Genetic algorithm to solve the problems of lectures and practicums scheduling

M F Syahputra¹, R Apriani², Sawaluddin³, D Abdullah⁴, W Albra⁵, M Heikal⁶, A Abdurrahman⁷, M Khaddafi⁸

¹,²,³ Department of Information Technology, Faculty of Computer Science and Information Technology, University of Sumatera Utara, Medan, Indonesia
⁴Department of Informatics, Universitas Malikussaleh, Aceh, Indonesia
⁵,⁶,⁷ Department of Management, Universitas Malikussaleh, Aceh, Indonesia
⁸Department of Accounting, Universitas Malikussaleh, Aceh, Indonesia

Email : nca_fadly@usu.ac.id | dahlan@unimal.ac.id | wahyuddin@unimal.ac.id | mohdheikal@unimal.ac.id | apridar@unimal.ac.id | khaddafi@unimal.ac.id

Abstract. Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collide with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

1. Introduction

Generally, the theory class and practicum class scheduling process in university is done manually. This method of scheduling has a low accuracy rate, depending on number of courses scheduled and class rooms available. Lee [1] stated that scheduling process correlates with time and resources allocation, which will ensure the entire task to be run smoothly. Problems found in timetable scheduling process correlates with the number of classes and the number of students enrolling for a course. The schedule collision can occur when there are students re-enroll for the previous course, or enroll for the more advanced course.

A scheduling process should fulfill each requirement in order to ensure that every scheduled task can be run smoothly [2]. In this case, class timetable scheduling process should meet the schedule of lecturers and students, the availability of class rooms, and the number of courses available, to ensure that there are no “collision” between a schedule to another schedule. Therefore, a method has to be implemented to perform theory class and practicum class scheduling process.
In this research, genetic algorithm will be implemented to perform theory class and practicum class scheduling process. Genetic algorithm is a heuristic search algorithm based on natural selection process mechanism, which is known as biological evolution process [3]. The algorithm has an optimal search method, and has an ability to perform search for the best solution on numerous solutions available. The implementation of genetic algorithm in this process should result in the more optimal theory class and practicum class timetable, which fulfills the requirements of zero schedule collisions. Previously we developed application to schedule diet for diabetes mellitus patient [4], where in other area of scheduling, used on container scheduling [5] and manufacturing [6].

2. Problem identification
Generally, the manual scheduling process on theory class and practicum class timetable in the university has a low accuracy rate, caused by possibilities of schedule collisions between number of classrooms and courses available, along with lecturers’ and students’ schedule. Therefore, a method has to be implemented for performing the scheduling process on theory class and practicum class timetable.

3. Methodology
The general architecture of the system developed for this research is shown by Figure 1. The processes involved in this research include initialization of population, evaluate fitness function, selection, crossover, and mutation. The best result obtained from this process will be shown as final timetable schedule.

![Figure 1. General architecture](image)

When using genetic algorithm, several constraints have to be defined in order to enable the algorithm to work. In this research, the constraints are divided to two types, namely hard constraints and soft constraints. Hard constraints defined in this research are described as below:

a. Every course can only be held in a class room;
b. A lecturer can only teach for a course in one schedule;
c. A student can only attend a course for one schedule;
d. Theory class and practicum class should be placed in adjacent schedule slot;
e. The number of available class rooms has to meet the number of students attending for the course;
f. Each chromosome has to contain course name, lecturer, time slot, class name, and day.
Meanwhile, soft constraints defined in this research are described as below:

a. The lecturer can select the desired time slot for a course;
b. Each schedule has to be distributed evenly for each day;
c. Each schedule should not collide with another schedule.

3.1. Population initialization
The chromosome will be represented by $m \times n = [114][8]$, where m represents the number of available courses, and n represents the number of available chromosomes, which combines course, lecturer, credit value, class room, day, and time slot into several pairs. The example of chromosome representation is shown by Table 1.

Chromosome	Course ID	Lecturer ID	Class ID	Credits	Room ID	Day ID	Time ID
1	1	26	1	2	6	4	5
2	2	26	2	2	5	3	4
3	3	6	1	2	3	2	2
114	114	15	1	3	2	4	1

From the chromosome representation expressed above, the initial population can be generated by providing the number of initial population. The population will be generated randomly by combining several individual from the population.

3.2. Evaluate fitness function
Fitness function value will be calculated by using (1):

$$fitness = \frac{1}{1 - (penalty1 + penalty2 + penalty3 + penalty4)}$$

where the penalty value is calculated from the aspects described as below:

a. There is a certain number of lecturer with multiple schedule within a time slot in one day;
b. There are pairs of theory class and practicum class scheduled within the same time slot in one day;
c. There are some courses within a semester scheduled within the same time slot; and
d. There are time slots being assigned by multiple courses within the same time slot.

The fitness function value can be calculated by checking each chromosome in an individual for penalty value, and dividing it with the number of chromosomes, which is 114 as described in population initialization process.

3.3. Selection
In this research, the roulette wheel selection method is implemented to perform selection between individuals. Each individual will be sorted based on the biggest fitness value, and the first two individual with highest fitness value will be used to perform crossover process.

3.4. Crossover
Crossover is the method to combine each gene in multiple chromosomes to generate a new individual. The process is done by switching each similar gene in chromosomes.
3.5. Mutation
Mutation is the next step to generate new individual after crossover. In this research, exchange mutation method is implemented to perform the mutation process. By using exchange mutation method, the value of several genes in each individual will be exchanged in order to generate a new individual.

4. Experiments and results
The system built for this research consists of three menus, namely File, which contains forms needed for scheduling process, namely: courses, lecturers and lab assistants, time slots, class rooms, and class groups; “Penjadwalan” (Scheduling), which contains parameter form to start scheduling process by using genetic algorithm; and “Informasi”, which contains information about the built system. The appearance of home menu in this system is shown by Figure 2.

![Figure 2. The appearance of home menu](image)

After scheduling process is done, the result is shown by timetable format, as shown by Figure 3. The schedule timetable can be converted to Excel spreadsheet format. Each schedule is represented by course code, along with day and time slot.
Figure 3. Result view

The result of experiment using genetic algorithm is shown by Table 2. The final fitness value of each experiment has to reach the value of 1 for obtaining best optimal result. The experiment result shows that the experiment utilizes fewer value of final population, can result in fewer final fitness value, which indicates that the result is not optimal. Meanwhile, the random function used in this research results in different result obtained when utilizing the same amount of initial and final population, compared with different amount of initial and final population.

Table 2. Experiment result

No.	Initial population	Final population	Max. Fitness	Min. Fitness	Average Fitness	Final fitness	Generations to result	Iteration
1	100	500	1	0.10361	0.26806	1	458	228
2	100	500	1	0.10546	0.29074	1	514	256
3	20	200	1	0.22880	0.61459	1	866	432
4	50	200	1	0.22786	0.48364	1	272	135
5	50	200	1	0.21430	0.58106	1	548	273
6	20	120	1	0.26306	0.90015	0.8789	2000	999
7	50	120	1	0.27653	0.90349	0.8663	2002	1000
8	100	120	1	0.54776	0.92468	0.8864	2000	999
9	50	300	1	0.14537	0.36282	1	380	188
10	100	300	1	0.19552	0.38352	1	250	124
11	50	100	1	0.37414	0.96623	0.9764	2002	1000
12	75	200	1	0.25072	0.50389	1	234	116
5. Conclusion
In this research, genetic algorithm is used for arranging timetable schedule of theory classes and practicum classes in university. The result of timetable arrangement using genetic algorithm correlates on random function, which will affect the best result obtained from the experiment. The number of final population utilized in each experiment correlates to the final fitness value, which affects the result of the schedule generated by the algorithm.

For the future research, numerous variables can be used in the scheduling process. Also, parameter addition to the scheduling process is recommended to provide a better result.

References
[1] Lee, H.S.C. 2000. Timetabling Highly Constrained System Via Genetic Algorithm. Department of Mathematics. College of Science, University of the Philippines. Diliman. Quezon City
[2] M. Kumar, M. Husian, N. Upreti, and D. Gupta, “Genetic algorithm: Review and application,” International Journal of Information Technology and Knowledge Management, vol. 2, pp. 451-454, 2010.
[3] Kusumadewi, Sri. 2003. Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu.
[4] M F Syahputra, V Felicia, R F Rahmat and R Budiarto 2017. Scheduling Diet for Diabetes Mellitus Patients using Genetic Algorithm. Journal of Physics: Conference Series, Volume 801, Number 1.
[5] B. Skinner, S. Yuan, S. Huang, D. Liu, B. Cai, G. Dissanayake, ... and D. Pagac, “Optimisation for job scheduling at automated container terminals using genetic algorithm,” Computers & Industrial Engineering, vol. 64, pp. 511-523, 2013.
[6] M. G. Filho, C. F. Barco, and R. F. T. Neto, “Using Genetic Algorithms to solve scheduling problems on flexible manufacturing systems (FMS): a literature survey, classification and analysis,” Flexible Services and Manufacturing Journal, vol. 26, pp. 408-431, 2014.
[7] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues,” Information Sciences, vol. 270, pp. 255-287, 2014.