Supplementary Information

Dissipation Enhancement Effect from Titania Semiconductor Modulation of Graphene-based Electromagnetic Absorbing Composites

Yi Lixi* Wu Jinwu

School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China

* Corresponding author.
E-mail address: yilixi@nchu.edu.cn.
Figure S1 Energy flux density of electromagnetic wave in absorber. (a)GM (Exfoliated GNS and manganese oxides 1:1) , (b) GMT10, (c) GMT30, (d) GMT50, and (e) GT composite samples. See online version for color display.
Figure S2 Eddy current coefficient C_0 of composite samples with addition of titania. To display different sample curves as much as possible, the symbols are set in different sizes. The inset figure with a scale in very small magnitude of E-9 to E-10 shows some differences in high resolution. Though there are tiny waves in the high frequency end for C_0, which are almost constant in the main range.

Table S1 Increment of semiconductor titania introduction to electromagnetic type composites

Thickness	EM component	Magnetic graphene	Magnetic ZnFe_2O_4	Magnetic ZnFe_2O_4@graphene	GNS-EMO	
4mm	Reflection loss(dB)	~20(HF)	~18(LF)	~4.25	~13.65(LF)/8.5(HF)	~4.78(HF)
Modulation components		~25(HF)	~9(LF)	—	~31(LF)/12.5(HF)	9.91(HF)
Before titania introduction		5(HF)	-9 (LF)	—	17.35(LF)/4.5(HF)	5.13(HF)
@TiO$_2$						
Loss increment(dB)						
Ref.						
						[28] [32] This work

HF and LH refer to high frequency and low frequency end, respectively.