Therapeutic effects of exercise interventions for patients with chronic kidney disease: an umbrella review of systematic reviews and meta-analyses

Fan Zhang, Yan Bai, Xing Zhao, Liuyan Huang, Weiqiong Wang, Wenqin Zhou, Huachun Zhang

ABSTRACT

Objective To conduct an overview of meta-analyses evaluating the impact of exercise interventions on improving health outcomes in patients with chronic kidney disease (CKD).

Design An umbrella review of systematic reviews and meta-analyses of intervention trials was performed.

Data sources PubMed, Web of Science, Embase and the Cochrane Database of Systematic Reviews were searched from inception to 9 March 2021 for relevant articles.

Eligibility criteria for selecting studies Eligible meta-analyses were those that compared the effects of usual care with and without exercise in patients with CKD. Health outcomes included those related to cardiovascular risk factors, physical fitness, dialysis-related symptoms, dialysis adequacy and health-related quality of life. Systematic reviews and meta-analyses that included fewer than 3 RCTs or fewer than 100 participants were excluded from the analysis.

Results A total of 31 eligible systematic reviews and meta-analyses were included that assessed 120 outcomes. For physical fitness, there was a moderate effect size for cardiorespiratory fitness, muscle strength and body composition and small effect size for muscle endurance. The effect sizes for cardiovascular risk factors, dialysis-related symptoms and health-related quality of life outcomes were small. According to the Grading of Recommendations, Assessment, Development and Evaluation framework, most outcomes were low or very low quality.

Conclusion Exercise appears to be a safe way to affect cardiovascular risk factors, such as blood pressure, improve physical fitness and health-related quality of life and reduce dialysis-related symptoms in patients with CKD.

PROSPERO registration number CRD42020223591.

INTRODUCTION

Chronic kidney disease (CKD) is a long-term condition characterised by the gradual loss of renal function over time. In the past 30 years, the mortality attributed to CKD increased by 41.5%, a percentage rate that exceeds several cancers and cardiovascular diseases. With the increasing incidence of hypertension, diabetes and obesity, this number will continue to rise. Patients with CKD experience a high symptom burden with progressively impaired physical performance, leading to decreased kidney function, lower health-related quality of life (HRQOL), increased risk of cardiovascular events and increased all-cause mortality.

With an increasing number of patients with CKD living longer, the effectiveness and accessibility of their health services have never been more critical. Renal rehabilitation is a multifaceted intervention programme. Rehabilitation consists of exercise interventions, diet control, fluid management and psychological support to alleviate physical/mental deficiencies caused by kidney disease and renal replacement therapy to improve disease prognosis and prolong life expectancy. Since exercise is the core of renal rehabilitation, there is an increasing number of systematic reviews and meta-analyses investigating the influence of exercise on health outcomes in patients with CKD.

Data from large cohort studies show that mortality risk was lower for regular (equal to or more than once/week) versus non-regular (less than once/week) exercisers (adjusted
HR=0.73, 95% CI: 0.69 to 0.78), and mortality risk tended to decrease as exercise frequency increased (HR for participants who exercised once/week=0.82, 95% CI: 0.75 to 0.91; HR for those who exercised 6–7 times/week=0.69, 95% CI: 0.63 to 0.76) and patients who exercised daily had lower mortality risk (HR=0.84, 95% CI: 0.74 to 0.96) than patients exercising once/week.9 Based on data from 41 randomised controlled trials (RCT), Heiwe et al reported practical improvements in aerobic capacity, muscular function and walking capacity in patients with CKD after exercise,10 indicators that are the core of frailty.11 In other words, exercise is an essential non-pharmacological strategy to improve frailty symptoms in patients with CKD, the latter being a significant cause of sedentary behaviour in such population.12 Because of this, some researchers and guidelines recommend that healthcare providers prescribe exercise for patients with CKD.15–16 However, the results of meta-analyses of exercise in patients with CKD are inconsistent.

This umbrella review aims to assess the therapeutic effects of exercise on cardiovascular risk factors, physical fitness, dialysis-related symptoms, dialysis adequacy and HRQOL in patients with CKD, summarised in systematic reviews and meta-analyses.

METHODS AND ANALYSIS

This umbrella review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.17 The review was prospectively registered (PROSPERO: CRD42020225591), and the protocol for this review was published.18

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Literature search

A comprehensive search strategy was performed to identify systematic reviews and meta-analyses of patients with CKD that compared usual care procedures with and without exercise interventions. PubMed, Embase, the Cochrane Database of Systematic Reviews and the Web of Science were searched for systematic reviews and meta-analyses from inception to 9 March 2021. The detailed search strategy is summarised in online supplemental table S1. The references of existing systematic reviews were also screened. Any reviews considered potentially relevant by at least one of the following: cardiovascular risk factors (blood pressure), physical fitness, dialysis-related symptoms, dialysis adequacy and HRQOL. The methods to assess each outcome are shown in online supplemental figure S1 (4) systematic reviews with meta-analysis of intervention trials (RCTs and quasi-experimental studies). A meta-analysis that included fewer than 3 studies or fewer than 100 participants was excluded. For duplicate literature, the article with the most comprehensive data was selected. The language was restricted to English. Letters to the editor, trial protocols and conference abstracts were excluded.

Study selection

Two independent authors screened all titles and abstracts compiled from the search results. Each paper was examined for appropriate eligibility criteria, and a third author resolved disagreements.

Data extraction

Requisite data were extracted independently by two independent authors into a standardised format that included: (1) study, (2) stage of CKD, (3) the number of included studies and participants, (4) exercise type, (5) exercise mode (intradialytic or interdialytic), (6) standardised mean difference (SMD) or mean difference (MD) with corresponding 95% CI for each outcome, (7) p values, (8) F values and (9) exercise-related adverse events.

Risk of bias assessment

A Measurement Tool to Assess Systematic Reviews-2 (AMSTAR-2) was used to assess the risk of bias among the included systematic reviews.19 This checklist contains 16 items, and each item was answered with a ‘yes’ (1 point), ‘partial yes’ (0.5 points) or ‘no’ (0 points). The percentage score for each study was calculated using the total score as the numerator and the highest score of 16 points as the denominator. A meta-analysis scoring ≥80% was classified as high quality, 40%–79% as medium quality and those scoring <40% as low quality.20 Two authors performed the risk of bias assessment independently, and discussions resolved the disagreement.

Data analysis

The summary effect size from each meta-analysis was analysed qualitatively based on the SMD and its 95% CI for each outcome. If they were not presented as SMD in the original meta-analysis, Review Manager V.5.3 was used to convert SMD outcomes. If data could not be converted into SMD, we contacted the authors of the meta-analysis for the data. Effects were considered small (SMD<0.50), moderate (SMD from 0.50 to 0.79) and large (SMD≥0.80).21 F values were interpreted as follows: ≤25% indicate low heterogeneity, 25%<I²<50% indicate mild heterogeneity, 50%<I²≤75% indicate moderate heterogeneity and >75% indicate high heterogeneity.22 The level of evidence for each meta-analysis was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system.23 The quality of evidence was assessed using five domains: risk of
bias, inconsistency, indirectness, imprecision and publication bias. Beginning with an initial score of 4 points, the score for each of these five domains was reduced accordingly: ‘not reported (-1)’, ‘serious (-1)’, ‘very serious (-2)’ or ‘neutral (0)’. Studies were rated as high (4 points), moderate (3 points), low (2 points) or very low (≤1 point) using the GRADE system. The GRADE assessment was conducted independently by two authors. Any differences were resolved by discussion or adjudication by a third author. The incidence of adverse events was based on the number of reported divided by the patients in the exercise group.

RESULTS
Characteristics of the meta-analyses
The search identified 2305 potential articles, of which 648 were duplicates. After reading the title and abstract, 1598 papers were excluded and 28 were excluded after full-text review resulting in 31 final studies. The PRISMA flow chart of study inclusion is illustrated in figure 1. The reasons for excluded articles are listed in online supplemental table S2.

The 31 included systematic reviews and meta-analyses were published from September 2011 through March 2021. The number of included studies assessed in the articles ranged from 3 to 24, with a mean of 8 studies. The study sample sizes ranged from 106 to 874 participants, with a mean of 304. The characteristics of the included meta-analyses are shown in online supplemental table S3. SMD data from four papers could not be obtained from the authors, and the data of their effect size were presented as MD. Scores based on AMSTAR-2 ranged from 34.4% to 100.0%, with an average score of 68.0%. Seven (22.6%) systematic reviews were rated high quality, while 23 (74.2%) were rated medium quality, and just one (0.3%) was rated low quality (online supplemental table S4).

Of the GRADE evidence quality of the 120 outcomes, 1.7% (2/120) reported evidence of high quality, 17.5% (21/120) reported evidence of moderate quality, 20.0% (24/120) reported evidence of low quality and 60.8% (73/120) reported evidence of very low quality (online supplemental table S5).
Blood pressure

There were 25 meta-analyses (reported in 13 articles) investigating the effect of exercise on cardiovascular risk factors (systolic and diastolic blood pressure) in patients with CKD. Of which, the number of studies ranged from 3 to 12 with a mean of 314 participants (range from 198 to 514) were included in each meta-analysis (table 1).

The effect of exercise on systolic blood pressure was investigated in 13 meta-analyses with a mild heterogeneity (average $I^2=49.1\%$), 20 30 33 34 40 41 45 46–49 and 2 reported a positive statistically significant outcome. Of the 13 meta-analyses, 9 reported a small effect size, and 1 reported moderate. GRADE assessment of quality indicated the overall evidence as being very low (10 meta-analyses, low (2 meta-analyses and 1 meta-analysis), and all were graded as low or very low quality of evidence.

Cardiorespiratory fitness

There were 34 meta-analyses (reported in 21 articles) that investigated the effects of exercise on cardiorespiratory fitness in patients with CKD using a peak oxygen uptake (18 of 34), a 6 min walk test (14 of 34) or aerobic capacity (2 of 34). The meta-analyses included a mean of 9 studies (ranging from 5 to 20) and a mean of 330 participants (ranging from 179 to 504) (table 2).

The effect of exercise on peak oxygen consumption was investigated in 18 meta-analyses (reported in 17 articles) with a mild heterogeneity (average $I^2=42.2\%$), 24 25 27 30 32 33 34 36–38 40 41 43 44 47 49 and 1 reported positive statistically significant outcomes.

Of the 18 meta-analyses, 3 reported a low effect size, 25 26 32 34 37 41 45 46 49, and 3 reported a large effect size. GRADE assessment of quality indicated the overall evidence as being very low (nine meta-analyses, low (eight meta-analyses and one meta-analysis), and high (one meta-analysis)). A meta-analysis that included kidney transplant recipients found no statistically significant difference in the SMD of the exercise group ($0.38; 95\% CI: -0.06 to 0.82; p=0.09$). 25

The effect of exercise on the 6 min walk test was investigated in 14 meta-analyses (reported in 13 articles) with a mild heterogeneity (average $I^2=44.9\%$), 25 28–30 32 34 36–38 40 41 43 51 and 13 reported positive statistically significant outcomes. Of the 14 meta-analyses, 2 reported a small effect size, 25 28 5 reported a moderate effect size, 36 37 41 43 51 and 3 reported a large effect size. GRADE assessment of quality indicated the overall evidence as being very low (eight meta-analyses, low (four meta-analyses and one meta-analysis) and moderate (two meta-analyses)). In the meta-analysis by Heiwe and Jacobson showed that regular exercise had significant beneficial effects on aerobic capacity. 10 30

Muscle strength

Ten meta-analyses (reported in nine articles) investigated the effects of exercise on muscle strength in patients with CKD with a low heterogeneity (average $I^2=19.1\%$). 10 26 32 33 35–38 51 The meta-analyses included a mean of 7 studies (ranging from 3 to 12) and a mean of 252 participants (ranging from 115 to 385) (table 3).

Muscle strength was measured using handgrip strength and lower limb muscle strength. For patients in 8 of 10 meta-analyses, exercise resulted in statistically significant improvements in muscle strength. Of the 10 meta-analyses, 3 reported a small effect size, 36 38 51 and 5 reported a moderate effect size, 32 33 35 36 and 2 reported a large effect size. GRADE assessment of quality indicated the overall evidence as being very low (six meta-analyses) and low (four meta-analyses).

Muscle endurance

Nine meta-analyses (reported in eight articles) investigated the effects of exercise on muscle endurance with a mild heterogeneity (average $I^2=29.4\%$). 10 25 33 36 38 40 43 51 An average of 238 participants (ranging from 106 to 461) from 5 studies (ranging from 3 to 7) were included in the meta-analysis (table 4).

Muscle endurance was measured using a sit-to-stand test, timed up and go test and walking capacity exercise. Pooled effect estimates from all nine meta-analyses suggested a beneficial effect of exercise on muscle endurance in patients with CKD. Seven of the nine meta-analyses reported power to detect a statistically significant effect. Two meta-analyses reported moderate effect size and five reported small effect size. GRADE assessment of quality indicated the overall evidence as being very low (seven meta-analyses), low (one meta-analyses) and moderate (one meta-analyses).

Body composition

Four meta-analyses consisting of 9 studies (ranging from 4 to 13) and a mean of 335 participants (ranging from 166 to 466) included body mass index as an outcome. 27 47 49 52 There was a low heterogeneity (average $I^2=12.0\%$) among the study outcomes (table 5).

Three of the four meta-analyses showed a positive statistically significant impact on body mass index using exercise interventions in patients with CKD. Small effect size was reported in all meta-analyses. GRADE assessment of quality indicated the overall evidence as being very low (one meta-analysis), low (two meta-analyses) and moderate (one meta-analysis).

Dialysis-related symptoms

Nine meta-analyses (reported in seven articles) investigated the effect of exercise on dialysis-related symptoms in patients with CKD. Each meta-analysis included a mean of 7 studies (ranging from 3 to 12...
Table 1 Summary of the effect of exercise on cardiovascular risk factor in patients with CKD

Study	Design	Stage of CKD	k (n)*	Exercise type	Mode	SMD or MD (95% CI)	Effect size	P value	I²	GRADE	
SBP	Pei et al⁴⁰	RCT/Quasi-RCT	Mixed	12 (514)	AE	–	MD: −2.91 (−6.68 to 0.87)	–	0.13	40.0%	⬤⬤⬤
	Wu et al⁴⁸	RCT/Quasi-RCT	Predialysis	3 (204)	AE+RT	–	SMD: −0.19 (−0.46 to 0.08)	Small	0.16	50.0%	⬤⬤⬤
	Chen et al⁵⁷	RCT	KTRs	5 (198)	Mixed	–	SMD: 0.18 (−0.10 to 0.46)	Small	0.21	0.0%	⬤⬤⬤
	Pu et al⁴¹	RCT	HD	7 (287)	Mixed	Intradialytic	SMD: −0.28 (−0.52 to 0.05)	Small	0.02	0.0%	⬤⬤⬤
	Yamamoto et al³⁸	RCT	Predialysis	10 (392)	AE	–	SMD: −0.75 (−1.24 to 0.26)	Moderate	0.003	80.3%	⬤⬤⬤
	Thompson et al⁴⁶	RCT	Predialysis	10 (335)	Mixed	–	MD: −4.30 (−9.00 to 0.40)	–	N.P.	50.4%	⬤⬤⬤
	Zhang et al⁶²	RCT	Predialysis	14 (463)	Mixed	–	SMD: −0.41 (−0.70 to 0.11)	Small	0.007	55.0%	⬤⬤⬤
	Huang et al³⁴	RCT	HD	7 (260)	Mixed	Mixed	SMD: −0.17 (−0.41 to 0.08)	Small	0.18	8.0%	⬤⬤⬤
	Heiwe et al³³	RCT/Quasi-RCT	Mixed	9 (347)	Mixed	Mixed	SMD: 0.25 (0.04 to 0.47)	Small	0.02	0.0%	⬤⬤⬤
	Heiwe and Jacobson¹⁰	RCT	HD	10 (312)	Mixed	–	SMD: 0.04 (−0.34 to 0.41)	Small	0.8	58.0%	⬤⬤
	Sheng et al⁴³	RCT	HD	7 (296)	Mixed	Intradialytic	SMD: −0.27 (−0.50 to 0.04)	Small	0.02	0.0%	⬤⬤⬤
	Ferrari et al³⁰	RCT	HD	10 (332)	AE	Intradialytic	MD: −10.07 (16.35 to 3.78)	–	0.002	44.0%	⬤⬤⬤
	Vanden Wyngaert et al¹⁷	RCT	Predialysis	8 (269)	AE	–	SMD: 0.08 (−0.58 to 0.74)	Small	0.81	84%	⬤⬤⬤
DBP	Pei et al⁴⁰	RCT/Quasi-RCT	Mixed	12 (514)	AE	–	MD: −1.11 (−3.41 to 1.20)	–	0.35	0%	⬤⬤⬤
	Wu et al⁴⁸	RCT/Quasi-RCT	Predialysis	4 (194)	AE+RT	–	SMD: −0.47 (−1.10 to 0.15)	Small	0.14	70.0%	⬤⬤⬤
	Chen et al⁵⁷	RCT	KTRs	5 (198)	Mixed	–	SMD: 0.04 (−0.45 to 0.52)	Small	0.89	59.0%	⬤⬤⬤
	Pu et al⁴¹	RCT	HD	7 (287)	Mixed	Intradialytic	SMD: −0.32 (−0.55 to 0.08)	Small	0.008	42.0%	⬤⬤⬤
	Thompson et al⁴⁶	RCT	Predialysis	8 (303)	Mixed	–	MD: −1.18 (−4.76 to 2.40)	–	N.P.	60.5%	⬤⬤⬤
	Zhang et al⁶²	RCT	Predialysis	12 (399)	Mixed	–	SMD: −0.31 (−0.71 to 0.08)	Small	0.12	70.0%	⬤⬤⬤
	Huang et al³⁴	RCT	HD	7 (260)	Mixed	Mixed	SMD: −0.23 (−0.69 to 0.24)	Small	0.34	68.0%	⬤⬤⬤
	Heiwe et al³³	RCT/Quasi-RCT	Mixed	11 (419)	Mixed	–	SMD: 0.16 (−0.04 to 0.36)	Small	0.11	40.0%	⬤⬤⬤
	Heiwe and Jacobson¹⁰	RCT	HD	10 (212)	Mixed	Mixed	SMD: 0.17 (−0.16 to 0.49)	Small	0.3	45.0%	⬤⬤⬤
	Sheng et al⁴³	RCT	HD	7 (296)	Mixed	Intradialytic	SMD: −0.24 (−0.47 to 0.01)	Small	0.04	52.1%	⬤⬤⬤
	Ferrari et al³⁰	RCT	HD	10 (334)	AE	Intradialytic	MD: −2.96 (−7.71 to 1.78)	–	0.22	0.0%	⬤⬤⬤
	Vanden Wyngaert et al¹⁷	RCT	Predialysis	7 (237)	AE	–	SMD: −0.09 (−0.78 to 0.59)	Small	0.79	83%	⬤⬤⬤

Mixed means aerobic exercise combined with resistance training.

*Number of included studies and corresponding sample size.

AE, aerobic exercise; OXLD, chronic kidney disease; DBP, diastolic blood pressure; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HD, haemodialysis; KTRs, kidney transplant recipients; MD, mean difference; N.P., no report; RCT, randomised controlled trial; RT, resistance training; SBP, systolic blood pressure; SMD, standardised mean difference.
Study	Design	Stage of CKD	k (n)*	Exercise type	Mode	SMD or MD (95% CI)	Effect size	P value	I^2	GRADE
Pei et al⁴⁰	RCT/Quasi-RCT	Mixed	17 (464)	AE	–	MD: 2.08 (1.10 to 3.05)	–	<0.001	25.0%	★★★
Nakamura et al³⁸	RCT/Cross-over	Predialysis	10 (401)	Mixed	–	SMD: 0.88 (0.53 to 1.23)	Large	<0.001	56.0%	★★★
Chen et al³⁷	RCT	KTRs	6 (202)	Mixed	–	SMD: 0.33 (-0.02 to 0.69)	Small	0.06	27.0%	★★★
Andrade et al²⁴	RCT	HD	5 (201)	AE+RT	Intradialytic	SMD: 1.01 (0.71 to 1.30)	Large	<0.001	0.0%	★★★★★
Chung et al²⁸	RCT	HD	6 (238)	Mixed	Intradialytic	SMD: 0.55 (0.18 to 0.92)	Moderate	0.003	52.9%	★★★
Pu et al¹¹	RCT	HD	10 (400)	Mixed	Intradialytic	SMD: 0.57 (0.23 to 0.90)	Moderate	<0.001	59.0%	★★★
Yamamoto et al¹⁹	RCT	Predialysis	10 (365)	AE	–	SMD: 0.54 (0.29 to 0.78)	Moderate	<0.001	24.6%	★★★★★
Yang et al²⁵	RCT	Mixed	5 (179)	Mixed	–	SMD: 0.33 (0.03 to 0.63)	Small	0.003	47.0%	★★★
Huang et al³⁴	RCT	HD	10 (371)	Mixed	Mixed	SMD: 0.73 (0.52 to 0.95)	Moderate	<0.001	71.0%	★★★
Matsuzawa et al¹⁷	RCT	HD	18 (582)	Mixed	Mixed	SMD: 0.62 (0.38 to 0.87)	Moderate	<0.001	49.0%	★★★
Smart et al⁴⁴	RCT	HD	8 (365)	Mixed	Mixed	SMD: 0.75 (0.39 to 1.11)	Moderate	<0.001	60.0%	★★★
Bogataj et al²³	RCT	HD	20 (504)	Mixed	Mixed	SMD: 0.58 (0.32 to 0.85)	Moderate	<0.001	57.4%	★★★
Sheng et al⁴³	RCT	HD	7 (310)	Mixed	Intradialytic	SMD: 0.53 (0.30 to 0.76)	Moderate	<0.001	36.0%	★★★
Neto et al³²	RCT	HD	10 (394)	Mixed	Intradialytic	SMD: 0.60 (0.15 to 1.04)	Moderate	0.008	76.0%	★★★
Ferrari et al²⁰	RCT	HD	5 (201)	AE+RT	Intradialytic	MD: 5.41 (4.03 to 6.79)	–	<0.001	0.0%	★★★
Ferrari et al²⁰	RCT	HD	7 (248)	AE	Intradialytic	MD: 2.07 (0.42 to 3.72)	–	<0.001	0.0%	★★★
Vanden Wyngaert et al¹⁷	RCT	Predialysis	11 (325)	AE	–	SMD: 0.99 (0.49 to 1.48)	Large	<0.001	74.0%	★★★
Oguchi et al²⁹	RCT	KTRs	4 (182)	Mixed	–	SMD: 0.38 (-0.06 to 0.82)	Small	0.09	45.0%	★★★
6MWT										
Pei et al⁴⁰	RCT/Quasi-RCT	Mixed	8 (496)	AE	–	MD: 0.04 (-0.52 to 0.59)	–	0.90	86.0%	★★★★★
Nakamura et al³⁸	RCT/Cross-over	Predialysis	5 (392)	Mixed	–	SMD: 1.04 (0.17 to 1.90)	Large	0.02	92.0%	★★★
Lu et al¹⁶	RCT	Dialysis	11 (300)	Mixed	Mixed	SMD: 0.52 (0.31 to 0.72)	Moderate	<0.001	39.0%	★★★
Chung et al²⁸	RCT	HD	4 (127)	Mixed	Intradialytic	SMD: 0.44 (0.09 to 0.80)	Small	0.015	0.0%	★★★
Zhang et al⁶¹	RCT	HD	8 (299)	RT	Intradialytic	SMD: 0.52 (0.28 to 0.75)	Moderate	<0.001	18.7%	★★★
Pu et al¹¹	RCT	HD	7 (219)	Mixed	Intradialytic	SMD: 0.57 (0.30 to 0.84)	Moderate	<0.001	0.0%	★★★
Clarkson et al⁷⁹	RCT	Dialysis	18 (744)	Mixed	–	MD: 33.64 (23.74 to 43.54)	–	<0.001	0.0%	★★★
Huang et al²⁴	RCT	HD	7 (205)	Mixed	Mixed	SMD: 1.01 (0.26 to 1.76)	Large	0.008	83.0%	★★★
Matsuzawa et al¹⁷	RCT	HD	10 (326)	Mixed	Mixed	SMD: 0.58 (0.24 to 0.93)	Moderate	<0.001	53.0%	★★★
Bogataj et al²³	RCT	HD	19	Mixed	Mixed	SMD: 0.44 (0.21 to 0.67)	Small	<0.001	49.6%	★★★
Sheng et al⁴³	RCT	HD	4 (146)	Mixed	Intradialytic	SMD: 0.58 (0.23 to 0.93)	Moderate	<0.001	89.7%	★★★
Neto et al³²	RCT	HD	6 (158)	Mixed	Intradialytic	SMD: 0.96 (0.11 to 1.80)	Large	0.03	82.0%	★★★
Ferrari et al²⁰	RCT	HD	6 (211)	RT	Intradialytic	MD: 68.5 (23.05 to 107.96)	–	<0.001	36.0%	★★★
Ferrari et al²⁰	RCT	HD	6 (188)	AE	Intradialytic	MD: 64.98 (43.86 to 86.11)	–	<0.001	0.0%	★★★

Continued
Table 2 Continued

Study Design	Stage of CKD	Exercise type	Mode	SMD or MD (95% CI)	Effect size	P value	I²	GRADE	
Heiwe et al³³	RCT/Quasi-RCT	Mixed	24 (847)	Mixed	SMD: −0.56 (−0.70 to 0.42)	Moderate	<0.001	12.0%	◄◯◯◯
Heiwe and Jacobson¹⁰	RCT	HD	21 (374)	Mixed	SMD: −0.80 (−1.02 to 0.58)	Large	<0.001	0.0%	◄◯◯◯

Mixed means aerobic exercise combined with resistance training.

*Number of included studies and corresponding sample size.

AE, aerobic exercise; CKD, chronic kidney disease; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HD, haemodialysis; KTRs, kidney transplant recipients; MD, mean difference; 6MWT, 6min walk test; RCT, randomised controlled trial; RT, resistance training; SMD, standardised mean difference; VO₂peak, peak oxygen uptake.

Table 3 Summary of the effect of exercise on muscle strength in patients with CKD

Study Design	Stage of CKD	Exercise type	Mode	SMD or MD (95% CI)	Effect size	P value	I²	GRADE	
Cheema et al²⁶	RCT	Predialysis	7 (249)	RT	SMD: 1.15 (0.80 to 1.49)	Large	0.161	35.0%	◄◯◯◯
Nakamura et al³³	RCT/Cross-over	Predialysis	4 (119)	Mixed	SMD: 0.35 (0.03 to 0.73)	Small	0.07	7.0%	◄◯◯◯
Lu et al³⁶	RCT	Dialysis	5 (234)	Mixed	SMD: 0.59 (0.20 to 0.98)	Moderate	0.003	52.0%	◄◯◯◯
Lu et al³⁶	RCT	Dialysis	7 (224)	Mixed	SMD: 0.47 (0.20 to 0.74)	Small	<0.001	0.0%	◄◯◯◯
Zhang et al³¹	RCT	HD	6 (300)	RT	SMD: 0.35 (0.12 to 0.58)	Small	0.003	41.6%	◄◯◯◯
Heiwe et al³³	RCT/Quasi-RCT	Mixed	9 (358)	Mixed	SMD: −0.52 (−0.73 to 0.31)	Moderate	<0.001	0.0%	◄◯◯◯
Heiwe and Jacobson¹⁰	RCT	HD	12 (385)	Mixed	SMD: −0.56 (−0.77 to 0.35)	Moderate	<0.001	0.0%	◄◯◯◯
Matsuzawa et al³⁷	RCT	HD	9 (281)	Mixed	SMD: 0.94 (0.67 to 1.21)	Large	<0.001	10.0%	◄◯◯◯
Neto et al³²	RCT	HD	9 (250)	Mixed	SMD: 0.61 (0.39 to 0.83)	Moderate	<0.001	58.9%	◄◯◯◯
Ju et al³⁵	RCT	Mixed	3 (115)	Mixed	SMD: 0.52 (0.14 to 0.89)	Moderate	0.007	0.0%	◄◯◯◯

Mixed means aerobic exercise combined with resistance training.

*Number of included studies and corresponding sample size.

CKD, chronic kidney disease; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HD, haemodialysis; MD, mean difference; RCT, randomised controlled trial; RT, resistance training; SMD, standardised mean difference.
Table 4 Summary of the effect of exercise on muscle endurance in patients with CKD

Study	Design	Stage of CKD	k (n)*	Exercise type	Mode	Outcome	SMD or MD (95% CI)	Effect size	P value	I²	GRADE
Lu et al³⁶	RCT	Dialysis	3 (193)	Mixed	Mixed	STS 10	MD: −4.69 (−9.01 to 0.38)	–	0.028	72.2%	☀️☀️☀️
Bogataj et al²⁵	RCT	HD	5 (461)	Mixed	–	STS 10	SMD: −0.55 (−1.00 to 0.09)	Moderate	0.019	71.6%	☀️☀️☀️
Lu et al³⁶	RCT	Dialysis	6 (240)	Mixed	Mixed	STS 30	SMD: 0.43 (0.17 to 0.69)	Small	0.001	2.0%	☀️☀️
Zhang et al³¹	RCT	HD	5 (164)	RT	Intradialytic STS 30	SMD: 0.42 (0.11,0.74)	Small	0.008	0.0%	☀️☀️	
Sheng et al³³	RCT	HD	3 (106)	Mixed	Intradialytic STS 60	SMD: 0.71 (0.31,1.12)	Moderate	<0.001	0.0%	☀️☀️	
Pei et al²³	RCT/Quasi-RCT	Mixed	5 (445)	AE	–	STS 60	MD: 2.08 (1.1,3.05)	–	0.98	82.0%	☀️☀️
Nakamura et al³⁸	RCT/Cross-over	Predialysis	3 (170)	Mixed	–	TUGT	SMD: −0.42 (−0.73 to 0.11)	Small	0.007	0.0%	☀️☀️
Heiwe et al³³	RCT/Quasi-RCT	Mixed	7 (191)	Mixed	–	Walking capacity	SMD: −0.48 (−0.79 to 0.17)	Small	0.003	2.0%	☀️☀️
Heiwe and Jacobson¹⁰	RCT	HD	7 (174)	Mixed	Mixed	Walking capacity	SMD: −0.33 (−0.67,0.01)	Small	0.06	16.0%	☀️☀️

Mixed means aerobic exercise combined with resistance training.

*Number of included studies and corresponding sample size.

AE, aerobic exercise; CKD, chronic kidney disease; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HD, haemodialysis; MD, mean difference; RCT, randomised controlled trial; RT, resistance training; SMD, standardised mean difference; STS 10, sit-to-stand 10 test; STS 30, sit-to-stand 30 test; STS 60, sit-to-stand 60 test; TUGT, timed up and go test.
Fatigue was measured using the Rhoten Fatigue Scale, Visual Analogue Scale and Haemodialysis Patients Fatigue Scale. The effect of exercise on fatigue was investigated in two meta-analyses with a low heterogeneity (average $I^2=23.5\%$).45, 53 The two meta-analyses revealed a statistically significant effect of exercise on fatigue. Although the meta-analyses reported large effect size, the quality of evidence was low45 or very low53 according to GRADE criteria.

Just one meta-analysis investigated the effects of exercise on restless legs syndrome in patients with CKD.45 The results showed that pooled effect estimated for restless legs syndrome with statistically significant but considerable average heterogeneity ($I^2=87.0\%$). According to GRADE criteria, the overall evidence for this outcome was very low.

Dialysis adequacy

Dialysis adequacy was measured using the value of Kt/V. Six meta-analyses (reported in five articles) investigated the effects of exercise on Kt/V in patients with CKD with a mild heterogeneity (average $I^2=25.7\%$).30, 31, 34, 41, 43 Comprehensive effect estimates from all the six meta-analyses with Kt/V outcomes showed that exercise had a beneficial effect. In three of the six meta-analyses, three reported a small effect size34, 41, 43 and one reported large effect size.31 According to GRADE criteria, all meta-analyses were rated as very low-quality evidence (table 6).

Health-related quality of life

Twenty-nine meta-analyses (reported in 13 articles) investigated the effect of exercise on HRQOL in patients with CKD.26, 28, 32, 34, 35, 37, 39–43, 51, 53 Among them, nine meta-analyses assessed the physical and mental subscale of the Short-Form Health Survey-36.28, 32, 34, 37, 41–43, 51, 53 Each meta-analysis included an average of 6 studies (ranging from 3 to 10) and 311 participants (ranging from 167 to 562). The included meta-analyses had moderate heterogeneity (average $I^2=51.0\%$) (table 7).

Of the 29 meta-analyses, a comprehensive effect estimate of the 28 meta-analyses shows that exercise is beneficial to the HRQOL of patients with CKD, but only 12 of 29 meta-analyses reported a statistically significant outcome.34, 37, 39–43, 53 There were 13 of 29 meta-analyses reporting a small effect size,28, 32, 34, 37, 41, 43, 51 4 were moderate32, 37, 39, 41 and 6 were large.26, 35, 42 According to GRADE criteria, the overall evidence for HRQOL was rated as very low (20 meta-analyses32, 35, 37, 39–43, 53 or low (9 meta-analyses26, 28, 34, 41, 51, 53).

Adverse events

Six meta-analyses reported exercise-related adverse events.26, 28, 30, 34, 43, 44 Of the adverse effects, the most commonly reported were hypotension and cramping. Overall, the incidence of adverse events was approximately 0.3%.
Summary of the effect of exercise on dialysis-related symptoms in patients with CKD

Study	Exercise type	Mode	Outcomes SMD or MD (95% CI)	Effect size	GRADE	
Ferreria et al	HD	Intradialytic Kt/V†	SMD: 2.21 (1.17 to 3.25) Large	<0.001	92.0%	
Pu et al	HD	Mixed	SMD: 0.29 (0.06 to 0.62) Small	0.01	0.0%	
Huang et al	HD	Mixed	SMD: 0.07 (0.01 to 0.15) Small	0.04	0.0%	
Ferrari et al	HD	Mixed	MD: 0.08 (0.00 to 0.14) Small	0.04	0.0%	
Song et al	HD	Mixed	MD: −0.85 (−1.20 to 0.50) Large	<0.001	0.0%	
Zhao et al	Dialysis	Mixed	Fatigue	SMD: −0.97 (−1.32 to 0.62) Large	<0.001	0.0%

*Number of included studies and corresponding sample size.†An indicator to assess dialysis adequacy.

Mixed means aerobic exercise combined with resistance training. AE, aerobic exercise; CKD, chronic kidney disease; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HD, haemodialysis; KTRs, kidney transplant recipients; MD, mean difference; RCT, randomised controlled trial; RLS, restless legs syndrome; RT, resistance training; SMD, standardised mean difference.

Discussion

Summary of main results

Several meta-analyses have been published on exercise interventions in patients with CKD. The findings of these meta-analyses should be assessed to determine if the evidence is consistent among the studies. This umbrella review included 31 eligible articles involving 120 separate meta-analyses investigating the effect of exercise on the health outcomes in patients with CKD. There was low-quality or very low-quality evidence for moderate beneficial effects of exercise on cardiorespiratory fitness, muscle strength and body composition. In addition, there was very low-quality evidence for minor beneficial effects of exercise on muscle endurance, cardiovascular risk factors, dialysis-related symptoms and HRQOL. Few adverse events related to exercise indicate that exercise is safe for patients with CKD.

Interpretation of study effects

Cardiovascular disease is a frequent complication of CKD and is the leading cause of death in patients with CKD. Hypertension is an important modifiable risk factor for cardiovascular diseases and progressive renal dysfunction in patients with CKD. The present overview showed that exercise has a small to moderate effect on blood pressure (SMD: −0.75 to 0.04 for systolic blood pressure and SMD: −0.47 to 0.04 for diastolic blood pressure); it is an appealing strategy for blood pressure control in patients with CKD. However, the dose effects of exercise in the context of the cardiovascular health of patients with CKD should be considered. A recent cohort study found that 7.5–15 metabolic equivalent hours per week (MET-h/week) was associated with the lowest risk of cardiovascular events. Regrettably, the benefit of exercise on cardiovascular risk factors cannot be determined because there are insufficient number of conclusive studies that assess exercise effects on overall cardiovascular health. In a systematic review by Heiwe et al, a meta-analysis including two trials found that exercise improved cardiovascular function in patients with CKD, as reflected in the SD of all normal RR intervals and left ventricular mass index. Furthermore, a recent randomised controlled trial published by Graham-Brown et al indicated that intradialytic exercise could reduce left ventricular mass and is safe, deliverable and well-tolerated. Although the GRADE evidence was low, exercise should be recommended for patients with CKD, particularly those comorbid with cardiovascular disease. Future randomised controlled exercise trials need to focus more on the role of exercise in cardiovascular events in patients with CKD.

Physical fitness is necessary for participation in activities of daily living. The exercise provided the best results in improving cardiorespiratory fitness and muscle strength in patients with CKD, with more than half of the meta-analyses reporting moderate or large effect sizes, regardless of the quality of evidence. Cardiorespiratory fitness is considered a significant independent predictor of mortality, and muscle strength is an essential indicator.
Table 7: Summary of the effect of exercise on health-related quality of life in patients with CKD

Study	Design	Stage of CKD	k (n)*	Exercise type	Mode	Outcomes	SMD or MD (95% CI)	Effect size	P value	I² GRADE	
Salhab et al[^42]	RCT	HD	5 (282)	AE	Intradialytic PCS	SMD: 1.82 (-0.92 to 4.55)	Large	0.19	98.0%	⬤⬤⬤⬤	
Chung et al[^48]	RCT	HD	6 (229)	Mixed	Intradialytic PCS	SMD: 0.46 (0.20 to 0.73)	Small	<0.001	1.90%	⬤⬤⬤⬤	
Zhang et al[^41]	RCT	HD	7 (297)	RT	Intradialytic PCS	SMD: 0.23 (-0.00 to 0.46)	Small	0.055	0.0%	⬤⬤⬤⬤	
Pu et al[^41]	RCT	HD	10 (320)	Mixed	Intradialytic PCS	SMD: 0.57 (0.14 to 1.01)	Moderate	0.01	70.0%	⬤⬤⬤⬤	
Zhao et al[^63]	RCT	Dialysis	5 (186)	Mixed	–	PCS	SMD: 0.31 (0.02 to 0.61)	Small	0.04	46.0%	⬤⬤⬤⬤
Huang et al[^44]	RCT	HD	7 (263)	Mixed	Mixed MCS	SMD: 0.34 (0.09 to 0.59)	Small	0.007	27.0%	⬤⬤⬤⬤	
Matsuzawa et al[^37]	RCT	HD	9 (264)	Mixed	Mixed PCS	SMD: 0.53 (0.52 to 0.82)	Moderate	<0.001	19.0%	⬤⬤⬤⬤	
Sheng et al[^3]	RCT	HD	7 (256)	Mixed	Intradialytic PCS	SMD: 0.30 (0.05 to 0.55)	Small	0.02	39.5%	⬤⬤⬤⬤	
Neto et al[^32]	RCT	HD	5 (193)	Mixed	Intradialytic PCS	SMD: 0.50 (-0.19 to 1.18)	Moderate	0.16	62.0%	⬤⬤⬤⬤	
Salhab et al[^42]	RCT	HD	5 (282)	AE	Intradialytic MCS	SMD: 1.02 (0.31 to 1.73)	Large	0.005	75.0%	⬤⬤⬤⬤	
Chung et al[^48]	RCT	HD	5 (193)	Mixed	Intradialytic MCS	SMD: 0.23 (-0.05 to 0.52)	Small	0.109	0.0%	⬤⬤⬤⬤	
Zhang et al[^41]	RCT	HD	7 (297)	RT	Intradialytic MCS	SMD: 0.13 (-0.10 to 0.36)	Small	0.082	46.5%	⬤⬤⬤⬤	
Pu et al[^41]	RCT	HD	8 (219)	Mixed	Intradialytic MCS	SMD: 0.19 (-0.09 to 0.46)	Small	0.18	30.0%	⬤⬤⬤⬤	
Zhao et al[^63]	RCT	Dialysis	5 (186)	Mixed	–	MCS	SMD: 0.30 (-0.20 to 0.80)	Small	0.24	64.0%	⬤⬤⬤⬤
Matsuzawa et al[^37]	RCT	HD	8 (228)	Mixed	Mixed MCS	SMD: 0.27 (0.02 to 0.51)	Small	0.03	0.0%	⬤⬤⬤⬤	
Sheng et al[^3]	RCT	HD	5 (167)	Mixed	Intradialytic MCS	SMD: 0.14 (-0.16 to 0.43)	Small	0.37	14.8%	⬤⬤⬤⬤	
Neto et al[^32]	RCT	HD	7 (185)	Mixed	Intradialytic MCS	SMD: 0.39 (-0.19 to 0.98)	Small	0.19	50.0%	⬤⬤⬤⬤	
Pei et al[^40]	RCT/Quasi-RCT	Mixed	6 (522)	AE	–	Physical function (SF-36)	MD: 8.36 (-1.24 to 17.95)	–	0.09	76.0%	⬤⬤⬤⬤
Pei et al[^40]	RCT/Quasi-RCT	Mixed	7 (562)	AE	–	Physical role (SF-36)	MD: 14.65 (1.47 to 27.84)	–	0.03	78.0%	⬤⬤⬤⬤
Pei et al[^40]	RCT/Quasi-RCT	Mixed	6 (447)	AE	–	Social function (SF-36)	MD: 8.24 (-1.09 to 17.58)	–	0.08	85.0%	⬤⬤⬤⬤
Pei et al[^40]	RCT/Quasi-RCT	Mixed	6 (513)	AE	–	Pain (SF-36)	MD: 5.94 (1.65 to 10.23)	–	0.007	49.0%	⬤⬤⬤⬤
Pei et al[^40]	RCT/Quasi-RCT	Mixed	7 (562)	AE	–	General health (SF-36)	MD: 8.90 (2.48 to 15.32)	–	0.007	71.0%	⬤⬤⬤⬤
Pei et al[^40]	RCT/Quasi-RCT	Mixed	6 (542)	AE	–	Mental health (SF-36)	MD: 7.30 (-0.94 to 15.54)	–	0.08	84.0%	⬤⬤⬤⬤
Cheema et al[^6]	RCT	Predialysis	6 (223)	RT	–	HRQOL	SMD: 0.83 (0.51 to 1.16)	Large	0.226	27.8%	⬤⬤⬤⬤
Oguchi et al[^39]	RCT	KTRs	4 (179)	Mixed	–	HRQOL	SMD: 0.54 (0.02 to 1.07)	Moderate	0.04	58.0%	⬤⬤⬤⬤

Continued
of physical performance in patients with CKD. It is well known that aerobic exercise is the ‘gold standard’ for cardiorespiratory rehabilitation and resistance training for muscle strength improvement. However, a combination of aerobic and resistance exercises may have a more profound effect on patients with CKD based on the current review. Meta-analyses by Andrade et al showed that combined training benefits cardiorespiratory fitness in patients with CKD.

Both sarcopenia and obesity have increased mortality risk and progression to end-stage renal disease in patients with CKD. Unlike patients receiving dialysis, treatment requirements for patients with predialysis CKD are based on maintaining a ‘healthy weight’ and preventing or attenuating obesity. In this overview, the effectiveness of exercise for body mass index was supported by four analyses with small effect sizes and moderate quality of evidence. Based on the results, exercise may contribute to lower body mass index in patients with CKD. However, additional studies are needed to confirm the benefits of exercise programmes for reducing sarcopenia and weight.

CKD population experience multiple symptoms that affect the patient’s prognosis and HRQOL. Patients who received dialysis treatment commonly reported restless legs syndrome, fatigue and inadequate dialysis due to kidney function deterioration and dialysis-related side effects. These symptoms affect sleep and daily activities and impose considerable psychological distress and economic burden. An increasing number of researchers have investigated the role of exercise as an important non-pharmacological strategy for preventing and/or treating symptoms. The results of a small number of meta-analyses suggested the beneficial effect of exercise on dialysis adequacy (SMD: 0.19 to 2.21) and improving restless legs syndrome (SMD: −1.79) and fatigue symptoms (SMD: −0.97 to −0.85). Nevertheless, the efficacy of exercise in patients with CKD for preventing dialysis-related symptoms awaits new clinical evidence.

With similar results obtained in another overview that included chronic disease, results from this overview demonstrated minor beneficial effects of exercise on HRQOL, irrespective of the evidence level in patients with CKD. Improved HRQOL is vital because most of the population reported poor health and well-being due to diet restriction, weakness and dialysis treatment. The consistent health benefits of exercise in this overview demonstrated that exercise could be a strategy to

Study	Design	Stage of CKD	Exercise type	Mode	Outcomes	SMD or MD (95% CI)	Effect size	P value	I²	GRADE
Ju et al	RCT	Mixed	Symptom/Problem (KDQOL)	Large	SMD: 1.92 (-1.06 to 4.90)	Large	0.21	99.0%	◯◯◯	
Ju et al	RCT	Mixed	Effects of kidney disease (KDQOL)	Large	SMD: −3.69 (-8.56 to 1.19)	Large	0.14	99.0%	◯◯◯	
Ju et al	RCT	Mixed	Burden of kidney disease (KDQOL)	Large	SMD: 1.04 (-0.75 to 2.82)	Large	0.26	98.0%	◯◯◯	

Mixed means aerobic exercise combined with resistance training.
During haemodialysis are usually performed under the supervision of a healthcare worker to ensure safety. It has been reported that all patients with CKD are at risk for cardiovascular events (e.g., arrhythmias, myocardial ischaemia) during exercise. Therefore, medical screening should be performed before exercise to determine which patients may be at increased risk for cardiovascular accidents. In addition, special attention should be paid to dry weight and blood pressure in patients with haemodialysis-dependent CKD to avoid excessive volume loading or dehydration, which may increase the risk associated with exercise.

Implications for clinical

Taken together, there is good reason to recommend exercise for improving prognosis in patients with CKD. Evidence from most randomised controlled trials increased confidence in the findings of this umbrella review. Because most of the meta-analyses assessed in this study did not detail the exercises instituted, it is difficult to make recommendations about the type of exercise that would be the most beneficial for patients with CKD. Although exercise’s effect sizes on improving health prognosis of patients with CKD were generally moderate, these effects may bring some clinical benefit to patients experiencing impaired function or symptom distress. Despite numerous meta-analyses providing only low-quality or very low-quality evidence, similar beneficial effects of exercise were reported by meta-analyses of randomised controlled trials with different grades of evidence. Remarkably, a recently published trial found that a 6-month intradialytic exercise programme effectively reduces healthcare costs. Overall, exercise should be integrated into the care of CKD, but the overall benefit of exercise to CKD is still debatable.

Limitations

This overview has several limitations. First, most meta-analyses included in this review involve haemodialysis patients, limiting the results’ extrapolation to other CKD stages. Second, improvement of flexibility in patients with CKD was not investigated. Flexibility is an important component of physical fitness that impacts muscular injury. The evidence for the efficacy of exercise on flexibility improvement is insufficient for a systematic review or meta-analysis. Third, since the search strategy was limited to English, this review may have language bias. It is unknown whether meta-analyses published in other languages would affect the results of our study. Fourth, the results may have been influenced by an overlap in the original studies. Fifth, the accuracy of the MD data cannot be guaranteed. Sixth, subgroup analyses of different types of exercise were not performed as described in the published protocol because most of the included meta-analyses did not detail the exercises. Seventh, both body composition and cardiovascular risk factors are common terms. However, the inclusion of studies was limited, so this review focused only on body mass index and blood pressure, and more evidence is still needed for the effects of other assessment metrics.

Conclusion

In patients with CKD, exercise improves muscle strength, endurance, body composition and HRQOL. At the same time, exercise decreases blood pressure and dialysis-related symptoms in patients with CKD. However, the quality of the evidence was considered low or very low for all outcomes indicating that we have low certainty evidence to support the findings above. More rigorous study is still needed in the future. Nevertheless, given the health benefits of physical activity, exercise should be integrated into renal care for a patient with any stage of CKD.

Contributors FZ and LH conceived and designed the review. YB and XZ searched databases, extracted the data and conducted the statistical analysis. WZ revised the manuscript. WW and HZ provided technical support. All authors had read and approved the final manuscript and agreed on its submission. FZ was the guarantor of this work.

Funding This study was supported by Longhua Hospital Shanghai University of Traditional Chinese Medicine (grant number: Y21026), and Longhua Hospital Shanghai University of Traditional Chinese Medicine (W2006.035).

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Huaichun Zhang http://orcid.org/0000-0002-7400-0869

REFERENCES

1. Zoccali C, Vanholder R, Massy ZA, et al. The systemic nature of CKD. *Nat Rev Nephrol* 2017;13:344–58.
2. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017. *Lancet* 2020;395:709–33.
3. Yang C, Gao B, Zhao X, et al. Executive summary for China kidney disease network (CK-NET) 2016 annual data report. *Kidney Int* 2020;98:1419–23.
Open access

14

Cheng H-T, Xu X, Lim PS, et al. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000-2015. *Diabetes Care* 2021;44:89-97.

Roshanravan B, Robinson-Cohen C, Patel KV, et al. Association between physical performance and all-cause mortality in CKD. *J Am Soc Nephrol* 2013;24:822-30.

Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. *Nat Rev Nephrol* 2014;10:504–16.

Hoshino J. Renal rehabilitation: exercise intervention and nutritional support in dialysis patients. *Nutrients* 2021;13:1444.

Wilund KR, Viana JL, Perez LM. A critical review of exercise training in hemodialysis patients: personalized activity prescriptions are needed. *Exerc Sport Sci Rev* 2020;48:28–39.

Tentori F, Elder SJ, Thumma J, et al. Physical exercise among participants in the dialysis outcomes and practices pattern study (DOPPS): correlates and associated outcomes. *Nephrol Dial Transplant* 2010;25:3050–62.

Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. *Am J Kidney Dis* 2014;64:385–93.

Wong L, Duque G, McMahon LP. Sarcopenia and frailty: challenges in mainstream nephrology practice. *Kidney Int Rep* 2021;6:2554–64.

Rampersad C, Darcel J, Harasemiw O, et al. Change in physical activity and function in patients with baseline advanced Nondialysis CKD. *Clin J Am Soc Nephrol* 2021;16:1805–12.

March DS, Graham-Brown MP, Young HM, et al. ‘There is nothing more deceptive than an obvious fact’: more evidence for the prescription of exercise during haemodialysis (intradialytic exercise) is still required. *Br J Sports Med* 2017;51:1379.

14 Clinical Practice Guideline. Exercise and lifestyle in chronic kidney disease. Available: https://renal.org/sites/renal.org/files/Exercise%20and%20lifestyle%20in%20CKD%20Clinical%20practice%20guideline33_v4_FINAL_0.pdf

15 Yamagata K, Hoshino J, Sugiyama H, et al. Clinical practice guideline for renal rehabilitation: systematic reviews and recommendations of exercise therapies in patients with kidney diseases. *Renal Replacement Therapy* 2019;5.

16 Deschamps T. Let’s programme exercise during haemodialysis (intradialytic exercise) into the care plan for patients, regardless of age. *Br J Sports Med* 2016;50:1573–8.

17 Shamslee L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 2015;350:g7647.

18 Zhang F, Wang H, Huang L, et al. Therapeutic effects of exercise interventions for patients with chronic kidney disease: protocol for an overview of systematic reviews and meta-analyses of clinical trials. *BMJ Open* 2021;11:e043011.

19 Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised trials of healthcare interventions, or both. *BMJ* 2017;358:j2008.

20 Grigic J, Grigic I, Pickering C, et al. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. *Br J Sports Med* 2020;54:681–8.

21 Cohen J. Quantitative methods in psychology: a power primer. *Psychological Bulletin* 1992;112:115–9.

22 Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327:557–60.

23 Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. *BMJ* 2004;328:1490.

24 Andrade FP, Rezende PdeS, Ferreira TdeS, et al. Effects of intradialytic exercise on cardiopulmonary capacity in chronic kidney disease: systematic review and meta-analysis of randomized clinical trials. *Sci Rep* 2019;9:18470.

25 Bogatá Š, Pajek M, Pajek J, et al. Exercise-Based interventions in hemodialysis patients: a systematic review with a meta-analysis of randomized controlled trials. *J Clin Med* 2019;8. doi:10.3390/jcm9010043

26 Cheema BS, Chan D, Fahey P, et al. Effect of progressive resistance training on measures of skeletal muscle hypertrophy, muscular strength and health-related quality of life in patients with chronic kidney disease: a systematic review and meta-analysis. *Sports Med* 2014;44:1125–38.

27 Chen G, Gao L, Li X. Effects of exercise training on cardiovascular risk factors in kidney transplant recipients: a systematic review and meta-analysis. *Ren Fail* 2019;41:408–18.

28 Chung Y-C, Yeh M-L, Liu Y-M. Effects of intradialytic exercise on the physical performance and quality of life in hemodialysis patients: a systematic review and meta-analysis of randomized controlled trials. *J Clin Nurs* 2017;26:1801–13.

29 Clarkson MJ, Bennett PN, Fraser SF, et al. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. *Am J Physiol Renal Physiol* 2018;316:F565–72.

30 Ferrara, Heilal L, Del Carlo T. Intradialytic training in patients with end-stage renal disease: a systematic review and meta-analysis of randomized controlled trials assessing the effects of five different training interventions. *J Nephrol* 2020;33:251–66.

31 Ferreira GD, Bohihe M, Correa CM, et al. Does Intradialytic exercise improve removal of solutes by hemodialysis? A systematic review and meta-analysis. *Arch Phys Med Rehabil* 2019;100:2371–80.

32 Gomes Neto M, de Lacerda FFR, Lopes AA, et al. Intradialytic exercise training modalities on physical functioning and health-related quality of life in patients undergoing maintenance hemodialysis: systematic review and meta-analysis. *Clin Rehabil* 2018;32:1189–202.

33 Heiwe S, Jacobson SH, Jacobson SH. Exercise training for patients with chronic kidney disease. *Cochrane Database Syst Rev* 2011;10:CD003236.

34 Huang M, Ly A, Wang J, et al. Exercise training and outcomes in hemodialysis patients: systematic review and meta-analysis. *Am J Nephrol* 2019;50:240–54.

35 Ju H, Chen H, Mi C, et al. The impact of home-based exercise program on physical function of chronic kidney disease patients: a meta-analysis of randomized controlled trials. *Physiologische Medizin, Rehabilitationsmedizin, Kurorthmedizin* 2020;30:108–14.

36 Lu Y, Wang Y, Lu Q. Effects of exercise on muscle fitness in dialysis patients: a systematic review and meta-analysis. *Am J Nephrol* 2019;50:291–302.

37 Matsuiwaa R, Hoshi K, Yoneki K, et al. Exercise training in elderly people undergoing hemodialysis: a systematic review and meta-analysis. *Kidney Int Rep* 2017;2:1096–110.

38 Nakamura K, Sasaki T, Yamamoto S, et al. Effects of exercise on kidney and physical function in patients with non-dialysis chronic kidney disease: a systematic review and meta-analysis. *Sci Rep* 2020;10:18195.

39 Oguchi H, Tsuchiya M, Yazawa M, et al. The efficacy of exercise training in kidney transplant recipients: a meta-analysis and systematic review. *Clin Exp Nephrol* 2019;23:275–84.

40 Pei G, Tang Y, Tan D, et al. Aerobic exercise in adults with chronic kidney disease (CKD): a meta-analysis. *Int Urol Nephrol* 2019;51:1787–95.

41 Pu J, Jiang Z, Wu W, et al. Efficacy and safety of intradialytic exercise in haemodialysis patients: a systematic review and meta-analysis. *BMJ Open* 2019;9:e026333.

42 Salhab N, Karavetian M, Koonjn M, et al. Effects of intradialytic aerobic exercise on hemodialysis patients: a systematic review and meta-analysis. *J Nephrol* 2019;32:549–66.

43 Sheng K, Zhang P, Chen L, et al. Intradialytic exercise in hemodialysis patients: a systematic review and meta-analysis. *Am J Nephrol* 2014;40:478–90.

44 Smart N, Steele M, Steele M. Exercise training in haemodialysis patients: a systematic review and meta-analysis. *Nephrology* 2011;16:626–32.

45 Song Y-Y, Hu R-J, Diao Y-S, et al. Effects of exercise training on restless legs syndrome, depression, sleep quality, and fatigue among hemodialysis patients: a systematic review and meta-analysis. *J Pain Symptom Manage* 2018;55:1184–95.

46 Thompson S, Weble N, Padwal RS, et al. The effect of exercise on blood pressure in chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. *PLoS One* 2019;14:e0211032.

47 Vanden Wyngaert K, Van Craenenbroeck AH, Van Biesen W, et al. The effects of aerobic exercise on eGFR, blood pressure and VO2peak in patients with chronic kidney disease stages 3–4: a systematic review and meta-analysis. *PLoS ONE* 2018;13:e0203662.

48 Wu X, Yang L, Wang Y, et al. Effects of combined aerobic and resistance exercise on renal function in adult patients with chronic kidney disease: a systematic review and meta-analysis. *Clin Rehabil* 2020;34:651–65.

49 Yamamoto R, Ito T, Nagasawa Y, et al. Efficacy of aerobic exercise on the cardiometabolic and renal outcomes in patients with chronic kidney disease: a systematic review of randomized controlled trials. *J Nephrol* 2021;34:155–64.

50 Yang H, Wu X, Wang M. Exercise affects cardiopulmonary function in patients with chronic kidney disease: a meta-analysis. *Biomed Res Int* 2017;2017:1–9.

51 Zhang F, Zhou W, Sun Q, et al. Effects of intradialytic resistance exercises on physical performance and quality of life among hemodialysis patients: a systematic review and meta-analysis. *Nurs Open* 2021;8:529–38.
52 Zhang L, Wang Y, Xiong L, et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: evidence from a meta-analysis. *BMC Nephrol* 2019;20:398.
53 Zhao Q-G, Zhang H-R, Wen X, et al. Exercise interventions on patients with end-stage renal disease: a systematic review. *Clin Rehabil* 2019;33:147–56.
54 Invaluable citation
55 Clyne N, Anding-Rost K. Exercise training in chronic kidney disease—effects, expectations and adherence. *Clin Kidney J* 2021;14:i3–14.
56 Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. *Lancet* 2017;389:1238–52.
57 Cheung AK, Chang TI, Cushman WC, et al. Blood pressure in chronic kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. *Kidney Int* 2019;95:1027–36.
58 Kuo CP, Tsai MT, Lee KH, et al. Dose-Response effects of physical activity on all-cause mortality and major cardioareal outcomes in chronic kidney disease. *Eur J Prev Cardiol* 2021.
59 Graham-Brown MPM, March DS, Young R, et al. A randomized controlled trial to investigate the effects of intra-dialytic cycling on left ventricular mass. *Kidney Int* 2021;99:1478–86.
60 Ziele DM, Klaassen G, van Adrichem E, et al. Physical inactivity: a risk factor and target for intervention in renal care. *Nat Rev Nephrol* 2017;13:152–68.
61 Mezzani A, Hamm LF, Jones AM, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European association for cardiovascular prevention and rehabilitation, the American association of cardiovascular and pulmonary rehabilitation and the Canadian association of cardiac rehabilitation. *Eur J Prev Cardiol* 2013;20:442–67.
62 Chan D, Cheema BS. Progressive resistance training in end-stage renal disease: systematic review. *Am J Nephrol* 2016;44:32–45.
63 Androga L, Sharma D, Armoda A, et al. Sarcopenia, obesity, and mortality in US adults with and without chronic kidney disease. *Kidney Int Rep* 2017;2:201–11.
64 Weisbord SD, Fried LF, Arnold RM, et al. Prevalence, severity, and importance of physical and emotional symptoms in chronic hemodialysis patients. *J Am Soc Nephrol* 2005;16:2487–94.
65 Flythe JE, Hilliard T, Castillo G, et al. Symptom prioritization among adults receiving In-Center hemodialysis: a mixed methods study. *Clin J Am Soc Nephrol* 2018;13:735–45.
66 Gregg LP, Bossola M, Ostrosky-Frid M, et al. Fatigue in CKD: epidemiology, pathophysiology, and treatment. *Clin J Am Soc Nephrol* 2021;16:1445–1455.
67 Flythe JE, Dorough A, Narendra JH, et al. Perspectives on symptom experiences and symptom reporting among individuals on hemodialysis. *Nephrol Dial Transplant* 2018;33:1842–52.
68 Metzger M, Abdel-Rahman EM, Boykin H, et al. A narrative review of management strategies for common symptoms in advanced CKD. *Kidney Int Rep* 2021;6:894–904.
69 Johansen KL. The promise and challenge of aerobic exercise in people undergoing long-term hemodialysis. *Clin J Am Soc Nephrol* 2021;16:505–7.
70 Fuller JT, Hartland MC, Maloney LT, et al. Therapeutic effects of aerobic and resistance exercises for cancer survivors: a systematic review of meta-analyses of clinical trials. *Br J Sports Med* 2018;52:1311.
71 Amir N, Tong A, McCarthy H, et al. Trajectories of quality of life in chronic kidney disease: a novel perspective of disease progression. *Nephrol Dial Transplant* 2021;36:1563–5.
72 Parker K. Intradialytic exercise is medicine for hemodialysis patients. *Curr Sports Med Rep* 2016;15:269–75.
73 Smart NA, Williams AD, Levinger I, et al. Exercise & Sports Science Australia (ESSA) position statement on exercise and chronic kidney disease. *J Sci Med Sport* 2013;16:406–11.
74 March DS, Hurt AW, Grantham CE, et al. A cost-effective analysis of the CYCLE-HD randomized controlled trial. *Kidney Int Rep* 2021;6:1548–57.
75 Fuhrmann I, Krause R. Principles of exercising in patients with chronic kidney disease, on dialysis and for kidney transplant recipients. *Clin Nephrol* 2004;61 Suppl 1:S14–25.
Supplemental Figures S1
Supplementary Table S1 The detailed search strategy

Databases	#	Search strategy
Pubmed	1	"renal insufficiency, chronic"[MeSH Terms]
	2	"chronic renal insufficiency"[Title/Abstract] or "chronic kidney insufficiency"[Title/Abstract] or "chronic kidney disease"[Title/Abstract] or "chronic renal disease"[Title/Abstract]
	3	"CKD"[Title/Abstract] or "CKF"[Title/Abstract] or "CRD"[Title/Abstract] or "CRF"[Title/Abstract]
	4	"end-stage kidney"[Title/Abstract] or "end-stage renal"[Title/Abstract] or "endstage kidney"[Title/Abstract] or "endstage renal"[Title/Abstract]
	5	"ESRD"[Title/Abstract] or "ESRF"[Title/Abstract] or "ESKD"[Title/Abstract] or "ESKF"[Title/Abstract]
	6	"Renal Replacement Therapy"[MeSH Terms]
	7	"dialysis"[Title/Abstract]
	8	"hemodialysis"[Title/Abstract] or "haemodialysis"[Title/Abstract] or "hemodiafiltration"[Title/Abstract] or "haemodiafiltration"[Title/Abstract] or "HD"[Title/Abstract]
	9	"PD"[Title/Abstract]
	10	"renal transplantation"[Title/Abstract] or "kidney grafting"[Title/Abstract] or "kidney transplantation"[Title/Abstract]
	11	"KTRs"[Title/Abstract]
	12	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11
	13	"Exercise"[MeSH Terms]
	14	"Exercise Movement Techniques"[MeSH Terms]
	15	"Exercise Therapy"[MeSH Terms]
	16	"Sports"[MeSH Terms]
	17	"train"[Title/Abstract] or "physical activity"[Title/Abstract] or "exercise"[Title/Abstract]
	18	#13 or #14 or #15 or #16 or #17
	19	"Systematic Review"[Publication Type] or "Systematic Reviews as Topic"[MeSH Terms]
	20	"meta analysis"[Publication Type] or "Meta-Analysis as Topic"[MeSH Terms]
---	---	
21	“Systematic Review”[Title/Abstract] or "system review”[Title/Abstract] or "data pooling”[Title/Abstract] or "meta”[Title/Abstract]	
22	#19 or #20 or #21	
23	#12 and #18 and #22	
CDSR 1	MeSH descriptor: [Kidney Diseases] explode all trees	
2	(“chronic kidney disease”) or (“chronic renal disease”) or (“chronic kidney failure”) or (“chronic renal failure”):ti,ab,kw	
3	(CKF or CKD or CRF or CRD):ti,ab,kw	
4	(“end-stage kidney”) or (“end-stage renal”) or (“endstage kidney”) or (“endstage renal”):ti,ab,kw	
5	ESRD or ESRF or ESKD:ti,ab,kw	
6	MeSH descriptor: [Renal Replacement Therapy] explode all trees	
7	dialysis:ti,ab,kw	
8	(hemodialysis or haemodialysis or hemodiafiltration or haemodiafiltration or HD):ti,ab,kw	
9	PD:ti,ab,kw	
10	(“renal transplantation”) or (“kidney grafting”) or (“kidney transplantation”):ti,ab,kw	
11	KTRs:ti,ab,kw	
12	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11	
13	MeSH descriptor: [Exercise] explode all trees	
14	MeSH descriptor: [Exercise Movement Techniques] explode all trees	
15	MeSH descriptor: [Exercise Therapy] explode all trees	
16	MeSH descriptor: [Sports] explode all trees	
17	(train or ("physical activity") or exercise):ti,ab,kw	
18	#13 or #14 or #15 or #16 or #17	
19	MeSH descriptor: [Meta-Analysis as Topic] explode all trees	
20	MeSH descriptor: [Systematic Reviews as Topic] explode all trees	
21	(“systematic review”) or ("system review") or ("data pooling") or (meta):ti,ab,kw	
22	#19 or #20 or #21	
---	---	
23	#12 and #18 and #22	
Embase		
1	'kidney disease'/exp	
2	('chronic kidney disease' or 'chronic renal disease' or 'chronic kidney failure' or 'chronic renal failure'):ti,ab,kw	
3	(CKF or CKD or CRF or CRD):ti,ab,kw	
4	('end-stage kidney' or 'end-stage renal' or 'endstage kidney' or 'endstage renal'):ti,ab,kw	
5	(ESRD or ESRF or ESKD or ESKF):ti,ab,kw	
6	'renal replacement therapy'/exp	
7	'dialysis':ti,ab,kw	
8	(hemodialysis or haemodialysis or hemofiltration or haemofiltration or haemodiafiltration or haemodiafiltration or HD):ti,ab,kw	
9	PD:ti,ab,kw	
10	('renal transplantation' or 'kidney grafting' or 'kidney transplantation'):ti,ab,kw	
11	KTRs:ti,ab,kw	
12	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11	
13	'exercise'/exp	
14	'physical activity'/exp	
15	'sport'/exp	
16	(train or 'physical activity' or exercise):ti,ab,kw	
17	#13 or #14 or #15 or #16	
18	'systematic review (topic)'/exp or 'systematic review'/exp	
19	'meta analysis (topic)'/exp or 'meta analysis'/exp	
20	('systematic review' or 'system review' or 'data pooling' or meta):ti,ab,kw	
21	#18 or #19 or #20	
22	#12 and #17 and #21	
Web of Science		
1	TS: ("chronic kidney disease" or "chronic renal disease" or "chronic kidney failure" or "chronic renal failure" or CKD or CRD or CKF or CRF)	
---	---	
2	TS: ("end-stage kidney" or "end-stage renal" or "endstage kidney" or "endstage renal" or ESKD or ESKF or ESRD or ESRF)	
3	TS: ("renal replacement therapy" or dialysis or hemodialysis or haemodialysis or hemofiltration or haemofiltration or hemodiafiltration or haemodiafiltration or HD or PD)	
4	TS: ("renal transplantation" or "kidney grafting" or "kidney transplantation" or KTRs)	
5	#1 or #2 or #3 or #4	
6	TS: (train or exercise or "physical activity")	
7	TS: ("systematic review" or "system review" or "data pooling" or meta)	
8	#1 and #2 and #3 and #4 and #5	
Supplementary Table S2 The characteristic of excluded studies

Studies	Reasons for exclusion
Nantakool et al (2020)	Non predefine outcome
Sawant et al (2014)	Non predefine outcome
Smart et al (2014)	Duplicate literature
Barcellos et al (2015)	Meta-analysis was not conducted
Yang et al (2020)	Non predefine outcome
Young et al (2018)	Included cases<100
Phan et al (2015)	Duplicate literature
Molsted et al (2019)	Included cases<100
Segura et al (2010)	Non-English
Ferreira et al (2020)	Non predefine outcome
Koufaki et al (2013)	Meta-analysis was not conducted
Smart et al (2012)	Abstracts
Howden et al (2012)	Meta-analysis was not conducted
Calella et al (2019)	Meta-analysis was not conducted
Singh et al (2005)	Meta-analysis was not conducted
Cardoso et al (2020)	Non predefine outcome
Villanego et al (2020)	Non-English
Medeiros et al (2017)	Intervention did not fit
Macdonald et al (2009)	Meta-analysis was not conducted
Wen et al (2019)	Non predefine outcome
Yang et al (2015)	Non predefine outcome
Thangarasa et al (2018)	Included cases<100
Chan et al (2016)	Meta-analysis was not conducted
Author(s)	Description
-------------------------	--
Johansen et al (2010)	Intervention did not fit
Thompson et al (2020)	Correction for published paper
Bakaloudi et al (2020)	Meta-analysis was not conducted
Kirkman et al (2019)	Meta-analysis was not conducted
Afsar et al (2018)	Meta-analysis was not conducted
Supplementary Table S3 The basic characteristics of the included meta-analyses

Author (year)	Design	Stage of CKD	Exercise type	Mode	Outcomes	SMD or MD (95% CI)	Effect size	P	I²	GRADE
Pei (2019)	RCT/quasi-RCT	Mixed	AE	-	VO_{2peak}	MD: 2.08 (1.1, 3.05)	-	<0.001	25.0%	Low
					STS 60	MD: 2.08 (1.1, 3.05)	-	0.98	82.0%	Very low
					6MWT	MD: 0.04 (-0.52, 0.59)	-	0.9	86.0%	Very low
					SBP	MD: -2.91 (-6.68, 0.87)	-	0.13	40.0%	Low
					DBP	MD: -1.11 (-3.41, 1.20)	-	0.35	0.0%	Low
					Physical function (SF-36)	MD: 8.36 (-1.24, 17.95)	-	0.09	76.0%	Very low
					Physical role (SF-36)	MD: 14.65 (1.47, 27.84)	-	0.03	78.0%	Very low
					Social function (SF-36)	MD: 8.24 (-1.09, 17.58)	-	0.08	85.0%	Very low
					Pain (SF-36)	MD: 5.94 (1.65, 10.23)	-	0.007	49.0%	Very low
					General health (SF-36)	MD: 8.90 (2.48, 15.32)	-	0.007	71.0%	Very low
					Mental health (SF-36)	MD: 7.30 (-0.94, 15.54)	-	0.08	84.0%	Very low
Ferreira (2019)	RCT/quasi-RCT	HD	AE	Intradialytic	Kt/V	SMD: 2.21 (1.17, 3.25)	Large	<0.001	92.0%	Very low
Cheema (2014)	RCT	Predialysis	RT	-	Muscle Strength	SMD: 1.15 (0.80, 1.49)	Large	0.161	35.0%	Low
					HRQoL	SMD: 0.83 (0.51, 1.16)	Large	0.226	27.8%	Low
Wu (2020)	RCT/quasi-RCT	Predialysis	AE+RT	-	SBP	SMD: -0.19 (-0.46, 0.08)	Small	0.16	50.0%	Very low
					DBP	SMD: -0.47 (-1.10, 0.15)	Small	0.14	70.0%	Very low
Author	Design	Treatment	Predialysis	VO_{2peak}	SMD	Effect Size	p Value	Change	Level of Evidence	
----------------	--------	-----------	-------------	------------	--------	-------------	---------	--------	------------------	
Nakamura (2020)	RCT/cross-over	Predialysis	Mixed	-	VO_{2peak}	0.88(0.53,1.23)	Large	<0.001	56.0%	Low
	10(401)		4(119)	5(392)	3(170)					
Muscle Strength	SMD	0.35(-0.03,0.73)	Small	0.07	7.0%	Very low				
6MWT	SMD	1.04(0.17,1.90)	Large	0.02	92.0%	Very low				
TUGT	SMD	-0.42(-0.73,-0.11)	Small	0.007	0.0%	Very low				
Lu (2019)	RCT	Dialysis	Mixed	Mixed	6MWT	MD:67.6(49.93,85.26)	-	<0.001	30.6%	Moderate
	11(300)		3(193)	5(234)	7(224)	6(240)				
Muscle strength	MD	3.67(1.37,5.97)	Large	0.02	38.6%	Low				
Muscle strength	MD	2.43(0.91,3.96)	-	0.002	21.2%	Low				
Chen (2019)	RCT	KTRs	Mixed	-	SBP	SMD:-0.18(-0.10,0.46)	Small	0.21	0.0%	Very low
	5(198)		5(198)	4(160)	6(202)					
Muscle strength	MD	0.02(-0.28,0.33)	Small	0.89	59.0%	Very low				
Muscle strength	MD	5.35(3.34,7.37)	-	<0.001	0.3%	Low				
Song (2018)	RCT	HD	Mixed	Mixed	RLS	MD:-1.79(-2.21,-1.37)	Large	<0.001	87.0%	Very low
	4(141)		3(139)		Fatigue	SMD:-0.85(-1.20,-0.50)	Large	<0.001	0.0%	Very low
Salhab (2019)	RCT	HD	AE	Intradialytic	PCS	MD:1.82(-0.92,4.55)	Large	0.19	98.0%	Very low
	5(282)		5(282)		MCS	SMD:1.02(0.31,1.73)	Large	0.005	57.0%	Very low
Andrade (2019)	RCT	HD	AE+RT	Intradialytic	VO_{2peak}	MD:1.01(0.71,1.30)	Large	<0.001	0.0%	Low
	5(201)									
Chung (2016)	RCT	HD	Mixed	Intradialytic	6MWT	SMD:0.44(0.09,0.80)	Small	0.015	0.0%	Low
	4(127)		6(238)	6(229)	5(193)					
Muscle strength	MD	0.55(0.18,0.92)	Moderate	0.003	52.9%	Very low				
Muscle strength	MD	0.46(0.20,0.73)	Small	<0.001	1.90%	Low				
Muscle strength	MD	0.23(-0.05,0.52)	Small	0.109	0.0%	Low				
Zhang (2021)	RCT	HD	RT	Intradialytic	6MWT	SMD:0.52(0.28,0.75)	Moderate	<0.001	18.7%	Very low
	8(299)		5(164)		STS 30	SMD:0.42(0.11,0.74)	Small	0.008	0.0%	Very low
Author	Study Type	Setting	Outcome	Effect Size	Effect Size 95% CI	Effect Size p Value	Baseline	Change	Improvement	
------------	------------	-----------	---------	-------------	-------------------	-------------------	----------	--------	-------------	
Pu (2019)	RCT	HD	HGS	SMD: 0.35(0.12, 0.58)	Small	0.003	41.6%	Very low		
			PCS	SMD: 0.23(-0.00, 0.46)	Small	0.055	0.0%	Very low		
			MCS	SMD: 0.13(-0.10, 0.36)	Small	0.082	46.5%	Very low		
		Mixed	Kt/V	SMD: 0.29(0.06, 0.52)	Small	0.01	0.0%	Very low		
			VO2peak	SMD: 0.57(0.23, 0.90)	Moderate	0.001	59.0%	Low		
			6MWT	SMD: 0.57(0.30, 0.84)	Moderate	0.001	0.0%	Very low		
			PCS	SMD: 0.57(0.14, 1.01)	Moderate	0.01	70.0%	Very low		
			MCS	SMD: 0.19(-0.09, 0.46)	Small	0.18	30.0%	Low		
			SBP	SMD: -0.28(-0.52, -0.05)	Small	0.02	0.0%	Very low		
			DBP	SMD: -0.32(-0.55, -0.08)	Small	0.008	42.0%	Very low		
Yamamoto (2021)	RCT	Predialysis	SBP	SMD: -0.75(-1.24, -0.26)	Moderate	0.003	80.3%	Very low		
		AE	VO2peak	SMD: 0.54(0.29, 0.78)	Moderate	0.001	24.6%	Very low		
		Mixed	BMI	SMD: -0.19(-0.38, -0.00)	Small	0.026	0.0%	Low		
Thompson (2019)	RCT	Predialysis	SBP	MD: -4.3(-9.0, 0.4)	-	N.P.	50.4%	Very low		
		Mixed	DBP	MD: -1.18(-4.76, 2.40)	-	N.P.	60.5%	Very low		
Yang (2017)	RCT	Mixed	VO2peak	SMD: 0.33(0.03, 0.63)	Small	0.003	47.0%	Low		
Clarkson (2019)	RCT	Dialysis	Fatigue	SMD: -0.97(-1.32, -0.62)	Large	0.001	47.0%	Low		
		Mixed	PCS	SMD: 0.31(0.02, 0.61)	Small	0.04	46.0%	Low		
			MCS	SMD: 0.30(-0.20, 0.80)	Small	0.24	64.0%	Very low		
Zhao (2019)	RCT	Dialysis	SBP	SMD: -0.41(-0.70, -0.11)	Small	0.007	55.0%	Moderate		
		Mixed	DBP	SMD: -0.31(-0.71, 0.08)	Small	0.12	70.0%	Low		
			BMI	SMD: -0.21(-0.39, -0.03)	Small	0.02	0.0%	Moderate		
Study	Design	HD Type	Sample Size	Measure	Effect Size	p Value	Significance	Effect Size		
---------------------	-----------------	---------	-------------	-------------	-------------	---------	--------------	-------------		
Huang (2019)	RCT	HD	8(257)	Kt/V	SMD:0.19(-0.06,0.43)	Small	0.14	0.0%	Very low	
			7(260)	SBP	SMD:-0.17(-0.41,0.08)	Small	0.18	8.0%	Low	
			7(260)	DBP	SMD:-0.23(-0.69,0.24)	Small	0.34	68.0%	Very low	
			7(265)	6MWT	SMD:1.01(0.26,1.76)	Large	0.008	83.0%	Very low	
			7(263)	PCS	SMD:0.34(0.09,0.59)	Small	0.007	27.0%	Low	
			7(263)	MCS	SMD:0.27(0.02,0.51)	Small	0.03	0.0%	Very low	
			10(371)	VO2peak	SMD:0.73(0.52,0.95)	Moderate	<0.001	71.0%	Low	
Heiwe (2011)	RCT/quasi-RCT	Mixed	24(847)	Aerobic capacity	SMD:-0.56(-0.70,-0.42)	Moderate	<0.001	12.0%	Moderate	
			9(358)	Muscle strength	SMD:-0.52(-0.73,-0.31)	Moderate	<0.001	0.0%	Low	
			7(191)	Walking capacity	SMD:-0.48(-0.79,-0.17)	Small	0.003	2.0%	Low	
			9(347)	SBP	SMD:0.25(0.04,0.47)	Small	0.02	0.0%	Low	
			11(419)	DBP	SMD:0.16(-0.04,0.36)	Small	0.11	40.0%	High	
Heiwe (2014)	RCT	HD	21(374)	Aerobic capacity	SMD:-0.80(-1.02,-0.58)	Large	<0.001	0.0%	Low	
			10(212)	DBP	SMD:0.17(-0.16,0.49)	Small	0.3	45.0%	Low	
			10(312)	SBP	SMD:0.04(-0.4,0.41)	Small	0.8	58.0%	Very low	
			10(385)	Muscle strength	SMD:-0.56(-0.77,-0.35)	Moderate	<0.001	0.0%	Very low	
			7(174)	Walking capacity	SMD:-0.33(-0.67,0.01)	Small	0.06	16.0%	Low	
Matsuzawa (2017)	RCT	HD	18(582)	VO2peak	SMD:0.62(0.38,0.87)	Moderate	<0.001	49.0%	High	
			10(326)	6MWT	SMD:0.58(0.24,0.93)	Moderate	<0.001	53.0%	Low	
			9(281)	Muscle strength	SMD:0.94(0.67,1.21)	Large	<0.001	10.0%	Very low	
			9(264)	PCS	SMD:0.53(0.52,0.82)	Moderate	<0.001	19.0%	Very low	
			8(228)	MCS	SMD:0.14(-0.15,0.42)	Small	0.34	10.0%	Very low	
Smart (2011)	RCT	HD	8(365)	VO2peak	SMD:0.75(0.39,1.11)	Moderate	<0.001	60.0%	Low	
Bogataj	RCT	HD	19(571)	6MWT	SMD:0.44(0.21,0.67)	Small	<0.001	49.6%	Very low	
Year	Study Type	Setting	Method	Outcome	MD	Effect Size	Significance	Rate (%)	Risk of Bias	
--------	------------	---------	--------	---------	------------	-------------	--------------	----------	--------------	
2020	RCT	HD		VO _peak	SMD:0.58(0.32,0.85)	Moderate	<0.001	57.4%	Very low	
				STS 10	SMD:-0.55(-1.00,-0.09)	Moderate	0.019	71.6%	Very low	
				Kt/V	SMD:0.27(0.01,0.53)	Small	0.040	0.0%	Very low	
				VO _peak	SMD:0.53(0.30,0.76)	Moderate	<0.001	36.0%	Very low	
				PCS	SMD:0.30(0.05,0.55)	Small	0.02	39.5%	Very low	
				MCS	SMD:0.14(-0.16,0.43)	Small	0.37	14.8%	Very low	
				6MWT	SMD:0.58(0.23,0.93)	Moderate	<0.001	89.7%	Very low	
				DBP	SMD:-0.24(-0.47,-0.01)	Small	0.04	52.1%	Very low	
				SBP	SMD:-0.27(-0.50,-0.04)	Small	0.02	0.0%	Very low	
				STS 60	SMD:0.71(0.31,1.12)	Moderate	<0.001	0.0%	Very low	
2014	RCT	HD		VO _peak	SMD:0.60(0.15,1.04)	Moderate	0.008	76.0%	Very low	
				PCS	SMD:0.50(-0.19,1.18)	Moderate	0.16	62.0%	Very low	
				MCS	SMD:0.39(-0.19,0.98)	Small	0.19	50.0%	Very low	
				6MWT	SMD:0.96(0.11,1.80)	Large	0.03	82.0%	Very low	
				Muscle strength	SMD:0.61(0.39,0.83)	Moderate	<0.001	58.9%	Very low	
2018	RCT	HD		VO _peak	SMD:0.60(0.15,1.04)	Moderate	0.008	76.0%	Very low	
				PCS	SMD:0.50(-0.19,1.18)	Moderate	0.16	62.0%	Very low	
				MCS	SMD:0.39(-0.19,0.98)	Small	0.19	50.0%	Very low	
				6MWT	SMD:0.96(0.11,1.80)	Large	0.03	82.0%	Very low	
				Muscle strength	SMD:0.61(0.39,0.83)	Moderate	<0.001	58.9%	Very low	
2019	RCT	HD		Kt/V	MD:0.08(0.00,0.15)	-	0.04	56.0%	Low	
				Kt/V	MD:0.1(0.0,0.2)	-	0.06	60.0%	Very low	
				VO _peak	MD:5.41(4.03,6.79)	-	<0.001	0.0%	Low	
				VO _peak	MD:2.07(0.42,3.72)	-	<0.001	0.0%	Very low	
				6MWT	MD:68.5(29.05,107.96)	-	<0.001	36.0%	Low	
				6MWT	MD:64.98(43.86,86.11)	-	<0.001	0.0%	Low	
				SBP	MD:-10.07(16.35,-3.78)	-	0.002	44.0%	Low	
				DBP	MD:-2.96(7.71,1.78)	-	0.22	0.0%	Low	
2018	RCT	Predialysis		SBP	SMD:0.08(-0.58,0.74)	Small	0.81	84%	Very low	
				DBP	SMD:-0.09(-0.78,0.59)	Small	0.79	83%	Very low	
Study	Design	Intervention	Sample Size	VO\textsubscript{2peak}	SMD	Effect Size	p-value	% Change	GRADE	
-------	--------	--------------	-------------	-----------------	-----	-------------	--------	----------	--------	
Oguch (2018)	RCT	KTRs	11(325)	SMD: 0.99(0.49,1.48)	Large	<0.001	74.0%	Very low		
			9(294)	BMI	SMD: -0.36(-0.60,-0.13)	Small	0.002	48.0%	Low	
			4(182)	VO\textsubscript{2peak}	SMD: 0.38(-0.06,0.82)	Small	0.09	45.0%	Low	
			4(179)	HRQoL	SMD: 0.54(0.02,1.07)	Moderate	0.04	58.0%	Very low	
Ju (2020)	RCT	Mixed	3 (115)	HGS	SMD: 0.52(0.14,0.89)	Moderate	0.007	0.0%	Very low	
			3 (387)	Symptom/problem (KDQoL)	SMD: 1.92(-1.06,4.90)	Large	0.21	99.0%	Very low	
			3 (387)	Effects of kidney disease (KDQoL)	SMD: -3.69(-8.56,1.19)	Large	0.14	99.0%	Very low	
			3 (387)	Burden of kidney disease (KDQoL)	SMD: 1.04(-0.75,2.82)	Large	0.26	98.0%	Very low	

Abbreviation: RCT = randomized controlled trial; AE = aerobic exercise; RT = resistance training; COM = combine; VO\textsubscript{2peak} = peak oxygen uptake; HRQoL = health-related quality of life; DBP = diastolic blood pressure; SBP = systolic blood pressure; PCS = physical component summary; MCS = mental component summary; 6MWT = 6 minutes walk test; STS 10 = sit to stand 10 test; STS 30 = sit to stand 30 test; STS 60 = sit to stand 60 test; TUGT = timed up and go test; RLS = Restless Legs Syndrome; BMI = body mass index; SMD = standardized mean difference; MD = mean difference; HD = hemodialysis; KTRs = kidney transplant recipients; SF-36 = short form-36; KDQoL = kidney disease quality of life; GRADE = Grading of Recommendations Assessment, Development, and Evaluation.

*Number of included studies and corresponding sample size.

Mixed means aerobic exercise combined with resistance training.
Supplementary Table S4 Results of the assessment of the methodological quality of the included meta-analyses using AMSTAR-2

Author	AMSTAR-2 Items	Score																	
Pei (2019)	√ × √ ○ √ × √ × √ × √ × √ × √ ×	53.1%																	
Ferreira (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	50.0%																	
Cheema (2014)	√ × √ ○ √ × √ × √ × √ × √ ×	87.5%																	
Wu (2020)	√ × √ ○ √ × √ × √ × √ × √ ×	84.4%																	
Nakamura (2020)	√ × √ ○ √ × √ × √ × √ × √ ×	84.4%																	
Lu (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	53.1%																	
Chen (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	50.0%																	
Song (2018)	√ × √ ○ √ × √ × √ × √ × √ ×	71.9%																	
Salhab (2021)	√ × √ ○ √ × √ × √ × √ × √ ×	51.1%																	
Andrade (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	65.6%																	
Chung (2016)	√ × √ ○ √ × √ × √ × √ × √ ×	78.1%																	
Zhang (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	65.6%																	
Pu (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	71.9%																	
Yamamoto (2021)	√ × √ ○ √ × √ × √ × √ × √ ×	71.9%																	
Thompson (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	84.4%																	
Yang (2017)	√ × √ ○ √ × √ × √ × √ × √ ×	75.0%																	
Clarkson (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	78.1%																	
Zhao (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	59.4%																	
Zhang (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	62.5%																	
Huang (2019)	√ × √ ○ √ × √ × √ × √ × √ ×	71.9%																	
Heiwe (2011)	√ × √ ○ √ × √ × √ × √ × √ ×	100.0%																	
Heiwe (2014)	√ × √ ○ √ × √ × √ × √ × √ ×	78.1%																	
Study	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	%
--------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
Matsuzawa(2017)	✓	✓	✓	o	✓	✓	x	✓	✓	x	✓	x	x	✓	✓	✓	✓	✓	71.9%
Smart(2011)	✓	x	✓	o	✓	x	x	o	o	x	✓	x	x	✓	✓	✓	✓	x	40.6%
Bogataj(2020)	✓	x	✓	o	✓	x	x	✓	✓	✓	✓	x	✓	✓	✓	✓	x	59.4%	
Sheng(2014)	✓	x	✓	o	✓	✓	✓	✓	x	✓	x	x	✓	✓	✓	✓	x	x	65.6%
Neto(2018)	✓	x	✓	o	✓	✓	x	✓	✓	x	✓	x	x	✓	✓	x	✓	53.1%	
Ferrari(2019)	✓	✓	✓	o	✓	✓	✓	✓	x	✓	✓	✓	✓	✓	✓	✓	✓	90.6%	
Wyngaert(2018)	✓	✓	✓	o	✓	✓	x	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	84.4%	
Oguchi(2018)	✓	✓	✓	o	✓	✓	x	✓	✓	✓	✓	✓	✓	✓	✓	✓	x	71.9%	
Ju(2020)	✓	x	✓	o	✓	x	x	✓	✓	x	✓	x	x	x	x	x	x	34.4%	

√ mean yes; ○ mean partial yes; × mean no.

1. Did the research questions and inclusion criteria for the review include the components of PICO? 2. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol? 3. Did the review authors explain their selection of the study designs for inclusion in the review? 4. Did the review authors use a comprehensive literature search strategy? 5. Did the review authors perform study selection in duplicate? 6. Did the review authors perform data extraction in duplicate? 7. Did the review authors provide a list of excluded studies and justify the exclusions? 8. Did the review authors describe the included studies in adequate detail? 9. Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review? 10. Did the review authors report on the sources of funding for the studies included in the review? 11. If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results? 12. If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis? 13. Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review? 14. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review? 15. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review? 16. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?
Supplementary Table S5: Results of the assessment of the quality of evidence for each outcome of the included meta-analyses using GRADE

Author	Outcome	GRADE items	Quality of the evidence																														
		Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias																											
Pei (2019)	VO_{2peak}	Very serious (-2)	Neutral	Neutral	Neutral	Neutral	Moderate																										
	STS 60	Serious (-1)	Very serious (-2)	Neutral	Neutral	Serious (-1)	Very low																										
	6MWT	Serious (-1)	Very serious (-2)	Neutral	Neutral	Serious (-1)	Very low																										
	SBP	Serious (-1)	Neutral	Neutral	Neutral	Not reported (-1)	Moderate																										
	DBP	Serious (-1)	Neutral	Neutral	Neutral	Not reported (-1)	Moderate																										
	Physical function (SF-36)	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	Physical role (SF-36)	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	Social function (SF-36)	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	Pain (SF-36)	Serious (-1)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	General health (SF-36)	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	Mental health (SF-36)	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																										
Ferreira	Kt/V	Very serious (-2)	Very serious (-2)	Neutral	Serious (-1)	Not reported (-1)	Very low																										
(2019)																																	
Cheema (2014)	Muscle Strength	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Moderate																										
	HRQoL	Neutral	Neutral	Serious (-1)	Serious (-1)	Serious (-1)	Moderate																										
Wu (2020)	SBP	Very serious (-2)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low																										
	DBP	Very serious (-2)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low																										
Author	Year	VO_{peak}	Muscle Strength	6MWT	TUGT	6MWT	HGS	Muscle strength	STS 10	HGS	STS 30	BMI	VO_{peak}	SBP	DBP	BMI	VO_{peak}	RLS	Fatigue	PCS	MCS	VO_{peak}	6MWT	VO_{peak}	PCS	MCS	STS 30	6MWT	STS 30				
----------	------	-----------	----------------	------	------	------	-----	----------------	-------	-----	-------	-----	-----------	-----	-----	-----	-----------	-----	---------	-----	-----	----------	------	----------	-----	-----	--------	------	--------				
Nakamura	2020	Neutral	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Moderate	Serious (-1)	Very low	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Neutral	Serious (-1)	Very low						
Lu	2019	6MWT	Neutral	Neutral	Neutral	Serious (-1)	Neutral	Moderate	Serious (-1)	Very low	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Neutral	Very low	Very low	Serious (-1)	Very low	Serious (-1)	Very low	Serious (-1)	Very low
Chen	2019	SBP	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low	Serious (-1)	Neutral	Neutral	Neutral	Very serious (-2)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low		
Song	2018	RLS	Serious (-1)	Serious (-1)	Neutral	Very serious (-2)	Serious (-1)	Very low	Serious (-1)	Very low	Serious (-1)	Neutral	Neutral	Neutral	Very serious (-2)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low					
Salhab	2019	PCS	Not reported (-1)	Serious (-1)	Neutral	Very serious (-2)	Serious (-1)	Very low	Serious (-1)	Very low	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low							
Andrade	2019	6MWT	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Moderate	Serious (-1)	Very low	Serious (-1)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low								
Chung	2019	VO_{peak}	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Moderate	Serious (-1)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low								
Zhang	2021	6MWT	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Moderate	Serious (-1)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Serious (-1)	Very low	Serious (-1)	Very low								
Author	Measure	Pu (2019)	Yamamoto (2021)	Thompson (2019)	Yang (2017)	Clarkson (2019)	Zhao (2019)	Zhang (2019)																									
---------------	----------	---	--------------------	--	--	--	--	--																									
		HGS Serious (-1) Neutral Neutral Serious (-1) Serious (-1) Very low																															
		PCS Very serious (-2) Neutral Neutral Serious (-1) Serious (-1) Very low																															
		MCS Very serious (-2) Neutral Neutral Serious (-1) Serious (-1) Very low																															
		Kt/V Serious (-1) Neutral Neutral Serious (-1) Not reported (-1) Very low																															
		VO_{2peak} Neutral Serious (-1) Neutral Neutral Not reported (-1) Moderate																															
		6MWT Neutral Neutral Neutral Serious (-1) Serious (-1) Moderate																															
		PCS Neutral Serious (-1) Neutral Neutral Serious (-1) Not reported (-1) Very low																															
		MCS Neutral Neutral Neutral Serious (-1) Serious (-1) Moderate																															
		SBP Serious (-1) Neutral Neutral Neutral Serious (-1) Serious (-1) Very low																															
		DBP Serious (-1) Neutral Neutral Neutral Serious (-1) Serious (-1) Very low																															
		SBP Very serious (-2) Serious (-1) Neutral Serious (-1) Very low																															
		VO_{2peak} Very serious (-2) Neutral Neutral Serious (-1) Neutral Very low																															
		BMI Very serious (-2) Neutral Neutral Neutral Neutral Low																															
		DBP Very serious (-2) Serious (-1) Neutral Serious (-1) Very low																															
		VO_{2peak} Neutral Neutral Neutral Serious (-1) Serious (-1) Low																															
		6MWT Neutral Neutral Neutral Neutral Serious (-1) Moderate																															
		Fatigue Neutral Neutral Neutral Serious (-1) Serious (-1) Low																															
		PCS Neutral Neutral Neutral Serious (-1) Serious (-1) Low																															
		MCS Neutral Serious (-1) Neutral Neutral Serious (-1) Very low																															
		SBP Neutral Serious (-1) Neutral Neutral Neutral Moderate																															
		DBP Neutral Serious (-1) Neutral Neutral Neutral Low																															
		BMI Serious (-1) Neutral Neutral Neutral Neutral Moderate																															
	Kt/V	SBP	DBP	6MWT	PCS	MCS	VO₂peak																										
--------------------	--------------	-------------	-------------	-------------	-------------	-------------	-------------------																										
Huang (2019)	Very serious (-2)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low																											
	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low																											
	Neutral	Neutral	Serious (-1)	Serious (-1)	Serious (-1)	Very low																											
	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low																											
	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low																											
	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low																											
	Very low	Neutral	Neutral	Serious (-1)	Serious (-1)	Low																											

	Aerobic capacity	Muscle strength	Walking capacity	SBP	DBP		
Heiwe (2011)	Neutral	Neutral	Neutral	Neutral	Neutral	Neutal	
	Neutralt	Neutralt	Serious (-1)	Serious (-1)	Not reported (-1)	Low	
	Neutral	Neutral	Neutral	Serious (-1)	Not reported (-1)	Low	
	Serious (-1)	Neutral	Neutral	Serious (-1)	Not reported (-1)	Very low	
	Serious (-1)	Neutral	Serious (-1)	Not reported (-1)	Very low		
	Neutralt	Neutral	Neutral	Serious (-1)	Not reported (-1)	Low	

	Aerobic capacity	Muscle strength	Walking capacity	SBP	DBP		
Heiwe (2014)	Neutral	Neutral	Neutral	Neutral	Neutral	Neutal	
	Neutralt	Neutralt	Serious (-1)	Serious (-1)	Not reported (-1)	Low	
	Neutral	Neutral	Serious (-1)	Serious (-1)	Not reported (-1)	Very low	
	Serious (-1)	Neutral	Serious (-1)	Not reported (-1)	Very low		
	Neutralt	Neutral	Neutral	Serious (-1)	Not reported (-1)	Low	

	VO₂peak	6MWT	Muscle strength	PCS	MCS		
Matsuzawa (2017)	Neutral	Serious (-1)	Serious (-1)	Neutral	Neutral	Neutal	
	Serious (-1)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	
	Very serious (-2)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
	Very serious (-2)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	

	VO₂peak	6MWT	Muscle strength	PCS	MCS		
Smart (2011)	Neutral	Serious (-1)	Neutral	Neutral	Serial		
	Serious (-1)	Neutral	Not reported (-1)	Neutral	Serial	Low	

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
(2020)	VO_{2\text{peak}}	Very serious (-2)	Serious (-1)	Neutral	Not reported (-1)	Not reported (-1)	Very low
STS 10	Neutral	Serious (-1)	Neutral	Not reported (-1)	Serious (-1)	Very low	

Sheng (2014)	Kt/V	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low
VO_{2\text{peak}}	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
PCS	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
MCS	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
6MWT	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low	
DBP	Serious (-1)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	
SBP	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
STS60	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	

Neto (2018)	VO_{2\text{peak}}	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Not reported (-1)	Very low
PCS	Serious (-1)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	
MCS	Serious (-1)	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	
6MWT	Serious (-1)	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Very low	
Muscle strength	Neutral	Serious (-1)	Neutral	Serious (-1)	Serious (-1)	Very low	

Ferrari (2019)	Kt/V (AE)	Neutral	Serious (-1)	Neutral	Serious (-1)	Neutral	Low
Kt/V (RT)	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
VO_{2\text{peak}} (COM)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low	
VO_{2\text{peak}} (AE)	Serious (-1)	Neutral	Neutral	Serious (-1)	Serious (-1)	Very low	
6MWT (RT)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low	
6MWT (AE)	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Low	
SBP	Serious (-1)	Neutral	Neutral	Serious (-1)	Neutral	Low	
DBP	Serious (-1)	Neutral	Neutral	Serious (-1)	Neutral	Low	

| Wyngaert (2018) | SBP | Serious (-1) | Serious (-1) | Neutral | Serious (-1) | Very low |
| DBP | Serious (-1) | Very serious (-2) | Neutral | Serious (-1) | Serious (-1) | Very low |
	VO\textsubscript{2peak}	BMI	HRQoL	HRQoL			
Oguchi							
(2018)	Very serious (-1)	Serious (-1)	Serious (-1)	Very low			
	Very serious (-2)	Neutral	Serious (-1)	Serious (-1)	Neutral	Low	
	Neutral	Neutral	Neutral	Serious (-1)	Serious (-1)	Neutral	Low
Ju							
(2020)	Very serious (-2)	Neutral	Neutral	Serious (-1)	Not reported (-1)	Very low	
	Very serious (-2)	Neutral	Serial (-1)	Not reported (-1)	Very low		
	Very serious (-2)	Neutral	Serial (-1)	Not reported (-1)	Very low		
	Very serious (-2)	Neutral	Serial (-1)	Not reported (-1)	Very low		
	Very serious (-2)	Neutral	Serial (-1)	Not reported (-1)	Very low		

Abbreviation: AE = aerobic exercise; RT = resistance training; COM = combine; VO\textsubscript{2peak} = peak oxygen uptake; HRQoL = health-related quality of life; DBP = diastolic blood pressure; SBP = systolic blood pressure; PCS = physical component summary; MCS = mental component summary; 6MWT = 6 minutes walk test; STS 10 = sit to stand 10 test; STS 30 = sit to stand 30 test; STS 60 = sit to stand 60 test; TUGT = timed up and go test; BMI = body mass index; SMD = standardized mean difference; HD = hemodialysis; KTRs = kidney transplant recipients; SF-36 = short form-36; KDQoL = kidney disease quality of life; Very serious mean the included studies existed two or more high risk of bias in terms of randomization, blinding, allocation concealment, completeness of result data, or selective reporting, or 75% ≤ I2 ≤ 100%. Serious mean the included studies existed two or more high risk of bias in terms of randomization, blinding, allocation concealment, completeness of result data, or selective reporting, or 50% ≤ I2 < 75%, or the included study sample size< 400, asymmetric funnel plot or less than 9 studies included.