Abstracts

influence of family, educational, and hospital support, and identify areas of unmet need. PARTICIPANTS AND METHODS: PBTS (N=56, M=1) 8.12, range=10-25) completed questionnaires on academic accommodations. Medical chart reviews provided diagnosis and treatment details. A subset of families, who did not significantly differ from the larger sample on demographics, completed qualitative interviews (N=25). Three coders identified themes separately for parents and survivors and reached consensus (final thematic content analysis). RESULTS: Familial support sized the role of family support, including providing individualized help, setting up a structured learning environment, and suggesting metacognitive strategies. Parents also emphasized how they have adjusted their expectations. At school, 53% reported an individualized education plan. Formal accommodations (e.g., modified coursework, small group instruction, extra time) were helpful, yet some noted barriers, including embarrassment and lack of follow-through. Survivors emphasized the value of informal accommodations. Families described unmet needs related to connecting with other survivors, navigating community and educational resources, and transitioning to adulthood. CONCLUSIONS: PBTS seem to rely on systems-level supports to mitigate neurocognitive effects. Future work should strengthen communication between systems and adult transition services.

QOL-05. TUMOR LOCATION IS LESS LIKELY INFLUENCE ON COGNITIVE DISFUNCTION IN CHILDREN

Binix Nakajima1,2, Shikito Kinoshita1,2, and Mitsuto Nakada2. 1Department of Occupational therapy, Kanazawa University, Kanazawa, Japan, 2Department of Neurosurgery, Kanazawa University, Kanazawa, Japan

INTRODUCTION: Though several factors are known to influence on long-term cognitive function in children with brain tumor, the impact of tumor localization to specific cognitive function was not well known. Here we investigate the influence of location of resection on postoperative cognitive outcome in school-aged children. METHODS: Participants were seven pediatric patients who underwent craniotomy for tumor resection in our hospital (mean age, 13.9 years). Their diagnoses were WHO grade I or II glioma (n=6) and hemangioma (n=1). Tumor were mainly located in following regions; frontal, n=2; parietal, n=2; temporal, n=3 (These lesions included hipoccampus or were located very close to it). Temporal assessments for cognitive function of several functional domains were performed 1 year post tumor location until last visit (median follow up was 106 months). Based on MRI, we estimated cognitive dysfunctions and compared them to observational symptoms. RESULTS: Preoperative cognitive function was normal in all patients. Cognitive dysfunctions estimated from resected area were as follows: (cognitive domain number; memory on working memory disorder, n=4; visuospatial cognitive disorder, n=3; disorder of processing speed, n=2; facial or topographic agnossia, n=2; Gerstman syndrome, n=1. Just after surgery, cognitive function was declined in two functional domains of two patients, which were only 16.7% of estimated deficit from resected region. They recovered to or nearly to preoperative level 3 months post surgery, and returned to your activities without any deficits. CONCLUSIONS: In pediatric lower-grade tumor, focal cognitive symptom was unlikely to be induced by local resection.

QOL-06. QUALITY OF LIFE IN MEDULLOBLASTOMA SURVIVORS IN WESTERN MEXICO

Regina M Navarro-Martin del Campo1,2, Jorge I Macias-Toscano1, Enfa Toral-Guajardo1, Fernando Sanchez-Zambrano2, Ana I Orozco-Alvarado3, 1Hospital Civil de Guadalajara “Dr. Juan I Menchaca”, Guadalajara, Jalisco, Mexico, 2GAPNO, International, Mexico

BACKGROUND: Treatment of children with medulloblastoma (MB) can lead survivors to lideate with long term sequelae and affect their quality of life (QoL). This study evaluates Qol in long term MB survivors. DESIGN/METHODS: Clinical files of MB survivors from 1997 to 2016 were retrospectively analyzed. Qol was defined by Schopper Criteria in a five dimensional evaluation: clinical data, physic effects of treatment, academic develop, functional state and self welfare report. RESULTS: Clinical data: Two of eight survivors were identified, mean age at review wa 8 years. median follow up was 106 months. Functional state: Last visit Karnofsky/lansky were 90 to 80% in 25% of patients. Physic effects of treatment: Cerebellar Mutism or ataxia were present in 25% of cases. Two patients required external dispositive. Audrometry detected an auditory toneal decrease in 25% of cases. An endothoracic disfunction was present in 46% of cases, 32% required hormone replacement and 28% having short size. Renal damage in 25% of cases. An endocrine disfunction was present in 46% of cases, 32% required external dispositives. Audiometry detected an auditive tonal decrease in 25% of cases. Bellar Mutism or ataxia were present in 25% of cases. Two patients re

QOL-07. CORTICAL VOLUME AND THICKNESS IN ADULT SURVIVORS OF CHILDHOOD POSTERIOR FOSSA TUMORS

Charlotte Sleers1, Jurgen Lemerec2, Jeroen Bloemmaert3, Sabine Deprez4, Karen Van Beek5, Anne Vyttrebrouck6, and Sandra Jacobs7. 1IKU Leuven, Leuven, Belgium, 2UZ Leuven, Leuven, Belgium

PURPOSE: A brain tumor treatment including cranial radiotherapy has previously been associated with long-term neurocognitive sequelae. Since underlying neurological mechanisms remain inconclusive, we investigated cortical features in childhood posterior fossa tumor survivors. METHODS: TI-weighted MRI (MPRAGE, resolution=98x98x1.2mm) was acquired to investigate the cortical structure in adult survivors of childhood infratentorial tumors (n=19, 15males; 16.4–58.8 years old, 2-years after treatment). These scans were compared to age- and gender- matched controls. Supratentorial cortical volume and thickness were estimated using voxel-based morphometry (VBM) and surface-based morphometry (SBM), respectively. We compared patients and controls, irradiated (n=13) versus non-irradiated patients, and investigated the age at radiotherapy (peak level: p<.001). RESULTS: Lower GM volumes were encountered in multiple brain areas of patients compared to controls. The right and left occipital lobes of irradiated patients showed lower GM volumes then non-irradiated patients in the superior and middle frontal gyr, the right supramarginal gyrus and precuneus. Age at radiotherapy was associated with GM volume in the inferior frontal gyrus. SBM yielded larger cortical thickness in patients in the left precuneus, inferior temporal and fusiform gyrus. The opposite effect was only marginally significant, in the left temporal lingual gyrus. Age at radiotherapy was not associated with cortical thickness, but radiotherapy was associated with the left parietal gy. CONCLUSION: Widespread differences in cortical volumes and thickness were observed in posterior fossa tumor survivors. Both radiotherapy and age at radiotherapy could be suggested as risk factors for long-term cortical development.

QOL-09. WHOLE-BRAIN WHITE MATTER NETWORK CONNECTIVITY IS DISRUPTED BY PEDIATRIC BRAIN TUMOR TREATMENT

Adéoue Overfide, Kiran Beera, Iska Moxon-Emre, Jovanka Skocic, Ute Bartels, Suzanne Laughlin, Vijay Ramaswamy, and Donald Mabbott; The Hospital for Sick Children, Toronto, ON, Canada

INTRODUCTION: Treatments for pediatric brain tumors (PBT) are neurotoxic and lead to long-term deficits that are driven by the perturbation of underlying white matter (WM). It is unclear if and how treatment may impact the connectivity across the entire brain, and return to baseline without any deficits. CONCLUSIONS: In pediatric lower-grade tumor, focal cognitive symptom was unlikely to be induced by local resection.

QOL-11. COMPARISON OF TREATMENT BURDEN RATING SCALES ON NEUROCOGNITIVE OUTCOMES IN A MIXED SAMPLE OF PEDIATRIC BRAIN TUMOR SURVIVORS

Muhammad Raaj, Ineke Oosterveld, Grace Yang1, Wafik Sadik, and Peter Stavishova2. 1MD Anderson Cancer Center, Houston, TX, USA, 2Fielding Graduate University, Santa Barbara, CA, USA

BACKGROUND: Predicting neurocognitive outcomes in pediatric brain tumor (PBT) patients is challenging. Rarity of PBT makes inclusion of detailed risk factors (e.g., treatment modality, intensity, individual complications) difficult when sample sizes are small. The Neurological Predictor Scale (NPS) summarizes complications and treatment factors associated physical effects, followed by academic development, functional state and self welfare report and all this has a negative impact in their QoL.