Left atrial concomitant surgical ablation for treatment of atrial fibrillation in cardiac surgery: A meta-analysis of randomized controlled trials

Xinxin Wang, Chunguo Wang, Minhua Ye, Jiang Lin, Jiang Jin, Quanteng Hu, Chengchu Zhu, Baofu Chen*

Department of Thoracic and Cardiovascular Surgery, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China

* 986725634@qq.com

Abstract

Introduction

Surgical ablation is a generally established treatment for patients with atrial fibrillation undergoing concomitant cardiac surgery. Left atrial (LA) lesion set for ablation is a simplified procedure suggested to reduce the surgery time and morbidity after procedure. The present meta-analysis aims to explore the outcomes of left atrial lesion set versus no ablative treatment in patients with AF undergoing cardiac surgery.

Methods

A literature research was performed in six database from their inception to July 2017, identifying all relevant randomized controlled trials (RCTs) comparing left atrial lesion set versus no ablative treatment in AF patient undergoing cardiac surgery. Data were extracted and analyzed according to predefined clinical endpoints.

Results

Eleven relevant RCTs were included for analysis in the present study. The prevalence of sinus rhythm in ablation group was significantly higher at discharge, 6-month and 1-year follow-up period. The morbidity including 30 day mortality, late all-cause mortality, reoperation for bleeding, permanent pacemaker implantation and neurological events were of no significant difference between two groups.

Conclusions

The result of our meta-analysis demonstrates that left atrial lesion set is an effective and safe surgical ablation strategy for AF patients undergoing concomitant cardiac surgery.
Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice and associated with reduced survival and increased risk of stroke, with a prevalence of 30 to 50% in patients undergoing mitral valve surgery\cite{1–6}. The pathology of AF is supposed to be abnormal re-entry circuits existing in atrial walls. The first surgical procedure called Cox-Maze III procedure was introduced by Dr James L Cox in 1992\cite{7}. The Cox-Maze III operation is a complex procedure which involves a series of endocardial incisions in both atria. The aim of Cox-Maze procedure is to interrupt the multiple, disorganized re-entrant circuits\cite{8}. This procedure is usually performed with other cardiac surgery including mitral valve repair/replacement or coronary artery bypass graft. Recent researches renewed the pathophysiological mechanisms underlying AF and found the pulmonary veins and left atrium were the main “triggers” of AF\cite{9}. This discovery lead to the innovation of the traditional Cox-Maze III procedure and limited the incisions to left atrium even just pulmonary veins instead of both atria. On the other hand, the advent of new energy sources for maze operation including radiofrequency, cryo-energy and microwaves also reduced the complex of the procedure. Previous meta-analysis has demonstrated that surgical ablation is an effective and safe procedure for AF patients undergoing cardiac surgery or mitral valve surgery only\cite{10, 11}. However, the direct evidence respecting to outcomes of left atrial surgical ablation for AF patients were not established. In order to make a supplement to this field, the present meta-analysis aims to summarize the available randomized evidence about the clinical outcomes of left atrial surgical ablation in patients undergoing concomitant surgery.

Materials and methods

Literature search strategy

Electronic searches were performed using PubMed, Ovid Medline, Cochrane Central Register of Controlled Trials (CCTR), Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Review of Effectiveness (DARE) and ACP Journal Club from their date of inception to July 2017. To achieve the maximum sensitivity of the search strategy, we combined the terms: ‘atrial fibrillation’ AND ‘ablation’ AND ‘randomized controlled trial’ as either key words or medical subject headings (MeSH) terms. The reference lists of all retrieved articles were checked for further identification of extra relevant studies assessed using the inclusion and exclusion criteria.

Selection criteria

Inclusion criteria for the present systematic review and meta-analysis were as follows:

1. Randomized controlled trial.
2. Patients underwent any cardiac surgery concomitantly with surgical ablative treatment of atrial fibrillation.
3. All patients were diagnosed with permanent or persistent atrial fibrillation.
4. Surgery ablation techniques included the left atrial surgical ablation.
5. A direct comparison between cardiac surgery with or without left atrial surgical ablation.
6. The endpoints of study were sinus rhythm or AF-free survival.

Exclusion criteria for the present systematic review and meta-analysis were as follows:
1. Not a randomized controlled trial.
2. Catheter ablation without concomitant cardiac surgery.
3. Comparison between other ablation techniques or different ablation energy, such as Cox-maze, modified Cox-maze, biatrial surgical ablation, cut and sew, cryoablation, radiofrequency, microwave, bipolar and unipolar.
4. Patients with paroxysmal AF were included.
5. Duplicate data from the same study.

Data extraction and quality assessment
All data were extracted from article texts, tables and figures. Two investigators independently reviewed every retrieved article (XW and QH). A disagreement was solved by discussion and consensus with a third investigator (CW) if necessary. The risk of bias was assessed according to the Cochrane Collaboration for risk of bias, by two reviewers (JL and JJ). The final results were reviewed by senior investigators (MY and BC).

Statistical analysis
Clinical outcomes were assessed with a standard meta-analysis technique. The hazard ratio (HR) and odds ratio (OR) was used as a summary statistic. \(\chi^2 \) tests were used to examine heterogeneity between trials. I\(^2\) statistic was used to estimate the heterogeneity and I\(^2\) > 50% was considered as substantial heterogeneity. In the present meta-analysis, the results were analyzed with the random-effects model considering the possible clinical diversity and methodological variation between studies. HR and the corresponding 95% CI were used for freedom from atrial fibrillation indirectly calculated using the method of Tierney and colleagues[12] in each study. If there was a substantial heterogeneity, the possible reasons for this were explored qualitatively. Meta-regression was used to investigate the effects of covariates, especially variations in patient characteristics. Publication bias of the major outcomes of this meta-analysis was detected by Egger’s regression test. All P values were two-sided. All statistical analyses were conducted with Review Manager version 5.3 (The Cochrane Collaboration, Copenhagen, Denmark) and Stata (version 12.0; StataCorp, College Station, TX).

Results
Literature search
A total of 1430 references were identified through six electronic database searches. Manual search of reference lists yielded two extra studies. After exclusion of duplicate or irrelevant references, 696 potentially relevant articles were retrieved. After detailed evaluation of these articles, 32 studies remained for assessment. After applying the selection criteria, 11 RCTs were selected for analysis (Fig 1). In these eleven studies, 666 patients underwent procedures that involved cardiac surgery with left atrial ablation (CS + LA group; \(n = 333 \)) or without surgical ablation (CS group; \(n = 333 \)). The study characteristics of these trials are summarized in Table 1.

Quality assessment
These eleven studies were all RCTs[13–23]. One study had more than 50 patients[13], while the remaining ten studies had less than 50 patients (range, 10–49 patients). Five studies used
cut-and-sew[13, 14, 18, 19, 23], two studies used radiofrequency ablation[20, 21], two studies used cryoablation[15, 22] and two studies used microwave[16, 17]. All studies reported patients undergoing left atrial ablation and left appendage amputation. A little variant existed among studies with regarding to ablation or cut-and-sew lines on the left atrial wall. All studies except one[17] reported a line connecting pulmonary veins and mitral valve annulus. Eight studies made a line connecting pulmonary veins and appendage amputation site[13–18, 21, 22]. Six studies isolated the pulmonary veins in one circle[14–17, 19, 23]. Four studies isolated the left and right pulmonary veins in pair[13, 18, 21, 22]. One study isolated the pulmonary veins in pair or one by one[20]. The five studies which isolated the pulmonary veins in pair or one by one made a connection line between two pairs. Only two studies reported performing cryoablation or electrocauterization to coronary sinus[15, 23]. The lesion set description of included studies were summarized in Table 2. All studies focused on permanent or persistent AF. SR was the primary endpoint in nine studies, while AF-free survival was the primary endpoint in two studies. The data of SR at discharge was reported in 8 of 11 studies. Preoperative data for co-variates, which were available for both groups, were variable between the studies in Table 3. Out of the 8 studies, age and gender were reported in 8, LVEF in 7, LAD in 8, AF duration in 7, NYHA III/IV in 2, hypertension in 4, stroke and diabetes in 3. As such, the NYHA, stroke and diabetes were excluded from meta-regression analysis for sinus rhythm at discharge. The data of freedom from atrial fibrillation were extracted indirectly from 7 of 11 studies. Out of the 7 studies, age, gender, LVEF and LAD were reported in 7, AF duration in 6, NYHA III/IV, hypertension, stroke and diabetes in 3. As such, the NYHA, stroke and diabetes were excluded from meta-regression analysis for freedom from atrial fibrillation at 1 year follow up. 30-day mortality was reported by all eleven studies. The 11 RCTs were also assessed qualitatively using tools recommended by the Cochrane Collaboration for the risk of bias. A graph and summary of selection bias, performance bias, detection bias, attrition bias, reporting bias and other bias identified in each individual RCT is shown in Fig 2.
Baseline patient and operational characteristics

The baseline patient and operational characteristics were observed in Table 3. Similar baseline characteristics were observed in both groups. Males accounted for 24–83% of patients undergoing CS + LA and 41–83% undergoing CS alone (weighted mean: 52% vs. 57%; P > 0.05). The average age ranged between 35–75 years for both CS + LA and CS groups (weighted mean: 59 vs. 59; P = 0.71) for CS + LA and CS groups respectively. There were also no differences between CS+LA and CS groups in terms of LVEF (P = 0.33), LA diameter (LAD) (P = 0.26), NYHA III/IV (P = 0.24), prior stroke (P = 0.09) and diabetes (P = 0.99). CBP and aortic cross clamp time was significantly longer when cardiac surgery was performed concomitantly with left atrial surgical ablation (P <0.01). Five studies reported valvular surgery with
Table 3. Summary of baseline patient characteristics and risk factors in studies comparing CS+LA with CS alone in surgical treatment for atrial fibrillation.

First author	Age (y)	Male (%)	LVEF (%)	LAD (mm)	AF duration (mo)	NYHA III-IV (%)	Hypertension (%)	Prior stroke (%)	Diabetes (%)
	CS+LA	CS	CS+LA	CS	CS+LA	CS	CS+LA	CS	CS
Wang	52±10	54±10	40	41	61±7	54±7	51±9	35±21	43
Vasconcelos	50±10	51±10	27	43	69±9	55±5	55±5	24±20	43
Srivastava	36±8	37±10	55	59	60±7	54±5	49±6	12	30
Schuetz	65±10	70±8	50	74	63±13	54±17	55±11	46±34	111±11
Knaut	74±4	75±6	58	67	56±14	45±4	47±6	71±53	52±96
Doukas	67±9	67±8	63	50	57±6	58±7	58±7	60±11	57±55
De Lima	54±9	50±15	30	60	64±12	53±9	62±12	23±4	17±3
Chevalier	70±6	66±10	24	50	60±9	55±11	53±11	161	89.2
Cherniavsky	62±7	64±8	83	74	56±14	49±55	49±50	NR	NR
Blomstrom-Lundqvist	70±8	66±8	83	83	54±9	61±11	58±7	26±33	33±54
Albrecht	55±5	51±15	30	50	62±11	53±8	62±12	32±32	25±32
Minimum	36	37	24	41	54	45	47	12	45
Maximum	74	75	83	83	69	61	61	161	70
Weighted average	59	59	52	57	59	54	54	46	55
P	0.71	0.22	0.33	0.26	0.85	0.24	0.85	0.09	0.99

CS: cardiac surgery; LA: left atrial ablation; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; AF, atrial fibrillation; NYHA, New York Heart Association Functional Classification; NR, not reported; M, median

https://doi.org/10.1371/journal.pone.0191354.t003
The CS + LA group also had a significantly higher proportion of patients in SR compared to CS group at 6-month (55.8% vs. 24.4%; OR, 5.00; 95% CI, 3.18–7.88; P < 0.00001; I² = 0%) and 1-year (55.1% vs. 20.8%; OR, 7.40; 95% CI, 3.97–13.79; P < 0.00001; I² = 16%) follow-up periods. The results are summarized in Fig 3. Meta-regression models found no significant effects exerted by patient age (P = 0.166), gender (P = 0.939), LVEF (P = 0.226), AF duration (P = 0.138), hypertension (P = 0.252), or LAD (P = 0.145) upon sinus rhythm at discharge in Fig 4. Subgroup analysis of different ablation energy including cut and sew radiofrequency ablation, Fig 2.

https://doi.org/10.1371/journal.pone.0191354.g002

Table 4. Summary of perioperative characteristics and complications.

First author	CBP time (min)	Cross-clamp time (min)	CABG (%)	Valvular surgery (%)	30-day mortality (%)	Reoperation for bleeding (%)						
	CS+LA	CS	CS+LA	CS	CS+LA	CS+LA	CS+LA	CS				
Wang	101.0 ± 34.0	85.3 ± 34.7	72.1 ± 28.3	61.9 ± 29.3	NR	NR	100	100	0	0	NR	NR
Vasconcelos	106 ± 17	78 ± 24	NR	NR	0	0	100	0	6.7	0	6.7	0
Srivastava	NR	NR	NR	0	0	100	100	6.7	0	0	5	5
Schuetz	121 ± 27	104 ± 45	100 ± 25	74 ± 44	12.5	26	66.7	36.8	4.2	5.3	NR	NR
Knaut	NR	NR	NR	NR	54	57	NR	NR	8.3	0	NR	NR
Doukas	106 ± 34	99 ± 37	70 ± 26	64 ± 28	12.5	12.5	100	6.1	8.3	NR	NR	NR
De Lima	97.8 ± 3	68.3 ± 22	NR	49.1 ± 19	0	100	0	0	0	0	10	
Chevalier	NR	NR	93 ± 32	74 ± 19	0	100	4.8	NR	0	0	NR	NR
Cherniaevsky	105.2 ± 37.2	70.8 ± 40.6	73.1 ± 28	47.5 ± 32.9	100	100	0	0	0	0	0	0
Blomstrom-Lundqvist	147 ± 23	119 ± 33	87 ± 95	84 ± 23	20	14.3	100	3.3	0	5.9	5.7	
Albrecht	99.85 ± 23.8	62.0 ± 23.8	74.7 ± 19	45.10 ± 21.1	0	0	100	5	0	0	0	0
Minimum	97.8	62	70	45.1	0	0	0	0	0	0	0	0
Maximum	147	119	100	84	100	100	8.3	8.3	6.7	10		
Weighted average	110.1	89.1	78.4	64.1	21.7	23.5	87.7	85.2	3	1.5	3.3	3.3

Wang 101.0 ± 34.0 85.3 ± 34.7 72.1 ± 28.3 61.9 ± 29.3 NR NR 100 100 0 0 NR NR
Vasconcelos 106 ± 17 78 ± 24 NR NR 0 0 100 100 6.7 0 6.7 0
Srivastava NR NR NR 0 0 100 100 0 0 5 5
Schuetz 121 ± 27 104 ± 45 100 ± 25 74 ± 44 12.5 26 66.7 36.8 4.2 5.3 NR NR
Knaut NR NR NR 54 57 NR NR NR 8.3 0 NR NR
Doukas 106 ± 34 99 ± 37 70 ± 26 64 ± 28 10.2 12.5 100 100 6.1 8.3 NR NR
De Lima 97.8 ± 3 68.3 ± 22 NR 49.1 ± 19 0 0 100 100 0 0 0 10
Chevalier NR NR 93 ± 32 74 ± 19 0 0 100 100 4.8 0 NR NR
Cherniaevsky 105.2 ± 37.2 70.8 ± 40.6 73.1 ± 28.2 47.5 ± 32.9 100 100 0 0 0 0 0 0
Blomstrom-Lundqvist 147 ± 23 119 ± 33 87 ± 95 84 ± 23 20 14.3 100 100 3.3 0 5.9 5.7
Albrecht 99.85 ± 23.8 62.0 ± 23.8 74.7 ± 19.2 45.10 ± 21.1 0 0 100 100 5 0 0 0
Minimum 97.8 62 70 45.1 0 0 0 0 0 0 0 0
Maximum 147 119 100 84 100 100 100 100 8.3 8.3 6.7 10
Weighted average 110.1 89.1 78.4 64.1 21.7 23.5 87.7 85.2 3 1.5 3.3 3.3

CS: cardiac surgery; LA: left atrial ablation; CBP, cardiopulmonary bypass time; NR, not reported; CAGB, coronary artery bypass grafting

https://doi.org/10.1371/journal.pone.0191354.t004

CS: cardiac surgery; LA: left atrial ablation; CBP, cardiopulmonary bypass time; NR, not reported; CAGB, coronary artery bypass grafting

https://doi.org/10.1371/journal.pone.0191354.t004
microwave and cryoablation demonstrated no significant difference affecting SR at discharge. Subgroup analysis according to the included number of patients or concomitant cardiac surgery type didn’t make a difference regarding SR at discharge. The results are summarized in Figs 5–7. Left atrial surgical ablation showed a good benefit in terms of freedom from atrial fibrillation at 1-year follow up (Hazard Ratio, 0.41; 95% CI, 0.37–0.46; P < 0.00001; I² = 92%; Fig 8). Meta-regression models found no significant effects exerted by patient age (P = 0.07), gender (P = 0.08), LVEF (P = 0.42), AF duration (P = 0.14), or LAD (P = 0.31) upon freedom from atrial fibrillation at 1 year follow up in Fig 9.

Assessment of safety

Mortality. Mortality outcomes at 30 days were reported in all studies. The risk of 30-day all-cause mortality was not significantly different between CS + LA and CS groups at 30 days (2.7% vs. 2.3%; OR, 1.06; 95% CI, 0.43–2.60; P = 0.90; I² = 0%; Fig 10). Furthermore, all-cause late mortality was also not significantly different (1.7% vs. 2.4%; OR, 1.25; 95% CI, 0.30–5.29; P = 0.76; I² = 0%; Fig 11). No significant heterogeneity was observed in these two comparisons.

Neurological events. All but one study reported outcomes for neurological events. The rates of neurological events ranged from 0 to 10.3% in the studies. 4 of 10 studies with a total of 329 patients reported no neurological events. 3 of 10 studies with a total of 137 patients reported a rate of neurological events above 9%. Overall there was a comparable results between CS + LA and CS groups with no significant heterogeneity (3.2% vs. 3.2%; OR, 1.05; 95% CI, 0.41–2.67; P = 0.92; I² = 0%; Fig 12).

Permanent pacemaker implantations. Permanent pacemaker implantations were reported in nine out of eleven included studies. The permanent pacemaker implantation percentage was 4.7% on average in these studies with a range from 0 to 16.9%. 3 of 9 studies reported no permanent pacemaker implantation with 164 patients included. 3 of 9 studies reported a percentage over 11% with a total of 153 patients. Overall, there was no difference in pacemaker implantations whether left atrial ablation was performed or not (5.5% vs. 5.1%; OR, 1.08; 95% CI, 0.48–2.40; P = 0.85; I² = 5%; Fig 13).
Reoperation for bleeding. Reoperation for bleeding were reported in six out of eleven included studies. The average reoperation for bleeding rate was 1.5%, ranging from 0 to 6.2%. 2 of 6 studies reported no reoperation for bleeding with a total of 104 patients. Overall, there was no difference in reoperation for bleeding between CS + LA and CS groups (5.3% vs. 5.1%; OR, 1.05; 95% CI, 0.31–3.55; P = 0.94; I² = 0%; Fig 14).

Table 4. Meta-regression analysis assessing the effect of various patient characteristics on sinus rhythm at discharge. LVEF: left ventricular ejection fraction; LAD: left atrial diameter.

Study or Subgroup	CS+LA	CS	Odds Ratio	M-H, Random, 95% CI
4.1.1 Discharge SR				
Albrecht 2009	16	20	12.4%	22.67 [4.37, 117.47]
Cherniavsky 2014	30	34	Not estimable	
Chevalier 2009	16	22	8.3%	67.20 [7.13, 633.37]
Doukas 2005	24	28	13.5%	22.08 [4.82, 101.21]
Schaeuf 2003	13	19	14.0%	8.30 [1.45, 27.45]
Srivastava 2008	21	40	19.8%	3.81 [1.45, 10.02]
Vasconcelos 2004	13	14	9.1%	1.08 [0.13, 8.95]
Wang 2014	44	60	22.9%	5.71 [2.73, 11.96]
Subtotal (95% CI)	269	267	100.0%	8.04 [3.74, 17.20]
Total events	177	80		

Egger's test detected no publication bias for the major outcomes of this meta-analysis: 30 days mortality (P = 0.52), permanent pacemaker implantations (P = 0.23), neurological events (P = 0.73), and reoperations for bleeding (P = 0.22). Publication bias was found regarding sinus
rhythm prevalence at 1 year (P = 0.02). After excluding the study of Chevalier or Wang, no publication bias was detected with P value of 0.09 and 0.06, respectively.

Discussion

AF has been supposed to be caused by the multiple and disorganized re-entrant circuits in atrial walls. Cox-Maze III procedure firstly applied by Dr James L Cox in 1992 was the gold standard treatment for AF. During the past two decades, modified Cox-Maze procedures and multiple ablation energy improved the outcomes of surgical ablation compared with traditional Cox-Maze III procedure. A recent meta-analysis has confirmed the cardiac surgery with concomitant surgical ablation is an effective and safe strategy for AF[10]. However, the efficacy and safety of simplified left atrial surgical ablation were not established. Thus, our study aims to report the clinical outcomes of CS+LA versus CS through a meta-analysis of RCTs.

AF has been consistently proved to be an independent predictor of life and survival, which suggests that the restoration of SR in AF patients is a critical therapeutic strategy[24–27]. For example, the AFFIRM study proved that the prevalence of SR was an important, independent predictor of survival, after adjustment for clinical variables such as age and comorbidities[26]. The risk to die among patients in SR was almost half of those who did not improve from AF (adjusted hazard ratio, 0.53; 99% CI, 0.39 to 0.72; P < 0.0001). In the present meta-analysis, we demonstrated that a higher SR prevalence in the CS+LA group at discharge (65.8% vs. 30.0%), 6-month (55.8% vs. 24.4%) and 1-year (55.1% vs. 20.8%) follow-up compared to CS group. Surgical ablation also improved the freedom from atrial fibrillation at 1-year follow up (HR, 0.41, 95% CI, 0.37–0.46; P < 0.00001; I² = 92). Previous meta-analyses had proved that
concomitant surgical ablation was a safe and effective at restoring rhythm during cardiac surgery with no exception for mitral valve surgery[10, 11]. The surgical ablation group had a higher prevalence of sinus rhythm at all 12 month follow up (OR, 6.72; 95% CI 4.88 to 9.25; P < 0.00001). The mortality, pacemaker implantation and neurological events were similar compared with no surgical ablation group. Another meta-analysis comparing biatrial ablation (BA) and left atrial ablation for AF found that the superiority of BA for restoring SR only maintained in 1 year with no difference beyond 1 year[28]. The SR prevalence in BA and LA group was similar for patients with follow-up beyond 1 year (59 vs 64%; OR 1.03; 95% CI 0.70–1.51; P = 0.87; I^2 = 26%). Our meta-analysis proved that left atrial ablation was an effective therapeutic strategy to restore SR in persistent or permanent AF patients, which was a good supplement to the previous studies.

The present meta-analysis found acceptable 30-day mortality (range: 0–8.3%) and all-cause late mortality rates (range: 0–7.5%) in included RCTs with no significant difference between CS+LA and CS group. Considering five of eleven studies underwent the traditional cut-and-sew techniques, the low mortality justified the safety of cut-and-sew in left atrial maze surgery. However, the small number of patients in RCTs suggested this result should be treated with caution.

Performing surgical atrial fibrillation in conjunction with cardiac surgery was supposed to increase the risk for postoperative permanent pacemaker requirement[29]. The adjusted odds of permanent pacemaker implantation was higher in surgical ablation group than that in patients with no history of AF who underwent cardiac surgery (OR 2.7; 95% CI 1.7–4.4). In the present meta-analysis, permanent pacemaker implantations were similar in CS+LA and CS group with a proportion of 5.5% and 5.1%, which was lower than the 5.94 to 7.10%
reported by a large retrospective study of the Society of Thoracic Surgeons National Cardiac Database[30]. This result suggested that LA lesion set was a safe procedure in terms of pacemaker implantation. It was consistent with a recent retrospective study which found that not left atrial but biatrial lesion set was the only statistically significant predictor of permanent pacemaker implantation after concomitant surgical ablation for AF through a univariate and multivariate analysis of 594 patients[31]. Demographic data, type of surgical procedure, and type of energy source did not have a significant impact of pacemaker implantation rate. The enhanced SR outcomes may reduce the incidence of permanent pacemaker implantation. However, this speculation should be taken with caution as studies reported different indications for pacemaker implantations.

No significant difference was found between CS+LA and CS group in terms of neurological events. Previous studies reported a protective effect from neurological events after Cox-Maze technique in AF patients undergoing concomitant cardiac surgery[32–35]. The negative outcome in our meta-analysis may be as a result of mixed factors including prosthetic valve

Fig 7. Meta-regression analysis assessing the effect of various patient characteristics on freedom for atrial fibrillation at 1 year follow-up. LVEF: left ventricular ejection fraction; LAD: left atrial diameter.

https://doi.org/10.1371/journal.pone.0191354.g007

Fig 8. Forest plot of 1-year freedom from atrial fibrillation at 1 year follow-up, showing summary of HRs with 95% confidence intervals for included studies.

https://doi.org/10.1371/journal.pone.0191354.g008
implantation, oral anti-coagulant or anti-platelet drugs, and the interaction between antiarhythmic and anti-coagulant drugs. We also found a similar reoperation rates for bleeding in these two groups. This result was logically reasonable as the reoperation for bleeding was similar in mixed BA and LA surgical ablation compared with cardiac surgery alone[10].

There are several limitations to our meta-analysis. Firstly, the RCTs included in this meta-analysis were small sample size studies. Secondly, the variant ablation or cut-and-sew lines in left atrial among RCTs may had influence on the efficacy of surgical ablation. Thirdly, the follow-up results beyond 1 year were not reported in most RCTs which cast doubts on the long-term efficacy of surgical ablation. Fourthly, AF monitoring in RCTs were based on ECG or 24h Holter at specific time point which may not be effective to detect the paroxysmal or

Fig 9. Meta-regression analysis assessing the effect of various patient characteristics on freedom for atrial fibrillation at 1 year follow up. LVEF: left ventricular ejection fraction; LAD: left atrial diameter.

https://doi.org/10.1371/journal.pone.0191354.g009

Study or Subgroup	CS+LA Events	Total	CS Events	Total	Weight	Odds Ratio M.H, Random, 95% CI
Albrecht 2009	0	70	0	70		Not estimable
Blomstrom Lundqvist 2007	3	49	4	48	33.3%	0.72 [0.15, 3.39]
Cherniavsky 2014	0	30	0	34		Not estimable
Chevalier 2009	1	21	0	22	7.6%	3.29 [0.13, 85.44]
de Lima 2004	0	10	0	10		Not estimable
Doukas 2005	3	49	4	48	33.3%	0.72 [0.15, 3.39]
Knaut 2010	2	24	0	21	8.4%	4.78 [0.22, 105.36]
Schuetz 2003	1	24	1	19	10.0%	0.78 [0.05, 13.39]
Srivastava 2008	0	40	0	40		Not estimable
Vasconcelos 2004	1	15	0	14	7.5%	3.00 [0.11, 79.91]
Wang 2014	0	70	0	70		Not estimable
Total (95% CI)	402	396	100.0%		1.06	[0.43, 2.60]

Total events 11

Heterogeneity: Tau² = 0.00; Chi² = 2.32, df = 5 (P = 0.89), I² = 0%
Test for overall effect: Z = 0.13 (P = 0.90)

Fig 10. Forest plot of 30-day mortality, showing summary ORs with 95% confidence intervals for included studies.

https://doi.org/10.1371/journal.pone.0191354.g010
Fig 11. Forest plot of late mortality, showing summary ORs with 95% confidence intervals for included studies.

![Forest plot of late mortality](https://doi.org/10.1371/journal.pone.0191354.g011)

Study or Subgroup	CS+LA Events	Total	CS Events	Total	Weight	M-H, Random, 95% CI	Odds Ratio
Albrecht 2009	0	20	0	20	Not estimable		
Cherniavsky 2014	0	30	0	34	Not estimable		
de Lima 2004	0	10	0	10	Not estimable		
Knaust 2010	1	24	0	21	19.6%	2.74 [0.11, 71.04]	
Srivastava 2008	3	40	2	40	61.1%	1.54 [0.24, 9.75]	
Vasconcelos 2004	0	15	1	14	19.3%	0.29 [0.01, 7.74]	
Wang 2014	0	70	0	70	Not estimable		

Total (95% CI): 209 / 209 = 100.0%

Heterogeneity: $\tau^2 = 0.00$, $\text{Chi}^2 = 1.04$, df = 2 ($p = 0.60$), $I^2 = 0$

Test for overall effect: $Z = 0.30$ ($p = 0.78$)

Fig 12. Forest plot of neurological events, showing summary ORs with 95% confidence intervals for included studies.

![Forest plot of neurological events](https://doi.org/10.1371/journal.pone.0191354.g012)

Study or Subgroup	CS+LA Events	Total	CS Events	Total	Weight	M-H, Random, 95% CI	Odds Ratio
Albrecht 2009	0	20	1	20	8.3%	0.32 [0.01, 8.26]	
Blomstrom Lundqvist 2007	4	40	2	35	27.9%	2.54 [0.43, 14.95]	
Cherniavsky 2014	0	30	0	34	Not estimable		
Chevalier 2009	3	21	1	22	15.9%	3.50 [0.33, 36.87]	
de Lima 2004	0	10	1	10	0.0%	0.30 [0.01, 8.33]	
Doukas 2006	2	49	3	48	28.1%	0.64 [0.10, 4.00]	
Knaust 2010	0	24	0	21	Not estimable		
Srivastava 2008	0	40	0	40	Not estimable		
Vasconcelos 2004	1	15	2	15	13.9%	0.46 [0.04, 5.75]	
Wang 2014	0	70	0	70	Not estimable		

Total (95% CI): 309 / 315 = 100.0%

Heterogeneity: $\tau^2 = 0.00$, $\text{Chi}^2 = 3.71$, df = 5 ($p = 0.59$), $I^2 = 0$

Test for overall effect: $Z = 0.10$ ($p = 0.92$)

Fig 13. Forest plot of permanent pacemaker implantations, showing summary ORs with 95% confidence intervals for included studies.

![Forest plot of permanent pacemaker implantations](https://doi.org/10.1371/journal.pone.0191354.g013)

Study or Subgroup	CS+LA Events	Total	CS Events	Total	Weight	M-H, Random, 95% CI	Odds Ratio
Blomstrom Lundqvist 2007	7	30	4	35	32.3%	2.38 [0.62, 9.02]	
Cherniavsky 2014	0	30	0	34	Not estimable		
Chevalier 2009	3	21	2	22	18.6%	1.87 [0.25, 11.13]	
de Lima 2004	0	10	0	10	Not estimable		
Doukas 2006	2	49	4	48	13.8%	0.47 [0.08, 2.68]	
Knaust 2010	2	24	4	21	18.5%	0.39 [0.06, 2.36]	
Srivastava 2008	0	40	0	40	Not estimable		
Vasconcelos 2004	0	15	1	14	5.8%	0.29 [0.01, 7.74]	
Wang 2014	2	70	0	70	8.7%	5.15 [0.24, 109.15]	

Total (95% CI): 289 / 294 = 100.0%

Heterogeneity: $\tau^2 = 0.05$, $\text{Chi}^2 = 5.24$, df = 5 ($p = 0.39$), $I^2 = 5$

Test for overall effect: $Z = 0.18$ ($p = 0.85$)
asymptomatic recurrent episodes. Fifthly, publication bias was found in the present meta-analysis. However, the main outcomes were robust in sensitive analysis.

Conclusion

We draw a conclusion that concomitant left atrial surgical ablation and cardiac surgery for persistent or permanent AF has a good efficacy for restoration of SR in 1 year following surgery. The 30 day mortality, late all-cause mortality, neurological events and permanent pacemaker implantation are of no significant difference between two groups. Thus, our meta-analysis demonstrates that left atrial surgical ablation is an effective therapeutic strategy for AF patients undergoing concomitant cardiac surgery without increased risk of mortality and morbidity.

Supporting information

S1 File. PRISMA checklist.

Acknowledgments

The present study was supported by grants from Taizhou science and technology bureau (2016A33739).

Author Contributions

Data curation: Chunguo Wang.

Funding acquisition: Chengchu Zhu.

Methodology: Jiang Lin, Jiang Jin.

Writing – original draft: Xinxin Wang, Quanteng Hu.

Writing – review & editing: Minhua Ye, Baofu Chen.

References

1. Lee R, Mccarthy PM, Wang EC, Vaduganathan M, Kruse J, Malaisrie SC, et al. Midterm survival in patients treated for atrial fibrillation: a propensity-matched comparison to patients without a history of atrial fibrillation. Journal of Thoracic & Cardiovascular Surgery. 2012; 143(6):1341.
2. Gillinov AM, Saltman AE. Ablation of Atrial Fibrillation with Concomitant Cardiac Surgery. Seminars in Thoracic and Cardiovascular Surgery. 19(1):25–32. https://doi.org/10.1053/j.semtcvs.2007.01.002 PMID: 17403454

3. Ad N, Cheng DC, Martin J, Berglin EE, Chang BC, Doukas G, et al. Surgical Ablation for Atrial Fibrillation in Cardiac Surgery: A Consensus Statement of the International Society of Minimally Invasive Cardiothoracic Surgery (ISMICS) 2009. Innovations. 2010; 5(2):74–83. https://doi.org/10.1097/IM.0b013e181d72939 PMID: 22437353

4. Ad N, Henry L, Massimiano P, Pritchard G, Holmes SD. The state of surgical ablation for atrial fibrillation in patients with mitral valve disease. Current Opinion in Cardiology. 2013; 28(2):170–80. https://doi.org/10.1097/HCO.0b013e32835ced9c PMID: 23295553

5. Melo J, Santiago T, Aguilar C, Berglin E, Knaut M, Alferi O, et al. Surgery for atrial fibrillation in patients with mitral valve disease: results at five years from the International Registry of Atrial Fibrillation Surgery. Journal of Thoracic & Cardiovascular Surgery. 2008; 135(4):863–9.

6. Khargi K, Denek H, Haardt H, Lemke B, Grewo P, Mueller KM, et al. Saline-irrigated, cooled-tip radiofrequency ablation is an effective technique to perform the Maze procedure. Annals of Thoracic Surgery. 2001; 72(3):1089–5.

7. Cox JL, Schuessler SB, D’Agostino H Jr, Stone C, Chang B-C, Cain M, et al. The surgical treatment of atrial fibrillation. III. Development of a definitive surgical procedure. The Journal of thoracic and cardiovascular surgery. 1991; 101(4):569–83. PMID: 2008095

8. Cox JL, Schuessler RB, Boineau JP. The development of the Maze procedure for the treatment of AF. Seminars in Thoracic & Cardiovascular Surgery. 2000; 12(1):2–14.

9. Haissaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine. 1998; 339(10):659–66. https://doi.org/10.1056/NEJM199809033391003 PMID: 9725923

10. Phan K, Xie A, La Meir M, Black D, Yan TD. Surgical ablation for treatment of atrial fibrillation in cardiac surgery: a cumulative meta-analysis of randomised controlled trials. Heart. 2014; 100(9):722–30. https://doi.org/10.1136/heartjnl-2013-305351 PMID: 24650881

11. Phan K, Xie A, Tian DH, Shalikrezae K, Yan TD. Systematic review and meta-analysis of surgical ablation for atrial fibrillation during mitral valve surgery. Annals of Cardiothoracic Surgery. 2014; 3(1):3–14. https://doi.org/10.3978/j.issn.2225-319X.2014.01.04 PMID: 24516793

12. Tierney JF, Stewart LA, Ghearsi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007; 8(1):16.

13. Wang X, Wang X, Song Y, Hu S, Wang W. Efficiency of radiofrequency ablation for surgical treatment of chronic atrial fibrillation in rheumatic valvular disease. International Journal of Cardiology. 2014; 174(3):497–502. https://doi.org/10.1016/j.ijcard.2014.03.153 PMID: 24820759

14. Vasconcelos JT, Scavavacca MI, Sampaio RO, Grinberg M, Sosa EA, Oliveira SA. Surgical treatment of atrial fibrillation through isolation of the left atrial posterior wall in patients with chronic rheumatic mitral valve disease. A randomized study with control group. Arquivos Brasileiros De Cardiologia. 2004; 83(3):203–10.

15. Srivastava V, Kumar S, Javali S, Rajesh TR, Pai V, Khandekar J, et al. Efficacy of Three Different Ablative Procedures to Treat Atrial Fibrillation in Patients with Valvular Heart Disease: A Randomised Trial. Heart, Lung and Circulation. 17(3):232–40. https://doi.org/10.1016/j.semtcvs.2007.01.002 PMID: 18242137

16. Schuettz A, Schulze CJ, Sarvanakis KK, Mair H, Plazer H, Kilger E, et al. Surgical treatment of permanent atrial fibrillation using microwave energy ablation: a prospective randomized clinical trial. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery. 2009; 24(4):475.

17. Knaut M, Kolberg S, Brosse S, Jung F. Epicardial microwave ablation of permanent atrial fibrillation during a coronary bypass and/or aortic valve operation: prospective, randomised, controlled, mono-centric study. Applied Cardiopulmonary Pathophysiology. 2010; 14(4):249.

18. Doukas G, Samani NJ, Alexiou C, Chin DT, Stafford PG, Spy T J, editors. Left atrial radiofrequency ablation during mitral valve surgery for continuous atrial fibrillation: Results of a prospective randomised clinical trial. Conference of G-Mex/Micro; 2005.

19. de Lima GG, Kalil RA, Leiria TL, Hatem DM, Kruse CL, Abrahão R, et al. Randomized study of surgery for patients with permanent atrial fibrillation as a result of mitral valve disease. Annals of Thoracic Surgery. 2004; 77(6):2089. https://doi.org/10.1016/j.athoracsur.2003.11.018 PMID: 15172273

20. Chevalier P, Leizorovicz A, Maureira P, Carteaux JP, Corbineau H, Caus T, et al. Left atrial radiofrequency ablation during mitral valve surgery: a prospective randomised multicentre study (SAFIR). Archives of Cardiovascular Diseases. 2009; 102(11):769–75. https://doi.org/10.1016/j.acvd.2009.08.010 PMID: 19944393
21. Cherniavsky A, Kareva Y, Pak I, Rakhomov S, Pokushalov E, Romanov A, et al. Assessment of results of surgical treatment for persistent atrial fibrillation during coronary artery bypass grafting using implantable loop recorders. Interactive Cardiovascular and Thoracic Surgery. 2014; 18(6):727–31. https://doi.org/10.1093/icvts/ivu016 PMID: 24572769

22. Blomström-Lundqvist C, Johansson B, Berglin E, Nilsson L, Jensen SM, Thelin S, et al. A randomized double-blind study of epicardial left atrial cryoablation for permanent atrial fibrillation in patients undergoing mitral valve surgery: the SWEDish Multicentre Atrial Fibrillation study (SWEDMAF). European Heart Journal. 2007; 28(23):2902–8. https://doi.org/10.1093/eurheartj/ehm378 PMID: 17984136

23. Albrecht A, Kalli RA, Schuch L, Abraham R, Sant’Anna JR, De LG, et al. Randomized study of surgical isolation of the pulmonary veins for correction of permanent atrial fibrillation associated with mitral valve disease. Journal of Thoracic & Cardiovascular Surgery. 2009; 138(2):454.

24. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinich R, et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation. 2003; 107(12):1614. https://doi.org/10.1161/01.CIR.0000079817.0380.45 PMID: 12668495

25. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D’Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. Archives of Internal Medicine. 1998; 158(3):229. PMID: 9472202

26. Corley SD. Relationships between sinus rhythm, treatment and survival in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Circulation. 2004; 109(6):1509–13.

27. Gammie JS, Haddad M, Milford-Belands S, Welke KF Jr, F, T, O’Brien SM, et al. Atrial fibrillation correction surgery: lessons from the Society of Thoracic Surgeons National Cardiac Database. Annals of Thoracic Surgery. 2008; 85(3):909. https://doi.org/10.1016/j.athoracsur.2007.10.097 PMID: 18291169

28. Phan K, Xie A, Tsai YC, Kumar N, La MM, Yan TD. Biatrial ablation vs. left atrial concomitant surgical ablation for treatment of atrial fibrillation: a meta-analysis. Heart Lung & Circulation. 2015; 24(1):e47–e8.

29. Elchami MF, Binongo JN, Levy M, Merchant FM, Halkos M, Thourani V, et al. Effect of Surgical Atrial Fibrillation Ablation at the Time of Cardiac Surgery on Risk of Postoperative Pacemaker Implantation. American Journal of Cardiology. 2015; 116(1):88–91. https://doi.org/10.1016/j.amjcard.2015.03.046 PMID: 25933731

30. Gammie JS, Haddad M, Milford-belands S, Welke KF Jr F T, O’Brien SM, et al. Atrial fibrillation correction surgery: lessons from the Society of Thoracic Surgeons National Cardiac Database. Annals of Thoracic Surgery. 2008; 85(3):909–14. https://doi.org/10.1016/j.athoracsur.2007.10.097 PMID: 18291169

31. Pecha S, Schäfer T, Yildirim Y, Ahmadzade T, Willems S, Reichenspurner H, et al. Predictors for permanent pacemaker implantation after concomitant surgical ablation for atrial fibrillation. Journal of Thoracic & Cardiovascular Surgery. 2014; 147(3):984–8.

32. Prasad SM, Maniar HS, Camillo CJ, Schuessler RB, Boineau JP, Sundt TM, III, et al. The Cox maze III procedure for atrial fibrillation: long-term efficacy in patients undergoing lone versus concomitant procedures. The Journal of thoracic and cardiovascular surgery. 126(6):1822–7. https://doi.org/10.1016/S0022-4806(16)30025-8

33. Schaff HV, Dearani JA, Daly RC, Orszulak TA, Danielson GK. Cox-Maze procedure for atrial fibrillation: Mayo Clinic experience. Seminars in Thoracic & Cardiovascular Surgery. 2000; 12(1):30–7.

34. Mccarthy PM, Gillinov AM, Castle L, Chung M, Rd CD. The Cox-Maze procedure: the Cleveland Clinic experience. Seminars in Thoracic & Cardiovascular Surgery. 2000; 12(1):25–9.

35. Cheng DCH, Ad N, Martin J, Berglin EE, Chang B-C, Doukas G, et al. Surgical Ablation for Atrial Fibrillation in Cardiac Surgery: A Meta-Analysis and Systematic Review. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2010; 5(2):84–96. doi: 10.1097/IMI. 0b013e3181d9199b. PMID: 22437354