Investigating correlates of athletic identity and sport-related injury outcomes: a scoping review

Tian Renton 1,2, Brian Petersen,3 Sidney Kennedy1,2,4

ABSTRACT

Objectives To conduct a scoping review that (1) describes what is known about the relationship between athletic identity and sport-related injury outcomes and (2) describes the relationship that an injury (as an exposure) has on athletic identity (as an outcome) in athletes.

Design Scoping review.

Participants A total of n=1852 athletes from various sport backgrounds and levels of competition.

Primary and secondary outcome measures The primary measure used within the studies identified was the Athletic Identity Measurement Scale. Secondary outcome measures assessed demographic, psychosocial, behavioural, physical function and pain-related constructs.

Results Twenty-two studies were identified for inclusion. Samples were dominated by male, Caucasian athletes. The majority of studies captured musculoskeletal injuries, while only three studies included sport-related concussion. Athletic identity was significantly and positively associated with depressive symptom severity, sport performance traits (eg, ego-orientation and mastery-orientation), social network size, physical self-worth, motivation, rehabilitation overadherence, mental toughness and playing through pain, as well as injury severity and functional recovery outcomes. Findings pertaining to the association that an injury (as an exposure) had on athletic identity (as an outcome) were inconsistent and limited.

Conclusions Athletic identity was most frequently associated with psychosocial, behavioural and injury-specific outcomes. Future research should seek to include diverse athlete samples (eg, women, athletes of different races, para-athletes) and should continue to reference theoretical injury models to inform study methodologies and to specify variables of interest for further exploration.

INTRODUCTION

Participation in sport, be it in a formal (eg, registered league) or informal (eg, pick-up, drop-in) setting, is a popular pastime for individuals the world over. Positive benefits associated with sport participation include increased mental toughness, perseverance and positive self-esteem, as well as the development of fine and gross motor skills, team work and problem-solving abilities. These benefits are aside from the countless physical (eg, maintenance of a healthy body weight), mental (eg, reduction in depression and anxiety symptoms) and cognitive benefits (eg, improved academic performance and memory recall) associated with physical activity in general. Despite these benefits, negative outcomes should also be considered, namely risk of injury. However, not all athletes are created equal, nor are their respective risks of sport injury. This is illustrated by several large-scale epidemiological studies describing marked differences in injury incidence when stratified by sport. Internal risk factors, such as an athlete's biological and physical characteristics (eg, age, sex, anthropometry, skill level and physical fitness) as well as their psychological predisposition (eg, personality, history of stressors and availability of coping resources) are also posited to modify injury risk. External factors, such as level of competition and playing surface, have also been implicated.

Despite individual athlete (eg, physicality, disposition) and sport-specific differences (eg, type, level, frequency of involvement, injury risk), all athletes are thought to embody an ‘athletic identity’ (AI). Initially defined by Brewer et al in 1993, AI is defined as ‘the exclusivity and strength with which an individual identifies with the athlete role, and looks to others for confirmation of that role’.

Strengths and limitations of this study

- The search strategy was constructed in consultation with a University of Toronto librarian.
- Citation management (EndNote) and systematic review citation screening software (Covidence) were used to allow reviewers to independently screen citations and extract data.
- Data extraction variables thoroughly described the study sample, injuries sustained, theoretical models referenced, athletic identity scores and timeline of administration, significant key findings as well as study strengths and limitations.
- A quality assessment was not conducted, and level of evidence ratings were not assigned to studies.
To some extent, an athlete’s self-perception of their AI can provide an important measure of their longevity in sport.21 Stronger AIs have been associated with positive health outcomes, increased sport engagement, enhanced athletic performance, improved global self-esteem and confidence, as well as improved social relationships.20–23 Conversely, following a sport-related injury, stronger AIs have been associated with depressive symptoms.24 It has also been suggested that athletes who hold a stronger AI may neglect other identities and role responsibilities to maintain the athlete role.20 Therefore, a strong AI may be helpful in some cases and harmful in others, especially within a sport injury context.

Athletes will continue to sustain injuries so long as sport exists, thus illustrating the need to understand factors associated with recovery. To inform stakeholders (eg, clinicians, coaches, athletes) understanding and expectations, many theoretical injury recovery models have been developed, several of which are presented here: The Biopsychosocial Model25,26; Biopsychosocial Model of Stress and Athletic Injury27; Integrated Model of Psychological Response to the Sport Injury and Rehabilitation Process28; and Cognitive Appraisal Model of Psychological Adjustment to Athletic Injury.29 Although not specific to sport, some models have been developed to explain and predict outcomes associated with a specific injury, such as concussion (Neurobiopsychosocial Model of Concussion30). Others have been adapted from existing models (Transactional Stress Model31) to suit a sport injury context (Injury Response Model32). For a more comprehensive review of select models, please see the following article.33 Despite variation in the labelling used within the models cited above, constructs can be categorised as modifiable (ie, flexible, subject to intervention) or non-modifiable (ie, fixed, unchanging). With respect to addressing recovery outcomes, attention is best focused on modifiable factors because they are subject to intervention. Prior to implementing an intervention however, efforts should focus on describing recovery outcomes observed for a given factor. To our knowledge, AI (a modifiable factor) has not been summarised in detail with respect to its association with sport injury recovery outcomes.

To address this knowledge gap and to provide a comprehensive summary of what is known about AI in relation to sport-related injury outcomes, authors conducted a scoping review. To guide this review, the following questions were established a priori:
1. Is there an association between athlete self-reported AI and response to a sport-related injury? If so, what is known? Response to injury is operationally defined as any outcome observed following injury (eg, psychosocial, behavioural, functional, cognitive or performance).
2. Is there an association between a sport-related injury (as an exposure) and athlete self-reported AI (as an outcome)? If so, what is known?

METHOD

Search strategy and study identification

Search strategies and terms were developed in consultation with a University of Toronto health science librarian (EN; 20 January 2020). The following databases were searched in March and April 2020 by one reviewer (TR): MEDLINE, EMBASE, SPORTDiscus, CINAHL, APA PsycInfo, and Sport Medicine & Education Index (Proquest). The number of citations identified were recorded in table 1.

Search results were exported to EndNote37 and duplicates were discarded (n=334). Thereafter, article titles and abstracts (n=1122) were exported to Covidence.38 Covidence collates each reviewer’s decision to accept or reject a citation and identifies screening conflicts for resolution. The programme also populates a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart to reflect the number of citations included or excluded at each screening stage (see online supplemental appendix 1). Reasons for exclusion were cited at the full-text screening stage only. Studies identified for inclusion at full-text screening also had their reference lists reviewed for additional studies. ClinicalTrials.gov was also searched using the following terms: “athlete”, “identity”, “injury” and “sport”, but did not identify any additional studies. TR and BP independently performed each stage of the screening process (titles, abstracts and full-text screening) as well as full-text data extraction. After completing each stage, reviewers met virtually (via Zoom) to discuss and resolve conflicts. Progression to the next screening stage occurred only after 100% agreement was achieved. The same process was applied throughout the data extraction phase. For quality assurance, this scoping review was structured according to the PRISMA extension for scoping reviews checklist (see online supplemental appendix 2).

Study inclusion criteria

1. AI was assessed using a self-report quantitative measure.
2. Study sample consisted of at least one group with a sport-related injury which prevented them from engaging in sport.
3. Injuries were real or hypothetical (ie, imaginary).
4. Studies captured athletes of any age and playing status (eg, amateur or professional, retired or active). Studies that included athletes with disabilities (eg, para-athletes) were permissible, however, the injury must have been secondary to the existing disability (ie, study must pertain to a sport-related injury).
5. An objective measure was used to assess the injury or post-rehabilitation status or post-injury AI.

Study exclusion criteria

1. Article not available in the English language.
2. Full-text article could not be located following direct request to author(s) (if not available online).
3. Injury was not specified or assessed for severity.
Table 1 Search strategies by database

Database	Search Strategy & Terms	Search Date	Number of Articles Returned
MEDLINE (OVID)	1. Athletes/	31 March 2020	n=250
	2. (Paralympian or Olympian or athlete*).tw,kf.		
	3. sports/ or baseball/ or basketball/ or bicycling/ or boxing/ or cricket sport/ or football/ or golf/ or gymnastics/ or hockey/ or martial arts/ or mountaineering/ or racquet sports/ or running/ or skating/ or snow sports/ or soccer/ or sports for persons with disabilities/ or “track and field”/ or volleyball/ or walking/ or water sports/ or weight lifting/ or wrestling/		
	4. (archery or artistic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or triathlon or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboard or dance or cheerleading or soccer or running).tw,kf.		
	5. 1 or 2 or 3 or 4		
	6. exp Self Concept/		
	7. ((identity or esteem or efficacy or schema) adj 3 self).tw,kf.		
	8. ((identity or esteem or efficacy or schema) adj 3 athlete*).tw,kf.		
	9. ((identity or esteem or efficacy or schema) adj 3 himself).tw,kf.		
	10. ((identity or esteem or efficacy or schema) adj 3 herself).tw,kf.		
	11. ((identity or esteem or efficacy or schema) adj 3 themselves).tw,kf.		
	12. 7 or 8 or 9 or 10 or 11		
	13. ((coherence or self) adj 3 sense of).tw,kf.		
	14. 6 or 12 or 13		
	15. 5 and 14		
	16. exp “wounds and injuries”/		
	17. (tare or separation or sprain or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or hernia or rupture or injur*).tw,kf.		
	18. 16 or 17		
	19. 5 and 14 and 18		
	20. Athletic Injuries/		
	21. 14 and 20		
	22. 19 or 21		
	31 March 2020		
EMBASE CLASSIC+EMBASE (OVID)	1. Athletes/	31 March 2020	N=357
	2. (Paralympian or Olympian or athlete*).tw,kf.		
	3. sports/ or baseball/ or basketball/ or bicycling/ or boxing/ or cricket sport/ or football/ or golf/ or gymnastics/ or hockey/ or martial arts/ or mountaineering/ or racquet sports/ or running/ or skating/ or snow sports/ or soccer/ or sports for persons with disabilities/ or “track and field”/ or volleyball/ or walking/ or water sports/ or weight lifting/ or wrestling/		
	4. (archery or artistic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or triathlon or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboard or dance or cheerleading or soccer or running).tw,kf.		
	5. 1 or 2 or 3 or 4		
	6. exp Self Concept/		
	7. ((identity or esteem or efficacy or schema) adj 3 self).tw,kf.		
	8. ((identity or esteem or efficacy or schema) adj 3 athlete*).tw,kf.		
	9. ((identity or esteem or efficacy or schema) adj 3 himself).tw,kf.		
	10. ((identity or esteem or efficacy or schema) adj 3 herself).tw,kf.		
	11. ((identity or esteem or efficacy or schema) adj 3 themselves).tw,kf.		
	12. 7 or 8 or 9 or 10 or 11		
	13. ((coherence or self) adj 3 sense of).tw,kf.		
	14. 6 or 12 or 13		
	15. 5 and 14		
	16. exp “wounds and injuries”/		
	17. (tare or separation or sprain or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or hernia or rupture or injur*).tw,kf.		
	18. 16 or 17		
	19. 5 and 14 and 18		
	20. Athletic Injuries/		
	21. 14 and 20		
	22. 19 or 21		

Continued
Table 1 Continued

Database	Search Strategy & Terms	Search Date	Number of Articles Returned
SPORTDiscus (EBSCO) 1800-present	DE "ATHLETES" OR DE "AFRICAN athletes" OR DE "AMATEUR athletes" OR DE "ARAB athletes" OR DE "ARCHERS" OR DE "ASIAN athletes" OR DE "ATHLETES with disabilities" OR DE "BADMINTON players" OR DE "BASEBALL players" OR DE "BASKETBALL players" OR DE "BLACK athletes" OR DE "BOBSEEDERS" OR DE "BODYPUILDERS" OR DE "BOWLERS" OR DE "BOXERS (Sports)" OR DE "BULLFIGHTERS" OR DE "CANADIAN athletes" OR DE "CANNONBALL players" OR DE "CELEBRITY athletes" OR DE "CHILDREN of athletes" OR DE "CHRISTIAN athletes" OR DE "COLLEGE athletes" OR DE "CRICKET players" OR DE "CROQUET players" OR DE "CURLERS (Athletes)" OR DE "CYCLISTS" OR DE "DEFENSIVE players" OR DE "DIABETIC athletes" OR DE "ELITE athletes" OR DE "ENDURANCE athletes" OR DE "EUROPEAN athletes" OR DE "Fencers" OR DE "FOOTBALL players" OR DE "GAY athletes" OR DE "GLADIATOR (Knight)" OR DE "GOLFS" OR DE "GYMNASTs" OR DE "HANDBALL players" OR DE "HOCKEY players" OR DE "INTERSEX athletes" (Athletes) OR DE "JUNIORS" OR DE "JUNIOR high school athletes" OR DE "KABADDI players" OR DE "LACROSSE players" OR DE "LAWN bowlers" OR DE "LIBERTY activists" OR DE "LONG-term athletes with disabilities" OR DE "MALE athletes" OR DE "MARTIAL artists" OR DE "MEXICAN athletes" OR DE "MIDDLE school athletes" OR DE "MOUNTaineers" OR DE "MUSLIM athletes" OR DE "NATIVE American athletes" OR DE "NETBALL players" OR DE "OFFENSIVE players" OR DE "OLDER athletes" OR DE "Olympic athletes" OR DE "OCEANographers" OR DE "OCEANographers" OR DE "PACIFIC Islander athletes" OR DE "PROFESSIONAL athletes" OR DE "ROWers" OR DE "RUGBY football players" OR DE "RUNNERS (Sports)" OR DE "SKATERS" OR DE "SKIERS" OR DE "SNOWBOARDers" OR DE "SOCCER players" OR DE "SOFTBALL players" OR DE "SQUASH players" OR DE "STANDARD players" OR DE "SUBSTITUTE players" OR DE "SWIMMERS" OR DE "TABLE tennis players" OR DE "TEAM handball players" OR DE "TENNIS players" OR DE "TRACK & field athletes" OR DE "TRIATHLetes" OR DE "VOLLEYball players" OR DE "WATER polo players" OR DE "Weight lifters" OR DE "WINDSurfers (Persons)" OR DE "WOMEN athletes" or DE "WRESTLers".		
	S2. AB (Paralympian or Olympic or athlet*) OR TI (Paralympian or Olympic or athlet*) OR SU (Paralympian or Olympic or athlet*) OR KW (Paralympian or Olympic or athlet*)		
	S3. DE "RECREATION" OR DE "AMATEUR sports" OR DE "AQUATIC sports" OR DE "BALL games" OR DE "BASEBALL" OR DE "COLLEGE sports" OR DE "CONTACT sports" OR DE "ENDURANCE sports" OR DE "EXTREME sports" OR DE "GYMNASTics" OR DE "HOCKY" OR DE "INDIVIDUAL sports" OR DE "MILITARY sports" OR DE "OLYMPIC Games" OR DE "PROFESSIONAL sports" OR DE "CREATIONAL sports" or DE "SCHOOL sports" OR DE "SPORTs" or DE "SPORTs for people with disabilities" OR DE "SPORTs for youth" or DE "SPORTs teams" or DE "TARGETS (Sports)" or DE "TEAM sports" or DE "WINTER" sports or DE "WOMEN's sports".		
	S4. TI (archery or artistic swimming or athletics or badminton or baseball or softball or beach volleyball or boxing or canoe or cycling or diving or equestrian or handicapping or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or triathlon or waterpolo or weightlifting or wrestling or boxing or taekwondo or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboarding or dace or cheerleading or soccer or running) OR SU (archery or artistic swimming or athletics or badminton or baseball or softball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or triathlon or weightlifting or wrestling or boxing or taekwondo or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboarding or dace or cheerleading or soccer or running) OR KW (archery or artistic swimming or athletics or badminton or baseball or softball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or triathlon or weightlifting or wrestling or boxing or taekwondo or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboarding or dace or cheerleading or soccer or running) OR SK (archery or artistic swimming or athletics or badminton or baseball or softball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or triathlon or weightlifting or wrestling or boxing or taekwondo or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboarding or dace or cheerleading or soccer or running) OR N (archery or artistic swimming or athletics or badminton or baseball or softball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or triathlon or weightlifting or wrestling or boxing or taekwondo or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboarding or dace or cheerleading or soccer or running)		
	S5. S1 OR S2 OR S3 OR S4		
	S6. DE "SELF-perception" OR DE "BODY image" OR DE "SELF-esteem"		
	S7. DE "ATHLETIC identity (Psychology)" OR DE "IDENTITY (Psychology)" OR DE "ATHLETIC identity (Psychology)" or DE "PHYSICALLY active people – IDENTITY – DE "PSYCHOLOGY of athletes" OR DE "ATHLETIC identity (Psychology)"		
	S8. TI (identity or esteem or efficacy or schema) N3 self OR AB (identity or esteem or efficacy or schema) N3 self OR SU (identity or esteem or efficacy or schema) N3 self		
	S9. TI (identity or esteem or efficacy or schema) N3 athlet* OR AB (identity or esteem or efficacy or schema) N3 athlet* OR SU (identity or esteem or efficacy or schema) N3 athlet*		
	S10. TI (identity or esteem or efficacy or schema) N3 self OR AB (identity or esteem or efficacy or schema) N3 self OR SU (identity or esteem or efficacy or schema) N3 self		
	S11. TI (identity or esteem or efficacy or schema) N3 self OR AB (identity or esteem or efficacy or schema) N3 self OR SU (identity or esteem or efficacy or schema) N3 self		
	S12. TI (identity or esteem or efficacy or schema) N3 self OR AB (identity or esteem or efficacy or schema) N3 self OR SU (identity or esteem or efficacy or schema) N3 self		
	S13. S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12		
	S14. TI (coherence or sense) N3 self OR AB (coherence or sense) N3 self OR SU (coherence or sense) N3 self		
	S15. S13 OR S14		
	S16. S3 AND S15		
	S17. DE "SPORTS injuries" OR DE "ACHILLES tendinitis" OR DE "ACEROBICS injuries" OR DE "AQUATIC sports injuries" OR DE "BASEBALL injuries" OR DE "BASKETBALL injuries" OR DE "BOXING injuries" OR DE "COMMOTIO cordis" OR DE "CRICKET injuries" OR DE "EQUESTRIAN accidents" OR DE "FOOTball injuries" OR DE "GOLF injuries" OR DE "GYMNASTICS injuries" OR DE "HOUNG injuries" OR DE "HOCKEY injuries" OR DE "HORSE sports injuries" OR DE "IN-line skating injuries" OR DE "JOgging injuries" OR DE "JUDO injures" OR DE "JUMPER’s knee" OR DE "KARATE injuries" OR DE "MARTIAL arts injuries" OR DE "NETBALL injuries" OR DE "PACkett game injuries" OR DE "RUGBY football injuries" OR DE "RUNning injuries" OR DE "SKATEBORading injuries" OR DE "SOCCER injures" OR DE "TENNIS injuries" OR DE "TURF toe" OR DE "VAULting injuries" OR DE "VOLLEYball injuries" OR DE "WALKing (Sports) injures" OR DE "WEIGHT training injures" OR DE "WINTER sports injures" AND (DE "SPORTS injuries" OR DE "SPORTS emergencies" OR DE "SPORTS orthopthalmology" OR DE "WOUNDS & injures" OR DE "BACKPacking injuries" OR DE "BLUNT trauma" OR DE "CHRONIC wounds & injures" OR DE "CRASH injures" OR DE "DANCING injures" OR DE "DECOMPRESSION sickness" OR DE "DISABILITIES" OR DE "DISLOCATIONS (Anatomy)" OR DE "HEAD injures" OR DE "MARTIAL arts injures" OR DE "MOUNTaineering injures" OR DE "OVEREXERTion injures" OR DE "OVERUSE injures" OR DE "PENETrating wounds" OR DE "PHYSIOLOGIC strain" OR DE "RIPTURE of organs, tissues, etc." OR DE "SOFT tissue injures" OR DE "SUBLUXATION" OR DE "WOUND care")		
	S18. TI (bear or separation or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or herna or rupture or injur*) OR AB (bear or separation or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or herna or rupture or injur*) OR SU (bear or separation or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or herna or rupture or injur*) OR KW (bear or separation or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or herna or rupture or injur*)		
	S19. S17 OR S18		
	S20. S16 AND S19		

*Use of Thesaurus Function to find DIE Terms

Renton T, et al. BMJ Open 2021;11:e044199. doi:10.1136/bmjopen-2020-044199

Continued
Table 1 Continued

Database	Search Strategy & Terms	Search Date	Number of Articles Returned
CINAHL plus with full text (BISCO) 1937-present	S1. (MH "Athletes, Amateur") OR (MH "Athletes, College") OR (MH "Athletes, Disabled") OR (MH "Athletes, Elite") OR (MH "Athletes, Female") OR (MH "Athletes, High School") OR (MH "Athletes, Male") OR (MH "Athletes, Master") OR (MH "Athletes, Professional") OR (MH "Athletes")	2 April 2020	N=248
	S2. AB (Paralympian or Olympian or athlete) OR TI (Paralympian or Olympian or athlete)		
	S3. MH "Sport"		
	S4. TI (archery or artistic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or triathlon or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboard or dance or cheerleading or soccer or running) OR AB (archery or artistic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or triathlon or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboard or dance or cheerleading or soccer or running)		
	S5. S1 OR S2 OR S3 OR S4		
	S6. MH "Self Concept"		
	S7. (MM "Professional Identity") OR (MM "Social Identity") OR (MM "Role")		
	S8. TI (identity or esteem or efficacy or schema) N3 self) OR AB (identity or esteem or efficacy or schema) N3 self		
	S9. TI (identity or esteem or efficacy or schema) N3 athlete) OR AB (identity or esteem or efficacy or schema) N3 athlete)		
	S10. TI (identity or esteem or efficacy or schema) N3 himself) OR AB (identity or esteem or efficacy or schema) N3 himself)		
	S11. TI (identity or esteem or efficacy or schema) N3 herself) OR AB (identity or esteem or efficacy or schema) N3 herself)		
	S12. TI (identity or esteem or efficacy or schema) N3 themselves) OR AB (identity or esteem or efficacy or schema) N3 themselves)		
	S13. S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12		
	S14. TI (coherence or self) N3 sense of) OR AB (coherence or self) N3 sense of)		
	S15. S13 OR S14		
	S16. S5 AND S15		
	S17. (MH "Athletic Injuries") OR (MM "Contusions and Abrasions") OR (MM "Back Injuries") OR (MM "Fractures") OR (MM "Leg Injuries") OR (MM "Ligament Injuries") OR (MM "Dislocations") OR (MM "Neck Injuries") OR (MM "Rupture") OR (MM "Soft Tissue Injuries") OR (MM "Spinal Cord Injuries") OR (MM "Spinal Injuries") OR (MM "Sprains and Strains") OR (MM "Tears and Lacerations") OR (MM "Tendon Injuries") OR MM "Wounds", Penetrating") OR (MM "Wounds, Nonpenetrating") OR (MM "Subluxation") OR (MM "Reinjury")		
	S18. TI (tear or separation or sprain or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or hernia or rupture or injury) OR AU (tear or separation or sprain or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or hernia or rupture or injury)		
	S19. S17 OR S18		
	S20. S21 AND S19		
	*Use of Subject Header Function to identify MH Terms		

APA PsycInfo (OVID) 1806–March week 4 2020

1. Athletes/
2. (Paralympian or Olympian or athlete).tw.kf.
3. sports/ or baseball/ or basketball/ or bicycling/ or boxing/ or cricket sport/ or football/ or golf/ or gymnastics/ or hockey/ or martial arts/ or mountaineering/ or racquet sports/ or running/ or skating/ or snow sports/ or socc er/ or sports for persons with disabilities/ or "track and field" or volleyball/ or walking/ or water sports/ or weight lifting/ or wrestling/
4. (archery or artistic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or triathlon or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton or jumping or snowboard or dance or cheerleading or soccer or running).tw.kf.
5. 1 or 2 or 3 or 4
6. exp Self Concept/
7. (identity or esteem or efficacy or schema) adj 3 self).tw.kf.
8. (identity or esteem or efficacy or schema) adj 3 athlete).tw.kf.
9. (identity or esteem or efficacy or schema) adj 3 himself).tw.kf.
10. (identity or esteem or efficacy or schema) adj 3 herself).tw.kf.
11. (identity or esteem or efficacy or schema) adj 3 themselves).tw.kf.
12. 7 or 8 or 9 or 10 or 11
13. (coherence or self) adj 3 sense of),tw.kf.
14. 6 or 12 or 13
15. 5 and 14
16. exp "wounds and injuries"/
17. (tear or separation or sprain or strain or break or fracture or contusion or damage or dislocation or bruise or concussion or hernia or rupture or injury).tw.kf.
18. 16 or 17
19. 5 and 14 and 18
20. Athletic Injuries/
21. 14 and 20
22. 19 or 21

Continued
Table 1 Continued

Database	Search Strategy & Terms	Search Date	Number of Articles Returned
Sport Medicine & Education Index (ProQuest) 1970–current	Concept 1. (MAINSUBJECT.EXACT("Athletes") OR ab("Paralympian or Olympian or athlete") OR pub("Paralympian or Olympian or athlete") OR it("Paralympian or Olympian or athlete") OR MAINTOPIC.EXACT("Winter sports") OR MAINSUBJECT.EXACT("Sports") OR MAINSUBJECT.EXACT("College sports") OR MAINTOPIC.EXACT("High school sports") OR MAINSUBJECT.EXACT("Professional sports") OR ab(athletic swimming or athletics or badminton or baseball or softball or basketball or beach volleyball or boxing or canoe or cycling or diving or equestrian or fencing or football or golf or gymnastics or handball or hockey or judo or karate or marathon or pentathlon or rowing or rugby or sailing or shooting or skateboarding or climbing or surfing or swimming or tennis or taekwondo or trampoline or waterpolo or weightlifting or wrestling or skiing or biathlon or bobsleigh or cross country or curling or figure skating or ice hockey or luge or Nordic or skeleton	2 April 2020	N=168

Data extraction

The following data were extracted from each of the included studies and logged independently by reviewers into a blank, preformatted table (see table 2 for template).

1. Description of sample: country of origin, sample size, sex, race, age, recruitment source, sport background, level of sport and history of sport involvement (eg, frequency and years of participation).
2. Injury descriptors: definition of injury used (if any), type and severity of injury, time removed from sport, rehabilitation protocol administered and surgical details (if any).
3. Study methodology: study design, primary and secondary objectives.
4. Theoretical support: author and model or theory used.
5. Outcome measures: AI measured used, timeline of administration, AI score and additional outcome measures used.
6. Key findings: findings related to AI and other measured variables.
7. Study strengths and limitations.

Findings are presented as a narrative summary, and where possible, presented as a tally (ie, number of studies that reported on a given finding) to denote trends in the literature. In keeping with the purpose of scoping review methodology which is ‘…to identify knowledge gaps, scope a body of literature, clarify concepts or to investigate research conduct’ as well as ‘…to identify strengths [and] weaknesses … in the research’, studies will not undergo quality review (ie, assessment of bias) or be assigned a Level of Evidence rating.

Patient and public involvement

No patient(s) involved.

RESULTS

The search strategy identified 1456 records for consideration (see table 1 for databases searched, search terms used and number of records identified). Two additional articles were identified via hand searching of the included article reference lists. One additional article was previously known to others, but not identified in the searches. Two articles contained multiple studies. A total of 20 publications reporting on 22 studies were eligible for inclusion. Studies used cross-section observational (n=8), prospective longitudinal (n=13) and mixed-methods (n=1) designs.

Sample descriptors

Studies originated from Australia (n=1), Canada (n=1), Israel (n=1), Slovenia (n=1) and the USA (n=18).
Table 2 Article data extraction

Author (year)	Sample Descriptors	Injury Description	Outcome Measures	Key Findings Pertaining to AI	Study Strengths and Limitations
Padaki et al (2018)					
n=24 (male, 50)	- Yes: ‘ACL rupture requiring surgery’	- Single sport athletes had significantly higher AIMS scores than multisport athletes	- Single sport athletes had significantly higher AIMS scores than multisport athletes	- Only study to group athletes by sport specialisation (as per the American Orthopaedic Society for Sports Medicine definition; that is, single vs multisport athletes) and compare AIMS scores between groups	- Only study to examine psychological trauma associated with a sport injury
3. -	ACL tear; 41.7% reporting concomitant meniscal injury	- No significant difference in AIMS scores by age group (<14 years old vs 15-21 years old)	- No significant difference in IES-R between Agh (AIMS score >50) and low AI (AIMS score ≤49)	- Small sample size	- Unknown how long athletes were removed from sport
4. -	Sport injury/severity	- Only study to examine psychological trauma associated with a sport injury		- Figures are provided, but exact values are not referenced	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups
5. -	Time out of sport; M(±SD); range	- Figure 1: 'time since injury': 1 week (acute) vs 63 weeks (chronic)		- No pre-injury data available	- Large variation in “time since injury”: 1 week (acute) vs 63 weeks (chronic)
6. -	Rehabilitation protocol and surgery details	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups		- Exclusively captured ACL injuries; findings may not be generalisable to other injuries	- No pre-injury data available
7. -	Study Design and Objectives	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups		- Sample size of 56 is small	- Unknown how long athletes were removed from sport
8. -	Model or Theory Referenced	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups		- Figures are provided, but exact values are not referenced	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups
9. -	Primary objective	- Only study to group athletes by sport specialisation (as per the American Orthopaedic Society for Sports Medicine definition; that is, single vs multisport athletes) and compare AIMS scores between groups	- Only study to examine psychological trauma associated with a sport injury	- Small sample size	- Unknown how long athletes were removed from sport
10. -	Secondary objective	- No significant difference in AIMS scores by age group (<14 years old vs 15-21 years old)	- No significant difference in IES-R between Agh (AIMS score >50) and low AI (AIMS score ≤49)	- Figures are provided, but exact values are not referenced	- Does not appear that tests of statistical significance were conducted to compare high and low AI groups
Hilliard et al (2017)					
n=79 (male, 64.6)	- Yes: ‘experiencing an MSK injury considered moderate in severity that results in at least 7 days of missed practice or competition and receiving physiotherapy for the injury’	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is described clearly and thoroughly (eg, clear definition of injury, sport, level of play, frequency of sport involvement, type of sport injury, time removed from sport)	- Range of sports and levels of play captured increase the generalisability of findings	- Study design used does not prioritise one aspect of the research over the other (ie, quantitative vs qualitative)
2. -	ACL tear (33.9%); sprains (12.6%); fractures (8.3%); undefined injury, only general area reported (eg, right knee, lower back, etc) (67%)	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Regression models have sufficient power	- Captured a range of MSK injuries	- Clear operational definition of injuries eligible for inclusion
3. -	As per definition, “…at least 7 days of missed practice or competition…”, median of 4 weeks reported since time of injury (range 1–63 weeks)	- Positive moderate but non-significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is predominantly male	- Only one additional outcome measure administered	- ROAQ assesses athletes’ beliefs, not actual behaviours
4. -	42% of injuries required surgery, not otherwise specified	- AIMS negative affectivity subscale independently predicted likelihood that athlete would: (1) ignore practitioner recommendations and (2) attempt to expedite the rehabilitation process	- Sample is predominantly male	- Statistical tests comparing AIMS scores with subscale scores increases likelihood of multicollinearity	- Sample is predominantly male
5. -	14.19±9.40 hours spent training/week prior to injury; 10.45±4.46 years involved in sport	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is predominantly male	- Statistical tests comparing AIMS scores with subscale scores increases likelihood of multicollinearity	- Sample is predominantly male
6. -	Divisions I (26%); Division II (15%); Division III (40%) and NAA (19%)	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is predominantly male	- Statistical tests comparing AIMS scores with subscale scores increases likelihood of multicollinearity	- Sample is predominantly male
7. -	- Division I (26%); Division II (15%); Division III (40%) and NAA (19%)	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is predominantly male	- Statistical tests comparing AIMS scores with subscale scores increases likelihood of multicollinearity	- Sample is predominantly male
8. -	- Division I (26%); Division II (15%); Division III (40%) and NAA (19%)	- Positive moderate and significant association between AIMS score and willingness to ignore practitioner recommendations pertaining to rehabilitation	- Sample is predominantly male	- Statistical tests comparing AIMS scores with subscale scores increases likelihood of multicollinearity	- Sample is predominantly male
Author (year)	Sample Descriptors	Outcome Measures	Key Findings Pertaining to AI Study Strengths	Limitations		
O’Rourke et al (2017)	1. USA	1. AIMS: 7 or 10 items	▶ Moderate positive and significant association with AIMS score: mastery-orientation, ego-orientation, parent ego climate, intrinsic and extrinsic motivation, social network size, post-concussion symptoms at time 2 and 3	▶ Only study to capture and compare AI with presence of post-concussion symptoms at multiple time points in the acute recovery phase	▶ Poorly described sample with respect to level of and frequency of sport involvement ▶ Use of a hospital-based clinic as a recruitment source may have biased the study sample (ie, captured athletes with more severe concussion symptoms) ▶ Follow-up measures administered in close proximity (time 1: ~1–14 days post-concussion; time 2: ~14–21 days post-concussion; time 3: ~21–28 days post-concussion) ▶ Diagnostic criteria for concussion not stated	▶ No pre-injury data available
Baroffi et al (2019)	1. Australia	1. AIMS: 7 or 10 items	▶ Strong positive and significant association between AIMS score and depressive symptom severity	▶ Small sample size ▶ Only three sports captured ▶ Frequency and years of sport involvement not provided for sample ▶ 8 weeks between occurrence of injury and questionnaire completion ▶ No pre-injury data on AI	Exclusively captured ACL injuries; findings may not be generalisable to other injuries	

Table 2 Continued

Sample Descriptors	Outcome Measures	Key Findings Pertaining to AI Study Strengths	Limitations
Author (year)			
Renton T, et al. BMJ Open 2021;11:e044199. doi:10.1136/bmjopen-2020-044199			

Sample Descriptors
- Country of origin
- n: (sex, %)
- Race (%)
- Age M±SD: range
- Recruitment source
- Injury Description
- Study Design and Objectives
- Study design
- Model or Theory
- Timeline of administration
- Group: score
- Names of additional measures used

Outcome Measures
- AIMS: 7 or 10 items
- Timeline of administration
- Group: score
- Names of additional measures used

Key Findings Pertaining to AI Study Strengths
- Moderate positive and significant association with AIMS score: mastery-orientation, ego-orientation, parent ego climate, intrinsic and extrinsic motivation, social network size, post-concussion symptoms at time 2 and 3

Limitations
- Only study to capture and compare AI with presence of post-concussion symptoms at multiple time points in the acute recovery phase
- Poorly described sample with respect to level of and frequency of sport involvement
- Use of a hospital-based clinic as a recruitment source may have biased the study sample (ie, captured athletes with more severe concussion symptoms)
- Follow-up measures administered in close proximity (time 1: ~1–14 days post-concussion; time 2: ~14–21 days post-concussion; time 3: ~21–28 days post-concussion)
- Diagnostic criteria for concussion not stated
- No pre-injury data available
Table 2 Continued

Study Design and Objectives	Model or Theory	Outcomes Measures	Strengths	Limitations
Prospective longitudinal				
To examine competitive				
athletes’ experience of				
severe injuries.				
Prospective cohort				
To assess the association				
between pre-season,				
individual characteristics				
and post-season recall of				
with-in season concussion				
symptom-reporting				
Cialdini and Trost				
(1998)				
Social Influence:				
Social Norms, Conformity and				
Compliance				
Cai; Cal; HQR				
Significant interaction				
identified between				
perceived concussion				
reporting norms and AIMS				
score with respect to				
predicting non-reporting				
behaviours; stronger				
AI was associated with non-				
report				
AIMS score alone did not				
significantly predict				
non-reporting behaviours				
Equal representation of				
females				
equal representation of				
females in sample				
Assessed AI prior to				
injury				
Captured a range of				
MSK injuries				
no significant difference				
identified between AIMS				
scores as assessed at different time points				
Small sample size				
Only study to exclusively				
examine concussion				
reporting behaviours				
Homogeneous sport				
sample captured; all				
participants were NCAA				
Division I ice hockey				
players				
Large sample size				
All male sample; not				
generalizable to females				
Reporting behaviours				
subject to recall bias				
follow-up questionnaires				
were administered at the end				
of hockey season				
Reporting behaviours based on				
presence of post-impact				
concussion symptoms				
rather than incidence of				
unexpected suspected				
concussions				

Sample Descriptors

1. Country of origin
2. n= (sex, %)
3. Age (years)
4. Age M±SD; range
5. Recruitment source
6. Sport (%)
7. Level of sport
8. History of sport engagement (frequency/years)
9. Injury Description
10. Definition of injury (yes/ no: definition)
11. Sport injury/severity
12. Time out of sport; M(SD)
13. Rehabilitation protocol and surgery details
14. Study design
15. Secondary objective
16. Authors (year)
17. Model name
18. Additional measures used
19. Participants raw data provided; means/SDs not calculated
20. Results were presented for each athlete, rather than summary for the entire sample
21. Narrow age range captured (20-21 years old)

Countries of origin

1. **Israel**
 - n=6 (unknown)
 - Meniscus tear, leg injury (not otherwise specified), broken bone in hand, labrum tear in shoulder
 - Range: 5 weeks–8 months
 - 50% required surgery
 - Yes: ACL tear
 - Yes: ACL tear
 - Range: 7–12 months
 - Prospective longitudinal
 - To examine competitive athletes’ experience of severe injuries.
 - Yes: NCAA definition of concussion
 - Concussion
 - Baseline: pre-season, pre-injury
 - Social Influence: Social Norms, Conformity and Compliance
 - Cai; Cal; HQR
 - Significant interaction identified between perceived concussion reporting norms and AIMS score with respect to predicting non-reporting behaviours; stronger AI was associated with non-report
 - AIMS score alone did not significantly predict non-reporting behaviours
 - Only study to exclusively examine concussion reporting behaviours
 - Homogeneous sport sample captured; all participants were NCAA Division I ice hockey players
 - Large sample size
 - All male sample; not generalizable to females
 - Reporting behaviours subject to recall bias; follow-up questionnaires were administered at the end of hockey season
 - Reporting behaviours based on presence of post-impact concussion symptoms rather than incidence of unreported suspected concussions

2. **USA**
 - n=146 (baseline); n=116 (post-season) (male, 100)
 - Only range was provided: 20–21 years old
 - NCAA Division I school teams: by referral via team athletic trainer
 - Softball; women’s soccer
 - NCAA Division I
 - Yes: ‘sport injury that is expected to prevent’ limit his/her sport participation for at least 4 days
 - Meniscus tear, leg injury (not otherwise specified), broken bone in hand, labrum tear in shoulder
 - Range: 5 weeks–8 months
 - 50% required surgery
 - Prospective longitudinal
 - To examine an athlete’s psychological and emotional response to sport injury and rehabilitation and coping resources.
 - To examine individual differences and changes over time from injury to being cleared to play.
 - linear Model of Response to Sport Injury
 - Lazarus and Folkman (1984)
 - Stress Appraisal and Coping
 - CEI; BCope
 - Significant interaction identified between perceived concussion reporting norms and AIMS score with respect to predicting non-reporting behaviours; stronger AI was associated with non-report
 - AIMS score alone did not significantly predict non-reporting behaviours
 - equal representation of males and females in sample
 - Assessed AI prior to injury
 - Captured a range of MSK injuries
 - Frequency and years of sport involvement not provided
 - Small sample size
 - Measure means/SDs not calculated for sample; participant raw data provided
 - Results were presented for each athlete, rather than summary for the entire sample
 - Narrow age range captured (20-21 years old)
Table 2 Continued

Sample Descriptions	Country of origin	n (sex, %)	Age ±SD; range	Race (%)	Sport (%)	Level of sport	History of sport engagement (frequency/years)	Outcome Measures	Key Findings Pertaining to AI Strengths	Limitations				
Masten et al. (2014)	Slovenia	n=68 (male, 69.1)	M=23.4; range: 16–40 years old	Black (52.2)	Handball (20.6); football (20.6); volleyball (9.1); alpine skiing (<3); ice hockey (<3); judo (<3); snowboarding (<3); tennis (<3); running (<3); gymnastics (<3); rugby (<3); standing/accelerating skiing (<3)	Meniscus tear: ACL/FACL patellar injury; non-reported; group 4 (8.8%); group 5 (76.5%); Orthopaedic clinic in Ljubljana, Slovenia	Yes: according to a previously proposed injury rating scale; individuals categorised to be in group 4 (ie, rehabilitation time expected to be up to 1 month) or group 5 (ie, rehabilitation time expected to be over 1 month and up to 6 months)	AIMS scores independently predicted an athlete’s motivation to engage in rehabilitation as well as their subjective value of rehabilitation; athletes with stronger AI were significantly more likely to have greater motivation and positive views towards rehabilitation	Only study to exclusively capture high-ranking athletes (eg, world class, international and national)	Compared athletes by injury severity (more severely injured (expected rehab time >1 month) vs less severely injured (expected rehab time ≤1 month))				
Renton et al. (2021)	USA	n=26 (male, 100)	20.08±1.46	Black (32.2)	Football	NCAA Division I	Yes: ‘(an injury) defined as having occurred as a result of a participation in an organised intercollegiate practice or game, requiring medical attention by a team athletic trainer or physician, and having resulted in the inability to participate for one or more days beyond the day of injury’	AIMS score was not a significant predictor of ‘time lost’ (ie, number of days removed from sport due to injury); AIMS score interaction terms with (1) positive and (2) negative life stress were also non-significant	Only study to exclusively capture high-ranking athletes (eg, world class, international and national)	Compared athletes by injury severity (more severely injured (expected rehab time >1 month) vs less severely injured (expected rehab time ≤1 month))	No post-injury assessment of AI	No comparison between injured and uninjured athletes with respect to AIMS baseline scores		
Petrie et al. (2014)	USA	n=26 (male, 100)	20.08±1.46	Black (32.2)	Football	NCAA Division I	Prospective longitudinal to determine the direct effects of life stress, different sources of social support, AI and mental toughness on athletic injury over the course of a competitive season.	No significant associations between AIMS score; (1) life stress, (2) injury outcome, (3) social support or (4) mental toughness were identified	Homogeneous sport sample captured; all participants were NCAA Division I football players	Small sample size	Frequency and years of sport involvement not provided	Findings not generalisable to females	No post-injury assessment of AI	No comparison between injured and uninjured athletes with respect to AIMS baseline scores
Table 2 Continued

Sample Descriptors	Outcome Measures
1. Country of origin	1. AIMS score 7 or 10 items
2. n:sex (%)	2. Timeline of administration
3. Race (%)	3. Group; score (M±SD)
4. Age M±SD; range	4. Names of additional measures used
5. Recruitment source	Key Findings Pertaining to AI
6. Sport(%)	Study Strengths and Limitations
7. Level of sport	
8. History of sport engagement (frequency/years)	

Author (year)	Brewer et al. (2013)
1. USA	1. Yes: ACL tear
2. n=91 (male, 63.7)	2. ACL tear
3. Caucasian (92)	3. At least 6 weeks
4. 29.73±10.24; range 14–54 years old	4. Accelerated ACL rehabilitation protocol as developed by Shelbourne et al.
5. Physical therapy clinics	5. To identify predictors of adherence to a postoperative ACL home rehabilitation programme.
6. —	6. Primary objective
7. Competitive (43%); recreational (54%)	7. Model name
8. —	Brewer score did not significantly predict home exercise completion ratio (ie, number of sets of home exercises completed compared with what was prescribed)

Author (year)	McKay et al. (2013)
1. Canada	1. Yes: “any injury that required medical attention, resulted in the inability to complete the current session of activity, and/or required the cessation of sporting activity for at least 24 hours; Subsequent injury: ‘any injury that occurred during the season, after the first reported injury, regardless of anatomical position or injury type’
2. n=356 (male, 100)	2. Prospective cohort
3. —	3. To determine the risk of injury associated with AI, attitudes towards body checking, competitive state anxiety and re-injury fear in elite youth ice hockey players.
4. Median=15; range 13–17 years old	4. To determine if there is an elevated risk of subsequent injury associated with return to play before medical clearance.
5. Elite ice hockey teams in Calgary, Alberta	5. —
6. Ice hockey	6. Baseline: within 3 weeks of hockey season start, pre-injury
7. AAA, AA, A	7. 55.72±7.54
8. Bantam age group: mean of 8.06 years of organised hockey; midget age group: mean of 9.57 years of organised hockey	8. CSAI-2R, BOQ, FRQ, MPQ-SF

Limitations	

Sample was predominantly Caucasian; findings may not be generalisable to other racial groups	
Sample was predominantly male	
Sample was poorly described; frequency and years of sport involvement and sports captured were not provided	
Exclusively captured ACL injuries; findings may not be generalisable to other injuries	

Strengths	

Similar distribution of competitive versus recreational athletes	
One of three studies that assessed actual rehabilitation behaviours (eg, home exercise completion, cryotherapy)	

Limitations	

Reporting discrepancy in findings pertaining to AI; authors were contacted for clarification but no response was provided	
No post-injury assessment of AI	
Findings not generalisable to females	
Narrow age range captured (13–17 years old)	
Table 2 Continued

Sample Descriptors	Outcome Measures	Model or Theory Referenced	Key Findings Pertaining to AI	Strengths (Study 1 and Study 2):
Author (year)				Samples captured were thoroughly described
				Wide range of sports and levels of involvement captured
				Large sample size
				Similar number of males and females captured
				Captured a range of MSK injuries
				Clear operational definition of injuries eligible for inclusion
				Limitations:
				No post-injury assessment of AI (both studies)
				Large variation in time lost (ie, number of days removed from sport) due to sport injury (both studies)
				Sample age (mean/SD) not provided in study 2

- **Podlog et al (2013)**
 - Study 1:
 - 1. USA
 - 2. n=118 (male, 51.7)
 - 3. —
 - 4. 15.97 ± 1.41
 - 5. Teams in Texas
 - Study 2:
 - 1. USA
 - 2. n=105 (male, 59)
 - 3. —
 - 4. —
 - 5. NCAA teams across the USA
- **Renton et al.**
 - Study 1:
 - 1. Yes: ‘were currently experiencing an injury requiring a minimum 2-week absence from sport training and competition, and currently receiving physiotherapy for their injury’
 - 2. ACL tear (34.7%); medial collateral/lateral collateral ligament injury (14.1%); shoulder dislocation (7.6%); carpal tunnel syndrome (<1%)
 - 3. M=2.7 months (SD=2.01); range: 0.5–7 months
 - 4. 57.6% required surgery, not otherwise specified
 - Study 2:
 - 1. Same as above
 - 2. ACL (17.1%); clavicle fracture (14.3%); shoulder dislocation (8.6%); sprain (7.6%)
 - 3. M=2.49 months (SD=2.01); range: 0.5–7 months
 - 4. 50.5% required surgery, not otherwise specified
- **Wiese-Bjornstal et al (1998)**
 - Study 1 and Study 2:
 - 1. Integrated Model of Response to Sport Injury
 - 2. AIMS scores significantly predicted rehabilitation tendencies; athletes with a stronger AI were significantly more likely to ignore practitioner recommendations |
 - Study 1 only:
 - 1. AIMS: 7 or 10 items
 - 2. Timeline of administration
 - 3. Group; score (MasSD)
 - 4. Names of additional measures used
 - Study 1 and Study 2:
 - 1. AIMS scores significantly predicted attempts to expedite the rehabilitation process; athletes with a stronger AI were significantly more likely to think and behave in a way that would expedite rehabilitation |
 - 2. AIMS scores significantly predicted rehabilitation tendencies; athletes with a stronger AI were significantly more likely to ignore practitioner recommendations |

Definition of injury (yes/no: definition):
- Yes: ‘were currently experiencing an injury requiring a minimum 2-week absence from sport training and competition, and currently receiving physiotherapy for their injury’
- No: —

Timeline of administration:
- Study 1: cross-sectional
- Study 2: cross-sectional

Objectives:
- Design and Theory Model

Study Design:
- Cross-sectional

Primary objective:
- To examine correlates of overadherence and premature return to sport.

Secondary objective:
- AIMS scores significantly predicted tendency to ignore practitioner rehabilitation recommendations.

Samples captured were thoroughly described

Wide range of sports and levels of involvement captured

Similar number of males and females captured

Captured a range of MSK injuries

Clear operational definition of injuries eligible for inclusion

Limitations:
- No post-injury assessment of AI (both studies)
- Large variation in time lost (ie, number of days removed from sport) due to sport injury (both studies)
- Sample age (mean/SD) not provided in study 2

Captured a range of MSK injuries

Clear operational definition of injuries eligible for inclusion

Limitations:
- No post-injury assessment of AI (both studies)
- Large variation in time lost (ie, number of days removed from sport) due to sport injury (both studies)
- Sample age (mean/SD) not provided in study 2
Table 2 Continued

Sample Descriptors	Injury Description	Study Design and Objectives	Model or Theory Referenced	Outcome Measures	Key Findings Pertaining to AI Study Strengths and Limitations	
Author (year)						
Weinberg et al (2013)	Yes: “playing through injury” was defined in the current study as participating while still feeling pain so that (a) the pain/injury needs some sort of mental attention during participation, (b) involves some sort of loss or change in function that would directly affect performance capabilities, therefore indicating a threat to well-being, and (c) a decision process was necessary as to whether participation should and/or would be initiated and continued during the experience of pain/injury.	Cross-sectional	1. Authors (year)	1. AIMS: 7 or 10 items	Men scored significantly higher on each AIMS subscale compared with women	
					AI significantly predicted athlete attitudes towards sport risk, pain and playing through pain; athletes scoring ≥75th percentile on the AIMS were more likely to have positive attitudes and behavioural tendencies to play through pain and injury compared with the moderate (between 25th and 75th percentile) and low AI groups (≤25th percentile).	
					AIMS exclusivity and negative affect subscales significantly predicted RPIQ toughness (in regards to risk, pain and injury in sport), social role choice (willingness to accept risk, pain and injury in sport), and “pressed” (perception of pressure exerted by others to play with pain and injury) subscale scores; athletes scoring higher on the exclusivity and negative affect AIMS subscales were more likely to endorse toughness (ie, risk, pain and injury).	
					AIMS negative affect subscale scores significantly predicted athlete behavioural intentions to play through an injury; athletes with stronger AIs were more likely to play through an injury.	
					Strengths:	
Large sample size						
Equal representation of men and women						
					Limitations:	
Homogeneous sample of intramural basketball players; findings not generalisable to other sports
Few details provided about injury
Reporting behaviours subject to recall bias; questionnaires administered at an unknown time point following injury
Did not assess actual behaviours following injury; operational definition (“playing through injury as defined…”) applied as an inclusion criteria only; Narrow age range captured (18–24 years old) |
Table 2 Continued

Author (year)	Sample Descriptors	Injury Description	Study Design and Objectives	Outcome Measures	Key Findings Pertaining to AI Strengths and Limitations
Brewer et al. (2010)	1. USA	Yes: ACL tear	1. Prospective longitudinal study of patients who underwent ACL reconstruction surgery and rehabilitation (a) decreasing AI self-esteem in the face of formidable threat to short-term and potentially long-term sport participation, and (b) greater decrements in AI are expected for those individuals who are experiencing slower post-operative recovery.	1. AIMS: 7 or 10 items	Time 1 and time 2: AIMS scores were not significantly different; all other time point comparisons were significantly different and adjusted for age and gender.
	2. n=108 (men, 66.7)	ACL tear	2. -	2. -	-
	3. Caucasian (60)	-	3. -	3. -	-
	4. 29.38±9.93; range: 14–54 years old	-	4. -	4. -	-
	5. Physical therapy clinics	-	5. -	5. -	-
	6. -	-	6. -	6. -	-
	7. Competitive 47%; recreational 49%; non-athletes 4%	-	7. -	7. -	-
	8. -	-	8. -	8. -	-
Author (year)	1.	2.	3.	4.	
---	---	---	---	---	
Brewer et al (2007)	1.	USA	1. Yes: ACL tear	1. Prospective longitudinal study to examine predictors of daily pain and negative mood over the first 6 weeks of rehabilitation following ACL reconstruction.	
2. n=91 (male, 63.7)	2. ACL	2.			
3. 29.7±10.24; range: 14–54 years old	3.	—	2. Integrated Model of Response to Sport Injury		
4. Physical therapy clinics	4.	29.7±10.24; range: 14–54 years old	AIMS score did not significantly and independently predict average daily pain.		
5. —	5.	—	AIMS score did not significantly and independently predict negative mood		
6. Competitive 43%; recreational 54%	6.	—	Significant interaction between AIMS score and number of days since surgery with respect to predicting negative mood; athletes with stronger AIs experienced greater decreases in negative mood as number of days since surgery increased.		
Brewer et al (2003)	1.	USA	1. Yes: ACL tear	1. Prospective longitudinal study to examine predictors of daily pain and negative mood over the first 6 weeks of rehabilitation following ACL reconstruction.	
2. n=61	2. ACL	2.			
3. Caucasian (92)	3.	—	2. Integrated Model of Response to Sport Injury		
4. 26.03±7.99; range: 14–47 years old	4.	26.03±7.99; range: 14–47 years old	AIMS score did not significantly and independently predict average daily pain.		
5. Physical therapy clinic	5.	—	AIMS score did not significantly and independently predict negative mood		
6. —	6.	—	Significant interaction between AIMS score and number of days since surgery with respect to predicting negative mood; athletes with stronger AIs experienced greater decreases in negative mood as number of days since surgery increased.		
7. Competitive 57%; recreational 41%	7.	—	AIMS score did not significantly and independently predict negative mood		

Key Findings Pertaining to Aims:
- The AIMS score did not significantly and independently predict average daily pain.
- The AIMS score did not significantly and independently predict negative mood.
- Significant interaction between AIMS score and number of days since surgery with respect to predicting negative mood; athletes with stronger AIs experienced greater decreases in negative mood as number of days since surgery increased.

Strengths:
- Similar representation of recreational and competitive level athletes.
- One of three studies that assessed actual rehabilitation behaviors (e.g., home exercise completion, cryotherapy).
- Wide age range captured (14–47 years old).

Limitations:
- Details about sports captured not provided.
- Frequency and years of sport involvement not provided.
- Details about sport injury not provided.
- Males and Caucasians were over-represented in sample; findings not generalisable to females and other races.
- Exclusively captured ACL injuries; findings may not be generalisable to other injuries.

Open access:
- One of three studies that assessed actual rehabilitation behaviors (e.g., home exercise completion, cryotherapy).
- Wide age range captured (14–47 years old).

Competitive athletes were over-represented in sample.
- Males and Caucasians were over-represented in sample; findings not generalisable to females and other races.
- Details about sports captured not provided.
- Frequency and years of sport involvement not provided.
- Exclusively captured ACL injuries; findings may not be generalisable to other injuries.
Table 2 Continued

Sample Descriptors	Outcome Measures	Key Findings Pertaining to Aim	Study Strengths and Limitations
1. Country of origin	1. AIMS 7 or 10 items	AIMS score significantly predicted depression scores; athletes with stronger AIs were more likely to experience more severe depressive symptoms	- Range of sports captured
2. n (sex, %)	2. Timeline of administration	- Frequency and years of sport involvement not provided	
3. Race (%)	3. Group; score (MaSD)	- Few details provided with respect to injuries captured	
4. Age Mean±SD; range	4. Names of additional measures used	- Small sample size	
5. Recruitment source		- Caucasians were over-represented in sample; findings may not be generalisable to other races	
6. Sport (%)		- AIMS only assessed at one time point	
7. Level of sport		- Narrow age range captured (15-18 years old)	
8. History of sport engagement (frequency/years)			

Author (year)	Sample	Descriptors	Injuries Description	Study Design and Objectives	Model or Theory	Reference	Strengths	Limitations
Manuel et al. (2002)	Yes: ‘athletes who would be out of sports for at least 3 weeks’							
1. USA	1. Most common injury was ACL (no % provided); Injury Severity Scale as completed by the attending orthopaedic surgeon. Scores range from 1 to 4, with a lower score indicating a less severe injury; M=2.50 (SD=1.26)	1. Prospective longitudinal to examine patterns of psychological distress in adolescents experiencing sport injuries.	1. Limitations: - Few details provided with respect to injuries captured					
2. Time 1 (baseline): n=48 (female, 58.3); time 2 (3 weeks) n=44; time 3 (6 weeks) n=40; time 4 (12 weeks) n=34	2. As per definition, out of sport for at least 3 weeks	2. -	-					
3. Caucasian (85)	3. Frequency and years of sport involvement not provided	3. -	-					
4. Range: 15-18 years old	4. Small sample size	4. -	-					
5. Misk Outpatient Physical Therapy Department at Wakeforest University	5. Few details provided with respect to injuries captured	5. -	-					
6. Males: football (56); baseball (11); wrestling (1); females: soccer (25); basketball (21); track (14); volleyball (7)	6. Narrow age range captured (15-18 years old)	6. -	-					
7. -	7. Clear operational definition of injuries eligible for inclusion	7. -	-					
8. -	8. AIMS only assessed at one time point	8. -	-					

Green and Weinberg (2001)	Yes: ‘discontinuance of regular physical activity/sport that was operationally defined as 30min of physical activity a week, for a period of at least 6 weeks’		
1. USA	1. Cross-sectional to examine coping skills and social support to better understand those individuals who are most vulnerable to injury.	1. Limitations: - Captured a range of MSK injuries	
2. n=30 (male, 60)	2. 50% knee injury; 26.7% other (three foot injuries, one broken fibula, one hemiated disc, one broken arm); 10% shoulder injury; 6.7% hip injury; 3% ankle injury	2. Wide age range captured (19–70 years old)	- Clear operational definition of injuries eligible for inclusion
3. Caucasian (60.3)	3. As per definition, at least 6 weeks, no additional data provided	3. -	-
4. M=30.8 (SD=missing); range: 19-70 years old	4. -	4. -	-
5. Sport medicine clinics, physical therapy clinics and orthopaedic centres	5. Clear operational definition of injuries eligible for inclusion	5. -	-
6. -	6. AIMS only assessed at one time point	6. -	-
7.	7. No additional data provided	7. -	-
8. Minimum of 30 min of sport or physical activity/week	8. No additional data provided	8. -	-
Table 2 Continued

Sample Descriptors	Injury Description	Study Design and Objectives	Model or Theory Referenced	Outcome Measures	Key Findings Pertaining to AI Study	Strengths	Limitations
1. Country of origin	1. Definition of injury (yes/no: definition)	1. Study design	1. Administration (M±SD)	1. AIMS; 7 or 10 items	Small positive and significant association between AIMS score and motivation	Large sample size	
n (sex, %)	2. Time of administration	2. Primary objective	2a. Cognitive Appraisal Models of Adjustment	Moderate positive and significant association between AIMS score and joint laxity as measured 6 months following ACL reconstructive surgery	Only study to measure functional injury outcomes (e.g., joint laxity, one leg hop distance, pain) using objective measures	Frequency and years of sport involvement not provided	
Age M±SD; range	3. Secondary objective	2b. Integrated Model of Response to Sport Injury	3. Names of additional measured(s) used	Small positive and significant association between AIMS score and joint laxity	Exclusively captured ACL injuries; findings may not be generalisable to other injuries	Males and Caucasians were over-represented in sample; findings may not be generalisable to females and other races	
Recruitment source	4. Rehabilitation protocol and surgery details	2c. Adapted model based on above referenced models (see article)	4. Names of additional measured(s) used	AIMS only assessed at one time point	Exclusively captured ACL injuries; findings may not be generalisable to other injuries		
Sport (%)							
Level of sport							
History of sport engagement (frequency/years)							
In injury Description	1. Yes: ACL tear	1. Prospective longitudinal study to examine the relationships among psychological factors, rehabilitation adherence and rehabilitation outcomes after ACL reconstruction.		1. Administration (M±SD)	Small positive and significant association between AIMS score and motivation	Only study to measure functional injury outcomes (e.g., joint laxity, one leg hop distance, pain) using objective measures	
	2. ACL tear	2. Accelerated ACL rehabilitation protocol as developed by Shelbourne et al; emphasis on early attainment of ROM, quadriceps strength and normal gait		2. Administration (M±SD)	Moderate positive and significant association between AIMS score and joint laxity	Frequency and years of sport involvement not provided	
	3. —	3. —		3. Administration (M±SD)	Small positive and significant association between AIMS score and joint laxity	Males and Caucasians were over-represented in sample; findings may not be generalisable to females and other races	
	4. —	4. —		4. Administration (M±SD)	AIMS only assessed at one time point	Exclusively captured ACL injuries; findings may not be generalisable to other injuries	

Author (year): Brewer et al. (2000)

Key:
- O: Outcomes
- M: Model or Theory
- T: Study Design and Objectives
- A: Author (year)
- S: Study Strengths and Limitations

Study Strengths and Limitations:
- Large sample size
- Only study to measure functional injury outcomes (e.g., joint laxity, one leg hop distance, pain) using objective measures
- Frequency and years of sport involvement not provided
- Males and Caucasians were over-represented in sample; findings may not be generalisable to females and other races
- AIMS only assessed at one time point
- Exclusively captured ACL injuries; findings may not be generalisable to other injuries

Notes:
- AIMS: 7 or 10 items
- Timeline of administration
- Group; score (M±SD)
- Names of additional measured(s) used

Findings Pertaining to AI Study:
- Small positive and significant association between AIMS score and motivation
- Moderate positive and significant association between AIMS score and joint laxity as measured 6 months following ACL reconstructive surgery
- Small positive and significant association between AIMS score and one leg hop distance and (2) knee function as measured 6 months following ACL reconstructive surgery
- AIMS score significantly predicted joint laxity as measured 6 months following ACL reconstructive surgery; athletes with stronger AIs were more likely to have similar knee joint stability between the affected and unaffected leg

N=95 (male, 70.5)

Race (%):
- Caucasian (88)

Age M±SD:
- 26.92±8.23

Recruitment source:
- Physical therapy clinic

Sport (%):
- Competitive (52%)
- Recreational (43%)
- Non-athletes (3%)
- Missing (2%)

Level of sport:
- Competitive (52%)
- Recreational (43%)
- Non-athletes (3%)
- Missing (2%)
Table 2 Continued

Sample Descriptors	Outcome Measures
1. Country of origin	1. AIMS: 7 or 10 items
2. n (%)	2. Timeline of administration
3. Race (%)	3. Group score
4. Age: M±SD, range (years)	(M±SD)
5. Recruitment source	4. Names of additional measure(s) used
6. Sport (%)	
7. Level of sport	
8. History of sport	
9. Engagement (frequency/year)	
10. Study design and Objectives	
11. Rehabilitation protocol and surgery	
12. Primary objective	
13. Secondary objective	
14. Model or Theory	
15. Author(s)	
16. Year	

Aims: To assess the extent to which AI was related to depressed mood in a sample of athletes who were already injured.

Strengths: Cross-validated depressive symptom severity using two measures of depression limitation (both studies).

Limitations:
- Exclusively captured male football players; findings may not be generalizable to females and other sports.
- Very small proportion of injured athletes captured (20% of total sample).
- No operational definition of sport injury provided.
- No significant difference in AIMS score between injured and uninjured groups.

Study 3:
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 1).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 4:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 5:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 6:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 7:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 8:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 9:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 10:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 11:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 12:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 13:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.

Study 14:
- AIMS score was not significantly associated with depressive symptom severity.
- AIMS score was a significant independent predictor of depressive symptom severity.
- Athletes with stronger AI were more likely to experience more severe symptoms of depression.
- Small positive and significant association between AIMS scores and physician-rated injury severity.

Strengths:
- One of two studies to assess injury severity (based on physician rating).
- Large sample size.
- Males were over-represented in sample; findings may not be generalizable to females.
- Strengths (study 3).

Limitations:
- Only study to compare AIMS scores between injured and uninjured group of athletes.
studies included both sex groups, except for three studies which included all-male samples and one which included an all-female sample. A total of n=1852 athletes were included; individual study sample sizes ranged from a minimum of n=6 (45) to a maximum n=316. Participants were a minimum of 13 to a maximum of 70 years old. Participants were recruited from several clinical and non-clinical settings, with one study failing to specify a recruitment source (see table 2, column 2).

Athletes were involved in a range of team and individual sports; however, several studies did not specify sport background. Furthermore, two studies included a small proportion (3% and 4%) of self-defined ‘non-athletes’. Authors of this review chose to include these studies due to the small number of non-athletes (n=7 total) included in analyses. Samples consisted of recreational (eg, house league) and competitive athletes (eg, elite, National Collegiate Athletics Association). Several studies did not report on this metric. Sport involvement (eg, frequency of and years involved in sport) was heterogeneous and reported within six studies. Sport participation ranged from 30 min to 14.19 (SD=9.40) hours per week and years of sport involvement ranged from 6.64 years (SD=3.98) to 11.17 years (SD=4.31) (see table 2, column 2).

Injury descriptors
Musculoskeletal (MSK) injuries were the most common injuries cited. Nine studies reported exclusively on anterior cruciate ligament (ACL) surgical outcomes, while two exclusively examined concussion. The remaining 11 studies captured various MSK injuries. Of these 11 studies, 1 did not specify an exact injury but indicated injury to lower or upper extremities, and 1 captured both injury severity on a scale ranging from 1 (mild) to 3 (severe) while the other stated that the majority of injuries were ACL tears, but did not specify the exact proportion. Time away from sport due to injury varied, ranging from 24 hours to 63 weeks. Ten studies did not specify a length of absence. Three studies reported on athletes who sustained multiple injuries during the data collection period while the remaining 19 captured a first (ie, initial) injury only (see table 2, column 3).

Definitions and theoretical models
Operational definitions of injury were specified in each study except one. Those that captured ACL and concussions exclusively, indicated a diagnosed ACL tear or diagnosed or self-reported concussion in lieu of an operational definition. Eleven studies referenced injury models as a means of justification for study methodologies used. The most frequently cited model was the Integrated Model of Response to Sport Injury. Several other theories unrelated to sport injury were also referenced (see table 2, column 5).

Wiese-Bjornstal et al’s injury model (see online supplemental appendix 3) suggests an athlete’s cognitive appraisal (eg, rate of perceived recovery, cognitive coping, etc.) of the injury is a primary driver of outcome (ie, physical, behavioural and emotional). Seven studies explicitly measured cognitive appraisal via subjective rehabilitation progress, coping skills and strategies used, psychological response to injury, readiness to return to sport and rehabilitation beliefs. Most outcome measures sought to typify athlete personal factors. A small proportion of studies (n=6) used measures that isolated situational factors (eg, sport, social and environmental) but only assessed social support (eg, availability, quality and source).

Measuring AI
The Athletic Identity Measurement Scale (AIMS), 7-item or 10-item version, was used exclusively to quantify the strength of AI (see table 2, column 6). The AIMS consists of three subscales: social identity (ie, the extent to which the individual views themselves as occupying the athlete role), exclusivity (ie, the extent to which the individual defines their self-worth based on the athlete role), and negative affectivity (ie, the extent to which the individual experiences negative emotions from undesired outcomes associated with the athlete role). The findings summarised below are specific to AI. Analyses that did not consider AI were excluded from the summary. Findings were grouped into the following categories: demographic, psychosocial, behavioural, injury-specific and pain. Several studies also investigated the association between injury (as an exposure) and AI (as an outcome). These findings are presented at the end of this section.

Demographics
Findings pertaining to AI and sex were presented in two studies but were inconsistent. One study found that sex significantly predicted AIMS subscale scores, with males having significantly higher scores on each subscale (eg, social, exclusivity and negative affect) than females. Padaki et al also compared AIMS scores by sex (M=56.6 vs 53.4 for females and males, respectively), but this difference was not significant (p=0.092). They also examined AIMS scores by sport involvement (single vs multisport athletes) and was the only study to have done so. Interestingly, single-sport athletes reported a significantly stronger AI (M=57.7) compared with multisport athletes (M=52.8, p=0.043). Two studies investigated AI and age, with both identifying a negative non-significant association (as age increased, AI decreased) (see table 2, column 7).

Psychosocial
Depressive symptoms were measured in six studies, but only five presented findings in relation to AIMS scores. Correlational analyses were conducted in two of the studies, while regression models were constructed in the other three. Correlational analysis identified a large positive significant association between AI and...
depression scores,32 while findings from the other study identified a small negative but non-significant association.35 Beta coefficients generated from regression models illustrated a similar positive relationship between AI and depressive symptom severity, while also adjusting for several covariates. Two studies included AIMS scores in their models as an interaction term, one with injury severity30 and one with number of days since surgery.47 Although both models indicated that interaction terms explained a greater variance in depression scores compared to when AIMS scores were entered alone, only one interaction coefficient was significant.47 Despite evidence suggesting that athletes with stronger AIs were more likely to experience depressive symptoms following a sport-related injury, findings also indicated that they experienced greater improvements in their mood throughout the post-surgical follow-up period.47 Four studies assessed anxiety, but only one study compared anxiety symptoms (eg, sport-related performance, somatic, concentration disruption and worry) to AI.54 Despite anxiety symptoms being positively, although weakly, correlated to AI ($r=0.14$; 0.13; 0.21; 0.05, respectively, for the type of anxiety symptoms noted in the previous sentence), findings were not significant. Another study assessed athletes for symptoms of post-traumatic stress disorder (PTSD; eg, hyperarousal, avoidance and intrusive thoughts)49 and compared PTSD scores between 'high' and 'low' AI groups prior to ACL reconstructive surgery. Group differences were not significant.

AI was significantly associated with several other, although more abstract, psychosocial constructs including sport performance traits, physical self-worth, motivation and social network size. Traits associated with sport performance such as ego-orientation (example scale item: ‘The most important thing is to be the best athlete’) and mastery-orientation (example scale item: ‘My goal is to learn new skills and get as good as possible’) were significantly associated with AI as represented by the moderate effect sizes observed.54 One study correlated physical self-worth (ie, perceived sport competence, perceived muscular and physical strength and conditioning) to AI and identified a positive moderate and significant association among athletes shortly after they began a rehabilitation programme.35 One study also identified a small significant association between AI and generalised motivation.51 Similarly, a moderate positive significant association was also identified between motivational climate in sport (as facilitated by parental figures) and AI. Athletes with stronger AIs also maintained greater intrinsic and extrinsic motivation towards participation in sport.54

Although social support was assessed in seven studies, only two presented findings in relation to AI. Findings indicated that the maintenance of larger social networks was moderately positively and significantly associated with AI.54 Petrie et al also examined the relationship between AI and social support but with respect to family, friends and significant others. Small positive but non-significant associations were identified between support provided by family, friends and AI but a negative association for significant others (see table 2, column 7).

Behavioural

Several studies investigated the relationship between AI and rehabilitation overadherence, motivation, completion of exercises and accompanying treatments (eg, cryotherapy). One study identified a small significant positive association between AI and beliefs pertaining to rehabilitation overadherence45 and another found that stronger AIs significantly and independently predicted overadherence (ie, ignoring practitioner recommendations and attempting to expedite the rehabilitation process).56 Contrariwise, one study found that athletes with AIs >75th percentile were less likely attempt to return to sport prior to medical clearance.45

Exercise completion was assessed in three studies.46 50 51 Findings were inconsistent. In one study, correlational analyses identified a small positive but non-significant association between AI and exercise completion.51 Authors also entered AI as an interaction term in regression models. When entered with subjective stress,50 a small positive significant interaction was found. However, when entered with age in a different study, a negative significant association was identified.51 Researchers also found that younger athletes were significantly more likely to complete their exercises and cryotherapy treatments compared with older athletes. Interestingly, the opposite relationship was observed in an earlier study but findings were not significant.51

In alignment with the findings discussed above, athletes with stronger AIs were significantly more likely to place a greater value on and maintain greater motivation towards the rehabilitation process.38 Similarly, beliefs and attitudes regarding rehabilitation were also examined.57 Authors allocated athletes into subgroups based on their AIMS score (‘low’=25th percentile; ‘moderate’=between 25th and 75th percentile; ‘high’=>75th percentile). Athletes in the ‘high’ subgroup reported significantly greater positive attitudes and tendencies to play through pain and injury than athletes in the ‘low’ and ‘moderate’ groups. When entered into a hierarchical regression model, AIMS exclusivity and negative affect subscales significantly predicted attitudes pertaining to toughness (ie, regarding risk, pain and injury in sport), social role choice (ie, willingness to accept risk, pain and injury in sport as a part of the athlete role) and ‘pressed’ (ie, the perception of pressure felt from others to play with pain and injury) across each subgroup. However, only the AIMS negative affect subscale was found to be a significant independent predictor of perceived injury behaviours (ie, intention to play through injury).57 A similar finding was identified by Kroshus et al in their investigation of concussion reporting behaviours. They found that athletes with stronger AIs were slightly and significantly more likely to engage in non-reporting behaviours than athletes with weaker AIs.42 Additional variance was explained when perceived...
conclusion reporting norms were added to their model (see Table 2, column 7).

Injury-specific outcomes

Injury severity, risk and functional outcomes were examined in several studies. Significant small effect sizes were identified between AI and physician-rated injury severity. Similarly, another study indicated that stronger AIs were moderately positively and significantly associated with concussion symptom severities at follow-up time points (~14–21 days and ~21–28 days post-concussion). When entered into a hierarchical regression model, AI significantly predicted post-concussion symptom severities ~21–28 days following injury. With respect to injury risk, one study found that athletes with AIMS scores <25th percentile faced a greater risk compared with those >25th percentile, but this difference was not significant. Notably, athletes with AIMS scores >75th percentile were significantly more likely to have incurred a subsequent injury during the data collection period.

Only one study assessed functional recovery outcomes. Measured 6 months following ACL reconstructive surgery, AI was moderately positively and significantly associated with improved joint stability (ie, less anterior and posterior laxity in the knee joint, improved single leg hopping scores and improved subjective knee function (ie, limping, locking, instability, support, swelling, stair climbing and squatting)). Findings were replicated in regression models which indicated that AI was a significant and positive independent predictor of joint stability. Psychological distress was identified as a significant negative independent predictor (see Table 2, column 7).

Pain

Measures assessing subjective ratings of pain were administered in six studies, however only two analysed pain ratings in relation to AIMS scores. Both studies identified small negative non-significant associations between AI and post-surgical pain ratings (see Table 2, column 7).

The relationship between injury as an exposure and AI as an outcome

Of the three studies that assessed AI at multiple time points, only one assessed AI prior to and following injury. One study found that AIMS scores decreased significantly over time (pre-surgery compared with 6, 12 and 24 months post-surgery) after adjusting for age, sex and rehabilitation progress. Scores did not change significantly between pre-op and 6 months nor between 12-month and 24-month follow-up, but all other comparisons were significant. Madrigal and Gill also assessed AIMS at two time points: pre-season and return to sport. Small decrements in AI were observed but were non-significant. The final study did not conduct tests of statistical significance (see Table 2, columns 6 and 7).

Study strengths and limitations

The studies captured within this review have several strengths and limitations for the reader to consider. First, the body of literature spans a 25-year period (1993–2018). This artefact implies that any trend or change with respect to athletes’ conceptualisation of AI that may have occurred as a result of cultural progression (ie, a shift over time in group norms, the importance of the athlete role, and cultural values and ideals as they pertain to sport) is represented within the data itself. Most studies either defined a specific injury (eg, ACL tear) or provided an operational definition of sport injury, thus ensuring that inclusion criteria were applied consistently. Due to exclusive use of the AIMS, AI was conceptualised and assessed equivocally across all studies. This allows for a direct comparison of AIMS scores from one study to another. Finally, almost half of the studies included athletes from a variety of sport backgrounds, increasing the external validity of these respective studies’ findings.

One of the most important limitations for readers to consider is that AI was not the primary construct of interest within the majority of the studies identified; only seven studies explicitly stated that AI was a primary variable of interest within objective statements, and therefore the main variable of interest within statistical tests. Therefore, it is possible that significant relationships between AI and the assessed injury outcomes were present but went unidentified. Being that a self-report measure was used to quantify the strength of AI, reports may have been skewed by a social desirability bias; athletes may have reported a stronger AI than their actual AI because this would be seen as desirable to other members (eg, teammates, coaches) of their social group. Another limitation with respect to the AIMS was timing and frequency of administration; 17 of 22 studies administered the AIMS following an injury and 19 studies administered the AIMS at one time point. Therefore, the existing body of literature cannot speak definitively to (1) any change over time with respect to the relationships observed between AI and the various injury outcomes observed, and (2) the relationship (if any) that exists between an injury (as an exposure) and AI (as an outcome).

Being that most studies were conducted in the USA, findings represent athletes who embody Western cultural values and attitudes towards sports and athletics. Females and athletes who identify as having a disability (eg, para-athletes) are under-represented in the literature, thus limiting the applicability of findings to these athlete populations. Studies captured a variety of MSK injuries, but few investigated AI in athletes who had sustained a sport-related concussion. Findings may not be generalisable to this population. The majority of studies had small sample sizes (n<100: n=15; n>100: n=7). This may have limited the type (eg, correlation vs regression modelling) and the extent (eg, number of predictor variables included in regression models) of statistical tests performed by authors. Overall, sport involvement (eg, frequency and years of involvement) as well as injury severity was poorly described within most studies. This oversight makes it difficult to gauge the dose–response relationship that
exists between sport involvement and AI, and how this then relates to the injury outcomes observed (see table 2, column 8).

DISCUSSION

Literature describing the relationship between AI and sport-related injury outcomes has grown steadily over the past 25 years. Importantly, 18 of 22 studies identified for inclusion in this review originated from the USA. This is important to consider when interpreting the findings presented herein given the cultural importance that different societies place on specific sports and the athlete role.\(^{60-62}\) The athletes described were representative of many different sports and varying levels of competition, thus increasing the external validity of this review’s findings to the general athlete population. Importantly, half of the identified studies referenced a theoretical model to inform study design and methodology. However, most investigators did not discuss or interpret their findings within the context of the models originally used to position their work. The integration of novel findings as they relate to the theoretical injury outcome models referenced is necessary to progress towards predictive modelling.

Injury outcomes associated with AI were grouped into five categories. Psychosocial, behavioural and injury-related outcomes dominated the literature, with relatively few studies reporting results within demographic and pain-related categories. Several studies identified moderate to strong positive relationships between AI and depressive symptoms following injury. This aligns with cognitive diathesis–stress models of depression\(^{63-66}\) as well as previous research that has identified sport injury as a risk factor for depression in athletes.\(^{59-63}\) When an athlete is unable to engage in sport, as is the case when an athlete sustains an injury, depressive symptoms may occur due to ego dissonance (ie, an incongruence between who an individual believes themselves to be and their ability to fulfil their role responsibilities). As per cognitive diathesis–stress models, athletes low in self-complexity (ie, a self-schemata consisting of a limited number of identities or significant identity overlap) are subject to a greater risk of experiencing depression following an identity disruption (eg, a sport injury) than athletes who maintain a multifaceted self-schemata (ie, maintenance of multiple identities and roles). However, this explanation fails to account for if and how the strength and importance of a given identity (eg, AI) moderates depression risk. Alternatively, depressive symptoms may manifest due to the fact that the athlete is no longer receiving the reciprocal benefits associated with role engagement. For example, studies captured in this review identified a significant positive relationship between AI and physical self-worth\(^{55}\) and general motivation.\(^{51}\)

Behaviourally, evidence suggested that athletes with stronger identities were more likely to overadhere to prescribed rehabilitative protocols.\(^{55,56}\) This could be due to an athlete’s attempt to remain in an ego syntonic state. The athlete seeks congruence between who they think they are (an athlete) and their associated role responsibilities (engaging in competition, training with teammates), so they engage in behaviours that will expedite their recovery. This behaviour may be useful, as evidence suggested that stronger AIs were associated with improved functional outcomes.\(^{51}\)

Interestingly, pain appears to be negatively associated (although non-significantly) with AI. This might suggest that an element of mental toughness or grit accompanies stronger AIs (ie, the ability to play through and downplay pain); both of the above traits having been previously associated with sport involvement.\(^{4,2}\) It may also be the case that athletes with stronger AIs develop better coping skills to deal with injury pain and are better equipped to “push through”. An alternative explanation: athletes with stronger identities opt to “push through” minor injuries and ignore minor indicators of injury (ie, pain) up to a certain threshold, which is supported by study findings.\(^{47,52}\) Additional support for this explanation is provided by studies that identified positive significant associations between AI and injury severity.\(^{56,54}\)

As stated previously, only three studies\(^{44,45,48}\) assessed AI at multiple time points, with only one of these three having assessed AI prior to and following injury.\(^{44}\) Based on the available literature, there is insufficient evidence to define the relationship that exists (if any) between an injury (as an exposure) and AI (as an outcome).

Strengths and limitations

Readers should consider the following strengths and limitations of the methodology used in this review. The search strategy used to identify studies was co-constructed with the help of a University of Toronto librarian. This collaboration ensured that (1) the relevant databases for the review topic were searched, (2) the search strategy notation was applied correctly for each database, and (3) that the search terms (eg, key words, subject headings) were exhaustive and appropriate to capture studies relevant to the review topic. To prevent bias, Covidence was used to blind reviewers’ decisions to accept or reject articles throughout all screening stages. Use of Covidence also ensured that all studies identified within the search were reviewed (ie, records were not missed). Finally, data extraction was conducted independently by both reviewers. This reduced the probability that study findings were transcribed erroneously within the data table and summarised incorrectly.

With respect to methodological limitations, authors did not conduct a quality and bias assessment of the identified studies. This is required and necessary prior to delineating implications for clinical care or conducting an intervention that seeks to alter AI in an attempt to improve injury outcomes. However, authors wish to remind readers that this is not the purpose of a scoping review,\(^{75}\) and is instead better suited to a systematic review. Researchers who wish to update this review with newly
published literature should consider the use of a rigorous and widely accepted method of qualitative evaluation (eg, Downs and Black’s Checklist for Quality Assessment\(^\text{4}\)). The exclusion of qualitative studies, theses/dissertations, and non-English articles may have resulted in the exclusion of relevant data. Finally, the search strategy used herein primarily used databases (eg, PubMed) to identify relevant studies. The incorrect labelling (eg, MeSH subject headings) of studies or studies published within journals not indexed within the databases searched were therefore missed (if any).

CONCLUSIONS

Findings from this review highlighted several significant and positive associations between AI and psychosocial (eg, depressive symptoms, performance traits, physical self-worth, motivation), behavioural (eg, rehabilitation overadherence, playing through pain and suspected injury) and injury-related (eg, function and injury severity) outcomes. Assessing AI prior to the start of a rehabilitation protocol may give both the athlete and treating clinician a road map of what to expect with respect to mindset, behaviours and recovery outcomes. Importantly, readers should consider the floor and ceiling effects of AI with respect to the relationships identified. A somewhat limited variability in mean AIMS scores does not allow for a complete representation of the AI as it relates to injury outcomes. Future studies should aim to capture athletes with a wider range of AIMS scores (ie, AI of varying strengths) as well as non-athletes who have also experienced an injury. Readers should also consider the over-representation of Caucasians, males, able-bodied athletes and MSK injuries identified in this review. Homogeneity in these domains limits the external validity of findings to other racial groups, females and populations with sport-related concussion. Subsequent studies should include para-athletes as no study included in this review considered this population. Importantly, limitations associated with study design and methodology within this body of literature preclude any causal inferences from being made (ie, AI as a cause of the injury outcomes observed).

This review also highlights a large gap in knowledge with respect to the association (if any) that exists between injury (as an exposure) and AI (as an outcome). Studies must adopt prospective longitudinal designs that assess AI prior to and following the occurrence of injury in order to speak to this relationship. Additional consideration should be given to the inclusion of multiple long-term follow-up observations. As per the Wiese-Björnstal et al injury model,\(^\text{50}\) an athlete’s cognitive appraisal of the injury event is a central tenant to the outcomes observed. Despite its importance, few studies directly assessed an athlete’s cognitive appraisal of their injury. Researchers may wish to inform the development of their study protocols while referencing a theoretical model. This will facilitate a more holistic understanding of the outcomes observed.

Acknowledgements The authors would like to thank Mrs Erica Nekolichuk (University of Toronto librarian) for helping construct the search strategy used within this review. The authors would also like to thank Dr Nick Reed, Dr Sakina Rizvi, and Dr John Cairney for their critical review of and feedback on the original scoping review protocol. The authors also wish to thank the peer reviewers for their comments; their feedback has substantially improved the quality of this written work.

Contributors TR was responsible for establishing the research questions, developing and conducting the literature search, performing the title, abstract and article screening process, extracting data from eligible articles, drafting and submitting the manuscript for publication, as well as responding to peer-reviewer feedback and completing the required revisions. BP was responsible for performing the title, abstract and article screening process, extracting data from eligible articles and contributing to results and discussion sections of the manuscript draft. SK was responsible for helping establish the research questions, advising on data extraction elements and editing/revising the manuscript draft prior to submission for publication.

Funding This work was supported by a Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarship Doctoral Award (CGS-D) (fund # 505508).

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included within the article or have been uploaded within supplemental files. All data extracted and summarised within this scoping review were obtained from published peer-reviewed journal articles. Please refer to articles referenced.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Tian Renton http://orcid.org/0000-0002-9772-0551

REFERENCES

1. Guillén F, Laborde S. Higher-Order structure of mental toughness and the analysis of latent mean differences between athletes from 34 disciplines and non-athletes. Pers Individ Dif 2014;60:30–5.
2. Laborde S, Guillén F, Mosley E. Positive personality-trait-like individual differences in athletes from individual- and team sports and in non-athletes. Psychol Sport Exerc 2016;26:9–13.
3. Kipp LE. Psychosocial aspects of youth physical activity. Pediatr Exerc Sci 2017;29:35–8.
4. Slutzky CB, Simpkins SD. The link between children’s sport participation and self-esteem: Exploring the mediating role of sport self-concept. Psychol Sport Exerc 2009;10:381–9.
5. Merkel DL. Youth sport: positive and negative impact on young athletes. Open Access J Sports Med 2013;4:151–60.
6. Varkevisser RDM, van Stralen MM, Kroeze W, et al. Determinants of weight loss maintenance: a systematic review. Obes Rev 2019;20:171–211.
7. Hu MX, Turner D, Geneara E, et al. Exercise interventions for the prevention of depression: a systematic review of meta-analyses. BMC Public Health 2020;20:1255.
8. McDowell CP, Dishman RK, Gordon BR, et al. Physical activity and anxiety: a systematic review and meta-analysis of prospective cohort studies. Am J Prev Med 2019;57:545–56.
9 Singh A, Uijtdewilligen L, Twisk JWR, et al. Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. *Arch Pediatr Adolesc Med* 2012;166:49–55.

10 Loprinzi PD, Frith E, Edwards MK, et al. The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. *Am J Health Promot* 2018;32:691–704.

11 Buono AM, Pilgaard M, Hulme A, et al. Injury prevalence across sports: a descriptive analysis on a representative sample of the Danish population. *Epidemiol* 2018;5:6.

12 Rääsinen AM, Kokko S, Pasanen K, et al. Prevalence of adolescent physical activity-related injuries in sports, leisure time, and school: the National physical activity behaviour study for children and adolescents. *BMC Musculoskelet Disord* 2018;19:58.

13 Friedman L, Fraser-Thomas JL, McQuillan SR, et al. Epidemiology of sports-related injuries in children and youth presenting to Canadian emergency departments from 2007–2010. *BMC Sports Med* 2013;5:30.

14 Centers for Disease Control and Prevention (CDC). Sports-related injuries among high school athletes—United States, 2005–06 school year. MMWR Morb Mortal Wkly Rep 2006;55:1037–40.

15 Steinbrück K. Epidemiology of sports injuries—25-year-analysis of sports orthopedic-traumatologic ambulatory care. *Sportverletz Sportmedizin* 1999;13:38–52.

16 Yang J, Tibbetts AS, Covassin T, et al. Epidemiology of overuse and acute injuries among competitive collegiate athletes. *J Athl Train* 2012;47:198–204.

17 Williams JM, Andersen MB. Psychosocial antecedents of sport injury: Review and daily process analysis of the stress and injury model. *J Appl Sport Psychol* 1998;10:5–25.

18 Wiese-Bjornstal DM. Sport injury and College athlete health across the lifespan. *J Intercollegiate Sport* 2009;2:64–80.

19 Meeuwisse WH. Assessing causation in sport injury: a multifactorial model. *Clin J Sport Med* 1994;4:116–70.

20 Brewer BW, Van Raalte J, Linder DE. Athletic identity: Hercules’ muscles or Achilles heel? *Int J Sport Psychol* 1993;24:237–54.

21 Chen S, Snyder S, Magner M. The effects of sport participation on student-athletes’ and non-athlete students’ social life and identity. *J Athl Train* 2013;48:176–93.

22 Horton R, Mack D. Athletic identity in marathon runners: functional focus on dysfunctional commitment. *J Sport Behav* 2000;23:101–19.

23 Marsh HW, Perry C, Horsley C, et al. Multidimensional Self-concepts of elite athletes: how do they differ from the general population? *J Sport Exerc Psychol* 1995;17:70–83.

24 Petitas. Identity Foreclosure: a unique challenge. *Pers J Guid J* 1978;56:558–61.

25 Porat Y, Lufi D, Tenenbaum G. Psychological components contribute to select young female gymnasts. *Int J Sport Psychol* 1999;20:79–86.

26 Brewer BW. Self-identity and Specific vulnerability to depressed mood. *J Pers* 1993;61:343–64.

27 Brewer BW. Psychology of sport injury rehabilitation. In: Tenenbaum G, Eklund R, eds. Handbook of sport psychology. Hoboken, NJ: Wiley & Sons, 2007: 404–24.

28 Brewer BW. Injury prevention and rehabilitation. In: Brewer BW, ed. *Sport psychology*. Chichester, UK: Wiley-Blackwell, 2009: 83–96.

29 Appaneal R, Perna F. Biopsychosocial model of injury. In: Eklund R, Tenenbaum G, eds. *Encyclopedia of sport and exercise psychology*. United States: SAGE Publications, Inc, 2014: 74–6.

30 Wiese-bjornstal DM, Smith AM, Shaffer SM, et al. An integrated model of response to sport injury: psychological and sociological dynamics. *J Appl Sport Psychol* 1990;4:68–99.

31 Brewer BW. Review and critique of models of psychological adjustment to athletic injury. *J Appl Sport Psychol* 1994;6:87–100.

32 McCrea M, Broshek DK, Barth J. Sports concussion assessment and management: future research directions. *Brain Inj* 2015;29:276–82.

33 Lazarus RS, Folkman S. Stress, appraisal and coping. New York, NY: Springer Publishing Company, Inc, 1984.

34 Eileen U. Coping and social support among injured athletes following surgery. *J Sport Exerc Psychol* 1997;19:71–90.

35 Green SL, Weinberg RS. Relationships among athletic identity, coping skills, social support, and the psychological impact of injury in recreational participants. *J Appl Sport Psychol* 2001;13:40–59.

36 Santi G, Pietrantoni L. Psychology of sport injury rehabilitation: a review of models and interventions. *JHSE* 2013;8:1029–44.

37 Clarivate analytics: endnote (version 7.7.1). Philadelphia, USA. Available: https://endnote.com

38 Innovation VH: Covidence systematic review software. Melbourne, Australia. Available: https://www.covidence.org

39 Munn Z, Peters MDJ, Stern C, et al. Systematic review or scavenging review: Guidance for authors when choosing between a systematic or scoping review approach. *BMJ Med Res Methodol* 2018;18:143–7.

40 Carson JG, Bloom GA, Falcão WR, et al. An examination of concussion education programmes: a scoping review methodology. *Inj Prev* 2015;21:301–8.

41 Petrie TA, Deiters J, Harmison RJ. Mental toughness, social support, and athletic identity: Moderators of the life stress–injury relationship in collegiate football players. *Sport Exerc Perform Psychol* 2014:3–12.

42 Kroshus E, Kubzansky LD, Goldman RE, et al. Norms, athletic identity, and concussion symptom under-reporting among male collegiate ice hockey players: a prospective cohort study. *Ann Behav Med* 2015;49:93–103.

43 McCoy K, Campbell T, Meeuwisse W, et al. The role of psychosocial risk factors for injury in elite youth ice hockey. *Clin J Sport Med* 2013;23:216–21.

44 Madrigal L, Gill DL. Psychological responses of division I female athletes throughout injury recovery: a case study approach. *J Clin Sport Psychol* 2014;8:276–98.

45 Samuel RD, Tenenbaum G, Mangel E, et al. Athletes’ experiences of severe injuries as a career-change event. *J Sport Psychol Action* 2015;6:99–120.

46 Brewer BW, Cornelius AE, Van Raalte JL, et al. Age-Related differences in predictors of adherence to rehabilitation after anterior cruciate ligament reconstruction. *J Athl Train* 2003;38:158–62.

47 Brewer BW, Cornelius AE, Sklar JH, et al. Pain and negative mood during rehabilitation after anterior cruciate ligament reconstruction: a preliminary scale validation and relationships with athletic identity. *Rehabil Psychol* 2017;62:84–72.

48 Brewer BW, Cornelius AE, Stephany Y. Self-protective changes in athletic identity following anterior cruciate ligament reconstruction. *Psychol Sport Exerc* 2010;11:1–5.

49 Padali AS, Nteiwesala WS, Levine WJ, et al. Prevalence of posttraumatic stress disorder symptoms among young athletes after anterior cruciate ligament rupture. *Orthop J Sport Med* 2018;6:9235967118787159.

50 Brewer BW, Cornelius AE, Van Raalte JL, et al. Predictors of adherence to home rehabilitation exercises following anterior cruciate ligament reconstruction. *Rehabil Psychol* 2017;62:208–20.

51 Parana J, Hanahan SJ, Connor JP. The roles of acceptance and catastrophizing in rehabilitation following anterior cruciate ligament reconstruction. *J Sci Med Sport* 2015;18:250–4.

52 Manuel JC, Shit JS, Curi WW, et al. Coping with sports injuries: an examination of the adolescent athlete. *J Adolesc Health* 2002;31:391–3.

53 O’Rourke DJ, Smith RE, Pun J, et al. Psychosocial correlates of young athletes’ self-reported concussion symptoms during the course of injury. *Sports Perform Res* 2017:8:262–76.

54 Hilliard RC, Blom L, Hankemeier D, et al. Exploring the relationship between athletic identity and beliefs about rehabilitation to predict rehabilitation adherence. *J Athl Train* 2015;49:729–37.

55 Weinberg R, Vernau D, Horn T. Playing through pain and injury: psychosocial considerations. *Clin Sport Psychol* 2013;7:41–59.

56 Masten R, Straðar K, Žilavec I. Psychological response of athletes to injury. *Kinesiology* 2014;46:127–34.

57 Brewer BW, Cornelius AE. Norms and factorial invariance of the athletic identity measurement scale. *Academic Athletic Journal* 2001:15:103–13.

58 Bradshaw L. Why do certain countries excel at certain sports? 2017. Available: https://theeculturetrip.com/middle-east/articles/why-do-certain-countries-excel-at-certain-sports/ [Accessed August 2020].

59 O’Rourke DJ, Smith RE, Pun J, et al. Psychosocial correlates of young athletes’ self-reported concussion symptoms during the course of injury. *Sports Perform Res* 2017:8:262–76.

60 Beck A, Rush AJ. Cognitive approaches to depression and suicide. In: Serban G, ed. *Cognitive deficits in the development of mental illness*. New York: Brunner/Mazel, 1978: 235–57.

61 Beck AT. Depression: clinical, experimental and theoretical aspects. New York: Brunner/Mazel, 1978.

62 Beck AT. Depression: clinical, experimental and theoretical aspects. New York: Brunner/Mazel, 1978.

63 Beck AT. Depression: clinical, experimental and theoretical aspects. New York: Brunner/Mazel, 1978.

64 Beck AT. Depression: clinical, experimental and theoretical aspects. New York: Brunner/Mazel, 1978.

65 Abramson L, Seligman ME, Teasdale JD. Learned helplessness in humans: critique and reformation. *J Abnorm Psychol* 1979;87:49–74.
Dance KA, Kuiper NA. Self-schemata, social roles, and a self-worth contingency model of depression. *Motiv Emot* 1987;11:251–68.

Linville PW. Self-complexity as a cognitive buffer against stress-related illness and depression. *J Pers Soc Psychol* 1987;52:663–76.

Beck AT. Depression: causes and treatment. Philadelphia: University of Pennsylvania Press, 1970.

Appaneal RN, Levine BR, Perna FM, et al. Measuring postinjury depression among male and female competitive athletes. *J Sport Exerc Psychol* 2009;31:60–76.

Cox CE, Ross-Stewart L, Foltz BD. Investigating the prevalence and risk factors of depression symptoms among NCAA division I collegiate athletes. *J Sports Sci* 2017;5:14–28.

Mainwaring LM, Hutchison M, Bisschop SM, et al. Emotional response to sport concussion compared to ACL injury. *Brain Inj* 2010;24:589–97.

Smith AM, Scott SG, O’Fallon WM, et al. Emotional responses of athletes to injury. *Mayo Clin Proc* 1990;65:38–50.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. *Int J Soc Res Methodol* 2005;8:19–32.

Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *J Epidemiol Community Health* 1998;52:377–84.

Samuel RD, Tenenbaum G. The role of change in athletes’ careers: A scheme of change for sport psychology practice. *Sport Psychol* 2011;25:233–52.

Cialdini RB, Trost M. Social influence: social norms, conformity and compliance. In: *Gilbert dT, Fiske S, Lindzey G*. New York: McGraw-Hill, 1998.

Andersen MB, Williams JM. A model of stress and athletic injury: prediction and prevention. *Journal of Sport and Exercise Psychology* 1988;10:294–306.

Kubler-Ross E, Macmillan New York: *On death and dying*, 1969.

Abramson LY, Metalsky GI, Alloy LB. Hopelessness depression: a theory-based subtype of depression. *Psychol Rev* 1989;96:358–72.

Abramson LY. Cognitive processes in depression. In: *Alloy lb*. New York: Guilford Press, 1988.

Robins CJ, Block P, vulnerability P. Personal vulnerability, life events, and depressive symptoms: a test of a specific interactional model. *J Pers Soc Psychol* 1988;54:847–52.

Oatley K, Bolton W. A social-cognitive theory of depression in reaction to life events. *Psychol Rev* 1985;92:372–88.