ON ISOLATED SINGULARITIES WITH A NONINVERTIBLE
FINITE ENDOMORPHISM

YUCHEN ZHANG

Abstract. We prove that if $\phi : (X, 0) \to (X, 0)$ is a finite endomorphism of an isolated singularity such that $\deg(\phi) \geq 2$ and ϕ is étale in codimension 1, then X is \mathbb{Q}-Gorenstein and log canonical.

1. Introduction

Let us start with an easy example. Let C be a smooth curve of genus g. By an argument using Riemann-Hurwitz Theorem, one can see that C has a finite endomorphism ϕ of degree ≥ 2 if and only if $g \leq 1$. In this case, assume that there is an ample divisor H on C such that ϕ^*H is a multiple of H. Then ϕ induces a finite endomorphism on the cone X over C with polarization mH, where m is a sufficiently large integer. On the other hand, one can see easily by adjunction that a normal cone over a smooth curve of genus g has log canonical singularity if and only if $g \leq 1$. This phenomenon is true in general. In this paper, we prove the following theorem:

Theorem 1.1. Let $(X, 0)$ be a normal projective variety with isolated singularity $0 \in X$. Suppose that there exists a finite endomorphism $\phi : (X, 0) \to (X, 0)$ such that $\deg \phi \geq 2$ and ϕ is étale in codimension 1. Then X is \mathbb{Q}-Gorenstein and log canonical.

The assumption that X has isolated singularity is necessary. Otherwise, let $X = E \times V$, where E is an elliptic curve and V is an arbitrary variety with a bad singularity. Then X has an induced noninvertible étale endomorphism from E.

We briefly review the history of this problem. For the definitions of related terminologies, we refer to Section 2 and [BdFF12]. The surface case is studied in [Wahl90]. Let X be a normal surface and $f : Y \to X$ be the minimal resolution. The relative Zariski decomposition yields $K_{Y/X} = P + N$. Wahl’s invariant is defined as the nonnegative intersection number $-P^2$, which is the key ingredient in the study of surfaces with noninvertible finite endomorphisms. A classification of such surfaces is given in [Pavre10, FN05]. Wahl’s invariant is generalized to higher
dimensions by Boucksom, de Fernex and Favre [BdFF12]. Due to the absence of minimal resolutions, they consider log discrepancy divisors on all birational models over X as Shokurov’s b-divisor $A_{X/X}$. The Zariski decomposition is replaced by the nef envelope $\text{Env}_X(A_{X/X})$. It can be shown that $-(\text{Env}_X(A_{X/X}))^n$ is a well-defined finite nonnegative number, which is called $\text{vol}_{\text{BdFF}}(X)$. This volume behaves well under finite morphisms. In particular, they prove the following theorem:

Theorem 1.2. [BdFF12, Theorem A and B] [Fulger13, Proposition 2.12] For normal isolated singularities $(X,0)$ with noninvertible finite endomorphism, $\text{vol}_{\text{BdFF}}(X) = 0$. Moreover, when X is \mathbb{Q}-Gorenstein, $\text{vol}_{\text{BdFF}}(X) = 0$ if and only if X has log canonical singularity.

The same theorem is obtained in [BH14] by analyzing the behavior of non-log-canonical centers under finite pullback. In [Fulger13], Fulger defines a courser volume $\text{vol}_F(X)$ as the asymptotic order of growth of plurigenera, which coincides with $\text{vol}_{\text{BdFF}}(X)$ when X is \mathbb{Q}-Gorenstein.

Unfortunately, in [yZhang14], the author produces a non-\mathbb{Q}-Gorenstein isolated singularity $(X,0)$ such that $\text{vol}_{\text{BdFF}}(X) = 0$ while there is no boundary Δ such that (X,Δ) is log canonical. We should remark that, in this example, X admits a small log canonical modification [OX12] [BH14, Proposition 2.4].

The \mathbb{Q}-Gorenstein case is further studied in [yZhang14, Section 3]. Specifically, the author shows that, like the surface case, $\text{vol}_{\text{BdFF}}(X)$ can be calculated by an intersection number on a certain birational model $f: Y \to X$, namely, the log canonical modification [OX12]. A key property of such a model is that $K_Y + E_f$ is f-ample, where E_f is the reduced exceptional divisor. In the non-\mathbb{Q}-Gorenstein case, the existence of the log canonical modification is conjectured to be true assuming the full minimal model program including the abundance conjecture, but has not yet been proved.

In this paper, in order to show that a normal isolated singularity $(X,0)$ in Theorem 1.1 is indeed \mathbb{Q}-Gorenstein, we consider a birational model over X called a movable modification (Theorem 3.1) where $K_Y + E_f$ is f-movable. The existence of movable modifications is known to experts. However, we include a proof in Section 3. We introduce a new volume $\text{vol}_{\text{mov}}(X)$ (Definition 4.6) using Nakayama’s σ-decomposition. We show the following theorem:

Theorem 1.3 (Proposition 4.5, Lemma 4.7, Theorem 4.8, 5.3 and 5.4). For normal isolated singularities $(X,0)$ and $(Y,0)$,

1. $\text{vol}_{\text{mov}}(X)$ is a finite nonnegative number, and $\text{vol}_{\text{mov}}(X) \geq \text{vol}_{\text{BdFF}}(X)$ with equality when X is \mathbb{Q}-Gorenstein.
2. If $\phi: (Y,0) \to (X,0)$ is a finite morphism of degree d that is étale in codimension 1, then

$$\text{vol}_{\text{mov}}(Y) = d \text{vol}_{\text{mov}}(X).$$
(3) If \(\phi : (X, 0) \to (X, 0) \) is a finite endomorphism of degree \(\geq 2 \) that is \(\text{étale} \) in codimension 1, then
\[
\text{vol}_{\text{mov}}(X) = 0.
\]

(4) If \(\text{vol}_{\text{mov}}(X) = 0 \), then \(X \) is numerically \(\mathbb{Q} \)-Gorenstein.

(5) Every numerically log canonical variety is \(\mathbb{Q} \)-Gorenstein.

As a byproduct while studying numerically \(\mathbb{Q} \)-Gorenstein varieties, we obtain the following theorem which slightly generalizes [OX12, Theorem 1.1].

Theorem 1.4 (Theorem 3.6). Let \(X \) be a numerically \(\mathbb{Q} \)-Gorenstein projective variety. Then there exists a log canonical model \(Y \) over \(X \).

The case that \(\phi \) is not \(\text{étale} \) in codimension one is also interesting. Although \(X \) is not \(\mathbb{Q} \)-Gorenstein in general (see example below), we still expect that there exists a boundary \(\Delta \) such that \((X, \Delta) \) is log canonical. It is known that \(X \) has klt singularities assuming that \(X \) is \(\mathbb{Q} \)-Gorenstein [BdFF12, Theorem B].

Example 1.5. Let \(V = \mathbb{P}^1 \times E \) where \(E \) is an elliptic curve. Let \(\phi_1 : \mathbb{P}^1 \to \mathbb{P}^1 \) be raising to the fourth power and \(\phi_2 = [2] : E \to E \) be multiplying by 2. Let \(H_1 \) be a point in \(\mathbb{P}^1 \), \(H_2 \) be a symmetric ample divisor on \(E \) (i.e., \([−1]^*H_2 = H_2 \)) and \(H = p_1^*H_1 + p_2^*H_2 \), where \(p_i \) are the projections. Then \(\phi = \phi_1 \times \phi_2 \) is an endomorphism on \(V \) of degree 16 such that \(\phi^*H \sim 4H \). We may take \(X \) be the cone over \(V \) with polarization \(H \). Thus, \(\phi \) induces an endomorphism on \(X \) of degree 16. But \(X \) is not \(\mathbb{Q} \)-Gorenstein or log terminal. However, one may take \(\Delta \) be the cone over \(p_1^*(D_1 + D_2) \) for two different points \(D_1 \) and \(D_2 \) on \(\mathbb{P}^1 \) and see that \(K_X + \Delta \) is \(\mathbb{Q} \)-Cartier and log canonical.

Question 1.6. Let \((X, 0) \) be a normal isolated singularity. If \(\phi : (X, 0) \to (X, 0) \) is a noninvertible finite endomorphism that is not \(\text{étale} \) in codimension one, does there exist a boundary \(\Delta \) such that \((X, \Delta) \) is log canonical?

The global counterpart of this problem is well studied. Let \((V, H) \) be a normal polarized projective variety. A finite endomorphism \(\phi : V \to V \) is called polarized if \(\phi^*H \) is a multiple of \(H \). The cone over a smooth variety \(V \) with the polarization \(H \) gives an isolated singularity as in the local case. The classification of polarized Kähler surfaces (also known as dynamic surfaces) is obtained in [FN05] and [Zhang06, Proposition 2.3.1]. The three dimensional case is studied in [Fujimoto02] and [FN07], where the classification of smooth projective 3-folds with \(\kappa(X) \geq 0 \) that admit nontrivial endomorphism (which necessarily is \(\text{étale} \)) is given. Higher dimensions are studied in [NZ09, NZ10, GKP16, Theorem 1.21]. It is known that a \(\mathbb{Q} \)-Gorenstein polarized projective variety with noninvertible endomorphism is log canonical [BH14]. We propose the global version of Question 1.6.
Question 1.7. If \(\phi \) is a noninvertible polarized finite endomorphism on \((V, H)\), is \(V \) log Calabi-Yau? It is known that \(-K_V\) is pseudo-effective when \(V \) is smooth \cite{BdFF12} Theorem C.

There are also conditions that are weaker than being polarized that rise from dynamic systems, such as amplified and unity-free. We refer to \cite{KR15} for the definitions and comparisons.

Acknowledgement. The main work was done during Algebraic Geometry Summer Research Institute organized by AMS and University of Utah. The author would like to thank to Tommaso de Fernex, Christopher Hacon, Lance Miller, Mircea Mustață and Miheea Popa for inspiring discussions, and the anonymous referee for pointing out several mistakes. The author is partially supported by NSF FRG Grant DMS-1265285.

2. Preliminaries

Throughout this paper, we work over an algebraically closed field \(k \) of characteristic 0.

2.1. Movable divisors. Let \(f : Y \to X \) be a projective morphism between normal varieties and \(D \) be an \(f \)-big Cartier divisors on \(Y \). The base locus of \(D \) over \(X \), \(\text{Bs}(D) \), is the co-support of the image of the following canonical map:

\[
f^*f_*O_Y(D) \otimes O_Y(-D) \to O_Y.
\]

The stable base locus is defined to be

\[
\text{B}(D) = \bigcap_{m \geq 1} \text{Bs}(mD)_{\text{red}}.
\]

One can easily extend this definition to \(\mathbb{Q} \)-Cartier divisors. We define the diminished base locus of \(D \) as

\[
\text{B}_-(D) = \bigcup_{\epsilon > 0} \text{B}(D + \epsilon H),
\]

where \(H \) is an \(f \)-ample divisor on \(Y \). It can be shown that \(\text{B}_-(D) \) is independent of the choice of \(H \) (see \cite{ELMNP06} Section 1).

We say an \(f \)-pseudo-effective \(\mathbb{Q} \)-Cartier divisor \(D \) on \(Y \) is \(f \)-mobile if

\[
\text{codim} (\text{Bs}(D)) \geq 2.
\]

The \(f \)-movable cone \(\overline{\text{Mov}}(Y/X) \) is the closure of the cone generated by \(f \)-mobile Cartier divisors in the finite dimensional space \(N^1(Y/X) \). We call an \(\mathbb{R} \)-divisor \(D \) \(f \)-movable if \(D \in \overline{\text{Mov}}(Y/X) \).

Lemma 2.1. \cite{Nakayama04} Theorem V.1.3 Let \(D \) be a \(\mathbb{Q} \)-Cartier divisor on \(Y \). Then \(D \in \overline{\text{Mov}}(Y/X) \) if and only if \(\text{B}_-(D) \) contains no divisor. \[\square\]1

1 This is called restricted base locus in \cite{ELMNP06} and non-nef locus in \cite{BDPP12}
Lemma 2.2. Let $f : Y \rightarrow X$ and $g : Z \rightarrow Y$ be two projective morphisms and $\phi = f \circ g$. If a Cartier divisor D on Z is ϕ-mobile, then D is also g-mobile. In particular, $\text{Mov}(Z/X) \subseteq \text{Mov}(Z/Y)$.

Proof. Since the morphism
\[
g^*f^* g_* O_Z(D) \otimes O_Z(-D) = \phi^* \phi_* O_Z(D) \otimes O_Z(-D) \xrightarrow{\rho_\phi} O_Z
\]
factors through $g^* g_* O_Z(D) \otimes O_Z(-D) \xrightarrow{\rho_g} O_Z$, it follows that $\text{im } \rho_\phi \subseteq \text{im } \rho_g$. Thus, if the co-support of $\text{im } \rho_\phi$ has codimension ≥ 2, then so is the co-support of $\text{im } \rho_g$. The lemma follows. \qed

The following lemma is a generalization of the well-known Negativity Lemma [KM98, Lemma 3.39].

Lemma 2.3. [Fujino11, Lemma 4.2] Let $f : Y \rightarrow X$ be a proper birational morphism where Y is a normal \mathbb{Q}-factorial variety. Let E be an \mathbb{R}-divisor on Y such that E is f-exceptional and $E \in \text{Mov}(Y/X)$. Then $E \leq 0$. \qed

2.2. Shokurov’s b-divisor. Let X be a normal variety.

A Weil b-divisor W over X is the assignment to each birational model $f : Y \rightarrow X$, a Weil divisor W_Y on Y that is compatible with pushforwards: if $\phi : Z \rightarrow Y$ are two models over X, then $\phi_* (W_Z) = W_Y$. The Weil-divisor W_Y is called the trace of W on Y. We denote by $\text{Div}(X)$ the group of Weil b-divisors over X and define \mathbb{Q}-Weil (\mathbb{R}-Weil, resp.) b-divisor as elements of $\text{Div}(X) \otimes \mathbb{Q}$ ($\text{Div}(X) \otimes \mathbb{R}$, resp.).

We call the Weil b-divisor C a Cartier b-divisor over X if there exists a birational model $f : Y \rightarrow X$ such that C_Y is Cartier and for every other model $\phi : Z \rightarrow Y$ with common resolution

\[
\begin{array}{ccc}
 W & \leftarrow & \rightarrow \\
 s & \rightarrow & t \\
 Z & \rightarrow & Y
\end{array}
\]
we have $C_Z = s_*(t^* C_Y)$. In this case, we say that $f : Y \rightarrow X$ is a determinant of C. Similarly, we define \mathbb{Q}-Cartier b-divisor and \mathbb{R}-Cartier b-divisor.

A \mathbb{R}-Cartier b-divisor C over X is called X-nef if there exists a (hence any) determinant $f : Y \rightarrow X$ such that C_Y is f-nef. We call a \mathbb{R}-Weil b-divisor W X-nef if W is a limit of X-nef \mathbb{R}-Cartier b-divisors, where the limit is taken in the numerical class of every model. The following lemma gives a characterization of X-nef \mathbb{R}-Weil b-divisors.

Lemma 2.4. [BdFF12, Lemma 2.10] A \mathbb{R}-Weil b-divisor W is X-nef if and only if $W_Y \in \text{Mov}(Y/X)$ on every \mathbb{Q}-factorial model Y. \qed
Let W_1 and W_2 be two \mathbb{R}-Weil b-divisors. We say $W_1 \geq W_2$, if for every model Y, we have $(W_1)_Y \geq (W_2)_Y$.

2.3. Nakayama’s σ-decomposition. Let X be a \mathbb{Q}-factorial projective normal variety over S and D be an S-big \mathbb{R}-divisor on X. For every prime divisor Γ on X, we define

$$\sigma_\Gamma(D) = \inf \{ \text{mult}_\Gamma \Delta | \Delta \equiv_S D, \Delta \geq 0 \}.$$

Since D is S-big, there exists an effective divisor Δ that is numerically equivalent to D. Hence, the infimum above is not taken over an empty set.

Remark 2.5. By the observation of Nakayama, this definition can be generalized to S-pseudo-effective \mathbb{R}-divisors. Let D be an S-pseudo-effective divisor on X. Fix an S-ample divisor A on X. Since for every $\epsilon > 0$, $D + \epsilon A$ is S-big, we can define $\sigma_\Gamma(D) = \lim_{\epsilon \downarrow 0} \sigma_\Gamma(D + \epsilon A)$. It is shown in [Nakayama04, Lemma III.1.4-5] that $\sigma_\Gamma(D)$ is independent of the choice of A and only depends on the numerical class of D. However, an example is given in [Lesieutre15] that this limit can be ∞ when S is not a point. In this paper, we only use the σ-decomposition in the case that X is birational to S, hence every divisor is S-big (see [Nakayama04, Lemma III.1.4(2)]).

It is shown in [Nakayama04, Lemma III.4.2] that there are finitely many prime divisors Γ on X such that $\sigma_\Gamma(D) > 0$, which leads us to the following definition.

Definition 2.6. Let D be an S-big \mathbb{R}-divisor on a \mathbb{Q}-factorial projective variety X over S. We define

$$N_\sigma(D) = \sum \sigma_\Gamma(D) \Gamma \quad \text{and} \quad P_\sigma(D) = D - N_\sigma(D),$$

where $P_\sigma(D)$ and $N_\sigma(D)$ are called the positive and negative part of the σ-decomposition, respectively.

Notation 2.7. To be precise, the σ-decomposition here should be written as $P_{\sigma/S}$ and $N_{\sigma/S}$ as we are using the relative version. However, in order to make our notation concise, we will omit the base S when it is clear from the context.

We record some properties of the σ-decomposition as below.

Proposition 2.8. Let D be an S-big \mathbb{R}-divisor on a \mathbb{Q}-factorial variety X. Let $f : Y \to X$ be a proper birational morphism, where Y is normal.

1. $N_\sigma(D) = 0$ if and only if $D \in \overline{\text{Mov}(X/S)}$.
2. $P_\sigma(D)$ is the largest \mathbb{R}-divisor in $\overline{\text{Mov}(X/S)}$ that is no greater than D.
3. $f_*P_\sigma(f^*D) = P_\sigma(D)$. In other words, $P_\sigma(f^*D)$ defines a \mathbb{R}-Weil b-divisor over X.
4. σ_Γ is a continuous function on the big cone of X over S. So is P_σ, where the convergence is coefficiently-wise.
Proof. (1) and (2) are [Nakayama04, Proposition III.1.14]. (3) is [Nakayama04, Theorem III.2.5(1)]. (4) is [Nakayama04, Lemma III.1.7(1)]. □

Inspired by the above proposition, we give the definition of \(\sigma \)-closure.

Definition 2.9. Let \(Y \) be a \(\mathbb{Q} \)-factorial model over \(X \) and \(D \) be an \(S \)-big \(R \)-divisor on \(Y \). The \(\sigma \)-closure \(P_\sigma(D) \) is an \(R \)-Weil b-divisor such that: for every model \(Z \) over \(X \), let \(W \) be a model dominating \(Y \) and \(Z \).

Then the trace of \(P_\sigma(D) \) on \(Z \) is \(t_\ast P_\sigma(s_\ast D) \). It is well-defined by Proposition 2.8(3).

Lemma 2.10. The \(\sigma \)-closure is \(X \)-nef.

Proof. The lemma follows directly from Proposition 2.8(2) and Lemma 2.4. □

2.4. Pullback of Weil divisors. We recall the definition of pullback of Weil divisors from [dFH09, BdFF12] as below.

Let \(X \) be a normal variety, \(D \) be a \(R \)-Weil divisor on \(X \) and \(E \) be a prime divisor over \(X \). We define the valuation \(v_E(D) = v_E(O_X(-D)) = v_E(O_X([-D])) \) as

\[
v_E(D) = \min\{v_E(\phi) \mid \phi \in O_U([-D]), U \cap c_X(E) \neq \emptyset\}.
\]

If \(D \) is Cartier, we see that \(v_E(D) \) is the usual valuation.

Suppose \(f : Y \to X \) is a proper birational morphism and \(Y \) is normal. The natural pullback \(f^! D \) is defined as

\[
f^! D = \sum v_E(D) E,
\]

where the sum runs through all prime divisors on \(Y \). It is easy to see that \(O_Y(-f^! D) = (O_X(-D) \cdot O_Y)^{\vee \vee} \). The natural pullback is also known as \(Z(O_X(-D))_f \) in [BdFF12], where \(Z(O_X(-D)) \) is viewed as a Weil b-divisor consisting of natural pullbacks.

In general, the natural pullbacks do not behave well under composition.

Lemma 2.11. [dFH09, Lemma 2.7] Let \(f : Y \to X \) and \(g : Z \to Y \) be two proper birational morphisms between normal varieties, \(D \) be an \(R \)-Weil divisor on \(X \). Then \((f \circ g)^! D - g^!(f^! D) \) is not necessarily zero. However, it is effective and \(g \)-exceptional. Moreover, if \(O_X(-D) \cdot O_Y \) is an invertible sheaf on \(Y \), then \((f \circ g)^! D = g^!(f^! D) \). □

Lemma 2.12. [BdFF12, Lemma 1.8 and 2.10]
If $\mathcal{O}_X(-D) \cdot \mathcal{O}_Y$ is an invertible sheaf, then $-f^*D$ is relatively globally generated over X. In other words, the following canonical homomorphism is surjective.

\[
f^*f_*\mathcal{O}_Y(-f^*D) \to \mathcal{O}_Y(-f^*D).
\]

(2) If $-f^*D$ is \mathbb{Q}-Cartier, then $-f^*D \in \text{Mov}(Y/X)$.

Proof. (1) Since $\mathcal{O}_X(-D) \cdot \mathcal{O}_Y$ is the image of $f^*\mathcal{O}_X(-D)$ under the homomorphism $f^*\mathcal{O}_X(-D) \to f^*\mathcal{O}_X$, we have a surjection

\[
f^*\mathcal{O}_X(-D) \to \mathcal{O}_X(-D) \cdot \mathcal{O}_Y.
\]

It is obvious that $f_*\mathcal{O}_Y(-f^*D) = \mathcal{O}_X(-D)$. The statement follows.

(2) Suppose $-mf^*D$ is Cartier. Let $g: Z \to X$ be a log resolution of X such that $\mathcal{O}_X(-D) \cdot \mathcal{O}_Z$ is an invertible sheaf and g factors through f via $\phi: Z \to Y$. Such log resolution exists by \cite[Theorem 4.2]{dFH09}. By part (1), $-mg^*D$ is relatively globally generated over X. Hence, $-mf^*D = \phi_*(mg^*D)$ is f-mobile.

\[
\square
\]

It is shown in \cite[Lemma 2.8]{dFH09} that for every positive integer m, we have $f^*D \geq \frac{1}{m}f^*(mD)$. Thus, we can define the pullback of D as a \mathbb{R}-Weil divisor,

\[
f^*D = \liminf_{m \to \infty} \frac{f^*(mD)}{m}.
\]

It is not hard to see that the liminf above is actually a limit (\cite[Lemma 2.1]{BdFF12}).

Lemma 2.13. If Y is \mathbb{Q}-factorial, then $-f^*D \in \text{Mov}(Y/X)$.

Proof. This is obvious by Lemma 2.12 and the definition.

Lemma 2.14. Let $f: Y \to X$ and $g: Z \to Y$ be two proper birational morphisms between normal varieties. Then for every \mathbb{Q}-Weil divisor D on X, $(f \circ g)^*D - g^*(f^*D)$ is an effective g-exceptional divisor.

Proof. The lemma follows from Lemma 2.11 and definition.

We will use the following notation from \cite[Remark 2.4]{BdFF12}.

Definition 2.15. $\text{Env}_X(D)$ is the \mathbb{R}-Weil b-divisor whose trace on every model Y is $-f^*(-D)$.

It is shown in \cite[Corollary 2.13]{BdFF12} that $\text{Env}_X(D)$ is the largest X-nef \mathbb{R}-Weil b-divisor W such that $W_X = D$.

Lemma 2.16. In the setting of Lemma 2.14, if Z is \mathbb{Q}-factorial, then $-(f \circ g)^*D = P_\sigma(-g^*(f^*D))$. Hence, $\text{Env}_X(-D) = P_\sigma(-f^*D)$.

Proof. By Lemma 2.13, \(-(f \circ g)^*D\) is a movable \(\mathbb{R}\)-divisor that is no greater than \(-g^*(f^*D)\). Using Lemma 2.28, we have \(-(f \circ g)^*D \leq \mathcal{P}(g^*(f^*D))\). On the other hand, \(\mathcal{P}(f^*D)\) is an \(X\)-naf \(\mathbb{R}\)-Weil \(b\)-divisor whose trace on \(X\) is \(D\). Hence, Env\(_X\)\((-D)\) \(\geq \mathcal{P}(f^*D)\). The lemma follows.

Lemma 2.17. [BdFF12, Corollary 2.13] If Env\(_X\)\((D)\) is \(\mathbb{R}\)-Cartier with a determinant on \(Y\), then the trace of Env\(_X\)\((D)\) on \(Y\) is \(X\)-naf.

We record the following Negativity Lemma in the context of \(b\)-divisors.

Lemma 2.18. [BdFF12, Proposition 2.12] Let \(\mathcal{W}\) be an \(X\)-naf \(\mathbb{R}\)-Weil \(b\)-divisor over \(X\) and \(f : Y \to X\) be a birational model. Then \(\mathcal{W}_Y \leq -f^*(-W_X)\).

2.5. Nef envelope of \(\mathbb{R}\)-Weil \(b\)-divisors and volume. All the definitions below are from [BdFF12], where the reader can find the details.

Let \(\mathcal{W}\) be an \(\mathbb{R}\)-Weil \(b\)-divisor over \(X\). We define the nef envelope Env\(_X\)\((\mathcal{W})\) of \(\mathcal{W}\) to be the largest \(X\)-naf \(\mathbb{R}\)-Weil \(b\)-divisor \(\mathcal{Z}\) such that \(\mathcal{Z} \leq \mathcal{W}\), if exists. Let \(\mathcal{C}\) be an \(\mathbb{R}\)-Cartier \(b\)-divisor over \(X\) whose center on \(X\) is \(0 \in X\). The self-intersection \(\mathcal{C}^n = \mathcal{C}_Y^n\) if \(Y\) is a determinant of \(\mathcal{C}\). It is obvious that \(\mathcal{C}^n\) is independent of the choice of \(Y\). If \(\mathcal{W}\) is \(X\)-naf whose center on \(X\) is \(0 \in X\), we define \(\mathcal{W}^n = \inf\{\mathcal{C}^n\}\) where the infimum is taken for all \(X\)-naf \(\mathbb{R}\)-Cartier \(b\)-divisors such that \(\mathcal{C} \geq \mathcal{W}\).

We copy the following properties from [BdFF12].

Proposition 2.19. [BdFF12, Theorem 4.14 and Proposition 4.16] Let \(\mathcal{W}\) be an \(X\)-naf \(\mathbb{R}\)-Weil \(b\)-divisor whose center on \(X\) is \(0 \in X\).

1. If \(\mathcal{W}_1 \leq \mathcal{W}_2\) are two \(X\)-naf \(\mathbb{R}\)-Weil \(b\)-divisors over \(X\), then \(\mathcal{W}_1^n \leq \mathcal{W}_2^n \leq 0\).
2. \(\mathcal{W}^n = 0\) if and only if \(\mathcal{W} = 0\).
3. Let \(\phi : (Y,0) \to (X,0)\) be a finite map of degree \(d\) between isolated singularities. Then \((\phi^*\mathcal{W})^n = d(\mathcal{W}^n)\).

For a model \(f : Y \to X\), we fix canonical divisors such that \(f_*K_Y = K_X\). For every positive integer \(m\), we define the \(m\)-th limiting log discrepancy divisor as

\[A_{m,Y/X} = K_Y + E_f - \frac{1}{m} f^*(mK_X), \]

where \(E_f\) is the reduced exceptional divisor. We denote by \(A_{m,X/X}\) the corresponding \(\mathbb{Q}\)-Weil \(b\)-divisor. Similarly, we define the log discrepancy divisor as

\[A_{Y/X} = K_Y + E - f^*K_X \]

and \(A_{X/X}\) to be the corresponding \(\mathbb{R}\)-Weil \(b\)-divisor.

It is shown in [BdFF12, Zhang14] that if \(X\) has isolated singularity, then Env\(_X\)\((A_{X/X})\) and Env\(_X\)\((A_{m,X/X})\) exist. We define

\[\text{vol}_m(X) = -\text{Env}_X(A_{m,X/X})^n \quad \text{and} \quad \text{vol}_{BdFF}(X) = -\text{Env}_X(A_{X/X})^n. \]

It is known that these volumes are finite nonnegative numbers.
In the case that X is \mathbb{Q}-Gorenstein, it is shown in \cite{Zhang14}, Theorem 3.2 that $\text{vol}_{\text{BdFF}}(X) = \text{vol}_m(X) = -A^0_{Y/X}$ for m sufficiently large and divisible, where Y is the log canonical modification of X. When X is non-\mathbb{Q}-Gorenstein, \cite{Zhang14}, Corollary 4.3] shows that for every $m \geq 2$, one can always pick a boundary Δ on X such that $\text{vol}_m(X)$ is calculated on the log canonical modification of the pair (X, Δ). We do not know whether $\text{vol}_{\text{BdFF}}(X)$ can be calculated by intersection number on some model.

The following theorem gives a criteria for log canonical singularity.

Theorem 2.20. \cite{Zhang14}, Corollary 4.6] If $\text{vol}_m(X) = 0$ for some (hence any multiple of an) integer $m \geq 1$, then there exists a boundary Δ on X such that (X, Δ) is log canonical. \qed

2.6. Numerically \mathbb{Q}-Cartier divisors. The numerically \mathbb{Q}-Cartier divisors are defined in \cite{BdFF12} and are further studied in \cite{BdFFU14}, which behave like \mathbb{Q}-Cartier divisors under birational pullbacks. We give the following definition which generalizes Mumford’s numerical pullback.

Definition 2.21. Let X be a normal variety.

1. A Weil divisor D on X is numerically Cartier if there exists a resolution of singularities $f : Y \to X$ and an f-numerically trivial Cartier divisor D' on Y such that $f_*D' = D$.

2. A \mathbb{Q}-Weil divisor is numerically \mathbb{Q}-Cartier if some multiple is numerically Cartier.

3. When the canonical divisor K_X is numerically \mathbb{Q}-Cartier, we say X is numerically \mathbb{Q}-Gorenstein.

Proposition 2.22. Let D be a Weil divisor on X.

1. D is numerically \mathbb{Q}-Cartier if and only if $\text{Env}_X(-D) = -\text{Env}_X(D)$.

2. Suppose X has rational singularities. Then D is numerically \mathbb{Q}-Cartier if and only if D is \mathbb{Q}-Cartier.

3. Suppose D is numerically \mathbb{Q}-Cartier. Let $f : Y \to X$ be a birational model such that f^*D is \mathbb{Q}-Cartier. Then f^*D is f-numerically trivial and $-\text{Env}_X(-D) = f^*D$.

Proof. (1) is \cite{BdFFU14}, Proposition 5.9] and (2) is \cite{BdFFU14}, Theorem 5.11].

For (3), let $g : Z \to Y$ be any \mathbb{Q}-factorial birational model over Y and $\phi = f \circ g$. By Lemma 2.16 we have

$$-\phi^*D = P_{\sigma}(-g^*(f^*D)) \leq -g^*(f^*D),$$

and

$$-\phi^*(-D) = P_{\sigma}(-g^*(f^*(-D))) \leq -g^*(f^*(-D)).$$
Applying (1), the sum yields

\[0 = -\phi^* D - \phi^*(-D) \leq -g^*(f^* D) - g^*(f^*(-D)) = 0. \]

Hence, \(\text{Env}_X(D) = f^* D \) and \(-\text{Env}_X(D) = -f^* D \). By Lemma 2.17, both \(f^* D \) and \(-f^* D \) are \(f \)-nef. Thus, \(f^* D \) is \(f \)-numerically trivial. \(\square \)

3. Partial Resolutions

3.1. Movable modification of non-\(\mathbb{Q} \)-Gorenstein varieties. The construction of our volume depends on the following theorem which is known to experts.

Theorem 3.1. There exists a birational morphism \(f : Y \to X \) such that

1. \(Y \) is \(\mathbb{Q} \)-factorial,
2. \((Y, E_f) \) is dlt, and
3. \(K_Y + E_f \in \overline{\text{Mov}(Y/X)} \),

where \(E_f \) is the reduced exceptional divisor. Moreover, \(A_{Y/X} \leq 0 \). We call \(f : Y \to X \) a movable modification of \(X \).

Remark 3.2. Theorem 3.1 does not require that \(X \) is \(\mathbb{Q} \)-Gorenstein. It is proved in \([OX12]\) that in the setting of \(K_X + \Delta \) being \(\mathbb{Q} \)-Cartier, one may further require that \(K_Y + E_f + \hat{\Delta} \) is \(f \)-semi-ample, where \(\hat{\Delta} \) is the strict transform of \(\Delta \) on \(Y \).

The general case of semi-ampleness is true if one assume the full minimal model program (MMP) including abundance.

Proof. Let \(g : Z \to X \) be a log resolution and \(E_g \) be the reduced exceptional divisor. Let \(H \) be a \(g \)-ample divisor on \(Z \). We run the \((K_Z + E_g)\)-MMP with scaling \(H \) over \(X \). We obtain a sequence of flips and divisorial contractions:

\[Z = Z_0 \twoheadrightarrow Z_1 \twoheadrightarrow \cdots, \]

and a decreasing sequence

\[\lambda_i = \inf \{ s \in \mathbb{R} | K_{Z_i} + E_{g_i} + sH_i \text{ is nef over } X \}. \]

We know that for every \(\lambda_i \geq t \geq \lambda_{i+1} \), \(K_{Z_i} + E_{g_i} + tH_i \) is relatively semi-ample over \(X \) and \(\lim_{i \to \infty} \lambda_i = 0 \) (see \([OX12]\) Lemma 2.6)).

For every divisor \(E \subset \mathcal{B}_-(K_Z + E_g/X) \) or equivalently every component \(E \) of \(N_\sigma(K_Z + E_g) \), there is some \(t > 0 \) such that \(E \subset \mathcal{B}(K_Z + E_g + tH/X) \). We may find an \(i \) such that \(\lambda_i \geq t \geq \lambda_{i+1} \). Since \(K_{Z_i} + E_{g_i} + tH_i \) is relatively semi-ample over \(X \), \(E \) must be contracted on \(Z_i \). Since there are finitely many such \(E \), we conclude that there is a model \(Z_j \) such that \(\mathcal{B}_-(K_{Z_j} + E_{g_j}/X) \) contains no divisor.

By Lemma 2.11 we have \(K_{Z_j} + E_{g_j} \in \overline{\text{Mov}(Z_j/X)} \). The theorem follows by setting \(Y = Z_j \).

For the moreover part, by Lemma 2.13 \(-f^* K_X \in \overline{\text{Mov}(Y/X)} \), hence so is \(K_Y + E_f - f^* K_X \). By Lemma 2.3 we have \(A_{Y/X} = K_Y + E_f - f^* K_X \leq 0 \). \(\square \)
3.2. Log canonical modification of numerically \(\mathbb{Q} \)-Gorenstein varieties.

Definition 3.3. For a numerically \(\mathbb{Q} \)-Gorenstein variety \(X \), we say \(X \) is numerically log canonical (numerically log terminal, resp.) if for every exceptional divisor \(E \) on \(\phi : Z \to X \), \(\operatorname{ord}_E(K_Z - f^*K_X) \geq -1 \) (\(> -1 \), resp.).

Remark 3.4. The above definition coincide with Mumford’s numerically pullbacks \([\text{KM}98, \text{Notation 4.1}]\) on surfaces.

The following proposition generalizes the well-known property in the surface case \([\text{KM}98, \text{Notation 4.1}], [\text{dFH}09, \text{Proposition 7.14}]\).

Proposition 3.5. If \(X \) is numerically log canonical, then \(X \) is \(\mathbb{Q} \)-Gorenstein.

Proof. Let \(f : Y \to X \) be a movable modification of \(X \). Then \(K_Y + E_f - f^*K_X \leq 0 \) by Lemma 2.23. Since \(X \) is numerically log canonical, there must be \(K_Y + E_f = f^*K_X \). Thus, \((Y, E_f)\) is a dlt pair such that \(K_Y + E_f \) is \(f \)-numerically trivial. By the abundance theorem \([\text{FG14, Theorem 4.9}]\) \(K_Y + E_f \) is \(f \)-semi-ample. Let \(\phi : Z = \operatorname{Proj}_X \bigoplus_m f_\ast \mathcal{O}_Y(m(K_Y + E_f)) \to X \) be the log canonical modification over \(X \). Then \(K_Z + E_\phi \) is \(\phi \)-ample. On the other hand, \(K_Z + E_\phi = \phi^*K_X \) is \(\phi \)-numerically trivial by Proposition 2.22(3). We conclude that \(\phi \) is an isomorphism. In particular, \(X \) is \(\mathbb{Q} \)-Gorenstein. \(\square \)

The existence of log canonical modifications is predicted by full relative minimal model program and is proved for a pair \((X, \Delta = \sum a_i \Delta_i)\) such that \(K_X + \Delta \) is \(\mathbb{Q} \)-Cartier and \(a_i \in [0, 1] \) \([\text{OX12}]\). The same idea applies in the case that \(K_X + \Delta \) is numerically \(\mathbb{Q} \)-Cartier. For the reader’s convenience, we include a sketch below for the case \(\Delta = 0 \).

Theorem 3.6. Let \(X \) be a numerically \(\mathbb{Q} \)-Gorenstein normal variety. Then there exists a unique birational model \(f : Y \to X \), such that

1. \(K_Y + E_f \) is a \(f \)-ample \(\mathbb{Q} \)-Cartier divisor, and
2. \((Y, E_f)\) is log canonical,

where \(E_f \) is the reduced exceptional divisor.

Proof. Step 1. By Theorem 3.1 there exists a movable modification \(\phi : Z \to X \) such that \(Z \) is \(\mathbb{Q} \)-factorial, \(K_Z + E_\phi \in \overline{\operatorname{Mov}}(Z/X) \) and \((Z, E_\phi)\) is dlt. By Lemma 2.1 we know that \(B_\ast (K_Z + E_\phi/X) \) contains no divisor. We denote the complement of the support of \(\phi(-[A_{Z/X}]) \) by \(X_{lc} \).

Step 2. We show that if \(E \) is an exceptional divisor on \(Z \) such that \(\phi(E) \subseteq X \setminus X_{lc} \), then \(\operatorname{ord}_E(A_{Z/X}) < 0 \). If this is not true, by Kollár-Shokurov’s Connectedness Lemma \([\text{KM}98, \text{Corollary 5.49}]\), there exist exceptional divisors \(E_0 \) and \(E_1 \) with centers in \(X \setminus X_{lc} \) such that \(\operatorname{ord}_{E_0}(A_{Z/X}) = 0 \), \(\operatorname{ord}_{E_1}(A_{Z/X}) < 0 \) and \(E_0 \cap E_1 \neq \emptyset \). Then \((A_{Z/X} + \epsilon H)|_{E_0} \) is not effective for \(0 < \epsilon \ll 1 \) and \(H \) ample. Since \(\phi^*X \)
is numerically trivial by Proposition 2.23.3), we have $E_0 \subseteq B_-(K_Z + E_\phi/X)$, a contradiction.

Step 3. Set $B = E_\phi - \epsilon A_{Z/X}$ for some small ϵ such that $B \geq 0$. We show that (Z, B) has a good minimal model over X. The idea is to apply [HX13 Theorem 1.1] over the open subset X_{lc}. A good minimal model exists over X_{lc} by Proposition 3.5 and [HX13 Lemma 2.11]. One can check that no strata of $|B|$ are contained in $\phi^{-1}(X\setminus X_{lc})$ using Step 2.

Step 4. Since $K_Z + B = (1 + \epsilon)(K_Z + E_\phi) - \epsilon \phi^*K_X \equiv_f (1 + \epsilon)(K_Z + E_\phi)$, a good minimal model of $K_Z + B$ is also a good minimal model of $K_Z + E_\phi$. Hence the canonical ring $R = \bigoplus_m \phi_* \mathcal{O}_Z(m(K_Z + E_\phi))$ is finitely generated over X and we may take $Y = \text{Proj}_X R$. \hfill \square

4. Movable Volume

We start with a lemma showing the behavior of Zariski decomposition in the sense of [BlFf12] on a movable modification.

Lemma 4.1. Let X be a normal variety which is not necessarily \mathbb{Q}-Gorenstein. Let $f : Y \to X$ be a movable modification. Then the trace of $\text{Env}_X(A_{X/X})$ on Y is $A_{Y/X}$.

Proof. Consider the \mathbb{R}-Weil b-divisor $\mathcal{P}_- = \mathcal{P}_\sigma(K_Y + E_f) + \text{Env}_X(-K_X)$. Let $g : Z \to Y$ be a projective birational morphism and $\phi = g \circ f$. Since (Y, E_f) is dlt, we have $g^*(K_Y + E_f) \leq K_Z + E_\phi$. Hence,

$$(\mathcal{P}_-)_Z = \mathcal{P}_\sigma(g^*(K_Y + E_f)) - \phi^*K_X \leq g^*(K_Y + E_f) - \phi^*K_X \leq A_{Z/X}.$$

Thus, \mathcal{P}_- is an X-nef \mathbb{R}-Weil b-divisor that is less than or equal to $A_{X/X}$. By the definition of nef envelope, we have $\mathcal{P}_- \leq \text{Env}_X(A_{X/X})$. Taking the trace on Y, we obtain

$$A_{Y/X} = (\mathcal{P}_-)_Y \leq (\text{Env}_X(A_{X/X}))_Y \leq (A_{X/X})_Y = A_{Y/X}.$$

The lemma follows. \hfill \square

Inspired by the lemma above, we give the following definition:

Definition 4.2. Let X be a normal variety and $f : Y \to X$ be a movable modification. The diminished positive part \mathcal{P}_- is an \mathbb{R}-Weil b-divisor over X:

$$\mathcal{P}_- = \mathcal{P}_\sigma(K_Y + E_f) + \text{Env}_X(-K_X).$$

Lemma 4.3. Let $f : Y \to X$ be a movable modification, $g : Z \to Y$ be a \mathbb{Q}-factorial birational model and $\phi = f \circ g$. Then the trace of \mathcal{P}_- on Z is $\mathcal{P}_\sigma(K_Z + E_\phi) - \phi^*K_X$.

In particular, \mathcal{P}_- is independent of the choice of Y.

Proof. We only need to show that

$$\mathcal{P}_\sigma(K_Z + E_\phi) = \mathcal{P}_\sigma(g^*(K_Y + E_f)).$$
Since \((Y, E_f)\) is dlt, we have \(K_Z + E_\phi \geq g^*(K_Y + E_f)\). Hence,
\[
P_\sigma(K_Z + E_\phi) \geq P_\sigma(g^*(K_Y + E_f)).
\]

Now we have
\[
P_\sigma(g^*(K_Y + E_f)) \leq P_\sigma(K_Z + E_\phi) \leq K_Z + E_\phi.
\]

As we know that \(K_Y + E_f \in \text{Mov}(Y/X)\), by Proposition \(2.8(3)\), \(g^*(K_Y + E_f) - P_\sigma(g^*(K_Y + E_f))\) is \(g\)-exceptional, and so is \(K_Z + E_\phi - P_\sigma(g^*(K_Y + E_f))\). We obtain that \(P_\sigma(K_Z + E_\phi) - g^*(K_Y + E_f)\) must be \(g\)-exceptional. Notice that \(P_\sigma(K_Z + E_\phi) - g^*(K_Y + E_f) \in \text{Mov}(Z/Y)\). By Lemma \(2.3\) we have \(P_\sigma(K_Z + E_\phi) \leq g^*(K_Y + E_f)\). Proposition \(2.8(2)\) gives the desired inequality. \(\square\)

\textbf{Remark 4.4.} If we assume the termination of MMP for dlt pairs, then there exists a movable modification with \(K_Y + E_f\) nef over \(X\), which is called a dlt modification \textbf{OX12}. In this case, it is not hard to see that \(P_\sigma(K_Y + E_f)\) is a \(\mathbb{Q}\)-Cartier \(b\)-divisor determined by \(f\).

\textbf{Lemma 4.5.} Let \(\phi: Z \to X\) be a \(\mathbb{Q}\)-factorial birational model over \(X\) not necessarily factoring through a movable modification. Then \((\mathcal{P}_-)_Z \leq P_\sigma(K_Z + E_\phi) - \phi^*K_X\).

\textbf{Proof.} Let \(f: Y \to X\) be a movable modification and \(W\) be a common resolution of \(Y\) and \(Z\) as below:

\[
\begin{array}{c}
W \\
\downarrow s \\
Y \quad \quad t \\
\downarrow \\
Z
\end{array}
\]

We only need to show that \(t_*P_\sigma(s^*(K_Y + E_f)) \leq P_\sigma(K_Z + E_\phi)\). It is clear that
\[
t_*P_\sigma(s^*(K_Y + E_f)) \leq t_*(s^*(K_Y + E_f)) \leq t_*(K_W + E_{f\circ s}) = K_Z + E_\phi
\]
and \(t_*P_\sigma(s^*(K_Y + E_f)) \in \text{Mov}(Z/X)\). The lemma now follows from Proposition \(2.8(2)\). \(\square\)

\textbf{Definition 4.6.} Suppose that \((X, 0)\) has only isolated singularity at \(0 \in X\). We define the \textbf{movable volume} \(\text{vol}_{\text{mov}}(X) = -(\mathcal{P}_-)^n\).

\textbf{Lemma 4.7.} \textbf{We have the following inequality between the volumes:}
\[
0 \leq \text{vol}_{\text{BdFF}}(X) \leq \text{vol}_{\text{mov}}(X) < +\infty.
\]

\textbf{Proof.} According to \[\text{Kollár13}\ 1.12.1], there exists a log resolution \(s: W \to X\) with an effective \(s\)-exceptional divisor \(H\) on \(W\) such that \(-H\) is \(s\)-ample. We fix an integer \(m\) such that \(K_W + E_s - mH\) and \(-s^*K_X - mH\) are both \(s\)-ample. For
any model \(\phi : Z \to X \) dominating a movable model and factoring through \(s \) via \(t : Z \to W \), we have

\[
(P_-)_Z = P_\sigma(K_Z + E_\phi) - \phi^*K_X
\]

\[
\geq P_\sigma(t^*(K_W + E_s)) + P_\sigma(-t^*(s^*K_X))
\]

\[
\geq P_\sigma(t^*(K_W + E_s - mH)) + P_\sigma(t^*(-s^*K_X - mH))
\]

\[
= t^*(K_W + E_s - mH) + t^*(-s^*K_X - mH)
\]

\[
= t^*(A_{W/X} - 2mH).
\]

Thus, by Proposition \[2.19\]

\[
\text{vol}_{\text{mov}}(X) = -(P_-)^n \leq -(A_{W/X} - 2mH)^n < +\infty.
\]

By the proof of Lemma \[4.1\] we have \(P_- \leq \text{Env}_X(A_{X/X}) \). Hence,

\[
\text{vol}_{\text{mov}}(X) = -(P_-)^n \geq -(\text{Env}_X(A_{X/X}))^n = \text{vol}_{BdFF}(X) \geq 0.
\]

\[\square\]

Theorem 4.8. \(\text{vol}_{\text{mov}}(X) = 0 \) if and only if \(X \) is \(\mathbb{Q} \)-Gorenstein and log canonical.

Proof. Suppose that \(\text{vol}_{\text{mov}}(X) = -(P_-)^n = 0 \). By Proposition \[2.19\] we have that \(P_- = 0 \). Let \(f : Y \to X \) be a movable modification, \(g : Z \to Y \) be any \(\mathbb{Q} \)-factorial model over \(Y \) and \(\phi = f \circ g \). Then \(0 = (P_-)_Y = A_{Y/X} \), hence \(K_Y + E_f = f^*K_X \).

In particular, \(f^*K_X \) is \(\mathbb{Q} \)-Cartier. For the trace on \(Z \), we have

\[
0 = (P_-)_Z = P_\sigma(g^*(K_Y + E_f)) - \phi^*K_X
\]

\[
= P_\sigma(g^*(f^*K_X)) + P_\sigma(-g^*(f^*K_X))
\]

\[
\leq g^*(f^*K_X) - g^*(f^*K_X) = 0,
\]

where the second row follows from Lemma \[2.16\]. In particular, we obtain that \(\text{Env}_X(-K_X) = P_\sigma(-f^*K_X) \) is a \(\mathbb{Q} \)-Cartier \(b \)-divisor determined by \(f \). Thus, \(-f^*K_X \) is \(f \)-nef by Lemma \[2.17\]. Similarly, since \(P_\sigma(g^*(f^*K_X)) = g^*(f^*K_X) \), we have that \(f^*K_X \) is also \(f \)-nef. Thus, \(f^*K_X \) is \(f \)-numerically trivial and \(X \) is numerically \(\mathbb{Q} \)-Gorenstein. The inequality \(0 = P_- \leq A_{X/X} \) yields that \(X \) is numerically log canonical. We may apply Proposition \[3.5\] to conclude the proof. The other direction is obvious. \[\square\]

5. Finite Endomorphisms

We briefly review the pullback of Weil \(b \)-divisors.

Let \(\phi : Y \to X \) be a generically finite dominant morphism between normal varieties. Every divisorial valuation \(\nu \) on \(Y \) induces a divisorial valuation \(\phi_*\nu \) via the natural inclusion of the function field \(\phi^* : k(X) \hookrightarrow k(Y) \) given by \(\phi_*\nu(f) = \nu(f \circ \phi) \) [BdFF12 Lemma 1.13]. In other words, suppose that \(F \) is a prime divisor on \(X' \) over \(X \). Then there is a birational model \(Y' \) over \(Y \) such that \(\phi \) lifts to a morphism \(\phi' : Y' \to X' \). We may obtain such \(Y' \) by blowing up the indeterminacy of the
rational map $Y \rightarrow X'$. If E is an irreducible component of $(\phi')^{-1}F$ such that $\phi'(E) = F$, then $\phi_*\nu_E$ is a scalar multiple of ν_F with the scalar $\nu_E(\phi^*F)$.

Let W be an \mathbb{R}-Weil b-divisor on X. We define the pullback of W as the \mathbb{R}-Weil b-divisor ϕ^*W such that $\nu_E(\phi^*W) = (\phi_*\nu_E)(W)$.

For a normal variety Z, we denote by K_Z the Weil b-divisor given by a canonical divisor on each model and E_Z the Weil b-divisor given by the reduced exceptional divisor over Z on each model.

Lemma 5.1. [BdFF12, Lemma 2.19 and 3.3] Let $\phi : Y \rightarrow X$ be a finite dominant morphism between normal varieties. Then

1. If D is an \mathbb{R}-Weil divisor on X, then $\text{Env}_Y(\phi^*D) = \phi^*\text{Env}_X(D)$.
2. If W is an \mathbb{R}-Weil b-divisor over X such that $\text{Env}_X(W)$ is well-defined, then $\text{Env}_Y(\phi^*W) = \phi^*\text{Env}_X(W)$.
3. If E is a prime exceptional divisor over Y, then
 $$\nu_E(K_Y + E_Y) = \nu_E(\phi^*(K_X + E_X)).$$
4. If ϕ is étale in codimension 1, then $K_Y + E_Y = \phi^*(K_X + E_X)$.

Proof. Part (1) and (2) are the same as [BdFF12, Lemma 2.19].

Let E be an exceptional divisor over Y. Let X' be a smooth model over X such that the center of $\phi_*\nu_E$ on X' is a divisor F. Let Y' be a smooth model over Y such that E is a divisor on Y' and $\phi' : Y' \rightarrow X'$ is a morphism. We summarize this in the following diagram:

$$
\begin{array}{ccc}
E & \xrightarrow{\phi'} & X' \supset F \\
\downarrow{g} & & \downarrow{f} \\
Y & \xrightarrow{\phi} & X.
\end{array}
$$

We have $\phi_*\nu_E = b\nu_F$ where $b = \nu_E(\phi^*F)$. Hence the ramification order of ϕ' at the generic point of E is $b - 1$. We get

$$\nu_E(K_{Y'}) = \nu_E(\phi^*K_{X'}) + b - 1 = b\nu_F(K_{X'}) + b - 1.$$

Thus

$$\nu_E(K_Y + E_Y) = \nu_E(K_{Y'}) + 1 = b\nu_F(K_{X'}) + b = \phi_*\nu_E(K_X + E_X).$$

Part (3) follows.

If ϕ is étale in codimension 1, then $K_Y = \phi^*K_X$. Hence, $K_Y + E_Y$ and $\phi^*(K_X + E_X)$ also coincide on non-exceptional valuations. \qed

Lemma 5.2. Let $f : Y \rightarrow X$ be a movable modification. Then

$$\text{Env}_X(K_X + E_X) = \mathcal{P}_f(K_Y + E_f).$$

In particular, $\mathcal{P}_- = \text{Env}_X(K_X + E_X) + \text{Env}_X(-K_X)$.
Proof. The proof is similar to Lemma 4.1. Let \(g : Z \to X \) be any \(\mathbb{Q} \)-factorial model factoring through \(f \) via \(\phi : Z \to Y \). By Lemma 4.3, the trace on \(Z \) satisfies:

\[
(P_\sigma(K_Y + E_f))_Z = P_\sigma(K_Z + E_g) \leq K_Z + E_g.
\]

Hence, \((\text{Env}_Y(K_Y + E_X))_Z \leq (P_\sigma(K_Y + E_f))_Z \). On the other hand, \(P_\sigma(K_Y + E_f) \leq K_X + E_X \). By the definition of nef envelope, we have \(\text{Env}_X(K_X + E_X) \geq P_\sigma(K_Y + E_f) \).

We are ready to prove the main theorem.

Theorem 5.3. Let \(\phi : (Y, 0) \to (X, 0) \) be a finite morphism of degree \(d \) between normal isolated singularities such that \(\phi \) is étale in codimension 1. Then

1. \(P_{-Y} = \phi^* P_{-X} \).
2. \(\text{vol}_{\text{mov}}(Y) = d \text{vol}_{\text{mov}}(X) \).

Proof. By Lemma 5.1 and 5.2

\[
P_{-Y} = \text{Env}_Y(K_Y + E_Y) + \text{Env}_Y(-K_Y)
\]

\[
= \text{Env}_Y(\phi^*(K_X + E_X)) + \text{Env}_Y(-\phi^*K_X)
\]

\[
= \phi^* \text{Env}_X(K_X + E_X) + \phi^* \text{Env}_X(-K_X)
\]

\[
= \phi^* P_{-X}.
\]

Part (2) now follows from Lemma 2.19.

Theorem 5.4. If \(\phi : (X, 0) \to (X, 0) \) is a finite endomorphism of degree \(d \geq 2 \) such that \(\phi \) is étale in codimension 1, then \(\text{vol}_{\text{mov}}(X) = 0 \).

Proof. By Theorem 5.3 \(\text{vol}_{\text{mov}}(X) = d \text{vol}_{\text{mov}}(X) \). But \(\text{vol}_{\text{mov}}(X) \) is a nonnegative finite number. There must be \(\text{vol}_{\text{mov}}(X) = 0 \).

References

[BdFF12] Sébastien Boucksom, Tommaso de Fernex, and Charles Favre. The volume of an isolated singularity. *Duke Math. J.*, 161:1455–1520, 2012.

[BdFFU14] Sébastien Boucksom, Tommaso de Fernex, Charles Favre, and Stefano Urbinati. Valuation spaces and multiplier ideals on singular varieties. *Recent Advances in Algebraic Geometry*, 417:29, 2014.

[BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. *J. Algebraic Geom.*, 22:201–248, 2013.

[BH14] Amaël Broustet and Andreas Höring. Singularities of varieties admitting an endomorphism. *Math. Ann.*, 360(1-2):429–456, 2014.

[dfFH09] Tommaso de Fernex and Christopher Hacon. Singularities on normal varieties. *Compos. Math.*, 145(2):393–414, 2009.

[ELMNP06] Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa. Asymptotic invariants of base loci. *Annales de l’institute Fourier*, 56(6):1701–1734, 2006.
[Favre10] Charles Favre. Holomorphic endomorphisms of singular rational surfaces. *Publ. Mat.*, 54(2):389–432, 2010.

[FG14] Osamu Fujino and Yoshinori Gongyo. Log pluricanonical representations and the abundance conjecture. *Compos. Math.*, 150(4):593–620, 2014.

[FN05] Yoshio Fujimoto and Noboru Nakayama. Compact complex surfaces admitting non-trivial surjective endomorphisms. *Tohoku Math. J. (2)*, 57(3):395–426, 2005.

[FN07] Yoshio Fujimoto and Noboru Nakayama. Endomorphisms of smooth projective 3-folds with nonnegative Kodaira dimension, II. *J. Math. Kyoto Univ.*, 47(1):79–114, 2007.

[Fujimoto02] Yoshio Fujimoto. Endomorphisms of smooth projective 3-folds with nonnegative Kodaira dimension. *Publ. RIMS. Kyoto Univ.*, 38:33–92, 2002.

[Fujino11] Osamu Fujino. Semi-stable minimal model program for varieties with trivial canonical divisor. *Proc. Japan Acad. Ser. A Math. Sci.*, 87(3):25–30, 2011.

[Fulger13] Mihai Fulger. Local volumes of Cartier divisors over normal algebraic varieties. *Ann. Inst. Fourier (Grenoble)*, 63(5):1793–1847, 2013.

[GKP16] Daniel Greb, Stefan Kebekus, and Thomas Peternell. Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of Abelian varieties. To appear in *Duke Math. J.*.

[HX13] Christopher Hacon and Chenyang Xu. Existence of log canonical closures. *Invent. Math.*, 192(1):161–195, 2013.

[KM98] János Kollár and Shigefumi Mori. *Birational Geometry of Algebraic Varieties*, volume 134 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1998.

[Kollár13] János Kollár. *Singularities of the minimal model program*, volume 200 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 2013.

[KR15] Holly Krieger and Paul Reschke. Cohomological conditions on endomorphisms of projective varieties. Preprint, [arXiv:1505.07088](http://arxiv.org/abs/1505.07088), 2015.

[Lesieutre15] John Lesieutre. A pathology of asymptotic multiplicity in the relative setting. Preprint, [arXiv:1502.03019](http://arxiv.org/abs/1502.03019), 2015.

[Nakayama04] Noboru Nakayama. *Zariski-decomposition and abundance*, volume 14 of *MSJ Memoirs*. Mathematical Society of Japan, Tokyo, 2004.

[NZ09] Noboru Nakayama and De-Qi Zhang. Building blocks of étale endomorphisms of complex projective manifolds. *Proc. Lond. Math. Soc. (3)*, 99(3):725–756, 2009.

[NZ10] Noboru Nakayama and De-Qi Zhang. Polarized endomorphisms of complex normal varieties. *Math. Ann.*, 346(4):991–1018, 2010.

[OX12] Yuji Odaka and Chenyang Xu. Log-canonical models of singular pairs and its applications. *Math. Res. Lett.*, 19(2):325–334, 2012.

[Wahl90] Jonathan Wahl. A characteristic number for links of surface singularities. *J. Amer. Math. Soc.*, 3(3):625–637, 1990.

[sZhang06] Shou-Wu Zhang. *Distributions in algebraic dynamics*, volume 10 of *Survey in Differential Geometry*, 381–430. Int. Press, 2006.

[yZhang14] Yuchen Zhang. On the volume of isolated singularities. *Compos. Math.*, 150(8):1413–1424, 2014.

YUCHEN ZHANG

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

E-mail address: zyuchen@umich.edu