A note on skew spectrum of graphs

Yanna Wang, Bo Zhou∗
Department of Mathematics, South China Normal University,
Guangzhou 510631, P. R. China

Abstract

We give some properties of skew spectrum of a graph, especially, we answer negatively a problem concerning the skew characteristic polynomial and matching polynomial in [M. Cavers et al., Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512–4529].

1 Introduction

We consider simple graphs. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). An orientation of \(G \) is a sign-valued function \(\sigma \) on the set of ordered pairs \(\{(i, j), (j, i) | ij \in E(G)\} \) that specifies an orientation to each edge \(ij \) of \(G \): If \(ij \in E(G) \), then we take \(\sigma(i, j) = 1 \) when \(i \to j \) and \(\sigma(i, j) = -1 \) when \(j \to i \). The resulting oriented graph is denoted by \(G^\sigma \). Both \(\sigma \) and \(G^\sigma \) are called orientations of \(G \).

The skew adjacency matrix \(S^\sigma = S(G^\sigma) \) of \(G^\sigma \) is the \(\{0, 1, -1\} \)-matrix with \((i, j) \)-entry equal to \(\sigma(i, j) \) if \(ij \in E(G^\sigma) \) and 0 otherwise. If there is no confusion, we simply write \(S = [s_{i,j}] \) for \(S^\sigma \). Thus \(s_{i,j} = 1 \) if \(ij \in E(G^\sigma) \), \(-1 \) if \(ji \in E(G^\sigma) \), and 0 otherwise. The (skew) characteristic polynomial of \(S = S^\sigma \) is

\[
p_S(x) = \det(xI - S) = x^n + s_1x^{n-1} + \cdots + s_{n-1}x + s_n,
\]

where \(n = |V(G)| \). Let \(\rho(D) \) be the spectral radius of a square matrix \(D \), i.e., the largest modulus of the eigenvalues of \(D \). The spectral radius of \(G \) is the spectral radius of its adjacency matrix. The maximum skew spectral radius of \(G \) is defined as \(\rho_s(G) = \max_S \rho(S) \), where the maximum is taken over all of the skew adjacency matrices \(S \) of \(G \).

∗Corresponding author. E-mail address: zhoubo@scnu.edu.cn
An odd-cycle graph is a graph with no even cycles (cycles of even lengths). In particular, a tree is an odd-cycle graph.

Let G be a graph with n vertices. Let $m_k(G)$ be the number of matchings in G that cover k vertices. Obviously, $m_k(G) = 0$ if k is odd. The matching polynomial of G is defined as

$$m(G, x) = \sum_{k=0}^{n} (-1)^{\frac{k}{2}} m_k(G) x^{n-k},$$

where $m_0(G) = 1$.

Let G be a graph on n vertices. After showing that G is an odd-cycle graph if and only if $p_S(x) = (-i)^n m(G, ix)$ for all skew adjacency matrices S of G (see [1, Lemma 5.4]), Cavers et al. [1] posed the following question:

Problem 1. If $p_S(x) = (-i)^n m(G, ix)$ for some skew adjacency matrix S of G, must G be an odd-cycle graph?

After showing that if G is an odd-cycle graph, then $\rho(S) = \rho(G)$ for all skew adjacency matrices S of G ([1, Lemma 6.2]), Cavers et al. [1] posed the following question:

Problem 2. If G is a connected graph and $\rho(S)$ is the same for all skew adjacency matrices S of G, must G be an odd-cycle graph?

In this note we answer Problem 1 negatively by constructing a class of graphs, and when G is a connected bipartite graph we answer Problem 2 affirmatively.

2 Preliminaries

Let \mathcal{U}_k be the set of all collections U of (vertex) disjoint edges and even cycles in G that cover k vertices (\mathcal{U}_k^c was used for this set in [1]). A routing \overrightarrow{U} of $U \in \mathcal{U}_k$ is obtained by replacing each edge in U by a digon and each (even) cycle in U by a dicycle. For an orientation σ of a graph G and a routing \overrightarrow{U} of $U \in \mathcal{U}_k$, let $\sigma(\overrightarrow{U}) = \prod_{(i,j) \in E(\overrightarrow{U})} \sigma(i,j)$. We say that \overrightarrow{U} is positively (resp. negatively) oriented relative to σ if $\sigma(\overrightarrow{U}) = 1$ (resp. $\sigma(\overrightarrow{U}) = -1$). For $U \in \mathcal{U}_k$, let $c^+(U)$ (resp. $c^-(U)$) be the number of cycles in U that are positively (resp. negatively) oriented relative to σ when U is given a routing \overrightarrow{U}. Then $c(U) = c^+(U) + c^-(U)$ is the (total) number of cycles of U.

Lemma 1. [1, eq. (8)] Let S be a skew adjacency matrix of G. Then $s_k = 0$ if k is odd and

$$s_k = m_k(G) + \sum_{U \in \mathcal{U}_k, c(U) > 0} (-1)^{c^+(U)} 2^{c(U)}$$

if k is even.
The following lemma is obtained from parts 2 and 3 of Lemma 6.2 in \cite{1}.

Lemma 2. Let G be a connected bipartite graph,

$$A = \begin{bmatrix} O & B \\ B^\top & O \end{bmatrix}$$

the adjacency matrix of G, and

$$S = \begin{bmatrix} O & B \\ -B^\top & O \end{bmatrix}$$

and

$$\tilde{S} = \begin{bmatrix} O & \tilde{B} \\ -\tilde{B}^\top & O \end{bmatrix}$$

two skew adjacency matrices of G. Then $\rho(A) = \rho_s(G)$, and $\rho(S) = \rho(\tilde{S})$ if and only if $\tilde{S} = DSD^{-1}$ for some $\{-1,1\}$-diagonal matrix D.

Lemma 3. \cite{1} Theorem 4.2. The skew adjacency matrices of a graph G are all cospectral if and only if G is an odd-cycle graph.

3 Results

First we give a negative answer to Problem 1.

Theorem 1. For integer $m \geq 2$, let G be the graph consisting of two $2m$-vertex cycles C_1 and C_2 with exactly one common vertex. Let σ be an orientation of G such that the cycle C_1 (resp. C_2) is positively (resp. negatively) oriented relative to σ. Let $S = S(G^\sigma)$ and let $n = 4m - 1$. Then $p_S(x) = (-i)^n m(G, ix)$.

Proof. It is sufficient to show that $s_k = m_k(G)$ for even k. By Lemma \cite{1} we only need to show that

$$\sum_{U \in \mathcal{U}_k \atop c(U) > 0} (-1)^{c(U)} 2^{c(U)} = 0$$

for even k.

This is obvious when $k < 2m$. Suppose that k is even with $2m \leq k \leq 4m - 2$. Let $C_1 = v_1v_2 \ldots v_2m v_1$ and $C_2 = v'_1 v'_2 \ldots v'_2m v'_1$ with $v_1 = v'_1$.

Let \mathcal{U}_k^1 be the subset of \mathcal{U}_k consisting of C_1 and $\frac{1}{2}(k - 2m)$ disjoint edges in C_2 and \mathcal{U}_k^2 the subset of \mathcal{U}_k consisting of C_2 and $\frac{1}{2}(k - 2m)$ disjoint edges in C_1. Obviously, $\mathcal{U}_k^1 \cap \mathcal{U}_k^2 = \emptyset$. For any $U \in \mathcal{U}_k$ with $c(U) > 0$, $U \in \mathcal{U}_k^1$ or $U \in \mathcal{U}_k^2$. There is a bijection from \mathcal{U}_k^1 to \mathcal{U}_k^2 which maps $U \in \mathcal{U}_k^1$ consisting of
C_1 and $\frac{1}{2}(k-2m)$ disjoint edges, say $v'_{i_1}, v'_{i_1+1}, \ldots, v'_{i_s}, v'_{i_s+1}$ in C_2 to $U' \in U_k^2$ consisting of C_2 and $\frac{1}{2}(k-2m)$ disjoint edges $v_i, v_{i+1}, \ldots, v_s, v_{s+1}$ in C_1, where $s = \frac{1}{2}(k-2m)$ and $2 \leq i_1 < \cdots < i_s \leq 2m-1$. Thus $|U_k^1| = |U_k^2|$. Note that

$$\sum_{U \in U_k^1} (−1)^{c^+(U)}2^{c(U)} = (−1)^1 \cdot 2^1 \cdot |U_k^1|$$

and

$$\sum_{U \in U_k^2} (−1)^{c^+(U)}2^{c(U)} = (−1)^0 \cdot 2^1 \cdot |U_k^2|. $$

Thus

$$\sum_{U \in U_k^0} (−1)^{c^+(U)}2^{c(U)} = \sum_{U \in U_k^1} (−1)^{c^+(U)}2^{c(U)} + \sum_{U \in U_k^2} (−1)^{c^+(U)}2^{c(U)} = 0,$$

as desired. \square

See Fig. 1 for an example with 7 vertices for Theorem 1 and its proof.

![Fig. 1. A graph on 7 vertices with an orientation.](image)

Now we give an observation on Problem 2, i.e., affirmative answer when G is a connected bipartite graph.

Theorem 2. Let G be a connected bipartite graph. If $\rho(S)$ is the same for all skew adjacency matrices S of G, then G is a tree.

Proof. Let

$$A = \begin{bmatrix} O & B \\ B^\top & O \end{bmatrix}$$

and

$$\overline{S} = \begin{bmatrix} O & B \\ -B^\top & O \end{bmatrix}$$

be an (ordinary) adjacency and a skew adjacency matrix of G. Let S be a skew adjacency matrix of G. Then $\rho(S) = \rho(S)$.

By Lemma 2 there is a $\{-1, 1\}$-diagonal matrix D such that $S = DSD^{-1}$, i.e., S is similar to S, which implies that all skew adjacency matrices of G are cospectral. Thus by Lemma 3 G is an odd-cycle graph. Since G is connected and bipartite, G is a tree.

Let G be a connected bipartite graph on n vertices. Let $K_{r,s}$ be the complete bipartite graph with r and s vertices in its two partite sets, respectively. Note that $\rho(G) < \rho(G + e)$ for an edge of the complement of G (following from the Perron-Frobenius theorem) and that $\rho(K_{r,s}) = \sqrt{rs}$.

By Lemma 2, $\rho_s(G) = \rho(G) \leq \sqrt{\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil}$ with equality if and only if $G = K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$, cf. [1, Example 6.1].

Let G be a connected graph on n vertices. Let P_n be the path on n vertices. By [1, Lemma 6.4], $\rho_s(G) > \rho_s(G - e)$ for an edge e of G. Let T be a spanning tree of G. Then by Lemma 2 and a result of Collatz and Sinogowitz [2], $\rho_s(G) \geq \rho_s(T) = \rho(T) \geq \rho(P_n)$ with equality if and only if $G = P_n$, cf. [1, Example 6.3].

Acknowledgment. This work was supported by the Guangdong Provincial Natural Science Foundation of China (no. S2011010005539). The authors thank the referee for constructive comments.

References

[1] M. Cavers, S.M. Cioabă, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012) 4512–4529.

[2] L. Collatz, U. Sinogowitz, Spektren endlicher graphen, Abh. Math. Semin. Univ. Hamburg 21 (1957) 63–77.