The cataclysmic events that have taken place across the globe as a result of the COVID-19 pandemic have infiltrated every aspect of society, including sport. As many places around the world are either beginning to observe or are on a downward descent of “flattening of the curve”, local, regional/state and national leaders have initiated steps to lift various stay-at-home orders and resume normal activities. With the recommencement of sanctioned athletic events over the upcoming summer months within the Northern Hemisphere, increased caution must be taken by clinicians, administrators, coaches and other stakeholders to ensure that proper procedures are in place to reduce the risk of injury, particularly at the secondary school level. The prolonged dormancy of secondary school student-athletes as a result of the current global pandemic, in combination with extreme heat observed during the summer months, also places these individuals at increased risk of exertional heat stroke (EHS), thus necessitating increased scrutiny toward optimizing EHS-related risk-reduction strategies.

Heat acclimatization, repeated bouts of exercise in a hot environment eliciting an increase of whole-body body temperature and profuse sweating, permits a series of thermoregulatory and cardiovascular adaptations that improve one’s tolerance to exercise in the heat [1]. Within team-based sports (e.g. soccer, cross country, and American Football), current recommendations [2, 3] encourage a 10–14 day gradual progression to full activity in outdoor environments that takes into consideration the duration and volume of activity, as well as protective equipment that is worn in respective sports to mitigate the risk of EHS. Recent evidence shows that when these recommendations are mandated at the state/organizational level for secondary school athletics, a risk reduction rate of 55% is observed for exertional heat illness [4].

Of particular concern surrounding the resumption of secondary school athletics is the overall risk profile for student-athletes returning to sport. It can be presumed that the extensive societal restrictions placed on individuals to aid in controlling the COVID-19 pandemic will result in an extended period time of potential inactivity and limited passive heat exposure amongst a large number of secondary school student-athletes. Prior literature has found that low physical fitness and being overweight was prevalent in 77% and 64% of EHS cases, respectively [5]. Evidence also suggests that the initial 2–3 days of training in a hot environment poses the greatest risk of exertional heat illness [6], hence the early season gradual progression to full activity heat acclimatization recommendation [2, 3]. However, adopting an alternative approach to heat acclimatization within secondary school athletics following the COVID-19 pandemic may be necessary to account for the aforementioned concerns related to the student-athlete EHS risk profile.

Endurance training to enhance cardiovascular fitness provides partial physiological benefits in the realm of heat acclimatization, as evidenced by studies showing that 4–8 weeks of aerobic-based training in temperate conditions improved physiological (i.e., lower heart rate) and thermoregulatory (i.e., increased sweat rate and decreased rate of rise of internal body temperature) responses, when exposed to a thermally stressful environment [7, 8]. Prolonging the heat acclimatization period from 10–14 to 17–24 days, with the first 7–10 days focused specifically on improving cardiovascular fitness (i.e., exercise acclimatization), may provide an environment that is conducive to improving the health and safety of student-athletes. Although 7–10 days of endurance and circuit training might only initiate the adaptive process relative to 4–8 weeks of training, it may allow for an easier...
transition to training in the heat and reduce the risk of exertional heat illness. Furthermore, to avoid or minimize the added thermal strain imposed by exposure to a hot environment during the initial 7–10 days of exercise acclimatization, considerations should be made to conducting these training sessions in a cool environment (e.g., indoors). Progressively increasing the total length of training permitted during this period should also be considered (e.g., from 45 to 90 min of training instead of the recommended maximum of 3 h [2]) (Fig. 1).

Given the variability which health and safety policies are implemented within secondary school athletics [9], it is imperative that the sports medicine clinician assumes the position of providing oversight for the education and implementation of the heat acclimatization procedures at the secondary school level. Furthermore, taking a more conservative approach to heat acclimatization by extending the duration of this period to focus on improving cardiovascular fitness prior to full heat exposure would allow for a safer transition back to sport for the secondary school student-athlete.

Author Contributions WMA and JDP contributed to the conception, writing, critical revision, and approval of the submitted work.

Compliance with Ethical Standards

Conflict of interest William Adams has a potential conflict of interest as a recipient of royalties from Springer Nature for a text on exertional heat illness.
heat illness for which he is the editor. Julien Périard has no potential conflicts of interest relevant to the content of this article.

Funding No sources of funding were used to assist in the preparation of this article.

References

1. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25:20–38. https://doi.org/10.1111/sms.12408.

2. Casa DJ, Cissian D, Inter-Association Task Force for Pre- season Secondary School Athletics Participants, et al. Pre- season heat-acclimatization guidelines for secondary school athletics. J Athl Train. 2009;44:332–3. https://doi.org/10.4085/1062-6050-44.3.332.

3. Casa DJ, DeMartini JK, Bergeron MF, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50:986–1000. https://doi.org/10.4085/1062-6050-50.9.07.

4. Kerr ZY, Register-Mihalik JK, Pryor RR, et al. The association between Mandated Preseason Heat Acclimatization Guidelines and Exertional Heat Illness during Preseason High School American Football Practices. Environ Health Perspect. 2019;127:47003. https://doi.org/10.1289/EHP4163.

5. Rav-Acha M, Hadad E, Epstein Y, et al. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328:84–7.

6. Cooper ER, Ferrara MS, Casa DJ, et al. Exertional heat illness in American Football Players: when is the risk greatest? J Athl Train. 2016;51:593–600. https://doi.org/10.4085/1062-6050-51.8.08.

7. Ravanelli N, Gagnon D, Imbeault P, et al. A retrospective analysis to determine if exercise training-induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation. Exp Physiol. 2020. https://doi.org/10.1113/EP088385.

8. Avellini BA, Shapiro Y, Fortney SM, et al. Effects on heat tolerance of physical training in water and on land. J Appl Physiol Respir Environ Exerc Physiol. 1982;53:1291–8. https://doi.org/10.1152/jappl.1982.53.5.1291.

9. Adams WM, Scarneo SE, Casa DJ. State-level implementation of health and safety policies to prevent sudden death and catastrophic injuries within secondary school athletics. Orthop J Sports Med. 2017;5:2325967117727262. https://doi.org/10.1177/2325967117727262.