Release oscillation in a hollow fiber – Part 2: The effect of its frequency on ions release and experimental verification

Ling Lin¹, Huigai Li² and Yanping Liu³

Abstract
The capillary oscillation in a hollow fiber greatly affects the process of ions release. Its approximate frequency is obtained, revealing a lower frequency predicts a longer release process, and the main factor affecting the frequency is studied theoretically and verified experimentally. The oscillation release can be also extended to drug release in tissue engineering.

Keywords
Capillary oscillation, frequency–amplitude, hollow fiber, tissue engineering, drug release

Introduction
Hollow fibers containing sliver ions are widely applied in the textile engineering,¹–³ the medical science, and the environment science. Sliver ions in the inner wall of the hollow fibers can be released when immersed in water, and they are widely used as an antibacterial material. The diffusion process is important for the initial release, ions at the open ends of the hollow fiber can be released immediately, but the ions inside of the hollow fiber can be gradually released due to the capillary oscillation, and its frequency will greatly affect the release efficiency. The mechanism of oscillation release is also valid for drug release in tissue engineering.⁴

Figure 1 illustrates a hollow fiber immersed in water, the capillary fluid will vibrate and the sliver ions on the inner wall will gradually be released due to capillary oscillation.

The capillary oscillator can be written as¹

\[(x_0 + x)x'' + \frac{a + bx}{L_0 - x} = 0\] \hspace{1cm} (1)

where \[a = \frac{P_{in}V_0 - SP_{out}(L - 2x_0)}{4S \rho}, \quad b = \frac{2S P_{out}}{4S \rho}, \quad L_0 = \frac{L}{2} - x_0.\]

The initial conditions are \[x(0) = A, \quad x'(0) = 0\] \hspace{1cm} (2)

A detailed derivation of the capillary oscillator was given in Lin and Yao.¹ The oscillator can be effectively solved by the variational iteration method,⁵–⁷ the homotopy perturbation method,⁸–¹² He’s frequency

¹Ningbo Advanced Textile Technology & Fashion CAD Key Laboratory, Zhejiang Fashion Institute of Technology, Ningbo, PR China
²College of Textile and Clothing Engineering, Soochow University, Suzhou, PR China
³Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, PR China

Corresponding author:
Yanping Liu, Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, PR China.
Email: liuyypzjou@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
formulation,13 and the Taylor series method.14 A complete review on various methods for nonlinear oscillators is available in He.13 The frequency of equation (1) can be approximately obtained as

$$\omega = \frac{2\pi}{T} = \frac{\pi}{2} \sqrt{\frac{P_{\text{in}} V_0 - SP_{\text{out}}(L - 2x_0) + 2SP_{\text{out}}A}{4\rho A(L - 2x_0 - 2A)(x_0 + A)}}$$

(3)

\textbf{The effect of its frequency on ions release}

We write equation (3) in the form

$$\omega^2 = \frac{\pi^2}{4} \frac{P_{\text{in}} V_0 - SP_{\text{out}}(L - 2x_0) + 2SP_{\text{out}}A}{4\rho A(L - 2x_0 - 2A)(x_0 + A)}$$

(4)

We want to study the effect of fiber length on the frequency, so we differentiate equation (4) with respect to L, this results in

$$\frac{\partial}{\partial L} (\omega^2) = - \frac{\pi^2}{16\rho A(x_0 + A)} \frac{SP_{\text{out}}(L - 2x_0 - 2A) - P_{\text{in}} V_0 + SP_{\text{out}}(L - 2x_0) - 2SP_{\text{out}}A}{(L - 2x_0 - 2A)^2}$$

$$= - \frac{\pi^2}{16\rho A(x_0 + A)} \frac{P_{\text{in}} V_0}{(L - 2x_0 - 2A)^2}$$

(5)

It is obvious that

$$\frac{\partial}{\partial L} (\omega^2) < 0$$

(6)

or

$$\frac{\partial \omega}{\partial L} < 0$$

(7)

This implies that a longer fiber has smaller frequency. As a result, a lower ions release is predicted.

\textbf{Experimental verification}

In order to verify the theoretical prediction, we choose samples with different length from 5 mm to 54 mm to check the release process of ions from the hollow fibers. Silver ions are distributed uniformly on the inner surface, the silver ion concentration is same for all samples. Six samples with length of 5 mm, 10 mm, 20 mm, 30 mm, 38 mm, and 54 mm, respectively, were used in the experiment. Each sample was then put into deionized water at temperature of 37°C. The concentration of silver ion on water was measured at different periods, and the results were shown in Figures 2 and 3; all the given data were the mean values of three measured data.
Figure 2. Release rate of silver ion on pure water vs. time. The numbers 1 and 2 represent the hollow fibers with length of 5 mm and 38 mm, respectively.

Figure 3. Release rate of silver ion on pure water vs. the fiber length at period of 24 h.

Figure 2 gives a comparison of the ions release between samples with different fiber length. An immediate release of silver ions at the initial stage was observed for both samples, and it is also obvious that ions release after the initial release process in a longer fiber is slower than that in a shorter fiber.

The concentration of the released ions after the initial release process scales with the frequency

\[C \propto \omega \]

or

\[C = C_0 + \beta \omega = C_0 + \beta \sqrt{\frac{n^2}{16SpA(x_0 + A)}} \frac{P_{\text{air}}V_0}{(L - 2x_0 - 2A)^2} \]

\[= C_0 + \frac{\gamma}{L - L_0} \]

(8)

(9)
where C_0, β, γ, and L_0 are constants, which can be determined experimentally

$$C = 0.366 + \frac{1.303}{L - 0.5}$$ \hspace{1cm} (10)

seeing a good agreement between the theoretical prediction and experimental data.

Discussion and conclusion

For the first time ever, we show the effect of fiber’s length on the release process. We can control the release process effectively by fiber length, making its applications accessible to various fields, where the controllable release is of great importance. The main effect affecting the frequency is the fiber length; a longer fiber requires a lower frequency and a longer release period.

The unsmooth inner surface can be more effectively modeled by fractal calculus,\(^{14}\) which can reveal some properties beyond the traditional calculus. Fractal calculus and fractional calculus are main tools to deal with discontinuous problems.\(^ {14-21}\) Additionally, nanoscale hollow fibers can be fabricated by electrospinning,\(^ {22-24}\) the results of which we will report in a forthcoming paper.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Ling Lin https://orcid.org/0000-0001-8975-4674
Yanping Liu https://orcid.org/0000-0002-0723-2109

References

1. Lin L and Yao SW. Release oscillation in a hollow fiber – part 1: mathematical model and fast estimation of its frequency. *J Low Freq Noise Vibr Act Control* 2019. DOI:10.1177/1461348419836347
2. Lin L. Hollow PET fibers containing silver particles as antibacterial materials. *J Text Inst* 2011; 102: 419–423.
3. Li H, Lin L and Wang M. Influence of nano-fiber membranes on silver ions released from hollow fibers containing silver particles. *Therm Sci* 2016; 20: 859–862.
4. Ye KQ, Kuang HZ, You ZW, et al. Electrospun nanofibers for tissue engineering with drug loading and release. *Pharmaceutics* 2019; 11: 182.
5. Anjum N and He J-H. Laplace transform: making the variational iteration method easier. *Appl Math Lett* 2019; 92: 134–138.
6. Dogan Durgun D and Konuralp A. Fractional variational iteration method for time-fractional nonlinear functional partial differential equation having proportional delays. *Therm Sci* 2018; 22: S33–S46.
7. Inc M, Khan H, Baleanu D, et al. Modified variational iteration method for straight fins with temperature dependent thermal conductivity. *Therm Sci* 2018; 22: S229–S236.
8. He JH. Homotopy perturbation method with an auxiliary term. *Abstract Appl Anal* 2012; 2012: 857612.
9. He JH. Homotopy perturbation method with two expanding parameters. *Indian J Phys* 2014; 88: 193–196.
10. Wu Y and He J-H. Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass. *Results Phys* 2018; 10: 270–271.
11. Adamu MY and Ogenyi P. New approach to parameterized homotopy perturbation method. *Therm Sci* 2018; 22: 1865–1870.
12. Liu ZJ, Adamu MY, Suleiman F, et al. Hybridization of homotopy perturbation transformation and Laplace transformation for the partial differential equations. *Therm Sci* 2017; 21: 1843–1846.
13. He JH. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199.
14. He JH and Ji FY. Taylor series solution for Lane–Emden equation. *J Math Chem* 2019. DOI: 10.1007/s10910-019-01048-7
15. He JH. Fractal calculus and its geometrical explanation. *Results Phys* 2018; 10: 272–276.
16. Li XX, Tian D and He CH. A fractal modification of the surface coverage model for an electrochemical arsenic sensor. *Electrochim Acta* 2019; 296: 491–493.

17. Wang QL, Shi XY and He JH. Fractal calculus and its application to explanation of biomechanism of polar bear hairs. *Fractals* 2018; 26: 1850086.

18. Wang Y and Deng QG. Fractal derivative model for tsunami travelling. *Fractals*. DOI: 10.1142/S0218348X19500178

19. Ain QT and He JH. On two-scale dimension and its applications. *Therm Sci* 2019; 23: 1313–1318.

20. He JH and Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. *Therm Sci* 2019; 23: 2131–2133.

21. He JH. A tutorial review on fractal spacetime and fractional calculus. *Int J Theor Phys* 2014; 53: 3698–3718.

22. Tian D, He C-H and He J-H. Macromolecule orientation in nanofibers. *Nanomaterials* 2018; 8: 918.

23. Tian D and He J-H. Macromolecular electrospinning: basic concept & preliminary experiment. *Results Phys* 2018; 11: 740–742.

24. Tian D Li XX and He JH. Self-assembly of macromolecules in a long and narrow tube. *Therm Sci* 2018; 22: 1659–1664.