Letter to the Editor

Reply: Breast cancer, human papilloma virus and sexual activities

JS Lawson*,1, WK Glenn1 and NJ Whitaker1

1School of Biotechnology and Biomolecular Sciences, University of New South Wales, SYDNEY, New South Wales 2052, Australia

Similar high-risk HPVs have been identified in breast tumours and cervical cancer that have occurred in the same women (Hennig et al, 1999; Widschwendter et al, 2004).

There is immortalisation and preneoplastic transformation of normal breast epithelial cells by HPVs (Band, 1995).

High-risk HPVs, in particular HPV types 16, 18, 31, 33 and less commonly additional types, are the accepted cause of cervical and other ano-genital cancers (IARC, 1995). Less well known is the likely causal role of high-risk HPVs in cancers of the head and neck (van Houten et al, 2001). The biological mechanisms by which HPVs are tropic and oncogenic to epithelial cells is reasonably well known from studies of cervical oncogenesis. These mechanisms include the presence and genomic integration of HPV DNA in epithelial tumours, the expression of the HPV E6 oncogene in the tumour where it binds to and degrades the tumour suppressor p53 gene allowing unregulated cell proliferation to occur (zur Hausen, 2002). Estrogens synergise with HPV oncoproteins to cause cervical cancer (Brake and Lambert, 2005) and the regulatory region of HPV 16 contains DNA sequences that are responsive to glucocorticoid hormones (Gloss et al, 1987).

Because of the presumably low viral load, PCR analyses for HPV on both formalin-fixed and fresh-frozen breast tumour specimens are difficult and very dependent on the details of the methods used. For example, the negative outcomes by Lindel et al (2007) have probably been because they used the incorrect PCR primers (Damin et al, 2007; Yasmeen et al, 2007). In our own studies, the identification of HPV DNA proved to be difficult and required additional amplification of the DNA before PCR and the use of SYBR Green I to optimise detection (Kan et al, 2005).

There are now five studies, including the report of Akil and co-workers in this issue of the Br J Cancer, for which the relationship between age of women and high-risk human papilloma virus (HPV)-positive breast cancer, has been published. Three of these studies report that the age of women with HPV-positive breast cancer is significantly younger than the women with HPV-negative breast cancer. On an average, Greek women with HPV-positive breast cancer were 15 years, Australian women 8 years, and Canadian and Syrian women 11 years younger than those with HPV-negative breast cancer (Kroupis et al, 2006; Lawson et al, 2006; Akil et al, 2007). Two studies report no difference in the age of women with HPV-positive or -negative breast cancer (Hennig et al, 1999; Damin et al, 2004). Some details of these studies are shown in Table 1.

Based on the younger age of some women with HPV-positive breast cancer, and the higher incidence of HPV-positive cervical cancer among younger women with multiple sexual partners, we have hypothesised that high-risk HPVs may have a causal role in some breast cancers. Therefore, a brief overview of the relevant evidence is of value.

The presence of high-risk HPV DNA in breast tumours has been shown, mainly by PCR analyses, in 11 out of 13 studies conducted in a various countries (reviewed by Lawson et al, 2006; plus a recent positive study by Yasmeen et al, 2007; a negative study by Lindel et al, 2007). Tumours of the breast nipple appear to have histopathological characteristics similar to HPV-positive cervical cancer (de Villiers et al, 2005).

Study	Population	HPV type	Age HPV+	Age HPV−	P-Value for age difference
Hennig et al, 1999; n = 107	Norway	16	50.8	49.4	0.659, NS
Damin et al, 2004; n = 101	Brazil	16/18	56.5	55.9	0.806, NS
Kroupis et al, 2006; n = 107	Greece	16	38	55	0.001, S
Lawson et al, 2006; n = 50	Australia	18	55.6	63.8	0.049, S
Akil et al, 2007	Canada/Syria	16	46.5	57.5	0.05, S

NS = not significant; S = significant at 95% level.

*Correspondence: Dr JS Lawson; E-mail: James.Lawson@unsw.edu.au
Published online 22 January 2008
The main means of transmission of HPVs appears to be by surface contact. The human papilloma virions are released when the cornified envelope of cells desquamate (Bryan and Brown, 2001). The possibility of transmission of high-risk HPVs during sexual activity is demonstrated by the high prevalence of these viruses in male and female genital organs. The prevalence of high-risk HPVs in male genital organs varies by population and methods of detection. The prevalence of high-risk HPVs in the penile glans, penile shaft, prepuce and scrotum is between 5 and 50%, the perianal area 0–33%, semen 2–83% and urine up to 7% (Dunne et al, 2006). High-risk HPVs are also present in normal, benign hyperplastic and malignant prostate tissues (Zambrano et al, 2002). The prevalence of high-risk HPVs in females varies between populations and dramatically so between age groups, with the prevalence in near normal cervical smears from UK women 61% at ages 20–24 decreasing to 14–15% in those over 50 years (Cotton et al, 2007).

What meaning might be given to these observations? In our view, the evidence that high-risk HPVs may have an aetiological role in human breast cancer is substantial but far from conclusive. Obviously further work needs to be done.

A working hypothesis is that high-risk HPVs may be involved in the initiation of breast cancer among younger women.

The Editor now considers correspondence on this publication closed.

REFERENCES

Akil N, Kassab A, Yasmeen A, Darnel AD, Bismar TA, Al Moustafa A-E (2007) Human breast cancer and sexual activities. Br J Cancer (in press)

Band V (1995) Preneoplastic transformation of human mammary epithelial cells. Semin Cancer Biology 6: 185–192

Brake T, Lambert PF (2005) Estrogen contributes to the onset, persistence and malignant progression of cervical cancer in a human papilloma virus-transgenic mouse model. Proc Natl Acad Sci USA 102: 2490–2495

Bryan JT, Brown DR (2001) Transmission of human papillomavirus type 11 infection by desquamated cornified cells. Virology 281: 35–42

Cotton SC, Sharp L, Seth R, Masson LF, Little J, Cruishank ME, Neal K, Waugh N (2007) Lifestyle and socio-demographic factors associated with high risk HPV infection in UK women. Br J Cancer 97: 133–139

Damin AP, Damin DC, Alexander CO (2007) HPV infection and breast cancer. Breast 16: 222

Damin APS, Karam R, Zettler CG, Caleffi M, Alexandre CO (2004) Evidence for an association of human papillomavirus and breast carcinomas. Breast Cancer Res Treat 84: 131–137

De Villiers E-M, Sandstrom RE, zur Hausen H, Buck CE (2005) Presence of papillomatosus sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast. Breast Cancer Res Treat 7: R1–R11

Dunne EF, Nielson CM, Stone KM, Markowitz LE, Giuliano AR (2006) Prevalence of HPV infection among men. J Infect Dis 194: 1044–1057

Gloss B, Bernard HU, Seedorf K, Klock G (1987) The upstream regulatory region of the human papilloma virus 16 contains an E2 protein independent enhancer which is specific for cervical carcinoma cells and regulate by glucocorticoid hormones. EMBO J 6: 3735–3743

Hennig EM, Sue Z, Thoresen S, Holm R, Kvinsland S, Nesland JM (1999) Human papillomavirus 16 in breast cancer of women treated for high grade cervical intraepithelial neoplasia (CIN III). Breast Cancer Res Treat 53: 121–135

International Agency for Research on Cancer (IARC) (1995) Monographs on the Evaluation of Carcinogenic Risks to Humans: Human Papillomaviruses. Vol 64, Lyon, France

Kan C-Y, Iacopetta BJ, Lawson JS, Whitaker N (2005) Identification of human papilloma virus DNA gene sequences in human breast cancer. Br J Cancer 93: 946–948

Kroupis C, Markou A, Pourlis D, Dionyssiou-Asteriou A, Liangidou ES (2006) Presence of high-risk human papillomavirus sequences in breast cancer tissues and association with histopathological characteristics. Clin Biochem 39: 727–731

Lawson JS, Kan C-Y, Iacopetta BJ, Whitaker NJ (2006) Are some breast cancers sexually transmitted? Br J Cancer 95: 1708

Lindel K, Forster A, Altermatt HJ, Greiner R, Gruber G (2007) Breast cancer and human papillomavirus (HPV) infection: no evidence of a viral etiology in a group of Swiss women. Breast 16: 172–177

van Houten VM, Snijders PJ, van den Brekel MW, Kummer JA, Meijer CJ, van Leeuwen B, Denkers F, Smeele LE, Snow GB, Brakenhoff RH (2001) Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 92(2): 232–235

Widschwendter A, Brunhuber T, Wiedemair A, Mueller-Holzner E, Marth C (2004) Detection of human papillomavirus DNA in breast cancer of patients with cervical cancer history. J Clin Virol 31: 292–297

Yasmeen A, Ricciardi R, Kassab A, Bismar TA, Al Moustafa A-E (2007) High risk HPVs in human breast cancer and normal mammary tissues. Breast 16: 445

Zambrano A, Kalantari M, Simoneau A, Jensen JL, Villarreal LP (2002) Detection of human polyoma viruses and papilloma viruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 53: 263–276

zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350