Evaluation of Automatic Monitoring of Instillation Adherence Using Eye Dropper Bottle Sensor and Deep Learning in Patients with Glaucoma
(点眼瓶センサーと Deep Learning による緑内障患者点眼アドヒアランス自動把握能力の評価)

Translational Vision Science & Technology, in press.

主指導教員：木内 良明 教授
（医系科学研究科 視覚病態学）
副指導教員：松尾 裕彰 教授
（広島大学病院 薬剤部）
副指導教員：近間 泰一郎 准教授
（医系科学研究科 視覚病態学）

西村 和晃
（医歯薬保健学研究科 医歯薬学専攻）
緑内障患者は約8千万人いると推測され、年々その数は増え続けており、40歳以上の20人に1人と言われています。緑内障は世界的に失明の主な原因の第1位である。緑内障点眼治療には患者アドヒアランスの問題が大きく存在する。例えば、新規にプロスタグランジン系の緑内障点眼薬を開始した患者の約3割が点眼治療を開始して3ヶ月の間で治療をドロップアウトしているという報告がある。こうしたアドヒアランス不良は治療の非効率化を招くと同時に、視野障害の進行するリスクが6倍以上になると報告されている。従って、緑内障点眼治療におけるアドヒアランス向上のための方法論は、臨床上重要な視点として、自己申告によるもの、点眼薬の重量変化によるもの、点眼瓶ケースの挙動を観察するものなど、様々に報告されています。ただ煩雑さや信用性の低さなどの問題がそれぞれにあり、実際の臨床現場で一般的に定着している方法論が我々の知る限り、いまだ存在しない。一方で、最近になって、モバイルヘルスを利用した薬物治療におけるアドヒアランス向上の取り組みが報告されている。モバイルヘルスは、スマートフォンやタブレット端末を用いて個別の情報をネットワーク接続し集積するというInternet of thingsの概念の範疇である。自動的に膨大なデータを総合的に収集できる上に、人手を介することがないためにコストパフォーマンスに圧倒的に優れている。すでに慢性の病気である高血圧における降圧剤の錠剤にセンサーを装着する事で患者の服薬状況を監視するシステムなどが報告されている。IoTと同様に、医療への応用が広がり始めた技術が、Deep Learningである。DLは、それ以前の機械学習の手法論から一線を画す高い精度の識別能力を持つ。眼科領域でも、画像識別の領域を中心に数多くの報告が出始めている。ただ定まった方法論がない緑内障治療における点眼アドヒアランス向上に、新しい技術であるIoTやDLを応用した取り組みは我々の知る限り報告がない。

今回我々は点眼瓶の挙動そのものを自動的に検出する点眼瓶センサーを開発した。さらに、DLを用いたセンサー波形の点眼挙動自動識別モデルを作成し、システムとして組み合わせた。今回、検討では、緑内障患者に実際に点眼瓶センターを使用してもらい、緑内障点眼に関する患者アドヒアランス自動把握の能力の評価を行った。

目的：我々は緑内障点眼アドヒアランスを正確に測ることを目的に、点眼瓶の挙動を検知する点眼瓶センサーと、Deep Learning(DL)による挙動波形自動解析を組み合わせた点眼瓶センサーシステムを開発し、評価を行った。

方法：ラタノプロスト点眼液0.005%もしくはラタノプロスト・チモールマレイン酸塩配合点眼液を両眼に点眼中の開放隅角緑内障患者20名を対象にした。点眼瓶の底に3軸の加速度センサーを装着した状態で点眼と点眼時刻の自己記載を3日間実施した。Z軸にかかる加速度が一定の時系列波形データからDL点眼判定モデルにより点眼と判定された波形データを自動取得した。得られた波形データの点眼時刻と患者の自己記載時刻を比較して5分以内を検出成功とした。さらに、波形データから点眼動作時間を算出し、個人間、日ごとで有意差があるかどうか検討し、緑内障患者の様々な因子との関連性についても検討した。
結果：点眼瓶センサーで得られた患者20名、3日間のデータから、DL点眼判定モデルにより計60個の点眼と判定された波形データが自動取得できた。さらに自動取得された60個の波形データの点眼時刻と患者自己記載時刻の差の平均は1±1.22分で、全て5分以内であり、検出成功率100%であった。さらに2元配置分散分析により個人間（P<0.001）、日差間（P<0.001）で共に有意差がある事がわかった。さらに60個の点眼動作時間の平均は16.1±14.4秒であった。また、重回帰分析により点眼動作時間と年齢（P<0.91）、性別（P<0.93）、MD値（左）（P<0.18）、MD値（右）（P<0.24）、点眼開始してからの時間（P<0.58）ともに関連性がない事がわかった。

結論：我々の開発した点眼瓶センサーチームは緑内障患者の点眼アドヒアランスの自動把握能力を有する。