Table 1: Description of color vision categories for various professional fields in India and predicted fail rate in normals and pass rate in individuals with CVD

Category	Professional Field	Description	% normals who fail	% CVD who pass	
Protans	CP‑1	Air Force, Navy	Pass Martin Lantern test at 6 m*	0.0	0.0
	CP‑2	Aviation	Zero errors on Ishihara test	18.15	0.71
	CP‑3	Army, Aviation	Pass Martin Lantern test at 1.5 m/read correctly plates 22‑25 in Ishihara test	21.66	0.63
	CP‑4	Disqualified from the above jobs	Failed Martin Lantern test	-	-

Prediction rates are given based on Holmes Wright Type A lantern test - CIE recommended protocol [2]

Striking the metronome in morphometric analysis of glaucoma - Shifting from Bruch’s Membrane Opening - Horizontal Rim Width (BMO-HRW) to Bruch’s Membrane Opening - Minimum Rim Width (BMO-MRW)

Dear Editor,

The neuro-retinal rim is separated from vitreous by the inner limiting membrane (ILM) of Elschnig. ILM is an objective inner boundary of neuroretinal rim tissue that is consistently detected by spectral-domain optical coherence tomography (SD-OCT). Currently, methods for neuro-retinal rim width measurement in SD-OCT employs the Bruch’s membrane opening (BMO) as the anatomical border of the rim, referenced to a BMO horizontal reference plane, termed as “BMO-horizontal rim width” (BMO-HRW). In contrast, the Spectralis OCT (Heidelberg Engineering, Germany) Glaucoma Module Premium Edition (GMPE) provides a new, objective method of optic nerve head (ONH) analysis using BMO, but the neuro-retinal rim assessment is performed from the BMO to the nearest point on the internal limiting membrane (ILM) rather than on the horizontal reference plane [Fig. 1]. This minimum distance measured between the BMO and the ILM in the ONH...
is defined as “BMO-minimum rim width” BMO-MRW [Fig. 1]. This parameter considers the orientation of the neuroretinal rim tissue relative to the point of measurement, and also takes into consideration the highly variable anatomy of the ONH between individuals, and quantifies the rim width perpendicular to the trajectory of axons. Applicative examples of the GMPE software in normal [Figs. 2-4] and glaucoma patients [Figs. 5-7] are shown. Additionally, this new software provides an anatomic positioning system [Figs. 2b and 5b] where acquisition of data is based on fovea-to-BMO-center axis (FoBMOC Axis), reducing the intra-individual variability, as the same piece of tissue is examined every-time during followup.\(^1-3\) By automatically, aligning relative to the individual’s FoBMOC axis at follow-up, accuracy is achieved to detect changes as small as one micron in the BMO-MRW, thus creating a new world in glaucoma diagnosis. Because of the varying orientation of the retinal
Every decision for something (BMO-MRW), is a decision against something else (BMO-HRW) [Figs. 4 and 7]. The same goes with choosing BMO-MRW over the traditional BMO-HRW, but the choice is for the better. Higher sensitivity in early glaucoma detection is reported with BMO-MRW compared to BMO-HRW. Furthermore, the structure–function relationship is enhanced with BMO-MRW compared to BMO-HRW, because of geometrically accurate properties of BMO-MRW, indicating a new promising structural marker [Figs. 3 and 6] for the detection of glaucoma. This concept is relatively new and interesting, but a promising one which will definitely improve the accuracy in the qualitative and quantitative evaluation of ONH.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Prasanna V Ramesh, Shruthy V Ramesh1, Meena K Ramesh2, Ramesh Rajasekaran3, Sathyan Parthasarathi4
Medical Officer, Department of Glaucoma and Research, 1Medical Officer, Department of Cataract and Refractive Surgery, 2Head of the Department of Cataract and Refractive Surgery and 3Chief Medical Officer, Mahathma Eye Hospital Private Limited, Trichy, 4Director, Sathyan Eye Care Hospital and Coimbatore Glaucoma Foundation, Coimbatore, Tamil Nadu, India
References

1. Chauhan BC, O’Leary N, Almobarak FA, Reis ASC, Yang H, Sharpe GP, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 2013;120:535-43.

2. Povazay B, Hofer B, Hermann B, Unterhuber A, Morgan JE, Glittenberg C, et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007;12:041204.

3. Reis AS, O’Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012;53:1852-60.

4. Danthurebandara VM, Sharpe GP, Hutchison DM, Denniss J, Nicolela MT, McKendrick AM, et al. Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci 2014;56:98-105.