Germline mutations of the \textit{STK11} gene lead to emergence of hamartomas in the gastrointestinal tract of patients with Peutz-Jeghers syndrome, who bear an increased risk of malignancies of the gastrointestinal tract, genital tract, and other organs. We analyzed 80 sporadic colorectal cancers, six small-intestinal cancers, and 40 gastric cancers for somatic mutations of \textit{STK11} by SSCP methods. Among them only one colorectal cancer, which showed a phenotype of microsatellite instability, was found to possess a deleterious mutation in this gene, a frameshift involving deletion of one base at codons 279–281. This region of the gene contains a mononucleotide-repeat sequence, CCCCCC. The other allele of \textit{STK11} had been lost in this tumor. If the \textit{STK11} gene is one of the mutational targets of microsatellite instability, its inactivation may be associated with tumor development in a small proportion of colorectal cancers.

Key words: \textit{STK11} — Microsatellite instability — Gastrointestinal cancer

PJS, an autosomal dominant condition, is characterized by hamartomatous polyposis throughout the gastrointestinal tract and by melanin spots on the lips, buccal mucosa, fingers, and toes.1,2 Patients affected with PJS are at increased risk for malignancies of the gastrointestinal tract, genital tract, and other organs.3–5 The PJS locus was mapped to the telomeric region of chromosome 19p by linkage analysis.6 Subsequently, germline mutations in a gene encoding a serine/threonine kinase, \textit{STK11}, were found to be responsible for PJS in some patients.7,8 Hamartomatous polyps from PJS patients often display LOH of the telomeric region of the short arm of chromosome 19, supporting the idea that \textit{STK11} is a tumor suppressor gene.9 Adenomas/carcinomas are thought to develop from hamartomatous lesions present in the stomach, duodenum, small intestine, and/or colon of PJS patients.3,10 These lines of evidence have suggested that mutations in the \textit{STK11} gene may be associated with development of sporadic gastrointestinal tumors. To investigate this possibility, we analyzed \textit{STK11} for somatic mutations in a large panel of gastrointestinal cancers.

5To whom correspondence should be addressed at the Laboratory Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo.

6The abbreviations used are: PJS, Peutz-Jeghers syndrome; PCR, polymerase chain reaction; SSCP, single-strand conformation polymorphism; LOH, loss of heterozygosity.

\section*{MATERIALS AND METHODS}

\textbf{Subjects} We extracted genomic DNAs from frozen samples of 80 colorectal cancers, six cancers of the small intestine, and 40 gastric cancers by a standard method.11 Genomic DNAs of matched normal tissue were extracted from peripheral blood or peritumoral intestinal tissues.

\textbf{PCR-SSCP analysis} Eight primer pairs corresponding to intrinsic sequences were designed to amplify the entire coding region of \textit{STK11} from genomic DNA, and PCR-SSCP protocols were performed in the manner reported previously.12 Each 20 \textmu l PCR mixture contained 10–50 ng of genomic DNA, 2 \textmu l of 10x PCR buffer, 250 \textmu M of each dNTP, 0.5 \textmu M of each primer, 5% DMSO, and 1 unit of \textit{Taq} polymerase (TaKaRa, Otsu). PCR amplifications were performed in a thermocycler (Perkin Elmer-Cetus 9600, Norwalk, CT) with denaturation at 94°C for 4 min followed by 35 cycles of 94°C for 30 s, 58–62°C for 30 s, 72°C for 30 s, and final extension at 72°C for 3 min. The PCR products of exons 1, 2, and 4+5 (as intron 4 is small, exons 4 and 5 were amplified together) were digested with appropriate restriction enzymes to achieve higher sensitivity for the SSCP analysis. The 450 bp PCR product for exon 1 was digested with \textit{RsaI} into fragments of 223 bp and 227 bp, the 413 bp product for exon 2 was digested with \textit{PvuII} (280-bp and 133-bp fragments), and the 503-bp product for exons 4+5 was cleaved by \textit{ApaI} (257 bp and 246 bp). A 3 \textmu l aliquot of each PCR product was added to 6 \textmu l of loading buffer (95% formamide, 10 mM EDTA,
PCR-amplification was performed with 50 nmol of each deoxynucleotide, 2 µl of 10× PCR buffer, 50 ng of DNA in a total volume of 20 µl. PCR conditions were 94°C for 4 min followed by 35 cycles (94°C for 30 s, 56°C for 30 s, and 72°C for 30 s) and final extension at 72°C for 3 min. PCR products were separated on a 6% polyacrylamide, 0.5× TBE and 5% glycerol. After electrophoresis, gels were stained with SYBER Green II (FMC Bioproducts, Rockland, ME) and visualized with an FMBIO II Multi-View fluorescence image analyzer (TaKaRa).

Direct sequencing Aberrant bands revealed by SSCP analysis were excised from the gel and amplified under the PCR conditions described above. The products were purified with a Suprec-02 (TaKaRa) and sequenced directly in both strands using an ABI 377 DNA automated sequencer and a Dye Terminator Cycle Sequencing FS Ready Reaction Kit (Perkin Elmer-Cetus, Norwalk, CT).

Analysis of microsatellite instability Genomic DNA samples from tumors were analyzed for microsatellite instability at the BAT-26 mononucleotide-repeat locus by PCR amplification. This locus can identify the status of microsatellite instability very effectively and it was reported to be 96% sensitive to microsatellite instability, with 100% specific responsibility for microsatellite instability.13, 14) Using forward primer 5′-TGACTACTTTTGACTTCAGCC-3′ and rhodamine-labeled reverse primer 5′-AACCATTCAACATTTTTAACCC-3′ (10 pmol each), PCR-amplification was performed with 50 nmol of each deoxynucleotide, 2 µl of 10× PCR buffer, 1 unit of Taq polymerase (TaKaRa), and 10–50 ng of DNA in a total volume of 20 µl. PCR conditions were 94°C for 4 min followed by 35 cycles (94°C for 30 s, 56°C for 30 s, and 72°C for 30 s) and final extension at 72°C for 3 min. PCR products were separated on a 5.6 M urea/32% formamide/8% polyacrylamide gel, and visualized with an FMBIO II Multi-View fluorescence image analyzer (TaKaRa).

LOH analysis of 19p13.3 DNAs from tumors and normal tissues were amplified at three microsatellite loci (D19S886, D19S883, D19S878) in the 19p13.3 region, using primers derived from the Genethon linkage map. One primer of each pair was labeled with 32P-ATP, and PCRs were performed for 35 cycles in 20-µl volumes containing 10–50 ng of DNA, 5 pmol of radiolabeled primer, 5 pmol of unlabeled primer, 2 µl of 10× PCR buffer, 50 nmol of each deoxynucleotide, and 1 unit of Taq polymerase (TaKaRa). PCR amplifications were performed with denaturation at 94°C for 4 min and 35 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 30 s, and final extension at 72°C for 3 min. The products were separated on 6% denaturing polyacrylamide gels and visualized by autoradiography.

RESULTS

We analyzed the entire coding region of the STK11 gene in a panel of 126 sporadic gastrointestinal cancers consisting of 80 colorectal cancers, six cancers of the small intestine, and 40 gastric cancers, by the SSCP method. Only one colorectal (T33) and one small-intestinal cancer (SI5) showed aberrant bands (Fig. 1). Analysis of the sequences in question detected two somatic mutations: a 1-bp deletion within codons 279–281 (exon 6) in T33 (Fig. 2) and a C-to-G substitution at codon 32 (exon 1) in SI5. These nucleotide changes were present only in the tumor tissues. The C-to-G substitution in SI5 caused no amino-acid change, but the deletion in T33 would probably fatally truncate the STK11 gene product.

Codons 279–281 contain the six-cytosine repetitive sequence that is frequently mutated in germline DNAs of PJS patients.12) Mononucleotide-repeat sequences often undergo somatic frameshift mutations in colorectal cancers with microsatellite instability. We examined the gastrointestinal cancers of our panel for mutations in the BAT-26 sequence, a reliable DNA marker for microsatellite instability. Thirteen of the 80 colorectal cancers, one of the six small-intestinal cancers, and four of the 40 gastric cancers showed microsatellite instability by mutation in the BAT-26 repeat sequence. T33, a colorectal cancer with a somatic frameshift mutation of STK11, was among the tumors mutated at BAT-26 (Fig. 3).

We analyzed T33 for allelic deletions of three markers at chromosome 19p13.3 (D19S886, D19S883, and D19S878). As the tumor revealed LOH at D19S886 and D19S878, both alleles of the STK11 gene appeared to have been inactivated.

Fig. 1. SSCP analysis of the STK11 gene. T33 and SI5 showed aberrant bands in exons 6 and 1, respectively.
Tumor T33 originated in the ascending colon of a 58-year-old female with no family history or personal prior history of malignancies. Histological study of the tumor, classified as Dukes’ B, revealed a moderately differentiated adenocarcinoma with no adenomatous or hamartomatous elements, and without any unique features.

DISCUSSION

In PJS, a hereditary polyposis syndrome, patients are at increased risk of gastrointestinal cancers and malignancies of multiple other organs.3-5) Recently mutations of STK11, the gene encoding serine/threonine kinase 11, were shown to be responsible for PJS,7,8) but the function of this serine/threonine kinase remains unclear as regards tumor development. The hamartomatous polyps in gastrointestinal tracts of PJS patients are thought to have the potential for becoming adenomas or carcinomas,9,10) and many of them display LOH in the telomeric region of 19p13.3 where STK11 is located.6) Such observations imply that STK11 is a tumor suppressor gene.

However, several studies have indicated that somatic mutations of STK11 are rare in sporadic colorectal cancers,15-17) gastric cancers,18) breast cancers19) and testicular tumors.15) Only Dong et al. have reported frequent somatic mutations of STK11 in left-sided colorectal tumors, including frameshift mutations involving codons 279-281.20) These codons contain the six-cytosine mononucleotide-repeat sequence that appears to be a mutational hotspot in PJS patients.12) Mononucleotide-repeat sequences are frequently targets of somatic frameshift mutations in colorectal cancers with microsatellite instability. However, we detected a frameshift mutation within codons 279-281 in only one among the 13 colorectal cancers in our panel that

Fig. 2. Sequence analysis of the aberrant band detected in T33, revealing a 1-bp (C) deletion at codon 279-281. This region of STK11 contains a six-cytosine repeat sequence in normal DNA but in T33, deletion of one of those cytosines leads to a stop codon downstream.

Fig. 3. Microsatellite instability indicated by mutation at the BAT-26 locus in T33 colorectal cancer. This locus is 96% sensitive to replication errors, with 100% specific responsibility for microsatellite instability.13,14) N, normal tissue DNA matched to T33.

Fig. 4. Loss of heterozygosity for STK11 locus, 19p13.3 telomeric markers D19S886 and D19S878 in tumor T33. D19S883 was not informative. N, normal tissue DNA; T, tumor DNA.
showed instability by mutation at the BAT-26 locus. This frameshift would cause truncation of the STK11 gene product, and probably abolish its function, because codons 279–281 lie within the catalytic-core domain of this serine/threonine kinase. Furthermore, this colorectal tumor (T33) showed LOH at markers flanking STK11 (D19S886 and D19S878), indicating that both alleles of STK11 had been inactivated.

In tumors with microsatellite instability, frameshift mutations preferentially accumulate in various oncogenes during tumor progression. The (A)10 of transforming growth factor-β receptor II (TGFβRII), (G)8 of insulin-like growth factor II receptor (IGFIIR) and (G)8 of the BAX gene are frequent mutational targets of microsatellite instability. Since tumor T33 showed no frameshift we consider the STK11 gene to be a novel target of microsatellite instability. As such, it may play an important role in development and progression of colorectal tumors having a microsatellite-mutator phenotype, although the frequency of this particular event appears to be very low.

ACKNOWLEDGMENTS

We gratefully acknowledge the technical assistance of Misae Nishijima. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan, and by a “Research for the Future” Program Grant (96L00102) of The Japan Society for the Promotion of Science.

(Received February 10, 1999/Revised March 31, 1999/Accepted April 6, 1999)
Aaltonen, L. A. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. *Cancer Res.*, 58, 2087–2090 (1998).

16) Resta, N., Simne, C., Mareni, C., Montera, M., Gentille, M., Susca, F., Gristina, R., Pozzi, S., Bertario, L., Bufo, P., Carlomagno, N., Ingrosso, M., Rossini, F., P., Tencioni, R., and Guanti, G. STK11 mutations in Peutz-Jeghers syndrome and sporadic colon cancers. *Cancer Res.*, 58, 4799–4801 (1998).

17) Wang, Z., Taylor, F., Churchman, M., Norbury, G. and Tomlinson, I. Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. *Am. J. Pathol.*, 153, 363–366 (1998).

18) Park, W. S., Moon, Y. W., Yang, Y. M., Kim, Y. D., Fuller, B. G., Vortmeyer, A. O., Fogt, F., Lubensky, I. A. and Zhuang, Z. Mutations of the STK11 gene in sporadic gastric carcinomas. *Int. J. Oncol.*, 13, 601–604 (1998).

19) Bignell, G. R., Barfoot, R., Steal, S., Collins, N., Warren, W. and Stratton, M. R. Low frequency of somatic mutations in the LKB1/Peutz-Jeghers syndrome gene in sporadic breast cancer. *Cancer Res.*, 58, 1384–1386 (1998).

20) Dong, S. M., Kim, K. M., Kim, S. Y., Shin, M. S., Na, E. Y., Lee, S. H., Park, W. S., Yoo, N. J., Jang, J. J., Yong, C. J., Kim, J. W., Kim, S. Y., Yang, Y. M., Kim, S. H., Kim, S. H. and Lee, J. Y. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. *Cancer Res.*, 58, 3787–3790 (1998).

21) Morkowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., Fan, R. S., Zborowska, E., Kinzler, K. W., Vogelstein, B., Brattain, M. and Willson, J. K. V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. *Science*, 268, 1336–1338 (1995).

22) Souza, R. F., Appel, R., Yin, J., Wang, S., Smolinski, K. N., Abraham, J. M., Zou, T. T., Shi, Y. O., Lei, L., Cottrell, J., Cyme, K., Biden, K., Simms, L., Leggett, B., Lynch, P. M., Fraizer, M., Powell, S. M., Harpaz, N., Sugimura, H., Young, J. and Meltzer, S. J. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumors. *Nat. Genet.*, 14, 255–257 (1996).

23) Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J. V. and Perucho, M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. *Science*, 275, 967–969 (1997).