Research Article
The Efficacy of Glucocorticoids in the Treatment of Nonarteritic Anterior Ischemic Optic Neuropathy: A Systematic Review and Meta-Analysis

Pingping Zhou, Jian Zhang, and Yanxiu Qi

Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China

Correspondence should be addressed to Pingping Zhou; 171843155@masu.edu.cn

Received 20 January 2022; Revised 30 January 2022; Accepted 2 February 2022; Published 18 March 2022

Academic Editor: Min Tang

Copyright © 2022 Pingping Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. To evaluate the clinical effects and safety of glucocorticoids for patients with nonarteritic anterior ischemic optic neuropathy (NAION). Methods. The databases MEDLINE, Embase, PubMed, Cochrane Database, and Web of Science were used to search for the relevant studies, and full-text articles that reported on the evaluation of glucocorticoids vs. no-treatment or placebo for patients with NAION. Review Manager 5.4 was used to estimate the pooled effects of the results among selected studies. Forest plots, funnel plots, and Begg’s rank correlation were also performed on the included articles. Results. A total of 983 patients were contained in the 9 studies that satisfied the eligibility criteria. The meta-analysis showed that, compared with the control group, the glucocorticoid group had significantly improved the VA (MD: -0.25, 95% CI [-0.45, -0.05], P = 0.02), VF (MD: -0.50, 95% CI [-0.94, -0.07], P = 0.02), and RNFL (MD: -14.10, 95% CI [-26.41, -1.79], P = 0.02) in NAION patients and had a high improvement rate of VA (RR 1.31, 95% CI [1.12, 1.52], P = 0.0005). No significant publication bias was observed in our study. Discussion. Our research preliminarily confirmed the effectiveness of glucocorticoids for NAION treatment, but more high-quality RCTs focusing on the hormone adverse reactions should be performed to verify our conclusions.

1. Introduction

Ischemic optic neuropathy (ION) is a vascular disease [1]. It occurs when the nutrient blood vessels of the optic nerve have circulatory disturbances [2]. The disease primarily occurs in one eye, but it can also occur in both eyes simultaneously or successively [3]. The incidence rate in the population is 0.5 per 100,000, and the disease most often occurs in people over 50, whose incidence is up to 2.3 ~ 10.2 per 100,000 [4, 5]. Pathologically, ION is divided into arteritis and nonarteritic ION, and 95% of ION is nonarteritic anterior ischemic optic neuropathy (NAION) [6, 7].

The pathological mechanism of NAION is still unclear [8, 9]. Some studies believe that the posterior ciliary artery that supplies the anterior part of the optic disc (i.e., the anterior and lamina area) has stenosis, occlusion, or perfusion pressure decrease, resulting in local microcirculation disorders, and the decreased optic papillary perfusion pressure will lead to insufficient blood supply to the optic disc, resulting in optic nerve ischemic disease [10, 11]. Optic disc edema often occurs in the acute phase. Although the edema will eventually disappear without any treatment, clinical observations have found that it does not change rapidly within 2 weeks [12]. The ischemic location and the degree of edema are important reasons that affect the central vision of NAION patients [13].

Glucocorticoids are anti-inflammatory and can reduce edema [14]. They can reduce capillary permeability and inhibit free radical injury. They have been used in the treatment of diseases with angiogenic edema as the main pathogenesis, such as intracerebral hemorrhage, brain tumor, and craniocerebral trauma [15, 16]. The pathological mechanism of NAION is often considered to be hypoperfusion or small vessel embolism in pathological mechanism. The optic disc edema caused by NAION cannot be completely defined as angiogenic or cytotoxic edema. Systemic hypoperfusion,
nocturnal hypotension, local autoregulation dysfunction, vasospasm, venous obstruction, and thrombosis been identified as the inducing factors of NAION, and the application of hormones often leads to the rise of blood pressure and blood glucose. Therefore, clinicians use hormones to quickly reduce optic disc edema and restore visual function. At the same time, they often worry about the impact of its adverse effects on NAION patients and the accuracy of curative effect [17].

Literature has shown that the application of glucocorticoids in the treatment of NAION can achieve better curative effects [14, 18]. We used the meta-analysis method to systematically evaluate the clinical efficacy of glucocorticoids in the treatment of NAION and objectively evaluate the effectiveness and safety of glucocorticoids, so as to provide references for its further clinical research and application.

2. Methods

2.1. Literature Search Strategy. We used comprehensive databases (MEDLINE, Embase, PubMed, Cochrane Database, and Web of Science) to search for previous studies that investigated the effects of glucocorticoids on the clinical outcomes in patients with ION. The literature search was performed from inception up to November 30th, 2021, using the following keywords and MeSH terms: (1) glucocorticoids; (2) ION; (3) corticosteroid; and (4) optic neuropathy. Numerous combinations of words and strings were applied with Boolean operators “AND” and “OR” to broaden the search. Our literature search was carried out without any consideration for publication status limitations or language restrictions. The reference lists of the retrieved studies and review articles were examined manually to identify further relevant studies not identified by the search strategy.

2.2. Study Selection. A study was included if it satisfied the following criteria:

1. Researches compared patients who received glucocorticoids and other therapy
2. The study contained patients with ION
3. The study contained indicators evaluating efficacy between glucocorticoids and other therapy
4. The study was available in full text

The exclusion criteria were as follows:

1. Researches did not meet the inclusion criteria
2. The outcomes of interest were not reported or were impossible to use
3. The document was a review, abstract, letter, or a duplicate publication

2.3. Data Extraction. Data extraction was conducted independently by two reviewers (Zhou and Zhang), and the disagreements were resolved in consultation with a third reviewer. The number of patients in each study group was recorded. We also extracted data for study location, study design, intervention mode, patients’ characteristics (age and gender), year of outset, and time of follow-up.

2.4. Quality Assessment. To qualitatively evaluate the quality of the included studies, the Cochrane Collaboration’s tool was used to assess the quality of randomized controlled trials (RCTs), and the Newcastle–Ottawa Scale (NOS) was used to assess the quality of nonrandomized trials.

2.5. Statistical Analysis. The review manager (Version 5.4, Cochrane Collaboration, 2020) was used to estimate the pooled results in the selected studies. Chi-square test and I^2 statistics were used to test the heterogeneity. An I^2 value of 0%-50% indicated that heterogeneity was not relevant/important; 30%-50% suggested moderate heterogeneity; 50%-90% represents substantial heterogeneity; and 75%-100% represented considerable heterogeneity. A fixed effects model was applied in the absence of heterogeneity, while a random effect model was used when heterogeneity was observed. If there were more than 5 studies included in the meta-analysis, the data would be evaluated for publication bias by viewing the symmetry of the funnel plot and using the Begg rank correlation method.

3. Results

3.1. Search Process. The search yielded 1263 titles. After removal of duplicates, 1027 articles were identified. After manually inspecting the titles and abstracts, 920 articles were excluded. From these, 98 articles were further excluded due to various reasons including that they had a different study design, insufficient data available, or because they were review articles. Ultimately, 9 studies included in our present meta-analysis strictly met our selection criteria [19–27]. Figure 1 illustrates the search process, with the associated inclusion and exclusion criteria.

3.2. Characteristics of Included Studies. The detailed characteristics of these 9 eligible studies are summarized in Table 1. In total, 983 patients were included, of which 504 were in an intervention group and 479 were in the control group; the age of most patients was over 50s. All included studies were published from 2007 to 2021. The sample size ranged from 10 to 613. These studies contained 6 retrospective cohort studies, two RCTs and 1 prospective cohort study.

3.3. Results of Quality Assessment. After identifying the included articles, the abstract and full text of each article were carefully read and the publication’s quality was evaluated according to Cochrane Collaboration’s tools and NOS (Tables 2 and 3). For the 2 RCTs, there was no risk of bias. The risk of bias of the non-RCTs showed that all studies were rated over 6, which indicated no significant risk of bias.

3.4. Results of the Meta-Analysis for Outcomes

3.4.1. Visual Acuity. The pooled analysis indicated that, compared with the control group, the glucocorticoid group resulted in a significant improvement in the visual acuity (VA, calculated by the logarithm of the minimum angle of
resolution, logMAR) with a mean difference (MD) of -0.25 (95% CI [-0.45, -0.05], P = 0.02; Figure 2). However, significant heterogeneity among the studies was detected ($I^2 = 89\%$, P < 0.00001).

3.4.2. Visual Field. A fixed effects model was used to evaluate the heterogeneity of visual field (VF, calculated by the mean deviation), as insignificant heterogeneity was found among the included studies ($P = 0.46$, $I^2 = 0\%$). The results showed that the glucocorticoid group had a better improvement in evaluation of visual field than the control group (MD = -0.50 with 95% CI [-0.94, -0.07], $P = 0.02$) (Figure 3).

3.4.3. Retinal Nerve Fiber Layer (RNFL). For retinal nerve fiber layer (RNFL), 6 studies involving 303 patients reported it. Meta-analysis showed that compared to the control group, the glucocorticoid group had a higher decrease of RNFL (MD: -14.10, 95% CI [-26.41, -1.79], $P = 0.02$, fixed effects model), without significant heterogeneity ($I^2 = 0\%$, $P = 0.61$) (Figure 4).

3.4.4. Improvement Rate of VA. Change \geq3 lines in the Snellen VA chart was considered to be a significant change, which corresponded to a change in logMAR of at least 0.30 [20]. Some articles analyzed the improvement rate of VA (change \geq3 lines), we performed a pooled analysis on these studies. Overall, the pooled estimate showed that compared to the control group, the glucocorticoid group had a significantly higher improvement rate of VF (RR 1.31, 95% CI [1.12, 1.52]; $P = 0.0005$, fixed effects model), with insignificant heterogeneity among the included studies ($I^2 = 15\%$, $P = 0.32$) (Figure 5).

3.4.5. Adverse Reactions. Since there were not enough literature reports on the comparison of adverse reactions between the two groups, we could not make a combined analysis. We made a descriptive analysis about adverse reactions, and the specific results were shown in Table 4. Adverse reactions included gastrointestinal reactions, headache, weight gain, and anxiety. From the current results, there was no significant difference in adverse reactions between two groups.

3.5. Publication Bias. The funnel plots for all four outcomes are shown in Figure 6. The shape showed some evidence of asymmetry, but the P value of the Egger test was not statistically significant (VA, P = 0.293; VF, P = 0.123; RNFL, P = 0.727; improvement rate of VA, P = 0.324). This indicated that there was no significant publication bias in our meta-analysis.

4. Discussion

Optic nerve edema is an important factor in the decline of visual function, and the timely application of glucocorticoids in a timely manner can help to eliminate edema, reduce the crowded state of optic disc, improve the blocking state of axial plasma flow, reduce the crowded pressure of capillaries at the optic nipple, improve the blood flow state, and improve the degree of nerve ischemia, so as to reduce some damage to visual function in a certain sense [14, 28, 29].
Study	Study design	Country	Treatment Intervention	No. of patients	Gender (M/F)	Age	Control	Follow-up	Duration
Kaderli 2007 [21]	Retrospective cohort study	Turkey	Triamcinolone intravitreal injection of 4 mg/0.1 mL.	No treatment	4/6	2/3	56-74	6 months	>9 months
Hayreh 2008 [20]	Retrospective cohort study	US	Prednisone 80 mg daily for 2 weeks, and then tapered down to 70 mg for 5 days, 60 mg for 5 days, and then cutting down by 5 mg every 5 days	No treatment	312/301	188/124	175/126	3 months	1973 to 2000
Rebolleda 2012	Retrospective cohort study	Spain	Prednisone 80 mg daily for 2 weeks, and then tapered down to 70 mg for 5 days, 60 mg for 5 days, and then cutting down by 5 mg every 5 days	No treatment	10/27	7/3	14/13	6 months	September 2008 to September 2009
Kinori 2014 [22]	Retrospective cohort study	Israel	Methylprednisolone (1 g/day) for 3 days, followed by oral prednisone (1 mg/kg) for 11 days	No treatment	24/24	14/10	16/8	6 months	—
Radoi 2014 [25]	Retrospective cohort study	France	Triamcinolone intravitreal injection of 4 mg/0.1 mL.	No treatment	21/15	NR	NR	6 months	February 2009 to November 2012 December 2010 to November 2013
Pakravan 2016 [23]	Randomized controlled trial	Iran	Methylprednisolone 500 mg twice a day for 3 days, followed by 2 weeks of oral prednisolone 1 mg/kg/day	Placebo	30/30	20/7	21/9	6 months	May 2012 to October 2015
Pakravan 2017 [24]	Prospective cohort study	Iran	Methylprednisolone 500 mg twice a day for 3 days followed with oral prednisolone 1 mg/kg for 10 days	Suggested treatments	43/30	32/11	21/9	6 months	March 2015 to August 2016
Saxena 2018 [27]	Randomized controlled trial	India	Prednisone 80 mg daily for 2 weeks, and then tapered down to 70 mg for 5 days, 60 mg for 5 days, and then cutting down by 5 mg every 5 days	Placebo	19/19	13/6	11/8	6 months	—
Durbant 2021 [19]	Retrospective cohort study	France	Triamcinolone intravitreal injection of 4 mg/0.1 mL.	No treatment	41/27	NR	NR	6 months	2009 to 2017
Table 2: Risk of bias of randomized controlled trial studies.

Study	Random allocation	Hidden distribution	Blind method	Incomplete outcome data	Selective reporting of results	Other bias	Quality level
Saxena 2018 [27]	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High
Pakravan 2016 [23]	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High

Table 3: Risk of bias of cohort studies.

Study	Representativeness of cohort	Selection of nonexposed cohort	Ascertainment of exposure	Outcome lacking at the beginning	Comparability of cohorts	Outcome assessment	Outcomes	Sufficient follow-up time	Follow-up adequacy	Score
Kaderli 2007 [21]	★	★	★	★	★	★	★	★	★	8
Radoi 2014 [25]	★	★	★	★	★	★	★	★	★	9
Hayreh 2008 [20]	★	★	★	★	★	★	★	★	★	7
Pakravan 2017 [24]	★	★	★	★	★	★	★	★	★	8
Rebolleda 2012	★	★	★	★	★	★	★	★	★	8
Kinori 2014 [22]	★	★	★	★	★	★	★	★	★	8
Durbant 2021 [19]	★	★	★	★	★	★	★	★	★	9

Figure 2: Forest plot evaluating the outcomes of VA. VA: visual acuity.

Figure 3: Forest plot evaluating the outcomes of VF. VF: visual field.
literature that failed to clearly define the treatment of NAION; therefore, some studies on hor-
to objectively analyze the effectiveness and safety of hormone treatment of NAION; therefore, some studies on hormone combined with other treatment methods and the literature that failed to clearly define arteritic or nonarteritic ION have been excluded to avoid the possible potential bias risk [33–35].

Our study systematically evaluated the therapeutic effect of glucocorticoids on NAION patients with VA, VF, RNFL, and adverse reactions as outcome indicators. A total of 9 studies were included in this paper. The results of meta-analysis showed that the application of glucocorticoids could improve VA (MD: -0.25, 95% CI [-0.45, -0.05], P = 0.02), VF (MD: -0.50, 95% CI [-0.94, -0.07], P = 0.02), and RNFL (MD: -14.10, 95% CI [-26.41, -7.79], P = 0.02) in NAION patients.

Chen et al. conducted a meta-analysis of the literature on the treatment of NAION with corticosteroids, and they found that corticosteroids did not significantly improve the vision of NAION patients [32]. However, our study strived to objectively analyze the effectiveness and safety of hormone treatment of NAION; therefore, some studies on hormone combined with other treatment methods and the literature that failed to clearly define arteritic or nonarteritic ION have been excluded to avoid the possible potential bias risk [33–35].

The adverse reactions of glucocorticoid drugs used in the treatment of NAION deserve clinicians’ attention, such as monitoring blood glucose changes, nausea, indigestion, headaches, and weight gain. Anxiety and depression are easily overlooked, and intraocular hypertension is the most common adverse reactions [36, 37]. By summarizing the adverse reactions of included literatures and comparing the differences with the control group in a descriptive way, we found that the differences between the two groups were not significant.

This study had some limitations. First, among the included studies, 7 were nonrandomized studies and only 2 were RCTs. As the “gold standard” for clinical efficacy evaluation, RCTs have more objective guiding significance, which may reduce the reliability of the results of this study. Second, there were few reports of adverse reactions in the original studies included in the meta-analysis, so it was
impossible to accurately evaluate the safety of glucocorticoids in NAION treatment.

5. Conclusions

Our meta-analysis found that the application of glucocorticoids in the treatment of NAION was safe and effective and can effectively improve VA and VF of NAION patients. However, the effect of glucocorticoids on the improvement of vision in NAION patients should be verified by more large sample RCTs and should focus on its hormone adverse reactions.

Data Availability

No data were used to support this study.

Ethical Approval

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Authors’ Contributions

Pingping Zhou and Jian Zhang contributed equally to this work.

References

[1] M. A. Nagel, A. N. Russman, H. Feit et al., "VZV ischemic optic neuropathy and subclinical temporal artery infection without rash," Neurology, vol. 80, pp. 424–426, 2012.
[2] C. Salgado, F. Vilson, N. R. Miller, and S. L. Bernstein, "Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model," Archives of Ophthalmology, vol. 129, no. 12, pp. 1583–1591, 2011.
[3] C. Kernstock, F. Beisse, S. Wiethoff et al., "Assessment of functional and morphometric endpoints in patients with nonarteritic anterior ischemic optic neuropathy (NAION)," Graefes Archive for Clinical and Experimental Ophthalmology, vol. 252, no. 3, pp. 515–521, 2014.
[4] A. M. Gruener, J. R. Chang, T. M. Bosley, Z. M. al-Sadah, C. Kum, and T. J. McCulley, "Relative frequencies of arteritic
and nonarteritic anterior ischemic optic neuropathy in an Arab population,” Journal of Neuro-Ophthalmology, vol. 37, no. 4, pp. 382–385, 2017.

[5] E. W. Mayes, E. D. Cole, S. Dang et al., “Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy,” Journal of Neuro-Ophthalmology, vol. 37, no. 4, pp. 358–364, 2017.

[6] S. L. Bernstein, M. A. Johnson, and N. R. Miller, “Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models,” Progress in Retinal and Eye Research, vol. 30, no. 3, pp. 167–187, 2011.

[7] M. I. Boone, G. G. Massry, R. A. Frankel, J. B. Holds, and S. M. Miller, “Visual outcome in bilateral nonarteritic anterior ischemic optic neuropathy,” Ophthalmology, vol. 103, no. 8, pp. 1223–1228, 1996.

[8] N. Desai, M. R. Patel, L. M. Prisant, and D. A. Thomas, “Nonarteritic anterior ischemic optic neuropathy,” Journal of Clinical Hypertension, vol. 7, pp. 130–133, 2010.

[9] M. Storoni, C. Chan, A. Cheng, N. C. Y. Chan, and C. K. S. Leung, “The pathogenesis of nonarteritic anterior ischemic optic neuropathy,” Asia-Pacific Journal of Ophthalmology, vol. 2, no. 2, pp. 132–135, 2013.

[10] E. J. Atkins, “Nonarteritic anterior ischemic optic neuropathy,” Current Treatment Options in Neurology, vol. 13, no. 1, pp. 92–100, 2011.

[11] C. S. Chen, M. A. Johnson, R. A. Flower, B. J. Slater, N. R. Miller, and S. L. Bernstein, “A primate model of nonarteritic anterior ischemic optic neuropathy,” Investigative Ophthalmology & Visual Science, vol. 49, no. 7, pp. 2985–2992, 2008.

[12] A. J. Bella, W. O. Brant, T. F. Lue, and G. B. Brock, “Nonarteritic anterior ischemic optic neuropathy (NAION) and phosphodiesterase type-5 inhibitors,” The Canadian Journal of Urology, vol. 13, no. 5, pp. 3233–3238, 2006.

[13] A. A. Nanji, K. S. Klein, V. S. Pelak, and M. X. Repka, “Nonarteritic anterior ischemic optic neuropathy in a child with optic disk drusen,” Journal of AAPOS, vol. 16, no. 2, pp. 207–209, 2012.

[14] P. M. Aries, B. Hellmich, and W. L. Gross, “The role of glucocorticoids in the treatment of vasculitis,” Zeitschrift für Rheumatologie, vol. 64, no. 3, pp. 155–161, 2005.

[15] B. Bakbak, B. T. Ozurtk, S. Gedlik, B. E. Koktekir, and S. Gonul, “Can intramuscular corticosteroid injection cause nonarteritic anterior ischemic optic neuropathy?,” Clinical Ophthalmology, vol. 2013, pp. 633–635, 2013.

[16] G. Rebolloleda, M. Pérez-López, P. Casas-Llera, and F. J. Muñoz-Negrete, “Treatment of non-arteritic anterior ischemic optic neuropathy with high-dose systemic corticosteroids,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 251, no. 3, pp. 1031–1032, 2013.

[17] Y. Cai, Y. Wu, and H. Yu, “Clinical observation of the effects of combined therapy on nonarteritic anterior ischemic optic neuropathy,” Journal of Clinical Ophthalmology, vol. 5, pp. 152–156, 2005.

[18] T. L. Huang, K. H. Lin, and R. K. Tsai, “Treatment strategy for non-arteritic anterior ischemic optic neuropathy,” Tzu Chi Medical Journal, vol. 25, no. 3, pp. 135–138, 2013.

[19] E. Durbant, C. Radoi, T. Garcia, A. Denoyer, and C. Arndt, “Injection intravitreaman de triamcinolone dans les neuropathies optiques ischémiques antérieures aigues non-arteritiques - Une etude retrospective,” Journal Français d’Ophthalmologie, vol. 44, no. 6, pp. 777–785, 2021.
[35] A. Yaman, O. B. Selver, A. O. Saatci, and M. F. Soylev, "Intra-vitreal triamcinolone acetonide injection for acute non-arteritic anterior ischaemic optic neuropathy," *Clinical & Experimental Optometry*, vol. 91, no. 6, pp. 561–564, 2008.

[36] R. Khanna, R. Hage, A. Lecler, T. Sené, C. Vignal-Clermont, and G. Clavel-Refregiers, "Giant cell arteritis with ocular involvement successfully treated with tocilizumab and very short-course glucocorticoids: A case report," *Journal Français d’Ophtalmologie*, vol. 44, no. 4, pp. 481–484, 2021.

[37] C. Zhang, Y. Guo, B. J. Slater, N. R. Miller, and S. L. Bernstein, "Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION)," *Experimental Eye Research*, vol. 91, no. 2, pp. 286–292, 2010.