SUPPLEMENTAL DATA

SUPPLEMENTAL FIGURES

SUPPLEMENTAL FIGURE 1 Dissection of haplotype-dependent INS pre-mRNA splicing

Legend:

(A) Splicing pattern of reporter constructs mutated at naturally occurring INS variants. Mutations are denoted by the traditional nomenclature (http://www.hgvs.org/mutnomen/). The original designation (Stead et al. 2003) of the variant is followed in parentheses. RNA products are shown schematically to the right; template reporters for overlap-extension PCR are at the bottom.

(B) Predicted auxiliary splicing elements at INS-72. Putative splicing regulatory motifs are shown above the sequence; variant residues at INS-72 are underlined.

(C) Splicing pattern of African-specific haplotypes with (Ta, Ma, Ja) or without (Ya, Va, Na) the 4-nt insertion allele at INS-69. The IC haplotype is shown as a control. Haplotype designation was as previously described (Stead et al. 2003).

(D) Splicing of reporter constructs with (primers J-C) and without (primers A-C) upstream minisatellite (VNTR) sequences is identical. Amplifications shown for panels B and C was with primers PL3 (Kralovicova et al. 2006a) and E. In experiment shown in panel D we employed PCR primers D and PL4 (Kralovicova et al. 2006a) (Figure 1).
SUPPLEMENTAL FIGURE 2 Allele-specific INS splicing in mouse cell lines

Legend: (A) Increased IR of the INS class IC haplotype as compared to the class IIIA haplotype in the Aire-expressing TEC cell line derived from thymic epithelial cells and in the macrophage cell line RAW264; NIH3T3 cells are shown as controls. The INS splicing pattern was not significantly different in a TEC cell line lacking Aire (data not shown). Haplotypes are at the top of each panel and mRNA isoforms to the right. Cloning primers are shown at the bottom; their location is depicted in Figure 1A. The extended 3’ segment of D-F reporters inhibits the cryptic 3’ splice site in INS exon 3 (cr3’ss+126), which is most likely mediated by the 3’end processing machinery that can influence selection of 3’ss of the last intron (Rigo and Martinson 2008). (B) A proposed model for genetic susceptibility to T1D at IDDM2. Unlike INS-69, which is confined to Africans, the INS-27A allele (IVS1-6A) has a high frequency in whites (Stead et al. 2003), indicating that this variant is critical for the haplotype-dependent proinsulin expression in this population. Antigen presenting cells will have a lower number of the MHC/proinsulin peptide complexes in carriers of the low-expressing and T1D-predisposing A alleles than in carriers of the T alleles. Their lower number would be associated with the lower probability of inducing apoptosis of autoreactive T cells in the thymus during negative selection. Antigen-presenting cells/antigenic peptides are in blue. MHC molecules and T-cell receptors are highlighted in light and dark gray, respectively.
SUPPLEMENTAL FIGURE 3 Heterogenous nuclear RIBONUCLEOPROTEINS F/H in
INS intron 1 splicing

Legend: (A) Increased intron 1 retention and decreased utilization of cr3’ss+126 in hnRNP F/H-
depleted cells. siRNAs are at the top, RNA products to the right; sc, scrambled control. The final
concentration of siRNAs in culture media was 80 (sc), 60 and 100 nM (hnRNP H/F). The D-F
constructs used for this experiment contained the class IC haplotype. (B) Improved efficiency of
intron 1 removal and cr3’ss+126 activation in cells overexpressing hnRNP H (1 µg of pcDNA-
hnRNP-H) and hnRNP F (1 µg of pCI-hnRNP-F). EV, empty vector.
SUPPLEMENTAL FIGURE 4 Sequence alignment of the 5' untranslated region of the proinsulin gene in primates

Legend: Intronic sequences are in lower case, exonic sequences are in upper case. Lineage-specific changes observed in at least two species/animals are highlighted in gray. Naturally occurring human polymorphisms are in red. Alignment was carried out using the Clustal-Wallis algorithm (v. 2.0). Hs, Homo sapiens (Stead et al. 2003)(Genbank accession numbers AY138590 and L15440); Pt1-2, Pan troglodytes (Stead et al. 2003) (this study); Gg, Gorilla gorilla (Stead et al. 2003)(AY137500); Pp1-2, Pongo pygmaeus and abelii (AY137503 and AC199962); Hg1, Hg2, Hylabates gabriellae (this study); Eryp, Erythrocebus patas (this study); Cae, Chlorocebus aethiops (X61092); Cc116, Cercopithecus campbelli (this study); Cd2A, Cercopithecus diana (this study); Ca303, Cercopithecus ascanius (this study); M114, Macaca tonkeana (this study); Mf, Macaca fuscata (this study); Mm1,Mm2, Macaca mulatta (Indian and Chinese, respectively; (this study); Ms, Macaca sylvanus (this study); Ph100, Papio hamydras (this study); Msp119, Msp102, Mandrillus sphinx (this study); Cang, Colobus angolensis (this study); Ac1af, Colobus guereza (this study); Se117, Se2, Semnopithecus entellus (this study); Pn, Pygathrix nemaeus (this study); To, Trachypithecus obscurus (this study); Ta, Trachypithecus auratus (this study); Sv, Semnopithecus vetulus (this study); Pm, Presbytis melalophos (this study); Nl, Nasalis larvatus (this study); Cj, Callithrix jacchus (this study); So1, Saguinus oedipus (this study); Smid92; Saguinus midas (this study); Sfl15, Saguinus fiscicollis (this study); Calgo6, Callimico goeldii (this study); Aab203, Aotus azarae (this study); At, Aotus trivirgatus (J02989); Mur, Microcebus murinus (Ensembl scaffold sequence, www.ensembl.org). Y, C or T; W, A or T; N, Y, C or T or A. Genbank accession numbers of new sequences: GU901169-GU901198.
Haplotype-dependent proinsulin expression is controlled by U2AF

Kralovicova J, Vorechovsky I.
Haplotype-dependent proinsulin expression is controlled by U2AF

	G6	G7
Hs	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Pt1	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Pt2	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Gg	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Pp1	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Pp2	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Hg1	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Hg2	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Kryp	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Cae	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Cc116	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Cd2A	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Ca303	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mt114	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mf	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mm1	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mm2	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Ms	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Ph100	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mmp119	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Cang	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Aab203	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
At	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228
Mur	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228	gtaagccagggccccagggcagggcacctgccttcagccggcctcagccctgcctgt 228

	Hs	CctagcccagACTGTCTTT---CTGCCATG 242
Pt1	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Pt2	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Gg	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Pp1	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Pp2	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Hg1	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Hg2	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Kryp	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Cae	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Cc116	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Cd2A	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Ca303	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mt114	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mf	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mm1	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mm2	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Ms	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Ph100	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mmp119	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Cang	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Aab203	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
At	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
Mur	cctagcccagACTGTCTTT---CTGCCATG 242	cctagcccagACTGTCTTT---CTGCCATG 242
SUPPLEMENTAL FIGURE 5 Ancestral deletions of INS intron 1 in primates and their effect on splicing

Legend: (A) A colobine-specific, 27-nucleotide deletion in INS intron 1. The deleted sequence is shown at the top. (B) Splicing pattern of human reporter constructs with two large deletions that took place during primate evolution. 293T cells were transfected with pCR3.1 containing INS segments defined by primers D and C, as shown in Figure 1A. Deletions are at the top and RNA products to the right; M, 100-nt size marker. Total RNA was isolated 48 hours post-transfection, reverse transcribed using oligo-d(T)$_{15}$ and complementary DNA products were visualized using PCR with vector-specific primers PL3 and PL4 and/or PL3 and E (Kralovicova et al. 2004) (Figure 1A). (C) Relative expression of INS isoforms in the wild-type reporter and plasmids containing Hominini- and Colobinae-specific deletions and their combination. The alignment of intron 1 sequences in primates is shown in Supplemental Figure 4. The 16-nt deletion (ctg ccc cac tgt ggg g) took place after the Homininae split ~6-9 million years ago.
SUPPLEMENTAL FIGURE 6 Predicted branch point sequence and polypyrimidine tract in \textit{INS} intron 1 in primates

Legend: Pp, orangutan; Hs, human. Predicted branch point sequence (orange) and polypyrimidine tracts (green) were determined using an algorithm derived from a comparative analysis of these signals that were conserved between human and mouse (Kol et al. 2005). Predicted branch point sequences in the remaining primates (Supplemental Figure 4) were identical to the human sequence.
SUPPLEMENTAL FIGURE 7 Coupled translation and splicing regulation of *INS* expression by upstream open reading frames

Legend: *Upper panel*, the splicing pattern of wild-type (WT; E2+1A) and mutated (E2+1G) reporter constructs 48 hours post-transfection into 293T cells. RNA products are schematically shown to the right; *middle panel*, quantification of mRNA isoforms. *Lower panel*, proinsulin concentration in cultures. Mutations introduced in two upstream open reading frames are shown at the bottom and their location and natural variability in primates is shown in Figure 3. E2+1A (WT) is specific for Great Apes, whereas E2+1G was found in all lower primates.
SUPPLEMENTAL FIGURE 8 Extending translational pathophysiology: gain and loss of upstream open reading frames (uORFs) in disease predisposition

Legend: Splicing mutations in the gene for thrombopoetin (TPO) induce exon skipping and a loss of the seventh uORF, leading to derepression of translation, excess of TPO and thrombocytosis (Wiestner et al. 1998) (upper panel). In contrast, variants that influence splicing of INS intron 1 result in a gain of uORF that curtails translation of intron 1-containing transcripts (lower panel). These transcripts are exported from the nucleus to the cytoplasm (Kralovicova et al. 2006a; Wang et al. 1997). Exons are denoted by numbered boxes, introns as lines, uORFs by black rectangles, disease-causing or -predisposing mutations by stars, and the increase (upper panel) or decrease (lower panel) of translated products by arrows. The degree of translation efficiency corresponds to the vertical size of the indicated arrows.
SUPPLEMENTAL FIGURE 9 RNAi-mediated depletion of U2AF subunits

Legend: Western blot analysis of HeLa cells transfected with siRNAs individually targeting U2AF subunits and their isoforms. Final concentrations of each siRNA in culture media were 10, 33 and 100 nM; a scrambled control (GC content 68%) was added at a final concentration of 48 nM. Antibodies are shown to the right. Lanes 2-4 contain two-, four- and eight-fold dilutions, respectively, of the total cell lysate shown in lane 1.
SUPPLEMENTAL FIGURE 10 U2AF35 is effectively downregulated at low concentrations of the U2AF35ab duplex

Legend: Western blot analysis was performed with antibodies shown to the right. Final concentration of the U2AF35ab siRNA in HeLa cell cultures was 0.1, 0.33, 1.0, 3.3 and 10 nM. sc, scrambled siRNA control (47% GC).
SUPPLEMENTAL FIGURE 11 Selection of dual-specificity splice sites by U2AF35

Legend: (A) Schematics of the splicing pattern and location of primers (arrows) used to detect isoforms that result from the use of the 5’ss or 3’ss in UBE2C/DIABLO transcripts. ES, exon skipping. (B) RT-PCR analysis of total RNA extracted from HeLa cells transfected with U2AF35ab siRNA and a scrambled control (sc). Final concentrations of siRNAs are shown at the bottom. M, 100-nt size marker.
SUPPLEMENTAL FIGURE 12 Skipping of short exons in U2AF-depleted cells

Legend: An example of a reporter construct with a short central exon (96 nt). The reporter construct was described previously (Kralovicova et al. 2006b). siRNAs are shown at the top, RNA products to the right, the name of the reporter to the left and utilization of the intron-proximal 3’ss at the bottom.
Legend: (A) \textit{INS} exon 2 deletion constructs (D-F) on the class IC haplotype background. Deletions are shown as horizontal lines (denoted del1-del20). Mutated residues and two deletions that activated cr3’sss+81 are highlighted in gray. (B) Relative expression (\%) of four \textit{INS} mRNA isoforms in each deletion reporter. Error bars indicate s.d. determined from duplicate wells. The utilization of the remaining isoforms was negligible, except for activation of cr3’sss+81 in del3 and del9. (C) Identification of a splicing enhancer in exon 2. Mutations in a putative RESCUE-ESE (Fairbrother et al. 2004) (boxed in panel (A)) are shown at the top. RNA products are shown to the right and the \textit{INS} reporter at the bottom. (D) A putative structure of the newly identified splicing enhancer in exon 2. Mutations are shown by arrows. (E) Activation of cr3’sss+81 by point mutations at exon positions 5, 10 and 11. Mutated positions are highlighted in gray in panel (A). M, 100-nt size marker. (F) Secreted proinsulin is shown on the pmol/L scale. Error bars denote standard deviations of a single transfection experiment in duplicate.
SUPPLEMENTAL FIGURE 14 Coexpression of SR proteins/hnRNPs and INS in 293T cells

Legend: Individual SR proteins/hnRNPs are shown at the top, RNA products to the right. Reduction of exon skipping upon individual overexpression of SR proteins is highlighted. An increase of cr3’ss+126 utilization observed for a subset of hnRNPs is also boxed.
SUPPLEMENTAL TABLES

SUPPLEMENTAL TABLE 1 Phylogeneny of G runs in INS intron 1 in primates

G run	Great Apes	Old World Monkeys	New World Monkeys	Strepsirrhini
G0	x	x	x	x
G1	x	x	x\(^1\)	
G2	x	x\(^2\)		
G3	x	x	x\(^1,3\)	x
G4	x	x	x	
G5	x\(^4\)	x\(^5\)	x\(^6\)	x\(^4\)
G6	x\(^7\)	x\(^8\)	x\(^7\)	x\(^7\)
G7	x	x	x	x

Legend: G runs are numbered as in Supplemental Figure 4. ‘x’ denotes a conserved G run. \(^1\), G run was shifted by 1 nucleotide in a subset of New World Monkeys; \(^2\), G run was deleted in all examined genera of Asian colobines; \(^3\), extra G3 in the vicinity; \(^4\), G5; \(^5\), G5, except for Cercopithecini; \(^6\) G4; \(^7\), G4; \(^8\) G4, except for Colobinae.
SUPPLEMENTAL TABLE 2 Predicted strength of INS splice sites

Intron	Splice site\(^1\)	Consensus sequence\(^2\)	Maximum entropy score (allele)\(^3\)
1	5’ss	CAG/GTCTKT	6.84 (INS-69del), 2.36 (INS-69ins)
1	Cr5’ss+30	CAG/GTGGRC	8.07 (INS-26G), 3.09 (INS-26A)
1	3’ss	CAGCCCTGCCTGTCCWCCCA\textit{G}/ATC	7.57 (INS-27T), 4.75 (INS-27A)
1	Cr3’ss+81	CCTCTGGGGACCTGACCC\textit{A}/CCG	-1.12
2	5’ss	AGG/GTGGAC	7.75
2	3’ss	TGC\textit{G}CGGCACGTCTGCTGGCA\textit{G}/TGG	4.36
2	Cr3’ss+35	GGG\textit{G}CGGGGGCCCTGGTGC\textit{A}/GCA	1.54
2	Cr3’ss+126	GC\textit{A}CTGCTCCCTCTACC\textit{A}/CTG	8.24

Legend: \(^1\)Cryptic (Cr) splice sites are denoted by their exon/intron position (in nucleotides) relative to their authentic counterparts; \(^2\) IUB codes: K is G or T, R is A or G, W is A or T. GT and AG dinucleotides are underlined. Exon/intron boundaries are denoted by a slash. \(^3\) Maximum entropy scores were computed as described (Buratti et al. 2007; Vorechovsky 2006; Yeo and Burge 2004). Location of the three variants is shown in Figure 1A. Their designation is according to the previously published nomenclature (Stead et al. 2003); del/ins, 4-nucleotide deletion/insertion allele at INS-69. The composite score of intron 1 splice sites is 11.59/14.41 (haplotype I/III, respectively), which is comparable to the composite score of intron 2 splice sites (12.01).
SUPPLEMENTAL TABLE 3 Oligonucleotide primers amplifying competing 3’ss in endogenous transcripts

Gene	Exon	ID\#	Primers (5’-3’)	Size of PCR products	Distance between competing 3’ss
SERBP1	5	Far2	CTCACAACCTGGGAAGACCTGC TAATCACTTTCTGTGATATGTA TTGCTCTGACCTGATGATGAA	102/147	45
SRRM1	6	Far3	AAAAGGGAGGCGGTTCCTGTA AAAGCATCTCTTGAGAGGAA	138/228	90
SLC15A4	3	Far12	CTGTTCCAAGAGCAGAATTGGA AAAGCAGGACTAATTTT	114/172	58
CIT	30	Far13	TGAAGGCTCTCTCTGCTGTA GAAGGCTCTCTGCTGTA	165/210	45
LRR2C8	6	Far15	GGAGGTGACCCCAGTGTCCA TACGAGGCAAGCACAGAT	182/252	70
SEPT4	11	Far19	GACCTGAGGAGTGTGACAC CCCAGCTCAATCTGCTGTA	156/244	88
STAT3	23	Far20	CGCTGCAATGCACTGCAATT CACGAGGAGCTGCTGTA	89/139	50
ATP13A1	14	Far24	GGAGGTGACCCCAGTGTCCA TACGAGGCAAGCACAGAT	182/252	70
FAM134A	4	Far25	CTTTCTTCTACTCAGGTTGA CCACAGCAGAAGCAGAT	144/197	53
MAP4K4	11	Far27	GAAGGAGAAAGGAGGCTGTA GCTGGAATCTCCTGCTGTA	187/280	93
C20orf30	3	Far28	TTATGATGCCGTCCCGTACC CCCTGCTGAGAAGCAGAT	135/223	88
SLC35C2	3	Far29	TTGTGGAAGGCGGTTCGTA CCAGCTGCAAGCAGAT	141/212	71
SFRS15	19	Far30	CTTCACTCTCAAGAATAAA GTGAAACAGGCTGCTGTA	151/217	66
FMR1-201	15	E15	GACGCGGTCCTGCTGTAATTCTC CTTCACTCTGCTGTA	85/124/160	39/36
FMR1-201	16	E16	GTAACTCAAGAAGGCTGTAAGA TTTGACATCTCAGCTGTA	134/185	51
ECM1\(^2\)	4	Far1	CCCACCCCTACTCCGAGGAC GGGAGTTGGGCAGGTAGCAG	148/235	87
SPOPL\(^2\)	4	Far26	AGGAATTTTTGAGGCTGTAAGA GTTCACTCTCCTCTGCTGTA	136/207	71
PRP3\(^3\)	12	Far4	TTTGATGCGAGTATGATGAA TTGGTGACCTCTCTGCTGTA	155/213	58
EIF3S7\(^2\)	15	-	CTTGATGCGAGGCTGTAAGA GTTCACTCTCCTCTGCTGTA	127/295	168
PTK9\(^2\)	12	-	GAGGAGCGAGGCTGTAAGA GTTCACTCTCCTCTGCTGTA	128/247	119
CUEDC1	17	-	GCCCTGGAAGGCTGTAAGA GTTCACTCTCCTCTGCTGTA	141/213	72

Legend: 1, Identity number corresponding to a previously described set of tandem 3’ss separated by >39 nt (Akerman and Mandel-Gutfreund 2007). 2, PCR products did not show the predicted size or failed to amplify.
SUPPLEMENTAL TABLE 4 Selection of competing 3’ss upon depletion of U2AF subunits

Gene	ID 3’ss	ID 3’ss in U2AF35(-) cells	3’ss promoted in U2AF35(-) cells	3’ss promoted in U2AF65(-) cells	Introns-proximal 3’ss (ME score)	Introns-distal 3’ss (ME score)	Splice site more dependent on U2AF
MAP4K4	10	39	Intron-proximal	Intron-proximal	AAG/G (7.8)	CAG/C (9.6)	Intron-distal (stringer)
SLC35C2	12	51	Intron-distal	Intron-distal	CAG/A (5.7)	CAG/G (8.9)	Intron-proximal (weaker)
SRRM1	10	1	Intron-proximal	Intron-proximal	TAG/A (4.5)	CAG/A (7.4)	Intron-distal (stronger)
FMR2-205	17	8	Intron-proximal	Intron-proximal	TAGG (7.4)	TAGC (8.7)	Intron-distal (weaker)
MAP4K4	10	39	Intron-proximal	Intron-proximal	AAG/G (7.8)	CAG/C (9.6)	Intron-distal (stringer)
SLC35C2	12	51	Intron-distal	Intron-distal	CAG/A (5.7)	CAG/G (8.9)	Intron-proximal (weaker)
SRRM1	10	1	Intron-proximal	Intron-proximal	TAG/A (4.5)	CAG/A (7.4)	Intron-distal (stronger)
FMR2-205	17	8	Intron-proximal	Intron-proximal	TAGG (7.4)	TAGC (8.7)	Intron-distal (weaker)
CUEDC1	82	90	Intron-distal	Intron-distal	CAG/G (8.3)	CAG/A (8.8)	Intron-proximal (weaker)
UBE2C	78	90	Intron-distal	Intron-distal	CAG/G (8.3)	CAG/A (8.8)	Intron-proximal (weaker)
DIABLO	65	60	Intron-proximal	Intron-proximal	TAGG (10.4)	CAG/G (8.8)	Intron-distal (weaker)
INS intron 1(crs’5+83)	0	19	Intron-distal	N.I.	N.I.	CAG/A (4.8)	Intron-proximal (stronger)
INS intron 2(crs’5+126)	15	0	Intron-proximal	Intron-proximal	CAG/G (4.4)	CAG/C (8.2)	Intron-distal (stronger)
	55	3	Intron-proximal	Intron-proximal	CAG/G (4.4)	CAG/C (8.2)	Intron-distal (stronger)
LIPC (ESS13, SS63)	54	40	Intron-proximal	Intron-proximal	TAGA (6.2)	CAG/T (2.3)	Intron-distal (weaker)
TH-BP-C	95	78	Intron-proximal	Intron-proximal	TAGA (6.2)	CAG/T (2.3)	Intron-distal (weaker)

Legend: 1, endogenous transcripts; 2, dual-specificity splice sites (Zhang et al. 2007); 3, exogenous transcripts; LIPC and TH minigenes were described previously (Kralovicova et al. 2006b; Kralovicova and Vorechovsky 2007); 4, % of splicing to intron-distal 3’ss in untreated cells; 5, % of splicing to intron-distal 3’ss in U2AF35-deficient (-) cells; 6, haplotype and primers used for minigene cloning are in parentheses. N.I., not informative; N.D., not determined; ME (maximum entropy) scores were computed as described previously (Buratti et al. 2007; Vorechovsky 2006; Yeo and Burge 2004).
SUPPLEMENTAL TABLE 5 A list of synthetic small interfering RNAs

Target	siRNA	Source
U2AF35a	CCAUGCCCUUCUUGAACA	(Pacheco et al. 2006)
U2AF35b	CCAUCUUGAUUCAAACAU	(Pacheco et al. 2006)
hU2AF35ab	GGCUGUGAUUGACUUGAAU	(Pacheco et al. 2006)
U2AF35-UTR	AGUGUGAUUGACUUGAC	This study
U2AF26-UTR	AGCCCCCCUUCACUCUCUG	This study
U2AF26-83	GACAAGGUAACUGCUUCUG	This study
U2AF65K	GCAAGUACGCUUGUCAA	(Hastings et al. 2007)
U2AF65P	GCAACGGUGACAUUCCUG	(Pacheco et al. 2006)
PUF60	GCAAGUGAACUCGUGUAG	(Hastings et al. 2007)
nPTB-N1	GAGAGAACGACAGACACUA	(Spellman et al. 2007)
nPTB-N3	UAAAGAAACCUUGAUCAAAAA	(Spellman et al. 2007)
PTB	CUUCCUACCUUCCAGAGA	(Wollerton et al. 2004)
9G8-Gao	AGAUCAGAUCAGGUCUCA	(Gao et al. 2007)
9G8-UTR	GUGUAAUGUGAUAGUAGU	This study
9G8-UTR2	GUGUAACCUAGAAAGAAGA	This study
SRp75-1	AGACCAAGGCUGAGAGAAG	This study
SRp75-2	AGCAGUCAUCUAAAGAGA	This study
SRp55-1	CGAAGAUCUGAAGAGAAGA	This study
SRp55-2	AAGAUGAGGCUCUAGGAA	This study
SRp40-1	UGCUCCACUUCUAGAACA	This study
SRp40-2	ACGUGGUUCUUCAGUAAGA	This study
SRp30c	AGAGAGAUCUAAUUAUGGA	(Paradis et al. 2007)
SRp30b/SC35	AAUCCAGGUCGACUUGA	(Gabadet al. 2005),
SRp30b/SC35	CAAGAUCUGCUAAUGGAA	This study
SRp30a/ASF	AGCAUGGCCGACUACUGU	(Karni et al. 2007)
SRp20-1	GGAAGAAGAAGACAGUUG	(Bedard et al. 2007)
SRp20-2	GUGUCCUUCUAGAAGAAG	(Bedard et al. 2007)
RSRC1-ORF1	GAACGCGUAGUCGUCUGC	This study
RSRC1-ORF2	UGGGCAUCCUGUGGCGCUA	This study
Scrambled control (47% CG)	AGGUAGUGAUAUCGCUUG	This study
Scrambled control (68% CG)	UGCCUGAAGGCUCUGUUGC	This study
hnRNP H	UCAGAGAUCAGAAGUCAA	(Paul et al. 2006)
hnRNP F	GCGAGAGGAGACAGAAGA	(Garneau et al. 2005)
Tra2α-UTR	CGGAAUGGUUGCAUAAGA	This study
Tra2β-UTR	GCAUGAAGACUUUCUGAA	This study
ZRSR1/2	CAAACUAGAAGAAGAGA	This study
ZRSR2-UTR	GGCUGAUGACGCAGUGGG	This study
Caperα-UTR	GGAUCUACUGUAAUUUGA	This study
Caperβ-UTR	UCAGUGGCAACAGUAACUG	This study
hSlu7-ORF	GUGAGUUAGUCGUAGAUA	This study
hSlu7-UTR	GACCAUCAAGAUAAGAGC	This study
References to Supplemental material

Akerman M, Mandel-Gutfreund Y (2007) Does distance matter? Variations in alternative 3' splicing regulation. Nucleic Acids Res 35:5487-5498

Bedard KM, Dajigo S, Semler BL (2007) A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J 26:459-467

Buratti E, Chivers MC, Kralovicova J, Romano M, Baralle M, Krainer AR, Vorechovsky I (2007) Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 35:4250-4263

Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32:W187-190

Gabut M, Mine M, Marsac C, Brivet M, Tazi J, Soret J (2005) The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 25:3286-3294

Gao L, Wang J, Wang Y, Andreidis A (2007) SR protein 9G8 modulates splicing of tau exon 10 via its proximal downstream intron, a clustering region for frontotemporal dementia mutations. Mol Cell Neurosci 34:48-58

Garneau D, Revil T, Fisette JF, Chabot B (2005) Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bel-x. J Biol Chem 280:22641-22650

Hastings ML, Allemand E, Duelli DM, Myers MP, Krainer AR (2007) Control of pre-mRNA splicing by the general splicing factors PUF60 and U2AF. PLoS ONE 2:e538

Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14:185-193

Kol G, Lev-Maor G, Ast G (2005) Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet 14:1559-1568

Kralovicova J, Gaunt TR, Rodriguez S, Wood PJ, Day INM, Vorechovsky I (2006a) Variants in the human insulin gene that affect pre-mRNA splicing: is -23 Hph I a functional single nucleotide polymorphism at IDDM2? Diabetes 55:260-264

Kralovicova J, Haixin L, Vorechovsky I (2006b) Phenotypic consequences of branchpoint substitutions. Hum Mutat 27:803-813

Kralovicova J, Houngninou-Molango S, Kramer A, Vorechovsky I (2004) Branch sites haplotypes that control alternative splicing. Hum Mol Genet 13:3189-3202

Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 35:6399-6413

Pacheco TR, Coelho MB, Desterro JM, Mollet I, Carmo-Fonseca M (2006) In vivo requirement of the small subunit of U2AF for recognition of a weak 3' splice site. Mol Cell Biol 26:8183-8190

Paradis C, Cloutier P, Shkreta L, Toutant J, Klarskov K, Chabot B (2007) hnRNP I/PTB can antagonize the splicing repressor activity of SRp30c. RNA 13:1287-1300

Paul S, Dansithong W, Kim D, Rossi J, Webster NJ, Comai L, Reddy S (2006) Interaction of muscleblind, CUG-BP1 and hnRNPH proteins in DM1-associated aberrant IR splicing. EMBO J 25:4271-4283

Rigo F, Martinson HG (2008) Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 28:849-862

Spellman R, Llorian M, Smith CW (2007) Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27:420-434

Stead JD, Hurles ME, Jeffreys AJ (2003) Global haplotype diversity in the human insulin gene region. Genome Res 13:2101-2111

Vorechovsky I (2006) Aberrant 3' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 34:4630-4641

Wang J, Shen L, Najafi H, Kolberg J, Matschinsky FM, Urdea M, German M (1997) Regulation of insulin preRNA splicing by glucose. Proc Natl Acad Sci USA 94:4360-4365

Wiestner A, Schlemer RJ, van der Maas AP, Skoda RC (1998) An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocytopenia. Nat Genet 18:49-52

Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CW (2004) Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 13:91-100

Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377-394
Zhang C, Hastings ML, Krainer AR, Zhang MQ (2007) Dual-specificity splice sites function alternatively as 5’ and 3’ splice sites. Proc Natl Acad Sci USA 104:15028-15033