Thermodynamic Simulation of CO2 – Adsorbent Based Sorption Refrigeration System

Different materials like activated carbon, metal organic frameworks, silica, etc. have ability to adsorb (exothermic process) and desorb (endothermic process) CO2. These heat interactions during adsorption and desorption processes can be utilized for the development of gas – adsorbent based sorption refrigeration system. Therefore, in the present work, this concept is employed to analyze the thermodynamic performance of CO2 – adsorbent based sorption refrigeration system (CO2-A SRS). The chosen adsorbents for thermodynamic simulation are Activated Carbon (Norit RB3), Pore Expanded Mesoporous Silica Materials (PE MSM 41), Amine Tethered Mesoporous Silica Materials (AT MSM 41) and Amine Functionalized Silica (AF Silica). The working pairs are developed based on the available pressure difference between coupled adsorbent to allow sufficient amount of CO2 to flow between the coupled materials in the operating temperature range of 0°C (refrigeration output), 25°C (ambient) and 100°C (heat source). The thermodynamic performance of refrigeration system is compared for two adsorbent pairs. The thermodynamic performance includes refrigeration effect, specific refrigeration power, coefficient of performance, refrigeration capacity and second law of efficiency. The refrigeration effect of Activated Carbon – PE MSM 41 pair is observed double that of AT MCM 41 – AF Silica pair. In addition, the thermodynamic performance of CO2-A SRS is compared with the performance of CO2 adsorbent based vapour adsorption refrigeration system (CO2-A VARS) available in literature. The COP of CO2-A SRS is observed higher than CO2-A VARS.

Keywords: Adsorbent; COP; CO2 adsorbent based sorption refrigeration system; CO2 storage; Reaction enthalpy; Specific refrigeration power.

1. INTRODUCTION

Carbon dioxide has adverse effect on the environment, since Green House Gases contains 77% of CO2 [1]. Therefore, the concept of storage and sequestration of CO2 from environment or waste exhaust gases received much interest of researchers worldwide. It is observed from several studies that CO2 can be captured by adsorption in different materials like activated carbon, zeolite, silica, etc. These technologies become promising solution for the benefit of future generations. Several studies on characterisation of adsorbent materials to identify its CO2 storage capacity are available in literature [2-30]. Development of any sorption based thermodynamic system demands for the knowledge of adsorption/desorption characteristics, reaction kinetics and thermal stability of materials used.

Vinod and Anil [2] have experimentally and theoretically studied the CO2 adsorption and desorption characteristics of three different type of activated carbons namely Norit RB3 (steam activated rod), Norit Darco (100 mesh size), and Norit Darco (12 -20 US mesh size).They have observed that CO2 adsorption capacity increased with increase in supply pressure. Later, the experimentally measured isotherm are simulated using D-A Model. Several researchers [12-14] theoretically studied the CO2 adsorption phenomena on solid adsorbents and revealed the importance of surface area and spreading pressure on the physical adsorption process. The development of several amine-tethered mesoporous silica materials to enhance the CO2 adsorption capacity at lower partial pressures are presented by different researchers [16-20]. In other studies [28-30], novel pore expanded mesoporous silica materials are suggested as promising support for amine tethering. It allows exploitation of internal space, which is not possible with zeolite, MSM-41, SBA-15 and KIT-6 [21, 22]. On the other hand, Loganathan et al. [27] have investigated the CO2 adsorption and desorption isotherms on PE-MSM-41 at different temperatures and at the pressure range of 0-25 bar and it was observed that the adsorption and desorption are reversible in nature as the isotherms coincide with each other.

The experimental investigation on CO2 storage and reaction rates of pitch-based activated carbon at 303 to
423 K temperature and 0-1 bar pressure is reported by Shen et al. [23]. Balsamo et al. [24] have reported that reaction kinetics directly proportional to supply pressures whereas inversely proportional to temperatures. It is observed by Zhang et al. [25] on experimental investigation of CO₂ storage and reaction kinetics of activated carbon and zeolite 13X at 298, 308, 318 and 328 K, and up to 30 bar pressure that the adsorption rates of zeolite 13X at low pressures are comparatively more than activated carbon whereas at higher pressures the adsorption capacities are observed lower in zeolite 13X compared to activated carbon.

CO₂ storage capacities of different adsorbent materials are widely investigated for several operating conditions whereas less effort has been given on the development of CO₂ – adsorption based thermodynamic systems. CO₂ – adsorption based thermodynamic systems like cooling system can be operated using waste heat as input whereas the heat of desorption during endothermic process can be utilized as cooling output. The development of any solid – gas sorption thermodynamic system demands for the several thermodynamic and thermo physical properties like gas storage, reaction kinetics, thermodynamic properties, etc. of adsorbent materials [31]. The selection of suitable working pairs depends on the adsorption isotherms, kinetics, and heat of adsorption and desorption, specific heat capacity, internal energy, etc. In addition to high adsorption capacity and fast kinetics, activated carbon exhibits high surface area, better pore size distribution and thermal stability. Therefore, it is more suitable for adsorption of CO₂ compared to other solid adsorbents [3–6, 26]. It can also be adopted easily for many applications due to its economical suitability for large quantity use and non-reactive to moisture. Activated carbons are also studied for the suitability of different applications like separation and purification of CO₂ sorption based thermodynamic devices systems, cryo-coolers and energy storage systems [7-11]. Recently, thermodynamic analysis of CO₂ and activated carbon based cooling system has been conducted by Vinod and Anil [2] and obtained maximum COP of 0.09 with CO₂-Norit RB3, pair at driving source temperature of 80°C with the evaporator temperature of 15°C. On the other hand, Banjac et al. [32] have discussed about the geothermal ground source heat pump for low temperature hydronic heating system. Jitendra and John Rajan [33] have presented the recent advancement in cooling technologies for solar PV systems.

Though several adsorbent materials are used to study their CO₂ adsorption capacity, activated carbons are reported to be most suitable for CO₂ storage applications due to its high CO₂ storage capacity. Also, activate carbons are used to study the thermodynamic performance of CO₂ – adsorbent based vapour adsorption refrigeration systems (CO₂-A VARS) by several researchers. But, the observed COP and cycle efficiency of CO₂-A VARS are quite low that necessitates the further investigations on system performance improvement. Therefore, in the present study, the concept of gas – solid sorption is employed to propose a new thermodynamic cycle of CO₂ – adsorbent based sorption refrigeration system (CO₂-A SRS). The sorption refrigeration system works with the employment of working pairs (adsorption/absorption materials) of one high pressure type and one low pressure type materials [34-39]. The useful cooling effect can be produced through adsorption/desorption of gas to/from working materials. Such systems do not require mechanical moving parts. There is no need of compressor to increase gas pressure, this (pressure increase or decrease) can be done through sensible heating and sensible cooling of charged materials. In addition, sorption systems are environmental friendly due to absence of harmful refrigerants. The refrigeration effect in CO₂-A SRS can be obtained by utilizing the heat interactions involved during CO₂ transfer between coupled adsorbent materials. This type of gas – solid sorption refrigeration system is never studied in literature using CO₂ as working fluid. Therefore, we proposed a concept of gas – solid sorption refrigeration system to theoretically analysis (thermodynamic simulation) the thermodynamic performance of such sorption system using CO₂ as working fluid. In the present study, two pairs of adsorbent materials are used to estimate the performance of CO₂-A SRS and compared their suitability for the development of CO₂-A SRS. The adsorbent pairs used for thermodynamic simulation of CO₂-A SRS are “Activated Carbon - PE MSM 41” and “AT MSM 41 - AF Silica”. The performance of CO₂-A SRS is estimated in terms of refrigeration effect, refrigeration capacity, specific refrigeration power, COP and cycle efficiency.

2. WORKING PRINCIPLE OF CO₂ – ADSORBENT BASED REFRIGERATION SYSTEMS

2.1 CO₂ – Adsorbent based sorption refrigeration system (CO₂-A SRS)

Figures 1 and 2 show the thermodynamic cycle and scheme of CO₂ – A SRS respectively working in the temperature range of T_ref = 0°C (refrigeration output temperature), T_r = 25°C (ambient temperature) and T_reg = 100°C (heat source temperature). A CO₂ – A SRS consists of two CO₂ transfer processes; refrigeration process and regeneration process, and one sensible heating process and one sensible cooling process. CO₂ – A SRS needs a pair of two adsorbent materials that eliminates the requirement of expansion device, heat exchangers, etc., which are required in CO₂-A VARS (Fig. 3). The CO₂ – A SRS system utilizes the reaction heats involved during adsorption/desorption of CO₂ on/from adsorbent materials to produce refrigeration effect.

Refer to Figs. 1 and 2; A₁ and A₁’ are adsorbents used at high-pressure side and A₂ and A₂’ are adsorbents at low-pressure side. In refrigeration process, adsorbent A₁ at point 1 desorbs CO₂ at T_ref which is adsorbed by adsorbent A₂ at point 2. The desorption (endothermic) heat absorb by adsorbent A₁ is responsible for producing refrigeration effect (Q_ref) at T_ref and the adsorption (exothermic) heat (Qₐ) released by adsorbent A₂ is rejected to ambient at T_r. Simultaneously, in regeneration process, the adsorbent A₁ desorbs CO₂ by taking the required heat (Q_reg) of desorption from waste heat source at T_reg that CO₂ is
adsorbed by adsorbent A₁ by rejecting heat of adsorption (Qₐ) to ambient at Tₐ. Thereafter, by sensibly cooling adsorbent A₁ from Tₐ to Tₐₑ and adsorbent A₂ from Tₐₑ to Tₐ, and sensibly heating of adsorbent A₁ from Tₐₑ to Tₐ and adsorbent A₂ from Tₐ to Tₐₑ, system can be ready for next cycle.

Figure 1. Thermodynamic cycle of CO₂ – adsorbent based sorption refrigeration system

2.2 CO₂ – Adsorbent based vapour adsorption refrigeration system (CO₂-A VARS)

Figure 3 shows the scheme of CO₂ – adsorbent based liquid adsorption system. This system consists of a condenser, an evaporator, an expansion valve and one sorption reactor. Firstly, CO₂ gets evaporated in an evaporator producing refrigeration effect (Qₑ). Then, the low-pressure CO₂ transferred to the adsorber and get adsorbed on adsorbent at low temperature. Since, the process of adsorption is exothermic, certain amount of heat (Qₐ) is rejected to ambient. Adsorber is then disconnected from the evaporator heat exchanger and is sensibly heated to required condenser temperature and corresponding pressure. After reaching to equilibrium condition, CO₂ get desorbed from adsorbent using waste heat source (Qₛ). The desorbed CO₂ condensed in the condenser by rejecting Qₐ amount of heat. The operation completes by expansion of CO₂ through expansion valve between condenser and evaporator.

Figure 3. Scheme of CO₂ – adsorbent based vapour adsorption refrigeration system

3. SELECTION OF ADSORBENT PAIRS

Typically, the desirable properties of adsorbents suitable for CO₂ – A SR system are (a) high CO₂ storage capacity that increases the amount of CO₂ transmission, (b) fast reaction kinetics to reduce overall cycle time, (c) sufficient pressure difference between coupled sorption beds at operating temperature range, (d) and favourable thermodynamic properties, generally, high desorption heat for adsorbent at high pressure side to increase refrigeration output and low desorption heat for adsorbent at low pressure side to reduce regeneration input. In this view, different adsorbent materials characterised for CO₂ storage application available in literature are chosen to identify the best-suited adsorbent pairs of the development of CO₂ – A SRS. The chosen adsorbent materials are Active Carbon (Norit RB3) (AC1), Activated Carbon (Norit Carco, 100 mesh size) (AC2), Activated Carbon (Norit Darco, 12 × 20 US mesh size) (AC3) [2], Pore Expanded Mesoporous Silica Materials (PE MSM 41) [26], Amine Tethered Mesoporous Silica Materials (AT MSM 41) [30], Amine Functionalized Silica (AF Silica) [40], 13X Zeolite [41] and MIL 101 [42].

The isotherm data of above mentioned adsorbent materials are taken from respective references and van’t Hoff plots are constructed for each adsorbent material. Van’t Hoff plot is a relation between logarithmic equilibrium pressure and inverse of absolute temperature. The equilibrium pressures for all the adsorbent materials are chosen at fixed CO₂ concentration at different temperatures. The selection of equilibrium pressure, CO₂ concentration was kept fixed to ensure the uniformity in measurements. The constructed plots are linear where its slope and intercept can be used to evaluate reaction enthalpy and reaction entropy respectively using van’t Hoff equation. Fig. 4 shows the van’t Hoff plots of all adsorbent materials chosen for present study. The equations of van’t Hoff lines and, estimated reaction enthalpy and entropy are listed in Table 1.

As mentioned earlier, the working temperature range for CO₂ – A SRS is selected as Tₑₑₑ = 0°C, Tₐ = 25°C and Tₑₑₑ = 100°C. We have proposed the refrigeration system which can able to discharge the waste heat at ambient temperature. Therefore, the heat sink is chosen as 25°C while the refrigeration output temperature (0°C)
and heat source temperature (100°C) are chosen in such a way that there exist sufficient pressure difference between coupled reactors to allow sufficient CO2 transfer between them. Also, high pressure difference increases rate and amount of CO2 transfer. Therefore, to select the suitable working pair for CO2 – A SRS, all adsorbent materials are examined on the basis of available pressure difference between coupled adsorbent beds for a given temperature range (see Fig. 4) because sufficient pressure differential is required to allow CO2 transfer between them and also for fast kinetics. Based on van’t Hoff data, out of eight adsorbents, only four adsorbent materials are found suitable for the development of CO2 – A SRS. The selected adsorbent materials and their possible pairs are Activated Carbon – PE MSM 41 (pair 1) and AT MSM 41 – AF Silica (pair 2). Activated carbon and AT MCM – 41 are considered as high pressure adsorbents due to their higher equilibrium pressures relative to PE MCM – 41 and AF Silica equilibrium pressures respectively at given operating temperatures. In the proceeding sections, thermodynamic cycles and simulation are discussed for these selected adsorbent pairs.

3.1 Results and discussion

For operation of CO2 – A SRS, a pair of high-pressure and low-pressure type adsorbent materials is required. In the present study, Activated Carbon and AT MCM 41 are considered as high-pressure type, and PE MCM 41 and AF Silica as low-pressure type adsorbent. The thermodynamic cycles for CO2 – A SRS constructed based on van’t Hoff plots for working pairs Activated Carbon – PE MSM 41 and AT MSM 41 – AF Silica are shown in Figs. 5 and 6, respectively.

Figure 4. Van’t Hoff plots for chosen adsorbent materials

As mentioned earlier, the working temperature range for CO2 – A SRS is selected as Tref = 0°C, Ta = 25°C and Treg = 100°C. We have proposed the refrigeration system which can able to discharge the waste heat at ambient temperature. Therefore, the heat sink is chosen as 25°C while the refrigeration output temperature (0°C) and heat source temperature (100°C) are chosen in such a way that there exist sufficient pressure difference between coupled reactors to allow sufficient CO2 transfer between them. Also, high pressure difference increases rate and amount of CO2 transfer. Therefore, to select the suitable working pair for CO2 – A SRS, all adsorbent materials are examined on the basis of available pressure difference between coupled adsorbent beds for a given temperature range (see Fig. 4) because sufficient pressure differential is required to allow CO2 transfer between them and also for fast kinetics. Based on van’t Hoff data, out of eight adsorbents, only four adsorbent materials are found suitable for the development of CO2 – A SRS. The selected adsorbent materials and their possible pairs are Activated Carbon – PE MSM 41 (pair 1) and AT MSM 41 – AF Silica (pair 2). Activated carbon and AT MCM – 41 are considered as high pressure adsorbents due to their higher equilibrium pressures relative to PE MCM – 41 and AF Silica equilibrium pressures respectively at given operating temperatures. In the proceeding sections, thermodynamic cycles and simulation are discussed for these selected adsorbent pairs.

Table 1. Estimated reaction enthalpy and entropy values

Adsorbent Materials	Van’t Hoff Equations	Reaction Enthalpy; ΔH (kJ/mol)	Reaction Entropy; ΔS (kJ/mol K)
Activated Carbon-1	lnPe = -2971.4/T + 13.621	24.7	0.113
Activated Carbon-2	lnPe = -2733.8/T + 12.438	22.7	0.103
Activated Carbon-3	lnPe = -2457.4/T + 11.737	20.4	0.098
Pore Expanded PE MCM-41	lnPe = -1983.1/T + 8.7686	16.5	0.073
Amine Tethered PE MCM-41	lnPe = -5423.9/T + 17.329	45.1	0.144
13X Zeolite	lnPe = -3589/T + 8.5758	29.8	0.071
MIL 101 Powder Form	lnPe = -1367.3/T + 6.2506	11.4	0.052
Amine Functionalized Mesoporous Silica	lnPe = -9226.1/T + 25.939	65.1	0.216
3.2 Thermodynamic analysis of CO2 adsorption based sorption refrigeration system

The thermodynamic analysis of CO2 – A SRS is carried out using Activated Carbon – PE MSM 41 and AT MSM 41 – AF Silica pairs to check their suitability for the development of CO2 – A SRS. The adsorbent to reactor mass ratio is assumed to be 1:0.75, the specific heat of adsorbent and reactor as 0.7 kJ/kg K and 0.46 kJ/kg K respectively [2, 34]. The cycle time is assumed to be 30 minutes for 1 kg of each adsorbent. The thermodynamic properties and transferrable CO2 of chosen adsorbent materials are available in Table 2.

The thermodynamic performance of CO2 – A SRS are estimated using following equations:

Refrigeration effect

\[Q_{\text{ref}} = n\Delta H_{\text{ref}} - \left((m_{\text{ref}}C_{\text{ref}} + m_{r,\text{ref}}C_{r,\text{ref}})(T_a - T_{\text{ref}}) \right) \] (1)

Regeneration heat supplied

\[Q_{\text{reg}} = n\Delta H_{\text{reg}} + \left((m_{r,\text{reg}}C_{r,\text{reg}} + m_{r,\text{reg}}C_{r,\text{reg}})(T_{\text{reg}} - T_a) \right) \] (2)

Coefficient of performance:

\[\text{COP} = \frac{Q_{\text{ref}}}{Q_{\text{reg}}} \] (3)

Specific refrigeration power

\[\text{SRP} = \frac{Q_{\text{ref}}}{t_{\text{half-cycle}}(m_{\text{ref}} + m_{\text{reg}})} \] (4)

Refrigeration capacity

\[RC = \frac{\text{Refrigeration load}}{\text{Cycle time}} = \frac{2Q_{\text{ref}}}{t_{\text{cycl}}} \] (5)

Second law efficiency

\[\eta_E = \frac{\text{COP}}{T_a/T_{\text{ref}}} \left(\frac{1}{T_a/T_{\text{reg}}} - 1 \right) \frac{1}{1 - (T_a/T_{\text{reg}})} \] (6)

Upon thermodynamic simulation of CO2 – adsorbent based sorption refrigeration system, the estimated thermodynamic performance viz. refrigeration effect \((Q_{\text{ref}})\), regeneration heat supplied \((Q_{\text{reg}})\), coefficient of performance \((\text{COP})\), specific refrigeration power \((\text{SRP})\), refrigeration capacity \((RC)\) and second law efficiency \((\eta_E)\) are listed in Table 3 for both the pairs. It is observed from the literature that the thermodynamic performance of any gas – solid sorption system significantly influences by reaction heat of the material employed. Also, for better refrigeration effect, the reaction heat of the refrigeration adsorbent material should be higher whereas the reaction heat of the regeneration adsorbent material should be lower. These together result in higher COP of the thermodynamic system. In the present study, it is observed that inspite of having higher reaction heat (AT MSM 41) than Activated Carbon, the refrigeration effect of CO2 – A SRS using Activated Carbon – PE MSM 41 pair is higher than that of using AT MSM 41 – AF silica pair. This is due to the availability of higher transferrable CO2 between Activated Carbon – PE MSM 41 pair (due to higher CO2 storage capacity of these adsorbents) than AT MSM 41 – AF silica pair. Also, in Activated Carbon – PE MSM 41 pair, the reaction heat of regeneration materials i.e. PE MSM 41 is lower than that of refrigeration material i.e. Activate Carbon, which gives rise in COP whereas on the other hand, for AT MSM 41 – AF silica pair, the reaction heat of AF Silica (regeneration material) is higher than that of AT MSM 41 (refrigeration material).

Table 2. Properties of adsorbent materials [2, 27, 40, 43]

S. No.	Absorbent Materials	Reaction Enthalpy; \(\Delta H\) (kJ/mol)	Transferrable CO2 (mol/gm)	Average Specific Heat (kJ/kgK)
1	Activated Carbon	18.63	0.02499	0.7
2	PE MSM-41	16	0.006	-
3	AT MSM-41	45	0.002	-
4	Amine Functionalized Silica	65	0.0012	-
Therefore, the SRP, cooling capacity and second law efficiency are also observed greater for the pair Activated Carbon – PE MSM 41. Based on the above observations for available pressure differential, reaction heat and transferrable CO₂, the pair of Activated Carbon – PE MSM 41 is considered to be a best suited working pair for the development of CO₂ adsorbent based sorption refrigeration system.

Table 3. Performance of CO₂ based solid sorption cooling system

Pairs	Activated Carbon - PE MCM	AT MCM - AF Silica
CO₂ Exchange (moles)	6	1.2
ΔH_{ref} (kJ/mol)	18.63	45
ΔH_{reg} (kJ/mol)	16	65
Q_{ref} (kJ)	98.65	40.87
Q_{reg} (kJ)	135.37	117.37
COP	0.72	0.34
SRP (W/kg)	54.8	22.7
RC (kW)	0.1	0.04
η_{sc} (%)	33.18	15.86

It is also observed in the literature [2] that the performance of CO₂ adsorbent based vapour adsorption refrigeration system has been analysed using adsorbent materials as Activated Carbon. The schematic and working principle of the CO₂ adsorbent based vapour adsorption refrigeration system is given in Fig. 3 and section 2.2. The thermodynamic performance of CO₂-A VARS was reported as the maximum COP of 0.04, SRP of 7.4 W/kg and second law efficiency of 2.33% for evaporator temperature of 0°C and condenser temperature of 80°C. The thermodynamic performance was estimated using the same values of transferrable CO₂ and reaction heat presented in Table 2 for Activated Carbon. Whereas in the present study, authors have estimated the maximum COP of 0.72, SRP of 54.8 W/kg and second law efficiency of 33.18% for the temperature range of 0°C, 25°C and 100°C with adsorbent pair of Activated Carbon – PE MSM 41.

Based on the above observations, the basic criterion for the selection of adsorbent pair to achieve best refrigeration performance can be suggested. The selection of adsorbent pair depends on the adsorbent isotherms, thermal stability and reaction kinetics at the refrigeration system operating temperature range. The general properties required are high transferrable CO₂ capacity, fast reaction rates, good thermal stability. The adsorbent placed at refrigeration side should possess higher reaction heat to increase refrigeration effect and the adsorbent placed at regeneration side should possess low reaction heat to reduce the regeneration heat supplied consequently together increases COP. In addition, the pressure differences between the coupled adsorbent reactors strongly influence the CO₂ transfer rate and amount. The higher-pressure difference between coupled adsorbents is responsible for high refrigeration capacity and reduces cycle time.

4. CONCLUSIONS

The study on thermodynamic simulation of CO₂ adsorbent based sorption refrigeration system and vapour adsorption system led to the following conclusions:

- The materials suitable for storage of CO₂ are considered to check their suitability for the development of gas-solid sorption refrigeration system.
- Out of several CO₂ storage materials, Activated Carbon, PE MSM 41, AT MSM 41 and AF Silica are found suitable for CO₂.
- The pair of Activated Carbon – PE MSM 41 is considered to be a best suited working pair for the development of CO₂ adsorbent based sorption refrigeration system.
- High refrigeration performance is observed for CO₂ – A SRS using the pair of Activated Carbon – PE MSM 41 compared to CO₂-A VARS using activated carbon as working material.

REFERENCES

[1] Rahman, F.A., Aziz, M.M.M., Saidur, R., Bakar, W.A., Hainin, M.R., Putrajaya, R. Hassan, N.A.: Pollution to solution: Capture and sequestration of carbon dioxide (CO₂) and its utilization as a renewable energy source for a sustainable future, Renewable and Sustainable Energy Reviews, Vol. 71, pp. 112-126, 2017.
[2] Singh, V.K. and Anil Kumar, E.: Experimental investigation and thermodynamic analysis of CO₂ adsorption on activated carbons for cooling system, Journal of CO₂ Utilization, Vol. 17, pp. 290-304, 2017.
[3] Sircar, S., Golden, T.C. and Rao, M.B.: Activated carbon for gas separation and storage, Carbon, Vol. 34, pp. 1-12, 1996.
[4] Yates, M., Blanco, J., Avila, P. and Martin, M.P.: Honeycomb monoliths of activated carbons for effluent gas purification, Microporous Mesoporous Mater, Vol. 37, pp. 201–208, 2000.
[5] Saxena, R., Singh, V.K. and Anil Kumar, E.: Carbon dioxide capture and sequestration by adsorption on activated carbon, Energy Procedia, Vol. 54, pp. 320-329, 2014.
[6] Singh, V.K. Anil Kumar, E.: Measurement of CO₂ adsorption kinetics on activated carbon suitable for gas storage systems, Greenhouse Gases Science and Technology, Vol. 7, pp. 182-201, 2017.
[7] Liu, X., Li, J., Zhou, L., Huang, D. and Zhou, Y.: Adsorption of CO₂, CH₄ and N₂ on ordered mesoporous silica molecular sieve, Chem. Phys. Lett., Vol. 415, pp. 198–201, 2005.
[8] Jee, J.G., Kim, M.B. and Lee, C.H.: Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve, Chem. Eng. Sci, Vol. 60, pp. 869–882, 2005.

[9] Saha, B.B., Sharkawy, I.E., Koyama, S., Lee, J.B. and Kuwahara, K.: Waste heat driven multi-bed adsorption chiller: heat exchangers overall thermal conductance on chiller performance, Heat Transfer Eng, Vol. 27, No. 3, pp. 80-87, 2006.

[10] Baby, R. Prakash, M.J.: Improving the performance of an active carbon-nitrogen adsorption cryocooler by thermal regeneration, Carbon, Vol. 43, pp. 2338-2343, 2005.

[11] Schlapbach, L. and Züttel, A.: Hydrogen-storage materials for mobile applications, Nature, Vol. 414, pp. 353-358, 2001.

[12] Hill, T.L.: Statistical mechanics of adsorption V. thermodynamic and heat of adsorption, J. Chem. Phys, Vol. 17, pp. 520-535, 1949.

[13] Hill, T.L.: Statistical mechanics of adsorption IX. Adsorption thermodynamics and solution thermodynamics, J. Chem. Phys, Vol. 18, pp. 246-256, 1950.

[14] Everett, D.H.: Interactions between adsorbed molecules, Trans. Faraday Soc, Vol. 40, pp. 177-187, 1965.

[15] Young, D.M. and Crowell, A.D.: Physical Adsorption of Gases, Butterworths, London, 1952.

[16] Belmabhkhot, Y. and Sayari, A.: Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions, Adsorption, Vol. 15, pp. 318-328, 2009.

[17] Belmabhkhot, Y. and Sayari, A.: Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor, J. Am. Chem. Soc, Vol. 132, pp. 6312-6314, 2010.

[18] Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G. and Jones, C.W.: Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly, J. Am. Chem. Soc, Vol. 130, pp. 2902–2903, 2008.

[19] Brunelli, N.A., Didas, S.A., Venkatasubbaiah, K. and Jones, C.W.: Tuning cooperativity by controlling the linker length of silica supported amines in catalysis and CO2 capture, J. Am. Chem. Soc, Vol. 134, pp. 13950–13953, 2012.

[20] Geoppert, A., Czaun, M., May, R.B., Surya Prakash, G.K., Ohah, G.A. and Narayanan, S.R.: Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent, J. Am. Chem. Soc, Vol. 133, pp. 20164–20167, 2012.

[21] Yang, Y., Kruk, M., Jaroniec, M. and Sayari, A.: Expanding the pore size of MCM-41 silicas: use of amines as expanders in direct synthesis and post synthesis procedures, J. Phys. Chem, Vol. 103, pp. 3651–3658, 1999.

[22] Heydari-Gorji, A., Belmabhkhot, Y. and Sayari, A.: Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption, Langmuir, Vol.27, pp. 12411–12416, 2011.

[23] Shen, C., Grande, C.A. and Rodrigues, A.E.: Adsorption equilibrium and kinetics of CO2 and N2 on activated carbon beads, Chemical Engineering Journal, Vol. 160, pp. 398-407, 2010.

[24] Balsamo, M., Budinova, T., Erto, A., Lancia, A., Petrov, B., Petrov, N. and Tsytuntsarski, B.: CO2 adsorption onto synthetic activated carbon: Kinetics thermodynamic and regeneration studies, Separation and Purification Technology, Vol. 116, pp. 214-221, 2013.

[25] Zhang, Z., Zhang, W., Shen, X., Xia, Q. and Li, Z.: Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area, Separation Science and Technology, Vol. 45, pp. 710-719, 2010.

[26] Knoblauch, K.: Activated carbon and carbon molecular sieves in gas separation and purification, Gas Sep. Purif, Vol. 7, pp. 195–196, 1993.

[27] Loganathan, S., Tikmani, M. and Ghoshal, A.K.: Pore-expanded MCM-41 for CO2 adsorption: experimental and isotherm modeling studies, Chemical Engineering Journal, Vol. 280, pp. 9–17, 2015.

[28] Belmabhkhot, Y. and Sayari, A.: Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas, Energy Fuels, Vol. 24, pp. 5273–5280, 2010.

[29] Heydari-Gorgi, A., Yang, Y. and Sayari, A.: Effect of pore length on CO2 adsorption over amine-modified mesoporous silicas, Energy Fuels, Vol. 25, pp. 4206–4210, 2011.

[30] Belmabhkhot, Y., Heymans, N., Weireld, G.D. and Sayari, A.: Simultaneous adsorption of H2S and CO2 on triamine-grafted pore-expanded mesoporous MCM-41 silica, Energy Fuels, Vol. 25, pp. 1310–1315, 2011.

[31] Vinod Kumar Sharma, and Anil Kumar, E.: Effect of measurement parameters on thermodynamic properties of La-based metal hydrides, Int. Journal of Hydrogen Energy, Vol. 39, pp. 5888-5898, 2014.

[32] Banjac, M., Bogosav, V. and Gojak, M.: Low temperature hydronic heating system with radiators and geothermal ground source heat pump, FME Transactions, Vol. 35, pp. 129-134, 2007.

[33] Satpute, J. and John Rajan, A.: Recent advancement in cooling technologies of solar photovoltaic (PV) system, FME Transactions, Vol. 46, pp. 575-584, 2018.

[34] Sharma, V.K.: Static and dynamic measurement based thermodynamic analysis of solid sorption refrigeration system, International Journal of Energy Research, Vol. 41, pp. 553-564, 2017.

[35] Sharma, V.K. and Anil Kumar, E.: Metal hydrides, in: Arza Seidel (Ed.), Kirk Othmer Encyclopedia of Chemical Technology, Wiley & Sons, pp. 1-21, 2018.
[36] Sharma, V.K. and Anil Kumar, E.: Thermodynamic analysis of novel multi stage multi effect metal hydride based thermodynamic system for simultaneous cooling heat pumping and heat transformation, International Journal of Hydrogen Energy, Vol. 42, pp. 437-447, 2017.

[37] Sharma, V.K. and Anil Kumar, E.: Metal hydrides for energy applications – Classification, PCI characterization and Simulation, International Journal of Energy Research, Vol. 41, pp. 901-923, 2017.

[38] Sharma, V.K., Anil Kumar, E. and Srinivasa Murthy, S.: Influence of dynamic operating conditions on the performance of metal hydride based solid sorption cooling systems, International Journal of Hydrogen Energy, Vol. 40, pp. 1108-1115, 2015.

[39] Sharma V.K. and Anil Kumar, E.: Studies on La – MCM-41 for CO 2 capture: Experimental isotherm and isosteric heats of adsorption for CO 2 /N2 adsorption over a 13X zeolite bed, Journal of Chemical Engineering, Vol. 303, pp. 89-99, 2016.

[40] Longanathan, S., Tikmani, M., Mishra, A. and Ghosal, A.K.: Amine tethered pore-expanded MCM-41 for CO2 capture: Experimental isotherm and kinetic modeling studies, Chemical Eng. Journal, Vol. 27, pp. 831-841, 2015.

[41] Songolzadeh, M., Soleimani, M. and Ravanchi, M.T.: Using modified Avrami kinetic and two component isotherm equation for modeling of CO2/N2 adsorption over a 13X zeolite bed, Journal of Natural Gas Science and Engineering, Vol 27, pp. 60-67, 2015.

[42] Montazerolghaem, M., Aghamiri, S.F., Talaie, M. R. Tangestaninejad, S.: A comparative investigation of CO2 adsorption on powder and pellet forms of MIL-101, Journal of Taiwan Institute of Chemical Engineers, Vol. 72, pp. 45-52, 2017.

[43] Watabe, T., Yogo, K., Watabe, T. Yogo, K.: Isotherm and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas, Separation and Purification Technology, Vol. 120, pp. 20-23, 2013.

NOMENCLATURE

Symbol	Description
A SRS	adsorbent based sorption refrigeration system
A VARS	adsorbent based vapour adsorption refrigeration system
COP	coefficient of performance
SRP	specific refrigeration power
RC	refrigeration capacity
C	specific heat; kJ/kg K
AH	reaction enthalpy; kJ/mol
m	mass of adsorbent; kg
n	moles of CO2; mol
P_e	equilibrium pressure; bar
ΔP	pressure differential; bar
Q	heat load; kJ
T	absolute temperature; °C
t	time; sec
η	efficiency

Subscripts

Symbol	Description
a	ambinet
c	condenser
cyl	cycle
ref	refrigeration
reg	regeneration
s	waste heat source
T	temperature
r	reactor

ТЕРМОДИНАМИЧКА СИМУЛАЦИЈА

СИСТЕМА СОРПЦИОНОГ ХЛАЂЕЊА БАЗИРАНог НА АДСОРБЕНТУ CO2

С.Н. Сајед, В.К. Шарма

Различити материјални као што су активни угљ, метално органички оквари, кварц и др. имају способност адсорције и десорције CO2. Топлотна интеракција током ових процеса може да се користи за развој система сорпционах хлађења на бази адсорбента гаса. У раду је ова концепција примењена за анализу термодинамичких перформанса система сорпционах хлађења базираних на адсорбенту CO2. Као адсорбенти су коришћени активни угљ Norit RB3, PE MSM 41, AT MSM 41 и AF Silica. Од наведених адсорбената направљени су парови на основу разлике у притиску која омогућава дозвољан проток CO2 између два адсорбента на радијо темпера туру хлађења од 0°C, амбијенталној од 25°C и извора топлоте од 100°C. Термодинамичке перформанса система хлађења су упоређиване по паровима адсорбената. Анализом су обухваћене следеће перформансне ефект хлађења, специфична снага хлађења, коефицијент перформанс, капацитет хлађења и други закон степена искоришћености. Ефекат хлађења код пара активних угља – PE MSM 41 је двоструко већи него код пара AT MSM 41 – AF-Silica. Такође је извршено поређење перформанси пара CO2 – A-SRS и пара CO2 – A-VARS што је доступно и у литератури. Утврђено је да је коефицијент перформанс код пара CO2-A STS већи него код пара CO2 – A VARS.