We investigated whether *Clostridium difficile* toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10^{-8} M *C. difficile* toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. *C. difficile* administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E$_2$ and thromboxane B$_2$. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by *C. difficile* and may participate in colonic dysmotility during active inflammation.

Key words: *Clostridium difficile*, motility, prostanoids, vasoactive intestinal peptide

Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

A. Nassif, W. E. Longo, CA R. Sexe, M. Stratton, J. Standeven, A. M. Vernava and D. L. Kaminski

Department of Surgery, The Surgical Research Institute, St. Louis University School of Medicine, St. Louis, MO, USA

CA Corresponding Author

Introduction

Clostridium difficile toxin is the causative agent of pseudomembranous colitis. This disease entity is associated with watery diarrhoea and altered motility, and is often effectively treated with enteral antibiotics. Colonic neuropeptides such as VIP and substance P are abundant in the gut and maintain various physiological functions, such as regulation of colonic motility. We have previously demonstrated that platelet-activating factor (PAF) increases colonic tissue levels of VIP and substance P which were inhibited by a specific PAF antagonist. In contrast, in further studies we found that trinitrobenzene (TNB) suppresses levels of these neuropeptides, which were ameliorated by neural blockade. The aim of the present study was to evaluate the possible role of endogenous VIP and substance P in the dysmotility changes of the left colon of the rabbit to *Clostridium difficile* toxin.

Materials and Methods

The experimental procedure for producing colonic inflammation by other agents known to induce colitis in the isolated rabbit colon has been reported previously. After isolating the colon, it was placed on a temperature controlled base, humidified whole organ perfusion apparatus (Mx International, Aurora, CO) and allowed to equilibrate with an intra-arterial Kreb’s Ringers bicarbonate (KRB) infusion for the first 30 min period. This was followed by the intraluminal infusion of 10^{-8} M *C. difficile* toxin while continuing intra-arterial infusion of KRB for 30 min. At the end of this period, *C. difficile* was discontinued and the colon was allowed to recover for 30 min, infusing only KRB intra-arterially. In a separate set of experiments, KRB was infused intraluminally during the entire 90 min period. Strain gauge transducers were sewn onto the serosal surface of the colon to measure colonic motility. Motility was calculated as four indices: (1) contractions/min; (2) peak force per contraction measured in grams; (3) average force per contraction; and (4) the minute motility index (MMI) calculated as the sum of the contractions, weighted by the peak force, and expressed as a per minute average. At the end of the experiment, tissue samples of colon were taken and immersed in liquid nitrogen and then stored at -70°C. A second section of colon was taken and evaluated histologically to determine the extent of inflammation. Tissue levels of prostaglandin E$_2$ (PGE$_2$), thromboxane B$_2$ (TxB$_2$), VIP and substance P were determined by well described radioimmunoassays.

Results

No colitis was observed in KRB treated colons. *C. difficile* treated colons demonstrated evidence of inflammation that was confined to the mucosa.
Table 1. The effect of C. difficile on tissue PGE₂, TxB₂, VIP, substance P and colonic motility

	KRB (n=4)	C. difficile (n=4)
Tissue VIP levels a	221.2 ± 31.6	107.6 ± 16.4*
Tissue SP levels a	164.6 ± 27.7	179.1 ± 13.5
Tissue PGE₂ levels	25.2 ± 6.4	174.8 ± 31.9*
Tissue TxB₂ levels	18.7 ± 5.4	32.4 ± 8.8*
Contraction/min	10.9 ± 3.5	14.7 ± 3.3*
Peak force b	2.6 ± 0.11	1.9 ± 0.08
Average force c	0.44 ± 0.3	0.72 ± 0.08*
MMI d	15.1 ± 3.5	16.2 ± 4.1

* p < 0.05, C. difficile and KRB.

PGE₂ and eicosanoids in both TNB and PAF models of colonic inflammation. We speculate from our previous studies involving alterations in colonic neuropeptides that disturbance of colonic motility may be related to a mechanism involving arachidonic acid metabolites released during inflammation and neuropeptide fluctuations. Presently, our data suggest that VIP is suppressed by C. difficile and may participate in colonic dysmotility disturbances during inflammatory states of the left colon. Studies are in progress to determine whether neural blockade or pretreatment with synthetic VIP antagonists antagonize the changes in neuropeptide release, inflammation and motility changes seen by C. difficile.

References

1. Larson AE, Price AB. Pseudomembranous colitis: presence of Clostridial toxins. Lancet 1977; ii:1312–1324.
2. Deshpande Y, Longo WE, Chandel B, et al. Effect of platelet-activating factor (PAF) and its antagonists on colonic dysmotility and tissue levels of colonic neuropeptides. Eur J Pharmacol 1994; 256: 121–123.
3. Sere R, Stratton M, Nassif A, Kaminski DL, Longo WE. lidocaine ameliorates trinitrobenzene sulfonic acid suppression of tissue levels of colonic neuropeptides. Surg Research Comm[in press].
4. Chandel B, Niehoff M, Deshpande Y, Staneven J, Vernava AM, Kaminski DL, Longo WE. The isolated perfused colon a novel model to study colonic inflammation and motility. Surg Research Comm 1994; 16: 125–129.
5. Kaminski DL, Andrus CH, German D, Deshpande YG. The role of prostanoids in the production of acute acaulos colon. Ann Surg 1990; 212: 455–461.
6. Burakowski R, Zhao L, Cattelaro AJ, Rose KL, Donovan V, Poohoulakas C, Percy WH. Effects of purified Clostridium difficile toxin A on rabbit distal colon. Gastroenterology 1995; 109: 349–354.
7. Gilbert RJ, Triadafilopoulos G, Poohoulakas C, Giampolico C, Lamont JT. Effect of purified C. difficile toxin on intestinal smooth muscle. Am J Physiol 1989; 256: G759–G766.
8. Pooh J, Drey-LeFaux MT, Bveno L. Leukotriene D₄ participates in colonic transit disturbances induced by intracolonic administration of trinitrobenzene sulfonic acid in rats. Gastroenterology 1992; 102: 149–156.
9. Pooh J, More J, Pooh L, Lveno L. Platelet activating factor and interleukin-1 are involved in colonic dysmotility in experimental collagen. Gastroenterology 1993; 106: 47–56.
10. Longo WE, Standeven J, Chandel B, Deshpande Y, Vernava AM, Kaminski DL. Platelet activating factor mediates trinitrobenzene induced dysmotility in the left colon. Mediators of Inflammation 1995; 4: 17–18.

Acknowledgement. This study was supported by USPHS Grant DK 27695.

Received 22 August 1995; accepted 28 August 1995