DYNAMICAL TREATMENT OF VIRIALIZATION HEATING IN GALAXY FORMATION

PENG WANG AND TOM ABEL

Kavli Institute for Particle Astrophysics and Cosmology Stanford Linear Accelerator Center and Stanford Physics Department, Menlo Park, CA 94025; and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106; pengwang@stanford.edu, tabel@stanford.edu

Received 2007 January 11; accepted 2007 September 10

ABSTRACT

In a hierarchical picture of galaxy formation virialization continualy transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously, allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semianalytical models of galaxy formation. Our method explicitly conserves energy, unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semianalytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

Subject headings: cosmology: theory — early universe — galaxies: formation

1. INTRODUCTION

In the traditional hierarchical scenario of galaxy formation (Rees & Ostriker 1977; White & Rees 1978; White & Frenk 1991; Kauffmann et al. 1999; Cole et al. 2000), it is assumed that the infalling gas is shock heated to the virial temperature of the hosting dark matter halo near the virial radius. However, recently, analytical argument (Birnboim & Dekel 2003), cosmological simulations (Keres et al. 2005) and observations (Blanton et al. 2005; Kauffmann et al. 2003a, 2003b; Cooray & Milosavljevic 2005a; Cooray & Milosavljevic 2005b) have all shown evidence that in halos below a critical mass scale \(M_{\text{cr}} \sim 10^{12} M_{\odot} \), infalling gas was not shock heated at the virial radius. Thus in addition to the traditional “hot mode” of accretion, halos below the critical mass scale also have a “cold mode” of accretion. It has been shown that introducing such a critical mass scale is advantageous in semi-analytical galaxy formation model (Cattaneo et al. 2006; Cooray & Milosavljevic 2005a, 2005b).

As the mass of a halo increases due to merging and accretion, the temperature of the gas inside the halo will also change due to turbulence and shocks that constantly transform the merging and accreting kinetic energy into thermal energy. Since the specific kinetic energy gained by the gas during merging and accretion is given by the change of virial temperature, the gas heating rate can be computed as \(\dot{E}_{\text{vir}} = \frac{k_B}{C_0} \frac{dT_{\text{vir}}}{dt} \), where \(\gamma \) is the adiabatic index which we will take to be 5/3 as is the case for pri-

shows two-dimensional slices of velocity divergence for four cosmologcal simulations with and without cooling. Velocity divergence is a good indicator of virialization shock positions. As can be seen in that figure, in the adiabatic cases, these shocks mainly exist at large radii where the gas virializes. But when radiative cooling is included, the turbulence becomes highly supersonic, which then increases the frequency of shock fronts in the interior of the halo. Even gas deep inside the halo is affected by the cascading network of shocks in supersonic turbulence. This supports our basic assumption that the potential energy is first transformed to kinetic energy and is approximately shared with all the fluid in a dark matter halo. Under this assumption, we compute the average heating rate during accretion and merging. So whether the infalling gas can be shock heated at the virial radius depends on the competition between virialization heating rate and the local cooling rate: infalling gas can be shock heated at the virial radius if virialization heating rate is larger than the local cooling rate, otherwise infalling gas must flow cold to the inner halo.

In this work, we compute this virialization heating rate and compare it to the gas cooling to find the evolution of the critical halo mass separating the cold and hot flow region in galaxy formation. We argue that our approach is advantageous as it formulates galaxy formation in an energy-conserving fashion.

2. FORMALISM

In the spherical collapse model of halo formation (Gunn & Gott 1972), a halo formed at redshift \(z \) with mass \(M \) has a radius \(R_{\text{vir}} \) that encloses a characteristic overdensity of \(\Delta_* \), which in a ΛCDM cosmology we will take to be 178 when \(z \geq 1 \) and 356/(1 + z) when \(z < 1 \) (a more precise fit is given by Bryan & Norman 1998). So \(M \) is related to \(R_{\text{vir}} \) by \(M = \Delta_*(4\pi/3)R_{\text{vir}}^3 \rho_m \), where \(\rho_m(z) = (3H_0^2/8\pi G)\Omega_m(1 + z)^3 \) is the mean matter density at redshift \(z \). For each halo, we define a virial velocity \(V_{\text{vir}} = GM/R_{\text{vir}} \) and a virial temperature \(T_{\text{vir}} = (\mu m_p/2k_B) V_{\text{vir}}^2 \), where
\(\mu \) is the mean molecular weight. From these definitions we find that

\[
T_{\text{vir}} = \frac{\mu m_p G^{2/3} \Delta_v^{1/3} \Omega_m^{1/3} H_0^{2/3} \rho_0^{1/3}}{16^{1/3} k_B} M^{2/3} (1 + z) \\
= 4.8 \times 10^{-3} \left(\frac{M}{M_\odot} \right)^{2/3} (1 + z) \\
\times \left(\frac{\Omega_m}{0.3} \right)^{1/3} \left(\frac{\Delta_v}{178} \right)^{1/3} \left(\frac{\mu}{0.59} \right) \text{K,}
\]

(1)

Using \(dz/dt = -H_0(\Omega_m(1+z)^3 + \Omega_\Lambda(1+z)^3)^{1/2} \) in a \(\Lambda \)CDM cosmology and differentiating equation (1), one finds

\[
\Gamma = \frac{3}{2} \frac{\mu m_p G^{2/3} \Delta_v^{1/3} \Omega_m^{1/3} H_0^{2/3}}{54^{1/3} \rho_0^{1/3}} M^{-1/3} \frac{dM}{dz} \\
\times \left[\Omega_m(1+z)^3 + \Omega_\Lambda(1+z)^3 \right]^{1/2} \\
= -2.95 \times 10^{-8} \left(\frac{M}{M_\odot} \right)^{-1/3} \frac{d(M/M_\odot)}{dz} \\
\times \left(\frac{\Omega_m}{0.3} \right)^{1/3} \left(\frac{\Delta_v}{178} \right)^{1/3} \left(\frac{\mu}{0.59} \right) \text{eV Gyr}^{-1}
\]

(2)

where \(dM/dz \) is the halo mass accretion rate, which in simulations can be found routinely by constructing halo merger trees. In this work we use a semianalytical approaches to compute \(dM/dz \) proposed by van den Bosch (2002). Wechsler et al. (2002) have proposed a different form of fitting formula for \(dM/dz \), but their formula fitted well with van den Bosch’s formula with redefined parameters (van den Bosch 2002). Figure 1 shows the mass accretion history of halos with current mass \(10^{10}, 10^{11}, 2 \times 10^{12}, 10^{13}, 10^{14}, \) and \(10^{15} M_\odot \) using van den Bosch’s formula.

3. IMPLICATIONS

3.1. Virialization Heating versus Cooling

To see whether infalling gas can be shock heated to the virial temperature at the virial radius, we need to compare the heating rate (2) to the gas cooling rate at the virial radius.

To compute the cooling rate, when \(T > 10^4 \) K, we use the tabulated cooling function for gas in collisional ionization equilibrium computed by Sutherland & Dopita (1993); when the gas temperature is smaller than \(10^4 \) K, atomic line cooling is insufficient and cooling rate is dominated by \(\mathrm{H}_2 \) rovibrational transition, we use the fitting formula for \(\mathrm{H}_2 \) cooling function in Ripamonti & Abel (2005), assuming a universal \(\mathrm{H}_2 \) fraction \(f_{\mathrm{H}_2} = 10^{-3} \) (Tegmark et al. 1997; Abel et al. 1998).

Figure 2 shows the heating rate \(\Gamma \) and cooling rate per particle \(n(T_{\text{vir}})A(T_{\text{vir}}) \) at virial radius for halos with current mass \(10^{10}, 10^{11}, 2 \times 10^{12}, 10^{13}, 10^{14}, \) and \(10^{15} M_\odot \). We assume that the gas has an isothermal density profile and we plot the case for both metal-free and solar-metallicity gas. As can be seen from Figure 2, in the case of metal-free gas, for \(10^{10}(10^{11}) M_\odot \) halo, cooling is always at least 3 \((2) \) orders of magnitude larger than heating; for \(2 \times 10^{12} M_\odot \) halo, cooling always dominates over heating but they are comparable around \(z \sim 1; \) for \(10^{13} (10^{14}, 10^{15}) M_\odot \) halo, heating overtakes cooling at \(z \sim 3.5 (5, 6) \). In summary, in the case of metal free gas, for halos with current mass smaller than \(2 \times 10^{12} M_\odot \) cooling always dominate over heating, while for halos with current mass larger than \(2 \times 10^{12} M_\odot \), heating will overtake cooling when redshift is smaller than some critical redshift \(z_{\text{cr}}(M) \) which is a increasing function of current halo mass. In all cases, the heating rate decreases sharply when \(z \to 0 \) due to the rapidly decreasing accretion rate in a dark energy dominated universe.

From Figure 2 we can see that cooling dominates heating around redshift 10 while the cooling rate is still dominated by atomic line cooling. So our framework predicts that gas falling into halo at redshift \(\sim 10 \) generally cannot be shock heated at the edge of the halo if their virial temperature are greater than \(10^4 \) K.

Abel et al. (2000, 2002) showed that the first generation of stars formed inside halos of mass \(\sim 10^6 M_\odot \) at redshift \(>20 \). From Figure 1 we can see that this corresponds roughly to halo of current mass \(10^6 M_\odot \). Then, from Figure 2 we can see that virialization heating is comparable to the cooling rate of those minihalos at high redshift, consistent with the conclusion of Yoshida et al. (2003).

3.2. Critical Mass Scale for Shock Heating at Small Redshift

As we have seen in Figure 2, virialization heating dominates cooling at small redshift for halos above a critical mass. Figure 3 shows the evolution of the critical halo mass \(M_{\text{cr}} \) where the rates are equal. We have considered both an isothermal density profile and an NFW profile (Navarro et al. 1997). For NFW profile, we took the concentration parameter \(c = 12 \), so the density at the virial radius is 0.17 of the mean density of the halo. It can be seen that zero metallicity, \(M_{\text{cr}} \sim 10^{11.5} - 10^{12} M_\odot \), while for solar metallicity, \(M_{\text{cr}} \sim 10^{12.5} - 10^{13} \), with both of them changing very slowly at redshift range \(0.5 < z < 3 \). This is consistent with recent cosmological simulations that found that below redshift 3, only gas in halos above an almost redshift independent critical mass \(M_{\text{cr}} \sim 10^{12} M_\odot \) can be shock heated at the virial radius, while below this mass there is a cold mode of gas accretion (Keres et al. 2005; Birnboim & Dekel 2003; Dekel & Birnboim 2006; Cattaneo et al. 2006). Using a spherical symmetric stability analysis, Birnboim & Dekel (2003) explained this to be due to the instability of virial shock in small halos. Our result implies a complementary interpretation of this phenomenon. Note that \(M_{\text{cr}} \) increases rapidly when \(z < 0.5 \) because halo accretion rate decrease rapidly due to the onset of dark energy domination.

3.3. Implications for Semianalytical Galaxy Formation Models

A central task of semianalytical galaxy formation models (SAMs) is computing the evolution of hot and cold gas fractions inside dark matter halos (White & Rees 1978; White & Frenk 1993).
In traditional SAMs, cooling is treated explicitly as a dynamical process while heating is treated impulsively. In SAM cooling is the result of competition between the local cooling time and dynamical time. The point where cooling time equals dynamical time is defined to be the "cooling radius" and is used to compute the amount of cold gas and then star formation rate. For heating, traditional SAMs just assume that when halo merge with each other, all gas that is not already cooled is shock heated to the virial temperature of the new halo (Kauffmann et al. 1999; Cole et al. 2000). We will see that if we treat heating also as a dynamical process, this is usually not the case.

First, we define a heating radius \(r_h \) as

\[
\frac{n(\mathbf{r})}{C_3(T_{\text{vir}})} = \frac{1}{C_0}.
\]

So gas can be shocked to the new virial temperature during merger for gas lying between the heating radius \(r_h \) and \(R_{\text{vir}} \). Using a SAM (Kauffmann et al. 1999; Cole et al. 2000), consider an isothermal gas density profile

\[
\rho_g(\mathbf{r}) = M_g / (4\pi\mu m_p R_{\text{vir}} r^2),
\]

where \(M_g \) is the total gas mass, \(\mu \) the mean molecular weight, then \(r_h \) becomes

\[
r_h = \left[\frac{M_g \Lambda(T_{\text{vir}})}{4\pi\mu m_p R_{\text{vir}} \Gamma} \right]^{1/2}.
\]

In traditional SAMs, it is assumed that all gas between the cooling radius and \(R_{\text{vir}} \) can be heated to the virial temperature of the new halo in mergers. Figure 4 shows the evolution of the heating radius (3) and the cooling radius defined by White & Frenk (1991) for halos of current mass \(10^{10}, 10^{11}, 2 \times 10^{12}, 10^{13}, 10^{14}, \) and \(10^{15} M_\odot \). From Figure 4 we can see that the heating radius is always at least 2 times larger than the cooling radius for both the zero and solar metallicity cases. Therefore, the typical mass accretion rate does not supply sufficient energy to heat all of the gas at \(r > r_{\text{cool}} \). Hence traditional SAMs may significantly overestimate the amount of gas that can be shock heated during galaxy mergers. This has direct implications for using SAMs to compute thermal radiation, cosmic-ray acceleration, AGN feedback, or whatever process that depends on the amount of halo hot gas. The kinetic energy associated to the gas accreted in code mode just lost as cooling radiations. The gas that has been shocked heated at one redshift may not be shocked heated to the new virial temperature at a later merger. Their temperature will keep to be the virial temperature corresponding to the time they cross the heating radius. However, note that this is true only when that gas is still outside the cooling radius, otherwise it will just cool down to the minimum temperature allowed by the gas cooling properties.
Thus, instead of assuming all uncooled gas to have the same virial temperature of the new halo, a more consistent way is to compute a temperature profile using the virialization heating rate if what is to be calculated depends on the amount of hot gas.

Using \(n_g^2 \langle r \rangle / C_3 (T_{\text{vir}})/C_0 n_g(\langle r \rangle) / C_0 \) as the net cooling rate, one can estimate the change in \(r_{\text{cool}} \). Thus the local cooling time is given by

\[
 t_{\text{cool}} = \frac{3k_B T_{\text{vir}} n_g(\langle r \rangle)}{2[n_g^2(\langle r \rangle) / C_3 (T_{\text{vir}})/C_0 n_g(\langle r \rangle) / C_0}] ,
\]

where \(n_g(\langle r \rangle) \) is the isothermal gas density profile.

If one assumes the density profile remains to be approximately fixed during cooling, the gas in the halo will have cooled at time \(t_{\text{cool}} \) determined by the equality of cooling time and halo dynamical time (White & Rees 1978)

\[
 t_{\text{cool}}[r_{\text{cool}}(t)] = t = t_{\text{dyn}} = \frac{R_{\text{vir}}}{V_{\text{vir}}} .
\]

Hence the heating corrected cooling radius is given by

\[
 r_{\text{cool}} = \left[\frac{M_g \Lambda(T_{\text{vir}})}{4 \pi \mu m_p (\frac{3}{2} k_B T_{\text{vir}} V_{\text{vir}} + R_{\text{vir}} \Gamma)} \right]^{1/2} .
\]

When \(\Gamma = 0 \), this reduces to the usual formula of cooling radius (White & Frenk 1991), as expected.

Figure 4 shows the evolution of cooling radius with and without the heating correction term (6). It can be seen that the amount of cooled gas is decreased only by a small amount compared to the case without heating correction. So virialization heating, while important for determining whether gas can be shock heated, plays a lesser role in influencing gas cooling inside halos. This explains why the amount of cold gas predicted by SAMs and numerical simulation compares well (Yoshida et al. 2002; Helly et al. 2003).

From equations (4) and (5), we have

\[
 \frac{dr_{\text{cool}}}{dt} = \frac{r_{\text{cool}}}{2 r_{\text{cool}}} n_g(r_{\text{cool}}) \Lambda(T_{\text{vir}}) / \Gamma .
\]

So combining equations (6) and (7), the cooling rate \(\dot{M}_{\text{cool}} = dM_{\text{cool}}/dt = 4 \pi \rho_g(r_{\text{cool}}) r_{\text{cool}}^2 dr_{\text{cool}}/dt \) with heating correction is given by

\[
 \dot{M}_{\text{cool}} = \frac{M_g V_{\text{vir}} r_{\text{cool}}}{2 R_{\text{vir}}^2} n_g(r_{\text{cool}}) \Lambda(T_{\text{vir}}) / \Gamma ,
\]

where \(r_{\text{cool}} \) is given by equation (6).

In SAMs, \(\dot{M}_{\text{cool}} \) is a key quantity to compute the evolution of cold gas and thus star formation rate (Cole et al. 2000). Equation (8) shows explicitly how this quantity will be modified in our formalism and thus can be directly applied to SAMs. Furthermore, although we assumed \(\Gamma \) contains only virialization heating in this work, the final result equation (8) is actually general which shows how to consistently incorporate heating effect into SAMs. For example, it can also be applied to discuss AGN heating (see, e.g., Croton et al. 2006).

In summary, we have found that gas heating is determined by the competition between cooling rate and heating rate while gas cooling is determined by the competition between cooling time and dynamical time.
and dynamical time. Our analysis suggests that just like current
treatment of gas cooling in SAMs, we should also treat gas heating
as a dynamical and local process, especially when we try to
calculate physical quantities that rely on the amount of hot
gas inside halos, e.g., thermal radiation from halo hot gas (e.g.,
Miniati et al. 2004; Furlanetto et al. 2005).

4. CONCLUSIONS AND DISCUSSION

We have computed a virialization heating rate that is directly
related to the halo mass accretion history using van den Bosch’s
fitting formula.

By comparing the virialization heating rate to the cooling rate,
we find that gas can be shock heated at the virial radius only for
large halos at low redshift and small halos at very high redshift.
The critical halo mass computed in our framework agrees with
recent simulations and other analytical arguments.

Using the virialization heating rate, we also found that current
SAMs may have significantly overestimated the amount of gas
that can be shock heated. Our formalism provides an energy-
conserving remedy to this problem. On the other hand, gas cool-
ing is primarily determined by the competition between cooling
time and dynamical time, which explains the good fit of the cold
gas amount in the literature by comparing SAMs to numerical
simulation.

Due to the energy-conserving nature of our formalism, it is
also suitable to be used to compute quantities such as the thermal
radiation from halo hot gas. Furthermore, since cosmic-ray ac-
celeration and generation of galactic magnetic field are directly
related to the amount of shocked gas (Waxman & Loeb 2000;
Loeb & Waxman 2000; Keshet et al. 2003; Medvedev et al.
2006; Pavlidou & Fields 2006), our formalism can also be ap-
plied to compute these processes.

Finally, we would like to indicate that an important issue for
our calculation is the absence of scatter in van den Bosch’s for-
mula as it is the averaged mass accretion rate in the sense of both
space and time. As a space average, it implies halos correspond-
ing to high sigma peaks will have larger mass accretion rate than
van den Bosch’s formula and vice versa for halos corresponding
to low sigma peaks. As a time average, it implies that for a single
halo, accretion rate can become larger than van den Bosch’s for-
mula during major merger and smaller in the quiescent accretion
epochs. Realizing the time-average nature of van den Bosch’s
formula may be quite important, since the final state of a halo
may be quite different if one computes the heating rate using the
true mass accretion rate constructed from simulation rather
than van den Bosch’s formula. However, we also note that from
Figures 2 and 3 in van den Bosch (2002) it’s not a bad estimate
that the scatter is roughly $0.5M(z)$, almost independent of red-
shift. From equation (2), we expect that this leads to a scatter of
$\sim 1.5^{2/3} \approx 1.3$ in the heating rate. Our calculation captures some
of the essential physical effects of the virialization heating pro-
cess and is easy to implement in SAMs that use merger trees de-
derived from N-body simulations or from Monte Carlo techniques.

This work was supported by NSF CAREER award AST 02-
39709 from the National Science Foundation. We would like to
thank Naoki Yoshida for helpful comments on the draft.

REFERENCES

Abel, T., Anninos, P., Norman, M. L., & Zhang, Y. 1998, ApJ, 508, 518
Abel, T., Bryan, G., & Norman, M. 2000, ApJ, 540, 39
---------, 2002, Science, 295, 93
Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349
Blanton, M. R., Eisenstein, D., Hogg, D. W., Schlegel, D. J., & Brinkmann, J.
2005, ApJ, 629, 143
Bryan, G. L., & Norman, M. L. 1998, ApJ, 495, 80
Cattaneo, A., Dekel, A., Devriendt, J., Guiderdoni, B., & Blaizot, J. 2006,
MNRAS, 370, 1651
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168
Cooray, A., & Milosavljevic, M. 2000a, ApJ, 627, L85
---------, 2005b, ApJ, 627, L89
Croton, D. J., et al. 2006, MNRAS, 365, 11
Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2005, ApJ, 622, 7
Gunn, J. E., & Gott, J. R., III, 1972, ApJ, 176, 1
Helly, J. C., Cole, S., Frenk, C. S., Baugh, C. M., Benson, A., Lacey, C., &
Pearce, F. R. 2003, MNRAS, 338, 913
Hernquist, L., & Springel, V. 2003, MNRAS, 341, 1253
Kauffmann, G., & Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS,
303, 188
Kauffmann, G., et al. 2003a, MNRAS, 341, 33
---------, 2003b, MNRAS, 341, 54
Keres, D., Katz, N., Weinberg, D. H., & Dave, R. 2005, MNRAS, 363, 2
Keshet, U., Waxman, E., Loeb, A., Springel, V., & Hernquist, L. 2003, ApJ,
585, 128
Loeb, A., & Waxman, E. 2000, Nature, 405, 156
Medvedev, M. V., Silva, L. O., & Kamionkowski, M. 2006, ApJ, 642, 11
Miniati, F., Ferrara, A., White, S. D. M., & Bianchi, S. 2004, MNRAS, 348,
964
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Pavlidou, V., & Fields, B. D. 2006, ApJ, 642, 734
Rees, M., & Ostriker, J. P. 1978, MNRAS, 179, 541
Ripamonti, E., & Abel, T. 2005, preprint (astro-ph/0507130)
Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253
Tegmark, M., Silk, J., Rees, M. J., Blanchard, A., Abel, T., & Palla, F. 1997,
ApJ, 474, 1
van den Bosch, F. C. 2002, MNRAS, 331, 98
Waxman, E., & Loeb, A. 2000, ApJ, 545, L11
Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A.
2002, ApJ, 568, 52
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
Wise, J., & Abel, T. 2007, ApJ, 665, 899
Yoshida, N., Abel, T., Hernquist, L., & Sugiyama, N. 2003, ApJ, 592, 645
Yoshida, N., Stoehr, F., Springel, V., & White, S. D. M. 2002, MNRAS, 335,
762