The impact of a changing winter climate on the hatch phenology of one of North America’s largest Atlantic salmon populations

Anna C. Rooke*, Brittany Palm-Flawd and Craig F. Purchase

Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 5X9, Canada

*Corresponding author: Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 5X9, Canada. Tel: +1-709-864-4452. Email: rookeac@gmail.com

Introduction

Shifts in reproductive phenology, including the seasonal timing of migration and breeding, are one of the primary phenotypic responses of wild populations to contemporary climate change (Walther et al., 2002; Parmesan and Yohe, 2003; Bradshaw and Holzapfel, 2006; Thackeray et al., 2010). Although most research on reproductive phenology focuses on advancements in spring warming, in northern temperate regions some of the most dramatic effects of climate change are expected during the winter. Understanding how changing winter climates influence the seasonal timing of key life events is critical for implementing effective conservation strategies, especially for poikilotherms, whose physiology and development are particularly sensitive to changes in thermal environment. Four mathematical models are available to predict the timing of hatch and emergence in Atlantic salmon (Salmo salar); however, such models are only useful if the effect of temperature is both repeatable within and among maternal families, and predictable across variable temperature regimes. Using a split-brood experiment, we found the timing of hatch to be repeatable and predictable in Atlantic salmon from the Exploits River, one of the largest remaining wild populations in North America. Three of the available mathematical models under-estimated the timing of hatch by an average of 21–26 accumulated thermal units (ATU); however, we identified one model that provided reasonable estimates of hatch timing (average under-estimate 7 ATU) under the three incubation temperature regimes we tested. We applied this model to daily water temperature profiles from 2006–18 at four sites within the Exploits River watershed. Across all years and sites, the predicted dates at 50% hatch ranged between 8 March and 23 May, while predicted dates of 50% emergence ranged from 11 May to 13 June. By identifying the seasonal timing of these particularly vulnerable early life stages, this model can aid the implementation of conservation efforts for this ecologically and economically important population.

Key words: Climate change, emergence, incubation, phenology, Salmo salar, salmonid

Editor: Steven Cooke

Received 9 September 2018; Revised 17 March 2019; Editorial Decision 29 March 2019; Accepted 3 April 2019

Cite as: Rooke AC, Palm-Flawd B, Purchase CF (2019) The impact of a changing winter climate on the hatch phenology of one of North America’s largest Atlantic salmon populations. Conserv Physiol 7(1): coz015; doi:10.1093/conphys/coz015.
will occur during the winter (Christensen et al., 2013). The trend towards shorter, warmer winters in temperate regions will impact the reproductive phenology of any species that incubates or raises young during the winter period. Understanding how changing winter climates influence the seasonal timing of key life events is critical for implementing effective conservation strategies, especially for poikilotherms, whose physiology and development are particularly sensitive to changes in thermal environment.

Many temperate coldwater fishes, such as most salmonids (subfamily, Salmoninaceae), spawn in the fall and embryos incubate in gravel nests throughout the winter. The timing of hatch, and emergence from the nest in spring, are critical for survival; individuals that emerge early are more likely to establish feeding territory and competitive dominance than those that emerge later; however, if hatchlings emerge too early they may experience high predation and reduced prey availability (Brännäs, 1995; Einum and Fleming, 2000; Skoglund et al., 2011). Spawn timing and incubation temperature are the key factors affecting phenology of hatch, with warmer incubation temperatures resulting in faster physiological development and shorter incubation periods (Peterson et al., 1977; Murray et al., 1990; Berg and Moen, 1999; Geist et al., 2006; Jeuthe et al., 2016).

Given the importance of temperature to development, the duration of the incubation period is typically reported in total accumulated thermal units (ATU), an index of time that incorporates total metabolically relevant thermal energy. Embryo development is not directly proportional to temperature; the rate of development per thermal unit is energy. Embryo development is not directly proportional to time that incorporates total metabolically relevant thermal duration of the incubation period is typically reported (Brännäs, 1995; Einum and Fleming, 2000; Skoglund et al., 2011). Spawn timing and incubation temperature are the key factors affecting phenology of hatch, with warmer incubation temperatures resulting in faster physiological development and shorter incubation periods (Peterson et al., 1977; Murray et al., 1990; Berg and Moen, 1999; Geist et al., 2006; Jeuthe et al., 2016).

In order for predictive models to be useful, the effect of temperature on the timing of hatch must be repeatable both among siblings within a family (e.g. male–female pairing), and among families within a population. Maternal effects play a large role in shaping early life phenotype in salmonids (Fleming et al., 2011; Van Leeuwen et al., 2016; Penney et al., 2018; Thorn and Morbey, 2018), and are primarily mediated through egg provisioning: larger eggs produce larger offspring, which can influence survival during this vulnerable life stage (Einum and Fleming, 1999; Thorn and Morbey, 2018). As such, repeatability within and among maternal families specifically, may be important in the precision of model predictions. Useful models must also be robust to variations in the exact pattern of incubation temperature (Penney et al., 2018), which can influence hatch timing independent of the average temperature (Steel et al., 2012). If the timing of hatch is sensitive to how thermal units accumulate during incubation, the precision of a predictive model developed under constant incubation temperatures in the laboratory may be limited when applied to the naturally fluctuating temperatures experienced by eggs incubating in the wild. Fortunately, technological advancements have made gathering detailed temperature data in the wild relatively easy, which helps to minimize the impact of Jensen’s inequality (i.e. performance at the average environmental condition is not equivalent to the average performance across a range of environmental conditions; Ruel and Ayres, 1999) on model predictions by allowing us to apply non-linear development functions over shorter timeframes. Yet, the accuracy of developmental models when applied to such detailed variable thermal regimes is not well tested. This is particularly important given that climate change is expected
to increase the variability of thermal conditions in the future.

In this study, we assessed the intra- and inter-maternal family variability of hatch timing in Atlantic salmon (Salmo salar Linnaeus, 1758) from the Exploits River, Newfoundland, Canada, under one constant, and two varying thermal incubation regimes. The Exploits River hosts one of the largest remaining wild populations of Atlantic salmon in North America, and as such, is of conservation concern given the global declines in Atlantic salmon abundance in recent decades (COSEWIC, 2010; ICES, 2017). The past and present environmental conditions experienced by the Exploits River population could also serve as a benchmark for future monitoring of changing climates. Considering the importance of phenology for hatching survival, we predict little intra- and inter-maternal family variability in hatch timing within the population. We compared our observed hatch timing in laboratory conditions with the timing predicted by four previously published models to assess the utility of these models in predicting hatch timing in the Exploits River population. Finally, we explore the inter-annual variability in predicted hatch and emergence windows for wild Atlantic salmon from this ecologically, and economically important population.

Materials and methods

Study population and gamete collection

We used eggs and semen from Atlantic salmon from the Exploits River, Newfoundland, Canada (48°92’N, 55°66’W). The Exploits River is the largest river (length: 246 km, drainage basin: 11272 km²) on the island of Newfoundland, flowing into the Atlantic Ocean. Historically, access to most of the watershed was restricted by natural barriers and hydroelectric facilities; however, improvements in fish-passage technology since the 1960s have dramatically increased access to spawning sites throughout the watershed (Scruton et al., 2008). The Exploits River currently supports one of, if not the largest anadromous Atlantic salmon population in North America, and as such should serve as a key baseline river for monitoring effects of a changing climate. Adults migrate through the lower Exploits River in late June through mid-July (Dempson et al., 2017) and spawning occurs in late October/early November (O’Connell et al., 1983).

In September 2016, wild migrating adult Atlantic salmon were collected from a fish ladder on Grand Falls (48°92’N, 55°66’W), located 22 km upstream from the mouth of the river. Fish were held on site in flow-through tanks until the beginning of November, when gametes were stripped. A total of 18 females (fork length: 567 ± 35 mm (mean ± SD), weight: 1615 ± 279 g) and 18 males (fork length: 544 ± 52 mm, weight: 1335 ± 445 g) were used. Gametes from 3–6 females and 4–5 males were collected on each of four different dates (‘fertilization date’: 1, 4, 8, 11 November 2016), and imme-

Incubation experiment

We assessed hatch timing of eggs from each maternal family under three different thermal regimes (Fig. 1; Table 1) to determine if predictive models were robust to variation in how thermal units accumulate over time. Incubation treatment ‘A’ maintained constant water temperature at 5.3 ± 0.38°C throughout incubation. Historical data indicates that the most thermally variable portion of the incubation period in the Exploits River occurs in December, with water temperatures in this large river being relative constant throughout much of the rest of the winter. Climate change is expected to further increase thermal variability in late autumn and early winter, and may result in increased frequency of high flow events due to periodic winter snow melts. Treatments B and C were designed to simulate a large temperature swing in early winter to test how such conditions influence the phenology of incubating embryos. Embryos in incubation treatment ‘B’ were exposed to warmer temperatures (10°C), while embryos in incubation treatment ‘C’ were exposed to cooler temperatures (2°C), for 3–4 weeks in late December and early January. After the period of varying temperatures, both treatments ‘B’ and ‘C’ were held at constant 3.4 ± 0.08°C until hatch (Fig. 1).

Embryos were incubated in vertical re-circulating salmonid incubators (Marisource, www.marisource.com) located in a dark, temperature controlled room (5°C). Temperature in the variable incubation treatments were controlled by heaters and chillers, and recorded every hour (HOBO Water Temp Pro v2 data loggers, www.onsetcomp.com). Incubators were
incubation tube is a good representation of an individual maternal family’s hatch timing. Replicate incubation tubes and/or maternal families were distributed across all four trays in an incubator, and there was no temperature gradient from the top to bottom tray. Embryos were inspected twice each week and all dead (white) eggs were removed to reduce the risk of fungal infection. Once embryos reached the eyed stage, they were checked daily and the number of hatched and unhatched were recorded.

Data analysis

Embryos from 18 different maternal families were incubated; however, hatch success was very low in one maternal family (0–14%) and this family was removed prior to analysis. Hatch success among the remaining maternal families varied widely (34–78%), but was relatively constant within a family even when reared under different incubation regimes (see Supplementary Figure A). To incorporate the impact of temperature on development, we report the timing of hatch in ATU (the sum of average daily water temperature) post fertilization. The timing at 50%, and 90% hatch was estimated with logistic regression fitted to hatch data for each incubation tube. All data analyses were completed in R 3.4.3 (R Development Core Team, 2017).

We assessed intra- and inter-maternal family repeatability of hatch timing using replicate incubation tubes held under the constant incubation treatment. As a measure of repeatability within maternal families, we report the intra-class correlation coefficient (ICC package; Wolak et al., 2012); an ICC close to 1 indicates that most of the variability is explained by the variation among maternal families, and therefore the trait is considered highly repeatable within maternal families. To assess repeatability among families, we used a mixed model approach with fertilization date included as a fixed effect, and individual maternal family as a random intercept:

\[\text{Hatch Timing} = \alpha + \beta_1 \text{Fertilization Date} + \beta_{\text{maternal family}} + \epsilon, \]

where \(\alpha \) is the global mean hatch timing, \(\beta_1 \) is the coefficient associated with each of the four fertilization dates and \(\epsilon \) is the random error term. Fertilization date was included to account

Table 1: Mean ± SD incubation temperature (°C) from day of fertilization until the last embryo hatched, ATU at 50% hatch (ATU50), and days post fertilization at 50% hatch (DPF50) for each treatment and fertilization date.

Fertilization date	Treatment A (constant)	Treatment B (warm spike)	Treatment C (cool spike)
	°C ATU50 DPF50	°C ATU50 DPF50	°C ATU50 DPF50
1 Nov	5.3 ± 0.38 526 ± 3.9 99 ± 0.8	5.2 ± 1.92 534 ± 5.3 100 ± 1.6	3.9 ± 1.40 492 ± 2.9 124 ± 0.8
4 Nov	5.3 ± 0.24 526 ± 9.2 100 ± 1.8	5.2 ± 1.90 531 ± 3.0 103 ± 0.9	3.9 ± 1.33 485 ± 6.9 125 ± 2.0
8 Nov	5.2 ± 0.15 534 ± 2.7 102 ± 0.5	5.1 ± 1.91 515 ± 2.2 102 ± 0.9	3.8 ± 1.25 471 ± 7.0 124 ± 2.0
11 Nov	5.2 ± 0.15 521 ± 1.5 99 ± 0.3	5.2 ± 1.94 501 ± 2.2 101 ± 0.7	3.7 ± 1.24 476 ± 3.8 127 ± 1.1
Treatment total	5.3 ± 0.38 527 ± 7.1 100 ± 1.7	5.2 ± 1.92 521 ± 12.9 102 ± 1.5	3.9 ± 1.37 481 ± 9.6 125 ± 2.0
for small differences in the thermal regimes experienced by embryos that were fertilized on the four different dates (Fig. 1; Table 1). In this model, a significant maternal family effect indicates differences in hatch timing among maternal families fertilized on the same day.

The effect of incubation temperature regime on hatch timing was also assessed using a mixed model approach. Incubation treatment (‘A’, ‘B’ and ‘C’), fertilization date, and the interaction between treatment and date were included as fixed effects, and individual maternal family was included as a random intercept. Only a single incubation tube per maternal family was reared in treatments ‘B’ and ‘C’, therefore we averaged the replicate measures in treatment ‘A’ to obtain a single measure per maternal family used in this model. Since embryos from all maternal families were incubated in all three treatments only once, a significant maternal family intercept effect in this model indicates that hatch timing in all maternal families responded to different thermal regimes in a similar way (i.e. a maternal family that required relatively few ATU at hatch in one treatment also tended to require relatively few ATU in another treatment).

Mixed models were analysed using the ‘lme4’ package (Bates et al., 2014) and the Satterthwaite approximation (‘lmerTest’, Kuznetsova et al., 2015), with the significance of the random effect assessed using a likelihood ratio test. Summary statistics of all mixed model analyses are available in Supplementary Material B. Residuals of statistical models met the assumptions of normality (Shapiro–Wilk Test) and homogeneity of variance (Levene Test) at a significance level of α = 0.05 without transformation. We completed all analyses on ATU at 50% and 90% hatch because the predictive models available in the literature (see below) use both these measures of hatch timing. However, since the results were very similar, here we only present the analysis on ATU at 50% hatch as it is the most commonly used measure of hatch timing. Complete results of ATU at 90% hatch are available in the Supplementary Material C.

Evaluating published model predictions

To determine if available predictive models can provide reasonable estimates of the timing of hatch for the Exploits River population, we compared our observed ATU at hatch with ATU predicted by the four hatch/emergence models for Atlantic salmon that we could find in the literature (see below). All four models use non-linear thermal growth relationships to predict incremental development during discrete time steps (e.g. days or weeks). Hatch and/or emergence is predicted to occur once a specific sum of development is accumulated. Since embryos fertilized on different dates in our laboratory experiment experienced slightly different thermal regimes (Table 1; Fig. 1), we compared the average observed ATU at hatch with the ATU predicted by each model, for every fertilization date and incubation treatment. For each of the four predictive models, we used a paired t-test (data paired by fertilization date and incubation treatment, n = 12) to determine whether model predictions were significantly different from the observed values.

The Crisp (1981) model uses daily percent development relative to daily average temperature (T_{avg}) to predict days from fertilization until 50% hatch.

$$\log(\text{days to hatch}) = -2.6562 \log(T_{avg} + 11.0) + \log(-11.0) \quad \text{Crisp model}$$

This model was developed and parameterized using previously published data on hatch timing from British (River Kent—Carrick, 1979), Norwegian (Gunnnes, 1979) and Canadian (Miramichi River, New Brunswick—Peterson et al., 1977) Atlantic salmon populations reared in the laboratory between 2.4–13°C.

The Gorodilov (1996) model describes the cumulative thermal energy required to reach over 100 morphologically discrete developmental states during early Atlantic salmon development. It is based only on daily average temperature and the accumulation of T_s (a measure of relative age in minutes, representing total thermal energy required to develop one somite pair).

$$\log(T_s) = 3.0984 - 0.0967T_{avg} + 0.00207T_{avg}^2 \quad \text{Gorodilov model}$$

A specific developmental state is reached when a designated number of T_s is accumulated (see Table 1 in Gorodilov, 1996). We used this model to predict the number of days until ‘peak hatch’ (i.e. 50% hatch: 315 T_s) and emergence (450 T_s). The Gorodilov model was developed using Atlantic salmon from hatcheries located on the Neva, Narova and Salaca rivers (draining into the Baltic Sea) and the Kola river (draining into the Barents Sea), reared under 13 constant temperature regimes between 0.1–11.0°C.

The WinSIRP model (Jensen et al., 2009) is designed to assist fish culturists and biologists to predict developmental timing in several species of salmonids. This computer model predicts ATU at 50% hatch using weekly average temperatures (T_{wk})

$$\text{days to hatch} = \frac{11248}{(T_{wk} + 5.3944)^{0.0198}} \quad \text{WinSIRP model}$$

and incorporates the influence of dissolved oxygen, pH, flow rate and waste production on development, which are particularly important when rearing embryos at high densities. The WinSIRP model was parameterized for Atlantic salmon from broodstocks maintained at the Glacier Bay site in Jervis Inlet (British Columbia, Canada), originating from the MOWI
(Norwegian) and Cascade (Canadian—Gaspé, Québec) aquaculture stocks, and incubated under constant temperature regimes between 4–14°C.

The Kane model (Kane, 1988) uses daily percent development to estimate ATU at 90% hatch and emergence, and relies only on daily average temperatures.

\[
\ln(\text{days to hatch}) = 5.483e^{-0.0347T_{\text{avg}}}
\]

This model was developed using Atlantic salmon from the Penobscot River (Maine, U.S.) incubated under 13 seasonally varying thermal profiles.

The Gorodilov and Kane models have been used primarily to assess the developmental stage of Atlantic salmon during rearing (Letcher et al., 2004; Moen et al., 2010; Bloomer et al., 2016; Kahar et al., 2016). Both the Crisp and WinSIRP models have been used to predict hatch and emergence dates in hatchery and wild salmon populations with varying degrees of success (Atlantic salmon: Jensen et al., 1991, Skoglund et al., 2011, Hedger et al., 2013; Chinook Oncorhynchus tsawytscha Walbaum 1792: Unwin et al., 2000; Gerson et al., 2016; Sockeye Oncorhynchus nerka Walbaum, 1792: Hendry et al., 1998).

Predicting hatch and emergence in the wild Exploits River population

The Gorodilov model produced the most accurate predictions of hatch timing in our experiment (see Results), and therefore we used the Gorodilov model to predict hatch and emergence in the wild Exploits River population from 2006–18. We predicted hatch and emergence of embryos fertilized on 4 October, and on 7 November, which corresponds to an assumed two week spawning window (O’Connell et al., 1983). Embryo and alevin (term used to describe hatched salmonids before they emerge from the gravel) development were predicted using daily average water temperatures available from temperature loggers (Water Resources Department, Government of Newfoundland and Labrador, https://www.mae.gov.nl.ca/wrmd/ADRS/v6/Graphs_List.asp) located in free-flowing water at four sites within the Exploits River system: East Pond Brook (48°40′55″N, 56°30′36″W), Gills Pond Brook (48°38′26″N, 56°31′40″W), Great Rattling Brook (48°49′36″N, 55°31′43″W), and the main Exploits River below the Noel Paul’s Brook tributary (48°50′39″N, 56°16′10″W).

Results

Intra- and inter-maternal family repeatability

When incubated at a constant 5.3°C, the ATU required for 50% hatch was considered moderately repeatable among replicate incubation tubes within maternal families (ICC = 0.61; 95% CI: 0.39–0.80). Although hatch timing was significantly different among maternal families (\(\chi^2_3 = 21.8, P < 0.0001\); Fig. 2), the maximum difference between two families (28 ATU, F5 vs. F9, Fig. 2) was small relative to the average total ATU at 50% hatch across all maternal families (527 ATU). Thus, although statistically significant, the among-family variability in hatch timing represented only 5.3% of the average total incubation period. Similarly, the date of fertilization had a significant (\(F_{3,17.5} = 3.67, P = 0.03\); Table 1) but modest influence on the timing of hatch: maternal families fertilized on 11 November required significantly fewer ATU to hatch than those fertilized 3 days earlier on 8 November (Tukey: \(P = 0.009\)); however, the difference was only 12 ATU, which represents only 2.3% of the total average incubation period. Considered together, intra- and inter-maternal family variability in hatch timing was small relative to the total duration of incubation, indicating that the timing of hatch was similar among maternal families.

Effect of thermal regime on timing of hatch

A significant interaction between incubation treatment and date of fertilization (\(F_{6,26} = 19.1, P < 0.0001\)) precluded a statistical evaluation of the effect of temperature on hatch timing; however, the response to temperature is clear from Fig. 3: embryos incubated at constant 5.3°C, and those exposed to a warm spike during the incubation period, had similar average ATU at hatch, while those exposed to a cold spike during the incubation period required fewer ATU to hatch. Given the average temperature experienced during incubation (Table 1), this pattern is consistent with the effects of compensatory development, where embryos reared at cooler temperatures required fewer ATU at hatch. Although the timing of hatch differed a little among maternal families, the effect of
temperatures was consistent across maternal families (i.e. a maternal family that required relatively few ATU at hatch in one incubation treatment also tended to require relatively few ATU at hatch in another treatment, $\chi^2 = 8.04, P < 0.005$; Fig. 3).

The date of fertilization influenced the timing of hatch when embryos were exposed to varying temperatures (Fig. 3; Table 1). When exposed to warm temperatures, and to a lesser degree when exposed to cold temperatures, maternal families fertilized on 8 and 11 November tended to require fewer ATU at hatch compared to maternal families fertilized on 1 or 4 November. However, the largest difference in ATU between fertilization dates (33 ATU, 1 November vs. 11 November in Treatment B, Fig. 3) was small compared with the average total ATU at hatch across all families in the treatment (521 ATU). Thus, the effect of fertilization date on hatch timing was relatively small, representing at most 6.3% of the average duration of the entire incubation period within a treatment.

Evaluating published model predictions

The Crisp ($t_{11} = -5.28, P = 0.0003$), WinSIRP ($t_{11} = -4.53, P = 0.0008$) and Kane ($t_{11} = -4.80, P = 0.0006$) models significantly underestimated the ATU required at hatch (average difference—Crisp: -21 ATU; WinSIRP: -24 ATU; Kane: -26 ATU). Under the temperatures experienced during hatch in our experiment, these models underestimated the date of hatch by 4–8 days. The predictions from the Gorodilov model were not significantly different from observed values ($t_{11} = -1.45, P = 0.17$; Fig. 4). The Gorodilov model predicted hatch timing in our experiment within 2 days of the observed average. We conclude that the Gorodilov model produces reasonably accurate predictions of timing of hatch in the Exploits River Atlantic salmon population.

Predicted hatch and emergence timing of wild Exploits River population

Based on in-stream temperatures, the predicted timing of hatch and emergence in the wild (using the Gorodilov model: see above) varied among sites, and among years in association with the local thermal conditions of the Exploits River (Fig. 5). Among years, the predicted dates at 50% hatch ranged between 8 March and 23 May (76-day window), while predicted dates of emergence ranged from 11 May to 13 June (33-day window). The average predicted period of emergence within a year (6.8 ± 3.0 days) was shorter than the average predicted period of hatch (11.7 ± 8.5 days). The only site located within the main stem Exploits River (below Noel Paul’s Brook tributary and downstream of a large lake) had warmer mid-winter temperatures and slower spring warming compared with the other three sites from smaller tributaries. This difference in thermal regime resulted in this site having the most protracted predicted hatch and emergence periods (Fig. 5). At all sites, the Gorodilov model predicted emergence to occur earlier in spring than has been previously observed near a hatchery in Noel Paul’s Brook (Fig. 5; see Discussion).
Figure 5: a) Water temperature (°C) at four sites in the Exploits River (grey lines = individual years (2006–18), black = average). The assumed spawning period (24 Oct–7 Nov—grey horizontal bar) and average predicted hatch (horizontal orange bar) and emergence (thick horizontal black bar) periods are shown. b) Yearly hatch (orange bar) and emergence (thick black bar) periods predicted by the Gorodilov model (see Results). Blue circles show date of 50% emergence observed by O’Connell et al. (1983) in an artificial spawning stream in Noel Paul’s Brook from 1970–80.

Discussion

Empirical models used to predict hatch timing rely on the non-linear relationship between incubation temperature and embryo development. This relationship can vary among populations (Murray et al., 1990; Solberg et al., 2014; Whitney et al., 2014; Fuhrman et al., 2018), and among families within a population (Konecki et al., 1995; Solberg et al., 2014; Fuhrman et al., 2018). In addition to the role of compensatory development in stabilizing early life phenology (Brannon et al., 2004; Quinn, 2005), the specific pattern in which thermal units accumulate over time can also influence the timing of hatch independent of the average temperature (Steel et al., 2012; Beer and Steel, 2018). Our laboratory experiment indicates that the ATU required to hatch in Exploits River Atlantic salmon is repeatable within maternal families, and that inter-family variability was relatively small, representing <8% of the average total duration of the incubation period. The effect of temperature on hatch timing was relatively consistent, with maternal families tending to respond to different incubation temperatures in a similar way. This consistency indicates that an accurately parameterized empirical model can predict hatch timing in this population relatively precisely.

We assessed whether previously published models for Atlantic salmon can accurately predict hatch timing in the Exploits River population incubated in laboratory conditions. Under the temperature regimes we tested, the Crisp, WinSIRP and Kane models tended to underestimate the ATU required at hatch. The difference between observed and estimated timing (up to 65 ATU) is well within the maximum inter-population variability documented in other salmonids (Chum Oncorhynchus keta Walbaum, 1792: 107 ATU, Beacham and Murray, 1987; Coho Oncorhynchus kisutch Walbaum, 1792: 120 ATU, Konecki et al., 1995). Thus, genetic differences in development rate between the Exploits River population and the populations used to develop these models could explain their poorer performance. Based on our experiment, the Gorodilov model provided the most accurate predictions, and may be useful for predicting hatch timing in the wild Exploits River population. Atlantic salmon from the north eastern coast of Newfoundland are currently considered as a single evolutionarily unit (COSEWIC, 2010), and range-
wide genetic analysis highlights the similar genetic structure of these populations (Jeffery et al., 2018). It would be informative to test whether the Gorodilov model can also be used to provide estimates of hatch and emergence timing in other populations within this region, as that could indicate it works with a large percentage of the remaining viable populations on the island.

An understanding of a population’s reproductive phenology can help managers limit the impact of anthropogenic activities (e.g. flow/release from dams, in-water activities, etc.) on spawning success, and juvenile recruitment. Although the timing of the adult migration into the Exploits River is known (Dempson et al., 2017), the timing of spawning activity, hatch and emergence are not well documented. The little information we have comes from an artificial spawning stream that was built in 1967 in Noel Paul’s Brook (48°37’N, 56°19’W), a tributary of the middle Exploits River (O’Connell et al., 1983). The stocking of fry produced from this artificial stream is largely responsible for the establishment of the current anadromous salmon population above the barrier at Grand Falls. Between 1970 and 1980, spawning in this artificial stream occurred in the last week of October and the first week in November, and hatchlings emerged from the gravel in June (O’Connell et al., 1983).

Although some overlap exists, the emergence period predicted by the Gorodilov model for 2006–18 was consistently earlier than that observed by O’Connell et al. (1983) in 1970–80 (see Fig. 5). This discrepancy could be the result of a phenotypic response to different incubation temperatures. For example, we used in-stream water temperatures to predict development, which may not be reflective of the intra-gravel temperatures experienced by incubating embryos/alevins (Acornley, 1999; Hanrahan, 2007; Saltveit and Brabrand, 2013). Alternatively, if water temperatures have warmed over the last ~33 years, this could explain why we predicted emergence to occur substantially earlier in 2006–18. Detailed records of incubation temperatures are not available for the Noel Paul’s Brook spawning channel in the 1970s; however, average daily water temperature during emergence (mean: 12.9°C, range: 11.5–13.8°C, Mercer and Anderson, 1974; Davis and Farwell, 1975; O’Connell et al., 1983) is within the range seen during the emergence windows predicted for 2006–18 (11.3°C, 7.2–16.7°C). Additionally, monthly average water temperatures during incubation from 1977–93 were similar to those in 2006–18, especially in the site located just downstream of the Noel Paul’s Brook tributary (see Supplementary Figure D). Thus, while differences in incubation temperature are likely a contributing factor, temperature alone cannot fully explain the discrepancy in predicted and observed emergence periods.

Technical issues with the Gorodilov model may also influence the accuracy of its predictions. Hatching is a clearly defined and irreversible early life event, whereas emergence from the gravel is a less well defined and potentially reversible event that is governed by behavioural as well as physiological mechanisms (Crisp, 1988; Quinn, 2005). Models were evaluated based on the timing of hatch in our laboratory experiment; since we did not raise alevins to swim-up/emergence, we assumed that the Gorodilov model also accurately predicts development between hatch and emergence. If the Gorodilov model underestimates the ATU required for development between hatch and emergence in the Exploits River population, this would cause us to systematically predict emergence to occur earlier than it actually would. Rearing conditions may also influence the accuracy of model predictions for embryos incubating in the wild. Embryos reared in incubation trays/screens tend to consume the yolk sac faster, and exhibit swim-up behaviour earlier than embryos incubated in artificial/gravel substrates (Crisp, 1988; Beer, 1999; Quinn 2005). The Gorodilov model is based on embryos reared in incubation trays; thus, it may consistently predict earlier emergence than would be seen in alevins incubating within gravel. When possible, we recommend that predictive models be developed using embryos reared under natural thermal regimes and in natural gravel substrate, to avoid these technical issues when the models are used to predict the timing of hatch in wild populations.

Although the Gorodilov model produced the most accurate hatch predictions in our laboratory rearing-experiment, the other three models tested underestimated hatch timing by only 21–26 ATU. This translates to 2–4 days at the temperatures experienced in the wild during the hatching period, which is well within the expected hatching window. Using a combination of all four models to predict hatch timing in the wild may be a more conservative approach given the uncertainty in the date of spawning and spatial variation in environmental conditions experienced by embryos incubating in the wild. A conservative approach is recommended when predicting early life phenotype especially considering that climate change is expected to cause water temperatures to increase, and all four models we tested were least accurate when estimating hatch under the warm exposure treatment. Further testing of these models at warm incubation regimes is warranted.

In the wild, spawning within a single population can occur over several weeks (Fleming, 1996). Embryos fertilized late in the spawning period may develop more efficiently than those fertilized early (Hebert et al., 1998; Hendry et al., 1998; Echave et al., 2017; Beer and Steel, 2018), causing hatching to occur within a shorter timeframe than spawning. This is consistent with our results in that embryos fertilized on the two later dates required fewer ATU to hatch in both varying temperature incubation treatments. The slightly warmer temperatures experienced by early fertilized embryos during the first few days of incubation cannot explain the effect of fertilization date on hatch timing because a similar pattern in early thermal environment occurred for embryos incubated at a constant temperature, and there was no effect of fertilization date on hatch timing in this treatment. Accel-
erahed development of late spawned embryos may be related to the relative exposure of fall cooling and spring warming during incubation through either genetic (Hebert et al., 1998) or plastic effects (see the ‘Expansion-compression threshold effect’ proposed by Beer and Steel, 2018). In our study, embryos fertilized on the first two dates spent 4–10 days longer incubating in warmer temperatures prior to exposure to varying thermal conditions compared with embryos fertilized on the latter two dates. Thus, compensatory development associated with the fewer thermal units accumulated in later fertilized embryos could explain why these embryos required fewer ATU at hatch. Our results suggest that even a few days difference in spawn timing may influence ATU required to hatch if incubation temperatures are not constant.

Our modelling exercise predicted substantial variation in the timing and duration of hatch and emergence in Atlantic salmon in the wild. Similar patterns have been identified in Pacific salmon (e.g. Adelfio et al., 2018; Sparks et al., 2018). In our study, site-specific thermal conditions resulted in partially asynchronous hatch and emergence timing among sites within a given year. Such diversity in early life phenology may help buffer overall fry production in the system to variability in climate (Schindler et al., 2010; Adelfio et al., 2018), especially if winter thermal anomalies cause emergence to coincide with unfavourable rearing conditions in some sites. The substantial inter-annual variability in hatch and emergence timing we predicted between 2006–18 suggests that the Exploits River Atlantic salmon are adapted to variable winter climatic conditions. Plasticity in spawn timing and developmental compensation will act to buffer early life phenology of Exploits River Atlantic salmon against changes in incubation conditions; however, whether this plasticity will be sufficient to maintain successful fry production in the face of potentially dramatic changes in winter climates in the future is yet to be seen.

Exposure to different temperatures during incubation may have impacts on development other than hatch timing, which would not have been identified in our study. Incubation temperature can influence size and developmental stage of alevins at hatch (Peterson et al., 1977; Sparks et al., 2017, but also see Steel et al., 2012; Penney et al., 2018). Smaller, less well-developed alevins would be more vulnerable to predators, and fluctuations in prey availability or environmental conditions. Exposure to extreme temperatures during incubation is linked with greater prevalence of morphological deformities in Atlantic salmon (Takle et al., 2005; Wargelius et al., 2005), which would also impact survival. Warmer incubation temperatures can influence juvenile growth trajectories, and increase the proportion of younger smolts (Jonsson et al., 2005; Finstad and Jonsson, 2012). Jonsson et al. (2014) found that Atlantic salmon eggs incubated in warm temperatures produced faster-growing juveniles that invested relatively more energy in gonad development as adults. These studies suggest that developmental effects early in life could have important implications for the expression of adult life histories (Clarke et al., 2016), which can affect a population’s sensitivity to harvest (Purchase et al., 2005).

Our study highlights the consistency of hatch timing in response to incubation temperature among Atlantic salmon maternal families from the Exploits River, indicating that changes in winter climate will likely impact the developmental phenology of the entire population in a similar manner. Unless spawn timing responds to climate change in a compensatory way, the ultimate consequence to population dynamics may depend on how the phenology of other environmental factors also respond to changing climates. If warmer winter temperatures advance salmonid development such that peak fry abundance occurs under unfavourable temperatures, or if prey availability does not advance in a similar timeframe, a mismatch between developmental phenology and environmental phenology could be established (Winder and Schindler, 2004; Thackeray et al., 2010), which could lead to reduced juvenile survival. Alternatively, if the phenology of spring environmental conditions and availability of prey advances in a similar manner to that of development, this would result in a prolonged first year growing period, and larger age 1 fish, which could improve juvenile survival. We know that the adult spawning migration in the Exploits River has advanced in response to a changing climate (Dempson et al., 2017). Investigating the inter-annual variation the phenology of fry emergence and prey availability is an important next step in assessing how climate change will likely impact recruitment in wild Atlantic salmon populations.

Acknowledgements

We thank the staff of the Environmental Resources Management Association for collecting, holding and stripping salmon from the Exploits River, in partnership with the Salmonid Association of Eastern Newfoundland. Margaret Litt, Ryan Carrow and Steven Poulos helped setup and monitor the experiment.

Funding

This work was supported by grants to CFP from the Atlantic Salmon Conservation Foundation, the Natural Sciences and Engineering Research Council of Canada (grant RGPIN-2016-04821), the Canada Foundation for Innovation (grant 19360) and the Research and Development Corporation of Newfoundland and Labrador.

Supplementary material

Supplementary material is available at Conservation Physiology online.
References

Acornley R (1999) Water temperatures within spawning beds in two chalk streams and implications for salmonid egg development. Hydrolog Process 13: 439–446.

Adelfio LA, Wondzell SM, Mantua NJ, Reeves GH (2018) Warm winters reduce landscape-scale variability in the duration of egg incubation for Coho Salmon (Oncorhynchus kisutch) on the Copper River Delta, Alaska. Can J Fish Aquat Sci: doi: 10.1139/cjfas-2018-0152.

Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4, http://CRAN.R-project.org/package=lme4.

Beacham TD, Murray CB (1987) Adaptive variation in body size, age, morphology, egg size, and developmental biology of chum salmon (Oncorhynchus keta) in British-Columbia. Can J Fish Aquat Sci 44: 244–261.

Beacham TD, Murray CB (1990) Temperature, egg size, and development of embryos and alevisins of five species of Pacific salmon: a comparative analysis. Trans Am Fish Soc 119: 927–945.

Beer WN (1999) Comparison of mechanistic and empirical methods for modeling embryo and alevin development in Chinook salmon. N Am J Aquac 61: 126–134.

Beer WN, Anderson JJ (1997) Modelling the growth of salmonid embryos. J Theor Biol 189: 297–306.

Beer WN, Steel EA (2018) Impacts and implications of temperature variability on Chinook salmon egg development and emergence phenology. Trans Am Fish Soc 147: 3–15.

Berg OK, Moen V (1999) Inter- and intrapopulation variation in temperature sum requirements at hatching in Norwegian Atlantic salmon. J Fish Biol 54: 636–647.

Bloomer J, Sear D, Dutey-Magni P, Kemp P (2016) The effects of oxygen depletion due to upwelling groundwater on the posthatch fitness of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 73: 1830–1840.

Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312: 1477–1478.

Brännäs E (1995) First access to territorial space and exposure to strong predation pressure: a conflict in early emerging Atlantic salmon (Salmo salar L.) fry. Evol Ecol 9: 411–420.

Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. In HD Smith, L Margolis, CC Wood, eds, Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management. Canadian Special Publication of Fisheries and Aquatic Sciences, Department of Fisheries and Oceans, Canada., Ottawa, Ontario, Canada. Vol 96. pp. 102–124.

Brannon EL, Powell MS, Quinn TP, Talbot A (2004) Population structure of Columbia River basin Chinook salmon and steelhead trout. Rev. Fish. Sci. 12: 99–232.

Campbell EY, Dunham JB, Reeves GH, Wondzell SM (2019) Phenology of hatching, emergence, and end-of-season body size in young-of-year Coho Salmon in thermally contrasting streams draining the Copper River Delta, Alaska. Can J Fish Aquat Sci 76: 185–191.

Carrick TR (1979) The effect of acid waters on the hatching of salmonid eggs. J Fish Biol 14: 109–120.

Christensen J, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti I, de Castro M, Dong W, Goswami P, Hall A, Kanyanga J et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker T, Qin D, G-K P, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P, eds, Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 1217–1308.

Clarke C, Fraser DJ, Purchase CF (2016) Lifelong and carry-over effects of early captive exposure in a recovery program for Atlantic salmon (Salmo salar). Anim Conserv 19: 350–359.

COSEWIC (2010) COSEWIC assessment and status report on the Atlantic Salmon Salmo salar (Nunavik population, Labrador population, Northeast Newfoundland population, South Newfoundland population, Southwest Newfoundland population, Northwest Newfoundland population, Québec Eastern North Shore population, Québec Western North Shore population, Anticosti Island population, Inner St. Lawrence population, Lake Ontario population, Gaspé-Southern Gulf of St. Lawrence population, Eastern Cape Breton population, Nova Scotia Southern Upland population, Inner Bay of Fundy population, Outer Bay of Fundy population) in Canada. Committee on the Status of Endangered Wildlife in Canada. xvi + 136 pp.

Crisp D (1981) A desk study of the relationship between temperature and hatching time for the eggs of five species of salmonid fishes. Freshw Biol 11: 361–368.

Crisp D (1988) Prediction, from temperature, of eyeing, hatching and “swim-up” times for salmonid embryos. Freshw Biol 19: 41–48.

Crozier LG, Hendry AP, Lawson P, Quinn TP, Mantua N, Battin J, Shaw R, Huey RB (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol Appl 1: 252–270.

Davis J, Farwell M (1975) Exploits River and Indian River Atlantic Salmon Development programs, 1974. Internal Report Series NEWI/1.75-1: 55p. Fisheries and Marine Service, Environment Canada. Resource Development Branch, Newfoundland Region.

Dempson JB, Schwartz CJ, Bradbury IR, Robertson MJ, Veinott G, Poole R, Colbourne E (2017) Influence of climate and abundance on migration timing of adult Atlantic salmon (Salmo salar) among rivers in Newfoundland and Labrador. Ecol Freshw Fish 26: 247–259.

Echave JD, Manhard CV, Smoker WW, Adkison MD, Gharrett AJ (2017) Outcrosses between seasonally different segments of a Pacific salmon population reveal local adaptation. Environ Biol Fishes 100: 1469–1481.

Einum S, Fleming IA (2000) Selection against late emergence and small offspring in Atlantic salmon (Salmo Salar). Evolution 54: 628–639.
Einum S, Fleming IA (1999) Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proc R Soc B Biol Sci 266: 2095–2100.

Elliott J, Hurley M (1998) An individual-based model for predicting the emergence period of sea trout fry in a Lake District stream. J Fish Biol 53: 414–433.

Elliott J, Hurley M, Maberly S (2000) The emergence period of sea trout fry in a Lake District stream correlates with the North Atlantic oscillation. J Fish Biol 56: 208–210.

Finstad AG, Jonsson B (2012) Effect of incubation temperature on growth performance in Atlantic salmon. Mar Ecol Prog Ser 454: 75–82.

Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fish 6: 349–416.

Fleming IA, Houde ALS, Fraser DJ, O'Reilly P, Hutchings JA (2011) Maternal and paternal effects on fitness correlates in outbred and inbred Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 68: 534–549.

Franssen J, Blais C, Lapointe M, Bérubé F, Bergeron N, Magnan P (2012) Asphyxiation and entombment mechanisms in fine ichthyoplankton substrates: experimental evidence with brook trout (Salvelinus fontinalis) embryos. Can J Fish Aquat Sci 69: 587–599.

Fuhrman AE, Larsen DA, Steel EA, Young G, Beckman BR (2018) Chinook salmon emergence phenotypes: describing the relationships between temperature, emergence timing and condition factor in a reaction norm framework. Ecol Freshw Fish 27: 350–362.

Garant D, Dodson JJ, Bernatchez L (2001) A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (Salmo salar L.). J Hered 92: 137–145.

Geist DR, Abernethy CS, Hand KD, Cullinan VI, Chandler JA, Groves PA (2006) Survival, development, and growth of fall Chinook salmon embryos, alevins, and fry exposed to variable thermal and dissolved oxygen regimes. Trans Am Fish Soc 135: 1462–1477.

Gerson M, Marklevitz S, Morbey Y (2016) Timing of spawning and predicted fry emergence by naturalized Chinook salmon (Oncorhynchus tshawytscha) in a Lake Huron tributary. J Great Lakes Res 42: 678–686.

Gorodilov YN (1996) Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Environ Biol Fishes 47: 109–127.

Gunnes K (1979) Survival and development of Atlantic salmon eggs and fry at three different temperatures. Aquaculture 16: 211–218.

Hanrahan TP (2007) Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas. River Res Appl 23: 323–341.

Hebert K, Goddard P, Smoker WW, Gharrett AJ (1998) Quantitative genetic variation and genotype by environment interaction of embryo development rate in pink salmon (Oncorhynchus gorbuscha). Can J Fish Aquat Sci 55: 2048–2057.

Hedger RD, Sundt-Hansen LE, Forseth T, Ugedal O, Diserud OH, Kvambekk ÅS, Finstad AG (2013) Predicting climate change effects on subarctic–Arctic populations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 70: 159–168.

Hendry AP, Hensleigh JE, Reisenbichler RR (1998) Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington. Can J Fish Aquat Sci 55: 1387–1394.

ICES (2017) Report of the Working Group on North Atlantic Salmon (WGNAS). 29 March–7 April 2017, Copenhagen, Denmark. ICES CM 2017/ACOM-20. 296 pp.

Jeffery NW, Wringle BF, McBride MC, Hamilton LC, Stanley RRE, Bernatchez L, Kent M, Clément M, Gilbey J, Sheehan TF et al. (2018) Range-wide regional assignment of Atlantic salmon (Salmo salar) using genome wide single-nucleotide polymorphisms. Fish Res 206: 163–175.

Jensen AJ, Johnson BO, Heggberget TG (1991) Initial feeding time of Atlantic salmon, Salmo salar, alevins compared to river flow and water temperature in Norwegian streams. Environ Biol Fishes 30: 379–385.

Jensen L, Hansen M, Pertoldi C, Holdensgaard G, Mensberg K-L, Loeschcke V (2008) Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proc R Soc B Biol Sci 275: 2859–2868.

Jensen J, Mclean W, Jensen M, Sweeten T, Damon W (2009) WinSIRP Version 2.0 User Manual: Microsoft Windows®-Based Salmonid Incubation and Rearing Programs, Designed for Microsoft Excel®. Can. Technical Report of Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada. Vol 2839. vii + 49.

Jeuthe H, Brännäs E, Nilsson J (2016) Effects of variable egg incubation temperatures on the embryonic development in Arctic charr Salvelinus alpinus. Aquac Res 47: 3753–3764.

Jonsson N, Jonsson B, Hansen LP (2005) Does climate during embryonic development influence parr growth and age of seaward migration in Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 62: 2502–2508.

Jonsson B, Jonsson N, Finstad AG (2014) Linking embryonic temperature with adult reproductive investment in Atlantic salmon Salmo salar. Mar Ecol Prog Ser 515: 217–226.

Kahar S, Debes PV, Vuori KA, Vähä JP, Vasmägi A (2016) Heritability, environmental effects, and genetic and phenotypic correlations of oxidative stress resistance-related enzyme activities during early life stages in Atlantic salmon. Evol Biol 43: 215–226.

Kane TR (1988) Relationship of temperature and time of initial feeding of Atlantic salmon. N Am J Aquac 50: 93–97.

Konecki J, Woody C, Quinn T (1995) Influence of temperature on incubation rates of coho salmon (Oncorhynchus kisutch) from ten Washington populations. Northwest Sci 69: 126–132.

Kuznetsova A, Brockhoff PB, Bojesen Christensen RH (2015) lmerTest: tests in linear mixed effects models. http://CRAN.R-project.org/web/packages/lmerTest/lmerTest.pdf.
Letcher BH, Dubreuil T, O’Donnell MJ, Obedzinski M, Griswold K, Nislow KH (2004) Long-term consequences of variation in timing and manner of fry introduction on juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression. Can J Fish Aquat Sci 61: 2288–2301.

Merkel T, Anderson T (1974) Summary of the 1973 Exploits River field activities. Resource Development branch, Newfoundland region. Fisheries and marine service, Environment Canada. Internal Report Series NEW/1–74–4: 51p

Moen AGG, Murashita K, Finn RN (2010) Ontogeny of energy homeostatic pathways via neuroendocrine signaling in Atlantic salmon. Dev Neurobiol 70: 649–658.

Murray CB, Beacham TD, McPhail J (1990) Influence of parental stock and incubation temperature on the early development of coho salmon (Oncorhynchus kisutch) in British Columbia. Can J Zool 68: 347–358.

O’Connell M, Davis J, Scott D (1983) An assessment of the stocking of Atlantic salmon (Salmo salar) fry in the tributaries of the middle Exploits River, Newfoundland. Can Tech Rep Fish Aquat Sci 1225: v + 142.

Parnes C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

Penney HD, Beirão J, Purchase CF (2018) Phenotypic plasticity during external embryonic development is affected more by maternal effects than multiple abiotic factors in brook trout. Evol Ecol Res 19: 135–158.

Peterson R, Spinney H, Sreedharan A (1977) Development of Atlantic Salmon (Salmo salar) eggs and alevins under varied temperature regimes. J Fish Res Board Canada 34: 31–43.

Purchase CF, Brown JA (2000) Interpopulation differences in growth rates and food conversion efficiencies of young grand banks and gulf of Maine Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 57: 2223–2229.

Purchase CF, Collins NC, Shuter BJ (2005) Sensitivity of maximum sustainable harvest rates to intra-specific life-history variability of lake trout (Salvelinus namaycush) and walleye (Sander vitreus). Fish Res 72: 141–148.

Quinn TP (2005) The Behavior and Ecology of Pacific Salmon & Trout, American Fisheries Society, Bethesda, Maryland, pp. 143–158.

Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14: 361–366.

R Development Core Team (2017) R: a language and environment for statistical computing. http://www.r-project.org/.

Saltveit SJ, Brabrand Å (2013) Incubation, hatching and survival of eggs of Atlantic salmon (Salmo salar) in spawning redds influenced by groundwater. Limnologica 43: 325–331.

Scrubton D, Pennell C, Bourgeois C, Goosney R, King L, Booth R, Eddy W, Porter T, Ollerhead LMN, Clarke KD (2008) Hydropower and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrbiolologia 609: 225–239.

Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465: 609–612.

Skoglund H, Einum S, Robertsen G (2011) Competitive interactions shape offspring performance in relation to seasonal timing of emergence in Atlantic salmon. J Anim Ecol 80: 365–374.

Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014) Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon. PLoS One 9: e113697. doi:10.1371/journal.pone.0113697.

Sparks MM, Westley PA, Falke JA, Quinn TP (2017) Thermal adaptation and phenotypic plasticity in a warming world: insights from common garden experiments on Alaskan sockeye salmon. Glob Chang Biol 23: 5203–5217.

Sparks MM, Falke JA, Quinn TP, Adkison MD, Schindler DE, Bartz K, Young D, Westley PAH (2018) Influence of spawning timing, water temperature, and climate warming on early life history phenology in western Alaska sockeye salmon. Can J Fish Aquat Sci 76: 123–135.

Steel EA, Tillotson A, Larsen DA, Fullerton AH, Denton KP, Beckman BR (2012) Beyond the mean: the role of variability in predicting ecological effects of stream temperature on salmon. Ecosphere 3:104. doi:10.1890/ES12-00255.1.

Takle H, Bæverfjord G, Lunde M, Kolstad K, Andersen Ø (2005) The effect of heat and cold exposure on HSP70 expression and development of deformities during embryogenesis of Atlantic salmon (Salmo salar). Aquaculture 249: 515–524.

Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Breerton TM, Bright PW, Carvalho L et al. (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16: 3304–3313.

Thorn MW, Morbey YE (2018) Egg size and the adaptive capacity of early life history traits in Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 11: 205–219.

Unwin MJ, Quinn TP, Kinnison MT, Bousted N (2000) Divergence in juvenile growth and life history in two recently colonized and partially isolated Chinook salmon populations. J Fish Biol 57: 943–960.

van Leeuwen T, McLennan D, McKelvey S, Stewart D, Adams C, Metcalfe N (2016) The association between parental life history and offspring phenotype in Atlantic salmon. J Exp Biol 219: 374–382.

Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJG, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416: 389–395.
Wargelius A, Fjelldal PG, Hansen T (2005) Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon \textit{(Salmo salar)}. \textit{Dev Genes Evol} 215: 350–357.

Weir LK, Breau C, Hutchings JA, Cunjak RA (2010) Multiple paternity and variance in male fertilization success within Atlantic salmon \textit{Salmo salar} redds in a naturally spawning population. \textit{J Fish Biol} 77: 479–493.

Whitney CK, Hinch SG, Patterson DA (2014) Population origin and water temperature affect development timing in embryonic sockeye salmon. \textit{Trans Am Fish Soc} 143: 1316–1329.

Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. \textit{Ecology} 85: 2100–2106.

Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guidelines for estimating repeatability. \textit{Methods Ecol Evol} 3: 129–137.