A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies

M. Marina,, M. I. A. Othmanb,, A. R. Seadawyc and C. Carstead

aDepartment of Mathematics and Computer Science, Transilvania University of Brasov, Brasov, Romania; bDepartment of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt; cMathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; dDepartment of Air Surveillance and Defense, “Henry Coanda” Air Force Academy, Brasov, Romania

ABSTRACT
We establish a domain of influence theorem for the mixed initial-boundary value problem in the context of the Moore–Gibson–Thompson theory of thermoelasticity for dipolar bodies. Based on the data of the mixed problem, we define, for a finite time $t > 0$, a bounded domain B_t, and prove that the displacements and the temperature decrease to zero, outside of the domain B_t. The main result is obtained with the help of two auxiliary results, namely two integral inequalities. We managed to prove that this type of influence domain can be built even if it is considered in a much more complex context. Thus, compared to the classical context in which this concept appeared, we took into account the heat conduction principle from the Moore–Gibson–Thompson theory, we considered the thermal effect and we analyzed the effect of the dipolar structure of the environment.

1. Introduction

Some researchers consider that type III heat conduction violates the principle of causality. This was the reason for considering the Choudhuri’s theory given [1]. This is also the reason why the Moore–Gibson–Thompson theory appeared (see [2], for instance). This theory was developed starting from a third-order differential equation, built in the context of some considerations related to fluid mechanics. Subsequently the equation was considered as a heat conduction equation because it has been obtained by considering a relaxation parameter into the type III heat conduction. Since the advent of the Moore–Gibson–Thompson theory, the number of dedicated studies to this theory has increased considerably. We mention some of them, a part developing the theoretical aspects of the theory, such as [3–6], others highlighting the practical applicability of this theory [6–13]. For our main result, we will approach the heat conduction of the Moore–Gibson–Thompson type in the case that the dissipation condition holds. We must emphasize that we have considered the Moore–Gibson–Thompson theory in the context of the thermoelastic dipolar bodies, starting from the consideration that these media are very current and have applicability to concrete materials. We can give the following examples, as very convincing: granular media having large molecules (concrete: polymers), animal bones, or human bones, and graphite.

If we consider the extensive number of published papers which are dedicated to the media with dipolar structure, we can conclude that this kind of structure is very suitable to model a large number of media in continuum mechanics [14–17].

In some previous studies, we have studied other aspects regarding the bodies with dipolar structure [18–22]. Another general consideration: our study is a plea for the theories regarding microstructure, for both elastic and thermoelastic environments. The most important concern of these theories is to eliminate the shortcomings of the classical theory. The advantages of bodies with microstructure have been highlighted in many studies dedicated to these environments [23–37].

2. Basic equations

We will approach a bounded domain D in the usual space \mathbb{R}^3 which is filled by an thermoelastic dipolar material. We denote by denoted by \bar{D} the closure of the domain D, so that $\bar{D} = \partial D \cup D$, ∂D being the frontier of the set D and it is assumed to be smooth enough to apply the theorem of divergence. Also, $n = (n_i)$ is the outward unit normal to the border ∂D. It will be understood that a vector \mathbf{v} has the components v_i and a tensor \mathbf{w} has the components w_{ij}. For a function $f = f(t, x)$ we will denote by f' its derivative with respect the variable t and by f_j its derivative with respect to the space variable x_i. Summation over repeated subscripts is implied.

CONTACT M. Marin m.marin@unitbv.ro Department of Mathematics and Computer Science, Transilvania University of Brasov, Brasov 500093, Romania

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The spatial argument and the time argument of a function will be omitted when there is no likelihood of confusion. We refer the motion of the body to a fixed system of rectangular Cartesian axes Ox, $i = 1, 2, 3$.

Let us define the problem of heat conduction of the Moore–Gibson–Thompson type, denoted by P, which consists of the differential equation relative to the temperature ϑ:

$$c(x) \left(\alpha \dddot{\vartheta} + \dddot{\vartheta} \right) = \left(\kappa_{ij}(x) \partial_{j} \vartheta + \kappa_{ij}^{*}(x) \partial_{j} \vartheta \right)_{i}. \quad (1)$$

Here we used the notation α for a positive parameter to designate the thermal relaxation. Also, $c(x)$ is notation for the thermal capacity, and the tensors κ_{ij} and κ_{ij}^{*} represent the thermal conductivity, and respectively, the thermal conductivity tensor in connection with the thermal relaxation parameter α. Both tensors κ_{ij} and κ_{ij}^{*} are assumed to be symmetric.

Our aim is to obtain a mixed initial-boundary value problem for ϑ. For this, we consider the following boundary condition:

$$\vartheta (t, x) = 0, \quad x \in \partial D, \quad t > 0, \quad (2)$$

and the following initial conditions:

$$\vartheta (0, x) = \vartheta^{0}(x), \quad \vartheta (0, x) = \vartheta^{1}(x), \quad \ddot{\vartheta} (0, x) = \vartheta^{2}(x), \quad x \in D. \quad (3)$$

All functions used in our considerations are assumed to be bounded. Furthermore, the thermal capacity $c(x)$ is a positive function, that is:

$$c(x) \geq c_{0} > 0, \quad x \in D. \quad (4)$$

Let us introduce the tensor K_{ij} by means of the notation $K_{ij} = \kappa_{ij} - \kappa_{ij}^{*}$. We will suppose that K_{ij} is a positive definite tensor: there exists a positive constant K_{0} so that

$$K_{ij} \xi_{i} \xi_{j} \geq K_{0} \xi_{i} \xi_{j}. \quad (5)$$

Now, we will introduce the mixed initial-boundary value problem for the Moore–Gibson–Thompson theory of thermoelastic bodies with dipolar structure.

To describe the deformation of this type of bodies, we will use the following variables:

$$u_{i}(x, t), \quad \varphi_{ij}(x, t), \quad \vartheta (x, t), \quad (x, t) \in D \times [0, \infty). \quad (6)$$

The notation $u = (u_{i})$ is used for the displacement vector, $\varphi = \varphi_{ij}$ for the dipolar displacement tensor and ϑ is the variation of the temperature from the reference temperature T_{0}, that we have already introduced previously.

We will use three strain tensors ε_{ij}, γ_{ij} and χ_{ijk} which are defined by means of the geometric equations:

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right), \quad \gamma_{ij} = u_{ij} - \varphi_{ij}, \quad \chi_{mnr} = \varphi_{mn,r}. \quad (7)$$

Our considerations will be made in the context of a linear theory, such that it is natural to consider that the internal energy is a quadratic form in its variables, namely, of the following form (see [3]):

$$E = \frac{1}{2} C_{ijmn} \varepsilon_{ij} \varepsilon_{mn} + G_{ijmn} \varphi_{ij} \varphi_{mn} + F_{ijmn} \vartheta_{mn}$$

$$+ \frac{1}{2} B_{ijmn} \vartheta_{ij} \vartheta_{mn} + 2 D_{ijmn} \vartheta_{ij} \vartheta_{mn} + A_{ijmn} \chi_{ij} \vartheta_{mn}$$

$$+ \frac{1}{2} c \left(\alpha \ddot{\vartheta} + \vartheta \right)^{2} - \left(a_{ij} \varepsilon_{ij} + b_{ij} \varphi_{ij} + c_{ijk} \chi_{ijk} \right) \right) \times \left(\alpha \ddot{\vartheta} + \vartheta \right) + \frac{1}{2} K_{ij} \vartheta_{i,j} \vartheta_{j}. \quad (8)$$

where $C_{ijmn}, G_{ijmn}, \ldots, A_{ijmn}$ are the elasticity tensors, whereas a_{ij}, b_{ij} and c_{ijk} are the coupling tensors and K_{ij} is the thermal conductivity tensor, defined above.

By using an appropriate procedure, starting by the form of E from (8), we can introduce the tensors of stress, having the components denoted by τ_{ij}, σ_{ij} and μ_{ijk}, with the help of the constitutive equations (see [19]):

$$\tau_{ij} = \frac{\partial E}{\partial \varepsilon_{ij}} = C_{ijmn} \varepsilon_{mn} + G_{ijmn} \varphi_{mn} + F_{ijmn} \vartheta_{mn}$$

$$- a_{ij} \left(\alpha \ddot{\vartheta} + \vartheta \right), \quad (11)$$

$$\sigma_{ij} = \frac{\partial E}{\partial \varphi_{ij}} = G_{ijmn} \varphi_{ij} \varphi_{mn} + B_{ijmn} \vartheta_{ij} \vartheta_{mn}$$

$$- b_{ij} \left(\alpha \ddot{\vartheta} + \vartheta \right), \quad (12)$$

$$\mu_{ijk} = \frac{\partial E}{\partial \chi_{ijk}} = F_{ijmn} \varphi_{mn} \vartheta_{ij} + D_{ijmn} \vartheta_{ij} \vartheta_{mn}$$

$$- c_{ijk} \left(\alpha \ddot{\vartheta} + \vartheta \right), \quad (13)$$

$$S = \frac{\partial E}{\partial \alpha \vartheta} = - \left(a_{ij} \varepsilon_{ij} + b_{ij} \varphi_{ij} + c_{ijk} \chi_{ijk} \right)$$

$$+ c \left(\alpha \ddot{\vartheta} + \vartheta \right), \quad (14)$$

$$\varrho_{i} = \frac{\partial E}{\partial \vartheta_{i}} = K_{ij} \vartheta_{i,j}. \quad (15)$$

We have added in (9) the expressions for entropy S and for the vector of heat flux having the components ϱ_{i}.

Also, the main equations, namely the motion equations, are obtained in the form (see [22]):

$$\left(\tau_{ij} + \sigma_{ij} \right)_{j} + \varrho_{i} = \varrho_{i,j} \quad (10)$$

$$\mu_{mnr,m} + \sigma_{mr} + \varrho_{mn} = l_{mn} \varrho_{mr}, \quad (11)$$

where the notation $l_{ij} = l_{ij}$ is used for the tensor of microinertia, ϱ is the notation for the constant mass density in the reference state, $f = (f_{i})$ is the body forces vector and $g = g_{ij}$ is the dipolar body forces tensor.

We will use the energy equation in the form that follows (see [7]):

$$- \left(a_{ij} \varepsilon_{ij} + b_{ij} \varphi_{ij} + c_{ijk} \chi_{ijk} \right) \times \left(\alpha \ddot{\vartheta} + \vartheta \right)$$

$$= \frac{1}{\varrho_{0}} \left(K_{ij} \vartheta_{i,j} \right) + \frac{1}{\varrho_{0}} \varrho_{r}, \quad (11)$$

where we denoted by r the heat supply.
We must suppose that the elasticity and coupling tensors used in the previous equations satisfy in the domain D the following symmetry relations:

$$C_{ijmn} = C_{jimn}, \quad G_{ijmn} = G_{jimn},$$

$$B_{ijmn} = B_{jimn}, \quad F_{ijkmn} = F_{jikmn},$$

$$A_{ijkmn} = A_{jikmn}, \quad a_{ij} = a_{ji}, \quad K_{ij} = K_{ji}. \tag{12}$$

We substitute the constitutive equations (9) and the geometric equations (7) in the motion equations (10) such that we obtain a system of differential equations of the form:

$$[[C_{ijmn} + G_{ijmn}] u_{n,m} + (G_{ijmn} + B_{ijmn}) (u_{n,m} - \varphi_{mn}) + (F_{mnij} + D_{ijmn}) \varphi_{nr,m} - (a_{ij} + b_{ij}) (\alpha \ddot{\varphi} + \dot{\varphi})]_{j} + \varphi_{t_{i}} = \varphi u_{i},$$

$$F_{ijkmn} u_{n,m} + D_{mnij}(u_{n,m} - \varphi_{mn}) + A_{ijkmn} \varphi_{nr,m} - c_{ij} (\alpha \ddot{\varphi} + \dot{\varphi})]_{j} + G_{kmn} u_{m,n} + B_{jkmn}(u_{m,n} - \varphi_{mn}) + D_{kmn}\varphi_{r,m} - b_{jk} (\alpha \ddot{\varphi} + \dot{\varphi}) + \varepsilon g_{jk} = I_{k} \varphi_{j}. \tag{13}$$

In order to complete the mixed problem for the Moore–Gibson–Thompson theory of thermoelasticity for bodies with dipolar structures, we add the following initial conditions:

$$u_{ij}(0,x) = u_{ij}^{0}(x), \quad \dot{u}_{ij}(0,x) = u_{ij}^{1}(x),$$

$$\varphi_{ij}(0,x) = \varphi_{ij}^{0}(x), \quad \dot{\varphi}_{ij}(0,x) = \varphi_{ij}^{1}(x),$$

$$\vartheta(0,x) = \vartheta^{0}(x), \quad \dot{\vartheta}(0,x) = \vartheta^{1}(x), \quad x \in D, \tag{14}$$

where $u_{ij}^{0}(x), u_{ij}^{1}(x), \varphi_{ij}^{0}(x), \varphi_{ij}^{1}(x), \vartheta^{0}(x)$ and $\vartheta^{1}(x)$ are prescribed functions.

Also, we add the boundary conditions:

$$u_{ij} = \bar{u}_{ij} \text{ on } \partial D_{1} \times [0,t_{0}),$$

$$\varphi_{ij} = \bar{\varphi}_{ij} \text{ on } \partial D_{2} \times [0,t_{0}),$$

$$m_{ij} = \bar{m}_{ij} \text{ on } \partial D_{3} \times (0,t_{0}),$$

$$\vartheta = \bar{\vartheta} \text{ on } \partial D_{3} \times [0,t_{0}),$$

$$q = \bar{q} \text{ on } \partial D_{3} \times (0,t_{0}), \tag{15}$$

where $\bar{u}_{ij}, \bar{\varphi}_{ij}, \bar{m}_{ij}, \bar{\vartheta}$ and \bar{q} are given functions.

In (15) we used the notation

$$t_{i} = (t_{j} + \alpha_{ij}) n_{i}, \quad m_{jk} = \mu_{ijk} n_{i}, \quad q = q n_{i}.$$
With these notations, inequality (19) receives on a much simpler form, as follows

$$P(s, x) \geq K(s, x), \quad \forall (s, x) \in [0, t] \times D. \quad (22)$$

The inequality that we will approach in next theorem is the basis for the demonstration of our main result. The following notations, for a disk and its border, are common:

$$B(x_0, \rho) = \{x \in D : |x - x_0| < \rho\},$$

$$\partial B(x_0, \rho) = \{x \in \partial D : |x - x_0| = \rho\}.$$

Theorem 3.1: If hypotheses (i)–(iii) are satisfied, then for any solution $$(u_t, \varphi_{ij}, \theta)$$ of the problem P, the inequality that follows is fulfilled

$$\int_{B(x_0,\rho)} P(t, x) \, dV + \frac{1}{T_0} \int_0^T \int_{B(x_0,\rho) + \nu(t - \tau)} K_{ij} \theta_{i,j} \, dV \, d\tau \leq \int_{B(x_0,\rho) + \nu(t - \tau)} \epsilon \left(f_t u_t + g_{jk} \varphi_{jk} + \frac{1}{T_0} r_\theta \right) \, dV \, d\tau$$

$$+ \int_0^T \int_{B(x_0,\rho) + \nu(t - \tau)} \left(t_i u_t + \ddot{m}_{jk} \varphi_{jk} + \frac{1}{T_0} \ddot{r}_\theta \right) \, dA \, d\tau. \quad (23)$$

Proof: In the beginning we use Equation (13)1, multiplied by $W u_t$, so that we obtain

$$W \frac{d}{dt} (\varphi u_t) = 2W \dot{\varphi} u_t + \left[2W \left(t_y + \sigma_j \right) \dot{u}_j \right]$$

$$- 2W \left(t_y + \sigma_j \right) u_t - 2W \left[C_{ijm\ell} \phi_{m\ell} + G_{mnij} \psi_{mn} \right]$$

$$+ F_{mnij} \psi_{mn} - \sigma_j \left(\alpha \ddot{\phi} + \dot{\psi} \right) u_t$$

$$- 2W \left[G_{ijm\ell} \phi_{m\ell} + B_{ijmn} \psi_{mn} + D_{ijmn} \psi_{mn} \right]$$

$$- b_j \left(\alpha \ddot{\phi} + \dot{\psi} \right) \dot{u}_j. \quad (24)$$

Similarly, using Equation (13)2, multiplied by $W \dot{\varphi}_{jk}$, we are led to

$$W \frac{d}{dt} \left(l_{jk} \dot{\varphi}_{jk} \right) = 2W \dot{\varphi} \dot{\varphi}_{jk} - 2W \left(l_{jk} \dot{\varphi}_{jk} \right) - 2W \left(l_{jk} \dot{\varphi}_{jk} \right)$$

$$- 2W \left[G_{ijm\ell} \psi_{m\ell} + B_{ijmn} \psi_{mn} + D_{ijmn} \psi_{mn} \right]$$

$$+ 2W \left[G_{ijm\ell} \psi_{m\ell} + B_{ijmn} \psi_{mn} + D_{ijmn} \psi_{mn} \right] \psi_{jk} \psi_{jk} \quad (25)$$

Finally, we proceed in the same way with Equation (11) that we multiply by $W \theta$ to obtain

$$W \frac{d}{dt} \left(c \theta^2 \right) = \frac{2}{T_0} W r_\theta + \frac{2}{T_0} \left[(W \theta, q_i)_j - W_j \theta q_i \right]$$

$$- \frac{2}{T_0} W K_{ij} \theta_{i,j} - 2W \left(a_{ij} \ddot{\theta} + b_{ij} \dot{\theta} + c_{ij} \dot{\chi}_{ij} \right) x \left(\alpha \ddot{\phi} + \dot{\psi} \right). \quad (26)$$

Now we add member with member the identities (24)–(26) and obtain the equality:

$$W \frac{d}{dt} (\varphi u_t \dot{u}_t + l_{jk} \dot{\varphi}_{jk} \psi_{jk} + c \theta^2) = 2W \left(f_t u_t + g_{jk} \varphi_{jk} + \frac{1}{T_0} r_\theta \right) \psi_{jk} + 2W \left(t_i u_t + \ddot{m}_{jk} \varphi_{jk} + \frac{1}{T_0} \ddot{r}_\theta \right) \psi_{jk} \quad (27)$$
taking into account the boundary conditions (15), we
D
\text{after that making use of the divergence theorem and }
\text{this identity can be written in a shorter form, if we }
\text{which, clearly, can be restated as follows }
\begin{align*}
\frac{1}{2} W \frac{d}{dt} \left[\varphi \dot{u}_i + l_{jk} \psi_{jk} + c \dot{r}^2 + C_{ijmn} \varphi_{ijmn} \right] \\
+ G_{mnij} \psi_{mnij} + B_{ijmn} \varphi_{ijmn} + F_{mnij} \varphi_{mnij} \\
+ D_{ijmn} \varphi_{ijmn} + A_{ijmn} \varphi_{ijmn} \\
+ \left(a_{ij} \dot{q}_j + b_{ij} \dot{q}_i + c_{jk} \dot{\chi}_{jk} \dot{\theta} \right) + \frac{1}{\varrho T_0} K_{ij} \dot{\theta}_j \\
= W_t \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right] \\
- W_j \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right],
\end{align*}
and this identity can be written in a shorter form, if we use the potential energy P, defined in (20):
\begin{align*}
\frac{1}{2} \frac{d}{dt} \left[\varphi \dot{u}_i + l_{jk} \psi_{jk} + c \dot{r}^2 + C_{ijmn} \varphi_{ijmn} \right] \\
+ G_{mnij} \psi_{mnij} + B_{ijmn} \varphi_{ijmn} + F_{mnij} \varphi_{mnij} \\
+ D_{ijmn} \varphi_{ijmn} + A_{ijmn} \varphi_{ijmn} \\
+ \left(a_{ij} \dot{q}_j + b_{ij} \dot{q}_i + c_{jk} \dot{\chi}_{jk} \dot{\theta} \right) + \frac{1}{\varrho T_0} K_{ij} \dot{\theta}_j \\
= W_t \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right] \\
- W_j \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right],
\end{align*}
and this identity can be written in a shorter form, if we use the potential energy P, defined in (20):
\begin{align*}
\frac{1}{2} W \dot{\theta} + \frac{1}{\varrho T_0} K_{ij} \dot{\theta}_j \\
= W_t \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right] \\
- W_j \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right].
\end{align*}
Integrating both members of identity (27) over [0, t] \times D, after that making use of the divergence theorem and taking into account the boundary conditions (15), we obtain
\begin{align*}
\int_D W \left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right) dV d\tau \\
- \int_0^t \int_D W_t \left[\left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right] dV d\tau \\
= \int_D W \left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right) dV \\
= \int_0^t \int_D W_t \left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right) dA d\tau \\
+ \int_0^t \int_D W_t \left(\tau_j + \sigma_j \right) \dot{u}_j + \mu_{jk} \dot{\psi}_{jk} + \frac{1}{\varrho T_0} \varphi \dot{q}_i \right) dV d\tau
\end{align*}
the last inequality being a consequence of the inequality (22).
With the help of inequalities (29) and (30), from the identity (28) we deduce the following useful inequality:
Now, we will define the domain of influence. For a time instant \(t \) we will consider \(D(t) \) as a domain which contains the points \(x \in \ddot{D} \), so that:

- if \(x \in D, u_i^0 \neq 0 \) or \(u_i^1 \neq 0 \) or \(\psi_j^0 \neq 0 \), or \(\vartheta^0 \neq 0 \), then \(\exists s \in [0, t] \) so that \(f_i(s, x) \neq 0 \) or \(g_j(s, x) \neq 0 \) or \(r(s, x) \neq 0 \);
- if \(x \in \partial D_1 \), \(\exists s \in [0, t] \) so that \(u_i(s, x) \neq 0 \);
- if \(x \in \partial D_2 \), \(\exists s \in [0, t] \) so that \(f_i(s, x) \neq 0 \);
- if \(x \in \partial D_3 \), \(\exists s \in [0, t] \) so that \(\psi_j(s, x) \neq 0 \);
- if \(x \in \partial D_4 \), \(\exists s \in [0, t] \) so that \(\vartheta(s, x) \neq 0 \);
- if \(x \in \partial D_5 \), \(\exists s \in [0, t] \) so that \(\vartheta(s, x) \neq 0 \).

With the help of the set \(D(t) \), the domain of influence is defined by:

\[
D_t = \{ y \in \ddot{D} : D(t) \cap S(y, vt) \} \neq \emptyset, \tag{32}
\]

where the sphere \(S(y, vt) \) is defined in (17) and \(\emptyset \) is the empty set.

Our important result is addressed in the following theorem.

Theorem 3.2: If hypotheses (i)–(iii) are satisfied, then for any solution \((u_i, \psi_j, \vartheta)\) of the problem \(P \), we have the following characterization:

\[
u_i(t, x) = 0, \quad \psi_j(t, x) = 0, \quad \text{and} \quad \vartheta(t, x) = 0, \quad \text{for any } (t, x) \in [0, t] \times (\ddot{D} \setminus D_t). \tag{33}
\]

Proof: For an arbitrarily \(x_0 \in \ddot{D} \setminus D_t \) and \(s \in [0, t] \), we will write the inequality (23) with \(t = s \) and \(\rho = v(t - s) \) so that we deduce

\[
\int_{\mathcal{B}(x_0, v(t-s))} \mathcal{P}(t, x) \, dV
\]

\[+ \int_0^t \int_{\mathcal{B}(x_0, v(t-r))} K_i \vartheta_i j \vartheta_i j \, dV \, dr \]

\[
\leq \int_{\mathcal{B}(x_0, vt)} \mathcal{P}(0, x) \, dV
\]

\[+ \int_0^t \int_{\mathcal{B}(x_0, v(t-r))} \left(f_i u_i + g_j \psi_j + \frac{1}{T_0} r^0 \right) \, dV \, dr \]

\[+ \int_0^t \int_{\partial \mathcal{B}(x_0, v(t-r))} \left(\bar{T}_i u_i + \bar{m}_j \psi_j + \frac{1}{T_0} \bar{q}^0 \right) \, dA \, dr. \tag{34}
\]

Because \(x_0 \in \ddot{D} \setminus D_t \), we deduce that \(x \in B(x_0, vt) \), as such \(x \notin D(t) \). Therefore, we have:

\[
\int_{\mathcal{B}(x_0, vt)} \mathcal{P}(0, x) \, dV = 0. \tag{35}
\]

Clearly, we have the inclusion \(B(x_0, v(t - r)) \subset B(x_0, vt) \). Thus, we deduce

\[
\int_0^t \int_{\mathcal{B}(x_0, v(t-r))} \left(f_i u_i + g_j \psi_j + \frac{1}{T_0} r^0 \right) \, dV \, dr = 0,
\]

\[
\int_0^t \int_{\partial \mathcal{B}(x_0, v(t-r))} \left(\bar{T}_i u_i + \bar{m}_j \psi_j + \frac{1}{T_0} \bar{q}^0 \right) \, dA \, dr = 0. \tag{36}
\]

Based on (35) and (36), from (34) we deduce the inequality that follows:

\[
\int_{\mathcal{B}(x_0, v(t-s))} \mathcal{P}(t, x) \, dV
\]

\[+ \frac{1}{T_0} \int_0^t \int_{\mathcal{B}(x_0, v(t-r))} K_i \vartheta_i j \vartheta_i j \, dV \, dr \leq 0,
\]

so that, considering the hypothesis (i), we deduce

\[
\int_{\mathcal{B}(x_0, v(t-s))} \mathcal{P}(t, x) \, dV \leq 0,
\]

and then, considering (22), the more we have the inequality

\[
\int_{\mathcal{B}(x_0, v(t-s))} K(t, x) \, dV \leq 0. \tag{37}
\]

Now, we take into account the definition (21) of the kinetic energy \(K \) so that from (37) we deduce

\[
u_i(t, x_0) = 0, \quad \psi_j(t, x_0) = 0, \quad \vartheta(t, x_0) = 0, \quad \forall (t, x_0) \in [0, t] \times (\ddot{D} \setminus D_t).
\]

But, we have

\[
u_i(0, x_0) = 0, \quad \psi_j(0, x_0) = 0, \quad \forall x_0 \in \ddot{D} \setminus D_t,
\]

that’s why the final conclusion is

\[
u_i(t, x_0) = 0, \quad \psi_j(t, x_0) = 0, \quad \vartheta(t, x_0) = 0, \quad \forall (t, x_0) \in [0, t] \times (\ddot{D} \setminus D_t),
\]

which concludes the proof of Theorem 3.2.

4. Conclusion

Some researchers consider that a result regarding the domain of influence, is, in fact, is a more relaxed form of the known principle of Saint-Venant from elementary elasticity. So, our result is a generalization of this principle to arrive in the context of the theory of Moore–Gibson–Thompson thermoelasticity for bodies with dipolar structure. Then, we managed to prove that this type of influence domain can be built even if it
Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

M. Marin http://orcid.org/0000-0003-1552-3763
M. I. A. Othman http://orcid.org/0000-0002-9577-5479
A. R. Seadawy http://orcid.org/0000-0002-7412-4773
C. Carstea http://orcid.org/0000-0002-2258-1817

References

[1] Choudhuri SKR. On a thermoelastic three-phase-lag model. J Therm Stresses. 2007;30:231–238.
[2] Thompson PA. Compressible-fluid dynamics. New York: McGraw-Hill; 1972.
[3] Dell’Oro F, Pata V. The Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl Math Optim. 2017;76:641–655.
[4] Lasiecka I, Wang X. Moore-Gibson-Thompson equation with memory in the critical case. J Differ Equ. 2016;261:4188–4222.
[5] Lasiecka I, Wang X. Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl Math Optim. 2017;76:641–655.
[6] Pellerin M, Sola-Morales J. Optimal scalar products in the Moore-Gibson-Thompson equation. Evol Equat Contr Theor. 2019;8:203–220.
[7] Conti M, Pata V, Quintanilla R. Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymptotic Anal. 2019:1–21. DOI:10.3233/ASY-191576.
[8] Kaltenbacher B, Lasiecka I, Marchand R. Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 2011;40:971–988.
[9] Marchand R, McDevitt T, Triggiani R. An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math Meth Appl Sci. 2012;35:1896–1929.
[10] Quintanilla R. Moore-Gibson-Thompson thermoelasticity. Math Mech Solids. 2019;24:4020–4031.
[11] Magana A, Quintanilla R. Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math Mech Solids. 2009;14:622–634.
[12] Knops RJ, Quintanilla R. Continuous data dependence in linear theories of thermoelasticity. Part I: classical theories. Basics and logarithmic convexity. In: Hetnarski RB, editor. Encyclopedia of thermal stresses. Dordrecht: Springer; 2014.
[13] Knops RJ, Payne LE. Growth estimates for solutions of evolutionary equations in Hilbert space with applications to elastodynamics. Arch Ration Mech Anal. 1971;41:363–398.
[14] Mindlin RD. Micro-structure in linear elasticity. Arch Ration Mech Anal. 1964;16:51–78.
[15] Green AE, Rivlin RS. Multipolar continuum mechanics. Arch Ration Mech Anal. 1964;17:113–147.
[16] Fried E, Gurtin ME. Thermomechanics of the interface between a body and its environment. Contin Mech Thermodyn. 2007;19(5):253–271.
[17] Altenbach H, Öchsner A. Cellular and porous materials in structures and processes. Wien: Springer; 2010.
[18] Marin M, Agarwal RP, Mahmud SR. Nonsimple material problems addressed by the Lagrange’s identity. Bound Value Probl. 2013:1–14, Art. No. 135.
[19] Marin M, Nicola S. Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin Mech Thermodyn. 2016;28(6):1645–1657.
[20] Marin M, Craciun EM, Pop N. Considerations on mixed initial-boundary value problems for micropolar porous bodies. Dyn Syst Appl. 2016;25(1–2):175–196.
[21] Marin M, Ellahi R, Chirila A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J Math. 2017;33(2):219–232.
[22] Marin M. The Lagrange identity method in thermoelasticity of bodies with microstructure. Int J Eng Sci. 1994;32(8):1229–1240.
[23] Eringen AC. Microcontinuum field theories. New York: Springer; 1999.
[24] Othman MIA, Abbas IA. Eigenvalue approach for generalized thermoelastic porous medium under the effect of thermal loading due to laser pulse in DPL model. Indian J Phys. 2019;93:1567–1578.
[25] Abbas I, Marin M. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E. 2017;87:254–260.
[26] Othman MIA. State space approach to generalized thermoelastic plane waves with two relaxation times under the dependence of the modulus of elasticity on reference temperature. Can J Phys. 2003;81(12):1403–1418.
[27] Seadawy AR. Three-dimensional weakly nonlinear shallow water waves regime and its travelling wave solutions. Int J Comput Meth. 2018;15(3):1850017.
[28] Seadawy AR. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods. Eur Phys J Plus. 2017;132; 2017.
[29] Seadawy AR. Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma. Physica A. 2016;455:44–51.
[30] Stanciu A, Teodorescu-Draghicescu H, Vlase S, et al. Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron Adv Mat. 2017;132:993–1003.
[31] Vlase S, Teodorescu-Draghicescu H, Motac DL, et al. Evolutionary equations in Hilbert space with applications to elastodynamics. Arch Ration Mech Anal. 1964;16:51–78.
[32] Scarpetta E, Svanadze M. Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J Elasticity. 2015;120(1):67–86.
[33] Craciun EM, Baesu E, Soos E. General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolared piezoelectric crystals:
application to mode III fracture propagation. IMA J Appl Math. 2004;70:39–52.
[34] Radhakrishnan B, Chandru P. Boundary controllability of impulsive integro-differential evolution systems with time-varying delays. J Taibah Univ Sci. 2018;12(5):520–531.
[35] Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482.
[36] Riaz A, Ellahi R, Bhatti MM, et al. Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf Res. 2019;50(16):1539–1560.
[37] Ullah R, Ellahi R, Sait SM, et al. On the fractional-order model of HIV-1 infection of CD4(+) T-cells under the influence of antiviral drug treatment. J Taibah Univ Sci. 2020;14(1):50–59.