Research Article

Holder’s Inequality ρ–Mean Continuity for Existence and Uniqueness Solution of Fractional Multi-Integrodifferential Delay System

Sameer Qasim Hasan

Department of Mathematics, University of Mustansiriyah, Baghdad, Iraq

Correspondence should be addressed to Sameer Qasim Hasan; dr.sameer_kasim@yahoo.com

Received 22 November 2019; Revised 31 December 2019; Accepted 10 January 2020; Published 10 March 2020

Academic Editor: Nan-Jing Huang

Copyright © 2020 Sameer Qasim Hasan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We herein present the detailed results for the existence and uniqueness of mild solution for multifractional order impulsive integrodifferential control equations with a nonlocal condition involving several types of semigroups of bounded linear operators, which were established on probability density functions related with the fractional differential equation. Additionally, we present the necessary and sufficient conditions to investigate Schauder’s fixed point theorem with Holder’s inequality ρ–mean continuity and infinite delay parameter to guarantee the uniqueness of a fixed point.

1. Introduction

The importance of investigating the solution for fractional order derivatives in integrodifferential equations with a nonlocal initial or boundary condition lies in the fact that they include several classes of fractional order integrodifferential equations, as presented in studies on the existence and uniqueness of nonlocal initial fractional order integrodifferential equations in [1–5] and in some other studies with a nonlocal boundary condition [6], as well as fractional order differential equations involving integral conditions as a boundary condition, as found in multiple papers, including those by [7, 8].

Additionally, existence and uniqueness investigated in several studies for impulsive fractional order integrodifferential problems are presented in [3, 9–14]. Integral nonlocal conditions for impulsive fractional order integrodifferential equations are also presented in [15, 16].

We consider the impulsive multifractional order integrodifferential equations with nonlocal conditions and finite delay as follows:

\[{}^cD^\alpha x(t) = Ax(t) + Bu(t) + f \left(t, x(t), I_1^{\beta_1}(x(t)), I_2^{\beta_2}(x(t)) \right), \]
\[t \in J = [0, b], t \neq t_i, \]
\[\Delta x_{t=t_i} = I_i(x(t_i)), \quad i = 1, 2, \ldots, s, \]
\[x(t) = \emptyset (t) + g(x)(t), \quad t \in [-r, 0], \]

where $^cD^\alpha$ and $I_1^{\beta_1}$ and $I_2^{\beta_2}$ are the Caputo fractional derivative and fractional integration, respectively, of order $0 < \alpha, \beta_1, \beta_2 < 1$, the state $x(\cdot)$ is defined on the Banach space X with the norm $\| \cdot \|$, $u(\cdot)$ is the control function in Banach space $L^2(J, V)$ of admissible control functions, and V is Banach space, where $B: V \rightarrow X$ is a linear bounded operator. $\{T(t)\}_{t \geq 0}$ is a strongly continuous semigroup of operators on X generated by A. $PC(J, X) = \{ x: [0, b] \rightarrow X, x(t) \text{ is continuous at } \ t \neq t_k \text{ and left continuous at } t = t_k \text{ and } x(t_k^-) \},$ the impulsive functions $I_i: \mathcal{D} \rightarrow X$, $i = 1, 2, \ldots, s$, where $0 < t_1 < t_2 < \cdots < t_s < t_{s+1} = b$. The functions
f: J × ∂ × X × X → X and g: PC(J, X) → X are continuous and satisfies some assumptions, where \(∂ = \{ω: [-r, 0) → X, ω(t)\text{ is continuous for all } t ∈ J \text{ except for a finite number of points } t_i \text{ at which } ω(t_i+) \text{ and } ω(t_i−) \text{ exist and } ω(t_i) = ω(t_i−)\} \), the impulsive functions \(I_i: ∂ → X, \ i = 1, 2, \ldots, s, \ 0 < t_1 < t_2 < \cdots < t_s < t_{s+1} = b, \) the jump of a function \(x \) at \(t_i \) is denoted by \(Δx(t_i) \), which is defined by \(Δx(t_i) = x(t_i−) − x(t_i+) \).

For \(x ∈ PC(J, X) \), we denote \(x_1 \) as the function in \(∂ \) given by \(x_1(θ) = x(t+θ), \ θ ∈ [-r, 0], \) and ∂ is a given function in \(∂ \).

Furthermore, \(PC([-r, b], X) \) is a Banach space of all piecewise continuous functions with the norm \(\|x\| = sup\{\|x(t)\|: t ∈ [-r, b]\} \).

The scientific problem of these types of fractional integrodifferential equations that have not easy solvability even some time there are difficult to study also their behaviours for their solutions on the certain space and the description of the equation terms, however it is need more effort and practice when the solvability of these problems have been investigated will be cover all a particular results from this problem such as [3, 10, 11].

In this paper, we first present the basic theory of existence and uniqueness of mild solution for multi-fractional order impulsive integrodifferential control equations with a nonlocal condition and infinite delay parameter (1) by defining several types of semigroups of linear bounded operators established on probability density functions defined on \((0, ∞) \) and consider the necessary and sufficient estimators conditions, which play an important role in investigating Schauder’s fixed point theorem with Holder’s inequality \(p \)-mean continuity to guarantee the existence and uniqueness of a fixed point.

2. Preliminaries

Definition 1 (see [17]). Let \(AC[0, ∞) \) be a space of absolutely continuous function. Then, the fractional integral for a function \(g ∈ AC[0, ∞) \) of order \(α \) is defined as follows:

\[
I^αg(t) = \frac{1}{Γ(α)} \int_0^t \frac{g(s)}{(t − s)^{1−α}} ds, \quad t > 0, \ 0 < α < 1,
\]

where \(Γ(·) \) is the gamma function.

Definition 2 (see [17]). The Caputo derivative for a function \(g ∈ AC[0, ∞) \) of order \(α \) is defined as follows:

\[
^{c}D^αg(t) = \frac{1}{Γ(1−α)} \int_0^t \frac{g'(s)}{(t − s)^{α}} ds, \quad t > 0, \ 0 < α < 1,
\]

where \(Γ(·) \) is the gamma function.

Definition 3 (see [18]). The family of bounded linear operators \(T(t), 0 ≤ t < ∞ \) defined on the Banach space \(X \) is a semigroup if \(T(0) = I \). Here, \(I \) is the identity operator on \(X \) and \(T(t+s) = T(t)T(s), \) for every \(t, s ≥ 0. \)

Definition 4 (see [18]). Let \(T(t) \) be a semigroup, then \(T(t) \) is called strongly continuous and is denoted by \(C_0 \) on a Banach space \(X \) if \(\lim_{t→0} \|T(t)x − IX\| = 0. \)

Definition 5 (see [18]). The domain of the linear operator \(A: D(A) ⊆ X → X \) is defined as follows. The domain \(D(A) = \{x ∈ X: \lim_{t→0} ((T(t)x − x)/t) \text{ exists and } Ax = (dT(t)/dt)|_{t=0} = \lim_{t→0} ((T(t)x − x)/t) \text{ for } x ∈ D(A). \) Here, \(A \) is the generator of the semigroup \(T(t). \)

Remark 1 (see [19]). We define the norm for measurable functions \(n: J → \mathbb{R} \) as follows:

\[
\|n\|_{L^p(J)} = \left\{ \left(\int_J |n(t)|^p dt \right)^{1/p} \right\}^{1/p}, \quad 1 ≤ p < ∞,
\]

\[
\inf_{μ(T)=0} \{μ(\{n(t)\})\}, \quad p = ∞,
\]

where \(μ(J) \) is the Lebesgue measure on \(J. \) The Banach space of all Lebesgue measurable functions is \(L^p(J, \mathbb{R}). \)

Lemma 1 (see [20]). If \(f_1 ∈ L^p(J, \mathbb{R}) \) and \(f_2 ∈ L^q(J, \mathbb{R}) \), then \(\|f_1f_2\|_p ≤ \|f_1\|_p\|f_2\|_q \) for \(p,q ≥ 1 \) and \((1/q) + (1/p) = 1, \) and the inequality is called Holder’s inequality.

Lemma 2 (see [19]). Let \(h: [0, b] → \mathbb{R} \) be a measurable function; if \(h(t) \) is Lebesgue integrable, then \(h \) is called the Bochner integrable.

Lemma 3 (see [20]). If \(D \) is a bounded, closed, and convex subset of a Banach space \(X \) and \(F: D → D \) is completely continuous, then \(F \) has a fixed point in \(D. \)

Lemma 4 (see [21]). Let \(ω ∈ L^p(J, X), \ 1 ≤ p < +∞, \text{ then } \lim_{t→0} \int_0^t \|ω(t+r) − ω(t)\|^p dt = 0, \text{ and } ω(s) = 0 \text{ for } s ∉ J. \)

In order to guarantee the existence and uniqueness of mild solution of problem (1), we introduce the following assumptions.

Assumptions

\[(A_1) \ |T(t)|_{t≥0} \text{ is a strongly continuous semigroup generated by } A, \text{ that is, a compact operator for every } t ≥ 0, \text{ and } \|T(t)\| ≤ M_1, \]

\[(A_2) \text{ Let } M_2 \text{ and } M_3 \text{ be the positive constants such that } \|B\| ≤ M_2 \text{ and } \|u\| ≤ M_3. \]

\[(A_3) \text{ The function } f: J × ∂ × X × X → X \text{ satisfies that for any } t ∈ J, \ f(t, x, y): ∂ × X → X \text{ is a continuous function and for all } (x, y) ∈ ∂ × X, \ f(·, ∂, x, y): J → X \text{ is strongly measurable, where} \]

\[(A_4) \text{ There exist } p, q, r, s ≥ 1 \text{ and } (1/p) + (1/q) + (1/r) + (1/s) = 1, \text{ such that for any } t ∈ J, \ f(t, x, y) ∈ L^p(J, X) \text{ and } \|f(t, x, y)|_{L^p(J, X)}| ≤ M_4. \]
\[\mathcal{D} = \left\{ \tau : [-r, \infty) \to X : \tau(t) \text{ is continuous everywhere except for a finite number of points } t_i \text{ at which } \tau(t_i) \text{ and } \tau(t_i') \text{ exist and } \tau(t_i) = \tau(t_i') \right\}, \]

and there is a positive function \(\mu(\cdot) \in L^p(J, \mathbb{R}^+) \) for some \(p, \ 1 < p < \infty \) such that

\[\|f(t, x, y, z)\| \leq \mu(t)\|x\| + \|y\| + \|z\|, \quad x, y, z \in PC(J, X), \quad t \in J. \]

The function \(g : PC(J, X) \to X \) is a continuous compact function, satisfying

\[\|g(x)\| \leq L\|x\| + L', \quad x \in PC(J, X), \text{ for constants, } \quad L, L' > 0. \]

The operator \(I_i : \mathcal{D} \to X, \ i = 1, 2, \ldots, s, \) is continuous and there is nondecreasing function \(N_i : \mathbb{R}^+ \to \mathbb{R}^+ \) such that

\[\|I_i(x)\| \leq N_i(\|x\|), \quad i = 1, 2, \ldots, s, \ x \in \mathcal{D}. \]

Let \(\mathcal{D}_q = \{x \in PC(J, X) : \|x\| \leq q\}, \) where \(q \) a positive constant. Therefore, \(\mathcal{D}_q \) is a closed, bounded, and convex subset in \(\mathcal{D}. \)

Definition 6. The function \(x(\cdot) \in PC(J, X) \) is the mild solution of problem (1), if \(x(t) = \emptyset(t) + g(x)(t) \) on \(t \in [-r, 0] \) and \(\Delta x|_{t=t_i} = I_i(x(t_i)), \ i = 1, 2, \ldots, s, \) the restriction of \(x(\cdot) \) to the interval \(J_i, \ i = 1, 2, \ldots, s, \) is continuous and the following equation is satisfied:

\[x(t) = S_a(t)[\emptyset + g(x)] + \int_0^t (t-s)^{a-1}T_a(t-s)[f(s, x_s, I^{\beta_1}(x(t)), I^{\beta_2}(x(t)))] + Bu(s)ds \]

\[+ \sum_{i=1}^s S_a(t-t_i)I_i(x(t_i)), \]

where

\[S_a(t) = \int_0^t \Phi_a(\theta)T^{(a\theta)}d\theta, \]

and \(\Phi_a(\theta) \) is the probability density function on \((0, \infty), \) with properties \(\Phi_a(0) \geq 0, \) and

\[\int_0^\infty \Phi_a(\theta)d\theta = 1, \]

\[\int_0^\infty \theta\Phi_a(\theta)d\theta = \frac{1}{\Gamma(a+1)}. \]

3. Main Results

Theorem 1. Assume that the hypotheses (A1)–(A3) with the condition \(M_1 = \left((ab^{p/(p-1)}/(\Gamma(1+a))) ((p-1)/(a-1) + p-1) \right)^{1/p} \left(\|x\|_{L^p(J, X)} + \|x\|_{L^p(J, X)} \right)^{1-p} \) hold. Then, for every nonlocal initial condition \(x(t) = \emptyset(t) + g(x)(t), \ t \in [-r, 0], \) the impulsive multifractional order integrodifferential equations with nonlocal conditions (1) has a mild solution \(x \in \mathcal{D}_q, \) where \(q \) a positive constant, for every control \(u \in L^2(J, V). \)

Proof. For any positive constant \(q, \) and \(x \in \mathcal{D}_q, \) from (A1) and (A3), we have

\[\|S_a(t)[\emptyset + g(x)]\| = \int_0^\infty \Phi_a(\theta)\|T^{(a\theta)}[\emptyset + g(x)]\|d\theta \]

\[\leq \int_0^\infty \Phi_a(\theta)\|T^{(a\theta)}\| \|\emptyset\| + \|g(x)\|d\theta \]

\[\leq M_1(\|\emptyset\| + Lq + \mathcal{I}). \]

Therefore, \(\int_0^\infty \Phi_a(\theta)\|T^{(a\theta)}[\emptyset + g(x)]\|d\theta \) exists. From (A1), (12)–(14), and (A3), we obtain
\begin{align*}
\left\| I^t_0 (t-s)^{\alpha-1} T_\alpha (t-s) \left[f(s, y_s + \bar{\Theta}, I^{\beta_1} (y(t) + \bar{\Theta}(t)), I^{\beta_2} (y(t) + \bar{\Theta}(t))) + Bu(s) \right] ds \right\|
\leq & \int_0^t \int_0^\infty a \Phi_\alpha (\theta) (t-s)^{\alpha-1} \left\| I^t (t-s)^{\alpha} \theta \right\| ds \\
\times & \left[\left\| f(s, y_s + \bar{\Theta}, I^{\beta_1} (y(t) + \bar{\Theta}(t)), I^{\beta_2} (y(t) + \bar{\Theta}(t))) \right\| + \left\| Bu(s) \right\| ds \\
\leq & \frac{\alpha M_1}{\Gamma (1 + \alpha)} \int_0^t (t-s)^{\alpha-1} \left[\sigma (s) \left(q + \| \bar{\Theta} \|_{PC} + \frac{1}{\Gamma (\beta_1)} \int_0^s (s-r)^{\beta_1-1} \left(q + \| \bar{\Theta} \|_{PC} \right) dr \right) \right. \\
+ & \frac{1}{\Gamma (\beta_2)} \int_0^t (s-r)^{\beta_2-1} \left(q + \| \bar{\Theta} \|_{PC} \right) dr \left. \right] ds \\
\leq & \frac{\alpha M_1 \left(q + \| \bar{\Theta} \|_{PC} \right)}{\Gamma (1 + \alpha)} \left(\left(\int_0^t (t-s)^{\alpha} ds \right)^{(p-1)/p} \left(\int_0^t \sigma(s)^p ds \right) \right)^{1/p} \\
+ & \frac{1}{\Gamma (\beta_1 + 1)} \left(\int_0^t (t-s)^{\alpha} ds \right)^{(p-1)/p} \left(\int_0^t \sigma(s)^p ds \right)^{1/p} \\
+ & \frac{1}{\Gamma (\beta_2 + 1)} \left(\int_0^t (t-s)^{\alpha} ds \right)^{(p-1)/p} \left(\int_0^t \sigma(s)^p ds \right)^{1/p} \\
+ & \frac{\alpha M_1 M_2 M_3}{\Gamma (1 + \alpha)} \int_0^t (t-s)^{\alpha-1} ds
\leq & \frac{\alpha M_1 \left(q + \| \bar{\Theta} \|_{PC} \right)}{\Gamma (1 + \alpha)} \left(\left(\frac{p-1}{(a-1) p + p - 1} \right)^{(p-1)/p} \left(\int_0^t \sigma(s)^p ds \right) \right)^{1/p} \\
+ & \frac{1}{\Gamma (\beta_1 + 1)} \left(\frac{p-1}{(a-1) p + p - 1} \right)^{(p-1)/p} \int_0^t \sigma(s)^p ds \\
+ & \frac{1}{\Gamma (\beta_1 + 1)} \left(\frac{p-1}{(a-1) p + p - 1} \right)^{(p-1)/p} \int_0^t \sigma(s)^p ds \\
+ & \frac{\alpha M_1 M_2 M_3}{\Gamma (1 + \alpha)} \int_0^t (t-s)^{\alpha-1} ds
\leq & \frac{\alpha M_1 \left(q + \| \bar{\Theta} \|_{PC} \right)}{\Gamma (1 + \alpha)} \left(\frac{p-1}{(a-1) p + p - 1} \right)^{(p-1)/p} \left(\| \sigma \|_{L^p (J, R^c)} \right. \\
+ & \frac{1}{\Gamma (\beta_1 + 1)} \left(\frac{p-1}{(a-1) p + p - 1} \right)^{(p-1)/p} \left(\| \sigma \|_{L^p (J, R^c)} + \frac{1}{\Gamma (\beta_1 + 1)} \left(\frac{1}{1 + (\beta_1 p^2/(p-1))} \right)^{(p-1)/p} \right. \\
\times & \left. \| \sigma \|_{L^p (J, R^c)} \right)
+ \frac{\alpha M_1 M_2 M_3 b^\alpha}{\Gamma (1 + \alpha)}
\end{align*}
\[
q = \left(\alpha M_1 ||\varnothing||_{PC} b^{a-1/p} / (\Gamma (1 + \alpha)) \right) ((p - 1)/(\alpha - 1)p + p - 1))^{(p - 1)/p} \left(||\sigma||_{L^p(J, R^+)} + \left(b^{\beta_2 r (p - 1)/p} / (\Gamma (1 + \alpha)) \right) ||\sigma||_{L^2(J, R^+)} \right)
\]

for all \(t \in J \). Thus, \(\| \int_0^t (t - s)^{-a-1} T_a (t - s) \| f (s, y_s + \varnothing, I^\beta_1 (y (r) + \varnothing (r)), I^\beta_2 (y (r) + \varnothing (r))) + B (s) \| ds \| \) is Lebesgue integrable with respect to \(s \in [0, t] \), for all \(t \in J \).

By Lemma 1, we get \(\| \int_0^t (t - s)^{-a-1} T_a (t - s) \| f (s, y_s + \varnothing, I^\beta_1 (y (r) + \varnothing (r)), I^\beta_2 (y (r) + \varnothing (r))) + B (s) \| ds \| \) is Bochner’s integrable, for \(s \in [0, t] \), \(t \in J \).

Now, we define the operators \(F \) on \(\mathcal{D}_q \) as follows:

\[
(Fx)(t) = \begin{cases}
\varnothing (t), & t \in [-r, 0], \\
S_a (t) [\varnothing + g (x)], & t \in J.
\end{cases}
\]

For \(\varnothing \in \mathcal{D} \), we define \(\tilde{\varnothing} \in PC \) by

\[
\tilde{\varnothing} (t) = \begin{cases}
\varnothing (t), & t \in [-r, 0], \\
S_a (t) [\varnothing + g (x)], & t \in J.
\end{cases}
\]

Clearly, since operator \(F \) has one fixed point and thus \(G \) too. So, we have

\[
(Gy)(t) = \begin{cases}
0, & t \in [-r, 0], \\
\int_0^t (t - s)^{a-1} T_a (t - s) \left[f (s, y_s + \varnothing, I^\beta_1 (y (r) + \varnothing (r)), I^\beta_2 (y (r) + \varnothing (r))) + B (s) \right] ds \\
+ \sum_{i=1}^s S_a (t - t_i) I_i (y (t_i) + \tilde{\varnothing} (t_i)), & t \in J.
\end{cases}
\]

Let \(x (t) = y (t) + \tilde{\varnothing} (t) \), the operator \(G : PC \rightarrow PC \) defined as

\[
(Gy)(t) = \begin{cases}
0, & t \in [-r, 0], \\
\int_0^t (t - s)^{a-1} T_a (t - s) \left[f (s, y_s + \tilde{\varnothing}, I^\beta_1 (y (r) + \tilde{\varnothing} (r)), I^\beta_2 (y (r) + \tilde{\varnothing} (r))) + B (s) \right] ds \\
+ \sum_{i=1}^s S_a (t - t_i) I_i (y (t_i) + \tilde{\varnothing} (t_i)), & t \in J.
\end{cases}
\]
In the following, we will prove that \(G \) has a fixed point on \(D_q \), and then we get \(F \) has a fixed point on \(D_q \).

Step 1. If \(\|Gy\| \leq q \), then \(\|Fx\| \leq q \), where \(y \in PC \) and \(x \in D_q \).

\[
\|Gy(t)\| = \left\| \int_0^t (t-s)^{\alpha - 1} T_a (t-s) \left[f(s, y_s + \bar{\sigma}_s, I^\beta (y(r) + \bar{\sigma}(r)), I^\beta (y(r) + \bar{\sigma}(r))) + Bu(s) \right] ds \right\| \\
+ \sum_{i=1}^{\infty} S_a (t-t_i) I_i (y(t_i) + \bar{\sigma}(t_i))
\]

\[
\|Gy(t)\| = \left\| \int_0^t \int_0^\infty a \theta \Phi_a (\theta) (t-s)^{\alpha - 1} T((t-s)^{\alpha}) \right\|
\times \left[f(s, y_s + \bar{\sigma}_s, I^\beta (y(r) + \bar{\sigma}(r)), I^\beta (y(r) + \bar{\sigma}(r))) + Bu(s) \right] ds
\]

\[
+ \sum_{i=1}^{\infty} \int_0^\infty \Phi_a (\theta) T((t-t_i)^{\alpha}) I_i (y(t_i) + \bar{\sigma}(t_i)) \right\| \right. \\
\leq \frac{a M_1 (q + \|\|_{PC}) L^{\alpha - (1/p)} \left(\frac{p - 1}{\alpha - 1} \right) \Gamma(1 + \alpha)}{\Gamma(1 + \alpha)} \left(\frac{\|a\|_{L^p(J,R)} + \|b\|_{L^p(J,R)}^p}{\Gamma(\beta + 1)} \right)
\left. + \frac{\|a\|_{L^p(J,R)} + \|b\|_{L^p(J,R)}^p}{\Gamma(\beta + 1)} \right) + M_1 \sum_{i=1}^{\infty} L_i (q + \|\|_{PC}) = q.
\]

Hence, if \(\|Gy\| \leq q \), then \(\|Fx\| \leq q \), where \(y \in PC \) and \(x \in D_q \).

Step 2. \(G \) is a completely continuous operator.

Firstly, we will show that \(G \) is continuous on \(D_q \).

For any \(y_n, y \in D_q, n = 1, 2, \ldots \), with \(\lim_{n \to \infty} \|y_n - y\| = 0 \), we get \(\lim_{n \to \infty} y_n(t) = y(t), t \in J \).

By (A3), we obtain

\[
\lim_{n \to \infty} f(t, y_n + \bar{\sigma}, I^\beta (y_n(r) + \bar{\sigma}(r)), I^\beta (y_n(r) + \bar{\sigma}(r))) = f(t, y + \bar{\sigma}, I^\beta (y(r) + \bar{\sigma}(r)), I^\beta (y(r) + \bar{\sigma}(r))), \quad \text{for } t \in J.
\]

(23)

Then,

\[
\sup_{s \in [0,b]} \left\| f(s, y_n + \bar{\sigma}, I^\beta (y_n(r) + \bar{\sigma}(r)), I^\beta (y_n(r) + \bar{\sigma}(r))) - f(s, y + \bar{\sigma}, I^\beta (y(r) + \bar{\sigma}(r)), I^\beta (y(r) + \bar{\sigma}(r))) \right\| \to 0, \quad n \to \infty.
\]

(24)

By using a method similar to the one used in (15) and (16), we have

\[
\lim_{n \to \infty} I_i (y_n(t_i) + \bar{\sigma}(t_i)) = I_i (y(t_i) + \bar{\sigma}(t_i)), \quad i = 1, 2, \ldots, s,
\]

\[
\sup_{s \in [0,b]} \left\| I_i (y_n(s_i) + \bar{\sigma}(s_i)) - I_i (y(s_i) + \bar{\sigma}(s_i)) \right\| \to 0, \quad n \to \infty.
\]

(25)

Additionally, from (A2), we obtain

\[
\lim_{n \to \infty} u_n(t) = u(t),
\]

\[
\sup_{s \in [0,b]} \left\| u_n(s) - u(s) \right\| \to 0, \quad n \to \infty.
\]

(26)

Subsequently, we have that
\[\|Gy_n - G y\| \leq \int_{0}^{t} (t-s)\alpha^{-1} \int_{0}^{s} f(s, y_n + \bar{\theta}, I^\alpha_i(y(t) + \bar{\theta}(t))), 1^{\alpha}_i(y(t) + \bar{\theta}(t))) \]

\[+ \int_{0}^{t} (t-s)^{-1} \int_{0}^{s} L(u_n - u) ds\]

\[+ \sum_{i=1}^{s} S_n(t-i)(I_y(y(t) + \bar{\theta}(t)) - I_y(y(t) + \bar{\theta}(t))\]

\[\leq \int_{0}^{t} \int_{0}^{s} a \theta \Phi_n^\alpha(t-s) (t-s)^{-1} T((t-s)^\alpha) [f(s, y_n + \bar{\theta}, I^\alpha_i(y(t) + \bar{\theta}(t))), 1^{\alpha}_i(y(t) + \bar{\theta}(t)))

\[+ \int_{0}^{t} \int_{0}^{s} a \theta \Phi_n^\alpha(t-s) (t-s)^{-1} T((t-s)^\alpha) B(u_n - u) d\theta ds\]

\[+ \sum_{i=1}^{s} \int_{0}^{s} \Phi_n(t)(t-s)^{-1} T((t-s)^\alpha) (I_y(y(t) + \bar{\theta}(t)) - I_y(y(t) + \bar{\theta}(t))) d\theta\]

\[\leq \frac{\alpha M_1 \beta^2}{\Gamma(1 + \alpha)} \sup_{s \in [0, b]} \|f(s, y_n + \bar{\theta}, I^\alpha_i(y(t) + \bar{\theta}(t))), 1^{\alpha}_i(y(t) + \bar{\theta}(t)))

\[+ \|f(s, y_n + \bar{\theta}, I^\alpha_i(y(t) + \bar{\theta}(t))), 1^{\alpha}_i(y(t) + \bar{\theta}(t))\| + \frac{\alpha M_1 \beta^2}{\Gamma(1 + \alpha)} \sup_{s \in [0, b]} \|u_n - u\| + M_1 \sum_{i=1}^{s} I_i(y_n(t))

\[+ \bar{\theta}(t)) - I_i(y(t) + \bar{\theta}(t))\|\]

Hence, by (16), (22), and (24), we have

\[\|Gy_n - G y\| \rightarrow 0, \quad n \rightarrow \infty. \quad (28)\]

Thus, \(G\) is continuous.

Now, we will prove that \(\{Gy, y \in D_q\}\) is equicontinuous on \(J, i = 1, 2, \ldots, s\). For any \(y \in D_q\) and \(0 \leq t_1 < t_2 \leq b\), we have

\[\|Gy(t_2) - Gy(t_1)\|

\[\leq \int_{0}^{t_1} \int_{0}^{s} a \theta \Phi_n^\alpha(t-s) (t-s)^{-1} T((t-s)^\alpha) [f(s, y_n + \bar{\theta}, I^\alpha_i(y(t) + \bar{\theta}(t))), 1^{\alpha}_i(y(t) + \bar{\theta}(t)))

\[+ \int_{0}^{t_1} \int_{0}^{s} a \theta \Phi_n^\alpha(t-s) (t-s)^{-1} T((t-s)^\alpha) B(u_n - u) d\theta ds\]

\[+ \sum_{i=1}^{s} \int_{0}^{s} \Phi_n(t)(t-s)^{-1} T((t-s)^\alpha) (I_y(y(t) + \bar{\theta}(t)) - I_y(y(t) + \bar{\theta}(t))) d\theta\]

\[= \alpha (I_1 + I_2 + I_3) + \sum_{i=1}^{s} \int_{0}^{s} \Phi_n^\alpha(t)(S(t_2 - t_1)^\alpha - S(t_1 - t_1)^\alpha) I_i(y(t)) + \bar{\theta}(t)) d\theta, \quad (29)\]
where

\[I_1 = \left\| \int_0^t \int_0^1 \partial \Phi_s(\theta) \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right] T((t_2 - s)^a \theta) \times \left[f(s, y_s + \bar{\sigma}_s, \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau), \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau)) + B(u(s)) \right] \, d\theta \, ds \right\| \]

\[I_2 = \left\| \int_0^t \int_0^1 \partial \Phi_s(\theta) (t_1 - s)^{a-1} T((t_2 - s)^a \theta) - T((t_1 - s)^a \theta) \right\| \times \left[f(s, y_s + \bar{\sigma}_s, \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau), \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau)) + B(u(s)) \right] d\theta \, ds \right\| \]

\[I_3 = \left\| \int_0^t \int_0^1 \partial \Phi_s(\theta) (t_2 - s)^{a-1} T((t_2 - s)^a \theta) \times \left[f(s, y_s + \bar{\sigma}_s, \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau), \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau)) + B(u(s)) \right] d\theta \, ds \right\| \]

\[I_1 \leq \frac{M_1}{\Gamma(1 + a)} \int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right] \left\| f(s, y_s + \bar{\sigma}_s, \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau), \bar{\Phi}_s(y_\tau + \bar{\sigma}_\tau)) + B(u(s)) \right\| \, ds \]

\[\leq \frac{M_1(q + \|\bar{\sigma}\|_{\mathcal{L}^p})}{\Gamma(1 + a)} \left(\left(\int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right]^p \, ds \right)^{(1/p)} \left\| \sigma \right\|_{\mathcal{L}^{p/(p-1)}(I,R')} \right) \]

\[+ \frac{1}{\Gamma(\beta_1 + 1)} \left(\int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right]^p \, ds \right)^{(1/p)} \left(\int_0^t \frac{s^{\beta_1^p/(p-1)^p}}{\beta_1^p/(p-1)^p} \, ds \right)^{(p-1)/p^2} \]

\[+ \frac{1}{\Gamma(\beta_1 + 1)} \left(\int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right]^p \, ds \right)^{(1/p)} \left(\int_0^t \frac{s^{\beta_1^p/(p-1)^p}}{\beta_1^p/(p-1)^p} \, ds \right)^{(p-1)/p^2} \]

\[+ \frac{M_1 M_2}{\Gamma(1 + a)} \int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right] \, ds \]

\[\leq \frac{M_1(q + \|\bar{\sigma}\|_{\mathcal{L}^p})}{\Gamma(1 + a)} \left(\left(\frac{1}{\beta_1^p/(p-1)^p} \right)^{(p-1)/p^2} \left\| \sigma \right\|_{\mathcal{L}^{p/(p-1)}(I,R')} \right) \]

\[+ \frac{\beta_1^p/(p-1)^p}{\Gamma(\beta_1 + 1)} \left(\int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right]^p \, ds \right)^{(1/p)} \left\| \sigma \right\|_{\mathcal{L}^{p/(p-1)}(I,R')} \]

\[+ \frac{M_1 M_2}{\Gamma(1 + a)} \int_0^t \left[(t_2 - s)^{a-1} - (t_1 - s)^{a-1} \right] \, ds. \]

By Lagrange’s mean value theorem, we have \((t_2 - s)^{a-1} - (t_1 - s)^{a-1} \to 0\) as \(t_2 \to t_1\) for \(s \in J\). Using Lemma 4, we obtain \(\int_0^t [(t_2 - s)^{a-1} - (t_1 - s)^{a-1}] \, ds \to 0\) as \(t_2 \to t_1\). Thus, \(\lim_{t_2 \to t_1} I_1 = 0\).
Now, for \(t_1 = 0, 0 < t_2 \leq b \), clearly, \(I_2 = 0 \) for \(t_1 > 0 \) and \(\varepsilon > 0 \) is sufficiently small. Therefore,

\[
I_2 \leq \left\| \int_{t_1}^{t_1+\varepsilon} \int_0^\infty \partial \Phi_a(\theta)(t_1-s)^{-\alpha}[T((t_2-s)^{\alpha}) - T((t_1-s)^{\alpha})] \times \left[f(s, y_\tau + \bar{\theta}, t_2^\beta (y(r) + \bar{\theta}(r))) + B_\varepsilon(s) \right] d\theta ds \right\|
\]

\[
+ \left\| \int_{t_1}^{t_1+\varepsilon} \int_0^\infty \partial \Phi_a(\theta)(t_1-s)^{-\alpha}[T((t_2-s)^{\alpha}) - T((t_1-s)^{\alpha})] \times \left[f(s, y_\tau + \bar{\theta}, t_2^\beta (y(r) + \bar{\theta}(r))) + B_\varepsilon(s) \right] d\theta ds \right\|
\]

\[
\leq \left\| \mathcal{Q} + \| \bar{\theta} \|_{PC} \right\| \sup_{\alpha \in [t_2, t_1-\varepsilon]} \| T ((t_2-s)^{\alpha}) - T ((t_1-s)^{\alpha}) \| \left(\int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) ds \right)
\]

\[
+ \left\| \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) \frac{s^\beta}{\beta_1 \Gamma(\beta_1)} ds + \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) \frac{s^\beta_2}{\beta_2 \Gamma(\beta_2)} ds \right\|
\]

\[
+ \frac{1}{\Gamma(1+\alpha)} \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sup_{\alpha \in [t_2, t_1-\varepsilon]} \| T ((t_2-s)^{\alpha}) - T ((t_1-s)^{\alpha}) \| M_2 M_3 \| ds
\]

\[
+ 2M_1 \left(\mathcal{Q} + \| \bar{\theta} \|_{PC} \right) \left[\int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) ds + \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) \frac{s^\beta_1}{\beta_1 \Gamma(\beta_1)} ds \right]
\]

\[
+ \frac{2M_1}{\Gamma(1+\alpha)} \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} M_2 M_3 \| ds
\]

\[
\leq \left\| \mathcal{Q} + \| \bar{\theta} \|_{PC} \right\| \sup_{\alpha \in [t_2, t_1-\varepsilon]} \| T ((t_2-s)^{\alpha}) - T ((t_1-s)^{\alpha}) \| \left(\int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} M_2 M_3 \| ds \right)
\]

\[
+ \left\| \| \sigma \|_{L^p((t_1,t_2]} + \frac{1}{\Gamma(\beta_1+1)} \left(\int_{0}^{t_1-\varepsilon} s^{\beta_1 p/(p-1)} ds \right)^{(p-1)/p} \left(\int_{0}^{t_1-\varepsilon} (\sigma(s))^{p^2} ds \right)^{1/p^2} \right\|
\]

\[
+ \frac{1}{\Gamma(\beta_2+1)} \left(\int_{0}^{t_1-\varepsilon} s^{\beta_2 p/(p-1)} ds \right)^{(p-1)/p} \left(\int_{0}^{t_1-\varepsilon} (\sigma(s))^{p^2} ds \right)^{1/p^2}
\]

\[
+ \frac{M_2 M_3}{\Gamma(1+\alpha)} \int_{0}^{t_1-\varepsilon} (t_1-s)^{-\alpha} \sup_{\alpha \in [t_2, t_1-\varepsilon]} \| T ((t_2-s)^{\alpha}) - T ((t_1-s)^{\alpha}) \| ds
\]

\[
+ 2M_1 \left(\mathcal{Q} + \| \bar{\theta} \|_{PC} \right) \left[\int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) ds + \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} \sigma(s) \frac{s^\beta_1}{\beta_1 \Gamma(\beta_1)} ds \right]
\]

\[
+ \frac{2M_1}{\Gamma(1+\alpha)} \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} M_2 M_3 \| ds
\]

\[
\times \left(\int_{t_1}^{t_1+\varepsilon} (\sigma(s))^{p^2} ds \right)^{1/p^2} + \frac{1}{\Gamma(\beta_2+1)} \left(\int_{t_1-\varepsilon}^{t_1} s^{\beta_2 p/(p-1)} ds \right)^{(p-1)/p} \left(\int_{t_1-\varepsilon}^{t_1} (\sigma(s))^{p^2} ds \right)^{1/p^2}
\]

\[
+ \frac{2M_1}{\Gamma(1+\alpha)} \int_{t_1}^{t_1+\varepsilon} (t_1-s)^{-\alpha} M_2 M_3 \| ds
\]
\[
I_3 \leq \frac{M_1}{\Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} (t_2 - s)^{a-1} \left[\|f(s, y_s + \bar{\Theta}_s, I^{\beta_1}(y(\tau) + \bar{\Theta}(\tau)), I^{\beta_2}(y(\tau) + \bar{\Theta}(\tau)))\| + \|Bu(s)\| \right] ds \right)
\]

\[
\leq \frac{M_1}{\Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} (t_2 - s)^{a-1} \left[\|y_s + \bar{\Theta}_s\| + \frac{1}{\Gamma(\beta_1)} \int_0^s (s - \tau)^{\beta_1-1} \|y(\tau) + \bar{\Theta}(\tau)\| d\tau \right] ds \right)
\]

\[
+ \frac{1}{\Gamma(\beta_2)} \int_0^s (s - \tau)^{\beta_2-1} \|y(\tau) + \bar{\Theta}(\tau)\| d\tau \right] + \|Bu(s)\| \right] ds
\]

\[
\leq \frac{M_1(\|f\|_{\text{PC}})}{\Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} (t_2 - s)^{a-1} \left[\|f(s, y_s + \bar{\Theta}_s, I^{\beta_1}(y(\tau) + \bar{\Theta}(\tau)), I^{\beta_2}(y(\tau) + \bar{\Theta}(\tau)))\| + \|Bu(s)\| \right] ds \right)
\]

Notably,

\[
I_1 \leq \frac{M_2 M_3}{\alpha \Gamma(1+\alpha)} (t_1^n - t^n) \sup \|T((t_2 - s)^a\theta) - T((t_1 - s)^a\theta)\|
\]

\[
\leq \frac{M_2 M_3}{\alpha \Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} ((t_2 - s)^a\theta)\| + \|Bu(s)\| \right) ds
\]

\[
+ \frac{2M_1(\|f\|_{\text{PC}})}{\Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} (t_2 - s)^{a-1} \left[\|f(s, y_s + \bar{\Theta}_s, I^{\beta_1}(y(\tau) + \bar{\Theta}(\tau)), I^{\beta_2}(y(\tau) + \bar{\Theta}(\tau)))\| + \|Bu(s)\| \right] ds \right)
\]

\[
\leq \frac{M_2 M_3}{\alpha \Gamma(1+\alpha)} \left(\int_{t_1}^{t_2} (t_2 - s)^{a-1} \left[\|f(s, y_s + \bar{\Theta}_s, I^{\beta_1}(y(\tau) + \bar{\Theta}(\tau)), I^{\beta_2}(y(\tau) + \bar{\Theta}(\tau)))\| + \|Bu(s)\| \right] ds \right)
\]

from (A1) implies the continuity of \([T(t)]_{t \geq 0}\) in the uniform operator topology, and it is clear that \(I_2 \rightarrow 0\) independent of \(y \in \mathcal{D}_q\) as \(t_2 - t_1 \rightarrow 0\), \(\epsilon \rightarrow 0\).
\[
\begin{aligned}
&\leq \frac{M_1(q + \|\varpi\|_{PC})}{\Gamma(1 + \alpha)} \left(\|\sigma\|_{L^p(J,R')} + \frac{1}{\Gamma(\beta_1 + 1)} \left(\frac{1}{1 + (\beta_1 p^2/(p-1))} \right)^{(p-1)/p^2} \left(t_2^\alpha p^2/(p-1) + 1 - t_1^\beta p^2/(p-1) \right)^{(p-1)/p^2} \|\sigma\|_{L^p(J,R')} \right) \\
&\quad + \frac{1}{\Gamma(\beta_2 + 1)} \left(\frac{1}{1 + (\beta_2 p^2/(p-1))} \right)^{(p-1)/p^2} \left(t_2^\alpha p^2/(p-1) + 1 - t_1^\beta p^2/(p-1) \right)^{(p-1)/p^2} \|\sigma\|_{L^p(J,R')} \\
&\times \left(\int_{t_1}^{t_2} (t_2 - s)^{(\alpha q)/(p-1)} \, ds \right)^{(p-1)/p} + \frac{M_1 M_2 M_3}{\Gamma(1 + \alpha)} \int_{t_1}^{t_2} (t_2 - s)^{n-1} \, ds \\
&\leq \frac{M_1(q + \|\varpi\|_{PC})}{\Gamma(1 + \alpha)} \left(\|\sigma\|_{L^p(J,R')} + \frac{1}{\Gamma(\beta_1 + 1)} \left(\frac{1}{1 + (\beta_1 p^2/(p-1))} \right)^{(p-1)/p^2} \left(t_2^\alpha p^2/(p-1) + 1 - t_1^\beta p^2/(p-1) \right)^{(p-1)/p^2} \|\sigma\|_{L^p(J,R')} \right) \\
&\quad + \frac{1}{\Gamma(\beta_2 + 1)} \left(\frac{1}{1 + (\beta_2 p^2/(p-1))} \right)^{(p-1)/p^2} \left(t_2^\alpha p^2/(p-1) + 1 - t_1^\beta p^2/(p-1) \right)^{(p-1)/p^2} \|\sigma\|_{L^p(J,R')} \\
&\quad \cdot \left(\frac{p - 1}{(\alpha - 1) p + p - 1} \right)^{(p-1)/p} \left(t_2 - t_1 \right)^{n-1/p} + \frac{M_1 M_2 M_3}{\alpha^2 (1 + \alpha)},
\end{aligned}
\]

We have that \(\lim_{\alpha \to \infty} I_3 = 0\). Thus, \(Gy(t_2) - Gy(t_1)\) tends to zero independent of \(y \in D_q\) as \(t_2 - t_1 \to 0\), which means that \([Gy, y \in D_q]\) is equicontinuous.

Now, we need to show that \(W(t) = \{Gy(t), y \in D_q\}\) is relatively compact in \(X\) and \(t \in [0, b]\). So, we define an operator \(G_{e,\delta}\) on \(D_q\) for all \(e \in (0, t)\) and \(\delta > 0\) as follows:

\[
(G_{e,\delta}y)(t) = \begin{cases}
0, & t \in [-r, 0], \\
\int_{t-e}^{t} \int_{0}^{\infty} a\theta(t-s)^{\alpha-1} \Phi_a(\theta)T((t-s)^{\alpha-1}) \left[f(s, y_s + \Theta, y(\theta) + \Theta, r), y(r) + \Theta, (r) \right] + \mu(s) \, d\theta ds \\
+ \sum_{i=1}^{r} \int_{0}^{\infty} \Phi_a(\Theta)T((t-s)^{\alpha-1}) \left[f(s, y_s + \Theta, y(\theta) + \Theta, r), y(r) + \Theta, (r) \right] + \mu(s) \, d\theta ds \\
& t \in J. \\
\end{cases}
\]

\[
= \begin{cases}
0, & t \in [-r, 0], \\
T(e^\delta) \left[\int_{t-e}^{t} \int_{0}^{\infty} a\theta(t-s)^{\alpha-1} \Phi_a(\theta)T((t-s)^{\alpha-1}) \left[f(s, y_s + \Theta, y(\theta) + \Theta, r), y(r) + \Theta, (r) \right] \\
+ \mu(s) \, d\theta ds + \sum_{i=1}^{r} \int_{0}^{\infty} \Phi_a(\Theta)T((t-s)^{\alpha-1}) \left[f(s, y_s + \Theta, y(\theta) + \Theta, r), y(r) + \Theta, (r) \right] \right], & t \in J.
\end{cases}
\]

Subsequently, from the compactness of \(T(e^\delta), e^\delta > 0\), we obtain the set \(W_{e,\delta}(t) = \{(G_{e,\delta}y)(t), y \in D_q\}\) is relatively compact in \(X\). Obviously, \(W(0)\) is relatively compact in \(X\), for all \(e \in (0, t)\) and \(\delta > 0\). Furthermore, for \(e \in D_q\), we obtain
\begin{align*}
\|G y(t) - (G_{i/2}) y(t)\| & \leq \alpha \int_0^t \theta(t-s)^{\alpha-1} \Phi_n(\theta) \left((t-s)^{\alpha} \right) \times \left[f(s, y_s + \tilde{\omega}_s, I^{\beta_1}(y(t) + \tilde{\omega}(t)), I^{\beta_2}(y(t) + \tilde{\omega}(t))) + B u(s) \right] d\theta ds \\
& \quad + \alpha \int_0^t \int_0^\infty \theta(t-s)^{\alpha-1} \Phi_n(\theta) T((t-s)^{\alpha}) \left[f(s, y_s + \tilde{\omega}_s, I^{\beta_1}(y(t) + \tilde{\omega}(t)), I^{\beta_2}(y(t) + \tilde{\omega}(t))) \right] d\theta ds - \int_0^t \int_0^\infty \theta(t-s)^{\alpha-1} \Phi_n(\theta) T((t-s)^{\alpha}) d\theta ds \\
& \quad + \alpha \int_0^t \int_0^\infty \theta(t-s)^{\alpha-1} \Phi_n(\theta) T((t-s)^{\alpha}) \left[f(s, y_s + \tilde{\omega}_s, I^{\beta_1}(y(t) + \tilde{\omega}(t)), I^{\beta_2}(y(t) + \tilde{\omega}(t))) + B u(s) \right] d\theta ds \\
& \quad + \sum_{i=1}^\infty \Phi_n(\theta) T((t-t_i)^{\alpha}) I_{i}(y(t_i) + \tilde{\omega}(t_i)) d\theta \\
& \leq \alpha M_1 \left[\int_0^t (t-s)^{\alpha-1} \sigma(s) \left(1 + \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} + \frac{s^{\beta_2}}{\Gamma(\beta_2 + 1)} \right) + M_2 M_3 \right] ds \int_0^\delta \theta \Phi_n(\theta) d\theta \\
& \quad + \alpha M_1 \left[\int_0^t (t-s)^{\alpha-1} \sigma(s) \left(1 + \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} + \frac{s^{\beta_2}}{\Gamma(\beta_2 + 1)} \right) + M_2 M_3 \right] ds \int_0^\delta \theta \Phi_n(\theta) d\theta \\
& \quad + M_1 \sum_{i=1}^\delta L_i (q + \tilde{\omega})_{\|\|_{PC}} \int_0^\delta \Phi_n(\theta) d\theta \\
& \quad \leq \alpha M_1 \left[\int_0^t (t-s)^{\alpha-1} \sigma(s) ds + \int_0^t (t-s)^{\alpha-1} \sigma(s) \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} ds \right] \\
& \quad + \int_0^t (t-s)^{\alpha-1} \sigma(s) \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} ds + \int_0^t (t-s)^{\alpha-1} M_2 M_3 ds \int_0^\delta \theta \Phi_n(\theta) d\theta \\
& \quad + \alpha M_1 \left[\int_0^t (t-s)^{\alpha-1} \sigma(s) ds + \int_0^t (t-s)^{\alpha-1} \sigma(s) \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} ds \right] \\
& \quad + \int_0^t (t-s)^{\alpha-1} \sigma(s) \frac{s^{\beta_1}}{\Gamma(\beta_1 + 1)} ds + \int_0^t (t-s)^{\alpha-1} M_2 M_3 ds \\
& \quad + M_1 \sum_{i=1}^\delta L_i (q + \tilde{\omega})_{\|\|_{PC}} \int_0^\delta \Phi_n(\theta) d\theta
\end{align*}
\[
\leq M_1(q + \|\mathcal{B}\|_{PC}) \left(\left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p}/\|\sigma\|_{L^p(J,R^c)} \right)
\]

\[
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} \\
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} + M_2M_3 \int_0^t (t-s)^{\alpha-1} ds \\
\times \left(\int_0^\delta \mathcal{D}(\theta) d\theta \right) + M_1(q + \|\mathcal{B}\|_{PC}) \left(\left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p}/\|\sigma\|_{L^p(J,R^c)} \right)
\]

\[
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} \\
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} + M_2M_3 \int_0^t (t-s)^{\alpha-1} ds \\
+ M_1 \sum_{i=1}^\delta L_i(q + \|\mathcal{B}\|_{PC}) \int_0^\delta \Phi_i(\theta) d\theta \leq M_1(q + \|\mathcal{B}\|_{PC}) \left(\left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p}/\|\sigma\|_{L^p(J,R^c)} \right)
\]

\[
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} \\
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} + M_2M_3 \int_0^t (t-s)^{\alpha-1} ds \\
+ M_1 \sum_{i=1}^\delta L_i(q + \|\mathcal{B}\|_{PC}) \int_0^\delta \Phi_i(\theta) d\theta \leq M_1(q + \|\mathcal{B}\|_{PC}) \left(\left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p}/\|\sigma\|_{L^p(J,R^c)} \right)
\]

\[
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} \\
+ \frac{1}{\Gamma(\beta_1+1)} \left(\frac{p-1}{\alpha(1-p)+p-1} \right)^{(p-1)/p} t^{(\alpha-1)p+p-1-p} \left(\int_0^t \beta_1^{-1} \mathcal{B}(s)^2 \right)^{\alpha/p} \left(\int_0^t (\sigma(s))^2 \right)^{1/p^2} + M_2M_3 \int_0^t (t-s)^{\alpha-1} ds \\
+ M_1 \sum_{i=1}^\delta L_i(q + \|\mathcal{B}\|_{PC}) \int_0^\delta \Phi_i(\theta) d\theta.
\]

Thus, the sets \(W_{e,\delta}(t) = \{ (G_{e,t}y)(t), \ y \in D_q \} \) are relatively compact and arbitrarily close to the set \(W(t) = \{ (Gy)(t), \ y \in D_q \} \), for \(t \in (0, b] \).

The set \(W(t) = \{ (Gy)(t), \ y \in D_q \} \) is uniformly bounded from (22), and therefore, according to the Ascoli–Arzela theorem, it is relatively compact. Because \(G \) is continuous on
Consider G has been completely continuous. Subsequently, by Schauder's fixed point theorem, G has a fixed point in \mathcal{D}_q^α and multifractional nonlocal impulsive control system (1) has a mild solution and completes the proof.

Now, let us obtain a unique result for the impulsive nonlocal control fractional system (1) by using the Banach contraction principle.

\textbf{Theorem 2.} We assume that the hypotheses (A_1)--(A_3) with the condition $[(M_1 L b^\alpha / \alpha) (1 + (s_{\beta_1}^\alpha / \Gamma(\beta_1 + 1)) + (s_{\beta_2}^\alpha / \Gamma(\beta_2 + 1))) + M_1 \sum_{i=1}^{s} N_i] < 1$ holds. Thus, for every nonlocal initial condition $x(t) = \varnothing(t) + g(x)(t)$, $t \in [-r, 0]$, the impulsive multifractional order integrodifferential equations with nonlocal conditions (1) have a unique mild solution $x \in \mathcal{D}_q$, where q is a positive constant, for every control $u \in L^2([0, \infty])$.

\textbf{Proof.} Consider the operator F on \mathcal{D}_q defined as follows:

\begin{align}
(Fx)(t) = \begin{cases}
\varnothing(t), & t \in [-r, 0], \\
S_\alpha (t) + g(x) + \int_0^t (t-s)^{\alpha-1} T_\alpha (t-s) \left[f(s, x, t) I_{\beta_1}(x(t)) + Bu(s) \right] ds + \sum_{i=1}^{s} S_\alpha (t-t_i) I_i (x(t_i)) & t \in J.
\end{cases}
\end{align}

Let $x(t) = y(t) + \bar{\varnothing}(t)$. We define the operator $G: PC \to PC$ as follows:

\begin{align}
(Gy)(t) = \begin{cases}
0, & t \in [-r, 0], \\
\int_0^t (t-s)^{\alpha-1} T_\alpha (t-s) \left[f(s, y, t) + \bar{\varnothing}, t I_{\beta_1}(y(t) + \bar{\varnothing}(t)), I_{\beta_2}(y(t) + \bar{\varnothing}(t)) + Bu(s) \right] ds + \sum_{i=1}^{s} S_\alpha (t-t_i) I_i (y(t_i) + \bar{\varnothing}(t_i)) & t \in J.
\end{cases}
\end{align}

Clearly, the operator F has a unique fixed point and so as G. Thus, it can be seen that, for $y_1, y_2 \in PC([-r, b], \mathbb{R})$ and for all $t \in [-r, 0]$, we get $(Gy_1)(t) - (Gy_2)(t) = 0$. For $t \in [t_k, t_{k+1}]$, we have the following:

\begin{align}
\|(Gy_1)(t) - (Gy_2)(t)\| = \int_0^t (t-s)^{\alpha-1} T_\alpha (t-s) \left[f(s, y_{1s} + \bar{\varnothing}, s, t) I_{\beta_1}(y_1(t) + \bar{\varnothing}(t)), I_{\beta_2}(y_2(t) + \bar{\varnothing}(t)) + Bu(s) \right] ds + \sum_{i=1}^{s} S_\alpha (t-t_i) I_i (y_1(t_i) + \bar{\varnothing}(t_i)) \\
\qquad \qquad \qquad \leq M_1 \int_0^t (t-s)^{\alpha-1} \left(\|y_1 - y_2\| + \|I_{\beta_1}(y_1(t) - y_2(t))\| \\
\qquad \qquad \qquad \qquad + \|I_{\beta_2}(y_1(t) - y_2(t))\| \right) ds + M_1 \sum_{i=1}^{s} N_i \|y_1(t_i) - y_2(t_i)\| \\
\qquad \qquad \qquad \leq M_1 L \int_0^t (t-s)^{\alpha-1} \left(\|y_1 - y_2\| + \frac{s_{\beta_1}^\alpha}{\Gamma(\beta_1 + 1)} \|y_1(s) - y_2(s)\| \\
\qquad \qquad \qquad \qquad + \frac{s_{\beta_2}^\alpha}{\Gamma(\beta_2 + 1)} \|y_1(s) - y_2(s)\| \right) ds + M_1 \sum_{i=1}^{s} N_i \|y_1(t_i) - y_2(t_i)\| \\
\qquad \qquad \qquad \leq \left[M_1 L \left(1 + \frac{s_{\beta_1}^\alpha}{\Gamma(\beta_1 + 1)} + \frac{s_{\beta_2}^\alpha}{\Gamma(\beta_2 + 1)} \right) \right] \sup_{t \in [-r, b]} \|y_1(t) - y_2(t)\| \\
\qquad \qquad \qquad \leq \left[M_1 L b^\alpha / \alpha \left(1 + \frac{s_{\beta_1}^\alpha}{\Gamma(\beta_1 + 1)} + \frac{s_{\beta_2}^\alpha}{\Gamma(\beta_2 + 1)} \right) + M_1 \sum_{i=1}^{s} N_i \right] \|y_1(t) - y_2(t)\|.
\end{align}
Subsequently, G is a contraction operator on $t \in \{t_k,t_{k+1}\}$, $k = 0, 1, 2, \ldots, s$, and by Banach contraction principle, G has a unique fixed point on D_g, which means that F has a unique fixed point on D_g.

4. Illustrative Example

Consider the impulsive multifractional order integro-differential equations with nonlocal conditions and finite delay of the form:

$$
\frac{\partial^{\alpha} z}{\partial t^{\alpha}}(t, \tau) = \frac{\partial^{\beta} z}{\partial t^{\beta}}(t, \tau) + n^+(\tau)u(t, \tau) + f(t, z(t-\tau), \int_0^t \int_0^s \int_0^s z(t, \tau, s)w(s, \tau-\tau)ds, t_i, \tau) \omega(s, \tau-\tau)ds,
$$

where $u(t, \tau)$ is a bounded linear control operator which is defined by $u(t, \tau) = u(t)\varphi(\tau)$ for $t \in [0, \pi]$ and $u \in L^2(J, X)$ and $\|B\| \leq M_2, \|u\| \leq M_3$.

(A) It is well known that A is an infinitesimal generator of a semigroup $T(t)$ defined by $T(t)w(s) = w(t+s)$ for each $w \in X$ and $t \geq 0$, $T(t)$ is a compact strongly continuous semigroup on X.

(B) $X: X \to X$ is a bounded linear control operator which is defined by $Bu(\tau) = n^+(\tau)u(\tau)$ for $\tau \in [0, \pi]$.

(A) $F(t, z, h_1, h_2) = f(t, z(t), h_1(t), h_2(t))$

$$
\int_0^t \int_0^s \int_0^s z(t, \tau, s)w(s, \tau-\tau)ds,
$$

$$
\int_0^t \int_0^s \int_0^s \int_0^s z(t, \tau, s)w(s, \tau-\tau)ds.
$$

(42)

Take $f(t, z(t), h_1(t), h_2(t)) = c_0 \sin(z(t)), c_0$ is a constant, F is continuous and for all $z, h_1, h_2 \in X$, $F(t, z, h_1, h_2): J \to X$ is strongly measurable:

$$
\|F(t, z, h_1, h_2)\| \leq c_0, z, h_1, h_2 \in PC(J, X).
$$

(43)

For $t \in [0, \pi], t \in [0, b], 0 < \alpha, \beta, \beta_1, \beta_2 \leq 1,$

$$
\left\{
\begin{align*}
\tau(t', \tau) - z(t', \tau) &= I(t', \tau), \\
\tau \in (0, \pi), i = 1, \ldots, k,
\end{align*}
\right.
$$

(39)

$$
\zeta(t) = \varnothing(t) + \int_0^b h(s)\log(1 + |z(s, t)|)ds, \\
\tau \in [0, \pi],
$$

(40)

where $r > 0, I_i > 0, i = 1, \ldots, k,$

$$
\varnothing \in \mathcal{D} = \{ \varphi: [-r, b] \to R, \varphi \text{ is continuous everywhere except for a countable number of points at which } \varphi(s^-), \varphi(s^+) \text{ exist with } \varphi(s^-) = \varphi(s^+) \}
$$

(41)

$$
\varnothing(\tau) = \varnothing(\tau) + \int_0^b h(s)\log(1 + |\varphi(s)|)ds,
$$

(44)

Then, g is a compact operator and $\|g(\sigma)(\tau)\| = \|\int_0^{b} h(s)\log(1 + |\sigma(s)(\tau)|)ds\| \leq |h(s)\log 1 + |\sigma(s)(\tau)|| \leq |\sigma(s)(\tau)||. \text{ Hence, } L = 1 \text{ and } L' = 0.$

(45)

Let $N_i: R^+ \to R^+ L_i(\|\varnothing\|\varnothing) = \|\int_{[0, \pi]} \rho_i(\tau, y)\varnothing(\tau, y)dy\|, i = 1, \ldots, k,$ nondecreasing function.

(A) $g: PC([a, b]: X) \to X$ is a continuous function which is defined by

$$
g(\sigma)(\tau) = \int_0^b h(s)\log(1 + |\sigma(s)(\tau)|)ds,
$$

(44)

Then, g is a compact operator and $\|g(\sigma)(\tau)\| = \|\int_0^{b} h(s)\log(1 + |\sigma(s)(\tau)|)ds\| \leq |h(s)\log 1 + |\sigma(s)(\tau)|| \leq |\sigma(s)(\tau)||. \text{ Hence, } L = 1 \text{ and } L' = 0.$

(45)

Let $N_i: R^+ \to R^+ L_i(\|\varnothing\|\varnothing) = \|\int_{[0, \pi]} \rho_i(\tau, y)\varnothing(\tau, y)dy\|, i = 1, \ldots, k,$ nondecreasing function.

(A) $g: PC([a, b]: X) \to X$ is a continuous function which is defined by

$$
g(\sigma)(\tau) = \int_0^b h(s)\log(1 + |\sigma(s)(\tau)|)ds,
$$

(44)

Then, g is a compact operator and $\|g(\sigma)(\tau)\| = \|\int_0^{b} h(s)\log(1 + |\sigma(s)(\tau)|)ds\| \leq |h(s)\log 1 + |\sigma(s)(\tau)|| \leq |\sigma(s)(\tau)||. \text{ Hence, } L = 1 \text{ and } L' = 0.$

(45)
Therefore, the nonlocal multifractional partial impulsive differential systems (38)–(40) can be written in the abstract forms (1)–(3), and all conditions of Theorems 1 and 2 are satisfied.

5. Conclusion
The existence and uniqueness of multifractional order impulsive integrodifferential equations with nonlocal conditions and infinite delay using Schauder’s fixed point theorem required certain types of semigroups defined on probability density functions and Holder’s inequality p-mean continuity as well as some necessary and sufficient estimators conditions that play an important role in guaranteeing the solution.

Data Availability
The data used to support the findings of this study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References
[1] H. Bazger and B. Ghazanfari, "Existence solutions for fractional integro-differential equations with non-local boundary conditions," Mathematical and Computational Applications, vol. 23, p. 36, 2018.
[2] M. Bragdi and M. Hazi, "Existence and uniqueness of solutions of fractional quasilinear mixed integrodifferential equations with nonlocal condition in Banach spaces," Electronic Journal of Qualitative Theory of Differential Equations, vol. 51, no. 51, pp. 1–16, 2012.
[3] G. R. Gautam and J. Dabas, "Existence result of fractional functional integro-differential equation with not instantaneous impulse," International Journal of Applied Mathematics and Mechanics, vol. 1, no. 3, pp. 11–21, 2014.
[4] K. Nouri, M. Nazari, and B. Keramat, Existence Solutions for Some Fractional Neutral Functional Integro-Differential Equations with Infinite Delay, 2017.
[5] J. Wang, Y. Zhou, W. Wei, and H. Xu, "Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls," Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1427–1441, 2011.
[6] S. Agarwal, S. Ntouyas, B. Ahmad, and M. Alhothuali, "Existence solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions," Advances in Difference Equations, vol. 128, 2013.
[7] P. Borisut, P. Kumam, I. Ahmed, and K. Sitthithakerngkiet, "Nonlinear Caputo fractional derivative with nonlocal riemann-liouville fractional integral condition via fixed point theorems," Symmetry, vol. 11, no. 6, p. 829, 2019.
[8] S. Meng and Y. Cui, "The extremal solution to conformable fractional differential equations involving integral boundary condition," Mathematics, vol. 7, no. 2, p. 186, 2019.
[9] D. Chalishajar, K. Karthikeyan, and J. Trujillo, "Existence of mild solutions for fractional impulsive semilinear integrodifferential equations in Banach spaces," Communications on Applied Nonlinear Analysis, vol. 19, no. 4, pp. 45–56, 2012.
[10] D. Chalishajar, C. Ravichandran, S. Dhanalakshmi, and R. Murugesu, "Existence of fractional impulsive functional integro-differential equations in Banach spaces," Applied System Innovation, vol. 2, no. 2, p. 18, 2019.
[11] Z. Gao, L. Yang, and G. Liu, "Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions," Applied Mathematics, vol. 4, no. 6, pp. 859–863, 2013.
[12] S., Q. Hasan and F. M. Ismaeel, "Existence and uniqueness of the mild solution to the fractional order impulsive nonlinear control system," American Journal of Mathematics and Statistics, vol. 5, no. 4, pp. 200–219, 2015.
[13] K. Hilal, K. Guida, L. Ilnelayz, and M Oukessoum, "Existence results for an impulsive fractional integrodifferential equations with a non-compact semigroup," Journal of Universal Mathematics, vol. 1, no. 3, pp. 293–311, 2018.
[14] S. Suressha and G. Thamizhendhib, "Initial value problem for nonlocal impulsive differential equations involving fractional derivative of order θ," American Journal of Engineering Research (AJER), vol. 8, no. 7, 193–199.
[15] B. Ahmad, M. Aghanmi, J. Nieto, and A. Alsaedi, "On impulsive nonlocal integro initial value problems involving multi-order caputo-type generalized fractional derivatives and generalized fractional integrals," Advances in Difference Equations, vol. 2019, p. 247, 2019.
[16] A. Anguraj, P. Karthikeyan, M. Rivero, and J. J. Trujillo, "On new existence results for fractional integro-differential equations with impulsive and integral conditions," Computers & Mathematics with Applications, vol. 66, no. 12, pp. 2587–2594, 2014.
[17] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999.
[18] A. Pazy, Semigroup of Linear Operator and Applications to Partial Differential Equation, Springer –Verlage, New York, NY, USA, 1983.
[19] I. A. Mohamed, "Existence and uniqueness of mitta-leffler-ulam stable solutions for functional integrodifferential equation with nonlocal initial conditions," European Journal of Pure and Applied Mathematics, vol. 8, no. 4, pp. 478–498, 2015.
[20] A. H. Siddiq, Functional Analysis with Applications, McGraw Hill, Publishing Company Limited, New Delhi, India, 1986.
[21] E. Zeidler, Nonlinear Functional Analysis and Its Application II/A, Springer-Verlag, New York, NY, USA, 1990.