Critical current diffraction pattern of SIFS Josephson junctions with a step-like F-layer

M Weides¹,², U Peralagu¹,³, H Kohlstedt¹,⁵, J Pfeiffer², M Kemmler², C Gürlrich², E Goldobin², D Koelle² and R Kleiner²

¹ Institute of Solid State Research, Research Centre, Jülich, D-52425 Jülich, Germany
² Physikalisches Institut-Experimentalphysik II and Center for Collective Quantum Phenomena, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
³ Present address: Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
⁴ Present address: Department of Physics, University of California, Santa Barbara, CA 93106, USA.
⁵ Present address: Nanoelktronik, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel, Germany.

Received 18 June 2010, in final form 15 July 2010
Published 6 August 2010
Online at stacks.iop.org/SUST/23/095007

Abstract
We present the latest generation of superconductor–insulator–ferromagnet–superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses \(d_1\) and \(d_2\) in both halves were varied to obtain different combinations of positive and negative critical current densities \(j_{c1}\) and \(j_{c2}\). The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.

(Some figures in this article are in colour only in the electronic version)

Superconducting spintronic elements, made up by superconducting (S) and ferromagnetic (F) layers, may improve future classical and quantum computing devices [1]. The underlying physics is based on the difference in spin order (antiparallel alignment in S and parallel in F): the Cooper pair singlet injected into a ferromagnet gains a finite center-of-mass momentum which, in turn, leads to an oscillating phase of the superconducting order parameter [2]. In the ground state, the conventional, e.g. SIS (I: tunnel barrier), Josephson junctions (JJs) have the same sign of the order parameter in both superconducting electrodes, whereas in SFS or SIFS JJs the order parameters may have opposite signs [3–7], i.e. one deals with a ‘\(\pi\) JJ’, as the Josephson phase is \(\phi = \pi\) in the ground state due to a negative critical current \(I_c < 0\). The conventional JJs with \(I_c > 0\) are called ‘0 JJ’ in this context, as they have \(\phi = 0\) in the ground state. Generally speaking \(I_c\) is an oscillating and decaying function of the F-layer thickness \(d_F\), see figure 1(a). By using an F-layer with a step-like thickness, \(d_1\) in one half and \(d_2\) in the other half, as shown in figure 1(b), one may fabricate a JJ with different \(I_{c1} = I_c(d_1)\) in one part of the JJ and \(I_{c2} = I_c(d_2)\) in the other part. If \(I_{c1}\) and \(I_{c2}\) have different signs, one obtains a 0–\(\pi\) JJ [8], in which 0 and \(\pi\) ground states compete with each other. At certain conditions [9] the ground state of the JJ is doubly degenerate, corresponding to a vortex of supercurrent circulating either clock- or counterclockwise, and thereby creating a spontaneous magnetic flux [10] \(|\Phi| \lesssim \Phi_0/2\), where \(\Phi_0\) is a magnetic flux quantum.

Various 0–0 (\(I_{c1}, I_{c2} > 0\)), \(\pi–\pi\) (\(I_{c1}, I_{c2} < 0\)) and 0–\(\pi\) (\(I_{c1} > 0, I_{c2} < 0\)) SIFS JJs based on a diluted NiCu alloy were already fabricated and studied by us [8, 11–13]. In comparison with other types of 0–\(\pi\) JJs, such as SFS or d-wave/s-wave [14, 15], the intrinsic capacitance of SIFS JJs makes these JJs underdamped, so that one can study the dynamics, carry out spectroscopy [16] or use them in macroscopic quantum circuits [1].

In this paper we present a new generation of SIFS (Nb\(\mid\)AlO\(_x\)\(\mid\)NiCu\(\mid\)Nb) JJs with a step in F-layer thickness. In comparison with the previous process the new one provides more superior JJs. First, additional Al interlayers within
of a step-type 0–π level optical photolithographic mask procedure including SF6 stack was covered with a 40 nm Nb cap layer.

∼ to-run variations. The F-layer gradient was reduced by a factor thicknesses in one fabrication run, we deposit a wedge-shaped temperature. To obtain many structures with different F-layer contained a triplet of junctions including: (a) The dependence \(|I_c(d_F)| \) as deposited initially) for JJs with non-etched (stars) and etched (circles) F-layer. The symmetric 0–π junction (solid line) has \(I_c(d_F) = -I_c(d_F) \). (b) Sketch of a step-type 0–π JJ. \(H \) and \(\Phi_{M,i} \) are oriented along the same axis.

the bottom Nb electrode decrease the SI interface roughness. Second, computer control of the F-layer step etch enhances reproducibility. Third, a lower F-layer gradient gives a better sample yield.

The multilayer is deposited by DC magnetron sputtering on thermally oxidized 4 inch Si substrates. The 160 nm thick Nb bottom electrode, made up by four 40 nm Nb layers, each separated by 2.4 nm Al layers to reduce roughness, was covered by a 5 nm thick Al layer and thermally oxidized for 30 min at 10⁻² mbar residual oxygen pressure and room temperature. To obtain many structures with different F-layer thicknesses in one fabrication run, we deposit a wedge-shaped F-layer (i.e. NiCu) alloy in order to minimize inevitable run-to-run variations. The F-layer gradient was reduced by a factor of ~2 compared to the previous process [11]. The multilayer stack was covered with a 40 nm Nb cap layer.

The stepped junctions were patterned using a four-level optical photolithographic mask procedure including SF6 reactive etching and Ar ion-beam milling. The junctions were partly protected with photoresist to define the step location in the F-layer, followed by (i) selective Nb removal via SF6 reactive etching, (ii) Ar ion-etching of the NiCu and (iii) \(\text{i}n \text{s}u \text{t}u \) deposition of Nb. The insulating layer between top and bottom electrodes is self-aligned by ion-beam etching down to the AlOx tunnel barrier and anodic oxidation of the bottom Nb electrode. Finally the top wiring is deposited.

Various junctions were placed on the wafer within a narrow row perpendicular to the gradient in the F-layer thickness and were replicated along this gradient. One row contained a triplet of junctions including:

- reference \(\pi \) JJ with as-deposited, uniform F-layer of thickness \(d_1 \);
- stepped 0–\(\pi \) JJ with step \(\Delta d_F \) in the F-layer thickness from \(d_1 \) to \(d_2 \).

Our data are compared with a simple model, which takes into account different \(I_{c,1} \neq I_{c,2} \) and different net magnetizations \(M_1 \neq M_2 \) in each half. Both the multidomain structure of the F-layer, yielding a stochastically distributed local magnetization, and the difference in magnetic thickness in both halves result in \(M_1 \neq M_2 \).

We consider an SIFS JJ, shown in figure 1(b) with \(I_{c,1} \neq I_{c,2} \). The fluxes \(\Phi_{M,1} \neq \Phi_{M,2} \), created by in-plane F-layer net magnetizations \(M_1 \) and \(M_2 \), are added to the flux \(\Phi \) provided by an external uniform magnetic field \(H \). Note that \(M_1 \) and \(M_2 \) can be independently aligned either parallel or antiparallel to the applied field. Thus, their sign can be either positive (parallel alignment) or negative (antiparallel alignment). The restriction to 1D magnetization is experimentally justified for weak magnets. The more general case of 2D in-plane magnetization in SIFS JJs is discussed elsewhere [17]. In the following we use an index \(i = 1, 2 \) to refer to two different parts of our JJ. The magnetic flux density is \(b_i = \mu_0 H / 2 \lambda_i + \Phi_{M,i} / L_i \) with the London penetration depth \(\lambda_i \) and the length \(L_i \) of each part.

For a short JJ of length \(L = L_1 + L_2 \) and width \(w \), both \(\leq 4 \lambda_i \), \(\phi_j \) is the Josephson penetration length, the local phase is \(\phi(x) = \phi_0 + 2 \pi / \Phi_0 \cdot b_i x \) with an arbitrary initial phase \(\phi_0 \) and the maximum Josephson supercurrent for each \(H \) is given by

\[
I_c(H) = \max \left[\phi_0 \left(\sum_{i=1}^2 \left(I_{c,i} \int_{L_i} \sin \phi_i(x) \, dx \right) \right)^{1/2}, \right] \tag{1}
\]

where \(I_{c,i} = j_{c,i} w L \). Further we assume that \(L_1 = L_2 = L / 2 \).

The effect of the input parameters, such as \(I_{c,i} \) and \(\Phi_{M,i} \), on \(I_c(H) \) was discussed for our first 0–\(\pi \) junction \((L_1 > 0, I_{c,2} < 0) \) in [13]. Now, using our latest generation of samples, we check the applicability of this model in the whole range of \(I_{c,2}/I_{c,1} = -1 \cdots 1 \). Figure 1(a) shows the experimentally measured \(|I_c(d_F)| \) dependence for reference JJs without an F-layer step. For JJs with an as-deposited (non-etched) F-layer the \(I_c(d_F) \) vanishes at \(d_F \approx 6.8 \) nm due to crossover from 0 to \(\pi \) ground state, i.e. the sign change of \(I_c(d_F) \). The etched-away F-layer thickness \(\Delta d_F \approx 1.7 \) nm was determined by the shift of the \(|I_c(d_F)| \) dependence along the \(d_F \) axis after etching. Note that we have two reference JJs for each \(d_F \): the one was etched \((d_F = d_1) \) and another left as deposited \((d_F = d_2) \).

For a JJ with a step in the F-layer, equation (1) predicts the \(I_c(H) \) patterns shown as a color plot in figure 2 for \(I_{c,2}/I_{c,1} = -1 \cdots 1 \). The full range \(I_{c,2}/I_{c,1} = -\infty \cdots \infty \) is included by an index change. The fluxes \(\Phi_{M,i} \) were set to zero. Experimentally the \(I_c(H) \) dependences are measured at 4.2 K for three JJs with \(I_{c,2}/I_{c,1} < 0 \) (0–\(\pi \) JJs) and for four JJs with \(I_{c,2}/I_{c,1} > 0 \) (0–0 or \(\pi–\pi \) JJs). They were taken on zero-field-cooled samples for both field sweeping directions. The magnetic field was applied in-plane and parallel to the F-layer step, see figure 1(b). The measured curves are shifted

The F-layer thicknesses were determined by XRD, compared to a profiler measurement in [8, 11–13].

Figure 1. (a) The dependence \(|I_c(d_F)|\) as deposited initially) for JJs with non-etched (stars) and etched (circles) F-layer. (b) Sketch of a step-type 0–π JJ. \(H \) and \(\Phi_{M,i} \) are oriented along the same axis.
in figure 2 according to their \(I_{c,2}/I_{c,1} \) ratio. At zero magnetic field the \(I_c(0) \) changes from a global maximum at \(I_{c,2}/I_{c,1} = 1 \) to a global minimum at \(I_{c,2}/I_{c,1} = -1 \) as the integrals in equation (1) gradually cancel out. For an applied magnetic field equal to the \(\Phi_0 \) denoted in the black box (left scale).

The small shifts along the \(H \)-axis were comparable to or smaller than \(\lambda_1 \). The longest sample (0 JJ of set \(d_2 = 7.3 \) nm) has \(\lambda_1 \approx 75 \mu \text{m} \). The measured \(I_c(H) \) of the 0–\(\pi \) and the 0 and \(\pi \) reference JJs are shown in figure 3 together with the calculated pattern for the 0–\(\pi \) JJs.

The magnetic field dependences \(I_{c,1}(H) \) and \(I_{c,2}(H) \) of the reference junctions are nearly ideal Fraunhofer patterns with oscillation period \(\mu_0 \Delta H \approx 93 \mu \text{T} \), see figure 3. The small shifts along the \(H \)-axis are attributed to a net magnetization of the F-layer. For the 0–\(\pi \) JJs the \(I_c(H) \) oscillation period was \(\approx 184 \mu \text{T} \), nearly twice as large as for the reference JJs, as expected from theory. The plateau with a weakly developed dip in figure 3(a) and partially developed dip in figure 3(b) at \(H \approx 0 \) are caused by the critical current asymmetry, i.e. \(I_{c,1} \neq -I_{c,2} \). This can be seen from the calculated \(I_c(H) \) pattern, too. For both samples the asymmetry of the main maxima and the shift of the \(I_c(H) \) pattern along the \(H \)-axis indicate a difference in the net magnetizations \(\Phi_{M,1} \). The best fit of the experimentally measured curves using equation (1) with \(\Phi_{M,1} \) as fitting parameters yields the fluxes \(\Phi_{M,1} \approx 0.2 \Phi_0 \), i.e. dividing them by an area \(6 \times 50 \mu \text{m}^2 \) of the F-layer in one half of the junction we obtain the net magnetization <1.4 mT, whereas for a fully polarized NiCu alloy a saturation magnetization of 100 mT was reported [18].

The fitting parameter gives the mean magnetization in each half, indicating that the zero-field-cooled F-layer is in a multidomain state. We attribute the remaining discrepancy with data to local nonuniformity of magnetization. Another feature—bumped minima in \(I_c(H) \) for \(I_{c,1} \neq -I_{c,2} \) and \(\Phi_{M,1} \neq \Phi_{M,2} \) [13]—appear very close to the measurement resolution limit and have not been further investigated. The \(I_c(H) \) dependence of the sample with \(d_2 = 8.13 \) nm shown in figure 3(c) is very symmetric, indicating \(\Phi_{M,1} = \Phi_{M,2} = 0 \).
The maximum critical currents at the left and right maxima of the $I_c(H)$ pattern for the 0–π JJ are 99.2 and 98.9 μA, respectively. They differ by less than 1%, and were $\approx 0.72I_c$, as expected from the theory [14]. The central feature of 0–π JJs—the dip or plateau at zero field with critical current given by $|I_c(0)/|I_c| = (1 - |I_c/|I_c|)/2$—is fairly well affirmed for all three 0–π JJs.

In summary, we have fabricated SIFS JJs with and without a step in the F-layer thickness using state-of-the-art SIFS JJ technology and produced 0–0, 0–π and π–π JJ with different I_c in the two parts. The experimentally measured $I_c(H)$ dependences can be well described by the model assuming different j_c and different net magnetization in different parts of the F-layer. The fits are much better than for the previous generation of samples [13]. The presented results demonstrate a good understanding of the physics of such 0–π JJs.

Thus the presented SIFS technology may provide the JJs with step-wise tailored $j_c(x)$ including the π regions with $j_c(x) < 0$.

Acknowledgments

Support via DFG (SFB/TRR-21, WE 4359/1-1) and the AvH Foundation (MW) is gratefully acknowledged.

References

[1] Kato T, Golubov A A and Nakamura Y 2007 Decoherence in a superconducting flux qubit with a π-junction Phys. Rev. B 76 172502
[2] Buzdin A I 2005 Proximity effects in superconductor–ferromagnet heterostructures Rev. Mod. Phys. 77 935
[3] Vasenko A S, Golubov A A, Kupriyanov M Yu and Weides M 2008 Properties of tunnel Josephson junctions with ferromagnetic interlayer Phys. Rev. B 77 134507
[4] Oboznov V A, Bol'ginov V V, Feofanov A K, Ryazanov V V and Buzdin A I 2006 Thickness dependence of the Josephson ground states of superconductor–ferromagnet–superconductor junctions Phys. Rev. Lett. 96 197003
[5] Weides M, Kemmler M, Goldobin E, Koelle D, Kleiner R, Kohlstedt H and Buzdin A 2006 High quality ferromagnetic 0 and π Josephson tunnel junctions Appl. Phys. Lett. 89 122511
[6] Bannykh A A, Pfeiffer J, Stolyarov V S, Batov I E, Ryazanov V V and Weides M 2009 Josephson tunnel junctions with a strong ferromagnetic interlayer Phys. Rev. B 79 054501
[7] Sprungmann D, Westerholt K, Zabel H, Weides M and Kohlstedt H 2009 Josephson tunnel junctions with Fe$_{25}$Co$_{75}$ interlayers J. Phys. D: Appl. Phys. 42 07005
[8] Weides M, Kemmler M, Goldobin E, Kohlstedt H, Waser R, Koelle D and Kleiner R 2006 0–π Josephson tunnel junctions with ferromagnetic barrier Phys. Rev. Lett. 97 247001
[9] Bulaevskii L N, Kuzii V V and Sobyanin A A 1978 On possibility of the spontaneous magnetic flux in a Josephson junction containing magnetic impurities Solid State Commun. 25 1053–7
[10] Goldobin E, Koelle D and Kleiner R 2002 Semifluxons in long Josephson 0–π-junctions Phys. Rev. B 66 100508
[11] Weides M, Schindler C and Kohlstedt H 2007 Low T_c Josephson junctions with tailored barrier J. Appl. Phys. 101 063902
[12] Weides M 2009 Josephson junctions with centered step and local variation of critical current density IEEE Trans. Supercond. 19 689
[13] Kemmler M et al 2010 Magnetic interference patterns in 0–π superconductor/insulator/ferromagnet/superconductor Josephson junctions: effects of asymmetry between 0 and π regions Phys. Rev. B 81 054522
[14] Smilde H J H, Ariando, Blank D H A, Gerritsma G J, Hilgenkamp H and Rogalla H 2002 d-waveinduced Josephson current counterflow in YBa$_2$Cu$_3$O$_{y}$/Nb zigzag junctions Phys. Rev. Lett. 88 57004
[15] Ariando, Darminto D, Smilde H J H, Leca V, Blank D H A, Rogalla H and Hilgenkamp H 2005 Phase-sensitive order parameter symmetry test experiments utilizing Nd$_{2-\delta}$Ce$_\delta$CuO$_{y}$/Nb zigzag junctions Phys. Rev. Lett. 94 167001
[16] Pfeiffer J, Kemmler M, Koelle D, Kleiner R, Goldobin E, Weides M, Feofanov A K, Lisenfeld J and Ustinov A V 2008 Static and dynamic properties of 0, π, and 0–π ferromagnetic tunnel Josephson Junctions Phys. Rev. B 77 214506
[17] Weides M 2008 Magnetic anisotropy in ferromagnetic Josephson junctions Appl. Phys. Lett. 93 52502
[18] Ahern S A, Martin M J C and Sucksmith W 1958 The spontaneous magnetization of nickel + copper alloys Proc. R. Soc. 248 145