MELANOMA DETECTION USING MACHINE LEARNING

S. Ranjana¹, R. Manimegala², K. Priya³

¹,²,³ Assistant Professor, Faculties of Humanities Science, Meenakashi Academy of Higher Education Research Chennai, TamilNadu, India
E-mail: ranjanas@ Maherfhs.ac.in¹, manimegalar@ Maherfhs.ac.in², priyak@ Maherfhs.ac.in³

ABSTRACT

The prevalence of malignant melanoma is increasing worldwide. This cancer is one of the leading causes of death in young people at any age. This cancer can be identified very early on because it's curable because it is noticeable on the face. New technologies have been a possible possibility to completely accurately diagnose early melanoma. First, a significantly better scientific detection capacity than melanoma in the clinic to be observed at the very earliest point with the advent of dermoscopy. The global implementation of this method has allowed vast collections of dermoscopic photographs of histopathologically confirmed melanomas and benign lesions to accumulate. In the fields of image recognition and machine learning, the advancement of advanced technology has allowed us to differentiate malignant melanoma from the several innocuous fake pictures without any biopsy. Such modern techniques would not only enable melanoma to be diagnosed sooner but should also reduce the large number of unnecessary and costly biopsy procedures. Although some of the latest systems in preliminary trials demonstrated a potential for these innovations, more technological improvement must be anticipated in precision and reproduciveness. We offer an outline on melanoma computerized detection in dermoscopic images in this article. First, the various types of lesion segmentation are discussed. We then offer a brief description of the segmentation of clinical characteristics. Finally, we are addressing the classification process in which machine learning algorithms are used to predict melanoma attributes produced by segments.

INTRODUCTION

Malignant melanoma, hereafter known as 'melanoma,' is a form of cancer that occurs in virtually all skin melanocytes. They exclude fairly uncommon primary melanomas from beyond the skin in this study, in the head, hand, and mouth [1]. Many viewers dream about melanoma, even since all of these cancers emerge from pigment cells, speak about an obscurely elevated lesion. Although certain melanomas lose pigment, which has a limited or total absence of dark pigments and look purple, white or tan. A further deviation from the traditional dark version of
the past is that many new early melanomas are mostly white [2]. Within the lesion, within addition to coloration and heights, there are also other characteristics that differentiate them from normal lesions in melanomas such as appearance and presence of other structures (clinical characteristics). The most deadly of skin cancers is Melanoma [3]. While in one particular case the carcinoma of Merkel cells is more lethal than any other form of skin cancer, overall melanoma causes more deaths [4]. It is reported that about 76,380 new cases of melanoma (46,870 people and 29,510 women) became diagnosed in 2016, according to the American Cancer Society (ACS). The ACS have reported nearly 10,130 deaths (6,750 people and 3,380 women) for the same year. Melanoma occurrence has risen annually. Many of these lives will be spared if melanoma is diagnosed early because it is readily curable. There are many trials worldwide utilizing various techniques to diagnose melanoma in the early stage [5]. Dermoscopy is a technique for obtaining a magnified and illuminative picture of a area of the skin for better visibility of skin spots (also known as dermatoscopy or epiluminescence microscopy). An imaging tool is called a dermatoscope for this reason [6]. Dermatoscopes of two types are: interaction with the surface without surface touch or blood, utilizing gel / oil film that occurs between skin and dermatoscope. Cross-polarized dermatoscopic illumination is used to obtain the vision from non-contact pictures and certain touch pictures [7]. Dermoscopy photos are commonly utilized for the diagnosis and evaluation of skin lesions owing to their lighting and magnification. Very few dermoscopic images are readily accessible. The most widely used study classes include PH2 and EDRA image repositories. A broad public dermoscopic image data archive has recently been established in the International Skin Imaging Partnership (ISIC) for the Melanoma initiative [8]. Dermoscopic photographs from these repositories may be used to study, build and evaluate the complex melanoma recognition algorithms.

LESION SEGMENTATION

A dermoscopic skin lesion is a specific bordering region, which is characterized most commonly by a distinct color or texture of the usual surrounding skin; this area is considered as being of significance to further analysis. Lesion segmentation indicates the zone (lesion) is isolated from regular (non-lesion) skin tissue [9,10]. In the analysis of dermoscopy images, lesion segmentation is a very effective phase for defining numerous global morphological features that are unique to the lesion while at the same time allowing for a broad area for segmentation of certain local clinical characteristics at a later level [11]. The boundary of the segmented zone, or area, often offers characteristics for use in the lesion study. Proper definition of the non-lesional zone, while overlooking objects present in other photos, often offers a standard field in which relative colors and other helpful characteristics can be measured.
Figure 1: A general block diagram of the system

For various factors, lesion segmentation is quite complicated. The primary explanation is that the regular and lesional skin in certain situations are completely in contrast. Many causes include skin tone shifts and skin aberrations involving appearance of objects (hairs, inks, dots, ruler marks, date labels, color reference charts etc.; non-irregular colors, irregular vignette (exterior black circles), lesion's physical place and primarily colour, pattern, design, scale and location differences in the lesion itself [12]. All these considerations must be taken into consideration during the construction of a rigorous algorithm of lesion segmentation. Through adequate planning measures for the segmentation of lesions, the impact of several can be reduced.
Primary pre-processing measures involve eliminating variable lighting effects, translating the image into a separate color space, selecting an correct color source, enhancing the display quality, enhancing contrast standardization of quality variations induced by image creation, smoothing the images, hair reduction, vignette reduction and lesion localization [13]. A proper combination of pre-processing measures may play an significant role in precise segmentation of lesions.

There are various commonly recognized methods for image division including but not limited to histogram thresholding techniques, clustering, spatial recognition of the localized and dispersed region, active contours, edge detection, fluorine logic, supervised learning, graph theory and probabilistic modeling. These approaches may be used independently or with greater specificity in combination.

For the exact segmentation and identification of features and generation of lesions, post-processing is necessary. Popular post-processing methods include the area of fusion, smoothing, opening and closing, identification and elimination of peninsulas, displacement of islands and widening of boundaries.
The study of lesion segmentation algorithm performance may be similarly nuanced and debatable with respect to the correct segmentation of lesions [14]. The segmentation of lesions often differs significantly amongst experts. In the majority of situations, an artificial border is comparable to a regular manual border obtained by the mixture of individual manual borders, utilizing several lesion regions originating from various experts [15]. Methods of measurement can be empirical or objective. A quantitative judgment is based on a specific ranking.

In this case, it should be described properly in the experimental setup to decide the scoring method among the various topics. An unbiased evaluation is based on the sum of errors compared with the typical manual lesion boundary by the automatic boundary. The literature describes multiple objective evaluation tests and each has its own advantages and disadvantages.

FEATURE SEGMENTATION

There may be many clinical characteristics showing that the lesion is benign or malignant for a defined dermoscopic picture of a lesion. The characteristic may be regional, covering the region of the lesion; local, present in a specific area or present in the lesion in many areas. In most instances, increasing segmentation of the lesion has then many segments across the lesion region, in comparison to lesion segmentation. Pigmentation network, atypical networks, lines,
forms of deterioration, dots and globules, blots, blue-white voila, shades of purple, green patches, cyst milia-like, vascular systems etc. Pigment network.

Any of the traits widely used for melanoma prediction. Many of these design types are often commonly classified as being multicomponent, lacunary and unspecific, with distinct patterns such as reticular, continental, cobblestone, homogeneous or starburst. Benign dermoscopic features in melanomas can be equally relevant in automated detection, when utilizing these melanoma recognition features.

Including the segmentation of lesions, functions include pre-processing, segmentation and after-processing phases. Any of the key features used in clinical segmentation are the colour, texture, form, composition, relative scale, lesion position, etc. The dissemination of a trait in the lesion region offers important diagnostic details in addition to their appearance. The clinical segmentation steps are close to those mentioned in the previous section Lesion segmentation steps.

The pre-processing phases of functionalities are mostly functional. The corresponding strategies used in the lesions segmentation are close to pre-processing strategies including colorstandard / correcting and lighting correction variance. The type of function being segmented may have relied upon each process involving image improvement, sharpening, blurring, converting color space, frequency / space transition, etc. A variety of these pre-processing approaches are tested rigorously with multiple iterations in order to find the best combination to detect the desired function. The best colour, texture or frequency channel is chosen by specific measures. For tuning / training such measures may be used as visual inspection or annotated masks. A variety of these pre-processing approaches are tested rigorously with multiple iterations in order to find the best combination to detect the desired function. The best colour, texture or frequency channel is chosen by specific measures. For tuning / training such measures may be used as visual inspection or annotated masks.

A specific method is taken to deal with the objects in the picture during the object segmentation phase. The goal function is frequently blurred by objects such as hairs and gels. Accordingly, either hair or gel masks are used in the pre-processing or post-processing (using a mask in order to eliminate some of the attribute segments in these regions), in compliance with the chosen segmentation system. These hair or gel masks may also be automatically produced which will in itself be a different issue for segmentation. Ruler marks are also treated as they resemble features that are hair-like but are usually smooth as shorter. Hair is often whiter and smoother often. In any study, objects like dark peripheral regions and light wheels can be absolutely removed by covering up them. This can be achieved in the first step of lesion segmentation.

For segmentation of functions, all forms of segmentation algorithms listed above may also be used in lesion segmentation. Nevertheless, the final segmentation production has many
dispersed segments of different shapes and sizes depending on the segmentation function. It is also necessary to choose the appropriate color channel combination for the usage of the dividing algorithm as to choose the appropriate dividing method. The postprocessing is also important in this case and should be carefully chosen depending on the form of filtering required for optimal performance. It should be recalled that the characteristics used in the last lesion classification are later created by the segments of the apps.

The classification parameters are the same as the lesion segmentation criterion except that a number of photos that appear where the goal attribute does not occur and there is no identification of the algorithm. An additional validation phase may then be done by measuring the binary function segmentation success / failure rate.

CONCLUSION

For effective diagnosis, early identification of melanoma is key. Due to the fact that dermoscopic images are so cheap and so popular, they provide the most viable alternative for utilizing modern image processing and machine learning algorithms. The usage of dermoscopy photos thus indicates that melanoma diagnosis is not likely to interrupt the current therapeutic model before the melanoma is actually active and unnecessary biopsies occur. It is most likely that the method of deroscopy research mentioned above would allow for the introduction of fast, reliable and cost-effective technologies on-site in clinics or even at home. Dermoscopic photographs come with various aberrations and artefacts. Hence the proper measures and procedures mentioned here are essential to resolve and treat these anomalies. Lesion segmentation with appropriate tolerance offers reasonable precision in the segmentation of the features which in effect maximizes the accuracy of classification. In consideration of the essential steps involved in lesion segmentation, feature segmentation, feature creation and classification, the auxiliary acts that are in most situations relevant to an outstanding result should be paid due attention.

REFERENCE

1. Wolf, J.A., Moreau, J.F., Akilov, O., Patton, T., English, J.C., Ho, J. and Ferris, L.K., 2013. Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA dermatology, 149(4), pp.422-426.
2. Kassani, Sara Hosseinzadeh, Peyman Hosseinzadeh Kassani, Michal J. Wesolowski, Kevin A. Schneider, and Ralph Deters. "Depthwise Separable Convolutional Neural Network for Skin Lesion Classification." In 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1-6. IEEE, 2019.
3. Liu, Chia-Feng, Pao-Cheng Huang, Min-Haw Wang, Chun-Hong Chen, and Ling-Sheng Jang. "A Microwave Resonator Biosensor Based on MEMS Technology and Rough Cu Electrodes for Biological Cell Detection." In 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1-2. IEEE, 2019.
4. Zighal, Nadia zmaouie, & Imenae Khaanfire Kaleel. "An easy way to the treatment of skin cancer by using sparse attribute identification auto-encoder & classification SVM." In 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1-6. IEEE, 2020.

5. Sanketh, Ravva Sai, M. Madhu Bala, Panati Viswa Narendra Reddy, and GVS Phani Kumar. "Melanoma Disease Detection Using Convolutional Neural Networks." In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCCS), pp. 1031-1037. IEEE, 2020.

6. Zhangg, Boyaen, Zhiyoang Whang, Junbinn Gaoe, Chantall Rutjaes., "Short-term Lesion Shift Identification with Innovative Siamese Neural Network for Cancer Screening." IEEE Transactions on Medical Imaging (2020).

7. Lucas, C.R., Sanders, L.L., Murray, J.C., Myers, S.A., Hall, R.P. and Grichnik, J.M., 2003. Early melanoma detection: nonuniform dermoscopic features and growth. *Journal of the American Academy of Dermatology*, 48(5), pp.663-671.

8. Mishra, N.K. and Celebi, M.E., 2016. An overview of melanoma detection in dermoscopy images using image processing and machine learning. *arXiv preprint arXiv:1601.07843*.

9. Capdehourat, G., Corez, A., Bazzano, A., Alonso, R. and Musé, P., 2011. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. *Pattern Recognition Letters*, 32(16), pp.2187-2196.

10. Li, Y. and Shen, L., 2018. Skin lesion analysis towards melanoma detection using deep learning network. *Sensors*, 18(2), p.556.

11. Lopez, A.R., Giro-i-Nieto, X., Burdick, J. and Marques, O., 2017, February. Skin lesion classification from dermoscopic images using deep learning techniques. In 2017 13th IASTED international conference on biomedical engineering (BioMed)(pp. 49-54). IEEE.

12. Palavi, "A Method of Dual Treatment to Diagnose Malignant Melanoma in Dermoscopic Images." In 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 1471-1476. IEEE, 2019.

13. Waheed, Z., Waheed, A., Zafar, M. and Riaz, F., 2017, March. An efficient machine learning approach for the detection of melanoma using dermoscopic images. In 2017 International Conference on Communication, Computing and Digital Systems (C-CODE) (pp. 316-319). IEEE.

14. Pandey, A. and Prakash, G., 2019. Deduplication with Attribute Based Encryption in E-Health Care Systems. *International Journal of MC Square Scientific Research, 11*(4), pp.16-24.

15. Fahad, A.A.A., 2019. Design and implementation of blood bank system using web services in cloud environment. *International Journal of MC Square Scientific Research, 11*(3), pp.09-16.

16. Kumanan, T. "Link Quality and Energy-Aware Metric-Based Routing Strategy in WSNS." Intelligent Computing in Engineering. Springer, Singapore, 2020. 533-539.
17. Sivasankar, C., and T. Kumanan. "Friend List-Based Reliable Routing in Autonomous Mobile Networks." Intelligent Computing in Engineering. Springer, Singapore, 2020. 409-415.