Integrated Artificial Neural Network with Trainable Activation Function Enabled by Topological Insulator-based Spin-Orbit Torque Devices

Puyang Huang1#, Xinqi Liu2,3#, Yue Xin1#, Yu Gu1, Albert Lee4, Zhuo Xu1, Peng Chen1, Yu Zhang5, Weijie Deng2, Guoqiang Yu5, Di Wu4, Zhongkai Liu2,3, Qi Yao2,3, Yumeng Yang1, Zhifeng Zhu1*, and Xufeng Kou1,3*

1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
3ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China.

4 Suzhou Inston Technology Co., Ltd., Jiangsu 215121, China.
5Beijing National Laboratory for Condensed Matter, Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

*Correspondence to: zhuzhf@shanghaitech.edu.cn; kouxf@shanghaitech.edu.cn.
Non-volatile memristors offer a salient platform for artificial neural network (ANN), but the integration of different function blocks into one hardware system remains challenging. Here we demonstrate the implementation of brain-like synaptic (SOT-S) and neuronal (SOT-N) functions in the Bi$_2$Te$_3$/CrTe$_2$ heterostructure-based spin-orbit torque (SOT) device. The SOT-S unit exhibits highly linear (linearity error < 4.19%) and symmetrical long-term potentiation/depression process, resulting in better performance compared to other memristor synapses. Meanwhile, the Sigmoid-shape transition curve inherited in the SOT-N cell replaces the software-based activation function block, hence reducing the system complexity. On this basis, we employ a serial-connected, voltage-mode sensing ANN architecture to enhance the vector-matrix multiplication signal strength with low reading error of 0.61%. Furthermore, the trainable activation function of SOT-N enables the integrated SOT-ANN to execute the Batch Normalization algorithm and activation operation within one clock cycle, which bring about improved on/off-chip training performance close to the ideal baseline.

Artificial intelligence (AI)-driven digital transformation in modern society requires high-speed and energy-efficient computing1. Drawing inspiration from neuroscience, neuromorphic engineering aims to emulate the exceptional computational capabilities of the human brain on solid-state platforms2,3. As a key application of this approach, the artificial neural network (ANN) employs weighted synapse units to encode the strengths of the input signals at a connection, and introduces the interconnected neuron units for the input-to-output mapping4,5. Therefore, the performance of the synapse unit depends on the generation of numerous intermediate states with high thermal stability, and the corresponding long-term potentiation (LTP) and long-term depression (LTD) process should be linear and symmetric for promoting
the learning process6-9. Meanwhile, a tunable non-linear activation function with a wide operating range is essential for the neuronal cell component to capture different features of input patterns (Fig. 1a)10-12.

Currently, various ANNs have been realized using conventional digital systems13-15. Yet in spite of high classification accuracy, the use of binary bits for large-scale convolution operations is unavoidably time- and energy-consuming16,17. Alternatively, memristor-based analog circuits, which naturally support the multiplication and accumulation of electrical signals in linear time-invariant (LTI) systems according to Ohm's and Kirchhoff's laws, can perform the vector-matrix multiplication (VMM) function in parallel. Besides, the results obtained after each convolution operation can be directly stored in the memristor crossbar array, eliminating the need for data transfer18,19. Like other analogue ANN paradigms18,20-25, the non-linear and non-volatile spin dynamics can also empower magneto-resistive devices with memristor-like behaviors, hence enabling energy-efficient neuromorphic computing26,27. For example, dedicated multi-layer structural engineering can tailor the mesoscopic spin-texture and anisotropic energy of magnetic domains, which serve as the intermediate state variables of an artificial synapse28-32. Meanwhile, the non-destructive electrical manipulation of magnetic domains through spin-transfer torque (STT) and/or spin-orbit torque (SOT) would give rise to a symmetric resistance change with high programming linearity and endurance (\textit{i.e.}, essential for realizing the synapse function with high accuracy)33. Furthermore, it is found that the transition curve during the current-induced magnetization switching process exhibits a Sigmoid-featured line-shape; in this regard, the SOT device itself can also fulfill the artificial neuron function without using additional activation function modules in peripheral circuits28. Along with programmable logic and non-volatile storage capabilities in the SOT-based magneto-resistive random-access memory (SOT-MRAM)34, the all-in-one analogue ANN computing system, in principle, could be developed based on the SOT-type devices.
To harness the aforementioned properties, in this Article, we fabricate the SOT-based devices on the 2-inch Bi$_2$Te$_3$/CrTe$_2$ heterostructures. We demonstrate reliable SOT-driven multi-state magnetization switching and showcase the basic operating principles of brain-like synapse (SOT-S) and neuron (SOT-N) units in crossbar arrays. The linear and symmetric weight response to the input current pulses with evenly spaced intermediate states of SOT-S and intrinsic Sigmoid-shape transition curve of SOT-N ensure higher classification accuracy and a simpler system layout compared to other memristors. To take full advantage of the SOT-ANN framework, we introduce serial-connected synapses with a voltage-mode sensing architecture to enhance the output VMM signal strength while reducing circuit complexity. Additionally, we utilize the thickness-dependent ferromagnetism of the CrTe$_2$ layer to optimize both the LTP/LTD learning process and the activation function. Furthermore, we implement the Batch Normalization (BN) algorithm in our SOT-ANN using trainable SOT-N units to achieve improved training results.

Implementing the SOT-Synapse and SOT-Neuron units. Experimentally, high-quality van der Waals (vdW) Bi$_2$Te$_3$/CrTe$_2$ heterostructures were prepared on the 2-inch Al$_2$O$_3$ (0001) substrate using molecular beam epitaxy (MBE), with detailed sample information provided in Methods and Supplementary Fig. S1. In this bilayer stack illustrated in Fig. 1b, the strong SOC-related spin-momentum-locking mechanism of the topological surface states ensures an effective spin polarization from the Bi$_2$Te$_3$ layer$^{35-37}$. In the meantime, the inherent perpendicular magnetic anisotropy (PMA) of CrTe$_2$ allows for direct pairing with the adjacent Bi$_2$Te$_3$ channel without invoking additional PMA-assisted layer, which in turn yields a greatly enhanced SOT efficiency of $\xi_{SOT} > 1$ compared to conventional heavy metals38. Consequently, the deterministic SOT-driven magnetization switching was realized in our Bi$_2$Te$_3$(18 nm)/CrTe$_2$(21 ML)-based crossbar devices with a low switching current density of $J_{SW} = 2.84 \times 10^6$ A/cm2 at $T = 120$ K.
Moreover, due to the non-destructive SOT switching mechanism, the recorded R_{xy}(HIGH)-to-R_{xy}(LOW) contour in Fig. 1c does not experience any distortion after 5×10^4 write/read cycles. Furthermore, the device-to-device variation in terms of J_{SW} is found to be less than 4.69% across the array (Fig. 1d), thanks to the uniform morphology of the as-grown Bi$_2$Te$_3$/CrTe$_2$ wafer.

Strikingly, the multi-domain nature of the CrTe$_2$ layer results in the emergence of multiple intermediate state variables during magnetization switching in the fabricated Bi$_2$Te$_3$ (18 nm)/CrTe$_2$ (21 ML) SOT-device, and the resulting minor loops of current-modulated V_{xy}-I_{DC} in Fig. 1e exhibit two distinctive features. Firstly, changing the write current pulse (I_{write}) successively from 15 mA to 27 mA generates 12 repeatable Hall resistance states, representing the LTP process of the SOT-S cell with a 3-bit weight. Similarly, by reversing the write current pulse polarity, a symmetric and linear LTD slope is produced, as shown in Fig. 1f. In view of the SOT-S performance, the LTP/LTD curves from 6 trials of identical potentiation/depression training pulses all maintain high linearity (i.e., the average linearity error is less than 4.19%, as shown in Supplementary Fig. S3) and low write stochasticity (i.e., standard deviation of write stochasticity in Fig. 1g is $\sigma = 5.41\%$). Moreover, after updating weight information in the SOT-S device, the resulting magnetic domain structure becomes stable against thermal fluctuation. As highlighted in Figs. 1h-1i, the readout Hall voltages remain constant as long as the read current range (i.e., 0.1 mA $\leq I_{read}^{syn} \leq 10$ mA) is below I_{write}^{syn}, and the corresponding read stochasticity is only 0.37% (i.e., the reading error analysis is provided in Supplementary Fig. S4). Besides, Fig. 1j shows that the measured V_{read}^{syn}-I_{read}^{syn} slopes at all weights have a high-linearity feature in the $I_{read}^{syn} \subseteq [-10$ mA, 0 mA] region, hence enabling a wide operating range of the SOT-S unit with low reading discrepancy (Supplementary Fig. S5).

Concurrently, the magnetization switching curves of the Bi$_2$Te$_3$/CrTe$_2$-based crossbar device can also fulfil the SOT-Neuron function (i.e., in contrast, other memristor-based ANN need additional digital modules or load resistors40). As depicted in Fig. 1e, all V_{xy}-I_{DC} minor-loops in the positive [0 mA, 27 mA]
region can be well-fitted by the logistic function as $y = \left[1 + e^{-k(x-x_c)}\right]^{-1}$ with $k = 0.89$ and $x_c = 17.59$ (Fig. 1k); on the other hand, the transition line-shape and relevant (k, x_c) values in the negative I_{DC} range are adjustable according to the write current level ($I_{\text{neuron}}^{\text{write}}$), as discussed later. In conclusion, the aforementioned characterizations manifest the feasibility to integrate both SOT-S (i.e., for weight encoding) and SOT-N (i.e., for activation function) units on one chip, making them compelling building blocks for a more efficient neural network.

Constructing the SOT-based integrated neural network. According to the operational principle of the SOT crossbar device, we adopted the serial-connected synapses architecture with voltage-mode sensing to construct the integrated ANN for the standard Modified National Institute of Standards and Technology (MNIST) test (Fig. 2a). In this specific design illustrated in Fig. 2b, the serial-connected SOT-S array requires only one analog-to-digital converter (ADC) per row, and it also enables direct superposition of the SOT-S output voltage signals so that the peripheral sensing circuit design can be simplified28. In addition, since both the write and read currents share the same conduction path in the SOT-S unit, the number of digital-to-analog converter (DAC) thus is halved to further reduce the circuit complexity41.

To conduct the MNIST test using our Bi$_2$Te$_3$/CrTe$_2$-based crossbar devices, the reset current $I_{\text{reset}}^{\text{syn}}$ is firstly applied along the $-y$ direction to reset all SOT-S cells to the initial magnetized state (i.e., normalized $R_{xy} = 0$). Afterwards, the programmed write current pulse $I_{\text{write},ij}^{\text{syn}}$ (i.e., which exerts appropriate SOT to tune the device to the required intermediate state) flows through each synapse node S_{ij} to update the weight information of $R_{xy,ij}^{\text{syn}}$ (Fig. 2c). Once the weight assignment is completed, the input current $I_{\text{VMM},ij}^{\text{syn}}$ is converted into the output Hall voltage signal of $V_{\text{VMM},ij}^{\text{syn}} = I_{\text{VMM},ij}^{\text{syn}} \cdot R_{xy,ij}^{\text{syn}}$ via anomalous Hall effect (AHE), and the VMM operation is accomplished by successively summing the SOT-S cells along the same row as $V_{\text{VMM},i}^{\text{syn}} = \sum_j V_{\text{VMM},ij}^{\text{syn}}$. Finally, such output voltage is delivered into the SOT-N cell (upper right panel of
Fig. 2c) where the activation function of the SOT-driven switching curve is utilized to complete the training process (the operation modes of our ANN are discussed in Supplementary Section 6). As a proof-of-concept, we fabricated a serial-connected synapse array consisting of three SOT-S devices (S_1, S_2, S_3), as shown in the bottom panel of Fig. 2c. When the input currents ($I_{\text{VMM,1}}^{\text{syn}}, I_{\text{VMM,2}}^{\text{syn}}, I_{\text{VMM,3}}^{\text{syn}}$) are applied, the measured output voltage $V_{\text{out, syn}}$ is highly consistent with the ideal scenario of $V_{\text{VMM}}^{\text{syn}} \equiv I_{\text{VMM,1}}^{\text{syn}} \cdot R_{xy,S1}^{\text{syn}} + I_{\text{VMM,2}}^{\text{syn}} \cdot R_{xy,S2}^{\text{syn}} + I_{\text{VMM,3}}^{\text{syn}} \cdot R_{xy,S3}^{\text{syn}}$, where the weight information is set as $(R_{xy,S1}^{\text{syn}}, R_{xy,S2}^{\text{syn}}, R_{xy,S3}^{\text{syn}}) = (0.39 \ \Omega, 0.44 \ \Omega \text{ and } 0.32 \ \Omega)$, respectively (Fig. 2d). By mapping all ($I_{\text{VMM,1}}^{\text{syn}}, I_{\text{VMM,2}}^{\text{syn}}, I_{\text{VMM,3}}^{\text{syn}}$) combinations in the [0 mA, 5 mA] range, the maximum error of $|V_{\text{out, syn}}^{\text{syn}} - V_{\text{VMM}}^{\text{syn}}|/V_{\text{VMM}}^{\text{syn}}$ is found to be lower than 0.61% (Fig. 2e), thereby validating the high precision of the VMM operation (results of other input cases are exemplified in Supplementary Fig. S7).

Inspired by the above $[1 \times 3]$ VMM demonstration, we subsequently employed a three-layer SOT-based ANN for handwritten digit recognition, utilizing off-chip training to quantize the trained digital model and deliver results to the analog neural network.42,43 Benefiting from a better LTP/LTD process in terms of symmetry, linearity, and state number (Fig. 2f), our integrated ANN system achieves a higher classification accuracy of 90.34% than other memristors, as summarized in Fig. 2g (i.e., it is noted that we directly adopted experimental data of both SOT-S and SOT-N cells, whereas other networks used software-generated Sigmoid activation function for off-chip training simulations).28,29,44,45 To gain further insights into the feature extraction process, we traced the feature evolution through $\sum_{i=1}^{n} W_{1,i} \times W_{2,ij}$ ($j = 1 \sim m$), where n (m) is the size of the hidden (output) layer, and $W_{1,i}$ ($W_{2,ij}$) is the weight array between the input (hidden) layer and the hidden (output) layer. As visualized in the lower panel of Fig. 2h and Supplementary Fig. S8, the characteristics of the 0~9 digits quickly become distinguishable after only 50
iterations (i.e., classification accuracy of 66.7%), and the final results trained by our SOT-S/SOT-N system after 1000 iterations are also of better pattern quality (Supplementary Fig. S9).

Improving SOT-ANN performance through CrTe_2 thickness optimization. In our previous study, we discovered a thickness-dependent ferromagnetism of CrTe_2 (Fig. 3a), which provides an additional degree of freedom for manipulating the SOT-S and SOT-N units^{46,47}. Specifically, the nearly square-shaped R_{xy} hysteresis loops in Fig. 3b confirm the presence of PMA in a series of CrTe_2 samples with the film thickness (d) from 5 ML to 21 ML. On the other hand, as emphasized in Fig. 3c, the coercive field H_C monotonically decreases from 12.6 mT ($d = 21$ ML) to 7.5 mT ($d = 5$ ML) at 120 K, leading to an effective lowering of the critical switching current I_{SW} by more than 55% in thinner Bi$_2$Te$_3$/CrTe$_2$ films (i.e., corresponding to a 51.2% energy reduction of the SOT-S write operation). More importantly, the measured anomalous Hall resistance R_{xy} of the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(5 ML) sample increases by 10 times compared with the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(21 ML) data. Consequently, the enlarged R_{xy} magnitude accommodates 18 intermediate state variables (i.e., 4-bit weight), accompanying by a 6-fold improvement in the resistance margin between neighboring states (Fig. 3d). This not only ensures a wider operating range (i.e., higher bit resolution) of the SOT-S cell, but also mitigates the design challenges related to the sensing accuracy of the readout circuit. Likewise, by varying the CrTe$_2$ layer thickness, the R_{xy}-I_{DC} transition slopes and their associated (k, x_c) values are modulated accordingly. Figure 3e shows that the most non-linear activation function with largest $k = 1.076$ is obtained in the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(5 ML)-based SOT-N device, which help to better capture different features of complex patterns^{28}. As a result of this structural engineering strategy, the SOT-ANN developed from the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(5 ML) heterostructures achieves a higher classification accuracy of 93.45%, as highlighted in Fig. 3f (detailed characterizations of the $d = 5$ ML SOT device are provided in Supplementary Fig. S10). Therefore, the
above results justify that the thickness-tailored ferromagnetism of CrTe$_2$ adds flexibility to optimize both the off-chip training and the power dissipation of the neural network.

Remarkably, the improved SOT-S/SOT-N performance in our Bi$_2$Te$_3$(18 nm)/CrTe$_2$(5 ML) system also allows for on-chip training, which conducts the iteration process in the memristor array to reduce power consumption (*i.e.*, off-chip training utilizes software-based iteration), albeit at the expense of classification accuracy due to finite intermediate states48,49. To meet the minimum 8-bit precision requirement for on-chip training50,51, we chose to link 16 SOT-S cells (each with 18 intermediate states) in our serial-connected network, resulting in a total of 288 available states in one synapse unit cell. Along with the linear and evenly spaced LTP/LTD process of SOT-S which warrants uniformly distributed state variables across the entire weight quantization range, our $d = 5$ ML SOT-ANN attains a relatively high classification accuracy of 83.15%, as shown in Fig. 3g. In contrast, suffering from a worse LTP/LTD linearity, uneven state distribution, and the absence of the bit-operation function, the on-chip training results of other memristor-based systems under the equivalent 8-bit quantization condition are not acceptable for practical applications.

Integrated Batch Normalization and activation functions enabled by tunable R_{xy}-I_{DC} minor-loops.

As neural networks for large-scale model training become more sophisticated, an increased number of hidden layers incurs problems such as gradient explosion or gradient disappearance during back-propagation, due to uneven data distribution in forward propagation52. To mitigate such issues, the BN algorithm has been proposed to eliminate internal covariate shift, thereby ensuring a stable input range among iterations (Fig. 4a)10,53. Mathematically, the BN block transforms the VMM result x to x' through $x' = \gamma x + \beta \equiv BN_{\gamma,\beta}(x)$, where γ and β represent the scale and shift parameters, respectively42. This converted signal x' is then passed to the activation function block as $f(x') = [1 + e^{-k(x' - x_c)}]^{-1} = [1 + e^{-\gamma k(x - x_c - \frac{\beta}{\gamma})}]^{-1}$, which is equivalent to generate a new set of activation function parameters $k' = \gamma k$.

and \(x'_c = \frac{x_c - \beta}{\gamma} \). While most analog ANN systems conduct BN algorithm by software, the SOT-N cell enables both BN and Activation operations to be realized in a single cell thanks to its tunable \((k, x_c)\) characteristics. For instance, in the case of the Bi\(_2\)Te\(_3\)(18 nm)/CrTe\(_2\)(5 ML)-based device, by changing the write current \(I_{\text{write}}^{\text{neuron}} \) from 19 mA to 32 mA, the tuning range of \(k \), which is extracted from the normalized \(V_{V_{\text{VM}}}^{\text{neuron}} - I_{V_{\text{VM}}}^{\text{neuron}} \) transition curves of Fig. 4b, is found to be [0.37, 1.28]. Consequently, the conventional five-stage analog ANN system can be simplified into a four-stage diagram consisting of VMM, BN&Activation, Back-Propagation, and Weight-Update, with only the Back-Propagation block being performed by software, as illustrated in Fig. 4c.

In accordance with this generic SOT-ANN framework, we further designed a relevant multiplexer circuit to synchronize the BN and Activation operations within a single clock cycle. As outlined in Fig. 4d, during the BN operation \((i.e., \text{ENACT signal is set as } 0)\), a large negative reset current pulse from DAC initializes the SOT-N, followed by the positive write signal \(I_{\text{write}}^{\text{neuron}} \) to set the SOT-N with the desirable \((k, x_c)\) values; in the Activation operation \((i.e., \text{ENACT } = 1)\), the output voltage \(V_{V_{\text{VM}}}^{\text{syn}} \) from the \(i^{\text{th}} \) row of the SOT-S array is applied onto the SOT-N cell to perform the Sigmoid calculation (right panel of Fig. 4d). Accordingly, by incorporating the BN algorithm in our \(d = 5 \text{ ML} \) SOT-ANN, the MNIST classification accuracy of the off-chip training is increased from 93.45% to 95.38%, and the training loss is reduced to 0.273, both of which are close to the ideal benchmark (left panel of Fig. 4e). Similarly, compared to the network with fixed activation function, the tunable \((k, x_c)\)-enabled BN algorithm also helps improve the on-chip training result by 6.18% as well as lower the loss from 1.5 to 0.8 with the same iteration number of 400 (right panel of Fig. 4e). Consequently, the co-optimization of hardware and algorithm in our integrated SOT-ANN paves the way for the realization of advanced and versatile AI-related computing.
Discussion

In conclusion, the investigation of Bi$_2$Te$_3$/CrTe$_2$ heterostructure-based SOT devices in this work reveals several advantages, including high linearity, long write/read endurance, and integrated synapse-neuron functionality over other memristor technologies, as summarized in Table 1$^{54-56}$. Moreover, by leveraging the trainable activation function by the write current pulse-configurable $V_{\text{VMM}}^{\text{neuron}}$-$I_{\text{VMM}}^{\text{neuron}}$ transition slope, we demonstrate the BN algorithm using the spintronic hardware with improved classification accuracy in both on-chip and off-chip training, which would be beneficial for low-power edge-computing and Internet of Things (IoT) applications57. In addition, since SOT-type devices exhibit salient size scaling ($<$ 100 nm) and fast switching ($<$ 5 ns) properties58, they may offer new opportunities of our proposed Bi$_2$Te$_3$/CrTe$_2$-based system for constructing energy-efficient large-scale neuromorphic computing systems32,33.

Methods:

Sample growth and structural characterizations: Wafer-scale CrTe$_2$ and Bi$_2$Te$_3$/CrTe$_2$ thin films were grown on 2-inch Al$_2$O$_3$(0001) substrates by MBE under a vacuum of 1×10^{-10} mbar. Before sample growth, the Al$_2$O$_3$ substrate was pre-annealed at 600 °C to remove adsorbed contamination. The substrate temperature was kept at 200 °C during both CrTe$_2$ and Bi$_2$Te$_3$ growth. High-purity Cr and Bi atoms were evaporated from standard Knudsen cells, and Te was evaporated using a thermal cracker cell. The real-time growth conditions and as-grown surface atom configuration were monitored by reflection high-energy electron diffraction (RHEED) patterns, and the flux ratio was calibrated by in-situ beam flux monitor. After sample growth, slices of Bi$_2$Te$_3$/CrTe$_2$ with different crystal orientations were obtained through focused ion beam (FIB) milling using the TESCAN LYRA3 FIB-SEM (TESCAN, Czech Republic). The crystal structure of the samples was analyzed using a probe aberration-corrected scanning
transmission electron microscopy (Cs-STEM, Themis Z G2 300, FEI, USA) equipped with energy-dispersive X-ray analysis (EDX, Bruker Super-X, Bruker, USA) to map the element distribution.

Device fabrication and transport measurements: The MBE-grown CrTe$_2$/Bi$_2$Te$_3$ heterostructures were patterned into µm-sized cross-bar structures using standard photo-lithography, and the Ti(15 nm)/Au(150 nm) electrodes were defined by e-beam evaporation. After device fabrication, magneto-transport measurements were performed in a He4 refrigerator (Oxford Teslatron PT system) using multiple lock-in amplifiers and Keithley source meters. During the SOT-driven magnetization switching experiment, a 500 µs writing current pulse was applied by Keithley 6221, followed by a 500 µs reading current pulse to measure R_{xy} by Keithley 2182. For the [1 × 3] VMM demonstration, three serial-connected SOT-S devices were controlled by three independent Keithley 6221, and the output voltage was recorded 200 ms after the application of input currents to ensure stable output states. Besides, a 5 s delay time was imposed between each operation to minimize unintentional Joule heating.

Network framework and parameter-setup for simulation: The image classification of handwritten digits from the MNIST database was simulated using a neural network by Matlab. The proposed three-layer SOT-ANN in this study consisted of 784 (28 × 28) input neurons, 128 hidden neurons, and 10 output neurons. Both off-chip and on-chip training simulations (up to 1000 iterations) were carried out based on 50,000 and 10,000 handwritten digit images as the training and testing dataset, respectively. The activation operation in our SOT-ANN was based on the experimental data of the SOT-N cells, while an ideal Sigmoid function with $k = 1$ and $x_c = 0$ was used for other memristors. The cross-entropy loss function was employed for the back-propagation algorithm in all network systems.
Acknowledgments

This work is sponsored by the National Key R&D Program of China (grant no. 2021YFA0715503), National Natural Science Foundation of China (grant no. 92164104), and the Major Project of Shanghai Municipal Science and Technology (grant no. 2018SHZDZX02), the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, and the ShanghaiTech Quantum Device and Soft Matter Nano-fabrication Labs (SMN180827). X.K. acknowledges support from the Shanghai Rising-Star Program (grant no. 21QA1406000) and the Open Fund of State Key Laboratory of Infrared Physics.

Author contributions

X.K. conceived and supervised the study. X.L. and P.C. grew the samples by MBE. P.H., X.L., and W.D. performed structural characterizations and transport measurements. P.H., X.L., Y.Z., G.Y., Z.L., Q.Y., and Y.Y. analyzed the experimental data. P.H., Y.X. and Z.X. conducted the neural network simulations. P.H., Y.G., A.L., and D.W designed the circuit structure and performed power consumption evaluation. P.H., Z.Z. and X.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing financial interests

The authors declare no competing financial interests.

References

1 Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607-617 (2019).
2 Mead, C. Neuromorphic electronic systems. Proceedings of the IEEE 78, 1629-1636 (1990).
3 Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature Communications 14, 1597 (2023).
4 Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255-260 (2022).
5 Mead, C. How we created neuromorphic engineering. Nature Electronics 3, 434-435 (2020).
6 Sun, X. & Yu, S. Impact of Non-Ideal Characteristics of Resistive Synaptic Devices on Implementing Convolutional Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 570-579 (2019).
7 Agarwal, S. et al. in 2016 International Joint Conference on Neural Networks (IJCNN). 929-938.
8 Roy, S., Sridharan, S., Jain, S. & Raghunathan, A. TxSim: Modeling Training of Deep Neural Networks on Resistive Crossbar Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 730-738 (2021).
9 Yu, Z., Leroux, N. & Neftci, E. in 2022 International Electron Devices Meeting (IEDM). 21.21.21-21.21.24.
10 Apicella, A., Donnarumma, F., Isgrò, F. & Prevete, R. A survey on modern trainable activation functions. Neural Networks 138, 14-32 (2021).
11 Li, B., Li, Y. & Rong, X. The extreme learning machine learning algorithm with tunable activation function. Neural Computing and Applications 22, 531-539 (2013).
12 Miao, P., Shen, Y. & Xia, X. Finite time dual neural networks with a tunable activation function for solving quadratic programming problems and its application. Neurocomputing 143, 80-89 (2014).
13 Biswas, A. & Chandrakasan, A. P. CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 54, 217-230 (2019).
14 Valavi, H., Ramadge, P. J., Nestler, E. & Verma, N. A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain Compute. IEEE Journal of Solid-State Circuits 54, 1789-1799 (2019).
15 Wang, P. et al. Three-Dimensional nand Flash for Vector–Matrix Multiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, 988-991 (2019).
16 Song, J. et al. in 2019 IEEE International Solid-State Circuits Conference - (ISSCC). 130-132.
17 Keckler, S. W., Dally, W. J., Khailany, B., Garland, M. & Glasco, D. GPUs and the Future of Parallel Computing. IEEE Micro 31, 7-17 (2011).
18 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64 (2015).
19 Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60-67 (2018).
20 Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504-512 (2022).
21 Le Gallo, M. et al. Mixed-precision in-memory computing. Nature Electronics 1, 246-253 (2018).
22 Luo, Y., Luc, Y. C. & Yu, S. in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1871-1876.
23 Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics 1, 137-145 (2018).
24 Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641-646 (2020).
25 Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nature Communications 9, 2331 (2018).
26 Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211-216 (2022).
27 Patil, A. D., Hua, H., Gonugondla, S., Kang, M. & Shanbhag, N. R. in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). 1-5.
Yang, S. et al. Integrated neuromorphic computing networks by artificial spin synapses and spin neurons. *NPG Asia Materials* 13, 11 (2021).

Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. *Nature Electronics* 3, 148-155 (2020).

Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. *Nature Physics* 7, 626-630 (2011).

Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. *Nature* 563, 230-234 (2018).

Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. *Nat. Mater.* 13, 11-20 (2014).

Liu, J. et al. Compensated Ferrimagnet Based Artificial Synapse and Neuron for Ultrafast Neuromorphic Computing. *Advanced Functional Materials* 32, 2107870 (2022).

Wang, Y. & Yang, H. Spin–Orbit Torques Based on Topological Materials. *Accounts of Materials Research* (2022).

Shao, Q. et al. in *2018 IEEE International Electron Devices Meeting (IEDM)*. 36.33.31-36.33.34.

Shin, I. et al. Spin–Orbit Torque Switching in an All-Van der Waals Heterostructure. *Advanced Materials* 34, 2101730 (2022).

Zhong, Y. et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. *Nature Communications* 13, 2811 (2022).

Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. *Nature* 606, 501-506 (2022).

Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. *Nature Electronics* 2, 290-299 (2019).

Zhang, W. et al. Neuro-inspired computing chips. *Nature Electronics* 3, 371-382 (2020).
52 Sergey, I. & Christian, S. in *Proceedings of the 32nd International Conference on Machine Learning* Vol. 37, 448-456 (PMLR, 2015).

53 Zhijie, Y. *et al*. Bactran: A Hardware Batch Normalization Implementation for CNN Training Engine. *IEEE Embedded Systems Letters* **13**, 29-32 (2021).

54 Milo, V., Malavena, G., Monzio Compagnoni, C. & Ielmini, D. Memristive and CMOS Devices for Neuromorphic Computing. *Materials* **13** (2020).

55 Compagnoni, C. M. *et al*. Reviewing the Evolution of the NAND Flash Technology. *Proceedings of the IEEE* **105**, 1609-1633 (2017).

56 Bez, R., Camerlenghi, E., Modelli, A. & Visconti, A. Introduction to flash memory. *Proceedings of the IEEE* **91**, 489-502 (2003).

57 Cai, P. *et al*. JOTE: Joint Offloading of Tasks and Energy in Fog-Enabled IoT Networks. *IEEE Internet of Things Journal* **7**, 3067-3082 (2020).

58 Yang, H. *et al*. Two-dimensional materials prospects for non-volatile spintronic memories. *Nature* **606**, 663-673 (2022).
Fig. 1. **Characterizations of Bi$_2$Te$_3$(18 nm)/CrTe$_2$(21 ML) heterostructure-based SOT-S and SOT-N devices.** a, Schematic of neural network and requirements of the synapse and neuron units for reliable learning and recognition. b, Illustration of the SOT-driven magnetization switching mechanism in the Bi$_2$Te$_3$/CrTe$_2$ heterostructures. c, Endurance test of the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(21 ML) crossbar up to 5×10^4 write/read cycles at $T = 120$ K. An in-plane magnetic field of $B = 0.09$ T was applied to enable the deterministic switching. d, Device-to-device variation of 36 SOT devices across the 2-inch wafer. e, Memristor-like SOT switching minor-loops of the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(21 ML) system. 12 intermediate states are generated by $I_{\text{write}}^{\text{syn}}$ ranging from 15 mA to 27 mA. f, Symmetric and repeatable LTP/LTD curves of the $d = 21$ ML SOT-S device under 6 trials of training pulses. g, Write stochasticity distribution of the SOT-S device where the data were collected from Fig. 1f. h-i, The readout Hall voltage $V_{\text{read}}^{\text{syn}}$ (h) and corresponding read stochasticity distribution of $I_{\text{read}}^{\text{syn}} = 5$ mA (i) of the SOT-S device. Once the weight information is set by $I_{\text{write}}^{\text{syn}}$, the measured $V_{\text{read}}^{\text{syn}}$ exhibits little fluctuation after 100 counts of the read
current pulses (0.1 mA < \(I_{\text{syn}}^{\text{read}}\) < 10 mA) for all 12 state variables. j, Linear \(V_{\text{read}}^{\text{syn}} - I_{\text{read}}^{\text{syn}}\) slopes of the SOT-S device under different weights. k, Fitting result of the Sigmoid-type \(V_{xy}\)-\(I_{\text{DC}}\) transition curves in the positive [0 mA, 27 mA] region by the logistic function.
Fig. 2. Circuit architecture and image classification accuracy of the integrated SOT-ANN.

a, Schematic of the neural network used for the MNIST test.
b, Serial-connected, voltage-mode sensing SOT-ANN architecture.
c, Operating principle of the integrated SOT-ANN network. After the
initialization ($I_{\text{reset}}^{\text{syn}}$) and weight assignment ($I_{\text{write,ij}}^{\text{syn}}$), the input current ($I_{\text{VMM,ij}}^{\text{syn}}$) is applied through each SOT-S device (−y direction), and the output Hall voltage signal ($V_{\text{VMM,ij}}^{\text{syn}}$) is summed along the same row (x-axis) which is subsequently served as the input voltage of the SOT-N unit. The lower panel of Fig. 2c displays the microscopic image of three serial-connected $d = 5$ ML SOT-S units (S_1, S_2, S_3) used for the $[1 \times 3]$ VMM demonstration, where $I_{\text{VMM,1}}^{\text{syn}}$, $I_{\text{VMM,2}}^{\text{syn}}$ and $I_{\text{VMM,3}}^{\text{syn}}$ represent the input currents. d, Measured $V_{\text{out}}^{\text{syn}}$ (red triangles) and ideal $V_{\text{VMM}}^{\text{syn}}$ (blue squares) results of the three serial-connected SOT-S array with the weight information of 0.39 Ω (cyan circles), 0.44 Ω (orange stars) and 0.32 Ω (green diamonds), respectively. e, $V_{\text{out}}^{\text{syn}}$ mapping under one specific input current condition with fixed $I_{\text{VMM,3}}^{\text{syn}} = 1$ mA but varied ($I_{\text{VMM,1}}^{\text{syn}}$, $I_{\text{VMM,2}}^{\text{syn}}$) combinations. f-g, Comparison of the normalized LTP/LTD curves (f) and the off-chip trained classification accuracy (g) among different memristor technologies. h, The recognition features of the 0~9 digits after the off-chip training after 50 and 1000 iterations.
Fig. 3. Dependence of the SOT-ANN performance on the CrTe$_2$ layer thickness. a, Schematic of Bi$_2$Te$_3$/CrTe$_2$ heterostructures with adjustable CrTe$_2$ layer thickness. b, Anomalous Hall resistances of four CrTe$_2$ samples with $d = 5$ ML, 9 ML, 14 ML, and 21 ML, respectively. Data are shifted vertically for convenient comparison. c, The evolution of I_{SW} as functions of temperature and CrTe$_2$ layer thickness. d-e, Tunable LTP/LTD curves (d) and R_{xy}-I_{DC} transition slopes (e) of the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(d)-based SOT devices. f, Off-chip training results with different CrTe$_2$ layer thicknesses. The background diagram was conducted under ideal synapse units with infinite weight states. g, Comparison of the on-chip trained classification accuracy of different memristors under the same 8-bit quantization condition after 1000 iterations.
Fig. 4. Four-stage integrated SOT-ANN system with available Batch Normalization and trainable activation functions. **a**, Correction of the internal covariate shift by applying the BN algorithm. **b**, Normalized $V_{\text{VMM}}^{\text{neuron}} - I_{\text{VMM}}^{\text{neuron}}$ transition curves and the extracted k values (inset) of the Bi$_2$Te$_3$(18 nm)/CrTe$_2$(5 ML)-based SOT device. The write current range (i.e., which generates 18 intermediate states) is $19 \text{ mA} < I_{\text{write}}^{\text{neuron}} < 32 \text{ mA}$. **c**, Illustration of the four-stage SOT-ANN system with the corresponding working units (VMM, BN&Activation, Back-Propagation, and Weight-Update). **d**, The circuit diagram (**left panel**) and operating signal waveforms (**right panel**) to execute both the BN and Activation operations in the same SOT-N device within one clock cycle. It is noted that the output voltage of the SOT-S array $V_{\text{VMM},i}^{\text{syn}}$ is converted into a negative $I_{\text{VMM}}^{\text{neuron}}$ by setting $I_{\text{VMM}}^{\text{neuron}} = -V_{\text{VMM},i}^{\text{syn}} / R_{\text{ch}}^{\text{neuron}}$, where $R_{\text{ch}}^{\text{neuron}}$ is the SOT-N channel resistance. **e**, Comparison of the classification accuracy and loss in the $d = 5$ nm SOT-ANN system with fixed and trainable k after the off-chip (**left panel**) and on-chip (**right panel**) trainings.
Technology	CMOS Memories	Memristive Device	Our Work				
	NOR Flash	NAND Flash	RRAM	PCM	FeFET	STT-MRAM	
Linearity	Low	Low	Low	Low	Medium	High	
Integration density	High	Very High	High	High	High	Medium	
Switching Energy	High	High	Medium	High	Medium	Low	Low
Retention	Long	Long	Medium	Long	Long	Medium	Long
Endurance	10^5	10^4	10^5-10^8	10^6-10^9	>10^5	10^{15}	>10^{15}
Inherited Activation Function	Yes	Yes	No	No	No	No	Yes
BN Algorithm & Activation Function integration	Yes	Yes	No	No	No	No	Yes

Table 1. Summary of analog ANN performance implemented by different memristor platforms.