Discriminating among interpretations for $X(2900)$ states

Tim Burns (Swansea University)
29 October 2020

[T.B. & E. Swanson, 2008.12838]
[T.B. & E. Swanson, 2009.05352]
Experimental properties

Two $X(2900)$ states in $B^+ \rightarrow D^+ X, X \rightarrow D^- K^+$

Their minimal flavour content is $ud\bar{s}\bar{c}$

$X_0(2900)$ \quad 2.866 \pm 0.007 \pm 0.002 \text{ GeV} \quad 0^+$

$X_1(2900)$ \quad 2.904 \pm 0.005 \pm 0.001 \text{ GeV} \quad 1^-$
Experimental properties

Two $X(2900)$ states in $B^+ \rightarrow D^+ X$, $X \rightarrow D^- K^+$

Their minimal flavour content is $ud\bar{s}\bar{c}$

$X_0(2900)$ \hspace{1cm} $2.866 \pm 0.007 \pm 0.002$ GeV \hspace{1cm} 0^+

$X_1(2900)$ \hspace{1cm} $2.904 \pm 0.005 \pm 0.001$ GeV \hspace{1cm} 1^-

$\bar{D}^* K^*$ \hspace{1cm} 2.902 GeV
Experimental properties

Two $X(2900)$ states in $B^+ \rightarrow D^+ X, X \rightarrow D^- K^+$

Their minimal flavour content is $ud\bar{s}\bar{c}$

State	Mass (GeV)	Parity
$X_0(2900)$	$2.866 \pm 0.007 \pm 0.002$	0^+
$X_1(2900)$	$2.904 \pm 0.005 \pm 0.001$	1^-
$\bar{D}^* K^*$	2.902 GeV	$0^+, 1^+, 2^+$ (in S-wave)
Experimental properties

Two $X(2900)$ states in $B^+ \rightarrow D^+ X, X \rightarrow D^- K^+$

Their minimal flavour content is $ud\bar{s}\bar{c}$

$X_0(2900) \quad 2.866 \pm 0.007 \pm 0.002 \text{ GeV} \quad 0^+$
$X_1(2900) \quad 2.904 \pm 0.005 \pm 0.001 \text{ GeV} \quad 1^-$

$\bar{D}^* K^* \quad 2.902 \text{ GeV} \quad 0^+, 1^+, 2^+ \text{ (in S-wave)}$
$\bar{D}_1(2420)K \quad 2.917 \text{ GeV}$
Experimental properties

Two $X(2900)$ states in $B^+ \rightarrow D^+ X$, $X \rightarrow D^- K^+$

Their minimal flavour content is $u d \bar{s} \bar{c}$

$\begin{array}{lll}
X_0(2900) & 2.866 \pm 0.007 \pm 0.002 \text{ GeV} & 0^+ \\
X_1(2900) & 2.904 \pm 0.005 \pm 0.001 \text{ GeV} & 1^- \\
\bar{D}^* K^* & 2.902 \text{ GeV} & 0^+, 1^+, 2^+ \text{ (in S-wave)} \\
\bar{D}_1(2420) K & 2.917 \text{ GeV} & 1^- \text{ (in S-wave)} \\
\end{array}$
Models
Tetraquark

Tetraquark interpretations:

▶ [Karliner & Rosner, 2008.05993]
▶ [He, Wang & Zhu, 2008.07145]
▶ [Zhang, 2008.07295]

But

▶ Mass inconsistent with variational quark model [Lu, Chen, Dong, 2008.07340]
▶ Analogy with bound lattice $ud\bar{b}\bar{b}$ is questionable
▶ If $X(2900)$ are orbital/radial excitations, where are ground states?
▶ No evidence for bound $ud\bar{s}\bar{c}$ in lattice [Hudspith et al 2006.14294], quark model [Zouzou et al 1986], QCD sum rules [Agaev et al 1907.04017]
▶ 1^- state awkward (P-wave)
Many models for $0^+ X_0(2900)$:

- **isoscalar** $\bar{D}^* K^*$ with vector hidden gauge [Molina et al 1005.0355, 2008.11171]
- **isoscalar** $\bar{D}^* K^*$ with effective Lagrangian [Liu et al 2008.07389]
- **isovector** $\bar{D}^* K^*$ with effective Lagrangian [He and Chen 2008.07782]
- **isoscalar** $\bar{D}^* K^*$ with heavy quark symmetry [Hu et al 2008.06894]
- **isoscalar** $\bar{D}^* K^*$ with molecular and diquark d.o.f. [Chen et al 2008.07516, Xue et al 2008.09516]

The $1^- X_1(2900)$ is more difficult:

- **virtual state from** $\bar{D}_1(2420) K$ [He and Chen 2008.07782]
Triangle [Liu et al 2008.07190]
Triangle [Liu et al 2008.07190]

Channels with thresholds near 2900 MeV
Triangle [Liu et al 2008.07190]

(a) $B^+ \rightarrow \chi_{c1} \rightarrow D^+ \rightarrow D^{*-} \rightarrow D^- \rightarrow K^+$

(b) $B^+ \rightarrow D_{sJ}^+ \rightarrow D_1^{0} \rightarrow K^+ \rightarrow K^0 \rightarrow D^-$

colour-suppressed!
Triangle [Liu et al 2008.07190]

 colour-suppressed!
Triangle [Liu et al 2008.07190]

colour-suppressed!
Triangle with FSIs [T.B. & Swanson 2008.12838]
Triangle with FSIs [T.B. & Swanson 2008.12838]
Triangle with FSIs [T.B. & Swanson 2008.12838]

[Diagram showing a triangle with vertices labeled B^+, D_s^{(*)}, K^{(*)}, and K. Arrows and lines indicate interactions and driving channels.]

driving channels with interactions
This is an example fit. Given parametric freedom, can't really distinguish triangle scenario (weak FSIs) from resonance scenario (strong FSIs)
Discriminating among models

[T.B. & E. Swanson, 2009.05352]
\[\bar{b} \rightarrow \bar{c}(c\bar{s}) \] Cabibbo-favoured

colour-favoured

Other diagrams gives wrong flavours and/or are colour suppressed
\[n\bar{n} = \frac{(u\bar{u} + d\bar{d})}{\sqrt{2}} \]
Note the absence of
\[B^+ \rightarrow D^+ D^- K^+ \]
flavour only, e.g. \(\bar{D}^* K^0 \) or \(D^0 K^0 \)
\[
\begin{align*}
\bar{D}^0 & \quad X & \quad D^- \\
K^0 & \quad K^+ & (\bar{D}^0) \\
D^+ & \quad \quad (K^0)
\end{align*}
\begin{align*}
\bar{D}^0 & \quad X^+ & \quad \bar{D}^0 \\
K^+ & \quad K^+ & \quad D^0
\end{align*}
\]
\[\begin{align*}
D^0 & \quad \bar{D}^0 \\
X & \quad D^- \\
K^- & \quad (\bar{D}^0) \\
K^+ & \quad (K^-)
\end{align*} \]
3 B^+ modes...

$B^+ \rightarrow D^+ X$, $X \rightarrow D^- K^+$,
$B^+ \rightarrow D^+ X$, $X \rightarrow \bar{D}^0 K^0$,
$B^+ \rightarrow D^0 X^+$, $X^+ \rightarrow \bar{D}^0 K^+$.
3 B^+ modes...
$B^+ \rightarrow D^+ X$, $X \rightarrow D^- K^+$,
$B^+ \rightarrow D^+ X$, $X \rightarrow \bar{D}^0 K^0$,
$B^+ \rightarrow D^0 X^+$, $X^+ \rightarrow \bar{D}^0 K^+$.
... and another 3 for B^0
All six modes related by isospin properties of operator O, which follows from nature of X.
Results for $X_1(2900)$ and its charged partners
(For $X_0(2900)$ scale by 5.6 / 30.6)

$B(B \to D \bar{D}K)$	$B^+ \to D^+ X$, $X \to D^- K^+$	$B^0 \to D^0 X$, $X \to D^- K^0$	$B^+ \to D^+ X$, $X \to \bar{D}^0 K^+$	$B^0 \to D^0 X$, $X \to D^- K^+$	$B^+ \to D^0 X^+$, $X^+ \to \bar{D}^0 K^+$	$B^0 \to D^+ X^-$, $X^- \to D^- K^0$
$B(B \to D \bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

$f(B \to DX, X \to \bar{D}K)$

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2 \left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		

$\Delta f/f$

| $\Delta f/f$ | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
Results for $X_1(2900)$ and its charged partners
(For $X_0(2900)$ scale by 5.6 / 30.6)

| $B(B \to D \bar{D}K)$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 2.2 ± 0.7 | 2.7 ± 1.1 | 15.5 ± 2.1 | 10.7 ± 1.1 | 14.5 ± 3.3 | 7.5 ± 1.7 |

$f(B \to DX, X \to \bar{D}K)$

Method	Triangle, QE	Triangle, OPE	Triangle, EFT	Resonance, $I = 0$	Resonance, $I = 1$	Resonance, I mixed	$\Delta f/f$
	30.6	30.6	30.6	30.6	30.6	30.6	0.1
	23.2	23.2	23.2	23.2	23.2	23.2	0.53
	0	1.1	1.1	4.3	4.3	4.3	0.36
				0	5.8	5.8	0.35
							0.41
							0.41
Results for $X_1(2900)$ and its charged partners
(For $X_0(2900)$ scale by 5.6 / 30.6)

$B(\rightarrow D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7
$f(\rightarrow DX, X \rightarrow \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2 \left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41
A triangle diagram with quark-exchange (QE), one-pion exchange (OPE) or effective field theory (EFT) interactions

$B(B \to D\bar{D}K)$	$B^+ \to D^+X$, $X \to D^-K^+$	$B^0 \to D^0X$, $X \to \bar{D}^0K^0$	$B^+ \to D^+X$, $X \to \bar{D}^0K^0$	$B^0 \to D^0X$, $X \to D^-K^+$	$B^+ \to D^0X^+$, $X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-$, $X^- \to D^-K^0$
$B(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

$f(B \to DX, X \to \bar{D}K)$
Triangle, QE
Triangle, OPE
Triangle, EFT
Resonance, $I = 0$
Resonance, $I = 1$
Resonance, I mixed

| $\Delta f/f$ | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
$B(B \to D\bar{D}K)$	$B^+ \to D^+X$, $X \to D^-K^+$	$B^0 \to D^0X$, $X \to \bar{D}^0K^0$	$B^+ \to D^+X$, $X \to \bar{D}^0K^0$	$B^0 \to D^0X$, $X \to D^-K^+$	$B^+ \to D^0X^+$, $X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-$, $X^- \to D^-K^0$
\mathcal{B}	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

$f(B \to DX, X \to \bar{D}K)$

	Triangle, QE	Triangle, OPE	Triangle, EFT	Resonance, $I = 0$	Resonance, $I = 1$	Resonance, I mixed
f	23.2	1.1	1.1	0	4.3	4.3 tan² $(\theta + \frac{\pi}{4})$
Resonance, $I = 0$	30.6	0	5.8	0	18.6	5.8 tan² $(\theta - \frac{\pi}{4})$
Resonance, $I = 1$	30.6	23.2	4.3	5.8	33.4	0
Resonance, I mixed	30.6	23.2	4.3	5.8	33.4	0

$\Delta f/f$

| | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

Resonance, either molecular or tetraquark
Mixed isospin case relevant for molecule
\[f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)} \]

	\(B^+ \rightarrow D^+X, \)
	\(X \rightarrow D^-K^+ \)
	\(B^+ \rightarrow D^+X, \)
	\(B^0 \rightarrow D^0X, \)
	\(B^+ \rightarrow D^0X^+, \)
	\(B^0 \rightarrow D^+X^-, \)
\(\mathcal{B}(B \rightarrow D\bar{D}K) \)	2.2 ± 0.7

\[f(B \rightarrow DX, X \rightarrow \bar{D}K) \]

	Triangle, QE	Triangle, OPE	Triangle, EFT	Resonance, \(I = 0 \)	Resonance, \(I = 1 \)	Resonance, \(I \) mixed
	30.6	23.2	0	0	4.6	8.3
	30.6	23.2	1.1	1.5	1.2	2.1
	30.6	23.2	1.1 \left(1 - \frac{C_0}{C_1}\right)^2	1.5 \left(1 - \frac{C_0}{C_1}\right)^2	1.2 \left(1 + \frac{C_0}{C_1}\right)^2	2.1 \left(1 + \frac{C_0}{C_1}\right)^2
	30.6	23.2	4.3	5.8	0	0
	30.6	23.2	4.3	5.8	18.6	33.4
	30.6	23.2	4.3 tan^2 \left(\theta + \frac{\pi}{4}\right)	5.8 tan^2 \left(\theta - \frac{\pi}{4}\right)		

\[\Delta f/f \]

| | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[
\begin{align*}
f(B \to DX, X \to \bar{D}K) &= \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \\
\end{align*}
\]

- Relations among matrix elements and small correction (B lifetime)

\(B \to D\bar{D}K \)	2.2 \(\pm \) 0.7	2.7 \(\pm \) 1.1	15.5 \(\pm \) 2.1	10.7 \(\pm \) 1.1	14.5 \(\pm \) 3.3	7.5 \(\pm \) 1.7

\[
f(B \to DX, X \to \bar{D}K)
\]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	\(1 - \frac{C_0}{C_1}\)^2	1.5 \(1 - \frac{C_0}{C_1}\)^2	1.2 \(1 + \frac{C_0}{C_1}\)^2	2.1 \(1 + \frac{C_0}{C_1}\)^2
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	4.3 \(\tan^2 (\theta + \frac{\pi}{4})\)	5.8 \(\tan^2 (\theta - \frac{\pi}{4})\)		

| \(\Delta f/f \) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)} \]

\(\mathcal{B}(B \rightarrow D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \rightarrow DX, X \rightarrow \bar{D}K) \]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	1.1 \(1 - \frac{C_0}{C_1} \)^2	1.5 \(1 - \frac{C_0}{C_1} \)^2	1.2 \(1 + \frac{C_0}{C_1} \)^2	2.1 \(1 + \frac{C_0}{C_1} \)^2
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	4.3 \(\tan^2 (\theta + \frac{\pi}{4}) \)	5.8 \(\tan^2 (\theta - \frac{\pi}{4}) \)		

\(\Delta f/f \)

| 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \quad \text{enhancement if 3-body small} \]

\(B \to D\bar{D}K \)	\(B^+ \to D^+X, \\ X \to D^-K^+ \)	\(B^0 \to D^0X, \\ X \to \bar{D}^0K^0 \)	\(B^+ \to D^+X, \\ X \to \bar{D}^0K^0 \)	\(B^0 \to D^0X, \\ X \to D^-K^+ \)	\(B^+ \to D^0X^+, \\ X^+ \to \bar{D}^0K^+ \)	\(B^0 \to D^+X^-, \\ X^- \to D^-K^0 \)
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

| \(f(B \to DX, X \to \bar{D}K) \) |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Triangle, QE | 30.6 | 23.2 | 0 | 0 | 4.6 | 8.3 |
| Triangle, OPE | 30.6 | 23.2 | 1.1 | 1.5 | 1.2 | 2.1 |
| Triangle, EFT | 30.6 | 23.2 | \(1.1 \left(1 - \frac{C_0}{C_1}\right)^2 \) | \(1.5 \left(1 - \frac{C_0}{C_1}\right)^2 \) | \(1.2 \left(1 + \frac{C_0}{C_1}\right)^2 \) | \(2.1 \left(1 + \frac{C_0}{C_1}\right)^2 \) |
| Resonance, \(I = 0 \) | 30.6 | 23.2 | 4.3 | 5.8 | 0 | 0 |
| Resonance, \(I = 1 \) | 30.6 | 23.2 | 4.3 | 5.8 | 18.6 | 33.4 |
| Resonance, \(I \) mixed | 30.6 | 23.2 | \(4.3 \tan^2 (\theta + \frac{\pi}{4}) \) | \(5.8 \tan^2 (\theta - \frac{\pi}{4}) \) |

| \(\Delta f/f \) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[
f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)}
\]

\(B \to D^+X, X \to D^-K^+\)	\(B^0 \to D^0X, X \to \bar{D}^0K^0\)	\(B^+ \to D^+X, X \to \bar{D}^0K^0\)	\(B^0 \to D^0X, X \to D^-K^+\)	\(B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+\)	\(B^0 \to D^+X^-, X^- \to D^-K^0\)	
\(\mathcal{B}(B \to D\bar{D}K)\)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[
f(B \to DX, X \to \bar{D}K)
\]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	\(1.1 \left(1 - \frac{C_0}{C_1}\right)^2\)	\(1.5 \left(1 - \frac{C_0}{C_1}\right)^2\)	\(1.2 \left(1 + \frac{C_0}{C_1}\right)^2\)	\(2.1 \left(1 + \frac{C_0}{C_1}\right)^2\)
Resonance, \(I = 0\)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1\)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I\) mixed	30.6	23.2	\(4.3 \tan^2(\theta + \frac{\pi}{4})\)	\(5.8 \tan^2(\theta - \frac{\pi}{4})\)		

\[
\Delta f/f
\]

| 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

fractional uncertainty
\[f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)} \]

\(\mathcal{B}(B \rightarrow D\bar{D}K) \)	\(B^+ \rightarrow D^+X, \quad X \rightarrow D^-K^+ \)	\(B^0 \rightarrow D^0X, \quad X \rightarrow D^0K^0 \)	\(B^+ \rightarrow D^+X, \quad X \rightarrow \bar{D}^0K^0 \)	\(B^0 \rightarrow D^0X, \quad X \rightarrow D^-K^+ \)	\(B^+ \rightarrow D^0X^+, \quad X^+ \rightarrow \bar{D}^0K^+ \)	\(B^0 \rightarrow D^+X^-, \quad X^- \rightarrow D^-K^0 \)
2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	

\(f(B \rightarrow DX, X \rightarrow \bar{D}K) \)
Triangle, QE
Triangle, OPE
Triangle, EFT
Resonance, \(I = 0 \)
Resonance, \(I = 1 \)
Resonance, \(I \) mixed

| \(\Delta f/f \) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

existing channel is largest
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

Mode	\(B^+ \to D^+X, X \to D^-K^+ \)	\(B^0 \to D^0X, X \to \bar{D}^0K^0 \)	\(B^+ \to D^+X, X \to \bar{D}^0K^0 \)	\(B^0 \to D^0X, X \to D^-K^+ \)	\(B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+ \)	\(B^0 \to D^+X^-, X^- \to D^-K^0 \)
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \to DX, X \to \bar{D}K) \]

Model	\(\text{Triangle, QE} \)	\(\text{Triangle, OPE} \)	\(\text{Triangle, EFT} \)	\(\text{Resonance, } I = 0 \)	\(\text{Resonance, } I = 1 \)	\(\text{Resonance, } I \text{ mixed} \)
\(30.6 \)	23.2	0	1.1 \((1 - \frac{c_0}{c_1})^2 \)	1.5 \((1 - \frac{c_0}{c_1})^2 \)	1.2 \((1 + \frac{c_0}{c_1})^2 \)	2.1 \((1 + \frac{c_0}{c_1})^2 \)
\(30.6 \)	23.2	1.1	1.5 \((1 - \frac{c_0}{c_1})^2 \)	1.2 \((1 + \frac{c_0}{c_1})^2 \)	2.1 \((1 + \frac{c_0}{c_1})^2 \)	
\(30.6 \)	23.2	4.3	5.8	0	0	
\(30.6 \)	23.2	4.3	5.8	18.6	33.4	
\(30.6 \)	23.2	4.3 \(\tan^2 \left(\theta + \frac{\pi}{4} \right) \)	5.8 \(\tan^2 \left(\theta - \frac{\pi}{4} \right) \)			

\[\Delta f/f \]

| \(0.1 \) | \(0.53 \) | \(0.36 \) | \(0.35 \) | \(0.41 \) | \(0.41 \) |

Neutral mode is comparable general prediction, same for all models.
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

\(B^+ \to D^+X, \) \(X \to D^-K^+ \)	\(B^0 \to D^0X, \) \(X \to \bar{D}^0K^0 \)	\(B^+ \to D^+X, \) \(X \to \bar{D}^0K^0 \)	\(B^0 \to D^0X, \) \(X \to D^-K^+ \)	\(B^+ \to D^0X^+, \) \(X^+ \to \bar{D}^0K^+ \)	\(B^0 \to D^+X^-, \) \(X^- \to D^-K^0 \)	
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 \(\pm \) 0.7	2.7 \(\pm \) 1.1	15.5 \(\pm \) 2.1	10.7 \(\pm \) 1.1	14.5 \(\pm \) 3.3	7.5 \(\pm \) 1.7

\[f(B \to DX, X \to \bar{D}K) \]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	\(1.1 \left(1 - \frac{C_0}{C_1} \right)^2 \)	\(1.5 \left(1 - \frac{C_0}{C_1} \right)^2 \)	\(1.2 \left(1 + \frac{C_0}{C_1} \right)^2 \)	\(2.1 \left(1 + \frac{C_0}{C_1} \right)^2 \)
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	\(4.3 \tan^2 (\theta + \frac{\pi}{4}) \)	\(5.8 \tan^2 (\theta - \frac{\pi}{4}) \)		

\(\Delta f/f \)

| | | | 0.36 | 0.35 | 0.41 | 0.41 |

remaining predictions discriminate among models
uncertainties are large but predictions still discriminate
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

$B^+ \to D^+X, \ X \to D^-K^+$	$B^0 \to D^0X, \ X \to D^0K^0$	$B^+ \to D^+X, \ X \to D^-K^+$	$B^0 \to D^0X, \ X \to D^-K^+$	$B^+ \to D^0X^+, \ X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-, \ X^- \to D^-K^0$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

$f(B \to DX, X \to \bar{D}K)$
Triangle, QE
Triangle, OPE
Triangle, EFT
Resonance, $I = 0$
Resonance, $I = 1$
Resonance, I mixed

| $\Delta f/f$ | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

Production Mode	\(B^+ \to D^+X, \ X \to D^-K^+\)	\(B^0 \to D^0X, \ X \to \bar{D}^0K^0\)	\(B^+ \to D^+X, \ X \to \bar{D}^0K^0\)	\(B^0 \to D^0X, \ X \to D^-K^+\)	\(B^+ \to D^0X^+, \ X^+ \to \bar{D}^0K^+\)	\(B^0 \to D^+X^-, \ X^- \to D^-K^0\)
\(\mathcal{B}(B \to D\bar{D}K)\)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[
f(B \to DX, X \to \bar{D}K)\]

Contribution	Triangle, QE	Triangle, OPE	Triangle, EFT	Resonance, \(I = 0\)	Resonance, \(I = 1\)	Resonance, \(I\) mixed
Value	30.6	30.6	30.6	30.6	30.6	30.6
Value	23.2	23.2	23.2	23.2	23.2	23.2
Value	0	1.1	\(1.1 \left(1 - \frac{C_0}{C_1} \right)^2\)	\(1.5 \left(1 - \frac{C_0}{C_1} \right)^2\)		
Value	0	1.5	\(1.2 \left(1 + \frac{C_0}{C_1} \right)^2\)	\(2.1 \left(1 + \frac{C_0}{C_1} \right)^2\)		
Value	4.6	1.2	2.1	4.3 tan^2 \(\theta + \frac{\pi}{4}\)		
Value	8.3	2.1	33.4	5.8 tan^2 \(\theta - \frac{\pi}{4}\)		

| \(\Delta f/f\) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

same production mode

different final state
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

\(B \to DX, X \to \bar{D}K \)	\(B^+ \to D^+X, X \to D^-K^+ \)	\(B^0 \to D^0X, X \to \bar{D}^0K^0 \)	\(B^+ \to D^+X, X \to \bar{D}^0K^0 \)	\(B^0 \to D^0X, X \to D^-K^+ \)	\(B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+ \)	\(B^0 \to D^+X^-, X^- \to D^-K^0 \)
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \to DX, X \to \bar{D}K) \]

- Triangle, QE: 30.6, 23.2, 0, 4.6, 8.3
- Triangle, OPE: 30.6, 23.2, 1.1, 1.5, 1.2, 2.1
- Triangle, EFT: 30.6, 23.2, \(1.1 \left(1 - \frac{C_0}{C_1} \right)^2 \), \(1.5 \left(1 - \frac{C_0}{C_1} \right)^2 \), \(1.2 \left(1 + \frac{C_0}{C_1} \right)^2 \), \(2.1 \left(1 + \frac{C_0}{C_1} \right)^2 \)
- Resonance, \(I = 0 \): 30.6, 23.2, 4.3, 5.8, 0, 0
- Resonance, \(I = 1 \): 30.6, 23.2, 4.3, 5.8, 18.6, 33.4
- Resonance, \(I \) mixed: 30.6, 23.2, \(4.3 \tan^2 \left(\theta + \frac{\pi}{4} \right) \), \(5.8 \tan^2 \left(\theta - \frac{\pi}{4} \right) \)

\(\Delta f/f \)

- 0.1, 0.53, 0.36, 0.35, 0.41, 0.41

Selection Rule: The selection rule is indicated where the entries are highlighted.

Same Production Mode, Different Final State: This is indicated by the boxed entries in the table.
\[
f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)}
\]

	$B^+ \to D^+X, X \to D^-K^+$	$B^0 \to D^0X, X \to \bar{D}^0K^0$	$B^+ \to D^+X, X \to \bar{D}^0K^0$	$B^0 \to D^0X, X \to D^-K^+$	$B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-, X^- \to D^-K^0$
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

	$B^+ \to D^+X, X \to D^-K^+$	$B^0 \to D^0X, X \to \bar{D}^0K^0$	$B^+ \to D^+X, X \to \bar{D}^0K^0$	$B^0 \to D^0X, X \to D^-K^+$	$B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-, X^- \to D^-K^0$
$f(B \to DX, X \to \bar{D}K)$						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	$1.1 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.5 \left(1 - \frac{C_0}{C_1}\right)^2$	$1.2 \left(1 + \frac{C_0}{C_1}\right)^2$	$2.1 \left(1 + \frac{C_0}{C_1}\right)^2$
Resonance, $I = 0$	30.6	23.2	4.3	5.8	0	0
Resonance, $I = 1$	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, I mixed	30.6	23.2	$4.3 \tan^2 \left(\theta + \frac{\pi}{4}\right)$	$5.8 \tan^2 \left(\theta - \frac{\pi}{4}\right)$		
$\Delta f/f$	0.1	0.53	0.36	0.35	0.41	0.41
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

$B^+ \to D^+X$, $X \to D^-K^+$	$B^0 \to D^0X$, $X \to \bar{D}^0K^0$	$B^+ \to D^+X$, $X \to \bar{D}^0K^0$	$B^0 \to D^0X$, $X \to D^-K^+$	$B^+ \to D^0X^+$, $X^+ \to \bar{D}^0K^+$	$B^0 \to D^+X^-$, $X^- \to D^-K^0$	
$\mathcal{B}(B \to D\bar{D}K)$	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

Constraint on contact terms

- Triangle, QE
- Triangle, OPE
- Triangle, EFT
- Resonance, $I = 0$
- Resonance, $I = 1$
- Resonance, I mixed

\[\Delta f/f \]

same production mode
different final state
\[f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)} \]

\(\mathcal{B}(B \rightarrow D\bar{D}K)\)	\(B^+ \rightarrow D^+X, X \rightarrow D^-K^+\)	\(B^0 \rightarrow D^0X, X \rightarrow \bar{D}^0K^0\)	\(B^+ \rightarrow D^+X, X \rightarrow \bar{D}^0K^0\)	\(B^0 \rightarrow D^0X, X \rightarrow D^-K^+\)	\(B^+ \rightarrow D^0X^+, X^+ \rightarrow \bar{D}^0K^+\)	\(B^0 \rightarrow D^+X^-, X^- \rightarrow D^-K^0\)
2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7	

\[f(B \rightarrow DX, X \rightarrow \bar{D}K) \]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	\(1.1 \left(1 - \frac{C_0}{C_1}\right)^2\)	\(1.5 \left(1 - \frac{C_0}{C_1}\right)^2\)	\(1.2 \left(1 + \frac{C_0}{C_1}\right)^2\)	\(2.1 \left(1 + \frac{C_0}{C_1}\right)^2\)
Resonance, \(I = 0\)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1\)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \text{ mixed}\)	30.6	23.2	\(4.3 \tan^2\left(\theta + \frac{\pi}{4}\right)\)	5.8 \(\tan^2\left(\theta - \frac{\pi}{4}\right)\)		

| \(\Delta f/f\) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

constraint on isospin mixing angle

same production mode, different final state
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

	\(B^+ \to D^+X, X \to D^-K^+ \)	\(B^0 \to D^0X, X \to \bar{D}^0K^0 \)	\(B^+ \to D^+X, X \to \bar{D}^0K^0 \)	\(B^0 \to D^0X, X \to D^-K^+ \)	\(B^+ \to D^0X^+, X^+ \to \bar{D}^0K^+ \)	\(B^0 \to D^+X^-, X^- \to D^-K^0 \)
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 \(\pm 0.7 \)	2.7 \(\pm 1.1 \)	15.5 \(\pm 2.1 \)	10.7 \(\pm 1.1 \)	14.5 \(\pm 3.3 \)	7.5 \(\pm 1.7 \)
\(f(B \to DX, X \to \bar{D}K) \)						
Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	1.1 \((1 - \frac{C_0}{C_1})^2 \)	1.5 \((1 - \frac{C_0}{C_1})^2 \)	1.2 \((1 + \frac{C_0}{C_1})^2 \)	2.1 \((1 + \frac{C_0}{C_1})^2 \)
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	4.3 \(\tan^2 (\theta + \frac{\pi}{4}) \)	5.8 \(\tan^2 (\theta - \frac{\pi}{4}) \)		
\(\Delta f/f \)	0.1	0.53	0.36	0.35	0.41	0.41

Similar patterns for neutral X in neutral B decays.
\[f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)} \]

\(B^+ \rightarrow D^+X, \) \(X \rightarrow D^-K^+ \)	\(B^0 \rightarrow D^0X, \) \(X \rightarrow \bar{D}^0K^0 \)	\(B^+ \rightarrow D^+X, \) \(X \rightarrow \bar{D}^0K^0 \)	\(B^0 \rightarrow D^0X, \) \(X \rightarrow D^-K^+ \)	\(B^+ \rightarrow D^0X^+, \) \(X^+ \rightarrow \bar{D}^0K^+ \)	\(B^0 \rightarrow D^+X^-, \) \(X^- \rightarrow D^-K^0 \)	
\(\mathcal{B}(B \rightarrow D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \rightarrow DX, X \rightarrow \bar{D}K) \]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	1.1 \(\left(1 - \frac{C_0}{C_1} \right)^2 \)	1.5 \(\left(1 - \frac{C_0}{C_1} \right)^2 \)	1.2 \(\left(1 + \frac{C_0}{C_1} \right)^2 \)	2.1 \(\left(1 + \frac{C_0}{C_1} \right)^2 \)
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	4.3 tan² \(\theta + \frac{\pi}{4} \)	5.8 tan² \(\theta - \frac{\pi}{4} \)		

\(\Delta f/f \)

| 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |

similar patterns for neutral X in neutral B decays
\[f(B \to DX, X \to \bar{D}K) = \frac{\mathcal{B}(B \to DX, X \to \bar{D}K)}{\mathcal{B}(B \to D\bar{D}K)} \]

\(B^+ \to D^+X, \ X \to D^-K^+ \)	\(B^0 \to D^0X, \ X \to \bar{D}^0 K^0 \)	\(B^+ \to D^+X, \ X \to \bar{D}^0 K^0 \)	\(B^0 \to D^0X, \ X \to D^-K^+ \)	\(B^+ \to D^0 X^+, \ X^+ \to \bar{D}^0 K^+ \)	\(B^0 \to D^+ X^-, \ X^- \to D^- K^0 \)	
\(\mathcal{B}(B \to D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \to DX, X \to \bar{D}K) \]

- **Triangle, QE**: 30.6
- **Triangle, OPE**: 30.6
- **Triangle, EFT**: 30.6
- **Resonance, \(I = 0 \)**: 30.6
- **Resonance, \(I = 1 \)**: 30.6
- **Resonance, \(I \) mixed**: 30.6

\(\Delta f/f \) | 0.1 | 0.53 | 0.36 | 0.35 | 0.41 | 0.41 |
\[f(B \to D^+ X, X \to \bar{D} K) = \frac{\mathcal{B}(B \to D^+ X, X \to \bar{D} K)}{\mathcal{B}(B \to D^- K)} \]

discriminate among models

	\(B^+ \to D^+ X, X \to D^- K^+ \)	\(B^0 \to D^0 X, X \to \bar{D}^0 K^0 \)	\(B^+ \to D^+ X, X \to \bar{D}^0 K^0 \)	\(B^0 \to D^0 X, X \to D^- K^+ \)	\(B^+ \to D^0 X^+, X^+ \to \bar{D}^0 K^+ \)	\(B^0 \to D^+ X^-, X^- \to D^- K^0 \)
\(\mathcal{B}(B \to D \bar{D} K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[f(B \to D^+ X, X \to \bar{D} K) \]

- Triangle, QE:
 - 30.6
- Triangle, OPE:
 - 30.6
- Triangle, EFT:
 - 30.6
- Resonance, \(I = 0 \):
 - 30.6
- Resonance, \(I = 1 \):
 - 30.6
- Resonance, \(I \) mixed:
 - 30.6

\[\Delta f/f \]

- 0.1
- 0.53
- 0.36
- 0.35
- 0.41
- 0.41

charged partners

absent only in \(I=0 \) resonance scenario
\[
f(B \rightarrow DX, X \rightarrow \bar{D}K) = \frac{\mathcal{B}(B \rightarrow DX, X \rightarrow \bar{D}K)}{\mathcal{B}(B \rightarrow D\bar{D}K)}
\]

\(B^+ \rightarrow D^+X, \) \(X \rightarrow D^-K^+ \)	\(B^0 \rightarrow D^0X, \) \(X \rightarrow \bar{D}^0K^0 \)	\(B^+ \rightarrow D^+X, \) \(X \rightarrow \bar{D}^0K^0 \)	\(B^0 \rightarrow D^0X, \) \(X \rightarrow D^-K^+ \)	\(B^+ \rightarrow D^0X^+ , \) \(X^+ \rightarrow \bar{D}^0K^+ \)	\(B^0 \rightarrow D^+X^-, \) \(X^- \rightarrow D^-K^0 \)	
\(\mathcal{B}(B \rightarrow D\bar{D}K) \)	2.2 ± 0.7	2.7 ± 1.1	15.5 ± 2.1	10.7 ± 1.1	14.5 ± 3.3	7.5 ± 1.7

\[
f(B \rightarrow DX, X \rightarrow \bar{D}K)
\]

Triangle, QE	30.6	23.2	0	0	4.6	8.3
Triangle, OPE	30.6	23.2	1.1	1.5	1.2	2.1
Triangle, EFT	30.6	23.2	1.1 \(\left(1 - \frac{C_0}{C_1}\right)^2 \)	1.5 \(\left(1 - \frac{C_0}{C_1}\right)^2 \)	1.2 \(\left(1 + \frac{C_0}{C_1}\right)^2 \)	2.1 \(\left(1 + \frac{C_0}{C_1}\right)^2 \)
Resonance, \(I = 0 \)	30.6	23.2	4.3	5.8	0	0
Resonance, \(I = 1 \)	30.6	23.2	4.3	5.8	18.6	33.4
Resonance, \(I \) mixed	30.6	23.2	4.3 \(\tan^2 \left(\theta + \frac{\pi}{4}\right) \)	5.8 \(\tan^2 \left(\theta - \frac{\pi}{4}\right) \)	0.41	0.41

\[
\Delta f/f = \begin{array}{c}
0.1 \\
0.53 \\
0.36 \\
0.35 \\
0.41 \\
0.41 \\
\end{array}
\]

enormous fit fractions in \(I=1 \) resonance scenario
Resonance scenarios only:

\[\mathcal{B}(B \to DX, X \to \bar{D}K) = \mathcal{B}(B \to DX) \mathcal{B}(X \to \bar{D}K). \]
Resonance scenarios only:

\[\mathcal{B}(B \to DX, X \to \bar{D}K) = \mathcal{B}(B \to DX) \mathcal{B}(X \to \bar{D}K). \]
Resonance scenarios only:

\[B(B \to DX, X \to \bar{D}K) = B(B \to DX)B(X \to \bar{D}K). \]

Note: \(B(X \to \bar{D}K) \ll 1 \) is natural!
so \(B(B \to DX) \) could be very large.
Conclusions
Triangle and resonance scenarios fit experimental data in amplitude model.
Conclusions

Triangle and resonance scenarios fit experimental data in amplitude model

Assuming
- dominance of colour-favoured transitions, and
- isospin
we get relations among fit fractions
Conclusions

Triangle and resonance scenarios fit experimental data in amplitude model.

Assuming
- dominance of colour-favoured transitions, and
- isospin
we get relations among fit fractions.

Six possible modes
- some new modes have very large fit fraction
- pattern can discriminate among models.

(absent only in I=0 resonance scenario)