Black hole spin and size of the X-ray emitting region(s) in the Seyfert 1.5 galaxy ESO 362–G18

B. Agís-González, G. Miniutti, E. Kara, A.C. Fabian, M. Sanfrutos, G. Risaliti, S. Bianchi, N.L. Strotjohann, R. D. Saxton and M.L. Parker

1 Centro de Astrobiología (CSIC–INTA), Dep. de Astrofísica; ESA, P.O. Box 78, E-28691, Villanueva de la Cañada, Madrid, Spain
2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA
4 INAF - Osservatorio Astronomico di Arcetri, L.go E. Fermi 5, Firenze, Italy
5 Dipartimento di Matematica e Fisica, Università degli Studi di Roma Tre, via della Vasca Navale 84, 00146 Roma, Italy
6 Physikalisches Institut, Universität Bonn, Nassallee 12, D-53115 Bonn, Germany
7 XMM SOC, ESA, P.O. Box 78, E-28691, Villanueva de la Cañada, Madrid, Spain

ABSTRACT

We report results from multi-epoch X-ray observations of the Seyfert 1.5 galaxy ESO 362–G18 performed between November 2005 and June 2010. ESO 362–G18 generally exhibits the typical X-ray spectrum of type 1 Active Galactic Nuclei (AGN). A disc–reflection component accounts for broad residuals in the iron K band and above 10 keV, as well as for a significant soft excess. From our best–fitting reflection model, we measure a black hole spin $a \gtrsim 0.92$ at the 99.99 per cent confidence level. ESO 362–G18 is also (typically) mildly absorbed by a column of neutral gas. The absorber is variable and one observation, performed ~ 2 months after a typical mildly absorbed one, is heavily absorbed by a cold column density of $\sim 3 \times 10^{23}$ cm$^{-2}$, nearly two orders of magnitude higher than that during any other observation. UV variability between the heavily absorbed observation and the others suggests that the absorber can be identified with a dusty, clumpy torus. The absorption variability timescale enables us to locate the X-ray emitting region within the innermost ~ 50 gravitational radii. Such result holds not only for the X-ray continuum, but also for the soft excess.

Key words: galaxies: active – X-rays: galaxies

1 INTRODUCTION

In recent years, several examples of X-ray absorption variability in Active Galactic Nuclei (AGN) have been reported on relatively short timescales ranging from hours to days (e.g. NGC 4388, Elvis et al. 2004; NGC 4151, Puccetti et al. 2007; NGC 1365, Risaliti et al. 2005; 2007; 2009 and Maiolino et al. 2010; NGC 7582, Bianchi et al. 2006). The X-ray luminosity from a central black hole.

X-ray absorption variability is also seen on longer timescales. These events are obviously more difficult to detect, as the longer timescale ideally requires long and continuous X-ray monitoring campaigns. In the few cases reported so far (e.g. Cen A, Rivers, Markowitz & Rothschild 2011: NGC 4507, Marinucci et al. 2012; ESO 323–G77, Miniutti et al. 2014; see Markowitz, Krumpe & Nkutta 2014 for a recent statistical analysis on such events) absorption on timescales of a few months can be attributed to clouds with typical column density of $10^{22} - 10^{23}$ cm$^{-2}$ and number density of $10^9 - 10^{11}$ cm$^{-3}$, and velocity of few times 10^3 km s$^{-1}$ which suggests that the variable X-ray absorber can be identified with broad line region (BLR) clouds. In the best studied cases, occultation events have been followed almost entirely from ingress to egress enabling e.g. Risaliti et al. (2007, 2009 in NGC 1365) and Sanfrutos et al. (2013 in SWIFT J2127.4+5654) to infer that the X-ray source is compact, and confined within $5 - 10 r_g$ ($r_g = G M_{BH}/c^2$) around the central black hole.

E-mail: agisgb@cab.inta-csic.es
Table 1. Details of the X-ray observations used in this work. The last two columns refer to the X-ray counts collected in a soft and hard energy band. The soft band is the 0.3–2 keV for the Swift, XMM 1 and XMM 2 observation, and the 0.5–2 keV for the Suzaku and the five Chandra observations. The hard band lower limit is set at 2 keV, while the upper bound is 10 keV except for the Swift and the five Chandra observations, where we use data up to 8.5 keV and 7.5 keV respectively because of signal–to–noise limitations.

Obs.	Obs. ID	Obs. date	Net exp.	$F_{0.5–2}$	$F_{2–10}$	Soft counts	Hard counts
Swift	00035234002	2005-11-26	7	3.9 ± 0.1	13.5 ± 0.4	1.7	1.0
XMM 1	0312190701	2006-01-28	8	0.66 ± 0.01	3.7 ± 0.1	4.3	2.1
Suzaku	703031010	2008-04-11	41	27.2 ± 0.1	33.2 ± 0.1	127.4	76.4
XMM 2	0610180101	2010-01-29	53	2.86 ± 0.02	9.58 ± 0.04	107.8	43.6
Chandra 1	11608	2010-05-18	10	2.67 ± 0.05	10.5 ± 0.2	6.5	3.9
Chandra 2	11609	2010-05-19	10	4.29 ± 0.06	13.3 ± 0.2	10.4	5.1
Chandra 3	11610	2010-05-21	10	2.11 ± 0.04	6.5 ± 0.2	5.3	2.5
Chandra 4	11611	2010-05-25	10	10.2 ± 0.1	19.9 ± 0.2	24.0	8.6
Chandra 5	11612	2010-06-03	10	6.55 ± 0.07	14.9 ± 0.2	15.2	5.8

The net exposure (fourth column) is in units of ks. Observed fluxes in the 0.5–2 keV (fifth column) and 2–10 keV bands (sixth column) are given in units of 10^{-12} erg s$^{-1}$ cm$^{-2}$. The soft and hard X-ray counts (last two columns) are in units of 10^3 photons.

This suggests that the ROSAT observation may have been affected by X-ray absorption, with different soft X-ray fluxes into our line–of–sight and into that of the ENLR. Subsequent observations with Swift and XMM–Newton confirm that X-ray absorption variability is present towards the X-ray–emitting region of ESO 362–G18, and that the soft X-ray luminosity during unabsorbed states is much higher than that derived by ROSAT. In fact, ESO 362–G18 makes a transition from an unobscured state with soft X-ray luminosity of $L_{0.5–2} \sim 5 \times 10^{38}$ erg s$^{-1}$ observed with Swift to a highly absorbed state with one order of magnitude lower soft X-ray luminosity observed with XMM–Newton about 2 months later (Winter et al. 2008).

We consider here 9 X-ray observations of ESO 362–G18 performed with the Swift, XMM–Newton, Suzaku, and Chandra X-ray observatories. The first 2 observations were performed only 2 months apart (2005-11-26 and 2006-01-28 respectively), and the third was performed about 2.2 years later. The remaining 6 observations were all performed within one year (2010) in the framework of our dedicated X-ray monitoring of the source. In particular, the 5 Chandra monitoring observations were performed within 15 days, between 2010–05–18 and 2010–06–03. The most important details of the observations used in this work are given in Table 1. Results from further X-ray observations performed with Swift starting from November 2010 are reported elsewhere (Miniutti et al. in preparation), as they provide interesting, independent results by themselves.

3 X-RAY SPECTRAL VARIABILITY

As the five Chandra observations are part of a two–week long monitoring campaign, we shall treat them separately from the others to investigate any short–timescale spectral variability in detail (see Section 3.5). In order to first define a global X-ray spectral model to be used to study the spectral variability of ESO 362–G18, we start our analysis from the two highest–quality observations of our monitoring campaign, namely the Suzaku and the XMM 2 observations which provide, by far, the largest number of X-ray counts (see Table 1).

3.1 The high–resolution RGS data from the XMM 2 observation

As a first step, we examine the high–resolution spectrum from the RGS on board of XMM–Newton during the XMM 2 observation.

We fit the RGS data with a simple blackbody plus power law and Galactic absorption model ($N_H = 1.75 \times 10^{20}$ cm$^{-2}$, Kalberla et al. 2005) which is adequate for the continuum. Several soft X-ray narrow emission lines are visually clear. We then add a series of

\[F_{0.5–2} \sim 6.4 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2} \]
3.2 The high-quality Suzaku and XMM 2 observations

The X-ray spectra from the two high-quality observations (Suzaku and XMM 2) are shown in the upper panel of Fig. 2. In order to show the general spectral shape of the two observations, we fit a power law plus Galactic absorption model in the 1–4 keV and 7–10 keV bands, i.e. ignoring the soft and Fe K bands, as well as the Suzaku HXD data above 10 keV. The resulting data–to–model ratios are shown in the middle panel of Fig. 2. A soft excess with similar spectral shape is detected in both observations. Both spectra also exhibit broad residuals in the Fe K band, and the HXD/PIN data suggest that a hard X-ray excess is present above 10 keV. Note, however, that while the best-fitting photon index from the (higher flux) Suzaku observation is $\Gamma \simeq 2.0$, and in line with the typical spectral slope of unobscured AGN ($\Gamma < 1.9$, e.g. Piconcelli et al. 2005), the XMM 2 observation is extremely hard with $\Gamma \simeq 3$, possibly signaling that some extra component is needed in the hard band.

As a first step, we examine in more detail the Fe K band spectra. Fitting a simple power law model (and Galactic absorption) in the 2–10 keV band, and ignoring the 4–7 keV energy range where Fe features are expected, produces the data–to–model ratio shown in the upper panel of Fig. 4. Adding an unresolved Gaussian with energy at 6.4 keV in the rest-frame accounts for the narrow Fe emission line and leaves a broad feature in the Fe K band (middle panel of Fig. 4). We then add a relativistic emission line model (the LAOR model, Laor 1991), and the data are now well reproduced in the 2–10 keV band with $\chi^2 = 1930$ for 1855 degrees of freedom (doF) (lower panel of Fig. 4). The narrow Fe emission line has an equivalent width of ~ 40 eV (~ 130 eV), and the broad relativistic one of ~ 130 eV (~ 250 eV) in the Suzaku (XMM 2) observation.
As for the relativistic parameters (forced to be the same in the two observations), we obtain a disc inclination of $i = 4.2 \pm 1.4$, an emissivity index $q = 4.2 \pm 1.4$, and an inner disc radius of $r_{\text{in}} = 3.1 \pm 0.7$ that, when identified with the innermost stable circular orbit around the black hole, corresponds to a black hole spin of $a \geq 0.76$. However, describing the data in a limited energy band with models that do not account for the reflection continuum associated with the emission lines may lead to misleading and/or inaccurate results. We then consider below a broadband spectral analysis using more self-consistent, physically-motivated spectral models.

Our broadband spectral model for both observations initially includes (i) a power law continuum, (ii) a distant reflection component (we use the PEXMON model in XSPEC, Nandra et al. 2007), (iii) all soft X-ray emission lines of Table 2 (iv) a disc-reflection component which may account for the soft excess, and for the positive residuals in the Fe K band (and in the HXD/PIN). The latter is modeled with the Ross & Fabian (2005) partially ionized reflection model which is convolved with the KERRCONV relativistic kernel (Brenneman & Reynolds 2006) to account for any relativistic effects. The soft X-ray emission lines and the distant reflection component are forced to be the same in both spectra, as these components are not expected to vary.

The fit is relatively good with $\chi^2 = 3040$ for 2580 degrees of freedom (dof), and the disc-reflection component accounts well for all three features noted above, namely the soft excess, broad Fe K residuals, and hard X-ray excess. The description of the data improves by adding a rather typical warm absorber (we use the ZX-IPCF model in XSPEC) affecting both the power law and the disc-reflection component. As the column density of the warm absorber is consistent with being the same in the two observations, we force a common N_H in both data sets. We obtain a significant improvement to $\chi^2 = 2880$ for 2577 dof with a common column density of $\approx 10^{22}$ cm$^{-2}$ and $\log \xi \approx 2.4$ (≈ 2.0) for the Suzaku (XMM 2) observation. Although the fit is now acceptable, the XMM 2 data are not well reproduced with systematic positive residuals in the 2–6 keV band. Moreover, the resulting spectral shape for that observation is still rather flat ($\Gamma \approx 1.5 - 1.6$) when compared with the typical value for unobscured AGN ($< \Gamma \approx 1.9$).

We then consider the possible presence of absorption by including a neutral absorber affecting both the power law and disc-reflection components. For the sake of generality, we allow it to partially cover the X-ray source. The fit improves dramatically by $\Delta \chi^2 = -137$ for 4 more free parameters ($G^2 = 2743$ for 2573 dof). In fact, the Suzaku spectrum is consistent with being unabsorbed (with covering fraction ≤ 0.1). Hence, the improvement is only due to a better description of the XMM 2 spectrum which requires a neutral absorber with column density $N_H \approx 10^{22}$ cm$^{-2}$ and covering fraction $C_H \approx 0.4$. The photon index during the XMM 2 observation is now $\Gamma \approx 1.8$, broadly consistent with a standard spectral slope. Replacing the disc-reflection component with a phenomenological blackbody (or disc blackbody) model to account for the soft excess results in a much worse statistical description of the data ($\chi^2 = 2938$ for 2576 dof), demonstrating that the disc-reflection model is a better description for the soft excess.

Let us discuss here results on the relativistic parameters associated with the disc-reflection component, namely the black hole spin a, emissivity index q, and disc inclination i. The error contour for the black hole spin is shown in the upper panel of Fig. 4. We measure a black hole spin of $a \geq 0.92$ at the 99.99 per cent confidence level, and of ≥ 0.98 at the 90 per cent one. Hence, the accreting black hole powering ESO 362–G18 is a very rapidly spinning Kerr black hole, consistent with being maximally spinning ($a = 0.998$). The contours plot for the disc-reflection emissivity index (q) and for the disc inclination (i) is shown in the lower panel of the same Figure and indicates that $q = 4.3^{+1.0}_{-0.8}$ and $i = 53^\circ \pm 5^\circ$ (90 per cent confidence level for the two interesting parameters). All three parameters are consistent with those derived from the simpler analysis discussed above and performed with emission line models only (see Fig. 3 and the associated discussion). However, using the broadband data and more self-consistent and physically-motivated models significantly reduces the uncertainties on these relevant parameters.

3.3 Joint fits to the Swift, Suzaku and the two XMM–Newton spectra

Having found a good global spectral model for the two highest-quality observations of our campaign, we now use it to perform a simultaneous analysis of the first four X-ray observations of Table 1 namely to the Swift, XMM 1, Suzaku, and XMM 2 observations. We defer the analysis of the five Chandra monitoring observations to Section 3.5. The X-ray spectrum of ESO 362–G18 from the first four observations is shown in the upper panel of Fig. 5 together with the best-fitting models (see below). Remarkable spectral variability is present with a general steeper–when–brighter behavior. Moreover the (lowest flux) XMM 1 observation appears to have a distinct spectral shape. The visually larger narrow Fe line equivalent width suggests that the hard X-ray continuum is significantly

We extend their original grid to include values of the ionization parameter down to $\xi = 0.01$ erg s$^{-1}$ cm and photon indices down to $\Gamma = 1.5$.

2 We extend their original grid to include values of the ionization parameter down to $\xi = 0.01$ erg s$^{-1}$ cm and photon indices down to $\Gamma = 1.5$.

© 2001 RAS, MNRAS 000:0-0
We conclude that the spectral shape during the XMM 1 observation is driven by cold absorption rather than by an extremely low intrinsic flux. Some residuals are seen at ~ 0.9 keV during the lowest flux XMM 1 observation. Adding a further soft (unresolved) X-ray emission line at 0.904 keV (corresponding to Ne I Ly) yields $\Delta \chi^2 = -34$ for 1 more free parameter (although it was not detected in our analysis, the line intensity is consistent with the RGS spectrum of the XMM 2 observation, and it is included with the same intensity of 1.8×10^{-5} ph s$^{-1}$ cm$^{-2}$ in all observations, as is the case for all other unresolved soft X-ray emission lines, see Table 2. The soft X-ray emission lines we include in our model are most likely associated with emission from extended gas that is photo-ionized by the AGN. The same gas may also be associated with a soft scattered component, as ubiquitously seen in the X-ray spectra of heavily absorbed AGN (e.g. Bianchi et al. 2005). We test this scenario by adding to our model a soft power law that is only absorbed by the Galactic column density. Its normalization is the same in all spectra, as this component is not expected to vary. The fit does not improve ($\Delta \chi^2 = -3$ for 2 more free parameters). We measure a photon index $\Gamma \approx 2.4$ and a scattered 0.5–2 keV luminosity of $\sim 10^{44}$ erg s$^{-1}$. This component is overwhelmed by the X-ray continuum, and thus negligible, in all observations except the lowest–flux XMM 1 observation. For consistency with the typical soft X-ray spectrum of heavily obscured AGN, we keep this component in our best–fitting spectral model although, as mentioned, it is not formally required by the data.

We conclude that most of the spectral variability seen in the upper panel of Fig. 5 is due to a variable cold absorber changing in both column density and covering fraction, although photon index variability is also detected with $\Delta \Gamma \sim 0.2$ – 0.3. The most important absorption variability event is detected during the XMM 1 observation which requires a much higher level of neutral X–ray absorption than any other observation and, in particular, than the Swift observation which was performed only 63 days earlier. We measure a column density of $\sim 10^{23}$ cm$^{-2}$ covering ~ 80 per cent of the X–ray emitting regions during the XMM 1 observation. Such a column density is more than one order of magnitude higher than during any other observation.

3.4 A hard scattered component

As discussed extensively by Miniutti et al. (2014), the inclusion of a hard scattered component describes very well the absorbed X–ray states of another source which exhibits extreme X-ray absorption variability, namely ESO 323-G77. A hard scattered component is likely present in all cases where absorption is due to a clumpy rather than homogeneous structure. This is because our line–of–sight (LOS) is absorbed by a specific clump (cloud), but the X–ray continuum in different directions intercepts different clumps which re–direct part of it into our LOS via scattering. The presence of a hard scattered component has also been reported in other absorbed AGN such as NGC 3227 (Lamer, Uttley & McHardy 2003) and NGC 7582 (Piconcelli et al. 2007). Both sources exhibit variable X–ray absorption, most likely associated with clumpy absorbers, in line with the scattering interpretation outlined above. The X–ray absorption variability ESO 362–G18 strongly suggests that this is the case here as well.

In order to check for the presence of a hard scattered component in ESO 362–G18, we use the same phenomenological model used by Miniutti et al. (2014) for the case of ESO 323–G77. We include an additional absorbed power law with the same
The hard scattered component is absorbed by a column density of \(N \). Note that this component is significantly detected only during the XMM 1 observation (as expected, see the discussion in Miniutti et al. 2014). The inclusion of that component induces a higher column density and covering fraction during the XMM 1 observation, while not affecting any other parameter. We now measure a column density of \(N \) for the XMM 1 observation, while not affecting any other parameter.

We consider here a joint fit to the five Chandra monitoring observations performed within 15 days from 2010–05–18 to 2010–06–03. In the lower panel, we show the best–fitting data–to–model ratios resulting from the joint fit to the five data sets.

3.5 The two weeks Chandra monitoring campaign

We consider here a joint fit to the five Chandra monitoring observations performed between 2010–05–18 to 2010–06–03 using the same X–ray spectral model described above. We fix the parameters associated with the soft X–ray emission lines, the distant reflection component, and the soft and hard scattered components to the values derived from the analysis discussed above, as the Chandra data have typically lower spectral quality, and because these...
components are not expected to vary. The relativistic parameters affecting the disc reflection component are also fixed to the best–fitting values obtained from the analysis of the first four observations, as the Chandra data cannot constrain them any better. As before, we force the warm absorber column density to be the same in all observations, while the ionization parameter is free to vary independently. As for the neutral partial covering absorber, the column density is initially free to vary independently. However, as N_{H} turns out to be consistent with being the same in all Chandra observations, we force it to have the same value in all data sets, so that the cold absorber is only allowed to vary in covering fraction.

We reach a good statistical description of the five Chandra monitoring observations with a final result of $\chi^2 = 1248$ for 1218 dof. The spectra, best–fitting models, and final data–to–model ratios for the joint fit to the five data sets are shown in Fig. 7. The observed spectral variability can be explained by a combination of photon index variability ($\Delta \Gamma \approx 0.3$, although the relatively large 90 per cent uncertainties imply that $\Gamma = 1.9 - 2.0$ is an acceptable solution for all observations) and by moderate changes in the covering fraction of a cold absorber with column density of $\approx 8 \times 10^{21} \text{ cm}^{-2}$. Our best–fitting results are reported in Table 3 and discussed in Section 4. We conclude that absorption variability, if present at all, is only modest during the two weeks Chandra monitoring campaign. Hence, the shortest timescale absorption variability event we detect is that occurring within the two months separating the Swift and the XMM 1 observations.

4 SUMMARY OF THE MULTI–EPOCH SPECTRAL ANALYSIS

The relevant best–fitting parameters of our multi–epoch spectral analysis are reported in Table 3. The parameters associated with the soft emission lines, the soft/hard scattering components, the distant reflector, and the disc–reflection relativistic kernel are the same in all observations. They are reported in the upper part of the Table. As mentioned, these parameters have been fixed in the joint analysis of the Chandra observations, so that the reported values and errors are drawn from the joint fit to the Swift, XMM 1, Suzaku, and XMM 2 observations.

A disc–reflection component is detected in all observations, except the Swift and Chandra 3 ones, where only upper limits are obtained. This is likely because of the relatively low spectral quality of these observations (see Table 1). The relativistic parameters are best constrained from the highest–quality spectra (Suzaku and XMM 2) and suggest that ESO 362–G18 is powered by a very rapidly spinning Kerr black hole (with spin $a \geq 0.98$ at the 90 percent confidence level). The observer inclination with respect to the disc axis is also very well constrained ($i \approx 53^\circ$). The disc ionization state is rather low, and we are only able to obtain upper limits on the ionization parameter, except during the highest flux Suzaku and Chandra 4 observations.

The intrinsic photon index Γ is variable and it appears to be steeper during the highest flux observations (Suzaku and Chandra 4), consistent with a steeper–when–brighter behaviour. After checking that the data allow us to do so, the warm absorber column density is forced to be the same during the first four and during the subsequent five observations. The final results indicate that the warm absorber column density is in fact likely constant during the whole 2005–2010 campaign with $N_{\text{H}} \approx 1 - 2 \times 10^{23} \text{ cm}^{-2}$. On the other hand, the warm absorber ionization is marginally variable and roughly consistent with responding to the intrinsic variability although the relatively large errors do not allow us to investigate its variability in detail.

A neutral, partially covering absorber is detected in all observations but the Suzaku one, which appears to be unabsorbed. The absorber is variable, and the X–ray spectrum of ESO 362–G18 changes from unabsorbed or only mildly absorbed states (e.g. during the Swift and Suzaku observation) to highly absorbed ones (the XMM 1 observation), going also through states with intermediate levels of absorption (the remaining XMM 2 and Chandra observations). The most remarkable absorption variability event is that occurring over the 63 days separating the mildly absorbed Swift observation ($N_{\text{H}} \approx 5 \times 10^{23} \text{ cm}^{-2}$ and $C_i \approx 0.5$) and the heavily absorbed XMM 1 one ($N_{\text{H}} \approx 3 - 4 \times 10^{23} \text{ cm}^{-2}$ and $C_i \geq 0.94$).

5 THE BLACK HOLE MASS AND FURTHER, INDEPENDENT CONSTRAINTS ON THE SYSTEM INCLINATION

García–Rissmann et al. (2005) measure the stellar velocity dispersion of ESO 362–G18 from the Calcium triplet obtaining $\sigma = 130 \pm 4 \text{ km s}^{-1}$ (we consider the average value and standard deviation of their two measurements). The black hole mass can be estimated from the $M_{\text{BH}} - \sigma$ relation (e.g. Merritt & Ferrarese 2001; Tremaine et al. 2002). Using the $M_{\text{BH}} - \sigma$ relation as obtained by Xiao et al. (2011), we estimate a black hole mass of $M_{\text{BH}} = (0.8 - 1.7) \times 10^7 M_{\odot}$. However, in order to include the spread and not only the statistical uncertainties on the best–fitting $M_{\text{BH}} - \sigma$ relation, we prefer to consider the sample of reverberation–mapped AGN from Woo et al. (2010) that have stellar velocity dispersion consistent with that of ESO 362–G18, and to assign to our AGN the black hole mass range that can be derived from this sub–sample. With this prescription, we obtain a larger mass range of $M_{\text{BH}} = (0.7 - 7.2) \times 10^7 M_{\odot}$.

Another estimate of the black hole mass can be obtained by combining the observed optical luminosity with the Hβ broad emission line FWHM by using, e.g. the relationship from Park et al. (2012), i.e.

$$M_{\text{BH}} = A \left(\frac{\text{FWHM}_{\text{H}\beta}}{10^3 \text{ km s}^{-1}} \right)^{1.666} \left(\frac{L_{\text{W}5100}}{10^{44} \text{ erg s}^{-1}} \right)^{0.518},$$

(1)

where $A = 10^{6.985} M_{\odot}$. Bennett et al. (2006) report a Hβ FWHM = 5240\pm500 km s$^{-1}$ from the optical spectrum obtained at the New Technology Telescope (NTT) on 2004–09–17. They also measure a nuclear 5100 Å luminosity of $\sim 4.1 \times 10^{43} \text{ erg s}^{-1}$. By using Eq. 1 we then have $M_{\text{BH}} = (0.8 - 8.1) \times 10^8 M_{\odot}$, which appears to be inconsistent (and much higher) than that derived from the stellar velocity dispersion.

However, Eq. 1 assumes an average virial coefficient $\log f = 0.72$, as derived by Woo et al. (2010). In fact, f is likely source–dependent, and depends on the unknown BLR geometry. If we assume a disc–like BLR geometry, the virial relationship can be expressed in terms of line FWHM as

$$M_{\text{BH}} = R_{\text{BLR}} \text{FWHM}^2 \left(4G \sin^2 i \right)^{-1},$$

(2)

where i is the inclination between the LOS and the angular momentum of the disc–like BLR, whose direction is likely parallel to that of the accretion flow angular momentum. R_{BLR} can be estimated from the Bentz et al. (2009) BLR–luminosity relationship which, for the given 5100 Å luminosity gives $R_{\text{BLR}} \approx 5.2 \times 10^{16} \text{ cm}$. Our disc–reflection model provides information on the system inclination, namely $i = 53^\circ \pm 5^\circ$. Inserting R_{BLR} and i into the
virial relationship leads to a black hole mass estimate of $M_{\text{BH}} = (4.5 \pm 1.5) \times 10^7 \, M_\odot$, which is now totally consistent with the mass estimated from the stellar velocity dispersion. Notice that, in order for the black hole mass estimates from σ_* and from the virial assumption to be consistent with each other, one must have $\sin^2 \iota \geq 0.46$. In other words, under the assumption of a disc–like BLR geometry, $\iota \geq 43^\circ$. This provides further, independent support to the relatively high inclination we derive from the X–ray spectral analysis with the disc–reflection model. Hereafter, we assume that $M_{\text{BH}} = (4.5 \pm 1.5) \times 10^7 \, M_\odot$ and we refer to $M_{\text{best}} = 4.5 \times 10^7 \, M_\odot$.

6 LOOKING FOR A REVERBERATION TIME LAG

An inescapable consequence of interpreting the soft X–ray excess as partially ionized X–ray reflection off the inner accretion disc is that relatively short time delays are expected between X–ray energy bands dominated by the intrinsic power law, and bands dominated by disc–reflection (i.e. the soft excess). Such lags have been indeed discovered in the Narrow–Line Seyfert 1 galaxy 1H 0707–495 (Fabian et al. 2009), and subsequently confirmed to be present in many other sources (Emmanoulopoulos et al. 2011; de Marco et al. 2011; 2013; Kara et al. 2013a, 2013b; Cackett et al. 2013; Fabian et al. 2013). The interpretation of the soft X–ray lags as due to the delayed reflection off the inner accretion disc has then been confirmed thanks to the detection of very similar Fe K lags in some sources (Zoghbi et al. 2012; Kara et al. 2013c, Zoghbi et al. 2013), although other authors consider the detected soft lags spurious and thus physically meaningless (e.g. Miller et al. 2010; Legg et al. 2012).

ESO 362–G18 is X–ray variable during the long XMM 2 observation, and the broadband 0.3–10 keV light curve is shown in

![Figure 8](image-url)
lags between different energy bands can in principle be computed.
Fig. 8. The X–ray variability is of sufficiently high amplitude that
values mean that the softer (soft–excess–dominated) band lags the harder
likely continuum–dominated) one. To compute the lag–frequency spectrum, we select energy bands
continuum (0.8–3 keV) respectively. In Fig. 9, we show the lag–
by disc–reflection (0.3–0.6 keV) and by the intrinsic power law
translates into a distance of
ESO 362–G18 makes a transition from a mildly absorbed state
7 ORIGIN OF THE VARIABLE ABSORBER AND
CONSTRAINTS ON THE X–RAY EMITTING
REGION(S) SIZE
The main result of our X–ray absorption variability analysis is that
with \(N_{H} \approx 5 \times 10^{21} \, \text{cm}^{-2}\) and \(C_{I} \approx 0.5\) as observed during
the Swift observation, to a highly absorbed one with \(N_{H} \approx 3 \times 4 \times 10^{22} \, \text{cm}^{-2}\) and \(C_{I} \geq 0.94\) during the XMM 1 observation performed 63 days later.
The observed X–ray absorption variability is most likely due
to one absorber clump (cloud) crossing our line–of–sight during
the XMM 1 observation. A clumpy absorber may be directly identified
with the clumpy obscuring torus (e.g. Nenkova et al. 2008a; Rivers
et al. 2011; Miniutti et al. 2014; Markowitz, Krume & Nikutta
2014). Another possibility is that the variable absorber is related to
BLR clouds (e.g. Lamer, Uttley & McHardy 2003; Elvis et al. 2004;
Risaliti et al. 2005, 2007, 2009; Sanfrutos et al. 2013; Miniutti et al.
2014). Although the BLR and clumpy torus are likely part of
the same obscuring structure (Elitzur & Shlosman 2006), they can
be physically distinguished by their dust content. The BLR is dust–
free, which locates the BLR within the dust–sublimation radius.
The same radius is instead generally considered as representative
of the inner edge of the clumpy torus. To gain some insight on the
location and origin of the variable absorber, we consider UV data
of ESO 362–G18 with the goal of distinguishing between dust–free
and dust–rich absorption during the XMM 1 observation.

7.1 UV variability
If the \(3 \times 4 \times 10^{22} \, \text{cm}^{-2}\) absorber affecting the XMM 1 observation is associated with the dusty clumpy torus, the UV emission from ESO 362–G18 may also be affected, provided that the absorber covers a sufficiently high fraction of the UV–emitting region (likely the accretion disc). On the other hand, if the absorber is dust–free (e.g. the BLR clouds), no significant effect is expected in the UV. Reliable optical and UV fluxes can be obtained from the UVOT and OM telescopes on board Swift and XMM–Newton during the mildly absorbed (hereafter “unabsorbed” for simplicity) Swift and XMM 2 observations as well as during the absorbed XMM 1 one. The resulting optical/UV flux densities are given in Table 4.

The U and UVW1 fluxes are nearly consistent with being constant in all observations. On the other hand, the UVM2 flux is nearly the same during the unabsorbed Swift and XMM 2 observation, but \(\sim 30\) per cent lower during the X–ray absorbed XMM 1 observation. The same is true for the UVW2 flux, which is \(\sim 40\) per cent lower during the X–ray absorbed XMM 1 observation than during the unabsorbed Swift one (no data were collected in UVW2 during the XMM 2 observation).

It is worth pointing out that the UV intrinsic variability is an
unlikely explanation for the observed variability in the UVM2 and
UVW2 filters because the intrinsic X–ray luminosity is higher
during the X–ray absorbed XMM 1 observation than during the two
X–ray unabsorbed ones. The most natural interpretation of the ob-
served UV variability is then that the UV–emission at the shorter
wavelength UVM2 and UVW2 filters is affected by absorption (as are the X–rays) during the XMM 1 observation, while it is not during
the two X–ray unabsorbed ones. By comparing the UV flux
during absorbed/unabsorbed observations, and assuming that total coverage would completely block the UV emission, we infer that
the absorber covers \(\sim 30\) (\(\sim 40\)) per cent of the UV–emitting re-
gion in the UVM2 (UVW2) filter. In summary, the UV data are consistent with a dusty absorber covering about \(30–40\) per cent of the UV emitting region during the X–ray absorbed XMM 1 observation. This strongly suggests that the absorber can be identified with one clump (or cloud) of the clumpy dusty torus, rather than with a BLR cloud.
The X-ray emitting region(s) size

As the UV are only partially covered during the XMM 1 observation, we show the larger UV-emitting region (blue in the on-line version), the smaller X-ray one (red in the on-line version), and the absorbing cloud (dark gray). The figure is not to scale for visual clarity. The time-evolution proceeds from top to bottom. The upper panel is representative of the unabsorbed Swift observation. The lower panel represents the likely geometry during the absorbed XMM 1 observation performed 63 days later, when the UV-emitting region is partially covered (\(C_{\rm UV} \sim 0.3 - 0.4\)) by the dusty absorbing cloud, while the X-ray-emitting region is fully covered (\(C_{\rm X} \sim 1\)). An intermediate situation where both the UV and X-ray-emitting regions are partially covered is shown in the middle panel.

As discussed above, the UV data strongly suggest that the absorbing structure can be identified with one clump of the dusty torus. Hence, \(v_c\) is lower than the Keplerian velocity at the dust sublimation radius \(R_{\rm dust} \sim 0.4L_{\rm Bol,45}\) pc (Nenkova et al. 2008a), where \(L_{\rm Bol,45}\) is the bolometric luminosity in units of \(10^{45}\) erg s\(^{-1}\). The (averaged) bolometric luminosity of ESO 362-\(1\)G18 can be estimated from the 2–10 keV luminosity assuming a X-ray bolometric correction \(k_{2-10}\). We use here the total (rather than the power law) averaged and unabsorbed 2–10 keV luminosity \(L_{\rm 2-10} \sim 0.5\) \(10^{42}\) erg s\(^{-1}\), as material at \(R_{\rm dust}\) sees all contributions. As for the X-ray bolometric correction, we assume \(k_{2-10} = 25\) (Vasudevan et al. 2009), which gives \(L_{\rm Bol} = 1.3 \times 10^{44}\) erg s\(^{-1}\) (i.e. an Eddington ratio of \(L_{\rm Bol}/L_{\rm Edd} \sim 0.02\) for a black hole mass of \(M_{\rm BH} = M_{\rm bol} = 4.5 \times 10^7 M_\odot\)). From the estimated \(L_{\rm Bol}\) we have that \(R_{\rm dust} \sim 0.14\) pc. Assuming Keplerian motion of the clumpier torus clouds, one has that \(v_c \lesssim 1180\) km s\(^{-1}\) for \(M_{\rm BH} = M_{\rm bol}\).

Substituting the upper limit on \(v_c\) into \(D_X = \Delta T v_c\) gives \(D_X \lesssim 6.4 \times 10^{14}\) cm. This corresponds to \(D_X \lesssim 96\) \(r_g M_{\rm bol}/M_{\rm BH}\), so that X-rays come from radii within \(D_X/2 = 48\) \(r_g M_{\rm bol}/M_{\rm BH}\) from the central, accreting black hole under the natural assumption of axial symmetry. This is consistent not only with microlensing results (e.g. Mosquera et al. 2013 and references therein), but also with measurements of the X-ray emitting size coming from other, better monitored X-ray occultation events which imply \(D_X \lesssim 10 - 20\) \(r_g\) (e.g. Risaliti et al. 2007, 2009; Sanfrutos et al. 2013). A simple sketch of the envisaged geometry and time–evolution is shown in Fig. 10.

The upper limit on \(D_X\) also represents a lower limit on \(D_c\). By combining this with the maximum observed column density, we infer that the cloud number density is \(n_c \lesssim 6.7 \times 10^6\) cm\(^{-3}\). Such a density is lower than that required for BLR clouds (\(\gtrsim 10^9\) cm\(^{-3}\), e.g. Davidson & Netzer 1979), supporting our identification of the variable absorber with one clumpy torus cloud.

\[\Delta T \leq 63\text{ days}\]

\[C_{\rm X} = 0\]

\[C_{\rm UV} = 0\]

\[C_{\rm X} = 1\]

\[C_{\rm UV} \approx 0.3-0.4\]

\[\text{Swift (2005-11-26)}\]

\[\text{XMM 1 (2006-01-28)}\]

\[96\] \(r_g M_{\rm bol}/M_{\rm BH}\), so that X-rays come from radii within \(D_X/2 = 48\) \(r_g M_{\rm bol}/M_{\rm BH}\) from the central, accreting black hole under the natural assumption of axial symmetry. This is consistent not only with microlensing results (e.g. Mosquera et al. 2013 and references therein), but also with measurements of the X-ray emitting size coming from other, better monitored X-ray occultation events which imply \(D_X \lesssim 10 - 20\) \(r_g\) (e.g. Risaliti et al. 2007, 2009; Sanfrutos et al. 2013). A simple sketch of the envisaged geometry and time–evolution is shown in Fig. 10.

The upper limit on \(D_X\) also represents a lower limit on \(D_c\). By combining this with the maximum observed column density, we infer that the cloud number density is \(n_c \lesssim 6.7 \times 10^6\) cm\(^{-3}\). Such a density is lower than that required for BLR clouds (\(\gtrsim 10^9\) cm\(^{-3}\), e.g. Davidson & Netzer 1979), supporting our identification of the variable absorber with one clumpy torus cloud.
8 DISCUSSION

Multi-epoch X-ray observations ESO 362–G18 reveal that the AGN is generally mildly absorbed by both partially ionized and neutral/low–ionization gas. While the warm absorber properties do not change significantly during our monitoring, the neutral absorber exhibits remarkable spectral variability with one observation (XMM 1) being highly significantly more absorbed than all others.

While unabsorbed, the X-ray spectrum is characterized by a strong soft excess, typical of the X-ray spectrum of a type 1 AGN. A broad feature is also seen at Fe K energies, and the Suzaku data from the HXD also exhibit a hard X-ray excess around 20–30 keV. All features are highly reminiscent of a reflection component off the inner accretion disc, whose spectral shape is distorted by relativistic effects. Using data from the two highest–quality, relatively unabsorbed observations Suzaku and XMM 2, we show that the X-ray spectrum is indeed best–described by a power law continuum affected by warm absorption, a reflection component from distant matter (comprising an unresolved Fe emission line) and, most importantly, a relativistically distorted disc–reflection spectrum originating in the inner accretion flow. Although its significance is rather low (about 2σ, see Fig. 9), an X-ray reverberation lag between the continuum– and disc–reflection–dominated bands supports our spectral model and suggests that the continuum and reprocessing sites are separated by \(\sim 7 r_g \). From our disc–reflection model, we infer that the black hole powering the AGN in ESO 362–G18 is a rapidly spinning Kerr black hole, and we measure a black hole spin \(a_\text{\bullet} \geq 0.92 \) at the 99.99 per cent (statistical) confidence level. The disc–reflection emissivity profile is steep, with \(q = 4.3^{+0.8}_{-0.6} \) and the inclination \(i \) between the disc axis and our LOS is \(53^\circ \pm 5^\circ \). Such a relatively high inclination implies that our LOS may intercept the classical obscuring torus of AGN unification schemes whose half–opening angle is typically assumed to be of the order of 45°.

Indeed, we observe X-ray absorption variability during our campaign, pointing to a clumpy nature of the cold absorber. All observations but one are consistent with being unabsorbed, or only mildly absorbed. The absorbed observation XMM 1 is characterized by a column density of \(\sim 3 \times 10^{23} \) cm\(^{-2} \) and a covering fraction of \(C_1 \geq 0.94 \). On the other hand, the previous Swift observation performed only 63 days earlier is consistent with a typical mildly absorbed state, with a neutral column density about two orders of magnitude lower. UV variability between the absorbed XMM 1 and the unabsorbed Swift and XMM 2 observations strongly suggests that absorption is due to a dusty cloud of the clumpy torus transiting the LOS during the (only) heavily obscured observation of our monitoring campaign.

It is worth pointing out that, in our best–fitting spectral model, the absorber is applied to both the power law continuum and the disc–reflection component with the same covering fraction in each observation. We now perform a simple check of this assumption. We select the two most heavily absorbed observations (namely the XMM 1 and XMM 2 ones). Our best–fitting model, obtained by assuming the same covering fraction towards the two spectral components in each observation, results in \(\chi^2 = 1634 \) for 1579 dof. We then allow the covering fraction towards the power law and the disc–reflection component to be different. We reach a similar statistical quality (\(\chi^2 = 1631 \) for 1577 dof), and the covering fraction towards the two components is consistent with being the same during each observation. This means that any constraint that can be obtained on the size of the X-ray emitting region is valid for both spectral components.

The relatively short X-ray absorption variability timescale of \(\sim 2 \) months between the Swift and XMM 1 observations enables us to constrain the X-ray emitting–region size to \(D_X \leq 96 r_g \), i.e. assuming the natural axial symmetry, \(D_X/2 = R_X \leq 48 r_g \). As absorption affects both the power law continuum (X-ray corona) and soft excess (disc–reflection, according to our spectral decomposition), \(R_X \) has to be associated with the outer boundary of the largest of the two emitting sites. The resulting compact nature of the soft excess emitting–region is fully consistent with our interpretation in terms of disc–reflection as, according to our model (and the steep emissivity profile), the bulk of the X-ray reflection flux originates from radii within \(\sim 10 r_g \). If the observed time lag between continuum and soft excess dominated energies can be interpreted roughly as the light–crossing–time between the continuum and soft excess emitting sites (a delay that would then correspond to a distance of \(\sim 7 r_g \)), our upper limit on the X-ray source size(s) is likely to significantly overestimate the real geometrical sizes.

As the X-ray source is consistent with being fully covered during the XMM 1 observation, the cloud linear size must be larger (or at most equal) to the X-ray source size. By combining this result with the observed column density we infer a cloud density of \(n_e \leq 6.7 \times 10^8 \) cm\(^{-3} \). Such a density is lower than that required for BLR clouds, supporting our identification of the variable absorber with one cloud of the dusty, clumpy torus.

9 CONCLUSIONS

In summary, ESO 362–G18 is a Seyfert galaxy characterized by an averaged bolometric luminosity of \(1.3 \times 10^{44} \) erg s\(^{-1} \) which, considering our best–estimate for the black hole mass of \(4.5 \times 10^7 M_\odot \), translates into an Eddington ratio of 0.02. The X-ray spectrum comprises a reflection component off the inner accretion disc around an almost maximally spinning Kerr black hole, and we infer a disc inclination of \(\sim 53^\circ \). Such high an inclination is expected to intercept, at least at times, the atmosphere of the obscuring torus which is generally thought to have a half–opening angle of \(\sim 45^\circ \). Indeed, we detect variable X-ray absorption in our data, with the most remarkable event occurring over \(\lesssim 2 \) months. The X-ray and UV data enable us to identify the variable absorber with the clumpy, dusty torus. The observed occultation event suggests that both the X-ray continuum and soft excess originate in a compact region within \(\lesssim 50 r_g \) from the central black hole. This supports our view that the soft excess is due to relativistic disc–reflection off the partially ionized disc surface. The detection of a relatively short time lag between the continuum and the soft excess also supports this interpretation and the inferred continuum–to–reprocessor distance (\(\sim 7 r_g \)) may indicate that the actual size of the X-ray emitting region(s) is significantly overestimated by our upper limit.

ACKNOWLEDGMENTS

This work is based on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. We made use of data obtained from the Chandra Data Archive, and software provided by the Chandra X-ray Center (CXC). We acknowledge the use of public data from the Swift data archive. This work also made use of data from the Suzaku observatory, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). This work has made use of data and/or software provided
REFERENCES

Bennert, N., Jungwiert, B., Komossa, S., Haas, M., Chini, R., 2006, A&A, 459, 55

Bentz, M. C., et al., 2009, ApJ, 705, 199

Bianchi, S., Miniutti, G., Fabian, A. C., Iwasawa, K., 2005, MNRAS, 360, 380

Bianchi, S., Piconcelli, E., Chabrier, M., Jiménez-Bailón, E., Matt, G., Fiore, F., 2009, ApJ, 695, 781

Brenneman, L. W., Reynolds, C. S., 2006, ApJ, 652, 1028

Cackett, E. M., Fabian, A. C., Zoghbi, A., Kara, E., Reynolds, C. S., Uttley, P., 2013, ApJ Lett., 764, L9

Chartas, G., Kochanek, C. S., Dai, X., Pointdexter, S., Garmire, G., 2009, ApJ, 693, 174

Dai, X., Kochanek, C. S., Chartas, G., Kozlowski, S., Morgan, C. W., Garmire, G., Agol, E., 2010, ApJ, 709, 278

Davidson, K., Netzer, H., 1979, Reviews of Modern Physics, 51, 715

de Marco, B., Ponti, G., Utley, P., Cappi, M., Dadina, M., Fabian, A. C., Miniutti, G., 2011, MNRAS, 417, L98

de Marco, B., Ponti, G., Cappi, M., Dadina, M., Utley, P., Cackett, E. M., Fabian, A. C., Miniutti, G., 2013, MNRAS, 431, 2441

Elitzur, M., Shlosman, I., 2006, ApJ Lett., 648, L101

Elvis, M., Risaliti, G., Nicastro, F., Miller, J. M., Fiore, F., Puccetti, S., 2004, ApJ Lett., 615, L25

Emmanoulopoulos, D., McHardy, I. M., Papadakis, I. E., 2011, MNRAS, 416, L94

Fabian, A. C., et al., 2009, Nature, 459, 540

Fabian, A. C. et al., 2013, MNRAS, 429, 2917

Faqqueli, H. A., Storchi-Bergmann, T., Binette, L., 2000, ApJ, 532, 867

Garcia-Rissmann, A., Vela, L. R., Asari, N. V., Cid Fernandes, R., 2000, ApJ, 532, 867

González Delgado, R. M., Storchi-Bergmann, T., 2005, MNRAS, 359, 765

Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775

Kara, E., Fabian, A. C., Cackett, E. M., Steiner, J. F., Uttley, P., Wilkins, D. R., Zoghbi, A., 2013a, MNRAS, 428, 2795

Kara, E., Fabian, A. C., Cackett, E. M., Miniutti, G., Uttley, P., 2013b, MNRAS, 430, 1408

Kara, E., Fabian, A. C., Cackett, E. M., Uttley, P., Wilkins, D. R., Zoghbi, A., 2013c, MNRAS, 434, 1129

Lamer, G., Uttley, P., McHardy, I. M., 2003, MNRAS, 342, L41

Laor, A., 1991, ApJ, 376, 90

Legg, E., Miller, L., Turner, T. J., Giustini, M., Reeves, J. N., Kraemer, S. B., 2012, ApJ, 760, 73

Maiolino, R. et al., 2010, A&A, 517, A47

Markowitz, A. G., Krumpe, M., Nikutta, R., 2014, MNRAS, 439, 1403

Marinucci, A. et al., 2013, MNRAS, 429, 2581

Merritt, D., Ferrarese, L., 2001, ApJ, 547, 140

Miller, L., Turner, T. J., Reeves, J. N., Braito, V., 2010, MNRAS, 408, 1928

Miniutti, G. et al., 2014, MNRAS, 437, 1776

Morgan, C. W., Kochanek, C. S., Dai, X., Morgan, N. D., Falco, E. E., 2008, ApJ, 689, 755

Morgan, C. W. et al., 2012, ApJ, 756, 52

Mosquera, A. M., Kochanek, C. S., Chen, B., Dai, X., Blackburne, J. A., Chartas, G., 2013, ApJ, 769, 53

Nandra, K., O’Neill, P. M., George, I. M., Reeves, J. N., 2007, MNRAS, 382, 194

Nenkova, M., Sirocky, M. M., Ivezic, Z., Elitzur, M., 2008a, ApJ, 685, 147

Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezic, Z., Elitzur, M., 2008b, ApJ, 685, 160

Park, D., Kelly, B. C., Woo, J.-H., Treu, T., 2012, ApJS, 203, 6

Piconcelli, E., Jimenez-Bailón, E., Guainazzi, M., Schartel, N., Rodríguez-Pascual, O. M., Santos-Lleó, M., 2005, A&A, 432, 15

Piconcelli, E., Bianchi, S., Guainazzi, M., Fiore, F., Chiaberge, M., 2007, A&A, 466, 855

Porquet, D., Dubau, J., 2000, A&A Supplement, 143, 495

Puccetti, S., Fiore, F., Risaliti, G., Capalbi, M., Elvis, M., Nicastro, F., 2007, MNRAS, 377, 607

Risaliti, G., Elvis, M., Fabbianaro, G., Baldi, A. & Zezas, A. 2005 ApJ, 623, L93-L96

Risaliti, G., Elvis, M., Fabbianaro, G., Baldi, A., Zezas, A., Salvati, M., 2007, ApJ Lett., 659, L111

Risaliti, G. et al., 2009, ApJ, 696, 160

Risaliti, G., Nardini, E., Salvati, M., Elvis, M., Fabbianaro G., Maiolino, R., Pietrini, P., Torricelli-Ciamponi, G., 2011, MNRAS, 410, 1027

Rivers, E., Markowitz, A., Rothschild, R., 2011, ApJ Lett., 742, L29

Ross, R. F., Fabian, A. C., 2005, MNRAS, 358, 211

Sanfrutos, M., Miniutti, G., Agís-González, B., Fabian, A. C., Miller, J. M., Panessa, F., Zoghbi, A., 2013, MNRAS, 436, 1588

Tremaine, S. et al., 2002, ApJ, 574, 740

Vasudevan, R. V., Mushotzky, R. F., Winter, L. M., Fabian, A. C., 2009, MNRAS, 399, 1553

Wilkins, D. R., Fabian, A. C., 2013, MNRAS, 430, 247

Winter, L. M., Mushotzky, R. F., Tueller, J., & Markwardt, C. 2008, ApJ, 674, 686

Woo, J.-H. et al., 2010, ApJ, 716, 269

Xiao, T., Barth, A. J., Greene, J. E., Ho, L. C., Bentz, M. C., Ludwig, R. R., Jiang, Y., 2011, ApJ, 739, 28

Zoghbi, A., Fabian, A. C., Reynolds, C. S., Cackett, E. M., 2012, MNRAS, 422, 129

Zoghbi, A., Reynolds, C., Cackett, E. M., Miniutti, G., Kara, E., Fabian, A. C., 2013, ApJ, 767, 121