Comparative Analysis of Data mining Methods to Analyze Personal Loans using Decision Tree and Naïve Bayes Classifier

Menuka Maharjan
Assistant Professor, Computer Engineering Department, Nepal Engineering College, Bhaktapur, Kathmandu, Nepal
Menuka[at]nec.edu.np

Abstract: The data mining classification techniques and analysis can enable banks to move precisely classify consumers into various credit risk group. Knowing what risk group a consumer falls into would allows a bank to fine tune its lending policies by recognizing high risk groups of consumers to whom loans should not be issued, and identifying safer loans that should be issued on terms commensurate with the risk of default. So research en for classification and prediction of loan grants. The attributes are determined that have greatest effect in the loan grants. For this purpose C4.5, CART and Naïve Bayes are compared and analyzed in this research. This concludes that a bank should not only target the rich customers for granting loan but it should assess the other attributes of a customer as well which play a very important part in credit granting decisions and predicting the loan defaulters.

Keywords: C4.5, CART, Naïve Bayes, Type II error

1. Introduction

The decision-making of accepting or rejecting a client’s credit by banks is commonly executed via judgmental techniques and credit scoring models. Most banks and financial institutions use the judgmental approach which is based on the 3C’s, 4C’s or 5C’s which are character, capital, collateral, capacity and condition. However, to improve assessment of credit applicants, banks can use credit scoring or predictive models to classify the applicants[1]. A bank loans officer needs analysis of his/her data in order to learn which loan applicants are safe" and which are risky” for the bank. To understand that information, classification is a form of data analysis that can be used to extract models describing important data classes or to predict future data trends. Several classification techniques have been proposed over the years e.g., neural networks, genetic algorithms, Naïve Bayesian approach, decision trees, nearest-neighbour method etc [2].

The classification is dependent on characteristics of the borrower (such as age, education level, occupation, marital status and income), the repayment performance on previous loans and the type of loan. In this study, my attention is restricted to C4.5, CART and Naïve Bayes classification considering its advantages like efficiency with respect to time accuracy data, etc and analyze different parameters (age, income, credit rating job etc.) those influence the loan grants.

2. Methodology

Classification is learning a function that maps an item into one of a set of predefined classes. It is the type of data analysis that can be used to extract models to describe important data classes or to predict future data trends. The classification process consists of two phases; the first phase is learning process, the training data will be analyzed by the classification algorithm. The learned model or classifier is represented in the form of classification rules. Next, the second phase is classification where the test data are used to estimate the accuracy of the Classification model or classifier. If the accuracy is considered acceptable, the rules can be applied to the classification of new data [3]. This section is about the framework for comparing the performance of the classification algorithms of decision trees: CART, C4.5 and Naïve Bayes classification with the role play of the attributes in them to predict loan grants data is taken from data sets[9]. It consists of 1000 data, among which 60% are used for training and remaining 40% are utilized for testing purpose that are work

Loan Prediction using C4.5
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier [7].

C4.5 algorithm:
For the classification the total number of good and bad in loan grants is found out from the data set. Information gain is calculated for the whole dataset i.e. Info (D) and then for each attribute the normalized information gain is calculated individually i.e. Info(D). Gain (A) is calculated subtracting...
the information gain and information gain of individual attribute for that particular attribute.

\[IG(A) = H(S) - \sum_{t \in T} P(t)H(t) \]

Where,

\[H(S) - \text{Entropy of set } S, \text{ and } H(S) = -\sum_{x \in X} p(x) \log_2 p(x) \]

T- The subsets created from splitting set \(S \) by attribute \(A \) such that \(P(T) \)- The proportion of the number of elements in \(T \) to the number of elements in set \(S \)

\[H(t) = -\sum_{i} p_i \log_2 p_i \]

The process is repeated for all the attributes and selected the highest normalized information gain for a decision node. The features of the attribute may be nominal or categorical like if age is attribute with its category like

- age 0-18
- age 19-30
- age 31-40
- age 41-50
- age 51 above

The process is repeated for each of the resulting attributes and made the table for only each features in both sides. Recursion is done until leaf node is not found.

Loan Prediction Using Cart

Classification and regression trees (CART) is a non-parametric decision tree learning technique that produces either classification or regression trees, depending on whether the dependent variable is categorical or numerical, respectively.

CART algorithm:

It will search for all possible variables and all possible values in order to find the best split – the question that splits the data into two parts with maximum homogeneity. The process is then repeated for each of the resulting data fragments which use impurity functions like Gini splitting index and Towing splitting index [6]. Here Gini splitting rule (or Gini index) is used for the loan prediction. It uses the following impurity function:

Splitting Criteria:

Gini index is measured to find the impurity of \(D \), a data partition or set of training tuples, as

\[\text{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2 \]

where \(p_i \) is the probability that a tuple in \(D \) belongs to class \(Ci \). The sum is computed over \(m \) classes.

Here, splitting is compulsory binary so, data \(D \) is splitted into \(D1 \) and \(D2 \). The partitioning is done as follows

\[\text{Gini}_X(D) = \frac{\text{Gini}(D1)}{|D1|} + \frac{|D2|}{|D|} \text{Gini}(D2) \]

The reduction in impurity that would be incurred by a binary split on a discrete or continuous-valued attribute \(A \) is

\[\Delta \text{Gini}(A) = \text{Gini}(D) \cdot \text{Gini}_X(D) \]

The process is repeated for each attributes and decision for the rootnode is made for the lowest valued Gini \(D \) [6]. Again if the attribute purpose is chosen as the root node then its features like personal loan and business loan is splitting binary and made the table for only each features in both sides. Recursion is done until leaf node is found.

Loan Prediction using Naive Bayes

A Naïve Bay’s classifier estimates the class-conditional probability by assuming that the attributes are conditionally independent, given the class label \(y \). The conditional independence assumption can be formally stated as follows:

\[P(X|y) = \prod_{i=1}^{d} P(X_i|y) \]

Where each attribute set \(X = \{X_1, X_2, \ldots, X_d\} \) consists of \(d \) attributes. [8]’

Algorithm

1) From data set \(D \) associated class label \(n \) dimensional attribute vector \(X = (x_1, x_2, x_3, \ldots, x_n) \), depiction \(n \) measurement made on the tuple from \(n \) attributes. \(A1, A2, A3 \ldots An \)

2) Suppose we have \(m \) classes \(c1, c2, \ldots, km \) giving tuple \(X \), classifier will predict \(X \) belongs to the highest posterior probability, condition on \(X \).

\[X \in Ci \text{ if } P(Ci|X) > P(Cj|X) \text{ for } 1 \leq j \leq m, j | Ci \text{, for which } P(Ci) \text{ is maximized is called maximum posterior hypothesis; } \]

\[P(Ci|X) = \frac{P(X|Ci)P(Ci)}{P(X)} \]

3) \(P(X) \) is constant for all classes maximize \(P(X|Ci)P(Ci) \).

\[P(Ci) = \frac{|C|}{|D|} \]

4) Calculate \(P(X|Ci) \) is extremely expensive Naïve assumes class conditional independence is made.

\[P(X|Ci) = \prod_{k=1}^{d} P(X_k|Ci) \]

\[= P(X_1|Ci).P(X_2|Ci) \ldots P(X_d|Ci) \]

Where \(X_k \) is the value of attribute, \(A_k \) for \(X \).

If \(A \) is category

\[P(X|A = c_i) = \frac{\# \text{of tuple of class}_C \in D \text{ that have value} X_k}{|C|D|} \]

3. Results and Discussion

The German loan dataset consist of 1000 dataset 60% of data is used for the train set and 40% is used for the test set. Experiments for CART and C4.5 using German data set are summarized below:

Table 1: C4.5 train
Attributes
category1
category2
category3
category4
category5
category6
Here out of 600 data are used for training in both the C4.5 and CART method. Category 1, 2,3,10 is better for correctly classified instances out of 600 data during train phase. The categories 4,6,7,8 shows that the false positive rate is large compared to other categories. Categories 6,8,11 shows all data are true positive so, there will be loss if the banks take true negative data as good one . The precision ,accuracy is higher for category 1,2,5,10 compared to other categories.

Table 2: CART train

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time	No of leaf	Size of tree
category1	389 34 91 86	91.962175	91.962175	389.14333	475	2.78	6	11	
category2	399 24 97 80	94.326241	94.326241	399.13333	479	1.61	7	13	
category3	389 34 91 86	91.962175	91.962175	389.14333	475	3.22	6	11	
category4	417 6 149 28	98.58156	98.58156	417.04667	445	0.42	3	5	
category5	411 12 111 66	97.16312	97.16312	411.11111	477	1.09	12	23	
category6	423 0 177 0	100	100	423	423	0.69	1	1	
category7	423 0 177 0	100	100	423	423	1.05	1	1	
category8	423 0 177 0	100	100	423	423	0.66	1	1	
category9	398 25 90 87	94.089835	94.089835	398.145	485	1.39	9	17	
category10	399 24 97 80	94.326241	94.326241	399.13333	479	1.59	7	13	
category11	423 0 177 0	100	100	423	423	0.44	1	1	

From the above table correctly classified instance out of 600 instances is higher in categories 9,10,2 in the case of CART.in confusion matrix category 6, 7, 8, 11 shows the worst case as false positives are 177 and true positive values are 423 for all these categories.

Table 3: Naive Bayes train

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time
category1	375 48 82 95	82.05689	88.65248	85.22727	78.33333	470	0.02
category2	383 40 94 83	80.2935	90.54374	85.11111	77.66667	466	0
category3	375 48 82 95	82.05689	88.65248	85.22727	78.33333	470	0.02
category4	393 30 117 60	77.05882	92.9078	84.24437	75.5	453	0.02
category5	368 55 117 60	75.87629	86.99764	81.05727	71.33333	420	0.03
category6	414 9 164 13	71.6263	97.87234	82.71728	71.16667	427	0.03
category7	388 35 128 49	75.1938	91.72577	82.64111	72.83333	437	0.02
category8	400 23 157 20	71.81329	94.56265	81.63265	70	420	0.02
category9	379 44 88 88	80.98291	89.59811	85.07295	77.83333	467	0.02
category10	379 44 94 83	80.12685	89.59811	84.59821	77	467	0.02
category11	423 0 177 0	70.5	100	82.69795	70.5	423	0.02

Here, out of 600 data sets the higher correctly classified instances is high in categories 1,3,i.e 470 and lower in category 5,6,8 i.e. 420, 414 and 400 respectively. The accuracy is high in categories, 1,3 i.e. it is 78.3333% and lower in category 8 . FP rate is rate is high in categories 4,5,6,7,8,11 and lower in 1,2,3,9,10.

Table 4: C4.5 test

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time
category1	266 11 45 78	85.5305	96.029	90.47619	86	344	1.89
category2	264 13 56 67	82.5	95.307	88.44221	82.75	331	0.75
category3	265 12 101 22	72.4044	95.668	82.42613	71.75	287	0.25
category4	236 41 65 58	78.4053	85.199	81.6609	73.9	294	0.22
category5	269 8 96 27	73.6986	97.112	83.8062	74	296	0.28
category6	277 0 123 0	69.25	100	81.83161	69.25	277	0.45
category7	277 0 123 0	69.25	100	81.83161	69.25	277	0.45
category8	277 0 123 0	69.25	100	81.83161	69.25	277	0.45
category9	257 20 62 61	80.5643	92.78	86.24161	79.5	318	0.5
category10	267 10 62 61	81.155	96.39	88.11881	82	328	0.86
category11	277 0 123 0	69.25	100	81.83161	69.25	277	0.11

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR211207105339
DOI: 10.21275/SR211207105339
423
Here out of 400 data are used for testing in both the C4.5 and CART method. The categories 6, 7, 8, 11 are not good for attributes for classification as there precision 69% only. The category 8 shows the best as its precision and accuracy is 95%.

Table 5: CART test

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time			
	TP	FN	FP	TN						
category 1	244	33	48	75	83.5616	88.08664	85.7645	79.75	319	1.89
category 2	259	18	62	61	80.6854	93.50181	86.62207	80	320	0.75
category 3	277	0	123	0	69.25	100	81.83161	69.25	277	0.25
category 4	238	39	56	67	80.9524	85.92058	83.36252	76.25	305	0.22
category 5	260	17	80	43	76.4706	93.86282	84.27877	75.75	303	0.28
category 6	277	0	123	0	69.25	100	81.83161	69.25	277	0.45
category 7	277	0	123	0	69.25	100	81.83161	69.25	277	0.45
category 8	277	0	123	0	69.25	100	81.83161	69.25	277	0.22
category 9	246	31	55	68	81.7276	88.80866	85.12111	78.5	314	0.5
category 10	259	18	62	61	80.6854	93.50181	86.62207	80	320	0.86
category 11	277	0	123	0	69.25	100	81.83161	69.25	277	0.11

In the above table category 3, 6, 7, 8, 11 shows higher false positive values so these are the worst attributes while category 2, 5, 10 are the best categories. Category 5 consists of only 4 attributes.

Table 6: Comparison of accuracy for C4.5, CART and Naïve Bayes

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time			
	TP	FN	FP	TN						
category 1	237	40	49	74	82.8613	85.55957	84.19183	77.75	311	0.06
category 2	240	37	61	62	79.73422	86.6426	83.04498	75.5	302	0.03
category 3	248	29	97	26	71.88406	89.53069	79.74277	68.5	274	0
category 4	246	31	81	42	75.22936	88.80866	81.45695	72	288	0
category 5	254	23	88	35	74.26901	91.69675	82.06785	72.25	289	0
category 6	266	11	111	12	70.55703	96.02888	81.34557	69.5	278	0
category 7	254	23	94	29	72.98851	91.69675	81.28	70.75	283	0
category 8	264	13	111	12	70.4	95.30686	80.9816	69	276	0
category 9	240	37	63	60	79.20792	86.6426	82.75862	75	300	0
category 10	238	39	59	64	80.13468	85.92058	82.92683	75.5	302	0.02
category 11	277	0	123	0	69.25	100	81.83161	69.25	277	0

Here, from the above figure we can see the accuracy is higher in C4.5 for the category in comparison to CART and Naïve Bayes. The category 4 performed good because it contains only four attributes and its accuracy is higher. The category 6, 7, 11 are the worst ones and accuracy is same in C4.5, CART and Naïve Bayes.

Table 7: Comparison of correctly classified instances for C4.5, CART and Naïve Bayes

Attributes	Confusion Matrix	Precision	Recall	F_score	Accuracy	CCI	Time			
	TP	FN	FP	TN						
category 1	237	40	49	74	82.8613	85.55957	84.19183	77.75	311	0.06
category 2	240	37	61	62	79.73422	86.6426	83.04498	75.5	302	0.03
category 3	248	29	97	26	71.88406	89.53069	79.74277	68.5	274	0
category 4	246	31	81	42	75.22936	88.80866	81.45695	72	288	0
category 5	254	23	88	35	74.26901	91.69675	82.06785	72.25	289	0
category 6	266	11	111	12	70.55703	96.02888	81.34557	69.5	278	0
category 7	254	23	94	29	72.98851	91.69675	81.28	70.75	283	0
category 8	264	13	111	12	70.4	95.30686	80.9816	69	276	0
category 9	240	37	63	60	79.20792	86.6426	82.75862	75	300	0
category 10	238	39	59	64	80.13468	85.92058	82.92683	75.5	302	0.02
category 11	277	0	123	0	69.25	100	81.83161	69.25	277	0

We can see the CCI using Naïve Bayes is remarkably higher compared to C4.5 and CART. The categories 1, 4, 9, 10 are good ones while category 5, 11 are the worst ones.

Figure 2: Average value of correctly classified instance for C4.5, CART and Naïve Bayes

From the above figure, the accuracy is higher in C4.5 compared to classifier Naïve Bayes and CART.
The average precision is remarkably higher in C4.5 compared to CART and Naïve Bayes. The average precision of C4.5 is 78%, CART is 75.5% and Naïve Bayes is 75.1.

The average recall value is higher it is 96%, CART is 95% and Naïve Bayes is 90.80% Here C4.5 is better in comparison to CART and Naïve Bayes.

The average F_score is higher in C4.5 i.e. 86%, CART is 83.80% and that of Naïve Bayes is 82%. Therefore we can conclude that C4.5 is better.

The average accuracy is higher in comparison to the classifier C4.5 than CART and Naïve Bayes. The average accuracy for C4.5 is 77.5%, CART is 74% and Naïve Bayes is 72.1%.

Naïve Bayes predicted higher compared to CART and C4.5 in Correctly classified instances. The average precision, recall, F_score, accuracy is high in C4.5 compared to CART and Naïve Bayes.

The main focus is on the false positive value as it is the positive count for the bad customers that it the most risk factor for the loan prediction. The categories 1,2,4,8,9,10 contain the lower FP value in which in category 8, C4.5 has the lowest FP. The category 4 is also acceptable as it contains only 4 attributes in which FP is low. The categories 3, 6, 7, 11 are the worst one.
4. Conclusion and Discussion

If a customer with bad credit is misclassified as a customer with good credit then a bank will suffer. In this research three different classifiers, C4.5, CART and Naïve Bayes have been applied to predict loan grants and the attribute selection in them. More, financial institution is seeking better strategies through the help of credit scoring models. Therefore, it is concluded that categories 4, 8 is the best one and categories 3, 6, 11 are the worst as it counts false positive value is greater in all the C4.5, CART and Naïve Bayes testing. Among the classifier C4.5, CART and Naïve Bayes, C4.5 is the best classifier to predict loan.

References

[1] Pratik Gosar, Paras Kapadia, Niharika, Maheswori, Pramila Chawan K. Chopde, "A study of a Classification Based Credit Risk Analysis Algorithm," International Journal of Engineering and Advanced Technology, vol. 1, no. 2249-8958, p. 3, April 2012.
[2] Sarika Chaudary Sanjay Kumar Maliki, "Comparative Study of Decision Tree Algorithms For Data Analysis," International Journal of Research in Computer Engineering and Electronics, p. 8, June-2013.
[3] A.Yilmaz camurcu Serhat Ozekes, "Classification and Prediction in a Data Mining Application," Journal of Marmarafor Pure Applied Science, pp. 169-174, 2002.
[4] Yu.Zhong Xiao-Lin, "An Overview of Personal Credit Scoring:Techniques and Future Work," International Journal of Intelligence Science, pp. 181-189, August 2012.
[5] Daniela Schiopu Irina Ionita, "Usig Principal Component Analysis in Loan Granting," pp. 88-96, 2010.
[6] Bora Aktan Husey Incea, "A Comparison of data Mining Techniques For Credit Scoring In Banking:A Managerial Perspective," Journal of Business Economics and Management, pp. 233-240, march 2009. [1]
[7] Arun K.Pujari, Data Mining Techniques. Hyderabad, India: Universities press private limited.
[8] P.-N. T.-N. T. Pang-Ning Tan. [Online]. Available: https://wwwusers.cs.umn.edu/~kumar001/dmbook/sol.pdf.
[9] P. D. H. Hofmann. [Online]. Available http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
[10] P. T. A. T. Kalyani R. Rawate, "Review on prediction system for bank loan credibility," Scientific Journal of Impact Factor (SJIF): 4.72, vol. 4, no. 12, 2017.
[11] P. C. Abhijit A. Sawant, "Comparison of Data Mining Techniques used for Financial," International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 6, p. 6, 2013.

Author Profile

Menuka Maharjan is Assistant Professor at Department of Computer Science and Engineering, Nepal Engineering College. She holds M.E. in Computer from Nepal College of Information Technology, Pokhara University. She has been in the teaching field since last 9 years. Her research interest includes data science and machine learning.