Research Article

Analysis of One-Bond Se-Se Nuclear Couplings in Diselenides and 1,2-Diselenoles on the Basis of Molecular Orbital Theory: Torsional Angular Dependence, Electron Density Influence, and Origin in 1J(Se, Se)

Akito Tanioku, Satoko Hayashi, and Waro Nakanishi

Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan

Correspondence should be addressed to Waro Nakanishi, nakanisi@sys.wakayama-u.ac.jp

Received 19 January 2009; Revised 15 April 2009; Accepted 8 May 2009

Recommended by Vito Lippolis

Nuclear couplings for the Se-Se bonds, 1J(Se, Se), are analyzed on the basis of the molecular orbital (MO) theory. The values are calculated by employing the triple ζ basis sets of the Slater type at the DFT level. 1J(Se, Se) are calculated modeled by MeSeSeMe (1a), which shows the typical torsional angular dependence on ϕ(CMeSeSeCMe). The dependence explains well the observed $^1J_{\text{obsd}}$(Se, Se) of small values (≤ 64 Hz) for RSeSeR$^+$ (1) (simple derivatives of 1a) and large values ($330–380$ Hz) observed for 4-substituted naphto[1,8-c,d]-1,2-diselenoles (2) which correspond to symperiplanar diselenides. 1J(Se, Se : 2) becomes larger as the electron density on Se increases. The paramagnetic spin-orbit terms contribute predominantly. The contributions are evaluated separately from each MO (ψ_i) and each $\psi_i \rightarrow \psi_a$ transition, where ψ_i and ψ_a are occupied and unoccupied MO’s, respectively. The separate evaluation enables us to recognize and visualize the origin and the mechanism of the couplings.

Copyright © 2009 Akito Tanioku et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Indirect nuclear spin-spin coupling constants (J) provide highly important information around coupled nuclei, containing strongly bonded and weakly interacting states, since the values depend on the electron distribution between the nuclei [1–10]. One–bond (1J), two-bond (geminal) (^{2}J), three-bond (vicinal) (^{3}J), and even longer coupling constants (^{n}J ($n \geq 4$)) are observed between selenium atoms, which will give important information around the coupled nuclei. The mechanism for 1J must be of the through-bond type; however, that for ^{n}J ($n \geq 2$) would contain through-space interactions, especially for ^{n}J ($n \geq 4$). Quantum chemical (QC) calculations are necessary for the analysis and the interpretation of the J values with physical meanings. Important properties of molecules will be clarified by elucidating the mechanism of spin-spin couplings on the basis of the molecular orbital (MO) theory.

Various $^1J_{\text{obsd}}$ (Se, Se) values are reported for alkyl and/or aryl derivatives of dimethyl diselenide (1a) (RSeSeR$^+$: 1). They are usually small ($^1J_{\text{obsd}}$(Se, Se: 1) ≤ 64 Hz ; see Table 1). We examined 1J(Se, Se) of naphto[1,8-c,d]-1,2-diselenole (4-Y-1,8-Se$_2$C$_{10}$H$_5$ (2): Y = H (a) [11–15], OMe (b), Me (c), Cl (d), COOMe (e), CN (f), and NO$_2$ (g)), which correspond to the symperiplanar diselenides (Figure 1). The 1J(Se, Se) values are measured for 2c, 2d, and 2g, and large $^1J_{\text{obsd}}$(Se, Se) values of 330–380 Hz are detected. Table 1 summarizes the $^1J_{\text{obsd}}$(Se, Se) values.

Why are $^1J_{\text{obsd}}$(Se, Se: 2) much larger than $^1J_{\text{obsd}}$(Se, Se: 1)? How do $^1J_{\text{obsd}}$(Se, Se: 2) depend on the substituent Y in 2? 1J(Se, Se) are analyzed on the basis of the MO theory, as the first step to investigate the nature of the bonded and nonbonded interactions between selenium atoms through 1J(Se, Se) [18]. 1J(Se, Se) are calculated for 1a and 2a–g.

According to the nonrelativistic theory, there are several mechanisms contributing to the spin-spin coupling constants. As expressed in (1), the total value ($^{n}J_{\text{TL}}$) is composed
of the contributions from the diamagnetic spin-orbit (DSO) term (nJ_{DSO}), the paramagnetic spin-orbit (PSO) term (nJ_{PSO}), the spin-dipolar (SD) term (nJ_{SD}), and the Fermi contact (FC) term (nJ_{FC}),

$$nJ_{TL} = nJ_{DSO} + nJ_{PSO} + nJ_{SD} + nJ_{FC}. \quad (1)$$

Scheme 1 summarizes the mechanism of the indirect nuclear spin-spin couplings. The origin of the terms, nJ_{DSO}, nJ_{PSO}, nJ_{SD}, and nJ_{FC}, is also illustrated, contributing to nJ_{TL}. The ground state of a molecule (M) is the singlet state (S_0) if the nuclei (N) in M have no magnetic moments. However, the ground state cannot be the pure S_0 if N possesses magnetic moments, μ_N. The ground state perturbed by μ_N is expressed as follows: DSO arise by the reorganization of S_0; therefore, they are usually very small. PSO appears by the mixing of upper singlet states (S_1, S_2, S_3, \ldots). FC and SD originate if admixtures occur from upper triplet states (T_1, T_2, T_3, \ldots), where only s-type atomic orbitals contribute to FC.

Calculated $1J_{TL}$ values are evaluated separately by the four components as shown in (1). The $1J(Se, Se)$ values are evaluated using the Slater-type atomic orbitals, which are equipped in the ADF 2008 program [19–23]. Evaluations of the values are performed employing the ADF program, after structural optimizations with the Gaussian 03 program [24]. Contributions from each ψ_i and each $\psi_i \rightarrow \psi_o$ transition are evaluated separately, where ψ_i and ψ_o denote occupied and unoccupied MOs, respectively. The treatment enables us to recognize and visualize clearly the origin of the indirect nuclear spin-spin couplings.

Table 1: Observed $1J_{obs}(Se, Se)$ values of some selenium compounds.

Compound	$1J_{obs}(Se, Se)$ [Hz]	Comment
tBuSeSeMe	2.7	(a)
nBuSeSeMe	36.3	(a)
MeSeSePh	22	(a)
O-CNMeCNSeMeCN	64	(b)
2 ($Y = Me$)	379.4	This work
2 ($Y = Cl$)	375.9	This work
2 ($Y = NO_2$)	330.8	This work

References [9, 16].

References [9, 17].

2. Experimental

2.1. Materials and Measurements. Manipulations were performed under an argon atmosphere with standard vacuum-line techniques. Glassware was dried at 130°C overnight. Solvents and reagents were purified by standard procedures as necessary. Melting points were measured with a Yanaco-MP apparatus of uncorrected. Flash column chromatography was performed on silica gel (Fuji Silysia PSQ-100B), acidic and basic alumina (E. Merck).

NMR spectra were recorded at 297 K in CDCl$_3$ and DMSO-d_6 solutions. 1H, 13C, and ^{77}Se NMR spectra were measured at 300, 75.5, and 76.2 MHz, respectively. Chemical shifts are given in ppm relative to those of TMS for 1H and ^{13}C NMR spectra and relative to reference compound Me$_2$Se for ^{77}Se NMR spectra.

2.2. Preparation of 4-methylnaptho[1,8-c,d]-1,2-diselenole (2b). According to a method similar to that previously reported for 2a [11–17] from 1,8-dichloro-4-methylnapthalene, 2b was obtained as purple needles in 68% yield, m.p. 127.0–128.0°C. 1H NMR (CDCl$_3$, 300 MHz, TMS): δ 2.50 (s, 3H), 7.09 (dd, 1H, $J = 0.9$ and 7.6 Hz), 7.25 (d, 1H, $J = 7.3$ Hz), 7.36 (dd, 1H, $J = 0.6$ and 6.9 Hz), 7.55 (dd, 1H, $J = 0.7$ and 8.4 Hz); ^{13}C NMR (CDCl$_3$, 75.5 MHz, TMS): δ 18.6, 120.4, 120.7, 121.0, 127.4, 128.2, 130.4, 137.0, 137.3, 138.0, 141.1; ^{77}Se NMR (CDCl$_3$, 76.2 MHz, Me$_2$Se): δ 411.8, 420.6. Anal. Calc. for C$_{11}$H$_8$Se$_2$: C, 44.32; H, 2.70%; found: C, 44.21; H, 2.63%.

2.3. Preparation of 4-chloronaphtho[1,8-c,d]-1,2-diselenole (2c). According to a method similar to that previously reported for 2a [11–17] from 1,4,8-trichloronaphthalene, 2c was obtained as brown needles in 58% yield, m.p. 155.0–156.0°C. 1H NMR (CDCl$_3$, 300 MHz, TMS): δ 7.24 (d, 1H, $J = 8.1$ Hz), 7.30 (d, 1H, $J = 7.9$ Hz), 7.34 (t, 1H, $J = 7.7$ Hz), 7.39 (dd, 1H, $J = 1.2$ and 7.4 Hz), 7.81 (dd, 1H, $J = 1.3$ and 7.9 Hz); ^{13}C NMR (CDCl$_3$, 75.5 MHz, TMS): δ 120.5, 120.6, 121.9, 127.3, 127.4, 128.6, 135.0, 138.5, 140.0, 141.2; ^{77}Se NMR (CDCl$_3$, 76.2 MHz, Me$_2$Se): δ 422.6, 444.6. Anal. Calc. for C$_{10}$H$_8$Se$_2$Cl: C, 37.71; H, 1.58%; found: C, 37.83; H, 1.60%.

2.4. Preparation of 4-nitronaphtho[1,8-c,d]-1,2-diselenole (2d). According to a method similar to that previously reported for 2a [11–17] from 1,8-dibromo-4-nitronaphthalene, 2d was obtained as dark purple needles in 28% yield, m.p. 196.0–197.0°C. 1H NMR (CDCl$_3$, 300 MHz, TMS): δ 7.40 (d, 1H, $J = 8.3$ Hz), 7.52 (dd, 1H, $J = 4.1$ and 7.6 Hz), 7.53 (s, 1H), 8.18 (d, 1H, $J = 8.3$ Hz), 8.51 (dd, 1H, $J = 2.7$ and 4.1 Hz); ^{13}C NMR (DMSO-d_6, 300 MHz, TMS): δ 7.57 (d, 1H, $J = 7.5$ and 8.5 Hz), 7.77 (d, 1H, $J = 8.5$ Hz), 7.84 (dd, 1H, $J = 0.7$ and 7.5 Hz), 8.20 (d, 1H, $J = 8.5$ Hz), 8.29 (dd, 1H, $J = 0.7$ and 8.5 Hz); ^{13}C NMR (DMSO-d_6, 75.5 MHz, TMS): δ 118.2, 120.0, 123.4, 127.1, 129.4, 131.1, 139.0, 140.8, 144.2, 155.5; ^{77}Se NMR (CDCl$_3$, 76.2 MHz, Me$_2$Se): δ 448.8, 474.4. Anal. Calc. for C$_{10}$H$_8$Se$_2$NO$_2$: C, 36.50; H, 1.53; N, 4.26%; found: C, 36.41; H, 1.40; N, 4.19%.
The ground state is S_0 when $\mu_N = 0$

The ground state contains S_n and $T_n (n \geq 1)$ characters when $\mu_N \neq 0$

Scheme 1: How do the indirect nuclear spin-spin couplings originate? Mechanisms for $^nJ_{DSO}$, $^nJ_{PSO}$, $^nJ_{SD}$, and $^nJ_{FC}$ terms, contributing to $^nJ_{TL}$.

Table 2: 1J(Se, Se) values calculated for $1a^{(a),(b)}$.

ϕ [°]	$E_{el}^{(c)}$ [kJ mol$^{-1}$]	$^1J_{PSO}$ [Hz]	$^1J_{SD}$ [Hz]	$^1J_{FC}$ [Hz]	$^1J_{SD+FC}$ [Hz]	$^1J_{TL}$ [Hz]
0.0	36.9	447.2	217.8	18.6	236.4	683.7
15.0	33.0	399.2	200.6	15.2	215.8	615.0
30.0	25.3	288.5	163.1	2.7	165.8	454.3
60.0	6.1	76.1	101.4	-43.3	58.1	134.2
75.0	0.9	20.0	87.8	-64.7	23.1	43.1
88.4	0.0	4.1	84.5	-76.7	7.8	11.9
90.0	0.0	4.2	84.6	-77.9	6.7	10.9
105.0	2.3	29.9	91.5	-77.4	14.1	44.0
120.0	7.4	94.7	109.3	-60.5	48.8	143.5
150.0	17.6	291.5	171.7	-8.2	163.5	455.0
165.0	21.5	370.6	201.1	9.0	210.1	580.7
180.0	22.8	400.7	213.4	14.3	227.7	628.4

(a) For the abbreviation, see text.
(b) $^1J_{DSO}$ being less than 0.03 Hz.
(c) Relative to optimized value (−5267.7384 au) at $\phi = 88.38^\circ$ in kJ mol$^{-1}$.

2.5. Measurements of 1J(Se, Se). During the measurement of 77Se NMR spectra for $2g$ ($Y = NO_2$) in chloroform- d_3 solutions (0.050 M) at 297 K, a typical AB quartet pattern of the spectra was observed. After careful analysis of the spectrum for $2g$, 1J(Se, Se) of 330.8 Hz was obtained. The 1J(Se, Se) values are obtained similarly by the careful analysis of the spectra for $2c$ and $2d$.

2.6. Calculation Method. Structures of $1a$ are optimized employing the 6-311++G(3df,2pd) basis sets of the Gaussian 03 program [24–28] at the DFT (B3LYP) level [29–32]. The torsional angle $CMeSeSeCMe (\phi)$ is 88.38° in the full-optimized structure of $1a$. Calculations that are further performed on $1a$: $1a$ are fully optimized except for ϕ, which are fixed by every 15° or 30°. Optimizations are also performed on $2a$–g using the 6-311+G(3df) basis sets [25–28] for Se and the 6-311+G(3d,2p) basis sets for other nuclei at the DFT (B3LYP) level [29–32]. The C_2v symmetry is assumed for $2a$ and $2b$–d and $2f$, and the C_1 symmetry for $2e$ and $2g$. The J(Se, Se) values are calculated with the triple ξ basis sets of the Slater type with two sets of polarization functions ($2\times1s$, $2\times2s$, $2\times2p$, $2\times3s$, $2\times3p$, $3\times3d$, $3\times4s$, $3\times4p$, $1\times4d$, and $1\times4f$ for Se) at the DFT (BLYP) level of the ADF 2008 program [19–23], applying on the optimized structures with the Gaussian 03 program [24]. Calculations are performed at the nonrelativistic level. The scalar ZORA relativistic formulation [33–35] is also applied to $2a$, for convenience of comparison. The $^nJ_{TL}$ values are evaluated separately by $^nJ_{DSO}$, $^nJ_{PSO}$, $^nJ_{SD}$, and $^nJ_{FC}$, as shown in (1). Mechanisms of the nuclear couplings are revealed by...
 decomposing the contributions to each ψᵢ and each ψᵢ → ψᵦ transition [36, 37].

3. Results and Discussion

3.1. Observed ¹¹Jobsd(Se, Se). Table 1 collects ¹¹Jobsd(Se, Se), necessary for discussion. The magnitudes of the ¹¹Jobsd(Se, Se) values are usually small (<64 Hz) for the simple derivatives of MeSeSeMe (1a) (RSeSeR': 1) [9, 16, 17]. On the other hand, large ¹¹Jobsd(Se, Se) are recorded for 2 (4-Y-1,8-Se₂C₆H₄), which correspond to symperiplanar diselenides, although not detected in 2a (Y = H) [11–15]. The values are 379.4 Hz for 2b (Y = Me), 375.9 Hz for 2c (Y = Cl), and 330.8 Hz for 2d (Y = NO₂). ¹¹J(Se, Se: 2) becomes smaller as the electron accepting ability of Y increases.

3.2. Mechanism of ¹¹J(Se, Se) in 1a. Table 2 shows the calculated ¹¹JTL and the components, ¹¹JPSO, ¹¹JSD, and ¹¹JFC, in ¹¹J(Se, Se: 1a). ¹¹JTL(Se, Se: 1a) is predicted to be less than 44 Hz for φ = 90° ± 15°. Therefore, ¹¹Jobsd(Se, Se: 1) is explained substantially and modeled by 1a with φ = 90°, although R and R' in 1 must also affect on the values. ¹¹J(Se, Se: 1a) is predicted to be very large at φ = 0° (684 Hz and 180° (628 Hz). Consequently, ¹¹Jobsd(Se, Se: 2) of 331–379 Hz are essentially explained by ¹¹J(Se, Se: 1a) with φ = 0°. Figure 2 draws the plots of ¹¹JPSO, ¹¹JSD, ¹¹JFC, ¹¹JTL, and ¹¹Jobsd(Se, Se: 1a) versus φ in 1a. It is well demonstrated that ¹¹JTL changes depending on φ, similarly to the case of ¹¹J(H, H), three-bond (vicinal) couplings in ¹H NMR spectra [1, 2]. ¹¹JPSO are negligible (<0.03 Hz).

How do ¹¹JPSO (Se, Se: 1a) and ¹¹JSD+FC (Se, Se: 1a) [≡ ¹¹JSD (Se, Se: 1a) + ¹¹JFC (Se, Se: 1a)] contribute to ¹¹JTL (Se, Se: 1a)? ¹¹JPSO (Se, Se: 1a) and ¹¹JSD+FC (Se, Se: 1a) are plotted versus ¹¹JTL (Se, Se: 1a), although not shown. The correlations are given in (2) and (3), respectively. The results exhibit that ¹¹JPSO (Se, Se: 1a) and ¹¹JSD+FC (Se, Se: 1a) contribute 65% and 35% to ¹¹JTL (Se, Se: 1a), respectively, irrespective of the φ(CSeSeC) values:

\[¹¹JPSO(Se, Se: 1a) = 0.651 \times ¹¹JTL(Se, Se: 1a) - 4.1 (r² = 0.999), \]

\[¹¹JSD+FC(Se, Se: 1a) = 0.349 \times ¹¹JTL(Se, Se: 1a) + 4.2 (r² = 0.998). \]

Why does ¹¹J(Se, Se: 1a) show the torsional angular dependence? What orbitals and transitions contribute to the dependence? ¹¹JPSO (Se, Se: 1a) is analyzed next.

3.2.1. Analysis of ¹¹JPSO(Se, Se) in 1a. The mechanism of ¹¹JPSO (Se, Se: 1a) is discussed by analyzing the contributions separately from each ψᵢ and each ψᵢ → ψᵦ transition. Table 3 lists the φ dependence of ¹¹JPSO (Se, Se: 1a) contributed from ψ₁→ψ₃₃, ψ₁→ψ₃₈, ψ₉ψ₄₃, ψ₉ψ₀, ψ₄₂, and ψ₄₃. The contribution from ψ₉ψ₄₃ to ¹¹JPSO (Se, Se: 1a) is large, whereas that from ψ₁→ψ₃₈ is small, although not shown. The plot of the contributions from ψ₉ψ₄₃ (φ) provides an excellent correlation (y = 0.976x + 37.3; r² = 0.9999). Figure 3(a) shows those from ψ₉ψ₀, ψ₄₂, and ψ₄₃ and Figure 3(b) exhibits those from ψ₉ψ₄₃, ψ₄₂→ψ₄₃, and ψ₉ψ₄₃. Contributions from ψ₄₂ and ψ₄₃ exchange with each other at φ = 90°. Those of ψ₉ψ₀ and ψ₄₀ do at φ = 135° (Figure 3(a)). The contributions from ψ₄₂→ψ₄₃ and ψ₉ψ₄₃ almost cancel out at φ ≈ 90° (Figure 3(b)).

Magnitudes of the contributions from ψ₄₂ and ψ₄₃ to ¹¹JPSO (Se, Se: 1a) are very large at 0° and 180° (Table 3), although those from ψ₅₉ and ψ₄₃ are negative and positive directions, respectively. The values amount to −353 to −360 Hz and 753–793 Hz, respectively. The contributions from ψ₄₃→ψ₄₂ are 433, 218, and 400 Hz at 0°, 90°, and 180°, respectively, and those from ψ₉ψ₄₃ are 17, −198, and 10 Hz at 0°, 90°, and 180°, respectively. Therefore, the mechanism of ¹¹JPSO (Se, Se: 1a) will be clarified by analyzing the contributions from ψ₄₂ and ψ₄₃ at 0° and 180°. The mechanism would be complex at 90°, since the small magnitude is the results of the total contributions from ψ₉ψ₄₃.

Figure 4 shows the ψ₄₂ → ψ₄₃ and ψ₄₃ → ψ₄₂ transitions at both φ = 0° and 180° which are shown in Table 3. Characters of ψ₄₂(HOMO-1), ψ₄₃(HOMO), and ψ₄₄(LUMO) are π(Se-Se), π*(Se-Se), and π*(Se-Se), respectively, at φ = 0° and 180°. ψ₄₂(HOMO-1) is essentially the same as ψ₄₃(HOMO) at φ = 90°. ψ₄₂ and ψ₄₃ at φ = 90° are also drawn in Figure 4, to show how ψ₄₂ and ψ₄₃ interconvert with each other. Contrary to the case of φ ≈ 0 and 180°, all of ψ₉ψ₄₃ contribute to ¹¹JPSO (Se, Se: 1a) at φ ≈ 90°. Contributions from the ψ₄₂ → ψ₄₃ and ψ₄₃ → ψ₄₂ transitions to ¹¹JPSO (Se, Se: 1a) at 90° are almost cancelled by those from the ψ₉ψ₄₃ at 90°. Consequently, it is difficult to specify a few
3.2.2. Evaluation of J_{PSO} (Se, Se: 1a) from ψ_{39-43}, ψ_{39-43}, and ψ_{39-43}. The character of ψ_{44} [LUMO: $\sigma^*(Se-Se)$] does not change so much depending on ϕ. Therefore, the behavior of ψ_{39-43} must be mainly responsible for the ϕ dependence in J_{PSO} (Se, Se: 1a) (see Figures 3 and 4). The MO description in Figure 4 visualizes the origin of J_{PSO} (Se, Se: 1a) and helps us to understand the mechanism, especially at $\phi = 0^\circ$ and 180°.

After elucidation of the mechanism for J_{PSO} (Se, Se: 1a), next extension is to clarify J_{PSO} (Se, Se: 2) on the basis of the MO theory.

3.2.2. Evaluation of J_{PSO} (Se, Se: 2) for 2. Table 4 collects the calculated J_{PSO} (Se, Se: 2) values, together with J_{PSO} (Se, Se: 2), J_{SD} (Se, Se: 2), J_{FC} (Se, Se: 2), and J_{SD+FC} (Se, Se: 2). Table 4 also contains the nuclear changes calculated with the natural bond orbital analysis (NBO) method (Qn(Se)) [38–40] for 2 having Y of H (a), OMe (b), Me (c), Cl (d), COOMe (e), CN (f), and NO$_2$ (g). The Y dependence of J_{obsd} (Se, Se: 2) is well reproduced by the calculations. J_{PSO} (Se, Se: 2) are predicted to be larger than the observed values by about 100 Hz. The DFT method overestimates the reciprocal energy differences $(\epsilon_a - \epsilon_b)^{-1}$, which would partly be responsible for the larger evaluation. The J_{PSO} (Se, Se) values are calculated at both nonrelativistic and scalar ZORA relativistic levels for 2a. The former is smaller than the latter. The value calculated at the nonrelativistic level seems to be closer to the observed value than that obtained with the scalar ZORA relativistic formulation in our calculation system. Therefore, it would be reasonable to discuss the J_{PSO} (Se, Se) value calculated at the nonrelativistic level in this case.

ϕ [$^\circ$]	0.0	15.0	30.0	60.0	75.0	88.4	90.0	105.0	120.0	150.0	165.0	180.0
ψ_{39-43}	447.2	399.2	288.5	76.1	19.9	4.1	4.3	29.9	94.7	291.4	370.5	400.7
ψ_{39-43}	449.9	403.1	294.9	84.4	35.2	20.4	20.6	45.9	109.1	302.2	380.3	410.4
ψ_{39}	−121.2	−117.6	−108.9	−80.9	−63.0	−44.9	−42.6	−18.9	8.7	−146.9	−155.1	−157.7
ψ_{40}	181.2	163.4	118.7	13.7	−28.6	−59.4	−62.8	−90.8	−114.3	65.3	85.4	93.0
ψ_{41}	−43.3	−48.3	−60.8	−87.9	−94.3	−93.1	−92.4	−79.9	−54.0	28.7	62.4	75.0
ψ_{42}	−359.7	−333.7	−266.1	−84.0	9.6	95.6	111.9	21.2	−71.9	−261.5	−328.1	−352.7
ψ_{43}	792.9	739.4	612.0	323.7	211.5	122.2	106.5	214.3	340.7	616.6	715.7	752.8
ψ_{44}	−333.3	−307.1	−240.9	−69.4	15.6	93.3	116.5	33.2	−54.4	−235.6	−298.1	−321.0
ψ_{45}	747.2	695.7	574.7	312.4	206.8	125.9	103.2	202.0	320.7	581.5	673.8	708.6

(a) In Hz.
(b) For the abbreviation, see text.
(c) Contribution from the transition.

Figure 3: Origin of the torsional angular dependence in J_{PSO} (Se, Se: 1a): (a) contributions from each of ψ_{39}, ψ_{40}, ψ_{41}, and ψ_{43} and (b) those from ψ_{39-43}, ψ_{42-43}, and ψ_{39-43}.
between ψ for all Y in Table 4.

strong acceptors such as CN and NO$_2$ while Q_{n} with Y depends on Y. Figure 5 shows the plot of Q_{n} versus $\psi_{a2} \rightarrow \psi_{a4}$ and $\psi_{a3} \rightarrow \psi_{a4}$ transitions at $\phi = 0$, 90, and 180°. The interconversion between ψ_{a2} and ψ_{a3} at $\phi \approx 90°$ is also depicted.

![Figure 4: Contributions to $J_{PSO}(Se, Se: 1a)$ from the $\psi_{a2} \rightarrow \psi_{a4}$ and $\psi_{a3} \rightarrow \psi_{a4}$ transitions at $\phi = 0°$.](image)

Table 4: $J(Se, Se)$ and $Qn(Se)$ calculated on the full-optimized structure of 2(a,b,c).

Compound	$J_{PSO}[Hz]$	$J_{SD}[Hz]$	$J_{FC}[Hz]$	$J_{SD+FC}[Hz]$	$J_{TL}[Hz]$	$Qn(1Se)$	$Qn(2Se)$	Symmetry
2a($Y = H$)	362.2	195.2	-54.1	141.1	503.3	0.2367	0.2367	C$_{2v}$
2b($Y = OMe$)	394.3	207.5	-54.2	153.3	547.7	0.2256	0.2264	C$_{i}$
2c($Y = Me$)	363.6	195.1	-55.3	139.8	500.4	0.2334	0.2297	C$_{i}$
2d($Y = Cl$)	360.1	193.4	-53.1	140.3	500.4	0.2448	0.2443	C$_{i}$
2e($Y = COOMe$)	324.1	178.2	-55.7	122.5	446.6	0.2593	0.2556	C$_{1}$
2f($Y = CN$)	326.6	180.6	-52.6	128.0	454.6	0.2677	0.2564	C$_{4}$
2g($Y = NO$_2$)	299.7	167.6	-53.9	113.7	413.4	0.2824	0.2576	C$_{1}$
2a($Y = H$)	390.7	206.4	2.6	209.0	599.7	0.2367	0.2367	C$_{2v}$

(a) For the abbreviation, see text.
(b) J_{PSO} being less than 0.03 Hz.
(c) Se and 8Se being attached to 1C and 8C in 4-Y-1,8-Se$_{2}$C$_{10}$H$_{5}$ (2), respectively.
(d) On the basis of scalar ZORA.

Before discussion of $J(Se, Se: 2)$, it would be instructive to clarify the behavior of $Qn(Se: 2)$, which changes depending on Y. Figure 5 shows the plot of $Qn(2Se: 2)$ versus $Qn(1Se: 2)$. The correlations of the linear type ($y = ax + b$ with r (correlation coefficient)) are given in the figure. The results show that $Qn(2Se: 2)$ grows larger as the accepting ability of Y increases for $Y = H$, OMe, Me, Cl, and COOMe then it becomes almost constant for $Y = CN$ and NO$_2$ while $Qn(1Se: 2)$ grows larger as the accepting ability of Y increases for all Y in Table 4. $Qn(2Se: 2)$ seems saturated for Y of very strong acceptors such as CN and NO$_2$ while $Qn(1Se: 2)$ will not for all Y.

How do $J_{TL}(Se, Se: 2)$ being controlled? $J_{TL}(Se, Se: 2)$ are plotted versus $Qn(1Se)$, $Qn(2Se)$, and $Qn(1Se)+Qn(2Se)$. Figure 6 shows the plot of $J_{TL}(Se, Se: 2)$ versus $Qn(1Se)$, which gives best correlation among the three. The correlation is given in the figure. $J_{TL}(Se, Se: 2)$ are confirmed to be controlled by $Qn(1Se)$. One might imagine that $J_{TL}(Se, Se: 2)$ should be controlled by $Qn(1Se)+Qn(2Se)$. The saturation in $Qn(2Se)$ shown in Figure 5 would perturb to give good correlations for $J_{TL}(Se, Se: 2)$ versus $Qn(1Se)$ + $Qn(2Se)$. It is demonstrated that $J_{TL}(Se, Se: 2)$ becomes smaller when $Qn(Se)$ increases, experimentally and theoretically.

After clarification of the Y dependence in $J_{TL}(Se, Se: 2)$, next extension is to elucidate the mechanism for $J(Se, Se: 2)$ on the basis of the MO theory.

3.3. **Mechanism of $J(Se, Se)$ in 2a.** How do $J_{PSO}(Se, Se: 2)$ and $J_{SD+FC}(Se, Se: 2)$ contribute to $J_{TL}(Se, Se: 2)$ in the change of Y? $J_{PSO}(Se, Se: 2)$ and $J_{SD+FC}(Se, Se: 2)$ are plotted versus $J_{TL}(Se, Se: 2)$ for various Y in Table 4. The results for $J_{PSO}(Se, Se: 2)$ and $J_{SD+FC}(Se, Se: 2)$ are given in (4) and (5), respectively. The correlations are very good, which shows that $J_{PSO}(Se, Se: 2)$ contributes predominantly to $J_{TL}(Se, Se: 2)$ (70%), irrespective of Y:

$$J_{PSO}(Se, Se : 2) = 0.704 \times J_{TL}(Se, Se : 2) + 8.3 \ (r^2 = 0.999),$$

(4)
The origin of 1J (Se, Se; 2) is elucidated by analyzing $^1J_{PSO}$ (Se, Se; 2a) on the basis of the MO theory, since $^1J_{PSO}$ (Se, Se) contributes predominantly to $^1J_{TL}$ (Se, Se) irrespective of Y. Figure 7 depicts the contributions of $^1J_{PSO}$ (Se, Se; 2a) separately from each ψ_i and each ψ_a transition. (a)–(c) in Figure 7 plot the contributions to $^1J_{PSO}$ (Se, Se; 2a) from each ψ_i and each transition of the $\psi_67 \rightarrow \psi_a$ and $\psi_66 \rightarrow \psi_a$ types, respectively. In Figure 7(a), contributions around ψ_5, ψ_{10}, ψ_{23}, ψ_{28}, and ψ_{53}–ψ_{67} originate mainly from atomic 2p(Se), 3p(Se), and 4p(Se) orbitals, respectively. Those caused by 2p(Se) and 3p(Se) are almost cancelled by summarizing over the corresponding orbitals. Therefore, 4p(Se) substantially contribute to $^1J_{PSO}$ (Se, Se; 2a). Especially, ψ_{67} (HOMO) and ψ_{66} (HOMO-1) control $^1J_{PSO}$ (Se, Se; 2a). ψ_6 of ψ_{68} determines $^1J_{PSO}$ (Se, Se; 2a), among a lot of $\psi_i \rightarrow \psi_a$ transitions in ψ_i of ψ_{67} and ψ_{66}, as shown in Figures 7(b) and 7(c).

Figure 8 shows the $\psi_67 \rightarrow \psi_{68}$ and $\psi_{66} \rightarrow \psi_{68}$ transitions in $^1J_{PSO}$ (Se, Se; 2a). The large $^1J_{PSO}$ (Se, Se; 2a) value arises from the mixing of ψ_{68} [LUMO: σ^* (Se–Se)] into ψ_{67} [HOMO: π^* (Se–Se)] and ψ_{66} [HOMO-1: π (Se–Se)] at the singlet state. The MO presentation in Figure 8 is essentially the same as the ψ_{42} \rightarrow ψ_{44} and ψ_{43} \rightarrow ψ_{44} transitions in $^1J_{PSO}$ (Se, Se; 2a) at $\phi = 0^\circ$ in Figure 4, although ψ_{67} (2a) and ψ_{66} (2a) contain the π (Nap) character. Large $^1J_{PSO}$ (Se, Se; 2) and small $^1J_{abnd}$ (Se, Se; 1) are well understood by the ϕ dependence in the calculated 1J (Se, Se; 1a) values.

4. Conclusion

Nuclear spin-spin coupling constants (J) provide highly important information around coupled nuclei, containing...
strongly bonded and weakly interacting states. The $^{1}J(\text{Se, Se})$ values are analyzed as the first step to investigate the nature of the bonded and nonbonded interactions between the Se atoms through $^{\psi a}_{\text{MO}}(\text{Se, Se})$. QC calculations are necessary for the analysis and the interpretation of the J values with physical meanings. Calculated $^{2}J_{\text{TL}}$ are composed of the contributions from $^{\psi a}_{\text{SD}}, ^{\psi a}_{\text{PSO}}, ^{\psi a}_{\text{DSO}},$ and $^{\psi a}_{\text{FC}}$. The decomposition helps us to consider the mechanisms of the spin-spin couplings, which are closely related to the electronic structures of compounds. Main contributions are evaluated separately from each ψ_i and each $\psi_a \rightarrow \psi_a$ transition, where ψ_i and ψ_a are occupied and unoccupied MO’s, respectively.

$^{1}J(\text{Se, Se})$ is calculated modeled by MeSeSeMe (1a), which shows the typical torsional angular dependence of $\phi(\text{CMeSeSeCMe})$. The dependence explains well $^{1}J_{\text{obsd}}(\text{Se, Se})$ of small values for RSeSeR’ (1) and large values for 4-Y-1,8-Se$_2$C$_{10}$H$_5$ (2) which correspond to symperiplanar diselenides. $^{1}J_{\text{TL}}(\text{Se, Se}; 2)$ are confirmed to be controlled by $Q_n(\text{Se})$. $^{1}J_{\text{TL}}(\text{Se, Se}; 2)$ are demonstrated to be smaller when $Q_n(\text{Se})$ becomes larger, experimentally and theoretically. The PSO terms contribute predominantly to $^{1}J(\text{Se, Se})$. The contributions are analyzed separately from each ψ_i and each $\psi_i \rightarrow \psi_a$ transition. The MO description of each transition enables us to recognize and visualize clearly the origin and the mechanisms of the indirect nuclear spin-spin couplings. Important properties of molecules, such as electronic structures, will be clarified by elucidating the mechanisms of the spin-spin couplings on the basis of the MO theory.
14] K. Yui, Y. Aso, and T. Otsubo, “Syntheses and properties of binaphtho[1,8-de]-1,3-dithiene and its selenium analogue,” *Chemistry Letters*, vol. 15, no. 4, pp. 551–554, 1986.

[15] Y. Aso, K. Yui, T. Miyoshi, T. Otsubo, F. Ogura, and J. Tanaka, “Dichalcogen-bridged acenaphthenes as new electron donors,” *Bulletin of the Chemical Society of Japan*, vol. 61, no. 6, pp. 2013–2018, 1988.

[16] J. A. Anderson, J. D. Odom, and A. J. Zozulin, “Preparation of unsymmetrical alkyl methyl and alkyl phenyl diselenides and determination of their selenium-77 chemical shifts and 77Se–77Se spin–spin coupling constants,” *Organometallics*, vol. 3, no. 10, pp. 1458–1465, 1984.

[17] G. Llabres, M. Bawir, J.-L. Piette, and L. Christiaens, “77Se, 13C and 1H NMR investigations on ortho-carbonyl benzene-selenenyl derivatives,” *Organic Magnetic Resonance*, vol. 15, no. 2, pp. 152–154, 1981.

[18] W. Nakanishi and S. Hayashi, “Torsional angular dependence of J(Se, Se) and fermi contact control of J(Se, Se): analysis of J(Se, Se)(n = 1–4) based on molecular orbital theory,” *Chemistry: A European Journal*, vol. 14, no. 18, pp. 5645–5655, 2008.

[19] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al., “Chemistry with ADE,” *Journal of Computational Chemistry*, vol. 22, no. 9, pp. 931–967, 2001.

[20] C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, “Towards an order-N DFT method,” *Theoretical Chemistry Accounts*, vol. 99, no. 6, pp. 391–403, 1998.

[21] E. J. Baerends, J. Autschbach, A. Bercés, et al., “ADF 2008.01,” *SCM, Theoretical Chemistry*, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com/.

[22] E. van Lente and E. J. Baerends, “Optimized Slater-type basis sets for the elements 1–118,” *Journal of Computational Chemistry*, vol. 24, no. 9, pp. 1142–1156, 2003.

[23] D. P. Chong, E. van Lente, S. Van Gisbergen, and E. J. Baerends, “Even-tempered slater-type orbitals revisited: from hydrogen to krypton,” *Journal of Computational Chemistry*, vol. 25, no. 8, pp. 1030–1036, 2004.

[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., *GAUSSIAN 03,* Revision D.05, Gaussian Inc., Pittsburgh, PA, USA, 2004.

[25] R. C. Binning Jr. and L. A. Curtiss, “Compact contracted basis sets for third-row atoms: Ga-Kr,” *Journal of Computational Chemistry*, vol. 11, no. 10, pp. 1206–1216, 1990.

[26] L. A. Curtiss, M. P. McGrath, J.-P. Blauudeau, N. E. Davis, R. C. Binning Jr., and L. Radom, “Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr,” *The Journal of Chemical Physics*, vol. 103, no. 14, pp. 6104–6113, 1995.

[27] M. P. McGrath and L. Radom, “Extension of Gaussian-1 (G1) theory to bromine-containing molecules,” *The Journal of Chemical Physics*, vol. 94, no. 1, pp. 511–516, 1991.

[28] T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. Von Ragué Schleyer, “Efficient diffuse function-augmented basis sets for anion calculations—III: the 3-21+G basis set for first-row elements, Li–F,” *Journal of Computational Chemistry*, vol. 4, no. 3, pp. 294–301, 1983.

[29] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” *Physical Review A*, vol. 38, no. 6, pp. 3098–3100, 1988.

[30] A. D. Becke, “Density-functional thermochemistry—III: the role of exact exchange,” *The Journal of Chemical Physics*, vol. 98, no. 7, pp. 5648–5652, 1993.

[31] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” *Physical Review B*, vol. 37, no. 2, pp. 785–789, 1988.