A NEW RECORD FOR THE MILK FROG *Trachycephalus coriaceus* (ANURA: HYLIDAE) FROM TELES PIRES RIVER, SOUTH AMAZONIA, BRAZIL

Un nuevo registro de la rana lechera *Trachycephalus coriaceus* (Anura: Hylidae) para el río Teles Pires, sur de la Amazonia, Brasil

Abstract

Herein, we report a new record of the milk frog *Trachycephalus coriaceus* for the Brazilian southern Amazonia and provide an updated geographic distribution map. We collected one specimen of *T. coriaceus* on 8 November 2016, during a nocturnal survey inside a dense ombrophilous forest in the right bank of the Teles Pires River, municipality of Jacareacanga, southern of Pará State. The record of *T. coriaceus* to Jacareacanga is the first to the State. The disjoint geographic distribution of this species along the Amazonia may just reflect the paucity of amphibian knowledge throughout this biome and the difficulty to detect this species in the field, given its explosive reproductive behavior.

Keywords: Amphibia, hydroelectric power plants, Pará state, tropical rain forest.

Resumen

Aquí, informamos sobre un nuevo registro de la rana lechera *Trachycephalus coriaceus* para el sur de la Amazonía brasileña y proporcionamos un mapa actualizado de su distribución geográfica. Recoleccionamos un espécimen de esta especie el 8 de noviembre de 2016, durante un muestreo nocturno dentro de un bosque denso ombrófilo en la margen derecha del río Teles Pires, municipio de Jacareacanga, al sur del estado de Pará. El registro de *T. coriaceus* en Jacareacanga es el primero en este estado. La distribución geográfica disyunta de esta especie a lo largo de Amazonía puede reflejar la escasez de conocimiento de anfibios en todo este bioma y la dificultad de detectar esta especie en campo, debido a su comportamiento reproductivo explosivo.

Palabras clave: Amphibia, bosque húmedo tropical, centrales hidroeléctricas, Pará.
The genus *Trachycephalus* Tschudi, 1838 currently includes 18 valid species distributed throughout Mexico, Central, and South America (Blotto et al., 2020; Frost, 2020). At this time, 14 *Trachycephalus* species are known to occur in Brazil (Segalla et al., 2019; Blotto et al., 2020), and seven of them are found in the Amazonia: *Trachycephalus coriaceus* (Peters, 1867), *T. cunauaru* Gordo, Toledo, Suárez, Kawashita-Ribeiro, Ávila, Morais, and Nunes, 2013, *T. hadroceps* (Duellman and Hoogmoed, 1992), *T. helioi* Nunes, Suárez, Gordo, and Pombal, 2013, *T. resinifictrix* (Goeldi, 1907), *T. typhonius* (Linnaeus, 1758), and *T. venezolanus* (Mertens, 1950). Of these species, only *T. typhonius* is widely distributed in South America, while the six remaining are Amazonian species (La Marca et al., 2010; Gordo et al., 2013; Nunes et al., 2013; Meneghelli et al., 2017; Meneghelli and Calderon 2017; Carvalho et al., 2018).

As most species within this genus, the milk frog *Trachycephalus coriaceus* have a paired, lateral vocal sac, a putative morphological synapomorphy of the genus (Faivovich et al., 2005); the exceptions are *T. hadroceps* and *T. helioi*, which have a single, subgular vocal sac (Nunes et al., 2013). Besides, this species can be easily diagnosed from its congeners by having (1) a dark bronze or golden iris without radial lines, (2) a pair of black blotches where the forearm inserts into the body, and (3) dorsum and flanks covered by brown shades or distinct brown rectangular blotches that extend from the upper eyelids to the lower sacral region (Duellman, 2005).

The current known geographic distribution of *Trachycephalus coriaceus* in the Amazonia is characterized by extensive gaps, with sparse records throughout Guyana, Surinam, French Guiana, Colombia, Ecuador, Peru, Bolivia, and Brazil (e.g., Peters, 1867; De la Riva, 1994; Gottsberger and Gruber, 2001; Duellman, 2005; Cole et al., 2013). In Brazil, *T. coriaceus* was already reported to occur in the States of Acre, Amapá, Amazonas, and Rondônia (Zimmerman and Rodrigues, 1990; Bernarde et al., 2011; Benício and Lima, 2017; Meneghelli et al., 2017). Herein, we report a new record of *T. coriaceus* for the Brazilian southern Amazonia, Pará state. Additionally, we provide an updated geographic distribution map for this species based on literature data (e.g., Gottsberger and Gruber, 2001; Bernarde et al., 2011; Cole et al., 2013; Benício and Lima, 2017; Meneghelli et al., 2017) and in our fieldwork (Supplementary material).

On November 8th of 2016, during a nocturnal survey inside a dense ombrophilous forest in the right bank of the Teles Pires River, municipality of Jacareacanga, southern of Pará state (9°15' S, and 56°47' W, 194 m. a. s. l), we collected one specimen of *Trachycephalus coriaceus* (Fig. 1a). The individual was fortuitously found after it drop-down from a tree in front of the researcher. The collected specimen was euthanized using 5 % lidocaine, fixed in 10 % formalin, and then permanently stored in 70 % alcohol. We collected the specimen under permit ICMBio 54493-12 and deposited it at Coleção Zoológica da Universidade Federal de Mato Grosso do Sul (ZUFMS-AMP08782; Snout-vent length: 63.3 mm).

The record of *Trachycephalus coriaceus* to the municipality of Jacareacanga is the first for Pará state and extends its geographic distribution nearly 760 km southeast from the nearest record in the municipality of Manaus, Amazonas state (Zimmerman and Rodrigues, 1990), 790 km eastward from the municipality of Porto Velho, Rondônia state (Meneghelli et al., 2017), and 920 km northeast from the Puerto Almacén, Santa Cruz, Bolivia (De La Riva, 1994). This record also extends the range of *T. coriaceus* nearly 1480 km southward from the type locality, Suriname (Peters, 1867) (Fig. 2). This was the only observation of *T. coriaceus* so far after 12 field expeditions of 15 days each in the study area, between 2015 and 2019. In contrast, we observed the congener *T. cunauaru* (Fig. 1b) in reproductive behavior during different expeditions in the same area.

We believe that the highly disjointed geographic distribution of *T. coriaceus* likely emerges from an interaction between the (i) extensive knowledge gaps throughout the Amazonia (e.g., Mayer et al., 2019; Cracraft et al., 2020), and (ii) the explosive reproductive behavior of *T. coriaceus*,
since that the individuals of this species remain inactive most of the year and become active by just a few days (Duellman, 2005), which hamper its records during field surveys.

The Tapajos endemism center is one of the most jeopardized Amazonian regions by anthropogenic pressures (Braz et al., 2016). The Teles Pires River is located at the South of Tapajos endemism center and struggles with extensive damming by hydroelectric plants established along with it (e.g., ANA, 2020). As a consequence of this activity, the river becomes highly fragmented, the large artificial lakes provoke irreversible losses of natural habitats and drives the climate changes by the emission of methane gas (Fearnside, 2000). Even though fishes are the most obviously impacted groups by hydroelectric power plants (Pelicice et al., 2015), deleterious effects of this activity on amphibians are also well demonstrated (Brandão and Araújo, 2008; Silva et al., 2018). The effectiveness of public policies is diminished given the current situation of knowledge gaps regards the Amazonian amphibians. The new record of *T. coriaceus* from a highly threatened Amazonian region represents a small but essential step toward the great challenge of understanding the Amazonia biota and provides information for future conservation actions.

ACKNOWLEDGMENTS

We thank the Instituto Chico Mendes de Conservação da Biodiversidade for collection permits (ICMBio 54493-12). LAS and RT are currently supported by a doctoral and master fellowship (CNPq #140408/2018-5 and 133289/2019-2, respectively). We also thanks Aldo Frank, Antônio Junior, Fábio Catarina, Joelson Lopes, and Kleber Venâncio for the essential support during the field surveys. We also thanks Ricardo Marques for reviewing English and Jorge Diaz Perez for reviewing Spanish.

REFERENCES

[ANA] Agência Nacional das Águas. 2020. Available in: http://portail1.snirh.gov.br/ana/apps/webappviewer/index.html?id=5094e51be90418aab741d9dc56ddeb9. Cited: 17 Apr 2020.

Benício RA, Lima JD. Anurans of Amapá National Forest, Eastern Amazonia, Brazil. Herpetol Notes. 2017;10:627-633.

Bernarde PS, Machado RA, Turci LCB. Herpetofauna of Igarapé Esperança area in the Reserva Extrativista Riozinho da Liberdade, Acre, Brazil. Biota Neotrop. 2011;11(3):117-144. Doi: http://dx.doi.org/10.1590/ S1676-06032011000300010
Blotto BL, Lyra ML, Cardoso MCS, Rodrigues MT, Dias IR, Marciano-Jr E, et al. The phylogeny of the Casque-headed Treefrogs (Hylidae: Hylinae: Lophyrylindii). Cladistics. 2020;2020:1-37. Doi: https://doi.org/10.1111/cla.12409

Brandão RA, Araújo AF. Changes in anuran species richness and abundance resulting from hydroelectric dam flooding in Central Brazil. Biotropica. 2008;40(2):263-266. Doi: https://doi.org/10.1111/j.1744-7429.2007.00356.x

Braz LC, Pereira JLG, Ferreira LV, Tháles MC. A situação das áreas de endemismo da Amazônia com relação ao desmatamento e às áreas protegidas. Boletim de Geografia. 2016;34(3):45-62. Doi: https://doi.org/10.4025/bolgeogr.v34i3.30294

De Carvalho VT, de Fraga R, Bittencourt S, Bonora L, Condriti LH, Gordo M, et al. Geographic distribution of Aparasphenodon venezolanus (Anura: Hylidae) in the Brazilian Amazon lowlands. Phyllomedusa: J Herpetol. 2018;17(1):139-144. Doi: https://doi.org/10.11606/issn.2316-9079.v17i1p139-144

Cole CJ, Townsend CR, Reynolds RP, MacCulloch RD, Lathrop A. Amphibians and reptiles of Guyana, South America: illustrated keys, annotated species accounts, and a biogeographic synopsis. P Biol Soc Wash. 2013;125(4):317-578. Doi: https://doi.org/10.2988/0006-324X-125.4.317

Cracraft J, Ribas CC, d'Horta FM, Bates J, Almeida RP, Aleixo A, et al. The origin and evolution of Amazonian amphibian species diversity. In: Rull V, Carnaval AC, editors. Neotropical Diversification: Patterns and Processes. Cham, Germany: Springer; 2020. p. 225-244. Doi: https://10.1007/978-3-030-31167-4_10

De la Riva I. An undescribed defensive mechanism in the neotropical hylid frog Phrynophybas coriacea (Amphibia-Reptilia). 1994;15(2):226-227. Doi: https://doi.org/10.1163/15683894X00335

De la Riva I, Kohler J, Lotters S, Reichle S. Ten years of research on Bolivian amphibians: updated checklist, distribution, taxonomic problems, literature and iconography. Rev Esp Herp. 2000;14:19-164.

De la Riva I, Márquez R, Bosch J. Advertisement calls of eight Bolivian hyliids (Amphibia, Anura). J Herpetol. 1995;29(1):113-118. Doi: https://doi.org/10.2307/1565094

Duellman WE. Cusco Amazónico. The Lives of Amphibians and Reptiles in an Amazonian Rainforest. New York: Cornell University Press; 2005. 472 p.

Fainovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. B Am Mus Nat Hist. 2005;2005(294):1-240. Doi: https://doi.org/10.1206/0003-0909(2005)294[0001:SORTEF]2.0.CO;2

Fearnside PM. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic change. 2000; 46:15-58. Doi:https://doi.org/10.1023/A:1005569915357

Frost DR. Amphibian Species of the World: An Online Reference. Version 6.0. 2020. Available in: https://amphibiansoftheworld.amnh.org/ Cited: 30 Mar 2020.

Gordo M, Toledo LF, Suárez P, Kawashita-Ribeiro RA, Ávila RW, Morais DH, et al. A new species of Milk Frog of the genus Trachycephalus Tschudi (Anura, Hylidae) from the Amazonian rainforest. Herpetologica. 2013;69(4):466-479. Doi: http://dx.doi.org/10.1655/HERPETOLOGICA-D-11-00086

Gottsberger B, Gruber E. Explosive breeding in five tropical anuran species. In: Lymberakis P, Valakos E, Pafilis P, Mylonas M, editors. Herpetologia Candiana. Crete: Natural History Museum of Crete, University of Crete; 2001. p. 79-81.

La Marca E, Azevedo-Ramos C, Scott N, Aquino L, Sikano D, Coloma LA, et al. Trachycephalus typhonius (errata version published in 2016). 2010. The IUCN Red List of Threatened Species. Available in: https://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T55824A11373788.en. Cited: 30 Mar 2020.

Mayer M, da Fonte LFM, Lötters S. Mind the gap! A review of Amazonian anurans in GenBank. Salamandra. 2019;55(2):89-96.

Meneghelli D, Calderon LDA. First record of the milk frog Trachycephalus cumauaru (Anura: Hylidae) from Rondônia state with updates on its geographical distribution. Herpetol Notes. 2017;10:119-121.

Meneghelli D, Dorazio BG, Calderon LDA. First record of the milk frog Trachycephalus coriaceus (Peters, 1867) for the state of Rondônia, Brazil (Anura: Hylidae). Herpetol Notes. 2017;10:75-78.

Nunes I, Suárez P, Gordo M, Pombal-Jr JP. A second species of Trachycephalus Tschudi (Anura: Hylidae) with a single vocal sac from the Brazilian Amazon. Copeia. 2013;2013(4):634-640. Doi: https://doi.org/10.1643/CH-12-102

Pelicce FM, Pompeu PS, Agostinho AA. Large reservoirs as ecological barriers to downstream movements of Neotropical migrant fish. Fish and Fisheries. 2015;16(4):697-715. Doi: https://doi.org/10.1111/faf.12089

Peters WCH. Über Flederthiere (Pteropus Gouldi, Rhinolophus Deckeni, Vespertilio lobiopes, Vesperugo Temminckii) und Amphibien (Hypsilurus Godfreyi, Lygosoma scutatum, Stenostoma nainrostre, Onychophanes unguiostris, Ahaetulla polylepis, Paedechis scutellatus, Hoplobatrachus Reinhardtii, Hyla coriacea). Monatsber Königl Preuss Akad Wiss Berlin. 1867;1867:703-712.

Segalla MV, Caramaschi U, Cruz CAG, Garcia PCA, Grant T, Haddad CFB, et al. Brazilian amphibians: list of species. Herpetologia Brasileira. 2019;8:65-96.

Silva YBDSE, Ribeiro BR, Thiesen Brum F, Soares-Filho B, Loyola R, Michalski F. Combined exposure to hydroelectric expansion, climate change and forest loss jeopardizes amphibians in the Brazilian Amazon. Divers Distrib. 2018;24(8):1072-1082.

Zimmerman B, Rodrigues MT. Frogs, snakes, and lizards of the INPA-WWF Reserves near Manaus, Brazil. In: Gentry AH, editor. Four Neotropical Rainforests. New Haven, Connecticut, USA: Yale University Press; 1990. p. 426-454.