Comparative assessment of antibacterial efficacy of aqueous extract of commercially available black, green, and lemon tea: an in vitro study

S. Dodamani Arun¹, M. Kshirsagar Minal¹, G. N. Karibasappa¹, V. K. Prashanth¹, A. Dodamani Girija², C. Jadhav Harish¹

¹Department of Public Health Dentistry, ACPM Dental College, Dhule, Maharashtra, India, ²Department of Prosthodontics, ACPM Dental College, Dhule, Maharashtra, India

Address of Correspondence:
Dr. M. Kshirsagar Minal,
Department of Public Health Dentistry,
ACPM Dental College, Dhule,
P. O. Box No. 145, Opp. Jawahar Soot Girni,
Sakri Road, Dhule - 424 001, Maharashtra, India.
Tel.: 07304643334/07066584979.
E-mail: minalk115@gmail.com

ABSTRACT

Objectives: The objective of this study is to determine and compare antibacterial efficacy of aqueous extracts of black, green, and lemon tea of a commercially available brand.

Materials and Methods: The well-diffusion method was used to evaluate the antibacterial efficacy of commercially available black tea, green tea, and lemon tea at three different concentrations (1.5 g, 5 g, and 7.5 g) against Streptococcus mutans and Lactobacillus acidophilus. After incubation in appropriate culture medium, diameter of zone of inhibition was measured to assess the antibacterial efficacy of tea.

Results: Maximum zone of inhibition was found with lemon tea (27 mm) followed by green tea (26 mm) and black tea (13 mm) against S. mutans and L. acidophilus. Zone of inhibition was highest at 7.5 g concentration (1 and half tea spoon) for lemon tea followed by green tea and black tea. Results were statistically analyzed with the analysis of variance (ANOVA). For pairwise intergroup multiple comparisons, bonferroni test was applied. The difference between black tea, green tea, and lemon tea were statistically significant ($P < 0.001$) at 5% level of significance.

Conclusion: Lemon tea at 7.5 g concentration was more effective followed by green tea and black tea against S. mutans and L. acidophilus.

Keywords: Lactobacillus acidophilus, Streptococcus mutans, tea

Introduction

Maintenance of optimal oral health is critical to enjoy the quality of life. Oral health-related quality of life is an integral part of general health and well-being and is recognized by the WHO as an important segment of the Global Oral Health Program (WHO, 2003).¹ Habit is an action performed repeatedly on a regular basis. An upsurge of industrialization, urbanization, economic development, and market globalization occurring in most countries around the world is associated with changes in the diet and lifestyle of individuals. Lifestyle is defined in terms of diet-pattern, social class, total income, education level, habits, culture, and environment. Tea consumption is also one of the most common habits.

Tea is one of the most commonly consumed beverages across the world² after water,³ which originated in China, that has conquered the world’s taste over the last 2000 years.³ It is the second most commonly consumed beverage in the world.⁴ Its first use is believed to be about 5,000 years ago and has remained popular as the most pleasurable and efficacious beverage in the world. Tea drinking has been gaining further acceptance now due to its natural health benefitting properties. It is an infusion made by steeping processed leaves, buds, or twigs of tea bush, Camellia sinensis, in hot water for several minutes, after which it is drunk.² It can be prepared as a drink, which can have many systemic health effects or an “extract” can be made from the leaves to use as medicine.⁸ They grow as small bushy plants about 3-4 feet high.³ Tea leaves are picked three to four times between spring and fall of each year.⁸ Bangladesh is the highest tea (black tea) producer in the world followed by India (black tea), Japan (green tea), and China (different sorts of tea).⁹ The per capita mean consumption of tea in the world has been reported to be 120 ml/day.¹ In India, the per capita consumption of tea annually is 706g.³ Antibacterial property of tea was first reported from Japan using Japanese tea against various diarrheal pathogens.⁸ For the first time in 1989, it was demonstrated that Japanese green tea has an inhibition effect on Streptococcus mutans.¹⁰ In 1958, a British botanist J. R. Sealy classified all plants in the genus Camellia and tea was given the name it has today.¹¹ The heritage drink has withstood the test of time, and it...
may well be the drink of the future. The journey of the beverage through the passage of time has been glorious and fascinating.

As tea contains various trace elements, the attention to the biological functioning of tea beverages has rose during the last few years. Three commonly used and commercially available tea varieties were selected for this study. Black tea is consumed all over the world and, in India, it is the most favored one. Black tea and green tea have been well researched on its antibacterial efficacy against oral micro biota. On lemon tea, relatively less research has been done, as it is less consumed. This study was therefore undertaken to assess whether aqueous extracts of three types of tea (black, green, and lemon tea) have any inhibitory effect on the \(S. \) mutans and \(L. \) acidophilus (cariogenic bacteria).

Materials and Methods

The present study is an in-vitro study conducted at the Department of Microbiology, Anasaheb Chudaman Patil Medical College, Dhule, Maharashtra. Ethical clearance for the study was obtained from the Institutional Ethical Review Committee. Three different commercially available tea of single brand (one of the popular and commonly available - Tetley) were randomly selected taking into consideration their availability in the market. Recently, manufactured and packed commercially available three different tea was purchased from the local retail outlet. The study was conducted over a period of 10 days. The culture media used in the present study was blood agar for agar diffusion method while nutrient broth for bacterial isolates preservation. Freeze-dried strains of \(S. \) mutans (MTCC, 497) and \(L. \) acidophilus (MTCC, 10307) were obtained from the Institute of Microbial Technology, Chandigarh. Bactericidal activity was determined by agar well-diffusion method given by Norrel and Messley (1997).

The above mentioned 2 different strains of organisms were first transferred to BHI broth and incubated for 24 h to check the viability. Then, these suspensions were smeared on blood agar plate. After 24 h of incubation at \(37^\circ \)C, 9-10 colonies were transferred to 10 ml brain heart infusion (BHI) broth for using it on the next day. These solutions were aseptically introduced and evenly spread on the blood agar plate (Lawn/ Carpet culture). After removing excess solution, the inoculum was allowed to dry for a few minutes at room temperature with the lid closed. With the aid of a sterile 5mm metal borer, 4 equally spaced wells were bored in the agar plate aseptically.

Extract preparation

In the present study, different concentrations of tea were selected in grams. Commercially available tea bag contains 1.5 g, so this concentration was selected. According to the strength and choice of concentration of tea varying from one individual to another. Based on one tea spoon and one and half tea spoon, the second and third concentrations were set to 5 g and 7.5 g, respectively. Thus, above-mentioned concentrations were selected for the present study.

Medium

To overcome the problem of contamination due to regular water, distilled water was used to prepare aqueous extracts of tea. To avoid toxic effects of alcoholic medium on general as well as dental health, aqueous medium was selected for this study. This mixture was filtered using whatman filter paper to obtain an extract.

As previous literature suggests, temperature to prepare tea taken was \(73^\circ \)C-83\(^\circ\)C for 5.3-6.3 minutes. All extracts were prepared by keeping boiling temperature and time, constant under aseptic conditions.

These extracts were allowed to cool at room temperature before antibacterial testing to avoid melting and mixing of agar with extracts. In one agar plate, 3 wells were prepared for 3 different concentrations of each tea. The above-mentioned concentrations of aqueous extracts of three different tea of 50 \(\mu l \) solution was poured in the respective prepared wells with the help of sterile and disposable dropper. Using this method, the experiment was done in triplicate for each type of tea extract and a total of 18 plates were prepared. After 24 h of incubation in incubator at \(37^\circ \)C, agar plates were observed for the zone of inhibition (areas without growth of test organisms). It was measured as the maximum width from the edge of the well to the periphery of the inhibition zone with the help of Vernier caliper. Maximum zone of inhibition would determine the inhibition of bacterial growth in an agar plate, so maximum zone was measured. The principle investigator was calibrated in the Department of Microbiology and measured the maximum zone of inhibitions on all the agar plates.

Statistical analysis

The Statistical Package for the Social Sciences (SPSS; version 16.0) was used for data analysis. Data were presented as mean \(\pm \) standard deviation of mean zone of inhibition. After testing, homogeneity of variances of data by Levene test. Data obtained was organized in an Excel sheet and subjected to statistical analysis. Analysis of variance (ANOVA) was used to find the significance of study parameters between three or more groups of samples and Bonferroni post-hoc test was used to compare mean zone of inhibition in between pairs of tea types for different concentration. The data exhibited a normal and homogeneous distribution; thus, zone of inhibition (in mm) was analyzed using mean of all the readings obtained and the level of significance at \(<0.05\) was considered statistically significant.

Results

Commercially available black tea, green tea, and lemon tea were effective against test organisms (Tables 1 and 2).
Lemon tea showed highest antibacterial effectiveness followed by green tea and black tea against test organisms. At different concentrations, lemon tea showed maximum zone of inhibition and was statistically significant except for green tea (Tables 3 and 4).

Table 1: Mean and range of S. mutans zone of inhibition (mm) in each group for different concentrations

S. mutans Group	Mean±SD	F	P value
1.5 g concentration			
1	0.0	759.250	<0.001
2	17.7±0.6		
3	19.0±1.0		
5 g concentration			
1	4.3±3.8	53.956	<0.001
2	19.7±0.6		
3	21.7±0.6		
7.5 g concentration			
1	11.3±1.5	173.727	<0.001
2	25.0±1.0		
3	26.7±0.6		

Table 2: Mean and range of L. acidophilus zone of inhibition (mm) in each group for different concentrations

L. acidophilus Group	Mean±SD	F	P value
1.5 g concentration			
1	0.0	564.250	<0.001
2	15.7±0.6		
3	16.0±1.0		
5 g concentration			
1	6.7±0.6	481.333	<0.001
2	17.3±0.6		
3	20.7±0.6		
7.5 g concentration			
1	11.7±0.6	522.333	<0.001
2	24.3±0.6		
3	25.3±0.6		

Discussion

During the last few years, an increased attention has been focused on the natural plant extracts, especially those containing phenolic compounds with antimicrobial and antioxidant properties. Tea is one of the important dietary sources of these compounds. Tea is reported to contain nearly 4000 bioactive compounds of which one-third is contributed by polyphenols. It contains flavonoids (alkaloids-caffeine, theophylline, and theobromine), saponins, tannins, catechins and polyphenols, amino acids, carbohydrates, proteins, chlorophyll, volatile compounds, minerals, trace elements, and other unidentified compounds. Flavonoid components are the a flavins, bisflavanols, and theaflavic acids. Four polyphenol compounds, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), EGC and EC are significant antioxidants constituents, and these compounds are responsible for the inhibition of pathogens. These constituents are oxidized during fermentation to yield a complex mixture of secondary...
polyphenols. The polyphenols, catechins, gallic acid, and the
aflavins are introduced as antibacterial agents of tea.10 Tea
contains 300-2000 ppm fluoride of which more than 50\% is
extracted into the tea infusion.11

Literature search shows that most of the previous studies
have been done on organic extracts of tea or extracts made
using tea leaves. Very few have been done on commercially
available tea. Since most of people use commercially available
tea and it is consumed regularly in aqueous form, the present
study was carried out to determine antibacterial efficacy of
aqueous extracts of tea. Earlier it was suggested that fluoride
is an important contributing factor in tea which is responsible
for caries inhibition. The recent investigations show that
flavonoids have antibacterial properties which over rules the
low fluoride concentration in tea.3

Three different commercially available tea of single brand at
three different concentrations were selected for the present
study. These three tea varieties at three different concentrations
were more effective on \textit{S. mutans} than \textit{L. acidophilus} but
at 5 g concentration black tea shows more inhibitory effect
on \textit{L. acidophilus} than \textit{S. mutans}, this observed difference
might be a result of genetic differences among the organisms.
Hence, further research should be done to know the reasons
behind the same.

Although the varieties of tea used in this study were
manufactured from leaves of the same plant species, \textit{Camellia
sinesis}, the catechin content depends on the leaf process before
tea drying, the geographic location of the farm, soil, climate,
and the type of tea such as blended or decaffeinated.10 Although
we had taken all tea of same brand for the present study, we
cannot assure/guarantee of tea leaves taken from the same
geographical area under same climatic conditions. Hence,
further research is necessary to overcome this limitation. The
absorption of elements such as aluminum may be increased
under acidic conditions as in the presence of citric acid in
tea with lemon.12 Citrus flavonoids have a large spectrum
of biological activity including antibacterial, antifungal,
antidiabetic, anticancer, and antiviral activities.19 The peel
of citrus fruits is a rich source of flavonoid glycosides,
coumarins, and volatile oils.20 The fiber of citrus fruit also
contains bioactive compounds, such as polyphenols, the most
important being Vitamin C (or ascorbic acid), and they
certainly prevent and cure Vitamin C deficiency.21 This may
be the reason lemon tea is more effective besides geographical
or climatic conditions. The primary difference between green
tea and black tea is in the fermentation process required to
produce tea. In case of black tea, the leaves and buds are
fully fermented or oxidized after they have been dried. In
green tea, leaves are steamed after they are dried.16 Green tea
also contains gallic acid, quercetin, kaempferol, myricetin,
caffeic acid, and chlorogenic acid.22 Black tea and green tea
contains same amount of flavonoids, their chemical structure
is different.10 The green tea is non-fermented thus contains

highest concentrations of polyphenols22 whereas the black
tea undergoes fermentation process which oxidizes many
of polyphenols catalyzed by polyphenol oxidase, degrading
EGCG, and reducing tea’s antibacterial potency. EGCG and
ECG are present in minute amounts in black tea compared to
green tea; this may be due process of oxidation.8,23 This may
be the reason why black tea exhibits less inhibitory action.7
This is in accordance with many previous studies conducted
on black tea and green tea. Shehab showed aqueous extract of
green tea was more effective than black tea on oral bacteria
in pregnant women.24 Subramaniam \textit{et al.} showed aqueous
extracts of oolong tea and green tea showed greater inhibitory
effect than black tea and chlorhexidine against \textit{S. mutans}.3

The alkaloids, flavonoids, tannins, EGCG, and polyphenols
are reported to have inhibitory effect. The alkaloids are said
to interfere with microbial cell division whereas flavonoids
possess anti-glucosyltransferase activity and inhibit bacterial
adhherence. Tannins, on the other hand, inhibit bacterial
growth with their strong iron binding capacity and also inhibit
glucosyltransferase activity and bacterial adhesion.3 Tea
polyphenols exert different actions by acting as a slow release
source of catechins and theaflavins, which inhibit growth and
adhherence of \textit{S. mutans} to the surface. EGCG and EC have been
reported to disrupt reconstituted bacterial membranes.1 EGCG
primarily responsible for the inhibitory activity.

It is also seen that different extracts were different in their
antimicrobial effectiveness depending on the extractive
solvent used. Oloke and Kolawole showed that bioactive
components of any medicinal plant may differ in their solubility
depending on the extractive solvents used.25 Our study also
shows significant inhibitory effect of all tea on \textit{L. acidophilus}
which is contradictory to Taylor \textit{et al.}26 and Margaret27 who
showed drinking green tea appears to protect against dental
caries. Mushtaq showed that recent research indicates that tea
can counter some of the microorganisms such as \textit{S. mutans},
\textit{L. acidophilus} that can form plaque and biofilms on teeth,
resulting in tooth decay.11

Use of hot water is the traditional way of brewing tea and
previous studies have shown that hot water is an efficient way
of extracting tea. Water temperature is an important factor
when extracting tea. Higher temperature reduces the polarity
of water, thus increasing its extraction efficiency and capability
to dissolve less polar compounds. Raising the temperature of
water also reduces its surface tension and viscosity, which
increases the diffusion rate and the rate of mass transfer during
extraction.27

\textbf{Conclusion}

Lemon tea possessed maximum antimicrobial effect against
test organisms at all concentrations taken in the present study.
Maximum zone of inhibition was seen at 7.5 g concentration
for lemon tea followed by green tea and black tea.

Recommendation

The present study has its own limitations. This study was performed on standard microorganisms. Further studies on these commercially available teas on S. mutans, Lactobacillus present in oral cavity are necessary with minimal inhibitory concentration for therapeutic use.

Dental public health significance

Because of many health benefits, lemon tea could be advocated as an alternative to black and green tea as lemons have strong antibacterial, antiviral, and immune boosting powers which build immunity and fight infection. Its antibacterial property inhibits oral bacteria responsible for causing many dental diseases.

Acknowledgment

The authors would like to thank Dr. Varsha Kalshetty, Faculty of Department of Microbiology, A.C.P.M Medical College, Dhule, for providing necessary facilities to conduct the present study and Dr. Prashant Patil for helping in statistical analysis.

References

1. WHO. Diet, Nutrition and the Prevention of Chronic Diseases; 2003. Available from: http://www.hqlibdoc.who.int/itr/who_trs_916.pdf. [Last cited on 2015 Jun 12].
2. Mughal T, Tahir A, Aziz MT, Rasheed M. Comparative antibacterial activity of green tea and lemon grass extracts against Streptococcus mutans and its synergism with antibiotics. J Appl Pharm 2009;2:16-24.
3. Subramaniam P, Eswara U, Maheshwar Reddy KR. Effect of different Types of tea on Streptococcus mutans: An in vitro study. Indian J Dent Res 2012;23:43-8.
4. Stoicov C, Saffari R, Houghton J. Green tea inhibits Helicobacter growth in vivo and in vitro. Int J Antimicrob Agents 2009;33:473-8.
5. Moezizadeh M. Anticariogenic effect of tea: A review of literature. J Dent Oral Hyg 2013;5:89-99.
6. Hossain MM, Mahmood S. In vitro studies on antibacterial, thrombolytic and antioxidant activities of green tea or Camellia sinensis. Am J Phytomed Clin Ther 2014;2:1200-1.
7. Anita P, Sivasamy S, Madan Kumar PD, Balan IN, Ethiraj S. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. J Basic Clin Pharm 2014;6:35-9.
8. Arab H, Maroofian A, Golestani S, Shafaei H, Sohrabi K. Review of the therapeutic effects of Camellia sinensis. J Med Plants Res 2011;5:5465-9.
9. Ahn YJ, Sakanaoka S, Kim MJ, Kawamura T, Fujisawa T, Mitsuoka T. Effect of green tea extract on growth of intestinal bacteria. Microb Ecol Health Dis 1990;3:335-8.
10. Naderi NJ, Niakan M, Kharazi Fard MJ, Zardi S. Antibacterial activity of Iranian green and black tea on Streptococcus mutans: An in vitro study. J Dent (Tehran) 2011;8:95-9.
11. Moezizadeh M. Anticariogenic effect of tea: A review of literature. J Med Plants Res 2011;3:266-72.