Antiviral Activity of an Extract from Leaves of the Tropical Plant Cynometra cauliflora

Noor Zarina Abd Wahab1,*, Aziah Azizul1, Norhidayah Badya2, Nazlina Ibrahim3

ABSTRACT
Background: Cynometra cauliflora is a species of tree in the family Fabaceae and has been used in folk medicinal preparation. Objectives: In this study, Cynometra cauliflora methanolic leaves extract was tested against clinical isolate herpes simplex virus type-1 (HSV-1). Materials and Methods: The leaves of C. cauliflora plant was extracted using methanol extraction method. Cytotoxicity was assessed using 3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT) assay. Plaque reduction assays were carried out to evaluate the antiviral activity of C. cauliflora extract against HSV-1. These include post-treatment, pre-treatment and virucidal assays. Results: The value of cytotoxicity concentration, CC50 of C. cauliflora extract was 36 mg/mL. High antiviral activity was observed in post-treatment. C. cauliflora extract treatment was found to not interfere directly to infectious particle and confer mild protection when given as prophylaxis. Conclusion: This study provides important novel insights on the phytomedicinal properties of C. cauliflora extracts on HSV-1. Key words: Herpes simplex virus type 1, Cynometra cauliflora, plaque reduction assay, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); virucidal.

INTRODUCTION
Medicinal plants of the Malaysian forest were reportedly rich in biological activities. Several interesting natural products were isolated from local medicinal plants such as styrlypyrone derivatives isolated from G. umbrosus have shown a potent antiviral activity against HSV-1 and dengue virus type 2 (DENV-2). Other in vitro studies also showed SPD is active against several cancer cell lines namely; HL-60 (leukemia), HepG2 (liver), PANC-1 and Hela cells. geraniin extracted from the rind of Nephelium lappaceum have shown antiviral activity against HSV-1 and dengue virus type 2 (DENV-2). C. cauliflora is a species of tree in the family Fabaceae and has been used in folk medicinal preparation. It is also commonly known as ‘Nam-Nam’ among native Malaysian as a tropical plant under the Fabaceae family. The fresh leaves parts were collected from the state of Terengganu, Malaysia. The leaves were cleaned with tap water to remove dirt and oven-dried at 60°C. Dried leaves powder of C. cauliflora was extracted with methanol. C. cauliflora leaves (100 g) was macerated with methanol (300 mL) to produce crude methanol extract. The extracts were filtered and solvent was evaporated under reduced pressure using rotary vacuum evaporator.

MATERIALS AND METHODS
Plant material
The fresh leaves parts were collected from the state of Terengganu, Malaysia. The leaves were cleaned with tap water to remove dirt and oven-dried at 60°C. Dried leaves powder of C. cauliflora was extracted with methanol. C. cauliflora leaves (100 g) was macerated with methanol (300 mL) to produce crude methanol extract. The extracts were filtered and solvent was evaporated under reduced pressure using rotary vacuum evaporator.

Cells and virus
Vero cell from American Type Culture Collection (ATCC) CCL-81 was used for both cytotoxicity and antiviral test. Dulbecco’s Modified Eagle’s Medium
(DMEM) (SigmaAldrich, USA) supplemented with 5% fetal bovine serum (FBS) (Sigma- Aldrich, USA) was used for cell maintenance throughout the experiment. Clinical strain of HSV-1 used was obtained from the stock culture of Faculty Science and Technology, Universiti Kebangsaan Malaysia.

Cytotoxicity test

Briefly, Vero cells (2.5×10^5 cells/mL) were seeded into 96-well plates and incubated overnight at 37°C. Upon 80% confluence, the cells were treated with several concentrations of extract, ranging from 3.13 mg/mL to 100 mg/mL. After incubation of about 72h, the growth medium was discarded and replaced with 100 μL of MTT solution and incubated for 3h. After that, the MTT solution was discarded, and formazan crystal was dissolved using 100 μL of dimethyl sulphoxide (DMSO) to lyse the cells. Colour development was detected using a microplate reader (TECAN Infinite 200 PRO, Austria) at 540 nm. Optical density (OD) of individual well was quantified using spectrophotometer at 540nm. Cells viability was calculated using formula below:

\[
\text{Cell viability (\%) = } \frac{\text{OD}_{\text{test}} - \text{OD}_{\text{blank}}}{\text{OD}_{\text{cell}} - \text{OD}_{\text{blank}}} \times 100
\]

where \(\text{OD}_{\text{test}} \) = optical absorbance of cells treated with SPD, \(\text{OD}_{\text{blank}} \) = optical absorbance for well filled with DMSO and \(\text{OD}_{\text{cell}} \) = optical absorbance for cells without treatment with SPD. Nonlinear regression was done to obtain the CC50 value (cytotoxic concentration which killed 50% of cells).

Antiviral assay

Antiviral activity was also evaluated by the plaque assay method. Screening for antiviral activity was performed using 3 different treatments. 1) Post-treatment: To evaluate antiviral activity of extract against intracellular replication of DENV-2, cells were inoculated with virus 2 hour before treatment with extract. 2) Pre-treatment: In order to determine the prophylactic anti-HSV-1 activity of extract, virus was inoculated to cells 24 hours after treatment with extract. 3) Virucidal: Direct virucidal effect of the extract was investigated by incubating virus with extract for 1 hour before it was inoculated on the cells. For the antiviral tests, the extract concentration tested was twice lower than the CC50 value in order to reduce the possibility of toxicity towards the cells. The viral concentration used for cell inoculations was fixed at 50 PFU. The effectiveness of extract as an antiviral agent expressed as selectivity index (SI).

\[
\text{Selectivity Index (SI) = Cytotoxicity concentration (CC}_{50}^{50}) \div \text{Effective concentration (EC}_{50}^{50})
\]

RESULTS

Cytotoxicity evaluation of C. cauliflora extract

MTT assay was conducted to determine the cytotoxicity of C. cauliflora extract towards Vero cells. The cytotoxicity assay result, as presented in Figure 1, shows the percentage of cell viability versus C. cauliflora extract concentration. The estimated CC50 value towards the Vero cells was 36.0 mg/mL.

Anti-HSV-1 activity of C. cauliflora

Plaque reduction assays were done to screen for anti-HSV-1 activity using C. cauliflora extract with different concentrations. Figure 2A, 2B and 2C shows the percentage of plaque reduction in post-treatment, pre-treatment and virucidal assays, respectively. The results from post-treatment assay showed that 100% plaque reduction was achieved at the concentration of 18 mg/mL. In pre-treatment assay, more than 50% plaque reduction was observed at 9 mg/mL. Meanwhile, C. cauliflora extract at any concentrations had no virucidal effect on HSV-1.

Effectiveness of certain compounds or extracts can be evaluated by using selective index (SI). In post-treatment assay, C. cauliflora extract exhibited potent antiviral activity against HSV-1 with EC50 = 2.14 mg/mL and with SI value of 16.8 (Table 1). Pre-treatment of Vero cells with C. cauliflora extract exhibited the prophylactic activity of extract against HSV-1 infection with EC50 = 8.5 mg/mL and with SI value of 4.23 (Table 1). C. cauliflora extract when added simultaneously with the virus not showed any anti-adsorption activity against HSV-1 (Table 1). Result revealed that C. cauliflora extract had greater SI value in post-treatment. Any antimicrobial compound that has SI values higher than 10 (SI>10) ensures the potential to be developed as an agent of antiviral drug. Selectivity index of C. cauliflora extract against HSV-1 was more than 10 indicating potential as antiviral agent.
Table 1: CC_{50}, EC_{50} and SI values of all extracts in post-treatment assay, pre-treatment assay and virucidal assay.

	CC_{50} (mg/mL)	EC_{50} (mg/mL)	SI (CC_{50}/EC_{50})
Post-treatment	36.0	2.14	16.8
Pre-treatment	36.0	8.5	4.23
Virucidal	36.0	-	-

CC_{50}: Cytotoxic concentration of SPD; EC_{50}: Effective concentration of SPD; SI: Degree of selectivity.
DISCUSSION

Based on phytochemical analyses the findings in previous study, C. cauliflora leave extract has been reported to be rich in secondary metabolites such as tannin, flavonoid, saponins, cardiac glycosides and terpenoids. Lyu and collaborators reported the elucidation of the mechanism of the antitherpetic (HSV-1) activity in vitro via plaque reduction assay of flavonoid. Similarly, Sieniaw ska demonstrated that tannins and related compounds, exhibit antitherpetic activity in vitro. In addition, Perez reported that saponins inhibit the replication of HSV-1 and poliovirus type 2 as shown by inhibition of cytopathic effect and reduction of virus production. Thus, the richness of secondary metabolites in C. cauliflora plant may contribute to anti-HSV-1 properties. In this study, we investigated whether C. cauliflora methanolic extracts could confer protection to cells before or after the initiation of HSV-1 infection. The ability of the extract to act directly against HSV-1 virion particle was observed in virucidal assay. This antiviral analysis was performed on Vero cells as a model of infection in mammalian cells.

Screening for antiviral activity involves post-, pre- and virucidal treatment to determine the best mode for antiviral administration. In this part of the study, C. cauliflora extract treatment was found to not interfere directly to infectious particle and confer mild protection when given as prophylaxis. Instead, this study showed that extract-HSV-1 treatment most effective when administered as post-treatment. The ability of C. cauliflora to confer protection to the cells before HSV-1 infection was tested by pretreating the cells with C. cauliflora. Pre-treatment was done to study the effect of the extract as prophylactic agent in protecting the cell from HSV-1 adsorption and penetration. C. cauliflora extracts presented low to mild prophylactic effects, perhaps due to the presence of various plant alkaloids in the crude extract of C. cauliflora, which may act synergistically to decrease the effective interaction of the active compounds. Additionally, the results are presented as some of the antiviral compounds in these extracts may be present at low levels in a non-cytotoxic dilution of the extract. Therefore, extract can act as partial prophylactic agent to protect Vero cells against HSV-1 infection. Virucidal agents are chemical substances that attack and inactivate the extracellular viral particles by damaging the cell surface receptors requires for fusion of the virion envelope with a cell plasma membrane, resulting in ineffective viral infection. Pre-treatment was done to study the effect of the extract as prophylactic agent in protecting the cell from HSV-1 adsorption and penetration. C. cauliflora extracts presented low to mild prophylactic effects, perhaps due to the presence of various plant alkaloids in the crude extract of C. cauliflora, which may act synergistically to decrease the effective interaction of the active compounds. Additionally, the results are presented as some of the antiviral compounds in these extracts may be present at low levels in a non-cytotoxic dilution of the extract. Therefore, extract can act as partial prophylactic agent to protect Vero cells against HSV-1 infection. Virucidal agents are chemical substances that attack and inactivate the extracellular viral particles by damaging the cell surface receptors requires for fusion of the virion envelope with a cell plasma membrane, resulting in ineffective viral infection. Virucidal agents are chemical substances that attack and inactivate the extracellular viral particles by damaging the cell surface receptors requires for fusion of the virion envelope with a cell plasma membrane, resulting in ineffective viral infection.

CONCLUSION

As a conclusion, our findings suggest that crude extract prepared from C. cauliflora contains antiviral active compounds and could be potential antiviral agent.

ACKNOWLEDGEMENTS

We wish to thank Universiti Sultan Zainal Abidin (UniSZA) for the facilities and laboratory instruments.

CONFLICTS OF INTEREST

None.

REFERENCES

1. Md Nor NS, Ibrahim N. Styrylpyrone derivative of goniathalamus umbrosus inhibit HSV-1 infection during viral early replication cycle. Antiviral Research. 2011;90:A21-78.
2. Ibrahim N, Shahar S, Wahab NZA, Nor NSM. Effect of styrylpyrone derivative (SPD) and SPD/foscarnet combination towards virus infected cell. The 2018 UKM FST Postgraduate Colloquium AIP Conf. Proc. 2019;2111:040002-1-4.
3. Noor Zarina AW, Nazlina I. In vitro study, antiviral activity of styrylpyrone derivative against dengue virus type 2. Asian Journal of Plant Sciences 2020;19:438-42.
4. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by human cervical HG-60 cells. Toxicology in vitro: An International Journal Published in Association with BIBRA. 2003;17(4):433-9.
5. Hawariah A, Stanslas J. In vitro response of human breast cancer cell lines to the growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenic. Anticancer Res. 1998;18(6A):4383-6.
6. Nurul Alia A, Noor Zarina AW, Noor Ayunie M, Azlin SS, Ahmad Syibli O. Antimicrobial Activity of Psidium guajava Leaves Extract Against Foodborne Pathogens. International Journal of Psychosocial Rehabilitation. 2020;24(7):2020.
7. Noor Zarina AW, Norhaidiyah B, Nazlina I, Mohd Khairul Arni K, Hafizan J, et al. Antiviral Activity of Cynometra Cauliflora Leaves Methanol Extract Towards Dengue Virus Type 2. International Journal of Engineering & Technology. 2018;73(3.14):344-7.
8. Abd Aziz AF, Iqbal M. Antioxidant Activity and Phytochemical Composition of Cynometra cauliflora. J Exp Int Med. 2013;3(4):337-41.
9. Tajudin TJ, Nashriyah Mat SA, Siti-Aishah AB, Aziz A, Yusran M, Alivi A, et al. Cytotoxicity, antiproliferative effects, and apoptosis induction of methanolic extract of Cynometra cauliflora Linn. Whole fruit on human promyelocytic leukemia HL-60 cells. Evidence-Based Complementary and Alternative Medicine. 2012;1-6.
10. Khoo HE, Azlan A, Kong KW, Ismail A. Phytochemicals and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development. Evidence-Based Complementary and Alternative Medicine. 2016;1-20.
11. Marbawi H, Sidi Ahmad SN, Baharudin NS, Gansau JA. In vitro embryo germination and callus induction of Cynometra cauliflora, an underutilized medicinal plant. Transactions on Science and Technology. 2016;3(3):476-82.
12. Lim TK. Edible Medicinal and Non-Medicinal Plants. 2012.
13. Horbul JE, Schmedel SC, Miller BRL, Rice SA, Southern PJ. Herpes simplex virus-induced epithelial damage and susceptibility to human immunodeficiency virus type 1 infection in human cervical organ culture. PLoS ONE 2011;6(7):e22638.
14. Shin H, Iwasaki A. Generating protective immunity against genital herpes. Trends in Immunology 2013;34(10):487-94.
15. Krawczyk A, Arndt MAE, Grosse-Hovest L, Weichert W, Giebel B, et al. Antiviral and cytotoxic effect and reduction of virus production. Thus, the richness of secondary metabolites in C. cauliflora plant may contribute to anti-HSV-1 properties. In this study, we investigated whether C. cauliflora methanolic extracts could confer protection to cells before or after the initiation of HSV-1 infection. The ability of the extract to act directly against HSV-1 virion particle was observed in virucidal assay. This antiviral analysis was performed on Vero cells as a model of infection in mammalian cells.
16. Krawczyk A, Arndt MAE, Grosse-Hovest L, Weichert W, Giebel B, et al. Antiviral and cytotoxic effect and reduction of virus production. Thus, the richness of secondary metabolites in C. cauliflora plant may contribute to anti-HSV-1 properties. In this study, we investigated whether C. cauliflora methanolic extracts could confer protection to cells before or after the initiation of HSV-1 infection. The ability of the extract to act directly against HSV-1 virion particle was observed in virucidal assay. This antiviral analysis was performed on Vero cells as a model of infection in mammalian cells.
17. Moses M, Md. Nor, NS, Ibrahim N. Styrylpyrone derivative of goniathalamus umbrosus inhibit HSV-1 infection during viral early replication cycle. Antiviral Research. 2011;90:A21-78.
18. Dargan DJ. Methods in Molecular Medicine. 1998;Totowa, New Jersey: Humana Press.
Wahab, et al.: Antiviral Activity of an Extract from Leaves of the Tropical Plant Cynometra cauliflora

19. Noor Zarina AW, Norhidayah B, Nazlina I, Mohd Khairul Amri K. Phytochemistry and antibacterial activity of Cynometra Cauliflora. Indian Journal of Public Health Research & Development. 2019;10(04):765-9.
20. Lyu S-Y, Rhim J-Y, Park W-B. Antitherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res. 2005;28(11):1293-301.
21. Sieniawska E. Activities of Tannins from in vitro Studies to Clinical Trials. Natural Product Communications. 2015;10(11), 1934578X1501001.
22. Perez RM. Antiviral Activity of Compounds Isolated from Plants. Pharmaceutical Biology. 2003;41(2):107-57.
23. Antoine TE, Park PJ, Shukla D. Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Reviews in Medical Virology. 2013;23(3):194-208.
24. Semple SJ, Reynolds GD, O’Leary MC, Flower RLP. Screening of Australian medicinal plants for antiviral activity. J Ethnopharmacol. 1998;60:163-72.
25. Galabov AS. Virucidal agents in the eve of manorapid synergy. GMS Krankenhhyg Interdiszip, 2007;2(1):18.

GRAPHICAL ABSTRACT

Mechanism of action of C. cauliflora extract antiviral activity against HSV-1

ABOUT AUTHORS

Dr. Noor Zarina Abd Wahab is senior lecturer at the Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Malaysia. Her current research interest are antimicrobial mechanism of action and biological activity of plant natural products.

Associate Professor Dr. Nazlina Ibrahim is senior lecturer at the Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia. Her current study is evaluation and determination of antimicrobial activities from plant, endophytes and synthetic chemicals. She also is interested in evaluating the toxicity of antimicrobial agents in cell culture and in animals.
Dr. Norhidayah Binti Badya is senior lecturer at the Faculty of Medicine, Universiti Sultan Zainal Abidin. Her current research interest are biomedical sciences, infectious/communicable diseases, molecular cell biology and epigenetics.

Aziah Azizul is postgraduate student of the Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Malaysia under supervision of Dr. Noor Zarina Abd Wahab.

Cite this article: Wahab NZA, Azizul A, Badya N, Ibrahim N. Antiviral Activity of an Extract from Leaves of the Tropical Plant Cynometra cauliflora. Pharmacog J. 2021;13(3): 752-7.