Limits of life in hostile environments: no barriers to biosphere function?

Jim P. Williams and John E. Hallsworth*
School of Biological Sciences, MBC, Queen’s University
Belfast, Belfast, BT9 7BL, UK.

Summary

Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (a_w) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at a_w values of ≤ 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.

Introduction

Xerophilic fungi are more tolerant to water stress than any other organism; mycelial growth of one species has been previously recorded down to a water activity of 0.656 (Pitt and Christian, 1968). Terrestrial fungi play key roles in the degradation of organic matter and global nutrient cycles, the formation and structure of soils and geological deposits, and via their symbiotic interactions with plants (Ruiz and Azcon, 1995; Gunde-Cimerman et al., 2000; Jeffries et al., 2003; Hoffland et al., 2004; van der Heijden et al., 2008). Furthermore, the substantial fungal biomass of soils in semiarid regions (Smith et al., 1992; Rutz and Kieft, 2004) can act as nutrient and water reservoirs in water-constrained ecosystems (Ruiz and Azcon, 1995; Austin et al., 2004; Kashangura et al., 2006; Collins et al., 2008). Xerophilic microbes have historically been isolated and characterized in the context of food-spoilage studies (Pitt, 1975), but they exist in nature at an indefinite number of biosphere–environment interfaces where life is challenged by physical and chemical barriers. Xerophilic fungi are therefore useful model systems to investigate the feasibility of cellular activity in arid and stressful habitats (Onofri et al., 2004; Beatty and Buxbaum, 2006; Tosca et al., 2008). Recent studies carried out on halophilic prokaryotes and mesophilic bacterial and yeast species from hostile environments found that chaotropicity (or related solute activities) can limit microbial metabolism, replication and survival (Hallsworth et al., 2003a; 2007; Duda et al., 2004; Lo Nostro et al., 2005). For both ionic and non-ionic solutes, neither chaotropic activities nor Hofmeister effects is a colligative property of a solution (see Dixit et al., 2002; Ball, 2008); furthermore the mechanism of chaotropic activity for ions (see Sachs and Wolff, 2003), non-ionic solutes (see Hallsworth et al., 2003a), and hydrophobic substances (McCambick et al., 2009; P. Bhaganna and J.E. Hallsworth, unpublished) may differ. Nevertheless, the Hofmeister series (for ions), chaotropicity and kosmotropicity (activities of diverse chemical species) provide frameworks that can be usefully employed to study the affinities of substances to modify the structural interactions of cellular macromolecules (see Hamaguchi and Geiduschek, 1962; Collins, 1997; Hallsworth et al., 2003a; Ball, 2008). However, such solute activities have not been studied either at ultra-low water activities (≤ 0.8; see Hallsworth et al., 2007), or in xerophilic fungi. Water activity has been highly effective in providing a global measure of the cumulative molecular-level, biochemical and phenotypic effects of decreased solvent availability (see Brown, 1990; Chaplin, 2006). Nevertheless, we recently observed that other solutes activities, most notably chaotropicity that weakens macromolecular interactions and disorders cellular structures, can also limit biosphere function in specific localities (see Hallsworth et al., 2007). We therefore suspected that water activity is not a definitive parameter that dictates the limits of microbial activity in all environmental niches. We carried out this study of xerophiles, obtained from diverse sources, to test the hypothesis that water activity does not...
always act as the barrier to microbial and, by implication, biosphere function in high-solute environments. Here we show that in low water-activity environments that are hostile to life ($\leq 0.72 \text{ a}_w$), water activity per se did not limit microbial activity; and provide evidence that cellular function was determined by the net effect of other environmental parameters (including chaotropic and kosmotropic activities) that impact on macromolecule structure-function. We also identified a new class of extremophilic microbe, *chaophiles*, that may prove to be a source of novel enzymes for biotechnology.

Results and discussion

Xerophilic fungi from high- and low-solute substrates

We took a two-pronged approach to identifying the ultimate, most xerophilic, microbes. First, we sampled environments in various continents and climatic zones, focusing our search on low-solute substrates: the surfaces of glass, metal, wood, leather, textiles and paper (see Table 1; *Experimental procedures*). Remarkably we found an abundance of xerophilic fungi, and isolated 107 phenotypically distinct cultures from these low-solute environments using glycerol-supplemented (5 M glycerol; 0.845 a_w) or sucrose-supplemented media (2.2 M sucrose; 0.884 a_w), predominantly on samples originating from humid countries such as Japan, Northern Ireland and Thailand (see Table 1). Second, we identified and obtained cultures of the 37 most-xerophilic strains previously reported in the published literature (1900–2008); the majority of these had been isolated from high-solute foods (see Table 2). In addition, we contacted research groups currently working in the field of environmental microbiology and obtained cultures of fungi and yeasts that had been isolated from high-salt or high-sugar environments and/or were suspected to be highly solute-tolerant (i.e. the 14 strains from EXF and UWOPS culture collections; see Table 2). For the purposes of the current study we used multiple criteria to define xerophilicity: that a species must be able to grow below 0.85 \text{ a}_w, under at least two sets of environmental conditions, and must also grow optimally below 0.95 \text{ a}_w (see Pitt, 1975).

For all environmental isolates and the named xerophile species (157 strains in total; see Tables 1 and 2) rates of hyphal extension were determined on low water-activity media containing one of a range of chemically diverse but biologically relevant solutes (see Fig. 1A and B). Generally strains from low-solute substrates grew down to similar water activities, and at comparable growth rates, to those from high-solute environments (data not shown). The solute that facilitated the optimum growth-rate varied depending on the fungal strain, but sucrose was most permissive for the majority of strains (Fig. 1A). By contrast, glycerol facilitated growth down to the lowest water-activity for more than 75% of strains (Fig. 1B) so we used glycerol-supplemented media to test the hypothesis that the stress parameter water activity does not always limit life on low water-activity substrates.

Nine out of the 157 strains grew at $\leq 0.75 \text{ a}_w$, and these had been isolated either from low-solute surfaces during the current study (strains JH06THH; JH06GBM; JH06GBO; JH06JPD from wooden surfaces, see Table 1) or from high-solute substrates by other research groups (strains *Aspergillus penicillioides* FRR 2179; *Eurotium amstelodami* FRR 2792; and three strains of *Xeromyces bisporus*: FRR 0025; FRR 3443; FRR 2347, see Table 2). Mycelial growth rates of these strains were quantified on glycerol-supplemented media over a matrix of temperature and water-activity values (Fig. 1C–K) in order to determine the limits of their biotic windows, and to obtain two-dimensional profiles of their growth phenotypes. We then determined the pH required for optimum growth over a range of water-activity values on glycerol-supplemented media in order to avoid inadvertently causing pH limitation. There were clear phenotypic differences between strains, but growth at low water activity was generally optimal at 30°C (see Fig. 1C–K) and pH 5.75 (data not shown) so these conditions were used throughout the study. Although hyphal growth has previously been recorded at $\leq 0.710 \text{ a}_w$ (see Pitt and Christian, 1968; see later), only two strains grew on glycerol media at water-activity values significantly below 0.714 \text{ a}_w, regardless of temperature or pH (see Fig. 1J and K). The glycerol concentrations used in these media (i.e. $\leq 7.16 \text{ M}$) are consistent with the intra and/or extracellular concentrations to which microbial cells can be exposed in nature (Brown, 1990; Hallsworth and Magan, 1994a; de Jong et al., 1997; Hallsworth, 1998; Zhuge et al., 2001; Bardavid et al., 2008). However, our data as well as earlier studies suggest that glycerol has inhibitory activities at molar concentrations (see Fig. 1J and K; Borowitz and Brown, 1974; Hallsworth et al., 2007), and may act as a chaotropic stressor due to its unusual interactions with water and destabilizing effects on macromolecular structures (Borowitz and Brown, 1974; Hallsworth et al., 2007). We therefore formulated the hypothesis that solute activities other than water activity can determine the limits of microbial-cell function.

Water activity did not limit life at low water activity

To test this hypothesis, we designed a range of 14 low water-activity media that were supplemented with either a chaotropic solute (fructose or glycerol) or combinations of glycerol and a number of other solutes: fructose and/or the kosmotropes sucrose, glucose, NaCl and KCl (Collins,
Strains were isolated from diverse substrates during the current study. The third and fourth characters of strain designations indicate the year that sampling and isolation were carried out (i.e. 2005, 2006 or 2007).

Strain designation	Environmental source (country)	Strain designation	Environmental source (country)
JH05GB42	Copper pipe in 12°C constant-temperature room (UK)	JW07JP14	Dead bamboo (Japan)
JH05GB43	Copper pipe in 12°C constant-temperature room (UK)	JW07JP18	Surface of firewood in outdoor woodpile (Japan)
JH06GBa	Underside of an antique earthenware-bowl (UK)	JW07JP20	External wall of a wooden hut (Japan)
JH06GBb	Dust on the floor of a living room (UK)	JW07JP21	Insect pupa (Japan)
JH06GbC	Blue (Stilton) cheese (UK)	JW07JP25	Surface of firewood in outdoor woodpile (Japan)
JH06GBB	Stem of dried protea flower (South Africa)	JW07JP29	Aluminium windowsill on the outside of a building (Japan)
JH06GBF	Paint work of a 1922 wooden window-frame (UK)	JW07JP30a	Aluminium windowsill inside a building (Japan)
JH06GBM	Underside of an antique sycamore chopping-block (UK)	JW07JP30b	Aluminium windowsill inside a building (Japan)
JH06GBN	Underside of an antique sycamore chopping-block (UK)	JW07JP30c	Aluminium windowsill inside a building (Japan)
JH06GBO	Underside of an antique sycamore chopping-block (UK)	JW07JP36	Glass surface of a window inside a building (Japan)
JH06GBW	Antique felt (UK)	JW07JP41a	Wooden floor (Japan)
JH06IL49	Semi-dried date (Israel)	JW07JP41b	Wooden floor (Japan)
JH06IL50	Semi-dried date (Israel)	JW07JP43	Old glass light-bulb (Japan)
JH06IN45	Semi-dried tamarind pods (India)	JW07JP49	Underside of a stone table – outdoors (Japan)
JH06IN46	Semi-dried tamarind pods (India)	JW07JP51	Surface of wooden bench – outdoors (Japan)
JH06IN47	Antique wooden artefact (India)	JW07JP56	Rotting wood (Japan)
JH06IN48	Antique wooden artefact (India)	JW07JP64	Dead tree-trunk (Japan)
JH06JPJ	Antique wooden artefact (Japan)	JW07JP74	Aluminium windowsill inside a building (Japan)
JH06JPD	Antique wooden rice-scoop (Japan)	JW07JP75	Old cotton cushion-cover (Japan)
JH06JPE	Inner surface of an antique bronze bell (Japan)	JW07JP83	Tree trunk (Japan)
JH06JPF	Inner surface of an antique bronze bell (Japan)	JW07JP95	Surface of wooden bench – outdoors (Japan)
JH06JPQ	Antique wooden rice-pot lid (Japan)	JW07JP96	Stone table – outdoors (Japan)
JH06JPS	Antique wooden rice-pot lid (Japan)	JW07JP96	Underside of a wooden bench – outdoors (Japan)
JH06JPT	Antique wooden rice-pot lid (Japan)	JW07JP117a	Internal surface of dried bamboo (Japan)
JH06NAV	Stem of a wild grape (Namibia)	JW07JP117b	Internal surface of dried bamboo (Japan)
JH06THH	Antique wooden artefact (Thailand)	JW07JP120a	Antique wooden artefact (Japan)
JH06THI	Antique wooden artefact (Thailand)	JW07JP120b	Antique wooden artefact (Japan)
JH06THJ	Antique wooden artefact (Thailand)	JW07JP160	Antique wooden artefact (Japan)
JH06THK	Antique wooden artefact (Thailand)	JW07JP166	Rotting bamboo (Japan)
JH06ZA44	Grass basket (South Africa)	JW07JP167	Rotting bamboo (Japan)
JH06ZA51	Tin surface of a food can (South Africa)	JW07JP168a	Rotting bamboo (Japan)
JH06ZA52	Tin surface of a food can (South Africa)	JW07JP168b	Rotting bamboo (Japan)
JH06ZAU	Glass of a 1940’s picture frame (South Africa)	JW07JP169	Rotting bamboo (Japan)
JH07JP126	Antique bronze vase (Japan)	JW07JP170a	Rotting bamboo (Japan)
JH07JP127	Green leaf (Japan)	JW07JP170b	Rotting bamboo (Japan)
JH07JP128	Old earthenware bonsai-container (Japan)	JW07JP171a	Rotting bamboo (Japan)
JH07JP130	Green bamboo (Japan)	JW07JP171b	Rotting bamboo (Japan)
JH07JP133	Rotting wood (Japan)	JW07JP172	Rotting bamboo (Japan)
JH07JP138	Old cedarwood-container (Japan)	JW07JP173	Old, dried Reiki mushroom (Japan)
JH07JP141	Bamboo leaf (Japan)	JW07JP174	Old, dried Reiki mushroom (Japan)
JH07JP143	Green bamboo (Japan)	JW07JP175a	Old, dried Reiki mushroom (Japan)
JH07JP144	Leaf surface (Japan)	JW07JP175b	Old, dried Reiki mushroom (Japan)
JH07JP146	Dead bamboo (Japan)	JW07JP176	Old, dried Reiki mushroom (Japan)
JH07JP148	Rotting bamboo (Japan)	JW07JP177	Old, dried Reiki mushroom (Japan)
JH07JP149	Rotting bamboo (Japan)	JW07JP179	Old, dried Reiki mushroom (Japan)
JH07JP151	Rotting leaf (Japan)	JW07JP180	Moulding surface of tree branch (Japan)
JH07JP154	Wooden bathroom wall (Japan)	JW07JP181	Airborne spores (Japan)
JH07JP156	Wooden bathroom wall (Japan)	JW07JPc118	Laboratory contaminant (Portugal)
JH07ZA147	Wooden artefact (South Africa)	RS07PT1	Laboratory contaminant (Portugal)
JW07GB158	Antique mahogany table-top (UK)	RS07PT2	Laboratory contaminant (Portugal)
JW07JP12	Metal surface of an armrest on a 1970’s train (Japan)	RS07PT3	Laboratory contaminant (Portugal)
JW07JP14	Silicon floor-seal on a 1970’s train (Japan)	RS07US5	Soil (North America)
JW07JP18	Silk toy hung on exterior of a building (Japan)	RS07US10	Soil (North America)
JW07JP13	Insect faeces on dead bamboo (Japan)	RS07US10	Soil (North America)

a. Strains were isolated on glycerol-supplemented and sucrose-supplemented MYPiA medium; see Experimental procedures. Strains RS07PT1, RS07PT2, RS07PT3, RS07US5 and RS07US10 were isolated by Ricardo dos Santos, Laboratório de Análises of the Instituto Superior Técnico, Portugal. Entries in bold correspond to strains selected for more detailed study (see Figs 1C–K, 2 and 3A).

b. The third and fourth characters of strain designations indicate the year that sampling and isolation were carried out (i.e. 2005, 2006 or 2007).
Species	Strain designation	Environmental source (country)	Relevant reference(s)
Aspergillus glaucus	IMI 053242	Microscope objective (Sri Lanka)	Fennell and Raper (1955)
Aspergillus nidulans var. echinulatus	CBS 120.55; IMI 061454	Not stated (Argentina)	Fennell and Raper (1955)
Aspergillus penicillioides	ATTC 14567; FRR 3722	Binocular lens (Australia)	Gock et al. (2003)
Aspergillus penicillioides	ATTC 16910; FRR 3722	Human lobomycosis (Australia)	Gock et al. (2003)
Aspergillus penicillioides	FRR 2179	Dried chillies (Australia)	
Aspergillus penicillioides	FRR 3795	Audio tape (Australia)	
Aspergillus wentii	CBS 104.07; IMI 017295	Soybeans (Indonesia)	
Basipetospora chlamdospora	IMI 332258	Soil (Chile)	
Brettanomyces bruxellensis	UWOPS 94-239.3	Tequila fermentation (Mexico)	
Candida apicola	UWOPS 01-663	Merremia tuberosa flower (Costa Rica)	
Candida berthetii	ATCC 18808; CBS 5452	Arabic gum (Cameroon)	Boidin et al. (1963)
Candida etchellsii	UWOPS 01-168.3	Bee hive (Costa Rica)	
Candida hawaiiana	UWOPS 04-206.8	Proceros c. bifer (Malaysia)	
Chrysosporium fastidium	ATTC 18053; FRR 0077	Improperly sundried prunes (Australia)	Hocking and Pitt (1980); Pitt and Hocking (1977)
Chrysosporium xerophilium	ATTC 18052; FRR 0530	High-moisture prunes (Australia)	Kinderlerer (1995)
Cladosporium sphaerospermum	EXF 738	Bathroom (Slovenia)	Zalar et al. (2007)
Debaryomyces hansenii	DSMZ 7090	Spoilt sake (Chile)	
Debaryomyces melissophilus	UWOPS 01-677	Conotelus nitidulid beetle from Merremia tuberosa flower (Costa Rica)	
Eurotium amstelodami	ATTC 16465; FRR 0153	Dates (Australia)	Tamura et al. (1999)
Eurotium chevalieri	ATCC 28248; FRR 0471	Dates (Australia)	Tamura et al. (1999)
Eurotium echinulatum	ATCC 62930; FRR 2471	Dates (Australia)	Tamura et al. (1999)
Eurotium halophilicum	ATCC 16465; FRR 2792	Dates (Australia)	Tamura et al. (1999)
Eurotium herbariorum	ATCC 16465; FRR 5004	Dates (Australia)	Tamura et al. (1999)
Hortaea werneckii	EXF 225	Hypersaline saltern (Slovenia)	
Kodamaea ohmeri	UWOPS 05-228.2	Beetle, Bertam Palm (Malaysia)	
Pichia sydowiorum	UWOPS 03-414.2	Nectar, Bertam Palm (Malaysia)	
Polypaecilum pisce	FRR 2732; IMI 288726	Dried fish (Indonesia)	
Saccharomyces cerevisae	CCY 21-4-13	Spoilt sake (Chile)	
Saccharomyces ludwigii	UWOPS 92-218.4	Tequila fermentation (Mexico)	
Starmerella bombicola	UWOPS 01-123.1	Bee from Ipomoea trifida (Costa Rica)	
Wallemia ichthyophaga	CBS 818.96	Sunflower seed (Sweden)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Wallemia muriae	MZKI B-952	Hypersaline saltern (Slovenia)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Wallemia sebi	EXF 994	Dead Sea (Israel)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Wallemia sebi	EF 994	Dead Sea (Israel)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Wallemia sebi	FRR 3443	Raisins (Australia)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Wallemia sebi	IMI 317902	Chinese dates (Australia)	Vaupotic and Plemenitas (2007); Zalar et al. (2005)
Xeromyces bisporus	ATCC 9656; FRR 1522	Spoilt liquorice (Australia)	Hocking and Pitt (1980); Pitt and Hocking (1977)
X. bisporus	ATCC 9656; FRR 3699	Table wine (Australia)	Hocking and Pitt (1980); Pitt and Hocking (1977)
X. bisporus	ATCC 9594; FRB 3699	Table wine (Australia)	Hocking and Pitt (1980); Pitt and Hocking (1977)
Z. rouxii	FRB 9594	Maple syrup (Australia)	Andrews and Pitt (1980)
Z. rouxii	FRB 9594	Table wine (Australia)	Andrews and Pitt (1980)
Z. rouxii	FRB 9594	Table wine (Australia)	Andrews and Pitt (1980)

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 11, 3292–3308
Fig. 1. Stress tolerance of xerophilic fungi to (A and B) single stressors and (C–I) temperature : water-activity regimes. Proportion of the 157 fungal strains tested (see Tables 1 and 2) that (A) grew optimally and (B) grew to their water-activity minimum on media containing either no added solute (control) or those supplemented with ethanol, NaCl, ethylene glycol, glycerol, MgCl₂, fructose, sucrose or PEG 400. For each medium type, fungi were grown over a range of concentrations from zero (control media) to the concentration limit that prevented growth (data not shown). For three fungal strains growth-rate data obtained from single-stressor screens were plotted according to the chaotropic or kosmotropic activity of media (see later). For C–K: growth profiles for the nine most xerophilic fungi incubated at 15, 20, 25, 30 and 37°C on glycerol-supplemented media [water-activity values ranged from 0.810 to 0.653; isopleth contours indicate growth rates (mm day⁻¹)] and were plotted using Sigmaplot, Version 8.0. The fungal strains were (C) JH06THH, (D) JH06GBM, (E) JH06GBO, (F) JH06JPD, (G) Aspergillus penicilloides FRR 2179, (H) Eurotium amstelodami FRR 2792, (I) Xeromyces bisporus FRR 0025, (J) X. bisporus FRR 3443 and (K) X. bisporus FRR 2347 (see Tables 1 and 2).

A number of recent studies provide evidence that some ions can penetrate the hydrophobic domains of macromolecular systems by shedding their hydration water and that, via their physical bulk, they disorder the tertiary/quaternary structure (see Sachs and Woolf, 2003), i.e. that – by our earlier definition – they act chaotropically. However, NaCl and KCl that were used to depress water activity in Media 7, 9 and 12 are kosmotropic (i.e. solutions of their ions have a net kosmotropic activity; see Table 3), and this is consistent with their stabilizing effects on membranes, proteins and other cellular structures (see Brown, 1990). The range of water-activity values tested (0.760–0.644 aw) lies at the extreme edge of the water-activity window for all nine xerophile strains under study, and growth optima at 30°C lay between 0.95 and 0.85, as shown for one X. bisporus strain in Fig. 2J. Remarkably there was no correlation between rates of radial extension for these nine fungi (the most xerophilic microbes thus far identified) on glycerol-containing media at ≤ 0.72 aw, and the water activity of their culture media (Fig. 2A–I). Generally, on glycerol-supplemented media at ≤ 0.85 aw, the growth rates of all strains decreased in proportion to medium water activity (e.g. see Fig. 2J). On the glycerol-supplemented medium at 0.644 aw and the fructose-supplemented medium at 0.760 aw (despite the relatively high water activity of the latter; see Table 3) there was no hyphal growth of any xerophile strain (therefore data are not shown for Media 13 or 14 in Fig. 2). Paradoxically, for Medium 1 (at 0.714 aw) eight out of the nine fungal strains either failed to grow (Fig. 2A–D) or grew 65–90% more slowly than predicted (see Fig. 2E–G and I), whereas at lower water-activities (0.670–0.647) growth rates were up to 580% greater than predicted (i.e. the mixed-solute Media 6–9 and 12; see Fig. 2A–I).

The lowest water activity previously reported for sustained growth of fungi was 0.656: for X. bisporus after a 90 day incubation period (Pitt and Christian, 1968). By comparison several fungal strains grew in the current study at 0.656 aw, and hyphal growth was observed at this water activity for one strain after only 11 days (Fig. 2F; Table 4). Remarkably we observed growth at water-activity values as low as 0.647, and did so in as little as 5–8 weeks, on mixed-solute media (see Fig. 2A–I; Table 4). Furthermore, four out of the five strains that were able to grow at 0.647 aw had been isolated from low-solute surfaces (in the current study; see Table 1) and were therefore more xerophilic than all but one of the strains

Table 3. Chaotropic-activity and water-activity values for solutes and solute combinations used to supplement growth media.*

Medium designation*	Added solute(s); concentration [M]	Water activity²	Chaotropic activity (kJ kg⁻¹)²					
1	Glycerol 0.84	NaCl 0	KCl 0	Fructose 0	Glucose 0	Sucrose 0	Highly chaotropic (15.27)	0.714
2	7.06	0	0	0	0	0	Highly chaotropic (16.84)	0.702
3	5.34	0	0	0	0	0.73	Relatively neutral (12.48)²	0.699
4	7.48	0	0	0	0	0	Highly chaotropic (18.05)	0.686
5	7.48	0	0	0	0	0	Highly chaotropic (18.05)	0.685
6	5.97	0	0	0	0	0.73	Relatively neutral (11.11)²	0.670
7	3.91	1.20	0.13	0	0	0.73	Relatively neutral (11.11)²	0.670
8	4.34	0	0	1.11	1.11	0	Relatively neutral (9.73)²	0.665
9	4.67	1.20	0.13	0	0	0.73	Relatively neutral (12.75)²	0.656
10	7.60	0	0	0	0	0.73	Highly chaotropic (28.80)	0.655
11	7.60	0	0	0	0	0	Highly chaotropic (20.80)	0.653
12	6.19	1.20	0.13	0	0	0	Relatively neutral (2.79)²	0.647
13	7.65	0	0	0	0	0	Highly chaotropic (20.88)	0.644
14	0	0	0	4.80	0	0	Highly chaotropic (20.80)	0.760

a. See Fig. 2A–I. The pH of all media was 5.75, except for Medium 4 (pH 4).
b. See Hallsworth and colleagues (2003a).
c. Measured at 30°C.
d. Extrapolated from agar gel-point curve.
e. Media were slightly kosmotropic so the activity value is negative.

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, *Environmental Microbiology*, 11, 3292–3308
isolated from high-solute environments during the past 100 years (see Fig. 2A–I; Table 4). One fungal strain, isolated in 2006 from the wooden (sycamore) surface of a 19th Century, kitchen chopping-block (JH06NIM; see Table 1), was observed to be growing at 0.647 aw after only 34 days incubation at 30°C (Fig. 2B; Table 4).

For a given fungal species, the lower water-activity limit for the germination of propagules is typically lower than that for hyphal growth (Pitt, 1975). However, numerous studies of spore germination of xerophiles at low water-activities (see Table S1) have found that growth ceases upon germ-tube production (Pitt and Christian, 1968). Whereas a number of reviews cite germ-tube formation by *X. bisporus* spores at 0.605 aw as evidence of cellular function at ultra-low water activity (Pitt, 1975; Grant, 2004; see also Table S1), further hyphal growth and mycelium development were not recorded (Pitt and Christian, 1968). In the current study hyphal growth of *A. penicillioides* and *E. amstelodami* occurred at considerably lower water-activity values (0.647 and 0.656 aw on mixed-solute media; see Fig. 2E and F; Table 4) than those previously reported for germination (i.e. 0.680 and 0.703 respectively; see Table S1). For each xerophile strain at water-activity values below their growth optimum, growth rates were proportionally reduced (for an example, see Fig. 2J). However, at extremely low water activity (= 0.72 aw), growth rates were no longer proportional to water activity so we concluded that other stress parameters limited cellular activity. Furthermore, we asked the scientific questions whether the chaotropicity of glycerol-supplemented media (6.84–7.65 M glycerol) limited hyphal growth at low water activity, and whether this inhibition was reversed by the kosmotropic activity of other substances present in the mixed-solute media (3.91–6.19 M glycerol).

Chaotropic compounds limited cell function, but their effects were reversible

The fructose-supplemented medium and the seven glycerol-supplemented media to have chaotropic-activity values of 15–21 kJ kg solution\(^{-1}\) (Table 3); values that are consistent with the chaotropicity limits for other microbial species (see Hallsworth et al., 2007). However, the activity values of the six mixed-solute media that contained kosmotropes were relatively neutral (12.48 to –2.75 kJ kg solution\(^{-1}\); see Table 3). Generally there were either low rates of radial extension on chaotropic media, or no growth at all (for glycerol-only media see Fig. 2A–I, orange columns; for fructose-only media data not shown). By contrast, remarkably high growth-rate values were obtained on the other media that were neutral or mildly chaotropic, and these were several hundred per cent higher than those predicted from water-activity values (see Fig. 2A–I, black columns). There was a strong inverse correlation between chaotropic activity and fungal growth (see Figs 2A–I and 3A): three strains that were able to grow down to 0.647 aw did not grow on any glycerol-supplemented media even at the relatively less-stressful water activity of 0.714 (Fig. 2A–C).

Glycerol, which is neutral or only weakly chaotropic below concentrations of 3–4 M (F.D.L. Alves and J.E. Hallsworth, unpublished), is widely known for its activities as a stress protectant that can both protect the structure and function of cellular macromolecules, and act as an intracellular osmolyte to control cell turgor (Brown, 1990; Dashnau et al., 2006). At higher concentrations (≥ 6 M), however, we have demonstrated the extreme chaotropicity of glycerol (Table 3). On high-solute substrates xerophile cells can fail due to the prohibitive energy expenditure required to retain the intracellular glycerol that is needed as an osmolyte (Hocking, 1993). We propose that glycerol itself can disorder and permeabilize the plasma membrane, via its chaotropic activity, thereby resulting in the leakage of this protectant from the cell.

Whereas the biochemical mechanisms by which chaotropic solutes disorder cellular macromolecules are not yet fully understood (see above), we have illustrated the structural consequences for macromolecular systems in a cell stressed by a chaotropic solute, and the way in which kosmotropic solutes counter cha trope-induced stress (Fig. 3B–E). For a cell growing under optimal conditions...
There are several classes of solute-tolerant microbe:

- NaCl (3.59 M, 0.812 aw), (III) sucrose (2.34 M, 0.831 aw), (IV) PEG 400 (1.25 M, 0.855 aw), (V) glycerol (4.90 M, 0.828 aw), (VI) fructose

- (VII) fructose (3.94 M, 0.804 aw), (VIII) fructose (4.36 M, 0.791 aw), (IX) glycerol (6.66 M, 0.747 aw), (X) ammonium nitrate

- (XI) ammonium nitrate (5.15 M, 0.817 aw). Values are means of three replicates and bars represent standard errors.

The data approximate to a Normal distribution (see dotted line), although it may be that the osmotic stress or other stress parameters associated with kosmotropic stressors ultimately limit hyphal growth. Diagrammatic illustrations (B–E) of the way in which chaotropic and kosmotropic activities impact on macromolecule and membrane structure in relation to an unstressed cell (B); in a chaotrope (e.g. urea)-stressed cell (C), a kosmotrope (e.g. sucrose)-stressed cell (D), and a cell exposed to both chaotropes and kosmotropes (E).

Fig. 3. Growth rates of three representative xerophilic fungi (A): *Xeromyces bisporus* FRR 3443, *Eurotium amstelodami* FRR 2792, and isolate JH06THAJ (see Tables 1 and 2) in relation to chaotropic and kosmotropic activities of culture media: (I) NaCl (4.28 M, 0.775 aw), (II) NaCl (3.59 M, 0.812 aw), (III) sucrose (2.34 M, 0.831 aw), (IV) PEG 400 (1.25 M, 0.855 aw), (V) glycerol (4.90 M, 0.828 aw), (VI) fructose (3.51 M, 0.829 aw), (VII) fructose (3.94 M, 0.804 aw), (VIII) fructose (4.36 M, 0.791 aw), (IX) glycerol (6.66 M, 0.747 aw), (X) ammonium nitrate (4.30 M, 0.855 aw) and (XI) ammonium nitrate (5.15 M, 0.817 aw). Values are means of three replicates and bars represent standard errors.

In summary, the data presented here (Figs 1, 2 and 3A; Table 3) support the hypothesis that the chaotropic activity of glycerol, not the stress parameter water activity, limits cell metabolism for these xerophilic fungi at ≤ 0.72 aw. This is consistent with evidence from other reports that chaotropicity limits microbial function (Hallsworth, 1998; 2003a; Duda et al., 2004; Lo Nostro et al., 2005), with a study showing that compatible solutes can reduce ethanol stress in conidia of *Aspergillus nidulans* (Hallsworth et al., 2003b), and with our recent studies of halophilic prokaryotes which demonstrated that the macromolecule-structuring activities of kosmotropic salts can reduce or reverse the inhibitory effects of chaotropic salts (Hallsworth et al., 2007).

Implications and conclusions

We already have an understanding of environmentally relevant solute stresses [osmotic stress (Dutrochet, 1826), matric stress (Griffin, 1977) and chaotrope-induced water stress (Hallsworth et al., 2003a)]; how chaotropic agents determine the limits of macromolecule function (see Hallsworth et al., 2003a; 2007; Duda et al., 2004); indications of the cellular components that fail...
Table 4. Fungal strains capable of hyphal growth ≤ 0.71 water activity. a

Species and/or strain designation	Nature of substrate of origin	Lowest recorded water activity for hyphal growth (1)	Earliest observation of hyphal growth (day)	Rate of hyphal extension (mm day−1)	Method used to reduce water activity (reference)	Chaotropic or kosmotropic activity of culture medium (kJ kg−1)
JH06GBM	L-S	0.647	34	0.05	Glycerol (6.19 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (2.79)
Aspergillus penicillioides FRR 2179	H-S	0.647	46	0.13	Glycerol (6.19 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (2.79)
JH06THH	L-S	0.647	46	0.06	Glycerol (6.19 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (2.79)
JH06GBO	L-S	0.647	60	0.06	Glycerol (6.19 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (2.79)
JH06THJ	L-S	0.647	60	0.03	Glycerol (6.19 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (2.79)
Xeromyces bisporus FRR 3443	H-S	0.653	41	0.03	Glycerol (7.60 M)	Highly chaotropic (20.80)
X. bisporus FRR 2347	H-S	0.653	41	0.01	Glycerol (7.60 M)	Highly chaotropic (20.80)
X. bisporus FRR 1522	H-S	0.653	41	0.01	Glycerol (7.60 M)	Highly chaotropic (20.80)
Eurotium amstelodami FRR 2792	H-S	0.656	11	0.12	Glycerol (4.67 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
X. bisporus FRR 0025	H-S	0.656	22	0.39	Glycerol (4.67 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
A. penicillioides FRR 3722	H-S	0.656	29	0.13	Glycerol (4.67 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
E. amstelodami FRR 0475	H-S	0.656	29	0.12	Glycerol (4.67 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
JH06THI	L-S	0.656	60	0.03	Glycerol (4.67 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
X. bisporus	H-S	0.656	90	Not quantified	Thin layer of medium on a glass surface in a humidity-controlled chamber (Pitt and Christian, 1968)	Not quantified
X. bisporus	H-S	0.663	120	Not quantified	Thin layer of medium on a glass surface in a humidity-controlled chamber (Pitt and Christian, 1968)	Not quantified
JH06JPD	L-S	0.667	11	0.10	Glycerol (3.91 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
JH07JP128	L-S	0.667	94	0.02	Glycerol (3.91 M), sucrose (0.73 M), NaCl (1.20 M), KCl (0.13 M)	Relatively neutral (−2.75)
Eurotium halophilicum FRR 2471	H-S	0.675	38	Not quantified	Equal weights of glucose and fructose added to growth media (Andrews and Pitt, 1987)	Not quantified
Chrysosporium xerophilum FRR 0530	H-S	0.686	118	0.01	Glycerol (7.48 M)	Highly chaotropic (18.05)
Chrysosporium fastidium	H-S	0.697	64	Not quantified	Thin layer of medium on a glass surface in a humidity-controlled chamber (Pitt and Christian, 1968)	Not quantified
C. xerophilum	H-S	0.708	80	Not quantified	Thin layer of medium on a glass surface in a humidity-controlled chamber (Pitt and Christian, 1968)	Not quantified
Eurotium chevalieri PIL 119	H-S	0.710	16	0.1	A thin layer of medium enclosed in a humidity-controlled, bung-sealed glass test tube (Ayerst, 1969)	Not quantified
E. amstelodami PIL 120	H-S	0.710	32	0.1	A thin layer of medium enclosed in a humidity-controlled, bung-sealed glass test tube (Ayerst, 1969)	Not quantified

a. Data for the yellow-shaded entries were obtained from the current study.

b. H-S = isolated from a high-solute substrate; L-S = isolated from a low-solute surface.

c. Compiled using data from the current study and from published xerophile studies; refs. Pitt and Christian (1968); Ayerst (1969); Andrews and Pitt (1987).

d. Data were obtained from the current study unless otherwise stated.

e. The culture medium was MYPA (pH 5.75, 30°C); see Experimental procedures.

f. N.B. Media were slightly kosmotropic so the activity value is negative.

g. The culture medium was Czapek Invert Malic Agar (pH 3.8, 25°C).

h. The culture medium was Yeast Nitrogen Base + 2% glucose w/v + 2% agar w/v.

i. The culture medium was Malt Extract Agar; MEA (30–40°C).

j. The culture medium was MEA (24–30°C).
under extreme forms of stress (see current study; Hocking, 1993; Ferrer et al., 2003; and other factors that determine the limits of microbial function in hostile environments (see Fig. 4; Pitt, 1975; Golyshina et al., 2006; Hallsworth et al., 2007; Marris, 2008). The current study illustrates how hitherto unidentified stress parameters can limit microbial cell function under certain environmental conditions, and may thereby constrain the biosphere in specific locations. Further work is needed to identify and characterize the stress mechanisms that act as failure points for ecosystems in hostile environments (Fig. 4). Many informative studies of the geochemical composition of extreme environments have already been carried out, including those of other planets (Mustard et al., 2008). Although chaotropicity has been shown to limit the functional biosphere in specific locations on Earth (Hallsworth et al., 2007), this stress parameter has not yet been factored into the mathematical models used to predict the feasibility of life in as-yet-unexplored environments on Earth or other planetary bodies (Beaty and Buxbaum, 2006; Marion and Kargel, 2008; Mustard et al., 2008; Tosca et al., 2008). We believe that chaotropicity should be accounted for in future models that aim to predict what types of environment can potentially support cellular activity (Fig. 4).

Global climate change, and changes in land-use, have accelerated the expansion of biologically hostile arid and semiarid regions over the past 30 years (Thomas et al., 2005; Seager et al., 2007). Polluted environments also represent a challenge to microbes that are exposed to the chaotropic activities of xenobiotics (Hallsworth et al., 2003a). Microbes in other natural habitats, as well as substrates used in industrial processes, may also be subjected to low water-activity conditions and/or high concen-

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, *Environmental Microbiology*, 11, 3292–3308
tations of chaotropic stressors such as formamide, ethanol, urea, ethylene glycol, butanol, NH$_4$NO$_3$, glycerol, phenol, MgCl$_2$, CaCl$_2$ and sodium benzoate (Brown, 1990; Hallsworth, 1998; 2003a; 2007; Bardavid et al., 2008). For both low water-activity and highly chaotropic substrates, analysis of the ways in which these (and other) stress parameters interact to limit biological activity can shed light on how to optimize or eliminate microbial activity, as required. Chaotropes and high temperatures disorder cellular structures, whereas kosmotropes and low temperatures have a stabilizing/ordering effect (Hamaguchi and Geiduschek, 1962; Collins, 1997; Hallsworth et al., 2003a) and we utilized the counteracting solute activities of glycerol and kosmotropic substances in order to extend the biotic window for xerophile growth at low water activity (Fig. 2A–I; Table 4). It may be that microbial cells in laboratory culture could, and that cells in nature do, function below the water-activity limit of 0.647 established in the present study (Fig. 2), and that we have not yet understood how to manipulate solute activities sufficiently well to maintain macromolecular function under high-solute conditions. Furthermore, the vast majority of microbes cannot be cultivated in vitro (Whitman et al., 1998; Rutz and Kieft, 2004; Ward and Fraser, 2005) and some of these may remain elusive as long as the physicochemical parameters that determine their biotic windows for growth are poorly understood. We propose that manipulation of solute activities will facilitate the cultivation and study of numerous microbial species that can currently only be detected in situ (using metagenomic techniques).

Knowledge-based approaches to manipulating environmental conditions could lead to strategies for the regeneration of desertified regions (see Kashangura et al., 2006), and for providing both food and biofuels to support human population whilst maintaining a sustainable biosphere. Diverse approaches based on manipulation of environmental conditions or stress parameters have already given rise to quantum improvements in the growth windows of mesophilic species (see Hallsworth and Magan, 1994b; 1995; Thomas et al., 1994; Hallsworth et al., 2007); there is evidence that kosmotropic substances reduce ethanol stress in yeast (see Hallsworth, 1998), and that kosmotropic ions can increase Halobacterium activity under chaotropic conditions (see Oren, 1983; Hallsworth et al., 2007). The bioremediation of chaotrope-polluted soils (Hallsworth et al., 2003a) may be most efficient at temperatures low enough to minimize the chaotrope-induced disordering of cellular structures. The effectiveness and efficiency of products and processes such as biocides, food preservatives (e.g. sodium benzoate), food and drinks fermentations, bioalcohol production from microbes (Hallsworth, 1998), and industrial biocatalysis in solvent systems, which utilize or generate chaotropic solutes could be enhanced via manipulation of solute activities. Further studies are needed so that more effective interventions can be made based on exploitation of phenotypic plasticity, employing recombinant technologies and/or systems biology approaches to obtaining stress-resistant cells (see Fig. 4).

Xerophilic fungi have most commonly been isolated from kosmotrope-containing substrates (Pitt, 1975), so chaotolerant species and/or their enzymes may have potential for diverse applications. One focus of our ongoing studies is to identify novel stress parameters that prevent life processes: it may be possible to further enhance microbial function, and ecosystem development, in hostile environments once the stress biology of microbes has been more completely elucidated.

Experimental procedures

Sampling strategies and environmental isolates

Fungi were isolated from diverse environments (see Table 1) using sterile cotton-tip swabs and inoculated onto slants of Malt-Extract, Yeast-Extract Phosphate Agar [MYPiA; 1% Malt-Extract w/v (Oxoid, UK), 1% Yeast-Extract w/v (Oxoid, UK), 1.5% Agar w/v (Acros, USA), 0.1% K$_2$HPO$_4$ w/v] supplemented with 5 M glycerol (0.845 a$_w$) in 1.8 ml, internal-thread cryovials and transferred, once back in the laboratory, to Petri plates containing MYPiA supplemented with glycerol (5 M; 0.845 a$_w$) or sucrose (2.2 M; 0.884 a$_w$). Petri plates were incubated at temperatures between 20°C and 30°C in sealed bags (see below) and checked periodically for up to 6 months. Upon visual inspection, all isolates that had grown were subcultured onto MYPiA supplemented with 6.52 M glycerol, and incubated at 30°C.

Named xerophile species

Named xerophile species were obtained from Culture Collection of Yeasts (CCY, Bratislava, Slovakia), German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany), Extremophilic Fungi Culture Collection (EXF, Ljubljana, Slovakia), Food Research Ryde (FRR, North Ryde, Australia), International Mycological Institute (IMI, Egham, UK), and University of Western Ontario, UWOPS Collection (Ontario, Canada); see Table 2. Cultures were maintained on MYPiA supplemented with either 2.78 M glucose (0.911 a$_w$) or 2.2 M sucrose (0.884 a$_w$) in sealed bags (see below) and incubated at 30°C.
Culture conditions and growth-rate determinations
Through this study, all media were sterilized in Schott bottles in a water bath (100°C, 60 min), cooled to within 7.5°C of the medium gel-point, and then poured into 9 cm vented Petri plates; inoculations were carried out using 4 mm diameter plugs from the periphery of actively growing cultures growing on MYPiA media supplemented with 5.43 M glycerol; and plates containing identical media were sealed in polyethylene bags to maintain a constant water activity (see Hallsworth et al., 2003b). Growth was assessed at periodic intervals by taking two measurements of colony diameter (in perpendicular directions), that were used to calculate rates of radial extension as described previously (Pitt and Hocking, 1977; Hallsworth and Magan, 1994a). Two-dimensional stress-tolerance profiles were plotted as described previously (Hallsworth and Magan, 1999) and mean values were plotted, and variation indicated in each display. Growth of yeast was carried out on the same media and quantified using spot tests as detailed by Albertyn and colleagues (1994).

Modification of media to investigate stress tolerance

Single-stressor solute-tolerance screen. All environmental isolates and named fungal strains were screened for stress tolerance on MYPiA media supplemented with different solutes over a range of concentrations; either ethanol (0.4–1.3 M), NaCl (2.1–3.4 M), ethylene glycol (2.0–3.4 M), glycerol (2.5–5.0 M), MgCl₂ (0.7–1.5 M), fructose (3.0–4.8 M), sucrose (1.1–2.1 M), or polyeethylene glycol (PEG) 400 (0.8–1.3 M), without addition of pH buffer, and incubated at 30°C for a period of up to 90 days. All inoculations were carried out in triplicate.

pH-tolerance study. All environmental isolates and named fungal strains were grown on MYPiA media supplemented with glycerol (at 3.8 M; 0.92 aw and 4.4 M; 0.88 aw respectively) and buffered to pH values of: 3.75, 4.5, 5.75 (citric acid; Na₃HPO₄), 6, 6.75 (MES; NaOH) and 7.5 (Hepes; NaOH; see Hallsworth and Magan, 1996). The pH of each medium was adjusted prior to autoclaving using appropriate buffers then measured postautoclave using a Mettler Toledo Seven Easy, pH-probe (Switzerland).

Temperature: water-activity growth-response study. The nine most xerophilic strains were inoculated onto MYPiA media supplemented with four different concentrations of glycerol (5.43, 6.19, 6.84 and 7.44 M) with water activity values ranging from 0.81 and 0.65 (see Fig. 1C–K) and incubated at 15, 22.5, 30 and 37.5°C. Quantification of water activity is described below.

Mixed-solute media for limits-of-cell function at low water-activity study. The nine xerophilic strains were inoculated onto 14 ultra-low water-activity media (0.714–0.644 aw), consisting of MYPiA media supplemented with combinations of glycerol, fructose, or glycerol plus kosmotropic solutes (see Fig. 2, Table 3, Fig. S1). The pH of all media was adjusted to 5.75, unless stated otherwise, using citric acid: Na₃HPO₄ buffer; following inoculation Petri plates were incubated at 30°C. For water-activity and chaotropic-activity values of Media 1–14 see Table 3; the methodologies used to obtain these values are described below.

Quantification of water activity
The water-activity values of media were measured at 30°C or, if different, at the temperature of incubation using a Novasina IC-II water-activity machine fitted with an alcohol-resistant humidity sensor and eVALC alcohol filter (Novasina, Pfäffikon, Switzerland), as described previously (Hallsworth and Nomura, 1999). This equipment was calibrated using saturated salt solutions of known water activity (Winston and Bates, 1960). Values were determined three times using replicate solutions made up on separate occasions. The variation of replicate values was within ±0.002 aw.

Determination of chaotropic activity
The chaotropic activity of solute(s) used to supplement growth media (see Table 3) was measured as a function of their ability to destabilize the polysaccharide macromolecule agar (Extra-Pure Reagent-grade agar, gel strength 600–700 g cm⁻², from Nacalai Tesque, Kyoto, Japan), and thereby lower gel-point (Hallsworth et al., 2003a). Agar was melted in distilled water, cooled to 55°C, and added to a solution of the solute or solute-mixture to be tested, also at 55°C, to give a final concentration of agar of 1.5% w/v and concentration(s) of solute(s) as used for the growth study. The agar–compound solutions were allowed to cool gradually and the gel-point temperature (± 0.3°C) was recorded using a temperature probe (Jenway, UK). The gel points determined were used to calculate the chaotropic activity of each compound in kJ kg⁻¹ (mole added compound)⁻¹, based on the fact that the heat capacity for a 1.5% agar w/v gel is 4.15 kJ kg⁻¹ °C⁻¹ (see Hallsworth et al., 2003a).

Acknowledgements
We are grateful for scientific discussions with A.N. Bell, P. Bhaganna, A.G. Maule, J.P. Quinn, D.J. Timson (Queen’s University Belfast, Northern Ireland), K.D. Collins (University of Maryland, USA), M.J. Danson (University of Bath, UK), J.L. Finney (University College London, UK), F. Franks (BioUpdate Foundation, UK), E.A. Galinski (University of Bonn, Germany), A.D. Hocking (CSIRO Division of Food Science and Technology, Australia), T.J McGenity and P. Nicholls (University of Essex, UK), A.Y. Mswaka (University of Harare, Zimbabwe), R.P. Rand (Brock University, Canada), R.J.P.R. dos Santos (Laboratório de Análises of the Instituto Superior Técnico, Portugal), and K.N. Timmis (Helmholtz Centre for Infection Research, Braunschweig, Germany); and also the Reviewers of the manuscript who offered new insights into the data. We wish to thank N. Gunde-Cimerman (University of Ljubljana, Slovenia), M.-A. Lachance, University of Western Ontario, Canada) and R.J.P.R. dos Santos (Portugal) for providing strains of yeast and fungi. Funding was received from the Department of Education and Learning (Northern Ireland), the Great Britain Sasakawa Foundation (London, UK), the Natural Environment Research Council.
Albertyn, J., Hohmann, S., Thevelein, J.M., and Prior, B.A. (1994) Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces-cerevisiae, and its expression is regulated by the high-osmolality glycerol response pathway. Mol Cell Biol 14: 4135–4144.

Andrews, S., and Pitt, J.I. (1987) Further-studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133: 233–238.

Arch, D.B., and Peberdy, J.F. (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17: 273–306.

Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., et al. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141: 221–235.

Ayerst, G. (1969) The effects of moisture and temperature on growth and spore germination in some fungi. J Stored Prod Res 5: 127–141.

Ball, P. (2008) Water as an active constituent in cell biology. Chem Rev 108: 74–108.

Bardavid, R.E., Khristo, P., and Oren, A. (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12: 5–14.

Beaty, D.W., and Buxbaum, K.L. (2006) Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6: 677–732.

Boidin, J., Pignal, M.C., Mermier, F., and Arpin, M. (1963) Quelques levures camerounaises. Cahiers la Mboké 1: 86–101.

Borowitz, L.J., and Brown, A.D. (1974) Salt relations of marine and halophilic species of unicellular green-alga, Dunaliella – role of glycerol as a compatible solute. Arch Microbiol 96: 37–52.

Brown, A.D. (1990) Microbial Water Stress Physiology – Principles and Perspectives. Chichester, UK: Wiley.

Chaplin, M. (2006) Opinion – Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7: 861–866.

Chen, C., Li, W.Z., Song, Y.C., and Yang, J. (2009) Hydrogen bonding analysis of glycerol aqueous solutions: a molecular dynamics simulation study. J Mol Liquids 146: 23–28.

Collins, K.D. (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72: 65–76.

Collins, S.L., Sinsabaugh, R.L., Crenshaw, C., Green, L., Porras-Alfaro, A., Stursova, M., and Zeglin, L.H. (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96: 413–420.

Corry, J.E.L. (1976) Sugar and polyol permeability of Salmonella and osmophilic yeast-cell membranes measured by turbidimetry, and its relation to heat-resistance. J Appl Bacteriol 40: 277–284.

Dashnau, J.L., Nucci, N.V., Sharp, K.A., and Vanderkooi, J.M. (2006) Hydrogen bonding and the cryoprotective properties of glycerol. J Phys Chem B 110: 13670–13677.

Dixit, S., Crain, J., Poon, W.C.K., Finney, J.L., and Soper, A.K. (2002) Molecular segregation observed in a concentrated alcohol-water solution. Nature 416: 829–832.

Duda, V.I., Danilevich, V.N., Suzina, N.E., Sherokhova, A.P., Dmitriev, V.V., Mokhova, O.N., and Akimov, V.N. (2004) Changes in the fine structure of microbial cells induced by chaotropic salts. Microbiology (Russia) 73: 341–349.

Dutrochet, H. (1826) L’Agent Immédiat Du Mouvement Vital Dévoilé Dans La Nature Et Dans Son Mode d’action, Chez Les Végétaux Et Les Animaux, Paris, France: Bailliére, J.B., Fennell, D.I., and Raper, K.B. (1955) New species and varieties of Aspergillus. Mycologia 47: 68–89.

Ferré, M., Chernikova, T.N., Yakimov, M.M., Golyshin, P.N., and Timmis, K.N. (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21: 1266–1267.

Galinski, E.A., Stein, M., Amendt, B., and Kinder, M. (1997) The kosmotropic (structure-forming) effect of compensatory solutes. Comp Biochem Physiol a Physiol 117: 357–365.

Gock, M.A., Hocking, A.D., Pitt, J.I., and Poulos, P.G. (2003) Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int J Food Microbiol 81: 11–19.

Golyshina, O.V., Golyshin, P.N., Timmis, K.N., and Ferrer, M. (2006) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8: 416–425.

Grant, W.D. (2004) Life at low water activity. Philos Trans R Soc Lond, B, Biol Sci 359: 1249–1266.

Griffin, D.M. (1977) Water potential and wood-decay fungi. Annu Rev Phytopathol 15: 319–329.

Gunde-Cimerman, N., Zalar, P., de Hoog, S., and Plemenitas, A. (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32: 235–240.

Hallsworth, J.E. (1998) Ethanol-induced water stress in yeast. J Ferment Bioeng 85: 125–137.

Hallsworth, J.E., and Magan, N. (1994a) Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of 3 entomopathogenic fungi. Microbiology 140: 2705–2713.

Hallsworth, J.E., and Magan, N. (1994b) Improved biological control by changing polyols/ trehalose in conidia of entomopathogens. In Brightons Crop Protection Council – Pests and Diseases 1994. Farnham, Surrey, UK: British Crop Protection Council, pp. 1091–1096.

Hallsworth, J.E., and Magan, N. (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141: 1109–1115.

Hallsworth, J.E., and Magan, N. (1996) Culture age, temperature and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62: 2435–2442.

Hallsworth, J.E., and Magan, N. (1999) Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J Invertebr Pathol 74: 261–266.

Hallsworth, J.E., and Nomura, Y. (1999) A simple method to determine the water activity of ethanol-containing samples. Biotechnol Bioeng 62: 242–245.

Hallsworth, J.E., Heim, S., and Timmis, K.N. (2003a) Chao-
tropic solutes cause water stress in *Pseudomonas putida*. Environ Microbiol 5: 1270–1280.

Hallsworth, J.E., Prior, B.A., Nomura, Y., Iwahara, M., and Timmis, K.N. (2003b) Compatible solutes protect against chaotrope (ethanol) -induced, nonosmotic water stress. Appl Environ Microbiol 69: 7032–7034.

Hallsworth, J.E., Yakimov, M.M., Golyshev, P.N., Gillion, J.L.M., D’Auria, G., Alves, F.D.L., et al. (2007) Limits of life in MgCl₂-containing environments: chaotropicity defines the window. Environ Microbiol 9: 801–813.

Hamaguchi, K., and Geidschusche, E.P. (1962) The effects of electrolytes on the stability of the desoxyribonucleic helix. J Am Chem Soc 84: 1329–1338.

van der Heijden, M.G.A., Bardgett, R.D., and van Straalen, N.M. (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296–310.

Hocking, A.D. (1993) Responses of xerophilic fungi to changes in water activity. In Stress Tolerance of Fungi. Jennings, D.H. (ed.). New York, USA: Marcel Decker, pp. 233–256.

Hocking, A.D., and Pitt, J.I. (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39: 488–492.

Hocking, A.D., and Pitt, J.I. (1988) Two new species of xerophilic fungi and a further record of. Eurotium-Halophilicum Mycologia 80: 82–88.

Hoffland, E., Kuyper, T.W., Wallander, H., Plassard, C., Gorbushina, A.A., Haselwandter, K., et al. (2004) The role of fungi in weathering. Front Ecol Environ 2: 258–264.

Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J.M. (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37: 1–16.

de Jong, J.C., McCormack, B.J., Smirnoff, N., and Talbot, N.J. (1997) Glycerol generates turgor in rice blast. Nature 389: 244–245.

Kashangura, C., Hallsworth, J.E., and Mswaka, A.Y. (2006) Phenotypic diversity amongst strains of *Pleurotus sajor-caju*: implications for cultivation in arid environments. Mycol Res 110: 312–317.

Kinderlerer, J.L. (1995) Czapek-Casein 50-Percent Glucose medium. In *Cold Aqueous Planetary Geochemistry with FREZCHEM: From Modeling to the Search for Life at the Limits*. Berlin, Germany: Springer-Verlag.

Marris, E. (2008) Water: More crop per drop. Nature 452: 273–277.

Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlimann, B.L., Milliken, R.E., Grant, J.A., et al. (2008) Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454: 305–309.

Onofri, S., Selmbmann, L., Zucconi, L., and Pagano, S. (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52: 229–237.

Oren, A. (1983) *Halobacterium sodomense* sp. nov., a Dead Sea Halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33: 381–386.

Pitt, J.I. (1975) Xerophilic fungi and the spoilage of foods of plant origin. In *Water Relations of Fungi*. 1st edn. Duckworth, R.B. (ed.). New York, USA: Academic Press, pp. 273–307.

Pitt, J.I., and Christian, J.H.B. (1968) Water relations of xerophilic fungi isolated from prunes. Appl Microbiol 16: 1853–1858.

Pitt, J.I., and Hocking, A.D. (1977) Influence of solute and hydrogen-ion concentration on water relations of some xerophilic fungi. J Gen Microbiol 101: 35–40.

Ruiz Lozano, J.M., and Azcon, R. (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plantarum 95: 472–478.

Rutz, B.A., and Kief, T.L. (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biol Biochem 36: 825–833.

Sachs, J.N., and Woolf, T.B. (2003) Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: Molecular dynamics simulations. J Am Chem Soc 125: 8742–8743.

Scott, W.J. (1957) Water relations of food spoilage micro-organisms. Adv Food Res 7: 83–127.

Seager, R., Ting, M.F., Held, I., Kushnir, Y., Lu, J., Vecchi, G., et al. (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316: 1181–1184.

Smith, M.L., Bruhn, J.N., and Anderson, J.B. (1992) The fungus *Armillaria-bulbosa* is amongst the largest and oldest living organisms. Nature 356: 428.

Tamura, M., Kasahara, K., and Sugiyama, J. (1999) Identity of the xerophilic species *Aspergillus penicillioides*: Integrated analysis of the genotypic and phenotypic characters. J Gen Microbiol Appl Microbiol 45: 29–37.

Thomas, D.S.G., Knight, M., and Wiggs, G.F.S. (2005) Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435: 1218–1221.

Thomas, K.C., Hynes, S.H., and Inglewed, W.M. (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by *Saccharomyces cerevisiae*. Appl Environ Microbiol 60: 1519–1524.

Tosca, N.J., Knoll, A.H., and McLennan, S.M. (2008) Water activity and the challenge for life on early Mars. Science 320: 1204–1207.

Vuopotic, T., and Plemenitas, A. (2007) Differential gene expression and Hog1 interaction with osmoreponsive genes in the extremely halotolerant black yeast *Hortaea werneckii*. BMC Genomics 8: 280–295.

Ward, N., and Fraser, C.M. (2005) How genomics has
affected the concept of microbiology. *Curr Opin Microbiol* 8: 564–571.

Whitman, W.B., Coleman, D.C., and Wiebe, W.J. (1998) Prokaryotes: The unseen majority. *Proc Natl Acad Sci USA* 95: 6578–6583.

Winston, P.W., and Bates, D.H. (1960) Saturated solutions for the control of humidity in biological research. *Ecology* 41: 232–237.

Zalar, P., de Hoog, G.S., Schroers, H.-J., Frank, J.M., and Gunde-Cimerman, N. (2005) Taxonomy and phylogeny of the xerophilic genus *Wallemia* (Wallemiomycetes and Wallemiales, cl. et ord. nov.). *Antonie Van Leeuwenhoek International J Gen Mol Microbiology* 87: 311–328.

Zalar, P., de Hoog, G.S., Schroers, H.-J., Crous, P.W., Groenewald, J.Z., and Gunde-Cimerman, N. (2007) Phylogeny and ecology of the ubiquitous saprobe *Cladosporium sphaerospermum*, with descriptions of seven new species from hypersaline environments. *Stud Mycol* 58: 157–183.

Zhuge, J., Fang, H.Y., Wang, Z.X., Chen, D.Z., Jin, H.R., and Gu, H.L. (2001) Glycerol production by a novel osmotolerant yeast *Candida glycerinogenes*. *Appl Microbiol Biotechnol* 55: 686–692.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Flow-chart to illustrate the progression of research activities during the current study.

Table S1. Fungal species capable of germination ≤ 0.71 water activity.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.