Data Article

Data on assessment of physical, chemical and biological characteristics of effluent from wastewater treatment in Torbat Heydarieh, Iran

Elham AlSadat Heidaria, Hosein Alidadib,c,*, Ali Asghar Najafpoorb,c, Seyed Mohsen Mohsenid, Aliakbar Dehghanb,c, Ali Sheibania, Maryam Sarkhoshb,c,*

* Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
b Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
c Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
d Student Research Committee, Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

A R T I C L E I N F O

Article history:
Received 2 March 2018
Received in revised form 21 April 2018
Accepted 18 May 2018
Available online 1 June 2018

Keywords:
Heavy metals
Effluent
Irrigation
Influent
Standard

A B S T R A C T

Data on the chemical, physical and biological of effluent from wastewater treatment are provided in table format in the current article. Samples were taken in Peak Flows at effluent Treatment Plants. Sampling and tests were conducted according to the standards methods. The collected data were analyzed by SPSS software and excel program. Nickel metal showed higher amounts than the standards required for irrigation agricultural land. Data could be useful from environmental and agricultural sciences to those concerned about heavy metals, Alkalinity, EC, COD, BOD5 and Microbial concentrations threats.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Environmental Sciences
More specific subject area	Pollutants in effluents
Type of data	Figure and table
How data was acquired	Heavy Metals measured with Flame Photometer. TSS was measured by drying oven. Electrical conductivity (EC), and pH of samples were measured by the portable pH.EC.TDS Meter of Hanna instruments. Electrochemical probes were used for DO measuring. BOD measurement was carried out with a manometer instrument. Total and fecal coliform was measured with membrane filtration technique.
Data format	Raw, analyzed.
Experimental factors	The data were obtained in 2016. All effluent samples in polyethylene bottles were stored in a dark place at 4 °C temperature until the analysis.
Experimental features	The mentioned parameters above, were analyzed according to the standards for water and wastewater treatment handbook and compared with standard.
Data source location	Torbat Heydarieh, Iran
Data accessibility	The data are available within this paper.

Value of the data

- Due to limited data in the area, the data can help to better understand the irrigation water quality in the area and provide further studies.
- Crops irrigation with wastewater treatment effluent can take risks on human health as consumers.
- The data shown here can be used for health risk assessment of pollutants for effluent disposal.

1. Data

Crops irrigation with wastewater treatment effluent can take risks on human health as consumers. It is due to absorption and accumulation of heavy metals. A summary of effluent and influent quality characteristics are presented in Table 1. The data of heavy metals measurement in wastewater treatment effluent has been shown in Table 2 and Fig. 1. Also they are WHO, EPA, and department of environment of Iran standards about acceptable heavy metals concentration wastewater treatment effluent for agriculture fields irrigation has been shown in Table 2 [1]. The data comparing with WHO, EPA, and department of environment of Iran standards in Table 2 show the concentration measurement of are more than WHO and EPA standards, but they corresponded with department of environment of Iran standards. In Table 3, total and fecal coliform nematode eggs in effluent are shown.

Table 1
Characteristics wastewater treatment effluent and influent.

Parameter	Units	Influent	Effluent	Standards for discharge to surface	Standards for agricultural use
pH	–	7.6 ± 0.5	7.8 ± 0.2	6.5–8.5	6.5–8.4
DO	mg/L	1.1 ± 0.4	2.5 ± 0.6	2	2
Alkalinity	mg CaCO₃/L	235 ± 24	150 ± 15		
TSS	mg/L	115 ± 18	38 ± 3	40	100
EC	ds/m	0.13 ± 0.02	0.113 ± 0.009	–	2.97
COD	mg/L	304.5 ± 18.7	58.1 ± 6.2	60	200
BOD₅	mg/L	121.6 ± 27.6	24.3 ± 3.7	30	100
2. Experimental design, materials and methods

2.1. Area description

Torbat Heydarieh province has a 23.888 km² area and locates in southwest of Mashhad (capital of state). It has a 142 km distance with Mashhad. It locates in the longitude 59° and 12 min east and the latitude 34 degree and 17 min north. Population of city is 267,604 according to last census in 2006 [2]. The wastewater treatment of Torbat Heydarieh locates in southwest of city. The biological reactor of wastewater treatment is extended activated sludge. Per capita water consumption almost calculated 216 Lpcd and it is estimated to decrease 264 Lpcd on 2020. Location of Torbat Heydarieh province and wastewater treatment showed in Fig. 2.

2.2. Sample collection and analytical procedures

This research conducted on wastewater treatment plant of Torbat Heydarieh province for four months from April to July 2016. Samples were taken in peak hours and transported to laboratory for experimenting under standard conditions. Samplings and experiments took according to the standard methods for water and wastewater treatment handbook [3,4].

Table 2

Parameter	Units	Effluent	Iran Standards for agricultural use	EPA Standards for agricultural use	WHO Standards for agricultural use
Ni	µg/L	184 ± 96	2000	200	200
Pb	µg/L	402 ± 80	1000	5000	5000
Cu	µg/L	50 ± 62	200	200	200
Cr	µg/L	98 ± 12	1000	100	100

Table 3

Parameter	Units	Effluent	Standards for discharge to surface	Standards for agricultural use
Total Coliform	MPN/100 mL	310 ± 55	1000	1000
Fecal Coliform	MPN/100 mL	1320 ± 37	400	400
Nematode eggs	Number/L	0	–	1 >

Fig. 1. The average concentrations of each heavy metal in each sampling month.
Acknowledgements

The authors gratefully acknowledge staff of the Wastewater Treatment Plant of Torbat Heydarieh, Iran. This work has been supported by Mashhad University of Medical Sciences [Grant no: 941757].

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.086.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.086. These data include Google maps of the most important areas described in this article.

References

[1] M. Pirsaheb, N. Fattahi, K. Sharafi, R. Khamotian, Z. Atafar, Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment, Food Addit. Contam.: Part B 9 (2016) 15–20.
[2] A.A. Najafpoor, Z. Vojoudi, M.H. Dehgani, F. Changani, H. Alidadi, Quality assessment of the Kashaf River in North East of Iran in 1996–2005, J. Appl. Sci. 7 (2007) 253–257.
[3] W.E. Federation, A.P.H. Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 2005.
[4] S. Hosseinpour Dizgah, K. Taghavi, J. Jaafari, E. Roohbakhsh, D. Ashrafi, Data on pollutants content in the influent and effluent from wastewater treatment plant of Rasht in Guilan Province, Iran, Data Brief 16 (2018) 271–275.