Supplementary Figure S1

Alignments of the amino acid sequences of V2Hb and OliHb (Oli). Secondary-structure based numbering of important residues are indicated.

The figure was prepared with the program ESPript (Robert, X. and Gouet, P. (2014) "Deciphering key features in protein structures with the new ENDscript server". Nucl. Acids Res. 42(W1), W320-W324).
Supplementary Table S1

Refined B-factors and occupancies of the atoms of oxygen-surrounding residues.

Data 1 (78% oxy)	Data 2 (69% oxy)						
Residue	**atom**	**B-factor**	**Occ.**	**Residue**	**atom**	**B-factor**	**Occ.**
Heme	FE	33.89	1	Heme	FE	29.13	1
NA	33.02			NA	30.66		
NB	35.18			NB	36.02		
NC	33.51			NC	30.65		
ND	34.15			ND	30.52		
His94 (F8)	NE2	34.85		His94 (F8)	NE2	30.37	
His62 (E7)	NE2	36.88		His62 (E7)	NE2	33.15	
Phe46 (CE1)	CE1	37.07		Phe46 (CE1)	CE1	31.89	
Val66 (E11)	CG2	35.50		Val66 (E11)	CG2	32.21	
Trp32 (B10)	CH2	36.47		Trp32 (B10)	CH2	31.87	
Average		35.05		**Average**		31.65	
S.D.	1.43			**S.D.**	1.92		
O2	O1	35.20	0.7	**O2**	O1	30.61	0.5
	O2	35.68			O2	31.61	
Data 1 (78% oxy)	**Data 2 (69% oxy)**						
Residue	**atom**	**B-factor**	**Occ.**	**Residue**	**atom**	**B-factor**	**Occ.**
Heme	FE	53.41	1	Heme	FE	35.52	1
NA	51.07			NA	35.52		
NB	49.46			NB	31.05		
NC	52.03			NC	32.82		
ND	48.27			ND	35.28		
His95 (F8)	NE2	57.02		His95 (F8)	NE2	35.11	
His63 (E7)	NE2	50.19		His63 (E7)	NE2	32.04	
Phe47 (CD1)	CE1	57.51		Phe47 (CD1)	CE1	39.18	
Val67 (E11)	CG2	48.44		Val67 (E11)	CG2	28.03	
Trp33 (B10)	CH2	62.57		Trp33 (B10)	CH2	39.20	
Average		53.00		**Average**		34.38	
S.D.	4.67			**S.D.**	3.49		
O2	O1	56.69	0.7	**O2**	O1	36.17	0.7
	O2	50.82			O2	33.63	
Data 1 (78% oxy)	**Data 2 (69% oxy)**						
Residue	**atom**	**B-factor**	**Occ.**	**Residue**	**atom**	**B-factor**	**Occ.**
Heme	FE	39.62	1	Heme	FE	36.00	1
NA	44.57			NA	36.93		
NB	40.41			NB	29.38		
NC	47.61			NC	36.19		
The figures were prepared using PYMOL software (http://www.pymol.org/).

Briefly, refinements were performed for the oxygen-omitted model; then, oxygen molecules were added to the model, and the XYZ coordinates, atomic displacement parameters (B-factors), and group occupancies for the oxygen molecule were manually adjusted, and the individual

Table S1

Residue (A1')	atom	B-factor	Occ.	Residue (A1')	atom	B-factor	Occ.
Heme	FE	40.14		Heme	FE	30.97	
	NA	36.29			NA	32.23	
	NB	42.82			NB	28.74	
	NC	39.70			NC	33.55	
	ND	44.73			ND	35.37	
His94 (F8)	NE2	39.65		His94 (F8)	NE2	27.91	
His62 (E7)	NE2	41.64		His62 (E7)	NE2	33.04	
Phe46 (CE1)	CE1	40.55		Phe46 (CE1)	CE1	34.23	
Val66 (E11)	CG2	38.33		Val66 (E11)	CG2	29.23	
Trp32 (B10)	CH2	41.55		Trp32 (B10)	CH2	39.06	
		40.54				32.43	
	S.D.	2.35			S.D.	3.40	
O₂	O1	40.40	0.8	O₂	O1	32.51	0.8
	O2	41.40			O2	35.12	

Table S1 continued

The final models were validated by MOLPROBITY [19]. The statistics for data collection and refinement are

Residue (A2')	atom	B-factor	Occ.	Residue (A2')	atom	B-factor	Occ.
Heme	FE	40.14		Heme	FE	30.97	
	NA	36.29			NA	32.23	
	NB	42.82			NB	28.74	
	NC	39.70			NC	33.55	
	ND	44.73			ND	35.37	
His94 (F8)	NE2	39.65		His94 (F8)	NE2	27.91	
His62 (E7)	NE2	41.64		His62 (E7)	NE2	33.04	
Phe46 (CE1)	CE1	40.55		Phe46 (CE1)	CE1	34.23	
Val66 (E11)	CG2	38.33		Val66 (E11)	CG2	29.23	
Trp32 (B10)	CH2	41.55		Trp32 (B10)	CH2	39.06	
		40.54				32.43	
	S.D.	2.35			S.D.	3.40	
O₂	O1	40.40	0.8	O₂	O1	32.51	0.8
	O2	41.40			O2	35.12	
Incubated for 3-180s. The crystals were immediately flash-frozen under a nitrogen gas stream at -183°C.

HEPES-NaOH pH 7.5. The dissociation of the bound oxygen is not solely dependent on the concentration of sodium then soaked in the final buffer containing 50 mM sodium hydrosulfite, 20% PEG-400, 18-20% PEG-3350, and 100 mM and 10 mM CaCl2 or MgCl2. Bright red crystals were obtained by the sitting-drop vapor diffusion method at 20°C using Biophysics and Physicobiology Vol. 19. Subsequent milestones of the theoretical Monod−Wyman−Ch has been available to date. One of the major reasons for this lack of information is that it remains challenging to prepare however, only a small amount of intact structural information about intermediates between oxy and deoxy forms [7−9].

This nature impacts the behavior of protein molecules broadly, affecting metabolism and signaling pathways, and providing clues to drug development. Arguably the most exhaustively studied allosteric protein is hemoglobin (Hb), beginning with this nature impacts the behavior of protein molecules broadly, affecting metabolism and signaling pathways, and providing clues to drug development. Arguably the most exhaustively studied allosteric protein is hemoglobin (Hb), beginning with.

Materials and Methods

Oxygen Equilibrium Measurements

The absorption spectra of the soaked crystals were measured and corrected for the air blank baseline under a nitrogen-helium and 0.95% butane gas was injected into the cell and 3 ml of a 50 µM of V2Hb solution (pH 6.6) was added and absorbance of around 2.8 at 416 nm to 280 nm were collected.

Average

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	49.57	1	Heme	FE	36.03	1
	NA	43.19			NA	31.11	
	NB	42.87			NB	30.96	
	NC	43.95			NC	32.83	
	ND	53.69			ND	30.12	
His95 (F8)	NE2	53.12		His95 (F8)	NE2	33.67	
				His63 (E7)	NE2	30.87	
				His63 (E7)	NE2	30.87	
Phe47 (CD1)	CE1	47.64		Phe47 (CD1)	CE1	35.47	
Val67 (E11)	CG2	46.34		Val67 (E11)	CG2	27.00	
Trp33 (B10)	CH2	53.17		Trp33 (B10)	CH2	39.81	
Average		47.51		Average		32.79	
	S.D.	4.66	0.8		S.D.	3.62	0.8
O2	O1	48.32	0.8	O2	O1	33.63	0.8
	O2	46.36			O2	33.19	

B1’

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	35.84	1	Heme	FE	29.20	1
	NA	40.01			NA	30.61	
	NB	39.60			NB	27.05	
	NC	47.86			NC	31.76	
	ND	43.23			ND	35.66	
His99 (F8)	NE2	41.09		His99 (F8)	NE2	31.48	
Phe47 (CD1)	CE1	42.00		Phe47 (CD1)	CE1	26.59	
Val71 (E11)	CG2	35.20		Val71 (E11)	CG2	24.84	
Phe37 (B10)	CZ	33.99		Phe37 (B10)	CZ	26.87	
Average		39.89		Average		29.47	
	S.D.	4.14	0.4		S.D.	3.21	0.4
O2	O1	39.10	0.4	O2	O1	31.07	0.4
	O2	37.78			O2	31.47	

B2’

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	53.41	1	Heme	FE	38.82	1
	NA	52.76			NA	39.56	
	NB	53.78			NB	38.71	
	NC	56.98			NC	42.98	
	ND	58.76			ND	38.44	
His99 (F8)	NE2	59.25		His99 (F8)	NE2	36.96	
Phe51 (CD1)	CE1	46.17		Phe51 (CD1)	CE1	37.62	
Val71 (E11)	CG2	46.80		Val71 (E11)	CG2	30.98	
Phe37 (B10)	CZ	64.19		Phe37 (B10)	CZ	36.86	
Average		53.76		Average		37.97	
Oxygenation Properties of V2Hb

Results

The Hill plot of the oxygen equilibrium (Figure 1B) clarified that the oxygen affinity (slope of the black line) of V2Hb is remarkably higher than that of Hb (maximum 0.19 mmHg), though the cooperativity (n, max value of 1.4) of V2Hb is lower than that of Hb (maximum 0.19 mmHg), though the cooperativity (n, max value of 1.4).

Data 3 (55% oxy)

Residue	atom	B-factor	Occ.	S.D.
Heme	FE	32.91	1	6.23
	NA	31.22		
	NB	32.30		
	NC	32.35		
	ND	31.60		
His94 (F8)	NE2	35.08		
His62 (E7)	NE2	35.58		
Phe46 (CE1)	CE1	31.89		
Val66 (E11)	CG2	31.95		
Trp32 (B10)	CH2	30.60		
Average		32.55		1.60

Residue	atom	B-factor	Occ.	S.D.
O2	O1	54.00		55.83
	O2	53.19		56.95

Data 4 (26% oxy)

Residue	atom	B-factor	Occ.	S.D.
Heme	FE	34.63	1	3.00
	NA	30.96		
	NB	38.94		
	NC	38.06		
	ND	34.25		
His94 (F8)	NE2	33.15		
His62 (E7)	NE2	40.05		
Phe46 (CE1)	CE1	42.48		
Val66 (E11)	CG2	37.30		
Trp32 (B10)	CH2	40.42		
Average		37.02		3.66

Residue	atom	B-factor	Occ.	S.D.
O2	O1	32.54	0.3	51.17
	O2	33.06		54.83

Data 5 (55% oxy)

Residue	atom	B-factor	Occ.	S.D.
Heme	FE	44.28	1	4.32
	NA	43.76		
	NB	40.36		
	NC	42.84		
	ND	42.81		
His95 (F8)	NE2	47.20		
His63 (E7)	NE2	42.90		
Phe47 (CD1)	CE1	43.64		
Val67 (E11)	CG2	37.81		
Trp33 (B10)	CH2	51.23		
Average		43.68		3.61

Residue	atom	B-factor	Occ.	S.D.
O2	O1	46.41	0.6	52.60
	O2	41.56		55.83

Data 6 (26% oxy)

Residue	atom	B-factor	Occ.	S.D.
Heme	FE	51.51	1	51.51
	NA	52.60		
	NB	56.50		
	NC	50.14		
	ND	55.83		
Microspectrometry

Deoxygenation of the Oxy Crystals

The crystals were immediately flash-frozen under a nitrogen gas stream at -183°C.

Recently we reported that bound oxygen of the crystals can gradually dissociate thorough the soaking method [11,12], and that the oxygen saturation of each molecule converged within the standard deviation of the refined coordinates and experimental data. Multiple molecules at this resolution converged within the standard deviation of the refined coordinates and experimental data. No symmetry restraint was applied in the structure.

The oxygen molecules were manually adjusted, and the individual adjustments and changes are smaller with local perturbations than those observed in Oli Hb. Our intermediate structures of V2Hb together with six copies of each of the four subunits (Figure 1A). Recently we reported that bound oxygen of the crystals has been available to date. One of the major reasons for this lack of information is that it remains challenging to prepare sheep blood of the worm. The allosteric nature of proteins has been widely studied for over half a century [1,2] as the "second secret of life" [3]; and that the oxygen saturation of each molecule converged within the standard deviation of the refined coordinates and experimental data. No symmetry restraint was applied in the structure.

The atomic coordinates and experimental data (PDB ID: 3wct or 3wcu) were used as the search models to determine the initial phases by performing using COOT [17] and PHENIX [18], respectively. No symmetry restraint was applied in the structure.

NW12A at KEK PF-AR. All data were processed and scaled using XDS [14] and truncated by the CCP4 software suite.

Table 1

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	47.55	1	Heme	FE	47.14	1
	NA	46.30			NA	49.01	
	NB	46.58			NB	56.24	
	NC	47.80			NC	45.74	
	ND	49.44			ND	50.99	
His99 (F8)	NE2	46.03		His99 (F8)	NE2	52.70	
His67 (E7)	NE2	45.03		His67 (E7)	NE2	51.71	
Phe51 (CD1)	CE1	47.54		Phe51 (CD1)	CE1	56.57	
Val71 (E11)	CG2	43.06		Val71 (E11)	CG2	49.82	
Phe37 (B10)	CZ	40.61		Phe37 (B10)	CZ	61.70	

Average

	S.D.		
O2	0.9	O2	0.3
O2	0.7	O2	0.3

A1’

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	37.09	1	Heme	FE	53.13	1
	NA	33.86			NA	42.48	
	NB	35.38			NB	42.83	
	NC	36.61			NC	48.07	
	ND	34.06			ND	46.04	
His94 (F8)	NE2	34.68		His94 (F8)	NE2	41.58	
His62 (E7)	NE2	39.93		His62 (E7)	NE2	46.06	
Phe46 (CE1)	CE1	37.48		Phe46 (CE1)	CE1	45.96	
Val66 (E11)	CG2	35.26		Val66 (E11)	CG2	43.97	
Trp32 (B10)	CH2	43.68		Trp32 (B10)	CH2	42.04	

Average

	S.D.		
O2	0.6	O2	0
O2	0.6	O2	0

A2’

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.

	S.D.		
O2	0	O2	0
O2	0	O2	0
Table S1: Oxygenation Properties of V2Hb

The oxygen affinity of V2Hb is remarkably higher than that of Hb. Briefly, refinements were performed for the oxygen-omitted model; then, oxygen molecules were added to the structure. The occupancies of the bound oxygen molecules at each subunit were estimated as described in our previous study of Hb [12].

Data Collection, Model Building, and Refinement

The atomic coordinates and experimental data (PDB ID: 7vlc, 7vld, 7vle, and 7vlf for the structures of

Gas Cryostream

Gas cryostream using an online microspectrophotometer at beamline BL38B1 [13]. All data were processed and scaled using XDS [14] and truncated by the CCP4 software suite NW12A at KEK PF-AR.

Refinement

The refinements were performed using COOT [17] and PHENIX [18], respectively. No symmetry restraint was applied in the structure refinement though the asymmetric unit contains two copies of each of the four subunits. Average R-factors were refined. Iterative occupancy of the oxygen molecules were manually adjusted, and the individual molecules converged within the standard deviation of the refined refinement.

Figures

The figures were prepared using PYMOL software (http://www.pymol.org/).

Table

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	42.12	1	Heme	FE	51.13	1
	NA	34.72		NA	49.21		
	NB	37.25		NB	48.42		
	NC	36.11		NC	48.79		
	ND	40.47		ND	53.87		
His95 (F8)	NE2	41.22		His95 (F8)	NE2	53.2	
His63 (E7)	NE2	38.99		His63 (E7)	NE2	58.79	
Phe47 (CD1)	CE1	44.82		Phe47 (CD1)	CE1	60.43	
Val67 (E11)	CG2	38.08		Val67 (E11)	CG2	51.03	
Trp33 (B10)	CH2	44.34		Trp33 (B10)	CH2	65.2	
Average		39.81		**Average**		54.01	
	S.D.	3.39		S.D.	5.66		

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
O₂	O1	38.82	0.7	O₂	O1	51.02	0.4
	O2	39.83			O2	51.63	

B1' Residue

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	32.32	1	Heme	FE	49.40	1
	NA	33.74		NA	50.51		
	NB	32.41		NB	45.79		
	NC	37.26		NC	51.01		
	ND	32.40		ND	51.33		
His99 (F8)	NE2	35.91		His99 (F8)	NE2	48.21	
His67 (E7)	NE2	33.10		His67 (E7)	NE2	47.98	
Phe51 (CD1)	CE1	34.59		Phe51 (CD1)	CE1	51.59	
Val71 (E11)	CG2	27.78		Val71 (E11)	CG2	49.30	
Phe37 (B10)	CZ	28.77		Phe37 (B10)	CZ	54.24	
Average		32.83		**Average**		49.94	
	S.D.	2.90		S.D.	2.34		

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
O₂	O1	33.01	0.2	O₂	O1	50.02	0
	O2	33.43			O2	51.63	

B2' Residue

Residue	atom	B-factor	Occ.	Residue	atom	B-factor	Occ.
Heme	FE	48.07	1	Heme	FE	57.67	1
	NA	47.12		NA	59.07		
	NB	46.86		NB	55.81		
	NC	48.26		NC	55.38		
	ND	48.89		ND	57.76		
His99 (F8)	NE2	50.03		His99 (F8)	NE2	59.78	
His67 (E7)	NE2	43.79		His67 (E7)	NE2	51.61	
Phe51 (CD1)	CE1	43.78		Phe51 (CD1)	CE1	59.02	
Val71 (E11)	CG2	43.19		Val71 (E11)	CG2	53.80	
Phe37 (B10)	CZ	51.13		Phe37 (B10)	CZ	56.80	
Average		47.11		**Average**		56.67	
	S.D.	2.74		S.D.	2.57		
Deoxygenation of the Oxy Crystals

Crystallization

Microspectrometry

Oxygen Equilibrium Measurements

Results