Targeting regulatory T cells in cytokine-induced killer cell cultures (Review)

QIANSHAN TAO, HUIPING WANG and ZHIMIN ZHAI

Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China

Received October 24, 2013; Accepted February 5, 2014

DOI: 10.3892/br.2014.234

Abstract. Regulatory T cells (Tregs) are potent immunosuppressive cells that promote tumor growth and invasion by inducing immune escape and suppressing the antitumor immune response. Cytokine-induced killer (CIK) cells are considered to be the primary candidate for adoptive immunotherapy due to their strong antitumor activity. It was recently reported that the concomitant presence of Tregs may decrease the cytotoxicity of CIK cells. Therefore, depletion or down-regulation of Tregs in CIK cell cultures by optimizing the culture program may enhance CIK cell cytotoxicity in vitro and in vivo. The aim of the present review was to summarize the currently available studies on the optimal culture strategy for improving the antitumor activity of CIK cells through targeting Tregs.

Contents

1. Introduction
2. CIK cell immunotherapy and Tregs
3. Targeting Tregs in CIK cell cultures
4. Conclusion

1. Introduction

Regulatory T cells (Tregs) are potent immunosuppressive cells that are essential for inducing immune tolerance and preventing autoimmune and inflammatory diseases (1,2). However, Tregs are commonly increased in malignancies and may limit beneficial responses by suppressing sterilizing and antitumor immunity (3,4). For this reason, finding effective methods to neutralize Tregs or their function is critical for successful tumor immunotherapy. Moreover, cytokine-induced killer (CIK) cells comprise heterogeneous cell populations, including a major effector cell population expressing both T-cell and natural killer (NK)-cell markers and lyse target cells in a non-major histocompatibility (MHC)-restricted manner (5). CIK cells were shown to be a promising tool in antitumor adoptive immunotherapy strategies (6); however, the main functional properties of CIK cells may be limited by certain inhibitory factors. It was recently reported that the concomitant presence of Tregs in CIK cell cultures may decrease CIK cell cytotoxicity, whereas depletion or down-regulation of Tregs by optimizing the culture program may improve the antitumor activity of CIK cells in vitro and in vivo. The present review aimed to summarize the currently available studies on the optimal culture strategy for improving the antitumor activity of CIK cells through targeting Tregs.

2. CIK cell immunotherapy and Tregs

Adaptive immunotherapy, a potential new approach, holds great promise in the treatment of various tumors that may be refractory to conventional therapies. Schmidt-Wolf et al (5) were the first to report that CIK cells, which are now considered as the primary candidate for adoptive immunotherapy, exert strong antiproliferative and cytotoxic effects against tumor cells (5,6). CIK cells are cytotoxic immune effector cells that are readily expandable and express the T-cell marker CD3, as well as the NK-cell marker CD56. The cytotoxicity of CIK cells is MHC-unrestricted and T-cell receptor-independent (5,7,8). The exact mechanisms underlying tumor cell recognition and elimination have not been fully elucidated in CIK cells; however, the NK cell-activating receptor NK group 2 member D (NKG2D), which is expressed on the membrane of CIK cells and interacts with MHC-unrestricted ligands on tumor cells, may play a predominant role (9). CIK cells may be generated by in vitro culture of peripheral blood mononuclear cells from healthy donors or tumor patients with interferon (IFN)-γ, interleukin (IL)-2, IL-1 and anti-CD3 monoclonal antibodies (mAb) (5). CIK cells may also be generated by incubating mononuclear cells from the bone marrow or cord blood with various types of additions (10,11).

The relatively robust and simple cell culture procedures used to expand CIK cells have enabled antitumor adoptive immunotherapy to be increasingly investigated worldwide. Numerous attributes for the use of CIK cells were developed...
over the past 2 decades. Clinical studies on CIK cells confirmed
the benefits and safety for patients with hematological malignancies and solid tumors (10,12). The International Registry on
CIK Cells was recently established to collect data worldwide
and set standard criteria to report the results of clinical trials
performed with CIK cells (13).

It was also demonstrated that combining chemotherapy,
radiotherapy or other immunotherapy approaches with
CIK cells may further enhance the therapeutic effect and prolong
the survival of cancer patients (6,14). Moreover, enhancing the
potency and specificity of CIK cell immunotherapy via optimi-
zizing the culture program may significantly improve their
antitumor activity. In particular, it was reported that Tregs
decreased the cytotoxicity of CIK cells (15), whereas cyto-
xicity was enhanced when Tregs were removed or downregulated.
The in vitro culture of CIK cells exhibited strong induction of
CD4+CD25+ cells with high secretion of IL-10 following unspec-
fic stimulation of the T-cell receptor (TCR) complex and
IL-2 (15). Depletion of CD25+ cells resulted in increased cyto-
xicity and reduced IL-10 release in CIK cells. Furthermore,
depletion of CD25+ cells pre-culture significantly increased
the proliferation and antitumor activity of CIK cells in vivo
and in vitro (15). Transforming growth factor-β (TGF-β) and
glucocorticoid-induced tumor necrosis factor-receptor-
related protein may participate in the immune regulation of Tregs in
CIK cell cultures and the inhibition of these two molecules was
found to partially abrogate the inhibitory effects of Tregs on
CIK cell proliferation and cytotoxicity (15).

3. Targeting Tregs in CIK cells

Dendritic cell (DC)-CIK cells. Following co-culture of
CIK cells with DC (DC-CIK cells), Tregs, the expres-
sion of TGF-β and IL-10 were downregulated; however,
the main effector cells, including CD3+CD56+ NKT cells,
cytokine expression and cytotoxicity were all significantly
upregulated (16,17). Moreover, T-bet, as a transcription factor
controlling IFN-γ expression in T helper 1 cells, further
enhanced the antitumor effects of DC-CIK cells by suppressing
Treg pathways (18). Thus, DC-CIK or improved DC-CIK cells
may be used for the induction of a specific immune response by
blocking the properties of Tregs and Treg-related cytokines.

Thymoglobulin (TG)-CIK cells. TG is a purified, pasteurized
preparation of polyclonal rabbit γ-immunoglobulin directed
against human thymocytes and displays specificity towards
a wide variety of surface antigens in the immune system.
CIK cells are typically generated with anti-CD3 mAb and
other cytokines; however, a previous study reported that
TG fostered the generation of functional CIK cells with no
concomitant expansion of tumor-suppressive Tregs compared
to anti-CD3 mAb (19).

IL-6-CIK cells. Over the last few years, the potential effects
of other cytokines on the generation of Tregs during the
preparation of CIK cells were investigated. A previous study
assessing the proportion of Tregs in CIK cells cultured with
and without IL-6 revealed that IL-6 improved the proliferation
and cytotoxic activity of CIK cells. However, the propor-
tions of Treg/CD4+ and Treg/CD3+ cells were decreased in
IL-6-CIK cells, suggesting that the addition of IL-6 during
CIK cell culture in vitro inhibited the production of Tregs (20).

IL-2-CIK cells. As mentioned above, CIK cells are typically
generated by in vitro culture of mononuclear cells with IL-2,
a potent lymphocyte stimulator (5). However, disruption of
the IL-2 pathway was shown to result in lymphoid hyperplasia
and autoimmunity rather than immune deficiency in mice,
indicating that the major function of IL-2 is to limit rather
than improve T-cell responses, whereas IL-2 is required for
the generation and function of Tregs by upregulating Foxp3
expression (21). Signaling through the IL-2 receptor, in
particular, is critical for T-cell differentiation and survival.
Tregs express all 3 components of the high-affinity IL-2 recep-
tors (α, CD25; β, CD122; and δ, CD132); however, effector
T cells express 2 incomplete components of the low-affinity
IL-2 receptors (β, CD122 and δ, CD132) (22). Thus, Tregs
may compete with effector T cells for IL-2 and inhibit the prolifer-
ation and function of effector T cells (23). Moreover, clinical
studies reported that high doses of IL-2 enhance immune
responses and exacerbate autoimmune destruction of islets,
whereas low doses of IL-2 offer long-lasting protection in
the same model, suggesting that the effects of IL-2 vary widely
depending on the dosing regimen (24-26).

Therefore, we hypothesized that applying a high dose of IL-2
in CIK cell cultures may enhance the cytotoxicity of CIK cells
by selectively expanding effector T cells and inhibiting Tregs
in vitro. This hypothesis is currently under investigation. In
the currently available data, a conventional dose of IL-2
(500 IE/ml) was found to induce the expression of Tregs in
CIK cell cultures in a time-dependent manner, with a peak
(accounting for ~50% of the total cultured cells) at days 7-8.
After ~1 week, the expression of Tregs in CIK cell cultures
was gradually decreased with time and was reduced to <5%
at day 28; however, CD3+CD56+ NKT cells and CD3+CD8+ T
cells were significantly increased in CIK cell cultures at the
same timepoint. These data suggested that Tregs compete with
effector T cells for IL-2 via their high-affinity IL-2 receptor
under conditions of IL-2 shortage; however, effector T cells
were ultimately able to expand significantly due to the constant
addition of IL-2.

Notably, IL-2-based regimens are able to activate cellular
antitumor immunity and are the mainstay of immunotherapy
directed against tumors (27). IL-7, -15 and -21, in particular,
share the common cytokine receptor γ-chain (γc) as well as
certain properties with IL-2 and were shown to stimulate
innate immunity and increase CD8+ T-cell-mediated anti-
tumor activity. Furthermore, the addition of IL-7 or IL-15
was shown to abrogate the suppressive activity of Tregs
in vitro (28) and the administration of anti-IL-2 plus exog-
enoous IL-15 to tumor-bearing mice enhanced the adoptive
immunotherapy of tumors (29). Therefore, we do not consider
IL-2 may be the optimal T-cell growth factor in the
culture of CIK cells and other γc-signaling cytokines, such
as IL-7, IL-15 and IL-21, may be alternative choices for the
optimal culture of CIK cells.

IL-7-CIK cells. In CIK cell cultures, the presence of IL-7
was shown to abrogate the ability of Tregs to suppress the prolif-
eration of conventional T cells in response to TCR activators,
whereas removal of IL-7 restored the suppressive function of Tregs and pre-blocking of the IL-7 receptor on Tregs restored suppressor function (30). Thus, IL-7 was shown to exert a more potent proliferative effect compared to IL-2 in generating CIK cells. Furthermore, IL-7-stimulated CIK cells were more potently cytotoxic (30) and IL-7 gene-transfected CIK cells exhibited an improved proliferation rate and a significantly higher cytotoxic activity compared to non-transfected CIK cells (31).

IL-21-CIK cells. IL-21-induced CIK cells may be of clinical value in the enhancement of antitumor immunotherapy via increasing the expression of IL-21 receptor, perforin, granzyme B, Fas ligand, IFN-γ and tumor necrosis factor-α, as well as activating the Janus kinase/signal transducers and activators of transcription signaling pathway (32). However, there is currently no published report of IL-21 directly enhancing the cytotoxicity of CIK cells by decreasing Tregs.

IL-15-CIK cells. IL-15 has attracted increasing attention for use in CIK cell cultures as an alternative to IL-2, as it binds and signals through a complex composed of IL-2/IL-15 common receptors CD122 and CD132 and stimulates CD8+T, NK and NKT cell proliferation, survival and effector functions. It was recently reported that IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against tumor cells compared to IL-2-induced CIK cells. Further analysis of IL-15-induced CIK cells demonstrated that the NKG2D receptor is also involved in the recognition of target cells and the main effector cells were CD3+CD8+CD25−CD56+ cells, which were more effective compared to conventional CD3+CD56+ cells in the lysis of tumor cells (33,34). In addition, our data (35) demonstrated that the application of IL-15 instead of IL-2 during the generation of CIK cells *in vitro* downregulated the production of Tregs and IL-35, but resulted in a significant enhancement of CIK cell-mediated cytotoxicity against leukemia cells, suggesting that IL-15 may improve the cytotoxicity of CIK cells by inhibiting the production of Tregs and IL-35 expression. Thus, the present review aimed to provide an update on the potential application of IL-15 in the culture of CIK cells and tumor immunotherapy.

4. Conclusions

In conclusion, CIK cells are heterogeneous cell populations following *in vitro* expansion and are considered to be the primary candidates for adoptive immunotherapy due to their potent cytotoxicity. However, the concomitant presence of expanded Tregs in CIK cell cultures significantly decreases their cytotoxicity. Depletion or downregulation of Tregs in CIK cell cultures via optimizing the culture program enhances their antitumor activity *in vitro* and *in vivo* and may provide novel strategies for successful tumor immunotherapy.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 81141104) and the Scientific and Technological Breakthrough Projects of Anhui Province (grant no. 11010402168).

References

1. Nishikawa H and Sakaguchi S: Regulatory T cells in tumor immunity. Int J Cancer 127: 759-767, 2010.
2. Mougiakakos D, Choudhury A, Lladser AE, Kiessling R and Johansson CC: Regulatory T cells in cancer. Adv Cancer Res 107: 51-105, 2010.
3. Zou W: Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295-307, 2006.
4. Banerjee A, Vasanthakumar A and Grigoriadis G: Modulating T regulatory cells in cancer: how close are we? Immunol Cell Biol 91: 340-349, 2013.
5. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG and Weissman IL: Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174: 139-149, 1991.
6. Jiang J, Wu C and Lu B: Cytokine-induced killer cells promote antitumor immunity. J Transl Med 11: 83, 2013.
7. Sangiolo D, Martinuzzi E, Todorovic M, et al: Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol 20: 841-848, 2008.
8. Prevani A, Borleri G, Pende D, Moretta L, Rambaldi A, Golay J and Introna M: Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 118: 3301-3310, 2011.
9. Lu X, Zha A, Cai X, Jia Z, Han M, Ma L, Zhou M, Qian K, Cen L and Chen B: Role of NKG2D in cytokine-induced killer cells against multiple myeloma cells. Cancer Biol Ther 13: 623-629, 2012.
10. Introna M, Franceschetti M, Ciocca A, Borleri G, Conti E, Golay J and Rambaldi A: Rapid and massive expansion of cord blood-derived cytokine-induced killer cells: an innovative proposal for the treatment of leukemia relapse after cord blood transplantation. Bone Marrow Transplant 38: 621-627, 2006.
11. Huang WR, Gao CJ, Zhang BL, Jin H and Da WM: Activation and cytotoxicity of bone marrow immunocytes by using various cytokines. J Exp Hematol 9: 48-51, 2001 (In Chinese).
12. Ma Y, Zhang B, Tang L, Xu YC, Xie ZM, Gu XF and Wang HX: Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis. Cytotherapy 14: 483-493, 2012.
13. Hontscha C, Borck Y, Zhou H, Messmer D and Schmidt-Wolf IG: Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137: 305-310, 2011.
14. Thanendrarajan S, Nowak M, Abken H and Schmidt-Wolf IG: Combining cytokine-induced killer cells with vaccination in cancer immunotherapy: more than one plus one? Leuk Res 35: 1136-1142, 2011.
15. Li H, Yu JP, Cao S, Wei F, Zhang P, An XM, Huang ZT and Ren XB: CD4+CD25+ regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. J Clin Immunol 27: 317-326, 2007.
16. Schmidt J, Eissold S, Bucher MW and Marten A: dendritic cells reduce number and function of CD4+CD25+ cells in cytokine-induced killer cells derived from patients with pancreatic carcinoma. Cancer Immunol Immunother 53: 1018-1026, 2004.
17. Li H, Ren XB, Zhang P, An XM, Liu H and Hao XS: dendritic cells reduce the number and function of CD4+CD25+ cells in cytokine-induced killer cells. Chin Med J 85: 3134-3138, 2005 (In Chinese).
18. Miao L, Run-Ming J and Yi J: T-Bet mediated anti-neoplastic effects of dendritic cell-cytokine induced killer cells in vitro. Iran J Pediatr 22: 43-51, 2012.
19. Bonanno G, Iudicone P, Mariotti A, et al: Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK) cells in clinical-grade cultures. J Transl Med 8: 129, 2010.
20. Lin G, Wang J, Lao X, et al: Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother 35: 337-343, 2012.
21. Zheng SG, Wang J, Wang P, Gray JD and Horwitz DA: IL-2 is essential for TGF-beta to convert naive CD4+CD25+ cells to CD4+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178: 2018-2027, 2007.
22. Shevach EM: Application of IL-2 therapy to target T regulatory cell function. Trends Immunol 33: 626-632, 2012.
23. Pandiyan P, Zheng L, Ishihara S, Reed J and Lenardo MJ: CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8: 1353-1362, 2007.

24. Matsuoka K, Koreth J, Kim HT, et al: Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med 5: 179ra43, 2013.

25. Yang JC, Sherry RM, Steinberg SM, et al: Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 21: 3127-3132, 2003.

26. Bluestone JA: The yin and yang of interleukin-2-mediated immunotherapy. N Engl J Med 365: 2129-2131, 2011.

27. Antony PA and Restifo NP: CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother 28: 120-128, 2005.

28. Deshpande P, Cavanagh MM, Le Saux S, Singh K, Weyand CM and Goronzy JJ: IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J Immunol 190: 1416-1423, 2013.

29. Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G and Piaggio E: Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front Immunol 4: 155, 2013.

30. Heninger AK, Theil A, Wilhelm C, Petzold C, Huebel N, Kreitschmer K, Bonifacio E and Monti P: IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J Immunol 189: 5649-5658, 2012.

31. Finke S, Trojaneck B, Lefterova P, et al: Increase of proliferation rate and enhancement of antitumor cytotoxicity of expanded human CD3+CD56+ immunologic effector cells by receptor-mediated transfection with the interleukin-7 gene. Gene Ther 5: 31-39, 1998.

32. Zhao N, Zhao MF, Rajbhandary S, Lu WY, Zhu HB, Xiao X, Deng Q and Li YM: Effects of humanized interleukin 21 on anti-leukemic activity of cytokine induced killer cells and the mechanism. Chin J Hematol 33: 823-828, 2012 (In Chinese).

33. Rettinger E, Kuci S, Naumann I, et al: The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 14: 91-103, 2012.

34. Rettinger E, Meyer V, Kreyenberg H, et al: Cytotoxic capacity of IL-15-stimulated cytokine-induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse models. Front Oncol 2: 32, 2012.

35. Tao Q, Chen T, Tao L, Wang H, Pan Y, Xiong S and Zhai Z: IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and down-regulating regulatory T cells as well as IL-35. J Immunother 36: 462-467, 2013.