Using Heart Rate to Predict Students’ Academic Performance

Mu Lin Wong, S. Senthil, L. Robert

Abstract: Timeliness was a missing factor in many studies on Academic Performance Prediction to identify at-risk students. This study embarked on a search to evaluate the feasibility of predicting students’ performance based on heart rate data collected during classes. This dimension of data was collected in the first four weeks after semester commencement to validate accurate prediction that will enable educationists to introduce remedial intervention to at-risk students. Another aim of this study is to determine the best threshold values for the different types of heart rate fluctuations that can be used in predicting academic achievements. The threshold values were tested further to verify whether the prediction model for individual course or combined courses was more accurate. Results revealed that heart rate data alone can achieve a maximum prediction accuracy of 88% and recall of 100%. Threshold values calculated in derived heart rate fluctuation types produces the best results. Prediction models for individual courses outperform the model using average threshold values of all courses.

Index Terms: At-Risk Students, Educational Data Mining, Heart Rate Analysis, Physiological Sensors, Students’ Academic Performance Prediction.

I. INTRODUCTION

Identifying at-risk students has been the heart of student performance prediction in the domain of Educational Data Mining. Previous models developed using historical data were successful in predicting students failing or bordering failure, especially after incorporating preparatory exam results. However, there is little or no time for remedial intervention.

Therefore, this study aims to examine the feasibility of using student heart rate to add the timeliness factor into the prediction model. In another word, the prediction should be able to identify at-risk students as early as possible in order to provide educationist opportunities for early intervention. Heart rate can be used as a gauge of students’ engagement in class.

This study will also evaluate different types of heart rate fluctuation to determine the best types to be used as features in academic prediction model. The authors have derived four types of heart rate fluctuations based on four basic heart rate fluctuation types calculated. All of them will be used to arithmetically derive threshold values for the purpose of prediction.

A third aim is to evaluate whether the threshold values of the prediction model be based on the heart rate data of each individual subject or the average heart rate data of all subjects combined. This is due to the fact that generally students are not all-rounders. Therefore, it might not be scientifically viable to generalize the threshold values for prediction.

The organization of this paper is as follows: Section II presents the literature review while Section III describes the methodology carried out to analyze students’ heart rate data to find the threshold values which can be used to predict at-risk students. Section IV discusses the results and the accuracy of such results. Finally, section V provides a general conclusion with the prospect of future research.

II. LITERATURE REVIEW

Marbouti et al. [1] proved using an empirical study that it is possible to predict at-risk students using only assessment data (assignments, quizzes, homework, projects, etc.) obtained from the instructor over a 5-week period and obtained an accuracy of 86.2% in identifying at-risk students. The limitation of this model is that it is accurate only if the student population is above 120 and the failure rate is less than 10% of the population. The model can only predict at-risk students within a specific course or subject. Baars et al. [2] predicted at-risk medical students with 66.7% accuracy after 6 months using personal and academic data. These medical students are assessed in an annual scheme rather than a semester scheme. Asif et al. [3] reportedly found from a population of 210 4-year undergraduate students a trend whereby poor performing students tend to perform the same throughout the four year program, while the good performing students will continue to perform well in the same period. Therefore, it’s possible to flag at-risk students through a consistent evaluation of their performance since the commencement of their class. Other studies [4]-[9] also indicate the possibility of timely prediction using academic data within the academic year or semester.

Kaur et al. [10] also performed an empirical study with 152 students and the prediction of at-risk students reach 83% with personal and academic data included. The drawback was that the accuracy was achieved only after including the feature of internal assessment results, therefore, failing to provide timeliness to the prediction model. Many empirical studies [11]-[19], though relatively accurate, don’t include timeliness in their prediction models. Therefore, the accuracy of the models didn’t provide a real solution to reduce failure rate. Zollanvari et al. [20] argued that a relatively accurate prediction model can be developed using only a set of self-regulatory learning behaviors, without using any...
more and more researchers are pointing out the significance of using engagement as a core feature in academic performance prediction. Cohen et al. [21] advocated that the inter-subject correlation of the electroencephalogram can be used to measure students’ neural engagement in video watching, therefore would be predictive of their academic performances. Currie et al. [22] highlight the use of eye movement as a mean of gauging student engagement for predicting academic outcome. Many recent studies [23]-[25] reveal the need to use engagement data in the predictive model development. Pardo et al. [26] emphasizes the need to combine self-report data and online engagement data to develop prediction model. Whitehill et al. [27] presented a feasibility of using automated facial recognition to determine class engagement and ultimately predict academic performance.

While self-report and observation instruments were used to measure engagement in the past [28]-[30], Azevedo [31] proposes to use data from physiological sensors as they are free from bias. Sinatra et al. [32] suggested a hybrid approach of incorporating physiological data and observational data to measure engagement. D’Mello et al. [33], recognizing learning requires engagement, showcased 15 case studies of measuring engagement in digital learning environments using a combination of physiological data and aspects of environmental context. Ainley and Ainley [34] pointed out that in their study of more than 400,000 students worldwide, enjoyment attached with studying science is directly affecting the level of engagement, ultimately predicting the level of achievement. Polatlos et al. [35] indicated that there is a strong relationship between emotional stimuli and heart rate responses. Rainville et al. [36] proved that the basic human emotions are associated with distinct patterns of cardiorespiratory activity. Two studies [37], [38] suggest that heart rate variability is highly proportionate to the demand of sustained attention, more than other cognitive processes. However, it’s nearly impossible to chain students to expensive cardiovascular sensors in a classroom environment. The wires would interfere with the learning process, not to mention resulting in bias being introduced to the experimentation. Therefore, wearable wireless sensors [39]-[43] are preferred to collect physiological data. They are more cost effective, non-intrusive and non-disturbing to the wearer.

Having surveyed the above literature, a gap is identified that no study has been done on using heart rate collected from physiological sensors to measure class engagement and predict academic performance. Since heart rate is proven to relate to human emotions and human emotions are related to academic performance, there is a high feasibility that heart rate can also be used to predict student achievement. The next section will discuss on the methods used to analyze the heart rate data collected and establish threshold values to predict at-risk students.

III. METHODOLOGY

The following segments will describe the detail methods used data sets creation, heart rate analysis, threshold values calculation, and parameters used in the prediction model.

A. Data Sets

In this study, the heart rate of 50 first-semester Bachelor of Computer Applications (BCA) students were recorded when they were attending lectures of three core subjects, namely C Programming (C), Digital Electronics (DE), and Mathematics (Math). Each lecture last for an hour. At the end of the first four weeks of semester commencement, there were a total of 15 hours of C lectures, 15 hours of DE lectures, and 10 hours of Math lectures.

The end semester result unveils that only 1 student failed in C and only 1 student failed in DE. The passing mark is 50%. In the spirit of recognizing at-risk students, the authors have enlisted students who just passed (scoring between 50% and 54%) to be considered as failed. The detail is shown in Table I.

TABLE I. Demographic of Students Who Passed or Failed in C, DE and Math
Passed (≥55%)
C
45
5
Total

B. Heart Rate Analysis

The heart rate data is measured as beat per minute (bpm) and is recorded at one second interval. There will be fluctuating heart rate for every student during the one-hour lecture. The authors proposed the following six types of heart rate fluctuation as measuring engagement during lecture.

- **Up** is defined as the number of times in an hour where the student heart rate increases 10 bpm or more within a 10-second period.
- **Down** is defined as the number of times in an hour where the student heart rate decreases 10 bpm or more within a 10-second period.
- **UD** is defined as the sum of Up and Down.
- **Peak** is defined as the number of times in an hour where the student heart rate increases 10 bpm or more and then immediately decreases 10 bpm or more within a 30-second period.
- **Low** is defined as the number of times in an hour where the student heart rate decreases 10 bpm or more and then immediately increases 10 bpm or more within a 30-second period.
- **PL** is defined as the sum of Peak and Low.

C. Threshold Values

After averaging the values of the six types of heart rate fluctuation of students who passed and students who failed, Table II , III and IV show the summary for C, DE, and Math respectively.

TABLE II. Heart Rate Fluctuation and Threshold Values of C.
Up
Down
UD
Peak
Low
PL
The threshold values were calculated based on the following formula.

\[T = MF + \frac{FS}{TS} \times (MP - MF) \]

(1)

T is the threshold value. MF is the mean of students who failed. MP is the mean of students who passed. FS is the number of students of failed while TS is the total number of students.

D. Prediction

Using the threshold values obtained for each subject, students are then predicted to pass a subject should their heart rate fluctuation values be higher than the threshold values. If not, they would be predicted to fail that subject.

Other parameters required in the evaluation of our prediction model include TP, TN, FP, FN, Accuracy and Precision. TP stands for True Positive, which means the number of students predicted to pass and actually passed. TN stands for True Negative, signifying the number of students predicted to fail and actually failed. False Positive (FP) is the number of students predicted to fail but actually passed, while False Negative (FN) is the number of students predicted to pass but actually failed. Accuracy (A) and Recall (R) can be defined as follow.

\[A = \frac{TP + TN}{TP + TN + FP + FN} \]

(2)

\[R = \frac{TN}{TN + FN} \]

(3)

Accuracy is the rate of correct prediction of both students who passed and students who failed. Since our aim is to identify at-risk students, therefore the prediction model developed must produce a low FN. In another word, the number of students predicted to pass but actually failed must be kept to the minimum. Recall is the percentage of all at-risk students predicted accurately. Consequently, a prediction model with a higher recall without compromising its accuracy is a better option.

The results of the prediction are shown and discussed in the next section.
Another model is created by averaging the threshold values of C, DE, and Math. Table VIII displays the accuracy and recall of such model. Comparing with Table V (65%), Table VI (100%), and Table VII (100%), the average recall of Table VIII is the lowest (46%). The average accuracy of Table VIII is 67%, which is better than Table V (56%) and Table VI (61%), but worse than Table VII (74%). Therefore, averaging the threshold values to produce a prediction model is an adverse move, especially when the threshold values differ greatly.

TABLE VIII. Prediction Accuracy & Recall for Combination Model.

Threshold	TP	TN	FP	FN	Accuracy	Recall
Up	32	52	48	3	0.66	0.57
Down	35	23	47	3	0.67	0.43
UD	67	45	22	5	0.67	0.29
Peak	10	31	49	3	0.65	0.57
Low	8	12	43	3	0.61	0.57
PL	17	78	105	3	0.72	0.43
UD&PL	97	3	46	4	0.67	0.43
UDPL	107	3	36	4	0.73	0.43
Average	97	3	46	4	0.67	0.46

Another way of comparing the prediction model using the average threshold values of the three subjects with the prediction model using the threshold values of each subject can be found in Table IX. Predicting students’ performance based on threshold values calculated on individual subjects produces higher recall, averaging ranging from 87% to 93%. On the contrary, the prediction model based on the average threshold values of all 3 subjects produces higher accuracy, ranging from 61% to 73%.

TABLE IX. Comparison of Models Developed Using Threshold Values of Individual Subject vs. Average Threshold Values of All Subjects.

Threshold Values of Individual Subjects	Average Threshold Values of All Subjects			
Accuracy	Recall	Accuracy	Recall	
Up	0.63	0.93	0.66	0.57
Down	0.65	0.87	0.67	0.43
UD	0.63	0.87	0.67	0.29
Peak	0.64	0.87	0.63	0.57
Low	0.59	0.87	0.61	0.57
PL	0.65	0.87	0.72	0.43
UD&PL	0.61	0.93	0.67	0.43
UDPL	0.68	0.87	0.73	0.43

V. CONCLUSION

Based on the results obtained in this study, it is highly probable to use heart rate data to predict students’ academic performance. With only 4 weeks of heart rate data analyzed, the prediction model achieved an accuracy ranging from 44% to 80%, and recall ranging from 29% to 100%, across the various heart rate fluctuation types used.

Out of eight heart rate fluctuation types, the derived types (UD, PL, UD&PL, and UDPL) are generally better performing than the others. UD&PL tends to produce high recall, ranging from 80% to 100%, while UDPL produces higher accuracy, ranging from 60% to 80%.

It is clear that the students’ performance prediction model should use threshold values of individual subjects as they give a higher recall as compared to using the average threshold values of three subjects. In another word, a higher recall means a better prediction model in identifying at-risk students.

However, heart rate is not the only factor influencing class engagement. The heart rate of a student can be affected by the emotional and physical elements of a student. Therefore, it is imperative that other relevant academic, personal and socio-economic data can be added as features in the prediction model, in order to increase accuracy and recall. Another future scope of research is to include evaluating the heart rate of the students for a whole semester so that the longitudinal factor can be assessed.

REFERENCES

1. F. Marbouti, H.A. Diefes-Dux, and K. Madhavan, “Models for Early Prediction of At-risk Students in a Course Using Standards-based Grading,” Computers & Education, 103, 2016, pp. 1-15.
2. G.J.A. Baars, T. Stijnen, and T.A.W. Splinter, “A Model to Predict Student Failure in the First Year of the Undergraduate Medical Curriculum,” Health Professions Education, 3, 2017, pp. 5-14.
3. R. Asif, A. Merceron, S.A. Ali, and N.G. Haider, “Analyzing Undergraduate Students’ Performance Using Educational Data Mining,” Computers & Education, 113, 2017, pp. 177-194.
4. E. Fernandes, M. Holanda, M. Victorinou, V. Borges, R. Carvalho, and G.V. Ervena, “Educational Data Mining: Predictive Analysis of Academic Performance of Public School Students in the Capital of Brazil,” Journal of Business Research, 94, 2019, pp. 335-343.
5. E.B. Costa, B. Fonseca, M.A. Santana, F.F. de-Araujo, and J. Rego, “Evaluating the Effectiveness of Educational Data Mining Techniques for Early Prediction of Students’ Academic Failure in Introductory Programming Courses,” Computers in Human Behavior, 73, 2017, pp. 247-256.
6. H. Miguës, A. Freitas, P.J.V. Garcia, and A. Silva, “Early Segmentation of Students According to Their Academic Performance: a predictive modeling approach,” Decision Support Systems, 115, 2018, pp. 36-51.
7. G. Barata, S. Gama, J. Jorge, and D. Goncalves, “Early Prediction of Student Profiles Based on Performance and Gaming Preferences,” IEEE Transactions On Learning Technologies, 9(3), 2016, pp. 272-284.
8. C.C. Gray, and D. Perkins, “Utilizing Early Engagement and Machine Learning to Predict Student Outcomes,” Computers & Education, 131, 2019, pp. 22-32.
9. Y. Meier, J. Xu, O. Atan, and M. van der Schaar, “Predicting Grades,” IEEE Transactions on Signal Processing, 64(4), 2016, pp. 959-972.
10. P. Kaur, M. Singh, and G.S. Josan, “Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector,” Procedia Computer Science, 57, 2015, pp. 500-508.
11. Y. Altujjar, W. Altamimi, I. Almutari, and A. A. Silva, “Predicting Students’ Performance in University Courses: A Case Study,” Computers & Education, 113, 2017, pp. 177-194.
12. G. Badra, A. Algobaila, H. Almutairia, and M. Almuterya, “Predicting Critical Courses Affecting Students Performance: A Case Study,” Procedia Computer Science, 82, 2016, pp. 65-71.
13. G. Ahmed, A. Alghubari, A. Almutawer, and A. Almutia, “Predicting Students’ Performance Using Business Data: A Case Study and Tool in RSM/Statistics Department,” Procedia Computer Science, 82, 2016, pp. 80-89.
14. H. Hamza, S. Indiradevi, and J.J. Kizhalakethottam, “Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm,” Procedia Technology, 25, 2016, pp. 326-332.
14. M. Pandey, and S. Taruna, “Towards the Integration of Multiple Classifier Pertaining to Student’s Performance Prediction,” Perspectives in Science, 8, 2016, pp. 364-366.

15. M. Pandey, and D. Correal, “Applying Data Mining Techniques to Predict Student Dropout: A Case Study,” in 2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence, 2018, pp. 1-6.

16. K.I.M. Ramaphosa, T. Z uda, and R. Kwuimi, “Educational Data Mining to Improve Learner Performance in Gauteng Primary Schools,” in 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems, 2018, pp. 1-6.

17. J. Y. Chung, and S. Lee, “Dropout Early Warning Systems for High School Students Using Machine Learning,” Children and Youth Services Review, 96, 2019, pp. 346-353.

18. S. Qu, K. Li, S. Zhang, and Y. Wang, “Predicting Achievement of Students in the Virtual Environment,” IEEE Access, 6, 2018, pp. 60264-60273.

19. K.T. Chai, D.C.L. Fung, M. D. Lytras, and T.M. Lam, “Predicting At-risk University Students in a Virtual Learning Environment via a Machine Learning Algorithm,” Computers in Human Behavior, in press, Available online 27 June 2018.

20. A. Zollanvari, R.C. Kizilirmak, Y.H. Kho, and D. Hernandez-Torrano, “Predicting Students’ GPA and Developing Intervention Strategies Based on Self-Reported Learning Behaviors,” IEEE Access, 5, 2017, pp. 23792-23802.

21. S.S. Cohen, J. Madsen, G. Tousch, D. Robles, S.F.A. Lima, S. Henin, and L.C. Parrá, “Neural Engagement with Online Educational Videos Predicts Learning Performance for Individual Students,” Neurobiology of Learning and Memory, 155, 2018, pp. 60-64.

22. J. Currie, R.R. Bond, P. McCullagh, P. Black, D.D. Finlay, and A. Peace, “Eye Tracking the Visual Attention of Nurses Interpreting Simulated Vital Signs Scenarios: Mining Metrics to Discriminate Between Performance Level,” IEEE Transactions On Human-Machine Systems, 48(2), 2018, pp. 113-124.

23. S. Helala, J. Liu, L. Liua, E. Ebrhaimea, S. Dawsone, D.J. Murray, and Q. Long, “Predicting Academic Performance by Considering Student Heterogeneity,” Knowledge-Based Systems, 161, 2018, pp. 134-146.

24. K.M. H’over, and M. M’uhl’auser, “ClassQasse: Measuring Students’ Attentionness in the Classroom,” in 2015 IEEE International Symposium on Multimedia, 2015, pp. 577-582.

25. V. Chandudu, A.A.P. Wai, and C.Y. Ho, “Evaluation of Learning Performance by Quantifying User’s Engagement,” in 2017 International Conference on Orange Technologies, 2017, pp. 180-183.

26. A. Pando, F. Han, and R.A. Ellis, “Combining University Student Self-Regulated Learning Indicators and Engagement with Online Learning Events to Predict Academic Performance,” 82 IEEE Transactions On Learning Technologies, 10(1), 2017, pp. 82-92.

27. J. Whitehill, Z. Serpell, Y.-C. Lin, A. Foster, and J.R. Movellan, “The Faces of Engagement: Automatic Recognition of Student Engagement from Facial Expressions,” 86 IEEE Transactions On Affective Computing, 5(1), 2014, pp. 86-98.

28. C. Goldspink and M. Foster, “A Conceptual Model and Set of Instruments for Measuring Student Engagement in Learning,” Cambridge Journal of Education, 43(3), 2013, pp. 291-311.

29. E. S. Lane and S. E. Harris, “A New Tool for Measuring Student Behavioral Engagement in Large University Classes,” Research and Teaching, 44(6), 2015, pp. 83-91.

30. R.J. Collie, and A.J. Martin, “Students’ Adaptability in Mathematics: Examining Self-Reports and Teachers’ Reports and Links with Engagement and Achievement Outcomes,” Contemporary Educational Psychology, 49, 2017, pp. 355-366.

31. R. Azevedo, “Defining and Measuring Engagement in Learning: Science: Conceptual, Theoretical, Methodological, and Analytical Issues,” Educational Psychologist, 50(1), 2015, pp. 84-94.

32. G.M. Simons, B.C. Heddy, and D. Lombardi, “The Challenges of Defining and Measuring Student Engagement in Science,” Educational Psychologist, 50(1), 2015, pp. 1-13.

33. S. D’Mello, E. Dieterle, and A. Duckworth, “Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning,” Educational Psychologist, 52(2), 2017, pp. 104-123.

34. M. Ainley, and A. Ainley, “Student Engagement with Science in Early Adolescence: The Contribution of Enjoyment to Students’ Continuing Interest in Learning about Science,” Contemporary Educational Psychology, 36, 2011, pp. 4-12.

35. O. Pollatos, B.M. Herbert, E. Matthias, and R. Schandy, “Heart rate response after emotional picture presentation is modulated by interoceptive awareness,” International Journal of Psychophysiology, 63, 2007, pp. 117-124.

36. P. Rainville, A. Bechara, N. Naqvi, and A.R. Damasio, “Basic Emotions are Associated with Distinct Patterns of Cardiorespiratory Activity,” International Journal of Psychophysiology, 61, 2006, pp. 5-18.

37. A. Lasue-Casado, J.C. Peraleza, D. Cárdenas, and D. Sanabria, “Heart Rate Variability and Cognitive Processing: The Autonomic Response to Task Demands,” Biological Psychology, 113, 2016, pp. 83-90.

38. C.D.B. Luft, E. Takase, and D. Darby, “Heart Rate Variability and Cognitive Function: Effects of Physical Effort,” Biological Psychology, 82, 2009, pp. 186-191.

39. Y. Song, Y. Wang, J. Yang, and J. Li, “Health Sensing by Wearable Sensors and Mobile Phones: A Survey,” Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom), 2014, pp. 453-459.

40. M.M. Rodgers, V.M. Pai, and R.S. Conroy, “Recent Advances in Wearable Sensors for Health Monitoring,” IEEE Sensors Journal, 15(6), 2015, pp. 3119-3126.

41. Z. Wang and Z. Huang, “Wearable Health Status Monitoring Device for Electricity Workers using ZigBee-based Wireless Sensor Network,” Proceedings in the 2014 7th International Conference on BioMedical Engineering and Informatics, 2014, pp. 602-606.

42. F. Sanfilippo and K.Y. Petterson, “A Sensor Fusion Wearable Health Monitoring System with Haptic Feedback,” Proceedings in the 2015 11th International Conference on Innovations in Information Technology, 2015, pp. 262-266.

43. C. Wang and P. Cesar, “Physiological Measurement on Students’ Engagement in a Distributed Learning Environment,” PhyCS, 2015, pp. 149-156.

AUTHORS PROFILE

Mu Lin Wong is a PhD Scholar in the School of Computing and Information Technology, REVA University, India. Earlier, he was working as Professor, Computer Science Department, Garden City College (currently Garden City University), India, and as Senior Lecturer, Kolej Aman, Malaysia. He graduated from University Technology Malaysia with a Bachelor Degree in Science and Computer with Education (Mathematics) in 1998 and Master Degree of Science in Information Technology (Education) in 2003. His interest is in Educational Data Mining, capitalizing computation power to revolutionize education.

Dr. S. Senthil is Professor and Director, School of Computer Science and Applications, REVA University, India. Previously, he worked as Associate Professor and Head, Department of Computer Science, Vidyasagar College of Arts and Science, India. He obtained his B.Sc. (Applied Science – Computer Technology) from PSG College of Technology, India, in 1995, Master of Computer Applications from Bharathidasan University, India, in 1999, M.Phil. in Computer Science from Manonmaniam Sundaranar University, India in 2002, and Ph.D. in Computer Science from Bharathiar University , India, in 2014. Another achievement is clearing SET in 2012. He has published 40 research papers in various reputed National and International Journals. He has presented a paper entitled "Lossless Preprocessing Algorithms for better Compression" in an IEEE International Conference at Zhangjiajie, China. His interest is in Database Systems, Data Mining, Data Compression, and Big Data Analytics.

Dr. L. Robert is an Associate Professor in the Department of Computer Science, Government Arts College, Coimbatore, India. He was a faculty member of the Computer Science and Information Systems Department, King Saudi University, Riyadh, KSA. He received his tertiary education from St. Joseph College, Trichy, obtaining B.Sc. Computer Science in 1993 and M.Sc. Computer Science in 1995, both receiving College Management Medals for outstanding academic performance. Another feather in the cap is clearing SET and NET. He completed his Ph.D. in Computer Science from PSG College of Technology, India, in 2008. His area of research is Data Compression and Data Management. He has since successfully guided four Ph.D. scholars. In the area of publication, he has authored more than 20 papers in national and international peer reviewed journals, and more than 30 papers in national and international conferences.

Retrieval Number: C47400983319190DEIESP
DOI:10.35940/ijrte.C4740.0983319

Published By: Blue Eyes Intelligence Engineering & Sciences Publication