Quantum Reflection of Antihydrogen from Nanoporous Media

G. Dufour,1 R. Guérot,1 A. Lambrecht,1 V.V. Nesvizhevsky,2 S. Reynaud,1 and A.Yu. Voronin3

1Laboratoire Kastler-Brossel, CNRS, ENS, UPMC, Campus Jussieu, F-75252 Paris, France
2Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042, Grenoble, France
3P.N. Lebedev Physical Institute, 53 Leninsky prospect, Ru-117924 Moscow, Russia

We study quantum reflection of antihydrogen atoms from nanoporous media due to the Casimir-Polder (CP) potential. Using a simple effective medium model, we show a dramatic increase of the probability of quantum reflection of antihydrogen atoms if the porosity of the medium increases. We discuss the limiting case of reflections at small energies, which have interesting applications for trapping and guiding antihydrogen using material walls.

PACS numbers: 36.10.Gv, 34.35.+a, 12.20Ds

I. INTRODUCTION

In a previous paper [1] we have shown that antihydrogen atoms have a significant probability of being reflected when they fall on a material surface. This quantum reflection occurs as a consequence of the rapid variation of the Casimir-Polder (CP) interaction on the scale of the atomic de Broglie wavelength [2].

We did emphasize in [1] that quantum reflection increased for weaker CP potentials. The explanation is that quantum reflection takes place closer to the surface for weaker potentials, and that the potential is steeper there, leading to a greater probability of non-adiabatic transition. As the CP interaction is due to the coupling of atoms with surface through electromagnetic vacuum fluctuations, a weaker coupling of the surface to the electromagnetic field leads to increased quantum reflection. This paradoxical result was discussed in [1] in relation to the effect of the dielectric index, as well as that of thickness for matter slabs. Here, we wish to extend this work by focusing on the enhancement of quantum reflection from nanoporous materials.

Increasing the reflection probability of antihydrogen would open the possibility for trapping and guiding antiantimatter with material walls, in particular anti-atoms can be trapped in gravitational quantum states held by gravity from above and quantum reflection from below [15]. Such states are also of interest for the GBAR experiment which is designed to measure the gravitational properties of antimat...
on bulk silicon. However, no reflection was observed on the aerogel. The authors of [10] impute this observation to uncontrolled surface charges. This is a serious issue to be solved in order to use the spectacular enhancement of reflection predicted in the present paper.

The dielectric properties of the material over a broad range of frequencies are needed to compute the CP force. Though a porous medium is by nature inhomogeneous, we will use an effective medium approximation and describe the composite material as an homogeneous medium with an effective permittivity ϵ. We will also make the simplifying assumption of a plane interface, whereas a porous medium is likely to have a rough surface. Such approximations are valid if the wavelengths involved are larger than the scales of inhomogeneity or roughness. Qualitatively, one expects our simplified description to lead to approximately correct results if the atom does not approach the medium closer than these scales. It will therefore be sufficient for a first exploration of the enhancement of quantum reflection by the use of low-density materials. A more complete description will require further work, as it would have to study the CP effect in presence of non specular scattering of electromagnetic field [25] as well as the resulting non specular quantum reflection of antihydrogen.

II. EFFECTIVE MEDIUM MODEL

There are several models available for obtaining the effective permittivity ϵ as a function of the permittivities of the constituent materials. For a host material containing non-overlapping spherical inclusions of another material, application of the Clausius-Mossoti relation yields the Maxwell-Garnett formula [26]:

$$\frac{\epsilon - \epsilon_h}{\epsilon + 2\epsilon_h} = \phi_1 \frac{\epsilon_1 - \epsilon_h}{\epsilon_1 + 2\epsilon_h} \tag{1}$$

where ϵ_h and ϵ_1 are the permittivity of the host and inclusions respectively and ϕ_1 is the volume fraction of inclusions.

Another possibility is the Bruggeman model [27], which requires that the average polarization of spherical inclusions embedded in the effective medium vanish. For a mixture of materials with permittivities ϵ_1 and ϵ_2 and volume fractions ϕ_1 and ϕ_2 ($\phi_1 + \phi_2 = 1$), the effective permittivity ϵ is given by:

$$\phi_1 \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} + \phi_2 \frac{\epsilon_2 - \epsilon}{\epsilon_2 + 2\epsilon} = 0 \tag{2}$$

Landau and Lifshitz have proposed another effective model based on the idea that the cubic root of the permittivity is approximately additive [28]:

$$\epsilon^{1/3} = \phi_1 \epsilon_1^{1/3} + \phi_2 \epsilon_2^{1/3} \tag{3}$$

In the Casimir-related literature, aerogels have been described by Maxwell-Garnett models with air inclusions in a solid matrix [29] or vice-versa [30]. Note that this Maxwell-Garnett model does not treat the host and the inclusions in a symmetrical manner. Here we prefer to use a symmetrical model, like the Landau-Lifshitz and Bruggeman models, since we want to vary the porosity over a wide range of values. As shown in figure 1 the Landau-Lifshitz and Bruggeman models give very similar results and we chose the latter for its simpler interpretation. In the rest of this paper, we denote ϕ the porosity, i.e. the volume fraction of gas or vacuum, and $1 - \phi$ the solid fraction, that is also the density reduction.

![Figure 1](image.png)

FIG. 1. (Color online) Comparison of effective medium models for the effective static permittivity of a silica aerogel as a function of porosity: Bruggeman (blue full line), Landau-Lifshitz (green dashed line), Maxwell-Garnett with silica inclusions (cyan dot-dashed line), Maxwell-Garnett with air inclusions (red dotted line).

The optical response properties used for antihydrogen, silica and silicon are the same as in [1]. Diamond is described by a simple Sellmeier model [31]:

$$\epsilon(i\xi) = B_0 + \frac{B_1}{1 + (\xi/\omega_1)^2} + \frac{B_2}{1 + (\xi/\omega_2)^2}, \tag{4}$$

with the parameters $B_{0,1,2} = 2.30982863, 3.35656148, 3.25669602$ and $\omega_{1,2} = 14.3235, 0.0376730 \times 10^{15}$ rad.s$^{-1}$.

III. CASIMIR-POLDER POTENTIAL

The calculation of the CP potential, presented in [1], is not repeated here. Results are presented with reference to the long-range retarded potential calculated for a perfect mirror $V^*(z) = C_1^* z^2$ with $C_1^* = 2.5 \times 10^{-57}$ Jm$^4 = 73.6$ a.u. Figures 2 and 3 show the CP potential created by aerogels and powders of diamond nanoparticles respectively, for various values of the porosity. The potential curves for porous silicon are similar to those of diamond nanoparticles. Figure 4 compares the potentials of these three materials when the porosity is 0% and 90%.
As explained in [1], quantum reflection occurs in the so-called badlands regions where the adiabatic approximation breaks down. Non-adiabatic transitions are effective when the function
\[Q(z) = \frac{\hbar^2 p''(z)}{2p(z)^3} - 3\hbar^2 p'(z)^2/4p(z)^4 \]
is large. It is expressed here as a function of the classical momentum
\[p = \sqrt{2m(E - V(z))} \]
and is related to the Schwarzian derivative of the WKB phase (see the references in [1]).

The peak of this function gives an indication on the distance where the reflection occurs and on the magnitude of the reflection. The peak is located closer to the surface for a weaker potential, thus corresponding to a steeper variation and a larger \(Q \). This is illustrated in figure 5 for silica aerogels. When porosity is increased, the peak of the badlands function \(Q \) gets closer to the surface while its magnitude grows.

We note that reflection occurs at a distance \(\gtrsim 100 \text{ nm} \) if the velocity of atoms is kept below \(10 \text{ mm.s}^{-1} \), even for the poorest reflective material considered here (silica aerogel with 98% porosity). We therefore expect that our simplified model gives qualitatively correct results as long as the condition on velocity is obeyed. This is the case for the regime of large quantum reflections obtained at low energies.
IV. SCATTERING LENGTH

We use the method described in [1] to calculate the reflection probability of antihydrogen atoms on the medium. In particular we enforce a full absorption boundary condition on the surface to account for the annihilation of those antihydrogen atoms which come to contact with matter. We focus the discussion on the low-energy behavior of atoms which corresponds to large quantum reflection.

The reflection amplitude \(r \) can be written in terms of a complex scattering length \(a \), which is defined as in [1]. For ultra-cold antihydrogen atoms, that is for velocities below 10 mm.s\(^{-1}\), \(a \) is independent of the energy. Its real and imaginary parts are shown in figures 7 and 8 respectively, for varying porosities.

When considering quantum gravitational traps for \(\Pi \) bounded below by the quantum reflection from the CP potential and above by gravity [13, 14], one obtains the lifetime for the quantum bouncer in the first gravitational quantum state:

\[
\tau = \frac{\hbar}{2mg |\text{Im} a(0)|}.
\]

(5)

Figure[9] shows this lifetime for silica aerogel, porous silicon and powder of diamond nanoparticles as the porosity is varied. The y– axis starts at 0.1 s which is the lifetime calculated for a perfect mirror [13]. Reflection is dramatically enhanced, especially for silica aerogels, for which extremely high porosities can be reached. For porous silicon and diamond nanoparticles, the reflection is enhanced by a factor \(\sim 6 \) between 0\% and 95\% porosity whereas for silica aerogel the enhancement factor is more than 20 between 0\% and 98\% porosity, with a lifetime reaching 4.6 s for the latter.

V. CONCLUSION

Using a simple effective medium model, we have shown a dramatic increase of the quantum reflection probability of antihydrogen atoms from nanoporous media. We have given theoretical predictions for reflection on silica aerogels, porous silicon and powders of diamond nanoparticles over a wide range of porosities. These results open exciting perspectives for trapping antihydrogen atoms above material surfaces and investigating its gravitational properties, although more work is needed to quantify the effects of inhomogeneities in the nanoporous medium.
FIG. 9. (Color online) Lifetime τ for antihydrogen in the first gravitational state above a silica aerogel (red dashed line), porous silicon (green dotted line) and a powder of nanodiamonds (cyan full line), as a function of the solid fraction $1 - \phi$ (log-log scale).

[1] G. Dufour, A. Gérardin, R. Guéroult, A. Lambrecht, V. Nesvizhevsky, S. Reynaud, and A. Voronin, Physical Review A, accepted (2012).
[2] M. Berry and K. Mount, Reports on Progress in Physics, 35, 315 (1972).
[3] I. Yu, J. Doyle, J. Sandberg, C. Cesar, D. Kleppner, and T. Greytak, Phys. Rev. Lett., 71, 1589 (1993).
[4] F. Shimizu, Phys. Rev. Lett., 86, 987 (2001).
[5] V. Druzhinina and M. DeKieviet, Phys. Rev. Lett., 91, 193202 (2003).
[6] H. Oberst, Y. Tashiro, K. Shimizu, and F. Shimizu, Phys. Rev., A80, 052904 (2009).
[7] B. S. Zhao, H. C. Schewe, G. Meijer, and W. Schoellkopf, Phys. Rev. Lett., 105, 133203 (2010).
[8] T. Pasquini, Y. Shin, C. Sanmer, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, Phys. Rev. Lett., 93, 223201 (2004).
[9] T. A. Pasquini, M. Saba, G.-B. Jo, Y. Shin, W. Ketterle, D. E. Pritchard, T. A. Savas, and N. Mulders, Phys. Rev. Lett., 97, 093201 (2006).
[10] H. Friedrich, G. Jacoby, and C. Meister, Physical Review A, 65, 032902 (2002).
[11] E. Lychagin, A. Muzychka, G. Nekhaev, G. Pignol, and K. V. Protasov, Nuclear Instruments & Methods A, 595, 631 (2008), ISSN 0168-9002, WOS:000261028600012.
[12] V. Nesvizhevsky, V. V. Nesvizhevsky, M. V. Baidakova, A. Y. Muzychka, A. V. Strelkov, G. Pignol, and K. V. Protasov, Nuclear Instruments & Methods A, 595, 631 (2008), ISSN 0168-9002, WOS:000261028600012.
[13] V. V. Nesvizhevsky, V. V. Nesvizhevsky, and S. Reynaud, Journal of Physics B, 45 (2012) ISSN 0953-4075, doi: 10.1088/0953-4075/45/11/115001.
[14] J. C. Maxwell Garnett, Philos T R Soc A, 203, 385 (1904).
[27] D. A. G. Bruggeman, Annalen der Physik, 416, 636 (1935) ISSN 1521-3889.
[28] L. Landau and E. Lifshitz, Electrodynamics of continuous media, Course of Theoretical Physics (Pergamon Press, 1960).

[29] R. Esquivel-Sirvent, Journal of Applied Physics, 102, 034307 (2007).
[30] G. Bimonte, T. Emig, M. Krüger, and M. Kardar, Physical Review A, 84, 042503 (2011).
[31] G. Ghosh, Handbook of thermo-optic coefficients of optical materials with applications (Academic Press, San Diego, Etats-Unis, 1998) ISBN 0-12-281855-5.