X-ray Crystal Structure and Characterization of Halide-binding Sites of Human Myeloperoxidase at 1.8 Å Resolution*

(Received for publication, October 27, 1999, and in revised form, January 4, 2000)

Tristan J. Fiedler, Curt A. Davey‡, and Roger E. Fenna§

From the Department of Biochemistry and Molecular Biology, University of Miami Medical School, Miami, Florida 33136

The x-ray crystal structure of human myeloperoxidase has been extended to 1.8 Å resolution, using x-ray data recorded at −180 °C (r = 0.197, free r = 0.239). Results confirm that the heme is covalently attached to the protein via two ester linkages between the carboxyl groups of Glu242 and Asp94 and modified methyl groups on pyrrole rings A and C of the heme as well as a sulfonium ion linkage between the sulfur atom of Met243 and the β-carbon of the vinyl group on pyrrole ring A. In the native enzyme a bound chloride ion has been identified at the amino terminus of the helix containing the proximal His336. Determination of the x-ray crystal structure of a myeloperoxidase-bromide complex (r = 0.243, free r = 0.296) has shown that this chloride ion can be replaced by bromide. Bromide is also seen to bind, at partial occupancy, in the distal heme cavity, in close proximity to the distal His95, where it replaces the water molecule hydrogen bonded to Gln91. The bromide-binding site in the distal cavity appears to be the halide-binding site responsible for shifts in the Soret band of the ferric enzyme is considerably red-shifted compared with other heme proteins, and relatively strong absorption bands in the visible region are responsible for the characteristic green color of the enzyme (12).

The overall protein fold of MPO was first revealed by a 3-Å resolution crystal structure of the canine enzyme (14). Apparently identical halves of the dimeric molecule are related by a noncrystallographic dyad axis and covalently linked by a single disulfide bridge at Cys153. The secondary structure is largely α-helical, with very little β-sheet. Each half molecule consists of a central core of five helices and a covalently bound heme. Four of these helices derive from the large polypeptide and the fifth from the small. The remainder of the large polypeptide folds into four separate domains and a single open loop that surround the central core. The small polypeptide wraps around the surface of the molecule with only its carboxyl-terminal helix penetrating the interior to form part of the central core. A very similar protein fold has been found for the catalytic domain of the membrane-bound enzyme prostaglandin H synthase, which shares 22% sequence identity with MPO (15).

The heme is capable of either two-electron peroxidation of halide ions (1, 2) and the pseudohalide thiocyanate (3, 4), according to the following reaction.

\[
\text{H}_2\text{O}_2 + \text{Cl}^- + \text{H}_2\text{O}^+ \rightarrow \text{HOCl} + 2\text{H}_2\text{O}
\]

REACTION 1

Products of these reactions and their secondary metabolites are responsible for killing phagocytized bacteria and viruses (5, 6).

Myeloperoxidase (MPO, EC 1.11.1.7)1 is a heme-containing enzyme found in mammalian neutrophils, where it catalyzes the hydrogen peroxide mediated peroxidation of halide ions (1, 2) and the pseudohalide thiocyanate (3, 4), according to the following reaction.

\[
\text{H}_2\text{O}_2 + \text{Cl}^- + \text{H}_2\text{O}^+ \rightarrow \text{HOCl} + 2\text{H}_2\text{O}
\]

REACTION 1

Products of these reactions and their secondary metabolites are responsible for killing phagocytized bacteria and viruses (5, 6).

1 The abbreviations used are: MPO, myeloperoxidase; LPO, lactoperoxidase; PEG 8k, polyethylene glycol (average mass, 8 kDa).
ions and thiocyanate or single-electron oxidation of a wide variety of aromatic alcohols and amines. The mechanism by which MPO catalyzes halide peroxidation is complex, because both H$_2$O$_2$ and halide are also inhibitors. Halide inhibition is competitive with respect to H$_2$O$_2$, and at any given pH there is an optimal ratio of the concentrations of halide: H$_2$O$_2$ consistent with maximal reaction velocity (19–22). The reaction of H$_2$O$_2$ with MPO to form compound I is pH-dependent. A group on the enzyme with a pK of 4.0 to 4.3, presumed to be the distal histidine, must be deprotonated for H$_2$O$_2$ binding to occur; whereas conversely, halide binding is favored at low pH when this group is protonated (23, 24). Spectral changes accompany the binding of halides to MPO. Fluoride, chloride, bromide, and iodide induce red-shifts of the Soret maximum from 428 nm to 423 nm, 419 nm, and 415 nm, respectively, and measurements of these spectral changes have been used to determine the pH dependence of halide binding to the enzyme (19, 23). However, these studies have arrived at differing conclusions concerning the number of halide-binding sites on the enzyme and whether there are separate sites for halide binding as a substrate and as an inhibitor.

In this paper we present additional detailed information on the active site region of MPO as revealed by a structure determination of the human enzyme to 1.8 Å resolution, using x-ray diffraction data recorded at $-180 \, ^\circ$C. In addition, structure determination of an MPO-bromide complex has revealed a number of halide-binding sites, and their possible relevance to the catalytic mechanism of the enzyme is discussed.

EXPERIMENTAL PROCEDURES

Crystallization—Crystals of human MPO isomorph C were grown by a method similar to those reported previously (25, 26). Hanging droplets containing 20 mg/ml MPO, 50 mM sodium acetate (pH 5.5), 50 mM ammonium sulfate, 2 mM calcium chloride, and 6% (w/v) PEG 8k were equilibrated with reservoirs containing the same concentrations of the above salts but with 22 to 25% w/v PEG 8k at 65 °F. Crystals were transferred to protein-free substitute mother liquor containing the above salts and 16% w/v PEG 8k for crystallographic experiments. For low temperature data collection, 20% (w/v) 2-methyl 2,4-pentanediol was included as cryoprotectant.

Data Collection and Processing—X-ray diffraction data were recorded using a 30-cm MAR image plate detector (MAR Research, Hamburg, Germany) mounted on a Rigaku RU300 x-ray generator equipped with long focusing mirrors (Area Detector Systems Corp., Poway, CA). A native low temperature (~180 °C) diffraction data set to 1.8 Å resolution was recorded from a single crystal, flash-frozen in a stream of cold nitrogen from a crystal cooling device (Area Detector Systems Corp.). The crystal to detector distance was set at 115 mm, and 231 frames of data were recorded at 1° rotation intervals. Image processing and data scaling were performed with DENZO and SCALPACK (27). The crystals belong to space group P2$_1$ with a single dimeric molecule of MPO as the asymmetric unit. Unit cell parameters from the frozen crystal were: $a = 110.0 \, \AA$, $b = 63.4 \, \AA$, $c = 92.2 \, \AA$, $\beta = 97.4^\circ$, compared with values of $a = 111.7 \, \AA$, $b = 64.6 \, \AA$, $c = 94.2 \, \AA$, $\beta = 97.9^\circ$ at room temperature (16), indicating significant shrinkage of the unit cell at cryogenic temperature. Data collection and scaling statistics are given in Table I.

Structure Determination and Refinement—The starting model for refinement was the 2.3 Å resolution structure of human MPO represented in the Rutgers University Protein Data Bank under access code 1D2V (16). This model consists of 9424 nonhydrogen protein atoms and 423 water molecules. The crystallographic R-factor was 15.0% for 55,500 reflections (93% completion) in the resolution range 6.0 to 2.28 Å, with root mean square deviations from ideality for bond lengths and angles of 0.013 Å and 3.01°. Refinement using the 1.8 Å resolution low temperature data set was carried out using X-PLOR version 3.8 (28) and stereochemical parameters derived from Engh and Huber (29). Cycles of simulated annealing, conjugate-gradient energy minimization, and isotropic temperature factor refinement were performed between stages of model rebuilding using 2Fo − Fi and Fi − Fo maps in conjunction with the molecular modeling program TURBO (Bio-Graphies Inc., Marseille, France). The highest resolution of x-ray data included in the refinement was increased stepwise from 2.25 Å to 2.0, 1.85, and 1.8 Å. A subset comprising 5% of the reflections was not used in refinement to allow for calculation of a free R-factor (30). Additional water molecules were included in the model when observed as spherical peaks at a level of at least 4σ in Fo-Fe difference maps, provided that suitable hydrogen bonding partners were already present in the model. Water molecules that failed to reappear at 2σ in 2Fo − Fi maps following a round of refinement were removed from the model. Because of an ambiguity in the hydrogen bonding pattern for water molecules in the distal heme cavity in the 2.3 Å resolution structure of human MPO, all water molecules in the distal cavity were specifically excluded from the model until the late stages of refinement when their positions could be clearly determined from 2Fo − Fi difference maps. Also, toward the end of refinement, solute ions, including acetate and sulfate were added to the model where indicated by additional difference map density and the presence of suitable protein ligands. Noncrystallographic symmetry restraints were not used during refinement, but a bulk solvent model was included in the final stages and resulted in considerable improvement in the R-factor for data in the lowest resolution shell. The quality of the model was assessed using the program PROCHECK (31). Coordinates for the final model have been deposited with the Rutgers University Protein Data Bank, access code 1CX5.

Bromide-substituted Crystals—A crystal of human MPO was transformed to substitute mother liquor consisting of 16% PEG 8k, 50 mM sodium acetate (pH 5.5), 50 mM ammonium sulfate, 2 mM calcium acetate, and 20 mM sodium bromide. Following equilibration for 48 h, the crystal was washed briefly in the same mother liquor with 20% (v/v) 2-methyl 2,4-pentanediol added as cryoprotectant before flash freezing in a stream of nitrogen at ~180 °C. X-ray diffraction data were recorded as described for the native enzyme and scaling statistics are given in Table I. The positions of bound bromide ions were determined from a difference Fourier map using F_o(MPO-bromide) − F_o(MPO) as coefficients. Subsequently, bromide ions were included in the model, and refinement of the structure was carried out using X-PLOR version 3.8 as described above. Coordinates for the refined model of the MPO-bromide complex have been deposited with the Rutgers University Protein Data Bank under access code 1D2V.

RESULTS

Quality of the Refined Native MPO Model—The final model consists of 10,307 nonhydrogen atoms, including 1140 amino acids, 2 hemes, 16 sugars, 2 calcium ions, 2 chloride ions, 4 sulfates, 6 acetates, and 838 water molecules. The crystallographic R-factor for reflections in the 30 to 1.8 Å range is 19.7%, and the corresponding free R-factor is 23.9%. The root mean square deviations from ideality for bond lengths and angles are 0.013 Å and 1.23°. A Ramachandran plot for the
whole molecule shows 88.8% of residues in the most favored regions and 11% in additionally allowed regions. Ser[42] in both halves of the molecule has ϕ, ψ angles in the generously allowed region, and no residues fall in disallowed regions. Although the ϕ, ψ angles for Ser[42] lie outside of the additionally allowed region, the orientation of this residue appears to be influenced by hydrogen bonding between the NH and CO groups of both of its adjacent peptide bonds with amino acid side chains. There are three cis-prolines at positions 124, 355, and 558 and a cis-peptide bond between Asn[549] and Asn[550] in each half of the molecule. Stereochemical parameters for both the main chain and side chains were determined to be within, or better than, the ranges given for other protein structures determined at comparable resolution according to the program PROCHECK (31).

Because the two halves of the MPO molecule (designated A and B) have different environments in the crystal, there are some differences in the conformations of equivalent side chains on the surface of the molecule. In general, the A half of the molecule is involved in more extensive intermolecular contacts in the crystal, and for this reason is a little better ordered than the B half. This is reflected in the lower average B-factor for protein atoms in the A half (11.1 Å²) compared with the B half (13.1 Å²). The amino acid numbering system used here is based on designating the first Cys in the small polypeptide as residue 1 (14). In the sequence of human MPO, deduced from the cDNA, there are 2 residues (Val and Thr) prior to Cys[1] (32, 33), but these are not evident in the electron density map.

The backbone density is very well defined for all four polypeptide chains, except for two surface loops involving residues 217–218 and 354–356 in both halves of the molecule. The amino terminus of the small polypeptide (residues 2–6) is poorly ordered in the A half but well ordered in the B half where the side chains of Glu[5] and Gln[4] are involved in hydrogen bonding with residues in a symmetry-related molecule. Conversely, the carboxyl terminus of the large polypeptide (residues 576–578) is poorly ordered in the B half but well defined in the A half where the terminal carboxyl group is hydrogen bonded to the amide nitrogen of Gln[79] in a neighboring molecule. A number of side chains on the surface of the molecule (15 in the A half and 23 in the B) exhibit some degree of disorder, although in many cases this is limited to truncated density for the termini of the longer side chains of arginine and lysine.

Structural Features of MPO—The overall polypeptide fold for human MPO (Fig. 1) is the same as reported previously for the dog enzyme (14) and described briefly in the introduction. However, the higher resolution of the current electron density map has allowed more detailed characterization of a number of structural features. The calcium-binding site has typical pentagonal bipyramidal coordination. The O$_y$ of Ser[177] and the peptide carbonyl oxygen of Phe[370] provide the axial ligands, whereas the other five ligands (Asp[96] carbonyl oxygen and peptide carbonyl oxygen, Thr[169] hydroxyl and peptide carbonyl oxygens, and Asp[172] carbonyl oxygen) are arranged approximately co-planar. Five of these ligands arise from residues within the 168–174 loop of the large polypeptide, whereas the other two involve Asp[96], which is adjacent to the distal His[35] in the small polypeptide. The orientations of all of the sugars comprising the Asn[317] glycosylation site have been determined. The carbohydrate chain consists of the standard (GlcNac)γ (Man), structure with a fucose 1–6 linked to the first GlcNac. Interactions between these sugar chains in the two halves of the molecule make up much of the dimer interface in MPO. Details of the carbohydrate conformation and its interactions with the protein will be presented elsewhere.

Fig. 1. Entire MPO dimer, viewed along the molecular dyad axis. The large polypeptides of the two halves are colored red and blue, whereas the small polypeptides are in lighter shades of the same colors. Other color coded features include: hemes (green), carbohydrate (orange), calcium (purple), and chloride (yellow). At the center of the molecule the disulfide linking the two halves is shown in black.
Asp⁹⁸ and Thr¹⁰⁰. One of the propionate oxygens forms hydrogen bonds with the Thr¹⁰⁰ peptide NH and additionally with a water molecule, whereas the other hydrogen bonds with the carboxyl group of Asp⁹⁸. Distances for these interactions and the heme-protein covalent bonds are given in Table II.

Distal Heme Cavity—Access to the distal cavity occurs via a narrow oval-shaped opening with a predominantly hydrophobic surface above pyrrole ring D. The pyrrole ring forms the base of the opening, whereas the upper surface consists of the bic surface above pyrrole ring D. The pyrrole ring forms the narrow oval-shaped opening with a predominantly hydrophobic surface above pyrrole ring D. The pyrrole ring forms the base of the opening, whereas the upper surface consists of the bic surface above pyrrole ring D. The pyrrole ring forms the narrow oval-shaped opening with a predominantly hydrophobic surface above pyrrole ring D.

Heme-protein interactions

Heme group	Residue	Bond type	Distance (Å)	A	B
A methyl C	Glu²⁴² O^{ε1}	covalent	1.55	1.55	
A vinyl Cδ2	Met²⁴³ O^{ε1}	covalent	1.63	1.62	
C methyl C	Asp²⁴⁹ O^{δ1}	covalent	1.54	1.55	
C propionate O1	Thr³⁰⁰ O^{γ1}	H-bond	2.91	2.92	
C propionate O1	Asp³⁰⁷ O^{ε1}	H-bond	2.68	2.67	
C propionate O2	Thr³⁰⁸ NH	H-bond	2.81	2.76	
C propionate O2	Wat³⁰⁶ OH	H-bond	2.58	2.81	
D propionate O1	Arg²⁵⁰ NH^{δ1}	H-bond	2.94	2.98	
D propionate O1	Arg²⁵⁴ NH^{δ1}	H-bond	2.58	2.70	
D propionate O2	Thr³⁰⁷ NH^{δ1}	H-bond	2.84	2.73	
D propionate O2	Arg²⁵⁴ NH^{δ1}	H-bond	2.86	2.85	
Fe³⁺	His²⁵⁰ N^{ε1}	ligand	2.19	2.19	
Fe³⁺	Wat¹ OH	ligand	2.90	3.00	

As shown in Fig. 4, a chain of hydrogen bonds involving 5 buried water molecules and the side chain of His²⁵⁰ extends from the distal histidine to the surface of the molecule, at a point remote from the solvent channel leading to the distal cavity. The N_ε of the distal His²⁵⁰ is hydrogen bonded to a buried water molecule, which is separated from the distal cavity water molecules by the imidazole ring. This water is also hydrogen bonded to N_ε of His²⁵⁰, thereby forming a bridge between the two histidines. The N_ε of His²⁵⁰ is hydrogen bonded to a second water molecule, which is the first in a chain of four buried water molecules, linked by hydrogen bonds, and leading to the surface of the protein. Each of the five buried water molecules is additionally hydrogen bonded to an oxygen acceptor. The first is a carboxyl oxygen of Asp²³⁷, whereas the other four are all peptide carbonyl oxygens.

Characterization of a Halide-binding Site—Toward the end of refinement, the most significant feature seen in F_o − F_c residual maps was additional positive density (11 σ) at a modeled water molecule hydrogen bonded to the peptide NH groups of Thr³² and Val²³⁷ in both halves of the molecule. Because Val²³⁷ is close to the amino terminus of an α-helix (residues 326–338), a bound anion in this location could interact with the partial positive charge associated with the helix dipole. Of the anions present in the mother liquor of crystallization (50 mM acetate, 50 mM sulfate, 2 mM chloride) chloride best modeled the observed compact spherical density. When chloride was
included in the model at full occupancy and a round of X-PLOR refinement was carried out, residual maps showed no significant positive or negative density at this putative chloride site.

The chloride-binding site (Fig. 5) is composed of residues 324–327 at the amino terminus of the helix containing the proximal His⁴³⁶, residues 30–33 of the small polypeptide, and Trp⁴³⁶. These two stretches of polypeptide are in a parallel orientation and held together by two backbone hydrogen bonds. The chloride has three ligands: Trp³² NH, Val ³²⁷ NH, and water in an almost planar trigonal arrangement. The water molecule is additionally hydrogen bonded to the peptide carbonyl oxygen of Leu³³ and the guanidinium group NH of Arg³³. There are two tryptophans in the immediate vicinity of the chloride ion. Trp⁴³⁶ makes the closest approach with its indole ring CH₂ at a distance of 3.6 Å from the ion, whereas Trp³² is directed away from the ion with its C⁷ 4.8 Å from the chloride.

Structure of an MPO-bromide Complex—To further characterize the binding properties of this site, an experiment was carried out to determine whether a second halide, bromide, could replace the putative chloride. As described above, x-ray diffraction data were recorded from a crystal soaked in 20 mM bromide at pH 5.5. A difference Fourier map, calculated using \(F_o - F_c \) coefficients revealed four separate bromide ions bound to each half of the molecule. The largest features of the map at 19.1 and 20.3 \(s \) in the two halves of the molecule occur at the putative chloride-binding site (Fig. 5). Refinement indicated full occupancy by bromide at this site and residual maps showed no positive or negative features greater than 3 \(s \) in this region. Superposition of the refined MPO-bromide model on that of the native revealed no significant protein conformational changes.

Two additional bromide ions were located at surface sites in each half of the molecule. Difference map peaks at 9.3 \(\sigma \) (A half) and 8.1 \(\sigma \) (B half) occur at water molecule 758, and peaks at 6.2 \(\sigma \) (A half) and 7.6 \(\sigma \) (B half) occur at water molecule 889. When these water molecules were replaced by bromide in the model, their occupancies refined to 0.60 and 0.54, respectively. Both of these ions are located well away from the heme group at distances of 29 and 26 Å from the heme iron. At the 889 position, the peptide NH groups of Gln³⁰¹ and Phe³¹³ together with a water molecule coordinate the bromide ion, whereas at 758, the peptide NH group of Thr⁵⁴⁴ and the guanidinium group of Arg⁵⁸² are involved in bromide ligation.

Although there is no indication of bromide binding to the heme iron, difference map peaks of 5.2 \(\sigma \) (A half) and 5.9 \(\sigma \) (B half) occur in the distal heme cavity at the position of water molecule W2, which is hydrogen bonded to the amide nitrogen of Gln³¹ (Fig. 3). Bromide ions included in the model at this position refined to an occupancy of 0.44 in each half of the molecule. Superposition of the refined MPO-bromide and native models indicated small shifts of the side chains of the distal His⁹⁵ and the heme ester linked Glu⁵⁴² upon bromide binding. The side chain of Glu⁵⁴², which is only 3.5 Å away from W2 in the native enzyme, moves about 0.3 Å away from the bromide, and the His⁹⁵ N_e also moves about 0.2 Å away from the bound ion. Such movements are on the order of the expected level of error in the coordinates (0.2 Å, as determined from a Luzatti plot) and may not be significant. More significant movements of water molecules W1 and W5 by 0.35 and 0.45 Å away from the bromide were also seen.

The distal cavity bromide is located 0.3 Å from the position occupied by W2 in the native enzyme. Possible electrostatic interactions occur between the bromide and water molecules W1 and W5, the N_e of His⁹⁵ and the amide nitrogen of Gln³¹.
that the sulfonium ion linkage should involve a bond between unique to MPO. It has been proposed by Kooter those of MPO, but that the sulfonium ion linkage is a feature peroxidases such as eosinophil peroxidase, LPO, and thyroid at position 243 (14). It is therefore likely that other mammalian additional density corresponding to re-

the Met sulfur atom and the α-carbon of the vinyl group, by analogy with the chemistry involved in the formation of thioether groups in cytochrome c. However, such a linkage is inconsistent with the high resolution crystal structure, which clearly shows (Fig. 2) that the link involves the vinyl β-carbon. Recently, it has been found that the formation of two ester bonds between the heme and polypeptide chain of LPO is a hydrogen peroxide-dependent autocatalytic process involving conversion of unmodified protoporphyrin IX to hydroxymethyl and di-hydroxymethyl intermediates presumably capable of ester bond formation with residues analogous to Asp94 and Glu242 of MPO (36). Difference Fourier transform infrared spectroscopic studies have confirmed the presence of two heme ester linkages in both LPO and MPO and have also indicated their presence in eosinophil peroxidase (37).

The Soret bands of the visible absorption spectra of mammalian peroxidases are characteristically red-shifted with respect to those seen in other heme proteins, and these spectral shifts have generally been ascribed to the influence of the protein environment on the spectral properties of the heme (12). In this regard it is noteworthy that a Met243→Gln mutant of recombinant human MPO exhibits a Soret band at 410–412 nm, considerably blue-shifted from the 428-nm band of the native enzyme in its oxidized form (35, 37, 38). Similarly, a Glu242→Gln mutant of MPO, presumably lacking one of the heme ester bonds, exhibits a blue-shifted Soret band at 416–418 nm, and an Asp94→Asn mutant, presumed to lack the other ester bond, also has a blue-shifted Soret band at 414 nm (38, 39). These studies of mutants strongly suggest that the covalent linkages to the heme in MPO contribute to the observed red shifts of the Soret band in the visible absorption spectrum. There is evidence to suggest that the covalent linkages to the heme are important in maintaining the catalytic activities of mammalian peroxidases. The catalytic activity of recombinant LPO was shown to be dependent on the proportion of covalently bound heme in the enzyme, while mutants of MPO, in which residues involved in covalent heme attachment have been replaced, also exhibit catalytic properties markedly different from those of the native enzyme (36). Neither the Met243→Gln nor the Glu242→Gln mutant MPO was capable of catalyzing the peroxidation of chloride ion, and both mutants had reduced catalytic activities when substrates for the single electron oxidation reaction were used (35, 37, 39).

In both cytochrome c peroxidase and lignin peroxidase the Nε of the distal histidine is hydrogen bonded to the amide carbonyl of Asn, and it has been proposed that this arrangement favors the imidazole tautomer in which the Nε is free to accept a

Table III

From	To	Distance		
		A	B	
Native structure:	proximal helix chloride			
Val257	Cl	3.23	3.25	
NH	Cl	3.22	3.21	
Trp292	Cl	3.07	3.17	
OH	Cl			
Bromide complex:	proximal helix bromide			
Val257	Br	3.36	3.50	
NH	Br	3.29	3.28	
Trp292	Br			
OH	Br			
Bromide complex:	distal cavity bromide			
His265	Br	3.55	3.50	
Glu242	Br	3.56	3.35	
Nε	Br	3.12	3.20	
W1	Br	2.73	2.91	
OH	Br			
W5	Br			
OH	Br			
Heme	Br	5.04	4.99	
Fe3+	Br	3.80	3.77	
Heme	CHA			

DISCUSSION

The mode of heme binding revealed by our studies may be unique to MPO. Although other members of this gene family all contain the conserved Asp94 and Glu242, they lack methionine at position 243 (14). It is therefore likely that other mammalian peroxidases such as eosinophil peroxidase, LPO, and thyroid peroxidase also have heme-protein ester linkages analogous to those of MPO, but that the sulfonium ion linkage is a feature unique to MPO. It has been proposed by Kooter et al. (34, 35) that the sulfonium ion linkage should involve a bond between

Fig. 5. Stereo view of the proximal helix chloride-binding site in the native MPO model. Residues 324–327 at the carboxyl terminus of the proximal helix are linked to residues 30–33 via two main chain hydrogen bonds. Superimposed is the $F_c - F_o$ bromide difference map contoured at 5 and 15 σ, showing additional density corresponding to replacement of chloride by bromide.
proton from the peroxide substrate (40). In MPO the N of His\(^{35}\) is hydrogen bonded to a buried water molecule, which is linked by His\(^{250}\) to a succession of four additional buried water molecules forming a chain of hydrogen bonds leading to the surface of the molecule. Such a chain could presumably also function to conduct protons away from the distal histidine and thereby ensure that the N is free to accept a proton from peroxide.

Assignment of a bound chloride ion to account for the high electron density at the amino terminus of the proximal helix in the native enzyme is strongly supported by results showing that this site can also be occupied by bromide. However, we propose that the reported spectral changes that accompany halide binding to MPO result from halide binding to the site that we observe in the distal cavity. A number of factors support this hypothesis. First, the close proximity of this site to the heme is consistent with the potential for a bound anion to influence the electron distribution in the porphyrin ring, thereby inducing spectral changes. Second, the halide location, 3.5 to 3.6 Å from the distal His N, is consistent with data indicating that halide binding is strongly influenced by the ionization state of a group on the enzyme with a pK of 4 to 4.5, which has been suggested to be the distal histidine (23, 24). At low pH, halide binding would be favored by charge-charge interaction between the protonated histidine and the halide anion. Third, the occupancy of halide binding in the distal cavity is consistent with the reported \(K_a\) values for both chloride and bromide binding to MPO (21). At pH 5.5, the \(K_a\) for chloride is on the order of 5 mM, whereas for bromide it is 20 mM. We have found that crystals of MPO soaked in 20 mM bromide at pH 5.5 contain bromide ion at 44% apparent occupancy at this site (note that the real occupancy must be less, because molecules that do not contain bromide presumably have water in this location). However, in the native enzyme structure, for which the mother liquor chloride concentration of 2 mM at pH 5.5 is less than half the reported \(K_a\) of 5 mM, chloride ion was not detected in the distal cavity. By the same reasoning, our data indicating that the proximal helix-binding site is fully occupied by both chloride in the native structure and by bromide in the complex, at the halide concentrations used, are inconsistent with its assignment as the site responsible for halide-induced spectral changes.

We propose that in resting MPO the distal cavity bromide-binding site corresponds to the site for inhibition of MPO by halides. Halide inhibition is competitive with respect to \(H_2O_2\) (19–22), and the distal cavity bromide-binding site is only 3.5–3.6 Å from the N of the distal histidine; sufficiently close to interfere with or even be mutually exclusive with \(H_2O_2\) binding. Evidence from salicylhydroxamic acid binding to MPO (26) should still be accessible to halides and could therefore also be the site at which halides bind as substrates. Model building, based on a ferryl oxygen to iron distance of 1.7 Å, indicates that a halide ion bound at this site would be about 3.6 Å from the heme ferryl oxygen and 3.8 Å from the heme methylene bridge carbon between pyrrole rings A and D, thereby readily facilitating electron transfer to the heme and incorporation of the ferryl oxygen into the hypohalous acid product of the reaction. In such a mechanism the distal histidine would play a dual role in catalysis; first in accepting a proton from hydrogen peroxide prior to scission of the O–O bond and second in suitably positioning the halide substrate for electron transfer to the heme of compound I and subsequent reaction with the ferryl oxygen.

Acknowledgment—We thank Lan Wang for assistance with the purification of human MPO.

REFERENCES
1. Agner, K. (1941) Acta Chem. Scand. 2, (Suppl. 8) 1–62
2. Harrison, J. E., and Schultz, J. (1976) J. Biol. Chem. 251, 1371–1374
3. Wever, R., Kast, W. M., Kolesnik, J. H., and Boelens, R. (1982) Biochim. Biophys. Acts 709, 212–219
4. Van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C., and Kettle, A. J. (1997) Biochem. J. 327, 487–492
5. Klebanoff, S. J. (1970) Science 169, 1095–1097
6. Belding, M. E., Klebanoff, S. J., and Ray, C. G. (1970) Science 167, 195–196
7. Merlie, J. P., Fagan, D., Mudd, J., and Needelman, P. (1988) J. Biol. Chem. 263, 3550–3553
8. Kimura, S., and Ikeda-Saito, M. (1988) Prostates Struct. Funct. Genet. 3, 113–120
9. Cala, M. M., Maillart, P., Brignon, G., Anglade, P., and Dumas, R. B. (1991) Eur. J. Biochem. 198, 733–739
10. Koefler, H. P., Ranyard, J., and Pertcheck, M. (1985) Blood 65, 484–491
11. Akin, D. T., and Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 8370–8375
12. Wever, R., and Plat, H. (1981) Biochim. Biophys. Acts 661, 235–239
13. Andrews, P. C., and Krinsky, N. S. (1981) J. Biol. Chem. 256, 4211–4218
14. Zeng, J., and Fenna, R. E. (1992) J. Mol. Biol. 226, 185–207
15. Ficci, D., Lali, P. M., and Garavito, M. (1994) Nature 373, 243–249
16. Fenna, R., Zeng, J., and Davey, C. (1995) Arch Biochem. Biophys. 316, 653–656
17. Taylor, K. L., Strobel, F., Yue, K. T., Pohl, P., Pohl, J., Woods, A. S., and Kinkade, J. M., Jr. (1995) Arch. Biochem. Biophys. 316, 635–642
18. Dolphin, D., Forman, A., Berg, D. C., and Felton, R. H. (1971) Proc. Natl. Acad. Sci. U. S. A. 68, 614–618
19. Stelmazynska, T., and Zgliczyński, J. M. (1974) Eur. J. Biochem. 45, 305–312
20. Zgliczyński, J. M., Selvaraj, R. J., Paul, B. B., Stelmazynska, T., Poskitt, P. K. F., and Sharrar, A. J. (1977) Proc. Exp. Biol. Med. 154, 418–422
21. Bakkentni, A. R. J., De Boer, J. G. P., Plat, H., and Wever, R. (1980) Biochim. Biophys. Acts 613, 337–348
22. Andrews, P. C., and Krinsky, N. I. (1982) J. Biol. Chem. 257, 13240–13245
23. Bolscher, B. G. J. M., and Wever, R. (1984) Biochim. Biophys. Acts 788, 1–10
Human Myeloperoxidase Structure

24. Ikeda-Saito, M. (1987) Biochemistry 26, 4344–4349
25. Sutton, B. J., Little, C., Olsen, R. L., and Willassen, N. P. (1988) J. Mol. Biol. 199, 295–306
26. Davey, C. A., and Fenna, R. E. (1996) Biochemistry 35, 10967–10973
27. Otwinowski, Z. (1993) in Proceedings of the CCP4 Study Weekend (Sawyer, L., Isaacs, N., and Bailey, S., eds) pp. 56–62, Daresbury Laboratory, Warrington, England
28. Brunger, A. T. (1992) X-PLOR, version 3.1, Yale University Press, New Haven, CT
29. Engh, R. A., and Huber, R. (1991) Acta Crystallogr. A 47, 392–400
30. Brunger, A. T. (1992) Nature 355, 472–474
31. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1992) PROCHECK V2, Oxford Molecular Ltd., Oxford, England
32. Johnson, K. R., Nauseef, W. M., Care, A., Weelock, M. J., Shane, S., Hudson, S., Koeflter, H. P., Selsted, M., Miller, C., and Rovera, G. (1987) Nucleic Acids Res. 15, 2013–2028
33. Muratshita, K., Kuheta, N., Asano, S., Kaziro, Y., and Nagata, S. (1987) J. Biol. Chem. 262, 3844–3851
34. Kooter, I. M., Pierik, A. J., Merkx, M., Averill, B. A., Moguilevsky, N., Bollen, A., and Wever, R. (1997) J. Am. Chem. Soc. 119, 11542–11543
35. Kooter, I. M., Moguilevsky, N., Bollen, A., van der Veen, L. A., Otto, C., Dekker, H. L., and Wever, R. (1999) J. Biol. Chem. 274, 26794–26802
36. De Pillis, G. D., Ozaki, S. I., Kuo, J. M., Malthy, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857–8860
37. Kooter, I. M., Moguilevsky, N., Bollen, A., Sijtsens, N. M., Otto, C., and Wever, R. (1997) J. Biol. Inorg. Chem. 2, 191–197
38. Jacquet, A., Garcia-Quintana, L., Deleersnyder, V., Fenna, R., Bollen, A., and Moguilevsky, N. (1994) Biochem. Biophys. Res. Commun. 202, 73–81
39. Floris, R., Moguilevsky, N., Pappels, G., Jacquet, A., Renire, R., Bollen, A., and Wever, R. (1995) J. Am. Chem. Soc. 117, 3907–3912
40. Poulos, T. L., and Fenna, R. E. (1994) Metal Ions in Biological Systems (Sigel, H., and Sigel, A., eds) Vol. 30, Chapter 2, pp. 26–75, Marcel Dekker, Inc., New York
41. Erman, J. E., Vitello, L. B., Mauro, J. M., and Kraut, J. (1989) Biochemistry 28, 7992–7995
42. Yonetani, T., Schleyer, H., and Ehrenberg, A. (1976) J. Biol. Chem. 241, 3240–3242
43. Lee, H. C., Booth, K. S., Caughey, W. S., and Ikeda-Saito, M. (1991) Biochim. Biophys. Acta 1076, 317–320
X-ray Crystal Structure and Characterization of Halide-binding Sites of Human Myeloperoxidase at 1.8 Å Resolution
Tristan J. Fiedler, Curt A. Davey and Roger E. Fenna

J. Biol. Chem. 2000, 275:11964-11971.
doi: 10.1074/jbc.275.16.11964

Access the most updated version of this article at http://www.jbc.org/content/275/16/11964

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 39 references, 14 of which can be accessed free at http://www.jbc.org/content/275/16/11964.full.html#ref-list-1