Rare clinical case report of a contralateral effect of laser biostimulation on the bone regeneration
Habash, Ghassan; Jayash, Soher Nagi

DOI:
10.1002/ccr3.5631

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Habash, G & Jayash, SN 2022, 'Rare clinical case report of a contralateral effect of laser biostimulation on the bone regeneration', Clinical Case Reports, vol. 10, no. 3, e05631. https://doi.org/10.1002/ccr3.5631

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
CASE REPORT

Rare clinical case report of a contralateral effect of laser biostimulation on the bone regeneration

Ghassan Habash1,2 | Soher Nagi Jayash3

1Deanship of Scientific Research, Al-Quds University, Al-Quds, Palestine
2Palestinian Association of Dental Implantology, Al-Quds, Palestine
3School of Dentistry, University of Birmingham, Birmingham, UK

Correspondence
Ghassan Habash, Deanship of Scientific Research, Al-Quds University, Al-Quds, Palestine.
Email: ghassan_habash@hotmail.com
Soher Nagi Jayash, School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK.
Email: soheernaji20@yahoo.com

1 INTRODUCTION

Laser biostimulation is the application of light to increase tissue healing, reduce inflammation, and control pain. Low level laser therapy (LLLT) is used in different dental procedures, such as non-surgical and surgical periodontal treatments, and in many clinical conditions, such as peri-implantitis, post-extraction and bone-healing therapy, temporomandibular disorders, hypersensitive dentine, traumatic ulcers, aphthous ulcers, herpes simplex virus infection of the lips, mucositis, paresthesiae, and trigeminal neuralgia.1,2 Peri-implantitis is an inflammatory process that affects the tissues around the implant causing bone loss. The regeneration of soft and hard tissues supporting dental implants is required to treat peri-implantitis.3 The biostimulative effects of LLLT have been shown in the literature,4-6 and indicates LLLT can be used to enhance wound healing locally and systemically. Previously, we reported the effects of laser therapy on horizontal bone regeneration around implants.7,8 In this case report, LLLT treatment was used to treat the bone loss around implant, surprisingly, the affected not only on the treatment side but also the non-treatment side and indicating that there is a generalized effect within the oral region. We aimed to show a rare bilateral bone regeneration around implants treated with LLLT on one side.

2 CASE REPORT

2.1 Methods

The patient was a 20-year-old woman with a diagnosis of peri-implantitis around implant placement in the upper left missing lateral incisor. The case was treated by using pontic site preservation by covering the implant with connective tissue graft and LLLT and the space restored by a minimally prepared resin-bonded bridge. The treatment
of this case was previously reported. Briefly, LLLT was applied on the surgical area using 810 nm Diode laser (QuickLase), pulsating wave mode (0.1 W) for 45 s labially and palatally to the treated implant immediately after each surgery, 7 days, 14 days 1 month, and 3 months after the surgeries. The patient was reviewed after 1 year, and cone beam computed tomography (CBCT) was taken. Written informed consent was obtained from the patient to publish this report in accordance with the journal’s patient consent policy.

2.2 Results

In the first visit, clinically, the gingiva around implant was normal and there was no pain in the right lateral incisor. CBCT scan revealed bone resorption in mesial and distal surfaces and palatal surfaces around the implant (Figure 1A,B). The main complaint for the patient was in the implant in the contralateral site (left lateral incisor), so the laser treatment was not applied on the right lateral incisor. The measurement of bone before treatment was 1.2 mm in the palatal site and 11 mm in the labial site of the implant (Figure 1C). Interestingly, on 1-year evaluation after laser treatment in contralateral site, CBCT showed bone formation around implant in contralateral site (Figure 2A,B). The alveolar bone-height measurements from CBCT images bone were 7.76 mm in the palatal side after treatment (Figure 2C). The bone thickness adjacent to dental implant was 0.72 mm on the palatal site of the implant (Figure 2).

3 Discussion

The benefit of using laser around the implant over other techniques is their ability to reach hard areas around the implant to achieve better sterilization and debridement. Our previous case report describes the clinical benefits of photobiomodulation in the treatment of peri-implantitis

FIGURE 1 3D composition of the implant site before treatment in labial view (A) and palatal view (B). (C) The CBCT imaging of implant site showing the measurements of bone height in labiopalatal view before treatment

FIGURE 2 3D composition of the implant site after treatment in labial view (A) and palatal view (B). (C) The CBCT imaging of implant site showing the measurements of bone height in labiopalatal view after treatment
that reported adequate bone fill one year post-operatively after laser therapy. Also, a previous study revealed that photobiomodulation accelerates, in vivo, the healing of the mucosa overlying alveolar sockets and can only hypothesize that also the underlying bone could reform in a shorter time.9

Surprisingly, the effect induced by LLLT was not restricted to the treatment side and was also observed on the contralateral side, indicating a bilateral effect in the anterior area of the maxilla. Previously, clinical study reported the application of LLLT appears to reduce the pain and sensitivity of the tooth and gingiva associated with orthodontic treatment and the analgesic effect induced by LLLT was not restricted to the treatment side and was also observed on the contralateral side, indicating an extended effect in the trigeminal area.10 This indicates that LLLT treatment may have some degree of bilateral effects within the orofacial region. This interesting finding will open the door for additional application of LLLT in bone healing that can be used clinically. However, this is the first clinical study reported the bilateral effect of laser in bone regeneration so this finding calls for future studies on the bilateral effects of LLLT.

4 | CONCLUSION

The application of LLLT appears to induce bone regeneration and may have contralateral effects. Thus, the present study indicates an interesting effect of LLLT on bone formation. Further clinical applications are suggested.

ACKNOWLEDGMENT

The authors would like to thank Dr. Ayman Zaghal for his assistance in imaging.

CONFLICT OF INTEREST

The authors declare there are no competing interests.

ETHICAL APPROVAL AND CONSENT TO PARTICIPATE

Patient consent and ethics approval are not applicable.

CONSENT

Consent for publication is signed.

DATA AVAILABILITY STATEMENT

All supporting data are available.

ORCID

Soher Nagi Jayash 🐣 https://orcid.org/0000-0001-5263-8557

REFERENCES

1. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30(5):465-475.
2. Misra N, Chittoria N, Umaphathy D, Misra P. Efficacy of diode laser in the management of oral lichen planus. Case Rep. 2013;2013:bcr2012007609.
3. Dreyer H, Grischke J, Tiede C, et al. Epidemiology and risk factors of peri-implantitis: a systematic review. J Periodontal Res. 2018;53(5):657-681.
4. Hawkins D, Abrahamse H. Phototherapy—a treatment modality for wound healing and pain relief. Afr J Biomed Res. 2007;10(2).
5. Bensadoun R-J, Nair RG. Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta-analysis. Curr Opin Oncol. 2012;24(4):363-370.
6. Özberk SS, Gündoğar H, Şenyurt SZ, Erciyas K. Adjunct use of low-level laser therapy on the treatment of necrotizing ulcerative gingivitis: a case report. J Lasers Med Sci. 2018;9(1):73.
7. Habash G, Jayash SN. Diode laser assisted horizontal bone defect regeneration in the treatment of peri-implantitis. Clin Case Rep. 2021;9(3):1247-1252.
8. Jayash SN, Habash G, Kamal M. Non-conventional method of pontic site preservation with laser-assisted bone regeneration. Clin Case Rep. 2021;9(7):e04483.
9. Scarano A, Lorusso F, Postiglione F, Mastrangelo F, Petrini M. Photobiomodulation enhances the healing of postextraction alveolar sockets: a randomized clinical trial with histomorphometric analysis and immunohistochemistry. J Oral Maxillofac Surg. 2021;79(1):e57.1-e57.12.
10. Wu S, Chen Y, Zhang J, et al. Effect of low-level laser therapy on tooth-related pain and somatosensory function evoked by orthodontic treatment. Int J Oral Sci. 2018;10(3):1-8.