Expression of PD-L1 in tumor and immune system cells affects the survival of patients with urinary bladder cancer.

Authors: Mateusz Matusiak, Jakub Dzierżawski, Jakub Jóźwicki, Jarosław Starzyński, Jan Misiak, Anna Aneta Brożyna, Wojciech Jóźwicki

DOI: 10.5603/MRJ.a2019.0026

Article type: ORIGINAL ARTICLES

Submitted: 2019-05-15

Accepted: 2019-05-21

Published online: 2019-05-24

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited.
Mateusz Matusiak1, Jakub Dzierżawski1, Jakub Jóźwicki2, Jarosław Starzyński1, Jan Misiak4, Anna A. Brożyna1,3, Wojciech Jóźwicki1,4.

1Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; 2Department of Clinical Pathomorphology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland; 3Department of Human Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; 4Department of Tumor Pathology and Pathomorphology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland

Mateusz Matusiak and Jakub Dzierżawski are equal first authors.

Expression of PD-L1 in tumor and immune system cells affects the survival of patients with urinary bladder cancer.

Corresponding author: Wojciech Jóźwicki, Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Romanowskiej 2, Poland, e-mail: jozwickiw@co.bydgoszcz.pl

ABSTRACT

Background: The prediction of tumor malignancy is still one of the most demanding diagnostic tasks in urinary bladder cancer because of its clinicopathological heterogeneity.

The aim of this study was to evaluate the expression of PD-L1 in tumor cells (TCs) and immune effector cells (IECs) as well as the pattern of distribution of PD-L1+ IECs within the tumor (dispersed or aggregated) and their association with survival of patients with pT1-pT4 urinary bladder cancer.

Materials and methods: 110 patients with stage pT1-pT4 urothelial bladder carcinoma who underwent radical cystectomy/cystoprostatectomy between 2011 and 2014 were included in the study. Paraaffin blocks most representative of tumor were selected for H&E staining as well as immunostaining with the use of rabbit anti-PD-L1 (Ventana clone SP142, Roche). In each sample the area of the tumor containing PD-L1+ IECs as well as the pattern of distribution (dispersed or aggregated) of PD-L1+ immune effector cells within the tumor were analyzed. In addition, the expression of PD-L1 in TCs was also assessed.

Results: Patients had a shorter survival time in pT2-pT4 cases without TCs expressing PD-L1 (p=0.007) and/or when PD-L1+ IECs displayed a predominantly dispersed pattern of distribution (p=0.013).
Conclusions: The expression of PD-L1 on TCs and IECs is a prognostic factor which allows for stratification of patient survival in UBC. The predominance of dispersed or aggregated pattern of distribution of PD-L1+ IECs in the tumor may be considered as a new prognostic factor in pT1-T4 UBC and indicate the functional status of the immune system.

Key words: PD-L1; urothelial bladder cancer; tumor microenvironment; immune cell distribution, immune effector cells, immune checkpoint inhibitors

1. INTRODUCTION

Urothelial bladder cancer (UBC) is the seventh most frequency occurring cancers in men and may be responsible for 200 000 deaths in 2018 [1]. The assessment of the tumor malignancy requires the assessment of tumor advancement (pT), histological malignancy (G), number of nonclassic differentiation types (NDN) and the tissue invasion type (TIT) [2–4]. Unfortunately, the prediction of the tumor progression and the risk of recurrence remains a diagnostic and therapeutic challenge in UBC. Its histological and clinical heterogeneity which likely reflects its molecular heterogeneity makes understanding the biological mechanisms of UBC malignancy a challenging area of research [5–8]. Recent studies have indicated several probable mechanisms of tumor progression by the way of modulating the immune system anti-tumor response. One important mechanism is the suppression of anti-tumor response by an excess infiltration of regulatory T cells (Tregs) [9]. The over-expression of RCAS1 in tumor cells (TCs) and the surrounding cells of the cancer microenvironment was also shown to correlate with clinical and pathomorphological patterns of malignancy [5]. An interesting new area of research is the cancer immune evasion through activation of immune checkpoints which suppress IECs [10,11]. One such mechanism is the PD-1/PD-L1 signaling pathway which suppresses the activity of T lymphocytes particularly in the effector phase of the immune response [11]. In 2017, Xingyuan et al. performed studies that showed the ability of UBC TCs to induce immunosuppression in patients through upregulation of PD-L1 expression on tumor-associated macrophages (TAMs) with the involvement of IL-10 [12].
Furthermore, PD-L1 can be expressed in both TCs and IECs. There is evidence that its expression within the tumor may in some circumstances facilitate the escape from immune surveillance and lead to tumor progression [10,13]. The results of clinical trials have demonstrated significant correlation between PD-L1 expression in some tumors and the effectiveness of treatment using immune checkpoint inhibitors (ICI) [14–19], especially in early stages of the disease [20], and in combination therapies [21]. However, some patients who meet the criteria for therapy do not respond well to anti-PD-L1 treatment [22,23]. Thus, finding new eligibility criteria for immunotherapy to increase its efficacy and safety is paramount. The aim of this study is to assess the expression of PD-L1 on TCs and IECs which are present in the tumor area and to analyze the effect of PD-L1 expression on patient survival in UBC.

2. MATERIALS AND METHODS
A total of 110 patients with pT1-pT4 UBC from Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz (Poland) who underwent radical cystectomy (or cystoprostatectomy) in 2011-2014 were enrolled in this study. The average follow-up time after surgery was about 22 months. The clinico-pathological characteristics of the study group is presented in Table 1.

TABLE 1.
Staging and histological type of tumors were assessed according to WHO classification [24]. Survival data were collected from National Health Fund. The study was approved by the Committee of Ethics of Scientific Research of Collegium Medicum, Nicolaus Copernicus University, Poland (KB 587/2018).

2.1 The preparation and evaluation of H&E stained samples

Tissue sections were fixed in 10% buffered formalin and embedded in paraffin blocks according to a standard protocol. The evaluation of HE (Hematoxylin-Eosin) stained sections from each urinary bladder was performed and one representative paraffin-embedded block was chosen for immunohistochemical staining.
2.2 Immunohistochemical staining and evaluation of samples

Immunohistochemical staining of 4 µm sections was performed with rabbit monoclonal anti-PD-L1 (Ventana clone SP142, Roche) and visualization system OptiView DAB IHC Detection Kit and OptiView Amplification Kit using VENTANA BenchMark system, according to the manufacturer’s protocol. To confirm the specificity of the signal, the same protocol but without the use of anti-PD-L1 was performed as a negative control for each sample. For each staining cycle, a positive control sample of human tonsil was included following the manufacturer’s recommendations. In each test sample, the percentage of tumor area occupied by tumor-associated immune cells exhibiting PD-L1 positive staining was assessed, regardless of staining intensity or the number of ICs present [25] (Figure 1AB). Furthermore, the pattern of distribution of PD-L1+ IECs in the tumor was evaluated as either dispersed or aggregated (with cell aggregates of 10 cells or more in a high-power field of view) (Figure 1CD).

FIGURE 1

Figure 1. The panel gives an example of the extent of the presence of PD-L1+ IECs in the tumor: <5% (A) and ≥5% (B). The aggregated and dispersed presence of PD-L1+ IECs is shown in pictures C and D, respectively. Arrows point to immune cells.

The presence or absence of PD-L1 expression was evaluated in the TCs regardless of intensity and extent of the expression.

FIGURE 2

Figure 2. The picture shows sample images of the presence of PD-L1 expression in tumor cells (A) and its absence (B).

The microscopic assessment was performed with the use of Nikon Eclipse 80i microscope. Pictures were taken with Nikon Digital Sight DS Fi1-U2 camera and with NISElements BR 3.0 software (Nikon instruments Europe B.V., Badhoevedorp, The Netherlands).

2.3 Statistical analysis
The relationship between PD-L1 expression in TCs and IECs was analyzed using T test for independent samples. PD-L1 expression in TCs and IECs and the probability of survival was assessed with Kaplan–Meier curves. The statistical analyses were performed using STATISTICA data analysis software (version 8.0; StatSoft, Inc., Tulsa, OK, USA). A p value <0.05 was considered to be significant.

3. RESULTS

3.1 Expression of PD-L1 and survival

The analysis of PD-L1 expression in TCs showed that the probability of survival was higher in cases where TCs expressed PD-L1 compared to those where such expression was not found (Figure 3).

FIGURE 3

Figure 3. The survival probability 20 and 50 months after cystectomy for UBC was about two and half times and twice higher, respectively, in patients with tumor PD-L1 expression.

Further, we observed that the presence of PD-L1+ IECs with a dispersed distribution pattern (n=40) was associated with significantly lower survival probability (Figure 4).

FIGURE 4

Figure 4. The probability of survival 4 years after cystectomy for UBC was more than twice lower in patients with advantage of dispersed PD-L1+ IECs in tumor.

3.2 Expression of PDL1 in tumor and immune cells

We observed a strong correlation between the extent of PD-L1 expression in TCs and the extent of expression of PD-L1 in IECs in close vicinity (p<0.05; r=0.60; n=110). The extent of PD-L1 expression in TCs was particularly high in tumors where PD-L1+ IECs occupied more than 5% of the whole tumor area (Figure 5).

FIGURE 5
Figure 5. The average extent of PD-L1 expression in tumor cells is at least 5 times as high in tumors in which PD-L1 + immune cells occupy over 5% of their surface area.

4. DISCUSSION

Immune mechanisms play a key role in tumor development and progression. Inhibition of anti-tumor response of the immune system and induction of immune tolerance are observed in the early and late stage of UBC development, respectively [5,9,26–28]. Recent studies have focused on immune checkpoint modulation of IECs activity by means of PD1-PDL1 signaling pathway in UBC [11,29]. We have demonstrated that the expression of PD-L1 in TCs of UBC is associated with the higher probability of survival (Figure 3). Contrary findings were obtained by Chun-Te et al. and also by Yide et al. [30,31]. However, the results of several other authors are not in accord. Bellmunt et al. and Davickai et al. confirmed such relation in patients with UBC [32,33], likewise, Kim et al. detected an association in head and neck tumors [34]. We cannot rule out that the difference in findings may be due to adopted selection of samples (i.e. non-epithelial bladder cancer included) and due to differences in methodology (type of antibody, representative section sampling). Some other authors report that the expression of PD-L1 on TCs may be associated with the increase of PD-L1+ IECs numbers within the tumor [31]. In our study, we have observed that the increase of the extent of the tumor with PD-L1+ IECs is associated with the increase of PD-L1 expression in TCs (Figure 5). This may suggest a similar or even synergistic involvement of these two cellular components (TCs and IECs) in downregulation of anti-tumor response through PD-L1. There is no clear consensus on that matter in literature [35,36]. The studies on the role of PD-L1 molecule in the ovarian cancer demonstrated that PD-L1 expression in tumor infiltrating macrophages may confer them protection from the immune system. The macrophages remove debris of tumor cells which in effect leads to high levels of tumor antigens in them which may result in them being targeted by IECs. PD-L1 expression on the surface of macrophages may protect them against this autoimmune response [37,38]. Thus, a parallel increase of PD-L1 expression in immune and tumor cells suggests a mechanism in which the immune system tries to activate a protective mechanism for its own effector cells. Ottenhof et al. in their study
on the prognostic value of PD-L1 expression in penile cancer discovered an association
between dispersed pattern of ligand expression in tumor cells and a lower probability of
survival [39]. In our study, the probability of survival in patients with UBC in stages pT1-T4
was reduced twice with a dispersed distribution of PD-L1+ IECs (Figure 4). The findings we
obtained suggest that the effectiveness of immune checkpoints linked to PD-L1 expression on
IECs dispersed within the tumor is higher in comparison with PD-L1 located on aggregated
IECs in UBC. Pichler et al. concluded that outcome prediction in UBC is most effective when
the expression of PD-L1 on IECs is assessed. Their studies indicated, however, that high
heterogeneity of expression dependent on the type of cells expressing PD-L1 cells may lead to
unreliable results [40]. Recent studies suggest that not only the level of PD-L1 expression in
IECs may have a prognostic value but also their location and aggregation within the tumor
may significantly affect survival [41,42]. Our findings indicate that there is a significant
prognostic value of assessing the dispersed and aggregated patterns of distribution of PD-L1+
IECs within the tumor. The diagnostic assessment standards for UBC proposed by other
authors do not include the assessment of distribution of PD-L1+ IECs within the tumor [25].
In our opinion, dispersion or aggregation of immunocompetent cells may be an indication of
the status of the immune system and as such should be included in the eligibility criteria for
immunotherapy in UBC.

5. CONCLUSIONS
The assessment of PD-L1 expression in TCs allows for prognostic stratification of patients
with UBC in all stages. The predominance of dispersed or aggregated type of distribution of
PD-L1+ IECs in the tumor may be considered as a new prognostic factor in pT1-pT4 UBC
and may also indicate the status of the immune system of a patient. The assessment of the PD-
L1 expression in TCs and IECs as well as of the type of distribution of IECs PD-L1+ in the
tumor should be considered for inclusion in immunotherapy eligibility criteria in patients with
UBC.

6. GRANT SUPPORT
This study was supported in part by funds for statutory research from Collegium Medicum, Nicolaus Copernicus University.

7. CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

8. LIST OF ABBREVIATIONS

IECs – immune effector cells

TCs – tumor cells

PD-L1 – programmed death ligand 1

PD-1 – programmed death 1

ICI – immune checkpoint inhibitors

UBC – urothelial bladder cancer

9. REFERENCES

[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424. doi:10.3322/caac.21492.

[2] Jozwicki W, Domaniewski J, Skok Z, Wolski Z, Domanowska E, Jozwicka G. Usefulness of histologic homogeneity estimation of muscle-invasive urinary bladder cancer in an individual prognosis: A mapping study. Urology 2005;66:1122–6. doi:10.1016/j.urology.2005.06.134.

[3] Domanowska E, Jozwicki W, Domaniewski J, Golda R, Skok Z, Wiśniewska H, et al. Muscle-invasive urothelial cell carcinoma of the human bladder: multidirectional differentiation and ability to metastasize. Hum Pathol 2007;38:741–6. doi:10.1016/j.humpath.2006.11.001.

[4] Bellmunt J, Orsola A, Leow JJ, Wiegel T, De Santis M, Horwich A, et al. Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014;25:iii40–8. doi:10.1093/annonc/mdu223.

[5] Jóźwicki W, Brożyna A, Siekiera J, Slominski A. Expression of RCAS1 Correlates with Urothelial Bladder Cancer Malignancy. Int J Mol Sci 2015;16:3783–803. doi:10.3390/ijms16023783.

[6] Jóźwicki W, Skok Z, Brożyna A, Siekiera J, Wolski Z, Domaniewski J. Urological Oncology Prognostic and diagnostic implications of histological differentiation in invasive urothelial cell carcinoma of the bladder: variant or non-classic differentiation number. Cent Eur J Urol 2010;63:112–6. doi:10.5173/ceju.2010.03.art1.
[7] Jóźwicki W, Brożyna A, Siekiera J. Expression of OCT4A: The First Step to the Next Stage of Urothelial Bladder Cancer Progression. Int J Mol Sci 2014;15:16069–82. doi:10.3390/ijms150916069.

[8] Amin MB. Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Mod Pathol 2009;22:596–118. doi:10.1038/modpathol.2009.26.

[9] Jóźwicki W, Brożyna AA, Siekiera J, Slominski AT. Frequency of CD4+CD25+Foxp3+ cells in peripheral blood in relation to urinary bladder cancer malignancy indicators before and after surgical removal. Oncotarget 2016;7. doi:10.18632/oncotarget.7199.

[10] Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015;348:56–61.

[11] Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007;19:813–24. doi:10.1093/intimm/dxm057.

[12] Wang X, Ni S, Chen Q, Ma L, Jiao Z, Wang C, et al. Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10: Macrophage and bladder cancer. Cell Biol Int 2017;41:177–86. doi:10.1002/cbin.10716.

[13] Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med 2000;192:1027–34. doi:10.1084/jem.192.7.1027.

[14] Rosenberg JE, Hoffman-Censits J, Powles T, Van Der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. The Lancet 2016;387:1909–1920.

[15] Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014;515:558–62. doi:10.1038/nature13904.

[16] Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015;21:24–33. doi:10.1016/j.molmed.2014.10.009.

[17] Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med 2017;376:1015–26. doi:10.1056/NEJMoa1613683.

[18] Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQ, Juco J, et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol 2017;18:212–220.

[19] Zhang X, Shi X, Li J, Mo L, Hu Z, Gao J, et al. PD-1 Blockade Overcomes Adaptive Immune Resistance in Treatment with Anchored-GM-CSF Bladder Cancer Cells Vaccine. J Cancer 2018;9:4374–81. doi:10.7150/jca.25423.

[20] Markowitz GJ, Havel LS, Crowley MJP, Ban Y, Lee SB, Thalappillil JS, et al. Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival. JCI Insight 2018;3. doi:10.1172/jci.insight.96836.

[21] Szabados B, van Dijk N, Tang YZ, van der Heijden MS, Wimalasingham A, Gomez de Liano A, et al. Response Rate to Chemotherapy After Immune Checkpoint Inhibition in Metastatic Urothelial Cancer. Eur Urol 2018;73:149–52. doi:10.1016/j.eururo.2017.08.022.

[22] de Jong JJ, Stoop H, Nieboer D, Boormans JL, van Leenders GJLH. Concordance of PD-L1 expression in matched urothelial bladder cancer specimens. Histopathology 2018;73:983–9. doi:10.1111/his.13710.
He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Sci Rep 2015;5. doi:10.1038/srep13110.

Sobin LH, Gospodarowicz MK, Wittekind C. TNM Classification of Malignant Tumours - 7th ed. Chichester 2009:262–5.

Jóźwicki W. VENTANA PD-L1 (SP142) - principles of pathomorphological evaluation in urinary bladder cancer 2017.

Jóźwicki W, Brożyna A, Siekiera J, Slominski A. Changes in Immunogenicity during the Development of Urinary Bladder Cancer: A Preliminary Study. Int J Mol Sci 2016;17:285. doi:10.3390/ijms17030285.

Chen T, Wang H, Zhang Z, Li Q, Yan K, Tao Q, et al. A Novel Cellular Senescence Gene, SENEX, Is Involved in Peripheral Regulatory T Cells Accumulation in Aged Urinary Bladder Cancer. PLoS ONE 2014;9:e87774. doi:10.1371/journal.pone.0087774.

Darra-Jèze G, Bergot A-S, Durgeau A, Billiard F, Salomon BL, Cohen JL, et al. Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J Clin Invest 2009. doi:10.1172/JCI36628.

Jóźwicki W, Frierson HF, Smolkin M, Gru AA. PD-L1 expression in tumor cells and the immunologic milieu of bladder carcinomas: a pathologic review of 165 cases. Hum Pathol 2018;81:184–91. doi:10.1016/j.humpath.2018.06.028.

Huang Y, Zhang S-D, McCrudden C, Chan K-W, Lin Y, Kwok H-F. The prognostic significance of PD-L1 in bladder cancer. Oncol Rep 2015. doi:10.3892/or.2015.3933.

Bellmunt J, Mullane SA, Werner L, Fay AP, Callea M, Leow JJ, et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol 2015;26:812–7. doi:10.1093/annonc/mdv009.

Faraj SF, Munari E, Guner G, Taube J, Anders R, Hicks J, et al. Assessment of Tumor PD-L1 Expression and Intratumoral CD8+ T Cells in Urothelial Carcinoma. Urology 2015;85:703.e1-703.e6. doi:10.1016/j.urology.2014.10.020.

Webb JR, Milne K, Kroeger DR, Nelson BH. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol Oncol 2016;141:293–302. doi:10.1016/j.ygyno.2016.03.008.

Webb JR, Milne K, Nelson BH. PD-1 and CD103 Are Widely Coexpressed on Prognostically Favorable Intraepithelial CD8 T Cells in Human Ovarian Cancer. Cancer Immunol Res 2015;3:926–35. doi:10.1158/2326-6066.CIR-14-0239.
[41] Wang B, Pan W, Yang M, Yang W, He W, Chen X, et al. Programmed death ligand-1 is associated with tumor infiltrating lymphocytes and poorer survival in urothelial cell carcinoma of the bladder. Cancer Sci 2019;110:489–98. doi:10.1111/cas.13887.

[42] Jiang Y, Lo AW, Wong A, Chen W, Wang Y, Lin L, et al. Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma. Oncotarget 2017;8:30175.
Table 1. Patient clinico-pathological characteristics

Patient’s characteristics	Number of patients
Age (years)	
30-50	2
51-60	24
61-70	53
71-80	29
81-90	2
Sex	
Female	22
Male	88
pT	
1	12
2a	13
2b	12
3a	10
3b	31
4a	32
4b	0
pN	
not available	2
0	61
1	12
2	33
3	2
Recurrence	
yes	16
no	94
Figure 3.

PD-L1 expression of TCs in pT2-pT4 tumors

Gehan-Wilcoxon,
$p = 0.007$

with expression, $n = 55$
over 10 months after cystectomy

without expression, $n = 18$

Figure 4.

PD-L1 positive ICs distribution within tumor

Gehan-Wilcoxon,
$p = 0.013$

aggregated, $n = 70$
over 5 times advantage of dispersed, $n = 40$
Figure 5.

PD-L1 expression in pT1-pT4 tumours

T test for independent samples, $p = 0.0001$

$n = 20$

$n = 90$

Expression on TCs [%]

Expression on IECs [%]

Average Average + 2 Std error Average + 0.95 Std dev