Boosting Performance Optimization with Interactive Data Movement Visualization

Philipp Schaad*, Tal Ben-Nun*, Torsten Hoefler*

* Scalable Parallel Computing Laboratory, ETH Zurich
The Cost of Data Movement

Exploit *spatial locality* and *temporal locality*!
Data Movement Optimization

1. Performance Analysis
2. Reduce Data Movement
Data Movement Optimization

1. Performance Analysis
2. Reduce Data Movement

Diagram showing the process of data movement optimization.
Data Movement Optimization

Performance Analysis

PAPI
Intel Vtune
LIKWID
Perf

[1] Saviankou et al., Cube v4: From Performance Report Explorer to Performance Analysis Tool
[2] Nagel et al., VAMPIR: Visualization and Analysis of MPI Resources
[3] Bell et al., ParaProf: A Portable, Extensible, and Scalable Tool for Parallel Performance Profile Analysis
Data Movement Optimization

Performance Analysis

Requires Execution!

PAPI
Intel Vtune
LIKWID
Perf

[1] Saviankou et al., Cube v4: From Performance Report Explorer to Performance Analysis Tool
[2] Nagel et al., VAMPIR: Visualization and Analysis of MPI Resources
[3] Bell et al., ParaProf: A Portable, Extensible, and Scalable Tool for Parallel Performance Profile Analysis
Data Movement Optimization

Performance analysis *without* program execution

PAPI
Intel Vtune
LIKWID
Perf

Requires Execution!

[1] Saviankou et al., Cube v4: From Performance Report Explorer to Performance Analysis Tool
[2] Nagel et al., VAMPIR: Visualization and Analysis of MPI Resources
[3] Bell et al., ParaProf: A Portable, Extensible, and Scalable Tool for Parallel Performance Profile Analysis
Data Movement Optimization

Performance Analysis

Static Dataflow Analysis

Small-Scale Parametric Simulations

Dataflow IR

DaCe [1]

Stateful DataFlow multiGraphs (SDFGs)

[1] Ben-Nun et al., Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures
Data Movement Optimization

- Static Dataflow Analysis
- Small-Scale Parametric Simulations
- Performance Analysis
- Reduce Data Movement
- Dataflow IR
Data Movement Optimization

Static Dataflow Analysis → Performance Analysis → Reduce Data Movement → Small-Scale Parametric Simulations

DaCe [1] Stateful DataFlow multiGraphs (SDFGs)

[1] Ben-Nun et al., Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures
Data Movement Optimization

Static Dataflow Analysis → Performance Analysis → Reduce Data Movement → Small-Scale Parametric Simulations

DaCe [1] Stateful DataFlow multiGraphs (SDFGs)

[1] Ben-Nun et al., Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures
Stateful DataFlow multiGraph (SDFG)

\[C = A \otimes B \quad A \in \mathbb{R}^N, B \in \mathbb{R}^M, C \in \mathbb{R}^{N \times M} \]

```python
def outer_prod(A, B, C, N, M):
    for i in range(N):
        for j in range(M):
            C[i, j] = A[i] * B[j]
```

Data Containers

Parallel Region (Map)

Computations

Data Movement

State
Static Dataflow Analysis

Data Movement Volume
Static Dataflow Analysis

Data Movement Volume
1. Derive volume for computations
2. Propagate through graph

Arithmetic Operations Count
1. Count operations in AST of computations
2. Propagate through graph

Operational Intensity

executed N*M times
Static Dataflow Analysis

\[\text{N*M Operations Intensity: } \frac{1}{3} \]

\[\text{1 Operation Intensity: } \frac{1}{3} \]

\[\text{N*M Operations Intensity: } \frac{1}{3} \]
Static Dataflow Analysis

\[N = 8 \]
\[M = 8 \]
Static Dataflow Analysis

\[N = 8 \]
\[M = 64 \]

![Diagram showing dataflow analysis with symbols and operations]

Substitute symbols

Change symbol values to perform scaling analysis

512 Operations
Intensity: \(\frac{1}{3} \)

1 Operation
Intensity: \(\frac{1}{3} \)

512 Operations
Intensity: \(\frac{1}{3} \)
Visualization

\[N = 8 \]
\[M = 64 \]

Visualize data by overlaying a heatmap

Low volume

High volume

\[[i=0:N, j=0:M] \]

\[C[i, j] = A[i] * B[j] \]
Visualization

\[N = 8 \]
\[M = 64 \]

Visualize data by overlaying a heatmap

Low operation count

High operation count
Visualization

\[N = 8 \]
\[M = 64 \]

Visualize data by overlaying a **heatmap**

In-Situ performance data reduces context switching

Low operation count

High operation count

\[[i=0:N, j=0:M] \]
\[C[i, j] = A[i] \times B[j] \]
Optimizing BERT Transformer Encoder

Data movement heatmap
Optimizing BERT Transformer Encoder

Loops with similar bounds
Optimizing BERT Transformer Encoder
Optimizing BERT Transformer Encoder
Optimizing BERT Transformer Encoder

Operational intensity heatmap
Optimizing BERT Transformer Encoder
Optimizing BERT Transformer Encoder

16-core Intel Xeon Gold 6130 at 2.1 GHz, 1.5 TB RAM

30.2x Speedup
Close-Up Reuse Analysis

Simulate data reuse behavior

$C = A \otimes B \quad A \in \mathbb{R}^N, B \in \mathbb{R}^M, C \in \mathbb{R}^{N \times M}$
Close-Up Reuse Analysis

\[C = A \otimes B \quad \text{where} \quad A \in \mathbb{R}^N, B \in \mathbb{R}^M, C \in \mathbb{R}^{N \times M} \]

Simulate data reuse behavior

Specify program region
Close-Up Reuse Analysis

\[C = A \otimes B \quad A \in \mathbb{R}^3, B \in \mathbb{R}^4, C \in \mathbb{R}^{3 \times 4} \]

Simulate data reuse behavior

Specify small example input parameters

\[N = 3 \]
\[M = 4 \]

Specify program region

Diagram:

- \(A \) and \(B \) labeled
- \(C[i, j] = A[i] \times B[j] \) labeled
- Loop conditions: \([i=0:N, j=0:M]\)
Close-Up Reuse Analysis

\[C = A \otimes B \quad A \in \mathbb{R}^3, B \in \mathbb{R}^4, C \in \mathbb{R}^{3 \times 4} \]

Simulate data reuse behavior

Specify small example input parameters

\[N = 3 \]
\[M = 4 \]

Specify program region

A

B

\[i = 0:3 \]
\[j = 0:4 \]

\[C[i, j] = A[i] \ast B[j] \]
Visualizing High-Dimensional Data

\[w \in \mathbb{R}^{C_{out} \times C_{in} \times K_Y \times K_X} \]

- \(C_{out} = 2 \)
- \(C_{in} = 3 \)
- \(K_Y = 4 \)
- \(K_X = 4 \)
Visualizing High-Dimensional Data

$w \in \mathbb{R}^{C_{out} \times C_{in} \times K_Y \times K_X}$

$C_{out} = 2$
$C_{in} = 3$
$K_Y = 4$
$K_X = 4$

$C_{out} = 2$
$C_{in} = 3$
Access Pattern Simulation

Convolution operation

\[y[i, j, k, l] = x[i, m, k+ky, l+kx] \times w[j, m, ky, kx] \]
Visually play back access pattern

\[y[i, j, k, l] += x[i, m, k+ky, l+kx] \times w[j, m, ky, kx] \]
Access Pattern Simulation

Flatten time dimension with heatmap
Access Pattern Simulation

\[C[i, j] \leftarrow A[i, k] \times B[k, j] \]
Data Layout Visualization

Exposes data layout

Determine cache line using strides, line size, and element size

float64 / double → element size = 8 bytes

Data layout & access pattern → spatial locality

\[C[i, j] += A[i, k] \times B[k, j] \]
Temporal Locality

Stack distance, cache line granularity

Accesses to unique addresses since last reference

\[
C[i, j] += A[i, k] \times B[k, j]
\]
Cache Misses

1. Cold miss
 Access with stack distance = \(\infty \)

2. Capacity miss
 Access with stack distance \(\geq t_d \)
 stack distance threshold
 Assuming LRU

3. Conflict miss
 Not counted in fully-associative cache
 Calculations generalizeable [1][2]

\[C[i, j] = A[i, k] * B[k, j] \]

Physical data movement = \#misses x cache line size

\(t_d = 5 \)

[1] McKinley and Temam, Quantifying Loop Nest Locality Using SPEC'95 and the Perfect Benchmarks
[2] Beyls and D'Hollander, Reuse distance as a metric for cache behavior
Stencil Optimization

\[I = 8 \]
\[J = 8 \]
\[K = 5 \]

Original sizes:
\[I = 256 \]
\[J = 256 \]
\[K = 160 \]
Scaling Factor x32

Accesses spread over non-contiguous dimension

Cache line shows \(K \) as contiguous dimension
Stencil Optimization

\(I = 8 \)
\(J = 8 \)
\(K = 5 \)

Reshape data containers

Poor use of cache

Better use of spatial locality

```plaintext
in_field [K, I+4, J+4]
```

```plaintext
coeff [K, I, J]
```

```plaintext
out_field [K, I, J]
```

```plaintext
hdiff
```

View Modes:
- Access Pattern / Number of Accesses
- Reuse Distance (Stack Distance)
- Median / Min / Max / Mixes
- Physical Data Movement
- Cache Lines
Stencil Optimization

$I = 8$
$J = 8$
$K = 5$

Iterates over contiguous dimension

Reorder loops
Stencil Optimization

16-core Intel Xeon Gold 6130 at 2.1 GHz, 1.5 TB RAM

138x Speedup
9.6x Reduction in cache misses
Conclusion

Global Data Movement

Fine-Grained Data Reuse

- In field [i=4, J=4, K]
- ocell [I, J, K]
- hcell
- out_field [I, J, K]
Where Next?

Automatic Optimization

Hardware Modelling

- Reg
- L1
- L2
- L3
- Main Memory
- Disk
- Network

Educational Tool
Thank you!

https://marketplace.visualstudio.com/items?itemName=phschaad.sdfv
https://github.com/spcl/dace-vscode