Integration of contractile forces during tissue invagination

Adam C. Martin, Michael Gelbart, Rodrigo Fernandez-Gonzalez, Matthias Kaschube, and Eric F. Wieschaus

Department of Molecular Biology, Howard Hughes Medical Institute, Lewis-Sigler Institute for Integrative Genomics, and Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065

Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior–posterior (a-p) embryonic axis.

Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supra-cellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.

Introduction

Throughout development, epithelial sheets of cells undergo dramatic rearrangements, such as tissue folding and invagination, to generate complex three-dimensional organs in a process called epithelial morphogenesis (Leptin, 2005; Lecuit and Lenne, 2007; Quintin et al., 2008). Epithelial morphogenesis results from coordinated cell shape changes and movements that collectively deform tissues (Holtfreter, 1943; Gustafson and Wolpert, 1962; Sweeton et al., 1991; Shih and Keller, 1992). Individual cell shape changes and movements require that forces are generated within cells. In addition, for cellular forces to result in coherent changes in tissue architecture, forces must be transmitted between epithelial cells. The mechanical coupling of epithelial cells implies that the integration of cellular forces can in turn influence individual cell dynamics (Peralta et al., 2007; Gorfinikel et al., 2009; Pouille et al., 2009; Solon et al., 2009). Therefore, understanding tissue morphogenesis requires determining how cellular forces are integrated across tissues and whether tissue-level forces feed back to control individual cell behaviors.

A common cell shape change that results in epithelial morphogenesis is apical constriction. Apical constriction reduces the apical cross-sectional area of an epithelial cell, which transforms a columnar cell to a wedge or cone shape. Coordinated apical constriction of mechanically coupled cells promotes epithelial folding and tissue invagination (Odell et al., 1981). During Drosophila gastrulation, apical constriction appears to be required for the invagination of the prospective mesoderm, a strip of ~1,200 cells along the ventral midline of the embryo (Leptin and Grunewald, 1990; Parks and Wieschaus, 1991; Sweeton et al., 1991). Apical constriction of mesoderm cells is polarized, or anisotropic, such that cells constrict predominantly in the ventral–lateral (v-l) direction, remaining longer along the anterior–posterior (a-p) axis (Fig. 1 A; Sweeton et al., 1991). The mechanism responsible for anisotropic constriction is not known, but one consequence is that whereas the tissue contracts in the v-l direction, a-p tissue length remains relatively constant, resulting in a long, narrow ventral furrow.
Results

Anisotropic apical constriction possibly reflects tissue mechanics

Polarized constriction could result from an individual cell behavior, such as directional actomyosin-based force generation along the v-l axis. Alternatively, a mechanical property of the tissue, such as greater tension along the a-p axis, could bias the direction in which cells constrict. Because ventral furrow cell apical constriction is pulsed (Martin et al., 2009), we decided to distinguish between these possibilities by determining whether the increase in cell polarization correlates with pulses of actomyosin contraction in individual cells. To visualize apical cell shape, we imaged ventral furrow cells in live embryos expressing the membrane markers Spider-GFP and Resille-GFP (Morin et al., 2001). We quantified the polarization of apical constriction by fitting apical cell outlines with ellipses and measuring two parameters (Fig. 1 B). Aspect ratio and anisotropy had similar values in elongated cells during furrow formation because cells were aligned along the a-p axis such that \(\theta \approx 0 \) (unpublished data).
Mean anisotropy and aspect ratio gradually increased to ~2 before cells invaginated into the embryo interior (Fig. 1, C and D). Analysis of individual cells demonstrated that transient increases in anisotropy did sometimes coincide with contrac-
tion pulses (Fig. 1, E and F, i). However, anisotropy also increased between contractions (Fig. 1, E and F, ii). Overall,
there was not a strong correlation between the constriction rate and the rate of change in anisotropy (r = 0.1 ± 0.24,
n = 125 cells, three embryos), which suggests that directional
contraction of individual cells is not solely responsible for the anisotropy. Furthermore, anisotropic constriction still
occurred in bicoid nanos torso-like (bnt) embryos that lack a-p polarity, which demonstrates that directional information
for individual cell constriction is not provided by the a-p pat-
tering system (Fig. 1 D). These results suggest that rather
than being caused by discrete cellular behaviors, anisotropic
apical constriction could result from the global mechanics of
the tissue.

AJs integrate contractile forces to
generate epithelial tension
AJs, which contain complexes of the transmembrane adhe-
sion molecule E-cadherin and the adaptors β-catenin and
α-catenin, link neighboring cells to each other and link the
cell surface to the actin cortex (Gumbiner, 2005). Partial
loss-of-function mutants in the Drosophila β-catenin (Arma-
dillo [Arm]), such as armΔ4300, result in lower levels of Arm,
E-cadherin, and α-catenin at the cell surface (Cox et al., 1996;
Sokac and Wieschaus, 2008; Sawyer et al., 2009). Therefore,
to determine whether there are mechanical properties of the
ventral furrow that might explain cell anisotropy, we exam-
ined the consequences of reducing AJ levels using maternal
and zygotic armΔ4300 mutants (armΔ29). Because contractile
forces for apical constriction are generated by myosin II on
the apical surface, we first visualized apical myosin-GFP in
live armΔ29 embryos. In wild-type embryos, myosin II forms
a meshwork on the ventral surface of the embryo (Fig. 2 A and
Video 1; Martin et al., 2009). In some armΔ29 embryos (n =
4/11), myosin II structures uniformly dissociated across the
tissue, presumably because of the global lack of cell adhe-
sion (unpublished data). However, in the majority of armΔ29
embryos (n = 7/11), the myosin II meshwork remained locally
intact, but tore across the entire width of the ventral furrow at
apparently random positions along the a-p axis before com-
pletely dissociating (Fig. 2 A and Video 1). Myosin-GFP in
the adjacent tissue retracted away from the tear, widening the
gap in the myosin II meshwork (Fig. 2 B). Epithelial tears
occurred in the ventral furrow but were not observed in more
lateral ectoderm at the same stage (unpublished data). These
results suggest that apical constriction of ventral furrow cells
generates epithelial tension, which can disrupt cell–cell adhe-
sion in embryos with weakened AJs. Similar epithelial
tears and tissue retractions were observed when arm (23/24
armRNAi embryos), E-cadherin (10/12 ECad2RNAi em-
byros), or α-catenin (3/12 α-cateninRNAi embryos) expres-
sion was knocked down using RNAi, which demonstrates
that all core AJ components are required for epithelial tension
(Fig. S1, A and B). However, the most striking feature of these
tears was that the associated tissue retraction was always di-
rected along the a-p axis of the embryo. This suggests that
epithelial tension transmitted through AJs is highest along the
a-p axis during ventral furrow formation, which could explain
the observed cell anisotropy.

Epithelial tension is highest along the
length of the ventral furrow
It was possible that decreasing the levels of AJ proteins
changed the wild-type distribution of tensile forces present
in the mesoderm primordium. Therefore, we sought to test
whether tension is anisotropic in this tissue by using an inde-
pendent approach. Laser ablation has served as an excellent
method to measure relative tensile forces in epithelial tissues
undergoing morphogenesis (Kiehart et al., 2000). Targeted UV
laser irradiation severs actin- and myosin II–containing struc-
tures, resulting in the recoil of the surrounding tissue whose
initial velocity (displacement/time) immediately after ablation
is proportional to the magnitude of the resting tension (Hutson
et al., 2003; Fernandez-Gonzalez et al., 2009). Because tissue
retraction associated with local ablations could be influenced
by the orientation of cellular actomyosin structures, we first
made 20-µm-long multicellular laser incisions along either the
a-p or v-l axes and measured the initial myosin II displace-
ment perpendicular to the incision at various distances from
the incision (Fig. 3 A). Incisions across the width of the ven-
tal furrow resulted in dramatic myosin displacement all along
the a-p axis of the embryo (Dap), which indicates tension along
this axis (Fig. 3 B and Video 2). Laser incisions parallel to the
furrow resulted in significantly less displacement along the v-l
axis (Dv; Fig. 3 B and Video 2), which is consistent with there
being lower v-l tension. To more accurately measure the initial
velocity of tissue retraction, we also performed 1-µm point
ablations in which we imaged myosin II displacement within
3 s of initiating ablation (compared with 9 s for line ablation,
Fig. S2). Ablation of isometric-looking myosin structures re-
sulted in retraction of the surrounding tissue (Fig. 3 D). To
determine if this displacement was directional, we measured
the initial radial displacement of myosin structures (Dθ) from
the site of ablation at different angles (θ) representing different
directions relative to the a-p and v-l axes (Fig. 3 E). The initial
radial displacement in wild-type embryos was 2–3-fold higher
along the a-p axis of the embryo (Fig. 3 F). These results con-
firm the conclusions from our analysis of armΔ29 mutants and
demonstrate that epithelial tension is predominantly directed
along the length of the ventral furrow.

Epithelial tension along the a-p axis causes
anisotropic apical constriction
The higher tension along the a-p axis suggests the possibility
that ventral furrow cells attempt to constrict isotropically, but
encounter more resistance and thus constrict less along the
a-p axis. To determine whether epithelial tension biases con-
striction to occur in the v-l direction, we examined how the
disruption of epithelial tension that results from AJ depletion
affects cell shape change in both live and fixed embryos.
epithelial tearing events (Fig. 4, D, E, and F). These results strongly suggest that individual cells are not hard-wired to undergo polarized contraction, but that apical constriction generates higher epithelial tension along the a-p axis, providing a mechanical constraint that feeds back to control the resulting individual cell shape.

In armRNAi embryos, cells within the tear rapidly expanded after dissociation of myosin II structures (Fig. 4, A and B; and Video 3). These distended cells abnormally changed neighbors as they expanded, which suggests that they had lost adhesion to one another (Fig. 4 C). Simultaneous with local cell expansion in the tear, the surrounding cells appeared to lose their a-p polarization and underwent isotropic apical constriction (Fig. 4, A and D; and Video 3). In live armRNAi embryos, cells that constricted after a neighboring epithelial tear exhibited a mean anisotropy of 1.07 ± 0.27 (mean ± SD, n = 120 cells, three embryos), which is close to being perfectly isotropic (anisotropy = 1). Furthermore, we observed cases in live armRNAi and ECad2RNAi embryos where cells began to contract anisotropically and then became more isotropic after epithelial tearing events (Fig. 4, D, E, and F). These results strongly suggest that individual cells are not hard-wired to undergo polarized contraction, but that apical constriction generates higher epithelial tension along the a-p axis, providing a mechanical constraint that feeds back to control the resulting individual cell shape.

Figure 2. ApJs integrate global epithelial tension. (A) Myosin II in live wild-type or armM/Z embryos. Myosin II initially starts to form a meshwork in armM/Z (arrowheads), but the meshwork separates at discrete positions along the a-p axis. (B) Kymograph of actomyosin meshwork separation in an armM/Z embryo. (C) Tearing of the supracellular meshwork alters myosin II organization and dynamics. Myosin II fibers that normally extend between myosin II spots retract (blue arrows) in armM/Z embryos (i). Loss of cell adhesion in armRNAi embryos causes myosin II to form rings (red and blue arrows) that contract (ii). Contracted myosin II rings in armRNAi embryos exhibit continuous, unrestrained cortical flow of myosin II spots (colored arrows track myosin spots over time) into the ring (iii). Bars: (A) 10 µm; (B) 10 µm; (C) 5 µm.
Integrating actomyosin contractility in tissues

Martin et al.

The largest of which likely resulted from pulses of myosin II coalescence (Fig. 5A). As myosin II levels increased and a furrow developed, myosin II and actin formed supracellular bridges using fixed embryos labeled with myosin II, actin, and E-cadherin. Before furrow formation, the majority of myosin II was present as isolated spots on the apical surface of individual cells,

Figure 3. Epithelial tension is highest along the length of the furrow. (A) Myosin-GFP images immediately after laser incisions (red lines, 20 µm) were made perpendicular to (top) or parallel to (bottom) the furrow. Myosin displacements perpendicular to these incisions (D_{ap} and D_{vl}) were measured. Bar, 20 µm. (B) D_{ap} and D_{vl} as a function of distance from the laser incision. The data were grouped into 4-µm bins (0–4, 4–8, etc…) and data points are mean ± SEM (indicated by error bars; n = 4 embryos). (C) D_{ap} as a function of distance for H₂O-injected (control) and twiRNAi embryos. Data points are the same as in B (n = 5 embryos). (D) Myosin-GFP images before (top) and after (bottom) a point ablation (crosshair). In the bottom panel, the post-ablation image (red) overlays the pre-ablation image (blue) to illustrate myosin displacement. Bar, 20 µm. (E) Schematic illustrating the method used for quantifying radial myosin displacement (D_r) in the direction (θ) relative to the a-p and v-l axes. Radial displacement is the component of the measured displacement (D) along direction θ. (F) D_r as a function of θ. The data were grouped into bins of 30° and data points are mean ± SEM (indicated by error bars; n = 5 embryos).
assembled and reappear at the apical surface as spotlike structures between cell vertices (Fig. 5 C; Dawes-Hoang et al., 2005; Kölsch et al., 2007; Martin et al., 2009). Spot AJs appeared to connect radial actomyosin fibers end-to-end to generate the supracellular fibers (Fig. 5 C). Interestingly, spot AJs linking actomyosin fibers were often stretched along the fiber, possibly indicating tension being exerted on the junction (Fig. 5 C). Thus, spot AJs appear to integrate cellular actomyosin networks into supracellular actomyosin fibers, resulting in a tissue-wide actomyosin meshwork.

fibers that extended across multiple cells and were incorporated into the tissue-wide meshwork (Fig. 5, A and B). Supracellular actomyosin fibers bridged the apical surface of the cell, such that the ends of myosin II fibers met at cell–cell interfaces (Fig. 5 B, i). Multiple radial actomyosin fibers often originated from a central myosin II spot or ring, which formed branches in the tissue-wide meshwork (Fig. 5 B, i). In addition to radial actomyosin fibers, some supracellular actomyosin fibers ran along cell boundaries (Fig. 5 B, ii). In ventral furrow cells, subapical AJs ~4 µm below the apical cortex are dis-
Spot AJs transmit tension from actomyosin fibers across the plasma membrane

To test whether spot AJs transmit tension between cellular actomyosin fibers, we examined more closely the cellular organization and dynamics of myosin II in embryos with reduced AJs. Supracellular actomyosin fibers initially formed in arm^{WZ} embryos, which is consistent with this allele retaining partial function (Fig. 2 A). However, upon epithelial tearing, myosin II fibers rapidly contracted, demonstrating that myosin II fibers generate contractile force in a manner similar to stress fibers (Fig. 2 C, i; and Video 4; Kumar et al., 2006). Loss of cell adhesion resulted in myosin II contraction into rings or balls across the entire epithelium (Fig. 2, A and C, ii and iii; and Fig. 4, A and B). Myosin II spots continuously flowed into myosin II rings, suggesting that unrestrained actomyosin contraction occurs in the absence of opposing contractile forces from surrounding cells (Fig. 2 C, iii; and Video 5). These results suggest that spot AJs balance tensile forces generated by cellular actomyosin networks to allow the formation of stable actomyosin fibers that transmit tension across the tissue.

The retraction of actomyosin fibers in embryos with reduced AJs could reflect a disruption of the extracellular linkage between adjacent cell plasma membranes or the intracellular connection between the plasma membrane and the actomyosin cortex. To distinguish between these models, we examined whether cell membranes completely separate during tearing events using scanning EM. In the ventral furrow of wild-type embryos, boundaries between cells cannot be discerned because of tight adhesion of these cells through apical AJs (Fig. 6 A). In contrast, individual
and ECad2RNAi embryos (Fig. S1 E). Thus, reducing the number of AJs possibly focuses the large amount of contractile force generated by ventral furrow cells onto the few remaining AJ–cytoskeleton connections, exceeding the forces of adhesion and causing junctions to detach from the tensile meshwork. However, because we have been unable to completely disrupt AJs, we cannot rule out the possibility that membrane tethers result from cell–cell adhesion that is E-cadherin and Arm independent. Regardless of the exact nature of the membrane connection, tether formation upon disruption of AJs further argues that spot AJs balance contractile forces across the plasma membrane, allowing tension to be transmitted between cells.

Epithelial tears and loss of cell-cell adhesion fail to occur in the absence of Snail-mediated actomyosin contraction

We have hypothesized that the epithelial tears observed in embryos with disrupted AJs result from contractility of the supracellular actomyosin meshwork. We previously showed that the transcription factor Snail is required for pulsed contractions and apical actomyosin meshwork assembly (Martin et al., 2009). Therefore, we determined whether Snail is required for the epithelial tears and loss of cell–cell adhesion observed in arm mutant embryos by performing double RNAi experiments in which the expression of sna was reduced in combination with arm. A control double-stranded RNA (dsRNA; CG3651RNAi) had no
effect on its own or with armRNAi (Fig. 7 A and Video 7), which demonstrates that multiple dsRNAs can be combined without affecting the potency of RNAi. Knockdown of sna and arm suppressed the formation of epithelial tears and the loss of adhesion normally observed in armRNAi embryos (n = 5 embryos; Fig. 7 A and Video 8). In addition, snaRNAi suppressed apical myosin II recruitment and contraction into rings in armRNAi embryos. Thus, epithelial tearing and loss of cell adhesion fail to occur in the absence of Snail-mediated actomyosin assembly, supporting the model that tension generated by the actomyosin contraction is responsible for these phenotypes.

Twist-mediated stabilization is required to transmit epithelial tension

The transcription factor Twist affects actomyosin contractility in the ventral furrow differently than Snail. Pulses of actomyosin...
contraction still occur in twi mutant and twiRNAi embryos. However, the resulting constriction fails to be stabilized, possibly because of a defect in maintaining cortical tension (Martin et al., 2009). Therefore, we examined whether Twist is required for the epithelial tears in armRNAi embryos to distinguish the roles of pulsed actomyosin contraction and Twist-dependent stabilization in generating tissue-wide epithelial tension. Pulses of myosin II coalescence occurred in twi-armRNAi embryos, similar to twiRNAi alone (Fig. 7 A and Video 9). Similar to armRNAi embryos, cells lost adhesion and formed tethers and dramatic blebs in twi-armRNAi embryos (Figs. 7 B and S1 F). Thus, pulsed contractions generate local tension that can disrupt cell–cell adhesion. Pulses continued even after cells lost adhesion, which suggests that the pulsed contraction does not require mechanical interactions between cells. Importantly, cell dissociation occurred without the formation of tissue-wide tears along the a-p axis of the embryo (n = 10 embryos; Fig. 7, A and B; and Videos 9 and 10), which suggests that pulsed actomyosin contractions are insufficient to generate global epithelial tension. To further examine Twist’s role in generating tension, we performed laser incisions across the width of the furrow and measured a-p myosin displacement (Dap) in control (H2O-injected) and twiRNAi embryos. twiRNAi embryos exhibited significantly lower levels of recoil at all distances from the incision, demonstrating that Twist is indeed required to transmit tension between ventral furrow cells (Fig. 3 C). Because Twist enhances Snail expression, it was possible that the disruption of epithelial tension was caused by lower levels of Snail activity (Kosman et al., 1991; Leptin, 1991). However, knockdown of the two Twist targets, fog and t48 (Costa et al., 1994; Kölsch et al., 2007), also suppressed the formation of tissue-wide epithelial tears in fog-t48-armRNAi embryos, demonstrating that this Twist activity is independent of Snail (unpublished data). Consistent with the importance of Twist in generating tissue-wide tears, epithelial tears in armM2Z mutants are restricted to ~14 cells within the 18 cell–wide Snail expression domain (Fig. 7 C), corresponding to the domain of highest Twist expression, where transcriptional targets such as folded gastrulation are activated (Leptin, 1991; Costa et al., 1994). Thus, Twist-mediated stabilization is required to transmit tension across the tissue, which is required for epithelial tears in arm mutant embryos.

Twist stabilizes apical myosin II fibers between contraction pulses to form a supracellular actomyosin meshwork

Why do pulsed myosin II contractions in twiRNAi embryos fail to transmit tension across the tissue? To address this question, we used myosin-GFP and membrane-mCherry to compare cellular myosin II dynamics in wild-type and twiRNAi embryos. In wild-type cells, myosin II fibers remain on the apical cortex after contraction pulses during the stabilization phase of apical constriction (Fig. 8 A; Martin et al., 2009). This results in a gradual increase in cortical myosin II levels over a series of contractions (Fig. 8 B). In contrast, myosin II seemed to disappear from the apical cortex after contraction pulses in twiRNAi embryos, with myosin II levels falling back to near the same level as before the pulse (Fig. 8, A and B). To determine whether twiRNAi affects cortical myosin II levels after contraction, we averaged normalized myosin II intensity profiles for individual pulses in control (CG3651 RNAi) and twiRNAi embryos. We found that mean cortical myosin II intensity in twiRNAi embryos dropped to a significantly lower level after a contraction pulse than control embryos (Fig. 8 C; P < 0.0001). This Twist-dependent stabilization of cortical myosin II was even more dramatic in arm-twRNAi embryos. In contrast to armRNAi embryos, where myosin II contracts into a stable cortical ring in each cell, myosin contractions in arm-twRNAi embryos were pulsed, with myosin II disappearing from the cortex after coalescing (Fig. 8 D). Myosin II dynamics in arm-twRNAi embryos were indistinguishable from fog-t48-armRNAi (n = 5 embryos), demonstrating that destabilization of cortical myosin II resulted directly from loss of function in the Twist pathway and not from lower Snail activity (Fig. 8 D). Given that contraction pulses are asynchronous in adjacent cells (Martin et al., 2009), we hypothesized that the failure to retain cortical myosin II between pulses would disrupt supracellular meshwork formation because only a subset of cells would have cortical myosin II at a given time. To test this, we segmented myosin-GFP images from control and twiRNAi embryos and measured the area of the largest myosin-GFP structure at each time point (Fig. 8 E). With our segmentation threshold, control embryos assembled large myosin II networks on the order of 200–300 µm2, or the size of several cells (Fig. 8 F). However, twiRNAi embryos rarely exhibited myosin II networks larger than 50 µm2, which corresponds to the apical area of an individual cell. We propose that Twist-dependent stabilization of apical myosin II fibers is required to form the supracellular actomyosin meshwork, which allows tension to be stably transmitted across the epithelium during ventral furrow formation.

Discussion

AJs integrate tensile force along the length of the ventral furrow

Recent studies have demonstrated the importance of actomyosin and AJs for individual cell shape changes and morphogenesis (Bertet et al., 2004; Dawes-Hoang et al., 2005; Franke et al., 2005; Blankenship et al., 2006; Gorfinkel and Arias, 2007; Martin et al., 2009; Sawyer et al., 2009). However, less is known about the underlying mechanisms by which dynamic contractile forces are transmitted between cells of an epithelium and the resulting tissue mechanics. In this study, we examined the mechanisms of ventral furrow formation both by lowering AJ levels and by ablating the apical actomyosin meshwork. Reducing AJ levels sensitized cell adhesion to stress, resulting in discrete, tissue-wide epithelial tears. We propose that tears in AJ-depleted embryos result from the loss of mechanical connections between cells when contractility exceeds the forces of adhesion. Interestingly, tears resulted from tissue separation along the a-p axis, which suggests that tension transmitted by AJs is mostly oriented along the length of the ventral furrow (Fig. 9 A). We confirmed this anisotropy in epithelial tension by showing that laser ablations in the ventral furrow also result in preferential...
Integrating actomyosin contractility in tissues

• Martin et al.

Epithelial tension controls individual cell shape

Ventral furrow cells undergo polarized apical constriction, constricting predominantly in the v-l direction and remaining longer along the a-p axis (Sweeton et al., 1991). Because we failed to find a correlation between contraction pulses and cell anisotropy and because epithelial tension itself is anisotropic, we tested whether polarized apical constriction results from the mechanical constraints of the tissue. Indeed, epithelial tears allowed adjacent anisotropic cells to constrict isotropically, which suggests that ventral furrow cells attempt to constrict isotropically, but encounter greater resistance to constriction along the a-p axis (Fig. 9 B). During germ band extension, tension generated by supracellular actomyosin cables influences myosin retraction along the a-p axis. The global a-p retraction of the surrounding tissue after epithelial tearing suggests that the ventral furrow is a mechanically coherent epithelium, in which high levels of tensile force are integrated along the length of the furrow.

It is surprising that the vast majority of the epithelial tension generated by apical constriction is oriented along the length of the furrow, the axis with the least tissue movement. Indeed, one might have expected greater levels of tension along the v-l axis given that apical constriction is thought to pull lateral cells toward the ventral midline around the circumference of the embryo (Fig. 9 A). Future experiments are required to determine how anisotropic tension in the ventral furrow contributes to the bending and invagination of this epithelium.
II assembly and dynamics within these cables (Fernandez-Gonzalez et al., 2009). Tension also appears to modulate actomyosin organization in the ventral furrow because epithelial tears resulted in unrestrained myosin II contraction into ring-like structures, as opposed to formation of a fibrous meshwork. Thus, the coupling of cellular contractile meshworks generates tension that feeds back to regulate both cytoskeletal organization/dynamics and cell shape. These results illustrate how the interplay between cell- and tissue-level forces influences cell shape change during morphogenesis.

Spot AJ’s transmit tensile forces oriented perpendicular to cell interfaces

Epithelial tension observed during ventral furrow formation likely resulted from contractile forces generated by apical actomyosin meshworks. We found that cellular actomyosin fibers were coupled end-to-end at spot AJ’s to form supracellular fibers and a tissue-wide meshwork. Disruption of AJ’s caused an imbalance of forces across the plasma membrane, resulting in membrane tethers. This supports a model in which tensile forces are integrated through discrete AJ anchors that link actomyosin networks in adjacent cells (Fig. 9 C). Supracellular actomyosin cables that transmit tension parallel to cell interfaces have been observed during germ band extension, dorsal closure, and compartment boundary formation (Rauzi et al., 2008; Rodriguez-Diaz et al., 2008; Fernandez-Gonzalez et al., 2009; Landsberg et al., 2009). However, in the ventral furrow, supracellular actomyosin fibers are mostly oriented perpendicular to cell interfaces (Fig. 9 C). This orientation is similar to that of actin in forming cultured epithelia, where radial actin fibers terminate in spot junctions and form supracellular actin meshworks across the apical surface of epithelia (Yonemura et al., 1995; Adams et al., 1996; Vaezi et al., 2002). Furthermore, actin meshworks consisting of radial actin fibers emanating from central actin spots are also observed in Xenopus cells undergoing convergence and extension (Skoglund et al., 2008; Rolo et al., 2009). Actomyosin organization as a two-dimensional branched meshwork could represent a different mechanical paradigm for epithelial morphogenesis that enables cells to form a mechanically coherent sheet in which tensile forces are not restricted to cell interfaces, but bridge the surface of cells across the entire tissue.

Pulsatile and stable contractile networks cooperate to change cell shape and transmit tension across the tissue

Knockdown of the transcription factor Twist using RNAi separates the activities of pulsatile actomyosin contraction and cell shape stabilization between contractions (Martin et al., 2009). Pulses of actomyosin contraction continued to occur in both arm-twiRNAi and arm-arm-twiRNAi embryos. In arm-arm-twiRNAi embryos, pulsed contractions disrupted cell–cell adhesion and formed membrane tethers, which suggests that pulsed contractions generate cellular tension that can separate the actomyosin network from AJ’s. A recent study of amnioserosa apical constriction proposed that contraction pulses are activated by mechanical interactions (i.e., stretching) between cells (Solon et al., 2009). However, in ventral furrow cells, pulsatile actomyosin contractions occurred even after cells lost adhesion, which suggests that pulsed contractions are fundamentally cell autonomous, possibly resulting from dynamic behaviors of cytoskeletal networks.
MATERIALS AND METHODS

FLY STOCKS AND GENETICS

The following stocks containing fluorescent fusion proteins were used: Spider-GFP (95–1) and Resille-GFP (117–2) (Morin et al., 2001), membrane-mCherry (this paper), myosin-GFP (sqh-GFP; Ryoji et al., 2002), and myosin-mCherry (sqh-GFP; Martin et al., 2009). To examine cell shape in embryos devoid of α-p polarity, we used the stock w; Resille-GFP; bicoid[1] nanos[2] torso-like[46]/TM3; Scr. We analyzed embryos from mothers that were homozygous for bicoid[1] nanos[2] torso-like[46]. To generate arm[2/2] mutants, we created arm[4X4A] germ-line clones using the FLP-FS system (Chou and Perrimon, 1992). We visualized myosin II in arm[2/2] mutants by generating a stock that was arm[4X4A] FRT101/FM7, sqh-GFP. We crossed females of this genotype to w ovo[3] FRT101/Y, fly-138 males to obtain arm[4X4A] FRT101/w ovo[3] FRT101; fly-138+/females. These females were heat shocked as larvae for 2 h at 37°C each day to induce mitotic recombination in the germ line. We imaged embryos from the following cross: arm[4X4A] FRT101/w ovo[3] FRT101; fly-138+/females x FM7/y; fly-138+/males. Half of these embryos showed loss of cell-cell adhesion, which is consistent with half being rescued zygotically.

Construction of membrane-mCherry

A membrane-mCherry marker was created by fusing the N-terminal 20 amino acids of the rat Gap43 gene, which contains a myristoylation sequence, to mCherry. This membrane-mCherry fusion was cloned into a pBUES vector containing the sqh promoter and 3′ untranslated region (Martin et al., 2009). The 3-kilobase KpnI/XbaI sqh3-membrane::mCherry-sqh3 fragment was then inserted into a transformation vector containing the attP site (Pl beg, courtesy of S. Ferguson, State University of New York at Fredonia, Fredonia, NY). The resulting construct was sent to Genetic Services, Inc., for integration into the attP2 site using the phic31 integrase system (Groth et al., 2004).

Laser ablation

Embryos were prepared for live imaging and were imaged using an Ultraview spinning disk confocal microscope equipped with a 63×/1.4 NA oil-immersion lens controlled with MetaMorph software (Universal Imaging). An N2 Micropoint laser (Photronics Instruments) tuned to 365 nm was focused on sqh-GFP structures on the ventral surface of the embryo to ablate actomyosin structures. Point ablations were performed by ablating isotropic sqh-GFP spots with a point ~1 μm in diameter, which took ~670 ms. Line ablations were performed by making nine sequential point ablations to make a 20-μm incision, which took ~6.4 s. Z stacks were acquired immediately before and after ablation in order to measure displacement of myosin II structures upon release of tension.

Image processing and analysis

Images presented were processed using ImageJ (http://rsb.info.nih.gov/ij/) and Photoshop CS (Adobe Systems, Inc.). A Gaussian smoothing filter with a radius of one pixel was used to reduce noise in published images. Myosin II images presented in all figures are maximum intensity projections of the apical ~5 μm of cells in the middle of the image. Because myosin II is almost entirely present on the apical surface of cells, these images represent a surface projection of the embryo. Images of cell outlines are z slices ~2 μm below the apical surface.

Image segmentation was performed using custom MATLAB (MathWorks) software. Raw images were bandpass filtered with effective cutoff wavelengths of ~1.4 μm low pass and ~6 μm high pass. The images were then thresholded and skeletonized to reduce the width of the membranes to one pixel. Cells were then indexed and tracked based on the distance between cell centroids at subsequent time points. We manually removed cells with errors in the segmentation to ensure that all cells in the dataset were correctly identified. Aspect ratio and anisotropy were calculated by using the “regionprops” function in MATLAB to measure major axis length, minor axis length, and orientation for individual cells. We measured the intensity of cortical myosin II in individual cells using three-dimensional time-lapse videos that were ~5 μm in depth. To separate cortical myosin II structures from the diffuse cytoplasmic staining, we smoothed sqh-GFP images using a Gaussian smoothing filter with a three-pixel kernel size, σ = 0.5 pixels, and clipped intensity values three standard deviations above the mean. We then made maximum-intensity z projections of myosin II (averaging the two highest-intensity values) and integrated the intensity
of all the pixels in a given cell. Data for apical area, myosin intensity, and anisotropy were smoothed using a Gaussian smoothing filter (σ = 18–24 s, three time points) to remove noise.

Recoil of sqh-GFP structures after laser ablation was quantified using custom software in which myosin spots were hand selected and tracked from the pre-ablation frame to the post-ablation frame (Fernandez-Gonzalez et al., 2009).

To measure the continuity of the supracellular meshwork in control-injected and twiRNAi embryos, we thresholded maximum-intensity projections of sqh-GFP images using the mean pixel intensity as a cutoff. We then used the “bwmorph” function in MATLAB to identify connected objects and identified the largest object at each time point in a time-lapse video.

Embryo fixation and staining
To visualize cytoskeletal structures, embryos were fixed with 8% paraformaldehyde/heptane for 30 min, manually devitellinized, stained, and mounted in AquaPolymount (Polysciences, Inc.). Endogenous sqh-GFP fluorescence was used to visualize myosin II, and Alexa Fluor 568 phalloidin (Invitrogen) was used to visualize F-actin. Drosophila E-Cadherin (Dcad2) was recognized using rat anti-Dcad2 (Developmental Studies Hybridoma Bank) at a dilution of 1:50. Snail and neurotactin double stainings were performed in heat-fixed embryos using mouse anti-neurotactin (BP106; Developmental Studies Hybridoma Bank) and rabbit anti-Snail (a gift from M. Biggin, Lawrence Berkeley National Laboratory, Berkeley, CA) at dilutions of 1:100 and 1:1,000, respectively.

Scanning EM
Embryos were dechorionated with 50% bleach and fixed for 25 min at room temperature (23°C) with a 1:1 mixture of 25% glutaraldehyde in 0.1 M cacodylate buffer and heptane. The vitelline membrane was then manually removed with a needle, and embryos were dehydrated by gradually stepping up the concentration of ethanol (25%, 50%, 75%, 95%, and 100%). Embryos were then incubated for 10 min with a 1:1 mixture of ethanol and tetramethylsilane (TMS), and then with 100% TMS. The TMS was allowed to evaporate, and we transferred the embryos to the microscope stage and performed metal coating using a Desk II Sputterer (Denton Vacuum). Samples were imaged using a tabletop scanning EM (TM-1000; Hitachi).

RNAi
Primers for dsRNA were designed with ERNAi (Arziman et al., 2005). Primers included the sequence of the T7 promoter (5′-TAATACGACTCACTATAGGG-3′) followed by the following recognition sequences: Arm-F, 5′-CTGGTATCCATAGCCGACCA-3′; Arm-R, 5′-TGCTACTTCAACAGCAACC-3′; Ecad2-R, 5′-GGACATACTCTCAGGGCCG-3′; catenin-F, 5′-AAGCTGCAAATCTGGAATGGAAA-3′; catenin-R, 5′-TCTAAGACTCGTTTGGG-3′; Fog-R, 5′-TGGTGACCAGTTCTCTTTCC-3′; and T48-R, 5′-GGACATACTCTCAGGGCCG-3′. Annealing was performed by adding 10 mM EDTA, 0.1% SDS, and 0.1 M NaCl to the reaction and incubating this mixture in a water bath heated to >90°C, which was allowed to cool for several hours. The dsRNA from genomic DNA. PCR products were used in a transcription reaction (Martin et al., 2009). Primer pairs were used to amplify a PCR product of 1:100 and 1:1,000, respectively.

Online supplemental material
Fig. S1 shows that knockdown of E-cadherin, Arm, or α-catenin disrupts the myosin II network and results in membrane tethers. Fig. S2 shows myosin-GFP displacement as a function of time for the two types of laser ablation experiments shown in Fig. 3. Video 1 shows myosin-GFP in wild-type and armRNAi mutant embryos. Video 2 shows laser ablations in myosin-GFP embryos. Video 3 shows myosin-mCherry and membrane-GFP in an armRNAi embryo. Video 4 shows the contraction of a myosin II fiber in an armRNAi mutant embryo. Video 5 shows the un-restrained myosin II contraction that occurs after tearing in an armRNAi embryo. Video 6 shows membrane tether formation in a membrane-GFP embryo. Video 7 shows myosin-GFP in a double RNAi control arm-CG3651RNAi embryo. Video 8 shows the suppression of tears and loss of cell–cell adhesion in a myosin-GFP arm-snaRNAi embryo. Video 9 shows that contraction pulses continue despite loss of cell–cell adhesion in a myosin-GFP arm-twRNAi embryo. Video 10 shows the suppression of epithelial tears in a membrane-GFP arm-twRNAi embryo. Online supplemental materials is available at http://www.jcb.org/cgi/content/full/jcb.200910099/DC1.

We are especially grateful to J. Zallen for allowing us to use the laser ablation system developed in her laboratory. We thank J. Goodhouse for his assistance with microscopy, S. Ferguson for providing the phic31 integration vector, and A. Sokac, Y-C. Wang, and J. Zallen for their helpful suggestions on the manuscript.

This work was supported by grant 5F06-1433112DCD from the American Cancer Society to A.C. Martin, P50 grant GM071508 from National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS) to M. Kaschube, RO1 grant GM079340 from NIH/NIGMS to J. Zallen, and National Institute of Child Health and Human Development grant 5R37HD15587 to E.F. Wieschaus. E.F. Wieschaus is an investigator of the Howard Hughes Medical Institute.

Submitted: 28 October 2009
Accepted: 1 February 2010

References
Adams, C.L., W.J. Nelson, and S.J. Smith. 1996. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell–cell adhesion. J. Cell Biol. 135:1899–1911. doi:10.1083/jcb.135.6.1899
Arziman, Z., T. Horn, and M. Boutros. 2005. E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Res. 33:W582–W588. doi:10.1093/nar/gki468
Bertet, C., L. Sulak, and T. Lecuit. 2004. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature. 429:667–671. doi:10.1038/nature02590
Blankenship, J.T., S.T. Backovic, J.S. Opsy, W. Weitz, and J.A. Zallen. 2006. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell. 11:459–470. doi:10.1016/j.devcel.2006.09.007
Buhl, A.M., N.L. Johnson, N. Dhanasekaran, and G.L. Johnson. 1995. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J. Biol. Chem. 270:24631–24634. doi:10.1074/jbc.270.42.24631
Chou, T.B., and N. Perrimon. 1992. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 131:643–653.
Costa, M., E.T. Wilson, and E. Wieschaus. 1994. A putative cell signal encoded by dpp3 regulates dorsal-ventral asymmetry in Drosophila. J. Cell Biol. 124:2208–2221. doi:10.1083/jcb.124.12.2208
Dawes-Hoang, R.E., K.M. Parmar, A.E. Christiansen, C.B. Phelps, A.H. Brand, and E.F. Wieschaus. 2005. Folded gastrulation, cell shape change and the control of myosin localization. Development. 132:4165–4178. doi:10.1242/dev.01938
Fernandez-Gonzalez, R., Sde.M. Simoes, J.C. Röper, S. Eaton, and J.A. Zallen. 2009. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell. 17:736–743. doi:10.1016/j.devcel.2009.09.003
Franke, J.D., R.A. Montague, and D.P. Kiehart. 2005. Nonmuscle myosin II generates forces that transmit tension and drive contractions in multiple tissues during dorsal closure. Curr. Biol. 15:2208–2221. doi:10.1016/j.cub.2005.11.064
Gorinkin, N., and A.M. Arias. 2007. Requirements for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 174:133–148. doi:10.1016/j.cell.2006.11.133
Groth, A.C., M. Fish, R. Nusse, and M.P. Calos. 2004. Construction of transgenic Drosophila by using the site-specific integrase from phage phi31. Genetics. 166:1775–1782. doi:10.1534/genetics.166.4.1775
Gumbiner, B.M. 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6:622–634. doi:10.1038/nrm1699

Gustafson, T., and L. Wolpert. 1962. Cellular mechanisms in the morphogenesis of the sea urchin larva. Change in shape of cell sheets. Exp. Cell Res. 27:260–279. doi:10.1016/0014-4827(62)90229-X

Hardin, J., and R. Keller. 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development. 103:211–230.

Holfreter, J. 1943. A study of the mechanics of gastrulation (part 1). J. Exp. Zool. 94:261–318. doi:10.1002/jez.14009404032

Hutson, M.S., Y. Tokutake, M.S. Hutson, R. Montague, S. Venakides, D.P. Kiehart, S., and E. Wieschaus. 1991. The leptin gene: a G alpha-like protein. J. Cell Biol. 158:127–137. doi:10.1083/jcb.158.1.127

Kiehart, D.P., C.G. Galbraith, K.A. Edwards, W.L. Rickoll, and R.A. Dorn. 2000. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149:471–490. doi:10.1083/jcb.149.2.471

Kölsch, V., T. Seher, G.J. Fernandez-Ballester, L. Serrano, and M. Leptin. 2007. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science. 315:384–386. doi:10.1126/science.1134883

Kosman, D., Y.T. Ip, M. Levine, and K. Arora. 1991. Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science. 254:118–122. doi:10.1126/science.1925551

Kumar, S., I.Z. Maxwell, A. Heisterkamp, T.R. Polte, T.P. Lele, M. Salanga, E. Mazur, and D.E. Inger. 2006. Viscoselastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762–3773. doi:10.1529/biophysj.105.071506

Landsberg, K.P., R. Farhadifar, J. Ranft, D. Umetsu, T.J. Widmann, T. Bittig, A. Royou, A., W. Sullivan, and R. Karess. 2002. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 158:127–137. doi:10.1083/jcb.200203148

Sawyer, J.K., N.J. Harris, K.C. Slep, U. Gaul, and M. Peifer. 2009. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186:57–73. doi:10.1083/jcb.200904010

Shih, J., and R. Keller. 1992. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development. 116:901–914.

Skoglund, P.A., R. Aro, X. Chen, B.M. Gumbiner, and R. Keller. 2008. Convergence and extension at gastrulation require a myosin II-dependent cortical actin network. Development. 135:2435–2444. doi:10.1242/dev.014704

Sokac, A.M., and E. Wieschaus. 2008. Zygotically controlled F-actin establishes cortical compartments to stabilize furrows during Drosophila celluarization. J. Cell Sci. 121:1815–1824. doi:10.1242/jcs.025171

Solon, J., A. Kaya-Copur, J. Colombelli, and D. Brunner. 2009. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell. 137:1331–1342. doi:10.1016/j.cell.2009.03.050

Sweeten, D., S. Parks, M. Costa, and E. Wieschaus. 1991. Gastrulation in Drosophila: the role of cortical furrow and posterior midgut invaginations. Development. 112:775–789.

Vaezi, C., B. Bauer, V. Vasioukhin, and E. Fuchs. 2002. Actin cable dynamics differences between non-polarized fibroblasts and polarized epithelial cells. Dev. Cell. 3:367–381. doi:10.1016/S1534-5807(02)00259-9

Yonemura, S., M. Itoh, A. Nagafuchi, and S. Tsukita. 1995. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108:127–142.

Rauzi, M., P. Verant, T. Lecuit, and P.F. Lenne. 2008. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10:1401–1410. doi:10.1038/ncb1798

Rodriguez-Diaz, A.Y., Y. Toyama, D.L. Abravanel, J.M. Wiemann, A.R. Wells, U.S. Tulu, G.S. Edwards, and D.P. Kiehart. 2008. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP J. 2:220–237. doi:10.2976/j.205565

Rolo, A., P. Skoglund, and R. Keller. 2009. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIIB. Dev. Biol. 327:327–338. doi:10.1016/j.ydbio.2008.12.009

Royou, A., W. Sullivan, and R. Karess. 2002. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 158:127–137. doi:10.1083/jcb.200203148

Vaezi, C., B. Bauer, V. Vasioukhin, and E. Fuchs. 2002. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell. 3:367–381. doi:10.1016/S1534-5807(02)00259-9

Yonemura, S., M. Itoh, A. Nagafuchi, and S. Tsukita. 1995. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108:127–142.