SOME NEW HERMITE–HADAMARD TYPE INEQUALITIES VIA CAPUTO k–FRACTIONAL DERIVATIVES CONCERNING $(n + 1)$–DIFFERENTIABLE GENERALIZED RELATIVE SEMI–$(r; m, h_1, h_2)$–PREINVEX MAPPINGS

ARTION KASHURI, ROZANA LIKO AND SILVESTRU SEVER DRAGOMIR

Abstract. In this article, we first presented a new identity concerning $(n + 1)$–differentiable mappings defined on m–invex set via Caputo k–fractional derivatives. By using the notion of generalized relative semi–$(r; m, h_1, h_2)$–preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Hermite–Hadamard type inequalities via Caputo k–fractional derivatives are established. It is pointed out that some new special cases can be deduced from main results of the article.

Mathematics subject classification (2010): 26A51, 26A33, 26D07, 26D10, 26D15.

Keywords and phrases: Hermite–Hadamard inequality, Hölder’s inequality, Minkowski inequality, power mean inequality, Caputo k–fractional derivatives, m–invex.

REFERENCES

[1] F. CHEN, A note on Hermite–Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math. 33, (2014), 299–306.

[2] Y. M. CHU, A. KASHURI, R. LIKO AND M. ADIL KHAN, Hermite–Hadamard type fractional integral inequalities for $MT_{(r, g, m)}$–preinvex functions, J. Comput. Anal. Appl. 168, (2019), Accepted paper.

[3] Z. DAHMANI, On Minkowski and Hermite–Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1, 1 (2010), 51–58.

[4] S. S. DRAGOMIR, J. PEČARIĆ AND L. E. PERSSON, Some inequalities of Hadamard type, Soochow J. Math. 21, (1995), 335–341.

[5] T. S. DU, J. G. LIAO AND Y. J. LI, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)–preinvex functions, J. Nonlinear Sci. Appl. 9, (2016), 3112–3126.

[6] G. FARID, A. JAVED AND A. U. REHMAN, On Hadamard inequalities for n–times differentiable functions which are relative convex via Caputo k–fractional derivatives, Nonlinear Anal. Forum, to appear.

[7] A. KASHURI AND R. LIKO, Generalizations of Hermite–Hadamard and Ostrowski type inequalities for MT_m–preinvex functions, Proyecciones 36, 1 (2017), 45–80.

[8] M. ADIL KHAN, Y. M. CHU, A. KASHURI, R. LIKO AND G. ALI, New Hermite–Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, In press.

[9] A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, Theory and applications of fractional differential equations, North-Holland Math. Stud. 204, Elsevier, New York-London, 2006.

[10] W. LIU, W. WEN AND J. PARK, Ostrowski type fractional integral inequalities for MT–convex functions, Miskolc Math. Notes 16, 1 (2015), 249–256.

[11] W. LIU, W. WEN AND J. PARK, Hermite–Hadamard type inequalities for MT–convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9, (2016), 766–777.

[12] C. LUO, T. S. DU, M. ADIL KHAN, A. KASHURI AND Y. SHEN, Some k–fractional integrals inequalities through generalized φ–m–MT–preinvexity, J. Comput. Anal. Appl. 240, (2019), Accepted paper.

[13] M. MATLOKA, Inequalities for h–preinvex functions, Appl. Math. Comput. 234, (2014), 52–57.
[14] O. OMOTEYINBO AND A. MOGBODEMU, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech. 1, 1 (2014), 1–12.

[15] C. PENG, C. ZHOU AND T. S. DU, Riemann-Liouville fractional Simpson’s inequalities through generalized \((m, h_1, h_2)\)-preinvexity, Ital. J. Pure Appl. Math. 38, (2017), 345–367.

[16] R. PINI, Invexity and generalized convexity, Optimization, 22, (1991), 513–525.

[17] E. SET AND A. GÖZPINAR, A study on Hermite-Hadamard type inequalities for \(s\)-convex functions via conformable fractional integrals, submitted.

[18] E. SET, A. GÖZPINAR AND J. Choi, Hermite-Hadamard type inequalities for twice differentiable \(m\)-convex functions via conformable fractional integrals, Far East J. Math. Sci. 101, 4 (2017), 873–891.

[19] E. SET AND I. MUMCU, Hermite-Hadamard-Féjér type inequalities for conformable fractional integrals, submitted.

[20] E. SET, M. Z. SARIKAYA AND A. GÖZPINAR, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., accepted paper.

[21] H. N. SHI, Two Schur-convex functions related to Hadamard-type integral inequalities, Publ. Math. Debrecen, 78, 2 (2011), 393–403.

[22] M. TUNÇ, E. GÖV AND Ü. ŞANAL, On \(tg_\beta\)-convex function and their inequalities, Facta Univ. Ser. Math. Inform. 30, 5 (2015), 679–691.

[23] S. VAROŞANEC, On \(h\)-convexity, J. Math. Anal. Appl. 326, 1 (2007), 303–311.

[24] E. A. YOUNESS, \(E\)-convex sets, \(E\)-convex functions, and \(E\)-convex programming, J. Optim. Theory Appl. 102, (1999), 439–450.

[25] X. M. ZHANG, Y. M. CHU AND X. H. ZHANG, The Hermite-Hadamard type inequality of \(GA\)-convex functions and its applications, J. Inequal. Appl., Article ID 507560, (2010), 11 pages.

[26] Y. ZHANG, T. S. DU, H. WANG, Y. J. SHEN AND A. KASHURI, Extensions of different type parameterized inequalities for generalized \((m, h)\)-preinvex mappings via \(k\)-fractional integrals, J. Inequal. Appl. 2018, 49 (2018), 1–30.