A NORMAL FORM FOR A REAL 2-CODIMENSIONAL SUBMANIFOLD IN \mathbb{C}^{N+1} NEAR A CR SINGULARITY

VALENTIN BURCEA

ABSTRACT. We construct a formal normal form for a class of real 2-codimensional submanifolds $M \subset \mathbb{C}^{N+1}$ near a CR singular point approximating the sphere. Our result gives a generalization of the Huang-Yin normal form in \mathbb{C}^2 to the higher dimensional case.

The study of real submanifolds in a complex space near an CR singularity goes back to the celebrated paper of Bishop [2]. A point $p \in M$ is called a CR singularity if it is a discontinuity point for the map $M \ni q \mapsto \dim_c T^0_1 M$ defined near p. Here $M \subset \mathbb{C}^{N+1}$ is a real submanifold and $T^0_1 M$ is the CR tangent space to M at q.

Bishop considered the case when there exists coordinates (z, w) in \mathbb{C}^2 such that near a CR singularity $p = 0$, a real 2-codimensional submanifold $M \subset \mathbb{C}^2$ is defined locally by

$$w = z^2 + \lambda \left(z^2 + \bar{z}^2 \right) + O(3), \quad \text{or} \quad w = z^2 + \bar{z}^2 + O(3),$$

where $\lambda \in [0, \infty]$ is a holomorphic invariant called the Bishop invariant. When $\lambda = \infty$, M is understood as being defined by the second equation from (1). If λ is non-exceptional Moser and Webster [20] proved that there exists a formal transformation that sends M into the normal form

$$w = \zbar + (\lambda + \epsilon w^q) (\zbar^2 + \zbar^2), \quad \epsilon \in \{0, -1, +1\}, \quad q \in \mathbb{N},$$

where $w = u + iv$. When $\lambda = 0$ Moser [19] derived the following partial normal form:

$$w = \zbar + 2\text{Re} \left\{ \sum_{j \geq s} a_j z^j \right\}.$$

Here $s := \min \{ j \in \mathbb{N}^*; a_j \neq 0 \}$ is the simplest higher order invariant, known as the Moser invariant. The Moser partial normal form is still subject to an infinite dimensional group action. The local equivalence problem for the real submanifolds defined by (0.2) with $s < \infty$ was completely solved in a recent deep paper by Huang and Yin [13]. Among many other things, Huang and Yin proved that (0.3) is either a quadric or it can be formally transformed into the following normal form defined by

$$w = \zbar + 2\text{Re} \left\{ \sum_{j \geq s} a_j z^j \right\}, \quad a_s = 1, \quad a_j = 0, \quad \text{if} \quad j = 0, \text{mod} s, \quad j > s.$$

Moreover, the above normal form determines, up to the group action by Z_s, the complex structure of M near the singular point p. Here s is just the mentioned Moser invariant.

Further related studies concerning the real submanifolds in the complex space near a CR singularity were done by Ahern-Gong [1], Coffman [4], [5], [6], Gong [11], [12], Huang [17], Huang-Krantz [18]. Also, the existence of CR singularities on a compact and connected real submanifold of codimension 2 was used together with some nontrivial assumptions in the study of the boundary problem for Levi-flat hypersurfaces by Dolbeault-Tomassini-Zaitsev [5], [9]. Further related work was done by Lebl [21], [22], [23].

In this paper we construct a higher dimensional analogue of the Huang-Yin normal form in \mathbb{C}^2. If $(z, w) = (z_1, \ldots, z_N, w)$ are coordinates of \mathbb{C}^{N+1} and $M \subset \mathbb{C}^{N+1}$ a real 2-codimensional submanifold, we consider the case where there exists a holomorphic change of coordinates (see [8] or [14]) such that near $p = 0$, M is given by

$$w = z_1 \zbar_1 + \cdots + z_N \zbar_N + \sum_{m+n \geq 3} \varphi_{m,n}(z, \zbar),$$

where $\varphi_{m,n}(z, \zbar)$ is a bihomogeneous polynomial of bidegree (m, n) in (z, \zbar).

Keywords: normal form, CR singularity, Fisher decomposition.

This project was supported by Science Foundation Ireland grant 06/RFP/MAT018.
Some of our methods extend those from the paper of Huang-Yin [13]. First, we give a generalization of the Moser partial normal form (0.3), called here the Extended Moser Lemma (Theorem 1.2), which uses the trace operator (see e.g. [24], [25], [26]):

\[\text{tr} := \sum_{k=1}^{N} \frac{\partial^2}{\partial z_k \partial s^k}. \]

In \(\mathbb{C}^2 \) the Moser partial normal form eliminates the terms in the local defining equation of \(M \) of positive degree in both \(z \) and \(\overline{z} \). The higher dimensional case considered here brings new difficulties. In \(\mathbb{C}^{N+1} \) the Extended Moser Lemma eliminates only iterated traces of the corresponding terms. However, these terms can still contribute to higher order terms in the construction of the normal form. Recently, similar normal forms were constructed for Levi-nondegenerate hypersurfaces in \(\mathbb{C}^{N+1} \) by Zaitsev [25]. The main instrument is given by the Fisher decomposition.

The condition that (0.3) contains nontrivial higher order terms has the following natural generalization to the higher dimensional case:

\[\text{Re} \left\{ \sum_{k \geq 3} \varphi_{k,0}(z) \right\} \neq 0, \]

where here and throughout the paper we use the following abbreviation

\[\varphi_{k,0}(z) := \varphi_{k,0}(z, \overline{z}) \]

as the latter polynomials do not depend on \(\overline{z} \). As a consequence we obtain that \(s := \min \{ k \in \mathbb{N}^* \colon \varphi_{k,0}(z) \neq 0 \} < \infty \). Then \(s \) is a biholomorphic invariant and \(\varphi_{s,0}(z) \) is invariant (as tensor). We call the integer \(s \geq 3 \) the generalized Moser invariant. In this paper we will use the following notation

\[\Delta(z) := \varphi_{s,0}(z), \quad \Delta_k(z) := \partial_{z_k} (\varphi_{s,0}(z)), \quad k = 1, \ldots, N. \]

The Extended Moser Lemma allows us to find just a partial normal form. The partial normal form constructed is not unique, but that is determined up to an action of an infinite dimensional group \(\text{Aut}_0(M_{\infty}) \), the formal automorphism group of the quadric model \(M_{\infty} := \{ w = z_1\overline{z}_1 + \cdots + z_N\overline{z}_N \} \) preserving the origin. Then, the next step is to reduce the action by the above mentioned infinite dimensional group on the partial normal form. In order to do this, we use the methods recently developed by Huang-Yin [13]. In particular, we follow the ideas of the proof of Huang-Yin [13] by considering instead of the quadric model \(M_{\infty} := \{ w = z_1\overline{z}_1 + \cdots + z_N\overline{z}_N + \Delta(z) + \overline{\Delta(z)} \} \) and by using the powerful Huang-Yin weights system.

Before we will give the statement of our main theorem, we introduce the following definitions

Definition 0.1. For a given homogeneous polynomial \(V(z) = \sum_{|I|=k} b_I z^I \) we consider the associated Fisher differential operator

\[V^* = \sum_{|I|=k} \overline{b_I} \frac{\partial^{|I|}}{\partial z^I}. \]

We would like to mention that the Fisher decomposition was used also by Ebenfelt [10].

In this paper, we consider the class of submanifolds such that in their defining equations, the polynomial \(\Delta(z) \) defined in (0.8) satisfies the following nondegeneracy condition:

Definition 0.2. The polynomial \(\Delta(z) \) is called nondegenerate if for any linear forms \(L_1(z), \ldots, L_N(z) \), one has

\[L_1(z) \Delta_1(z) + \cdots + L_N(z) \Delta_N(z) \equiv 0 \quad \implies \quad L_1(z) \equiv \cdots \equiv L_N(z) \equiv 0. \]

In the section 2 we prove that our non-degeneracy condition is invariant under any linear change of coordinates.

In this paper we prove the following result:

Theorem 0.3. Let \(M \subset \mathbb{C}^{N+1} \) be a 2-codimensional real (formal) submanifold given near the point \(0 \in M \) by the formal power series equation

\[w = z_1\overline{z}_1 + \cdots + z_N\overline{z}_N + \sum_{m+n \geq 3} \varphi_{m,n}(z, \overline{z}), \]
where $\varphi_{m,n}(z,\overline{z})$ is a bihomogeneous polynomial of bidegree (m,n) in (z,\overline{z}) satisfying (1.7). We assume that the homogeneous polynomial of degree s defined by (1.8) is nondegenerate. Then there exists a unique formal map
\begin{equation}
(\varphi', w') = (F(z, w), G(z, w)) = (z, w) + O(2),
\end{equation}
that transforms M into the following normal form:
\begin{equation}
w' = z_1'\overline{z}_1 + \cdots + z_N'\overline{z}_N + \sum_{m+n\geq 3} \varphi'_{m,n}(z',\overline{z}) + 2\text{Re} \left\{ \sum_{k\geq s} \varphi'_{k,0}(z') \right\},
\end{equation}
where $\varphi'_{m,n}(z',\overline{z})$ is a bihomogeneous polynomial of bidegree (m,n) in (z',\overline{z}) satisfying the following normalization conditions
\begin{equation}
\begin{cases}
\text{tr}^{m-1} \varphi'_{m,n}(z',\overline{z}) = 0, & m \leq n - 1, \ m, n \neq 0; \\
\text{tr}^{n} \varphi'_{m,n}(z',\overline{z}) = 0, & m \geq n, \ m, n \neq 0.
\end{cases}
\end{equation}

A few words about the construction of the normal form. We want to find a formal biholomorphic map sending M into a formal normal form. This leads us to study an infinite system of homogeneous equations by truncating the original equation. As in the paper of Huang-Yin, this system is a semi-non linear system and is very hard to solve. We have then to use the powerful Huang-Yin strategy and defining the weight of z_1 to be 1 and the weight of \overline{z}_k to be $s - 1$, for all $k = 1, \ldots, N$. Since $\text{Aut}_0(M_\infty)$ is infinite-dimensional, it follows that the homogeneous linearized normalization equations (see sections 3 and 4) have nontrivial kernel spaces. By using the preceding system of weights and a similar argument as in the paper of Huang-Yin [13], we are able to trace precisely how the lower order terms arise in non-linear fashion: The kernel space of degree $2t + 1$ is restricted by imposing a normalization condition on $\varphi'_{ts+1,0}(z)$ and the kernel space of degree $2t + 2$ by imposing normalization conditions on $\varphi'_{ts,0}(z)$. The non-uniqueness part of the lower degree solutions are uniquely determined in the higher order equations.

We would like to mention the pseudo-normal form constructed by Huang-Yin [14] as a related result to our result in \mathbb{C}^{N+1}. Our normal form is a natural generalization of the Huang-Yin normal form in \mathbb{C}^2. We would like to observe that our normalization conditions are invariant under the linear changes of coordinates that preserves the quadric model $M_\infty := \{ w = z_1\overline{z}_1 + \cdots + z_N\overline{z}_N \}$.

A few words about the paper organization: In course of section 2 we will give a generalization of the Moser partial normal form and we will make further preparations for our normal form construction. The normal form construction will be presented in the course of sections 3 and 4. In section 5 we will prove the uniqueness of the formal transformation map.

Acknowledgements. This paper was written under the supervision of Prof. Dmitri Zaitsev. I would like to thank him for the introduction to the topic, for his patience and encouragement during the preparation of the manuscript. I would like to thank Prof. Hermann Render for pointing out the Fisher decomposition generalization from [24]. I am grateful also to the referees for helpful comments on the previous versions of the manuscript.

1. Preliminaries, notations and the Extended Moser Lemma

Let (z_1, \ldots, z_N, w) be the coordinates from \mathbb{C}^{N+1}. Let $M \subset \mathbb{C}^{N+1}$ be a real submanifold defined near $p = 0$ by
\begin{equation}
w = z_1\overline{z}_1 + \cdots + z_N\overline{z}_N + \sum_{m+n\geq 3} \varphi_{m,n}(z,\overline{z}),
\end{equation}
where $\varphi_{m,n}(z,\overline{z})$ is a bihomogeneous polynomial of bidegree (m,n) in (z,\overline{z}), for all $m,n \geq 0$.

Let M' be another submanifold defined by
\begin{equation}
w' = z_1'\overline{z}_1 + \cdots + z_N'\overline{z}_N + \sum_{m+n\geq 3} \varphi'_{m,n}(z',\overline{z}),
\end{equation}
where $\varphi'_{m,n}(z',\overline{z})$ is a bihomogeneous polynomial of bidegree (m,n) in (z',\overline{z}), for all $m,n \geq 0$. We define the hermitian product
\begin{equation}
(z, t) = z_1\overline{t}_1 + \cdots + z_N\overline{t}_N, \quad z = (z_1, \ldots, z_N), \quad t = (t_1, \ldots, t_N) \in \mathbb{C}^N.
\end{equation}
Let \((z', w') = (F(z, w), G(z, w))\) be a formal map which sends \(M\) to \(M'\) and fixes the point \(0 \in \mathbb{C}^{N+1}\). Substituting this map into \((2.2)\), we obtain

\[
G(z, w) = \langle F(z, w), F(z, w) \rangle + \sum_{m+n \geq 3} \varphi'_{m,n} \left(F(z, w), \overline{F(z, w)} \right).
\]

In the course of this paper we use the following notations

\[
\varphi_k(z, \overline{z}) = \sum_{m+n \geq k} \varphi_{m,n}(z, \overline{z}), \quad \varphi_k(z, \overline{z}) = \sum_{m+n \geq k} \varphi_{m,n}(z, \overline{z}), \quad k \geq 3.
\]

Substituting in \((2.4)\) \(F(z, w) = \sum_{m,n \geq 0} F_{m,n}(z)w^n\), \(G(z, w) = \sum_{m,n \geq 0} G_{m,n}(z)w^n\), where \(G_{m,n}(z), F_{m,n}(z)\) are homogeneous polynomials of degree \(m\) in \(z\), by using \(w\) satisfying \((1.4)\) and notations \((1.5)\), it follows that

\[
\sum_{m,n \geq 0} G_{m,n}(z) \langle (z, z) + \varphi_{\geq 3} \rangle^n = \left\| \sum_{m_1,n_1 \geq 0} F_{m_1,n_1}(z) \langle (z, z) + \varphi_{\geq 3} \rangle^{n_1} \right\|^2
\]

\[
+ \varphi_{\geq 3} \left(\sum_{m_2,n_2 \geq 0} F_{m_2,n_2}(z) \langle (z, z) + \varphi_{\geq 3} \rangle^{n_2}, \sum_{m_3,n_3 \geq 0} F_{m_3,n_3}(z) \langle (z, z) + \varphi_{\geq 3} \rangle^{n_3} \right).
\]

Since our map fixes the point \(0 \in \mathbb{C}^{N+1}\), it follows that \(G_{0,0}(z) = 0, F_{0,0}(z) = 0\). Collecting the terms of bidegree \((1,0)\) in \((z, \overline{z})\) from \((1.6)\), we obtain \(G_{1,0}(z) = 0\). Collecting the terms of bidegree \((1,1)\) in \((z, \overline{z})\) from \((1.6)\), we obtain

\[
G_{0,1}(z, z) = \langle F_{1,0}(z), F_{1,0}(z) \rangle.
\]

Then \((1.7)\) describes all the possible values of \(G_{0,1}(z), F_{1,0}(z)\). Therefore \(\text{Im} G_{0,1} = 0\). By composing with an linear automorphism of \(\text{Re} w = \langle z, z \rangle\), we can assume that \(G_{0,1}(z) = 1, F_{1,0}(z) = z\).

By using the same approach as in \((2.4)\) (this idea was suggested to me by Dmitri Zaitsev), the „good“ terms that can help us to find the formal change of coordinates under some normalization conditions are

\[
\varphi_{m,n}(z, \overline{z}), \quad \varphi'_{m,n}(z, \overline{z}), \quad G_{m,n}(z)\langle z, z \rangle^n, \quad \langle F_{m,n}(z), z, z \rangle^n, \quad \langle z, \overline{F_{m,n}(z)} \rangle\langle z, z \rangle^n.
\]

We recall the trace decomposition (see e.g. \((25), (28)\)):

Lemma 1.1. For every bihomogeneous polynomial \(P(z, \overline{z})\) and \(n \in \mathbb{N}\) there exist \(Q(z, \overline{z})\) and \(R(z, \overline{z})\) unique polynomials such that

\[
P(z, \overline{z}) = Q(z, \overline{z})\langle z, z \rangle^n + R(z, \overline{z}), \quad \text{tr}^n R = 0.
\]

By using the Lemma 2.1 and the „good“ terms defined previously (see \((1.8)\)) we develop a partial normal form that generalizes the Moser Lemma (see \((1.9)\)). We prove the following statement:

Theorem 1.2 (Extended Moser Lemma). Let \(M \subset \mathbb{C}^{N+1}\) be a \(2\)-codimensional real-formal submanifold. Suppose that \(0 \in M\) is a CR singular point and the submanifold \(M\) is defined by

\[
w = \langle z, z \rangle + \sum_{m+n \geq 3} \varphi_{m,n}(z, \overline{z}),
\]

where \(\varphi_{m,n}(z, \overline{z})\) is bihomogeneous polynomial of bidegree \((m, n)\) in \((z, \overline{z})\), for all \(m, n \geq 0\). Then there exists a unique formal map

\[
(z', w') = \left(z + \sum_{m+n \geq 2} F_m(z)w^n, w + \sum_{m+n \geq 2} G_m(z)w^n \right),
\]

where \(F_m(z), G_m(z)\) are homogeneous polynomials in \(z\) of degree \(m\) with the following normalization conditions

\[
F_{0,n+1}(z) = 0, \quad F_{1,n}(z) = 0, \quad \text{for all } n \geq 1,
\]

that transforms \(M\) to the following partial normal form:

\[
w' = \langle z', z' \rangle + \sum_{m+n \geq 3} \varphi'_{m,n} \langle z', \overline{z}' \rangle + 2\text{Re} \left\{ \sum_{k \geq 3} \varphi'_{k,0} (z') \right\},
\]

where \(\varphi'_{m,n}(z,\overline{z}) \) are bihomogeneous polynomials of bidegree \((m,n)\) in \((z,\overline{z})\), for all \(m,n \geq 0\), that satisfy the trace normalization conditions \([\text{(1.13)}]\).

Proof. We construct the polynomials \(F_{m',n'}(z) \) with \(m' + 2n' = T - 1 \) and \(G_{m',n'}(z) \) with \(m' + 2n' = T \) by induction on \(T = m' + 2n' \). We assume that we have constructed the polynomials \(F_{k,l}(z) \) with \(k + 2l < T - 1 \), \(G_{k,l}(z) \) with \(k + 2l < T \).

Collecting the terms of bidegree \((m,n)\) in \((z,\overline{z})\) with \(T = m + n \) from \([\text{(1.10)}]\), we obtain
\[
\varphi'_{m,n}(z,\overline{z}) = G_{m-n,n}(z) \langle z, z \rangle^n - \langle F_{m-n+1,n-1}(z), z \rangle \langle z, z \rangle^{n-1} - \langle z, F_{m+n-1,m-1}(z) \rangle \langle z, z \rangle^{m-1} + \varphi_{m,n}(z,\overline{z}) + \ldots,
\]
where \(\ldots \) represents terms which depend on the polynomials \(G_{k,l}(z) \) with \(k + 2l < T \), \(F_{k,l}(z) \) with \(k + 2l < T - 1 \) and on \(\varphi_{k,l}(z,\overline{z}) \), \(\varphi'_{k,l}(z,\overline{z}) \) with \(k + l < T = m + n \).

Collecting the terms of bidegree \((m,n)\) in \((z,\overline{z})\) with \(T := m + n \geq 3 \) from \([\text{(1.14)}]\), we have to study the following cases:

1. **Case \(m < n - 1, m, n \geq 1 \).** Collecting the terms of bidegree \((m,n)\) in \((z,\overline{z})\) from \([\text{(1.14)}]\) with \(m < n - 1 \) and \(m, n \geq 1 \), we obtain
\[
\varphi'_{m,n}(z,\overline{z}) = - \langle z, F_{n-m+1,m-1}(z) \rangle \langle z, z \rangle^{m-1} + \ldots
\]
We want to use the normalization condition \(tr^{m-1} \varphi'_{m,n}(z,\overline{z}) = 0 \). This allows us to find the polynomial \(F_{n-m+1,m-1}(z) \). By applying Lemma 2.1 to the sum of terms which appear in \(\ldots \), we obtain
\[
\varphi'_{m,n}(z,\overline{z}) = - \langle z, F_{n-m+1,m-1}(z) \rangle + D_{m,n}(z,\overline{z}) \langle z, z \rangle^{m-1} + P_{1}(z,\overline{z}),
\]
where \(D_{m,n}(z,\overline{z}) \) is a polynomial of degree \(n - m + 1 \) in \(z_1, \ldots, z_N \) and 1 in \(z_1, \ldots, z_N \) with determined coefficients from the induction hypothesis and \(tr^{m-1}(P_{1}(z,\overline{z})) = 0 \). Then, by using the normalization condition \(tr^{m-1} \varphi'_{m,n}(z,\overline{z}) = 0 \), by the uniqueness of trace decomposition we obtain that \(\langle z, F_{n-m+1,m-1}(z) \rangle = D_{m,n}(z,\overline{z}) \). It follows that
\[
F_{k,l}(z) = \partial_{z} (D_{l+1+k+1}(z,\overline{z})), \quad \text{for all } k > 2, l \geq 0,
\]
where \(\partial_{z} := (\partial_{z_1}, \ldots, \partial_{z_N}) \).

2. **Case \(m > n + 1, m, n \geq 1 \).** Collecting the terms of bidegree \((m,n)\) in \((z,\overline{z})\) from \([\text{(1.14)}]\) with \(m > n + 1 \) and \(m, n \geq 1 \), we obtain
\[
\varphi'_{m,n}(z,\overline{z}) = (G_{m-n,n}(z) - \langle F_{m-n+1,n-1}(z), z \rangle) \langle z, z \rangle^{n-1} + \ldots
\]
In order to find the polynomial \(G_{m-n,n}(z) \) we want to use the normalization condition \(tr^n \varphi'_{m,n}(z,\overline{z}) = 0 \). By applying Lemma 2.1 to the sum of terms which appear in \(\ldots \) and to \(\langle F_{m-n+1,n-1}(z), z \rangle \), we obtain
\[
\varphi'_{m,n}(z,\overline{z}) = (G_{m-n,n}(z) - E_{m,n}(z)) \langle z, z \rangle^{n} + P_{2}(z,\overline{z}),
\]
where \(E_{m,n}(z) \) is a holomorphic polynomial with determined coefficients by the induction hypothesis and \(tr^n(P_{2}(z,\overline{z})) = 0 \). Then, by using the normalization condition \(tr^n \varphi'_{m,n}(z,\overline{z}) = 0 \), by the uniqueness of trace decomposition we obtain that \(G_{m-n,n}(z) = E_{m,n}(z) \). It follows that
\[
G_{k,l}(z) = E_{k+l}(z), \quad \text{for all } k \geq 2, l \geq 0.
\]

3. **Case \(n - 1, n \geq 2 \).** Collecting the terms of bidegree \((n - 1, n)\) in \((z,\overline{z})\) from \([\text{(1.14)}]\) with \(n \geq 2 \), we obtain
\[
\varphi'_{n-1,n}(z,\overline{z}) = \varphi_{n-1,n}(z,\overline{z}) - \langle F_{0,n-1}(z), z \rangle \langle z, z \rangle^{n-1} - \langle z, F_{2,n-2}(z) \rangle \langle z, z \rangle^{n-2} + \ldots
\]
In order to find \(F_{2,n-2}(z) \) we want to use the normalization condition \(tr^{n-2} \varphi'_{n-1,n}(z,\overline{z}) = 0 \). By applying the Lemma 2.1 to the sum of terms from \(\ldots \), we obtain
\[
\varphi'_{n-1,n}(z,\overline{z}) = - (\langle F_{0,n-1}(z), z \rangle + \langle z, F_{2,n-2}(z) \rangle - C_{n-1,n}(z,\overline{z})) \langle z, z \rangle^{n-2} + P_{3}(z,\overline{z}),
\]
where \(tr^{n-2}(P_{3}(z,\overline{z})) = 0 \) and \(C_{n-1,n}(z,\overline{z}) \) is a determined polynomial of degree 1 in \(z_1, \ldots, z_N \) and degree 2 in \(z_1, \ldots, z_N \). We take \(F_{0,n-1}(z) = 0 \) (see \([\text{(1.12)}]\)). Next, by using the normalization condition \(tr^{n-2} \varphi'_{n-1,n}(z,\overline{z}) = 0 \), by the uniqueness of trace decomposition we obtain that \(\langle z, F_{2,n-2}(z) \rangle = C_{n-1,n}(z,\overline{z}) \). It follows that
\[
F_{2,n-2}(z) = \partial_{z} (C_{n-1,n}(z,\overline{z})),
\]
where \(\partial_{z} := (\partial_{z_2}, \ldots, \partial_{z_N}) \).

4. **Case \(n, n-1 \), \(n \geq 2 \).** Collecting the terms of bidegree \((n,n-1)\) in \((z,\overline{z})\) from \([\text{(1.14)}]\) with \(n \geq 2 \), we obtain
\[
\varphi'_{n,n-1}(z,\overline{z}) = (G_{1,n-1}(z,\overline{z}) - \langle F_{2,n-2}(z), z \rangle - \langle z, F_{0,n-1}(z) \rangle) \langle z, z \rangle^{n-2} + \varphi_{n,n-1}(z,\overline{z}) + \ldots
\]
In order to find $G_{1,n-1}(z)$ we want to use the normalization condition $\text{tr}^{n-1} \varphi'_{n,n-1}(z,\overline{z}) = 0$. By using (1.12) and by applying Lemma 2.1 to \langle F_{2,n-2}(z), z \rangle$ (see (1.23)) and to the sum of terms from \ldots, we obtain
\begin{equation}
\varphi'_{n,n-1}(z,\overline{z}) = (G_{1,n-1}(z) - B_{n,n-1}(z)) \langle z, z \rangle^{n-1} + P_4(z,\overline{z}),
\end{equation}
where $\text{tr}^{n-1}(P_4(z,\overline{z})) = 0$ and $B_{n,n-1}(z)$ is a determined holomorphic polynomial. By the uniqueness of trace decomposition we obtain that $G_{1,n-1}(z) = B_{n,n-1}(z)$, for all $n \geq 2$.

(5) Case (n, n), $n \geq 2$. Collecting the terms of bidegree (n, n) in (z, \overline{z}) from (1.14), we obtain
\begin{equation}
\varphi'_{n,n}(z,\overline{z}) = G_{0,n}(z)\langle z, z \rangle^n - (F_{1,n-1}(z), z) \langle z, z \rangle^{n-1} - \langle z, F_{1,n-1}(z) \rangle \langle z, z \rangle^{n-1} + \varphi_{n,n}(z,\overline{z}) + \ldots
\end{equation}
By taking $F_{1,n-1}(z) = 0$ (see (1.12)), we obtain $\varphi'_{n,n}(z,\overline{z}) = G_{0,n}(z)\langle z, z \rangle^n + \ldots$. In order to find $G_{0,n}(z)$ we use the normalization condition $\text{tr}^n \varphi'_{n,n}(z,\overline{z}) = 0$. By applying the Lemma 2.1 to the sum of terms from \ldots we obtain that $\varphi'_{n,n}(z,\overline{z}) = (G_{0,n}(z) - A_n)\langle z, z \rangle^n + P_3(z,\overline{z})$, where A_n is a determined constant and $\text{tr}^n(P_3(z,\overline{z})) = 0$. By the uniqueness of trace decomposition we obtain that $G_{0,n} = A_n$, for all $n \geq 3$.

(6) Case ($T, 0$) and ($0, T$) $T \geq 3$. Collecting the terms of bidegree $(T, 0)$ and $(0, T)$ in (z, \overline{z}) from (1.14), we obtain
\begin{equation}
\begin{cases}
G_{T,0}(z) + \varphi'_{T,0}(z) = \varphi_{T,0}(z) + a(z) \\
\varphi'_{0,T}(\overline{z}) = \varphi_{0,T}(\overline{z}) + b(\overline{z})
\end{cases}
\end{equation}
where $a(z), b(\overline{z})$ are the sums of terms that are determined by the induction hypothesis. By using the normalization condition $\varphi'_{0,T}(\overline{z}) = \varphi_{T,0}(\overline{z})$ we obtain that $G_{T,0}(z) = \varphi_{T,0}(z) + a(z) - b(\overline{z}) - \varphi_{0,T}(\overline{z})$.

The Extended Moser Lemma leaves undetermined an infinite number of parameters (see (1.12)). They act on the higher order terms. In order to determine them and complete our partial normal form we will apply in the course of sections 3 and 4 the following two lemmas:

Lemma 1.3. Let $P(z)$ be a homogeneous pure polynomial. For every $k \in \mathbb{N}^*$, there exist $Q(z), R(z)$ unique polynomials such that
\begin{equation}
P(z) = Q(z)\Delta(z)^k + R(z), \quad (\Delta^k)^* (R(z)) = 0.
\end{equation}

Lemma 1.4. For every homogeneous polynomial $P(z)$ of degree $(t + 1)s$ there exists a unique decomposition
\begin{equation}
P(z) = L(z) + C(z), \quad (\Delta_k \Delta^t)^* (C(z)) = 0, \quad k = 1, \ldots, N,
\end{equation}
such that $L(z) = (\Delta_1(z)A_1(z) + \cdots + \Delta_N(z)A_N(z)) \Delta(z)^t$, where $A_1(z), \ldots, A_N(z)$ are linear forms.

The lemmas 2.3 and 2.4 are consequences of the Fisher decomposition (see [24]).

Remark 1.5. The Lemma 2.4 is a particular case of the generalized Fisher decomposition. The polynomial $L(z)$ is uniquely determined, but the linear forms $A_1(z), \ldots, A_N(z)$ are not necessarily uniquely determined. In order to make them uniquely determined we consider a nondegenerate polynomial $\Delta(z)$ (see (0.3) and Definition 1.2).

The following proposition shows us the nondegeneracy condition on $\Delta(z)$ is invariant under any linear change of coordinates:

Proposition 1.6. If $\Delta(z)$ is nondegenerate and $z \mapsto Az$ is a linear change of coordinates, then $\Delta(Az)$ is also nondegenerate.

Proof. Let $\Delta(z) = \Delta(Az)$, where $A = \{a_{jk}\}_{1 \leq j,k \leq N}$. Therefore $\Delta_j(z) = \sum_{k=1}^{N} \Delta_k(Az) a_{jk}$, for all $j = 1, \ldots, N$. We consider $\mathcal{L}_1(z), \ldots, \mathcal{L}_N(z)$ linear forms such that $\mathcal{L}_1(z)\Delta_1(z) + \cdots + \mathcal{L}_N(z)\Delta_N(z) \equiv 0$, or equivalently $\sum_{j,k=1}^{N} \Delta_k(Az) \mathcal{L}_j(z) a_{jk} \equiv 0$. Since $\Delta(z)$ is nondegenerate and $\{a_{jk}\}_{1 \leq j,k \leq N}$ is invertible it follows that $\mathcal{L}_1(z) \equiv \cdots \equiv \mathcal{L}_N(z) \equiv 0$. \qed

The system of weights : By following the ideas of Huang-Yin [13], we define the system of weights for $z_1, \overline{z}_1, \ldots, z_N, \overline{z}_N$ as follows. We define $\text{wt} \{z_k\} = 1$ and $\text{wt} \{\overline{z}_k\} = s - 1$, for all $k = 1, \ldots, N$. If $A(z, \overline{z})$ is a formal power series we write $\text{wt} \{A(z, \overline{z})\} \geq k$ if $A(tz, t^{s-1}\overline{z}) = O(t^k)$. We also write $\text{Ord} \{A(z, \overline{z})\} = k$ if $A(tz, t^{s-1}\overline{z}) = t^k A(z, \overline{z})$. We denote by $\Theta_m^n(z, \overline{z})$ a series in (z, \overline{z}) of weight at least m and order at least n. In the particular case when $\Theta_m^n(z, \overline{z})$ is just a polynomial we use the notation $P_m^n(z, \overline{z})$. We define the set of the normal weights
\[\text{wt}_{\text{nor}} \{w\} = 2, \quad \text{wt}_{\text{nor}} \{z_1\} = \cdots = \text{wt}_{\text{nor}} \{z_N\} = \text{wt}_{\text{nor}} \{\overline{z}_1\} = \cdots = \text{wt}_{\text{nor}} \{\overline{z}_N\} = 1. \]
Notations: If $h(z, w)$ is a formal power series with no constant term we introduce the following notations
\[
h(z, w) = \sum_{l \geq 1} h^{(l)}_{nor}(z, w), \quad \text{where } h^{(l)}_{nor}(tz, t^2w) = t^l h^{(l)}_{nor}(z, w),
\]
(1.30)
\[
h_{\geq l}(z, w) = \sum_{k \geq l} h^{(k)}_{nor}(z, w).
\]

2. Proof of Theorem 1.3-Case $T + 1 = ts + 1, t \geq 1$

By applying Extended Moser Lemma we can assume that M is given by the following equation
\[
w = \langle z, z \rangle + \sum_{m+n \geq 3} \varphi_{m,n}(z, \bar{z}) + O(T + 2),
\]
where $\varphi_{m,n}(z, \bar{z})$ satisfies (1.14), for all $3 \leq m + n \leq T$.

We perform induction on $T \geq 3$. Assume that (1.15) holds for $\varphi_{k,0}(z)$, for all $k = s + 1, \ldots, T$ with $k = 0, 1 \mod (s)$. If $T + 1 \notin \{ts; t \in \mathbb{N}^* - \{1, 2\}\} \cup \{ts + 1; t \in \mathbb{N}^*\}$ we apply Extended Moser Lemma. In the case when $T + 1 \in \{ts; t \in \mathbb{N}^* - \{1\}\} \cup \{ts + 1; t \in \mathbb{N}^*\}$, we will look for a formal map which sends our submanifold M to a new submanifold M' given by
\[
w' = \langle z', z' \rangle + \sum_{m+n \geq 3} \varphi'_{m,n}(z', \bar{z}') + O(T + 2),
\]
where $\varphi'_{m,n}(z', \bar{z}')$ satisfies (1.14), for all $3 \leq m + n \leq T$ and $\varphi'_{k,0}(z')$ satisfies (1.15), for all $k = s + 1, \ldots, T$ with $k = 0, 1 \mod (s)$. We will obtain that $\varphi'_{k,0}(z) = \varphi_{k,0}(z)$ for all $k = s, \ldots, T$.

In the course of this section we consider the case when $T + 1 = ts + 1$. We are looking for a biholomorphic transformation of the following type
\[
(z', w') = (z + F(z, w), w + G(z, w))
\]
(2.3)
\[
F(z, w) = \sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, w), \quad G(z, w) = \sum_{l=0}^{T-2t} G^{(2t+l+1)}_{nor}(z, w),
\]
that maps M into M' up to the order $T + 1 = ts + 1$. In order for the preceding mapping to be uniquely determined we assume that $F^{(2t+l)}_{nor}(z, w)$ is normalized as in Extended Moser Lemma, for all $l = 1, \ldots, T$. Substituting (2.3) into (2.2) we obtain
\[
w + G(z, w) = \langle z + F(z, w), z + F(z, w) \rangle + \sum_{m+n \geq 3} \varphi'_{m,n}(z + F(z, w), \bar{z} + F(z, w)) + O(T + 2),
\]
where w satisfies (2.1). By making some simplifications in (2.4) by using (2.4), we obtain
\[
\sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \bar{z})) = 2 \text{Re} \left(\sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \bar{z})) \right) + \left\| \sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \bar{z})) \right\|^2
\]
(2.5)
\[
+ \varphi_{\geq 3}(z + \sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \bar{z})), z + \sum_{l=0}^{T-2t} F^{(2t+l)}_{nor}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \bar{z})))
\]
\[- \varphi_{\geq 3}(z, \bar{z}).
\]

Collecting the terms with the same bidegree from (2.5), we find $F(z, w)$ and $G(z, w)$ by applying Extended Moser Lemma. Since we don’t have components of $F(z, w)$ of normal weight less than $2t$ and $G(z, w)$ with normal weight less than $2t + 1$, collecting in (2.5) the terms with the same bidegree (m, n) in (z, \bar{z}) with $m + n < 2t + 1$, we obtain that $\varphi'_{m,n}(z, \bar{z}) = \varphi_{m,n}(z, \bar{z})$.

Collecting the terms of bidegree (m, n) in (z, \bar{z}) with $m + n = 2t + 1$ (like in the Extended Moser Lemma proof) we find $G^{(2t+1)}_{nor}(z, w)$ and $F^{(2t)}_{nor}(z, w)$ as follows. We make the following claim:

Lemma 2.1. $G^{(2t+1)}_{nor}(z, w) = 0, F^{(2t)}_{nor}(z, w) = aw^t - z(z, a)w^{t-1}$, where $a = (a_1, \ldots, a_N) \in \mathbb{C}^N$.
Proof. Collecting the pure terms of degree $2t + 1$ from (2.5), we obtain that $\varphi_{2t+1,0}(z) = \varphi'_{2t+1,0}(z)$. Collecting the terms of bidegree (m,n) with $m + n = 2t + 1$ in (z,\overline{z}) and $0 < m < n - 1$ (2.5), we obtain

$$\varphi'_{m,n}(z,\overline{z}) = -\langle z, F_{n-m+1,m-1}(z) \rangle \langle z, z \rangle^{m-1} + \varphi_{m,n}(z,\overline{z}).$$

Since $\varphi_{m,n}(z,\overline{z}), \varphi'_{m,n}(z,\overline{z})$ satisfy (1.11), by the uniqueness of the trace decomposition, we obtain $F_{n-m+1,m-1}(z) = 0$. Collecting the terms of bidegree (m,n) in (z,\overline{z}) with $m + n = 2t + 1$ and $m > n + 1$ from (2.5), we obtain

$$\varphi'_{m,n}(z,\overline{z}) = G_{m-n,n}(z,\overline{z}) - (F_{m-n+1,n-1}(z)), \langle z, z \rangle^{n-1} + \varphi_{m,n}(z,\overline{z}).$$

Since $F_{m-n+1,n-1}(z) = 0$ it follows that $G_{m-n,n}(z) = 0$. Collecting the terms of bidegree $(t-1,t)$ and $(t,t-1)$ in (z,\overline{z}) from (2.5), we obtain the following two equations

$$\varphi'_{t-1,t}(z,\overline{z}) = -((F_{0,t-1}(z), z)), \langle z, z \rangle + \langle z, F_{2,t-2}(z) \rangle) \langle z, \overline{z} \rangle^{t-2} + \varphi_{t-1,t}(z,\overline{z}),$$

$$\varphi'_{t-1,1}(z,\overline{z}) = G_{1,t-1}(z) \langle z, \overline{z} \rangle^{t-1} - ((F_{2,t-2}(z), z) + \langle z, F_{0,t-1}(z) \rangle \langle z, z \rangle \rangle \langle z, \overline{z} \rangle^{t-2} + \varphi_{t-1,1}(z,\overline{z}).$$

By using (2.8) it follows that $G_{1,t-1}(z) = 0$. We set $F_{0,t-1}(z) = \alpha = \{a_1,\ldots,a_N\}$ and we write $F_{2,t-2}(z) = (F_{2,t-2}(z),\ldots,F_{2,t-2}(z))$. Since $\varphi_{m,n}(z,\overline{z}), \varphi'_{m,n}(z,\overline{z})$ satisfy (1.14), by the uniqueness of the trace decomposition, from (2.8) we obtain the equation $(z,a) = (z,F_{2,t-2}(z),z) = 0$, that can be solved as

$$F_{2,t-2}^k(z) = -\frac{\partial}{\partial k} \langle \langle z,a \rangle,\overline{z} \rangle = -z_k(z,a), \quad k = 1,\ldots,N.$$

Therefore $F_{2,t-2}^k(z,w) = aw^t - z(z,a)w^{t-1}$, where $a = \{a_1,\ldots,a_N\} \subset \mathbb{C}^N$. □

By Lemma 3.1 we conclude that $F(z,w) = F_{2t+1}(z,w) + F_{2t+1}(w,z)$ and $G(z,w) = G_{2t+2}(z,w)$ (see (1.30)). We also have $F_{2t+1}(z,w) = \sum_{k+2l=2t+1} F_{k+l}(z,w)^t$, where $F_{k+l}(z)$ is a homogeneous polynomial of degree k. It follows that

$$\text{wt} \{F_{2t+1}(z,w)\} \geq \min_{k+2l=2t+1} \{k + l s, k+2l \geq 2t + 1\}.$$

Next, we prove that $\text{wt} \{F_{2t+1}(z,w)\} \geq ts + s - 1$. Since $\text{wt} \{F_{2t+1}(z,w)\} \geq \min_{k+2l=2t+1} \{k(s-1) + ls\}$, it is enough to prove that $k(s-1) + ls \geq ts + s - 1$ for $k+2l \geq 2t + 1$. Since we can write the latter inequality as $(k-1)(s-1) + ls \geq ts$, for $(k-1)+2l \geq 2t$, it is enough to prove that $k(s-1) + ls \geq ts$, for $k+2l \geq 2t$. Since $s \geq 3$ it follows that $ks - 2k \geq 0$. Hence $2k(s-1) + 2ls \geq ks + 2ls$. It follows that $k(s-1) + ls \geq \frac{ks + 2ls}{2s} = ts$.

Lemma 2.2. By using the previous calculations, we give the following intermediate estimates

$$\text{wt} \{F_{2t+1}(z,w)\} \geq 2t + 1, \quad \text{wt} \{F_{2t+1}(z,w)\} \geq ts + s - 1, \quad \text{wt} \{F_{2t+1}(z,w)\} \geq ts + 2,$$

$$\text{wt} \{F_{2t+1}(z,w)\} \geq ts + s - 1, \quad \text{wt} \{F_{2t+1}(z,w)\} \geq ts + 2.$$
Proof. We make the expansion \(\varphi'_m(z + F(z, w)) = \varphi'_{m,n}(z, \overline{\tau}) + \ldots \), where in „…” we have different types of terms involving \(F_{k',l}(z) \) with \(k' + 2l' < m + n \) and normalized terms \(\varphi_k(z, \overline{\tau}), \varphi_k(z, \overline{\tau}) \) with \(k + l < m + n \). In order to study the weight and the order of terms which can appear in „…” it is enough to study the weight and the order of the following particular terms

\[
A_1(z, w) = F_1(z, w)z^t, \quad A_2(z, w) = z^t z^l F_1(z, w), \quad B_1(z, w) = F_2(z, w)z^t, \quad B_2(z, w) = F_2(z, w)z^l,
\]

where \(A_1(z, w) \) is the first component of \(F_{2n+1}^r(z, w) \) and \(B_2(z, w) \) is the first component of \(F_{2n+1}^r(z, w) \). Here we assume that \(|I| = m - 1, |I_1| = m, |I_1| = n - 1, |J| = n \).

By using (2.11) we obtain \(\text{wt} \{ A_1(z, w) \} \geq m - 1 + ts + 2 - s + n(s - 1) \geq ts + 2 \). It is equivalent to prove that \(m - 1 + s(n - 1) - s \geq 0 \). This is true because \(m - 1 + s(n - 1) - s \geq 0 \). On the other hand, we have \(\text{Ord} \{ A_1(z, w) \} = m + 2 + 2t + n \geq 2 + 2t + 2 \).

By using (2.11) we obtain \(\text{wt} \{ A_2(z, w) \} \geq m + s + (n - 1)(s - 1) \geq 2 \). We have \(m + s + (n - 1) \geq m + 2(n - 1) \geq m - 2n - 4 \geq 0 \), and this is true because \(m + n \geq 3 \) and \(m, n \geq 1 \). On the other hand we have \(\text{Ord} \{ A_2(z, w) \} = m + 2 + 2t + n - 1 \geq 2 + 2t + 2 \).

In the same way we obtain that \(\text{Ord} \{ B_1(z, w) \}, \text{Ord} \{ B_2(z, w) \} \geq 2t + 1 \). By using (2.11), every term from „…” that depends on \(F_2(z, w) \) can be written as \(\Theta^2_s(z, \overline{\tau}) \). From here we obtain our claim. \(\square \)

Lemma 2.4. For \(w \) satisfying (2.1) and for all \(k > s \), we have the following estimation

\[
\varphi'_k(z + F(z, w)) = \varphi'_k(z) + 2\text{Re} \left(\Theta^2_s(z, \overline{\tau}) F_{2s+1}^r(z, w) \right) + \Theta_{ts+2}^2(z, \overline{\tau}),
\]

where \(\text{wt} \left(\Theta_{ts+2}^2(z, \overline{\tau}) \right) \geq ts + 2 \).

Proof. We make the expansion \(\varphi'_k(z + F(z, w)) = \varphi'_k(z) + \ldots \). In order to study the weight and the order of terms which can appear in „…” it is enough to study the weight and the order of the following terms

\[
A(z, w) = F_1(z, w)z^t, \quad B(z, w) = F_2(z, w)z^l,
\]

where \(A(z, w) \) is the first component of \(F_{2n+1}^r(z, w) \) and \(B(z, w) \) is the first component of \(F_{2n+1}^r(z, w) \). Here we assume that \(|I| = m - 1, |I_1| = m, |I_1| = n - 1, |J| = n \).

We want to evaluate the weight and the order of the other terms of (2.5). By Lemma 4.3 and Lemma 4.4, it remains to evaluate the order and the weight of the terms of the following expression

\[
S(z, \overline{\tau}) = 2\text{Re} \left(F(z, w), z \right) + 2\text{Re} \left\{ \varphi'_s(z + F(z, w)) \right\},
\]

where \(w \) satisfies (2.1).

Lemma 2.5. For \(F_{2n+1}^r(z, w) \) given by Lemma 4.1 and \(w \) satisfying (2.1) we have

\[
2\text{Re} \left(F_{2n+1}^r(z, w), z \right) = 2\text{Re} \left\{ (z, a)\Delta(z)w^{t-1} \right\} + \Theta_{ts+2}^2(z, \overline{\tau}),
\]

where \(\text{wt} \left(\Theta_{ts+2}^2(z, \overline{\tau}) \right) \geq ts + 2 \).

Proof. We compute

\[
2\text{Re} \left(\Theta_{ts+2}^2(z, \overline{\tau}) \right) \geq ts + 2. \quad \square
\]
Lemma 2.6. For w satisfying (2.1) we have the following estimate

$$2\text{Re} \left\{ \Delta (z + F(z, w)) \right\} = 2\text{Re} \left\{ \Delta(z) - s(z, a)\Delta(z)w^{t-1} \right\}$$

$$(2.18)$$

$$+ 2\text{Re} \left\langle \Delta' (z) + \Theta^2(z, \overline{z}, F_{\geq 2t+1}(z, w)) + \Theta^2_{ts+2}(z, \overline{z}), \right.$$ where $\text{wt} \left\{ \Theta^2_{ts+2}(z, \overline{z}) \right\} \geq ts + 2.$

Proof. By using the Taylor expansion it follows that

$$2\text{Re} \left\{ \Delta (z + F(z, w)) \right\} = 2\text{Re} \left\{ \Delta(z) + \sum_{k=1}^{N} \Delta_k(z)F^k_{\geq 2t}(z, w) + L(z, \overline{z}) \right\},$$

where $F^k_{\geq 2t}(z, w) = \{F^1_{\geq 2t}(z, w), \ldots, F^N_{\geq 2t}(z, w)\}$ and $L(z, \overline{z}) = \left\langle \Theta^2(z, \overline{z}), F_{\geq 2t+1}(z, w) \right\rangle.$ We compute

$$\sum_{k=1}^{N} 2\text{Re} \left\{ \Delta_k(z)F^k_{\geq 2t}(z, w) \right\} = \sum_{k=1}^{N} 2\text{Re} \left\{ \Delta_k(z) (a_kw^t - z_k(z, a)w^{t-1} + F^k_{\geq 2t+1}(z, w)) \right\},$$

$$(2.20)$$

$$= \Theta^2_{ts+2}(z, \overline{z}) - 2s\text{Re} \left\{ (z, a)\Delta(z)w^{t-1} \right\} + 2\text{Re} \left\langle \Delta'(z), F_{\geq 2t+1}(z, w) \right\rangle,$$

where $\text{wt} \left\{ \Theta^2_{ts+2}(z, \overline{z}) \right\} \geq ts + 2.$

For w satisfying (2.1), by Lemma 3.5 and by Lemma 3.6, we can rewrite (2.15) as follows

$$S(z, \overline{z}) = 2(1-s)\text{Re} \left\{ (z, a)\Delta(z)w^{t-1} \right\} + 2\text{Re} \left\langle \overline{z} + \Delta'(z) + \Theta^2(z, \overline{z}, F_{\geq 2t+1}(z, w)) + \Theta^2_{ts+2}(z, \overline{z}), \right.$$ where $\text{wt} \left\{ \Theta^2_{ts+2}(z, \overline{z}) \right\} \geq ts + 2.$ By Lemmas 3.1 – 3.6 we obtain

$$G_{\geq 2t+2}(z, (z, z) + \varphi_{\geq 3}(z, \overline{z})) = 2(1-s)\text{Re} \left\{ (z, a)\Delta(z) ((z, z) + \varphi_{\geq 3}(z, \overline{z}))^{t-1} \right\}$$

$$(2.21)$$

$$+ 2\text{Re} \left\langle \overline{z} + \Delta'(z) + \Theta^2(z, \overline{z}, F_{\geq 2t+1}(z, (z, z) + \varphi_{\geq 3}(z, \overline{z}))), \right.$$ + $\varphi_{\geq 2t+2}(z, \overline{z}) - \varphi^t_{\geq 2t+2}(z, \overline{z}) + \Theta^2_{ts+2}(z, \overline{z}),$

where $\text{wt} \left\{ \Theta^2_{ts+2}(z, \overline{z}) \right\} \geq ts + 2.$

Assume that $t = 1$. Collecting the terms of total degree $k < s + 1$ in (z, \overline{z}) from (2.20) we find the polynomials $\left(G^{(s+1)}_{\text{nor}}(z, w), F^{(s)}_{\text{nor}}(z, w)\right)$ for all $k < s$. Collecting the terms of total degree $m + n = s + 1$ in (z, \overline{z}) from (2.22), we obtain

$$G^{(s+1)}_{\text{nor}}(z, (z, z)) = 2(1-s)\text{Re} \left\{ (z, a)\Delta(z) + \varphi_{s+1}(z, \overline{z}) \right\} + 2\text{Re} \left\langle z, F^{(s)}_{\text{nor}}(z, (z, z)) \right\rangle + \varphi_{s+1}(z, \overline{z}) - \varphi_{s+1}(z, \overline{z}) + (\Theta^2_{s+2})(z, \overline{z}).$$

By applying Extended Moser Lemma we find a solution $\left(G^{(s+1)}_{\text{nor}}(z, w), F^{(s)}_{\text{nor}}(z, w)\right)$ for the latter equation. We consider the following Fisher decompositions

$$\varphi_{s+1, 0}(z) = Q(z)\Delta(z) + R(z), \quad \varphi^t_{s+1, 0}(z) = Q'(z)\Delta(z) + R'(z),$$

where $\Delta^t(R(z)) = \Delta^t(R'(z)) = 0.$ We want to put the normalization condition $\Delta^t(\varphi_{s+1, 0}(z)) = 0.$ Collecting the pure terms of degree $s + 1$ in (2.23), by (2.24) we obtain

$$\varphi_{s+1, 0}(z) = \varphi_{s+1, 0}(z) - (1-s)(z, a)\Delta(z) = (Q(z) - (1-s)(z, a)) \Delta(z) + R(z),$$

where $Q(z)$ is a determined polynomial of degree 1 in $z_1, \ldots, z_N.$ It follows that $Q'(z) = Q(z) - (1-s)(z, a)$ and $R'(z) = R(z).$ Then the normalization condition $\Delta^t(\varphi_{s+1, 0}(z)) = 0$ is equivalent to finding a such that $Q'(z) = Q(z) - (1-s)(z, a) = 0.$ The last equation provides us the free parameter $a.$

Assuming that $t \geq 2$, we prove the following lemma (this is the analogue of the Lemma 3.3 from Huang-Yin [13]):
Lemma 2.7. Let $N_s := ts + 2$. For all $0 \leq j \leq t - 1$ and $p \in [2t + j(s - 2) + 2, 2t + (j + 1)(s - 2) + 1]$, we make the following estimate

$$G_{\geq p}(z, w) = 2(1 - s)^{j+1} \text{Re} \left\{ (z, a) \Delta(z)^{j+1} w^{t-j-1} \right\} + 2 \text{Re} \left\{ \overline{\Theta(z)} + \overline{\Theta^2(z, \overline{z})}, F_{\geq p-1}(z, w) \right\}
$$

$$+ \varphi^{'}_{\geq p}(z, \overline{z}) - \varphi_{\geq p}(z, \overline{z}) + \Theta^{p+1}_{N_s}(z, \overline{z}),$$

where $\text{wt} \left\{ \Theta^{2t+2}_{N_s}(z, \overline{z}) \right\} \geq N_s$ and w satisfies (2.27).

Proof.

Step 1. When $s = 3$ this step is obvious. Assume that $s > 3$. Let $p_0 = 2t + j(s - 2) + 2$, where $j \in [0, t - 1]$. We make induction on $p \in [2t + j(s - 2) + 2, 2t + (j + 1)(s - 2) + 1]$. For $j = 0$ (therefore $p = 2t + 2$) the lemma is satisfied (see equation (2.22)). Let $p \geq p_0$ such that $p + 1 \leq 2t + (j + 1)(s - 2) + 1$. Collecting the terms of bidegree (m, n) in (z, \overline{z}) from (2.26) with $m + n = p$, we obtain

$$G^{(p)}_{\text{nor}}(z, \overline{z}) = 2 \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} + \varphi^{'}_{p}(z, \overline{z}) - \varphi_{p}(z, \overline{z}) + \Theta^{p}_{N_s}(z, \overline{z}).$$

By applying Extended Moser Lemma we find a solution $\left\{ F^{(p-1)}_{\text{nor}}(z, w), G^{(p)}_{\text{nor}}(z, w) \right\}$ for (2.27). Assume that p is even. In this case we find $F^{(p-1)}_{\text{nor}}(z, w)$ recalling the cases 1 and 3 of the Extended Moser Lemma proof. By using the cases 2 and 4 of the Extended Moser Lemma proof we find $G^{(p)}_{\text{nor}}(z, w)$. Since $\text{wt} \left\{ \Theta^{2t+2}_{N_s}(z, \overline{z}) \right\} \geq N_s$ we obtain

$$\text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\}, \text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}, z) \right\} \geq N_s.$$ Also we $G^{(p)}_{\text{nor}}(z, \overline{z})$, wt \left\{ G^{(p)}_{\text{nor}}(z, \overline{z}, z) \right\} \geq N_s.

We can bring similarly arguments as well when p is even. We obtain the following estimates

$$\text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} \geq N_s - s + 1, \text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} \geq N_s - 1,$$

$$\text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} \geq N_s - 1, \text{wt} \left\{ F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} \geq N_s - s + 1,$$

$$\text{wt} \left\{ G^{(p)}_{\text{nor}}(z, \overline{z}) \right\} \geq N_s, \text{wt} \left\{ G^{(p)}_{\text{nor}}(z, \overline{z}, z) \right\} \geq N_s,$$

where w satisfies (2.21). As a consequence of (2.27) we obtain

$$G^{(p)}_{\text{nor}}(z, \overline{z}) = \Theta^{p+1}_{N_s}(z, \overline{z}), 2 \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} = \Theta^{p+1}_{N_s}(z, \overline{z}),$$

$$\left\langle \Delta(z) + \Theta^{(p)}_{N_s}(z, \overline{z}) \right\rangle, F^{(p-1)}_{\text{nor}}(z, \overline{z}), z \right\rangle = \Theta^{p+1}_{N_s}(z, \overline{z}),$$

and each of the preceding formal power series $\Theta^{p+1}_{N_s}(z, \overline{z})$ has the property $\text{wt} \left\{ \Theta^{p+1}_{N_s}(z, \overline{z}) \right\} \geq N_s$. Substituting $F_{\geq p-1}(z, w) = F^{(p-1)}_{\text{nor}}(z, w) + F_{\geq p}(z, w)$ and $G_{\geq p}(z, w) = G^{(p)}_{\text{nor}}(z, w) + G_{\geq p+1}(z, w)$ into (2.20), we obtain

$$G^{(p)}_{\text{nor}}(z, w) + G_{\geq p+1}(z, w) = 2(1 - s)^{j+1} \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} \left(2 \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} + 2 \text{Re} \left\{ \overline{\Theta(z)} + \overline{\Theta^2(z, \overline{z})}, F_{\geq p}(z, \overline{z}) \right\}
$$

$$\left\langle \Delta(z) + \Theta^{p}_N(z, \overline{z}, z) \right\rangle, F^{(p-1)}_{\text{nor}}(z, \overline{z}), \varphi^{'}(z, \overline{z}) - \varphi_{p}(z, \overline{z})
$$

$$+ \Theta^{p+1}_{N_s}(z, \overline{z}), \varphi^{'}_{\geq p+1}(z, \overline{z}) - \varphi_{\geq p+1}(z, \overline{z}) + \Theta^{p+1}_{N_s}(z, \overline{z}).$$

Collecting the pure terms of degree p from (2.27), it follows that $\varphi_{p,0}(z) = \varphi_{p,0}(z) + \ldots$ where in “...)” we have determined terms with the weight less than $p < N_s := ts + 2$. Therefore $\varphi_{p,0}(z) = \varphi_{p,0}(z)$. We will obtain that $\varphi_{k,0}(z) = \varphi_{k,0}(z)$, for all $k = 3, \ldots, T$. By making a simplification in (2.30) by using (2.27), it follows that

$$G_{\geq p+1}(z, w) = 2(1 - s)^{j+1} \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} + 2 \text{Re} \left\{ \overline{\Theta(z)} + \overline{\Theta^2(z, \overline{z})}, F_{\geq p}(z, \overline{z}) \right\}
$$

$$\left\langle \Delta(z) + \Theta^{p}_N(z, \overline{z}, z) \right\rangle, F^{(p-1)}_{\text{nor}}(z, \overline{z}), \varphi^{'}_{\geq p+1}(z, \overline{z}) - \varphi_{\geq p+1}(z, \overline{z}) + J(z, \overline{z}) + \Theta^{p+1}_{N_s}(z, \overline{z}),$$

where $\text{wt} \left\{ \Theta^{p+1}_{N_s}(z, \overline{z}) \right\} \geq N_s$ and

$$J(z, \overline{z}) = 2 \text{Re} \left\{ (z, a) \Delta^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\} + 2 \text{Re} \left\{ \overline{\Theta(z)} + \overline{\Theta^2(z, \overline{z})}, F^{(p-1)}_{\text{nor}}(z, \overline{z}) \right\}
$$

$$\left\langle \Delta(z) + \Theta^{p}_N(z, \overline{z}, z) \right\rangle, F^{(p-1)}_{\text{nor}}(z, \overline{z}), \varphi^{'}(z, \overline{z}) - \varphi_{p}(z, \overline{z})
$$

$$+ \Theta^{p+1}_{N_s}(z, \overline{z}), \varphi^{'}_{\geq p+1}(z, \overline{z}) - \varphi_{\geq p+1}(z, \overline{z}) + \Theta^{p+1}_{N_s}(z, \overline{z}).$$

By using (2.28) and (2.29) it follows that $J(z, \overline{z}) = \Theta^{p+1}_{N_s}(z, \overline{z})$, where $\text{wt} \left\{ \Theta^{p+1}_{N_s}(z, \overline{z}) \right\} \geq N_s.$
Step 2. Assume that we have proved Lemma 3.7 for $p \in [2t + j(s - 2) + 2, 2t + (j + 1)(s - 2) + 1]$ for $j \in [0, t - 1]$. We prove now Lemma 3.7 for $p \in [2t + (j + 1)(s - 2) + 2, 2t + (j + 2)(s - 2) + 1]$. Collecting the terms of bidegree (m, n) in (z, \overline{z}) from (2.26) with $m + n = \Lambda + 1 := 2t + (j + 1)(s - 2) + 1$, we obtain

\begin{equation}
G^{(\Lambda+1)}_{\text{nor}}(z, \overline{z}) = 2(1 - s)^{j+1}\text{Re} \left\{ \left(z, a \right) \Delta(z)^{j+1} \left(z, z^t \right)^{t-j-1} \right\} + 2\text{Re} \left\{ z, F^{(\Lambda)}_{\text{nor}}(z, \overline{z}) \right\} + \varphi'_{\Lambda+1}(z, \overline{z}) - \varphi_{\Lambda+1}(z, \overline{z}) + \Theta^{\Lambda+1}_{\text{nor}}(z, \overline{z}).
\end{equation}

Here we $\{ (\Theta_1^{(\Lambda+1)}(z, \overline{z}) \} \geq N_s$. We define the following map

\begin{equation}
F^{(\Lambda)}_{\text{nor}}(z, w) = F^{(\Lambda)}_1(z, w) + F^{(\Lambda)}_2(z, w), \quad F^{(\Lambda)}_1(z, w) = -(1 - s)^{j+1} \langle z, a \rangle \Delta(z)^{j+1} w^{t-j-2} (z_1, \ldots, z_N).
\end{equation}

Substituting (2.34) into (2.33), we obtain

\begin{equation}
G^{(\Lambda+1)}_{\text{nor}}(z, \overline{z}) = 2\text{Re} \left\{ z, F^{(\Lambda)}(z, \overline{z}) \right\} + \varphi'_{\Lambda+1}(z, \overline{z}) - \varphi_{\Lambda+1}(z, \overline{z}) + \Theta^{\Lambda+1}_{\text{nor}}(z, \overline{z}).
\end{equation}

By applying Extended Moser Lemma we find a solution $(G^{(\Lambda+1)}_{\text{nor}}(z, w), F^{(\Lambda)}(z, w))$ for (2.35). By using the same arguments as in the Step 1 we obtain the following estimates

\begin{equation}
\begin{aligned}
\text{wt} \left\{ G^{(\Lambda+1)}_{\text{nor}}(z, w) - G^{(\Lambda+1)}_{\text{nor}}(z, \langle z, z \rangle) \right\}, \text{wt} \left\{ G^{\Lambda+1}_{\text{nor}}(z, w) \right\}, \text{wt} \left\{ G^{(\Lambda+1)}_{\text{nor}}(z, \langle z, z \rangle) \right\} \geq N_s,
\text{wt} \left\{ F^{(\Lambda)}_1(z, w) - F^{(\Lambda)}_1(z, \langle z, z \rangle) \right\}, \text{wt} \left\{ F^{(\Lambda)}_2(z, w) \right\}, \text{wt} \left\{ F^{(\Lambda)}_2(z, \langle z, z \rangle) \right\} \geq N_s - s + 1,
\text{wt} \left\{ F^{(\Lambda)}_2(z, w) - F^{(\Lambda)}_2(z, \langle z, z \rangle) \right\}, \text{wt} \left\{ F^{(\Lambda)}_1(z, w) \right\}, \text{wt} \left\{ F^{(\Lambda)}_1(z, \langle z, z \rangle) \right\} \geq N_s - 1,
\end{aligned}
\end{equation}

where w satisfies (2.31). As a consequence of (2.36) we obtain

\begin{equation}
G^{(\Lambda+1)}_{\text{nor}}(z, w) - G^{(\Lambda+1)}_{\text{nor}}(z, \langle z, z \rangle) = \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}), \quad 2\text{Re} \left\{ F^{(\Lambda)}_2(z, w) - F^{(\Lambda)}_2(z, \langle z, z \rangle), z \right\} = \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}),
\end{equation}

where w satisfies (2.31) and each of the preceding formal power series has the property \(\{ \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}) \} \geq N_s. \) Substituting $F^{(\Lambda)}_{\geq \Lambda}(z, w) = F^{(\Lambda)}_{\text{nor}}(z, w) + F^{(\Lambda)}_{\geq \Lambda+1}(z, w)$ and $G^{(\Lambda+1)}_{\text{nor}}(z, w) = G^{(\Lambda+1)}_{\text{nor}}(z, w) + G^{(\Lambda+1)}_{\geq \Lambda+2}(z, w)$ in (2.26), we obtain

\begin{equation}
G^{(\Lambda+1)}_{\text{nor}}(z, w) + G^{(\Lambda+1)}_{\geq \Lambda+2}(z, w) = 2(1 - s)^{j+1}\text{Re} \left\{ \langle z, a \rangle \Delta(z)^{j+1} w^{t-j-1} \right\} + 2\text{Re} \left\{ z, F^{(\Lambda)}_{\text{nor}}(z, \overline{z}) + F^{(\Lambda)}_{\geq \Lambda+1}(z, w) \right\} + \varphi'_{\Lambda+2}(z, \overline{z}) - \varphi_{\Lambda+2}(z, \overline{z}) + \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}).
\end{equation}

By making a simplification in (2.38) with (2.33), and then by (2.34), we obtain

\begin{equation}
G^{(\Lambda+2)}_{\geq \Lambda+2}(z, w) = 2\text{Re} \left\{ z, \Delta(z)^{j+1} + \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}) \right\} + \varphi'_{\geq \Lambda+2}(z, \overline{z}) - \varphi_{\geq \Lambda+2}(z, \overline{z}) + \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}) + J(z, \overline{z}),
\end{equation}

where

\begin{equation}
\begin{aligned}
J(z, \overline{z}) &= 2\text{Re} \left\{ z, F^{(\Lambda)}_{\text{nor}}(z, w) - F^{(\Lambda)}_{\text{nor}}(z, \langle z, z \rangle) \right\} + 2\text{Re} \left\{ \Delta(z)^{j+1} w^{t-j-1} - \langle z, a \rangle \Delta(z)^{j+1} (z, z)^{t-j-1} \right\} + G^{(\Lambda)}_{\text{nor}}(z, \langle z, z \rangle) + \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}) + J(z, \overline{z}),
\end{aligned}
\end{equation}

By using (2.36) and (2.37) it follows that

\begin{equation}
J(z, \overline{z}) = 2\text{Re} \left\{ z, F^{(\Lambda)}_{1}(z, w) - F^{(\Lambda)}_{1}(z, \langle z, z \rangle) \right\} + 2\text{Re} \left\{ \Delta(z)^{j+1} w^{t-j-1} - \langle z, a \rangle \Delta(z)^{j+1} (z, z)^{t-j-1} \right\} + \Theta^{\Lambda+2}_{\text{nor}}(z, \overline{z}),
\end{equation}
where \(\text{wt} \{ \Theta^{\lambda+2}_{N_s}(z, \overline{z}) \} \geq N_s \). We observe that

\[
(2.42) \quad \text{Re} \left\langle z, F_1^{(A)}(z, z) \right\rangle = -(1-s)^{j+1} \text{Re} \left\{ \langle z, a \rangle \langle z, z \rangle^{j-1-j} \Delta(z)^{j+1} \right\}.
\]

Since \(\{ F_1^{(A)}(z, w) \} \geq N_s - s \) and \(\text{wt} \{ F_1^{(A)}(z, w) \} \geq N_s \), it follows that

\[
(2.43) \quad \text{Re} \left\langle \Theta^2_{N_s}(z, \overline{z}), F_1^{(A)}(z, w) \right\rangle = \Theta^{\lambda+2}_{N_s}(z, \overline{z}),
\]

where \(\text{wt} \{ \Theta^{\lambda+2}_{N_s}(z, \overline{z}) \} \geq N_s \). By using \((2.42) \) and \((2.43) \), we can rewrite \((2.41) \) as follows

\[
(2.44) \quad J(z, \overline{z}) = 2 \text{Re} \left\langle z, F_1^{(A)}(z, w) \right\rangle + 2 \text{Re} \left\langle \Delta'(z), F_1^{(A)}(z, w) \right\rangle + 2(1-s)^{j+1} \text{Re} \left\{ \langle z, a \rangle \langle z, z \rangle^{j+1} \Delta(z)^{j+1} \right\} + \Theta^{\lambda+2}_{N_s}(z, \overline{z}),
\]

where \(\text{wt} \{ \Theta^{\lambda+2}_{N_s}(z, \overline{z}) \} \geq N_s \). Substituting the formula of \(F_1^{(A)}(z, w) \) in \((2.44) \), we obtain

\[
(2.45) \quad J(z, \overline{z}) = -2(1-s)^{j+1} \text{Re} \left\{ \langle z, a \rangle \langle z, z \rangle^{j+1} \Delta(z)^{j+1} \right\} + 2(1-s)^{j+1} \text{Re} \left\{ \langle z, a \rangle \langle z, z \rangle^{j+1} \Delta(z)^{j+1} \right\} + \Theta^{\lambda+2}_{N_s}(z, \overline{z}),
\]

where \(J(z, \overline{z}) \) satisfies \((2.1) \) and \(\text{wt} \{ \Theta^{\lambda+2}_{N_s}(z, \overline{z}) \} \geq N_s \).

The proof of our Lemma follows by using \((2.45) \) and \((2.39) \).

Collecting the terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n = ts + 1 \) and \(t = j - 1 \) from \((2.26) \), we obtain

\[
(2.46) \quad G_{nor}^{(ts+1)}(z, \langle z, z \rangle) = 2(1-s)^{j} \text{Re} \left\{ \langle z, a \rangle \Delta(z)^{j} \right\} + 2 \text{Re} \left\langle z, F_{nor}^{(ts)}(z, \langle z, z \rangle) \right\rangle
\]

\[
+ \varphi'_{ts+1,0}(z, \overline{z}) - \varphi_{ts+1,0}(z, \overline{z}) + (\Theta^1)_{ts+1}^{(ts+1)}(z, \overline{z}).
\]

By applying Extended Moser Lemma we find a solution \(G_{nor}^{(ts+1)}(z, w), F_{nor}^{(ts)}(z, w) \) for \((2.46) \). Collecting the pure terms from \((2.46) \) of degree \(ts+1 \), it follows that

\[
(2.47) \quad \varphi'_{ts+1,0}(z) - \varphi_{ts+1,0}(z) = (1-s)^{j} \langle z, a \rangle \Delta(z)^{j}.
\]

The parameter \(a \) will help us to put the desired normalization condition (see \((0.15) \)). By applying Lemma 2.4 for \(\varphi'_{ts+1,0}(z) \) and \(\varphi_{ts+1,0}(z) \), it follows that

\[
(2.48) \quad \varphi_{ts+1,0}(z) = (1-s)^{j} Q(z) \Delta(z)^{j} + R(z), \quad \varphi'_{ts+1,0}(z) = Q'(z) \Delta(z)^{j} + R'(z),
\]

where \((\Delta')^* (R(z)) = (\Delta')^* (R'(z)) = 0 \). We impose the normalization condition \((\Delta')^* (\varphi'_{ts+1,0}(z)) = 0 \). This is equivalent finding \(a \) such that \(Q(z) = 0 \). Here \(Q(z) \) is a determined holomorphic polynomial. We find \(a \) by solving the equation \(Q'(z) = (1-s)^{j} \langle z, a \rangle - Q(z) = 0 \).

By composing the map that sends \(M \) into \((2.41) \) with the map \((2.8) \) we obtain our formal transformation that sends \(M \) into \(M' \) up to degree \(ts+1 \).

3. Proof of Theorem 1.3-Case \(T + 1 = (t + 1)s, t \geq 1 \)

In this case we are looking for a biholomorphic transformation of the following type

\[
(3.1) \quad F(z, w) = \sum_{l=0}^{T-2t-1} F_{nor}^{(2l+t+1)}(z, w), \quad G(z, w) = \sum_{l=0}^{T-2t} G_{nor}^{(2l+2+1)}(z, w).
\]

that maps \(M \) into \(M' \) up to the degree \(T + 1 = (t + 1)s \). In order to make the mapping \((3.1) \) uniquely determined we assume that \(F_{nor}^{(2l+t+1)}(z, w) \) is normalized as in Extended Moser Lemma, for all \(l = 1, \ldots, T - 2t - 1 \). Replacing \((3.1) \) in
and after a simplification with (2.1), we obtain
\[T^{-2t-1} \sum_{\tau=0}^{T-2t-1} G_{m,n}^{(2t+2+\tau)}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \overline{z})) = 2 \text{Re} \left(\sum_{l=0}^{T-2t-1} F_{m,n}^{(2t+l+1)}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \overline{z})) \right) \]
\[+ \varphi_{\geq 3} \left(z + \sum_{l=-1}^{T-2t} F_{m,n}^{(2t+l+2)}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \overline{z})) \right) \]
\[+ \varphi_{\geq 3} \left(\left\| \sum_{l=0}^{T-2t-1} F_{m,n}^{(2t+l+1)}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \overline{z})) \right\|^2 \right) \]
\[+ \varphi_{\geq 3} \left(z + \sum_{l=-1}^{T-2t} F_{m,n}^{(2t+l+2)}(z, \langle z, z \rangle + \varphi_{\geq 3}(z, \overline{z})) \right) - \varphi_{\geq 3}(z, \overline{z}). \]

Collecting the terms with the same bidegree in \((z, \overline{z})\) from (3.2), we will find \(F(z, w)\) and \(G(z, w)\) by applying Extended Moser Lemma. Since \(F(z, w)\) and \(G(z, w)\) don’t have components of normal weight less than \(2t+2\), collecting in (3.2) the terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n < 2t + 2\), we obtain \(\varphi_{m,n}^\prime(z, \overline{z}) = \varphi_{m,n}(z, \overline{z})\).

Collecting the terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n = 2t + 2\) from (3.2), we prove the following lemma:

Lemma 3.1. \(G_{m,n}^{(2t+2)}(z, w) = (a + \overline{a}) w^{t+1}, F_{m,n}^{(2t+1)}(z, w) = (a_{11} \ldots a_{1N}) \begin{pmatrix} z_1 \\ \vdots \\ a_{N1} \ldots a_{NN} \end{pmatrix} = \begin{pmatrix} z_1 \\ \vdots \\ z_N \end{pmatrix}, \) where \(Na\) is the trace of the matrix \((a_{ij})_{1 \leq i,j \leq N}\).

Proof. Collecting the pure terms of degree \(2t + 2\) from (3.2), we obtain that \(\varphi_{2t+2}(z) = \varphi_{2t+2}^\prime(z)\). Collecting the terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n = 2t + 2\) and \(0 < m < n - 1\) from (3.2), we obtain
\[\varphi_{m,n}^\prime(z, \overline{z}) = -\langle z, F_{m,n+1,m-1}(z) \rangle \langle \overline{z}, \overline{z} \rangle^{m-1} + \varphi_{m,n}(z, \overline{z}). \]

Since \(\varphi_{m,n}(z, \overline{z}), \varphi_{m,n}^\prime(z, \overline{z})\) satisfy (1.1.1), by the uniqueness of trace decomposition, we obtain \(F_{m,n+1,m-1}(z) = 0\). Collecting the terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n = 2t + 2\) and \(m > n + 1\) from (3.2), we obtain
\[\varphi_{m,n}^\prime(z, \overline{z}) = G_{m,n}(z) \langle z, \overline{z} \rangle^n - \langle F_{m,n+1,n-1}(z, z) \rangle (\langle z, \overline{z} \rangle)^{n-1} + \varphi_{m,n}(z, \overline{z}). \]

Since \(F_{m,n+1,n-1}(z) = 0\) it follows that \(G_{m,n}(z) = 0\).

Collecting the terms of bidegree \((t + 1, t + 1)\) in \((z, \overline{z})\) from (3.2), we obtain
\[\varphi_{t+1,t+1}^\prime(z, \overline{z}) = \langle F_{t+1,t}(z), z \rangle - \langle F_{t+1,t}(z), \overline{z} \rangle \triangleq \langle z, z \rangle^t + \varphi_{t+1,t+1}(z, \overline{z}). \]
Then (3.5) can not provide us \(F_{t+1}(z)\). Therefore \(F_{t+1}(z)\) is undetermined. We obtain
\[F_{m,n}^{(2t+1)}(z, w) = w^t \begin{pmatrix} a_{11} \ldots a_{1N} \\ \vdots \\ a_{N1} \ldots a_{NN} \end{pmatrix} \begin{pmatrix} z_1 \\ \vdots \\ z_N \end{pmatrix}, \quad a_{ij} \in \mathbb{C}, \ 1 \leq i,j \leq N. \]

We write \(a_{11} = a + b_1, \ldots, a_{NN} = a + b_N\) and we use the notations \(b_{k,j} = a_{k,j}\), for all \(k \neq j\). Then the matrix \((b_{k,j})_{1 \leq k,j \leq N}\) represents the traceless part of the matrix \((a_{k,j})_{1 \leq k,j \leq N}\). By applying Lemma 2.1 to the polynomial \(\langle F_{t+1}(z), z \rangle\), we obtain \(\langle F_{t+1}(z), z \rangle = a(z, z) + P(z, \overline{z})\) with \(\text{tr} (P(z, \overline{z})) = 0\), where \(P(z, \overline{z}) = \sum_{i,j=1}^{N} b_{i,j,z_i \overline{z}_j}\). By using the preceding decomposition we obtain
\[\varphi_{t+1,t+1}^\prime(z, \overline{z}) = \langle G_{t+1,t+1}(z) - a - \overline{a} \rangle \langle z, z \rangle^{t+1} + \varphi_{t+1,t+1}(z, \overline{z}) - 2 \text{Re} \left(P(z, \overline{z}) \langle z, z \rangle^t \right) \]
Since \(\text{tr} (P(z, \overline{z})) = 0\) it follows that \(\text{tr}^{t+1} (\text{Re} (P(z, \overline{z}) \langle z, z \rangle^t)) = 0\) (see Lemma 6.6 from [25]).

We can write \(F(z, w) = F_{n+2}^{(2t+2)}(z, w) + F_{2t+3}(z, w)\) and \(G(z, w) = G_{2t+2}(z, w)\) (see (1.30)). We have \(F_{2t+2}(z, w) = \sum_{k+2l \geq 2t+2} F_{k,l}(z) w^d\), where \(F_{k,l}(z)\) is a homogeneous polynomial of degree \(k\). Therefore \(\{ F_{2t+2}(z, w) \} \geq \min_{k+2l \geq 2t+2} \{ k+l \geq 2t+2 \} \geq 2t+2\). Next, we show that \(\{ F_{2t+2}(z, w) \} \geq ts + s - 1\). Since \(\{ F_{2t+2}(z, w) \} \geq \min_{k+2l \geq 2t+2} \{ k(s-1) + ls \}\), it is enough to prove that \(k(s-1) + ls \geq ts + s - 1\) for \(k+2l \geq 2t+2\). Since we can write the latter inequality as \((k-1)(s-1) + ls \geq ts\) for \((k-1) + 2l \geq 2t+1\), it is enough to prove that \(k(s-1) + ls \geq ts\) for \(k+2l \geq 2t+1 > 2t\). Continuing the calculations like in the previous case we obtain the desired result.
Lemma 3.2. For w satisfying (2.1), we make the following immediate estimates

$$
\text{wt}\left\{ F_{(2t+1)}(z, w) \right\} \geq ts + 1, \quad \text{wt}\left\{ F_{(2t+1)}^\prime(z, w) \right\} \geq ts + s - 1, \quad \text{wt}\left\{ \left\| F_{(2t+1)}(z, w) \right\|^2 \right\} \geq ts + s + 1,
$$

(3.8)

$$
\text{wt}\left\{ F_{\geq 2t+2}(z, w) \right\} \geq 2t + 2, \quad \text{wt}\left\{ F_{\geq 2t+2}(z, w) \right\} \geq ts + s - 1, \quad \text{wt}\left\{ \left\| F_{\geq 2t+2}(z, w) \right\|^2 \right\} \geq ts + s + 1,
$$

$$
\text{wt}\left\{ \left\langle F_{(2t+1)}(z, w), F_{\geq 2t+2}(z, w) \right\rangle \right\}, \quad \text{wt}\left\{ \left\langle F_{\geq 2t+2}(z, w), F_{(2t+1)}(z, w) \right\rangle \right\} \geq ts + s + 1.
$$

As a consequence of the estimates (3.8) we obtain

$$
\| F(z, w) \|^2 = \left\| F_{(2t+1)}(z, w) \right\|^2 + 2\text{Re} \left\langle F_{(2t+1)}(z, w), F_{\geq 2t+2}(z, w) \right\rangle + \| F_{\geq 2t+2}(z, w) \|^2 = \Theta_{ts+s+1}^{2t+3}(z, \overline{z}),
$$

where $\text{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z, \overline{z}) \right\} \geq ts + s + 1$.

In order to apply Extended Moser Lemma in (3.8) we have to identify and weight and order evaluate the terms which are not ,,good”. We prove the following lemmas:

Lemma 3.3. For all $m, n \geq 1$ and w satisfying (2.1), we make the following estimate

$$
\varphi_{m,n}^\prime(z + F(z, w), z + F(z, w)) = \varphi_{m,n}^\prime(z, \overline{z}) + \ldots \quad (\text{see the proof of Lemma 3.3}).
$$

In order to prove (3.10), it is enough to study the weight and the order of the following particular terms

$$
A_1(z, w) = F_1(z, w) z^I \overline{z}^J, \quad A_2(z, w) = z^I \overline{z}^J F_1(z, w), \quad B_1(z, w) = F_2(z, w) z^I \overline{z}^J, \quad B_2(z, w) = z^I \overline{z}^J F_2(z, w),
$$

where $F_1(z, w)$ is the first component of $F_{(2t+1)}(z, w)$ and $F_2(z, w)$ is the first component of $F_{\geq 2t+2}(z, w)$. Here we assume that $|I| = m - 1, |J| = n, |I_1| = m, |I_1| = n - 1$.

By using (3.8) we obtain $\text{wt}\left\{ A_1(z, w) \right\} \geq m + 1 - ts + 1 + n(s - 1) \geq ts + s + 1 \iff m + s(n - 1) \geq m + s + s - 1 \iff m + s(n - 1) \geq m + 3(n - 1) \geq n + 1$. On the other hand $\text{Ord}\left\{ A_1(z, w) \right\} \geq m + 1 - 2t + 1 + n \geq 2t + 3$.

By using (3.8) we obtain $\text{wt}\left\{ A_2(z, w) \right\} \geq m + 1 - n(s - 1) + ts + s - 1 \geq ts + s + 1$ and the latter inequality is true since $m + s(n - 1) \geq m + 3(n - 1) \geq n + 1$. The latter inequality can be proved with the same calculations like in Lemma 3.3 proof. On the other hand, we observe that $\text{Ord}\left\{ A_1(z, w) \right\} \geq m + 2t + 1 + n \geq 2t + 3$.

In the same way we obtain $\text{Ord}\left\{ B_1(z, w) \right\}, \text{Ord}\left\{ B_2(z, w) \right\} \geq 2t + 2$. By using (3.8), every term from „...” that depends on $F_2(z, w)$ can be written as $\Theta_{s}^2(z, \overline{z}) F_2(z, w)$. This proves our claim.

Lemma 3.4. For all $k > s$ and w satisfying (2.1), we make the following estimate

$$
\varphi_{k,0}^\prime(z + F(z, w)) = \varphi_{k,0}^\prime(z) + 2\text{Re} \left\langle \Theta_{s}^2(z, \overline{z}), F_{\geq 2t+2}(z, w) \right\rangle + \Theta_{ts+s+1}^{2t+3}(z, \overline{z}),
$$

(3.11)

where $\text{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z, \overline{z}) \right\} \geq ts + s + 1$.

Proof. We make the expansion $\varphi_{k,0}^\prime(z + F(z, w)) = \varphi_{k,0}^\prime(z) \ldots$. To study the weight and the order of terms which can appear in „...” it is enough to study the weight and order of the following terms

$$
A(z, w) = F_1(z, w) z^I, \quad B(z, w) = F_2(z, w) z^I,
$$

where $F_1(z, w)$ is the first component of $F_{(2t+1)}(z, w)$ and $F_2(z, w)$ is the first component of $F_{\geq 2t+2}(z, w)$. Here we assume that $|I| = m - 1 \geq s$. From (3.8) we obtain $\text{wt}\left\{ A(z, w) \right\} \geq s + ts + 1 = ts + s + 1$. On the other hand, we have $\text{Ord}\left\{ A(z, w) \right\} \geq 2t + s + 1 \geq 2t + 3$. By using (3.8) each term from „...” that depends on $F_2(z, w)$ can be written as $\Theta_{s}^2(z, \overline{z}) F_2(z, w)$. This proves our claim.

Lemma 3.5. For w satisfying (2.1) we have the following estimate

$$
2\text{Re} \left\langle \Delta(z + F(z, w)) \right\rangle = 2\text{Re} \left\langle \Delta(z) + \sum_{k=1}^{N} \Delta_k(z) \left(a_{k1} z_1 + \ldots + a_{kN} z_N \right) w \right\rangle + \Theta_{ts+s+1}^{2t+3}(z, \overline{z}),
$$

(3.12)

$$
+ 2\text{Re} \left\langle \Delta(z) + \Theta_{s}^2(z, \overline{z}), F_{\geq 2t+2}(z, w) \right\rangle + \Theta_{ts+s+1}^{2t+3}(z, \overline{z}),
$$
where \(\mathrm{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z,\bar{z}) \right\} \geq ts + s + 1. \)

Proof. For \(w \) satisfying (2.1), we have the expansion

\begin{equation}
\begin{aligned}
(3.13) \quad & 2 \text{Re} \left\{ \Delta(z + F(z,w)) \right\} = 2 \text{Re} \left\{ \Delta(z) + \sum_{k=1}^{N} \Delta_k(z) F_{2t+1}^k(z,w) + L(z,\bar{z}) \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}),
\end{aligned}
\end{equation}

where \(F_{2t+1}(z,w) = (F_1, z, \ldots, F_{2t+1}(z,w)) \) and \(L(z,\bar{z}) = \left(\Theta_2^2(z,\bar{z}), \bar{F}_{2t+2}(z,w) \right) \). We compute

\begin{equation}
\begin{aligned}
(3.14) \quad & \sum_{k=1}^{N} 2 \text{Re} \left\{ \Delta_k(z) F_{2t+1}^k(z,w) \right\} = \sum_{k=1}^{N} 2 \text{Re} \left\{ \Delta_k(z) \left(w^t \sum_{j=1}^{N} \alpha_{kj} z_j + F_{2t+2}^k(z,w) \right) \right\}
\end{aligned}
\end{equation}

\[= 2 \text{Re} \left\{ w^t \sum_{k=1}^{N} \Delta_k(z) (a_{k1} z_1 + \cdots + a_{kN} z_N) \right\} + 2 \text{Re} \left\{ \Delta'(z) F_{2t+2}(z,w) \right\}. \]

Lemma 3.6. For \(w \) satisfying (2.1), we have the following estimate

\begin{equation}
\begin{aligned}
(3.15) \quad & G_{(n+2)}^{(2t+3)}(z,w) - 2 \text{Re} \left\{ F_{(n+1)}(z,w), z \right\} = 2(a + \bar{w}) \text{Re} \left\{ \Delta(z) w^t \right\} + 2 \text{Re} \left\{ P(z,\bar{z}) w^t \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}),
\end{aligned}
\end{equation}

where \(P(z,\bar{z}) = \sum_{k,j=1}^{N} b_{kj} z_k \bar{z}_j \) and \(\mathrm{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z,\bar{z}) \right\} \geq ts + s + 1. \)

Proof. For \(w \) satisfying (2.1), by Lemma 4.1 it follows that

\begin{equation}
\begin{aligned}
(3.16) \quad & G_{(n+2)}^{(2t+3)}(z,w) - 2 \text{Re} \left\{ F_{(n+1)}^{(2t+3)}(z,w), z \right\} = (a + \bar{w}) w^t + 2 \text{Re} \left\{ w^t \left(\begin{array}{ccc}
 b_{11} + a & \cdots & b_{1N} \\
 \vdots & \ddots & \vdots \\
 b_{N1} & \cdots & b_{NN} + a
\end{array} \right) \left(\begin{array}{c}
z_1 \\
\vdots \\
z_N
\end{array} \right), z \right\},
\end{aligned}
\end{equation}

\[= 2 \text{Re} \left\{ aw^{t+1} \right\} - 2 \text{Re} \left\{ aw^t (z,\bar{z}) + P(z,\bar{z}) w^t \right\} + \bar{w} (w^{t+1} - \bar{w}^{t+1}),
\]

\[= 2 \text{Re} \left\{ aw^t (w - (z,\bar{z})) \right\} - 2 \text{Re} \left\{ P(z,\bar{z}) w^t \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}),
\]

\[= 2 \text{Re} \left\{ aw^t \left(\Delta(z) + \Delta'(z) \right) \right\} - 2 \text{Re} \left\{ P(z,\bar{z}) w^t \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}),
\]

\[= 2(a + \bar{w}) \text{Re} \left\{ \Delta(z) w^t \right\} - 2 \text{Re} \left\{ P(z,\bar{z}) w^t \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}), \]

where \(\mathrm{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z,\bar{z}) \right\} \geq ts + s + 1. \)

Substituting \(F(z,w) = F_{(n+1)}^{(2t+1)}(z,w) + F_{(n+2)}(z,w) \) and \(G(z,w) = G_{(n+2)}^{(2t+3)}(z,w) + G_{ts+s+1}(z,w) \) (see (1.30)) into (3.17) and by Lemmas 4.2 – 4.6, we obtain

\begin{equation}
\begin{aligned}
(3.17) \quad & G_{2t+3}(z,w) = 2 \text{Re} \left\{ \sum_{k=1}^{N} \Delta_k(z) (a_{k1} z_1 + \cdots + a_{kN} z_N) - (a + \bar{w}) \Delta(z) \right\} + 2 \text{Re} \left\{ P(z,\bar{z}) (w^t - (z,\bar{z})^t) \right\}
\end{aligned}
\end{equation}

\[+ 2 \text{Re} \left\{ \Delta'(z) + \Theta_2^2(z,\bar{z}), F_{2t+2}(z,w) \right\} + \varphi_{2t+3}(z,\bar{z}) - \varphi_{2t+3}(z,\bar{z}) + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}), \]

where \(w \) satisfies (2.1) and \(\mathrm{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z,\bar{z}) \right\} \geq ts + s + 1. \) It remains to study the expression

\begin{equation}
\begin{aligned}
(3.18) \quad & E(z,\bar{z}) = 2 \text{Re} \left\{ P(z,\bar{z}) (w^t - (z,\bar{z})^t) \right\}.
\end{aligned}
\end{equation}

Lemma 3.7. For \(w \) satisfying (2.1) we make the following estimate

\begin{equation}
\begin{aligned}
(3.19) \quad & E(z,\bar{z}) = 2 \text{Re} \left\{ \left(P(z,\bar{z}) + \overline{P(z,\bar{z})} \right) \Delta(z) \sum_{k+i=t-1} w^k (z,\bar{z})^l \right\} + \Theta_{ts+s+1}^{2t+3}(z,\bar{z}),
\end{aligned}
\end{equation}

where \(P(z,\bar{z}) = \sum_{k,j=1}^{N} b_{kj} z_k \bar{z}_j \) and \(\mathrm{wt}\left\{ \Theta_{ts+s+1}^{2t+3}(z,\bar{z}) \right\} \geq ts + s + 1. \)
Proof. We compute

\[
E(z, \bar{z}) = 2\text{Re} \left\{ P(z, \bar{z}) \left(\Delta(z) + \overline{\Delta(z)} \right) \sum_{k+l=t-1} w^k \langle z, z \rangle ^l \right\} + \Theta_{ts+s+1}^{2t+3}(z, \bar{z}),
\]

(3.20)

where \(\text{wt} \left\{ \Theta_{ts+s+1}^{2t+3}(z, \bar{z}) \right\} \geq ts + s + 1. \)

We consider the following notations

\[
\mathcal{L}(z, \bar{z}) = P(z, \bar{z}) + \overline{P(z, \bar{z})} = \sum_{k,j=1}^{N} (b_{k,j} + \overline{b_{j,k}}) z_k \bar{z}_j,
\]

(3.21)

\[
Q(z) = \sum_{k=1}^{N} \Delta_k(z) \left(a_{k1} z_1 + \cdots + a_{kN} z_N \right) - (a + \overline{a}) \Delta(z), \quad Q_1(z) = \sum_{k,j=1}^{N} (b_{k,j} + \overline{b_{j,k}}) z_k \Delta_k(z).
\]

Then, for \(w \) satisfying (2.1), by Lemma 4.7 and the notations (3.21), we can rewrite (3.17) as follows (3.22)

\[
G_{2t+3}(z, w) = 2\text{Re} \left\{ Q(z) w^t \right\} + 2\text{Re} \left\{ \mathcal{L}(z, \bar{z}) \Delta(z) E_{t-1} (w, \langle z, z \rangle) \right\} + 2\text{Re} \left\{ \tau + \Delta'(z) + \Theta_s^2(z, \bar{z}), F_{2t+2}(z, w) \right\} \\
+ \varphi_{2t+3}(z, \bar{z}) - \varphi_{2t+3}(z, \bar{z}) + \Theta_{ts+s+1}^{2t+3}(z, \bar{z}),
\]

where \(\text{wt} \left\{ \Theta_{ts+s+1}^{2t+3}(z, \bar{z}) \right\} \geq ts + s + 1 \). Here \(E_{t-1} (w, \langle z, z \rangle) = \sum_{k+l=t-1} \sum_{s=1}^{N} w^k \langle z, z \rangle ^l \). For \(p \geq 2t + 3 \) we prove the following lemma (the analogue of Lemma 3.4 from Huang-Yin [13]):

Lemma 3.8. We define \(\epsilon(p) = 0 \) if \(p < 2t + s \) and \(\epsilon(p) = 1 \) if \(p \geq 2t + s, \gamma(p) = 1 \) if \(p < ts + 2 \) and \(\gamma(p) = 0 \) if \(p = ts + 2 \). Let \(N_k := ts + s + 1 \). For all \(0 \leq j \leq t \) and \(p \in [2t + j(s-2) + 3, 2t + (j+1)(s-2) + 2] \), we have the following estimate (3.23)

\[
G_p(z, w) = 2(1-s)^2 \text{Re} \left\{ Q(z) \Delta(z)^j w^{t-j} \right\} + 2\gamma(p) (1-s)^2 \text{Re} \left\{ \mathcal{L}(z, \bar{z}) \Delta(z)^j + \sum_{l_1+l_2=t-j-1} E_{l_1,l_2}^{t-j} w^{l_1} \langle z, z \rangle ^{l_2} \right\} \\
+ 2s \text{Re} \left\{ Q_1(z) \Delta(z)^j w^{t-j} \sum_{l_0=0}^{j-1} (-1)^{l_0} \left(1-s \right)^l E_{l_0}^{t-j} \right\} + 2\text{Re} \left\{ \tau + \Delta'(z) + \Theta_s^2(z, \bar{z}), F_{2t-1}(z, w) \right\} \\
+ \varphi_{p}(z, \bar{z}) - \varphi_{p}(z, \bar{z}) + \Theta_{N_k}^p(z, \bar{z}),
\]

where \(\text{wt} \left\{ \Theta_{N_k}^p(z, \bar{z}) \right\} \geq N_k \) and \(w \) satisfies (2.1). Here \(E_{l_1,l_2}^{t-j} \) with \(l_1 + l_2 = t - j - 1 \) and \(E_{l_0}^{t-j} \) with \(l_0 = 1, \ldots, j - 1 \) are natural numbers satisfying the following recurrence relations

\[
E_{l+1,l}^{t-j} = F_{l}^{t-j}, \quad E_{l,0}^{t-j} = \sum_{l_1+l_2=t-j-1} E_{l_1,l_2}^{t-j}, \quad E_{l,t-j-1-l}^{t-j} = \sum_{l'=1}^{t-j-1} E_{l-t-j+l'}^{t-j}.
\]

Also \(\beta_l \in \mathbb{N}, \) for all \(l = 1, \ldots, j - 1. \)

Proof. For \(j = 0 \) and \(k = 0 \) we obtain \(p = 2t + 3. \) Therefore (3.23) becomes (3.22).

Step 1. We make a similarly approach as in the Step 1 of the Lemma 3.7.

Step 2. Assume that we proved the Lemma 4.8 for \(m \in [2t + j(s-2) + 3, 2t + (j+1)(s-2) + 2], \) for \(j \in [0, t-1]. \) We want to prove that (3.23) holds for \(m \in [2t + (j+1)(s-2) + 3, 2t + (j+2)(s-2) + 2]. \) Collecting from (3.23) the
terms of bidegree \((m, n)\) in \((z, \tau)\) with \(m + n = \Lambda + 1 := 2t + (j + 1)(s - 2) + 2\), we obtain (3.24)
\[
G^{(\Lambda+1)}_{\text{nor}} (z, (z, z)) = 2\text{Re} \left(z, F^{(\Lambda)}_{\text{nor}} (z, (z, z)) \right) + 2\gamma (p) (-1)^j \text{Re} \left\{ \mathcal{L}(z, \tau) \Delta(z)^{j+1} (z, z)^{t-j-1} \sum_{l_1 + l_2 = t-j-1} E^{l_1, l_2}_{l_1, l_2} \right\} + 2\epsilon (p) \text{Re} \left(\sum_{j=0}^{\infty} (-1)^j (1-s)^j F^{l-j}_{l} \right) + 2(1-s)^j \text{Re} \left(Q(z) \Delta(z)^j (z, z)^{t-j} \right) \]
\[
+ \varphi'_{\Lambda+1} (z, \tau) - \varphi_{\Lambda+1} (z, \tau) + \mathbb{P}^{A+1}_{N'_{\Lambda}} (z, \tau),
\]
where \(w \mathbb{P}^{A+1}_{N'_{\Lambda}} (z, \tau) \geq N'_{\Lambda} \). We define the following mappings
\[
F_1^{(A)} (z, w) = -(1-s)^j Q(z) \Delta(z)^j w^{t-j-1} (z_1, \ldots, z_N),
F_2^{(A)} (z, w) = -\epsilon (p) Q_1(z) \Delta(z)^j w^{t-j-1} \sum_{i=0}^{j-1} (-1)^i (1-s)^j F^{l-j}_{l} \bigg| (z_1, \ldots, z_N),
\]
\[
F_3^{(A)} (z, w) = -\gamma (p) (-1)^j \Delta(z)^{j+1} \sum_{l_1 + l_2 = t-j-1} E^{l_1, l_2}_{l_1, l_2} \left(\sum_{i=1}^{N} (b_{l_1,1} + \bar{b}_{l_1,1}) z_{l_1}, \ldots, \sum_{i=1}^{N} (b_{l,N} + \bar{b}_{l,N}) z_{l_1} \right),
\]
\[
F_4^{(A)} (z, w) = F_1^{(A)} (z, w) + F_2^{(A)} (z, w) + F_3^{(A)} (z, w) + F_4^{(A)} (z, w),
\]
where \(F_4^{(A)} (z, w)\) will be determined later (see (3.25)).

Substituting (3.25) into (3.24), by making some simplifications it follows that
\[
G^{(\Lambda+1)}_{\text{nor}} (z, (z, z)) = 2\text{Re} \left(z, F_4^{(A)} (z, (z, z)) \right) + \varphi'_{\Lambda+1} (z, \tau) - \varphi_{\Lambda+1} (z, \tau) + \mathbb{P}^{A+1}_{N'_{\Lambda}} (z, \tau).
\]
By applying Extended Moser Lemma we find a solution \(\left(G^{(\Lambda+1)}_{\text{nor}} (z, w), F_4^{(A)} (z, w) \right) \) for (3.26). By repeating the procedure from the first case of the normal form construction, we obtain the following estimates
\[
\text{wt} \left\{ G^{(\Lambda+1)}_{\text{nor}} (z, (z, z)) \right\}, \text{wt} \left\{ G^{(\Lambda+1)}_{\text{nor}} (z, w) \right\}, \text{wt} \left\{ G^{(\Lambda+1)}_{\text{nor}} (z, (z, z)) \right\} \geq N'_{\Lambda},
\]
\[
\text{wt} \left\{ F_1^{(A)} (z, w) - F_4^{(A)} (z, (z, z)) \right\}, \text{wt} \left\{ F_4^{(A)} (z, w) \right\}, \text{wt} \left\{ F_4^{(A)} (z, (z, z)) \right\}, \text{wt} \left\{ F_4^{(A)} (z, w) - F_4^{(A)} (z, \tau) \right\} \geq N'_{\Lambda} - 1,
\]
where \(w\) satisfies (2.1). As a consequence of (3.27) we obtain
\[
\left\{ \Delta' (z) + \Theta''_{\Lambda} (z, \tau), F_4^{(A)} (z, w) \right\} = \Theta_{\Lambda}^{A+2} (z, \tau),
\]
\[
\text{Re} \left\{ F_4^{(A)} (z, w) - F_4^{(A)} (z, (z, z)) \right\} = \Theta_{\Lambda}^{A+2} (z, \tau),
\]
where \(w\) satisfies (2.1) and each of \(\Theta_{\Lambda}^{A+2} (z, \tau)\) has the property \(\text{wt} \left\{ \Theta_{\Lambda}^{2t+3} (z, \tau) \right\} \geq N'_{\Lambda} \). Substituting \(F_{\Lambda} (z, w) = F_4^{(A)} (z, w) + F_{\Lambda+1} (z, w)\) and \(G_{\Lambda+1} (z, w) = G_{\text{nor}}^{(\Lambda+1)} (z, w) + G_{\Lambda+1} (z, w)\) in (3.29), it follows that
\[
G^{(\Lambda+1)} (z, w) + G_{\Lambda+2} (z, w) = 2\text{Re} \left(\tau + \Delta' (z) + \Theta''_{\Lambda} (z, \tau), F_4^{(A)} (z, w) + G_{\Lambda+1} (z, w) \right) + \varphi_{\Lambda+1} (z, \tau) - \varphi_{\Lambda+1} (z, \tau) + \Theta_{\Lambda}^{A+2} (z, \tau)
\]
\[
+ (\Theta_1)^{A+1}_{N'_{\Lambda}} (z, \tau) + \varphi'_{\Lambda+1} (z, \tau) - \varphi_{\Lambda+1} (z, \tau) + \Theta_{\Lambda}^{A+2} (z, \tau)
\]
\[
+ 2(1-s)^j \text{Re} \left(Q(z) \Delta(z)^j w^{t-j} \right) \]
\[
+ 2\epsilon (p) \text{Re} \left(\sum_{j=0}^{\infty} (-1)^j (1-s)^j F^{l-j}_{l} \right) \]
\[
+ 2\epsilon (p) \text{Re} \left(\sum_{j=0}^{\infty} (-1)^j (1-s)^j F^{l-j}_{l} \right).
\]
where \(w \) satisfies (2.11). After a simplification in the preceding equation by using (3.24), it follows that

\[
G_{\geq A+2}(z, w) = 2 \text{Re} \left(z + \Delta'(z) + \Theta^2_s(z, \overline{z}), \overline{F_{\geq A+1}(z, w)} \right) + \varphi_{\geq A+2}(z, \overline{z}) - \varphi'_{\geq A+2}(z, \overline{z}) + \Theta^{A+2}_{N'}(z, \overline{z}) + J(z, \overline{z}),
\]

where we have used the following notation

\[
J(z, \overline{z}) = 2 \text{Re} \left(z, F^{(A)}_{\text{nor}}(z, w) - F^{(A)}_{\text{nor}}(z, \langle z, z \rangle) \right) + 2 \text{Re} \left(\Delta'(z) + \Theta^2_s(z, \overline{z}), \overline{F^{(A)}_{\text{nor}}(z, w)} \right) + 2(1 - s)^j \text{Re} \left\{ Q(z) \Delta(z)^j w^{t-j} - Q(z) \Delta(z)^j \langle z, z \rangle^{t-j} \right\} + G^{(A+2)}_{\text{nor}}(z, \langle z, z \rangle) - G^{(A+2)}_{\text{nor}}(z, w)
\]

\[
J(z, \overline{z}) = 2 \text{Re} \left\{ \sum_{k=1}^{3} \left(F^{(A)}_k(z, w) - F^{(A)}_{\text{nor}}(z, \langle z, z \rangle) \right) \right\} + 2 \text{Re} \left(\Delta'(z) + \Theta^2_s(z, \overline{z}), \sum_{k=1}^{3} F^{(A)}_k(z, w) \right) + 2(1 - s)^j \text{Re} \left\{ Q(z) \Delta(z)^j (w^{t-j} - \langle z, z \rangle^{t-j}) \right\} + G^{(A+2)}_{\text{nor}}(z, \langle z, z \rangle) - G^{(A+2)}_{\text{nor}}(z, w)
\]

(3.32)

We observe that

\[
\text{Re} \left\{ F^{(A)}_2(z, \langle z, z \rangle), z \right\} = -(1 - s)^j \text{Re} \left\{ Q(z) \Delta(z)^j (z, \overline{z})^{t-j} \right\},
\]

(3.33)

\[
\text{Re} \left\{ F^{(A)}_3(z, \langle z, z \rangle), z \right\} = -\epsilon(p) \text{Re} \left\{ Q(z) \Delta(z)^j (z, z)^{t-j}, \sum_{l=0}^{j-1} (-1)^{\beta_l} (1 - s)^l F^j_{l-t} \right\},
\]

(3.34)

\[
\text{Re} \left\{ F^{(A)}_3(z, \langle z, z \rangle), z \right\} = -(1 - s)^j \gamma(p) \text{Re} \left\{ \mathcal{L}(z, \overline{z}) \Delta(z)^j (z, z)^{t-j} \sum_{l_1+l_2=t-j-1} E^{t-j}_{l_1,l_2} \right\}.
\]

Since \(\left\{ F^{(A)}_k(z, w) \right\} \geq ts + 1 \) and \(\left\{ F^{(A)}_{\text{nor}}(z, w) \right\} \geq ts + s - 1 \) for all \(k \in \{1, 2, 3\} \), it follows that

\[
2 \text{Re} \left\{ \Theta^2_s(z, \overline{z}), \sum_{k=1}^{3} F^{(A)}_k(z, w) \right\} = \Theta^{A+2}_{N'}(z, \overline{z}),
\]

(3.34)

where \(\Theta^{A+2}_{N'}(z, \overline{z}) \). By using (3.21), (3.22), (3.23), (3.24) we can rewrite (3.24) as follows

\[
J(z, \overline{z}) = 2 \text{Re} \left\{ z, \sum_{k=1}^{3} F^{(A)}_k(z, w) \right\} + 2 \text{Re} \left(\Delta'(z), \sum_{k=1}^{3} F^{(A)}_k(z, w) \right) + 2(1 - s)^j \text{Re} \left\{ Q(z) \Delta(z)^j (w^{t-j} + \langle z, z \rangle^{t-j+1}) \right\} + 2 \epsilon(p) \text{Re} \left\{ Q(z) \Delta(z)^j (w^{t-j} + \langle z, z \rangle^{t-j+1}) \right\}.
\]

(3.35)
Substituting the formulas of $F_1^A(z,w), F_2^A(z,w)$ and $F_1^A(z,w)$ in (3.35) and using w satisfying (2.1), we obtain

$$J(z, \varpi) = -2(1 - s)^j \text{Re} \left\{ Q(z)J(z)^j w^{t-j-1} (\langle z, \varpi \rangle + s\Delta(z)) - Q(z)J(z)^j w^{t-j} \right\}$$

$$- 2(-1)^j \gamma(p) \text{Re} \left\{ L(z, \varpi) \Delta(z)^{j+1} \sum_{l_1 + l_2 = t-j-1} E_{l_1, l_2}^{t-j} w^{l_1 + l_2} (w^{l_1} - \langle z, \varpi \rangle^{l_1}) \right\}$$

(3.36)

$$- 2(-1)^j \gamma(p) \text{Re} \left\{ Q_1(z) \Delta(z)^{j+1} \sum_{l_1 + l_2 = t-j-1} E_{l_1, l_2}^{t-j} w^{t-j-1} \right\}$$

$$- 2\varepsilon(p) \text{Re} \left\{ Q_1(z) \Delta(z)^j \sum_{l=0}^{j-1} (-1)^{\beta_l} (1 - s)^{l+1} F_1^{t-j} w^{t-j-1} (\langle z, \varpi \rangle + s\Delta(z) - w) \right\}.$$

By (3.30) and by the next identity (3.37) we obtain the recurrence relations given by the statement of Lemma 23.

$$J(z, \varpi) = 2(1 - s)^{j+1} \text{Re} \left\{ Q(z) \Delta(z)^{j+1} w^{t-j-1} \right\}$$

$$+ 2\gamma(p)(1 - s)^{j+1} \text{Re} \left\{ L(z, \varpi) \Delta(z)^{j+2} \sum_{l_1 + l_2 = t-j-2} E_{l_1, l_2}^{t-j-1} w^{l_1 + l_2} (z, \varpi)^{l_1} \right\}$$

(3.37)

$$+ 2(1 - s)^{j+1} \text{Re} \left\{ Q_1(z) \Delta(z)^{j+1} \sum_{l_1 + l_2 = t-j-1} E_{l_1, l_2}^{t-j} w^{t-j-1} \right\}$$

$$+ 2\varepsilon(p) \text{Re} \left\{ Q_1(z) \Delta(z)^{j+1} \sum_{l=0}^{j-1} (-1)^{\beta_l} (1 - s)^{l+1} F_1^{t-j} w^{t-j-1} \right\} + \Theta_{N'_1}^{A+2}(z, \varpi),$$

where w is the identity characterized by (3.37) and $\Theta_{N'_1}^{A+2}(z, \varpi) \geq N'.$

The proof of our Lemma follows by using (3.37) and (3.30). □

Collecting the terms of bidegree (m,n) in (z, ϖ) from (3.23) with $m + n = ts + s$ and $t = j$, we obtain

$$G_1^{(ts+s)}(z, \varpi) = 2(1 - s)^j \text{Re} \left\{ Q(z) \Delta(z)^j \right\} + 2K \text{Re} \left\{ Q_1(z) \Delta(z)^j \right\} + 2 \text{Re} \left\{ z, F^{(ts+s-1)}_1(z, w) \right\}$$

$$+ \varphi_{ts+s,0}^{A+2}(z, \varpi) - \varphi_{ts+s,0}(z, \varpi) + (\Theta_{N'_1}^{A+2}(z, \varpi).$$

(3.38)

By applying Extended Moser Lemma we find a solution $(G_1^{(ts+s)}(z, w), F_1^{(ts+s-1)}(z, w))$ for (3.38). Collecting the pure terms of degree $ts + s$ from (3.38), it follows that

$$\varphi_{ts+s,0}^A(z) - \varphi_{ts+s,0}(z) = (1 - s)^j Q(z) \Delta(z)^j + KQ_1(z) \Delta(z)^j,$$

where $K = (-1)^{\beta_1}k_1(1 - s)^{t-1} + \cdots + (-1)^{\beta_r}k_r(1 - s) + (-1)^{\beta_t}k_t$, with $k_1, \ldots, k_t \in \mathbb{N}.$ By the proof of the Lemma 4.8 (see (3.36) and (3.37)) we observe that $\beta_1 = 1, \ldots, \beta_t = t$. Next, by applying Lemma 2.4 to $\varphi_{ts+s,0}(z)$ and $\varphi_{ts+s,0}^A(z)$, it follows that

$$\varphi_{ts+s,0}(z) = (A_1(z)\Delta_1(z) + \cdots + A_N(z)\Delta_N(z)) \Delta(z)^j + C(z),$$

$$\varphi_{ts+s,0}^A(z) = (A_1^*(z)\Delta_1(z) + \cdots + A_N^*(z)\Delta_N(z)) \Delta(z)^j + C'(z),$$

where $(\Delta_1^j)^* (C(z)) = (\Delta_1^j)^* (C'(z)) = 0$, for all $k = 1, \ldots, N$. We have

$$Q(z) = \sum_{k=1}^{N} \Delta_k(z) \left(a_{k1} z_1 + \cdots + \left(a_{kk} - \frac{a + \pi}{s} \right) z_k + \cdots + a_{kN} z_N \right),$$

(3.41)

$$Q_1(z) = \sum_{k=1}^{N} \Delta_k(z) \left((a_{k1} + \pi_{1k}) z_1 + \cdots + (a_{kk} + \pi_{kk} - (a + \pi)) z_k + \cdots + (a_{kN} + \pi_{Nk}) z_N \right).$$
We impose the normalization condition \((\Delta_k \Delta^i)^N (\varphi'_{k+s,0}(z)) = 0\), for all \(k = 1, \ldots, N\). By Lemma 2.4 this is equivalent to finding \((a_{ij})_{1 \leq i, j \leq N}\) such that \(A_i(z) = \cdots = A_N(z) = 0\). It follows that
\[(1 - s)^t a_{kj} + K(a_{kj} + \bar{a}_{jk}) = c_{kj}, \quad \text{for all } k, j = 1, \ldots, N, \quad k \neq j,
\]

where \(c_{kj}\) is determined, for all \(k, j = 1, \ldots, N\). Here \(N\) is the free parameters. By using the second equation from (3.42) we find
\[
\text{Im } a_{kk}, \quad \text{for all } k = 1, \ldots, N.
\]

By taking the real part in the second equation from (3.42), we obtain
\[
(1 - s)^t \left(a_{kk} - \frac{a + \bar{a}}{\bar{s}} \right) + K(a_{kk} + \bar{a}_{kk} - (a + \bar{a})) = c_{kk}, \quad \text{for all } k = 1, \ldots, N,
\]

By using the second equation from (3.42) we find \(\text{Im } a_{kk}\), for all \(k = 1, \ldots, N\). Now, let \(k \neq j\) and \(k, j \in \{1, \ldots, N\}\). By taking the real and the imaginary part in first equation from (3.42), we obtain
\[
(1 - s)^t (1 - s)^t + 2 N K s) \Re a_{kk} - (2(1 - s)^t + 2 K s) \sum_{l=1}^{N} \Re a_{ll} = \Re c_{k,k}, \quad k = 1, \ldots, N.
\]

By summing all the identities from (3.43), it follows that \((1 - s)^t N(s - 2) \sum_{l=1}^{N} \Re a_{ll} = \sum_{k=1}^{N} \Re c_{k,k}\). Next, going back to (3.43) we find \(\Re a_{ll}\), for all \(l = 1, \ldots, N\). Now, let \(k \neq j\) and \(k, j \in \{1, \ldots, N\}\). By taking the real and imaginary part in first equation from (3.42), we obtain
\[
\begin{align*}
(1 - s)^t + K) \Re a_{kj} + K \Re a_{jk} &= \Re c_{k,j}, \\
(1 - s)^t + K) \Re a_{kj} + K \Re a_{jk} &= \Re c_{k,k},
\end{align*}
\]

where \(c_{k,j}\) is determined, for all \(k, j = 1, \ldots, N\) and \(k \neq j\). In order to solve the preceding system of equations it is enough to observe that \((1 - s)^t ((1 - s)^t + 2 K) \neq 0\). It is equivalent to observe that
\[
(1 - s)^t + 2 (1 - s)^t + 2 K \neq 0,
\]

\[
(1 - s)^t (s - 1)^t + 2 (K(1 - s)^t + 2 K(1 - s)^t + 2 + \cdots + K_j) \neq 0.
\]

By composing the map that sends \(M\) into (2.1) with the map (3.4) we obtain our formal transformation that sends \(M\) into \(M'\) up to degree \(ts + s + 1\).

4. Proof of Theorem 5-Uniqueness of the formal transformation map

In order to prove the uniqueness of the map (0.12), it is enough to prove that the following map is the identity
\[
M' \ni (z, w) \longrightarrow \left(z + \sum_{k \geq 2} F_{\text{nor}}^{(k)}(z, w), w + \sum_{k \geq 2} G_{\text{nor}}^{(k+1)}(z, w) \right) \in M'.
\]

Here \(M'\) is a manifold defined by the normal form from the Theorem 1.5. We have used the notations (1.30). We perform induction on \(k \geq 2\).

Definition 4.1. The undetermined homogeneous parts of the map (4.1) by applying Extended Moser Lemma are called the free parameters.

We prove that \(F_{\text{nor}}^{(2)}(z, w) = 0\). Here we recall the first case of the normal form construction. We assume that \(t = 1\). By repeating the normalization procedures from the first case of the normal form construction, we find that all of the homogeneous components of \(F_{\text{nor}}^{(2)}(z, w)\) except the free parameter are 0 and that \(G_{\text{nor}}^{(2)}(z, w) = 0\). By using the same approach as in the first case of the normal form construction (see (2.25)), it follows that
\[
\varphi'_{k+1,0}(z) - \varphi_{k+1,0}(z) = (1 - s)(a) \Delta(z) = 0.
\]

Here \(a\) is the free parameter of \(F_{\text{nor}}^{(2)}(z, w)\). It follows that \(a = 0\). Therefore \(F_{\text{nor}}^{(2)}(z, w) = 0\).

We assume that \(F_{\text{nor}}^{(k)}(z, w) = \cdots = F_{\text{nor}}^{(k-2)}(z, w) = 0, G_{\text{nor}}^{(3)}(z, w) = \cdots = G_{\text{nor}}^{(k-1)}(z, w) = 0\). We want to prove that \(F_{\text{nor}}^{(k-1)}(z, w) = 0, G_{\text{nor}}^{(k)}(z, w) = 0\). First, we consider the case when \(k = 2t\), with \(t \geq 2\). Let \(a \in \mathbb{C}^N\) be the free parameter of the polynomial \(F_{\text{nor}}^{(2t)}(z, w)\). By repeating all the normalization procedures from the first case of the normal form construction it follows that all of the homogeneous components of \(F_{\text{nor}}^{(2t)}(z, w)\) except the free parameters are 0 and that \(G_{\text{nor}}^{(2t+1)}(z, w) = 0\). We are interested in the image of the manifold \(M\) through the map (4.1) to \(M\) up to degree \(ts + 1\). We repeat the normalization procedure done during Lemma 3.7 proof. In that case we have considered a particular
mapping (see (2.3)). Here we have a general polynomial map with other free parameters. They generate terms of weight at least $ts + 2$ that do not change their weight under the conjugation:

$$\text{wt} \{F_{1,m}(z)w^m, z\}, \text{wt} \{z, F_{1,m}(z)w^m\} \geq ts + 2, \text{ for all } m > t;$$

$$\text{wt} \{F_{0,r}(z)w^r, z\}, \text{wt} \{z, F_{0,r}(z)w^r\} \geq ts + 2, \text{ for all } r \geq t + 2.$$ (4.3)

Here $F_{1,m}(z)w^m$, $F_{0,r}(z)w^r$ are the free parameters of $F_{\text{nor}}^{(2m+1)}(z, w)$ and $F_{\text{nor}}^{(2r)}(z, w)$, for all $m > t$ and $r \geq t + 2$. Therefore they cannot interact with the pure terms of degree $ts + 1$ (because of the higher weight). All the Lemmas 3.1 – 3.6 remain the same in this general case.

By using the same approach as in the first case of the normal form construction (see (2.47)), it follows that

$$\varphi'_{ts+1,0}(z) - \varphi_{ts+1,0}(z) = (1-s)^{ts+1}Q(z)\Delta'(z) = 0.$$ (4.4)

It follows that $a = 0$. Therefore $F_{\text{nor}}^{(2t)}(z, w) = 0$.

We assume that $k = 2t + 1$, with $t \geq 2$. Let $(a_{i,j})_{1 \leq i, j \leq N}$ be the free parameter of $F_{\text{nor}}^{(2t+1)}(z, w)$. By repeating all the normalization procedures from the first case of the normal form construction, it follows that all of the homogeneous components of $F_{\text{nor}}^{(2t+1)}(z, w)$ except the free parameters are 0 and that $G_{\text{nor}}^{(2t+2)}(z, w) = 0$.

We are interested of the image of the manifold M' through the map (2.3) to M' up to degree $ts + s + 1$. The other free parameters of the map (4.1) generate terms of weight at least $ts + s + 1$ that do not change their weight under the conjugation:

$$\text{wt} \{F_{1,m}(z)w^m, z\}, \text{wt} \{z, F_{1,m}(z)w^m\} \geq ts + s + 1, \text{ for all } m > t + 1;$$

$$\text{wt} \{F_{0,r}(z)w^r, z\}, \text{wt} \{z, F_{0,r}(z)w^r\} \geq ts + s + 1, \text{ for all } r \geq t + 3.$$ (4.5)

All the Lemmas 4.1 – 4.7 remain true in this general case.

By using the same approach as in the second case of the normal form construction (see (3.39)), it follows that

$$\varphi'_{ts+s,0}(z) - \varphi_{ts+s,0}(z) = (1-s)^{ts+s}Q(z)\Delta'(z) = 0.$$ (4.6)

It follows that $(a_{i,j})_{1 \leq i, j \leq N} = 0$. Therefore $F_{\text{nor}}^{(2t+1)}(z, w) = 0$, $G_{\text{nor}}^{(2t+2)}(z, w) = 0$. This proves that (4.1) is the identity mapping. From here we conclude the uniqueness of the formal transformation (0.12).

References

[1] Ahern, P.; Gong, X. — Real analytic manifolds in \mathbb{C}^n with parabolic complex tangents along a submanifold of codimension one. Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 1, 1–64.

[2] Bishop, E. — Differentiable Manifolds In Complex Euclidean Space. Duke Math. J. 32 (1965), no. 1, 1–21.

[3] Chern, S.S; Moser, J.K. — Real hypersurfaces in complex manifolds. Acta Math. 133, (1974), no. 1, 219–271.

[4] Coffman, A. — Analytic Normal Form For CR Singular Surfaces in \mathbb{C}^3. Houston J. Math. 30 (2004), no. 4, 969-996.

[5] Coffman, A. — CR Singularities of real threefolds in \mathbb{C}^4. Adv. Geom. 6 (2006), no. 109-137.

[6] Coffman, A. — Unfolding CR Singularities Mem. Amer. Math. Soc. 205 (2010), no. 962.

[7] Coffman, A. — CR singularities of real fourfolds in \mathbb{C}^5. Illinois J. Math. 53 (2009), no. 3, 939-981.

[8] Dolbeault, P.; Tomassini, G.; Zaitsev, D. — On Levi-flat hypersurfaces with prescribed boundary. Pure and Applied Mathematics Quarterly 6 (2010), no 3, (Special Issue: In honor of Joseph J. Kohn, Part I), 725-753.

[9] Dolbeault, P.; Tomassini, G.; Zaitsev, D. — Boundary Problem for Levi-Flat Graphs. http://de.arxiv.org/pdf/0912.1332

[10] Ebenfelt, P. — New invariants in CR structures and a normal form for real hypersurfaces at a Levi degeneracy. J. Differential Geom. 50, (1998), no 2, 207-247.

[11] Gong, X. — Existence of real analytic surfaces with hyperbolic complex tangent that are formally but not holomorphically equivalent to quadrics. Indiana Univ. Math. J. 53 (2004), no. 1, 83-95.

[12] Gong, X. — Existence of real analytic surfaces with hyperbolic complex tangent that are formally but not holomorphically equivalent to quadrics. Indiana Univ. Math. J. 53 (2004), no. 1, 83-95.

[13] Huang, X.; Yin, W. — A Bishop surface with vanishing Bishop invariant. Invent. Math. 176 (2010), no 3, 461-520.

[14] Huang, X.; Yin, W. — A codimension two CR singular submanifold that is formally equivalent to a symmetric quadric. Int. Math. Res. Notices IMRN (2009), no 15, 2789-2828.

[15] Huang, X. — Local Equivalence Problems for Real Submanifolds in Complex Spaces. Lecture Notes in Mathematics, Springer-Verlag, pp. 109-161, Berlin-Heidelberg-New York, (2004).

[16] Huang, X.; Yin, W. — Equivalence problem for Bishop surfaces. Sci. China Math. 43 (2010), no 3, 687-700.

[17] Huang, X.; Yin, W. — Equivalence problem for Bishop surfaces. Sci. China Math. 43 (2010), no 3, 687-700.

[18] Huang, X.; Krantz, S. — On a problem of Moser. Duke Math. J. 78 (1995), no 1, 213-228.

[19] Moser, J. — Analytic Surfaces in \mathbb{C}^2 and their local hull of holomorphy. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 10 (1985), 397-410.

[20] Moser, J.; Webster, S. — Normal forms for real surfaces in \mathbb{C}^2 near complex tangents and hyperbolic surface transformations. Acta Math. 150 (1983), 255-296.

[21] Lebl, J. — Nowhere minimal CR submanifolds and Levi-flat hypersurfaces. J. Geom. Anal. 17 (2007), no 2, 321-341.
[22] Lebl, J. — Extension of Levi-flat hypersurfaces past CR boundaries. *Indiana Univ. Math. J.* **57** (2008), no 2, 699-716.
[23] Lebl, J. — Levi-flat hypersurfaces with real analytic boundary. *Trans. Amer. Math. Soc.* **362** (2010), no 12, 6367-6380.
[24] Shapiro, H. — Algebraic Theorem of E.Fisher and the holomorphic Goursat problem. *Bull. London Math. Soc.* **21** (1989), no 6, 513-537.
[25] Zaitsev, D. — New Normal Forms for Levi-nondegenerate Hypersurfaces. *Several Complex Variables and Connections with PDE Theory and Geometry. Complex analysis-Trends in Mathematics, Birkhauser Verlag, (Special Issue: In the honor of Linda Preiss Rothschild)*, pp. 321-340, Basel/ Switzerland, (2010). http://arxiv.org/abs/0902.2087.
[26] Zaitsev, D. — Normal forms of non-integrable CR structures. Preprint http://arxiv.org/abs/0812.1104 (to appear in American Journal of Mathematics).

E-mail address: valentin@maths.tcd.ie

V. Burcea: School of Mathematics, Trinity College Dublin, Dublin 2, Ireland