Upward shift of the vortex solid phase in high-temperature superconducting wires through high density nanoparticle addition

Masashi Miura1,2, Boris Maiorov1, Fedor F. Balakirev1, Takeharu Kato1, Michio Sato2, Yuji Takagi4, Teruo Izumi4 & Leonardo Civale1

We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10^22/m^3), the irreversibility field (H_{irr}) continues to increase with no sign of saturation up to 60T, although the vortices vastly outnumber pinning centers. We find extremely high H_{irr}, namely H_{irr} = 30T (H||45°) and 24T (H||c) at 65K and 58T (H||45°) and 45T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.

Although the critical temperature (T_c) and upper critical field (H_{c2}) of high temperature superconductors are extremely high, superconductors only become technically useful at a much lower field-temperature boundary, called the melting, or irreversibility, line. This is due to the appearance of the vortex liquid phase, one of the unique characteristics of these superconductors. In this liquid phase, superconductors have finite resistivity behaving much like a normal metal, thus the need to move the melting line to higher fields/temperatures. Defects can move the melting line, with random point-like defects pushing it down and correlated defects moving this line up. The positive effect of correlated disorder is restricted to an angular range near the defects’ orientation, and usually only up to a characteristic field related to the density of the defects (the matching field, typically a few tesla). Pushing up this upper limit is both technologically and scientifically important; given the interest in high magnetic field magnets. This requires finding ways to immobilize vortex densities much higher than the highest defect density that can be introduced without compromising the material integrity.

Recently, a third kind of disorder (neither correlated nor point-like) has been demonstrated to be effective at improving both J_c and H_{irr} at a very wide range of field orientations. A deeper and more quantitative understanding of the effect of nanoparticles in a mixed pinning landscape (as they often work together with correlated defects) is necessary for assessing the potential of Cu-based superconducting wires for applications at high fields.

In particular, it is important to establish the behavior of H_{irr} when the vortex density is much higher than that of the defects. Most REBa2Cu3Oy (REBCO) films (RE = rare earth) with self-assembled nanorods and YBCO crystals with columnar defects show improved H_{irr} and a “kink” in the vortex liquid-glass transition for H||c. This occurs when vortices stop populating columnar defects and start filling interstitial positions, at a density related to that of the defects at the so-called matching field (μ_0H_{phi}). These findings lead to the validation of the

1Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. 2Graduate School of Science & Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan. 3Materials R&D Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atuta-ku, Nagoya 456-8587, Japan. 4Superconductivity Research Laboratory, International Superconductivity Technology Center, KSP R&D Wing A-9F, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012 Japan. Correspondence and requests for materials should be addressed to M.M. (email: masashi-m@st.seikei.ac.jp)
simple argument that once the pinning centers have been outnumbered by vortices, their effect on increasing H_{irr} decreases or may even be washed out. However, this idea overlooks the fact that vortices are interacting elastic objects, which form a lattice with different degrees of order depending on the underlying pinning landscape. The understanding of the physical system adds a layer of complexity when pinning centers of different dimensions (point defects, lines, planes or nanoparticles) are taken into account.

In this paper, we show that the combination of planar twin boundaries (TBs) and a higher density of three dimensional (3D) nanoparticles (NPs) increases H_{irr} up to 60 T. In the case of TBs there is a clear signature of the matching field at very low fields (0.5 T) but nevertheless, their presence continues to increase H_{irr} up to 60 T. The effect of the NPs is also seen up to 60 T with the additional benefit of their being effective in the entire angular range. We find no signs of saturation in the improvement of H_{irr} up to 3 wt% BaZrO$_3$ (BZO) added to REBCO wire up to the highest field measured (60 T), and obtain record high values.

Results

The results shown are distributed as follows. We start by explaining the growth methods and show superconducting and microstructural studies. We find that the use of (Y,Gd)BCO is beneficial (as compared to YBCO) and that the addition of BZO NPs does not degrade the general properties, and increases twin boundary density. Then we focus on transport measurements in DC and pulsed fields as a function of temperature and field orientation. For the upper critical field, (H_{c2}), the addition of NPs produces no significant changes. For H_{irr}, the scenario is complex and depends on the field magnitude and orientation. For $H_{||}$, at low fields, twin boundaries dominate the irreversible line with a matching field observed and a peak as function of field orientation. As the field increases the effects of TBs are less prominent as nanoparticles compete in the vortex localization. At high fields, NPs and TBs cooperate to enhance the H_{irr}. At intermediate angles (e.g. $H_{||} = 45^\circ$) nanoparticles produce the greatest increase in H_{irr}, showing no saturation up to the highest fields measured. Furthermore, at high fields we obtain a constant improvement of 25% with respect to YBCO films. For $H_{||}$ ab, the changes due to NPs addition are small as compared to other orientations.

Uniformly dispersed BaZrO$_3$ nanoparticles in (Y$_{0.27}$Gd$_{0.73}$)Ba$_2$Cu$_3$O$_y$ wires. The samples used in this study were 0.5 μ thick films of standard YBCO, (Y$_{0.77}$Gd$_{0.23}$)Ba$_2$Cu$_3$O$_y$, (Y,Gd)BCO and BZO-doped (Y,Gd) BCO ((Y,Gd)BCO + BZO) derived from the metal organic deposition (MOD) process, grown on metal substrates. The content of BZO in the films was 1–3 wt%. The film microstructure was studied by several techniques (see Methods). The planar view transmission electron microscopy (TEM) images of standard YBCO, (Y,Gd)BCO with 1wt% BZO (+1BZO) and 3wt% BZO (+3BZO) wires are shown in Fig. 1a–c. The corresponding bottom panels in those figures show schematics of the main defects. All films have a low density (~0.1 × 1021/m3) of large RE$_2$Cu$_2$O$_5$ (225) precipitates (shown as open circles in the bottom panels) formed during REBCO crystallization from the precursors containing BaF$_2$, RE$_2$Cu$_2$O$_5$ and CuO. In both +1BZO and +3BZO wires, BZO NPs (modal size ~23 nm) are randomly distributed and uniformly dispersed. The average density of these nanoparticles was determined to be $n = 2.9 × 10^{21}$/m3 for +1BZO, $n = 7.1 × 10^{21}$/m3 for +2BZO (not shown), and $n = 13 × 10^{21}$/m3 for +3BZO wires, respectively. Note that the greater than linear dependence of n on BZO% derives from the slight decrease in size of the NPs with increasing BZO density. In addition to the uniformly distributed 3D defects (BZO NPs), all samples, including the standard YBCO, contain high densities of two types of planar (2D) defects, namely c-axis correlated TBs (Fig. 1a–d) and stacking faults (SFs) parallel to the ab plane (Fig. 1e). In some previous studies of MOD REBCO with nanoparticles, it was observed that the SFs cut into the TBs, resulting in discontinuous short length TBs14. In contrast, although our +3BZO wire has a high density of SFs as shown in Fig. 1e, the TBs remain connected from the bottom to the surface (Fig. 1d), indicating that the TBs in the BZO NP-doped wire are c-axis correlated pinning centers.

Table 1 shows a summary of the crystallographic and superconducting properties for the YBCO, (Y,Gd)BCO, +1BZO, +2BZO and +3BZO films. No decrease in T_c, or increase of $\delta \omega$ or $\delta \phi$ is observed for the films with BZO inclusions. The only difference found is positive, being that films with Y,Gd have higher T_c and self-field J_c/c as compared to the YBCO film, consistent with good crystallinity (unchanged $\delta \omega$, $\delta \phi$). The J_c/c values of the +3BZO film at 65 and 77 K are 12.5 and 4.0 MA cm$^{-2}$, respectively. These J_c/c values are almost as high as those of nanoparticle MOD-YBCO thin films on a single crystal substrate3. The fact that we maintained (or even improved) J_c/c and T_c after adding defects is significant given that in some cases, for films grown by pulsed laser deposition (PLD), T_c and J_c/c decreased with increasing BZO content due to poor crystallinity, local strain and oxygen deficiency near second phases26. The difference in T_c and J_c/c behavior with BZO% between MOD and PLD processes comes from differences in the formation mechanisms of the BZO/REBCO matrix27.

Irreversibility line at low and intermediate DC magnetic fields. To investigate the influence of the density of BZO NPs on the superconducting properties of the glassy phase, we measured the irreversibility temperature $T_{irr}(H, \theta).$ Figure 2a–c show $T_{irr}(\theta)$ at 0.5, 4 and 15 T for standard YBCO, (Y,Gd)BCO and (Y,Gd) BCO + BZO wires, where θ is the angle between the magnetic field and the c axis. For the YBCO and (Y,Gd)BCO wires, at low magnetic fields we observe two maxima in T_{irr}, centered at $H_{||}$ ($\theta = 0^\circ$) and $H_{||}ab$ ($\theta = 90^\circ$). The peak at $H_{||}$ comes from c-axis correlated defects. The maximum at $H_{||}ab$ originates from the electronic-mass anisotropy and the SFs. At intermediate fields (see Fig. 2b), this c-axis peak of T_{irr} in both YBCO and (Y,Gd)BCO becomes very weak, but is evident again at higher fields (see Fig. 2c). We note that the $T_{irr}(\theta)/T_c$ for the YBCO and (Y,Gd)BCO wires are almost identical as shown in inset of Fig. 2, which validates the use of YBCO for the comparison that we are making.

All wires with BZO NPs show an enhanced $T_{irr}(\theta)$ as compared to that of the YBCO and (Y,Gd)BCO wires, and the magnitude of the $T_{irr}(\theta)$ enhancement increases with increasing BZO NP content at all magnetic fields (0.5, 4 and 15 T) and at all angles. The T_{irr}, anisotropy, $T_{irr}(|ab|)/T_{irr}(|c|)$, is also smaller for the + BZO samples and
decreases monotonically with BZO NP content. At low fields, the +3BZO wire exhibits nearly isotropic properties with a small (in height) c-axis peak. At 15 T, \(T_{\text{irr}}(\theta) \) shows a small c-axis peak indicating a contribution from correlated pinning. This is consistent with \(J_c(\theta) \) data\(^1\) at high fields where a c-axis peak is also found. In both cases (\(J_c \) and \(T_{\text{irr}} \)) the c-axis peak height is less pronounced in samples with BZO additions, partially because of the general increase in \(J_c \) and \(T_{\text{irr}} \) produced by the nanoparticles.

The results in Fig. 2 can be interpreted as follows. At low fields, below the matching field of the TBs (\(\mu_0 H_{\phi,\text{TB}} \)) given by \(\mu_0 H_{\phi,\text{TB}} = (\phi_0/d_{\text{TB}})^2 \), where \(\phi_0 \) and \(d_{\text{TB}} \) are the flux quantum and TB spacing respectively, most vortices get localized by the TBs (Fig. 3a). At intermediate \(H \), above \(\mu_0 H_{\phi,\text{TB}} \), the density of vortices is high enough that the TBs become “saturated”, the extra vortices sit outside them and become localized by the randomly distributed NPs which are strong pinning centers (Figs 2b and 3b). At even higher fields, once all the NPs are saturated, no elastic energy is lost by achieving pinning at the TBs, allowing for the localization effect of the TBs to be observed through the caging effect (Fig. 3c), similar to what happens for the standard YBCO sample (Fig. 2c).

To better determine the effects of the c-axis correlated defects, we measured \(\mu_0 H_{\phi,\text{irr}}(T) \) at low fields for different \(\theta \) (see Fig. 4). The c-axis irreversibility lines of the wires with and without BZO NPs exhibit a pronounced kink indicating a crossover field (see \(H_{\phi,\text{irr}} \) arrows). For fields smaller than \(\mu_0 H_{\phi,\text{irr}} \), \(H_{\phi,\text{irr}} \) shows a rapid increase with
Table 1. Structural and superconducting properties. Sample data for the reference YBCO wire and for the (Y,Gd)BCO + BZO wires. δω and δφ denote the full-width at half-maximum (FWHM) values of the out-of-plane rocking curves (ω scans) of the 005 diffraction peaks and in-plane rocking curves (φ scans) of the 103 diffraction peaks, respectively. The particle-size distribution was extracted from high-magnification planar- and cross-section views of several TEM images. The size of the BZO NPs ranged from 17 to 28 nm with a modal size of ~23 nm. The average TB spacing was estimated from several planar view TEM images. Tc was determined using a criterion of 0.01 ρn.

Sample	YBCO	(Y,Gd)BCO	+1BZO	+2BZO	+3BZO
δω (deg.)	1.07	1.10	1.05	1.08	1.11
δφ (deg.)	2.89	2.85	2.88	2.84	2.83
Average NP diameter (nm)	~108*	~113*	23 ± 4.8	23 ± 4.6	22 ± 4.7
Average NP density (10²¹/m³)	~0.1*	~0.1*	2.9 ± 0.1	7.1 ± 0.14	13.0 ± 0.13
Average TB spacing (nm)	45 ± 4.8	38.5 ± 5.2	34 ± 2.5	32.5 ± 3.2	30 ± 3.1
Tc (K)	89.9	90.2	90.3	90.4	90.4
Jc (77 K) (MA/cm²)	2.8	3.8	4.0	3.9	4.0

Figure 2. Angular dependent irreversibility temperature \(T_{irr} \). Angular dependence of \(T_{irr} \) for YBCO, (Y,Gd)BCO and (Y,Gd)BCO + BZO wires at (a) 0.5 T, (b) 4 T and (c) 15 T, respectively. Inset of Fig. 2 indicates the angular dependent normalized \(T_{irr} (T_{irr}/T_c) \) for YBCO and (Y,Gd)BCO wires.
decreasing T; above $\mu_0 H_{irr}$, the irreversibility line is closer to a linear temperature dependence. For the +3BZO wire, $\mu_0 H_{irr}$ is 0.55 T, which is 1.6 times higher than that of YBCO ($\mu_0 H_{irr} = 0.34$ T). From TEM images, we observe that this correlates with the higher TB density found in +3BZO as compared to YBCO wires. Indeed, we obtain $\mu_0 H_{irr} \approx 2.3T$ and $1.0T$, for +3BZO and YBCO, respectively. This cross-over is remarkably similar to that observed in YBCO bulk with nanoscale TBs18,19 and columnar defects20. For TBs and columnar defects, the cross-over field is usually not observed precisely at the matching field but around $1/3-1/2$ of H_{irr}. This also correlates very well with our observation of the crossover fields with $H_{irr}/H_{TB} \sim 1/3$ for samples with and without BZO NPs.

Figure 3. Diagrams of vortex pinning for configurations involving different defects at $\mathbf{H}||\mathbf{c}$. (a) Diagram of vortex and c-axis parallel correlated TBs and BZO NPs at $\mu_0 H < \mu_0 H_{TB}$. (b) Diagram of a vortex and BZO NPs and TBs at $\mu_0 H \sim \mu_0 H_{TB}(a_l = d_{BZO})$, showing that above $\mu_0 H_{TB}$, vortices are localized not only by TBs but also by BZO NPs. (c) Diagram of a vortex and hybrid defects at $\mu_0 H \gg \mu_0 H_{BZO}$ showing how a large number of vortices are arrested by BZO NPs and TBs.

Figure 4. Temperature dependence of H_{irr} at low magnetic fields. Red open and solid symbol show $\mu_0 H_{irr}(T/T_c)$ at $\mathbf{H}||45^\circ$ and $\mathbf{H}||\mathbf{c}$, respectively, for the +3BZO wire. Black solid symbols indicate $\mu_0 H_{irr}(T/T_c)$ for the YBCO wire at $\mathbf{H}||\mathbf{c}$. A clear kink (H_{irr}) is observed only for $\mathbf{H}||\mathbf{c}$ for the wires.
namely 0.34 and 0.24 for YBCO and +3BZO, respectively. To further corroborate that the observed crossover field arises from correlated defects and is not an artifact, we confirmed that no kink is found in H_{irr} at H||c in our MOD REBCO wires. Note that the TBs continue to contribute at \(H = 0 \) (see Fig. 4). Therefore, we can conclude that the array of TBs is the main source of correlated pinning at \(H = 0 \) for all samples in spite of their very different pinning landscapes. The inset of Fig. 5a shows the electronic-mass dependence of \(\mu H_{c2} \). The average values for \(\mu H_{c2} \) are 5.1, 4.6 and 4.7 for the YBCO, +1BZO and +3BZO wires, respectively. To further corroborate that the observed crossover field arises from correlated defects and is not an artifact, we confirmed that no kink is found in H_{irr} at H||c in our MOD REBCO wires. Note that the TBs continue to contribute at \(\mu > 5 \) as seen in the peak of \(T_{irr}(\theta) \) around H||c in Fig. 2c and the inset of Fig. 5d.

Irreversibility lines and upper critical fields in pulsed fields. To obtain the temperature and angular dependence of \(\mu H_{c2} \) and \(\mu H_{irr} \) for the YBCO and (Y,Gd)BCO + BZO wires at even higher fields, we measured \(\rho(T) \) and \(\rho(H) \) at various angles for the YBCO and (Y,Gd)BCO + BZO wires (see ref. 9 for details). The average values for \(\gamma \) are 5.1, 4.6 and 4.7 for the YBCO, +1BZO and +3BZO wires, respectively. Although \(\gamma \) is slightly smaller for the wires with BZO, all values are very close to 5. Further confirmation of the obtained value of \(\gamma \), comes from the angular-dependent \(H_{c2} \) shown in Fig. 5b. The angular dependence of \(H_{c2} \) can be fit very well using \(H_{c2}(\theta) = H_{c}(\cos^{2}(\theta) + 1/2 \sin^{2}(\theta)) \) (see ref. 21) with \(\gamma = 4.7 \), in agreement with the experimental result shown in the inset of Fig. 5a. This is also in accordance with our previous work, where we reported that the \(\mu H_{c2} \) dependence follows a single curve consistent with \(\gamma = 5 \) even with different additions and growth methods. From the \(\mu H_{c2} \) data, we conclude that \(\mu H_{c2} \) is not greatly affected by the pinning landscape. It is worth noting that the value of \(\gamma = 5 \) is indeed smaller than the values found for YBCO single crystals, as previously noted. The lack of sensitivity in \(H_{c2} \) upon increase of disorder can be found in the small coherence length of REBCO [also the reason for high \(H_{c2} \)]. The small coherence length places REBCO in the clean limit, thus making its superconducting properties less sensitive to disorder.

On the other hand, the changes in pinning landscape do influence \(H_{irr} \), as a clear enhancement is found for all +BZO wires compared with YBCO wire (see Fig. 5c,d). Figure 5c displays the \(\mu H_{irr} \) at various angles for the YBCO and (Y,Gd)BCO + BZO wires. For \(H || c \) and \(H || 45^\circ \), wires with BZO NPs show a much bigger enhancement for \(H || 45^\circ \), respectively. For \(H || ab \), a much bigger enhancement for \(H || ab \) and a much bigger enhancement for \(H || c \) and

Figure 5. Temperature and angular dependence of the upper critical field and irreversibility field. (a) Temperature and (b) angular dependence of \(\mu H_{c2} \). The inset of Fig. 5(a) shows the temperature dependence of \(\gamma \) calculated using \(\mu H_{c2} \). The inset of Fig. 5(b) shows \(\rho(T) \) with YGdBCO + 1BZO wire. Solid lines in Fig. 5(b) are \(\epsilon(\theta)\mu H_{c2} \) using \(\gamma \) values from the inset of Fig. 5(a). (c) Temperature and (d) angular dependence of \(\mu H_{irr} \). Solid lines in Fig. 5(d) are \(\epsilon(\theta)\mu H_{irr} \) for the YBCO and +3BZO wires using \(\gamma = 5.1 \) and 4.7, respectively.
The inset shows the ratio of $\mu_0H_{irr,\text{3BZO}}/\mu_0H_{irr,\text{Y}}$ for $+1\text{BZO}$ and $+3\text{BZO}$ wires. The inset of Fig. 5c shows a greater increase with respect to $H_{irr,\text{Y}}$, and the inset of Fig. 6 shows that $H_{irr,\text{Y}}$ is bigger for higher BZO NP densities. We also find that $H_{irr,\text{Y}}/H_{irr,\text{3BZO}}=\gamma$ is similar for both samples, consistently with Fig. 5c, showing no signs of saturation up to the highest magnetic field measured. It is worth mentioning that although in principle the samples in references 6,7,14 are also MOD with NPs, there are some differences in the microstructure with the wires in this study. Specifically, with the addition of BZO our samples have a higher density of twin boundaries, but the opposite is found in ref. 14.

The lack of saturation is also apparent in the inset of Fig. 6, which shows the ratio $\mu_0H_{irr,\text{BZO}}/\mu_0H_{irr,\text{Y}}$ for $+1\text{BZO}$ and $+3\text{BZO}$ for $H||45^\circ$. The inset shows the ratio of $\mu_0H_{irr,\text{BZO}}/\mu_0H_{irr,\text{Y}}$ for $+1$ and $+3\text{BZO}$ for $H||45^\circ$. The inset shows the ratio of $\mu_0H_{irr,\text{BZO}}/\mu_0H_{irr,\text{Y}}$ for $+1$ and $+3\text{BZO}$ for $H||45^\circ$.

Discussion

In order to pinpoint $H-T$ regions where the BZO additions are more effective, in Fig. 6 we plot the H_{irr} enhancement $\Delta\mu_0H_{irr}=\mu_0H_{irr,\text{BZO}}-\mu_0H_{irr,\text{Y}}$ for different concentrations of BZO NPs. This also sets the bases to determine possible $H-T$ saturation regions and if so, the dependence with magnetic field orientation. The improvement, $\Delta\mu_0H_{irr}$, is bigger for higher BZO NP densities. We also find that ΔH_{irr} shows similar temperature dependences for the $+1\text{BZO}$, $+2\text{BZO}$ (not shown) and $+3\text{BZO}$ for all orientations measured. At $H||45^\circ$, $\Delta\mu_0H_{irr}$ curves have a greater increase with respect to $H||c$ for both concentrations, consistently with Fig. 5c, showing no signs of saturation up to the highest magnetic field measured.

The lack of saturation is also apparent in the inset of Fig. 6, which shows the ratio $\mu_0H_{irr,\text{BZO}}/\mu_0H_{irr,\text{Y}}$ for the $H||45^\circ$ orientation for two different concentrations of BZO NPs, 1% and 3%. The enhancement factor is largest at low fields and initially decays with H, but then becomes constant up the highest accessible fields. In particular, H_{irr} for $+3\text{BZO}$ is about 25% higher than for YBCO up to $\sim45\text{T}$.

Figure 6. Temperature dependence of H_{irr} enhancement. Temperature dependence of $\Delta\mu_0H_{irr}=\mu_0H_{irr,\text{BZO}}-\mu_0H_{irr,\text{Y}}$ at $H||c$ and $H||45^\circ$ for $+1\text{BZO}$ and $+3\text{BZO}$ wires.
Also observed in Fig. 6 is a steeper growth in H_{irr} at $T > 80$ K for both +1BZO and +3BZO wires. This temperature corresponds to $\mu_0H = 5$ T, where the inter-vortex distance is $d \approx 22$ nm, which is close to the average BZO NP spacing ($d_{BZO} \approx 30$ nm) observed in TEM images. This suggests that NPs are most effective in increasing μ_0H_{irr} (at $H||45^\circ$, as seen in Fig. 5) when the intervortex distance is similar to the distance between NPs. This behavior is analogous to the I_c enhancement we observed as function of field for different NP densities in ref. 36.

The fact that improvements are smaller for $H||c$ compared to $H||45^\circ$, is partly due to the fact that H_{irr} is already higher due to the presence of correlated defects (insert Fig. 5d). After an initial increase of H_{irr} at μ_0H_{irr} flattens around 75 K and appears to increase again for $T < 60$ K. The initial increase can be related to the higher density of NPs and/or of TBs, with the latter being 2.3 times more numerous in samples with BZO than in standard YBCO. However, the increase at lower temperatures is most likely related solely to the presence of nanoparticles, given the similarity of the behavior found at $H||45^\circ$.

The lack of saturation in the increase of H_{irr} is remarkable. For +3BZO at $H||45^\circ$ we have achieved a 25% enhancement up to the highest fields measured, with no sign of decrease. This corresponds to an absolute increase over 9 T for $\mu_0H_{irr} \approx 50$ T, implying an increase of $\sim 4-6$ K in operational temperature (depending on the orientation). This enhancement is particularly significant knowing that at $\mu_0H = 60$ T the inter-vortex spacing is at least 7 times smaller than the average distance between nanoparticles. These findings indicate that further improvement of H_{irr} in practical REBCO wires is still possible, thus pushing the technically relevant region up to even higher magnetic fields.

In summary, we find that up to the highest BZO NPs density we tested, H_{irr} can be increased further, with no indication of saturation up to 60 T. This allows us to report extremely high μ_0H_{irr}, the highest values reported so far for REBCO films and wires. Our results suggest that higher densities of NPs will increase H_{irr} even more, and that the high-field limit is far from being reached in nanoengineered REBCO wires. These results are further proof that REBCO wire is an enabling technology for several high field applications.

Methods

HTS wires based on epitaxial REBCO nanocomposite films of standard YBCO and (Y,Gd)BCO + BZO were grown from metal organic solutions including Y-, Gd-, and Ba-trifluoroacetates and Cu-naphthenate with the cation ratio of 0.77 : 0.23 : 1.5 : 3 on ion-beam-assist deposited metal templates37. We added Zr-naphthenate into the (Y,Gd)BCO solutions; the content of BZO was 1–3wt%, and the concentration of starting solution was 1.2 mol/L. The total thickness of the superconductive layer for all samples was 0.5 μm, which was confirmed by cross sectional transmission electron microscopy (TEM). The details of the calculations and conversion steps have been published elsewhere37.

Films were patterned using photolithography and ion milling into bridges of ~50 μm width. The crystalline quality was examined by x-ray diffraction (XRD). The resistivity measurements, $\rho vs. H$, were performed in pulsed fields up to 60 T at the Pulsed Field Facility of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. The four-probe technique was applied in AC mode with a low current corresponding to $H||45^\circ$. Line quality was examined by x-ray diffraction (XRD). The resistivity measurements, $\rho vs. H$, were performed in a Quantum Design PPMS with a superconducting magnet (DC magnetic field) generating fields μ_0H up to 15 T. For the transport measurements the current was always perpendicular to H. Criteria of $0.9\rho_n$ and $0.01\rho_n$, where ρ_n is the normal state resistivity, were used to define H_n and H_{irr}, respectively. Both planar and cross sectional TEM images were taken to evaluate the microstructure of the film.

The microstructures and elemental concentration mappings of the films were analyzed by transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDS), respectively.

References

1. Petrean, A. M., Paulius, L. M., Kwok, W. K., Fendrich, J. A. & Crabtree, G. W. Experimental evidence for the vortex glass phase in untwinned, proton irradiated YBa$_2$Cu$_3$O$_{7-}\delta$. Phys. Rev. Lett. 84, 5852 (2000).
2. Kruisín-Elbaum, L., Civale, L., Thompson, J. R. & Field, C. Accommodation of vortices to columnar defects: evidence for large entropic reduction of vortex localization. Phys. Rev. B 53, 11744 (1996).
3. Olsson, J. J. et al. Bose glass transition in columnar-defected untwinned YBa$_2$Cu$_3$O$_{7-}\delta$. Phys. Rev. B 65, 104520 (2002).
4. Horii, S. et al. Vortex Bose glass in ErBa$_2$Cu$_3$O$_{7-}\delta$ films with size-controlled nanorods. Appl. Phys. Lett. 93, 152506 (2008).
5. Ozaki, T. et al. Flux pinning properties and microstructure of SmBa$_2$Cu$_3$O$_y$ thin films with systematically controlled BaZrO$_3$ nanorods. J. Appl. Phys. 108, 093905 (2010).
6. Gutiérrez, I. et al. Strong isotropic flux pinning in solution-derived YBa$_2$Cu$_3$O$_{7-}\delta$ nanocomposite superconductor films. Nat. Mat. 6, 367 (2007).
7. Puig, T. et al. Vortex pinning in chemical solution nanostructured YBCO films. Supercond. Sci. Technol. 21, 34008 (2008).
8. Maiorov, B. et al. Synergistic combination of different types of defect to optimize pinning landscape using BaZrO$_3$ doped YBa$_2$Cu$_3$O$_{7-}\delta$. Nat. Mat. 8, 398 (2009).
9. Miura, M. et al. Vortex liquid-glass transition up to 60 T in nanoengineered coated conductors grown by metal organic deposition. Appl. Phys. Lett. 96, 072506 (2010).
10. Miura, M. et al. Mixed pinning landscape in nanoparticle-introduced YGdBa$_2$Cu$_3$O$_y$ films grown by metal organic deposition. Phys. Rev. B 83, 184519 (2011).
11. Palau, A., Bartolomé, E., Llordés, A., Puig, T. & Obradors, X. Isotropic and anisotropic pinning in TFA-grown YBa$_2$Cu$_3$O$_{7-}\delta$. Supercond. Sci. Technol. 24, 125010 (2011).
12. Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mat. 11, 329 (2012).
13. Horide, T. et al. Improvement by double artificial pinning centers of BaSnO$_3$ nanorods and Y$_2$O$_3$ nanoparticles in YBa$_2$Cu$_3$O$_{7-}\delta$ coated conductors. Supercond. Sci. Technol. 26, 075019 (2013).
14. Rouco, V. et al. Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Supercond. Sci. Technol. 27, 125009 (2014).
15. Horide, T. et al. Mixed pinning landscape in nanoparticle-introduced YGdBa$_2$Cu$_3$O$_y$ films grown by metal organic deposition. Phys. Rev. B 83, 184519 (2011).
16. Palau, A., Bartolomé, E., Llordés, A., Puig, T. & Obradors, X. Isotropic and anisotropic pinning in TFA-grown YBa$_2$Cu$_3$O$_{7-}\delta$. Supercond. Sci. Technol. 24, 125010 (2011).
17. Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mat. 11, 329 (2012).
18. Horide, T. et al. Improvement by double artificial pinning centers of BaSnO$_3$ nanorods and Y$_2$O$_3$ nanoparticles in YBa$_2$Cu$_3$O$_{7-}\delta$ coated conductors. Supercond. Sci. Technol. 26, 075019 (2013).
19. Rouco, V. et al. Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Supercond. Sci. Technol. 27, 125009 (2014).
15. Sorbom, B. N. et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Engineering and Design 100, 378–405 (2015).
16. Wei, S. H., Zuev, Y. L., Cantoni, C. & Goyal, A. Engineering nanocomponent defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires. Sci. Rep. 3, 2310 (2013).
17. Miura, M., Yoshizumi, M., Izumi, T. & Shiokara, Y., Formation mechanism of BaZrO3 nanoparticles in Y1−xSmBa2Cu3Oy-coated conductors derived from trifluoroacetate metal-organic deposition. Supercond. Sci. Technol. 23, 014013 (2010).
18. Maiorov, B. & Osquiguil, E. Vortex solid state in YBa2Cu3O7−δ twinned crystals. Phys. Rev. B 64, 052511 (2001).
19. Shylk, L. et al. Engineering periodic arrays of nanoscale twin boundaries in bulk YBa2Cu3O7−δ with RuO2 additions. Appl. Phys. Lett. 88, 062509 (2006).
20. Civalle, L. & Krusin-Elbaum, L. Comment on “Upper Limit of the Bose-Glass Transition in YBa2Cu3O7 at High Density of Columnar Defects” Phys. Rev. Lett. 78, 1829 (1997).
21. Blatter, G., Feigel’tman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).
22. Holesinger, T., Maiorov, B. & Civalle, L. Strategic materials development for enhanced coated conductor performance. Presented at 2010 Annual Peer Review for Advanced Cable and Conductors, Alexandria VA, USA, June 29-July 1, 2010. Available at: http://www.ltspreview.com/pdfs/presentations/day%203/strategic-research/10_SR_StrategicMaterialsDevelopment_for_CoatedConductorPerformance.pdf (Accessed: 4 December 2015).
23. Maiorov, B., G. Nieva, G. & Osquiguil, E. First-order phase transition of the vortex lattice in twinned YBa2Cu3O7 single crystals in tilted magnetic fields, Phys. Rev. B 61, 12427–12432 (2000).
24. Kwock, W. K. et al. Vortex lattice melting in unwinned and twinned single crystals of YBa2Cu3O7-δ. Phys. Rev. Lett. 69, 3370 (1992).
25. Civalle, L. et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 84, 2121 (2004).
26. Maiorov, B. et al. Vortex pinning landscape in YBa2Cu3O7 films grown by hybrid liquid phase epitaxy. Supercond. Sci. Technol. 20, S223 (2007).
27. Koshelev, A. E. & Kolton, A. B. Theory and simulations on strong pinning of vortex lines by nanoparticles. Phys. Rev. B 84, 104528 (2011).
28. van der Beek, C. J., Konczykowski, M. & Prozorov, R. Anisotropy of strong pinning in multi-band superconductors. Supercond. Sci. Technol. 25, 084010 (2012).
29. Mishev, V. et al. Interaction of vortices in anisotropic superconductors with isotropic defects. Supercond. Sci. Technol. 28, 102001 (2015).
30. Chen, Z. et al. Three-dimensional vortex pinning by nano-precipitates in a Sm-doped YBa2Cu3O7−δ coated conductor. Supercond. Sci. Technol. 20, S205 (2007).
31. Tarantini, C. et al. Anisotropy of the irreversibility field for Zr-doped (Y,Gd)Ba2Cu3O7−δ thin films up to 45 T. Phys. Rev. B 84, 224514 (2011).
32. Rosenzweig, S. et al. Irreversibility field up to 42 T of GdBa2Cu3O7−δ thin films grown by PLD and its dependence on deposition parameters. Supercond. Sci. Technol. 23, 105017 (2010).
33. Selvanamickam, V. et al. High critical currents in heavily doped (Gd,Y)Ba2Cu3O7 superconductor tapes. Appl. Phys. Lett. 106, 032601 (2015).
34. Xu, A. et al. Strongly enhanced vortex pinning from 40 to 77 K in magnetic fields up to 31 T in 15 mol% Zr-added (Gd,Y)-Ba-Cu-O superconducting tapes. APL Mater. 2, 046111 (2014).
35. Awaji, S. et al. High-performance irreversible field and flux pinning force density in BaHfO3-doped GdBa2Cu3O7 tape prepared by pulsed laser deposition. Appl. Phys. Express 8, 023101 (2015).
36. Miura, M. et al. Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles. Nat. Commun. 4, 2499 (2013).
37. Yamada, Y. et al. Development of Long Length IBAD-MgO and PLD Coated Conductors. IEEE Trans. Appl. Supercond. 19 3236 (2009).

Acknowledgements
Work by B.M. and L.C. was supported by the U.S. DOE, Office of Science, BES, Materials Sciences and Engineering Division. Work by M.M. at LANL was supported by the LANL LDRD program, and at Seikei Univ. by JSPS KAKENHI (26709076). Work by F.F.B. was supported by NSF Cooperative Agreement No. DMR-1157490 and the State of Florida. A part of the work at ISTEC-SRL was supported by METI and NEDO as a Collaborative Research. M.M. would like to thank Jeffrey O. Willis for helpful discussions and a critical reading of the manuscript.

Author Contributions
M.M. grew the films, carried out the experimental design, performed the superconducting property measurements and prepared the manuscript. B.M. carried out superconducting property measurements, data analysis, provided advice and consultation on flux pinning and assisted in preparing the manuscript and coordinated the research. F.F.B. carried out superconducting properties measurement. T.K. carried out microstructural studies. M.S. carried out superconducting property measurements. Y.T. carried out photolithography preparations. T.I. provided advice and consultation on film preparation. L.C. contributed to discussion and manuscript preparation. All authors discussed the results and implications and commented on the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Miura, M. et al. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Sci. Rep. 6, 20436; doi: 10.1038/srep20436 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/