Observational Study

Analysis of B-ultrasound and contrast-enhanced ultrasound characteristics of different hepatic neuroendocrine neoplasm

Xiao-Ning Kang, Xiao-Yu Zhang, Jie Bai, Zun-Yi Wang, Wen-Jie Yin, Li Li

ORCID number: Xiao-Ning Kang (0000-0002-9480-8929); Xiao-Yu Zhang (0000-0002-6363-0435); Jie Bai (0000-0002-9825-5036); Zun-Yi Wang (0000-0002-4318-0813); Wen-Jie Yin (0000-0001-3874-2289); Li Li (0000-0001-5716-0177).

Author contributions: Kang XN, Zhang XY, and Li L designed the research; Kang XN, Bai J, and Wang ZY performed the research; Li L and Yin WJ contributed new reagents/analytic tools; Kang XN, Bai J, and Zhang XY analyzed the data; and Kang XN, Zhang XY, and Li L wrote the paper.

Institutional review board statement: The study was approved by the ethics committee of Cangzhou Central Hospital.

Informed consent statement: All patients gave informed consent.

Conflict-of-interest statement: The authors declare that they have no competing interests.

Data sharing statement: No additional data are available.

STROBE statement: The authors have read the STROBE Statement, and the manuscript was prepared and revised according to the STROBE Statement.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0)

Abstract

BACKGROUND

Hepatic neuroendocrine neoplasm (hNEN) is a highly heterogeneous tumor. The exact identification of the source and malignant degree of hNEN is important. However, there is a lack of information regarding diagnosis of hNEN with imaging. In addition, no studies have compared the imaging between hNEN and hepatocellular carcinoma (HCC) and among different sources and malignant degrees of hNEN.

AIM

To compare the ultrasound characteristics between hNEN and HCC and among different sources and malignant degrees of hNEN.

METHODS

A total of 55 patients with hNEN were recruited and defined as the hNEN group. Among them, 35 cases of hNET were defined as the hNET group. Twenty cases of hepatic neuroendocrine carcinoma (hNEC) were defined as the hNEC group. Among the 55 lesions, 29 were transferred from the pancreas, 20 were from the gastrointestinal tract, and six were from other sites. In total, 55 patients with HCC were recruited and defined as the HCC group. The characteristic differences of B-mode ultrasound and contrast-enhanced ultrasound (CEUS) between hNEN and HCC and among different sources and malignant degrees of hNEN were compared.

RESULTS

In the hNEN group, the proportions of multiple liver lesions, unclear borders,
and high echo lesions were higher than those in the HCC group. The proportions of non-uniform echo and peripheral acoustic halo were lower than those in the HCC group ($P < 0.05$). The washout to iso-enhancement time and washout to hypo-enhancement time were lower than those in the HCC group ($P < 0.05$). The characteristics of B-ultrasound and CEUS among different sources of hNEN were similar, and the differences were not statistically significant ($P > 0.05$). B-mode ultrasound characteristics of hNET and hNEC were similar. The proportions of low enhancement at portal venous phase, non-uniform enhancement forms, and combined tumor vasculature in the hNEC group were larger than those in the hNEN group ($P < 0.05$).

CONCLUSION

Compared with HCC, hNEN showed multiple intrahepatic lesions, uniform high echo, uniform high enhancement at arterial phase, and rapid washout. Low enhancement at portal venous phase, overall non-uniform enhancement form, and the proportion of combined tumor vasculature in hNEC were larger than those in hNET.

Key words: Hepatic neuroendocrine neoplasm; Hepatic neuroendocrine tumor; Hepatic neuroendocrine carcinoma; B-ultrasound; Contrast-enhanced ultrasound

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION

Neuroendocrine neoplasm (NEN) is a highly heterogeneous tumor. The liver is the most important metastatic part of NEN, which is mostly transferred from other organs, such as the gastrointestinal tract. Therefore, hepatic NEN (hNEN) is more common than primary hNEN[1-3]. The manifestations of hNEN patients are complex and mostly non-specific. Patients with hNEN often present with liver discomfort and bloating. It is necessary to identify hNEN and hepatocellular carcinoma (HCC). In addition, all NENs have malignant potential. NEN from different sources and malignant degrees differ greatly in outcome and treatment. Hence, it is important to identify accurately the source and malignant degree of hNEN.

Currently, the diagnosis of hNEN mainly depends on the results of pathological examination and immunohistochemistry[4-6]. Although pathological examination and immunohistochemistry are the gold standard for diagnosis, they are invasive examinations. They can only be used as a means of verification and cannot be used as a screening tool for diseases. Clinically, initial screening is required through non-invasive examinations (e.g., imaging examinations, laboratory examinations, etc), and pathological diagnosis is performed on highly suspected patients. However, due to the rareness of hNEN, there is a lack of current information regarding imaging examinations, and there is little experience in identifying hNEN and HCC, hNEN from different sources, and malignant degrees.

Beard et al[7] reported that hNEN and HCC had similarities in ultrasound
performance, which may cause misdiagnosis due to insufficient understanding. Some studies compared the hNEN characteristics of different sources and malignant degrees and found that the B-ultrasound and contrast-enhanced ultrasound (CEUS) performance of hNEN from different sources and malignant degrees were different\(^8\)-\(^10\). These findings suggest that we can identify hNEN by ultrasound and CEUS, but its clinical application value has not been confirmed. Therefore, the present study compared the ultrasound performance between hNEN and HCC. In addition, the characteristics of B-mode ultrasound and CEUS from different sources and malignant degrees of hNEN were analyzed in order to provide a reference for the diagnosis and treatment of hNEN.

MATERIALS AND METHODS

Research object
A total of 55 patients with hNEN admitted to Cangzhou Central Hospital from January 2014 to May 2018 were recruited. All patients obtained a complete B-mode ultrasound and CEUS data. They were defined as the hNEN group. Among them, 27 were males and 28 were females with an age range of 36-68 years old and an average of 55.23 ± 14.52 years old. Three patients in the hNEN group had hepatitis. The inclusion criteria of hNEN were: Surgical resection or biopsy was confirmed as hNEN, and immunohistochemistry confirmed that ChRA or Syno was positive. The exclusion criteria were: HCC, mixed liver cancer, hilar cholangiocarcinoma, and extrahepatic cholangiocarcinoma. According to the World Health Organization classification of the digestive system tumor (2010) neuroendocrine tumor (NET) grading standard\(^11\), 35 cases of hepatic NET (hNET) (G1 and G2) were defined as the hNET group, and 20 cases of hNEC (G3) were defined as the hNEC group. Among the 55 hNEN lesions, 29 were transferred from the pancreas, 20 were from the gastrointestinal tract, and six were from other sites (two cases from the gallbladder, two cases from the abdomen, and two cases from the lung). During the study period, 55 patients with HCC were recruited as the HCC group. There were 38 males and 17 females with an age range of 35-71 years old and an average age of 54.29 ± 17.27 years old. There were 51 HCC patients associated with hepatitis, and the hepatitis infection rate was significantly higher than that of hNEN patients. The difference was statistically significant (\(\chi^2 = 86.443, P = 0.000\)). All patients signed informed consent, and this study was reviewed by the Ethics Committee of Cangzhou Central Hospital.

Research methods

Ultrasound examination: Ultrasound examination was performed using a Philips ultrasound affinity 70 diagnostic instruments equipped with CEUS imaging software. B-mode ultrasound and CEUS examinations were performed in each patient. The patient was placed in a supine position. The depth, focus, gain, and grayscale and color Doppler (CDFI) range were adjusted before examination. B-mode ultrasound examinations, including CDFI scans, were performed first. Lesion diameter (unit: cm), number (single/multiple), lesion property (solid/cyst), echo uniformity (uniform/non-uniform), echo level (high/low/mixed/equal), boundary (clear/unclear), accompanying signs (peripheral acoustic halo, posterior echo attenuation) of the liver lesions, and CDFI images were recorded.

Subsequently, a 2.4 mL contrast agent of SonoVue (Bracco) was used for CEUS. After the bolus injection into the left median cubital vein, 5 mL of saline was injected. The timing was started when the injection began. The whole examination process was about 3-5 min, and the image data were recorded. The time phase of hepatic CEUS was: 10-30 s after the injection of the contrast agent was the arterial phase, 31-120 s was the portal venous phase, and 121-360 s was the late phase. All examinations were performed by physicians with more than 10 years of ultrasound experience in our hospital.

Data collection and image analysis: B-mode ultrasound lesion diameter, number, boundary, lesion property, echo level, echo uniformity, and the number and proportion of accompanying signs (peripheral acoustic halo, posterior echo attenuation) of the liver lesions were observed and recorded. The characteristic differences of B-mode ultrasound between hNEN and HCC groups, transferred from different hNEN sources, and between hNEC and hNET groups were compared.

CEUS: The initial enhancement time (units: s) of liver parenchyma and lesions was recorded. The washout to iso-enhancement time (units: s) and washout to hypo-enhancement time (units: s) of liver lesions were recorded as well. Then, the number and proportion of different enhancement levels at arterial phase (reference to the
enhancement level of adjacent liver tissue, divided into high/equal/low enhancement), enhancement levels at portal venous phase and late phase (equal/low enhancement), enhancement-washout modes (fast enhancement and washout/equal enhancement and fast washout/low enhancement and fast washout), and special signs (adjacent and internal tumor vasculature, tumor necrosis no-enhancement zone, capsule enhancement in the late phase) of liver lesions were recorded. The characteristic differences of CEUS between hNEN and HCC groups, transferred from different hNEN sources, and between hNEC and hNET groups were compared.

Statistical analysis

All statistical analyses were performed with SPSS version 19.0 (IBM, Armonk, NY, United States) software. The numerical data were expressed as mean ± SD and the categorical variables as number and percentage. The t test was used to compare the two groups of numerical data, and the three groups of numerical data were compared using one-way analysis of variance. The comparisons between the categorical variables were performed by chi-square test. If the minimum theoretical frequency was less than one, the Fisher’s exact test was used. \(P < 0.05 \) was considered a statistically significant difference.

RESULTS

Pathological features of hNEN

Hematoxylin-eosin staining showed that the tumors were arranged by uniform circular or oval cells, which were nested or glandularly distributed. The cells were well-differentiated. There were fewer mitotic figures, and the atypia was not obvious (Figure 1). Immunohistochemical staining showed that 42 patients with hNEN were positive for ChrA (Figure 2), and 45 patients were positive for Syno (Figure 3).

Comparison of B-mode ultrasound characteristics between the hNEN group and the HCC group

Among all the B-mode ultrasound features, lesion diameter and the proportions of different lesion property and posterior echo attenuation were similar between the hNEN and HCC groups, and the differences were not statistically significant \((P > 0.05) \). The proportions of multiple liver lesions, unclear boundary, and high echo lesion in the hNEN group were higher than those in the HCC group, and the differences were statistically significant \((P < 0.05) \). The proportions of non-uniform echo and peripheral acoustic halo in the hNEN group were lower than those in the HCC group, and the differences were statistically significant \((P < 0.05) \) (Table 1).

Comparison of CEUS characteristics between hNEN and HCC groups

The initial enhancement time was similar in the hNEN and HCC groups, and the difference was not statistically significant \((P > 0.05) \). The washout to iso-enhancement time and washout to hypo-enhancement time in the hNEN group were lower than those in the HCC group. The differences were statistically significant \((P < 0.05) \). The proportions of different CEUS enhancement characteristics, including enhancement at arterial phase, portal venous phase, and late phase, enhancement-washout mode, enhancement form, tumor vasculature, tumor necrosis, and capsule enhancement were similar in the two groups, and the differences were not statistically significant \((P > 0.05) \) (Table 2).

Comparison of B-mode ultrasound characteristics transferred from different sources of hNEN

The lesion diameter in hNEN lesions transferred from the gastrointestinal tract, pancreas, and other sites was similar, and there was no statistical significance \((P > 0.05) \). In addition, the proportions of hNEN B-mode ultrasound characteristics, including number of liver lesions, lesion property, boundary, echo level, echo uniformity, posterior echo attenuation, and peripheral acoustic halo, transferred from different sources were similar, and the differences were not statistically significant \((P > 0.05) \) (Table 3).

Comparison of CEUS characteristics transferred from different sources of hNEN

The initial enhancement time, washout to iso-enhancement time, and washout to hypo-enhancement time of hNEN transferred from the gastrointestinal tract, pancreas, and other sites were similar. The differences were not statistically significant \((P > 0.05) \). The proportions of CEUS enhancement characteristics transferred from
Comparison of B-mode ultrasound characteristics between hNET and hNEC groups
The difference in lesion diameter between hNET and hNEC groups was not statistically significant ($P > 0.05$). The proportions of B-mode ultrasound features, including number of liver lesions, lesion property, boundary, echo level, echo uniformity, posterior echo attenuation, and peripheral acoustic halo, between hNET and hNEC groups were similar, and the differences were not statistically significant ($P > 0.05$; Table 5).

Comparison of CEUS characteristics between hNET and hNEC groups
There was no significant difference between hNEN and hNEC groups in terms of initial enhancement time, washout to iso-enhancement time, and washout to hypo-enhancement time ($P > 0.05$). Among the CEUS enhancement characteristics, the proportions of low enhancement at portal venous phase, non-uniform enhancement forms, and no tumor vasculature in the hNEC group were greater than those in the hNEN group ($P < 0.05$). The remaining CEUS enhancement characteristics, including the proportions of enhancement at arterial phase, enhancement at late phase, tumor necrosis, and capsule enhancement, were similar between the two groups. The differences were not statistically significant ($P > 0.05$; Table 6).

DISCUSSION
Imaging examination plays an important role in tumor discovery, auxiliary diagnosis, treatment, and follow-up. B-mode ultrasound and CEUS are widely used in clinical practice as non-invasive and simple imaging methods. However, due to the rareness of hNEN, there is currently little experience in imaging diagnosis of hNEN, which may result in clinicians not being able to obtain correct imaging results for hNEN, thus affecting the diagnosis and treatment of hNEN. Therefore, the present study first compared the B-mode ultrasound and CEUS performance between hNEN and HCC. Then, we compared the B-mode ultrasound and CEUS characteristics of different sources of hNEN and different malignant degrees of hNEN in order to report clinical diagnostic experience for hNEN.

Comparison of B-mode ultrasound and CEUS results between hNEN and HCC groups
Recent studies have reported that the characteristics of hNEN B-mode ultrasound are uniform hyperechoic or hypoechoic masses with clear boundaries[12,13]. Most of hNEN CEUS characteristics are “fast forward and fast out”[14]. Centripetal enhancement at the arterial phase appears first, and then uniform high enhancement appears[15]. The characteristics of HCC B-mode ultrasound are hypoechoic or mixed echo masses with clear boundaries[16]. The CEUS characteristics are “fast forward and fast out” as well. But most of the CEUS characteristics of HCC showed uniform high enhancement at the arterial phase[17-19]. In this study, there was no significant difference in lesion size and the proportions of different lesion property and posterior echo attenuation in the comparison of B-mode ultrasound and CEUS results between hNEN and HCC.
groups. The possible reason is that both hNEN and HCC are solid and blood-rich tumors. They have similar characteristics in B-ultrasound signs and enhancement features. However, the proportions of multiple liver lesion, unclear border, and high echo lesion in the hNEN group were higher than those in the HCC group. The proportions of non-uniform echo and peripheral acoustic halo in the hNEN group were lower than those in the HCC group. It has been suggested that if the liver lesions found in the ultrasound examination are multiple, uniform high echo, and without peripheral acoustic halo, it may be hNEN. Further examination should be performed to determine if there are extrahepatic lesions.

In the comparison of CEUS results, the initial enhancement time was similar between the hNEN and HCC groups, but the washout to iso-enhancement time and washout to hypo-enhancement time in the hNEN group were lower than those in the HCC group. These findings indicated that the washout time in hNEN was earlier than that in HCC. The possible reason is that hNENs are transferred from different sources. The blood flow supply composition is different, which results in a different washout time than HCC. In addition, the proportions of CEUS characteristics, including enhancement of arterial phase, portal venous phase, and enhancement of late phase, enhancement forms, tumor vasculature, tumor necrosis, and capsule enhancement, were similar in the hNEN and HCC groups. Because the CEUS enhancement features of hNEN and HCC are similar, it is difficult to distinguish clinically. It is necessary to pay special attention to the difference of contrast agent washout time between hNEN and HCC.

Therefore, this study suggests two points in the ultrasound examination: (1) Intrahepatic lesions are multiple, uniform, and high echo and without peripheral acoustic halo; and (2) In the CEUS performance of intrahepatic lesions, the uniform high enhancement at arterial phase was found, and the washout is rapid. The diagnosis of hNEN needs to be considered.

Comparison of B-mode ultrasound and CEUS results among hNENs from different sources

hNEN can be transferred from multiple sites, including the pancreas, gastrointestinal tract, liver, lungs, adrenal glands, etc. Gastroenteropancreatic NENs are the main source of hNEN. Previous studies have revealed that although the treatment of hNEN is surgery, the efficacy and 5-year survival of different sources of hNEN are different. The survival time of hNEN patients from the gastrointestinal tract is significantly longer than that of hNEN patients from the pancreas. Ablation, embolism, and liver transplantation have different effects on hNEN from different sources. In addition, some patients with hNEN need to undergo surgery again to remove the primary lesion because they have misjudged the source of hNEN before surgery. Therefore, predicting the possible primary site of hNEN is important in guiding the patient's examination, such as finding the extrahepatic primary tumor and the treatment plan. This study analyzed B-mode ultrasound and CEUS results of hNENs from the gastrointestinal tract, pancreas, and other sites. We found there was no significant difference in B-mode ultrasound and CEUS characteristics of hNEN from different sources. All of them were mainly multiple hyperechoic lesions, and the CEUS showed uniformly high enhancement at arterial phase and rapid washout. This indicated that it is difficult to identify hNEN from different sources only by ultrasound. Therefore, this study suggests that when hNEN is suspected to be a metastatic tumor, the pathological examination should be performed to clarify the primary lesion to prevent missed diagnosis.
Comparison of B-mode ultrasound and CEUS results between hNET and hNEC groups

All hNENs have malignant potential\cite{34-37}, and hNEN can be divided into poorly differentiated hNEC (G3 grade) and highly differentiated hNET (G1 and G2 grade) according to its degree of differentiation\cite{38-40}. Most hNET patients require local therapy, and most hNEC patients require systemic therapy\cite{41-43}. Therefore, accurate identification of hNEC and hNET has great significance for clinical treatment of patients. In this study, the characteristics of B-mode ultrasound of hNEC and hNET groups were compared. It was found that both hNEC and hNET groups showed multiple solid lesions, uniform and high echo, no posterior echo attenuation, and peripheral acoustic halo. The difference was not obvious. When comparing CEUS features, it was found that the initial enhancement time, washout to iso-enhancement time, and washout to hypo-enhancement time were similar between the two groups. The proportions of enhancement at arterial phase, enhancement at late phase, tumor necrosis, and capsule enhancement were similar as well. However, there were differences in the enhancement level at the portal vein phase. It was low enhancement in the hNEC group, while some of the hNETs showed partial equal enhancement. In addition, the proportion of combined tumor vasculature in the hNEC group was larger than that in the hNET group. The possible reason is that hNEC is mainly supplied by arteries, and washout is fast at the portal venous phase. Compared with hNEC, hNET has more portal blood supply, which leads to equal enhancement at the portal venous phase. This is consistent with the biological behavior and malignancy of the tumor\cite{44}. It also explains to some extent why hNEC has a low enhancement level in the portal venous phase and a large proportion of tumor blood vessels\cite{45,46}. In addition, compared with hNET, hNEC has more non-uniform enhancement form at the portal venous phase, probably because hNEC is more prone to cystic lesions, resulting in non-uniform enhancement in CEUS\cite{15,47,48}. Therefore, when the CEUS result of hNEN is equal enhancement at the portal venous phase and uniform enhancement form, hNET can be considered. If there is low enhancement at the portal venous phase, non-uniform enhancement form, and combined tumor vasculature, hNEC should be highly suspected. Further medical treatment measures should be taken.

Limitations and perspectives

Because patients with hNEN are rare, there are currently few targeted studies about hNEN. The number of patients recruited in this study was limited. Patients with primary hNEN were not included in this study. There are further research plans to conduct a multi-center study to collect detailed data from hNEN patients to make the results more comprehensive.

Conclusion

In summary, this study compared the ultrasound characteristics between hNEN and HCC and among hNENs from different sources and malignant degrees. We found that compared with HCC, hNEN showed multiple intrahepatic lesions, uniform high echo, uniform high enhancement at the arterial phase, and rapid washout. The ultrasound characteristics of hNENs from different sources were similar. The low enhancement at portal venous phase, overall non-uniform enhancement form, and the proportion of combined tumor vasculature in hNEC were larger than those of hNET, indicating that hNEC and hNET can be initially identified based on CEUS results.
Table 1. Comparison of B-mode ultrasound characteristics between hepatic neuroendocrine neoplasm and hepatocellular carcinoma groups, n (%)

B-mode Ultrasound characteristics	hNEN group, n = 55	HCC group, n = 55	t/χ²	P value
Diameter in cm	4.32 ± 1.38	3.91 ± 1.27	1.621	0.108
Number of liver lesions				
Single	19 (34.5)	47 (85.5)	29.697	0.000
Multiple	36 (65.5)	8 (14.5)		
Lesion property				
Solid	50 (90.9)	47 (85.5)	0.785	0.376
Cyst	5 (9.1)	8 (14.5)		
Boundary				
Clear	29 (52.7)	40 (72.7)	4.705	0.030
Unclear	26 (47.3)	15 (27.3)		
Echo level				
High	28 (50.9)	13 (23.6)	9.498	0.023
Low	17 (30.9)	24 (43.6)		
Mixed	10 (18.2)	17 (30.9)		
Equal	0 (0.0)	1 (1.8)		
Echo uniformity				
Uniform	39 (70.9)	26 (47.3)	6.356	0.012
Non-uniform	16 (29.1)	29 (52.7)		
Posterior echo attenuation				
Yes	6 (10.9)	2 (3.6)	-	0.271
No	49 (89.1)	53 (96.4)		
Peripheral acoustic halo				
Yes	13 (23.6)	27 (49.1)	7.700	0.006
No	42 (76.4)	28 (50.9)		

1Represent Fisher's exact test. hNEN: Hepatic neuroendocrine neoplasm; HCC: Hepatocellular carcinoma.

Table 2. Comparison of contrast-enhanced ultrasound characteristics between hepatic neuroendocrine neoplasm group and hepatocellular carcinoma group, n (%)

Contrast-enhanced Ultrasound characteristics	hNEN group, n = 55	HCC group, n = 55	t/χ²	P value
Initial enhancement time in s	16.23 ± 5.29	16.52 ± 5.17	0.291	0.772
Washout to iso-enhancement time in s	26.91 ± 15.39	47.26 ± 16.84	6.615	0.000
Washout to hypo-enhancement time in s	59.84 ± 37.91	99.63 ± 61.82	5.092	0.000
Enhancement level at arterial phase				
High	53 (96.4)	55 (100)	2.037	0.154
Equal	2 (3.6)	0 (0)		
Low	0 (0)	0 (0)		
Enhancement level at portal venous phase				
Equal	7 (12.7)	11 (20.0)	1.063	0.303
Low	48 (87.3)	44 (80.0)		
Enhancement level at late phase				
Equal	2 (3.6)	1 (1.8)	0.343	0.558
Low	53 (96.4)	54 (98.2)		
Enhancement forms				
Fast forward and fast out	53 (96.4)	51 (92.8)	0.705	0.401
Equal/slow forward and fast out	2 (3.6)	4 (7.2)		
Enhancement forms				
Uniform	33 (60)	39 (70.9)	1.447	0.229
Non-uniform	22 (40)	16 (29.1)		
Tumor vasculature				
Yes	34 (61.8)	38 (69.1)	0.643	0.423
No	21 (38.2)	17 (30.9)		
Tumor necrosis				
Yes	16 (29.1)	19 (34.5)	0.377	0.539
No	39 (70.9)	36 (65.5)		
Capsule enhancement				
Yes	7 (12.7)	2 (3.6)	3.025	0.082
No	48 (87.3)	53 (96.4)		

hNEN: Hepatic neuroendocrine neoplasm; HCC: Hepatocellular carcinoma.
Table 3 Comparison of B-mode ultrasound characteristics transferred from different sources of hepatic neuroendocrine neoplasm, n (%)

B-mode Ultrasound characteristics	gastrointestinal tract, n = 20	Pancreas, n = 29	Other sites, n = 6	F_{X}^{2}	P value
Diameter in cm	3.24 ± 1.96	2.98 ± 1.95	3.41 ± 2.06	1.772	0.163
Number of liver lesions	Single	7 (35)	10 (34.5)	2 (33.3)	-
	Multiple	13 (65)	19 (65.5)	4 (66.7)	-
Lesion property	Solid	19 (95.0)	25 (86.0)	6 (100.0)	1.781
	Cyst	1 (5.0)	4 (13.8)	0 (0)	-
Boundary	Clear	10 (50.0)	15 (51.7)	4 (66.47)	-
	Unclear	10 (50.0)	14 (48.3)	2 (16.7)	-
Echo level	High	6 (30.0)	17 (58.6)	4 (66.7)	-
	Low	10 (50.0)	7 (24.1)	1 (33.3)	-
	Mixed	4 (20.0)	5 (17.2)	1 (33.3)	-
Echo uniformity	Uniform	15 (75.0)	20 (69.0)	4 (66.7)	-
	Non-uniform	5 (25.0)	9 (31.0)	2 (33.3)	-
Posterior echo attenuation	Yes	2 (10.0)	4 (13.8)	0 (0)	-
	No	18 (90.0)	25 (86.2)	6 (100.0)	-
Peripheral acoustic halo	Yes	16 (80.0)	21 (72.4)	5 (83.3)	-
	No	4 (20.0)	8 (27.6)	1 (16.7)	-

1Represent Fisher’s exact test.

Table 4 Comparison of contrast-enhanced ultrasound characteristics transferred from different sources of hepatic neuroendocrine neoplasm, n (%)

Contrast-enhanced ultrasound characteristics	Gastrointestinal tract, n = 20	Pancreas, n = 29	Other sites, n = 6	t/X^{2}	P value
Initial enhancement time in s	16.28 ± 5.82	16.83 ± 6.16	15.22 ± 4.92	1.305	0.372
Washout to iso-enhancement time in s	28.82 ± 12.38	27.29 ± 14.92	2.13 ± 11.23	0.924	0.477
Washout to hypo-enhancement time in s	64.93 ± 36.29	55.28 ± 31.83	58.21 ± 29.65	0.874	0.592
Enhancement level at arterial phase	High	19 (95.0)	28 (96.6)	6 (100.0)	0.335
	Equal	1 (5.0)	1 (3.4)	0 (0)	-
	Low	0 (0)	0 (0)	0 (0)	-
Enhancement level at portal venous phase	Equal	2 (10.0)	5 (17.2)	0 (0)	-
	Low	18 (90.0)	24 (82.8)	6 (100.0)	-
Enhancement level at late phase	Equal	1 (5.0)	1 (3.4)	0 (0)	-
	Low	19 (95.0)	28 (96.6)	6 (100.0)	-
Enhancement forms	Fast forward and fast out	19 (95.0)	28 (96.6)	6 (100.0)	-
	Equal/Slow forward and fast out	1 (5.0)	1 (3.4)	0 (0)	-
Enhancement forms	Uniform	13 (65.0)	16 (55.2)	4 (66.7)	-
	Non-uniform	7 (35.0)	13 (44.8)	2 (33.3)	-
Tumor vasculature	Yes	14 (70.0)	17 (58.6)	3 (50.0)	-
	No	6 (30.0)	12 (41.4)	3 (50.0)	-
Tumor necrosis	Yes	4 (20.0)	10 (34.5)	2 (33.3)	-
	No	16 (80.0)	19 (65.5)	4 (66.7)	-
Capsule enhancement	Yes	2 (10.0)	4 (13.8)	1 (16.7)	-
	No	18 (90.0)	25 (86.2)	5 (83.3)	-

1Represent Fisher’s exact test.
Table 5 Comparison of B-mode ultrasound characteristics between hepatic neuroendocrine tumor and hepatic neuroendocrine carcinoma groups, n (%)

B-mode Ultrasound characteristics	hNET group, n = 35	hNEC group, n = 20	t/χ²	P value
Diameter in cm	4.58 ± 2.91	5.08 ± 3.87	0.543	0.590
Number of liver lesions				
Single	12 (34.3)	7 (35.0)	0.003	0.957
Multiple	23 (65.7)	13 (65.0)		
Lesion property				
Solid	31 (88.6)	19 (95.0)	0.636	0.425
Cyst	4 (11.4)	1 (5.0)		
Boundary				
Clear	18 (51.4)	11 (55.0)	0.065	0.799
Unclear	17 (48.6)	9 (45.0)		
Echo level				
High	19 (54.3)	9 (45.0)	0.443	0.801
Low	10 (28.6)	7 (35.0)		
Mixed	6 (17.1)	4 (20.0)		
Equal	0 (0)	0 (0)		
Echo uniformity	Uniform	25 (71.4)	0.013	0.911
	Non-uniform	10 (28.6)		
		6 (30.0)		
Posterior echo attenuation				
Yes	5 (14.3)	1 (5.0)	-	0.399
No	30 (85.7)	19 (95.0)		
Peripheral acoustic halo				
Yes	9 (25.7)	4 (20.0)	-	0.749
No	26 (74.3)	16 (80.0)		

1Represent Fisher’s exact test. hNET: Hepatic neuroendocrine tumor; hNEC: Hepatic neuroendocrine carcinoma.

Table 6 Comparison of contrast-enhanced ultrasound characteristics between hepatic neuroendocrine tumor and hepatic neuroendocrine carcinoma groups, n (%)

Contrast-enhanced Ultrasound characteristics	hNET group, n = 35	hNEC group, n = 20	t/χ²	P value	
Initial enhancement time in s	16.83 ± 5.08	16.28 ± 4.93	0.834	0.854	
Washout to iso-enhancement time in s	30.84 ± 10.38	27.68 ± 9.74	1.856	0.804	
Washout to hypo-enhancement time in s	65.28 ± 37.84	51.72 ± 31.85	1.152	0.833	
Enhancement level at arterial phase					
High	33 (94.3)	20 (100.0)	1.186	0.276	
Equal	2 (5.7)	0 (0)			
Low	0 (0)	0 (0)			
Enhancement level at portal venous phase					
Equal	7 (20.0)	0 (0)	4.583	0.032	
Low	28 (80.0)	20 (100.0)			
Enhancement level at late phase					
Equal	1 (2.9)	1 (5.0)	-	1.000	
Low	34 (97.1)	19 (95.0)			
Enhancement forms	Fast forward and fast out	34 (91.1)	19 (95.0)	- 1.000	
Equal/slow forward and fast out	1 (2.9)	1 (5.0)			
Enhancement forms	Uniform	28 (80.0)	5 (25.0)	16.042	0.000
Non-uniform	7 (20.0)	15 (75.0)			
Tumor vasculature	Yes	15 (42.9)	19 (95.0)	14.661	0.000
No	20 (57.1)	1 (5.0)			
Tumor necrosis	Yes	10 (28.6)	6 (30.0)	0.013	0.911
No	25 (71.4)	14 (70.0)			
Capsule enhancement	Yes	6 (17.1)	1 (5.0)	- 0.402	
No	29 (82.9)	19 (95.0)			

1Represent Fisher’s exact test. hNET: Hepatic neuroendocrine tumor; hNEC: Hepatic neuroendocrine carcinoma.

ARTICLE HIGHLIGHTS

Research background

Hepatic neuroendocrine neoplasm (hNEN) is a rare tumor clinically. It is important to identify...
the source and malignant degree of hNEN and distinguish it from hepatocellular carcinoma (HCC). Imaging examination is required for the initial screening of hNEN. However, there is a lack of data regarding imaging diagnosis of hNEN.

Research motivation
Because of the lack of imaging examination experience, the screening and identification of hNEN is difficult. Research has revealed that there are some differences among hNEN with different sources and malignant degrees screened by ultrasound and contrast-enhanced ultrasound (CEUS). By analyzing the characteristics of ultrasound and CEUS, our study hopes to provide more helpful information in the diagnosis of hNEN.

Research objectives
In this study, the ultrasound performance between hNEN and HCC and data of hNEN with different sources and malignant degrees were compared. The purpose of this study was to improve the accuracy of the identification of hNEN and provide useful information for its clinical diagnosis.

Research methods
A total of 55 patients with hNEN were recruited, the hNEN group. There were 35 cases in the hepatic neuroendocrine tumor (hNET) group, and 20 cases in the neuroendocrine carcinoma (hNEC) group. About 55 patients with HCC were recruited as the HCC group. The characteristic differences of B-mode ultrasound and CEUS between hNEN and HCC, hNEN from different sources, and between hNEC and hNET were compared and analyzed.

Research results
Compared with the HCC group, the proportions of multiple liver lesions, unclear borders, and high echo lesions were higher and the proportions of non-uniform echo and peripheral acoustic halo were lower in the hNEN group. In the NEN group, the washout to iso-enhancement time and the washout to hypo-enhancement time were lower than those of the HCC group. The proportion of low enhancement of portal venous phase, non-uniform enhancement forms, and combined tumor vasculature in the hNEC group was greater than that in the hNEN group.

Research conclusions
Compared with HCC, the ultrasound performance of hNEN showed more intrahepatic lesions, uniform high echo, uniform high enhancement at arterial phase, and rapid washout. Compared with hNET, the CEUS characteristics of hNEC are low enhancement of portal venous phase, non-uniform enhancement forms, and combined tumor vasculature.

Research perspectives
To expand this research, future studies should include more hospitals in order to collect detailed data from more hNEN patients. The ultrasound results of primary hNEN also need to be analyzed further to provide stronger evidence for clinical diagnosis.

REFERENCES

1. Yang K, Cheng YS, Yang JJ, Jiang X, Guo JX. Primary hepatic neuroendocrine tumor with multiple liver metastases: A case report with review of the literature. World J Gastroenterol 2015; 21: 3132-3138 [PMID: [25780316 DOI: 10.3748/wjg.v21.i10.3132]

2. Tamburrino D, Spoletini G, Partelli S, Muffatti F, Adamenko O, Crippa S, Falconi M. Surgical management of neuroendocrine tumors. Best Pract Res Clin Endocrinol Metab 2016; 30: 93-102 [PMID: [26971846 DOI: 10.1016/j.bcp.2015.10.003]

3. Ortiz J, Balasubramanian M, Brown T, Cetrulo L. Liver transplant for neuroendocrine tumor metastatic to the liver: literature review and report of extirpation at 16-year recurrence. Exp Clin Transplant 2015; 13: 86-91 [PMID: [25343464 DOI: 10.6002/ect.2013.0215]

4. Haug AR, Cindea-Drimus R, Auernhammer CJ, Reineke M, Beuschlein F, Wängler B, Uebelis C, Schmidt GP, Spitzweg C, Bartenstein P, Hacker M. Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology 2014; 270: 517-525 [PMID: [24056402 DOI: 10.1148/radiol.13122501]

5. Wang J, Li J, Wu JX. Diagnosis and therapy of primary hepatic neuroendocrine carcinoma: clinical analysis of 10 cases. Asian Pac J Cancer Prev 2014; 15: 2541-2546 [PMID: [24781861 DOI: 10.7314/APJCP.2014.15.6.2541]

6. Zhao ZM, Wang J, Uguwuou UC, Wang L, Townsend JP. Primary hepatic neuroendocrine carcinoma: report of two cases and literature review. BMC Clin Pathol 2016; 18: [3 [PMID: [29507528]

7. Beard RE, Finkelstein SD, Borhani AA, Minervini MI, Marsh JW. A massive hepatic tumor demonstrating hepatocellular, cholangiocarcinoma and neuroendocrine lineages: A case report and review of the literature. Int J Surg Case Rep 2017; 37: 26-32 [PMID: [28623758 DOI: 10.1016/j.ijscr.2017.05.039]

8. Manta R, Nardi E, Pagano N, Ricci C, Sica M, Castellani D, Bertani H, Piccoli M, Mullineris B, Tringali A, Marin F, Germani U, Villanacci V, Casadei R, Matignani M, Conigliaro R, Bassotti G, Zullo A. Pre-operative Diagnosis of Pancreatic Neuroendocrine Tumors with Endoscopic Ultrasoundography and Computed Tomography in a Large Series. J Gastrointestin Liver Dis 2016; 25: 317-321 [PMID: [27689195 DOI: 10.1148/radiol.14132541]

9. Hoeffel C, Job L, Ladam-Marcus V, Vitré F, Cadiot G, Marcus C. Detection of hepatic metastases from carcinoid tumor: prospective evaluation of contrast-enhanced ultrasonography. Dig Dis Sci 2009; 54: 2040-2046 [PMID: [19034651 DOI: 10.1007/s10620-008-0570-9]
Kang XN et al. Ultrasound characteristics of hepatic neuroendocrine neoplasm

10 Kim TK, Jang HJ. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis. World J Gastroenterol 2014; 20: 3590-3596. [PMID: [24707142 DOI: 10.3748/wjg.v20.i13.3590]

11 Bosman FT. WHO Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer 2010;

12 Nomura Y, Nakashima A, Okita J, Ogawa A, Fukutomi S, Yamaguchi R, Kusanagi H, Kage M, Okuda K, Yano H. Clinicopathological features of neoplasms with neuroendocrine differentiation occurring in the liver. J Clin Pathol 2017; 70: 563-570. [PMID: [27881473 DOI: 10.1111/jcpp.2017.01401]

13 Sahai S, Scherf et al. Ardon D, Chapio J, Zhao Y, Sohn JH, Fleckenstein F, Lin M, Geschwind JF, Duran R. Imaging Biomarkers of Tumor Response in Neuroendocrine Liver Metastases Treated with Transarterial Chemoembolization: Can Enhancing Tumor Burden of the Whole Liver Help Predict Patient Survival? Radiology 2017; 283: 883-894. [PMID: [27831830 DOI: 10.1148/radiol.2016160838]

14 Li R, Tang CL, Yang D, Zhang XH, Cai P, Ma KS, Guo DY, Ding SY. Primary hepatic neuroendocrine tumors: clinical characteristics and imaging features on contrast-enhanced ultrasound and computed tomography. Abdom Radiol (NY) 2016; 41: 1767-1775. [PMID: [27155608 DOI: 10.1007/s00261-016-0770-3]

15 Li W, Zhang BW, Wang Z, Liao B, Hong LY, Xu M, Lin XN, Xie XY, Lu MD, Chen LD, Wang W. Case Report of Contrast-Enhanced Ultrasound Features of Primary Hepatic Neuroendocrine Tumor: A CARE-Compliant Article. Medicine (Baltimore) 2016; 95: e5450. [PMID: [27227910 DOI: 10.1097/MD.0000000000003450]

16 Lekht I, Nayyar M, Luu B, Guichet PL, Ho J, Ter-Oganesyan R, Katz M, Gulati M. Intra-arterial contrast-enhanced ultrasound (IA CEUS) for localization of hepatocellular carcinoma (HCC) supply during transarterial chemoembolization (TACE): a case series. Abdom Radiol (NY) 2017; 42: 1400-1407. [PMID: [28600548 DOI: 10.1007/s00261-016-1016-0]

17 Kim TK, Noh SY, Wilson SR, Kono Y, Piscaglia F, Jang HJ, Lyschik A, Dietrich CF, Willmann JK, Vezedidis A, Sirlin CB. Contrast-enhanced ultrasound (CEUS) liver imaging reporting and data system (Li-RADS) 2017 - a review of important differences compared to the CT/MRI system. Clin Mol Hepatol 2017; 23: 280-289. [PMID: [28911220 DOI: 10.3358/cmh.2017.0007]

18 Kim DW, Talati C, Kim R. Hepatocellular carcinoma (HCC): beyond Sorafenib-chemotherapy. J Gastrointest Oncol 2017; 8: 256-265. [PMID: [28480065 DOI: 10.21037/jgo.2016.09.07]

19 Zhang X, Ma L, Bao H, Zhang J, Wang Z, Gong P. Clinical, pathological and prognostic characteristics of gastroenteropancreatic neuroendocrine neoplasms in China: a retrospective study. BMC Endocr Disord 2014; 14: 54. [PMID: [25001493 DOI: 10.1186/1472-6823-14-54]

20 Mayo SC, de Jong MC, Palitano C, Clarey BM, Reddy SK, Gamblin TC, Celinski SA, Kooby DA, Staley CA, Stokes JB, Chu CK, Ferreiro A, Schalick RD, Choti MA, Mentha G, Strub J, Bauer TW, Adams RB, Aldighetti L, Capussotti L, Pavlik TM. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis. Ann Surg Oncol 2010; 17: 3129-3136. [PMID: [20858797 DOI: 10.1245/s10434-010-0871-1]

21 Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic Well-Differentiated Grade 3 Neuroendocrine Tumors: Review and Position Statement. Oncologist 2016; 21: 1191-1199. [PMID: [27401895 DOI: 10.1634/theoncologist.2015-0476]

22 Valadares LJ, Costa Junior W, Ribeiro HS, Diniz AL, Coimbra FR, Fujimura PM, Leite AF. Resection of liver metastasis from neuroendocrine tumors: evaluation of results and prognostic factors. Rev Col Bras Cir 2015; 42: 25-31. [PMID: [25992967 DOI: 10.1590/0100-6991201500100006]

23 Watson GA, Ahmed Y, Piccolo S, Chat S, Cobbe S, Mahony C, Crotty J, Hallsy MJ, Khiey P, Iapadela OB, Healy V, Osman N, Gupta RK. Unusual Sites of High-Grade Neuroendocrine Carcinomas: A Case Series and Review of the Literature. Am J Case Rep 2018; 19: 710-723. [PMID: [29915166 DOI: 10.12659/AJCR.908953]

24 Fiore F, Del Prete M, Franco R, Marrotta V, Rambundo V, Marcello F, Di Sarno A, Luca di Roseto C, Colao A, Faggiano A. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors. Endocrine 2014; 47: 177-182. [PMID: [24388266 DOI: 10.1007/s12020-013-0308-0]

25 Meerson K, Lewandowski DJ, Ulcay MF, Riaz A, Ryu RK, Sau T, Gupta B, Meloanders P, Miller FH, Yaghmai V, Gates VL, Atassi B, Newman S, Omary RA, Benson AB, Salem R. Radioembolization for liver metastasis of neuroendocrine carcinoma: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys 2012; 83: 887-894. [PMID: [22170720 DOI: 10.1016/j.ijrobp.2011.07.041]

26 de Herder WW, Mazzufero V, Tavechio L, Wiedemann B. Multidisciplinary approach for the treatment of neuroendocrine tumors. J Clin Oncol 2010; 28: 83-846. [PMID: [21302064 DOI: 10.1007/10380916100960357]

27 Shin Y, Ha SY, Hyeon J, Lee B, Lee J, Jang KT, Kim KM, Park YS, Park CK. Gastroenteropancreatic Neuroendocrine Tumors with Liver Metastases in Korea: A Clinicopathological Analysis of 72 Cases in a Single Institute. Cancer Res Treat 2015; 47: 738-746. [PMID: [25677852 DOI: 10.4143/crt.2014.224]

28 Iwasaki M, Tsukuda K, Jinnai H, Komatsubara T, Arisaka T, Tsunemi M, Nakano M, Iijima M, Hiraishi H. Multimodal Treatment of Vasoactive Intestinal Polypeptide-producing Pancreatic Neuroendocrine Tumors with Liver Metastases. Intern Med 2017; 56: 517-522. [PMID: [28250297 DOI: 10.2169/internalmedicine.56.7512]

29 Pascuettu S, femia D, Lo Russo G, Ortolani S, Milione M, Maccauro M, Vernieri C, Prinzi N, Concas L, Leuzzi L, De Braud F, Buzzoni R. Update on medical treatment of small intestinal neuroendocrine tumors. Expert Rev Anticancer Ther 2016; 16: 969-976. [PMID: [27353322 DOI: 10.1080/14772558.2016.1207534]

30 de Baere T, Deschamps F, Tselias L, Ducrue M, Planchard D, Pearson E, Berdelou A, Lebouillex S, Elias D, Bauden E. GEP-NETs update: Interventional radiology: role in the treatment of liver metastases from GEP-NETS. Eur J Endocrinol 2015; 172: R151-R166. [PMID: [25358517 DOI: 10.1536/eje-14-0630]

31 Geramizadeh B, Kashkooie A, Malekhosseini SA. Liver Metastasis of Gastrointestinal Neuroendocrine Tumors: A Single Center Experience. Hepat Mon 2016; 16: e37293. [PMID: [27330538 DOI: 10.5812/hepatmon.37293]

32 Konukiewitz B, Jesinghaus M, Steiger K, Schlitter AM, Kasajima A, Sipos B, Zamboni G, Weichert W, Pflä N, Köppl G. Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum Pathol 2018; 77: 70-79. [PMID: [29596894 DOI: 10.1016/j.humpath.2018.03.018]

33 Cavalcio F, Rausa E, Corte D, Nicolini AF, Massironi S. Is there still a role for the hepatic locoregional
Ultrasound characteristics of hepatic neuroendocrine neoplasm

Kang XN et al.

May 15, 2019 Volume 11 Issue 5

WJGO | https://www.wjgnet.com

10.1016/j.canrad.2009.06.017

10.1007/900000000000030

10.1159/000335597

10.1107/0003-5058-6-1-203

10.1016/j.yasad.2014.05.003

10.1097/MPA.0b013e3181f1124e

10.25579/900000000000033

10.1016/j.yasad.2014.05.003

10.1016/j.canrad.2009.06.017

10.1111/ajt.13831

10.1245/s10434-014-3523-y

10.1007/s00270-016-1478-z

10.1186/s40644-015-0046-0

10.1097/0000000000000030

10.1111/j.1365-2076.2012.10883.x

10.1111/j.1365-2076.2012.10883.x

10.1136/jgc-2014-129953

10.4103/0973-1482.151532

10.1007/s12328-015-0609-4

10.1159/000454761

10.1016/j.pan.2013;122-126

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1
