Impact of short-term reconstructive surgical missions: a systematic review

Thom C.C. Hendriks,¹,² Matthijs Botman,¹,² Charissa N.S. Rahmee,¹,² Johannes C.F. Ket,³ Margriet G. Mullender,¹ Barend Gerretsen,⁴ Emanuel Q. Nuwass,⁵ Klaas W. Marck,⁶ Henri A.H. Winters¹,²

ABSTRACT

Introduction Short-term missions providing patients in low-income countries with reconstructive surgery are often criticised because evidence of their value is lacking. This study aims to assess the effectiveness of short-term reconstructive surgical missions in low-income and middle-income countries.

Methods A systematic review was conducted according to PRISMA guidelines. We searched five medical databases from inception up to 2 July 2018. Original studies of short-term reconstructive surgical missions were included, which reported data on patient safety measurements, health gains of individual patients and sustainability. Data were combined to generate overall outcomes, including overall complication rates.

Results Of 1662 identified studies, 41 met full inclusion criteria, which included 48 546 patients. The overall study quality according to Oxford CEBM and GRADE was low. Ten studies reported a minimum of 6 months' follow-up, showing a follow-up rate of 56.0% and a complication rate of 22.3%. Twelve studies that did not report on duration or follow-up rate reported a complication rate of 1.2%. Fifteen out of 20 studies (75%) that reported on follow-up also reported on sustainable characteristics.

Conclusions Evidence on the patient outcomes of reconstructive surgical missions is scarce and of limited quality. Higher complication rates were reported in studies which explicitly mentioned the duration and rate of follow-up. Studies with a low follow-up quality might underestimate the positive impact of missions. This review indicates that missions should develop towards sustainable partnerships. These partnerships should provide quality aftercare, perform outcome research and build the surgical capacity of local healthcare systems.

PROSPERO registration number CRD42018099285.

INTRODUCTION

Conditions that are treatable by reconstructive surgery make up a large part of the global burden of surgical disease. Examples are burns (8.1 million disability-adjusted life years [DALYs]),¹ oro-facial clefts (0.23 million DALYs),¹ complex wounds including trauma-related wounds (unknown DALYs, but estimated to be significant), pressure sores (0.67 million DALYs)¹ or noma (a neglected tropical disease, a roughly estimated 1–10 million DALYs).² Short-term reconstructive surgical missions are a well-established routine method of addressing these conditions and reducing their impact on global health by providing specialised care in underserved populations.³ Such missions are commonly short term, disease specific, focus on service delivery and have a tendency to work outside the local healthcare system. This is also referred to as a ‘vertical approach to healthcare development’.⁴

Despite being a common model, the impact of reconstructive surgical missions is hardly known.¹ ⁶ Medical missions in general are
commonly debated in the literature.7-15 There is rising concern about the limited accountability of missions, with little data reported back to healthcare authorities due to a lack of outcome measurements.8 9 Quality of care is debated, as missions often have limited capacity to provide ancillary services or follow-up.10 Furthermore, sustainability is questioned in terms of lasting positive impact on the local healthcare system or its cost-effectiveness. The question is whether short-term surgical missions are the most rational allocation of resources to address local healthcare needs.4 7 8 12 15 Ultimately, the ethical implications of surgical volunteerism often ignite debate.17 18

These concerns are discussed in several reviews of medical missions in low-income and middle-income countries (LMICs).7 9 10 12-15 19 For instance, Martiniuk \textit{et al} and Roche \textit{et al} argued that global standards are needed for short-term medical missions,7 14 and Sykes shows that only 6\% of all published studies on medical missions report on empirical data.16 Only a few studies reviewed surgical missions specifically.9 12-15 19 Shrim \textit{et al} systematically compare three types of charitable platforms for global surgery (short-term missions, self-contained surgical platforms and specialty surgical hospitals run by non-governmental organisations [NGOs]). Although they conclude that evidence in the literature is scarce, they state that self-contained temporary platforms and specialised surgical centres appear to provide more effective and cost-effective care than short-term surgical missions, except when no other delivery platform exists.12

These reviews provide valuable insights into medical missions in general. However, the diversity of medical and surgical missions is large, which hampers the interpretation of empirical data. This review aims to systematically review evidence on the impact of short-term reconstructive surgical missions specifically, and critically analyses the quality of the available empirical data. In this review, four key aspects are addressed: basic characteristics of missions, patient safety, health gains of individuals and sustainability.

\textbf{METHODS}

We conducted a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines.20

\textbf{Inclusion criteria}

All original studies that analysed empirical data of short-term missions pertaining to reconstructive surgical care in LMICs were eligible. Studies lacking analyses of empirical data, reviews, studies of specialty surgical hospitals that provide continuous year-round care, mobile surgical platforms sent from in-country hospitals, studies in conflicts zones, studies not related to LMICs or studies of patients that were transported to high-income countries (HICs) were excluded. The studies were restricted to English and Dutch language. No restrictions were applied regarding publication dates. Duplicates were excluded.

\textbf{Search strategy and data sources}

PubMed, Embase.com, Clarivate Analytics/Web of Science and Open Grey were searched up to 1 July 2018; Proquest up to 1 July 2017 (by CR, TH and JK). The last database was no longer available to us after 2017. The following terms—including synonyms—were used as index terms or free-text words: ‘plastic surgery’, ‘reconstructive surgical procedures’, ‘cleft lip’, ‘post-burn contractures’ or ‘noma’ combined with ‘medical missions’, ‘humanitarian’ or ‘charity’. More studies were identified by reviewing the bibliographies of retrieved studies. The full search strategies for all databases can be found in the online supplementary file 1.

\textbf{Study selection}

Studies were screened for eligibility by two independent investigators (TH and CR): in case of disparity, a third author was involved (MB). Two investigators independently extracted the data to create tables and figures (TH and CR).

Data on mission characteristics and individual patient-level data were extracted and analysed across four key features:

1. Basic characteristics of the missions, including mission length, number of patients who received surgery, and age and gender distribution.

2. Patient safety by means of complication registration. Data were collected on three indicators: follow-up length, follow-up rate and complication rate. The follow-up rate was calculated by the number of patients who completed follow-up divided by the total number of patients who were included for follow-up. The complication rate was calculated as follows: the number of patients with complications divided by the total number of patients who completed follow-up.

3. Health gains: data on surgical outcomes were collected, for example, improvement of range of motion, patient-reported outcome measures (PROMs) or DALYs averted per patient. All reported PROMs were recorded, for example on surgical outcomes, complications or the quality of care provided. All types of formats, questionnaires or any other tool describing these outcomes were included. DALYs are used to define the overall disease burden over a population and are calculated by ‘adding the number of years of life lost due to premature mortality to the number of years of healthy life lost related to disability’.21 This means that 1 DALY can be defined as one lost year of healthy life.21 Many limitations of this approach are described in the literature. The biggest challenge is that it is not based on health data from countries, but on complex estimation techniques. DALYs are therefore estimations and many concerns exist about their reliability and uncertainty.22 23
these challenges, DALY metrics are commonly applied in global surgery studies.1 21 24
4. Sustainable characteristics of missions: studies were reviewed for data on long-term partnerships, training objectives and involvement of local staff. Also, data on the cost-effectiveness of missions were collected. Missions were categorised either as stand-alone or consecutive missions to the same hospital, region or country.

Data analysis and synthesis
After a pilot, data were extracted independently and in duplicate using a data extraction sheet (TH and CR). Authors were contacted when data on complication registration were missing. Quantitative data synthesis consisted of compiling total number of patients (eg, total number of patients who were included, total number of patients with complications) to generate overall outcomes. Table 1 and the online supplementary appendix file 1 provide details of the data extracted from each reference. Due to the heterogeneity of studies in types of surgery, local healthcare settings or available resources, statistical analyses were not feasible. Study quality assessment was performed independently by authors TH and CR according to the Oxford CEBM Level of Evidence classification25 and the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) system.26

RESULTS
The search identified 1662 unique citations. After screening titles and abstracts 1570 studies were excluded because they did not concern short-term reconstructive surgical missions. Ninety-two studies concerned reconstructive surgical missions and were reviewed full-text. Of the full-text studies, 51 were excluded. Please see figure 1 for the screening and selection process. Studies reviewing specialty hospitals missions were excluded, as this was outside the scope of this review. After full-text analyses, 41 met full inclusion criteria (figure 1 and table 1).27–67

The studies included predominantly consisted of case series, with 37 studies graded at Oxford CEBM Level IV. The remaining four economic analyses were graded at level IIB. This resulted in a C grade of recommendations for our review, according to CEBM. The overall GRADE score was 2.7 (low to moderate quality), meaning that our confidence in the effect estimate is limited (table 2).26 68

Twenty-eight of 41 studies included pertained to cleft care (78% of the total study population). The number of patients in all studies totalled 48 546, with a mean age of 13.4 years (SD 8.5) (table 3). The average mission length was 10 days (SD 3.8; range, 6–21 days). Organisations were active in Africa, South-East Asia, Eastern Europe, and South and Central America. A typical mission team consisted of two or three plastic and/or maxillofacial surgeons, one or two anaesthetists, a mission coordinator, theatre nurse and one or two resident doctors, totalling 8 to 10 individuals for one single mission.32 33 37 46 47 50 51 54 58 Some teams were considerably larger, up to 40 individuals.36

Regarding patient safety, nine studies (22%) did not report on complications. Twelve studies (29%) only reported a complication rate without reporting on follow-up length or rate. The overall complication rate in these 12 studies was 1.2%. Ten studies (21%) reported a follow-up length shorter than 180 days, with a mean follow-up rate of 81.3% and a complication rate of 7.1%. Ten studies (24%) provided a follow-up length longer than 180 days, reporting a mean follow-up rate of 56.0% and a 22.3% complication rate (table 3). Mortality after cleft surgery was reported in three studies, totalling 3 out of 14 551 patients included in these studies.16 28 64 For general reconstructive surgical missions—not specified for a single disease—one single study reported one death54 and no mortality was reported in contracture and noma missions.

Twelve studies (29%) reported on health gains of the mission, reporting heterogeneous methods and outcomes (table 1). Methods used in cleft studies included photographic assessment of aesthetic outcomes,30 56 speech evaluation,16 47 or DALYs averted.41 43 48 55 Three cleft studies evaluated speech functionality postoperatively, either by questionnaires61 or speech tests.16 47 Study methods were clear and showed overall improvements of speech. Four cleft studies reported on DALYs averted by cleft lip and palate repair surgery. DALYs averted per patient were 3.9,43 6.041 and 10.1 per patient.48 In three noma missions, a surgeon-reported outcome scale was used to score aesthetic and functional outcome.32 50 52 Overall findings showed that high-complex surgery is associated with greater risks of unsatisfactory results. Three studies used PROMs. One contracture study reported improvements in quality of life and disability by using validated questionnaires, and reported overall positive outcomes.60 Two cleft studies used self-developed questionnaires to assess PROMs, reporting positive results.61 66 None of the studies reported on patient-reported outcomes on the quality of the care provided.

With regard to the sustainable characteristics of missions, 29 studies reported qualitative data (71%) on sustainability, while none of the studies reported quantitative data. Fifteen out of twenty studies that reported on follow-up and complications also reported on sustainable characteristics such as long-term partnerships or training activities (table 4). Ten organisations (24%) were engaged in longer-term partnerships, and thirteen missions (32%) returned to the same regions or hospitals. Few data were available on the frequency of missions, although several studies reported conducting yearly missions.32 35 45 59 Fifteen studies (35%) described teaching objectives as a goal during their missions. Activities mentioned were lectures,29 37 55 training of local surgeons,16 33 38 54 health-care workers57 55 60 or fellowships in donor countries.16 53 55
Authors (year)	Affiliated organisations	Country of mission	Year of mission	Number of patients treated	Length of follow-up	Follow-up rate	Complication rate	Health gains	
Aziz et al (2009)²⁷	NA	Bangladesh	2006–2008	146	≤10 days	NA	8/146 (5.5%)	NA	
Bello et al (2018)²⁸	CFDF	Nigeria	2011–2017	448	2 months	155/448 (34.6%)	NA	35/155 (34.6%)	NA
Bermudez and Lizarra (2009)²⁹	Operation Smile	40 countries	2007	4086	1 year	812/4086 (19.9%)	NA	NA	NA
Calis et al (2016)³¹	Interplast Turkey	Uzbekistan	2009–2014	529	NA	NA	1/529 (0.2%)	NA	
Daniels et al (2016)³²	ReSurge Int.	China	2005–2009	201	1–5 years	116/201 (57.7%)	34/96 (35.4%)	NA	
Fayyaz et al (2015)³³	Cleft Lip and Palate Association	Pakistan	2014	312	3 months	NA	18/312 (5.8%)	NA	
Guneren et al (2015)³⁴	Turkish international development agency	Asia, Middle East, Africa	2007–2014	25	NA	NA	NA	NA	
Hackenberg et al (2015)³⁵	Operation Smile	India	2006–2012	3503	NA	NA	NA	Total 21 008 DALYs averted 6.0 DALYs averted per patient	
Hughes et al (2016)³⁶	Hands Across the World	Ecuador	2015	27	NA	NA	NA	NA	
Hughes et al (2012)³⁷	Hands Across the World	Ecuador	1996–2011	1142	7 days	1089/1142 (97.1%)	40/1122 (3.6%)	Total 396–1042 DALY averted 3.9–10.2 DALY averted per patient	
Maine et al (2012)³⁸	ReSurge Int and Rostros Felices	Ecuador	2000–2005	315	>14 days	128/315 (40%)	72/128 (56.3%)	NA	
McQueen et al (2007)³⁹	Operation Smile	Jordan, Iraq	2005	71	NA	NA	4/71 (5.6%)	NA	

Continued
Authors (year)	Affiliated organisations	Country of mission	Year of mission	Number of patients treated	Length of follow-up	Follow-up rate	Complication rate	Health gains
McQueen et al (2009)	Operation Smile	18 Countries	NA	8151	NA	NA	67/8151 (0.8%)	NA
Moon et al (2012)	Smile for Children	Vietnam	2007–2010	303	NA	NA	NA	Total 377 to 458 DALYs averted on average mission
Navarro (2015)	CIRPLAST	Peru	1994–2014	6108	12 days (range 12 days to 9 years)	5162/6108 (84.5%)	377/5162 (7.3%)	NA
Park et al (2018)	Operation Smile	India	2010–2011	890	7 days	662/890 (74.4%)	101/662 (15.3%)	NA
Rauso et al (2015)	Emergenza Sorrissi Onlus	Uganda, Gabon	2012–2014	56	NA	NA	2/56 (3.6%)	NA
Rivera et al (2013)	Operation Smile	Honduras	2007	45	6 months	22/45 (48.9%)	3/22 (13.6%)	NA
de Buys Roessingh et al (2012)	SedoGoho hospital, TdH, CHUV Laus.	Benin and Togo	1993–2008	131*	5.6–7.6 years	36/71 (50.7%)*	14/71 (19.7%)*	Speech follow-up: 36 patients. Acceptable 17/36=47.2%. Unacceptable 19/36=52.8%
Rossell-Perry et al (2015)	ReSurge International and Smile Train	Peru	2002–2012	257	1–5 years	97/353 (27.5%)*	34/257 (13.2%)*	NA
Sharp et al (2008)	Operation Smile	Philippines	2003	120	6 months	52/99 (52.5%)*	10/50 (20.0%)*	Improved speech 52% ▶ Improved eating 25% ▶ Improved social benefit 14% ▶ Improved appearance 6%
Sieg et al (2004)	NA	Africa, Asia, Central America	NA	14	≥1 year	10/14 (71.0%)*	1/10 (10%)*	NA
Uemura et al (2015)	Duang-Kaew Foundation	Thailand, Vietnam, Myanmar, Laos, Cambodia, China, Sri Lanka, Bhutan and India	1988–2008	6832	1 month	5412/6832 (79.2%)	186/5412 (3.4%)	NA
Uetani et al (2006)	Japanese Cleft Palate Foundation	Vietnam	1993–2003	790	NA	NA	NA	NA
Wes et al (2017)	Changing Children’s Lives Int.	Thailand	2013	56	<1.5 years	30/56 (53.6%)	0/30 (0%)	Self-reported improvement: social interactions 83.3%; confidence 83.3%; school performance 75%

Table 1 Continued
Table 1 Continued

Authors (year)	Affiliated organisations	Country of mission	Year of mission	Number of patients treated	Length of follow-up	Follow-up rate	Complication rate	Health gains
Post-burn contracture								
Borghese et al (2005)	NA	Cambodia, Bangladesh	2002, 2003	200	NA	NA	14/200 (7.0%)	NA
El Ezzi et al (2017)	Terre des hommes	Benin and Togo	2002–2011	50	3.6 years	50/50 (100%)	28/50 (56.0%)	NA
Fuzaylov et al (2015)	Doctors Collaborating to Help Children	Ukraine	2011–2013	39	NA	NA	1/39 (2.6%)	NA
Kim et al (2012)	Operation ReStore, Operation Smile and Cents of Relief	India	2010	38	NA	NA	9/60 (15.0%)	NA
Sinha et al (2016)	Operation ReStore	India	2012	31	84 days	31/39 (79.5%)	9/31 (29.0%)	SF-36 QoL : improvement of 5.8 points WPI: 13.7% mean improvement
Noma								
Bouman et al (2010)	Facing Africa and Dutch Noma Foundation	Ethiopia, Nigeria	2007, 2008	63	35 days	74/74 (100%)	47/74 (63.5%)	Excellent results 36% Satisfactory 23% Mediocre 16% Poor 11% Very poor 14%
Marck et al (2010)	Facing Africa	Ethiopia	2007, 2008	77	35 days	77/77 (100%)	54/77 (70.1%)	Good results 30.7% Acceptable 34.6% Mediocre 17.9% Poor 7.7% Very poor 9.0%
Rodgers et al (2015)	Facing Africa and Dutch Noma Foundation	Ethiopia	2008–2014	34	36 days	NA	17/34 (50.0%)	NA

General reconstructive missions

Continued
Table 1. Continued

Authors (year)	Affiliated organisations	Country of mission	Year of mission	Number of patients treated\(^a\)	Length of follow-up\(^b\)	Follow-up rate	Complication rate\(^c\)	Health gains
Baran et al (2007)\(^{29}\)	Physicians for Peace and Interplast	Multiple countries	1985–2004	4736	NA	NA	NA	NA
Figus et al (2009)\(^{37}\)	Interplast Italy	Multiple countries	1988–2008	5235	NA	NA	NA	NA
McClennagan et al (2013)\(^{31}\)	Project Harar	Ethiopia	2012	40	21 days	30/30 (100%)	7/30 (23.3%)	NA
Merrel et al (2007)\(^{54}\)	Operation Smile	Vietnam	1990–2004	266	NA	NA	6/266 (2.3%)	NA

Authors were contacted when data were missing for follow-up. Of note, in several studies (indicated with an \(*\)), the follow-up rate or complications rate were calculated over different subgroups; therefore, columns may not add up or correlate. \(^a\)When available, this review reports the number of patients who received surgery; when not available, the number of procedures was used; when not available, the number of diagnosis was used. \(^b\)When studies reported a range of follow-up intervals, the shortest length of follow-up was used for calculations. \(^c\)When the total number of patients who completed follow-up was not available, the total number of patients included was used (in line with the cited articles). \(^d\)The complication rate cited was calculated over the total number of procedures.

Authors: Hendriks TC.C, et al. BMJ Glob Health 2019;4:e001176. doi:10.1136/bmjgh-2018-001176

Affiliated organisations: Physicians for Peace and Interplast

Country of mission: Multiple countries

Year of mission: 1985–2004

Number of patients treated: 4736

Length of follow-up: NA

Follow-up rate: NA

Complication rate: NA

Health gains: NA

DISCUSSION

Several systematic reviews about short-term missions have been published in the past. However, none of the studies published empirical data on the effects of training or elaborated on how the training of local healthcare personnel was organised.

Four cost-effectiveness studies were available for short-term cleft missions. Three studies reviewed the effectiveness per DALY averted, reporting US$33.94/DALY, US$56.0/DALY, and US$247.42/DALY. The variation is explained by the differences in study populations, sample sizes, effectiveness measurements, and costing approaches used. However, none of the studies published empirical data on the effects of training or elaborated on how the training of local healthcare personnel was organised.
which is lower than the rates of their counterpart short-term missions.³⁹ Smile Train studies report lower rates, between 0.88% and 3%.⁷⁰ ⁷¹ ⁷³ ⁷⁸ However, they note that there might be a risk of under-reporting or selection bias due to a dependence of Smile Train surgeons on payment-per-patient (risking fewer referrals when higher complication rates are reported) and a limited capacity of surgeons to treat complex cases.⁷⁰ ⁷¹ ⁷³ ⁷⁸ Furthermore, with only one Smile Train study reporting on follow-up lengths,⁷⁵ these complication rates should be interpreted with caution. To be able to compare the strengths and weaknesses of different approaches of providing surgical

Figure 1 Flow diagram. LMIC, low-income and middle-income country.

Type of missions	Number of studies included	Oxford CEBM Level of Evidence	Average GRADE score
Cleft care mission studies	28 studies	24 Level IV studies (case series) 4 Level IIB (economic studies)	2.6 (quality: low–moderate)
Post-burn contractures mission studies	5 studies	5 Level IV studies (case series)	3.4 (quality: moderate)
Noma mission studies	4 studies	4 Level IV studies (case series)	4.3 (quality: high)
General reconstructive surgery mission studies	4 studies	4 Level IV studies (case series)	1.3 (quality: very low–low)
Overall quality and level of recommendation	41 studies	37/41 Level IV studies 4/41 Level IIB studies Level C recommendations	2.7 (quality: low–moderate)

Information listed per condition. Quality assessment of included studies was performed using the GRADE system⁶⁸ and Oxford CEBM Level of Evidence.
Table 3 (A) Overall outcomes on basic characteristics of missions

Length of mission	Total number of patients	Gender distribution	Age										
	Studies (n)	Total length (days)	Average (days)	Studies (n)	Patients (n, %)	Female (n, %)	Male (n, %)	Studies (n)	Mean (years)	Studies (n)	Median (years)		
Clefts	18	168	9	28	37642 (78)	1344	18	12210 (45.8)	14435 (54.2)	12	9.22	3	4.5
Post-burn contractures	3	23	8	5	358 (1)	72	4	143 (44.8)	176 (55.2)	2	27.6	1	4.0
Noma	2	28	14	4	269 (1)	67	3	102 (58.6)	72 (41.4)	1	23.9	1	17.0
General reconstructive	4	57	14	4	10277 (21)	2569	1	143 (44.8)	176 (55.2)	1	24.0	NA	NA
Totals	27	276	41	48546 (100)	26	12598 (45.9)	14859 (54.1)	16	13.4 (SD+/- 8.5)	4.5 (Q25-75 2.9-13)			

Overall mean or median

- Overall follow-up length: 10 (+/-SD 3.8)
- Overall follow-up length: 1184 (+/-SD 2134.4)

Table 3 (B) Overall outcomes on patient safety

Follow-up length not reported	Follow-up length<180 days	Follow-up length>180 days						
Studies (n)	Follow-up rate* (%)	Follow-up rate† (n, %)	Follow-up rate* (%)	Follow-up rate† (n, %)	Follow-up rate* (%)	Follow-up rate† (n, %)		
Clefts	7	111/11 992 (0.9)	6	81.0	739/12 513 (5.9)	9	54.3	181/887 (20.4)
Post-burn contractures	3	24/383 (6.3)	1	77.4	9/31 (29.0)	1	100.0	28/50 (56.0)
Noma	1	17/34 (50.0)	3	97.6	158/240 (65.8)	0	NA	NA
General reconstructive	1	6/266 (2.3)	1	100	7/30 (23.3)	0	NA	NA
Total studies	12	11	10					

Overall rate: 158/12 675 (1.25) 81.3 913/12 814 (7.1) 56.0 209/937 (22.3)

*The follow-up rate: the number of patients who completed follow-up divided by the total number of patients included for follow-up. For clarity reasons only percentages are displayed, patient numbers are omitted.

†The complication rate: the number of patients with complications divided by the total number of patients who completed follow-up. Displayed are the patient numbers, between brackets the complication percentage.

NA, not available.
Table 4 Sustainable characteristics of short-term missions

Authors (year)	Years	Number and frequency	Consecutive missions to the same country	Consecutive missions to the same region/city	Consecutive missions with (part of the) same team	Partnership	Long-term relationship	Teaching objective	Advancement of local staff	Quality follow-up and sustainable characteristics†
Aziz et al (2009)	2006–2008	3 (annual)	✓	✓	✓	✓	✓	✓	✓	✓
Bello et al (2018)	2011–2017	17	✓	✓				✓	✓	■
Baran et al (2007)	2007		✓	✓	✓	✓	✓	✓	✓	✓
Bermudez et al (2009)	2007		✓	✓	✓	✓	✓	✓	✓	✓
Borghese et al (2005)	2002–2003	✓						✓	✓	■
Bouman et al (2010)	2007–2008	4 (biannual)	✓	❑				✓	✓	■
Calis et al (2016)	2009–2014	6 (annual)	✓	✓	✓	✓	✓	✓	✓	✓
Daniels et al (2016)		✓						✓	✓	❑
El Ezzi et al (2017)	2002–2011	9 (biannual)	✓	✓	✓	✓	✓	✓	✓	✓
Fayyaz et al (2015)	2004–present	130	✓	✓	✓	✓	✓	✓	✓	✓
Figus et al (2009)	1988–present	47	✓	❑				✓	✓	■
Fuzaylov et al (2015)	2011–2013	3 (annual)	✓	✓	✓	✓	✓	✓	✓	✓
Guneen et al (2015)	2007–2014	27	✓	❑				✓	✓	■
Hughes et al (2012)	1996–2011	16 (annual)	✓	❑				✓	✓	■
Macintosh et al (2013)	1993–present	(biannual)	✓	❑				✓	✓	■
Madsen et al (2015)	2005–2009	(annual)	✓	✓	✓	✓	✓	✓	✓	✓
Mane et al (2012)	2000–2005	✓						✓	✓	■

Continued
Table 4 Continued

Authors (year)	Years	Number and frequency	Consecutive missions to the same country	Consecutive missions to the same region/city	Consecutive missions with (part of) the same team	Partnership	Training local staff	Lectures/workshops/education	Advice on logistics within healthcare system	Encouraging medical independence of local staff	Participation of local staff in surgical care and pre-op and/or post-op care	Fellowship abroad	Providing medical supplies	Studies that reported both on follow-up details and sustainable characteristics†
Marck et al	2007–2008	2 (annual)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		■
McClenaghan et al (2013)	2012		✓	✓										■
McQueen et al	2005													■
Merel et al	1990–2004	11	✓	✓	✓	✓	✓	✓						■
Moon et al	2007–2010	4 (annual)	✓											■
Navarro (2015)	1994–2014	141 (10 annually)	✓											■
Park et al	2010–2011	2	✓	✓	✓	✓	✓	✓	✓					■
Rivera et al	2007	1												■
de Buys Roessingh et al (2012)	1993–2008	(annual)	✓	✓	✓	✓	✓	✓						◊
Rosell-Perry et al (2015)	2002–2012		✓	✓	✓									◊
Uemura et al	1988–2008	458	✓											■
Uetani et al	1993–2003													■

In order to determine whether or not missions were sustainable, the data were collected and allocated to three groups, ie, building long-term relationships, teaching objectives during the mission and the advancement of local staff. Each sustainability group is divided into different subsets. A checkmark (✓) means the study describes the concomitant form of sustainable health care.

*Part of the Operation Smile International (OSI) programme.
†Added to this table were studies that reported both on sustainable characteristics and on quality of follow-up (including length and rate of follow-up and complication rate). Eight studies with follow-up shorter than 180 days (■ marks), seven studies with follow-up up longer than 180 days (◊ marks). Five studies reported on quality of follow-up, but did not report on sustainable characteristics.
care in a LMIC, there is a need for more high-quality studies. Apart from registrations of complications, such studies should assess long-term outcome using validated outcome measures and PROMs. Specialty hospitals, which provide services all year round, could provide good conditions for longer-term outcome research.

Several studies in this review consistently report on follow-up, showing that substantial efforts are being made to improve the data output of missions. Ten studies reported significant follow-up lengths of more than 6 months and high numbers of patients returning for follow-up were shown. The majority of these missions were engaged in long-term partnerships. This included training of local healthcare personnel, which was likely to improve the feasibility of organising follow-up. Several strategies were implemented to ensure the quality of follow-up. Some missions deployed medical students to assess palatal fistulas or sent a speech pathologist in-country to review outcomes. The relatively high number of complications seen in noma missions could be partly explained by a stringent follow-up, done by an independent researcher who consistently reported on follow-up. All the studies mentioned above provide examples of how to ensure patient safety during and after missions.

Although some studies reported on health gains, with several studies reporting positive functional outcomes, the methods and evidence are heterogeneous and results are too limited to draw conclusions. The role of PROMs is effective in reconstructive surgery to assess the quality and outcomes of healthcare. Only a few of the studies included reported successfully on outcomes using PROMs and none assessed the quality of care experienced by patients. Patient experience of outcomes and quality is important. Future studies should include PROMs on surgical outcomes and quality of care. Only a few studies report on the sustainable characteristics of missions. Data on this topic are usually qualitative and highly variable. It is noteworthy that reporting on sustainability and higher quality of patient follow-up often go hand in hand. This suggests that more sustainable missions may be better able to follow their patients for a longer period. However, as empirical evidence on sustainability is still non-existent, there is an urgent need for further studies.

Limitations

This systematic review has several limitations. Literature on short-term reconstructive missions is scarce and of limited quality, limiting the strength of this review. As the majority of studies are cleft studies, the conclusions and recommendations of this review may not be fully applicable to other types of reconstructive surgical missions. The studies included represent just a small proportion of the many reconstructive surgical missions conducted worldwide. This may introduce a potential bias. It is likely that the small proportion likely does not fully represent the actual effect of all reconstructive surgical missions. In our view, this emphasises the need to incorporate standard monitoring and evaluations into missions.

Furthermore, this review addresses only short-term missions and does not attempt to make a direct comparison with long-term surgical platforms such as specialty hospitals. It is often argued that specialty hospitals are safer and have a more positive effect on local healthcare systems. Comparative studies of short-term missions and specialty hospitals can identify strengths and weaknesses of each approach. However, a definitive comparison between missions and specialty hospitals seems to be premature at present given the lack of comparative studies.

Concerns regarding the use of DALY metrics are applicable to the studies included in this review. It is argued that surgical conditions are underestimated in the global burden of disease studies. Attempts to estimate the surgical burden across all disease conditions have been challenging. In a recent study, it was argued that the current DALY approach is inadequate to quantify the burden of paediatric surgical conditions.

Recommendations

There are opportunities for NGOs to develop short-term missions towards more sustainable partnerships. In the past, missions have been a ‘vertical’ approach to healthcare development. Such missions have limitations, for example in building local capacity of surgical services. The results of this study indicate that longer-term follow-up is frequently lacking, with complications being potentially missed. To address these shortcomings, the ‘diagonal development’ approach has been proposed. It combines the short-term vertical inputs of missions with longer-term horizontal benefits, with the ultimate aim of improving access to, and surgical capacity of, the local healthcare system. Such goals may be achieved through long-term development of surgical infrastructure, continued training of the local surgical workforce or building an academic culture.

One example of such a diagonal approach is to aim for standardised tracking of longer-term outcomes of missions in strong collaboration with local partners. This might yield several advantages. Besides empowering local researchers and building an academic culture, outcomes can be reported back to patients and healthcare authorities. This will enhance the accountability of NGOs and allow for evaluations of the quality of care provided.

Another example of long-term investments in the local surgical capacity is strengthening of the training activities of surgical NGOs. Such activities should be integrated into existing national or regional training activities. The training should be adapted to local settings, needs-driven and should focus on bilateral knowledge exchange.
CONCLUSION
This review shows that evidence for the effectiveness of short-term reconstructive surgical missions is both of limited substance and quality. Given the overall lack of evidence, there is an urgent need to incorporate outcomes research in future missions. This should include longer-term complication registration and measurements of health gains among individual patients. The effectiveness of training activities should also be evaluated. One approach to achieve this is to develop short-term missions towards diagonal development missions, which aim to build surgical capacity of local healthcare systems through long-term investments.

Contributors The contributorship will be proceeded with the plastic surgery department at VU University Medical Center Amsterdam.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1260–344.
2. Srour ML, Marko K, Baratti-Mayer D, Noma: overview of a neglected disease and human rights violation. Am J Trop Med Hyg 2017;96:268–74.
3. Meara JG, Leather AJ, Hagander L, et al. Global surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet 2015;385:656–82.
4. Patel PB, Hoyler M, Maine R, et al. An opportunity for diagonal development in global surgery: cleft lip and palate care in resource-limited settings. Plast Surg Int 2012;2012:1–10.
5. Patel PS, Chung KY, Kasara L. Innovate global plastic and reconstructive surgery: cleft lip and palate care in resource-limited settings. J Craniofac Surg 2018;29:937–42.
6. Ng-Kamstra JS, Riesel JN, Arya S, et al. Surgical non-governmental organizations: global surgery’s unknown nonprofit sector. World J Surg 2016;40:1823–41.
7. Martinuk AL, Manouchehrian M, Negin JA, et al. Brain gains: a literature review of medical missions to low and middle-income countries. BMC Health Serv Res 2012;12.
8. Caldron PH, Impens A, Pavlova M, et al. A systematic review of social, economic and diplomatic aspects of short-term medical missions. BMC Health Serv Res 2015;15.
9. Kynes JM, Zeigler L, McQueen E. Surgical outreach for children by international humanitarian organizations: a review. Children 2017;4:e63.
10. Sykes KJ. Short-term medical service trips: a systematic review of the evidence. Am J Public Health 2014;104:e38–48.
11. Maki J, Qualls M, White B, et al. Health impact assessment and short-term medical missions: a methods study to evaluate quality of care. BMC Health Serv Res 2008;8.
12. Shrieve MG, Sleema A, Ravilla TD. Charitable platforms in global surgery: a systematic review of their effectiveness, cost-effectiveness, sustainability, and role training. World J Surg 2015;39:10–20.
13. Chung KY. Plastic and reconstructive surgery in global health: let’s reconstruct global surgery. Plast Reconstr Surg Glob Open 2017;5:e1273.
clinical and economic impact in global plastic surgery. Cleft Palate Craniofac J 2017;54:535–9.
43. Hughes CD, Babigian A, McCormack S, et al. The clinical and economic impact of a sustained program in global plastic surgery: valuing cleft care in resource-poor settings. Plast Reconstr Surg 2012;130:87e–94.
44. Johnson BD. Short term surgical mission evaluation: a medical record analysis. Ann Arbor [PhD]. San Francisco, University of California, 2011.
45. Kim FS, Tran HH, Sinha I, et al. Experience with corrective surgery for postburn contractures in Mumbai, India. J Burn Care Res 2012;33:e120–6.
46. Macintosh RB, Herman LT, Shavipaku JK, et al. Volunteer cleft surgery in Colombia: an 18-year perspective. J Oral Maxillofac Surg 2013;71:1740–2.
47. Madsen C, Lough D, Lim A, et al. Cleft and craniofacial care during military plastic surgical humanitarian missions. J Craniofac Surg 2015;26:1097–101.
48. Magee WP, Vander Burg R, Hatcher KW. Cleft lip and palate as a cost-effective health care treatment in the developing world. World J Surg 2010;34:420–7.
49. Maine RG, Hoffman WW, Palacios-Martinez JH, et al. Comparison of fistula rates after pateloplasty for international and local surgeons on surgical missions in Paraguay and rates at a craniofacial center in the United States. Plast Reconstr Surg 2012;129:319e–26.
50. Marck R, Huijing M, Vest D, et al. Early outcome of facial reconstructive surgery abroad: a comparative study. Eur J Plast Surg 2010;33:193–7.
51. McClenaghan F, Fell M, Martin D, et al. Surgical mission planning in the developing world. Int J Oral Maxillofac Surg 2013;42:1587–91.
52. McGurr M, Marck R. Treatment of clefts in Ethiopia. Br Dent J 2010;208:179–82.
53. McQueen KAK, Burkle FM. Humanitarian cleft surgery in Colombia: an 18-year perspective. J Oral Maxillofac Surg 2012;64:203–12.
54. Navarro CE. CIRPLAST: cleft lip and palate missions in Peru. J Craniofac Surg 2015;26:1109–11.
55. Rauso R, Onesti M, Scuderi N. Unilateral cleft lip repair during charity missions: a consideration about simultaneously lip and nose repair. Minerva Otol 2015;6:203–12.
56. Rivera ME, Hexem KR, Womer JW, et al. Parents’ satisfaction with repair of paediatric cleft lip/cleft palate in Honduras. Paediatr Int Child Health 2013;33:170–5.
57. Rodgers W, Lloyd T, Milen K, et al. Microvascular reconstruction of facial defects in settings where resources are limited. Br J Oral Maxillofac Surg 2016;54:51–6.
58. Rossell-Perry P, Reguera S, Bhat-Jain L, et al. Comparison of two models of surgical care for patients with cleft lip and palate in resource-challenged settings. World J Surg 2015;39:47–58.
59. Sharp HM, Canady JW, Ligon FAC, et al. Caregiver and patient reported outcomes after repair of cleft lip and/or palate in the Philippines. Cleft Palate Craniofac J 2008;45:163–71.
60. Sieg P, Hakim SG, Jacobsen H-C, et al. Rare facial clefts: treatment during charity missions in developing countries. Plast Reconstr Surg 2004;114:640–7.
61. Sinha I, Zhu D, Ojomo K, et al. Functional and subjective assessment of burn contracture release in a mission setting. Burns 2016;42:466–70.
62. Uemura T, Preeyanont P, Udomsong S. Humanitarian cleft lip/palate surgeries in Buddhist Thailand and neighboring countries. J Craniofac Surg 2015;26:1112–5.
63. Uetani M, Jimba M, Niimi T, et al. Effects of a long-term volunteer surgical program in a developing country: the case in Vietnam from 1993 to 2003. Cleft Palate Craniofac J 2006;43:616–9.
64. Wes AM, Paul N, Gerety PA, et al. A sustainable model for patient follow-up following an international cleft mission. Cleft Palate Craniofac J 2018;55:97–82.
65. McQueen KAK, Magee W, Crabtree T, et al. Application of outcome measures in international humanitarian aid: comparing indices through retrospective analysis of corrective surgical care cases. Prehosp Disaster Med 2009;24:39–46.
66. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations... BMJ 2004;328:1490.
67. Bermudez LE, Lizarraza AK. Operation SMILE: how to measure its success. Ann Plast Surg 2011;67:205–8.
68. Brown JC, Chawla P, Kline R, et al. Cleft lip and/or palate: one organization’s experience with more than a quarter million surgeries during the past decade. J Craniofac Surg 2014;25:1601–9.
69. Conway JC, Taub PJ, Kline R, et al. Ten-year experience of more than 35,000 orofacial clefts in Africa. BMC Pediatr 2015;15.
70. Cubitt JJ, Hodges AM, Van Lierde KM, et al. Global variation in cleft palate repairs: an analysis of 352,191 primary cleft repairs in low- to higher-middle-income countries. Cleft Palate Craniofac J 2014;51:553–6.
71. Felski M, Hoyle T, Abebe ME, et al. The impact of a single surgical intervention for patients with a cleft lip living in rural Ethiopia. J Plast Reconstr Aesthet Surg 2014;67:1194–200.
72. Gupta K, Gupta P, Bansal P, et al. Anesthetic management for SMILE train a blessing for population of low socioeconomic status: a prospective study. Anesth Essays Res 2010;4:81–4.
73. Abenavoli FM, Altacera M, et al. Humanitarian cleft mission to central Africa—experience and suggestions. J Postgrad Med 2011;25:373–5.
74. Corlew DS, Akire BC, Poenaru D, et al. Economic valuation of the impact of a surgical charity using the value of lost welfare approach. BMJ Global Health 2016;1:e000059.
75. Poenaru D. Getting the job done: analysis of the impact and effectiveness of the SmileTrain program in alleviating the global burden of cleft disease. World J Surg 2013;37:1562–70.
76. Poenaru D, Lin D, Corlew S. Economic valuation of the global burden of cleft disease. World J Surg 2016;40:1053–9.
77. Huijing MA, Marck KW, Combes J, et al. Facial reconstruction in the developing world: a complicated matter. Br J Oral Maxillofac Surg 2011;49:292–6.
78. Chow A, Mayer EK, Darzi AW, et al. Patient-reported outcome measures: the importance of patient satisfaction in surgery. Surgery 2009;146:435–43.
79. Fasic AL, Lemaine V, Klassen AF, et al. Patient-reported outcome measures in plastic surgery: use and interpretation in evidence-based medicine. Plast Reconstr Surg 2011;127:1361–7.
80. Kruk ME, Pate M, Mullan Z. Introducing the Lancet Global Health Commission on high-quality health systems in the SDG era. Lancet Glob Health 2017;5:e480–1.
81. Campbell A, West RM, Mackay D, et al. Scalable, sustainable cost-effective surgical care: a model for safety and quality in the developing world. Part III: impact and sustainability. J Craniofac Surg 2014;25:1685–9.
82. Persing S, Patel A, Clune JE, et al. The repair of international clefts in the current surgical landscape. J Craniofac Surg 2015;26:1126–8.
83. Bickler S, Ozgediz D, Gosselin R, et al. Key concepts for estimating the burden of surgical conditions and the unmet need for surgical care. World J Surg 2010;34:374–80.
84. Gosselin R, Ozgediz D, Poenaru D. A square peg in a round hole? Challenges with DALY-based “burden of disease” calculations in surgery and a call for alternative metrics. World J Surg 2013;37:2507–11.
85. Smith ER, Concepcion T, Lim S, et al. Disability weights for pediatric surgical procedures: a systematic review and analysis. World J Surg 2018;42:3201–34.