SpinC Dirac operators over the flat 3-torus

J. Fabian Meier
Universität Bonn
13th January 2013

Abstract

We determine spectrum and eigenspaces of some families of SpinC Dirac operators over the flat 3-torus. Our method relies on projections onto appropriate 2-tori on which we use complex geometry.

Furthermore we investigate those families by means of spectral sections (in the sense of Melrose/Piazza). Our aim is to give a hands-on approach to this concept. First we calculate the relevant indices with the help of spectral flows. Then we define the concept of a system of infinitesimal spectral sections which allows us to classify spectral sections for small parameters R up to equivalence in K-theory. We undertake these classifications for the families of operators mentioned above.

Our aim is therefore twofold: On the one hand we want to understand the behaviour of SpinC Dirac operators over a 3-torus, especially for situations which are induced from a 4-manifold with boundary T^3. This has prospective applications in generalised Seiberg-Witten theory. On the other hand we want to make the term “spectral section”, for which one normally only knows existence results, more concrete by giving a detailed description in a special situation.

Keywords:
SpinC Dirac operator; 3-torus; spectral section

Subject classification:
MSC[2010] 47A10; 58C40; 58J30

1 Introduction

In the study of smooth 4-manifolds, especially in the context of (generalised) Seiberg-Witten theory, it would be nice to understand SpinC Dirac operators
which are induced on the boundary of a compact 4-manifold.

Manifolds with boundary T^3 where already studied in this context by [6]. But for generalized Seiberg-Witten theories, also families of operators in non-trivial SpinC structures become important. Therefore, we undertake a detailed study for some of these families. We now describe the object of investigation:

For every SpinC structure on $T^3 = \mathbb{R}^3 / \mathbb{Z}^3$ we analyse the family of Dirac operators given by connections $\nabla^K + i\alpha$; here ∇^K is a fixed background connection (to be constructed below) for an appropriate line bundle K and α comes from the parameter space of closed one-forms.

Our first aim is to determine the spectrum and an orthogonal eigenbasis for these operators. Our strategy is as follows:

1. We write the 3-torus as S^1 bundle over a 2-torus (determined by the SpinC structure).
2. We equip the 2-torus with a complex structure and choose appropriate holomorphic line bundles.
3. We use complex geometry and methods from [1].
4. We combine the calculated terms with exponential functions to get the desired result.

The calculations above will help us to access our second aim: The construction of spectral sections.

For a lattice $\ell \subset H^1(T^3; \mathbb{Z}) \subset H^1(T^3; \mathbb{R})$ look at the family of operators parametrised by $B = (\ell \otimes \mathbb{R})/\ell$. Since we know the concrete spectrum we can calculate all spectral flows in this torus which gives us direct access to the index in $K^1(B)$. By [1] section 2 the vanishing of this index corresponds to the existence of spectral sections.

For small parameters R we give a classification of all spectral sections up to equivalence in K-theory.

Remark 1. If $\iota : T^3 \hookrightarrow M$ is the boundary of a SpinC 4-manifold M and ℓ is chosen to be a subset of $\iota^*(H^1(M; \mathbb{Z}))$, then one can show that our family of operators is a boundary family in the sense of [4]; this guarantees the existence of spectral sections in this case but does not lead to concrete constructions of them.
2 Definitions

We take $T^3 := \mathbb{R}^3/\mathbb{Z}^3$ to be the flat 3-torus. We identify the first and second cohomology groups with each other by the Hodge star operation. Both of them will be identified with \mathbb{Z}^3 or \mathbb{R}^3 through the standard (positively oriented) basis dx_1, dx_2, dx_3 of \mathbb{T}^3.

The trivial Spin structure induces a SpinC structure with associated bundle $\mathbb{H} = T^3 \times \mathbb{H}$. Here $\mathbb{H} = \text{span}\{e_0, e_1, e_2, e_3\}$ denotes the space of quaternions. It is considered as a complex vector space by left multiplication with $i = e_1$ and as a left-quaternionic vector space by inverse right multiplication.

Now the SpinC structures can be canonically identified with elements $\hat{k} \in H^2(T^3; \mathbb{Z})$ (for a general explanation of SpinC structures and their associated bundles see e.g. [5]). For every such element we choose a Hermitian line bundle K with $c_1(K) = \hat{k}$ and a unitary background connection ∇^K; possible choices and constructions will be detailed in the subsequent sections. Then the SpinC structure \hat{k} has the associated bundle $\mathbb{H} \otimes K$.

For each K and closed one-form α we get a SpinC Dirac operator

$$D^K_\alpha : \Gamma(\mathbb{H} \otimes K) \to (\mathbb{H} \otimes K)$$

for the connection $\nabla^K + i\alpha$.

These operators will be analysed in the subsequent sections.

3 Spectrum and Eigenbasis

We distinguish two main cases.

3.1 Nontrivial SpinC structure

We write $\hat{k} = h \cdot k$ with $k \in \mathbb{Z}^3$ and maximal $h \in \mathbb{Z}_+$. Let W be the plane in \mathbb{R}^3 orthogonal to k and π_k the orthogonal projection. By taking quotients we get a map $\pi^\Lambda_K : T^3 \to T_\Lambda := W/\Lambda$ with $\Lambda = \pi_k(\mathbb{Z}^3)$.

Let w_1, w_2 be the basis of a fundamental parallelogram in Λ. We take $c^i \in [0, 1)$, $i = 1, 2$, with $w_i - c^i \cdot k \in \mathbb{Z}^3$.

Lemma 2. The map $\pi^\Lambda_K : T^3 \to T_\Lambda$ determines a trivial \mathbb{R}/\mathbb{Z}-bundle with trivialisation:

$$\begin{align*}
\left[\chi_1 w_1 + \chi_2 w_2 + \chi k\right] &\mapsto \left[\chi_1 w_1 + \chi_2 w_2; \left\langle c^1 \chi_1 + c^2 \chi_2 + \chi \right\rangle\right] \quad (1)
\end{align*}$$
Proof. Direct calculation.

We give T_Λ the induced metric and orientation and choose a Hermitian line bundle L over it with $c_1(L) = h$ (in the standard identification of $H^2(T_\Lambda; \mathbb{Z})$ with \mathbb{Z}). Furthermore, we equip the bundle with an arbitrary unitary connection ∇^L.

Definition 3. We define $K := \pi^{-1}_K(L)$ and $\nabla^K := \pi^{-1}_K(\nabla^L)$. Then we have $c_1(K) = \hat{k}$.

3.1.1 Working on T_Λ

We now look at the corresponding problem on T_Λ. For each (positive) Chern class h, we have an associated bundle $\mathbb{H} \otimes L$ over T_Λ. Then each closed one-form α_Λ over T_Λ defines a Dirac operator

$$D^L_{\alpha_\Lambda} : \Gamma(\mathbb{H} \otimes L) \to (\mathbb{H} \otimes L)$$

We give W an arbitrary complex structure and scale everything so that we work on $\mathbb{C}/\{1, \tau\}$ with $\text{im} \tau > 0$. Now we can equip L with a holomorphic structure; we choose it so that $\nabla^L + i\alpha_\Lambda$ becomes the Chern connection of the holomorphic bundle.

This specifies a problem for twisted Dirac operators on a Riemann surface. We use the results of [1, section 5.2], where the eigenspaces of $D^L_{\alpha_\Lambda}$ are described in terms of holomorphic sections.

The eigenspaces can be made explicit using theta functions. A detailed discussion of all calculations and identifications can be found in [3, section 2.c]. The result is the following:

Lemma 4. We can explicitly construct a basis of orthogonal eigensections σ_m, $m \in \mathbb{Z}$, for $D^L_{\alpha_\Lambda}$ with respective eigenvalues

$$\mu_m := \text{sgn} m \sqrt{2\pi h \|k\| \left\lfloor \frac{|m|}{h} \right\rfloor}.$$

The eigenvalues are independent of α_Λ.

3.1.2 An eigenbasis for $(D^K_{\alpha})^2$

Remark 5. By a standard gauging argument, we can reduce the problem of finding spectrum and eigenspaces from closed one-forms to harmonic one-forms. So from now on we assume $\alpha \in H^1(T^3; \mathbb{R}) \cong \mathbb{R}^3$.

4
We now look at the map $s_l \circ \text{tri}, \ l \in \mathbb{Z}$, where $s_l : \mathbb{R}/\mathbb{Z} \to S^1$ is defined to be $t \mapsto \exp(2\pi it)$ and tri is the map from (1). Its exterior derivative is given by:

$$d(s_l \circ \text{tri}) = 2\pi i (s_l \circ \text{tri}) \ (c^1, c^2, 1).$$

We now want to separate this form into its parallel and orthogonal part with respect to W:

$$d(s_l \circ \text{tri}) = 2\pi i (s_l \circ \text{tri}) \cdot (\omega^l \parallel + \omega^l \perp).$$

In the same way we split $\alpha = \alpha^l \parallel + \alpha^l \perp$.

We set $\alpha^l : = \alpha^s + 2\pi \omega^l \parallel$ and use Lemma 4 to determine a basis of sections for $\Gamma(H \otimes L)$ which we call σ^l_m, $m \in \mathbb{Z}$.

The parameter $\omega^l \parallel$ becomes necessary for our construction since the bundle $T^3 \to T$ is trivial but its metric differs from the orthogonal product $T \times S^1$.

Definition 6. Define

$$\hat{\sigma}_{l,m}(v) := (s_l \circ \text{tri})(v) \cdot \pi^* k(\sigma^l_m)(v)$$

This can be interpreted as a combination of a basis of the Dirac operator over S^1 with bases over T.

Definition 7. Let $\lambda_l : = (2\pi l + \langle k, \alpha \rangle)/\|k\|$, where \langle , \rangle means the standard scalar product of \mathbb{R}^3 (or, interpreted differently, the evaluation of $k \cup \alpha$ at the orientation class).

Theorem 8 (Eigenbasis for $(D^K_\alpha)^2$). The set $\{\hat{\sigma}_{l,m} \ | \ l, m \in \mathbb{Z}\}$ forms an orthogonal basis of eigensections for $(D^K_\alpha)^2$ with the respective eigenvalues $\lambda_l^2 + \mu_m^2$.

Proof. Applying D^K_α twice and using the definition of ω^l, we see that these sections are indeed eigensections for the given eigenvalues. With a standard calculation (see [3, p.45]), we conclude that the set span $\{\hat{\sigma}_{l,m} \ | \ l, m \in \mathbb{Z}\}$ is dense in the space of L^2-sections. The orthogonality can be deduced from the orthogonality of the σ^l_m by using the fact that a change of α_\perp changes the spectrum but fixes σ^l_m. \hfill \square

3.1.3 An eigenbasis for D^K_α

Theorem 8 gives a quadratic equation for D^K_α. Furthermore, we know that the Dirac operator on T is graded, so the bases σ^l_m split into $\sigma^l_m + \sigma^l_m$. Together this leads us to the following definition:
Definition 9. Let
\[
\sigma_{l,m}^\pm := (s_l \circ \text{tri}) \cdot \left(\left(\lambda_l + \mu_m \pm \sqrt{\lambda_l^2 + \mu_m^2} \right) \pi_\mathcal{K}^\ast (\sigma_{l,m}^+) \right.
\]
\[
+ \left(-\lambda_l + \mu_m \pm \sqrt{\lambda_l^2 + \mu_m^2} \right) \pi_\mathcal{K}^\ast (\sigma_{l,m}^-) \Bigg)\]
\[
\sigma_{l,m}^0 := \hat{\sigma}_{l,m}
\]
and
\[
\nu_{l,m}^\pm := \pm \sqrt{\lambda_l^2 + \mu_m^2}
\]
\[
\nu_{l,m}^0 := \left\{ \begin{array}{ll}
\lambda_l & \text{for } 0 \leq m \leq h - 1 \\
\mu_m & \text{otherwise}
\end{array} \right.
\]

From this set of vectors we have to choose a subset of nonzero vectors whose span is dense.

Theorem 10. We get an orthogonal eigenbasis of \mathcal{D}_α^K by
\[
\left\{ \sigma_{l,m}^\pm \mid (l, m) \in \mathbb{Z}^2 \text{ with } \lambda_l \neq 0 \text{ and } m \geq h \right\}
\]
\[
\cup \left\{ \sigma_{l,m}^0 \mid (l, m) \in \mathbb{Z}^2 \text{ with } \lambda_l = 0 \text{ or } 0 \leq m \leq h - 1 \right\},
\]
which will be written as $M_{l,m}^\pm \cup M_{l,m}^0$. The respective eigenvalues are $\nu_{l,m}^{+/0/-}$.

Proof. We check that all these vectors are nonzero and belong to the defined eigenspaces.

From the construction in [1] we know that $\sigma_{l,m}^- = \sigma_{l,m}^+ + \sigma_{l,m}^-$ implies $\sigma_{h-m-1}^- = \sigma_{h-m}^+ - \sigma_{h-m}^-$. Therefore, we have the \mathcal{D}_α^K-invariant subspaces
\[
\text{span} \left\{ \hat{\sigma}_{l,m}, \mathcal{D}_\alpha^K \hat{\sigma}_{l,m} \right\} = \text{span} \left\{ \hat{\sigma}_{l,m}, \hat{\sigma}_{h,m-1} \right\}
\]
They can be used to prove the orthogonality and density of the constructed sections. \hfill \Box

3.2 Trivial SpinC structure

We look at \mathcal{D}_α on $\Gamma(\mathbb{H}) = \Gamma(\mathbb{C}^2)$ for the standard connection ∇^K. \hfill 6
Let
\[\sigma_b(x_1, x_2, x_3) := \exp \left(2\pi i (b_1 x_1 + b_2 x_2 + b_3 x_3) \right) \]

Then we get the basis of sections:
\[\text{span} \left\{ \sigma_b^+ = (\sigma_b, 0) \mid b \in \mathbb{Z}^3 \right\} \cup \left\{ \sigma_b^- = (0, \sigma_b) \mid b \in \mathbb{Z}^3 \right\} \]

Define \(\beta = \alpha + 2\pi b \).

We use the classical methods of [2] to determine:

Theorem 11. We get an orthogonal eigenbasis for \(D_\alpha \) as
\[\left\{ \|\beta\| \sigma_b^+ - D_\alpha \sigma_b^+ \mid b \in \mathbb{Z}^3 \text{ with } \beta_2 \neq 0 \text{ or } \beta_3 \neq 0 \right\} \]
\[\cup \left\{ \|\beta\| \sigma_b^+ + D_\alpha \sigma_b^+ \mid b \in \mathbb{Z}^3 \text{ with } \beta_2 \neq 0 \text{ or } \beta_3 \neq 0 \right\} \]
\[\cup \left\{ \sigma_b^+ \mid \beta_2 = \beta_3 = 0 \right\}. \]

Furthermore, we have for \(\beta_2 \neq 0 \) or \(\beta_3 \neq 0 \):
\[\text{span} \left\{ \sigma_b^+, \sigma_b^- \right\} = \text{span} \left\{ \|\beta\| \sigma_b^+ - D_\alpha \sigma_b^+, \|\beta\| \sigma_b^+ + D_\alpha \sigma_b^+ \right\}. \]

The spectrum consists of all numbers \(\pm \|\beta(b, \alpha)\| \) for \(b \in \mathbb{Z}^3 \).

Remark 12. In the case \(\hat{k} \neq 0 \) the spectrum is determined by \(\alpha_\perp \) while the eigenbasis is determined by \(\alpha_\parallel \). Here every change of \(\alpha \) has influence on both eigenbasis and spectrum.

4 Spectral sections

We look at families of Dirac operators over a compact base space \(B \). [4] defined the concept of a spectral section for a constant \(R > 0 \). The most interesting spectral sections are those for small \(R \); they should be classified in the sense of the following definition.

Definition 13. Let \(R_{\text{inf}} \) be defined as the infimum of the set
\[\left\{ R > 0 \mid \text{for } R \text{ exists at least one spectral section} \right\}. \]
Furthermore, choose a (small) positive number ε_P. Then a system of infinitesimal spectral sections is a map
\[
\left[R_{\text{inf}}, R_{\text{inf}} + \varepsilon_P \right] \times I \to \{ \text{spectral sections for a fixed operator } D \}
\]
where
\[
(R, i) \mapsto P^i_R,
\]
where
1. I is an arbitrary index set,
2. P^i_R is a spectral section for the constant map R,
3. every $(P^i_R)_\alpha$, $\alpha \in B$, depends continuously on R (where we consider $(P^i_R)_\alpha$ as operator between L^2 spaces), and
4. $\cup_{i \in I} \{ P^i_R \}$ is a representation system for all spectral sections for R, i.e. for all possible spectral sections P_R there is a P^i_R with $i \in I$, so that $\text{Im } P_R - \text{Im } P^i_R$ is zero in K-theory.

A minimal system of infinitesimal spectral sections is one in which I is chosen minimal (under the inclusion relation).

4.1 Definition of the family

Let $\ell \subset H^1(T^3; \mathbb{Z})$ be a lattice (of non-maximal dimension) and let $B := (\ell \otimes \mathbb{R})/\ell$.

We need the following ingredients for our definition:

- $\ker(d)_{\ell \otimes \mathbb{R}}$: The subset of $\ker(d)$ representing elements in $\ell \otimes \mathbb{R}$.
- G_ℓ: The subgroup of the gauge group $\text{Map}(T^3, S^1)$ determined by ℓ.
- The projection $\text{pr}_{T^3} : T^3 \times (\nabla^K + \mathbf{i} \ker(d)_{\ell \otimes \mathbb{R}}) \to T^3$ together with the induced vector bundle $\text{pr}_{T^3}^* (\mathbb{H} \otimes K)$.

If v is an element of the fibre of $\text{pr}_{T^3}^* (\mathbb{H} \otimes K)$ over
\[
(y, \nabla^K + \mathbf{i} \alpha^c) \in T^3 \times (\nabla^K + \mathbf{i} \ker(d)_{\ell \otimes \mathbb{R}}),
\]
we can define the following action of G_ℓ:
\[
G_\ell \times \text{pr}_{T^3}^* (\mathbb{H} \otimes K) \to \text{pr}_{T^3}^* (\mathbb{H} \otimes K)
\]
\[
\left(u, (v, y, \nabla^K + \mathbf{i} \alpha) \right) \mapsto (u(y) \cdot v, y, \nabla^K + \mathbf{i} \alpha + ud\alpha^{-1}), \quad (2)
\]
The quotient is a bundle over $T^3 \times B$. The connection from the parameter space determines a family of Dirac operators called \mathcal{D}.

Depending on \hat{k} and ℓ we want to know:

1. Do spectral sections exist?
2. If they exist: What do they look like?

4.2 Existence of spectral sections

Following [4] we know that spectral sections for \mathcal{D} exist if and only if the index of \mathcal{D} in $K^1(B)$ vanishes. Let \mathcal{I} be the following composition of isomorphisms (remember that B is a torus of maximal dimension 2):

$$K^1(B) \xrightarrow{\text{Chern}} H^1(B; \mathbb{Z}) \rightarrow (H_1(B; \mathbb{Z}))^* \rightarrow \ell^*$$

Lemma 14. Let $a \in H^1(T^3; \mathbb{Z})$ and let $f : (\mathbb{R} \cdot a)/a \rightarrow B$ be the map induced by the inclusion. In this way we get a pullback family \mathcal{D}^a over $(\mathbb{R} \cdot a)/a$. Then the spectral flow of \mathcal{D}^a in positive direction is given by

$$\langle \hat{k}, a \rangle = \langle \hat{k} \cup a, [T^3] \rangle$$

Proof. We use our explicit knowledge of the spectrum.

First we assume $\hat{k} \neq 0$: From all eigenvalues $\nu_{l,m}^{+/-0}$ only those of the form $\nu_{l,m}^0$ for $0 \leq m \leq h - 1$ have a chance to cross zero. From the definition we know that $\nu_{l,m}^0 = \lambda_l = (2\pi l + \langle k, \alpha \rangle)/\|k\|$ for which we can count the crossings while running around the circle.

For $\hat{k} = 0$ the spectrum is always symmetric with respect to zero. We see that every spectral flow has to vanish. \hfill \Box

With this Lemma we get a direct access to the following statement:

Theorem 15. The isomorphism \mathcal{I} maps the index of \mathcal{D} to the map $x \mapsto \langle \hat{k} \cup x, [T^3] \rangle$ in ℓ^*.

Proof. Take a fundamental basis a_1, a_2 of the torus B; then an element in $K^1(B)$ is determined by its images in $K^1((\mathbb{R} \cdot a_i)/a_i)$, which we calculate with the formula from the preceding lemma. Since the maps are linear, it is enough to check the theorem for a_1, a_2 which is an easy exercise. \hfill \Box

Corollary 16. Spectral sections for \mathcal{D} exist if and only if $k \cup \ell = 0$.

9
4.3 Construction of spectral sections for $\hat{k} \neq 0$

Theorem 17. If spectral sections exist, the spectrum is constant.

Proof. From $k \cup \ell = 0$ we know that for every $\alpha \in (\ell \otimes \mathbb{R})$ we have $\alpha \perp = 0$. From section 3.1.3 we know that this implies a constant spectrum. \hfill \square

Therefore, we have $R_{\text{inf}} = 0$. For ε_P smaller than the smallest eigenvalue of D, the spectral sections are fixed everywhere except for the h-dimensional kernel of D.

Let $I := \{ F \mid F \text{ subbundle of } B \times \mathbb{C}^h \} / \sim \cong \mathbb{Z}^{h-1} \cup \{ 0 \} \cup \{ C^k \}$ and define $P_F|_{\ker D}$ for $R < \varepsilon_P$ as the orthogonal projection onto F. This defines a system of infinitesimal spectral sections which is obviously also minimal.

4.4 Construction of spectral sections for $\hat{k} = 0$

We split $\Gamma_{L^2}(\mathbb{H})$ into the 2-dimensional D_α-invariant subspaces $\Sigma_b = \text{span}\{ \sigma^+_b, \sigma^-_b \}$. On each of them, we have the two eigenvalues $\pm \| \beta \| = \pm \| \alpha + 2\pi b \|$. For small R we know that for each α there is at most one b with $\| \beta \| \leq R$. So for any spectral section P for D with small R we know that it fixes all Σ_b. Since $P_\alpha|\Sigma_b : \Sigma_b \to \Sigma_b$ is a one-dimensional orthogonal projection for $\| \beta \| > R$, it has to be a one-dimensional orthogonal projection for all β (and, therefore, for all α, since α and β are in bijective correspondence).

We now assume that ℓ is a plane since $\dim \ell \leq 1$ does not lead to interesting conclusions. In addition to the assumptions about R above we assume that ε_P is smaller than the minimal distance between $\ell \otimes \mathbb{R}$ and any point $b \in \mathbb{Z}^3 \backslash \ell$. This implies that for such b there are no eigenvalues with $\| \beta \| < R$ on Σ_b.

The space of one-dimensional orthogonal projections on \mathbb{C}^2 equals $\mathbb{CP}^1 \cong S^2$. Fix an element $b \in \ell_{\mathbb{Z}} = (\ell \otimes \mathbb{R}) \cap \mathbb{Z}^3$ and look at the corresponding map $P_\beta|\Sigma_b : \ell \otimes \mathbb{R} \to \mathbb{CP}^1$ (written as function of β). For $\| \beta \| \geq R$ every ray coming from zero will be mapped to one point, producing a circle in \mathbb{CP}^1 (this follows from the construction of the eigenbasis).

For $\| \beta \| < R$ we have to continue this map in some way; topologically, the problem is as follows: We have to construct a map from the 2-disc to the 2-sphere which maps the boundary pointwise to the equator. Up to homotopy, there are $\pi_2(S^2) \cong \mathbb{Z}$ many choices for that.

4.4.1 A system of infinitesimal spectral sections

The preceding discussion leads to the following:
Since we had imposed no lower bounds for R, we have $R_{\text{inf}} = 0$. Let ε_P be so small that ε_P fulfills all conditions mentioned above.

We take $I = \{ g : \ell_Z/\ell \to \pi_2(\mathbb{CP}^1) \}$ and define for each $R < \varepsilon_P$ spectral projections P^g. For $b \notin \ell_Z$ these maps are already defined on Σ_b. For $b \in \ell_Z$, we define P^g_b on Σ_b to be a continuation specified by $g(b) \in \pi_2(\mathbb{CP}^1)$ as discussed in the preceding subsection (These continuations can be chosen to depend continuously on the parameters).

Conditions 1 and 2 (from the definition of infinitesimal spectral sections) are clear, 3 can be checked directly (if we specify the continuations explicitly), and 4 follows from the discussion above.

In general this system is not minimal. We can choose a minimal system J by fixing an element $g_0 \in I$ and a point $l_0 \in \ell_Z/\ell$ and defining

$$J = \{ g \in I \mid g(l) = g_0(l) \text{ for } l \neq l_0 \}.$$

This is true because J represents all element of the form $(0, z)$ from $K(B) \cong H^0(B; \mathbb{Z}) \oplus H^2(B; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$.

5 Acknowledgements

This article grew out of my dissertation [3]. I would like to thank my supervisor Prof. Stefan Bauer for his support. Furthermore, I thank Johannes Ebert for helpful suggestions.

References

[1] Antonio López Almorox and Carlos Tejero Prieto. Holomorphic spectrum of twisted dirac operators on compact riemann surfaces. *Journal of Geometry and Physics* 56, 2069-2091, 2006.

[2] Thomas Friedrich. Zur abhängigkeit des dirac-operators von der spin- struktur. *Colloquium Mathematicum, Vol. XLVIII*, 1984.

[3] Fabian Meier. *Spectral properties of Spinc Dirac operators on T^3, $S^1 \times S^2$ and S^3*. PhD thesis, Universität Bielefeld, July 2010. http://bieson.ub.uni-bielefeld.de/volltexte/2010/1731/.

[4] Richard B. Melrose and Paolo Piazza. Families of dirac operators, boundaries and the b-calculus. *Journal of Differential Geometry* 45, 99-180, 1997.
[5] John W. Morgan. *The Seiberg-Witten equations and applications to the topology of smooth four-manifolds*. Princeton University Press, first edition, 1996.

[6] John W. Morgan, Tomasz S. Mrowka, and Zoltan Szabo. Product formulas along t^3 for seiberg-witten invariants. *Mathematical Research Letters* 4, 915-929, 1997.