Low energy onset of nuclear shadowing in photoabsorption

T. Falter, S. Leupold and U. Mosel
Institut für Theoretische Physik
Justus-Liebig-Universität Giessen
D-35392 Giessen, Germany
(February 26, 2000)

Abstract

The early onset of nuclear shadowing in photoabsorption at low photon energies (∼ 1 GeV) has recently been interpreted as a possible signature of a decrease of the ρ meson mass in nuclei. We show that one can understand this early onset within simple Glauber theory if one takes the negative real part of the ρN scattering amplitudes into account, corresponding to a higher effective mass of the ρ meson in nuclear medium.

PACS numbers: 25.20.Dc, 24.10.Ht, 12.40.Vv
Recent photoabsorption data on C, Al, Cu, Sn and Pb in the energy range from 1 to 2.6 GeV display an early onset of the shadowing effect. The shadowing of high energy photons can be quantitatively understood in the Glauber approach (see e.g. and references therein) but some of the newer models slightly underestimate the effect for low photon energies or even predict antishadowing below 2 GeV when nucleon correlations are taken into account.

The early onset of shadowing has recently been interpreted as a sign for a lighter ρ meson in medium. The shadowing effect was evaluated within a Glauber-Gribov multiple scattering theory and generalized vector dominance using realistic spectral functions for the hadronic components of the photon but neglecting the real parts of the hadron-nucleon scattering amplitudes. A decrease of the ρ mass in nuclei was then suggested to fit the data.

The aim of this paper is to show how one can understand the data within a simple Glauber model if one takes the real part of the ρN scattering amplitude into account. Experiments show that for energies of about 4 and 6 GeV the real part of the ρN forward scattering amplitude is negative and already of the same order of magnitude as its imaginary part. Dispersion theoretical calculations indicate that this is also the case for the energies we are considering. A negative real part indeed leads to a positive mass shift of the ρ in medium as pointed out by Eletsky and Ioffe. We also include two-body correlations between the nucleons which avoids unphysical contributions to the shadowing effect in the considered energy region.

Glauber’s formalism allows us to express the nuclear amplitudes of high energy particles in terms of more fundamental interactions with nucleons. We are interested in the total photon nucleus cross section which is related to the nuclear forward Compton amplitude via the optical theorem. We will briefly describe the two contributions to the nuclear Compton amplitude in order α_{em}. For a detailed derivation within the Glauber model we refer to and references therein.

Consider a real photon with momentum $k \cdot \hat{e}_z$ that hits a nucleus with mass number A and nucleon number density $n(\vec{r})$. The first contribution to the Compton amplitude in order α_{em} comes from forward scattering of the photon from a single nucleon somewhere inside the nucleus as shown in Fig. 1. This leads to the unshadowed part of the cross section (first term in (1)). The second contribution comes from processes as depicted in Fig. 2. Here the photon enters the nucleus at impact parameter \vec{b} and produces an on-shell vector meson V with momentum $k_V \cdot \hat{e}_z$ on a nucleon at position z_1. This meson then scatters at fixed impact parameter (eikonal approximation) through the nucleus and finally at position z_2 back into the outgoing photon.

The resulting expression for the total photon nucleus cross section, neglecting correlations between the single nucleons (independent particle model), is then given by

$$\sigma_{\gamma A} = A\sigma_{\gamma N} + \sum_V \frac{8\pi^2}{kk_V} \text{Im} \left\{ i f_{\gamma V} f_{V \gamma} \int d^2b \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 n(\vec{b}, z_1) n(\vec{b}, z_2) \right. $$

$$\times e^{iQV(z_1-z_2)} \exp \left[-\frac{1}{2} \sigma_V (1 - i\alpha_V) \int_{z_1}^{z_2} dz' n(\vec{b}, z') \right] \right\}, \quad (1)$$

where $\sigma_{\gamma N}$ denotes the total photon nucleon cross section and σ_V the total vector meson
nucleon cross section. The momentum transfer \(q_V = k - k_V \) is given by

\[
q_V = k - \sqrt{k^2 - m_V^2}
\]

(2)

where \(m_V \) is the vacuum mass of the vector meson \(V \). We use the vector dominance model (VDM) to relate the photoproduction amplitude \(f_{\gamma V} \) for the vector meson \(V \) in the forward direction to the \(VN \) forward scattering amplitude \(f_{VV} \) in the following way

\[
f_{\gamma V} f_{V\gamma} = \frac{e^2}{g_V^2} f_{VV}^2.
\]

(3)

The optical theorem allows us to express the amplitude \(f_{VV} \) as

\[
f_{VV} = \frac{ik_V}{4\pi} \sigma_V (1 - i\alpha_V)
\]

(4)

where \(\alpha_V = \text{Re} f_{VV} / \text{Im} f_{VV} \) is the ratio of real to imaginary part of the \(VN \) forward scattering amplitude. From (3) one sees that within VDM the photoproduction amplitude also depends on \(\alpha_V \).

The effect of two-body correlations between the nucleons has been investigated e.g. in Ref. [4,13]. We are interested in how these correlations influence the shadowing in the low energy region where \(q_V \) is large. From (1) we see that for very large \(q_V \) the second term on the right hand side contributes most if \(z_1 \approx z_2 \), that is when the first and the last nucleon in the scattering process are approximately at the same position. Replacing the product of one-particle densities by the two-particle density

\[
n_2(\vec{b}, z_1, z_2) = n(\vec{b}, z_1)n(\vec{b}, z_2) + \Delta(\vec{b}, |z_1 - z_2|)
\]

(5)

as proposed in Ref. [7], avoids such unphysical contributions. Since for \(z_1 \approx z_2 \) the last exponential in (1) is approximately one, consideration of correlations between the first and the last nucleon should be sufficient. For the two-body correlation function \(\Delta \) we use the same Bessel function parametrization as in Ref. [7]:

\[
\Delta(\vec{b}, |z_1 - z_2|) = -j_0(q_c |z_1 - z_2|)n(\vec{b}, z_1)n(\vec{b}, z_2)
\]

(6)

with \(q_c = 780 \text{ MeV} \).

Since the largest contributions to shadowing stem from the lighter vector mesons we only allow for \(V = \rho, \omega, \phi \), neglecting higher mass intermediate states with large \(q_V \). Since the \(\rho \) is the lightest vector meson and its photoproduction amplitude \(f_{\gamma\rho} \) is about 3 times larger than that of the \(\omega \) and \(\phi \), it will make the main contribution to the sum in (1) for low energies. Hence, the shadowing effect at low photon energies is very sensitive to the properties of the \(\rho \) and in particular to the choice of \(\alpha_\rho \).

In Fig. 3 we compare the ratio \(\sigma_{\gamma A} / A \sigma_{\gamma N} \) plotted against photon energy with the data from Ref. [1,2] for different nuclei. We assume a Woods-Saxon distribution [18] for \(n(\vec{r}) \) and approximate the photon nucleon cross section \(\sigma_{\gamma N} \) for each nucleus with mass number \(A \) and proton number \(Z \) by

\[
\sigma_{\gamma N} = \frac{Z\sigma_{\gamma p} + (A - Z)\sigma_{\gamma n}}{A},
\]

(7)
fitting the data on σ_{np} and $\sigma_{\gamma n}$ for photon energies between 1 and 5 GeV.

The dotted line in Fig. 3 represents the result one gets using the quark model parametrization for σ_V and the coupling constants g_V of Model I of Ref. [3] with α_V set to zero. One clearly underestimates the shadowing effect at the considered energies and even gets anti-shadowing at photon energies below 1.5 GeV (12C) and 2 GeV (208Pb) as stated in Ref. [2,7].

The effect of the real part of $f_{\rho\rho}$ is shown by the dashed line in Fig. 3. The parametrization of α_V is also taken from Model I of Ref. [3]. Taking the negative real parts of the amplitudes into account leads to two competing effects: The negative value of α_V in the exponential of (1) diminishes the shadowing effect. However α_V also enters the prefactor $f_{\gamma V} f_{V\gamma}$ via (3) and (4) and thereby increases shadowing. In total this leads to an enhancement of the shadowing effect and improves the agreement with experiment significantly. This result is also obtained in [19] which investigates the influence of shadowing on photo-meson production for photon energies between 1 and 10 GeV.

The solid line in Fig. 3 shows the result one gets if one uses the ρN scattering amplitude from the dispersion theoretical analysis by Kondratyuk et al. [17] and assuming that $f_{\omega\omega} = f_{\rho\rho}$. For the ϕ we still use the parametrization from Ref. [3]. In Ref. [17] the dependence of $f_{\rho\rho}$ on the momentum of the ρ meson yields a positive mass shift for ρ momenta larger than 100 MeV. This is compatible with the result of Eletsky and Ioffe [16] for energies above 2 GeV who obtain an increase of the ρ mass in medium with growing ρ momentum. Again one sees that considering the (negative) real part of the ρN scattering amplitude leads to a very good agreement with the data. The difference between the dashed and the solid lines in Fig. 3 reflects the uncertainty in the elementary ρN amplitude; it is, however, obvious that both parametrizations used lead to the same conclusion that using a negative real part for the ρN scattering amplitude explains the early onset of shadowing.

This result can be interpreted in terms of an in-medium change of the ρ meson properties. For large energies $k \approx k_\rho \gg m_\rho$, $q_\rho \approx m_\rho^2/2k_\rho$ the last two exponentials in (1) simplify to

$$\exp \left[\frac{i}{2k_\rho} \left(m_\rho^2 - 4\pi f_{\rho\rho} n_0 \right) \left(z_1 - z_2 \right) \right]$$

where we have assumed a uniform density n_0. We would have gotten the same result if we had taken for the ρ contribution to the Compton amplitude the process pictured in Fig. 4. Here the photon produces an effective ρ^* with mass m^* and width Γ^* at the first nucleon at position z_1 which propagates formally without further scattering to the nucleon at position z_2 and scatters back into the photon. The effective propagator contains the multiple scattering of the ρ and can be calculated from the effective optical potential

$$U = -4\pi f_{\rho\rho} n_0.$$ \hspace{1cm} (8)

In the calculation reported here the negative real part of the amplitude $f_{\rho\rho}$ results in a larger effective mass of the ρ meson in medium

$$m^* = \sqrt{m_\rho^2 - 4\pi \text{Re} (f_{\rho\rho}) n_0}.$$ \hspace{1cm} (9)

\footnote{Due to a misprint the sign of α_V in Table XXXV of Ref. [3] is wrong.}
Thus, the multiple scattering contained in \(\text{(1)} \) generates the mass-shift of the \(\rho \)-meson. On the other hand, using an external mass-shift for the \(\rho \) meson in a multiple scattering approximation such as \(\text{(1)} \) doublecounts the in-medium effects. This explains why the authors of \(\text{[8]} \) were led to the conclusion that the early onset of shadowing reflects a lowering of the \(\rho \) meson mass in medium.

We have demonstrated that the early onset of shadowing can be understood if one allows for a negative real part of the vector meson scattering and photoproduction amplitudes. This corresponds to an increase of the \(\rho \) meson mass in the nuclear medium at large momenta, in agreement with dispersion theoretical analyses.

ACKNOWLEDGMENTS

This work was supported by DFG.
REFERENCES

[1] N. Bianchi et al., Phys. Rev. C 54, 1688 (1996).
[2] V. Muccifora et al., Phys. Rev. C 60, 064616 (1999).
[3] T. H. Bauer, F. Pipkin, R. Spital and D. R. Yennie, Rev. Mod. Phys. 50, 261 (1978).
[4] A. Donnachie and G. Shaw, Electromagnetic Interactions of Hadrons, edited by A. Donnachie and G. Shaw (Plenum, New York, 1978), Vol. 2, p. 195.
[5] G. Piller, W. Ratzka, W. Weise, Z. Phys. A 352, 427 (1995).
[6] R. Engel, J. Ranft and S. Roesler, Phys. Rev. D 55, 6957 (1997).
[7] S. Boffi, Ye. Golubeva, L. A. Kondratyuk and M. I. Krivoruchenko, Nucl. Phys. A 606, 421 (1996).
[8] N. Bianchi, E. De Sanctis, M. Mirazita and V. Muccifora, Phys. Rev. C 60, 064617 (1999).
[9] V. N. Gribov, JETP 30, 709 (1970).
[10] J. H. Weis, Acta Phys. Pol. B 7, 851 (1976).
[11] R. J. Glauber, Lectures in Theoretical Physics, edited by W.E. Brittin and L.G. Dunham (Wiley Intersience, New York, 1959), Vol. I, p. 315.
[12] R. J. Glauber, High Energy Physics and Nuclear Structure, edited by S. Devons (Plenum, New York, 1970), p. 207.
[13] D. R. Yennie, Hadronic Interactions of Electrons and Photons, edited by J. Cummings and H. Osborn (Academic, New York/London, 1971), p. 321.
[14] H. Alvensleben et al., Phys. Rev. Lett. 25, 1377 (1970); Phys. Rev. Lett. 27, 444 (1971).
[15] P. J. Biggs, D. W. Braben, R. W. Clifft, E. Gabathuler and R. E. Rand, Phys. Rev. Lett. 27, 1157 (1971).
[16] V. L. Eletsky and B. L. Ioffe, Phys. Rev. Lett. 78, 1010 (1997).
[17] L. A. Kondratyuk, A. Sibirtsev, W. Cassing, Ye. S. Golubeva and M. Effenberger, Phys. Rev. C 58, 1078 (1998).
[18] H. Lenske (private communication).
[19] M. Effenberger and U. Mosel, nucl-th/9908078.
FIG. 1. Contributions to the unshadowed part of the nuclear Compton amplitude in order α_{em}. The photon scatters from a single nucleon.

FIG. 2. Shadowing contribution to the nuclear Compton amplitude in order α_{em}. The photon produces a vector meson V that scatters through the nucleus and finally back into the outgoing photon.
FIG. 3. Ratio of nuclear and nucleon photoabsorption cross section plotted against the photon energy (dotted line - real part of the scattering amplitudes set to 0, dashed line - real part like in Ref. [3], solid line - ρN scattering amplitude like in Ref. [17]). The data are taken from Ref. [1] (circles) and Ref. [2] (squares).
FIG. 4. The effective propagator of the ρ^* replaces the multiple scattering of the ρ meson in Fig. 2.