Effect of predominantly unidirectional flow of a viscous liquid between solid walls

V L Sennitskii¹ ²
¹ Lavrentiev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
² Novosibirsk State University, Novosibirsk, Russia
E-mail: sennitskii@yandex.ru

Abstract. The problem is considered on a flow of a viscous liquid in the presence of solid bodies – two walls and a free plate the boundary of which is permeable for a liquid – under oscillatory influences. The formulation of the problem includes the equation of the plate motion, the equations of Navier–Stokes and a continuity and conditions at solid boundaries of the liquid. The new hydro-mechanical effect is revealed which consists in that in the absence of a predominant direction in space free parts of the hydro-mechanical system at a background of oscillations perform a unidirectional, steady motion.

1. Introduction
One of actual directions of fluid mechanics is the study of the dynamics of hydro-mechanical systems under vibrational (oscillatory) influences. A significant number of works is fulfilled in this direction (see [1–19] and the references which are presented there). The realized investigations allowed to reveal a series of new hydro-mechanical effects; it is proved by obtained results that hydro-mechanical systems can behave unordinary or even paradoxically under oscillatory influences. In particular the effect of a paradoxical motion of a solid body in a vibrating liquid was discovered in [2]. The presence of the phenomenon of a predominantly unidirectional motion of compressible inclusions in a vibrating liquid was established by the theoretical and experimental works [6–8, 11]. For the first time it was introduced the division (the classification) of liquid vibrations (liquid oscillations) in uniform and non-uniform and it was shown its importance of principle in [9] (see also [12]). A hydro-mechanical analog of the “Kapitsa oscillator” effect [20] was obtained in [13]. The effect of a prescribed orientation of a solid inclusion in a viscous liquid was found in [16]. The effect of a predominantly unidirectional rotation of a solid body and a viscous liquid was found in [17]. The effect of a predominantly unidirectional rotation of a viscous liquid with a free boundary was revealed in [19].

The present work contains the formulation and the solution of the problem on the motion of a hydro-mechanical system consisting of a viscous liquid and solid bodies – two walls and a plate which boundary is permeable for a liquid. The plate is free (its motion has to be determined). The hydro-mechanical system undergoes by oscillatory influences which are characterized by the absence of a predominant direction in space. It is revealed that in response to the (non-unidirectional) influences free parts of the hydro-mechanical system – liquid layers and also the plate – perform a unidirectional, steady motion.
2. Formulation of the problem

There are a viscous incompressible liquid and contacting it absolutely solid walls \(W_1, W_2 \) and a plate \(\Xi \). The walls perform prescribed oscillations along the axis \(Y \) of the inertial rectangular coordinate system \(X, Y, Z \). The wall \(W_1 \) is confined by the plane \(Y = A_1 \), the wall \(W_2 \) – by the plane \(Y = A_2 \), the plate – by the planes \(Y = B_1 \) and \(Y = B_2 \) \((A_1 < B_1 < B_2 < A_2; B_1, B_2 \) – constants). The fields between the walls and the plate – the domains \(\Omega_1: A_1 < Y < B_1 \) and \(\Omega_2: B_2 < Y < A_2 \) \((-\infty < X < \infty, -\infty < Z < \infty)\) are filled by the liquid. The distance between the walls \(L = A_2 - A_1 \) is constant. The boundary of the plate is permeable for the liquid; the plate moves along the axis \(X \) under the action of external oscillatory forces and the forces from the liquid. It is required to determine the independent on initial data, periodical by time \(t \) motion of the hydro-mechanical system.

Let it be that \(T \) is period of the walls \(W_1, W_2 \) oscillations; \(\tau = t / T; \ x = X / L; \ y = Y / L; \ z = Z / L; \ A_1 = \bar{A} \sin 2\pi \tau \) \((\bar{A} > 0 \) – constant); \(\varepsilon = \bar{A} / L; \ a_1 = A_1 / L; \ a_2 = A_2 / L; \ b_1 = B_1 / L; \ b_2 = B_2 / L; \ z = \) part of the plate \(\Xi \) which has the length \(D_x \), the thickness \(D_y \) and is confined between the planes \(Z = Z' \) and \(Z = Z' + D_z \) \((Z', D_x > 0, D_y > 0 \) are constants); \(m \) is the body \(\xi \) mass; \(\mathbf{e}_x = \{1, 0, 0\}; \mathbf{e}_y = \{0, 1, 0\}; \mathbf{U} = \{U, 0, 0\} \) is the velocity of the body \(\xi \) (the plate \(\Xi \)); \(u = TU / L; \rho, v, V = \{V_x, V_y, V_z\} \) are the liquid density, the liquid viscosity kinematic coefficient and the liquid velocity, correspondingly; \(\mathbf{v} = TV / L \) \((\mathbf{v} = v_x \mathbf{e}_x + v_y (y, \tau) \mathbf{e}_y)\); \(P \) is the pressure in liquid; \(p = T^2 p / (\rho L^2) \) \((p = p(y, \tau))\); \(\text{Re} = L^2 / (\nu T) \) is Reynolds number; \(F_{\text{ext}} = \tilde{F} \sin (2\pi \tau + \varphi) \) is external force acting on the body \(\xi \) in the direction of the axis \(X \) \((\tilde{F} > 0, \ \varphi \) are constants); \(f_{\text{ext}} = T^2 F_{\text{ext}} / (mL)\); \(F_{\text{liq}} = \rho v \left[(\partial V_x / \partial Y)_{Y = B_2} - (\partial V_x / \partial Y)_{Y = B_1} \right] D_x D_z \) is the force from the liquid acting on the body \(\xi \) in the direction of the axis \(X \); \(f_{\text{liq}} = T^2 F_{\text{liq}} / (mL)\).

The equation of the body \(\xi \) (the plate \(\Xi \)) motion, the equations of Navier-Stokes and a continuity and the conditions at the boundaries of the bodies \(W_1, W_2, \Xi \) have the following form:

\[
\frac{du}{d\tau} = f_{\text{ext}} + f_{\text{liq}}; \tag{1}
\]

\[
\frac{\partial \mathbf{v}}{\partial \tau} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \frac{1}{\text{Re}} \Delta \mathbf{v} \quad \text{in} \quad \Omega_1, \Omega_2; \tag{2}
\]

\[
\nabla \cdot \mathbf{v} = 0 \quad \text{in} \quad \Omega_1, \Omega_2; \tag{3}
\]

\[
\mathbf{v} = \frac{da_1}{d\tau} \mathbf{e}_y \quad \text{under} \quad y = a_1, \ y = 1 + a_1; \tag{4}
\]

\[
\mathbf{v} = u \mathbf{e}_x + \frac{da_1}{d\tau} \mathbf{e}_y \quad \text{under} \quad y = b_1, y = b_2. \tag{5}
\]

3. Solution of problem and analysis

It results from (3) – (5)

\[
v_y = 2\pi \varepsilon \cos 2\pi \tau. \tag{6}
\]
In accordance with (2), (4), (5), (6)

\[p = 4\pi^2 \varepsilon (\sin 2\pi \tau) y + p' \] (7)

\((p' \text{ depends on } \tau); \)

\[\frac{\partial v_x}{\partial \tau} + 2\pi \varepsilon (\cos 2\pi \tau) \frac{\partial v_x}{\partial y} = \frac{1}{\text{Re}} \frac{\partial^2 v_x}{\partial y^2} \text{ in } \Omega_1, \Omega_2; \] (8)

\[v_x = 0 \text{ under } y = a_1, \ y = 1 + a_1; \] (9)

\[v_x = u \text{ under } y = b_1, \ y = b_2. \] (10)

The problem (1), (8) – (10) is considered further for the values of \(\varepsilon \) which are much smaller than unit. It will be assumed that

\[u \sim u_0 + \varepsilon u_1, \quad v_x \sim v_{x0} + \varepsilon v_{x1} \text{ under } \varepsilon \to 0. \] (11)

Let it be that \(N = 0, 1 \) are the numbers of approximation (the powers of \(\varepsilon \)).

It results from (1), (8) – (11)

\[\frac{du_N}{d\tau} = (1 - N) f_{\text{ext}} + f_{\text{liq}} N; \] (12)

\[\frac{\partial v_{xN}}{\partial \tau} + 2N\pi (\cos 2\pi \tau) \frac{\partial v_{x0}}{\partial y} = \frac{1}{\text{Re}} \frac{\partial^2 v_{xN}}{\partial y^2} \text{ in } \Omega_1, \Omega_2; \] (13)

\[v_{xN} = -N (\sin 2\pi \tau) \frac{\partial v_{x0}}{\partial y} \text{ under } y = 0, \ y = 1; \] (14)

\[v_{xN} = u_N \text{ under } y = b_1, \ y = b_2. \] (15)

Here \(\Omega_1 \) and \(\Omega_2 \) are the domains respectively \(0 < y < b_1 \) and \(b_2 < y < 1 \) \((-\infty < X < \infty, -\infty < Z < \infty); \)

\(f_{\text{liq}} N = \frac{\varepsilon}{\text{Re}} \left(\frac{\partial v_{xN}}{\partial y} \big|_{y=b_2} - \frac{\partial v_{xN}}{\partial y} \big|_{y=b_1} \right) \left(\varepsilon = \rho LD_X D_z / m \right). \)

Let it be that \(N = 0, \)

The problem (12) – (15) has the solution

\[u_0 = \text{Real} \left(\hat{u} e^{2\pi i \tau} \right) = -\frac{\hat{f}}{2\pi} \text{Real} \left\{ \frac{e^{i(2\pi \tau + \varphi)}}{1 + \frac{Z}{X} \left[\cosh \lambda b_1 + \cosh \lambda (1 - b_2) \right]} \right\}; \] (16)

\[v_{x0} = \text{Real} \left(\hat{v} \frac{\sinh \lambda y}{\sinh \lambda b_1} e^{2\pi i \tau} \right) \text{ in } \Omega_1; \] (17)
\(v_{x0} = \text{Real} \left[\bar{u} \frac{\text{sh}(1-y)}{\text{sh}(1-b_2)} e^{2\pi i r} \right] \) in \(\overline{\Omega}_2 \),

where \(\hat{f} = T^2 \bar{F}/(mL) \); \(\lambda = (1 + i)\sqrt{\pi \text{Re}} \).

Let it be that \(N = 1 \).

In accordance with (12) – (15)

\[
\frac{d\bar{v}}{dy} \bigg|_{y=b_2} - \frac{d\bar{v}}{dy} \bigg|_{y=b_1} = 0;
\]

(19)

\[
2\pi \left(\cos 2\pi r \frac{\partial v_{x0}}{\partial y} \right) = \frac{1}{\text{Re}} \frac{\partial^2 \bar{v}}{\partial y^2} \text{ in } \overline{\Omega}_1, \overline{\Omega}_2;
\]

(20)

\[
\bar{v} = - \left(\sin 2\pi r \frac{\partial v_{x0}}{\partial y} \right) \text{ under } y = 0, \quad y = 1;
\]

(21)

\[
\bar{v} = \bar{u} \quad \text{under } y = b_1, \quad y = b_2.
\]

(22)

Here \(\langle \ldots \rangle = \int_{t}^{t+1} \ldots \, dt \); \(\bar{u} = \langle u_1 \rangle \); \(\bar{v} = \langle v_{x1} \rangle \).

The problem (12) – (15) has the solution

\[
u_1 = \bar{u} + \text{Real} \left(\bar{u} e^{4\pi i r} \right),
\]

\[
v_{x1} = \bar{v} + \text{Real} \left(\bar{v}_1 e^{4\pi i r} \right) \text{ in } \overline{\Omega}_1, \quad v_{x1} = \bar{v} + \text{Real} \left(\bar{v}_2 e^{4\pi i r} \right) \text{ in } \overline{\Omega}_2,
\]

(23)

where \(\bar{u} \) – constant; \(\bar{v}_1, \bar{v}_2 \) – functions of \(y \).

It results from (16) – (22)

\[
\bar{u} = \frac{1}{2(1+b_1-b_2)} \text{Real} \{ \bar{u} \bar{u} \left[b_1 \text{ch} \lambda(1-b_2) - (1-b_2) \text{ch} \lambda b_1 \right] \};
\]

(24)

\[
\bar{v} = \pi \text{Re} \text{Real} \left[\bar{u} \frac{\text{ch} \lambda y - (\text{ch} \lambda b_1) b_1^{-1} y}{\lambda \text{sh} \lambda b_1} \right] + \bar{u} \frac{y}{b_1} \text{ in } \overline{\Omega}_1;
\]

(25)

\[
\bar{v} = - \pi \text{Re} \text{Real} \left[\bar{u} \frac{\text{ch} \lambda (1-y) - (\text{ch} \lambda (1-b_2))(1-b_2)^{-1} (1-y)}{\lambda \text{sh} \lambda (1-b_2)} \right] + \bar{u} \frac{1-y}{1-b_2} \text{ in } \overline{\Omega}_2;
\]

(26)

Formulas

\[
u = u_0 + \varepsilon u_1, \quad v_x = v_{x0} + \varepsilon v_{x1}
\]

(27)
and (6), (7), (16) – (18), (23) – (26) determine the approximate solution of the problem (1) – (5). In particular it is obvious from this solution that the liquid (at a background of oscillations) performs an unidirectional, steady motion. It should be noted that the plate Ξ under $b_\nu \equiv 1 - b_\mathcal{E}$ (at a background of oscillations) is motionless.

It begs to consider the question on the time-averaged liquid motion for the values of b_ν, $1 - b_\mathcal{E}$ which are much smaller than unit. The use of (6), (16) – (18), (23) – (27) allows to obtain

$$
\langle u \rangle = \varepsilon \tilde{u} \sim \varepsilon (1 - \eta) Q,
$$

$$
\langle \nu \rangle = \varepsilon \tilde{\nu} e_x \sim \varepsilon Q \left(\frac{y}{b_1} - \eta \right) e_x \quad \text{in} \quad \Omega_1,
$$

$$
\langle \nu \rangle = \varepsilon \tilde{\nu} e_x \sim \varepsilon Q \left(1 - \eta \frac{1 - y}{1 - b_2} \right) e_x \quad \text{in} \quad \Omega_2
$$

under $b_1 \to 0$, $1 - b_2 \to 0$ and constant $\eta \equiv \frac{1 - b_2}{b_1}$, κ, Re.

Here

$$
Q = \frac{\text{Re} \hat{\nu}}{2\kappa (1 + \eta)} \left[\cos \varphi + \frac{2\pi \text{Re} \eta}{\kappa (1 + \eta)} (\sin \varphi) b_1 \right] = \frac{\text{Re} \hat{\nu}}{2\kappa (1 + \eta)} \left[\cos \varphi + \frac{2\pi \text{Re} \eta}{\kappa (1 + \eta)} (\sin \varphi) (1 - b_2) \right].
$$

In accordance with (28) (at a background of oscillations), the following liquid dynamics takes place. Under $\eta < 1$ ($\eta > 0$) in the domain Ω_1 there are two layers defined by the formulas $0 < y < 1 - b_2$ (the layer l_1) and $1 - b_2 < y < b_1$ in which the liquid moves in mutually contrary directions, moreover the liquid motion direction in the layer l_1 is opposite to the plate Ξ motion direction; in the domain Ω_2 (in the layer $b_2 < y < 1$) the liquid moves in its sole direction which coincides with the plate Ξ motion direction. It is to be noted that the thickness of the layer l_1 equals to the “thickness” of the domain Ω_2. Under $\eta > 1$ in the domain Ω_2 there are two layers defined by the formulas $b_2 < y < 1 - b_1$ and $1 - b_1 < y < 1$ (the layer l_2) in which the liquid moves in mutually contrary directions, moreover the liquid motion direction in the layer l_2 is opposite to the plate Ξ motion direction; in the domain Ω_4 (in the layer $0 < y < b_1$) the liquid moves in its sole direction which coincides with the plate Ξ motion direction. It is to be noted that the thickness of the layer l_2 equals to the “thickness” of the domain Ω_4. Under $\eta = 1$ the plate Ξ is motionless, in each of domains Ω_4, Ω_2 the liquid moves in its sole direction and these directions are mutually contrary.

It has to be noted that the time-averaged motion of the liquid layers takes place under any (positive) value of η.

4. Conclusion

The realized investigation allows to do the inference on the existence of the effect which consists in that in the absence of a predominant direction in space a hydro-mechanical system which undergoes by oscillatory influences produces the unidirectional responses (the reactions for the influences) which expresses in that the free parts of the system – in particular the liquid layers – at a background of oscillations perform the unidirectional, steady motion.

The results of this work can be useful for example in connection with further investigations of non-trivial dynamics of hydro-mechanical systems.
References

[1] Chelomei V N 1983 Soviet Phys. Dokl. 28 (5) 387–90
[2] Sennitskii V L 1985 J. Appl. Mech. Tech. Phys. 26 (5) 630–4
[3] Sennitskii V L 1986 J. Appl. Mech. Tech. Phys. 27 (4) 542–7
[4] Lugovtsov B A and Sennitskii V L 1986 Soviet Phys. Dokl. 31 530–1
[5] Lyubimov D V, Lyubimova T P and Cherepanov A A 1987 Convevt. Flows (Perm, Russia: Perm Pedagogical Institute) pp 61–71
[6] Sennitskii V L 1988 J. Appl. Mech.Tech. Phys. 29 (6) 865–70
[7] Sennitskii V L 1991 Dokl. Akad. Nauk SSSR 319 (1) 117–9 (in Russian)
[8] Sennitskii V L 1993 J. Appl. Mech. Tech. Phys. 34 (1) 96–7
[9] Sennitskii V L 1993 Proc. Int. Workshop on G – jitter (Potsdam, USA: Clarkson University) pp 178–86
[10] Lavrenteva O M 1999 Eur. J. Appl. Math. 10 (3) 251–63
[11] Sennitskii V L 2001 J. Appl. Mech. Tech. Phys. 42 (1) 82–6
[12] Sennitskii V L 2007 J. Appl. Mech. Tech. Phys. 48 (1) 79–85
[13] Sennitskii V L 2009 J. Appl. Mech. Tech. Phys. 50 (6) 936–43
[14] Pyatigorskaya O S and Sennitskii V L 2013 J. Appl. Mech. Tech. Phys. 54 (2) 237–42
[15] Pyatigorskaya O S and Sennitskii V L 2013 J. Appl. Mech. Tech. Phys. 54 (3) 404–7
[16] Sennitskii V L 2015 Sib. Zh. Ind. Mat. 18 (1) 123–8 (in Russian)
[17] Sennitskii V L 2017 J. Appl. Industr. Math. 11 (2) 284–8
[18] Sennitskii V L 2017 Int. J. Appl. Fund. Res. 8 (1) 28–33 (in Russian)
[19] Sennitskii V L 2020 Thermophys. Aeromech. 27 (1) 163–6
[20] Kapitsa P L 1951 Succ. Phys. Sci. 44 (1) 7–20