Growth and yields of two varieties of maize (Zea mays L.) intercropped with peanut (Arachys hypogaea L.) applied by bokashi plus fertilizer between the rows of teak trees based agroforestry system

I. Karimuna¹, Halim², A Ansi³, W E Marfi³, T Wijayanto², I. Hasanuddin⁴

¹Agrotechnology Department, Faculty of Agriculture, University of Halu Oleo Kendari, Southeast Sulawesi, Indonesia, and the Vice Rector for Academic Affair, Lakidende University, Unaaha
²Agrotechnology Department, Faculty of Agriculture, University of Halu Oleo Kendari, Southeast Sulawesi, Indonesia
³Forestry Department of Wuna Agriculture High Education (STIP-Wuna), Muna Regency, Southeast Sulawesi, Indonesia
⁴Government Official for Food Crops, Horticulture and Plantation, Muna Regency, South East Sulawesi, Indonesia

*Email: ikarimuna@hotmail.com

Abstract. Nutrient shortages are the main problems faced by farmers, so as to improve soil fertility using organic fertilizer is compulsory. The main objective was to analyze the effects of bokashi plus fertilizer on the growth and yields of two varieties of maize intercropped with peanut under three years old teak trees in agroforestry system. The research was arranged in randomized completely block design in factorial pattern with two factors, maize variety: local maize and hybrid corn bisi-2; and bokashi plus fertilizer doses: 0, 3, 6 and 9 t ha⁻¹. Maize growth recorded were plant height, leaf number, stem diameter and leaf area at 2, 4, 6 and 8 WAP and maize yields recorded were cob weight with cornhusk, cob weight without cornhusk, cob length, diameter, row number, 100 seeds dry weight, biomass dry weight, yield and LER. The results showed that interaction between maize variety and bokashi plus fertilizer had significant effect on the growth and yield of maize intercropped with peanut under three years of teak trees in agroforestry system. The best effects of maize growth and yield were obtained at 9 t ha⁻¹ with highest yield of local maize and hybrid maize of 4.69 and 5.79 t ha⁻¹.

1. Introduction
Maize (Zea mays L) is the second strategic commodity after rice because corn is one of the cereal commodities that contains high nutritional values and has high economic value. [1] reported that the nutrient contents of 100 g maize grain composed of amylum (73.4%), fiber (9.5%), protein (9.1%), lipid (4.4%) and ash (1.4%). This result was consistent with the application of appropriate quantity of organic fertilizer that may increase agriculture crop yields which also result in an enhanced quality of grain [2] and [3]. The role of corn, apart from being food and feed, is now widely used as a raw
material for energy (fuel) and other industrial raw materials whose needs continue to increase every year [4].

Problems in corn cultivation consist of biotic and abiotic factors, traditional cultivation techniques, using varieties that have low yield potential, low plant populations, and use of fertilizers that are not optimal [5]. Several important factors that need to be considered to increase corn production include the use of new high-yielding varieties, optimum fertilization, and arrangement of the planting population. These factors are interconnected so that in increasing corn production an understanding is needed to manage them in a synergistic manner so that high yields are obtained [6].

Maize may cultivate both in intercropping pattern with legume crops or monocropping. One of the best legume crops that can be intercropped with maize is peanut. This legume crop is generally cultivated in tropical countries which may produce adequate yield for food [7]. Studies on the success of cropping system research have been obtained as reported by [8], in particular on the combination of planting annual and perennial crops known as agroforestry [9]; [10]; [11], which had been usually practiced for a long time in order to obtain not only for agriculture production, but also for sustaining biological diversity in improved agroforestry system.

Napabulano district where agroforestry system is being practiced, was selected as the place to carry out this research since abundant natural resources dominated by Chromolaena odorata L that contains high quantity of nutrients [12], known as local name “komba-komba” with the addition of chicken dung and rice bran mixed with EM4 and water to make bokashi plus fertilizer. The results of previous research on the effects of organic fertilizer to improve soil nutrient had been reported by [13]. In addition according to [14], revealed that the use of bokashi plus fertilizer into the soil might increase soil nutrient contents and if integrated with appropriate arrangement of two or more crops were greatly recommended to elucidate the problems of soil nutrient shortages and to guarantee the better quality of grain.

The use of high-yielding maize variety and superior local maize intercropped with peanut under early growth development of teak trees treated by bokashi plus fertilizer is interesting to be studied. However, how the growth and yields of two varieties of maize intercropped with peanut perform under teak trees based agroforestry system has been unknown. The main purpose of writing this paper was aimed at analyzing the effects of bokashi plus fertilizer on the growth and yields of two varieties of maize intercropped with peanut cultivated between the rows of three years old teak trees in sustainable agroforestry system in Pentiro Village, Napabulano District, Muna Regency, Southeast Sulawesi Province.

2. Materials and methods

2.1. Place and time
The research was conducted in the farmer’s land of Pentiro village, Napabulano District. Three years old teak trees stand with proper space arrangement of 6 m x 6 m was used for demonstration plot. This research was carried out from December 2020 to May 2021.

2.2. Materials and equipment
There were some materials used in this research such as hybrid maize bisi-2, local peanut, bokashi plus fertilizer (mixture of Chromolaena odorata L., chicken dung, rice bran, EM4, water and palm sugar), label, poles and newsprint. Equipment used were hoe for soil collection, analytical balance, filter, metric scales, ropes, watering tools, scissors, plastic pouches, camera, stationery writing, leaf area meter, waring net, electric oven, and tools for soil analysis. Other equipment used in the field were chopper machine, hand tractor, knife, sprayer, measurement and soil thermometer.
2.3. Methods

Research design was arranged in factorial pattern with randomized completely block design (RCBD), consisting of two factors. First factor was maize variety (M), consisting of two levels, such as local maize (M1) and hybrid corn bisi-2 (M2). Second factor was various doses of bokashi plus fertilizer (F), consisting of four levels, such as 0 t ha$^{-1}$ or without bokashi plus fertilizer (F0), 3 t ha$^{-1}$ of bokashi fertilizer plus (F1), 6 t ha$^{-1}$ of bokashi fertilizer plus (F2) and 9 t ha$^{-1}$ of bokashi fertilizer plus (F3). Therefore, there were eight combinations, i.e. M1F0, M1F1, M1F2, M1F3, M2F0, M2F1, M2F2 and M2F3. Every combination was conducted four repetitions so that there were 32 experimental units for intercropping and added with eight plots for monocropping. Maize growth components recorded were plant height, stem diameter, number of leaves and leaf areas collected at the ages of 2, 4, 6 and 8 weeks after planting (WAP). Yield component on flowering time were determined when 50% of maize in one plot was flowering. Other yields components such as cob dry weight with husk, cob dry weight without husk, cob length, cob diameter, row number, 100 seeds dry weight, biomass dry weight, yield per ha and LER were recorded. All variables collected were tabulated using excel program and then analyzed using analyses of variances (ANOVA), and if significant different, then followed by Honestly Significant Difference (HSD) α=0.05 or 95 percent confidence level.

3. Results and discussion

3.1. Results

3.1.1. Maize growth components. The growth dynamic of maize in the combination treatment of maize variety and various doses of bokashi plus appplication had significant effects and consistent results on the averages of plant height and number of leaves recorded at 2, 4, 6 and 8 WAP in Pentiro village (Table 1). The highest plant height and leaf number of maize growth were achieved at the combination of M2F3 and the lowest one was found at the combination of M1F0. This indicated that hybrid maize bisi-2 applied by the doses of bokashi plus fertilizer 9 t ha$^{-1}$ gave a better response compared with other combinations. The results also showed that the increase quantity of bokashi plus doses applied to the soil, the higher the plant height and number of maize leaves cultivated in intercropping system with peanut as shown in Table 1.

Combination	Plant height (cm)	Leaf Number (strands)						
	2 WAP	4 WAP	6 WAP	8 WAP	2 WAP	4 WAP	6 WAP	8 WAP
M1F0	31.64d	51.55d	128.82d	158.75c	6.26d	9.35b	12.34a	14.21c
M1F1	38.52bcd	59.63cd	132.93d	160.48c	7.04cd	9.94b	13.62ab	15.64bc
M1F2	42.78abc	63.81bc	146.54cd	174.50bc	7.68bcd	10.65ab	13.89ab	16.48ab
M1F3	44.69abc	69.05abc	159.87bc	186.66ab	8.05abcd	11.27ab	14.75ab	16.90ab
M2F0	36.49cd	66.22bc	143.56cd	173.45bc	7.81abcd	9.18ab	14.16ab	15.76ab
M2F1	42.72abc	71.45abc	165.82ab	187.87ab	8.53abc	10.56ab	15.31ab	16.15ab
M2F2	45.86ab	75.56ab	173.24ab	192.64ab	9.30ab	11.74ab	15.88ab	17.25ab
M2F3	50.18a	80.84a	179.02a	201.08a	9.76a	12.86a	16.45a	17.98a

Table 1. Data on the averages of plant height (cm) and number of leaves (strands) of maize intercropped with peanut applied by bokashi plus fertilizer at 2, 4, 6, and 8 WAP.

Notes: Figures shown in eight columns followed by difference letters were significant difference using Honestly Significant Difference (HSD) α=0.05.

In terms of stem diameter and leaf area of maize growth, the results of study showed that the combination treatment of maize variety and various doses of bokashi plus fertilizer had significant effects and consistent results of maize stem diameter and the area of leaves observed at 2, 4, 6 and 8
WAP in Pentiro village (Table 2). The highest stem diameter and leaf area of maize growth were achieved at the combination of M2F3 and the lowest one was found at the combination of M1F0, indicating that hybrid maize bisi-2 applied by the doses of bokashi plus fertilizer 9 t h⁻¹ gave a better response compared with other combinations. The research results also showed that the increase doses of bokashi plus fertilizer applied to the soil, the higher growth of maize on stem diameter and the area of leaves cultivated in intercropping system with peanut between the rows of three years old teak trees based agroforestry system as shown in Table 2.

Table 2. Data on the averages of stem diameter (cm) and area of leaves (cm²) of maize cultivated in intercropping system with peanut treated by bokashi plus fertilizer at 2, 4, 6 and 8 WAP.

Combination	Stem Diameter (cm)	Leaf Area (cm²)						
	2 WAP	4 WAP	6 WAP	8 WAP	2 WAP	4 WAP	6 WAP	8 WAP
M1F0	0.38	1.05c	1.42c	1.82c	23.57c	208.17d	452.90c	590.45e
M1F1	0.42	1.16bc	1.49bc	1.94bc	28.48c	235.64c	526.06b	646.25de
M1F2	0.45	1.22bc	1.65abc	2.26abc	37.12ab	286.91b	578.72ab	685.32cd
M1F3	0.47	1.31bc	1.72abc	2.38ab	41.63a	314.65a	606.15a	719.70bcd
M2F0	0.40	1.23bc	1.54abc	2.32abc	25.48c	217.42cd	478.54bc	737.55bc
M2F1	0.52	1.38ab	1.66abc	2.47ab	29.62bc	239.66c	527.85b	765.91abc
M2F2	0.61	1.45ab	1.79ab	2.52a	37.98a	306.91a	595.51a	796.33ab
M2F3	0.66	1.67a	1.87a	2.75a	42.85a	327.54a	622.94a	838.05a

HSD α=0.05 ns 0.32 0.34 0.55 7.86 26.04 67.51 82.04

Notes: Numbers shown in eight columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05

3.1.2. Maize yields components. Data collection of averages yields components observed on two maize varieties cultivated in intercropping system with peanut applied by bokashi plus fertilizer between the rows of three years old teak trees were determined using Honestly Significant Difference (HSD) α=0.05 figured out in Table 3, 4, 5, 6, 7 and Table 8.

Table 3. Effects of bokashi plus fertilizer on flowering time, cob weight with husk, cob weight without husk, length of cob and cob diameter of maize intercropped with peanut under three years old teak trees.

Combination	Flowering time (day)	Cob weight with husk (g)	Cob weight without husk (g)	Length of cob (cm)	Diameter of cob (cm)
M1F0	46.26c	187.50f	194.01d	14.65b	3.91c
M1F1	46.74c	195.11ef	206.85cd	15.24b	4.33bc
M1F2	47.05c	207.92cde	218.42abc	15.85b	4.72abc
M1F3	47.65bc	214.04bc	221.93abc	16.17b	5.14abc
M2F0	58.46ab	198.20def	219.25bcd	18.37ab	4.94abc
M2F1	59.43a	216.18abc	227.56abc	19.25ab	5.88ab
M2F2	59.65a	228.95ab	239.42ab	19.64ab	6.02ab
M2F3	60.02a	231.85a	246.06a	22.03a	6.15a

HSD α=0.05 10.82 16.97 24.63 5.81 1.75

Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05.

Table 3 showed that the combination of variety of maize and bokashi plus fertilizer gave better response and significant effects on the flowering time, cob weight with husk, cob weight without husk,
cob length and cob diameter of maize intercropped with peanut between the rows of three years old teak trees based agroforestry system in Pentiro village, Napabalano district. The longest flowering time, highest cob weight with husk, the highest cob weight without husk, the highest cob length and the highest cob diameter were consistently achieved at the combination of M2F3 and the lowest one was found at the combination of M1F0, indicating that hybrid maize bisi-2 applied by various doses of bokashi plus 9 t h⁻¹ gave a better response compared with other combinations. The research results revealed that the increasing doses of bokashi plus fertilizer applied into the soil, the better flowering time obtained. Moreover, the higher cob weight with husk, the higher cob weight without husk, the better length of cob and the bigger cob diameter of maize planted in intercropping with peanut under teak trees based agroforestry system as figured out in Table 3.

Based on Table 4, it showed that the combination of variety of maize and bokashi plus fertilizer gave better response and significant effects on the averages of row number (lines), dry weight of 100 seeds (g), biomass dry weight (t ha⁻¹), yield (t ha⁻¹) and LER of maize intercropped with peanut under teak trees based agroforestry system in Pentiro village. The highest averages number of row (lines), the highest 100 seeds dry weight (g), the highest dry weight of biomass (t ha⁻¹), the highest yield (t ha⁻¹) and the highest land equivalent ratio (LER) were consistently achieved at the combination of M2F3 and the lowest one was found at the combination of M1F0, indicating that hybrid maize bisi-2 applied by bokashi plus fertilizer amounted to 9 t h⁻¹ gave a better response compared with other combinations. The research results confirmed showed that the increasing doses of bokashi plus fertilizer applied to the soil, the better averages row number (lines), dry weight of 100 seeds (g), biomass dry weight (t ha⁻¹), yield of maize crop (t ha⁻¹) and LER of maize planted in intercropping with peanut under teak trees based agroforestry system as figured out in Table 4, indicating high adaptability of maize variety to the local condition.

Table 4. The effects of bokashi plus fertilizer on row number, dry weight of 100 seeds, biomass dry weight, maize yield and LER of maize intercropped with local peanut under three years old teak trees.

Combination	Row number (lines)	Dry weight of 100 seeds (g)	Biomass dry weight (t ha⁻¹)	Maize yield (t ha⁻¹)	LER
M1F0	11.62c	21.86c	21.43c	4.31b	1.20c
M1F1	11.78c	22.45bc	24.24bc	4.45b	1.25abc
M1F2	12.49bc	24.38abc	25.48ab	4.68b	1.26abc
M1F3	13.13ab	24.56abc	25.74ab	5.32ab	1.33ab
M2F0	12.48bc	23.95abc	26.27ab	4.86b	1.24bc
M2F1	13.54ab	25.84abc	26.35ab	5.37ab	1.27abc
M2F2	13.79a	26.85ab	27.64ab	6.40a	1.34ab
M2F3	13.85a	28.37a	28.76a	6.52a	1.36a

HSD α=0.05

| Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05. |

Based on Table 5, it showed that maize variety of hybrid bisi-2 gave significant different compared with local maize on flowering time (day), cob weight with husk (g), cob weight without husk (g), length of cob (cm) and diameter of cob (cm) of maize cultivated in intercropping system with peanut applied by bokashi plus fertilizer under three years old teak trees in Pentiro village. The longest averages flowering time (day), the highest cob weight with husk (g), the highest cob weight without husk (g), the length of cob (cm) and the biggest diameter of cob (cm) recorded were significantly different achieved at the hybrid maize bisi-2.
Table 5. The yields performances of two maize varieties planted in intercropping system with peanut treated by bokashi plus between the rows of three years old teak trees.

Maize variety	Flowering time (day)	Cob with husk (g)	Cob weight without husk (g)	Length of cob (cm)	Diameter of cob (cm)
M1	46.93b	201.14b	210.30b	15.48b	4.53b
M2	59.39a	218.80a	233.07a	19.82a	5.75a

HSD α=0.05 2.46 7.95 12.40 3.86 1.05

Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05.

Based on Table 6, it showed that the variety of hybrid maize bisi-2 gave significant different compared with local maize on the averages row number (lines), dry weight of 100 seeds (g), biomass dry weight (t ha⁻¹), maize yield (t ha⁻¹) and LER of maize planted in intercropping system with peanut applied by bokashi plus organic fertilizer between the rows of three years old teak trees in Pentiro village. It showed that hybrid maize bisi-2 was higher than that of local maize on the averages row number (lines), dry weight of 100 seeds (g), biomass dry weight (t ha⁻¹), maize yield (t ha⁻¹) and LER.

Table 6. The yields performances of two maize varieties planted in intercropping system with peanut applied by bokashi plus organic fertilizer between the rows of three years old teak trees.

Maize variety	Row number (lines)	Dry weight of 100 seeds (g)	Biomass dry weight (t ha⁻¹)	Maize yield (t ha⁻¹)	LER
M1	12.26	23.31b	24.22b	4.69b	1.26
M2	13.42	26.25a	27.26a	5.79a	1.30

HSD α=0.05 ns 2.48 2.69 1.08 0.13

Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05.

Table 7. Effects of bokashi plus fertilizer on flowering time, cob weight with husk, weight of cob without husk, length of cob and diameter of maize cob intercropped with peanut under three years old teak trees.

Doses of bokashi plus	Flowering time (day)	Cob weight with husk (g)	Weight of cob without husk (g)	Length of cob (cm)	Diameter of cob (cm)
0 t ha⁻¹	52.36	192.85b	206.63c	16.51b	4.43c
3 t ha⁻¹	53.09	205.65ab	217.21bc	17.25ab	5.11bc
6 t ha⁻¹	53.35	218.44ab	228.92ab	17.75a	5.37ab
9 t ha⁻¹	53.84	222.95a	234.00a	19.10a	5.65a

HSD 0.05 ns 8.85 14.82 2.41 0.27

Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) α=0.05.

Based on Table 7, it showed that the use of bokashi plus organic fertilizer had better response and significant different on the averages of flowering time (day), cob weight with husk (g), cob weight without husk (g), length of cob (cm) and diameter of cob (cm) of two maize varieties intercropped with peanut under three years old teak trees in Pentiro village. The treatment of 9 t ha⁻¹ was consistently the best response and significant different compared with other treatments on flowering time (day), cob with husk (g), cob without husk (g), length of cob (cm) and diameter of cob (cm) of
two maize varieties intercropped with peanut under three years old teak trees in Pentiro village, while the lowest one was found at the treatment of without bokashi plus fertilizer (Table 7).

Based on Table 8, it showed that the treatment of bokashi plus organic fertilizer had better response and significant different on the averages of row number (lines), dry weight of 100 seeds (g), biomass dry weight (t ha\(^{-1}\)), maize yield (t ha\(^{-1}\)) and LER of two maize varieties cultivated in intercropping system with peanut under three years old teak trees in Pentiro village. The treatment of 9 t ha\(^{-1}\) was consistently the best response and significant different compared with other treatments on number of row (lines), 100 seeds dry weight (g), dry weight of biomass (t ha\(^{-1}\)), yield of maize (t ha\(^{-1}\)) and land equivalent ratio (LER) of two maize varieties intercropped with peanut under three years old teak trees in Pentiro village, while the lowest one was consistently recorded at the treatment without bokashi plus fertilizer (Table 8), indicating a high adaptability of maize variety on the treatment of organic fertilizer.

Table 8. The effects of bokashi plus fertilizer on row number, dry weight of 100 seeds, dry weight of biomass, maize yield and LER of maize intercropped with peanut under three years old teak trees.

Doses of bokashi plus (t ha\(^{-1}\))	Row number (lines)	Dry weight of 100 seeds (g)	Dry weight of biomass (t ha\(^{-1}\))	Maize yield (t ha\(^{-1}\))	LER
0 t ha\(^{-1}\)	12.05b	22.91b	23.85c	4.59b	1.22c
3 t ha\(^{-1}\)	12.66ab	24.15ab	25.30bc	4.91ab	1.26bc
6 t ha\(^{-1}\)	13.14ab	25.62ab	26.56ab	5.54ab	1.30ab
9 t ha\(^{-1}\)	13.49a	26.47a	27.25a	5.92a	1.35a
HSD 0.05	1.14	3.35	2.18	1.06	0.07

Notes: Numbers shown in five columns followed by difference symbols were significant difference using Honestly Significant Difference (HSD) \(\alpha=0.05\).

3.2. Discussion

The growth and yield of maize intercropped with peanut were significantly influenced by the interaction of maize variety and availability of nutrient contents derived from bokashi plus fertilizer in intercropping system under three years old teak trees (Table 1, 2, 3, 4, 5, 6, 7 and Table 8). These revealed that bokashi plus organic fertilizer applied amounted to 3, 6 and 9 t ha\(^{-1}\) could increase the variables of maize growth and yields cultivated in intercropping system with peanut under three years old teak trees. This phenomenon indicated that maize and peanut in intercropping system might grow and produce sufficient yield under three years old teak trees stands, eventhough these results of growth and yield components were a bit lower compared with the previous findings [15]; [16]. In this research, best response on the variables of maize growth and yields planted in intercropping system with peanut between the rows of three years old teak trees was resulted in sufficient space, light and quantity of macro nutrients (N, P, K, Ca and Mg) and micronutrients that might support metabolic process of plants. [17] reported that sufficient space, light, nutrient and water availability might lead to proper performances of plants growth and yields cultivated in intercropping pattern. This finding was in line with previous reports [18] and [19], revealed that the application of higher doses of bokashi plus organic fertilizer might compose a plenty of macro and micronutrients that provide nutrient balance and support optimal photosynthesis, and photosyntetic results could be allocated and distributed to all parts of maize tissues.

As shown in Table 1, 2, 7 and Table 8, these confirmed that the application of adequate bokashi plus organic fertilizer might improve the capacity of soil fertility that could be identified on the better variables of maize growth and yields development compared with the lower one. This was assumed due to the use of sufficient quantity of bokashi fertilizer was capable of providing nutrients that meet plant growth requirement and might establish suitable soil physical and chemical conditions for best growth and yield of maize. According to [20], that the absorbed nutrients will be accumulated in the
leaves into protein that can form seeds, with the fulfillment of plant nutrient needs causing metabolism to run optimally so that the formation of protein, carbohydrates and starch is not hampered, as a result the accumulation of metabolic products in the formation of seeds will increase causing the seeds to be formed have the maximum size and weight. This phenomenon was relevant to the previous finding as reported by [21], revealed that physiological activity would take place well depending on the accessibility of nutrients in the media and plant tissues that would determine the distribution of photosynthetic results on root, stem and leave organs [19].

Observation of vegetative growth under three years old teak trees (Table 1 and Table 2), especially plant height is one of the key parameters to determine the level of adaptation of a variety in each different agroecosystem [6]. According to [22], that tall plants are able to receive the full intensity of sunlight, so that the photosynthesis process can take place optimally thereby increasing the supply of dry matter to leaves, stems and seeds that trigger plant growth and biomass, leaf number, stem diameter and leaf area. The number of leaves is influenced by genotype and the environment, a large number of leaves is thought to make a major contribution to the photosynthetic activity of plants because leaves are plant organs that function as a place for photosynthesis to occur [23]. The genotype had a significant effect on flowering time, length of the ear and number of rows. Plant age is related to plant genetic factors, which is why each strain or variety tested has a different plant age. This is in accordance with what was stated by [24], that plants will show ripe harvest if the total energy adopted has reached a certain level limit (growing degree day) and a certain level limit is different for each plant caused by genetic factors. The results of observations of flowering age (Table 3 and Table 4) show that local maize has a faster flowering time than bisi-2 hybrid maize. Varieties that have a 50% shorter flowering age, the maturity age of the line/variety is also shorter. The ability of a variety depends on genetic traits, environment, sunlight intensity and temperature. A plant planted in a certain area has a faster harvest time, if planted in another area it does not always have the same age, because the growing environment is also different [25]; [26] and [27] The yield of hybrid corn will be optimal if it is supported by fertilization carried out with the right dose, time and method [28]. Furthermore, according to [20], one of the characteristics of hybrid corn varieties is that it is responsive to fertilization so that it is suitable to be planted in fertile land such as rice fields with the target of high productivity. In addition, fertilization based on soil nutrient status and using high yielding varieties can support plant growth and improve harvest quantity and quality [14] and [29]. In the formation of bokashi fertilizer, the addition of EM4 that contains Lactobacillus, Actinomycetes, fermentation fungy, photosynthetic bacteria, yeast and phosphate solvent bacteria to accelerate biomass decomposition, could easily provide nutrients added to the soil more obtainable and the nutrients would simply be absorbed by maize plants [30] and [31].

The research findings as recorded on the maize growth components revealed that the higher the increase of bokashi organic fertilizer applied into the soil media of maize habitat, the better the average maize plant height, number of leaves, stem diameter and leaf areas of two varieties of maize cultivated in intercropping system with peanut obtained at 2, 4, 6 and 8 WAP between the rows of three years old teak trees. In terms of maize yield components, a better yield of maize obtained at the treatment of 9 t ha⁻¹, implying the higher adaptation of maize grow in intercropping system with peanut between the rows of three years old teak plantation. This research also showed a promising result of maize crop to produce enough yields even though the availability of sunlight was greatly decreased due to closed canopy of teak trees but the growth and yields of maize was not influenced as long as the soil media could provide enough quantity of nutrients, water and other elements to support the development of maize [14]; [15], [16] and [32].

4. Conclusion
The conclusions were as follows (1) the interaction between the variety of maize and the various doses of bokashi plus fertilizer gave significant effect on the maize growth and yields cultivated in intercropping system with peanut between the rows of three years old teak plantation, (2) the increase doses of bokashi plus organic fertilizer applied into the soil, the better the maize growth and yield
components of maize cultivated in intercropping system with peanut produced and both factors tested were solely highly significant, (3) the use of proper variety of maize and bokashi plus organic fertilizer had the best response on maize growth and yields cultivated in intercropping system with peanut between the rows of three years old agroforestry teak trees based system, (4) the best treatment of bokashi organic fertilizer was 9 t ha⁻¹ with the yields of hybrid maize bisi-2, local maize and peanut under agroforestry teak trees based system amounted to 5.79, 4.59, 2.16 t ha⁻¹ and the best LER = 1.35, and (5) it was recommended that the combination of hybrid maize bisi-2 and the bokashi plus dose of 9 t ha⁻¹ was the best growth and yield response of maize cultivated in intercropping system with peanut between the rows of three years old teak plantation.

References
[1] Watson, S.A, 2003. Corn: chemistry and technology. American Association of Cereal Chemistry, Inc. St. Paul Minnesota. USA. 2(1) 69-106.
[2] Ayoola, O.T, 2010. Yield performance of crops and soil chemical changes under fertilizer treatments in a mixed cropping system. African Journal of Biotechnology. 9(26): 4018-4021.
[3] Zarei, I., Yousef S., Gholam R H, Ali J and Khosro M, 2012 Effects of biofertilizers on grain yield and protein content of two soybean (Glycine max L.) cultivars, African Journal of Biotechnology. 11(27), 7028-7037, Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.3194 ISSN 1684–5315.
[4] Hermanto, D.W, Sadikin E, and Hikmat, 2009. Description of superior legume crops 1918 - 2009. Center for Food Crops Research and Development, Agricultural Research and Development Center.
[5] Sirrapa, M.P., and Nurdin, M. 2010. Response of maize hybrid varieties and composite on single application of N, P, K and fertilizers 58. J. Agrotek Lestari, 15(2): 49-55.
[6] Pesireron and Senewe. 2011. Performance of 10 varieties/strains of composite and hybrid corn in dryland agroecosystems in Maluku. J. Agriculture Cultivation, 7(2): 53-59.
[7] Karimuna, L., 2001. Multiple Cropping, Theory and Its Application, Publish by UNHALU Press, 236p.
[8] Karimuna, L., Halim, Resman, M. Rufendi, W.E.Marfi, and S. Akri, 2018. Agroforestry in West Kulisusu, North Buton Regency, Final Report of Ipteks bagi Wilayah, Research and Higher Education, Institution of Research and Community Services, University of Halu Oleo, Kendari, Southeast Sulawesi Province
[9] Karki, A. M, 2019. Agroforestry and its benefits, Sustainable Resource Management at the Technical University of Munich, Online Article uploaded 19 August 2020.
[10] Sabarmardin, M.S. 2004. Agroforestry: Concept, Prospect, and Challenges. Presentation Workshop Agroforestry. Fakultas Kehutanan Universitas Gadjah Mada, Yogyakarta.
[11] Young, A, 1990. Agroforestry for Soil Conservation, CAB International International Council for Research in Agroforestry, ICRAF, ISBN 8 85198 648 X.
[12] Karimuna L., 2000. Floristic Composition and Biomass of Fallow Vegetation in Abandoned Agricultural Fields of Southeast Sulawesi. Georg-August-University Goettingen. Cuvillier Verlag Goettingen. 207p.
[13] Karimuna, L., Halim, Resman, M. Rufendi, W.E.Marfi, and S. Akri, 2016, Agroforestry in West Kulisusu, North Buton Regency, Final Report of Ipteks for the Region, Research and Higher Education, Institution of Research and Community Services, University of Halu Oleo, Kendari, Southeast Sulawesi Province
[14] Karimuna, L., Halim, Resman, M. Rufendi, W.E.Marfi, and S. Akri, 2018, Growth and Yields Performances of Agricultural Crops Under Controlled Agroforestry System on Maintaining Biological Diversity and Improvement of Community Welfare in Indonesia, Proceeding on the 6th Kuala Lumpur International Agriculture, Forestry and Plantation Conference, Agriculture, Forestry and Plantations: Challenges in the 4th Industrial Revolution, 24-25 April 2018. Bangi Resort Hotel, Bangi, Selangor, Malaysia.
[15] Karimuna, L., Halim, Azhar Ansi, W.E.Marfi, and Samaruddin, L., 2019, Application Of Integrated Bokashi Plus Fertilizer On The Growth And Yields Of Intercropped Maize And Peanut Under Early Growth Of Teak Plantation In Napabalano District, Muna Regency, Indonesia, International Journal of Agriculture, Foretry and Plantation, (ijafp). ISSN 2462-1757, 8(6) 147-154

[16] Karimuna, L., Halim, Azhar Ansi, W.E.Marfi, Samaruddin, L., and Hasanuddin, L., 2020, Effects of Bokashi Plus Fertilizer on the Growth and Yield of Peanut (Arachis hypogaea L.) in Intercropped Maize and Peanut under Sustainable Creative Agroforestry System, International Journal of Agriculture, Forestry and Plantation, (ijafp), ISSN 2462-1757, 10(9) 165-173

[17] Zakaria, F., 2016. Intercropping pattern of maize and soybean, Ideas Publishing, IKAPI Member, ISBN : 978-602-0889-82-5

[18] Karimuna, L., 2006. Study of secondary vegetation treated as bokashi on the intercropped maize and soybean of smallholding farmers land in Southeast Sulawesi, Indonesia, Tropentag 2006, Bonn Germany.

[19] Turmudi, E. 2002. Study on plant growth and research in corn intercropping system with four soybean cultivars at various planting time. Program studies of Agronomy, Faculty of Agriculture University of Bengkulu. J. Indonesian Agricultural Sciences: 4(2): 89-90.

[20] Taufik, M., Aziez, A., and Tyas, S., 2010. Effect of dosage and method of placement of NPK fertilizer on hybrid corn growth and yield (Zea mays L). J. Agrineca. 10(2): 197-207.

[21] Karimuna, L., S. Leomo and L. Indriyani. 2009. Application of mulching technology and bokashi vegetation secondary to increased production of intercropping of corn and peanut. Implementation of Science and Technology of Community Service. University of Halu Oleo, Kendari.

[22] Soehendi, R. and Syahri. 2013. Potency of maize development in South Sumatra. J. Suboptimal Land, 2(1): 81-92.

[23] Kartahadi, J. 2009. Yield potential of thirteen single cross hybrid corn lines, Manipulation of State Polytechnic Lampung, J. Applied Agriculture Research, 10(1): 17-22.

[24] Masdar, M. Karim, B. Rusman, N. Hakim, Helmi. 2006. Yield rates and yield components of the rice intensification system (RIS) without organic fertilizers in areas of high rainfall, JIP. 8:126-131.

[25] Umar, S. 2008. Genetic variation, heritability and genotypic correlation of important traits of sesame plants (Sesamum indicum L.). J. Littri 13:88-92.

[26] Maruapey, A. 2012. Effect of Potassium fertilization dosage on growth and production of various origins of pulut corn (Zea mays ceratina. L). J. Agroforestry, 7(1) : 33-41.

[27] Wangiyana, W., Ngawit, I.K., and Hanan, M. 2013. Increased yield of hybrid corn var. bisi-2 with cow manure application and increasing the frequency of Urea and a mixture of SP-36 and KCl, J. Agrotechnology, 1(2): 56-75.

[28] Ningrum, G.A., Hikam, S., and Timotiwu, P. B., 2013. Evaluation of seed viability, resilience and plant recovery of four corn inbred pedigris stored for more than twelve months, J. Agrotek Tropika, 1(1): 14-19.

[29] Haris, K., and Askari, K.M., 2009. Growth and production of various varieties of corn plants at two doses of Urea fertilizer, J. Agrisystem, 4(1): 26-36.

[30] Baligar, V. C., Fageria, N. K. and He, Z. L., 2001. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32(7-8), 921-950. Available online in https://doi.org/10.1081/CSS-100104098

[31] Jeschke M.R., 2014. Managing corn for greater yield. Crop Insights. 24 (2): 76-84. DuPont Pioneer-Johnston, IA, Available online in <https://www.pioneer.com/home/site/us/agronomy/library/corn-greater-yield/>.

[32] Ekowati, D., and M. Nasir, 2011. The growth of maize crop (Zea mays L.) bisi-2 variety on rejected and non-rejected sand at Pantai Trisik Kulon Progo, Faculty of Biology, Gadjah Mada University, Yogyakarta, Human and Environment Journal, 18(3): 220-231.