Current Status of Metal Stents for Malignant Gastroduodenal Obstruction

Ding Shi*, Xin-min Qiu and Tian-yuan Feng*

Department of Gastroenterology, The First People’s Hospital of Yuhang District, Zhejiang Province, China

Abstract

Metal stent insertion to relieve malignant gastroduodenal obstruction is an effective alternative to surgery, but there are some problems associated with existing metal stents for malignant gastroduodenal obstruction. Common complications of covered and uncovered stents are migration and obstruction, respectively. To date, there are several practice-improved stents, such as partially covered, double-layer, three-layer, and individualized stents designed according to the shape and size of the Gastric Outlet Obstruction (GOO). Choosing the most appropriate type of stent is arduous and should be done mainly in relation to the morphological aspects of the stricture. In general, the stent is implanted by a Through-The-Endoscope (TTS) method, but certain types of stent can only be implanted by a peroral route. After adequate training, endoscopic gastroduodenal stent insertion is a reproducible, simple, safe, and cost-effective procedure, with high technical and clinical success rates.

Keywords: Metal stent; Malignant gastro-duodenal obstructions; Biliary obstruction

Introduction

Gastroduodenal obstruction is the most common complication of advanced distal gastric, periamillary, or duodenal malignancy. The majority of cases occur as a pre-terminal adverse event in the above malignancies, with poor prognosis and a median survival of 3 to 6 months [1,2]. Patients often suffer from intractable nausea, vomiting, and severe weight loss. The role of endoscopic management of this condition has significantly changed in the last 20 years. As early as 1992, metallic stents were used to treat malignant gastroduodenal obstruction [3,4]. Metal stents are used more and more for the palliative treatment of malignant gastroduodenal obstruction because of their safety and effectiveness. Enteral stenting has a success rate similar to surgery, is associated with shorter time before a patient can resume food intake, and reduces hospital stay and costs [5-14]. However, stent use is complicated by several thorny issues, including recurrent obstruction as a result of progressive tumor ingrowth or overgrowth [15-17] and stent migration [18-22]. Many attempts have been made to solve these problems) [23-27]. This article reviews the characteristics, differences, and treatment options of the available gastroduodenal Self-Expandable Metallic Stents (SEMS).

Definition of gastroduodenal obstruction

At present, definitions of gastroduodenal obstruction vary. The term gastric outlet obstruction (GOO) appears more in published articles, [28-32] and is preferred by most endoscopists [19,26,33-40]. Some endoscopists call Gastroduodenal Obstructions GOOs [41] and a few separate GOO from duodenal obstruction in describing gastroduodenal obstruction [1,42]. We consider GOO and duodenal obstruction as two different concepts.

The stomach and duodenum are adjacent digestive tracts that food passes by. However, the pylorus is the only exit for gastric contents; accordingly, the gastric outlet should be confined to antrum and pylorus. That is to say, gastroduodenal obstruction consists of gastric outlet and duodenal obstruction, and gastroduodenal obstruction is not equal to gastric outlet obstruction. The definition has clinical significance for stenting when treating malignant gastroduodenal obstruction. Because the stomach cavity is wide and the duodenal lumen is relatively small, GOO stents should be different from those used to treat duodenal obstruction.

Indications for enteral stent placement

The most common reason caused duodenal obstruction is pancreatic malignancy, [19,31,39,43,44] and ampullary, cholangiocarcinoma, gallbladder cancer, hepatobiliary malignancy can also lead to duodenal obstruction, reported in some studies [45]. The reason caused GOO is mainly advanced gastric cancer [1,20,46,47]. Enteral stents are frequently employed in above patients who are poor surgical candidates with shortened life expectancy, advanced or metastatic disease, significant medical comorbidities, and known anesthesis risk [48-52].

Stent type

Many types of metal stent are used to treat malignant gastroduodenal obstruction, including covered [46] and uncovered stents [53]. Uncovered stents are currently accepted by most endoscopists [43,54]. A recent study demonstrated that the use of uncovered stents might be a preferred option for malignant duodenal obstruction because of their lower rate of stent migration and longer patency compared to covered stents [55]. The migration rate of covered stents used for malignant gastroduodenal obstruction was found to be unacceptably high, [18,21,24,34]. Although these complications can be managed by interventional treatments, re-intervention will undoubtedly increase patient cost and pain. Therefore, many attempts have been made to identify ideal stents, and there have been many types of stents developed as a result [23,25,57-59]. Double- and triple-layer stents are representative of these newly developed stents, and their common feature is that two (one of stents is covered) stents are overlapped together, or a membrane is sandwiched between two nitinol self-expanding metal stent layers. All these stents are suitable for malignant duodenal obstruction. However, whether these stents are appropriate for malignant GOO is worth investigating. Shi et al. [60] studied the shape and size of GOO caused by distal gastric cancer, and two basic shapes of stomach cancer were observed: cup shaped and funnel...
shaped. The mean maximum breadth of the obstruction cup is 51.3 mm, and the mean maximum breadth of the obstruction funnel is 40.6 mm. However, the diameter of the end of the above-described stents ranges from 18 to 28 mm [31,43,53,57,59,61] which is not suitable for the proximal end of malignant GOO. Two studies demonstrated that individualized stents designed according to GOO shape and size can help reduce tumor in growth and stent migration [60,62].

Stent placement

Almost all uncovered stents and some covered ones are designed for through-the-scope deployment and require a therapeutic channel endoscope (working channel>3.7 mm) [26,50,63]. All procedures were performed by experienced interventional endoscopists with ample experience in placement of duodenal stents [26]. Some published literatures describe the methods of through-the-endoscope (TTS) deployment in detail [61,64]. It is important to emphasize that imaging of the obstructed length and extent must be obtained before stenting. If the endoscope cannot advance through the stenotic area, the obstructing area should be passed by a guidewire, and a catheter should be inserted along the guidewire. Then, contrast medium is injected via the catheter to judge the position of the guidewire. The SEMS delivery system can be passed over the guidewire through the working channel of the endoscope only when the guidewire is confirmed to be located in the intestine lumen. Moreover, stent retraction should be taken into account when the stent is released. The location of the delivery system should be adjusted in time to ensure accurate stent positioning. However, it is not possible to adjust the delivery system when the stent is more than half released.

Metallic stents that cannot be mounted on the TTS delivery system must be implanted by a peroral method under fluoroscopic guidance without the use of endoscopy. That is to say, after the endoscope is withdrawn, the delivery system is perorally inserted over the guidewire. It is important that the position of the guidewire is steadily maintained when the delivery system is inserted. Guidewire migration can cause stent dislocation or intestinal perforation. The whole procedure is performed under fluoroscopic guidance or fluoroscopic and endoscopic guidance [65,66]. The technical success rate of non-TTS is lower than that of TTS. The main cause of failure is that delivery system bends in the gastric lumen. Abdominal compression and overtube are used to aid advancement of the delivery system when necessary [62].

Technical and clinical success

Technical success is defined by accurate stent placement with adequate stent expansion and evidence of luminal patency post-procedure, which is usually evaluated by performing a water-soluble or barium contrast study. The reported technical success rates range from 88.2 to 100% [1,22,24,26,31,33,48,53,61,67-70]. The main causes of technical failure is the inability to pass the guidewire across the stricture [31,54] and inability to negotiate the stent delivery system over the guidewire into the duodenum because of stent delivery system looping in the dilated gastric fundus [71,72].

Clinical success is determined by resolution of the patient’s obstructive symptoms, the ability to resume a regular diet after stent placement, and maintaining adequate oral intake during follow-up. The reported clinical success rates range from 83% to 90% [31,36,43,73,74]. However, some studies have reported rates as high as 96% to 98.6% [20-22,25].

After stent placement, some patients may not show improvements in symptoms due to lack of stomach and bowel motility in a chronically obstructed stomach, unrecognized distal small bowel strictures, or functional GOO due to neural involvement of the tumor [24,36,75]. Therefore, it is important that the additional bowel obstruction is adequately judged before stenting and that prokinetic agents are used after stenting.

Complications

Stent obstruction and migration: The incidence of uncovered stent obstruction ranges from 12% to 41.7% [16,17,21,24,34,61]. Restenosis of uncovered stents may be inevitable with tumor in growth. Although covered stents can decrease restenosis by tumor ingrowth, the advantage of covered stents is offset by their higher migration rate, which ranges from 6.9% to 27.3% [54,56,57,61,66]. Moreover, covered stents cannot solve the problems of tumor overgrowth or stent collapse [15,76] and do not offer any improvement in outcome over uncovered stents [66]. Therefore, both uncovered and covered stents can require re-intervention [76,77]. Chemotherapy after stent placement may decrease the likelihood of tumor in growth and overgrowth and increase the duration of stent patency [19,52]. However, chemotherapy may also increase the incidence of stent migration [22,24,48,74]. A more migration-resistant design for covered stents would be required to minimize migration from the gastric outlet and allow for better stent patency. Double- or triple-layered stents seem to prevent migration and tumor in growth [23,57,71]. A comparative study demonstrated that double stents were superior to uncovered stents in both median stent patency time and median patient survival [58]. However, another report suggested that stent migration and collapse remain problematic [59]. Tumor overgrowth is also inevitable with the prolongation of survival time [15]. To overcome these problems, Kim and colleagues proposed a design to prevent migration, which includes using a covered “stent within stent design” that employs three endoscopic clips on the proximal end that help to anchor the stent in place [27], and Isayama et al. advised that stents should be long enough to avoid tumor overgrowth or in growth at the uncovered portion [25]. Theoretically, extended double stents should be the best choice to treat malignant duodenal obstruction. However, any extended stent may not be suitable for GOO caused by gastric cancer because the extended part of stent can only be free in wide gastric cavity. The proximal portion of the stent should be big enough to avoid migration and in growth at the uncovered portion. Individualized stents designed according to GOO shape and size should be reasonable choices, but determining whether individualized stents are truly superior to standard versions will require larger case-control studies.

Biliary obstruction: Approximately 61% of patients with malignant duodenal obstruction experience biliary obstruction [78]. Therefore, biliary obstruction has to be taken into account before performing duodenal stenting. It is very difficult to endoscopically place biliary stents through the mesh of duodenal stents [1], although there are some reports that biliary stents were successfully placed throughout duodenal stent meshes [79-81].

The rate of biliary obstruction after gastroduodenal stent placement has been found to range from 1.3% to 11% [1,19,24,82]. Even though biliary stents are placed before duodenal stenting, there is a risk of bile obstruction after duodenal stenting. A recent report described six patients that developed cholangitis after duodenal stenting despite placement of a biliary stent prior to enteral stenting [31]. Another report showed that duodenal SEMS placement is a risk factor for biliary SEMS dysfunction [83]. Such a biliary obstruction may be associated with stent placement bridging the ampulla of Vater and limit the use of covered stents. If the ampulla of Vater can be covered by an enteral stent, uncovered stents should be employed, although other studies reported
that the rate of biliary obstruction after covered stent placement was not as high as expected [71,84]. In order to reduce the risk of bile duct obstruction, t may be wise to perform biliary decompression prior to covered stent placement. Simultaneous biliary and duodenal obstruction is the most difficult problem because duodenal obstruction may influence the ability for endoscopic biliary stent placement, and biliary decompression usually requires a percutaneous transhepatic approach. A new duodenal metal stent was designed to simultaneously address the problems of biliary and duodenal stenting [85]. This new stent has a unified structure in its central 3-cm portion, which contributes to the easy insertion of a biliary stent through the mesh wall of the central portion of the duodenal stent without resistance. This is perhaps the best treatment option for simultaneous biliary and duodenal obstruction or biliary obstruction after duodenal stenting is addressed.

Conclusions

GOO and duodenal obstruction are two different concepts, and the stents selected to treat them should be different. Duodenal stents can be covered and uncovered. The former have a high incidence of migration, and the latter have a high incidence of re-stenosis due to tumor in growth. Uncovered stents seem more likely to be accepted for palliation of malignant duodenal obstruction. Double- or triple- layered stents have been developed and seem to be superior to uncovered and covered. The former have a high incidence of migration, and the latter have a high incidence of re-stenosis due to tumor in growth. Biliary obstruction has to be taken into account before performing duodenal stenting. It is unclear what stent type is most suitable for GOO, but individualized stents seem to be a popular trend.

References

1. Caglar E, Dobrucali A (2013) Self-expandable metallic stent placement in the palliative treatment of malignant obstruction of gastric outlet and duodenum. Clin Endosc 46: 59-64.
2. Larssen L, Hauge T, Medhus AW (2012) Stent treatment of malignant gastric outlet obstruction: the effect on rate of gastric emptying, symptoms, and survival. Surg Endosc 26: 2955-2960.
3. Kozarek RA, Ball TJ, Patterson DJ (1992) Metallic self-expanding stent application in the upper gastrointestinal tract: cavaets and concerns. Gastrointest Endosc 38: 1-6.
4. Topazian M, Ring E, Grendell J (1992) Palliation of obstructing gastric cancer with steel mesh, self-expanding endoprostheses. Gastrointest Endosc 38: 58-60.
5. Del Piano M, Ballaré M, Montino F, Todesco A, Orsello M, et al. (2005) Endoscopy or surgery for malignant GI outlet obstruction? Gastrointest Endosc 61: 421-426.
6. Jeurnink SM, van Eijck CH, Steyerberg EW, Kuipers EJ, Siersema PD (2007) Stent versus gastrojejunostomy for the palliation of gastric outlet obstruction: a systematic review. BMJ Gastroenterol 7: 18.
7. Hosono S, Ohtani H, Arimoto Y, Kanamia Y (2007) Endoscopic stenting versus surgical gastroenterostomy for palliation of malignant gastroduodenal obstruction: a meta-analysis. J Gastroenterol 42: 283-290.
8. Wong YT, Brams DM, Munson L, Sanders L, Heiss F, et al. (2002) Gastric outlet obstruction secondary to pancreatic cancer: surgical vs endoscopic palliation. Surg Endosc 16: 310-312.
9. Mittal A, Windsor J, Woodfield J, Casey P, Lane M (2004) Matched study of three methods for palliation of malignant pyloroduodenal obstruction. Br J Surg 91: 205-209.
10. Maetani I, Tada T, Ukit a T, Inoue H, Sakai Y, et al. (2004) Comparison of duodenal stent placement with surgical gastrojejunostomy for palliation in patients with duodenal obstructions caused by pancreaticobiliary malignancies. Endoscopy 36: 73-78.
11. Maetani I, Akatsuka S, Ikeka M, Tada T, Ukit a T, et al. (2005) Self-expandable metallic stent placement for palliation in gastric outlet obstructions caused by gastric cancer: a comparison with surgical gastrojejunostomy. J Gastroenterol 40: 932-937.
12. Espinel J, Sanz O, Vivas S, Jorquera F, Muñoz F, et al. (2008) Malignant gastrointestinal obstruction: endoscopic stenting versus surgical palliation. Surg Endosc 20: 1083-1087.
13. Alonso-Lárraga JO, Alvaro-Villegas JC, Sobrino-Cossio S, Hernández-Guerreiro A, de-la-Mora-Levy G, et al. (2012) Self-expanding metal stents versus antrectomy for the palliative treatment of obstructive adenocarcinoma of the gastric antrum. Rev Esp Enferm Dig 104: 185-189.
14. Shaw JM, Borrman PC, Krige JE, Stupart DA, Panieri E (2010) Self-expanding metal stents as an alternative to surgical bypass for malignant gastric outlet obstruction. Br J Surg 97: 872-876.
15. Jang JH, Song HY, Kim JH, Song M, Park JH, et al. (2011) Tumor overgrowth after expandable metallic stent placement: experience in 583 patients with malignant gastroduodenal obstruction. AJR Am J Roentgenol 196: W831-W836.
16. Holt AP, Patel M, Ahmed MM (2004) Palliation of patients with malignant gastroduodenal obstruction with self-expanding metallic stents: the treatment of choice? Gastrointest Endosc 60: 1010-1017.
17. Morikawa S, Suzuki A, Nakase K, Yasuda K (2012) Palliation of malignant upper gastrointestinal obstruction with self-expandable metal stent. Korean J Radiol 13 Suppl 1: S98-103.
18. Park KB, Do YS, Kang WK, Choo SW, Han YH, et al. (2001) Malignant obstruction of gastric outlet and duodenum: palliation with flexible covered metal stents. Radiology 219: 679-683.
19. Telford JJ, Carr-Locke DL, Baron TH, Tringali A, Parsons WG, et al. (2004) Palliation of patients with malignant gastric outlet obstruction with the external Wallstent: outcomes from a multicenter study. Gastrointest Endosc 60: 916-920.
20. Kim JH, Song HY, Shin JH, Hu HT, Lee SK, et al. (2009) Metallic stent placement in the palliative treatment of malignant gastric outlet obstructions: primary gastric carcinoma versus pancreatic carcinoma. AJR Am J Roentgenol 193: 241-247.
21. van Hooff JF, Uiltdehaag MJ, Bruno MJ, Timmer R, Siersema PD, et al. (2009) Efficacy and safety of the new WallFlex enteral stent in palliative treatment of malignant gastric outlet obstruction (DUOFLEx study): a prospective multicenter study. Gastrointest Endosc 69: 1059-1066.
22. Lee KM, Choi SJ, Shin SJ, Hwang JC, Lim SG, et al. (2009) Palliative treatment of malignant gastroduodenal obstruction with metallic stent: prospective comparison of covered and uncovered stents. Scand J Gastroenterol 44: 846-852.
23. Lee SM, Kang DH, Kim GH, Park WI, Kim HW, et al. (2007) Self-expanding metallic stents for gastric outlet obstruction resulting from stomach cancer: a preliminary study with a newly designed double-layered pyloric stent. Gastrointest Endosc 66: 1206-1210.
24. Kim JH, Song HY, Shin JH, Choi E, Kim TW, et al. (2007) Metallic stent placement in the palliative treatment of malignant gastroduodenal obstructions: prospective evaluation of results and factors influencing outcome in 213 patients. Gastrointest Endosc 66: 256-264.
25. Isayama H, Sasaki T, Nakai Y, Togawa O, Kogure H, et al. (2012) Management of malignant gastric outlet obstruction with a modified triple-layered covered metal stent. Gastrointest Endosc 75: 757-763.
26. Didden P, Spaander MC, de Ridder R, Berk L, van Tilburg AJ, et al. (2013) Efficacy and safety of a partially covered stent in malignant gastric outlet obstruction: a prospective Western series. Gastrointest Endosc 77: 664-668.
27. Kim ID, Kang DH, Choi CW, Kim HW, Jung WJ, et al. (2010) Prevention of covered enteral stent migration in patients with malignant gastric outlet obstruction: a pilot study of anchoring with endoscopic clips. Scand J Gastroenterol 45: 100-105.
28. Sasaki T, Isayama H, Nakai Y, Togawa O, Kogure H, et al. (2012) Predictive factors of solid food intake in patients with malignant gastric outlet obstruction receiving self-expandable metallic stents for palliation. Dig Endosc 24: 226-230.
29. Park JC, Park JJ, Cheoi K, Chung H, Lee H, et al. (2012) Clinical outcomes of secondary stent-in-stent self-expanding metal stent placement for primary stent malfunction in malignant gastric outlet obstruction. Dig Liver Dis 44: 999-1005.
30. Lin CL, Pemg CL, Chao Y, Li CP, Hou MC, et al. (2012) Application of stent placement or nasojejunal feeding tube placement in patients with malignant gastric outlet obstruction: a retrospective series of 38 cases. J Chin Med Assoc 75: 624-629.
31. van den Berg MW, Huijtenk S, Fockens P, Vleggar FP, Dijkstra MG, et al. (2013) First data on the Evolution duodenal stent for palliation of malignant gastric outlet obstruction (DUOLITION study): a prospective multicenter study. Endoscopy 45: 174-181.

32. Saski T, Isayama H, Maetani I, Nakai Y, Kagure H, et al. (2013) Japanese multicenter estimation of WallFlex duodenal stent for unresectable malignant gastric outlet obstruction. Dig Endosc 25: 1-6.

33. Kim JH, Yoo BM, Lee KJ, Hahn KB, Cho SW, et al. (2001) Self-expanding coil stent with a long delivery system for palliation of unresectable malignant gastric outlet obstruction: a prospective study. Endoscopy 33: 836-842.

34. Kim GH, Kang DH, Lee DH, Heo J, Song GA, et al. (2004) Which types of stent, uncovered or covered, should be used in gastric outlet obstructions? Scand J Gastroenterol 39: 1010-1014.

35. van Hoof J, Mutignani M, Repici A, Messmann H, Neuhase H, et al. (2007) First data on the palliative treatment of patients with malignant gastric outlet obstruction using the WallFlex enteral stent: a retrospective multicenter study. Endoscopy 39: 434-439.

36. Havemann MC, Adamsen S, Weijdemann M (2009) Malignant gastric outlet obstruction managed by endoscopic stenting: a prospective single-centre study. Scand J Gastroenterol 44: 248-251.

37. Schmidt C, Gerdes H, Hawkins W, Zucker E, Zhou Q, et al. (2009) A prospective observational study examining quality of life in patients with malignant gastric outlet obstruction. Arch Surg 139: 92-99.

38. Ly J, O’Gradly G, Mittal A, Plank L, Windsor JA (2010) A systematic review of methods to palliate malignant gastric outlet obstruction. Surg Endosc 24: 290-297.

39. van Hooft JE, van Montfoort ML, Jeumink SM, Brunio MJ, Dijkstra MG, et al. (2011) Safety and efficacy of a new non-foreshortening nitinol stent in malignant gastric outlet obstruction (DUONITI study): a prospective, multicenter study. Endoscopy 43: 671-675.

40. Strand DS, Thlick JE, Patrice JT, Gaidthane MR, Katheh M, et al. (2012) Gastroduodenal stents are associated with more durable patency as compared to percutaneous endoscopic gastrojugoanostomy in the palliation of malignant gastric outlet obstruction. J Interv Gastroenterol 2: 150-154.

41. Kubota K, Kuroda J, Origuchi N, Kaminiishi M, Isayama H, et al. (2007) Stomach-partitioning gastrojejunoanostomy for gastroduodenal outlet obstruction. Arch Surg 142: 607-611.

42. Huang Q, Dai DK, Qian XJ, Zhai RY (2007) Treatment of gastric outlet and duodenal obstructions with uncovered expandable metal stents. World J Gastroenterol 13: 5376-5379.

43. Ahn HS, Hong SJ, Moon JH, Ko BM, Choi HJ, et al. (2012) Uncovered self-expandable metallic stent placement as a first-line palliative therapy in unresectable malignant duodenal obstruction. J Dig Dis 13: 628-633.

44. Cheng HT, Lee CS, Lin CH, Cheng CL, Tang JH, et al. (2012) Treatment of malignant gastric outlet obstruction with metallic stents: assessment of whether gastrointestinal position affects efficacy. J Investig Med 60: 1027-1032.

45. Larssen L, Medhus AW, Hauge T (2009) Treatment of malignant gastric outlet obstruction with stents: an evaluation of the reported variables for clinical outcome. BMC Gastroenterol 9: 45.

46. Seo EH, Jung MK, Park MJ, Park KS, Jeon SW, et al. (2008) Covered expandable nitinol stents for malignant gastroduodenal obstructions. J Gastroenterol Hepatol 23: 1056-1062.

47. Mansoor H, Yusuf MA (2013) Outcomes of endoscopic pyloric stenting in malignant gastric outlet obstruction: a retrospective study. BMC Res Notes 6: 280.

48. Adler DG, Baron TH (2002) Endoscopic palliation of malignant gastric outlet obstruction using self-expanding metal stents: experience in 36 patients. Am J Gastroenterol 97: 72-78.

49. Kazi HA, O’Reilly DA, Satishdanand AR, Zeidman MR (2006) Endoscopic stent insertion for the palliation of malignant gastric outlet obstruction. Dig Surg 23: 28-31.

50. Frech EJ, Adler DG (2007) Endoscopic therapy for malignant bowel obstruction. J Support Oncol 5: 303-310, 319.

51. Chandrasekaram MD, Eslisk GD, Mansfield CO, Lienh M, Richardson M, et al. (2012) Endoscopic stenting versus operative gastrojejunostomy for malignant gastric outlet obstruction. Surg Endosc 26: 323-329.
al. (2010) Surgical gastrojejunostomy or endoscopic stent placement for the palliation of malignant gastric outlet obstruction (SUSTENT study): a multicenter randomized trial. Gastrointest Endosc 71: 490-499.

74. Kim CG, Choi IJ, Lee JY, Cho SJ, Park SR, et al. (2010) Covered versus uncovered self-expandable metallic stents for palliation of malignant pyloric obstruction in gastric cancer patients: a randomized, prospective study. Gastrointest Endosc 72: 25-32.

75. Kim JH, Song HY, Shin JH (2010) Malignant gastric outlet obstructions: treatment with self-expandable metallic stents. Gut Liver 4 : S32-38.

76. Kim JH, Song HY, Shin JH, Choi E, Kim TW, et al. (2007) Stent collapse as a delayed complication of placement of a covered gastroduodenal stent. AJR Am J Roentgenol 188: 1495-1499.

77. Sabharwal T, Irani FG, Adam A; Cardiovascular and Interventional Radiological Society of Europe (2007) Quality assurance guidelines for placement of gastroduodenal stents. Cardiovasc Intervent Radiol 30: 1-5.

78. Lopera JE, Brazzini A, Gonzales A, Castaneda-Zuniga WR (2004) Gastroduodenal stent placement: current status. Radiographics 24: 1561-1573.

79. Kaw M, Singh S, Gagneja H (2003) Clinical outcome of simultaneous self-expandable metal stents for palliation of malignant biliary and duodenal obstruction. Surg Endosc 17: 457-461.

80. Mutignani M, Tringali A, Shah SG, Perri V, Familiari P, et al. (2007) Combined endoscopic stent insertion in malignant biliary and duodenal obstruction. Endoscopy 39: 440-447.

81. Mair F, Hammel P, Ponsot P, Aubert A, O’Toole D, et al. (2006) Long-term outcome of biliary and duodenal stents in palliative treatment of patients with unresectable adenocarcinoma of the head of pancreas. Am J Gastroenterol 101: 735-742.

82. Dormann A, Meisner S, Verin N, Wenk Lang A (2004) Self-expanding metal stents for gastroduodenal malignancies: systematic review of their clinical effectiveness. Endoscopy 36: 543-550.

83. Hamada T, Nakai Y, Isayama H, Sasaki T, Kogure H, et al. (2013) Duodenal metal stent placement is a risk factor for biliary metal stent dysfunction: an analysis using a time-dependent covariate. Surg Endosc 27: 1243-1249.

84. Kim SY, Song HY, Kim JH, Kim KR, Shin JH, et al. (2008) Bridging across the ampulla of Vater with covered self-expanding metallic stents: is it contraindicated when treating malignant gastroduodenal obstruction? J Vasc Interv Radiol 19: 1607-1613.

85. Moon JH, Choi HJ, Ko BM, Koo HC, Hong SJ, et al. (2009) Combined endoscopic stent-in-stent placement for malignant biliary and duodenal obstruction by using a new duodenal metal stent (with videos). Gastrointest Endosc 70: 772-777.