Delayed perforation after endoscopic resection of a colonic laterally spreading tumor: A case report and literature review

Ge-Yu-Jia Zhou, Jin-Long Hu, Sheng Wang, Nan Ge, Xiang Liu, Guo-Xin Wang, Si-Yu Sun, Jin-Tao Guo

BACKGROUND
Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been widely used for the treatment of early gastrointestinal cancer. Endoscopic piecemeal mucosal resection (EPMR) is derived from the combination of EMR and ESD. Delayed perforation with peritonitis after colonic EPMR is a rare but severe complication, sometimes requiring surgery. There are some associated risk factors, including patient- (location, diameter, and presence of fibrosis) and procedure-related factors. Early recognition and timely treatment are crucial for its management.

CASE SUMMARY
We report a case in which delayed perforation with peritonitis was treated using endoscopic closure. A 54-year-old man was diagnosed with a 30-mm-diameter laterally spreading tumor in the colonic hepatic curvature. Fifteen hours after endoscopic resection, peritonitis caused by delayed perforation occurred and gradually aggravated. Conservative treatment was ineffective and no obvious perforation was observed. After timely endoscopic closure, the patient was discharged on postoperative day 4.

CONCLUSION
In occasion of localized peritonitis aggravating without macroscopic perforation, endoscopic closure is an effective treatment for delayed perforation with stable vital signs in the early stage.

Key words: Endoscopic mucosal resection; Endoscopic submucosal dissection; Endoscopic piecemeal mucosal resection; Delayed perforation; Endoscopic closure; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: April 8, 2020
Peer-review started: April 8, 2020
First decision: April 28, 2020
Revised: April 29, 2020
Accepted: July 14, 2020
Article in press: July 14, 2020
Published online: August 26, 2020

P-Reviewer: Coffin CS, Kato M
S-Editor: Wang JL
L-Editor: Wang TQ
P-Editor: Liu JH

Core tip: We report a case in which delayed perforation occurred 15 h after colonic endoscopic resection of a laterally spreading tumor in the colonic hepatic curvature. Peritonitis aggravated progressively without macroscopic perforation and conservative treatment had no effect. Micro-perforation was successfully closed under endoscopy with clips to avoid worse complications and surgical intervention.

Citation: Zhou GYJ, Hu JL, Wang S, Ge N, Liu X, Wang GX, Sun SY, Guo JT. Delayed perforation after endoscopic resection of a colonic laterally spreading tumor: A case report and literature review. World J Clin Cases 2020; 8(16): 3608-3615
URL: https://www.wjgnet.com/2307-8960/full/v8/i16/3608.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i16.3608

INTRODUCTION

Endoscopic mucosal resection (EMR) is a common treatment for gastrointestinal mucosal lesions worldwide. Developed on the basis of EMR, endoscopic submucosal dissection (ESD) makes en bloc resection possible and endoscopic piecemeal mucosal resection (EPMR) is suitable for large tumors. Endoscopic therapy requires complicated technology and is associated with a high risk of complications[1]. Perforation is one of the most severe complications; there is both intraoperative perforation and delayed perforation. The latter is often associated with severe systemic symptoms or signs once found; therefore, it requires immediate diagnosis and management[2].

Here, we report a case in which delayed perforation occurred after colonic endoscopic resection of a laterally spreading tumor (LST) in the hepatic flexure of the colon and peritonitis aggravated progressively. This case is being reported because delayed perforation was identified in a timely fashion and endoscopic closure was performed without macroscopic perforation to avoid worse complications and surgical intervention. We discuss the clinical course of this rare case about micro-perforation and also review the relevant literature.

CASE PRESENTATION

Chief complaints
A 54-year-old man complained of aggravating abdominal pain 15 h after endoscopic resection of a colonic LST.

History of present illness
The patient was referred to our hospital for endoscopic resection of an LST measuring 30 mm that was diagnosed as an adenoma on pathology in the medial side of the colonic hepatic curvature. The patient was placed on a low-fiber diet on the day prior to endoscopic surgery. Adequate bowel preparation (BBPS: 3 points) was achieved using a split regimen of 4 L of polyethylene glycol solution and simethicone. During the procedure, our experienced team performed ESD for this lesion at first. When damage to the muscular layer caused by poor scope operability was observed, we changed into EPMR to quickly finish the operation. Prophylactic closure with clips was performed at the damage site. The tumor was removed without residue, and the wound was treated quite well without obvious perforation or hemorrhage. There was no abdominal pain after resection, and the patient was in a good condition. Routine antibiotics and intravenous nutrition were used in consideration of the large mucosal defect. Fifteen hours after endoscopic resection, the patient passed gas and then suddenly experienced severe abdominal pain that aggravated progressively over time without any alleviation.

History of past illness
The patient had a history of diabetes for 10 years without a regular oral hypoglycemic treatment. He had no history of other chronic diseases like cardiovascular disease and hypertension, and no history of trauma, surgery, or blood transfusion. He had no history of food and drug allergy.
Personal and family history
The patient occasionally drank alcohol and denied a history of smoking. He had no family history of intestinal tumors.

Physical examination
Physical examination showed intolerable compression pain and rebound pain localized in the right abdomen, suggesting the presence of peritonitis.

Laboratory examinations
Emergency blood analysis showed that neutrophil proportion increased slightly (79.9%) with normal white blood cell count, hemoglobin, and red blood cell count.

Imaging examinations
Emergency computed tomography (CT) revealed a small amount of pneumoperitoneum and substantial exudate (Figure 1).

FINAL DIAGNOSIS
The final diagnosis was a perforation after endoscopic resection.

TREATMENT
The attempt of placing gastrointestinal decompression did not relieve the symptoms. Emergent colonoscopy with carbon dioxide insufflation was performed. No obvious perforation was observed. We believed that there was a micro-perforation, and the wound was closed using clips (Figure 2). It only took 2 h from the beginning of abdominal pain to achieve successful endoscopic closure. The patient was asked to maintain a semi-recumbent position and was treated with fasting and broad-spectrum antibiotics.

OUTCOME AND FOLLOW-UP
During the night after endoscopic closure, the patient experienced a fever of 38.3°C, but the pain was slightly relieved. Three days after endoscopic closure, the patient’s abdominal pain totally subsided, and after tolerating oral diet, he was discharged on the 4th day after endoscopic closure (Figure 3).

No recurrence occurred in the follow-up. The patient was content with our timely treatment, and informed consent was obtained.

DISCUSSION
In the present case, delayed perforation occurred 15 h after colonic endoscopic resection of LST in the hepatic flexure of colon. Peritonitis aggravated progressively without obvious perforation and conservative treatment had no effect. Micro-perforation was successfully closed under endoscopy with clips, which had not been reflected in the previous cases ever.

EMR is effective for lesions < 20 mm, and ESD is recommended for lesions > 20 mm with limited submucosal invasion[4]. Nevertheless, there remain no definitive guidelines for treatment of lesions > 20 mm with no invasion or invasion limited in the mucosal layer. We were planning to perform ESD according to anticipatory judgment; however, poor scope operability causing damage to the muscular layer caused us to change to EPMR. Fortunately, no perforation or obvious hemorrhage occurred throughout the procedure, suggesting that our strategy was reasonable.

Perforation is considered one of the most serious complications of therapeutic colonoscopy. Because of intraperitoneal leakage of the intestinal fluid with digestive enzymes and fecal fluid with large amounts of bacteria, peritonitis caused by colorectal perforation is more serious than gastric perforation[4]. The probability of perforation after ESD is higher than that after EMR, accounting for 1.4%-14.0%[6]. Endoscopic perforation is classified as intraoperative and delayed
perforation; the latter is even rarer, with reported rates of $0.3\%-0.7\%$ and is defined as perforation within 48 h after endoscopic surgery. All previously reported ten cases occurred within 48 h after ESD or EMR$^{8-12}$, accompanied by peritonitis of various degrees. Delayed perforation in our case took place in 15 h and caused progressively increasing peritonitis, which is even rarer because of the aggravating peritonitis and our earlier recognition compared with previous case reports.
Several studies have demonstrated that many factors contribute to the occurrence of delayed perforation. Kang et al[13] reported that LSTs were the most common type of lesions causing endoscopic perforation. The most common location was the right colon, including the cecum, ascending colon, and transverse colon, because colonoscopy might be technically complicated there. Of the reported ten cases, 70% occurred in the right colon. The other risk factors include large tumor diameter, presence of fibrosis, and procedure-related factors[7,23]. Our present case is partly consistent with these reports in terms of tumor diameter and tumor location.

The mechanism of immediate colonic perforation is believed to be associated with unintended deep dissection. Delayed perforation is thought to result from thermal injury, that is, to say, immoderate thermocoagulation damages both the submucosal and muscular layers, leading to small perforations over time[8,10]. In our present case, neither an obvious perforation nor a small perforation was observed during the subsequent emergent endoscopy. Therefore, we believed that there was a microperforation where there was deep dissection or thermal injury of the muscular layer during the procedure.

Several studies have emphasized that prompt and accurate diagnosis is essential for appropriate management and favorable prognosis after delayed perforation[12,13]. Symptoms and signs should be recorded and evaluated carefully. Abdominal pain is one of the earliest and most common symptoms, accompanied by peritoneal irritation signs. Abdominal distention, fever, tachycardia, tachypnea, and subcutaneous emphysema also raise the index of suspicion for delayed perforation. To obtain a definitive diagnosis, plain abdominal radiography or abdominal computed tomography is recommended to detect subdiaphragmatic free air and fluid leak with high accuracy. Laboratory indicators such as complete blood counts are useful to estimate the degree of abdominal contamination. In our case, when perforation was suspected, a CT scan was performed emergently, which finally indicated pneumoperitoneum and exudation, thereby confirming our suspicion.

Currently, there are no guidelines on the management of delayed perforation after colonic endoscopic resection. Delayed perforation after therapeutic colonoscopy is a rare event; however, it is severe, and emergent surgery is the most common treatment for this situation, especially in the context of peritonitis[14]. With the development of endoscopic techniques[11,16-18], timely endoscopic closure may be a good option, if delayed perforation occurs in the patient’s fasting period with local peritonitis. In the present case, although there was no obvious perforation, peritonitis increased over time and conservative treatment was ineffective. Micro-perforation was diagnosed and successfully closed using clips with carbon dioxide insufflation under colonoscopy. Fasting and intravenous broad-spectrum antibiotics were also administered to avoid the need for surgical rescue.

In the English literature, only five other reports (10 cases) of delayed perforation after EMR and ESD with non-surgical management have been reported[8-12] (Table 1). The decision to conduct an endoscopic operation also depends on the perforation size, endoscopist’s experience, and instruments available[15,16,20-23]. During endoscopic closure, carbon dioxide insufflation is generally preferred to prevent barotrauma because this gas is absorbed more quickly than air[24]. Inoki et al[9] reported a case in which delayed perforation after EMR was closed with endoscopic clips. Currently, increasing numbers of endoscopic techniques and equipment have been used. Both through-the-scope-clip and over-the-scope-clip are widely used for endoscopic repair, the former for smaller perforations and the latter for larger ones. Xiao et al[11] demonstrated an endoscopic method called the overtube approach. Nagami et al[8] demonstrated that polyglycolic acid sheets and fibrin glue were effective for endoscopic closure of delayed perforation. Subsequent conservative treatment after closure is indispensable, including fasting, intravenous antibiotics, gastrointestinal decompression, and nutrition support[25]. Kawashima et al[8] described completely conservative treatment, including transnasal decompression, as a method to manage delayed perforation. Nevertheless, not all cases can be treated endoscopically. Delayed perforation with general peritonitis, hemodynamic disorder, and failure in endoscopic closure require immediate surgical treatment[10].

CONCLUSION

Delayed perforation with peritonitis after endoscopic operation is an uncommon but serious complication. Endoscopists should operate carefully throughout the procedure, especially for LSTs in the right colon. If delayed perforation occurs and
Table 1 Summary of previous reports of delayed perforation with non-surgical management

Ref.	Case	Age (yr)	Sex	Morphology	Location	Tumor diameter (mm)	Endoscopic therapy	Time of delayed perforation (h)	Perforation size (mm)	Treatment	Hospital stay (d)
Kawashima et al [8], 2018	1	66	Male	LST	Cecum	40	ESD	Within 24	10	Transnasal decompression, antibiotics	26
Inoki et al [9], 2016	2	73	Male	LST	Transverse colon	18	EMR	Within 24	NM	Endoscopic closure with clips, antibiotics	9
Nagami et al [10], 2019	3	81	Male	LST	Ascending colon	40	ESD	Within 48	NM	Endoscopic closure with clips, polyglycolic acid sheets and fibrin glue, antibiotics	16
Xiao et al [11], 2014	4	49	Female	LST	Sigmoid colon	NM	ESD	Within 24-48	3	Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics	29
Xiao et al [11], 2014	5	77	Male	LST	Ascending colon	NM	ESD	Within 24-48	6	Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics	12
Xiao et al [11], 2014	6	41	Female	Polyp	Transverse colon	NM	EMR	Within 24-48	5	Endoscopic closure with clips, overtube, nasobiliary tube, antibiotics	7
Iwatsubo et al [12], 2019	7	45	Male	Protruded	Descending colon	10	ESD	24	NM	Conservative therapy, antibiotics	13
Iwatsubo et al [12], 2019	8	53	Male	Flat	Transverse colon	22	ESD	19	NM	Conservative therapy, antibiotics	12
Iwatsubo et al [12], 2019	9	74	Female	Protruded	Rectum	110	ESD	14	NM	Conservative therapy, antibiotics	14
Iwatsubo et al [12], 2019	10	58	Male	Protruded	Ascending colon	55	ESD	24	NM	Conservative therapy, antibiotics	13

NM: Not mentioned; ESD: Endoscopic submucosal dissection; EMR: Endoscopic mucosal resection; LST: Laterally spreading tumor.

Localized peritonitis exacerbates, even without macroscopic perforation, endoscopic closure is an alternative for patients with stable vital signs in the early stage.

REFERENCES

1. **Hong SN**, Byeon JS, Lee BI, Yang DH, Kim J, Cho KB, Cho JW, Jang HJ, Jeon SW, Jung SA, Chang DK. Prediction model and risk score for perforation in patients undergoing colorectal endoscopic submucosal dissection. *Gastrointest Endosc* 2016; **84**: 98-108 [PMID: 26708921 DOI: 10.1016/j.gie.2015.12.011]

2. **Paspatis GA**, Dumonceau JM, Barthet M, Meisner S, Repici A, Saunders BP, Verzakis A, Gonzalez JM, Turino SY, Tsiamoulou ZP, Fockens P, Hassan C. Diagnosis and management of iatrogenic endoscopic perforations: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. *Endoscopy* 2014; **46**: 693-711 [PMID: 25046348 DOI: 10.1055/s-0034-1377531]

3. **Pimentel-Nunes P**, Dinis-Ribeiro M, Ponchon T, Repici A, Vietj M, De Ceglie A, Amato A, Berr F, Bhandari P, Bialek A, Conio M, Haringsma J, Langner C, Meisner S, Messmann H, Morino M, Neuhau H, Pieszewa H, Rugge M, Saunders BP, Robaszkiewicz M, Seewald S, Kashin S, Dumonceau JM, Hassan C, Deprez PH. Endoscopic submucosal dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. *Endoscopy* 2015; **47**: 829-854 [PMID: 26317585 DOI: 10.1055/s-0034-1392882]
Zhou GYJ et al. Delayed perforation after EPMR of a colonic LST

4 Taku K, Sano Y, Fu KI, Saito Y, Matsuda T, Uraoka T, Yoshino T, Yamaguchi Y, Fujita M, Hattori S, Ishikawa T, Saito D, Fuji T, Kaneko E, Yoshida S. Iatrogenic perforation associated with therapeutic colonoscopy: a multicenter study in Japan. J Gastroenterol Hepatol 2007; 22: 1409-1414 [PMID: 17593224 DOI: 10.1111/j.1440-1746.2007.05022.x]

5 Saito Y, Fukuzawa M, Matsuda T, Fukunaga S, Sakamoto T, Uraoka T, Nakajima T, Ikebara H, Fu KI, Itoi T, Fuji T. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc 2010; 24: 343-352 [PMID: 19517168 DOI: 10.1007/s00464-009-0562-8]

6 Tamegai Y, Saito Y, Masaki N, Hinohara C, Oshima T, Kogure E, Liu Y, Uemura N, Saito K. Endoscopic submucosal dissection: a safe technique for colorectal tumors. Endoscopy 2007; 39: 418-422 [PMID: 17516348 DOI: 10.1055/s-2007-966427]

7 Isomoto H, Nishiyama H, Yamaguchi N, Fakuwa E, Ishii H, Ikeda K, Ohnita K, Nakao K, Kohno S, Shikawa S. Clinicopathological factors associated with clinical outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 2009; 41: 679-683 [PMID: 19670135 DOI: 10.1055/s-0029-1214979]

8 Kawashima K, Hikiuchi T, Fujisawa T, Gunji N, Nakamura J, Watanabe K, Katakura K, Ohira H. Delayed perforation after endoscopic submucosal dissection for mucosal colon cancer: A conservatively treated case. Fujisuka J Med Sci 2017; 54: 157-162 [PMID: 30197398 DOI: 10.5387/fms.2017-0014]

9 Inoki K, Sakamoto T, Sekiguchi M, Yamada M, Nakajima T, Matsuda T, Saito Y. Successful endoscopic closure of a colonic perforation one day after endoscopic mucosal resection of a lesion in the transverse colon. World J Clin Cases 2016; 4: 238-242 [PMID: 27574613 DOI: 10.12998/wjcc.v4.i8.238]

10 Nagami Y, Fukunaga S, Kanamori A, Sakai T, Ominami M, Watanabe T, Fujiwara Y. Endoscopic closure using polyglycolic acid sheets for delayed perforation after colonic endoscopic submucosal dissection. Endoscopy 2020; 52: E11-E12 [PMID: 31387945 DOI: 10.1055/a-0978-4501]

11 Xiao YF, Bai JY, Yu J, Lin XL, Zhao XY, Yang SM, Fan CQ. Endoscopic treatment of delayed colonic perforation: the enteroscopy overtube approach. Endoscopy 2014; 46: 503-508 [PMID: 24777425 DOI: 10.1055/s-0034-1365040]

12 Iwatsubo T, Takeuchi Y, Yasumaki Y, Nakagawa K, Arao M, Ohmori M, Iwagami H, Matsuno K, Inoue S, Nakahira H, Matsuura N, Shirajio S, Maekawa A, Kanasaka T, Yamamoto S, Higashino K, Ueno N, Ishihara R. Differences in Clinical Course of Intraoperative and Delayed Perforation Caused by Endoscopic Submucosal Dissection for Colorectal Neoplasms: A Retrospective Study. Dig Dis 2019; 37: 53-62 [PMID: 30227392 DOI: 10.1159/000489268]

13 Kang DU, Choi Y, Lee HS, Lee HJ, Park SH, Yang DH, Yoon SM, Kim KJ, Ye BD, Myung SJ, Yang SK, Kim JH, Byeon JS. Endoscopic and Clinical Factors Affecting the Prognosis of Colorectal Endoscopic Submucosal Dissection-Related Perforation. Gut Liver 2016; 10: 420-428 [PMID: 26780090 DOI: 10.5009/gnl15252]

14 Ko YB, Lee JM, Kim WS, Kwak MS, Lee JH, Shin DY, Yang DH, Byeon JS. Unexpected Delayed Colon Perforation after the Endoscopic Submucosal Dissection With Snaring of a Laterally Spreading Tumor. Clin Endosc 2015; 48: 570-575 [PMID: 26668808 DOI: 10.5946/ce.2015.48.6.570]

15 Alsowaina KN, Ahmed MA, Alkhamesi NA, Elnahas AI, Havel JD, Khanna NV, Schlachta CM. Management of colorectal perforation: a systematic review and treatment algorithm. Surg Endosc 2019; 33: 3889-3898 [PMID: 31451923 DOI: 10.1007/s00464-019-06764-7]

16 Nunes G, Marques PP, Patita M, Allen M, Gargate L. EUS-guided recanalization of complete colorectal anastomotic stenosis using a lumen-apposing metal stent. Endoscopy 2019; 51: 211-212 [PMID: 30785118 DOI: 10.4103/eus.eus._02.18]

17 Guo J, Sun S. EUS-guided gallbladder drainage and gallbladder interventions in China. Endosc Ultrasound 2018; 7: 83-84 [PMID: 29667621 DOI: 10.1056/eus.16.18]

18 Wang G, Liu X, Wang S, Ge N, Guo J, Sun S. Endoscopic Ultrasound-guided Gastroenterostomy: A Promising Alternative to Surgery. J Transl Int Med 2017; 9: 93-99 [PMID: 31631779 DOI: 10.2478/jtim-2017-0021]

19 Theerawisijakorn N, Tansneem AA, Kangkam P, Angsuwatcharakon P, Ritudit W, Navicharern P, Kitisin K. Endoscopic closure of a colorectal perforation using polyglycolic acid sheets. J Transl Intern Med 2019; 4: 73-75 [PMID: 30197398 DOI: 10.4103/eus.eus_14_18]

20 de'Angelis N, Di Saverio S, Chiara O, Martinez-Perez A, Patrizi F, Weber DG, Amalou L, Bijff W, Ben-Ishay O, Bala M, Bruetti F, Gaiani F, Abdalla S, Amiot A, Bahouth H, Bianchi G, Casanova D, Coccollini F, Coimbra R, de Angelis GL, De Simone B, Fraga GP, Genova P, Ivatury R, Kausch H, Kirkpatrick AW, Le Baleur Y, Machado F, Chichom-Mefire A, Memoto R, Mesquita C, Salamea Molina JC, manzano-Suñer R, Ordogeza C, Peitzman AB, Pereira BM, Picetti E, Pisano M, Puyana JC, Rizoli S, Siddiqui M, Sobhani I, Ten Broek RP, Zorcolo L, Carra MC, Kluger Y, Catena F. 2017 WSES guidelines for the management of iatrogenic colonoscopy perforation. World J Emerg Surg 2018; 13: 5 [PMID: 29416554 DOI: 10.1186/s13017-018-0162-9]

21 Sun S, Wang C, Wang S. Remember, interventional EUS is performed using an elevator-containing scope as well. Endoscopy 2018; 50: 73-75 [PMID: 29667618 DOI: 10.1055/eus.14.18]

22 Ge N, Hu J, Sun S, Linghu E, Jin Z, Li Z. Endoscopic Ultrasound-guided Pancreatic Pseudocyst Drainage with Lumen-apposing Metal Stents or Plastic Double-pigtail Stents: A Multifactorial Analysis. J Transl Med 2017; 5: 213-219 [PMID: 29340278 DOI: 10.1515/jtm-2017-0036]

23 Ge N, Sun S. Endoscopic ultrasound: An all in one technique vibrates virtually around the whole internal medical field. J Transl Intern Med 2014; 2: 104-106

24 Dellow ES, Hawk JS, Grimm IS, Shaheen NJ. The use of carbon dioxide for insufflation during GI endoscopy: a systematic review. Gastrointest Endosc 2009; 69: 845-849 [PMID: 19152906 DOI: 10.1016/j.gie.2008.05.067]

25 Tanaka S, Kashida H, Saito Y, Yahagi N, Yamano H, Saito S, Hisabe T, Yao T, Watanabe M, Yoshida M, Kudo SE, Tsuruta O, Sugihara KI, Watanabe T, Saihoy Y, Igarashi M, Toyonaga T, Ajioka Y, Ichinose M, Matsui T, Sugita A, Sugano K, Fujimoto K, Tajiri H. JGES guidelines for colorectal endoscopic submucosal
dissection/endoscopic mucosal resection. *Dig Endosc* 2015; 27: 417-434 [PMID: 25652022 DOI: 10.1111/den.12456]

26 Cho SB, Lee WS, Joo YE, Kim HR, Park SW, Park CH, Kim HS, Choi SK, Rew JS. Therapeutic options for iatrogenic colon perforation: feasibility of endoscopic clip closure and predictors of the need for early surgery. *Surg Endosc* 2012; 26: 473-479 [PMID: 21938583 DOI: 10.1007/s00464-011-1903-y]
