INFLUENCE OF THE CONDITIONS FOR THE PREPARATION AND THERMAL DESTRUCTION OF AMMONIUM TETRAVANADATE ON THE COMPOSITION OF OXIDE-VANADIC ELECTRO-FUNCTIONAL MATERIALS

K.V. Luskan, A.O. Gyrenko, O.P. Musov, O.P. Klimenko. Вплив умов отримання та термодеструкції амоній тетраванадату на склад оксиднованадієвих електрофункціональних матеріалів. Підсумовано результати досліджень з вивчення впливу умов окиснення і сублімації на склад продуктів термодеструкції амоній тетраванадату. Розглянуто вплив умов виділення амоній тетраванадату на склад оксидов ванадію. Оксиди ванадію утворюються на четвертій стадії термічного розкладання амоній тетраванадату. Встановлено, що виділення осаду методом центрифугування призводить до отримання VO2 в інертній атмосфері, тоді як сублімаційна сушка – до V2O3, високодисперсний V2O5 утворюється в окисній атмосфері. Високодисперсні оксиди ванадію з різним ступенем окислення можуть бути отримані за розробленою технологією.

Key words: vanadium oxides, ammonium tetravanadate, synthesis, centrifugation, freeze drying

Introduction. Vanadium salts (IV) have properties that open up great opportunities for using them as a precursor for the synthesis of highly dispersed vanadium oxides of varying degrees of oxidation (V2O3, V3O5, VO2).

The final synthesis products are widely used in optical switches, memory elements, energy-saving coatings for glass, surfaces of optical media information, catalysts, cathode materials in lithium batteries [1 – 3].

The analysis of recent researches and publications presented in the scientific literature on methods of synthesis of vanadium oxides has shown that in the last decade the authors devote considerable attention to high-temperature decomposition of precursors – nano dispersed salts of vanadium (IV) [2, 4 – 6].

DOI 10.15276/opu.2.52.2017.13

© 2017 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
It should be noted that this method allows to carry out the process of synthesis in optimal conditions in terms of the effectiveness of management of the properties of the final product, energy costs and productivity. It is likely that the composition and quality of the final products of vanadium oxides will depend on the conditions of synthesis and thermal decomposition of the precursor. In this regard, it is relevant to conduct comprehensive research on the choice of the salt of vanadium (IV), the methods of its synthesis and thermal decomposition.

A number of papers have been published on the use of the following precursors: ammonium vanadite NH₄H₃V₂O₆ [4], ammonium hexavalentate (NH₄)₂V₆O₁₆ [6], tetravanadienate ammonium (NH₄)₂V₄O₉ [7]. The use of the first two compounds leads to the production of initial products with impurities of other compounds, which requires additional treatment of vanadium salts before thermal decomposition. Application of the latter contributes to obtaining finite nanocrystalline vanadium oxides with a high degree of chemical purity.

Thus, based on the analysis of the disadvantages and features of various vanadium salts, the choice of tetravanadate ammonium as the precursor for the most effective synthesis of vanadium oxides is theoretically justified.

One of the first studies on the properties and composition (NH₄)₂V₄O₉ was published in 1876 [8]. Despite the high interest in this topic until recently full research of physical and chemical properties and the development of technology for the production of ammonium tetravanadate was not conducted.

The purpose of the study is to determine the technological parameters for the production of oxides of vanadium with different degrees of oxidation (V₂O₃, VO₂, V₂O₅).

To achieve the goal you need to solve the following tasks:
- to establish the physical and chemical properties of the precursor;
- to determine the influence of sedimentation (NH₄)₂V₄O₉ on the composition of final products V₂O₅, VO₂;
- to establish conditions for the thermal decomposition of the precursor.

Materials and methods. The process of obtaining salt of vanadium (IV) includes three main stages: obtaining an aqueous solution of oxovanadium (IV), precipitation of the product with a solution of ammonia, separation of the precipitate.

The solution was obtained by dissolving 2.4...3 g of V₂O₅ (reagent grade) and 8.32 g H₂C₂O₄ (reagent grade) corresponding to the molar ratio of V₂O₅:H₂C₂O₄ from 1: 4 to 1: 5 in 100 ml. Water under heating to a temperature of 330...340 K. The product was precipitated from a solution of oxyanodium (IV) with 25 % ammonium hydroxide to pH = 10.2 with form a dark brown precipitate separated by two methods: centrifugation and sublimation drying.

At the final fourth stage of technology, the dried salt of tetravanadate ammonium was thermally decomposed in air and in a neutral atmosphere of argon.

To determine the phase composition of ammonium powders of tetravanadate and vanadium oxides, an X-ray diffraction analysis performed on the DRON-3 installation in monochromatized copper radiation of CuKα was used.

He differential-thermal analysis of vanadium dioxin was carried out on the derivatograph “Q-1500” of the system F. Paulik, I. Paulik, L. Erdey of the MOM company.

Results. As a research object, salt of ammonium tetravanadate was selected. This choice is due to the fact that when regulating the conditions of salt synthesis and its thermal decomposition, chemically pure products of vanadium oxides of different phase composition are obtained. That is why it is important to determine the physical and chemical properties, the influence of sedimentation methods and the conditions for the thermal decomposition of tetravanadate ammonium in order to create the bases for the technological process of obtaining V₂O₃, VO₂, V₂O₅.

The product obtained after the interaction of the solution of oxovanadium (IV) with ammonium hydroxide is a dark brown precipitate (NH₄)₂V₄O₉, which shows high solubility with decreasing pH and is characterized by high oxygen oxidation rate.
To obtain vanadium dioxide, the precursor should contain a minimum amount of compounds of vanadium, 5-oxide and oxalate ions. There is an assumption that the high-temperature treatment of ammonium tetravanadate salt, the presence of impurities of oxalate ions can lead to the formation of V$_2$O$_3$.

Taking into account the above, an important stage in the technology for the production of tetravanadate ammonium is the separation of the precipitate. For this purpose, it was advisable to use two methods – centrifugation and sublimation drying which, unlike filtration, aimed at minimizing the contact of a precipitate with oxygen, which prevents oxidation of V (IV) to V (V), and, more likely, helps to remove impurities of oxalate ions.

The first method is aimed at separating the excess of oxalate ions by three to four rinsing operations with distilled water, minimizing contact with oxygen in the air. The solubility (NH$_4$)$_2$V$_4$O$_9$ in water is significantly dependent on pH (Fig. 1).

When the pH approaches up to 8.8, the solubility of the ammonium salt of tetravanadate increases dramatically, so that in order to avoid costs, it is necessary to rinse with a weak solution of ammonium hydroxide. The precipitate is dried in an atmosphere of argon at a temperature of 453...473 K for a further 120...180 minutes.

The second method is aimed at the decomposition of an excess of oxalate ions at a set temperature of 453...473 K for 50...70 minutes in vacuum conditions. Due to the peculiarities of the rotational evaporator, a simultaneous separation of the sediment occurs due to distillation of the filtrate and its drying, which greatly reduces the synthesis time of (NH$_4$)$_2$V$_4$O$_9$.

As seen from X-ray diffraction (Figure 2), dried ammonium powders of tetravanadate, obtained by two methods, have a pronounced crystalline structure with diffraction peaks, which are inherent to the phases (NH$_4$)$_2$V$_4$O$_9$ and (NH$_4$)$_4$V$_6$O$_{16}$.

When thermally treated, structural compounds (NH$_4$)$_2$V$_4$O$_9$, (NH$_4$)$_4$V$_6$O$_{16}$ exposed decomposition processes and do not affect the composition of vanadium oxides, which is confirmed by qualitative identification using the method of X-ray diffraction analysis.

For final products nanodispersed vanadium oxide powders the ammonium tetravanadate, obtained by both methods, was heat treated in two steps: at a temperature of 873...923 K for 50...60
minutes with subsequent exposure at a temperature of 1123...1173 K for 10...15 min. in an atmosphere of argon.

The result of such a heat treatment of ammonium precursor, synthesized by centrifugation, is a chemically pure crystalline powder of vanadium dioxin. This is evidenced by the diffractogram (Fig. 3, a) and the expressive endothermic peak on the curve obtained by differential thermal analysis (DTA) at a temperature of 341 K (Fig. 3, b), corresponding to the characteristic of vanadium dioxide semiconductor-metal transition.

\[
\begin{align*}
\Delta T & \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Temperature, K} & \quad 320 \quad 340 \quad 360 \quad 380 \quad 400
\end{align*}
\]

Fig. 3. Diffraction diagram of vanadium dioxide powder obtained by thermal decomposition of tetravanadate of ammonium, synthesized using a centrifugation method at a temperature of 873 K - 60 min and with subsequent exposition 1173 K - 10 min in the atmosphere of argon (a) and the DTA VO_2 curve obtained from (NH_4)_2V_4O_9 (b)

Identical heat treatment of the powder (NH_4)_2V_4O_9, obtained by sublimation drying results in the production of V_2O_3 (Fig. 4).

\[
\begin{align*}
\Delta T & \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{Temperature, K} & \quad 320 \quad 340 \quad 360 \quad 380 \quad 400
\end{align*}
\]

Fig. 4. Diffraction diagram of vanadium dioxide powder obtained by thermal decomposition of tetravanadate ammonium, synthesized using sublimation drying at a temperature of 873 K for 60 min. and heat treatment at a temperature of 1173 K for 10 minutes. in an atmosphere of argon

This is explained by the fact that an excess of oxalic acid, present in the precipitate is not removed and helps restore V^{5+} to V^{3+}.

To obtain nanocrystalline pentoxide vanadium (Fig. 5), precursors synthesized by both methods were thermally treated at a temperature of 643...663 K for 50...60 minutes in the atmosphere of air.

It has been shown that nanosized crystals of vanadium pentoxide have improved electrochemical properties, which makes it possible to use them as a cathode material for lithium batteries [2].
Conclusion. Thus, the influence of the conditions of obtaining and thermo-destruction of tetravanadate ammonium on the composition of vanadium oxides \(\text{V}_2\text{O}_3, \text{VO}_2, \text{V}_2\text{O}_5\) is investigated. The synthesis process of \((\text{NH}_4)_2\text{V}_4\text{O}_9\) involves three basic steps: obtaining an aqueous solution of oxovanadium (IV), precipitating the product with a solution of ammonia, and separating the salt precipitate. The corresponding vanadium oxides are formed at the fourth stage of the thermal decomposition of the resulting precipitate.

\[
\begin{align*}
5.75\% & \text{V}_2\text{O}_5 \\
4.37\% & \text{V}_2\text{O}_5 \\
3.41\% & \text{V}_2\text{O}_5 \\
2.88\% & \text{V}_2\text{O}_5 \\
2.61\% & \text{V}_2\text{O}_5 \\
2.18\% & \text{V}_2\text{O}_5 \\
1.98\% & \text{V}_2\text{O}_5 \\
1.78\% & \text{V}_2\text{O}_5 \\
1.56\% & \text{V}_2\text{O}_5 \\
1.29\% & \text{V}_2\text{O}_5 \\
\end{align*}
\]

Fig. 5. Diffractogram of powder of vanadium pentoxide obtained by thermal decomposition of tetravanadate ammonium at a temperature of 653 K for 50 min. in the atmosphere of air.

The possibility of separating the sediment by methods of centrifugation and sublimation drying was investigated taking into account the physical and chemical properties of the precursor (high solubility and high oxygen oxidation rate).

It is shown that \(\text{VO}_2\) is formed as a result of thermal decomposition in an inert atmosphere of a precipitate obtained by centrifugation at the third stage of the technological process. At the same time, it is possible to obtain only \(\text{V}_2\text{O}_3\) as a result of thermal degradation in an inert atmosphere from a precipitate containing the salt of tetravanadate of ammonium separated from the solution by sublimation drying.

Separation of a precipitate by heat treatment in an oxidized atmosphere, regardless of the method, allows for the production of highly dispersed \(\text{V}_2\text{O}_3\).

Література

1. External electric field manipulations on structural phase transition of vanadium dioxide nanoparticles and its application in field effect transistor / W.W. Li, J. J. Zhu, J.R. Liang et al. // Physical. Chemistry. – 2011. – Vol. 115. – PP. 23558 – 23563.
2. Influence of thermal-decomposition temperatures on structures and properties of \(\text{V}_2\text{O}_5\) as cathode materials for lithium ion battery / Y. Chen, C. Cheng, W. Chen, H. Liu, J. Zhu // Progress in Natural Science: Materials International. – 2015. – Vol. 25, Issue 1. – PP. 42 – 46.
3. Electrodymanics of the vanadium oxides \(\text{VO}_2\) and \(\text{V}_2\text{O}_3\) / M.M. Qazilbash, A.A. Schafgans, K.S. Burch, D.N. Basov et. al. // Physical Review. – 2008. – Vol. 77, Issue 11. – PP. 1098 – 0121.
4. Пат. 100940 Україна, МПК C01G 31/00. Спосіб отримання нанодисперсового діоксиду ванадію / Черненко І.М., Івон О.І., Колбунов В.Р., Олійник О.Ю.; патентовласник ДВНЗ «Український державний хіміко-технологічний університет», – заяв. 20.09.2011; надр. 11.02.2013, Бюл № 3.
5. Phase and morphology evolution of \(\text{VO}_2\) nanoparticles using a novel hydrothermal system for thermo-chromatic applications: the growth mechanism and effect of ammonium (\(\text{NH}_4^+\)) / B. Dong, N. Shen, C. Cao, Z. Chen, H. Luo// RSC Advances. – 2016. – Vol. 6, Issue 85. – PP. 81559 – 81568.
6. Пат. 2162057 Російська Федерація, МПК C01G 31/02. Микрочастиці діоксиду ванадію, спосіб их отримання, в частинності для поверхневих покриттів / Легран П., Гаваррі Ж., Вальмалет Ж.,
Вакье Ж., Лефевр Д., Ле Пантюр Жевко; патентовласник Ле Пантюр Жефко – заявл. 03.11.1995; надр. 20.01.2001.
7. Пат. 104512 Україна, МПК С01G 31/00. Спосіб отримання нанодисперсного порошку тетраванадату амонію / Лускань К.В., Мисов О.П., Гиренко А.О; патентовласник ДВНЗ «Український державний хіміко-технологічний університет». – № u201506327; заявл. 26.06.2015; надр. 10.02.2016, Бюл № 3.
8. Crow, J.K. On Hypovanadic Oxide (Vanadium Tetroxide), and its compounds / J.K. Crow // Chemical Society. – 1876. – Vol. 30, – PP. 453 – 462.

References
1. Li, W.W., Zhu, J. J., & Liang J.R. et al. (2011). External electric field manipulations on structural phase transition of vanadium dioxide nanoparticles and its application in field effect transistor. Physical Chemistry, 115, 23558–23563.
2. Chen, Y., Cheng, C., Chen, W., Liu H., & Zhu, J. (2015). Influence of thermal-decomposition temperatures on structures and properties of V2O5 as cathode materials for lithium ion battery. Progress in Natural Science: Materials International, 25, 42–46.
3. Qazilbash, M.M., Schafgans, A.A., Burch, K.S., & Basov D.N. et. al. (2008). Electrodynamics of the vanadium oxides VO2 and V2O3. Physical Review, 77, 1098–0121.
4. Chernenko, I.M., Ivon, O.I., Kolbynov, V.R., & Oliynek, O. (2013). Sposib otrymannya nanodispersnoho dioksydu vanadiyu [Method nanodispersed vanadium dioxide]. Ukraine Patent: UA 100940.
5. Dong, B., Shen, N., Cao, C., Chen, Z., & Luo, H. (2016). Phase and morphology evolution of VO2 nanoparticles using a novel hydrothermal system for thermochromic applications: the growth mechanism and effect of ammonium (NH4+). RSC Advances, 6, 81559–81568.
6. Lergan, P, Gavari, G., Valmalet, G., Vake, G., Lefevr, D., & Le Pantyr Gevko. (2001). Mykrochastytsy dyoksydu vanadiyu, sposob ykh poluchenyya, v chastnosti dlya poverkhnosti pokrytyy [Microparticles of vanadium dioxide, a process for their preparation, in particular for surface coatings]. Russia Patent: 2162057.
7. Luskan, K.V., Mysov, O.P., & Gyrenko, A.O. (2016). Sposib otrymannya nanodispersnoho poroshku tetravanadatu amoniyu [Method nanodispersed powdered ammonium tetravanadatu]. Ukraine Patent: UA 104512.
8. Crow, J.K. (1876). On Hypovanadic Oxide (Vanadium Tetroxide), and its compounds. Chemical Society, 30, 453–462.

Received May 05, 2017
Accepted July 24, 2017