Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited

J. Johansson1, S. B. Cenko2,3, O. D. Fox4, S. Dhawan5, A. Goobar6, V. Stanishev7, N. Butler8, W. H. Lee9, A. M. Watson10, U. C. Fremling11, M. M. Kasliwal12, P. E. Nugent13, T. Petrushevska14, J. Sollerman15, L. Yan16, S. Dhawan1, O. D. Fox4, W. H. Lee7, M. M. Kasliwal8, D. A. Howell14,15, A. Goobar1, J. Sollerman12

1 Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden; joeljo@fysik.su.se
2 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
3 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
4 Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 USA
5 Department of Physics, Chemistry and Biology, IFM, Linköping University, SE-58183 Linköping, Sweden
6 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
7 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 CDMX, México
8 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
9 Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
10 Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720, USA
11 Centre for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
12 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
13 Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
14 Las Cumbres Observatory, 6740 Cortona Dr, Suite 102, Goleta, CA 93117-5575, USA
15 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138-1516, USA
16 Department of Physics and Astronomy, University of California, 1 Shields Ave, Davis, CA 95616-5270, USA
17 Department of Physics and Astronomy, University of California, 1 Shields Ave, Davis, CA 95616-5270, USA

Received 2021 May 24; revised 2021 October 11; accepted 2021 October 12; published 2021 December 24

Abstract

We present optical and near-infrared (NIR, Y, J, H-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, RV = 2.0, for all SNe, or a best-fit RV for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a “mass step,” between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above log(M*/M⊙) = 10. However, the mass step remains significant (3σ) at optical wavelengths (g, r, i) when using a global RV, but vanishes when each SN is corrected using their individual best-fit RV. Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical.

Unified Astronomy Thesaurus concepts: Type Ia supernovae (1728); Cosmology (343); Interstellar dust extinction (837)

Supporting material: machine-readable table

1. Introduction

Since the initial standardization of Type Ia supernova (SN Ia) peak luminosities was employed in the discovery of the accelerated expansion of the universe (Riess et al. 1998; Perlmutter et al. 1999), estimates of the local value of the Hubble constant from SNe (H0; Riess et al. 2019) are in tension with the value inferred from the early universe (Planck Collaboration et al. 2020). This tension is a possible sign of new physics or unresolved sources of systematic uncertainty.

Significant work has gone into understanding how to more precisely standardize SNe Ia as distance indicators at optical (visible) wavelengths. The SN Ia optical peak brightness is corrected for lightcurve shape (Phillips 1993) and color (Tripp 1998), and there are now several more elaborated prescriptions for optimizing these standardization procedures (see, e.g., Guy et al. 2007; Burns et al. 2011; Mandel et al. 2011). More recently, additional correction terms aiming at further improving the SN Ia standard candle have also been proposed. One such term accounts for the dependence of the SN Ia luminosity on its host galaxy properties, e.g., stellar mass (Hamuy et al. 1995; Sullivan et al. 2003; Lampeitl et al. 2010; Childress et al. 2013; Betoule et al. 2014; Uddin et al. 2017; Scolnic et al. 2018; Wiseman et al. 2020; Kelsey et al. 2021). These studies all uncover, to various degrees of significance, a “mass step” in the data: after lightcurve standardization, SNe in high-mass galaxies are more luminous than those exploding in low-mass galaxies. The origin of this mass step is poorly understood. Possible explanations include intrinsic differences in the SN populations and extrinsic differences in the host galaxy dust properties (Brout & Scolnic 2021). Near-infrared (NIR; 1 < λ < 2.5 μm) observations offer many advantages for standardizing SNe Ia (Elias et al. 1985; Meikle 2000) and for testing the hypothesis of different host galaxy dust properties. SNe Ia are more naturally standard candles at these wavelengths,
requiring significantly smaller corrections to their peak luminosity to yield similar precision as compared to the optical (Kasen et al. 2004; Wood-Vasey et al. 2008; Mandel et al. 2009; Burns et al. 2011, 2018; Dhawan et al. 2018a; Avelino et al. 2019). The reported scatter in NIR absolute magnitudes of $\lesssim 0.15$ mag is also supported by theoretical models, which indicate small variations of $\lesssim 0.1-0.2$ mag in the peak NIR magnitudes despite widely varying physical properties of the ejecta (Kasen 2006; Blondin et al. 2015). Furthermore, the NIR is less affected by dust extinction, e.g., the J-band extinction is a factor of ~ 4 lower than in V-band for typical dust. If different dust properties in low- and high-mass host galaxies are the cause of the mass step, the size of the mass step should be wavelength dependent (larger in the optical and smaller in the NIR; see, e.g., Figure 13 in Uddin et al. 2020). There are already upcoming data sets (e.g., CSP-II, Sweetspot, and RAISIN; Phillips et al. 2019; Ponder et al. 2020; Kirshner 2013), and ongoing (e.g., SIRAH, DEHVILS, and VEILS; Jha et al. 2019) and future SN Ia programs (e.g., with the Nancy Grace Roman Space Telescope; Hounsell et al. 2018) aiming to take advantage of these properties of SNe Ia and use NIR observations to study dark energy. In this context, NIR observations of SNe Ia in the nearby Hubble flow (z $\gtrsim 0.03$) are extremely valuable cosmological tools both as a Hubble flow rug of the local distance ladder and as a low-z “anchor” sample to measure dark energy properties.

However, as Burns et al. (2018) point out, there is a deficit of SNe in low-mass hosts in the current SN Ia NIR data set, and observing an unbiased sample of SNe Ia in the nearby Hubble flow is crucial to test the impact of SN Ia systematics, e.g., extinction from host galaxy dust, on the inferred value of H_0 (Burns et al. 2018; Dhawan et al. 2018a). Moreover, recent works have also claimed evidence for a mass step in the NIR as well (Ponder et al. 2020; Uddin et al. 2020). If indeed present and not accounted for, it will introduce further systematic uncertainties in the NIR SN Ia cosmological analyses.

The main goal of this work is to obtain optical and NIR lightcurves of an unbiased sample of SNe Ia in the nearby Hubble flow, together with data from the literature, to examine the impact of the host galaxy extinction determination on the claimed correlations between the host stellar masses and the NIR Hubble diagram residuals.

Here, we present optical and NIR observations of a new sample of 42 SNe Ia with redshifts out to $z \sim 0.12$ and containing 12 SNe in hosts with masses below $\log(M_*/M_\odot) = 10$.

Section 2 presents our sample. Section 3 describes our observations. Section 4 presents our analysis techniques, including spectroscopic classification, lightcurve fitting, derivation of the NIR Hubble diagram, and correlations with the host galaxy stellar mass. Section 5 discusses the results, and Section 6 provides our conclusion.

Throughout this paper we assume a flat ΛCDM cosmological model with $\Omega_M = 0.27$ and Hubble constant $H_0 = 73.2$ km s$^{-1}$ Mpc$^{-1}$ from Burns et al. (2018).

2. Supernova Sample

This work presents 42 new SNe Ia discovered with the intermediate Palomar Transient Factory (iPTF; Rau et al. 2009). We chose targets spanning a wide range of redshifts and host galaxy environments, and acquired optical and NIR follow-up observations for targets with early iPTF detection and classification. These observations are described in more detail in Section 3.

![Figure 1](image1.png)

Figure 1. Redshift distribution of the SNe used in the analysis. Note that peculiar SNe Ia are not included here, as well as SNe lacking optical lightcurves. The total number of unique SNe with both optical and NIR lightcurves amounts to 242.

![Figure 2](image2.png)

Figure 2. Host galaxy mass distribution of the SNe used in the analysis.

For our analysis, we also include SNe Ia from the literature having both optical and NIR lightcurves, which we describe briefly here and summarize in Figures 1 and 2. The final photometry of the first stage of the Carnegie Supernova Project (CSP-I) are presented in Krisciunas et al. (2017). Their sample consists of 120 SNe with NIR coverage, $z = 0.0037-0.0835$. CfAIR2 (Friedman et al. 2015) is a sample of NIR lightcurves for 94 SNe Ia obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope (PAIRTEL) between 2005 and 2011. Barone-Nugent et al. (2012) present J- and H-band lightcurves of 12 SNe Ia discovered by PTF in the redshift range $0.03 < z < 0.08$. This data was re-analyzed by Stanishev et al. (2018), including optical lightcurves. Stanishev et al. (2018) add 16 more SNe with NIR data in the redshift range $z = 0.037-0.183$. Furthermore, we include the six SNe with UV, optical, and NIR lightcurves in Amanullah et al. (2015). Note that some of the
supernovae were observed by, e.g., both CSP and CfA (see Friedman et al. 2015, for a comparison), and the total sample size in Figures 1 and 2 refers to the number of unique SNe.

3. Observations

The follow-up observations were obtained with several different facilities, which are described in the following sections. For each instrument used, deep reference images were obtained after the supernova emission had faded away. The reference images were subtracted from the science images in order to facilitate the photometry of the SNe, which can otherwise be affected by the light of the host galaxy. Image subtraction was in most cases performed as part of the reduction pipelines, which all utilize implementation of the convolution algorithms presented in Alard & Lupton (1998).

3.1. Optical Data

During the intermediate Palomar Transient Factory (iPTF) survey, the Palomar 48 inch (P48) telescope typically delivered g- and R-band images. The P48 image reduction is described by Laher et al. (2014), while the PTF photometric calibration and the photometric system are discussed by Ofek et al. (2012).

Optical follow-up observations were collected using the Palomar 60 inch telescope (P60, BVIgriz filters), the 2.56 m Nordic Optical Telescope (NOT), and the Las Cumbres Observatory (LCO) in UBVRI and/or griz-bands. The P60 data were reduced using an automated pipeline (Cenko et al. 2006), calibrated against the Sloan Digital Sky Survey (SDSS) and the reference images subtracted using FPipe (Fremling et al. 2016). Similarly, the NOT data were reduced with standard IRAF routines using the QUBA pipeline (Valenti et al. 2011), calibrated to the Landolt system through observations of standard stars and SDSS stars in the field. LCO data were reduced using lcogtsnpipe (Valenti et al. 2016) by performing point-spread function (PSF) fitting photometry. Zero-points for images in the UBVRI filters were calculated from Landolt standard fields (Landolt 1992) taken on the same night by the same telescope. For images in the griz filter set, zero-points were calculated using SDSS magnitudes of stars in the same field as the object.

3.2. Near-infrared Observations

For 37 out of 42 SNe in our sample, we acquired follow-up observations using the Reionization and Transients InfraRed camera (RATIR). RATIR is a six-band simultaneous optical and NIR imager (riZYJH bands) mounted on the autonomous 1.5 m Harold L. Johnson Telescope at the Observatorio Astronómico Nacional on Sierra San Pedro Mártir in Baja California, Mexico (Butler et al. 2012; Fox et al. 2012; Klein et al. 2012; Watson et al. 2012).

Typical observations include a series of 80 s exposures in the ri bands and 60 s exposures in the ZYJH bands, with dithering between exposures. The fixed IR filters of RATIR cover half of their respective detectors, automatically providing off-target IR sky exposures while the target is observed in the neighboring filter. Master IR sky frames are created from a median stack of off-target images in each IR filter. No off-target sky frames were obtained on the optical CCDs, but the small galaxy sizes and sufficient dithering allowed for a sky frame to be created from a median stack of selected images in each filter that did not contain either a bright star or an extended host galaxy.

Flat-field frames consist of evening sky exposures. Given the lack of a cold shutter in RATIR’s design, IR dark frames are not available. Laboratory testing, however, confirms that the dark current is negligible in both IR detectors (Fox et al. 2012). Bias subtraction and twilight flat division are performed using algorithms written in PYTHON, image alignment is conducted by astrometry.net (Lang et al. 2010), and image co-addition is achieved using SWARP (Bertin 2010). Figure 3 shows a typical set of images, where blue, green, and red show the field of view for the i-, J-, and H-band frames, respectively.
For seven SNe Ia in our sample, J- and H-band observations were also obtained using other facilities, such as HAWK-I on the 8 m Very Large Telescope (VLT; for iPTF14brb, 14ddi, 14de, 14ej, and 14fww), VIRCAM on the 4 m VISTA telescope (iPTF14fipb), and WIRC on the Palomar 200 inch telescope (iPTF14gni). These observations were processed with the corresponding instrument reduction pipelines.

3.3. Image Subtraction

Image subtraction was performed utilizing the High Order Transform of PSF ANd Template Subtraction (HOTPANTS; Becker 2015). Point sources were selected along the field of view (FOV) to calculate the PSF in each image, either based on classification from SDSS or through manual inspection. Given the relative paucity of bright point sources in most fields (particularly in the NIR), the PSF was held fixed across the FOV.

The calculated PSFs were utilized to perform PSF-matched photometry on the resulting subtracted images, yielding measurements of the instrumental magnitude of the supernovae in each epoch:

\[
m_{f, \text{inst}} = -2.5 \log_{10} \frac{\text{ADU}}{t_{\text{exp}}}. \quad (1)
\]

Uncertainties and upper limits were determined by inserting false sources of varying brightness into the RATIR images and repeating the identical process of image subtraction and PSF-matched photometry.

3.4. Photometric Calibration

Photometric calibration of the RATIR data was performed following the process outlined in Ofek et al. (2012). To calculate color and illumination terms, we selected fields with coverage from both SDSS (optical) and UKIDSS (NIR), and obtained photometry for stars (i.e., objects classified as point sources in SDSS) with r-band magnitudes between 14 and 18 (with additional flagging for saturation). We measured instrumental magnitudes via PSF-matched photometry for these calibration stars as above.

As a first pass, we calculate a zero-point for each image with no additional corrections (e.g., color and illumination terms). We removed nights with a large scatter in the zero-point (rms ≥ 0.10 mag) or individual stars that were clear outliers in the fits (determined via visual inspection).

We then perform a least-squares fit using the remaining nights/stars to the following equation for each filter f:

\[
m_{f} = m_{f, \text{inst}} + \text{ZP} + C_{t,i,j} \cdot (m_{i} - m_{j}) + C_{\text{illum}} \quad (2)
\]

where ZP is the zero-point, $C_{t,i,j}$ is the color term, m_{i} and m_{j} are the filters used for the color correction, and C_{illum} is an illumination correction term accounting for PSF variations depending on the position on the detector.

The color and illumination terms are held fixed for all observations in a given filter, while the zero-point term is allowed to vary freely in each image. The resulting best-fit color terms and zero-point rms are shown in Table 1. The zero-point rms is typically ~ 0.03 mag for the RATIR r to H bands.

For fields with SDSS and UKIDSS coverage, calibrated supernova magnitudes are calculated using Equation (2). For fields lacking SDSS coverage, we use photometry from Pan-STARRS1 Data Release 2 (Magnier et al. 2020), which is in a photometric system close to SDSS (Tonry et al. 2012). For fields lacking UKIDSS coverage we use 2MASS (Skrutskie et al. 2006) and the transformation from Hodgkin et al. (2009) to calibrate the Y-band RATIR data ($Y = J + 0.50 \times (J - H) + 0.08$).

All subtracted optical and near-IR photometry for the SNe Ia in our sample are presented in Table 2 and will be available on the WISeREP archive18 (Yaron & Gal-Yam 2012).

4. Analysis

Some of the SNe presented here have previously been published in separate papers:

1. Optical and NIR lightcurves and spectra of iPTF13abc (SN 2013bh) were presented and analyzed in Silverman et al. (2013). It is a near identical twin to the peculiar Ia SN 2000cx.
2. UV, optical, and NIR lightcurves and spectra of iPTF13asv (SN 2013cv) were presented in Cao et al. (2016) and there is additional H-band photometry in Weyant et al. (2018). SN iPTF13asv shows low expansion velocities and persistent carbon absorption features after the maximum, both of which are commonly seen in super-Chandrasekhar events, although its lightcurve shape and sharp secondary near-IR peak resemble characteristic features of normal SNe Ia.
3. Optical lightcurves and high-resolution spectra of iPTF13dge were presented in Ferretti et al. (2016), and NIR lightcurves in Weyant et al. (2018). The lightcurves are compatible with that of a normal SN Ia with little reddening, and no definite time variability could be detected in any absorption feature of iPTF13dge.
4. UV, optical, and NIR observations of iPTF13ebh from the CSP-II collaboration were presented in Hsiao et al. (2015). SN iPTF13ebh can be categorized as a “transitional” event, on the fast-declining end of normal SNe Ia.

18 http://wiserep.weizmann.ac.il
For our single spectrum of iPTF14apg, observed five days before peak brightness, SNID gives a best match to SN 2004dt at $z = 0.088 \pm 0.004$, consistent with the spectroscopic redshift of the nearest galaxy. Among the top matches are also SNe 2006ot and 2006bt (Foley et al. 2010), which are peculiar Ia SNe excluded from the Hubble diagram analysis (Burns et al. 2018, Uddin et al. 2020). A direct comparison of the lightcurves of iPTF14apg to those of SNe 2006ot and 2006bt (see Figure 4) strengthens this classification.

4.1. Host Galaxies

Figure 5 shows cutout images from the SDSS and PanStarrs surveys, centered on the SN positions. Most SNe can easily be associated with their hosts, while some cases are ambiguous, including:

1. SN iPTF14apg: the nearest galaxy is SDSS J123758.69+082301.5 with a spectroscopic redshift $z = 0.08717$, separated by $51''$, corresponding to a projected distance of 79.4 kpc.
2. SN iPTF14bpo: the nearest galaxy is SDSS J171429.74+310905.0 with a spectroscopic redshift $z = 0.07847$, separated by $27''$, corresponding to a projected distance of 38.9 kpc.
3. SN iPTF14ddi: the nearest galaxy is SDSS J171036.45+313945.0 with a spectroscopic redshift $z = 0.08133$, separated by $40''$, corresponding to a projected distance of 59.2 kpc.

For the literature sample, we note that SNe PTF10hmv, PTF10rlg, and PTF10qyx from Barone-Nugent et al. (2012) have ambiguous hosts.

We estimate the host galaxy stellar mass, M_*, using the relationship published in Taylor et al. (2011),

$$\log(M_*/M_\odot) = 1.15 + 0.7(m_g - m_i) - 0.4M_{\text{r band}}. \quad (3)$$

We use g- and i-band magnitudes from SDSS (or PanStarrs when no SDSS photometry is available), corrected for the Milky Way (MW) extinction. M_* is the absolute magnitude in the i band. Table 3 lists the redshifts and coordinates of the SNe in our sample, together with their likely host galaxies and our estimates of the host galaxy stellar mass.

Our mass estimates are consistent with those of Neill et al. (2009), Chang et al. (2015), and Burns et al. (2018), but are systematically higher by ~0.2–0.3 dex than the estimates from Ponder et al. (2020) and Uddin et al. (2020), who employ a more sophisticated spectral energy distribution (SED) fitting (Figure 6). However, for consistency when comparing stellar masses between our sample and the CSP, CFA, and literature sample, we choose to use our estimates for the combined analysis.

4.2. Light Curve and Host Galaxy Extinction Fitting

We use the SNooPy lightcurve fitting package developed for the CSP sample (Burns et al. 2011, 2014, 2018) to analyze the lightcurves of the SNe in our sample, including the lightcurves of the literature sample. To find the time of maximum, T_{max}, the color-stretch parameter, s_{stretch}, and the observed rest-frame peak magnitude of the SNe, the SNooPy max_model was fitted to the lightcurves. An example fit is shown in the upper panel of

Figure 4. Black symbols show our observed lightcurves of iPTF14apg. The SNooPy max_model fails to accurately fit the lightcurves, shown in gray lines (based on the r-band stretch, and offset to match the peak magnitudes). In blue and orange are the lightcurves of peculiar Ia SNe 2006ot and 2006bt, respectively.

For the other SNe included in our sample (except iPTF14ale, which has no spectroscopic classification), we run the SuperNova IDentification code (SNID Blondin & Tonry 2007) on the spectra (to be presented in a separate paper). For SNe iPTF13s, iPTF13sdg, iPTF13efe, iPTF14bpz, and iPTF14pb, we rely on redshift estimates based on the SN spectral features using SNID. Furthermore, for iPTF13ahn, iPTF13asv, iPTF13azs, iPTF13crp, and iPTF13dxk, we determine the redshifts from narrow host galaxy lines in the SN spectra.

19 The MW extinction is included in the fitted model and the derived magnitudes are corrected for it.
of Figure 7 and the derived lightcurve parameters are given in Tables 4 and 5.

To derive the host galaxy extinction, we use the more elaborated color model. This model allows us to fit for the host galaxy extinction taking into account the dependence of SN Ia intrinsic colors on s_{BV} (Burns et al. 2014). It uses parameterized dust extinction laws to calculate the total-to-selective extinction ratio R_X in any filter X as a function of R_V and $E(B - V)_{host}$ by the means of synthetic photometry (see Burns et al. 2011). As R_V controls the wavelength dependence.
of the extinction and the host galaxy color excess $E(B - V)_{\text{host}}$, the amount of the extinction, with observations over a broad range of frequencies it is in principle possible to fit independently for RV and $E(B - V)_{\text{host}}$, which are otherwise correlated. In our analysis we use the Cardelli et al. (1989) and O'Donnell (1994) extinction laws. For full details on the color model, the reader is referred to Burns et al. (2014, 2018).

We perform two fits for the extinction. First, $RV = 2.0$ is assumed for all SN hosts and only $E(B - V)_{\text{host}}$ is fitted. The value $RV = 2$ corresponds to our sample average (weighted average $RV = 1.9$, $\sigma_{RV} = 0.8$) and is close to values commonly found in many SN Ia cosmological analyses, which commonly employ a single RV. Second, both $E(B - V)_{\text{host}}$ and RV are fitted. This is possible because SNe Ia show a small intrinsic color dispersion across the optical to NIR bands and the inclusion of NIR observations provides additional wavelength leverage. Nevertheless, when $E(B - V)_{\text{host}}$ approaches zero (or rather, the level of scatter in the intrinsic color, $\sigma_{E(B - V)} \sim 0.06$ mag), the leverage to get meaningful constraints on RV decreases. The results from the second fit are shown in Table 5. Figure 7 lower panel shows an example of the inferred color excess and the best-fit extinction parameters.

It is a long-standing issue that SN analyses have yielded "unusually" low RV values. This is seen both when

\[^{20}\] It may be that the MW average of $RV = 3.1$ is unusually high.
minimizing the Hubble residuals using a global R_V for cosmological samples and for detailed studies of individual, highly extinguished SNe (e.g., SNe 2006X and 2014J; Amanullah et al. 2014; Burns et al. 2014). We stress that we only use the observed colors to constrain $E(B-V)_{host}$ and R_V, since determining extinction by minimizing Hubble residuals can lead to a bias (Burns et al. 2018; Uddin et al. 2020).

4.3. NIR Hubble Diagram

To construct the Hubble diagrams, the distance modulus for filter X, μ_X, was computed as:

$$\mu_X = m_X - P_X^N(s_{BV} - 1) - R_{X,BV}E(B-V)_{host},$$

where $P_X^N(s_{BV} - 1)$ is the second-order polynomial luminosity decline rate relation from Burns et al. (2018) and $R_{X,BV}$ is the total-to-selective absorption coefficient for filter X computed from R_V and $E(B-V)_{host}$. Here, we impose that $R_V > 0$ and do not correct for dust extinction objects with $E(B-V)_{host} < 0$, i.e., intrinsically blue objects.

Figure 8 shows the resulting J- and H-band Hubble diagrams for our optical+NIR SNe Ia compilation, including 40 SNe from our sample. SNe iPTF14aqg and iPTF14aqat are not included here, as we do not include spectroscopically peculiar SNe Ia (03fg, 06bt, 02es-like, or Iax SNe) in the analysis. Furthermore we apply a set of cuts on the redshift, stretch, and color excess distribution to our sample, such that we include only SNe with $z_{CMB} > 0.01$, $s_{BV} > 0.5$, $E(B-V)_{host} < 0.5$ mag, and $E(B-V)_{MW} < 0.2$ mag (corresponding to typical sample cuts used in other cosmological analyses, e.g., using SALT2 parameters $-0.3 < c < 0.3$ and $-3 < x_1 < 3$). The solid lines show the best-fit Hubble lines and the dashed lines indicate the scatter expected due to peculiar velocities $\sigma_{pec} = 300$ km s$^{-1}$.

The rms scatter in the Hubble residuals for the combined sample, after the cuts, is $\sigma_{HR,J} = 0.19$ mag (165 SNe) and $\sigma_{HR,H} = 0.21$ mag (152 SNe), for J and H, respectively. The scatter in J and H does not decrease significantly when using individual best-fit R_V instead of a global R_V.

We note an offset of 0.20 ± 0.05 mag when comparing the Y-band peak magnitudes to the CSP-I sample (also seen when comparing individual Y-band lightcurves of SNe observed simultaneously by RATIR and CSP-II, C. Burns, private communication). We thus add 0.20 mag to the Y-band magnitudes listed in Table 4 for the Hubble diagram analysis.

4.4. Correlations with Host Galaxy Stellar Mass

Having SN host galaxy stellar masses determined in Section 4.1 and color- and stretch-corrected distances from Section 4.3, we can begin to look for correlations.

In Figure 9 we show how our derived color stretch and color excess correlate with host stellar mass. Similar to conclusions reached in previous studies (Sullivan et al. 2011; Childress et al. 2013), we find that low-mass galaxies tend to host SNe with a higher stretch ($s_{BV} > 0.8$) and moderate extinction.
(E(B − V)$_{\text{host}}$ \lesssim 0.25 mag), while high-mass galaxies also host highly reddened SNe and fast-declining SNe.

Following Stanishev et al. (2018) and references therein, we fit the probability density function (PDF) of the computed color excesses for the entire sample, using an exponentially modified Gaussian distribution with a mean c_0 and standard deviation σ_e and exponent relaxation parameter τ. We find values $c_0 = 0.02$ mag, $\sigma_e = 0.06$ mag, and $\tau = 0.14$. We interpret the Gaussian component as a residual scatter due to intrinsic color variations.

Previous analyses (e.g., Sullivan et al. 2011; Betoule et al. 2014) typically split the sample at $M_{\text{split}} = 10^{10}$ M_\odot, which seems to be an “astrophysically reasonable” choice given the fairly distinct difference between the stretch and color excess distributions below and above log(M_\star/M_\odot) = 10.0. Other analyses have chosen a “statistically motivated” mass split location, either at the median stellar mass (log(M_\star/M_\odot) \sim 10.5) of their respective sample or based on some information criterion that maximizes the likelihood (Ponder et al. 2020; Udinn et al. 2020; Thorp et al. 2021). We choose to split our sample at $M_{\text{split}} = 10^{10}$ M_\odot as our fiducial case. Despite adding more SNe in low-mass galaxies from our subsample and, e.g., the Barone-Nugent et al. (2012) subsample, the distribution of host stellar mass for our sample is still skewed toward higher log(M_\star/M_\odot). For the combined sample, the median log(M_\star/M_\odot) = 10.50.

If we look at the observed distribution of best-fit R_V values (Figure 10), we find a weighted average $R_V = 2.2$ ($\sigma_{R_V} = 0.9$) for log(M_\star/M_\odot) < 10.0 and $R_V = 1.7$ ($\sigma_{R_V} = 0.8$) for log(M_\star/M_\odot) > 10.0 host galaxies. The weighted average value of R_V for the whole sample is $R_V = 1.9$ ($\sigma_{R_V} = 0.9$).

Here, we are not including R_V estimates for SNe with color excesses close to the level of the intrinsic color scatter E(B − V)$_{\text{host}}$ < σ_e \sim 0.06 mag (where we typically find artificially low R_V, albeit with large error bars) or those for highly extinguished SNe with E(B − V)$_{\text{host}}$ > 0.5 mag (which are well fit by R_V values ranging from 1.1 to 2.7, but the distribution is likely to be observationally biased toward finding SNe with low R_V).

In order to test the hypothesis that the distributions of R_V in the low and high stellar mass bins are statistically compatible with being drawn from the same underlying distribution we
perform a Kolmogorov–Smirnov (K-S) test. The K-S test yields a p-value of only 0.015, suggesting that the distributions are significantly different, with more than 95% confidence.

Even though the weighted mean values are statistically consistent with the global mean R_V value, we stress that the wide, non-Gaussian, probability distributions are different.

For the low- and high-mass bins, we compute the weighted mean and standard deviation of the Hubble residuals for the $BVgrizYJH$ filters (horizontal black lines in Figures 11 and 12). For each filter χ, we will refer to any Hubble residual offset between the two bins as a “mass step”, $\Delta_{HR}(\chi)$. To further investigate the behavior of the Hubble residuals, we divide the sample into five mass bins (orange symbols in Figure 11), to see if there are any additional effects toward the edges of the host mass distribution. Following Uddin et al. (2020), we also fit a slope to the Hubble residuals as a function of host mass (yellow lines in Figures 11 and 12) using Orthogonal Distance Regression (ODR).

We find that by using a global value $R_V=2.0$ (close to the average R_V for the entire sample) for all SNe in low- and high-mass host galaxies we reproduce a significant ($\sim 2\sigma$) mass step in optical $BVgiri$-band Hubble residuals $\Delta_{HR} \sim -0.07 \pm 0.03$ mag, while for NIR JH bands there is no significant mass step ($\Delta_{HR}(J) = -0.021 \pm 0.033$ mag and $\Delta_{HR}(H) = 0.020 \pm 0.036$ mag), shown as red symbols in Figure 13 (left panel). A similar trend is seen when fitting a slope to the Hubble residuals as a function of host mass. For optical $BVgiri$-bands we find slopes of $\sim 0.06 \pm 0.02$ mag dex$^{-1}$, while in the NIR the slopes are smaller (-0.027 ± 0.016 mag dex$^{-1}$ and -0.005 ± 0.018 mag dex$^{-1}$ in J and H, respectively) shown as red symbols in the right panel of Figure 13.

When correcting each SN individually by their best-fit $R_V \times (E(B-V)_{host})$ we see no significant mass step or mass slope in the Hubble residuals across the optical and NIR bands (blue symbols in Figure 13).

This result seems valid when changing the cuts on z, S_{peak}, and $E(B-V)_{host}$, and perhaps more importantly, the choice of M_{plate}. Choosing $M_{plate} = 10^{10.5} M_\odot$ (the median stellar host galaxy mass of our SNe compilation), we do see a (not significant) mass step across the optical and NIR $\Delta_{HR} \sim -0.04 \pm 0.03$ mag. We find
that our results are in line with Brout & Scolnic (2021), who modeled host galaxy reddening as separate Gaussian distributions for galaxies below and above \(\log(M_*/M_\odot) = 10 \). They found that for SNe in low-mass hosts, the average \(\langle R_V \rangle = 2.75 \pm 0.35 \), whereas for SNe in high-mass hosts, \(\langle R_V \rangle = 1.5 \pm 0.25 \), with both subsamples having a wide distribution \(\sigma_{R_V} = 1.3 \). This is in fair agreement with Salim et al. (2018), who found that, on average, dusty, high-mass quiescent galaxies have lower \(R_V \) values \(\langle R_V \rangle = 2.61 \), whereas low-mass star-forming galaxies tend to have higher values for \(R_V \) \(\langle R_V \rangle = 3.15 \).

Uddin et al. (2020) found nominal evidence for a consistent mass step in both the optical and NIR using the CSP-I sample \(\Delta_{HR}(J) = -1.03 \pm 0.05 \text{mag} \) and \(\Delta_{HR}(H) = -0.097 \pm 0.047 \text{mag} \) using similar cuts on the sample, although including SNe with \(z < 0.01 \) and having the mass step located at \(\log(M_*/M_\odot) = 10.5 \) (shown as gray dashed lines in Figure 13). We cannot fully reproduce the NIR mass step reported by Uddin et al. (2020), even if we use their host masses and the same best-fit extinction. We note that they do use updated Phillips relations, correcting for stretch using more flexible spline functions calibrated using unpublished data from CSP-II (C. Burns and S. Uddin, private communication), but we do not expect this to result in the observed differences in our plots.

Ponder et al. (2020) also report an \(H \)-band mass step \(\Delta_{HR}(H) = -0.18 \pm 0.05 \text{mag} \) (mass step located at \(\log(M_*/M_\odot) = 10.44 \)) using a compilation of 99 SNe from the literature. However, after removing two outliers, the step reduces to \(\Delta_{HR}(H) = -0.10 \pm 0.04 \text{mag} \). For our sample, we find \(\Delta_{HR}(H) = -0.03 \pm 0.04 \text{mag} \) for a mass step located at \(\log(M_*/M_\odot) = 10.44 \), i.e., consistent with the results from Ponder et al. (2020) in having no NIR mass step. It is unclear if the difference in the results is due to the lack of NIR stretch corrections and/or color corrections, or if it is possibly due to contamination from host galaxy light in unsubtracted photometry from the Sweetspot sample in Weyant et al. (2018).

Recently, Thorp et al. (2021) analyzed optical (\(griz \)) lightcurves of 157 nearby SNe Ia \((0.015 < z < 0.08) \) from the Foundation DR1 data set using the BayesSN lightcurve fitter (Mandel et al. 2011, 2020). When splitting their sample at \(\log(M_*/M_\odot) = 10.3 \), they find \(\langle R_V \rangle = 2.84 \pm 0.31 \text{mag} \) in low-mass hosts and \(\langle R_V \rangle = 2.58 \pm 0.23 \text{mag} \) in high-mass hosts (using the Fitzpatrick 1999 extinction law). This is broadly consistent with our results and those of Brout & Scolnic (2021), finding higher \(\langle R_V \rangle \) in low-mass galaxies. However, Thorp et al. (2021) conclude that these values are consistent with the global value of \(\langle R_V \rangle = 2.61 \pm 0.21 \), estimated for the full sample, and cannot be an explanation of the mass step. After corrections, their resulting mass step is marginally reduced, \(\Delta_{HR} = 0.054 \pm 0.025 \text{mag} \) (shown as the gray dotted line in the left panel of Figure 13).
5. Discussion

The relation between SN Ia luminosity and host galaxy properties is of great interest for SN Ia progenitor studies as well as for cosmology, as a third empirical correction (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al. 2010). While the correlation has been seen nearly ubiquitously across different samples (see, e.g., Brout et al. 2019; Smith et al. 2020), there is a significant debate about the physical origin of this relation. There has been speculation that the mass step may be driven by the age of the stellar population, metallicity, or star formation rate (Sullivan et al. 2010; D’Andrea et al. 2011; Gupta et al. 2011; Hayden et al. 2013; Childress et al. 2014; Rigault et al. 2020; Rose et al. 2021). However, it is possible that this correlation arises due to different SN Ia environments in different host galaxy types.

While most studies pertain to SN luminosity and host galaxy correlations in the optical, recently there have been reports of the possible detection of the mass step in the NIR wavebands (Ponder et al. 2020; Uddin et al. 2020). In this study, we exploit the multiwavelength, well-sampled lightcurves of the SNe in our sample and compute the mass step/slope after stretch and color corrections, fitting the R_V parameter individually for each SN. We find that when fitting the R_V value for each SN, we see a mass step consistent with zero in all filters from B to H band (see Figure 13). However, when fixing the R_V value to the sample average, as is done in previous studies, we find that there is a mass step of $\sim 0.07-0.1$ mag in the optical ($BVgri$), while no significant step is seen in the NIR (YJH).

Since the free R_V case yields mass steps that are consistent with zero, it is likely that the origin of the mass step is due to variations of dust properties in the interstellar medium of the host galaxies. However, more detailed studies would be required to rule out intrinsic effects. In fact, there are indications that there are two SN populations having different SN ejecta velocities and different intrinsic colors, which also trace the host galaxy stellar mass (see, e.g., Polin et al. 2019; Pan 2020; Siebert et al. 2020). Childress et al. (2013) and Gonzalez-Gaitan et al. (2021) simulate the effect of having separate color—luminosity corrections for low- and high-mass...
Figure 12. Hubble residuals versus host galaxy stellar mass from fitting from optical ($BgVri$) and NIR (YJH) lightcurves with the SNooPy color model (i.e., each SN corrected with best-fit $E(B−V)_{host}$ and R_V). Orange symbols show the binned mean and standard deviation of the Hubble residuals in five mass bins, while the orange line is the fitted slope.
galaxies. They find that multiple free color—luminosity slope parameters may explain away the mass step, suggesting that the origin of the mass step is a difference in the intrinsic color—luminosity relation (β_{int}^{com}) of two SN populations found in galaxies with different masses as opposed to different dust properties.

6. Conclusion

Many studies in the literature have suggested the need for an additional standardization parameter for SNe Ia, beyond the lightcurve shape and color. In particular, firm evidence has been put forward for a correlation between residuals in the Hubble diagram at optical wavelengths and the host galaxy stellar mass (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al. 2010; D’Andrea et al. 2011; Gupta et al. 2011; Hayden et al. 2013; Childress et al. 2014; Rose et al. 2021). The underlying cause of these correlations is not completely understood, with some suggestions that this could be due to a correlation with the age/metallicity of the underlying stellar population; however, there is also evidence pointing to this correlation arising from differences in dust properties of the SN hosts.

Our work differs from previous studies in that we use a sample of SNe Ia, found in the untargeted PTF/iPTF surveys, that adds a significant number of low-mass host galaxies. Furthermore, our data set includes multiband follow-up observations, including in the near-IR, which allows us to infer the total-to-selective extinction parameter, R_V, for each SN individually. This is motivated by the findings in, e.g., Amanullah et al. (2015) and Burns et al. (2018), suggesting that the wavelength dependence of dimming by host galaxy mass varies between SNe, making the use of a single value of R_V questionable. Using a parameterized extinction relation by CCM, we fit for both the color excess, $E(B - V)$, and R_V using \texttt{SNooPy color model} fits of the multiband data. In other words, our estimate of the extinction along the line of sight to each SN is not derived from the Hubble residuals. When examining the Hubble residuals, we do not find a significant correlation with stellar mass at optical or NIR wavelengths.

If we, instead, assume a single value for R_V to correct all SNe fitting only the color excess, we recover the “mass step” in optical filters. In the NIR, we find no significant dependence on the stellar mass, independent of how R_V is measured, i.e., individually or globally. This is consistent with the interpretation made by Brout & Scolnic (2021), that the mass step is likely caused by differences in dust properties of the low- and high-mass SN host galaxies.

We are grateful for valuable comments from Jakob Nordin and feedback from the CSP team (Chris Burns, Eric Hsiao, Mark Phillips, and Shuvo Uddin). We thank Melissa L. Graham for helping to obtain follow-up observations with Las Cumbres Observatory in 2013. A.G. acknowledges support from the Swedish Research Council under Dnr VR 2016-03274 and 2020-03444. T.P. acknowledges the financial support from the Slovenian Research Agency (grants I0-0033, P1-0031, J1-8136 and Z1-1853). Research by S.V. is supported by NSF grants AST-1813176 and AST-2008108.

This work makes use of observations from the Las Cumbres Observatory network. The LCO team was supported by NSF grants AST-1313484 and AST-1911225. The intermediate Palomar Transient Factory project is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe. LANL participation in iPTF is supported by the US Department of Energy as a part of the Laboratory Directed Research and Development program.

Software: FPipe (Fremling et al. 2016), QUBA pipeline (Valenti et al. 2011), lcogtsnpipe (Valenti et al. 2016), IRAF (Tody 1993), astrometry.net (Lang et al. 2010), swarp (Bertin 2010), (Becker 2015), SNooPy (Burns et al. 2011).

ORCID iDs

J. Johansson © https://orcid.org/0000-0001-5975-290X
S. B. Cenko © https://orcid.org/0000-0003-1673-970X
