parallel corpus for Indian language pairs.

Given our familiarity with Bengali and Hindi, we took up this task as a case-study and evaluated the performance of NMT models on Indian language pair-Hindi and Bengali. We then analyzed the resulting translated sentences and suggested post-processing heuristics to improve the quality of the translated sentences. We have proposed heuristics to rectify the incorrect translations of the named entities. We have also proposed a heuristic to translate and predict the position of untranslated source words.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.org/licenses/by/4.0/
2 Related work

Neural machine translation

Neural machine translation models attempt to optimize \(p(e|f) \) directly by including feature extraction using a single neural network. The entire translation process is done using an encoder-decoder framework (Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014) where the encoder encodes \(f \) into a continuous space representation and the decoder uses the encoding of \(f \) and decoding history to generate the target language sentence \(e \). The encoders and decoders are essentially recurrent neural networks (RNNs)(Mikolov et al., 2010; Mikolov et al., 2011) or its gated versions (Gated Recurrent Unit (GRU) (Chung et al., 2014; Chung et al., 2015) or Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)) capable of learning long-term dependencies.

Cho et al. (2014) proposed to use the final state of the hidden layer of the encoder as the encoding of the source sentence. Sundermeyer et al. (2014) used a bi-directional RNN in the encoder and used the concatenation of the final states of the hidden layers as the encoding of the source sentence. Sutskever et al. (2014) proposed to train the encoder using the source sentence in the reverse ordering of words and the decoder in the correct word ordering of target sentence.

Bahdanau et al. (2014) and Luong et al. (2015) have proposed the attention-based translation model. The encoder of the model is a bi-directional RNN (Schuster and Paliwal, 1997). The annotation vectors \(\mathbf{h}_j^T \) (where \(\mathbf{h}_j \) encodes the \(j^{th} \) word with respect to the other words in the source sentence) are obtained by concatenating the two sequences of hidden layers \(\mathbf{h}_j^T \) and \(\mathbf{h}_j^T \) which are obtained by training the forward RNNs on the original sequence of input sentences and the backward RNNs on the reverse sequence of input sentences, such that \(\mathbf{h}_j^T = [\mathbf{h}_j^T; \mathbf{h}_j^T] \). The decoder consists of a single layer GRU. At time step \(t \), the alignment layer decides the relevance of the source words for the word to be predicted. The relevance (\(\alpha_{jt} \)) of the \(j^{th} \) annotation vector at time \(t \) is determined by a feed-forward neural network that takes the previous state of the hidden layer of the decoder (\(\mathbf{s}_{t-1} \)), embedding of the last predicted word (\(\mathbf{y}_{t-1} \)) and the \(j^{th} \) annotation vector (\(\mathbf{h}_j \)) as input. The hidden state of the decoder at time \(t \) is computed as a function \(f_r \) of the previous hidden state \(\mathbf{s}_t \), the context vector \(\mathbf{c}_t \) and the previous predicted word \(\mathbf{y}_{t-1} \), where \(f_r \) is a GRU and \(\mathbf{c}_t \) is the context vector for the \(t^{th} \) word is obtained as a sum of the annotation vectors weighted by the corresponding relevance scores.

\[
\mathbf{s}_t = f_r(\mathbf{s}_{t-1}, \mathbf{y}_{t-1}, \mathbf{c}_t)
\]

Finally, the conditional distribution over the words is obtained by using a deep output layer.

\[
p(\mathbf{y}_t|\mathbf{y}_{t-1}, \mathbf{x}) \propto \exp(\mathbf{y}_t^T(W_\theta \mathbf{f}_0(\mathbf{s}_t, \mathbf{y}_{t-1}, \mathbf{c}_t) + b_0))
\]

where, \(\mathbf{y}_t \) is the indicator vector corresponding to a word in the target vocabulary. \(W_\theta \) and \(b_0 \) are the weights and bias of the deep layer and \(f_0 \) is a single-layer feed-forward neural network with a two-way maxout layer (Goodfellow et al., 2013).

Once the model learns the conditional distribution, then given a source sentence we can find a translation that approximately maximizes the conditional probability using, for instance, a beam search algorithm.

3 Proposed Method

In this paper, we studied the performance of attention-model based NMT system (Bahdanau et al., 2014) on Bengali-Hindi language pair. The attention-based NMT models have shown near state-of-the-art performance for the language pairs, English-French and English-German. One of the advantages for these language pairs was the availability of good-quality, sentence aligned parallel corpora from WMT’14 dataset. We implemented the same attention-model based NMT system (Bahdanau et al., 2014) and studied its performance on the Indian language pair, Bengali and Hindi. Both Hindi and Bengali belong to the same family of language and share some high-level syntactic similarities such as Subject-Object-Verb (SOV) sentence structure which lead us to believe that the attention model will be useful for this language pair.
3.1 Resources used

Monolingual Hindi and Bengali corpora were used to train word2vec (Mikolov et al., 2013) to obtain the word embeddings. The monolingual Hindi corpus was obtained from the ILTP-DC (www.tdil-dc.in/) which consists of about 45 million sentences. The FIRE 2011 (http://www.isical.ac.in/ clia/2011/) monolingual Bengali news corpus consisting of about 3.5 million sentences was used to obtain the Bengali word vectors. The Bengali-Hindi parallel corpus was obtained from ILCI (sanskrit.jnu.ac.in/ilci), comprising of 50000 sentences obtained from tourism and health domains was used for the experiments. From the 50000 Bengali-Hindi parallel sentences, 49000 sentence pairs were randomly selected for training and remaining 1000 sentence pairs were used for testing. In order to reduce the size of the vocabulary we replaced all the numeric values by the ’NUM’ token.

3.2 Our implementation of the Attention-Model

The attention-model based NMT model (Bahdanau et al., 2014) was implemented in Theano (Theano Development Team, 2016). The number of hidden layer units (n) was taken as 1000, the word embedding dimensionality as 620 and the size of the maxout hidden layer in the deep output was 500. The number of hidden units in the alignment model was 1000. We used gradient-clipping with a clipping threshold of 5. The model was trained using stochastic gradient descent with a learning rate of 0.0627 and batch size of 1. The model was run on a Nvidia Tesla K40C GPU machine.

4 Results

MOSES (a phrase-based SMT model) (Koehn et al., 2007) was used as a baseline system for comparison of the NMT model. The Bengali-Hindi parallel corpus obtained from ILCI (sanskrit.jnu.ac.in/ilci) comprising of 50000 sentences obtained from tourism and health domains was used for the experiments. From the 50000 Bengali-Hindi parallel sentences 49000 sentence pairs were randomly selected for training the model and remaining 1000 sentence pairs were used for testing. Out of the 49000 sentence-pairs in the training set, 15000 pairs (tuning set) were randomly selected for tuning the model parameter (weights) using MERT system (Minimum Error Rate Training) (Och, 2003) which searches for weights optimizing a given error measure which is BLEU score in our case. The SRILM (Stolcke, 2002) language model was trained using the entire training dataset comprising of 49000 sentence pairs.

We compared the performance of the attention-model based NMT system with that of the baseline MOSES phrase-based SMT system. We ran the NMT model for 25 epochs. Table 1 summarizes the results.

Translation model	BLEU score	Iterations
MOSES	14.35	-
Attention-based translation model	20.41	25

As the BLEU score suggests, the translation quality of the NMT system surpasses that of the MOSES (Koehn et al., 2007) by a significant margin. Out of the 1000 sentence pairs used for testing, we randomly picked up 8 sentences and present them in Appendix 1. We observe that in five of the eight examples the translation results of the attention model are clearly better than that produced by MOSES. The translation by MOSES is slightly better in two cases whereas in one example, both models have almost similar translation results. This was the general trend in all the test examples with the attention model performing relatively better than MOSES in cases of longer source sentences (Figure 1).

We also compared the BLEU score of our NMT model over 25 iterations with the MOSES system and saw that only after 5 iterations, the NMT model started performing better than MOSES (Figure 2).

5 Analysis

Our implementation of the attention based NMT model significantly outperforms MOSES in terms of BLEU scores. However on manual inspection of some random samples, we observed significant errors
Figure 1: Variation of BLEU score with sentence length. The plot shows the BLEU score against the source sentence length.

Figure 2: Comparison of BLEU score of the NMT model over 25 iterations with the baseline MOSES system.
in translation of named entities. Due to the limited size of the corpus, many named entities were absent from the vocabulary and hence the model was not able to find a suitable translation for them. Thus the quality of the translated sentences suffered. We propose the following algorithm as a post processing step in order to deal with named entities.

5.1 Dealing with named entities

Algorithm 1 summarizes the steps for correcting the errors due to wrong translation of the named entities for a test Bengali sentence.

Algorithm 1: Correction of errors due to wrong translation of the named entities

input	Bengali sentence \((B = \{b_1, b_2, \cdots, b_M\})\), translated Hindi sentence, word alignment scores \((\alpha \text{ values})\) for the translation
output	Corrected Hindi sentence

1. for each word \(b_j\) in \(B\) do
2. if \(b_j\) is named entity then
3. Tag \(b_j\) as NE
4. end
5. end

6. for each tagged \(b_j\) do
7. Transliterate the tagged \(b_j\) into the target language (Hindi) using any open-source transliteration tool.
8. Find the index \(i\) in the translated sentence for which the value of \(\alpha_{ij}\) is maximum. /* This \(h_i\) corresponds to the word in the target language sentence whose translation has been most highly influenced by \(b_j\). */
9. Replace \(h_i\) with the transliterated word of \(b_j\)
10. end

The named entities in the test sentences were identified manually. For transliterating the Bengali words to Hindi we used a Bengali-Hindi transliterator developed at our institute. We are working on developing a good quality NER system for Bengali and automating the process of identification and transliteration of the Bengali named entities. On manually observing the target sentences after performing the heuristic, it was found that the overall quality of the translated sentences had gone up and they were more relevant to the context of the source sentences. However this post-processing step resulted in slight decrease in the BLEU score. Part of this may be due to the fact that direct transliteration of the named entities from the source language to the target language without stemming or lemmatization could not take into account the inflectional differences in the source and target language. In Appendix 2 we present five examples. Words like কচ্ছ (kachchh-of) in Bengali when transliterated directly into Hindi results in कच्छेर (kachchher), which is indeed the direct Hindi transliteration of the Bengali word including the inflection -of but fails to capture the context in which it is used and how it should be used (with proper inflection) in the target language sentence. Similarly in the third example sentence, the Bengali word এশিয়ান (Asiyan) transliterate directly to एशियान (Asiyan) in the target language but the word एशियाई (Asia-of) was more suited to the context of the sentence. But as we mentioned earlier, it was manually observed that the relevance of the target sentences in relation to the source sentences was found to be more than those of the translated sentences before correction.

5.2 The problem of untranslated words

The lack of sufficient amount of training data meant that we had to work with a limited vocabulary size for the source as well as the target language. This resulted in many phrases in the source sentences not getting translated simply because our model was not able to find words in the target language vocabulary for that phrase. Algorithm 2 summarizes the post-processing heuristic to deal with such untranslated words.
Algorithm 2: Prediction of translations for untranslated words

input: Bengali sentence \(B = \{b_1, b_2, \cdots, b_M\} \), translated Hindi sentence \(H = \{h_1, h_2, \cdots, h_N\} \), word alignment scores (\(\alpha \) values) for the translation

output: Corrected Hindi sentence

1. for each word in \(b_j \) in \(B \) do
2. if \(b_j \) is NOUN then
3. untranslated = false for all \(h_i \) in \(H \) do
4. if \(\alpha_{ij} > \) threshold then
5. untranslated = true
6. break
7. end
8. end
9. if untranslated then
10. Find the index \(i \) in the target sentence for which the value of \(\alpha_{ij} \) is maximum.
11. Insert the transliteration of \(b_j \) in Hindi into the target sentence at the \(i^{th} \) position.
12. end
13. end

The intuition behind this heuristic is very simple. The index which is most highly influenced by the untranslated word in the source sentence is the probable position for the translation of that word to occur. We simply transliterated those words and put them at position that they influence the most in the target sentence. We show five randomly selected examples in Appendix 3 (\(\alpha_{ij} = 0.2 \)). Out of the five examples, we find that the quality of 4 sentences improved, while for one sentence, it did not improve much.

We observed that the NMT system is better at translating the postpositions than the SMT system. We need to further investigate this observation. The reason is not yet clear to us and we are working to find the explanation for this observation.

6 Conclusion

In this paper we showed that the performance of the attention-model based NMT system for the Indian language pair, Bengali and Hindi is better than the existing SMT model of MOSES. We then analysed the output translated sentences and observed that there were significant translation errors in case of named entities and rare words. In order to improve the results, we implemented certain post-processing heuristic steps and manually observed that we were able to make the translated sentences more relevant in context to the source sentences.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. In ICLR 2015.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October. Association for Computational Linguistics.

Junyoung Chung, Çağlar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555.

Junyoung Chung, Çağlar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2015. Gated feedback recurrent neural networks. CoRR, abs/1502.02367.
Appendix A. Comparison of output of attention-based NMT model and MOSES.

Bengali	MOSES	Attention-based TM	Ref. translation
এরা হেলন সাধারণ বা বেজেটের পযটক।	যে বৈচিত্র্য আম বেজেট বালা পযটক হয়।	যে বর্তমান বেজেট বালা পযটক হয়।	বর্তমান বেজেট বা বেজেটকে পযটক করে।
পেট চাট লাগেল যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।	পেট মেঘে চাট লাগেল। যেত হেত। পাের সত্তা য়েত পাের মাংসেপশী ও হাড় পযটক হয়।
Appendix B. Example of sentences containing named entities before and after post-processing.

Table 2: Target sentences after transliterating the named entities in the source sentences

Bengali	Attention-based TM	After transliteration	Ref. translation
কন্যার ছোট্টা সস্তুষ্টি হল জানাতে?	এককিতাল্লান তাস রন্ধন কারণে হিসাবে নিষেধাজ্ঞা হিসাবে নিষেধাজ্ঞা 3 ন্যাশনাল হিসাবে।	কন্যার ছোট্টা রেশিপিয়ান জানাতে?	এককিতাল্লান তাস রন্ধন কারণে হিসাবে নিষেধাজ্ঞা হিসাবে নিষেধাজ্ঞা 3 ন্যাশনাল হিসাবে।
বতীর নাম হল কাফস খেদালী খেদালী লাবন খেদালী ও শলাঙ্গ খেদালী।	তিনি যে যे...		
Appendix C. Example of sentences with untranslated words before and after post-processing.

Table 3: Target sentences after transliterating and inserting the untranslated words
Bengali
Attention-based TM
After transliteration
Ref. translation
Bengali
Attention-based TM
After transliteration
Ref. translation
Bengali
Attention-based TM
After transliteration
Ref. translation
Bengali
Attention-based TM
After transliteration
Ref. translation
Bengali
Attention-based TM
After transliteration
Ref. translation