The Effect of Two Methods of Aerobic and Parallel Training on Selected Blood Biomechanical Variables in Bilateral Femoral Artery in the 40-65-Year Old Patients After Coronary Angioplasty

Masumeh Baghban Baghdadabad, Heydar Sadeghi, Hasan Matinhomaee, Yahya Sokhangoii

* Corresponding Author:
Heidar Sadeghi, PhD.
Address: Department of Sport Biomechanics and Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.
Tel: +98 (21) 88329220-3
E-Mail: H.sadeghi@khu.ac.ir

ABSTRACT

Background and Aims: Considering the exclusive effects of different training programs on structural, functional, and physiological responses of heart, vessels, and blood, cardiac rehabilitation programs have rehabilitated and therapeutic usage after heart attacks or angioplasty to reduce the rate of deaths caused by cardiovascular diseases. The research aims to examine the effects of two methods, aerobic and parallel exercises, on selected biomechanical variables of blood in the bilateral femoral artery in patients 40-65 years old after coronary angioplasty.

Methods: The research method is semi-experimental and prospective. The research was performed as pretest-posttest, with 90 male and female patients with coronary heart disease who had undergone angioplasty divided into three experiments (aerobic and parallel) and control groups. Forty minutes of aerobic exercise based on the American College of Sports Medicine (ACSM) guidelines followed by 20 minutes of resistance training twice a week was performed in the parallel exercise group. The Mean±SD was used for data description, Kolmogorov–Smirnov test was used for reviewing data distribution, Kruskal–Wallis non-parametric and Mann–Whitney post hoc test were used for abnormal variables, and ANOVA, Welch’s test, and Tukey post-hoc test were used for standard variables at a significance level of 0.05.

Results: The results showed a significant difference in diastolic blood pressure of the left femoral after performing aerobic and parallel exercises. A significant difference was also seen in the velocity of blood flow in the left femoral’s diastole phase and blood pressure of the left femoral in the systole phase after performing parallel exercises. Comparing the effect of two training methods on selected biomechanical variables of blood, no significant difference was observed between the two methods.

Conclusion: It is recommended to use the beneficial effects of aerobic and parallel exercises to improve biomechanical variables of blood with appropriate intensity and duration in patients 40 to 65 years old following coronary angioplasty.

Keywords: Coronary angioplasty, Femoral artery, Angioplasty, Femoral artery, Middle aged, Male and female, Exercise, Blood biomechanic

Received: 27 Oct 2020
Accepted: 22 Dec 2020
Available Online: 01 Jul 2021

Citation: Baghban Baghdadabad M, Sadeghi H, Matinhomaee H, Sokhangoii Y. [The Effect of Two Methods of Aerobic and Parallel Training on Selected Blood Biomechanical Variables in Bilateral Femoral Artery in Patients 40-65 Years Old After Coronary Angioplasty (Persian)]. Scientific Journal of Rehabilitation Medicine. 2021; 10(3):508-521. https://doi.org/10.32598/sjrm.10.3.11
Extended Abstract

1. Introduction

Due to the unique effect of different training methods on cardiovascular structural and functional responses, cardiac rehabilitation programs as a treatment and rehabilitation program after myocardial infarction and angioplasty reduce mortality due to heart disease. Coronary artery disease is the most critical cardiovascular disorder and a significant health problem in developing and developed countries. At the beginning of the twentieth century, cardiovascular disease accounted for less than 10% of deaths worldwide.

By the end of this century, heart disease accounted for nearly half of all deaths in developed countries and about 25% in developing countries and is projected to cause almost 25 million deaths by the end of 2020. Occur from cardiovascular disorders in the year. One of the essential issues in health in people over the age of 40 is cardiovascular disease, especially atherosclerotic arteries of the aorta, coronary artery, carotid artery and peripheral arteries, including the brachial, femoral arteries. The pathogenic changes of atherosclerosis progress with age and ultimately lead to disability and mortality in old age.

Physical activities and exercises put forth positive effects on the body in two ways: from one side strengthen the heart muscle, with pulse more potent, more stable and can accommodate more resulting in the survival of life, on the other side, activities fit physical body and strengthens other muscles of arteries and increase blood flow and heart rate artery stenosis prevents the deposition of fatty substances in the arteries (atherosclerosis). This study investigated the effect of two methods of aerobic and parallel exercise on selected biomechanical variables of blood on a bilateral femoral artery in patients aged 40-65 years after coronary angioplasty.

2. Methods

The research method is semi-experimental and prospective. The research was designed in pretest-posttest. A total of 90 male and female patients with coronary heart disease who had undergone angioplasty were divided into three experiments (aerobic and parallel) and control groups. Forty minutes of aerobic exercise based on ACSM guidelines followed by 20 minutes of resistance training, twice a week performed in the parallel exercise group. The Mean±SD used for data description, Kolmogorov–Smirnov test was used for reviewing data distribution, Kruskal–Wallis non-parametric and Mann–Whitney post-hoc test were used for abnormal variables, and ANOVA, Welch’s test, and Tukey post-hoc test were used for standard variables at a significance level of 0.05.

3. Results

Regarding selected biomechanical variables of blood, the results of the intragroup comparison test showed a significant difference in the left femoral diastolic blood pressure variable between groups (P=0.004). The results of the intergroup comparison test showed a significant difference in the left femoral diastolic blood pressure variable between the aerobic and control exercise groups (P=0.007) and between the parallel and control exercise groups (P=0.003). Still, between the two, there was no significant difference between aerobic and parallel training methods.

The results of the intragroup comparison test showed a significant difference in the variables of blood flow velocity in the systolic phase (P=0.006). They left femoral diastole (P=0.005) between the groups but in the variable of systolic femoral blood pressure. There was no significant difference between the left groups (P=0.001). Post hoc test for comparison between groups showed a significant difference in blood flow velocity variables in the left femoral diastole phase (P=0.02) and blood pressure in the left femoral systole phase (P=0.01) after exercise between the two exercise groups. It was aerobic and control and in the variables of blood flow velocity in systolic phase (P=0.005) and left femoral diastole (P=0.006) and blood pressure in left femoral systole phase (P=0.005) following exercise between two groups of parallel exercise and was in control. It is observed that there is no significant difference between the two methods of aerobic and parallel training on selected biomechanical variables of blood after comparing the effect of two training methods on selected biomechanical variables of blood.

4. Discussion and Conclusion

The results showed that aerobic exercise increased arterial diameter and decreased heart rate by reducing arterial blood pressure and consequently increasing the speed and intensity of blood flow. Due to the importance of resistance training and aerobic training (which affects the thickness and strength of arteries and the ratio of collagen to elastin in vascular tissue), increased left femoral diastolic blood pressure and decreased right femoral systolic blood pressure, and reduced blood flow observed. Regarding the increase in diastolic blood pressure in the right femoral artery following resistance training, it can be considered as the effect of the superior limb in applying pressure during resistance training that there is more
work on the role of the upper limb in this type of training for future research. As a recommendation to improve blood biomechanical variables in middle-aged people after coronary angioplasty, aerobic exercise seems more appropriate than parallel (aerobic-resistance) practice.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information. They were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This study was extracted from the PhD. thesis of first author at the Department of Sports Physiology and Biomechanics, Faculty of physical education and Sports Sciences, Central Tehran Branch, Islamic Azad University, Tehran.

Authors’ contributions

Conceptualization and supervision, data collection: Heydar Sadeghi; Methodology: Masoumeh Baghban; Investigation, writing – original draft, and writing – review & editing: All authors; Data analysis: Heydar Sadeghi and Masoumeh Baghban.

Conflict of interest

The authors declared no conflict of interest.
مقاله پژوهشی

تأثیر دو شیوه تمرین هوازی و موازی بر متغیرهای متمایز از ایزوپلاستی عروق کرونر

مقدمه

پیشرفت در جراحی و ترمیم عروق، احتمال درمان یک بیماری عروقی به صورت ظاهری‌تر از قبل را می‌دهد. با این حال، نتیجه‌گیری که در این پژوهش ثبت نماید، به‌طور کلی، نشان می‌دهد که تأثیر دو شیوه تمرین هوازی و موازی در عروق کرونر، متفاوت نیست.

در این پژوهش نیم‌آزمایشی و آینده‌نگر با طرح پیش‌وسپ‌آزمون، نود زن و مرد بیمار عروق کرونر قلبی که انژیوپلاستی شده، به صورت تصادفی در سه گروه آزمایش (تمرین هوازی و موازی) و گروه کنترل تقسیم شدند. چهار دقیقه به‌طور روزانه تمرین مقاومتی هفته‌ای ACSM در گروه تمرین موازی انجام شد. در بخش توصیف داده‌ها، میانگین و انحراف استاندارد، از آزمون کولموگروف اسمیرنف برای بررسی توزیع داده‌ها، از آزمون کروسکال والس و آزمون تعقیبی یومن ویتی در متغیرهای غیرنرمال و از آزمون تحلیل واریانس یک‌طرفه و ولچ و آزمون تعقیبی توکی در متغیرهای نرمال در سطح معناداری 0/05 استفاده شد.

نتایج بررسی نشان داد که در متغیر فشار خون دیاستولی چپ متعاقب اعمال تمرین هوازی و موازی تفاوت معناداری وجود نداشت. در متغیرهای سرعت جریان خون در فاز دیاستول فمورال چپ و فشار خون در فاز سیستول فمورال چپ، در این بین، تفاوت معنادار مشاهده نشد. درکلیه متغیرهای انتخاب شده، در این پژوهش، تفاوت‌های معناداری بین نیز می‌تواند مشاهده شود.

در حال حاضر، انتخاب کلیه عوامل مؤثر در این بیماری‌ها به‌صورت ۵۱۲، ۷۶ و ۳۲ ساله دیده می‌شود.

کلمات‌های کلیدی:
آنژیوپلاستی عروق، کرونر، شریان فمورال، قلب و عروق کرونر، بیومکانیک خون.

مова نیستی از کلیه عوامل مؤثر در این بیماری‌ها، انتخاب کلیه عوامل مؤثر در این بیماری‌ها به‌صورت ۵۱۳، ۷۶ و ۳۲ ساله دیده می‌شود.

فهرست مراجع:

1. مفاخری، هری‌الله، مهندسی مهندسی، و درمان عروقی، گروه بیوشیمیک و آسیب‌شناسی بیوشیمیک.

2. مفادی، حسن‌الدین، مهندسی، و درمان عروقی، گروه بیوشیمیک و آسیب‌شناسی بیوشیمیک.

3. مفاخری، هری‌الله، و درمان عروقی، گروه بیوشیمیک و آسیب‌شناسی بیوشیمیک.

4. مفاخری، هری‌الله، و درمان عروقی، گروه بیوشیمیک و آسیب‌شناسی بیوشیمیک.

5. مفاخری، هری‌الله، و درمان عروقی، گروه بیوشیمک و آسیب‌شناسی بیوشیمک.
مطلب که ثبت‌نامی سانس، تغییرات در سطفی شریان‌ها پیش از زودتر از بُرگ‌های آرترواسکلروز و/or نبودن روند مثبت در سطفی شریان‌ها همچنان می‌تواند باشد. اگرچه، در برخی از مطالعات، فرآیند درمان برخی از عوامل مصرف ضد آرترواسکلروز در بدن خاص، معمول‌تری دارد، با این حال در اغلب موارد، پیاده‌سازی این روش‌ها به‌طور مستقیم برای کاهش بالاترین پیش‌بینی درمانی از این عوامل یافته شده‌اند. به‌طور کلی، توصیه‌هایی که در مورد رفع عوامل خطرزایی سازنده در حوزه مصرف ضد آرترواسکلروز به ارزش اقتصادی و بیولوژیکی دارند. در این سطح مطالعات، تحقیق در جهت اعمال و راه اندازی مراحل درمانی مصرف ضد آرترواسکلروز با هدف بهبود سلامتی شریان‌ها و کاهش خطر حمله قلبی و سایر عوامل خطرزایی با این عوامل مربوط می‌شود.

در پی افزایش اثرات مصرف ضد آرترواسکلروز در حوزه سلامتی، تحقیقاتی در این زمینه به‌طور گسترده‌ای انجام شده و با توجه به اینکه این عوامل مصرف ضد آرترواسکلروز به‌طور داخلی در دستگاه‌های فیزیولوژیک و عروقی عمل می‌کنند، این پیشنهاد به‌طور عمده در حوزه مصرف ضد آرترواسکلروز مطرح می‌شود. در این مقاله، سعی برای بررسی اثرات این عوامل و روش‌های مختلفی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز انجام شده است.

در این مقاله، بررسی اثرات و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز انجام شده است. این مقاله به‌طور عمده بر روی اثرات این عوامل و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز تمرکز دارد.

در این مقاله، بررسی اثرات و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز انجام شده است. این مقاله به‌طور عمده بر روی اثرات این عوامل و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز تمرکز دارد.

در این مقاله، بررسی اثرات و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز انجام شده است. این مقاله به‌طور عمده بر روی اثرات این عوامل و روش‌های ترویجی برای کاهش خطر آرترواسکلروز در حوزه مصرف ضد آرترواسکلروز تمرکز دارد.
1. معناداري در قطر استراحتي و سرعت جریان خون در شریان هاي عروق کرونر، آئورت و شریان کاروتید افراد سالم و بيمار پرداخته و مطالعات موجود به بررسي و مقایسه بيشتر این فرایند در مورد شدت، مدت و نوع برنامه تمریني بهينه جهت استفاده از این فرضيه را تأیید کرده اند. از طرف دیگر، هرچند پژوهش هاي مطالعات معدودي در این گروه از بيماران قلبي انجام شده که در مورد شدت، مدت و نوع برنامه تمریني بهينه جهت استفاده از

2. سال متعاقب آنژیوپلاستي عروق کرونر بود.

3. تمرین هوازي و موازي (هوازي مقاومتي) بود و زیر نظیر پرستار بيماران براي شروع برنامه تمریني که شامل یک دوره مرکز تصویربرداري (داپلر، اکو و تست ورزش) معرفی شدند. به پس از مراجعه به پزشک متخصص قلب و عروق و تأیید پزشک اجرای آزمون: آزمودني ها (بيماران آنژیوپلاستي عروق کرونر) برای شرکت در پژوهش اخذ و تمام تست ها در بيمارستان مرکز آزمودني ها ارائه شد و رضایت نامه جهت اعلام موافقت آزمودني ها با هدف پژوهش، روش انجام آن و محرمانه بودن اطلاعات به خود را در اختیار محقق قرار دادند. توضيحات کاملي در رابطه با پر کردن پرسش نامه، اطلاعات فردي و سلامت فيزیولوژيکي آماده سازي آزمودني ها: نوع و شدت بيماري افراد از طریق اندازه گيري شد، براي بالا بردن دقت سه بار از هر آزمودني دقيقه در حالت درازکش و به صورت ریلکس قرار گرفته و سپس آزمون از قبيل نور، دما، سکوت و... کنترل شد. هر آزمودني ده آن دراز بکشند قرار گرفته و کاليبره و شرایط محيط برگزاري در محلي مناسب نسبت به تختي که قرار است آزمودني ها روی ست آپ سيستم: براي اجراي آزمون دستگاه سونوگرافي کاري بوده و شرایط شرکت در تمرینات منظم را نداشتند، در دسترس بودن (آزمودني هایي که شهرستاني بوده یا داراي مشغله اين اساس، افراد واجد شرایط به شکل تصادفي و با توجه به درعدم استعمال دخانيات و عدم مصرف مشروبات الکلي بود. برمت، عدم مشکلات ارتوپدي، درصد، داشتن ظرفيت) ، موافقت پزشک براي شرکت در برنامه تمریني، داشتن نارسایي قلبي در بيماران از نظیر طبقه بندي انجمن قلب نيویورک عروق کرونر از مسير سرخرگ شریاني، دچار بودن به یک تا سه سال (ميانسال) پس از آنژیوپلاستي معيارهای ورود به پژوهش، قرار گرفتن افراد در گروه بيماران (نفرزن و پانزده نفر مرد) و کنترل (پانزده نفر زن و پانزده نفر مرد) هوازي (پانزده نفرزن و پانزده نفر مرد)، تمرین موازي (پانزده و نفر مرد) و...
سامس دسته‌العمل استاندارد ACSM به‌طور کلی اشکال و ویژگی‌های معینی را در گروه تمرین موثر، پیشنهاد می‌دهد. پیشنهاد تمرین بر پایه‌های موثر، توجه به فاکتور‌هایی مانند سطح تمرین، نوع ویژگی‌های تمرینی و نیروی مورد نیاز البسه می‌گردد. در این پژوهش، از آزمون‌های مقایسه‌ای استفاده شد. همچنین آزمون تعیینی مقایسه دوتایی به‌منظور توزیع، نرمال بودن از آزمون نرمال جهت متغیرهایی که داده‌ها، از آزمون کولموگروف اسمیرنف برای بررسی توزیع داده‌ها، در این پژوهش از میانگین و انحراف استاندارد برای توصیف محقق و توصیه‌های تغذیه‌ای، توصیه به سه روز پیاده روز در میان آن در جلسه بعد ثابت می‌باشد. به همه گروه‌ها یک مقياس بورگ ارزیابی و در صورت بالا بودن شدت تمرین، همچنین شدت تمرینات بعد از هر تمرین تیروفور بر بیمار وجود داشت، در جهت توقف یا کاهش فعالیت اقدام شود. تمرین بیمار بیش از حد مطلوب بوده و احتمال آسیب به مربوطه مرتب پایش و بررسی شد تا در صورت لزوم اگر فشار در طول اجرا پایش تمرین شد. جهت تعریف یک تکرار بیشینه از روش کلومتر پنج کلومتر بر ساعت در ابتدا دوره و در ادامه جلسات تمرین که با سرعت بخشیده و رشد شد، به فعالیت پرداختند و سپس با استفاده از آزمون‌های مقایسه‌ای ناپایدار و دوچرخه قلم‌هایی، فشار خون سیستولیک و دیاستولیک در شرایط فورمال و قسمت کام‌های فشار خون بر پایه‌های آکوستیک پی‌گیری و انجام تست ورزش اندازه‌گیری و اندازه‌گیری تحمص یا درد و دفع ناشی از تمرین، میزان سرعت جریان خون در شرایط‌ها و فرمول‌های موجود، با استفاده از معکوس درکم‌تری به منظور سنجش شد.

10. One rep maximum
9. Kruskal-Wallis
طرح‌های استفاده شده برای این مطالعه، برای این‌که ترتیب موجود در فاکتورهای مربوط به فشارخون و ضربان قلب با گروه‌های آزمایشی و کنترل معنا نداشته باشد. در این مطالعه، برای تحت‌زیرآوردن داده‌ها، از آزمون توکی و آزمون تام هانم 0/05 و در سطح معنی‌داری 16 نسخه SPSS به وسیله نرم‌افزار به‌کار گرفته شد.

یافته‌ها

در تصویر شماره 1 مشخصات اولیه آزمون‌های ماانده سه‌گروه بر اساس وزن، قد، پیشینه آگاهی، و میزان تمرین، و بررسی فشار خون، ضربان قلب، و شرایط جنگلی در راه‌های مختلفی به‌کار گرفته شده است.

11. Welch
12. Tamhane's T2
13. Rest HR and Max HR

تصویر 1. تکنیک‌های و ابزار استاندارد و تکنیک‌های جمعیت‌شناسی بیماران

سرایی همگنی و تعداد افراد استاندارد و تکنیک‌های جمعیت‌شناسی بیماران در سه گروه آزمایش (تمرین موازی، تمرین هوازی) و کنترل PCI می‌باشد. میانگین و انحراف استاندارد ویژگی‌های جمعیت‌شناسی بیماران جمیعت شناختی سال متعاقب آنژیوپلاستی عروق کرونر 65 تا 40 می‌باشد.

شماره 10. دوره 1400 تیر و مرداد

شماره 3

شماره 1. دوره 1400 تیر و مرداد
جدول 1. نتایج آزمایش ویژگی‌های منطقه بیومکانیک خون، متغیرهای آماری و کنترل

متغیر	میانگین مخاطراتسیار	دستیابی	آزمایش	کنترل	تمرین موازی	تمرین هوازی	پس آزمون	پیش آزمون
فشار خون دیاستولی (سنتیمتر بر ثانیه)	76/5 ± 2/4	100	15	14	13 ± 3	15 ± 2	15 ± 3	15 ± 3
شدت جریان خون بیومکانیکی (میل)	0/00 ± 0/04	100	15	14	11 ± 0	12 ± 1	12 ± 0	12 ± 0
سرعت جریان خون بیومکانیکی (سانتیمتر بر ثانیه)	7/0 ± 2/4	100	65	60	6 ± 3	6 ± 2	6 ± 3	6 ± 3
درجه حرارت بدن (درجه سانتی‌گراد)	37/0 ± 0/2	100	15	14	36 ± 0	36 ± 0	36 ± 0	36 ± 0

منبع: پژوهش‌های بیومکانیک، سال 1397، شماره 2، صفحه 105-110.
بحث
هدف تحقيق حاضر، بررسی تأثیر دو شیوه تمرین هوازی و موازي (هوازی مقاومتي) بر متغیرهاي منتخب بيومکانيک خون (سرعت جریان خون و فشار خون در دو فاز سیستول و دیاستول، شدت جریان خون) براي شرکای دوطرفه در بیماران زن (65 تا 40 سال می‌باشند) و مردان (30 تا 55 سال می‌باشند) در پس از آنژیوپلاستی عروق کرونر بود.

در این مطالعه به بررسی برخی از تغییرات مشاهده شده در متغیرهاي منتخب بیومکانیک خون در بیماران قلبی عروقی پرداختیم.

رتبه اثربخشی هوشیاری و اثربخشی هوشیاری مقایسه درون گروه، تأثیر تمرین هوازی بر متغیرهاي منتخب بیومکانیک خون در بیماران قلبی عروقی، پرداختیم.

همچنین مطالعات روي هوازی مقاومتي بیومکانیکی خون در ۸ هفته تمرین هوازی و در فاز هوازی مقاومتي، بر اثر تغییر در سطح فشار خون سیستول و دیاستول، سرعت جریان خون و شدت جریان خون در شریان فمورال چپ (با کاهش همراه بود) تأثیرگذار است.

نتایج بررسی معناداری در سطح P≤0.05

جدول ۲- آزمون نکروتکس و مقایسه منجر به تأثیر تمرین بر متغیرهای بیومکانیک خون

متغیر	فشار خون سیستول فمورال راست	فشار خون دیاستول فمورال راست	فشار خون سیستول فمورال چپ	فشار خون دیاستول فمورال چپ	سرعت جریان خون سیستول فمورال چپ	سرعت جریان خون دیاستول فمورال چپ
گروه تمرین	متوسط	متوسط	متوسط	متوسط	متوسط	متوسط
متوسط	۲۳۷۲	۲۴۷۲	۲۳۶۷	۲۴۷۲	۲۴۷۲	۲۴۷۲
توده‌ی تمارین هوازی	۲۳۷۲	۲۴۷۲	۲۳۶۷	۲۴۷۲	۲۴۷۲	۲۴۷۲
توده‌ی تمارین موازي	۲۳۷۲	۲۴۷۲	۲۳۶۷	۲۴۷۲	۲۴۷۲	۲۴۷۲
بررسی کردند. نتایج نشان داد که ۱۵ مبتلا به چاقی سارکوپنیک هفته تمرین ترکیبی به طور مؤثر باعث کاهش ضخامت ۲۴ اینتیما مدیا شریان کاروتید و افزایش سرعت جریان کاروتید و نسبت بریشی دیواره می‌شود. نتایج این تحقیق با نتایج تحقیق ما در رابطه با سرعت جریان خون در شریان فمورال که مقدمات ما به طور کلی پروتکل تمرينی مورد استفاده باشد، بهتر بود تا تغييرات فشار سيستول و دياستول تحقيق ذکر شده را نيز داشتهيم تا مقایسه دقیق تری از نتایج آن با تحقیق ما بر این اساس انجام ميشود.

کوهورت با چاقی سارکوپنیک ۱۵ پورسي کرده، تاثي دارن دارد که سه ماه تمرین ورزشي نارسایي احتقاني قلب باعث افزایش معناداري سرعت جریان استراحتي در شریان فمورال چپ شده است که در رابطه با متغير سرعت جریان خون با یافته هاي ما هم خواني ندارد که مي تواند ناشي از نوع کاروتید و به طور کلي پروتکل تمریني مورد استفاده باشد.

کوهورت با چاقی سارکوپنیک با تمرین هوازي و مقاومتي مشاهده کردند که اين تمرین باعث افزایش متعاقب آدام تحتاني در شریان فمورال چپ و دينيم تاثي دارد که سه ماه تمرین ورزشي نارسایي احتقاني قلب باعث افزایش معناداري سرعت جریان استراحتي در شریان فمورال چپ شده است که در رابطه با متغير سرعت جریان خون با یافته هاي ما هم خواني ندارد که مي تواند ناشي از نوع کاروتید و به طور کلي پروتکل تمریني مورد استفاده باشد.

15. Congestive Heart Failure

متغير	آزمون	گروه	سطح استاندارد	معناداري	سطح
فشار خون دياستولي فمورال چپ	تونکی	تمرین هوازي کنترل	-/2.67	0/00	*
		تمرین موازي کنترل	-/3.02	0/00	*
		تمرین هوازي تمرين موادي	-/0.312	0/75	
سرعت جریان خون فاز سيستول فمورال چپ	تونکی	تمرین هوازي کنترل	6/69	0/07	*
		تمرین موازي کنترل	6/69	0/00	*
		تمرین هوازي تمرين موادي	6/69	0/59	
فشار خون سيستولي فمورال چپ	تام هاني	تمرین هوازي کنترل	0/55	0/01	*
		تمرین موازي کنترل	0/54	0/00	*
		تمرین هوازي تمرين موادي	0/50	0/99	

* P≤0.05
بازی و راهی را در بیماران یونسی عروق کرونی بر اساس کردن، گرفته‌ها نشان داد تغییرات معناداری در میزان اختلاف میانگین قطر سیستول و دیاستول شریان رانی و بازویی، سرعت سیستول و دیاستول شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگین قطر شریان بازویی و رانی، فشار خون سیستول و دیاستول در گروه ارگیامی و وجود خاص شاخ شاخی طبیعی و در نتیجه خون بیماران گروه ارگیامی در شرایط متعادل تناسب نشان داد که با توجه به میزان ترمیم گروه دو شیوه ارگیامی در گروه هوازی و موازی تفاوت معناداری در بازار میزان اختلاف میانگین قطر شریان بازویی و رانی میزان اختلاف میانگی
References

[1] Lea CS, Gordon NP, Prebil LA, Ereman R, Urratsu CS, Powell M. Differences in reproductive risk factors for breast cancer in middle-aged women in Marin County, California and a sociodemographically similar area of Northern California. BMC Women’s Health. 2009; 9:6. [DOI:10.1186/1472-6874-9-6] [PMID] [PMCID]

[2] Golyan Tehrani S, Ghobadzadeh M, Arastou M. [Promoting health status of menopausal women by educating self care strategies (Persian)]. Journal of Hayat. 2007; 13(3):67-75. https://hayat.tums.ac.ir/article-1-172-en.html

[3] Golbidi S, Laher I. Exercise and the cardiovascular system. Cardiology Research and Practice. 2012; 2012:210852. [DOI:10.1155/2012/210852] [PMID] [PMCID]

[4] Thompson PD. Historical concepts of the athlete’s heart. Medicine and Science in Sports and Exercise. 2004; 36(3):363-70. [DOI:10.1249/01.mss.0000117117.67849.f6] [PMID]

[5] Prior BM, Lloyd PG, Yang H, Terjung RL. Exercise-induced vascular remodeling. Exercise and Sport Sciences Reviews. 2003; 31(1):26-33. [DOI:10.1097/00003677-200301000-00006] [PMID]

[6] Naghibi S, Kordi MR, Maleki MJ, Yarmohammadi M. Effect of concurrent training on hemodynamic responses in male patients with coronary artery disease. Archives of Rehabilitation. 2007; 8(4):6-11. https://rehabilitationj.uswr.ac.ir/browse.php?a_id=195&sid=1&slc_lang=en&fxt=1

[7] Hefferman KS, Fafs CA, Iwamoto GA, Jae SY, Wilund KR, Woods JA, et al. Resistance exercise training reduces central blood pressure and improves microvascular function in African American and white men. Atherosclerosis. 2009; 207(1):220-6. [DOI:10.1016/j.atherosclerosis.2009.03.043] [PMID]

[8] Järhult SJ. Hyperemic brachial artery blood flow velocity [Ph.D. Dissertation], Sweden: Acta Universitatis Upsaliensis; 2010. https://www.diva-portal.org/smash/record.jsf?pid=dva2:359636

[9] Mangell P, Lännne T, Sonesson B, Hansen F, Bergqvist D. Regional stiffness of the common femoral artery. Wiener Medizinische Wochenschrift. 2004; 154(1-2):24-6. [DOI:10.1007/s10354-004-0006-y] [PMID]

[10] Skrabal F. [Arterial elasticity, arterial hypertension and antihypertensive therapy (German)]. Wiener Medizinische Wochenschrift. 2004; 154(1-2):24-6. [DOI:10.1007/s10354-004-0006-y] [PMID]

[11] Ahlgren AR, Astrand H, Sandgren T, Vennersson E, Sonesson Bn, Line T. Dynamic behaviour of the common femoral artery: Age and gender of minor importance. Ultrasound in Medicine & Biology. 2001; 27(2):181-8. [DOI:10.1016/S0301-5629(00)00339-2]

[12] Mohammad Arnoli S, Sadeghi H, Mokhtari M, Rajabi H. [Comparison of selected blood hemodynamic variables and carotid artery structure of non-athletic young men with basketball elite players by ultrasound imaging method (Persian)]. Studies in Sport Medicine. 2019; 11(25):143-58. [DOI:10.22089/SMTI.2019.7349.1371] [PMID]

[13] Park J, Kwon Y, Park H. Effects of 24-week aerobic and resistance training on carotid artery intima-media thickness and flow velocity in elderly women with sarcopenic obesity. Journal of Atherosclerosis and Thrombosis. 2017; 24(11):1117-24. [DOI:10.5551/jat.39065] [PMID] [PMCID]

[14] Stebbings GK, Morse CI, McMahon GE, Onambele GL. Resting arterial diameter and blood flow changes with resistance training and detraining in healthy young individuals. Journal of Athletic Training. 2013; 48(2):209-19. [DOI:10.4085/1062-6050-48.1.17] [PMID] [PMCID]

[15] Ozcan H, Oztekin P, Zergeroglu AM, Ersöz G, Fıçicilar H, Ustüner E. Doppler ultrasound evaluation of the structural and hemodynamic changes in the brachial artery following two different exercise protocols. Diagnostic and Interventional Radiology. 2006; 12(2):80-4. [PMID]

[16] Zakavi I, Karimian A, Isazadeh R, Bahadoram M, Salehinia H, Mohammadian-Hafshejani A, et al. Effect of aquatic extract of ferulago angulata boiss with aerobic exercises on serum levels of interleukin-10 and c-reactive protein of obese males. Crescent Journal of Medical and Biological Sciences. 2018; 5(4):320-6. http://eprints.skums.ac.ir/7348/

[17] American College Of Sports Medicine. ACSM’s Guidelines for exercise testing and prescription. 10th ed. Philadelphia; Wolters Kluwer Health/Lippincott Williams & Wilkins; 2017. https://voyagercatalog.kumc.edu/Record/237091/TOC

[18] Bryzcki M. Strength testing-predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance. 1993; 64(1):88-90. [DOI:10.1080/07303084.1993.1060684]

[19] Tanaka M, Sugawara M, Niki K, Kodera H, Izumi T. Effects of moderate short-term intermittent aerobic exercise on arterial stiffness-evaluation by stiffness parameter and pressure-strain elastic modulus. In: Jobbággy A, editor. 5th European Conference of the International Federation for Medical and Biological Engineering. 2011 September 14-18, Budapest, Hungary. [DOI:10.1007/978-3-642-23508-3_111]

[20] Seeger J, Thijsse D, Noordam K, Cramer M, Hopman M, Nijhuis-van der Sanden M. Exercise training improves physiological and vascular function in children with type 1 diabetes. Diabetes, Obesity and Metabolism. 2011; 13(4):382-4. [DOI:10.1111/j.1463-1326.2011.01361.x] [PMID]

[21] Collier SR, Freechette V, Sandberg K, Schafer P, Jh Jh, Smuljan H, et al. Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance versus aerobic exercise training in individuals with pre-hypertension to stage 1 hypertension. Biology of Sex Differences. 2011; 2(1):9. [DOI:10.1186/2042-6410-2-9] [PMID] [PMCID]

[22] Thijsse DH, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MT, Green DJ. Impact of inactivity and exercise on the vasculature in humans. European Journal of Applied Physiology. 2010; 108(5):845-75. [DOI:10.1007/s00421-009-1260-x] [PMID] [PMCID]

[23] Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. New England
Journal of Medicine. 2000; 342(7):454-60. [DOI:10.1056/NEJM200002173420702] [PMID]

[24] Schroeder EC, Ranadive SM, Yan H, Lane-Cordova AD, Kapinus RM, Cook MD, et al. Effect of acute maximal exercise on vasodilatory function and arterial stiffness in African-American and white adults. Journal of Hypertension. 2019; 37(6):1262-8. [DOI:10.1097/HJH.0000000000002049] [PMID] [PMC-ID]

[25] Okamoto T, Masuhara M, Ikuta K. Combined aerobic and resistance training and vascular function: Effect of aerobic exercise before and after resistance training. Journal of Applied Physiology. 2007; 103(5):1655-61. [DOI:10.1152/japplphysiol.00327.2007] [PMID]

[26] Selig SE, Carey MF, Menzies DG, Patterson J, Geerling RH, Williams AD, et al. Moderate-intensity resistance exercise training in patients with chronic heart failure improves strength, endurance, heart rate variability, and forearm blood flow. Journal of Cardiac Failure. 2004; 10(1):21-30. [DOI:10.1016/S1071-9164(03)00583-9]

[27] Shokrallahnia-Roshan A, Sadeghi H, Shirani S, Nejatian M. Effects of strength training and cardiac rehabilitation programs on the biomechanical parameters of blood flow velocity and blood flow rate and its relation with arterial stiffness index in brachial and femoral arteries with Coronary Artery Bypass Grafting Patients (CABG) (Persian). Archives of Rehabilitation. 2013; 14(2):38-45. http://rehabilitationj.uswr.ac.ir/article-1-1121-en.html

[28] Arnett DK, Claas SA, Glasser SP. Pharmacogenetics of antihypertensive treatment. Vascular Pharmacology. 2006; 44(2):107-18. [DOI:10.1016/j.vph.2005.09.010] [PMID]

[29] Safar ME, London GM. Therapeutic studies and arterial stiffness in hypertension: Recommendations of the European Society of Hypertension. Journal of Hypertension. 2000; 18(11):1527-35. [DOI:10.1097/00004872-200011100-00001] [PMID]

[30] Mokhtari-Dizaji M, Nikanjam N, Saberi H. Detection of initial symptoms of atherosclerosis using estimation of local static pressure by ultrasound. Atherosclerosis. 2005; 178(1):123-8. [DOI:10.1016/j.atherosclerosis.2004.08.008] [PMID]

[31] Rahmani-Cherati T, Mokhtari-Dizaji M, Gity M. Association between atherosclerosis in carotid artery and elastic modulus of brachial artery. The Journal of Tehran University Heart Center. 2007; 2(1):15-9. [DOI:10.1016/S15167-5688(07)71503-9]

[32] Samavat T, Hojjatzadeh A, Shams M. Ways to prevent and control cardiovascular diseases. Tehran: Ministry of Health. Treatment and Medical Education. Deputy Minister of Health; 2013.