SUPPLEMENTARY MATERIAL

Punigratane, a novel pyrrolidine alkaloid from *Punica granatum* rind with putative efflux inhibition activity.

Zumaana Rafiq\(^a\), Sreevidya Narasimhan\(^a\), Rosy Vennila\(^b\) and Rama Vaidyanathan\(^a, *\)

\(^a\) Dept. of Biotechnology, Dr. M.G.R. Educational and Research Institute, E.V.R. Periyar Salai, Maduravoyal, Chennai – 600095, India

\(^b\) Institute of Surgical Gastroenterology and Liver Transplantation, Government Stanley Medical College and Hospital, Chennai- 600001, India

Abstract

A new pyrrolidine alkaloid named Punigratane was isolated from the rind of *Punica granatum*. This is the first report of a pyrrolidine like structure from the rind. The activity of this compound was tested in a representative MDR *Klebsiella pneumoniae* strain which exhibited high efflux pump activity. At a concentration of 6 mg, this compound Punigratane was found to have efflux inhibition activity.

Keywords: Pyrrolidine alkaloid, Punigratane, *Punica granatum*, pomegranate rind, RND efflux pump inhibitor, multidrug resistance, *Klebsiella pneumoniae*.

Corresponding Author – Dr. Rama Vaidyanathan, Dept. of Biotechnology, Dr. M.G.R. Educational and Research Institute, E.V.R. Periyar Salai, Maduravoyal, Chennai – 600095, India, Email: ramavaidy@gmail.com
Figure S1: Mass Spectra of Punigratane
Figure S2: Infrared Spectra of Punigratane
Figure S3: 13C NMR of Punigratane
Figure S4: 1H NMR of Punigratane
Figure S5: 1H NMR of Punigratane – Expansion

Figure S6: Chemdraw Simulated 1H NMR of Punigratane
ChemNMR 1H Estimation

Estimation quality is indicated by color: good, medium, rough

Protocol of the 1H NMR Prediction:

Node	Shift Base + Inc.	Comment (ppm rel. to TMS)
CH	2.54	pyrroldine
	-0.01	1 beta - C from methine
	-0.05	1 unknown substituent(s)
CH	2.64	pyrroldine
	-0.01	1 beta - C from methine
	-0.05	1 unknown substituent(s)
CHZ 1.68 1.425000	2.02	pyrroldine
	-0.20	1 c - C from H-CN
CHZ 1.68 1.426000	1.69	pyrroldine
	-0.12	1 unknown substituent(s)
CHZ 2.26	0.92	methyl
	-0.04	1 beta - C from methylene
	-0.04	1 unknown substituent(s)
CHZ 1.38	2.52	methyl
	0.04	1 alpha - H(SC)
CHZ 1.38	-0.04	1 beta - C
CHZ 1.38	-0.04	1 unknown substituent(s)
CHZ 1.38	1.97	methyl
	-0.04	1 beta - C
CHZ 1.38	-0.04	1 unknown substituent(s)
CHZ 1.25	1.77	methyl
	-0.04	1 beta - C
CHZ 1.25	-0.04	1 unknown substituent(s)
CHZ 1.25	1.33	methyl
	-0.04	1 beta - C
CHZ 1.25	-0.04	1 unknown substituent(s)
CHZ 1.29	1.37	methyl
	-0.04	1 beta - C
CHZ 1.29	-0.04	1 unknown substituent(s)
CHZ 1.29	1.37	methyl
	-0.04	1 beta - C
CHZ 1.29	-0.04	1 unknown substituent(s)
CHZ 1.29	1.37	methyl
	-0.04	1 beta - C
CHZ 1.29	-0.04	1 unknown substituent(s)
CHZ 1.31	1.37	methyl
	-0.04	1 beta - C
CHZ 1.31	-0.04	1 unknown substituent(s)
CHZ 0.88	1.37	methyl
	0.02	1 beta - C
CHZ 0.88	0.02	1 unknown substituent(s)
CHZ 0.88	0.02	1 methyl
	0.02	1 unknown substituent(s)

IH NMR Coupling Constant Prediction

shift **atom index** **coupling partner, constant and vector**

2.54	2	H-C=CH-H	7.0
2.54	3	H-C=CH-H	7.0
2.54	4	H-C=CH-H	7.0
1.95	5	4 diastereotopic	11.4
1.95	6	H-C=CH=H	7.1
1.95	7	4 diastereotopic	11.4
2.28	8	7.0	
1.95	9	H-C=CH=H	7.1
1.25	10	7.1	
1.25	11	H-C=CH=H	7.1
1.25	12	7.1	
1.25	13	H-C=CH=H	7.1
1.25	14	7.1	
1.25	15	H-C=CH=H	7.1
1.25	16	7.1	
1.25	17	H-C=CH=H	7.1
1.25	18	7.1	
1.25	19	H-C=CH=H	7.1
1.25	20	7.1	
1.25	21	H-C=CH=H	7.1
1.25	22	7.1	
1.25	23	H-C=CH=H	7.1
1.25	24	7.1	
1.25	25	H-C=CH=H	7.1
1.25	26	7.1	
1.25	27	H-C=CH=H	7.1

Notes:

- **Shifts** are given in ppm relative to TMS.
- **Coupling Constants** are given in Hz.
- **Vector** indicates the direction of the coupling interaction.
- **Diastereotopic** refers to chemical shifts that are not superimposable due to spatial orientation.

Each chemical shift and coupling constant is accompanied by a detailed comment indicating the nature of the substituent(s) involved.
Figure S7: Simulated 1H NMR of Punigratane- nmrdb.org

AtomID	From	To
54	0.866	0.866
38	0.866	0.866
40	0.866	0.866
39	0.866	0.866
55	0.866	0.866
53	0.866	0.866
47	1.233	1.233
48	1.233	1.233
32	1.233	1.233
33	1.233	1.233
50	1.24	1.24
34	1.24	1.24
49	1.24	1.24
35	1.24	1.24
45	1.251	1.251
31	1.251	1.251
30	1.251	1.251
45	1.251	1.251
29	1.255	1.255
44	1.255	1.255
29	1.255	1.255
43	1.255	1.255
51	1.278	1.278
52	1.278	1.278
36	1.278	1.278
37	1.278	1.278
25	1.33	1.33
27	1.33	1.33
42	1.33	1.33
41	1.33	1.33
24	1.7435	1.7435
29	1.7435	1.7435
25	1.7435	1.7435
21	1.7435	1.7435
58	2.364	2.364
57	2.364	2.364
56	2.364	2.364
22	2.818	2.818
23	2.818	2.818
Figure S8: Simulated 13C NMR of Punigratane
Protocol of the C-13 NMR Prediction:

Node	Shift	Base	ppm rel. to TMS	Comment
CH	69.3	-9.1	pyrroldine	good
CH	69.3	-9.1	pyrroldine	general corrections
CH2	27.0	-13.3	pyrroldine	general corrections
CH2	27.0	-13.3	pyrroldine	general corrections
CH2	27.3	-13.3	pyrroldine	general corrections
CH2	27.3	-13.3	pyrroldine	general corrections
CH2	27.6	-13.3	pyrroldine	general corrections

Estimation quality is indicated by color:
- good
- medium
- rough

Diagram:

[Chemical structure diagram]

Notes:
- The chemical structure diagram shows the connectivity of carbon atoms with their respective shifts.
- The estimation quality is indicated by color:
 - good
 - medium
 - rough
Figure S9: Simulated 13C NMR of Punigratane – nmrdb.org