Zmiany ilościowe metylacji DNA indukowane przez światło monochromatyczne u regenerantów jęczmienia uzyskanych na drodze androgenesy

Quantitative changes in DNA methylation induced by monochromatic light in barley regenerants obtained by androgenesis

Patrycja Siedlarz, Sławomir Bany, Krystyna Rybka

Zakład Biochemii i Fizjologii Roślin
Instytut Hodowli i Aklimatyzacji Roślin- Państwowy Instytut Badawczy, 05-870 Radzików
k.rybka@ihar.edu.pl

Changes in DNA methylation are one of the best known mechanisms of epigenetic regulation of gene expression, which in the process of induced androgenesis is associated with reprogramming of haploid microspores development towards the formation of embryos, as a result of exposure of anthers in ears and then anthers culture in vitro to stress factors. The aim of the study was to test the hypothesis of whether the use of monochromatic light during induced androgenesis might be associated with epigenetic phenomena. The experiments were carried out on DH plants of spring barley (Hordeum vulgare L.) obtained by androgenesis modified by monochromatic light: blue, green and red. A quantitative evaluation of the effect of light on the degree of DNA methylation was performed using RP-HPLC for the comparison of regenerants obtained under standard, control conditions (darkness) with those obtained with light usage. The differences in the amount of methylated cytidine in comparison to the control were: 0.40%, 0.16% and -0.55%, for blue, red and green light, respectively. The level of global genomic DNA methylation from control plants was in the range 21.32-21.52%. Methylation changes in response to monochromatic light used during callus formation in anthers culture, determined by RP-HPLC, are significant although small.

Key words: RP-HPLC, Hordeum vulgare L., LED, cytidine

Wstęp

Metylacja DNA to, zachodząca podczas fazy S cyklu komórkowego, modyfikacja kwasu dezoksyrybonukleinowego przebiegająca pod wpływem metylotransferaz DNA, specyficznych względem zasad azotowych: cytozyny bądź adeniny wchodzących w skład nukleotydów: dezoksykistydyny (dC) i dezoksycytidydyny (dA). Polega ona na przyłączaniu grup metylowych (-CH₃) głównie do piątego atomu węgla w pierścieniu pyrimidynowym oraz rzadziej na metylacji grup NH₂ znajdujących się bądź przy 4 atomie węgla cytozyny bądź przy 6 atomie węgla adeniny (zasady purynowej). Metylacja występująca w dinukleotydach CpG i trinukleotydach CpxG, gdzie X oznacza A, T, C określa jest jako metylacja symetryczna, natomiast w sekwencjach CpxpX,
jako niesymetryczna. Donorem grupy metylowej jest 5′-adenozynometionina a produktami reakcji są: 5-metyl-2′-deoksycytydyna (5mCdC), główny produkt reakcji metylacji DNA a także N4-metyldeoksycytydyna oraz N7-metylodeksadenozyna. Zawartość 5mCdC jest warunkowana zarówno przez enzymatycznie katalizowaną reakcję metylacji jak i demetylacją, która to może przebiegać w sposób pasywny bądź aktywny. Do demetylacji pasywnej dochodzi w trakcie replikacji, której nie towarzyszy metylotransferaza-1 (DNMT1) co skutkuje brakiem metylacji zachowawczej (Guz i in., 2010).

Natomiast demetylacja aktywna katalizowana jest przez dwufunkcyjne glikozydazy DNA z rodziny Demeter w trakcie naprawy błędów replikacyjnych (Li i in., 2018), jest także związana z modyfikacjami histonów i najprawdopodobniej, niekodującego RNA (Parrilla-Doblas i in., 2019, Zhang i in., 2012).

U ssaków ilość 5mCdC w stosunku do całkowitej ilości dC wynosi 3-4%, co w proporcji do wszystkich nukleozydów stanowi 0,75-1% (Guz i in., 2010). Ocenia się, że u ssaków 70-80% dinukleotydów CpG w całym genomie jest zmetylownych (Law i Jacobsen, 2010).

Sposób realizacji tego etapu doświadczenia jest badanym celem (Siedlarz i in., 2016). Grupę badaną stanowił DNA regenerantów, genotypu roślin donorowych, eksplantatu, składu pożywki a także czasu trwania kultury. Do czynników które potencjalnie mogą wpływać na metylację DNA możemy zaliczyć również światło. Stwierdzono, że ilość metylowanej cytydyny w DNA regenerantów DH jęczmienia uzyskanych w procesach androgenezy jak i somatycznej embriogenezy rośnie w porównaniu do rośliny donorowej natomiast w genomie pszenicy – maleje (Machczyńska i in., 2014; Orłowska i in., 2016). Jednakże jeżeli zostanie przeprowadzony kolejny cykl generatywny jeden lub więcej, to w kolejnych pokoleniach otrzymywanych w ten sposób ilość 5mCd stabilizuje się. Zmianom ilościowym towarzyszą zmiany wzorów metylacyjnych (Bednarek i Orłowska, 2020; Machczyńska i in., 2014; Niedziela, 2018; Orłowska i in., 2016).

Ilościową analizę zmian metylacji genomu można prowadzić za pomocą chromatografii cieczowej RP-HPLC (Reversed Phase-High Performance Liquid Chromatography). Metoda RP-HPLC była stosowana do analizy zmian poziomu metylacji DNA roślin zbożowych znajdujących się pod wpływem stresu abiotycznego (Niedziela, 2018) oraz w badaniach wpływu kultur in vitro na regeneranty jęczmienia (Orłowska i in., 2016) i pszenicy (Machczyńska i in., 2014). Celem obecnej pracy było sprawdzenie, czy modyfikacja procesu androgenezy w kulturach pylnikowych in vitro, polegająca na zastosowaniu światła monochromatycznego na etapie indukcji kalusa, wpływa na zmiany poziomu metylacji genomowego DNA regenerantów.

Material i Metody

Materiał do badań stanowił DNA z liści regenerantów jąrego (Hordeum vulgare L.) genotypu 2dh/8, uzyskanych w kulturach pylnikowych prowadzonych w różnych warunkach oświetleniowych na etapie formowania kalusa na pożywce indukującej. Regeneranty były uprawiane w płatach, w fitotronie, w temperaturze 18/14°C i fotoperiodzie 16/8h dzień/noc. DNA izolowano z liści roślin w stadium krzewienia. Stopień ploidalności uzyskanych regenerantów określono przy użyciu cytometru przepływowego CyFlow Ploidy Analyser (Sysmex Polska Sp. z o. o.). Sposób realizacji tego etapu doświadczenia i jego szczegółowe wyniki są przedmiotem odrębnej publikacji (Siedlarz i in., 2020). Grupę badaną stanowił DNA regenerantów uzyskanych w wyniku androgenezy in vitro modyfikowanej w fazie indukcji kalusa przez światło monochromatyczne LED: niebieskie 454,63 nm, zielone 525,95 nm.
i czerwone 630,84 nm a grupę kontrolną DNA regenerantów uzyskanych w standardowych warunkach, tj. przebiegającej w ciemności fazie indukcji kalusa (Orłowska i in., 2016, Bednarek i Orłowska, 2020, Siedlarz i in., 2020). DNA izolowano z par regeneratów uzyskanych z pylników tego samego kłosa: 10 w warunkach kontrolnych i 10 w warunkach modyfikowanych światłem. W sumie 60 prób DNA została wyizolowanych z liści roślin w fazie kreszenia za pomocą zestawu DNasy Mini Prepkit (Qiagen GmbH, Hilden, Niemcy), zgodnie z metodą producenta. Stężenie oraz czystość DNA oznaczono przy użyciu spektrofotometru UV-Vis NanoDrop 2000c/2000 (Thermo Scientific, USA).

Ilościową ocenę stopnia metylacji DNA prowadzono techniką RP-HPLC przy użyciu systemu Waters 625 LC z detektorem Waters 996 PDA (Johnston i in., 2005, Orłowska i in., 2016). Po denaturacji DNA w 100°C próby trawiono za pomocą nukleaza P1, a następnie oznaczono dC oraz 5mdC po rozdzieleniu w warunkach izotokowych na kolumnie Max-RP C12, 4 mm, 100x4,6 mm, firmy Phenomenex (USA), połączonym z przedkolumną 4u Max-RP C12, wymywanymi eluentem o gęstości liniarnej 0 – 55% buforu B w czasie 0 - 10 min., 55 – 100% B w czasie 10,1 - 20 min, następnie 100% buforu A przez 5 min, przy przepływie 1 ml/min, gdzie bufor A to: 0,5% metanol w 10 mM KH2PO4 pH 3,7 oraz bufor B to: 10% metanol w 10 mM KH2PO4 pH 3,7. Detekcję prowadzono spektrofotometrycznie w przy długości fali λ = 280 nm. Za pomocą oprogramowania Millenium 32 v. 4.0 określano procentowy udział 5-metylocytyny (5mdC) w analizowanych preparatach. Dla każdej badanej próby wyznaczano wartość procentową całkowitej metylacji genomowego DNA z ilorazu zawartości 5-metyl-2’-deoeksycytidydy w stosunku do sumy: 2’-deoeksycytidydy i 5-metyl-2’-deoeksycytidydy: 5mdC [%] = [5mdC / (5mdC + dC)] x 100. Użytkowane wyniki poddano analizie wariancji (ANOVA) i wyznaczono grupy jednorodne na podstawie testu Tukeya.

Wyniki i Dyskusja

Poprzez zrealizowane doświadczenie sprawdzono czy modyfikacja procesu androgenezy in vitro polegająca na zastosowaniu światła monochromatycznego na etapie indukcji kalusa, wpływa na zmiany poziomu metylacji genomowego DNA regenerantów. Analizie ilościowej poddano DNA wyizolowane z 60 roślin, a dokładniej 30 par roślin, uzyskanych w warunkach kontrolnych i modyfikowanych światłem. Ponieważ roślinę donorową charakteryzował ustabilizowany poziom metylacji DNA, gdyż pochodziła ona z rozmnażania generatywnych (Orłowska i in., 2016), zakładamy, że zmiany zaobserwowane w niniejszym doświadczeniu zostały indukowane przez światło. Nie ma dostępnych informacji, ile dokładnie cykli generatywnych jest potrzebnych do ustabilizowania/wyeliminowania (jeśli to w ogóle możliwe) wpływu kultur tkankowych na poziom metylacji DNA. Niemniej jednak wykazano, że zarówno w genomie jęczmienia jak i pszenicy poziom metylacji stabilizuje się po jednym/dwóch cyklach (Machczyńska i in., 2014, Orłowska i in., 2016). Tak więc, aby ustabilizować zmiany metylacji DNA indukowane w regenerantach podczas hodowli tkankowych in vitro, należy rozważyć zastosowanie jako po tomstroy regenerantów jako rośliny donorowe. Całkowity zakres zmian metylacyjnych genomu jęczmienia oznaczony w obecnym eksperymentie był niewielki i zawierał się w granicach 21,12-21,87%. Również Orłowska i in. (2016) wykazała dla odmian jęczmienia Scarlett stopień metylacji genomu rośliny donorowej 17,86% natomiast zakres zmienności całkowitej metylacji DNA regenerantów i kolejnych dwóch pokoleń generatywnych zawierał się w granicach 19,88-20,09%. Machczyńska i in. (2014) dla pszenicy (odmiana Bogo) wykazała podobny trend. Niezależnie od metody prowadzenia kultur in vitro (androgeneza w kulturach płynnikowych vs embriogeneza) całkowita metylacja DNA, oznaczana techniką RP-HPLC wynosiła 25,4% w przypadku roślin donorowych, w generatywnie otrzymanym pierwszym pokoleniu obniżała się do 23,6% a następnie nieco się podnosiła, różniąc się od 21,7% w grupie kontrolnej. Może to być wynikiem procesu modyfikacji procesu androgenezy w kulturach tkankowych, które prowadzą do zmniejszenia metylacji DNA w kulturach tkankowych, następnie do podniesienia metylacji DNA w kulturach tkankowych, które prowadzą do zmniejszenia metylacji DNA w kulturach tkankowych (Machczyńska i in., 2014). Jednakże, dla pszenicy (odmiana Bogo) forzeniowa metylacja DNA w kulturach tkankowych wynosiła 22,3%, podczas gdy u regenerantów zawierała podobny trend. Niemniej jednak wykazano, że zarówno w genomie jęczmienia jak i pszenicy poziom metylacji stabilizuje się po jednym/dwóch cyklach (Machczyńska i in., 2014), przy czym w przypadku regenerantów z pokolenia drugiego i kolejnych pokoleń metylacja DNA wynosiła 21,87%. Również Orłowska i in. (2016) wykazała poziom metylacji genomu w kulturach tkankowych w granicach 21,12-21,87%. Również Orłowska i in. (2016) wykazała poziom metylacji genomu w kulturach tkankowych w granicach 21,12-21,87%.

Po zrealizowaniu doświadczenia zidentyfikowano proces androgenezy in vitro polegającą na zastosowaniu światła monochromatycznego na etapie indukcji kalusa, wpływającego na zmiany poziomu metylacji genomowego DNA regenerantów. Analizie ilościowej poddano DNA wyizolowane z 60 roślin, a dokładniej 30 par roślin, uzyskanych w warunkach kontrolnych i modyfikowanych światłem. Ponieważ roślinę donorową charakteryzował ustabilizowany poziom metylacji DNA, gdyż pochodziła ona z rozmnażania generatywnych (Orłowska i in., 2016), zakładamy, że zmiany zaobserwowane w niniejszym doświadczeniu zostały indukowane przez światło.
and also different from the group of control conditions (Tab. 1). The differences in the level of methylation of regenerants obtained under control conditions and conditions modified by light (numbers in rows)

significant difference with P ≥ 95% (nd - no differences) between the level of methylation of regenerants obtained under control conditions and the level of methylation of regenerants obtained under conditions modified by light (numbers in rows)

The average amount of methylated cytidine [%] in the genomic DNA of barley regenerants obtained by androgenesis under standard conditions (control) and conditions modified by blue, green or red monochromatic light.

	warunki androgenesy	androgenesis condition
światło light	kontrola control	światło light
niebieskie blue	21.52 a	21.12 b **
zielone green	21.32 a	21.87 a **
czerwone red	21.45 a	21.29 b **

	warunki androgenesy	androgenesis condition
światło light	kontrola control	światło light
niebieskie blue	21.52 a	21.12 b **
zielone green	21.32 a	21.87 a **
czerwone red	21.45 a	21.29 b **

Values marked with the same letter do not differ significantly in the group of control regenerants (control) and the group of regenerants obtained under conditions modified by light (light) (numbers in a column)

significant difference with P ≥ 95% (nd - no differences) between the level of methylation of regenerants obtained under control conditions and the level of methylation of regenerants obtained under conditions modified by light (numbers in rows)

Fig. 1. Average differences [%] in the amount of methylated cytidine in the DNA of regenerants obtained by androgenesis under control conditions and conditions modified by blue, green and red monochromatic light. (Pandev and Pandev-Rai, 2015). Presented
Zmiany ilościowe metylacji DNA indukowane przez światło monochromatyczne u regenerantów jęczmienia...

wyniki wskazują, że również rodzaj zastosowane-go światła monochromatycznego w trakcie indukcji kalusa w kulturach pylnikowych in vitro wywołuje zmiany w poziomie metylacji genomowego DNA, w sposób zależny od zastosowanej długości fali światła, czyli od koloru światła monochromatycznego.

Wnioski

Wykorzystanie światła monochromatycznego w androgenezie w czasie inkubacji pylników na pożywce indukującej wpływa na niewielkie, lecz istotne zmiany metylacji DNA genomowego. Poziom metylacji jest zależny od długości fali zastosowanego światła.

Część wyników została zaprezentowana podczas Konferencji Dni Młodego Naukowca w 2019 r. w Radzikowie.

Literatura

Bednarek P. T., Orłowska R. 2020. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tiss. Organ Cult. 140: 245 – 257.
Finnegan E. J., Genger R. K., Peacock W. J., Dennis E. S. 1998. DNA methylation in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49(1): 223 – 247.
Fiuk A., Bednarek P. T., Rybczyński J. J. 2010. Flow Cytometry, HPLC-RP, and metAFLP Analyses to Assess Genetic Variability in Somatic Embryo-Derived Plantlets of Gentiana pannonica Scop. Plant Mol. Biol. Rep. 28: 413 – 420.
Guz J., Foksiński M., Oliński R. 2010. Mechanizm metylacji i demetylacji DNA – znaczenie w kontroli ekspresji genów [Eng.: Mechanism of DNA methylation and demethylation – its role in control of genes expression]. Post. Bioch. 56(1): 7 – 15.
Johnston J. W., Harding K., Bremmer D. H., Souch G., Green J., Lynch P. T., Grout B., Benson E. E. 2005. HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol. Biochem. 43(9): 844 – 853.
Karan R., DeLeon T., Biradar H., Subudhi P. K. 2012. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PloS One 7(6): e40203.
Law J. A., Jacobsen S. E. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Gen. 11(3): 204 – 220.
Li X., Yu X., Wang N., Feng Q., Dong Z., Liu L., Liu B. 2007. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum Trin.). Plant Cell Tiss. Organ Cult. 90(2): 153 – 168.
Machczyńska J., Orłowska R., Zimny J., Bednarek P. T. 2014. Extended metAFLP approach in studies of the tissue culture induced variation (TCIV) in case of triticale. Mol. Breed. 34(3): 845 – 854.
Niedziela A. 2018. The influence of Al³⁺ on DNA methylation and sequence changes in the triticale (× Triticosecale Witmack) genome. J. Appl. Gen. 59(4): 405 – 417.
Orłowska R., Machczyńska J., Oleszczuk S., Zimny J., Bednarek P. T. 2016. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.) J. Biol. Res.-Thessalonike 23(1): 19.
Pandey N., Pandey-Rai S. 2015. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4): 869 – 879.
Parrilla-Doblas J. T., Roldan-Arjona T., Ariza R. R., Cordoba-Canero D. 2019. Active DNA Demethylation in Plants. Int. J. Mol. Sci. 20(19): 4683.
Peredo E. L., Revilla M. A., Arroyo-Garcia R. 2006. Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. J. Plant Physiol. 163(10): 1071 – 1079.
Siedlarz i in. 2020 (w przygotowaniu).
Zhang H., Zhu J. K. 2012. Active DNA demethylation in plants and animals. Cold Spring Harb. Symp. Quant. Biol. 77: 161 – 173.
