Diverse SARS-CoV-2 variants have arisen during the pandemic. As of May 4, 2022, there had been 2 recognized variants of concern (VOC), Delta and Omicron, in addition to earlier emerging VOCs Alpha, Beta, and Gamma and strains previously categorized as variants of interest (VOI). Many VOIs have been understudied in terms of pathogenesis, transmissibility, and potential for immune escape. Delta and Omicron illustrate how variants emerging in tropical settings can spread globally.

Mu was first reported as a VOI in early January 2021 in northern Colombia. While outcompeting other locally circulating variants, Mu spread to additional countries, such as Ecuador, United States, Mexico, and Spain; as of early 2022, it was still circulating at low levels in Colombia (1). Mu caused 70% of all COVID-19 cases in Colombia during May–July 2021 (Figure 1), a period which also accounted for the highest number of deaths in Colombia during the pandemic, suggesting substantial pathogenicity of Mu (1). Mu was later outcompeted by Delta and Omicron, and the number of Mu-related cases gradually decreased through the end of 2021 (Figure 1).

Recent studies relying on data from spike-based pseudovirus testing suggested substantially lower neutralization of Mu compared with the parental B.1 virus in antiserum samples from persons in Japan and China who had received either the BNT162b2 (Pfizer-BioNTech, https://www.pfizer.com) or SinoVac (http://www.sinovac.com) vaccines or recovered from COVID-19 (2,3). Because of inherent limitations in pseudovirus-based systems for reproducing response variations based on natural infection (4), regional differences of immune responses (5), and different vaccines used in Colombia, we comparatively characterized the neutralization of Mu and VOCs using fully infectious viruses and serum samples from persons in Colombia. The study was approved by the Ethics Committee of the Universidad Industrial de Santander (protocol 4110) and by the Ethics Committee of the Charité-Universitätsmedizin Berlin (protocol EA2/031/22). All participants provided written informed consent.

The Study

By March 2022, ≈68% of the population of Colombia had been vaccinated, predominantly with spike-based mRNA (BNT162b2), vectored (AZD1222; AstraZeneca, https://www.astrazeneca.com), and chemically inactivated whole virus–based vaccines (CoronaVac) (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/28/8/22-0584-App1.pdf). To investigate the potency of natural and vaccine-derived immunity, we tested and compared the effectiveness of naturally acquired and vaccine-induced immune responses to SARS-CoV-2 Mu variant...
neutralization activity in 49 serum samples from vaccinated and naturally infected persons in Colombia. Among vaccinated persons, we tested serum from 32 persons sampled in October 2021. Of those, 10 vaccinated with BioNTech-Pfizer were tested a median 99.5 d (range 65–170) after completing vaccination, 7 vaccinated with AstraZeneca were tested a median 146.0 d (range 129–173) after completing vaccination, and 15 vaccinated with Sinovac were tested a median 46.0 d (range 28–131) after completing vaccination. We tested serum samples from 17 persons who tested positive for SARS-CoV-2 antibodies (MAGLUMI 2019-nCoV IgG; Snibe Diagnostic, https://www.snibe.com) (Table 1; Appendix Table 1) during a seroprevalence study conducted in November 2020. To control whether persons vaccinated with spike-based vaccines were not previously infected, serum samples were tested against the SARS-CoV-2 IgG nucleocapsid protein by ELISA (SARS-CoV-2 NCP kit; Euroimmun, https://www.euroimmun.com) (Table 2). We used 50% plaque reduction neutralization tests to obtain neutralizing titers against an early isolate and the Alpha, Beta, Delta, Gamma, Omicron BA.1, and Mu variants (Appendix).

Neutralizing antibody titers against Mu were significantly lower than those against the parental isolate (p<0.0001 by Wilcoxon matched-pairs signed-rank test) in all serum samples tested in this study, irrespective of whether immune responses were elicited by vaccination or by natural infection. Vaccine-derived antibodies neutralized Mu on average 8.1-fold (p<0.0001 by Wilcoxon test) less than the parental strain resembling the vaccine backbones (Figure 2, panels A–C; Appendix Figure 2). We found a similar 8.0-fold reduced neutralization of Mu (p<0.0001 by Wilcoxon test) for the group of naturally infected persons (Figure 2, panel D). Despite the relatively lower neutralization potency observed in serum samples from persons immunized with the inactivated full virus-based vaccine Sinovac, observed differences in the ability to neutralize Mu compared with the parental strain among the 3 vaccine groups were not statistically significant (range 7.7–11.4-fold; p = 0.8298 by Kruskal-Wallis test) (Figure 2).

Compared with other variants, neutralizing antibody titers from serum samples of both naturally infected persons and vaccinees were lower against Mu than against all VOCs except for Omicron (Figure 2, panels A and B). Therefore, our results provide strong evidence for immune evasion of the Mu VOI on the basis of results from robust neutralization testing using full viral isolates. Neutralization of Mu by vaccine-induced antibodies was significantly lower than for Beta (p = 0.0083 by Wilcoxon test), for which immune evasion properties led to the suspension of AstraZeneca usage in South Africa (6), and Gamma, which resulted in breakthrough infections in Latin America (7). Immune evasion of Mu is consistent with shared mutations in spike protein residues associated with immune evasion in Beta and Gamma, such as E484K (8). In addition, the mutation leading to the amino acid exchange R346K in Mu is known to be involved in the evasion of monoclonal antibody–mediated neutralization (9), and genomic exchanges occurring at 3 adjacent sites (Y144T, Y145S, and insertion of the amino acid asparagine [N] between spike residues 145 and 146) have been associated with the immune escape properties of Mu (10,11).

![Figure 1. Incidence of SARS-CoV-2 and circulation of variants, by month, Colombia, 2021. Data on variant circulation was obtained from GISAID (https://www.gisaid.org) and data on the number of cases in Colombia from the Our World in Data database (https://www.ourworldindata.org).](image-url)

Table 1. Median age and days after the second dose of vaccinated persons, by vaccine type, at time of sampling among persons in Colombia*

Vaccine groups	Days after second dose (range)	Age, y (range)
AstraZeneca	146 (129–173)	66.0 (61–72)
Pfizer-BioNTech	99.5 (65–170)	44.6 (27–65)
Sinovac	46.0 (23–131)	44.5 (23–92)

*AstraZeneca (AZD1222), https://www.astrazeneca.com; Pfizer-BioNTech (BNT162b2), https://www.pfizer.com; Sinovac (CoronaVac), http://www.sinovac.com.
Antigenic cartography was recently employed to map the antigenic relationship between the SARS-CoV-2 Omicron and Delta VOCs and other previously circulating VOCs and VOIs (S.H. Wilks et al., unpub. data, https://www.biorxiv.org/content/10.1016/2022.01.28.477987v1). Among the serum samples from Colombia vaccinees, there was a high antigenic distance between Mu and most variants from other serum samples, which clustered together with the parental strain and Alpha (Appendix Figure 3). Of note, antibody responses in naturally infected persons supported past infection with strains bearing similarities to early SARS-CoV-2 isolates and the Gamma variant (Figure 2, panel D). Antibody reactivity in naturally

Table 2. ELISA results and endpoint titers for vaccinee and naturally infected individual serum samples from persons in Colombia

Group	Patient ID	Nucleocapsid Neutralizing titer by PRNT₅₀
AstraZeneca		
AZ2	0.15	204 WT Mu 154 79 64 77 13
AZ3	0.07	453 AZ2 123 381 305 36 470 25
AZ4	0.11	75 3 91 16 20 24 6
AZ5	0.12	76 9 104 3 13 29 2
AZ6	0.13	34 3 45 3 23 15 0
AZ9	0.08	179 35 189 75 128 84 10
AZ10	0.07	319 9 153 47 55 26 8
Pfizer-BioNTech		
PF1	0.14	119 9 85 1 18 38 3
PF2	0.04	28 3 43 35 15 17 3
PF3	0.15	262 62 158 130 101 149 19
PF4	0.06	754 121 715 204 226 187 43
PF5	0.05	501 87 320 48 91 259 9
PF6	0.07	123 10 119 52 15 11 3
PF7	0.19	214 9 70 5 0 125 3
PF8	0.05	207 18 167 28 25 66 3
PF9	0.09	715 10 273 0 46 108 2
PF10	0.62	1043 132 1036 343 333 799 47
Sinovac		
SVN1	2.96	51 54 72 36 66 83 0
SVN2	1.68	47 9 24 23 21 22 0
SVN3	0.46	41 6 1 1 18 1 0
SVN4	2.43	118 61 151 111 89 87 25
SVN7	0.97	363 162 347 407 188 259 56
SVN8	0.81	303 5 93 26 30 61 5
SVN9	0.69	53 0 32 3 15 35 0
SVN10	1.61	65 4 27 0 10 66 1
SVN12	0.29	52 8 52 1 20 21 0
SVN13	0.39	387 24 126 35 130 7
SVN15	2.81	145 175 168 197 147 133 19
SVN16	0.40	67 2 6 25 10 21 3
SVN17	0.07	24 1 1 5 0 15 3
SVN18	0.37	65 0 3 4 0 24 7
SVN20	1.88	686 464 612 155 131 503 16
Naturally infected		
EA210	ND	696 146 825 595 167 177 2
EA234	ND	142 4 86 83 67 9 0
EA238	ND	1,080 48 1080 314 541 79 5
EA245	ND	70 2 61 154 44 0 0
EA332	ND	93 10 43 94 1 20 0
EA334	ND	140 6 74 115 7 16 3
EA340	ND	77 2 24 61 0 14 2
EA352	ND	1,080 113 1,080 578 870 59 3
EA354	ND	336 119 423 972 90 628 0
EA380	ND	918 43 281 630 151 63 17
EA396	ND	139 24 88 88 14 21 0
EA413	ND	1,080 18 864 1,080 260 17 11
EA422	ND	2 20 28 6 123 100 0
EA439	ND	398 171 283 812 79 62 9
EA485	ND	357 87 531 206 114 14 0
EA501	ND	17 13 86 80 1 0 2
EA520	ND	166 36 154 211 16 141 1

*Cut-off ≥0.8 was considered positive.

*Cut-off ≥0.8 was considered positive.

AstraZeneca (AZD1222), https://www.astrazeneca.com; Pfizer-BioNTech (BNT162b2), https://www.pfizer.com; Sinovac (CoronaVac), http://www.sinovac.com. ND, not determined; PRNT₅₀, 50% plaque reduction neutralization test; WT, wild-type.
Immune Responses to SARS-CoV-2 Mu Variant

infected persons was thus in concordance with the circulation of SARS-CoV-2 variants in South America during the time of sampling in late 2020 (12), supporting the robustness of our data.

Our study was limited by different time points for sampling of vaccinees and the lack of information on natural infections altering immune responses in vaccinees. However, lack of detectable N-protein antibody responses and the absence of clinical records suggestive of COVID-19 infection in vaccinees immunized with spike-based vaccines supports the robustness of our data despite the vaccinees’ unclear infection histories.

Conclusions

Our data highlight the importance of continuous monitoring for the emergence of new SARS-CoV-2 variants and strains and the timely identification of those variants with potential to evade naturally elicited and vaccine-derived immune responses, using local sampling specimens in the context of regional epidemiologic conditions. Moreover, our data confirmed the potential of Mu to partially evade immune responses, which may affect the efficacy of vaccination programs in southern America and other areas (7,13). Further studies are warranted to evaluate the pathogenicity of and cell-mediated immunity against Mu and the ability of immune responses associated with Mu to neutralize other SARS-CoV-2 variants. However, because vaccination boosters still provide some degree of protection against severe disease from Omicron (3,14), which shows more immunity evasion than Mu, vaccination will likely still provide protection against severe disease from Mu.

Acknowledgments

We thank Victor Carvalho Uribeta, Ana María Arboleda, Karina Freyle, and Arne Kühne for their technical support. The Gamma and the Omicron SARS-CoV-2 isolates were obtained from the European Virus Archive and provided by Dr. Chantal Reusken from the National Institute for Public Health and the Environment.

This work was supported by the Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (project nos. 88114108 and 81263203), Universidad Industrial de Santander, and MinCiencias-SGR (project no. BPIN 2020000100126).

About the Author

Dr. Oliveira-Filho is a virologist at the Institute of Virology, Charité Universitätsmedizin Berlin. His research interests include the epidemiology and evolution of emerging viruses.
DISPATCHES

References

1. Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Prada DA, et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect Genet Evol. 2021;95:105038. https://doi.org/10.1016/j.meegid.2021.105038

2. Uriu K, Kimura I, Shirakawa K, Takaori-Kondo A, Nakada TA, Kaneda A, et al.; Genotype to Phenotype Japan (G2P-Japan) Consortium. Neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine serum. N Engl J Med. 2021;385:2397–9. https://doi.org/10.1056/NEJMci2114706

3. Wang Y, Ma Y, Xu Y, Liu J, Li X, Chen Y, et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect. 2022;11:424–7. https://doi.org/10.1080/22221751.2022.2027219

4. Chen M, Zhang XE. Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. Int J Biol Sci. 2021;17:1574–80. https://doi.org/10.7150/ijbs.59184

5. Kollmann TR. Variation between populations in the innate immune response to vaccine adjuvants. Front Immunol. 2013;4:81. https://doi.org/10.3389/fimmu.2013.00081

6. Madhi SA, Izu A, Pollard AJ. ChAdOx1 nCoV-19 vaccine efficacy against the B.1.351 variant. [Reply]. N Engl J Med. 2021;385:571–2. https://doi.org/10.1056/NEJMc2110093

7. Vignier N, Bérot V, Bonnave N, Puegny S, Ballet M, Jacob E, et al. Breakthrough infections of SARS-CoV-2 Gamma variant in fully vaccinated gold miners, French Guiana, 2021. Emerg Infect Dis. 2021;27:2673–6. https://doi.org/10.3201/eid2710.211427

8. Cai Y, Zhang J, Xiao T, Lavine CL, Rawson S, Peng H, et al. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science. 2021;373:642–8. https://doi.org/10.1126/science.abi9745

9. McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE, Walls AC, et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science. 2022;375:864–8. https://doi.org/10.1126/science.1659256

10. Hossain MJ, Rabaan AA, Mutair AA, Alhumaid S, Emran TB, Saikumar G, et al. Strategies to tackle SARS-CoV-2 Mu, a newly classified variant of interest likely to resist currently available COVID-19 vaccines. Hum Vaccin Immunother. 2022;18:2027197. https://doi.org/10.1080/21645515.2022.2027197

11. Uriu K, Cardenas P, Munoz E, Barragan V, Kosugi Y, Shirakawa K, et al. Characterization of the immune resistance of SARS-CoV-2 Mu variant and the robust immunity induced by Mu infection. J Infect Dis. 2022;jia053.

12. Gutierrez B, Marquez S, Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, Candido DDS, et al. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evol. 2021;7:vca051. 13. Collie S, Champion J, Moultrie H, Bekker LG, Gray G. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa. N Engl J Med. 2022;386:494–6. https://doi.org/10.1056/NEJMoa2119270

13. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27:1205–11. https://doi.org/10.1038/s41591-021-01377-8

Address for correspondence: Jan Felix Drexler, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany; email: felix.drexler@charite.de

EID Podcast
Farmer Infected with Avian-Like Swine Influenza

Viruses are constantly mutating, and with those mutations can come shifts in their abilities to infect different hosts. Sometimes these mutations allow a virus to “jump” from one species to another, such as an avian influenza virus adapting to pigs.

Zoonotic transmission can have catastrophic effects on global and environmental health. Researchers document and study these events, prepare for them, and if possible, minimize the risk for zoonotic transmission in the first place.

In this EID podcast, Dr. Kristien Van Reeth, a professor of virology at Ghent University in Belgium, tells the events of how an avian-like influenza virus infected a pig farmer in the Netherlands.

Visit our website to listen: https://go.usa.gov/xHgBx

EMERGING INFECTIOUS DISEASES®
Appendix

Participant Recruitment and Sampling

The study was approved by the Ethics Committee of the Universidad Industrial de Santander (protocol 4110) and by the Ethics Committee of the Charité Universitätsmedizin-Berlin (Protocol EA2/031/22). All patients provided written informed consent. To control whether the vaccinated persons also had been naturally infected, subjects were followed up and did not report clinical symptoms or direct contact with persons who tested positive until sampling. In addition to that, all persons vaccinated with the spike-based vaccines from Pfizer and AstraZeneca tested negative for antibodies against the SARS-CoV-2 N protein, suggesting lack of natural infection and consistent with recording of clinical symptoms.

50% Plaque Reduction Neutralization Tests

We used a parental SARS-CoV-2 B.1 lineage strain (Pango version 3.1.17) sampled in January 2020 (Munich/ChVir929/2020 strain, GISAID accession: EPI_ISL_406862), containing one mutation (D614G) in the spike-encoding gene only compared to the SARS-CoV-2 reference sequence used for vaccine production (Isolate Wuhan-Hu-1 GenBank accession number: NC045512). We used the following SARS-CoV-2 variants: Alpha (ChVir21652/2020, GISAID accession: EPI_ISL_802995), Beta (ChVir22131/2021, GISAID accession: EPI_ISL_862149), Gamma (NH-RIVM_10915/2021, GISAID accession: EPI_ISL_943045), Delta (454236/2021, GISAID accession: EPI_ISL_4566914), Mu (H3/2021, GISAID accession: EPI_ISL_6665693) and Omicron (hCoV-19/Netherlands/NH-RIVM-71076/2021, GISAID accession: EPI_ISL_6841611.2; Pango lineage: BA.1.17.2). A total of 60 plaque-forming units were incubated with serum dilutions of 1:40, 1:120, 1:360, and 1:1080 for 1 h, and afterwards added onto a monolayer containing 1.8×10^5 Vero E6 cells per well in a 12-well plate. After 1 h of
incubation, an overlay containing DMEM with 1% FCS and 2% Avicell was added, and cells were further incubated for 3 d for Mu and 2 d for the other variants. The overlay medium was removed, and cells were fixated with 6% paraformaldehyde and stained with crystal violet. PRNT50 endpoint titers were calculated using a logistic regression function in GraphPad prism6 (www.graphpad.com).

Antigenic Cartography

Antigenic cartography was done using the R package Racmacs (onhttps://acorg.github.io/Racmacs) as described elsewhere (S.H. Wilks; unpub. data, https://www.biorxiv.org/content/10.1101/2022.01.28.477987v1). Comparative neutralization of SARS-CoV-2 variants by serum samples from persons fully immunized with the different vaccines (BioNTech-Pfizer BNT162b2, AstraZeneca AZD1222, and CoronaVac).

Appendix Table. List of samples and reciprocal PRNT50 endpoint titers of serum samples for vaccinated persons*†

Sample ID	Early isolate	Mu	Alpha	Beta	Gamma	Delta	Omicron	D after 2nd dose	Age	Vaccine
AZ2	204	154	79	64	77	13	129	64	AstraZeneca	
AZ3	453	381	305	306	470	25	173	69	AstraZeneca	
AZ4	76	9	104	3	13	29	146	61	AstraZeneca	
AZ5	34	4	45	3	23	15	165	72	AstraZeneca	
AZ6	179	153	47	55	26	8	142	63	AstraZeneca	
AZ10	319	9	153	47	55	26	142	63	AstraZeneca	
PF1	119	9	85	1	18	38	113	65	BioNTech	
PF2	28	3	43	35	15	17	170	42	BioNTech	
PF3	282	62	158	130	149	19	110	46	BioNTech	
PF4	754	121	715	204	226	187	110	27	BioNTech	
PF5	501	87	320	48	91	59	121	29	BioNTech	
PF6	123	10	119	52	15	11	3	80	46	BioNTech
PF7	214	9	70	5	0	125	3	88	54	BioNTech
PF8	207	18	167	28	25	66	3	66	35	BioNTech
PF9	715	10	273	0	46	108	2	65	49	BioNTech
PF10	1043	132	1,036	343	333	799	47	89	53	BioNTech
SVN1	51	54	72	36	66	83	0	89	56	CoronaVac
SVN2	47	9	24	23	21	22	0	33	23	CoronaVac
SVN3	41	6	1	1	18	1	0	31	30	CoronaVac
SVN4	118	61	151	111	89	87	25	27	28	CoronaVac
SVN7	363	162	347	407	188	259	56	37	27	CoronaVac
SVN8	303	5	93	26	30	61	5	37	54	CoronaVac
SVN9	53	0	32	3	15	35	0	41	25	CoronaVac
SVN10	65	4	27	0	10	66	1	46	26	CoronaVac
SVN12	52	8	52	1	20	21	0	105	60	CoronaVac
SVN13	387	24	126	126	35	130	7	90	57	CoronaVac
SVN15	145	175	168	197	147	133	19	131	92	CoronaVac
SVN16	67	2	6	25	10	21	3	90	54	CoronaVac
SVN17	24	1	1	5	0	15	3	97	56	CoronaVac
SVN18	65	0	3	4	0	24	7	81	52	CoronaVac
SVN20	686	464	612	155	131	503	16	46	28	CoronaVac

*AZ, AstraZeneca; PF, Pfizer; SVN, Sinovac
†Because we followed the Colombian vaccination program, it was not possible to collect samples the same time after completing the recommended vaccination scheme and the subjects' age were variable.
Appendix Figure 1. Vaccines doses delivered to Colombia as of January 2022 (https://www.minsalud.gov.co).
Appendix Figure 2. Comparative neutralization of SARS-CoV-2 variants by serum samples from persons fully immunized with the different vaccines (BioNTech-Pfizer BNT162b2, AstraZeneca AZD1222, and CoronaVac). Each point represents 50% plaque reduction neutralization test endpoint titers of 1 tested serum using different SARS-CoV-2 variants; the bars indicate the geometric mean titers, and the grey error bars represent 95% CI. Statistical significance was determined by the Wilcoxon matched signed-rank test and p-values are indicated on top. For clarity of presentation, only significant values between the early isolate and the Mu and the Omicron variants are shown.
Appendix Figure 3. Antigenic cartography of SARS-CoV-2 variants based on serum samples used in Figure 2 A–C. Each square corresponds to a serum sample tested. The colored circles indicate the tested SARS-CoV-2 variants. One grid square (1 antigenic unit) corresponds to a 2-fold serum dilution in the PRNT\textsubscript{50} assay. To decrease uncertainty in the antigenic cartography, PRNT\textsubscript{50} all endpoint titers <10 were considered as exactly <10. Antigenic mapping was not done for naturally infected persons because we could not rule out infection with multiple SARS-CoV-2 variants leading to heterogeneous antibody responses preventing a meaningful antigenic map.