18-Fluoro-deoxyglucose uptake in inflammatory hepatic adenoma: A case report

Willy Liu, Jean Delwaide, Noella Bletard, Philippe Delvenne, Paul Meunier, Roland Hustinx, Olivier Detry

Abstract
Positron emission tomography computed tomography (PET-CT) using 18-Fluoro-deoxyglucose (18FDG) is an imaging modality that reflects cellular glucose metabolism. Most cancers show an uptake of 18FDG and benign tumors do not usually behave in such a way. The authors report herein the case of a 38-year-old female patient with a past medical history of cervical intraepithelial neoplasia and pheochromocytoma, in whom a liver lesion had been detected with PET-CT. The tumor was laparoscopically resected and the diagnosis of inflammatory hepatic adenoma was confirmed. This is the first description of an inflammatory hepatic adenoma with an 18FDG up-take.

Key words: Liver surgery; Liver tumor; Liver cancer; Benign tumor; Laparoscopy; Prognosis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In cancer therapy, the use of 18-Fluoro-deoxyglucose (18FDG) positron emission tomography computed tomography as a staging or prognostic tool, is increasing. This is also the case for primary or secondary
Hepatocellular adenomas (HCAs) are rare benign hepatic tumors that are more frequent in women and have been associated with oral contraceptive use\(^1\). The risk of malignant transformation of HCAs is small but non-negligible\(^2\). The commonest complication of HCAs is bleeding, an occurrence which has been linked to multiple factors such as the size of the adenoma, pregnancy, visualization of lesional arteries, left lateral lobe location and exophytic growth. Due to these risks, recent guidelines have recommended the resection of adenomas that present: A diameter larger than 50 mm, signs of hepatocarcinoma or focal dysplasia, activated β-catenin mutation, high level of serum alphafoetoprotein, hepatocellular adenomas developing in male gender or hepatocellular adenomas developing in a glycogen storage disease\(^3\). The resection is regularly performed as laparoscopic hepatectomy\(^4\).

Positron emission tomography computed tomography (PET-CT) using 18-Fluoro-deoxyglucose (\(^18\)FDG) is an imaging modality that is based on an enhancement of glucose consumption, a distinguishing feature of most cancers that is in part related to the over-expression of GLUT-1 glucose transporters and increased hexokinase activity. The use of PET-CT in primary or secondary liver cancer is increasing\(^5\). As HCAs are benign lesions, they are not assumed to be \(^18\)FDG-avid, except in some rare cases. To the best of their knowledge, the authors described herein the first report of \(^18\)FDG uptake by an inflammatory HCA (I-HCA), and reviewed the literature for other reports of \(^18\)FDG uptake in other types of liver adenoma.

DISCUSSION

This report describes the occurrence of a 50-mm I-HCA that was highly avid for \(^18\)FDG at PET-CT. The exact nature of this I-HCA was confirmed by surgical resection. To the best of the authors’ knowledge, this is the first report of \(^18\)FDG uptake by an I-HCA. HCAs are classified into four types, according to their genetic and histologic features (Table 1): HNF1\(α\) inactivated HCA (H-HCA), β-catenin mutated HCA (β-HCA), I-HCA and unclassified HCA\(^7,8\). The actual risk of malignancy of all HCAs is evaluated at 4.2%\(^9,10\). The β-HCA subtype is associated with the highest risk of malignant transformation and must be resected (Table 1). After literature review, the authors found 22 other HCA cases with \(^18\)FDG uptake in PET-CT\(^9,11\) (Table 2), and none of them was the inflammatory type. Eighteen of them have a description of the histological findings with steatosis. Twelve reported a final diagnosis, which was either HNF1\(α\) or hepatic adenomatosis.

The uptake of \(^18\)FDG results from the increased metabolism of the cell. The intracellular FDG accumulation is proportional to the amount of glucose utilization\(^12\) and most cancers do have increased cellular activity.
The differential diagnosis of benign 18FDG avid hepatic lesions might include focal steatosis, infectious, parasitic or inflammatory processes \textit{(e.g., hepatic abscess, cryptococcal infection, hepatic tuberculosis)} and hepatic adenoma[21,22]. Focal fatty infiltration has been reported to be PET-avid[23]. In fact, as a response to fat accumulation, a subacute inflammatory hepatic reaction with infiltration of activated Kupffer cells may occur, resulting in a higher SUV\textsubscript{max} than adjacent normal liver parenchyma. As said above, five cases of hepatic adenoma showed fatty changes but none of them were of the inflammatory type. Only one had a few inflammatory infiltrates. Maybe the fatty change itself was sufficient enough to induce a PET-avid response, without obvious inflammatory infiltrate in histological examination. It is also possible, as suggested by Nakashima \textit{et al}[14], that the high expression of glucose transporters might be responsible for the increased uptake. Indeed, one study demonstrated that in H-HCA the
LFABP gene ablation significantly increased the in-vitro expression of GLUT-2 but not that of GLUT-1 [24]. Another study demonstrated that HNF1α-inactivated HCAs activate glycolysis due to a strong up-regulation of glucokinase [25]. These two components are features of most cancers (rise of GLUT-1 and hexokinase activity) with features of H-HCA (rise of GLUT-2 and glucokinase). However, due to the few reports published in literature, no conclusion can be made on the risk of cancer development in HCA with uptake of 18FDG. Prospective and large series are needed to confirm the role of PET-CT in HCA evaluation and prognosis.

Table 1 Classification of hepatocellular adenomas

HCA subtype	Abbreviation	Proportion	Markers	Malignant transformation
HNF1α inactivated	H-HCA	35%-40%	LFABP	Rare
β-catenin activated	β-HCA	10%	β-catenin'/GS' activated	Yes
Inflammatory	I-HCA	50%	CRP*	No
Unclassified	U-HCA	5%	None	No

HCA: Hepatocellular adenoma.

Table 2 Cases of 18-fluoro-deoxyglucose-avid hepatocellular adenomas reported in literature

Ref.	Gender	Age (yr)	Size (mm)	SUVmax	Diagnosis
[7]	Female	41	10	NA	HCA
[8]	Female	37	33	5	H-HCA
[9]	NA	44	30	6.2	H-HCA
[10]	Female	52	NA	4.09-9.8	Hepatic adenomatosis
[11]	Female	65	30	NA	Necrotic HCA
[12]	Male	69	40	10.4	H-HCA
[13]	4 cases	NA	73 ± 15	6 ± 0.5	HCA
[14]	Female	34	20-30	3.9	HCA
[15]	Male	73	25	11.9	Fatty liver
[16]	Female	44	23	7.9	H-HCA
[17]	9 cases	49 ± 16	27 ± 15	8.2 ± 4.3	H-HCA
This case	Female	38	50	9.3	I-HCA

HCA: Hepatocellular adenoma; 18FDG: 18-fluoro-deoxyglucose; H-HCA: HNF1α inactivated HCA; I-HCA: Inflammatory HCA; NA: Not available.

Clinical diagnosis
This tumor was asymptomatic and described at follow-up imaging after surgical resection of a pheochromocytoma.

Differential diagnosis
Adenoma, hepatocellular carcinoma, other primary or metastatic hepatic tumors.

Laboratory diagnosis
Blood tumor markers, and particularly alphafoetoprotein, were negative.

Imaging diagnosis
Magnetic resonance imaging was compatible with hepatocellular adenoma, but the lesion was 18-fluoro-deoxyglucose (18FDG) avid at positron emission tomography computed tomography (PET-CT).

Pathological diagnosis
Percutaneous biopsy and surgical specimen confirmed inflammatory hepatocellular adenoma (I-HCA).

Treatment
Laparoscopic liver R0 resection.

Related reports
To the authors’ knowledge, this case is the first report of a PET-CT FDG-avid I-HCA.

Term explanation
Hepatocellular adenomas are benign liver lesions whose imaging diagnosis could be uncertain.

Experiences and lessons
PET-CT positivity is not necessary linked to cancerous degeneration in liver adenomas.
This paper reported a case of PET-avid hepatocellular adenomas and reviews related literature to show variety case of PET-avid HCA.

REFERENCES

1. Barthelmes L, Tait IS. Liver cell adenoma and liver cell adenomatosis. *HPB* (Oxford) 2005; 7: 186-196 [PMID: 18333188 DOI: 10.1007/s10195-005-0289-y]

2. Stoot JH, Coelen RJ, De Jong MC, Dejong CH. Malignant transformation of hepatocellular adenomas into hepatocellular carcinomas: a systematic review including more than 1600 adenoma cases. *HPB* (Oxford) 2010; 12: 509-522 [PMID: 20887318 DOI: 10.1111/j.1477-2574.2010.00222.x]

3. Vijay A, Elaffandi A, Khalaf H. Hepatocellular adenoma: An update. *World J Hepatol* 2015; 7: 2603-2609 [PMID: 26557953 DOI: 10.4245/wjh.v7.i25.25603]

4. Descotes B, Gilner D, Latche F, Valtie D, Painjeau J, Hanny A, Morino M, Bismuth H, Castaing D, Soubier E, Honore P, Detrey O, Legrand M, Azagra JS, Goereminck M, Ceuterick M, Marescaux J, Mutter D, de Hemptinne B, Troisi R, Weerts J, Dallemagne B, Jehaes C, Gelin M, Donckier V, Aerts R, Topal B, Bertrand C, Mansvelt B, Van Knurckelsven L, Herman D, Hant M, Totte E, Schookmel R, Gigot JF. Laparoscopic liver resection of benign liver tumors. *Surg Endosc* 2003; 17: 23-30 [PMID: 12364994]

5. Detrey O, Govaerts L, Derover A, Vandermeulen M, Meurisse N, Malenga S, Bletard N, Mbeendi C, Lamproye A, Honoré P, Meunier P, Delwaide J, Rustinx R. Prognostic value of (18)F-FDG PET/CT in the management of hepatocellular carcinoma. *World J Gastroenterol* 2015; 21: 3049-3054 [PMID: 25780305 DOI: 10.3748/wjg.v21.i10.3049]

6. Hustinx R, Detrey O. Hepatobiliary disease: primary and metastatic liver tumors. In: Cook G, Maisey M, Britton K, Chengazi V, editors. Clinical nuclear medicine. 4th ed. London, United Kingdom: Hodder Arnold, 2006: 661-672

7. Bioulac-Sage P, Balabaud C, Zucman-Rossi J. Subtype classification and clinical significance. *Clin Nucl Med* 1997; 22: 490-491 [PMID: 9278777]

8. Samiyoshi T, Moriguchi M, Kanemoto H, Asakura K, Sasaki K, Sugiura T, Mizo M, Uesaka K. Liver-specific contrast agent-enhanced magnetic resonance and (18)F-fluorodeoxyglucose positron emission tomography contributions to the management of hepatocellular adenoma: report of a case. *Surg Today* 2012; 42: 200-204 [PMID: 22160355 DOI: 10.1007/s00595-011-0067-7]

9. Fosse P, Girault S, Hoareau J, Testard A, Couturier O, Morel O. Unusual uptake of 18F-FDG by a hepatic adenoma. *Clin Nucl Med* 2013; 38: 135-136 [PMID: 23343143 DOI: 10.1097/RLU.0b013e3182799f5a]

10. Sanli Y, Bakir B, Kuyucumcu S, Ozkan ZG, Guluegolu M, Bilge O, Turkmen C, Mudun A. Hepatic adenomatosis may mimic metastatic lesions of liver with 18F-FDG PET/CT. *Clin Nucl Med* 2012; 37: 697-698 [PMID: 22691518 DOI: 10.1097/RLU.0b013e3182443c6d]

11. Bueno E, Dupre A, Golffier C, Chabrot P, Flamein R, Dubois A, Pezet D. Positive PET-CT scan in hepatocellular adenoma with concomitant benign liver tumors. *Gastroenterol Clin Biol* 2010; 34: 338-341 [PMID: 20227207 DOI: 10.1016/j.gecb.2010.01.018]

12. Nakashima T, Takayama Y, Nishita A, Asayama Y, Baba S, Yamashita Y, Shirabe K, Kubo Y, Hida T, Honda H. Hepatocellular adenoma showing high uptake of (18)F-fluorodeoxyglucose (FDG) via an increased expression of glucose transporter 2 (GLUT-2). *Clin Imaging* 2014; 38: 888-891 [PMID: 25034402 DOI: 10.1016/j.clinimag.2014.06.005]

13. Magini G, Farsad M, Frigerio M, Serra C, Colechia A, Jovine E, Vivarelli M, Feletti V, Golffier R, Patti C, Fanti S, Franchi R, Lodi F, Boschi S, Bernardi M, Trevisani F. C-11 acetate does not enhance usefulness of F-18 FDG PET/CT in differentiating between focal nodular hyperplasia and hepatocellular adenoma. *Clin Nucl Med* 2009; 34: 659-665 [PMID: 19893396 DOI: 10.1097/RLU.0b013e3181853488]

14. Stephenson JA, Kasapi T, Al-Taoan O, Dennison AR. Uptake of (18) FDG by a Hepatic Adenoma on Positron Emission Tomography. *Case Reports Hepatol* 2011; 2011: 276402 [PMID: 25954539 DOI: 10.1155/2011/276402]

15. Laurent-Belue A, Girma A, Le Stanc E. Diagnostic challenge to characterise a liver hypermetabolic focus on fluorochole (18F) PET/CT: a case report. *Medecine Nucleaire* 2013; 37: 282-288 [DOI: 10.1016/j.mednuc.2013.05.002]

16. Lim D, Lee SY, Lim KH, Chan CY. Hepatic adenoma mimicking a metastatic lesion on computed tomography-positron emission tomography scan. *World J Gastroenterol* 2013; 19: 4432-4436 [PMID: 23885159 DOI: 10.3748/wjg.v19.i27.4432]

17. Lee SY, Kingham TP, LaGratta MD, Jessurum J, Cherqui D, Jarnagin WR, Kluger MD. PET-avid hepatic adenomas: incidental findings associated with HNF1α mutated lesions. *HPB* (Oxford) 2016; 18: 41-48 [PMID: 26768804 DOI: 10.1016/j.hpb.2015.07.001]

18. Boelhaar R, Delgad-Rolton R, Owen WI, Giammarile F, Tatsch K, Eschner W, Zerjilbergen FF, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Vesser E, Hoekstra CJ, Praun J, Willemesen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. *Eur J Nucl Med Mol Imaging* 2015; 42: 328-354 [PMID: 25452219 DOI: 10.1007/s00259-014-2961-x]

19. Son HB, Han CJ, Kim BJ, Kim J, Jeong SH, Kim YC, Lee JO, Choi CY, Im SM. [Evaluation of various hepatic lesions with positron emission tomography]. *Taejun Kang Hakho Chei* 2002; 8: 472-480 [DOI: 12506252]

20. Wang YT, Lu F, Zhuo F, Qian ZB, Xu YP, Meng T. Primary hepatic tuberculoma appears similar to hepatic malignancy on F-18 FDG PET/CT. *Clin Nucl Med* 2009; 34: 528-529 [PMID: 19617736 DOI: 1097/RLU.0b013e3181abb6f7]

21. Tan GJ, Wang SY, Li D, Martin GG, Kier AB, Schroeder F. Loss of liver FA binding capacity mimicking hepatic malignancy on F-18 FDG PET. *Abdom Imaging* 2014; 39: 187-195 [PMID: 24233161 DOI: 10.1007/s00261-013-0443-3]

22. Kim YH, Kim JY, Jang SJ, Chung HW, Jang KS, Paik SS, Song SY, Choi YY. F-18 FDG uptake in focal fatty infiltration of liver mimicking malignant hepatic neoplasm on PET/CT images. *Clin Nucl Med* 2011; 36: 1146-1148 [PMID: 22064098 DOI: 10.1097/RLU.0b013e3182335f60]

23. McIntosh AL, Atsivane BS, Storey SM, Landrock KK, Landrock DF, Kier AB, Schroeder F. Loss of liver FA binding protein significantly alters hepatocyte plasma membrane microdomains. *J Lipid Res* 2012; 53: 467-480 [PMID: 22223861 DOI: 10.1194/jlr.M019919]

P-Reviewer: Shi Z, Zhang Q **S-Reviewer:** Kong JX **L-Editor:** A **E-Editor:** Li D
