EXTENSIONS OF HOMOGENEOUS COORDINATE RINGS TO A_∞-ALGEBRAS

A. POLISHCHUK

ABSTRACT. We study A_∞-structures extending the natural algebra structure on the cohomology of $\oplus_{n \in \mathbb{Z}} L^n$, where L is a very ample line bundle on a projective d-dimensional variety X such that $H^i(X, L^n) = 0$ for $0 < i < d$ and all $n \in \mathbb{Z}$. We prove that there exists a unique such nontrivial A_∞-structure up to a strict A_∞-isomorphism (i.e., an A_∞-isomorphism with the identity as the first structure map) and rescaling. In the case when X is a curve we also compute the group of strict A_∞-automorphisms of this A_∞-structure.

1. Introduction

Let X be a projective variety over a field k, L be a very ample line bundle on X. Recall that the graded k-algebra $R_L = \oplus_{n \geq 0} H^0(X, L^n)$ is called the homogeneous coordinate ring corresponding to L. More generally, one can consider the bigraded k-algebra

$$A_L = \oplus_{p,q \in \mathbb{Z}} H^q(X, L^p).$$

We call A_L the extended homogeneous coordinate ring corresponding to L.

Since A_L can be represented naturally as the cohomology algebra of some dg-algebra (say, using injective resolutions or Čech cohomology with respect to an affine covering), it is equipped with a family of higher operations called Massey products. A better way of recording this additional structure uses the notion of A_∞-algebra due to Stasheff. Namely, by the theorem of Kadeishvili the product on A_L extends to a canonical (up to A_∞-isomorphism) A_∞-algebra structure with $m_1 = 0$ (see [4] 3.3 and references therein). More precisely, this structure is unique up to a strict A_∞-isomorphism, i.e., an A_∞-isomorphism with the identity map as the first structure map (see section 2.1 for details). Note that the axioms of A_∞-algebra use the cohomological grading on A_L (where $H^q(X, L^p)$ has cohomological degree q), and all the operations (m_n) have degree zero with respect to the internal grading (where $H^q(X, L^p)$ has internal degree p). The natural question is whether it is possible to characterize intrinsically this canonical class of A_∞-structures on A_L. This question is partly motivated by the homological mirror symmetry. Namely, in the case when X is a Calabi-Yau manifold, the A_∞-structure on A_L is supposed to be A_∞-equivalent to an appropriate A_∞-algebra arising on a mirror dual symplectic side. An intrinsic characterization of the A_∞-isomorphism class of our A_∞-structure could be helpful in reducing the problem of constructing such an A_∞-equivalence to constructing

This work was partially supported by NSF grant DMS-0070967.
an isomorphism of the usual associative algebras. More generally, it is conceivable that the algebra A_L can appear as cohomology algebra of some other dg-algebras (for example, if there is an equivalence of the derived category of coherent sheaves on X with some other such category), so one might be interested in comparing corresponding A_∞-structures on A_L.

Thus, we want to study all A_∞-structures (m_n) on A_L (with respect to the cohomological grading), such that $m_1 = 0$, m_2 is the standard double product and all m_n have degree 0 with respect to the internal grading. Let us call such an A_∞-structure on A_L admissible. As we have already mentioned before, there is a canonical strict A_∞-isomorphism class of such structures coming from the realization of A_L as cohomology of the dg-algebra $\oplus_n \mathcal{C}^*(L^n)$ where $\mathcal{C}^*(?)$ denotes the Čech complex with respect to some open affine covering of X. By definition, an A_∞-structure belongs to the canonical class if there exists an A_∞-isomorphism from A_L equipped with this A_∞-structure to the above dg-algebra inducing identity on the cohomology. The simplest picture one could imagine would be that all admissible A_∞-structures are strictly A_∞-isomorphic, i.e., that A_L is intrinsically formal. It turns out that this is not the case. However, our main theorem below shows that if the cohomology of the structure sheaf on X is concentrated in degrees 0 and $\dim X$ then for sufficiently ample L the situation is not too much worse.

We will recall the notion of a homotopy between A_∞-morphisms in section 2.1 below. \footnote{All A_∞-morphisms and homotopies between them are assumed to respect the internal grading on A_L.} Let us say that an A_∞-structure is nontrivial if it is not A_∞-isomorphic to an A_∞-structure with $m_n = 0$ for $n \neq 2$. By rescaling of an A_∞-structure we mean the change of the products (m_n) to $(\lambda^{n-2}m_n)$ for some constant $\lambda \in k^\ast$. Our main result gives a classification of admissible A_∞-structures on A_L up to a strict A_∞-isomorphism and rescaling (under certain assumptions).

Theorem 1.1. Let L be a very ample line bundle on a d-dimensional projective variety X such that $H^q(X,L^p) = 0$ for $q \neq 0$, d and all $p \in \mathbb{Z}$. Then

(i) up to a strict A_∞-isomorphism and rescaling there exists a unique non-trivial admissible A_∞-structure on A_L; moreover, A_∞-structures on A_L from the canonical strict A_∞-isomorphism class are nontrivial;

(ii) for every pair of strict A_∞-isomorphisms $f, f' : (m_i) \to (n_i)$ between admissible A_∞-structures on A_L there exists a homotopy from f to f'.

Remarks. 1. One can unify strict A_∞-isomorphisms with rescalings by considering A_∞-isomorphisms (f_n) with the morphism f_1 of the form $f_1(a) = \lambda^{\deg(a)}$ for some $\lambda \in k^\ast$ (where a is a homogeneous element of A_L). In particular, part (i) of the theorem implies that all non-trivial admissible A_∞-structures on A_L are A_∞-isomorphic.

2. As we will show in section 2.1, part (ii) of the theorem is equivalent to its particular case when $f' = f$. In this case the statement is that every strict A_∞-automorphism of f is homotopic to the identity.

3. If one wants to see more explicitly how a canonical A_∞-structure on A_L looks like, one has to choose one of the natural dg-algebras with cohomology A_L (an obvious algebraic choice is the Čech complex; in the case $k = \mathbb{C}$ one can also use the Dolbeault complex).
choose a projector \(\pi \) from the dg-algebra to some space of representatives for the cohomology such that \(\pi = 1 - dQ - Qd \) for some operator \(Q \), and then apply formulas of [5] for the operations \(m_n \) (they are given by certain sums over trees).

The above theorem is applicable to every line bundle of sufficiently large degree on a curve. In higher dimensions it can be used for every sufficiently ample line bundle on a \(d \)-dimensional projective variety \(X \) such that there exists a dualizing sheaf on \(X \) and \(H^i(X, \mathcal{O}_X) = 0 \) for \(0 < i < d \). For example, this condition is satisfied for complete intersections in projective spaces. At present we do not know how to extend this theorem to the case when \(\mathcal{O}_X \) has some nontrivial middle cohomology. Note that for a smooth projective variety \(X \) over \(\mathbb{C} \) the natural (up to a strict \(A_\infty \)-isomorphism) \(A_\infty \)-structure on \(H^*(X, \mathcal{O}_X) \) is trivial as follows from the formality theorem of [1]. This suggests that for sufficiently ample line bundle \(L \) one could try to characterize the canonical \(A_\infty \)-structure on \(A_L \) (up to a strict \(A_\infty \)-isomorphism and rescaling) as an admissible \(A_\infty \)-structure whose restriction to \(H^*(X, \mathcal{O}_X) \) is trivial.

In the case when \(X \) is a curve we can also compute the group of strict \(A_\infty \)-automorphisms of an \(A_\infty \)-structure on \(A_L \). As we will explain below 2.1, strict \(A_\infty \)-isomorphisms on \(A_L \) form a group \(HG \), which is a subgroup of automorphisms of the free coalgebra \(\text{Bar}(A_L) \) (preserving both gradings). The dual to the degree zero component of \(\text{Bar}(A_L) \) (with respect to both gradings) can be identified with the completed tensor algebra \(\hat{T}(H^1(X, \mathcal{O}_X)^*) = \prod_{n \geq 0} T^n(H^1(X, \mathcal{O}_X)^*) \). Therefore, we obtain a natural homomorphism from \(HG \) to to the group \(G \) of continuous automorphisms of \(\hat{T}(H^1(X, \mathcal{O}_X)^*) \).

Theorem 1.2. Let \(L \) be a very ample line bundle on a projective curve \(X \) such that \(H^1(X, L) = 0 \). Let also \(HG(m) \subset HG \) be the group of strict \(A_\infty \)-automorphisms of an admissible \(A_\infty \)-structure \(m \) on \(A_L \). Then the above homomorphism \(HG \to G \) restricts to an isomorphism of \(HG(m) \) with the subgroup \(G_0 \subset G \) consisting of inner automorphisms of \(\hat{T}(H^1(X, \mathcal{O}_X)^*) \) by elements in \(1 + \prod_{n > 0} T^n(H^1(X, \mathcal{O}_X)^*) \).

Assume that \(X \) is a smooth projective curve. Then there is a canonical noncommutative thickening \(\tilde{J} \) of the Jacobian \(J \) of \(X \) (see [3]). As was shown in [10], a choice of an \(A_\infty \)-structure in the canonical strict \(A_\infty \)-isomorphism class gives rise to a formal system of coordinates on \(\tilde{J} \) at zero. More precisely, by this we mean an isomorphism of the formal completion of the local ring of \(\tilde{J} \) at zero with \(\hat{T}(H^1(X, \mathcal{O}_X)^*) \) inducing the identity map on the tangent spaces. Formal coordinates associated with two strictly isomorphic \(A_\infty \)-structures are related by the coordinate change given by the image of the corresponding \(A_\infty \)-isomorphism under the homomorphism \(HG \to G \). Now Theorem 1.2 implies that two \(A_\infty \)-structures in the canonical class that induce the same formal coordinate on \(\tilde{J} \) can be connected by a unique strict \(A_\infty \)-isomorphism. Indeed, two such isomorphisms would differ by a strict \(A_\infty \)-automorphism inducing the trivial automorphism of \(\hat{T}(H^1(X, \mathcal{O}_X)^*) \), but such an \(A_\infty \)-automorphism is trivial by Theorem 1.2.

Convention. Throughout the paper we work over a fixed ground field \(k \). The symbol \(\otimes \) without additional subscripts always denotes the tensor product over \(k \).

Acknowledgment. I’d like to thank the referee for helpful remarks and suggestions.
2. Preliminaries

2.1. Strict A_∞-isomorphisms and homotopies. We refer to [4] for an introduction to A_∞-structures. We restrict ourselves to several remarks about A_∞-isomorphisms and homotopies between them.

A strict A_∞-isomorphism between two A_∞-structures (m) and (m') on the same graded space A is an A_∞-morphism $f = (f_n)$ from (A, m) to (A, m') such that $f_1 = \text{id}$. The equations connecting f, m and m' can be interpreted as follows. Recall that m and m' correspond to coderivations d_m and $d_{m'}$ of the bar-construction $\text{Bar}(A) = \oplus_{n \geq 1} T^n(A[1])$ such that $d^2_m = d^2_{m'} = 0$. Now every collection $f = (f_n)_{n \geq 1}$, where $f_n : A^{\otimes n} \to A$ has degree $1 - n$, $f_1 = \text{id}$, defines a coalgebra automorphism $\alpha_f : \text{Bar}(A) \to \text{Bar}(A)$, with the component $\text{Bar}(A) \to A[1]$ given by (f_n). The condition that f is an A_∞-morphism is equivalent to the equation $\alpha_f \circ d_m = d_{m'} \circ \alpha_f$. In other words, strict A_∞-isomorphisms between A_∞-structures precisely correspond to the action of the group of automorphisms of $\text{Bar}(A)$ as a coalgebra on the space of coderivations d such that $d^2 = 0$. More precisely, we consider only automorphisms of $\text{Bar}(A)$ of degree 0 inducing the identity map $A \to A$. Let us denote by $HG = HG(A)$ the group of such automorphisms which we will also call the group of strict A_∞-isomorphisms on A. We will denote by $m \to g \ast m$, where $g \in HG$, the natural action of this group on the set of all A_∞-structures on A.

One can define a decreasing filtration (HG_n) of HG by normal subgroups by setting

\[HG_n = \{ f = (f_i) \mid f_i = 0, 1 < i \leq n \}. \]

Note that $f \in HG_n$ if and only if the restriction of α_f to the sub-coalgebra $\text{Bar}(A)_{\leq n} = \oplus_{i \leq n} (A[1])^\otimes i$ is the identity homomorphism. Furthermore, it is also clear that $HG \simeq \text{proj lim}_n HG/HG_n$. In particular, an infinite product of strict A_∞-isomorphisms

\[f(3) \ast f(2) \ast f(1) \]

is well-defined as long as $f(n) \in HG_{i(n)}$, where $i(n) \to \infty$ as $n \to \infty$. The notion of a homotopy between A_∞-morphisms is best understood in a more general context of A_∞-categories. Namely, for every pair of A_∞-categories C, D one can define the A_∞-category $\text{Fun}(C, D)$ having A_∞-functors $F : C \to D$ as objects (see [6], [8]). In particular, there is a natural notion of closed morphisms between two A_∞-functors $F, F' : C \to D$. Specializing to the case when C and D are A_∞-categories with one object corresponding to A_∞-algebras A and B we obtain a notion of a closed morphism between a pair of A_∞-morphisms $f, f' : A \to B$. Following [4] we call such a closed morphism a homotopy between A_∞-morphisms f and f'. More explicitly, a homotopy h is given by a collection of maps $h_n : A^{\otimes n} \to B$ of degree $-n$, where $n \geq 1$, satisfying some equations. These equations are written as follows: there exists a unique linear map $H : \text{Bar}(A) \to \text{Bar}(B)$ of degree -1 with the component $\text{Bar}(A) \to B$ given by (h_n), such that

\[\Delta \circ H = (\alpha_f \otimes H + H \otimes \alpha_{f'}) \circ \Delta, \]

(2.1.1)

where $\alpha_f, \alpha_{f'} : \text{Bar}(A) \to \text{Bar}(B)$ are coalgebra homomorphisms corresponding to f and f', Δ denotes the comultiplication. Then the equation connecting h, f and f' is

\[\alpha_f - \alpha_{f'} = d_A \circ H + H \circ d_B, \]

(2.1.2)

where d_A (resp., d_B) is the coderivation of $\text{Bar}(A)$ (resp., $\text{Bar}(B)$) corresponding to the A_∞-structure on A (resp., B). It is not difficult to check that for a given A_∞-morphism
f from A to B the equations (2.1.1) and (2.1.2) imply that α_f is a homomorphism of dg-coalgebras, so it defines an A_{∞}-morphism f' from A to B. Moreover, similarly to the case of strict A_{∞}-isomorphisms we have the following result.

Lemma 2.1. Let A and B be A_{∞}-algebras and $f = (f_n)$ be an A_{∞}-morphism from A to B. For every collection $(h_n)_{n \geq 1}$, where $h_n : A^{\otimes n} \to B$ has degree $-n$, there exists a unique A_{∞}-morphism f' from A to B such that h is a homotopy from f to f'.

Proof. It is easy to see that equation (2.1.1) is equivalent to the following formula

$$H[a_1|\ldots|a_n] = \sum_{i_1<\ldots<i_k<m<j_1<\ldots<j_l=n} \pm [f_{i_1}(a_1, \ldots, a_{i_1})|\ldots|f_{i_k-i_{k-1}}(a_{i_{k-1}+1}, \ldots, a_i)]$$

$$h_{m-i}(a_{i+1}, \ldots, a_m)[f'_{j_1-m}(a_{m+1}, \ldots, a_{j_1})|\ldots|f'_{j_l-j_{l-1}}(a_{j_{l-1}+1}, \ldots, a_{j_l})],$$

(2.1.3)

where $a_1, \ldots, a_n \in A$, $n \geq 1$. We are going to construct the maps $H|_{Bar(A)_{\leq n}}$ and $\alpha_f|_{Bar(A)_{\leq n}}$ recursively, so that at each step the equations (2.1.2) and (2.1.3) are satisfied when restricted to $Bar(A)_{\leq n}$. Of course, we also want H to have (h_n) as components. Then such a construction will be unique. Note that $H|_{A[1]}$ is given by h_1 and $\alpha_f|_{A[1]}$ is given by $f'_1 = f_1 - m_1 \circ h_1 - h_1 \circ m_1$. Now assume that the restrictions of H and α_f to $Bar(A)_{\leq n-1}$ are already constructed, so that the maps $f'_i : A^{\otimes i} \to B$ are defined for $i \leq n-1$. Then the formula (2.1.3) defines uniquely the extension of H to $Bar(A)_{\leq n}$ (note that in the RHS of this formula only f'_i with $i \leq n-1$ appear). It remains to apply formula (2.1.2) to define $\alpha_f|_{Bar(A)_{\leq n}}$. \hfill \Box

Let HG be the group of strict A_{∞}-isomorphisms on a given graded space A. In other words, HG is the group of degree 0 coalgebra automorphisms of $Bar(A)$ with the component $A \to A$ equal to the identity map. This group acts on the set of all A_{∞}-structures on A. The stabilizer subgroup of some A_{∞}-structure m is the group of strict A_{∞}-automorphisms $HG(m)$. We can consider the set of all strict A_{∞}-automorphisms $f_h \in HG(m)$ such that there exists a homotopy h from the trivial A_{∞}-automorphism f^m to f_h (where $f^m_{i+1} = 0$ for $i > 1$). It is easy to see that A_{∞}-automorphisms of the form f_h constitute a normal subgroup in $HG(m)$ that we will denote by $HG(m)^0$. Furthermore, for every $g \in HG$ we have $HG_{g^m} = gHG(m)^0g^{-1}$. Also, for a pair of elements $g_1, g_2 \in HG$ such that $m' = g_1 \ast m = g_2 \ast m$, there exists a homotopy between g_1 and g_2 (where g_i are considered as A_{∞}-morphisms from (A, m) to (A, m')) if and only if $g_1^{-1}g_2 \in HG(m)^0$.

2.2. Obstructions. Below we use Hochschild cohomology $HH(A) := HH(A, A)$ for a graded associative algebra A (see [7] for the corresponding sign convention). When considering $A = A_L$ as a graded algebra we equip it with the cohomological grading, so in the situation of Theorem 1.1 this grading has only 0-th and d-th non-trivial graded components.

The following lemma is well known and its proof is straightforward.

Lemma 2.2. Let m and m' be two admissible A_{∞}-structures on A. Assume that $m_i = m'_i$ for $i < n$, where $n \geq 3$.

(i) Set \(c(a_1, \ldots, a_n) = (m'_n - m_n)(a_1, \ldots, a_n) \). Then \(c \) is a Hochschild \(n \)-cocycle, i.e.,

\[
\delta c(a_1, \ldots, a_{n+1}) = \sum_{j=1}^{n} (-1)^{j} c(a_1, \ldots, a_j a_{j+1}, \ldots, a_{n+1}) + (-1)^{n+1} c(a_1, \ldots, a_n) a_{n+1} = 0.
\]

(ii) If \(m' = f \star m \) for a strict \(A_\infty \)-isomorphism \(f \) such that \(f_i = 0 \) for \(1 < i < n - 1 \), then setting \(b(a_1, \ldots, a_{n-1}) = (-1)^{n-1} f_{n-1}(a_1, \ldots, a_{n-1}) \) we get

\[
c(a_1, \ldots, a_n) = \delta b(a_1, \ldots, a_n),
\]

where \(c \) is the \(n \)-cocycle defined in (i). Hence, \(c \) is a Hochschild coboundary.

Thus, the study of admissible \(A_\infty \)-structures on \(A \) is closely related to the study of certain components of Hochschild cohomology of \(A \). More precisely, let us denote \(C_{p,q}^n(A) \) (resp. \(HH_{p,q}^n(A) \)) the space of reduced Hochschild \(n \)-cochains (resp. \(n \)-th Hochschild cohomology classes) of internal grading \(-p\) and of cohomological grading \(-q\). In other words, \(C_{p,q}^n(A) \) consists of cochains \(c : A^\otimes n \to A \) such that \(\text{intdeg} c(a_1, \ldots, a_n) = \text{intdeg} a_1 + \ldots + \text{intdeg} a_n - p \), \(\deg c(a_1, \ldots, a_n) = \deg a_1 + \ldots + \deg a_n - q \). Since, all the operations \(m_n \) respect the internal grading and have (cohomological) degree \(2 - n \), we see that the cocycle \(c \) defined in Lemma 2.2 lives in \(C_{0,n-2}^n(A) \).

There is an analogue of Lemma 2.2 for strict \(A_\infty \)-isomorphisms.

Lemma 2.3. Let \(m \) and \(m' \) be admissible \(A_\infty \)-structures on \(A \), \(f, f' \) be a pair of strict \(A_\infty \)-isomorphisms from \(m \) to \(m' \). Assume that \(f_i = f'_i \) for \(i < n \), where \(n \geq 2 \).

(i) Set \(c(a_1, \ldots, a_n) = (f'_n - f_n)(a_1, \ldots, a_n) \). Then \(c \) is a Hochschild \(n \)-cocycle in \(C_{0,n-1}^n(A) \).

(ii) If \(\phi : f \to f' \) is a homotopy such that \(\phi_i = 0 \) for \(i < n - 1 \), then for \(b(a_1, \ldots, a_{n-1}) = \pm \phi_{n-1}(a_1, \ldots, a_{n-1}) \) one has \(c = \delta b \).

3. Calculations

3.1. Hochschild cohomology

In this subsection we calculate the components of the Hochschild cohomology of \(A = A_L \) that are relevant for the proof of Theorem 1.1.

Let us set \(R = R_L \) and let \(R_+ = \oplus_{n \geq 1} R_n \) be the augmentation ideal in \(R \), so that \(R/R_+ = k \). Recall that the bar-construction provides a free resolution of \(k \) as \(R \)-module of the form

\[
\ldots \to R_+ \otimes R_+ \otimes R \to R_+ \otimes R \to R \to k.
\]

(3.1.1)

For graded \(R \)-bimodules \(M_1, \ldots, M_n \) we consider the bar-complex

\[
B^\bullet(M_1, \ldots, M_n) = M_1 \otimes T(R_+) \otimes M_2 \otimes \ldots \otimes T(R_+) \otimes M_n,
\]

where \(T(R_+) \) is the tensor algebra of \(R_+ \). This is just the tensor product over \(T(R_+) \) of the bar-complexes of \(M_1, \ldots, M_n \) (where \(M_1 \) is considered as a right \(R \)-module, \(M_2, \ldots, M_{n-1} \) as \(R \)-bimodules, and \(M_n \) as a left \(R \)-module). The grading in this complex is induced by the cohomological grading of the tensor algebra \(T(R_+) \) defined by \(\deg T^i(R_+) = -i \), so that \(B^\bullet(M_1, \ldots, M_n) \) is concentrated in nonnegative degrees and the differential has degree 1. For example, \(B^\bullet(k, R) \) is the bar-resolution (3.1.1) of \(k \).
Proposition 3.1. Under the assumptions of Theorem 1.1 let us consider the graded \(R \)-
module \(M = \oplus_{i \in \mathbb{Z}} H^d(X, L^i) \). Let \(M_1, \ldots, M_n \) be graded \(R \)-bimodules such that each of
them is isomorphic to \(M \) as a (graded) right \(R \)-module and as a left \(R \)-module.

(i) The complex \(B^\bullet(k, M) = T(R_+) \otimes M \) has one-dimensional cohomology, which is
concentrated in degree \(-d - 1\) and internal degree 0.

(ii) \(H^i(B^\bullet(M_1, M_2)) = 0 \) for \(i \neq -d - 1 \) and \(H^{-d-1}(B^\bullet(M_1, M_2)) \) is isomorphic to \(M \) as
a (graded) right \(R \)-module and as a left \(R \)-module.

(iii) \(H^i(B^\bullet(M_1, \ldots, M_n)) = 0 \) for \(i > -(n - 1)(d + 1) \).

(iv) \(H^i(B^\bullet(k, M_1, \ldots, M_n, k)) = 0 \) for \(i > -(n(d + 1)) \). In addition, the space
\(H^{-d-1}(B^\bullet(k, M_1, k)) \) is one-dimensional and has internal degree 0.

Proof. (i) Localizing the exact sequence (3.1.1) on \(X \) and tensoring with \(L^m \), where \(m \in \mathbb{Z} \), we obtain the following exact sequence of vector bundles on \(X \):

\[
\ldots \oplus_{n_1, n_2 > 0} R_{n_1} \otimes R_{n_2} \otimes L^{m-n_1-n_2} \to \oplus_{n > 0} R_n \otimes L^{m-n} \to L^m \to 0.
\] (3.1.2)

Each term in this sequence is a direct sum of a number of copies of line bundles \(L^n \): for
a finite-dimensional vector space \(V \) we denote by \(V \otimes L^n \) the direct sum of \(\dim V \) copies
of \(L^n \). Now let us consider the spectral sequence with \(E_1 \)-term given by the cohomology
of all sheaves in this complex and abutting to zero (this sequence converges since we can
calculate cohomology using Čech resolutions with respect to a finite open affine covering
of \(X \)). The \(E_1 \)-term consists of two rows: one obtained by applying the functor \(H^0(X, \cdot) \)
to (3.1.2), another obtained by applying \(H^d(X, \cdot) \). The row of \(H^0 \)'s has form

\[
\ldots \oplus_{n_1, n_2 > 0} R_{n_1} \otimes R_{n_2} \otimes R_{m-n_1-n_2} \to \oplus_{n > 0} R_n \otimes R_{m-n} \to R_m \to 0
\]

which is just the \(m \)-th homogeneous component of the bar-resolution. Hence, this complex
is exact for \(m \neq 0 \). Since the sequence abuts to zero the row of \(H^d \)'s should also be exact
for \(m \neq 0 \). For \(m = 0 \) the row of \(H^0 \)'s reduces to the single term \(H^0(X, \mathcal{O}_X) = k \), hence,
the row of \(H^d \)'s in this case has one-dimensional cohomology at \(-(d + 1)\)-th term and is
exact elsewhere.

(ii) Consider the filtration on \(B^\bullet(M_1, M_2) \) associated with the \(\mathbb{Z} \)-grading on \(M_2 \). By part
(i) the corresponding spectral sequence has the term \(E_1 \simeq H^{-d-1}(M_1 \otimes T(R_+)) \otimes M_2 \simeq M_2 \).
Hence, it degenerates in this term and

\[
H^*(K^\bullet) \simeq H^{-d-1}(K^\bullet) \simeq M
\]
as a right \(R \)-module. Similarly, the spectral sequence associated with the filtration on \(K^\bullet \)
induced by the \(\mathbb{Z} \)-grading on \(M_2 \) gives an isomorphism of left \(R \)-modules \(H^{-d-1}(K^\bullet) \simeq M \).

(iii) For \(n = 2 \) this follows from (ii). Now let \(n > 2 \) and assume that the assertion holds
for \(n' < n \). We can consider \(B^\bullet(M_1, \ldots, M_n) \) as the total complex associated with a
bicomplex, where the bidegree \((\deg_0, \deg_1)\) on \(M_1 \otimes T(R_+) \otimes \cdots \otimes T(R_+) \otimes M_n \) is given by

\[
\deg_0(x_1 \otimes t_1 \otimes \ldots \otimes t_{n-1} \otimes x_n) = \sum_{i \equiv 0(2)} \deg(t_i),
\]

\[
\deg_1(x_1 \otimes t_1 \otimes \ldots \otimes t_{n-1} \otimes x_n) = \sum_{i \equiv 1(2)} \deg(t_i),
\]

7
where \(t_i \in T(R_+) \), \(x_i \in M_i \), deg denotes the cohomological degree on \(T(R_+) \). Therefore, there is a spectral sequence abutting to cohomology of \(B^\bullet(M_1, \ldots, M_n) \) with the \(E_1 \)-term
\[
H^\bullet(M_1 \otimes T(R_+) \otimes M_2) \otimes T(R_+) \otimes H^\bullet(M_3 \otimes T(R_+) \otimes M_4) \otimes \ldots,
\]
where the last factor of the tensor product is either \(M_n \) or \(H^\bullet(M_{n-1} \otimes T(R_+) \otimes M_n) \). Using part (ii) we see that
\[
\left(H^\bullet(M_1', \ldots, M'_{n'}) \left[(n - n')(d + 1) \right] \right)
\]
with \(n' < n \). It remains to apply the induction assumption.

(iv) Consider first the case \(n = 1 \). The complex \(B^\bullet(k, M_1, k) = T(R_+) \otimes M_1 \otimes T(R_+) \) is the total complex of the bicomplex \((\partial_1 \otimes \text{id}, \text{id} \otimes \partial_2)\), where \(\partial_1 \) and \(\partial_2 \) are bar-differentials on \(T(R_+) \otimes M_1 \) and \(M_1 \otimes T(R_+) \). Our assertion follows immediately from (i) by considering the spectral sequence associated with this bicomplex.

Now assume that for some \(n > 1 \) the assertion holds for all \(n' < n \). As before we view \(B^\bullet(k, M_1, \ldots, M_n, k) \) as the total complex of a bicomplex by defining the bidegree on \(T(R_+) \otimes M_1 \otimes \ldots \otimes M_n \otimes T(R_+) \) as follows:
\[
\text{deg}_0(t_0 \otimes x_1 \otimes t_1 \ldots \otimes x_n \otimes t_n) = \sum_{i \equiv 0(2)} \text{deg}(t_i),
\]
\[
\text{deg}_1(t_0 \otimes x_1 \otimes t_1 \ldots \otimes x_n \otimes t_n) = \sum_{i \equiv 1(2)} \text{deg}(t_i).
\]

Assume first that \(n \) is even. Then there is a spectral sequence associated with the above bicomplex abutting to the cohomology of \(B^\bullet(k, M_1, \ldots, M_n, k) \) and with the \(E_1 \)-term
\[
T(R_+) \otimes H^\bullet(M_1 \otimes T(R_+) \otimes M_2) \otimes T(R_+) \otimes \ldots \otimes H^\bullet(M_{n-1} \otimes T(R_+) \otimes M_n) \otimes T(R_+).
\]
Using (ii) we see that \(E_1 \) is isomorphic to the complex of the form
\[
B^\bullet(k, M'_1, \ldots, M'_{n/2}, k)[n(d + 1)/2],
\]
so we can apply the induction assumption. If \(n \) is odd then we consider another spectral sequence associated with the above bicomplex, so that
\[
E_1 = H^\bullet(T(R_+) \otimes M_1) \otimes T(R_+) \otimes H^\bullet(M_2 \otimes T(R_+) \otimes M_3) \otimes T(R_+) \otimes \ldots \otimes H^\bullet(M_{n-1} \otimes T(R_+) \otimes M_n) \otimes T(R_+).
\]
By (i) and (ii) this complex is isomorphic to \(B^\bullet(k, M'_1, \ldots, M'_{(n-1)/2}, k)[(n + 1)(d + 1)/2] \). Again we can finish the proof by applying the induction assumption. \(\square \)

We will also need the following simple lemma.

Lemma 3.2. Let \(C^\bullet \) be a complex in an abelian category equipped with a decreasing filtration \(C^\bullet = F^0C^\bullet \supset F^1C^\bullet \supset F^2C^\bullet \supset \ldots \) such that \(C^n = \text{proj. lim.} \lim_{i} C^n/F^iC^n \) for all \(n \). Let \(\text{gr}_i C^\bullet = F^iC^\bullet/F^{i+1}C^\bullet \), \(i = 0, 1, \ldots \) be the associated graded factors. Assume that \(H^n \text{gr}_i C^\bullet = 0 \) for all \(i > 0 \) and for some fixed \(n \). Then the natural map \(H^n C^\bullet \to H^n \text{gr}_0 C^\bullet \) is injective.
Proof. Considering an exact sequence of complexes

$$0 \rightarrow F^1C^\bullet \rightarrow C^\bullet \rightarrow \text{gr}_0 C^\bullet \rightarrow 0$$

one can easily reduce the proof to the case $H^i \text{gr}_i C^\bullet = 0$ for all $i \geq 0$. In this case we have to show that $H^n C^\bullet = 0$. Let $c \in C^n$ be a cocycle and let c_i be its image in $C^n/F^i C^n$. It suffices to construct a sequence of elements $x_i \in C^{n-1}/F^i C^{n-1}$, $i = 1, 2, \ldots$, such that $x_{i+1} \equiv x_i \mod F^i C^{n-1}$ and $c_i = d(i)x_i$, where $d(i)$ is the differential on $C^\bullet/F^i C^\bullet$. Since n-th cohomology of $C^\bullet/F^i C^\bullet = \text{gr}_0 C^\bullet$ is trivial we can find x_1 such that $c_1 = d(1)x_1$. Then we proceed by induction: once x_1, \ldots, x_i are chosen an easy diagram chase using the exact triple of complexes

$$0 \rightarrow \text{gr}_i C^\bullet \rightarrow C^\bullet/F^{i+1} C^\bullet \rightarrow C^\bullet/F^i C^\bullet \rightarrow 0$$

and the vanishing of $H^n(\text{gr}_i C^\bullet)$ show that x_{i+1} exists. \qed

Theorem 3.3. Under the assumptions of Theorem 1.1 one has $HH^i_{0,md}(A) = 0$ for $i < m(d + 2)$ and $\dim HH^{d+2}_{0,d}(A) \leq 1$, where $A = A_L$.

Proof. Set $C^i = C^i_{0,md}(A)$ (see 2.2). Note that Hochschild differential maps C^i into C^{i+1} (since m_2 preserves both gradings on A). Recall that the decomposition of A into graded pieces with respect to the cohomological degree has form $A = R \oplus M$, where R has degree 0 and $M = \bigoplus_{i \in \mathbb{Z}} H^d(X, L^i)$ has degree d. The natural augmentation of A is given by the ideal $A_+ = R_+ \oplus M$. Each of the spaces C^i decomposes into a direct sum $C^i = C^i(0) \oplus C^i(d)$, where $C^i(0) \subset \text{Hom}(A^{\otimes i}_+, R)$, $C^i(d) \subset \text{Hom}(A^{\otimes i}_+, M)$. More precisely, the space $C^i(0)$ consists of linear maps

$$[T(R_+) \otimes M \otimes T(R_+) \otimes \ldots \otimes M \otimes T(R_+)]_i \rightarrow R \quad (3.1.3)$$

preserving the internal grading, where there are m factors of M in the tensor product and the index i refers to the total number of factors $H^*(L^*)$ (so that the LHS can be considered as a subspace of $A^{\otimes i}_+$). Similarly, the space $C^i(d)$ consists of linear maps

$$[T(R^+) \otimes M \otimes T(R^+) \otimes \ldots \otimes M \otimes T(R^+)]_i \rightarrow M$$

preserving the internal grading, where there is $m + 1$ factors of M in the tensor product. Clearly, $C^\bullet(d)$ is a subcomplex in C^\bullet, so we have an exact sequence of complexes

$$0 \rightarrow C^\bullet(d) \rightarrow C^\bullet \rightarrow C^\bullet(0) \rightarrow 0.$$

Therefore, it suffices to prove that $H^i(C^\bullet(0)) = H^i(C^\bullet(d)) = 0$ for $i < m(d + 2)$, and that in the case $m = 1$ one has in addition $H^{d+2}(C^\bullet(d)) = 0$ and $\dim H^{d+2}(C^\bullet(0)) \leq 1$.

To compute the cohomology of these two complexes we can use spectral sequences associated with some natural filtrations to reduce the problem to simpler complexes. First, let us consider the decomposition

$$C^\bullet(0) = \prod_{j \geq 0} C^\bullet(0)_j,$$
where \(C^i(0)_j \subset C^i(0) \) is the space of maps (3.1.3) with the image contained in \(H^0(L^j) \subset R \). The differential on \(C^\bullet(0) \) has form
\[
\delta(x_j)_{j \geq 0} = (\sum_{j' \leq j} \delta_{j',j} x_{j'})_{j \geq 0}
\]
for some maps \(\delta_{j',j} : C^\bullet(0)_{j'} \to C^\bullet(0)_j \), where \(j' \leq j \). By Lemma 3.2 it suffices to prove that one has \(H^i(C^\bullet(0)_j, \delta_{j,j}) = 0 \) for \(i < m(d+2) \) and all \(j \), while for \(m = 1 \) one has in addition \(H^{d+2}(C^\bullet(0)_j, \delta_{j,j}) = 0 \) for \(j > 0 \) and \(\dim H^{d+2}(C^\bullet(0)_0, \delta_{0,0}) \leq 1 \). But
\[
(C^\bullet(0)_j, \delta_{j,j}) = \text{Hom}(K^\bullet_{m,j}, R_j)[-m],
\]
where \(K^\bullet_m = B^\bullet(k, M, \ldots, M, k) \) (\(m \) copies of \(M \)) and \(K^\bullet_{m,j} \) is its \(j \)-th graded component with respect to the internal grading. Here we use the following convention for the grading on the dual complex: \(\text{Hom}(K^\bullet, R)^i = \text{Hom}(K^{-i}, R) \). Therefore, Proposition 3.1(iv) implies that cohomology of \(C^\bullet(0)_j \) is concentrated in degrees \(\geq m(d+1) + m = m(d+2) \). Moreover, for \(m = 1 \) the \((d+2) \)-th cohomology space is non-zero only for \(j = 0 \), in which case it is one-dimensional.

For the complex \(C^\bullet(d) \) we have to use a different filtration (since \(M \) is not bounded below with respect to the internal grading). Consider the decreasing filtration on \(C^\bullet(d) \) induced by the following grading on \(T(R^+) \otimes M \otimes T(R) \otimes \ldots \otimes M \otimes T(R) \):
\[
\text{deg}(t_1 \otimes x_1 \otimes t_2 \otimes \ldots \otimes x_{m+1} \otimes t_{m+2}) = \text{deg}(t_1) + \text{deg}(t_{m+2}),
\]
where \(t_i \in T(R) \), \(x_i \in M \), the degree of \(R \) is taken to be \(-1\). The associated graded complex is
\[
\text{Hom}_{gr}(T(R^+) \otimes B^\bullet(M, \ldots, M) \otimes T(R^+) \otimes M)[-m - 1],
\]
where there are \(m+1 \) factors of \(M \) in the bar-construction. It remains to apply Proposition 3.1(iii).

\[\square \]

3.2. Some Massey products. In this subsection we will show the nontriviality of the canonical class of \(A_\infty \)-structures on \(A_L \) and combine it with our computations of the Hochschild cohomology to prove the main theorem.

Note that the canonical class of \(A_\infty \)-structures can be defined in a more general context. Namely, if \(\mathcal{C} \) is an abelian category with enough injectives then we can define the canonical class of \(A_\infty \)-structures on the derived category \(D^+(\mathcal{C}) \) of bounded below complexes over \(\mathcal{C} \). Indeed, one can use the equivalence of \(D^+(\mathcal{C}) \) with the homotopy category of complexes with injective terms and apply Kadeishvili’s construction to the dg-category of such complexes (see [10],1.2 for more details). In the case when \(\mathcal{C} \) is the category of coherent sheaves the resulting \(A_\infty \)-structure is strictly \(A_\infty \)-isomorphic to the structure obtained using Čech resolutions (since the relevant dg-categories are equivalent). In this context we have the following construction of nontrivial Massey products.

Lemma 3.4. Let \(\mathcal{C} \) be an abelian category with enough injectives,
\[
0 \to F_0 \xrightarrow{\alpha_0} F_1 \xrightarrow{\alpha_2} F_2 \to \ldots \xrightarrow{\alpha_n} F_n \to 0
\]
be an exact sequence in \(\mathcal{C} \), where \(n \geq 2 \), and let \(\beta : F_n \to F_0[n - 1] \) be a morphism in the derived category \(D^b(\mathcal{C}) \) corresponding to the Yoneda extension class in \(\text{Ext}^{n-1}(F_n, F_0) \)
represented by the above sequence. Assume that \(\text{Ext}^{j-i-1}(F_j, F_i) = 0 \) when \(0 \leq i < j \leq n - 1 \). Then

\[
m_{n+1}(\alpha_1, \ldots, \alpha_n, \beta) = \pm \text{id}_{F_0}
\]

for any \(A_\infty \)-structure \((m_i) \) on \(D^b(C) \) from the canonical class.

Proof. Assume first that \(n = 2 \). Then \(m_3(\alpha_1, \alpha_2, \beta) \) is the unique value of the well-defined triple Massey product in \(D^b(C) \) (see [9], 1.1). Using the standard recipe for its calculation (see [2], IV.2) we immediately get that \(m_3(\alpha_1, \alpha_2, \beta) = \text{id} \).

For general \(n \) we can proceed by induction. Assume that the statement is true for \(n - 1 \). Set \(F_{n-1}' = \ker(\alpha_n) \). Then we have exact sequences

\[
0 \to F_0 \xrightarrow{\alpha} F_1 \to \ldots \to F_{n-2} \xrightarrow{\alpha_{n-1}} F_{n-1}' \to 0,
\]

\[
0 \to F_{n-1}' \xrightarrow{i} F_{n-1} \xrightarrow{\alpha} F_n \to 0,
\]

where \(m_2(\alpha_{n-1}', i) = i \circ \alpha_{n-1}' = \alpha_{n-1} \). By the definition, we have \(\beta = m_2(\gamma, \beta') \), where \(\beta' \in \text{Ext}^{n-2}(F_{n-1}', F_0) \) and \(\gamma \in \text{Ext}^n(F_n, F_{n-1}') \) are the extension classes corresponding to these exact sequences. Applying the \(A_\infty \)-axiom to the elements \((\alpha_1, \ldots, \alpha_n, \gamma, \beta') \) and using the vanishing of \(m_{n-1+i}(\alpha_{i+1}, \ldots, \alpha_n, \gamma, \beta') \in \text{Ext}^{i-1}(F_i, F_0) \) for \(0 < i < n \), we get

\[
m_{n+1}(\alpha_1, \ldots, \alpha_n, \beta) = \pm m_n(\alpha_1, \ldots, \alpha_{n-1}, m_3(\alpha_{n-1}, \alpha_n, \gamma), \beta').
\]

Furthermore, applying the \(A_\infty \)-axiom to the elements \((\alpha_{n-1}', i, \alpha_n, \gamma) \) we get

\[
m_3(\alpha_{n-1}, \alpha_n, \gamma) = \pm m_2(\alpha_{n-1}', m_3(i, \alpha_n, \gamma)).
\]

Next, we claim that sequences (3.2.1) and (3.2.2) satisfy the assumptions of the lemma. Indeed, for (3.2.1) this is clear, so we just have to check that \(\text{Hom}(F_{n-1}, F_{n-1}') = 0 \). The exact sequence (3.2.1) gives a resolution \(F_0 \to \ldots \to F_{n-2} \) of \(F_{n-1}' \) and we can compute \(\text{Hom}(F_{n-1}, F_{n-1}') \) using this resolution. Now the required vanishing follows from our assumption that \(\text{Ext}^{n-i-2}(F_{n-1}, F_i) = 0 \) for \(0 \leq i \leq n - 2 \). Therefore, we have

\[
m_3(i, \alpha_n, \gamma) = \text{id}.
\]

Together with (3.2.4) this implies that

\[
m_3(\alpha_{n-1}, \alpha_n, \gamma) = \pm \alpha_{n-1}'.
\]

Substituting this into (3.2.3) we get

\[
m_{n+1}(\alpha_1, \ldots, \alpha_n, \beta) = \pm m_n(\alpha_1, \ldots, \alpha_{n-1}, \alpha_{n-1}', \beta').
\]

It remains to apply the induction assumption to the sequence (3.2.1). \(\Box \)

Proof of Theorem 1.1. (i) Since the algebra \(A = A_L \) is concentrated in degrees 0 and \(d \), the first potentially nontrivial higher product of an admissible \(A_\infty \)-structure \((m_i) \) on \(A \) is \(m_{d+2} \). Therefore, by Lemma 2.2 for every such \(A_\infty \)-structure \((m_i) \) on \(A \) the map \(m_{d+2} \) induces a cohomology class \([m_{d+2}] \in HH_{d+2}^d(A) \). We claim that if \((m_i') \) is another admissible \(A_\infty \)-structure on \(A \) then \((m_i) \) is strictly \(A_\infty \)-isomorphic to \((m_i') \) if and only if \([m_{d+2}] = [m_{d+2}'] \). Indeed, this follows from Lemma 2.2 and from the vanishing of higher obstructions due to Theorem 3.3 (these obstructions lie in \(HH_{0,md+2}^d(A) \) where \(m > 1 \), and the vanishing follows since \(md + 2 < m(d + 2) \)). In particular, an admissible \(A_\infty \)-structure
(m_i) is nontrivial if and only if [m_{d+2}] \neq 0. Since by Theorem 3.3 the space \(HH_{0,d}^{d+2}(A)\) is at most one-dimensional, it remains to prove the nontriviality of an admissible \(A_\infty\)-structure from the canonical class. Replacing \(L\) by its sufficiently high power if necessary we can assume that there exists \(d+1\) sections \(s_0, \ldots, s_{d+1} \in H^0(L)\) without common zeroes. The corresponding Koszul complex gives an exact sequence

\[0 \to O \to O^{\oplus(d+1)} \otimes_O L \to O^{\oplus(d+1)} \otimes_O L^2 \to \ldots \to O^{\oplus(d+1)} \otimes_O L^d \to L^{d+1} \to 0.\]

By our assumptions this sequence satisfies the conditions required in Lemma 3.4, hence we get a nontrivial \((d+2)\)-ple Massey product for our \(A_\infty\)-structure.

(ii) Applying Lemma 2.3 we see that obstructions for connecting two strict \(A_\infty\)-isomorphisms by a homotopy lie in \(\oplus_{m \geq 1} HH_{0,md}^{md+1}(A)\). But this space is zero by Theorem 3.3. \(\square\)

Corollary 3.5. Under assumptions of Theorem 1.1 the space \(HH_{0,d}^{d+2}(A_L)\) is one-dimensional.

Proof. Indeed, from Theorem 3.3 we know that \(\dim HH_{0,d}^{d+2}(A_L) \leq 1\). If this space were zero then the above argument would show that all admissible \(A_\infty\)-structures on \(A_L\) are trivial. But we know that \(A_\infty\)-structures on \(A_L\) from the canonical class are nontrivial. \(\square\)

Remark. One can ask whether there exists an \(A_\infty\)-structure on \(A_L\) from the canonical class such that \(m_n = 0\) for \(n > d + 2\) or at least \(m_n = 0\) for all sufficiently large \(n\). However, even in the case of smooth curves of genus \(\geq 1\) the answer is “no”. The proof can be obtained using the construction of a universal deformation of a coherent sheaf (when it exists) using the canonical \(A_\infty\)-structure, outlined in [10]. For example, it is shown there that the products

\[m_{n+2} : H^1(O_X) \otimes H^0(L^{n_1}) \otimes H^0(L^{n_2}) \to H^0(L^{n_1+n_2})\]

appear as coefficients in the universal deformation of the structure sheaf. The base of this family is \(\text{Spec } R\), where \(R \simeq k[[t_1, \ldots, t_g]]\) is the completed symmetric algebra of \(H^1(O_X)\). If all sufficiently large products were zero, this family would be induced by the base change from some family over an open neighborhood \(U\) of zero in the affine space \(A^g\). But this would imply that the embedding of \(\text{Spec } R\) into the Jacobian (corresponding to the isomorphism of \(R\) with the completion of the local ring of the Jacobian at zero) factors through \(U\), which is false.

3.3. Proof of Theorem 1.2.

Theorem 1.1(i) easily implies that every admissible \(A_\infty\)-structure on \(A = A_L\) is (strictly) \(A_\infty\)-isomorphic to some strictly unital \(A_\infty\)-structure. Therefore, it is enough to prove our statement for strictly unital structures. Recall that the group of strict \(A_\infty\)-isomorphisms \(HG\) is the group of coalgebra automorphisms of \(\text{Bar}(A_L)\) inducing the identity map \(A_L \to A_L\) and preserving two grading on \(\text{Bar}(A_L)\) induced by the two gradings of \(A_L\). Thus, we can identify \(HG\) with a subgroup of algebra automorphisms of the completed cobar-construction \(\text{Cobar}(A_L) = \prod_{n \geq 0} T^n(A_L)[n]\) (our convention is that passing to dual vector space changes the grading to the opposite one).

By Theorem 1.1(ii) for every strict \(A_\infty\)-automorphism \(f\) of an \(A_\infty\)-structure \(m\) there exists a homotopy from \(f\) to the trivial \(A_\infty\)-automorphism \(f^{tr}\). Let \(\alpha = \alpha_f^m\) be the automorphism of \(\text{Cobar}(A_L)\) corresponding to \(f\) and \(h = H^* : \text{Cobar}(A_L) \to \text{Cobar}(A_L)[-1]\)
be the map giving the homotopy from f to f^{tr}. The equations dual to (2.1.1) and (2.1.2) in our case have form

$$h(xy) = h(x)y \pm \alpha(x)h(y),$$

$$\alpha = \text{id} + d \circ h + h \circ d,$$

where d is the differential on Cobar(A_L) associated with m. Recall that $A_L = H^0 \oplus H^1$, where $H^0 = \oplus_{n \geq 0} H^0(X, L^n)$, $H^1 = \oplus_{n \leq 0} H^1(X, L^n)$. Since h has degree -1 we have $h((H^1)^*[−1]) = 0$ and $h((H^0)^*[−1]) \subset \bar{T}((H^1)^*[−1])$. Furthermore, since h preserves the internal degree, we have $h(H^0(X, L^n)^*[−1]) = 0$ for all $n > 0$. Let $\epsilon \in (H^0)^*[−1] \subset \text{Cobar}(A_L)$ be an element corresponding to the natural projection $H^0 \rightarrow H^0(X, O_X) \simeq k$. Then we have $A_L^*[−1] = k\epsilon \oplus V$, where $V = (H^1)^*[−1] \oplus (\oplus_{n > 0} H^0(X, L^n))^*[−1]$, and $h(V) = 0$. Let $\langle V \rangle \subset \text{Cobar}(A_L)$ be the subalgebra topologically generated by V. Then h vanishes on $\langle V \rangle$. Also, for every $x \in V$ we have

$$dx = \epsilon x + x\epsilon \mod \langle V \rangle$$

since our A_{∞}-structure is strictly unital. Hence, for $x \in V$ we have

$$\alpha(x) = x + h(dx) = x + h(\epsilon)x - \alpha(x)h(\epsilon),$$

which implies that

$$\alpha(x) = (1 + h(\epsilon))x(1 + h(\epsilon))^{-1}.$$

In particular, the restriction of α to the subalgebra $\bar{T}(H^1(X, O_X)^*[−1])$ is the inner automorphism associated with the invertible element $1 + h(\epsilon) \in \bar{T}(H^1(X, O_X)^*[−1])$. On the other hand, we have

$$d\epsilon = \epsilon^2 \mod \langle V \rangle.$$

Hence,

$$\alpha(\epsilon) = \epsilon + dh(\epsilon) + h(\epsilon)\epsilon - \alpha(\epsilon)h(\epsilon),$$

so that

$$\alpha(\epsilon) = (1 + h(\epsilon))\epsilon(1 + h(\epsilon))^{-1} + dh(\epsilon) \cdot (1 + h(\epsilon))^{-1}.$$

Thus, α is uniquely determined by $h(\epsilon)$. Also, by Lemma 2.1 $h(\epsilon)$ can be an arbitrary element of $\prod_{n \geq 1} T^n((H^1(X, O_X)^*[−1])$.}

\section*{References}

[1] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, \textit{Real Homotopy Theory of Kähler Manifolds}, Inventiones math. 29 (1975), 245–274.

[2] S. Gelfand, Yu. Manin, Methods of homological algebra. Springer-Verlag, 1996.

[3] M. Kapranov, \textit{Noncommutative geometry based on commutator expansions}, J. Reine Angew. Math. 505 (1998), 73–118.

[4] B. Keller, \textit{Introduction to A_{∞}-algebras and modules}, Homology Homotopy Appl. 3 (2001), 1–35.

[5] M. Kontsevich, Y. Soibelman, \textit{Homological mirror symmetry and torus fibrations}, in \textit{Symplectic geometry and mirror symmetry (Seoul, 2000)}, 203–263, World Sci. Publishing, River Edge, NJ, 2001.

[6] K. Lefèvre-Hasegawa, \textit{Sur Les A_{∞}-Catégories}, Thèse de Doctorat, Univeristé Paris 7, 2002, available at http://www.math.jussieu.fr/~lefevre/publ.html

[7] J.-L. Loday, Cyclic homology. Springer-Verlag, 1998.

[8] V. Lyubashenko, \textit{Category of A_{∞}-categories}, preprint math.CT/0210047.
[9] A. Polishchuk, *Classical Yang-Baxter equation and the A_∞-constraint*, Advances in Math. 168 (2002), 56–95.

[10] A. Polishchuk, *A_∞-structures, Brill-Noether loci and the Fourier-Mukai transform*, preprint math.AG/0204092, to appear in Compositio Math.