International Publication Trends and Collaboration Impact on the Scientific Research of Saudi Arabia

Amal Babour*, Ohoud Alzamzami

King Abdulaziz University, Faculty of Computing and Information Technology, Jeddah, SAUDI ARABIA.

ABSTRACT
International collaborations are assumed to have a positive effect on scientific research advancement, which ultimately affects the economic growth of developing countries. To examine this effect, international collaborations in Saudi Arabia during the last two decades are investigated. Bibliometric and statistical analyses were applied to identify the characteristics of research collaboration using data extracted from Microsoft Academic Graph (MAG) between 2001 and 2020. After removing records with incomplete information, 158,860 publications were considered in the statistical analysis. The study showed that 64.74% of Saudi Arabia’s scientific output involved international collaborations. Among the different collaboration countries, the United States and Egypt accounted for the highest numbers of collaborations. Over time, the ratio of international collaborations to domestic collaborations continued to increase, indicating the general interest of researchers in Saudi Arabia in international collaborations. The average growth rate of Saudi Arabia’s scientific publications was 17.16% annually, and this growth was attributed more to international collaborations than domestic collaborations. Notably, co-authored publications with international first authors achieve a higher rate of citations than publications with domestic first authors. The analyzed dataset revealed that most scientific publications from Saudi Arabia were owed to international collaborations which have had a constructive effect on the quality of research and perceptibility of Saudi Arabia in the scientific community.

Keywords: Bibliometrics, Citation rate, Co-authorship, Collaboration Coefficient, Growth Rate.

INTRODUCTION
The economic growth of countries in the 21st century depends on their advancement in technology and their contribution to science.[1] The advancement in scientific research and technological innovation are considered as enablers for developing countries to attain a higher level of economic growth that is equivalent to that of developed countries. Although most scientific and technological advances occur over long periods and develop at a slow rate which might be imperceptible to the public, the accumulative results of these advances have visible effects on the country’s economy. The economic growth of South Korea, which has been achieved in a relatively short time compared to that of Western countries, is mainly attributed to its advancement in science and technology. In Australia, the advances in science was estimated to account for 20% to 30% of the nation’s overall economic growth, including activities such as employment, and exports.[2]

Scientific research activity is regarded as the catalyst of evolution and progression in developing countries. The quality of goods and services provided by countries to the public depends on technological innovations, which are mainly driven by scientific research and the new information and knowledge produced by the scientific community. A major constructive effect on the economic complexity of countries had been observed with the scientific output of fundamental sciences and engineering.[3] In addition, the diversity of the research output from scientific areas such as material science, medicine, chemistry, technology, and computer science constructively and substantially influences economic growth. [4]

Recently, international collaborations in scientific research have gained much attention from many countries around the world. Co-authorship with international colleagues produces a positive impact on individual productivity.[5] The increasing interest in university rankings and the research indicators involved in these rankings are two of the main reasons for the general trend of collaboration around the world.[6] A study has shown that the percentage of internationally co-authored publications between 1986 and 1999 doubled.[5] This percentage has increased in some countries to around 50%.[8] Research collaboration is becoming the standard in
the current research community of developing countries. Due to their lack of experience and availability of supporting infrastructure, developing countries resolve to collaborate with other countries that have more mature scientific research experience as a standard and effective way to strengthen their technical capabilities and to share resources.[10] For instance, three-quarters of the growth in the scientific output of Vietnam between 2001 and 2015 was associated with international collaborations instead of depending solely on domestic collaborations.[10] In China, international collaborations accounted for almost 50\% of all published papers in healthcare science between 2001 and 2010.[11] In the clinical medicine research of Malaysia, articles with international collaborations were published in higher impact factor journals and cited more frequently than articles without international collaborations, indicating that internationally co-authored papers are more valued.[12]

Over the past twenty years, the number of peer-reviewed publications has increased as a result of scientific research activities.[10,13] Publishing in peer-reviewed journals is one of the signs of the quality of scientific research. Peer-reviewed scientific publications have a positive and strong effect on the economic advancement of countries, which is mainly driven by knowledge.[14] However, investigating the effect and magnitude of international collaborations on the scientific activities of a country and determining how the rate of collaboration has changed over time is an interesting topic that should be studied within the context of each country.

The government of Saudi Arabia has recognized the value of advancement in education and science in accomplishing a bright future for Saudi Arabia. Since its establishment in 1932, along with its growing economy, Saudi Arabia has continued to increase the assigned budget for science and technology (S&T). As a developing country, Saudi Arabia, which has a historic practice of higher education and science, offers an attractive case study that demonstrates the benefit of international scientific collaborations.

This study aims to conduct a comprehensive exploration of the scientific activities in Saudi Arabia using bibliometric and statistical analysis. The objectives are as follows: (1) to identify the characteristics of Saudi Arabia scientific output; (2) to quantify domestic and international collaborations in Saudi Arabia; (3) to find out whether international collaborations have driven the growth in scientific activities during the past two decades; and (4) to determine if international research collaboration helps in producing higher quality and more impactful research compared with that of domestic collaborations.

DATA AND METHODOLOGY

Data Source and collection

The dataset of publications used in this study was obtained from the Microsoft Academic Graph (MAG) database, which is “a heterogeneous graph containing scientific publication records, citation relationships between publications, authors, institutions, journals, conferences, and fields of study”.[13] MAG is used by government agencies as a tool for in-depth analyses of scientific and technological trends, and the development of statistical indicators on science, technology, and innovation (STI). It has been selected because of its large coverage scope which encompasses more than 244,000,000 publications, covering all fields of scientific research.[16]

To retrieve the related set of publications, all publications in MAG, which contain Saudi Arabia as one of the affiliated countries during 2001 and 2020, were downloaded. Only the publications written in the English language were included. The involved publication types are conferences, books, journals, and patents. The extracted dataset contained a list of variables which included authors, affiliations, research area, and the number of citations. In publications, institutional affiliations are listed for each author. Affiliation countries for each author in each of the publications were extracted. According to the authors and extracted countries of affiliation, the articles were classified into one of the following two main categories: (a) single-author publications, for publications with only a single author; and (b) multiple-author publications for those with more than one author. Furthermore, the multiple-authored publications were classified into domestic or international collaborations.

The collected publications were classified according to their research areas into 19 broad groups: material science, medicine, chemistry, computer science, biology, mathematics, engineering, physics, environmental science, geology, psychology, business, geography, economics, sociology, political science, history, art, and philosophy.

Analysis Methods

To analyze the collected publication dataset, mostly descriptive statistical analysis was used. All analyses were conducted using Python 3.7 and Excel Workspace on the Windows platform. For studying the publication trend in the dataset over time, the study period was divided into four 5-year subperiods: 2001–2005, 2006–2010, 2011–2015, and 2016–2020. The rate of growth was estimated by the Compound Annual Growth Rate (CAGR).[17] Given that n is the number of years in the dataset, X is number of publications in the ending year, and Y is number of publications in the beginning year, CAGR can be calculated as:
RESUL TS

Publication Trends

From 2001 to 2020, Saudi Arabia published 181,130 publications in MAG. However, 22,270 publications were excluded because they had incomplete information. The remaining 158,860 publications were used in the analysis conducted in this study. The first analysis done is classifying the publications into the broad research area, which is shown in Figure 1. This analysis showed that almost 65% of the publications were focused on just 4 main areas: material science (18.17%), medicine (16.93%), chemistry (16.70%), and computer science (13.10%). Each of the remaining research areas accounted for less than 10% of the total scientific output for Saudi Arabia, especially sociology, political science, history, art, and philosophy which accounted for less than 0.5% of the total publications.

In 2020, Saudi Arabia published 21,449 publications compared to only 904 publications produced in 2001. During this period, two phases of growth can be observed. The first phase is between 2001 and 2010, with an annual growth rate of about 16.25% per annum. The second phase is between 2011 and 2020, in which the rate of growth was 13.47%.

Table 1 presents the number of publications for each of the research areas based on the four 5-year subperiods and the growth rate between 2011 and 2020. Generally, the number of publications has grown for all the research areas, with a rate of growth of 17.16% per annum between 2001 and 2020. Among the different research areas, political science, sociology, psychology, material science, and computer science showed the highest growth of more than 20% per year, whereas engineering showed the lowest growth of 0.8% per year.

In addition, the ratio of collaborative papers for each scientific research area was quantified using the collaboration coefficient (CC), where \(R_j \) is the number of publications that have \(j \) authors in the research area, \(\text{MAX} \) is the greatest number of authors in the research area, and \(P \) is the total number of publications in the research area.\(^{[13]}\) It can be defined as:

\[
\text{CC} = 1 - \frac{\sum_{j=1}^{\text{MAX}} \left(1 - \frac{1}{j}\right) R_j}{P}
\]

The CC value is a ratio between 0 and 1, where 0 means no collaboration, and single-author publications dominated the publication records of this research area, and 1 means that all the publications in this research area were collaborative.

To quantify the domestic and international collaboration in Saudi Arabia, multiple author publications were categorized into two main categories based on the collaboration type. The categories are domestic collaboration (DOM), which includes publications that had multiple authors where the affiliation countries of all authors were Saudi Arabia, and international collaboration (IC) for publications that had multiple authors where at least one of them had an overseas affiliation.

To evaluate the quality of publications, citation analysis was used. In this analysis, the IC category was further classified based on the first authors into two sub-categories: IC.SA for internationally co-authored publications with Saudi Arabia being the affiliation country of the first author; and IC. IA for internationally co-authored publications with an international (overseas) first author. In addition, a set of boxplots was created to show the distribution of citations for the publication type for each study area.

To visualize the collaborative relationships between Saudi Arabia and other countries, a global map was generated to show the research collaborations of Saudi Arabia with the countries around the world. In addition, a graph analysis method was used to build a visual star-like graph of nodes and links. The countries are represented in this Figure as nodes, while the links represent the collaborations. Saudi Arabia forms the center of the graph where other collaboration countries are connected to the center. The weight of the connection between Saudi Arabia and any other country was defined as the total number of collaborated publications between these countries.

Figure 1: Broad scientific research areas of Saudi Arabia between 2001 and 2020 and their percentages.
Research collaborations

Most of the analyzed publications had multiple authors. Table 2 shows the collaboration coefficients (CCs), which are computed based on the number of authors for each of the defined research areas over the four 5-year subperiods. The CCs value showed a continuous increase through the study periods for nearly all broad research areas, especially for the last two periods, with the highest increase being observed in chemistry and material science. However, a decrease in collaborations can be observed in the research area of philosophy through the whole study periods.

Based on the categorization of publications according to the co-authorship status, Table 3 shows the percentages of single-authored scientific publications, in addition to domestic and international collaborative scientific publications for all the research areas. Overall, single-authored publications accounted for approximately 12.69% of the total publications between 2001 and 2020. Nevertheless, the percentages of publications with a single author varied among the different areas of research, with philosophy, art, and history publications having the highest percentages of 74.24%, 62.35%, and 60.93%, respectively.

Domestic publications contributed to approximately 22.57% of the publications with engineering and environmental science publications having the highest percentages of 36.48% and 34.76%, respectively. In addition, international collaboration publications, which had at least one international affiliation, reported the highest percentage of 64.74% among the other collaboration type categories. Biology had the highest percentage of international collaboration, with about 80.83% of publications, followed by physics (77.37%) and chemistry (74.27%). All research areas had an international collaboration rate of around 25% or more except for philosophy.

Furthermore, the identified collaborative publications were categorized into three categories based on the first authorship and the conditions as defined in the ‘Data Collection and Analysis Methods’ Section. The categories and their percentages are as follows. The domestic authors’ category (DOM) for publications with all domestic authors accounted for 22.57% of the total collaborative publications. The second category for internationally collaborated publications with domestic first authors (IC.SA) formed about 20.84% of the total collaborative publications. The third category of internationally collaborated publications with overseas first authors (IC.IA) comprised about 43.91% of the total collaborative publications.

Table 1: Distribution of the number of original articles from Saudi Arabia published in Microsoft Academic Graph (MAG) between 2001 and 2020 based on the four 5-year subperiods and the growth rate.

Broad research areas	2001-2005	2006-2010	2011-2015	2016-2020	Growth rate (%/year)
Material science	544	1405	8668	18255	23.18%
Medicine	1092	2291	8227	15282	15.63%
Chemistry	828	1583	8970	15142	17.23%
Computer science	441	1508	6235	12630	21.61%
Biology	252	809	5118	6981	17.83%
Mathematics	584	1237	4672	5434	13.21%
Engineering	481	1035	3383	2003	0.80%
Physics	231	367	2083	3536	15.82%
Environmental science	138	228	1061	2851	18.378%
Geology	270	391	1292	2172	10.14%
Psychology	50	137	888	2246	23.92%
Business	88	189	599	1275	17.99%
Geography	25	71	359	651	19.83%
Economics	57	126	335	449	9.50%
Sociology	13	29	254	406	24.57%
Political science	14	39	169	379	25.70%
History	7	6	33	105	13.90%
Art	3	7	35	40	10.96%
Philosophy	2	4	26	34	10.22%
All areas	5120	11,462	52,407	89,871	17.16%

Table 2: Collaboration coefficient of Saudi Arabia broad research areas between 2001 and 2020.

Broad research areas	2001-2005	2006-2010	2011-2015	2016-2020	Growth rate (%/year)
Material science	0.44	0.53	0.67	0.71	
Medicine	0.29	0.40	0.58	0.66	
Chemistry	0.50	0.57	0.70	0.73	
Computer science	0.38	0.48	0.58	0.65	
Biology	0.32	0.41	0.56	0.62	
Mathematics	0.32	0.41	0.56	0.62	
Engineering	0.36	0.45	0.53	0.60	
Physics	0.41	0.50	0.66	0.68	
Environmental science	0.46	0.52	0.62	0.66	
Geology	0.51	0.55	0.60	0.64	
Psychology	0.35	0.41	0.44	0.49	
Business	0.35	0.32	0.44	0.49	
Geography	0.28	0.42	0.51	0.63	
Economics	0.39	0.31	0.44	0.50	
Sociology	0.18	0.20	0.22	0.30	
Political science	0.15	0.29	0.34	0.42	
History	0.18	0.24	0.16	0.29	
Art	0.25	0.30	0.25	0.27	
Philosophy	0.33	0.20	0.19	0.16	
All areas	0.34	0.40	0.48	0.53	
Table 3: Saudi Arabia’s scientific publications are categorized by research area and collaboration type.

Broad research areas	Total number of publications	Publications with a single author (%)	Domestic collaborative publications (%)	International collaborative publications (%)
Material science	28872	7.32%	22.70%	69.98%
Medicine	26892	18.84%	28.38%	52.78%
Chemistry	26523	6.35%	19.38%	74.27%
Computer science	20814	11.74%	27.27%	60.99%
Biology	13160	5.93%	13.24%	80.83%
Mathematics	11927	15.82%	15.13%	69.05%
Engineering	6902	21.01%	36.48%	42.51%
Physics	6217	9.44%	13.19%	77.37%
Environmental Science	4278	11.31%	26.09%	62.60%
Geology	4125	13.28%	34.76%	51.95%
Psychology	3321	31.74%	16.65%	51.61%
Business	2151	31.29%	17.11%	51.60%
Geography	1106	20.98%	17.72%	61.30%
Economics	967	30.61%	10.65%	58.74%
Sociology	702	58.26%	10.97%	30.77%
Political science	601	42.10%	12.81%	45.09%
History	151	60.93%	14.57%	24.50%
Art	85	62.35%	11.76%	25.88%
Philosophy	66	74.24%	9.09%	16.67%
All areas	158,860	12.69%	22.57%	64.74%

Singled authored publications had only Saudi Arabia affiliation.

Between the two periods of 2001 to 2005 and 2016 to 2020, the total number of publications increased from 5120 to 89,871. During this period, there was an increase in the proportion of international collaborative publications, where such publications aided in approximately 71% of this increase. Table 4 shows the number of international publications in the four 5-year periods. As seen from 2001 to 2005, almost 26% of the whole Saudi Arabian scientific output had an international co-author(s). This percentage increased to 41% from 2006 to 2010, 64% from 2011 to 2015, and 71% from 2016 to 2020. However, a reduction of 100% in international publications was observed in history for the period from 2006 to 2010, as well as a reduction of 24.8% in engineering, and 33.3% in philosophy for the period from 2016 to 2020.

At the same time, the percentage of the international publications in some study areas remained very low on the four 5-year periods. This was clearly observed in sociology, political science, history, art, and philosophy, where their international publications did not exceed 0.5% of the total number of the international publications in the whole study periods.

Table 4: Distribution of the number of international collaborative publications from Saudi Arabia published in Microsoft Academic Graph (MAG) between 2001 and 2020 based on the four 5-year subperiods.

Broad research areas	2001-2005	2006-2010	2011-2015	2016-2020
Material Science	150	588	5770	13697
Medicine	137	581	4214	9261
Chemistry	216	763	6701	12019
Computer Science	111	561	3439	8584
Biology	113	544	4149	5831
Mathematics	184	590	3316	4145
Engineering	84	319	1445	1086
Physics	90	199	1609	2912
Environmental Science	30	82	648	1918
Geology	87	186	698	1172
Psychology	16	72	453	1173
Business	38	59	291	722
Geography	5	26	192	455
Economics	32	46	198	292
Sociology	3	7	70	136
Political Science	3	12	71	185
History	1	0	6	30
Art	1	2	7	12
Philosophy	0	1	6	4
All areas	1301	4638	33,283	63,634

Figure 2: Geographical distribution of publications of Saudi Arabia.

Collaboration Countries

In total, Saudi Arabia collaborated with 163 countries worldwide, as shown on the map presented in Figure 2. As seen in the Figure, Saudi Arabia collaborated with about 84% of the countries around the world. Table 5 shows the top 20 collaborative countries with Saudi Arabia. Of the top 20 countries, 10 are considered developed or scientifically advanced countries. The percent of the total in this Table is
Table 5: Top 20 countries of scientific publication collaborations with Saudi Arabia from 2001 to 2020.

Country	2001-2005	2006-2010	2011-2015	2016-2020	Total (2001-2020)	Percent of the total (%)
United States	454	1416	8328	14960	25158	18.76%
Egypt	142	730	6091	11955	18918	14.10%
China	22	156	2535	7607	10320	7.69%
India	41	243	2839	7084	10207	7.61%
United Kingdom	191	476	3256	6082	10005	7.46%
Pakistan	38	219	2227	7239	9723	7.25%
Canada	113	355	2343	3349	6160	4.59%
Malaysia	15	152	2264	3590	6021	4.49%
Australia	28	145	1625	3321	5119	3.82%
Germany	31	199	1829	2850	4909	3.66%
France	40	181	1457	2592	4270	3.18%
Turkey	64	152	1264	2163	3643	2.72%
Italy	25	98	1190	2145	3458	2.58%
South Korea	13	79	987	1962	3041	2.27%
Spain	9	86	1099	1694	2888	2.15%
Japan	18	107	928	1692	2745	2.05%
Tunisia	6	3	399	1709	2117	1.58%
Qatar	6	21	390	1407	1824	1.36%
Netherlands	15	60	702	1040	1817	1.35%
Iran	1	36	641	1113	1791	1.34%

Research impact and citation analysis

To evaluate the effect of international collaborations on the research quality and impact, a subset of publications was selected and the number of citations for these publications was determined. Table 6 shows the relative citation index, and the average citations for publications published between 2011 and 2015 were grouped by the research areas and based on the collaboration types, DOM and IC. The relative citation index was calculated as the ratio of the average citations for international and domestic collaborative publications. The selection of the time frame was based on the recommendation that a sufficient citation period for most scientific areas is no less than five years from the publication year. It should be noted that the average citations of all the scientific areas were higher for international collaborative publications than that of the domestic collaborative publications. Additionally, in some research areas such as biology, economics, mathematics, and chemistry, international collaborative publications had significantly higher citation rates than domestic collaborative publications. Taking Biology as an example, the citation average for international and domestic collaborative publications in this area was 81.4%, and 12.09%, respectively.

Figure 4 presents a detailed analysis of the citations, which is distributed by research areas and first authorship status. The Figure demonstrates that IC.IA collaborative publications achieved the highest citation average for all the research areas except political science. IC.SA collaborative publications come next after IC.IA, and domestic collaborative publications got the smallest citation average among the three categories for nearly all the research areas except history and art.
DISCUSSION

The value of scientific collaboration is acknowledged by the contemporary research community in both developing and developed countries. Developing countries utilize scientific collaborations with developed countries as a successful approach to develop their own research capability and to enhance their economies. Investigating the progress of scientific collaborations over time could provide useful insights into the advancement and economic status of developing countries. Considering the current country of study, it has been found that a large percentage of the scientific output of Saudi Arabia during the last 20 years has resulted from international collaborations. As Saudi Arabia’s international collaborations with developed or developing countries have increased, the percentage of domestic collaborations has decreased marginally, indicating that the research experience of Saudi Arabia has advanced over time.

Regarding the nature and motives of international collaborations, it has been observed that collaboration with international countries was more frequently utilized in experimental research fields such as medicine, life sciences, and earth science as a method for resource sharing. More specifically, research in life and earth sciences involves large investments, expensive devices, and equipment required for conducting experiments, which may be the main reasons for the high percentage of publications with international collaborations. Additionally, in the clinical medicine research field, international collaborations might be attributed to the vital need for professional skills, the availability of data sources, and the ease of data collection.

Based on the results of the current study, four main findings could be highlighted. However, these findings should be inferred within the context of this study, including its strengths and limitations. The chief strength of this study is its inclusion of the different types of publications; this enables the obtaining of the full material regarding the characteristics of research collaboration in Saudi Arabia. According to Wang, the selection of 20 years as the study time window is considered sufficient for a reliable analysis of the publications’ growth rate and identifying the citation patterns. However, a biased analysis of the citation could result from the variation of the citation patterns based on the different scientific areas considered in this study.

The first point is related to the stage of growth of the Saudi Arabian scientific research capability. Currently, most of the scientific output from Saudi Arabia (87%) is produced by either domestic or international collaborations, demonstrating that collaborations play a crucial role in the scientific research and knowledge establishment in Saudi Arabia. Moreover, the publications of Saudi Arabia are characterized by the high
and growing percentage of international collaborations. The collaboration coefficient has increased over the years, showing the general trend of the increment in international collaborations, with a sacrifice of the decrement in domestic collaboration. While 64.74% of Saudi Arabia’s total scientific publications are produced by international collaboration, only 22.57% of this total is produced by domestic collaboration. This indicates that, like many developing countries which depend on other developed or developing countries to build their research capabilities, Saudi Arabia is still at an early stage of research capacity building. In contrast, other developed countries such as China, Taiwan, South Korea, Turkey which had a lower rate of international collaboration,\(^{(20,21)}\) a substantial proportion (71%) of the growth in Saudi Arabia’s scientific output throughout the past 20 years resulted from collaboration with other countries.

Second, Saudi Arabia has mostly collaborated with the United States, where between 2001–2005 and 2016–2020, the number of co-authored publications with authors from the US has largely increased. Increased collaboration with the United States implies the maturing scientific experience of Saudi Arabia and the cooperation of both countries in addressing the common areas of concern. In addition, Saudi Arabia has also collaborated with other scientifically advanced and developed countries such as China and the United Kingdom.

Third, the results provide enough evidence to show that Saudi Arabia has profited from international collaborations with other countries in research projects. As anticipated, publications resulting from international collaborations accumulated more citations than domestic collaborative publications. This observation is consistent with findings from previous studies which suggest that international collaborative publications are more visible to the research community than domestic collaborative publications.\(^{(22)}\)

Fourth, more significantly, an interesting finding from the results is that the affiliation country of first authors of international collaborative publications has a considerable effect on the number of citations received. Internationally collaborative publications with overseas first authors acquired more citations than those with domestic first authors. This finding is consistent with the result of a previous study that reported that higher levels of international collaboration have a positive and considerable impact on citations.\(^{(25)}\)

CONCLUSION

This study has shown that during the last 20 years from 2001 to 2020, Saudi Arabia’s scientific publications have grown yearly with an average of 17.16% per year. The growth was mainly attributed to international collaborations, which accounted for about 71% of the growth. The United States and Egypt are the most collaborative countries with Saudi Arabia, as they are the main partners with Saudi Arabia in many scientific research projects. The results analysis in this study provides evidence that international collaborations helped in enhancing the visibility and the research impact of Saudi Arabia’s scientific output, which led to augment the country’s research capabilities.

Even though international collaboration has increased in most of the research areas, some areas still need to increase their international collaborative works. This can come through looking for opportunities for international collaborations by the researchers. In addition to the government role in encouraging and supporting the researchers in terms of providing funds, incentives and opportunities can be further raised for domestic researchers to have more and easier contact with foreign researchers by supporting international mobility of domestic researchers, hosting international researchers in all research areas especially the research areas that need to enhance their international collaborations such as sociology, political science, history, art, and philosophy.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. González CB, Flores E, Martínez MA. Scientific production convergence: An empirical analysis across Nations. Minerva. 2021;1-23. doi: 10.1007/s11024-021-09443-8.
2. Chubb I. The importance of advanced physical, mathematical and biological sciences to the Australian economy; 2016.
3. Laverde-Rojas H, Correa JC. Can scientific productivity impact the economic complexity of countries? Scientometrics. 2019;123(1):267-82. doi: 10.1007/s11192-019-03119-8.
4. Pinto T, Teixeira AAC. The impact of research output on economic growth by fields of science: A dynamic panel data analysis, 1980-2016. Scientometrics. 2020;123(2):945-78. doi: 10.1007/s11192-020-03419-3.
5. Rostam M, Ceravolo FA, Metcalfe AS. The internationalization of research. In: The internationalization of the academy. Springer; 2014;119-43.
6. Woldegiyorgis AA, Proctor D, De Wit H. Internationalization of research: Key considerations and concerns. Journal of Studies in International Education. 2018;22(2):161-78. doi: 10.1177/1028315117828004.
7. Archibugi D, Coco A. International partnerships for knowledge in business and academia: A comparison between Europe and the USA. Technovation. 2004;24(7):517-28. doi: 10.1016/S0166-4972(03)00141-X.
8. Schmoch U, Schubert T. Are international co-publications an indicator for quality of Scientific Research? Scientometrics. 2008;74(3):361-77. doi: 10.1007/s11192-007-1818-5.
9. Brahmakulam I, Jackson B, Wagner C, Wong A, Yoda T. Science and technology collaboration: Building capacity in developing countries. RAND Science and Technology. Santa Monica. 2001;2001.
10. Nguyen TV, Ho-Le TP, Le UV. International collaboration in scientific research in Vietnam: An analysis of patterns and impact. Scientometrics. 2017;110(2):1035-51. doi: 10.1007/s11192-016-2201-1.
11. Chen K, Yao Q, Sun J, He ZF, Yao L, Liu ZY. International publication trends and collaboration performance of China in healthcare science and services research. Israel Journal of Health Policy Research. 2016;5(1):1. doi: 10.1186/s13584-016-0061-z; PMID 26834970.
12. Low WY, Ng KH, Kabir MA, Koh AP, Sinnasamy J. Trend and impact of international collaboration in clinical medicine papers published in Malaysia. Scientometrics. 2014;98(2):1521-33. doi: 10.1007/s11192-013-1121-6, PMID 24465065.

13. Manh HD, H.D. Scientific publications in Vietnam as seen from Scopus during 1996-2013. Scientometrics. 2015;105(1):83-95. doi: 10.1007/s11192-015-1655-x.

14. Nguyen TV, Pham LT. Scientific output and its relationship to knowledge economy: An analysis of ASEAN countries. Scientometrics. 2011;89(1):107-17. doi: 10.1007/s11192-011-0446-2.

15. Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BJ, et al. An overview of Microsoft academic service (mas) and applications. In: Proceedings of the 24th international conference on World Wide Web; 2015. doi: 10.1145/2740908.2742839.

16. Martin-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics. 2020;1-36. doi: 10.1007/s11192-020-03690-4. PMID 32981987.

17. Choi DG, Lee H, SungTK. Research profiling for “standardization and innovation”. Scientometrics. 2011;88(1):259-78. doi: 10.1007/s11192-011-0344-7.

18. Savanur K, Srikanth R. Modified collaborative coefficient: A new measure for quantifying the degree of research collaboration. Scientometrics. 2010;84(2):365-71. doi: 10.1007/s11192-009-0100-4.

19. Wang J. Citation time window choice for research impact evaluation. Scientometrics. 2013;94(3):851-72. doi: 10.1007/s11192-012-0775-9.

20. e Conhecimento RDL. Knowledge, Networks and Nations: Global scientific collaboration in the 21st century; 2011.

21. Kim MJ. Korean science and international collaboration, 1995-2000. Scientometrics. 2005;63(2):321-39. doi: 10.1007/s11192-005-0215-1.

22. Khor KA, Yu LG. Influence of international co-authorship on the research citation impact of young universities. Scientometrics. 2016;107(3):1095-110. doi: 10.1007/s11192-016-1905-6, PMID 27239078.

23. Corfraria H, Mira Godinho MM, Wang L. Determinants of citation impact: A comparative analysis of the Global South versus the Global North. Research Policy. 2017;46(1):265-79. doi: 10.1016/j.respol.2016.11.004.