A Technical appendix

A.1 Properties of the subspace shrinkage Prior

To see how \(\omega \) shrinks the VAR towards the factor model, it is convenient to exploit the fact that if the rank of \(X \) is \(K \), the matrix \(X \) and the matrix \(F_K \) (i.e., the first \(K \) PCs of \(X \)) span the same column space \(C \). Moreover, notice that \(F_K = (F_q, F_{(q+1):K}) \) with \(F_{(q+1):K} \) storing the final \(K - q \) principal components of \(X \). Using these definitions and the result that \(\text{C}(X) = \text{C}(F_K) \), the corresponding projection matrices coincide:

\[
X \left(X'X + \frac{\omega}{1-\omega}X'(IT - \Phi_0)X \right)^{-1} X' = F_K \left(F_K'F_K + \frac{\omega}{1-\omega}F_K'(IT - \Phi_0)F_K \right)^{-1} F_K'.
\] (10)

Notice that conditional on a standard normalization, we have that \(F_K'F_K = I_K \) and \(F_q'F_{(q+1):K} = 0 \). This allows us to rewrite Eq. (11) as:

\[
F_K \left(I_K + \frac{\omega}{1-\omega} \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1} F_K' = (F_q, F_{q+1};K) \begin{bmatrix} I_q & 0 \\ 0 & (1-\omega)I_{K-q} \end{bmatrix} \begin{bmatrix} F_q' \\ F_{q+1};K \end{bmatrix} \] \hspace{1cm} (12)

\[
= \Phi_0 + (1-\omega) \Phi_1, \hspace{1cm} (13)
\]

with \(\Phi_1 = F_{q+1};K (F_q'F_{q+1};K)^{-1} F_q' \). It is straightforward to show that

\[
\Phi = \Phi_0 + \Phi_1,
\]

where \(\Phi = X(X'X)^{-1}X' \) is the projection matrix of \(X \). Thus, we can substitute \(\Phi_1 = \Phi - \Phi_0 \) in Eq. (14) and multiply from the right with \(Y \) to arrive at:

\[
\mathbb{E}(XA|Y, \omega) = \omega \Phi_0 Y + (1-\omega) \Phi Y, \hspace{1cm} (15)
\]

which shows that the posterior mean of the regression function is a convex combination of the VAR fit, \(\Phi Y \), and the fit of the PC regression, \(\Phi_0 Y \).
A.2 Our implementation of the Minnesota prior

In our empirical work we set the dummies as follows (see Banbura, Giannone, and Reichlin, 2010):

\[
Y = \begin{pmatrix}
\text{diag}(\hat{a}_1, \ldots, \hat{a}_M) / \hat{\vartheta} \\
0_{M(p-1) \times M} \\
\text{diag}(\hat{\sigma}_1, \ldots, \hat{\sigma}_M) \\
0_{1 \times M}
\end{pmatrix}, \quad
X = \begin{pmatrix}
J_p \otimes \text{diag}(\hat{\sigma}_1, \ldots, \hat{\sigma}_M) / \hat{\vartheta} & 0_{K \times 1} \\
0_{M \times K} & 0_{M \times 1} \\
0_{1 \times K} & \kappa
\end{pmatrix},
\]

with \(\hat{\sigma}_j (j = 1, \ldots, M) \) denoting the OLS residual standard deviation of an AR(\(p \)) model for \(y_{jt} \), the \(j^{th} \) variable in \(Y_t \), \(\hat{a}_j \) is the \(j^{th} \) diagonal element of \(A \), and \(J_p = \text{diag}(1, \ldots, p) \). Notice that this set of dummies includes the prior for the intercept which depends on the hyperparameter \(\kappa \). \(\kappa \) is set to a very small number (in our empirical work it equals 0.001), leading to a weakly informative prior for the intercepts. Notice that the prior precision of the Minnesota prior is given by \(X'X \) and the prior mean is equal to the OLS estimate based on the dummy observations:

\(A = (X'X)^{-1} X'Y \).
Additional simulation results

In Sub-section 3 we showed that our approach is able to recover the true number of factors as long as M is not too large. We stated that one of the reasons why we under-estimate the true number of factors in large dimensional models is due to the fact that the VAR is capable of mimicking factor dynamics in finite samples and the likelihood is not strongly informative about whether a factor model or a VAR should be used to model y_t. If the number of observations, however, increases, our approach should be able to infer the true number of factors. We provide simulation evidence to support this claim in Table 5. This table is the same as Table 1 with two main differences. First, we drop the models which have an informative prior on ω for brevity reasons. Second, and more importantly, we increase the length of the time series and set $T = 2500$.

Table 5: Simulation results for differing values of q and M and $T = 2500$. Averages across 100 replications from the factor model DGP

q =	1	3	6	8	1	3	6	8
$M = 30$	1.00	3.00	6.32	8.00	1.00	3.04	6.16	8.00
$M = 60$	1.00	3.00	6.00	8.00	1.00	3.00	6.00	8.00
$M = 120$	1.00	3.00	6.00	8.00	1.00	3.00	6.00	8.00

Posterior mean of ω
$M = 30$
$M = 60$
$M = 120$

Notes: subVAR denotes the VAR coupled with the subspace shrinkage prior, Minn is the combination between subspace and Minnesota shrinkage while flat is the subspace shrinkage prior without additional shrinkage. Both models feature a flat prior on ω. Each number is based on computing the mean of posterior medians across 100 replications from the respective DGPs. For q, we use the posterior median as our point estimate while for ω we use the posterior mean.

The table suggests that if the number of observations becomes large, our model detects the true number of factors very accurately. For all model sizes, the estimated number of factors is never far away from the true number of factors. This finding suggests that the accuracy of our approach, as expected, strongly depends on the relationship between the number of coefficients and the length of the time series. Since the dimension of the state space grows quadratically in M, substantial information in the likelihood is required to infer the true number of factors for $M = 120$.

33
Table 6: Description of the Dataset

ID FRED Code	Description	Transformation Codes	S M L XL				
GDPC1	Real Gross Domestic Product	5 X X X X					
PCEC96	Real Personal Consumption Expenditures	5 X X X X					
PCDN	Real Personal Consumption Expenditures: Nonfarm Dollars	5 X X X					
GDPCC1	Real Gross Private Domestic Investment	5 X X X X					
FFx	Real private fixed investment	5 X X X					
Y01B1Q1Q027SBEA	Real Gross Private Domestic Investment: Fixed Investment: Nonresidential Equipment	5 X X X					
FFx	Real private fixed investment: Nonresidential	5 X X X					
FFx	Real private fixed investment: Residential	5 X X X					
ANR4BEQ1Q16SBEA	Shares of gdp's domestic product: Gross private domestic investment: Change in private inventories	1 X X X					
Y01B1Q1Q027SBEA	Real Government Consumption Expenditures and Gross Investment: Federal	5 X X X					
A281Q1Q027SBEA	Real Government Consumption Expenditures and Gross Investment: Federal	5 X X X					
PGRECPFx	Real Federal Government Current Receipts	5 X X X					
SLEB	Real government state and local consumption expenditures	5 X X X					
EPXGSCC1	Real Exports of Goods and Services	5 X X X					
USXGSCC1	Real Imports of Goods and Services	5 X X X					
DPIPC06	Real Disposable Personal Income	5 X X X					
OCTNF3	Nonfarm Business Sector: Real Output	5 X X X					
OCTNF3	Business Sector: Real Output	5 X X X					
INDEPDRO	B’Totital Industrial Production Index (Index 2012=100)	5 X X X					
INDEPLAL	B’Final industrial Production: Final Products (Market Group) (Index 2012=100)	5 X X X					
IPCOUSDG	CPI:Consumer Goods Industrial Production: Consumer Goods (Index 2012=100)	5 X X X					
IPMSAT	Metals (Index 2012=100)	5 X X X					
IPDMAT	Durable Materials (Index 2012=100)	5 X X X					
IPDMAT	Non durable Materials (Index 2012=100)	5 X X X					
IPDMAT	Durable Consumer Goods (Index 2012=100)	5 X X X					
IPDHH110SQ	Durable Goods: Automotive products (Index 2012=100)	5 X X X					
IPDHH110SED	Non durable Consumer Goods (Index 2012=100)	5 X X X					
IPBUSQ	Business Equipment (Index 2012=100)	5 X X X					
IPHH122SQ	Consumer energy products (Index 2012=100)	5 X X X					
NUMiëNS	Capacity Utilization: Manufacturing (SIC) (Percent of Capacity)	5 X X X					
IPH11012SB	Industrial Production: Manufacturing (SIC) (Index 2012=100)	5 X X X					
IPH11022SB	Industrial Production: Residential Utilities (Index 2012=100)	5 X X X					
IPFUELS	Industrial Production: Fuel (Index 2012=100)	5 X X X					
PAYEM	Emp:Nonfarm All Employees: Total nonfarm (Thousands of Persons)	5 X X X					
UFSPY	All Employees: Total Private Industries (Thousands of Persons)	5 X X X					
MANEMP	All Employees: Manufacturing (Thousands of Persons)	5 X X X					
USVRY	All Employees: Service-Providing Industries (Thousands of Persons)	5 X X X					
USGQGD	All Employees: Goods-Producing Industries (Thousands of Persons)	5 X X X					
DMANEMP	All Employees: Durable goods (Thousands of Persons)	5 X X X					
DSMANEMP	All Employees: Non durable goods (Thousands of Persons)	5 X X X					
USCOSS	All Employees: Construction (Thousands of Persons)	5 X X X					
USERS	All Employees: Education & Health Services (Thousands of Persons)	5 X X X					
USFIRE	All Employees: Financial Activities (Thousands of Persons)	5 X X X					
USMFO	All Employees: Information Services (Thousands of Persons)	5 X X X					
USBFS	All Employees: Professional & Business Services (Thousands of Persons)	5 X X X					
USLAH	All Employees: Leisure & Hospitality (Thousands of Persons)	5 X X X					
USMOR	All Employees: Other Services (Thousands of Persons)	5 X X X					
USMINE	All Employees: Mining and Logging (Thousands of Persons)	5 X X X					
USPSU	All Employees: Trade, Transportation & Utilities (Thousands of Persons)	5 X X X					
USOOG	All Employees: Government (Thousands of Persons)	5 X X X					
USHRADE	All Employees: Retail Trade (Thousands of Persons)	5 X X X					
USWTRADE	All Employees: Wholesale Trade (Thousands of Persons)	5 X X X					
CES0893000001	Government: Federal (Thousands of Persons)	5 X X X					
CES0893000001	Government: State Government (Thousands of Persons)	5 X X X					
CES0893000001	Government: Local Government (Thousands of Persons)	5 X X X					
CE1604	Civilian Employment (Thousands of Persons)	5 X X X					
CIVPAR1	Civilian Labor Force Participation Rate (Percent)	5 X X X					
UNRATE	Civilian Unemployment Rate (Percent)	5 X X X					
UNRATESTX	Unemployment Rate less than 27 weeks (Percent)	5 X X X					
UNRATESTX	Unemployment Rate for more than 27 weeks (Percent)	5 X X X					
LNS14000012	Unemployment Rate - 16 to 19 years (Percent)	2 X X X					
LNS14000025	Unemployment Rate - 20 years and over, Men (Percent)	2 X X X					
LNS14000026	Unemployment Rate - 20 years and over, Women (Percent)	2 X X X					
UEMPTLY	Number of Civilian Unemployed - Less Than 5 Weeks (Thousands of Persons)	5 X X X					
UEMPSTLY514	Number of Civilian Unemployed for 5 to 14 Weeks (Thousands of Persons)	5 X X X					
UEMPSTLY526	Number of Civilian Unemployed for 15 to 26 Weeks (Thousands of Persons)	5 X X X					
UEMPSTLY704	Number of Civilian Unemployed for 27 Weeks and Over (Thousands of Persons)	5 X X X					
AWHRMAN	Average Weekly Hours of Production and Nonsmokers: Manufacturing (Hours)	1 X X X					
AWHRMAN	Average Weekly Overtime Hours of Production and Nonsmokers: Manufacturing (Hours)	2 X X X					
HWLx	Help-Wanted Index	1 X X X					
CES0660000007	Average Weekly Hours of Production and Nonsmokers: Goods-Producing	2 X X X					
CLMASS	Initial Claims	2 X X X					
HOUST	Housing Starts: Total: New Privately Owned Housing Units Started	5 X X X					
HOUSTDF	Privately Owned Housing Starts: 5-Unit Structures or More	5 X X X					
HOUSTJW	Housing Starts in Midwest Census Region (Thousands of Units)	5 X X X					
HOUSTNE	Housing Starts in Northeast Census Region (Thousands of Units)	5 X X X					
HOUSTS	Housing Starts in South Census Region (Thousands of Units)	5 X X X					
HOUSTW	Housing Starts in West Census Region (Thousands of Units)	5 X X X					
RSFAM	Real Retail and Food Services Sales (Millions of Channel 2012 Dollars)	5 X X X					
AMDSINOx	Real Manufacturers New Orders: Durable Goods (Millions of 2012 Dollars)	5 X X X					
AMDSDUOx	Real Value of Manufactures Unfilled Orders for Durable Goods Industries	5 X X X					
BUSINVx	Total Business Inventories (Millions of Dollars)	5 X X X					
ISSRATx	Total Business: Inventories to Sales Ratio	2 X X X					
PCECTPE	Personal Consumption Expenditure: Chain-type Price Index	6 X X X					
PCEFLPE	Personal Consumption Expenditure: Chain-type Price Index	6 X X X					
G2DFCTPI	Gross Domestic Product: Chain-type Price Index	6 X X X					
G3DFCTPI	Gross Private Domestic Investment: Chain-type Price Index	6 X X X					
IFDSB	Business Sector: Implicit Price Deflator (Index 2012=100)	5 X X X					
ID	FEER Code	Description	Transformation Codes	S	M	L	XL
----	-----------	-------------	----------------------	---	---	---	----
91	DGDSRG3Q086SBEA	Personal consumption expenditures: Goods	6	X	X		
92	DGDSRG3Q086SBEA	Personal consumption expenditures: Services	6	X	X		
93	DGDSRG3Q086SBEA	Personal consumption expenditures: Non-durables goods	6	X	X		
95	DGDSRG3Q086SBEA	Personal consumption expenditures: Services: Household consumption expenditures	6	X	X		
96	DMTRGRGQ086SBEA	Personal consumption expenditures: Durable goods: Motor vehicles and parts	6	X	X		
97	FMTRGQ086SBEA	Personal consumption expenditures: Durables: Furnishings and durable household equipment	6	X	X		
98	DREGQ086SBEA	Personal consumption expenditures: Durables: Recreational goods and vehicles	6	X	X		
99	DGDSRG3Q086SBEA	Personal consumption expenditures: Goods: Other durables goods	6	X	X		
100	DFXARGQ086SBEA	Personal consumption expenditures: Non-durables goods: Food and beverages purchased for off-premises consumption	6	X	X		
101	DCLORQ086SBEA	Personal consumption expenditures: Non-durables goods: Clothing and footwear	6	X	X		
102	DQGRQ086SBEA	Personal consumption expenditures: Non-durables goods: Gasoline and other energy goods	6	X	X		
103	DGDSRG3Q086SBEA	Personal consumption expenditures: Other non-durables goods	6	X	X		
104	DHTRGRGQ086SBEA	Personal consumption expenditures: Services: Housing and utilities	6	X	X		
105	DHTRGRGQ086SBEA	Personal consumption expenditures: Services: Health care	6	X	X		
106	DTRSGQ086SBEA	Personal consumption expenditures: Transportation services	6	X	X		
107	DTRGQ086SBEA	Personal consumption expenditures: Recreation services	6	X	X		
108	DPXARGQ086SBEA	Personal consumption expenditures: Services: Food services and accommodations	6	X	X		
109	DFSRGQ086SBEA	Personal consumption expenditures: Financial services and insurance	6	X	X		
110	DTSRGQ086SBEA	Personal consumption expenditures: Other services	6	X	X		
111	CPFURS	Consumer Price Index for All Urban Consumers: All Items	6	X	X	X	
112	CPFURE	Consumer Price Index for All Urban Consumers: All Items Less Food & Energy	6	X	X	X	
113	WPSFD49027	Producer Price Index by Commodity for Finished Goods	6	X	X		
114	FICPOC	Producer Price Index for All Commodities	6	X	X		
115	WPSFD40052	Producer Price Index by Commodity for Finished Consumer Goods	6	X	X		
116	FPFDCC	Producer Price Index by Commodity Industrial Commodities	6	X	X		
117	WPSFDC	Producer Price Index by Commodity Intermediate Materials: Supplies & Components	6	X	X		
118	WPSFUG	Producer Price Index by Commodity for Fuels and Related Products and Power	5	X	X		
119	0LPBICEx	Real Crude Oil Price: West Texas Intermediate (WTI) - Cushing, Oklahoma	5	X	X		
120	WPSFD6	Producer Price Index: Crude Materials for Further Processing	6	X	X		
121	FPFD3M	Producer Price Index: Commodities: Metals and metal products. Primary nonferrous metals	6	X	X		
122	CPATPPSL	Consumer Price Index for All Urban Consumers: Apparel	6	X	X		
123	CPTURS	Consumer Price Index for All Urban Consumers: Transportation	6	X	X		
124	CPFDHDSL	Consumer Price Index for All Urban Consumers: Medical Care	6	X	X		
125	CUSF00008AC	Consumer Price Index for All Urban Consumers: Commodities	6	X	X		
126	CESF000008t	Real Average Hourly Earnings of Production and Nonproduction Employees: Construction	5	X	X		
127	CESF000008t	Real Average Hourly Earnings of Production and Nonproduction Employees: Manufacturing	5	X	X		
128	CPDI0NFB	Nonfarm Business Sector, Real Compensation Per Hour (Index 2012=100)	5	X	X		
129	CESF00000008	Average Hourly Earnings of Production and Nonproduction Employees	6	X	X	X	
130	EODMFS	Effective Federal Funds Rate (Percent)	2	X	X	X	
131	TBMIS	3-Month Treasury Bill Secondary Market Rate (Percent)	2	X	X		
132	TTSMS	6-Month Treasury Bill Secondary Market Rate (Percent)	2	X	X		
133	G1	1-Year Treasury Constant Maturity Rate (Percent)	2	X	X	X	
134	GS10	10-Year Treasury Constant Maturity Rate (Percent)	2	X	X	X	
135	AAA	Moody's Seasoned Aus Corporate Bond Yield (Percent)	2	X	X		
136	BAA	Moody's Seasoned Aus Corporate Bond Yield (Percent)	2	X	X		
137	BAA30YM	Moody's Seasoned Aus Corporate Bond Yield Relative to Yield on 10-Year Treasury	1	X			
138	TBIS3Mx	6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Percent)	1	X			
139	GISTBMx	1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent)	1	X			
140	GISTBMx	10-Year Treasury Constant Maturity Minus 5-Year Treasury Bill, secondary market (Percent)	1	X			
141	G5	5-Year Treasury Constant Maturity Rate	2	X			
142	TRBSFFM	3-Month Treasury Constant Maturity Minus Federal Funds Rate	1	X			
143	TFFFM	5-Year Treasury Constant Maturity Minus Federal Funds Rate	X	X			
144	AAFFM	Moody's Seasoned Aus Corporate Bond Minus Federal Funds Rate	1	X			
145	MIRREAL	Real Mid Money Stock	5	X	X		
146	MIRREAL	Real Mid Money Stock (Percent)	5	X			
147	BUSL0Axx	Real Commercial and Industrial Loans, All Commercial Banks	5	X	X		
148	AUSL0Axx	Real Consumer Loans at All Commercial Banks	5	X	X		
149	NSREVSLx	Total Real Nontraditional Loans and purchased, Outstanding	5	X	X		
150	REALLx	Real Estate Loans, All Commercial Banks	5	X	X		
151	TOTLSx	Total Consumer Credit Outstanding	5	X	X		
152	TOTRESNS	Total Reserve of Depository Institutions	6	X	X		
153	NDORORNS	Reserve Of Depository Institutions, Nonreserve	7	X			
154	DTCOLYVHBM	Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies	6	X			
155	DCTCHTBM	Total Consumer Loans and Leases Outstanding Owned and Securitized by Finance Companies	6	X			
156	SVENT	Securities in Bank Credit at All Commercial Banks	6	X			
157	TASHIOx	Real Total Assets of Household and Nonprofit Organizations	5	X			
158	EKEUx	Switzerland / U.S. Foreign Exchange Rate	5	X	X		
159	EXSFXa	Japa / U.S. Foreign Exchange Rate	5	X	X		
160	EXSFXa	U.S. / U.K. Foreign Exchange Rate	5	X	X		
161	EXACx	Canada / U.S. Foreign Exchange Rate	5	X	X		
162	SP500x	S&P's Common Stock Price Index: Composite	5	X	X		
163	EPOCBx	S&P's Common Stock Price Index: Industrials	5	X	X		
164	SP400x	S&P's Composite Common Stock: Dividend Yield	2	X			

Notes: This table provides an overview of the dataset employed. The transformation codes are applied to each time series y_t and described in McCracken and Ng (2020): (1) no transformation; (2) Δy_{t+1}; (3) $\Delta^2 y_{t+1}$; (4) $\log(y_{t+1})$; (5) $\Delta \log(y_{t+1})$; (6) $\Delta^2 \log(y_{t+1})$; (7) $\Delta (y_{t+1}/y_t - 1)$. ‘X’ marks the inclusion of one variable into one of the datasets.