Diffusion in Social Networks with Competing Products

Krzysztof R. Apt$^{1,2}$ and Evangelos Markakis$^3$

$^1$ CWI, Amsterdam, the Netherlands, 
apt@cwi.nl, 
$^2$ University of Amsterdam, 
$^3$ Athens University of Economics and Business, 
Dept. of Informatics, Athens, Greece 
markakis@gmail.com

Abstract. We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize the graphs for which adoption of a product by the whole network is possible (respectively necessary) and the ones for which a unique outcome is guaranteed. These characterizations directly yield polynomial time algorithms that allow us to determine whether a given social network satisfies one of the above properties. We also study algorithmic questions for networks without unique outcomes. We show that the problem of computing the minimum possible spread of a product is NP-hard to approximate with an approximation ratio better than $\Omega(n)$, in contrast to the maximum spread, which is efficiently computable. We then move on to questions regarding the behavior of a node with respect to adopting some (resp. a given) product. We show that the problem of determining whether a given node has to adopt some (resp. a given) product in all final networks is co-NP-complete.

1 Introduction

1.1 Background

Social networks have become a huge interdisciplinary research area with important links to sociology, economics, epidemiology, computer science, and mathematics. A flurry of numerous articles and recent books [10,6] shows the growing relevance of this field as it deals with such diverse topics as epidemics, spread of certain patterns of social behaviour, effects of advertising, and emergence of ‘bubbles’ in financial markets.

A large part of research on social networks focuses on the problem of diffusion, that is the spread of a certain event or information over the network, e.g., becoming infected or adopting a given product. In the remainder of the paper, we will use as a running example the adoption of a product, which is being marketed over a social network.

Two prevalent models have been considered for capturing diffusion: the threshold models introduced in [8] and [15] and the independent cascade models studied
in \cite{7}. In threshold models, which is the focus of our work, each node $i$ has a threshold $\theta(i) \in (0, 1]$ and it decides to adopt a product when the total weight of incoming edges from nodes that have already adopted a product reaches or exceeds $\theta(i)$. In a special case a node decides to adopt a product if at least the fraction $\theta(i)$ of its neighbours has done so. In cascade models, each node that adopts a product can activate each of his neighbours with a certain probability and each node has only one chance of activating a neighbour.

Most of research has focussed on the situation in which the players face the choice of adopting a specific product or not. In this setting, the algorithmic problem of choosing an initial set of nodes so as to maximize the adoption of a given product and certain variants of this were studied initially in \cite{11} and in several publications that followed, e.g., \cite{5, 14}.

When studying social networks from the point of view of adopting new products that come to the market, it is natural to lift the restriction of a single product. One natural example is when users choose among competing programs from providers of mobile telephones. Then, because of lower subscription costs, each owner of a mobile telephone naturally prefers to choose the same provider that his friends choose. In such situations, the outcome of the adoption process does not need to be unique. Indeed, individuals with a low ‘threshold’ can adopt any product a small group of their friends adopts. As a result this leads to different considerations than before.

In the presence of multiple products, diffusion has been investigated recently for cascade models in \cite{2, 4, 12}, where new approximation algorithms and hardness results have been proposed. For threshold models, an extension to two products has been recently proposed in \cite{3}, where the authors examine whether the algorithmic approach of \cite{11} can be extended. Algorithms and hardness of approximation results are provided for certain variants of the diffusion process.

Game theoretic aspects have also been considered in the case of two products. In particular, the behavior of best response dynamics in infinite graphs is studied in \cite{13}, when each node has to choose between two different products. An extension of this model is studied in \cite{9} with a focus on notions of compatibility and bilinguality, i.e., having the option to adopt both products at an extra cost so as to be compatible with all your neighbours.

1.2 Contributions

We study a new model of a social network in which nodes (agents) can choose out of several alternatives and in which various outcomes of the adoption process are possible. Our model combines a number of features present in various models of networks.

It is a threshold model and we assume that the threshold of a node is a fixed number as in \cite{5} (and unlike \cite{11, 3}, where they are random variables). This is in contrast to Hebb’s model of learning in networks of neurons, the focus of which is on learning, leading to strengthening of the connections (here thresholds). In our context threshold should be viewed as a fixed ‘resistance level’ of a node to adopt a product. In contrast to the SIR model, see, e.g., \cite{10}, in which a node
can be in only two states, in our model each node can choose out of several
states (products). We also allow that not all nodes have exactly the same set
of products to choose from, e.g. due to geographic or income restrictions some
products may be available only to a subset of the nodes. If a node changes
its state from the initial one, the new state (that corresponds to the adopted
product) is final, as is the case with most of the related literature.

Our work consists of two parts. In the first part (Sections 3, 4, 5) we study
three basic problems concerning this model. In particular, we find necessary and
sufficient conditions for determining whether

- a specific product will possibly be adopted by all nodes.
- a specific product will necessarily be adopted by all nodes.
- the adoption process of the products will yield a unique outcome.

For each of these questions, we obtain a characterization with respect to the
structure of the underlying graph.

In the second part (Section 6), we focus on networks that do not possess a
unique outcome and investigate the complexity of various problems concerning
the adoption process. We start with estimating the minimum and maximum
number of nodes that may adopt a given product. Then we move on to questions
regarding the behavior of a given node in terms of adopting a given product or
some product from its list. We resolve the complexity of all these problems. As
we show, some of these problems are efficiently solvable, whereas the remaining
ones are either co-NP-complete or have strong inapproximability properties.

2 Preliminaries

Assume a fixed weighted directed graph \( G = (V, E) \) (with no parallel edges and
no self-loops), with \( n = |V| \) and \( w_{ij} \in [0, 1] \) being the weight of edge \((i, j)\). Given
a node \( i \) of \( G \) we denote by \( N(i) \) the set of nodes from which there is an incoming
edge to \( i \). We call each \( j \in N(i) \) a neighbour of \( i \) in \( G \). We assume that for
each node \( i \) such that \( N(i) \neq \emptyset \), \( \sum_{j \in N(i)} w_{ji} \leq 1 \). Further, we have a threshold
function \( \theta \) that assigns to each node \( i \in V \) a fixed value \( \theta(i) \in (0, 1] \). Finally,
we fix a finite set \( P \) of alternatives to which we shall refer as products.

By a social network we mean a tuple \((G, P, p, \theta)\), where \( p \) is a function
that assigns to each node of \( G \) a non-empty subset of \( P \). The idea is that each
node \( i \) is offered a non-empty set \( p(i) \subseteq P \) of products from which it can make
its choice. If \( p(i) \) is a singleton, say \( p(i) = \{t\} \), the node adopted the product
( or product \( t \). Otherwise it can adopt a product if the total weight of incoming edges from
neighbours that have already adopted it is at least equal to the threshold \( \theta(i) \).

To formalize the questions we want to address, we need to introduce a number
of notions. Since \( G, P \) and \( \theta \) are fixed, we often identify each social network with
the function \( p \).

Consider a binary relation \( \to \) on social networks. Denote by \( \to^* \) the reflexive,
transitive closure of \( \to \). We call a reduction sequence \( p \to^* p' \) maximal if
for no \( p'' \) we have \( p' \to p'' \). In that case we will say that \( p' \) is a final network,
given the initial network \( p \).
Definition 1. Assume an initial social network $p$ and a network $p'$. We say that

- $p'$ is reachable (from $p$) if $p \rightarrow^* p'$,
- $p'$ is unavoidable (from $p$) if for all maximal sequences of reductions $p \rightarrow^* p''$ we have $p' = p''$,
- $p$ has a unique outcome if some social network is unavoidable from $p$.

From now on we specialize the relation $\rightarrow$. Given a social network $p$, and a product $t \in p(i)$ for some node $i$ with $N(i) \neq \emptyset$, we use the abbreviation $A(t, i)$ (for ‘adoption condition of product $t$ by node $i$’) for

$$\sum_{j \in N(i) \setminus \{i\}} w_{ji} \geq \theta(i)$$

When $N(i) = \emptyset$, we stipulate that $A(t, i)$ holds for every $t \in p(i)$.

Definition 2.

- We write $p_1 \rightarrow p_2$ if $p_2 \neq p_1$ and for all nodes $i$, if $p_2(i) \neq p_1(i)$, then $|p_1(i)| \geq 2$ and for some $t \in p_1(i)$

$$p_2(i) = \{t\} \text{ and } A(t, i) \text{ holds in } p_1.$$

- We say that node $i$ in a social network $p$

  - adopted product $t$ if $p(i) = \{t\}$,
  - can adopt product $t$ if $t \in p(i)$, $|p(i)| \geq 2$, and $A(t, i)$ holds in $p$.

In particular, a node $i$ with no neighbours and more than one product in $p(i)$ can adopt any product that is a possible choice for it. Note that each modification of the function $p$ results in assigning to a node $i$ a singleton set. Thus, if $p_1 \rightarrow^* p_2$, then for all nodes $i$ either $p_2(i) = p_1(i)$ or $p_2(i)$ is a singleton set.

One of the questions we are interested is whether a product $t$ can spread to the whole network. We will denote this final network by $[t]$, where $[t]$ denotes the constant function $p$ such that $p(i) = \{t\}$ for all nodes $i$. Furthermore, given a social network $(G, P, p, \theta)$ and a product $t \in P$ we denote by $G_{p,t}$ the weighted directed graph obtained from $G$ by removing from it all edges to nodes $i$ with $p(i) = \{t\}$. That is, in $G_{p,t}$ for all such nodes $i$ we have $N(i) = \emptyset$ and for all other nodes the set of neighbours in $G_{p,t}$ and $G$ is the same.

If each weight $w_{j,i}$ in the considered graph equals $\frac{1}{|N(i)|}$, then we call the corresponding social network equitable. Hence in equitable social networks the adoption condition, $A(t, i)$, holds if at least a fraction $\theta(i)$ of the neighbours of $i$ adopted in $p$ product $t$.

Example 1. As an example for illustrating the definitions, consider the equitable social networks in Figure 1, where $P = \{t_1, t_2\}$ and where we mention next to each node the set of products available to it.

In the first social network, if $\theta(a) \leq \frac{2}{3}$, then the network in which node $a$ adopts product $t_1$ is reachable, and so is the case for product $t_2$. If $\frac{1}{3} < \theta(a) \leq \frac{2}{3}$,
then only the network in which node \(a\) adopts product \(t_1\) is reachable. Further, if \(\theta(a) > \frac{2}{3}\), then none of the above two networks is reachable. Finally, the initial network has a unique outcome iff \(\frac{1}{3} < \theta(a)\).

For the second social network the following more elaborate case distinction lists the possible values of \(p\) in the final reachable networks.

\[
\begin{align*}
\theta(b) &\leq \frac{1}{3} \land \theta(c) \leq \frac{1}{2} & : (p(b) = \{t_1\} \land p(c) = \{t_2\}) \land (p(c) = \{t_1\} \land p(c) = \{t_2\}) \\
\theta(b) &\leq \frac{1}{3} \land \theta(c) > \frac{1}{2} & : (p(b) = \{t_1\} \land p(c) = P) \lor (p(b) = p(c) = \{t_2\}) \\
\frac{1}{3} < \theta(b) &\leq \frac{2}{3} \land \theta(c) \leq \frac{1}{2} & : p(b) = p(c) = \{t_2\} \\
\frac{1}{3} < \theta(b) &\land \theta(c) > \frac{1}{2} & : p(b) = p(c) = P \\
\frac{2}{3} < \theta(b) &\land \theta(c) \leq \frac{1}{2} & : p(b) = P \land p(c) = \{t_2\}
\end{align*}
\]

In particular, when \(\frac{1}{3} < \theta(b) \leq \frac{2}{3}\) and \(\theta(c) \leq \frac{1}{2}\), node \(b\) adopts product \(t_2\) only after node \(c\) adopts it.

### 3 Reachable outcomes

We start with providing necessary and sufficient conditions for a product to be reachable by all nodes. This is achieved by a structural characterization of graphs that allow products to spread to the whole graph, given the threshold function \(\theta\). In particular, we shall need the following notion.

**Definition 3.** Given a threshold function \(\theta\) we call a weighted directed graph \(\theta\)-well-structured if for some function level that maps nodes to natural numbers, we have that for all nodes \(i\) such that \(N(i) \neq \emptyset\)

\[
\sum_{j \in N(i) \mid \text{level}(j) < \text{level}(i)} w_{ji} \geq \theta(i).
\]

In other words, a weighted directed graph is \(\theta\)-well-structured if levels can be assigned to its nodes in such a way that for each node \(i\) such that \(N(i) \neq \emptyset\), the sum of the weights of the incoming edges from lower levels is at least \(\theta(i)\). We will often refer to the function level as a certificate for the graph being
$\theta$-well-structured. Note that there can be many certificates for a given graph. Note also that $\theta$-well structured graphs can have cycles. For instance, it is easy to check that the second social network in Figure 1 is $\theta$-well structured when $\theta(i) \leq \frac{1}{3}$ for every node $i$.

We have the following characterization.

**Theorem 1.** Assume a social network $(G, P, p, \theta)$ and a product $top \in P$. A social network $(G, P, [top], \theta)$ is reachable from $(G, P, p, \theta)$ iff

- for all $i$, $top \in p(i)$,
- $G_{p, top}$ is $\theta$-well-structured.

**Proof.** (⇒) If for some node $i$ we have $top \not\in p(i)$, then $i$ cannot adopt product $top$ and $[top]$ is not reachable.

To establish the second condition consider a reduction sequence $p_1 \rightarrow p_2 \rightarrow \ldots \rightarrow p_m$ starting in $p$ and such that $p_m = [top]$.

Assign now to each node $i$ the minimal $k$ such that $p_{k+1}(i) = \{top\}$. We claim that this definition of the level function shows that $G_{p, top}$ is $\theta$-well-structured. Consider a node $i$.

**Case 1.** $level(i) = 0$.

Then $p(i) = \{top\}$, so by the definition of $G_{p, top}$ we have $N(i) = \emptyset$ in $G_{p, top}$. Hence we do not need to argue about these nodes since we only need to ensure condition (1) for nodes with $N(i) \neq \emptyset$.

**Case 2.** $level(i) > 0$.

Suppose that $N(i) \neq \emptyset$ and that $level(i) = k$. By the definition of the reduction $\rightarrow$ the adoption condition $A(top, i)$ holds in $p_k$, i.e.,

$$\sum_{j \in N(i)|p_k(j) = \{top\}} w_{ji} \geq \theta(i).$$

But for each $j \in N(i)$ such that $p_k(j) = \{top\}$ we have by definition $level(j) < level(i)$. So (1) holds.

(⇐) Consider a certificate function level showing that $G_{p, top}$ is $\theta$-well-structured. Without loss of generality we can assume that the nodes in $G_{p, top}$ such that $N(i) = \emptyset$ are exactly the nodes of level 0. We construct by induction on the level $m$ a reduction sequence $p \rightarrow^* p''$, such that for all nodes $i$ we have $top \in p''(i)$ and for all nodes $i$ of level $\leq m$ we have $p''(i) = \{top\}$.

Consider level 0. By definition of $G_{p, top}$, a node $i$ is of level 0 iff it has no neighbours in $G$ or $p(i) = \{top\}$. In the former case, by the first condition, $top \in p(i)$. So $p \rightarrow^* p''$, where the function $p''$ is defined by

$$p''(i) := \begin{cases} 
\{top\} & \text{if } level(i) = 0 \\
 p(i) & \text{otherwise}
\end{cases}$$
This establishes the induction basis.

Suppose the claim holds for some level \( m \). So we have \( p \rightarrow^* p' \), where for all nodes \( i \) we have \( \text{top} \in p'(i) \) and for all nodes \( i \) of level \( \leq m \) we have \( p'(i) = \{ \text{top} \} \).

Consider the nodes of level \( m + 1 \). For each such node \( i \) we have \( \text{top} \in p'(i) \), \( N(i) \neq \emptyset \) and

\[
\sum_{j \in N(i) \mid \text{level}(j) < \text{level}(i)} w_{ji} \geq \theta(i).
\]

By the definition of \( G_{p,\text{top}} \) the sets of neighbours of \( i \) in \( G \) and \( G_{p,\text{top}} \) are the same. By the induction hypothesis for all nodes \( j \) such that \( \text{level}(j) < \text{level}(i) \) we have \( p'(j) = \{ \text{top} \} \).

So either node \( i \) adopted product \( \text{top} \) in \( p' \) or can adopt product \( \text{top} \) in \( p' \). Hence \( p' \rightarrow^* p'' \), where the function \( p'' \) is defined by

\[
p''(i) := \begin{cases} \{ \text{top} \} & \text{if } \text{level}(i) = m + 1 \\ p'(i) & \text{otherwise} \end{cases}
\]

Consequently \( p \rightarrow^* p'' \), which establishes the induction step. We conclude \( p \rightarrow^* [\text{top}] \).

Next we show that testing if a graph is \( \theta \)-well-structured can be efficiently solved.

**Theorem 2.** Given a weighted directed graph \( G \) and a threshold function \( \theta \), we can decide whether \( G \) is \( \theta \)-well-structured in time \( O(n^2) \).

**Proof.** (Sketch) We claim that the following simple algorithm achieves this:

- Given a weighted directed graph \( G \), first assign level 0 to all nodes with \( N(i) = \emptyset \). If no such node exists, output that the graph is not \( \theta \)-well-structured.
- Inductively, at step \( i \), assign level \( i \) to each node for which condition (1) from Definition 3 is satisfied when considering only its neighbours that have been assigned levels 0, \ldots, \( i - 1 \).
- If by iterating this all nodes are assigned a level, then output that the graph is \( \theta \)-well-structured. Otherwise, output that \( G \) is not \( \theta \)-well-structured.

The above algorithm can be implemented in time \( O(n^2 + |E|) = O(n^2) \), by using the adjacency list representation. To prove correctness, note that if the input graph is not \( \theta \)-well-structured, then the algorithm will output No, as otherwise, at termination it would have constructed a level function for a non-\( \theta \)-well-structured graph. For the reverse, suppose a graph \( G \) is \( \theta \)-well-structured. The idea of the proof is to use a certificate function, in which all nodes are assigned the minimum possible level. We then prove by induction that this is precisely the level assignment produced by the algorithm and hence it outputs Yes. Due to lack of space, we omit the proof.

Finally, we end this section by observing that determining whether a network \([\text{top}]\) is reachable can also be solved efficiently.

**Theorem 3.** Assume a social network \((G, P, p, \theta)\) and a product \( \text{top} \in P \). There is an algorithm running in time \( O(n^2) \) that determines whether the social network \((G, P, [\text{top}], \theta)\) is reachable.
4 Unavoidable outcomes

Next, we focus on the notion of unavoidable outcomes. We establish the following characterization.

**Theorem 4.** Assume a social network \((G, P, p, \theta)\) and a product \(\text{top} \in P\). A social network \((G, P, \{\text{top}\}, \theta)\) is unavoidable iff

- for all \(i\), if \(N(i) = \emptyset\), then \(p(i) = \{\text{top}\}\),
- for all \(i\), \(\text{top} \in p(i)\),
- \(G_{p, \text{top}}\) is \(\theta\)-well-structured.

To prove this, we need first a few lemmas, the proofs of which we omit from this version.

**Lemma 1.** Suppose that \(p \rightarrow^* p'\) and for some node \(i\) we have \(p'(i) = \{t\}\). Then for some node \(j\) such that \(N(j) = \emptyset\) or \(p(j)\) is a singleton, we have \(t \in p(j)\).

Intuitively, this means that each product eventually adopted can also be initially adopted (by a possibly different node).

**Lemma 2.** Assume a social network \((G, P, p, \theta)\) and a product \(\text{top} \in P\). Suppose that

- for all \(i\), if \(N(i) = \emptyset\) or \(p(i)\) is a singleton, then \(p(i) = \{\text{top}\}\).

Then a unique outcome of \((G, P, p, \theta)\) exists.

Intuitively, this means that if initially only one product can be adopted, then a unique outcome of the social network exists.

**Proof of Theorem 4.** (Sketch) By Theorem 1 and Lemma 2.

In analogy to Theorem 3 we also have the following simple fact.

**Theorem 5.** Assume a social network \((G, P, p, \theta)\) and a product \(\text{top} \in P\). There is an algorithm, running in time \(O(n^2)\), that determines whether the social network \((G, P, \{\text{top}\}, \theta)\) is unavoidable.

5 Unique outcomes

We now consider the question of when does a network admit a unique outcome. To answer this, we introduce the following definitions.

**Definition 4.** Given social networks \(p, p'\) based on the same graph we say that

- node \(i\) can switch in \(p'\) given \(p\) if \(i\) adopted in \(p'\) a product \(t\) and for some \(t' \neq t\)

\[ t' \in p(i) \land A(t', i) \text{ holds in } p', \]

- \(p'\) is ambivalent given \(p\) if it contains a node that either can adopt more than one product or can switch in \(p'\) given \(p\),
the reduction $p \rightarrow p'$ is **fast** if for each node $i$, if $i$ can adopt a product in $p$ then $i$ adopted a product in $p'$. Intuitively, $p \rightarrow p'$ is then a ‘maximal’ one-step reduction of $p$.

**Definition 5.** By the **contraction sequence** of a social network we mean the unique reduction sequence $p \rightarrow^* p'$ such that

- each of its reduction steps is fast,
- either $p \rightarrow^* p'$ is maximal or $p'$ is the first network in the sequence $p \rightarrow^* p'$ that is ambivalent given $p$.

We now formulate a characterization of social networks that admit a unique outcome. We omit the proof.

**Theorem 6.** A social network admits a unique outcome iff its contraction sequence ends in a non-ambivalent social network.

**Corollary 1.** Assume a social network $(G, P, p, \theta)$ such that

- for all nodes $i$ we have $\theta(i) > \frac{1}{2}$,
- for all $i$, if $N(i) = \emptyset$, then $p(i)$ is a singleton.

Then $(G, P, p, \theta)$ admits a unique outcome.

The above corollary can be strengthened by assuming that the network is such that if $\theta(i) \leq \frac{1}{2}$ then $|N(i)| < 2$ or $|p(i)| = 1$. The reason is that the nodes for which $|N(i)| < 2$ or $|p(i)| = 1$ cannot introduce an ambivalence.

When for some node $i$, $\theta(i) \leq \frac{1}{2}$ holds and neither $|N(i)| < 2$ nor $|p(i)| = 1$, the equitable social network still may admit a unique outcome but it does not have to. For instance the second social network in Figure 1 admits a unique outcome for the last three alternatives (explained in Example 1), while for the first two it does not.

**Theorem 6** also yields an algorithm to test if a network has a unique outcome. The algorithm simply has to simulate the contraction sequence of a network and determine whether it ends in a non-ambivalent network. The statement of the algorithm and its analysis are omitted.

**Theorem 7.** There exists a polynomial time algorithm, running in time $O(n^2 + n|P|)$, that determines whether a social network admits a unique outcome. Furthermore, if for all nodes $i$ we have $\theta(i) > \frac{1}{2}$, there is a $O(n^2)$ algorithm.

For all practical purposes we have $|P| << n$, so even for the general case the running time would typically be $O(n^2)$.

### 6 Product adoption in networks without unique outcomes

The results of the previous section reveal that many social networks will not admit a unique outcome. In this section, we consider some natural questions
regarding product adoption that are of interest for such networks. We start with
two optimization problems.

Suppose that a product $top$ is neither unavoidable by all nodes nor reachable.
We would like then to estimate the worst and best-case scenario for the spread
of this product. That is, starting from a given initial network $p$, what is the
minimum (resp. maximum) number of nodes that will adopt this product in a
final network (recall that a final network is one that has been obtained from
some initial network by a maximal sequence of reductions). Hence, the following
two problems are of interest.

**MIN-ADOPTION:** Given a social network $(G, P, p, \theta)$ and a product $top$, find
the minimum number of nodes that adopted $top$ in a final network, starting from
$(G, P, p, \theta)$.

**MAX-ADOPTION:** Given a social network $(G, P, p, \theta)$ and a product $top$, find
the maximum number of nodes that adopted $top$ in a final network, starting
from $(G, P, p, \theta)$.

We show that these two problems are substantially different, the first being
essentially inapproximable while the second efficiently solvable.

**Theorem 8.** If $n$ is the number of nodes of a network, then

(i) It is NP-hard to approximate MIN-ADOPTION with an approximation ratio
better than $\Omega(n)$.

(ii) The MAX-ADOPTION problem can be solved in $O(n^2)$ time.

**Proof.** (i) We give a reduction from the PARTITION problem, which is: given
$n$ positive rational numbers $(a_1, \ldots, a_n)$, is there a set $S$ such that $\sum_{i \in S} a_i = \sum_{i \notin S} a_i$? Consider an instance $I$ of PARTITION. WLOG, suppose we have
normalized the numbers so that $\sum_{i=1}^n a_i = 1$. Hence the question is to decide
whether there is a set $S$ such that $\sum_{i \in S} a_i = \sum_{i \notin S} a_i = \frac{1}{2}$.

We build an instance of our problem with 3 products, namely $P = \{top, t, t'\}$,
and with the graph shown in Figure 2. The number of nodes in the line that
starts to the right of node $e$ is $M = n^{O(1)}$, hence the reduction is of polynomial
time. The weights in those edges is 1. The thresholds of the nodes are
$\theta(a) = \theta(b) = \theta(c) = \theta(d) = \frac{1}{2}$, $\theta(e) = 1/2 + \epsilon$, for some $\epsilon > 0$ and for the nodes to
the right of $e$ we can set the thresholds to an arbitrary positive number in $(0, 1]$.
Finally, for each node $i \in \{1, \ldots, n\}$, we set $w_{i,a} = w_{i,b} = a_i$. The weights of the
other edges can be seen in the figure.

We claim that if there exists a solution to $I$, then a final network exists where
the number of nodes that adopted $top$ equals 3, otherwise in all final networks
the number of nodes that adopted $top$ equals $M + 5$. This directly yields the
desired result.

Suppose there is a solution $S$ to $I$. Then we can have the nodes corresponding
to the set $S$ adopt $t$ and the remaining nodes from $\{1, \ldots, n\}$ adopt $t'$. This
implies that node $a$ can adopt $t$ and node $b$ can adopt $t'$. Subsequently, node $c$
can adopts $t$ and node $d$ can adopt $t'$, which implies that node $e$ cannot adopt
any product. Hence a final network exists in which only 3 nodes adopted $top$.  

10
Fig. 2. The graph of the reduction with $P = \{\text{top}, t, t'\}$ and $R = \{t, t'\}$.

For the reverse direction, suppose there is no solution to the PARTITION problem. Then, no matter how we partition the nodes $\{1, \ldots, n\}$, into 2 sets $S, S'$, it will always be that for one of them, say $S$, we have $\sum_{i \in S} a_i > \frac{1}{2}$, whereas for the other we have $\sum_{i \in S'} a_i < \frac{1}{2}$. Thus in each final network, no matter which nodes from $\{1, \ldots, n\}$ adopted $t$ or $t'$, the nodes $a$ and $b$ adopted the same product. Suppose that nodes $a$ and $b$ both adopted $t$ (the same applies if they both adopt $t'$). This in turn implies that node $c$ adopted $t$ and node $d$ did not adopt $t'$. Thus, the node $d$ could only adopt top. But then the only choice for node $e$ was to adopt top and this propagates along the whole line to the right of $e$. This completes the proof of (i).

(ii) The algorithm for MAX-ADOPTION resembles the one used in the proof of Theorem 7. Given the product top, it suffices to start with the nodes that have already adopted the product and perform fast reductions but only with respect to top until no further adoption of top is possible.

We now move on to some decision problems that concern the behavior of a specific node in a given social network. We consider the following natural questions.

ADOPTION 1: (unavoidable adoption of some product)
Determine whether a given node has to adopt some product in all final networks.

ADOPTION 2: (unavoidable adoption of a given product)
Determine whether a given node has to adopt a given product in all final networks.

ADOPTION 3: (possible adoption of some product)
Determine whether a given node can adopt some product in some final network.

ADOPTION 4: (possible adoption of a given product)
Determine whether a given node can adopt a given product in some final network.

Theorem 9. The complexity of the above problems is as follows:

(i) ADOPTION 1 is co-NP-complete.
(ii) ADOPTION 2 is co-NP-complete.
(iii) ADOPTION 3 can be solved in $O(n^2 |P|)$ time.
(iv) ADOPTION 4 can be solved in $O(n^2)$ time.

The proofs of (i) and (ii) use the reduction given in the proof of Theorem 8. We omit the proof due to lack of space.

7 Conclusions and future work

We have introduced a diffusion model in the presence of multiple competing products and studied some basic questions. We have provided characterizations of the underlying graph structure for determining whether a product can spread or will necessarily spread to the whole graph, and of the networks that admit a unique outcome. We also studied the complexity of various problems that are of interest for networks that do not admit a unique outcome, such as the problems of computing the minimum or maximum number of nodes that will adopt a given product, or determining whether a given node has to adopt some (resp. a given) product in all final networks.

In the proposed model, one could also incorporate game theoretic aspects by considering a strategic game either between the nodes who decide which product to choose, or between the producers who decide to offer their products for free to some selected nodes. In the former case, a game theoretic analysis for players choosing between two products has been presented in [13]. An extension with the additional option of adopting both products has been considered in [9]. The latter case, with the producers being the players, has been recently studied in [1] in a different model than the threshold ones. We are particularly interested in analyzing the set of Nash equilibria in the presence of multiple products, as well as in introducing threshold behavior in the model of [1].

Acknowledgement

We would like to thank Berthold Vöcking for suggesting to us the first two problems in Section 6.

References

1. N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. A note on competitive diffusion through social networks. Inf. Process. Lett., 110(6):221–225, 2010.
2. S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in social networks. In Proc. 3rd International Workshop on Internet and Network Economics (WINE), pages 306–311, 2007.
3. A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in social networks. In Proc. 6th International Workshop on Internet and Network Economics (WINE 2010), pages 539–550, 2010.
4. T. Carnes, C. Nagarajan, S. M. Wild, and A. van Zuylen. Maximizing influence in a competitive social network: A follower’s perspective. In Proc. 9th International Conference on Electronic Commerce (ICEC), pages 351–360, 2007.
5. N. Chen. On the approximability of influence in social networks. *SIAM J. Discrete Math.*, 23(3):1400–1415, 2009.

6. D. Easley and J. Kleinberg. *Networks, Crowds, and Markets*. Cambridge University Press, 2010.

7. J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. *Marketing Letters*, 12(3):211–223, 2001.

8. M. Granovetter. Threshold models of collective behavior. *American Journal of Sociology*, 83(6):1420–1443, 1978.

9. N. Immorlica, J. M. Kleinberg, M. Mahdian, and T. Wexler. The role of compatibility in the diffusion of technologies through social networks. In *ACM Conference on Electronic Commerce*, pages 75–83, 2007.

10. M. Jackson. *Social and Economic Networks*. Princeton University Press, Princeton, 2008.

11. D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In L. Getoor, T. E.Senator, P. Domingos, and C. Faloutsos, editors, *KDD*, pages 137–146. ACM, 2003.

12. J. Kostka, Y. A. Oswald, and R. Wattenhofer. Word of mouth: Rumor dissemination in social networks. In *SIROCCO*, pages 185–196, 2008.

13. S. Morris. Contagion. *The Review of Economic Studies*, 67(1):57–78, 2000.

14. E. Mossel and S. Roch. On the submodularity of influence in social networks. In *STOC*, pages 128–134, 2007.

15. T. Schelling. *Micromotives and Macrobequality*. Norton, 1978.