Strategy to Treat Pancreatic Fistula Using Comprehensive Endoscopic Procedures Together with Percutaneous Methods

Masataka Kikuyama1*, Masaya Kawaguchi1, Tatsuki Ueda2 and Yuji Ota2

1Department of Gastroenterology, Shizuoka General Hospital, Japan
2Department of Gastroenterology, Kyoto University Hospital, Japan

Abstract

Objective: Pancreatic fistula (PF) is an early complication after pancreatoduodenectomy. PF occurs because of disruption to the pancreatodigestive tract anastomosis with stricture or occlusion. A strategy to treat PF using interventional methods is proposed.

Methods: We treated a total of 6 patients with PF by endoscopic ultrasound (EUS)-guided or percutaneous pancreatic duct drainage. In this paper, these patients are reviewed based on the applied treatment for PF.

Results: At the time of introduction to our department, all the patients, except for one, had a percutaneous drainage tube implanted prior to surgery. In 2 patients undergoing pancreatoojejunostomy within 3 months of the previous surgery, percutaneous introduction of a guidewire into the anastomosed jejunum, via the disrupted anastomosis, through the percutaneous fistula and the implantation of a percutaneous jejunal tube for 6 weeks was an effective PF treatment. There were 4 patients (3 pancreatoojejunostomy, 1 pancreatogastrostomy) with more than 3 months of PF, with an occluded anastomosis and the pancreatic juice flow had to be rerouted by making another pancreatodigestive tract anastomosis using percutaneous or EUS-guided puncture of the pancreatic duct.

Conclusions: The optimal treatment for PF is considered to be the recanalization of the stricture or occluded anastomosis, or rerouting of the pancreatic juice flow by making another anastomosis. Considering our experiences in the treatment of PF, EUS-guided puncture of the pancreatic duct near the occluded anastomosis using a convex-type EUS endoscope is the most preferable method to treat PF. In patients for whom it is difficult to introduce the endoscope into the afferent loop in the pancreatoojejunostomy, various methods, including percutaneous approaches, are feasible to treat PF.

Keywords: Pancreatic fistula; Pancreatoduodenectomy; Pancreatoojejunostomy; Acute recurrent pancreatitis

Introduction

Pancreatic fistula (PF) and acute recurrent pancreatitis (ARP) are the respective early and late stage complications after pancreatoduodenectomy (PD). The frequency of PF is low in patients with pancreaticoastrostomy, with a rate of 0-12% [1], while it is more frequent among pancreatoojejunostomy patients, with a rate of 10 to 20% [1]. Another study has reported that 14% of patients with pancreatoduodenectomy have suffered from PF [2]. The disruption of the anastomotic site is the cause of PF and is associated with stricture or occlusion of the anastomosis at early stages after PD. In contrast, the frequency of ARP is low with the ratio of 2% in pancreatogastrostomy [1], and 1.6% [1] to 2.2% [2] in pancreatoojejunostomy. The strictured or occluded anastomosis at the late stage post-PD causes ARP [3].

These disorders cause the patients to stay in the hospital for longer periods of time without any oral intake, consequently reducing the quality of life. Although surgeons are frequently reluctant to perform surgery, due to an increased susceptibility to postoperative adhesion or a physical burden to the patients, surgical treatment is associated with good results [3].

Pancreatic duct drainage is the optimal treatment for these disorders. Recently, endoscopic procedures have been adapted to treat ARP, and the endoscopic ultrasound (EUS)-guided method was reported to be useful for such treatment [4-7]. Yet, symptomatic treatments using EUS-guided drainage of the collected fluid have been reported on several occasions [8,9], while there are only a few reports on draining a pancreatic duct [10,11]. We treated a total of 6 patients with PF by EUS-guided or percutaneous pancreatic duct drainage. In this paper, these patients are reviewed based on the applied treatment for PF, and a strategy is proposed.

Methods

For 10 years, starting from 2005, 6 patients (mean age, 71-year-old (46-82); male: female, 4:2) with PF were introduced to our hospital for its treatment. The initial diseases which showed evidence of PD were bile duct cancer in 3, as well as acinar cell cancer, chronic pancreatitis with pancreatic stones, and multiple aneurysms of the pancreas head, one in each patient (Table 1). Reconstruction was completed through pancreatogastrostomy and pancreatoojejunostomy in 1 (Case 3) and 5 patients, respectively. PF was recognized immediately after the previous surgery in 5 patients. The remaining 1 patient (Case 2) suffered from PF shortly after radiological interventional treatment for hemorrhage caused by the pseudoaneurysm occurring 52 days after the previous surgery. In 5 patients, a percutaneous tube had been placed near the anastomosis during the prior surgery, and in 1 after treating pseudoaneurysm using IVR (Case 2). In this case, it had been
Implanted after the treatment for draining the fluid collected around the pancreas due to PF.

At the time of introduction, every patient did not have the sign of infection, but kept with nothing by mouth with support by total parenteral nutrition, whose PF were classified to Grade B of ISGPF definition [12] according to the duration of persistent PF over 3 weeks. The drained volume through the percutaneous tube changed depending on the day, but kept more than 100 ml with the maximum volume of 200 ml a day.

The time from the onset of PF to its treatment using endoscopic or percutaneous procedures was 43, 33, 156, 93, 361, and 134 days in each case. The patient suffering from hemorrhage because of the pseudoaneurysm (Case 2) had the period of 33 days, and the treatment was performed 85 days after the former surgery.

The percutaneous tube was removed when effectiveness of the treatments for disappearance of PF was recognized. After removing the percutaneous tube, recurrence of PF was examined by computed tomography or ultrasonography.

Results

Through the percutaneously implanted tube, contrast medium injection revealed the remnant pancreatic duct, but not the anastomosed jejunum in all patients (Figure 1).

In the 2 patients suffering from PF for 45 days (Case 1) and 33 days, or specifically 85 days after the previous surgery (Case 2), a 0.025-inch guidewire (GW) (Radifocus, Terumo, Japan) was introduced through the percutaneous tube and advanced into the anastomosed jejunum via the disrupted pancreatojejunostomy (Figure 2). A 7-Fr percutaneous jejunal tube through the pancreatojejunostomy was placed over the GW (Figure 3). PF was cured, and the percutaneous tube was removed on the 27th and 49th day after the treatment without recurrence of PF, respectively.

In 4 patients suffering from PF for over 3 months, a GW introduced through the percutaneous drainage tube could not pass through the disrupted anastomosis into the anastomosed digestive tract. In 3 patients (Case 4, 5, 6) with pancreatojejunostomy, the anastomosis was not recognized by an endoscope introduced into the anastomotic site. Endoscopic or percutaneous treatments mentioned below were performed, and PFs were cured in all 4 patients by making another pancreatojejunostomy (Table 2).

Table 1: Patient Characteristics

Case	Age	Sex	Previous disease	Reconstruction	Onset of PF	Period suffering PF (days)
1	71	F	PMA	PJ	Immediately after sur.	43
2	82	M	BC	PJ	After IVR for pseudoaneurysm	33 (85 after the prior surgery)
3	46	M	CP	PG	Immediately after sur.	156
4	71	M	BC	PJ	Immediately after sur.	93
5	78	F	AC	PJ	Immediately after sur.	361
6	71	M	BC	PJ	Immediately after sur.	134

A 46-year-old man suffered from PF for 156 days after PD with pancreatogastrostomy due to chronic pancreatitis with pancreatic stones. Using a duodenoscope, the pancreatogastrostomy was identified at the posterior wall of the lower gastric body (Figure 4). Endoscopic retrograde cholangiopancreatography (ERCP) was attempted through the anastomosis, but failed as a result of the occluded anastomosis. The dilated pancreatic duct was identified from the stomach using a miniature sonographic probe near the anastomosis, and the dilated pancreatic duct was punctured from the stomach using an electric needle knife (KD-10Q-1, Olympus, Japan) under the fluoroscope. A

Figure 1: Contrast medium injection via the percutaneous drainage tube reveals the remnant pancreatic duct (arrow), but not the anastomosed jejunum.

Figure 2: A. Contrast medium injection via the percutaneous drainage tube reveals the remnant pancreatic duct (arrow). B. A 0.025-inch guidewire, introduced through the percutaneous tube (arrow), advanced into the anastomosed jejunum via the disrupted pancreatojejunostomy (Case 2).

Figure 3: A percutaneous jejunal tube (arrow) through the pancreatojejunostomy was placed over the guidewire (Case 2).
pancreatography was made (Figure 5), and a 0.025-inch guidewire (Jagwire, Boston, Japan) was introduced into the pancreatic duct through the catheter with the placement of a 7-Fr 7-cm pancreatic stent (Olympus, Japan) after dilating the puncture route (Figure 6), which was another pancreatogastrostomy. The percutaneous tube was removed on the 25th day after the treatment without recurrence of PF (Case 3).

A 71-year-old man suffered from PF for 93 days after PD with pancreatojejunostomy due to bile duct cancer. A convex-type EUS endoscopy for puncture (GF type UCT260, Olympus, Japan) was introduced into the anastomotic site of the anastomosed jejunum.

A 73-year-old woman suffered from PF for 361 days after PD with pancreatojejunostomy due to duodenal papillary cancer. Abdominal ultrasonography clearly revealed the dilated pancreatic duct and the anastomosed jejunum (Figure 9). We percutaneously punctured the anastomosed jejunum through the pancreatic duct near the anastomosis using a 21G needle (Hanaco, Japan) (Figure 10). Introducing a 0.018-inch GW (Hanaco, Japan) and placing a percutaneous tube through the pancreatic duct into the anastomosed jejunum (Figure 11), another pancreatopancreaticojejunostomy was made. The percutaneous tube was removed on the 25th day after the treatment without recurrence of PF (Case 5) [10].

A 71-year-old man suffered from PF for 93 days after PD with pancreatojejunostomy due to bile duct cancer. A convex-type EUS endoscopy for puncture (GF type UCT260, Olympus, Japan) was introduced into the anastomotic site of the anastomosed jejunum.

GW: Guide wire; PF: Pancreatic Fistula

Table 2: Method of treatment for PF and results.

Case	Method of treatment	Technical success	Period of percutaneous PF drainage tube removal after the treatment (days)	PF recurrence
1	Percutaneous GW insertion	Yes	27	No
2	Percutaneous GW insertion	Yes	49	No
3	Transgastric puncture	Yes	25	No
4	Transjejunal puncture	Yes	21	No
5	Percutaneous puncture	Yes	29	No
6	Transjejunal puncture	Yes	16	No

Figure 4: Using a duodenoscope, the pancreatogastrostomy (arrow) was identified at the posterior wall of the lower gastric body (Case 3).

Figure 5: A. The dilated pancreatic duct was puncture from the stomach using an electric needle knife (arrow) under the fluoroscope. B. A pancreatography was made (Case 3).

Figure 6: After dilating the puncture route, a 7Fr 7cm pancreatic stent (arrow) was implanted. A, X-ray image; B, Endoscopic image (Case 3).

Figure 7: Under the fluoroscope, the pancreatic duct was punctured from the jejunum with pancreatography through the percutaneous pancreatic drainage tube (arrow) (Case 4).
Using EUS, the dilated MPD was clearly visible (Figure 12) and punctured using a 19G needle (Sonotip, Medi-Globe, Germany). After the pancreatography (Figure 13), a 0.025-inch GW was introduced into the pancreatic duct and a tapered 5-Fr pancreatic stent was implanted (Figure 14) to make another pancreatojejunostomy. The percutaneous tube was removed on the 16th day after the treatment without recurrence of PF (Case 6) [11].

Discussion

Post-operative PF is diagnosed by elevated amylase concentration in the drained fluid, and the grade is defined [12]. Grade A is a transient PF, while grade B and C have persistent drainage over 3 weeks. These patients require clinical intervention or an operation preventing the patient from consuming anything by mouth, meaning they are supported with partial or total parenteral or enteral nutrition and an extended hospital stay [12]. Intra-drainage of pancreatic juice, instead of extra-drainage, could lead to patient discharged with per-oral intake. Further, EUS-guided cyst-gastrostomy, by placing a stent between the gastric cavity and the fluid collection, was reported to be the method with preferable results [8,9]. However, the method is just a symptomatic treatment, as it allows for draining of the collected fluid leaking from the pancreatic duct, but does not treat PF itself. Not treating PF has the risk of repeated fluid collection after removing the implanted stent [13].
or as a result of implanted stent dysfunction in patients with persistent pancreatic juice leakage. Moreover, many patients with PF were introduced to the department of gastroenterology with a percutaneous tube, which had been implanted during the previous operation. In these cases, the fluid collection cavity was absent for continuous drainage by the tube, and EUS-guided transmural cyst drainage was not feasible. The optimal treatment for PF is considered to be internal pancreatic duct drainage by reopening the occluded pancreatodigestive tract anastomosis or making a new one.

According to our experience treating PF, the state of the disrupted anastomosis changed at about 3 months after the onset of PF. In patients at the early stage, before 3 months (Case 1, 2), the disrupted anastomosis was easily passed through by a GW, and dilation with percutaneous tube placement could treat PF. The reason why implantation of a percutaneous tube through the disrupted anastomosis is a treatment for PF is discussed below. The jejunal side of the anastomosis becomes stenotic and obstructed pancreatic juice flow induces disruption of the anastomosis. However, the stenotic jejunal side of the anastomosis is not organized, and percutaneous tube placement contributes to the dilation of the stenotic portion to recover the pancreatic juice flow into the jejunum.

On the other hand, patients suffering from PF for more than 3 months had an organized occluded anastomosis, and opening an occluded anastomosis or making another pancreatojejunalostomy was needed. To treat an occluded anastomosis, the anastomosis needed to be punctured from the pancreas side using a needle knife introduced through the EUS-guided route from the stomach [14]. This method is an attractive and a novel procedure, but also hazardous, as reaching the anastomosed GI tract is not guaranteed and vessels lying along the direction of the puncture are not excluded. Pancreatogastrostomy by the anastomosed GI tract is not guaranteed and vessels lying along the direction of the puncture are not excluded. Pancreatogastrostomy by implanting a stent between the anastomosis changed at about 3 months after the onset of PF. In patients with pancreatojejunostomy, various methods, including percutaneous methods described above, are feasible to treat PF.

In Case 3 and Case 4 of our study, we treated PF with the obstructed anastomosis using a miniature EUS probe to identify the pancreatic duct and decide the direction of the puncturing needle for making another pancreatodigestive tract anastomosis. When these treatments had been performed, a EUS endoscope for puncture had not been introduced to our hospital and the treatment for a strictured anastomosis using EUS had been scarcely reported. However, now, these treatments could be accomplished using a EUS endoscope for puncture in patients with pancreatogastrostomy [17], and also in patients with pancreatojejunalostomy, if the endoscope could be introduced into the anastomotic site [11]. Moreover, the percutaneous method used to treat PF in Case 5 can also be treated using a EUS endoscope for puncture, if the endoscope can be introduced into the anastomotic site.

Conclusions

The optimal treatment for PF is considered to be recanalization of the stricture or occluded anastomosis, or the rerouting of the pancreatic juice flow by making another anastomosis. While the regular treatment has not been established, percutaneous introduction of a guidewire into the anastomosed jejunum via the disrupted anastomosis through the percutaneous fistula to place a percutaneous jejunal tube could be effective within 3 months after the onset of PF and the previous surgery. Further, EUS-guided transmural puncture near the occluded anastomosis from the anastomosed jejunum in pancreatojejunalostomy and the anastomosed stomach in pancreatogastrostomy is feasible to implant a stent after the 3-month period. In patients where it is difficult to introduce the endoscope into the afferent loop in pancreatogastrostomy, various methods, including percutaneous methods described above, are feasible to treat PF.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Schmitt HJ, Schmidtt U, Simunec D, Jäger M, Aselmann H, et al. (2002) Morbidity and mortality associated with pancreatogastrostomy and pancreatojejunalostomy following partial pancreatoduodenectomy. Br J Surg 89: 1245-1251.
2. Yeo CJ, Cameron JL, Sohn TA, Lillehöök KD, Pitt HA, et al. (1997) Six hundred fifty consecutive pancreatoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 226: 248-257.
3. Cioffi JL, McDuffie LA, Roch AM, Zyromski NJ, Ceppa EP, et al. (2016) Pancreatogastrostomy Stricture After Pancreatoduodenectomy: Outcomes After Operative Revision. J Gastrointest Surg 20: 293-299.
4. Kikuyama M, Itoi T, Ota Y, Matsumura K, Tsujiya T, et al. (2011) Therapeutic endoscopy for stenotic pancreatogastrostomy tract anastomosis after pancreatoduodenectomy (with videos). Gastrointest Endosc 73: 376-382.
5. Mallery S, Matlock J, Freeman ML (2004) EUS-guided rendezvous drainage of obstructed biliary and pancreatic ducts: Report of 6 cases. Gastrointest Endosc 59: 100-107.
6. Kinney TP, Gupta K, Mallery S, Hunter D, Jensen E, et al. (2009) Therapeutic pancreatic endoscopy after Whipple resection requires rendezvous access. Endoscopy 41: 898-901.
7. Itoi T, Kikuyama M, Ishii K, Matsumura K, Sofuni A, et al. (2011) EUS-guided rendezvous with single balloon enteroscopy for treatment of stenotic pancreatojejunal anastomosis in post-Whipple patients (with video). Gastrointest Endosc 73: 398-401.
8. Onodera M, Kawakami H, Kuwatani M, Kudo T, Haba S, et al. (2012) Endoscopic ultrasound-guided transmural drainage for pancreatic fistula or pancreatic duct dilation after pancreatic surgery. Surg Endosc 26: 1710-1717.
9. Tomoda T, Kato H, Akimoto Y, Matsumoto K, Yamamoto N, et al. (2015) Endoscopic ultrasonography-guided transjejunal drainage for postoperative pancreatic fistula using forward-viewing echoendoscope. Clin J Gastroenterol 8: 228-231.
10. Ota Y, Kikuyama M, Suzuki S, Nakahodo J, Koide S (2010) Percutaneous pancreatic-duct puncture with rendezvous technique can treat stenotic pancreatojejunalostomy. Dig Endosc 22: 228-231.
11. Kikuyama M, Ueda T (2014) Endoscopic ultrasound-guided transjejunal
puncture of the main pancreatic duct as an alternative treatment for strictured pancreateojejunal anastomosis. Pancreatology 14: 107-108.

12. Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, et al. (2005) Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 138: 8-13.

13. Téllez-Avila F, Carmona-Aguilera GJ, Valdovinos-Andráca F, Casasola-Sánchez LE, González-Aquírr A, et al. (2015) Postoperative abdominal collections drainage: Percutaneous versus guided by endoscopic ultrasound. Dig Endosc 27: 763-767.

14. Ryu M, Mullady DK, Dimaio CJ, Swanson RS, Carr-Locke DL, et al. (2010) Pancreatic antegrade needle-knife (PANK) for treatment of symptomatic pancreatic duct obstruction in Whipple patients (with video). Gastrointest Endosc 72: 1081-1088.

15. Tessier G, Borjes E, Avanitakis M, Hittelet A, Pesenti C, et al. (2007) EUS-guided pancreaticogastrostomy and pancreaticobulbostomy for the treatment of pain in patients with pancreatic duct dilatation inaccessible for transpapillary endoscopic therapy. Gastrointest Endosc 65: 233-241.

16. Itoi T, Sofuni A, Tshuchiya T, Ishii K, Ikeuchi N, et al. (2015) Initial evaluation of a new plastic pancreatic duct stent for endoscopic ultrasonography-guided placement. Endoscopy 47: 462-465.

17. Ota Y, Kikuyama M, Sasada Y, Matsushashi T, Nakahodo J, et al. (2009) Endoscopic management of stenotic anastomosis using a rendezvous technique after pancreateogastrostomy. Dig Endosc 21: 201-204.