DETERMINATION OF IMPACT PARAMETERS
IN ALIGNED BREAKUP OF PROJECTILE-LIKE
FRAGMENTS IN 197Au + 197Au COLLISIONS
AT 23A MeV*

T. CAPa,b, K. SIWEK-WILCZYŃSKAb, J. WIŁCZYŃSKIa,†, F. AMORINIc,d
L. AUDITOREe, G. CARDELLAf, E. DE FILIPPOf, E. GERACId,f
L. GRASSId,f, A. GRZESZCZUKg, E. LA GUIDARAf, J. HANc, T. KOZIKh
G. LANZALONEc,i, I. LOMBARDOj, R. NAJMANh, N.G. NICOLISk
A. PAGANOf, M. PAPAf, E. PIASECKIa,†, S. PIRRONEf, R. PŁANETAh
G. POLITId,f, F. RIZZOc,d, P. RUSSOTTOf, I. SKWIRA-CHALOTb
A. TRIFIRÓe, M. TRIMARCHIe, G. VERDEf, W. ZIPPERg

aNational Centre for Nuclear Research, Otwock/Warszawa, Poland
bFaculty of Physics, University of Warsaw, Warszawa, Poland
cINFN, Laboratori Nazionali del Sud, Catania, Italy
dDipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
eDipartimento di Fisica, Università di Messina and INFN Gruppo Collegato di Messina, Messina, Italy
fINFN, Sezione di Catania, Catania, Italy
gInstitute of Physics, University of Silesia, Katowice, Poland
hThe M. Smoluchowski Institute of Physics, Jagiellonian University Kraków, Poland
iUniversità Kore, Enna, Italy
jDipartimento di Fisica, Università di Napoli and INFN — Sezione di Napoli Napoli, Italy
kDepartment of Physics, University of Ioannina, Ioannina, Greece
lHeavy Ion Laboratory, University of Warsaw, Warszawa, Poland

(Received January 18, 2016)

Symmetric and asymmetric aligned breakup of projectile-like fragments
in 197Au + 197Au collisions at 23A MeV was studied. Independently of the
asymmetry, the reaction yields have been found peaked at a common, very
narrow range of impact parameters.

DOI:10.5506/APhysPolB.47.983

* Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland,
September 6–13, 2015.
† Deceased.
1. Introduction

Collisions of very heavy nuclear systems, such as $^{197}\text{Au} + ^{197}\text{Au}$, attract the interest of researchers mostly because of the complete elimination of fusion processes which cannot occur due to the Coulomb instability of such super-heavy composite systems. Consequently, a wide range of impact parameters corresponding to semi-peripheral and near-central collisions is open to fast dynamical rearrangements of nuclear matter and new exotic processes.

Ternary breakup of heavy nuclear systems [1–3] proceeds as a rule sequentially, in two stages. In the first stage, a large portion of kinetic energy is dissipated and an excited projectile-like fragment (PLF^*) and excited target-like fragment (TLF^*) are formed as a result of the exchange of many nucleons between the target and projectile

$$^{197}\text{Au} + ^{197}\text{Au} \rightarrow \text{TLF}^* + \text{PLF}^*. \quad (1)$$

In the second stage of the reaction, either the PLF^* or TLF^* breaks up. In the case of an initially symmetric system, both decay modes are identical, so it is enough to study half of the events in which the PLF^* breaks up into fragments F_1 and F_2

$$\text{PLF}^* \rightarrow F_1 + F_2 + \text{evaporated light particles}. \quad (2)$$

In our notation, F_1 denotes the heavier fragment of mass number A_{F_1} and F_2 denotes the lighter one of mass number A_{F_2}.

2. Experiment

The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania, Italy. A beam of ^{197}Au ions from the LNS Superconducting Cyclotron was accelerated to an energy of 23A MeV and bombarded a ^{197}Au target placed inside the Charged Heavy Ion Mass and Energy Resolving Array (CHIMERA) [4]. The CHIMERA multidetector is arranged in 4π geometry and is built of 1192 two-layer ΔE–E telescopes, each consisting of a planar 275 μm-silicon detector and a CsI(Tl) scintillator. Detailed information on methods of mass identification and fragment energy determination with the CHIMERA detection system is given in [5].

3. Reconstruction of cold projectile-like fragments (PLF) and hot (PLF^*) fragments

Figure 1 shows the mass number distribution of pairs of fragments F_1 and F_2 formed in the process described by Eq. (2). The distributions are
plotted as a function of the ratio \(f = \frac{A_{F2}}{(A_{F1} + A_{F2})} \) which is a measure of asymmetry of the breakup. Only pairs of fragments for which both \(A_{F1} \) and \(A_{F2} \) are greater than 7 and \(A_{F1} + A_{F2} \geq 160 \) are taken into account in the analysis. One can see from Fig. 1 that pairs of fragments F1 and F2 of all possible asymmetries are produced. Especially intensively populated is a group of very asymmetric partitions corresponding to \(f \leq 0.1 \). Characteristics of typical “intermediate mass fragments” (IMF) (of mass numbers up to 20), observed in other experiments at low \([7, 8]\) and higher energies \([9–12]\) fit these asymmetric partitions. However, apart from pairs involving IMFs, more symmetric divisions are also observed in our experiment. In the following part of this paper, we will concentrate only on partitions corresponding to \(f > 0.1 \).

Fig. 1. Distribution of asymmetry parameter (lower panel). Average mass numbers of fragments F1, F2 and their sum (upper panel). For more details, see Table I.

Initially, we analyze our data in a simplified approach neglecting the influence of evaporated light particles (see Eq. (2)) in the balance of momenta. Thus, the reaction is studied by viewing the velocity vectors of cold (de-excited) fragments (\(\vec{v}_{F1}, \vec{v}_{F2} \)) and cold PLF (\(\vec{v}_{PLF} \)) defined in the center-of-mass reference frame of the \(^{197}\text{Au}+^{197}\text{Au}\) system. Here, the vector \(\vec{v}_{PLF} \) is the velocity of the center-of-mass of the F1+F2 subsystem (reconstructed PLF).
The correlations between the total kinetic energy (TKE) and center-of-mass emission angle $\Theta_{\text{C.M.}}$ for reconstructed cold PLFs are shown in Fig. 2 for three selected bins of the asymmetry parameter f (TKE is calculated as

Fig. 2. TKE vs. $\Theta_{\text{C.M.}}$ diagrams of cold PLFs for three selected asymmetries (left column) and velocity distributions of lighter fragments F2 in the PLF systems (right column) evidently demonstrating Coulomb rings for events located within the limiting rectangular gates.
the sum of kinetic energies of the cold PLF and complementary cold TLF calculated from momentum balance when the momenta of evaporated nucleons are neglected). One can see in Fig. 2 that, independently of the asymmetry of the breakup, the most probable events are localized in a rather narrow range of the PLF deflection angles $\Theta_{\text{C.M.}} \approx 15^\circ$ and in a well-defined range of total kinetic energy corresponding to a considerable but not complete loss of kinetic energy.

Next, we studied the decay of the projectile-like fragments into F1 and F2. This was done in the reference frame fixed to the center of mass of the reconstructed PLF, with one coordinate directed along the TLF*–PLF* separation axis [6]. In the right column of Fig. 2, we display velocity distributions in this reference frame by plotting the transverse component \tilde{v}_\perp vs. the longitudinal component \tilde{v}_\parallel of the velocity of the lighter fragment (F2). Events are clearly distributed on rings, a fact that demonstrates an approximately constant value of relative velocity in the F1+F2 subsystem. In fact, the observed rings exactly correspond to the value of relative velocity of pure Coulomb repulsion between fragments F1 and F2. The panel shown on top of the right column in Fig. 2 demonstrates that light fragments F2 are mostly emitted from the neck between the primary target-like fragment and the primary projectile-like fragment. However, for some more symmetric events ($f = 0.30–0.35$), a significant part of the light fragments F2 are seen on the opposite side, at forward angles. Detailed analysis of angular distributions requires corrections accounting for the detection efficiency of coinciding fragments. These effects have been studied separately but are not discussed in this work.

Some quantitative results of our analysis are collected in Table I. The first four columns show separately the asymmetry parameter bin width, the corresponding mass numbers A_{F2}, A_{F1} and A_{PLF} of the lighter fragment, heavier fragment and their sum, respectively. The fifth column shows the value of the total kinetic energy (TKE) of the cold PLF and complementary cold TLF. The results represent the most probable events located within the rectangular 200 MeV \times 10 deg gates shown for a given asymmetry in Fig. 2.

We propose a simple method of calculating corrections which have to be applied to cold values of TKE converting them into the correct hot values TKE* (sum of kinetic energies of PLF* and TLF*). Assuming that the average velocity of all nucleons of the primary PLF* is not affected by the evaporation of nucleons from the PLF*, one can readily show that the ratio $\frac{TKE^*}{TKE} = \frac{k(A_{\text{tot}} - A_{PLF})}{A_{\text{tot}} - kA_{PLF}}$, (3)
Characteristics of breakup of Au-like primary fragments as a function of the breakup asymmetry parameter f. Numbers represent average values. The last three columns show the results of HICOL calculations (see the text).

f	A_{F2}	A_{F1}	A_{PLF}	TKE [MeV]	A_{PLF^*}	TKE* [MeV]	N_{trans}	L [h]	J_{PLF^*}	N_{exch}
0.10–0.15	22	149	171	1150	196	1493	−1	1030	103	29
0.15–0.20	30	142	172	1050	201	1412	4	1003	98	34
0.20–0.25	40	135	175	950	207	1329	10	976	118	40
0.25–0.30	49	127	176	950	208	1330	11	976	118	40
0.30–0.35	57	118	175	1100	203	1458	6	1017	108	32
0.35–0.40	67	111	178	1300	199	1622	2	1066	88	25
0.40–0.45	77	103	180	1400	198	1699	1	1091	78	22
0.45–0.50	85	94	179	1400	198	1699	1	1091	78	22

where A_{tot} is the combined mass number of the colliding system. A value of the coefficient k can be approximately estimated assuming purely statistical emission of the missing nucleons. The whole system of mass number A_{tot} can emit N_{evap} nucleons, $N_{evap} = (E_0 - TKE^*)/\epsilon$, where E_0 is the center-of-mass kinetic energy of the colliding system and ϵ is the average amount of excitation energy necessary to evaporate one nucleon. A reasonable value of this parameter is $\epsilon \approx 15$ MeV. The number of nucleons emitted from the primary PLF* fragment is equal to $A_{PLF^*} - A_{PLF} = (E_0 - TKE^*)A_{PLF^*}/\epsilon A_{tot}$ (proportionality of the excitation energy to fragment masses is assumed). This leads to the relation

$$k = \frac{\epsilon A_{tot}}{\epsilon A_{tot} + TKE^* - E_0}$$

with the unknown value of TKE*. One can calculate the coefficient k from a recurrence formula starting from the first order approximation, in which TKE* = TKE is assumed.

Calculated values of TKE* and estimated mass numbers of the primary fragments A_{PLF^*} for a given asymmetry parameter f are listed in Table I in columns seventh and sixth, respectively. Estimates of the resulting net transfer of nucleons in the primary stage of the reaction, $N_{trans} = A_{PLF^*} - 197$ are also given in Table I (the eighth column). One can see that differences between TKE and TKE* are significant and they must be accounted for in attempts to interpret theoretically the data.
4. Localization in angular momentum space

In order to obtain information on the localization of the PLF* breakup reactions in impact parameter/angular momentum space, we carried out calculations using the well-tested nuclear dynamics model HICOL of Feldmeier [13], based on the concept of multinucleon exchange, which predicts very strong energy dissipation. The theoretical dependence of the total kinetic energy TKE* on the angular momentum of relative motion L calculated for 197Au+197Au collisions at 23A MeV is shown in the left panel of Fig. 3. In the right-hand side panel, the combined amount of orbital angular momentum transferred to the PLF* and TLF* is shown. Provided the inertia of the colliding system is calculated in HICOL sufficiently realistically, the inelasticity of the reaction (i.e. the TKE* value) unambiguously determines the resulting localization of the reaction in L-space.

![Fig. 3. Calculations with the code HICOL of the total kinetic energy TKE* and the angular momentum transfer for the 197Au+197Au reaction at 23A MeV. Dashed areas in both plots show the corresponding range for groups of events within the rectangular gates in Fig. 2.](image)

The HICOL calculations have been done for all groups of experimental events shown in Fig. 2 (within the limiting rectangular gates). Surprisingly, independently of the asymmetry of the breakup, the reactions turned out to be localized in quite a narrow range of L-values, $L \approx 1000–1100 \ h$ (see also the ninth column in Table I). This corresponds to a very large but not complete damping of the available kinetic energy (the grazing trajectory angular momentum for these reactions is $L_{\text{graz}} \approx 1570 \ h$).

The calculated angular momenta transferred to final PLF* and TLF* ($J_{\text{PLF*}}$, the tenth column in Table I) as well as the calculated number of nucleons exchanged between primary fragments (N_{exch}, the eleventh column) are also of the highest interest because they may shed light on the nature of the dynamical disturbance causing breakup. A detailed analysis is under way.
This work was supported by the Polish National Science Centre under Contract No. UMO-2014/14/M/ST2/00738 (COPIN-INFN Collaboration).

REFERENCES

[1] I. Skwira-Chalot et al., *Phys. Rev. Lett.* **101**, 262701 (2008).
[2] J. Wilczyński et al., *Phys. Rev. C* **81**, 024605 (2010).
[3] J. Wilczyński et al., *Phys. Rev. C* **81**, 067604 (2010).
[4] A. Pagano et al., *Nucl. Phys. A* **734**, 504 (2004).
[5] T. Cap et al., *Phys. Scr.* **T154**, 014007 (2013).
[6] T. Cap et al., *Phys. Scr.* **89**, 054005 (2014).
[7] P. Glassel, D. von Harrach, H.J. Specht, *Z. Phys. A* **310**, 189 (1983).
[8] A.A. Stefanini et al., *Z. Phys. A* **351**, 167 (1995).
[9] F. Bocage et al., *Nucl. Phys. A* **676**, 391 (2000).
[10] E. De Filippo et al., *Phys. Rev. C* **71**, 044602 (2005).
[11] E. De Filippo et al., *Phys. Rev. C* **71**, 064604 (2005).
[12] J. Łukasik et al., *Phys. Lett. B* **566**, 76 (2003).
[13] H. Feldmeier, *Rep. Prog. Phys.* **50**, 915 (1987).