On Autonilpotent Finite Groups
V. I. Murashka
{mvimath@yandex.ru}
Francisk Skorina Gomel State University, Gomel, Belarus

Abstract. In the paper autonilpotent groups were characterized as groups G such that $\text{Aut}G$ stabilizes some chain of subgroups of G. It was shown that a p-group is autonilpotent if and only if its group of automorphisms is also a p-group. Analogues of Baer’s theorem about the hypercenter and Frobenius p-nilpotency criterion were obtained for autonilpotent groups.

Keywords. Finite groups; nilpotent groups; autonilpotent groups; hypercenter of a group.

AMS(2010). 20D25, 20D45, 20D15.

1 Introduction and results

Throughout this paper and all groups are finite and G always denotes a finite group. Recall that $\text{Aut}G$ and $\text{Inn}G$ are the groups of all and inner automorphisms of G respectively.

Let A be a group of automorphisms of a group G. Kaloujnine [1] and Hall [2] showed that if A stabilizes some chain of subgroups of G then A is nilpotent. In this paper we will consider the converse question: assume that A stabilizes some chain of subgroups of G, what can be said about G?

M. R. R. Moghaddam and M. A. Rostamyari [3] introduced the concept of autonilpotent group. Let

$$L_n(G) = \{x \in G \mid [x, \alpha_1, \ldots, \alpha_n] = 1 \quad \forall \alpha_1, \ldots, \alpha_n \in \text{Aut}G\}$$

Then G is called autonilpotent if $G = L_n(G)$ for some natural n. Some properties of autonilpotent groups were studied in [4].

Theorem 1.1. A group G is autonilpotent if and only if $\text{Aut}G$ stabilizes some chain of subgroups of G.

Recall that $\pi(G)$ is the set of prime divisors of G. It is known that a group is nilpotent if and only if it is the direct product of its Sylow subgroups. Here we proved

Theorem 1.2. A group G is autonilpotent if and only if it is the direct product of its Sylow subgroups and the automorphism group of a Sylow p-subgroup of G is a p-group for all $p \in \pi(G)$.

In [5] all abelian autonilpotent groups were described. In particular, abelian autonilpotent non-unit groups of odd order don’t exist. It was not known about the existence of autonilpotent p-groups of odd order.

Corollary 1.1. Let p be a prime. A p-group G is autonilpotent if and only if $\text{Aut}G$ is a p-group.

An example of a p-group G of order p^5 ($p > 3$) such that $\text{Aut}G$ is also a p-group was constructed in [6]. In the library of small groups of GAP [7] there are 30 groups of order 3^6 such that their automorphism groups are also 3-groups (for example groups [729, 31], [729, 41] and [729, 46]).

Note that $L_n(G) \subseteq L_{n+1}(G)$ for all natural n. Since G is finite, it is clear that $L_n(G) = L_{n+1}(G)$ for some natural n. In this case we shall call a subgroup $L_n(G) = L_\infty(G)$ the absolute hypercenter of G. Hence G is autonilpotent if and only if $G = L_\infty(G)$. In [8] Baer showed that a p-element g of G belongs to the hypercenter $Z_\infty(G)$ of G if and only if it commutes with all p'-elements of G. It means that $g^x = g$ for any p'-element x of G. Here we obtain the following analogue of Baer’s result.
Theorem 1.3. Let g be a p-element of a group G. Then $g \in L_{\infty}(G)$ if and only if $g^a = g$ for every p'-element α of AutG.

Corollary 1.2. A group G is autonilpotent if and only if every automorphism α of G fixes all elements of G whose orders are coprime to the order of α.

According to Frobenius p-nilpotency criterion (see [3, 5E, 5.26]) a group G is nilpotent if and only if $N_G(P)/C_G(P)$ is a p-group for every p-subgroup P of G and every $p \in \pi(G)$.

Theorem 1.4. A group G is autonilpotent if and only if $N_{\text{Aut}_G}(P)/C_{\text{Aut}_G}(P)$ is a p-group for every p-subgroup P of G and every $p \in \pi(G)$.

2 Preliminaries

For an automorphism α and an element x of a group B we denote by x^α the image of x under α. Let A and B be groups and φ be a homomorphism form A to AutB. We can define the action of A on B in the following way

$$x^\alpha = x^{\varphi(\alpha)}, \quad x \in B, \quad a \in A.$$

In this case A is called a group of operators of B. It is known that the following sets are subgroups of A for any subgroup D of B.

$$N_A(D) = \{a \in A \mid D^a = D\}, \quad C_A(D) = \{a \in A \mid d^a = d \quad \forall d \in D\} \quad \text{and} \quad \text{Aut}_A(D) = N_A(D)/C_A(D),$$

where $\text{Aut}_A(D)$ is a group of automorphisms induced by A on D. Note that $\text{Ker} \varphi = C_A(B)$.

Hence the actions of A and $\text{Aut}_A(B) = A/C_A(B)$ on B are the same.

Recall that $[b, a] = b^{-1}a^b$ for $a \in A$ and $b \in B$. Let $y \in B$. We can also consider y as an element of InnB. Assume that $y \in N_{\text{Aut}_B(\text{Aut}_A B)}$. Then we can consider a^y as element of A

$$x^{a^y} = x^{y^{-1}a^y} = x^{y^{-1}\varphi(\alpha)y} = x^{\varphi(\alpha)y}, \quad x \in B.$$

Now it is clear that

$$[b, a]^y = y^{-1}b^{-1}yy^{-1}b^y = (b^{-1})^y b^y = (b^y)^{-1}(b^y)^{y^{-1}a^y} = [b^y, a^y].$$

3 R-nilpotent Groups

Let R be a group of operators for a group G and

$$K_0(G, R) = G \quad \text{and} \quad K_n(G, R) = [K_{n-1}(G, R), R],$$

$$L_0(G, R) = 1 \quad \text{and} \quad L_n(G, R) = \{x \in G \mid [x, \alpha_1, \ldots, \alpha_n] = 1 \quad \forall \alpha_1, \ldots, \alpha_n \in R\}.$$

Lemma 3.1. Let R be a group of operators for a group G and $\text{Inn}G \leq N_{\text{Aut}_G}(\text{Aut}_R G)$. Then

1. $L_n(G, R)$ is a normal subgroup of G for all natural n;
2. $L_n(G, R) = G$ for some natural n if and only if $K_n(G, R) = 1$.

Proof. Let prove (1). Let $x \in L_n(G, R)$. Note that for every $\alpha \in R$ and $y \in G$ there exists $\beta \in R$ with $\alpha = \beta^y$. From $1 = 1^y = [x, \alpha_1, \ldots, \alpha_n]^y = [x^y, \alpha_1^y, \ldots, \alpha_n^y]$ it follows that $[x^y, \alpha_1, \ldots, \alpha_n] = 1 \quad \forall \alpha_1, \ldots, \alpha_n \in R$. Hence $x^y \in L_n(G, R)$. Thus $L_n(G, R)$ is normal in G.

2
Let show that \(L_n(G, R) \) is a subgroup of \(G \). Since \(G \) is finite, it is sufficient to show that if \(x, y \in L_n(G, R) \), then \(xy \in L_n(G, R) \). Let \(\alpha \in R \). It is straightforward to check that \([xy, \alpha] = [x, \alpha][y, \alpha]\). From \(\text{Inn}G \leq N_{\text{Aut}G}(\text{Aut}_RG) \) it follows that \([x, \alpha][y, \alpha] = [x^\gamma, \alpha^\delta][y, \alpha] \), where \(\alpha^\gamma \in R \). It means that \([xy, \alpha_1, \ldots, \alpha_n] = [z, \beta_1, \ldots, \beta_n][y, \alpha_1, \ldots, \alpha_n] \), where \(\beta_1, \ldots, \beta_n \in R \) and \(z \in L_n(G, R) \) as a conjugate of \(x \). Therefore \(xy \in L_n(G, R) \). Thus \(L_n(G, R) \leq G \).

Let prove (2). Assume that \(K_n(G, R) = 1 \). From \([x, \alpha_1, \ldots, \alpha_n] \mid \forall x \in G \) and \(\forall \alpha_1, \ldots, \alpha_n \in R \), it follows that \(L_n(G, R) = G \). Assume now that \(L_n(G, R) = G \). Since \(L_1(G, R) \) is a subgroup, \([L_1(G, R), R] \leq L_{i-1}(G, R) \). From \(L_n(G, R) = G \) it follows that \(K_i(G, R) \leq L_{n-i}(G, R) \). Thus \(K_n(G, R) = 1 \).

We shall call a group \(G \) \(R \)-nilpotent if \(K_n(G, R) = 1 \) for some natural \(n \). Hence if \(R = G \), then \(R \)-nilpotent group \(G \) is nilpotent and if \(R = \text{Aut}G \), then \(R \)-nilpotent group \(G \) is autonilpotent by Lemma 3.1.

Theorem 3.1. Let \(R \) be a group of operators for a group \(G \). Then \(G \) is \(R \)-nilpotent if and only if \(R \) stabilizes some chain of subgroups of \(G \).

Proof. Assume that \(G \) is \(R \)-nilpotent. Then \(1 = K_n(G, R) \) for some \(n \). From \([K_i(G, R), R] = K_{i+1}(G, R) \) it follows that \(xK_{i+1}(G, R) = x^\alpha K_{i+1}(G, R) \) for every \(\alpha \in R \) and \(x \in K_i(G, R) \). It means that \(R \) stabilizes
\[
1 = K_n(G, R) \leq K_{n-1}(G, R) \leq \cdots \leq K_0(G, R) = G.
\]
Assume that \(R \) stabilizes the following chain of subgroups
\[
1 = G_n < G_{n-1} < \cdots < G_0 = G
\]
Note tat \(K_0(G, R) = G \leq G_0 \). Assume that \(K_i(G, R) \leq G_i \). Let show that \(K_{i+1}(G, R) \leq G_{i+1} \).

Since \(x^\alpha G_{i+1} = xG_{i+1} \) for every \(\alpha \in R \) and \(x \in G_i \), we see that
\[
K_{i+1}(G, R) = [K_i(G, R), R] \leq [G_i, R] \leq G_{i+1}.
\]
Hence \(K_n(G, R) \leq G_n = 1 \). Therefore \(G \) is \(R \)-nilpotent.

Theorem 1.2 follows from Theorem 3.1 when \(R = \text{Aut}G \). According to [10, A, 13.8(b)] every group \(G \) is \(F(G) \)-nilpotent, where \(F(G) \) is the Fitting subgroup of \(G \).

Theorem 3.2. Let \(p \) be a prime and \(R \) be a group of operators for a \(p \)-group \(G \). Then \(G \) is \(R \)-nilpotent if and only if \(\text{Aut}_RG \) is a \(p \)-group.

Proof. (a) If a \(p \)-group \(G \) is \(R \)-nilpotent, then \(\text{Aut}_RG \) is a \(p \)-group.

Note that \(R \) stabilizes the chain of subgroups
\[
1 = K_n(G, R) < K_{n-1}(G, R) < \cdots < K_1(G, R) < K_0(G, R) = G.
\]
By [10, Corollary 12.4A(a)], \(\text{Aut}_RG = R/C_R(G) \) is a \(p \)-group.

(b) Let \(P \) be a \(p \)-group of operators of a \(p \)-group \(G \). Then \(G \) has a \(P \)-admissible maximal subgroup.

Note that maximal subgroups of \(G \) are in one-to-one correspondence with maximal subgroups of \(G/\Phi(G) \). It is well known that \(G/\Phi(G) \) is isomorphic to the direct product of \(n \) copies of \(\mathbb{Z}_p \) for some natural \(n \). So the number of maximal subgroups of \(G/\Phi(G) \) is equal to the number of maximal subspaces of a vector space of dimension \(n \) over \(\mathbb{F}_p \). It is known (for example see [11]) that this number \(k = (p^n - 1)/(p - 1) \). So the number of maximal subgroups of \(G \) is coprime to \(p \). Note that if \(M \) is a maximal subgroup of \(G \), then
\[
M^z = \{m^z \mid m \in M\}
\]
is also maximal subgroup of G. Hence a p-group P acts on the set of maximal subgroups of G. From $(k, p) = 1$ it follows that P has a fixed point on it. It means that there exists a maximal subgroup M of G with $M^p = M$ for all $x \in P$.

(c) Let P be a group of operators of a p-group G. If $\text{Aut}_P G$ is a p-group, then G has P-composition series with simple factors.

Note the actions of P and $\text{Aut}_P G$ on G are the same. From (b) it follows that every P-admissible subgroup M of G has maximal P-admissible subgroup N. Hence G has P-composition series with simple factors.

(d) Let P be a group of operators of a p-group G. If $\text{Aut}_R G$ is a p-group, then G is R-nilpotent.

By (c) G has R-composition series with simple factors. Let

$$1 = G_n < G_{n-1} < \cdots < G_1 < G_0 = G$$

be this series. Note that $G = K_0(G, R) \leq G$. Assume that we show that $K_i(G, R) \leq G_i$ for some i. Let show that $K_{i+1}(G, R) \leq G_{i+1}$ (note that the order of $\text{Aut} G_i / G_{i+1} \simeq \text{Aut} Z_p / Z_{p-1}$ is coprime to p). Hence R acts trivially on G_i / G_{i+1}, i.e.

$$(gG_{i+1})^{-1}(gG_{i+1})^\alpha = [g, \alpha]G_{i+1} = G_{i+1}$$

for all $g \in G_i$ and $\alpha \in R$. So $[g, \alpha] \in G_{i+1}$ for all $g \in G_i$ and $\alpha \in R$. It means that

$$K_{i+1}(G, R) = [K_i(G, R), R] \leq [G_i, R] \leq G_{i+1}.$$

Thus $K_n(G, R) \leq G_n = 1$. Hence G is R-nilpotent.

It is clear that $L_n(G, R) \subseteq L_{n+1}(G, R)$. Since G is finite, we see that there is a natural n such that $L_n(G) = L_{n+1}(G)$ for all $i > 1$. In this case let $L_n(G, R) = L_\infty(G, R)$. Note that if $R = \text{Inn} G$, then $L_\infty(G, R) = Z_\infty(G)$ the hypercenter of G, and if $R = \text{Aut} G$, then $L_\infty(G, R) = L_\infty(G)$ the absolute hypercenter of G.

Theorem 3.3. Let R be a group of operators for a group G with $\text{Inn} G \leq \text{Aut}_R G$ and g be a p-element of G. Then $g \in L_\infty(G, R)$ if and only if $g^\alpha = g$ for every p'-element α of R.

Proof. From $\text{Inn} G \leq \text{Aut}_R G$ it follows that $L_\infty(G, R)$ is nilpotent. Let g be a p-element of $L_\infty(G, R)$. Note that if $g \in L_1(G, R)$, then $[g, \alpha] = 1$ or $g = g^\alpha$ for all p'-elements α of R. Assume that if $g \in L_k(G, R)$, then $g^m = g^\alpha$ for all p'-elements α of R. Let show that if $g \in L_{k+1}(G, R)$, then $g = g^\alpha$ for all p'-elements α of R.

Since $L_\infty(G, R)$ is nilpotent, $[g, \alpha]$ is a p'-element for all $\alpha \in R$. Assume now that $\alpha \in R$ is a p'-element. From $g \in L_{k+1}(G, R)$ it follows that $[g, \alpha] \in L_k(G, R)$. By induction $[g, \alpha]^m = [g, \alpha]$. Let m be the order of α. From $g^\alpha = g[g, \alpha]$ it follows that $g = g^{\alpha^m} = g[g, \alpha]^m$ or $[g, \alpha]^m = 1$. Since $[g, \alpha]$ is a p'-element and $(p, m) = 1$, we see that $[g, \alpha] = 1$ or $g = g^\alpha$. Thus if $g \in L_{k+1}(G, R)$, then $g = g^\alpha$ for all p'-elements α of R.

From $L_\infty(G, R) = L_n(G, R)$ for some natural n it follows that if g is a p-element of $L_\infty(G, R)$, then $g^{\alpha^m} = g$ for every p'-element α of R.

Let G_p be the set of all elements of G such that $g^\alpha = g$ for every p'-element α of R and every $g \in G_p$. Note that if $x, y \in G_p$, then $xy \in G_p$. Hence G_p is a subgroup of G. Let $g \in G_p$, $\alpha, \beta \in R$ and β is a p'-element. Then $\beta^{\alpha^{-1}}$ is a p'-element too. Hence

$$(g^\alpha)^\beta = g^\alpha \beta^{-1} \alpha = g^{\alpha \beta^{-1}} = g^\alpha.$$

It means that $g^\alpha \in G_p$. Thus G_p is a R-admissible subgroup of G. Let x be a p'-element of G_p. From $\text{Inn} G \leq \text{Aut}_R G$ it follows that

$$\alpha_x : g \mapsto g^x.$$
is a p'-element of R. Hence it acts trivially on G_p. Let P be a Sylow p-subgroup of G_p. Then $P \leq G_p$. It means that all p-elements of G_p form a subgroup. So $\text{Pchar} G_p$. Hence P is R-admissible. Now $\text{Aut}_R P$ is a p-group. It means that P is R-nilpotent by Theorem 3.2. So $K_n(P, R) = 1$ for some natural n. Thus $[g, \alpha_1, \ldots, \alpha_n] = 1$ for any $g \in P$ and $\alpha_1, \ldots, \alpha_n \in R$. Therefore $P \leq L_{\infty}(G, R)$.

Corollary 3.1 (Baer [8]). Let p be a prime and G be a group. Then a p-element g of G belongs to $Z_{\infty}(G)$ if and only if it permutes with all p'-elements of G.

Theorem 3.4. Let R be a group of operators for a group G with $\text{Inn} G \leq \text{Aut}_R G$. Then G is R-nilpotent if and only if $\text{Aut}_R P$ is a p-group for all p-subgroups P of G and $p \in \pi(G)$.

Proof. Assume that a group G is R-nilpotent. Then $G = L_{\infty}(G, R)$ by Lemma 3.1. Let P be a p-subgroup of G. Then $g = g^\alpha$ for all p'-elements α of R and all $g \in P$ by Theorem 3.3. It means that $\text{Aut}_R P = N_R(P)/C_R(P)$ is a p-group.

Assume that $\text{Aut}_R P$ is a p-group for every p-subgroup P of G and every $p \in \pi(G)$. Suppose that G is non-nilpotent. So there is a Schmidt subgroup S of G. Then S has a normal q-subgroup Q for some prime q and there is a q'-element x of S with $x \notin C_G(Q)$. Since

$$\alpha_x : g \to g^x$$

is a non-identity inner automorphism of G of q'-order and $\text{Inn} G \leq \text{Aut}_R G$, $\text{Aut}_R Q$ is not a q-group for a q-subgroup Q, a contradiction.

Hence G is nilpotent. Let P be a Sylow p-subgroup of G. Then P contains all p-elements of G and $\text{Pchar} G$. Since $\text{Aut}_R P = R/C_R(P)$ is a p-group, $g = g^\alpha$ for all p'-elements α of R and all $g \in P$. From Theorem 3.3 it follows that $P \leq L_{\infty}(G, R)$. Hence $G \leq L_{\infty}(G, R)$. Therefore $G = L_{\infty}(G, R)$. Thus G is R-nilpotent by Lemma 3.1.

Theorem 3.5. Let R be a group of operators for a group G with $\text{Inn} G \leq \text{Aut}_R G$. Then G is R-nilpotent if and only if it is the direct product of its Sylow subgroups and $\text{Aut}_R P$ is a p-group for every Sylow p-subgroup P of G and all $p \in \pi(G)$.

Proof. Assume that G is R-nilpotent. From $\text{Inn} G \leq \text{Aut}_R G$ it follows that G is nilpotent. Hence it is the direct product of its Sylow subgroups. Note that $\text{Aut}_R P$ is a p-group for every Sylow p-subgroup P of G and all $p \in \pi(G)$ by Theorem 3.3.

The proof of the converse statement is the same as in the end of proof of Theorem 3.4.

Proof of Theorem 1.2. The automorphism group of a direct product of groups was described in [12]. In particular, if $G = P \times H$, where P is a Sylow subgroup of G, then $\text{Aut} G = \text{Aut} P \times \text{Aut} H$ and $\text{Aut}_{\text{Aut} G} P = \text{Aut} P$. Now Theorem 1.2 directly follows from Theorem 3.5.

Final Remarks

In [13, 14] it was shown that if G has has A-composition series with prime indexes then A is supersoluble. Shemetkov [14] and Schmid [15] studied \mathfrak{S}-stable groups of automorphisms for a (solubly) saturated formation \mathfrak{S}.

Let \mathfrak{S} be a class of groups, R be a group of automorphisms of a group G and H/K be a R-composition factor of G. We shall call H/K R-\mathfrak{S}-central if

$$H/K \triangleleft \text{Aut}_R H/K \in \mathfrak{S}.$$

Hence if $R = \text{Inn} G$, then R-\mathfrak{S}-central factor is just \mathfrak{S}-central.
Definition 1. We shall call a group G auto-\mathfrak{F}-group if every $\text{Aut}G$-composition factor of G is $\text{Aut}G$-\mathfrak{F}-central.

Question 1. Describe the class of all autosupersoluble groups.

Question 2. Describe the class of all auto-\mathfrak{F}-groups, where \mathfrak{F} is a hereditary saturated formation.

Acknowledgments

I am grateful to A. F. Vasil’ev for helpful discussions.

References

[1] L. Kaloujnine, ber gewisse Beziehungen zwischen einer Gruppe und ihren Automorphismen, Berliner Mathematische Tagung, (1953) 164–172.
[2] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2(4) (1968) 787—801.
[3] M. R. R. Moghaddam and M. A. Rostamyari, On autonilpotent groups, in Fifth International Group Theory Conference, Islamic Azad University, Mashhad Branch, 13–15 March (2013), pp. 169–172.
[4] S. Davoudirad, M.R.R. Moghaddam and M.A Rostamyari, Autonilpotent groups and their properties, Asian-European Journal of Mathematics, 9(2) (2016) DOI: 10.1142/S179355711650056X.
[5] M. M. Nasrabadi and A. Gholamiam, On A-nilpotent abelian groups, Proc. Indian Acad. Sci. (Math. Sci.) 124(4) (2014) 517–525.
[6] M. J. Curran, Automorphisms of certain p-groups (p odd), Bull. Austral. Math. Soc. 38 (1988) 299-305.
[7] Groups, Algorithms, and Programming (GAP), Version 4.8.7. http://www.gap-system.org (2017).
[8] R. Baer. Group Elements of Prime Power Index, Trans. Amer. Math Soc. 75(1) (1953) 20–47.
[9] I. Martin Isaacs, Finite group theory (Graduate studies in mathematics, V. 92, 2008).
[10] K. Doerk and T. Hawkes, Finite soluble groups (Walter de Gruyter, 1992).
[11] J. Konvalina, A Unified Interpretation of the Binomial Coefficients, the Stirling Numbers, and the Gaussian Coefficients, The American Mathematical Monthly, 107(10) (2000) 901-910.
[12] J. N. S. Bidwell, M. J. Curran and D. J. McCaughan, Automorphisms of direct products of finite groups, Arch. Math. 86 (2006) 481–489.
[13] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60(4) (1954) 409—434.
[14] L. A. Semetkov, Graduated formations of groups, Mathematics of the USSR-Sbornik. 23(4) (1974) 593-611.
[15] P. Schmid, Lokale Formationen endlicher Gruppen, Math. Z. 137(1) (1974) 31-48.