On The Infinitely Divisible of Meixner Distribution

Dodi Devianto*1, Rahma Diana Safitri1, Jayanti Herli1, Maiyastri1

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University Padang 25163, West Sumatra Province, Indonesia
*Corresponding author: ddevianto@fmipa.unand.ac.id

Abstract
The log-returns of most financial data show a significant leptokurtosis. For the better fit we showed a special levy process which is called the Meixner process. The Meixner distribution belongs to the class of infinitely divisible distribution characterized by using characteristic function satisfied continuity and complex conjugate properties, and it was proposed as a model for represented efficiently of the log-returns of financial data. The perfect fit of underlying Meixner distribution performing by using goodness of fit test.

Keywords
Meixner distribution, infinitely divisible distribution, characteristic function, goodness of fit test

1. INTRODUCTION
The log-returns of most financial data have an actual kurtosis. The normal distribution has lower kurtosis than log-returns of most financial data, which show a significant leptokurtosis. Therefore, we propose another model which is reached the higher kurtosis in financial data. The model is the special of levy process, that is Meixner process, which was introduce in Grigelionis (1999). The Meixner distribution is a distribution with four parameters there are \((\alpha, \beta, \mu, \delta)\)it was introduced in Schouten (2001, 2003). This paper will determine the infinitely divisible of Meixner distribution and it is shown the goodness of fit of Meixner distribution on financial data.

The simulation and estimation of the Meixner distribution was introduced in Grigoletto and Provasi (2009). Kawai (2012) has studied likelihood ratio gradient estimation for Meixner distribution and Levy processes, while Kawai and Masuda (2011) have studied local asymptotic normality property for Meixner Levy processes with discrete observations. Fengler and Melnikov (2017) have introduced the models option pricing GARCH with innovation Meixner. Hass (2018) has investigated the pricing of cliquet options with Meixner processes. Most of the analysis of financial data by previous researcher showed interest on the dynamics of exchange rate. On this paper we will present the analyze of IDR-USD rates and fit the data to Meixner distribution.

This paper will give the property of infinitely divisible of Meixner distribution. In section 2, we introduce the Meixner distribution and the infinitely divisible characteristic function of Meixner distribution. In section 3 we fit the Meixner distribution to our data set of exchange of IDR-USD rates and we perform the result by Histogram and QQ-plot with p-value of Kolmogorov-Smirnov test using WolframMathematica.

2. THE MEIXNER DISTRIBUTION
This section will give definition of Meixner distribution and some properties of characteristic function including its infinite divisibility.

Definition 1 The probability density function (pdf) of the Meixner distribution with parameter \(\theta = (\alpha, \beta, \delta, \mu)\) with notation \(X \sim MXR(\alpha, \beta, \delta, \mu)\) that is

\[
 f_{MXR}(x; \theta) = \frac{(2 \cos(\beta/2))^{2\beta}}{2 \alpha \pi \Gamma(2\delta)} \exp\left(\frac{\beta(x - \mu)}{\alpha}\right) \left|\Gamma\left(\delta + i\frac{x - \mu}{\alpha}\right)\right|^2
\]

where

\[-\infty < x < \infty, -\infty < \mu < +\infty, \alpha > 0, -\pi < \beta < \pi, \delta > 0\]

and

\[
 \left|\Gamma\left(\delta + i\frac{x - \mu}{\alpha}\right)\right|^2 = \left(\int_0^\infty \cos\left(\frac{x - \mu}{\alpha} \log y\right) y^{\delta-1} e^{-\gamma dy}\right)^2
 + \left(\int_0^\infty \sin\left(\frac{x - \mu}{\alpha} \log y\right) y^{\delta-1} e^{-\gamma dy}\right)^2
\]
The characteristic function φ of a distribution from random variable X, is the Fourier-Stieljes transform of random variable X with distribution function $F(x) = P(X \leq x)$ that is defined in Lukacs (1992) as follows

$$\varphi_X(t) = E(\exp(itX)) = \int_{-\infty}^{+\infty} \exp(itx) dF(x).$$

The characteristic function of the Meixner distribution with parameters $(\alpha, \beta, \delta, \mu)$ is given by

$$\varphi_X(t) = \left(\frac{\cos \left(\frac{\beta}{2}\right)}{\cosh \left(\frac{\alpha t}{2}\right)}\right)^{2\delta} \exp(it\mu)$$

The followings will give some properties of characteristic function from Meixner distribution as theory on supporting its infinite divisibility.

Preposition 1 Let $\varphi_X(t)$ is the characteristic function of Meixner distribution, then $\varphi_X(0) = 1$.

Proof. It is easily to have $\varphi_X(0) = 1$.

Preposition 2 Let X be random variable of Meixner distribution with characteristic function $\varphi_X(t)$, then characteristic function of $-X$ is conjugate from characteristic function $\varphi_X(t)$ that is $\varphi_X(t)$.

Proof. Let $Y = -X$ then we get $\frac{dy}{dx} = -1$, so that we have

$$|J| = \left|\frac{dy}{dx}\right| = |-1| = 1.$$ Since $Y = -X$, the characteristic function of random variable $-X$ is

$$\varphi_{-X}(t) = \int_{-\infty}^{+\infty} \exp(it(-x)) f(-x) dx$$

$$= \int_{-\infty}^{+\infty} \exp(it(-x)) \left(\frac{2\cos(\beta/2)^{2\delta}}{2\alpha \pi \Gamma(2\delta)} \exp\left(\frac{\beta(x-\mu)}{\alpha}\right)\right) dx$$

$$\left|\Gamma\left(\delta + \frac{i(x-\mu)}{\alpha}\right)\right|^2 \frac{\cos \left(\frac{\beta}{2}\right)}{\cosh \left(\frac{\alpha t}{2}\right)} d x$$

$$= \left(\frac{\cos \left(\frac{\beta}{2}\right)}{\cosh \left(\frac{\alpha t}{2}\right)}\right)^{2\delta} \exp(-it\mu) \int_{-\infty}^{+\infty} \left(\frac{2\cos \left(\frac{\beta-it\alpha}{2}\right)}{2\alpha \pi \Gamma(2\delta)}\right)^{2\delta} dx$$

$$\exp\left(\frac{\beta-it\alpha}{\alpha}(-x-\mu)\right) \left|\Gamma\left(\delta + \frac{i(-x-\mu)}{\alpha}\right)\right|^2 d x.$$

The following will give some properties of characteristic function from Meixner distribution as theory on supporting its infinite divisibility.

Preposition 3 Characteristic function of Meixner distribution is continuous.

Proof. Let $\varphi_X(t)$ is characteristic function of Meixner distribution and let $h = s - t$ for $s > t$. It will shows that for every $\varepsilon > 0$ there exists $\delta(\varepsilon)$, therefore $|\varphi_X(s) - \varphi_X(t)| < \varepsilon$, then $|s-t| < \delta(\varepsilon)$. We have the following equation

$$|\varphi_X(s) - \varphi_X(t)| = \left|\cos \left(\frac{\beta}{2}\right)\right|^{2\delta} \exp(it\mu) - \frac{\cos \left(\frac{\beta}{2}\right)}{\cosh \left(\frac{\alpha t}{2}\right)} \exp(it\mu)$$

$$= \left|\cos \left(\frac{\beta}{2}\right)\right|^{2\delta} \exp(i(h + t)\mu) - \frac{\cos \left(\frac{\beta}{2}\right)}{\cosh \left(\frac{\alpha t}{2}\right)} \exp(it\mu)$$

For $h = s - t$, then $h \rightarrow 0$ and $|\varphi_X(s) - \varphi_X(t)| \rightarrow 0$ and then for every $\varepsilon > 0$ there exists $\delta(\varepsilon)$ in form $\delta(\varepsilon) < \varepsilon$, then $|\varphi_X(s) - \varphi_X(t)| < \varepsilon$, then $|s-t| < \delta(\varepsilon)$.

Lemma 1. Let X be random variable of Meixner, $X \sim MXR(\alpha, \beta, \delta, \mu)$, then the expected value, variance, skewness and kurtosis of random variable X are given by

$$E(X) = \alpha \delta \tan \left(\frac{\beta}{2}\right) + \mu$$

$$VAR(X) = \frac{\alpha^2 \delta \sec^2 \left(\frac{\beta}{2}\right)}{2}$$

$$SKEW(X) = \sqrt{\frac{2}{\delta}} \sin \left(\frac{\beta}{2}\right)$$

$$KURT(X) = 3 + \frac{2 - \cos(\beta)}{\delta}$$

Proof. Let $\kappa_X^{(\nu)}(t)$ denoted the ν^{th} derivative of $\kappa_X(t)$ of the cumulant generating function of the Meixner distribution with respect to t, then it can be shown that:

$$\kappa_X(t) = 2\delta \ln \left(\cos \left(\frac{\beta}{2}\right)\right) - 2\delta \ln \left(\cos \left(\frac{\alpha t + \beta}{2}\right)\right) + \mu t$$
The characteristic function of a distribution is defined as a random variable as the main result is established in this paper. This derivative of the cumulant generating function, so that we have

\[\varphi_S(t) = \sum_{n=1}^{n} \varphi_{X_i}(t) = \varphi_{X_1} + \varphi_{X_2} + \ldots + \varphi_{X_n} \]

This is show that \(S_n \) also has Meixner distribution with parameters \((\alpha, \beta, \delta, \mu)\).

3. THE INFINITELY DIVISIBLE OF MEIXNER DISTRIBUTION

The infinitely divisible of some distribution function is defined if for every \(n \) positive integer there is a distribution function \(F_n \) such as the distribution \(F \) is convolution \(n \) time’s of \(F_n \), where \(F = (F_n * F_n * \ldots * F_n) \), see Chung (2001). An equivalent definition of infinitely divisible distribution is also given on property of characteristic function. Steutel and Harn (2004) give its understanding, suppose \(\varphi_X(t) \) is the characteristic function of the distribution \(F \). If for every positive integer \(n \), there exists a function \(\varphi_X \), as the \(n \)-th power of a characteristic function becomes the characteristic function \(\varphi_X(t) \), we say that the distribution is infinitely divisible, then \(\varphi_X(t) = (\varphi_X(t))^n \)

Proposition 4 Meixner distribution is infinitely divisible.

Proof. There exist a characteristic function of Meixner distribution with

\[\varphi(t) = \left(\frac{\cos \left(\frac{\beta t}{2} \right)}{\cosh \left(\frac{(\alpha t - \beta \delta)}{2} \right)} \right)^{\frac{2\mu}{\delta}} \exp \left(\frac{(it \mu)}{n} \right) \]

as the characteristic function of Meixner distribution with parameters \((\alpha, \beta, \delta, \mu)\). Then we have the following relation

\[\varphi_n(t; \alpha, \beta, \delta, \mu)_n = \left(\frac{\cos \left(\frac{\beta t}{2} \right)}{\cosh \left(\frac{(\alpha t - \beta \delta)}{2} \right)} \exp \left(\frac{(it \mu)}{n} \right) \right)^n = \varphi(t; \alpha, \beta, \delta, \mu). \]

A consequence of infinitely divisible is that the characteristic function of the Meixner distribution is infinitely divisible, since we have \(\varphi_X(t; \alpha, \beta, \delta, \mu) = \left[\varphi_{X_0} \right](t; \alpha, \beta, \delta, \mu) \)
4. THE GOODNESS OF FIT OF MEIXNER DISTRIBUTION

In this paper we studied the dynamics data in exchange of IDR-USD rates as the application of the infinitely divisible Meixner distribution. The period of data analysis of exchange rate IDR (Indonesian Rupiah) to USD (Dolar of American) is from Januari 4th 2016 until Augustus 31th 2017, totally of data are 407. Exchange rate IDR-USD we get from BI (Bank Indonesia). The goodness of fit performance shows graphical by histogram, QQ-plot and also with statistical test by Kolmogorov-Smirnov. The QQ-plot is a graphical method that plots the empirical quantiles of the fitted distribution. And the numerical of p-value from Kolmogorov-Smirnov test is must been higher than 0.05. The histogram and QQ-plot of the empirical of the Meixner distribution fitted the log-returns of data was showed in (a). The QQ-plot was showed in (b), it shows that the points lie on or very near to the straight line and it confirm the Meixner distribution is the better fit for analyzing financial data. The Quantile-plot from Meixner distribution in log return of exchange rate in Figure (1.b), with the p-value of Kolmogorov-Smirnov test. 0.599658 and it is greater than 0.05, then we conclude that the data is distributed to Meixner distribution.

The consequence of infinitely divisible Meixner distribution, the we can divide the data into 12, it is to show the change of in log return of exchange rate hourly. The original curve of probability density function of Meixner distribution is in blue line and the infinitely divisible of Meixner distribution (log return of exchange rate hourly) in red line. Parameters of exchange rate IDR-USD (daily data) is $\alpha = 0.00439032$, $\beta = -0.0125685$, $\mu = -0.0000354$, $\delta = 0.2713906$. And then we make the data exchange rate IDR-USD to hourly, then we have $\alpha = 0.00439032$, $\beta = -0.0125685$, $\mu = -0.00001475$, $\delta = 0.01130794$ this performance shows that the Meixner distribution is infinitely divisible such as in Theorem 3.1.

5. CONCLUSION

The infinitely divisible Meixner distribution is determined by using the property of characteristic function. The characteristic function which is defined as Fourier-Stieltjes transform has performed the continuity property. The financial data of log return exchange rate IDR-USD has shown a significant where Meixner distribution has better fit as special Levy process.

REFERENCES

Chung, K. L. (2001). *Course in Probability Theory*. Academic Press
Fengler, M. R. and A. Melnikov (2017). GARCH option pricing models with Meixner innovations. *Review of Derivatives Research*, 21(3); 277–305
Grigelionis, B. (1999). Processes of Meixner type. *Lithuanian Mathematical Journal*, 39(1); 33–41
Grigoletto, M. and C. Provasi (2009). Simulation and Estimation of the Meixner Distribution. *Communications in Statistics Simulation and Computation*, 38(1); 58–77
Hass, M. (2018). Cliquet option pricing with Meixner processes. *Modern Stochastics: Theory and Applications*, 1; 81–97
Kawai, R. (2012). Likelihood Ratio Gradient Estimation for Meixner Distribution and L evy Processes. *Computational Statistics*, 27(4); 739–755
Kawai, R. and H. Masuda (2011). Local asymptotic normality property for Meixner Levy processes with discrete observations. *Statistics and Probability Letters*, 81(4); 460–469
Lukaes, E. (1992). *Characteristic function (2nd ed.)*. Griffin, London
Schouten, W. (2001). *Meixner Processes in Finance*. Technical Report
Schouten, W. (2003). *Levy Processes in Finance*. New York: John Wiley & Sons
Steutel, F. and K. Harn (2004). *Infinite Divisibility of Probability Distributions on the Real Line*. Marsel Dekker Inc., New York