BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy

ACM AsiaCCS’22

Daniele Antonioli (EURECOM and EPFL)
Nils Ole Tippenhauer (CISPA)
Kasper Rasmussen (University of Oxford)
Mathias Payer (EPFL)
Bluetooth is a Pervasive Wireless Technology

- **Bluetooth Classic (BT)**
 - High throughput services
- **Bluetooth Low Energy (BLE)**
 - Ultra low power services
- **Bluetooth standard (v5.3)**
 - One vulnerability in the standard
 - Billions of exploitable devices
BT and BLE Security Are Considered Separately

BT Threats
(NinO, KNOB, BIAS, …)

BLE Threats
(CrackLE, KNOB, BLES, …)
We Blur the Security Boundary abusing CTKD

BT Threats
(NinO, KNOB, BIAS, …)

BLE Threats
(CrackLE, KNOB, BLESAPA, …)
We perform **Cross-Transport Attacks on BT** and **BLE**

- **BT Threats** (NinO, KNOB, BIAS, …)
- **BLE Threats** (CrackLE, KNOB, BLESA, …)

NEW: BT-BLE Cross-Transport Threats (BLUR)

Daniele Antonioli - BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy
Contributions

- CTKD is a **novel** and **cross-transport** attack surface
- Uncover **four vulnerabilities** in the CTKD **specification**
- Develop **four cross-transport (BLUR) attacks**
 - Cross-transport Impersonation, MitM, unintended sessions
- **Conduct** the BLUR attacks on actual devices
 - Exploit 16 devices (14 chips, Bluetooth 4.1, 4.2, 5.0, 5.1, 5.2)
- **Fix** the BLUR attacks
 - Unlike the mitigation in the Bluetooth standard
Device Discovery and Pairing Initialization

Victims support BT, BLE and CTKD. They start pairing over BT
Pairing Feature Exchange

Central

Pairing Feature Exchange

BT

Peripheral

Strongest security mode. E.g. Secure Connections, MitM, CTKD, and Input-Output support.
BT pairing key derivation via ECDH. Strongest authentication available (Numeric Comparison)
BLE Pairing Key Cross-Transport Key Derivation (CTKD)

Derives K_{BLE} from K_{BT}, no BLE packets

Crosses the BT/BLE security boundary CTKD

Introduced for usability, no security evaluation (2014, v4.2)
Pairing Completed and Secure Sessions Establishment

Devices can start a **BLE** secure session **without** having to pair over **BLE**
Attacker Model

Charlie, attacker in Bluetooth range
Goals: Cross-transport Impersonation, MitM, unintended sessions
BLUR Attacks: Summary

1. Cross-transport central impersonation
2. Cross-transport peripheral impersonation
3. Cross-transport MitM
4. Cross-transport unintended session

NOTE: attacks as standard-compliant as they exploit CTKD’s specification
BLUR Attacks: Cross-Transport Central Impersonation

What happens if Charlie tries to pair over BLE with Bob while impersonating Alice?

NEW: Cross-transport Central Impersonation
BLUR Attacks: Cross-Transport Central Impersonation

Daniele Antonioli - BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy
BLUR Attacks: Cross-Transport Central Impersonation (2)

Daniele Antonioli - BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy
BLUR Attacks: Cross-Transport Peripheral Impersonation

Daniele Antonioli - BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy
BLUR Attacks: Cross-Transport MitM
BLUR Attacks: Cross-Transport Unintended Session
Evaluation: Exploiting 16 devices (14 unique chips)

Device	OS	Chip	Bluetooth Version	BLUR Attack Role	MI/SI	MitM	US
Cypress	Proprietary	Cypress	5.0	Peripheral	✓	✓	✓
Dell	Win 10 PRO	Intel	4.2	Peripheral	✓	✓	✓
Google	Android	Qualcomm	5.0	Peripheral	✓	✓	✓
Lenovo	Linux	Intel	4.2	Peripheral	✓	✓	✓
Samsung	Android	Samsung	5.0	Peripheral	✓	✓	✓
Samsung	Android	Qualcomm	5.0	Peripheral	✓	✓	✓
Samsung	Android	Broadcom	5.0	Peripheral	✓	✓	✓
Samsung	Android	Broadcom	5.0	Peripheral	✓	✓	✓
Xiaomi	Android	Qualcomm	5.1	Peripheral	✓	✓	✓
Xiaomi	Android	Qualcomm	5.2	Peripheral	✓	✓	✓
Sony	Proprietary	CSR	4.2	Central	✓	✓	✓
Sony	Proprietary	CSR	4.1	Central	✓	✓	✓
BLUR Attacks Root Causes: Issues with CTKD

- Device always pairable over **BT** and **BLE**
 - Attacker pairs on unused transports (impersonating someone)
- Cross-transport key tampering
 - Attacker writes, overwrites, and steals BT/BLE keys
- Cross-transport association mismatch
 - Attacker downgrades association (when necessary)
- Cross-transport roles mismatch
 - Attacker pairs mixing roles (e.g., BLE Central, BT Peripheral)
Our Countermeasures

● Disable key overwriting via CTKD, unless user consent
 ○ Prevent key overwriting via CTKD
 ○ We implemented and tested it on Linux

● Disable BT/BLE pairability if not needed, provide a pairing UI
 ○ Prevent an attacker from pairing on unused transports
Fix in the Bluetooth standard 5.1+ is not effective

From the standard: “While performing CTKD derivation, if the key for the other transport already exists, then the devices shall not overwrite that existing key with a key that is weaker in either strength or MITM protection”

- Bluetooth 4.2 and 5.0 are not covered despite being popular versions
- BLUR key write and unintended session attacks not covered
- BLUR key overwrite attacks do not require to downgrade key’s strength and MitM protection
Conclusion and Q&A

- CTKD is a **novel** and **cross-transport** attack surface
- Uncover **four vulnerabilities** in the CTKD **specification**
- Develop **four cross-transport (BLUR) attacks**
 - Cross-transport Impersonation, MitM, unintended sessions
- **Conduct** the BLUR attacks on actual devices
 - Exploit 16 devices (14 chips, Bluetooth 4.1, 4.2, 5.0, 5.1, 5.2)
- **Fix** the BLUR attacks
 - Unlike the mitigation in the Bluetooth standard
- **Links:** [paper](#), [slides](#), [video](#), [code](#), [website](#)