Proposal of a taxonomic nomenclature for the *Bacillus cereus* group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes

Laura M. Carroll¹, Martin Wiedmann², Jasna Kovac³

¹Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany

²Department of Food Science, Cornell University, Ithaca, NY, USA

³Department of Food Science, The Pennsylvania State University, University Park, PA, USA

*Corresponding author: Jasna Kovac, jzk303@psu.edu
ABSTRACT

The *Bacillus cereus* group comprises numerous closely related species, including bioterrorism agent *B. anthracis*, foodborne pathogen *B. cereus*, and biopescticide *B. thuringiensis*. Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruencies, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available *B. cereus* group genomes (*n* = 2,231), we show that current genospecies definitions lead to overlapping species clusters, and that an average nucleotide identity (ANI) genospecies threshold of ≈92.5 reflects a natural gap in core genome similarity. We propose a taxonomy for the *B. cereus* group which accounts for (i) genospecies using separable species clusters formed at a threshold of ≈92.5 ANI, and (ii) phenotypes relevant to public health and industry. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance, early detection of emerging, high-risk genotypes, and outbreak preparedness. Furthermore, the nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy which moves beyond arbitrarily set genospecies thresholds, while maintaining congruence with phenotypes and historically important species names.
INTRODUCTION

The *Bacillus cereus* group species complex, also known as *B. cereus sensu lato* (s.l.), is a subgroup of closely related species belonging to the genus *Bacillus*. Group members are Gram-positive, spore-forming, and widely distributed throughout the environment. While closely related from an evolutionary perspective, members of this group vary in their ability to cause disease in humans. Notable members which are considered to be pathogenic include anthrax-causing *B. anthracis*, which has been responsible for outbreaks and bioterrorism attacks around the world,\(^2\)-\(^5\) and *B. cereus sensu stricto* (s.s.), which is commonly regarded as a foodborne pathogen, but has also been associated with anthrax-like symptoms and other severe infections.\(^1\),\(^6\)

Interspersed among species which are widely regarded as pathogenic are those which have found important roles in agriculture and industry, the most notable of which is biopesticide *B. thuringiensis*.\(^7\),\(^8\)

Prior to 2013, the *B. cereus* group was composed of six closely related species (i.e., *B. anthracis*, *B. cereus s.s.*, *B. mycoides*, *B. pseudomycoides*, *B. thuringiensis*, and *B. weihenstephanensis*), which had been delineated using various methods, including phenotypic characterization (e.g., production of insecticidal crystal proteins [*B. thuringiensis*], rhizoidal colony morphology [*B. mycoides* and *pseudomycoides*], psychrotolerance and an inability to grow at 43°C [*B. weihenstephanensis*]), 16S rDNA sequencing, and/or DNA-DNA hybridization.\(^9\)-\(^11\) However, as whole-genome sequencing (WGS) has become more affordable and accessible, the gold standard for prokaryotic species delineation has migrated to high-throughput, *in silico* average nucleotide identity (ANI)-based methods,\(^12\) for which two genomes are said to belong to the same genospecies if they share an ANI value above a threshold.

While numerous genospecies thresholds have been proposed over the years (e.g., 94,
proposed by Konstantinidis and Tiedje in 2005,13 95-96 ANI, proposed by Richter and Rosselló-Móra12 and later supported by Kim, et al.14), a recent survey of pairwise ANI values between 90,000 prokaryotic genomes (including some members of the \textit{B. cereus} group) concluded that a genospecies threshold of 95 ANI should be adequate for most bacterial species.15

ANI-based genospecies assignment for members of the \textit{B. cereus} group has relied on calculating the pairwise ANI values shared between a genome of interest and the genomes of all published \textit{B. cereus} group type strains, a practice that was used to describe \textit{B. cytotoxicus} and \textit{B. toyonensis} (published in 2013), and \textit{B. wiedmannii} (published in 2016) as novel species.16-18 This practice was further employed in 2017, when nine novel \textit{B. cereus} group species (\textit{B. albus}, \textit{B. luti}, \textit{B. mobilis}, \textit{B. nitratireducens}, \textit{B. pacificus}, \textit{B. paramycoide}, \textit{B. paranthracis}, \textit{B. proteolyticus}, and \textit{B. tropicus}) were published,19 effectively doubling the number of published \textit{B. cereus} group species from nine to 18.

However, the practice of assigning \textit{B. cereus} group genomes to a genospecies using \textit{B. cereus} group type strain genomes is problematic due to the fact that (i) type strain genomes do not necessarily (or even likely) represent the medoid of a genospecies cluster, meaning that it is possible for a genome to share an ANI value greater than the genospecies threshold with multiple type strain genomes (i.e., a genome could potentially belong to more than one \textit{B. cereus} group genospecies), and (ii) novel \textit{B. cereus} group species have been published using different genospecies thresholds (e.g., \textit{B. toyonensis}, \textit{B. wiedmannii}, and the nine species published in 2017 used ANI genospecies thresholds of 92, 95, and 96, respectively).17 Further confusion arises when the type strains of “novel” species encompass well-established, previously described clinically and industrially relevant \textit{B. cereus} group lineages within their genospecies thresholds. For example, since the publication of \textit{B. paranthracis} as a novel
species in 2017,19 the well-researched foodborne pathogen referred to as emetic "B. cereus"1,20-22 technically belongs to the \textit{B. paranthracis} genospecies cluster based on a conventional ANI threshold of 95.23 This is problematic, as this taxonomic assignment likely bears little meaning to anyone not well-versed and up-to-date with \textit{B. cereus} group taxonomy, including clinicians. Current definitions of \textit{B. cereus} group species are further proven to be outdated as the amount of publicly available genomic data grows and continues to reveal increasing genomic and phenotypic diversity within the group. Between April 201724 and March 2018, the number of assembled \textit{B. cereus} group genomes available in the National Center for Biotechnology Information’s (NCBI’s) RefSeq25 database more than tripled, implying that there are likely unexplored portions of the \textit{B. cereus} group phylogeny.

Genomic and taxonomic semantics aside, phenotypic characteristics used for species assignment (e.g., motility, hemolysis, emetic toxin production) are known to vary within and among species9,10,26,27 This is particularly problematic in cases where the genomic determinants responsible for a clinically or industrially relevant phenotype are plasmid-mediated, such as synthesis of anthrax toxin/capsular proteins,28-31 bioinsecticidal crystal proteins,32-34 or cereulide (emetic toxin) synthetase proteins.35,36 These traits can be lost or gained, heterogeneous in their presence within a species, or present across multiple species.

Current species definitions do not account for species-phenotype incongruencies, which can lead to potentially high-consequence misclassifications of an isolate’s virulence potential. For example, strains exhibiting phenotypic characteristics associated with "B. cereus", such as motility, can cause anthrax in humans and animals37-40, while \textit{B. anthracis} which lack the genes required for anthrax toxin and capsule formation have attenuated virulence.41 The problem at hand requires the construction of an ontological framework which is accurate in terms of its
adherence to widely accepted genomic and taxonomic definitions of bacterial genospecies, while still being informative, intuitive, and actionable to those in public health and industry.

Differentiating organisms capable of causing illness or death in humans and animals from those which have far-reaching agricultural and industrial applications is essential for a proper assessment of the risk posed by a particular strain. Here, we leverage all publicly available assembled *B. cereus* group genomes (*n* = 2,231) to construct a phylogenomically informed taxonomic framework with the flexibility to account for phenotypes of interest to those in public health and industry.

METHODS

Acquisition and initial in silico characterization of Bacillus cereus group genomes. All genomes in the NCBI RefSeq Assembly database\(^5\) which were submitted as a published *B. cereus* group species (*B. albus, anthracis, cereus, cytotoxicus, luti, mobilis, mycoides, nitratireducens, pacificus, paramycoides, paranthracis, proteolyticus, pseudomyoides, thuringiensis, toyonensis, tropicus, weihenstephanensis, or wiedmannii*) were downloaded (Supplementary Tables S1 and S2), along with the type strain genomes of three proposed effective *B. cereus* group species (i.e., “*B. bingmayongensis*”, “*B. gaemokensis*”, and “*B. manliponensis*”) (*n* = 2,231, accessed November 19, 2018; Supplementary Tables S1 and S2). QUAST version 4.0\(^{42}\) was used to assess the quality of each assembled genome, and BTyper version 2.3.2\(^{24}\) was used to detect *B. cereus* group virulence genes in each genome, using default minimum amino acid sequence identity and coverage thresholds (50 and 70%, respectively), which have been shown to correlate with PCR-based detection of virulence genes in *B. cereus* group isolates (Supplementary Table S1).\(^{24,43}\) Prokka version 1.12\(^{44}\) was used to annotate each of the 2,231 *B. cereus* group genomes, and the resulting coding sequences (CDS) were used as
input for the command-line implementation BtToxin_scanner version 1.0
(BtToxin_scanner2.pl),45 which was used to identify insecticidal toxin genes associated with \textit{B. thuringiensis} (Bt toxins) in each genome using the default settings.

Calculation of pairwise average nucleotide identity values, hierarchical clustering, and identification of medoid genomes. FastANI version 1.015 was used to calculate pairwise average nucleotide identity (ANI) values between each of the 2,231 genomes (4,977,361 total comparisons). To ensure that the breakpoints and shape of the distribution of pairwise ANI calculations were robust to genome ambiguity, all pairwise ANI values were calculated a second time, with ambiguous nucleotides (i.e., those not belonging to the set \{\textit{A, C, G, T}\}) removed from each genome (Supplementary Figure S1). Robustness was further assessed by removing genomes (i) falling below various N50 thresholds (i.e., \leq 10 Kbp, 20 Kbp, 50 Kbp, and 100 Kbp), and/or (ii) containing any contigs classified in domains other than Bacteria, phyla other than Firmicutes, and/or genera other than \textit{Bacillus} using Kraken version 2.0.8-beta46,47 and the complete standard Kraken database (accessed August 6, 2019; Supplementary Figure S1). For each data set, a histogram of all pairwise ANI values was plotted in R version 3.6.0,48 using the ggplot2 package (Supplementary Figure S1).49 For the identification of a final set of medoid genomes at various thresholds (described below), all genomes with an N50 > 20 Kbp in the original set of 2,231 NCBI RefSeq genomes were used in all subsequent steps (\(n = 2,218\); Supplementary Table S1 and Supplementary Figure S1).

For each data set, the resulting pairwise ANI values were used to construct a similarity matrix, \(S_{\text{ANI}}\), using R version 3.6.0 and the reshape2 package50 as follows, where \(n = 2,218\):
Let \(g_1, g_2, \ldots, g_n \) be a set of \(n \) genomes, denoted by \(G (G = \{g_1, g_2, \ldots, g_n\}) \). Similarity function \(\text{ANI}(g_i, g_j) \) denotes the ANI value shared by query and reference genomes \(g_i \) and \(g_j \), respectively, where

\[
\text{ANI}: G \times G \to [0,100]
\]

Similarity matrix \(S_{\text{ANI}} \) can be defined as

\[
S_{\text{ANI}} = (s_{ij});
\]

\[
s_{ij} = \text{ANI}_{ij} = \text{ANI}(g_i, g_j)
\]

Similarity matrix \(S_{\text{ANI}} \) was converted to a dissimilarity matrix, \(D_{\text{ANI}} \), as follows, where \(J \) denotes an \(n \times n \) matrix where each element is equal to 1:

\[
D_{\text{ANI}} = 100J - S_{\text{ANI}}
\]

\(\text{ANI} \) as a similarity function is not symmetric (i.e., for all \(g_i, g_j \), \(\text{ANI}(g_i, g_j) \neq \text{ANI}(g_j, g_i) \)), as minor differences between corresponding values in the upper and lower triangles of \(D_{\text{ANI}} \) existed: \(\max \left(d(g_i, g_j), d(g_j, g_i) \right) = 0.504 \), \(\min \left(d(g_i, g_j), d(g_j, g_i) \right) = 0 \), \(\text{mean}(d(g_i, g_j), d(g_j, g_i)) = 0.056 \), and \(\text{median}(d(g_i, g_j), d(g_j, g_i)) = 0.046 \). As such, \(D_{\text{ANI}} \) is not a symmetric matrix (i.e., \(D_{\text{ANI}} \neq D_{\text{ANI}}^T \)). To coerce \(D_{\text{ANI}} \) to a symmetric matrix, \(D_{\text{ANI}}^{\text{sym}} \), the following transformation was applied:

\[
D_{\text{ANI}}^{\text{sym}} = 0.5(D_{\text{ANI}} + D_{\text{ANI}}^T)
\]

The \text{hclust} function in R’s \text{stats} package was then used to perform average linkage hierarchical clustering, using \(D_{\text{ANI}}^{\text{sym}} \) as the dissimilarity structure, and the resulting dendrogram was annotated using the \text{ggplot2}, \text{dendextend} \(^{51}\) and \text{viridis} \(^{52}\) packages. Dendrogram clusters formed at various species thresholds (denoted here by \(T_d \), where \(T_d = \{4,5,6,7.5\} \), corresponding to ANI values of 96, 95, 94, and 92.5, respectively) were obtained by treating genome lineages which coalesced
prior to T_d as members of the same cluster (i.e., genomospecies), and those which did not as members of different clusters. Medoid genomes were then identified within each cluster at each threshold, using the pam function in R’s cluster package53 and $D_{\text{ANI}}^{\text{sym}}$ as a dissimilarity structure, where the medoid genome is defined as

$$g_{\text{medoid}} = \arg \min_{y \in \{g_1, g_2, \ldots, g_n\}} \sum_{i=1}^{n} d(y, g_i)$$

where $d(g_i, g_j) = 100 - \text{ANI}(g_i, g_j)$.

To construct a graph with each of the final set of 2,218 $B.\text{cereus}$ group genomes represented as nodes and ANI values represented as weighted edges, $D_{\text{ANI}}^{\text{sym}}$ was converted to a symmetric similarity matrix, $S_{\text{ANI}}^{\text{sym}}$, as follows:

$$S_{\text{ANI}}^{\text{sym}} = -1(D_{\text{ANI}}^{\text{sym}} - 100 I)$$

The igraph54 package in R version 3.6.0 was used to construct each graph, with $S_{\text{ANI}}^{\text{sym}}$ treated as an adjacency matrix, and edges with weights (i.e., ANI values) less than a similarity threshold T_s (i.e., $T_s = \{92.5, 95\}$) removed.

Phylogeny construction using single-copy core orthologous clusters identified in 2,231 $B.\text{cereus}$ group genomes. FASTA files containing amino acid sequences of protein-coding features (.faa files) produced by Prokka version 1.1244 were used as input for OrthoFinder version 2.3.3.55 Single-copy orthologous clusters present in all 2,231 genomes (i.e., single copy core orthologous clusters) were identified using an iterative approach, in which OrthoFinder was used to identify single-copy orthologous clusters core to n of the 2,231 $B.\text{cereus}$ group genomes, sampled randomly without replacement (where $n = 30$ or $n = 11$ for 74 and 1 [the remainder] iteration[s], respectively). The union of single-copy orthologous clusters present in all n genomes in each random sample of $B.\text{cereus}$ group genomes was then queried again using OrthoFinder,
which identified a total of 79 single-copy orthologous clusters core to all 2,231 *B. cereus* group genomes. Nucleotide sequences of each of the 79 single-copy core orthologous clusters present in all 2,231 genomes were aligned using PRANK v.170427. The resulting alignments were concatenated, and snp-sites version 2.4.0 was used to produce an alignment of variant sites, excluding gaps and ambiguous characters. IQ-TREE version 1.6.10 was used to construct a maximum likelihood phylogeny, using the alignment of core SNPs detected in all 2,231 *B. cereus* group genomes. The GTR+G+ASC nucleotide substitution model implemented in IQ-TREE (i.e., General Time Reversible model with a Gamma parameter to allow rate heterogeneity among sites and an ascertainment bias correction to account for the use of solely variant sites) was used, along with 1,000 replicates of the Ultrafast bootstrap approximation. Taxa excluded from the final medoid set of genomes (i.e., those with N50 < 20 Kbp) were removed using the drop.tip function in the ape package for R version 3.6.0, and the resulting phylogeny was annotated in R using the following packages: ggplot2, ape, phytools, phylbase, ggtree, and phangorn.

RESULTS

Current species definitions do not reliably differentiate *B. anthracis* from neighboring lineages. The currently employed practice of calculating pairwise ANI values between a genome of interest and the genomes of known *B. cereus* group species type strains (Supplementary Table S2) and using the widely accepted threshold of 95 ANI as a hard genomospecies cutoff produced non-overlapping, separable genomospecies clusters for *B. albus* (*n* = 11), “*B. bingmayongensis*” (*n* = 1), *B. cytotoxicus* (*n* = 14), “*B. gaemokensis*” (*n* = 1), *B. luti* (*n* = 3), “*B. manliponensis*” (*n* = 1), *B. nitratireducens* (*n* = 70), *B. paramyoides* (*n* = 6), *B. proteolyticus* (*n* = 7), *B. pseudomycoides* (*n* = 111), and *B. toyonensis* (*n* = 230). None of the genomes assigned...
to these genospecies clusters shared ≥95 ANI with any genomes assigned to a different genospecies cluster (Figures 1 and 2A1 and Supplementary Table S3). However, several currently defined type strain-centric genospecies clusters did not yield well-separated, reliable genospecies assignments, including genospecies clusters formed by the type strains of (i) diarrheal foodborne pathogen *B. cereus s.s.* and biopesticide *B. thuringiensis*, and (ii) *B. mycoides* and *B. weihenstephanensis*, as has been well-documented previously (Figures 1 and 2A1 and Supplementary Table S3).[^18][^68][^69] The type strains of newly described *B. mobilis* and *B. wiedmannii* (published in 2017 and 2016, respectively)[^18][^19] were also found to produce ambiguous taxonomic classifications in which a genome could share ≥95 ANI with both species type strains (Figures 1 and 2A1 and Supplementary Table S3). The largest source of ambiguity, however, stemmed from bioterrorism agent *B. anthracis* and its neighboring lineages: the genospecies cluster formed by the *B. anthracis* reference genome overlapped with those of *B. pacificus*, *B. paranthracis*, and *B. tropicus*, the latter three of which were published as novel species in 2017 (Figures 1 and 2A1 and Supplementary Table S3).[^19] While no genomes were found to share ≥95 ANI with three or more of *B. anthracis*, *B. pacificus*, *B. paranthracis*, and *B. tropicus* genospecies clusters, each pair of these four genospecies clusters was found to overlap (Figures 1 and 2A1 and Supplementary Table S3).

The species overlap problem persisted at a 95 ANI threshold, even when medoid genomes were used to represent genospecies clusters instead of type strain genomes (Figure 2A2 and Supplementary Table S4). All genospecies clusters which were non-overlapping when type strains were used for genospecies assignment (e.g., *B. pseudomycoides*, *B. toyonensis*) remained non-overlapping, except for *B. proteolyticus*, which was located at the intersection of two genospecies clusters (Figure 2A2 and Supplementary Table S4). All
overlapping genomospecies clusters (i.e., *B. cereus* s.s. and *B. thuringiensis*; *B. mycoides* and *B. weihenstephanensis*; *B. mobilis* and *B. wiedmannii*; *B. anthracis*, *B. pacificus*, *B. paranthracis*, and *B. tropicus*) continued to produce ambiguous genomospecies assignments, although with more than 3.6 times fewer total multi-species classifications at ≥ 95 ANI compared to assignment based on species type strains; 405 genomes were assigned to 2 or more medoid-based genomospecies clusters [18.2%], compared to 1,478 genomes assigned to 2 or more type strain genomospecies clusters [66.2%] (Figure 2A).

Genomic elements responsible for anthrax, emetic, and insecticidal toxin production

exhibit heterogeneous presence in multiple *B. cereus* group species using current genomospecies definitions. Additional nomenclatural discrepancies arise when a trait of interest is plasmid-encoded, as these traits are expected to be lost or gained more frequently than those of chromosomal origin. Such is the case of the plasmid-mediated anthrax toxin genes often associated with *B. anthracis* (edema factor-encoding *cya*, lethal factor-encoding *lef* and protective antigen-encoding *pagA*):70 of 241 (38.6%) genomes most closely resembling the *B. anthracis* reference genome at ≥95 ANI did not possess anthrax toxin genes *cya*, *lef*, and *pagA* (Figures 3A and 3B and Supplementary Table S5). Notably, isolates which most closely resemble *B. anthracis* by current species definitions (i.e., ≥95 ANI), despite lacking the genes necessary to produce anthrax toxin, do not appear to be particularly uncommon; such strains have been isolated from a diverse array of environments (e.g., soil, animal feed, milk, spices, egg whites, baby wipes), from six continents, as well as the International Space Station (Supplementary Table S5). The classification of these isolates as *B. anthracis* could lead to incorrect assumptions about the anthrax-causing capability of strains belonging to these lineages.
Additionally, genes required for the production of anthrax toxin have been described in not only *B. anthracis*, but in isolates which share phenotypic characteristics often associated with “*B. cereus*” (e.g., motility, gamma bacteriophage resistance) as well.10,24,37-40 Despite the common assertion that *B. anthracis* is a clonal species with low diversity,71-73 the species cluster formed by *B. anthracis* at 95 ANI encompasses several lineages which fall outside of the highly similar one most commonly associated with anthrax illness (Figures 3A and 3B). Furthermore, even at the widely accepted genospecies threshold of 95 ANI, nearly all (145 of 149; 97.3\%) genomes possessing the anthrax toxin encoding genes (i.e., *cya*, *lef*, and *pagA*) were found to belong to the *B. anthracis* reference genome genospecies cluster, including three of the seven genomes submitted to NCBI’s RefSeq database as anthrax-causing “*B. cereus*” (Figures 3A and 3B and Supplementary Table S6). These three genomes most closely resembled the *B. anthracis* reference genome, but also shared ≥95 ANI with the *B. paranthracis* type strain genome (Supplementary Table S6). The remaining four genomes derived from other anthrax-causing “*B. cereus*” strains most closely resembled the *B. tropicus* type strain, shared ≥95 ANI with the *B. paranthracis* type strain, and shared between 94 and 95 ANI with the *B. anthracis* species reference genome (Supplementary Table S6). This separation of anthrax-causing *B. cereus* group genomes into two genospecies clusters at 95 ANI was maintained when medoid genomes were used in lieu of type/reference genomes as well (Figure 2A2 and Supplementary Table S6). As such, several anthrax-causing “*B. cereus*” strains are technically still *B. anthracis*, even by the current genospecies definitions (i.e., ≥95 ANI relative to the *B. anthracis* species reference genome; Figures 3A and 3B) and despite having a mosaic of phenotypic characteristics attributed to *B. cereus* s.s. and *B. anthracis*.
Heterologous presentation within the genospecies or lineage with which it is associated, as well as presence in additional genospecies, is not reserved for anthrax toxin production. Emetic “B. cereus” has been designated as such by its ability to produce cereulide, a highly heat- and pH-resistant toxin responsible for a foodborne illness characterized by symptoms of vomiting.1,22,74 At a genospecies threshold of ≥ 95 ANI, all 30 emetic “B. cereus” genomes most closely resembled the B. paranthracis type strain. All emetic “B. cereus” genomes were confined to a single genospecies cluster when medoid genomes were used, and were interspersed among genomes which lacked cesABCD and are hence likely incapable of producing emetic toxin (Figures 3A and 3C and Supplementary Table S1). cesABCD were detected in five genomes representing two additional medoid-based genospecies clusters at ≥ 95 ANI as well (Figures 3A and 3C and Supplementary Table S1). One of these genospecies clusters contained the type strains of B. weihenstephanensis and B. mycoides, which is unsurprising considering cereulide-producing B. weihenstephanensis has been isolated in rare cases.75,76 However, two genomes categorized previously as emetic “B. weihenstephanensis” belonged to a completely separate genospecies cluster at a 95 ANI threshold (Figures 3A and 3C and Supplementary Table S1).

The Cry and Cyt insecticidal proteins associated with popular biocontrol agent B. thuringiensis (i.e., Bt toxins), which can be plasmid-mediated, are plagued by similar issues, as B. thuringiensis has historically been differentiated from B. cereus s.s. by its ability to produce insecticidal toxins (e.g., Cry and Cyt toxins).77 However, genes known to encode these insecticidal toxins were detected in nine of the 21 B. cereus group type strain genospecies clusters at the widely used genospecies threshold of 95 ANI (B. albus, B. anthracis, B. cereus s.s., B. mycoides, B. paranthracis, B. thuringiensis, B. toyonensis, B. tropicus, and B.)
B. wiedmannii; Figures 3A and 3D). These results are consistent with previous findings, as Bt toxin production has been previously attributed to numerous B. cereus group lineages.⁶⁹,⁷⁷,⁷⁸

ANI-based comparisons to medoid genomes using a lowered genomospecies threshold of ≥92.5 eliminate the species overlap problem for B. anthracis and its neighboring lineages.

Numerous bacterial lineages have showcased a breakpoint in core genome similarity which is close to a threshold 95 ANI. As such, the 95 ANI cutoff has been proposed to serve as an adequate metric of delineation for many bacterial species.¹⁵ However, pairwise ANI values for a significant proportion of B. cereus group genomes, particularly B. anthracis and neighboring lineages, fall within the 93-95 ANI range, with a breakpoint in core genome similarity occurring close to 92.5 ANI (Figure 4 and Supplementary Figure S2). These characteristics, including lack of a natural breakpoint in core genome similarity at 95 ANI and a breakpoint at ≥92.5 ANI, were maintained when genomes were removed at quality and contamination filtering thresholds of varying stringency (Supplementary Figure S1). Using a 92.5 ANI breakpoint for genomospecies assignment, rather than 95, nearly eliminates the species overlap problem: only six of 2,231 genomes (0.269%) were assigned to 2 or more medoid-based genomospecies clusters at a hard threshold of 92.5 ANI (Figure 2 B2 and Supplementary Table S7). This can be compared to 18.2% and 66.2% of genomes assigned to multiple genomospecies clusters at 95 ANI when medoid genomes and species type strain/reference genomes were used, respectively (Figure 2 and Supplementary Tables S3 and S4).

Additionally, at 92.5 ANI, the total number of B. cereus group genomospecies clusters is reduced to 18, compared to 36 genomospecies clusters formed using medoid genomes at 95 ANI (Figures 3A and 5 and Supplementary Tables S4 and S7). At a threshold of 92.5 ANI, all genomes in which anthrax toxin-encoding genes were detected were confined to a single
genospecies cluster (referred to here as *B. mosaicus*; see Discussion section). Cereulide synthetase genes *cesABCD* were confined to two genospecies clusters (*B. mosaicus* and *B. mycoides*; see Discussion section), while known Cry and Cyt genes commonly associated with *B. thuringiensis* were detected in four genospecies clusters (*B. cereus* s.s., *B. mosaicus*, *B. mycoides*, and *B. toyonensis*; see Discussion section).

Notably, even at a lowered threshold of 92.5 ANI, seven genospecies clusters did not possess type strains or reference genomes of any published species (Supplementary Table S7), indicating that putative novel *B. cereus* group genospecies may be present among publicly available genomes. One of these genospecies clusters has recently been proposed as novel *B. cereus* group species “*B. clarus*”. The remaining six genospecies, which are composed of environmental *B. cereus* group strains from soil and agricultural environments, have not previously been proposed as novel species (Supplementary Table S8).

DISCUSSION

When applied to bacteria, the taxonomic concept of “species” is notoriously ambiguous, particularly in cases where taxonomy is intertwined with a mobilizable (e.g., plasmid-encoded) phenotype, and even more so when that phenotype is a well-established component of the medical or industrial lexicon. Taxonomic definitions based solely on phenotype lack nuance in the omics era, as they ignore potential underpinning genomic diversity which could be leveraged to provide a higher-resolution assessment of an isolate’s pathogenic potential or industrial utility. A notable example outside of the *B. cereus* group can be seen in botulinum neurotoxin [BoNT]-producing bacterial species, to which the *Clostridium botulinum* species label has historically been applied, despite the fact that multiple genospecies are capable of BoNT production. Furthermore, taxonomy based on phenotype can be ambiguous—and even misleading—when a
trait is lost, gained, or not widespread throughout a lineage. For example, it is currently unclear if emetic “B. cereus” can still be labeled as such if it loses plasmid-encoded genes responsible for cereulide production. Additionally, emetic symptoms are not exclusive to cereulide intoxication. The development of a taxonomic nomenclature just for the sake of taxonomic rigor, however, can be equally problematic when a particular bacterial lineage has deep roots in medicine or industry. For example, some Escherichia coli lineages and Shigella spp., which do not represent distinct genera at a genomic level, may be identified and treated differently in a clinical setting. As such, their current taxonomic designations are readily interpretable and actionable in the medical and public health communities, despite genomic inconsistencies reflected in their nomenclature.

An ideal taxonomic nomenclature for the B. cereus group should be easily interpretable by clinicians and public health officials, without sacrificing the resolution provided by WGS and other contemporary technologies. Several previous publications describing B. cereus group members which exhibit genotype-phenotype incongruencies have appended the term “biovar” to species names to denote phenotypes of interest (e.g., anthrax-causing “B. cereus” as B. cereus biovar anthracis; Cry-producing B. wiedmannii as B. wiedmannii biovar thuringiensis). A taxonomic nomenclature for the B. cereus group is thus proposed, consisting of the following components: (i) an amended collection of genomospecies names, corresponding to the resolvable genomospecies clusters obtained at the B. cereus group core genome breakpoint of ≈92.5 ANI shown here; (ii) a formal collection of subspecies names, which can be used to account for well-established lineages of medical importance; and (iii) a formalized and extended collection of biovar terms, which can account for phenotype heterogeneity (Figure 6; note that a recently proposed “genomovar” framework for B. cereus s.s. and genomes classified as B. thuringiensis
using the species type strain genome83 is not adopted here, due to the lack of a genomospecies boundary for \textit{B. cereus s.s.} and \textit{B. thuringiensis} [shown here and elsewhere,17-19 including the paper proposing the genomovar framework83], as well as the lack of a standardized species definition for \textit{B. thuringiensis} [i.e., some studies have defined \textit{B. thuringiensis} as any \textit{B. cereus} group species capable of producing insecticidal toxins,69 while others have defined it based on similarity to the species type strain genome83]).

A formal proposal of a novel taxonomic nomenclature for the \textit{B. cereus} group.

\textbf{A. Genospecies.}

The \textit{B. cereus} group currently consists of eight genospecies clusters (denoted I – VIII) which encompass published \textit{B. cereus} group species, four genospecies (denoted ix – xii) which encompass putative \textit{B. cereus} group species that have already been proposed in the literature, and six genospecies (denoted xiii – xviii) which may represent unknown putative genospecies that have yet to be proposed (Figure 5). A genome belongs to a genospecies if it shares ≥ 92.5 ANI with the genospecies medoid genome (Supplementary Table S7). Due to the resolvability of genospecies clusters at this threshold, it follows that (i) a genome does not belong to a genospecies if it shares ≤ 92.5 with the genospecies medoid genome; (ii) two genomes belong to the same genospecies if they share ≥ 92.5 ANI with each other; (iii) two genomes belong to different genospecies if they share ≤ 92.5 ANI with each other (i.e., in practice, one does not need to use a genospecies medoid genome for genospecies assignment, but rather any genome of known genospecies; see Supplementary Tables S1 [genospecies assignments for all publicly available \textit{B. cereus} group genomes] and S7 [genospecies...
assignments of *B. cereus* group type strain genomes]). When written, genomospecies names immediately follow the genus name (*Bacillus* or *B.*) and are italicized and lower-case.

Published genomospecies

I. Bacillus pseudomycoides. The *B. pseudomycoides* genomospecies cluster contained 111 genomes, including the genome of species type strain *B. pseudomycoides* str. DSM 12442. All genomes previously classified as *B. pseudomycoides* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

II. Bacillus paramycoides. The *B. paramycoides* genomospecies cluster contained six genomes, including the genome of species type strain *B. paramycoides* str. NH24A2. All genomes previously classified as *B. paramycoides* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

III. Bacillus mosaicus. The *B. mosaicus* genomospecies contained 722 genomes, including type strains and reference genomes of species formerly known as *B. albus* (now *B. mosaicus* str. N35-10-2), *B. anthracis* (now *B. mosaicus* subsp. *anthracis* str. Ames; see sections “Subspecies” and “Biovars” below), *B. mobilis* (now *B. mosaicus* str. 0711P9-1), *B. pacificus* (now *B. mosaicus* EB422), *B. paranthracis* (now *B. mosaicus* str. MN5), *B. tropicus* (now *B. mosaicus* N24), and *B. wiedmannii* (now *B. mosaicus* FSL W8-0169). Additionally, all members of the lineage formerly known as emetic “*B. cereus*” belong to *B. mosaicus* (see sections “Subspecies” and “Biovars” below). While the species formerly known as *B.*
anthracis is the oldest described former species in this group, it is not proposed as the genospecies name, as doing so could lead to incorrect assumptions of an isolate’s anthrax-causing potential. As such, the proposed genospecies name (*mosaicus*) is chosen to reflect the diversity of lineages and phenotypes present among members of this genospecies. All genomes previously assigned to the aforementioned former species using their respective type strain or reference genomes at a threshold of 95 ANI belong to *B. mosaicus*.

IV. Bacillus cereus sensu stricto (s.s.). The *B. cereus* s.s. genospecies contained 949 genomes, including those of type strains *B. cereus* s.s. (*B. cereus* s.s. str. ATCC 14579) and former species *B. thuringiensis* (now *B. cereus* s.s. serovar berliner biovar Thuringiensis str. ATCC 10792; see section “Biovars” below). *B. cereus* s.s. was chosen as the genospecies name, with Thuringiensis proposed as a biovar to account for phenotypic heterogeneity within *B. cereus* s.s., as well as the presence of insecticidal toxins in other genospecies (see section “Biovars” below). All genomes previously assigned to the species *B. cereus* s.s. and former species *B. thuringiensis* at a 95 ANI threshold using these type strains belong to the *B. cereus* s.s. genospecies.

V. Bacillus toyonensis. The *B. toyonensis* genospecies contained 230 genomes, including the type strain of *B. toyonensis* (*B. toyonensis* str. BCT-7112). All genomes previously classified as *B. toyonensis* relative to the type strain at a threshold of 95 ANI remain in this genospecies, and no additional genomes belong to the genospecies. As such, this genospecies remains consistent with its previous classification, and its previous name remains unchanged.

VI. Bacillus mycoides. The *B. mycoides* genospecies contained 164 genomes, including the type strain of *B. mycoides* (*B. mycoides* str. DSM 2048), former species *B.*
nitratireducens (now B. mycoides str. 4049), former species B. proteolyticus (now B. mycoides str. TD42), and former species B. weihenstephanensis (now B. mycoides str. WSBC 10204). Additionally, all members of the lineages formerly known as emetic B. weihenstephanensis belong to B. mycoides (see section “Biovars” below). B. mycoides was selected as the genomospecies name, as it is the oldest of published former species described in this cluster (and remains consistent with taxonomic changes recently proposed by others). All genomes previously assigned to the aforementioned species using their respective type strain or reference genomes and a threshold of 95 ANI belong to B. mycoides.

VII. Bacillus cytotoxicus. The B. cytotoxicus genomospecies contained 14 genomes, including the type strain of B. cytotoxicus (B. cytotoxicus str. NVH 391-98). All genomes previously classified as B. cytotoxicus relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

VIII. Bacillus luti. The B. luti genomospecies contains nine genomes, including the type strain of B. luti (B. luti str. TD41). All genomes previously classified as B. luti relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

Previously proposed putative species

The following four putative B. cereus group genomospecies which have been proposed previously remain unchanged:

ix. “B. bingmayongensis” (including type strain “B. bingmayongensis” str. FJAT-13831)
**x. **“*B. gaemokensis*” (including type strain “*B. gaemokensis*” str. KCTC 13318)

**xi. **“*B. manliponensis*” (including type strain “*B. manliponensis*” str. JCM 15802)

**xii. **“*B. clarus*” (including type strain “*B. clarus*” str. ATCC 21929)

Putative novel species

The six putative genomspecies clusters xiii-xviii listed in Supplementary Table S8 have not been proposed as novel species in the literature, and thus may eventually be adopted as novel species following rigorous genotypic and phenotypic characterization and peer-reviewed publication. Future proposed novel *B. cereus* group species should (i) share < 92.5 ANI with all *B. cereus* group genomes, and (ii) share ≥ 97% 16S rDNA similarity with known *B. cereus* group species (a definition used in previous studies). ¹⁹

B. Subspecies. **

We propose the adoption of the following two subspecies terms to ensure that the medically important lineages formerly known as *B. anthracis* and emetic “*B. cereus*” are still interpretable outside of a strictly taxonomic context. When written, subspecies names are italicized, lower-case, and can optionally (i) be appended to the species name, after the non-italicized delimiter “subspecies” or “subsp.”, prior to a serotype designation (if applicable); or (ii) follow the genus name (*Bacillus* or *B.*) directly, with the species name omitted, prior to a serotype designation (if applicable).

- **B. mosaicus** subspecies *anthracis* (can also be written as *B. mosaicus* subsp. *anthracis*; *B. anthracis*): refers to the comparatively clonal lineage of former species *B. anthracis* commonly associated with anthrax illness. Isolates which are assigned to this subspecies should (i) exhibit distinguishing phenotypic characteristics (e.g., lack of motility, lack of hemolysis on Sheep RBC agar) associated with the classical definition of *B. anthracis* as outlined in the Bacteriological Analytical Manual (BAM)
chapter on *B. cereus*, and/or (ii) share ≥99.9 ANI with former species reference genome *B. anthracis* str. Ames (now *B. mosaicus* subsp. *anthracis*; NCBI RefSeq Accession GCF_000007845.1), as Jain, et al.\(^{15}\) identified this as a threshold for this closely related lineage, a result which we replicated here. The use of the term “subspecies *anthracis*” does not indicate whether an isolate produces anthrax toxin or possesses the machinery required for the synthesis of anthrax toxin or not (see “biovar Anthracis” below for further clarification).

b. *B. mosaicus* subspecies *cereus* (can also be written as *B. mosaicus* subsp. *cereus*; *B. cereus*): refers to the lineage formerly known as emetic “*B. cereus*”. All genomes possessing cereulide synthetase genes (*cesABCD*) which did not belong to the *B. mycoides* species cluster (see “Species” section above) shared ≥97.5 ANI with the emetic reference strain formerly known as *B. cereus* str. AH187 (now *B. mosaicus* subsp. *cereus* biovar Emeticus; NCBI RefSeq Accession GCF_000021225.1). As such, isolates which are assigned to this subspecies (i) produce cereulide and belong to the species *B. mosaicus*, (ii) possess the cereulide synthetase biosynthetic gene cluster and belong to the species *B. mosaicus*, and/or (iii) share ≥97.5 ANI with emetic reference genome *B. cereus* str. AH187 (now *B. mosaicus* subsp. *cereus* biovar Emeticus; NCBI RefSeq Accession GCF_000021225.1). The use of the term “subspecies *cereus*” does not indicate whether an isolate produces cereulide or possesses the machinery required for the synthesis of cereulide or not (see “Biovar Emeticus” below for further clarification).

C. **Biovars.** To account for phenotypes of clinical and industrial importance which can be distributed across species and heterogeneous in their appearance in individual lineages, we
propose the biovars listed below. While phenotypic evidence of a trait assigned to a biovar is ideal, biovars can also be predicted at the genomic level. When written, (i) the first letter of the biovar is capitalized; (ii) the biovar name is not italicized; (iii) the biovar is appended to the end of a species, subspecies (if applicable), or serotype name (if applicable), following the non-italicized delimiter “biovar”; (iv) if applicable, multiple biovars follow the non-italicized, plural delimiter “biovars”, are listed in alphabetical order, and are each separated by a comma and a single space; (v) biovar(s) may follow the genus name (Bacillus or B.) directly, with the species, subspecies (if applicable), and serotype (if applicable) names omitted.

a. **biovar Anthracis**: can be applied to an isolate (i) known to produce anthrax toxin (preferred), and/or (ii) possess anthrax toxin encoding genes cya, lef, and pagA. Capsular genes (e.g., cap, has, bps)\(^{30,31,84}\) are deliberately excluded from the definition of the Anthracis biovar as a conservative measure. This is to avoid cases in which an isolate might possess anthrax toxin genes but no known capsule synthesis genes, despite the ability to synthesize a capsule via novel capsule synthesis mechanisms. Published examples of this biovar are: *B. mosaicus* subsp. *anthracis* biovar Anthracis (i.e., anthrax-causing members of the classical “clonal” lineage often associated with anthrax disease; can also be written as *B. anthracis* biovar Anthracis or *B. Anthracis*); *B. mosaicus* biovar Anthracis (i.e., anthrax-causing lineages formerly known as “anthrax-causing *B. cereus*”; can also be written as *B. cereus*).

b. **biovar Emeticus**: can be applied to an isolate known to produce cereulide (preferred) and/or possess genes encoding cereulide synthetase (*cesABCD*). Published examples
of this biovar are: *B. mosaicus* subsp. *cereus* biovar Emeticus (i.e., cereulide-producing lineages formerly known as emetic “*B. cereus*”; can also be written as *B. cereus* biovar Emeticus or *B. Emeticus*); *B. mycoides* biovar Emeticus (i.e., cereulide-producing lineages formerly known as “emetic *B. weihenstephanensis*”; can also be written as *B. Emeticus*).

c. **biovar Thuringiensis:** can be applied to an isolate known to produce one or more insecticidal/Bt toxins (preferred) and/or possess genes known to encode insecticidal toxins (e.g., genes encoding Cry, Cyt, or Vip toxins). Examples of this biovar include *B. mosaicus* biovar Thuringiensis and *B. cereus s.s.* biovar Thuringiensis (both of which can be written as *B. Thuringiensis*).

CONCLUSION

The nomenclature proposed here offers numerous advantages over previous taxonomic conventions. Most importantly, it is consistent; it provides an explicit, standardized framework for naming and classifying members of the *B. cereus* group using genomic and/or phenotypic methods, and it resolves previous ambiguities in the scientific community (e.g., whether *B. cereus* group isolates outside of the “clonal” lineage often associated with anthrax disease but still within commonly employed genomospecies thresholds, including those capable of causing anthrax,\(^{40,85,86}\) are *B. anthracis*; whether “*B. thuringiensis*” refers to any *B. cereus* group member which carries genes encoding insecticidal toxins,\(^{69}\) or to members of the *B. cereus* group which most closely resemble the *B. thuringiensis* species type strain;\(^{83}\) whether emetic “*B. cereus*” should be referred to as such, or as “*B. paranthracis*”\(^{23}\). Furthermore, genomes can now only be assigned to a single genomospecies (i.e., the species-overlap problem is eliminated), and a single, genomically informed ANI threshold for the proposal of novel genomospecies is proposed.
A second advantage of the proposed taxonomy is its backwards-compatibility with previous medical and industrial definitions of *B. cereus* group species; for example, with the taxonomy proposed here, any *B. cereus* group isolate capable of producing insecticidal crystal proteins can be referred to as *B. Thuringiensis*, which is in line with the traditional definition of the species.\(^6^9\) Specific lineages, however, can be accounted for through the incorporation of species and/or serovar names (e.g., *B. cereus s.s. serovar berliner biovar Thuringiensis*).

Additionally all isolates capable of producing anthrax toxin can be referred to as *B. Anthracis*, while members of the “clonal” anthrax lineage can continue to be referred to as *B. anthracis* (the subspecies short-form of *B. mosaicus subsp. anthracis*). We anticipate that these minor nomenclatural changes will remain interpretable and actionable to those in medicine, public health, and industry, while still remaining true to genomic definitions of bacterial species.

Finally, the proposed taxonomy is advantageous for its flexibility. The framework proposed here can be easily expanded to account for additional important lineages or phenotypes through the adoption of novel subspecies or biovars, respectively. For example, future biovars (i.e., biovar Cereus) can be proposed to describe *B. cereus* group members capable of causing diarrheal foodborne disease, as this form of disease involves multiple toxins and is not yet fully understood.\(^8^7\) The biovar nomenclature proposed here, along with revised genomospecies definitions and the proposal of novel subspecies, provides a standardized framework for *B. cereus* group classification, accounting for both phylogenomic diversity and phenotypic heterogeneity. An open-source, freely available command-line tool for characterizing *B. cereus* group genomes *in silico* using the framework proposed here can be found at:

https://github.com/lmc297/BTyper3.

REFERENCES
1. Stenfors Arnesen, L. P., Fagerlund, A. & Granum, P. E. From soil to gut: *Bacillus cereus* and its food poisoning toxins. *FEMS Microbiol Rev* **32**, 579-606, doi:10.1111/j.1574-6976.2008.00112.x (2008).

2. Hoffmaster, A. R., Fitzgerald, C. C., Ribot, E., Mayer, L. W. & Popovic, T. Molecular subtyping of *Bacillus anthracis* and the 2001 bioterrorism-associated anthrax outbreak, United States. *Emerg Infect Dis* **8**, 1111-1116, doi:10.3201/eid0810.020394 (2002).

3. Takahashi, H. *et al.* *Bacillus anthracis* incident, Kameido, Tokyo, 1993. *Emerg Infect Dis* **10**, 117-120, doi:10.3201/eid1001.030238 (2004).

4. Abbara, A. *et al.* Lessons for control of heroin-associated anthrax in Europe from 2009-2010 outbreak case studies, London, UK. *Emerg Infect Dis* **20**, 1115-1122, doi:10.3201/eid2007.131764 (2014).

5. Hanczaruk, M. *et al.* Injectional anthrax in heroin users, Europe, 2000-2012. *Emerg Infect Dis* **20**, 322-323, doi:10.3201/eid2002.120921 (2014).

6. Bottone, E. J. *Bacillus cereus*, a volatile human pathogen. *Clin Microbiol Rev* **23**, 382-398, doi:10.1128/CMR.00073-09 (2010).

7. Jouzani, G. S., Valijanian, E. & Sharafi, R. *Bacillus thuringiensis*: a successful insecticide with new environmental features and tidings. *Appl Microbiol Biotechnol* **101**, 2691-2711, doi:10.1007/s00253-017-8175-y (2017).

8. Chattopadhyay, P., Banerjee, G. & Mukherjee, S. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. *3 Biotech* **7**, 60, doi:10.1007/s13205-017-0717-6 (2017).

9. Tallent, S. M., Kotewicz, K. M., Strain, E. A. & Bennett, R. W. Efficient isolation and identification of *Bacillus cereus* group. *J AOAC Int* **95**, 446-451 (2012).
Tallent, S. M., Rhodehamel, E. J., Harmon, S. M. & Bennett, R. W. Bacillus cereus in
Bacteriological Analytical Manual (U.S. Food and Drug Administration, 2012).

Approved Lists of Bacterial Names (Amended). (ASM Press, 1989).

Richter, M. & Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic
species definition. Proc Natl Acad Sci U S A 106, 19126-19131,
doi:10.1073/pnas.0906412106 (2009).

Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species
definition for prokaryotes. Proc Natl Acad Sci U S A 102, 2567-2572,
doi:10.1073/pnas.0409727102 (2005).

Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between
average nucleotide identity and 16S rRNA gene sequence similarity for species
demarcation of prokaryotes. Int J Syst Evol Microbiol 64, 346-351,
doi:10.1099/ijs.0.059774-0 (2014).

Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
Nat Commun 9, 5114, doi:10.1038/s41467-018-07641-9 (2018).

Guinebretiere, M. H. et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species
of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol
Microbiol 63, 31-40, doi:10.1099/ijs.0.030627-0 (2013).

Jimenez, G. et al. Description of Bacillus toyonensis sp. nov., a novel species of the
Bacillus cereus group, and pairwise genome comparisons of the species of the group by
means of ANI calculations. Syst Appl Microbiol 36, 383-391,
doi:10.1016/j.syapm.2013.04.008 (2013).
Miller, R. A. et al. *Bacillus wiedmannii* sp. nov., a psychrotolerant and cytotoxic *Bacillus cereus* group species isolated from dairy foods and dairy environments. *Int J Syst Evol Microbiol* **66**, 4744-4753, doi:10.1099/ijsem.0.001421 (2016).

Liu, Y. et al. Proposal of nine novel species of the *Bacillus cereus* group. *Int J Syst Evol Microbiol* **67**, 2499-2508, doi:10.1099/ijsem.0.001821 (2017).

Ehling-Schulz, M., Frenzel, E. & Gohar, M. Food-bacteria interplay: pathometabolism of emetic *Bacillus cereus*. *Front Microbiol* **6**, 704, doi:10.3389/fmicb.2015.00704 (2015).

Ehling-Schulz, M. et al. Emetic toxin formation of *Bacillus cereus* is restricted to a single evolutionary lineage of closely related strains. *Microbiology* **151**, 183-197, doi:10.1099/mic.0.27607-0 (2005).

Ehling-Schulz, M., Fricker, M. & Scherer, S. *Bacillus cereus*, the causative agent of an emetic type of food-borne illness. *Mol Nutr Food Res* **48**, 479-487, doi:10.1002/mnfr.200400055 (2004).

Carroll, L. M. et al. Characterization of Emetic and Diarrheal *Bacillus cereus* Strains From a 2016 Foodborne Outbreak Using Whole-Genome Sequencing: Addressing the Microbiological, Epidemiological, and Bioinformatic Challenges. *Frontiers in Microbiology* **10**, doi:10.3389/fmicb.2019.00144 (2019).

Carroll, L. M., Kovac, J., Miller, R. A. & Wiedmann, M. Rapid, high-throughput identification of anthrax-causing and emetic *Bacillus cereus* group genome assemblies using BTyper, a computational tool for virulence-based classification of *Bacillus cereus* group isolates using nucleotide sequencing data. *Appl Environ Microbiol*, doi:10.1128/AEM.01096-17 (2017).
Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61-65, doi:10.1093/nar/gkl842 (2007).

Kamar, R. et al. Pathogenic potential of Bacillus cereus strains as revealed by phenotypic analysis. J Clin Microbiol 51, 320-323, doi:10.1128/JCM.02848-12 (2013).

Miller, R. A., Jian, J., Beno, S. M., Wiedmann, M. & Kovac, J. Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates. Appl Environ Microbiol 84, doi:10.1128/AEM.02479-17 (2018).

Okinaka, R. T. et al. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181, 6509-6515 (1999).

Ezzell, J. W. & Welkos, S. L. The capsule of Bacillus anthracis, a review. J Appl Microbiol 87, 250, doi:10.1046/j.1365-2672.1999.00881.x (1999).

Oh, S. Y., Budzik, J. M., Garufi, G. & Schneewind, O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol Microbiol 80, 455-470, doi:10.1111/j.1365-2958.2011.07582.x (2011).

Scarff, J. M., Seldina, Y. I., Vergis, J. M., Ventura, C. L. & O'Brien, A. D. Expression and contribution to virulence of each polysaccharide capsule of Bacillus cereus strain G9241. PLoS One 13, e0202701, doi:10.1371/journal.pone.0202701 (2018).

Reyes-Ramirez, A. & Ibarra, J. E. Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 74, 125-129, doi:10.1128/AEM.02133-07 (2008).

Meric, G. et al. Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol 27, 1524-1540, doi:10.1111/mec.14546 (2018).
Gonzalez, J. M., Jr., Brown, B. J. & Carlton, B. C. Transfer of *Bacillus thuringiensis* plasmids coding for delta-endotoxin among strains of *B. thuringiensis* and *B. cereus*. *Proc Natl Acad Sci U S A* 79, 6951-6955, doi:10.1073/pnas.79.22.6951 (1982).

Ehling-Schulz, M. *et al.* Cereulide synthetase gene cluster from emetic *Bacillus cereus*: structure and location on a mega virulence plasmid related to *Bacillus anthracis* toxin plasmid pXO1. *BMC Microbiol* 6, 20, doi:10.1186/1471-2180-6-20 (2006).

Rasko, D. A. *et al.* Complete sequence analysis of novel plasmids from emetic and periodontal *Bacillus cereus* isolates reveals a common evolutionary history among the *B. cereus*-group plasmids, including *Bacillus anthracis* pXO1. *J Bacteriol* 189, 52-64, doi:10.1128/JB.01313-06 (2007).

Marston, C. K. *et al.* Anthrax Toxin-Expressing *Bacillus cereus* Isolated from an Anthrax-Like Eschar. *PLoS One* 11, e0156987, doi:10.1371/journal.pone.0156987 (2016).

Antonation, K. S. *et al.* *Bacillus cereus* Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution. *PLoS Negl Trop Dis* 10, e0004923, doi:10.1371/journal.pntd.0004923 (2016).

Wilson, M. K. *et al.* *Bacillus cereus* G9241 makes anthrax toxin and capsule like highly virulent *B. anthracis* Ames but behaves like attenuated toxigenic nonencapsulated *B. anthracis* Sterne in rabbits and mice. *Infect Immun* 79, 3012-3019, doi:10.1128/IAI.00205-11 (2011).

Klee, S. R. *et al.* The genome of a *Bacillus* isolate causing anthrax in chimpanzees combines chromosomal properties of *B. cereus* with *B. anthracis* virulence plasmids. *PLoS One* 5, e10986, doi:10.1371/journal.pone.0010986 (2010).
Mikesell, P., Ivins, B. E., Ristroph, J. D. & Dreier, T. M. Evidence for plasmid-mediated toxin production in *Bacillus anthracis*. *Infect Immun* **39**, 371-376 (1983).

Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* **29**, 1072-1075, doi:10.1093/bioinformatics/btt086 (2013).

Kovac, J. *et al.* Production of hemolysin BL by *Bacillus cereus* group isolates of dairy origin is associated with whole-genome phylogenetic clade. *BMC Genomics* **17**, 581, doi:10.1186/s12864-016-2883-z (2016).

Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069, doi:10.1093/bioinformatics/btu153 (2014).

Ye, W. *et al.* Mining new crystal protein genes from *Bacillus thuringiensis* on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. *Appl Environ Microbiol* **78**, 4795-4801, doi:10.1128/AEM.00340-12 (2012).

Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biol* **15**, R46, doi:10.1186/gb-2014-15-3-r46 (2014).

Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. *bioRxiv*, 762302, doi:10.1101/762302 (2019).

R Core Team. *R*: A language and environment for statistical computing. (Vienna, Austria, 2018).

Wickham, H. *Ggplot2: elegant graphics for data analysis*. (Springer, 2009).

Wickham, H. Reshaping Data with the reshape Package. *2007* **21**, 20, doi:10.18637/jss.v021.i12 (2007).
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. *Bioinformatics* **31**, 3718-3720, doi:10.1093/bioinformatics/btv428 (2015).

viridis: Default Color Maps from 'matplotlib' v. R package version 0.5.1 (2018).

cluster: Cluster Analysis Basics and Extensions. v. 2.0.6 (2017).

Csardi, G. & Nepusz, T. The igraph software package for complex network research. *InterJournal Complex Systems*, 1695 (2006).

Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. *Genome Biol* **16**, 157, doi:10.1186/s13059-015-0721-2 (2015).

Loytynoja, A. Phylogeny-aware alignment with PRANK. *Methods Mol Biol* **1079**, 155-170, doi:10.1007/978-1-62703-646-7_10 (2014).

Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. *Microb Genom* **2**, e000056, doi:10.1099/mgen.0.000056 (2016).

Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268-274, doi:10.1093/molbev/msu300 (2015).

Tavare, S. Some probabilistic and statistical problems in the analysis of DNA sequences, in Some Mathematical Questions in Biology - DNA Sequence Analysis, ed Miura R. M. (Providence, RI: Amer Math Soc;), 57-86.

Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. *J Mol Evol* **39**, 306-314 (1994).
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. *Syst Biol* **50**, 913-925 (2001).

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFB-Boot2: Improving the Ultrafast Bootstrap Approximation. *Mol Biol Evol* **35**, 518-522, doi:10.1093/molbev/msx281 (2018).

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526-528, doi:10.1093/bioinformatics/bty633 (2019).

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution* **3**, 217-223, doi:10.1111/j.2041-210X.2011.00169.x (2012).

phylobase: Base Package for Phylogenetic Structures and Comparative Data. v. 0.8.4 (2017).

Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution* **8**, 28-36, doi:10.1111/2041-210X.12628 (2017).

Schliep, K. P. phangorn: phylogenetic analysis in R. *Bioinformatics* **27**, 592-593, doi:10.1093/bioinformatics/btq706 (2011).

Liu, Y., Lai, Q. & Shao, Z. Genome analysis-based reclassification of *Bacillus weihenstephanensis* as a later heterotypic synonym of *Bacillus mycoides*. *Int J Syst Evol Microbiol* **68**, 106-112, doi:10.1099/ijsem.0.002466 (2018).
Zheng, J. et al. Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts. MBio 8, doi:10.1128/mBio.00822-17 (2017).

Dai, Z., Sirard, J. C., Mock, M. & Koehler, T. M. The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16, 1171-1181, doi:10.1111/j.1365-2958.1995.tb02340.x (1995).

Rodriguez, R. L. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 46, W282-W288, doi:10.1093/nar/gky467 (2018).

Vergnaud, G. et al. Comparison of French and Worldwide Bacillus anthracis Strains Favors a Recent, Post-Columbian Origin of the Predominant North-American Clade. PLoS One 11, e0146216, doi:10.1371/journal.pone.0146216 (2016).

Sahl, J. W. et al. A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens. MBio 7, doi:10.1128/mBio.01501-16 (2016).

Agata, N. et al. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett 121, 31-34, doi:10.1111/j.1574-6968.1994.tb07071.x (1994).

Thorsen, L. et al. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72, 5118-5121, doi:10.1128/AEM.00170-06 (2006).

Hotton, F. M. et al. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ Microbiol Rep 1, 177-183, doi:10.1111/j.1758-2229.2009.00028.x (2009).
Johler, S. et al. Enterotoxin Production of *Bacillus thuringiensis* Isolates From Biopesticides, Foods, and Outbreaks. *Front Microbiol* 9, 1915, doi:10.3389/fmicb.2018.01915 (2018).

Lazarte, J. N., Lopez, R. P., Ghiringhelli, P. D. & Beron, C. M. *Bacillus wiedmannii* biovar *thuringiensis*: A Specialized Mosquitocidal Pathogen with Plasmids from Diverse Origins. *Genome Biol Evol* 10, 2823-2833, doi:10.1093/gbe/evy211 (2018).

Acevedo, M. M. et al. *Bacillus clarus* sp. nov. is a new *Bacillus cereus* group species isolated from soil. *bioRxiv*, 508077, doi:10.1101/508077 (2019).

Smith, T., Williamson, C. H. D., Hill, K., Sahl, J. & Keim, P. Botulinum Neurotoxin-Producing Bacteria. Isn't It Time that We Called a Species a Species? *MBio* 9, doi:10.1128/mBio.01469-18 (2018).

Glasset, B. et al. *Bacillus cereus*-induced food-borne outbreaks in France, 2007 to 2014: epidemiology and genetic characterisation. *Euro Surveill* 21, doi:10.2807/1560-7917.ES.2016.21.48.30413 (2016).

Pettengill, E. A., Pettengill, J. B. & Binet, R. Phylogenetic Analyses of *Shigella* and Enteroinvasive *Escherichia coli* for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation. *Front Microbiol* 6, 1573, doi:10.3389/fmicb.2015.01573 (2015).

Baek, I., Lee, K., Goodfellow, M. & Chun, J. Comparative Genomic and Phylogenomic Analyses Clarify Relationships Within and Between *Bacillus cereus* and *Bacillus thuringiensis*: Proposal for the Recognition of Two *Bacillus thuringiensis* Genomovars. *Front Microbiol* 10, 1978, doi:10.3389/fmicb.2019.01978 (2019).
Uchida, I., Makino, S., Sekizaki, T. & Terakado, N. Cross-talk to the genes for *Bacillus anthracis* capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. *Mol Microbiol* **23**, 1229-1240, doi:10.1046/j.1365-2958.1997.3041667.x (1997).

Hoffmaster, A. R. *et al.* Characterization of *Bacillus cereus* isolates associated with fatal pneumonias: strains are closely related to *Bacillus anthracis* and harbor *B. anthracis* virulence genes. *J Clin Microbiol* **44**, 3352-3360, doi:10.1128/JCM.00561-06 (2006).

Leendertz, F. H. *et al.* Anthrax kills wild chimpanzees in a tropical rainforest. *Nature* **430**, 451-452, doi:10.1038/nature02722 (2004).

Doll, V. M., Ehling-Schulz, M. & Vogelmann, R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic *Bacillus cereus*. *PLoS One* **8**, e61404, doi:10.1371/journal.pone.0061404 (2013).

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1650441 and USDA National Institute of Food and Agriculture Hatch Appropriations under Project #PEN04646 and Accession #1015787.

AUTHOR CONTRIBUTIONS

LMC performed all computational analyses. JK, LMC, and MW conceived the study and wrote the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.
FIGURE LEGENDS

Figure 1. Dendrogram constructed using symmetric pairwise average nucleotide identity (ANI) dissimilarities calculated between 2,218 *B. cereus* group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., $D_{\text{ANI}}^{\text{sym}}$ in the “Methods” section) and the average linkage hierarchical clustering method implemented in the hclust function in R. Blue tip labels denote the location of species type strain/reference genomes in the dendrogram, while tree height corresponds to ANI dissimilarity. Branch colors correspond to branch height within the tree. Dashed vertical lines appear at dissimilarities of 7.5, 6, 5, and 4, which correspond to ANI thresholds of 92.5, 94, 95, and 96, respectively (from left to right in order of appearance along the X-axis).

Figure 2. Weighted undirected graphs constructed using symmetric pairwise average nucleotide identity (ANI) values calculated between 2,218 *B. cereus* group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., $S_{\text{ANI}}^{\text{sym}}$ in the “Methods” section). Nodes represent individual genomes, while weighted edges connect each pair of genomes with a mean ANI value (A) \geq 95, and (B) \geq 92.5, where edge weight corresponds to the mean ANI value of the pair. Nodes (i.e., genomes) are colored by (1) closest matching type strain genome, or (2) closest matching medoid genome of clusters formed at the respective ANI value. Graphs were constructed using the graphout layout algorithm implemented in R’s igraph package, using 500 iterations and a charge of 0.02.

Figure 3. Maximum likelihood phylogenies of 2,218 *B. cereus* group genomes with N50 > 20 Kbp. Tip and branch labels are colored by (A) genomospecies assignment using medoid genomes of genomospecies clusters formed at the widely used genomospecies threshold of 95 ANI (clusters are arbitrarily numbered), and presence (pink) and absence (gray) of (B) anthrax toxin genes *cya*, *lef*, and *pagA*, (C) cereulide synthetase encoding *cesABCD*, and (D) one or more
previously described Cry or Cyt insecticidal toxin-encoding genes. Phylogenies were constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 B. cereus group genomes. The type strain of “B. manliponensis” (i.e., the most distantly related member of the group) was treated as an outgroup on which each phylogeny was rooted. Virulence genes (cya, lef, and pagA; cesABCD) were detected using BTyper version 2.3.2 (default thresholds), while insecticidal toxin-encoding genes were detected using BtToxin_scanner version 1.0 (default settings; presence and absence of high-confidence, previously known Cry- and Cyt-encoding genes are shown, with predicted putative novel insecticidal toxin-encoding genes excluded).

Figure 4. Histogram of pairwise average nucleotide identity (ANI) values calculated between 2,231 B. cereus group genomes downloaded from NCBI’s RefSeq database. FastANI version 1.0 was used to calculate all pairwise ANI values. For histograms of pairwise ANI values calculated between genomes meeting additional quality thresholds, or colored according to closest species type strain/reference genome at a traditional ≥95 ANI threshold, see Supplementary Figures S1 and S2, respectively.

Figure 5. Maximum likelihood phylogeny of 2,218 B. cereus group genomes with N50 > 20 Kb. Tip and branch labels are colored by genospecies assignment using medoid genomes of genospecies clusters formed at proposed genospecies threshold 92.5 ANI. Phylogeny was constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 B. cereus group genomes. The type strain of “B. manliponensis” (i.e., the most distantly related member of the group) was treated as an outgroup on which the phylogeny was rooted.

Figure 6. Taxonomic hierarchy for the proposed B. cereus group nomenclature. Taxonomic levels are listed in the left margin, with levels which are optional/not applicable to all organisms.
denoted as such. Rounded boxes shaded in light green correspond to possible taxonomic
designations at their respective level, while blue boxes correspond to requirements an isolate
and/or its genome must meet to be assigned that designation. Possible forms which the final
taxonomic assignment can take can be found in the gray box at the bottom of the chart.
Figure 1. Dendrogram constructed using symmetric pairwise average nucleotide identity (ANI) dissimilarities calculated between 2,218 \(B. \)
cereus group genomes from NCBI's RefSeq database with N50 > 20 Kbp (i.e., \(\mathbf{D}_{\text{ANI}} \) in the “Methods” section) and the average linkage
henarchical clustering method implemented in the hclust function in R. Blue tip labels denote the location of species type strain/reference
genomes in the dendrogram, while tree height corresponds to ANI dissimilarity. Branch colors correspond to branch height within the tree.
ashed vertical lines appear at dissimilarities of 7.5, 6, 5, and 4, which correspond to ANI thresholds of 92.5, 94, 95, and 96, respectively
(from left to right in order of appearance along the X-axis).
Figure 2. Weighted undirected graphs constructed using symmetric pairwise average nucleotide identity (ANI) values calculated between 2,218 B. cereus group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., $S_{\text{ANI}}^{\text{sym}}$ in the “Methods” section). Nodes represent individual genomes, while weighted edges connect each pair of genomes with a mean ANI value (A) ≥ 95, and (B) ≥ 92.5, where edge weight corresponds to the mean ANI value of the pair. Nodes (i.e., genomes) are colored by (1) closest matching type strain genome, or (2) closest matching medoid genome of clusters formed at the respective ANI value. Graphs were constructed using the graphout layout algorithm implemented in R’s igraph package, using 500 iterations and a charge of 0.02.
Figure 3. Maximum likelihood phylogenies of 2,218 B. cereus group genomes with N50 > 20 Kbp. Tip and branch labels are colored by (A) genomospecies assignment using medoid genomes of genomospecies clusters formed at the widely used genomospecies threshold of 95 ANI (clusters are arbitrarily numbered), and presence (pink) and absence (gray) of (B) anthrax toxin genes cya, lef, and pagA, (C) cereulide synthetase encoding cesABCD, and (D) one or more previously described Cry or Cyt insecticidal toxin-encoding genes. Phylogenies were constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 B. cereus group genomes. The type strain of “B. manliponensis” (i.e., the most distantly related member of the group) was treated as an outgroup on which each phylogeny was rooted. Virulence genes (cya, lef, and pagA; cesABCD) were detected using BTyperversion 2.3.2 (default thresholds), while insecticidal toxin encoding genes were detected using BToxin_scanner version 1.0 (default settings; presence and absence of high-confidence, previously known Cry- and Cyt-encoding genes are shown, with predicted putative novel insecticidal toxin-encoding genes excluded).
Figure 4. Histogram of pairwise average nucleotide identity (ANI) values calculated between 2,231 B. cereus group genomes downloaded from NCBI’s RefSeq database. FastANI version 1.0 was used to calculate all pairwise ANI values. For histograms of pairwise ANI values calculated between genomes meeting additional quality thresholds, or colored according to closest species type strain/reference genome at a traditional ≥95 ANI threshold, see Supplementary Figures S1 and S2, respectively.
Figure 5. Maximum likelihood phylogeny of 2,218 *B. cereus* group genomes with N50 > 20 Kb. Tip and branch labels are colored by genomospecies assignment using medoid genomes of genomospecies clusters formed at proposed genomospecies threshold 92.5 ANI. Phylogeny was constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 *B. cereus* group genomes. The type strain of “*B. maniliponensis*” (i.e., the most distantly related member of the group) was treated as an outgroup on which the phylogeny was rooted.
Figure 6. Taxonomic hierarchy for the proposed *B. cereus* group nomenclature. Taxonomic levels are listed in the left margin, with levels which are optional/not applicable to all organisms denoted as such. Rounded boxes shaded in light green correspond to possible taxonomic designations at their respective level, while blue boxes correspond to requirements an isolate and/or its genome must meet to be assigned that designation. Possible forms which the final taxonomic assignment can take can be found in the gray box at the bottom of the chart.