Weak phase α from $B^0 \to a_1^+ (1260) \pi^\mp$

M. Gronau1 and J. Zupan2,3

1Department of Physics, Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
2Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
3J. Stefan Institute, Jamova 39, P.O. Box 3000, 1001 Ljubljana, Slovenia

Quasi two-body decays $B^0(t) \to a_1^+ (1260) \pi^\mp$ identified by four charged pions determine a phase α_{eff}, which is equal to the weak phase α in the limit of vanishing penguin amplitudes. Applying SU(3) flavor symmetry to these decays and to $B \to a_1 K$ and $B \to K_1 \pi$, with K_1 an admixture of $K_1(1270)$ and $K_1(1400)$, we derive expressions providing bounds on $\alpha - \alpha_{\text{eff}}$. Higher precision in α may be achieved by an overall fit to a complete set of SU(3) related measurements. A method is sketched applying isospin symmetry to time-dependent invariant mass distributions in $B \to \pi^+ \pi^- \pi^0 \pi^0$.

I. INTRODUCTION

Hadronic B decays from $\bar{b} \to \bar{u} u d \bar{d}$ transitions provide the most direct information about the weak phase $\alpha \equiv \arg(-V_{td} V_{tb}^*/V_{td} V_{ub}^*)$, governing the interference between $B^0 - \bar{B}^0$ mixing and B decay amplitudes in these transitions. The current determination of α from time-dependent CP asymmetries in $B^0 \to \pi^+ \pi^-$, $B \to \rho^\mp \pi^\mp$ and $B \to \rho^\mp \rho^\pm$ involves a combined error at a level of 10° \cite{1,2}.

Information on α can also be extracted from time-dependent decays $B^0(t) \to a_1^+ (1260) \pi^\mp$ \cite{3,4}. Recently the Babar \cite{3} and Belle \cite{4} collaborations have reported branching ratio measurements for these processes, where final states were identified through four charged pions,

$$B(B^0 \to a_1^+ (1260) \pi^\mp) = \left\{ \begin{array}{ll}
(40.2 \pm 3.9 \pm 3.9) \times 10^{-6} & \text{[5]}, \\
(48.6 \pm 4.1 \pm 3.9) \times 10^{-6} & \text{[6]}.
\end{array} \right. \hspace{1cm} (1)$$

These values, where charge-conjugation averaging is implied for initial and final states, are in agreement with a calculation based on naive factorization \cite{7}.

The difficulty in extracting α, common to all the above modes, is the presence of subleading penguin amplitudes with a different weak phase than that of the dominant tree amplitudes. This difficulty can be overcome by using symmetries, either isospin \cite{8,9} or approximate SU(3) flavor \cite{10,11}. Applications of these symmetries to $B^0 \to a_1^+ \pi^\mp$ resemble applications to $B \to \rho \pi$, data, where isospin symmetry in a Dalitz plot analysis \cite{12,13} and flavor SU(3) for quasi two-body decays \cite{14,15} have already been used to determine α.

An essential point in applying isospin to time-dependent decays into multibody final states is the existence of a final state which is common to several resonant channels having some overlap in phase space. This permits measuring relative phases between decay amplitudes for distinct resonant channels in B^0 and \bar{B}^0 decays. In $B \to \rho \pi$, decays to the final state $\pi^+ \pi^- \pi^0 \pi^0$ involve interference of $B^0(\bar{B}^0) \to \rho^+ \pi^-, B^0(\bar{B}^0) \to \rho^- \pi^+$ and $B^0(\bar{B}^0) \to \rho^0 \pi^0$ in the three corners of the Dalitz plot \cite{12,13}.

In contrast, one can readily show that in $B \to a_1 \pi$ ($a_1 \to \rho \pi$) the final state $\pi^+ \pi^- \rho^+ \rho^-$, common to $B^0(\bar{B}^0) \to a_1^+ \pi^-, B^0(\bar{B}^0) \to a_1^+ \pi^+ + B^0(\bar{B}^0) \to a_1^0 \pi^0$, does not involve an overlap between the a_1^+ resonance bands and the a_1^0 resonance band. Each of the three resonant amplitudes does interfere with the dominantly longitudinal amplitudes \cite{14} for $B^0(\bar{B}^0) \to \rho^+ \rho^-$. (In Ref. \cite{4} cuts on $B^0 \to a_1 \pi$ were suggested to eliminate this interference.) Thus, in principle, a fit for $B^0(t) \to \pi^+ \pi^- \pi^0 \pi^0$ combining contributions from $B \to a_1 \pi$ and $B \to \rho \rho$ could permit measuring relative phases between the three $B^0 \to a_1 \pi$ amplitudes. The absence of a penguin amplitude in the $\Delta I = 3/2, I = 2$ linear combination of these amplitudes \cite{14} would then enable an extraction of α \cite{15}.

While in this respect the situation seems similar to $B \to \rho \pi$, one would face in this rather complex analysis the challenges of an additional π^0 in the final state and of an uncertainty in the a_1 resonance shape.

The purpose of this Brief Report is to propose an easier measurement of α in time-dependent decays $B^0(\bar{B}^0) \to a_1^+ (1260) \pi^\mp$ with four charged pions in the final state, which is the cleanest signal channel to reconstruct. We will study these decays in the quasi two-body approximation within a complete set of SU(3) related processes. While we will follow an analogous study of $B^0(t) \to \rho^+ \pi^-$ \cite{14}, a modification is required by the fact that K_{1A}, the SU(3) partner of $a_1(1260)$, is a mixture of two mass eigenstates, $K_1(1270)$ and $K_1(1400)$ \cite{17}.

In Section II we define decay amplitudes and time-dependent decay rates for $B^0(\bar{B}^0) \to a_1^+ \pi^\mp$ in terms of tree and penguin contributions, noting a measurable quantity α_{eff} which equals α in the limit of van-
ishing penguin contributions. Section III derives upper bounds on \(\alpha - \alpha_{\text{eff}} \) in terms of branching ratios for \(B \to a_1 K, B \to K_1(1270) \pi \) and \(B \to K_1(1400) \pi \). Section IV concludes, suggesting a determination of \(\alpha \) using an overall parameter fit to a complete set of SU(3) related observables.

II. AmpLitudes and time-Dependence

We borrow notations and conventions from Ref. [14]. \(B^0 \) decay amplitudes involve subscripts denoting the charge of the \(a_1 \), while \(B^0 \) amplitudes into charge conjugate states are denoted by \(\overline{B}^0 \) with the same subscripts,

\[
A_+ \equiv A(B^0 \to a_1^+ \pi^-), \quad A_- \equiv A(B^0 \to a_1^- \pi^+) \,
\]

\[
\overline{A}_+ \equiv A(\overline{B}^0 \to a_1^- \pi^+), \quad \overline{A}_- \equiv A(\overline{B}^0 \to a_1^+ \pi^-). \tag{2}
\]

The four decay amplitudes can be expressed in terms of a “tree” amplitude \(t \) and a smaller “penguin” amplitude \(p \). We adopt the c-convention, in which the top-quark has been integrated out in the \(b \to d \) penguin transition and unitarity of the CKM matrix has been used to move a \(V_{ub} V_{ud} \) term into the tree amplitude. We write

\[
A_\pm = e^{i\gamma} t_\pm + p_\pm, \quad \overline{A}_\pm = e^{-i\gamma} t_\pm + p_\pm, \tag{3}
\]

where dependence on the weak phase \(\gamma \) is displayed explicitly, while \(t_\pm \) and \(p_\pm \) contain strong phases.

Time-dependent decay rates for initially \(B^0 \) decaying into \(a_1^0 \pi^\mp \) are given by [18]

\[
\Gamma(B^0(t) \to a_1^0 \pi^\mp) = e^{-\frac{1}{2}(C \pm \Delta C) \cos \Delta mt - (S \pm \Delta S) \sin \Delta mt}, \tag{4}
\]

where

\[
C \pm \Delta C = \frac{|A_\pm|^2 - |\overline{A}_\pm|^2}{|A_\pm|^2 + |\overline{A}_\pm|^2}, \tag{5}
\]

and

\[
S \pm \Delta S = \frac{2 \text{Re}(e^{-2i\gamma} \overline{A}_\pm A^*_\pm)}{|A_\pm|^2 + |\overline{A}_\pm|^2}. \tag{6}
\]

Here \(\Gamma \) and \(\Delta n \) are the average \(B^0 \) width and the neutral \(B \) mass difference, respectively. For initially \(\overline{B}^0 \) decays, the \(\cos \Delta mt \) and \(\sin \Delta mt \) terms in (4) have opposite signs. Thus, time-dependence in these decays determines the four quantities, \(S \pm \Delta S, C \pm \Delta C \).

We now define two phases which coincide with \(\alpha \) in the limit of vanishing penguin amplitudes [14], [18],

\[
\alpha_{\text{eff}}^\pm = \frac{1}{2} \text{arg} \left(e^{-2i\gamma} \overline{A}_\pm A^*_\pm \right). \tag{7}
\]

Whereas these two phases cannot be measured separately, their algebraic average \(\alpha_{\text{eff}} \) is measurable [14]:

\[
\alpha_{\text{eff}} \equiv \frac{1}{2} \left(\alpha_{\text{eff}}^+ + \alpha_{\text{eff}}^- \right) = \frac{1}{4} \left[\arcsin \left(\frac{S + \Delta S}{\sqrt{1 - (C + \Delta C)^2}} \right) + \arcsin \left(\frac{S - \Delta S}{\sqrt{1 - (C - \Delta C)^2}} \right) \right]. \tag{8}
\]

The two shifts \(\alpha - \alpha_{\text{eff}}^\pm \) are expected to increase with the magnitudes of the corresponding penguin amplitudes, \(|p_\pm| \). The shifts may be expressed in terms of \(|p_\pm|, \gamma \) and corresponding CP-averaged rates and CP asymmetries in \(B^0 \to a_1^0 \pi^\pm \),

\[
\mathbf{\Gamma}(a_1^0 \pi^\mp) = \frac{1}{2} (|A_\pm|^2 + |\overline{A}_\pm|^2), \quad \mathbf{A}_{\text{CP}}^\pm = \frac{|A_\pm|^2 - |\overline{A}_\pm|^2}{|A_\pm|^2 + |\overline{A}_\pm|^2}. \tag{9}
\]

One finds [14], [19],

\[
\cos 2(\alpha - \alpha_{\text{eff}}^\pm) = 1 - 2|p_\pm|^2 \sin^2 \gamma / \mathbf{A}_{\text{CP}}^\pm. \tag{10}
\]

III. BOUNDS ON \(\alpha - \alpha_{\text{eff}} \) FROM FLAVOR SU(3)

The corrections \(\alpha - \alpha_{\text{eff}}^\pm \) caused by the penguin amplitudes \(p_\pm \) may be bounded by relating the decays \(B^0 \to a_1^0 \pi^\pm \) with corresponding \(\Delta S = 1 \) decays, \(B \to a_1 K \) and \(B \to K_1 a_1 \), where \(K_1 a_1 \) is a nearly equal admixture of the \(K_1(1270) \) and \(K_1(1400) \) resonances [17]. The bounds are effective because of a relative factor \(\lambda^2, \lambda = 0.23 \) between the ratios of penguin-to-tree amplitudes in \(\Delta S = 0 \) and \(\Delta S = 1 \) processes. The bounds become more restrictive for small values of \(|p_\pm|/|t_\pm| \). For instance, branching ratios for \(B \to a_1 K \) and \(B \to K_1 a_1 \) which are not much larger than \(B(a_1^0 \pi^\pm) \) would imply generically \(|p_\pm|/|t_\pm| \ll 1 \) (see discussion below), similar to what has been observed in \(B^0 \to \rho^0 \pi^0 \) [14].

Applying flavor SU(3) to \(B^0 \to a_1^0 \pi^\pm \) we will make two approximations, neglecting \(\Delta S = 1 \) annihilation amplitudes which are formally \(1/m_t \)-suppressed [20], and neglecting nonfactorizable SU(3) breaking corrections when relating \(\Delta S = 0 \) and \(\Delta S = 1 \) amplitudes. Since we expect \(|p_\pm|/|t_\pm| \) to be small, these approximations have only a second order effect on the extracted value of \(\alpha \).

We start by discussing upper bounds on \(|\alpha - \alpha_{\text{eff}}| \) following from decay rates for \(B^+ \to a_1 K^0 \). Under the above-mentioned approximation one has

\[
A(B^+ \to a_1^+ K^0) = -\langle \lambda \rangle^{-1} f_K f_\pi p_-, \tag{11}
\]

\[
A(B^0 \to a_1^- K^+) = f_K f_\pi \langle \lambda \rangle^{-1} (\lambda^2 - e^{i\gamma}) \langle M \rangle, \tag{12}
\]

where \(\lambda = |V_{us}|/|V_{ud}| = |V_{cd}|/|V_{cs}| = 0.23, \) and \(f_\pi, f_K \) are decay constants [17]. We define two ratios of CP-averaged rates for these processes and for \(B^0 \to a_1^0 \pi^\pm \),
multiplied by \mathcal{X}^2,
\[
\mathcal{R}_+ \equiv \frac{\mathcal{X}^2 f_+ T(a_1^- K^0)}{f_K^2 T(a_1^- \pi^+)} , \quad \mathcal{R}_- \equiv \frac{\mathcal{X}^2 f_- T(a_1^+ K^0)}{f_K^2 T(a_1^- \pi^+)} .
\] (13)

Superscripts and subscripts denote the charges of the B meson and the a_1 meson in the denominator. These definitions lead to bounds on $|p_-|/|t_-|$ as mentioned above,
\[
\frac{\sqrt{\mathcal{R}_-}}{1 + \sqrt{\mathcal{R}_-}} \leq \frac{|p_-|}{|t_-|} \leq \frac{\sqrt{\mathcal{R}_-}}{1 - \sqrt{\mathcal{R}_-}} ,
\] (14)
\[
\frac{\sqrt{\mathcal{R}_-} - \mathcal{X}^2}{1 + \sqrt{\mathcal{R}_-}} \leq \frac{|p_-|}{|t_-|} \leq \frac{\sqrt{\mathcal{R}_-} - \mathcal{X}^2}{1 - \sqrt{\mathcal{R}_-}} .
\] (15)

Eqs. (14)–(15) imply immediately
\[
\cos 2(\alpha - \alpha_{eff}^-) = \frac{1 - 2\mathcal{R}_- \sin^2 \gamma}{\sqrt{1 - (\mathcal{A}_{CP})^2}} ,
\] (16)
and therefore
\[
|\sin(\alpha - \alpha_{eff}^-)| \leq \sqrt{\mathcal{R}_-} \sin \gamma .
\] (17)

The CP-averaged rate for 12 obeys 14, 21, $K^0(1400)$, and consequently,
\[
\cos 2(\alpha - \alpha_{eff}^-) \geq \frac{1 - 2\mathcal{R}_0^-}{\sqrt{1 - (\mathcal{A}_{CP})^2}} ,
\] (18)
and therefore
\[
|\sin(\alpha - \alpha_{eff}^-)| \leq \sqrt{\mathcal{R}_0^-} .
\] (19)

Similar considerations can be applied in order to obtain upper bounds on $|\sin(\alpha - \alpha_{eff}^-)|$ in terms of ratios of rates involving K_{1A}, the strange quark model $3P_1$ partner of a_1,
\[
\mathcal{R}_{+A} \equiv \frac{\mathcal{X}^2 f_+ T(K_{1A} \pi^+)}{f_K^2 T(a_1^- \pi^+)} , \quad \mathcal{R}_{-A} \equiv \frac{\mathcal{X}^2 f_- T(K_{1A} \pi^-)}{f_K^2 T(a_1^- \pi^-)} .
\] (20)

The SU(3) decompositions of the amplitudes in the numerators are similar to 11 and 12,
\[
A(B^+ \to K_{1A} \pi^+) = \frac{-\mathcal{X}}{f_{a_1} f_{K_1}} f_K ,
\] (21)
\[
A(B^0 \to K_{1A} \pi^-) = \frac{f_{K_1}}{f_{a_1}} (-\mathcal{X}) f_K + e^{i\chi_{K_{1A}}} .
\] (22)

This implies bounds on $|p_+|/|t_+|$ similar to 12 and 16 with \mathcal{R}_{+0} replaced by \mathcal{R}_{+A}. Instead of 16 and 19 one now has
\[
|\sin(\alpha - \alpha_{eff}^-)| \leq \sqrt{\mathcal{R}_{+A}} \sin \gamma ,
\] (23)
\[
|\sin(\alpha - \alpha_{eff}^+)| \leq \sqrt{\mathcal{R}_{+A}} .
\] (24)

We now discuss upper bounds on \mathcal{R}_{+A} and \mathcal{R}_{-A} in terms of physical processes involving the mass eigenstates $K_1(1270)$ and $K_1(1400)$. The state K_{1A} is an almost equal admixture of these states,
\[
K_{1A} = \cos \theta K_1(1400) + \sin \theta K_1(1270) ,
\] (25)
with $33^\circ < \theta < 57^\circ 22$, while the orthogonal state, the strange SU(3) 1P_1 partner of $b_1(1236)$, is
\[
K_{1B} = -\sin \theta K_1(1400) - \cos \theta K_1(1270) ,
\] (26)
This implies
\[
A(B^+ \to K_{1A} \pi^+) = \cos \theta A(K_1^0(1400) \pi^+) + \sin \theta A(K_1^0(1270) \pi^+) ,
\] (27)
where the two pure penguin amplitudes, identified by their final states, involve an arbitrary relative strong phase. Thus, one has an upper bound on $\mathcal{R}(K_{1A} \pi^+)$,
\[
\mathcal{R}(K_{1A} \pi^+) \leq \sqrt{\frac{\mathcal{R}(K_1^0(1400) \pi^+)}{\sin \theta \sqrt{\mathcal{R}(K_1^0(1270) \pi^+)}}} ,
\] (28)
which determines an upper bound on \mathcal{R}_{+A} defined in 20.

A similar expression holds for an upper bound on \mathcal{R}_{-A}, in terms of the mixing angle θ and CP-averaged decay rates for $B^0 \to K_{1A}^+(1400) \pi^-$ and $B^0 \to K_{1A}^+(1270) \pi^-$. This bound can be shown to hold in spite of the fact that these processes involve both penguin and tree amplitudes.

Finally, one combines the two separate upper bounds on $|\alpha - \alpha_{eff}^-|$ and $|\alpha - \alpha_{eff}^+|$ to obtain a bound on $|\alpha - \alpha_{eff}|$,
\[
|\alpha - \alpha_{eff}| \leq \frac{1}{2}(|\alpha - \alpha_{eff}^-| + |\alpha - \alpha_{eff}^+|) .
\] (29)

IV. CONCLUSION

We have studied the extraction of α from time-dependent decays $B(t) \to a_1^\pm(1260)\pi^+$ in the quasi two-body approximation. The four observables, $S \pm \Delta S$ and $C \pm \Delta C$, determine the angle α_{eff} in Eq. 8 up to a fourfold discrete ambiguity. A twofold ambiguity in α_{eff} may be resolved either by other constraints on α, or by assuming that the two added angles on the right-hand side of Eq. 8 differ by much less than 180°. This follows from $|\arg(|t_-|/|t_+|)| < 90^\circ$, valid to leading order in $1/m_b$ 21, and an assumption of small $|p_+|/|t_+|$, testable through relations such as Eqs. 14 and 15.

We have used flavor SU(3) to obtain upper bounds 17, 19, 23 and 24 on $|\alpha - \alpha_{eff}^\pm|$. This requires measuring CP-averaged rates for either $B^+ \to a_1^+ K^0$ or $B^0 \to a_1^- K^+$ and CP-averaged rates for either $B^+ \to K_{1A}^0(1270) \pi^+$ and $B^+ \to K_{1A}^0(1400) \pi^+$ or $B^0 \to K_{1A}^+(1270) \pi^-$ and $B^0 \to K_{1A}^+(1400) \pi^-$. The resulting
upper bound, Eq. (29), assumes an unknown relative sign between \(\alpha - \alpha_{\text{eff}} \) and \(\alpha - \alpha_{\text{eff}}' \). In \(B^0 \to \rho^\pm \pi^\mp \) these two shifts are expected to have opposite signs because \(|p_{\pm}|/t_{\pm} \) are small and \(\arg(p_{\pm}/t_{\pm}) \) lie in opposite hemispheres [22], as shown in a global SU(3) fit to \(B \to VP \) decays [22] and in QCD factorization including \(1/m_b \)-suppressed terms [22]. This reduces the bound on \(|\alpha - \alpha_{\text{eff}}| \) in \(B^0 \to \rho^\pm \pi^\mp \) by a factor of two [22]. It is unclear whether a similar argument holds in \(B^0 \to \pi^0 \pi^- \). Instead of using SU(3) to obtain upper bounds on \(|\alpha - \alpha_{\text{eff}}| \) one may perform a fit to all the observables in \(B^0(t) \to \rho^\pm \pi^\mp \) and in SU(3) related modes. This study is expected to reduce errors and to resolve ambiguities in \(\alpha \), as has been shown in the case of \(B^0 \to \rho^\pm \pi^\mp \) by performing a \(\chi^2 \) fit [11]. Since the states \(K_{1A} \) and \(K_{1B} \) in [26] and [28] mix, a complete set of processes includes also the decay \(B^0 \to b_1^+(1235)\pi^- \) described by amplitudes \(t_{b_1^+} \) and \(p_{b_1^+} \) in analogy with [3]. Information from \(B^0 \to b_1^+(1235)\pi^- \) is not needed since the corresponding \(\Delta S = 1 \) decays \(B \to b_1 K \) are unrelated to \(B \to a_1 K \).

Amplitude decompositions are given in Eqs. (9), (11), (12), (21), and (22) and by corresponding expressions for \(A(B^0 \to b_1^+ \pi^-), A(B \to K_{1B} \pi) \), with the replacements \(t_{+} \to t_{b_1^+}, p_{+} \to p_{b_1^+}, K_{1A} \to K_{1B} \). The total number of observables is seventeen, including \(S, C, C' \) and the two CP-averaged rates in \(B^0(t) \to a_1^+ \pi^- \), the CP-averaged rates and asymmetries in \(B^0 \to b_1^+ \pi^-, a_1^- K^+, K_1^-(1400)\pi^-, K_1^+(1270)\pi^- \), and the rates for \(B^+ \to a_1^+ K^0, K_1^+(1400)\pi^+, K_1^0(1270)\pi^+ \). The seventeen observables are described in terms of twelve parameters, the magnitudes and relative phases of \(t_{b_1^+}, p_{b_1^+}, t_{+}, p_{+} \) and the weak phase \(\alpha \). A simplification, \(t_{b_1^+}^+ \approx 0 \), occurs by assuming factorization of tree amplitudes, which holds at leading order in \(1/m_b \) [21, 25], and by using the \(G \)-parity of \(b_1 \) [20]. This implies a vanishing asymmetry in \(B^0 \to b_1^+ \pi^- \) and a small rate for this process unless \(p_{b_1^+}^+ \) is enhanced by nonperturbative effects.

We thank Fernando Palombo and Jim Smith for helpful discussions and for motivating this study. This work was supported in part by the United States Department of Energy under Grants No. DOE-ER-40682-143 and DEAC02-6CH03000, by the Israel Science Foundation under Grant No. 1052/04, and by the German-Israeli Foundation under Grant No. I-781-55.14/2003.

[1] J. Charles et al. [CKMfitter Group], Eur. Phys. J. C 41, 1 (2005), updated in www.slac.stanford.edu/xorg/ckmfitter.
[2] M. Gronau, arXiv:hep-ph/0510153, talk given at the Tenth International Conference on B Physics at Hadron Machines, Assisi, Perugia, Italy, June 20–24, 2005.
[3] R. Aleksan, I. Dunietz, B. Kayser and F. Le Diberder, Nucl. Phys. B 361, 141 (1991).
[4] The BABAR Physics Book, Editors P. F. Harrison and H. R. Quinn, SLAC-R-0504 (1998).
[5] B. Aubert et al. [BaBar Collaboration], arXiv:hep-ex/0109061 [hep-ex/0507029].
[6] K. Abe et al. [Belle Collaboration], arXiv:hep-ex/0507009.
[7] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 103 (1987).
[8] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990); H. J. Lipkin, Y. Nir, H. R. Quinn and A. Snyder, Phys. Rev. D 44, 1454 (1991); M. Gronau, Phys. Lett. B 265, 389 (1991).
[9] S. Gardner, Phys. Rev. D 59, 077502 (1999); ibid. 72, 034015 (2005); M. Gronau and J. Zupan, Phys. Rev. D 71, 074017 (2005).
[10] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994); ibid. 52, 6356 (1995); ibid. 52, 6374 (1995).
[11] A. S. Dighe, M. Gronau and J. L. Rosner, Phys. Rev. D 57, 1783 (1998); M. Gronau and J. L. Rosner, Phys. Rev. D 61, 073008 (2000).
[12] A. E. Snyder and H. R. Quinn, Phys. Rev. D 48, 2139 (1993); H. R. Quinn and J. P. Silva, Phys. Rev. D 62, 054002 (2000).
[13] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0408099.
[14] M. Gronau and J. Zupan, Phys. Rev. D 70, 074031 (2004).
[15] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 91, 201802 (2003); C. C. Wang et al. [Belle Collaboration], Phys. Rev. Lett. 94, 121801 (2005).
[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 95, 041805 (2005); K. Abe et al. [Belle Collaboration], arXiv:hep-ex/0507039.
[17] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004).
[18] M. Gronau, Phys. Lett. B 233, 479 (1989).
[19] J. Charles, Phys. Rev. D 59, 054007 (1999).
[20] C. W. Bauer and D. Pirjol, Phys. Lett. B 604, 183 (2004); C. W. Bauer, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 70, 054015 (2004).
[21] A similar bound was shown first to hold in \(B^0 \to K^+ \pi^- \). See R. Fleischer and T. Mannel, Phys. Rev. D 57, 2752 (1998).
[22] M. Suzuki, Phys. Rev. D 47, 1252 (1993); L. Burakovsky and T. Goldman, Phys. Rev. D 56, 1368 (1997). See also H. Y. Cheng, Phys. Rev. D 67, 094007 (2003).
[23] M. Gronau, E. Lunghi and D. Wyler, Phys. Lett. B 606, 95 (2005).
[24] C. W. Chiang, M. Gronau, Z. Luo, J. L. Rosner and D. A. Suprun, Phys. Rev. D 69, 034001 (2004).
[25] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[26] S. Laplace and V. Shelkov, Eur. Phys. J. C 22, 431 (2001); M. Suzuki, Phys. Rev. D 65, 097501 (2002).