A REMARK ABOUT 6J SYMBOLS AND YOUNG SEMI-NORMAL FORM

DANIEL BARTER

1. Introduction

A semi-simple tensor category is determined up to equivalence by its Grothendieck ring and its 6j symbols with respect to a set of tree basis vectors. The 6j symbols are the coordinate representation of the associator. Despite their importance, we only know explicit formulas for 6j symbols in a few special cases. In the $\text{SL}_2(\mathbb{C})$ and $U_q(\mathfrak{sl}_2)$ cases, explicit formulas for the 6j-symbols are computed in [CFS95]. As far as the author is aware, the only other case where explicit 6j-symbols are known is G-graded vector spaces for G a finite group. In this case, associators are cohomology classes in $H^3(G, \mathbb{C}^\times)$.

In this note, we compute a large number of 6j symbols inside the tensor category consisting of polynomial representations of GL(∞). This tensor category is studied in detail by Sam and Snowden in [SS16, SS15, SS12]. More precisely, we have:

Theorem 1. Let $\lambda \subseteq \mu$ be partitions such that $\mu \setminus \lambda$ has two boxes not contained in a single row or column. Then

$$(j_{\lambda}^{\mu})^{-1} = \left(\begin{array}{cc} k & -k \\ k+1 & k-1 \end{array} \right).$$

Where k is the axial distance in the skew partition $\mu \setminus \lambda$. These 6j symbols are uniquely defined up to scaling.

We describe computations in tensor categories using string diagrams. A good introduction to string diagrams is [Sel11]. For a complete and rigorous introduction to tensor categories, we direct the reader to [EGNO15].

The author would like to thank Corey Jones and Scott Morrison for many useful conversations and their support.

2. What are 6j symbols?

Definition 2. Let X be a semi-simple tensor category. Index the simple objects with a set Λ. Choose a basis for each $X(\mu, \lambda \otimes \nu)$ denoted by

$$
\begin{array}{c}
\lambda \\
\mid \\
\mu
\end{array},
\begin{array}{c}
\lambda \\
\mid \\
\nu
\end{array},
\begin{array}{c}
\lambda \\
\mid \\
e_1
\end{array},
\begin{array}{c}
\lambda \\
\mid \\
e_2
\end{array}, \ldots
$$

Date: September 22, 2021.
and let

\[\lambda, \nu, \mu, e_1, \ldots \]

be the dual basis of \(X(\lambda \otimes \nu, \mu) \). We call these diagrams **tree string diagrams**. It is important to notice that the tree string diagrams are not canonically defined.

Definition 3. Pick a distinguished simple object \(X \in X \). The **fusion graph** of \(X \) has vertices \(\Lambda \) and the edges from \(\lambda \) to \(\mu \) are the distinguished basis vectors in \(X(\mu, \lambda \otimes X) \).

Proposition 4. Fix \(\lambda \in \Lambda \). Then \(X(\lambda, X^\otimes n) \) has dimension the number of length \(n \) paths from the tensor unit to \(\lambda \) in the fusion graph for \(X \). Moreover, an explicit basis is given by string diagrams of the form

\[
\begin{array}{c}
X \\
X \\
X \\
X \\
X \\
\lambda
\end{array}
\]

we call such string diagrams **tree basis vectors**

Proof. Decompose \(X^\otimes n \) using the fusion graph for \(X \). \(\square \)

Definition 5. Since \(X \) is semi-simple, the Artin-Wedderburn theorem implies that \(\text{End}(X^\otimes n) \) is a product of matrix algebras. Proposition 4 implies that in the tree string basis, the matrix units in \(\text{End}(X^\otimes n) \) look like

\[
\begin{array}{c}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_n \\
\lambda
\end{array}
\]

Equivalently, the irreducible representations of \(\text{End}(X^\otimes n) \) are parameterized by the simple objects in \(X \) which have a length \(n \) path from the tensor unit in the fusion graph for \(X \). The string diagrams defined in proposition 4 form a basis for the corresponding representation.
Definition 6. Fix $\lambda_1, \lambda_2, \lambda_3, \mu \in \Lambda$. Then we have two bases for $X(\mu, \lambda_1 \otimes \lambda_2 \otimes \lambda_3)$:

$$
\begin{cases}
\lambda_1 \\
\alpha \\
e_1 \\
e_2 \\
\mu
\end{cases}
\quad \leftrightarrow
\begin{cases}
\lambda_3 \\
\beta \\
f_1 \\
f_2 \\
\mu
\end{cases}
$$

The $6j$ symbols are the entries in the change of basis matrix $(j_{\mu}^{\lambda_1, \lambda_2, \lambda_3})^{e_1, e_2}_{f_1, f_2}$. In other words, they are a coordinate representation of the associator. They must satisfy some algebraic relations which correspond to the pentagon axiom and the unit axiom. From the $6j$-symbols and the Grothendieck ring, you can recover the tensor category. Therefore, the $6j$-symbols are coordinates on the moduli stack of semi-simple tensor categories with a fixed Grothendieck ring.

3. Young Semi-normal form

Definition 7. Let X be a semi-simple tensor category with distinguished object X. If $\sigma \in \text{End}(X^{\otimes 2})$ then we have

$$
\begin{align*}
\lambda & \quad \sigma \\
a & \quad b \\
\mu & \quad = \sum_{fg} m_{fg, ab}(\sigma)
\end{align*}
$$

We call the matrix $m(\sigma)$ a semi-normal form for σ.

Definition 8. We define the category S which has objects the natural numbers and morphisms

$$
S(m, n) = \begin{cases}
S_m & m = n \\
0 & \text{otherwise}
\end{cases}
$$

where S_n is the symmetric group with simple reflections g_1, \ldots, g_{n-1}. The inclusion $S_m \otimes S_n \to S_{m+n}$ defined by $g_i \otimes g_j \mapsto g_i \sigma_{m+j}$ equips S with a tensor structure. We define $\mathcal{S} \subseteq [S^{\text{op}}, \text{Vec}]$ to be the idempotent completion of S. The monoidal structure on S extends to \mathcal{S} via day convolution. The category \mathcal{S} can be described as the polynomial representations of $\text{GL}(\infty)$ as defined by Sam and Snowden in [SS16]. The Grothendieck ring for \mathcal{S} has basis given by partitions and multiplication given by the Littlewood-Richardson rule. A special case of the
Littlewood-Richardson rule is the Pieri rule:

$$\lambda \otimes \square = \sum_{\lambda \subset \mu^{n+1}} \mu$$

This implies that the tree basis vectors

are in bijection (up to scaling) with standard skew tableaux of shape $\mu \setminus \lambda$. We shall abuse notation and identify these tree basis vectors with the corresponding standard skew tableaux. Suppose that $\lambda \subseteq \mu \vdash n + 2$ are partitions such that $\mu \setminus \lambda$ is not contained in a single row or column. Then there are exactly two partitions which satisfy $\lambda \subseteq \nu \subseteq \mu$. Call them ν and ν'. The multiplicity space $S(\lambda \otimes \square \otimes \square \mu)$ is 2-dimensional with basis

The semi-normal form for g_1 is well known:

$$m(g_1) = \begin{pmatrix} -1/k & 1 \\ 1 - 1/k^2 & 1/k \end{pmatrix}$$

where k is the axial distance in $\mu \setminus \lambda$:
Identify the trivalent vertex e with the matrix unit inside $\text{End}(X^\otimes 2)$. Consider the action of e on the two bases

On the left basis, e acts via the semi-normal form $m(e)$. On the right basis, e is a projection. Inside \mathcal{S}, this implies the matrix of eigenvectors $vectors$ of $m(e) = 1/2(e + m(g_1))$ equals $(j_\mu^\lambda\square)^{-1}$. Therefore we have

$$(j_\mu^\lambda\square)^{-1} = \begin{pmatrix} k & \frac{-k}{k+1} \\ \frac{k+1}{k} & 1 \end{pmatrix}.$$

This proves theorem \ref{thm:main}.

References

[CFS95] J. Scott Carter, Daniel E. Flath, and Masahico Saito. *The classical and quantum 6j-symbols*, volume 43 of *Mathematical Notes*. Princeton University Press, Princeton, NJ, 1995.

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. *Tensor categories*, volume 205 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2015.

[Sel11] P. Selinger. A survey of graphical languages for monoidal categories. In *New structures for physics*, volume 813 of *Lecture Notes in Phys.*, pages 289–355. Springer, Heidelberg, 2011.

[SS12] Steven V Sam and Andrew Snowden. Introduction to twisted commutative algebras. 2012.

[SS15] Steven V. Sam and Andrew Snowden. Stability patterns in representation theory. *Forum Math. Sigma*, 3:e11, 108, 2015.

[SS16] Steven V. Sam and Andrew Snowden. GL-equivariant modules over polynomial rings in infinitely many variables. *Trans. Amer. Math. Soc.*, 368(2):1097–1158, 2016.