Back to the Roots of Genres: Text Classification by Language Function

Henning Wachsmuth and Kathrin Bujna
presented at IJCNLP on November 10, 2011
Motivation: Filter search results

- Imagine you search for opinions on a product, but only want to read personal views...

 [Image of search for iPad good or bad]

- ... Or you are interested in a brand, but do not want commercial texts on that brand...

 [Image of search for IBM successful]

- ... Such filtering could be approached with genre identification, but...
Unlike many renowned classification tasks, genre identification mixes different aspects of both texts and documents.

There is a missing common understanding of genres:
- As a consequence, several genre classification schemes exist
- Different approaches are badly comparable (see Sharoff et. al., 2010)
- The task itself is unclear

In contrast, we focus on one single aspect of genres: language functions.
The functions of natural language

- In 1934, the psychologist Karl Bühler introduced one of the most influential attempts to categorize the functions of natural language.

- Later on (1971), the linguist Katharina Reiß carried the three language functions over to text.
We introduce the new task “Language Function Analysis“ (LFA)

Given a text, decide whether its predominant language function is 1) expression, 2) appeal, or 3) representation.

Properties of LFA
- Very general
- Addresses one single aspect of genres
- Can be used for document filtering purposes

So, yet another classification scheme?
- LFA is not meant to solve genre identification, but might help to better understand genres
- **Question:** How can we identify the language function of a text?
A text corpus for LFA

• For evaluation, we built a German text corpus in cooperation with industry
 – Contains separated text collections of two product domains:

- **Music**
 2713 well-written promotional texts and reviews

- **Smartphones**
 2093 blog posts of varying quality and style

• Each text is manually classified by language function and sentiment polarity
 – Many details about the annotation process in the paper
 – We mapped the language functions to product-related classes:

 - **personal texts**
 - **commercial texts**
 - **informational texts**
A machine learning approach to LFA

- Our approach to LFA relies on **supervised machine learning** classification
 - Experiments with features from different research areas
 - Organization into 6 feature groups

(Simple) Genre
- part-of-speech distribution
- and text statistics

Text type
- frequency of entities
- and some parts-of-speech

Writing style
- most common
- words and trigrams

Sentiment
- sentiment polarity
- and emoticons

Core trigrams
- most discriminative
- trigrams

Core terms
- most discriminative
- terms
Evaluation

- We evaluated LFA for both corpus domains based on the 6 feature groups
 - We used linear multi-class support vector machines in all experiments
 - Text classification often suffers from domain dependency, so we also evaluated out-of-domain classification

- We split the corpus into training, validation, and test sets
 - Smartphone sets even more imbalanced

Source code and feature files at http://infexba.upb.de
Results: From music to smartphones

- We first trained a classifier on the music training set for each feature group as well as for all features.

Accuracy results:

- Genre
- Text type
- Writing style
- Sentiment
- Core trigrams
- Core terms
- All features

Feature Group	Personal F-score	Commercial F-score	Informational F-score
All features	0.87	0.73	0.79
Core terms	0.11	0.11	
Core trigrams	0.38	0.38	
Sentiment	0.27		
Writing style	0.59		
Text type	0.62		
Genre	0.69		

- applied to the music test set
- applied to the smartphone test set
Results: From smartphones to music

- Next, we retrained the classifiers **on the smartphone training set**

Accuracy results:

- F-score per class:
 - Personal: 0.75
 - Commercial: 0.31
 - Informational: 0.68

![Bar chart showing accuracy results for different text types applied to smartphone and music test sets](chart.png)

- **Applied to the smartphone test set**
- **Applied to the music test set**
Key observations

• **Machine learning** appears to work well for LFA on homogeneous collections, such as the music texts

• Classification of very heterogeneous collections as well as of out-of-domain data remain **open problems**

• The **best-performing features** are common in authorship attribution

• **Writing style and text type features** appear to be only weakly domain-dependent in LFA

• Language functions and **sentiment polarities** seem to have few correlation
Take away messages

• In our view, we need to go back to the roots of genres in order to achieve progress in the field.

• We introduced Language Function Analysis (LFA), a very general classification task that addresses one single aspect.

• It is possible to determine the predominant language function of a text using machine learning.

• There’s much room for doing better than us in LFA, so start working on it 😊.
Thank you for your attention.

s-lab – Software Quality Lab
University of Paderborn
Zukunftsmeile 1, 33102 Paderborn
Germany

http://is.upb.de/?id=wachsmuth
hwachsmuth@s-lab.upb.de