Public Release of N-body simulation and related data by the Virgo consortium.

C. S. Frenk, J. M. Colberg, H. M. P. Couchman, G. Efstathiou, A. E. Evrard, A. Jenkins, T. J. MacFarland, B. Moore, J. A. Peacock, F. R. Pearce, P. A. Thomas, S. D. M. White and N. Yoshida.

(The Virgo Consortium)

1 INTRODUCTION

The Virgo consortium is an international collaboration whose aim is to perform large cosmological simulations of the formation of structure. We have been carrying out simulations on parallel supercomputers since 1996. In this short article we provide a brief description of datasets that we are making publicly available and we give a list of papers for refereed journals which have already made use of the data.

Over the past few years, the Virgo consortium has carried out a large number of high-resolution simulations of the clustering evolution of cold dark matter (CDM). They follow structure formation in four cosmological models: a flat model with $\Omega_0 = 0.3$ and cosmological constant, $\Lambda = 2H_0^2 = 0.7$ (ΛCDM); an open model also with $\Omega_0 = 0.3$ (OCDM); and two models with $\Omega = 1$, one with the standard CDM power spectrum (SCDM), and the other with the same power spectrum as the $\Omega_0 = 0.3$ models (τCDM). The number of particles in the older simulations is about 17 million, with the box sizes ranging from 85 to 240 h^{-1} Mpc (where h denotes the Hubble constant in units of 100 km s$^{-1}$ Mpc$^{-1}$) and the particle mass from 6.86 to 22.7 $\times 10^{10}h^{-1}$ M$_\odot$.

A variety of studies have been carried out using these data. These include investigations of the clustering statistics of the dark matter (Jenkins et al 1998, Juskiewicz, Springel & Durrer 1999); detailed analyses of the internal structure (Thomas et al 1998), velocity distributions (Colberg et al 2000) and the large-scale environment of galaxy cluster halos (Colberg et al 1999); a novel description of the topology of the dark matter distribution and a comparison with recent galaxy surveys (Springel et al 1998, Canavezes et al 1998, Canavezes & Sharpe 1998); analyses of the strong gravitational lensing properties of clusters (Bartelmann et al 1998);...
ray-tracing simulations and statistical analysis of the shear fields produced by weak lensing (Reblinsky & Bartelmann 1999, Reblinsky et al 1999, Jain, Seljak & White 2000, Jain & van Waerbeke 2000, Munshi & Jain 2000a,b); studies of the Sunyaev-Zel’ dovich signatures imprinted on the CMB (Diaferio, Sunyaev & Nusser 2000); tests of analytic models both for the abundance and clustering of dark halos (Sheth & Tormen 1999; Sheth, Mo & Tormen 2000) and for the bias of the galaxy population (Peacock & Smith 2000).

Table 1. N-body simulation parameters. The Hubble volume data, with -hub suffix, includes lightcone outputs as well as time-slices (see Evrard 1998). The $N = 256^3$ simulations were first analysed by Jenkins et al (1998). The simulations with the -gif suffix were designed to allow galaxy formation to be followed directly and were first fully presented (including the available halo and galaxy catalogs and merger trees) by Kauffmann et al (1999).

Run	Ω	Λ	Γ	σ_8	N_{part}	$L_{\text{box}}/h^{-1}\text{Mpc}$	$m_{\text{particle}}/h^{-1}\text{M}_\odot$	$r_{\text{soft}}/h^{-1}\text{kpc}$
τCDM-hub	1.0	0.0	0.21	0.60	1 000 000 000	2000.0	2.22 x 10^{12}	100
ΛCDM-hub	0.3	0.7	0.21	0.90	1 000 000 000	3000.0	2.25 x 10^{12}	100
SCDM-virgo	1.0	0.0	0.5	0.60	16 777 216	239.5	2.27 x 10^{11}	30
τCDM-virgo	1.0	0.0	0.21	0.60	16 777 216	239.5	2.27 x 10^{11}	30
ΛCDM-virgo	0.3	0.7	0.21	0.90	16 777 216	239.5	6.86 x 10^{10}	30
OCM-virgo	0.3	0.0	0.21	0.85	16 777 216	239.5	6.86 x 10^{10}	30
SCDM-gif	1.0	0.0	0.5	0.60	16 777 216	84.5	1.00 x 10^{10}	30
τCDM-gif	1.0	0.0	0.21	0.60	16 777 216	84.5	1.00 x 10^{10}	30
ΛCDM-gif	0.3	0.7	0.21	0.90	16 777 216	141.3	1.40 x 10^{10}	30
OCM-gif	0.3	0.0	0.21	0.85	16 777 216	141.3	1.40 x 10^{10}	30

Several years ago we completed the two largest N-body simulations ever attempted using a specially designed code (MacFarland et al 1999). These “Hubble volume” simulations follow a billion particles each – almost one order of magnitude more than the largest previous simulations – in the τCDM and ΛCDM cosmologies. The simulated regions have linear, comoving dimensions of 2000-3000 h^{-1} Mpc so that, for $\Omega = 1$, the diagonal of the simulation cube extends to a redshift $z = 4.6$, nearly the size of the “observed” universe. The total mass in the $\Omega = 1$ volume is $2.2 \times 10^{15} h^{-1} M_{\odot}$, and so a cluster as rich as Coma has about 500 particles within an Abell radius. The comoving gravitational softening, $0.1 h^{-1}$ Mpc, is sufficiently small to provide reliable cluster velocity dispersions and gross assembly histories. Particles masses and softenings are similar in the ΛCDM simulation. Such large volumes require the application of new analysis techniques that take into account the substantial light travel time across the region. In addition to storing a number of standard “snapshots” of the mass distribution, we therefore created surveys along the past light cones of hypothetical observers.

The Hubble volume simulations contain several tens of thousands of rich clusters and are so large that they can be used to investigate the behaviour of clustering diagnostics, including high order statistics, with unprecedented accuracy. The first papers analyzing Hubble volume data (Szapudi et al 2000, Colombi et al 2000) present the probability distribution of fundamental statistics such as the distribution of counts-in-cells, together with a full analysis of sampling uncertainties for estimates constructed from surveys of realistic (finite) size. Analysis of the two-point correlations of clusters is presented in Colberg et al (2000). Data from the Hubble volume simulations, together with a wide range of other Virgo data, has been used to study the mass function of dark matter halos over more than four orders of magnitude in mass (Jenkins et al 2000). Mock-galaxy catalogs constructed from the Hubble Volume simulations are used to assess the uncertainties in observational power spectrum estimates by Hoyle et al (1999).

The numerical data from all the original $N = 256^3$ Virgo simulations are now publically available, as are a variety of data products from the Hubble Volume simulations (“snap-shots”, light-cone output and cluster catalogs) and from the galaxy formation modelling of the GIF project (halo catalogs, merger trees and galaxy catalogs). They may be found at: http://www.mpa-garching.mpg.de/Virgo/data_download.html

We anticipate making further data available from this site as our projects progress. Smaller data volumes can be downloaded directly over the net. Many of our datasets are too large, however, for this to be practicable. Such data can be obtained on tape after payment of a nominal fee; we impose this to avoid frivolous requests imposing unnecessary work on our archive manager. Images of many of these simulations can be down-loaded from the related websites:

http://www.mpa-garching.mpg.de/NumCos
http://star-www.dur.ac.uk/~frazierp/virgo
http://www.physics.lsa.umich.edu/hubble-volume

We would appreciate an appropriate credit if these data are used in published work. This should include the relevant reference as detailed below, as well as a mention in the acknowledgements that the data were obtained from

© 2000 RAS, MNRAS 000.
the Virgo consortium. The \(N = 256^3 \) simulations in Table 1 were first presented in Jenkins et al. (1998). The original motivation for the set-up of the \(-g! \) simulations and the additional analysis involved in constructing halo catalogs, merger trees and galaxy catalogs are described in Kauffmann et al. (1999a). The Hubble Volume simulations are outlined in Evrard (1998) and a detailed description is in preparation (Evrard et al 2000). We would like to keep an up-to-date record of all published papers using our data and so we would appreciate your help in notifying us by email (to C.S.Frenk@durham.ac.uk) of new papers making use of Virgo data.

ACKNOWLEDGEMENTS

CSF acknowledges a PPARC Senior Research Fellowship and a Leverhulme Research Fellowship. PAT is a PPARC postdoctoral fellow. AEE’s participation was supported in France by the CIES and CNRS and in the US by NSF AST98-03199 and by the NASA Astrophysics Theory Program. The simulation data were generated using supercomputers at the Computer Centre of the Max-Planck Society (the Rechenzentrum, Garching) and at the Edinburgh Parallel Computing Centre. We particularly wish to thank Jacob Pichlmeier (SGI/Cray, RZG) for his support. We thank the Max-Planck-Institute for Astrophysics for hosting our download site and, in particular, Norbert Gruener for acting as site administrator.

REFERENCES

Bartelmann, M., Huss, A., Colberg, J. M., Jenkins, A. R., & Pearce, F. R., 1998, Arc statistics with realistic cluster potentials. IV. Clusters in different cosmologies, A&A, 330, 1.

Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. & Lacey, C., 2000a. The Nature of Galaxy Bias and Clustering, MNRAS, 311, 793

Benson, A. J., Baugh, C., Cole, S., Frenk, C. S. & Lacey, C., 2000b. The dependence of velocity and clustering statistics on galaxy properties, MNRAS, 316, 107

Benson, A. J., Nusser, A., Sugiyama, N. & Lacey, C.G., 2000c, Non-uniform reionization by galaxies and its effect on the cosmic microwave background, MNRAS, submitted (astro-ph/0002457)

Canavezes, A, Springel, V., Oliver, J., Rowan-Robinson, M., Kibble, O. White, S. D. M., Saunders, W., Efstathiou, G., Frenk, C. S., McMahon, R., Maddox, S., Sutherland, W. & Tadros, H. 1998. The topology of the IRAS Point Source Catalogue redshift survey, MNRAS, 297, 777

Canavezes, A. & Sharpe, J., 2000, Recovering the Topology of the Initial Density Fluctuations Using the IRAS Point Source Catalogue Redshift Survey, MNRAS, submitted (astro-ph/0002439)

Colberg, J. M., White, S. D. M., Jenkins, A. & Pearce, F. R. 1999a. Linking cluster formation to large-scale structure, MNRAS, 308, 593

Colberg, J. M., White, S. D. M., MacFarland, T. J., Jenkins, A., Pearce, F. R., Frenk, C. S., Thomas, P. A. & Couchman, H. M. P. 1999b. Peculiar Velocities of Galaxy Clusters, MNRAS, 313, 229

Colberg, J. M., White, S. D. M., Yoshida, N., MacFarland, T. J., Jenkins, A., Frenk, C. S., Pearce, F. R., Evrard, A. E., Couchman, H. M. P., Peacock, J. A. & Thomas, 2000. The clustering of galaxy clusters in CDM universes, MNRAS, in press (astro-ph/0005259)

Colombi, S., Szapudi, I., Jenkins, A. & Colberg, J. M. 2000. Experimental Cosmic Statistics I: Variance, MNRAS, 313, 711

Diaferio, A., Kauffmann, G., Colberg, J. M., White, S. D. M., Schade, D. & Ellington, E., 2000, The Spatial and Kinematical Distributions of Cluster Galaxies in a ΛCDM Universe – Comparison with Observations, MNRAS, submitted (astro-ph/0005485)

Evrard, A., 1998, Simulating Large-Scale Structure, in Evolution of large scale structure : from recombination to Garching, edited by A. J. Banday, R. K. Sheth, L. N. da Costa, Garching, Germany : European Southern Observatory, [1999] ("Proceedings of the MPA-ESO conference, Garching, Germany, 2-7 August 1998"). p.249, (astro-ph/9812357)

Evrard, A., MacFarland, T. J., Couchman, H. M. P., Colberg, J. M., Yoshida, N., White, S. D. M., Jenkins, A., Frenk, C. S., Pearce, F. R., Efstathiou, G., Peacock, J. A. & Thomas, P. A., 2000. In preparation.

Guzik, J. & Seljak, U., 2000, Galaxy-dark matter correlation applied to galaxy-galaxy lensing: predictions from the semi-analytic galaxy formation models, MNRAS, submitted (astro-ph/0007067)

Hoyle, F., Baugh, C. M., Shanks, T. & Ratcliffe, A., The Durham/UKST Galaxy Redshift Survey - VI. Power spectrum analysis of clustering, MNRAS, 309, 659

Jain, B., Seljak, U. & White, S. D. M., 2000, Ray Tracing Simulations of Weak Lensing by Large-scale Structure, ApJ, 530, 547

Jain, B. & van Waerbeke, L., 2000, Statistics of dark matter halos from gravitational lensing, ApJ, 530, L1

Jenkins, A., Frenk, C. S., Pearce, F. R., Thomas, P. A., Colberg, J. M., White, S. D. M., Couchman, H. M. P., Peacock, J. A., Efstathiou, G., & Nelson, A. H. 1998. Evolution of structure in cold dark matter universes, ApJ, 499, 20.

Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, S., Evrard, A. E., & Yoshida, N., 2000. The mass function of dark matter halos, MNRAS, submitted (astro-ph/0005260)

Juszkiewicz, R., Springel, V. & Durrer, R., Dynamics of Pairwise Motions, 1999, ApJ, 518, L25

Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. 1999a. Clustering of Galaxies in a Hierarchical Universe I: Methods and Results at z=0, MNRAS, 303, 188.

Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999a, Clustering of Galaxies in a Hierarchical Universe: II. Evolution to High Redshift, MNRAS, 307, 529

MacFarland, T, Couchman, H. M. P., Pearce, F. R., Pichlmeier, J. 1999. A New Parallel P3M Code for Very Large-Scale Cosmological Simulations, New Astronomy, 3, 687

Munshi, D & Jain, B., 2000a, The Statistics of Weak Lensing at Small Angular Scales: Probability Distribution Function, MNRAS, in press (astro-ph/0111505)

Munshi, D & Jain, B., 2000b, Statistics of Weak Lensing at Small Angular Scales: Analytical Predictions for Lower Order Moments, MNRAS, in press (astro-ph/0012338)

Peacock, J. A. & Smith, R. E., 2000, Halo occupation numbers and galaxy bias, MNRAS, in press (astro-ph/0005016)

Reblinsky, K. & Bartelmann, M., 1999, Projection effects in mass-selected galaxy samples, A&A, 345, 1

Reblinsky, K., Kruse, G., Jain, B. & Schneider, P., 1999, Cosmic shear and halo abundances: Analytical versus numerical
Schmalzing, J. & Diaferio, A., 2000, Topology and Geometry of the CfA2 Redshift Survey, MNRAS, 312, 638
Scoccimarro, R., Couchman, H.M.P. & Frieman, J.A., 1999. The bispectrum as a signature of gravitational instability, ApJ, 517, 531.
Scoccimarro, R., Sheth, R., Hui, L. & Jain, B., 2000, How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering, ApJ, submitted (astro-ph/0006319)
Seljak, U., 2000, Analytic model for galaxy and dark matter clustering, MNRAS, in press (astro-ph/0001493)
Sheth, R. K. & Tormen, G., 1999, Large-scale bias and the peak background split, MNRAS, 308, 119
Sheth, R. K., Mo, H.J. & Tormen, G., 2000, Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, MNRAS, in press (astro-ph/9907024)
Somerville, R., Lemson, G., Sigad, Y., Dekel, A., Kauffmann, G. & White, S.D.M., 2000, Nonlinear stochastic galaxy biasing in cosmological simulations, MNRAS, in press (astro-ph/9912073)
Springel, V., White, S. D. M., Colberg, J. M., Couchman, H. M. P., Efstathiou, G., Frenk, C. S., Jenkins, A. R., Pearce, F. R., Nelson, A. H., Peacock, J. A. & Thomas, P. A., 1998, Genus statistics of the Virgo N-body simulations and the 1.2Jy redshift survey, MNRAS, 298, 1169.
Szapudi, I., Colombi, S., Jenkins, A. & Colberg, J. M. 1999. Experimental Cosmic Statistics II : Distribution, MNRAS, 313, 725
Szapudi, I., Branchini, E., Frenk, C. S., Maddox, S. & Saunders, W., 2000, The luminosity dependence of clustering and higher order correlations in the PSCz survey, MNRAS, in press.
Thomas, P., Couchman, H., Jenkins, A., Pearce, F., Frenk, C. S, White, S. D. M., Colberg, J., Peacock, J., Efstathiou, G. & Nelson, A. 1998. The structure of clusters in different cosmologies, MNRAS, 296, 1061.