Implications of the 125 GeV Higgs boson for scalar
dark matter and for the CMSSM phenomenology

Mario Kadastik, Kristjan Kannike, Antonio Racioppi and Martti Raidal

National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn 10143, Estonia
Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa, Italia
E-mail: mario.kadastik@cern.ch, kannike@cern.ch, antonio.racioppi@kbfi.ee, martti.raidal@cern.ch

Abstract: We study phenomenological implications of the ATLAS and CMS hint of a
125 ± 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric
dark matter models, and for the phenomenology of the CMSSM. We show that in scalar
dark matter models the vacuum stability bound on Higgs boson mass is lower than in
the standard model and the 125 GeV Higgs boson is consistent with the models being
valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM
parameter space keeping the Higgs boson mass fixed to 125 ± 1 GeV, and study in detail
the freeze-out processes that imply the observed amount of dark matter. After imposing
all phenomenological constraints except for the muon (g − 2)_µ, we show that the CMSSM
parameter space is divided into well separated regions with distinctive but in general heavy
sparticle mass spectra. Imposing the (g − 2)_µ constraint introduces severe tension between
the high SUSY scale and the experimental measurements – only the slepton co-annihilation
region survives with potentially testable sparticle masses at the LHC. In the latter case the
spin-independent DM-nucleon scattering cross section is predicted to be below detectable
limit at the XENON100 but might be of measurable magnitude in the general case of light
dark matter with large bino-higgsino mixing and unobservably large scalar masses.

ArXiv ePrint: 1112.3647
1 Introduction

In the standard model (SM) of particle interactions the only unknown quantity is the Higgs boson mass \([1–4]\). Any assumption that fixes the Higgs boson quartic self-coupling at any scale \(\Lambda\) implies a prediction for the Higgs boson mass. Many models of that sort have been proposed in the past based on different arguments of new physics beyond the SM. In general, the properties of the SM Higgs potential are among the best studied quantities in particle physics ([5]; for a review and references see [6]).

Based on data collected in 2011, both the ATLAS and CMS experiments have published their results for searches for the SM-like Higgs boson \([7, 8]\) confirming and improving their earlier claims \([9, 10]\) for the inconclusive evidence of a signal of a \(M_H = 124\) GeV (CMS) or \(M_H = 126\) GeV (ATLAS) Higgs boson; we will assume that the mass is in this \(M_H = 125 \pm 1\) GeV range. The corresponding local significances of the excess in ATLAS and CMS are 3.5\(\sigma\) and 3.1\(\sigma\), respectively, while the global significances after taking into account the look-elsewhere-effect are 2.2\(\sigma\) and 2.1\(\sigma\). Although definitive confirmation of the observed evidence requires more data, the LHC result motivates studies of fundamental scalars in particle physics and in cosmology.

If the present inconclusive evidence for \(M_H \approx 125\) GeV Higgs boson will be confirmed, this result will have a profound impact on building models beyond the SM and on their phenomenology. In the context of the SM, the Higgs boson mass 125 GeV is below the vacuum stability bound \(M_H > 128\) GeV coming from the requirement of the SM validity up to the scale of gauge coupling unification \(\Lambda_{\text{GUT}}\). Vanishing SM Higgs boson self-coupling \(\lambda(\Lambda) = 0\) below the GUT scale, \(\Lambda < \Lambda_{\text{GUT}}\), implies that the fundamental scale of new physics related to electroweak symmetry breaking and, perhaps, to flavour generation, might be lower than the GUT scale. On the other hand, the Higgs boson mass \(M_H \approx 125\) GeV may imply that there is new physics beyond the SM not too far from the

2 Scalar dark matter and vanishing Higgs self-coupling

2.1 Scalar singlet model
2.2 Inert doublet model
2.3 Singlet plus doublet model

3 CMSSM dark matter and LHC phenomenology for the 125 GeV Higgs boson

4 Conclusions
electroweak scale that modifies the Higgs boson mass prediction. The most popular such a framework is low energy supersymmetry (SUSY) that prefers a light Higgs boson. For SUSY scenarios the lightest Higgs boson mass $M_H \approx 125$ GeV is unusually high, close to the upper bound in popular models, and implies a higher SUSY breaking scale than one expects from naturalness arguments. Clearly those arguments mean that the present hint for the Higgs boson mass requires re-assessment of several “standard” concepts both in SUSY and in non-SUSY models.

The aim of this work is twofold. First, assuming that the Higgs boson mass is in the range $M_H = 125 \pm 1$ GeV, we study the implications of this assumption on the vacuum stability in scalar dark matter (DM) models. In those models the DM and Higgs sectors are related via the Higgs portal and the scalar potentials are in general rather complicated. Due to many new self-interactions in the scalar sector, the SM Higgs quartic coupling renormalization is modified and one might expect that the triviality $\lambda(\Lambda) = 0$ may be achieved for higher values of Λ. We show that this is indeed the case and the SM vacuum stability results will be changed in the non-SUSY scalar DM models compared to the SM prediction. As a new result we show that in those scenarios the 125 GeV Higgs boson is consistent with the vacuum stability up to Λ_{GUT} and, therefore, the scalar DM models do not require new fundamental scales between TeV and the GUT scales.

Second, a technically much more involved question is what is the implication of the $M_H = 125 \pm 1$ GeV LHC result for SUSY predictions of generating DM relic abundance, DM direct detection and for the LHC phenomenology. Generically such a heavy Higgs boson requires rather heavy stops, \textit{i.e.}, a large SUSY breaking scale\footnote{In the context of the 125 GeV Higgs boson this point has already been noted in \cite{11–20}.}. This, in general, implies a large fine tuning to obtain the correct electroweak scale, very fine tuned DM annihilation channels and poor prospects for discovering SUSY at the LHC. We analyze those issues in detail in the constrained minimal supersymmetric standard model (CMSSM) and show that the requirements of $M_H = 125 \pm 1$ GeV and correct DM relic abundance together select out parameter regions with well defined sparticle spectra. We work out CMSSM predictions for DM direct detection cross sections in those parameter regions. The most important new result of this paper is to predict sharp linear relationship between the gluino, lightest stop and slepton masses in the stop and slepton co-annihilation regions that are the only ones accessible to the LHC experiments.

If, in addition, also the muon anomalous magnetic moment $(g-2)_\mu$ constraint is imposed on the CMSSM, only a tiny parameter region is singled out that induces DM via the slepton co-annihilation channel. In this parameter space the LHC has a good chance to observe gluinos and the lightest stop but the DM direct detection experiments like XENON100 are predicted to obtain null result. In the other DM freeze-out channels that also predict the correct amount of DM the situation might be an opposite – only TeV scale DM is observable in DM direct detection experiments while the heavy gluinos and scalars decouple from the spectrum. We classify all those possibilities and discuss their phenomenology.

In section 2 we present results for models of the SM extended with scalars: a complex
SU(2) singlet, an inert doublet or both. In section 3 we give scans for CMSSM with both with and without the \((g - 2)_\mu\) constraint. We conclude in section 4.

2 Scalar dark matter and vanishing Higgs self-coupling

Triviality of the SM Higgs boson self-coupling, \(\lambda = 0\), at some scale \(\Lambda\) is an interesting possibility. From theoretical point of view this may indicate a scale where some new fundamental theory beyond the SM generates electroweak symmetry breaking and Higgs boson Yukawa couplings, i.e., flavour physics. From the phenomenological point of view this scale uniquely predicts the Higgs boson mass due to the evolution of the Higgs self-coupling via renormalization group equations. Examples of this running at two loop level in the SM are presented in Fig. 1 for different values of the SM Higgs boson masses as indicated in the figure. Our results agree with the recent works \([5, 6]\). This result shows that the LHC indications for the Higgs boson imply the triviality scale to be about \(10^{10}\) GeV rather than the GUT scale \(2.1 \times 10^{16}\) GeV. Such a low scale can be associated with the seesaw scale \([21–25]\) where neutrino masses are generated rather than with the GUT scale.

The natural question to ask is that what happens to the vacuum stability in models with extended scalar sector? Particularly interesting among those models are the scalar DM models that have been already addressed in the 125 GeV Higgs boson scenario \([26]\).\(^2\)

2.1 Scalar singlet model

The simplest DM model is obtained by extending the SM scalar potential with a real \([28–31]\) or complex \([32]\) singlet scalar field. In view of embedding this scenario into a GUT framework \([33]\), we study the complex singlet scalar \(S = (S_H + iS_A)/\sqrt{2}\), but the phenomenology in the real singlet case is similar. The vacuum stability of the real singlet model has previously been studied in \([31]\).

\(^2\)Singlet fermion DM has also been studied \([27]\).
Denoting the SM Higgs boson with H_1, the most general Lagrangian invariant under the Z_2 transformations $H_1 \rightarrow H_1, S \rightarrow -S$ is given by

$$V = \mu_1^2 H_1^\dagger H_1 + \lambda_1 (H_1^\dagger H_1)^2 + \mu_3 S^\dagger S + \frac{\mu_2^2}{2} \left[S^2 + (S^\dagger)^2 \right] + \lambda_S (S^\dagger S)^2 + \frac{\lambda'_S}{2} \left[S^4 + (S^\dagger)^4 \right] + \frac{\lambda''_S}{2} \left[(S^\dagger S)^3 + (S^\dagger)^3 \right].$$

(2.1)

The vacuum stability conditions for the complex singlet model with a global $U(1)$ are given in [32]. However, those conditions are not applicable here because this model is far too simple compared to the general case (2.1). For the general model the full vacuum stability conditions are rather complicated and have been addressed previously in Ref. [34]. However, the conditions of [34] turn out to be too restrictive because they are derived by requiring the matrix of quartic couplings to be positive. This is required only if the coefficients of biquadratic terms are negative and, in general, cut out some allowed parameter space.

The conditions arising from pure quartic terms of the potential (2.1) are

$$\lambda_1 \geq 0, \quad \lambda_S + \lambda'_S \geq |\lambda''_S|. \quad (2.2)$$

For simplicity we consider in addition only the case when the coefficients of the terms biquadratic in real fields (e.g. the coefficient of $S^2 H^\dagger S^2$) are all non-negative, giving

$$\lambda_S - 3 \lambda'_S \geq 0, \quad \lambda_S - |\lambda'_S| \geq 0. \quad (2.3)$$

Doing this, we exclude a part of the points that would be allowed by the full vacuum stability conditions. However, this is sufficient for our purposes because our aim is to show that regions of the parameter space exist that lower the SM Higgs boson mass vacuum stability argument is lowered and the vacuum can be stable up to the GUT or Planck scale.

The one-loop RGEs can be obtained from those in [34] by setting all couplings of the inert doublet to zero. The RGEs show that nonzero λ_{S1} or λ'_{S1} give a positive contribution to the β-function of λ_1, pushing the scale where $\lambda_1 \equiv \lambda = 0$ higher. For qualitative understanding of the model, we let $\lambda_S = \lambda'_S = \lambda''_S = \lambda'_{S1} = 0$. Fig. 2 shows one loop level running for the 125 GeV Higgs quartic coupling for $\lambda_{S1} = 0$ (the SM case) and for $\lambda_{S1} = 0.3$. In the latter case, the minimum bound on Higgs boson mass from the vacuum stability argument is lowered and the vacuum can be stable up to the GUT or Planck scale.

2.2 Inert doublet model

In the inert doublet model [35–38] there is, besides the SM Higgs H_1, an additional scalar doublet H_2 that is odd under a new Z_2 symmetry and thus does not have Yukawa couplings. The neutral component of the inert doublet is a DM candidate. The most general Lagrangian invariant under the Z_2 transformations $H_1 \rightarrow H_1, H_2 \rightarrow -H_2$ is

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^\dagger H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^\dagger H_2)^2 + \text{h.c.} \right].$$

(2.4)
The requirement of vacuum stability imposes
\[\lambda_1, \lambda_2 > 0, \quad \lambda_3, \lambda_4 - |\lambda_5| > -2\sqrt{\lambda_1 \lambda_2}. \] \tag{2.5}

We will not perform a detailed study of the inert doublet model alone here, because it is a limiting case of the singlet plus doublet model studied below.

2.3 Singlet plus doublet model

This model has been previously studied in the context of $SO(10)$ GUT \cite{33, 34, 39–41}. Here, however, we present a general scan of parameters without imposing any GUT boundary conditions.

The Lagrangian with Z_2 even H_1 and odd H_2 and S is
\[
V = \mu_1^2 H_1^\dagger H_1 + \lambda_1 (H_1^\dagger H_1)^2 + \mu_2^2 H_2^\dagger H_2 + \lambda_2 (H_2^\dagger H_2)^2 \\
+ \mu_S^2 S^\dagger S + \frac{\mu_S^2}{2} \left[S^2 + (S^\dagger)^2 \right] + \lambda_S (S^\dagger S)^2 + \frac{\lambda_S}{2} \left[S^4 + (S^\dagger)^4 \right] + \frac{\lambda'_S}{2} (S^\dagger S) \left[S^2 + (S^\dagger)^2 \right] \\
+ \lambda_{S1} (S^\dagger S)(H_1^\dagger H_1) + \lambda_{S2} (S^\dagger S)(H_2^\dagger H_2) \\
+ \frac{\lambda_{S1}}{2} (H_1^\dagger H_1) \left[S^2 + (S^\dagger)^2 \right] + \frac{\lambda_{S2}}{2} (H_2^\dagger H_2) \left[S^2 + (S^\dagger)^2 \right] \\
+ \lambda_3 (H_1^\dagger H_1)(H_2^\dagger H_2) + \lambda_4 (H_1^\dagger H_2)(H_2^\dagger H_1) + \frac{\lambda_5}{2} \left[(H_1^\dagger H_2)^2 + (H_2^\dagger H_1)^2 \right] \\
+ \frac{\mu_{SH}}{2} \left[S^\dagger H_1^\dagger H_2 + H_2^\dagger H_1 S \right] + \frac{\mu'_{SH}}{2} \left[S H_1^\dagger H_2 + H_2^\dagger H_1 S \right]. \tag{2.6}
\]

Just as for the complex singlet model, we consider here only the case of positive biquadratic terms for real fields (with the exception of the purely inert doublet conditions that are completely general). The simplified vacuum stability conditions for this model are given by (2.2), (2.3) and (2.5) together with an additional constraint3

\[\lambda_{S2} - |\lambda'_{S2}| \geq 0. \] \tag{2.7}

3 Again, similarly to the singlet model the constraints in Ref. [34] that were used in the previous version of the current paper are too restrictive.
The RGE-s for couplings and mass parameters are given in [34]. We have performed a scan of the parameters for the values of couplings randomly generated in the ranges

\[115 \text{ GeV} \leq M_H \leq 180 \text{ GeV}, \quad 10 \text{ GeV} \leq \mu_S \leq 10^3 \text{ GeV}, \]
\[10 \text{ GeV} \leq \mu_2 \leq 10^3 \text{ GeV}, \quad 10 \text{ GeV}^2 \leq \mu_S^2 \leq 100 \text{ GeV}^2, \]
\[10^{-2} \text{ GeV} \leq |\mu'_{SH}| \leq 10^3 \text{ GeV}, \quad 0 \leq \lambda_2 \leq 0.1, \]
\[0 \leq \lambda_S \leq 0.1, \quad -0.1 \leq \lambda'_S \leq 0.1, \]
\[-1 \leq \lambda_3 \leq 1, \quad -1 \leq \lambda_4 \leq 1, \]
\[0 \leq \lambda_{S1} \leq 1, \quad 0 \leq \lambda_{S2} \leq 1, \]
\[(2.8) \]

with the rest of the parameters set to zero. In the case of every generated point we check that it satisfies the requirements of vacuum stability and perturbativity in the whole range from \(M_Z \) to \(\Lambda_{\text{GUT}} \), positivity of masses at \(M_Z \) and lie within the 3\(\sigma \) range of the WMAP cosmic abundance. The points that satisfy all the constraints are shown in Fig. 3.

In the left panel of Fig. 3, the region excluded by the CMS is shown in red; the 124–126 GeV Higgs mass range is shown in green. Because the points were calculated using one-loop RGEs for the doublet plus singlet model, we show the GUT scale vacuum stability bound for the SM at one-loop level with the blue line (the two-loop bound is lower by about 3.5 GeV). The points excluded by the XENON100 experiment [42] are shown in gray while the black points satisfy the present direct detection constraints. The shortage of points in the range from about 100 GeV to about 500 GeV is due to the DM being mostly singlet-like: in the low mass range it annihilates via the Higgs resonance, in the mass range above 500 GeV the quartic scalar interactions can be large enough to allow for efficient annihilation via contact terms, but in between annihilation is not efficient, resulting in overabundance of DM and exclusion by CMB bounds.

The right panel of Fig. 3 shows the XENON100 direct detection constraints in detail. The points in the Higgs boson mass range \(M_H = 125 \pm 1 \text{ GeV} \) are green. The low mass region below 50 GeV is excluded. Between 100 GeV and 200 GeV there is a region that accommodates \(M_H = 125 \pm 1 \text{ GeV} \), having vacuum stability up to the GUT scale with a low mass Higgs. Thus we conclude that the scalar DM models are perfectly consistent with the 125 GeV higgs mass and do not require the existence of new fundamental scale below the GUT or Planck scale.

The scan is no exhaustive, but for 124-126 GeV Higgs mass range, the noticeable differences with the rest of the parameter space are in the soft coupling \(\mu'_{SH} \) and couplings between dark sector and the SM Higgs that tend to be smaller than with a freely varying Higgs mass.

3 CMSSM dark matter and LHC phenomenology for the 125 GeV Higgs boson

The CMSSM is the most thoroughly studied SUSY model. Naturally, if the Higgs boson is discovered with the mass \(M_H = 125 \pm 1 \text{ GeV} \), one would like to know what is the implication of this discovery for the phenomenology of this model. Here we show that if
all the phenomenological constraints are taken into account, the CMSSM parameter space shrinks into well defined small regions according to the dominant DM freeze-out process. We study whether the CMSSM can be tested at the LHC and in DM direct detection experiments such as XENON100 and conclude that, despite of heavy Higgs boson, discovery of CMSSM gluinos and/or stops is not excluded at the LHC. In addition, if the sparticle spectrum is too heavy for the LHC discovery, DM direct detection experiments may still discover the CMSSM DM.

It is well known that such a heavy Higgs boson imposes challenges on SUSY models in which the Higgs boson mass is predicted to be

$$M_H^2 = M_Z^2 \cos^2 2\beta + \delta_t^2,$$

(3.1)

where δ_t is the stop dominated loop contribution. For $M_H \approx 125$ GeV the loop contribution must be as large as the tree level one which requires very heavy stops unless there is an extremely large trilinear scalar coupling that makes the lightest stop light due to large mixing. A heavy SUSY scale, in turn, makes the lightness of electroweak symmetry breaking scale unnatural. In addition, a heavy sparticle spectrum imposes fine tunings on the processes that contribute to the DM freeze-out in SUSY models. Taking those facts into account, the phenomenological constraints that are commonly addressed in the context of SUSY models, summarized in Table 1, the constraints from SUSY searches at the LHC and the constraints from DM direct detection, the CMSSM parameter space is known to be rather fine tuned [43–47].

At the GUT scale the parameter space of the CMSSM is described by five parameters,

$$m_0, M_{1/2}, A_0, \tan \beta, \text{sign} (\mu),$$

(3.2)

the common scalar mass, the common gaugino mass, the common trilinear coupling, ratio of two Higgs vevs and the sign of the higgsino mass parameter. To scan over the CMSSM
Table 1. Used constraints for the CMSSM analyses.

Parameter	Experiment	Standard Model
$\alpha_3(M_Z)$ 52	0.1184 ± 0.0007	parameter
m_t 53	173.2 ± 0.9	parameter
m_b 54	4.19 ± 0.12	parameter
$\Omega_{DM}h^2$ 55	0.112 ± 0.0056	0
δa_μ 56	$(2.8 \pm 0.8) \times 10^{-9}$	0
$BR(B_d \to X_s \gamma)$ 57	$(3.50 \pm 0.17) \times 10^{-4}$	$(3.15 \pm 0.23) \times 10^{-4}$
$BR(B_s \to \mu^+\mu^-)$ 58	$< 1.1 \times 10^{-8}$ at 95\%C.L.	$(0.33 \pm 0.03) \times 10^{-8}$
$BR(B_u \to \tau\bar{\nu})/SM$ 59	1.25 ± 0.40	1

parameter space we randomly generate the parameters in the following ranges:

\[
\begin{align*}
300 < m_0, & \\ M_{1/2} < 10^4 \text{ GeV}, & \\
|A_0| < 5m_0, & 3 < \tan \beta < 60, \quad (3.3)
\end{align*}
\]

sign(μ) = ±.

We use the MicrOMEGAs package $^{48, 49}$ to compute the electroweak scale sparticle mass spectrum, the Higgs boson masses, the DM relic abundance Ω_{DM}, the spin-independent DM-nucleon direct detection cross section σ_{SI} and the other observables in Table 1. In addition, we require $M_H = 125 \pm 1$ GeV. We do not attempt to find the best fit regions of the parameter space because there is no Higgs mass measurement yet. In addition, there is a few GeV theoretical uncertainty in the computation of SUSY Higgs masses in the available codes. Therefore, to select the phenomenologically acceptable parameter space we impose 3σ hard cuts for the observables in Table 1.4 Our approach should be regarded as an example study of the CMSSM parameter space for heavy Higgs boson; qualitatively similar results should hold if the real Higgs boson mass deviates from 125 GeV by a few GeV.

Our results are presented in Figs. 4-7. Because there is a tension between the observables that push the SUSY scale to high values and the measurement of $(g - 2)_{\mu}$ 43, we disregard the $(g - 2)_{\mu}$ constraint for the moment. The reason is that the CMSSM parameter fit is largely dominated by two observables, the DM relic abundance and the $(g - 2)_{\mu}$, the latter constraining mostly the scale. We would first like to study the parameter space that induces correct M_H and Ω_{DM}. Therefore we discuss the implications of the $(g - 2)_{\mu}$ constraint later.

In Fig. 4 we present our results in scatter plots without the $(g - 2)_{\mu}$ constraint. In the upper left panel the results are presented in ($m_0, M_{1/2}$) plane, in the upper right panel in (M_{DM}, σ_{SI}) plane, in the lower left panel in ($M_{DM}, M_{\tilde{t}_1} - M_{DM}$) plane, and in the lower right panel in ($M_{DM}, M_{\tilde{t}_1} - M_{DM}$) plane. The first 100 days XENON100 constraint 42 is also shown.

4The new constraints on $B_s \to \mu^+\mu^-$ from the LHCb and CMS $^{50, 51}$ have an impact on points with low stop mass at high $\tan \beta$. Qualitatively, however, the regions and channels remain the same.
We identify five distinctive parameter regions according to the dominant DM annihilation processes.

- The light blue points with small m_0 and $M_{1/2}$ represent the slepton co-annihilation region. They are featured by very large values of $\tan \beta$. Those points represent the best fit value of the CMSSM [43] and have low enough sparticle masses that allow potential SUSY discovery at the LHC. However, their spin-independent direct detection cross section is predicted to be below 10^{-46} cm2 and remains unobservable at the XENON100. The present XENON100 experimental bound is plotted in the upper right panel with solid red line. This is the only parameter region that survives at 3σ level after the $(g - 2)_\mu$ constraint is imposed.

- The green dots represent the stop co-annihilation region. Consequently those points have the lowest possible stop mass and, due to the mass degeneracy with DM, stops can be long lived and seen as stable very slow particles (R-hadrons) at the LHC. The feature of those points is an enormous trilinear coupling and very large stop mixing. In addition, the gluino mass can be reachable at the LHC. For stop co-annihilation region the spin-independent DM direct detection cross section is, unfortunately, unobservable.

- The dots represented by continuous colour code from red to orange represent the so
The colour varies according to the higgsino component from red (predominantly bino) to yellow (pure higgsino). Therefore those points can simultaneously have small DM mass and large DM-nucleon scattering cross section that can be well tested at the XENON100. However, apart from the DM, all other sparticle masses are predicted to be too heavy for direct production at the LHC.

- The yellow dots around $M_{\text{DM}} \sim 1$ TeV represent the pure higgsino DM that is almost degenerate in mass with chargino. The sparticle mass spectrum is predicted to be even heavier than in the previous case because the DM scale is fixed to be high. These points represent the most general and most abundant bulk of the $M_H = 125$ GeV Higgs scenario – apart from the light DM and heavy Higgs boson there are no other observable consequences because stops can completely decouple. In our case the 10 TeV bound on stops is imposed only because we did not generate larger values of m_0.

- The dark blue points represent heavy Higgs resonances. Those points are featured by very large values of tan β and give the heaviest mass spectrum. In essence those points are just smeared out higgsino points due to additional Higgs-mediated processes.

In order to study the testability of those parameter regions at the LHC we plot in Fig. 5 the physical gluino mass against the lightest stop mass and the lightest slepton mass against the lightest stop mass. Clearly, the only two regions of interest for the LHC are the called well-tempered neutralino [60], i.e., neutralinos with large bino-higgsino mixing.
slepton and stop co-annihilation regions. Therefore we plot in lower panels the low mass scale zoom of the upper panels. According to Ref. [61] both regions have a chance to be discovered already in the 7 TeV LHC. Interestingly, due to the stop mass degeneracy with DM the stops can be long-lived. In this case one must search for R-hadrons at the LHC experiments.

To study the tan β and heavy Higgs mass dependence of the generated parameter space we plot in Fig. 6 scatter plots in ($m_{\tilde{t}_1}$, tan β) and (M_A, tan β) plains. The slepton co-annihilation points have a preferably large tan β that implies large contributions to the observables like $B_s \rightarrow \mu\mu$ and the $(g-2)_\mu$. Those allow for indirect testing of this parameter region. Unfortunately the heavy Higgses are predicted to be too heavy to detect at the LHC.

We remind that so far we have disregarded the $(g-2)_\mu$ constraint. If we impose a hard 3σ cut on the generated parameter space, only the slepton co-annihilation region survives. The result is plotted in Fig. 7 where we repeat the content of Fig. 4 but with the additional $(g-2)_\mu$ constraint. As expected, the observed deviation in the $(g-2)_\mu$ from the SM prediction is hard to explain in SUSY models with heavy spectrum. Therefore the two measurements, $(g-2)_\mu$ and $M_H = 125$ GeV, are in conflict in the CMSSM [18]. The conflict is mildest in the slepton co-annihilation case because of large tan β and the lightest sparticle spectrum. Therefore, for the $M_H = 125$ GeV Higgs boson, we predict definite sparticle masses and correlations between them, shown in Fig. 7, for the LHC. If the CMSSM is realized in Nature and if it contributes significantly to the $(g-2)_\mu$, the sparticle spectrum is essentially fixed and potentially observable at the LHC.

4 Conclusions

The recent LHC searches for the SM-like Higgs boson motivate studies of the fundamental scalars in particle physics models and in cosmology. In this paper we analyzed the implications of the $M_H \approx 125$ GeV Higgs boson for the vacuum stability in scalar DM models and for the phenomenology of CMSSM. This value of the Higgs boson mass is interesting in both cases because it does not fit to the standard expectation neither in the SM nor in minimal supersymmetric models with SUSY breaking scale below 1 TeV.
Figure 7. The same as in Fig. 5 in the case of imposing 3σ constraint on the $(g - 2)_\mu$ prediction.

We have shown that in the case of non-SUSY scalar DM models the vacuum can be stable up to the GUT scale even for Higgs boson masses much below the corresponding SM bound. Therefore, unlike the SM, the scalar DM models can be valid up to the GUT or Planck scales even for the Higgs boson mass as low as $M_H \approx 125$ GeV.

In minimal SUSY models, to the contrary, the $M_H \approx 125$ GeV Higgs boson is heavier than expected in scenarios that address naturalness of the electroweak scale. In order to generate such a large Higgs boson mass at loop level, the SUSY breaking scale must be rather high and could be unobservable at the LHC. This problem can be overcome with extremely large stop A-term so that the lightest stop is light due to large mixing. At the same time the DM neutralino can also be light, either because of dominant slepton co-annihilation processes or because of large bino-higgsino mixing. In the latter case the DM-nucleon scattering cross section can be observable in direct detection experiments like the XENON100.

To quantify those results we studied the CMSSM by scanning over its parameter space allowing the sparticle mass parameters to be very large. We first considered the case without attempting to explain the $(g - 2)_\mu$ in the context of CMSSM. We confirmed that for very large A-terms there exists a stop co-annihilation region where all DM, stop and gluino are preferably light. Due to the mass degeneracy between stop and DM the stops can also be long lived resulting in non-trivial LHC phenomenology. The second parameter region that is potentially reachable at the LHC is the slepton co-annihilation region. The most important result of this work is to make sharp predictions of gluino, stop and slepton masses, shown in Fig. 5, for the CMSSM parameter regions that remain testable at the LHC.

For other channels of generating the correct DM relic abundance the $M_H \approx 125$ GeV Higgs boson implies very heavy sparticle masses. The exception is, of course, the DM that can be light due to bino-higgsino mixing even if other sparticles are as heavy as 10 TeV. In this case the CMSSM cannot be tested at the LHC but the DM spin-independent scattering cross section off nuclei may be large due to the large higgsino component. The latter scenario may be discoverable already in the running XENON100 experiment.

If, in addition, one attempts to explain also the $(g - 2)_\mu$ in this framework, there is immediate tension between the high SUSY scale and the large value of the needed $(g - 2)_\mu$.
contribution. We found that after imposing the \((g - 2)_\mu\) constraint on the CMSSM, only the slepton co-annihilation region survived at 3\(\sigma\) level, see Fig. 7. This implies that the CMSSM has a definite prediction for the sparticle masses and spectrum to be tested at the LHC experiments.

Acknowledgements
We thank A. Strumia for several discussions. This work was supported by the ESF grants 8090, 8499, 8943, MTT59, MTT60, MJID140, JD164, by the recurrent financing SF0690030s09 project and by the European Union through the European Regional Development Fund.

References
[1] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys.Lett. 12 (1964) 132–133.

[2] G. Guralnik, C. Hagen, and T. Kibble, Global Conservation Laws and Massless Particles, Phys.Rev.Lett. 13 (1964) 585–587.

[3] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.Rev.Lett. 13 (1964) 321–323.

[4] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys.Rev.Lett. 13 (1964) 508–509.

[5] Z.-z. Xing, H. Zhang, and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, arXiv:1112.3112.

[6] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, et al., Higgs mass implications on the stability of the electroweak vacuum, arXiv:1112.3022.

[7] CMS Collaboration Collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV, arXiv:1202.1488.

[8] ATLAS Collaboration Collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, arXiv:1202.1408.

[9] Combination of Higgs Boson Searches with up to 4.9 fb-1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, Tech. Rep. ATLAS-CONF-2011-163, CERN, Geneva, Dec, 2011.

[10] Combination of SM Higgs Searches, CMS-PAS-HIG-11-032, 2011.

[11] M. Carena, S. Gori, N. R. Shah, and C. E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the \(\gamma\gamma\) rate, arXiv:1112.3336.

[12] T. Moroi, R. Sato, and T. T. Yanagida, Extra Matters Decree the Relatively Heavy Higgs of Mass about 125 GeV in the Supersymmetric Model, arXiv:1112.3142.

[13] T. Moroi and K. Nakayama, Wino LSP detection in the light of recent Higgs searches at the LHC, arXiv:1112.3123.
[14] P. Draper, P. Meade, M. Reece, and D. Shih, *Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking*, arXiv:1112.3068.

[15] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, and J. Quevillon, *Implications of a 125 GeV Higgs for supersymmetric models*, Phys. Lett. B708 (2012) 162–169, [arXiv:1112.3028].

[16] S. Heinemeyer, O. Stal, and G. Weiglein, *Interpreting the LHC Higgs Search Results in the MSSM*, arXiv:1112.3026. 11 pages, 4 figures. v2: Discussion on lower bound on gluino mass extended.

[17] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, *A Higgs Mass Shift to 125 GeV and A Multi-Jet Supersymmetry Signal: Miracle of the Flippons at the √s = 7 TeV LHC*, arXiv:1112.3024.

[18] H. Baer, V. Barger, and A. Mustafayev, *Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches*, arXiv:1112.2703.

[19] L. J. Hall, D. Pinner, and J. T. Ruderman, *A Natural SUSY Higgs Near 126 GeV*, arXiv:1112.3017.

[20] A. Arbey, M. Battaglia, and F. Mahmoudi, *Constraints on the MSSM from the Higgs Sector: A pMSSM Study of Higgs Searches, B_s^0 → μ^+μ^- and Dark Matter Direct Detection*, arXiv:1112.3032.

[21] M. Gell-Mann, P. Ramond, and R. Slansky, *Complex spinors and unified theories*, in *Supergravity* (P. v. Nieuwenhuizen and D. Freedman, eds.). North Holland Publ. Co., 1979.

[22] T. Yanagida, *Horizontal symmetry and masses of neutrinos*, in *Baryon Number of the Universe and Unified Theories*. Tsukuba, Japan, Feb, 1979.

[23] R. N. Mohapatra and G. Senjanovic, *Neutrino mass and spontaneous parity nonconservation*, Phys. Rev. Lett. 44 (1980) 912.

[24] S. L. Glashow, *The future of elementary particle physics*, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687.

[25] P. Minkowski, *μν ↔ eγ at a rate of one out of 1-billion muon decays?*, Phys. Lett. B67 (1977) 421.

[26] A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon, *Implications of LHC searches for Higgs–portal dark matter*, arXiv:1112.3299.

[27] S. Baek, P. Ko, and W.-I. Park, *Search for the Higgs portal to a singlet fermionic dark matter at the LHC*, arXiv:1112.1847.

[28] J. McDonald, *Gauge Singlet Scalars as Cold Dark Matter*, Phys. Rev. D50 (1994) 3637–3649, [hep-ph/0702143].

[29] C. P. Burgess, M. Pospelov, and T. ter Veldhuis, *The minimal model of nonbaryonic dark matter: A singlet scalar*, Nucl. Phys. B619 (2001) 709–728, [hep-ph/0011335].

[30] V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf, and G. Shaughnessy, *LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet*, Phys. Rev. D77 (2008) 035005, [arXiv:0706.4311].

[31] M. Gonderinger, Y. Li, H. Patel, and M. J. Ramsey-Musolf, *Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter*, JHEP 1001 (2010) 053, [arXiv:0910.3167].

[32] V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, *Complex Singlet Extension of the Standard Model*, Phys. Rev. D79 (2009) 015018, [arXiv:0811.0393].
[33] M. Kadastik, K. Kannike, and M. Raidal, *Matter parity as the origin of scalar Dark Matter*, Phys.Rev. D81 (2010) 015002, [arXiv:0903.2475].

[34] M. Kadastik, K. Kannike, and M. Raidal, *Dark Matter as the signal of Grand Unification*, Phys.Rev. D80 (2009) 085020, [arXiv:0907.1894].

[35] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. Tytgat, *The Inert Doublet Model: An Archetype for Dark Matter*, JCAP 0702 (2007) 028, [hep-ph/0612275].

[36] R. Barbieri, L. J. Hall, and V. S. Rychkov, *Improved naturalness with a heavy Higgs: An Alternative road to LHC physics*, Phys.Rev. D74 (2006) 015007, [hep-ph/0603188].

[37] E. Ma, *Verifiable radiative seesaw mechanism of neutrino mass and dark matter*, Phys.Rev. D73 (2006) 077301, [hep-ph/0601225].

[38] N. G. Deshpande and E. Ma, *Pattern of Symmetry Breaking with Two Higgs Doublets*, Phys.Rev. D18 (1978) 2574.

[39] M. Kadastik, K. Kannike, A. Racioppi, and M. Raidal, *EWSB from the soft portal into Dark Matter and prediction for direct detection*, Phys.Rev.Lett. 104 (2010) 201301, [arXiv:0912.2729].

[40] M. Kadastik, K. Kannike, A. Racioppi, and M. Raidal, *Implications of the CDMS result on Dark Matter and LHC physics*, Phys.Lett. B694 (2010) 242–245, [arXiv:0912.3797].

[41] K. Huitu, K. Kannike, A. Racioppi, and M. Raidal, *Long-lived charged Higgs at LHC as a probe of scalar Dark Matter*, JHEP 1101 (2011) 010, [arXiv:1005.4409].

[42] XENON100 Collaboration Collaboration, E. Aprile et. al., *Dark Matter Results from 100 Live Days of XENON100 Data*, Phys.Rev.Lett. 107 (2011) 131302, [arXiv:1104.2549].

[43] M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, et. al., *Implications of XENON100 and LHC results for Dark Matter models*, Nucl.Phys. B853 (2011) 607–624, [arXiv:1104.3572].

[44] O. Buchmueller, R. Cavanaugh, D. Colling, A. De Roeck, M. Dolan, et. al., *Supersymmetry and Dark Matter in Light of LHC 2010 and Xenon100 Data*, Eur.Phys.J. C71 (2011) 1722, [arXiv:1106.2529].

[45] O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et. al., *Supersymmetry in Light of 1/fb of LHC Data*, arXiv:1110.3568.

[46] G. Bertone, D. Cerdeno, M. Fornasa, R. de Austri, C. Strege, et. al., *Global fits of the cMSSM including the first LHC and XENON100 data*, JCAP 1201 (2012) 015, [arXiv:1107.1715].

[47] A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, and Y. Tsai, *Bayesian Implications of Current LHC and XENON100 Search Limits for the Constrained MSSM*, arXiv:1111.6098.

[48] G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, et. al., *Indirect search for dark matter with micrOMEGAs2.4*, Comput.Phys.Commun. 182 (2011) 842–856, [arXiv:1004.1092].

[49] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, *MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model*, Comput.Phys.Commun. 176 (2007) 367–382, [hep-ph/0607059].

[50] LHCb collaboration Collaboration, R. Aaij et. al., *Strong constraints on the rare decays B_s \to \mu^+\mu^- and B^0 \to \mu^+\mu^−*, arXiv:1203.4493.
C. Collaboration, “Summary plot at cms wiki.”.

S. Bethke, *The 2009 World Average of alpha(s)*, *Eur.Phys.J. C64* (2009) 689–703, [arXiv:0908.1135](https://arxiv.org/abs/0908.1135).

Tevatron Electroweak Working Group, for the CDF and D0 Collaborations

Collaboration, *Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb-1 of data*, [arXiv:1107.5255](https://arxiv.org/abs/1107.5255). 16 pages, 2 figures.

K. N. et al. (Particle Data Group) *J. Phys. G 37* (2010 and 2011 partial update for the 2012 edition) 075021.

D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. Nolta, *et. al.*, *Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters*, *Astrophys.J.Suppl.* 192 (2011) 16, [arXiv:1001.4635](https://arxiv.org/abs/1001.4635).

M. Davier, A. Hoecker, B. Malaeascu, and Z. Zhang, *Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ)*, *Eur.Phys.J. C71* (2011) 1515, [arXiv:1010.4180](https://arxiv.org/abs/1010.4180).

M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, *et. al.*, *Estimate of B(anti – B → X(s)gamma) at O(alpha(s)**2), Phys.Rev.Lett.* 98 (2007) 022002, [hep-ph/0609232](https://arxiv.org/abs/hep-ph/0609232).

T. CMS and L. collaborations, *Combination of cms and lhcb limits for the bs → mm search*, [CMS-PAS-BPH-11-019, LHCB-CONF-2011-047](https://cds.cern.ch/record/1414992), [arXiv:1107.5255](https://arxiv.org/abs/1107.5255).

O. Buchmueller, R. Cavanaugh, A. De Roeck, J. Ellis, H. Flacher, *et. al.*, *Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1*, *Eur.Phys.J. C64* (2009) 391–415, [arXiv:0907.5568](https://arxiv.org/abs/0907.5568).

N. Arkani-Hamed, A. Delgado, and G. Giudice, *The Well-tempered neutralino*, *Nucl.Phys. B741* (2006) 108–130, [hep-ph/0601041](https://arxiv.org/abs/hep-ph/0601041). Latex2e, 29 pages, 5 figures, reference added, typo corrected, version to be published in NPB.

H. Baer, V. Barger, A. Lessa, and X. Tata, *LHC discovery potential for supersymmetry with √s = 7 TeV and 5 – 30 fb^{-1}*., [arXiv:1112.3044](https://arxiv.org/abs/1112.3044). 7 pages with 2 .eps figure. In version 2, a new figure has been added along with associated discussion.