Identification of functional features of synthetic SINEUPs, antisense IncRNAs that specifically enhance protein translation
“Identification of functional features of synthetic SINEUPs, antisense IncRNAs that specifically enhance protein translation.”

PLOS ONE 13(2): e0183229.
https://doi.org/10.1371/journal.pone.0183229
1. 序
約15年前までは、ゲノムの殆どは使われておらず、ジャンクだと考えられていた。しかしながら2005年、理化学研究所の研究グループは、ゲノムの大部分がRNAとして転写され、さらにその大部分がロングノンコーディングRNA（lncRNA）として構成されているという研究結果を報告した。続く解析によって、それらのかなりの部分のlncRNAが、タンパク質を翻訳するmRNAに対するアンチセンス鎖として発現しており、マウスのゲノム中では、少なくとも72%の転写物がセンス鎖・アンチセンス鎖対になっていることを発見した。この研究報告に基づき、アンチセンスlncRNAについての研究が世界的に盛んとなり、多くの研究成果が報告された。一例を挙げると、アルツハイマー病の原因遺伝子である、アミロイドβ（Aβ）の生産量を増加させるBACE1（β-site Amyloid precursor protein Cleaving Enzyme 1）のアンチセンス鎖（BASE1-AS）RNAは、BASE1のRNA転写量を増加させ、タンパク質発現量を増加する。また別の例として、脳由来神経栄養因子であるBDNF（brain-derived neurotrophic factor）のアンチセンス鎖は、BDNFのRNA転写量を減少させ、タンパク質発現量を抑制する。このようなアンチセンスlncRNAは、センスmRNAとの相補的な配列領域にて、センスmRNAと結合していると考えられることから、アンチセンスRNAは、センスmRNAとの相補的な配列領域を結合領域（Binding Domain; BD）と呼ぶ。アンチセンスlncRNAのさらなる機能を確かめるために、アンチセンス鎖のBDを他のmRNA（例えばEGFP）のアンチセンス配列と置き換え、細胞に導入したところ、センス鎖のmRNA量を変えることなく、それらのタンパク質翻訳を促進した。カルニンチ客員教授らの研究グループはその合成RNAを“SINEUPs”と名付け、その機能を確認してきた。SINEUPsはBD、および翻訳を促進する鍵であるSINEB2が含まれる機能領域（Effector Domain; ED）からなる（図1）。EDであるSINEB2は、tRNAに由来するRNAポリメラーゼⅢのプロモーター配列を含んでいる。ゲノム中に存在する、ほとんどのSINEB2はRNAポリメラーゼⅢによって転写されるものと
考えられており、類似配列は植物からヒトまでのゲノムで確認されている。しかし、近年までレトロトランスポゾンは外来遺伝子からの残骸で不要な遺伝子だと考えられていたため、その機能解析の研究はあまり行われてこなかった。そこで私は、SINEUPsのどのドメインが翻訳促進の機能にどのように作用しているかを調査することを目的に、翻訳機能に関わるBDおよびEDの必須領域の解析を行った。先行研究においてBDをEGFPのアンチセンス配列として設計したSINEUP-GFPがマウスドーバミン神経細胞株、ヒト胎児肝細胞株、チャイニーズハムスター卵巣細胞株およびメダカの生体でGFPの翻訳を促進することが確認されている6-9。そこで、本研究ではSINEUP-GFPを機能解析のツールとして用いた。まず、EGFPに対するBDの最適化を行った。次に、必須領域の解析を迅速に行うために、高スループットスクリーニング方法を開発し、EDの機能ドメインを解析した。さらに、SINEUPsを細胞に導入した際に、細胞内で不要なストレス応答が惹起されていないかを確認した。

2. 実験方法

プラスミドおよび遺伝子クローニング
pcDNA3.1(−)およびpEGFP-C2は、それぞれThermo Fisher ScientificおよびClontechから購入した。クローニングの基礎となるプラスミドは、SINEUP-GFP（FL-60 nt）5,6を使用し、変異体はQuickChange II Site-Directed Mutagenesis Kit（Agilent、#200523）を用いて作製した。Kitに使用するPCRプライマーは、QuickChange Primer Design Program（Agilent）を用いてデザインした。ΔBD, SCR-1およびSCR-2はTransSINE Technologiesから入手した。

細胞培養
HEK293T/17（ヒト胎児腎）細胞株（CRL-11268, ATCC）およびHepa1-6（マウス肝癌）細胞株（CRL-1830, ATCC）を使用した。培養にはATCCの標準培地（ATCC-30-2022）を使用し、5%CO₂恒温器で37℃、3-5日間培養後、70-90%コンフルエンスになったものを実験に使用した。

DNA導入および細胞回収
6ウェルプレートに細胞を播種し、24時間後にpEGFP-C2およびpcDNA3.1-SINEUP-GFPを1:4.3（0.6μg+3.6μg）の比率で10μlのLipofectamine2000（Thermo Fisher Scientific、11668019）を使用して導入した。24時間後、細胞をピペットにより回収し、下記のタンパク質抽出に用いた。

Cap Analysis Gene Expression（CAGE）
CAGEライブラリは5μgのtotal RNAを用いて、高橋らの方法で作製した10。CAGEライブラリをHiSeq 2000（Illumina）でシークエンスし、転写開始点を解析した。シークエンス結果はDNA Data Bank of Japan(http://www.ddbj.nig.ac.jp/index-e.html)に登録されている。Submissionアクセス番号:DRA005519、BioProjectアクセス番号:PRJDB5492、
タンパク質抽出
回収した細胞に、細胞溶解液および PMSF（CST、#8553）を加え、10 分間4℃で遠心（20,000 × g）後、上清を回収した。上清のタンパク濃度は DC Protein Assay（BioRad、5000112JA）法で測定した。

Western blot 法
10-20 μg の抽出タンパク質を 10% SDS PAGE ゲル（Mini PROTEAN TGX Precast Gel、Bio-Rad）に流し、セミドライトランスファー法（BioRad）でニトロセルロース膜（GE Healthcare、03953-95）でブロッキングした。目的のタンパク質を 1 次抗体に反応させ、その後 horseradish peroxidase（HRP）標識 2 次抗体で反応させた。HRP を ECL（Amersham、に反応させ、発光タンパク質を FUJI LAS-3000（FUJIFILM）または FUSION（Vilber-Lourmat）で検出した。タンパク質のバンド強度は、Image J version 1.48（National Institutes of Health）で解析した。

抗体
1 次抗体は、抗 GFP rabbit serum 抗体（A-6455、Life Technologies）、モノクローナル抗 β-actin 抗体（A5441、Sigma Aldrich）、抗 alpha Tubulin（TUBA1A）抗体（ab80779, abcam）、抗 GAPDH 抗体（G4595、SIGMA Aldrich）、抗 PKR 抗体（ab32052, abcam）、抗 PKR phospho T451 抗体（ab81303, abcam）、抗 EIF2S1 抗体（ab26197, abcam）、抗 EIF2S1 phospho S51 抗体（ab32157, abcam）、抗 phosho-4E-BP1（ser65）抗体（#9451, CST）、抗 4E-BP1 抗体（#9452、CST）を使用した。2 次抗体は、HRP 標識ポリクローナルヤギ抗ラビット抗体（P0448、Dako）、HRP 標識ポリクローナルヤギ抗マウス抗体（P0447、Dako）を使用した。

CeligoS を使用した GFP 発現解析法
SINEUPs 効果を確認する高スループットスクリーニング方法には、CeligoS Imaging Cytometer（Nexcelom Bioscience）を使用した。

24 ウェルプレートに細胞を播種し、24 時間後に pEGFP-C2 および pcDNA3.1-SINEUP-GFP を 1:4.3（75 ng + 725 ng）の比率で 3 μl の Lipofectamine2000（Thermo Fisher Scientific）を使用して導入した。24 時間後、核を Hoechst 33342（H3570, Thermo Fisher Scientific）で染色し、EGFP の積分強度を CeligoS software（Nexcelom Bioscience）で解析した。

3. 研究結果
1）BD スクリーニング：SINEUP-GFP の BD 配列最適化
Carri eri らは、先行研究において SINEUP-GFP の BD を、EGFP 転写物の第 1 メチオニン（AUG）を起点に 40 塩基上流から 32 塩基下流に設計し、その後翻訳に及ぼす
効果を報告した。しかし、その際に EGFP の転写開始点を考慮していなかったため、実際の BD 設計が転写物と相補鎖になっているかが未調査であった。そこで、改めて CAGE 法*で EGFP の転写開始点を解析し、BD の最適設計を目指すこととした。その結果、EGFP の転写開始点は AUG の 27 塩基上流に存在することが判明した（図 2A 左）。また、SINEUP-GFP の転写開始点は SINEUPs を挿入した場所から 93 塩基上流に存在することが判明した。

図 2. SINEUP-GFP の BD 最適化
（A）CAGE 法による、EGFP および SINEUP-GFP の転写開始点解析。緑：EGFPmRNA の転写開始点。赤：SINEUPs の転写開始点。（B）SINEUP-GFP の BD 変異体およびその効果。HEK293T/17 細胞に pEGFP および SINEUP-GFP の BD 変異体を導入し、SINEUP-GFP の翻訳効果をウェスタンブロッティングで確認した。***p<0.0005、n=9、Δ：欠損
Takahashi et al., PLOS ONE, 13(2): e0183229.
基上流にあることが判明した。(図2A右)。そこで私は、SINEUP-GFPのBDを最適化するために、BDを27塩基上流から32塩基下流の間で16種類作製し、HEK293T/17細胞にpEGFPと共に導入した。トランスフェクション24時間後の細胞からタンパク質を抽出し、ウェスタンブロッティングでEGFPの発現量を測定した結果、5未側を削除したSINEUP-GFP（Δ5'-32nt）がSINEUPsを入れていないコントロールに比べ、2.8倍EGFPの翻訳を促進し、以前に報告していたFL-60ntよりも高い効果を示した（図2B、グラフの上から8個目）。

2) 高スループットSINEUPsスクリーニング方法の確立
BDスクリーニングを行った際には、ウェスタンプロッティング法を用いて、EGFPの発現を比較していた。しかし、ウェスタンプロッティング法は、多くのサンプルを同時に対象とすることができない。そこで、本研究では、高スループットなスクリーニング方法の開発を試みた。この方法は、BDスクリーニングをCeligo Sのイメージで評価することで、高速で大量のデータを取得できるという利点がある。この方法を用いることで、大きなデータ量を高速で処理することが可能である。

図3. SINEUPs高スループットスクリーニング方法の確立。(A) SINEUPs高スループットスクリーニング方法の概要。(B) SINEUP-GFPのBD変異体Δ5'-32ntを用い、Celigo Sのイメージを抽出した結果、SINEUPを入れていないControl（左）に比べ、Δ5'-32nt（右）のEGFPシグナル強度が上がった。(C) (B)のイメージを用い、全細胞数から換算したEGFPシグナルの積分強度を比で表した結果。***p<0.0005, n=3, FOV: field of view

Takahashi et al., PLOS ONE, 13(2): e0183229.
効率的に短時間で検出することが難しい。そこで、BD と ED を短時間で大量にスクリーニングするための、高スループットな SINEUPs 評価系を開発した（図 3）。評価系では、生細胞内に発現する EGFP の蛍光強度を CeligoS イメージングで測定し、全細胞数で標準化することで、1 細胞あたりの EGFP シグナルの積分強度を解析した。この方法を使用すると、今までおよそ 2 週間要していた SINEUPs の評価が 3 日間で可能になった（図 3 A）。1 の結果で最も EGFP の翻訳を促進した Δ5'-32nt をこの方法で検出し、全細胞数から換算した EGFP の積分強度を解析したところ、SINEUP を入れていないコントロールに比べ、Δ5'-32nt は確かに EGFP の翻訳を促進した（図 3 B および C）。

3）EDスクリーニング：翻訳促進に必須な SINEB2 のサブドメイン解析
SINEB2 には、tRNA 由来である RNA ポリメラーゼⅢのプロモーター配列 A box および B box が存在する 11。また、SINEB2 転写物に RNA ポリメラーゼⅡが結合することが報告されており、その結合にはタンパク質と RNA の構造が関係していることが示唆されている 12。そこで、本研究では RNAfold プログラムを用いて、AS-Uchl1 から抽出した SINEB2 の 2 次構造を予測し、それぞれの既知のサブドメインについて、翻訳促進に必須な構造や配列を確認することにした（図 4 A および 4 B 左）。まず、ドメインごとに 10 塩基をランダムに欠損（図 4 A のオレンジ部分 5 個および A box、B box を両方）した 6 個の SINEUP-GFP を作製し、それぞれの変異体を、2）で確立した高スループットスクリーニング法で検出した。その結果、ほぼすべての欠損変異体が、SINEB2 配列に変異をいれていない Full に比べ、翻訳促進機能を減衰、もしくは喪失した（図 4 B 右）。この結果から、10 塩基を欠損したことで、配列依存的な活性機能が損失した可能性が考えられた。次に、翻訳促進活性は構造依存的に機能しているかを確認するために、2 次構造予測で強固なステムループを形成している部分（65-76 番目付近）に注目し、その構成塩基を欠損（ΔG76）、または付加（G76GG および G70GA）したところ、SINEUPs の機能に変化を及ぼさなかった（図 4 C グラフ右から 1、2、3 番目）。しかしながら、67 番目および 70 番目のグアニンをアデニンに変化させ、ステムループを壊した G67A/G70A（図 4 C グラフ右から 4 番目）については、SINEUPs の機能が Full に比べて減衰した。この結果から、SINEB2 の翻訳促進にはステムループ構造が必須だということが示唆された。
図4．SINEUP-GFPの活性に必須なSINEB2のサブドメイン解析

(A) SINEB2の配列およびその既知領域。

(B) SINEB2の2次構造予測およびその変異体の翻訳活性を解析した結果。

(C) ステムループドメインの変異体、およびその翻訳活性を解析した結果。

*p<0.05、Control：SINEUPを入れていないサンプル、Full：変異を入れていないSINEB2配列。n=3、dm: double mutation、Δ: 欠損

Takahashi et al., PLOS ONE, 13(2): e0183229.
による翻訳制御経路の確認
1）の実験結果より、SINEUP-GFPのBDは少なくとも32塩基（Δ5'-32nt）が、EGFPのmRNAと2本鎖を形成するために設計されなければならない。SINEB2はSINEの部類に属するレトロトランスポゾンであるが、同SINEに属するAlu反復配列は、2本鎖RNA依存性プロテインキナーゼ（PKR）を活性化するという報告がある。通常PKRの経路が活性化されると、翻訳開始を担っているEIF-2αがリン酸化され、特定の遺伝子翻訳を阻害する機能が働く。SINEUPsのBDは、センス鎖mRNAと2本鎖を形成するように設計されており、さらにAluが属するSINEの部類であるため、SINEUP-GFPを細胞に導入した際に、2本鎖RNA依存性プロテインキナーゼ（PKR）の活性経路および、それに続く通常の翻訳抑制機能（eIF2αのリン酸化）がSINEUPsによって惹起されているかどうか、それぞれのタンパク質の発現変化から確認した。結果として、SINEUPsによるタンパク質の発現は変化せず、2本鎖RNAに対するストレス応答が惹起されていないことが判明した（データは主論文中に記載）。

4. 討論
本研究では、SINEUPsの機能を担っているBDおよびEDの特徴配列を調査し、BDが2本鎖依存的なストレス応答経路を活性化するかを確認した。SINEUPs研究のひとつの目的は、BDを哺乳類およびその他の遺伝子に広範囲に設計し、機能の法則性を理解することにある。前述したように、SINEUP-GFPはメダカの生体、マウス細胞株、チャイニーズハムスター細胞株、ヒト細胞株内でEGFPのタンパク質翻訳を促進しており、それらに存在する共通した翻訳機構に、SINEUPsは関与している可能性が示唆される。他の内在性のmRNAに対するSINEUPsがEGFPと同様の現象を示すかを確認することは、SINEUPsによるタンパク質翻訳促進の作用機序を検証するために、重要だと考える。そのためには、内在性のmRNAに対するBDの長さ、翻訳開始点上流の非翻訳領域の長さ、およびそのRNAの2次構造などをそれぞれに調査する必要がある。本研究で識別したSINEUP-GFPの最適BD（Δ5'-32nt）はEGFPのAUGとKozak配列の相補鎖になっており、先行研究で効果のあったSINEUP-DJ-16およびSINEUP-NLucのBDと同様の特徴を示している。AUGとKozak配列の相補鎖が、どのようにSINEUPsの作用機序を担っているかを解明するためには、さらなる検証実験が必要であるが、SINEUP-GFPのリボゾーム認識部位（Kozak配列）への関与が翻訳促進を引き起こしている可能性が示唆される。
された。解析に用いた高スループットスクリーニング方法は、SINEUP 研究におい
て有力なツールとして利用できるものであり、さらなる研究に貢献できると考える。
SINEUPs 技術は標的遺伝子の翻訳を促進する機能を担っており、疾病原因の遺伝子
の翻訳を生体内で活性化する可能性を秘めている。本研究では、細胞に導入した合成
SINEUP-GFP が、2 本鎖 RNA によるストレス応答を惹起していないことを確認し
た。この結果は、SINEUPs を RNA 治療へ応用する際のストレス応答への懸念を和
らげるものと考える。

5. まとめ
1) SINEUP-GFP が EGFP の翻訳を最大限に促進するには、BD を翻訳開始配列
 AUG およびリボソーム認識 Kozak 配列を含んだ 32 塩基に対するアンチセン
ス配列として設計することが必要であることを確認した。
2) BD および ED のサブドメイン機能を広範囲に調査するために、高スループッ
トな検出方法を確立した。
3) 2) で確立した検出方法を用い、ED のスクリーニングを行ったところ、ED
は配列依存的および構造依存的に機能していることが判明した。
4) SINEUP-GFP を細胞に導入しても 2 本鎖 RNA 依存性プロテインキナーゼ
(PKR) の経路は活性化されず、SINEUPs の BD によるストレス応答は検出
されなかった。

6. 業績として優れた点（通常の過程博士の学位論文の要件を超える点）
本研究は、2012 年に新規のアンチセンス IncRNA が標的 mRNA の翻訳を促進すると
いう現象が発見されて以来の、約 5 年間の研究をまとめた結果である。この約 5 年間
で、私は 3 報の SINEUPs に関する研究論文に共著者として携わった。それらの研究
を通して自らが蓄積した技術や知識を、本研究でさらに深く掘り下げ、報告した。我々
はそのアンチセンス IncRNA を SINEUPs と名付け、研究を続けている。新規の発見
であったが故に、当初はその機能や作用機序は全くの未知であった。本研究で、EGFP
および SINEUP-GFP の転写開始点を調査するために使用した CAGE 法は、2008 年
から 2011 年までの 3 年間に、SINEUPs とは別のプロジェクト ENCODE*5 に貢献
するために自らが改良した技術を用いており（参考論文 1, 2 を参照）、通常の過程
博士 3 年間では、これらの業績は時間的に、または経験的に成し得なかったと考える。

7. 論文リスト
＜学術雑誌等に発表した論文＞
主論文
I 主論文
1. Hazuki Takahashi, Ana Kozhuharova, Harshita Sharma, Masakazu Hirose,
Takako Ohyama, Francesca Fasolo, Toshio Yamazaki, Diego Cotella, Claudio Santoro, Silvia Zucchelli, Stefano Gustincich, Piero Carninci.; Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. PLOS ONE Vol. 13, NO.2, e0183229, 2018.

参考文献（筆頭著者）

1. Hazuki Takahashi, Timo Lassmann, Mitsuyoshi Murata, Piero Carninci.; 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nature Protocols. Vol. 7, NO. 3, Page, 542-61, 2012.

2. Hazuki Takahashi, Sachi Kato, Mitsuyoshi Murata, Piero Carninci.; CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods in Molecular Biology. Vol. 786, Pages 181-200, 2012.

3. Charles Plessy*, Nicolas Bertin*, Hazuki Takahashi*, Roberto Simone*, Md. Salimullah, Timo Lassmann, Morana Vitezic, Jessica Severin, Signe Olivarius, Dejan Lazarevic, Nadine Hornig, Valero Orlando, Ian Bell, Hui Gao, Jacqueline Dumais, Philipp Kapranov, Huaien Wang, Carrie A. Davis, Thomas R. Gingeras, Jun Kawai, Carsten O. Daub, Yoshihide Hayashizaki, Stefano Gustincich, Piero Carninci.; Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods. Vol. 7, NO. 7, Pages 528-534, 2010. *These authors contributed equally.

＜学術雑誌等または商業誌における解説、総説＞

1. 高橋葉月 ピエロ・カルニンチ「続・生物工学基礎講座 バイオよもやま話 遺伝子発現制御の歴史と応用(解説)」生物工学会誌、第93巻、第12号、751頁〜753頁、2015年12月発行

2. Hazuki Takahashi, Piero Carninci.; Widespread genome transcription: new possibilities for RNA therapies. Biochemical and Biophysical Research Communications. Vol. 452, NO. 2, Pages 294-301, 2014.

3. 高橋葉月、薬師寺秀樹、ピエロ・カルニンチ「SINEUPs: タンパク質合成を促進する新規RNAツール」実験医学 第31巻、第9号、1431頁〜1436頁、2013年6月発行

その他（文中に使用した参考文献）

1. Carninci, P. et al. The transcriptional landscape of the mammalian genome. *Science* **309**, 1559-1563 (2005).

2. Katayama, S. et al. Antisense transcription in the mammalian
transcriptome. *Science* **309**, 1564-1566 (2005).

3 Faghihi, M. A. *et al.* Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. *Nature Medicine* **14**, 723-730 (2008).

4 Modarresi, F. *et al.* Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. *Nat Biotechnol* **30**, 453-459 (2012).

5 Carrieri, C. *et al.* Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. *Nature* **491**, 454-457 (2012).

6 Zucchelli, S. *et al.* SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. *Frontiers in Cellular Neuroscience* **9**, 174 (2015).

7 Zucchelli, S. *et al.* SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation. *RNA Biology* **12**, 771-779 (2015).

8 Patrucco, L. *et al.* Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. *Gene* (2015).

9 Indrieri, A. *et al.* Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo. *Sci Rep* **6**, 27315 (2016).

10 Takahashi, H., Lassmann, T., Murata, M. & Carninci, P. 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. *Nature Protocols* **7**, 542-561 (2012).

11 Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. & Goodrich, J. A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. *Nat Struct Mol Biol* **11**, 822-829 (2004).

12 Espinoza, C. A., Goodrich, J. A. & Kugel, J. F. Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. *RNA* **13**, 583-596 (2007).

13 Chu, W. M., Ballard, R., Carpick, B. W., Williams, B. R. G. & Schmid, C. W. Potential Alu function: Regulation of the activity of double-stranded RNA-activated kinase PKR. *Mol Cell Biol* **18**, 58-68 (1998).

14 Davies, M. V., Furtado, M., Hershey, J. W., Thimmappaya, B. & Kaufman, R. J. Complementation of adenovirus virus-associated RNA I gene deletion by expression of a mutant eukaryotic translation initiation factor. *Proc Natl Acad Sci USA* **86**, 9163-9167 (1989).

15 Kertesz, M. *et al.* Genome-wide measurement of RNA secondary structure
Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486-490 (2015).

17 Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706-709 (2014).

9. 用語集
*1) UCHL1 テンパク質; 脱ユビキチン化酵素の一つで、その遺伝子変異がパーキンソン病の発症に関与していると考えられている。
*2) SINEB2; Short Interspersed Nuclear Element B2 の略。レトロトランスポゾン因子*3) SINE に分類されるマウス特異的な遺伝子であり、tRNA の進化の過程で分かれたものだと考えられている。マウスゲノム中に 35 万コピー存在し、それ自体は進化をしてこなかったと考えられている。200 塩基程度の短い配列を持つ。
*3) レトロトランスポゾン因子; 「転移遺伝子」の一種であり、多くの真核生物組織の遺伝子内に普遍的に存在する。レトロトランスポゾンは、自分自身を RNA に複写した後、逆転写酵素によって DNA に複写し返されることで移動、つまり「転移」する。
*4) CAGE 法; Cap Analysis of Gene Expression の略。理研オミックス基盤研究領域が開発した方法で、5'末端の塩基配列を決定する実験技法。遺伝子の転写開始点を包括的に同定できる。
*5) ENCODE; The Encyclopedia of DNA Elements の略。アメリカ国立ヒトゲノム研究所 (NHGRI) が 2003 年に立ち上げたヒトゲノム解析プロジェクト。ヒトゲノムのすべての機能要素の解析を目指し、2012 年までに、世界 5 か国（スペイン、アメリカ、イギリス、日本、シンガポール）から 32 の研究機関が参加した。