Noncommutative reduction of the nonlinear Schrödinger equation
on Lie groups

A. I. Breev

Department of Theoretical Physics, Tomsk State
University Novosobornaya Sq. 1, 634050 Tomsk, Russia

A. V. Shapovalov

Department of Theoretical Physics, Tomsk State University
Novosobornaya Sq. 1, 634050 Tomsk, Russia; and
Tomsk Polytechnic University, Lenin ave., 30, 634034 Tomsk, Russia

D. M. Gitman

Department of Theoretical Physics, Tomsk State
University Novosobornaya Sq. 1, Tomsk, Russia, 634050;
P.N. Lebedev Physical Institute, 53 Leninskiy ave., 119991 Moscow, Russia; and
Institute of Physics, University of São Paulo, Rua do Matão,
1371, CEP 05508-090, São Paulo, SP, Brazil.
Abstract

We propose a new approach that allows one to reduce nonlinear equations on Lie groups to equations with a fewer number of independent variables for finding particular solutions of the nonlinear equations. The main idea is to apply the method of noncommutative integration to the linear part of a nonlinear equation, which allows one to find bases in the space of solutions of linear partial differential equations with a set of noncommuting symmetry operators. The approach is implemented for the generalized nonlinear Schrödinger equation on a Lie group in curved space with local cubic nonlinearity. General formalism is illustrated by the example of noncommutative reduction of the nonstationary nonlinear Schrödinger equation on the motion group $E(2)$ of the two-dimensional plane \mathbb{R}^2. In the particular case, we come to the usual $(1 + 1)$-dimensional nonlinear Schrödinger equation with the soliton solution. Another example provides the noncommutative reduction of the stationary multidimensional nonlinear Schrödinger equation on the four-dimensional exponential solvable group.

PACS numbers: 02.20.Tw, 03.65.Fd, 11.30.Na

Keywords: nonlinear Schrödinger equation; noncommutative integration; Lie groups; induced representations; orbit method

Mathematics Subject Classification 2010: 34A34, 35Q41, 17B08
I. INTRODUCTION

The Lie group theory provides powerful methods for studying linear and nonlinear differential equations in mathematical physics. Generally, for the equation with a symmetry group, one can efficiently find and classify group invariant solutions and conservation laws, generate new solutions from those already found (see, for example, the well-known books of Ovsyannikov, Ibragimov, Olver [1–3], and many others).

Remarkable potentialities for finding explicit solutions are opened up when an equation can be represented directly in terms of the coordinates of a Lie group. For example, equations on a curved space with a simply transitive motion group can be represented as equations on a Lie group manifold. We call such an equation the equation on the Lie group. Some aspects of integrability of nonlinear equations on Lie groups are the subject of the present work.

Here, we propose a new approach based on the Lie group theory that allows one to reduce a nonlinear equation presented in terms of a Lie group to an equation with a fewer number of independent variables using the noncommutative ansatz of the work [4] determined by the linear part of the nonlinear equation. The noncommutative integration method (NIM) has been proposed for linear partial differential equations (PDEs) in [4]. Following this method, one can find a basis for the solution space of the linear equation admitting a set of noncommuting symmetry operators related to the Lie group of invariance of the equation. Then the noncommutative reduction of a nonlinear equation on a Lie group yields families of particular solutions containing the parameters ("quantum numbers") of the basis of solutions to the corresponding linear equation. We describe the proposed noncommutative reduction for the nonlinear Schrödinger equation (NLSE) in curved space with local cubic nonlinearity and simply transitive motion group written in terms of the Lie group. The general formalism is illustrated by the examples of noncommutative reduction of the multidimensional NLSE on the Lie group \(E(2) \) of the two-dimensional plane \(\mathbb{R}^2 \) and on the four-dimensional exponential solvable group. A family of particular solutions of the NLSE on the Lie group obtained within the framework of our approach contains the parameters of solutions of the corresponding linear Schrödinger equation.

The nonlinear Schrödinger equation is one of the fundamental equations in nonlinear theoretical physics and mathematics. It arises in a number of nonlinear models of various
physical phenomena and in wide range of applications. As an example, we recall the theory of optical pulse propagation in nonlinear media \[5, 6\]. In the theory of Bose-Einstein condensates, the NLSE is referred to as the Gross-Pitaevskii equation (GPE) \[7–9\]. The \((1+1)\) dimensional NLSE is integrable within the framework of the soliton theory (see, e.g., \[10\] and references therein).

The approach proposed here expands the possibilities of constructing exact solutions of field equations in curved spaces in addition to the method of separation of variables, which is widely used in general relativity (see, e.g., recent papers \[11, 12\] and references therein) and cosmology \[13–16\].

We also emphasize that here we consider the noncommutative reduction of nonlinear equations with local nonlinearity in contrast to the papers \[4, 17, 18\] where NIM was applied to equations with nonlocal nonlinearity of convolution type.

The paper is structured as follows. In Section \(\text{II}\) we present the required concepts and definitions from the theory of Lie groups, introduce notations, and the problem setup. In Section \(\text{III}\) we describe a special representation of the Lie algebra which is constructed using the orbit method. Then we apply an ansatz for the non-commutative reduction of the nonlinear Schrödinger equation on the Lie group. Section \(\text{IV}\) illustrates general approach by the example of the noncommutative reduction of the nonstationary nonlinear Schrödinger equation \(2, 8\) on the motion group \(E(2)\) of the two-dimensional plane \(\mathbb{R}^2\). In the particular case, we come to the usual \((1+1)\)-dimensional NLSE with the soliton solution. In Section \(\text{V}\) the noncommutative reduction of the stationary multidimensional NLSE is studied in the case of the four-dimensional exponential solvable group. In Section \(\text{V}\) the concluding remarks are given.

\(\text{II. NOTATIONS AND THE PROBLEM SETUP}\)

In this section, we briefly review the required concepts and definitions from the Lie group theory and introduce the technical notations.

Let \(G\) be an \(n\)– dimensional Lie group, its Lie algebra \(\mathfrak{g}\) be the tangent space at the group unity \(e \in G\), and \(\{e_a\}\) be a fixed basis in the linear space \(\mathfrak{g}\) \((a, b, c = 1, \ldots, n)\). The Lie group \(G\) acts on itself as the left, \(L_{\tilde{g}}(g) = \varphi(\tilde{g}, g)\), and the right, \(R_{\tilde{g}}(g) = \varphi(g, \tilde{g})\), translations, where \(\varphi(g, \tilde{g})\) is a composition function, and \(g, \tilde{g} \in G\). The differentials of the left and
right translations determine the left-invariant,\(\xi_X(g) = (L_g)_*X\), \(\eta_X(g) = -(R_g)_*X\), vector fields on the Lie group \(G\) \((X \in \mathfrak{g})\). Also, we have
\[
[\xi_X, \xi_Y] = \xi_{[X,Y]}, \quad [\eta_X, \eta_Y] = \eta_{[X,Y]}, \quad [\xi_X, \eta_Y] = 0, \quad X, Y \in \mathfrak{g},
\]
where \([X,Y]\) is the commutator of \(X, Y \in \mathfrak{g}\).

Let \(\{e^b\}\) be the dual basis to \(\{e_a\}\) in the Lie algebra \(\mathfrak{g}\), \(\langle e^b, e_a \rangle = \delta^b_a\), and the brackets \(\langle \cdot, \cdot \rangle\) denote the natural pairing of a 1-form and a vector. Then the left-invariant, \(\omega^X(g) = (L_g)_*X\), and the right-invariant, \(\sigma^X(g) = -(R_g)_*X\), Maurer-Cartan 1-forms satisfy the equations
\[
d\omega^a = -\frac{1}{2} C^a_{bc} \omega^b \wedge \omega^c, \quad d\sigma^a = -\frac{1}{2} C^a_{bc} \sigma^b \wedge \sigma^c, \quad C^a_{bc} = [e^b, e^c]^a.
\]
The implicit summation over repeated indices is assumed.

We take the basis right-invariant vector fields \(\eta_a(g) = \eta_{e_a}(g)\) and the dual right-invariant 1-forms \(\sigma^a(g) = \sigma^e_a(g)\) as the moving frame on \(G\) and introduce the right-invariant metric
\[
ds^2 = g_{\mu\nu}(g) dg^\mu dg^\nu, \quad \mu, \nu = 1, \ldots, n,
\]
where \(g^\mu\) are local coordinates on \(G\). The metric tensor \(g_{\mu\nu}(g)\) of the right-invariant metric \((2.3)\) is expanded over a moving frame with a constant symmetric matrix \(G_{ab}\):
\[
g_{\mu\nu}(g) = \sigma^a_{\mu}(g) \sigma^b_{\nu}(g), \quad g^{\mu\nu}(g) = \sigma^a_{\mu}(g) \sigma^b_{\nu}(g), \quad C^{ac} G_{cb} = \delta^a_b.
\]
The Christoffel symbols of the symmetric connection consistent with the metric \(ds^2\) on the Lie group \(G\) are defined in terms of the metric tensor \((2.4)\) as
\[
\Gamma^\rho_{\nu\mu}(g) = \frac{1}{2} g^{\rho\tau}(g) (\partial_\nu g_{\tau\mu}(g) + \partial_\mu g_{\nu\tau}(g) - \partial_\tau g_{\nu\mu}(g)) , \quad \partial_\nu \equiv \frac{\partial}{\partial g^\nu}.
\]
Substituting \((2.4)\) in \((2.5)\) and taking into account the Maurer-Cartan equations \((2.2)\), we get (see Ref. [19]):
\[
\Gamma^\rho_{\nu\mu}(g) = \Gamma^a_{bc} \sigma^b_{\nu}(g) \sigma^c_{\mu}(g) \eta^\rho_a(g) + \eta^\rho_a(g) \frac{\partial \sigma^a_{\mu}(g)}{\partial g^\nu} ,
\]
\[
\Gamma^a_{bd}(g) = -\frac{1}{2} C^a_{bd} - \frac{1}{2} G^{ac} (G_{eb} C^e_{dc} + G_{ed} C^e_{bc}) .
\]
To simplify the presentation, we consider unimodular Lie groups when the left Haar measure \(d\mu_L(g)\) coincides with the right Haar measure on the Lie group \(G\): \(d\mu_R(g) = d\mu_L(g) = d\mu(g)\).
Now we can consider differential equations on Lie groups. The Schrödinger equation on a unimodular Lie group G with the metric (2.3) for the wave function $\psi = \psi(t, g)$ has the form
\[
i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta_G \psi,
\]
(2.6)
where \hbar is the Planck constant, $m (> 0)$ is the mass of the particle, t is the time. The Laplace operator Δ_G on the Lie group G is a quadratic polynomial in the right-invariant vector fields:
\[- \hbar^2 \Delta_G = H (-i\hbar \eta), \quad H(f) = G^{ab} f_a f_b.\]
(2.7)
The operator Δ is a symmetric operator with respect to the Riemannian measure
\[d\mu(g) = \sqrt{\det g_{\mu\nu}} dg = \sqrt{G} d\mu(g), \quad G = \det(G_{ab}).\]
A linear differential operator $X(g) = X(g, \partial_g)$ commuting with the operator $H(\eta)$ on some space of functions,
\[[X(g), H(\eta)] = 0,
leaves invariant the set of solutions to the equation and it is the symmetry operator of the equation (2.6). From equation (2.1), one can easily see that the linear equation (2.6) admits a set of left-invariant vector fields ξ_a as symmetry operators. It can be shown that the Laplace operator on an n-dimensional manifold admitting a set of n linearly independent symmetry operators of the first order can always be represented locally in the form (2.7) up to a constant factor for some Lie group G with right-invariant metric [20].

In this paper, we consider the following nonlinear Schrödinger equation (2.6) on the Lie group G:
\[
i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta_G \psi + U(g, \psi) \psi.
\]
(2.8)
Note that the nonlinearity $U(g, \psi)$ does not admit ξ_a as symmetry operators of the equation (2.8). When $G = \mathbb{R}^3$, we have $U(g, \psi) = |\psi|^2$ and (2.8) is the well-known nonlinear Schrödinger equation (see, e.g., [7–10], and references therein).

We will show that the NIM is effective for solving the equation (2.8) under some restrictions on the Lie group G.

6
III. NONCOMMUTATIVE REDUCTION OF THE NONLINEAR SCHRODINGER EQUATION

The approach to noncommutative reduction of the equation (3.8) is based on a special representation of the Lie algebra \(g \) constructed in terms of the orbit method. We also need a suitable direct and inverse Fourier transform on the Lie group \(G \).

First, we recall some necessary definitions from the orbit method that will be used hereinafter.

The degenerate Poisson-Lie bracket,

\[
\{ \phi, \psi \}(f) = \langle f, [d\phi(f), d\psi(f)] \rangle = C_{ab}^{c} \frac{\partial \phi(f)}{\partial f_{a}} \frac{\partial \psi(f)}{\partial f_{b}}, \quad \phi, \psi \in C^{\infty}(g^{*}),
\]

endows the space \(g^{*} \) with a Poisson structure [21]. Here, \(f_{a} \) are the coordinates of a linear functional \(f = f_{a}e^{a} \in g^{*} \) relative to the dual basis \(\{e^{a}\} \). The number \(\text{ind}g \) of functionally independent Casimir functions \(K_{\mu}(f) \) with respect to the bracket (3.1) is called the index of the Lie algebra \(g \), \(\mu = 1, \ldots, \text{ind}g \).

A coadjoint representation \(\text{Ad}^{*}: G \times g^{*} \to g^{*} \) splits \(g^{*} \) into coadjoint orbits (K-orbits). Restriction of the bracket (3.1) to an orbit is nondegenerate and coincides with the Poisson bracket generated by the Kirillov symplectic form \(\omega_{\lambda} \) [21]. Orbits of maximum dimension \(\dim O^{(0)} = \dim g - \text{ind}g \) are called non-degenerate [21, 22].

Let \(O_{\lambda} \) be a nondegenerate K-orbit passing through the covector \(\lambda \in g^{*} \). Using Kirillov’s orbit method [22], we construct an unitary irreducible representation of the Lie group \(G \) with respect to a given orbit. This representation can be constructed iff for the functional \(\lambda \) there exists a subalgebra \(h \subset g^{C} \) in the complex extension \(g^{C} \) of the Lie algebra \(g \) satisfying the conditions:

\[
\langle \lambda, [h, h] \rangle = 0, \quad \dim h = \dim g - \frac{1}{2} \dim O_{\lambda}.
\]

The subalgebra \(h \) is called the polarization of the functional \(\lambda \). Equation (3.2) assumes that the functionals from \(g^{*} \) can be prolonged to \(g^{C} \) by linearity. In this paper, to simplify the presentation, we restrict ourselves to the case when \(h \) is the real polarization.

Now we introduce a special coordinate system on the Lie group \(G \) compatible with non-degenerate K-orbits of \(G \). Let \(H \) be a closed subgroup in a Lie group \(G \), and \(h \) be the Lie algebra of \(H \). The Lie group acts on the right homogeneous space \(Q \simeq G/H : q' = qg \) and defines a principal bundle with the base \(Q \), fibers \(H \), and the canonical projection \(\pi : G \to Q \).
Choose a basis $\{e_\alpha\}$ in the subalgebra \mathfrak{h} and a basis $\{e'_\alpha\}$ is in the complementary subspace $\mathfrak{m} = \mathfrak{h}^\perp$. In some trivializing neighborhood V_0 of the unit of the Lie group G, we introduce the local coordinates of the second kind

$$g(q, h) = \left(e^{\frac{1}{\hbar} \dim \mathfrak{h} e^{\frac{1}{\hbar} \dim \mathfrak{h} - 1} \ldots e^{\frac{1}{\hbar} \dim \mathfrak{h} - 1} \ldots e^{\frac{1}{\hbar} \dim \mathfrak{h}} e^{\frac{1}{\hbar} \dim \mathfrak{Q} e^{\frac{1}{\hbar} \dim \mathfrak{Q} - 1} \ldots e^{\frac{1}{\hbar} \dim \mathfrak{Q} - 1} \ldots e^{\frac{1}{\hbar} \dim \mathfrak{Q}}} \right).$$

We fix a section $s : Q \to G$ of the principal bundle of G by the equality

$$g(q, h) = h s(q).$$

The left-invariant vector fields on G in local coordinates (q, h) have the form

$$\xi_X(q, h) = \xi_X^\pi(q) \partial_\pi + \xi_X^\alpha(q, h) \partial_{h^\alpha},$$

where $\alpha_X(q) = \xi_X^\pi(q) \partial_q$ are the generators of the group action on the homogeneous space Q.

According to the orbit method [21], we introduce a unitary one-dimensional irreducible representation of the Lie group G, which in a neighborhood of V_0 is given by

$$U^\lambda(e^X) = \exp \left(\frac{i}{\hbar} \langle \lambda, X \rangle \right), \quad X \in \mathfrak{h}. \quad (3.3)$$

The representation of the Lie group G corresponding to the orbit O_λ is induced by the one-dimensional representation

$$(T_g^\lambda \psi)(q) = \Delta_H^{-1/2}(h(q, g)) U^\lambda(h(q, g)) \psi(qg) = U^{\lambda + i\beta}(h(q, g)) \psi(qg), \quad (3.4)$$

$$\beta_{\pi} = -\frac{1}{2} \text{Tr} \left(\text{ad}_{\pi|_{\mathfrak{h}}} \right),$$

where $\Delta_H(g) = \det \text{Ad}_h$ is the module of the subgroup H, $h \in H; e_H$ is the unit element in the Lie group H. The function $h(q, g)$ in (3.4) is a factor of the homogeneous space Q: $s(q)g = h(q, g)s(qg), \quad h(q, e) = 1$.

Let $L_2(Q, \mathfrak{h}, \lambda)$ denotes the space of functions defined on Q where the representation (3.4) acts. Restriction of the left-invariant vector fields $\xi_X(q)$ on the homogeneous space Q reads

$$\ell_X(q, \partial_q, \lambda) = \left([U^{\lambda + i\beta}(h)]^{-1} \xi_X(g) U^{\lambda + i\beta}(h) \right)_{h = e_H}, \quad (3.5)$$

$$[\ell_X(q, \partial_q, \lambda), \ell_Y(q, \partial_q, \lambda)] = \ell_{[X,Y]}(q, \partial_q, \lambda), \quad X, Y \in \mathfrak{g}.\]
The representation (3.4) is unitary with respect to the scalar product in the space of functions $L_2(Q, \mathfrak{h}, \lambda)$:

$$
(\psi_1, \psi_2) = \int_Q \overline{\psi_1(q)}\psi_2(q)d\mu(q), \quad d\mu(q) = \rho(q)dq^1 \ldots dq^l.
$$

The function $\rho(q)$ is determined from the condition that the operators $-i\ell_X(q, \partial_q, \lambda)$ are Hermitian with respect to the given scalar product (3.6).

The irreducible representation of the Lie algebra \mathfrak{g} by linear operators of the first order (3.5) depending on $\dim Q = \dim O/2 = (\dim \mathfrak{g} - \text{ind} \mathfrak{g})/2$ variables is called the λ-representation of the Lie algebra \mathfrak{g}. It was introduced in [4].

The explicit form of the λ-representation operators is determined by left-invariant vector fields in the trivialization domain V_0 of the principal bundle G:

$$
\ell_X(q, \partial_q, \lambda) = \xi_X(q)\partial_q + \frac{i}{\hbar}\xi_X(q, e_H) (\lambda\tau + i\hbar\beta_\tau).
$$

Let us introduce the direct and inverse generalized Fourier transform, which is the essential point of the non-commutative integration method. The representation operators (3.4) can be rewritten in the integral form as

$$
(T^\lambda g \psi)(q) = \int_Q \psi(q') \mathcal{D}^\lambda_{qq'}(g)d\mu(q),
$$

$$
\mathcal{D}^\lambda_{qq'}(g) = \Delta^{-1/2}_H(h(q, g))U^\lambda(h(q, g))\delta(qg, q'),
$$

where $\delta(q, q')$ is a generalized delta function with respect to the measure $d\mu(q)$. The generalized kernels $\mathcal{D}^\lambda_{qq'}(g)$ of this representation have the properties

$$
\mathcal{D}^\lambda_{qq'}(g_1g_2) = \int_Q \mathcal{D}^\lambda_{qq''}(g_1)\mathcal{D}^\lambda_{q''q'}(g_2)d\mu(q''),
$$

$$
\mathcal{D}^\lambda_{qq'}(g) = \mathcal{D}^\lambda_{q'q}(g^{-1}), \quad \mathcal{D}^\lambda_{qq'}(e) = \delta(q, q'),
$$

where $g_1, g_2 \in G$ satisfy the system of equations

$$(\eta_X(g) + \ell_X(q, \partial_q, \lambda)) \mathcal{D}^\lambda_{qq'}(g) = 0, \quad \left(\xi_X(g) + \ell_X(q', \partial_{q'}, \lambda)\right) \mathcal{D}^\lambda_{qq'}(g) = 0. \quad (3.7)
$$

Note that the functions $\mathcal{D}^\lambda_{qq'}(g)$ are defined globally on the whole Lie group G if the K-orbit O_λ is integer in the sense of Kirillov’s definition [22].

The set of generalized functions $\mathcal{D}^\lambda_{qq'}(g)$ satisfying the system of equations (3.7) has the properties of completeness and orthogonality for a certain choice of the measure $d\mu(\lambda)$ in
parameter space J:
\[
\int_G D^\lambda_{qq}(g) D^\lambda_{q'q'}(g) d\mu(g) = \delta(q, q') \delta(q', q') \delta(\lambda, \lambda), \tag{3.8}
\]
\[
\int_{Q \times G} D^\lambda_{qq}(g) D^\lambda_{q'q'}(g) d\mu(g) d\lambda = \delta(\bar{g}, g), \tag{3.9}
\]
where $\delta(g)$ is the generalized Dirac delta function with respect to the right Haar measure $d\mu(g)$ on the Lie group G.

Consider the function space $L(G, d\mu(g))$ of functions of the form
\[
\psi(g) = \int_Q \psi(q, q', \lambda) D^\lambda_{qq'}(g^{-1}) d\mu(q') d\mu(q) d\mu(\lambda), \tag{3.10}
\]
where the function $\psi(q, q', \lambda)$ with respect to the variables q and q' belongs to the space $L_2(Q, b, \lambda)$. From (3.8) and (3.9), we can write the inverse transform as
\[
\psi(q, q', \lambda) = \int_{Q \times Q \times J} \psi^\lambda(g) D^\lambda_{qq'}(g^{-1}) d\mu(g). \tag{3.11}
\]
It follows from (3.10) and (3.11) that the action of the operators $\xi_X(g)$ and $\eta_X(g)$ on the function $\psi^\lambda(g)$ from $L_2(G, \lambda, d\mu(g))$ corresponds to the action of the operators $\xi^\lambda_X(g, \partial_q, \lambda)$ and $\ell_X(q', \partial_{q'}, \lambda)$ on the function $\psi(q, q', \lambda)$:
\[
\xi_X(g) \psi^\lambda(g) \leftrightarrow \xi^\lambda_X(g, \partial_q, \lambda) \psi(q, q', \lambda),
\quad
\eta_X(g) \psi^\lambda(g) \leftrightarrow \ell_X(q', \partial_{q'}, \lambda) \psi(q, q', \lambda). \tag{3.12}
\]
The functions (3.10) are eigenfunctions for the Casimir operators $K^{(s)}_\mu(ih\xi) = K^{(s)}_\mu(-i\hbar\eta)$:
\[
K^{(s)}_\mu(ih\xi) \psi^\lambda(g) \leftrightarrow \kappa^{(s)}_\mu(\lambda) \psi(q, q', \lambda),
\quad
K^{(s)}_\mu(-i\hbar\ell(q', \partial_{q'}, \lambda)) = \kappa^{(s)}_\mu(\lambda), \quad
\lim_{\hbar \to 0} \kappa^{(s)}_\mu(\lambda) = \omega^{(s)}_\mu(\lambda).
\]
As a result of the generalized Fourier transform (3.10), the left and right fields are converted to λ-representations, and the Casimir operators become constants.

This fact is core to the method of non-commutative integration of linear differential equations on Lie groups. The method allows one to reduce the original linear differential equation
\[
- \hbar^2 \Delta_G \psi(g; q, \lambda) = \Lambda^2 \psi(g; q, \lambda), \quad \Lambda = \text{const} \tag{3.13}
\]
with the number of independent variables g equal to $\dim g$ to the equation
\[
H(-i\hbar\ell(q', \partial_{q'}, \lambda)) \psi(q'; q, \lambda) = \Lambda^2 \psi(q'; q, \lambda)
\]
with a fewer number of independent variables \(q' \) that is equal to \((\dim g - \text{ind} g)/2\) using the ansatz

\[
\psi^\lambda(g; q, \lambda) = U^\lambda e^{i h \beta} (h(q, g^{-1})) \psi(q g^{-1}; q, \lambda)
\]

(3.14)

parameterized by \(q \) and \(\lambda \). In view of (3.9), the set of functions (3.14) parameterized by \(q, \lambda \) and \(\Lambda \) forms a complete set of solutions to the equation (3.13).

Then we will apply the ansatz of the form (3.14) to the non-commutative reduction of the nonlinear Schrödinger equation (2.8). Let us look for a solution of (2.8) in the form

\[
\psi^\lambda(t, g; q) = U^\lambda e^{i h \beta} (h(q, g^{-1})) \psi(t, q g^{-1}; q, \lambda).
\]

In view of the relations (3.12), the linear part of the equation (2.8) can be written as

\[
\left(i \hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m} \Delta_G \right) \psi^\lambda(t, g; q) =
\]

\[
U^\lambda e^{i h \beta} (h(q, g^{-1})) \times
\]

\[
\frac{1}{2m} \left[i \hbar \frac{\partial}{\partial t} + H(-i \hbar \ell(q', \partial q', \lambda)) \right] \psi(t, q'; q, \lambda) \bigg|_{q' = q g^{-1}},
\]

and \(|\psi^\lambda(t, g; q)|^2\) reads

\[
|\psi^\lambda(t, g; q)|^2 = |U^\lambda e^{i h \beta} h(q, g^{-1})|^2 |\psi(t, q g^{-1}; q, \lambda)|^2 =
\]

\[
e^{-2h(q, g)} \kappa^2(q)|\psi(t, q g^{-1}; q, \lambda)|^2.
\]

For the real polarization \(h \), in view of the formula (3.3), \(|U^\lambda h(q, g^{-1})| = 1\). Then, we have

\[
|\psi^\lambda(t, g; q)|^2 = e^{-2h(q, g)} \kappa^2(q)|\psi(t, q g^{-1}; q, \lambda)|^2.
\]

We only consider the Lie groups \(G \) for which

\[
e^{-2h(q, g)} \kappa^2(q) = \kappa^2(q).
\]

(3.15)

The condition (3.15) is satisfied if the covector \(\beta \) is zero. Thus, under the condition (3.15), we obtain the reduced nonlinear Schrödinger equation

\[
\left[i \hbar \frac{\partial}{\partial t} + \frac{1}{2m} H(-i \hbar \ell(q', \partial q', \lambda)) \right] \psi(t, q'; q, \lambda) +
\]

\[
+ U \left(\kappa^2(q) |\psi(t, q'; q, \lambda)|^2 \right) \psi(t, q'; q, \lambda) = 0
\]

with the fewer number of independent variables \(q' \).
Here, we consider an example of non-commutative reduction of the nonlinear Schrödinger equation (2.8) on the motion group $E(2)$ of the two-dimensional plane \mathbb{R}^2. The three-dimensional Lie algebra $\mathfrak{e}(2)$ of $E(2)$ is determined by the commutation relations $[e_1, e_3] = -e_2, [e_2, e_3] = e_1$ relative to the fixed basis $\{e_1, e_2, e_3\}$.

The left-invariant and the right-invariant vector fields on a $E(2)$ have the form

$$
\xi_1 = \partial_x, \quad \xi_2 = \partial_y, \quad \xi_3 = y\partial_x - x\partial_y + \partial_{\alpha},
$$

$$
\eta_1 = -\cos \alpha \partial_x + \sin \alpha \partial_y,
$$

$$
\eta_2 = -\sin \alpha \partial_x - \cos \alpha \partial_y, \quad \eta_3 = -\partial_{\alpha}
$$

with respect to the canonical coordinates (x, y, α) of the second kind:

$$
g = (x, y, \alpha) = e^\alpha e_3 e_y e_1 e_x e_1, \quad (x, y) \in \mathbb{R}^2, \quad \alpha \in [0, 2\pi).$$

The invariant measure on the group coincides with the Lebesgue measure $d\mu(g) = dx dy d\alpha$. The composition law of the group is

$$
g_1 g_2 = (x_2 + x_1 \cos \alpha_2 + y_1 \sin \alpha_2, y_2 - x_1 \sin \alpha_2 + y_1 \cos \alpha_2, \alpha_1 + \alpha_2),
$$

$$
g_1 = (x_1, y_1, \alpha_1), \quad g_2 = (x_2, y_2, \alpha_2).
$$

Each non-degenerate orbit is determined by the Casimir function $K(f) = f_1^2 + f_2^2$ on the dual space $\mathfrak{e}^*(2) \simeq \mathbb{R}^2$ and passes through the covector $\lambda(j) = (j, 0, 0), \ j > 0$, i.e.

$$
\mathcal{O}_j = \{ f \in \mathbb{R}^3 \mid K(f) = j^2, \ -(f_1 = f_2 = 0) \},
$$

$$
\dim \mathcal{O}_j = 2.
$$

The λ-representation operators corresponding to the real polarization $\mathfrak{h} = \{e_1, e_2\}$ have the form

$$
\ell_1 = i\frac{j}{\hbar} \cos q, \quad \ell_2 = -i\frac{j}{\hbar} \sin q, \quad \ell_3 = \partial_q, \quad q \in [0; 2\pi).
$$

The operators $-i\hbar \ell_a$ are symmetric with respect to the measure $d\mu(q) = dq$, and all non-degenerate orbits are integer. Solving the system of equations (3.7), we find the functions $\mathcal{D}_{yy}^\lambda(g^{-1})$, and the completeness and orthogonality conditions for them yield the following
measure $d\mu(\lambda)$:

$$\mathcal{D}_{qq'}(g^{-1}) = \exp \left[\frac{ij_1}{\hbar} (y \sin q - x \cos q) \right] \delta (q' - q + \alpha),$$

$$d\mu(\lambda) = \frac{1}{(2\pi)^2} j dj.$$

Let us introduce the right-invariant metric given by the matrix $(G^{ab}) = \text{diag}(\delta_1, \delta_2, \delta_3)$. In local coordinates, this metric can be written as

$$ds^2 = \left(\delta_1^{-1} \cos^2 \alpha + \delta_2^{-1} \sin^2 \alpha \right) dx^2 +$$

$$+ \left(\delta_1^{-1} \sin^2 \alpha + \delta_2^{-1} \cos^2 \alpha \right) dy^2 + \delta_3^{-1} d\alpha^2. \quad (4.1)$$

The metric (4.1) has the nonzero scalar curvature $R = \delta_3 (\delta_1 - \delta_2)^2 / (2\delta_1 \delta_2)$, and the corresponding Laplace operator reads

$$\Delta_{E(2)} = \left(\delta_1 \cos^2 \alpha + \delta_2 \sin^2 \alpha \right) \partial^2_{xx} +$$

$$\left(\delta_1 \sin^2 \alpha + \delta_2 \cos^2 \alpha \right) \partial^2_{yy} + (\delta_2 - \delta_1) \sin 2\alpha \partial^2_{xy} + \delta_3 \partial^2_{\alpha\alpha}.$$

For the nonlinear Schrödinger equation with the Laplace operator $\Delta_{E(2)}$ and potential $V = V(\alpha)$,

$$i\hbar \frac{\partial \psi}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta_{E(2)} + V(\alpha) - \varepsilon \vert \psi \vert^2 \right) \psi, \quad (4.2)$$

$$\psi(t,g;q,j) = \exp \left[\frac{ij}{\hbar} (y \sin q - x \cos q) \right] \psi(t,q - \alpha).$$

Then, for the function $\psi(t,q')$, the equation (4.2) yields the following reduced equation:

$$i\hbar \frac{\partial \psi(t,q')}{\partial t} + \frac{\hbar^2}{2m} \delta_3 j \frac{\partial^2 \psi(t,q')}{\partial q'^2} -$$

$$- \left[\frac{\hbar^2 j}{2m} (\delta_1 \cos^2 q' + \delta_2 \sin^2 q') + V(q - q') - \varepsilon \vert \psi(t,q') \vert^2 \right] \psi(t,q') = 0. \quad (4.3)$$

It can be seen that in the particular case $V(\alpha) = 0$, $\delta_1 = \delta_2$, $\delta_3 = 1$ the equation (4.3) takes the form of the usual nonlinear Schrödinger equation and has the soliton solution

$$\psi(t,q') = \frac{\hbar a}{\sqrt{\varepsilon m}} \cosh^{-1} [(q' - vt)] \exp \left[\frac{im}{\hbar} \left(q' - \frac{v}{2} \right) v - \frac{i\hbar}{2m} \left(a^2 - \delta_1 n'^2 \right) \right],$$

$$j = \hbar n', \quad \varepsilon > 0.$$

The solution to the original equation (4.2) has the form

$$\psi(t,g;q,n') = \frac{\hbar a}{\sqrt{\varepsilon m}} \cosh^{-1} [(q - \alpha - vt)] \times$$

$$\times \exp \left[i \left(y \sin q - x \cos q \right) n' + \frac{im}{\hbar} \left(q - \alpha - \frac{v}{2} \right) v - \frac{i\hbar}{2m} \left(a^2 - \delta_1 n'^2 \right) \right].$$

13
Concluding this section, we note that the nonlinear equation (2.8) on the Lie groups includes as a particular case the well-known classical
\(1 + 1\)-dimensional nonlinear Schrödinger equation integrable by the Inverse Scattering Transform method (e.g., [10]), and the noncommutative reduction method proposed in this paper yields the one-soliton solution. This case follows from the more general equation (4.2) with a potential \(V(\alpha)\), which can be regarded as an example of the Gross-Pitaevskii equation [7].

V. THE FOUR-DIMENSIONAL SOLVABLE EXPONENTIAL GROUP

Consider a four-dimensional solvable exponential group \(G\). The Lie algebra \(\mathfrak{g}\) of \(G\), with respect to a fixed basis \({e_1, e_2, e_3, e_4}\), is defined by the commutation relations \([e_2, e_3] = e_1, [e_2, e_4] = e_2, [e_3, e_4] = -e_3\). The algebra index equals 2 and there are two Casimir functions

\[
K_1(f) = f_1, \quad K_2(f) = f_1f_4 - f_3f_2, \quad f \in \mathfrak{g}^* \simeq \mathbb{R}^4.
\]

In canonical coordinates of the second kind

\[
g(x_1, x_2, x_3, x_4) = e^{x_4 e_4} e^{x_3 e_3} e^{x_2 e_2} e^{x_1 e_1}, \quad x_1 \in [0, 2\pi), (x_2, x_3, x_4) \in \mathbb{R}^3,
\]

the left-invariant and the right-invariant vector fields are given by

\[
\xi_1 = \partial_{x_1}, \quad \xi_2 = \partial_{x_3}, \quad \xi_3 = x_2 \partial_{x_1} + \partial_{x_3}, \quad \xi_4 = x_2 \partial_{x_2} - x_3 \partial_{x_3},
\]

\[
\eta_1 = \partial_{x_1}, \quad \eta_2 = -e^{x_4} (x_3 \partial_{x_1} + \partial_{x_2}), \quad \eta_3 = -e^{-x_4} \partial_{x_3}, \quad \eta_4 = -\partial_{x_4}.
\]

The invariant measure on the group coincides with the Lebesgue measure and is of the form

\[
d\mu(g) = dx_1 dx_2 dx_3 dx_4. \quad \text{The subgroup } G_1 = \{\exp(e_1 x_1)\} \text{ of the Lie group } G \text{ can be either compact } (x_1 \in [0; 2\pi)) \text{ or noncompact } (x_1 \in \mathbb{R}^1). \quad \text{Let us choose the right-invariant metric on the group as follows:}
\]

\[
ds^2 = \delta_1^{-1} dx_1 dx_4 + (\delta_2^{-1} dx_3 - \delta_1^{-1} x_3 dx_4) dx_2, \tag{5.1}
\]

\[
\left(g^{ab}\right) = 2\text{antidiag} (\delta_1, \delta_2, \delta_2, \delta_1),
\]

\[
\delta_2 \neq -\delta_1, \quad \delta_1, \delta_2 = \text{const}.
\]

The metric (5.1) is not flat since there is a nonzero component of the Ricci tensor \(R_{\mu\nu}(g)\):

\[
R_{44}(g) = (\delta_2/\delta_1)^2/2. \quad \text{The Laplace operator of the metric (5.1) reads}
\]

\[
\Delta_G = 4\delta_1 \partial_{x_1 x_4}^2 + 2\delta_2 \left(2\partial_{x_2 x_3}^2 + 2x_3 \partial_{x_1 x_3}^2 + \partial_{x_1}\right).
\]
In this section, we will consider a stationary nonlinear Schrödinger equation of the form

\[- \frac{\hbar^2}{2m} \Delta_x \psi(g) + \varepsilon e^{x_4} |\psi(g)|^2 \psi(g) = E \psi(g), \quad E > 0. \quad (5.2)\]

There is a complete set of commuting symmetry operators \(\{-i\hbar \xi_1, -i\hbar \xi_2, K_2(-i\hbar \xi)\}\) that allows one to perform a complete separation of variables in the linear equation \(5.2\) with \(\varepsilon = 0:\)

\[
\psi_{p_1p_2j_2}(g) = e^{\frac{i}{\hbar}(p_1x_1+p_2x_2)} \left(\frac{\hbar}{p_2 + p_1x_3} \right)^{1/2} e^{i\frac{p_2}{\hbar} \varphi_{p_1p_2j_2}} \left(x_4 + \ln \frac{p_2 + p_1x_3}{\hbar} \right), \quad (5.3)
\]

Substituting the ansatz \(5.3\) into the equation \(5.2\) with \(\varepsilon = 0\), we get the ordinary differential equation

\[2(\delta_1 + \delta_2)p_1 \frac{d\varphi_{p_1p_2j_2}(z)}{dz} - \frac{i}{\hbar} (2\delta_2j_2 + mE) \varphi_{p_1p_2j_2}(z) = 0.\]

Nevertheless, it is not possible to reduce the nonlinear equation \(5.2\) (when \(\varepsilon \neq 0\)) since

\[e^{x_4} |\psi_{p_1p_2j_2}(g)|^2 \psi_{p_1p_2j_2}(g) = \frac{e^z}{(p_2 + p_1x_3)^2} |\varphi_{p_1p_2j_2}(z)|^2 \varphi_{p_1p_2j_2}(z)\]

and the expression \(e^z/(p_2 + p_1x_3)^2\) depends on the variable \(x_3\).

Let us now carry out the non-commutative reduction. Each nondegenerate K-orbit passes through the parameterized covector \(\lambda(j) = (j_1, 0, 0, j_2), j = (j_1, j_2) \in \mathbb{R}^2:\)

\[O_j = \{f \in \mathbb{R}^4 \mid K(f) = j_1, K(f) = j_1j_2, - (f_1 = f_2 = f = 0)\},\]

\[\dim O_j = 2.\]

The \(\lambda\)-representation operators corresponding to nondegenerate K-orbits and real polarization \(\mathfrak{h} = \{e_1, e_3, e_4\}\) have the form

\[\ell_1 = i\frac{j_1}{\hbar}, \quad \ell_2 = \partial_q, \quad \ell_3 = i\frac{j_1}{\hbar} q, \quad \ell_4 = q \partial_q + i\frac{1}{\hbar} \left(j_2 - i\hbar \frac{1}{2} \right),\]

\[K_1(-i\hbar \ell) = j_1, \quad K_2(-i\hbar \ell) = j_1j_2.\]
where the covector $\beta = (0, 0, 0, -1/2)$. The operators $-i\hbar \ell_a$ are symmetric with respect to the measure $d\mu(q) = dq, q \in Q \simeq \mathbb{R}^1$.

Solving the system of equations (3.7), we obtain the functions $\mathcal{D}_{qq}^\lambda(g^{-1})$, and the completeness and orthogonality conditions for them yield the following measure $d\mu(\lambda)$:

$$
\mathcal{D}_{qq}^\lambda(g^{-1}) = \exp \left(-\frac{1}{2} x_4 - \frac{i j_1}{\hbar} (x_3 (q - x_2) + x_1) - \frac{i j_2}{\hbar} x_4 \right) \delta (q' + e^{-x_4} (x_2 - q)),
$$

$$
d\mu(\lambda) = \frac{1}{(2\pi)^3} j_1 d j_1 d j_2.
$$

Then, the non-commutative ansatz has the form

$$
\psi(g; q, j_1, j_2) = e^{-x_4/2} \exp \left(-\frac{i j_1}{\hbar} (x_3 (q - x_2) + x_1) - \frac{i j_2}{\hbar} x_4 \right) \times \psi \left(e^{-x_4} (q - x_2) \right).
$$

Substituting (5.4) into (4.2), we obtain the ordinary differential equation

$$
-\frac{n_1 \hbar^2}{m} \left[i(\delta_1 + \delta_2) \left(2q' \frac{d}{dq} + 1 \right) - 2\hbar\delta_2 n_2 \right] \psi(q') +
+ \varepsilon |\psi(q')|^2 \psi(q') = E \psi(q').
$$

In the linear case $\varepsilon = 0$, we have a solution

$$
\psi(q') = \frac{1}{\sqrt{q'}} \exp \left(i \frac{mE/(2\hbar^2) - \delta_1 n_1 n_2}{(\delta_1 + \delta_2) n_1} \ln q' \right), \quad \varepsilon = 0.
$$

We seek a solution of the equation (5.5) in the form

$$
\psi(q') = f(q') \exp(i\Phi(q')),
$$

where $f(q')$ and $\Phi(q')$ are real functions. Substituting (5.6) in (5.5), we get the ODE system:

$$
\begin{align*}
2\frac{\hbar^2}{m} (\delta_1 + \delta_2) j_1 q' f'(q') + \varepsilon f(q')^3 \cot \phi(q') + \\
\left[2\frac{\hbar^2}{m} (\delta_1 + \delta_2) j_1 (2q' \phi'(q') \cot \phi(q') + 1) - E \cot \phi(q') \right] f(q') = 0,
\end{align*}
$$

$$
2q' f'(q') + f(q') = 0.
$$

The solution of this system yields

$$
\psi(q') = \sqrt{\frac{\hbar^2 \, 2 (\delta_1 + \delta_2) n_1}{\varepsilon m \, q'}} \exp \left\{ i \left[\frac{c_1}{q'} + \frac{mE/(2n_1 \hbar^2) - \delta_1 n_2}{\delta_1 + \delta_2} \right] \ln q' + \frac{\ln c_1}{2} \right\}.
$$

16
Substituting (5.7) into the expression (5.4), we obtain a set of particular solutions $\psi(g)$ of the nonlinear equation (4.2) that are parameterized by $\{q', n_1, n_2\}$ and c_1. For this set of solutions, the following equality holds:

$$|\psi(g)|^2 = \frac{2\hbar^2}{\varepsilon m} (\delta_1 + \delta_2) \left| \frac{n_1 c_1}{q - x_2} \right|^2. \quad (5.8)$$

Thus, the non-commutative reduction of the equation (4.2) to (5.5) made it possible to find a family of particular solutions of the original equation (4.2). The solutions obtained tend to infinity on the plane $x_2 = q$ and tend to zero as $x_2 \to \pm \infty$ that can be seen from (5.8).

Conclusion

In this article, we consider an approach in which the noncommutative integration method developed in [4] for finding bases for solution spaces of linear PDEs with symmetries can be applied to constructing families of particular solutions of nonlinear equations on Lie groups by reducing the nonlinear equation to an equation with a fewer number of independent variables. In terms of this approach, we study the generalized nonlinear Schrödinger equation in curved space with local cubic nonlinearity on a Lie group.

The application of the noncommutative integration method to nonlinear equations on Lie groups, under certain restrictions on the Lie group, allows finding families of particular solutions parameterized by the eigenvalues of the non-commutative set of symmetry operators for the *linear part* of the nonlinear equation under consideration. The nonlinear term in the original nonlinear equation does not admit those symmetry operators that its linear part admits. On the other hand, the noncommutative ansatz is determined only by the algebra of symmetry operators of the linear part of the nonlinear equation. The special form of the ansatz (3.14) and its algebraic properties allow us in a number of cases to carry out a non-commutative reduction of the original nonlinear equation.

The parameters q and λ in the noncommutative ansatz (3.14) acquire a physical meaning when comparing the solution of a nonlinear equation with the solution of its linear counterpart as it was considered in [23].

In some cases, it is possible to carry out the noncommutative reduction to a nonlinear equation with an external potential. In the case of the NLSE with a potential, we arrive at
the Gross-Pitaevskii equation, which is the model mean field equation in the BEC theory [7–9]. This case is demonstrated by the example of the NLSE with the external potential (4.2) on the three-dimensional Lie group $E(2)$ in Section IV. With a special choice of the right-invariant metric on the group $E(2)$, we have obtained the classical $(1 + 1)$ dimensional NLSE as a result of noncommutative reduction. This made it possible to obtain a soliton type solution for the NLSE on the group $E(2)$.

We also note that in this paper we consider the NLSE with local nonlinearity in contrast to papers [24, 25], where the noncommutative reduction was applied to nonlinear equations with a nonlocal term of the convolution type. In those papers, the original nonlocal nonlinear equation was reduced to a nonlocal nonlinear equation with a fewer number of independent variables using the generalized Fourier transform.

The broad implication of the present research is that the noncommutative reduction of the NLSE considered in this paper expands the possibilities of exact integration of nonlinear equations on Lie groups, and, what is important, in the multidimensional case. The proposed approach is rather limited by the symmetries of the equation than by its specific form. Therefore, the proposed version of noncommutative reduction can be applied to other equations, among which the nonlinear relativistic equations are of particular interest, for example, the nonlinear Dirac equation, the sine-Gordon equation, and the reaction-diffusion type equations. In addition, the problem of the search of nonlinear equations admitting a noncommutative reduction naturally arises.

VI. ACKNOWLEDGMENTS

The work is supported by Russian Science Foundation, grant No. 19-12-00042.

[1] L. V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982).

[2] N. H. Ibragimov, Transformation groups applied to mathematical physics. Vol. 3. (Springer Science & Business Media, 2001).

[3] P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993).
[4] A. V. Shapovalov and I. V. Shirokov, Noncommutative integration of linear differential equations, *Theoret. Math. Phys.* **104**(2) (1995) 921–934, doi:10.1007/BF02065973.

[5] A. Hasegawa, M. Matsumoto, *Optical Solitons in Fibers* (Springer-Verlag, Berlin, 2003).

[6] C. Sulem and P. L. Sulem, *The Nonlinear Schrodinger Equation. Self-Focusing and Wave Collapse* (Springer-Verlag, New York, 1999).

[7] Dalfovo F., Giorgini S., Pitaevskii L.P. and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, *Rev. Mod. Phys.* **71** (1999), 463–512, doi:10.1103/RevModPhys.71.463, arXiv:cond-mat/9806038.

[8] L. Pitaevskii and S Stringari, *Bose-Einstein Condensation* (Oxford University Press, Oxford, 2003).

[9] P. G. Kevrekidis and D. J. Frantzeskakis, Solitons in coupled nonlinear Schrödinger models: A survey of recent developments, *Rev. in Phys.* **1** (2016), 140-153, doi:10.1016/j.revip.2016.07.002.

[10] S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, *Theory of Solitons: The Inverse Scattering Method* (Springer Science & Business Media, New York, 1984).

[11] M. N. Boldyreva and A. A. Magazev, Exact solutions of Klein–Gordon equations in external electromagnetic fields on 3D de Sitter background, *J. of Math. Phys.* **62** (2021) 053503, doi: 10.1063/5.0023795, arXiv:2008.00184 [math-ph].

[12] V. Obukhov, Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stackel spaces of type (2.1), *Int. J. Geom. Methods Mod. Phys.* **17**(14) (2020) 2050186, doi: 10.1142/S0219887820501868, arXiv:2008.10248 [gr-qc].

[13] E. Elizalde, Exact solutions of the massive Klein-Gordon-Schwarzschild equation, *Phys. Rev. D* **37**(8) (1988) 2127, doi: https://doi.org/10.1103/PhysRevD.37.2127.

[14] S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, *Int. J. Geom. Meth. Mod. Phys.* **4** (2007) 115-146, doi: 10.1142/S0219887807001928.

[15] S. Capozziello, De Laurentis M. and S.D. Odintsov, Noether Symmetry Approach in Gauss-Bonnet Cosmology, *Modern Physics Letters A.* **29** (30) (2014) 1450164, doi: 10.1142/S0217732314501648, arXiv:1406.5652 [gr-qc].

[16] I. Brevik, V. V. Obukhov and A. V. Timoshkin, Cosmological Models Coupled with Dark Matter in a Dissipative Universe, *Astrophys. Space Sci.* **359**(1) (2015) 11, doi: 10.1007/s10509-
015-2451-z, arXiv:1507.05216 [gr-qc].

[17] I. V. Shirokov, Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups, *Theoret. Math. Phys.* **123**(3) (2000) 754–767, doi:10.1007/BF02551030, arXiv:math-ph/0101028.

[18] A. I. Breev, A. V. Shapovalov, Non-commutative integration of the Dirac equation in homogeneous spaces, *Symmetry*, **12**(11) (2020) 1867, doi:10.3390/sym12111867, arXiv:2011.06401 [math-ph].

[19] S. P. Baranovskii, V. V. Mikheev and I. V. Shirokov, Four-Dimensional Lie Group Integration of the Klein–Fock Equation, *Russ. Phys. J.* **45**(11) (2002) 1033-1041, doi:10.1023/A:1023383820802.

[20] A. I. Breev and A. V. Shapovalov, The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration, *J. of Phys.: Conf. Ser.* **670**(1) (2016) 012015, doi:10.1088/1742-6596/670/1/012015, arXiv:1509.08612 [math-ph].

[21] A. A. Kirillov, *Elements of the Theory of Representations* (Springer-Verlag, Berlin, 1976).

[22] A. A. Kirillov, *Lectures on the orbit method.* Vol 64 (American Mathematical Soc., Providence, 2004).

[23] R. D’Agosta, B. A. Malomed and C. Presilla, Stationary solutions of the Gross–Pitaevskii equation with linear counterpart, *Phys. Lett. A* **275** (2000) 424–434, doi:10.1016/S0375-9601(00)00619-8.

[24] A. I. Breev, Schrodinger Equation with Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces, *Russ. Phys. J.* **57**(8) (2014) 1050–1058, doi:10.1007/s11182-014-0343-2.

[25] A. I. Breev, M. M. Goncharovskii and I. V. Shirokov, Klein–Gordon equation with a special type of nonlocal nonlinearity in commutative homogeneous spaces with invariant metric, *Russ. Phys. J.* **56**(7) (2013) 731-739, doi:10.1007/s11182-013-0092-7.