When can we improve on sample average approximation for stochastic optimization?

Eddie Anderson\(^a\), Harrison Nguyen\(^a,\ast\)

\(^a\)The University of Sydney, NSW, 2006, Australia

Abstract

We explore the performance of sample average approximation in comparison with several other methods for stochastic optimization when there is information available on the underlying true probability distribution. The methods we evaluate are (a) bagging; (b) kernel density estimation (KDE); (c) maximum likelihood estimation (MLE); and (d) a Bayesian approach. We use two test sets, the first has a quadratic objective function allowing for very different types of interaction between the random component and the univariate decision variable. Here the sample average approximation is remarkably effective and only consistently outperformed by a Bayesian approach. The second test set is a portfolio optimization problem in which we use different covariance structures for a set of 5 stocks. Here bagging, MLE and a Bayesian approach all do well.

Keywords: stochastic optimization, sample average approximation, maximum likelihood estimation, bagging, kernel smoothing

1. Introduction

We suppose that we have a sample of \(N\) points \(S = \{y_1, y_2, \ldots, y_N\}\) drawn from a random variable \(Y\) with an unknown distribution and we wish to solve the stochastic optimization problem:

\[
P: \min_{x \in X} \mathbb{E}[c(x, y)],
\]

where \(x\) is the decision variable and lies in \(X\) and the expectation is taken over the unknown distribution for \(Y\) and \(c\) is some cost function. Typically such problems arise when a decision needs to be taken now (e.g. investment) to optimize a future payoff that depends on a random variable (e.g. demand each day) where the only information on that random variable is a historical sequence (e.g. daily demand over the last year).
The standard approach is to use the sample average approximation (SAA),
so that we solve the problem:
\[
\text{SAA:} \quad \min_{x \in X} \frac{1}{N} \sum c(x, y_i)
\]
in which we treat the sample as though it was the full distribution. This
amounts to optimizing the objective within sample, and then applying the
optimal decision out of sample. In fact an SAA approach is frequently used
without identifying it as such, when researchers concentrate on the sample
at hand and have no way to assess directly the quality of the solutions they
achieve.

The SAA method is generally very effective and makes no assumptions
at all about the underlying distribution for the random variable \(Y\). How-
ever in practice we are likely to have at least some information about the
distribution. Perhaps we know that

- the underlying density function is continuous, or smooth, or
- the underlying distribution has a single mode, or
- there is a good approximation to the underlying distribution from a
 parameterized set of distributions.

We are interested in the following question: when and how can we use infor-
mation about the underlying unknown distribution to improve on the solution
obtained by SAA?

If there is a large sample, it is easy to see that the problem SAA will
be close to the underlying problem \(P\) and there are results in the literature
which make this statement more precise. Specifically a result of Shapiro
et al. (2009) shows convergence under relatively weak conditions (such as
Lipschitz behaviour for the cost function in terms of \(x\) and compactness of
\(X\)). Thus with a large sample the room for improvement on SAA will be
small and we will have a harder task to establish whether or not a given
method is worthwhile applying. Thus we will concentrate on problems with
small samples \((N \leq 200)\).

Some recent work (Esfahani and Kuhn (2018), Gotoh et al. (2017)) on
distributionally robust optimization has shown that in some circumstances
these methods give better out of sample performance than SAA but we will
not include these approaches in our comparisons.

In this paper we report on a series of numerical experiments that address
the question of whether we can improve on SAA. The results will demonstrate
how effective SAA is, since it is surprisingly hard to show improvements and
these are usually modest. One reason for this is that the use of more so-
plicated approaches gives rise to a greater danger of overfitting, where
the characteristics of the particular random sample S are fitted by a postu-
lated density function in a precise way that would not be justified if proper
allowance was made for the uncertainty within the sample.

We have experimented with a few different approaches but we believe that
there are four which are worth discussing in detail as alternatives to straight
SAA: (A) bagging; (B) kernel density estimation (KDE); (C) maximum like-
lihood estimation (MLE); and (D) a Bayesian approach. We summarize our
main conclusions as follows. On our test problems, a Bayesian approach is
very effective. The maximum likelihood approach has variable performance
that depends on the problem structure and the number of parameters to be
estimated. For portfolio optimization it performs well, but for one dimen-
sional problems it does not offer significant improvement. For multivari-
ate problems bagging is a technique that can improve results substantially and
should be considered as a matter of course. However using a smoothing
technique to estimate the underlying density does not improve performance.

In this type of numerical study the conclusions we arrive at are inevitably
tentative. We hope that this work will act as a spur to increased understand-
ing of this issue and the variety of methods that may be applied. We make use
of techniques that are drawn from both the machine learning and stochastic
optimization areas and there is value in comparing these different approaches
within a common framework.

The paper is laid out as follows. In Section 2, we introduce the four alter-
natives to SAA that we consider. In Section 3, we describe the computational
experiments that we have carried out. Finally in Section 4, we discuss the
results of our experiments and conclude.

2. Four Alternatives to Sample Average Approximation

For each of the four alternatives we will consider the arguments that sug-
gest the approach may be effective, as well as the information assumptions
on the underlying distribution, i.e. the nature of the additional information
that is available to the decision maker. This may be knowledge that the un-
derlying density for the random variable is smooth, or, for a better informed
decision maker, the parameterized set of distributions from which the sample
is drawn.

2.1. Bagging

Bagging refers to the technique of bootstrap aggregation. The process
is quite simple: we take a new sample of size M from $S = \{y_1, y_2, \ldots, y_N\}$
with replacement, to obtain \(S^{(1)} = \{y_1^{(1)}, y_2^{(1)}, \ldots, y_M^{(1)}\}\) and then solve the
problem SAA for the sample \(S^{(1)}\) to find a solution \(x^{(1)}\). We repeat this
process \(B\) times, to generate samples \(S^{(1)}, S^{(2)}, \ldots, S^{(B)}\) with corresponding
SAA solutions \(x^{(1)}, x^{(2)}, \ldots, x^{(B)}\) and we finally form the bagging solution by
averaging, so \(x_{bag} = (1/B) \sum_{j=1}^{B} x^{(j)}\). We can then test \(x_{bag}\) out of sample
and, as we will see, there may be an improvement in comparison with the
SAA solution \(x_{SAA}(S)\) from the original sample \(S\), even though \(x_{bag}\) is based
on exactly the same underlying set of \(y\) values as \(x_{SAA}(S)\). Often, we take
\(M = N\), but the method can be applied with \(M < N\) or even \(M > N\).

Also the description we have given assumes sampling with replacement (i.e.

a bootstrap), but as observed by Buja and Stuetzle (2006) we can also use

a subsampling approach where we take \(M < N\) (say \(M = N/2\)) and create

the samples \(S^{(1)}, S^{(2)}, \ldots, S^{(B)}\) by sampling without replacement.

Just like SAA, the bagging approach does not make any assumptions on
the underlying distribution for \(y\). The key argument that suggests we may
be able to improve on a standard SAA approach is related to what is usually
called shrinkage. This is illustrated in Figure 1 for a univariate decision
variable \(x\). The choices \(x_{SAA}(S_i)\) vary according to the choice of sample \(S_i\)
and we can expect to have some samples with the value \(x_{SAA}(S_i)\) being too
high in comparison with the best possible value \(x^*\) which minimizes the out of
sample expectation \(E[c(x, y)]\). Equally there will be some samples where the
value \(x_{SAA}(S_i)\) is too low. Thus we expect that averaging over the different
\(x_{SAA}(S_i)\) values will produce a value that has better performance through a
reduction in variance (though if we really had a number of different samples
available it would be more natural simply to combine them into a larger
sample and work directly with this). The bagging approach uses the same
ideas but replaces the averaging over alternative samples with an average over
different bootstrap samples all generated from \(S\). This is known to reduce
the sample induced variance for the estimator \(x_{bag}\) in comparison with the
estimator \(x_{SAA}(S)\).

2.2. Kernel Density Estimation

The problem we are faced with can be viewed as follows: we are given a
sample from an unknown distribution and wish to estimate the underlying
density function in order to carry out an optimization for the expectation
with respect to this “true” density function. In most cases of interest in
practice the underlying density will have some properties of smoothness, and
it makes sense to use this information. The standard approach in statistics
is kernel density estimation, under which we estimate the density at a point
Figure 1: Diagram to illustrate why shrinkage is helpful.

\[
\hat{f}(y) = \frac{1}{Nh} \sum_{i=1}^{N} K \left(\frac{y - y_i}{h} \right)
\]

for some kernel function \(K \) that integrates to 1 and \(h > 0 \) is a smoothing parameter called the bandwidth which controls the shape of \(K \). We will choose a Gaussian kernel \(K(y) = \left(1/\sqrt{2\pi}\right) \exp(-y^2/2) \).

We generate samples from \(\hat{f} \) and then solve the problem,

\[
P_{\text{KDE}} : \min_{x} \int c(x, y) \hat{f}(y) dy.
\]

In our computational experiments, this is done by taking a very large number of samples from the density \(\hat{f} \) and applying SAA to this new dataset.

The choice of bandwidth parameter \(h \) is a matter for careful choice. As \(h \) gets small the behaviour of \(\hat{f} \) gets closer to a set of delta functions at the original data points. The result is that a solution for \(P_{\text{KDE}} \) gets closer to a solution to the original problem SAA, and the two will be the same in the limit of small \(h \).
2.3. Maximum Likelihood Estimation

The underlying idea of MLE can be applied whenever we can specify a set of possible distributions from which the observed sample might have been drawn. A maximum likelihood estimator simply chooses that distribution which gives the highest likelihood of obtaining the sample that has been observed. For example if we make no restriction at all on the underlying distribution then the maximum likelihood is obtained by choosing the (discrete) sample distribution which has probability \(\frac{1}{N} \) at each of the points \(y_i, i = 1, 2, ..., N \). And hence we recapture the SAA solution.

In practice we use log likelihood, and hence we choose a density function \(f \) to maximize the log likelihood of observing the sample \(S \),

\[
\sum_{i=1}^{N} \log f(y_i).
\]

The most common form of maximum likelihood estimator occurs when the decision maker knows that the distribution comes from a parameterized family of distributions, for example the sample might be drawn from a normal distribution with unknown mean and variance. MLE is then used to estimate the parameters of the unknown underlying distribution. More formally we can describe this by supposing that we have a family of distributions defined by density functions \(f(y; \theta) \) where the density is determined by the choice of parameters (a vector) \(\theta \in \Theta \). Then we select the value of \(\theta \) that maximizes the log likelihood of observing the sample. Hence we choose \(\theta^* \) that solves

\[
\max_{\theta} \sum_{i=1}^{N} \log(f(y_i; \theta)).
\]

We then proceed to solve the original problem using the estimated distribution with density \(\hat{f}(y) = f(y; \theta^*) \). As usual in our computations we take a large number of samples from \(\hat{f} \) and then use SAA to find the maximum likelihood choice for \(x \).

2.4. Bayesian approach

A Bayesian framework avoids the selection of a single distribution as an estimate of the true underlying distribution. It is most useful when there is a parameterized family of distribution densities \(f(y; \theta), \theta \in \Theta \) from which the sample may have been drawn. However we do not need to put all of these possible distributions on an equal footing, instead we may specify what we think is the probability attached to different possible values of the parameters \(\theta \), through giving a prior distribution \(\gamma(\theta) \) defined on the set of possible
parameters Θ. After observing the sample $S = \{y_1, y_2, ..., y_N\}$ we can update our prior beliefs about the likelihood of different parameter values to obtain a posterior distribution $\gamma(\theta \mid S)$, where

$$\gamma(\theta \mid S) \propto \prod_{i=1}^{N} f(y_i; \theta) \gamma(\theta)$$

and γ is normalized to integrate to 1. A Bayesian estimation method could select a value of the unknown parameter θ from this posterior density. However in our framework it is best to continue with an explicit uncertainty on the parameter θ and allow new sample points to be generated according to the posterior distribution $\gamma(\theta \mid S)$. The final density over which the cost function $c(x, y)$ is minimized is given by

$$\hat{f}_S(y) = \frac{\int_{\Theta} f(y; \theta) \prod_{i=1}^{N} f(y_i; \theta) \gamma(\theta) d\theta}{\int_{\Theta} \prod_{i=1}^{N} f(y_i; \theta) \gamma(\theta) d\theta}$$

This can be seen to be a density (i.e. it integrates to 1) through interchanging the order of integration for θ and y. To estimate the posterior distribution MCMC sampling has been used with specific priors described later.

3. Computational Testing

We will carry out computational testing on two different types of problem, first some small scale cases where both the decision variable x and the random variable Y are scalars and the cost function is quadratic, and second a simple portfolio optimization problem where x and y are multivariate. At the same time as specifying the structure of the problem we need to specify the actual underlying distribution. This will be unknown to the decision maker, but will enable us to see how good the decisions are when tested out-of-sample. Before giving more details on the two problem settings we describe the process we use for testing different methods.

The assessment of how well a method works in each case follows the same scheme:

1. Choose a “true” underlying distribution.
2. Take a number, K, of samples each of size N, call these $S_1, S_2, ..., S_K$ and apply the chosen approach to each sample. This generates for each sample an optimal solution, $x_M(S_j)$ which we can compare against the sample average solution, $x_{SAA}(S_j)$ (both of which depend on the sample chosen).
3. Compare performance on average (across the K different samples) when the expectations are taken with respect to the true underlying distribution. This final step evaluates the improvement against SAA:

$$
\frac{1}{K} \sum_{j=1}^{K} \mathbb{E}[c(x_{SAA}(S_j), y)] - \frac{1}{K} \sum_{j=1}^{K} \mathbb{E}[c(x_M(S_j), y)].
$$

(1)

The expectations here could potentially be done exactly through evaluating an integral with respect to the true distribution, but for our purposes it is sufficient to simply take another much larger sample from the true distribution and evaluate the average cost on that sample. At this point it will be preferable to take matched pair of samples for the two expectations in (1).

In other words we take a large sample \(\{y^{(a)}_1, y^{(a)}_2, \ldots, y^{(a)}_L\} \) and then estimate the improvement from

$$
\frac{1}{K} \sum_{j=1}^{K} \frac{1}{L} \sum_{i=1}^{L} \left(c(x_{SAA}(S_j), y^{(a)}_i) - c(x_M(S_j), y^{(a)}_i) \right).
$$

3.1. Quadratic test problems

We will use a set of 10 test problems with scalar values for the decision variable x and scalar random variable Y, and a cost function which has at most quadratic terms in x and y of the form $x^2 + \alpha x^2 y + \beta xy^2 + \gamma xy$ where the values α, β, γ for the 10 problems are given in Table 1. These sets of coefficients were selected from a larger randomly generated set in order to exhibit different types of behavior. The cost function surfaces in terms of the decision variable x and the random variable y for these 10 test problems are shown in Figure 2.

f	1	2	3	4	5	6	7	8	9	10
α	-0.67	0.02	-0.51	0.71	0.19	-0.26	-0.22	0.65	0.6	0.49
β	2.56	-2.57	-2.1	-1.45	2.17	1.23	3.71	2.02	0.86	-3.25
γ	2.51	1.31	1.97	1.62	1.04	3.89	0.19	3.68	0.33	0.65

Table 1: Value of coefficients for cost functions.

Each cost function is evaluated against 5 underlying “true” univariate distributions: three beta distributions, with parameters a and b with a support of $[-1, 1]$ and two bi-modal Gaussian mixture (GM), with parameters μ and σ for each Gaussian, and ρ, the mixing proportion of the two Gaussians. The parameter values are shown in Table 2 and the respective probability density function shown in Figure 3. A set of N samples, where $N = \{10, 20, 50\}$, was
Figure 2: A set of quadratic cost functions of the form $x^2 + \alpha x^2 y + \beta xy^2 + \gamma xy$, where α, β and γ are listed in Table 1.

sampled from the given distribution and then the decision variable, x, was computed for each quadratic test problem. This was repeated 1000 times. The decision variable was calculated using bagging, maximum likelihood estimation, kernel density estimation, a Bayesian framework and sample average approximation.

ID	True	Parameters
1	Beta	$a = 2$ $b = 2$
2	Beta	$a = 5$ $b = 5$
3	Beta	$a = 2$ $b = 5$
4	GM	$\mu_1 = -0.5$ $\sigma_1 = 0.15$ $\mu_2 = 0.4$ $\sigma_2 = 0.3$ $\rho = 0.6$
5	GM	$\mu_1 = -0.1$ $\sigma_1 = 0.3$ $\mu_2 = 0.4$ $\sigma_2 = 0.1$ $\rho = 0.7$

Table 2: Parameter values for different distributions.

Figure 3: Probability density function of various distributions with parameters given in Table 2.
In bagging, each new sample set was the same size as the original samples, \(M = N \), and this was repeated \(B = 400 \) times. The KDE method used a Gaussian kernel where the bandwidth parameter was chosen through Scott’s Rule (Scott (2015)) and hence changes with the sample size. The MLE method when applied to the first three cases was constrained to fit a unimodal beta distribution on \([-1, 1]\) with 2 (shape) parameters, \(a > 1 \) and \(b > 1 \). For the mixture of Gaussian distributions all 5 parameters were estimated using the parameter ranges of \(\sigma_i > 0.1 \). The Bayesian framework for the first three distributions used uniform priors with a support of \([1, 7]\) for \(a \) and \(b \). For distributions 4 and 5, to estimate model parameters \(\mu, \sigma^2 \) and \(\rho \) we used conjugate priors as described by Bishop (2006):

\[
\begin{align*}
\rho_k & \sim \text{Dir}(\delta) \\
\frac{1}{\sigma_k^2} & \sim \text{Wishart}(V, \nu) \\
\mu_k | \sigma_k & \sim N(m, \sigma_k^2/\alpha) \quad \text{for} \quad k = 1, 2
\end{align*}
\]

where \(\alpha = 0.1, \, V = 0.1, \, \nu = 2, \, \delta = 10 \) and \(m \) is set to the mean of samples.

Figure 4 shows the results we obtain on this test set, which we will discuss in more detail in the next section.

3.2. Portfolio optimization test problems

Portfolio optimization problems are often used to test stochastic optimization approaches. They are of interest in practice and provide a significant challenge to obtain good out of sample performance. Moreover it is known that the SAA approach can perform poorly on these problems.

There is a wealth of empirical data available for stock returns, however we have chosen to carry out our tests on synthetic data. The reason for this choice is that for both MLE and Bayesian approaches we need to have a parametric model of the underlying process. In the case of stock prices there are many potential models and the performance on empirical data of the methods we investigate will critically depend on the accuracy of the model chosen. This will have the effect of making it harder to assess the value of different approaches. By using synthetic data we can avoid these problems.

Given a set of \(n \) stocks, the most common form of portfolio optimization problem seeks weights \(w_i, \, i = 1, 2, \ldots, n \) (these are the decision variables we have normally labelled \(x \)) to minimize risk subject to a target for portfolio return. If we measure risk by the variance of the returns, as in the standard Markowitz version of portfolio theory, we get the problem

\[
\begin{align*}
\min_w & \quad \mathbb{E} \left[w^\top \Sigma w \right] \\
\text{subject to} & \quad w^\top 1_n = 1, \\
& \quad w^\top \mu = R.
\end{align*}
\]
where \(\Sigma \) is the covariance matrix for the stock returns, \(\mu_r \) is the vector of mean returns and \(R \) is a target portfolio return. In this version of the problem we allow borrowing (corresponding to negative components in \(w \)).

Given a sample over \(N \) periods of stock returns we can replace \(\Sigma \) by \(\hat{\Sigma} \) which is the sample covariance, and replace \(\mu_r \) by the sample mean, \(\hat{\mu}_r \).

Solving this in-sample problem then gives a set of portfolio weights that can be assessed out of sample.

In practice the target portfolio return \(R \) is hard to determine. Actual
market returns can vary significantly from period to period and so the target becomes somewhat arbitrary. Moreover the estimates of mean return for individual stocks are important for the solution but are typically unreliable. Hence it is quite common to drop the target return constraint and simply consider a minimum variance portfolio given a set of stocks that are all expected to have reasonably good mean returns. This minimum variance portfolio problem is the one that we will consider. Thus with \(W = \{ w : \sum_{i=1}^{n} w_i = 1 \} \) we solve \(\min_{w \in W} [w^\top \hat{\Sigma} w] \).

Let \(z_i^{(k)} \) be the return for stock \(i \) in period \(k \) (i.e. the \(k \)'th element of the sample). We have \(\hat{\Sigma}_{ij} = \frac{1}{N} \sum_{k=1}^{N} (z_i^{(k)} - \bar{z}_i)(z_j^{(k)} - \bar{z}_j) \) where \(\bar{z}_i = \frac{1}{N} \sum_{k=1}^{N} z_i^{(k)} \), \(i = 1,2,...,n \), (noting that whether we use \(1/N \) or \(1/(N-1) \) in \(\hat{\Sigma} \) will not change the optimal weights). Thus

\[
\begin{align*}
w^\top \hat{\Sigma} w &= \sum_i \sum_j w_i w_j \frac{1}{N} \sum_{k=1}^{N} (z_i^{(k)} - \bar{z}_i)(z_j^{(k)} - \bar{z}_j) \\
&= \frac{1}{N} \sum_{k=1}^{N} \sum_i \sum_j w_i w_j z_i^{(k)} z_j^{(k)} - \left(\sum_i w_i \bar{z}_i \right) \left(\sum_j w_j \bar{z}_j \right)
\end{align*}
\]

In general the in-sample minimum variance portfolio problem cannot be expressed as simply an SAA solution with objective formed as the sum of costs over each of the samples \(z^{(k)} \). However, in the case that the mean returns from each stock are the same with \(\bar{z}_i = \bar{z} \), then the second term in the expression above becomes \(\bar{z}^2 \). In this case we get an optimal solution for the in-sample problem which matches the SAA solution with cost function \(c(w, z) = (w^\top z)^2 \).

In our experiments we use 5 different covariance matrices and assume a t-distribution for individual stock returns with 3 degrees of freedom each with 0 mean. This is a good fit for real data (Peiró (1994)). The covariances for these “true” distributions are estimated from real stock data (using S&P 500 data for weekly returns).

For the MLE approach, the mean and covariance were estimated assuming 3 degrees of freedom. The Bayesian framework used the following model:

\[
\begin{align*}
\sigma &\sim \text{Gamma}(\alpha, \beta) \\
L|\sigma &\sim \text{LKJ}(\eta, n, \sigma) \\
\mu_t|L &\sim \mathcal{N}(0, LL^T) \\
s_i|\mu_t, L &\sim t(\mu_t, LL^T, \nu) \quad \text{for} \quad i = 1, ..., N,
\end{align*}
\]

where \(L \) is a lower-triangular Cholesky factor of a covariance matrix, \(\mu_t \) is a vector of means sampled from a Normal distribution with 0 mean and covari-
Figure 5: The improvement over SAA optimizing a portfolio for a set of 5 different covariances with shading for 95% confidence interval.

The covariance given by LL^T and s_i is a vector of representative stock prices sampled from a t-distribution. The hyperparameters of each of the priors were set to the following values: $\alpha = 3$, $\beta = 1$, $\eta = 2$, $n = 5$ and $\nu = 3$. The LKJ distribution is a distribution over cholesky decomposed covariance matrices, such that the underlying correlation matrices follow an LKJ distribution. This allows for more efficient sampling of covariance matrices (Lewandowski et al. (2009)).

Figure 5 shows the results we obtain for the 5 different portfolio opti-
mization problems considered.

4. Discussion and Conclusion

We begin by discussing the results for the quadratic test set shown in Figure 4. As we would expect the greatest differences in performance occur with small sample sizes. First note that kernel density smoothing performs poorly in all cases. Our test cases involve cost functions that are already smooth with respect to changes in the random variable y, and so there is nothing to be gained by smoothing the density functions. More surprisingly we find a significant degradation in performance.

Also in these experiments there is no advantage gained from bagging, with a small performance penalty for sample size 10. Moreover the maximum likelihood estimator makes only a small improvement on SAA, with no improvement at all on 3 of the 5 distributions. This is a surprise and we have carried out some additional experiments to explore what is happening. In this case MLE performance can be significantly weakened by over-fitting. The results presented here have only a small number of estimated parameters. For the beta distributions we assume that the end points of the support of the distribution are known. If these parameters are unknown and also fitted using the MLE approach, then the end results are significantly worse than for SAA.

The clear winner for these quadratic test problems is a Bayesian approach, which is able to take advantage of the information on the underlying distributions without problems of over fitting associated with MLE. For example with beta distributions when we need to estimate the end points of the distribution support, a Bayesian approach is still effective, even though MLE does worse than SAA in this case due to over fitting.

When we consider the portfolio optimization problems we obtain rather different results. First observe that kernel smoothing has essentially the same performance as SAA. It is interesting that with portfolio optimization bagging performs well, with an improvement on SAA in all cases. This method makes no use of information on the underlying distribution but achieves between 30% and 40% of the available benefits of the more sophisticated approaches.

MLE and Bayesian approaches both do well, with the Bayesian approach being best with a sample size of 50 in 4 out of 5 cases, but the MLE is preferred for larger sample sizes.

In summary, for one dimensional problems it is hard to beat SAA, but where there is information on a parameterized family of distributions then a Bayesian estimation is recommended. Maximum likelihood estimation should
not be used. For multi-dimensional problems, like portfolio optimization, bagging is a technique that should be applied in the absence of good information on the underlying distribution. Where there is a parameterized family of distributions then either MLE or Bayesian methods can work well.

References

Bishop, C.M., 2006. Pattern recognition and machine learning. Springer.

Buja, A., Stuetzle, W., 2006. Observations on bagging. Statistica Sinica 16, 323.

Esfahani, P.M., Kuhn, D., 2018. Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical Programming 171, 115–166.

Gotoh, J.Y., Kim, M.J., Lim, A.E., 2017. Calibration of distributionally robust empirical optimization models. arXiv preprint arXiv:1711.06565.

Lewandowski, D., Kurowicka, D., Joe, H., 2009. Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis 100, 1989–2001.

Peiró, A., 1994. The distribution of stock returns: international evidence. Applied Financial Economics 4, 431–439.

Scott, D.W., 2015. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons.

Shapiro, A., Dentcheva, D., Ruszczyński, A., 2009. Lectures on stochastic programming: modeling and theory. SIAM.