Synthesis of Nβ-Protected Amino Sulenyl Methyl Formamides and Sulfonyl Methyl Formamides: A Simple Protocol

Chinthaginjala Srinivasulu, Nagamangala R. Sagar, Thimmalapura M. Vishwanatha, Suram Durgamma, and Vommina V. Sureshbabu*

ABSTRACT: Chiral amino acid-derived formamides represent one of the most versatile components in multicomponent reactions. Herein, we describe a facile synthesis of Nβ-protected amino sulfenyl methyl formamides and sulfonyl methyl formamides via the Mannich reaction of Nα-protected amino alkyl thiols followed by oxidation using 3-chloroperbenzoic acid (m-CPBA). This protocol is applicable to a wide range of Fmoc- and Cbz-protected amino acids. Notably, the reaction provides high yield and retains the stereochemistry of the chiral center of the starting component.

INTRODUCTION

The formamide group has been considered as an important synthon for the synthesis of isocyanides, which has shown diverse applications in isocyanide-based multicomponent reactions (IMCRs). A massive variety of formamides and their corresponding isocyanides have been investigated, thereby greatly expanding the capacity of molecular diversity through IMCRs. Some isocyanides are less stable and possess a foul smell compared to formamides, and therefore, the ability to perform one-pot dehydration/MCR would significantly widen the versatility and scope of formamides. This protocol proved to be particularly valuable when the desired isocyanides were inaccessible. In this context, several groups have made a significant contribution for one-pot dehydration/MCR without the isolation of isocyanides or sensitive aldehydes. It is important to note that amino acid- and peptide-derived formamides and its isocyanides have gained attention in MCRs for medicinal chemistry and drug discovery applications. We also explored the C-terminal modification of amino acids to prepare formamides and isocyanides (Figure 1) and employed in MCRs for the construction of a new class of peptidomimetics. With a view toward enabling a new class of formamides as well as isocyanides, we considered that sulfonyl formamides derived from chiral amino acids (Figure 1b) might be useful for generating a novel class of peptidomimetics. In this context, impressive applications of para-tosylmethylisocyanide (TosMIC) inspired us.

TosMIC serves as a precursor for the synthesis of several drug intermediates and pharmacologically active compounds. Its utility in the synthesis of nitriles, aldehydes, ketones, alkanes, cyclophanes, and a large number of natural products is known. The solid-phase version of TosMIC has also been utilized for the synthesis of various heterocycles. More importantly, chiral TosMIC analogues have been synthesized and employed for the synthesis of optically active compounds. In addition, the incorporation of sulfur into a given biomolecule can dramatically modify its physical and biological properties, thereby resulting in the enhancement of the stability against proteolysis and improve...
bioavailability. Certain other properties, such as receptor selectivity or potency, often can be substantially improved. As a result, the development of novel sulfur-based unnatural amino acids and peptidomimetics within a peptide framework constitutes a prime goal of interest in the drug discovery space.

In this regard, we report a novel class of amino acid-derived sulfonyl methyl formamides from the corresponding thiol through acid-catalyzed three-component Mannich type reaction followed by oxidation under mild conditions in a two-step process.

RESULTS AND DISCUSSION

We had described an efficient protocol for the synthesis of N-protected amino alkyl thiols and demonstrated their multiple applications for the construction of sulfur-containing peptidomimetics. In the proposed protocol, the sulfonyl methyl formamides were synthesized from corresponding N-protected amino alkyl thiols, which were prepared from our previously reported protocol. All the N-protected amino alkyl thiols could be stored for a long time under an inert atmosphere.

Initially, the reaction was commenced using Cbz-Phe-ψ(CH$_2$SH) as a model substrate for optimizing the reaction conditions. Cbz-Phe-ψ(CH$_2$SH) was treated with formamide (1.0 equiv) and paraformaldehyde (1.0 equiv) in tetrahydrofuran (THF) and stirred at rt. The reaction failed to proceed even after 4 h of stirring, leaving behind the reactant as it is. Further, the investigation of the use of acid catalysts was carried out. Initially, the reaction was performed using PhCOOH and turned to be unproductive, although liquid chromatography mass spectrometry data provided the formation of desired compound ψ. Without varying the equivalents of formamide and paraformaldehyde, PhSO$_3$H was used wherein a 28% yield of ψ was recorded when the reaction was carried at rt to 60 °C (Table 1, entry 7). The preliminary optimization indicated the influence of temperature on reaction; in other words, no increase in yield was recorded when the reaction was carried at 23.25 °C to 28.12 min, respectively (Figure 2, ii). This indicated the increase in the acid strength of catalyst led to a gradual improvement in the yield, as reflected in Table 1 until entry 7. When none of the above acid catalysts was found efficient in conversion to ψ, we turned out to use 98% HCOOH. Using 30 mol % of HCOOH, stoichiometric amounts of both formamide and paraformaldehyde were increased to 4.0 equiv, and the reaction was carried out at reflux in toluene till the completion. The reaction proceeded well to afford ψ in moderate to good yield. Among the reactions carried out with HCOOH, the optimized condition for the efficient conversion was found when 5.0 equiv of formamide and 4.0 equiv of paraformaldehyde were used which led to the highest yield (90%) of ψ without any formation of noticeable impurities (Table 1, entry 10). Further, when the reaction was carried out with increased equivalents of formamide and formic acid, no improvement in the yield was observed. Alongside, different commonly used solvents, such as dichloromethane, CH$_2$Cl$_2$, THF, CH$_3$CN, and toluene, were examined; however, toluene was found beneficial to the reaction to furnish the target molecule ψ in good yield by a one-pot manner and allowing complete solubility of N'-protected alkyl thiol.

This protocol could be used for the gram-scale synthesis, as the desired compound ψ was isolated in 84% yield (1.29 g) for 1.3 g of the starting material. All the title compounds were obtained as stable solids and could be stored at room temperature for several months.

To represent the generality and scope of the optimized protocol, various Fmoc- and Cbz-protected amino alkyl thiols were investigated. As shown in Scheme 1, all the thiols were valid substrates and smoothly proceeded to afford corresponding sulfonyl methyl formamide (ψ) in good to excellent yields. Even sterically constrained residues such as Phe, Phg, Val, and Ile were well tolerated without demanding additional time for the completion of the reaction.

Next, we set out to carry out the oxidation of sulfoxenyl to sulfone using m-CPBA as an oxidizing agent. Thus, a reaction of sulfonyl methyl formamides ψ with 2.0 equiv of m-CPBA in dry CH$_2$Cl$_2$ at 0 °C afforded the corresponding formamides ψ in excellent yield in an hour (Scheme 2).

Table 1. Optimization of Reaction Conditions for the Synthesis of Sulfinyl Methyl Formamide

s.no	catalyst (mol %)	NH$_2$CHO (equiv)	(CH$_2$O)$_n$ (equiv)	yield (%)b
1	PhCOOH (10)	1.0	1.0	trace
2	PhCOOH (20)	1.0	1.0	trace
3	CF$_3$COOH (20)	1.0	1.0	12
4	PhSO$_3$H (20)	1.0	1.0	28
5	PhCOOH (20)	2.0	2.0	36
6	HCOOH (30)	3.0	3.0	54
7	HCOOH (30)	4.0	4.0	82
8	HCOOH (30)	5.0	4.0	90
9	HCOOH (30)	6.0	4.0	89
10	HCOOH (40)	5.0	4.0	88

aEntries 2–6 = reaction carried out at 60 °C. Entries 7–12 = reaction carried out at 90 °C. bYield obtained after column chromatography.
A plausible mechanism based on the experimental results obtained during the reaction is depicted in Scheme 3. The proposed mechanism occurs via a Mannich-type three-component acid-catalyzed fashion. The reaction proceeds through the formation of key intermediate protonated imino formamide (I) by the reaction of paraformaldehyde and formamide in the presence of formic acid. Further, thiol as a Mannich donor attacks the imino carbon of the intermediate (I) to furnish sulfenyl methyl formamide (II). In the next step, sulfonyl methyl formamide (III) forms by the oxidation of sulfenyln methyl formamide by a well-known oxidizing agent m-CPBA.

CONCLUSIONS

In conclusion, a straightforward procedure has been described for the preparation of a series of Nβ-protected amino sulfonyl methyl formamides by a two-step protocol. The present procedure can afford Nβ-protected amino sulfonyl methyl formamides and Nβ-protected amino sulfonyl methyl formamides in good to excellent yields. These formamides could be
employed for MCR for the construction of novel peptidomimetic molecules.

EXPERIMENTAL SECTION

General Information. All reagents were obtained from commercial suppliers and used without further purification. Thin-layer chromatography (TLC) experiments were carried out using precoated silica gel 60F254. HRMS spectra were recorded on a micromass Q-TOF spectrometer. 1H and 13C NMR spectra were recorded on a Bruker AMX 400 MHz and 100 MHz spectrometer, respectively, in DMSO-d_6 and analyzed using MestrNova software and reported as chemical shifts (δ) in parts per million (ppm). The coupling constants were reported in hertz (Hz). Column chromatography for purification of products was performed on silica gel (100–200 mesh). The RP-HPLC experiments were carried out on an Agilent 1260 instrument (chiral column: amylose-2 and cellulose-1, pore size: 5 μm, diameter × length: 4.6 × 250 mm). The melting points of the compounds were determined on a VEEGO (model: VMP-DS) melting point apparatus.

General Procedure for Nβ-Protected Amino Sulfonyl Methyl Formamides. To a stirred solution of Nβ-protected amino thiol (1.0 equiv) in toluene (10 mL), formamide (5.0 equiv), para formaldehyde (4.0 equiv), and formic acid (30 mol %) were added, and the solution was refluxed for 4 h. After the completion of the reaction (monitored by TLC), the mixture was cooled to room temperature, and the solvent was vacuum evaporated and diluted with EtOAc, washed with water (2 × 10 mL) and brine (10 mL), dried over Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 100–200 mesh) with 4:6
ethyl acetate and hexane to afford the corresponding sulfenyl methyl formamide.

General Procedure for Nβ-Protected Amino Sulfonyl Methyl Formamide. To a stirred solution of Nβ-protected
amino sulfonyl methyl formamide (1.0 equiv) in CH₂Cl₂, m-
CPBA (2.0 equiv) was added at 0 °C, and the solution was
stirred for 1 h at 0 °C. After completion of the reaction
(monitored by TLC), the solvent was vacuum evaporated and
diluted with EtOAc, washed with water (2 × 10 mL) and brine
(10 mL), dried over Na₂SO₄, filtered, and concentrated under
reduced pressure. The residue was purified by column
chromatography (silica gel 100−200 mesh) with 5:5 ethyl
acetate and hexane to afford the corresponding title compounds.

■ ACKNOWLEDGMENTS

We sincerely thank the Science and Engineering Research Board
(SERB) for a fellowship and Council of Scientific and Industrial
Research (CSIR), Govt. of India for the financial support.
Thanks to DST-PURSE for providing equipment.
We also thank NMR Centre, Indian Institute of Science for NMR spectra.
Dr. H. N. Gopi, IISER-PUNE for providing mass spectral data.

■ REFERENCES

(1) (a) Gerack, C.; McElwee-White, L. Formylation of Amines.
Molecules 2014, 19, 7689−7713. (b) Neochoritis, C. G.; Zarganes-
Tzitzikas, T.; Sotani, S.; Dömling, A.; Herdtweck, E.; Khoury, K.;
Dömling, A. Leuckart-Wallach Route Toward Iso cyanides and Some
Applications. ACS Comb. Sci. 2015, 17, 493−499.
(2) Dömling, A.; Ug I. Multicomponent reactions with isocyanides.
Angew. Chem., Int. Ed. 2000, 39, 3168−3210.
(3) (a) Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.;
Novellino, E.; Tron, G. C.; Zhu, J. To each his own: isonitriles for all
flavors. Functionalized isocyanides as valuable tools in organic
synthesis. Chem. Soc. Rev. 2017, 46, 1295−1357. (b) Dömling, A.
Recent Developments in Iso cyanide Based Multicomponent Reactions
in Applied Chemistry. Chem. Rev. 2006, 106, 17−89.
(4) (a) Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Multiple
Multicomponent Macrocyclizations (MiBs): A Strategic Development
Toward Macrocycle Diversity. Chem. Rev. 2009, 109, 796−814.
(b) Gulevich, A. V.; Zhdkanko, A. G.; Orru, R. V. A.; Nenajdenko, V.
G. Isocyanacetate derivatives: synthesis, reactivity, and application.
Chem. Rev. 2010, 110, 5235−5331. (c) Alvim, H. G. O.; da Silva Júnior,
E. N.; Neto, B. A. D. What do we know about multicomponent
reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich,
Passerini and Ugi MCRs. RSC Adv. 2014, 4, 54282−54299. (d) Sadjadi,
S.; Heravi, M. M.; Nazari, N. Iso cyanide-based multicomponent
reactions in the synthesis of heterocycles. RSC Adv. 2016, 6, 53203−
53272.
(5) (a) Salvador, C. E. M.; Pieber, B.; Neu, P. M.; Torvisco, A.;
Andrade, C. K. Z.; Kappe, C. O. A Sequential Ugi Multicomponent/
Cu-Catalyzed Azide-Alkyne Cycloaddition Approach for the Con-
tinuous Flow Generation of Cyclic Peptoids. J. Org. Chem. 2015, 80,
4590−4602. (b) Neochoritis, C. G.; Sotani, S.; Mishra, B.; Dömling, A.
Efficient iso cyanide-less iso cyanide-based multicomponent reactions.
Org. Lett. 2015, 17, 2002−2005. (c) Liu, N.; Chao, F.; Liu, M.-G.;
Huang, N.-Y.; Zou, K.; Wang, L. Odorless Iso cyanide Chemistry: One-
Pot Synthesis of Heterocycles via the Passerini and Post modification
Tandem Reaction Based on the in Situ Capture of Iso cyanides. J. Org.
Chem. 2019, 84, 2366−2371.
(6) (a) Wang, J.; Sun, Y.; Jiang, M.-H.; Hu, T. Y.; Zhao, Y.-J.; Li, X.;
Wang, G.; Hao, K.; Zhen, L. Iminium Ion and N-Hydroxyimide as the
Surrogate Components in DEAD-Promoted Oxidative Ugi Variant.
J. Org. Chem. 2018, 83, 13121−13131. (b) Drouet, F.; Masson, G.; Zhu, J.
Ugi four-component reaction of alcohols: stoichiometric and catalytic
oxidation/MCR sequences. Org. Lett. 2013, 15, 2854−2857.
(7) (a) Koopmanschap, G.; Ruijter, E.; Orru, R. V. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. *Belisstein J. Org. Chem.* 2014, 10, 544–598. (b) Ricardo, M. G.; Vasco, A. V.; Rivera, D. G.; Wessjohann, L. A. Stabilization of Cyclic β-Hairpins by Ugi-Reaction-Derived N-Alkylated Peptides: The Quest for Functionalized β-Turns. *Org. Lett.* 2019, 21, 7307–7310. (c) Zajdlik, A.; Wang, Z.; Hickey, J. L.; Aman, A.; Schimner, A. D.; Yudin, A. K. α-Boryl Isocyanides Enable Facile Preparation of Bioactive Boropeptides. *Angew. Chem., Int. Ed.* 2013, 52, 8411–8415. (d) Reguera, V.; Méndez, Y.; Humpierre, A. R.; Valdés, O.; Rivera, D. G. Multicomponent reactions in ligation and bioconjugation chemistry. *Acc. Chem. Res.* 2018, 51, 1475–1486. (e) Yuan, Y.; Zhu, J.; Li, X.; Wu, X.; Danishefsky, S. J. Preparation and reactions of N-thioformyl peptides from amino thiocarboxylic acids and isonitriles. *Tetrahedron Lett.* 2009, 50, 2329–2333.

(8) (a) Sudarshan, N. S.; Narendra, N.; Hamantha, H. P.; Sureshbabu, V. V. An Efficient Conversion of the Carboxylic Group of N-Fmoc α-Amino Acids/Peptide Acids into N-Formamides Employing Isocyanates as Key Intermediates. *J. Org. Chem.* 2007, 72, 9804–9807. (b) Sureshbabu, V. V.; Narendra, N.; Nagendra, G. Chiral N-Fmoc-β-Amino Alkyl Isonitriles Derived from Amino Acids: First Synthesis and Application in 1-Substituted Tetrazole Synthesis. *J. Org. Chem.* 2009, 74, 153–157. (c) Vishwanatha, T. M.; Narendra, N.; Sureshbabu, V. V. Synthesis of β-lactam peptidomimetics through Ugi MCR: first application of chiral Nβ-Fmoc amino alkyl isonitriles in MCRs. *Tetrahedron Lett.* 2011, 52, 5620–5624. (d) Santhosh, L.; Nagamangala, S. R.; Thimmalapura, V. M.; Vommina, S. V. Synthesis of 1,5-Disubstituted Tetrozola via Ugi Azide Reaction: An Asymmetric Induction Approach. *ChemistrySelect* 2017, 2, 5497–5500.

(9) Tandon, V. K.; Rai, S. p-Toluenesulfonylmethyl Isoyanide: a Versatile Synthon in Organic Chemistry. *Sulfur Rep.* 2003, 24, 307–385.

(10) Neochoritis, C. G.; Livadiotou, D.; Tsiasar, V.; Zarganes-Tzitzikas, T.; Samatidou, E. The indoleacetic acids in IMCRs: a three-component Ugi reaction involving TosMIC. *Tetrahedron* 2016, 72, 5149–5156.

(11) (a) Have, R. t.; Huismann, M.; Meetsma, A.; Leusen, A. M. Novel synthesis of 4 (5)-monosubstituted imidazoles via cycloaddition of tosylmethyl isocyanide to aldimines. *Tetrahedron* 1997, 53, 11355–11368. (b) van Leusen, D.; van Leusen, A. M. A new synthesis of symmetrical and unsymmetrical α-diketones through α-isocyanano-α-toluenesulfonamide tethers. *Tetrahedron Lett.* 1977, 18, 4233–4236.

(12) Kulkarni, B. A.; Ganesan, A. A solid-phase equivalent of van Leusen’s TosMIC, and its application in oxazole synthesis. *Tetrahedron Lett.* 1999, 40, 5633–5636.

(13) Lujan-Montelongo, J. A.; Estevez, A. O.; Fleming, F. F. Alkyl sulfonamides: Formal nucleophiles for synthesizing TosMIC analogs. *Eur. J. Org. Chem.* 2015, 1602–1605.

(14) (a) Panduranga, V.; Prabhu, G.; Kumar L, R.; Krishnamurthy, M.; Sureshbabu, V. V. Thionation of di and tripeptides employing thiourea as a sulphur transfer reagent. *RSC Adv.* 2016, 6, 98141–98146. (b) Yang, J.; Wang, C.; Xu, S.; Zhao, J. Ynamide-Mediated Thiopeptide Synthesis. *Angew. Chem., Int. Ed.* 2019, 58, 1382–1386. (c) Anwer, M. K.; Sherman, D. B.; Spatola, A. F. Backbone modifications in cyclic peptides Conformational analysis of a cyclic pseudopentapeptide containing a thiomethylene ether amide bond replacement. *Int. J. Pept. Protein Res.* 1990, 36, 392–399. (d) Vertesaljai, P.; Biswas, S.; Lebedeva, I.; Broggi, E.; Asiri, A. M.; Katritzky, A. R. Synthesis of Taurine-Containing Peptides, Sulfonopeptides, and N- and O-Conjugates. *J. Org. Chem.* 2014, 79, 2688–2693. (e) Wang, C. K.; Craik, D. J. Designing macrocyclic disulfide-rich peptides for biotechnological applications. *Nat. Chem. Biol.* 2018, 14, 417–427. (f) Northfield, S. E.; Wang, C. K.; Schroeder, C. I.; Durek, T.; Kan, M.-W.; Swedberg, J. E.; Craik, D. J. Disulfide-rich macrocyclic peptides as templates in drug design. *Eur. J. Med. Chem.* 2014, 77, 248–257.

(15) (a) Sharnabai, K. M.; Krishnamurthy, M.; Sagar, N. R.; Santosh, L.; Sureshbabu, V. V. N-chlorosuccinimide-mediated oxidative chlorination of thiols to Nε-protected amino alkyl sulfonyl azides and their utility in the synthesis of sulfonyl triazole acids. *Protein Pept. Lett.* 2017, 24, 56–63. (b) Sagar, N. R.; Durgamma, S.; Srinivasulu, C.; Basavaprabhu, H.; Sureshbabu, V. V. A Unified Approach to Access N-Acyl Sulfonylamide Tethered Peptide Conjugates. *ChemistrySelect* 2019, 4, 6408–6413. (c) Sureshbabu, V.; Vishwanatha, T.; Vasanta, B. A simple synthesis of Nβ-Fmoc/Z-amino alkyl thiols and their use in the synthesis of Nβ-Fmoc/Z-amino alkyl sulfonic acids. *Synlett* 2010, 1037–1042.