Research Article

Topological Sustainability of Crop Water Requirements and Irrigation Scheduling of Some Main Crops Based on the Penman-Monteith Method

Waseem Asghar Khan 1, Jamshaid Ul Rahman, 2 Mogtaba Mohammed, 1 Ziyad Ali Al Hussain, 1 and Murtada K. Elbashir 3

1 Department of Mathematics, Faculty of Sciences Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
2 Abdus Salam School of Mathematical Sciences, GCU, Lahore 54000, Pakistan
3 College of Computer and Information Sciences, Jouf University, Sakaka 72441, Saudi Arabia

Correspondence should be addressed to Waseem Asghar Khan; wa.khan@mu.edu.sa

Received 5 October 2021; Accepted 27 October 2021; Published 22 November 2021

Academic Editor: Haidar Ali

Copyright © 2021 Waseem Asghar Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The following method was used to apply the topology of the current study of evapotranspiration E_T, net irrigation demand, irrigation schedules, and total effective rain fall of different crop models: using the Food and Agriculture Organization’s (FAO) CROPWAT 8.0 standard software and the CLIMWAT 2.0 tool and the FAO-56 Penman-Monteith approach to examine the variable topology of evapotranspiration E_T. Due to high temperatures in summer with an annual mean of 6.33 mm/day, the topological demonstration of reference evapotranspiration (E_{To}) increases from 2.84 mm/day in January to a maximum of 9.61 mm/day in July. Effective rainfall fluctuates from 0 mm to 53.4 mm. Total irrigation topological indices requirements were 308.3 mm/dec, 335.9 mm/dec, 343.6 mm/dec, 853 mm/dec, and 1479.6 mm/dec for barley, wheat, maize, rice, and citrus, respectively. The physical topological indices due to low demand in winter and high demand in summer, the total net irrigation, and gross irrigation for clay loamy soils for wheat (210.6 mm and 147.4 mm), barley (176.6 mm and 123.6 mm), citrus (204.5 mm and 143.2 mm), and maize (163.9 mm and 114.7 mm), but not for rice. This topology demonstrates that wheat has 4, barley has 4, citrus has 12, maize has 4, and rice crop has 12 irrigation schedules in a year.

1. Introduction

The topology of agricultural technology development for wheat, rice, maize, citrus, and barley in Saudi Arabia faces enormous challenges, which are average of arid areas described with water shortage, low precipitation, and above average evapotranspiration requirement. The greatest source of irrigation water is acquired from groundwater. The farming segment expended more than 85% of water ingesting, which achieved more than 23 billion m3 in 2012; see [1]. An efficient and precise assessment of CWR is necessary for preparing, constructing, operating, and controlling farm systems due to a rise in the demand of water with time. Precise assessment of CWR can assist to sustain cost-effective utilization of water reserves for irrigation. Evapotranspiration (ET) performs the most important part in topological sustainability of irrigation water [2].

Groundwater is an important source of freshwater of strategic importance for a country’s and its people’s long-term development. Management of water resources has become a hot topic in recent years, with the goal of ensuring sustained quality and availability while also meeting economic and social development objectives [3, 4].

Under conditions of limited water resources, the CROPWAT model can help improve useful suggestions for increasing yield production [5]. It enables the expansion of irrigation practice suggestions, the design of irrigation timetables under various water allocation requirements, and
the estimation under rainfed or shortfall irrigation conditions. The approximate yield reduction is caused by water pressure and climate factors. According to the modeling results, the significant yield decline occurred in the embryonic stage in both rainfed and watered situations [6, 7].

CROPWAT and CLIMWAT softwares are used by many researchers for the estimation of CWR, and irrigation pattern and preparation. These tools were built by the "Food and Agriculture Organization" (FAO) for assisting researchers in water irrigation investigations and irrigation sustainability [7–11]. CLIMWAT is a climate data bank that works in conjunction with software application CROPWAT. CROPWAT uses meteorological data from over 5000 climate stations across the world to determine agricultural water requirements, irrigation source, and planning for a range of crops. Aimed at the stations in its database, CLIMWAT delivers lengthy-term monthly base values of the climatological limitations required for the Penman-Monteith method computation of evapotranspiration: mean relative humidity, mean high daily temperature, mean minimum daily temperature, mean sunshine hours, mean wind speed, and monthly total and effective rainfall [9, 12]. In the current analysis, the IWR and irrigation scheduling of rice, maize, citrus, barley, and wheat in Qassim region, Saudi Arabia, were investigated using the CLIMWAT and CROPWAT models.

2. Methodology and Materials

2.1. Working Area. Al-Qassim Province, as shown in Figure 1, is located at the heart of Saudi Arabia, geographically at the center of the Arabian Peninsula. The total population of this region is 1370727 and the total area of this region is 58046 km². This region is an agricultural asset of Saudi Arabia. The total cultivated area is 453099 m², the total harvest area is 427050.1 m², and the total production is 236505 (ton) [13]. The average minimum and maximum temperatures are 16.5°C and 31.4°C in 2019. The average minimum and maximum temperatures are 23.8 km/day and 8.1 per hour, respectively. The latitude and longitude of Qassim are 26° 30’ N and 43° 76’ E with an altitude of 650 m. The average rainfall of Qassim is 183 mm [14–16].

2.2. Topology of FAO Penman-Monteith Method to Estimate Reference Evapotranspiration (ET₀). FAO-56 Penman-Monteith method to estimate (ET₀) at standard climatological measurements of sunlight, air temperature, humidity, and wind velocity is used in the calculation. The weather measurements are needed at 2 m above an extensive surface of green grass, shadowing the ground and being not short of water, to maintain the integrity of the computations and strength of this method to predict evapotranspiration perfectly under every climatic situation [2, 17]:

\[
ET₀ = \frac{0.408 \Delta (R_n - G) + \gamma (900/T + 273) \mu_e (e_s - e_a)}{\Delta + \gamma (+0.34 \mu_e)}
\]

where \(\gamma\) is psychrometric constant (kPa/°C), \(e_s - e_a\) is saturation vapour pressure deficit (kPa), \(e_a\) is actual vapour pressure (kPa), \(e_s\) is saturation vapour pressure (kPa), \(ET₀\) is reference evapotranspiration (mm/day), \(\Delta\) is slope vapour pressure curve (kPa/°C), \(R_n\) is net radiation at the crop surface (MJ/m² day), \(\mu_e\) is wind speed at 2 m height (m/s), \(T\) is air temperature at 2 m height (°C), and \(G\) is soil heat flux density (MJ/m² day).

In Table 1 results in column 9 show that the ET₀ gradually increases from nearly 2.84 mm/day in January to the highest worth of approximately 9.61 mm/day in Jul. Then it again declines steadily to 2.97 mm/day in December as shown in Table 1 and Figure 1. The maximum ET₀ rises from 5.26 to 6.98 mm/day in April. The average yearly ET₀ was 6.33 mm/day in 2019.

In Table 1, the maximum effective rainfall was 53.4 mm in November, 2019, although it was zero in June to September and between 4 mm and 37 mm in the other months of year 2019. The total twelve-month effective rainfall was expected to be 172.3 mm. There are various approaches to estimate the effective rainfall, e.g., fixed percentage 80%, dependable rain (FAO/AGLW method), empirical formula, and no rainfall. But, in this study, we use the US Agriculture Department of Soil Conservation Service (USAD S. C.) method which has developed a technique for determining effective rainfall using long-term meteorological and soil quality data. Perusing 50 years of rainfall information at 22 experimental stations representing various meteorological and soil conditions resulted in a complete analysis. Each day, the soil moisture balance was calculated by subtracting consumptive usage from the previous day’s balance and adding effective rainfall or irrigation. The soil input rate and rainfall intensities are not taken into account in this method to avoid a high level of complexity [2].

USAD S. C. Method:

Effective rainfall \(P_{efl}\) is calculated by the crop factor tactic whereby the consequence of the numerous climate circumstances is combined into ET₀ and the crop properties into the crop factor and

\[
effective\ rainfall\ (P_{efl}) = rainfall \times \frac{125 - 0.2 \times \text{rainfall}}{125} \text{ if rainfall} \leq 250, \tag{2a}
\]

and

\[
effective\ rainfall\ (P_{efl}) = 125 - 0.1 \times \text{rainfall} \text{ if rainfall} \geq 250. \tag{2b}
\]

2.3. Crop Water Requirement (CWR) or Crop Evapotranspiration (ETc). The quantity of rainwater necessary by the harvest throughout the spell is specified as crop water necessity. ETc is calculated by the crop factor tactic whereby the consequence of the numerous climate circumstances is combined into ET₀ and the crop properties into the crop factor and
reference crop evapotranspiration (ET\textsubscript{o}) which can be investigated by the following relation [8, 18]:

\[
s = K\text{c} \times \text{ETo},
\]

where \(K\text{c} \), called crop coefficient introduced by [2, 7, 19] varying according to crop time of season (days or weeks after planting) at different stages as shown in Figure 2, is basically the ratio of the \(\text{ETc} \) to \(\text{ETo} \). This coefficient incorporates the impacts of four necessary measures that characterize the crop from source grassland, i.e., reflectance of the soil surface, crop height, evaporation from soil, and resistance canopy. In growth spell, four different phases of crop growth are considered, i.e., initial stage, crop development stage, mid-season stage, and late season stage [2, 20].

2.4. Topology of Net Irrigation Water Requirement (NIWR)

NIWR for each crop is calculated by using the following formula:
\[\text{NIWR} = \text{ETc} - P_{\text{eff}}. \] (4)

3. Discussion and Results

The region (Saudi Arabia), climatic location (Al-Qassim region), name of crop, sowing and harvesting period, and soil information were all included in the CROPWET and CLIMWAT package data (black clay soil). Once all data have been entered into the system, we calculate ETo using the Penman-Monteith method (equation (1)) and effective rainfall using the USDA S. C. method ((2a) and (2b)). The IWRs and effective rain of rice, wheat, citrus, maize (grain), and barley are shown in Tables 2–6. The CROPWAT program [9] was used to calculate all of the results. The crop’s scientific name, critical depletion, sowing and harvesting times, Kc value, rooting depth (m), yield response friction at various phases (beginning, growing, mid-season, and late-season), total number of days required for completion, and croup height (m) are shown in Tables 7–11.

Tables 2–6 reveals the results of total irrigative water requirements (IWRs), total effective rainfall and crop evapotranspiration (ETc) of five crops (rice, wheat, citrus, maize, and barley) in Qassim region; KSA are according to this order respectively:

IWRs:

\[
\begin{align*}
\text{Barley} & \quad (308.3) < \text{Wheat} \quad (335.9) < \text{Maize} \quad (343.6) < \text{Rice} \quad (853) < \text{Citrus} \quad (1479.6). \\
\text{Total Effective Rainfall:} & \\
\text{Rice} & \quad (47.9) < \text{Barley} \quad (114.2) < \text{Maize} \quad (120.2) < \text{Wheat} \quad (125.2) < \text{Citrus} \quad (172.5). \\
\text{Crop Evapotranspiration (ETc):} & \\
\text{Barley} & \quad (423.4) < \text{Wheat} \quad (461.5) < \text{Maize} \quad (464.9) < \text{Rice} \quad (659.3) < \text{Citrus} \quad (1656.4).
\end{align*}
\] (5) (6) (7)

In Tables 2–6 results reveal that 172.5% of effective rainfall has been recorded by citrus, 152.2% has been recorded by wheat, 120.2%, 114.2%, and 47.9% have been recorded by maize, barley, and rice, respectively, and
Table 2: Results shows CWR to rice at different stages; the total time taken from nursery/land preparation to end stage is 150 days approximately. Column 8 shows the results of IWR.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
Nov.	2	Nure	1.20	0.52	3.1	6.7	0
Nov.	3	Nurs/LPr	1.12	2.68	26.8	7.8	110.1
December	1	Nurs/LPr	1.06	3.59	35.9	3.1	122.8
December	2	Initial	1.09	3.12	31.2	0.2	89.1
December	3	Initial	1.10	3.15	34.7	0.6	34
January	1	Dev	1.11	3.14	31.4	1	30.3
January	2	Dev	1.15	3.17	31.7	0.9	30.7
January	3	Dev	1.20	3.70	40.7	2.5	38.1
February	1	Mid	1.23	4.25	42.5	5.2	37.2
February	2	Mid	1.23	4.63	46.3	7.1	39.1
February	3	Mid	1.23	5.24	41.9	5	37
March	1	Mid	1.23	5.85	58.5	1	57.5
March	2	Late	1.22	6.42	64.2	0	64.2
March	3	Late	1.17	6.85	75.4	0.8	74.6
April	1	Late	1.13	7.22	72.2	4	68.2
April	2	Late	1.10	7.66	23	1.7	20.1
Total						**659.3**	

Table 3: CWR of wheat at different stages.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
December	2	Init	0.3	0.86	5.2	6.5	0
December	3	Init	0.3	0.86	9.5	9.2	0.3
January	1	Init	0.3	0.85	8.5	7.1	1.4
January	2	Dev	0.38	1.05	10.5	5.7	4.8
January	3	Dev	0.68	2.1	23.2	4.9	18.3
February	1	Dev	0.99	3.43	34.3	2.5	31.8
February	2	Mid	1.18	4.44	44.4	0.9	43.6
February	3	Mid	1.18	5.04	40.4	6.5	33.8
March	1	Mid	1.18	5.63	56.3	14.9	41.4
March	2	Mid	1.18	6.22	62.2	20.7	41.5
March	3	Late	1.11	6.46	71.1	17.7	53.4
April	1	Late	0.81	5.22	52.2	14	38.2
April	2	Late	0.52	3.64	36.4	12.2	24.2
April	3	Late	0.33	2.5	7.5	2.6	3.2
Total						**461.5**	

Table 4: CWR of citrus at different stages.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
December	2	Init	0.74	2.12	12.7	6.5	3.1
December	3	Init	0.7	2.22	22.1	9.2	12.9
January	1	Init	0.7	1.97	19.7	7.1	12.7
January	2	Init	0.7	1.92	19.2	5.7	13.5
January	3	Init	0.7	2.16	23.8	4.9	18.9
February	1	Init	0.7	2.42	24.2	2.5	21.7
February	2	Dev	0.7	2.64	26.4	0.9	25.5
February	3	Dev	0.7	2.99	24	6.5	17.4
March	1	Dev	0.7	3.35	33.5	14.9	18.6
March	2	Dev	0.7	3.71	37.1	20.7	16.4
March	3	Dev	0.71	4.12	45.3	17.7	27.6
April	1	Dev	0.71	4.53	45.3	14	31.3
April	2	Dev	0.71	4.95	49.5	12.2	37.3
April	3	Dev	0.71	5.39	53.9	8.5	45.3
May	1	Dev	0.71	5.87	58.7	3.9	54.8
May	2	Mid	0.71	6.33	63.3	0.1	63.3
May	3	Mid	0.71	6.47	71.2	0	71.1
Table 4: Continued.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
June	1	Mid	0.71	6.59	65.9	0.1	65.7
June	2	Mid	0.71	6.75	67.5	0	67.5
June	3	Mid	0.71	6.78	67.8	0	67.8
July	1	Mid	0.71	6.86	68.6	0	68.6
July	2	Mid	0.71	6.91	69.1	0	69.1
July	3	Mid	0.71	6.65	73.2	0	73.2
August	1	Mid	0.71	6.37	63.7	0	63.7
August	2	Mid	0.71	6.13	61.3	0	61.3
August	3	Mid	0.71	5.74	63.2	0	63.2
September	1	Mid	0.71	5.3	53	0	53
September	2	Late	0.74	5.05	50.5	0	50.5
September	3	Late	0.74	4.92	49.2	0.1	49
October	1	Late	0.74	4.86	48.6	0.5	48
October	2	Late	0.74	4.72	47.2	0.8	46.4
October	3	Late	0.74	4.22	46.5	2.7	43.8
November	1	Late	0.74	3.7	37	4.9	32.1
November	2	Late	0.74	3.22	32.2	6.7	25.6
November	3	Late	0.74	2.88	28.8	7.7	21.1
December	1	Late	0.74	2.49	24.9	9.4	15.5
December	2	Late	0.74	2.12	8.5	4.3	3.1
Total				1656.4	172.5	1479.6	

Table 5: CWR of maize (grain) at different stages.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
December	2	Init	0.3	0.86	5.2	6.5	0
December	3	Init	0.3	0.86	9.5	9.2	0.3
January	1	Dev	0.37	1.06	10.6	7.1	3.5
January	2	Dev	0.63	1.74	17.4	5.7	11.7
January	3	Dev	0.92	2.83	31.1	4.9	26.2
February	1	Mid	1.18	4.09	40.9	2.5	38.3
February	2	Mid	1.24	4.66	46.6	0.9	45.7
February	3	Mid	1.24	5.28	42.2	6.5	35.7
March	1	Mid	1.24	5.89	58.9	14.9	44
March	2	Late	1.23	6.5	65	20.7	44.2
March	3	Late	1.03	6.01	66.1	17.7	48.5
April	1	Late	0.72	4.61	46.1	14	32.1
April	2	Late	0.45	3.17	25.3	9.7	13.2
Total				464.9	120.2	343.6	

Table 6: CWR of barley at different stages.

Year/Mon.	Decade	Stages	Kc	ETc mm/day	ETc mm/dec	Effective rainfall mm/dec	IWR mm/dec
December	2	Init	0.3	0.86	5.2	6.5	0
December	3	Dev	0.31	0.89	9.8	9.2	0.6
January	1	Dev	0.56	1.59	15.9	7.1	8.8
January	2	Dev	0.91	2.5	25	5.7	19.4
January	3	Mid	1.17	3.6	39.6	4.9	34.7
February	1	Mid	1.18	4.07	40.7	2.5	38.1
February	2	Mid	1.18	4.43	44.3	0.9	43.4
February	3	Mid	1.18	5.01	40.1	6.5	33.6
March	1	Mid	1.18	5.6	56	14.9	41.1
March	2	Late	1.11	5.85	58.5	20.7	37.8
March	3	Late	0.81	4.7	51.7	17.7	34
April	1	Late	0.48	3.08	30.8	14	16.8
April	2	Late	0.28	1.96	5.9	3.6	0
Total				423.4	114.2	308.3	
Table 7: Rice crop data at various stages.

Crop Name	Scientific Name	Oryza sativa						
Planting date (KSA)	15th December, 2020							
Harvest date	13th April, 2021							
Stages	Nursery	Land prep	Puddling	Initial	Develop	Mid	Late	Total
Length (days)	30	0.70	1.20	0.10	0.40	10	150	
Kc dry values	0.30	1.05	0.60	0.60	30	30	30	
Kc wet value	0.50	0.70	0.70	0.70	130	130	130	
Rooting depth (m)	0.20	0.60	0.60	0.60	130	130	130	
Puddling depth (m)	0.40	0.40	0.40	0.40	130	130	130	
Nursery area (%)	10	10	10	10	130	130	130	
Critical depletion	0.20	0.20	0.20	0.20	130	130	130	
Yield response friction	1.09	1.09	1.09	1.09	130	130	130	
Crop height (m)	1.09	1.09	1.09	1.09	130	130	130	

Only for rice crop we added nursery and land preparation time and Kc wet value; results show that at nursery stage, the Kc dry values and Kc wet values are 0.70 and 1.20; at land preparation stage, the Kc dry values and Kc wet values are 0.30 and 1.05; at land preparation stage, the Kc dry values and Kc wet values are 0.30 and 1.05; at initial and developing stages, the Kc dry values and Kc wet values are 0.50 and 1.10; at mid-season stage, the Kc dry values and Kc wet values are 0.05 and 1.20; and at late season stage, the Kc dry values and Kc wet values are 0.70 and 1.05.

Table 8: Wheat crop data at various stages.

Crop Name	Scientific Name	Triticum aestivum			
Planting date (KSA)	15th December 2020				
Harvest date	23rd April 2021				
Stages	Initial	Develop	Mid	Late	Total
Length (days)	30	30	40	30	130
Kc values	0.30	1.15	0.30	0.30	130
Rooting depth (m)	0.30	1.20	1.20	1.20	130
Critical depletion	0.55	0.55	0.80	0.80	130
Yield response friction	0.40	0.60	0.80	0.40	130
Crop height (m)	1.09	1.09	1.09	1.09	130

The Kc value at the initial and developing stage is 0.30; at mid-season stage, the Kc is 1.15, and at late season stage, the Kc value is 0.30.

Table 9: The Citrus crop data at various stages.

Crop Name	Scientific Name	Rutaceae			
Planting date (KSA)	15/12/2020				
Harvest date	14/12/2021				
Stages	Initial	Develop	Mid	Late	Total
Length (days)	60	90	120	95	365
Kc values	0.70	0.65	0.70	0.70	365
Rooting depth (m)	1.40	1.40	1.40	1.40	365
Critical depletion	0.50	0.50	0.50	0.50	365
Yield response friction	1	1	1	1	365
Crop height (m)	4	4	4	4	365

The Kc value at the initial and developing stage is 0.70; at mid-season stage, the Kc is 0.65; and at the late season stage, the Kc value is 0.70.

Table 10: The maize grain crop data at various stages.

Crop Name	Scientific Name	Zea mays			
Planting date (KSA)	15/03/2020				
Harvest date	17/07/2020				
Stages	Initial	Develop	Mid	Late	Total
Length (days)	20	35	40	30	125
Kc values	0.30	1.20	0.35	0.35	125
Rooting depth (m)	0.30	1.00	1.00	1.00	125
Critical depletion	0.55	0.55	0.80	0.80	125
Yield response friction	0.40	0.30	0.50	0.50	125
Crop height (m)	2	2	2	2	125

The Kc value at initial and developing stage is 0.30; at mid-season stage, the Kc is 1.20; and at late season stage, the Kc value is 0.35.
Table 11: Barley crop data at various stages.

Crop Name	Scientific Name	Harvest date	Length (days)	Kc values	Rooting depth (m)	Critical depletion	Yield response friction	Crop height (m)
Barley	Hordeum vulgare	15/10/2020	15	0.30	0.30	0.55	0.20	1
		11/02/2021	25	1.15	1.10	0.60		
			50	0.25	0.90	0.50		
			30					
			120					

The Kc value at initial and developing stage is 0.30; at mid-season stage, the Kc is 1.15; and at late season stage, the Kc value is 0.25.

Table 12: Rice irrigation schedules, starting from the 25th of November and ending on the 13th of April of the next year.

Date	Day	Stage	Eta (%)	Puddl.	Rain (mm)	Ks (fract.)	Percol.	Depl. SM (mm)	Net Gift (mm)	Loss (mm)	Depl. (mm)
25-Nov	–19	PrePu	90	Prep	0	0.9	0	41	91.3	0	40
10-Dec	–4	Puddl	100	Prep	0	1	0	4	90	0	40
14-Dec	0	Puddl	100	OK	0	1	4.9	0	54.3	0	4.3
23-Dec	9	Init	100	OK	4.8	1	3.1	0	95.5	0	-4.5
10-Jan	27	Dev	100	OK	0	1	3.1	0	100.4	0	0.4
26-Jan	43	Dev	100	OK	0	1	3.1	0	95.3	0	-4.7
9-Feb	57	Mid	100	OK	0	1	3.1	0	95.3	0	-4.7
22-Feb	70	Mid	100	OK	0	1	3.1	0	100.8	0	0.8
8-Mar	84	Mid	100	OK	0	1	3.1	0	98.3	0	-1.7
21-Mar	97	End	100	OK	0	1	3.1	0	100.1	0	0.1
2-Apr	109	End									
13-Apr	2	End									

Depl. = Depletion (mm); Percol. = percolation; Ks is the adjustment coefficient for water stress.

Table 13: Wheat irrigation schedules.

Date	Day	Stage	Rain (mm)	Ks (fract.)	Eta (%)	Depl. (%)	Net Irr. (mm)	Deficit (mm)	Loss (mm)	Gr. Irr. (mm)	Flow (L/s/ha)
22-Jan	8-Feb	Dev	0	1	100	56	98.8	0	0	141.2	0.42
24-Feb	12-Mar	Mid	0	1	100	57	136.8	0	0	195.5	0.69
31-Mar	16-Apr	End	0	1	100	61	147.4	0	0	210.6	0.7
23-Apr		End	2	1	100	25					

Table 14: Citrus irrigation schedules.

Date	Day	Stage	Rain (mm)	Ks (fract.)	Eta (%)	Depl. (%)	Net Irr. (mm)	Deficit (mm)	Loss (mm)	Gr. Irr. (mm)	Flow (L/s/ha)
15-Dec	1	Init	0	1	100	51	142.1	0	0	203	23.5
6-Mar	82	Dev	0	1	100	51	141.9	0	0	202.7	0.29
25-Apr	132	Dev	0	1	100	51	142.6	0	0	203.8	0.47
20-May	157	Mid	0	1	100	50	140.4	0	0	200.6	0.93
11-Jun	179	Mid	0	1	100	51	143.6	0	0	205.2	1.08
2-Jul	200	Mid	0	1	100	51	142.2	0	0	203.2	1.12
23-Jul	221	Mid	0	1	100	51	144	0	0	205.6	1.13
14-Aug	243	Mid	0	1	100	51	141.5	0	0	202.1	1.06
8-Sep	268	Mid	0	1	100	51	142.4	0	0	203.4	0.94
7-Oct	297	End	0.3	1	100	51	143.7	0	0	205.2	0.82
12-Nov	333	End	0	1	100	51	143.2	0	0	204.5	0.66
14-Dec		End	0	1	0	21					
Table 15: Maize irrigation schedules.

Date	Stage	Day	Rain (mm)	Ks (fract.)	Depl. (%)	Eta (%)	Net Irr. (mm)	Deficit (mm)	Loss (mm)	Gr. Irr. (mm)	Flow (L/s/ha)
12-Jan	Dev	29-Jan	0	1	55	100	73.6	0	0	105.2	0.42
12-Feb	Mid	29-Feb	0	1	57	100	114.4	0	0	163.4	0.61
10-Mar	Mid	26-Mar	0	1	57	100	114.7	0	0	163.9	0.73
18-Apr	End	End	0	1	64	100					

Table 16: Barley irrigation schedules.

Date	Day	Stage	Rain (mm)	Ks (fract.)	Eta (%)	Depl. (%)	Net Irr. (mm)	Deficit (mm)	Loss (mm)	Gr. Irr. (mm)	Flow (L/s/ha)
10-Jan	27	Dev	0	1	100	56	93.5	0	0	133.6	0.57
11-Feb	59	Mid	0	1	100	55	121.1	0	0	173	0.63
12-Mar	88	Mid	0	1	100	56	123.6	0	0	176.6	0.7
13-Apr	End	End	6.4	1	100	37					

Figure 3: Color reveals rice irrigation schedules showing depletion SAT (blue vertical lines pattern); depletion SM (red vertical lines pattern); SAT rootzone (dark blue line); TAM rootzone (dark green line); RAM rootzone (brown line); SAT puddle (blue thin line); and TAM puddle (green thin line).
Figure 4: Color reveals the wheat irrigation schedules showing RAM (brown line); TAM (green line); and water depletion (red vertical line pattern).

Figure 5: Color reveals the citrus irrigation schedules showing RAM (brown line); TAM (green line); and water depletion (red vertical line pattern).

Figure 6: Color reveals the maize irrigation schedules showing RAM (brown line); TAM (green line); and water depletion (red vertical line pattern).
114.7 mm), but not for rice crop. This analysis demonstrates that wheat has 4, barley has 4, citrus has 12, maize has 4, and rice crop has 12 irrigation schedules in a year. Figures 3–7 demonstrate the irrigation schedules of rice, wheat, citrus, maize, and barley, respectively [21].

4. Conclusion

The goal of this study was to determine IWRs and crop coefficients for wheat, barley, citrus, maize, and rice in the Qassim region. Penman-Monteith’s model estimated an average evapotranspiration of 6.33 mm/day. Citrus had more regular irrigation and evapotranspiration schedules than the four crops in this sequence, as shown by the above results:

Barley (308.3) < Wheat (335.9) < Maize (343.6) < Rice (853) < Citrus (1479.6),

and the order of effective rainfall of all crops is

Rice (47.9) < Barley (114.2) < Maize (120.2) < Wheat (125.2) < Citrus (172.5).

Abbreviations

IWR: Irrigation water requirements
Dev.: Development

In these results, "ETo has increased from 2.84 mm/day to 9.61 mm/day, while effective rainfall has increased from 0 mm to 53.4 mm. For barley, wheat, maize, rice, and citrus, the overall IWRs were 308.3 mm/dec, 335.9 mm/dec, 343.6 mm/dec, 853 mm/dec, and 1479.6 mm/dec, respectively. Except for rice, total net irrigation and total gross irrigation for clay loamy soils are 210.6 mm and 147.4 mm, 176.6 mm and 123.6 mm, 204.5 mm and 143.2 mm, and 163.9 mm and 114.7 mm, respectively, due to low demand in winter and high demand in summer. Wheat, barley, citrus, maize, and rice have irrigation schedules of 4, 4, 12, 4, and 12, respectively", according to the data. Tables 2–6 show the novelty of this work.
Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
The authors declare that they have no conflicts of interest to report regarding the present study.

Authors’ Contributions
Methodology was developed by W. A.; investigation was carried out by W. A.; formal analysis was performed by M. K.; resources were provided by W. A. and J. R.; data collection was done by Z. A.; reviewing and editing were done by W. A. and M. A.; conceptualization was done by M. A.; software was provided by W. A. and J. R.; original draft was written by W. A. and M. K.

Acknowledgments
The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IFP-2020-20.

References
[1] Ministry of Electricity and Water, Statistical Annual Report, Ministry of Electricity and Water, Riyadh, Saudi Arabia, 2014.
[2] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop Evapotranspiration, FAO, Rome, Italy, FAO irrigation and drainage paper no. 56, 1998.
[3] L. Zhao, X. Li, S. Wu, Z. Wu, and M. Tong, “Method for calculating productivity of water imbibition based on volume fracturing stimulations of low permeability reservoirs,” Geofluids, vol. 12, Article ID 6693359, 2021.
[4] M. Zhang, X. Li, X. Cheng et al., “Isotopic tracing of prechlorate sources in the environment,” Journal of Chemistry, vol. 2021, Article ID 9978489, 10 pages, 2021.
[5] Food and Agriculture Organization (FAO), CROPWAT: A Computer Program for Irrigation Planning and Management, M. Smith, Ed., FAO Irrigation and Drainage Paper No. 46, Rome, Italy, 1992.
[6] A. A. Gohari, “Simulation of peanut (Arachis hypogaea L.) with cropwat model in irrigation condition and rainfed,” Science in Agriculture, vol. 2, no. 3, pp. 54–59, 2013.
[7] A. V. Memon and S. Jamsa, “Crop water requirement and irrigation scheduling of soybean and tomato crop using CROPWAT 8.0,” International research Journal of Engineering and Technology, vol. 5, no. 9, pp. 669–671, 2018.
[8] L. S. Pereira, R. G. Allen, M. Smith, and D. Raes, “Crop evapotranspiration estimation with FAO56: past and future,” Agricultural Water Management, vol. 147, pp. 4–20, 2015.
[9] CROPWAT Software, FAO, Land and Water Division, http://www.fao.org/landwater/databases-and-software/cropwat/en/, 2018.
[10] J. D. Valiantzas, “Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data,” Journal of Hydrology, vol. 505, pp. 13–23, 2013.

[11] G. Muñoz and J. Grieser, CLIMWAT 2.0 for CROPWAT; Water Resources, Development and Management Service, Environment and Natural Resources Service, FAO, Rome, Italy, 2006.
[12] A. Al-Omran, S. Eid, and F. Alshammarri, “Crop water requirements of date palm based on actual applied water and Penman–Monteith calculations in Saudi Arabia,” Applied Water Science, vol. 9, no. 69, pp. 1–9, 2019.
[13] Open-source Data General Authority for Statistics, KSA, https://www.stats.gov.sa.
[14] U. Laessing, Saudi Hopes Dates Will Enliven Remote Conservation Town, Reuters, London, UK, 2010.
[15] F. S. Mohammad, H. M. Al-Ghobari, and M. E. Marazky, “Impact of water requirement on yield productivity of potato crop using lysimeters under arid climate,” Open Access Journal of Science, vol. 3, no. 2, pp. 47–54, 2019.
[16] Ministry of Agriculture (MOA), Agriculture Statistical Yearbook. Agricultural Research and Development Affairs, Department of Studies Planning and Statistics, New Delhi, India, 2014.
[17] P. Waller and M. Yitayew, “Crop evapotranspiration,” in Irrigation and Drainage Engineering, pp. 89–104, Springer, Cham, Switzerland, 2016.
[18] P. V. de Azevedo, C. B. de Souza, B. B. da Silva, and V. P. R. da Silva, “Water requirements of pineapple crop grown in a tropical environment, Brazil,” Agricultural Water Management, vol. 88, no. 1–3, pp. 201–208, 2007.
[19] T. J. Trout and K. C. DeJonge, “Crop water use and crop coefficients of maize in the great plains,” Journal of Irrigation and Drainage Engineering, vol. 144, no. 6, pp. 1–13, 2018.
[20] K. Djaman and S. Irmak, “Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions,” Journal of Irrigation and Drainage Engineering, vol. 139, pp. 433–446, 2012.
[21] L. Some, Y. Dembele, M. Ouedraogo, B. M. Some, F. L. Kambire, and S. Sangare, Analysis of Crop Water Use and Soil Water Balance in Burkina Faso Using CROPWAT CEEPA DP36, University of Pretoria, Pretoria, South Africa, 2006.