Proportional 2-Choosability with a Bounded Palette

Jeffrey A. Mudrock1 · Robert Piechota1 · Paul Shin1 · Tim Wagstrom1

Received: 2 June 2020 / Revised: 13 December 2021 / Accepted: 14 December 2021 / Published online: 22 December 2021
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021

Abstract
Proportional choosability is a list coloring analogue of equitable coloring. Specifically, a k-assignment L for a graph G associates a list $L(v)$ of k available colors to each $v \in V(G)$. An L-coloring assigns a color to each vertex v from its list $L(v)$. A proportional L-coloring of G is a proper L-coloring in which each color $c \in \bigcup_{v \in V(G)} L(v)$ is used $\lceil \eta(c)/k \rceil \text{ or } \lfloor \eta(c)/k \rfloor$ times where $\eta(c) = \{|v \in V(G) : c \in L(v)\}|$. A graph G is proportionally k-choosable if a proportional L-coloring of G exists whenever L is a k-assignment for G. Motivated by earlier work, we initiate the study of proportional choosability with a bounded palette by studying proportional 2-choosability with a bounded palette. In particular, when $\ell \geq 2$, a graph G is said to be proportionally $(2, \ell)$-choosable if a proportional L-coloring of G exists whenever L is a 2-assignment for G satisfying $|\bigcup_{v \in V(G)} L(v)| \leq \ell$. We observe that a graph is proportionally $(2, 2)$-choosable if and only if it is equitably 2-colorable. As ℓ gets larger, the set of proportionally $(2, \ell)$-choosable graphs gets smaller. We show that whenever $\ell \geq 5$ a graph is proportionally $(2, \ell)$-choosable if and only if it is proportionally 2-choosable.

Keywords Graph coloring · Equitable coloring · List coloring

Mathematics Subject Classification 05C15

1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Generally speaking we follow West [18] for terminology and notation. The set of natural numbers is $\mathbb{N} = \{1, 2, 3, \ldots\}$. For $m \in \mathbb{N}$, we write $[m]$ for the set $\{1, \ldots, m\}$. For graph G we write $\Delta(G)$ for the maximum degree of a vertex in G. We write $K_{n,m}$ for the complete bipartite graph with partite sets of size n and m.

Jeffrey A. Mudrock
jmudrock@clcillinois.edu

1 Department of Mathematics, College of Lake County, Grayslake, IL 60030, USA
When C is a cycle on n vertices ($n \geq 3$ since C is simple), $V(C) = \{v_1, \ldots, v_n\}$, and $E(C) = \{\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}$, then we say the vertices are written in cyclic order when we write v_1, \ldots, v_n. When G_1 and G_2 are vertex disjoint graphs, we write $G_1 + G_2$ for the disjoint union of G_1 and G_2.

In 2019 a new notion combining the notions of list coloring and equitable coloring called proportional choosability was introduced [8]. In this paper, we study proportional choosability with a bounded palette. We begin by briefly reviewing some important notions.

1.1 List Coloring with a Bounded Palette

In the classical vertex coloring problem we wish to color the vertices of a graph G with colors from the set $[k]$ so that adjacent vertices receive different colors, a so-called proper k-coloring. We say G is k-colorable when a proper k-coloring of G exists. The chromatic number of G, denoted $\chi(G)$, is the smallest k such that G is k-colorable.

List coloring is a variation on classical vertex coloring, and it was introduced independently by Vizing [17] and Erdős, Rubin, and Taylor [4] in the 1970’s. For list coloring, we associate with a graph G a list assignment L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. We say G is L-colorable if there exists a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$ (we refer to f as a proper L-coloring of G). A list assignment L is called a k-assignment for G if $|L(v)| = k$ for each $v \in V(G)$. We say G is k-choosable if G is L-colorable whenever L is a k-assignment for G.

The study of list coloring with a bounded palette began in 2005 [11]. Suppose that L is a list assignment for a graph G. The palette of colors associated with L is $\bigcup_{v \in V(G)} L(v)$. From this point forward, we use L to denote the palette of colors associated with L whenever L is a list assignment. Suppose $1 \leq k \leq \ell$. A list assignment L for a graph G is a (k, ℓ)-assignment for G if L is a k-assignment for G and $L \subseteq \ell$. Notice that if L is a (k, ℓ)-assignment for G, we can view L as a function with domain $V(G)$ and codomain equal to the set of k-element subsets of ℓ. We say G is (k, ℓ)-choosable if G is L-colorable whenever L is a (k, ℓ)-assignment for G. Clearly, a graph is (k, k)-choosable if and only if it is k-colorable. In [2] the complexity of (k, ℓ)-choosability is studied for grids (i.e., the Cartesian product of two paths), subgrids (i.e., induced subgraphs of grids), 3-colorable planar graphs, and triangle-free planar graphs.

In [11] it is shown that for any $k \geq 2$, there is a $C \in \mathbb{N}$ satisfying $C = O(k16^k \ln k)$ as $k \to \infty$ such that if G is $(k, 2k - 1)$-choosable, then G is C-choosable. In 2015, it was subsequently demonstrated that this constant C must also satisfy $C = \Omega(4^k / \sqrt{k})$ as $k \to \infty$ (see [1]). Importantly, results like this show that understanding list coloring with a bounded palette can provide us with information about list coloring in general. On the other hand, graphs that fail to be k-choosable can be (k, ℓ)-choosable. Indeed, for each k and ℓ satisfying $3 \leq k \leq \ell$, there is a graph G that is (k, ℓ)-choosable but not $(k, \ell + 1)$-choosable (see [11]).
1.2 Equitable Coloring and Proportional Choosability

1.2.1 Equitable Coloring

Equitable coloring is another variation on the classical vertex coloring problem that began with a conjecture of Erdős in 1964 [3]. Equitable coloring was formally defined by Meyer in 1973 [12]. Specifically, an equitable \(k \)-coloring of a graph \(G \) is a proper \(k \)-coloring \(f \) of \(G \) such that the sizes of the color classes differ by at most one (where a proper \(k \)-coloring has exactly \(k \) color classes). In an equitable \(k \)-coloring, the color classes associated with the coloring are each of size \(\lfloor \frac{|V(G)|}{k} \rfloor \) or \(\lceil \frac{|V(G)|}{k} \rceil \). We say that a graph \(G \) is equitable \(k \)-colorable if there exists an equitable \(k \)-coloring of \(G \). Equitable coloring has been applied in various contexts (for example, see [6, 7, 15, 16]). Furthermore, in 1970 Hajnal and Szemerédi [5] proved the 1964 conjecture of Erdős: every graph \(G \) has an equitable \(k \)-coloring when \(\Delta(G) \leq \frac{1}{2}k \).

Unlike classical vertex coloring, increasing the number of colors can make equitable coloring more difficult. For example, for any \(m \in \mathbb{N} \), \(K_{2m+1,2m+1} \) is equitably \(2m \)-colorable, but it is not equitably \((2m + 1) \)-colorable. Moreover, unlike classical vertex coloring, the property of being equitably \(k \)-colorable is not monotone. For example, \(K_{3,3} \) is equitably 2-colorable, but \(K_{1,3} \) is not equitably 2-colorable.

1.2.2 Proportional Choosability

In 2003, Kostochka, Pelsmajer, and West [10] introduced a list version of equitable coloring called equitable choosability which has received quite a bit of attention in the literature. If \(L \) is a \(k \)-assignment for the graph \(G \), a proper \(L \)-coloring of \(G \) is an equitable \(L \)-coloring of \(G \) if each color in \(L \) appears on at most \(\frac{|V(G)|}{k} \) vertices. We say that \(G \) is equitably \(k \)-choosable if an equitable \(L \)-coloring of \(G \) exists whenever \(L \) is a \(k \)-assignment for \(G \). While equitable choosability is a useful notion in many contexts, it does not place a lower bound on how many times a color must be used, whereas in an equitable \(k \)-coloring of \(G \) each color must be used at least \(\lceil \frac{|V(G)|}{k} \rceil \) times.

Kaul, Pelsmajer, Reiniger, and the first author [8] introduced a new list analogue of equitable coloring called proportional choosability which places both an upper and lower bound on how many times a color must be used in a list coloring. Specifically, suppose that \(L \) is a \(k \)-assignment for a graph \(G \). For each color \(c \in L \), the multiplicity of \(c \) in \(L \) is the number of vertices \(v \) whose list \(L(v) \) contains \(c \). The multiplicity of \(c \) in \(L \) is denoted by \(\eta_L(c) \) (or simply \(\eta(c) \) when the list assignment is clear). So, \(\eta_L(c) = |\{ v \in V(G) : c \in L(v) \}| \). A proper \(L \)-coloring \(f \) for \(G \) is a proportional \(L \)-coloring of \(G \) if for each \(c \in L \), \(f^{-1}(c) \), the color class of \(c \), is of size \(\left\lfloor \frac{\eta(c)}{k} \right\rfloor \) or \(\left\lceil \frac{\eta(c)}{k} \right\rceil \).

We say that \(G \) is proportionally \(L \)-colorable if a proportional \(L \)-coloring of \(G \) exists,
and we say \(G \) is proportionally \(k \)-choosable if \(G \) is proportionally \(L \)-colorable whenever \(L \) is a \(k \)-assignment for \(G \). Proportional choosability has some beautiful properties, some of which, at first glance, may seem quite surprising.

Proposition 1 [8] If \(G \) is proportionally \(k \)-choosable, then \(G \) is both equitably \(k \)-choosable and equitably \(k \)-colorable.

Proposition 2 [8] If \(G \) is proportionally \(k \)-choosable, then \(G \) is proportionally \((k+1) \)-choosable.

Proposition 3 [8] Suppose \(H \) is a subgraph of \(G \). If \(G \) is proportionally \(k \)-choosable, then \(H \) is proportionally \(k \)-choosable.

Notice that Propositions 2 and 3 are particularly interesting since they do not hold in the contexts of equitable coloring and equitable choosability. Recently, a nice characterization of the proportionally 2-choosable graphs was discovered; this characterization inspired the questions that lead to this paper. Recall that a linear forest is a disjoint union of paths.

Theorem 4 [9, 13] A graph \(G \) is proportionally 2-choosable if and only if \(G \) is a linear forest such that the largest component of \(G \) has at most five vertices and all the other components of \(G \) have two or fewer vertices.

1.3 Proportional Choosability with a Bounded Palette

Having defined proportional choosability, it is natural to consider proportional choosability with a bounded palette. Suppose \(1 \leq k \leq \ell \). We say a graph \(G \) is proportionally \((k, \ell)\)-choosable if \(G \) is proportionally \(L \)-colorable whenever \(L \) is a \((k, \ell)\)-assignment for \(G \). Two properties of proportional \((k, \ell)\)-choosability are easy to immediately prove.

Proposition 5 For each \(k \in \mathbb{N} \), \(G \) is proportionally \((k, k)\)-choosable if and only if \(G \) is equitably \(k \)-colorable.

Proof Suppose \(G \) is proportionally \((k, k)\)-choosable. Let \(L \) be a \(k \)-assignment for \(G \) such that \(L(v) = [k] \) for all \(v \in V(G) \). Note that \(\eta(1) = \cdots = \eta(k) = |V(G)| \). Since \(L \) is a \((k, k)\)-assignment for \(G \), we know there is a proportional \(L \)-coloring \(f \) of \(G \). Clearly, \(f \) is also an equitable \(k \)-coloring of \(G \).

Conversely, suppose \(G \) is equitably \(k \)-colorable and \(L \) is an arbitrary \((k, k)\)-assignment for \(G \). Notice that an equitable \(k \)-coloring of \(G \) exists, and \(L(v) = [k] \) for each \(v \in V(G) \). The result follows since an equitable \(k \)-coloring of \(G \) is also a proportional \(L \)-coloring of \(G \).

Proposition 6 Suppose \(1 \leq k \leq \ell \). If \(G \) is proportionally \((k, \ell + 1)\)-choosable, then \(G \) is proportionally \((k, \ell)\)-choosable.

Proof Suppose \(G \) is proportionally \((k, \ell + 1)\)-choosable, and suppose \(L \) is an arbitrary \((k, \ell)\)-assignment for \(G \). Clearly, \(L \) is also a \((k, \ell + 1)\)-assignment for \(G \).
Since G is proportionally $(k, \ell + 1)$-choosable, we know that G is proportionally L-colorable.

The following question lead to the results in this paper.

Question 7 For each $\ell \geq 2$, what graphs are proportionally $(2, \ell)$-choosable?

Suppose G is the set of proportionally 2-choosable graphs. Notice that if $i \geq 2$ and G_i is the set of graphs that are proportionally $(2, i)$-choosable, then by Proposition 6,

$$G_2 \supseteq G_3 \supseteq G_4 \supseteq \cdots.$$

By Theorem 4, for every $\ell \in \mathbb{N}$, G_ℓ contains all linear forests such that the largest component has at most five vertices and all the other components have two or fewer vertices (i.e. G is a subset of G_ℓ for each $\ell \in \mathbb{N}$). Furthermore, Proposition 5 tells us that G_2 is exactly the set of equitably 2-colorable graphs. Since an n-vertex graph is proportionally k-choosable if and only if it is proportionally (k, kn)-choosable the following question and its generalization are natural.

Question 8 Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally $(2, \mu)$-choosable?

Question 9 For each $k \geq 2$, is there a constant μ_k such that any graph G is proportionally k-choosable if and only if G is proportionally (k, μ_k)-choosable?

Question 9 is open for each $k \geq 3$. The answer to Question 8 is yes, and interestingly, the smallest such μ for which the answer is yes is 5. Specifically, using the notation above, we will see below that

$$G_2 \supseteq G_3 \supseteq G_4 \supseteq G_5 \text{ and } G_\ell = G \text{ for each } \ell \geq 5.$$

1.4 Outline of Results and an Open Question

We will answer Question 7 for $\ell = 2$ and each $\ell \geq 5$ which will give us an answer to Question 8. The proofs of many of our results rely on finding ways to extend Proposition 3 to the bounded palette context. This presents some difficulties as the proof of Proposition 3 relies on the construction of a list assignment that may have a large palette size (cf. the proof of Proposition 21 in [8]). The characterization of the proportionally $(2, 2)$-choosable graphs below follows immediately from Proposition 5 and a simple characterization of equitably 2-colorable graphs.

Observation 10 A graph G is proportionally $(2, 2)$-choosable if and only if G is a bipartite graph with a bipartition X, Y satisfying $|X| - |Y| \leq 1$.

Our next result answers Question 7 for each $\ell \geq 5$.

Theorem 11 For each $\ell \geq 5$, a graph G is proportionally $(2, \ell)$-choosable if and only if G is a linear forest such that the largest component of G has at most 5 vertices and all other components of G have at most 2 vertices.

With Observation 10 and Theorem 11 in mind, the following question is natural.
Question 12 For $\ell = 3, 4$ what graphs are proportionally $(2, \ell)$-choosable?

Question 12 is pursued in [14] which contains long arguments that prove the following two results: (1) A connected graph G is proportionally $(2, 4)$-choosable if and only if $G = P_n$ where $n \leq 5$ or $n = 7$, and (2) A connected graph G is proportionally $(2, 3)$-choosable if and only if $G = P_n$ for some $n \in \mathbb{N}$.

One might conjecture that a graph G is proportionally $(2, 4)$-choosable (resp. $(2, 3)$-choosable) if and only if the components of G are proportionally $(2, 4)$-choosable (resp. $(2, 3)$-choosable). It is shown in [14] that this conjecture however is not correct in both directions for proportional $(2, 4)$-choosability, and the “only if” direction of this conjecture is not correct for proportional $(2, 3)$-choosability. Thus, Question 12 is open in general.

2 Proving Theorem 11

We begin by proving three lemmas.

Lemma 13 If G contains a copy of $K_{1,3}$ as a subgraph, then G is not proportionally $(2, 3)$-choosable. Consequently, if a graph G is proportionally $(2, \ell)$-choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.

Proof Suppose H is a subgraph of G such that $H = K_{1,3}$, and suppose H has bipartition $\{a\}$ and $\{b_1, b_2, b_3\}$. To prove the desired, we will construct a $(2, 3)$-assignment, L, for G such that there is no proportional L-coloring of G. Suppose L is the $(2, 3)$-assignment for G such that for each $v \in V(H), L(v) = \{1, 2\}$, and for each $v \in V(G) - V(H), L(v) = \{2, 3\}$. For the sake of contradiction, suppose that f is a proportional L-coloring of G. Note that $\eta(1) = 4$, so $|f^{-1}(1)| = 2$. Clearly, $f(a) = 1$ or $f(a) = 2$. If $f(a) = 1$, then $f(b_i) = 2$ for each $i \in [3]$, and $|f^{-1}(1)| = 1$. If $f(a) = 2$, then $f(b_i) = 1$ for each $i \in [3]$, and $|f^{-1}(1)| = 3$. In either case we have a contradiction.

Lemma 14 If a graph contains a cycle, then it is not proportionally $(2, \ell)$-choosable for each $\ell \geq 4$.

Proof Suppose G is an arbitrary graph that contains a cycle C. By Proposition 6, it suffices to show that G is not proportionally $(2, 4)$-choosable. If C is an odd cycle, then G is not 2-colorable; thus, G is not proportionally $(2, 4)$-choosable. So, we may suppose that C is an even cycle.

Suppose the vertices of C written in cyclic order are: v_1, \ldots, v_{2k+2} where $k \in \mathbb{N}$. We will now construct a $(2, 4)$-assignment, L, for G such that there is no proportional L-coloring of G. Suppose L is the $(2, 4)$-assignment for G given by $L(v_{2i-1}) = \{1, 2\}$ and $L(v_{2i}) = \{1, 3\}$ for each $i \in [k + 1]$, and $L(v) = \{3, 4\}$ if $v \in V(G) - V(C)$. Notice that $\eta(1) = 2k + 2$ and $\eta(2) = k + 1$. For the sake of contradiction, suppose f is a proportional L-coloring of G. This implies that $|f^{-1}(1)| = k + 1$ and
\[0 < \left\lfloor \frac{k + 1}{2} \right\rfloor \leq |f^{-1}(2)| \leq \left\lceil \frac{k + 1}{2} \right\rceil < k + 1.\]

Since \(C \) contains exactly two independent sets of size at least \(k + 1 \) and \(1 \notin L(v) \) for each \(v \in V(G) - V(C) \), either \(f(v_{2i}) = 1 \) for each \(i \in [k + 1] \) or \(f(v_{2i-1}) = 1 \) for each \(i \in [k + 1] \). This implies that \(|f^{-1}(2)| = k + 1 \) or \(|f^{-1}(2)| = 0 \) which in either case is a contradiction. \(\square \)

Lemma 15 If a graph contains a copy of \(K_{1,2} + K_{1,2} \), then it is not proportionally \((2, \ell)-choosable\) for each \(\ell \geq 5 \).

Proof Suppose \(G \) is a graph that contains two vertex disjoint graphs \(H_1 \) and \(H_2 \) that are copies of \(K_{1,2} \). By Proposition 6, it suffices to show that \(G \) is not proportionally \((2, 5)-choosable\). Suppose \(H_1 \) has bipartition \(A_1, B_1 \), where \(A_1 = \{a_1\} \) and \(B_1 = \{b_0, b_1\} \). Suppose \(H_2 \) has bipartition \(A_2, B_2 \), where \(A_2 = \{a_2\} \) and \(B_2 = \{b_2, b_3\} \). We will now construct a \((2, 5)-assignment\) \(L \) for \(G \) such that there is no proportional \(L\)-coloring of \(G \). Suppose \(L \) is the \((2, 5)-assignment\) for \(G \) given by \(L(a_1) = L(a_2) = \{1, 2\} \), \(L(b_0) = L(b_1) = \{1, 3\} \), \(L(b_2) = L(b_3) = \{1, 4\} \), and \(L(v) = \{1, 5\} \) if \(v \in V(G) - V(H_1 + H_2) \). Notice that \(\eta(i) = 2 \) for \(i = 2, 3, 4 \).

For the sake of contradiction, suppose \(f \) is a proportional \(L\)-coloring of \(G \). This means that \(|f^{-1}(i)| = 1 \) for \(i = 2, 3, 4 \). Thus, \(f(a_1) = 1 \) or \(f(a_2) = 1 \). This implies that \(|f^{-1}(3)| = 2 \) or \(|f^{-1}(4)| = 2 \) respectively which in either case is a contradiction. \(\square \)

We are now ready to prove Theorem 11 which we restate.

Theorem 11 For each \(\ell \geq 5 \), a graph \(G \) is proportionally \((2, \ell)-choosable\) if and only if \(G \) is a linear forest such that the largest component of \(G \) has at most 5 vertices and all other components of \(G \) have at most 2 vertices.

Proof Throughout the proof, suppose \(\ell \) is a fixed natural number satisfying \(\ell \geq 5 \). Suppose that \(G \) is a linear forest such that the largest component of \(G \) has at most 5 vertices and all other components of \(G \) have at most 2 vertices. By Theorem 4, we know \(G \) is proportionally \((2, \ell)-choosable\).

Conversely, suppose that \(G \) is proportionally \((2, \ell)-choosable\). By Lemma 13 we know that \(\Delta(G) \leq 2 \), and by Lemma 14 we know that \(G \) can not contain a cycle. This means that \(G \) must be a linear forest. Finally, by Lemma 15 we know that \(G \) can not contain a copy of \(K_{1,2} + K_{1,2} \) (i.e., \(P_3 + P_3 \)). Thus, \(G \) must be a linear forest such that the longest path has at most 5 vertices and all other paths have at most 2 vertices. \(\square \)

Acknowledgements This paper is a research project conducted with undergraduates Robert Piechota, Paul Shin, and Tim Wagstrom at the College of Lake County during the summer of 2019. The support of the College of Lake County is gratefully acknowledged. The authors would like to thank Hemanshu Kaul, Michael Pelsmajer, Jonathan Sprague, and the anonymous referee for their helpful comments on this paper. The authors would also like to thank Carlos Villeda for many helpful conversations.
Funding Not applicable

Availability of Data and Material Not applicable

Code Availability Not applicable

Declarations

Conflict of Interest Not applicable

References

1. Bonamy, M., Kang, R.: List coloring with a bounded palette. J. Graph Theory 84, 93–103 (2017)
2. Demange, M., de Werra, D.: Complexity of choosability with a small palette of colors. (preprint) (2017) arXiv:1601.01768
3. Erdős, P.: Problem 9. In: Fiedler, M. (ed.), Theory of Graphs and Its Applications, Proc. Sympos., Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. Prague, 159 (1964)
4. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Cong. Numer. 26, 125–127 (1979)
5. HajnáL, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Rényi, A., Sós, V.T. (eds.) Combinatorial Theory and Its Applications, vol. II, pp. 601–623. North-Holland, Amsterdam (1970)
6. Janson, S., Ruciński, A.: The infamous upper tail. Rand. Struct. Algorithms 20, 317–342 (2002)
7. Kaul, H., Jacobson, S.H.: New global optima results for the Kauffman NK model: handling dependency, mathematical programming. Spec. Issue Optim. Under Uncert. 108, 475–494 (2006)
8. Kaul, H., Mudrock, J., Pelsmajer, M., Reiniger, B.: Proportional choosability: a new list analogue of equitable coloring. Disc. Math. 342, 2371–2383 (2019)
9. Kaul, H., Mudrock, J., Pelsmajer, M.J., Reiniger, B.: A simple characterization of proportionally 2-choosable graphs. Graphs Combin. 36, 679–687 (2020)
10. Kostochka, A.V., Pelsmajer, M.J., West, D.B.: A list analogue of equitable coloring. J. Graph Theory 44, 166–177 (2003)
11. Král’, D., Sgall, J.: Coloring graphs from lists with bounded size of their union. J. Graph Theory 49, 177–186 (2005)
12. Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)
13. Mudrock, J.: On the list coloring problem and its equitable variants, Ph.D. Thesis, Illinois Institute of Technology (2018)
14. Mudrock, J., Piechota, R., Shin, P., Wagstrom, T.: Proportional 2-choosability with a bounded palette. (preprint) (2020) arXiv:1910.03418
15. Pemmaraju, S.V.: Equitable colorings extend Chernoff–Hoeffding bounds. In: Proceedings of the 5th International Workshop on Randomization and Approximation Techniques in Computer Science (APPROX-RANDOM 2001), 285-296 (2001)
16. Tucker, A.: Perfect graphs and an application to optimizing municipal services. SIAM Rev. 15, 585–590 (1973)
17. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz. Metody Diskret. Anal. v Teorii Kodovi Skhem 101(29), 3–10 (1976)
18. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.