Heart development is a dynamic process that involves transcriptome expression changes and cis (enhancer and promoter activities) and trans (transcription factor binding) regulation. Much previous work has established the regulatory mechanisms in this process. 1–3 As the importance of noncoding RNAs in regulating expression and epigenetic modifications is gaining recognition in heart development, researchers have discovered long noncoding RNA (lncRNA) that directly regulate heart development and disease.4,5 For example, the adult heart expresses more sense lncRNAs compared with fetal heart. We also report the coexpression of lncRNAs and neighboring coding genes that have important functions in heart development. Importantly, the regulation of lncRNA expression during fetal to adult heart development seems to be due, in part, to the coordination of specific developmental epigenetic modifications, such as H3K4me1 and H3k4me3. The expression of promoter-associated lncRNAs in adult and fetal hearts also seems to be related to these epigenetic states. Finally, transcription factor–binding analysis suggests that lncRNAs are directly regulating cardiac gene expression during development.

Conclusions—We provide a systematic analysis of lncRNA control of heart development that gives clues to the roles that specific lncRNAs play in fetal and adult hearts. (Circ Cardiovasc Genet. 2016;9:110-118. DOI: 10.1161/CIRCGENETICS.115.001264.)

Key Words: fetal heart ■ gene expression ■ genomics ■ long noncoding RNAs ■ transcription factor
exists primarily in enhancer regions, whereas H3K27me3 differentiates active from inactive/poised enhancers. Similar findings have also been shown in human ESCs. Other work has defined the enhancer features important for mouse ESC differentiation, such as active enhancers with H3K4me1, H3K27ac, and H3K36me3, as well as poised enhancers defined by the presence or absence of H3K27me3 and H3K9me3.

Perhaps not surprisingly, lncRNA expression is also coordinated by chromatin modification status similar to protein-coding genes. In analyzing RNA bound to chromatin-modifying complexes, thousands of strongly conserved lncRNAs have been identified in K4-K36 domains in human and mouse that regulate ESC pluripotency and cell proliferation. This suggests that lncRNAs might be organizing and controlling regulatory regions for each lncRNA. Our analysis defines lncRNAs into enhancer-associated (elncRNA) and promoter-associated (plncRNA) groups according to the chromatin status in putative regulatory regions for each lncRNA. Our analysis defines the repertoire of cardiac-specific noncoding transcripts that are unique to the human fetal and adult heart stages, and enhances our understanding of the importance that lncRNAs play in heart development. Finally, we have created a database, Heart development-Associated LncRNA Database (HDALD), which tabulates the differentially expressed lncRNAs in our analysis and is available at http://210.42.113.162/Heart/index.php.

Methods

Sample Acquisition

All human heart samples were obtained following the guidelines of the Stanford University Institutional Review Board. Two fetal heart tissues (16 and 17 weeks) were acquired from Stem Express (Placerville, CA). Cardiac tissue was transported in ice-cold UW (University of Wisconsin) solution and cut into small cubes (<500 mm³), then immediately stored in liquid nitrogen. Two additional human fetal heart RNA-seq data sets (GSM1059494, 17 weeks and GSM1059495, 13 weeks), and 3 normal adult heart RNA-seq data sets (GSM1101970, GSM1698563, and GSM1698564) were also included in our analysis.

RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction Analysis

Total RNA was isolated from human cardiac tissues using Qiagen miRNeasy Kit (Qiagen Sciences, Inc; Germantown, MD). Briefly, human cardiac tissues were ground into fine powder in liquid nitrogen with mortar and pestle, and then homogenized in Qiagen miRNeasy lysis buffer in a glass Dounce homogenizer. Afterward, total RNA was extracted according to the manufacturer’s instructions. For reverse transcription, we used the High Capacity RNA-to-cDNA kit (Life Technologies). For quantitative polymerase chain reaction experiments, we used custom primer sets (Table I in the Data Supplement) on a StepOne Real-Time PCR System (Life Technologies). The experiments were run in triplicate per targeted gene per sample. Expression values were normalized to the average expression level of 18S rRNA.

RNA Sequencing

Sonication of cDNA was performed to produce an average fragment size of 280 bps and Illumina sequencing adapters were ligated to 500 ng of cDNA using NEBNext miRNA Library Prep Reagent Set (New England Biolabs, Ipswich, MA). Polymerase chain reaction was performed on the adapter-ligated cDNA using the following conditions: denaturation 98°C 30 s, followed by 12 cycles of denaturation 98°C 10 s, annealing 65°C 30 s, and extension 72°C 30 s, and ending with an extension step at 72°C for 5 minutes. Libraries were submitted to the Stanford Stem Cell Institute Genome Center for sequencing using Illumina’s HiSeq2000 platform. Paired end sequencing was performed with an average length of 100 bps (2x100). All RNA-Seq data are uploaded to the GEO database (GSE68279).

RNA Sequencing Data Analysis

All RNA-seq data were mapped to human reference genome hg19 using TopHat1,2 with default parameters. mRNA and lncRNA information were downloaded from the UCSC and RefSeq databases; multiple transcripts at the same genomic locations were merged into 1 unique transcript to yield the longest exon possible. A single GTF file was created for use as the reference annotation file. The alignment BAM files were then sorted, converted into SAM files with SAMtools,3 and then subjected to read counting using the Python package HTSeq (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html). We used Bioconductor package DESeq4 for all differential expression analysis from the raw counts. To eliminate batch effect, we included batch as a factor in our differential expression analysis. The read counts were converted into Reads Per Kilobase of exon model per Million mapped reads (RPKM) and log2 transformed. The RPKM of lncRNAs were clustered and visualized as principal component analysis and heatmaps in R.

Correlation of lncRNA and Neighboring Coding Genes

Neighboring coding genes located 20-kb upstream and downstream of lncRNAs were assessed for coregulation using Pearson correlation. Significantly correlated coding genes with lncRNAs were treated as potential target pairs. Networks and functional analyses were generated using ingenuity pathway analysis (QIAGEN Redwood City, www.qiagen.com/ingenuity). The P value was calculated by ingenuity pathway analysis using the right-tailed Fisher exact test.

ChIP-seq Data Analysis

Chromatin immunoprecipitation (ChIP-seq) data for H3K4me1 and H3K4me3 marks in human fetal heart and adult tissues were downloaded from the NIH Epigenomics Roadmap Project. All FASTQ files were aligned to hg19 using Bowtie. Peaks and enriched regions were called by Model-Based Analysis of ChIP-Seq (MACS) and annotated by Homer. Heatmaps were generated with DeepTools. All RNA-seq and ChIP-seq signals were visualized using an Integrative Genomics Viewer.

Classification of Enhancer- and Promoter-Associated lncRNAs

The transcriptional start sites (TSS) of lncRNAs were extracted from the annotation files. The genomic coordination of chromatin...
modification peaks 2-kb upstream or downstream of each TSS were clustered and used to classify the lncRNAs into enhancer-associated (elncRNA) or promoter-associated (plncRNA) groups. The differential expression analyses of elncRNA and plncRNA in fetal and adult hearts were performed using the Bioconductor package DESeq.

Detection of Transcription Factor–Binding Sites and Human Single-Nucleotide Polymorphism Sites

Human conserved transcription factor–binding sites (TFBS) were downloaded from the UCSC database and mapped to putative lncRNA promoter regions (−2 kb to TSS). Ratios of potential binding events were calculated and displayed as heatmaps using TM4 (www.tm4.org). Human single-nucleotide polymorphisms (SNPs) were identified from the dbSNP142 Database. All genomic coordination analyses were performed by in-house Perl scripts, which are available on request.

Results

Identification of lncRNAs Enriched in Fetal or Adult Heart

By integrating the UCSC gene database and NCBI RefSeq database, we acquired all available lncRNA annotations for putative human lncRNAs. LncRNAs that overlap by ≥1 exons and are transcribed from the same strand were merged into a single lncRNA that represented the longest possible transcript. Those RNAs shorter than 250 bp, including small nuclear RNAs, were removed from our annotation file. Using this pipeline, we identified 12 180 nonredundant lncRNAs with unique genomic locations. RNA sequencing revealed the expression levels (RPKM) of each lncRNA in 3 adult and 4 fetal heart samples (Figure 1A). Of these, 4918 lncRNAs were expressed in both adult and fetal hearts (average RPKM>0.01). Through differential expression analysis, we further identified 277 lncRNAs (Benjamini and Hochberg adjusted P<0.05, fold change ≥2.5) that were differentially expressed between adult and fetal hearts. Among them, 164 (Benjamini and Hochberg adjusted P<0.05, fold change ≥2.5) were upregulated in fetus and 113 (Benjamini and Hochberg adjusted P<0.05, fold change ≥2.5) were upregulated in adult hearts (Figure 1B). The remaining lncRNAs did not exhibit significant differential expression between adult and fetal hearts.

To understand the functional differences between lncRNAs upregulated in adult heart compared with those in fetal heart, we first analyzed their respective sequence features. We found that 52% of fetal heart upregulated lncRNAs have 2 to 4 exons, which is more than adult upregulated lncRNAs (37%). Ten percent of fetal upregulated lncRNAs and 16% of adult upregulated lncRNAs have 1 exon (Figure 2A). Reviewing the length of differentially expressed lncRNAs, we calculated that 85% of fetal and 72% of adult upregulated lncRNAs ranged from 1 to 10 kbp (Figure 2B). Eight percent of fetal upregulated lncRNAs are between 250 bp and 1 kbp in length, a lower percentage than in adult upregulated lncRNAs (24%). In total, 7% of fetal heart upregulated lncRNAs were longer than 10 kbps, which is slightly higher than the 4% seen in adult heart. Some interesting specific examples of annotated lncRNAs emerged from this analysis. For example, the 21-kb lncRNA MEG3 was upregulated in fetal heart and is a known tumor suppressor. A second 382-bp lncRNA, BCYRN1, was upregulated in adult heart and has been reported to be upregulated and targeted by c-MYC in non–small cell lung cancer.

On the basis of the genomic positions of lncRNAs in relation to neighboring coding genes, we clustered significantly expressed lncRNAs into 4 types: sense (overlap with coding genes on sense strand), antisense (overlap with coding genes on antisense strand), bidirectional (distance to coding genes is <1 kb on reserve strand), and intergenic (located between coding genes; Figure 2C). We observed that adult and fetal hearts have similar expression levels of antisense and intergenic lncRNAs (Figure 2D). However, the percentage of sense lncRNAs is more than 2x greater in adult (18%) compared with fetal heart (7%). In contrast, the number of antisense lncRNAs is somewhat increased in fetal (25%) compared with adult heart (19%). Specific examples include the lncRNA LOC728407, which is located in the PARG transcript body and is upregulated in adult heart. The host gene PARG is known to be associated with cell death. In a second example, the fetal heart upregulated lncRNA SLC8A1-AS1 is located on the opposite strand of the protein-coding gene SLC8A1, a protein involved in congenital heart disease.

lncRNAs Are Involved in Multiple Networks During Cardiac Development

To determine how differentially expressed lncRNAs might function in cardiac development, we performed correlation...
analysis to screen for potential targets. Because lncRNAs are often coexpressed with neighboring coding genes, we first identified coding genes within 20 kb of lncRNAs and used Pearson correlations to detect significant correlations (Tables II and III in the Data Supplement). In 164 fetal upregulated lncRNAs, we identified 54 lncRNA–mRNA pairs that had significant expression correlations ($r > 0.7$, $P < 0.05$). Among them, 49 lncRNA–mRNA pairs showed positive correlations, with only 5 pairs showing negative correlation. Of 113 adult upregulated lncRNAs, 5 and 15 lncRNA–mRNA pairs showed positive and negative correlations ($r > 0.7$, $P < 0.05$), respectively. For comparison, of the 4641 nonsignificant differential expression lncRNAs, 317 showed positive correlation pairs and 121 showed negative correlation pairs. Quantitative polymerase chain reaction results validated 1 upregulated lncRNA–mRNA pair in adult heart (TCONS_00018783/ANKRD1) and 2 pairs that were upregulated in fetal heart (TCONS_00020859/TMTC2 and TCONS_00007979/WDR1; Figure 3).

To explore the putative function of lncRNAs that are upregulated in fetus or adult heart, we used Ingenuity Pathway Analysis to classify lncRNAs into functional categories according to neighboring significantly correlated coding genes. In total, 54 coding genes were correlated to upregulated lncRNAs, 5 and 15 lncRNA–mRNA pairs showed positive and negative correlations ($r > 0.7$, $P < 0.05$), respectively. For comparison, of the 4641 nonsignificant differential expression lncRNAs, 317 showed positive correlation pairs and 121 showed negative correlation pairs. Quantitative polymerase chain reaction results validated 1 upregulated lncRNA–mRNA pair in adult heart (TCONS_00018783/ANKRD1) and 2 pairs that were upregulated in fetal heart (TCONS_00020859/TMTC2 and TCONS_00007979/WDR1; Figure 3).

To explore the putative function of lncRNAs that are upregulated in fetus or adult heart, we used Ingenuity Pathway Analysis to classify lncRNAs into functional categories according to neighboring significantly correlated coding genes. In total, 54 coding genes were correlated to upregulated lncRNAs, 5 and 15 lncRNA–mRNA pairs showed positive and negative correlations ($r > 0.7$, $P < 0.05$), respectively. For comparison, of the 4641 nonsignificant differential expression lncRNAs, 317 showed positive correlation pairs and 121 showed negative correlation pairs. Quantitative polymerase chain reaction results validated 1 upregulated lncRNA–mRNA pair in adult heart (TCONS_00018783/ANKRD1) and 2 pairs that were upregulated in fetal heart (TCONS_00020859/TMTC2 and TCONS_00007979/WDR1; Figure 3).

LncRNAs Are Associated With Epigenetic Modifications in Fetal and Adult Hearts

Previous work has shown that lncRNAs function as epigenetic regulators of gene expression. To explore how lncRNA expression is regulated during cardiac development, we determined the relationship between lncRNA expression and histone modification in human adult and fetal hearts. Each locus is treated as a potential poised or active enhancer (H3k4me1) or promoter (H3k4me3). Across the entire genome, we identified 108926 H3k4me1 and 24818
H3k4me3 loci in adult heart and 83,799 H3k4me1 and 32,356 H3k4me3 loci in fetal heart. We then classified lncRNAs into elncRNA or plncRNA groups by determining the distribution of H3k4me1 and H3k4me3 marks within 2 kb from the TSS for each lncRNA, similar to previous work using primary erythroid cells (Figure 5A). We identified 1277 lncRNAs located near adult enhancer loci (adult elncRNAs), 1090 lncRNAs located near fetal enhancer loci (fetal elncRNAs), and 1935 lncRNAs located near both adult and fetus enhancers (overlap elncRNAs; Figure 5B). Using the same method for analysis of promoter lncRNA associations, we identified 1193 adult plncRNAs, 184 fetal plncRNAs, and 1699 overlap plncRNAs.

To determine whether these epigenetic modifications in enhancer regions may be related to lncRNA expression, we performed differential expression analysis of our identified promoter- and enhancer-associated lncRNAs, we identified 1193 adult plncRNAs, 184 fetal plncRNAs, and 1699 overlap plncRNAs.

Figure 3. Coexpression of lncRNA–mRNA pairs between human fetal and adult hearts. A, Expression level of 3 pairs of lncRNA–mRNA from RNA-seq data sets. Reads Per kilobase of exon model per Million mapped reads (RPKM) is used to define the expression level. Left y axis represents lncRNA expression and right y axis represents neighboring mRNA (protein-coding) gene expression. B, Quantitative polymerase chain reaction validation of the coexpression of lncRNA–mRNA pairs. *P<0.05, **P<0.01, and ***P<0.001. Blue bars represent lncRNA expression and red bars represent neighboring protein-coding gene expression.

To determine whether these epigenetic modifications in enhancer regions may be related to lncRNA expression, we performed differential expression analysis of our identified promoter- and enhancer-associated lncRNAs in adult and fetal hearts. Our results show significantly different expression of elncRNAs between adult and fetal hearts: 54% of adult elncRNAs were upregulated in adult and 46% were upregulated in fetus hearts, whereas 49% and 51% of fetal elncRNAs were upregulated in fetal and adult hearts, respectively (Figure 6B). As our analysis used a 4-kb window surrounding the TSS of lncRNAs to identify putative regulatory enhancers, we excluded potential enhancers further upstream or downstream that may be regulating lncRNA expression. In contrast to enhancers, promoters are more often located near the TSS, possibly explaining why we observed a more obvious correlation between plncRNA expression and promoter chromatin status.

Finally, we detected a positive correlation between plncRNAs and coding genes that share the same promoter (promoter loci are located ±2 kb from the TSS in both lncRNA and coding gene). Sixty-three percent of plncRNAs were positively correlated ($r>0.7$, $P<0.05$) and 37% of plncRNAs were negatively correlated ($r<-0.7$, $P<0.05$) with associated coding genes (Tables IV and V in the Data Supplement; Figure 6C). We also analyzed human homologous Braveheart expression, an lncRNA that has been shown to be important in mouse heart commitment. We found that Braveheart is highly expressed in fetal heart (Figure IVA in the Data Supplement) and is correlated with several coding genes (Figure IVB in the Data Supplement).
Transcription Factor Binding and SNPs in Development-Associated lncRNAs

One of the functions of lncRNAs is to act as chaperones for transporting and localizing transcription factors to specific genomic loci. Understanding the TFBS in heart development that have associated lncRNAs may help elucidate the interplay between them in regulating cardiac development. Toward this goal, conserved TFBS (total of 81 factors) were downloaded from the UCSC Table Browser. We detected 651 and 486 TFBS upstream of fetal and adult heart upregulated lncRNAs, respectively (Table VI in the Data Supplement; Figure 7). In fetal upregulated lncRNAs, transcription factors ATF (2.3%) and RREB-1 (2.2%) had >2× the number of binding sites compared with adult upregulated lncRNAs (0.6% and 0.8%, respectively).

Figure 4. Functional clustering of lncRNAs in fetal and adult hearts based on protein-coding gene coexpression. A, Ingenuity pathway analysis (IPA) of diseases and biological functions of protein-coding genes exhibiting coexpression with lncRNAs. B, IPA of toxicity functions. Pathways are ranked based on significance (-log P value).

Figure 5. Identification of enhancer- and promoter-associated lncRNAs in adult and fetal hearts. A, Heatmap of chromatin modifications in putative lncRNA regulatory regions. ChIP signals are shown for H3k4me1 (enhancer) and H3k4me3 (promoter) histone modifications within 2 kb of the transcriptional start sites for each lncRNA. B, Distribution of elncRNAs and plncRNAs between adult and fetal hearts. Regions of overlap in Venn diagrams indicate lncRNAs that are upregulated in both adult and fetal hearts.
respectively). In contrast, adult heart upregulated lncRNAs demonstrated a higher percentage of upstream binding with ROR\(\alpha\)1 (2.1%), Pbx1a (1.9%), and LCR-F1 (2.3%) compared with fetal heart (1.4%, 0.5%, and 1.7%, respectively; Figure 7). Among these transcription factors, ATF plays a role in heart failure,\(^{36}\) and LCR-F1 is involved in transcription activation in cardiomyocytes.\(^{37}\)

Because sequence mutations in the promoters of lncRNAs may negatively affect transcription factor binding,\(^{35}\) we next analyzed SNPs located in putative TFBS upstream of lncRNAs. We downloaded human dbSNP142 data from the UCSC browser and mapped them to the predicted TFBS. In promoters of adult upregulated lncRNAs, we identified 68 TFBS in 50 lncRNAs that might be affected by 193 SNPs (Table VII in the Data Supplement). For example, the transcription factor POU2F2C had a higher percentage (2.1%) of binding in adult upregulated lncRNAs than in fetal heart (0.8%), and this TFBS contains the SNP rs562165402 (minor allele frequency=0.02%). In promoters of fetal upregulated lncRNAs, we also identified 65 TFBS in 56 lncRNAs that could be affected by 219 SNPs (Table VIII in the Data Supplement). RREB-1, which binds preferentially to fetal upregulated lncRNAs, might be affected by SNP rs146951114 (minor allele frequency=0.04%). We think these sequence variants in lncRNA promoters provided a well-annotated repository for transcription factor–binding analysis in cardiac development.

Discussion

In this study, we performed a genome-wide analysis of lncRNAs associated with heart development and their coexpressed protein-coding genes. Building on previous studies that detected differentially expressed lncRNAs during mouse heart development,\(^ {6,7,9,31,38}\) cardiac cell differentiation,\(^ {39}\) and heart disease,\(^ {8,40}\) we report here the contrasting “lncRNA-omes” between human fetal and adult hearts. Furthermore, through expression correlations between lncRNAs and protein-coding mRNAs based on genomic proximity, we construct a coexpression network that enables identification of important coding genes and lncRNAs in human heart development. This allows prediction of functional categories for the correlated lncRNAs, including various cardiac development pathways such as cardiomyocyte differentiation, apoptosis, and heart formation and failure. We have also included analysis of the sequence features and genomic positions of significant fetal and adult heart upregulated lncRNAs that exhibit striking differences between the 2 stages. Until future research elucidates the function of these lncRNA subclasses, we can only hypothesize their specific biological roles during human development. Finally, our HDALD database can be used to search the genomic locations of differentially expressed lncRNAs and view their expression levels from RNA-seq data. We think these data provide a new useful resource for exploring novel markers of heart disease and development disorders.

On the basis of public ChIP-seq data, our analysis also suggests that lncRNAs maybe important regulators of protein-coding gene expression. These findings confirm previous work that proposed lncRNAs as epigenetic regulators.\(^ {31}\) Here we further observe the possible effect of epigenetic modifications acting on lncRNA expression between human fetal and adult hearts. We determined specific histone modifications that were different across both heart stages and observed that promoter activities (defined by H3K4me3 histone modifications) were associated with lncRNA expression differences in fetal and adult hearts. Although experimental validation is needed, our results suggest that specific chromatin modifications are correlated with lncRNA expression in the human heart. Finally, we detected potential TFBS in heart development-associated lncRNAs. We found a clear distinction between TFBS in fetal versus adult heart and which may be related to important cardiac developmental processes. DNA sequence variants in these TFBS may affect transcription factor–binding events, and our results revealed numerous SNPs associated with
Figure 7. Conserved transcription factor–binding sites (TFBS) in putative cardiac development lncRNA regulatory regions. Each row represents 1 potential TFBS for the indicated transcription factor in fetal and adult hearts, and colors indicate the relative downstream lncRNA expression (within 2 kb) of this putative regulatory region. Eighty-one human conserved transcription factors were used in this analysis. The range represents the log2 percentage of TFBS.

TFBS in adult and fetal hearts. Further exploration of these SNPs through experimental studies may yield important DNA mutations that affect fetal to adult heart development.

In conclusion, we performed a genome-wide exploration of lncRNA changes in human heart development from the fetus to adult stage, and compared the sequence features of differentially expressed lncRNAs. We found that lncRNA changes were associated with protein-coding genes that play important functions in cardiac development and disease. Our results show that lncRNAs are frequently coexpressed with neighboring coding genes, the latter of which are involved in important heart development processes. Furthermore, we also inspected the chromatin modifications in this process and classified lncRNAs into enhancer- and promoter-associated types. The expression differences in promoter-associated lncRNAs were correlated with the chromatin modifications. These results provide a noncoding genomic landscape for human cardiac development and demonstrate the interplay between epigenetic modifications and transcription factor binding.

Acknowledgments
We thank the Stanford Stem Cell Institute Genome Center for their sequencing expertise, and Blake Wu for help in editing this article.

Sources of Funding
This study was funded by the American Heart Association Established Investigator Award, the National Institutes of Health R01 HL130020, R01 HL123968, R01 HL126527, R01 HL128170, and P01 GM099130 (Dr. Wu).

Disclosures
None.

References
1. Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006;313:1922–1927. doi: 10.1126/science.1132292.
2. Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002;90:509–519.
3. Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12:415–429. doi: 10.1016/j.devcel.2006.12.011.
4. Schornero N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res. 2012;111:1349–1362. doi: 10.1161/CIRCRESAHA.112.268953.
5. Papait R, Kundernfanco P, Stipparo GG, Latronico MV, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013;6:876–883. doi: 10.1007/s12265-013-9488-6.
6. Grote P, Wittler L, Hendrix F, Koch W, Währisch M, Seiswah S, Beisaw A, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206–214. doi: 10.1016/j.devcel.2012.12.012.
7. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152:570–583. doi: 10.1016/j.cell.2013.01.003.
8. Song G, Shen Y, Zhu J, Liu H, Liu M, Shen YQ, et al. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One. 2013;8:e77492. doi: 10.1371/journal.pone.0077492.
9. Korostowski L, Sledzik N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8:e1002956. doi: 10.1371/journal.pgen.1002956.
10. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151:206–220. doi: 10.1016/j.cell.2012.07.035.
11. Creyghton MP, Cheng AW, Welstead GG, Fueller EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–21936. doi: 10.1073/pnas.1006171107.
12. Rada-Iglesias A, Bajpai R, Swigut T, Bruggmann S, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–283. doi: 10.1038/nature09692.
13. Zentner GE, Tesaor PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011;21:1273–1283. doi: 10.1101/gr.122382.111.
14. Onzaiin S, Pezzuto I, Micheletti R, Burdet F, Sheta N, Nemir M, et al. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol. 2014;76:55–70. doi: 10.1016/j.yjmcc.2014.08.009.
15. Gutmann M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–227. doi: 10.1038/nature07672.
16. Khalil AM, Gutmann M, Haarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–11672. doi: 10.1073/pnas.0904715106.
Heart development is a dynamic process that requires the interplay of gene expression with cis- (enhancer and promoter activities) and trans- (transcription factor binding) regulation. Interestingly, a relatively new class of noncoding RNAs, long noncoding RNAs (lncRNA), has recently been shown to also regulate gene expression in pathways related to heart development and disease. However, the molecular mechanism(s) by which lncRNAs exert their effect on the heart are largely unknown. In this study, we use RNA-seq and associated epigenetic and transcription factor data from fetal and adult hearts to perform genome-wide analyses of differentially expressed lncRNAs. We report significant changes in the lncRNA-ome between these 2 important stages of the heart. Through expression correlation studies of lncRNAs and nearby protein-coding mRNAs, we then construct a coexpression network that enables identification of important coding and noncoding gene pairs involved in heart development. We also analyze the epigenetic modifications in putative promoter and enhancer regions for fetal and adult heart, which include critical cardiac development pathways, such as cardiomyocyte differentiation, apoptosis, and heart formation, and failure. We also analyze the epigenetic modifications in putative promoter and enhancer regions for important lncRNAs and provide in silico evidence of critical transcription factor–binding events at these regulatory regions.