Effect of Radiation Induced Crosslinking on Thermal Aging Properties of Ethylene-Tetrafluoroethylene for Aircraft Cable Materials

Xiaodong Zhang 1, Fei Chen 2,* Zhimin Su 3 and Taiping Xie 1,*

1 School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China; 2008zhangdong@163.com
2 Department of Chemical Engineering and Safety, BinZhou University, Binzhou 256603, Shandong, China.
3 Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China; Ton_ly@sina.com
* Correspondence: cfgxx@163.com (F.C.); deartaiping@163.com (T.X.)

The results of activation energy of ETFE experiments are shown in Figure S1.

![DSC curves of the non-isothermal oxidation induction temperature of ETFE unirradiated at different heating rates.](image)

Figure S1. DSC curves of the non-isothermal oxidation induction temperature of ETFE unirradiated at different heating rates.

Heating Rate/(°C/min)	Oxidation Induction Temperature /°C	Peak/°C
5	454.80	463.68
10	471.17	478.69
15	478.84	487.14
20	482.57	492.20

Table S1. Non-isothermal oxidation induction date obtained from the DSC scans at different heating rates.
The values of Ea (212.86 kJ/mol) can be calculated according to the Kissinger’s equation.

Table S2. Non-isothermal oxidation induction date obtained from the DSC scans at different heating rates.

Heating Rate/(°C/min)	Oxidation Induction Temperature/°C	Peak/°C
5	294.98	306.82
10	307.15	322.16
15	314.57	330.11
20	320.17	337.51
The values of E_a (127.28 kJ/mol) can be calculated according to the Kissinger's equation.

Figure S4. Linear relationship of $\ln(\beta / T_{\text{max}}^2)$ versus $1/T_{\text{max}}$.

![Figure S4](image)

$Y=15.28806-15309.1792X$

$R^2=0.99973$

Table S3. Non-isothermal oxidation induction date obtained from the DSC scans at different heating rates.

Heating Rate/(°C/min)	Oxidation Induction Temperature/°C	Peak/°C
5	348.92	381.80
10	364.82	399.55
15	375.10	411.48
20	388.85	420.46

Figure S5. DSC curves of the non-isothermal oxidation induction temperature of ETFE absorbed 120 kGy at different heating rates.

![Figure S5](image)
Figure S6. Linear relationship of $\ln(\beta/T_{\text{max}})$ versus $1/T_{\text{max}}$. The values of E_a (124.37 kJ/mol) can be calculated according to the Kissinger’s equation.

Figure S7. DSC curves of the non-isothermal oxidation induction temperature of ETFE absorbed 180 kGy at different heating rates.

Table S4. Non-isothermal oxidation induction date obtained from the DSC scans at different heating rates.

Heating Rate/(°C/min)	Oxidation Induction Temperature/°C	Peak/°C
5	346.42	380.98
10	365.94	400.00
15	376.70	411.42
20	380.81	423.15
Figure S8. Linear relationship of $\ln(\beta / T_{\text{max}}^2)$ versus $1/T_{\text{max}}$.

The values of Ea (115.02 kJ/mol) can be calculated according to Kissinger’s equation.