Synthesis and characterization of Sb doped SnO$_2$ for the photovoltaic applications: different route

K. Balasubramanian and G. Venkatachari

Nanomaterials Laboratory, Department of Physics, Thiagarajar College of Engineering, Madurai—625 015, India

E-mail: drvg2004@rediffmail.com

Keywords: dye sensitized solar cell, antimony doped tin oxide, hydrothermal

Abstract

Antimony doped tin oxide (ATO - Sn$_{0.92}$O$_2$:Sb$_{0.08}$) nanoparticles were synthesized by different chemical routes such as Hydrothermal (HT), Sol-gel (SG) and Sonochemical (SC) methods. The XRD pattern of the samples shows that Sb ion successfully incorporated into Sn lattice without altering the crystal structure. Optical spectral analysis of the samples indicates more absorption in the visible region. The vibrational modes of the ATO nanoparticles were characterized by FTIR spectra. DSSCs were fabricated with the as-prepared ATO nanoparticles from different routes, Eosin-Y dye, I$^-$/I$_3^-$ redox couple as electrolyte. I–V characteristics of the as fabricated devices were recorded to estimate the efficiency of the device. Our results indicate the DSSC fabricated using the hydrothermally synthesized ATO nanoparticle gives good efficiency ($\eta = 4.15\%$) comparing to the DSSCs fabricated using NPs synthesized via other methods. Hence, hydrothermally prepared material is to be considered as a suitable optical window material for DSSCs.

1. Introduction

Hectic research has been going on for the past two decades, to commercialize low cost silicon-free solar cells. A successful prototype of dye sensitized solar cell (DSSC) was demonstrated in the year 1991 with 7% efficiency [1]. Selection of materials plays a vital role in deciding the performance of the solar cell. To give better performance DSSC should have a strong sensitizing dye and good electrolyte to achieve higher open circuit voltage (V_{OC}). Further, the anode materials should have a very high surface area to enhance dye adsorption and ultrafast electron injection from the excited dye to the TCO in addition for an efficient transport of charge carriers with minimal recombination loss of electrons [2–7]. So far many researcher works with TiO$_2$ as photo anode, which could absorb only 6%–7% of the solar spectrum [8, 9]. An alternative, earth abundant and low cost material with an excellent optoelectrical property is needed to replace TiO$_2$. However, tin dioxide (SnO$_2$), an important n-type semiconductor with a wide band gap (E$_g$ = 3.8–4.3 eV), exhibits excellent optical, electrical and chemical properties and high thermal stability. SnO$_2$ and SnO$_2$-based materials, such as Sb-doped SnO$_2$, Mn-doped SnO$_2$, Zn$_2$SnO$_4$, Cd$_2$SnO$_4$ and so on, have been extensively studied due to their favorable optical and electrical properties [10, 11].

It has been observed that Sb-doped SnO$_2$ (ATO) exhibits good optical property, high electrical conductivity and good stability [12, 13] all important for a photovoltaic and optoelectronic applications [13, 14]. It is interesting to note that the chemical and physical properties of these materials largely depend on the sizes and shapes of particles. And these materials have been prepared by many techniques such as sol–gel [13–15], hydrothermal [16], solvothermal [17], sonochemical [18], combustion [19], and other methods. In this present work we have been synthesized the Sb:SnO$_2$ nanoparticles by sol-gel, sonochemical and hydrothermal method with Sb doping concentration of 8%, as the photo anode material for the solar cell application [20].
2. Materials and methods

The starting precursor tin II chloride (SnCl$_2$.2H$_2$O) and antimony trichloride (SbCl$_3$) were purchased from Merck, Germany.

2.1. Sol-gel method

The stoichiometric amounts of precursors were dissolved in 100 ml of absolute alcohol with continuous stirring with the temperature maintained at 70 °C. While stirring, the pH value of the solution maintained about 10–11 by drop wise adding of aqueous ammonia solution to gel formation. Then the gel was aged overnight and dried in air at 120 °C for 2 h. Subsequently, the gel was calcined at 500 °C for 2 h.

2.2. Sonochemical method

The starting precursors were dissolved in 50 ml of absolute ethanol separately and then mixed together and acetylacetone was added. After 20 min, stirring the homogeneous solution was formed. Then, the prepared homogeneous solution was sonicated for 60 min by immersing an ultrasonic horn. While, sonication the pH value of the solution maintained about 9–10 using aqueous ammonia solution. The pale-white precipitate was obtained and washed several times with double distilled water and dried at 120 °C for 2 h. Finally, as-prepared precipitate was calcined at 500 °C for 2 h.

2.3. Hydrothermal method

The precursors were dissolved in 50 ml of alcohol separately and mixed together with continuous stirring. Then the solution was transferred to the 100 ml Teflon lined autoclave which was then kept in the oven at 180 °C for 4 h. The synthesized sample was washed several times with double distilled water and ethanol. Subsequently, the sample dried in air at 120 °C for 2 h and calcined at 500 °C for 2 h.

2.4. Characterization techniques

The phase purity of the as-prepared ATO samples were identified using XPERT PRO X-Ray diffractometer in the 2θ ranging from 10°–80°. The UV–vis DRS reflection spectra for the as-synthesized ATO nanoparticles were recorded wavelength ranging from 250 nm to 700 nm using Ocean Optics spectrophotometer. The morphologies of the samples were observed by scanning electron microscopy (Carl-Zeiss EVO). FTIR spectra of ATO nanoparticles were recorded in the range of 4000–400 cm$^{-1}$ using SHIMADZU IR affinity spectrophotometer with KBr technique. The current density-voltage (J–V) calibrations were done using Keithley 2450 source measuring unit (SMU), with 100 mW cm$^{-2}$ (1sun) AM 1.5 G simulated sunlight produced by a solar simulator.

3. Results and discussion

3.1. Structural analysis

Figure 1 depicted the XRD pattern of the ATO samples were prepared via different synthesis methods. From the XRD pattern, the selected peak at 2θ values equal to 26.77°, 33.89°, 37.98°, 51.75°, 54.67°, 65.57° and 71.33° corresponding to the orientation along (1 10), (1 0 1), (2 0 0), (2 1 1), (2 2 0), (3 1 0) and (3 0 1) planes were observed. All the diffraction patterns were well matched with a tetragonal cassiterite structure with space group P42/mnm (JCPDS card no. 88–2348) and its lattice parameter a = 4.57092 Å and c = 3.14933 Å and the volume = 65.8 Å. The preferential orientation (1 10) plane was slightly shifted towards higher angle, it can be observed that the dopant did not alter the unit cell structure [21]. No peaks arising from other crystallized impurities could be detected, indicating that only Sb ions were incorporated into the lattice of SnO$_2$ crystal structure with good crystallinity.

3.2. UV–vis DRS Study

The diffuse reflectance spectra of ATO nanoparticles were recorded in 250–750 nm wavelength regions and it was shown in figure 2. It can be seen that as-synthesized ATO nanoparticles were having more absorption in the visible region. The optical band gap values of the materials were obtained from the following expressions using the Kubelka-Munk function as:

$$ F(R) = \frac{(1 - R)^2}{2R} $$

$$ [F(R)h\nu]^\frac{1}{2} = A(h\nu - E_g) $$

(1)

(2)
where $F(R)$ is the absorption coefficient from Kubelka-Munk function, R is the reflectivity, A is proportionality constant, $h\nu$ is the photon energy, E_g is the band gap energy. The value of n is $1/2$ for direct type transition and 2 for an indirect type transition. The optical band gap of the ATO NPs was estimated as 3.68 eV for HT, 3.71 eV for SG and 3.76 eV for SC. Among these values HT synthesized ATO nanoparticles show better absorption in the visible region than the other samples.

3.3. Surface morphology analysis
The SEM images of ATO samples were shown in figures 3(a)–(c). Compared to the synthesis methods, the aggregation of the nanoparticles varies considerably, and the shapes of the ATO particles are clear in the sample prepared as hydrothermal method.
3.4. FTIR analysis

Recorded Fourier Transform Infrared (FT-IR) spectra of the ATO samples were shown in figure 4. The strong peaks appeared around 617 cm$^{-1}$ in all the spectra were assigned to the stretching vibrations of Sb-O bonds.

Figure 3. Scanning electron microscope images for the synthesized NPs, (a) SC, (b) SG and (c) HT.

Figure 4. FTIR transmittance spectrum for the synthesized NPs.
The broad peak in all the spectra ascribes octahedral SnO$_6$ structure formation in the unit cell. It is indicated that, Sb ions were incorporated into the SnO$_6$ octahedral structure without altering the crystal structure as confirmed by XRD studies. A weak peak appeared around 1622 cm$^{-1}$ in all samples corresponds to the bending vibrations H$_2$O molecule [24, 25]. A weak broad peak appeared at 3371 cm$^{-1}$ due to the stretching vibration of the hydroxyl group [26] the sample prepared via hydrothermal method. It can be seen that, the strongest vibration peak depends on shifting of the preferential orientation (1 1 0) plane.

4. Current-voltage characteristics

The ATO nanoparticles were coated on to the conventional FTO conducting glass plate. Before the coating the plates were cleaned ultrasonically in isopropanol. ATO NPs were coated via doctor blade method as the anode with the active area of 0.64 cm2 and dried at room temperature for 10 min subsequently heated at 500 °C for 30 min. Then the film was immersed into the Eosin Y dye for 24 h. Platinum (Pt) coated FTO plate was used as the counter electrode. Both photo anode and the counter electrodes were sandwiched and I$^-$/I$_3^-$ redox couple electrolyte was introduced for the DSSC calibration. The assembled DSSCs were undergone for the current density-voltage (J–V) calibrations using Keithley 2450 source measuring unit (SMU), while irradiating 100 mW cm$^{-2}$ (1 sun) with AM 1.5 G simulated sunlight produced by a solar simulator. Before the calibration the system is calibrated with a silicon reference cell. The current density-voltage (J–V) plot is shown in figure 5.

The fill factor (FF) and power conversion efficiency (η) of the solar cells were determined from following equations (3) and (4),

$$FF = \frac{J_{\text{max}} V_{\text{max}}}{V_{\text{OC}} I_{\text{SC}}}$$ \hspace{1cm} (3)

$$\eta = \frac{FF V_{\text{OC}} I_{\text{SC}}}{P_{\text{in}}}$$ \hspace{1cm} (4)

where V_{OC}—open circuit voltage, I_{SC}—short circuit current, V_{max}—Voltage maximum and J_{max}—current density maximum at power maximum. From the J–V plot, FF and PCE were calculated and tabulated in table 1. The power conversion efficiency was found to be 4.15% for HT, 3.52% for SG and 3.16% for SC. The cell assembled using the hydrothermally synthesized ATO NPs. [27, 28]
5. Conclusion

In this work, ATO nanoparticles were successfully synthesized through different chemical methods. As-prepared ATO nanoparticles show tetragonal rutile structure with good crystalline nature. Among the all methods, hydrothermally synthesized (HT) nanoparticles show good absorption in the entire visible region and the spherical shaped morphology. The DSSCs were fabricated with the structure of FTO/ATO + EY/1 /I$_3$ redox couple electrolyte/Pt_CE using as-prepared ATO nanoparticles. The results indicate that hydrothermally synthesized ATO nanoparticle shows good efficiency ($\eta = 4.15\%$) and to be consider as a suitable optical window materials for DSSCs.

ORCID iDs

Karuppasamy Balasubramanian https://orcid.org/0000-0003-0697-2292

References

[1] Oregan B and Gratzel M 1991 A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO$_2$ films Nature 353 737–40
[2] Seddigi Z S, Saleh A A, Samir S, Samir K P et al 2016 Carbonate doping in TiO$_2$ microsphere: the key parameter influencing others for efficient dye sensitized solar cell Sci. Rep. 6 23209
[3] Yella A, Hsuan W L, Hoi N T, Chenyi Y, Aravind K C, Md Khaja N, Eric W G D, Chen-Yu Y, Michael G, Shaik M Z et al 2011 Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency Science 334 629–34
[4] Tao H N, Chenyi Y, Thomas M, Jun-Ho Y, Shaik M Z, Mohammed K N, Michael G et al 2011 Cyclopentadienylthiophene bridged donor–acceptor dyes achieve high power conversion efficiencies in dyesensitized solar cells based on the tris-coated bipyridine redox couple ChemSusChem 4 591–4
[5] Heiniger L-P, Giordano F, Moehl T and Gratzel M 2014 Mesoporous TiO$_2$ beads offer improved mass transport for cobalt-based redox couples leading to high efficiency dye-sensitized solar cells Adv. Energy Mater. 4 1400168
[6] Li Z-Q, Wang-Chao C, Fu-Ling G, Li-E M, Lin-Hua H, Song-Yuan D et al 2015 Mesoporous TiO$_2$ yolk–shell microspheres for dyesensitized solar cells with a high efficiency exceeding 11% Sci. Rep. 5 14178
[7] Hardin B E, Snith H J and McGehee D M 2012 The renaissance of dye-sensitized solar cells Nat Photon 6 162–9
[8] Ren W, Ai Z, Jia F, Zhang L, Fan X and Zou Z 2007 Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO$_2$ Appl. Catal., B 69 138–44
[9] Hu H, Ding J, Zhang S, Li Y, Bai L and Yuan N 2013 Photodeposition of Ag$_2$S on TiO$_2$ nanorod arrays for quantum dot-sensitized solar cells Nanoscale Res. Lett. 8 10
[10] Zheng M, Li G, Zhang X, Huang S, Lei Y and Zhang L 2001 Fabrication and Structural Characterization of Large-Scale Uniform SnO$_2$ Nanowire Array Embedded in Anodic Alumina Membrane Chem. Mater. 13 3859
[11] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 Field-effect transistors based on single semiconducting oxide nanobelts J. Phys. Chem. B. (Comm.) 107 659–63
[12] Wang Y, Igot D, Bernd S, Markus A et al 2009 Antimony-doped SnO$_2$ nanopowders with high crystallinity for lithium-ion battery electrode Chem. Mater. 21 3202–9
[13] Wang Y, Mu Q, Wang G and Zhou Z 2010 Sensing characterization to NH$_3$ of nanocrystalline Sb-doped SnO$_2$ synthesized by a nonaqueous–gel–route Sensors and Actuators B 145 847–53
[14] Zhong X, Yang B, Zhang X, Jia J and Yi G 2012 Effect of calcination temperature on the characteristics of Sb-doped SnO$_2$ nanoparticles synthesized by the sol–gel method Particuology 10 365–70
[15] Benrabah B, Bouaza A, Hamzaoui S and Debbi A 2009 Sol–gel preparation and characterization of antimony doped tin oxide (ATO) powders and thin films Eur. Phys. J. Appl. Phys. 48 3001
[16] Mio H, Ding C and Luo H 2003 Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method Microelectron. Eng. 66 142
[17] Jeon H J, Jeon M K, Kang M, Lee S G, Lee Y L, Hong Y K and Choi B H 2005 Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their properties Mater. Lett. 59 180
[18] Nooruruk R, Vittayakorn N, Mekprasart W, Sritharathikhun J and Pecharapa W 2015 Sb-doped SnO$_2$ nanoparticles synthesized by sonochemical-assisted precipitation process J. Nanosci. Nanotechnol. 15 2564–9
[19] Zhang J and Gao L 2004 Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate–citrate combustion method Mater. Res. Bull. 39 2249–55
[20] Xu J M et al 2013 Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals CrystEngComm 15 3296–300
[21] Miller W, Rasp M, Stefanic G, Günther S, Ruthousky J, Niederberger M and Fattakhova-Rohlfing D 2011 Antimony doped tin oxide nanoparticles and their assembly in mesostructured film Phys. Status Solidi C 8 1759–63
[22] Sudarsan V, Muthe K P, Vyas J C and Kulkshreshtha S K 2002 PO$_4^{3–}$ tetrahedra in SbPO$_4$ and Sb$_2$PO$_4$: a 31P NMR and XPS study J. Alloys Compd. 336 119–23
[23] Husson E, Genef F, Lachgar A and Piffard Y 1988 The vibrational spectra of some antimony phosphates J. Solid State Chem. 75 305–12
[24] Yates D J 1961 Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide J. Phys. Chem. 65 746–53
[25] Suyakumaran T, Bharathi N V, Sriramachandran P, Sharmagaval R and Ramaswamy S 2019 Facile synthesis, vibrational, optical and improved luminescence properties analysis of Ca$_3$KZn$_2$V$_3$O$_{12}$ phosphor Mater. Res. Express 6 116329
[26] Coates J 2006 Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation
[27] Correa Baena J P and Agrios A G 2014 Antimony-doped tin oxide aerogels as porous electron collectors for dye-sensitized solar cells The Journal of Physical Chemistry C 118 2028–35
[28] Yoo B, Kim K, Lee S H, Kim W M and Park N G 2008 ITO/ATO/TiO$_2$ triple-layered transparent conducting substrates for dye-sensitized solar cells Sol. Energy Mater. Sol. Cells 92 873–7