Polarization in Ξ^0_c decays*

Tong-Zhu Han(韩童竹)1,2,11, Rong-Gang Ping(平荣刚)1,4,2, Tao Luo(罗涛)1,3, Guang-Zhi Xu(许之智)2

1Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China
2Physics department, Liaoning University, Shenyang 110036, China
3Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918(1), Beijing 100049, China
4University of Chinese Academy of Science, Beijing 100049, China

Abstract: Measurements of decay asymmetry parameters of charmed baryons, e.g., Ξ_c, provide more data to test the W-emission and W-exchange mechanisms controlled by strong and weak interactions. Taking advantage of the spin polarization in charmed baryon decays, we investigate the possibility to measure weak decay asymmetry parameters in the $e^+e^-\rightarrow \Xi^0_c\Xi^0$ process. We analyze the transverse polarization spontaneously produced in this process and the spin transfer in the subsequent Ξ_c decays. The sensitivity to measure the asymmetry parameters is estimated for the decay $\Xi_c \rightarrow \Xi\pi$.

Keywords: transverse polarization, asymmetry parameters, spin, charmed baryon decays

DOI: 10.1088/1674-1137/44/1/013002

1 Introduction

Evidence for charmed baryons Ξ^+_c and Ξ^0_c was reported for the first time by a hyperon beam experiment at CERN [1] and subsequently confirmed by other experiments [2–6]. Recently, precise measurements of their masses are obtained from the hadron collider experiments [7, 8]. Some exclusive decay modes are established by experiment, whereas fundamental properties, such as the spin and parity, are still unconfirmed. Their quark contents are assigned as usc for Ξ^+_c and dsc for Ξ^0_c baryons. In the $SU(4)$ quark model, these two states are referred to as the 20-plet with $SU(3)$ octet. Hence, spin and parity are assigned the value of $\frac{1}{2}^+$. The charmed baryon decays are suggested to be a unique laboratory to study the strong and weak interactions. Compared with the charm meson decays, the W-exchange processes are believed to make significant contributions due to the absence of color and helicity suppressions. This argument is confirmed by the recent measurement of the branching fraction of $\Lambda^+_c \rightarrow \Xi^0_cK^+$ [9]. However, it is difficult to make reliable calculations on this process, since it involves nonfactorizable amplitudes. In contrast, decay rates and asymmetry parameters for Cabbibo-favored decays, e.g., $\Xi^0_c \rightarrow \Xi^-\pi^+$ and $\Xi^+_c \rightarrow \Xi^0\pi^+$, were calculated by numerous research groups [10–15]. The measurement of the decay asymmetry parameter would provide information on the nonfactorizable contributions to the decay. To date, this is measured only for the $\Xi^0_c \rightarrow \Xi^-\pi^+$ decay, namely, $\alpha_{\Xi^0} = -0.6 \pm 0.4$ [16]. However, the theoretical predictions are obtained with large uncertainty, falling in the range $(0.99, -0.38)$ [10–15]. A similar situation happens with the $\Xi^+_c \rightarrow \Xi^0\pi^+$ decay, and the asymmetry parameter was calculated to be $\alpha_{\Xi^+_c} = 1$ [11], whereas other calculations predicted this parameter in the range $(1, -0.27)$ [10, 12–15] with same convention.

In this work, we motivate to analyze the Ξ^0_c spin polarization and demonstrate how it is transferred to the decayed particles in the process $e^+e^-\rightarrow \Xi^0_c\Xi^0$. Taking advantage of the enhanced production cross-section near the mass threshold, a data sample may be taken around $m = 1.5$ GeV in e^+e^- colliders, such as the Super-Tau Charm Factory [17]. The formulas are also applicable to the process $e^+e^-\rightarrow \Xi^+_c\Xi^-_c$.

* Supported by the National Natural Science Foundation of China (11875262, 11805037, 11705078), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1832121), Shanghai Pujiang Program (18PJ1401000) and Open Research Program of Large Research Infrastructures (2017), Chinese Academy of Sciences
1) E-mail: hantz@ihep.ac.cn
2) E-mail: pingrg@ihep.ac.cn
3) E-mail: luot@fudan.edu.cn
4) E-mail: luot@fudan.edu.cn

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd
2 Transverse polarization of Ξ_c

We suppose that the charmed baryon pairs are produced from the unpolarized beam e^+e^- collisions, namely $e^+e^- \rightarrow \Xi_c \Xi_c$. We assume that the collisions take place around the energy point $\sqrt{s} = 2M_{\Xi_c}$, and its cross-section may be enhanced close to the mass threshold of charmed baryon pair, which is similar to the enhancement of the $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ cross-section, as observed in experiments [18]. The Z-boson contribution to this process is negligible due to the center-of-mass energy far away from the Z-boson mass. Hence, the electromagnetic process dominates the cross-section, and it conserves the spin parity.

In the production plane formed by the electron beam and the outgoing charmed baryon, the charmed baryons align in the longitudinal direction during the production of this process. However, the charmed baryon may be polarized along the direction normal to the production plane, as long as the process can acquire a phase angle difference between the electro- and magnetic-form factors. This kind of transverse polarization (TP) is originated from the tensor polarization of J/ψ decays in e^+e^- collisions, and it has been theoretically studied for a long time [19–25]. Recently, the transverse polarization of Λ baryons has been observed in both continuum process and J/ψ decays [26].

The transverse polarization of the charmed baryon makes the subsequent weak decay to become a spin polarimeter, such that its decay asymmetry parameter can be measured by analyzing the angular distributions of decay products. The spin density matrix can be formulated as:

$$\rho^i_{\lambda\lambda'} = \frac{1}{2} \left[(\rho_{\lambda\lambda'}^E \sigma^E \cdot \vec{\beta}) + m_{\lambda\lambda'} I_0 + m_{\lambda\lambda'} I_0 ', \right]$$

where $\rho_{\lambda\lambda'}^E$ is an unpolarized cross-section, I_0 is a 2×2 unit matrix, and $\vec{\beta}$ is a polarization vector. The spin density matrix is normalized as $\rho_{\lambda\lambda'}^E = \text{Tr}[\rho_{\lambda\lambda'}^E \sigma_i] / \text{Tr}[\rho_{\lambda\lambda'}^E]$ ($i = x, y, z$), associated with the Pauli matrices σ_i.

Calculating the spin density matrix is straightforward. In the production plane, the orientation of the charmed baryon is denoted by a polar angle θ spanning between the positron beam and the outgoing direction of the charmed baryon, as shown in Fig. 1. With helicity amplitudes defined in Table 1, the elements of the Ξ^0_c spin density matrix are calculated to be

$$\rho^i_{\lambda\lambda'} = \sum_{m_{\lambda\lambda'}} D_{m_{\lambda\lambda'} - \lambda}^* (\phi, \theta, 0) D_{m_{\lambda\lambda'} - \lambda} (\phi, \theta, 0) \times A_{\lambda\lambda'} A_{\lambda\lambda'}^*,$$

where $D_{m_{\lambda\lambda'}}^i (\phi, \theta, 0)$ is a Wigner-D function; the sum runs over the virtual photon of spin z-projection, $m = \pm 1$. To be more specific, one has

$$\rho^E_{\lambda\lambda'} = \rho^E_{\lambda\lambda'} = \frac{1}{2} \left[1 + \alpha \cos^2 \theta \right],$$

$$\rho^E_{\lambda\lambda'} = \rho^E_{\lambda\lambda'} = \frac{1}{2} \left[1 - \alpha \cos^2 \theta \right],$$

where $\alpha = \left| A_{1/2}\lambda\lambda' \right|^2 / \left| A_{3/2}\lambda\lambda' \right|^2$ is the angular distribution parameter of the charmed baryon, Δ_0 is the phase angle difference between the two independent helicity amplitudes $A_{1/2,1/2}$ and $A_{1/2,-1/2}$. Here, the spin of Ξ^0_c is not observed in the calculation. Then, the degree of Ξ^0_c polarization is calculated to be

$$\rho^E_{\lambda\lambda'} = \rho^E_{\lambda\lambda'} = 0,$$

$$\rho^E_{\lambda\lambda'} = \rho^E_{\lambda\lambda'} = \frac{1}{2} \left[1 - \alpha \cos^2 \theta \right].$$

The results indicate that in the production x-z plane,
the polarization of the charmed baryon vanishes, whereas the TP component normal to the production plane emerges, provided that the factor $\sqrt{1 - \alpha^2 \sin(\Delta_0)}$ has non-zero value.

3 \(\Xi^- \) spin density matrix

We further consider the single tag decay \(\Xi^0 \rightarrow \Xi^- (A_2)\pi^+ \) and \(\Xi^0 \) decays to anything, such that high efficiency is achieved. Its helicity amplitude is denoted by \(B_{A_1} \), and the orientation of \(\Xi^- \) is described by the helicity angles \((\theta_1, \phi_1) \). Here, \(\theta_1 \) is defined as the angle between the \(\Xi^- \) momentum in \(\Xi^0 \) rest frame and the \(\Xi^0 \) momentum in the \(e^+e^- \) center-of-mass (CMS) system, and \(\phi_1 \) is the angle between the \(\Xi^- \) production plane and its decay plane, as shown in Fig. 1.

The \(\Xi^0 \) weak decay gives rise to the longitudinal polarization of \(\Xi^- \) by an amount of \(\mathcal{P}_{e} \alpha_{\Xi} \) along the \(\Xi^- \) flying direction. Hence, this decay can be used to measure the \(\Xi^- \) polarization degree if the decay asymmetry parameter \(\alpha_{\Xi} \) is determined. Since the decay violates parity, any difference between the two helicity amplitudes \(B_{A_{1,2}} \) characterizes the decay asymmetry distribution. Thus, the decay asymmetry parameter is defined by \(\alpha_{\Xi} = \frac{\langle |B_{A_{1,2}}|^2 \rangle - \langle |B_{A_{1,2}}| \rangle^2}{\langle |B_{A_{1,2}}| \rangle^2} \). This definition is consistent with the Lee-Yang parameter defined with the \(S \) and \(P \)-wave [27].

Using the obtained spin density matrix \(\rho_{\Xi} \), the \(\Xi^- \) spin density matrix is calculated by

\[
\rho_{A_2,\phi_2} = \sum_{\phi_1,0} \rho_{A_2,\phi_1,0} D_{A_2,\phi_1,0}^2(\phi_1,0) D_{A_2,\phi_1,0}^2(\phi_1,0),
\]

where \(D_{A_2,\phi_1,0}^2(\phi_1,0) \) is the Wigner-D function.

The further simplification yields

\[
\rho_{\Xi} = \rho_{\Xi} + \rho_{\Xi} = \frac{1}{2} (\rho_{\Xi} + \alpha_{\Xi} \rho_{\Xi} \sin(2\theta_1 \sin(\phi_1)),
\]

\[
\rho_{\Xi} = \rho_{\Xi} = \frac{1}{4} \alpha_{\Xi} \sqrt{1 - \alpha_{\Xi}^2} \sin(\phi_1),
\]

where \(\Delta_1 \) is the phase angle difference between the two helicity amplitudes \(B_{1,2} \) and \(B_{-1,2} \), and the \(\Xi^- \) spin polarization components are taken as

\[
\rho_{\Xi} = \rho_{\Xi} + \rho_{\Xi} = 1 + \alpha \cos^2 \theta_1,
\]

\[
\rho_{\Xi} = -2i \text{Im}(\rho_{\Xi}) = -i \sqrt{1 - \alpha^2} \sin(2\theta_1 \cos(\Delta_0)).
\]

The \(\Xi^- \) angular distribution is given by the trace of its spin density matrix, namely

\[
\mathcal{W}(\Xi^- (\theta_1, \phi_1)) \propto \cos^2 \theta_1 + \sqrt{1 - \alpha^2} \alpha_{\Xi} \sin(\theta_1 \sin(\phi_1)),
\]

The above distribution can be understood from the role of \(\Xi^0 \) spin polarimeter, i.e.

\[
\mathcal{W}(\Xi^- (\theta_1, \phi_1)) = \mathcal{P}_{\Xi} [1 + \mathcal{P}_{\Xi} \alpha_{\Xi} \sin(\theta_1 \sin(\phi_1))],
\]

where \(\mathcal{P}_{\Xi} \) is unpolarized cross-section.

The spin transfer in the \(\Xi^0 \) decay is twofold. The \(\Xi^- \) transverse polarization entirely originates from the \(\Xi^0 \) transverse component, and the decayed \(\Xi^- \) acquires some longitudinal polarization partly from the \(\Xi^0 \) transverse polarization, and partly from the weak decay. The elements of its polarization vector are calculated to be

\[
\mathcal{P}_{\Xi} = \frac{1}{2} \sqrt{1 - \alpha_{\Xi}^2} \rho_{\Xi} \sin(\Delta_1 \cos(\theta_1 \cos(\Delta_1 \cos(\phi_1) \sin(\Delta_0)),
\]

\[
\mathcal{P}_{\Xi} = \frac{1}{2} \sqrt{1 - \alpha_{\Xi}^2} \rho_{\Xi} \sin(\Delta_1 \cos(\theta_1 \sin(\phi_1)) \cos(\Delta_1 \cos(\phi_1) \sin(\Delta_0)),
\]

\[
\mathcal{P}_{\Xi} = \frac{1}{2} (\alpha_{\Xi} \rho_{\Xi} - \sin(\Delta_1 \cos(\phi_1) \sin(\Delta_0)),
\]

4 Joint angular distribution

To optimally use the information available in the experiment, we formulate the joint angular distributions for the full decay chain, namely, \(e^+e^- \rightarrow \Xi^0 \Xi^0 \rightarrow \Xi^- \pi^+ \), \(\Xi^- \rightarrow \Lambda \pi^- \Lambda \rightarrow p \pi^+ \), and \(\Xi^0 \) decaying into anything. The first two decay chains have been encoded in the \(\Xi^- \) spin density matrix, and thus allow us to construct the complete decay amplitude beginning with the \(\Xi^- \) decay. Heli- city amplitudes for \(\Xi^- \) and \(\Lambda \) decays are given in Table 1, and their decay asymmetry parameters are denoted by \(\alpha_{\Xi} \) and \(\alpha_{\Lambda} \), respectively, defined by \(\alpha_{\Xi} = \frac{(G_{1/2}^2 - |G_{-1/2}|^2)}{|G_{1/2}|^2 + |G_{-1/2}|^2} \), and \(\alpha_{\Lambda} = \frac{(F_{1/2}^2 - |F_{-1/2}|^2)}{|F_{1/2}|^2 + |F_{-1/2}|^2} \). Helicity angles, \((\theta_2, \phi_2) \) for \(\Xi^- \rightarrow \Lambda \pi^- \) and \((\phi_3, \alpha_3) \) for \(\Lambda \rightarrow p \pi^+ \), are illustrated in Fig. 1. Subsequently, the joint angular distribution for the full decay chain is calculated by

\[
\mathcal{W}(\theta_1, \theta_2, \theta_3, \phi_2, \phi_3) = \sum_{\theta_1, \phi_1, \theta_2, \phi_2, \theta_3, \phi_3} \rho_{\Xi}(\theta_1, \phi_1) \rho_{\Xi}(\theta_2, \phi_2) \rho_{\Xi}(\theta_3, \phi_3),
\]

\[
\times D_{\Xi}(\phi_2, \phi_2, 0) D_{\Xi}(\phi_2, \phi_2, 0) \times D_{\Xi}(\phi_2, \phi_2, 0) D_{\Xi}(\phi_2, \phi_2, 0) \times G_{\Xi}(\phi_3, \phi_3).
\]

After the \(\phi_2 \) angle is integrated out, the simplified expression in terms of decay asymmetry parameters is given by

\[
\mathcal{W}(\theta_1, \theta_2, \theta_3, \phi_2) = \mathcal{W}(1 + \alpha_{\lambda} \alpha_{\Xi} \cos(\theta_2))\]

\[
+ (\alpha_{\lambda} \cos(\theta_2) + \alpha_{\Xi}) \mathcal{P}_{\Xi} \sin(\theta_1 \sin(\phi_2)) \]

\[
- \mathcal{P}_{\Xi} \sin(\theta_2) \sin(\phi_2) + \mathcal{P}_{\Xi} \cos(\phi_2).
\]

If we do not observe the angular distributions for the
last step decay, we integrate out the angle θ_3. Then, we have a reduced distribution in terms of the Ξ spin polarization as

$$
W_A(\theta, \theta_1, \theta_2, \phi_1, \phi_2) \propto W_\Xi + a_\Xi \mathcal{F}_{\Xi} \cos\theta_2 \\
+ a_\Xi \sin\theta_2 (P_{\Xi}^c \cos\phi_2 - P_{\Xi}^y \sin\phi_2).
$$

(12)

5 Spin observable

The transverse polarization of charmed baryon is spontaneously generated from the e^+e^- annihilation, which is characterized by Eq. (4). The charmed baryon carries a reverse polarization degree in the detector of the east and west region, and it has a net-zero degree of polarization in the full coverage of detector. To display its distribution relative to $\cos\theta$ in the data analysis, a general way is to fill the distribution of $\langle \sin\theta_1 \sin\phi_1 \rangle$ relative to $\cos\theta$, which makes it independent of the measurement of the angular distribution parameter α. Here, the average is defined by

$$
\langle \sin\theta_1 \sin\phi_1 \rangle = \frac{1}{N} \int W_\Xi(\theta, \theta_1, \phi_1) \sin\theta_1 \sin\phi_1 d(\cos\theta_1) d\phi_1
$$

$$
= \frac{1}{3} \mathcal{F}_{\Xi} a_\Xi,
$$

with a normalization factor

$$
N = \int W_\Xi(\theta, \theta_1, \phi_1) d(\cos\theta_1) d\phi_1.
$$

A Monte-Carlo (MC) simulation is performed to generate events using Eq. (7), with a naive choice of parameters $a_\Xi = -0.1, \alpha = 0.3$. Thus, we fill a histogram of $\cos\theta$ with a weight of $\sin\theta_1 \sin\phi_1/N$ as shown in Fig. 2, here N is the number of generated events. With a sufficient size of MC sample, one can see that the filled distribution of $\langle \sin\theta_1 \sin\phi_1 \rangle$ relative to $\cos\theta$ can be described with the \mathcal{F}_{Ξ} distribution, as given by Eq. (4).

6 Sensitivity of α_Ξ measurement

To measure the decay asymmetry parameter α_Ξ, we make use of the decay chain to the greatest degree possible. The precise measurement benefits from the full decay chain of polarization information, which is expressed in terms of hyperon Υ and Λ weak decays. We assume that the α_Ξ parameter is extracted from fitting the normalized angular distribution $\mathcal{W}(\theta, \theta_1, \theta_2, \phi_1, \phi_2)$, defined by $W(\theta, \theta_1, \theta_2, \phi_1, \phi_2) / \int \cdots \int W(\cdots) d\cos\theta_3 d\cos\theta_2 d\cos\theta_1 d\phi_1 d\phi_2$, to data event by event with a likelihood function

$$
L = \prod_{i=1}^N \mathcal{W}(\theta, \theta_1, \theta_2, \phi_1, \phi_2, \alpha_\Xi),
$$

(14)

where N is the number of observed events. The statistical sensitivity associated to the parameter estimation with the maximum likelihood method is determined by the relative uncertainty

$$
\delta(\alpha_\Xi) = \frac{\sqrt{V(\alpha_\Xi)}}{|\alpha_\Xi|},
$$

(15)

where $V(\alpha_\Xi)$ denotes the variance of the parameter α_Ξ, which can be determined by

$$
V^{-1}(\alpha_\Xi) = N \int \frac{1}{W(\theta, \phi_1, \alpha_\Xi)} \left[\frac{\partial \mathcal{W}(\theta, \phi_1, \alpha_\Xi)}{\partial \alpha_\Xi} \right]^2
\times \prod_i d\cos\theta_i \prod_j d\phi_j.
$$

(16)

To obtain the dependence of sensitivity on the signal yields N, we estimate the value of $\delta(\alpha_\Xi)$ by taking the parameters [28] as $\alpha_\Xi = -0.392 \pm 0.008, \alpha_\Lambda = 0.750 \pm 0.010$, whereas no measurement is available for the Ξ_c angular distribution parameter, we naively assume $\alpha = 0.6$. The parameter α_Ξ sensitivity is calculated as follows:

$$
0.25 \sqrt{\frac{0.002}{0.008}} \frac{0.1943}{\sqrt{N}} < \delta(\alpha_\Xi) < \frac{1.943}{0.012},
$$

(17)

where the uncertainties due to the α_Ξ and α_Λ uncertainties, and the lower and upper bonds are determined by taking the $\alpha_\Xi = -0.1$ and -0.9, respectively. Here, uncertainties are due to the α_Ξ and α_Λ uncertainties.

Regarding other α_Ξ values, we plot the sensitivity versus the Ξ_c statistics, as shown in Fig. 3, where the experimental effects, such as the backgrounds and the detection angular acceptance, are not taken into consideration. If we take $\alpha_\Xi = -0.6 \pm 0.4$ for the $\Xi_c^0 \rightarrow \Xi_c^+ \pi^0$ decay, the signal 50000 events yields sensitivity of this paramet-
er reaching the precision of 0.1 ~ 0.9%. The α_{Ξ} measurement can be performed in the super KEKB, or in the future Super Tau Charm Facility, which was proposed by Chinese and Russian physicists, with the center-of-mass energy from 2 to 5 GeV.

7 Summary

We formulate the polarization in the process $e^+e^- \rightarrow \Xi \Xi$ motivated by the study of weak asymmetry decay parameters for the $\Xi_c \rightarrow \Xi \pi$ decay. As in other continuum process, the transverse polarization may be spontaneously generated accompanied by the baryon pair production from e^+e^- annihilations. We formulate the decay asymmetry parameter for the weak decay $\Xi_c \rightarrow \Xi \pi$, and we show how the transverse polarization is transferred from the charmed baryon to the decayed Ξ hyperon. Taking advantage of the full decay chain, we formulate the joint angular distributions for the decay chain $\Xi \rightarrow \Lambda \pi$ and $\Lambda \rightarrow p \pi^-$. A Monte-Carlo simulation is performed to show how to display the transverse polarization effects. The sensitivity to measure the α_{Ξ} asymmetry parameters is estimated with the full decay chain formula.

References

1. S. Biaga et al., Phys. Lett. B, 122: 455 (1983); 150: 230 (1985)
2. S. Barlag et al., (ACCMOR Collaboration), Phys. Lett. B, 233: 522 (1989)
3. M. S. Alam et al. (CLEO Collaboration), Phys. Lett. B, 226: 401 (1989)
4. H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B, 247: 121 (1990)
5. K. W. Edwards et al. (CLEO Collaboration), Phys. Lett. B, 373: 261 (1996)
6. P. L. Frabetti et al. (E687 Collaboration), Phys. Lett. B, 427: 211 (1998)
7. T. A. Aaltonen et al. (CDF Collaboration), Phys. Rev. D, 89(7): 072014 (2014)
8. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett., 113: 032001 (2014)
9. M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B, 783: 200 (2018)
10. K.K. Sharma and R.C. Verma, Eur. Phys. J. C, 7: 217 (1999)
11. P. Zenczykowski, Phys. Rev. D, 50: 402 (1994)
12. M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij et al., Phys. Rev. D, 57: 1 (1998)
13. J. G. Korner and M. Kramer, Z. Phys. C, 55: 659 (1992)
14. H. Y. Cheng and B. Tseng, Phys. Rev. D, 48: 4188 (1993)
15. Q. P. Xu and A. N. Kamal, Phys. Rev. D, 46: 270 (1992)
16. S. Chan et al (CLEO Collaboration), Phys. Rev. D, 63: 111102 (2001)
17. A. V. Bobrov and A. E. Bondar, Nucl. Phys. Proc. Suppl., 253-255: 199 (2014)
18. X. L. Wang et al (Belle Collaboration), Phys. Rev. Lett., 99: 142002 (2007)
19. A. Z. Dubnickova, S. Dubnicka, and M. P. Rekalo, Nuovo Cim. A, 109: 241 (1996)
20. H. Czyz, A. Grzelinska, and J. H. Kuhn, Phys. Rev. D, 75: 074026 (2007), arXiv:hep-ph/0702122 [HEP-PH]
21. G. I. Gakh and E. Tomasi-Gustafsson, Nucl. Phys. A, 771: 169 (2006), arXiv:hep-ph/0511240
22. G. Faldt, Eur. Phys. J. A, 52(5): 141 (2016), arXiv:1602.02532 [nucl-th]
23. G. Faldt and A. Kupsc, Phys. Lett. B, 772: 16 (2017), arXiv:1702.07288 [hep-ph]
24. W. Lu, X. Q. Li, and H. M. Hu, Phys. Lett. B, 368: 281 (1996), arXiv:hep-ph/9601256
25. W. Lu, X. Q. Li, and H. M. Hu, Phys. Rev. D, 53: 131 (1996), arXiv:hep-ph/9511325
26. M. Ablikim et al. (BESIII Collaboration), Nature Physics (2019), arXiv:1808.08917
27. T. D. Lee and C. N. Yang, Phys. Rev., 108: 1645 (1957); M. Bishai et al (CLEO Collaboration), Phys. Lett. B, 350: 256 (1995)
28. M. Tanabashi et al (Particle Data Group), Phys. Rev. D, 98: 03001 (2018)