ZEROS OF SECTIONS OF EXPONENTIAL SUMS

PAVEL BLEHER AND ROBERT MALLISON, JR.

Abstract. We derive the large n asymptotics of zeros of sections of a generic exponential sum. We divide all the zeros of the n-th section of the exponential sum into “genuine zeros”, which approach, as $n \to \infty$, the zeros of the exponential sum, and “spurious zeros”, which go to infinity as $n \to \infty$. We show that the spurious zeros, after scaling down by the factor of n, approach a “rosette”, a finite collection of curves on the complex plane, resembling the rosette. We derive also the large n asymptotics of the “transitional zeros”, the intermediate zeros between genuine and spurious ones. Our results give an extension to the classical results of Szegő about the large n asymptotics of zeros of sections of the exponential, sine, and cosine functions.

1. Introduction

We will be interested in this paper in the distribution of zeros of sections of exponential sums. We consider the exponential sum,

$$f(z) = \sum_{j=1}^{M} c_j e^{\lambda_j z},$$

where $c_j, \lambda_j \in \mathbb{C}$, and its Taylor series,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k.$$

The n-th section of $f(z)$ is the finite Taylor series,

$$f_n(z) = \sum_{k=0}^{n} a_k z^k.$$

The problem is to find the distribution of zeros of f_n, $f_n(z_k) = 0$, as $n \to \infty$. This problem was posed and solved for $f(z) = e^z$ in the classical paper of Szegő [18]. Szegő proved that as $n \to \infty$, the rescaled zeros,

$$\zeta_k = \frac{z_k}{n},$$

approach the curve,

$$\Gamma = \{ \zeta : |e^{1-\zeta}| = 1, \quad |\zeta| \leq 1 \},$$

on the complex plane, and the limiting distribution of the zeros on Γ is the measure of the maximal entropy, the preimage of the uniform measure on the circle under the Riemann map. Precise asymptotics of the zeros of sections of e^z and the sections themselves were obtained in the works of Buckholtz [3], Newman and Rivlin [13], Carpenter, Varga, and Waldvogel.
The absence of zeros in some parabolic domains on the complex plane was established in the works of Newman and Rivlin [13] and Saff and Varga [16]. For connections of zeros of sections of e^z to the Riemann zeta-function see the works of Conrey and Ghosh [5] and Yildirim [22].

Szegő also found the limiting distribution of the sections zeros for $f(z) = \cos z$ and $f(z) = \sin z$. In this case a part of the zeros of f_n approaches the zeros of f as $n \to \infty$, but there is another part of the zeros, the “spurious zeros”, which go to infinity as $n \to \infty$. Szegő proved that as $n \to \infty$ the rescaled spurious zeros approach a limiting curve and have a limiting distribution on this curve. Close results were obtained by Dieudonné [6], by a different method. Detailed asymptotics of the zeros of sections of $\cos z$ and $\sin z$ were obtained in the works of Kappert [10] and Varga and Carpenter [20], [21]. See also the review papers of Varga [19], Ostrovskii [14], and Zemyan [23]. The distribution of zeros of analytic functions is a classical area of complex analysis, and many results concerning the distribution of zeros of analytic functions are discussed in the monograph of Levin [12]. The distribution of sections of analytic functions of the Mittag-Leffler type is studied in the work of Edrei, Saff, and Varga [7].

Our main goal in this work is to obtain asymptotics of zeros of sections of exponential sums. First we discuss, in Section 2, the asymptotics of large zeros of exponential sums themselves. The rest of the paper is devoted to the asymptotics of zeros of the sections of exponential sums. As an example, let us consider the exponential sum,

$$f(z) = 3e^{(8+2i)z} + (-9 + 12i)e^{(4+7i)z} + (2 + i)e^{(-7+4i)z} - 5e^{(-6-6i)z} + (6 - 7i)e^{(1-8i)z} + (8 - 5i)e^{(6-4i)z} + (3 - 9i)e^{(4+4i)z} + 2ie^{(-2-4i)z}.$$

The zeros of the section of this function for $n = 250$ are depicted on Figure 1. The zeros form a shape resembling a rosette. In this paper we obtain the large n asymptotics of the zeros of exponential sums, which provides us with explicit equations for different parts of the rosette.
We divide the zeros of \(f_n \) into four classes: (1) finite zeros, (2) zeros of the main series, (3) spurious zeros, and (4) transitional zeros. They are described as follows:

- **The finite zeros** are the ones that lie in a finite disk, \(D(0, R_0) = \{ z \in \mathbb{C} : |z| \leq R_0 \} \).

- **The zeros of the main series** are located in a small neighborhood of the rays, on the intervals \(R_0 \leq |z| \leq nr_c(j, n) - R_1, R_1 > 0, \) where \(j \) is the number of the ray, and \(\lim_{n \to \infty} r_c(j, n) = r_c(j) > 0 \) is the critical radius on the \(j \)-th ray. We derive the angular coordinate of the \(j \)-th ray and a transcendental equation, which determines \(r_c(j) \) uniquely.

- As \(n \to \infty \), both the finite zeros and the zeros of the main series converge to the zeros of the exponential sum, \(f(z) \). We call them the genuine zeros of \(f_n \). In addition to them, there are spurious zeros of \(f_n \), which go to infinity as \(n \to \infty \). If we scale down the spurious zeros by the factor of \(n \), they approach to some curves \(G_j \). We derive the equations of the curves \(G_j \). As a better approximation to the spurious zeros, we construct curves \(G_j^n \), which approach \(G_j \) as \(n \to \infty \), and such that the scaled down spurious zeros lie in the \(O(n^{-2}) \)-neighborhood of \(G_j^n \).

- **The transitional zeros** of \(f_n \) are the intermediate ones, located near the triple points on Figure 1, where the zeros of the main series and the spurious zeros merge. We derive an equation, which gives the asymptotic location of the transitional zeros. This is determined by zeros of a three term exponential sum.

We derive the asymptotics of the zeros of \(f_n \), as \(n \to \infty \), in Sections 4–9 below. In Appendices A and B we obtain uniform asymptotics of zeros of the sections of \(e^{\eta \zeta} \), and of the sections themselves, in a fixed neighborhood of the point \(\zeta = 1 \). These uniform asymptotics are used in the main part of the paper to derive the asymptotics of the spurious zeros of \(f_n \).

We would like to mention here the work of Kuijlaars and McLaughlin [11], where the Riemann-Hilbert approach to distribution of zeros of Laguerre polynomials with nonclassical parameters is developed. The distribution of zeros in [11] has many similarities to the distribution of zeros of exponential sums. Also we would like to mention the work of Bergkvist and Rullgard [2], in which the distribution of zeros of polynomial eigenfunctions of some differential equations of higher order was studied. The distribution of zeros in [2] seems to have similarities to the distribution of zeros of sections of exponential sums as well.

2. Zeros of exponential sums

We consider the exponential sum,

\[
f(z) = \sum_{j=1}^{M} c_j e^{\lambda_j z}, \quad c_j \neq 0, \tag{2.1}
\]

where we assume that the numbers \(\lambda_j \) satisfy the following condition:

Condition P. The numbers \(\lambda_j, j = 1, \ldots, m, m \geq 3, \) are the vertices of a convex \(m \)-gon \(P_m \) on the complex plane, and the numbers \(\lambda_j, j = m + 1, \ldots, M, \) lie strictly inside of \(P_m \).

The polygon \(P_m \) is the convex hull of the the numbers \(\lambda_j, j = 1, \ldots, M, \) on the complex plane, and condition P restricts the remaining numbers \(\lambda_j, j = m + 1, \ldots, M, \) to lie strictly inside of \(P_m \) (not on the sides of \(P_m \)). For the sake of definiteness, we will assume that the
vertices $\lambda_1, \ldots, \lambda_m$ are enumerated counterclockwise along P_m. Figure 2 shows the convex hull for exponential sum (1.6).

![Figure 2. The convex hull for exponential sum (1.6), with $\lambda_1 = 8 + 2i$, $\lambda_2 = 4 + 7i$, $\lambda_3 = -7 + 4i$, $\lambda_4 = -6 - 6i$, $\lambda_5 = 1 - 8i$, $\lambda_6 = 6 - 4i$, $\lambda_7 = 4 + 4i$, $\lambda_8 = -2 - 4i$.](image)

In this section we describe the asymptotics of zeros of $f(z)$ on the complex plane as $|z| \to \infty$. We begin with a description of sectors free of large zeros of f. Define

$$\theta_{jk} = -\arg(\lambda_k - \lambda_j) + \frac{\pi}{2} \mod 2\pi. \quad (2.2)$$

Partition the complex plane into the sectors,

$$U_j = \{z = re^{i\theta} : \theta_{j,j+1} < \theta < \theta_{j-1,j} \mod 2\pi, \ r > 0\}, \quad j = 1, \ldots, m, \quad (2.3)$$

where we take the convention that

$$\theta_{m,m+1} = \theta_{01} = \theta_{m1}. \quad (2.4)$$

The notation $\theta_{j,j+1} < \theta < \theta_{j-1,j} \mod 2\pi$ means that θ belongs to the interval from $\theta_{j,j+1}$ to $\theta_{j-1,j}$ on the unit circle in the positive direction. Define also the rays,

$$S_{j,j+1} = \{z = re^{i\theta} : \theta = \theta_{j,j+1}, \ r \geq 0\}, \quad j = 1, \ldots, m, \quad (2.5)$$

so that U_j is the sector between the rays $S_{j,j+1}$ and $S_{j-1,j}$. Observe that the rays $S_{j,j+1}$ are orthogonal to the sides of the complex conjugate convex hull, $\overline{P_m}$, of the numbers λ_j. Figure 3 shows the complex conjugate convex hull and the rays $S_{j,j+1}$ for exponential sum (1.6).

For a given $j = 1, \ldots, m$, we write

$$\sum_{k=1}^{M} c_k e^{\lambda_k z} = c_j e^{\lambda_j z} \left[1 + \sum_{k: k \neq j} \frac{c_k}{c_j} e^{(\lambda_k - \lambda_j)z} \right]. \quad (2.6)$$

We will describe a region where the sum in the brackets on the right is small and, as a result, $f(z) \neq 0$.
Figure 3. The complex conjugate convex hull for exponential sum (1.6), and the corresponding rays $S_{j,j+1}$, $j = 1, \ldots, 6$.

Proposition 2.1. Let us fix θ in the interval
$$\theta_{j,j+1} < \theta < \theta_{j-1,j} \mod 2\pi.$$ (2.7)
Then for any $k \neq j$,
$$\lim_{r \to \infty} e^{(\lambda_k - \lambda_j)z} = 0, \quad z = re^{i\theta}. \quad (2.8)$$

Proof. Since λ_{j-1}, λ_j, λ_{j+1} are the vertices of the convex hull of the numbers λ_k, we have that
$$\arg(\lambda_{j+1} - \lambda_j) \leq \arg(\lambda_k - \lambda_j) \leq \arg(\lambda_{j-1} - \lambda_j) \mod 2\pi,$$ (2.9)
hence
$$-\theta_{j,j+1} + \frac{\pi}{2} \leq \arg(\lambda_k - \lambda_j) \leq -\theta_{j,j+1} + \frac{3\pi}{2} \mod 2\pi.$$ (2.10)
By adding this inequality and (2.7), we obtain that
$$\frac{\pi}{2} < \arg(\lambda_k - \lambda_j)z < \frac{3\pi}{2} \mod 2\pi,$$ (2.11)
which implies (2.8). Proposition 2.1 is proved.

For the future use, observe that if $k \neq j - 1, j, j + 1$, then inequality (2.9) is strict and hence there exists $\varepsilon > 0$ such that
$$\frac{\pi}{2} + \varepsilon < \arg(\lambda_k - \lambda_j)z < \frac{3\pi}{2} - \varepsilon.$$ (2.12)
This gives that for some $c > 0$,
$$e^{(\lambda_k - \lambda_j)z} = O(e^{-c|z|}), \quad |z| \to \infty \quad k \neq j - 1, j, j + 1,$$ (2.13)
uniformly in the closed sector \overline{U}_j. From (2.3) we obtain that for some $\varepsilon > 0$,
$$\frac{\pi}{2} < \arg(\lambda_{j+1} - \lambda_j)z < \frac{3\pi}{2} - \varepsilon, \quad z \in U_j,$$ (2.14)
and from (2.5), that
\[
\arg (\lambda_{j+1} - \lambda_j)z = \frac{\pi}{2}, \quad z \in S_{j,j+1}.
\] (2.15)

This gives that for some \(c > 0\),
\[
e^{(\lambda_{j+1} - \lambda_j)z} = O(e^{-cd_{j,j+1}(z)}), \quad d_{j,j+1}(z) \equiv \text{dist}(z, S_{j,j+1}) \to \infty; \quad z \in U_j.
\] (2.16)

Similarly,
\[
e^{(\lambda_{j-1} - \lambda_j)z} = O(e^{-cd_{j-1,j}(z)}), \quad d_{j-1,j}(z) \to \infty; \quad z \in U_j.
\] (2.17)

Estimates (2.13), (2.16), and (2.17) imply that there exist large numbers \(r_0, R_0 > 0\) such that for \(j = 1, \ldots, m\),
\[
\sum_{k: k \neq j} \left| \frac{c_k}{c_j} e^{(\lambda_k - \lambda_j)z} \right| < \frac{1}{2}, \quad z \in U_j(r_0, R_0),
\] (2.18)

where
\[
U_j(r_0, R_0) = \{ z \in U_j : |z| > R_0, \ \text{dist}(z, S_{j,j+1}) > r_0, \ \text{dist}(z, S_{j-1,j}) > r_0 \}.
\] (2.19)

We will call \(U_j(r_0, R_0)\) the \(j\)-th one-term domination domain. When \(z \in U_j(r_0, R_0)\), the term \(c_j e^{\lambda_j z}\) dominates in \(f(z)\) the other terms. Define
\[
U(r_0, R_0) = \bigcup_{j=1}^{m} U_j(r_0, R_0).
\] (2.20)

Define also
\[
S_{j,j+1}(r_0, R_0) = \{ z : |z| > R_0, \ \text{dist}(z, S_{j,j+1}) \leq r_0 \}, \quad j = 1, \ldots, m.
\] (2.21)

We will assume that \(R_0\) is big enough so that
\[
S_{j,j+1}(r_0, R_0) \cap S_{j-1,j}(r_0, R_0) = \emptyset, \quad j = 1, \ldots, m.
\] (2.22)

We will call \(S_{j,j+1}(r_0, R_0)\) the \((j, j+1)\)-st two-term domination strip. Define
\[
S(r_0, R_0) = \bigcup_{j=1}^{m} S_{j,j+1}(r_0, R_0).
\] (2.23)

Proposition 2.2. (Absence of zeros of \(f\) in the one-term domination domains). There exists \(r_0, R_0 > 0\) such that
\[
\sum_{k=1}^{M} c_k e^{\lambda_k z} \neq 0, \quad z \in U(r_0, R_0).
\] (2.24)

Proof. The proof follows from (2.6) and (2.18). \(\square\)

Proposition 2.2 implies that all the large zeros of \(f\) are concentrated in the two-term domination strips, \(S_{j,j+1}(r_0, R_0)\). To describe these zeros consider the two-term equation,
\[
f_0(z) \equiv c_j e^{\lambda_j z} + c_{j+1} e^{\lambda_{j+1} z} = 0.
\] (2.25)

By the linear change of variable,
\[
u = \frac{(\lambda_{j+1} - \lambda_j)z}{2t} + \frac{1}{2t} \log \frac{c_{j+1}}{c_j},
\] (2.26)
we reduce \(f_0 \) to
\[
 f_0(z) = 2\sqrt{c_jc_{j+1}} e^{(\lambda_{j+1}+\lambda_j)z/2} \cos u.
\] (2.27)
Therefore, the general solution to equation (2.25) is \(u = \frac{\pi}{2} + \pi l \), or
\[
 z = z^0(j, j + 1; l) \equiv \alpha_{j,j+1} + l\tau_{j,j+1}, \quad n \in \mathbb{Z},
\] (2.28)
where
\[
 \alpha_{j,j+1} = \frac{\pi i - \log \frac{\epsilon_{j+1}}{\epsilon_j}}{\lambda_{j+1} - \lambda_j}, \quad \tau_{j,j+1} = \frac{2\pi i}{\lambda_{j+1} - \lambda_j}.
\] (2.29)

Observe that
\[
 \arg \tau_{j,j+1} = \theta_{j,j+1}.
\] (2.30)

Now we can describe the zeros of \(f \) in the two-term domination strips. We will use the following general proposition. Denote
\[
 D(z_0, r) = \{ z : |z - z_0| < r \}, \quad r > 0.
\] (2.31)

Proposition 2.3. Let \(f(z) = f_0(z) + f_1(z) \) where \(f_0, f_1 \) are analytic functions in the disk \(D(z_0, r) \), \(r > 0 \). Suppose that
- \(f_0(z_0) = 0 \),
- \(|f_0(z)| \geq A|z - z_0|, \forall z \in D(z_0, r) \), where \(A > 0 \),
- \(|f_1(z)| \leq \varepsilon, z \in D(z_0, r), \varepsilon > 0 \).

Then if \(r_0 \equiv \frac{2\varepsilon}{A} < r \), then there is a unique simple zero of \(f \) in the disk \(D(z_0, r_0) \).

Proof. For \(|z - z_0| = r_0, |f_0(z)| \geq 2\varepsilon > |f_1(z)| \), hence \(f \) has a unique simple zero in \(D(z_0, r_0) \) by the Rouché theorem. Proposition 2.3 is proved. \(\square \)

With the help of Proposition 2.3 we prove the following result.

Proposition 2.4. (Zeros of \(f \) in the two-term domination strips). There exist \(r_0, R_0 > 0 \) such that all zeros \(z_k \) of exponential sum (2.7) in \(S_{j,j+1}(r_0, R_0) \) are simple and close to zeros (2.28), so that for some \(l = l(k) > 0 \),
\[
 |z_k - z^0(j, j + 1; l)| = O(e^{-c|z|}), \quad c > 0,
\] (2.32)
and for each \(z^0(j, j + 1; l) \in S_{j,j+1}(r_0, R_0) \), there is a zero \(z_k \) of \(f \) satisfying (2.32).

Proof. From (2.13) and (2.17) we obtain that if \(z \in S_{j,j+1}(r_0, R_0) \), then for some \(c > 0 \),
\[
 e^{(\lambda_k - \lambda_j)z} = O(e^{-c|z|}), \quad e^{(\lambda_k - \lambda_{j+1})z} = O(e^{-c|z|}), \quad |z| \to \infty; \quad k \neq j, j + 1.
\] (2.33)

Let us write equation \(f(z) = 0 \) as
\[
 f_0(z) + f_1(z) = 0, \quad f_1(z) = \sum_{k \neq j,j+1} c_k e^{\lambda_k z}.
\] (2.34)

Then (2.33) implies that if \(z \in S_{j,j+1}(r_0, R_0) \), then
\[
 e^{-\frac{(\lambda_{j+1}+\lambda_j)z}{2}} f_1(z) = O(e^{-c|z|}), \quad c > 0, \quad |z| \to \infty,
\] (2.35)
and under transformation (2.26) equation (2.34) becomes
\[
 \cos u + g_1(u) = 0, \quad g_1(u) = O(e^{-c_0\Re u}), \quad c_0 > 0; \quad \Re u \to \infty.
\] (2.36)
Proposition 2.3 implies that for any $a > 0$ there exists $b > 0$ such that all zeros of the latter equation in the region
\[\{ u : |\text{Im } u| < a, \text{Re } u > b \} \] (2.37)
are simple and of the form,
\[u^0(l) = \frac{\pi}{2} + \pi l + O(e^{-c_0 \text{Re } u}). \] (2.38)
This implies (2.32). Proposition 2.4 is proved. □

We will call $z_k \in S(r_0, R_0)$, the zeros of the main series. We summarize the results of this section as follows.

Theorem 2.5. (Zeros of the exponential sum.) Suppose that the numbers λ_j satisfy Condition P. Then there exists $r_0, R_0 > 0$ such that all the zeros of f belong to one of the following categories:
- $|z_k| \leq R_0$ (finite zeros)
- $z_k \in S(r_0, R_0)$, described by formula (2.32) (zeros of the main series).

3. ZEROS OF SECTIONS OF EXPONENTIAL SUMS

Denote by $f_n(z)$ the section of the exponential sum $f(z)$,
\[f_n(z) = \sum_{k=0}^{n} \frac{f^{(k)}(0)z^k}{k!}. \] (3.1)

By (2.1),
\[f_n(z) = \sum_{k=0}^{n} a_k z^k, \quad a_k = \sum_{j=1}^{M} \frac{c_j \lambda_j^k}{k!}. \] (3.2)

Our main goal will be to describe the zeros of the polynomial $f_n(z)$,
\[f_n(z) = 0, \] (3.3)
as $n \to \infty$. We expect that as $n \to \infty$ some of the zeros of $f_n(z)$ approach the zeros of $f(z)$. We call them the genuine zeros of f_n. We divide the genuine zeros into finite zeros and zeros of the main series, in accordance with Theorem 2.5. But there is also a family of other zeros, which go to infinity as $n \to \infty$. We call them the spurious zeros. In addition, there will be a relatively small number of intermediate zeros. We call them the transitional zeros. In the following sections, we will describe all these zeros of f_n.

4. FINITE ZEROS

It will be more convenient for us to consider, instead of (3.3), the equation
\[f_{n-1}(z) = 0, \] (4.1)
We rewrite it as
\[f(z) = \sum_{k=n}^{\infty} a_k z^k = a_n z^n \sum_{k=0}^{\infty} \frac{a_{n+k}}{a_n} z^k. \] (4.2)

In addition to Condition P, we will assume the following condition:

Condition Q. One of $|\lambda_j|$’s, say $|\lambda_1|$, is bigger than the others.
By the change of variables, \(\lambda_1 z \rightarrow z \), we can reduce \(\lambda_1 \) to 1, so we will assume that
\[
\lambda_1 = 1 > |\lambda_j|, \quad j = 2, \ldots, N. \quad (4.3)
\]
Also we can assume that
\[
c_1 = 1. \quad (4.4)
\]
In this case, by (3.2), as \(n \rightarrow \infty \),
\[
a_n = \frac{1}{n!}(1 + O(q^n)), \quad 0 < q < 1. \quad (4.5)
\]
Therefore, equation (4.2) reads
\[
f(z) = \frac{z^n}{n!} (1 + O(q^n)) \left[1 + \sum_{k=1}^{\infty} \frac{z^k(1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} \right]. \quad (4.6)
\]
By the Stirling formula,
\[
n! = \frac{n^n}{e^n} \sqrt{2\pi n} e^{\theta_1}, \quad 0 < \theta < 1, \quad (4.7)
\]
hence we can rewrite (4.6) as
\[
f(z) = \frac{e^n z^n e^{-\frac{\theta_1}{n}}}{n^n \sqrt{2\pi n}} (1 + O(q^n)) \left[1 + \sum_{k=1}^{\infty} \frac{z^k(1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} \right], \quad (4.8)
\]
where the \(O \)-terms are independent of \(z \). If \(z \) is bounded, \(|z| < R_0 \), then the right hand side is \(O(e^{-An}) \) as \(n \rightarrow \infty \) for any \(A > 0 \). Hence the zeros, with multiplicities, of \(f_n \) are close to those of \(f \). More precisely, the following proposition holds.

Proposition 4.1. (Finite zeros of \(f_{n-1} \)). Let \(R_0 > 0 \) be a fixed number such that \(f \) has no zeros on the circle \(|z| = R_0 \). Then for large \(n \), there is a one-to-one correspondence between zeros \(z_k \in D(0, R_0) \) of \(f \), and zeros \(z_k(n) \in D(0, R_0) \) of \(f_{n-1} \) such that
\[
z_k(n) - z_k = O(e^{-An}), \quad n \rightarrow \infty, \quad (4.9)
\]
for any \(A > 0 \). Here any zero of multiplicity \(p \) is counted as \(p \) zeros.

5. Zeros of the Main Series

Consider now zeros of \(f \) in the two-term domination strip \(S_{j,j+1}(r_0, R_0) \). Let us write \(f \) as
\[
f(z) = f_0(z) + f_1(z), \quad f_0(z) = c_j e^{\lambda_j z} + c_{j+1} e^{\lambda_{j+1} z}, \quad (5.1)
\]
so that \(f_0 \) dominates \(f_1 \) in \(S_{j,j+1}(r_0, R_0) \). With the help of substitution (2.26), we reduce \(f_0 \) to form \((2.27) \). In (2.20), (2.21) we choose the branch for \(\log \frac{c_{j+1}}{c_j} \) and \(\sqrt{c_j c_{j+1}} \) as follows: if \(c_j = r_j e^{i\theta_j}, -\pi < \theta_j < \pi, j = 1, \ldots, m \), then we define
\[
\log \frac{c_{j+1}}{c_j} = \ln \frac{r_{j+1}}{r_j} + i(\theta_{j+1} - \theta_j), \quad \sqrt{c_j c_{j+1}} = \sqrt{r_j r_{j+1}} e^{i\frac{\theta_j + \theta_{j+1}}{2}} \quad (5.2)
\]
Under (2.26), equation (4.8) reduces to the form,

\[\cos u + O(e^{-cRe u}) = \frac{e^n z^n e^{-(\lambda_{j+1} + \lambda_j)\frac{z}{2}} e^{-\frac{\theta}{2n}}}{2\sqrt{c_j c_{j+1}} n^n \sqrt{2\pi n}} (1 + O(q^n)) \]

\[\times \left[1 + \sum_{k=1}^{\infty} \frac{z^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} \right]. \] \hspace{1cm} (5.3)

After the rescaling,

\[z = n\zeta, \] \hspace{1cm} (5.4)

we obtain the equation,

\[\cos u + O(e^{-cRe u}) = \frac{e^n \zeta^n e^{-(\lambda_{j+1} + \lambda_j)n\zeta} e^{-\frac{\theta}{2n}}}{2\sqrt{c_j c_{j+1}} \sqrt{2\pi n}} (1 + O(q^n)) \]

\[\times \left[1 + \sum_{k=1}^{\infty} \frac{n^k \zeta^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} \right]. \] \hspace{1cm} (5.5)

Let us discuss the condition when the right hand side in this equation is \(o(1) \) as \(n \to \infty \).

As a first approximation to this, consider the critical radius \(r_c = r_c(j, j+1) > 0 \) on the ray \(\{ \zeta : \arg \zeta = \theta_{j,j+1} \} \), as a solution of the equation

\[e^{\frac{\zeta e^{-(\lambda_{j+1} + \lambda_j)\zeta}}{2}} = 1, \quad \zeta = r_c e^{i\theta_{j,j+1}}, \] \hspace{1cm} (5.6)

on the interval \(0 < r_c < 1 \). This equation can be rewritten as

\[r_c e^{1+rx_{j,j+1}} = 1, \] \hspace{1cm} (5.7)

where

\[x_{j,j+1} = \frac{|\lambda_{j+1} + \lambda_j|}{2} \cos \beta_{j,j+1}, \] \hspace{1cm} (5.8)

and

\[\beta_{j,j+1} = \arg(\lambda_{j+1} + \lambda_j) + \theta_{j,j+1} - \pi = -\frac{\pi}{2} + \arg \frac{\lambda_{j+1} + \lambda_j}{\lambda_{j+1} - \lambda_j}. \] \hspace{1cm} (5.9)

Proposition 5.1. (Existence of the critical radius). *There exists a unique solution of equation (5.6) on the interval \(0 < r_c < 1 \).*

Proof. Observe that (4.3) implies that

\[-1 < x_{j,j+1} < 1. \] \hspace{1cm} (5.10)

From this condition we obtain that the function

\[g(r) = re^{1+rx_{j,j+1}} \] \hspace{1cm} (5.11)

is increasing on \([0, 1]\). Indeed,

\[g'(r) = (1 + rx_{j,j+1})e^{1+rx_{j,j+1}} > 0, \quad 0 \leq r \leq 1. \] \hspace{1cm} (5.12)

Also, \(g(0) = 0 \) and \(g(1) > 1 \), hence equation (5.7) has a unique solution on the interval \(0 < r_c < 1 \), QED.
Let \(0 < r^* < 1\) be a solution of the equation,

\[r^* e^{1+r^*} = 1. \]

(5.13)

We have that

\[r^* = 0.27846 \ldots \]

(5.14)

From (5.10) we obtain that \(g(r^*) < 1\), hence

\[r^* < r_c < 1. \]

(5.15)

In the disk \(|\zeta| \leq r_c < 1\), the function

\[1 + \sum_{k=1}^{\infty} \frac{n^k \zeta^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} \]

(5.16)

is well approximated by

\[1 + \sum_{k=1}^{\infty} \zeta^k = \frac{1}{1 - \zeta}, \]

(5.17)

so that

\[\left| 1 + \sum_{k=1}^{\infty} \frac{n^k \zeta^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k)(1 + O(q^n))} - \frac{1}{1 - \zeta} \right| = O(n^{-1}). \]

(5.18)

Therefore, for \(z \in S_{j,j+1} \cap \{|z| \leq nr_c\}\), equation (5.5) reduces to

\[\cos u + O(e^{-cReu}) = \frac{e^n \zeta^n e^{-\frac{(\lambda_{j+1}+\lambda_j)n\zeta}{2}}}{2\sqrt{c_jc_{j+1}}\sqrt{2\pi n (1-\zeta)}} (1 + O(n^{-1})). \]

(5.19)

Introduce the \(n\)-th critical radius, \(r_c^n = r_c^n(j, j+1) > 0\), on the ray \(\{\zeta : \arg \zeta = \theta_{j,j+1}\}\), as a solution of the equation

\[\left| \frac{e^{\zeta} e^{-\frac{(\lambda_{j+1}+\lambda_j)\zeta}{2}}}{2\sqrt{c_jc_{j+1}}\sqrt{2\pi n (1-\zeta)}} \right|^\frac{1}{n} = 1, \quad \zeta = \zeta_c^n \equiv r_c^n e^{i\theta_{j,j+1}}, \]

(5.20)

on the interval \(0 < r_c^n < 1\). Observe that \(r_c^n\) is a small correction to \(r_c\),

\[r_c^n = r_c + O(n^{-1} \ln n). \]

(5.21)

Theorem 5.2. (Zeros of the main series). There exists a (big) number \(R_1 > 0\) such that for any zero \(z_k\) of \(f\) in the region,

\[S_{j,j+1}(r_0, R_0, R_1; n) = S_{j,j+1}(r_0, R_0) \cap \{z : |z| < nr_c^n - R_1\}, \quad r_c^n = r_c^n(j, j+1), \]

(5.22)

there exists a unique zero \(z_k(n)\) of \(f_{n-1}\) such that

\[z_k(n) - z_k = O(e^{-c(nr_c^n - |z_k|)}), \quad n \to \infty, \]

(5.23)

where \(\gamma > 0\) is independent of \(n\). There exists \(N > 0\) such that \(\forall n > N\), the zeros \(z_k(n)\), described by (5.23), exhaust all the zeros of \(f_{n-1}\) in the region \(S_{j,j+1}(r_0, R_0, R_1; n)\).
Proof. Define
\[\beta_n(\zeta) = \frac{e^\zeta e^{-(\lambda_{j+1}+\lambda_j)\zeta}}{2\sqrt{c_j \epsilon_{j+1} \sqrt{2\pi n (1 - \zeta)}}}, \quad |\zeta| < r_c^n < 1. \] (5.24)

Then
\[\lim_{n \to \infty} \beta_n(\zeta) = \beta(\zeta) \equiv e^\zeta e^{-(\lambda_{j+1}+\lambda_j)\zeta}, \quad |\zeta| < r_c^n. \] (5.25)

and by (5.20),
\[|\beta_n(r_c^n e^{i\theta_j,j+1})| = 1. \] (5.26)

The function \(g(r) = |\beta(re^{i\theta_j,j+1})| \) is strictly increasing on the interval \(0 < r < 1 \) and this, together with (5.25), (5.26), implies that for large \(n \),
\[|\beta_n(re^{i\theta_j,j+1})| \leq e^{c(r-r_c^n)}, \quad c > 0; \quad 0 < r \leq r_c^n. \] (5.27)

Equation (5.19) is of the form
\[\alpha(u) = \gamma_n(z), \] (5.28)
where \(u \) and \(z \) are related as in (2.26), \(\alpha(u) \) an entire function such that in the region \(\{u: |\text{Im} u| < a, \text{Re} u > b\}; a, b > 0 \),
\[\alpha(u) = \cos u + O(e^{-c\Re u}), \] (5.29)

and \(\gamma_n(z) \) is an entire function such that
\[\gamma_n(z) = \beta_n(\zeta)^n(1 + O(n^{-1})), \quad \zeta = \frac{z}{n}. \] (5.30)

From (5.27) and (5.26) we obtain that in the region \(\{u: |\text{Im} u| < a, \text{Re} u > b\}, \)
\[|\gamma_n(z)| < C|\beta_n(\zeta)|^n = Ce^{O(|z|-nr_c^n)}, \quad C, c > 0; \quad |z| < nr_c^n. \] (5.31)

By Proposition 2.3 this implies that for a given \(a > 0 \) there exists \(b > 0 \) and \(R_0 > 0 \) such that all the zeros, \(u_k(n) \), of equation (5.28) in the region \(\{u: |\text{Im} u| < a, \text{Re} u > b, |z| < nr_c^n - R_1\} \), are simple and close to the zeros, \(u_k \), of the function \(\alpha(u) \), so that
\[u_k(n) - u_k = O(e^{-c(nr_c^n - |z|)}), \quad n \to \infty, \] (5.32)

which implies (5.28). Theorem 5.2 is proved. \(\square \)

We will call the zeros \(z_k(n) \) satisfying (5.23), the zeros of the main series of \(f_{n-1} \). As \(n \to \infty \), they approach the zeros \(z_k \) of \(f \). This is true also for the finite zeros of Proposition 4.1. 4.1

6. Spurious zeros

We will construct a sequence of spurious zeros of \(f_{n-1}(z) \) in the \(j \)-th one-term domination sector, \(U_j(r_0, R_0) \). Let us first discuss the construction informally.

Construction of the rosette. In \(U_j(r_0, R_0) \),
\[f(z) = c_j e^{\lambda_j z}(1 + O(e^{-d_j(z)})), \] (6.1)

where
\[d_j(z) = c \min\{\text{dist}(z, S_{j,j+1}), \text{dist}(z, S_{j-1,j}), |z|\}, \quad c > 0, \] (6.2)
hence equation (4.8), which is equivalent to the equation \(f_{n-1}(z) = 0 \), reads

\[
1 + O(e^{-d_j(z)}) = \frac{e^n z^n e^{-\lambda_j z} e^{-\frac{\theta}{2\pi n}} (1 + O(q^n))}{n^c \sqrt{2\pi n}} \left[1 + \sum_{k=1}^{\infty} \frac{z^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k) (1 + O(q^n))} \right],
\]

or after the scaling \(z = n \zeta \),

\[
1 + O(e^{-d_j(z)}) = \frac{e^n \zeta^n e^{-\lambda_j n \zeta} e^{-\frac{\theta}{2\pi n}} (1 + O(q^n))}{c_j \sqrt{2\pi n}} \times \left[1 + \sum_{k=1}^{\infty} \frac{n^k \zeta^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k) (1 + O(q^n))} \right].
\]

By taking the \(n \)-th root, we obtain the equation,

\[
\omega_q \left(1 + O(e^{-d_j(z)}) \right) = \frac{e^{\frac{1}{n} \zeta e^{-\lambda_j \zeta} e^{-\frac{\theta}{2\pi n}} (1 + O(q^n))}}{(c_j \sqrt{2\pi n})^\frac{1}{n}} \times \left[1 + \sum_{k=1}^{\infty} \frac{n^k \zeta^k (1 + O(q^{n+k}))}{(n+1) \ldots (n+k) (1 + O(q^n))} \right]^\frac{1}{n},
\]

where \(\omega_q = e^{\frac{2\pi i q}{n}} \), \(q = 0, 1, \ldots, n-1 \). As an approximation to this equation, consider the equation,

\[
en^{\frac{1}{n} \zeta e^{-\lambda_j \zeta}} = \omega_q.
\]

By taking the absolute value of both sides, we obtain the equation of the curve on the complex plane,

\[
en \left| \zeta e^{-\lambda_j \zeta} \right| = 1.
\]

For \(\lambda_1 = 1 \) it reduces to the Szegő equation,

\[
en \left| \zeta e^{-\zeta} \right| = 1,
\]

and for \(\lambda_j = 0 \), to the equation of the circle,

\[
|\zeta| = e^{-1}.
\]

If \(0 < \lambda_j < 1 \), it can be reduced to the equation,

\[
en \left| \zeta e^{-|\lambda_j| \zeta} \right| = 1, \quad \zeta = e^{i \arg \lambda_j} \zeta.
\]

If \(0 < c < 1 \), the set of solutions of the equation

\[
en \left| \zeta e^{-c \zeta} \right| = 1
\]

on the complex plane consists of two analytic curves: \(\Gamma = \Gamma(c) \), inside of the unit circle, and \(\Gamma_0 = \Gamma_0(c) \), outside of the unit circle. In the polar coordinates, \(\xi = re^{i\theta} \), equation (6.11) reads

\[
\cos \theta = g(r), \quad g(r) = \frac{1 + \ln r}{cr}.
\]

Observe that

\[
g'(r) = \frac{\ln r}{cr^2},
\]

and \(g(r) \) attains a maximum at \(r = 1 \), with \(g(1) = \frac{1}{c} > 1 \). Also, \(g(0) = -\infty \) and \(g(r) \) is increasing on \((0, 1]\). Hence equation (6.12) has a unique solution in the interval \(0 < r < 1 \) for
any θ, and this solution determines the oval $\Gamma(c)$. We will call (6.11) the \textit{generalized Szegö equation} and $\Gamma(c)$ the \textit{generalized Szegö curve}. Figure 4 depicts the generalized Szegö curve for $c = 0.9$. In the Cartesian coordinates the equation of $\Gamma(c)$ has the form,

$$y = \pm \sqrt{e^{2cx - 2} - x^2}. \quad (6.14)$$

![Figure 4. The generalized Szegö curve for $c = 0.9$.](image)

The function

$$h(\xi) = e\xi e^{-c\xi}, \quad (6.15)$$

is entire and it conformally maps the interior of the curve $\Gamma(c)$ onto the unit disk,

$$h : \text{Int } \Gamma(c) \to D(0, 1) = \{z : |z| < 1\}. \quad (6.16)$$

The preimage, with respect to h, of the uniform probability measure on the unit circle, $(2\pi)^{-1}d\theta$, is the measure $d\mu_{\text{max}}(\theta)$ of the maximal entropy on $\Gamma(c)$.

We will denote the curve

$$\mathcal{G}(\lambda_j) = \{\zeta : e|\zeta e^{-\lambda_j}\zeta| = 1, \ |\zeta| < 1\}, \quad (6.17)$$

so that

$$\mathcal{G}(\lambda_j) = e^{-i\arg\lambda_j}\Gamma(|\lambda_j|). \quad (6.18)$$

Recall that the sector $U_j(r_0, R_0)$ is given by the inequalities,

$$\theta_{j,j+1} < \arg\zeta < \theta_{j-1,j} \mod 2\pi, \quad \theta_{j,j+1} = -\arg(\lambda_{j+1} - \lambda_j) + \frac{\pi}{2}. \quad (6.19)$$

According to (6.10), this implies that if $\lambda_j \neq 0$ then

$$\alpha_{j,j+1} < \arg\xi < \alpha_{j-1,j} \mod 2\pi; \quad \alpha_{j,j+1} = -\arg(\lambda_{j+1} - \lambda_j) + \frac{\pi}{2} + \arg\lambda_j. \quad (6.20)$$
This condition holds also for $\lambda_j = 0$, if we take the agreement that $\arg \lambda_j = 0$ for $\lambda_j = 0$. Consider now the arc,
\[
\Gamma_j = \{ \xi : \xi \in \Gamma(|\lambda_j|), \alpha_{j,j+1} < \arg \xi < \alpha_{j-1,j} \mod 2\pi \},
\] (6.21)
on $\Gamma(|\lambda_j|)$, and the arc,
\[
G_j = e^{-i \arg \lambda_j} \Gamma_j = \{ \zeta : \zeta \in e^{-i \arg \lambda_j} \Gamma(|\lambda_j|), \theta_{j,j+1} < \arg \zeta < \theta_{j-1,j} \mod 2\pi \},
\] (6.22)
on $G(\lambda_j)$. The arc $G_j \subset G(\lambda_j)$ goes from one side of the sector $U_j(r_0, R_0)$ to another. More precisely, we have the following statement. Consider the points
\[
\zeta_c(j,j+1) = r_c(j,j+1) e^{i \theta_{j,j+1}}, \quad j = 1, \ldots, m.
\] (6.23)

Proposition 6.1. The arc G_j connects the point $\zeta_c(j-1,j)$ to the point $\zeta_c(j,j+1)$.

Proof. From (2.26) we have that if $\arg z = \theta_{j,j+1}$ then
\[
\lambda_j z = \frac{(\lambda_{j+1} + \lambda_j) z}{2} - i u, \quad u \in \mathbb{R},
\] (6.24)

hence
\[
|e^{-\lambda_j \zeta}| = \left| e^{-\frac{(\lambda_{j+1} + \lambda_j) \zeta}{2}} \right|, \quad \zeta = \frac{z}{n},
\] (6.25)

and equations (5.6) and (6.7) coincide. This proves that $\zeta_c(j,j+1) \in G_j$. The relation $\zeta_c(j-1,j) \in G_j$ is established in the same way. Proposition 6.1 is proved. \hfill \Box

The rosette H is, by definition, the union of the arcs G_j and the finite rays,
\[
R_{j,j+1} = \{ z = r e^{i \theta} : \theta = \theta_{j,j+1}, 0 \leq r \leq r_c(j,j+1) \},
\] (6.26)

$j = 1, \ldots, m$, so that
\[
H = R \bigcup G,
\] (6.27)

where
\[
R = \bigcup_{j=1}^m R_{j,j+1}
\] (6.28)

and
\[
G = \bigcup_{j=1}^m G_j.
\] (6.29)

By definition, the j-th petal, P_j, of the rosette H is the region bounded by the rays $R_{j,j+1}$, $R_{j-1,j}$, and the arc G_j.

Construction of the n-th rosette. As a better, than (6.6), approximation to equation (6.5), consider the equation,
\[
\frac{e \zeta e^{-\lambda_j \zeta}}{[c_j \sqrt{2\pi n} (1 - \zeta)]^{\frac{1}{n}}} = \omega_q.
\] (6.30)

By taking the absolute value of the both sides, we obtain the equation,
\[
\frac{e |\zeta e^{-\lambda_j \zeta}|}{[c_j \sqrt{2\pi n} |1 - \zeta|]^{\frac{1}{n}}} = 1,
\] (6.31)
Consider the curve,
\[G^n(\lambda_j) = \begin{cases} \zeta : \frac{e^{|\zeta e^{-\lambda_j \zeta}|}}{[c_j \sqrt{2\pi n} |1 - \zeta|]^{\frac{1}{n}}} = 1, |\zeta| < 1 \end{cases} \] (6.32)
and the arc \(G^n_j \subset G^n(\lambda_j) \), which goes from the point
\[\zeta^n_c(j, j + 1) = r^n_c(j, j + 1)e^{i\theta_{j,j+1}} \] (6.33)
to the point \(\zeta^n_c(j - 1, j) \). Observe that if \(|\lambda_j| < 1\) then for large \(n \), the curve \(G^n(\lambda_j) \) lies outside of the curve \(G(\lambda_j) \), and
\[\text{dist}(G^n(\lambda_j), G(\lambda_j)) = \frac{c \ln n}{n}(1 + o(1)), \quad n \to \infty; \quad c > 0. \] (6.34)

Also, if \(\delta > 0 \) is fixed, then for large \(n \), the curve \(G^n(1) \setminus D(1, \delta) \) lies outside of the curve \(G(1) \setminus D(1, \delta) \), so that the equations of \(G^n(1) \setminus D(1, \delta) \) and \(G(1) \setminus D(1, \delta) \) in the polar coordinates, \(\rho = \gamma^n(\theta) \) and \(\rho = \gamma(\theta) \), satisfy \(\gamma^n(\theta) > \gamma(\theta) \), and
\[\text{dist}(G^n(1) \setminus D(1, \delta), G(1) \setminus D(1, \delta)) = \frac{c(\delta) \ln n}{n}(1 + o(1)), \quad n \to \infty; \quad c(\delta) > 0. \] (6.35)

The \(n \)-th rosette, \(\mathcal{H}^n \), is, by definition, the union of the arcs \(G^n_j \) and the finite rays,
\[R^n_{j,j+1} = \{ z = re^{i\theta} : \theta = \theta_{j,j+1}, 0 \leq r \leq r^n_c(j, j + 1) \}, \] (6.36)
\(j = 1, \ldots, m \), so that
\[\mathcal{H}^n = R^n \bigcup G^n, \] (6.37)
where
\[R^n = \bigcup_{j=1}^{m} R^n_{j,j+1} \] (6.38)
and
\[G^n = \bigcup_{j=1}^{m} G^n_j. \] (6.39)

By definition, the \(j \)-th petal, \(\mathcal{P}^n_j \), of the rosette \(\mathcal{H}^n \) is the region bounded by the rays \(R^n_{j,j+1} \), \(R^n_{j-1,j} \), and the arc \(G^n_j \).

Construction of the spurious zeros. Consider the function,
\[h^n_j(\zeta) = \frac{e^{|\zeta e^{-\lambda_j \zeta}|}}{[c_j \sqrt{2\pi n} (1 - \zeta)]^{\frac{1}{n}}}. \] (6.40)

It maps the arc \(G^n_j \) into the unit circle. Define the points \(\zeta_q(j, n) \) as the preimages of the points \(\omega_q \) on the arc \(G^n_j \),
\[\zeta_q(j, n) = (h^n_j)^{-1}(\omega_q), \quad \zeta_q(j, n) \in G^n_j. \] (6.41)

Let
\[d_{jn}(\zeta) = n \min \{ \text{dist}(\zeta, \zeta^n_c(j, j + 1)), \text{dist}(\zeta, \zeta^n_c(j - 1, j)) \}. \] (6.42)
Theorem 6.2. (Spurious zeros, \(j \neq 1 \)) There exists \(R_0 > 0 \) such that if \(j \neq 1 \) then for any \(\zeta_q(j, n) \in G_j^n \) such that
\[
d_{jn}(\zeta_q(j, n)) > R_0,
\]
there exists a unique simple zero \(\zeta_k(n) \) of \(f_{n-1}(n\zeta) \) such that
\[
\zeta_k(n) = \zeta_q(j, n) + O(n^{-1}e^{-d_{jn}(\zeta_q(j, n))} + n^{-2}), \quad n \to \infty.
\]

Proof. By using (6.40), we write equation (6.5), which is equivalent to the equation
\[
0, \quad \text{as}
\]
the point \(j \) formula (6.44) with
\[
j = 1. For the second group we will consider another approximation to
\[
\zeta_k(n) = O(n^{-1}e^{-d_{jn}(\zeta_q(j, n))} + n^{-2}).
\]

If \(j \neq 1 \), then the generalized Szegő curve, \(\Gamma(1) \), lies strictly inside of the unit circle, hence the arc \(G_j \) does. Observe that in a neighborhood of \(G_j \),
\[
\lim_{n \to \infty} h_j^n(\zeta) = h_j(\zeta) \equiv e\zeta e^{-\lambda_j \zeta},
\]
and \(h_j'(\zeta) \neq 0 \), hence \((h_j^n)'(\zeta) \to h_j'(\zeta) \) and \(|(h_j^n)'(\zeta)| > \delta > 0 \) for large \(n \). Since \(|\omega_q - \omega_{q+1}| = \frac{2\pi}{n} + O(n^{-2}) \), we obtain, by Proposition 2.3 that if \(d_{jn}(\zeta_q(j, n)) \) is big then there is a simple root \(\zeta_k(n) \) of equation (6.46) such that (6.44) holds, QED.

For \(j = 1 \) the Szegő curve, \(\Gamma(1) \), is not strictly inside of the unit disk, because it contains the point \(\zeta = 1 \). Let us fix some \(\rho < 1 \) sufficiently close to 1 and partition the zeros \(\zeta_k(n) \) of \(f_{n-1}(n\zeta) \) into two groups: \(|\zeta_k(n)| < \rho \) and \(|\zeta_k(n)| > \rho \). For the first group we will prove formula (6.44) with \(j = 1 \). For the second group we will consider another approximation to \(\zeta_k(n) \). Let \(\zeta_k^0(n) \) be the zeros of the section \(s_{n-1}(n\zeta) \) of \(e^{n\zeta} \), so that
\[
s_{n-1}(z) = \sum_{k=0}^{n-1} \frac{z^k}{k!}.
\]
We will prove for the second group, that \(\zeta_k(n) \) is well approximated by \(\zeta_k^0(n) \). The asymptotics \(\zeta_k^0(n) \) is well-known for \(|\zeta_k^0(n)| < 1 - \varepsilon, \varepsilon > 0 \), and for \(|\zeta_k^0(n)| - 1| \leq \frac{\delta}{\sqrt{n}} \). In Appendices \[A\] and \[B\] below we derive uniform asymptotics of \(\zeta_k^0(n) \) in the disk \(D(1, \delta), \delta > 0 \).

Theorem 6.3. (Spurious zeros, \(j = 1 \)) There exist \(1 > \rho_0 > 0 \) and \(R_0 > 0 \) such that for any \(\rho \in (\rho_0, 1) \) the following is true: For any \(\zeta_q(1, n) \in G_1^n \) such that
\[
d_{1n}(\zeta_q(1, n)) > R_0,
\]
and
\[
|\zeta_q(1, n)| < \rho,
\]
there exists a unique simple zero \(\zeta_k(n) \) of \(f_{n-1}(n\zeta) \) such that
\[
\zeta_k(n) = \zeta_q(1, n) + O(n^{-1}e^{-d_{1n}(\zeta_q(1, n))} + n^{-2}), \quad n \to \infty.
\]
In addition, for any zero \(\zeta_k^0(n) \) of \(s_{n-1}(n\zeta) \) such that
\[
|\zeta_k^0(n)| > \rho,
\]
there exists a unique simple zero \(\zeta_k(n) \) of \(f_{n-1}(nz) \) such that
\[
\zeta_k(n) = \zeta_k^0(n) + O(e^{-cn}), \quad n \to \infty; \quad c > 0.
\]
Proof. The first part of the theorem, about (6.51), is proved in the same way as Theorem 6.2 and we omit the proof. For the second part, observe that for any \(\delta > 0 \) there exists \(\rho_0 < 1 \) such that for any \(\rho \in (\rho_0, 1) \), condition (6.52) implies that

\[
|\zeta_k^0(n) - 1| < \delta. \tag{6.54}
\]

Let us write the equation,

\[
f_{n-1}(z) = s_{n-1}(z) + f_{n-1}^1(z) = 0, \quad f_{n-1}^1(z) = \sum_{k=0}^{n-1} \frac{(c_2 \lambda_2^k + \ldots + c_M \lambda_M^k) z^k}{k!}, \tag{6.55}
\]

in the form

\[
g_n(\zeta) \equiv \frac{s_{n-1}(n\zeta)}{e^{n\zeta}} = -e^{-n\zeta} f_{n-1}^1(n\zeta), \quad z = n\zeta. \tag{6.56}
\]

Observe that if \(\epsilon > 0 \) is sufficiently small then there exists \(c > 0 \) such that for any \(\zeta \) in the disk \(\{ |\zeta - 1| \leq \epsilon \} \),

\[
e^{-n\zeta} f_{n-1}^1(z) = O(e^{-cn}), \quad n \to \infty. \tag{6.57}
\]

The zeros \(\zeta_k^0(n) \) solve the equation \(g_n(\zeta_k^0(n)) = 0 \), and inequality (B.70) in Appendix B below implies that

\[
|g_n(\zeta)| \geq |\zeta - \zeta_k^0(n)|, \quad \text{if} \quad |\zeta - \zeta_k^0(n)| \leq cn^{-1}. \tag{6.58}
\]

Therefore, by Proposition 2.3 for any zero \(\zeta_k^0(n) \) of \(s_{n-1}(n\zeta) \) there exists a unique simple zero \(\zeta_k(n) \) of \(f_{n-1}(n\zeta) \) such that (6.53) holds. Theorem 6.3 is proved. \(\square \)

The zeros \(z_k(n) \) described in Theorems 6.2 and 6.3 are called the spurious zeros of the section \(f_{n-1}(z) \). For these zeros, \(\zeta_k(n) = z_k(n)/n \) lies in a small neighborhood of the curve \(\mathcal{G}^n \).

7. Transitional zeros

For a given \(j = 1, \ldots, m \), the \(j \)-th set, \(T_j^n \), of the transitional zeros of \(f_{n-1} \) is located in a neighborhood of the point \(n\zeta_c^n(j, j+1) \). Let us first describe \(T_j^n \) informally. We set

\[
z = n\zeta_c^n(j, j+1) + w \tag{7.1}
\]

and substitute this into equation (6.14), which is equivalent to \(f_{n-1}(z) = 0 \). This gives that

\[
\cos u + O(e^{-c \text{Re} u}) = e^n(\zeta_c^n + \frac{w}{n})^n e^{-\frac{(\lambda_j + \lambda_{j+1})(n\zeta_c^n + w)}{2}} \frac{1}{2 \sqrt{c_j c_{j+1}} \sqrt{2\pi n} (1 - \zeta_c^n + \frac{w}{n}) (1 + O(n^{-1}))}. \tag{7.2}
\]

We will assume that \(w = O(n^{\frac{1}{2}}) \) as \(n \to \infty \). Then

\[
\left(\zeta_c^n + \frac{w}{n}\right)^n = (\zeta_c^n)^n e^{(\zeta_c^n)^{-1} w (1 + O(n^{-\frac{1}{2}}))}, \tag{7.3}
\]

and (7.2) reduces to the equation,

\[
\cos u + O(e^{-c \text{Re} u}) = A_n e^{(c_j^{-1} + \lambda_{j+1}) w (1 + O(n^{-\frac{1}{2}}))), \tag{7.4}
\]

where

\[
A_n = \frac{e^n (\zeta_c^n)^n e^{-\frac{(\lambda_j + \lambda_{j+1})n\zeta_c^n}{2}}}{2 \sqrt{c_j c_{j+1}} \sqrt{2\pi n} (1 - \zeta_c^n)}. \tag{7.5}
\]
By (5.20),

$$|A_n| = 1,$$

(7.6)

and by (2.26),

$$e^{iu} = e^{(\lambda_{j+1} - \lambda_j)z} \sqrt{\frac{c_{j+1}}{c_j}}.$$

(7.7)

By substituting (7.1), we obtain that

$$e^{iu} = e^{(\lambda_{j+1} - \lambda_j)n \nu \zeta_c^n} e^{(\lambda_{j+1} - \lambda_j)z} \sqrt{\frac{c_{j+1}}{c_j}}.$$

(7.8)

Observe that

$$(\lambda_{j+1} - \lambda_j)\zeta_c^n = (\lambda_{j+1} - \lambda_j)r_n e^{i\theta_{j,j+1}} = ir_n |\lambda_{j+1} - \lambda_j|,$$

(7.9)

hence

$$e^{iu} = B_n e^{(\lambda_{j+1} - \lambda_j)w},$$

(7.10)

where

$$B_n = e^{-ir_n |\lambda_{j+1} - \lambda_j|} \sqrt{\frac{c_{j+1}}{c_j}}.$$

(7.11)

We have that

$$|B_n| = \sqrt{\frac{c_{j+1}}{c_j}}.$$

(7.12)

Thus, equation (7.4) reduces to

$$B_n e^{(\lambda_{j+1} - \lambda_j)w} + B_n^{-1} e^{(\lambda_{j+1} - \lambda_j)w} = 2A_n e^{(\zeta_c^{-1} - \frac{\lambda_{j+1} + \lambda_j}{2})w} + O(n^{-\frac{3}{2}}),$$

(7.13)

or

$$B_n e^{\lambda_{j+1}w} + B_n^{-1} e^{\lambda_jw} - 2A_n e^{\zeta_c^{-1}w} = O(n^{-\frac{3}{2}}).$$

(7.14)

The expression on the left is a three term exponential sum with the exponents λ_{j+1}, λ_j, and ζ_c^{-1}. Observe that

$$|\zeta_c^{-1}| = r_c^{-1} > 1,$$

and the vector ζ_c^{-1} is orthogonal to the one $(\lambda_{j+1} - \lambda_j)$. Since $|\lambda_j|$, $|\lambda_{j+1}| \leq 1$, this implies that the numbers λ_{j+1}, λ_j, and ζ_c^{-1} do not lie on the same line. Now we can formulate the asymptotic formula for the transitional zeros.

Theorem 7.1. (Transitional zeros.) There is a one-to-one correspondence between the zeros $w_k(n)$ of the exponential sum,

$$g_n(w) = B_n e^{\lambda_{j+1}w} + B_n^{-1} e^{\lambda_jw} - 2A_n e^{\zeta_c^{-1}w},$$

(7.15)

in the disk $D(0, n^{\frac{3}{4}})$ and the zeros $z_k(n)$ of $f_{n-1}(z)$ in the disk $D(n\zeta_c^n (j,j+1), n^{\frac{3}{4}})$, such that

$$z_k(n) = n\zeta_c^n (j,j+1) + w_k(n) + O(n^{-\frac{3}{4}}).$$

(7.16)
Therefore, there exists $\varepsilon > 0$, independent of n, such that all the zeros of $g_n(w)$ with $|w| > R$ are simple and belong to the main series, see Section 2. For them equation (7.14) implies (7.16), with even a better error term, $O(n^{-\frac{1}{2}})$. It remains to consider zeros $|w_k(n)| \leq R$.

The zeros of $g_n(w)$ are at most double, since the Vandermonde determinant is nonzero. Therefore, there exists $\varepsilon > 0$, independent of n, such that for any three zeros, $w_k(n)$, $w_l(n)$, $w_m(n)$, of $g_n(w)$,

$$\max \{|w_k(n) - w_l(n)|, |w_k(n) - w_m(n)|, |w_m(n) - w_l(n)|\} > \varepsilon. \quad (7.17)$$

This implies that there exists $\exists \delta > 0$ such that for any $w_k(n) \in D(0, R)$, there exists $0.1\varepsilon < r < 0.2\varepsilon$ such that

$$|g_n(w)| > \delta, \quad \forall |w - w_k(n)| = r. \quad (7.18)$$

Equation (7.14) implies now that $\exists N > 0$ such that $\forall n > N$, there exists a zero $z_k(n)$ of f_{n-1} which satisfies (7.16). Relation (7.17) enables us to make the correspondence $w_k(n) \rightarrow z_k(n)$ one-to-one. Theorem 7.1 is proved.

We call the zeros $z_k(n)$ satisfying (7.16), the transitional zeros in the neighborhood of the point $n\zeta^o(j, j+1)$. The set of these zeros is denoted by T^n_j. The set of all the transitional zeros is

$$T^n = \bigcup_{j=1}^{m} T^n_j. \quad (7.19)$$

The set of transitional zeros overlaps with both the zeros of the main series and the spurious zeros.

8. Completeness of Zeros

Theorem 8.1. (Completeness.) There exists $N > 0$ such that for any $n > N$, any zero $z_k(n)$ of f_{n-1} belongs to one of the following four categories: finite zeros, zeros of the main series, spurious zeros, and transitional zeros.

Proof. We will consider zeros in different regions on the complex plane. As usual, $z_k(n) = n\zeta^o(j, n)$.

Region 1, $z_k(n) \in D(0, R_0)$. The completeness follows from Proposition 4.1.

Region 2, $\zeta_k(n) \in \mathbb{C} \setminus [D(0, \rho) \cup D(1, \delta)]$, $0 < \rho < 1$, $0 < \delta$.

Lemma 8.2. (Absence of zeros outside of $D(0, \rho) \cup D(1, \delta)$.) For any $\delta > 0$ there exist $1 > \rho > 0$ and $N > 0$ such that for any $n > N$, $f_{n-1}(n\zeta) \neq 0$ if $\zeta \notin D(0, \rho) \cup D(1, \delta)$.

Proof. Fix any $\delta > 0$. The function $s_{n-1}(n\zeta)$ is a polynomial of degree $(n-1)$ and for large ζ the leading term of this polynomial dominates,

$$s_{n-1}(n\zeta) = \frac{n^{n-1}\zeta^{n-1}}{(n-1)!}(1 + o(1)), \quad n \rightarrow \infty. \quad (8.1)$$

On the other hand, for small ζ,

$$s_{n-1}(n\zeta) = e^{n\zeta}(1 + o(1)), \quad n \rightarrow \infty. \quad (8.2)$$

The transition from one asymptotics to another occurs in a neighborhood of the Szegö curve. Let Γ_ε, $\varepsilon > 0$, be the ε-neighborhood of the Szegö curve Γ, and let $D^{\text{int}}_\varepsilon$ and $D^{\text{out}}_\varepsilon$ be the
two connected components of \(\mathbb{C} \setminus \Gamma_\varepsilon \), interior and exterior. Then, as shown by Szegö, asymptotics \((8.1) \) holds in \(D_{\text{int}} \), while asymptotics \((8.2) \) holds in \(D_{\text{ext}} \), with a uniform with respect to \(z \) estimate of the error terms \(o(1) \). It follows from \((8.4) \), that for any \(\varepsilon > 0 \) there exists \(N > 0 \) such that
\[
\varepsilon^{n(1+\varepsilon_0)}|\zeta|^{-n} \geq |s_{n-1}(n\zeta)| \geq \varepsilon^{n(1-\varepsilon_0)}|\zeta|^{-n}, \quad \zeta \in D_{\text{ext}}, \quad n > N.
\]
It is obvious that for all \(\zeta \),
\[
|s_{n-1}(n\zeta)| \leq \sum_{k=0}^{\infty} \frac{|n\zeta|^k}{k!} = e^{n|\zeta|}.
\]
For the given \(\delta > 0 \), let us choose \(\varepsilon > 0 \), \(\varepsilon_0 > 0 \), \(\varepsilon_1 > 0 \), and \(1 > \rho > 0 \) such that the following three conditions are satisfied:

1. \(\Gamma_\varepsilon \subset D(0, \rho) \cup D(1, \delta) \);
2. \(|\lambda_j|(1 + \varepsilon_1) < 1 - \varepsilon_0 - \varepsilon + \ln \rho, \quad j = 2, \ldots, M \);
3. \(|\lambda_j| < e^{-2\varepsilon_0 - \varepsilon}, \quad j = 2, \ldots, M \).

We claim that then \(\exists N > 0 \) such that for \(j = 2, \ldots, M \),
\[
|s_{n-1}(n\lambda_j\zeta)| \leq e^{-\varepsilon n}|s_{n-1}(n\zeta)|, \quad \zeta \notin D(0, \rho) \cup D(1, \delta), \quad n > N.
\]
Indeed, consider two cases: (1) \(\rho \leq |\zeta| \leq 1 + \varepsilon_1 \), and (2) \(|\zeta| > 1 + \varepsilon_1 \). In case (1), by \((8.3) \), \((8.4) \), and \((8.6) \),
\[
|s_{n-1}(n\lambda_j\zeta)| \leq e^{n|\lambda_j\zeta|} \leq e^{n(1-\varepsilon_0-\varepsilon)}\rho^{n-1} \leq e^{n(1-\varepsilon_0-\varepsilon)}|\zeta|^{n-1} \leq e^{-\varepsilon n}|s_{n-1}(n\zeta)|, \quad n > N,
\]
and in case (2), by \((8.3) \) and \((8.7) \),
\[
|s_{n-1}(n\lambda_j\zeta)| \leq e^{n(1+\varepsilon_0)}|\lambda_j\zeta|^{n-1} \leq e^{n(1-\varepsilon_0-\varepsilon)}|\zeta|^{n-1} \leq e^{-\varepsilon n}|s_{n-1}(n\zeta)|, \quad n > N.
\]
This proves \((8.8) \). From \((8.8) \) we obtain that there exists \(N > 0 \) such that
\[
|f_{n-1}(n\zeta)| \leq Me^{-\varepsilon n}|s_{n-1}(n\zeta)|, \quad \zeta \notin D(0, \rho) \cup D(1, \delta), \quad n > N,
\]
hence \(f_{n-1}(n\zeta) = s_{n-1}(n\zeta) + f_{n-1}(n\zeta) \neq 0 \), if \(N \) is big enough, QED.

Region 3, \(z_k(n) \in S_{j,j+1}(r_0, R_0) \cap D(0, n\rho) \). We go back to Section 6. In the disk \(\zeta \in D(0, \rho) \), function \((5.16) \) is well approximated by \((5.17) \), hence the equation \(f_{n-1}(n\zeta) = 0 \) reduces to \((5.19) \). Therefore, if \(z_k(n) \in S_{j,j+1}(r_0, R_0) \cap D(0, n\rho) \) and \(|z| > nr_e^n + 0.5n^4 \), then equation \(f_{n-1}(n\zeta) = 0 \) has no zeros for large \(n \), because the absolute value of the right hand side in \((5.19) \) approaches infinity, as \(n \to \infty \), while the left hand side remains bounded. This proves that the only zeros of \(f_{n-1} \) in \(S_{j,j+1}(r_0, R_0) \cap D(0, n\rho) \) are the zeros of the main series and transitional zeros.

Region 4, \(z_k(n) \in U_j(r_0, R_0) \cap D(0, n\rho) \). We go back to Section 6. In the disk \(\zeta \in D(0, \rho) \), function \((5.16) \) is well approximated by \((5.17) \), hence the equation \(f_{n-1}(n\zeta) = 0 \) reduces to \((6.40) \). This implies that all the zeros of \(f_{n-1} \) in \(S_{j,j+1}(r_0, R_0) \cap D(0, n\rho) \) are either spurious or transitional.
Region 5, $ζ_k(n) ∈ D(1, δ)$. According to (6.56), (6.57), the equation $f_{n−1} = 0$ reduces to the one,

$$\frac{s_{n−1}(nζ)}{e^{cn}} = O(e^{-cn}).$$ \hspace{1cm} (8.12)

Asymptotics (8.39), in Appendix B below, proves that all the zeros of the latter equation are located near the zeros of $s_{n−1}$, which implies that all these zeros are spurious, described by (6.53).

This ends the proof of Theorem 8.1. □

9. LIMITING DISTRIBUTION OF ZEROS ON THE ROSETTE

It follows from Theorems 5.2, 6.2, and 6.3 that as $n → ∞$, the normalized zeros $ζ_k = \frac{2k}{n}$ of the section $f_{n−1}$ approach the rosette H, and the $δ$-function measure of zeros,

$$dμ_{n−1} = \frac{1}{n−1} \sum_{k=1}^{n−1} δ(ζ − ζ_k) dζ,$$ \hspace{1cm} (9.1)

weakly converges to a probability measure on H,

$$\lim_{n→∞} μ_{n−1} = μ_H,$$ \hspace{1cm} (9.2)

such that for any continuous test function $ϕ(ζ)$,

$$\lim_{n→∞} \int ϕ(ζ) dμ_{n−1} = \int ϕ(ζ) dμ_H = \int_\mathcal{H} ϕ(ζ) p(ζ) |dζ|,$$ \hspace{1cm} (9.3)

where $p(ζ) ≥ 0$ is a density function on H. The above theorems give the following description of the density $p(ζ)$.

Theorem 9.1. On the ray $R_{j,j+1}$, $p(ζ)$ is constant,

$$p(ζ) = \frac{|λ_{j+1} − λ_j|}{2π}, \hspace{0.5cm} ζ ∈ R_{j,j+1},$$ \hspace{1cm} (9.4)

$j = 1, \ldots, m$. On the curve \mathcal{G}_j,

$$p(ζ) = \frac{|h_j(ζ)|}{2π}, \hspace{0.5cm} ζ ∈ \mathcal{G}_j,$$ \hspace{1cm} (9.5)

where

$$h_j(ζ) = ζ e^{(1−λ_j)ζ}.$$ \hspace{1cm} (9.6)

Proof. Ray $R_{j,j+1}$. By (5.23) the scaled zeros $ζ_k(n)$ of $f_{n−1}$ are close to the scaled zeros $ζ_k$ of f, so that

$$ζ_k(n) − ζ_k = O(n^{-1}e^{−γn(r_0^2 − |ζ|^2)}).$$ \hspace{1cm} (9.7)

On the other hand, by (2.32) for $z_k ∈ S_{j,j+1}(r_0, R_0)$,

$$ζ_k − n^{-1} (α_{j,j+1} + \frac{2πi}{λ_{j+1} − λ_j}) = O(n^{-1}e^{−cl}).$$ \hspace{1cm} (9.8)

This implies that $ζ_k(n)$ are close to the points of the lattice

$$\mathcal{L}_{j,j+1} = \{ z = n^{-1} (α_{j,j+1} + \frac{2πi}{λ_{j+1} − λ_j}), \hspace{0.5cm} l ∈ Z \},$$ \hspace{1cm} (9.9)
hence \((9.4)\) follows.

Curve \(G_j, j \neq 1\). From \((6.44)\) we obtain that
\[
\zeta_k(n) = (h_j)^{-1}(\omega_q + O(n^{-1}e^{-d_jn(\zeta_q(j,n))} + n^{-2} \ln n)),
\]
\[(9.10)\]

hence
\[
h_j(\zeta_k(n)) = \omega_q + O(n^{-1}e^{-d_jn(\zeta_q(j,n))} + n^{-2} \ln n),
\]
\[(9.11)\]

If \(\zeta = \zeta_k(n)\) and \(\zeta^0\) is \(\zeta_k(n)\) which corresponds to \(\omega_q + 1\), then
\[
\omega_q + 1 - \omega_q = h_j'(\zeta)(\zeta^0 - \zeta) + O(n^{-1}e^{-d_jn(\zeta_q(j,n))} + n^{-2} \ln n),
\]
\[(9.12)\]

which implies \((9.5)\). This proves Theorem 9.1.

\section{10. Beyond Conditions P and Q}

\subsection{10.1. Beyond Condition P}

Condition P means that there is no \(\lambda_j, j = m + 1, \ldots, M\), on the sides of the polygon \(P_m\). Suppose that this condition does not hold and there are some \(\lambda_k\)'s on the side \([\lambda_j, \lambda_{j+1}]\). Denote
\[
\sigma_j = \{\lambda_k : \lambda_k \in [\lambda_j, \lambda_{j+1}]\}.
\]
\[(10.1)\]

Observe that \(\sigma_j\) includes \(\lambda_j\) and \(\lambda_{j+1}\). In this case, instead of two-term equation \((2.25)\), we consider the multiterm equation,
\[
\sum_{k: \lambda_k \in \sigma_j} c_k e^{\lambda_k z} = 0.
\]
\[(10.2)\]

With the help of substitution \((2.26)\) we reduce it to the equation
\[
\sum_{k: \lambda_k \in \sigma_j} \tilde{c}_k e^{i y_k u} = 0, \quad -1 \leq y_k \leq 1.
\]
\[(10.3)\]

The function on the left is quasiperiodic. Its zeros are concentrated in a finite strip \([u : |\text{Im } u| < A}\). The distribution of zeros of quasiperiodic exponential sums was studied in the work of Soprunova \[17\]. It was shown that the zeros also have a property of quasiperiodicity, and its average number is the same as for the function \(\cos u\).

The main results of the present paper, concerning the distribution of zeros of the exponential sum and its sections, can be extended, with proper modifications, to the case when Condition P does not hold, but it requires some additional considerations for the zeros of the main series.

\subsection{10.2. Beyond Condition Q}

If Condition Q violates then there are several maximal \(|\lambda_j|\)'s. As an example, consider the symmetric sum,
\[
f(z) = \frac{1}{m} \sum_{j=0}^{m-1} e^{\omega j z} = 0, \quad \omega = e^{2\pi i / m}.
\]
\[(10.4)\]

In this case,
\[
f_n(z) = \sum_{k: 0 \leq mk \leq n} \frac{z^{mk}}{(mk)!}.
\]
\[(10.5)\]
The rosette is symmetric and all the results are extended to this case. Figure 5 depicts zeros of the $n = 200$ section of exponential sum (10.4) for $m = 4$. The spurious zeros are described in the symmetric case by parts of the original Szegő curve, $\Gamma(1)$.

![Figure 5](image-url)

Figure 5. The zeros of the $n = 200$ section of exponential sum (10.4) for $m = 4$.

All the results are extended also to a slightly more general case of

$$f(z) = \sum_{j=0}^{m-1} c_j e^{a\omega^j z} = 0, \quad \omega = e^{\frac{2\pi i}{m}},$$

(10.6)

where $c_j \neq 0$, $j = 0, \ldots, m - 1$, and $a \neq 0$. For $m = 2$ this includes the sine and cosine functions.

Consider now the exponential sum

$$f(z) = \sum_{j=1}^m e^{\lambda_j z},$$

(10.7)

where

$$\lambda_j = e^{i\varphi_j}, \quad \varphi_j \in \mathbb{R}.$$

(10.8)

Then

$$f_n(z) = \sum_{k=0}^n a_k z^k,$$

(10.9)

where

$$a_k = \frac{e^{ik\varphi_1} + \ldots + e^{ik\varphi_m}}{k!}.$$

(10.10)

In this case the asymptotic behavior of the coefficients a_k depends on the arithmetic properties of the numbers φ_j, and the asymptotic behavior of the zeros z_k of f_n can be rather complicated.
Appendix A. Uniform asymptotics of the zeros of $s_{n-1}(n\zeta)$ in the disk $D(1, \delta)$

We write the equation

$$s_{n-1}(n\zeta) \equiv \sum_{k=0}^{n-1} \frac{(n\zeta)^k}{k!} = 0 \quad (A.1)$$

as

$$e^{n\zeta} = \frac{(n\zeta)^n}{n!} \sum_{k=0}^{\infty} \frac{n!(n\zeta)^k}{(n+k)!},$$

or

$$\frac{e^{-n\zeta}n^\zeta}{n!} \sum_{k=0}^{\infty} \frac{n!n^k\zeta^k}{(n+k)!} = 1. \quad (A.3)$$

We will assume that

$$|\zeta| \leq 1. \quad (A.4)$$

With the help of the Stirling formula we obtain that

$$\frac{n!n^k}{(n+k)!} = \exp \left[k - \left(n + k + \frac{1}{2} \right) \ln \left(1 + \frac{k}{n} \right) + \frac{\theta_n}{12} - \frac{\theta_{n+k}}{12(n+k)} \right]. \quad (A.5)$$

Since

$$\ln(1+x) = x - \frac{x^2}{2} + O(x^3), \quad x \to 0,$$

this gives that as $n \to \infty$,

$$\frac{n!n^k}{(n+k)!} = e^{-\frac{k^2}{2n}} \left(1 + O\left(\frac{k^3}{n^2} + \frac{k}{n} \right) \right), \quad 0 \leq k \leq n^{0.6}. \quad (A.7)$$

Also,

$$\frac{n!n^k}{(n+k)!} = \begin{cases} O(e^{-n^{0.1}}), & n^{0.6} \leq k \leq n, \\ O(2^{n-k}e^{-n^{0.1}}), & n \leq k. \end{cases} \quad (A.8)$$

Therefore,

$$\sum_{k=0}^{\infty} \frac{n!n^k\zeta^k}{(n+k)!} = \sum_{k=0}^{\infty} e^{-\frac{k^2}{2n}\zeta^k} + O(1), \quad |\zeta| \leq 1, \quad (A.9)$$

and equation (A.3) reduces to

$$\frac{e^{-n\zeta}n^\zeta}{n!} \left[\sum_{k=0}^{\infty} e^{-\frac{k^2}{2n}\zeta^k} + O(1) \right] = 1, \quad |\zeta| \leq 1. \quad (A.10)$$

Let

$$\zeta = e^{\tau n^{-1/2}}, \quad \text{Re} \tau \leq 0. \quad (A.11)$$

Then

$$\sum_{k=0}^{\infty} e^{-\frac{k^2}{2n}\zeta^k} = \sum_{k=0}^{\infty} e^{-\frac{k^2}{2n}+\tau kn^{-1/2}} = n^{1/2} \int_0^{\infty} e^{-\frac{x^2}{2}+\tau x} dx + O(|\tau| + 1), \quad (A.12)$$

by the Euler-Maclaurin integration formula. To justify the error term, observe that

$$\left| e^{-\frac{k^2}{2n}+\tau kn^{-1/2}} - \int_k^{k+1} e^{-\frac{x^2}{2n}+\tau xn^{-1/2}} dx \right| \leq \int_k^{k+1} \left(\frac{x}{n} + |\tau|n^{-1/2} \right) e^{-\frac{x^2}{2n}+\tau xn^{-1/2}} \, dx. \quad (A.13)$$
hence
\[\left| \sum_{k=0}^{\infty} e^{-\frac{k^2}{n^2} + \tau kn^{-1/2}} - \int_{0}^{\infty} e^{-\frac{x^2}{n^2} + \tau x n^{-1/2}} \, dx \right| \leq \int_{0}^{\infty} \left(\frac{x}{n} + |\tau| n^{-1/2} \right) \left| e^{-\frac{x^2}{n^2} + \tau x n^{-1/2}} \right| \, dx \] (A.14)
\[\leq C(1 + |\tau|), \]
which implies (A.12). From (A.9) and (A.12),
\[\sum_{k=0}^{\infty} \frac{n! n^k \zeta^k}{(n + k)!} = n^{1/2} \int_{0}^{\infty} e^{-\frac{x^2}{2} + \tau x} \, dx + O(|\tau| + 1), \] (A.15)
Equation (A.3) reduces to
\[e^{-n^2} \left[\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^2}{2} + \tau x} \, dx + O(|\tau| + 1) \right] = 1. \] (A.16)
By applying the Stirling formula, we obtain that
\[e^{n^2} \left[\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^2}{2} + \tau x} \, dx + O\left(|\tau| + 1\right) \right] = 1. \] (A.17)
Let us fix any big number \(M > 0 \) and any small number \(\varepsilon > 0 \), and consider the three (partially overlapping) cases:
1. \(0 \leq |\tau| \leq M \),
2. \(M \leq |\tau| \leq \frac{1}{6 - \varepsilon} \), \(\text{Re} \, \tau < 0 \),
3. \(\text{Re} \, \tau \leq -n^{-\varepsilon} \).

Case (1), \(0 \leq |\tau| \leq M \). We assumed \(\text{Re} \, \tau \leq 0 \), but if \(|\tau| \leq M \), equations (A.10) and (A.12) hold without this restriction. In the case under consideration,
\[\zeta = e^{\tau n^{-1/2}} = 1 + \tau n^{-1/2} + \frac{\tau^2 n^{-1}}{2} + O(n^{-\frac{3}{2}}), \] (A.18)
hence
\[e^{n^2} \zeta^n = e^{-\frac{\tau^2}{2}} (1 + O(n^{-\frac{1}{2}})), \] (A.19)
hence equation (A.17) reduces to
\[\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{(x-\tau)^2}{2}} \, dx + O(n^{-\frac{1}{2}}) = 1, \] (A.20)
or
\[\frac{1}{\sqrt{2\pi}} \int_{\tau}^{\infty} e^{-\frac{x^2}{2}} \, dx + O(n^{-\frac{1}{2}}) = 0, \] (A.21)
which is the Newman-Rivlin equation [13], with an error term of the order of \(n^{-\frac{1}{2}} \). All zeros of the function,
\[E(\tau) = \frac{1}{\sqrt{2\pi}} \int_{\tau}^{\infty} e^{-\frac{x^2}{2}} \, dx, \quad E(\tau) = \frac{1}{2} \text{erfc} \left(\frac{\tau}{\sqrt{2}} \right), \] (A.22)
are simple and they lie in the left half-plane, \(\{ z : \ \text{Re} \, z < 0 \} \), see [8]. If we enumerate the zeros \(\tau_q \) in the second quadrant by \(|\tau_q| \), then
\[\tau_1 = -1.915990857 \ldots + i2.816359418 \ldots, \]
and
\[\tau_q = 2\sqrt{\pi qe^{\frac{q}{2}}} + \frac{1}{4\sqrt{\pi q}} \ln(8\pi q)e^{\frac{q}{2}} + O\left(q^{-\frac{1}{2}}\right), \quad q \to \infty. \] (A.23)

Since \(E(\tau) \) is real, it also has zeros \(\tau_k \) in the third quadrant. From (A.20) we obtain that the zeros \(\zeta_q(n) \) of \(s_{n-1}(n\zeta) \) such that \(|\zeta_q(n) - 1| \leq M n^{-1/2} \) and \(\text{Im} \, \zeta_k \geq 0 \) are simple and they have the asymptotics
\[\zeta_q(n) = 1 + n^{-1/2}\tau_q + O(n^{-1}), \quad n \to \infty. \] (A.24)

This formula, with the error term \(o(n^{-1/2}) \), was obtained by Newman and Rivlin.

Case (2), \(M \leq |\tau| \leq n^{\frac{1}{6} - \varepsilon} \), \(\text{Re} \, \tau < 0 \). For large \(\tau \) formula (A.19) is modified as follows:
\[e^{(1-C)\zeta^n} = e^{-\frac{x^2}{2}}(1 + O(\tau^3 n^{-\frac{1}{2}})), \] (A.25)
hence instead of equation (A.21) we obtain the equation,
\[\frac{1}{\sqrt{2\pi}} \int_{\tau}^{\infty} e^{-\frac{x^2}{2}} dx + O(\tau^3 n^{-\frac{1}{2}}) = 0, \] (A.26)
Under the assumption \(|\tau| \leq n^{\frac{1}{6} - \varepsilon} \) the error term is of the order of \(O(n^{-3\varepsilon}) \). We can rewrite the equation \(E(\tau) = 0 \) in the form,
\[\tilde{E}(\tau) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\tau} e^{-\frac{x^2}{2}} dx = 1. \] (A.27)
For \(\text{Re} \, \tau \to -\infty \),
\[\tilde{E}(\tau) \sim -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \] (A.28)
hence
\[-\frac{1}{\sqrt{2\pi}} \tau_q^{-1} e^{-\frac{\tau_q^2}{2}} \sim 1, \] (A.29)
and
\[\tilde{E}'(\tau_q) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\tau_q^2}{2}} \sim -\tau_q, \] (A.30)
If \(\delta \equiv |(\tau - \tau_q)| \ll |\tau_q|^{-1} \) then
\[\tilde{E}'(\tau) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\tau^2}{2}} = \tilde{E}'(\tau_q)(1 + O(\delta)), \] (A.31)
hence
\[|\tilde{E}(\tau) - 1| \geq c|\tau - \tau_q|, \quad |\tau - \tau_q| \leq \delta; \quad c > 0. \] (A.32)
Equation (A.26) can be rewritten in the form,
\[\tilde{E}(\tau) = 1 + O(\tau^3 n^{-\frac{1}{2}}). \] (A.33)
From Proposition 2.3 we obtain now that
\[\zeta_q(n) = 1 + n^{-1/2}\tau_q + O(n^{-1}q), \quad q \leq n^{\frac{1}{3} - \varepsilon}, \quad n \to \infty. \] (A.34)
This asymptotics gives an extension of the asymptotics of Newman and Rivlin to \(q \leq n^{\frac{1}{3} - \varepsilon} \).
Case (3). \(\Re \tau \leq -n^\varepsilon, \varepsilon > 0 \). Our calculations in this case are based on the formula,

\[
\sum_{k=0}^{\infty} e^{-\frac{k^2}{2n}} \zeta^k = \frac{1}{1 - \zeta} \left[1 + O \left(\frac{1}{n(1 - |\zeta|)^2} \right) \right], \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.35}
\]

To prove this formula, observe that

\[
\sum_{k=0}^{\infty} |\zeta|^k = O(n \exp(-n^\varepsilon)), \quad n \to \infty, \tag{A.36}
\]

and

\[
\sum_{k=0}^{\sqrt{n}} (1 - e^{-\frac{k^2}{2n}})|\zeta|^k \leq C_0 \sum_{k=0}^{\sqrt{n}} k^2 |z|^k \leq \frac{C_1}{n(1 - |\zeta|)^3}. \tag{A.37}
\]

This implies (A.35). Similarly, from (A.7) we obtain the estimate,

\[
\sum_{k=0}^{\infty} \frac{n!}{(n+k)!} e^{-\frac{k^2}{2n}} \zeta^k = O \left(\frac{1}{n(1 - |\zeta|)^2} \right), \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.38}
\]

We reduce now equation (A.10) to

\[
e^{-n\zeta} n^\zeta n^n \left[1 + O \left(\frac{1}{n(1 - |\zeta|)^2} \right) \right] = 1, \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.39}
\]

By applying the Stirling formula and by taking the \(n \)-th root, we obtain the equation,

\[
e^{1-\zeta} \frac{1}{\sqrt{2\pi n(1 - \zeta)}} \left[1 + O \left(\frac{1}{n^2(1 - |\zeta|)^2} \right) \right] = \omega_q, \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}), \tag{A.40}
\]

\(\omega_q = e^{\frac{2\pi q}{n}} \). As an approximation to this equation, consider the equation

\[
h(\zeta) \equiv e^{1-\zeta} \zeta = \omega_q, \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.41}
\]

We have that if \(\zeta = 1 - t \), then

\[
e^{1-\zeta} \zeta = 1 - \frac{t^2}{2} (1 + O(t)), \quad t \to 0, \tag{A.42}
\]

hence the solution to the equation \(h(\zeta_q) = \omega_q \) has the asymptotics,

\[
\zeta_q = 1 + \sqrt{\frac{2q}{n}} e^{\frac{3\pi i}{4}} \left(1 + O \left(\frac{q}{n} \right) \right), \quad \frac{q}{n} \to 0. \tag{A.43}
\]

Also,

\[
|h(\zeta) - \omega_q| \geq c \sqrt{\frac{q}{n}} |\zeta - \zeta_q|, \quad |\zeta - \zeta_q| \leq \frac{z_q}{2}; \quad c > 0. \tag{A.44}
\]

As a better approximation to equation (A.40), consider the equation

\[
h^n(\zeta) \equiv \frac{e^{1-\zeta} \zeta}{\sqrt[3]{2\pi n(1 - \zeta)}} = \omega_q, \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.45}
\]

Observe that

\[
\sqrt[3]{2\pi n(1 - \zeta)} = 1 + O \left(\frac{\ln n}{n} \right), \quad |\zeta| \leq \exp(-n^{-\frac{1}{2} + \varepsilon}). \tag{A.46}
\]
hence by Proposition there exists a zero of such that
\[
\zeta_q^n = \zeta_q + O\left(\frac{\ln n}{\sqrt{nq}}\right), \quad q \geq n^\varepsilon. \tag{A.47}
\]

This in turn implies that there is a simple zero \(\zeta_q(n)\) of equation (A.40) such that
\[
\zeta_q(n) = \zeta_q^n + O\left(\frac{1}{n^{1/2}q^{3/2}}\right), \quad q \geq n^\varepsilon. \tag{A.48}
\]

The following theorem summarizes the results of this appendix.

Theorem A.1. For any \(\varepsilon > 0\), the zeros \(\zeta_q(n)\) of \(s_{n-1}(n\zeta)\) have asymptotics (A.34) in the interval \(1 \leq q \leq n^{1/3 - \varepsilon}\) and asymptotics (A.48) in the interval \(n^{\varepsilon} \leq q \leq n^{2/3}\).

Appendix B. Uniform asymptotics of the function \(s_n(n\zeta)\) in the disk \(D(1, \delta)\)

The function
\[
s_n(z) \equiv \sum_{k=0}^{n} \frac{z^k}{k!} \tag{B.1}
\]
solves the equation
\[
s'_n = s_n - \frac{z^n}{n!}, \tag{B.2}
\]
or
\[
(s_ne^{-z})' = -\frac{e^{-z}z^n}{n!}. \tag{B.3}
\]
In addition,
\[
\lim_{z \to +\infty} s_n(z)e^{-z} = 0, \tag{B.4}
\]

hence
\[
s_n(z) = e^z \int_{z}^{+\infty} \frac{e^{-u}u^n du}{n!}. \tag{B.5}
\]

This gives that
\[
s_n(n\zeta) = \frac{n^{n+1}e^n(\zeta-1)}{n!} \int_{\zeta}^{+\infty} e^{-n\phi(u)} du, \tag{B.6}
\]

where
\[
\phi(\zeta) = \zeta - \ln \zeta - 1. \tag{B.7}
\]

We will assume that \(\ln \zeta\) is taken on the principal branch, with a cut on \((-\infty, 0]\). Observe that \(\zeta = 1\) is a critical point of \(\phi(\zeta)\) and
\[
\phi(\zeta) = \frac{(\zeta - 1)^2}{2} - \frac{(\zeta - 1)^3}{3} + \ldots \tag{B.8}
\]

Therefore, the function
\[
\xi(\zeta) = \sqrt{\phi(\zeta)} = \sqrt{\zeta - \ln \zeta - 1} \tag{B.9}
\]
is analytic in some disk \(D(1, \delta), \delta > 0\), and \(\xi\) is the conformal mapping,
\[
\xi : D(1, \delta) \to \Omega, \tag{B.10}
\]
where Ω is a domain with analytic boundary, $0 \in \Omega$. It follows from (B.7) that $\xi(\zeta)$ is analytically continued to the half-line $(0, \infty)$ and $\xi(0) = -\infty, \xi(\infty) = +\infty$. From (B.8) we have that

$$\xi(\zeta) = \frac{\zeta - 1}{\sqrt{2}} - \frac{(\zeta - 1)^2}{6\sqrt{2}} + \frac{(\zeta - 1)^3}{36\sqrt{2}} + \ldots$$ \hspace{1cm} (B.11)

For the inverse mapping, $\eta = \xi^{-1} : \Omega \to D(1, \delta)$, we have that

$$\zeta = \eta(\xi) = 1 + \sqrt{2} \xi + \frac{2\xi^2}{3} + \frac{\sqrt{2} \xi^3}{18} + \ldots$$ \hspace{1cm} (B.12)

After the substitution $v = \xi(u)$, (B.6) becomes

$$s_n(\eta(\xi)) = \frac{n^{n+1}e^{n(\xi-1)}}{n!} \int_{\xi(\zeta)}^{+\infty} e^{-nv^2} \eta'(v) \, dv, \quad (B.13)$$

or if we put $w = \sqrt{n} v$,

$$s_n(\eta(\xi)) = \frac{n^{n+\frac{1}{2}}e^{n(\xi-1)}}{n!} \int_{\sqrt{n}\xi(\zeta)}^{+\infty} e^{-w^2} \eta\left(\frac{w}{\sqrt{n}}\right) \, dw. \quad (B.14)$$

By applying the Stirling formula, we obtain that

$$\frac{s_n(\eta(\xi))}{e^{n\xi}} = \frac{e^{-\frac{\xi}{2n}}}{\sqrt{2\pi}} \int_{\sqrt{n}\xi(\zeta)}^{+\infty} e^{-w^2} \eta\left(\frac{w}{\sqrt{n}}\right) \, dw. \quad (B.15)$$

The asymptotics of the integral on the right is described in terms of the complementary error function,

$$\text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{+\infty} e^{-w^2} \, dw. \quad (B.16)$$

For any $\varepsilon > 0$, as $|z| \to \infty$,

$$\text{erfc}(z) = \frac{e^{-z^2}}{z\sqrt{\pi}} \left(1 - \frac{1}{2z^2} + O(z^{-4})\right), \quad |\arg(z)| < \frac{3\pi}{4} - \varepsilon, \quad (B.17)$$

see [1]. Let us fix an arbitrary (big) number $M > 1$ and consider two cases: (1) $|\zeta - 1| \leq \frac{M}{\sqrt{n}}$, and (2) $\frac{M}{\sqrt{n}} \leq |\zeta - 1| \leq \delta$.

Case 1. $|\zeta - 1| \leq \frac{M}{\sqrt{n}}$. Since

$$\eta\left(\frac{w}{\sqrt{n}}\right) = \eta'(0) + O(n^{-\frac{1}{2}}) = \sqrt{2} + O(n^{-\frac{1}{2}}),$$ \hspace{1cm} (B.18)

if w is bounded, we obtain from (B.15) that

$$\frac{s_n(\eta(\xi))}{e^{n\xi}} = \frac{1}{2} \text{erfc}\left(\sqrt{n} \xi(\zeta)\right) + O(n^{-\frac{1}{2}}), \quad |\zeta - 1| \leq \frac{M}{\sqrt{n}}. \quad (B.19)$$

Case 2. $\frac{M}{\sqrt{n}} \leq |\zeta - 1| \leq \delta$. Suppose first that

$$|\arg(\zeta - 1)| \leq \frac{2\pi}{3}. \quad (B.20)$$

Then by (B.11),

$$|\arg(\xi(\zeta))| < 0.7\pi < \frac{3\pi}{4}, \quad (B.21)$$

and...
if δ is small enough. Set $a = \sqrt{n} \xi(\zeta)$. We have that
\[\int_a^{+\infty} e^{-w^2} \eta' \left(\frac{w}{\sqrt{n}} \right) \, dw = \eta' \left(\frac{a}{\sqrt{n}} \right) \int_a^{+\infty} e^{-w^2} \, dw \]
\[+ \int_a^{+\infty} e^{-w^2} \left[\eta' \left(\frac{w}{\sqrt{n}} \right) - \eta' \left(\frac{a}{\sqrt{n}} \right) \right] \, dw, \tag{B.22} \]
and as $n \to \infty$,
\[\int_a^{+\infty} e^{-w^2} \left[\eta' \left(\frac{w}{\sqrt{n}} \right) - \eta' \left(\frac{a}{\sqrt{n}} \right) \right] \, dw = O \left(\frac{e^{-a^2}}{a^2 \sqrt{n}} \right), \quad |\arg a| < \frac{3\pi}{4} - \varepsilon. \tag{B.23} \]
Indeed, set $w = a + t$. Then the latter integral becomes
\[\int_0^{+\infty} e^{-a^2 - 2at - t^2} \left[\eta' \left(\frac{a + t}{\sqrt{n}} \right) - \eta' \left(\frac{a}{\sqrt{n}} \right) \right] \, dt. \tag{B.24} \]
We can choose the contour of integration near $t = 0$ as $t = re^{-i \arg a}$, $r_0 > r > 0$, where $r_0 = 0.1 |a|$, and then from $t_0 = r_0 e^{-i \arg a}$ to $+\infty$ in such a way that $|e^{-\pi t^2}|$ is decreasing to 0. Observe that for $r_0 > r > 0$,
\[|\eta' \left(\frac{a + re^{-i \arg a}}{\sqrt{n}} \right) - \eta' \left(\frac{a}{\sqrt{n}} \right) | \leq \frac{C r}{\sqrt{n}}, \tag{B.25} \]

hence
\[\left| \int_0^{t_0} e^{-2|a|r - t^2} \left[\eta' \left(\frac{a + t}{\sqrt{n}} \right) - \eta' \left(\frac{a}{\sqrt{n}} \right) \right] \, dt \right| \leq \frac{C}{\sqrt{n}} \int_0^{r_0} e^{-|a|r} r \, dr < \frac{C}{\sqrt{n} |a|^2}. \tag{B.26} \]
This gives (B.23).

Since $\eta(\xi(\zeta)) = \zeta$ and $a = \sqrt{n} \xi(\zeta)$, we have that
\[\eta' \left(\frac{a}{\sqrt{n}} \right) = \eta' \left(\frac{\xi(\zeta)}{\sqrt{n}} \right) = \frac{1}{\xi'(\zeta)}. \tag{B.27} \]

We obtain now from (B.22), (B.23) and (B.17), that
\[\int_a^{+\infty} e^{-w^2} \eta' \left(\frac{w}{\sqrt{n}} \right) \, dw = \frac{1}{\xi'(\zeta)} \int_a^{+\infty} e^{-w^2} \, dw \left[1 + O \left(\frac{1}{a \sqrt{n}} \right) \right] \]
\[= \frac{\sqrt{\pi}}{2 \xi'(\zeta)} \text{erfc} \left(a \right) \left[1 + O \left(\frac{1}{a \sqrt{n}} \right) \right], \quad |\arg a| < \frac{3\pi}{4} - \varepsilon, \tag{B.28} \]

hence by (B.15),
\[\frac{s_n(n \zeta)}{e^{n\zeta}} = \frac{1}{2 \sqrt{2 \xi'(\zeta)}} \text{erfc} \left(\sqrt{n} \xi(\zeta) \right) \left[1 + O \left(\frac{1}{(\zeta - 1)n} \right) \right], \quad |\arg(\zeta - 1)| \leq \frac{2\pi}{3}. \tag{B.29} \]

Suppose now that
\[|\arg(\zeta - 1) - \pi| \leq \frac{2\pi}{3}. \tag{B.30} \]

Then by (B.11),
\[|\arg(\xi(\zeta)) - \pi| < 0.7\pi < \frac{3\pi}{4}, \tag{B.31} \]
if δ is small enough. Observe that $s_n(0) = 1$, hence from (B.6) we obtain that
\[
\int_0^{+\infty} e^{-n\phi(u)} \, du = \frac{e^n n!}{n^{n+1}}.
\] (B.32)

Therefore, (B.6) can be rewritten as
\[
s_n(n\zeta) = e^{n\zeta} - \frac{e^{n + 1} e^{n(\zeta - 1)}}{n!} \int_0^\infty e^{-n\phi(u)} \, du,
\] (B.33)

and (B.15) as
\[
s_n(n\zeta) = e^{n\zeta} - \frac{e^{-\frac{\theta}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{\sqrt{n}\xi(\zeta)} e^{-w^2} \, \eta\left(\frac{w}{\sqrt{n}}\right) \, dw,
\] (B.34)

Observe that
\[
\text{erfc}(-z) = 2 \sqrt{\pi} \int_{-\infty}^{z} e^{-w^2} \, dw,
\] (B.35)

and by (B.17),
\[
\text{erfc}(-z) = -e^{-z^2} \frac{\sqrt{2}}{\pi} \xi'(\zeta) \text{erfc}\left(\sqrt{n} \xi(\zeta)\right) \left[1 + O\left(\frac{1}{(\zeta - 1)n}\right)\right], \quad |\text{arg}(\zeta - 1)| \leq \frac{2\pi}{3}.
\] (B.36)

Also,
\[
\text{erfc}(-z) + \text{erfc} z = 2.
\] (B.37)

Similar to (B.29), we obtain now that
\[
\frac{s_n(n\zeta)}{e^{n\zeta}} = 1 - \frac{1}{2\sqrt{2} \xi'(\zeta)} \text{erfc}\left(\sqrt{n} \xi(\zeta)\right) \left[1 + O\left(\frac{1}{(\zeta - 1)n}\right)\right], \quad |\text{arg}(\zeta - 1)| \leq \frac{2\pi}{3}.
\] (B.38)

Let us summarize the results of this appendix.

Theorem B.1. There exists $\delta > 0$ such that for any $M > 1$ as $n \to \infty$,
\[
s_n(n\zeta) = \left\{ \begin{array}{ll}
\frac{1}{2} \text{erfc} \left(\sqrt{n} \xi(\zeta)\right) + O(n^{-\frac{3}{2}}), & \text{if } |\zeta - 1| \leq \frac{M}{\sqrt{n}}; \\
\frac{1}{2\sqrt{2} \xi'(\zeta)} \text{erfc}\left(\sqrt{n} \xi(\zeta)\right) \left[1 + O\left(\frac{1}{(\zeta - 1)n}\right)\right], & \text{if } \frac{M}{\sqrt{n}} \leq |\zeta - 1| \leq \delta \quad \text{and} \quad |\text{arg}(\zeta - 1)| \leq \frac{2\pi}{3}; \\
1 - \frac{1}{2\sqrt{2} \xi'(\zeta)} \text{erfc}\left(-\sqrt{n} \xi(\zeta)\right) \left[1 + O\left(\frac{1}{(\zeta - 1)n}\right)\right], & \text{if } \frac{M}{\sqrt{n}} \leq |\zeta - 1| \leq \delta \quad \text{and} \quad |\text{arg}(\zeta - 1) - \pi| \leq \frac{2\pi}{3}.
\end{array} \right.
\] (B.39)

A similar asymptotics for real $\zeta > 0$ was obtained by Jet Wimp (unpublished), see [9].

Asymptotics (B.39) can be used to locate the zeros of s_n. The zeros σ_q, $\bar{\sigma}_q$, of erfc(σ) are located in the second and the third quadrants, and the ones in the second quadrant have the asymptotics [8],
\[
\sigma_q = \sqrt{2\pi q e^{\frac{3\pi i}{4}}} + \frac{1}{4\sqrt{2\pi q}} \ln(8\pi q) e^{\frac{\pi i}{8}} + O\left(q^{-\frac{1}{2}}\right), \quad q \to \infty.
\] (B.40)
cf. (A.28), where $\tau_q = \sqrt{2} \sigma_q$. The first zero is

$$\sigma_1 = -1.3548101281 \ldots + i1.9914668430 \ldots$$

Asymptotics (B.40) can be obtained from the equation

$$2 = \text{erfc}(-\sigma_q) = -\frac{e^{-\sigma_q^2}}{\sigma_q \sqrt{\pi}} \left(1 - \frac{1}{2\sigma_q^2} + O(\sigma_q^{-4})\right), \quad q \to \infty,$$

It follows from (B.39) that the zeros $\zeta_q(n_1), \zeta_q(n_2)$ of $s_n(n\zeta)$ are also located in the second and the third quadrants. Let us find the large n asymptotics of $\zeta_q(n)$. First we consider the problem informally. By (B.39), the equation $s_n(n\zeta) = 0$ can be rewritten as

$$\text{erfc}(-\sqrt{n} \xi(\zeta)) = 2 \left[1 + O\left(\frac{1}{\sqrt{n}}\right)\right].$$

Set

$$\sigma = \sqrt{n} \xi(\zeta);$$

then (B.43) reads

$$\text{erfc}(-\sigma) = \frac{2 \sqrt{2}}{\eta'\left(\frac{\sigma}{\sqrt{n}}\right)} \left[1 + O\left(\frac{1}{\sigma \sqrt{n}}\right)\right].$$

We are looking for $\sigma = \sigma_q + \tau$, where τ is a small correction to be determined. It is convenient to take logarithm of the both sides of (B.45).

$$\log \text{erfc}(-\sigma_q - \tau) = \frac{3 \ln 2}{2} - \log \eta'\left(\frac{\sigma_q + \tau}{\sqrt{n}}\right) + O\left(\frac{1}{\sigma \sqrt{n \sigma}}\right).$$

(Observe that $\sigma_q^{-1} = O(q^{-1/2})$.) We have the Taylor expansion,

$$\log \text{erfc}(-\sigma_q - \tau) = \log \text{erfc}(-\sigma_q) - \frac{\text{erfc}'(-\sigma_q) \tau}{\text{erfc}(-\sigma_q)} + O(\tau^2)$$

$$= \ln 2 + \frac{2 e^{-\sigma_q^2} \tau}{\sqrt{\pi} \text{erfc}(-\sigma_q)} + O(\tau^2),$$

where the error term is uniform in σ_q. Indeed, it follows from asymptotics (B.36) that

$$\frac{\text{erfc}'(-\sigma)}{\text{erfc}(-\sigma)} = -\frac{2 e^{-\sigma^2}}{\sqrt{\pi} \text{erfc}(-\sigma)} = 2\sigma - \frac{1}{\sigma} + O(\sigma^{-3}),$$

hence

$$[\log \text{erfc}(-\sigma)]'' = O(1), \quad \sigma \to \infty; \quad |\arg \sigma - \pi| < \frac{3\pi}{4}.$$}

We find τ from the equation,

$$\ln 2 + \frac{2 e^{-\sigma_q^2} \tau}{\sqrt{\pi} \text{erfc}(-\sigma_q)} = \frac{3 \ln 2}{2} - \log \eta'\left(\frac{\sigma_q}{\sqrt{n}}\right),$$

so that

$$\tau = \frac{\sqrt{\pi}}{2} \left[\frac{\ln 2}{2} - \log \eta'\left(\frac{\sigma_q}{\sqrt{n}}\right)\right] e^{\sigma_q^2} \text{erfc}(-\sigma_q),$$

\(\text{(B.51)}\)
or

$$\tau = \frac{1}{\sqrt{n}} g \left(\frac{\sigma_q}{\sqrt{n}} \right) h(\sigma_q), \quad (B.52)$$

where the function

$$g(z) = -\frac{1}{2z} \left[\frac{\ln 2}{2} - \log \eta' \left(\frac{\sigma_q}{\sqrt{n}} + \frac{\tau_q}{n} \right) \right] = \frac{\sqrt{2}}{3} - \frac{5z}{36} + \ldots \quad (B.53)$$

is analytic at $z = 0$, and

$$h(\sigma) = -\sqrt{\pi} \sigma e^{\sigma^2} \text{erfc} (-\sigma) = 1 - \frac{1}{2\sigma^2} + O(\sigma^{-4}), \quad \sigma \to \infty. \quad (B.54)$$

Theorem B.2. There exists $\delta > 0$ such that all the zeros $\zeta_q(n)$ of $s_n(n\zeta)$ in the domain $D(1, \delta) \cap \{\text{Im}\, \zeta > 0\}$ have the asymptotics,

$$\zeta_q(n) = \frac{\lambda}{\sqrt{n}} \left(\frac{\sigma_q}{\sqrt{n}} + \frac{\tau_q}{n} \right) + O \left(\frac{1}{n^{\frac{1}{2}}} \right), \quad n \to \infty, \quad (B.55)$$

where η is the inverse function of $\xi(\zeta) = \sqrt{\frac{\lambda}{\zeta} - \ln \zeta - 1}$, see (B.12), $\{\sigma_q, q = 1, 2, \ldots\}$ are the zeros of $\text{erfc} (\sigma)$ in the upper half-plane, and

$$\tau_q = g \left(\frac{\sigma_q}{\sqrt{n}} \right) h(\sigma_q), \quad (B.56)$$

where g and h are defined in (B.53) and (B.54), respectively.

Proof. Existence. Let us write equation (B.46) as

$$\log \text{erfc} \left(-\sigma_q - \tau \right) = \frac{3 \ln 2}{2} - \log \eta' \left(\frac{\sigma_q}{\sqrt{n}} + \frac{\tau}{n} \right) + \varepsilon(\tau), \quad \varepsilon(\tau) = O \left(\frac{1}{\sqrt{n}} \right), \quad (B.57)$$

or as

$$f(\tau) \equiv \log \text{erfc} \left(-\sigma_q - \tau \right) - \frac{3 \ln 2}{2} + \log \eta' \left(\frac{\sigma_q}{\sqrt{n}} + \frac{\tau}{n} \right) - \varepsilon(\tau) = 0. \quad (B.58)$$

Let

$$\tau^0 = \frac{1}{\sqrt{n}} g \left(\frac{\sigma_q}{\sqrt{n}} \right) h(\sigma_q), \quad (B.59)$$

Then from (B.50) we obtain that

$$f(\tau^0) = O \left(\frac{1}{\sqrt{n^q}} \right), \quad (B.60)$$

and from (B.47), (B.48), that

$$|f'(\tau^0)| > c > 0; \quad f''(\tau) = O(1), \quad |\tau - \tau^0| \leq n^{-\frac{1}{2}}. \quad (B.61)$$

This implies the existence of a zero τ^1 of $f(\tau)$ such that

$$\tau^1 = \tau^0 + O \left(\frac{1}{\sqrt{n^q}} \right). \quad (B.62)$$

By (B.44), this means that there is a zero ζ^1 of $s_n(n\zeta)$ such that

$$\sigma_q + \tau^1 = \sqrt{n} \xi(\zeta^1), \quad (B.63)$$
hence
\[\zeta^1 = \eta \left(\frac{\sigma_q + \tau^0}{\sqrt{n}} + O \left(\frac{1}{n\sqrt{q}} \right) \right), \quad (B.64) \]
which implies (B.55). The existence is proved.

Uniqueness. From (B.60) it follows that any zero \(\sigma \) of equation (B.35) must be in the disk \(D(\sigma_q, n^{-3}) \), but by (B.61) there is a unique zero in this disk. This proves the uniqueness.

Theorem B.2 is proved. \(\square \)

It follows from (B.56), (B.53), and (B.54), that \(\tau_q \) is uniformly bounded, hence equation (B.55) can be rewritten in the form,
\[\zeta \left(\sqrt{\frac{n}{q}} \right) = \eta \left(\frac{\sigma_q}{\sqrt{n}} + \frac{\tau_q}{n} + O \left(\frac{1}{n\sqrt{q}} \right) \right), \quad n \to \infty. \quad (B.65) \]
Equation (B.55) implies also that
\[\xi \left(\sqrt{\frac{n}{q}} \right) = \sqrt{n} \sigma_q (1 + O(q^{-1})) \quad (B.66) \]
It follows from Theorem B.1 and B.2 that
\[\left(\frac{s_n(n \zeta)}{e^{n \zeta}} \right) \bigg|_{\zeta = \zeta_q(n)} = \sqrt{2n} \sigma_q \quad (B.67) \]
Indeed, when we differentiate the last formula in (B.39), we obtain, with the help of (B.66) and (B.42), that
\[\left(\frac{s_n(n \zeta)}{e^{n \zeta}} \right) \bigg|_{\zeta = \zeta_q(n)} = \sqrt{n} \sigma_q \quad (B.68) \]
which implies (B.67), due to (B.42). If we differentiate the last formula in (B.39) twice, we obtain similarly, that
\[\left(\frac{s_n(n \zeta)}{e^{n \zeta}} \right)'' \bigg|_{\zeta = \zeta_q(n)} = O(nq), \quad (B.69) \]
By combining (B.67) and (B.69), we obtain the following result.

Proposition B.3. There exists \(c > 0 \) and \(N > 0 \) such that \(\forall n > N \),
\[\left| \frac{s_n(n \zeta)}{e^{n \zeta}} \right| \geq \sqrt{nq} |\zeta - \zeta_q(n)|, \quad \text{if} \quad |\zeta - \zeta_q(n)| \leq \frac{c}{\sqrt{nq}}. \quad (B.70) \]

References

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover, N.Y. 1972.
[2] T. Bergkvist and H. Rullgård, *On polynomial eigenfunctions for a class of differential operators*, Math. Res. Lett. **9** (2002), 153–171.
[3] J.D. Buckholtz, *A characterization of the exponential series*, Amer. Math. Monthly **73**, Part II (1966), 121–123.
[4] A.J. Carpenter, R.S. Varga, and J. Waldvogel, *Asymptotics for the zeros of the partial sums of e^z. I.*, Rocky Mountain J. Math, (1991) 99–120.

[5] B. Conrey and A. Ghosh, *On the zeros of the Taylor polynomials associated with the exponential function*, Amer. Math. Monthly 95, No. 6 (1988), 528–533.

[6] J. Dieudonné, *Sur les zéros des polynomes-sectiones de e^z*, Bull. Soc. Math. France 70 (1935), 333–351.

[7] A. Edrei, E.B. Saff, and R.S. Varga, *Zeros of sections of power series*, Lecture Notes in Mathematics, No. 1002, Springer-Verlag (1983)

[8] H.E. Fettis, J.C. Caslin, and K.R. Cramer, *Complex zeros of the error function and of the complementary error function*. Math. Comp. 27 (1973), 401–404.

[9] W.M.Y. Goh and R. Boyer, *On the zero attractor on the Euler polynomials*. Preprint.

[10] M. Kappert, *On the zeros of the partial sums of $\cos(z)$ and $\sin(z)$*, Numer. Math. 74, (1996) 397–417.

[11] A.B.J. Kuijlaars and K.T.-R. McLaughlin, *Asymptotic zero behavior of Laguerre polynomials with negative parameter*. Constr. Approx. 20 (2004), no. 4, 497–523.

[12] B.Ja. Levin, *Distribution of zeros of entire functions*. Translations of Mathematical Monographs 5. American Mathematical Society, Providence, R.I., 1980. xii+523 pp.

[13] D.J. Newman and T.J. Rivlin, *The zeros of the partial sums of the exponential function*, J. Approx. Theory 5 (1972), 405–412. Correction: J. Approx. Theory 16 (1976), 299–300.

[14] I.V. Ostrovskii, *On zero distribution of sections and tails of power series*, Israel Math. Conf. Proc. 15 (2001), 297–310.

[15] I.E. Pritsker and R.S. Varga, *The Szegő curve, zero distribution and weighted approximation*, Trans. Amer. Math. Soc. 349, No. 10, (1997) 4085–4105.

[16] E.B. Saff and R.S. Varga, *Zero-free parabolic regions for sequences of polynomials*, SIAM J. Math. Anal. 7 (1976), 344–357.

[17] E. Soprunova, *Exponential Gelfond-Khovanskii formula in dimension one*. Preprint.

[18] G. Szegő, *Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges.*, 23 (1924), 500–64.

[19] R.S. Varga, *Scientific computation on some mathematical conjectures*, Approximation Theory V (C.K. Chui, L.L. Schumacher, and J.D. Ward, eds.), pp. 191–209, Academic Press, 1986.

[20] R.S. Varga and A.J. Carpenter, *Zeros of the partial sums of $\cos(z)$ and $\sin(z)$. I.*, Numer. Algorithms, 25 (2000), 363-375.

[21] R.S. Varga and A.J. Carpenter, *Zeros of the partial sums of $\cos(z)$ and $\sin(z)$, II.*, Numer. Math. 90 (2001), 371-400.

[22] Y.C. Yıldırım, *A sum over the zeros of partial sums of e^z*, J. Ramanujan Math. Soc. 6 (1991), 51–66.

[23] S.M. Zemyan, *On the zeroes of the N-th partial sum of the exponential series*, Amer. Math. Monthly (2005), 891–905.

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, U.S.A.

E-mail address: bleher@math.iupui.edu

Department of Mathematics, Indiana Wesleyan University, 4201 S. Washington St., Marion, IN 46953, U.S.A.

E-mail address: bob.mallison@indwes.edu