Some Grüss-type results via Pompeiu's-like inequalities

This is the Published version of the following publication

Dragomir, Sever S (2015) Some Grüss-type results via Pompeiu's-like inequalities. Arabian Journal of Mathematics, 4 (3). 159 - 170. ISSN 2193-5343

The publisher’s official version can be found at http://link.springer.com/article/10.1007/s40065-015-0135-8
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/31733/
S. S. Dragomir

Some Grüss-type results via Pompeiu’s-like inequalities

Received: 9 March 2015 / Accepted: 6 August 2015 / Published online: 27 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In this paper, some Grüss-type results via Pompeiu’s-like inequalities are proved.

Mathematics Subject Classification 26D15 · 25D10

1 Introduction

In 1946, Pompeiu [18] derived a variant of Lagrange’s mean value theorem, now known as Pompeiu’s mean value theorem (see also [18, p.83]).

Theorem 1.1 (Pompeiu [18]) For every real valued function \(f \) differentiable on an interval \([a, b]\) not containing 0 and for all pairs \(x_1 \neq x_2 \) in \([a, b]\), there exists a point \(\xi \) between \(x_1 \) and \(x_2 \) such that

\[
\frac{x_1 f(x_2) - x_2 f(x_1)}{x_1 - x_2} = f(\xi) - \xi f'(\xi) .
\] (1.1)

The following inequality is useful to derive some Ostrowski-type inequalities; see [9].

Corollary 1.2 (Pompeiu’s inequality) With the assumptions of Theorem 1.1 and if \(\| f - \ell f' \|_\infty \) = \(\sup_{t \in (a,b)} |f(t) - tf'(t)| < \infty \) where \(\ell(t) = t, t \in [a, b] \), then

\[
|tf(x) - xf(t)| \leq \| f - \ell f' \|_\infty |x - t|
\] (1.2)

for any \(t, x \in [a, b] \).

S. S. Dragomir (✉)
Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, MC 8001, Australia
E-mail: sever.dragomir@vu.edu.au
http://rgmia.org/dragomir

S. S. Dragomir
School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
The inequality (1.2) was obtained by the author in [9].

For other Ostrowski-type inequalities concerning the p-norms $\|f-\ell f\|_p$, see [1,2,17,19].

For two Lebesgue integrable functions $f, g : [a, b] \to \mathbb{R}$, consider the Čebyšev functional:

$$C(f, g) := \frac{1}{b-a} \int_a^b f(t)g(t)dt - \frac{1}{(b-a)^2} \int_a^b f(t)dt \int_a^b g(t)dt. \quad (1.3)$$

Grüss [10] showed that

$$|C(f, g)| \leq \frac{1}{4} (M - m)(N - n), \quad (1.4)$$

provided that there exists the real numbers m, M, n, N such that

$$m \leq f(t) \leq M \quad \text{and} \quad n \leq g(t) \leq N \quad \text{for a.e. } t \in [a, b]. \quad (1.5)$$

The constant $\frac{1}{4}$ is best possible in (1.3) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known, result, though it was obtained by Čebyšev [7], states that

$$|C(f, g)| \leq \frac{1}{12} \left\| f' \right\|_\infty \left\| g' \right\|_\infty (b - a)^2, \quad (1.6)$$

provided that f', g' exist and are continuous on $[a, b]$ and $\left\| f' \right\|_\infty = \sup_{t \in [a, b]} |f'(t)|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (1.6) also holds if $f, g : [a, b] \to \mathbb{R}$ are assumed to be absolutely continuous and $f', g' \in L_\infty[a, b]$, while $\left\| f' \right\|_\infty = \text{ess sup}_{t \in [a, b]} |f'(t)|$.

A mixture between Grüss’ result (1.4) and Čebyšev’s one (1.6) is the following inequality obtained by Ostrowski [15]:

$$|C(f, g)| \leq \frac{1}{8} (b - a)(M - m) \left\| g' \right\|_\infty, \quad (1.7)$$

provided that f is Lebesgue integrable and satisfies (1.5), while g is absolutely continuous and $g' \in L_\infty[a, b]$. The constant $\frac{1}{8}$ is best possible in (1.7).

The case of Euclidean norms of the derivative was considered by Lupaş [12], in which he proved that

$$|C(f, g)| \leq \frac{1}{\pi^2} \left\| f' \right\|_2 \left\| g' \right\|_2 (b - a), \quad (1.8)$$

provided that f, g are absolutely continuous and $f', g' \in L_2[a, b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

Recently, Cerone and Dragomir [3] have proved the following results:

$$|C(f, g)| \leq \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_q \cdot \frac{1}{b-a} \left(\int_a^b \left| f(t) - \frac{1}{b-a} \int_a^b f(s)ds \right|^p dt \right)^{\frac{1}{p}}, \quad (1.9)$$

where $p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$ or $p = 1$ and $q = \infty$, and

$$|C(f, g)| \leq \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_1 \cdot \frac{1}{b-a} \text{ess sup}_{t \in [a, b]} \left| f(t) - \frac{1}{b-a} \int_a^b f(s)ds \right|, \quad (1.10)$$

provided that $f \in L_p[a, b]$ and $g \in L_q[a, b]$ ($p > 1, \frac{1}{p} + \frac{1}{q} = 1; p = 1, q = \infty$ or $p = \infty, q = 1$).

Notice that for $q = \infty, p = 1$ in (1.9), we obtain

$$|C(f, g)| \leq \inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_\infty \cdot \frac{1}{b-a} \int_a^b \left| f(t) - \frac{1}{b-a} \int_a^b f(s)ds \right| dt$$

$$\leq \|g\|_\infty \cdot \frac{1}{b-a} \int_a^b \left| f(t) - \frac{1}{b-a} \int_a^b f(s)ds \right| dt \quad (1.11)$$
and, if \(g \) satisfies \((1.5)\), then

\[
|C(f, g)| \leq \inf_{y \in \mathbb{R}} \|g - y\|_\infty \cdot \frac{1}{b - a} \int_a^b \left| f(t) - \frac{1}{b - a} \int_a^b f(s) \, ds \right| \, dt
\]

\[
\leq \left\| g - \frac{n + N}{2} \right\|_\infty \cdot \frac{1}{b - a} \int_a^b \left| f(t) - \frac{1}{b - a} \int_a^b f(s) \, ds \right| \, dt
\]

\[
\leq \frac{1}{2} (N - n) \cdot \frac{1}{b - a} \int_a^b \left| f(t) - \frac{1}{b - a} \int_a^b f(s) \, ds \right| \, dt. \tag{1.12}
\]

The inequality between the first and the last term in \((1.12)\) has been obtained by Cheng and Sun \([8]\). However, the sharpness of the constant \(\frac{1}{2} \), a generalization for the abstract Lebesgue integral and the discrete version of it have been obtained in \([4]\).

For other recent results on the Grüss inequality, see \([5, 6, 11, 13, 14, 16, 20]\) and the references therein.

In this paper, some Grüss-type results via Pompeiu’s-like inequalities are proved.

\section{Some Pompeiu’s-type inequalities}

We can generalize the above inequality for the larger class of functions that are absolutely continuous and complex valued as well as for other norms of the difference \(f - \ell f' \).

\begin{theorem}
Let \(f : [a, b] \rightarrow \mathbb{C} \) be an absolutely continuous function on the interval \([a, b]\) with \(b > a > 0 \). Then for any \(t, x \in [a, b] \), we have

\[
|tf(x) - xf(t)| \leq \begin{cases}
\left\| f - \ell f' \right\|_\infty |x - t| & \text{if } f - \ell f' \in L_\infty [a, b], \\
\left(\frac{1}{2} \right)^{1/q} \left\| f - \ell f' \right\|_p \left| \frac{x^q}{p} - \frac{t^q}{p} \right|^{1/q} & \text{if } f - \ell f' \in L_p [a, b],
\end{cases}
\]

or equivalently

\[
\left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| \leq \begin{cases}
\left\| f - \ell f' \right\|_\infty \left| \frac{1}{x} - \frac{1}{t} \right| & \text{if } f - \ell f' \in L_\infty [a, b], \\
\left(\frac{1}{2} \right)^{1/q} \left\| f - \ell f' \right\|_p \left| \frac{1}{x^{2q-1}} - \frac{1}{t^{2q-1}} \right|^{1/q} & \text{if } f - \ell f' \in L_p [a, b],
\end{cases}
\]

\tag{2.2}
\end{theorem}

\begin{proof}
If \(f \) is absolutely continuous, then \(f/\ell \) is absolutely continuous on the interval \([a, b]\) that does not contain \(0 \) and

\[
\int_t^x \left(\frac{f(s)}{s} \right)' \, ds = \frac{f(x)}{x} - \frac{f(t)}{t}
\]

for any \(t, x \in [a, b] \) with \(x \neq t \).

Since

\[
\int_t^x \left(\frac{f(s)}{s} \right)' \, ds = \int_t^x \frac{f'(s) s - f(s)}{s^2} \, ds,
\]

we get the following identity:

\[
tf(x) - xf(t) = xt \int_t^x \frac{f'(s) s - f(s)}{s^2} \, ds. \tag{2.3}
\]
for any \(t, x \in [a, b] \).

We notice that the equality (2.3) was proved for the smaller class of differentiable function and in a different manner in [17].

Taking the modulus in (2.3), we have

\[
|tf(x) - xf(t)| = \left| xt \int_t^x \frac{f'(s) s - f(s)}{s^2} \, ds \right|
\leq xt \left| \int_t^x \frac{f'(s) s - f(s)}{s^2} \, ds \right| := I,
\]

and utilizing Hölder’s integral inequality we deduce

\[
I \leq xt \left\{ \sup_{s \in [t,x]} |f'(s) s - f(s)| \right\} \left(\int_t^x \frac{1}{s^2} \, ds \right)^{1/2} \leq \left(\frac{1}{2q - 1} \right)^{1/2} \|f - \ell f'\|_{\infty} |x - t|,
\]

\[
= \left(\frac{1}{2q - 1} \right)^{1/2} \|f - \ell f'\|_{\infty} \frac{|x^q - t^q|^{1/2}}{s^q - t^q} \left(\frac{1}{2q - 1} \right)^{1/2} < \frac{1}{p + \frac{1}{q} = 1},
\]

and the inequality (2.2) is proved. \(\square \)

Remark 2.2 The first inequality in (2.1) also holds in the same form for \(0 > b > a \).

3 Some Grüss-type inequalities

We have the following result of Grüss type.

Theorem 3.1 Let \(f, g : [a, b] \to \mathbb{C} \) be absolutely continuous functions on the interval \([a, b] \) with \(b > a > 0 \). If \(f', g' \in L_\infty[a, b] \), then

\[
\left| \frac{b^3 - a^3}{3} \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b tg(t) \, dt \right|
\leq \frac{1}{12} (b - a)^4 \left\| f - \ell f' \right\|_{\infty} \left\| g - \ell g' \right\|_{\infty}.
\]

The constant \(\frac{1}{12} \) is best possible.

Proof From the first inequality in (2.1), we have

\[
\left| \int_a^b \int_a^b (tf(x) - xf(t)) (tg(x) - xg(t)) \, dr \, dx \right|
\leq \int_a^b \int_a^b |(tf(x) - xf(t)) (tg(x) - xg(t))| \, dr \, dx
\leq \left\| f - \ell f' \right\|_{\infty} \left\| g - \ell g' \right\|_{\infty} \int_a^b (x - t)^2 \, dr \, dx.
\]

\[\square \]
Observe that
\[
\int_a^b \int_a^b (tf(x) - xf(t)) (tg(x) - xg(t)) \, dx \, dt
= \int_a^b \int_a^b \left[t^2 f(x) g(x) + x^2 f(t) g(t) - tg(t) xf(x) - f(t) txg(x) \right] \, dx \, dt
= 2 \left[\int_a^b t^2 \, dt \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b g(t) \, dt \right]
\]
and
\[
\int_a^b \int_a^b (x-t)^2 \, dx \, dt = \frac{1}{3} \int_a^b [(b-x)^3 + (x-a)^3] \, dx = \frac{1}{6} (b-a)^4.
\]
Utilizing the inequality (3.2), we deduce the desired result (3.1).

Now, assume that the inequality (3.1) holds with a constant $B > 0$ instead of $\frac{1}{12}$, i.e.,
\[
\left| \frac{b^3 - a^3}{3} \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b g(t) \, dt \right|
\leq B \left(b-a \right)^4 \| f - \ell f' \|_\infty \| g - \ell g' \|_\infty .
\] (3.3)

If we take $f(t) = g(t) = 1$, $t \in [a, b]$, then
\[
\frac{b^3 - a^3}{3} \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b g(t) \, dt
= \frac{b^3 - a^3}{3} (b-a) - \left(\frac{b^2 - a^2}{2} \right)^2 = \frac{1}{12} (b-a)^4
\]
and
\[
\| f - \ell f' \|_\infty = \| g - \ell g' \|_\infty = 1
\]
and by (3.3) we get $B \geq \frac{1}{12}$, which proves the sharpness of the constant. \(\square\)

The following result for the complementary (p, q)-norms, with $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, holds.

Theorem 3.2 Let $f, g : [a, b] \to \mathbb{C}$ be absolutely continuous functions on the interval $[a, b]$ with $b > a > 0$. If $f' \in L_p[a, b]$, $g' \in L_q[a, b]$ with $p, q > 1$, $p, q \neq 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then
\[
\left| \frac{b^3 - a^3}{3} \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b g(t) \, dt \right|
\leq \frac{1}{2} \frac{1}{(2q-1)^{1/q} (2p-1)^{1/p}} \, \| f - \ell f' \|_p \| g - \ell g' \|_q \, M_{p}^{1/p} (a, b) \, M_{q}^{1/q} (a, b) .
\] (3.4)

where
\[
M_q(a, b) := \int_a^b \int_a^b \left| t^q x^q - \frac{x^q}{t^q} \right| \, dx \, dt .
\]
We have the bounds
\[
M_q(a, b) \leq (b-a) \, N_{q}^{1/2} (a, b)
\]
and
\[
M_p(a, b) \leq (b-a) \, N_{p}^{1/2} (a, b)
\]
where, for $r > 1$,

$$N_r (a, b) := \begin{cases} \frac{1}{2} \left(\frac{b^{2r+1}-a^{2r+1}}{2r+1}, \frac{b^{2r+3}-a^{2r+3}}{2r+3} - \left(\frac{b^2-a^2}{2} \right)^2 \right), r \neq \frac{3}{2} \\ (b^2-a^2) \left(\frac{b^2+a^2}{2}, \ln \frac{b}{a} - \left(\frac{b^2-a^2}{2} \right) \right), r = \frac{3}{2}. \end{cases}$$

Proof From the second inequality in (2.1), we have

$$|tf(x) - xf(t)| \leq \frac{1}{2q-1} \left\| f - \ell f' \right\|_p \left(\frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right)^{1/q}$$

and

$$|rg(x) - xg(t)| \leq \frac{1}{2p-1} \left\| g - \ell g' \right\|_q \left(\frac{x^p}{t^{p-1}} - \frac{t^p}{x^{p-1}} \right)^{1/p}$$

for any $t, x \in [a, b]$.

If we multiply these inequalities and integrate, then we get

$$\left| \int_a^b \int_a^b (tf(x) - xf(t))(tg(x) - xg(t)) \, dr \, dx \right|$$

$$\leq \int_a^b \int_a^b |(tf(x) - xf(t))(tg(x) - xg(t))| \, dr \, dx$$

$$\leq \frac{1}{(2q-1)^{1/q} (2p-1)^{1/p}} \left\| f - \ell f' \right\|_p \left\| g - \ell g' \right\|_q
\times \int_a^b \int_a^b \left| \frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right|^{1/q} \left| \frac{x^p}{t^{p-1}} - \frac{t^p}{x^{p-1}} \right|^{1/p} \, dr \, dx. \quad (3.5)$$

Utilizing Hölder’s integral inequality for double integrals, we have

$$\int_a^b \int_a^b \left| \frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right|^{1/q} \left| \frac{x^p}{t^{p-1}} - \frac{t^p}{x^{p-1}} \right|^{1/p} \, dr \, dx$$

$$\leq \left(\int_a^b \int_a^b \left| \frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right| \, dr \, dx \right)^{1/q} \left(\int_a^b \int_a^b \left| \frac{x^p}{t^{p-1}} - \frac{t^p}{x^{p-1}} \right| \, dr \, dx \right)^{1/p}$$

$$= M_q^{1/q} (a, b) M_p^{1/p} (a, b) \quad (3.6)$$

for $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Utilizing Cauchy–Bunyakowsky–Schwarz integral inequality for double integrals, we have

$$M_q (a, b) = \int_a^b \int_a^b \left| \frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right| \, dr \, dx$$

$$\leq \left(\int_a^b \int_a^b \, dr \, dx \right)^{1/2} \left(\int_a^b \int_a^b \left(\frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right)^2 \, dr \, dx \right)^{1/2}$$

$$= (b-a) \left(\int_a^b \int_a^b \left(\frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right)^2 \, dr \, dx \right)^{1/2}.$$
Theorem 3.4

Observe that

\[N_q(a, b) := \int_a^b \int_a^b \left(\frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right)^2 \, dx \, dt \]

\[= \int_a^b \int_a^b \frac{x^{2q}}{t^{2(q-1)}} \, dx \, dt - 2 \int_a^b \int_a^b \frac{x^q}{t^{q-1}} \frac{t^q}{x^{q-1}} \, dx \, dt + \int_a^b \int_a^b \frac{t^{2q}}{x^{2(q-1)}} \, dx \, dt \]

\[= 2 \int_a^b x^{2q} \, dx \int_a^b t^{-2(q-1)} \, dt - 2 \left(\int_a^b x \, dx \right)^2 \]

\[= 2 \left(\frac{b^{2q+1} - a^{2q+1}}{2q+1} - \frac{b^{-2q+3} - a^{-2q+3}}{-2q+3} - \left(\frac{b^2 - a^2}{2} \right)^2 \right) \]

provided \(q \neq \frac{3}{2} \).

If \(q = \frac{3}{2} \), then

\[N_q(a, b) = (b^2 - a^2) \left[\frac{b^2 + a^2}{2} \cdot \ln \frac{b}{a} - \frac{b^2 - a^2}{2} \right]. \]

Therefore,

\[M_q(a, b) \leq (b - a) N^{1/2}_q(a, b) \]

and, similarly,

\[M_p(a, b) \leq (b - a) N^{1/2}_q(a, b). \]

\[\square \]

Remark 3.3 The double integral

\[M_q(a, b) := \int_a^b \int_a^b \left| \frac{x^q}{t^{q-1}} - \frac{t^q}{x^{q-1}} \right| \, dx \, dt \]

can be computed exactly by iterating the integrals. However, the final form is too complicated to be stated here.

The Euclidean norms case is as follows:

Theorem 3.4 Let \(f, g : [a, b] \to \mathbb{C} \) be absolutely continuous functions on the interval \([a, b] \) with \(b > a > 0 \). If \(f', g' \in L_2[a, b] \), then

\[
\left| \frac{b^3 - a^3}{3} \int_a^b f(t) g(t) \, dt - \int_a^b t f(t) \, dt \int_a^b t g(t) \, dt \right|
\]

\[
\leq \frac{1}{9} \left\| f - \ell f' \right\|_2 \left\| g - \ell g' \right\|_2 \left[(b^3 + a^3) \ln \frac{b}{a} - \frac{2}{3} (b^3 - a^3) \right]. \tag{3.7}
\]

Proof From the second inequality in (2.1), we have

\[
|tf(x) - xf(t)| \leq \frac{1}{\sqrt{3}} \left\| f - \ell f' \right\|_2 \left| \frac{x^2}{t} - \frac{t^2}{x} \right|^{1/2}
\]

and

\[
|tg(x) - xg(t)| \leq \frac{1}{\sqrt{3}} \left\| g - \ell g' \right\|_2 \left| \frac{x^2}{t} - \frac{t^2}{x} \right|^{1/2}
\]

for any \(t, x \in [a, b] \).
If we multiply these inequalities and integrate, then we get
\[
\left| \int_a^b \left(\int_a^b (tf(x) - xf(t)) (tg(x) - xg(t)) \, dt \right) \, dx \right|
\leq \int_a^b \left(\int_a^b |tf(x) - xf(t)| (tg(x) - xg(t)) \, dt \right) \, dx
\leq \frac{1}{3} \| f - \ell f' \|_2 \| g - \ell g' \|_2 \int_a^b \int_a^b \left| \frac{x^2}{t} - \frac{t^2}{x} \right| \, dx.
\tag{3.8}
\]
Since
\[
\int_a^b \int_a^b \left| \frac{x^2}{t} - \frac{t^2}{x} \right| \, dx
= \int_a^b \left(\int_a^x \left(\frac{x^2}{t} - \frac{t^2}{x} \right) \, dt + \int_x^b \left(\frac{t^2}{x} - \frac{x^2}{t} \right) \, dt \right) \, dx
= \int_a^b \left(x^2 (2 \ln x - \ln a - \ln b) + \frac{b^3 + a^3 - 2x^3}{3x} \right) \, dx
\]
and
\[
\int_a^b x^2 (2 \ln x - \ln a - \ln b) \, dx
= \int_a^b 2x^2 \ln x \, dx - \ln (ab) \int_a^b x^2 \, dx
= \frac{(b^3 + a^3) \ln \frac{b}{a}}{3} - \frac{2}{9} (b^3 - a^3),
\]
while
\[
\int_a^b \frac{b^3 + a^3 - 2x^3}{3x} \, dx = \frac{(b^3 + a^3) \ln \frac{b}{a}}{3} - \frac{2}{9} (b^3 - a^3),
\]
then we conclude that
\[
\int_a^b \int_a^b \left| \frac{x^2}{t} - \frac{t^2}{x} \right| \, dx \, dt
= \frac{2}{3} \left[(b^3 + a^3) \ln \frac{b}{a} - \frac{2}{3} (b^3 - a^3) \right].
\]
Making use of the inequality (3.8), we deduce the desired result (3.7). \(\square \)

Remark 3.5 It is an open question to the author if \(\frac{1}{9} \) is best possible in (3.7).

Theorem 3.6 Let \(f, g : [a, b] \to \mathbb{C} \) be absolutely continuous functions on the interval \([a, b]\) with \(b > a > 0 \). Then,
\[
\left| \int_a^b f(t) g(t) \, dt - \int_a^b tf(t) \, dt \int_a^b tg(t) \, dt \right|
\leq \| f - \ell f' \|_1 \| g - \ell g' \|_1 \frac{2b^3 + a^3 - 3ab^2}{6a}.
\tag{3.9}
\]

Proof From the third inequality in (2.1), we have
\[
\left| \int_a^b \left(\int_a^b (tf(x) - xf(t)) (tg(x) - xg(t)) \, dt \right) \, dx \right|
\leq \int_a^b \left(\int_a^b |tf(x) - xf(t)| (tg(x) - xg(t)) \, dt \right) \, dx
\leq \| f - \ell f' \|_1 \| g - \ell g' \|_1 \int_a^b \int_a^b \left(\max \{t, x\} \right) \frac{2b^3 + a^3 - 3ab^2}{6a} \, dx.
\tag{3.10}
\]
Observe that

\[
\int_a^b \int_a^b \left(\frac{\max\{t, x\}}{\min\{t, x\}} \right)^2 \, dt \, dx
= \int_a^b \left[\int_x^a \left(\frac{\max\{t, x\}}{\min\{t, x\}} \right)^2 \, dt \right] \, dx
= \int_a^b \left[\int_a^x \left(\frac{t}{x} \right)^2 \, dt + \int_x^b \left(\frac{t}{x} \right)^2 \, dt \right] \, dx
= \frac{2b^3 + a^3 - 3ab^2}{6a},
\]

which together with (3.10) produces the desired inequality (3.9).

\[\Box\]

4 Some related results

The following result holds.

Theorem 4.1 Let \(f, g : [a, b] \to \mathbb{C} \) be absolutely continuous functions on the interval \([a, b]\) with \(b > a > 0 \). If \(f', g' \in L_{\infty} [a, b] \), then

\[
\left| (b - a) \int_a^b \frac{f(t)g(t)}{t^2} \, dt - \int_a^b \frac{f(t)}{t} \, dt \int_a^b \frac{g(t)}{t} \, dt \right|
\leq (b - a)^2 \frac{L^2(a, b) - G^2(a, b)}{L^2(a, b) G^2(a, b)} \left\| f - \ell f' \right\|_\infty \left\| g - \ell g' \right\|_\infty,
\]

where \(G(a, b) := \sqrt{ab} \) is the geometric mean and

\[L(a, b) := \frac{b - a}{\ln b - \ln a} \]

is the Logarithmic mean.

The inequality (4.1) is sharp.

Proof From the first inequality in (2.2), we have

\[
\left| \left(f(x) - \frac{f(t)}{t} \right) \left(g(x) - \frac{g(t)}{t} \right) \right|
\leq \left\| f - \ell f' \right\|_\infty \left\| g - \ell g' \right\|_\infty \left(\frac{1}{t} - \frac{1}{x} \right)^2
\]

for any \(t, x \in [a, b] \).

Integrating this inequality on \([a, b]^2\), we get

\[
\left| \int_a^b \int_a^b \left(f(x) - \frac{f(t)}{t} \right) \left(g(x) - \frac{g(t)}{t} \right) \, dt \, dx \right|
\leq \left\| f - \ell f' \right\|_\infty \left\| g - \ell g' \right\|_\infty \int_a^b \int_a^b \left(\frac{1}{t} - \frac{1}{x} \right)^2 \, dt \, dx.
\]

(4.3)
We have
\[
\int_a^b \int_a^b \left(\frac{f(x)}{x} - \frac{f(t)}{t} \right) \left(\frac{g(x)}{x} - \frac{g(t)}{t} \right) \, dx \, dt = 2 \left[(b-a) \int_a^b \frac{f(t)g(t)}{t^2} \, dt - \int_a^b \frac{f(t)}{t} \, dt \int_a^b \frac{g(t)}{t} \, dt \right]
\]
and
\[
\int_a^b \int_a^b \left(\frac{1}{t} - \frac{1}{x} \right)^2 \, dx \, dt = 2 (b-a)^2 \frac{L^2(a,b) - G^2(a,b)}{L^2(a,b) G^2(a,b)}.
\]
Making use of (4.3), we get the desired result (4.1).

If we take \(f(t) = g(t) = 1 \), then we have
\[
(b-a) \int_a^b \frac{f(t)g(t)}{t^2} \, dt - \int_a^b \frac{f(t)}{t} \, dt \int_a^b \frac{g(t)}{t} \, dt = (b-a)^2 \frac{L^2(a,b) - G^2(a,b)}{L^2(a,b) G^2(a,b)}
\]
and
\[
\| f - \ell f' \|_\infty = \| g - \ell g' \|_\infty = 1,
\]
and we obtain in both sides of (4.1) the same quantity
\[
(b-a)^2 \frac{L^2(a,b) - G^2(a,b)}{L^2(a,b) G^2(a,b)}.
\]

The case of Euclidian norms is as follows:

Theorem 4.2 Let \(f, g : [a, b] \to \mathbb{C} \) be absolutely continuous functions on the interval \([a, b]\) with \(b > a > 0 \). If \(f', g' \in L_2[a, b] \), then
\[
\left| (b-a) \int_a^b \frac{f(t)g(t)}{t^2} \, dt - \int_a^b \frac{f(t)}{t} \, dt \int_a^b \frac{g(t)}{t} \, dt \right| \leq \frac{1}{6} \| f - \ell f' \|_2 \| g - \ell g' \|_2 \frac{2(b-a)^3}{a^3 b^3}.
\]

Proof From the second inequality in (2.2) for \(p = q = 2 \), we have
\[
\left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| \leq \frac{1}{\sqrt{3}} \| f - \ell f' \|_2 \left| \frac{1}{t^3} - \frac{1}{x^3} \right|^{1/2}
\]
and
\[
\left| \frac{g(x)}{x} - \frac{g(t)}{t} \right| \leq \frac{1}{\sqrt{3}} \| g - \ell g' \|_2 \left| \frac{1}{t^3} - \frac{1}{x^3} \right|^{1/2}
\]
for any \(t, x \in [a, b] \).

On multiplying (4.5) with (4.6), we derive
\[
\left| \left(\frac{f(x)}{x} - \frac{f(t)}{t} \right) \left(\frac{g(x)}{x} - \frac{g(t)}{t} \right) \right| \leq \frac{1}{3} \| f - \ell f' \|_2 \| g - \ell g' \|_2 \left| \frac{1}{t^3} - \frac{1}{x^3} \right|
\]
for any \(t, x \in [a, b] \).
Integrating this inequality on \([a, b]^2\), we get
\[
\int_a^b \int_a^b \left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| \left(\frac{g(x)}{x} - \frac{g(t)}{t} \right) \, dx \, dt \\
\leq \int_a^b \int_a^b \left| \left(\frac{f(x)}{x} - \frac{f(t)}{t} \right) \left(\frac{g(x)}{x} - \frac{g(t)}{t} \right) \right| \, dx \, dt \\
\leq \frac{1}{3} \left\| f - \ell f' \right\|_2 \left\| g - \ell g' \right\|_2 \int_a^b \int_a^b \left| \frac{1}{x^3} - \frac{1}{x^3} \right| \, dx \, dt = \frac{(b - a)^3}{a^2 b^2}.
\]

From (4.8), we then obtain the desired result (4.4). \(\square\)

Remark 4.3 It is an open question to the author if \(\frac{1}{6}\) is the best possible constant in (4.4).

The interested reader may obtain other similar results in terms of the norms \(\left\| f - \ell f' \right\|_p \left\| g - \ell g' \right\|_q\) with \(p, q > 1\), \(p, q \neq 2\) and \(\frac{1}{p} + \frac{1}{q} = 1\). However, the details are omitted.

Acknowledgments The author would like to thank the anonymous referees for their valuable comments that have been implemented in the final version of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Acu, A.M.; Sofonea, F.D.: On an inequality of Ostrowski type. *J. Sci. Arts* 3(16), 281–287 (2011)
2. Acu, A.M.; Baboș, A.; Sofonea, F.D.: The mean value theorems and inequalities of Ostrowski type. Sci. Stud. Res. Math. Inform. 21(1), 5–16 (2011)
3. Cerone, P.; Dragomir, S.S.: New bounds for the Čebyšev functional. Appl. Math. Lett. 18, 603–611 (2005)
4. Cerone, P.; Dragomir, S.S.: A refinement of the Grüss inequality and applications. Tamkang J. Math. 38(1), 37–49 (2007)
5. Cerone, P.; Dragomir, S.S.: Some bounds in terms of \(\Delta\)-seminorms for Ostrowski-Grüss type inequalities. Soochow J. Math. 27(4), 423–434 (2001)
6. Cerone, P.; Dragomir, S.S.; Roumeliotis, J. Grüss inequality in terms of \(\Delta\)-seminorms and applications. Integr. Transforms Spec. Funct. 14(3), 205–216 (2003)
7. Chebyshev, P.L.: Sur les expressions approximatives des intégraux définis par les prises paires entre les même limites. Proc. Math. Soc. Charkow 2, 93–98 (1882)
8. Cheng, X-L.; Sun, J.: Note on the perturbed trapezoid inequality. J. Ineq. Pure Appl. Math. 3(2), (2002) (art. 29, 7 pp)
9. Dragomir, S.S.: An inequality of Ostrowski type via Pompeiu’s mean value theorem. J. Inequal. Pure Appl. Math. 6(3), (2005) (article 83, 9 pp)
10. Grüss, G.: Über das Maximum des absoluten Betrages von \(\int \frac{1}{b-a} \int_0^b f(x)g(x) \, dx - \int \frac{1}{b-a} \int_0^b f(x) \, dx \int_0^b g(x) \, dx\). Math. Z. 39, 215–226 (1935)
11. Li, X.; Mohapatra, R.N.; Rodriguez, R.S.: Grüss-type inequalities. J. Math. Anal. Appl. 267(2), 434–443 (2002)
12. Lupaș, A.: The best constant in an integral inequality. Mathematica (Cluj, Romania) 15(38(2)), 219–222 (1973)
13. Mercer, A.M.: An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math. 6(4), (2005) (article 93, 4 pp)
14. Mitrović, D.S.; Pečarić, J.E.; Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht/Boston/London (1993)
15. Ostrowski, A.M.: On an integral inequality. Aequat. Math. 4, 358–373 (1970)
16. Pachpatte, B.G.: On Grüss like integral inequalities via Pompeiu’s mean value theorem. J. Inequal. Pure Appl. Math. 6(3), (2005) (article 82, 5 pp)
17. Pečarić, J.; Ungar, Š.: On an inequality of Ostrowski type. J. Inequal. Pure Appl. Math. 7(4), (2006) (art. 151, 5 pp)
18. Pompeiu, D.: Sur une proposition analogue au théorème des accroissements fins. Mathematica (Cluj, Romania) 22, 143–146 (1946)
19. Popa, E.C.: An inequality of Ostrowski type via a mean value theorem. Gen. Math. 15(1), 93–100 (2007)
20. Sahoo, P.K.; Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific, Singapore, New Jersey, London, Hong Kong (2000)