Interconectarea structurilor ISR din Forțele Terestre cu structurile ISR din Forțele Aeriene și Forțele Navale reprezintă o reală provocare pentru asigurarea întregului ciclu informațional într-o arhitectură flexibilă, robustă și complexă, pentru realizarea imaginii comune recunoscute și pentru asigurarea sprijinului comandantului Grupării de Forțe Intrunite în luarea celor mai bune decizii. Importanța realizării interconexiunii structurilor ISR de la toate nivelurile ierarhice și din toate categoriile de forțe este determinată de existența mediului operațional impredicibil și de necesitatea scurtării timpurilor de reacție în procesul decizional.

Connecting ISR structures from Land Units with ISR structures of Air and Naval units, represents a real challenge, for assuring the whole information cycle in a flexible, robust, and complex architecture in order to create a common known image and to assure support for the commander of the Joint Forces Group in taking the best decisions. The importance of achievement interconnection between ISR structures at all level of hierarchy and from all categories of forces is determined by unpredictability of operational environment, and the necessity of shortening response time during decisional process.

Cuvinte-cheie: informații; cercetare; supraveghere; Forțe Terestre; Forțe Aeriene; Forțe Navale; Grupare de Forțe Intrunite.

Keywords: intelligence; reconnaissance; surveillance; Land Forces; Air Forces; Naval Forces; Joint Forces Group.

Mediul operațional aflat într-o continuă schimbare, evoluțiile tehnologice și cele ale mijloacelor ISR fără precedent ne determină să analizăm posibilitatea utilizării capabilităților ISR într-un mod oportun, prioritizat, într-o arhitectură ISR optimă, pentru obținerea unui număr cât mai mare de informații în sprijinul operațiilor, avându-se în vedere evitarea supraaglomerării cu informații irelevante, depășite sau inexacte.

Capabilitățile de culegere ISR pot opera în toate mediile operaționale și pot fi caracterizate ca fiind terestre, aeropurtate, navale, spațiale, cibernetice, de mediu¹. Potrivit Dicționarului explicativ al limbii române, prin interdependență se înțelege ,,legătură și condiționare reciprocă între procese, lucruri, fenomene etc.”². În prezent, cooperarea judicioasă a senzorilor din Forțele Terestre cu senzorii din Forțele Aeriene și din Forțele Navale poate determina creșterea eficienței operațiilor întrunite prin realizarea unui obiectiv comun, într-un spațiu și într-o perioadă de timp clar determinate.

Executarea operațiilor militare în mediile de confruntare terestru, aerian și naval permite „interceptarea simultană a țintelor și realizarea imaginii comune recunoscute”³.

Experiența ultimelor conflicte demonstrează faptul că succesul operațiilor militare este determinat de participarea a cel puțin două categorii de forțe. Istoria recentă ne arată faptul că niciuna dintre acestea nu poate câștiga de una singură. Un exemplu elocvent în acest sens îl constituie războiul din Golf, în care Coaliția Multinațională a fost organizată din structuri aparținând tuturor mediilor de confruntare, constituite într-o grupare de forțe întrunite.

Sincronizarea mijloacelor de culegere a informațiilor de la toate categoriile de forțe și

*Universitatea Națională de Apărare „Carol I”
e-mail: adi_jianu@yahoo.com

Iunie, 2021
de la toate nivelurile ierarhice reprezintă o parte importantă a procesului ISR. Datele și informațiile primite de la un mijloc de culegere ISR din FT pot fi complete cu produse primite de la celelalte mijloace de culegere din cadrul FN sau FA.

Pornind de la definiția arhitecturii ISR, potrivit căreia aceasta reprezintă totalitatea „organizațiilor, proceselor, relațiilor și sistemelor care concepează elementele de culegere, bazele de date, serviciile, aplicațiile, structurile de analiză și beneficiarii într-un mediu operațional“4, putem să înțelegem faptul că interrelaționarea și interconectivitatea tuturor senzorilor din FT, FN și FA reprezintă un subsistem al întregului sistem arhitectural de informații.

Mai mult decât atât, putem afirma că aplicabilitatea principiilor managementului arhitecturii ISR (interconectivitate, flexibilitate, compatibilitate, adaptare la misiune, control centralizat)5 este comună tuturor structurilor ISR din Forțele Terestre, din Forțele Navale și din Forțele Aeriene.

Spre deosebire de capabilitățile de culegere specializate în Forțele Terestre (HUMINT, OSINT, IMINT, GEOINT, ACINT, MASINT)6, în Forțele Navale întâlnim OSINT, IMINT, SIGINT, RADINT, capabilități de hidrolocație care cuprind sistemele de coastă și larg, capabilități privind situația CBRN, capabilități de cercetare din cadrul Regimentului de Infanterie Marină și al Grupului Naval de Forțe pentru Operații Speciale7. În „Doctrina Întrunită pentru Informații, Supraveghere și Cercetare“, pe lângă deja enumeratele capabilități, sunt prezentate și altele, precum CYBERINT, TECHINT, EW, MPE8.

Putem observa că, în concordanță cu doctrina românească, există unele capabilități de culegere similare, care pot determina un grad ridicat de cooperare, dar și capabilități diferite de culegere, care pot genera un volum complet de informații și, implicit, o imagine de ansamblu „cuprinzătoare“ la nivel întrunit.

Din punct de vedere doctrinar,9 sistemele de culegere pot fi dispuse la sol, pe platforme aeriene/spațiale și pe platforme maritime. Mijloacele de supraveghere electronică și mijloacele de cercetare și supraveghere în infraroșu, electroo optic și prin radar sunt comune tuturor celor trei sisteme de culegere din Forțele Terestre, Forțele Aeriene și Forțele Navale.

Sistemele de culegere dispuse pe platformele aeriene au echipamente de imagistică hiperspectrală și multispectrală, precum și de detectare a unor anomalii magnetice. Pe de altă parte, sistemele de culegere dispuse pe platforme navale includ mijloace de detectare acustică, precum sistemele de culegere dispuse la sol. Capabilitățile de culegere din surse umane (HUMINT) sunt specifice, în mod evident, structurilor ISR din Forțele Terestre.

Din perspectivă IMINT (Imagery Intelligence)10, platformele purtătoare de senzori (preluare și analiză a imaginilor) sunt terestre, aeriene și navale.

În ceea ce privește platformele terestre, putem vorbi despre platformele mobile cu o autonomie foarte bună și pot transmite fotografii, înregistrări și date în timp aproape real, dar prezintă riscul pierderii echipajului. Platformele aeriene, cunoscute mai puțin și numite vehicule terestre, fără echipaj la bord (UGV/unmanned ground vehicle), care pot să furnizeze imagini la distanțe scurte, dar pot fi ușor capturate sau se pot deteriora pe timpul misiunii. Pe de altă parte, platformele aeriene11 pot fi cu sau fără echipaj uman la bord. Platformele cu echipaj la bord pot zbura la înălțimi mari, pe distanțe lungi, cu o autonomie foarte bună și pot transmiti fotografii, înregistrări și date în timp aproape real, dar prezintă riscul pierderii echipajului și sunt foarte costisitoare. Platformele fără echipaj la bord au avantajul că nu există riscul pierderii echipajului, pot transmite fotografii și înregistrări în timp aproape real, pot fi utilizate de mai multe ori, sunt operate de la sol, dar trebuie să fie încadrate în sistemul de control aerian. Indiferent dacă dispun sau nu de echipaj la bord, platformele aeriene sunt influențate de condițiile meteorologice.

Stățiile de control UAS pot fi instalate terestru, naval și aerian, asigură planificarea și executarea misiunilor, realizează sistemul de comunicații, asigură procesarea, exploatarea și diseminarea informațiilor către beneficiari12. Platformele navale pot asigura imagini la bord, pe platforme aeriene/spațiale și pe platforme maritime. Mijloacele de supraveghere electronică și mijloacele de cercetare și supraveghere în infraroșu, electroo optic și prin radar sunt comune tuturor celor trei sisteme de culegere din Forțele Terestre, Forțele Aeriene și Forțele Navale.
echipaj uman la bord, pot fi lansate platforme aeriene mobile13.

Prin supravegherea unui teatrul/zonă de operațiuni de către senzori, se asigură supremația informațională asupra adversarului, precum și posibilitatea de adaptare a operațiilor la situațiile complexe apărute, a modului de acțiune, dar mai ales de impunere a voinței proprii.14

În accepția unor autori15, supravegherea prin observare a spațiului aerian, terestru și naval se realizează, pentru executarea schimbului reciproc de date și informații, prin identificarea și raportarea principalor caracteristici ale mijloacelor terestre, aeriene și navale, precum și a modalităților de acțiune și a manevrelor execute.

De asemenea, se determină locurile debarcării elementelor de desant maritim și aerian, utilizarea de către adversar a mijloacelor CBRN, se realizează evaluarea loviturilor antiaeriene, precum și observarea și raportarea fenomenelor meteorologice și a schimbărilor climatice în zona de operațiuni.

Schimbul de informații dintre structurile ISR din Forțele Terestre și structurile ISR din Forțele Aeriene contribuie, în mod evident, la la sporirea efectivității mișcării forțelor terestre, precum și la sporirea eficienței operatoarelor de la bord. Schimbul de informații permite îmbunătățirea coordonărilor și coordonării pentru îndeplinirea scopurilor operațiunii.

Pentru realizarea operațiiei de interdicție aeriană asupra unor ținte (de obicei, fixe) din adâncimea dispozitivului adversarului, operațiune care necesită o planificare deliberată, structurile ISR din Forțele Terestre pot fi utilizate în cadrul operațiunii pentru a asigura protecția teritorială a nației. Schimbul de informații permite îmbunătățirea coordonărilor și coordonării pentru îndeplinirea scopurilor operațiunii.

În opinia unor autori,18 radarul, lidarul și sonarul reprezintă senzorii cu ,,aplicabilitatea cea mai mare în supravegherea aeriană și detecția corpurilor aflate în mișcare în mediile terestre, maritim și aerian". Structurile ISR pot coopera cu structurile ISR din Forțele Aeriene în cadrul operațiunii de interdicție aeriană, asigurându-se protecția teritorială a nației.

În opinia unor autori,18 radarul, lidarul și sonarul reprezintă senzorii cu ,,aplicabilitatea cea mai mare în supravegherea aeriană și detecția corpurilor aflate în mișcare în mediile terestre, maritim și aerian". Structurile ISR pot coopera cu structurile ISR din Forțele Aeriene în cadrul operațiunii de interdicție aeriană, asigurându-se protecția teritorială a nației.
securitate. Totodată, pot contribui la procesul de targeting (identificarea și priorizarea țintelor), precum și la evaluarea pierderilor în operație și evitarea daunelor colaterale 19.

În acest sens, este importantă viteza de culegere și de transmitere a informațiilor de către structurile ISR și mai ales diseminarea către beneficiar. Coordonarea este executată întrunit prin Managementul cerințelor de informații și managementul culegerii (Intelligence Requirement Management and Collection Management – IRM&CM), astfel încât informațiile culese din surse deschise de către structurile ISR din Forțele Terestre să ajungă în timp oportun atât la Forțele Aeriene, cât și la Forțele Navale, și invers.

Pentru interconectarea senzorilor din FT, FA și FN în ceea ce privește informațiile neclasificate, pot fi utilizate anumite rețele pe Internet, cum ar fi: *World Wide Web, Deep Web, Dark Web*.

La rețeaua World Wide Web, conectarea se realizează prin utilizarea unui cod standard, denumit HTML/Hyper-text Mark-up Language. La *Deep Web*, conținutul din rețea nu este accesibil prin motoarele standard de căutare comune, include site-uri private și presupune abonarea și înregistrarea operatorilor. *Dark Web* este componentă a DeepWeb, este ascunsă în mod intenționat și este accesibilă doar prin rețele criptate 20.

O altă modalitate de interconectare poate fi o rețea tactică de date, securizată, denumită Internet Protocol/IP. În NATO, aceasta este denumită NATO General Comunications System (NGCS)/Sistem general de comunicații NATO, constituită din sisteme și subsisteme NATO la toate nivelurile țării. Pentru securizarea rețelei și pentru a evita distribuirea informațiilor către persoane neautorizate, NGCS dispune de un dispozitiv de criptare pentru a limita accesul la informații, denumit ”boundary protection device” 21.

Unul utilizat în cadrul NATO care își demonstrează eficiența astăzi în teatrele de operații și care poate fi utilizat și de structurile ISR este ”Blue Force Tracking”. Acesta asigură interconectarea tuturor forțelor albastre într-o zonă de operații, este interoperabil și poate oferi o imagine completă a dispunerii forțelor proprii și aliate și contribuie decisiv la evitarea fraticidului.

În doctrina americană 22, întâlnim conceptul de „sistem distribuit de supraveghere a spațiului terestru comun” (Distributed Common Ground System – Army/DCGS-A). Sistemul asigură decidenților posibilitatea de a recepționa date și informații din teren, dar și de a transmite mesaje, sarcini, informații tuturor senzorilor aflați în zona de operații. De asemenea, sistemul corespunde cerințelor de informații la toate nivelurile ierarhice.

Pe viitor, este necesară aderarea la o strategie comună de management al legăturilor de date în cadrul NATO (NATO Bi-Strategic Commanders Data Link Management Strategy/Bi-SC DLMS). Aceasta se realizează pentru îmbunătățirea managementului automat al linkurilor, pentru a reduce duplicarea informațiilor, pentru proiectarea unui format comun al mesajelor și standardizarea raportării 23.

Concluzii

Interconectarea structurilor ISR din Forțele Terestre cu structurile ISR din Forțele Aeriene și Forțele Navale poate fi esențială în sprijinirea cu informații al Grupării de Forțe Întrunite și poate contribui decisiv la succesul oricărei operații.

Consider că este necesară continuarea acestei direcții de cercetare, deoarece a reprezentat, reprezintă și va reprezenta și în viitor o reală provocare. Trebuie să recunoaștem faptul că interconectarea tuturor senzorilor este destul de dificil de realizat. Subiectul reprezintă un motiv de dezbatere nu numai pentru Armata României, dar și pentru alte armate membre ale NATO.

Lucrul cu informația într-un mediu colaborativ, cu un grad ridicat de interconectare, cu respectarea celor două principii devenite clasice ,,nevoia de a cunoaște” și ,,nevoia de a distribui” poate determina evitarea apariției informației vitale mult întârziată.

Sunt de părere că trebuie să experimentăm mai mult schimbul de informații și să înțelegem, așa după cum istoria a demonstrat-o în nenumărate rânduri, că o decizie luată astăzi (chiar dacă nu este cea mai bună) este mult mai valoroasă decât o decizie luată mâine, dar prea târziu.

Experiența poate fi câștigată prin intensificarea exercițiilor în comun dintre structurile ISR aparținând tuturor categoriilor de forțe din Armata României, prin creșterea cooperării, a interconexiunii și, de ce nu, chiar a încredierii reciproce.

NOTE:

1 I.A.-1.5, *Doctrina Întrunită pentru Informații, Supraveghere și Cercetare*, București, 2017, p. 38.
2 ***Dicționarul explicativ al limbii române*, dexonline, ro, accesat la 05.04.2021.
Buletinul Universității Naționale de Apărare „Carol I”

Iunie, 2021

3 Cristian Stanciu, *Fizionomia operațiilor militare în mediul de securitate contemporan*, Editura Universității Naționale de Apărare „Carol I”, București, 2016, p. 70.

4 I.A.-1.5, Ibidem, p. 43.

5 I.A.-1.5, Ibidem, p. 39.

6 SMFT-20, *Manualul pentru întrebuințarea elementelor ISR din Forțele Terestre*, București, 2019, p. 1-3.

7 F.N.-1.3, *Doctrina pentru operațiile a Forțelor Navale*, București, 2012, art. 30.

8 I.A.-1.5, Ibidem, p. 15.

9 I.A.-1.5, Ibidem, pp. 10-11.

10 I.A.-2.6, *Doctrina sprijinului cu informații militare obținute prin exploatarea imaginilor IMINT*, București, 2013, p. 36.

11 I.A.-2.6, Ibidem, p. 37.

12 SMAp-2 *Manual militar de întrebuințare a sistemelor de aeronave fără pilot (UAS) în Armata României*, București, 2021, p. 8.

13 I.A.-2.6, Ibidem, p. 46.

14 Radu D. Ghica, „Tipologia misiunilor în condițiile noii mediului de operare la începutul secolului XXI”, *CSSAS, Politici și strategii în gestionarea conflictualității*, Editura Universității Naționale de Apărare „Carol I”, București, 2008, p. 39.

15 F.A.1.1.3.2., *Manual privind organizarea și executarea supravegherii prin observare a spațiului aerian și terestru/ maritim în Statul Major al Forțelor Aeriene*, București, 2011, p. 8.

16 F.A./Av-2, *Manualul pentru luptă al flotilei aeriene*, București, 2010, p. 24.

17 F.N.-1.3, *Doctrina pentru operații a Forțelor Navale*, București, 2012, art. 9.

18 Petru Pirjol, *Arhitectura sistemului de supraveghere a spațiului aerian. Dinamică structură și funcționalitate*, Editura Universității Naționale de Apărare „Carol I”, București, 2020, p. 37.

19 I.A.-1.7, *Doctrina pentru informații din surse deschise*, București, 2020, p. 15.

20 I.A.-1.7, Ibidem, p. 27.

21 FA-1.2, *Doctrina privind apărarea aeriană și antirachetă cu baza la sol*, București, 2020, p. 17.

22 FM 2.0. *Intelligence*, Headquarters, Department of the Army, Washington DC, 2004, p. 1-23.

23 FA-1.2, Ibidem, p. 18.

BIBLIOGRAFIE

*** AJP-2.7 *Allied Joint Doctrine for Reconnaissance and Surveillance*, 2009.

*** AJP-3.2 *Allied Joint Doctrine for Land Operations*, 2016.

*** AJP-3.3 *Allied Joint Doctrine for Air and Space Operations*, 2016.

*** F.A.1.1.3.2., *Manual privind organizarea și executarea supravegherii prin observare a spațiului aerian și terestru/maritim în Statul Major al Forțelor Aeriene*, București, 2011.

*** F.A.1.2., *Doctrina privind apărarea aeriană și antirachetă cu baza la sol*, București, 2020.

*** F.A./Av-2, *Manualul pentru luptă al flotilei aeriene*, București, 2010.

*** FM 2.0. *Intelligence*, Headquarters, Department of the Army, Washington DC, 2004.

*** F.N.-1.3, *Doctrina pentru operații a Forțelor Navale*, București, 2012.

*** I.A.-1.5, *Doctrina Întrunită pentru Informații, Supraveghere și Cercetare*, București, 2017.

*** I.A.-1.7, *Doctrina pentru informații din surse deschise*, București, 2020.

*** I.A.-2.6, *Doctrina sprijinului cu informații militare obținute prin exploatarea imaginilor IMINT*, București, 2013.

*** IGEO-1, *Instrucțiuni privind sprijinul geospațial în Armata României*, București, 2020.

*** SMAp-2 *Manualul militar de întrebuințare a sistemelor de aeronave fără pilot (UAS) în Armata României*, București, 2021.

*** SMAp-74, *Doctrina operațiilor în spațiul cibernetic*, București, 2020.

*** SMFT-20, *Manualul pentru întrebuințarea elementelor ISR din Forțele Terestre*, București, 2019.

*** Dicționarul explicativ al limbii române, dlexonline.ro

Ghica Radu D., „Tipologia misiunilor în condițiile noii mediului de operare la începutul secolului XXI”, *CSSAS, Politici și strategii în gestionarea conflictualității*, Editura Universității Naționale de Apărare „Carol I”, București, 2008.

Pirjol Petru, *Arhitectura sistemului de supraveghere a spațiului aerian. Dinamică structurală și funcțională*, Editura Universității Naționale de Apărare „Carol I”, București, 2020.

Stanciu Cristian, *Fizionomia operațiilor militare în mediul de securitate contemporan*, Editura Universității Naționale de Apărare „Carol I”, București, 2016.