13C NMR and Mass Spectrometry of Soil Organic Matter

Galya I. Ivanova*, Edward W. Randall†

1 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

2 Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.

Received 14 November 2002; revised 2 December 2002

Abstract: Liquid state, high resolution 13C NMR spectroscopy and mass spectrometry were used to study the composition and structure of soil organic matter (SOM) using soil extracts from two long-term experiments at the Rothamsted Experimental Station. Both one- and two-dimensional NMR techniques were applied. 13C NMR sub-spectra of the CH\textsubscript{n} (n = 0…3) groups, obtained by the Distortionless Enhancement by Polarisation Transfer (DEPT) technique, were used for the elucidation of the qualitative and quantitative composition of humic and fulvic acids in the soils. The chemical structure of SOM was further analysed at the molecular level through Fast Atom Bombardment Mass Spectrometry (FABMS) and Gas Chromatography-Mass Spectrometry (GC/MS). Humic and fulvic extract results were not only compared to each other, but also to the solid state 13C NMR results for the complete soil sample.

Keywords: soil organic matter, 13C NMR, DEPT, FABMS, GC/MS, Rothamsted soils

1 Introduction

High resolution Fourier transform NMR spectroscopy is a relatively new technique in the field of soil science. The complex nature of soil organic matter (SOM) makes the investigation of soils and soil extracts by NMR spectroscopy difficult [1]. The application of the NMR spectroscopy in the studies of soils and soil organic matter for both solid...
samples and liquid extracts has been discussed by selected authors including Randall et al. [1] and Preston [2]. 13C NMR spectroscopy is useful among the molecular spectroscopic methods available for SOM characterisation. It identifies partial structures of the SOM chemical components. Additional structural information for liquid extracts is obtained by the application of the NMR techniques of Distortionless Enhancement by Polarisation Transfer (DEPT), SEMUT-90 (sub-spectral editing using a multiple quantum trap) [3] and two-dimensional (2D) NMR experiments [1]. DEPT, SEMUT-90 and 2D J-resolved spectroscopy have been used previously to study aquatic humic substances [4].

Unfortunately, polarisation transfer and 2D NMR techniques have had limited application in the characterisation of SOM. The spectra obtained to date have been at relatively low magnetic fields ranging up to 9 T [4, 5, 6, 7], allowing low dispersion.

Molecular structure for SOM can be elucidated by mass spectrometric studies using analytic techniques developed for samples at low vapour pressure and thermal stability, or high molecular weight, such as biological macromolecules, biopolymers, oligosaccharides, drugs, carbohydrates, etc. Separation techniques and mass spectrometric techniques, such as gas chromatography or liquid chromatography may be used to analyse complex mixtures.

Pyrolysis-mass spectrometry, a method pioneered by Schulten [8], was developed and widely applied [9, 10, 11, 12] for soil characterisation. This method pyrolyses samples directly under a vacuum in the ion source of the mass spectrometer at temperatures ranging from 50° C to 750° C. Thermal decomposition products are then identified by soft ionisation mass spectrometry [11]. Another example of how Pyrolysis-gas chromatography/mass spectrometry is used is the chemical characterisation of the organic matter in soils [13, 14, 15].

The following report results from a long-term study conducted at the Rothamsted Experimental Station, UK, on the composition and structure of SOM by a combination of high-field 13C NMR spectroscopy (at magnetic fields of 14.1 T and 9.1 T), Fast Atom Bombardment Mass Spectrometry (FABMS), and Gas Chromatography-Mass Spectrometry (GC/MS).

The qualitative and quantitative compositions of humic and fulvic acids in the above-mentioned soils were measured using 13C NMR, DEPT and 2D 1H-13C heteronuclear correlation experiments (HMQC, Heteronuclear Multiple Quantum Correlation spectroscopy).

FABMS and GC/MS experiments yielded further information on the chemical structures of SOM subunits at the molecular level. These techniques are advantageous in that they avoid the preliminary thermal decomposition of the samples. FABMS is a particularly suitable technique for polar or labile samples, yielding ionised molecular species for molecular weights up to ~ 20 kDa. Since FABMS has been less successful with non-polar samples, gas chromatography-mass spectrometry was employed to analyse the humic acids of the soils without a preliminary thermal decomposition.
2 Materials and Methods

2.1 Soils and Sample Preparation

Two soils, High-field Grass (H) and Geescroft Field (G) were sampled from a long-term field experiment (more than 135 years old) conducted at the Rothamsted Experimental Station, (51° 48’ 03” N, 0° 21’ 10” W). Sample H was taken in 1981 from a mature grassland area which had received nitrogen fertiliser over a period of 135 years. It was taken at a depth of 10 cm showing a pH of 6.12 and a carbon content of 4.7%.

Sample G was taken in 1991 from a plot of agricultural land which had not received manure or carbonate treatment since 1881. Sample G was taken at a depth of 15 cm indicating a pH of 5.7 and a carbon content of 0.9%.

The humic substances of H and G were extracted with 0.5 M NaOH according to the procedure described in the literature [16]. The humic (HH, HG) and fulvic (FH, FG) acids were separated by acidification (6 M HCl, pH < 1) of the alkaline soil extracts. They were isolated and purified by the method described above [17].

2.2 NMR Spectroscopy

The liquid state NMR spectra were recorded on Bruker AMX-600 and Bruker 400 spectrometers, operating at 150.9 and 100.6 MHz for 13C respectively. The solutions were obtained by dissolving 50 - 100 mg (according to solubility) of the sample in 0.5 ml 0.5 M NaOD/ D$_2$O under nitrogen. The solutions were then centrifuged prior to the NMR experiments on a Europe 24M centrifuge at 18 000 c/s for 20 minutes. A sample temperature of 37° C was used, and chemical shifts were referenced to internal TSP (sodiumtrimethylsilylpropionate).

The 13C NMR spectra were recorded using the inverse-gated decoupling technique, with the decoupler off except during the acquisition time, in order to obtain 13C spectra decoupled from the protons but without Nuclear Overhauser Enhancement (NOE). The spectroscopic parameters were as follows: a pulse width of 6 μsec; an acquisition time of 0.8 s; and a relaxation delay of 2.0 s. More than 30,000 scans were normally accumulated and a 50 Hz line-broadening applied.

The DEPT (θ_{45^0}, θ_{90^0} and θ_{135^0}) spectra of the humic (HH and HG) and fulvic (FH and FG) acids were obtained under the same conditions as the 13C NMR spectra, with the use of $\tau = (2^{1/2}J_{CH})^{-1} = 3.45$ μs, (whereby t is the delay between the pulses). A line broadening of 50 Hz and more than 10,000 scans were accumulated. The sub-spectra of CH, CH$_2$, CH$_3$ and C-quaternary carbons were obtained by addition and subtraction of the DEPT spectra, according to the expressions 1 - 4 below.

\[
\text{C-quaternary} = ^{13}\text{C NMR-DEPT}\Theta_{45^0} \\
CH = \text{DEPT}\Theta_{90^0} \\
CH_2 = \text{DEPT}\Theta_{45^0} - \text{DEPT}\Theta_{135^0}
\]
\[CH_3 = (\text{DEPT}\Theta_{45^\circ} + \text{DEPT}\Theta_{135^\circ}) - \text{DEPT}\Theta_{90^\circ} \] (4)

The 2D 1H-13C heteronuclear correlation spectra (HMQC) were obtained using the standard Bruker software, with a spectral width of ca 30,000 Hz for 13C and ca 7,000 Hz for 1H, a relaxation delay of 2 s, 128 increments, and an FT size of 1K 512.

2.3 Mass Spectrometry

For the FABMS experiments, a CRATOS MS890 mass spectrometer was used. The samples were run with xenon (Xe) FAB from a thioglycerol matrix. Gas chromatography/mass spectrometry was used for the humic acids. For the gas chromatographic separation, a GC Hewlett Packard 5890 gas chromatograph equipped with a SGE 25QC2/ BPI - 0.25 column (25m 0.22mm 0.25m. Bonded 100% Me Silicone) was employed. The starting temperature for the GC separation was 60$^\circ$C and the final temperature was 300$^\circ$C, with heating rates of 8$^\circ$C per min. The mass spectra were then produced by a Jeol JMS-AX 505W spectrometer, using the Electron Impact (EI) mode.

The analysis of FABMS and GC/MS spectra was done using the library-search program of the mass-spectral service at King’s College, University of London. The data from "Eight peak index of mass spectra"-MSDS, was compared with mass spectral data from the literature [8, 9, 10, 11] and with structural information obtained from the NMR spectroscopy investigations from The Institute of Organic Chemistry, Bulgarian Academy of Sciences.

3 Results and Discussion

The extraction procedures applied to soils are may change slightly the nature of the soil organic matter. Nonetheless, they offer possibilities for more detailed structural elucidation of these complex mixtures compared with solid state NMR on untreated soils (‘complete’ soils). Solid state NMR spectroscopy has been applied to a wide range of soil samples; however, there are associated problems of quantification and loss of structural details [1, 2, 18, 19, 20, 21]. Although extraction procedures are invasive, they are advantageous in that some of the inorganic matter is removed reducing the paramagnetism of the samples. The percentage of SOM in the samples is increased. The soil-extracts may be investigated by solution-state NMR spectroscopy, which gives better resolution of the spectra, especially with the use of high field NMR spectrometers and also one- and two-dimensional techniques [3, 4, 17]. Both humic (HH, HG) and fulvic (FH, FG) acids were isolated and investigated separately to obtain more information about the composition and chemical structure of the SOM in sample soils H and G. The 13C NMR spectra of humic and fulvic acids demonstrated many overlapping resonances which were difficult to resolve even at high field (100.6 MHz for 13C). The use of DEPT pulse techniques produced a completely edited set of DEPT sub-spectra which were used for a quantitative evaluation [3, 4, 22].
3.1 13C Solution State NMR Spectra

The spectral assignments were based on the 1D 13C NMR, DEPT, the sub-spectra for CH$_3$, CH$_2$, CH and C-quaternary (Fig. 1, 2) carbons, and the 2D 1H-13C heteronuclear correlation spectra (Fig. 3).

![Fig. 1 150.9 MHz 13C NMR and DEPT spectra showing CH$_3$, CH$_2$, CH and C-quat. carbons in humic acids of soil High-field Grass](image)

The results are presented in Table 1. The quantitative distribution (in %) of CH$_3$, CH$_2$, CH and C-quaternary carbons was calculated on the basis of the integral intensity of the spectral regions in the DEPT spectra and sub-spectra [3, 4, 22]. The sum total of the quantitative distribution (in %) of CH$_n$ (n = 0, 1, 2 and 3) for every one spectral area was compared to those obtained from the 13C NMR spectra recorded using the inverse-gated decoupling technique. The data are presented in Tables 2 and 3.

From the data presented in Table 1, the difference in the composition and chemical structure of the humic and fulvic acids is obvious (Fig. 1, 2). Compared to the fulvic acids FH and FG, the 13C NMR spectra of humic acids are more complicated. The difference is the domination of aromatic and aliphatic structures in the humic acids, whereas carbohydrate structures prevail in the fulvic acids. The spectral regions at 105 - 145 ppm and 145 - 160 ppm in the 13C NMR spectra of humic acids were assigned...
to alkyl and O-substituted aromatic carbons, respectively. The strong peaks at 118.1 and 128.6 ppm are characteristic for the ortho- and meta-aromatic carbons in phenols, and those at 50.0 and 55 - 60 ppm for the carbons of methoxy and ethoxy groups, and can be easy identified in the 2D 1H/ 13C correlated spectrum (cross peaks at 118.1/ 6.5 ppm, 128.6/ 7.4 ppm, 50.0/ 3.4 ppm and 55 - 60/ 3.6-4.0 ppm) (Fig. 3). The resonance signals at 45 - 65, 65 - 80 and 80 - 90 ppm are assigned to the carbons of the aliphatic chains in lignin-like structures (18). The peaks at 47-60 ppm in the CH-sub-spectra of HH (Fig. 1), probably originate from the methine carbons of the propane side chains in lignins. The presence of these resonances shows the lignin-like nature of the humic acids.

In the 13C NMR spectra of the fulvic acids FH and FG, the resonance peaks of 95 - 108 ppm were assigned to anomeric carbons, those of 65 - 80 ppm to C-2 - C-5 carbons, and of 63 - 70 ppm to C-6 in sugar units from oligo- and polysaccharides. The assignment of DEPT spectra and sub-spectra of CH, CH2 carbons confirm the presence of carbohydrate structures in the fulvic acids. The resonance peaks of 170 - 190 ppm, as well as those in the aliphatic region, show the presence of carboxylic acids or esters. The very weak peaks of 40 - 45 ppm and 55 - 60 ppm were assigned to carbons in CH2NH2 and CHNH2 functional groups in amino acids. From the sub-spectra of the methyl carbons...
the amount of the CH$_3$O- groups (59-64 ppm) was determined.

3.2 MASS Spectrometry

The proposed chemical structures involved in the SOM of humic and fulvic acids, identified on a basis of FABMS, are shown in Tables 4 and 5, respectively. Signals with the same m/z ratio have been found in the FABMS spectra of the fulvic acids FG and FH, but with a difference in the relative intensities. The intensities were normalised with respect to the signal at m/z 80 for fulvic acids (FH and FG) and that at m/z 130 for humic acids. It was observed in the FABMS experiment that the signal intensity at m/z 133 (M+1) increased with time by one at m/z 195 (M+1). This could be the result of decomposition of glucoronic acid to glutaric acid or of the decomposition of carbohydrate structures. A substantial difference in the FABMS spectra of the humic acids HG and HH was observed, resulting from the presence of high molecular hydrocarbons or alcohols in HG (Table 5).

HG and HH were also investigated by gas-chromatography/mass spectrometry (GC/MS). The gas-chromatographic separation for some of the mixture components was poor, especially for those at lower retention times (RT = 3.5 - 28 min); so their identifica-
tion was difficult. The gas-chromatograms of the humic acids HH and HG are presented in Figure 4.

![Gas-chromatograms of the humic acids: a. HH; b. HG](image)

The fraction compositions were estimated by Electron Impact Mass spectrometry (EIMS). The main EI-signals (m/z) and proposed associated structures are presented in Table 6. The signals due to monomeric units of lignin-like structures (m/z 124, 126, 140, 154, 168, 182, 196, 210) were found at RT 8.4, 10.6, 11.7, 17.2 min in the gas-chromatograms of HG and HH. Additional fractions in HG (at RT = 20.6, 23.3, 25.9, 28.4, 30.9, 32.9, 39.9, 44.0, 46.0 min) were observed. The analysis of EIMS spectra has shown the presence of high-molecular weight aliphatic fractions. The compositions of the humic acids HH and HG in the gas chromatograms are presented in Table 7.

3.3 Structural Elucidation of the Samples

The structural elucidation of the humic acids HH and HG was achieved not only on the basis of 13C NMR and FABMS but also from the data obtained from GC/MS by the use of Electron Impact Mass spectrometry (EIMS). The GC/EIMS experiments have been used because of the inadequate information obtained by the application of FABMS to the humic acids, which could be explained by the presence of non-polar structures in the humic acids. FABMS is particularly suitable for polar molecules but less successful with non-polar samples [23]. On the basis of the 13C NMR data of HH and HG, a high percentage for the aromatic and aliphatic carbons was found (Table. 2). Most of the aromatic residues in the humic acids HG were substituted, as shown by the high (16.7 %) amount of quaternary carbons in the aromatic spectral area (110 - 145 ppm). On the other hand a doubled amount for the methine carbons in the aromatic spectral area of HH was
found. The predominant presence of CH₂ groups and especially of methylene carbons in long-chain hydrocarbons (22.3 ppm) for HH was established. The low content of methyl, methine and quaternary carbons in the spectral region 5 - 40 ppm indicated the lower content of branched aliphatic chains in HH, in comparison to HG (Table 2). The higher percentage of carboxylic carbons in HG indicated the increased content of carboxylic acids. The analysis of GC/EIMS spectra has shown the supplementary presence of high-molecular weight aliphatic fractions and carboxylic acids (mass range m/z 324 - 450) in the HG sample which has not been found in HH (Table 6 and 7).

The ¹³C NMR data show that the percentage of O-substituted methine and methylene carbons is highest in the fulvic acids. An increased content of CH-OH(R), CH₃O and COOH(R) carbons in FG was observed (Table 3). This could be explained by the greater abundance of alcohols, glycols, amino and carboxylic acids and their derivatives. The high percentage of carboxylic carbons and the low percentage of methylene and methyl carbons, shows the presence of dicarboxylic acids, substituted in the chain. The carboxylic acids in the fulvic acid FG are more substituted in the chain, as shown by the higher percentage of methine and quaternary carbons in the aliphatic spectral region (Table. 3). In Table 4, the FABMS results are in general agreement with the NMR data although a higher relative intensity of the signals characteristic for alcohols (m/z 61, 62), proteins (m/z 131), carboxylic acids or their derivatives (m/z 286) was found.

Both ¹³C NMR and mass spectral data show that the main difference in the chemical composition of SOM of the soils High-field Grass and Geescroft Field is the presence of high-molecular aliphatic compounds (hydrocarbons, alcohols or carboxylic acids with long aliphatic chains) in the latter.

The results of this investigation may be compared with those obtained on the whole soils by solid state ¹³C NMR spectroscopy [24] by combining the results for the humic and fulvic components for each of the two soils. Agreement after normalisation is good except for two spectral areas: the 160 - 190 ppm (carbonyl) and 10 - 50 ppm (alkyl) regions. For these, the solid state NMR results are approximately two thirds lower. This may be attributed to complications in the CP MAS NMR experiments which were the lack of an enhancement for carbon atoms, which have no approximate protons.

Acknowledgements:

We thank the Royal Society for a Fellowship for Dr. G. I. Ivanova. The NMR, MS and GC/MS instruments were provided by the University of London Intercollegiate Research Scheme and were located at Queen Mary London University (Bruker AMX 600) and King's College (Bruker 400, CRATOS MS890, GC Hewlett Packard 5890). We thank Mr. R. Tye and Mr. A. Cakebread of King's College for the mass spectrometry service.
References

[1] E.W. Randall, N. Mahieu, G.I. Ivanova: “NMR studies of soil, soil organic matter and nutrients: spectroscopy and imaging”, *Geoderma*, Vol. 80, (1997), pp. 307–325.

[2] C.M. Preston: “Applications of NMR to soil organic matter analysis: history and prospects”, *Soil Science*, Vol. 161, (1996), pp. 144–166.

[3] H.S. Shin and H. Moon: “An ‘average’ structure proposed for soil fulvic acid by DEPT/ QUAT 13C NMR pulse techniques”, *Soil Science*, Vol. 161, (1996), pp. 250–256.

[4] J. Lambert, P. Burba, J. Buddrus: “Quantification of Partial Structures in Aquatic Humic Substances by Volume Integration of Two-Dimensional 13C Nuclear Magnetic Resonance Spectra. Comparison of One- and Two-Dimensional Techniques”, *Magn. Reson. Chem.*, Vol. 30, (1992), pp. 221–227.

[5] L.W. Dennis and R.E. Pabst: *Polarisation Transfer and 2D Experiments in NMR of Solutions of Humic Materials and Fossil Fuel Liquids. NMR of Humic Substances and Coal*, Ch. 6, Chelsea, USA, 1987.

[6] J. Buddrus, B. Burba, H. Herzog, J. Lambert: “Quantitation of partial structures of aquatic humic substances by one- and two-dimensional solution 13C nuclear magnetic resonance spectroscopy”, *Anal. Chem.*, Vol. 61, (1989), pp. 628–631.

[7] R.M. Ede and G. Brunow: “Application of Two-Dimensional Homo- and Heteronuclear Correlation NMR Spectroscopy to Wood Lignin Structure Determination”, *J. Org. Chem.*, Vol. 57, (1992), pp. 1477–1480.

[8] H.-R. Schulten: *Analytical Pyrolysis*, Elsevier, Amsterdam, 1977.

[9] R. Hempfling and H.-R. Schulten: “Chemical characterisation of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-field ionisation mass spectrometry”, *Org. Geochem.*, Vol. 15, (1990), pp. 131–145.

[10] C.M. Preston, R. Hempfling, H.-R. Schulten, M. Schnitzer, J.A. Trofymov, D.E. Axelson: “Characterisation of the organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionisation mass spectrometry”, *Plant and Soil*, Vol. 158, (1994), pp. 69–82.

[11] M. Schnitzer and H.-R. Schulten: “Analysis of Organic Matter in Soil Extracts and Whole Soils by Pyrolysis-Mass Spectrometry”, *Advances in Agronomy*, Vol. 55, (1995), pp. 167–217.

[12] L. Beyer, R. Frund, C. Wachendorf, H. Knicker, C. Sorge, C. Kobbemann, H.-R. Schulten, H.-D. Ludemann, H.-P. Blume: “A simple wet chemical extraction procedure to characterise soil organic matter (SOM): 3. Results of vegetation, crop litter and forest litter in comparison to data as revealed with CPMAS 13C NMR spectroscopy and pyrolysis-field ionisation mass spectrometry”, *Commun. Soil Sci. Plant Anal.*, Vol. 27, (1996), pp. 2243–2264.

[13] H.-R. Schulten: “The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry”, *Fresenius J. Anal. Chem.*, Vol. 351, (1995), pp. 62–73.

[14] H.-R. Schulten: “Analytical pyrolysis of humic substances and soils: geochemical, agroecological and ecological consequences”, *J. Anal. Appl. Pyrolysis*, Vol. 25, (1993), pp. 97–122.
[15] H.-R. Schulten: “The three-dimensional structure of soil organo-mineral complexes studied by analytical pyrolysis”, \textit{J. Analyt. Appl. Pyrolysis}, Vol. 32, (1995), pp. 111–126.

[16] G. Calderoni and M. Schnitzer: “Effects of age on the chemical structure of Paleosol humic acids and fulvic acids”, \textit{Geochim. Cosmochim. Acta}, Vol. 48, (1984), pp. 2045–2051.

[17] G.I. Ivanova and E.W. Randall: “1H and 13C NMR study of soil organic matter at 14.1 T”, \textit{Bulg. Chem. Comm.}, Vol. 31, (1999), pp. 172–183.

[18] J.A. Baldock, J.M. Oades, A.M. Vassallo, M.A. Wilson: “Incorporation of uniformly labelled 13C-glucose carbon into the organic fraction of soils. Carbon balance and CP/MAS 13C NMR measurements”, \textit{Austr. J. Soil Res.}, Vol. 27, (1989), pp. 725–746.

[19] R. Frund and H.-D. Ludemann: “The quantitative analysis of solution and CPMAS-13C NMR spectra of humic material”, \textit{The Science of the Total Environment}, Vol. 81/82, (1989), pp. 157–168.

[20] P. Kincheshe, D.S. Powlson, E.W. Randall: “13C NMR studies of organic matter in soils: I. Quantitation possibilities”, \textit{Europ. J. Soil Sci.}, Vol. 46, (1995), pp. 125–138.

[21] N. Mahieu, D.S. Powlson, E.W. Randall: “Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter”, \textit{Soil Sci. Soc. Am. J.}, Vol. 63, (1999), pp. 307–319.

[22] M.R. Bendall and D.T. Pegg: “Complete Accurate Editing of Decoupled 13C Spectra Using DEPT and a Quaternary-Only Sequence”, \textit{J. Magn. Res.}, Vol. 53, (1983), pp. 272–296.

[23] J.R. Chapman: \textit{Practical Organic Mass Spectrometry}, Ch. 5, Ed. J. Wiley & Sons Ltd., England, 1995.

[24] P. Kincheshe, D.S. Powlson, E.W. Randall: “13C NMR studies of organic matter in soils: II. A case study of some Rothamsted soils”, \textit{Europ. J. Soil Sci.}, Vol. 46, (1995), pp. 139–146.
Assignment as functional groups	Chem. shifts (ppm) of HH	Chem. shifts (ppm) of FH	Chem. shifts (ppm) of HG	Chem. shifts (ppm) of FG
CH₃ in n-alkyl chain	13.4	-	15.5	-
CH₃ in branched chain	17.0, 17.9	18.7, 19.6	17 - 26	18 - 20
CH₃CO-, CH₃N-	21.8	-	28.0	25 - 30
CH₃-CH₂	22.0	-	21.1	-
CH₂ in n-alkyl chain	29.1	-	25.4 - 32.6	24.9
C-quat.	29.3	33.7, 39.6	33.1	40.0
CH in alkyl chain	25.0, 29.4	-	24.1 - 45.5	30 - 40
CH₂ in branched chain	35 - 40	-	30 - 40	30 - 40
CH₂-N	46.5, 47.7	40 - 45	40.5	45 - 50
CH-N	55 - 60	55 - 60	50 - 65	50 - 60
CH(CHOH)₂	45 - 65	50 - 60	50 - 65	50 - 60
CH₃O-	55.5	59 - 65	59.1	64.2
CH₂OH	60.0, 60.5	63.9, 65.5	59.1	63.3
CH₂OR	68.5	68.6, 71.4	64.1	65.2
CHOH, CHOR	65 - 90	70 - 90	65 - 90	70 - 90
-O-CH-O-, -O-C-O-	95 - 105	90 - 115	95 - 110	95 - 105
CH-aromatic, olefinic	105 - 140	-	105 - 140	-
CH - o- to COH(R)	118.1	18.1	105 - 117	-
CH - m- to COH(R)	128.6	-	131.7	-
CH in olefinic chain	139.8	-	138.0	-
C-quat. Ar, alkyl subst.	120 - 145	-	100 - 145	-
C-quat. Ar with -OH(R)	145 - 160	-	150 - 165	-
COOH(R)	170 - 190	170 - 190	170 - 190	170 - 190

Table 1 Chemical shift assignment of the resonance peaks in 13C NMR spectra of humic and fulvic acids of High-field Grass (H) and Geescroft Field (G) soils.
Spectral area (ppm)	13C NMR (%)	C-quat. (%)	CH (%)	CH$_2$ (%)	CH$_3$ (%)	\sum CH$_n$
10 - 50	25.0	25.7	0.5	---	0.8	9.7
50 - 70	10.1	8.6	---	---	1.6	3.4
70 - 95	12.6	11.5	---	---	12.1	11.8
95 - 145	29.3	29.4	9.5	16.7	20.3	12.6
145 - 165	6.7	5.3	6.7	5.3	---	---
165 - 190	16.3	19.5	16.3	19.5	---	---

Table 2 Quantitative distribution (%) of CH$_3$, CH$_2$, CH and C-quaternary carbons in the humic acids of the soils High-Field Grass (HH) and Geescroft Field (HG).
Spectral area (ppm)	13C NMR (%)	C-quat. (%)	CH (%)	CH$_2$ (%)	CH$_3$ (%)	$\sum CH_n$
10 - 50	FH 10.2, FG 14.5, FH 1.9, FG 3.2	FH 4.9, FG 7.2, FH 6.3, FG 1.3	10.4	14.4		
50 - 90	FH 64.9, FG 56.6	FH 38.7, FG 41.9, FH 26.0, FG 11.3, FH 1.9, FG 2.1	66.6	55.3		
90 - 110	FH 11.1, FG 9.5, FH 5.2, FG 0.5	FH 5.8, FG 9.0	11.0	9.5		
165 - 190	FH 13.8, FG 19.4, FH 13.8, FG 19.4	----	----	----	13.8	19.4

Table 3: Quantitative distribution (%) of CH$_3$, CH$_2$, CH and C-quaternary carbons in the fulvic acids of the soils High-Field Grass (FH) and Geescroft Field (FG).
Mol. weight m/z	Rel. signal intensity in FG (%)	Rel. signal intensity in FH (%)	Proposed elemental composition	Proposed chem. structure
58	14.2	6.2	C₃H₆O	Acetone
61	19.7	15.5	C₂H₇ON	Aminoethanol
62	24.8	13.8	C₂H₆O₂	Ethyleneglycol
80	100	100	C₄H₄N₂	Pyrimidine
			C₄H₄N₂	Pyridazine
			C₆H₈	Hexatriene
130	50.8	23.1	C₁₀H₁₀	Methylindene
131	99.2	71.8	C₅H₉O₃N	Alanine, N-acetyl
			C₆H₁₃O₂	Leucine
			C₅H₉O₃N	Glycine, N-acetyl, methyl ester
132	61.8	66.7	C₅H₈O₄	Glutaric acid
			C₄H₈O₃N₂	Glycine, N-glycyl
			C₅H₈O₄	Pentoses
133	19.7	25.1	C₄H₇NO₄	Aspartic acid
139	24.0	20.8	C₄H₇N₆	Methylmelamine
154	52.7	70.5	C₅H₁₀N₆	Dimethylmelamine
194	42.5	67.2	C₆H₁₀O₇	Glucuronic acid
			C₇H₁₄O₆	Inositol, 4-C-methyl
			C₇H₁₄O₆	Fructose, 3-O-methyl
252	18.5	18.3	C₉H₁₅O₆B₃	Inositol, tris(methylboronate)
286	393.7	11.7	C₁₄H₂₆O₄N₂	Leucine, N-acetylglycyl−, butyl ester
			C₁₄H₂₆O₄N₂	Alanine, N-acetylvalyl−, butyl ester
			C₁₀H₂₂O₅S₂	Glucose, diethyl mercaptal
311	13.4	12.7	C₁₂H₁₇O₅N₅	Guanosine, N, N−dimethyl

Table 4 Proposed chemical compounds, in the fulvic acids FG and FH, identified by FABMS spectrometry.
m/z	Rel. signal intensity in HG (%)	Rel. signal intensity in HH (%)	Proposed elemental composition	Proposed chem. structure
130	100	100	C_{10}H_{10}	Methylindene
			C_{10}H_{10}	Divinylbenzene
			C_7H_{14}O_2	Propanoic acid, butyl ester
152	54.8	68.0	C_{10}H_{16}O	2,4-Decadienal
			C_9H_{12}O_2	Phenol, 4-propoxy-
			C_8H_{8}O_3	Hydroxymethoxybenzaldehyde
174	10.7	—	C_{10}H_{22}O_2	Decadiol
			C_{13}H_{20}	Benzene, heptene
194	20.3	10.4	C_{11}H_{14}O_3	2-Allyloxy-1, 3-dimethoxybenzene
			C_{11}H_{14}O_3	Phenol, 2, 6-dimethoxy-4-propenyl
220	14.7	2.3	C_9H_{12}	Ethylmethylbenzene
236	47.9	—	C_{17}H_{32}	Heptadecadiene
278	12.9	—	C_{20}H_{42}O_2	1,4-Eicosanediol
324	7.8	—	C_{23}H_{48}	Tricosane
410	7.1	—	C_{30}H_{50}	Squalene

Table 5 Proposed chemical compounds, in the humic acids HG and HH, identified by FABMS spectrometry.
EI-signal m/z	Proposed elemental composition	Proposed structure
124	C\(_7\)H\(_8\)O\(_2\)	Guaiacol
126	C\(_6\)H\(_6\)O\(_3\)	Hydroxymethylfuraldehyde
140	C\(_7\)H\(_8\)O\(_3\)	Hydroxyguaiacol
154	C\(_8\)H\(_{10}\)O\(_3\)	Syringol
168	C\(_9\)H\(_{12}\)O\(_3\)	Methylsyringol
182	C\(_9\)H\(_{10}\)O\(_4\)	Syringaldehyde
196	C\(_{10}\)H\(_{12}\)O\(_4\)	Syringylethanone
210	C\(_{11}\)H\(_{14}\)O\(_4\)	Synapyl alcohol
214	C\(_{14}\)H\(_{30}\)O	1-Tetradecanol
242	C\(_{16}\)H\(_{34}\)O	1-Hexadecanol
282	C\(_{20}\)H\(_{42}\)	Eicosane
310	C\(_{22}\)H\(_{46}\)	Octadecane, –tetramethyl
324	C\(_{23}\)H\(_{48}\)	Tricosane; Docosane, 6–methyl
336	C\(_{24}\)H\(_{48}\)	Cyclotetracosane
338	C\(_{24}\)H\(_{50}\)	Nonadecane, –pentamethyl; Tetracosane
342	C\(_{22}\)H\(_{46}\)O\(_2\)	Ethanol, 2-eicosyloxy
352	C\(_{25}\)H\(_{52}\)	Eicosane, -pentamethyl
355	C\(_{23}\)H\(_{46}\)O\(_2\)	High carboxylic acid
364	C\(_{26}\)H\(_{52}\)	1-Hexacosene
366	C\(_{26}\)H\(_{54}\)	Hexacosane
394	C\(_{28}\)H\(_{58}\)	Docosane, 7-hexyl
408	C\(_{27}\)H\(_{52}\)O\(_2\)	Docosenoic asid, tetramethyl–, methyl ester
410	C\(_{30}\)H\(_{50}\)	Squalene
422	C\(_{30}\)H\(_{62}\)	Triacontane; Hexamethyltetrasosane
436	C\(_{31}\)H\(_{64}\)	11-Decylleneicosane
450	C\(_{32}\)H\(_{66}\)	Dotriacontane

Table 6 Assignment of the EI-signals (m/z) in the masspectra of chromatographic fractions of humic acids HH and HG to proposed structures.
GC-fractions RT (min)	Found in	Main m/z signals in EI/MS (see Table 6)
8.4	HG, HH	126, 154, 182, 210
10.6	HG, HH	124, 168, 182, 210
11.7	HG, HH	126, 196, 214, 242
17.2	HG, HH	Mixture
20.6	HG	310, 342
22.7	HG, HH	Mixture
23.3	HG	324
25.9	HG	338
27.9	HG, HH	341, 430, 503
28.4	HG	352
30.9	HG	366
32.9	HG	336
33.3	HG, HH	380
35.5	HG	394
35.8	HG, HH	410
37.5	HG, HH	364
37.8	HG, HH	408
39.9	HG	422
42.0	HG, HH	436
44.0	HG	355, 450
46.0	HG	355, 394

Table 7 Composition of the fractions in the gas-chromatograms of HH and HG.