Structural Investigations of Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3 glass-ceramics by Solid State NMR

S V Pershina1, M Y Dzuba1,2, S G Vlasova2, Y V Baklanova3

1Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, 620137, Akademicheskaya st., 20, Yekaterinburg, Russian Federation
2Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002, Mira st., 19, Yekaterinburg, Russian Federation
3 Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990, Pervomayskaya st., 91, Yekaterinburg, Russian Federation

E-mail: Svpershina_86@mail.ru

Abstract. NASICON-type conductors based on LiGe_2(PO_4)_3 are very promising lithium-conducting electrolytes for all-solid-state lithium-ion and lithium batteries. Al-doped LiGe_2(PO_4)_3 solid electrolytes possessed higher conductivity (~10^{-4} S/cm at room temperature) and stability versus metallic Li. In this paper, we present the structure study of Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3 compound. Fast lithium-ion conductor Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3 solid electrolyte have been obtained through glass crystallization at 820 °C during 8 h. Structural positions occupied by atoms have been examined by solid state nuclear magnetic resonance experiments. ^6Li, ^7Li, ^27Al and ^31P NMR measurements have been performed at room temperature.

1. Introduction

All-solid-state lithium batteries using a solid electrolyte have long-life, safety, excellent rate capability, as well as high voltage and capacity, so they are considered as next-generation power sources [1-3]. Solid state lithium ion conductors for these applications must be resistant to the aggressive Li, have high lithium ion conductivity at room temperature (> 10^{-4} S cm^{-1}) and thermal stability, and also dense microstructure [4]. In particular, solid electrolytes with NASICON (Na Super Ionic CONductor) structure and formula Li_{M2}(PO_4)_3 (M^IV= Ge, Ti, Sn, and Hf) have been extensively studied [1-4]. It is known that the conductivity increases by 3-4 orders of magnitude at room temperature when Ge^{4+}(Ti^{4+}) is partially replaced by Al^{3+}, Y^{3+} or Sc^{3+} ions [1, 5, 6]. In particular, Li_{1+x}Al_{1-x}Ge_{2-x}(PO_4)_3 system attracts a lot of interest due to its high conductivity and stability against metallic Li [2, 5]. Among Al-doped LiGe_2(PO_4)_3 solid electrolytes, Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3 composition (or LAGP) exhibits the highest conductivity [6, 7], however, the conductivity of this electrolyte is considerably dependent on the synthesis conditions. It should be noted that crystallization of a glass corresponding to the formula Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3 is the most viable method of obtaining a high-conductivity LAGP electrolyte compared to conventional solid-state and sol-gel methods [6-8].

The framework of NASICON-type materials can be described as a covalent skeleton M_2(PO_4)_3 with corner-sharing MO_6 octahedra and PO_4 tetrahedra which form a three-dimensional (3D) network [1, 4, 5]. In this case, two MO_6 octahedra and three PO_4 tetrahedrons share oxygen atoms. In NASICON-type structure there are two possible crystallographic sites for Li ions migration: octahedral (Li_1) and 10-fold...
coordinated (Li\textsubscript{2}). Li\textsubscript{1} positions should be fully occupied and Li\textsubscript{2} positions should all be vacant to provide a high conductivity of the electrolyte. The tetrahedral positions in the NASICON structure should be completely occupied by P5+ ions, and Al3+ cations are only in octahedral sites. The presence of Al3+ ions in tetrahedral coordination indicates the presence of phosphate-based impurities even in very small quantities, which negative influence on ionic conductivity. Determining the coordination of Al3+ ions in NASICON-type materials is useful for clarifying the phase composition of samples. The structure of the LAGP ceramic electrolytes has been the subject of a large number of works [9 -11], however, only a few studies on LAGP glass-ceramics have been performed [3, 12]. For this reason, we focused on the structural aspects of this type of compound using nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) at room temperature.

2. Experimental

Li\textsubscript{1.5}Al\textsubscript{0.5}Ge\textsubscript{1.5}(PO\textsubscript{4})\textsubscript{3} glass-ceramics were obtained by glass crystallization. The starting glass of 19.75Li\textsubscript{2}O–6.17Al\textsubscript{2}O\textsubscript{3}–37.04GeO\textsubscript{2}–37.04P\textsubscript{2}O\textsubscript{5} composition for obtaining Li\textsubscript{1.5}Al\textsubscript{0.5}Ge\textsubscript{1.5}(PO\textsubscript{4})\textsubscript{3} glass-ceramics was synthesized by melt quenching. During the synthesis of glass and glass-ceramics at high temperatures, part of Li\textsubscript{2}O can volatilize; therefore, Li was taken in excess.

Li\textsubscript{2}CO\textsubscript{3} (>99.4%), Al\textsubscript{2}O\textsubscript{3} (>99.9%), GeO\textsubscript{2} (>99.9%) and NH\textsubscript{4}H\textsubscript{2}PO\textsubscript{4} (≥98.0%) served as precursors for obtaining glass. Aluminium and germanium oxides were previously heated at 1000 °C for 1 h, and Li\textsubscript{2}CO\textsubscript{3} was dried at 300 °C for 3 h. The starting components were thoroughly mixed together. The mix was heated stepwise up to 500 °C to remove volatile components. The resulting mixture was then melted in a Pt crucible at 1450 °C for 1 h. The melt was quenched between preheated steel plates. The procedure yielded transparent colorless parallel-sided plates without any impurities. The samples were annealed at 500 °C during 0.5 h to relieve thermal stresses, then polished on both sides and crystallized at 820 °C for 8 h at the rate of 3 °C min-1. After crystallization, the samples were slowly cooled down to room temperature in the furnace. In appearance the samples were white.

The amorphous structure of the original glass and the phase composition of the obtained glass-ceramics were determined by X-ray diffraction method (XRD) with a Rigaku D/MAX-2200VL/PC diffractometer (Rigaku, Japan) over a 2\textdegree range of 10–60° at room temperature. The collected data were processed with the FULLPROF program.

The 6Li, 7Li, 27Al and 31P MAS NMR spectra were obtained by using Agilent 400WB spectrometer (B\textsubscript{0} = 9.4 T, 6Li, 7Li, 27Al and 31P Larmor frequencies are 58.87, 155.46, 104.31 and 161.94 MHz, respectively) with standart Agilent 4.0 mm MAS Probe head at room temperature at MAS speed of 5–10 kHz. A 9.7 M LiCl, 1.1M Al(NO\textsubscript{3})\textsubscript{3} and H\textsubscript{3}PO\textsubscript{4} were used as a references. The spectra deconvolution was performed with the DMFit program [13].

3. Result and discussion

The X-ray powder diffraction patterns of glass-ceramic electrolytes are shown in Figure 1. According to the XRD analysis, the pattern reflections of the obtained electrolytes corresponded to the LiGe\textsubscript{2}(PO\textsubscript{4})\textsubscript{3} phase, which is indexed as a hexagonal structure with the space group $R\overline{3}c$ (\#167), and also the GeO\textsubscript{2} impurity phase, Figure 1. $R\overline{3}c$ space group is typical for NASICON-type structure [2, 6]. It is known that a partial substitution of Ge4+ ions ($r_1 = 0.53$ Å) for Al3+ ions ($r_1 = 0.53$ Å) with almost similar ionic radii yields solid solutions Li\textsubscript{1+x}Al\textsubscript{x}Ge\textsubscript{2–x}(PO\textsubscript{4})\textsubscript{3} at 0.1 ≤ x ≤ 0.6 [6, 7].

The 27Al MAS NMR spectrum of LAGP glass-ceramics shows the narrow single line with a maximum at $\delta = 14.8$ ppm (Figure 2), which can be unambiguously attributed to Al3+ ions in an octahedral positions since Al takes the place of Ge in LAGP framework. Indeed, in the 27Al NMR spectra of the Li\textsubscript{1+x}Al\textsubscript{x}M\textsubscript{2–x}(PO\textsubscript{4})\textsubscript{3} (M = Ti, Ge; $x = 0.0–0.5$) compositions, the most intensive spectral component at $\delta = 14$ ppm corresponds to AlO\textsubscript{6}, while the line at ~ 41 ppm assigned to tetrahedrally coordinated aluminum [10]. The presence of this line in the NMR spectrum indicates the appearance of the AlPO\textsubscript{4} impurity phase in the compounds; moreover, the intensity of this line usually grows with increasing dopant concentration [14]. However, unlike the above-mentioned compounds, the presence of the single signal in the 27Al NMR spectrum for the studied LAGP glass-ceramic samples is in
complete agreement with the NASICON-type structure. The absence of the signal from the AlPO$_4$ impurity phase indicates wide stability interval of Li$_{1+\delta}$Al$_{\delta}$Ge$_{2-\delta}$(PO$_4$)$_3$ solid solutions.

Figure 1. XRD pattern at room temperature of the Li$_{1.5}$Al$_{0.5}$Ge$_{1.5}$(PO$_4$)$_3$ glass-ceramics crystallized at 820 °C, and line diagram for GeO$_2$.

Figure 2. The 27Al MAS NMR spectrum of LAGP glass-ceramics crystallized at 820 °C. The spinning sidebands are marked with asterisks.

The 31P MAS NMR spectrum of LAGP glass-ceramics represents a superposition of six asymmetric lines with different chemical shift values, indicating six different environments of P$^{5+}$ ions, Figure 3. The line shape modelling of the NMR spectrum allowed to distinguish four components with different PO$_4^{3-}$ environments in the LAGP crystal structure. So, the most intensive lines with maxima at $\delta \sim$ -42 ppm and $\delta \sim$ 37 ppm should be attributed to P(OGe)$_4$ and P(OGe)$_3$(OAl)$_1$ groups, respectively. While less intensive lines with more positive chemical shift values at $\delta \sim$ -32 ppm and $\delta \sim$ -28 ppm can be assigned to P(OGe)$_2$(OAl)$_2$ and P(OGe)$_1$(OAl)$_1$ groups, respectively. The P(OGe)$_4$/ P(OGe)$_3$(OAl)$_1$/ P(OGe)$_2$(OAl)$_2$/ P(OGe)$_1$(OAl)$_1$ components ratio is equal 24 / 54 / 16 / 6 (in %). Two lines with low
intensity at $\delta \sim -4$ ppm and $\delta \sim -7$ ppm are observed in the range of 25 to 50 ppm additionally to the main lines; they can be attributed to NMR signals from possible Li$_3$PO$_4$ and/or Li$_4$P$_2$O$_7$ impurity phases [12]. These impurities have not been identified by XRD analysis, possibly due to their low content.

Figure 3. The 31P MAS NMR spectrum at room temperature of LAGP glass-ceramics samples crystallized at 820 °C (purple line). The computer modeling results (Gaussian / Lorentzian model) of the spectrum shape with lines corresponding to nonequivalent phosphate groups are presented by black curve. The spinning sidebands are marked with asterisks.

The 6,7Li MAS NMR spectra of LAGP glass-ceramics are represented by a narrow single line with the maximum positions at $\delta = -0.5$ ppm, respectively, Figures 4 and 5. According to the LAGP crystal structure, Li$^+$ ions occupy at least two different positions which are in close near and form the three-dimensional channel for lithium-ion migration. However, it is not possible to separate these positions even on the 6Li MAS NMR spectra at room temperature due to the high ion exchange between them.

Figure 4. 6Li (left) and 7Li (right) MAS NMR spectra of LAGP glass-ceramics samples crystallized at 820 °C.

4. Conclusions
In this work the structure of promising Li$_{1.5}$Al$_{0.5}$Ge$_{1.5}$(PO$_4$)$_3$ glass-ceramic electrolytes crystallized at 820 °C were studied using NMR method. The assignment of the 31P and 27Al MAS NMR lines to various phosphate and aluminate structural groups was performed.
It was established that all Al$^{3+}$ ions are in the octahedral environment, which is typical for the NASICON-type structure.

It was confirmed that no AlPO$_4$ impurity was presented in the studied samples.

Acknowledgement
The reported study was funded by the Russian Science Foundation according to the research project № 18-73-00099. The characterization of materials was carried out at the Shared Access Centre “Composition of Compounds” of the Institute of High Temperature Electrochemistry of the Ural Branch of the RAS, Yekaterinburg, Russian Federation.

References
[1] Meesala Y, Jena A, Chang H and Liu R-S 2017 ACS Energy Lett. 2 2734
[2] Xu X, Wen Z, Wu X, Yang X and Gu Z 2007 J. Am. Ceram. Soc. 90 2802
[3] Zhu Y, Zhang Y and Lu L 2015 J. Power Sourc. 290 123
[4] Zhang Z et al 2018 Energy Environ. Sci. 11 1945
[5] Leo C J, Chowdari B V R, Subba Rao G V and Souquet J L 2002 Mater. Res. Bull. 37 1419
[6] Fu J 1997 Solid State Ionics 104 191
[7] Kun H et al 2013 Mater. Charact. 80 86
[8] Kotobuki M and Koishi M 2015 Ceram. Int. 41 8562
[9] Hayamizu K and Seki S 2017 Phys. Chem. Chem. Phys. 19 23483
[10] Arbi K, Bucheli W, Jiménez R and Sanz J 2015 J. Eur. Ceram. Soc. 35 1477
[11] Diez-Gómez V, Arbi K and Sanz J 2016 J. Am. Chem. Soc. 138 9479
[12] Schröder C, Ren J, Rodrigues A C M and Eckert H 2014 J. Phys. Chem. C 118 9400
[13] Massiot D et al 2002 Magn. Reson. Chem. 40 70
[14] Forsyth M at al 1999 Solid State Ionics. 124 213