High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

Antonio Fiore,1 Jitao Zhang,1 Peng Shao,2 Seok Hyun Yun,2 and Giuliano Scarcelli1,a)
1Fishell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland 20742, USA
2Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St., Boston, Massachusetts 02114, USA

(Received 8 March 2016; accepted 14 April 2016; published online 17 May 2016)

Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

Here, we report a spectrometer configuration featuring a tunable, high-throughput and narrow-bandpass filter based on a low-finesse Fabry Perot etalon. Thanks to this innovation, we increased the overall spectral extinction by more than 10 fold with respect to state-of-the-art spectrometers with less than ~2 dB insertion loss. This enabled us to perform rapid Brillouin spectral characterization deep into non-transparent biological tissue without any limitation due to elastic scattering background.

The spectrometer consists of a triple-pass Fabry-Perot (3PFP) bandpass filter and a two-stage VIPA spectrometer (Fig. 1(a)). The 3PFP filter was placed on the collimated beam path, before a two-stage VIPA spectrometer featuring two VIPA etalons of 17 GHz Free Spectral Range (FSR). To build the 3PFP, we used a fused silica etalon of 3.37 mm thickness (i.e., 30 GHz FSR) coated for 60% reflectivity, resulting in low finesse (6). Using low reflectivity and low finesse, the etalon in single-pass configuration has a ~5 GHz bandwidth with <10% loss. However, at low finesse, the spectral extinction is limited to 11 dB. Using a triple-pass configuration, the filter featured a 3 GHz bandwidth and ~40% insertion loss. The throughput of the filter is less than the ideal case (<15%) because of secondary resonant cavities formed between the mirrors and the etalon due to the multi-pass configuration. Nevertheless, for equal rejection performances, the multi-pass low-finesse approach is twice as efficient as a high-finesse single pass configuration.

By changing the angle between the etalon and the incoming beam, the filter bandpass can be tuned with high precision to isolate the desired Brillouin scattering signal (Stokes peak from a water sample in this case), as shown in Figure 1(b). This allows to suppress the stray laser light due to reflections within the spectrometer as well as the background noise due to elastic scattering within the sample. Note that, in Figure 1(b),

a)Author to whom correspondence should be addressed. Electronic mail: scarcel@umd.edu
also the Brillouin Stokes component is suppressed. However, because typical variations within samples in Brillouin measurements are less than 2 GHz, the bandwidth of the filter is large enough to perform Brillouin imaging in one setting without the necessity of tuning the angle.

The spectral extinction of the spectrometer is characterized in Figure 2. To construct the curve, we performed several measurements of the two-stage VIPA spectrometer extinction while varying the angle (and thus the central frequency) of the Fabry-Perot filter. Because the transmitted intensity varied over several orders of magnitude, the limited dynamic range of the camera could not capture the whole spectral profile in one setting; therefore, we acquired several profiles at fixed laser incident power in different detection configurations by tuning gain (g), exposure time (t), and using a neutral density filter of throughput (f). The intensities (I) for each acquisition were then scaled according to the relation $I = (\text{counts} \times p)/(g \times t \times f)$. The overall spectrometer has a maximum extinction of about 85 dB with optical throughput of 16% (~58% from the 3PFP filter and 27% from the two-stage VIPA spectrometer). This is about 15 dB larger than previous spectrometers with similar throughput.

Because the FSRs of the FP filter and of the VIPAs are not matched, the two VIPA peaks at 0 and 17 GHz do not have equal intensity, and the point of maximal extinction does not fall at half of the two VIPA peaks. If the FSRs of 3PFP and VIPA etalons were to be matched, the maximum extinction would be larger than 90 dB with the same overall throughput.

To quantify the performances of our setup in the measurements of turbid media, we connected the Brillouin spectrometer to an inverted confocal microscope and measured the Brillouin spectra of intralipid solutions. Light from a 532 nm single mode laser was focused into an intralipid solution sample, placed in a transparent plastic dish. Figure 3(a) shows photographs of intralipid solutions of increasing concentration and increasing opacity. Intralipid solution at 10%, clearly non-transparent, is generally used to mimic the elastic scattering properties of biological tissue and thus provide a useful tool to quantify the rejection of non-Brillouin scattered light and compare it across studies. Previous works have shown that a two-stage VIPA spectrometer can suppress the elastic scattering component only up to a concentration of 0.001%; a three stage spectrometer can suppress the background light of up to a 5% Intralipid solution but with a total loss of over 90%.

Figure 3(b) shows the signal to background ratio (SBR) of a Brillouin spectrum acquired from pure water up to a 20% intralipid solution. The elastic background is very well suppressed, showing an SBR greater than one at all concentrations. Importantly, we verified that at 10% intralipid
solution, our Brillouin measurement is shot-noise limited, thus unaffected by elastic background.

Next, we demonstrated the ability to detect background-free Brillouin signal from biological tissue. The tissue sample was a thin slice of chicken breast of area of about 1 cm², placed on the bottom of glass dish plate. The laser light was focused into the tissue through the glass cover-slip at a power of 6 mW and exposure time of 300 ms. Figure 4(a) shows the Brillouin signal intensity as a function of tissue depth reported as average and standard deviation of 100 frames. The focusing depth was varied by translating the objective lens along the z-axis of the microscope. For comparison, the background signal at each depth is reported, the exponential fit leads to a mean free path of \(\sim 150 \mu m \).

\[\text{SNR} = \frac{S}{\sqrt{N}} \]

FIG. 4. (a) Comparison between Brillouin signal and elastic scattering light component at different depths. (b) Signal to noise ratio as a function of tissue depth reported as average and standard deviation of 100 frames. The exponential fit leads to a mean free path of \(\sim 150 \mu m \).

In conclusion, we have developed a two-stage VIPA Brillouin spectrometer with confocal sampling and a triple pass Fabry-Perot bandpass filter. We demonstrated rapid Brillouin measurement of intralipid solutions and turbid biological tissue with effective suppression of elastic scattering background. This investigation may expand the reach of Brillouin technology beyond ocular tissue to important areas such as the mechanical characterizations of tumors and atherosclerotic plaques.

This work was supported in part by the National Institutes of Health (K25EB015885, R21EY023043, and R01EY025454); National Science Foundation (CMMI-1537027 and CBET-0853773); Human Frontier Science Program (Young Investigator Grant) and the Ministry of Science of Korea, under the “ICT Consilience Creative Program” (IITP-2015-R0346-15-1007).

\[\text{SNR} = \frac{S}{\sqrt{N}} \]

1. R. D. Hartschuh, A. Kisliuk, V. V. Yakovlev, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W.-L. Wu, Appl. Phys. Lett. 87(17), 173121 (2005); J. G. Dil, Rep. Prog. Phys. 45(3), 283 (1982); A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, Appl. Phys. Lett. 89(6), 063506 (2006); T. Stilf, R. Sainidou, M. Retesch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, Nano Lett. 8(10), 3194 (2008); Y. Minami and K. Sakai, Rev. Sci. Instrum. 80(1), 014902 (2009).

2. J. R. Sandercock, RCA Rev. 36(1), 89 (1975).

3. K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87(6), 061903 (2005); S. -i. Itoh, Jpn. J. Appl. Phys., Part 1 37(5S), 3134 (1998); Y. Minami, T. Yogi, and K. Sakai, Appl. Phys. Lett. 93(16), 161107 (2008).

4. M. Ahart, M. Somayazulu, S. A. Grumisch, R. Boehler, H.-k. Mao, and R. J. Hemley, J. Chem. Phys. 134(12), 124517 (2011); A. V. Svanidze, V. P. Romanov, and S. G. Lushnikov, JETP Lett. 93(7), 409 (2011).

5. G. Scarcelli and S. H. Yun, Nat. Photonics 2(1), 39 (2008).

6. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kann, and S. H. Yun, Nat. Methods 12(12), 1132 (2015).

7. G. Scarcelli and S. H. Yun, Opt. Express 19(11), 10913 (2011).

8. Z. Meng and V. V. Yakovlev, J. Innovative Opt. Health Sci. 8(04), 1550021 (2015); G. Antonacci, G. Lepert, C. Paterson, and P. Török, Appl. Phys. Lett. 107(6), 061102 (2015); I. Remer and A. Bilenca, Opt. Lett. 41(5), 926 (2016).

9. M. Copié and M. Zgonik, Opt. Commun. 41(5), 310 (1982).

10. W.-F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26(12), 2166 (1990).