Orthogonal and antiparallel vortex tubes and energy cascades in quantum turbulence

Tsuyoshi Kadokura and Hiroki Saito
Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585, Japan
(Dated: July 17, 2018)

We investigate the dynamics of energy cascades in quantum turbulence by directly observing the vorticity distributions in numerical simulations of the Gross-Pitaevskii equation. By Fourier filtering each scale of the vorticity distribution, we find that antiparallel vortex tubes at a large scale generate small-scale vortex tubes orthogonal to those at the large scale, which is a manifestation of the energy cascade from large to small scales. We reveal the dynamics of quantized vortex lines in these processes.

I. INTRODUCTION

As the Reynolds number increases, laminar fluid flow develops into turbulence due to hydrodynamic instability [1], and energy is transferred from large to small scales. Such an energy cascade has already been implied in the famous sketch of water turbulence drawn by Leonardo da Vinci, in which many large and small vortices are tangled with each other. More specifically, the energy cascade in turbulence was illustrated by Richardson, in which large-scale vortex rings are divided into small-scale rings [2]. By a statistical approach with universality assumptions, the energy cascade has been shown to lead to Kolmogorov’s $-5/3$ power law in the energy spectrum, which has been thoroughly investigated theoretically and observed experimentally [3–10].

Quantum fluids are different from classical fluids in that, in quantum fluids, vortices are quantized and viscosity is absent. Despite these differences, it has been shown that classical and quantum fluids share a variety of hydrodynamic phenomena [11–17]. Energy cascades and power-law spectra have been observed in quantum turbulence of superfluid helium [18] and ultracold atomic gases [19]. Theoretically, it has been revealed that turbulent quantum fluids exhibit Kolmogorov’s power law in incompressible kinetic-energy spectra [20–23]. A variety of dynamics and power-law spectra in quantum fluids have been investigated [24–39].

Recently, Goto et al. [9, 10] numerically studied the energy cascade in classical fluids from the perspective of the vorticity distribution. By taking the Fourier transform of the vorticity distribution and applying a band-pass filter to the Fourier components, they extracted each scale of the vorticity distribution of the turbulent flow. They found that the vortex tubes at each scale tend to align in antiparallel, while vortex tubes generated at smaller scales tend to be orthogonal to the antiparallel vortex tubes at larger scales. This dynamics leads to the energy transfer from large to small scales, and may be responsible for the energy cascade and Kolmogorov’s power law. Since there are various similarities between the hydrodynamic phenomena in classical and quantum fluids, we expect that the dynamics observed at each hierarchy in the vorticity distribution of classical fluids should also be observed in quantum fluids. We investigate this correspondence in the present study.

In the present paper, we focus on each level of hierarchy in the vorticity distribution in a quantum fluid. First, so that the expected dynamics can be clearly seen, antiparallel vortex bundles are imprinted artificially in a uniform superfluid. Using a method of Fourier filtering, these bundles of quantized vortices are visualized as vortex tubes. We find that antiparallel vortex tubes generate small-scale vortex tubes orthogonal to the antiparallel vortex tubes. Next, we apply our Fourier filtering scheme to isotropic fully-developed turbulence that exhibits Kolmogorov’s $-5/3$ power law. By calculating the angles between the directions of the vortex tubes, we confirm the existence of antiparallel correlation at each scale and orthogonal correlations between different scales in the quantum turbulence, as observed for classical turbulence.

This paper is organized as follows. Section II formulates the problem and describes the numerical method. The dynamics of the initially located vortex bundles are studied in Sec. IIIA. Section IIIB studies the case of fully developed quantum turbulence. Conclusions are given in Sec. IV.

II. FORMULATION OF THE PROBLEM

We consider the dynamics of a quantum fluid, which is described by the three-dimensional Gross-Pitaevskii equation given by

$$
(i - \gamma)\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + U(r, t) \Psi + g |\Psi|^2 \Psi,
$$

(1)
where $\Psi(r, t)$ is the macroscopic wave function, m is the particle mass, $U(r, t)$ represents an external potential, and g is the interaction coefficient. Equation (1) includes a phenomenological dissipation constant γ [21–23] to eliminate large-wavenumber components generated by the energy cascade. We take $\gamma = 0.004$ in this study. We normalize the wave function as $\tilde{\psi} = n_0^{-1/2} \Psi$, where n_0 is the atomic density $|\Psi|^2$ in a uniform system without U. The length and time are normalized by $\xi = \hbar / (mg n_0)^{1/2}$ and $\tau = \hbar / (gn_0)$ respectively. Equation (1) is then normalized as

$$(i - \gamma) \frac{\partial \tilde{\psi}}{\partial t} = \left[-\frac{1}{2} \tilde{\nabla}^2 + \tilde{\psi} \right] \tilde{\psi}, \tag{2}$$

where $\tilde{\nabla}^2 = \xi^2 \nabla^2$ and $\tilde{U} = U / (gn_0)$.

The flux of the mass current is given by

$$J = \frac{1}{2i} \left(\hat{\psi}^\dagger \nabla \tilde{\psi} - \tilde{\psi} \nabla \hat{\psi} \right) = |\tilde{\psi}|^2 \nabla \phi, \tag{3}$$

where ϕ is the phase of $\tilde{\psi}$. The vorticity Ω is usually defined as the curl of the velocity field, $\Omega = \nabla \times (J / |\tilde{\psi}|^2) = \tilde{r} \times \tilde{\nabla} \phi$. The vorticity Ω therefore vanishes everywhere except at the singularity of the quantized vortex core. To avoid the singularity in the vorticity distribution, we define the vorticity distribution of the mass current as

$$W = \tilde{\nabla} \times J, \tag{4}$$

which is a smooth function even at the vortex core and numerically tractable. We extract a specific scale of the vorticity distribution by applying the band-pass Fourier filter [10, 41],

$$\tilde{W}(k, t; k_c) = \begin{cases} \int W(r, t) e^{-ik \cdot r} \, dr & (k_c / \sqrt{2} < |k| < \sqrt{2}k_c) \\ 0 & \text{(otherwise)} \end{cases}, \tag{5}$$

where k_c is the characteristic wavenumber of the band-pass filter. The band-pass filtered vorticity distribution is thus given by

$$W(r, t; k_c) = \frac{1}{V} \sum_k \tilde{W}(k, t) e^{ik \cdot r}, \tag{6}$$

where $V = L^3$ is the volume of the system. Let us consider vorticity distributions $W(r, t; k_c)$ at two scales, W_1 and W_2, where k_c for W_2 is larger than that for W_1. We define an angle θ_{12} between $W_1(r)$ and $W_2(r + \Delta r)$ as

$$\cos \theta_{12} = \frac{W_1(r) \cdot W_2(r + \Delta r)}{|W_1(r)||W_2(r + \Delta r)|}. \tag{7}$$

We also define an angle θ_{11} between $W_1(r)$ and $W_1(r + \Delta r)$ as

$$\cos \theta_{11} = \frac{W_1(r) \cdot W_1(r + \Delta r)}{|W_1(r)||W_1(r + \Delta r)|}. \tag{8}$$

In numerical calculations, we collect the values of $\cos \theta_{12}$ and $\cos \theta_{11}$ by varying r and Δr where $|\Delta r|$ is restricted to some range. We thus obtain the occurrence distributions $P_{12}(\cos \theta_{12})$ and $P_{11}(\cos \theta_{11})$ for these angles. These distributions thus correspond to the probability distributions of the angle between the vorticities, if we choose r (and Δr within some range) randomly. If the vorticities W_1 at r and $r + \Delta r$ tend to be antiparallel with each other, $P_{11}(\cos \theta_{11})$ has a peak at $\cos \theta_{11} = -1$. If the vorticity $W_1(r)$ at a larger scale generates the vorticity $W_2(r + \Delta r)$ at a smaller scale and the latter tends to be orthogonal to the former, $P_{12}(\cos \theta_{12})$ has a peak at $\cos \theta_{12} = 0$. These tendencies in W_1 and W_2 will be numerically shown in the next section.

We numerically solve Eq. (2) using the pseudospectral method, and therefore, a periodic boundary condition is imposed. The numerical space is taken to be $L^3 = 128^3$ with mesh of $\Delta x = \Delta y = \Delta z = 1$.

III. NUMERICAL RESULTS

A. Dynamics of vortex bundles

First we consider the dynamics starting from an artificial initial state to clearly see how large-scale vortex bundles generate vortices at a small scale. Four large-scale vortex bundles are imprinted in a uniform system, as shown in
FIG. 1: Dynamics of quantized vortex cores for an initial state with four vortex bundles. The numerical pixels around which the phase rotates by 2π are visualized. (a) Four bundles with six vortex lines in each bundle prepared in a uniform system using Eqs. (9) and (10) with $r_b = 16$. The centers of the bundles are located at $(x, y) = (64, 64), (108, 64), (64, 108), \text{ and } (108, 108)$. The curly arrows indicate the rotation directions of the vortices and the arrows in the $\pm y$ directions indicate the directions of their propagation. (b) Snapshot at $t = 160$. Two pairs of vortex bundles travel in the $\pm y$ directions, and vortex rings and ladder structures are formed.

Fig. 1 (a) [42]. Each bundle consists of six quantized vortex lines, expressed as

$$\tilde{\psi}(r) = \tilde{\psi}_0(r) \prod_{n=0}^{5} \frac{x - x_n \pm i (y - y_n)}{|x - x_n \pm i (y - y_n)|}, \quad (9)$$

$$\left(\begin{array}{c} x_n \\ y_n \end{array} \right) = \left(\begin{array}{c} r_b \cos \left(\frac{\pi}{3} \pm \frac{\pi n}{5} \right) \\ r_b \sin \left(\frac{\pi}{3} \pm \frac{\pi n}{5} \right) \end{array} \right), \quad (n = 0, 1, \cdots, 5), \quad (10)$$

where $\tilde{\psi}_0$ is a uniform wave function, r_b is the bundle radius, and the rotation directions of the vortices are determined by the \pm sign in Eq. (9). The time evolution of the system is obtained by solving Eq. (1) with $U = 0$. To extract the vortex cores in Fig. 1, we calculate the phase winding around each numerical mesh. In the time evolution, the two pairs of vortex bundles with opposite circulations first travel in the $\pm y$ directions. Because of the twisted configuration, fast spreading of the vortices in the bundles is avoided. At a later time, small vortex rings are created between the bundles, which are stretched to become ladder-like vortices perpendicular to the bundles, followed by the creation of new vortex rings, as shown in Fig. 1(b).

Figure 2 shows this process in detail. Small vortex rings are nucleated between the vortex bundles, as shown in Fig. 2(b), since the flow velocity in this region exceeds a local critical velocity. The created vortex rings are then stretched and touch one of the vortices in the bundle, at which vortex reconnection occurs, as shown in Figs. 2(c)-2(e). After the reconnection, the vortices form bridges between the bundles and a ladder structure is formed. Subsequently, new vortex rings are then created between the bundles, as shown in Fig. 2(f). This visualization of the vortex core dynamics is peculiar to quantum fluids, and clarifies the elementary process of vortex stretching. The band-pass filtered vorticity distributions $|W_1|$ and $|W_2|$ are shown in Figs. 2(a‘)–2(f‘). The wavenumber ranges of the band-pass filters are $4/\sqrt{2} \leq |k| < 4\sqrt{2}$ for W_1 and $7/\sqrt{2} \leq |k| < 7\sqrt{2}$ for W_2; i.e., W_1 and W_2 are larger- and smaller-scale vorticity distributions, respectively. At $t = 40$, the vorticities W_2 are distributed in and around W_1, as shown in Fig. 2(a‘). As the vortices in the bundles expand, the distribution W_1 diffuse, and the tube-like isodensity surfaces of W_1 become thinner. Although the distribution of W_2 is fragmented for $t \lesssim 120$, the vortex tubes of W_2 that are orthogonal to
FIG. 2: The same dynamics as in Fig. 1. The vortex cores are shown in (a)–(f), and the isodensity surfaces of band-pass filtered vorticity distributions $|W_1|$ and $|W_2|$ are shown in (a')-(f'). The ranges of the wavenumbers in the Fourier filters are $4/\sqrt{2} \leq |k| < 4\sqrt{2}$ for W_1 (red or dark gray) and $7/\sqrt{2} \leq |k| < 7\sqrt{2}$ for W_2 (yellow or light gray). The outline in (b) indicates the created vortex rings. The outlines in (c)–(e) highlight vortex reconnection. Those of W_1 are established at $t = 160$, as shown in Fig. 2(f'). These dynamics clearly show that a large-scale structure produces a small-scale structure, which causes the energy cascade. Similar dynamics are also observed in classical fluids [10, 43], which are attributed to vortex stretching. On the other hand, in the present case, the orthogonal structure is generated through stretching of quantized vortex rings and their reconnection [44]. Figures 3(a) and 3(b) show the vortex-core distribution and band-pass filtered vortex distributions of the ladder structure in Figs. 2(f) and 2(f') seen from different angles. The rotation directions of W_1 and W_2 are shown in Fig. 3(b), indicating that the small-scale vortex tubes have opposite rotation directions. To quantify the distributions of the angles between the vortex tubes, we calculate the distributions of $\cos \theta_{12}$ and $\cos \theta_{11}$ for the state in Fig. 3(b), which are shown in Figs. 3(c) and 3(d). The distance $|\Delta r|$ in Eqs. (7) and (8) is taken to be 48–50, which is the typical distance for the distances between vortex tubes in Fig. 3(b). The distribution $P_{12}(\cos \theta_{12})$ is large around $\cos \theta_{12} = 0$, which
Fig. 3: (a) Vortex cores., (b) Isodensity surfaces of $|W_1|$ and $|W_2|$. Normalized distribution (c) of angles θ_{12} between $W_1(r)$ and $W_2(r + \Delta r)$, and (d) of angles θ_{11} between $W_1(r)$ and $W_1(r + \Delta r)$ at $t = 160$ in the dynamics shown in Fig. 2. The curly arrows in (b) represent the directions of the circulations. In (c) and (d), the data are taken for the range $48 \leq |\Delta r| < 50$.

Indicates that $W_1(r)$ and $W_2(r + \Delta r)$ tend to be orthogonal to each other. The distribution $P_{11}(\cos \theta_{11})$ is large at $\cos \theta_{11} = -1$, which indicates that $W_1(r)$ and $W_1(r + \Delta r)$ tend to be antiparallel with each other. There is also a peak at $\cos \theta_{11} = 1$, due to case in which $W_1(r)$ and $W_1(r + \Delta r)$ are in the same vortex tube. These results are similar to those in classical fluids with a similar setup [10].

B. Fully-developed isotropic turbulence

We consider here the case of isotropic quantum turbulence. We numerically solve Eq. (2) with a time-dependent random potential $U(r, t)$ generated by the method given in Appendix A. The initial condition is the homogeneous state, and the system evolves until the steady turbulent state is reached. The isodensity surfaces of $|\psi|^2$, the vortex-core profiles, and the power spectra $E(k)$ are shown in Figs. 4(a)–4(c), 4(a′)–4(c′), and 4(a″)–4(c″), respectively. The power spectrum $E(k)$ is defined in Appendix B. Since the characteristic spatial scale of the random potential is of the order of the system size, long-wavelength modes are excited at $t = 20$. An energy cascade from the long-wavelength to short-wavelength modes then occurs. Kolmogorov's power law, $E(k) \propto k^{-5/3}$, is observed in Fig. 4(c″), and the system is in the turbulent state.

To investigate how the energy is transferred from large to small scales, we calculate the band-pass filtered vorticity distributions W_1 and W_2. Figure 5(a) shows the isodensity surfaces of $|W_1|$ and $|W_2|$ at $t = 13405$. The definitions of W_1 and W_2 are the same as those in Sec. III A, i.e., W_1 and W_2 correspond to larger- and smaller-scale vorticity.
FIG. 4: (a)–(c) Isodensity surfaces of $|\bar{\psi}|^2$, (a′)–(c′) vortex-core profiles, and (a″)–(c″) power spectra $E(k)$ (arbitrary units) for the dynamics driven by the random potential $U(r,t)$ in Eq. (A1) with $\kappa = 0.05$, $A_0 = 0.5$, and $l = 8\pi$. The size of the cubes in (a)–(c) and (a′)–(c′) is 128^3. The slope of the lines in (a″)–(c″) is $-5/3$.

distributions, respectively. The right-hand panel in Fig. 5(a) shows an enlarged view of the meshed region. In the enlarged view, we can clearly see that the pair of vortex tubes in W_1 aligns in parallel and the vortex tubes in W_2 tend to be orthogonal to those in W_1. This configuration of vortex tubes in W_1 and W_2 is similar to that in Fig. 3(b) in which the vortex bundles are artificially generated. By contrast, we note that the structures shown in Fig. 5(a) are formed by a random potential. Figures 5(b) and 5(c) show the angular distributions P_{12} and P_{11} of the vorticities W_1 and W_2, defined in Eqs. (7) and (8). These were calculated for the whole $L^3 = 128^3$ region. Although the turbulent state is induced by a random potential, there are significant correlations between the vorticities. The vorticities $W_1(r)$ and $W_2(r + \Delta r)$ tend to be orthogonal to each other, and $P_{12}(\cos \theta_{12})$ has a peak at $\cos \theta_{12} = 0$. The vorticities W_1 at r and $r + \Delta r$ tend to be antiparallel with each other, and $P_{11}(\cos \theta_{11})$ has a peak at $\cos \theta_{11} = -1$. (The peak at $\cos \theta_{11} = 1$ is due to the correlation within a single vortex tube.) To assure that these tendencies are not incidental, we calculate the time-averaged angular distributions for $13000 \leq t < 14000$. The characteristic time scale of the random potential is $\kappa^{-1} = 20$, which is long enough to observe these ensemble averaged behaviors. We find that the tendencies in Figs. 5(d) and 5(e) are the same as those in Figs. 5(b) and 5(c), respectively, and therefore the above angular correlations in the vorticity distributions can be observed constantly.

Thus, we have shown that in quantum turbulence, large-scale vorticity W_1 tends to have antiparallel structures and small-scale vorticity W_2 tends to be perpendicular to W_1. These results indicate that the energy is transferred from large to small scales through vortex stretch dynamics, which implies that this is one of the mechanisms of the energy cascade and emergence of Kolmogorov’s law in quantum turbulence.
FIG. 5: Vorticity distribution of fully-developed turbulence for the dynamics shown in Fig. 4. (a) Isodensity surfaces of vorticity distributions $|W_1|$ and $|W_2|$ at $t = 13405$, where the wavenumber ranges of the Fourier filtering are the same as those in Fig. 2. The magnified region clearly shows that W_1 and W_2 tend to be orthogonal to each other. (b) Distribution of angles θ_{12} between $W_1(r)$ and $W_2(r + \Delta r)$. (c) Distribution of angles θ_{11} between $W_1(r)$ and $W_1(r + \Delta r)$. (b) and (c) were obtained by a single shot at $t = 13405$ and (d) and (e) are averages of 1000 shots for $13000 \leq t < 14000$. The distributions P_{11} and P_{12} are calculated over the whole 128^3 region (not restricted to the selected region as in the right panel in (a)).

IV. CONCLUSIONS

We have investigated the dynamics of vortices in quantum fluids using the numerical simulation of the Gross-Pitaevskii equation. We defined band-pass filtered vorticity distributions to study the dynamics at each scale. In Sec. III A, we examined the dynamics of the vortex bundles and observed that large-scale antiparallel vortices nucleate small-scale vortices orthogonal to those at the large scale. These processes are induced by nucleation of quantized vortex rings and their reconnections. In Sec. III B, we applied our method to the homogeneous isotropic turbulent state. Despite the fact that the turbulent state is generated by a random potential, there are significant correlations...
in the vorticity distributions. We found that intra-scale vorticities tend to align in antiparallel and the smaller-scale vortices tend to be orthogonal to larger-scale vortices. These vortex dynamics may play an important role in the energy cascade and Kolmogorov’s law in quantum turbulence.

In the present study, we have only considered vorticity distributions at two scales W_1 and W_2. Performing numerical simulations in a larger system will provide vorticity distributions at multiple scales, which will reveal the multistage generation of antiparallel and orthogonal vortices.

Acknowledgments

The present study was supported by JSPS KAKENHI Grant Numbers JP16K05505, JP17K05595, and JP17K05596.

Appendix A: Time-dependent random potential to generate quantum turbulence

To generate homogeneous isotropic quantum turbulence, we use a random potential. The potential is expanded as

$$U(r, t) = \sum_k C_k(t)e^{ik\cdot r}. \quad (A1)$$

The time-dependent Fourier components $C_k(t)$ follow the Langevin equation

$$\frac{dC_k(t)}{dt} = -\kappa C_k(t) + f_k(t), \quad (A2)$$

where the constant $\kappa > 0$ determines the time scale of potential variation and $f_k(t)$ is the Gaussian noise with an average,

$$\langle f_k(t) \rangle = 0, \quad (A3)$$

and correlation function,

$$\langle f_k(t)f_{k'}(t') \rangle = A_k \delta_{kk'} \delta(t-t'). \quad (A4)$$

The magnitude A_k is given by

$$A_k = A_0 e^{-\left(\frac{\kappa}{2} l \right)^2}, \quad (A5)$$

where the parameter l determines the characteristic scale of the random potential. Using the solution of the Langevin equation in Eq. (A1), we have

$$\langle C_k(t)C_{k'}(t') \rangle = \frac{A_k}{2\kappa} \delta_{kk'} e^{-\kappa |t-t'|}, \quad (A6)$$

which gives

$$\langle U(r, t)U(r', t') \rangle \propto e^{-\kappa |t-t'|}e^{\left|\nabla \cdot \psi \right|^2}. \quad (A7)$$

In the numerical simulation in Sec. III B, the coefficients $C_k(t)$ numerically evolve according to Eq. (A2). The inverse Fourier transform in Eq. (A1) thus gives the time-dependent random potential with spatial and temporal scales of l and κ^{-1}, respectively.

Appendix B: Incompressible kinetic-energy power spectrum

The kinetic energy of a quantum fluid is expressed as

$$E_{\text{kinetic}} = -\frac{1}{2} \int \, dr \hat{\psi}^* \nabla^2 \hat{\psi}, \quad (B1)$$

$$= \frac{1}{2} \int \, dr |\nabla \hat{\psi}|^2. \quad (B2)$$
Using the transformation, $\tilde{\psi}(r) = \sqrt{\rho(r)} e^{i\phi(r)}$, the kinetic-energy can be divided into two terms as

$$E_{\text{kinetic}} = \frac{1}{2} \int dr \left[\rho(\tilde{\nabla}\phi)^2 + (\tilde{\nabla}\sqrt{\rho})^2 \right],$$

(B3)

$$= E_1 + E_2,$$

(B4)

where $E_1 = \frac{1}{2} \int dr \rho(\tilde{\nabla}\phi)^2$ corresponds to the classical kinetic energy and $E_2 = \frac{1}{2} \int dr (\tilde{\nabla}\sqrt{\rho})^2$ comes from the quantum pressure. We define $w(r) = \sqrt{\rho(r)} \tilde{\nabla}\phi(r)$ and its Fourier transform,$$
\tilde{w}(k) = \int w(r) e^{-ik \cdot r} dr.
$$
(B5)

The field w is divided into compressible and incompressible parts as

$$\tilde{w}(k) = \frac{k \cdot \tilde{w}(k)}{k^2} k + \frac{(k \times \tilde{w}) \times k}{k^2},$$

(B6)

$$\tilde{w}_L = \frac{k \cdot \tilde{w}(k)}{k^2} k,$$

(B7)

$$\tilde{w}_T = \frac{(k \times \tilde{w}) \times k}{k^2}.$$

(B8)

The kinetic energy can be rewritten as

$$E_1 = \frac{1}{2} \int dr |w(r)|^2,$$

(B9)

$$= \frac{1}{2} \int dr \left[|w_T(r)|^2 + |w_L(r)|^2 \right].$$

(B10)

We focus on the incompressible part of the kinetic energy,

$$E_1^c = \frac{1}{2} \int |w_T(r)|^2 dr,$$

(B11)

$$= \frac{1}{2} \int \frac{dk}{(2\pi)^3} \tilde{w}_T(k) \cdot \tilde{w}_T(-k),$$

(B12)

$$= \int dk E(k),$$

(B13)

which is the definition of the power spectrum $E(k)$ of the incompressible flow.

[1] O. Reynolds, An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous and of the Law of Resistance in Parallel Channels, Phil. Trans. R. Soc. London 174, 935 (1883).

[2] L. F. Richardson, Weather Prediction by Numerical Process, (Cambridge University Press, Cambridge, 1922).

[3] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, (Cambridge University Press, Cambridge, 1995).

[4] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30, 301 (1941).

[5] G. K. Batchelor, and I. Proudman, The effect of rapid distortion of a fluid in turbulent motion, Quart. J. Mech. Appl. Math. 7, 83 (1954).

[6] T. Tatsumi, The Theory of Decay Process of Incompressible Isotropic Turbulence, Proc. R. Soc. London 239, 16 (1957).

[7] R. H. Kraichnan, On Kolmogorov’s inertial-range theories, J. Fluid Mech. 62, 305 (1974).

[8] U. Frisch, P. L. Sulem, and M. Nelkin, A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87, 719 (1978).

[9] S. Goto, A physical mechanism of the energy cascade in homogeneous isotropic turbulence, J. Fluid Mech. 605, 355 (2008).

[10] S. Goto, Y. Saito, and G. Kawahara, Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers, Phys. Rev. Fluids 2, 064603 (2017).

[11] K. Sasaki, N. Suzuki, and H. Saito, Bénard-von Kármán Vortex Street in a Bose-Einstein Condensate, Phys. Rev. Lett. 104, 150404 (2010).

[12] M. T. Reeves, T. P. Billam, B. P. Anderson, and A. S. Bradley, Identifying a Superfluid Reynolds Number via Dynamical Similarity, Phys. Rev. Lett. 114, 155302 (2015).
[13] W. J. Kwon, J. H. Kim, S. W. Seo, and Y. Shin, Observation of von Kármán Vortex Street in an Atomic Superfluid Gas, Phys. Rev. Lett. 117, 245301 (2016).
[14] K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate, Phys. Rev. A 80, 063611 (2009).
[15] T. Kadokura, T. Aoi, K. Sasaki, T. Kishimoto, and H. Saito, Rayleigh-Taylor instability in a two-component Bose-Einstein condensate with rotational symmetry, Phys. Rev. A 85, 013602 (2012).
[16] H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates, Phys. Rev. B 81, 094517 (2010).
[17] A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, and M. Marklund, Magnetic Richtmyer-Meshkov instability in a two-component Bose-Einstein condensate, Phys. Rev. A 82, 043608 (2010).
[18] L. Skrbek, Quantum turbulence, J. Phys. Conf. 318, 012004 (2011).
[19] N. Navon, A. I. Gaunt, R. P. Smith, and Z. Hadzibabic, Emergence of a turbulent cascade in a quantum gas, Nature (London) 539, 3 (2016).
[20] T. Araki, M. Tsubota, and S. K. Nemirovskii, Energy Spectrum of Superfluid Turbulence with No Normal-Fluid Component, Phys. Rev. Lett. 89, 145301 (2002).
[21] M. Kobayashi, and M. Tsubota, Kolmogorov Spectrum of Superfluid Turbulence: Numerical Analysis of the Gross-Pitaevskii Equation with a Small-Scale Dissipation, Phys. Rev. Lett. 94, 065302 (2005).
[22] M. Kobayashi, and M. Tsubota, Thermal Dissipation in Quantum Turbulence, Phys. Rev. Lett. 97, 145301 (2006).
[23] M. Kobayashi, and M. Tsubota, Quantum turbulence in a trapped Bose-Einstein condensate, Phys. Rev. A 76, 045603 (2007).
[24] A. W. Baggaley, J. Laurie, and C. F. Barenghi, Vortex-Density Fluctuations, Energy Spectra, and Vortical Regions in Superfluid Turbulence, Phys. Rev. Lett. 109, 205304 (2012).
[25] M. Tsubota, Quantum turbulence: from superfluid helium to atomic Bose-Einstein condensates, Contemp. Phys. 50, 463 (2009).
[26] M. Tsubota, K. Fujimoto, and S. Yui, Numerical Studies of Quantum Turbulence, J. Low Temp. Phys. 188, 119 (2017).
[27] J. Paret and P. Tabeling, Experimental Observation of the Two-Dimensional Inverse Energy Cascade, Phys. Rev. Lett. 79, 4162 (1997).
[28] A. C. White, B. P. Anderson, and V. S. Bagnato, Vortices and turbulence in trapped atomic condensates, Proc. Natl. Acad. Sci. U.S.A. 111, 4719 (2014).
[29] A. Villois, D. Proment, and G. Krstulovic, Evolution of a superfluid vortex filament tangle driven by the Gross-Pitaevskii equation, Phys. Rev. E 93, 061103(R) (2016).
[30] P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, and W. F. Vinen, Dissipation of Quantum Turbulence in the Zero Temperature Limit, Phys. Rev. Lett. 99, 265302 (2007).
[31] M. T. Reeves, B. P. Anderson, and A. S. Bradley, Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates, Phys. Rev. A 86, 053621 (2012).
[32] D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi, Kelvin Waves Cascade in Superfluid Turbulence, Phys. Rev. Lett. 86, 3080 (2001).
[33] C. F. Barenghi, V. S. L’vov, and P. E. Roche, Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid, Proc. Natl. Acad. Sci. U.S.A. 111, 4683 (2014).
[34] M. Kursa, K. Bajer, and T. Lipniacki, Cascade of vortex loops initiated by a single reconnection of quantum vortices, Phys. Rev. B 83, 014515 (2011).
[35] R. M. Kerr, Swirling, turbulent vortex rings formed from a chain reaction of reconnection events, Phys. Fluids 25, 065101 (2013).
[36] S. R. Stalp, L. Skrbek, and R. J. Donnelly, Decay of Grid Turbulence in a Finite Channel, Phys. Rev. Lett. 82, 4831 (1999).
[37] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex Formation in a Stirred Bose-Einstein condensate, Phys. Rev. Lett. 84, 806 (2000).
[38] N. G. Parker, and C. S. Adams, Emergence and Decay of Turbulence in Stirred Atomic Bose-Einstein condensates, Phys. Rev. Lett. 95, 145301 (2005).
[39] C. Nore, M. Abid, and M. E. Brachet, Kolmogorov Turbulence in Low-Temperature Superflows, Phys. Rev. Lett. 78, 3896 (1997).
[40] M. Tsubota, and M. Kobayashi, Quantum Turbulence in Trapped Atomic Bose-Einstein condensates, J. Low Temp. Phys. 150, 402 (2008).
[41] S. Goto, Coherent Structures and Energy Cascade in Homogeneous Turbulence, Prog. Theor. Phys. Suppl. 195, 139 (2012).
[42] T. Yasuda, S. Goto, and G. Kawahara, Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube, Fluid Dyn. Res. 46, 061413 (2014).
[43] M. V. Melander, and F. Hussain, Core dynamics on a vortex column, Fluid Dyn. Res. 13, 1 (1994).
[44] R. M. Kerr, Vortex Stretching as a Mechanism of Quantum Kinetic Energy Decay, Phys. Rev. Lett. 106, 224501 (2011).