Prevalence of dementia in ischaemic or mixed stroke populations: systematic review and meta-analysis

Louise Craig,1 Zhi Liang Hoo,1 Toh Zeng Yan,2 Joanna Wardlaw,1,3 Terence J Quinn1

ABSTRACT

An understanding of the epidemiology of poststroke dementia (PSD) is necessary to inform research, practice and policy. With increasing primary studies, a contemporary review of PSD could allow for analyses of incidence and prevalence trends. Databases were searched using a prespecified search strategy. Eligible studies described an ischaemic or mixed stroke cohort with prospective clinical assessment for dementia. Pooled prevalence of dementia was calculated using random-effects models at any time after stroke (primary outcome) and at 1 year (range: 6–18 months), stratified for inclusion of prestroke dementia. Meta-regression explored the effect of year of study. Sensitivity analyses removed low-quality or outlier studies. Of 12 505 titles assessed, 44 studies were included in the quantitative analyses. At any time point after stroke, the prevalence of PSD was 16.5% (95% CI 10.4% to 25.1%) excluding prestroke dementia and 22.3% (95% CI 18.8% to 26.2%) including prestroke dementia. At 1 year, the prevalence of PSD was 18.4% (95% CI 7.4% to 38.7%) and 20.4% (95% CI 14.2% to 28.2%) with prestroke dementia included. In studies including prestroke dementia there was a negative association between dementia prevalence and year of study (slope coefficient = −0.05 (SD: 0.01), p<0.0001). Estimates were robust to sensitivity analyses. Dementia is common following stroke. At any point following stroke, more than one in five people will have dementia, although a proportion of this dementia predates the stroke. Declining prevalence of prestroke dementia may explain apparent reduction in PSD over time. Risk of dementia following stroke remains substantial and front-loaded, with high prevalence at 1 year post event.

INTRODUCTION

Improving our knowledge of the neuropsychological effects of stroke is of increasing international interest. The 2011 James Lind Alliance, a UK priority setting workshop, identified managing cognitive issues as the most important topic for stroke research.1 There is agreement that cognitive problems after stroke are substantial; however, the rates reported vary widely between studies. Previous research has suggested that a history of stroke almost doubles the risk of dementia in the population aged over 65 years.3 The comparison and interpretation of these studies are challenging due to differences in study design, that is, duration of follow-up timeframes and the casemix of patients included, for example, combining studies with an intracerebral haemorrhage focus with ischaemic stroke.

A key meta-analysis conducted in 2009 reported that around 10% of patients had dementia prior to stroke, 10% developed stroke soon after the first stroke and over 30% developed dementia after recurrent stroke.3 These review data have since been used to inform policy4 5 and have informed sample size calculations for studies using poststroke dementia (PSD) as the outcome.6 Many studies included in this review are now decades old. In the context of temporal change in dementia prevalence, a new analysis that includes contemporary data seems warranted. The last decade has seen increasing recognition of the importance of PSD with various primary studies on the topic. A contemporary review may offer an estimate of PSD prevalence with greater precision than previous reviews7 7 and would allow for incorporation of risk of bias assessment and framing the certainty of summary results using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system.

A consensus approach to PSD diagnosis has been proposed, with recent descriptions from various expert groups describing incident dementia with a temporal relationship to stroke.8 9 PSD is part of the spectrum of poststroke cognitive impairment. While PSD has an operationalised definition, variation in definitions and classifications is an issue for other syndromes included in the poststroke cognitive impairment rubric. Limiting a review to PSD allows for a more defined population. Arguably a review that tries to pool data on PSD and milder forms of cognitive impairment risks such heterogeneity that any estimates of prevalence become unhelpful.

An increasingly ageing population coupled with a decline in mortality after stroke10 means that PSD may become more prevalent particularly since the risk of stroke and dementia rises exponentially with age.10 11 Although there are indications of declining incidence of stroke and dementia in developed countries, this may not be the case for developing countries.12 Information on PSD prevalence would be useful to provide estimates to design appropriate services to manage the burden of PSD.13 As the population prevalence of PSD may show temporal variation, an analysis would allow for exploration of temporal trends.

Therefore, the primary aim of this study was to collate the available evidence to provide a pooled...
prevalence of dementia after ischaemic or mixed stroke. Our secondary aims were to explore subgroups of interest, to assess the effects of study quality and to explore potential heterogeneity in terms of time since stroke, presence of prestroke dementia, recurrent stroke, setting and year of study.

METHODS
This review was conducted in adherence with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (on supplemental files 2 and 3). We used a validated search strategy from an existing review for our primary search. We adapted the search strategy to the focus of our review, limiting to studies of PSD only. We included primary studies published in peer-reviewed journals that included people who had ischaemic stroke, transient ischaemic attack or undifferentiated stroke cohorts and reported quantitative data on the occurrence of PSD at any time point after the stroke event. We accepted any clinical diagnostic assessment, provided it was based on a recognised classification, for example, the Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International Classification of Diseases (ICD). No restrictions were placed on country, written language or year of publication.

We excluded studies where the primary population of interest was exclusively intracerebral haemorrhage, subarachnoid haemorrhage or traumatic brain injury as all these groups have distinct cognitive recovery profiles. The following types of studies were also excluded: case studies with too few patients to gain reliable conclusions (less than 20 patients); case–control studies and randomised controlled trials, as they would not give representative population data; and studies that did not use a recognised clinical classification criterion, for example, the use of a single screening tool such as the Mini Mental State Examination or the Montreal Cognitive Assessment without an accompanying clinical diagnostic assessment. Abstracts, letters, editorials and commentaries were also excluded.

Search methods for identification of studies
Our search syntax used a combination of exploded medical subject headings ‘dementia’ or ‘vascular dementia’ or ‘multi-infarct dementia’ and ‘stroke’. We searched MEDLINE (OVID) and EMBASE (OVID) electronic databases from 2008 (to capture any in press papers that may have been missed in the 2009 search) to July 2019 and conducted forward and backward citation searching of included studies. To identify earlier studies, we assessed the inclusion and exclusion lists of the previous review. We reassessed all studies against our revised inclusion and exclusion criteria. We also hand-searched the following journals for relevant articles published between January 2009 and July 2019: Stroke (American Heart Association), International Journal of Stroke (World Stroke Organization) and European Stroke Journal (European Stroke Organisation). If relevant abstracts were identified but the papers were not available, we contacted the author regarding publication status. Similarly, where relevant data were not available in the published manuscript, we contacted the study authors. As a validation exercise, we cross-checked our selected titles with other reviews that have a stroke cognition focus and no new titles were found.

Selection process and data extraction
All aspects of the selection process were completed by two reviewers (ZLH, TZY). Reviewers were blind to each other’s data extraction; data were compared and discrepancies resolved with access to a third arbitrator (TJQ) as required. We extracted data from eligible papers using a prespecified and piloted proforma, based on the Cochrane data extraction tool and designed to be harmonised with the original study. We collected data on prevalence of dementia (proportion, with corresponding measure of uncertainty), details of the cohort and the methods used to ascertain stroke and dementia status. Where the time point of assessing PSD was not reported, an assumption was derived using the reported dates of cohort inception and the date of paper publication (on supplemental files S1, S2).

Data analysis
The primary outcome for the analysis was prevalence of PSD at any time post stroke, stratified by inclusion or exclusion prestroke dementia. The secondary outcomes were prevalence of PSD at 1 year (allowing for studies with relevant data within a 6–18 months range), stratified by inclusion and/or exclusion of prestroke dementia, and prevalence of prestroke dementia, noting whether prestroke dementia was measured at the time of stroke or only in those patients who survived to follow-up assessment. We calculated point estimates with 95% CI for all these analyses. Study heterogeneity was expected so we used random-effect models throughout.

Subgroup analysis
We explored heterogeneity across a series of predefined subgroups of interest: stroke type, which included three levels: first-ever stroke (FES), recurring stroke (RS) or mixed population (cohorts which consisted of both FES and RS populations, yet prevalence data were not reported separately for each population); setting (hospital-based or community-based study); contemporary (published within the previous 10 years) or historical (published more than 10 years ago); and the country’s level of income using the WHO classification (high-income or middle-income or low-income country). These subgroup analyses were conducted for the primary outcome and limited to stroke type for the secondary outcome. Data on PSD were pooled at the following time points: baseline to 3 months, 6 months, 12–18 months, 2–3 years and ≥6 years. Due to availability of data, the denominators used for the subgroup analyses were those reported for the inception cohort and therefore may vary from the denominators used in the main analysis which were subject to attrition (on supplemental files S3–S5).

Sensitivity analysis
We removed studies considered to be outliers from the meta-analysis to examine the effect on the pooled prevalence. Outliers were identified if the study’s CI did not overlap with the CI of the pooled effect. If the analysis is robust then there should be minimal change in the pooled estimate. We further performed sensitivity analysis restricting to those studies judged as low or moderate quality.

Meta-regression analysis
To explore any temporal change in PSD prevalence, we performed a meta-regression of dementia prevalence at any timeframe against the year of study recruitment. Where a cohort was recruited over a longer time period than 1 year, we used the study midpoint. We used Spearman’s correlation to test the association between study quality (ordinal sum of risk of bias assessment) and the year of study recruitment. All quantitative analyses were performed using Comprehensive Meta-Analysis V2.2 (USA) and Statistical Package for the Social Sciences (SPSS) V26.
Quality of assessment

We appraised the methodological quality and level of bias using the Newcastle-Ottawa Scale (NOS) for observational studies.21 We assessed individual studies including those in the original study using seven relevant items, classified into three categories: the selection of the study groups, the comparability of the groups and the ascertainment of outcome of interest for cohort studies (online supplemental file 3). Points were awarded for each quality item, and the highest quality studies were awarded up to 8 points. No formal cut-offs exist to define low or high risk of bias with the NOS. Therefore, we used cut-offs previously described to form the basis of our scoring system and to pair the score with traffic light coding.22–25 Studies with 0–2, 3–5 and 6–8 points represented low, moderate and high quality, respectively. Findings from quality assessment informed a sensitivity analysis limited to studies of high quality.

Publication bias

Publication bias was assessed by visual inspection of the funnel plots and complemented with statistical testing using Egger’s weighted regression and Begg’s rank correlation test. P<0.05 was considered to be suggestive of statistically significant publication bias.26

Strength of evidence

An assessment of overall strength of evidence based on the GRADE framework, modified to be suitable for an observational epidemiology question, was performed.27 Risk of bias, consistency of results (heterogeneity), directness (applicability of included studies to research question), precision (based on CIs of summary estimate) and publication bias (funnel plot) were all assessed.

RESULTS

The search identified 12,505 articles. After deduplication and screening of titles and abstracts, 128 full-text articles were assessed (figure 1). Data were extracted from 27 studies that meet the eligibility criteria and were included in the review (online supplemental S1–S27). Fifteen studies from the 17 papers included in the previous meta-analysis for PSD prevalence were also included (online supplemental S28–S41, S44). Two studies

Figure 1 PRISMA search flow. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
were excluded due to the method of diagnosis, one study used a screening tool only (online supplemental S43) and the other study, although included in the prestroke analysis, used medical records to identify patients with dementia after stroke (online supplemental S42).

Study characteristics

The review included 44 studies conducted in the following countries: Africa (n=3), Europe (n=16), Americas (n=7), Asia (n=15) and Australasia (n=1). The sample sizes ranged from 50 to 215118. The period of follow-up ranged from 3 months to 25 years, with 3 months the modal follow-up time point (n=18). The average age of participants ranged from 56 years to 79.9 years. Most studies used the DSM IV (n=16) (online supplemental S4, S6, S10, S17, S20, S21, S25, S26, S28, S29, S31, S33–S35, S37, S44) and for 9 population-based studies (online supplemental S1, S2, S6, S11, S12, S14, S15, S22, S27, S34, S35). Online supplemental table S1 details the characteristics of the included studies.

PSD prevalence (excluding prestroke dementia): all timeframes

Data on the prevalence of PSD excluding prestroke dementia regardless of timeframe were available for 24 hospital-based studies (online supplemental S4, S5, S7, S9, S10, S13, S14, S16–S18, S20–S23, S25, S26, S28, S29, S31, S33–S35, S37, S44) and for 9 population-based studies (online supplemental S1, S2, S6, S11, S12, S14, S15, S22, S27, S34, S35). The reported prevalence of PSD excluding prestroke dementia in the individual studies ranged from 2.6% to 39.2%. Based on the 33 studies included in the meta-analysis, the pooled prevalence was 16.5% (95% CI 10.4% to 25.1%). There were no statistically significant subgroup differences detected (table 1).

Table 1	Prevalence of poststroke dementia: results of the subgroup analysis (all timeframes)		
Subgroup (studies, n)	**All timeframes**	**Inclusion**	**Excluding prestroke dementia**
Prevalence, % (95% CI), n studies	**Prevalence, % (95% CI), n studies**		
Hospital-based	24.0 (20.6 to 27.8), n=15	18.2 (10.6 to 29.5), n=24	
Population-based	11.1 (6.3 to 18.7), n=2	12.4 (4.9 to 28.2), n=9	
Stroke type	**Prevalence, % (95% CI), n studies**	**Prevalence, % (95% CI), n studies**	
Recurrent stroke	41.7 (31.9 to 52.1), n=4	31.3 (13.9 to 56.4), n=8	
First-ever stroke	18.1 (13.3 to 24.0), n=5	14.4 (8.3 to 24.0), n=19	
Mixed population	23.8 (20.3 to 27.6), n=15	19.7 (10.6 to 33.6), n=14	
Year of publication	**Prevalence, % (95% CI), n studies**	**Prevalence, % (95% CI), n studies**	
Historical	27.1 (23.7 to 30.7), n=11	19.1 (8.9 to 36.3), n=10	
Contemporary	14.4 (11.3 to 18.3), n=6	15.1 (8.4 to 25.8), n=21	
Level of income	**Prevalence, % (95% CI), n studies**	**Prevalence, % (95% CI), n studies**	
High	12.8 (6.9 to 22.7), n=19		
High-middle	19.8 (7.3 to 43.7), n=7		
Low-middle	25.7 (9.3 to 52.1), n=7		
Low	10.0 (4.6 to 20.5), n=1		

*The same study can appear in both inclusion and exclusion of prestroke dementia. Inclusion/exclusion prestroke dementia categories are not mutually exclusive.

PSD prevalence (including prestroke dementia): all timeframes

Data on the prevalence of PSD including prestroke dementia regardless of timeframe were available for 14 hospital-based studies (online supplemental S7, S8, S18, S21, S23, S28, S30–S32, S34, S37, S38, S40, S44) and for 2 population-based studies (online supplemental S3 and S39). The reported prevalence of PSD including prestroke dementia in the individual studies ranged from 8.4% to 41.5%. Based on the 17 studies including prestroke dementia, the pooled prevalence was 22.3% (95% CI 18.8% to 26.2%). Statistically significant subgroup differences were detected for setting (p=0.004), stroke type (first vs recurrent) (p<0.001), year of publication (p=0.002) and income (p=0.014).

Table 2	Prevalence of poststroke dementia: results of the subgroup analysis (1 year)	
Subgroup (studies, n)	**Including prestroke dementia**	**Excluding prestroke dementia**
Prevalence, % (95% CI), n studies	**Prevalence, % (95% CI), n studies**	
Stroke type*		
Recurrent stroke	33.4 (9.3 to 70.9), n=7	23.5 (12.7 to 39.1), n=1
First-ever stroke	117.7 (6.1 to 41.9), n=11	1.0 (6.7 to 17.5), n=2
Mixed population	28.6 (23.5 to 34.2), n=5	20.4 (41.4 to 60.4), n=5

*The same study can appear in both inclusion and exclusion of prestroke dementia. Inclusion/exclusion prestroke dementia categories are not mutually exclusive.

PSD prevalence (including prestroke dementia): at year 1

Data on the prevalence of PSD excluding prestroke dementia at 1 year following stroke were available for 13 hospital-based studies (online supplemental S4, S5, S10, S13, S14, S17, S20, S22, S25, S31, S33–S35) and for 3 population-based studies (online supplemental S1, S6, S12). The estimated prevalence of PSD in the first year after stroke ranged from 1.1% to 39.2%. Based on the 16 studies included in the meta-analysis, the pooled prevalence was 18.4% (95% CI 7.4 to 38.7). No statistically significant subgroup differences were detected (table 2).

PSD prevalence (including prestroke dementia): at year 1

Data on the prevalence of PSD including prestroke dementia 1 year after stroke were available for four hospital-based studies (online supplemental S21, S30, S31 and S34) and for two population-based studies (online supplemental S3 and S40). The estimated prevalence of PSD in the first year after stroke ranged from 1.0% to 31.0%. Based on the six studies included in the meta-analysis, the pooled prevalence was 20.4% (95% CI 14.2 to 28.2). A statistically significant subgroup difference was detected for stroke type (first vs recurrent) (p<0.001) (table 2).

*The same study can appear in both inclusion and exclusion of prestroke dementia. Inclusion/exclusion prestroke dementia categories are not mutually exclusive.

Prestroke dementia

The pooled prevalence for prestroke dementia was 7.6% (95% CI 4.0 to 14.0) (n=25 studies). Data on the prevalence of prestroke dementia were available for 19 hospital-based studies (online supplemental S5, S7–S10, S13, S14, S16, S18, S22, S25, S28, S31, S34, S35, S37, S38, S40, S41) and 6 population-based studies (online supplemental S6, S12, S19, S36, S42, S45). Thirteen of the 19 hospital-based studies obtained rates of prestroke dementia.
dementia at an interview with an informant using the Informant Questionnaire on Cognitive Decline in the Elderly questionnaire. The population-based studies used a variety of methods, such as review of medical records and premorbid assessment of cognition. Eight hospital-based studies assessed all patients who had a stroke on admission to hospital, nine assessed only those patients who survived to follow-up and two studies assessed patients at admission and at follow-up. All population-based studies assessed prestroke dementia before or shortly after stroke.

PSD prevalence by timeframe since stroke
The studies were classified into the following timeframes: baseline to 3 months, 6 months, 12–18 months, 2–5 years and greater than 6 years. The pooled prevalence increased from 19.1% at 3 months to 19.8% at 6 months and was then lower for each of the later time points (online supplemental figure S9).

Quality assessment
Thirty-two studies were categorised as high quality and ten studies were categorised as moderate quality. The majority of studies were assessed to have a truly or somewhat representative cohort. Most studies had no age criteria, with a mean age >60 years apart from two studies (online supplemental S6 and S16). Studies provided detailed descriptions such as vascular risk factors of the cohort and scored at least 1 point for the comparability section of the NOS. The prevalence estimate appeared lower in high-quality studies than in moderate-quality studies, both for studies that excluded prestroke dementia (15.3% (7.9%–27.9%) vs 20.6% (13.7%–29.7%)) and studies that included prestroke dementia (21.3% (17.2%–26.2%) vs 25.4% (22.6%–28.4%)) (table 3).

Sensitivity analysis
Eight studies were considered to be outliers and were removed from the analysis (online supplemental S1, S2, S4, S10, S12, S17, S26, S44), which reduced the prevalence to 15.6% (95% CI 14.0% to 17.3%) for studies excluding prestroke dementia and to 21.4% (95% CI 18.2% to 25.0%) for studies including prestroke dementia. Small or large sample sizes (online supplemental S12 and S17) and no specific timeframe for dementia assessment post stroke (online supplemental S1, S2) are likely to be some of the reasons for these outlying results. This reduction of less than 1% indicates that the analysis was robust when outlier studies were removed. Ten studies considered to be of moderate quality were removed from the analysis (online supplemental S1, S2, S9, S11, S15, S16, S30, S31, S38, S44). This reduced the prevalence by 1% for studies excluding prestroke dementia and by 0.9% for studies including prestroke dementia, respectively, indicating that the analysis was robust to the removal of studies of moderate quality (online supplemental table S2).

Publication bias
The funnel plot analysis suggests publication bias for studies excluding prestroke dementia. For the rank correlation test, Kendall’s τ is −0.28 with one-tailed p=0.01. For Egger’s test, the intercept is 4.36, with a 95% CI from −4.56 to 13.3, and one-tailed p=0.16. The funnel plot analysis suggests publication bias for studies including prestroke dementia. For the rank correlation test, Kendall’s τ is −0.29 with one-tailed p=0.05. For Egger’s test, the intercept is −3.83, with a 95% CI from −7.81 to 0.13 and one-tailed p=0.03 (online supplemental figures S10, S11).

Table 3 Methodological quality assessment of cohort studies using the Newcastle-Ottawa Scale

Study, year	Selection	Comparability	Outcome	Total score
Akinnemi et al, 2014 S8	3	1	2	6
Alteri et al, 2004 S27	3	2	3	8
Arauz et al, 2014 S9	2	1	2	5
Assayag et al, 2017 S26	3	1	3	7
Barba et al, 2000 S28	3	1	2	6
Carotzollo et al, 2016 S10	3	1	3	7
Censori et al, 1996 S29	3	1	2	6
Clark et al, 2018 S11	3	0	2	5
Corraini et al, 2017 S12	3	2	3	8
Das et al, 2013 S3	3	1	3	7
De Konnig et al, 1998 S30	2	1	2	5
De Konnig et al, 2005 S31	3	0	2	5
Delgado et al, 2010 S13	3	1	2	6
Desmond et al, 2000 S32	3	2	3	8
Gorelick et al, 1993 S44	2	2	2	6
Gur et al, 1994 S33	3	1	3	7
Henon et al, 2001 S34	3	2	3	8
Ihle-Hansen et al, 2010 S14	3	1	3	7
Inizitari et al, 1998 S35	3	1	3	7
Kase et al, 1998 S36	3	2	3	8
Kherd et al, 2000 S16	2	1	2	5
Kim et al, 2017 S15	3	0	2	5
Klimkowitz et al, 2002 S37	3	2	1	6
Kokmen et al, 1996 S42	2	1	2	5
Kumuptogpanich et al, 2017 S5	3	1	3	7
Mehrbain et al, 2015 S17	3	1	2	6
Ojagbemi et al, 2017 S18	3	1	2	6
Pendlebury, 2019 S6	3	1	3	7
Pohjavaara et al, 1997 S38	2	1	2	5
Portegies et al, 2016 S19	3	1	3	7
Qu et al, 2015 S1	3	1	2	5
Renjen et al, 2015 S20	3	0	3	6
Sarofo et al, 2017 S21	3	2	3	8
Selim et al, 2009 S22	3	1	3	7
Srikanthi et al, 2004 S39	2	2	3	7
Surawanan et al, 2018 S4	3	1	3	7
Tang et al, 2004 S40	3	1	2	6
Tang et al, 2017 S23	2	1	2	6
Tu et al, 2013 S24	3	1	2	6
Yang et al, 2015 S25	3	2	3	8
Yu et al, 2013 S7	3	1	2	6
Zhang et al, 2017 S2	3	1	1	5
Zhou et al, 2004 S41	3	2	2	7

Cut-off score

Group	Good	Moderate	Poor
Selection	3	2	1
Comparability	2	1	0
Outcome	3	2	1
Total points	≥6	5	≤4

Strength of evidence (GRADE)
The overall strength of evidence for our estimate of dementia prevalence was graded as low due to a high risk of bias and inconsistency (observational heterogeneous studies), publication
bias and imprecise overall estimate (wide CIs) (online supplemental table S3).

Meta-regression
There was no significant relationship between the log event rate for dementia prevalence and year of recruitment of the study for studies excluding prestroke dementia (slope coefficient (SE) = 0.03 (0.025), p = 0.18). There was a significant relationship between the log event rate for dementia occurrence and year of recruitment of the study for studies including prestroke dementia (slope coefficient (SE) = −0.05 (0.01), p = 0.0000). There was no significant association between study quality and year of study recruitment (coefficient = −0.095, p = 0.55) (online supplemental figures S12 and S13).

DISCUSSION
This quantitative synthesis of 44 studies suggests that approximately one in five of all stroke survivors have dementia. Risk appears substantial and front-loaded following stroke, with 1-year prevalence similar to the estimate for dementia at any time point. For this update, we found new evidence that allowed us to offer greater precision in estimates than in previous reviews. Some of our findings confirm the results from other analyses, for example, the rates of PSD were highest in the hospital-based studies of recurrent stroke. Other findings are unique to our analyses, for example, the apparent decrease in estimates of all-cause PSD over time.

The primary aim of this review was to provide a pooled prevalence of PSD and not to examine any relationships between PSD and demographic factors, vascular risk factors or stroke characteristics such as stroke severity. However, through various subgroup analyses we explored factors that may contribute to the high prevalence of PSD. Inclusion of prestroke dementia consistently increased estimates of PSD and emphasises the importance of considering the prestroke state when assessing stroke survivors. Recurrent stroke substantially increased PSD, a finding in keeping with previous evidence. Several mechanisms may explain this, including the cumulative impact of neurological insult, underlying cerebrovascular disease or common risk factors. Other sources of heterogeneity relating to casemix and study setting were explored; however, no single factor explained the differences in estimates for studies that excluded prestroke dementia.

Dementia is a progressive condition, yet in our analysis as the length of time between the stroke event and assessment increased, the prevalence of PSD showed a modest decrease. Attrition due to mortality is one plausible explanation. In addition, immediately after the stroke event, there are dynamic changes in cognition and attempts at early assessment may overestimate dementia. It is recommended that any formal diagnosis of dementia is not made until several months after the index stroke. These estimates of PSD at fixed time points after stroke provide information that can be used for clinical benchmarking, epidemiology and public health messaging.

Our analysis of temporal change in reports of dementia prevalence suggested no change in incident dementia post stroke, but a decrease in PSD when prestroke dementia was included. The factors underlying this are currently not clear. One plausible explanation is that raised awareness and improved access to diagnosis have increased the rates of dementia diagnosed before or at the time of the stroke, with a subsequent decrease in poststroke diagnosis. Decreases in all-cause dementia incidence in industrialised countries may also be relevant. Alternatively, it has been speculated that the incidence of vascular dementia may have reduced, supported by the improvement in vascular care. Although our meta-regression analyses indirectly support this view, caution needs to be drawn when interpreting the causal implications of these analyses. The age-specific risk of all-cause prevalence in the USA and Europe has declined by about 20% per decade since late 1990s. Other factors will also be important and may become more important in the future, for example, improvements in recognition and diagnosis of dementia and increased survival of patients who had a stroke who are at higher risk of developing dementia. For these reasons, it seems prudent to continue to monitor the incidence and prevalence of PSD. In this regard, we look forward to the results of large observational cohorts that are designed to address the interplay of stroke, dementia and vascular disease.

Strengths and weaknesses of this review
We followed best practice in evidence synthesis and made use of tools such as risk of bias assessment and GRADE to frame our results. There has been a substantial increase in research around stroke and cognition. To keep the review focused and manageable, we limited it to dementia diagnosis, rather than less well-defined syndromes such as poststroke cognitive impairment. A distinct review investigating the prevalence of cognitive impairment no dementia (CIND) has been previously conducted and revealed that in the first year post stroke one in four people present with CIND. The authors also highlighted that there was significant variation in how the CIND was operationalised, such as the use of different cut-offs for impairment and the use of functional criteria. PSD rather than other cognitive syndromes seems to have the greatest influence on overall prognosis following stroke. Age is the most important risk factor for dementia so stratifying the analysis by age groups may have explained the variation in prevalence estimates between the studies. We did not include studies where the primary population of interest was intracerebral haemorrhage, subarachnoid haemorrhage or traumatic brain injury as all these groups have distinct cognitive recovery profiles and combining the various groups may explain conflicting results in previous research (online supplemental S6 and S8).

Areas of future research
This review has highlighted some important methodological limitations which could be used to inform recommendations for the conduct of future primary research studies in this area, for example, a more inclusive inclusion criteria to overcome the potential underestimation of the prevalence of dementia after stroke. Differing approaches to diagnosis of the dementia syndrome were evident across the papers included in our review. There is ongoing work to standardise diagnosis, such as the consensus statement produced by the Vascular Impairment of Cognition Classification study group. A recommendation based on this review is for researchers to adopt a standard process or to describe the steps used to diagnose PSD. This would improve the internal and external validity of future observational studies and raise potential for inclusion in future meta-analyses.

Cognitive impairment is associated with increased mortality and morbidity, which can lead to sizeable loss at follow-up impacting of the measurable risk of dementia after stroke. Therefore, future research studies should employ alternative strategies to follow-up and the use of face-to-face assessment such as telephone/video assessment, home visits and postal...
surveys. Furthermore, while the focus of this review was dementia following stroke, there is a need for more epidemiological data on the cognitive consequences of stroke that do not meet the criteria for dementia.

Implications for research and practice
Our estimates of prevalence allow projections for the future burden of PSD to design appropriate health policy, that is, the allocation of healthcare resources. Our findings highlight the importance of this condition among policy makers, healthcare professionals and the public. Our estimates can be used for planning research, for example, in planning the sample size of a future interventional trial.

CONCLUSION
At all points in the stroke journey, in all healthcare settings and in all countries of the world, PSD is one of the most common complications of stroke. Certain factors were associated with higher prevalence, for example, inclusion of people with pre-stroke dementia and recurrent stroke, but even when these factors were not present the prevalence remained substantial.

Twitter Terence J Quinn @DrTerryQuinn

References
1 Pollock A, St George B, Fenton M, et al. Top 10 research priorities relating to life after stroke—consensus from stroke survivors, caregivers, and health professionals. Int J Stroke 2014;9:315–33.
2 Savva GM, Stephan BC, Alzheimer’s Society Vascular Dementia Systematic Review Group. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke 2010;41:e41–e6.
3 Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 2009;8:1006–18.
4 Eskes GA, Lanctö KL, Hermann N, et al. Canadian stroke best practice recommendations: mood, cognition and fatigue following stroke practice guidelines. Int J Stroke 2015;10:1130–40.
5 Royal College of Physicians. Regional clinical guideline for stroke. 5th edn, 2016.
6 Bath PM, Scott P, Blackburn DJ, et al. Intensive versus guideline blood pressure and lipid lowering in patients with previous stroke: main results from the pilot ‘prevention of decline in cognition after stroke trial’ (PODISC) randomised controlled trial. PLoS One 2017;12:e0164608.
7 Sun J-H, Tan L, Yu J-T. Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann Transl Med 2014;2:80.
8 Mijailovic MD, Pavlovic A, Brainin M, et al. Post-stroke dementia—a comprehensive review. BMC Med 2017;15:11.
9 Skrobot OA, Black SE, Chen C, et al. Progress toward standardized diagnosis of vascular cognitive impairment: guidelines from the vascular impairment of cognition classification consensus study. Alzheimers Dement 2018;14:280–92.
10 Rothwell PM, Coull AJ, Giles MF. Charge in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford vascular study). Lancet 2004;363:1925–33.
11 Rothwell PM, Coull AJ, Silver LE, et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford vascular study). Lancet 2005;366:1733–83.
12 Feigin VL, Krishnamurthi RV, Parmar F, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology 2015;45:161–76.
13 Béjot Y, Abou-Eboulé C, Durier J, et al. Prevalence of early dementia after first-ever stroke: a 24-year population-based study. Stroke 2011;42:607–12.
14 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med 2009;3:e123–30.
15 American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 2013.
16 Hénon H, Pasquier F, Leys D. Poststroke dementia. Cerebrovasc Dis 2006;22:61–70.
17 Higgins JP, Thomas J, Chandler J, Cochrane Handbook for systematic reviews of interventions version 6.0. 2019.
18 The World Bank. Available: https://datatopics.worldbank.org/world-development-indicators/stories/the-classification-of-countries-by-income.html. [Accessed 2 Dec 2020].
19 Viechtbauer W, Cheung MV-L. Outlier and influence diagnostics for meta-analysis. Res Synth Methods 2010;1:112–25.
20 Bown MJ, Sutton AJ. Quality control in systematic reviews and meta-analyses. Eur J Vasc Endovasc Surg 2010;40:669–77.
21 et al. AlleviA GA, Shea B, O’Connell D. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2008. Available: http://www.ohri.ca/programs/clinical Effectiveness/ayoje.html.
22 Catalá-López F, Hutton E, Page MJ, et al. Risk of mortality among children, adolescents, and adults with autism spectrum disorder or attention deficit hyperactivity disorder and their first-degree relatives: a protocol for a systematic review and meta-analysis of observational studies. Syst Rev 2017;6:189.
23 Tekelab I, Akibu M, Tagessa N, et al. Neonatal mortality in Ethiopia: a protocol for systematic review and meta-analysis. Syst Rev 2019;8:103.
24 Zulkipli MS, Dahl M, Jamil Nor ashikin, Nj, et al. The association between obesity and dengue severity among pediatric patients: a systematic review and meta-analysis. PloS Negl Trop Dis 2018;12:e0006263.
25 McPheeters ML, Kiplapali S, Peterson NB, et al. Closing the quality gap: revisiting the state of the science (Vol. 3: quality improvement interventions to address health disparities). Evid Rep Technol Assess 2012;1:473.
26 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:239–40.
27 Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
28 Pannotti L, Basile AM, Pracucci G, et al. Impact of age-related cerebral white matter changes on the transition to disability -- the LADIS study: rationale, design and methodology. Neuroepidemiology 2005;24:51–62.
29 Iademica C, Park L, Capone C. Threats to the mind: aging, amyloid, and hypertension. Stroke 2009;40:540–4.
30 Inzitari D, Pracucci G, Poggesi A, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three-year follow-up of LADIS (leukoaraisis and disability) study cohort. BMJ 2009;339:b2477.
31 Cersosimo JO, Azarpazhooh MR, Kapral MK, et al. Evidence of concomitantly increasing stroke and dementia prevalence among those 80 years and older in Ontario, Canada, 2003–04 to 2012–13. Can J Neurol Sci. 2019;46:105–7.
32 Pase MP, Sattarazib CA, Seshadri S. Role of improved vascular health in the declining incidence of dementia. Stroke 2017;48:2013–20.
33 Robinson L, Tang E, Taylor J-P. Dementia: timely diagnosis and early intervention. BMJ 2015;350:h3029.
34 Wolters FJ, Ikram MA. Epidemiology of vascular dementia. *Arterioscler Thromb Vasc Biol* 2019;39:1542–9.
35 Satzbal CL, Beiser AS, Chouraki V, et al. Incidence of dementia over three decades in the Framingham heart study. *N Engl J Med Overseas Ed* 2016;374:523–32.
36 Schrijvers EMC, Verhaaren BFJ, Koudstaal PJ, et al. Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam study. *Neurology* 2012;78:1456–63.
37 Wardlaw JM, Doublal F, Brown R, et al. Rates, risks and routes to reduce vascular dementia (R4vad), a UK-wide multicentre prospective observational cohort study of cognition after stroke: protocol. *Eur Stroke J* 2021;6:89–101.
38 Sexton E, McLoughlin A, Williams DJ, et al. Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. *Eur Stroke J* 2019;4:160–71.
39 Leys D, Hénon H, Mackowiak-Cordoliani M-A, et al. Poststroke dementia. *Lancet Neurol* 2005;4:752–9.
40 Van der Flier WM, Scheltens P. Epidemiology and risk factors of dementia. *J Neurol Neurosurg Psych* 2005;76:v2.
41 Béjot Y, Aboa-Eboulé C, Durier J, et al. Prevalence of early dementia after first-ever stroke: a 24-year population-based study. *Stroke* 2011;42:6–1.
S1. Qu Y, Zhuo L, Li N, et al. Prevalence of post-stroke cognitive impairment in China: a community-based, cross-sectional study. *PLoS One*. 2015;10:e0122864.

S2. Zhang C, She Y, Lan T, et al. Study on epidemiology of cognitive dysfunction after stroke in the population over the age of 45 in Inner Mongolia. *International Journal of Neuroscience*. 2018;128:654-62.

S3. Das S, Paul N, Hazra A, et al. Cognitive dysfunction in stroke survivors: a community-based prospective study from Kolkata, India. *Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association*. 2013;22:1233-42.

S4. Surawan J, Sirithanawutichai T, Areemit S, et al. Prevalence and factors associated with memory disturbance and dementia after acute ischemic stroke. *Neurol Int*. 2018;10:7761.

S5. Kumutpongpanich T, Senanarong V. Associations Between Brain Imaging Characteristics and Cognition in Post-Stroke Patients. *J Med Assoc Thai*. 2017:100.

S6. Pendlebury ST, Rothwell PM, Oxford Vascular S. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study. *The Lancet Neurology*. 2019;18:248-58.

S7. Yu KH, Cho SJ, Oh MS, et al. Cognitive impairment evaluated with vascular Cognitive Impairment Harmonization Standards in a multicenter prospective stroke cohort in Korea. *Stroke*. 2013;44:786-8.

S8. Akinyemi RO, Allan L, Owolabi MO, et al. Profile and determinants of vascular cognitive impairment in African stroke survivors: The CogFAST Nigeria Study. *Journal of the Neurological Sciences*. 2014;346:241-9.

S9. Arauz A, Rodríguez-Agudelo Y, Sosa AL, et al. Vascular Cognitive Disorders and Depression After First-Ever Stroke: The Fogarty-Mexico Stroke Cohort. *Cerebrovascular Diseases*. 2014;38:284-9.

S10. Caratozzolo S, Mombelli G, Riva M, et al. Dementia after Three Months and One Year from Stroke: New Onset or Previous Cognitive Impairment? *Journal of Stroke and Cerebrovascular Diseases*. 2016;25:2735-45.

S11. Clark DG, Boan AD, Sims-Robinson C, et al. Differential Impact of Index Stroke on Dementia Risk in African-Americans Compared to Whites. *Journal of Stroke and Cerebrovascular Diseases*. 2018;27:2725-30.

S12. Corraini P, Henderson VW, Ording AG, et al. Long-Term Risk of Dementia Among Survivors of Ischemic or Hemorrhagic Stroke. *Stroke*. 2017;48:180-6.

S13. Delgado C, Donoso A, Orellana P, et al. Frequency and Determinants of Poststroke Cognitive Impairment at Three and Twelve Months in Chile. *Dementia and Geriatric Cognitive Disorders*. 2010;29:397-405.

S14. Ille-Hansen H, Thommessen B, Wyller TB, et al. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment. *Dement Geriatr Cogn Disord*. 2011;32:401-7.

S15. Kim, J. H. Lee, Yunhwan. Dementia and Death After Stroke in Older Adults During A 10-Year Follow-Up: Results From A Competing Risk Model. *J Nutr Health Aging*. 2018;22:2.

S16. Khedr EM, Hamed SA, El-Shereef HK, et al. Cognitive impairment after cerebrovascular stroke: Relationship to vascular risk factors. *Neuropsychiatric disease and treatment*. 2009;5:103-16.

S17. Mehrabian S, Raycheva M, Petrova N, et al. Neuropsychological and neuroimaging markers in prediction of cognitive impairment after ischemic stroke: a prospective follow-up study. *Neuropsychiatric disease and treatment*. 2015;11:2711-9.

S18. Ojagbemi A, Owolabi M, Bello T, et al. Stroke severity predicts poststroke delirium and its association with dementia: Longitudinal observation from a low income setting. *Journal of the Neurological Sciences*. 2017;375:376-81.

S19. Portegies Marileen LP, Wolters Frank J, Hofman A, et al. Prestroke Vascular Pathology and the Risk of Recurrent Stroke and Poststroke Dementia. *Stroke*. 2016;47:2119-22.

S20. Renjen PN, Gauba C, Chaudhari D. Cognitive Impairment After Stroke. *Cureus*. 2015;7:e335-e.
S21. Sarfo FS, Akassi J, Adamu S, et al. Burden and Predictors of Poststroke Cognitive Impairment in a Sample of Ghanaian Stroke Survivors. *Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association*. 2017;26:2553-62.

S22. Selim HA. Prestroke cognitive decline and early epileptic seizures after stroke as predictors of new onset dementia. *Egyhaj Journal of Neurology, Psychiatry and Neurosurgery*. 2009;46:579-87.

S23. Tang EYH, Robinson L, Stephan BCM. Risk Prediction Models for Post-Stroke Dementia. *Geriatrics (Basel)*. 2017;2:19.

S24. Tu Q, Ding B, Yang X, et al. The current situation on vascular cognitive impairment after ischemic stroke in Changsha. *Arch Gerontal Geriatr*. 2014;58:236-47.

S25. Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack. *Alzheimer’s & Dementia*. 2015;11:16-23.

S26. Ben Assayag E, Eldor R, Korczyn Amos D, et al. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline. *Stroke*. 2017;48:2368-74.

S27. Altieri M, Di Piero V, Pasquini M, et al. Delayed poststroke dementia: a 4-year follow-up study. *Neurology*. 2004;62:2193-7.

S28. Barba R, Martinez-Espinosa S, Rodriguez-Garcia E, et al. Poststroke dementia: clinical features and risk factors. *Stroke*. 2000;31:1494-501.

S29. Censori B, Manara O, Agostinis C, et al. Dementia after first stroke. *Stroke*. 1996;27:1205-10.

S30. De Koning I, van Kooten F, Dippel DW, et al. The CAMCOG: a useful screening instrument for dementia in stroke patients. *Stroke*. 1998;29:2080-6.

S31. De Koning I, van Kooten F, Koudstaal PJ, et al. Diagnostic value of the Rotterdam-CAMCOG in post-stroke dementia. *J Neural Neurosurg Psychiatry*. 2005;76:263-5.

S32. Desmond DW, Moroney JT, Paik MC, et al. Frequency and clinical determinants of dementia after ischemic stroke. *Neurology*. 2000;54:1124-31.

S33. Gur AY, Neufeld MY, Treves TA, et al. EEG as predictor of dementia following first ischemic stroke. *Acta Neurologica Scandinavica*. 1994;90:263-5.

S34. Henon H, Durieu I, Guerouaou D, et al. Poststroke dementia: incidence and relationship to prestroke cognitive decline. *Neurology*. 2001;57:1216-22.

S35. Inzitari D, Di Carlo A, Pracucci G, et al. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. *Stroke*. 1998;29:2087-93.

S36. Kase CS, Wolf PA, Kelly-Hayes M, et al. Intellectual decline after stroke: the Framingham Study. *Stroke*. 1998;29:805-12.

S37. Klimkowicz A, Dzedzic T, Slowik A, et al. Incidence of pre- and poststroke dementia: cracow stroke registry. *Dement Geriatr Cogn Disord*. 2002;14:137-40.

S38. Pohjasvaara T, Erkinjuntti T, Vataja R, et al. Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the Helsinki Stroke Aging Memory Study (SAM) cohort. *Stroke*. 1997;28:785-92.

S39. Srikanth VK, Anderson JF, Donnan GA, et al. Progressive dementia after first-ever stroke: a community-based follow-up study. *Neurology*. 2004;63:785-92.

S40. Tang WK, Chan SS, Chiu HF, et al. Frequency and determinants of poststroke dementia in Chinese. *Stroke*. 2004;35:930-5.

S41. Zhou DH, Wang JY, Li J, Deng J, Gao C, Chen M. Study on frequency and predictors of dementia after ischemic stroke: the Chongqing stroke study. *Journal of neurology*. 2004;251(4):421-7.

S42. Kokmen E, Whisnant JP, O’Fallon WM, et al. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960-1984). *Neurology*. 1996;46:154-9.
S43. Andersen G, Vestergaard K, Østergaard Riis J, Ingeman-Nielsen M. Intellectual Impairment in the First Year following Stroke, Compared to an Age-Matched Population Sample. Cerebrovascular Diseases. 1996;6(6):363-9.

S44. Gorelick PB, Brody J, Cohen D, et al. Risk factors for dementia associated with multiple cerebral infarcts. A case-control analysis in predominantly African-American hospital-based patients. Arch Neurol. 1993;50:714-20.

S45. Appelros P. Characteristics of Mini-Mental State Examination 1 year after stroke. Acta Neurol Scand. 2005;112:88-92.
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE		**Title**	1
		Identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT		**Structured summary**	2
		Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION		**Rationale**	3-4
		Describe the rationale for the review in the context of what is already known.	
		Objectives	5
		Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS		**Protocol and registration**	NA(6)
		Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	
	5	**Eligibility criteria**	5
		Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
	6	**Information sources**	5-6
		Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	
	7	**Search**	5
		Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
	8	**Study selection**	6
		State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	
	9	**Data collection process**	6
		Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	
	10	**Data items**	6-7
		List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
	11	**Risk of bias in individual studies**	8
		Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	
	12	**Summary measures**	7
		State the principal summary measures (e.g., risk ratio, difference in means).	
	13	**Synthesis of results**	7
		Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I², for each meta-analysis.	
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7-8
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figures 3-6
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Figures 3-6
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	16-17
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	17 & 20
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	19
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	21
PRISMA 2009 Checklist

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.
Selection	1) Representativeness of the exposed cohort	2) Ascertainment of exposure	3) Demonstration that outcome of interest was not present at start of study	4) Comparability of cohorts on the basis of the design or analysis
	a) truly representative of the average (describe) in the community *	a) secure record (e.g. surgical records) *	a) yes *	a) study controls for (select the most important factor) *
	b) somewhat representative of the average in the community *	b) structured interview *	b) no	b) study controls for any additional factor* (This criteria could be modified to indicate specific control for a second
	c) selected group of users e.g. nurses, volunteers	c) written self-report	c) no	c) study controls for any additional factor* (This criteria could be modified to indicate specific control for a second
	d) no description of the derivation of the cohort	d) no description	d) no description	d) no description

Truly / Somewhat describes a stroke population with dementia	Clinical diagnosis of stroke and dementia +/- inv. / Interview with subsequent validation	Post-Stroke Dementia clearly defined	Description of Age + Sex + Vascular Risk Factor + Additional Factors
Selected group described (may not represent exclusively stroke population with dementia)	Case Report / Structured interview (with no validation by clinician)	Post stroke dementia mixed with pre-stroke dementia (no description to separate them)	Description of Age + Sex + (at least 1) Vascular Risk Factor
No description	Written / Self-reported / No description	No proper description of cohort	
Outcome	Description
1) Assessment of outcome	
a) independent blind assessment *	
b) record linkage *	
c) self-report	
d) no description	
2) Was follow-up long enough for outcomes to occur	
a) yes (select an adequate follow up period for outcome of interest) *	
b) no	
3) Adequacy of follow up of cohorts	
a) complete follow up - all subjects accounted for *	
b) subjects lost to follow up unlikely to introduce bias - small number	
lost - > ____% (select an adequate %) follow up, or description	
provided of those lost *	
c) follow up rate < ____% (select an adequate %) and no description	
of those lost	
d) no statement	

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability.
Study, Year Country	Date of data Collection	No. of population Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method		
Alteri et al, 2004, Italy (S27)	1995-97	N=191 L	Y	Severe aphasia or neglect, <5 years' education, SAH, age <40 years, concomitant neurological disorder, severe comorbidity	71	30	89	Y	N	Annually for 4 years	ICD-10		
Caratozzolo et al, 2016, Italy (S10)	2011	N=105 P	Y *	TIA	72.4 (10.7)	37.1	85	Y	Y	IQ-CODE	12 months	DSM-IV	
Delgado et al, 2010, Chile (S13)	2005-2006	N=74 P	Y *	Poor consciousness, TIA, SAH, CNS Disorders, Severely impaired stroke (mRS >3)	72.2 (7.7)	42.0	89.0	Y	Y	SS-IQCODE	12 months	Neuropsychologic al evaluation including MMSE & Mattis Dementia Rating Scale	
de Koning et al, 1998, 2000 Netherlands (S30, S31)	1993-96	N=300 X	N	Aphasia, sensory impairment, not fluent in Dutch,	70	40.0	71	N	NA	3-9 months	DSM IIIR		
Study, Year Country	Date of data Collection	No. of population	Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	-------------------	------------	-----	-------------------	---------------	------------	---------------------	-----------------------------	-----------------------------	------------------	----------------------	
de Koning et al, 2005 Netherlands (S31)	2000-01	N=121	X	N	Aphasia, sensory impairment, not fluent in Dutch, reduced consciousness	70	38	63	N	Y (FU only)	Interview	3-9months	DSM IIIR
Gur et al, 1994, Israel (S33)	1988-90	N=199	L	Y	Aphasia	73	53	100	Y	N	6 monthly to 5 years	DSM IIIR	
Henon et al, 2002 France (S34)	1995-1996	N=142	L	N	Non-white, no informant, age <40 years, not fluent in French, not from Lille, history of severe head trauma	72	46	Not reported	N	Y	IQCODE	6 months, annually to 3 years	ICD-10
Inzitari et al, 1998, Italy (S35)	1993-94	N=339	X	N	None given	71	48	83.2	Y	Y (FU only)	Interview	1 year	ICD-10
Study, Year Country	Date of data Collection	No. of population	Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	-------------------	------------	-----	-------------------	---------------	------------	---------------------	---------------------------	-----------------------------	-------------------	----------------------	
Ihle-Hansen et al, 2010, Norway (S14)	2007-2008	N=184	P	Y	SAH, TIA, MCI, Life expectancy < 1 year	72 (12.2)	49.5	76.4	Y	Y	IQCODE	12 months	MMSE & CDT + TMT-A + TMT-B ICD-10
Kumutpongpanich et al, 2017 Thailand (S5)	2006-2007	N=85	X	Y *	Dementia before stroke, Expired or lost to follow up, Unable to perform neuropsychological test, Imaging study was not performed or was lost, Patients with aphasia	69.4 (9.3)	N/A	100	Y	Y	12 months	TMSE, Category Verbal Fluency Test, Neuropsychiatric Inventory DSM-IV, NINDS-AIREN	
Mehrabian et al, 2015 Bulgaria (S17)	N/A	N=74	P	Y	ICH, NIHSS >6, Persistent aphasia, Severe sensory impairment, Malignant disease, Neurological conditions, Psychiatric conditions, History of Pre-Stroke Cognitive Impairment	65.6 (5.6)	21.2	100	Y	N	12 months	MMSE & Neuropsychologic al battery DSM-IV, NINDS-AIREN	
Study, Year Country	Date of data Collection	No. of population Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method		
---------------------	-------------------------	-----------------------------	-----	-------------------	---------------	------------	----------------------	-----------------------------	--------------------------	-------------------	---------------------		
Renjen et al, 2015 India (S20)	N/A	N=50	Y	TIA, Neurodegenerative disorder, Moderate to severe aphasia	61.8	36	74	Y	Y	Short-IQCODE	12 months	PGI-Battery of Brain Dysfunction (PGI BBD > 30) & IQCODE	
Sarfo et al, 2017, Ghana (S21)	2015-2016	N=58	X	On sedatives, Aphasia without proxy, Significant physical illness, Motor/Sensory impairment (hearing visual), Neurological or psychiatric illness Systemic disorders capable of impairing cognition	59.9 (13.7)	47.6	66	N	NA	3 months, 12 months, 2-4 years and 5 years	MoCA & V-NB		
Selim et al, 2009 Egypt (S22)	2007-2008	N=66	Y	TIA, SAH, CVT, Seizure history, Severe head trauma history, Neurological surgery	Median age 63	47.0	74.2	Y	Y	IQCODE	18 months	MMSE + Neuro-psychological battery	

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Study, Year Country	Date of data Collection	No. of population	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
Surawan et al, 2018 Thailand (S4)	2017	N=138 P	Y *	Depression, Vitamin B12 deficiency, renal failure, hypothyroid, syphilis, HIV, Pick’s disease, CJD, Huntington’s disease, Parkinson’s, Alzheimer’s Disease, Sensory impairment (hearing/ visual), Communication impairment	Mean 69	46.1	100	Y	N	3 and 6 months	MMSE-Thai 2002 (≤ 23)	
Yang et al, 2015 Hong Kong (S25)	2009-2010	N=1013 P, X	Y *	Severe language impairment, Terminal illness, Psychiatric comorbidity	69.2 (11.7)	44.3	70.1	Y	Y	Not reported	6 months	Cantonese MMSE + MoCA (HK Version)
Akinyemi et al, 2014 Nigeria (S8)	2010-12	N=143 P	N	SAH, Moderate to severe aphasia, Significant physical and sensory impairment, Psychiatric history	60.4 (9.5)	43.4	79.5	N	Y	CSID-informant part	3 months	CSID + MMSE + V-NB
Study, Year Country	Date of data Collection	No. of population	FES Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method		
---------------------	------------------------	-------------------	-----------------------	---------------	--------------	---------------------	----------------------------	-----------------------------	-------------------	----------------------------		
Arauz et al, 2014 Mexico (S9)	2005	N=110 P, X	Y TIA, SAH, Severe aphasia	56 (17.8)	38.2	84.0	Y	Y IQ-CODE	3 months	DSM-IV+ AHA/ASA VCI criteria		
Assayag et al, 2017 Israel (S26)	2008-14	N=507 L	Y Head trauma or brain procedures, ICH, Severe aphasia	67.4 (9.7)	40.6	100	Y	N IQ-CODE	24 months	MoCA & NeuroTrax computerised Cognitive Testing		
Barba et al, 2000 Spain, (S28)	1994-95	N=251 X, L	N Primary brain lesion, aphasia, comorbidity	69	47	88.4	N	Y IQ-CODE	3,6,24 months	DSM IIIR		
Censori et al, 2000 Italy, (S29)	1993-94	110 X	Y Age <40 or ≥80 years, other neurological disorder, unusual cause of stroke, comorbidity, depression,	65	35	100	Y	N	3 months	NINDS A		
Study, Year Country	Date of data Collection	No. of population	Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method
---------------------	-------------------------	-------------------	------------	-----	--------------------	---------------	-------------	---------------------	-----------------------------	-----------------------------	---------------------	------------------------
Desmond et al., 1996 US, (S32)	1988–90 1994–97	N=453 X, L	N	Dysphasia, unable to speak English or Spanish, low GCS, age <60 years	70	53	100	N	N (Y in L study)	N	3 months, annually up to 4 years	DSM III
Gorelick et al., 1993 US, (S44)	1987–90	N=147 X	N	Aphasia, Parkinson’s disease, possible prior Alzheimer’s disease	72	49	100 (Multiple IS)	N	N	2-3months	DSM III	
Khedr et al., 2009 Egypt, (S16)	N/A (1 year duration)	N=81 p	Y	Poor consciousness, Persistent Aphasia, Psychosis, SAH, Systemic Disease, cancer, Severe head trauma history, Neurological surgery, Severe sensory impairment	57.7 (5.19)	33.3	84	Y	Y	IQCODE	3 months	MMSE <21 / CASI <67 DSM-IV
Klimkowicz et al, 2002 Poland, (S37)	2000–01	N=220 X	N	Age ≤40 years, no reliable informant, other brain lesion	66	55	87.2	N	Y	IQCODE	3 months	DSM IV
Study, Year Country	Date of data Collection	No. of population	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	------------------	-----	-------------------	--------------	------------	----------------------	----------------------------	--------------------------	-----------------	---------------------	
Tang et al, 2004, China (S40)	Data not available	N=280	X	Non-Chinese ethnic group, non-Cantonese speaking, age <50 years	71	55	Not reported	N	Y (FU only) (IQCODE)	3 months	DSM IV	
Tang et al, 2017 Taiwan (S23)	2014-15	N=172	X	Active infection, cancer, renal disease, autoimmune disorder, Current steroid treatment, Poor diabetes control	72.1 (7.5)	35.5	100	N	NA	85+54.0 months	MMSE & MoCA, NINDS-AIREN, CDR	
Ojagbemi et al, 2017 Nigeria (S18)	2014-16	N=96	P	Unable to communicate reliably, Aphasia, Severe co-morbidities	61.1 (12.9)	46.5	N/A	N	Y IQ-CODE	3 months	MMSE, NINDS-AIREN	
Pohjasvaara et al Finland, 1997 (S38)	1993–95	N=451	X	Age <55 or >85 years, unable to speak Finnish	71	49	100	N	Y (FU only) Interview	3 months	DSM III	
Study, Year Country	Date of data Collection	No. of population	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	------------------	-----	--------------------	---------------	------------	----------------------	-----------------------------	-----------------------------	------------------	----------------------	
Yu et al, 2013, South Korea (S7)	2007-08	N=328	Y	non-resident in Helsinki, reduced conscious level, poor hearing, aphasia	63.9 (12.4)	38.8	100	N	Y	IQCODE	3 months	K-VCHS-NP protocol + Korean MMSE
Zhou et al, 2004, China (S41)	1999-00	N=434	N	Concomitant neurological disorder, age <55 years, severe medical comorbidity or sensory impairment, reduced GCS, severe aphasia	68	47	100	N	Y (FU only)	IQCODE	3 months	DSM IV
Appelros et al, 2002 Sweden (S45)	1999–00	N=232	Y	Aphasia	74	50	73.0	N	Y	Interview	1 year	MMSE
Study, Year Country	Date of data Collection	No. of population	Study Type	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	-------------------	------------	-------------------	--------------	-----------	----------------------	-----------------------------	--------------------------	-------------------	----------------------	
Corraini et al, 2017 Norway (S12)	1982-13	N=215,118 R	Y	Previous stroke, mild cognitive impairment, amnestic syndrome	Median age 72	47.6	39.2	Y	Y	30 years	ICD-10	
Das et al, 2013 India (S3)	2006-10	N=219 P *	Y	TIA, Aphasia, Psychosis, Sensory impairment (hearing/visual)	74.5 (8.30)	48	N/A	N	NA	36 months	BMSE (adaptation of MMSE) + Kolkata Cognitive Screening Battery + CDR + DSM III-R	
Kokmen et al 1996, USA (S42)	1960-84	N=971 R	Y	Previous stroke or dementia	Not available	50	100	NA	Records	Up to 25 years	NA	
Pendlebury et al, 2019, UK (S6)	2002-12	N=2080 P, L	N	Previous diagnosis of dementia	74.4 (13.0)	51	64.3	Y		60 months (median 4.2 years)	MMSE (< 24) & MoCA / Telephone Interview for Cognitive Status - Modified	
Study, Year Country	Date of data Collection	No. of population Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	-----------------------------	-----	-------------------	---------------	------------	---------------------	-----------------------------	---------------------------	-------------------	-------------------	
Srikanth et al, 2004, Australia (S39)	1998-99	N=198X, L, PPS	Y	Aphasia, unable to speak English, inadequate vision or hearing	69	41	93.2	N	NA	3 months; 1, 2 years	DSM-IV	
Qu et al, 2015, China (S1)	2012-13	N=599 X	N	TIA, Existing neurological or psychiatric disorders, Aphasia, Sensory impairment (hearing/ visual), Poor consciousness	67.9 (16.6)	54	86.5	Y	N	Not specified. Assumed 1 year.	MOCA + MMSE with stratification cut-off by education, Hachinski ischaemic	
Clark et al, 2018, USA (S11)	2000-10	N=68,758 R, L	N	Prior diagnosis of dementia	68 (13)	51	100	Y	N Exclusion criteria	60 months	ICD-9	
Kase et al, 1998, USA (S36)	1982-01	N=74 L, V		Previous stroke or dementia	79	61	68.9	Y	Y	10 years	DSM III, MMSE DSM IV	
Study, Year Country	Date of data Collection	No. of population	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method	
---------------------	-------------------------	------------------	-----	-------------------	--------------	------------	---------------------	-----------------------------	-----------------------------	--------------------	---------------------	
Portegies et al, 2016 Netherlands (S19)	1990-12	N=993	Y	Prevalent stroke, Prevalent dementia	79.9 (8.7)	60.4	N/A	Y	Y	115 months (+/- 72 months)	3 step protocol : MMSE<26, Geriatric Mental Schedule (GMS)>0 and Cambridge Examination for Mental Disorders in the Elderly Neurologist-led clinical diagnosis/consensus meeting	
Kim et al, 2017 South Korea (S15)	2002	N=2527	Y	Non-citizens (Korea), Stroke and dementia between year 2002 & 2003	72	54.8	N/A	Y	N	120 months	ICD-10	
Tu et al, 2013 China (S24)	2008-11	N=689	N	ICH, Alcohol, Severe aphasia, Severe sensory impairment (hearing/ visual)	68.6 (11.4)	41.4	100	Y	N	3 months	MOCA-CS + MMSE + FAB-CS	
Study, Year	Country	Date of data Collection	No. of population Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method
-------------	---------	-------------------------	-----------------------------	-----	-------------------	--------------	-----------	---------------------	-----------------------------	-----------------------------	-------------------	-------------------
Zhang et al, 2017	Mongolia (S2)	N/A	N= 444	N	Neurological system disease that may affect cognition (AD), History of psychoactive drug abuse, CO/chemical poisoning, chronic alcoholism, Severe aphasia, Sensory impairment (hearing/visual), History of mental disorder	43.9	87.4	Y	N	Not Specified. Assumed 3 months.	CDR + NINDS-AIREN	

Included in previous meta-analysis. Y* = included in the pre-stroke dementia analysis only

P - Prospective / R - Retrospective / X - Cross Sectional / L - Longitudinal (studies with multiple follow-ups beyond 12 months).

FES – Studies recruiting (FES) First Ever Stroke Candidates: Y = Yes N = No (Mixed Population Data) Y* = Study recruiting mixed population but with FES and Recurrent Stroke Data available

CVT – Cerebral Venous Thrombosis, ICH – Intra-Cerebral Haemorrhage, MCI – Mild cognitive Impairment, NIHSS – National Institutes of Health Stroke Scale, SAH – Subarachnoid Haemorrhage, TIA – Transient Ischaemic Attack AHA/ASA – American Heart Association/American Stroke Association; BMSE – Bengali Version of Hindi Mental State Examination

CASI – Community Abilities Screening Instrument; CDR – Clinical Dementia Rating, CSDD – Community Screening Instrument of Dementia; DSM – Diagnostics and Statistical Manual; FAB-CS – Frontal Assessment Battery-Chang Sha Version, ICD – International Statistical Classification of Diseases and Related Health Problems; HIS – Hachinski Ischaemic Score; IQCODE – Informant Questionnaire on The Cognitive Decline in Elderly; SS-IQCODE – Shortened Spanish IQCODE; K-VCISH-NP – Korean-Vascular Cognitive Impairment Harmanisation Standards-Neuro-Psychological; MoCA-CS – Montreal Cognitive Assessment-Chang Sha Version; NINDS-AIREN - National Institute of Neurological Disorders and Stroke and Association Internationale; PGI-BBD – PGI-Battery of Brain Dysfunction pour la Recherche et l’Enseignement en Neurosciences. (Vascular Dementia Criteria); TMSE – Thai Mental State Examination

TMT-A – Train Making Test – A; TMT-B – Train Making Test – B; SWDFR – 5-Word Delay Free Recall; V-NB – Vascular Neuro-Psychological Battery

*** PSD Data: MIXED : Pre-Stroke Dementia not evaluated/excluded. PSDanalysis includes possible pre-stroke dementia data. PSD : PSDData (Pre-Stroke Dementia Excluded)
Study, Year Country	Date of data Collection	No. of population Study Type	FES	Exclusion Criteria	Mean Age (SD)	Female (%)	Ischaemic Stroke (%)	Pre-stroke dementia excluded	Pre-stroke dementia quantified	Follow-up Duration	PSD Assessment Method

PSD Assessment Method - CD-S: Clinical Diagnosis using standard classification system; CD-Other: Clinical diagnosis using other assessment tool; NPB: Neuro-Psychological Battery
Table S2 Results of Sensitivity Analysis

Outcome	No. of studies	Prevalence % (95% CI)	Prevalence % (95% CI), n= number of studies
Removal of outliers			
Prevalence any timeframe			
Including pre-stroke dementia	16	21.4 (18.2-25.0)	22.3 (18.8 to 26.2), n=17
Excluding pre-stroke dementia	26	15.6 (14.0-17.3)	16.5 (10.4 to 25.1), n=33
Prevalence at 1 year			
Including pre-stroke dementia	6	20.4 (14.2-28.2)	20.4 (14.2 to 28.2), n= 6
Excluding pre-stroke dementia	14	20.5 (15.0-27.4)	18.4 (7.4 to 38.7), n=16
Removal of moderate quality studies			
Prevalence any timeframe			
Including pre-stroke dementia	14	21.3 (17.2-26.2)	22.3 (18.8 to 26.2), n=17
Excluding pre-stroke dementia	25	15.3 (7.9-27.5)	16.5 (10.4 to 25.1), n=33
Prevalence at 1 year			
Including pre-stroke dementia	4	17.4 (9.2-30.4)	20.4 (14.2 to 28.2), n=6
Excluding pre-stroke dementia	14	17.2 (6.7-37.3)	18.4 (7.4 to 38.7), n=16
Table S3 Overall strength of evidence

Prevalence of Post-Stroke Dementia	Risk of Bias	Consistency	Directness	Precision	Publication Bias	Effect (95%CI)	Quality of Evidence
Possibly serious	Serious	Not serious	Serious	Possibly serious	22.3% 95%CI:18.8 to 26.2	16.5% 95%CI:10.4 to 25.1	Low
Figure S1 Post-stroke prevalence – including pre-stroke dementia (all timeframes)

Stroke type	Study name	Diagnostic Criteria	Event rate	Lower limit	Upper limit	Event rate and 95% CI
MIsed	Akhtar et al 2014	DSM-IV & AHA/AAS VCI	0.044	0.030	0.056	
MIsed	Barba et al 2000	DSM III	0.099	0.050	0.156	
Combined	Da et al 2015	CDH & DSM-III-R	0.020	0.015	0.026	
MIsed	de Koning et al 1999	DSM III	0.027	0.010	0.044	
MIsed	de Koning et al 2003	DSM IV	0.239	0.171	0.318	
MIsed	Demanet et al 2000	DSM III	0.250	0.186	0.314	
MIsed	Gosh et al 1993	DSM III	0.018	0.001	0.034	
MIsed	Hens et al 2001	DSM III	0.030	0.010	0.040	
MIsed	Klimaszweski et al 2001	DSM IV	0.020	0.015	0.026	
MIsed	Olajos et al 2013	NINDS-AIREN	0.182	0.100	0.263	
MIsed	Polaizkaraa et al 1997	DSM III	0.225	0.187	0.262	
MIsed	Sawat et al 2017	DSM IV	0.020	0.015	0.026	
FES	Schuch et al 2004	DSM IV	0.125	0.097	0.153	
MIsed	Tang et al 2004	DSM IV	0.205	0.157	0.251	
MIsed	Tang et al 2017	NINDS-AIREN/CDB	0.239	0.155	0.327	
MIsed	Yu et al 2015	DSM IV	0.127	0.097	0.153	
MIsed	Zhou et al 2004	DSM IV	0.223	0.188	0.262	

-1.00 -0.50 0.00 0.50 1.00
Figure S2 Post-stroke prevalence - excluding pre-stroke dementia (all timeframes)

Study Type	Study Name	Diagnosis/Method	Lower Bound	Upper Bound	Evidence and Heterogeneity
FEU	Ross et al. 2019	CHS & IPHUS-MNCH	0.018	0.030	-
PSS	Jorgensen et al. 2017	DABAS	0.106	0.115	-
Mixed	Riddoch et al. 2009	DABAS	0.305	0.372	-
Combined	Cameron et al. 2014	DABAS	0.052	0.267	-
PSS	Com once at MNCH	DABAS	0.036	0.080	-
Mixed	Clark et al. 2015	ICD-9	0.150	0.201	-
PSS	Cameron et al. 2017	ICD-9	0.351	0.632	-
Mixed	de Hingh et al. 2003	DABAS	0.202	0.361	-
Combined	Delgado et al. 2018	DABAS	0.122	0.194	-
PSS	Gao et al. 2014	DABAS	0.115	0.174	-
Mixed	Horne et al. 2001	ICD-9	0.226	0.314	-
FEU	Bille-Rasmussen et al. 2011	ICD-9	0.156	0.345	-
Mixed	Ibbot et al. 1996	ICD-9	0.348	0.432	-
FEU	Ross et al. 1996	DABAS	0.222	0.365	-
PSS	Ross et al. 2009	DABAS	0.084	0.131	-
Mixed	Ross et al. 2017	DABAS	0.084	0.131	-
Combined	Arboix et al. 1991	DABAS	0.226	0.314	-
PSS	Tomatsu et al. 2003	DABAS	0.156	0.284	-
Combined	Tomatsu et al. 2003	DABAS	0.156	0.284	-
Mixed	Tomatsu et al. 2003	DABAS	0.156	0.284	-
Mixed	Yamagishi et al. 2004	DABAS	0.156	0.284	-
Mixed	Yoshimura et al. 2004	DABAS	0.156	0.284	-

Craig L, et al. J Neurol Neurosurg Psychiatry 2021:0:1–8. doi: 10.1136/jnnp-2020-325796
Figure S3 Post-stroke prevalence-including pre-stroke dementia (one year)

Stroke type	Study name	Diagnostic Criteria	Event rate	Lower limit	Upper limit	Event rate and 95% CI
Combined	Carotemolos et al 2016	DSM-IV	0.322	0.267	0.446	
FES	Gerathj et al 2017	ICD-10	0.011	0.011	0.012	
Mixed	de Koning et al 2005	DSM-IV	0.252	0.183	0.339	
Combined	Delgado et al 2010	MDHS	0.662	0.594	0.764	
FES	Gro et al 1994	DSM III-R	0.111	0.074	0.162	
Mixed	Horne et al 2001	ICD-10	0.228	0.164	0.309	
FES	Hille-Berntsen et al 2012	ICD-10	0.196	0.145	0.259	
Mixed	Jauchri et al 1998	ICD-10	0.616	0.442	0.802	
Combined	Komotopopari et al 2017	DSM-IV/NINDS-AIREN	0.170	0.109	0.272	
FES	Mehrabian et al 2015	DSM-IV/NINDS-AIREN	0.392	0.280	0.507	
Mixed	Ferdlaly et al 2019	DSM-IV	0.165	0.093	0.239	
Mixed	Qu et al 2013	MOCA & MME	0.021	0.024	0.035	
Combined	Fejervy et al 2015	DSM-V	0.360	0.190	0.540	
Combined	Scriven et al 2009	ICD-10	0.243	0.134	0.360	
Combined	Tzavvos et al 2018	Modified DSM-V	0.382	0.230	0.533	
Combined	Yang et al 2015	DSM-IV & CDR	0.687	0.571	0.806	
			0.384	0.257	0.517	

Values represent the event rate and 95% CI.
Figure S4
Post-stroke prevalence—not excluding pre-stroke dementia (one year)

Stroke type	Study name	Diagnostic Criteria	Event rate	Lower limit	Upper limit	Event rate and 95% CI
Combined	Bus et al 2013	CDR & DSM-III-R	0.100	0.067	0.148	
Mixed	de Ronting et al 1998	DSM IIIR	0.237	0.192	0.288	
Mixed	de Ronting et al 2000	DSM IV	0.289	0.216	0.376	
Mixed	Henson et al 2001(1)	ICD9	0.310	0.239	0.391	
Mixed	Sarfo et al 2017	DSM-IV	0.207	0.123	0.330	
FES	Srikasth et al 2004	DSM-IV	0.125	0.071	0.212	
			0.204	0.142	0.282	

-1.00 -0.50 0.00 0.50 1.00
Figure S5

Hospital-based, any (first or recurrent) stroke, including pre-stroke dementia versus Population-based, any (first or recurrent) stroke, including pre-stroke dementia

Stroke type	Group by Study name	Diagnostic Criteria	Event Rate	Lower limit	Upper limit
MEL	LB	DSM IV & ADDASCA 1988	0.000	0.000	0.0142
MEL	LB	Kuchel et al 1995	0.000	0.000	0.0142
MEL	LB	de Keijser et al 1998	0.000	0.000	0.0142
MEL	LB	Elkind et al 2000	0.000	0.000	0.0142
MEL	LB	Grech et al 1995	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Elkind et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
MEL	LB	Finucan et al 2000	0.000	0.000	0.0142
Figure S6 Hospital-based, any (first or recurrent) stroke, excluding pre-stroke dementia versus Population, any (first or recurrent) stroke, excluding pre-stroke dementia

Stroke Type	Group By	Study Name	Diagnostic Criteria	Event Rate	Lower 95%	Upper 95%
Pen	Hospital	Akass et al 2014	CBP 3	0.122	0.079	0.192
Pen	Population	Akass et al 2014	CBP 3	0.030	0.012	0.054
Mixed	Hospital	Mural et al 2009	CBP 3	0.211	0.175	0.250
Mixed	Population	Mural et al 2009	CBP 3	0.092	0.064	0.128
Goodkind	Hospital	Carin et al 2014	CBP 3	0.922	0.820	0.988
Goodkind	Population	Carin et al 2014	CBP 3	0.980	0.788	0.998
McKechnie	Hospital	Emsley et al 1999	CBP 3	0.790	0.704	0.905
McKechnie	Population	Emsley et al 1999	CBP 3	0.090	0.044	0.159
Hsieh	Hospital	Zee et al 2000	CBP 3	0.112	0.075	0.163
Hsieh	Population	Zee et al 2000	CBP 3	0.135	0.116	0.156
Mixed	Hospital	Bobrowski et al 2012	CBP 3	0.135	0.116	0.156
Mixed	Population	Bobrowski et al 2012	CBP 3	0.135	0.116	0.156
Mixed	Hospital	Kline et al 2012	CBP 3	0.135	0.116	0.156
Mixed	Population	Kline et al 2012	CBP 3	0.135	0.116	0.156
Mixed	Hospital	Hermida et al 2010	CBP 3	0.135	0.116	0.156
Mixed	Population	Hermida et al 2010	CBP 3	0.135	0.116	0.156
Mixed	Hospital	Hermida et al 2010	CBP 3	0.135	0.116	0.156
Mixed	Population	Hermida et al 2010	CBP 3	0.135	0.116	0.156

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Figure S7 Recurrent stroke versus any (first or recurrent) stroke versus any (first or recurrent) stroke, all timeframes, including pre-stroke dementia

Stroke type	Group by study	Study name	Diagnostic Criteria	Event rate	Lower CI	Upper CI
FES	FES	Done et al. 2015	CHDS	0.06	0.06	0.06
FES	FES	Klahdeke et al. 2006	DSMIV	0.23	0.23	0.23
FES	FES	Feldman et al. 2007	DSMIV	0.26	0.26	0.26
FES	FES	Steffen et al. 2004	DSMIV	0.25	0.25	0.25
FES	FES	Ilies et al. 2006	DSMIV	0.23	0.23	0.23
MIR	MIR	Alshoumri et al. 2014	DSMIV & AHA/ASA	0.86	0.86	0.86
MIR	MIR	Batha et al. 2003	DSMIV	0.29	0.29	0.29
MIR	MIR	de Reuver & et al. 1999	DSMIV	0.37	0.37	0.37
MIR	MIR	de Reuver & et al. 2002	DSMIV	0.26	0.26	0.26
MIR	MIR	Dodel et al. 2010	MDRS	0.36	0.36	0.36
MIR	MIR	Donath et al. 2008	DSS	0.26	0.26	0.26
MIR	MIR	Hara et al. 2009(2)	ICPS	0.39	0.39	0.39
MIR	MIR	Klahdeke et al. 2009(2)	DSMIV	0.24	0.24	0.24
MIR	MIR	Ophill et al. 2015(1)	NINDS-AIREN	0.18	0.18	0.18
MIR	MIR	Poljarska et al. 1995(2)	DSMIV	0.25	0.25	0.25
MIR	MIR	Sanders et al. 2017	DSMB	0.27	0.27	0.27
MIR	MIR	Tong et al. 2006(1)	DSMIV	0.29	0.29	0.29
MIR	MIR	Tong et al. 2017	NINDS-AIREN	0.26	0.26	0.26
MIR	MIR	Yu et al. 2013	DSMIV	0.22	0.22	0.22
MIR	MIR	Ilies et al. 2006(2)	DSMIV	0.22	0.22	0.22
MIR	MIR	Swinburn et al. 2008	DSMIV	0.26	0.26	0.26
SE	SE	Done et al. 2015	CHDS	0.23	0.23	0.23
SE	SE	Gurlt et al. 2007	DSMIV	0.43	0.43	0.43
SE	SE	Klahdeke et al. 2002	ICPS	0.67	0.67	0.67
SE	SE	Ilies et al. 2006	ICPS	0.43	0.43	0.43
SE	SE	Done et al. 2015	CHDS	0.43	0.43	0.43

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Figure S8 Recurrent stroke versus any (first or recurrent) stroke versus any (first or recurrent) stroke, all timeframes, excluding pre-stroke dementia

Stroke type	Group	Study name	Disease categories	Event rate and 95% CI
				0.100
				0.120
				0.130
				0.140
				0.150
				0.160
				0.170
				0.180
				0.190
				0.200
				0.210
				0.220
				0.230
				0.240
				0.250
				0.260
				0.270
				0.280
				0.290
				0.300
				0.310
				0.320
				0.330
				0.340
				0.350
				0.360
				0.370
				0.380
				0.390
				0.400
				0.410
				0.420
				0.430
				0.440
				0.450
				0.460
				0.470
				0.480
				0.490
				0.500
				0.510
				0.520
				0.530
				0.540
				0.550
				0.560
				0.570
				0.580
				0.590
				0.600
				0.610
				0.620
				0.630
				0.640
				0.650
				0.660
				0.670
				0.680
				0.690
				0.700
				0.710
				0.720
				0.730
				0.740
				0.750
				0.760
				0.770
				0.780
				0.790
				0.800

Craig L, et al. J Neurol Neurosurg Psychiatry 2021:01–8. doi: 10.1136/jnnp-2020-325796
Figure S9: Prevalence over time

Length of time post stroke

Prevalence (%)

3 months 6 months 12-18 months 2-5 years >6 years

Upper CI 30.9
Upper CI 25
Lower CI, 14.3
Lower CI, 12.1
Upper CI 21.6
Lower CI, 11.4
Lower CI, 10.2
Upper CI 22.6
Upper CI 22.6
Lower CI, 6.5

Pooled prevalence
Figure S10 Funnel Plot (PSD all timeframes, excluding pre-stroke dementia)
Figure S11
Funnel Plot (PSD all timeframes, including pre-stroke dementia)

Funnel Plot of Standard Error by Logit event rate

-3 -2 -1 0 1 2 3
Logit event rate

0.0 0.1 0.2 0.3 0.4
Standard Error
Figure S12 Meta-regression of dementia (event rate log scale) occurrence against year of recruitment (all timeframes) for studies excluding pre-stroke dementia

Regression of Logit event rate on Recruitment Year

Logit event rate

Recruitment Year

1990.0 1995.0 1998.0 2000.0 2005.0 2010.0 2015.0 2020.0 2025.0
Figure S13 Meta-regression of dementia (event rate log scale) occurrence against year of recruitment (all timeframes) for studies including pre-stroke dementia.