Cyclic molecules can exhibit fundamentally different electronic dynamics compared with their linear counterparts due to the lack of chain end effects, high rotational symmetry, and the presence of ring strain. The photophysical properties of cyclic molecules have been extensively investigated for a large number of systems ranging from small aromatic rings to large molecular complexes. A recurrent key concept is exciton delocalization, which is known to lead to strong fluorescence suppression in cyclic molecular structures such as benzene. The high symmetry results in a dipole-forbidden lowest exciton state. We find that concomitantly, the degeneracy of the dipole-allowed first excited state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings.
and symmetry defects of varying extent can be introduced through modifications in synthesis.

In this study, we examine five synthetic porphyrin nanorings with structures mimicking those of the natural RC-LH1 complexes previously described. We investigate fully conjugated nanorings with and without defects, a nanoring featuring a gap due to broken conjugation, and systems consisting of two fused nanorings (see Figure 1). We reveal the effect of symmetry distortions on the electronic transitions in these systems, showing that as deviations from rotational symmetry increase, oscillator strength is transferred to the lowest \(k = 0 \) state. Concomitantly, the degeneracy of the dipole-allowed first excited \(k = \pm 1 \) state is shown to be lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings.

The synthesis and characterization of the nanoring complexes is described in detail in the Supporting Information and in previous literature reports.33–36 Figure 1 shows the structures and simplified graphical representations of the five investigated nanorings consisting of zinc porphyrin units joined by butadiyne bridges. The six-legged \((T6)2\) templates inside all complexes bind to the porphyrin units, thus maintaining a rigid ring-like shape for the nanorings, which is vital because it suppresses competing symmetry weakening from ring distortions.

The most highly symmetric compound, \(c\text{-}P6\text{-}T6 \), has a closed ring structure with six porphyrin units,37 comparable to the \(D_{6h} \) symmetry of benzene. For ring-like systems with 6-fold symmetry, such as benzene, the energy-level structure can easily be visualized through the simple Hückel molecular orbital method for \(\pi \)-conjugated molecules. This approach postulates two nondegenerate \(k = 0, k = 3 \) and two pairwise degenerate \(k = \pm 1, k = \pm 2 \) exciton states; however, simple analysis of the transition dipole moments to these states reveals that only the two degenerate \(k = \pm 1 \) states of orthogonal polarization can carry significant oscillator strength. In particular, the transitions to the lowest \(k = 0 \) state can be visualized by the simple Kasha model38 as dipole contributions summing to zero in a hexagonal arrangement. Therefore, once the molecule has relaxed into its lowest state, emission is expected to be strongly suppressed, as we have shown to be the case for \(c\text{-}P6\text{-}T6 \).

Figure 1 also displays four other compounds whose symmetry has been reduced with respect to \(c\text{-}P6\text{-}T6 \). Here \(c\text{-}P6\text{-}T6 \) has a very similar structure, but with the minor modification that two opposite porphyrins have additional alkyne bridges with TIPS (triisopropylsilyl) end groups attached (see SI), leading to reduced symmetry. Stronger deviations are introduced by \(l\text{-}P6\text{-}T6 \), which comprises a linear six-porphyrin chain bound to the \(T6 \) template and therefore features a “gap” in the \(\pi \)-conjugated backbone. The two spiro fused ring structures \(s\text{-}P11\text{-}(T6)_2 \) and \(s_{c\text{-}}P11\text{-}(T6)_2 \) comprise 11 porphyrin units each and consist of two interlinked six-porphyrin nanorings with perpendicular template planes, as shown in Figure 1, with the only difference being the ethyl side chains attached to the shared porphyrin unit in the center of \(s_{c\text{-}}P11\text{-}(T6)_2 \) (see SI).36 For all measurements reported, \(l\text{-}P6\text{-}T6 \) was dissolved in toluene, while all other samples were prepared in toluene/1% pyridine solutions to avoid aggregation.

We proceed to investigate the impact of symmetry on the electronic properties of ring-like molecules by investigating the changes in absorption and emission of these five porphyrin nanoring systems, ranging from almost perfect 6-fold symmetry, through modifications in structure, to ring structures with broken \(\pi \)-conjugation. As a first comprehensive insight into the energy level structure in these ring systems, Figure 2 shows the extinction coefficient spectra of the five compounds in the region of the \(Q \)-band. Extinction coefficient spectra over a wider range of photon energies and emission spectra can be found in the SI. In contrast with zinc porphyrin monomers that display degenerate \(S_0\text{-}S_1 \) transitions at \(\sim 550 \text{ nm} \) (\(Q \)-band),39
the Q-band of the ring structures is split into Q₁ and Q₂ bands with polarizations parallel and perpendicular to the molecular backbone, respectively, and the Q₃ band is significantly redshifted to ∼800 nm because of the increased conjugation length.²⁸

For the most highly symmetric molecule, c-P₆-T₆, the extinction coefficient spectrum shows three distinctive strong peaks with approximately equal energy difference. We have previously shown that excitations in this system are fully delocalized over the entire ring.²⁸ thus, the simple Hückel model should hold as previously described, and only the lowest allowed k = ±1 exciton state carries significant oscillator strength. As we have previously discussed,²⁸ the multiple peaks most likely arise from vibrational contributions, with the approximate 75 meV energy spacing between the three main peaks tentatively supporting an interpretation in terms of Franck–Condon vibronic progression within an adiabatic Born–Oppenheimer framework. As the symmetry is lowered for the other nanorings systems, two effects can be clearly observed in the extinction coefficient spectra. First, new features appear at the low-energy end (1.2 to 1.4 eV) of the spectra, which grow in intensity (red arrows in Figure 2) as symmetry distortions become more severe. We propose that such deviations from 6-fold symmetry may lead to oscillator strength being transferred to the lowest (k = 0) exciton state. For the ring with broken π-conjugation (l-P₆-T₆) this low-energy peak rises to considerable strength (Figure 2e), suggesting a strongly allowed transition to the k = 0 state becomes possible. This phenomenon has analogies to observations in the natural RC-LH1 complexes from Rps. palustris, which features a gap in the LH1 ring²⁹ that enhances absorption contributions for the k = 0 state. Concomitant with these changes, the distortions from 6-fold symmetry appear to also affect the peak intensity ratio of the three strong peaks visible in all extinction spectra. Compared with c-P₆-T₆, the first peak in the series, as indicated with green arrows in Figure 2, gradually rises with respect to the second peak as symmetry constraints are lifted. This effect may derive from higher energy vibronic progressions of the emerging k = 0 state overlapping with the k = 1 features and is therefore most likely of similar origin.

To ascertain whether a particular lowering of the nanoring symmetry indeed leads to the emergence of a dipole-allowed lowest (k = 0) state, we further probed the emissive properties of these molecules, following excitation into the Q₁-band. While for a rotationally symmetric molecule, transitions from the k = 0 exciton state are dipole forbidden within the Franck–Condon approximation, weak emission is possible via Herzberg–Teller intensity borrowing through joint electronic-vibrational transitions that match the symmetry of the higher-lying allowed (k = 1) transition.³⁷ A weakening of symmetry constraints, however, is expected to relieve the strict selection rules on the k = 0 state, leading to additional Franck–Condon emission. To investigate such effects, we therefore measured the radiative emission rate of all molecules, which reflects the oscillator strength in the k = 0 state into which the system rapidly relaxes following excitation. For this purpose, the fluorescence lifetime was measured using time-correlated single-photon counting (TCSPC) and the quantum yield was obtained by comparing the fluorescence spectrum integral against that of a reference standard (full details of measurement are provided in S1). From these independent measurements, the radiative (Γᵣ) and nonradiative (Γₙᵣ) rate contributions were evaluated, as listed in Table 1. It can be seen that the

molecule	τ (ps)	QY	Γᵣ (ns⁻¹)	Γₙᵣ (ns⁻¹)
c-P₆-T₆	627	0.7%	0.010	1.60
c-P₆-T₆	682	1.3%	0.019	1.45
σ₉-P₁₁(T₆)₂	271	0.5%	0.020	3.73
σ-P₁₁(T₆)₂	343	0.8%	0.024	2.90
l-P₆-T₆	364	2.3%	0.064	2.69

Details of measurements are given in the Supporting Information.
We proceed by establishing a quantitative correlation between such reduced-symmetry enhancements in radiative rates and the changes in the absorption features previously discussed. Figure 3 shows the correlation between (a) the absorption intensity of the $k = 0$ state and (b) the intensity ratio of the first two main peaks, plotted against the radiative emission rate for each of the five compounds. To capture the contributions to the absorption into the emerging $k = 0$ state (indicated by red arrows in Figure 2), we integrated the extinction coefficient spectrum over the low-energy wing up to a full width at half-maximum below the first main peak and given in relation to the integral over the full spectrum of the Q_\parallel band. The intensity ratio of the first two peaks in the main ($k = \pm 1$) peak series of the extinction coefficient spectrum. Each data point corresponds to a ring complex with the colors depicted matching that of the icons above the graphs representing the structure. Dashed lines are guides to the eye, highlighting the strong correlation between the parameters, but do not imply a particular functional dependence.

![Figure 3](image-url). Analysis of the extinction coefficient spectra for the nanoring complexes c-P6-T6 (red), c-P6-T6 (blue), s_{x_6}P11-(T6)$_2$ (yellow), s-P11-(T6)$_2$ (magenta), and l-P6-T6 (green) in relation to their radiative emission rates. (a) Spectrally integrated extinction coefficient of the emerging low-energy ($k = 0$) peak, determined by integration of the spectra shown in Figure 2 up to a full width at half-maximum below the first main peak and given in relation to the integral over the full spectrum of the Q_\parallel band. (b) Intensity ratio of the first two peaks in the main ($k = \pm 1$) peak series of the extinction coefficient spectrum. Each data point corresponds to a ring complex with the colors depicted matching that of the icons above the graphs representing the structure. Dashed lines are guides to the eye, highlighting the strong correlation between the parameters, but do not imply a particular functional dependence.
Figure 4. (a) Initial value of the PL anisotropy following excitation with a short (100 fs) light pulse for \(c\)-P6-T6 (red), \(c\)-P6, T6 (blue), and \(l\)-P6-T6 (green). Dashed lines serve as a guide to the eye. Anisotropy values have been calculated using the PL intensity polarized parallel and orthogonal to the excitation pulse, averaged over the first 5 ps following excitation, during which these intensities do not vary (see Supporting Information). (b) Schematic diagram illustrating the splitting of the \(k = \pm 1\) level leading to the observed trend in PL anisotropy for \(l\)-P6-T6. For the highly symmetric \(c\)-P6-T6, Herzberg–Teller effects activate transitions from the \(k = 0\) state to the ground state via vibrational levels (not shown), while for \(l\)-P6-T6 with broken \(\pi\)-conjugation such transition may become directly Franck–Condon allowed.

lowered as a result of the clear break in conjugation. Figure 4b illustrates the mechanism that explains our experimental observations. Highly rotationally symmetric systems such as \(c\)-P6-T6 absorb light through the degenerate \(k = \pm 1\) states that are orthogonalized. Following an ultrafast relaxation to the \(k = 0\) state, Franck–Condon forbidden emission from this state takes place via weak Herzberg–Teller coupling. Because there is no preferred excitation polarization direction nor a net emission dipole moment in the nanoring plane, the polarization memory is completely lost in this 2D plane, resulting in \(\gamma = 0.1\); however, for \(l\)-P6-T6 the lowered symmetry lifts the degeneracy of the \(k = \pm 1\) states and results in the creation of new higher-lying states (labeled as \(k = 1, 2\ldots\) in Figure 4b) with transition dipoles of well-defined orientation with respect to the symmetry plane. These changes are accompanied by a strong recovery of Franck–Condon allowed transitions from the lowest excited state, as previously discussed and examined in natural light-harvesting complexes.\(^{20,21,40}\) As indicated in Figure 4b, this scenario creates a well-defined relation between the orientation of the dipole moment associated with the lowest (\(k = 0\)) state and those of the nondegenerate higher-lying states, with some combinations being parallel and others orthogonal. In particular, the conjugation break in \(l\)-P6-T6 causes the lowest (\(k = 0\)) state wave function to have a lobe (probability density maximum) at the ring side opposite to the break, leading to a net dipole moment in the \(x\) direction (here we take the \(y\) direction to lie within the mirror-symmetry plane). Such deviation from a fully delocalized (i.e., no nodes) wave function in the \(k = 0\) state of the highly symmetric \(c\)-P6-T6 thus transfers oscillator strength to the ground state of \(l\)-P6-T6, in accordance with the observed recovery in radiative rate. The higher lying \(k = 1\) state of \(l\)-P6-T6 has some analogy to the degenerate \(k = 1\) state of the symmetric \(c\)-P6-T6 as its nodes fall onto the symmetry plane and it is hence less perturbed by the conjugation gap than the orthogonal \(k = -1\) state. Therefore, the observed polarization switch in \(l\)-P6-T6 can be understood in terms of an initial excitation into nondegenerate higher-lying states, such as the \(k = 1\) state with polarization along the \(y\) direction, followed by relaxation into the \(k = 0\) state that is associated with a dipole moment in the orthogonal \(x\) direction. Strictly speaking, orthogonal absorbing and emitting transition dipole moments should yield \(\gamma = -0.2\), whereas collinear dipole moments result in \(\gamma = 0.4\) for randomly oriented molecules in solution;\(^{41}\) however, contributions from higher lying (\(k \geq 1\)) states and their vibrational progressions are broadly overlapping (clearly separate features are not discernible in the absorption of \(l\)-P6-T6; see Figure 2). Hence, in reality, anisotropy values between -0.1 and 0.1 are observed for the range over which the excitation wavelength is varied (Figure 4a); however, the strong observed variation of polarization anisotropy from negative to positive values as the excitation energy is tuned through the higher-lying excitation band provides clear evidence that severe symmetry lowering in such systems leads to a lifting of the degeneracy of the ring-like \(k = \pm 1\) states, creating a series of states with well-defined transition dipole moments.

In conclusion, \(\pi\)-conjugated six-porphyrin nanorings with various distortions to the cyclic structures have been investigated to explore the influence of symmetry lowering on their photophysical properties. We have demonstrated that as symmetry distortions increase in severity along the series of structures, oscillator strength is transferred to the transition into the lowest (\(k = 0\)) state, which is Franck–Condon forbidden in the fully 6-fold rotationally symmetric rings. The associated increases in oscillator strength were shown to correlate with gradually emerging \(k = 0\) absorption features at the lower energy end of the absorption spectra and changes in intensity ratio of higher-lying overlapping absorption peaks. Thus, symmetry plays a vital role in influencing and correlating absorptive and emissive properties of ring-like molecules, which we have been able to capture quantitatively. Furthermore, we have revealed through time-resolved photoluminescence anisotropy probes that strong symmetry breaking, induced, for example, through full breaks in conjugation, lifts the degeneracy of the \(k = \pm 1\) states found in highly symmetric ring assemblies, instead creating a series of states with well-defined transition dipole moments. We note that these findings have direct relevance to ring-like complexes found in natural light-harvesting systems, which have a rich diversity of geometrical structures. Here chromophores can be arranged in circular, elliptically deformed or array arrangements, exhibit a gap, or form dimeric structures; however, comparable investigations of the impact of structural symmetries on photophysical properties are challenging in such biological systems, as the chromophores are held loosely together and interact significantly with their environment. Our study therefore highlights the outstanding potential of using synthetic biomimetic porphyrin nanorings as model systems to investigate the effect of symmetry and geometric arrangement on the fundamental nature of the light-harvesting states.
Assisted by Frédéric Sott, J. Phys. Chem. Lett. 2014, 5, 1846–1852.
(21) Mostovoy, M. V.; Knoester, J. Statistics of Optical Spectra from Single-Ring Aggregates and its Application to LH2. J. Phys. Chem. B 2000, 104, 12355–12364.
(22) Gerken, U.; Lupo, D.; Tietz, C.; Wrachtrup, J.; Ghosh, R. Circular Symmetry of the Light-Harvesting 1 Complex from Rhodospirillum Rubrum is not Perturbed by Interaction with the Reaction Center. Biochemistry 2003, 42, 10354–10360.
(23) Roszak, A. W.; Howard, T. D.; Southall, J.; Gardiner, A. T. Law, C. J.; Isaacs, N. W.; Cogdell, R. J. Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris. Science 2003, 302, 1969–1972.
(24) Richter, M. F.; Baier, J.; Prem, T.; Oellerich, S.; Francia, F.; Venturoli, G.; Oesterhelt, D.; Southall, J.; Cogdell, R. J.; Köhler, J. Symmetry Matters for the Electronic Structure of Core Complexes from Rhodopseudomonas Palustris and Rhodobacter Sphaeroides. PLoS ONE 2007, 2, e365–e376.
(25) Qian, P.; Bullough, P. A. Molecular Architecture of Photosynthetic Membranes in Rhodobacter Sphaeroides: The Role of PufX. EMBO J. 2004, 23, 690–700.
(26) Qi, P.; Bullough, P. A.; Hunter, C. N. Three-Dimensional Reconstruction of a Membrane-Bending Complex: the RC-LH1-PufX Core Dimer of Phodobacter Sphaeroides. J. Biol. Chem. 2008, 283, 14002–14011.
(27) Nieman, G. C. Molecular Distortions and the Phosphorescence of Benzene. J. Chem. Phys. 1969, 50, 1674–1683.
(28) Chang, M.-H.; Hoffman, M.; Anderson, H. L.; Herz, L. M. Dynamics of Excited-State Conformational Relaxation and Electronic Delocalization in Conjugated Porphyrin Oligomers. J. Am. Chem. Soc. 2008, 130, 10171–10178.
(29) Hestand, N. J.; Spano, F. C. The Effect of Chain Bending on the Photophysical Properties of Conjugated Polymers. J. Phys. Chem. B 2011, 115, 3835–3836.
(30) Sener, M. K.; Schulten, K. General Random Matrix Approach to Account for the Effect of Static Disorder on the Spectral Properties of Light Harvesting Systems. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2002, 65, 031916.

Efficient Fluorescence in Conjugated Cyclopaphenylenes. Nano Lett. 2014, 14, 6539–6546.
(14) Kromer, J.; Rios-Carreras, I.; Fuhrmann, G.; Muxch, C.; Wunderlin, M.; Debaerdemaecker, T.; Men-Asteritz, E.; Bauerle, P. Synthesis of the First Fully Alaph-Conjugated Macrocyclic Oligoimidophenones: Cycl[6]phiphnes with Tunable Cavities in the Nanometer Regime. Angew. Chem., Int. Ed. 2000, 39, 3481–3486.
(15) Aggarwal, A. V.; Thiessen, A.; Idelson, A.; Kalle, D.; Würsch, D.; Stang, T.; Steiner, F.; Jester, S.-S.; Vogelsang, J.; Höger, S.; et al. Fluctuating Exciton Localization in Giant π-Conjugated Spoked-Wheel Macrocycles. Nat. Chem. 2013, 5, 964–970.
(16) Hori, T.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Yoon, M.-C.; Yoon, Z. S.; Cho, S.; Kim, D.; Osaka, A. Giant Porphyrin Wheels with Large Electronic Coupling as Models of Light-Harvesting Photosynthetic Antenna. Chem. - Eur. J. 2006, 12, 1319–1327.
(17) Nakamura, Y.; Aratani, N.; Osaka, A. Cyclic Porphyrin Arrays as Artificial Photosynthetic Antenna: Synthesis and Excitation Energy Transfer. Chem. Soc. Rev. 2007, 36, 831–845.
(18) Terazono, Y.; Kodis, G.; Chachisvilis, M.; Cherry, B. R.; Fournier, M.; Moore, A.; Moore, T. A.; Gust, D. Multiporphyrin Arrays with π-Antiferromagnetic Interactions. J. Am. Chem. Soc. 2015, 137, 245–258.
(19) Parkinson, P.; Knappke, C. E. I.; Kamonsubthipaijai, N.; Sirtiph, K.; Matichak, J. D.; Anderson, H. L.; Herz, L. M. Ultrafast Energy Transfer in Biomimetic Multistrand Nanorings. J. Am. Chem. Soc. 2014, 136, 8217–8220.
(20) Matsushita, M.; Ketelaars, M.; van Oijen, A. M.; Köhler, J.; Aartsma, T. J.; Schmidt, J.; Köhler, J.; Aartsma, T. J.; Schmidt, J. Spectroscopy on the B850 Band of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas Acidophila II. Exciton States of an Elliptically Deformed Ring Aggregate. Biophys. J. 2001, 80, 1604–1614.
(21) Mostovoy, M. V.; Knoester, J. Statistics of Optical Spectra from Single-Ring Aggregates and its Application to LH2. J. Phys. Chem. B 2000, 104, 12355–12364.
(22) Gerken, U.; Lupo, D.; Tietz, C.; Wrachtrup, J.; Ghosh, R. Circular Symmetry of the Light-Harvesting 1 Complex from Rhodospirillum rubrum is not Perturbed by Interaction with the Reaction Center. Biochemistry 2003, 42, 10354–10360.
(23) Roszak, A. W.; Howard, T. D.; Southall, J.; Gardiner, A. T. Law, C. J.; Isaacs, N. W.; Cogdell, R. J. Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas Palustris. Science 2003, 302, 1969–1972.
(24) Richter, M. F.; Baier, J.; Prem, T.; Oellerich, S.; Francia, F.; Venturoli, G.; Oesterhelt, D.; Southall, J.; Cogdell, R. J.; Köhler, J. Symmetry Matters for the Electronic Structure of Core Complexes from Rhodopseudomonas Palustris and Rhodobacter Sphaeroides. PLoS ONE 2007, 2, e365–e376.
(25) Siebert, C. A.; Qian, P.; Bullough, P. A. Molecular Architecture of Photosynthetic Membranes in Rhodobacter Sphaeroides: the Role of PufX. EMBO J. 2004, 23, 690–700.
(26) Qi, P.; Bullough, P. A.; Hunter, C. N. Three-Dimensional Reconstruction of a Membrane-Bending Complex: the RC-LH1-PufX Core Dimer of Phodobacter Sphaeroides. J. Biol. Chem. 2008, 283, 14002–14011.
(27) Nieman, G. C. Molecular Distortions and the Phosphorescence of Benzene. J. Chem. Phys. 1969, 50, 1674–1683.
(28) Chang, M.-H.; Hoffman, M.; Anderson, H. L.; Herz, L. M. Dynamics of Excited-State Conformational Relaxation and Electronic Delocalization in Conjugated Porphyrin Oligomers. J. Am. Chem. Soc. 2008, 130, 10171–10178.
(29) Hestand, N. J.; Spano, F. C. The Effect of Chain Bending on the Photophysical Properties of Conjugated Polymers. J. Phys. Chem. B 2011, 115, 3835–3836.
(30) Sener, M. K.; Schulten, K. General Random Matrix Approach to Account for the Effect of Static Disorder on the Spectral Properties of Light Harvesting Systems. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2002, 65, 031916.
(31) Kim, P.; Park, K. H.; Kim, W.; Tamachi, T.; Iyoda, M.; Kim, D. Relationship between Dynamic Planarization Processes and Exciton Delocalization in Cyclic Oligothiophenes. *J. Phys. Chem. Lett.* 2015, 6, 451–456.
(32) Hoffmann, M.; Wilson, C. J.; Odell, B.; Anderson, H. L. Template-Directed Synthesis of a pi-Conjugated Porphyrin Nanoring. *Angew. Chem., Int. Ed.* 2007, 46, 3122–3125.
(33) Hoffmann, M.; Kärnfratt, J.; Chang, M. H.; Herz, L. M.; Albinsson, B.; Anderson, H. L. Enhanced pi conjugation around a porphyrin[6] nanoring. *Angew. Chem., Int. Ed.* 2008, 47, 4993–4996.
(34) Screen, T. E. O.; Lawton, K. B.; Wilson, G. S.; Dolney, N.; Ispasoiu, R.; Goodson, T., III; Martin, S. J.; Bradley, D. D. C.; Anderson, H. L. Synthesis and Third Order Nonlinear Optics of a New Soluble Conjugated Porphyrin Polymer. *J. Mater. Chem.* 2001, 11, 312–320.
(35) Tait, C. E.; Neuhaus, P.; Anderson, H. L.; Timmel, C. R. Triplet State Delocalization in a Conjugated Porphyrin Dimer Probed by Transient Electron Paramagnetic Resonance Techniques. *J. Am. Chem. Soc.* 2015, 137, 6670–6679.
(36) Favereau, L.; Cnossen, A.; Kelber, J. B.; Gong, J. Q.; Oetterli, R. M.; Cremers, J.; Herz, L. M.; Anderson, H. L. Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings. *J. Am. Chem. Soc.* 2015, 137, 14256–14259.
(37) Sprafke, J. K.; Kondratuk, D. V.; Wykes, M.; Thompson, A. L.; Hoffmann, M.; Dreviskas, R.; Chen, W.-h.; Yong, C. K.; Kärnfratt, J.; Bullock, J. E.; et al. Belt-Shaped π-Systems: Relating Geometry to Electronic Structure in a Six-Porphyrin Nanoring. *J. Am. Chem. Soc.* 2011, 133, 17262–17273.
(38) Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M. The Exciton Model in Molecular Spectroscopy. *Pure Appl. Chem.* 1965, 11, 371–392.
(39) Anderson, H. L. Building Molecular Wires from the Colours of Life: Conjugated Porphyrin Oligomers. *Chem. Commun.* 1999, 2323–2330.
(40) Ketelaars, M.; van Oijen, A. M.; Matsushita, M.; Köhler, J.; Schmidt, J.; Aartsma, T. J. Spectroscopy on the B850 Band of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas Acidophila I. Experiments and Monte Carlo Simulations. *Biophys. J.* 2001, 80, 1591–1603.
(41) Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence: *Principles and Applications*, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2012.
(42) Chang, M. H.; Frampton, M. J.; Anderson, H. L.; Herz, L. M. Intermolecular Interaction Effects on the Ultrafast Depolarization of the Optical Emission from Conjugated Polymers. *Phys. Rev. Lett.* 2007, 98, 027402.
(43) Lakowicz, J. R. *Principles of Fluorescence Spectroscopy*, 3rd ed.; Springer: New York, 2006.
(44) Gong, J. Q.; Parkinson, P.; Kondratuk, D. V.; Gil-Ramírez, G.; Anderson, H. L.; Herz, L. M. Structure-Directed Exciton Dynamics in Templated Molecular Nanorings. *J. Phys. Chem. C* 2015, 119, 6414–6420.
(45) Menielou, C.; Schiphorst, J.; Kendhale, A. M.; Parkinson, P.; Debije, M. G.; Schenning, A.; Herz, L. M. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene-Bisimide Donor-Acceptor Triads. *J. Phys. Chem. Lett.* 2015, 6, 1170–1176.
(46) Neuhaus, P.; Cnossen, A.; Gong, J. Q.; Herz, L. M.; Anderson, H. L. A Molecular Nanotube with Three-Dimensional π-Conjugation. *Angew. Chem., Int. Ed.* 2015, 54, 7344–7348.