Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey

Kate Land, Anže Slosar, Chris Lintott, Dan Andreescu, Steven Bamford, Phil Murray, Robert Nichol, M. Jordan Raddick, Kevin Schawinski, Alex Szalay, Daniel Thomas, Jan Vandenberg.

1 Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
2 Berkeley Center for Cosmological Physics, Lawrence Berkeley National Laboratory and Physics Department, University of California, Berkeley CA 94720, USA
3 LinkLab, 4506 Graystone Ave., Bronx, NY 10471, USA
4 ICG, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth, PO1 2EG, UK
5 Fingerprint Digital Media, 9 Victoria Close, Newtownards, Co. Down, Northern Ireland, BT23 7GY, UK
6 Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218, USA

ABSTRACT

We re-examine the evidence for a violation of large-scale statistical isotropy in the distribution of projected spin vectors of spiral galaxies. We have a sample of ~ 37,000 spiral galaxies from the Sloan Digital Sky Survey, with their line of sight spin direction confidently classified by members of the public through the online project Galaxy Zoo (Lintott et al. 2008). After establishing and correcting for a certain level of bias in our handedness results we find the winding sense of the galaxies to be consistent with statistical isotropy. In particular we find no significant dipole signal, and thus no evidence for overall preferred handedness of the Universe. We compare this result to those of other authors and conclude that these may also be affected and explained by a bias effect.

Key words: galaxies: spiral, cosmology: large-scale structure of Universe

1 INTRODUCTION

Galaxy Zoo (Lintott et al. 2008) is an online project in which volunteers visually classify the morphologies of galaxies selected at random from the spectroscopic sample of the Sloan Digital Sky Survey (SDSS, York et al. (2000)) Data Release 6 (DR6). Information of this type is essential to the development of our understanding of galaxy formation. The public response to the launch of Galaxy Zoo in July 2007 was overwhelming, achieving over 36 million classifications within a few months and results that agree exceptionally well with those of professional astronomers (Lintott et al. 2008). To make the project accessible to as many people as possible a relatively simple classification scheme was used, outlined in Table 1.

Along with the morphology of the galaxies the perceived rotation direction was also requested where possible, i.e. for spiral galaxies, where it is assumed that the arms of the spiral galaxies trail the rotation. Determining the rotation direction in this way is accurate for 96% of galaxies (Pasha & Smirnov 1982). Moving from the centre of the galaxy outwards, the spiral in fact ‘unwinds’ the opposite way to the rotation, and therefore to avoid further confusion we herein refer to a clockwise and anti-clockwise classification as Z and S-wise respectively, indicating the projected pattern of the galaxy arms on the sky. A Z-wise galaxy (see Table 1) is assumed to be rotating clockwise with respect to our line of sight, thus with its angular momentum vector pointing away from us. Likewise, an S-wise galaxy is assumed to be rotating anti-clockwise (also known as ‘counterclockwise’), with its angular momentum vector pointing towards us.

We perform a large-scale multipole analysis of the Galaxy Zoo catalogue of spiral galaxies winding sense, accounting for the partial sky coverage and quantifying the level of uncertainty introduced by this. Locally ($|cz| \lesssim 3000$ km s$^{-1}$) this information can be used to constrain galaxy formation scenarios (Sugai & Iye 1995), while at higher red-
Figure 1. Typical Z and S-wise galaxies in our clean sample. The top four images are classified as Z-wise (with class-weights of 85.0%, 88.2%, 90.6%, 94.6%), and the bottom four as S-wise (with class-weights of 84.0%, 86.2%, 87.3%, 93.9% from left to right).

shifts we can test the fundamental assumption that the Universe is statistically homogeneous and isotropic over cosmological scales. In a companion paper (Slosar et al. 2008) we use the same spin data to analyse the small-scale 2-point correlation function, relating the results to predictions from the tidal-torque theory of structure-momentum formation and N-body simulations.

In Section 2 we introduce the Galaxy Zoo (GZ) dataset, and basic classification results. Due to the high signal-to-noise (i.e. multiple classifications) of our dataset, we are able to further investigate the level of bias that may be introduced into our handedness results because of the visual and human nature of the classifications, and in Section 2.2 we discuss these results and present the final dataset in Section 2.3 that we use thereafter. In Section 3 we outline our method of analysis, and the results for our GZ dataset. We also consider third-party datasets in Section 3.3, and provide complementary results to those of Sugai & Iye (1995), with some clarifying comparisons. We discuss our results in Section 4.

2 THE DATA

As of November 28th 2007, GZ had over 36 million classifications (called ‘votes’ herein) for 893,212 galaxies from 85,276 users. This sample of galaxies was selected to be those that are targeted for spectroscopy by SDSS; extended sources with Petrosian magnitude \(r < 17.77\). We also included objects that were not originally targeted as such, but were observed to be galaxies once their spectrum was taken. Where spectroscopic redshifts are available, we find they range to \(z \lesssim 0.5\), with an average of \(\bar{z} \sim 0.14\) (\(\sim 600\) Mpc). The galaxies thus probe our local universe at cosmological scales. Every galaxy in this SDSS Data Release 6 (DR6) spectroscopic sample has been classified on average \(\sim 41\) times. In practice \(\sim 5\%\) of this raw data is removed when we only allow one vote per galaxy per person, taking the first vote where necessary (multiple votes are probably due to people double clicking with the mouse). This results in an average of \(\sim 39\) distinct votes per galaxy.

To reduce this information to one final classification (and corresponding uncertainty) per galaxy a variety of different schemes were investigated. Firstly, for each galaxy we simply counted the number of votes it received for each of the six class-types (see Table 1 for an explanation of the six different class-types), resulting in six class-weights for each object that sum to 1 (or 100%). The largest class-weight then indicates the final classification of the object, although in practice we only use objects where one class-type receives a significant majority of the votes. This scheme is called ‘unweighted’ as each vote is counted equally in computing the class-weights, regardless of the user.

An alternative method involved weighting the raw votes such that users who tended to agree with the majority have their votes up-weighted, while users who consistently disagreed with the majority have their votes down-weighted. The user-weights are iteratively determined by considering for each object (at each iteration) how well a user’s vote agrees with the class-weights for that object, as determined from the weighted votes from all users. All users start with a weight of 1, but after a number of iterations this converges, with the final user-weights used to establish the final class-weights for each object. This method has the advantage of down-weighting users who are consistently unreliable. However it assumes that the majority vote is always right, and thus may penalise users who are more careful than the average user.

In the end we find that the results do not differ significantly between the weighted and unweighted schemes. Therefore we herein use the unweighted results as their simplicity (in that they do not correlate the data across the galaxies) will be essential in Section 2.2 when we consider subsets of our data in the analysis of possible bias effects in our results.

From our GZ catalogue of final class-weights we identify the objects with relatively low final classification uncertainty. Our clean and superclean samples contain objects with at least 10 votes (which is almost all of our GZ galaxies), and a top class-weight of over 80% and 95% respectively. This guarantees at least a 5\(\sigma\) and 7\(\sigma\) detection of the final classification respectively (assuming people were voting at random from the six options), and in most cases (i.e. for 39 votes) at least 10\(\sigma\) and 13\(\sigma\) respectively. Of course, these significances are purely statistical and there is some human ‘systematic’ error involved that is hard to quantify due to the nature of the experiment. We are justified in claiming, however, that more votes would not change our sample beyond noise fluctuations as the votes are uncorrelated.

Our final clean sample contains 291,626 objects (when

Class	Button	Description
1	🎯	Elliptical galaxy
2	🔄	Clockwise/Z-wise spiral galaxy
3	⏰	Anti-clockwise/S-wise spiral galaxy
4	⚫	Spiral galaxy other (e.g. edge on, unsure)
5	✈️	Star or Don’t Know (e.g. artefact)
6	⠓	Merger

Table 1. The Galaxy Zoo classification scheme. The symbols are the same as those used on the buttons of the Galaxy Zoo analysis web page. Note that spiral galaxies have three separate class-types, while ellipticals have just one.
class=2,3,4 votes are all counted as ‘spiral’), and thus we have the morphological classifications at over 5σ confidence for approximately a third of the entire spectroscopic sample of SDSS DR6. Of these we find 97,848 to be spiral galaxies and 184,743 are elliptical galaxies, with the remaining as stars (8,074) and mergers (961). We find the galaxy morphology classifications agree exceptionally well with those of expert classifications such as Fukugita et al. (2007) and Schawinski et al. (2007) (see Lintott et al. (2008) for more details).

2.1 The Initial Spin Sample

In this paper we are interested in the projected spin classifications of the spiral galaxies; the galaxies classified as class=2 or class=3. We find (17,100, 18,471) of the spiral galaxies are cleanly classified (i.e. over 80% weights) with (Z, S)-wise winding sense respectively, with equivalent (Z, S)-wise number counts of (6,106, 7,034) for the superclean sample. For a null hypothesis of statistical isotropy we would expect (Z, S)-wise handedness to be equally likely across the sky, however we observe a significant excess of S-wise galaxies at over 15σ. The S-wise proportion from the raw-vote counts is 52.5%, which is higher than the 51.9% returned from the clean spin catalogue number counts. This possibly indicates the presence of some biasing effect, as the raw vote proportions should match the clean number-count proportions if there is no bias, as these should both just reflect the true proportions in our sample.

Figure 2. The S-wise excess as a function of redshift. In redshift bins of ∆z = 0.02 we count the number of S-wise galaxies that we find, N_s, and the number we would expect assuming that S and Z-wise galaxies are equally likely, i.e. ⟨N_s⟩ = N/2 where N is the total number of galaxies in the redshift bin. We plot the difference between the observed and expected numbers, normalised by ⟨N_s⟩ just for visual clarity. We also show the 1σ scatter (red dashed histogram) expected assuming the normal approximation to binomial statistics, σ = 1/√N.

We consider how this S-wise excess varies with redshift, to gain insight into the possible source of this signal. Of the SDSS galaxies targeted for spectroscopy, ∼70% have had their spectrum taken and processed in DR6, and we find (12,055, 13,123) of our clean (Z, S)-wise galaxies have spectroscopic redshifts available. From these we plot a histogram of the S-wise excess as a function of redshift in Figure 2. In each redshift bin we find the total number of galaxies N_i, and the expected number of S-wise galaxies assuming statistical isotropy, i.e. ⟨N_s⟩ = N_i/2. We then plot the difference between the number of S-wise galaxies observed in this bin, N_s, and the expected number. We further normalise by the expected number for clarity. We also include the 1σ error bars from assuming a normal approximation to the binomial distribution. We see that the excess is fairly consistent across our sample, and not associated with any particular redshift. Different physical processes dominate at different redshifts, and thus the consistency of this S-wise excess is perhaps indicative of some overall bias in our results rather than a true astronomical signal.

We investigate this possibility further in the next section, but as a first check we consider the full ∼ 35 million votes that contribute to our final classifications. We find 2,272,354 votes for Z-wise and 2,482,271 for S-wise. Compared to the total number of votes, and total number of objects, this roughly indicates that there are 58,632 Z-wise and 64,049 S-wise galaxies in our GZ dataset, and an excess of S-wise galaxies at over 15σ. The S-wise proportion from the raw-vote counts is 52.5%, which is higher than the 51.9% returned from the clean spin catalogue number counts. This possibly indicates the presence of some biasing effect, as the raw vote proportions should match the clean number-count proportions if there is no bias, as these should both just reflect the true proportions in our sample.

2.2 The Bias Study

Before we analyse our data we wish to check that our GZ clean spin catalogue (those galaxies with final clean classifications of class=2 or class=3) provides a fair representation of the full GZ dataset. It is important that we make these checks as there are a number possible sources of bias in the GZ classification scheme. The process of visually classifying the winding sense of galaxies may introduce a bias if humans are able to discern patterns of one handedness better than others - an effect that some neuroscientists believe to exist (Gori et al. 2006). The design of the Galaxy Zoo website may also be influencing the decisions of the users, through the symbols on the buttons or the images shown in the tutorial. Alternatively, the position of the buttons on the screen could cause users to sometimes record their votes incorrectly, in a systematic way.

It could be argued that there may exist detectable malicious contamination from a small number of users recording incorrect classifications, in a systematic or random way. However, we only allow one vote per person per galaxy and so the effect of individual users is very limited. Further, with regard to the S-wise excess, if we consider the number of class=2 and class=3 votes that each user records then we observe an overall trend in the results - with all users generally clicking the S-wise button more then the Z-wise button. Thus we know that the S-wise excess is not just coming from the results of a few users.

Before we introduce the results of our bias study, let us just clarify how a biasing effect could influence our spin catalogue. We do not hypothesise that any biasing effect could be

\[\frac{N_s - \langle N_s \rangle}{\sqrt{\langle N_s \rangle}} \]

\[\frac{1}{\sqrt{N}} \]

\[\sigma \]

\[N/4 \]

\[N/2 \]

As determined from the normal approximation to the binomial distribution valid for large sample sizes, which indicates that the number of S-wise galaxies out of a total of N galaxies has a probability distribution \(\sim N(N/2, N/4) \).
so large that galaxies in our clean sample are misclassified, i.e. they have been assigned an incorrect final classification. This would require \(\geq 35 \) different people who do not know each other to all select the same incorrect button when they view that galaxy. Instead, a biasing effect would impact our spin catalogue if it makes it harder for some types of galaxies to be cleanly classified than other types. Take for example a human bias effect, in which a human can discern a S-wise galaxy has slightly more chance of being in our clean sample than a Z-wise galaxy, resulting in perhaps more S-wise than Z-wise galaxies in our clean sample even if there are an equal number on the sky.

To investigate the possibility of bias-effects being present in our spin catalogue we obtain classifications for mirror images of a subset of the GZ dataset. This will conclusively constrain the level of bias affecting our spin results, although we will not necessarily be able to identify the source without further investigations. Extra images of the entire superclean sample (as of 4\(^{th}\) Sept 2007) and a random 5\% of the rest of the GZ catalogue were used. This ‘bias sample’ contained 91,303 objects, and for each we submitted to the GZ website 3 transformed images: a monochrome version, a vertically mirrored version, and a diagonally mirrored version. From the 28\(^{th}\) November 2007 it has been this bias sample that the website has been collecting classifications for, and as of January 5\(^{th}\) we had an average of 22 distinct votes per image that we use herein.

We condense these votes into final classifications as before. We observe effectively no difference in the results from the two different mirror images, and so we combine the mirror votes. Therefore, for each of the objects in our bias sample we have two new sets of class-weights - one set from the monochrome image, and the other from the mirror images. In comparing these two new class-weights we can assess the level of any bias in our results. We cannot compare these class-weights with those of the original images, as the votes were logged at different times and we find the behaviour of users to vary at a detectable level from month to month (this is especially true when a newsletter is sent out to the users and the site receives a surge of traffic). Only votes that have been obtained concurrently can be compared completely fairly.

We perform two different tests for bias in our handedness results (see [Lintott et al.](#) for an analysis of the bias results with respect to the elliptical vs spiral classifications). Firstly we consider the average class-weight for class=2 and 3, and examine how this changes between the monochrome and mirrored images. We obviously expect to see the average class-weight for class=3 to be higher than class=2 for the monochrome images to reflect the S-wise excess that we observe. We then also expect to see this average class-weights to switch over for the mirrored images.

In Table 2 we record the average class-weight (as a percentage) that each class-type receives for the monochrome and mirrored images. We obtain estimates for the errors on our averages through the jackknife method of resampling (with 2000 samples).

We find that the average (Z, S)-wise average weight (at \(\sim 3\sigma \)) agrees with our observation of an S-wise excess of galaxies. If there is no bias in our handedness results then we would expect these class-weight averages for the mirror images to swap over, with now a higher class-weight for Z-wise. However, we find average class-weights of (5.6\%, 5.9\%) for the mirrored images - which still displays a significantly higher S-wise average weight, at \(\sim 3\sigma \). The fact that the weights stay the same within statistical accuracy indicates that we have a significant level of bias in our results, and no true S-wise excess. In particular, we can put an upper limit on the intrinsic excess of S-wise galaxies to \(|N_S - N_Z|/(N_S + N_Z) < 0.021(0.028) \) at 95\% (99.7\%) confidence limits.

Secondly, we assess the level of bias that may be effecting the clean and superclean samples. We expect these samples to contain relatively visually clear galaxies, and therefore it is not obvious that a subtle effect such as that found for the average GZ galaxy would still effect these samples. We consider an effectively random sample of GZ galaxies\(^3\). We consider the number of these galaxies that pass the classification criteria of the clean sample for the monochrome images, and for the mirrored images. We find (Z, S)-wise numbers of (839, 923) for the monochrome images, and (864, 905) for the mirrored images. Therefore we again see the bias effect, as they both find more S-wise galaxies (although due to the smaller sample size the effect is not as significant as before, with jackknife errors of \(\sim 25 \) galaxies). We can however always eliminate any possible bias effect by insisting that an image passes the criteria before AND after mirroring, and in this case we find (739, 739) (Z, S)-wise galaxies. This indicates that the bias effect can account for the excess exactly.

We find it is beyond the scope of this paper to identify the bias source. It may be that people find it easier to ‘see’ the handedness of an S-wise galaxy. However, we cannot tell the difference between ‘not seeing’ the handedness and

\begin{table}[h]
\centering
\begin{tabular}{c|cc|cc}
\hline
\textbf{class} & \multicolumn{2}{c|}{\textbf{monochrome}} & \multicolumn{2}{c}{\textbf{mirrored}} \\
\textbf{-type} & < \% > & \(\sigma \) & < \% > & \(\sigma \) \\
\hline
1 & 55.962 & 0.123 & 55.015 & 0.124 \\
2 & 5.552 & 0.071 & 5.646 & 0.071 \\
3 & 6.032 & 0.073 & 5.942 & 0.072 \\
4 & 17.416 & 0.092 & 18.461 & 0.093 \\
5 & 11.059 & 0.060 & 11.265 & 0.060 \\
6 & 4.007 & 0.050 & 3.670 & 0.045 \\
\hline
\end{tabular}
\caption{The average class-weights as a function of class-type for the monochrome and mirrored data. We see that the average class\(=2,3 \) weights do not reverse between the monochrome and mirrored images, therefore indicating that there is a bias effect in the data. The evidence for a true excess of S-wise of galaxies on the sky is thus limited.}
\end{table}

\begin{flushleft}
3 This is actually not just a simple average over our bias sample, as not all of the galaxies in the bias sample were selected at random. We up-weight the results of the randomly selected portion of our bias sample to balance with the superclean portion and effectively create a random subsample of the full GZ dataset. We find the same results if we down-weight the superclean portion of our bias sample, or select just 5\% of them at random.
\end{flushleft}

\begin{flushleft}
4 We use the random portion of our bias sample, and a number of the superclean portion selected at random with the same 5\% probability.
\end{flushleft}
clicking the wrong button (by accident). So the two main culprits remain the design of the site, and a human pattern recognition effect.

The latter case would be of interest to neuroscientists. For example, in Gori et al. (2006) the authors found that observers who stared at the centre of a Leviant’s ‘Enigma’ illusion (see their Figure 1) would judge the perceived rotation as clockwise for longer than anti-clockwise (as the motion changes direction). No explanation for the directional bias was found, but this effect might cause GZ users to be biased in any motion that they perceive in unclear images of spiral galaxies. Whether this leads to a greater chance of selecting the S-wise icon, or influencing the results for relatively clear images is not evident.

2.3 The Final (bias corrected) Dataset

The bias study results have demonstrated that there is not an excess of S-wise galaxies at any significant level, but rather that the S-wise class on average receives extra votes for some reason - making it a bit easier for a S-wise galaxy to pass the clean criteria than a Z-wise galaxy. Individual clean classifications are correct, but overall number counts are skewed and we would like to correct for this effect. We do so by reducing the classification criteria for the Z-wise class-weight.

We find Z-wise clean and superclean classification criteria of 0.78 and 0.94 respectively brings the numbers of S and Z-wise galaxies into agreement within 1σ, and we employ this Z-wise criteria herein. However, in all our statistical analysis we will marginalise over this correction, and therefore fold in all the uncertainty due to the bias effect.

This is a rather crude bias correction, as the level of bias may vary with redshift, magnitude, size, etc. like that of the morphology bias examined in Bamford et al. (2008). However, we do not know how the true Z/S-wise ratio varies with distance or magnitude, and thus we cannot make a bias correction that varies with such parameters. Therefore Z-wise and S-wise number counts cannot in general be compared for a subset of our ‘bias corrected’ dataset.

We have a new bias corrected (‘bc’) cleanbc sample of (Z,S)=(18,467, 18,471) and a supercleanbc sample of (7,047, 7,034). From this we remove probable duplicate objects which can arise when a large galaxy is given more than one spectroscopic ID during the SDSS pipeline. We use the maximum petroRadr of a pair to determine if their Objids actually point to the same object, and remove one of them at random, resulting in a cleanbc spin sample of (Z=S)=(18,074, 18,052) galaxies, and similarly a supercleanbc sample of (Z,S)=(6,902, 6,904). For visualization, we reduce this data into a pixelised map by averaging the spins of the galaxies into a pixelised map by averaging the spins of the galaxies into a pixelised map by averaging the spins of the galaxies.

\[
\sum_{j=1}^{N_i} s_j
\]

where the summation is over the \(N_i \) galaxies in the ith pixel, and \(s_j = +1, -1 \) if the galaxy is Z, S-wise respectively. We use the Healpix pixelisation scheme (Gorski et al. 2002), with nside=16. The number of pixels in our map=12 nside\(^5\) = 3,072, of which our cleanbc spin sample covers 801, and we plot these results in Figure 3.

3 ANALYSIS

3.1 Method

We wish to establish the large scale statistical properties of the galaxy spins. Although there is some level of uncertainty in the overall (S, Z)-wise number counts, it is still possible to look for a dipole, for example, in the spin distributions. Rather than using an averaged map, such as that in Figure 3 we fit a probability model to all of the galaxies. The null hypothesis that we wish to test against is that we are equally likely to observe an Z or S-wise galaxies wherever you look on the sky - i.e. statistical isotropy. However, we wish to constrain alternative models in which the probability of observing a Z or S-wise galaxy varies with position on the sky (the sum of these probabilities must always equal one). To explore this possibility we expand the probability of a galaxy spin being Z-wise into the first few (the largest) spherical harmonic modes, such that it is a function of position on the sky:

\[
P(Z|\hat{n}) = 0.5 + M + D \hat{d} \cdot \hat{n} + Q (\hat{q}_1 \cdot \hat{n} \hat{q}_2 - \frac{1}{3} \hat{q}_1 \cdot \hat{q}_2)
\]

\[
P(S|\hat{n}) = 1 - P(Z|\hat{n}).
\]
where M, D, Q are the magnitude of the monopole, dipole, and quadrupole respectively.

This parameterisation of harmonic modes in terms of unit vectors, and an overall magnitude, is known as Maxwell Multipole Vector representation, and it is increasingly being used in CMB analysis (Copi et al. 2004; Weeks 2004). Compared to the standard expansion into spherical harmonic coefficients it has the advantage of providing rotationally invariant parameters, or parameters that rotate simply with the coordinates (such as the vectors). The vectors are in fact ‘headless’ - a change in sign can be absorbed by the magnitude D, Q. To avoid this degeneracy we restrict the magnitude of D and Q to be positive. For the quadrupole the vectors can still both flip signs together, but in reality we find this degeneracy to not be a problem as the MCMC methods tend to converge to one solution.

We wish to explore the constraints that our Galaxy Zoo dataset provides for these parameters. We can find the probability of the parameters from the likelihood of our data

$$ L = \prod_i P(h_i|\hat{n}_i)$$

where h_i is the handedness of the ith galaxy (Z or S), which is at position \hat{n}_i on the sky.

3.2 Results

We use MCMC analysis to explore our likelihood. As a consistency check we confirm that we are able to recover various input parameters of M, D, Q - although the partial sky coverage does give some degeneracies as expected, between M and D in particular. D and Q are constrained to be positive and we plot their marginalised constraints from our clean and superclean samples in Figure 4. We have marginalised over all the other parameters, including the monopole component, and therefore have folded in any uncertainty that the bias effect and subsequent correction introduces.

We find that the constraints on D and Q are both consistent with 0, with upper 95% limits of 0.018 and 0.047 respectively from the clean sample, and 0.031 and 0.069 from the superclean sample. Alternatively, we fit Gaussians to the distributions and we find that the best fits mean ~ 0 to 3 decimal places, with standard deviations for D and Q of 0.0084 and 0.014 from the clean data, and 0.025 and 0.037 from the superclean data. Due to the uncertainty of the monopole component, and the null dipole and quadrupole signal, we have no meaningful constraints on the direction of the vectors.

We conclude that the Galaxy Zoo spin results are consistent with statistical isotropy. In the next section we compare this result to those of similar studies.

3.3 Third-party Datasets

Previous studies of the spin of spiral galaxies include the recent work of Long (2007a) (herein L07a), where the line of sight spin direction was determined by eye for $\sim 2,800$ galaxies visually selected from the SDSS (DR5). An excess of S-wise galaxies was seen in the direction (RA,DEC)$\sim (202^\circ, 25^\circ)$ (in Equitorial coordinates) indicating that the spin vectors predominantly align in the opposite direction (RA,DEC)$\sim (22^\circ, -25^\circ)$. The probability of the effect was estimated to be 0.2% under the assumption of isotropy and binomial statistics, although Monte Carlo simulations were not performed.

Similar work was carried out earlier in Sugai & Iye (1993), within the context of probing theories of galaxy formation. The spin dipole was evaluated for $\sim 7,500$ galaxies and found to be in the direction (RA,DEC)$=(270^\circ, 10^\circ)$, and (RA,DEC)$=(210^\circ, 40^\circ)$ for a subsample of nearby galaxies ($|cz| < 3000$ km s$^{-1}$). However, the amplitude of the dipole was not found to be significant when compared to Monte Carlo simulations.

Curiously, the dipoles from these two analyses are in completely opposite directions. The samples cover different amounts and parts of the sky, with SDSS mainly in the Northern hemisphere and the sample of Sugai & Iye (1993) predominantly in the Southern hemisphere. In both cases the dipoles tend to point away from the majority of the data but neither analysis fits for a monopole or takes account of their partial sky coverage in assessing the dipole. With incomplete sky coverage the spherical harmonic decomposition is no longer orthogonal and for a sample covering less than half of the sky it is hard to tell the difference between a monopole (an excess of one type over the other) and a dipole (an asymmetry in the distribution).

Iye & Sugai (1991) compiled a catalog of the projected spins of 8,287 galaxies from the ESO/Uppsala Survey of the ESO (B) Atlas. Two independent judgments of the winding sense were made, and if these disagreed then a third judgement was taken. The result is a catalog of $(3,257, 3,268)=(Z, S)$-wise galaxies, with the remaining 1,762 galaxies deemed indistinguishable. These galaxies are all in the Southern hemisphere, and so provide a complementary dataset to ours which is primarily in the Northern hemisphere.

We combine our clean dataset with their 6,525 galaxies with distinguishable handedness and repeat our MCMC analysis fitting our probability model (2). However, in this case we must allow each dataset to have its own monopole term, to account for the different levels of possible bias in the results due to the different methods of classification. Again we find constraints that are completely consistent with zero,
and we fit a Gaussian of $\sigma = 0.0079$ and 0.017 to the D and Q contours respectively. The constraints do not reduce as much as one would expect when expanding the dataset to the full sky because of the different monopole terms that we have included.

We are able to do a more direct comparison with the dataset of L07a, as this also uses galaxies from SDSS and thus with which we overlap. The sample of L07a consists of ~2,800 galaxies from SDSS DR5 with redshifts $z < 0.04$ and apparent magnitude constraint $q < 17$ that were visually selected as being reasonably clear. Both computerised and visual methods of spin classification were attempted - and the results were found to agree well, but visually scanning was more effective towards higher redshifts - providing an extra $\sim 50\%$ galaxies. The classifications used in L07a are thus those from visual classification - where a galaxy image was randomly mirrored in the process.

Of this sample, L07a found 1,266 and 1,365 galaxies to be Z and S-wise respectively, with the remaining ‘Unknown’ (U). We find clean$_{bc}$ classifications for 2,501 of the sample, and the level of agreement is tabulated in Table 3. We see very good agreement between our classifications, and the 10 cases where the handedness classifications contradict each other we have double checked the SDSS images and find the disagreement can be put down to misclassification in L07a - thus those from visual classification - where a galaxy image was randomly mirrored in the process.

Of this sample, L07a found 1,266 and 1,365 galaxies to be Z and S-wise respectively, with the remaining ‘Unknown’ (U). We find clean$_{bc}$ classifications for 2,501 of the sample, and the level of agreement is tabulated in Table 3. We see very good agreement between our classifications, and the 10 cases where the handedness classifications contradict each other we have double checked the SDSS images and find the disagreement can be put down to misclassification in L07a - thus those from visual classification - where a galaxy image was randomly mirrored in the process.

Of this sample, L07a found 1,266 and 1,365 galaxies to be Z and S-wise respectively, with the remaining ‘Unknown’ (U). We find clean$_{bc}$ classifications for 2,501 of the sample, and the level of agreement is tabulated in Table 3. We see very good agreement between our classifications, and the 10 cases where the handedness classifications contradict each other we have double checked the SDSS images and find the disagreement can be put down to misclassification in L07a - thus those from visual classification - where a galaxy image was randomly mirrored in the process.

Table 3. The level of agreement between our clean$_{bc}$ classifications and those of L07a. The '-' column are those galaxies without a clean$_{bc}$ GZ classification.

	1	2	3	4	5	6	tot	
Z	0	1143	0	1	2	113	1266	
S	0	3	1235	0	1	1	125	1365
U	0	43	63	0	1	1	95	223

Table 3. The level of agreement between our clean$_{bc}$ classifications and those of L07a. The '-' column are those galaxies without a clean$_{bc}$ GZ classification.

	1	2	3	4	5	6	tot	
Z	0	1143	0	1	2	113	1266	
S	0	3	1235	0	1	1	125	1365
U	0	43	63	0	1	1	95	223

Table 3. The level of agreement between our clean$_{bc}$ classifications and those of L07a. The '-' column are those galaxies without a clean$_{bc}$ GZ classification.

Figure 5. The constraints on the dipole from the sample of L07a, before (black histogram) and after (red) a monopole term is included and marginalised over. The right-hand figure shows the 1,2,3σ contours for the monopole and dipole - demonstrating the degeneracy between the two as expected when you have only partial sky coverage.

4 CONCLUSIONS

In this paper we have performed a classical test of cosmological statistical isotropy, from observations of the projected spins of galaxies. In line with the cosmological principle we find there is no significant large-scale correlations in the spin distributions (although a detection of the small-scale 2-point correlation function is found in Slosar et al. (2008)).

Due to the multiple classifications present in our dataset, we have been able to demonstrate that these visual classifications contain a certain level of bias between the identification of clockwise (Z-wise) and anti-clockwise (S-wise) rotating spiral galaxies. This must be accounted for in any analysis of the data, and is straightforward to do so by allowing the overall probability of the two (S vs Z) to differ. One then can continue to look for large-scale correlations such as a dipole, or a quadrupole.

We find that the projected angular momentum of galaxies in our local Universe are consistent with isotropy. This is in agreement with other similar studies (Sugai & Iye 1993), although our sample is a factor of 5 times larger than any previous datasets. Our classifications agree very well with those of Longo (2007a), who found evidence for a preferred axis in their sample. We find that this evidence diminishes when one allows for an overall monopole term, to account for the unknown level of bias in the results (or a true signal on the sky).

These results aid our understanding of the formation of large-scale structure. They limit the possibility of coherent large-scale magnetic fields that assist in the formation of galactic angular momentum (Longo 2007b). Similarly they constrain scenarios of galaxy formation - providing support for tidal torque theory (Barnes & Efstathiou 1987) as opposed to scenarios in which the angular momenta
tum of galaxies are coherent over large scales. Such scenarios include those where the angular momentum of galaxies originates from primordial vorticity, or from collapsing inflows (Sugai & Iye 1995).

ACKNOWLEDGEMENTS

We thank M. Longo for many useful conversations, and for kindly sharing his dataset with us. We are similarly grateful to H. Sugai and M. Iye for assistance, particularly in recovering and sharing their dataset. We are grateful to P. Ferreira and J. Silk for many useful conversations and encouragement.

But ultimate thanks must of course go to all the volunteers that have made Galaxy Zoo possible. Not only does this include \(\sim 100,000 \) users who personally identified hundreds of galaxies, but also web-designers, programmers, forum moderators, bloggers, journalists, guinea-pigs, colleagues, school teachers, etc. everyone who has been interested and excited, about the project! In particular we acknowledge invaluable contributions from Edd Edmondson and Alice Sheppard.

KL is funded by a Glasstone research fellowship, and further supported by Christ Church, Oxford. CJL acknowledges support from the STFC Science in Society Program. KS is supported by the Henry Skynner Junior Research Fellowship at Balliol College, Oxford.

REFERENCES

Bamford S., et al., 2008, [arXiv:0805.2612]
Barnes J., Efstathiou G., 1987, ApJ, 319, 575,
Copi C. J., Huterer D., Starkman G. D., 2004, Phys. Rev., D70, 043515, [astro-ph/0310511]
Fukugita M., et al., 2007, AJ, 134, 579, [arXiv:0704.1743]
Gori S., Hamburger K., Spillmann L., 2006, Vision Research, 46, 3267
Gorski K. M., et al., 2005, ApJ, 622, 759, [astro-ph/0409513]
Iye M., Sugai H., 1991, Astro. Phys. Journal, 374, 112,
Lintott C., et al., 2008, [arXiv:0804.4483]
Longo M. J., 2007a, [astro-ph/0703325]
Longo M. J., 2007b, [astro-ph/0703694]
Pasha I. I., Smirnov M. A., 1982, Astrophysics and Space Scienc, 86, 215
Schawinski K., et al., 2007, MNRAS, 382, 1415, [arXiv:0709.3015]
Slosar A., et al., 2008, in preparation
Sugai H., Iye M., 1995, MNRAS, 276, 327
Weeks J. R., 2004, [astro-ph/0412231]
York D. G., et al., 2000, AJ, 120, 1579, [astro-ph/0006396]