Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine

M. Hasheena1 · A. Ratnamala1 · M. Noorjahan2 · G. Deepthi Reddy2 · K. Shiprath3 · H. Manjunatha3 · K. Chandra Babu Naidu4

Received: 7 April 2022 / Accepted: 21 May 2022 / Published online: 8 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The current study highlights the design and construction of a sensitive and selective sensor for detection of dopamine and tyrosine using a GO-SnS2 quantum dots by a drop casting method on glassy carbon electrode. Highly porous nanocrystalline GO-SnS2 quantum dots were synthesized by using ultrasonication followed by hydrothermal method in a facile manner. XRD, SEM, XPS, TEM, and pore size distribution techniques were used to characterize the quantum dots that were produced. The newly fabricated electrode was evaluated for EIS (Electrochemical impedance spectroscopy), CV (cyclic voltammetry) and chronoamperometric methods. The observed limit of detection of dopamine was observed to be 26 nM. High selectivity and sensitivity were observed for electrochemical detection of dopamine and tyrosine.

Keywords GO-SnS2 quantum dots · Dopamine · Tyrosine · Graphene oxide · Electrochemical

1 Introduction

Dopamine and tyrosine are essential biomolecules which play a key role in human metabolism. Tyrosine is an important precursor of thyroid hormones, dopamine, adrenaline, and other hormones that are used to establish and maintain a proper balance in humans [1]. Hypothyroidism, hypochondria, and dementia are all caused by a lack of tyrosine. Dopamine belongs to the catecholamine family and is formed in the brain by dopaminergic neurons [2]. Dopamine is a key signal-transmission component between neurons because it is linked to the majority of important human body functions like motor control, reward, motivation, and cognition [3–6]. Low levels of dopamine and tyrosine in the blood, as well as the death of dopaminergic neurons in the brain, have been linked to a range of significant neurological illnesses, including Parkinson’s disease, psychosis, and attention deficit hyperactivity disorder (ADHD) drug addiction [6, 7]. To solve this problem, several studies have described novel approaches for detecting dopamine and tyrosine in a highly sensitive and selective manner, which might be utilized to identify dopamine and tyrosine-related neurological illnesses promptly [8–10].

Because of its short detection time and cost efficiency, the electrochemical sensing approach is recognized as one of the most effective approaches for dopamine and tyrosine detection among the different existing methods such as ELISA, colorimetric methods, Raman, and HPLC. [11–14]. Dopamine and tyrosine are redox-active chemicals that may be reduced or oxidized at different potentials, and their electrical characteristics can be used to detect their presence in a sample (usually human blood). The use of an electrochemical dopamine and tyrosine detection approach is challenging due to signal interference from other biological molecules.
(e.g., uric acid (UA), ascorbic acid (AA), and catecholamine molecules). Signal interference might greatly limit the sensitivity of dopamine detection since the reduction and oxidation potentials of these biological substances allegedly coincide with those of dopamine [15–17]. Furthermore, the electrochemical sensitivity of dopamine is still lower than that of other traditional techniques like HPLC and ELISA, which is a substantial hurdle to overcome before this approach can be utilized to detect accurate levels of dopamine [18]. By functionalizing electrode surfaces or introducing other types of conductive materials, several attempts have been made to overcome the issues of selectivity and sensitivity.

Graphene, a two-dimensional (2D) honeycomb structure made up of pure carbon molecules, has been widely exploited in different scientific fields, including batteries, display panels, solar cells, and even biological applications [19–22]. Furthermore, graphene derivatives have been shown to exhibit notable dopamine-detection properties [23], which are principally owing to π-π and electrostatic interactions between the graphene oxides’ surfaces. Various graphene-derivative-modified electrodes have been created to increase the performance of dopamine biosensors, including graphene/glassy carbon electrode (GCE), graphene–gold nanoparticles/GCE, TiO2–graphene/GCE, and GO/GCE electrodes [24–27]. One of the most intriguing carbonaceous compounds is graphene, a one-layer thick sheet with exceptional optical, thermal, and electrical characteristics. The discovery of porous graphene oxide (PGO), a type of graphene-oxide sheet with numerous hydroxyl groups and a porous surface [28], has the potential to improve the electrostatic interaction between the PGO and the analytes while also facilitating electron transfer between the molecules and the underlying electrode substrates [29].

Generally graphene oxide functionalized metals oxides or sulphides shows high affinity towards sensing of the bio molecules [30–32]. Richard et al. reported ZnO–ZnFe2O4/Fe3O4/carbon nanocomposite with ultrasensitive and selective electrode for detection of dopamine[33]. SnO2 nano wires were used for selective detection of riboflavin [31]. Apart from this many of the sensors were fabricated for real time monitoring [34].

Among the various binary compounds of tin chalcogenides, tin sulphides are well studied or explored owing to adaptable chemical nature and can be fabricated into hybrids, composites, non-toxic nature etc. hence they are widely used in energy storage devices, solar cells and optoelectronic devices. Despite this, the electrochemical procedure produces substantial capacity fading in tin sulphides due to the high-volume change. [14–16]. Because these matrices can greatly promote electron/ion transfer and effectively accommodate cycle-induced stress/strain of SnS, the electrochemical performance of tin sulphide has recently been improved by grafting nanosized tin sulphide into various types of carbon matrices (e.g., carbon spheres, amorphous carbon, macroporous carbon, carbon nanotubes, or graphene) [17–23]. Despite considerable gains in gravimetric capacity and cycle performance, the nanostructure of these composites, in combination with the low tap density of carbon matrix, can restrict volumetric capacity [24, 25]. Furthermore, the creation of these composites typically involves severe conditions or sophisticated synthesis, both of which are costly to industry. As a result, achieving a simple, scalable synthesis of tin sulphide-based graphene materials with superior volumetric storage remains a major challenge.

We used a facile hydrothermal method to create a novel graphene Oxide/ SnS2 (GO-SnS2) composite. SnS2 quantum dots are tightly supported on porous graphene oxide (PGO) in the composite, forming a primary microstructure and then assembling into a secondary nanostructure. The tap density of the nanostructured SnS2 and PGO hybrid is very high. The combination of SnS2 quantum dots and PGO nanosheets inside nanosized building blocks can not only improve electron/ion transport, but also efficiently insert SnS2 volume change and provide strong structural stability to the composite. As a result, the tightly compacted GO-SnS2 quantum dots show high, fast, and stable dopamine electrochemical detection. Thus, the prepared GO-SnS2 quantum dots were found to be exhibiting superior electrochemical performance, combined with its simple scalable synthesis, makes it a promising material for practical application.

2 Experimental section

2.1 Reagents and chemicals

Stannous dichloride (SnCl2.4H2O), Sodium Sulphide flakes (make: SD fine chemicals, INDIA), Dopamine (make: Aldrich), Tyrosine from Fischer Scientific Ltd., Potassium ferrocyanide and Potassium Chloride from SD Fine. Chemicals used in this work are of AR grade or analytical grade and used as received.

2.2 Synthesis of SnS2 nanoparticles using plant extract

The synthesis of SnS2 quantum dots was carried out as per our earlier work in slightly modified two step manner[35] Fresh Syzigium cumini (S. cumini) leaves (100 g) were collected and rinsed several times with distilled water to remove foreign particles before being ground using a mortar and
2. Fabrication of electrode

Before being utilised to form the working electrode, the glassy carbon electrode (GCE) was thoroughly washed with deionized water and polished with an alumina polishing pad. The electrode was sonicated for 15 min after being distributed in 1 mL DMF. To make a thin layer, the resultant mixture was drop casted over the surface of GCE with a micropipette and air dried overnight at room temperature. The modified electrode after casting was analysed for SEM analysis in order to check the uniformity of the material on the surface of the electrode (Fig. 4e). The SEM images clearly show the uniformity of the material that is coated.

2.1 Synthesis of Graphene oxide/SnS$_2$ nanocomposites (NCs)

Ultra-sonication followed by the hydrothermal method is simple and fast for synthesis of graphene oxide/ SnS$_2$ nanocomposite materials as reported in our earlier work [35]. In a beaker about 500 mg of graphene oxide in 100 mL water are homogenized by using an ultrasonic bath. The homogeneous graphene solution in the beaker were mixed with preformed SnS$_2$ synthesized, followed by hydrothermal treatment for 24 h at 100$^\circ$ C without adding any precipitating agent. The resultant colloidal solution was rinsed with ethanol and water, and then aged for roughly 12 h in beaker. Finally, the resultant combination solutions were dried in an oven at 65 $^\circ$C for 24 h, yield GO-SnS$_2$ quantum dots.

3 Material characterization

The produced GO-SnS$_2$ quantum dots were examined using a various of characterization methods. The size of GO-SnS$_2$ quantum dot phase purity and crystalline nature were examined using the X’pert Pro X-ray diffractometer with Ni filtered Cu Kα radiation ($\lambda=1.5406\AA$, 2θ=0–60). SEM (ZEISS EVO 18 model) was used to record the morphology of the GO-SnS$_2$ quantum dots. The GO-SnS$_2$ quantum dots were photographed and their selected area electron diffraction (SAED) patterns were obtained using an FEI TECHNAI G2 transmission electron microscope (TEM). A UV-1800 pc Shimadzu spectrophotometer was used to detect colloidal dispersions of GO-SnS$_2$ quantum dots in 200 to 1100 nm range. X-ray photoemission spectra were obtained on a KRATOS AXIS 165 with Mg Kα radiation (1253.6 eV) at 75 W. The C 1s line at 284.6 eV was utilized.
as an internal reference. Asymmetric gaussian forms were adopted in each situation. Binding energies of similar samples were typically constant within 0.1 eV.

4 Results and discussion

4.1 Material characterization

![Fig. 2 XPS spectra of the GO-SnS$_2$ quantum dots high resolution spectra of (a) Survey spectrum (b) Sn 3d$^{5/2}$ and Sn 3d$^{3/2}$ (c) S 2p spectra (d) C 1s spectra](image)

![Fig. 3 Pore sized distribution of SnS$_2$-GO quantum dots (a) Pore diameter (b) Surface area and (c) Pore volume](image)
4.1.1 XRD

The crystal structure of the as synthesized GO-SnS$_2$ quantum dots was given in Fig. 1.

The diffraction peaks at $2\theta = 26.0$ and also a hump around 25 shows the sp2 graphene carbon. The peaks observed at $2\theta = 27.0$ (100), 34.09 (101), 42.58 (102), 51.8 (111), and 59.14 (200) and its corresponding planes is attributed to the hexagonal phase of SnS$_2$ [36]. The diffraction patterns agree well with the JCPDS card No. 23-0677. The obtained peaks are sharp with no impurities. The particle size calculated based on Scherrer’s equation at $2\theta = 26.0$, 34.09 and 42.58.
42.58 are estimated to be 5.27 nm, 9.19 nm and 7.74 nm respectively.

4.1.3 Pore size distribution

Figure 3 (a), (b) and (c) depicts the N$_2$ adsorption and desorption isotherms of GO-SnS$_2$ quantum dots. As observed from the Fig. 3c, the adsorption isotherms are similar to that of type (IV) isotherms with prominent hysteresis loop in the P/P$_0$ range of 0.5-1 reflecting the presence of mesopores. The synthesized GO-SnS$_2$ quantum dots showing the mesoporosity and is further confirmed by corresponding pore size distribution [38]. The SnS$_2$-GO quantum dots have a surface area of 13.865 m2/g, an average pore size of 15.24 nm, and a measured pore volume of 0.066 cc/g. The findings are consistent with previous reported results [38].

4.1.4 SEM and TEM

Figure 4(a) and (b) shows the SEM and TEM images of synthesized GO-SnS$_2$ quantum dots. The SEM pictures disclose that the particles are agglomerated with sheet like
morphology of the graphene on which the SnS$_2$ particles are decorated and the sheets are attached to each other due to tiny dimensions and large surface energy. Each nano-cluster size ranges from, 31.40–57.83 nm, as indicated from SEM images. The SnS$_2$ particles were seem to embedded in the graphene sheets [39]. The EDAX patterns are given in Fig. 4(c) and the surface composition of C, O, Sn and S are in a specific area are 82.05, 15.78, 1.84 and 0.32 (atomic weight\%) respectively.

The TEM images of GO-SnS$_2$ in Fig. 4b, demonstrates the quantum dots of size around 3 nm. The quantum dots are showing good crystallinity and the SAED pattern (Fig. 4d) infringes with hexagonal phase of tin sulphide and SnS$_2$ phases were decorated on graphene oxide, which is well in accordance with that of XRD.

4.2 Electrochemical performance of dopamine and tyrosine on the GO-SnS$_2$ nanocomposite modified electrode

Dopamine and tyrosine coexist in blood and many biological fluids and interfere with each other in the detection and moreover the concentration of tyrosine is generally low. High concentration of DA may interfere in determining the tyrosine. Hence, simultaneous determination of DA and Tyrosine is highly essential in electrochemical analytical research.

Three electrode voltammetry was carried out for electrochemical characterization and sensing. The primary event that reveals the existence of dopamine is the oxidation of dopamine on the surface of GCE. Dopamine molecules are linked to the surface of modified GCE electrode, releasing 2 H$^+$ ions to generate dopamine-o-quinone. These ions are then identified on the GCE, resulting in a conspicuous anodic peak on the voltammogram. Similarly, tyrosine molecules also attached to the electrode surface and releases 1 H$^+$ ion producing the ketone derivative of tyrosine and these ions are detected and analysed by CV studies. Scheme. 1 depicts a graphical illustration of this phenomenon.

4.2.1 EIS

Electrochemical impedance experiments in 0.1 M KCl at its formal potential in the frequency range 100 kHz to 100 mHz with a 10mV amplitude were performed to examine the electrical characteristics of the prepared electrodes. A typical EIS response of bare GCE and GO-SnS$_2$ quantum dots/GCE are shown in Fig. 5. At the bare GCE, a partial semicircle with a virtually straight tail indicates electron transport resistance to the redox probe. On the GO-SnS$_2$ quantum dot/GCE, the semicircle does not appear, suggesting a lower barrier to electron transmission. This is due to the high conductivity of the graphene oxide-SnS$_2$ formed on the surface. As indicated by the enhanced electrode’s impedance behaviour, GO-SnS$_2$ has been effectively adsorbed on the GCE surface. The modified electrode’s resistance is lower than the bare graphite electrodes, which could be due to improved conductivity of the modified electrode [40, 41]. The impedance charts match the behaviour of the CV.
4.2.2 Simultaneous detection of dopamine and tyrosine on GO-SnS₂ modified electrode

Simultaneous detection studies of dopamine and tyrosine were given in Fig. 6. There are no peaks observed in bare glassy carbon electrode as seen in Fig. 6(a) and moreover in case of GO-SnS₂/GCE with analyte only tyrosine is showing Ip (current) 0.0187 mA at Epa (voltage) 0.782 V which is given in Fig. 6(f). And in the third case simultaneous detection of tyrosine and dopamine was carried out using 100 µM Dopamine and 500µM of tyrosine in PBS buffer solution at pH 7 and is given in Fig. 6(e). The oxidation peaks of dopamine and tyrosine are very well separated and peaks appeared at 0.202 V with current 0.0257962 mA, and the peak at 0.7952 V with current 0.02579 mA correspond to dopamine and tyrosine respectively. Thus, the CV studies clearly showing the modified GO-SnS₂/GCE was successful in separating and distinguishing the analytes dopamine and tyrosine.

With precise redox behaviour of dopamine, GO-SnS₂/GCE demonstrated a three-fold increase in anodic peak current of 0.0362 mA. (Fig. 6d). These GO-SnS₂ dots, which boosted conductivity and surface area, are responsible for the better electrochemical current responsiveness.

To prove the surface area of GCE increases with modification with GO-SnS₂, the electroactive area of bare GCE, GO-SnS₂/GCE were determined and compared using CV technique as per the Randles-Sevik equation [42].

\[
i_p = \left(2.69 \times 10^5 \right)^{3/2} D^{1/2} v^{1/2} A_c.
\]

\[i_p = nFQυ/4RT \]

Fig. 6 Simultaneous detection studies of Dopamine and tyrosine on GO-SnS₂/GCE: a) bare GCE without any analyte, b) bare GCE with dopamine, c) GCE coated with GO-SnS₂ without analyte, d) GCE coated with GO-SnS₂ with dopamine, e) GO-SnS₂/GCE with dopamine 100µM + tyrosine 500 µM, f) GO-SnS₂/GCE with 500 µM tyrosine at scan rate of 50mV/s

The electrochemical areas calculated by using the equation are 0.112 cm² and 0.226 cm² for base GCE and GO-SnS₂/GCE respectively. As seen from the values the electroactive surface area increases nearly by 50% compared to that of bare GCE.

4.2.3 Effect of scan rate on peak current of dopamine and tyrosine

Using cyclic voltammetry, the impact of changing the sweep rate for 100 M dopamine in 0.1 M PBS at pH 7 was examined (Fig. 7A). Different scan speeds ranging from 50 to 400 mV/s were used to record the CV profiles. Peak current rose with a minor positive shift in peak potential in the region of 50 to 400 mV/s, as seen in the graph. Ip vs. potential and Ip vs. square root of scan rate demonstrate a linear relationship with zero intercept as seen in the figure inset. The regression equation is expressed as Ip = 2.9852 x + 0.03638 \((R^2 = 0.99418)\). The Ip increased linearly with scan rate and the corresponding regression equation is obtained as Ip = 0.082 x + 0.01431 \((R^2 = 0.99172)\). All these results confirm the diffusion-controlled process controlling the overall kinetics.

The number of electrons ‘n’ was estimated using Laviron’s equation, which is expressed as below [43].

\[\text{Ip} = nFQυ/4RT\]

In the above equation, Ip represents the anodic peak current (A), Q represents the charge associated with oxidation (C), υ is the scan rate (V s⁻¹), R represents the gas constant.
reduction peak was observed at – 0.445 mV potential. Apart from the oxidation and reduction peaks of dopamine, the third peak due to leucodopaminechrome observed due to ring closure of dopamine-o-quinone [44, 45].

Effect of varying concentration of tyrosine at modified GO-GO-SnS$_2$/GCE is shown in Fig. 8(B) and a similar trend as seen in dopamine were observed. As prominent oxidation peak at 500µM is seen in tyrosine studies, this concentration was chosen for all the comparative studies.

4.2.5 Effect of pH on dopamine and tyrosine studies

CV tests were performed to assess the influence of pH on oxidation of dopamine at PBS solutions with varying pH ranging from 4 to 12 at a scan rate of 50 mV/s to enhance the electrochemical responsiveness of the GO-SnS$_2$/GCE towards the electrochemical oxidation of DA (Fig. 9 A). The peak potential shifts to the negative side when pH rises from 4 to 11, owing to enhanced reversibility of the oxidation which involves deprotonation at elevated pH ranges (Fig. 9 A). Furthermore, pH = 7 PBS had a superior electrochemical response in sensor applications. As a result, pH = 7 PBS was discovered to be optimal electrolyte for electrochemical research.

Effect of pH on tyrosine oxidation in PBS solutions with varying pH from 4 to 12 at a scan rate of 50 mV/s was given
Fig. 9 Cyclic voltagrams of (A) 100µM dopamine and (B) 500µM tyrosine with varying pH using 0.1 M PBS, scan rate 50mV: (a-i); a)4, b)5, c)6, d)7, e)8, f)9, g)10, h)11, i)12

Fig. 10 Amperometry response of GO-SnS$_2$/GCE for each addition of (a) 50 µM DA (b) interferents (AA and UA) at constant applied potential of +0.25 V in PBS containing 0.1 M KCl (pH 7.0)
of GO-SnS$_2$/GCE electrode. In the concentration range of 2.5×10^{-6} to 250×10^{-6} M, a linear connection between peak current and DA concentration was observed, with the lowest detection limit being 26 nM. In order to understand improvement of the modified sensor the calculated limit of detection and sensitivity were compared with earlier reported dopamine sensors and is given in Table 1.

4.2.7 Interference studies

The interference studies on GO-SnS$_2$/GCE was carried out by taking the common interfering biomolecules like 50 µM uric acid (UA), 50 µM ascorbic acid (AA) in phosphate buffer at pH 7 by using the chronoamperometry and the results are given in Fig. 10(b). The synthesized sensor system shows insignificant current intensity changes with respect to dopamine as demonstrated in Fig. 11.

4.2.8 Stability and repeatability of GO-SnS$_2$/GCE electrode

The electrode’s stability was tested by immersing it for three weeks in a phosphate buffer solution with a pH of 7.0. Every week, CVs were collected and compared to the ones received on the first day. The oxidation peak current was found to be somewhat lower than anticipated. The current reduction was just 10% after three weeks as demonstrated in Fig. 11(a) indicating that the modified electrode is highly stable.

The modified electrode’s repeatability was tested ten times with 100 µM DA. After each measurement, the modified electrode was rinsed with buffer solution and evaluated in Fig. 9(B). With increase in concentration there is increase in anodic peak current but the relative response was low when compared to dopamine. There is shift in negative peak potentials due to increase in reversibility of the oxidation at elevated pH of 7 and concentration of 500 µM was found to be optimum for tyrosine studies.

Table 1

Comparison of analytical performance at GO-SnS$_2$/GCE with modified electrode with previously reported dopamine sensors

S. No.	Modified Electrode	LOD(µM)	Linear range(µM)	Ref
1	Indium Tin oxide	0.001	-	[46]
2	GC/G-SnO$_2$	2	0–100	[47]
3	Bi-Sn NP/CGA/SPCE	0.0046	0.02 – 97.59	[48]
4	Pd NPs/GC	8	8.0–88	[49]
5	CTAB/rGO/Zn	0.5	1.0–500	[50]
6	GCE/CQDs/CuO	2.4	1–180	[51]
7	N-Graphediyne quantum dots (GDQDs)	0.14	0.32–500	[52]
8	GO-SnS$_2$	0.029	2.5–250	Current work

Fig. 11 (a) Repeatability and (b) Stability studies of GO-SnS$_2$/GCE in Phosphate buffer at pH 7 containing 50 µM dopamine concentration @50 mV/s scan rate
5 Conclusions

Finally, using a facile ultrasonication and hydrothermal method, the quantum dots of SnS$_2$-carbon composites were synthesized. The as synthesized materials were characterized by using various techniques like XRD, SEM, TEM, EDX and elemental mapping, XPS, and pore size distribution. These dots were used to construct a modified glassy carbon electrode for dopamine and tyrosine detection. For EIS, CV and chronoamperometric studies, the electrocatalytic activity of modified electrodes is investigated. Intriguingly, chronoamperometric studies discloses a LOD of 26 nM for dopamine detection. Compared to dopamine the relative response of tyrosine is less. The modified electrode has excellent stability, selectivity, sensitivity, and reproducibility, according to our research.

References

1. J. Greenstein, M. Winitz, Chemistry of the amino acids. Yale J. Biol. Med. 38, 383–384 (1966)
2. M.L. Heien, A.S. Khan, J.L. Ariansen, J.H. Cheer, P.E. Phillips, K.M. Wassum, R.M. Wightman, Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. USA 102, (2005) 10023–10028
3. T. Paus, Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2, 417–424 (2001)
4. N.D. Volkow, G.-J. Wang, J.S. Fowler, D. Tomasi, F. Telang, R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine and serotonin on a glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34, 70–76 (2012)
5. Y. Miao, Y. Bao, S. Fan, G. Shi, Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem. Int. Edit 123, 1877–1880 (2011)
6. Y. Luo, L. Ma, X. Zhang, A.Z. Liang, Jiang, Sers detection of dopamine using label-free acridine red as molecular probe in reduced graphene oxide/silver nanotriangle sol substrate. Nanoscale Res. Lett. 10, 230 (2015)
7. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027–1036 (2010)
8. J. Ping, J. Yu, W. Yang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 28, 291–297 (2011)
9. H. Kim, K.-Y. Park, J. Hong, K. Kang, All-graphene-battery: Bridging the gap between supercapacitors and lithium-ion batteries. Sci. Rep. 4, 5278 (2014)
10. M. Mallesha, R. Manjunatha, C. Nethravathi, G.S. Suresh, J.S. Rajamathi, Melo, T.V. Venkatesha, Functionalized-graphite modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry 81, 104–108 (2011)
11. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)
12. K. Wu, J. Fei, S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 318, 100–106 (2003)
13. L. Zhang, X. Jiang, Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J. Electroanal. Chem. 583, 292–299 (2005)
14. C.-X. Xu, K.-J. Huang, Y. Fan, Z.-W. Wu, J. Li, T. Gan, Simultaneous electrochemical determination of dopamine and pyruvate using a TiO$_2$-graphene/poly(4-aminobenzenesulfonic acid) composite film based platform. Mater. Sci. Eng. C 32, 969–974 (2012)
15. L. Jiang, Z. Fan, Design of advanced porous graphene materails: From graphene nanomesh to 3D architectures. Nanoscale 6, 1922–1945 (2014)
16. K.E. Hubbard, A. Wells, T.S. Owens, M. Tagen, C.H. Fraga, C.F. Stewart, Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed. Chromatogr. 24, 626–631 (2010)
Electrochemical Biosensors. J. Electrochem. Soc. 167, 037555 (2020).
31. A. Asha Sharma, A. Ahmed, S.K. Singh, A. Oruganti, S. Khosla, Arya, Recent Advances in Tin Oxide Nanomaterials as Electrochemical/Chemiresistive. Sensors. J 168, 027505 (2021) Electrochem. Soc.,
32. Q. Huang, X. Lin, L. Tong, and Q. Tong, Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustainable Chemistry & Engineering. 8, 1644–1650 (2020).
33. R. Appiah-Ntiamoah, A. Fufa Baye, H. Kim, ZnO-ZnFe2O4/Fe3O4/Carbon Nanocomposites for Ultra-sensitive and Selective Dopamine Detection. ACS Appl. Nano Mater. 5, 4754–4766. https://doi.org/10.1021/acsnano.1c04222 (2022).
34. J. Mi, C. Chen, Wang, Y. Wang, L., W. Huang, P. Xiong, Y. J. Zhang, Fei, A high-sensitive dopamine electrochemical sensor based on multilayer TiC2MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. 178 (2022)107410
35. G. Deepthi Reddy, M. Noorjahan, A. Ratnamala, Novel Visible-Range Luminescence of Pristine Nano Zirconia Phosphor using Green Fabrication Technique. Bull. Mater. Sci. 42, 34 (2019).
36. M. Dekun, Q. Tang, W. Zhang, Q. Tang, R. Zhang, W. Yu, Y. Zhou, Large-Scale Hydrothermal Synthesis of SnS2 Nanobelts. J. Nanosci. Nanotechnol. 10, 1–4 (2005).
37. H. Chen, B. Zhang, J. Zhang, W. Yu, J. Zheng, Z. Ding, H. Li, L. Ming, D.A. Mifounde Bengono, S. Chen, H. Tong, In-situ Grown SnS2 Nanosheets on rGO as an Advanced Anode Material for Lithium and Sodium Ion Batteries Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00629
38. A. Zhu, L. Qiao, Z. Jia, P. Tan, Y. liu, Y. maa, J. Pan, C-S bonds induced ultrafine SnS2 dots/porous g-C3N4 sheets 0D/2D heterojunction: synthesis and photocatalytic mechanism investigation, 46 (2017)17032. DOI:https://doi.org/10.1039/C7DT03894A
39. M. Choia, W. Williamb, J. Hwangab, D. Yoona, J. Kima, A Supercritical Ethanol Route for One-pot Synthesis of Tin Sulﬁde–Reduced Graphene Oxides and Their Anode Performance for Lithium Ion Batteries, Journal of Industrial and Engineering Chemistry 59, 160–166 (2018).
40. F. Huang, Y. Peng, G. Jin, S. Zhang, J. Kong, Selective determination of haloperidol and hydroxyzine at multi-walled carbon nanotubes-modiﬁed glassy carbon electrodes, Sensors 8 (2008) 1879–1889
41. R. Manjunatha, G.S. Suresh, J.S. Melo, F. Stanislau D’SouzaT. Venkataramanagia, Venkatesha, Simultaneous determination of ascorbic acid, dopamine and uric acid using polystyrene sulfonate wrapped, multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique. Sens. Actuators B Chem. 19, 643–650 (2010)
42. P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry (2003). ISBN 0-85404-661-5
43. E. Laviron, General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusion less Electrochemical Systems. J. Electroanal. Chem. Interface. Electrochem. 101, 19–28 (1979). https://doi.org/10.1016/S0022-0728(79)80075-3
44. H. Zhao, Y. Zhang, Z. Yuan, Electrochemical determination of dopamine using a poly(2-picolinic acid) modified glassy carbon electrode. Analyst 126, 358–360 (2001).
45. G. Jin, Y. Zhang, W. Cheng, Poly (p-aminobenzene sulfonic acid)-modiﬁed glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens. Actuators B 107, 528–534 (2005).
46. B.-K. Kim, J.Y. Lee, J.H. Park, J. Kwak, Electrochemical detection of dopamine using a bare indium-tin oxide electrode and scan rate control. J. Electroanal. Chem. 708, 7–12 (2013).
47. R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Graphene/SnO2 nanocomposite modiﬁed electrode for electrochemical detection of dopamine. Biosensing Res. 5, 42–49 (2015).
48. S. Pitchaimani Veerakumar, S.-M. Manavalan, Chen, Alagarsamy Pandikumar, and King-Chuen Lin, Ultraﬁne Bi-Sn nanoparticle decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug. Nanoscale 12, 22217–22233 (2020).
49. S. Thagaparajn, R.F. Yang, S.M. Chen, Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochemistry. 75, 163–169 (2009). DOI:https://doi.org/10.1016/j.bioelechem.2009.03.014
50. Y.J. Yang, One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem 221, 750–759 (2015).
51. E. Eligkuro Saheed, O.E.Fayemi Abolanle, S.Adekunle Bhekie, B.Mamba Thabo, T.I. Nkambule, E. Eno, Ebenso, Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modiﬁed electrode Flatchem,33 (2022) 100372. https://doi.org/10.1016/j.flatchem.2022.100372.
52. L. Bai Qiang, X. Hongyang, Yi, S. Shugao, W. Lina, L. Manhong, Y. J. Yang, One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem 221, 750–759 (2015).
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.