A conjecture of Yves André. *

Andrei Yafaev

May 31, 2018

1 Introduction.

In this article we deal with the following conjecture by Yves André and Frans Oort.

Conjecture 1.1 (André-Oort) Let \((G, X)\) be a Shimura datum. Let \(K\) be a compact open subgroup of \(G(\mathbb{A}_f)\) and let \(S\) be a set of special points in \(\text{Sh}_K(G, X)(\mathbb{C})\). Then every irreducible component of the Zariski closure of \(S\) in \(\text{Sh}_K(G, X)_\mathbb{C}\) is a subvariety of Hodge type.

The introduction to [2] (and references contained therein) contains a comprehensive exposition of terminology and notations relative to this conjecture. Since we use the same terminology and notations, we do not reproduce them here. The introduction to [2] also contains an exposition of results on this conjecture obtained before the article [3] came out.

In this article we prove the following theorem, which is actually the statement conjectured by Yves André in 1989 in his book [1] (see Problem 9). This statement (without the assumption of the GRH) is now referred to as a conjecture of Yves André.

Theorem 1.2 Assume the Generalised Riemann Hypothesis (GRH) for CM fields. Let \((G, X)\) be a Shimura datum. Let \(K\) be a compact open subgroup of \(G(\mathbb{A}_f)\). Let \(C\) be an irreducible closed algebraic curve contained in the Shimura variety \(\text{Sh}_K(G, X)\) and such that \(C\) contains an infinite set of special points. Then \(C\) is of Hodge type.

In the article [3] we considered a curve in a Shimura variety \(\text{Sh}_K(G, X)\) containing an infinite set \(S\) of special points satisfying the following condition. There is a faithful rational representa-

*The author was supported by an EPSRC grant and the European Research Training Network “Arithmetic Algebraic Geometry”. Address: Imperial College, Dept. of Mathematics, 180 Queens Gate, SW7 2BZ London, UK. E-mail: andrei.yafaev@ic.ac.uk
tion of G such that the \mathbb{Q}-Hodge structures corresponding to the points in S via this representation lie in one isomorphism class. We proved that such a curve is of Hodge type. This was the strongest result towards the André-Oort conjecture at that time.

In the article [3] we introduced some technical tools to attack the André-Oort conjecture. In particular we obtained the following characterisation of subvarieties of Hodge type of a Shimura variety associated to a Shimura datum (G, X) with G semisimple of adjoint type. Let Z be a Hodge generic subvariety of $\text{Sh}_K(G, X)$ contained in its image by some Hecke correspondence T_g with g an element of $G(\mathbb{Q}_p)$ i.e. $Z \subset T_gZ$. Suppose that p is bigger than some integer depending on G, X, K and Z and that g is such that for any simple factor G_i of G, the image of g in $G_i(\mathbb{Q}_p)$ is not contained in a compact subgroup. Then Z is of Hodge type provided Z contains at least one special point.

The strategy used to prove our main theorem 1.2 is the same as the one used in [3] (see Section 2 of [3] for details). We use the characterisation mentioned above. After having reduced ourselves to the case where the group G is semisimple of adjoint type and where the curve C is Hodge generic, we try to get C to be contained in its image by a suitable Hecke correspondence. We consider intersections of C with its images T_gC by Hecke correspondences T_g with g some elements of $G(\mathbb{Q}_p)$ for various primes p. For suitably chosen p and g such intersection contains a Galois orbit of some special point of C. We prove that one can choose a prime p and an element g, both satisfying the conditions mentioned above, in such a way that the Galois orbit is too large for the intersection $T_gC \cap C$ to be finite. The choice of a prime p with this property is made possible by the assumption of the GRH and the use of the effective version of the Chebotarev density theorem. We conclude that C is of Hodge type.

The heart of this paper is a proof of a theorem about lower bounds for Galois orbits of special points of Shimura varieties. Our theorem on Galois orbits is a partial answer to Edixhoven’s question Open Problem 14 in [4]. Using the GRH we refine lower bounds for Galois orbits given in [3] enough to be able to prove the conjecture of Yves André.

In section 2.2 we obtain precise information about Mumford-Tate groups of special points and their representations coming from special points on Shimura varieties. This information allows us to bring the following improvement to the main result of [3].

Theorem 1.3 Let (G, X) be a Shimura datum. Let K be a compact open subgroup of $G(\mathbb{A}_f)$. Let C be an irreducible closed algebraic curve contained in the Shimura variety $\text{Sh}_K(G, X)$ and such that C contains an infinite set S of special points satisfying the following condition.

For any point s of S we choose an element (\tilde{s}, g) of $X \times G(\mathbb{A}_f)$ lying over s. We suppose that the Mumford-Tate groups $\text{MT}(\tilde{s})$ lie in one isomorphism class of \mathbb{Q}-tori as s ranges through the set S. Then C is of Hodge type.
2 Lower bounds for Galois orbits.

In this section we prove a theorem giving lower bounds for Galois orbits of special points of Shimura varieties.

Theorem 2.1 Assume the GRH for CM fields. Let N be a positive integer. Let (G, X) be a Shimura datum with G semi-simple of adjoint type, and let K be a neat compact open subgroup of $G(A_f)$. Via a faithful representation of G, we view G as a closed algebraic subgroup of $GL_n(\mathbb{Q})$, such that K is contained in $GL_n(\hat{\mathbb{Z}})$. Let $V_{\mathbb{Z}}$ be the induced variation of \mathbb{Z}-Hodge structure on $Sh_K(G, X)$. For s in $Sh_K(G, X)$, we let V_s be the corresponding Hodge structure and $MT(V_s)$ its Mumford-Tate group (viewed as a closed algebraic subgroup of $GL_n(\mathbb{Z})$). Let $F \subset \mathbb{C}$ be a number field over which $Sh_K(G, X)$ admits a canonical model. For any special point s in $Sh_K(G, X)$, let L_s be the splitting field of $MT(V_s)$ and d_{L_s} be the absolute value of its discriminant.

There exist real $c_1 > 0$ and $c_2 > 0$ such that for any special point s in $Sh_K(G, X)_F(\overline{\mathbb{Q}})$ we have:

$$|Gal(\overline{\mathbb{Q}}/F) \cdot s| > c_1 \log(d_{L_s})^N \prod_{\{p \text{ prime } | MT(V_s)_{\mathbb{Q}_p} \text{ is not a torus}\}} c_2 p$$

2.2 Reciprocity morphisms and Mumford-Tate groups.

In this section we recall the definition of the Mumford-Tate group and reciprocity morphism attached to special elements of X and prove some technical results about the Mumford-Tate groups and reciprocity morphisms to be used later on.

Let (G, X) be a Shimura datum with G semisimple of adjoint type, let V be a faithful rational representation of G and let $V_{\mathbb{Z}}$ be a lattice in V. Then $V_{\mathbb{Z}}$ induces a variation of \mathbb{Z}-Hodge structure over X. Let h be a special element of X. The morphism $h : \mathbb{S} \rightarrow G_{\mathbb{R}}$, composed with the representation gives an \mathbb{R}-Hodge structure $h : \mathbb{S} \rightarrow GL(V_{\mathbb{R}})$. Let z and ϖ be the generators of the character group of \mathbb{S}. The morphism h corresponds to the decomposition

$$V_{\mathbb{C}} = \bigoplus_{p,q} V^{p,q}$$

where $V^{p,q}$ is the \mathbb{C}-vector subspace on which \mathbb{S} acts through the character $z^p \varpi^q$. The spaces $V^{p,q}$ satisfy the following condition $\overline{V^{p,q}} = V^{q,p}$. Let W be the collection of pairs of integers (p, q) that intervene in this representation. Since the \mathbb{R}-Hodge structures corresponding to elements of X lie in one isomorphism class, the set W does not depend on the element h in X. The fact that G is of adjoint type implies that for any (p, q) in W we have $p + q = 0$. Let $M \subset GL(V)$ be the Mumford-Tate group of h and let L be its splitting field. Let us recall that M is the smallest algebraic subgroup H of $GL(V)$ having the property that h factors through $H_{\mathbb{R}}$. The
group M is a \mathbb{Q}-torus because h is special and M is given a \mathbb{Z}-structure by taking its Zariski closure in the \mathbb{Z}-group scheme $GL(V_{\mathbb{Z}})$. We let $X^*(M)$ be the character group of M i.e the group $\text{Hom}(M_{\mathbb{Q}}, \mathbb{G}_{m,\mathbb{Q}})$. The group $X^*(M)$ is a free \mathbb{Z}-module of rank equal to the dimension of M with a continuous $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-action.

Lemma 2.3 The field L is a Galois CM field. Furthermore, the degree of L is bounded in terms of the dimension of V.

Proof. The field L is Galois since it is the splitting field of a torus (the group $\text{Gal}(\overline{\mathbb{Q}}/L)$ is exactly the kernel of the morphism $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow GL(X^*(M))$ hence is a normal subgroup of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$). The fact that L is a CM field follows from the fact that $ad(h(i))$ is a Cartan involution of $G_{\mathbb{R}}$ (this is a part of axioms imposed upon Shimura data).

Let E be the centre of the endomorphism algebra of the Hodge structure V. The algebra E is a finite product of number fields $E = E_1 \times \cdots \times E_m$. The torus M is a subtorus of the torus $\prod_{i=1}^m \text{Res}_{E_i/\mathbb{Q}} \mathbb{G}_{m,E_i}$. Hence M is split over the composite of the Galois closures of the E_i whose degree is clearly bounded in terms of the dimension of V only. \square

Let T be the \mathbb{Q}-torus $\text{Res}_{L/\mathbb{Q}} \mathbb{G}_{m,L}$. Let G_L be the Galois group of L over \mathbb{Q} and let $r: T \longrightarrow M \subset GL(V)$ be the reciprocity morphism associated to h. Let us recall how r is defined. The morphism h gives, by extending scalars from \mathbb{R} to \mathbb{C}, the morphism $h_{\mathbb{C}}$ from $\mathbb{G}_{m,\mathbb{C}} \times \mathbb{G}_{m,\mathbb{C}}$ to $M_{\mathbb{C}} \subset GL(V_{\mathbb{C}})$. Let $\mu: \mathbb{G}_{m,\mathbb{C}} \longrightarrow M_{\mathbb{C}}$ be the morphism $h_{\mathbb{C}}(z,1)$. This morphism μ is defined over L. Hence μ induces a morphism $\mathbb{G}_{m,L} \longrightarrow M_L$, which, by taking the restriction of scalars from L to \mathbb{Q} gives the morphism

$$\text{Res}_{L/\mathbb{Q}} \mu: \text{Res}_{L/\mathbb{Q}} \mathbb{G}_{m,L} \longrightarrow \text{Res}_{L/\mathbb{Q}} M_L.$$

This morphism $\text{Res}_{L/\mathbb{Q}} \mu$ followed the by the norm morphism $\text{Res}_{L/\mathbb{Q}} M_L \longrightarrow M$ gives r. The morphism $X^*(r)$ between character groups $X^*(M)$ and $X^*(T)$ is injective (because r is a surjective morphism of \mathbb{Q}-tori). The Galois module $X^*(T)$ is naturally isomorphic to $\mathbb{Z}[G_L]$. We enumerate the elements of G_L thus choosing a basis for $X^*(T)$ so that it now makes sense to talk about coordinates of elements of $X^*(T)$.

The morphism r, when composed with the representation, defines an action of the torus T on the \mathbb{Q}-vector space V. There is a subset \mathcal{X} of $X^*(T)$ such that this representation corresponds to a direct sum decomposition

$$V_{\overline{\mathbb{Q}}} = \bigoplus_{\chi \in \mathcal{X}} V_{\chi},$$

where each V_{χ} is a $\overline{\mathbb{Q}}$-subspace of $V_{\overline{\mathbb{Q}}}$ on which $T_{\overline{\mathbb{Q}}}$ acts through the character χ. The spaces V_{χ} satisfy the condition that $V_{\chi}^\sigma = V_{\sigma \chi}$ (which insures that the representation is defined over \mathbb{Q}).
The representation $h_C(z, 1)$ of G_{mC} corresponds to the decomposition $V_C = \oplus_{(p,q) \in W} V^{p,q}$ where G_{mC} acts via the character z^p on $V^{p,q}$. This representation is defined over L hence induces a representation of G_{mL}. We get a decomposition $V_L = \oplus_{(p,q) \in W} V^{p,q}$ where G_{mL} acts through the character z^p on $V^{p,q}$. The representation r of T_L is obtained by taking the restriction of scalars of this representation of G_{mL} followed by the norm from L to \mathbb{Q}.

It follows that the characters of $X^*(T)$ that belong to \mathcal{X} have coordinates (with respect to the basis we have chosen) can be only integers p or q where (p, q) is some element of W. In particular they are bounded, in absolute value, independently of the element h. Furthermore, the characters in \mathcal{X} have the property that for any χ in \mathcal{X}, the character χ^\vee is the identity because the morphism r satisfies the so-called Seere’s condition (the group G is of adjoint type) and $p + q = 0$ for every pair (p, q) in W. We refer to Section 2 of Chapter I of [5], in particular the Proposition 2.4 for facts about Hodge structures of CM type. We summarise what has been said in the following proposition.

Proposition 2.4 There is an integer $k > 0$ such that the following holds. Let h be a special element of X, M its Mumford-Tate group and L its splitting field. Choose a basis for $X^*(T)$ by enumerating the elements of G_L. With respect to the basis the coordinates of the characters of T that intervene in the decomposition $V^{\vee}_Q = \bigoplus_{\chi \in \mathcal{X}} V_{\chi}$ coming from the representation r associated to h have absolute value at most k. Furthermore, for any character χ in \mathcal{X} the character χ^\vee is the identity.

We now apply this Proposition to prove a number of results about Mumford-Tate groups of special elements of X and reciprocity morphisms attached to such elements. These results will be used later on to prove lower bounds for Galois orbits.

Proposition 2.5 There is a real $e > 0$ such that the following holds. Let h be a special element of X. Let M be the Mumford-Tate group of h and L be its splitting field. Let $r: T \rightarrow M$ be the reciprocity morphism attached to h. Let p be a prime. The index of $r((\mathbb{Q}_p \otimes \mathbb{Q})^*)$ in $M(\mathbb{Q}_p)$ is finite bounded above by e. The index of $r((\mathbb{Z}_p \otimes \mathbb{Q}_L)^*)$ in the maximal compact open subgroup of $M(\mathbb{Q}_p)$ is finite and bounded above by e.

Proof. Let P be the \mathbb{Z}-submodule of $X^*(T)$ spanned by the vectors in \mathcal{X}. Recall that we identify $X^*(M)$ with its image by $X^*(r)$ i.e we view it as a submodule of $X^*(T)$ and we have chosen a basis for $X^*(T)$. The module $X^*(M)$ is P. The group $M(\mathbb{Q}_p)$ is canonically isomorphic to the group $\text{Hom}_{G_L}(X^*(M), (\mathbb{Q}_p \otimes \mathbb{Q})^*)$ of G_L-invariant homomorphisms. Similarly the group $(\mathbb{Q}_p \otimes \mathbb{Q})^*$ is isomorphic to $\text{Hom}_{G_L}(X^*(T), (\mathbb{Q}_p \otimes \mathbb{Q})^*)$ and the morphism $r: T(\mathbb{Q}_p) \rightarrow M(\mathbb{Q}_p)$ is

$$r: \text{Hom}_{G_L}(X^*(T), (\mathbb{Q}_p \otimes \mathbb{Q})^*) \rightarrow \text{Hom}_{G_L}(X^*(M), (\mathbb{Q}_p \otimes \mathbb{Q})^*)$$

5
which is just the restriction. The group $X^*(T)/P$ is a product of a free abelian group and a torsion group. Let E be the order of this torsion subgroup. Since, by the previous Proposition, the coordinates of the vectors generating P are bounded (in absolute value) by a uniform constant k, the number E is bounded in terms of k and n_L only. It is straightforward to see that the order of the cokernel is bounded in terms of E and n_L only. The first claim follows.

The maximal compact open subgroup of $M(\mathbb{Q}_p)$ is $\text{Hom}_{G_L}(X^*(M), (\mathbb{Z}_p \otimes \mathcal{O}_L)^*)$. The second claim is proved using exactly the same arguments.

Proposition 2.6 There is an integer $B > 0$ such that the following holds. Let h be a special element of X and let M be its Mumford-Tate group and L its splitting field. Let p be a prime splitting L (hence M). There is a \mathbb{Z}-basis of the character group $X^*(M)$ such that the differences of coordinates of the characters (with respect to this basis) that intervene in the representation $V_{\mathbb{Q}_p}$ of $M_{\mathbb{Q}_p}$ have absolute value at most B.

Proof. The module $X^*(M_{\mathbb{Q}_p})$ is a submodule of $X^*(T)$ (along with its given basis), generated by vectors whose coordinates are bounded in absolute value by the integer k from the Proposition 2.4. This integer is independent of the point h. It follows that there is only finite number (depending on k and n_L only) of possibilities for the set \mathcal{X} and hence for the submodule $X^*(M)$ of $X^*(T)$. Choose some basis for $X^*(M)$ for each of this finite number of cases. Take B to be the maximum of absolute values of the differences of coordinates of characters in \mathcal{X} with respect to these bases. □

Proposition 2.7 There is a real $C > 0$ such that the following holds. Let p be a prime. For any special element h in X with Mumford-Tate group M such that $M_{\mathbb{F}_p}$ is a torus, the following holds. Let Y be a subspace of $V_{\mathbb{F}_p}$. Let T be the stabiliser of Y in $M_{\mathbb{F}_p}$ (as defined in the Lemma 3.3.1 of [3]). The order of the group of connected components of $T_{\mathbb{F}_p}$ has order at most C. The order of the cokernel of the morphism $M(\mathbb{F}_p) \rightarrow (M/T)(\mathbb{F}_p)$ is at most C.

Proof. Proceeding as in the proof of the Lemma 4.4.1 of [3], we reduce the proof of this proposition to the proof of the fact that stabilisers of lines satisfy the conclusion of the statement above. We have a decomposition $V_{\mathbb{F}_p} = \oplus_{\chi \in \mathcal{X}} V_{\chi}$. Let v be an element of $V_{\mathbb{F}_p}$, write $v = \sum_{\chi} v_{\chi}$. The stabiliser of the line kv is the intersection of the kernels of $\chi - \chi'$ with χ and χ' distinct characters such that $v_{\chi} \neq 0$ and $v_{\chi'} \neq 0$. Since the torsion of each \mathbb{Z}-module $X^*(T)/(\chi - \chi')\mathbb{Z}$ is bounded independently of s and of the characters χ and χ' in \mathcal{X}, the order of the group of connected components of the stabiliser of $k \cdot v$ is bounded independently of s, p and the subspace. This proves the first claim.
As for the second claim, using the Lemma 4.4.2 of [3], we see that the order of the cokernel of the map \(M(F_p) \rightarrow (M/T)(F_p) \) is bounded by the order of the group of connected components of \(T_{F_p} \), which is uniformly bounded by what has just been said. The second claim follows. \(\square \)

Proposition 2.8 There is a real \(D > 0 \) such that the following holds. Let \(h \) be a special element of \(X \) and let \(M \) be its Mumford-Tate group. Let \(K_M \) be the maximal compact open subgroup of \(M(\mathbb{A}_f) \). The intersection \(M(\mathbb{Q}) \cap K_M \) is finite of order bounded by \(D \).

Proof. The group \(M(\mathbb{Q}) \cap K_M \) is finite because \(M(\mathbb{R}) \) is compact (\(M(\mathbb{R}) \) stabilises the point \(h \) of the Hermitian symmetric domain \(X \) and the group \(G_{\mathbb{R}} \) is of adjoint type) and the group \(M(\mathbb{Q}) \cap K_M \) is discrete. Let \(L \) be the splitting field of \(M \). Choose any basis for the character group \(X^*(M) \) and use this basis to embed \(M \) into a product of \(\dim(M) \) copies of \(T_L \). Then the group \(M(\mathbb{Q}) \cap K_M \) is, via this embedding, a finite subgroup of the product of \(d \) copies of \(O_L^1 \). It follows that it is contained in the product of \(\dim(M) \) copies of the group of roots of unity in \(L \) which is finite of order bounded independently of the point \(h \). The claim follows. \(\square \)

2.9 Getting rid of \(G \).

Choose a set of representatives \(R \) in \(G(\mathbb{A}_f) \) for the set of double classes \(G(\mathbb{Q}) \backslash G(\mathbb{A}_f) / K \). Note that \(R \) is finite. For \(s \in Sh_K(G, X) \) there exists a unique \(g_s \) in \(R \) and an element \(\tilde{s} \) in \(X \) unique up to \(\Gamma_s := G(\mathbb{Q}) \cap g_s K g_s^{-1} \), such that \(s = (\tilde{s}, g_s) \). Let \(K_s \) be the compact open subgroup of \(G(\mathbb{A}_f) \) defined by \(K_s := g_s K g_s^{-1} \). We let \(MT(\tilde{s}) \) be the Mumford-Tate group of \(\tilde{s} \) (the smallest algebraic subgroup \(H \) of \(G \) such that \(\tilde{s} \) factors through \(H_{\mathbb{R}} \)). The Mumford-Tate group \(MT(V_s) \) is the image of \(MT(\tilde{s}) \) by the representation (this follows from the explicit construction of the variation of Hodge structures over \(Sh_K(G, X) \) given in the Section 3.2 of [3]). The element \(\tilde{s} \) gives an embedding of the Shimura datum \((MT(\tilde{s}), \{\tilde{s}\}) \) into \((G, X) \).

In this section we reduce the problem of giving a lower bound for the Galois orbit of the point \(s \) of \(Sh_K(G, X) \) to the one of giving a lower bound for the Galois orbit of the point \((\tilde{s}, 1) \) of \(Sh_{K \cap MT(\tilde{s})(\mathbb{A}_f)}(MT(\tilde{s})) \).

Proposition 2.10 The morphism of Shimura varieties

\[
Sh_{K \cap MT(\tilde{s})(\mathbb{A}_f)}(MT(\tilde{s})) \rightarrow Sh_K(G, X)
\]

sending \((\tilde{s}, t) \) to \((\tilde{s}, t \cdot g_s) \) is injective.

Proof. Let \(M := MT(\tilde{s}) \). Let \(H \) be the centraliser of \(M \) in \(G \). Let \((\tilde{s}, t) \) and \((\tilde{s}, t') \) be two points of \(Sh_{K \cap MT(\tilde{s})(\mathbb{A}_f)}(MT(\tilde{s})) \) such that \((\tilde{s}, t \cdot g_s) = (\tilde{s}, t' \cdot g_s) \) in \(Sh_K(G, X) \). There exists an
element \(q \) of \(H(Q) \) and an element \(k \) of \(K \) such that we have the following relation

\[
 t = qt' g_s k g_s^{-1}
\]

Since \(H(Q) \) and \(M(\mathbb{A}_\mathbb{F}) \) commute, this relation implies that \(tt'^{-1} \) belongs to \(M(\mathbb{A}_\mathbb{F}) \cap H(Q)U_s \) with \(U_s := H(\mathbb{A}_\mathbb{F}) \cap K_s \). Hence what we need to prove is that \(M(\mathbb{A}_\mathbb{F}) \cap H(Q)K_s = M(Q)(M(\mathbb{A}_\mathbb{F}) \cap U_s) \). Consider the quotient of algebraic groups \(H \longrightarrow \overline{H} = H/M \), which is well defined since \(M \) is normal in \(H \). The image of \(U_s \) of \(U_s \) in \(\overline{H}(\mathbb{A}_\mathbb{F}) \) is neat. On the other hand \(\overline{H}(\mathbb{R}) \) is compact since \(H(\mathbb{R}) \) is compact (as a stabiliser of a point in a hermitian symmetric domain and because \(G_{\mathbb{R}} \) is of adjoint type) and the map \(H(\mathbb{R}) \longrightarrow \overline{H}(\mathbb{R}) \) is surjective on identity components. It follows that \(\overline{H}(Q) \) is discrete in \(\overline{H}(\mathbb{A}_\mathbb{F}) \) and hence \(\overline{H}(Q) \cap U_s \) is trivial by neatness of \(U_s \).

Now suppose that \(h \) is in \(H(Q) \) and \(u \) in \(U_s \) such that \(hu \) is in \(M(\mathbb{A}_\mathbb{F}) \). Then, in \(\overline{H}(\mathbb{A}_\mathbb{F}) \), we have \(\overline{h} \cdot \overline{u} = 1 \), hence \(\overline{h} = \overline{u} = 1 \) in \(\overline{H}(\mathbb{A}_\mathbb{F}) \). That means that \(h \) is in \(M(Q) \) and \(u \) is in \(M(\mathbb{A}_\mathbb{F}) \cap U_s \).

The claim follows. \(\square \)

2.11 Lower bounds for Galois orbits.

We keep the notations of the preceding section. Let furthermore \(L \) be the splitting field of \(MT(\bar{s}) \). Let \(r \) be the reciprocity morphism attached to \(\bar{s} \) as explained in Section 2.2. To simplify the notation we write \(M \) for \(MT(\bar{s}) \). The morphism \(\text{Sh}_{K_s \cap MT(\bar{s})} \) \((\text{MT}(\bar{s})) \longrightarrow \text{Sh}_{K_s}(G, X) \) is defined over \(L \). The action of \(\text{Gal}(\overline{Q}/L) \) on the Hecke orbit of \((\bar{s}, g_s) \) is defined as follows. The group \(\text{Gal}(\overline{Q}/L) \) acts through its maximal abelian quotient, which is, by class field theory, isomorphic to a quotient of a product of a finite group of connected components of \(\mathbb{R} \times L \) (of order bounded in terms of the degree of \(L \) only) and of \((\mathbb{A}_\mathbb{F} \times L)^*/(\hat{\mathbb{Z}} \otimes O_L)^* \). Let \(\sigma \) be an element of \(\text{Gal}(\overline{Q}/L) \) and \(t \) be an element of \((\mathbb{A}_\mathbb{F} \times L)^* \) such that some element in the preimage of \(\sigma \) in \((\mathbb{A} \times L)^* \) followed by the projection to \((\mathbb{A}_\mathbb{F} \times L)^* \) is \(t \). Then

\[
 \sigma(\bar{s}, g_s) = (\bar{s}, r(\bar{t}) \cdot g_s)
\]

It follows that the size of the Galois orbit is, up to a uniformly bounded factor, the size of the set \((\bar{s}, r((\mathbb{A}_\mathbb{F} \times L)^*) \cdot g_s) \). From the last lemma it follows that to prove the Theorem 2.1 it suffices to give a lower bound for the size of the image of the set \((\bar{s}, r((\mathbb{A}_\mathbb{F} \times L)^*)) \) in \(\text{Sh}_{K_s \cap M(\mathbb{A}_\mathbb{F})}(M) \). Since the set \(R \) of elements \(g_s \) is finite, the index \([K : K_s \cap K] \) is bounded independently of \(s \) and it suffices to give a lower bound for the Galois orbit of the point \((\bar{s}, 1) \) of the Shimura variety \(\text{Sh}_{\text{GL}_n(\mathbb{Z}) \cap M(\mathbb{A}_\mathbb{F})}(M) \).

Lemma 2.12 There is an element \(q \) of \(\text{GL}_n(Q) \) such that the torus \(M' := qMq^{-1} \) satisfies the condition that \(M'_p \) is a torus for any prime \(p \) not dividing the discriminant of \(L \).
Proof. Let S be the finite set of primes p such that $M(\mathbb{Z}_p)$ is not the maximal compact subgroup $\text{Hom}_{GL_1}(X^*(M), (\mathbb{Z}_p \otimes O_L)^*)$ of $M(\mathbb{Q}_p)$. For every prime p in S, choose a lattice L_p in \mathbb{Q}_p^n invariant under the maximal compact subgroup of $M(\mathbb{Q}_p)$. Let $g = (g_p)$ be an element of $\text{GL}_n(\mathbb{A}_f)$ such that each g_p is an element of $\text{GL}_n(\mathbb{Q}_p)$ such that $L_p = g_p Z_p^n$. As $\text{GL}_n(\mathbb{A}_f) = \text{GL}_n(\mathbb{Q})\text{GL}_n(\hat{\mathbb{Z}})$, we get an element q of $\text{GL}_n(\mathbb{Q})$ such that $q = qk$ for some k in $\text{GL}_n(\hat{\mathbb{Z}})$. By the Lemma 3.3.1 of [3], the torus $M' := qMq^{-1}$ is a torus for every p unramified in L. \hfill \Box

The morphism inn_q induces an isomorphism between $M(\mathbb{Q}) \setminus M(\mathbb{A}_f)/M(\mathbb{A}_f) \cap \text{GL}_n(\hat{\mathbb{Z}})$ and $M'(\mathbb{Q}) \setminus M'(\mathbb{A}_f)/M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}$. We let r' denote the morphism $\text{inn}_q \circ r$. To give a lower bound for the Galois orbit of the point $(\tilde{s}, 1)$ of $\text{Sh}_{M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}}(M')$ it suffices to give a lower bound for the image of $r'((\mathbb{A}_f \otimes L)^*)$ in $M'(\mathbb{Q}) \setminus M'(\mathbb{A}_f)/M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}$.

Proposition 2.13 The size of the image of $r'((\mathbb{A}_f \otimes L)^*)$ in $\text{Sh}_{M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}}(M')$ is, up to a uniform (i.e depending only on the Shimura variety, not on s) constant, the size of the image of $r'((\mathbb{A}_f \otimes L)^*) \cap M'(\hat{\mathbb{Z}})$ in $M'(\mathbb{Z})/M'(\hat{\mathbb{Z}}) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}$.

Proof. We are interested in the size of the set

$$r'((\mathbb{A}_f \otimes L)^*)/r'((\mathbb{A}_f \otimes L)^*) \cap (M'(\mathbb{Q})(q\text{GL}_n(\hat{\mathbb{Z}})q^{-1} \cap M'(\mathbb{A}_f))).$$

Since $M'(\hat{\mathbb{Z}})$ is the maximal compact subgroup of $M'(\mathbb{A}_f)$, we have an inclusion

$$M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1} \subset M'(\hat{\mathbb{Z}}).$$

Hence the size of the set we are interested in is the size of

$$r'((\mathbb{A}_f \otimes L)^*)/r'((\mathbb{A}_f \otimes L)^*) \cap M'(\mathbb{Q})M'(\hat{\mathbb{Z}})$$

times that of

$$r'((\mathbb{A}_f \otimes L)^*) \cap M'(\mathbb{Q})M'(\hat{\mathbb{Z}})/r'((\mathbb{A}_f \otimes L)^*) \cap (M'(\mathbb{Q})M'(\mathbb{A}_f) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}).$$

The order of $M'(\mathbb{Q}) \cap M'(\hat{\mathbb{Z}})$ is bounded independently of the point s by the Proposition 2.8, hence the size of

$$r'((\mathbb{A}_f \otimes L)^*) \cap M'(\mathbb{Q})M'(\hat{\mathbb{Z}})/r'((\mathbb{A}_f \otimes L)^*) \cap (M'(\mathbb{Q})q\text{GL}_n(\hat{\mathbb{Z}})q^{-1} \cap M'(\mathbb{A}_f))$$

is, up to a uniformly bounded constant, that of the of the image of $r'((\mathbb{A}_f \otimes L)^*) \cap M'(\hat{\mathbb{Z}})$ in $M'(\mathbb{Z})/M'(\hat{\mathbb{Z}}) \cap q\text{GL}_n(\hat{\mathbb{Z}})q^{-1}$. \hfill \Box
Theorem 2.15 Assume the GRH for CM fields. Let N be a positive integer. There is a real constant $c > 0$ independent of the choice of s and M' (but depending on N) such that the size of the set $r'((\mathbb{A}_f \otimes L)^*) / r'((\mathbb{A}_f \otimes L)^*) \cap M'(\mathbb{Q}) M'(\mathbb{Z})$ is at least $c \log(d_L)^N$.

Proof. In what follows, we write M for M' and r for r' to simplify the notations. Let n_L be the degree of L over \mathbb{Q}. Let $m > 0$ be an integer at most $\frac{\log(d_L)^5}{15 n_L \log\log(d_L)}$ and let p_1, \ldots, p_m be m distinct primes split in L and smaller than $\log(d_L)^5$. Their existence is provided by the effective Chebotarev theorem (under GRH), provided d_L is bigger than some absolute constant, which we assume. We refer to the Proposition 8.2 of [2] for the exact statement of the effective Chebotarev theorem that we use. For each $i = 1, \ldots, m$, we choose a place v_i of L lying over p_i. We let P_i be the uniformiser at the place v_i. Let n_1, \ldots, n_m be integers satisfying $|n_i| < N$. Let I be the...
element of \((A_f \otimes L)^*\) that equals \(P_i^{m_i}\) at the place \(v_i\) for \(i = 1, \ldots, m\) and 1 everywhere. Suppose that \(r(I)\) belongs to \(M(\mathbb{Q})M(\hat{\mathbb{Z}})\). Let \(\pi\) be a corresponding element of \(M(\mathbb{Q})\) (this element is defined up to an element of \(M(\mathbb{Q}) \cap M(\hat{\mathbb{Z}})\) which is, by the Proposition 2.8 a finite group of uniformly bounded order). Let, as before, \(\text{Lemma 2.16}\) \(G\) be a corresponding element of \(\text{Gal}(\mathbb{Q})\) \(\cap M(\hat{\mathbb{Z}})\) which is Galois invariant. Let \(\pi\) be the cardinality of \(\mathcal{X}\) and let \((\pi_1, \ldots, \pi_d)\) be the \(d\) elements of \(L^*\) which are images of \(\pi\) by the \(d\) characters in \(\mathcal{X}\). The field \(\mathbb{Q}(\pi_1, \ldots, \pi_d)\) is Galois because the set \(\mathcal{X}\) is Galois invariant.

Lemma 2.16 Suppose that not all \(n_i\) are zero. Then the field \(\mathbb{Q}(\pi_1, \ldots, \pi_d)\) is \(L\).

Proof. It suffices to prove that the group \(\text{Gal}(L/\mathbb{Q}(\pi_1, \ldots, \pi_d))\) acts trivially on \(\mathbb{Q} \otimes X^*(M)\) (alternatively on \(\mathbb{Q} \otimes X_*(M)\), \(X_*(M)\) being the group of cocharacters).

To simplify the exposition we suppose that \(m = 1\) (the general case is done using exactly the same arguments). Let \(\sigma\) be an element of \(\text{Gal}(L/\mathbb{Q}(\pi_1, \ldots, \pi_d))\). So we have a prime \(p\) splitting \(L\), we choose a place \(v\) of \(L\) lying over \(p\) and a uniformiser \(P\) at \(v\). We consider the idele \(I = P^n\) with \(n > 1\) some integer. We suppose that \(r(I)\) belongs to \(M(\mathbb{Q})M(\hat{\mathbb{Z}})\). As \(p\) splits \(M\), we have \(M(\mathbb{Q}_p) = \text{Hom}(X^*(M), \mathbb{Q}_p^*) = X_*(M) \otimes \mathbb{Q}_p^*\). It follows that the evaluation map \(\nu_p: \mathbb{Q}_p^* \rightarrow \mathbb{Z}\) induces an isomorphism between \(M(\mathbb{Q}_p)/M(\mathbb{Z}_p)\) and the group of cocharacters \(X_*(M)\) of \(M\). Let \(K\) be the kernel of \(r\), then we have an exact sequence of \(\mathbb{Q}\)-vector spaces with \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\)-action

\[
0 \rightarrow \mathbb{Q} \otimes X_*(K) \rightarrow \mathbb{Q} \otimes X_*(T) \rightarrow \mathbb{Q} \otimes X_*(M) \rightarrow 0.
\]

It suffices to prove that \(\sigma\) acts trivially on \(\mathbb{Q} \otimes (X_*(T)/X_*(K))\). Since \(\sigma\) fixes each \(\pi_i\) and the set of \(\pi_i\) is \(G_L\)-invariant, \(\sigma\) fixes all the elements \(r(\tau I)\) of \(M(\mathbb{Q}_p)/M(\mathbb{Z}_p)\) with \(\tau\) ranging through \(G_L\). The Galois action on \(M(\mathbb{Q}_p)/M(\mathbb{Z}_p)\) is being given by identifying it with \(X_*(M)\) which has a Galois action. Since the morphism \(X_*(T) \rightarrow X_*(M)\) is surjective, for any \(\tau\) in \(G_L\) we have \(\sigma \tau I = \tau I\) in \(\mathbb{Q} \otimes (X_*(T)/X_*(K))\). Let \(e_1, \ldots, e_{n_k}\) be the basis of \(\mathbb{Q} \otimes X_*(T)\) given by the \(n\)th powers of uniformisers at the places lying over \(p\). Their images in \(\mathbb{Q} \otimes (X_*(T)/X_*(K))\) generate this vector space. Since \(\sigma\) fixes these elements, \(\sigma\) acts trivially on \(\mathbb{Q} \otimes (X_*(T)/X_*(K))\).

The claim follows. \(\square\)

Let \(x\) be the integer \((p_1 \cdots p_m)^{N_k}\) with \(k\) the integer from the Proposition 2.4. Let \(\chi\) be a character in \(\mathcal{X}\). The element \(x\chi(I)\) of \((A_f \otimes L)^*\) belongs to \(\hat{\mathbb{Z}} \otimes O_L\). On the other hand this element is of the form \(x\pi_i\) (for some \(i\)) times some element of \((\hat{\mathbb{Z}} \otimes O_L)^*\). It follows that \(x\pi_i\) is in \(O_L\). We replace \(\pi_i\) with \(x\pi_i\). The fact that \(\chi\chi\) is the identity shows that \(\pi_i\pi_i^\star\) is \(x^2 = (p_1 \cdots p_m)^{2N_k}\). The
field $\mathbb{Q}(\pi_1, \ldots, \pi_d)$ is L. Let us choose a basis b_1, \ldots, b_{n_L} of L over \mathbb{Q} consisting of monomials in π_1, \ldots, π_d of degree bounded by a constant depending on n_L only. The discriminant of the ring $\mathbb{Z}[b_1, \ldots, b_{n_L}]$ is the discriminant of the matrix A whose entries $A_{ij} = \text{Tr}_{L/\mathbb{Q}}(b_i b_j)$. The absolute values of the A_{ij} are bounded by a uniform power of $(p_1 \cdots p_m)^N$. We see that the discriminant of A is the sum of $n_L!$ terms whose absolute values are bounded by a uniform power of $(p_1 \cdots p_m)^N$ hence there is a uniform constant t such that

$$|\text{disc} \mathbb{Z}[b_1, \ldots, b_{n_L}]| \leq (p_1 \cdots p_m)^{Nt}.$$

Since $\mathbb{Z}[b_1, \ldots, b_{n_L}]$ is an order in O_L, we have

$$|\text{disc} \mathbb{Z}[b_1, \ldots, b_{n_L}]| \geq d_L$$

Replacing t with $5t$, we get the following inequality

$$\log(d_L)^{Nm} > d_L$$

Hence, if I is such that $r(I)$ belongs to $M(\mathbb{Q})M(\hat{\mathbb{Z}})$, then

$$Nm > \frac{\log(d_L)}{t \log \log(d_L)}$$

Let us now consider elements of $(A_f \otimes L)^*$ that equal $P_i^{n_i}$ at the place v_i and 1 outside of the places v_i and where $|n_i| < N/2$ with N and m are such that $Nm \leq \frac{\log(d_L)}{\tau \log \log(d_L)}$. From the above inequality it follows that these elements have distinct non-trivial images in $M(A_f)/M(\mathbb{Q})M(\hat{\mathbb{Z}})$ by r. It follows that the set $r((A_f \otimes L)^*)/r((A_f \otimes L)^*) \cap M(\mathbb{Q})M(\hat{\mathbb{Z}})$ contains at least $(N/2)^m$ elements if N and m being such that $Nm \leq \frac{\log(d_L)}{\tau \log \log(d_L)}$. Taking $m = \frac{\log(d_L)}{2Nn_L \log \log(d_L)}$ (which is possible by the effective Chebotarev), we easily see that $(N/2)^m$ is at least $c \log(d_L)^N$ elements where c is some real positive constant not depending on s (but of course depending on N). □

3 Proof of main results.

In this section we prove the Theorems 1.2 and 1.3. Let (G, X) be a Shimura datum and K a compact open subgroup in $G(A_f)$. Let C be an irreducible closed algebraic curve in $\text{Sh}_K(G, X)$ containing an infinite set Σ of special points. For any special point s of C we let L_s be the splitting field of the Mumford-Tate group of some element \tilde{s} lying over s and we let d_s be the absolute value of the discriminant of L_s.

Proposition 3.1 Suppose that the discriminant of L_s is bounded as s ranges through Σ. Then C is of Hodge type.
Proof. We can assume that G is semisimple of adjoint type (passing to the adjoint group does not change the property of C being of Hodge type by the Proposition 2.2 of [3] and does not change the property that d_{L_s} is bounded). Let us choose some faithful representation V of G. Since the discriminant of L_s is bounded as s ranges through Σ, there are only finitely many possibilities for L_s. Hence we can assume that for all points s in Σ, the field L_s is the same field L. For any s in Σ, we let \tilde{s} be an element of X such that $s = (\tilde{s}, g)$ for some g in $G(\mathbb{A}_f)$. The reciprocity morphism $r_{\tilde{s}}$ gives a rational representation of the torus $T := \text{Res}_{L/\mathbb{Q}} G_{mL}$. This representation corresponds to a direct sum decomposition $V_L = \bigoplus_{\chi \in X} V_\chi$ for some subset X of $X^*(T)$. As before, we identify the G_L-module X_* with $\mathbb{Z}[G_L]$ and enumerate elements of G_L thus getting a basis for $X^*(T)$. Using the fact that coordinates of the characters in the set X are bounded in absolute value by k which does not depend on s (Proposition 2.4), we see that there are only finitely many possibilities for the set X as s ranges through Σ. Hence, possibly replacing Σ by an infinite subset, we can and do assume that the set X is constant as s ranges through Σ. We can further assume that the dimensions of the V_χ are constant. We now see that the \mathbb{Q}-Hodge structures $V_{\tilde{s}}$ are isomorphic as s ranges through Σ. Hence C is of Hodge type by the main theorem of [3].

From the proof of this Proposition the Theorem 1.3 follows. Indeed, let C be a curve in $\text{Sh}_K(G, X)$ that contains an infinite set Σ of points such that the corresponding Mumford-Tate groups are isomorphic as \mathbb{Q}-tori. Since the Mumford-Tate groups of points of Σ are isomorphic, they have the same splitting field. From the proof of the above proposition, it follows that C contains an infinite set of special points such that the \mathbb{Q}-Hodge structures corresponding to these points via some faithful representation of G lie in one isomorphism class. By the main result of [3], C is of Hodge type.

In what follows we assume that d_{L_s} is unbounded as s ranges through Σ. From Propositions 2.1 and 2.2 of [3], it follows that we can assume G to be semisimple of adjoint type and C to be Hodge generic. Write $G = G_1 \times \cdots \times G_r$ where G_i are simple. We can and do assume that K is the product of compact open subgroups K_p of the $G(\mathbb{Q}_p)$ and that K is neat. Choose a faithful representation V of G through which we view G as a closed subgroup of $\text{GL}_n(\mathbb{Q})$ such that K is in $\text{GL}_n(\hat{\mathbb{Z}})$. Also choose a K-invariant lattice in $V_{\mathbb{A}_f}$. This gives a variation of \mathbb{Z}-Hodge structure on $\text{Sh}_K(G, X)$ (Section 3.2 of [3]). Let X^+ be a connected component of X. After possibly having replaced C by an irreducible component of its image under a suitable Hecke correspondence we can and do assume that C is contained in the image S of $X^+ \times \{1\}$ in $\text{Sh}_K(G, X)$. Since C contains an infinite set of special points which are in $\text{Sh}_K(G, X)(\mathbb{Q})$, C is defined over a Galois number field F containing the reflex field of (G, X) (as an absolutely irreducible closed subscheme Z_F of $\text{Sh}_K(G, X)_{\overline{F}}$).
Proposition 3.2 Assume the GRH for CM fields. There is a prime \(p \) and a point \(s \) in \(\Sigma \) which have the following properties

1. \(p \) splits \(\MT(V_s) \).
2. \(\MT(V_s)_{F_p} \) is a torus.
3. Let \(k \) be an integer as in the Corollary 7.4.4 of [3]. Then \(|\Gal(\overline{\Q}/F) \cdot s| > p^k \).

Proof. Let, as in the section 7 of [3], define the function \(i: \Sigma \rightarrow \Z \) as follows. For \(s \) in \(\Sigma \), let \(i(s) \) be the number of prime numbers \(p \) such that \(\MT(V_s)_{F_p} \) is not a torus. Then, by the Theorem 2.1 there exist real \(c_1 > 0 \) and \(c_2 > 0 \) such that for any \(s \) in \(\Sigma \) we have

\[
|\Gal(\overline{\Q}/F) \cdot s| > c_1 \log(d_{L_s})^{5k} c_2 i(s)!
\]

where \(k \) is the integer from the Corollary 7.4.4 of [3]. Using this inequality and the effective Chebotarev theorem (in the form stated in the Proposition 8.2 of [2]) we see that the number of primes split in \(L_s \) and smaller than \(|\Gal(\overline{\Q}/F) \cdot s|^{1/k} \) is bigger than \(i(s) \) when \(d_{L_s} \) is large enough. This finishes the proof of the proposition. \(\square \)

Take a prime \(p \) and a point \(s \) given by the previous proposition. Let \(m \) be an element of \(G(\Q_p) \) given by the Corollary 7.4.4 of [3] (this Corollary can be applied because of our Proposition 2.6). Then some Galois conjugate of \(s \) is in \(C \cap T_mC \) and since \(C \cap T_mC \) is defined over \(F \) the whole Galois orbit of \(s \) is contained in \(C \cap T_mC \). If the intersection \(C \cap T_mC \) was finite, its cardinality would be smaller than \(p^k \). By the choice of \(p \) and \(s \), this intersection can not be finite hence \(C \) is contained in \(T_mC \). We conclude that \(C \) is of Hodge type using the Theorem 7.1 of [3].

References

[1] Y. André G-functions and geometry Aspects of Mathematics, E13. Friedr. Vieweg and Sohn, Braunschweig, 1989.

[2] S.J. Edixhoven On the André-Oort conjecture for Hilbert modular surfaces. Progress in Mathematics 195 (2001), 133-155, Birkhauser. Available on Edixhoven’s homepage.

[3] S.J. Edixhoven, A. Yafaev Subvarieties of Shimura varieties. Annals of Mathematics, 157 (2003), 1-25.

[4] S.J. Edixhoven, B. Moonen, F. Oort Open problems in algebraic geometry. Bull. Sci. Math. 125 (2001), n. 1, 1-22.
[5] J.S. Milne *Canonical models of (mixed) Shimura varieties and automorphic vector bundles*. Automorphic forms, Shimura varieties and L-functions. Vol I. Proceedings of the conference held at university of Michigan. Ann Arbor, Michigan, 1988.

[6] B.J.J. Moonen. *Linearity properties of Shimura varieties. II*. Compositio Math. 114 (1998), no. 1, 3–35.

Acknowledgements

This work is a continuation of author’s Phd thesis carried out under supervision of Bas Edixhoven. The author is grateful to him for many important discussions on the subject and many important comments on previous versions of this paper. The author is grateful to Ralph Greenberg who provided him with his unpublished notes on abelian varieties with complex multiplication. The author is grateful to Alexei Skorobogatov for some useful discussions. The author is grateful to the EPSRC and Arithmetic Algebraic Geometry network for financial support.