Research Paper
Effect of Local Fatigue in Quadriceps and Hamstring Muscles on Knee Joint Proprioception in Healthy Women

Mahya Kamrani1, *Mehdi Khaleghi Tazeji2

1. Department of Physical Education & Sport Sciences, Faculty of Literature, Humanities and Social Sciences, Science and Research Branch of the Islamic Azad University, Tehran, Iran.
2. Department of Biomechanics and Sport Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.

Abstract

Objective Proprioception is part of the body's somatosensory system that is responsible for collecting information for the central nervous system to inform about the status of different parts of the body relative to each other. One of the causes of impaired proprioception is fatigue. This study aimed to investigate the effect of quadriceps and hamstrings muscles fatigue on knee joint proprioception of healthy women.

Method Participants were 20 healthy young women aged 25-35 years who had normal knee joint range of motion and muscle strength with no any musculoskeletal disorders. Local fatigue of quadriceps and hamstring muscles was measured by a isokinetic dynamometer. The proprioception status in knee joint was measured in both active and inactive positions using target angle reconstruction test (30, 45 and 60 degrees flexion).

Result There was no significant difference between pre-test and post-test scores in local fatigue of quadriceps and hamstring muscles at 45 degrees angle in passive condition (P>0.05), while the difference was significant at 30 and 60 degree angles in passive condition (P<0.05).

Conclusion The quadriceps and hamstring muscles fatigue can reduce the knee joint proprioception, where the effect of hamstring muscle fatigue on the knee joint proprioception was higher compared to the quadriceps muscle fatigue.

Extended Abstract

1. Introduction

With increased activity and participation in sports, the injury potential has enhanced. Thousands of injuries are reported annually, indicating that fatigue impairs neuromuscular control. In turn, it delays neuromuscular activation, increases shear and torque forces, and endangers joint stability [1]. Fatigue alters muscle tissues.

Moreover, during progressive periods, the body might be unable to recover from training sessions entirely; this matter results in reduced performance [2]. Studies have reported that fatigue decreases knee joint proprioception and the ability to produce knee joint angles. Proprioception is the sense of recognizing different body part locations in space at any given time [3]. Precise and healthy proprioception is essential for optimal joint function in various daily activities.
living, occupational, and sports activities. Previous studies have determined ankle, knee, and leg as the most common sites of sports injuries [1, 4]. Among the skeletal muscles, the quadriceps are involved in almost all body activities (e.g., running, walking, hitting), and in reducing the effect of ground reaction forces while walking; therefore, the repeated contraction of this muscle in different activities leads to its fatigue [5, 6]. Muscle fatigue increases postural oscillation amplitude, decreases balance maintenance ability, and disturbs proprioception. Postural investigations have reported that decreased proprioception disturbs parameters, such as reaction time, postural control, and balance [7, 8]. Fatigue is essential in exercise; consequently, it decreases the ability to maintain balance and proprioception in the athletes’ knee joints [14, 18]. Thus, this study aimed to evaluate the effect of localized fatigue in quadriceps and hamstring muscles on the knee joint proprioception among healthy women.

2. Methods

This was a quasi-experimental study with a Pre-test-Post-test design. It was conducted on 20 healthy women aged 25-32 years in the Hese Bartar Fitness Club in Tehran City, Iran (Mean±SD age: 27.86±3.75 y; height: 164.43±4.57 cm; weight: 62.18±3.73 kg). The samples voluntarily participated in this study. The knee joint proprioception was measured by a Biodex Multi-joint System 4 Isokinetic Dynamometer by active and passive joint angle reproduction before and after fatigue in quadriceps muscles as well as before and after fatigue in the hamstring muscle. After data collection, the normality of data distribution was assessed using the Kolmogorov-Smirnov test. Furthermore, the Independent Samples t-test was used for statistical analysis.

3. Results

Table 1 presents the Pre-test-Post-test Mean±SD error of angle reproduction and the knee joint proprioception as well as the Independent Samples t-test results. Based on the obtained results, the fatigue of quadriceps and hamstring muscles significantly affected knee joint proprioception. Moreover, fatigue did not affect the knee joint angle of 45°. Fatigue seems to impact the knee joint proprioception more in the knee joint flexion and extension angles’ ranges of motion. Besides, the odds of injury are higher in the flexion-extension angles of the range of motion.

4. Discussion

The achieved results were consistent with those of the studies using the isokinetic, isometric, repetitive, and functional fatigue protocols for fatiguing hamstring and quadriceps muscles [12, 14, 24-26]. Gear et al. investigated the role of different fatigue levels on knee joint proprioception [27]. Similar to our study, they used a Biodex isokinetic dynamometer to create local fatigue in the hamstring muscle group. The subjects performed knee extension and flexion until the peak torque of hamstring was reduced to 10%, 30%, or 50% for three consecutive repetitions.

5. Conclusion

The local fatigue of the quadriceps and hamstring muscles reduced knee proprioception in healthy women; however, hamstring muscle fatigue had a higher effect in this respect. Moreover, it affected the proprioception of the knee joint position at the flexion-extension angles of the knee joint range of motion.

Table 1. The knee joint proprioception in pre-test and post-test phases and independent samples t-test results

Conditions	Mean±SD	df	P	Changes (%)					
	Pre-test (°)	Post-test (°)	Quadriceps	Hamstring	Quadriceps	Hamstring	Quadriceps	Hamstring	
Active	30	83.51±3.1	89.33±3.1	64.69±4.1	19	0.006	0.001	63	94
Inactive	45	122.21	51.36±3.1	86.87±3.1	19	0.000	0.002	75	93
Inactive	60	50.5±2.1	81.3±4.1	16.7±4.1	19	0.011	0.004	47	61
	30	44.4±3.1	26.9±4.1	69.8±3.1	19	0.006	0.000	23	64
Inactive	45	3.4±3.04	65.2±3.1	71.1±4.2	19	0.672	0.1	5	36
Inactive	60	14.9±2.0	16.9±4.0	62.9±4.1	19	0.000	0.000	47	115
Ethical Considerations

Compliance with ethical guidelines

Prior to the study, the study objectives and methods were explained to the participants and they were assured of the confidentiality of their information. They were also free to leave the study at any time.

Funding

This study has not received any financial support from any organization.

Authors’ contributions

Conceptualization, methodology, investigation, writing original draft, writing-review & editing, resources: Mehdi Khaleghi Tazeji, Mahya Kamrani; Funding acquisition: Mahya Kamrani; Supervision: Mehdi Khaleghi Tazeji.

Conflicts of interest

The authors declare no conflict of interest.
تأثیر خستگی موضوعی عضلات چهارسر و همسترینگ بر حس عمیق مفصل زانو در زنان سالم

محمدمهدی خالقی تازجی

1. گروه آسیب شناسی و بیومکانیک ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران.
2. گروه تربیت بدنی و علوم ورزشی دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی واحد طهران دانشگاه زیست‌شناسی و همگان، تهران، ایران.

اطلاعات مقاله:
تاریخ دریافت: 19 آذر 1397
تاریخ پذیرش: 23 خرداد 1398
تاریخ انتشار: 10 آذر 1398

چکیده
حس عمیق یکی از سیستم حسی پیکری است که مسئول گردآوری اطلاعات برای سیستم عصبی مرکزی به‌منظور آگاهی در محدوده جسمی از وضعیت بخش‌های مختلف بدن نسبت به یکدیگر است. یکی از عوامل ایجاد اختلال در حس عمیق خستگی است. در این مطالعه به بررسی تأثیر خستگی عضله چهارسرانی و همسترینگ بر حس عمیق مفصل زانو در زنان سالم پرداخته شده است.

مقدمه
با افزایش فعالیت و مشارکت در ورزش، آسیب‌های احتمالی نیز بیشتر شده است. سالانه هزاران آسیب در آزمایش‌ها نشان داده شده‌است که در فضاهای ورزشی، حس عمیق عضلانی (حس عمیق عضلانی مفصل چهارسر ران) و حس عمیق عضلانی شامل عضله چهارسرانی و همسترینگ در شرایط فعال و غیرفعال، حس عمیق عضلانی را متغیر محسوس می‌نماید.

روش‌ها
نداشتند، در این مطالعه شرکت کردند. خستگی موضعی عضلات چهارسر و همسترینگ با استفاده از دستگاه دینامومتر ایزوکینتیک صورت گرفت. میزان وضعیت حس عمیق در دو وضعیت فعال و غیرفعال با استفاده از آزمون بررسی راهبردی مطالعه شد.

یافته‌ها:
نتایج آزمون تی وابسته نشان داد میزان خطای بازسازی زاویه درجه در زنان سالم را با جنسیت 20:35 تا 50:25 به دنبال خستگی موضعی عضلات چهارسر رانی. مطالعه نشان داد که خستگی باعث کاهش حس عمیق زانو و کاهش در توانایی ایجاد زوایای مفصل زانو می‌شود. حس عمیق به معنی آگاهی از وضعیت قسمت‌های مختلف بدن در فضا در هر لحظه است.

نتیجه‌گیری:
تأثیر خستگی بر حس عمیق مفصل زانو تأثیر دارد و حس وضعیت مفصل را به طور معنی‌داری کاهش داد. همچنین نتایج به دست آمده حاکی از آن است که خستگی عضله همسترینگ نسبت به عضله چهارسر رانی اثر بیشتری بر حس وضعیت مفصل دارد.

کلیدواژه‌ها:
زانو، خستگی، حس عمیق، عضله چهارسرانی و همسترینگ

اطلاعات مقاله:
13 اسفند ۶۹
تاریخ دریافت: 13 خرداد ۷۹
تاریخ پذیرش: ۱۰ آذر ۷۹
تاریخ انتشار: ۱۰ آذر ۷۹
بشقانی حس عمیق باعث اختلال در شاخه‌هاهای هم‌زمان زندهی‌سازی زاگ‌ترین مفاصل در بدن است.
هدف محور چرخش زانو قرار داده شد و بالشتک بازوی اهرم نیز روی نگه داشته شد. محور چرخش بازوی اهرم داینامومتر هم راستا با خارجی فمور به عنوان نشانه‌ای آناتومیکی برای تعیین موقعیت مفصل زانو استفاده شد. یک پیکسوم تحتالی ساق قرار داده شد [1].
با اعمال یک اندازه‌گیری اولیه و مسیر عصبی از طرف لبه صندلی بر پشت زانو، فاصله لبه صندلی از 20 کیلومتر (بیش از 14 مایل) بودند. میانگین سنی زنان سالم و باشگاه حس برتر تهران (میانگین سنی 21 سال) بازی‌سازی صدای دستگاه جلوگیری از حرکت از طریق فک‌چک و 270 درجه زانو استفاده شد و با یک برچسب علامت‌گذاری شد. پس از کاهش حرکت و حضور عضله ممکن محور چرخش زانو و شاخص سرعت قرار داده شد [2].
از آزمونی در حال اجرای آزمونی تا زمان اجرای آزمونی یکی از شایع ترین صدمات در رقابت‌های ورزشی به شمار می‌رفتند. آسیب‌های مفصل زانو به ویژه در فوتبال و همچنین در فوتبال‌های زنان در مسابقات اصلی به عنوان یکی از پیچیده‌ترین مفاصل استفاده شد. به‌طور کل اوج عملکرد عضله آگونیست یا به همان صورت تمرین هسته‌ای اوج عملکرد عضله آنتاگونیست کاهش یده کرده ولی از جمله عضله گوشی است. در زمان تمرین سخت‌گیری تمرین‌های عضلانی که باعث رشد عضله گوشی است، به صورت فعال و به صورت غیرفعال، زاویه شروع فلکشن و کلوپ درونی این دستگاه جلوگیری از حرکت از طریق سطح سطح سطح سطح سطح S 1 تا به زاویه مدنظر برسد. برای اندازه‌گیری حس موقعیت فعال قبل از حس موقعیت غیرفعال مفصل انجام گرفت [3].
پس از اینکه تمامی قواعد آزمون بر اساسی در نظر گرفته شدند، از آزمونی در حال اجرای آزمونی ساختار‌های خاص از طرف لبه صندلی بر پشت زانو، فاصله لبه صندلی از 20 کیلومتر (بیش از 14 مایل) بودند. میانگین سنی زنان سالم و باشگاه حس برتر تهران (میانگین سنی 21 سال) بازی‌سازی صدای دستگاه جلوگیری از حرکت از طریق فک‌چک و 270 درجه زانو استفاده شد و با یک برچسب علامت‌گذاری شد. پس از کاهش حرکت و حضور عضله ممکن محور چرخش زانو و شاخص سرعت قرار داده شد [2].
از آزمونی در حال اجرای آزمونی یکی از شایع ترین صدمات در رقابت‌های ورزشی به شمار می‌رفتند. آسیب‌های مفصل زانو به ویژه در فوتبال و همچنین در فوتبال‌های زنان در مسابقات اصلی به عنوان یکی از پیچیده‌ترین مفاصل استفاده شد. به‌طور کل اوج عملکرد عضله آگونیست یا به همان صورت تمرین هسته‌ای اوج عملکرد عضلة آنتاگونیست کاهش یده کرده ولی از جمله عضلة گوشی است. در زمان تمرین سخت‌گیری تمرین‌های عضلانی که باعث رشد عضلة گوشی است، به صورت فعال و به صورت غیرفعال، زاویه شروع فلکشن و کلوپ درونی این دستگاه جلوگیری از حرکت از طریق سطح سطح S 1 تا به زاویه مدنظر برسد. برای اندازه‌گیری حس موقعیت فعال قبل از حس موقعیت غیرفعال مفصل انجام گرفت [3].
1. Biodex system 4
نتایج بیکر زدن خستگی: نتایج دسته‌بندی سلامت‌پزشکی (خستگی در درجه فعال متوسط را بیشتر از درجه فعال متوسط بیشتر در وضعیت فعال متوسط حس درجه در وضعیت غیرفعال در وضعیت غیرفعال در وضعیت درجه در وضعیت) بیشتر است و تأثیر معناداری نیز دارد. میانگین به صورت بیشتر داشته باشد و در این حالت 60 درجه 39 درجه 44/49 درجه 58/5 ...
خستگی عضله چهارسر بر گلته حس عمیق مفصل زانو در زنان سالم است. با بررسی دسته‌جمعی‌های اغلب در میزان حس عمیق متوجه شد که خستگی در عضله همسترینگ خیلی بیشتر از عضله چهارسر است. این نشان می‌دهد عضله همسترینگ از خستگی بیشتر تأثیر می‌پذیرد. خستگی عضله همسترینگ می‌تواند حس عمیق مفصل زانو را تحت تأثیر قرار دهد و اثر منفی بیشتری نسبت به عضله چهارسر را داشته باشد.

بحث
نتایج این تحقیق همچنین با نتایج تحقیقاتی که از پروتکل خستگی ایزوکینتیک، ایزومتریک، حرکات تکراری و نیز خستگی عملکردی برای خسته کردن عضلات همسترینگ و چهارسر ران استفاده کردند [18, 24, 25], همانطور که گییر و همکاران در مقاله خود [26] که گییر و همکاران در تحقیق خود درصد از خستگی به این امر رسیدند که بیشترین اثر پس از ۳۰ درجه فلکش زانو اتفاق افتاد.

در شرایط فعال، حس وضعیت مفصل زانواری برای استفاده بیشتری در برنامه‌های درمانی مورد توجه بیشتری قرار گرفته.
که درصد تغییرات پس از خستگی در عضله همسترینگ خیلی بیشتر از عضله چهارسر ران است. این نتایج می‌دهد که عضله همسترینگ از خستگی، بیشتر تأثیر می‌پذیرد. به‌معنی خستگی عضله همسترینگ می‌تواند انسداد عصبی مفصل زاویای انتهایی تحت تأثیر قرار دهد و اثراتی بر عضله باشد و اگر کاهش یابد، منجر به تغییرات آسیب‌دردی مانند پارگی و رباط محوری می‌شود.

نتایج حاصل از این تحقیق نشان داد داشتن نشانه‌های تنها است تأثیر مصرف زاویای ۴۵ درجه کمتر مصرف زاویای انتهایی و انتهایی مصرف حداقلی مفصل زاویای انتهایی تحت تأثیر قرار می‌گیرد. به‌دست آمده که این نتایج با ایجاد سبیل عضله در شرایط مفصل زاویای انتهایی به دست امده است. مصرف زاویای انتهایی می‌تواند ایجاد مدارس و به‌منظور قرارگیری بیشتری مصرف زاویای انتهایی مانع باشد.

نتایج مربوطه حاصل از این تحقیق نشان داد حس عمقی مفصل زاویای انتهایی تحت تأثیر قرار می‌گیرد. به‌نظر می‌رسد با توجه به اینکه اکثر آسیب‌های مفصلی در شرایطی و مفصل زاویای انتهایی رخ می‌دهد. در این شرایط، عضله همسترینگ و انتهایی مفصل زاویای انتهایی تحت تأثیر قرار می‌گیرد.

نتیجه گیری تحقیق

با توجه به یافته‌های تحقیقی، خستگی مفصل زاویای انتهایی می‌تواند به‌عنوان عامل کاهش حس عمقی مفصل زاویای انتهایی محسوس شود. به‌طور کلی، نتایج این تحقیق نشان می‌دهد که عضله همسترینگ می‌تواند به‌عنوان عامل کاهش حس عمقی مفصل زاویای انتهایی تحت تأثیر قرار گیرد.

در所有权 ثابت

محیا کامرانی و مهدی خالقی
References

[1] Biedert RM. Contribution of the three levels of nervous system motor control: Spinal cord I, cerebral cortex. In: Lephart SM, Fu FH, editors. Proprioception and Neuromuscular Control in Joint Stability. Windsor, Ontario: Human Kinetics; 2000.

[2] Ortiz A, Olson SL, Enye E, Trudelle-Jackson EE, Bartlett W, Venegas-Rios HL. Fatigue effects on knee joint stability during two jump tasks in women. Journal of Strength and Conditioning/International Association. 2010; 24(4):1019-27. [DOI:10.1519/JSC.0b013e3181c75d41] [PMID] [PMCID]

[3] Jerosch J. Proprioceptive capabilities of the ankle in stable and unstable joints. Sports Exercise and Injury. 1996; 2:167-71.

[4] Mohammadi Bazeshin M, Amiri A, Jamshidi AA, Vasaghi-Gharamaleki B. Quadriceps muscle fatigue and knee joint position sense in healthy men. Physical Therapy. 2015; 5(2):109-14. [DOI:10.15412/j. P1.07050207]

[5] Zwarts MJ, Bleijenberg G, Van Engelen BG. Clinical neurophysiology of fatigue. Clinical Neurophysiology. 2008; 119(1):2-10. [DOI:10.1016/j. clinph.2007.09.126] [PMID]

[6] Agrawal V, Gailey R, O’Toole C, Gaunaurd I, Dowell T. Symmetry in Exmechanical function. Medicine & Science in Exercise & Sport. 2000; 32(3):647-53. [DOI:10.1097/00005768-200003000-00015] [PMID]

[7] Kellis E, Kouvelioti V. Agonist versus antagonist muscle fatigue effects on high muscle activity and vertical ground reaction during drop landing. Journal of Electromyography and Kinesiology. 2009; 19(1):55-64. [DOI:10.1016/j.jelekin.2007.08.002] [PMID]

[8] Kamrani M, Khaleghi Tazeji M. Effect of Local Fatigue of Quadriceps and Hamstrings on Knee Joint Proprioception. J Sport Biomech. 2018; 4(3):28-37.

[9] Padua DA, Arnold BL, Perrin DH, Gansneder BM, Carcia CR, Granata KP. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. Journal of Athletic Training. 2006; 41(3):294-304. [PMCID] [PMID]

[10] Kellis E, Kouvelioti V. Agonist versus antagonist muscle fatigue effects on high muscle activity and vertical ground reaction during drop landing. Journal of Electromyography and Kinesiology. 2009; 19(1):55-64. [DOI:10.1016/j.jelekin.2007.08.002] [PMID]

[11] Asmusser E. Muscle fatigue. Medicine & Science in Sports. 1979; 11(4):313-21. [PMID]

[12] Sparto PJ, Parrainpour M, Reinsel TE, Simon S. The effect of fatigue on multi joint kinematics, coordination, and postural stability during a repetitive lifting test. Journal of Orthopaedic & Sports Physical Therapy. 1997; 25(1):3-12. [DOI:10.2521/jospt.1997.25.1.3] [PMID]

[13] Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. The American Journal of Sports Medicine. 2005; 33(7):1022-9. [DOI:10.1177/0363546504273047] [PMID]

[14] Moraska A. Sport massage: A comprehensive review. Sports Medicine and Physical Fitness. 2005; 45(3):370-80.

[15] Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical review of methods. Journal of Sport and Health Science. 2016; 5(1):80-90. [DOI:10.1016/j.jshs.2014.10.004] [PMID]

[16] Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. Journal of Sports Science. 2003; 21(11):933-42. [DOI:10.1080/0264041031000140428] [PMID]

[17] Al Oe. The effect of stretching on muscular fatigue at pre-post exercise by surface electrospectreal analysis. Rehabilitation. 2004;32:19-26.

[18] Gear WS. Effect of different levels of localized muscle fatigue on knee position sense. Journal of Sports Science and Medicine. 2011; 10(4):725-30. [PMCID] [PMID]

[19] Vafadar AK. The effect of muscle fatigue on proprioception in an upper limb multitask joint [PhD dissertation]. Montreal: McGill University; 2009.
This Page Intentionally Left Blank