Left translates of a square integrable function on the Heisenberg group

R. Radha · Saswata Adhikari

Abstract
The aim of this paper is to study some properties of left translates of a square integrable function on the Heisenberg group. First, a necessary and sufficient condition for the existence of the canonical dual to a function \(\varphi \in L^2(\mathbb{R}^{2n}) \) is obtained in the case of twisted shift-invariant spaces. Further, characterizations of \(\ell^2 \)-linear independence and the Hilbertian property of the twisted translates of a function \(\varphi \in L^2(\mathbb{R}^{2n}) \) are obtained. Later these results are shown in the case of the Heisenberg group.

Keywords
Besselian · Frames · Twisted translation · Heisenberg group · Hilbertian

Mathematics Subject Classification Primary 42C15; Secondary 43A30 · 42B10

1 Introduction
A closed subspace \(V \subset L^2(\mathbb{R}) \) is called shift-invariant if \(f \in V \implies \tau_k f \in V \) for any \(k \in \mathbb{Z} \), where \(\tau_k f(x) = f(x - k) \) for \(f \in L^2(\mathbb{R}) \). Characterizations of shift-invariant spaces in terms of range functions were studied on \(\mathbb{R}^n \) by Bownik in [3]. These type of characterizations were studied for locally compact abelian groups in [4,10] and for non-abelian compact groups in [14]. Recently in [9], J. Iverson classified invariant subspaces of \(\mathcal{H}_\rho \) in terms of range functions and investigated frames of the form \(\{\rho(\xi) f_i\}_{\xi \in K, i \in I} \), where \(\rho \) is a representation of a non-abelian compact group \(K \) on a Hilbert space \(\mathcal{H}_\rho \), using an operator valued version of Zak transform. In [1], the authors introduced bracket map on the polarized Heisenberg group \(\mathbb{H}_{\rho}^{pol} \) using the group Fourier transform and obtained characterizations of orthonormal system, frames and Riesz basis consisting of left translates of \(\varphi \in L^2(\mathbb{H}_{\rho}^{pol}) \) in terms of the bracket map. In [6], Currey et al generalized some results of [3] to shift-invariant spaces associated with a class of nilpotent Lie groups. The concept of the bracket map has been generalized in [2] to include any non-abelian discrete group \(\Gamma \) using its unitary
representations and L^1 space over the non-commutative measurable space vNa(Γ), which is the compact dual of Γ whose underlying space is a group von Neumann algebra. Using this bracket map, characterizations of orthonormal basis, Riesz basis, frames were obtained for shift-invariant spaces in a Hilbert space \mathcal{H} given by the action of a non-abelian countable discrete group Γ. In [15], Luef provided a connection between the construction of projections in non-commutative tori and the construction of tight Gabor frames for $L^2(\mathbb{R})$. Recently, the authors obtained characterizations of orthonormal system, Bessel sequence, frame and Riesz basis of twisted shift-invariant spaces in terms of the kernel of the Weyl transform in [12]. Similar characterizations are obtained in the shift-invariant spaces associated with a countably many mutually orthogonal generators on the Heisenberg group in [13].

Hernandez et al have provided a necessary and sufficient condition for the existence of the canonical dual to a function $\varphi \in L^2(\mathbb{R})$ in [8]. Further, characterizations of ℓ^2-linear independence and the Hilbertian property of $\{\tau_k \varphi : k \in \mathbb{Z}\}$ were obtained in terms of the Fourier transform. The aim of this paper is to obtain similar type of results on the Heisenberg group in terms of the group Fourier transform. In order to obtain our results on the Heisenberg group, we first prove all these results in twisted shift-invariant spaces on \mathbb{R}^n. Since $L^1(\mathbb{H}^n)$ is a non-commutative group under convolution and $L^1(\mathbb{C}^n)$ is a non-commutative group under twisted convolution, in order to obtain analogous results, as in the Euclidean case (as per [8]), we make use of a condition called “condition C”. This condition roughly means that a non-trivial, non-central translate of $\varphi \in L^2(\mathbb{H}^n)$ yields a periodizing (operator valued) sequence on the Fourier transform side that is orthogonal to that of φ. As mentioned earlier, we first prove the results in the case of a twisted shift-invariant space on \mathbb{R}^n and then extend to a shift-invariant space on \mathbb{H}^n.

The Heisenberg group \mathbb{H}^n is a nilpotent Lie group whose underlying manifold is $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, where the group operation is defined by $(x, y, t)(x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(x' - y' - y - x'))$ and the Haar measure is the Lebesgue measure $dxdydt$ on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$. Now it is clear that $\{(2k, l, m) : k, l \in \mathbb{Z}, m \in \mathbb{Z}\}$ is a discrete subgroup of \mathbb{H}^n. By Stone-von Neumann theorem, every infinite dimensional irreducible unitary representation on the Heisenberg group is unitarily equivalent to the representation $\pi_\lambda, \lambda \in \mathbb{R}^*$, where π_λ is defined by

$$\pi_\lambda(x, y, t)\varphi(\xi) = e^{2\pi i \lambda t} e^{2\pi i \lambda (x, y, t)} \varphi(\xi + y),$$

where $\varphi \in L^2(\mathbb{R}^n)$. In order to study shift-invariant spaces on \mathbb{H}^n, we need to make use of the representation theory of \mathbb{H}^n. The group Fourier transform on \mathbb{H}^n is defined to be

$$\hat{f}(\lambda) = \int_{\mathbb{H}^n} f(x, y, t)\pi_\lambda(x, y, t)dxdydt$$

for $f \in L^1(\mathbb{H}^n)$. More explicitly, $\hat{f}(\lambda)$ is the bounded operator acting on $L^2(\mathbb{R}^n)$ (i.e., $\hat{f}(\lambda) \in \mathcal{B}(L^2(\mathbb{R}^n))$) given by $\hat{f}(\lambda)\varphi = \int_{\mathbb{H}^n} f(x, y, t)\pi_\lambda(x, y, t)\varphi dxdydt$, where the integral is a Bochner integral taking values in the Hilbert space $L^2(\mathbb{R}^n)$. Further,

$$\|\hat{f}(\lambda)\|_\mathcal{B} \leq \|f\|_{L^1(\mathbb{H}^n)}.$$
Define $f^\lambda(x, y) = \int_{\mathbb{R}^2} f(x, y, t) e^{2\pi ixt} dt$ to be the inverse Fourier transform of f in the t-variable. Thus $\hat{f}(\lambda) = \int_{\mathbb{R}^{2n}} f^\lambda(x, y) \pi_\lambda(x, y, 0) dx dy$. One can write $\hat{f}(\lambda) = W_\lambda(f^\lambda)$, where $W_\lambda(f)$ is given by

$$W_\lambda(f) = \int_{\mathbb{R}^{2n}} f(x, y) \pi_\lambda(x, y, 0) dx dy,$$

for $f \in L^1(\mathbb{R}^{2n})$.

In many problems on \mathbb{H}^n, an important technique is to take the partial Fourier transform in the t-variable to reduce the study to the case of \mathbb{R}^{2n}. In particular, for $f, g \in L^1(\mathbb{H}^n)$, the convolution of f and g on \mathbb{H}^n is defined to be

$$(f \ast g)(z, t) = \int_{\mathbb{H}^n} f((z, t)(w, s)^{-1}) g(w, s) dw ds.$$

This group convolution on \mathbb{H}^n can be reduced to \mathbb{R}^{2n} as a non-standard convolution, known as twisted convolution. For $f, g \in L^1(\mathbb{R}^{2n})$, the twisted convolution of f and g is defined to be

$$(f \times g)(z) = \int_{\mathbb{R}^{2n}} f(z - w) g(w) e^{2\pi i m(z, w)} dw.$$

If we define $f^\#(z, t) = e^{-2\pi it} f(z)$, then one can show that $f^\# \ast g^\# = (f \times g)^\#$. Further, for $f, g \in L^1(\mathbb{H}^n)$, one has $\hat{f} \ast \hat{g}(\lambda) = \hat{f}(\lambda) \hat{g}(\lambda)$, $\lambda \in \mathbb{R}^*$, as in the case of Euclidean Fourier transform. This leads to $W(f \times g) = W(f)W(g)$, where

$$W(f) = \int_{\mathbb{R}^{2n}} f(x, y) \pi(x, y) dx dy,$$

called the Weyl transform of $f \in L^1(\mathbb{R}^{2n})$, by taking $\lambda = 1$ in $W_\lambda(f)$ and by writing $\pi(x, y) = \pi_1(x, y, 0)$.

Thus in order to study shift-invariant spaces on \mathbb{H}^n, we consider the twisted shift-invariant spaces on \mathbb{R}^{2n}. Let \mathcal{L} be a discrete subgroup of the Heisenberg group \mathbb{H}^n such that $\mathbb{H}^n / \mathcal{L}$ is compact. In other words, \mathcal{L} is a lattice in \mathbb{H}^n. For $\varphi \in L^2(\mathbb{H}^n)$, the principal shift-invariant space, $V(\varphi)$, is defined to be $\text{span}\{L_l \varphi : l \in \mathcal{L}\}$, where $L_l \varphi(X) = \varphi(l^{-1}.X)$, $X \in \mathbb{H}^n$. However, for the sake of computational convenience the standard lattice $\{(2k, l, m) : k, l \in \mathbb{Z}, m \in \mathbb{Z}\}$ is taken in place of \mathcal{L}. Hence for $\varphi \in L^2(\mathbb{H}^n)$, $V(\varphi)$ is taken to be the closed linear span of the collection $\{L_{(2k, l, m)} \varphi : k, l \in \mathbb{Z}, m \in \mathbb{Z}\}$. In order to study the left translations on the Heisenberg group, we consider the twisted translations on \mathbb{R}^{2n}. For $\varphi \in L^2(\mathbb{R}^{2n}), (k, l) \in \mathbb{Z}^{2n}$, we define the twisted translation of φ, denoted by $T_{(k,l)}^I \varphi$, as

$$T_{(k,l)}^I \varphi(x, y) = e^{2\pi i(x.y)k} \varphi(x - k, y - l), \quad (x, y) \in \mathbb{R}^{2n}.$$

Using this definition, the twisted shift-invariant space of φ, denoted by $V^I(\varphi)$, is defined to be the closed linear span of $\{T_{(k,l)}^I \varphi : (k, l) \in \mathbb{Z}^{2n}\}$ in $L^2(\mathbb{H}^n)$.

We shall now mention a few more properties of Weyl transform and group Fourier transform on \mathbb{H}^n, which will be used in the sequel. The Weyl transform of a function $f \in L^1(\mathbb{R}^{2n})$ can be explicitly written as
\[W(f)\varphi(\xi) = \int_{\mathbb{R}^{2n}} f(x, y)e^{2\pi i(x, \xi + \frac{1}{2}x, y)}\varphi(\xi + y)dx\,dy, \quad \varphi \in L^2(\mathbb{R}^n), \; z = x + iy, \]

which maps \(L^1(\mathbb{R}^{2n}) \) into the space of bounded operators on \(L^2(\mathbb{R}^n) \), denoted by \(B(L^2(\mathbb{R}^n)) \). The Weyl transform \(W(f) \) is an integral operator with kernel \(K_f(\xi, \eta) \) given by

\[\int_{\mathbb{R}^n} f(x, \eta - \xi)e^{i\pi x \cdot (\xi + \eta)}dx. \]

This map \(W \) can be uniquely extended to a bijection from the class of tempered distributions \(S'(\mathbb{R}^{2n}) \) onto the space of continuous linear maps from \(S(\mathbb{R}^n) \) into \(S'(\mathbb{R}^n) \). If \(f \in L^2(\mathbb{R}^{2n}) \), then \(W(f) \in B_2(L^2(\mathbb{R}^n)) \), the space of Hilbert-Schmidt operators on \(\mathbb{R}^n \). For \(f, g \in L^2(\mathbb{R}^{2n}) \), we have

\[\langle W(f), W(g) \rangle_{B_2} = \langle f, g \rangle_{L^2(\mathbb{R}^{2n})} = \langle Kf, Kg \rangle_{L^2(\mathbb{R}^{2n})}. \quad (1.1) \]

The group Fourier transform is an isometric isomorphism of \(L^2(\mathbb{H}^n) \) onto \(L^2(\mathbb{R}^*, B_2; d\mu) \), where \(d\mu(\lambda) = |\lambda|^n\,d\lambda \). For \(f, g \in L^2(\mathbb{H}^n) \), we have

\[(f, g) = \int_{\mathbb{R}} \langle \hat{f}(\lambda), \hat{g}(\lambda) \rangle_{B_2} |\lambda|^n\,d\lambda = \int_{\mathbb{R}} \langle W_\lambda(f^\lambda), W_\lambda(g^\lambda) \rangle_{B_2} |\lambda|^n\,d\lambda. \quad (1.2) \]

We refer to Thangavelu [17] for further details on \(\mathbb{H}^n \).

The paper is organized as follows. In Sect. 2, we provide required definitions and statement of some results which are available in the literature. In Sect. 3, we study the canonical dual to a function in twisted shift-invariant spaces on \(\mathbb{R}^{2n} \). In Sect. 4, we obtain characterization for the twisted translates in \(L^2(\mathbb{R}^{2n}) \) to be \(\ell^2 \)-linearly independent. In Sect. 5, we provide characterization for the twisted translates to be Hilbertian. In this case, we show that there exists \(\tilde{\phi} \in L^2(\mathbb{R}^{2n}) \) such that \(\{ T_{(k,l)}^i \tilde{\phi} : (k, l) \in \mathbb{Z}^{2n} \} \) is Besselian. In Sect. 6, we obtain these results on the Heisenberg group.

2 Preliminaries

Let \(\mathcal{H} \) be a separable Hilbert space.

Definition 2.1 A sequence \(\{ f_k : k \in \mathbb{Z} \} \) in \(\mathcal{H} \) is called a Bessel sequence for \(\mathcal{H} \) if there exists a constant \(B > 0 \) such that

\[\sum_{k \in \mathbb{Z}} |\langle f, f_k \rangle|^2 \leq B \| f \|^2, \quad \forall f \in \mathcal{H}. \]

Definition 2.2 A sequence \(\{ f_k : k \in \mathbb{Z} \} \) in \(\mathcal{H} \) is called a frame for \(\mathcal{H} \) if there exist two constants \(A, B > 0 \) such that

\[A \| f \|^2 \leq \sum_{k \in \mathbb{Z}} |\langle f, f_k \rangle|^2 \leq B \| f \|^2, \quad \forall f \in \mathcal{H}. \]

Definition 2.3 A sequence \(\{ f_k : k \in \mathbb{Z} \} \) in \(\mathcal{H} \) is said to be \(\ell^2 \)-linearly dependent if there exists a non-zero sequence \(\{ c_k \} \in \ell^2(\mathbb{Z}) \) such that \(\sum_{k \in \mathbb{Z}} c_k f_k = 0 \). If the sequence \(\{ c_k \} \) is not \(\ell^2 \)-linearly dependent, then it is said to be \(\ell^2 \)-linearly independent.
Since the series of the form \(\sum_{k \in \mathbb{Z}} c_k f_k \) does not always converge unconditionally, one must give an ordering to \(\{ f_k \}_{k \in \mathbb{Z}} \) in order to talk about its convergence. We take the ordering for the integers as \(\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\} \), as is usually done while dealing with the Fourier series.

For a study of of frames we refer to [5] and [7].

We shall make use of the following definitions and results which were given in [12].

Lemma 2.1 Let \(\varphi \in L^2(\mathbb{R}^{2n}) \). Then the kernel of the Weyl transform of \(T_{(k,l)}^t \varphi \) satisfies the following relation.

\[
K_{T_{(k,l)}^t \varphi}(\xi, \eta) = e^{\pi i (2\xi + l)_2 k} K_\varphi(\xi + l, \eta).
\] (2.1)

Definition 2.4 For \(\varphi \in L^2(\mathbb{R}^{2n}) \), the function \(w_\varphi \) is defined as follows.

\[
w_\varphi(\xi) = \sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} |K_\varphi(\xi + m, \eta)|^2 d\eta, \quad \xi \in \mathbb{R}^n.
\]

Definition 2.5 A function \(\varphi \in L^2(\mathbb{R}^{2n}) \) is said to satisfy “condition C” if

\[
\sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} K_\varphi(\xi + m, \eta) \overline{K_\varphi(\xi + m + l, \eta)} d\eta = 0 \quad a.e. \ \xi \in \mathbb{T}^n, \ \text{forall} \ \ l \in \mathbb{Z}^n \setminus \{0\}.
\]

Theorem 2.1 [12] If \(\{ T_{(k,l)}^t \varphi : (k, l) \in \mathbb{Z}^2 \} \) is a Bessel sequence in \(L^2(\mathbb{R}^{2n}) \) with bound \(B \), then \(w_\varphi(\xi) \leq B \) a.e. \(\xi \in \mathbb{T}^n \). Conversely, suppose \(w_\varphi(\xi) \leq B \) a.e. \(\xi \in \mathbb{T}^n \). If, in addition \(\varphi \) satisfies condition C, then \(\{ T_{(k,l)}^t \varphi : (k, l) \in \mathbb{Z}^2 \} \) is a Bessel sequence in \(L^2(\mathbb{R}^{2n}) \) with bound \(B \).

Let \(\varphi \in L^2(\mathbb{R}^{2n}) \) be such that \(\varphi \) satisfies condition C. Suppose \(A^t(\varphi) = \text{span}(T_{(k,l)}^t \varphi : (k, l) \in \mathbb{Z}^2) \) and \(V^t(\varphi) = \overline{A^t(\varphi)} \). Consider \(f \in A^t(\varphi) \) i.e., \(f = \sum_{(k', l') \in \mathcal{F}} c_{k', l'} T_{(k', l')}^t \varphi \), where \(\mathcal{F} \) is a finite set. Define \(\rho(\xi) = \{ \rho_{l'}(\xi) \}_{l' \in \mathbb{Z}^n} \) for \(\xi \in \mathbb{T}^n \), where \(\rho_{l'}(\xi) = \sum_{k'} c_{k', l'} e^{\pi i (2\xi + l')_2 k'} \). Define \(J_\varphi(f) = \rho \). In particular, taking \(f = T_{(k,l)}^t \varphi \), one has

\[
J_\varphi(T_{(k,l)}^t \varphi)(\xi) = (\ldots, 0, \ldots, 0, e^{\pi i k e^{2\pi i k_2 \xi}}, 0, \ldots, 0, \ldots)
\] (2.2)

with \(e^{\pi i k e^{2\pi i k_2 \xi}} \) in the \(l \)th position a.e. \(\xi \in \mathbb{T}^n \).

Proposition 2.1 [12] The map \(J_\varphi \) initially defined on \(A^t(\varphi) \) can be extended to an isometric isomorphism between \(V^t(\varphi) \) and \(L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w_\varphi) \).

Moreover, it was proved that \(f \in V^t(\varphi) \) if and only if

\[
K_f(\xi, \eta) = \sum_{l' \in \mathbb{Z}^n} \rho_{l'}(\xi) K_\varphi(\xi + l', \eta),
\] (2.3)

where \(\rho(\xi) = \{ \rho_{l'}(\xi) \}_{l' \in \mathbb{Z}^n} \) and \(\rho \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w_\varphi) \).

The following equation (2.4) appears in the proof of Theorem 3.5 in [12].
Lemma 2.2 Let \(\{c_{k,l} : (k, l) \in \mathbb{Z}^{2n}\} \) be a finite sequence and \(\varphi \in L^2(\mathbb{R}^{2n}) \) be such that \(\varphi \) satisfies condition C. Then

\[
\left\| \sum_{(k,l) \in \mathcal{F}} c_{k,l} T^l_{(k,l)} \varphi \right\|^2_{L^2(\mathbb{R}^{2n})} = \sum_l \left(\sum_k c_{k,l} e^{\pi i l k} e^{2\pi i k \lambda} \right)^2 \mathcal{F}(\xi) d\xi, \tag{2.4}
\]

where \(\mathcal{F} \) denotes a finite set.

Now, we shall give some definitions and results which are also given in [13].

Definition 2.6 For \(\varphi \in L^2(\mathbb{H}^n) \) and \((k, l) \in \mathbb{Z}^{2n} \), the function \(G_{k,l}^\varphi \) is defined as follows.

\[
G_{k,l}^\varphi(\lambda) = \sum_{r \in \mathbb{Z}^n} \langle \varphi(\lambda + r), L_{(2k,l,0)}^{\varphi(\lambda + r)} \rangle_{\mathcal{B}_2} |\lambda + r|^n, \quad \lambda \in (0, 1]. \tag{2.5}
\]

In fact, originally in [13], the function \(G_{k,l}^\varphi \) was defined in terms of the kernel of \(W_{_{\lambda}} \). Later it was shown that \(G_{k,l}^\varphi \) turns out to be (2.5).

Definition 2.7 A function \(\varphi \in L^2(\mathbb{H}^n) \) is said to satisfy “condition C” if \(G_{k,l}^\varphi(\lambda) = 0 \) a.e. \(\lambda \in (0, 1), \forall (k, l) \in \mathbb{Z}^{2n} \setminus \{(0, 0)\} \).

Remark 2.1 In order to show that a function \(\varphi \in L^2(\mathbb{H}^n) \) satisfies condition C, it is enough to show that all the Fourier coefficients of \(G_{k,l}^\varphi \) vanish when \((k, l) \in \mathbb{Z}^{2n} \setminus \{(0, 0)\} \). But

\[
\widehat{G}_{k,l}^\varphi(m) = \int_0^1 G_{k,l}^\varphi(\lambda) e^{-2\pi im\lambda} d\lambda
\]

\[
= \int_0^1 \sum_{r \in \mathbb{Z}^n} \langle \varphi(\lambda + r), L_{(2k,l,0)}^{\varphi(\lambda + r)} \rangle_{\mathcal{B}_2} |\lambda + r|^n e^{-2\pi im(\lambda + r)} d\lambda
\]

\[
= \int_{\mathbb{R}} \langle \varphi(\lambda), L_{(2k,l,0)}^{\varphi(\lambda)} \rangle_{\mathcal{B}_2} |\lambda|^n e^{-2\pi im\lambda} d\lambda
\]

\[
= \langle \varphi, L_{(2k,l,0)}^{\varphi} \rangle_{L^2(\mathbb{H}^n)}^{\mathcal{B}_2} \tag{2.6}
\]

using (1.2) and the fact that \(L_{(2k,l,0)}^{\varphi(\lambda)} \varphi(\lambda) = e^{2\pi im\lambda} L_{(2k,l,0)}^{\varphi(\lambda)} \varphi(\lambda) \). Thus it is enough to show that \(\langle \varphi, L_{(2k,l,m)}^{\varphi} \rangle = 0, \forall m \in \mathbb{Z} \), whenever \((k, l) \neq (0, 0) \).

Example 2.1 We shall first provide some examples of functions in \(L^2(\mathbb{H}) \) which satisfy condition C.

1. Let \(\varphi(x, y, t) = \chi_{[0, 2]}(x) \chi_{[0, 1]}(y) h(t), \) where \(h \) is an arbitrary function in \(L^2(\mathbb{R}) \). Then

\[
L_{(2k,l,m)}^{\varphi}(x, y, t) = \varphi(x - 2k, y - l, t - m + \frac{1}{2}(2ky - xl))
\]

\[
= \chi_{[0, 2]}(x - 2k) \chi_{[0, 1]}(y - l) h(t - m + ky - \frac{l}{2} x)
\]

\[
= \chi_{[2k, 2k+2]}(x) \chi_{[l, l+1]}(y) h(t - m + ky - \frac{l}{2} x).
\]
Left translates of a square integrable function on the Heisenberg group

Since for \((k, l) \neq (0, 0), [0, 2] \times [0, 1] \cap [2k, 2k + 2] \times [l, l + 1] = \emptyset\), it follows that
\[
\langle \varphi, L_{(2k, l, m)} \varphi \rangle = 0, \quad \forall m \in \mathbb{Z}.
\]
Then from (2.6), we get \(G_k^\varphi(\lambda) = 0, \quad \forall m \in \mathbb{Z}\) whenever \((k, l) \neq (0, 0)\). Thus \(\varphi\) satisfies condition C.

In [13], we have proved the theorem that \(L_{(2k, l, m)} \varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\) is an orthonormal system in \(L^2(\mathbb{H}^{2n})\) if and only if \(G_k^\varphi(\lambda) = 1\) a.e. \(\lambda \in (0, 1)\) and \(\varphi\) satisfies condition C. Thus it is meaningful to give an example of a function \(\varphi\) which satisfies condition C but \(L_{(2k, l, m)} \varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\) is not an orthonormal system. This is illustrated in Example 2 and Example 3.

2. We take \(h(t) = e^{-t^2}, t \in \mathbb{R}\), in Example 1. For this function \(h\), the corresponding \(\varphi\) satisfies \(\langle \varphi, L_{(0, 0, 1)} \varphi \rangle \neq 0\). In fact,
\[
\langle \varphi, L_{(0, 0, 1)} \varphi \rangle = \int_{\mathbb{H}} \varphi(x, y, t)\overline{\varphi(x, y, t - 1)} dx dy dt
\]
\[
= \int_{\mathbb{H}} \chi_{[0, 1]}(x)\chi_{[0, 1]}(y)h(t)\chi_{[0, 1]}(x)\chi_{[0, 1]}(y)h(t - 1) dx dy dt
\]
\[
= 2 \int_{\mathbb{R}} h(t)h(t - 1) dt
\]
\[
= 2 \int_{\mathbb{R}} e^{-t^2} e^{-(t-1)^2} dt > 0.
\]

Thus \(L_{(2k, l, m)} \varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\) does not form an orthonormal system in \(L^2(\mathbb{H})\).

3. Instead of \(e^{-t^2}\), one can take \(e^{-|t|}\) or in general any \(h \in L^2(\mathbb{R})\) for which \(\int_{\mathbb{R}} h(t)h(t - 1) dt \neq 0\).

4. Let \(\varphi(x, y, t) = f(x)g(y)h(t)\), where \(\text{supp } f \cap \text{supp } \tau_{2k} f = \emptyset, \forall k \neq 0\) and \(\text{supp } g \cap \text{supp } \tau_{2k} g = \emptyset, \forall l \neq 0, h \in L^2(\mathbb{R})\). Then the same proof discussed in Example 1 can be used to show that \(\varphi\) satisfies condition C. Again as an example, we can take
\[
f(x) = \begin{cases}
eq \frac{1}{\sqrt{\pi(x^2)}} & 0 < x < 2, \\
0 & \text{otherwise},
\end{cases}
\]
and
\[
g(x) = \begin{cases} e^{-\frac{1}{\sqrt{\pi(x^2)}}} & 0 < x < 1, \\
0 & \text{otherwise},
\end{cases}
\]
and \(h(t) = e^{-t^2}, t \in \mathbb{R}\).

Now we shall provide examples of functions in \(L^2(\mathbb{H})\), which do not satisfy condition C.

5. Let \(\varphi(x, y, t) = \chi_{[0, 3]}(x)\chi_{[0, 1]}(y)h(t)\), where \(h\) is an arbitrary function in \(L^2(\mathbb{R})\). Then
\[
L_{(2, 0, 0)} \varphi(x, y, t) = \varphi(x - 2, y, t + y) = \chi_{[2, 5]}(x)\chi_{[0, 1]}(y)h(t + y).
\]
Consider

\[\langle \varphi, L_{(2,0,0)} \varphi \rangle = \int_{\mathbb{R}^3} \varphi(x, y, t) \overline{L_{(2,0,0)} \varphi(x, y, t)} dx dy dt \]

\[= \int_{\mathbb{R}} \chi_{[0,3]}(x) \chi_{[2,5]}(x) dx \int_{\mathbb{R}} \chi_{[0,1]}(y) \left(\int_{\mathbb{R}} h(t) \overline{h(t+y)} dt \right) dy \]

\[= \frac{3}{2} \int_{\mathbb{R}} dx \int_{0}^{1} h(t) \overline{h(t+y)} dt dy \]

\[= \int_{0}^{1} h(t) \overline{h(t+y)} dt dy. \]

Choose \(h \) in such a way that the above integral is non-zero. For example, we can take \(h(t) = \sin t, \ t \in \mathbb{R}. \) Then

\[\langle \varphi, L_{(2,0,0)} \varphi \rangle = \int_{\mathbb{R}} \sin t \sin(t+y) dt dy \]

\[= \int_{\mathbb{R}} \int_{0}^{1} \chi_{[-\frac{1}{2}, \frac{1}{2}]}(\xi) e^{-2\pi i y \xi} \chi_{[-\frac{1}{2}, \frac{1}{2}]}(\xi) d\xi dy \]

\[= \int_{0}^{\frac{1}{2}} e^{-2\pi i y \xi} d\xi dy = \int_{0}^{\frac{1}{2}} \frac{\sin \pi y}{\pi y} dy > 0. \]

Thus from (2.6), we have \(\hat{G}_{(2,0,0)}(0) \neq 0, \) showing that \(\varphi \) does not satisfy condition C.

6. More generally, let \(\varphi(x, y, t) = f(x)g(y)h(t) \), where the value of both the integrals \(\int_{\mathbb{R}} f(x) f(x-2) dx \) and \(\int_{\mathbb{R}} \int_{\mathbb{R}} |g(y)|^2 h(t) \overline{h(t+y)} dt dy \) are non-zero. Then

\[\langle \varphi, L_{(2,0,0)} \varphi \rangle = \int_{\mathbb{R}^3} \varphi(x, y, t) \overline{L_{(2,0,0)} \varphi(x, y, t)} dx dy dt \]

\[= \int_{\mathbb{R}} f(x) f(x-2) dx \int_{\mathbb{R}} |g(y)|^2 \left(\int_{\mathbb{R}} h(t) \overline{h(t+y)} dt \right) dy \neq 0. \]

Thus \(\varphi \) does not satisfy condition C. For example, we can take \(f(x) = e^{-|x|}, \ x \in \mathbb{R}, \ h(t) = \sin t, \ t \in \mathbb{R} \) and

\[g(y) = \begin{cases} \frac{1}{2n+1}, & y \in [2n, 2n + 1], \quad n = 0, 1, 2, \ldots, \\ 0, & \text{otherwise}. \end{cases} \]
In fact, proceeding similarly as in Example 5, we have
\[
\int_{\mathbb{R}} \left(|g(y)|^2 \int_{\mathbb{R}} h(t) h(t+y) dt \right) dy = \int_{\mathbb{R}} |g(y)|^2 \frac{\sin \pi y}{\pi y} dy = \sum_{n=0}^{\infty} \int_{2n}^{2n+1} \frac{\sin \pi y}{\pi y} dy
\]
\[
= \sum_{n=0}^{\infty} \int_{2n}^{2n+1} \frac{1}{(n+1)^2} \frac{\sin \pi y}{\pi y} dy
\]
\[
\leq \int_{0}^{\infty} \frac{\sin \pi y}{\pi y} dy + \frac{1}{\pi} \sum_{n=1}^{\infty} \int_{2n}^{2n+1} \frac{1}{(n+1)^2} dy
\]
\[
\leq \int_{0}^{\infty} \frac{\sin \pi y}{\pi y} dy + \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n^3} < \infty.
\]
and
\[
\int_{\mathbb{R}} f(x) \bar{f}(x-2) dx = \int_{\mathbb{R}} e^{-|x|} e^{-|x-2|} dx < \infty.
\]

Since the integrand in both the integrals is non-negative, $⟨\varphi, L_{(2,0,0)} ϕ⟩ > 0$.

Remark 2.2 Let $m = 0$ in (2.6). Then we have
\[
\int_{0}^{1} G_{k,l}^{\varphi} (λ) dλ = ⟨\varphi, L_{(2k,l,0)} ϕ⟩ < \infty,
\]
which shows that the function $G_{k,l}^{\varphi}(λ)$, defined in (2.5), is finite a.e. $λ \in (0, 1]$.

The following theorem is a consequence of Theorem 4.1 in [13]. For its proof, we refer to [13].

Theorem 2.2 If $\{L_{(2k,l,m)} \varphi : (k,l,m) \in \mathbb{Z}^{2n+1}\}$ is a Bessel sequence in $L^2(\mathbb{H}^n)$ with bound B, then $G_{0,0}^{\varphi} (λ) \leq B$ a.e. $λ \in (0, 1]$. Conversely, suppose $G_{0,0}^{\varphi} (λ) \leq B$ a.e. $λ \in (0, 1]$. If, in addition $ϕ$ satisfies condition C, then $\{L_{(2k,l,m)} ϕ : (k,l,m) \in \mathbb{Z}^{2n+1}\}$ is a Bessel sequence in $L^2(\mathbb{H}^n)$ with bound B.

Let $ϕ \in L^2(\mathbb{H}^n)$ be such that $ϕ$ satisfies condition C. Suppose $A(ϕ) = \text{span} \{L_{(2k,l,m)} ϕ : (k,l,m) \in \mathbb{Z}^{2n+1}\}$. Then $V(ϕ) = \overline{A(ϕ)}$. Let $f \in A(ϕ)$ i.e., $f = \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} ϕ$, where \mathcal{F} is a finite set. Define $ρ(λ) = \{ρ_{k',l'}(λ)\}_{(k',l') \in \mathcal{F}}$ for $λ \in (0, 1]$, where
\[
ρ_{k',l'}(λ) = \sum_{m' \in \mathcal{F}} c_{k',l',m'} e^{2\pi i m'λ}.
\]
(2.7)

Define $J_ϕ(f) = ρ$.

Proposition 2.2 Let $ϕ \in L^2(\mathbb{H}^n)$ be such that $ϕ$ satisfies condition C. Then the map $J_ϕ$ initially defined on $A(ϕ)$ can be extended to an isometric isomorphism between $V(ϕ)$ and $L^2((0, 1], ϵ^2(\mathbb{Z}^{2n}), G_{0,0}^{ϕ})$.
(The above result has been proved for a more general case in [13]. However, for the sake
of completeness, we provide the proof here.)

Proof Let \(f \in A(\varphi) \). Then

\[
\widehat{f}(\lambda) = \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} \varphi(\lambda)
\]

\[
= \sum_{k',l',m'} c_{k',l',m'} e^{2\pi im'\lambda} L_{(2k',l',0)} \varphi(\lambda)
\]

\[
= \sum_{k',l'} \rho_{k',l'}(\lambda) L_{(2k',l',0)} \varphi(\lambda),
\]

(2.8)

using (2.7) and \(\rho(\lambda) = \{\rho_{k',l'}(\lambda)\}_{(k',l') \in \mathcal{F}} \).

Conversely let \(\rho(\lambda) = \{\rho_{k',l'}(\lambda)\}_{(k',l') \in \mathcal{F}} \) where \(\rho_{k',l'}(\lambda) \) is given by (2.7). Define \(f = \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} \varphi \). Then \(f \in A(\varphi) \) and \(\widehat{f}(\lambda) = \sum_{k',l'} \rho_{k',l'}(\lambda) L_{(2k',l',0)} \varphi(\lambda) \), which shows that \(J_{\varphi} f = \rho \). Thus we see that there is a one to one correspondence between \(A(\varphi) \) and the collection of functions of the form \(\rho \). Further, we have

\[
\| f \|^2 = \left\| \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} \varphi \right\|^2_{L^2(\mathbb{H})} = \sum_{k',l'} \int_0^1 \left| \sum_{m'} c_{k',l',m'} e^{2\pi im'\lambda} \right|^2 G_{0,0}^\varphi(\lambda) d\lambda.
\]

(2.9)

In fact,

\[
\left\| \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} \varphi \right\|^2_{L^2(\mathbb{H})} = \int_\mathbb{R} \left\| \sum_{k',l',m'} c_{k',l',m'} L_{(2k',l',m')} \varphi(\lambda) \right\|^2_{B_2} |\lambda|^\alpha d\lambda
\]

\[
= \int_0^1 \sum_{r \in \mathbb{Z}} \left\| \sum_{k',l',m'} c_{k',l',m'} L_{(2k',l',m')} \varphi(\lambda + r) \right\|^2_{B_2} |\lambda + r|^\alpha d\lambda
\]

\[
= \int_0^1 \sum_{r \in \mathbb{Z}} \left\| \sum_{k'} \left(\sum_{m'} c_{k',l',m'} e^{2\pi im'\lambda} \right) L_{(2k',l',0)} \varphi(\lambda + r) \right\|^2_{B_2} |\lambda + r|^\alpha d\lambda
\]

\[
= \int_0^1 \sum_{r \in \mathbb{Z}} \sum_{k'} \left(\sum_{m'} c_{k',l',m'} e^{2\pi im'\lambda} \right) L_{(2k',l',0)} \varphi(\lambda + r) \right\|^2_{B_2} |\lambda + r|^\alpha d\lambda
\]

\[
+ \int_0^1 \sum_{r \in \mathbb{Z}} \sum_{(k_1',l_1') \neq (k_2',l_2')} \left(\sum_{m'} c_{k_1',l_1',m'} e^{2\pi im'\lambda} \right) L_{(2k_1',l_1',0)} \varphi(\lambda + r) \right\|^2_{B_2} |\lambda + r|^\alpha d\lambda,
\]

(2.10)
using (1.2). Now, using (2.5) and the fact that \(\|L_{(2k, l, 0)}(\lambda)\|_{\mathcal{B}_2} = \|\widetilde{\phi}(\lambda)\|_{\mathcal{B}_2} \), \(\forall k, l \in \mathbb{Z}^n \), the first term on the right hand side of (2.10) becomes

\[
\int_{0}^{1} \sum_{r \in \mathbb{Z}} \sum_{k', l'} \left| \sum_{m'} c_{k', l', m'} e^{2\pi i m' \lambda} \right|^2 \|L_{(2k', l', 0)}(\lambda)\|_{\mathcal{B}_2} |\lambda + r|^n d\lambda = \int_{0}^{1} \sum_{k', l'} \left| \sum_{m'} c_{k', l', m'} e^{2\pi i m' \lambda} \right|^2 \|\widetilde{\phi}(\lambda + r)\|_{\mathcal{B}_2}^2 \|\lambda + r|^n d\lambda = \int_{0}^{1} \sum_{k', l'} \left| \sum_{m'} c_{k', l', m'} e^{2\pi i m' \lambda} \right|^2 G_{0,0}^\phi(\lambda) d\lambda. \tag{2.11}
\]

The second term on the right hand side of (2.10) is

\[
\int_{0}^{1} \sum_{(k', l') \neq (k_0', l_0')} \sum_{m_1, m_2} c_{k_1', l_1', m_1} c_{k_2', l_2', m_2} e^{2\pi i (m_1 - m_2) \lambda} \times \sum_{r \in \mathbb{Z}} \|L_{(2k_0', l_0', 0)}(\lambda)\|_{\mathcal{B}_2}^2 |\lambda + r|^n d\lambda = 0,
\]

as \(\phi \) satisfies condition C. Thus (2.9) follows from (2.10) and (2.11). Then, using (2.7), we have

\[
\|f\|^2 = \sum_{k', l'} \int_{0}^{1} |\rho_{k', l'}(\lambda)|^2 G_{0,0}^\phi(\lambda) d\lambda = \int_{0}^{1} \|\rho(\lambda)\|^2_{\ell^2(\mathbb{Z}^{2n})} G_{0,0}^\phi(\lambda) d\lambda = \|\rho\|^2_{L^2((0, 1], \ell^2(\mathbb{Z}^{2n}), G_{0,0}^\phi)}.
\]

Hence \(J(\phi) \) is an isometry. Using density argument this isometry can be extended to the whole of \(V(\phi) \). Moreover from (2.8), we have \(f \in V(\phi) \) if and only if

\[
\hat{f}(\lambda) = \sum_{k', l' \in \mathbb{Z}^{2n}} \rho_{k', l'}(\lambda) L_{(2k', l', 0)}(\lambda) \phi(\lambda), \tag{2.12}
\]

where \(\rho(\lambda) = \{\rho_{k', l'}(\lambda)\}_{(k', l') \in \mathbb{Z}^{2n}} \) and \(\rho \in L^2((0, 1], \ell^2(\mathbb{Z}^{2n}), G_{0,0}^\phi) \). \(\square \)

The following definitions and results are in accordance with [8].

Definition 2.8 An element \(\phi \in \mathcal{H} \) is said to be a canonical dual to the system \(\{f_k : k \in \mathbb{Z}\} \) if \(\langle f_k, \phi \rangle = \delta_{k, 0} \), \(\forall k \in \mathbb{Z} \). In case, if \(f_k \) is generated from a single function \(f \) by some transformation, then \(\phi \) is called a canonical dual to \(f \).

Definition 2.9 A sequence \(\{f_k : k \in \mathbb{Z}\} \) in \(\mathcal{H} \) is said to be Besselian if \(\sum_{k \in \mathbb{Z}} c_k f_k \) is convergent implies \(\{c_k\} \in \ell^2(\mathbb{Z}) \).

Definition 2.10 A sequence \(\{f_k : k \in \mathbb{Z}\} \) in \(\mathcal{H} \) is said to be Hilbertian if \(\{c_k\} \in \ell^2(\mathbb{Z}) \) implies \(\sum_{k \in \mathbb{Z}} c_k f_k \) converges.
Lemma 2.3 Suppose a measurable non-negative function \(s \) on \(\mathbb{T}^n \) satisfies \(sm \in L^1(\mathbb{T}^n) \), whenever \(m \in L^1(\mathbb{T}^n) \), then \(s \in L^\infty(\mathbb{T}^n) \).

The above Lemma is proved for \(n = 1 \) in [8, Lemma 3.6]. Following along the same lines, one can prove the Lemma for \(n > 1 \).

The following theorem is in accordance with Remark 2.3 of [16].

Theorem 2.3 For every measurable subset \(A \subset \mathbb{T}^n \) with \(\lambda(A) > 0 \), \(\lambda(A^c) > 0 \), there exists non-zero \(f \in L^2(\mathbb{T}^n) \) such that

1. \(\text{supp } f \subset A \);
2. there exists \(M > 0 \) such that \(\|S_n(f)\|_{L^\infty(\mathbb{T}^n)} \leq M \) for all \(n \in \mathbb{N} \), where \(\lambda(A) \) and \(\lambda(A^c) \) denote the Lebesgue measure of \(A \) and \(A^c \) respectively and \(S_n(f) \) denotes the \(n \)th partial sum of the Fourier series of \(f \).

The above theorem is proved for \(n = 1 \) in [16, Remark 2.3]. We note that Remark 2.3 in [16] is an application of the following Theorem, which is stated therein. For the proof of it, we refer to [16].

Theorem 2.4 [16] For every \(F \in L^\infty(\mathbb{T}) \) with \(\|F\|_{L^\infty} \leq 1 \) and for every \(0 < \epsilon \leq 1 \) there exists a function \(G \in U^\infty \) with the following properties: \(|G| + |F - G| = |F| \), \(\|\langle \xi, F(\xi) \rangle \| \leq \epsilon \|F\| \), and \(\|G\|_{U^\infty} \leq C(1 + \log(\epsilon^{-1})) \), where \(U^\infty \) denotes the space of functions \(f \in L^\infty(\mathbb{T}) \) for which the following norm is finite:

\[
\|f\|_{U^\infty} = \sup \left\{ \sum_{\eta \leq k \leq m} \hat{f}(k)\xi^k \right\} \quad m, n \in \mathbb{Z}, n \leq m, \xi \in \mathbb{T}.
\]

Theorem 2.4 is proved in a much more general setting in [11, Theorem 1], which implies that Theorem 2.4 is also true for functions on \(\mathbb{T}^n \). Then proceeding similarly as in the proof of [16], we can show that Remark 2.3 of [16] holds for \(n > 1 \), from which it follows that Theorem 2.3 of the paper holds for \(n > 1 \).

3 Canonical dual in twisted shift-invariant spaces

The following theorem gives a necessary and sufficient condition for the existence of the canonical dual to \(\varphi \) in \(L^2(\mathbb{R}^{2n}) \) under condition C. We recall Definition 2.8. Accordingly, we say that a function \(\tilde{\varphi} \in L^2(\mathbb{R}^{2n}) \) is said to be a canonical dual to a function \(\varphi \) in \(L^2(\mathbb{R}^{2n}) \) if

\[
\langle T_{(k,l)}(\tilde{\varphi}), \varphi \rangle = \delta_{(k,l),(0,0)}
\]

holds for every \(k, l \in \mathbb{Z}^n \).

Theorem 3.1 Let \(\varphi \in L^2(\mathbb{R}^{2n}) \) be such that \(\varphi \) satisfies condition C. Then there exists a canonical dual \(\tilde{\varphi} \) to \(\varphi \) that belongs to \(V^1(\varphi) \) if and only if \(\frac{1}{\varphi} \in L^1(\mathbb{T}^n) \). Moreover, in this case, \(K_{\tilde{\varphi}}(\xi, \eta) = \frac{1}{\varphi(\xi)}K_{\varphi}(\xi, \eta) \).

Proof Let the canonical dual \(\tilde{\varphi} \) to \(\varphi \) belong to \(V^1(\varphi) \). Then from (2.3), we have

\[
K_{\tilde{\varphi}}(\xi, \eta) = \sum_{l' \in \mathbb{Z}^n} \rho_{l'}(\xi)K_{\varphi}(\xi + l', \eta),
\]

where \(\rho(\xi) = \{\rho_{l'}(\xi)\}_{l' \in \mathbb{Z}^n} \) and \(\rho \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), \frac{1}{\varphi}) \). Since \(\tilde{\varphi} \) is the canonical dual to \(\varphi \), it must satisfy

\[
\langle T_{(k,l)}(\varphi), \tilde{\varphi} \rangle = \delta_{(k,l),(0,0)}, \quad \forall k, l \in \mathbb{Z}^n.
\]
Consider
\[
\langle T_{(k,l)}^t \varphi, \tilde{\varphi} \rangle = \langle K_{T_{(k,l)}^t \varphi}^t, K_{\tilde{\varphi}}^t \rangle \\
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_{T_{(k,l)}^t \varphi}^t (\xi, \eta) K_{\tilde{\varphi}}^t (\xi, \eta) d\xi d\eta \\
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{\pi i (2\xi + l) k} K_{\varphi}^t (\xi + l, \eta) \overline{K_{\varphi}^t (\xi, \eta)} d\xi d\eta,
\]
using (1.1) and (2.1). Now, substituting for \(K_{\varphi}^t (\xi, \eta) \) from (3.1), we get
\[
\langle T_{(k,l)}^t \varphi, \tilde{\varphi} \rangle = e^{\pi i l k} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_{\varphi}^t (\xi + l, \eta) \sum_{l' \in \mathbb{Z}^n} \rho_{l'} (\xi) K_{\varphi}^t (\xi + l', \eta) e^{2\pi i k \xi} d\xi d\eta \\
= e^{\pi i l k} \int_{\mathbb{T}^n} \int_{\mathbb{R}^n} \rho_{l'} (\xi) \int_{\mathbb{R}^n} K_{\varphi}^t (\xi + m + l', \eta) d\eta e^{2\pi i k \xi} d\xi \\
= e^{\pi i l k} \int_{\mathbb{T}^n} \rho_{l'} (\xi) \sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} |K_{\varphi}^t (\xi + m + l')|^2 d\eta e^{2\pi i k \xi} d\xi,
\]
as \(\varphi \) satisfies condition C. Hence
\[
\langle T_{(k,l)}^t \varphi, \tilde{\varphi} \rangle = e^{\pi i l k} \int_{\mathbb{T}^n} \rho_{l'} (\xi) \sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} |K_{\varphi}^t (\xi + m, \eta)|^2 d\eta e^{2\pi i k \xi} d\xi \\
= e^{\pi i l k} \int_{\mathbb{T}^n} \rho_{l'} (\xi) \int_{\mathbb{R}^n} e^{2\pi i k \xi} d\xi, \tag{3.3}
\]
using the definition of \(w^\varphi \). Thus, from (3.2) and (3.3), we see that for a fixed \(l, k \)th Fourier coefficient of the function \(\rho_{l'} w^\varphi \) is given by
\[
\rho_{l'} w^\varphi (k) = e^{\pi i k \delta}_{(-k,l),(0,0)}.
\]
Hence \(\rho_0^\varphi (\xi) w^\varphi (\xi) = 1 \) a.e. \(\xi \in \mathbb{T}^n \) and for \(l \neq 0, \rho_{l}^\varphi (\xi) w^\varphi (\xi) = 0 \) a.e. \(\xi \in \mathbb{T}^n \), from which it follows that \(\rho_0^\varphi (\xi) = \frac{1}{w^\varphi (\xi)} \) a.e. \(\xi \in \mathbb{T}^n \) and for \(l \neq 0, \rho_{l}^\varphi (\xi) = 0 \) a.e. \(\xi \in \mathbb{T}^n \).

Since \(\rho \in L^2 (\mathbb{T}^n, \ell^2 (\mathbb{Z}^n), w_\varphi) \), \(\int_{\mathbb{T}^n} \| \rho (\xi) \|^2_{\ell^2 (\mathbb{Z}^n)} w_\varphi (\xi) d\xi < \infty \). Now substituting the value of \(\rho_{l}^\varphi (\xi) \) for \(l \in \mathbb{Z}^n \) in the above integral, we get \(\frac{1}{w_\varphi} \in L^1 (\mathbb{T}^n) \).

Conversely, suppose \(\frac{1}{w_\varphi} \in L^1 (\mathbb{T}^n) \). Let \(\rho (\xi) = (\ldots, 0, 0, \ldots, 0, \frac{1}{w_\varphi (\xi)}, 0, \ldots, 0, \ldots) \) with \(\frac{1}{w_\varphi (\xi)} \) in the 0th position for \(\xi \in \mathbb{T}^n \). Then clearly \(\rho \in L^2 (\mathbb{T}^n, \ell^2 (\mathbb{Z}^n), w_\varphi) \). Define \(\bar{\varphi} \in L^2 (\mathbb{R}^{2n}) \) such that \(K_{\bar{\varphi}} (\xi, \eta) = \frac{1}{w_\varphi (\xi)} K_{\varphi} (\xi, \eta) \). Then \(K_{\bar{\varphi}} (\xi, \eta) \) can be written as
\[
K_{\bar{\varphi}} (\xi, \eta) = \sum_{l \in \mathbb{Z}^n} \rho_{l}^\varphi (\xi) K_{\varphi} (\xi + l, \eta),
\]

where \(\rho_0(\xi) = \frac{1}{w_\psi(\xi)} \) a.e. \(\xi \in \mathbb{T}^n \) and \(\rho_1(\xi) = 0 \) a.e. \(\xi \in \mathbb{T}^n \) for all \(l \neq 0 \). From (2.3), we get \(\varphi \in V^1(\varphi) \). Now it follows from (3.3) that \(\langle T^l_{(k,l)} \varphi, \varphi \rangle = \delta_{(k,l),(0,0)} \) for all \(k, l \in \mathbb{Z}^n \). Hence \(\varphi \) is the canonical dual to \(\varphi \).

\[
\begin{align*}
4 \text{ Non-redundancy property of twisted translates in } L^2(\mathbb{R}^{2n})
\end{align*}
\]

In the following theorem, we shall show that under condition C, the condition \(w_\varphi(\xi) > 0 \) a.e. \(\xi \in \mathbb{T}^n \) is sufficient for the collection consisting of twisted translates of \(\varphi \in L^2(\mathbb{R}^{2n}) \) to be non-redundant.

In this section and the next section, we will be mostly dealing with the series of the form \(\sum_{(k,l) \in \mathbb{Z}^{2n}} c_{k,l} T^l_{(k,l)} \varphi \), which need not be convergent unconditionally always. So one must give an ordering on \(\mathbb{Z}^{2n} \) for the convergence of the above series. We first give an ordering on \(\mathbb{Z}^2 \) as follows:

\[
\mathbb{Z}^2 = \{(0,0), (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1), (0,2), (1,2), (2,2), (2,1), (2,0), (2,-1), (1,-2), (0,-2), (-1,-2), (-2,-2), (-2,-1), (-2,0), (-2,1), (-2,2), (-1,2), \ldots \}
\]

i.e., we first take \((0,0)\), then all integer valued points on the square of length 2 centered at origin in the clockwise direction starting from \((0,1)\) followed by all integer valued points on square of length 4 centered at origin in the clockwise direction starting from \((0,2)\) and we continue in the similar way. In order to give an ordering on \(\mathbb{Z}^3 \), we have to first consider a cube centered at origin and proceed as in the case of \(\mathbb{Z}^2 \). In general for \(\mathbb{Z}^{2n} \), one has to first give an ordering on \([-1, 1]^{2n}\) followed by giving ordering on \([-2, 2]^{2n}\) and continue in a similar way. Further, when we deal with the sum over \((k, l, m)\) in \(\mathbb{Z}^{2n+1} \) in Sect. 6, we follow the ordering in a similar manner using \((2n + 1)\) cubes.

Theorem 4.1 Let \(\varphi \in L^2(\mathbb{R}^{2n}) \) be such that \(\varphi \) satisfies condition C. Suppose \(w_\varphi(\xi) > 0 \) a.e. \(\xi \in \mathbb{T}^n \). Then \(\{T^l_{(k,l)} \varphi : (k, l) \in \mathbb{Z}^{2n}\} \) is \(\ell^2 \)-linearly independent.

Proof Suppose \(\{T^l_{(k,l)} \varphi : (k, l) \in \mathbb{Z}^{2n}\} \) is \(\ell^2 \)-linearly dependent. Then there exists \(\{c_{k,l}\} \), a non-zero sequence in \(\ell^2(\mathbb{Z}^{2n}) \) such that \(\sum_{k,l \in \mathbb{Z}^{2n}} c_{k,l} T^l_{(k,l)} \varphi = 0 \). Consider the partial sum \(S_{m,n} \varphi = \sum_{|k| \leq m, |l| \leq r} c_{k,l} T^l_{(k,l)} \varphi \). Then \(\{S_{m,n} \varphi\} \) converges to 0 in \(L^2(\mathbb{R}^{2n}) \). Now, using (2.4), we get

\[
\|S_{m,n} \varphi\|^2_{L^2(\mathbb{R}^{2n})} = \sum_{|l| \leq r} \int_{\mathbb{T}^n} \left| \sum_{|k| \leq m} c_{k,l} e^{2\pi i k \cdot \xi} e^{2\pi i l \cdot \xi} \right|^2 w_\varphi(\xi) d\xi.
\]

Taking limit as \(m, r \rightarrow \infty \), we have

\[
\sum_{l \in \mathbb{Z}^n} \lim_{m \rightarrow \infty} \int_{\mathbb{T}^n} \left| \sum_{|k| \leq m} c_{k,l} e^{2\pi i k \cdot \xi} e^{2\pi i l \cdot \xi} \right|^2 w_\varphi(\xi) d\xi = 0,
\]
from which it follows that for each $l \in \mathbb{Z}^n$,

$$
\lim_{m \to \infty} \int_{\mathbb{T}^n} \left| \sum_{|k| \leq m} c_{k,l} e^{\pi i k \cdot \xi} \right|^2 w_\varphi(\xi) d\xi = 0. \quad (4.1)
$$

Now for each $l \in \mathbb{Z}^n$, define

$$
\rho_{l,m}(\xi) = \sum_{|k| \leq m} c_{k,l} e^{\pi i k \cdot \xi}, \quad \xi \in \mathbb{T}^n.
$$

Then there exists a subsequence $\rho_{l,m}'$ of $\rho_{l,m}$ such that $\rho_{l,m}'(\xi)$ converges to $g_1(\xi)$ a.e. $\xi \in \mathbb{T}^n$, for some $g_1 \in L^2(\mathbb{T}^n)$, $\forall l \in \mathbb{Z}^n$. Also, from (4.1), we get $\rho_{l,m}' \sqrt{w_\varphi} \to 0$ in $L^2(\mathbb{T}^n)$. Hence there exists a subsequence $\rho_{l,m}''$ of $\rho_{l,m}'$ such that $\rho_{l,m}''(\xi) \sqrt{w_\varphi(\xi)} \to 0$ a.e. $\xi \in \mathbb{T}^n$. But then it follows that

$$
g_l(\xi) \sqrt{w_\varphi(\xi)} = 0 \text{ a.e. } \xi \in \mathbb{T}^n, \quad \forall l \in \mathbb{Z}^n. \quad (4.2)
$$

Since $\{c_{k,l}\}$ is a non-zero sequence, there exists $l_0 \in \mathbb{Z}^n$ for which $g_{l_0}(\xi) \neq 0$ a.e. $\xi \in \mathbb{T}^n$. This means that the set E on which $g_{l_0}(\xi)$ does not vanish has strictly positive measure. Hence using (4.2), we conclude that $w_\varphi(\xi)$ vanishes on E, which is a contradiction to the given hypothesis that $w_\varphi(\xi) > 0$ a.e. $\xi \in \mathbb{T}^n$, proving our assertion.

In the following theorem, we shall prove that the converse of the above theorem becomes true without using condition C but under an additional assumption that $\{T_{(k,l)}: (k,l) \in \mathbb{Z}^{2n}\}$ is a Bessel sequence.

Theorem 4.2 Suppose $\{T_{(k,l)}: (k,l) \in \mathbb{Z}^{2n}\}$ is a Bessel sequence with bound B that is ℓ^2-linearly independent. Then $w_\varphi(\xi) > 0$ a.e. $\xi \in \mathbb{T}^n$.

Proof Let $\Omega_\varphi = \{\xi \in \mathbb{T}^n : w_\varphi(\xi) > 0\}$. Let $g(\xi)$ be the characteristic function on Ω_φ^c with Fourier series $\sum_{k \in \mathbb{Z}^n} c_{k,0} e^{2\pi i k \cdot \xi}$, where $\{c_{k,0}\} \in \ell^2(\mathbb{Z}^n)$. Then $g(\xi) \sqrt{w_\varphi(\xi)} = 0$, $\forall \xi \in \mathbb{T}^n$.

Consider the partial sum $S_m g(\xi) = \sum_{|k| \leq m} c_{k,0} e^{2\pi i k \cdot \xi}, \xi \in \mathbb{T}^n$. Now, suppose Ω_φ^c has non-zero measure. Then $g(\xi) \neq 0$ a.e. $\xi \in \mathbb{T}^n$. Hence there exists $k_0 \in \mathbb{Z}^n$ such that $c_{k_0,0} \neq 0$. Define $c_{k,l} = 0, \forall k \in \mathbb{Z}^n, \forall l \in \mathbb{Z}^{2n}\{0\}$. Then $\{c_{k,l}\}$ is a non-zero sequence in $\ell^2(\mathbb{Z}^{2n})$. Consider

$$
\left\| \sum_{|k| \leq m, |l| \leq r} c_{k,l} T_{(k,l)} \varphi \right\|^2_{L^2(\mathbb{R}^{2n})} = \left\| \sum_{|k| \leq m} c_{k,0} T_{(k,0)} \varphi \right\|^2_{L^2(\mathbb{R}^{2n})}
$$

$$
= \int_{\mathbb{T}^n} \left| \sum_{|k| \leq m} c_{k,0} e^{2\pi i k \cdot \xi} w_\varphi(\xi) d\xi
$$

$$
= \int_{\mathbb{T}^n} |S_m g(\xi)|^2 w_\varphi(\xi) d\xi
$$

$$
= \|S_m g \sqrt{w_\varphi}\|^2_{L^2(\mathbb{T}^n)} = \|(S_m g - g) \sqrt{w_\varphi}\|^2_{L^2(\mathbb{T}^n)}.
$$

@ Springer
using (2.4). Since \(\{T_{(k,l)}^{t} \phi : (k, l) \in \mathbb{Z}^{2n}\} \) is a Bessel sequence with bound \(B \), it follows from Theorem 2.1 that \(w_{\phi}(\xi) \leq B \) a.e. \(\xi \in \mathbb{T}^{n} \). Thus there exists a non-zero sequence \(\{c_{k,l}\} \) such that
\[
\left\| \sum_{|k| \leq m, |l| \leq r} c_{k,l} T_{(k,l)}^{t} \phi \right\|_{L^{2}(\mathbb{R}^{2n})}^{2} \leq B \|S_{m}g - g\|_{L^{2}(\mathbb{T}^{n})}^{2} \rightarrow 0 \text{ as } m \rightarrow \infty.
\]
This shows that \(\{T_{(k,l)}^{t} \phi : (k, l) \in \mathbb{Z}^{2n}\} \) is \(\ell^{2} \)-linearly dependent, which is a contradiction to the given hypothesis. Thus \(\Omega_{\phi}^{c} \) has zero measure, proving our assertion. \(\square \)

Now we shall prove the converse of Theorem 4.1 without assuming that \(\{T_{(k,l)}^{t} \phi : (k, l) \in \mathbb{Z}^{2n}\} \) is a Bessel sequence in Theorem 4.2.

Theorem 4.3 Let \(0 \neq \varphi \in L^{2}(\mathbb{R}^{2n}) \). If \(\{T_{(k,l)}^{t} \phi : (k, l) \in \mathbb{Z}^{2n}\} \) is \(\ell^{2} \)-linearly independent, then \(w_{\phi}(\xi) > 0 \) a.e. \(\xi \in \mathbb{T}^{n} \).

Proof Let \(\Omega_{\phi}^{c} = \{\xi \in \mathbb{T}^{n} : w_{\phi}(\xi) > 0\} \). Assume that the set \(\Omega_{\phi}^{c} \) has strictly positive measure. Since \(\varphi \neq 0, \Omega_{\phi} \) also has strictly positive measure. By Theorem 2.3, there exists \(0 \neq f \in L^{2}(\mathbb{T}^{n}) \) such that supp \(f \subset \Omega_{\phi}^{c} \) and \(S_{n}(f) \) are uniformly bounded. Let \(c_{k,0} = \hat{f}(k), \forall k \in \mathbb{Z}^{n} \) and \(c_{k,l} = 0, \forall k \in \mathbb{Z}^{n} \), \(\forall l \in \mathbb{Z}^{n}\setminus\{0\} \). Then \(\{c_{k,l}\} \) is a non-zero sequence in \(\ell^{2}(\mathbb{Z}^{2n}) \). Using (2.4), we get
\[
\left\| \sum_{|k| \leq m, |l| \leq r} c_{k,l} T_{(k,l)}^{t} \phi \right\|_{L^{2}(\mathbb{R}^{2n})}^{2} = \left\| \sum_{|k| \leq m} c_{k,0} T_{(k,0)}^{t} \phi \right\|^{2} = \int_{\mathbb{T}^{n}} \left| \sum_{|k| \leq m} c_{k,0} e^{2\pi ik \cdot \xi} \right|^{2} w_{\phi}(\xi) d\xi
\]
\[
= \int_{\mathbb{T}^{n}} \left| \sum_{|k| \leq m} \hat{f}(k) e^{2\pi ik \cdot \xi} \right|^{2} w_{\phi}(\xi) d\xi
\]
\[
= \int_{\mathbb{T}^{n}} |S_{m}f(\xi)|^{2} w_{\phi}(\xi) d\xi. \quad (4.3)
\]
Now \(S_{m}f(\xi) \) converges to 0 a.e. \(\xi \in \Omega_{\phi}^{c} \), as supp \(f \subset \Omega_{\phi}^{c} \) and \(w_{\phi}(\xi) = 0 \) for \(\xi \in \Omega_{\phi}^{c} \). Hence
\[
\lim_{m \to \infty} |S_{m}(f)(\xi)|^{2} w_{\phi}(\xi) = 0 \text{ a.e. } \xi \in \mathbb{T}^{n}. \quad (4.4)
\]
Since \(S_{n}(f) \) are uniformly bounded on \(\mathbb{T}^{n} \) and \(w_{\phi} \in L^{1}(\mathbb{T}^{n}) \), applying Lebesgue dominated convergence theorem, we get from (4.4) that
\[
\lim_{m \to \infty} \int_{\mathbb{T}^{n}} |S_{m}(f)(\xi)|^{2} w_{\phi}(\xi) d\xi = 0.
\]
Thus from (4.3), we get a non-zero sequence \(\{c_{k,l}\} \) such that \(\sum_{k,l \in \mathbb{Z}^{2n}} c_{k,l} T_{(k,l)}^{t} \phi = 0 \), which means that \(\{T_{(k,l)}^{t} \phi : (k, l) \in \mathbb{Z}^{2n}\} \) is \(\ell^{2} \)-linearly dependent. This is a contradiction to our hypothesis, thus proving the theorem. \(\square \)
5 Twisted translates as Besselian and Hilbertian sequences in $L^2(\mathbb{R}^{2n})$

In this section, we shall obtain the characterization for the collection $\{T_{(k,l)}^i \varphi : (k, l) \in \mathbb{Z}^{2n}\}$ to be Hilbertian. Towards this, we have the following theorem.

Theorem 5.1 Let $\varphi \in L^2(\mathbb{R}^{2n})$ be such that φ satisfies condition C. Assume that $\frac{1}{\|\varphi||_\infty} \in L^1(\mathbb{T}^n)$. If $\{T_{(k,l)}^i \varphi : (k, l) \in \mathbb{Z}^{2n}\}$ is Hilbertian, then $\|\varphi||_\infty < \infty$.

Proof Let q be any arbitrary non-negative function in $L^1(\mathbb{T}^n)$. Then there exists a function m with $m \in L^2(\mathbb{T}^n)$ such that $|m|^2 = q$. Let m have the Fourier series expansion $\sum_{k \in \mathbb{Z}^n} c_{k,0} e^{2\pi i k \cdot \xi}$, where $\{c_{k,0}\} \in \ell^2(\mathbb{Z}^n)$. Define $c_{k,0} = 0$, $\forall \ k \in \mathbb{Z}^n$, $\forall \ l \in \mathbb{Z}^n \setminus \{0\}$. Then $\{c_{k,0}\} \in \ell^2(\mathbb{Z}^n)$. Since $\{T_{(k,l)}^i \varphi : (k, l) \in \mathbb{Z}^{2n}\}$ is Hilbertian, $\sum_{k,l \in \mathbb{Z}^n} c_{k,l} T_{(k,l)}^i \varphi = \sum_{k,l \in \mathbb{Z}^n} c_{k,0} T_{(k,0)}^i \varphi$ converges in $V^i(\varphi)$. Consider the partial sum $S_m \varphi = \sum_{|k| \leq m} c_{k,0} T_{(k,0)}^i \varphi$. Then $S_m \varphi$ converges to some $\psi \in V^i(\varphi)$. Since $J \varphi$ is a bounded operator from $V^i(\varphi)$ to $L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w \varphi)$, (see Proposition 2.1), $J \varphi(S_m \varphi)$ converges to $J \varphi(\psi) = \rho \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w \varphi)$. Using (2.2), we get $J \varphi(T_{(k,0)}^i(\varphi)(\xi) = (\ldots, 0, \ldots, 0, e^{2\pi i k \cdot \xi}, 0, \ldots, 0)$ with $e^{2\pi i k \cdot \xi}$ in the 0th position a.e. $\xi \in \mathbb{T}^n$. Now

$$J \varphi(S_m \varphi)(\xi) = \sum_{|k| \leq m} c_{k,0} J \varphi(T_{(k,0)}^i(\varphi)(\xi) = \sum_{|k| \leq m} c_{k,0} (0, \ldots, 0, e^{2\pi i k \cdot \xi}, 0, \ldots, 0, \ldots) = (0, \ldots, 0, \sum_{|k| \leq m} c_{k,0} e^{2\pi i k \cdot \xi}, 0, \ldots, 0, \ldots)$$

with $\sum_{|k| \leq m} c_{k,0} e^{2\pi i k \cdot \xi}$ in the 0th position a.e. $\xi \in \mathbb{T}^n$. Hence $J \varphi(S_m \varphi)$ converges to $(\ldots, 0, \ldots, 0, m(\cdot), 0, \ldots, 0, \ldots)$ with $m(\cdot)$ in the 0th position in $L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))$. Thus, there exists a subsequence $J \varphi(S_{m_j} \varphi)$ of $J \varphi(S \varphi)$ such that $J \varphi(S_{m_j} \varphi)(\xi)$ converges to $(\ldots, 0, \ldots, 0, m(\xi), 0, \ldots, 0, \ldots)$ with $m(\xi)$ in the 0th position in $\ell^2(\mathbb{Z}^n)$ a.e. $\xi \in \mathbb{T}^n$. On the other hand,

$$\|J \varphi(S_{m_j} \varphi) - \rho\|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w \varphi)}^2 = \int_{\mathbb{T}^n} \|J \varphi(S_{m_j} \varphi)(\xi) - \rho(\xi)\|^2_{\ell^2(\mathbb{Z}^n), w \varphi} d\xi$$

$$= \int_{\mathbb{T}^n} \left\|J \varphi(S_{m_j} \varphi)(\xi) - \rho(\xi)\sqrt{w \varphi(\xi)}\right\|^2_{\ell^2(\mathbb{Z}^n), w \varphi} d\xi$$

$$= \|J \varphi(S_{m_j} \varphi)\sqrt{w \varphi} - \rho \sqrt{w \varphi}\|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))}^2.$$
a.e. $\xi \in \mathbb{T}^n$. Since $\rho \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w_\varphi)$, we have \[
abla \rho(\xi) \|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w_\varphi)}^2 \| w_\varphi(\xi) d\xi < \infty,\] from which it follows that \[
abla |m(\xi)|^2 w_\varphi(\xi) d\xi < \infty.\] In other words, \[
abla q(\xi) w_\varphi(\xi) d\xi < \infty,\] which implies that $q w_\varphi \in L^1(\mathbb{T}^n)$. By Lemma 2.3, $\|w_\varphi\|_\infty < \infty$. \hfill \square

Now we shall prove the converse of Theorem 5.1.

Theorem 5.2 Let $\varphi \in L^2(\mathbb{R}^{2n})$ be such that φ satisfies condition C and $\frac{1}{w_\varphi} \in L^1(\mathbb{T}^n)$. Assume that $\|w_\varphi\|_\infty < \infty$. Then $\{T_{(k,l)\varphi} : (k, l) \in \mathbb{Z}^{2n}\}$ is Hilbertian.

Proof Define the map
\[
I_\varphi : L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n)) \to L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n)), w_\varphi) \quad \rho \mapsto \rho.
\]
Then using the assumption that $\|w_\varphi\|_\infty < \infty$, we get
\[
\|I_\varphi \rho\|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))}^2 \| w_\varphi(\xi) d\xi = \int_{\mathbb{T}^n} \|\rho(\xi)\|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))}^2 \| w_\varphi(\xi) d\xi \leq \|w_\varphi\|_\infty \|\rho\|_{L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))}^2,
\]
which shows that I_φ is a well defined bounded operator on $L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))$. Hence $J^{-1}_\varphi \circ I_\varphi$ is a bounded operator of $L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))$ onto $V^t(\varphi)$. Define $e_{k,l}(\xi) = (\ldots, 0, \ldots, 0, e^{2\pi ik \xi}, 0, \ldots, 0, \ldots)$ with $e^{2\pi ik \xi}$ in the lth position a.e. $\xi \in \mathbb{T}^n$. Then \[e_{(k,l)} : (k, l) \in \mathbb{Z}^{2n}\] is an orthonormal basis for $L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))$. Let $\{c_{k,l}\} \in \ell^2(\mathbb{Z}^{2n})$ and $\rho = \sum_{k,l \in \mathbb{Z}^n} c_{k,l} e^{i\xi k} e_{k,l} \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n))$. Hence
\[
\sum_{k,l \in \mathbb{Z}^n} c_{k,l} (J^{-1}_\varphi \circ I_\varphi)(e^{i\xi k} e_{k,l}) = (J^{-1}_\varphi \circ I_\varphi) \rho \in V^t(\varphi).
\]
But
\[
(J^{-1}_\varphi \circ I_\varphi)(e^{i\xi k} e_{k,l}) = J^{-1}_\varphi(e^{i\xi k} e_{k,l}) = T_{(k,l)\varphi},
\]
using (2.2). Thus \[
\sum_{k,l \in \mathbb{Z}^n} c_{k,l} T_{(k,l)\varphi} = (J^{-1}_\varphi \circ I_\varphi) \rho \in V^t(\varphi),\] proving that $\{T_{(k,l)\varphi} : (k, l) \in \mathbb{Z}^{2n}\}$ is Hilbertian. \hfill \square

Combining Theorem 5.1, Theorem 5.2 and by taking $B = \|w_\varphi\|_\infty$ in Theorem 2.1, we get the following theorem.

Theorem 5.3 Let $\varphi \in L^2(\mathbb{R}^{2n})$ be such that φ satisfies condition C and $\frac{1}{w_\varphi} \in L^1(\mathbb{T}^n)$. Then the following are equivalent.

(a) $\{T_{(k,l)\varphi} : (k, l) \in \mathbb{Z}^{2n}\}$ is Hilbertian.
(b) $\|w_\varphi\|_\infty < \infty$.
(c) $\{T_{(k,l)\varphi} : (k, l) \in \mathbb{Z}^{2n}\}$ is a Bessel sequence.
Theorem 5.4 Let \(\varphi \in L^2(\mathbb{R}^{2n}) \) be such that \(\varphi \) satisfies condition C and \(\frac{1}{w_\varphi} \in L^1(\mathbb{T}^n) \). If any one of the equivalent conditions of Theorem 5.3 is true, then there exists \(\tilde{\varphi} \in V^1(\varphi) \), canonical dual to \(\varphi \) such that \(\{T^l(\varphi) : (k, l) \in \mathbb{Z}^{2n}\} \) is Besselian.

Moreover, if \(\{T^l(\varphi) : (k, l) \in \mathbb{Z}^{2n}\} \) is Besselian and if for each \(\psi \in V^1(\varphi) \) there exists a sequence \(\{c_{k,l}\} \) such that \(\psi = \sum_{k,l} c_{k,l} T^l(\varphi) \), then \(\|\frac{1}{w_\psi}\|_\infty < \infty \).

Proof We assume that \(\|w_\psi\|_\infty < \infty \). Since \(\varphi \) satisfies condition C and \(\frac{1}{w_\varphi} \in L^1(\mathbb{T}^n) \), by Theorem 3.1, there exists a canonical dual \(\tilde{\varphi} \) to \(\varphi \), which belongs to \(V^1(\varphi) \). Moreover, in this case, \(K_{\tilde{\varphi}}(\xi, \eta) = \frac{1}{w_\varphi(\xi)} K_{\varphi}(\xi, \eta) \). Now

\[
\frac{w_\tilde{\varphi}(\xi)}{w_\varphi(\xi)} = \sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} \left| K_{\tilde{\varphi}}(\xi + m, \eta) \right|^2 d\eta
\]

and for \(l \neq 0 \),

\[
\sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} K_{\tilde{\varphi}}(\xi + m, \eta) K_{\tilde{\varphi}}(\xi + m + l, \eta) d\eta = \frac{1}{(w_\varphi(\xi))^2} \sum_{m \in \mathbb{Z}^n} \int_{\mathbb{R}^n} K_{\tilde{\varphi}}(\xi + m, \eta) K_{\tilde{\varphi}}(\xi + m + l, \eta) d\eta
\]

as \(\varphi \) satisfies condition C. This shows that \(\tilde{\varphi} \) also satisfies condition C.

Let \(\sum_{k,l} c_{k,l} T^l(\varphi) < \infty \). Using (2.4), we have

\[
\left\| \sum_{|k| \leq m, |l| \leq r} c_{k,l} T^l(\varphi) \right\|_{L^2(\mathbb{R}^{2n})}^2 = \sum_{|k| \leq m} \left| \sum_{|l| \leq r} c_{k,l} e^{\pi \imath k \xi} e^{2\pi \imath k \xi} \right|^2 w_\varphi(\xi) d\xi.
\]

Hence, using Parseval formula for the Fourier series and (5.1), we get

\[
\sum_{|k| \leq m, |l| \leq r} c_{k,l}^2 = \sum_{|l| \leq r} \left| \sum_{|k| \leq m} c_{k,l} e^{\pi \imath k \xi} e^{2\pi \imath k \xi} \right|^2 d\xi
\]

\[
\leq \|w_\varphi\|_\infty \sum_{|l| \leq r} \left| \sum_{|k| \leq m} c_{k,l} e^{\pi \imath k \xi} e^{2\pi \imath k \xi} \right|^2 w_\varphi(\xi) d\xi
\]

\[
= \|w_\varphi\|_\infty \left\| \sum_{|k| \leq m, |l| \leq r} c_{k,l} T^l(\varphi) \right\|_{L^2(\mathbb{R}^{2n})}^2.
\]
Now since \(\sum_{k,l \in \mathbb{Z}^n} c_{k,l} T^l_{(k,l)} \tilde{\varphi} \) converges in \(L^2(\mathbb{R}^{2n}) \), it follows that \(\{c_{k,l}\} \in \ell^2(\mathbb{Z}^{2n}) \), thus proving that \(\{T^l_{(k,l)} \tilde{\varphi} : (k, l) \in \mathbb{Z}^{2n}\} \) is Besselian.

Now to prove the remaining part of the theorem, let \(q \) be any arbitrary non-negative function in \(L^1(\mathbb{T}^n) \). Then \(q = |m|^2 \) for some function \(m \in L^2(\mathbb{T}^n) \). Consider

\[
\rho(\xi) = \left(\ldots, 0, 0, \frac{m(\xi)}{\sqrt{w_\varphi(\xi)}}, 0, 0, \ldots \right)
\]

(5.2)

with \(\frac{m(\xi)}{\sqrt{w_\varphi(\xi)}} \) in the 0th position a.e. \(\xi \in \mathbb{T}^n \). Clearly \(\rho \in L^2(\mathbb{T}^n, \ell^2(\mathbb{Z}^n), w_\varphi) \). Using Proposition 2.1, there exists unique \(f \in V^t(\varphi) \) such that \(J_{\varphi}(f) = \rho \). By our assumption, there exists a sequence \(\{c_{k,l}\} \) such that \(f = \sum_{k,l \in \mathbb{Z}^n} c_{k,l} T^l_{(k,l)} \varphi \). Then using (2.2), we get

\[
J_{\varphi}(f)(\xi) = \sum_{k,l \in \mathbb{Z}^n} c_{k,l} J_{\varphi}(T^l_{(k,l)} \varphi)(\xi)
\]

\[
= \sum_{k,l \in \mathbb{Z}^n} c_{k,l} (\ldots, 0, 0, e^{\pi i k \cdot \xi}, 0, 0, 0, \ldots)
\]

\[
= \sum_{l \in \mathbb{Z}^n} \left(\ldots, 0, 0, \sum_{k \in \mathbb{Z}^n} c_{k,l} e^{\pi i k \cdot \xi}, 0, 0, 0, \ldots \right)
\]

(5.3)

\[
= \left(\ldots, \sum_{k \in \mathbb{Z}^n} c_{k,0} e^{\pi i k \cdot \xi}, \ldots, \sum_{k \in \mathbb{Z}^n} c_{k,l} e^{\pi i k \cdot \xi}, \ldots \right).
\]

with \(\sum_{k \in \mathbb{Z}^n} c_{k,l} e^{\pi i k \cdot \xi} \) in the \(l \)th position a.e. \(\xi \in \mathbb{T}^n \). Now equating (5.2) and (5.3) component wise, we get \(c_{k,l} = 0, \forall k \in \mathbb{Z}^n, \forall l \in \mathbb{Z}^n \backslash \{0\} \) and \(\sum_{k \in \mathbb{Z}^n} c_{k,0} e^{2\pi i k \cdot \xi} = \frac{m(\xi)}{\sqrt{w_\varphi(\xi)}} \) in \(L^2(\mathbb{T}^n, w_\varphi) \). Thus \(f = \sum_{k \in \mathbb{Z}^n} c_{k,0} T^l_{(k,0)} \varphi \). Since \(\{T^l_{(k,l)} \varphi : (k, l) \in \mathbb{Z}^{2n}\} \) is Besselian, \(\{c_{k,0}\} \in \ell^2(\mathbb{Z}^n) \). Let \(h = \sum_{k \in \mathbb{Z}^n} c_{k,0} e^{2\pi i k \cdot \xi} \) in \(L^2(\mathbb{T}^n) \). Then using the same subsequential argument used for the proof of Theorem 5.1, we can show that \(h(\xi) = \frac{m(\xi)}{\sqrt{w_\varphi(\xi)}} \) a.e. \(\xi \in \mathbb{T}^n \).

Hence \(\frac{m}{\sqrt{w_\varphi}} \in L^2(\mathbb{T}^n) \), which implies that \(\frac{q}{w_\varphi} \in L^1(\mathbb{T}^n) \). Then it follows from Lemma 2.3 that \(\|\frac{1}{w_\varphi}\|_\infty < \infty \).

\[\square\]

6 Results on the Heisenberg group

The following theorem provides a necessary and sufficient condition for the existence of the canonical dual to a function \(\varphi \in L^2(\mathbb{H}^n) \) under condition C. We recall Definition 2.8. Correspondingly, we say that a function \(\hat{\varphi} \in L^2(\mathbb{H}^n) \) is said to be a canonical dual to a function \(\varphi \) in \(L^2(\mathbb{H}^n) \) if \(\langle L_{(2k,l,m)} \hat{\varphi}, \varphi \rangle = \delta_{(k,l,m),(0,0,0)} \) holds for every \(k, l, m \in \mathbb{Z} \).

Theorem 6.1 Let \(\varphi \in L^2(\mathbb{H}^n) \) be such that \(\varphi \) satisfies condition C. Then there exists a canonical dual \(\hat{\varphi} \) to \(\varphi \) that belongs to \(V(\varphi) \) if and only if \(\frac{1}{G_{0,0}} \in L^1(0, 1) \). Moreover, in this case, \(\hat{\varphi}(\lambda) = \frac{1}{G_{0,0}(\lambda)} \hat{\varphi}(\lambda), \forall \lambda \in \mathbb{R}^e \).
Proof Let there exist \(\hat{\varphi} \in V(\varphi) \), which is the canonical dual to \(\varphi \). Then from (2.12), we have

\[
\hat{\varphi}(\lambda) = \sum_{k',l' \in \mathbb{Z}^n} \rho_{k',l'}(\lambda) L_{(2k',l',0)} \varphi(\lambda),
\]

where \(\rho(\lambda) = \{\rho_{k',l'}(\lambda)\}_{(k',l') \in \mathbb{Z}^n} \) and \(\rho \in L^2((0, 1], \ell^2(\mathbb{Z}^{2n}), G_0^\rho) \). Also \(\hat{\varphi} \) satisfies the relation \(\langle L_{(2k',l',0)} \varphi, \hat{\varphi} \rangle = \delta_{(k'l',0)} \varphi \), \(\forall (k, l, m) \in \mathbb{Z}^{2n+1} \). Consider

\[
\langle L_{(2k',l',0)} \varphi, \hat{\varphi} \rangle_{L^2(\mathbb{R}^n)} = \int_{\mathbb{R}} \langle L_{(2k',l',0)} \varphi(\lambda), \hat{\varphi}(\lambda) \rangle_{L^2(\mathbb{R}^n)} |\lambda|^n d\lambda,
\]

\[
= \int_{\mathbb{R}} \left(L_{(2k',l',0)} \varphi(\lambda), \rho_{k',l'}(\lambda) L_{(2k',l',0)} \varphi(\lambda) \right)_{L^2(\mathbb{R}^n)} |\lambda|^n e^{2\pi i m \lambda} d\lambda,
\]

using (1.2) and the fact that \(L_{(2k',l',0)} \varphi(\lambda) = e^{2\pi i m \lambda} L_{(2k',l',0)} \varphi(\lambda) \). Now, substituting for \(\hat{\varphi}(\lambda) \) from (6.1), we get

\[
\langle L_{(2k',l',0)} \varphi, \hat{\varphi} \rangle = \int_{\mathbb{R}} \left(L_{(2k',l',0)} \varphi(\lambda), \sum_{k',l' \in \mathbb{Z}^n} \rho_{k',l'}(\lambda) L_{(2k',l',0)} \varphi(\lambda) \right)_{L^2(\mathbb{R}^n)} |\lambda|^n e^{2\pi i m \lambda} d\lambda,
\]

\[
= \sum_{k',l' \in \mathbb{Z}^n} \int_{\mathbb{R}} \rho_{k',l'}(\lambda) \langle L_{(2k',l',0)} \varphi(\lambda), L_{(2k',l',0)} \varphi(\lambda) \rangle_{L^2(\mathbb{R}^n)} |\lambda|^n e^{2\pi i m \lambda} d\lambda,
\]

\[
= \sum_{k',l' \in \mathbb{Z}^n} \int_{\mathbb{R}} \rho_{k',l'}(\lambda) \sum_{r \in \mathbb{Z}} \| L_{(2k',l',0)} \varphi(\lambda + r) \|_{L^2}^2 |\lambda + r|^n e^{2\pi i m \lambda} d\lambda,
\]

\[
= \int_{\mathbb{R}} \left(\rho_{k',l'}(\lambda) \sum_{r \in \mathbb{Z}} \| L_{(2k',l',0)} \varphi(\lambda + r) \|_{L^2}^2 |\lambda + r|^n e^{2\pi i m \lambda} d\lambda,
\]

as \(\varphi \) satisfies condition C. Hence, using the fact that \(\| L_{(2k',l',0)} \varphi(\lambda) \|_{L^2} = \| \varphi(\lambda) \|_{L^2}, \forall k, l \in \mathbb{Z}^n \), we have

\[
\langle L_{(2k',l',0)} \varphi, \hat{\varphi} \rangle = \int_{\mathbb{R}} \rho_{k',l'}(\lambda) \sum_{r \in \mathbb{Z}} \| \varphi(\lambda + r) \|_{L^2}^2 |\lambda + r|^n e^{2\pi i m \lambda} d\lambda,
\]

\[
= \int_{\mathbb{R}} \rho_{k',l'}(\lambda) G^\rho_{0,0}(\lambda) e^{2\pi i m \lambda} d\lambda.
\]

Then proceeding exactly as in Theorem 3.1, we can show that \(\rho_{0,0}(\lambda) = \frac{1}{G^\rho_{0,0}(\lambda)} \) a.e. \(\lambda \in (0, 1] \) and \(\rho_{k,l}(\lambda) = 0 \) a.e. \(\lambda \in (0, 1], \forall (k, l, m) \neq (0, 0) \). Since \(\rho \in L^2((0, 1], \ell^2(\mathbb{Z}^{2n}), G_0^\rho) \), it follows that \(\frac{1}{G^\rho_{0,0}} \in L^1(0, 1] \).

Conversely, assume that \(\frac{1}{G^\rho_{0,0}} \in L^1(0, 1] \). Consider \(\rho(\lambda) = (0, \ldots, 0, 1, 0, \ldots, 0, \frac{1}{G^\rho_{0,0}(\lambda)}, 0, \ldots, 0, \ldots) \), with \(\frac{1}{G^\rho_{0,0}(\lambda)} \) in the 0th position a.e. \(\lambda \in (0, 1] \). Then \(\rho \in L^2((0, 1], \ell^2(\mathbb{Z}^{2n})) \),
Theorem 6.2 Let \(\varphi \in L^2(\mathbb{H}^n) \) be such that \(\varphi \) satisfies condition C. If \(G_{0,0}^\varphi(\lambda) > 0 \) a.e. \(\lambda \in (0, 1] \), then \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is \(\ell^2 \)-linearly independent.

Proof Suppose \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is \(\ell^2 \)-linearly dependent. Then there exists a non-zero sequence \(\{c_{k,l,m}\} \) in \(\ell^2(\mathbb{Z}^{2n+1}) \) such that

\[
\sum_{(k,l,m) \in \mathbb{Z}^{2n+1}} c_{k,l,m} L_{(2k,l,m)}\varphi = 0.
\]

Consider the partial sum

\[
S_{k',l',m'}\varphi = \sum_{|k| \leq k', |l| \leq l', |m| \leq m'} c_{k,l,m} L_{(2k,l,m)}\varphi.
\]

Then \(S_{k',l',m'}\varphi \) converges to 0 in \(L^2(\mathbb{H}^n) \). Moreover, it follows from (2.9) that

\[
\|S_{k',l',m'}\varphi\|^2_{L^2(\mathbb{H}^n)} = \sum_{|k| \leq k', |l| \leq l', |m| \leq m'} \left| \sum_{|m| \leq m'} c_{k,l,m} e^{2\pi im\lambda} \right|^2 G_{0,0}^\varphi(\lambda)d\lambda.
\]

Proceeding along same lines as that of Theorem 4.1, we can find a set \(E \) with strictly positive measure such that if \(\varphi \) is the canonical dual to \(\varphi \), then it follows from (2.12) that \(\varphi \in V(\varphi) \). From (6.2), using similar argument as in Theorem 3.1, we can show that \(\varphi \) is the canonical dual to \(\varphi \).

\(\Box \)

In the following, we state the converse of the above theorem without proof. The proof will be similar to the proof of Theorem 4.3.

Theorem 6.3 Let \(0 \neq \varphi \in L^2(\mathbb{H}^n) \). Assume that \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is \(\ell^2 \)-linearly independent. Then \(G_{0,0}^\varphi(\lambda) > 0 \) a.e. \(\lambda \in (0, 1] \).

As in the case of twisted translation, by taking \(B = \|G_{0,0}^\varphi\|_\infty \) in Theorem 2.2, we can show the following theorem.

Theorem 6.4 Let \(\varphi \in L^2(\mathbb{H}^n) \) be such that \(\varphi \) satisfies condition C and \(\frac{1}{G_{0,0}^\varphi} \in L^1(0, 1] \). Then the following are equivalent.

(a) \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is Hilbertian.

(b) \(\|G_{0,0}^\varphi\|_\infty < \infty \).

(c) \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is a Bessel sequence.

Theorem 6.5 Let \(\varphi \in L^2(\mathbb{H}^n) \) be such that \(\varphi \) satisfies condition C and \(\frac{1}{G_{0,0}^\varphi} \in L^1(0, 1] \). If any of the equivalent conditions of the above theorem holds, then there exists \(\tilde{\varphi} \in V(\varphi) \) such that \(\{L_{(2k,l,m)}\tilde{\varphi} : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is Besselian.

Moreover, if \(\{L_{(2k,l,m)}\varphi : (k, l, m) \in \mathbb{Z}^{2n+1}\} \) is Besselian and if for each \(\psi \in V(\varphi) \), there exists a sequence \(\{c_{k,l,m}\} \) such that \(\psi = \sum_{(k,l,m) \in \mathbb{Z}^{2n+1}} c_{k,l,m} L_{(2k,l,m)}\varphi \), then \(\|\frac{1}{G_{0,0}^\varphi}\|_\infty < \infty \).
\textbf{Proof} Let us assume that \(\|G^\varphi_{0,0}\|_\infty < \infty \). Since \(\varphi \) satisfies condition C and \(\frac{1}{G^\varphi_{0,0}} \in L^1(0, 1) \), it follows from Theorem 6.1 that there exists \(\hat{\varphi} \in V(\varphi) \), which is the canonical dual to \(\varphi \) and it satisfies the relation \(\hat{\varphi}(\lambda) = \frac{1}{G^\varphi_{0,0}(\lambda)} \hat{\varphi}(\lambda) \). Since \(\hat{\varphi} \in V(\varphi) \), we have

\[L_{(2k,l,0)} \hat{\varphi}(\lambda) = \sum_{(k',l') \in \mathbb{Z}^{2n}} \rho_{k'-k,l'-l}(\lambda) e^{2\pi i(k'l'k')\lambda} L_{(2k',l',0)} \varphi(\lambda), \quad \forall (k, l) \in \mathbb{Z}^{2n}. \quad (6.3) \]

In fact, let \(\tilde{\varphi} \in A(\varphi) \) i.e., \(\tilde{\varphi} = \sum_{(k',l',m') \in \mathcal{F}} c_{k',l',m'} L_{(2k',l',m')} \varphi \), where \(\mathcal{F} \) denotes a finite set. Then

\[L_{(2k,l,0)} \tilde{\varphi}(\lambda) = \sum_{k',l',m'} c_{k',l',m'} L_{(2k,l,0)} L_{(2k',l',m')} \varphi(\lambda) \]

\[= \sum_{k',l',m'} c_{k',l',m'} L_{(2k,l+l',m'+k',l-l')} \varphi(\lambda). \]

Hence

\[L_{(2k,l,0)} \tilde{\varphi}(\lambda) = \sum_{k',l',m'} c_{k',l',m'} L_{(2k+l+k',l+l',m'+k'-l-l')} \varphi(\lambda) \]

\[= \sum_{k',l',m'} c_{k',l',m'} e^{2\pi i(m'+k'-l-l')\lambda} L_{(2k+l+l',0)} \varphi(\lambda). \]

Applying change of variables, we get

\[L_{(2k,l,0)} \tilde{\varphi}(\lambda) = \sum_{k',l',m'} c_{k',l',m'} e^{2\pi i(m'+k'-l-l')\lambda} L_{(2k',l',0)} \varphi(\lambda) \]

\[= \sum_{k',l'} \rho_{k'-k,l'-l}(\lambda) e^{2\pi i(k'k-l'l')\lambda} L_{(2k',l',0)} \varphi(\lambda). \]

Thus using density argument, (6.3) will follow. Since from Theorem 6.1, \(\rho_{0,0}(\lambda) = \frac{1}{G^\varphi_{0,0}(\lambda)} \) a.e. \(\lambda \in (0, 1] \) and \(\rho_{k,l}(\lambda) = 0 \) a.e. \(\lambda \in (0, 1], \forall (k, l) \neq (0, 0) \), it follows that

\[L_{(2k,l,0)} \hat{\varphi}(\lambda) = \frac{1}{G^\varphi_{0,0}(\lambda)} L_{(2k,l,0)} \varphi(\lambda). \]

Now

\[G^\tilde{\varphi}_{k,l}(\lambda) = \sum_{r \in \mathbb{Z}} \langle \tilde{\varphi}(\lambda + r), L_{(2k,l,0)} \tilde{\varphi}(\lambda + r) \rangle_{B_2} |\lambda + r|^n \]

\[= \frac{1}{(G^\varphi_{0,0}(\lambda))^2} \sum_{r \in \mathbb{Z}} \langle \tilde{\varphi}(\lambda + r), L_{(2k,l,0)} \varphi(\lambda + r) \rangle_{B_2} |\lambda + r|^n, \quad \forall (k, l) \in \mathbb{Z}^{2n}. \]

Thus \(G^\tilde{\varphi}_{0,0}(\lambda) = \frac{1}{(G^\varphi_{0,0}(\lambda))^2} \sum_{r \in \mathbb{Z}} \|\tilde{\varphi}(\lambda + r)\|^2_{B_2} |\lambda + r|^n = \frac{1}{G^\varphi_{0,0}(\lambda)} \) a.e. \(\lambda \in (0, 1] \) and for \((k, l) \neq (0, 0) \), \(G^\tilde{\varphi}_{k,l}(\lambda) = 0 \) a.e. \(\lambda \in (0, 1] \), as \(\varphi \) satisfies condition C. Hence \(\tilde{\varphi} \) satisfies condition C.
Assume that\[\sum_{(k,l,m) \in \mathbb{Z}^{2n+1}} c_{k,l,m} L_{(2k,l,m)} \tilde{\varphi} < \infty. \]As \(\tilde{\varphi} \) satisfies condition C, it follows from (2.9) that
\[
\left\| \sum_{|k| \leq k', |l| \leq l', |m| \leq m'} c_{k,l,m} L_{(2k,l,m)} \tilde{\varphi} \right\|_{L^2(\mathbb{R}^n)}^2 = \sum_{|k| \leq k', |l| \leq l'} \int_0^1 \left| \sum_{|m| \leq m'} c_{k,l,m} e^{2\pi i m \lambda} \right|^2 G_{0,0}^{0,0}(\lambda) d\lambda.
\]
Now proceeding similarly as in Theorem 5.4 and using the fact that \(\|G_{0,0}^{0,0}\|_{\infty} < \infty \), we can show that \(\{c_{k,l,m}\} \in \ell^2(\mathbb{Z}^{2n+1}) \), thus proving that \(\{L_{(2k,l,m)} \tilde{\varphi} : (k,l,m) \in \mathbb{Z}^{2n+1}\} \) is Besselian.

The proof of the remaining part of this theorem is similar to the proof of Theorem 5.4. □

Acknowledgements We thank the referee for meticulously reading the manuscript and giving us valuable comments and suggestions.

References

1. Barbieri, D., Hernandez, E., Mayeli, A.: Bracket map for the Heisenberg group and the characterization of cyclic subspaces. Appl. Comput. Harmon. Anal. 37, 218–234 (2014)
2. Barbieri, D., Hernandez, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)
3. Bownik, M.: The structure of shift-invariant subspaces of \(L^2(\mathbb{R}^n) \). J. Funct. Anal. 176, 282–309 (2000)
4. Cabrelli, C., Paternostro, V.: Shift-invariant spaces on LCA groups. J. Funct. Anal. 258, 2034–2059 (2010)
5. Christensen, O.: Frames and Bases an Introductory Course. Birkhäuser, Boston (2008)
6. Currey, B., Mayeli, A., Oussa, V.: Characterization of shift-invariant spaces on a class of Nilpotent Lie groups with application. J. Fourier Anal. Appl. 20, 384–400 (2014)
7. Heil, C.: A Basis Theory Primer. Birkhäuser, Basel (2011)
8. Hernandez, E., Sikic, H., Weiss, G., Wilson, E.: On the Properties of the Integer Translates of a Square Integrable Function in \(L^2(\mathbb{R}) \), Harmonic Analysis and Partial Differential Equations, Contemporary Mathematics, pp. 233–249. American Mathematical Society, Providence (2010)
9. Iversen, J.: Frames generated by compact group actions. Trans. Am. Math. Soc. 370(1), 509–551 (2018)
10. Kamyabi Gol, R.A., Raisi Tousi, R.: The structure of shift invariant spaces on a locally compact abelian group. J. Math. Anal. Appl. 340, 219–225 (2008)
11. Kislyakov, S.V.: A sharp correction theorem. Studia Math. 113(2), 177–196 (1995)
12. Radha, R., Adhikari, S.: Frames and Riesz bases of twisted shift-invariant spaces in \(L^2(\mathbb{R}^n) \). J. Math. Anal. Appl. 434, 1442–1461 (2016)
13. Radha, R., Adhikari, S.: Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group. arXiv:1711.06902 [math.FA]
14. Radha, R., Shravan kumar, N.: Shift-invariant subspaces on compact groups. Bull. Sci. Math 137(No 4), 485–497 (2013)
15. Luef, F.: Projections in noncommutative tori and Gabor frames. Proc. Am. Math. Soc. 139, 571–582 (2011)
16. Saliani, S.: \(\ell^2 \)-linear independence for the system of integer translates of a square integrable function. Proc. Am. Math. Soc. 141(3), 937–941 (2013)
17. Thangavelu, S.: Harmonic Analysis on the Heisenberg Group. Birkhäuser, Boston (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.