Bioactivity of Plant Extracts against Cowpea Bruchid *Callosobruchus maculatus* (Fab): A Review

C. Shunmugadevi, S. Anbu Radhika

ABSTRACT

The objective of the present review is to know the bioactive compounds of the plant extract against *Callosobruchus maculatus*. Plants are able to produce a large number of bioactive compounds. Plant extract was found to have a wide range of bioactive compounds like Alkaloids, Carbohydrates, Starch, Glycosides, Flavonoids, Triterpenoids, Resins, Saponins, Steroid, Proteins and Tannins. The high concentration of phytochemicals protects against the *Callosobruchus maculatus*. Recent revelations have shown that synthetic insecticides were found to penetrate into grains and may be toxic. Natural products such as botanical insecticides may provide suitable alternatives. The review obviously designated that plant products have potentials of controlling *Callosobruchus maculatus* in stored cowpea as they are safe, free of residue and strong biological activities that are eco-friendly and biodegradable.

Key words: *Callosobruchus maculatus*, Cowpea, Pest management, Plant products.

Cowpea [*Vigna unguiculata* (L.) Walp.] is an important grain legume in the tropics and subtropics. It is a native to central Africa and belongs to the family Fabaceae (Coble, 1956) and is eaten in the form of grain, green pods and leaves (Ademu, 2012). Cowpea is known as vegetable meat due to high amount of protein in the grain with better biological value on dry weight basis. The grain contains 26.61% protein, 3.99 % lipid, 56.8% carbohydrates, 8.60% moisture, 3.84% ash, 1.38% crude fibre, 1.51% gross energy and 54.85% nitrogen free extract (Owolabi, 2012). It is mostly grown as an intercrop with sorghum, maize and millet (Asiwe, 2006). Cowpea is generally preferred by farmers because of its role in increasing soil fertility through nitrogen fixation (Blade et al, 1997) and production of nutritious fodder for livestock. Insect pests are considered to be largely responsible for this, as their attack can result in 90-100% yield reduction (Jackai and Daoust, 1986). Cowpea (Oyewale and Bamaliyi, 2013) is mostly grown in tropical and sub-tropical regions in the world for vegetable and grains and to lesser extent as a fodder crop. It is a most versatile pulse crop because of its smoothening nature, drought tolerant characters, soil restoring properties and multi-purpose uses. Cowpea seeds are damaged during storage by the cowpea seed bruchid (*Callosobruchus maculatus*) (Fatope et al., 1995). The genus *Callosobruchus* includes at least 20 species, originated mostly from Asia and Africa and occurring mainly in tropical and subtropical regions of the world (Tuda and Chou, 2005). Some of the most common species include *Callosobruchus maculatus* (Fab.), *C. chinensis* (L.), *C. subinnotatus* (Pic.), *C. analis* (F.) and *C. rhodesianus* (Pic.) (Southgate, 1978). The host they infest are a variety of beans such as Vigna. (*Vigna unguiculata* L. Walpers, cowpea; *V. radiata* L. Wilczek, mungbean; *V. subterranea* L. Verdecourt, bambara groundnuts) and other leguminous seeds viz chickpea (*Cicer arietinum* L.), green gram (*Phaseolus aureus* Roxb.), black gram (*Phaseolus mungo* Roxb.), red gram (*Cajanus cajan* L.), lentil (*Lens culinaris* Medik.), soyabean (*Glycine max* Mer.), pea (*Pisum sativum* L.), peanut (*Arachis hypogaea* L.) and haricot beans (*Phaseolus vulgaris* L.) (Tuda and Chou, 2005). *Callosobruchus maculatus*, the cowpea weevil is the most important pest of cowpea (*Vigna unguiculata* L.) during storage (Edde and Amatobi, 2003). *Callosobruchus maculatus* spp. can cause damage of legume seeds up to 100% during storage (Gbey et al. 2011). On an average, damage of pulses caused by these bruchid insects during storage may count to 5-10% in the temperate and 20-30% in the tropical countries (Kiradoo and Srivastava, 2010). The adult female lays eggs on the seed surface and the hatching larvae burrow into the seed. The whole development takes place inside a single seed and the adults emerge out by leaving behind holed seed (Messina and Jones 2009). More than one larva can develop within a single grain. Damaged legume seeds have thus reduced weight, become unsuitable for human or animal consumption and have poor germinating ability (Elhag, 2000). Heavy infestation can lead to mouldiness and reduction in commercial value of the seeds (Kiradoo and Srivastava, 2010). Crop losses due to such pests are direct, as well as indirect. Apart from...
their direct damage to the stored legume grains they also create conditions that bring secondary infestation by rot organisms mainly fungi and subsequent mycotoxin contamination.

Generally, the infestation starts in the field (Nahdy, 1995) where the adults lay eggs on green or drying pods. Eggs adhere on the surface of pods from where the first instar larvae bore into the seeds through the pod cover. During threshing, no clear-cut evidence or symptoms of damage is visualized (Nahdy et al., 1999). Infestation in the field has no serious implications as the damage in the field is low. However, once infested seeds are stored, huge damage occurs due to rapid multiplication of insects in a very short time (Taylor 1981). Although beginning of infestation occurs from field, no one denies from the cross infestation which also occur in food commodities during storage (Nahdy et al., 1999).

Reports show the polyphenism i.e. the production of above one adult morphs in the life cycle of Callosobruchus spp. in response to environmental variations. They have two distinct adult morphs; a nonflying, inactive, normal or sedentary morph and a flight or active morph (Nahdy et al., 1999; Zannou et al., 2003). This polymorphism of bruchids get up from their different ecological niches (Messina 1990). The adults of flight morph are less fecund, adapted to field infestation during the rainy season and lay eggs on the maturing pods (Huignard et al., 1985). After 1 month, when the infested seeds are harvested and stored, adults of the flightless morph emerge. In Callosobruchus maculatus conditions like low larval densities, abundant food, high moisture content, intermediate photoperiods and lower temperatures promote the inactive form to develop (Utida, 1972). Being sexually active, they multiply rapidly up to 4-5 generations and after higher larval densities or due to genetic predispositions, adults of the flight morph begin to emerge (Arnold et al., 2012). Study shows that this type of polymorphism is brought by the increase in temperature, seed water content, larval density and post embryonic development (Zannou et al., 2003). The flight morphs are equipped survive until the next rainy season for repeating the cycle (Monge and Huignard, 1991). This polyphenism in the life cycle of bruchids augments their capacity for infestation of agricultural commodities. In this present study, we explain to expression in to the accomplishments of the use of plant products in the managing and control of Callosobruchus maculatus (Fab.).

Importance and uses of cowpea

Cowpea [Vigna unguiculata (L.) Walp] is an important grain legume in the diet of many people in the third world countries as it provides not only high-quality protein (26.61%) but also constitute the cheapest source of dietary protein for low income sectors of the population (Rachie and Singh, 1985). It is also a good source of carbohydrate (56.8%) calcium, iron, vitamin B and carotene. Cowpea is mainly grown in tropical and subtropical regions in the world for vegetable and grain and to lesser extent as a fodder crop. Although cultivated primarily for its edible seeds, direct consumption of cowpea leaves is also widespread in Africa (Rachie, 1975). In fresh form, the young leaves, immature pods and beans are used as vegetables, while snacks and main meal dishes are prepared from the dried grain (Nelson et al., 1997). In India both green and dried cowpea seeds are suitable for canning and boiling as well.

Pests of cowpea

Plant insect pests, diseases and weeds carry out a serious threat to crop production. Population of weeds, insect pests and diseases have increased over the years especially by the introduction of monoculture farming in the country (Jackai and Adalla, 1997). Cowpea is a crop that is widely reported to be attacked by an array of insect pests and diseases. Adebiyi and Tedela, (2012) reported that the cowpea bruchid is the major threat to this plant. Over 130 species of insects have been reported in cowpea cultivation (Ahmed et al., 2009). Hamman et al., (2012) identified the following as some of the insects: Cowpea aphids, Aphis craccivora (Koch), Giant coreid bug, Anoplocnemis curvipes Stol (Hemiptera: Coreidae); Thrips, Megalurothrips sjostedti Tryb. (Thysanoptera: Thripidae); Flower or pollen beetle, Mylabris spp. Fab. (Coleoptera: Meloluidae); Spiny Brown bug, Clavigralla tomentosicollis Germ. (Hemiptera: Coreidae); Green stink bugs, Nezara viridula Linn. (Hemiptera: Pentatomidae), thrips (Megalurothrips sjostedti), Ootheca sp., Clavigralla sp., and Cowpea bruchid, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). There are numerous important insect pests of cowpeas worldwide and most locations have 2-4 species being key pests. The maximum damaging pests are flower bud thrips, Megalurothrips sjostedti Tryb. (Thysanoptera : Thripidae), the legume pod borer, Maruca vitrata Fab. (Lepidoptera : Pyralidae) and the pod sucking bug (PSB) compound of which Clavigralla spp. Stal. (Hemiptera : Coreidae), Anoplocnemis curvipes Fab. (Hemiptera : Coreidae), Riportorius dentipes Fab. (Hemiptera: Alydidae) and Aspavia armigera are the maximum damaging.

Damage caused by the pests

The cowpea weevil [Callosobruchus maculatus (Fabricius)] is the greatest important postharvest storage pest of cowpea. The weevils occur wherever the cowpea is grown. The adult beetle is minor (3 mm long) and orange-brown with dark markings. The adult lays eggs on the pods that are at maturity stage in the field and on hatching the larvae bore into the seeds through the pod wall and seed coat and enter the seed. Messina (1984) reported high mortality of larvae in the field due to failure of larvae to penetrate the seed after drilling through the pod wall. The adult emergence occurs after harvest (Booker, 1967) in the store where real destruction happens due to re-infestations and easiness of larval penetration into the seed because usually the seeds are stored after shelling. Re-infestation occurs repeatedly during storage period. In store, each female lays 40-60 white flat eggs and
glues it on the seeds surface; on hatching the larva bore into the seed, where it feed, grow and pupate before developing as adult out of the seed after about 3-4 weeks. A single seed can be infested with multiple larvae (Giga and Smith, 1983; Messina, 1993). It is reported that about 8-10 or more larvae can be found in a single seed. Thus, heavily damaged seeds show numerous exit holes (Ofuya and Agele, 1990). Both sexes can mate soon after appearance and they require neither food nor water to reproduce and can mate several times during their life time. The beetle permanency is slightly affected by relative humidity (Giga and Smith, 1983). Both sexes live an average of 7 days (Messina, 1993). The complete life cycle takes about five weeks; this means that a new generation rises every month during storage. An infestation of up to 100% of the stored seeds has been reported within 3 to 5 months under farmer’s storage conditions (Redden et al., 1984; Singh, 1980). The reduction in seed weight is directly proportional to the number of exit holes on the seeds, thus the yield losses can be easily estimated for different accession (Singh et al., 1983). A single beetle is talented to cause a weight loss of grain of up to 3.5% (Booker, 1967).

Survival, oviposition and progeny development of *C. maculatus* in stored cowpea

Cowpea bruchids, *Callosobruchus maculatus* are among the major insect pests of legumes which cause high infestation in cowpea both in the field and in storage (Kang et al., 2013). Cowpea grain stored after harvest is the favorite food of the bruchids (Baributsa, 2010). Initial infestation of cowpea starts in the field just before harvest and the insects are carried into the store where the population builds up rapidly (Deshpande et al., 2011). They lay eggs on the pods of legume hosts as they approach maturity in the field but emergence usually occurs after harvest. In storage, *Callosobruchus maculatus* lay eggs on the seeds and larval development and pupation are completed entirely within a single seed. Although the larvae are the major destructive stage because adult cowpea bruchid do not feed.

The female lays her eggs on the cowpea seed (Fig 1) which hatch in about a week and each tiny grub-like larva bores through the bottom of its egg and into the seed where it feeds, grows and develops, passing through four larval and one pupal stage. This takes about four weeks and once an adult female emerges from the seed, finds a male and mates then begins to lay eggs on other cowpeas. Bruchid, *Callosobruchus maculatus* passes through four main stages in their life cycle which are egg, larva, pupa and adult as shown below in Fig 2.

Management of Cowpea Pests

Due to the devastating effect of insect pests of Cowpea at almost every stage of its development, several approaches have been adopted to control the cowpea pest *C. maculatus*. Research into the control of these pest has centred primarily on the use of synthetic insecticides (Echendu, 1991). Dursban and Dimecron, which have been found to be effective against the pests. Over the years, chemical pesticides had made a great contribution to the fight against pests and diseases (Echendu, 1991). However, their widespread and long-term use resulted in insecticide resistance and biomagnifications of insecticides, which in turn resulted in restrictions on their export problems like soil and water contamination and dramatic increase of the damaging residues in many primary and derived agricultural products arose, which endangered both the general environment and human health. Previously insect pests of cowpea have mainly been controlled with synthetic insecticides (Shan, 1997). The use of synthetic organic insecticides in crop pest control programs around the world had caused marvellous damage to the environment, pest resurgence, pest resistance to insecticides and lethal effects on non-target organisms. Several management strategies are available such as use of botanical insecticides as alternative to use of chemicals. The use of plant derived biopesticides has the following advantages: plant products are more readily available, biodegradable and less toxic to non-target organisms, selective in action and capable of retarding development of resistance.
Bioactivity of Plant Extracts against Cowpea Bruchid *Callosobruchus maculatus* (Fab): A Review

(Rahman and Talukder, 2006). Abdullahi, (2011) stated that plant materials are safe to biocontrol agents. As a result of the problems of pesticide resistance and negative effects on non-target organisms including man and the environment, chemical pesticides have been reportedly banned in developed countries (Ebenexer, 2010). These resuscitated the idea of botanical insecticides as a promising alternative to pest control. Botanical insecticides are naturally occurring chemical extracted from plants which failure readily in the soil and are not stored in plant or animal tissue. Frequently their effect is not long lasting as those of synthetic pesticides. Botanical insecticides are generally pest-specific and are relatively meaningless to non-target organisms. They are biodegradable and harmless to the environment. Also, the possibility of insect developing resistance to botanical insecticide is less possibility (Isman, 2010). Over 2000 species of plants are known to possessed insecticidal activities.

Anbu Radhika and Sahayaraj (2016) observed the insecticidal activity of pungam oil, they conclude pungam derivatives leads to death of sucking and defoliating insects. The grain safety activity of neem seeds and tobacco extract in practice for more than 300 year in India and Europe (Jotwani and Srikar, 1965, Kulkarni and Joshi, 1998). The forms in Tamil Nadu and Karnadaka use Vítez negundo and Karanja as grain protectants (Ahmed et al., 1997). Biocidal activities of some other plants viz. *Amaranthus spinosus*, *Apios America*, *Brassica nigra*, *Carica papaya andrographis paniculata*, *Madhuca indica*, *Moringa oelefera*, *Ocimum basilicum*, *Piper nigram*, *Trigonella foenumgraecum* etc., have also been detail reviewed by Khatri and Meshram, 2014.

Despite this only a few have been scientifically evaluated (Schmutterer, 1990), *Petiveria alliacea* which is commonly known as Anamu belongs to the family phtolocaceace (Ojo, 1996) reported several biological compounds in the root of *P. alliacea* which comprise: benzaldehyde, dibenzyltrisulfide, cis and trans-stibene e.t.c of which dibenzyltrisulfide is insecticidal compound. The use of Cashew Nut Shell Liquid (CNSL) has been gaining more attention due to its possession of the active Phenolic compounds, Anacardic acid and Cardol, which also have corrosive and abrasive properties (Lale, 1995). It was demonstrated that low concentration of CNSL could be effective in the management of *C. maculatus*. Similar work was also reported in preventing oviposition in *C. maculatus* (Olotuah and Ofuya, 2010). Research in current years has been revolving more towards selective botanical pesticides, usually apparent to be safer than the synthetic (Armason et al, 1995), while, extensive works on the use of plant extracts in pest management were also documented the use of inexperience and safe protectants of plant origins was extensively reviewed (Mordue, 1993).

Plant extracts used as bio pesticides-powders

Ahmed et al., (2009) reported the parts of the plant used include leaves, stems, seeds or roots. The plant parts would be washed and either air or shade dried, ground and sieved in to powder. The materials are grounded into powder using mortar and pestle or grounded electronically using blender (Ahmed et al., 2009; Ogunwolu and Idowu, 1994). It will then be sieved using sieve of appropriate sizes. The resulting fine powder was used in dusting the surface of the cowpea. Application was based on weight/weight (w/w) basis. The powder properly coated the surface of the cowpea seeds before was stored. Adenakan et al. (2013), Ekeh et al. (2013), Asawalam and Dioka (2012), Yusuf et al. (2011) and Ogunwolu and Idowu (1994) reported pesticidal properties of different parts of plant materials such as garlic, Chillies, *Moringa, Dendula tripetela*, *Curcuma longa* (Turmeric), Neem and *Clausena on Callosobruchus maculatus*. Pirimphos-methyl caused 100% control (mortality) of *Callosobruchus maculatus* but the performance was not significantly different (p ≥ 0.05) with the leaf powder of *Clausena anisata* (76.8). The other powders of the plant materials were significantly (p ≤ 0.05) better than the control (5.0). Similarly, the use of plant materials has significantly reduced the percentage seed perforation. The result showed that there was no significant difference (p ≥ 0.05) between leaf powder (2.0) and synthetic chemical (0.0). The highest percentage seed perforation was recorded in the control (96.7). Some plant extracts and their parts used by various researchers are listed in Table 1.

Plant materials to be prepared were pulverized and the appropriate quantity soaked in water and the mixture was shaken and stirred thoroughly and applied directly or can be allowed to stand overnight and the mixture is filtered over a muslin cloth (Ahmed et al., 2009 and Ahmed et al., 2007). The filtrate obtained formed the extract that was diluted with an appropriate quantity of water to form the spray solution (Oparaee et al., 2005; Ahmed et al., 2009). Ogunwolu and Idowu, (1994) reported that the crude extract is standardized in methanol: water solvent. The suspension was evaporated, acidified and extracted with chloroform. This was either obtained using water or alcohol as aqueous or ethanol extract. The powder of plant materials was soaked in and left overnight. The mixture was shaken and filtered over clean muslin cloth and the filtrate is now used in biocontrol. Adebiyi and Tedela (2012), Ratnasekera and Rajapksse (2012), Abdullahi (2011), Rahman and Talukder (2006) and Ogunwolu et al. (2002) reported different pesticidal properties of some plants such as Moss plant, Neem, Desert date and *Clausena on Callosobruchus maculatus*. Adebiyi and Tedela, (2012) showed the effect of extract in the control of *Callosobruchus maculatus*. The result showed that both the water and ethanol extract of *Barbula indica* were able to cause mortality of *Callosobruchus maculatus* significantly (p ≥ 0.05) better than the control. The highest mortality was achieved with the application of 4 g 100-1mls (63.33 and 83.33) and the lowest mean *Callosobruchus maculatus* mortality was recorded in the control (3.33 and 16.67) for water and ethanol extract, respectively.
Table 1: Some examples of plant materials and the different parts used as.

Plant materials	Common name	Family	Parts used	Source
Citrus sinensis O.	Sweet orange	Rutaceae	P	Yusuf et al. (2011)
Allium sativum L.	Garlic	Liliaceae	B	Ekeh et al. (2013)
Azadirachta indica (A. Juss)	Neem	Meliaceae	S, L	Ogunwolu and Idowu (1994)
Balanites aegyptiaca (L.)	Desert date	Balanitaceae	L	Abdullahi (2011)
Annona spp (L.)	Anona	Annonaceae	L	Ratnasereka and Raj at seke (2012)
Capsicumfructescens	Chilli pepper	Solanaceae	F	Yusuf et al. (2011)
Allium cepa (L.)	Onion	Solanaceae	B	Ahmed et al. (2009)
Clausena anisata H.	Drum stick	Moringaceae	F, L, S, R	Adenakan et al. (2013)
I,foringa oleifera Lam.				
Arachis hypogea L.	Groudnut	Leguminosae	O	Adenakan et al. (2013)
Ocimum gratissimum L.	African basil	Lamiaceae	L	Ekeh et al. (2013)
Annonasenegenalisens	custard-apple	Annonaceae	SB	Fatope et al. (1995)
Pers. Balanites aegyptiaca	soap berry	Zygophyllaceae	R	Fatope et al. (1995)
Entada africana Buill and Perr.	African Locust Bean Tree	Mimosaceae	SB	Fatope et al. (1995)
Mitracarpus Scaber Zucc	button grass	Rubiaceae	SH	Fatope et al. (1995)
Sclerocaryablrrea (A. Rich).Höchst.	morula	Anacardiaceae	SB	Fatope et al. (1995)
Spenocleazeylanlca Gearth	Goose Weed	Sphenolcaceae	SH	Fatope et al. (1995)
Allium sativum L.	garlic	Amaryllidaceae	B	Edwin, I.E., Jacob, I.E, (2017)
Cordia millenii	manjack	Boraginaceae	S	Edwin, I.E., Jacob, I.E, (2017)
Monodora myristica	seeds of Africa nutmeg	Annonaceae	S	Edwin, I.E., Jacob, I.E, (2017)
Xylopiaaethiopica	negro pepper	Annonaceae	FR	Edwin, I.E., Jacob, I.E, (2017)
Zingiber officinale	ginger	Zingiberaceae	RZ	Edwin, I.E., Jacob, I.E, (2017)
Dysphaniaaerosioides	wormseed	Amaranthaceae	L	Mkenda et al. (2015)
Tephrosia vogelii	tephrosia	Fabaceae	L	Mkenda et al. (2015)
Lippia javanica	fever tea	Verbenaceae	L	Mkenda et al. (2015)
Tithonia diversifolia	Mexican sunflower	Asteraceae	L	Mkenda et al. (2015)
Murraya koenigii	curry leaf	Rutaceae	L	Mkenda et al. (2015)
Azadirachta indica	nintree	Meliaceae	L	Mkenda et al. (2015)
Azadirachta indica Juss.	Neem	Meliaceae	SO	Boeke et al. (2004)
Blumea aurita (L.) DC	Faux tabac	Asteraceae	LO	Boeke et al. (2004)
Capsicum frutescens L.	Pepper	Solanaceae	Su	Boeke et al. (2004)
Carica papaya L.	Papaya	Caricaceae	Su	Boeke et al. (2004)
Cymbopogon citratus	Lemongrass	Stapf Poaceae	L	Boeke et al. (2004)
(DC. Ex Nees)	Cymbopogon nardus (L.)	Citronella grass	Rende Poaceae	L Boeke et al. (2004)
Cymbopogon schoenanths (L.)	Camel grass	Sprengel Poaceae	L Boeke et al. (2004)	
Draecaena arborea (Wild.)	Dragontree	Link Liliaceae	L Boeke et al. (2004)	
Helianthus annuus L.	Sunflower	Asteraceae	S	Boeke et al. (2004)
Hyptis spicigera Lam.	Marubio	Lamiaceae	L	Boeke et al. (2004)
Momordica charantia L.	Bittergourd	Cucurbitaceae	Su	Boeke et al. (2004)
Nicotiana tabacum L.	Tobacco	Solanaceae	L	Boeke et al. (2004)
Ocimum basilicum L.	Sweet basil	Lamiaceae	L	Boeke et al. (2004)
Tagetes minuta L.	Mexican marigold	Asteraceae	L	Boeke et al. (2004)

Key: P = peel; B = bulb; S = seed; L = leaves; SB = stem bark; R = root; RB = root bark; F = flower; O = oil, SH = shoot, FR = Fruit, RZ = rhizome, SO = Seed oil, Leaf oil, Su = Slurry.
Bioactivity of Plant Extracts against Cowpea Bruchid *Callosobruchus maculatus* (Fab): A Review

Phytochemical analysis of some plant extracts
Phytochemical constituent in *Citrus sinensis* (Shalaby et al., 2011)

Obtained compounds	Leaves		Peels	
	C. aurantifolia	*C. sinensis*	*C. aurantifolia*	*C. sinensis*
Psoralene (1)	+	+	+	+
Xanthotoxin (2)	-	-	-	-
Bergapten (3)	+	+	+	+
Isopimpinellin (4)	+	+	+	-
Imperatorin (5)	+	-	+	-
Isobergapten (6)	+	-	-	-
Marmesin (7)	+	-	-	-
Umbelliferone (8)	+	-	-	-
Kaempferol (9)	-	+	-	-
Quercetin (10)	-	+	+	+
Myricetin (11)	-	+	+	+
4',5,7'-Trihydroxy-3,6-dimethoxy flavone (12)	+	+	+	-
Hyperin (13)	-	+	-	-
Quercetin-3-O-robinobioside (14)	+	+	+	+
Rutin (15)	-	+	+	+
Hesperidin (16)	-	-	+	+
Stigmasterol (17)	+	-	-	-
β-Sitosterol (18)	+	-	-	-

![Molecule 1](image1.png)

1. Psoralene
2. Xanthotoxin
3. Bergapten
4. Isopimpinellin
5. Imperatorin

![Molecule 2](image2.png)

6a. Isobergapten
6b. Angelicin

![Molecule 3](image3.png)

Marmesin (7)

![Molecule 4](image4.png)

Umbelliferone (8)

![Molecule 5](image5.png)
Phytochemical Analysis of Some Plant Material.

Plant materials	Alkaloids	Carbohydrates	Starch	Glycosides	Flavonoids	Triterpenoids	Resins	Saponins	Steroid	Proteins	Tannins
Citrus sinensis O.	+	+	-	-	+	-	+	+	-	+	+
Allium sativum L.	+	+	-	-	+	+	+	+	-	+	+
Azadirachta indica (A. juss)	+	+	-	-	+	+	+	+	-	+	+
Balanites aegyptiaca (L.)	+	+	-	-	+	+	+	-	+	+	+
Annona spp (L.)	+	+	-	-	+	+	+	-	+	+	+
Capsicumfructescens	+	+	-	-	+	+	+	-	+	+	+
Allium cepa (L.)	+	+	-	-	+	+	+	-	+	+	+
Clausena anisata H.	+	+	-	-	+	+	+	-	+	+	+
litoringa oleifera Lam	+	+	-	-	+	+	+	-	+	+	+

+ = Presence; - = absence.

Phytochemical constituent in Allium sativum L. (Martin et al., 2016).

Phytochemical constituent in Azadirachta indica (Koul et al., 2016).
Phytochemical constituent in *Balanites aegyptiaca* (Chothani, et al., 2011).
Phytochemical constituent in *Dittrichia viscosa* (Faiza et al., 2019)

In recent literature, Faiza et al. have been reported the efficacy of four bi- and tri-cyclic sesquiterpenes, namely inuloxins A, B and C and α-costic acid, extracted from aerial parts of *Dittrichia viscosa* collected in Algeria was assessed against the cowpea seed beetle *Callosobruchus maculatus*. The compounds were evaluated for their effect on adult mortality, oviposition and adult emergence. Three concentrations (100, 50 and 25 μg/ml) of each compound were tested with chickpea being used as the test plant. Complete adult mortality (100%) was achieved at only 1 day after exposure to inuloxins B and C and α-costic acid with LC50s less than 36 μg/ml. Lethal concentration values (LC50) were determined as 30.4, 35.2, 31.6 and 29.4 μg/ml, respectively, for inuloxins A, B and C and α-costic acid. Oviposition and F1 progeny emergence were significantly reduced (27% and 73%, respectively) after treatment with *D. viscosa* compounds. Our results also revealed that oviposition, adult emergence and sex ratio varied with the sex of the treated mating partner suggesting that the test compounds may have acted as male (or indirect female) chemosterilants resulting in reduced fecundity and fertility of untreated females that mated with treated males.
Bioassay methods

Bioassay methods commonly employed for insecticide toxicity evaluation are topical application, potter’s tower method, injection method, dipping method (leaf dip and larvae dip), contact or residual method, film method, etc.

Topical application

A generally employed method is topical application, where the insecticide is dissolved in a relatively nontoxic and volatile solvent such as acetone and small, measured droplets are applied at a chosen location on the body surface on the thorax of individual third stage larvae with an operated micro applicator (Durmusoglu, 2015). A motor driven topical applicator is available with micrometer-driven precision syringe. The advantage of this method is, the high degree of precision and reproducibility that can be attained, large number of tests can be performed in a relatively short time, small number of insects required per replication, simple and inexpensive equipment needed, small amount of toxicant and solvents used.

Potter’s tower method

Uniform spraying or dusting on the body of insect can be done by means of potter’s tower. Potter (Potter, 1952) designed a spray tower with a twin-fluid nozzle mounted centrally at the top of an open ended metal tube where the sprays falls vertically and deposits on horizontal plane. The topical application on entire insect body can be done by potter’s tower by possession the Petri dish containing known number of insects under the bottom part of the tower and spraying inside through nozzle fitted in the lower side by maintaining a particular pressure. This methodology simulates field acquaintance conditions and hence is informative for pest management. The technique has emerged as one of the most convenient methods of dispensing known amount of toxins accurately on insects. The major difficulties of the method are the potter’s tower method has a slow execution time and a high initial cost, due to the necessity of purchasing equipment. In this approach Petri dishes are spread evenly over the entire surface leaving a residual film. The dose is varied by the concentration of insecticide solution added to the vials (Simon, 2008). Insects are released on to the treated surface and thus get exposed to residual film. Alternatively, the insecticide is applied evenly on to leaf, glass, filter paper, wood panel or other types of building materials and allowed to dry before exposing the insects to the residual deposits. For uniform application, equipment called Potter’s tower is commonly used. The deposits are expressed as milligrams or grams of active ingredient per square meter (mg or g a.i./m2). These techniques do not represent field situations and do not allow us to verify whether or not the field doses are effective for the pest control (Siqueira, 2000).

Contact or Residual method

In this method, the formulated insecticide is diluted in a volatile solvent (acetone) and the insecticide solution is coated inside a glass vial. The solvent is allowed to evaporate by rotating the container so that the insecticide is spread evenly over the entire surface leaving a residual film. The dose is varied by the concentration of insecticide solution added to the vials (Simon, 2008). Insects are released on to the treated surface and thus get exposed to residual film. Alternatively, the insecticide is applied evenly on to leaf, glass, filter paper, wood panel or other types of building materials and allowed to dry before exposing the insects to the residual deposits. For uniform application, equipment called Potter’s tower is commonly used. The deposits are expressed as milligrams or grams of active ingredient per square meter (mg or g a.i./m2). These techniques do not represent field situations and do not allow us to verify whether or not the field doses are effective for the pest control (Bacci, 2009).

Film method

The technique includes insecticide solution is usually deposited on glass surface such as Petri dish, flask, vial, wide mouth jar etc. Petri dishes are most commonly used for evaluating insecticide efficacy. In this approach Petri dishes (5 cm diameter) are coated with one milliliter solution on their inner sides and the solution is allowed for uniform spreading in the Petri dish by swirling it gently and then permitting it dry up at room temperature. The target test insects are then released onto the film of the toxicant in the container. Thereafter, the known numbers of insects are exposed on for a period of 18-24 hours depending upon the
recalculation (Birah, 2008).

Fumigation method

The fumigation method is suitable for stored-product pests. The fumigation would be performed in a closed chamber at 30 ± 2°C and 60 ± 5 % relative humidity. The insecticide is announced into a sealed container along with the insects. Each fumigation test is replicated thrice or more along with control and after exposure the insects would be provided with small quantity of culture medium for a week and moved to recovery room. Adult mortality is recorded at different time intervals from the end of the exposure period (Simon, 2008).

Aqueous solution method

The principle of this method is to disperse the insecticide residue in a small amount of water miscible solvent (acetone or alcohol) into water as a solution or suspension. Then a small number of searching aquatic organisms such as mosquito larvae, micro crustaceans or fish are exposed to the solution. The amount of residue in a treated sample is obtained by comparing its toxicity to that of the standard. The amount of solvent in water should be as little as possible and its toxicity, if any, can be detected by control tests. This method has the advantage of having the whole organism constantly in contact with the medium. Some have claimed uniform management of the toxicant, but settling of the suspended material may occur. High sensitivity is thought to be the result of circulation and absorption of the toxicant through the gills or equivalent organs (Dewey, 1958).

Photomigration method

Photomigration method is another aqueous solution method which was devised by Burchfield *et al.* using negative phototaxic response to larvae of *Aedes aegypti* (Burchfield 1952). The insecticidal solution is carefully evaporated under moderate stream of air to dryness and the residue is dissolved in small amount of acetone and then 50 mL water is added. One to two hundred larvae are then confined behind a porous barrier in a glass trough comprising above solution. After varying time period, the light is turned on and barrier is removed. Viable larvae rapidly migrate away from the light. After one-minute exposure, a second barrier is kept in the trough and the larvae left behind are considered as dead. From a series of dilution LC50 (The dose required to inactivate 50% of the test population) and LC90 are worked out. The per cent mortality corresponding to each dose calculated from the number of insects released and the mortality experiential after exposure period. The mortality in control if any will affect the accuracy of the result. In order to over this error, a correction is regularly applied by using the Abott’s formula.

The susceptibility of any population to a poison is assessed by constructing a dosage-mortality curve in which the dosage is plotted against the percentage mortality at a given period of time. Such a plot produces a sigmoid curve whose asymptotic methods (infinite ends) at the regions of zero and 100% mortality are difficult to define without extensive testing. In profit transformation, the sigmoid curve is converted to a straight line by plotting the logarithm of the dosage against the profit value of percent mortality. This method of computation yields a straight line, which greatly facilitates the determination of the LC50, LC90 or any other lethal concentration/dose.

Utility of bioassay

- Bioassay is assumed to ascertain the potency of the chemicals as insecticides.
- It helps to discovery out the property of synergism.
- Potentiation and resentment of a compound when used in a mixture with an insecticide.
- Comparative or relative toxicity of insecticides is worked out on the basis of LC50 found as a result of bioassay. This gives an index for selecting promising insecticides for field trial against insect pests.
- Bioassay supports in evaluation of insecticides for their safety to pollinators, predators and pathogens.
- Bioassay can help the formulators in improving the effectiveness for their formulated products, through changes in solvent, spreader, emulsifier, stickers etc.
- The quality of marketed insecticides can be checked through bioassay of samples collected and comparing them with standard.
- The change in values of LC50 of an insecticide for an insect with the passage of time indicates variation in susceptibility which helps in detection of resistance if developed in the insect population. Cross resistance to other insecticides, use of synergists and mixed formulations to overcome resistance are also estimated through bioassay.
- Formation of toxic metabolites, not quantitatively, due to use of insecticide can be determined by bioassay.
- Through bioassay lethal time LT50 required to kill 50% population to test animal. ED50 or EO50 i.e. the dose or concentration of chemical carries out sterility or other quantitative effects in 50 % population can also be worked out.
- Bioassay can also be applied for estimation of micro quantities i.e. residues of insecticides in different commodities in order to alarm the consumers from hazards associated.

Mechanisms of activity of Botanicals Oviposition deterrent

Grownup bruchids do not feed on stored cowpea seeds, but only deposit their eggs. As shown in this study, D. ambrosioides, *T. vogelli* and *L. javanica* have the potential for stored grain legume protection against bruchids by preventing oviposition (Mkenda *et al.* 2015). This is when the plant products prevent the insect from laying eggs on the stored product. This is exhibited by releasing fumes in to the surrounding that prevent mating and subsequent laying of eggs. Rahman and Talukder, (2006) stated that when stored grains mixed with leaf, bark and seed powder of plant material reduced oviposition. Good example of
oviposition deterrent showed that the use of chillies, garlic and peppermint plant parts caused different level of deterrence to *Callosobruchus maculatus*. Chillies and garlic applied at the rate of 50 g per 500 g cowpea seeds greatly reduced oviposition relative to the control. The number of eggs laid on cowpea treated with chillies was not significantly (p ≥ 0.05) different with garlic but was significantly different with the control. Peppermint however recorded the highest number of eggs laid among the plant treatments but was still better than the control. The efficacy of different plant derivatives against the development of the cowpea weevil, *C. maculatus* fed on cowpea (Radha and Susheela, 2014), *V. unguiculata* seeds. The leaf extracts of romantic plants, *M. koenigii* and *A. indica* were evaluated for their growth, adult mortality and oviposition inhibition of *C. maculatus*. Several compounds have been isolated from the leaves, stem and flowers of *T. diversifolia* (including sesquiterpenes, diterpenes, monoterpenes and alicyclic compounds), some of which have demonstrated biological activities against different species of insects.

Insecticidal properties

Plant materials possessed active ingredients (a.i.) that have insecticidal properties. Neem contained *Azadirachtin, Nimbin, Nimbidin, Selanin; Psidium guineense* contained *Guineense; Annona* contained *Annonacin; Clausena anisata* contained *Clausenol* and *Comarunis*. These materials caused different toxicity properties to insects either by contact, stomach or through respiratory poison to *Callosobruchus maculatus*: Adenakan *et al.* (2013) and Adebiyi and Tedela, (2012) reported toxicity properties of *C. anisata*, Moss plant and *Moringa* plants respectively on *Callosobruchus maculatus*. An example of toxic effect of plant materials was reported by Adenakan *et al.* (2013). The findings showed that *Moringa* flower powder that was applied at the rate of 0.5 g per 30 g cowpea seeds caused insecticidal property in form of mortality. Acetlic dust caused highest *Callosobruchus maculatus* mortality 10 hrs after infestation. However, the same control was achieved with the application of leaf powder. All the treatments however caused significant control of *Callosobruchus maculatus* 24 hrs after infestation. The plant extract of *Allium sativum* L. (Garlic), *Cordia millenii* Baker (Manjack), *Monodora myristica* (Gaertn.) (Nutmeg), *Xylopia aethiopica* (Dunal) (Negropepper) and *Zingiber officinale Roscoe* (Ginger) against *Callosobruchus maculatus* (Cowpea weevil) infesting cowpea seeds.

Anti-feeding deterrent

Anti-feeding is sometimes referred to as feeding deterrent. It was defined as the action of a chemical that inhibits feeding although does not kill the insect directly (Manukata, 1977). Saxena *et al.* (1988) defined anti-feedants as chemicals which retard or disrupt insect feeding by rendering the treated materials unattractive or unpalatable. In that situation, the pests get starved to death. This was when plant products prevented insect predation on stored products. The toxicity in effect may be by stomach poison.

Repellency Control

Plant products that were pungent or having irritating odour were used in insect repellency control. Talukder, (2006) defined repellency as a chemical stimulus which causes the insects to make oriented movements away from the source of the stimulus. The use of plants such as Pine tree, *Eucalyptus globules* Labille; Rue, *Ruta graveolens* Linn. and Garlic, *A. sativum* as repellent had been reported (Ahmed *et al.*, 2009). Talukder, (2006) reported the use of essential oil of Artemisia annua L. as repellent contrary to storage pests such as *Tribolium castenum* Herbst and *Callosobruchus maculatus* (L.). Some plants materials possessed repulsive odour which drive insect away. This phenomenon occurred when fumes were released in to the vicinity, the odour will be perceived by the insect and will drive it away thereby dying due to hunger.

Metamorphosis inhibition

Plant products were used as bio pesticides in arresting insect growth. The effect of growth regulatory plant products can be seen in several ways. There were molecules inhibiting metamorphosis. These compounds preventing completion of life cycle from taking place at the right time or force the insect to go through an early metamorphosis, so that development takes place at a time not favourable for the insect National Research Council (NRC) (1992). Others chemicals have been observed to alter hormones related to this function so that insects suffer malformation. Either, the insects were made sterile or were killed. NRC (1992) reported action of neem extract on some insect pests by way of disrupting their life cycle. The a.i. possessed by plant materials have the ability of inhibiting the life cycle of insects. A good example is *Azadirachtin* found in Neem. The a.i. prevents the insect from completing metamorphosis, or adults were malformed (NRC, 1992). Similarly, Adenakan *et al.*, (2013) reported the efficacy of different parts of *Moringa* parts in reducing the development period of *Callosobruchus maculatus*. There was lower mean number of adults emerged at various seed treated with different parts of *Moringa* plant powders. The lowest number of adults that emerged was significantly different from the highest number that emerged in the control treatment.

CONCLUSION

The review of available literature showed that use of different plant materials as powders or in form of extracts significantly reduced seed damage and deter oviposition of *C. maculatus* on cowpea. The use of pirimiphos-methyl was however superior but was not significantly different with the plant materials. Several plants materials were used as the healthier bioactive compounds. The literatures showed that garlic, chilies and peppermint applied at the rate of 0.035–0.55g significantly (p<0.05) reduced oviposition, respectively compared to the control. Similarly, powdered flowers of *M. oleifera* applied at the rate of 0.5 g per 30 g of seeds caused
mortality of *C. maculatus* better than the control 8 hours after infestation. The use of *A. anisata* and Permethrin exhibited percentage mortality of cowpea bruchids was high using Permethrin but was not significantly (p<0.05) better than *Clausena* leaf powder. Bioactivity of phytochemical plants can be a useful tool for the determination and study of different agricultural pesticides. It can be simple, swift, multipurpose and highly sensitive to a wide range of toxicants. Control of *C. maculatus* on stored cowpea can equally be achieved using plant materials. Adult mortality, oviposition activity repellent activity against *C. maculatus* by bioactive compounds will increase the environmental safety and farmer friendly. The continued use of some plant extracts as grain protectants and bioactive compounds by local farmers should be encouraged through education.

REFERENCES

Abdullahi, N. (2011). Studies on the efficacy of leaf extract of *Balanites aegyptiaca* on the oviposition and survival of immature stages (larvae and pupae) of *Callosobruchus maculatus* (F.) on stored cowpea seeds. Bayero Journal of Pure and Applied Sciences. 4(1): 40-43.

Adebiyi, A. O. and Tedela, P. O. (2012). Pesticidal effects of Barbula indica on *Callosobruchus maculatus* (Coleoptera: Bruchidae). Nature and Science. 10(9): 113-115.

Adejumo, T.O. (2012). Identification, incidence, severity and methods of control of the causal organism of false smut disease of cowpea *Vigna unguiculata* L. Walp. African Agricultural Technology Foundation (AATF).

Ahmed, B. I., Onu, B.I., Mudi, L. and Aliyu, M. (2007). Comparative efficacy of some selected plant derived biopesticides for the control of insect pests of cowpea [*Vigna unguiculata* (L.) Walp] in Katsina State, Nigeria. Korean Journal of Crop Sci. 52(2): 183-197.

Ahmed, M., Gupta, B. K. and Bhandari, R (1997). Antifeedant Potency of some plants produce against defoliating pest of popular, *Clostere cuperata*. Indian Journal of Forest. 123(3): 821-826.

Ahmed, B. I., Onu, I. and Mudi, L. (2009). Field bioefficacy of plant extracts for the control of post flowering insect pests of cowpea, *Vigna unguiculata* (L.) Walp in Nigeria. Journal of Biopesticides. 2(1): 37-43.

Anbu Radhika, S. and K. Sahayaraj. (2016). Insecticidal activity of monochrotophs and pungam oil combination for cotton pest's management under laboratory condition. Tropical Agronomy. 66(1-2): 125-133.

Arnason J.T., B.J.R. Philogen and P., Morand. (1995). An overview of the use of plant Insecticides of Plant Origin. ACS, Symposium Series No. 387 American Chemical Society Washington, D.C. USA. 213.

Arnold S.E.J., Stevenson P.C. and Belmain S.R. (2012). Odour-mediated orientation of beetles is influenced by age, sex and morph. Plos One. 7(11): 1-7.

Asiwe J.A.N. (2006). Baseline survey on the production, constraints and utilization of cowpea in South Africa: Implications to cowpea improvement. Proceeding International Conference on indigenous vegetables and legumes: Prospects for fighting poverty, hunger and malnutrition. Organized by IPGRI, ICRISAT and ISHS, 12-15 December 2006 in Hyderabad, India. 2006: 621-622.

Asewalam, E. F. and Dioka, U. J. (2012). Evaluation of toxicity of *Dennitia tripetal* Baker Fand Curcuma longa L. rhizomes against cowpea seed bruchid, *Callosobruchus maculatus* (F.) Coleoptera: Bruchidae. Agricultural Science Research Journal. 2(6): 308 -311.

Bacci L., Piccano M. C., Barros E. C., Rosado J. F., Silva G. A., Silva V.F., (2009) Physiological selectivity of insecticides to wasps (*Hymenoptera: Vespidae*) preying on the diamondback moth. Sociobiology. 53: 151-167.

Baributsa, D., Lowenberg-DeBoer J., Murdock L., Moussa B. (2010). Profitable chemical-free cowpea storage technology for smallholder farmers in Africa: Opportunities and challenges. Julius-Kühn-Archiv. 425: S.1046.

Birah, A., Alpana, B.S., Mahapatro, G.K., Gupta, P. (2008). Toxicity evaluation of emamectin benzoate against tobacco Caterpillar (spodoptera utra) by three different assay techniques. Indian Journal of Entomology. 70(3): 200-205.

Blade, S.F., Shetty, S.V.R., Terao, T., Singh, B.B. (1997). Recent developments in cowpea cropping systems research. In: Advances in Cowpea Research. [Singh, B.B., Mohan Raj, D.R., Dashiel, K.E., Jackal, L.E.N. (Eds.)]. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Centre for Agricultural Sciences (JIRCSA), IITA, Ibadan, 114-128.

Boeke, S. J., Boersma, M. G., Alink, G. M., van Loon, J. J., van Huis, A., Dicke, M., et al. (2004). Safety evaluation of neem (*Azadirachta indica*) derived pesticides. J. Ethnopharmacol. 94: 25-41.

Booker, R.H. (1967). Observations on three Bruchids associated with cowpea in Northern Nigeria. Journal of Stored Products Research. 3: 1-15.

Burchfield, H.P., Hilchey, J.D., Storrs, E.E. (1952). An objective method for insecticide bio- assay based on photomigration of mosquito larvae. Contributions from Boyce Thompson Institute.7: 57-86.

Chothani, D.L., Vaghasiya, H.U., (2011) A review on *Balanites aegyptiaca* Del (desert date): phytochemical constituents, traditional uses and pharmacological activity, Pharmacognosy Reviews. 5(9): 55-62.

Coblentz, S.L., (1956). Introduction to the Botany of Tropical Crops. Longman Group Limited. Essex, England. 79-98.

Deshpande, V.K., Makunur, B., Deshpande, S.K., Adiger, S., Salima, P.M. (2011). Quantitative and qualitative losses caused by *Callosobruchus maculates* in cowpea during seed storage. Plant Archives. 11(2): 723-731.

Dewey, J.E. (1958). Utility of bioassay in the determination of pesticide residues. Agricultural and Food Chemistry. 6(4): 274-281.

Dürmuşoğlu, E., Hâtipoglu, A., Gürkan, M.O., Moores, G. (2015). Comparison of different bioassay methods for determining insecticide resistance in European Grapevine Moth, *Lobesia botrana* (Denis and Schiffermüller) (*Lepidoptera: Tortricidae*), Turkish Journal of Entomology. 39(3): 271-276.
Bioactivity of Plant Extracts against Cowpea Bruchid Callosobruchus maculatus (Fab): A Review

Ebenezer, O.O. (2010). Management of major field pests and yield of cowpea [Vigna unguiculata (L.) Walp] under calendar and monitored application of synthetic chemicals in Asaba, Southern Nigeria. African Journal of General Agriculture. 6(3): 177-186.

Echendu, T.N.C. (1991). Cashew and neem as surface protectants of cowpea against infestation and damage by Callosobruchus maculatus (Fab.) Journal of Tropical Science. 31: 209-211.

Edwin, I.E., Jacob, I.E. (2017). Bio-insecticidal potency of five plant extracts against cowpea weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L.). Journal of Biological Sciences. 10(4): 317-322.

Ede, P.A, Amatobi, C.I. (2003). Seed coat has no value in protecting cowpea seed against attack by Callosobruchus maculatus (F.). J. Stored Prod. Res. 39: 1-10.

Elhag, E.A. (2000). Deterrent effects of some botanical products on oviposition of the cowpea bruchid Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Int. J. Pest. Manag. 46(2): 109-113.

Ekeh, F.N., Onah, I.E., Atama, C.I., Ivoke, N. and Eyo, J.E. (2013). Effectiveness of botanical powders against Callosobruchus maculatus (Coleoptera: Bruchidae) in some stored leguminous grains under laboratory conditions. African Journal of Biotechnology. 12(12): 1384-1391.

Faiza, G., Nadja, Z., Ouassila, H., Abderrahmane, S., Alessio, C., Angela, Antonio, E., (2019). Bioefficacy of compounds from Dittrichia viscosa (Asteraceae) as protectant of chickpea seeds against the cowpea seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae), Journal of Plant Diseases and Protection Volume. 126: 437-446.

Fatope, M.O., Mann, A., Takeda Y. (1995). Cowpea weevil bioassay: A simple prescreen for plants with grain protectant effects, International Journal of Pest Management. 41(2): 44-86.

Gbaye, O.A., Millard, J.C., Holloway, G.J. (2011). Legume type and temperature effects on the toxicity of insecticides to the genus Callosobruchus (Coleoptera: Bruchidae). J. Stored Prod. Res. 47: 8e12.

Giga, D.P., Smith, R.H. (1983). Comparative life-history studies of 4 Callosobruchus species infesting cowpeas with special reference to Callosobruchus rhodesianus (pic) (Coleoptera, Bruchidae). Journal of Stored Products Research. 19: 189-198.

Hamman, S.I., Malgwi, A.M. and Micheal, C.G. (2012). Comparative efficacy of three biopesticides and a synthetic insecticide in controlling insect pests of cowpea (Vigna unguiculata L. Walp) in Yola, Nigeria, Nigerian Journal of Entomology. 29: 41-58.

Huignard, J., Leroi, B., Alzouna, I., Germain, J.F. (1985). Oviposition and development of Bruchidius atrolineatus and Callosobruchus maculatus in Vigna unguiculata in cultures in Niger. Insect Sci. Appl. 6: 691-699.

Immaraju, J.A., Morse, J.G., Brawne, O.L. (1990). Evaluation of three bioassay techniques for citrus thrips' resistance and correlation of the leaf dip method to field mortality. Journal of Agricultural Entomology. 1: 17-27.

Isman, M.B. (2010). Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology. 51: 45-66.

Jackai, L.E.N. and Adalla, C.B. (1997). Pest Management Practices in Cowpea: A review. In: Advances in Cowpea Research, [edited by B.B. Singh, D.R. Mohan, Raj, K.E. Dashiel and L. E. N. Jackai]. Copublication of International Institute of Tropical Agriculture (IITA) and Japan International Research Centre for Agricultural Sciences (JIRCAS). IITA, Ibadan, Nigeria. Pages 240-258.

Jackai, L.E.N. and Daoust, R.A. (1986). Insect pests of cowpea. Annual Review of Entomology. 31: 9-119.

Jotwani, M.G. and Srikar, P. (1995) Neem as protectant against stored grain pests infesting wheat seed. Indian Journal of Entomology. 27: 160-164.

Kang, J.K., Pittendrigh, B.R., Onstad, D.W. (2013) Insect resistance management for stored product pests: A case study of cowpea weevil (Coleoptera: Bruchidae). Journal of Economic Entomology. 106(6): 2473-2490.

Khatri, P.K. and Meshram, P.B. (2014). Familiarizing with local biodiversity. Tropical Forest Research Institute, Mandala Road, Jabalpur, Madhya Pradesh.

Kiradoo, M.M., Srivastava, M.A. (2010). Comparative study on the efficacy of two Lamiaeae plants on egg laying performance by the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae). J. Biopestic. 3(3): 590-595.

Koul, O., Isman, M.B., Ketkar, C.M. (1990). Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany. 68: 1-11.

Kulkarni, N. and Joshi, K.C. (1998). Antifeedant properties of some botanical extracts against maharukha webworm, Altica fabriciella sweep. Journal of Tropical Forest Products. 4(1): 11-16.

Lale, N.E.S. (1995). An overview of the use of plant Insecticides of Plant Origin. ACS, Symposium Series No. 387 American Chemical Society Washington, D.C. USA, 213.

Manukata, K. (1977). Insect antifeedants of Spodoptera litura in plants. In: Host Plant Resistance to Pests. [P.A. Hedlin (Ed)], ACS Symposium Series No. 62. American Chemical Society. Washington. Pp 185-196.

Martins, N. (2016). Petropoulos S and Ferreira ICF, Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry. 211(15): 41-50.

Messaina, F.J. (1984). Influence of cowpea pod maturity on the oviposition choices and larval survival of a bruchid beetle Callosobruchus maculatus. Entomol. Exp. Appl. 35: 241-248.

Messaina, F.J. (1990). Alternative life-histories in Callosobruchus maculatus: environmental and genetic bases. In: Bruchids and legumes: economics, ecology and co-evolution. [Fuiji K, Gatehouse AMR, Johnson CD, Mitchell R, Yoshida T (eds)]. Klwuer Academic Publishers, The Hague, pp 303-315.

Messaina, F.J. (1993). Heritability and evolvability of fitness components in Callosobruchus maculatus. Heredity. 71: 623-629.

Messaina, F.J., Jones, J.C. (2009). Does rapid adaptation to a poor-quality host by Callosobruchus maculatus (F.) cause cross-adaptation to other legume hosts? J. Stored. Prod. Res. 45: 215-219.

Mkenda, P., Mwarauta, R., Stevenson, P.C., Ndakidemi, P., Mtei, K., Belmain, R.S. (2015). Extracts from Field Margin Weeds Provide Economically Viable and Environmentally

Agricultural Reviews
Benign Pest Control Compared to Synthetic Pesticides, *PLOS ONE* [DOI:10.1371/journal.pone.0143530] November 23, 2015.

Monge, J.P., Huigard, J. (1991). Population fluctuations of two bruchid species *Callosobruchus maculatus* and *Bruchidius atrolineatus* and their parasitoids Dinarmus basalis and Eupelmus vuillieti in a storage situation in Niger. *J Afr Zool.* 105: 187-196.

Mordue, A.J. and A. Blackwell. (1993). Azadirachtin: An update. *Journal of Insect Physiology.* 39: 903-924.

Nahdy, M.S. (1995). Biotic and abiotic factors influencing the biology and distribution of common storage pests of pigeonpea. Ph.D Thesis, University of Reading, UK.

Nahdy, M.S., Slim, S.N., Ellis, R.H. (1999). Effect of field infestations of immature pigeonpea (*Cajanus cajan* (L.) Millsp.) pods on production of active (flight) and sedentary (flightless) morphs of *Callosobruchus chinensis* (L.). *J. Stored Prod. Res.* 35: 339-354.

Nelson, H.B., Heiman, R.G., Bolduc, C., Kovalick, G.E., Whitley, P., Stern, M., Beckingham, K. (1997). Calmodulin point mutations affect Drosophila development and behavior. *Genetics.* 147(4): 1783-1798.

NRC (1992). *Neem: A Tree for Solving Global Problems.* National Research Council, Washington, DC.

NRC (1992). *Neem: A Tree for Solving Global Problems.* National Research Council, Washington, DC.

Ofuya, T.I., Agele, S.O. (1990). Ability of ovipositing *Callosobruchus maculatus* (Fabricius) (*Coleoptera: Bruchidae*) females to discriminate between seeds with differing numbers of emergence holes. *Journal of Stored Products Research.* 26: 117-120.

Ogunwulu, O. and Idowu, O. (1994). Potential of powdered *Zanthoxylum zanthoxylloides* (Rutaceae) root bark and *Azadirachta indica* (Meliaceae) seed for the control of the cowpea seed bruchid, *Callosobruchus maculatus* (Bruchidae) in Nigeria. *Journal of Zoology.* 108: 521-528.

Ojo, I.O. (1996). On the effectiveness of insecticides of biological origin. Proceeding of 25th Annual Conference. *Entomological Society of Nigeria.* 30: 25-31.

Olotuah, O.F. and Ofuya, T.I. (2010). Comparative protection of cowpea, *Vigna unguiculata* (L.) Walp. against field insect pests using cashew nut shell liquid and cypermethrin (Cymbush). *Pakistan Journal of Nutrition.* 9(2): 158-161.

Ogunwulu, E.O., Aku, A.A., Attah, J. and Igoli, J.O. (2002). Control of seed bruchid (*Callosobruchus maculatus* F.) infestation in cowpea (*Vigna unguiculata* (L.) Walp) with *Clausena anisata* Hook (Rutaceae). *Bioscience Research Communications.* 14(2): 205-211.

Oporoike, A.M., Dike, M.C. and Amatobi, C.I. (2005). Field valuation of extracts of five Nigerian species for control of postflowering insect pests of cowpea, *Vigna unguiculata* (L.) Walp. *Plant Protection Sciences.* 41: 14-20.

Owolabi, A.O., Ndidi, U.S., James, B.D., Amune, F.A. (2012). Proximate, Antinutrient and Mineral composition of five varieties (improved and local) of cowpea, *Vigna unguiculata*, commonly consumed in Samaru community, Zaria-Nigeria. *Asian Journal of Food Science and Technology.* 4(2): 70-72.

Oyewale and Bamaif, (2013). Management of Cowpea Insect Pests *Sch. Acad. J. Biosci.* 1(5): 217-226.

Potter, C. (1952). An improved laboratory apparatus for applying direct sprays and surface films with data on the electrostatic charge on atomized sprays. *Annals of Applied Biology.* 39: 1-28.

Radha, R. and Susheela, P. (2014). Efficacy of plant extracts on the toxicity, ovipositional deterrence and damage assessment of the cowpea weevil, *Callosobruchus maculatus* (Coleoptera: Bruchidae). *Journal of Entomology and Zoology Studies.* 2(3): 16-20.

Rachie, K.O. and Singh, S.R. (1985) Cowpea research production and utilization. *John Wiley and Sons.* New York. Brisbane pp. 22-25.

Rachie, K.O. (1975). Introduction. In: *Research, Production and utilization,* [S.R. Singh and O.K. Rachie (eds.)], *John Wiley and Sons, Chichester, UK.* Pages xxi-xxii.

Raheja A.K. and Hays, A.M. (1975). Sole crop cowpea production by farmers using improved practices. *Tropical Grain Legumes Bulletin.* 1(1): 6.

Rahman, A. and Talukder, F.A. (2006). Bioefficacy of some plant derivatives that protect grain against the pulse beetle, *Callosobruchus maculatus*. *Journal of Insect Science.* 6(3): 1-10.

Ratnasekera, D. and Rajapakse, R. (2012). The potential use of indigenous plant materials against *Callosobruchus chinensis* L and *Callosobruchus maculatus* L. (*Coleoptera: Bruchidae*) in stored legumes in Sri Lanka. *Journal of Biopesticides.* 5(supplementary): 88-94.

Redden, R.J., Singh, S.R., Luckefahr, M.J. (1984). Breeding for cowpea resistance to bruchids at IITA. *Protection Ecology.* 7: 291-303.

Saxena, R.C., Jilliani, G. and Kareem, A.A. (1988). Effects of neem on stored grain insects. In: *Focus on phytochemical pesticides,* [M. Jacobson (Eds.)], *Volume 1, The Neem Tree*, CRC press, Florida. pp 97-111.

Schmutterer, H. (1990). Properties and potentials of natural pesticides from the neem tree, *Azadirachta indica*. *Annual Review of Entomology.* 35: 271-298.

Shalaby, N.M.M., Abd-Alla, H.I., Ahmed, H.H. and Basoudan, N. (2011). Protective effect of Citrus sinensis and Citrus aurantifolia against osteoporosis and their phytochemical constituents. *J. Med. Plant. Res.* 5(4): 579-588.

Shan, Z.J. (1997). Status of pesticide pollution and management of China. *Environmental Protection.* 7: 40-43.

Singh, S.R. (1980). Biology of cowpea pests and potential for host plant resistance. In: *Biology and Breeding for resistance to Arthropods and Pathogens in Agricultural plants.* [Harris MK (ed)], *Texas A and M Univ, Collage Station Texas,* pp 398-421.

Singh, S.R., Singh, B.B., Jackal, L.E.N., Ntare, B.R. (1983). Cowpea Research at IITA. In: IITA (ed). *IITA, Ibadan Nigeria.*

Simon, J.Y. (2008). The Toxicology and Biochemistry of Insecticides. *CRC press.* 1-276.

Siqueira, H.A.A., Guedes, R.N.C., Picanço, M.C. (2000). Insecticide resistance in populations of Tuta absoluta (Lepdoptera: Gelechiidae). *Agricultural and Forest Entomology.* 2: 147-153.

Siqueira, J.F., Rôças, I.N., Favieri, A, Lima, K.C. (2000). Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5% and 5.25% sodium hypochlorite. *J. Endod.* 26(6): 331-4.
Southgate, B.J. (1978). New junior synonyms of *Callosobruchus anais* (F.) and *Callosobruchus dolichosi* (Gyll.) (Coleoptera: Bruchidae) with notes on distribution. J. Stored Prod. Res. 14: 61-63.

Sun, Y.P. (1963). Bioassay-Insects. In: Principles, methods and general applications-volume 1 in Analytical methods for pesticides, plant growth regulators and food additives (Eds. Gunter Zweig), Published by Elsevier. 399-423.

Talukder, F. A. (2006). Plant Products as potential stored-product insect management agents. A mini review. Emirate Journal Agric. Sci. 18(1): 17-32.

Tuda M., Chou L.Y., Niyomdham C., Buranapanichpan S., Tateishi Y. (2005). Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41: 31-45.

Tran, D.T., Thi Mai, H.D., Pham, V.C., Nguyen, V.H., Litaudon, M., Gueritte, F.O., Nguyen Q.V., Tran, T.A., Chau. V.M. (2013). Alkaloids and styrillactones from the leaves of *Goniothalamus tamirensis*. Phytochemistry Letters. 6: 79-83.

Taylor TA (1981). Distribution, ecology and importance of bruchids attacking grain legumes in Africa. In: The ecology of bruchids attacking legumes (Pulses). [Labeyrie V (ed)], Dr. W Junk Publishers, London, 199-203.

Utida, S. (1972). Density dependent polymorphism in the adult of *Callosobruchus maculatus* (Coleoptera, Bruchidae). J. Stored Prod. Res. 8: 111-125.

Yusuf, A.U., Dike, M.C., Adebitan, S.A. and Ahmed, B.I. (2011). Comparative efficacy of seven plant products on the cowpea bruchid, *Callosobruchus maculatus* development and damage, Journal of Biopesticides. 4(1): 19-26.

Zannou, E.T., Glitho, I.A., Huignard, J., Monge, J.P. (2003). Life history of flight morph females of *Callosobruchus maculatus* F.: evidence of a reproductive diapause, Biopesticides. 4(1): 19-26.