Effect of Androsterone after Pilocarpine-induced Status Epilepticus in Mice

Inja Cho1,2, Yang-Je Cho1, Hyun-Woo Kim1, Kyung Heo1, Byung-In Lee1,2, Won-Joo Kim1

1Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
2Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Korea

Background and Purpose: Neurosteroids exert their antiepileptic effects via GABAA and NMDA receptors. Another cell death mechanism is excessive Ca2+ influx into cells. Calbindin-D28k (CB) is a protein that modulates intracellular Ca2+ in the nervous system. We evaluated whether androsterone up-regulates the expression of CB and has a neuroprotective effect by controlling Ca2+ after pilocarpine-induced status epilepticus (SE) in mice.

Methods: SE was induced in ICR mice by injection of pilocarpine. Two hours after SE, mice were treated intraperitoneally (i.p.) with androsterone (100-200 mg/kg) or vehicle, and compared with other control groups. Two days after injection, immunohistochemical staining for CB was performed using a hippocampal slice from each mice group. We also used cresyl violet staining to compare changes in hippocampal structures.

Results: Two days after pilocarpine-induced SE, androsterone increased the expression of CB in the hippocampus compared with control SE mice. The number of CB-positive cells was 1±0.4 cells/mm3 in pilocarpine-only group, 14±1.1 cells/mm3 in pilocarpine plus androsterone 100 mg group and 29±2.5 cells/mm3 in pilocarpine plus androsterone 200 mg group (p<0.001).

Conclusions: These results suggest that the neuroprotective effect of androsterone after pilocarpine-induced SE may be mediated by an increased expression of CB. (2014;4:7-13)

Key words: Neurosteroid, Androsterone, Calbindin-D28k, Hippocampus, Seizure

Introduction

Neurosteroids are a type of steroid produced in the central nervous system rather than the adrenal gland. Neurosteroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels of GABA receptors.1-2 In addition, neurosteroids may also exert effects on gene expression via intracellular steroid hormone receptors. Neurosteroids have a wide range of potential clinical applications from sedation to epilepsy and traumatic brain injury treatment.3

Systemic administration of pilocarpine-induced status epilepticus (SE) consequentially generates death of pyramidal cells in the CA1 and CA3 fields of the hippocampus.4 This is due to excessive elevation of intracellular Ca2+ levels, resulting from overactivation of glutamate receptors.5-6 Therefore, regulation of intracellular Ca2+ levels is an important factor in neuronal survival after SE.
of androsterone and changes in CB expression with pilocarpine-induced SE.

Methods

The Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) approved all procedures. Male Institute for Cancer Research (ICR) mice (25 to 30 g, Orient Bio Co., Gyeonggi-do, Korea) were used in these experiments. Mice were housed under a 12 h light/dark cycle with food and water ad libitum. Lithium chloride (127 mg/kg, Sigma, St. Louis, MO, USA) was injected intraperitoneally (i.p.) 24 h prior to pilocarpine administration. Next, mice were pretreated with methscopolamine-bromide (1 mg/kg, i.p., Sigma) 30 min prior to pilocarpine, and single dose of pilocarpine (30 mg/kg, i.p., Sigma) was administered. Seizures were scored using Racine’s scale, and the duration of status epilepticus (SE) was determined by

![Figure 1. Cresyl violet staining of the mouse hippocampus. Severe neuronal degeneration in CA1 and CA3 pyramidal cells was detected in the pilocarpine-induced SE group (B) compared to the other groups. (A) normal control; (B) pilocarpine-only group; (C) pilocarpine plus androsterone 100 mg group; (D) pilocarpine plus androsterone 200 mg group; (E) androsterone-only group.](image-url)
Figure 2. CB-immunostained hippocampi from the normal (A, C, E, and G) and androsterone-only groups (B, D, F, and H). CB-positive neurons were expressed in the stratum radiatum of the CA1 and CA3 regions, the stratum lucidum of the CA3 region, the stratum molecular of the DG, and interneurons (arrows). Expression was increased in the androsterone-only group (D and F) compared to the normal group (C and E). G, granular; L, lucidum; M, molecular; P, pyramidal; R, radiatum.
behavioral assessment. The beginning of SE was defined as the onset of continuous generalized seizure activity (stage 4 or 5 based on Racine’s scale) without regaining normal behavior between the seizures. All mice received i.p. injections of 0.9% saline: 5 mL twice on the day with SE and 5 mL twice (in the morning and evening) of the day after SE. Two hours after SE, mice were treated with androsterone (100 and 200 mg/kg, i.p.). We compared with three other groups: the saline-only injection group (normal), the androsterone 200 mg-only injection group (androsterone-only), and the pilocarpine-only injection group (pilocarpine-only).

Mice were anesthetized and transcardially perfused with heparinized saline, followed by 3.7% formaldehyde in phosphate-buffered saline (PBS). Brains were isolated and postfixed in the same fixative overnight at 4°C. Fixed frozen brains were sectioned coronally at 20

Figure 3. CB-immunostained hippocampi from the pilocarpine-only group (A, D, G, and J), pilocarpine plus androsterone 100 mg groups (B, E, H and K) and pilocarpine plus androsterone 200 mg groups (C, F, I and L). CB-positive neurons increased in the stratum radiatum of the CA1 and CA3 regions, the stratum lucidum of the CA3 region (blue arrows), and the stratum molecular of the DG (black arrow area) compared with the normal group.
μm using a cryostat. Sections collected from single animals were used for histological analyses, such as cresyl violet staining and immunohistochemistry (n =6 mice in each experimental group).

For the DAB substrate reaction, sections were incubated with 3% H_2O_2 in PBS with 0.3% Triton X-100. CB was stained using the monoclonal anti-calbindin D28K antibody (1:3000, Sigma). The primary antibody was reacted overnight at 4°C. The secondary antibody, biotinylated anti-mouse IgG (Vector Laboratories, Burlingame, CA, USA), was reacted at room temperature for 1 h. During the procedure, all sections were washed with PBS between each step. We followed the manufacturer’s protocols for the M.O.M kit (Vector Labs). Visualization was performed using the Vectastain ABC-DAB system for 1 h at room temperature (Vector Labs).

Sections were stained in 0.2% cresyl fast violet acetate for 5 min and rinsed in water. They were then rinsed in 95% alcohol and differentiated in cresyl violet differentiator [95% alcohol (90 mL), chloroform (10 mL), acetic acid (three drops)]. Sections were rinsed in absolute alcohol, cleared, and mounted on slides.

Figure 4. (A) Representative CB-immunostained hippocampi from the normal group (a, e, i), pilocarpine-only group (b, f, j), pilocarpine plus androsterone 200 mg group (c, g, k), and androsterone-only group (d, h, l). In the pilocarpine plus androsterone group, CB-positive neurons increased in the stratum radiatum of the CA1 and CA3 regions, the stratum lucidum of the CA3 region, and the stratum molecular of the DG compared to the other groups. Insets show the high-magnified images c, e, g and k. (B) Quantitation of CB-positive cells in the stratum radiatum of hippocampus. In the pilocarpine plus androsterone groups, CB-positive interneuron cells increased dose dependently. *p<0.001
Data are expressed as the mean ± standard error of the mean. Statistical comparisons were made using one-way analysis of variance (ANOVA), followed by Bonferroni’s post hoc tests (SAS, Cary, NC, USA). The level of significance was set at \(p < 0.05 \) and 0.001.

Results

In the cresyl violet staining, hippocampal CA1 and CA3 pyramidal neurons were markedly decreased and morphologically-damaged neurons were observed in the pyramidal layer of the pilocarpine-only group. Hippocampal structures were relatively preserved in all other groups (Fig. 1). In the pilocarpine plus androsterone (200 mg) group, the structures of the hippocampal neurons in the CA1 and CA3 regions were as well preserved as the normal group (Fig. 1D).

We evaluated the direct effect of androsterone on CB without SE and compared this with the normal and androsterone-only group (Fig. 2). CB-positive neurons were highly expressed in the stratum radiatum of the CA1 and CA3 region, stratum lucidum of the CA3 region, stratum molecular of the dentate gyrus (DG) and interneurons in the androsterone-only group (Fig. 2G and H).

We also compared CB changes after pilocarpine-induced SE. CB-positive cells were increased in all subfields of hippocampus in the pilocarpine plus androsterone group compared to the pilocarpine-only group (Fig. 3). In particular, CB-positive cells increased dose-dependently in the pilocarpine plus androsterone group, the stratum radiatum of the CA1 and CA3 region, the stratum lucidum of the CA3 region (Fig. 3D to I), and the stratum molecular of the DG (Fig. 3J to L). In the pilocarpine-only group, CB-positive cells were dramatically reduced in the entire hippocampus. Especially in the stratum radiatum of the CA1 and CA3 regions, expression of CB-positive cells, such as interneurons, was reduced in pilocarpine-only group compared to the normal control group. Additionally, the CB staining intensity was decreased in the stratum lucidum of the CA3 region (Fig. 4).

As shown in Fig. 4, quantification of CB-positive interneurons in the stratum radiatum of the CA1 and CA3 regions was performed in the pilocarpine-only and pilocarpine plus androsterone groups. CB-positive cells in the pilocarpine-only group were not present; however, in the pilocarpine plus androsterone group, the number of CB-positive interneurons increased significantly compared to the pilocarpine-only group.

The number of CB positive cells was 1±0.4 cells/mm² in pilocarpine-only group, 14±1.1 cells/mm² in pilocarpine plus androsterone 100 mg group and 29±2.5 cells/mm² in pilocarpine plus androsterone 200 mg group \((p<0.001)\) (Fig. 4B). In addition, the number of CB-positive interneurons increased dose-dependently. Finally, in the stratum lucidum of the CA3 region, the CB staining intensity in the pilocarpine plus androsterone group increased.

Discussion

Our results show a decrease in CB-positive cells in the stratum radiatum of the CA1 and CA3 regions of the hippocampus after pilocarpine-induced SE in the pilocarpine-only group. In contrast, androsterone treatment after pilocarpine-induced SE induced CB expression more than the pilocarpine-only group. CB-positive cells were detected more often in the stratum radiatum of the CA1 and CA3 regions in the androsterone plus pilocarpine group, and the morphology of neuronal cells was well preserved compared to the pilocarpine-only group. In the androsterone-only group, there tended to be more CB-positive compared to the normal control group.

Calcium influx and intracellular Ca²⁺ play role in several important functions, including production of action potentials, neurotransmitter release, cell-to-cell interactions, and neuronal plasticity in the central nervous systems. It has been reported that the failure to regulate intracellular Ca²⁺ concentration induces excessive Ca²⁺ influx into neuronal cells, resulting in a neuronal cell death cascade. In epilepsy, abnormal Ca²⁺ levels are found both in vitro and in vivo. Ca²⁺ levels were significantly and chronically elevated during bicuculline-induced epilepsy *in vitro*. Bicuculline, the GABA receptor antagonist, also induced neuronal cell death. Therefore, Ca²⁺ is considered to play an important role in epileptogenesis.

CB is an intracellular calcium-binding protein, and functions in Ca²⁺ buffering systems. Therefore, CB may protect neuronal cells against in excessive Ca²⁺, including subpopulations of interneurons and the GABAAergic character of a comparatively large group of non-pyramidal cells in the hippocampus. Hence, CB may regulate excitation of neuronal cells between excitatory and inhibitory neuronal cells. Previous studies found that decreased CB expression was observed in epileptic conditions. In addition, it was reported that some steroids, such as testosterone and estrogen, stimulated calbindin synthesis to regulate development of sexually dimorphic structures. Calbindin can modulate depolarization of dopaminergic cells, which is related to hippocampal cell death.

Our finding of decreased numbers of CB-positive cells after pilocarpine treatment suggest that decreased CB is related to calcium
Ca²⁺ and protects neuronal cells. Androsterone may modulate Ca²⁺
mediated increase in CB-positive cells plays a role in buffering excess
mediated by androsterone is related to neuronal cell protection in SE.

In conclusion, our observations suggest that the androsterone-
mediated increase in CB-positive cells plays a role in buffering excess Ca²⁺
and protects neuronal cells. Androsterone may modulate Ca²⁺
homeostatic mechanisms in epilepsy and function in neuroprotection
against excess Ca²⁺.

References

1. Kaminski RM, Marini H, Kim WJ, Rogawski MA. Anticonvulsant activ-
ity of androsterone and etiocholanolone. Epilepsia 2005;46:819-27.
2. Mroz K, Mroz T, Wielosz M, Tutka P. Effects of androsterone on con-
vulsions in various seizure models in mice. Pharmacol Rep 2009;61:
564-9.
3. Hill M, Zaruba J, Marusic P, et al. Effects of valproate and carbama-
zepine monotherapy on neuroactive steroids, their precursors and metabo-
lites in adult men with epilepsy. J Steroid Biochem Mol Biol 2010;122:
239-52.
4. Fujikawa DG. The temporal evolution of neuronal damage from pilo-
carpine-induced status epilepticus. Brain Res 1996;725:11-22.
5. Pekani JW, Zacek R, Coyle JT. Kainic acid stimulates excitatory amin-
o acid neurotransmitter release at presynaptic receptors. Nature 1982;298:757-9.
6. Yi SS. Time-dependent changes of calbindin D-28K and parvalbumin
immunoreactivity in the hippocampus of rats with streptozotocin-in-
duced type 1 diabetes. J Vet Sci 2013;14:373-80.
7. Toth K, Freund TF. Calbindin D28k-containing nonpyramidal cells in
the rat hippocampus: their immunoreactivity for GABA and projection
to the medial septum. Neuroscience 1992;49:793-805.
8. Heizmann CW, Braun K. Changes in Ca(2+)-binding proteins in hu-
man neurodegenerative disorders. Trends Neurosci 1992;15:259-64.
9. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the
nervous system. Trends Neurosci 1992;15:303-8.
10. Yang Q, Wang S, Hamberger A, Celio MR, Haglid KG. Delayed de-
crease of calbindin immunoreactivity in the granule cell-mossy fibers
after kainic acid-induced seizures. Brain Res Bull 1997;43:551-9.
11. Bellido T, Huening M, Raval-Pandya M, Manolagas SC, Christakos S.
Calbindin-D28k is expressed in osteoblastic cells and suppresses their
apoptosis by inhibiting caspase-3 activity. J Biol Chem 2000;275:
26328-32.
12. Guo Q, Christakos S, Robinson N, Mattson MP. Calbindin D28k blocks
the proapoptotic actions of mutant presenilin 1: reduced oxidative
stress and preserved mitochondrial function. Proc Natl Acad Sci U S A
1998;95:3227-32.
13. Carter DS, Harrison AJ, Falenski KW, Blair RE, De Lorenzo RJ. Long-
term decrease in calbindin-D28k expression in the hippocampus of
epileptic rats following pilocarpine-induced status epilepticus. Epilepsy
Res 2008;79:213-23.
14. Nya Y, Baker K, Lawson DE. Estrogen and a calcium flux dependent
factor modulate the calbindin gene expression in the uterus of laying
hens. Gen Camp Endocrinol 1992;87:87-94.
15. Stuart EB, Thompson JM, Rhee RW, Lephart ED. Steroid hormone in-
fluence on brain calbindin-D28K in male prepubertal and ovariec-
tomized rats. Brain Res Dev Brain Res 2001;129:125-33.
16. Kim GW, Kim HJ, Cho KJ, Kim HW, Cho YJ, Lee BI. The role of MMP-9
in integrin-mediated hippocampal cell death after pilocarpine-
induced status epilepticus. Neurobiol Dis 2009;36:169-80.
17. Jimenez-Jimenez FJ, Garcia-Ruiz PJ, de Bustos F. [Calcium, neuronal
death and neurological disease]. Rev Neurol 1996;24:1199-209.
18. Parsons JT, Churn SB, Kochan LD, De Lorenzo RJ. Pilocarpine-induced
status epilepticus causes N-methyl-D-aspartate receptor-dependent in-
hibition of microsomal Mg(2+)-Ca(2+) ATPase-mediated Ca(2+) uptake.
J Neurochem 2000;75:1209-18.
19. Parsons JT, Halkitis PN, Bimbi D, Borkowski T. Perceptions of the ben-
efits and costs associated with condom use and unprotected sex among
late adolescent college students. J Adolesc 2000;23:377-91.
20. Pal S, Sombati S, Limbrick DD, Jr., De Lorenzo RJ. Induction of sponta-
neous recurrent epileptiform discharges causes long-term changes in
intracellular calcium homeostatic mechanisms. Cell Calcium 2000;28:
181-93.
21. Frantseva MV, Velazquez JL, Hwang PA, Carlen PL. Free radical pro-
duction correlates with cell death in an in vitro model of epilepsy.
Eur J Neurosci 2000;12:1431-9.
22. Sloviter RS. Calcium-binding protein (calbindin-D28k) and parvalbumin
immunocytochemistry: localization in the rat hippocampus with specif-
ic reference to the selective vulnerability of hippocampal neurons to
seizure activity. J Comp Neurol 1989;280:20-31.
23. Frantseva MV, Velazquez JL, Hwang PA, Carlen PL. Free radical pro-
duction correlates with cell death in an in vitro model of epilepsy.
Eur J Neurosci 2000;12:1431-9.
24. Sloviter RS. Calcium-binding protein (calbindin-D28k) and parvalbumin
immunocytochemistry: localization in the rat hippocampus with specif-
ic reference to the selective vulnerability of hippocampal neurons to
seizure activity. J Comp Neurol 1989;280:183-96.
25. Gulyas AI, Freund TF. Pyramidal cell dendrites are the primary targets
calbindin D28k-immunoreactive interneurons in the hippocampus.
Hippocampus 1996;6:525-34.
26. Buyse CA, Paris JJ, Wolf AA, Rusconi JC. Effects and Mechanisms of
Calphal, Calpha2-THP on emotion, motivation, and reward functions
involving brainstem neurones. Prog Neurosci 2011;5:136.
27. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine
against hippocampal cell death. J Neurosci 2000;20:8643-9.

www.kes.or.kr