Heart regeneration, stem cells, and cytokines
Na Li1,2*, Chuan Wang1, LiXin Jia1,2,3 and Jie Du1,2,3

Abstract
The human heart has limited regenerative capacity, which makes the reparative response after the cardiac infarction quite challenging. During the last decade, stem cells have become promising candidates for heart repair, owing to their potent differentiation capacity and paracrine cytokine secretion. Among the different types of stem cells, mesenchymal stem cells have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs. The paracrine cytokines play important roles in cardiac regeneration, neovascularization, anti-apoptosis, and anti-remodeling mechanisms, among others. This review summarizes the cytokines secreted by stem cells and their relative signaling pathways, which represent key mechanisms for heart regeneration and may serve as a promising future therapeutic strategy for myocardial infarction patients.

Keywords: Cytokines, Heart regeneration, Stem cells, Paracrine mechanisms

Review
Introduction
Myocardial infarction (MI) causes the loss of cardiac tissue and scar formation, which ultimately lead to heart failure. According to the World Health Organization, heart failure initiated by MI and coronary artery disease accounts for 29% of deaths worldwide [1]. However, human heart tissue does not regenerate spontaneously, thus “regenerative medicine” represents a promising alternative treatment for MI [2]. Cardiac tissue regenerative medicine involves cardiomyocyte regeneration, neovascularization, and paracrine cytokines, which have anti-inflammatory, anti-apoptotic, and anti-remodeling effects [3]. During the last decade, stem cells have become promising candidates for regenerative medicine not only because of their capacity of differentiation toward cardiomyocyte and vascular cell lineages but also their capacity for releasing such paracrine factors and their anti-arrhythmic effects [4,5]. Paracrine cytokines and chemokines play pivotal roles in stem cell-related cardiac repair mechanisms.

Although great advances have been made in the identification of novel strategies to save the myocardium and improve the mortality of MI patients, further understanding of the impact of cytokines on myoblast differentiation and the related signaling pathways may provide unique opportunities for reducing cardiac impairment.

The current review summarizes the stem cell-related cytokines and related reparative pathways that represent potential therapeutic targets for cardiac regeneration after MI.

Cellular sources of cardiac regeneration
Cardiac progenitor cells
Shortly after birth, human cardiomyocytes cease proliferating and exhibit a very limited regenerative capacity. However, this concept has been challenged recently. Bergmann et al. used C14 to carbon date the DNA of dividing cardiomyocytes. They demonstrated that the diploid cardiomyocyte nuclei were younger than the human subjects, providing good evidence for cardiomyocyte division in adult humans. Mathematical statistics suggested that approximately 1% of cardiomyocytes were renewed per year at age 20 years, and 0.4% at age 75 years [6]. Based on these kinetics, about 45% of cardiomyocytes would be predicted to be renewed over the normal human lifespan, whereas 55% would be cells persisting since birth [7]. After this demonstration of the renewal capacity in adult heart tissue, the existence of cardiac progenitor cells (CPCs) in postnatal hearts has been reported by different groups [8]. CPCs have been identified by surface markers such as c-KIT, Isl1 cells, or SCA-1.
and their physiological properties such as the ability to ef-
flux fluorescent dye (i.e., side population) [9]. CPCs ex-
pressing the tyrosine kinase receptor c-KIT are the most
extensively investigated subtype [10]. Beltrami et al. has
first identified the c-KIT-positive CSCs in the heart cap-
able of dividing symmetrically and asymmetrically in vitro
and differentiating into myocytes, vascular smooth muscle
cells (SMCs), and endothelial cells (ECs) [11]. Newly dif-
ferentiated cardiomyocytes possess the mechanical and
electric properties of functionally cardiomyocytes, which
 improvise cardiac function after MI [12]. Some studies indi-
cate that, when transplanted, c-KIT+ cells induce large-
scale regeneration of myocardial infarcts and contribute to
the formation of new myocardium and vessels, whereas
others suggest smaller-scale regeneration [10]. Hatzister-
gos and colleagues demonstrated that MSCs may stimu-
late endogenous CSCs, including c-KIT CSCs and GATA-
4 CSCs, to differentiate into enriched populations of adult
cardioblasts that express Nkx2-5 and troponin I both in
vivo and in vitro [13]. However, clinical applications of
CSCs are limited because of their small number and low
proliferation capacity. Nevertheless, CSCs play a pivotal
role in the maintenance of cardiac homeostasis and repair.

Mesenchymal stem cells
Since the first demonstration that bone marrow-derived
mesenchymal stem cells (MSCs) can generate functional
cardiomyocytes [14], these cells have become a promis-
 ing therapeutic candidate for heart disease. In the past
decade, many clinical trials have used MSCs to treat MI
and heart failure. The results have demonstrated clinical
safety and efficacy, but the cardiac function improve-
ments have been limited, ranging from 3% to 15% [15].
Currently, differentiation of MSCs into functional card-
iomycytes remains controversial and the rate of myocar-
dial regeneration appears too minor to explain the
significant cardiac function recovery observed after MSC
transplantation following MI. Accumulating evidence
suggests that the MSC cytokine profile exerts beneficial
effects on the prevention of apoptosis and fibrosis as
well as improvement of cardiac function [16-18]. For ex-
ample, Duran et al. recently demonstrated that bone
marrow-derived stem cells improve survival, cardiac
function, and attenuate remodeling through the secre-
tion of pro-angiogenic factors that stimulate endogenous
neovascularization [5].

Induced pluripotent stem cells
Fifteen years ago, Murry et al. first demonstrated that fi-
broblasts could be transdifferentiated into skeletal
muscle in vitro by overexpressing the myogenic tran-
scription factor, MyoD [19]. Subsequently, Yamanaka
and colleagues proved that pluripotent stem cells could
be induced from mouse embryonic or adult fibroblasts by
introducing four defined factors, Oct3/4, Sox2, c-Myc,
and Klf4, under embryonic stem cell culture conditions
[20]. While this groundbreaking finding has opened an ex-
 citing research area, its clinical applications remain limited
given the transgenic integration and alteration of the en-
dogenous genomic organization. Induced pluripotent stem
cells (iPS) can differentiate into cardiomyocytes via mech-
anisms involving the aforementioned cytokines. The pro-
duction of the iPS by non-viral methods or a combina-
tion of the cytokines may serve as alternatives for iPS cell
therapy.

Under hypoxic conditions, stem cells can release growth
factors and cytokines such as transforming growth factor
(TGF)-β, interleukin (IL)-6, vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF)-2, hepato-
cyte growth factor (HGF), insulin-like growth factor (IGF),
angiopoietin (Ang)-1, stromal cell-derived factor (SDF)-1,
matrix metalloproteinase (MMP)-9, and tumor necrosis
factor (TNF)-α, among others. These secreted cytokines
exert important anti-apoptosis, anti-inflammatory, and
anti-remodeling effects in a paracrine manner [21].

Cytokines, stem cells, and cardiomyocyte regeneration
Cytokines are small cell-secreted molecules that play
pivotal roles in cell proliferation, differentiation, and
apoptosis [22]. Increasing evidence suggests that stem
cell transplantation may decrease circulating inflamma-
 tory cytokines such as TNF-α, IL-6, and IL-1β in re-
 sponse to injury. Aggarwal et al. observed that immune
cells co-cultured with MSCs may alter the cytokine se-
cretion profile and finally lead to immunotolerance
in vitro [23]. Among the candidates for positive regula-
tors of cardiomyocyte differentiation, the TGF-β, IL-6,
and chemokine families are the most widely investigated
to date and have been demonstrated to be the key players
in cardiomyocyte regeneration.

TGF-β and cardiomyocyte regeneration
The zebrafish heart shows a remarkable regenerative
capacity compared to the mammalian heart. TGF-β is
expressed during early cardiac development in zebrafish,
which coordinates a wide spectrum of subsequent cellular
steps that are required for efficient cardiac regeneration.
Recently, it was reported that Smad3-dependent TGF-β
signaling orchestrates beneficial effects on cardiomyocyte-
based regeneration to achieve complete heart regeneration
[24]. Downregulation of TGF-β/activin signaling caused a
wide range of cellular phenotypes affecting heart function.
In MI, TGF-β plays a pivotal role in cardiac repair by sup-
pressing inflammation and promoting the myofibroblast
phenotype and extracellular matrix deposition. Myofibro-
blast proliferation results in restoration of cardiac function
after MI. Moreover, TGF-β simultaneously induced myo-
genesis and inhibited adipogenesis in a dose-dependent
manner [25]. In MI, TGF-β was upregulated especially in the infarct border zone associated with Smad2, 3, and 4 expression and phosphorylation of Smad1 and 2 [26]. TGF-β1 can induce MSCs to differentiate into either chondrocytes or SMCs in vitro [27,28]. TGF-β released from MSCs can promote angiogenesis by stimulating EC proliferation. However, cell – cell and cell – matrix interactions are necessary for such differentiation to occur, similar to development of these tissues in vivo [29]. TGF-β1 inhibits adipogenic differentiation of MSCs in monolayer culture. Recently, Rouhi et al. demonstrated that autologous serum enhances cardiomyocyte differentiation of rat bone marrow MSCs cells in the presence of TGF-β1 [30]. Taken together, the TGF-β1 signaling pathway may serve as a potential therapeutic target for the heart regeneration process.

IL-6 family of cytokines and cardiomyocyte regeneration

Accumulating data show that the IL-6 family also plays a key regulatory role in cardiomyocyte regeneration. The IL-6 family includes leukemia inhibitory factor (LIF), cardiotoxin-1 (CT-1), IL-6, oncostatin-M, and neutrophilin-1/B-cell stimulating factor-3 (NTN-1/BSF-3) [31,32]. IL-6 has numerous activities. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R) associated with a second protein, gp130, and initiates intracellular signaling [33]. IL-6 has multiple regulatory functions in the immune and nervous systems. Furthermore, IL-6 is also involved in liver regeneration and metabolic homeostasis [34]. Exogenous recombinant IL-6 influences the proliferation and differentiation of cultured myoblasts derived from human or murine muscle via the activation of the STAT3 signaling pathway [35]. Our group recently demonstrated that IL-6 expression and activation of the STAT3 signaling pathway in monocytes/macrophages are critical mediators of macrophage migration and myoblast proliferation during muscle regeneration [36].

CT-1 is another member of the IL-6 cytokine family. CT-1 knockdown did not affect infarct size in a murine model, suggesting that CT-1 does not play an essential role in MI-related injury. Upregulation of CT-1 in the infarcted myocardium modulates the fibrotic response through the inhibition of fibroblast proliferation [37]. However, CT-1 activates the Janus kinase/signal transducers and activators of transcription (JAK/STAT), mitogen-activated protein (MAP) kinase, phosphatidylinositol (PI) 3 kinase, and nuclear factor κB (NF-κB) pathways to exert its hypertrophic and cytoprotective properties [38].

Chemokines and cardiac regeneration

Chemokines comprise a family of small, highly basic proteins with strikingly similar tertiary structures [39]. Chemokines are markedly upregulated in healing myocardial infarcts and play important roles in modulating infarct angiogenesis and fibrous tissue deposition. In the CXC chemokine subfamily, the SDF-1α/CXC-chemokine receptor type 4 (SDF-1α/CXCR4) axis is the best-understood signaling pathway for cardiogenesis, neovascularization, hematopoiesis, and neuronal development, as well as endothelial progenitor cell trafficking. SDF-1 is predominantly expressed in the infarct area after MI, which causes the migration of MSCs into the heart and may responsible for the improvement of cardiac function [40]. We previously demonstrated that endothelial nitric oxide synthase (eNOS) promotes the migration of MSCs toward the infarcted heart through the upregulation of SDF-1 [41]. However, this SDF-1 – induced MSCs migration toward the MI area can nearly be abolished by a PI3K inhibitor and CXCR4 antagonist [40]. Overexpression of SDF-1 in MSCs promoted angiogenesis and improved cardiac function in a rat MI model [42].

Cytokines, neovascularisation, and angiogenesis

MI induces inflammation in the infarcted zone and the accumulation of various factors that promote the angiogenesis process. Lai et al. demonstrated that MSC-derived microparticles increase myocyte viability and reduce adverse remodeling after myocardial hypoxia-induced injury [43]. These microparticles has been demonstrated to contain cytokines, chemokines, and microRNAs. Neovascularisation consists of two district processes, vasculogenesis and angiogenesis. Vasculogenesis is driven by bone marrow-derived circulating endothelial progenitor cells whereas angiogenesis is initiated by local ECs proliferating from existing vasculature. Neovascularisation is stringently regulated by a variety of cytokines, including the VEGF, FGF, and Ang families [44]. Here, we summarize the major cytokines that play pivotal roles in neovascularisation and angiogenesis.

VEGF

VEGF plays crucial roles in EC proliferation and recruitment, embryonic development, and ischemic tissue damage. VEGF acts through the VEGF receptor (VEGFR) 1 or VEGFR 2 protein tyrosine kinases. Hypoxia-inducible factor (HIF)-1 is the key regulator of VEGF expression [45,46]. Five human VEGF isoforms (A, B, C, D, and placental growth factor [PIGF]) have been produced by differential splicing of VEGF mRNA. VEGF-A is primarily involved in vascular growth, lymphatic development, and vascular malformation [47]. Thus VEGF-A has been intensively investigated regarding its role in tumorigenesis and potential for cancer therapy. While VEGF-C and VEGF-D regulate the lymphangiogenesis [48]. VEGF appears to be a critical regulator of EC proliferation [49]. Pretreatment of cardiac scars with gene transfer of VEGF in addition to the Gata4, Mef2c, and Tbx5 (GMT) enhanced the transdifferentiation of rat fibroblasts into
(induced) cardiomyocytes [50]. The addition of VEGF into the transfection cocktail resulted in a 4-fold improvement in the cardiac ejection fraction [50]. Recently, Ye et al. demonstrated that VEGF is required for effective cardiomyocyte differentiation of human iPS [51]. Moreover, VEGF also mediates the phosphorylation of eNOS, which is pivotal in the regulation of angioblast and embryonic EC proliferation [52]. Taken together, VEGF is a key regulator of angiogenesis after cardiac ischemia and warrants further investigation as a therapeutic target for hypoxia-induced tissue damage in subsequent clinical trials.

FGF

The FGF protein family exhibits a wide variety of effects. Among these proteins, acidic FGF (FGF-1) and basic FGF (FGF-2) are the most critical stimulators of EC proliferation and angiogenesis promotion in cancer and cardiac hypoxia [53]. FGF is upregulated early after cardiac ischemic injury, which suggests that it may be involved in the regulation of the early inflammatory reaction after MI. Although FGF and VEGF activate different genes and seem to stimulate different vessel types, these actions are highly correlated [54]. It has been demonstrated that FGF’s angiogenic effects are VEGF dependent, while VEGF-induced tubulogenesis requires FGF signaling [55]. FGF has been shown to induce neovascularization in a rat vascular pedicle model [56]. Endothelial progenitor cells express FGF receptors and it has been demonstrated that FGF regulates the proliferation and differentiation of endothelial progenitor cell-like MSCs through the ERK1/2 signaling pathway [57]. In a murine diabetes model, the improvement of neovascularization corresponded to the high local expression of FGF and VEGF, suggesting that these cytokines play key roles in post-ischemic angiogenesis.

Recently, it was also revealed that MSCs overexpressing granulocyte chemotactic protein (GCP)-2 improved cardiac function through enhanced angiogenic properties in a myocardial infarction model [58]. Taken together, the angiogenic cytokines secreted by MSCs represent promising therapeutic targets for the treatment of MI patients.

Cytokines and other cardioprotective effects

The cytokines secreted by MSCs also play important roles in cardiomyocyte apoptosis, cardiac contractility, cardiac remodeling, and inflammation.

Anti-apoptotic effects

Mirotsou et al. reported that secreted frizzled-related protein 2 (Sfrp2) promotes myocardial repair by increasing cellular catenin and upregulating expression of anti-apoptotic genes Birc1b and Bcl2 [59]. Wang et al. have demonstrated that Hsp20-engineered MSCs are resistant to oxidative stress due to enhanced activation of Akt and increased secretion of VEGF, FGF-2, and IGF-1 [60]. MSCs pretreated with a combination of growth factors, including FGF-2, IGF-1, and BMP-2, cause reduced cardiomyocyte apoptosis under hypoxic conditions and enhance the phosphorylation of Akt and cyclic adenosine monophosphate (cAMP), resulting in better gap junctions and decreased infarct size [61].

Anti-arrhythmic effects

The anti-arrhythmic potential of MSCs remains controversial. Chang et al. revealed the proarrhythmic potential of MSC transplantation in an in vitro co-culture system [62]. Such proarrhythmic effects may be related to the heterogeneity of MSCs, immaturity of transdifferentiated MSCs, and contractile dyskinesia between MSCs and in situ cardiomyocytes. However, Ly et al. contend that stem cell therapy promotes important anti-arrhythmic effects if properly applied [63]. Thus, studies regarding the effects of MSC-related cytokines on arrhythmia need further assessment. The anti-arrhythmic effects of MSCs may serve more important clinical applications than anti-arrhythmic drugs.

Anti-inflammatory effects

After infarct damage, several innate immune pathways are activated in the infarcted myocardium. Inflammatory factors such as TGF-β, IL-1β, IL-6, TNF-α, VEGF, and others are consistently found in the infarct area. Aggarwal et al. observed that MSC trafficking into the infarct area decreases the secretion of TNF-α and interferon-γ, while increasing IL-4 and IL-10 production [23]. MSC transplantation also attenuates the activity of NF-κB, inhibits the protein production of TNF-α and IL-6, and increases the expression of IL-10 in infarcted myocardium [64]. MSCs also release heme oxygenase-1 (HO-1) and eNOS, important anti-oxidative stress factors, resulting in the protection of cardiomyocytes, improvement of neovascularization, and improvement in cardiac function during the early stage after MI [65]. The mechanisms by which MSCs modulate the immune system to reduce the inflammatory response warrant further investigation.

Conclusions

Myocardial regeneration has been intensively studied in the last decade given the promising results of the stem cell therapy in MI. Among the mechanisms underlying the cardioprotective effects of stem cells, the paracrine cytokines released by stem cells are the most important factors. This review summarized the major cytokines involved in cardiomyocyte differentiation, angiogenesis, and neovascularization, as well as anti-apoptotic and anti-arrhythmic processes. Increased understanding of
the cardioprotective mechanisms of MSCs and iPS may enable the discovery of more beneficial cytokines for heart regeneration. The full understanding of the related cytokine signaling pathways and their complex biological effects will be essential for future clinical applications.

Competing interest
The authors declare that they have no competing interests.

Authors’ contribution
NL, CW conceived and prepared the initial manuscript. LXJ and JD critically revised and expanded the manuscript. All authors read and approved the final manuscript.

Author details
1Capital Medical University Affiliated Beijing Anzhen Hospital, Anzhenli, Chaoyang District, Beijing 100029, China. 2Beijing Research Institute of Heart, Lung and Vessel Diseases, Beijing 100029, China. 3The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China.

Received: 31 July 2013 Accepted: 24 January 2014
Published: 2 April 2014

References
1. Celemajer DS, Choy CK, Motijion E, Anstey NM, Woo KS: Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol 2012, 60:2071–126.
2. Sangamalnath SK, Bolli R: Cell therapy for heart failure: a comprehensive overview of clinical and experimental studies, current challenges, and future directions. Circ Res 2013, 113(6):810–834.
3. Steinhauser ML, Lee RT: Regenerative Medicine Research 2014, 2:6 Page 5 of 6
http://www.regenmedres.com/content/2/1/6

4. Steinhauser ML, Lee RT: Cardiomyocyte repair: heart failure, paracrine signaling mechanisms, and new strategies. Stem Cells Int 2011, 2011:39028.
5. Duran JM, McAweek CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madich E, Berretta RM, Kudo H, Houser SR: Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms. Circ Res 2013, 113(3):539–552.
6. Bergmann O, Bhadrwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Drud H, Jovinge S, Frién J: Evidence for cardiomyocyte renewal in humans. Science 2009, 324:98–102.
7. Kajstura J, Gunsamy N, Ogorek B, Goichberg P, Clavo-Rondon C, Hosoda T, Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G, Iaffaldano G, Yoon YS, Wecker A, Heyd L, Park YK: The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 2010, 3:652–662.
8. Barile L, Messina E, Giacomello A, Marban E: The regenerative capacity of the zebrafish heart during the late phase of liver regeneration. J Biol Chem 2004, 279:107–112.
9. Hibi M, Nakajima K, Hirano T: Cardiomyocyte renewal in humans. J Clin Invest 2009, 123(5):1921–1930.
10. Pachowka M, Zegarska J, Ciecierski R, Korczak-Kowalska G, Leri A, Anversa P: Human mesenchymal stem cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A 2007, 104:17783–17788.
11. Fuh E, Brinton TJ: Bone marrow stem cells for the treatment of ischemic heart disease: a clinical trial review. J Cardiovasc Transl Res 2009, 2:202–218.
12. Yoon YS, Wecker A, Heyd L, Park YS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Alkass K, Ashara T, Losordo DW: Clinically expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005, 115:326–338.
13. Rota M, Kajstura J, Hosoda T, Bearzi C, Vitali S, Esposito G, Iaffaldano G, Padin-rugeas ME, Gonzalez A, Rizi R, Small N, Muraski J, Alvarez R, Chen X, Utkanek B, Bolli R, Houser SR, Leri A, Sussman MA, Anversa P: Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A 2007, 104:17783–17788.
14. Toma C, Pittenger MF: Bone marrow mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002, 105:93–98.
15. Freed D, Cunnington RH, Dangerfield AL, Sutton JS, Dixon IM: Emerging evidence for the role of cardioprotectin-1 in cardiac repair in the infarcted heart. Cardiovasc Res 2005, 65:782–792.
38. Jougasaki M: Cardiotrophin-1 in cardiovascular regulation. Adv Clin Chem 2010, 52:41–76.
39. Apostolakis S, Papadakis EG, Kiambovitis E, Spandiosis DA: Chemokines in vascular pathology (review). Int J Mol Med 2006, 17:691–701.
40. Yu J, Li M, Qu Z, Yan D, Li D, Ruan Q: SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J Cardiovasc Pharmacol 2010, 55:496–500.
41. Li N, Lu X, Zhao X, Xiang FL, Xenocostas A, Karayannos M, Feng Q: Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells 2009, 27:2961–70.
42. Wang Y, Luther K: Genetically manipulated progenitor/stem cells restore function to the infarcted heart via the SDF-1alpha/CXCR4 signaling pathway. Prog Mol Biol Trans Sci 2012, 111:265–284.
43. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK: Esosomes secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Rev 2016, 12:214–222.
44. Boomstra RA, Geenen DJ: Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 2012, 7:e23936.
45. Razban V, Lotfi AS, Solemami M, Ahmadi H, Massumi S, Khajeh S, Gaheidi M, Arjmandi S, Najavand S, Khosheed A: HIF-1alpha Overexpression Induces Angiogenesis in Mesenchymal Stem Cells. Biopen Open Access 2012, 3:113–118.
46. Hoenig MR, Bianchi C, Sellke FW: Vascular endothelial growth factor regulates angiogenesis in mesenchymal stem cells. Circ Res 2012, 110:1547–1557.
47. Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, Hackett N: The FGF family: biology, pathophysiology and therapeutic potential. Expert Rev Cardiovasc Ther 2014, 12:43–51.
48. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK: Esosomes secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Rev 2016, 12:214–222.
49. Stalmans I: Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome. Verh K Acad Geneesk Belg 2005, 67:229–276.
50. Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Shroyer K, Yang J, Ma Y, Crystal RG, Rosengart TK: In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 2012, 1:e005652.
51. Ye L, Zhang S, Gieder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J: Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 2013, 8:e53764.
52. Gentile C, Muise-Helmericks RC, Drake CJ: VEGF-mediated phosphorylation of eNOS regulates angioblast and embryonic endothelial cell proliferation. Dev Biol 2013, 373:163–175.
53. Beeken A, Mohammadi M: The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2008, 7:235–253.
54. Holmes DI, Zachary IC: Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2. Cell Signal 2008, 20:569–579.
55. Murakami M, Simons M: Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008, 15:215–220.
56. Moya MI, Cheng MH, Huang JJ, Francis-Sedlak ME, Kao SW, Kao SW, Opara EC, Brey EM: The effect of FGF-1 loaded alginate microbeads on neovascularization and angiogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials 2010, 31:2816–2826.
57. Takahashi M, Okubo N, Chosa N, Takahashi N, Ibii M, Karning M, Muzuki H, Ishii H, Kyakumoto S: Fibroblast growth factor-1-induced ERK1/2 signaling reciprocally regulates proliferation and smooth muscle cell differentiation of ligament derived endothelial progenitor cell-like cells. Int J Mol Med 2012, 29:357–364.
58. Kim SW, Lee DW, Yu LH, Zhang HZ, Kim CE, Kim JM, Park TH, Cha KS, Seo SY, Roh MS, Lee KC, Jung JS, Kim MH: Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res 2012, 95:493–506.
59. Mirotou M, Zhang Z, Deeb A, Zhang L, Gniecchi M, Noisieux N, Lu H, Pachori A, Dravu V: Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 2007, 104:1643–1648.
60. Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, Kanlas EG, Wang T, Fan GC: Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 2009, 27:3021–3031.
61. Hahn JY, Cho HJ, Kang HJ, Kim TS, Kim MH, Chung JH, Bae JW, Oh BH, Park YB, Kim HS: Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol 2008, 51:933–943.
62. Chang MG, Tung L, Sekar RB, Chang CY, Cyryk J, Dong P, Marban E, Abraham MR: Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006, 113:1832–1841.
63. Ly HQ, Nattel S: Stem cells are not proarrhythmic: letting the genie out of the bottle. Circulation 2006, 113:1824–1831.
64. Du YY, Zhou SH, Zhou T, Su H, Pan HW, Du WH, Liu B, Liu QM: Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy 2008, 10:469–478.
65. Solleymaniejadian E, Pramanik K, Samadian E: Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 2012, 67:1–8.

Cite this article as: Li et al: Heart regeneration, stem cells, and cytokines. Regenerative Medicine Research 2014 2:6.