Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia

Sujit Maiti1, Kiran Halagur Bhole Gowda Kumar1, Christina A. Castellani1, Richard O’Reilly2, Shiva M. Singh1,2*

1 Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, Ontario, Canada, 2 Department of Psychiatry and London Health Sciences Centre, The University of Western Ontario, London, Ontario, Canada

Abstract

Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (~80%) represented gains. In addition, ~10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.

Introduction

Genome-wide constancy and change underlies evolution and familial inheritance but remains ill-defined. An assessment of changes as the genome is passed on from one generation (meiosis) and developmental cycle (mitosis) to the next is needed. It directly contributes to the sum of genetic individuality. At present, these inquiries are difficult [2], and require the development of new quantitative methods to assess genome-wide changes and their significance. This report assesses two common measures of genomic variation: copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (~80%) represented gains. In addition, ~10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.

that all autosomal genes are present in two copies, with one allele inherited from each parent. The majority of CNVs are copy number polymorphisms (CNPs), existing in a frequency that is greater than 1% and transmitted across generations. However, a small proportion of CNVs are novel events. CNVs may account for a major fraction (~12%) of the genome, but appear to concentrate in some genomic regions depending on the sequence features [4,5]. Unlike CNVs, SNPs are relatively small changes, usually involving replacement of a nucleotide with another. SNPs are common and distributed across the entire human genome. Individual SNPs mark a unique genomic location, and are usually neutral in nature. In other cases, they may change amino-acids, cause protein truncation or affect expression. They are easily detected, and have been extensively exploited in genetic analysis including the cloning of disease causing genes, individual identification and establishment of genetic relatedness.

Studies on these two genome-wide variations (SNPs and CNVs) have greatly enhanced our understanding of evolution and genetic individuality. They are also helping to elucidate the cause of genetic, and genomic disorders including schizophrenia [6]. A number of SNPs appear to be linked to this complex neuro-developmental disease, which has a heritability estimate of 80%. However, results of linkage studies have not been consistently reproducible [7,8].
Results and Discussion

Familial Distribution of CNVs

The number of CNVs per individual ranged from 35 to 65, with the exception of one individual who is described more fully later (Table 2). This is similar to the number of CNVs per subject reported from most other studies that have used Affymetrix 6.0 Human SNP arrays [14]. The range is also comparable with the number of CNVs found in Venter’s genome (62) based on his complete genome sequence [15]. The exception in our study was the father in family 2 (II-1-1) who was found to harbour a rare chromosome 13q deletion containing 40 CNVs at a single genomic location. Although this finding is beyond the scope of this report, it is important to note that II-1-1 underwent chemotherapy treatment and that the samples utilized in this study were obtained towards the end of that treatment. Most CNVs identified were in the range of 100 to 200 Kb, consistent with the size distribution of CNVs reported in the literature [14]. The majority of CNVs observed (Table 3) were copy number gains (78.5%) and ~10% of the CNVs identified are not listed in the Database of Genomic Variants (http://projects.tcag.ca/variation/) accessed on 8.2.2010. Further, the chromosomal distribution of CNVs was comparable across individuals with the exception of the father in family 2 who had consistently higher CNVs affecting most chromosomes (Table 4). Of the CNVs identified, >50 per cent overlapped RefSeq genes. The identified genes are frequently associated with metabolic pathways such as starch and sucrose metabolism as well as pathways involved in the metabolism of amino acids, for example, phenylalanine, histidine and tyrosine (H2Z4A, HZ1A, ALDH1LI1, PSMD1). Structurally, >67% of the CNVs identified were flanked at both the 5’ and 3’ end or at just the 5’ (>7%) or 3’ (>8%) end with a set of common repeats, represented by short interspersed nucleotide elements (SINEs), long interspersed nucleotide elements (LINEs), long terminal repeats (LTRs) and low copy repeats (LCRs) near the breakpoints. The majority of the deletion breakpoints had 1–30 bp of microhomology, whereas a small fraction of deletion breakpoints contained inserted sequences. The co-occurrence of microhomology and inserted sequence suggests that both recombination and replication based mutational mechanisms are operational in CNV generation. Recent studies have identified short DNA motifs that both determine the location of meiotic crossover hotspots and are significantly enriched at the breakpoints of recurrent non-allelic homologous recombination (NAHR) syndromes [16]. We found evidence for this mechanism in a subset of the breakpoint events (data not shown). This was true for the de novo (Figure 2a) as well as inherited (Figure 2b) CNVs. Such sequences may represent genomic architecture that is prone to genome instability by a predisposition to genomic rearrangements via non-homologous end joining (NHEJ), template switching and/or non-allelic homologous recombination (NAHR).

Familial vs de novo Origin of CNVs

A novel feature of the data included in this report is that we are able to classify observed CNVs into two groups based on their origin. The designations included in this figure are followed in subsequent figures and tables.

doi:10.1371/journal.pone.0017125.g001

![Pedigree of two families with monozygotic twins discordant for schizophrenia](image)

Figure 1. Pedigree of two families with monozygotic twins discordant for schizophrenia. Members of the family one are indicated with (I-) and members of the family two are indicated with (II-).

Family 1	Family 2							
I-1-1	I-1-2	I-2-1	I-2-2	II-1-1	II-1-2	II-2-1	II-2-2	
Age (yr.) at assessment	82	74	53	53	N/A	N/A	43	43
Sex	Male	Female	Female	Female	Male	Female	Female	Female
Declared Race	Afro-American	Caucasian						
Psychiatric features	Compulsive Personality Disorder	Schizophrenia, Paranoid Type, onset age 22	Bipolar I Disorder, onset age 52	Major depression and panic disorder for 6 months after cardiac surgery, onset age 73	N/A	Schizoaffective Disorder, onset age 27	Single episode of Major Depression, fully remitted, onset age 18	

Demography and Clinical History of monozygotic (MZ) twins discordant for Schizophrenia (SCZ). Family one is indicated with (I), family two is indicated with (II).

N/A = Not Applicable.

doi:10.1371/journal.pone.0017125.t001

Table 1. Demography and Clinical History.
absence or presence in one of the parents. CNVs that were found in one or both twins and not seen in either parent, were classified as de novo. If a de novo CNV was present in both twins, it was considered to have originated during parental meiosis and when present in only one of the two twins, it was assumed to have originated in mitosis during development. This classification allowed us to identify 14 and 26 de novo CNVs in family 1 (Table 5) and family 2 (Table 6) respectively. The table includes genomic locations as well as individual specific break points which allow for the assessment of regions of overlap with the Database of Genomic Variants (Toronto, Ontario). Mitotic origin of CNVs was ~3 times higher than CNVs generated during parental meiosis. Of the mitotic de novo CNVs identified two (loss at 14q32.11 as well as loss at 8q11.21) were specific to the patient in family 1. Other CNVs of that particular size range were observed in that particular individual.

Table 2. Distribution of CNV among family members according to size.

CNV Size	Family 1	Family 2						
	I-1-1	I-1-2	I-2-1	I-2-2	II-1-1	II-1-2	II-2-1	II-2-2
<= 100 kb	0 0 0 0 2 0 0 0	0 0 0 0 2 0 0 0						
>100 to 200 kb	17 18 15 20 119 50 24 24	17 18 15 20 119 50 24 24						
>200 to 300 kb	11 6 4 10 25 6 13 9	11 6 4 10 25 6 13 9						
>300 to 400 kb	5 5 6 5 11 3 1 4	5 5 6 5 11 3 1 4						
>400 to 500 kb	2 0 2 2 6 1 1 2	2 0 2 2 6 1 1 2						
>500 to 1000 kb	6 2 4 7 7 2 5 2	6 2 4 7 7 2 5 2						
>1 to 10 Mb	9 4 5 3 5 2 4 5	9 4 5 3 5 2 4 5						
>10 to 20 Mb	5 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0						
>20 Mb	3 0 0 0 2 0 2 2	3 0 0 0 2 0 2 2						
Total	58 35 36 47 177 64 50 49	58 35 36 47 177 64 50 49						

Numerical values in each cell of the table indicate how many CNVs of that particular size range were observed in that particular individual. doi:10.1371/journal.pone.0017125.t003

Table 3. Identity of copy number variants across individual family members.

CNVss	Family 1	Family 2						
	I-1-1	I-1-2	I-2-1	I-2-2	II-1-1	II-1-2	II-2-1	II-2-2
No. of Loss	21 6 5 6 52 11 6 4	21 6 5 6 52 11 6 4						
No. of Gain	37 29 31 41 125 53 44 45	37 29 31 41 125 53 44 45						
Novel (absent in DGV)	1 1 0 2 42 6 1 0	1 1 0 2 42 6 1 0						
Present in DGV	57 34 36 45 135 58 49 49	57 34 36 45 135 58 49 49						
Total (for the individual)	58 35 36 47 177 64 50 49	58 35 36 47 177 64 50 49						

Frequency of CNVs which are losses (deletion) or gains (duplication) and characterization as present or absent from The Database of Genomic Variants (DGV).

doi:10.1371/journal.pone.0017125.t004

Assessment of such questions. Nonetheless, it is appropriate to entertain the discussion that the known features of these genes are or are not compatible with disturbances observed in schizophrenia, which is discussed below.

De novo CNVs and Schizophrenia

The genes overlapping disease specific de novo CNVs in family 1 included PSMC1 (proteasome 26S subunit, ATPase, 1) and C14orf102 (chromosome 14 open reading frame 102 gene) on 14q32.11 and KIAA0146 on 8q11.21. PSMC1 (MIM 602706) is an ATP-dependent protease [17] that may include protein ubiquitination in response to DNA damage [18]. It is composed of a 20S catalytic proteasome and 2 PA700 regulatory modules and contains an AAA (ATPases associated with diverse cellular activities) domain [17]. The human and mouse proteins are 99% identical [19] and may play a significant role in ubiquitin-mediated proteasomal proteolysis in the molecular pathogenesis of neurological diseases such as spinocerebellar ataxia type 7 (SCA7). Also, several studies (for review, see [20,21]), have indicated that the genes related to ubiquitination are altered in the brains of patients with schizophrenia. Further, this CNV also affects another gene (C14orf102; chromosome 14 open reading frame 102) which is conserved across phyla and highly expressed in the brain.
(Affymetrix GNF Expression Atlas 2 Data). The other CNV affected in this patient of family 1 represents a loss at 8q11.21, that contains the still uncharacterized gene, KIAA0146, which is expressed in the brain, may contain a CAG repeat and is conserved in chimpanzee, dog, cow, mouse, rat, chicken, and zebra fish. It is a transcription factor with CCAAT enhancer binding protein (CEBP) function [22]. Further the gene is highly expressed in the brain and hippocampus that may implicate it in mental disorders (www.genecards.org). Although we cannot rule out a role for these three genes (PSMC1, C14orf102 and KIAA0146) in schizophrenia, such conclusions would be premature. Only a follow up study will establish if any of the three genes directly contribute to the development of schizophrenia in the patient from family 1. A similar analysis of CNVs in family 2 has identified a 109 kb gain at 19q13.41 that is specific to the schizophrenia patient in family 2. Translocations involving 19q13 are a frequent finding in follicular adenomas of the thyroid and may represent the most frequent type of structural aberration in human epithelial tumors [23]. The CNV identified in this region contains two genes; DPRX1 and ZNF331. DPRX1 (divergent-paired related homeobox) is a member of the DPRX homeobox gene family, contains a single conserved homeodomain and may function as a putative transcription factor. It may bind a promoter or enhancer sequence or interact with a DNA binding transcription factor and is involved in early embryonic development and cell differentiation [24]. The drosophila homologue of the DPRX1 gene (dPrx5;
Table 5. de novo CNVs in Family 1.

Sl. No	Location	Family 1	Status	Meiosis	Mitosis	Novel	Genes (Overlapping or Nearby)	SD	
			I-2-1	Size (kb)	Breakpoints	I-2-2	Size (kb)	Breakpoints	
1	1p36.13	Yes	112	1672089...16835888	Gain	Yes	NBPF1, NBPF10	1	
2	2p25.3	Yes	152	1407209...1559511	Gain	Yes	TPO	0	
3	2p11.2	Yes	1147	89862331...91008912	Loss	Yes		0	
4	4q28.3	Yes	191	132801221...132992517	Gain	Yes		1	
5	7q11.21	Yes	118	64706066...64823721	Loss	Yes		1	
6	8p23.1	Yes	126	7847289...7973253	Loss	Yes		1	
7	8q11.1	Yes	336	47045602...47381308	Gain	Yes		0	
8	8q11.21	Yes	154	48178242...48332398	Loss	Yes	Yes	KIAA0146	0
9	9p11.2	Yes	569	45361389...45929992	Gain	Yes	FAM27A	1	
10	9p13.1	Yes	141	38777481...38918566	Gain	Yes		1	
11	9q12	Yes	861	65412415...66273526	Gain	Yes		1	
12	12p13.31	Yes	196	8303317...8499801	Gain	Yes	CLEC6A	1	
13	14q32.11	Yes	103	89780137...8983415	Loss	Yes	Yes	PSMC1, C14orf102	0
14	21q11.2	Yes	119	13891136...14009908	Gain	Yes	ANKR021, LOC441956	1	
15	Xp11.23	Yes	149	47917899...48066856	Gain	Yes	SSX5, SSX1, SSX9	0	

doi:10.1371/journal.pone.0017125.t005
Table 6. de novo CNVs in Family 2.

Sl. No	Location	Family 2	Status	Melosis	Mitosis	Novel	Genes (Overlapping or Nearby)	SD
1	1q21.1	Yes	120	14368707…143987616	Gain	Yes	NOTCH2NL	0
2	1q21.1	Yes	104	147353175…147456930	Loss	Yes		0
3	1q43	Yes	119	241230453…241349107	Gain	Yes		0
4	3q21.2	Yes	155	126958012…127112518	Gain	Yes		1
5	4p11	Yes	299	4896100…49285347	Gain	Yes		0
6	5p15.33	Yes	101	770367…871743	Gain	Yes	ZDHHC11	1
7	5p13.3	Yes	151	34119387…34269887	Gain	Yes		1
8	7q11.21	Yes	202	61761008…61962936	Gain	Yes		0
9	7q11.21	Yes	116	64588316…64704125	Gain	Yes		1
10	7q35	Yes	100	142956516…143056637	Gain	Yes	LOC41294, FAM139A	1
11	8p23.1	Yes	220	12071704…12291845	Gain	Yes	FAM86B1, DEFB130	0
12	9p12	Yes	2720	41465094…44184664	Gain	Yes	ANKRD20A2, ANKRD20A3, FOXD4L4, FOXD4L2	1
13	9q12	Yes	250	67416254…67665974	Gain	Yes	ANKRD20A1, ANKRD20A3	1
14	11q13.2	Yes	267	67239223…67505822	Gain	Yes		1
15	12p13.31	Yes	189	8310909…8499801	Gain	Yes		1
16	13q11	Yes	208	18138676…18346383	Gain	Yes		1
17	14q11.1	Yes	601	18072112…18672662	Gain	Yes	OR1H12, ACTBL1	1
18	15q11.1	Yes	105	18276329…18382609	Gain	Yes		1
19	15q11.2	Yes	203	19882763…20085783	Gain	Yes	OR4M2, OR4N4, LOC630137	1
20	15q13.1	Yes	227	28608083…27103216	Gain	Yes	APBA2	0
21	15q13.2	Yes	110	28402853…28563274	Gain	Yes	CHRFAM7A	1
22	17p11.1	Yes	199	22127012…22326425	Gain	Yes		0
23	19q13.41	Yes	109	58847652…58957090	Gain	Yes	ZNF331, DPRX	0
24	20q11.1	Yes	118	28147331…28264860	Gain	Yes		1
25	21p11.2	Yes	3480	10106540…13586186	Gain	Yes	BAGE2, BAGE4, BAGE	0

Identity of de novo CNVs found in Family 1 (5a) and Family 2 (5b) and the gene regions (overlapping or nearby). De novo CNVs are defined as those that are present in either or both twins but not found in parents. SD displays the percentage of overlap with segmental duplications; '0' indicates no overlap between the CNV and segmental duplication and '1' indicates 90–100% overlap. The table includes genomic locations as well as twin specific breakpoints which allow for the assessment of regions of overlap with the Database of Genomic Variants (Toronto, Ontario). SI No. = Serial number. Novel indicates a CNV which is not present in The Database of Genomic Variants (DGV). doi:10.1371/journal.pone.0017125.t006
Table 7. Inherited CNVs in Family 1.

SL. No	Location	Size (kb)	Breakpoints	Status	Novel Genes (Overlapping or Nearby)	SD
1	1p36.33	Yes 167	51586...218057		Gain OR4F5, OR4F3, OR4F16, OR4F29	1
2	1q21.1	Yes 765	1475303136...148068045	Gain	PRLA4, FCGR1A, HIST2H2BF	1
3	2p11.2	Yes 338	8891715...89254935	Gain		1
4	2p11.1	Yes 138	91017077...91154841	Gain		1
5	2q21.2	Yes 236	132597824...132833718	Gain		1
6	3p12.3	Yes 306	75677859...75984129	Gain		1
7	3q21.2	Yes 132	126907150...127039328	Gain		1
8	3q21.3	Yes 170	131198515...131368353	Gain		1
9	4p16.2	Yes 196	4040542...4236511	Gain		1
10	4p11	Yes 436	48849363...49283347	Gain		1
11	4q35.2	Yes 232	191028137...191254119	Gain	FRG1, TUBB4Q, FRG2, DUX4	0
12	7p11.1	Yes 231	57523223...57753919	Gain		1
13	7q11.2	Yes 112	61365830...61477958	Gain		0
14	7q11.21	Yes 253	64820173...64573380	Loss	ZNF92	0
15	8p23.1	Yes 694	7209579...7903560	Loss	DEFB103A, DEFB103B, SPAG18, DEFB104B, DEFB104A, DEFB106B, DEFB106A, DEFB108B, DEFB109A, DEFB109B, DEFB109A, SPAG11A, DEF8	2
16	9q12	Yes 690	68115006...6805366	Gain	FOXD4L6, CBWD6, ANKR20A4, CCDC29	1
17	10q11.1	Yes 183	41972779...42155347	Gain		1
SL. No	Location	Family 1	Genes (Overlapping or Nearby)	Status	SD	
-------	----------	----------	-----------------------------	--------	----	
18	1p15.4	Yes 175	3405799...3580813	Gain	1	
19	1q13.2	Yes 227	6723922...6746368	Gain	1	
20	14q11.1	Yes 1322	18138794...19460382	Gain	0	
		Yes 1103	18072112...19175240	Gain	0	
		Yes 705	18072112...18776746	Gain	0	
		Yes 139	3430789...3569191			
21	14q32.33	Yes 126	105265510...105391419	Gain	0	
		Yes 167	105100670...1052681960	Gain	0	
		Yes 632	10519672...105822317			
		Yes 156	105413825...105526826			
		Yes 213	105289618...105502685			
		Yes 178	105807891...106005581			
		Yes 205	1056108896...105788389			
		Yes 279	10550896...105612786			
		Yes 20	18072112...18776746			
22	15q11.1	Yes 471	18370252...18841457	Gain	1	
		Yes 178	1852238...18700540			
		Yes 1233	18845990...20068512			
		Yes 1078	18845990...19923712			
		Yes 264	19303160...19566863			
23	15q11.2	Yes 189	2202687...22214843	Gain	1	
24	16p11.2	Yes 1217	32303108...33520394			
		Yes 1297	32538757...33836128			
		Yes 1142	32538757...33680554			
		Yes 249	32538757...32787273			
		Yes 752	32910359...33662480			
25	16p11.2	Yes 250	34374795...34624994			
		Yes 249	34375333...34624994			
26	17p11.2	Yes 140	20559979...20700313			
		Yes 164	20538867...20703365			
27	17q21.31	Yes 229	41521621...41750183			
		Yes 123	41521621...41644356			
28	17q21.31	Yes 351	41758620...42107467			
		Yes 392	4170624...42092926			
		Yes 302	4170624...42092926			
		Yes 204	9758730...9962501			
		Yes 204	9758730...9962501			
		Yes 3477	10106540...13538117			
30	21p11.1	Yes 3411	10106540...13538117			
		Yes 3419	10106540...13525448			
		Yes 3477	10106540...13538117			
31	22q11.1	Yes 339	14435171...14774593			
		Yes 320	14435207...14754960			
		Yes 320	14435207...14754960			
Drosophila peroxiredoxin 5) confers protection against oxidative stress, apoptosis and also promotes longevity [25]. The next gene, ZNF331 (zinc finger protein 331) affected by this CNV is also involved in DNA-dependent regulation of transcription as a transcriptional repressor [26]. Interestingly, it is one of the imprinted genes that exhibits monoallelic expression in a parent-of-origin specific manner [27]. Imprinted genes are important for development and behaviour and disruption of their expression is associated with many human disorders [28]. In conclusion the three genes affected in the schizophrenia patient in family 1 (PSMC1, C14orf102, KIAA0146) and the two genes affected in the patient of family 2 (DPRX1 and ZNF331) could not be excluded from their potential involvement in the development of schizophrenia in the two patients. If applicable, the biological systems affected in the two patients is hypothesized to be different. The patient in family one is hypothesized to have a ubiquitin-mediated proteasomal proteolysis while the patient of family 2 could have errors in regulatory mechanisms affecting gene regulation. Such conclusions must remain hypothetical until proven by independent supporting evidence.

De novo changes may lead to mosaicism

The genotypes generated by the Affymetrix 6.0 array have also allowed us to establish that ~0.12% (1086 and 1022 in twin pair 1 and 2 respectively; 11 substitutions shared by both pairs) of the SNPs in the twins represented *de novo* substitutions, but unlike CNVs, (that primarily originated during ontogeny in mitosis) most (63–65%) originated during parental meiosis. These results suggest that DNA replication fidelity at the level of single base pairs (SNPs) vs replication forks (CNVs) is differentially exercised during meiosis and mitosis. The single base pairing is much more stringent in mitosis (evolved to produce identical daughter cells), compared to meiosis where errors can facilitate potentially beneficial variations. In contrast, CNVs which affect the phenotype may be advantageous when occurring during mitosis and selected for during development. Thus, cell type specific CNVs may play a role in growth and development, offering advantageous variability. This would mean that most individuals are mosaics [29]: a hypothesis that is difficult to assess and evaluate. It is likely that the ratio of mosaic cells may be maintained throughout the differentiated (ectoderm, mesoderm, endoderm, etc) tissues over the lifetime [30,31]; an exception being when other factors are directly influencing DNA stability. Such a mechanism may generate genomic differences and differential mosaicism in most or all individuals. If this is the case, it will complicate traditional genetic analysis that assumes stability of the genome with rare exceptions.

We have been able to establish genome-wide (CNVs and SNPs) discordance for MZ twin pairs. Also, given that the twins are discordant for schizophrenia, it is possible to assign provisional CNVs (and genes) as well as substitutions (SNPs) that may be associated with the disease status of the affected twins in family 1 and family 2 (Table 7,8). Similarly, we identified substitutions (SNPs) that were different between the affected and unafflected member of the two sets of twins including their distribution along the chromosomes, introns and exons and the predicted effect on the gene product. Identity of *de novo* CNVs found in Family 1 (Table 5) and Family 2 (Table 6) and the gene regions which they overlapped was reported. *De novo* CNVs are defined as those that are present in either twin but not found in parents. In the tables, SD indicates the percentage of overlap between segmental duplications and the CNVs, '0' means there is no overlap between CNV and segmental duplication and ‘1’ means 90–100% overlap.

Table 7. Cont.

SL	Location	Family 1 Status	Novel Genes (Overlapping or Nearby)	SD
I-1-1	Size (kb)	Breakpoints	Site (kb)	Breakpoints
32	22q11.21	Yes	136	20145854…20281562
33	22q11.22	Yes	136	20145854…20281562

De novo changes may lead to mosaicism

The genotypes generated by the Affymetrix 6.0 array have also allowed us to establish that ~0.12% (1086 and 1022 in twin pair 1 and 2 respectively; 11 substitutions shared by both pairs) of the SNPs in the twins represented *de novo* substitutions, but unlike CNVs, (that primarily originated during ontogeny in mitosis) most (63–65%) originated during parental meiosis. These results suggest that DNA replication fidelity at the level of single base pairs (SNPs) vs replication forks (CNVs) is differentially exercised during meiosis and mitosis. The single base pairing is much more stringent in mitosis (evolved to produce identical daughter cells), compared to meiosis where errors can facilitate potentially beneficial variations. In contrast, CNVs which affect the phenotype may be advantageous when occurring during mitosis and selected for during development. Thus, cell type specific CNVs may play a role in growth and development, offering advantageous variability. This would mean that most individuals are mosaics [29]: a hypothesis that is difficult to assess and evaluate. It is likely that the ratio of mosaic cells may be maintained throughout the differentiated (ectoderm, mesoderm, endoderm, etc) tissues over the lifetime [30,31]; an exception being when other factors are directly influencing DNA stability. Such a mechanism may generate genomic differences and differential mosaicism in most or all individuals. If this is the case, it will complicate traditional genetic analysis that assumes stability of the genome with rare exceptions.

We have been able to establish genome-wide (CNVs and SNPs) discordance for MZ twin pairs. Also, given that the twins are discordant for schizophrenia, it is possible to assign provisional CNVs (and genes) as well as substitutions (SNPs) that may be associated with the disease status of the affected twins in family 1 and family 2 (Table 7,8). Similarly, we identified substitutions (SNPs) that were different between the affected and unaffected member of the two sets of twins including their distribution along the chromosomes, introns and exons and the predicted effect on the gene product. Identity of *de novo* CNVs found in Family 1 (Table 5) and Family 2 (Table 6) and the gene regions which they overlapped was reported. *De novo* CNVs are defined as those that are present in either twin but not found in parents. In the tables, SD indicates the percentage of overlap between segmental duplications and the CNVs, '0' means there is no overlap between CNV and segmental duplication and ‘1’ means 90–100% overlap.
Table 8. Inherited CNVs in Family 2.

Sl. No	Location	Family 2	Status	Genes (Overlapping or Nearby)	SD
1	1p36.33	Yes	707	5186..758644	
2	1p36.13	Yes	117	16718622..76835888	
3	1p21.1	Yes	130	1039107940..104012000	
4	1p11.2	Yes	21680	121045307..142725034	
5	1q23.3	Yes	121	159775403..159896554	
6	2p11.2	Yes	401	88925215..89326446	
7	2p11.1	Yes	160	91017077..91176948	
8	2q21.2	Yes	260	13259436..13285218	
9	3p12.3	Yes	260	75583442..75843060	
10	3q12.2	Yes	108	101822746..101930873	
11	3q21.3	Yes	121	159775403..159896554	
12	4p16.2	Yes	401	88925215..89326446	
13	3p12.3	Yes	260	75583442..75843060	
14	7p22.1	Yes	157	6838697..6995298	
15	7p11.1	Yes	117	57640100..57757406	
16	8p23.1	Yes	203	12415742..12618442	
17	8p11.3	Yes	139	39349470..39488053	
18	9p11.2	Yes	2137	44336683..66273526	
19	9q12	Yes	861	68352238..69213455	
20	10q11.2	Yes	129	41974976..42103488	
21	10p15.4	Yes	206	3383178..3588946	
22	14q11.2	Yes	232	2160285..21788783	
23	14q11.2	Yes	226	21804698..22030660	
24	14q32.33	Yes	286	105190672..10576359	
25	15q11.2	Yes	156	18682380..18838423	

Sources of Genomic Discordance between MZ Twins
SL No	Location	Family 2	Size II-1-1 (kb) Breakpoints	Size II-1-2 (kb) Breakpoints	Size II-2-1 (kb) Breakpoints	Size II-2-2 (kb) Breakpoints	Status	Genes (Overlapping or Nearby)	SD
26	15q25.3		Yes 1067 18861808…19928521	Yes 572 18850029…19422452	Yes 344 1845990…19189673	Gain OR4M2, OR4N4, LOC650137	Gain	1	
27	15q25.3		Yes 624 19207088…19835514	Gain	Gain	AKAP12	0		
28	16p11.2		Yes 118 31882658…3200323	Yes 1131 32531735…33662480	Yes 1377 32303108…33680554	Gain LOC729355, TP53TG3	Gain	1	
29	17q21.31		Yes 294 32088275…32382422	Gain	Gain	Gain	1		
30	18p11.21		Yes 185 32538757…32723310	Gain	Gain	Gain	1		
31	19q13.31		Yes 474 32962147…33463245	Gain	Gain	Gain	1		
32	21p11.2		Yes 211 3351476…33662480	Gain	Gain	Gain	1		
33	22q11.22		Yes 586 41521621…42107467	Yes 198 41521621…41719935	Yes 407 4170624…42107467	Gain KIAA1267, LRRRC37A, ARL17, LRRRC37A2, NSF	Gain	1	
34	Xp11.2		Yes 130 15218647…15348836	Gain	Gain	ROCK1	1		
35	Xq13.1		Yes 16 47917899…48029446	Yes 269 47917899…48186708	Yes 257 47935225…48192383	Gain SSX5, SSX1, SSX9, SSX3	Gain	1	
36	Xq13.1		Yes 185 71869375…72054837	Gain	Gain	DMRTC1	1		

Identity of inherited CNVs found in Family 1 (7), Family 2 (8) and the gene regions which they overlap. Inherited CNVs are those which are present in either or both parents and transmitted to either or both twins. All size is in kb. SD indicates the percentage of overlap between segmental duplications and CNVs. ‘0’ means there is no overlap between CNV and segmental duplication, ‘1’ means 90–100% and ‘2’ means 50–90% overlap. Parental CNVs not transmitted to offspring were not included in Table 5–8 so the total number of CNVs present in Table 2–4 was not same as Table 5–8. The table includes genomic locations as well as individual specific break points which allow for the assessment of regions of overlap with the Database of Genomic Variants (Toronto, Ontario). SI No. = Serial number. Novel indicates a CNV which is not present in The Database of Genomic Variants (DGV). doi:10.1371/journal.pone.0017125.t008
We also analyzed genes that overlapped de novo CNVs (gains and losses) in order to assess their potential effect on physiology and function starting with GO ontology annotation [http://www.geneontology.org]. Interestingly, the majority of genes belonged to transcription, DNA replication, transport, and cell signalling pathways, including 'binding' or 'catalytic' functions. A number of these genes are expressed in the brain, some with potential to affect neurophysiology, neurodevelopment and function and a set of them are known to show altered expression in schizophrenia (www.schizophreniaforum.org). Also of significance is the observation that the FAM19A5 protein encoded by the FAM19A5 gene (22q13.32) belongs to the TATA protein family which are predominantly expressed in the brain, and are postulated to function as brain-specific chemokinases or neurokinines, that act as regulators of immune and nervous cells [32]. This finding adds to the existing speculation about the role of the Major Histocompatibility Loci (MHC) and infection in SCZ. Functional analysis of this gene and upstream regulatory elements for characteristic patterns of nucleosome occupancy changes associated with enhancers could yield novel insights into the role of this gene in psychiatric disorders. IPA analysis of gene networks of CNVs and SNPs converged on cell cycle, cellular growth and proliferation. Genes involved in genetic disorders such as hematological disease, immunological, inflammatory and developmental disorders were overrepresented. These results support the hypothesis that schizophrenia is a “developmental disorder” at the molecular level. Interestingly, a recent co-expression network analysis of microarray-based brain gene expression data revealed perturbations in developmental processes in schizophrenia [33]. However, given that these results are based on only two twin pairs, and schizophrenia is highly heterogeneous, the results on disease causations cannot be generalized. Also, we have offered other explanations for twin discordance that may involve epigenetic changes [34].

It is not surprising that genomic studies have begun to use monozygotic twins. In fact a number of them have identified copy number variations [35] and epigenetic [36–38] differences between them; an exception to these results is a recent study by Baranzini et al [39]. They studied three pairs of monozygotic twins discordant for Multiple Sclerosis (MS) and found no difference that could account for the disease causation. The results may be viewed as not surprising for a number of reasons. First, MS is known to have significant environmental components including sunlight and viruses, among others, [40] and the concordance rate in monozygotic twins is only ~30%. Second, they assessed the CD4+ lymphocytes only that may or may not represent the causative cell type. Also, they sequenced the genome of CD4+ cells from a single pair corresponding to 21.7 and 22.5-fold coverage representing 99.6% and 99.5% of the NCBI human reference genome, which may or may not be effective. Only additional genomic and epigenomic studies on MZ twins will offer insights into the dynamics of genomic stability and change, that forms the focus of this report.

In summary, the present study adds to the recent effort in human genetics to define the phenomenon of constancy and change using inheritance and origin of genome-wide CNVs and SNPs. The results demonstrate that CNVs often result from mitosis during early development facilitated by flanking repeats. They may lead to CNV differences among different tissue and make most individuals mosaics. The described approach expands the search for disease related genetic changes, indicates the time of their occurrence and begins to interrogate the mechanisms involved.

Materials and Methods

This research was approved by the Committee on Research Involving Human Subjects at the University of Western Ontario. The families and patients were identified, recruited and clinically assessed by Dr. Richard O’Reilly (Psychiatrist) and all participants (Figure 1) gave informed consent and provided blood and buccal cells for this research. All subjects were interviewed using the Structured Clinical Interview for DSM IV and the SCID II (for personality disorders) and their medical records collected and reviewed. Diagnoses and demographic information are listed in Table 1. DNA was extracted from the collected white blood cells using the perfect DNA blood kit (5prime.com) following the manufacturer’s protocol. Subsequent microarray analysis was performed using the Affymetrix Genome-Wide Human SNP Array 6.0 at the London Regional Genomics Centre (LRGC) following manufacturer’s protocol and stringent quality control measures. Briefly, 5 μg of genomic DNA was labelled and hybridized to Affymetrix SNP 6.0 arrays. CNVs called by both Affymetrix Genotyping Console 4.0 and Partek® Genotyping SuiteTM software suites were retained for analysis. In both cases, the CNVs were identified by continuity of markers on a segment. Two CNVs that overlapped by >50% in the two methods of data analysis were given the same identity. Every measure was undertaken to avoid inclusion of false positives including correction for segmental duplications. We found evidence of CNVs associated with segmental duplications which agrees with previous studies [41]. The CNVs identified were further assessed by comparison to the Database of Genomic Variants (http://projects.tcag.ca/variation/) and annotated with gene symbols by importing the annotation file from the UCSC genome browser (NCBI36/hg 18). A CNV that was present in both members of the twin pair and not in either of their two parents was considered to be meiotic de novo (originated during gamete formation), while a CNV that was present in one of the two twins and not present in either parent was considered to be mitotic de novo (originated during development). Further, a CNV present in the SCZ affected twin only (as compared to the two parents and unaffected member of the pair or the database) was classified as “provisional de novo CNV” for this disease. Novel CNVs discovered in this study were validated for predicted CNVs by Real Time PCR analysis with an internal control (RNAseP gene) using TaqMan detection chemistry and the ABI Prism 7300 Sequence Detection System (Applied Biosystems, http://www.appliedbiosystems.org). The copy number of the test locus in each case was defined as \[2^{\Delta CT}\] where \(\Delta CT\) is the difference in threshold cycle number for the test and reference loci.

Additional CNV analysis focused on two aspects. The first deals with identification of putative repeat elements in the flanking regions of CNVs; within a 1 kb region upstream and downstream of the CNV breakpoint which could promote breakage, deletion and duplication. The identification of repeat elements was carried out using repeat masker (http://www.repeatmasker.org/). Secondly, a probable mechanism associated with sequence-specific susceptibility to CNVs was queried. This data was used to test models related to the origin of CNVs. Previously reported candidates for CNV mechanisms include Non-Allelic Homologous Recombination (NAHR), Non-Homologous End Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS) and Microhomology-Mediated Break-Induced Replication (MMBIR) [42]. The second line of investigation involved functional characterization of genes by matching of the identified genes with the Schizophrenia Gene Database (http://www.schizophreniaforum.org/res/sczgene/default.asp) as well as their assessment by GO ontology.
including their potential effect on the gene and gene product, as well as pathways that may be affected.

Acknowledgments
We thank members of the two families who participated in this research.

Author Contributions
Conceived and designed the experiments: SS RO. Performed the experiments: SM KHBGK CC. Analyzed the data: SM CC. Contributed reagents/materials/analysis tools: RO SS. Wrote the paper: SS.

References
1. Fisher RA (1919) The Genesis of Twins. Genetics 4: 489–499.
2. Venter JC (2010) Multiple personal genomes avail. Nature 464: 676-677.
3. Lee C, Scherer SW (2010) The clinical context of copy number variation in the human genome. Expert Rev Mol Med 12: e8.
4. Irifune A, Irie A, Okada Y, Konishi N, Yamori Y, et al. (2004) Deletion of large-scale variation in the human genome. Nat Genet 36: 949-951.
5. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528.
6. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61: 473–487.
7. Walsh T, Clénet JM, McCarthy SE, Addition AM, Pierce SB, et al. (2010) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 329: 539-543.
8. Nédélec F, Ge D, Weale ME, Maia J, Feng S, et al. (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5: e1000373.
9. Singh SM, Castellani CA, O’Reilly RL (2009) Copy number variation showers between cytogenetic findings and histology. Cancer Genet Cytogenet 101: 42–48.
10. Ku CS, Pawitan Y, Sim X, Ong RT, Seielstad M, et al. (2010) Genomic copy number polymorphism in the human genome. Science 329: 539-543.
11. Kirov G (2010) The role of copy number variation in schizophrenia. Expert Rev Neurother 10: 23–32.
12. Gottesman II, Bertelsen A (1989) Commenting unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer's Danish identical and fraternal discordant twins. Arch Gen Psychiatry 46: 867-872.
13. McCaffery J, Asherson P, Owen M, Farmer A (1994) The strength of the genetic effects. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 164: 593–599.
14. Ku CS, Pawitan Y, Sin X, Ong RT, Seielstad M, et al. (2010) Genomic copy number variations in three Southeast Asian populations. Hum Mutat 31: 851-857.
15. Levy S, Sutton G, Ng PG, Feuk L, Halpern AL, et al. (2007) The diploid genome sequence of an individual human. PLoS Biol 5: e124.
16. Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common second gene in a dicistronic operon. Biochim Biophys Acta 1518: 190–193.
17. Dacelemans C, Ritchie ME, Smiths G, Abou-Amero S, Sudbury IM, et al. (2010) High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet 11: 25.
18. Melboom M, Mauro AH, Pentimalli F, Fusco A, Belge G, et al. (2003) A 3.4-kbp transcript of ZNF331 is solely expressed in follicular thyroid adenomas. Crytogenet Genome Res 101: 113–117.
19. Fruhling S (1998) The origin and evolution of human chromosome segments. Biochim Biophys Acta 1372: 233–239.
20. Ku CS, Pawitan Y, Sim X, Ong RT, Seielstad M, et al. (2010) Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry 67: 318–327.
21. Konradi C (2005) Gene expression microarray studies in polygenic psychiatric disorders: applications and data analysis. Brain Res Brain Res Rev 50: 142–155.
22. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, et al. (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. PLoS Genet 6: e1000832.
23. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, et al. (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15: 577–583.
24. Schwartz M (2010) The emergence of a new science of the mind: immunology benefits the mind. Mol Psychiatry 15: 337–338.
25. Torkamani A, Dean B, Schork NJ, Thomas EA (2010) Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 20: 403–412.
26. Singh SM, O’Reilly RL (2009) Epigenomics and neurodevelopment in schizophrenia: monogenic expression of schizophrenia? Mol Psychiatry 14: 356–358.