Spectrophotometric characterization of the Philae landing site and surroundings with the ROSETTA/OSIRIS cameras

Hong Van Hoang,1,2⋆ S. Fornasier,1,3 E. Quirico,2 P. H. Hasselmann,1 M. A. Barucci,1 H. Sierks,4 C. Tubiana,4 and C. Güttler,4
1LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, 5 place Jules Janssen, 92195 Meudon, France
2Université Grenoble Alpes, CNRS, Institut de Planétologie et Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble F-38041, France
3Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris Cedex 05, France
4Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg, 3, 37077, Göttingen, Germany

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We investigate Abydos, the final landing site of the Philae lander after its eventful landing from the Rosetta spacecraft on comet 67P/Churyumov-Gerasimenko on 12 November 2014. Over 1000 OSIRIS level 3B images were analysed, which cover the August 2014 to September 2016 timeframe, with spatial resolution ranging from 7.6 m/px to approximately 0.06 m/px. We found that the Abydos site is as dark as the global 67P nucleus and spectrally red, with an average albedo of 6.5% at 649 nm and a spectral slope value of about 17%/100 nm at 50° phase angle. Similar to the whole nucleus, the Abydos site also shows phase reddening but with lower coefficients than other regions of the comet which may imply a thinner cover of microscopically rough regolith compared to other areas. Seasonal variations, as already noticed for the whole nucleus, were also observed. We identified some potential morphological changes near the landing site implying a total mass loss of 4.7-7.0 × 10^5 kg. Small spots ranging from 0.1 m^2 to 27 m^2 were observed close to Abydos before and after perihelion. Their estimated water ice abundance reaches 30-40% locally, indicating fresh exposures of volatiles. Their lifetime ranges from a few hours up to three months for two pre-perihelion spots. The Abydos surroundings showed low level of cometary activity compared to other regions of the nucleus. Only a few jets are reported originating nearby Abydos, including a bright outburst that lasted for about one hour.

Key words: Comets: individual: 67P/Churyumov-Gerasimenko – Methods: data analysis – Methods: observational – Techniques: photometric

1 INTRODUCTION
On 12 November 2014, at 08h35 UTC, the Philae lander began its historic descent towards the surface of comet 67P/Churyumov-Gerasimenko (67P). After nearly 7 hours, the lander made its first touchdown on the surface of the comet at 15h34 at a site named Agilkia. However, since the anchoring system did not work as expected, Philae bounced back and made contact with the surface of the comet twice before its final touchdown at 17h31, at a site called Abydos (see Biele et al. 2015, Fig. 3). Two phases of in-situ operations were planned to follow the landing, however only a modified version of the first short term phase, i.e. First Scientific Sequence (FSS) was implemented before the lander entered hibernation on 15 November 2014 at 00h08. In the following year, the “awakened” Philae established several successful contacts with the Rosetta spacecraft between June and July 2015, the last of which took place on 9 July 2015 at 17h45 (Ulamec et al. 2016). The lander was finally unambiguously imaged by the OSIRIS/NAC instrument on 2 September 2016 (see Ulamec et al. 2017, Fig. 1), after four extensive search campaigns that involved instruments onboard both Rosetta and Philae (O’Rourke et al. 2019). As the first instrument to conduct an in-situ analysis of a comet, Philae was able to provide a number of unique results. The immediate surroundings of the lander were captured in great details thanks to the CIVA and ROLIS cameras onboard Philae, the former revealed a diverse surface

⋆ E-mail: Hong-Van.Hoang@obspm.fr

© 2020 The Authors
morphology that includes a blacklit block, networks of ubiquitous fractures of lengths from sub-cm to tens of cm and nearly 700 “pebbles” of sizes between 3.7 and 12.5 mm (Bibring et al. 2015; Poulet et al. 2016), whereas ROLIS showed a lumpy surface that includes both relatively smooth dark areas and more rough and clumpy bright areas with no large-scale colour variations (Schröder et al. 2017).

Surface strength at Abydos was difficult to be evaluated, as none of the Philae instruments were fully able to penetrate the landing site. Several lower limits were derived from this lack of success: at least 4 MPa of local penetration resistance and 2 MPa of uniaxial compressive strength from MUPUS (Spohn et al. 2015), over 2 MPa based on CASSE (Biele et al. 2015). Knapmeyer et al. 2018 combined data from both instruments and suggested a layered structure at Abydos, including a thin (i.e. a few cm) and hard top layer to account for the MUPUS deflection and a thicker layer (10 - 50 cm) with shear modulus 3.6 - 346 MPa, Young’s modulus 7.2 - 980 MPa. On the other hand, using the lander Philae as an impact probe, Heinisch et al. 2019 estimated that the overall surface compressive strength of the impact sites did not exceed ∼ 800 Pa: 399±393 Pa where Philae had a collision with the rim of the circular Hatmehit depression, 147±77 Pa at the site of the second touchdown and 8±7 - 73±70 Pa for several scratch marks found close to Philae.

This paper aims to characterize the final landing site of Philae as observed by the OSIRIS instrument, which had made observations of the Abydos site as well as its surroundings from when the Rosetta spacecraft first approached comet 67P in early August 2014 to the final days of the mission in late September 2016 (see Table 1). These observations allow us to analyse various aspects of the final landing site, i.e. morphology, reflectance, spectrophotometry and activity, as well as the evolution of these properties throughout the two years of OSIRIS operations.

The article is organised as follows: Section 2 summarises the OSIRIS observations of Abydos and the analysis that was performed on these observations. Section 3 describes the terrains surroundings the landing site, while section 4 and section 5 present the analysis of the reflectance and the spectrophotometric properties of Abydos, respectively. Section 6 shows the bright patches of exposed volatiles that were found at close distances to Abydos in OSIRIS images and section 7 focuses on the few instances of cometary activity captured by OSIRIS near the final landing site of Philae. Finally, in section 8 we discuss our findings and we compare them to the published results on comet 67P.

2 OBSERVATIONS AND METHODOLOGY

Optical, Spectroscopic and Infrared Remote Imaging System (OSIRIS) was the name of the scientific imaging system onboard Rosetta. It was composed of two cameras: the Narrow Angle Camera (NAC, field of view 2.20° × 2.22°) that focused on the study of the nucleus composition and morphology, and the lower resolution Wide Angle Camera (WAC, field of view 11.35° × 12.11°), devoting to the study of the cometary coma. The NAC had 11 filters with a wavelength range of 250-1000 nm, while the WAC had 14 filters that covered the range of 240-720 nm (Keller et al. 2007). Our study is mostly based on NAC data, and every image of the comet surface...
Table 1

Observing conditions and the spectral slope of the surroundings of Abydos computed throughout the length of the Rosetta mission. The date of each sequence is the acquisition time of the reference orange filter (F22 or F82). Slope1 is the spectral slope and the associated error Std1 is evaluated in the 535-882 nm wavelength range. Slope2 and Std2 serve the same function in the 480-882 nm wavelength range.

Date	\(\Delta\) (km)	\(\alpha\) (°)	\(N\)	Slope1	Std1	Slope2	Std2	Description
2014-08-02T23:22:22	395.3	27.1	7	15.1	2.1	16.4	2.0	Mostly Hatmehit depression.
2014-08-03T20:49:22	261.8	39.6	7	16.3	0.7	14.0	0.8	Hatmehit and Bastet visible.
2014-08-06T09:20:22	118.9	49.6	7	17.4	1.6	19.6	1.3	Mainly Hatmehit depression, with partially illuminated Wosret and Bastet
2014-09-02T09:44:02	51.5	40.7	9	17.6	2.3	18.8	1.2	Mostly Hatmehit depression, but Bastet and (partially illuminated) Wosret and Bastet also visible. F15 (269.3 nm) and F61 (931.9 nm) filters omitted from slope calculation.
2015-02-19T09:39:33	27.1	69.0	5	19.9	2.4	21.0	1.3	Mainly Hatmehit depression, but Bastet and (partially illuminated) Wosret and Bastet also visible.
2015-02-21T12:54:04	188.9	81.6	11	19.0	1.4	21.3	1.9	Hatmehit, Wosret and Bastet all visible, but the latter two were poorly illuminated.
2015-04-13T06:09:30	69.5	44.3	3	15.5	1.3	17.7	1.5	Hatmehit, Wosret and Bastet all visible.
2015-04-25T17:10:48	151.8	79.2	3	15.9	1.4	18.1	1.5	Mostly Wosret and Bastet, but Hatmehit depression also visible.
2015-05-02T10:43:57	91.5	65.3	11	17.2	1.6	19.5	1.5	Mostly Bastet and Hatmehit, but Wosret also visible.
2015-05-16T22:56:24	123.9	61.2	11	15.4	1.1	17.0	1.1	Mostly Wosret and Bastet, but Hatmehit depression also visible.
2015-05-25T13:35:55	129.0	61.1	10	15.3	1.3	17.9	1.1	Mostly Wosret and Bastet, but Hatmehit also visible. F15 filter omitted from slope calculation.
2015-06-18T13:00:04	189.6	90.1	4	16.7	1.4	19.1	1.9	Mostly Hatmehit rim and depression, but Bastet and Wosret also visible.
2015-06-27T07:15:18	198.0	90.0	11	16.7	1.0	18.5	1.3	Mostly Wosret, but Bastet and Hatmehit also visible.
2015-07-04T13:43:26	174.8	90.1	11	16.3	1.2	18.0	1.4	Hatmehit, Wosret and Bastet all visible.
2015-07-11T18:07:20	157.2	89.6	11	16.5	0.8	18.4	0.8	Mainly Wosret and Bastet. Hatmehit mostly in shadows.
2015-07-19T09:21:35	179.3	89.6	11	16.1	1.0	17.6	1.1	Hatmehit, Wosret and Bastet all visible.
2015-07-24T17:52:54	167.8	90.1	11	16.9	1.2	19.5	0.9	Mostly Wosret, but Bastet also visible.
2015-08-01T12:53:15	211.6	89.9	11	16.6	1.2	18.5	1.2	Wosret and Bastet visible.
2015-08-09T17:43:25	307.2	89.2	11	15.8	0.8	17.6	0.9	Mostly Bastet and Hatmehit visible. Hatmehit depression partially in shadows.
2015-08-12T18:21:20	328.6	89.6	11	16.0	1.1	17.7	1.1	Mostly Bastet and Hatmehit visible. Hatmehit depression partially in shadows.
2015-08-22T23:18:04	330.2	88.4	11	16.1	1.5	18.1	1.4	Mostly Wosret, but Bastet and Hatmehit also visible. Hatmehit depression partially in shadows.
2015-08-30T23:55:56	403.1	70.2	11	15.8	1.1	17.7	0.9	Wosret and Bastet visible.
2015-09-09T10:43:13	427.9	100.5	7	16.1	1.1	18.1	1.1	Wosret and Bastet visible, Hatmehit in shadows.
2015-10-11T12:15:56	522.3	61.4	11	15.2	0.9	16.7	0.8	Hatmehit, Wosret and Bastet all visible.
2015-10-20T01:03:29	421.0	64.4	11	15.0	0.7	16.9	0.8	Hatmehit, Wosret and Bastet all visible. A spot at (-7.3°, -2.2°), near the boundary with the shadows.
2015-10-31T19:09:07	293.3	62.1	11	15.5	0.6	16.9	0.7	Wosret and Bastet visible.
Table 1 – continued
Spectral slope of the surroundings of Abydos throughout the length of the Rosetta mission, continued from Table 1.

Date	\(\Delta (\text{km})\)	\(\alpha (\degree)\)	\(N\)	Slope1	Slope2	Std1	Std2	Description
2015-11-19T20:08:20	125.9	78.2	3	16.3	16.3	0.6	18.6	Wosret and Bastet visible.
2015-11-22T14:42:23	128.6	89.6	3	17.2	17.2	1.2	19.7	Wosret and Bastet visible.
2015-11-28T20:47:47	124.2	90.4	11	17.5	17.5	1.4	19.6	Hatmehit, Wosret and Bastet all visible. Spectrally blue spots visible on the Hatmehit rim.
2015-12-07T01:14:32	97.9	89.7	3	17.0	17.0	0.8	19.7	Hatmehit, Wosret and Bastet all visible, although the Hatmehit rim was mostly in shadows. Bright spots visible on the Hatmehit rim.
2015-12-10T01:32:27	101.6	88.9	3	17.4	17.4	1.0	20.0	Mostly Wosret and Bastet, but Hatmehit depression also visible.
2015-12-26T16:06:26	76.7	90.2	11	16.8	16.8	1.8	19.5	Hatmehit, Wosret and Bastet all visible. Parts of the Hatmehit rim that bordered Wosret were in shadows. Bright spots visible on the rim.
2016-01-09T21:45:45	77.8	90.5	11	18.7	18.7	1.6	20.9	Mostly Hatmehit visible, although its rim was partially shadowed. Bright spots visible on the Hatmehit rim.
2016-01-12T01:35:12	84.0	63.1	3	16.1	16.1	0.7	18.4	Hatmehit, Wosret and Bastet visible, although the Hatmehit depression dominated the view. The Hatmehit rim was mainly in shadows, with bright spots visible.
2016-01-23T18:05:09	74.2	62.3	3	17.1	17.1	0.7	19.3	Mostly Wosret, but Bastet and Hatmehit also visible.
2016-01-27T21:35:45	68.1	62.7	9	16.5	16.5	0.9	18.1	Wosret and Bastet visible.
2016-02-10T19:25:10	47.3	65.2	11	17.8	17.8	1.1	19.5	Mostly Wosret and Bastet, but Hatmehit depression also visible.
2016-02-13T09:00:20	44.0	69.6	3	17.7	17.7	1.2	20.2	Mostly Wosret, but Bastet and Hatmehit also visible.
2016-04-09T17:35:16	32.7	40.8	11	16.0	16.0	1.0	18.4	Mostly Wosret, but Bastet and Hatmehit also visible.
2016-04-10T19:21:45	31.2	20.4	11	14.1	14.1	1.2	16.3	Hatmehit, Wosret and Bastet all visible.
2016-05-16T22:24:54	7.8	101.6	5	19.1	19.1	2.4	21.7	Mostly Wosret visible. Frost seen in some shadowed surfaces.
2016-05-28T12:28:44	4.9	101.0	5	19.7	19.7	2.1	22.7	Only Wosret visible, which was dominated by shadows.
2016-06-12T22:29:58	27.5	81.4	3	18.3	18.3	2.0	21.0	Mostly Wosret, but Hatmehit depression also visible.
2016-06-14T10:30:32	26.7	54.0	3	17.1	17.1	1.7	19.4	Mostly Wosret and Bastet, but Hatmehit depression also visible.
2016-05-16T21:35:16	30.1	62.1	3	17.2	17.2	1.5	19.8	Mostly Hatmeht, but Bastet also visible.
2016-06-17T22:15:54	30.5	79.4	3	18.1	18.1	1.6	20.7	Only Hatmeht visible, with several bright spots on the rim.
2016-07-02T15:29:59	14.3	92.9	5	19.6	19.6	1.7	22.0	Hatmehit, Wosret and Bastet all visible.
2016-07-03T12:45:15	7.2	102.1	3	18.9	18.9	1.8	21.8	Only Wosret visible, which was mostly in shadows.
2016-07-09T15:35:15	12.1	99.0	7	19.3	19.3	1.8	21.4	Only Wosret visible, with a number of bright spots under shadows of boulders. Frosts visible under a boulder.
2016-07-23T18:25:59	8.4	100.3	3	18.5	18.5	1.6	21.5	Only Hatmeht visible, with the rim mostly in shadows.
2016-08-21T17:59:03	4.2	89.7	3	18.1	18.1	2.5	21.1	Wosret and Bastet visible, the former mostly in shadows.
2016-08-24T18:19:04	3.9	91.5	3	18.6	18.6	1.8	21.9	Wosret and Bastet visible, the former mostly in shadows. Weak frosts under some shadowed structures.
used in this article originates from the NAC unless specified otherwise.

As the main instrument that was used in the search campaigns for Philae, the OSIRIS/NAC has taken over 1000 images of Abydos and its surroundings throughout the length of the Rosetta mission at various spatial resolutions that range from a few cm/px to more than 7 m/px. Lower resolution observations (≥ 2 m/px) usually fell into a couple of phases of the mission: when the Rosetta spacecraft first approached the comet in August 2014 and around the perihelion passage, when the spacecraft was far from the comet because of the high activity; high resolution observations (≤ 20 cm/px) were mostly captured from May 2016 onwards. The landing site was observed at a wide range of phase angles (−20° to ~120°), though many of the observations were taken at high phase angles (≥∼90°) especially during the extended phase of the Rosetta mission in 2016. It must be noted that Abydos was frequently observed in poor illumination conditions (e.g. Fig. 2 and Fig. 10), making the characterization of the site particularly difficult.

The images used in our study have been corrected at OSIRIS level 3B from the OSIRIS pipeline, including corrections for bias, flat field and geometric distortions, calibration in absolute flux (W m⁻² nm⁻¹ sr⁻¹) and conversion to I/F radiance factor (Tubiana et al. 2015; Fornasier et al. 2015).

Each image can be reconstructed using a stereophotoclinometric shape model (5 million or 12 million facets, Jorda et al. 2016), from which illumination conditions and observing geometry was retrieved for every pixel. NAIF SPICE kernels (Acton et al. 2018) were sometimes used to obtain trajectory and instrumental information relevant to the observing sequence.

2.1 Spectrophotometry analysis

The spectral behaviour and evolution of the Abydos surroundings were investigated by the analysis of 54 colour sequences (i.e. when at least 3 different colour filters were available) that cover the time period from early August 2014 to late August 2016 (see Table 1). Firstly, a region of interest (ROI) covering an area of 5° (corresponding dimension ~300 - 600 m) or 10° radius (corresponding ROI dimension ~900 m) was selected around the landing site. The coordinates of the ROIs follow the Cheops reference frame (Preusker et al. 2015).

All filters of a given sequence were first co-registered into a colour cube thanks to a python script based on the scikit-image library (Van Der Walt et al. 2014), and the optical flow algorithm (Farnebäck 2003), in the same manner as described in Fornasier et al. 2019a and Hasselmann et al. 2019. The orange filter (either NAC/F22 or occasionally NAC/F83, 535.7 nm) was selected as the reference, and one of those transformations was subsequently applied to the remaining filters: affine (including translation, rotation and shearing), similarity (including translation and rotation), projective and optical flow (which calculates the displacement field between two image frames).

Once the filters were successfully stacked, false-colour RGB maps were created using the STIFF code (Bertin 2012) in order to make first visual inspections. Every RGB in this article follows this setting unless specified otherwise: “green”= F22, “blue”= F24 (480.7 nm) and “red”= F41 (882.1 nm). Most of the comet surface appears “red” in colour composites as it is dominated by a dark terrain, while bright volatile-rich patches are bright and white.

Each image was corrected for topographic-photometric conditions by applying the Lommel-Seelinger law, which has been shown to work well on dark surfaces (Li et al. 2015). The reflectance of selected ROIs were calculated by integrating the flux in a box of 3x3 pixels, and their relative reflectances were obtained by normalising the spectra to the green filter (NAC/F23 or occasionally NAC/F83, 535.7 nm) as commonly done in the literature for comet 67P in previous analyses (e.g. Fornasier et al. 2015, 2019a; Deshapriya et al. 2016; Feller et al. 2016; Hasselmann et al. 2017). If a sequence does not have a green filter, an artificial green filter was created through linear interpolation of the signals of the F24 and F22 filters.

Finally, the spectral slope was calculated in the 335-882 nm range (expressed in Fornasier et al. 2015) and the 480-882 nm range. Spectral slope maps were generated using the F41 and F23/F83 filters. The average spectral slope was evaluated from a Gaussian fit of the slope distribution, in which the center of the peak represents the typical spectral translation and rotation), projective and optical flow (which calculates the displacement field between two image frames).

Figure 3. The comet nucleus as captured by the orange NAC filter on 5 March 2016, 10h35, superposed with a contrast-enhanced version of the dark side of the Hatmehit rim in the upper left side of the image. The arrow indicates the position of Abydos, and the red circle and ellipse respectively indicate the position of site AA and site BB (see Fig. 4), which will be discussed in Section 3.

1 https://www.cosmos.esa.int/web/spice/spice-for-rosetta
2 The larger ROI was meant to compensate for the phases of low spatial resolutions, as mentioned previously in the second paragraph of Section 2.

3 Pixels having incidence or emission angles above 80° were excluded.
analysed in Lucchetti et al. 2016 from pre-perihelion images. The landing site was located on an area covered in talus deposits that was surrounded by fractured and layered outcropping consolidated terrains. The Wesret and Bastet sides of the Abydos surroundings displayed similar fractured patterns, in which the fractures were typically 30-50 m long and roughly perpendicular to the Hatmehit rim. 447 boulders of size 0.8-11.5 m were identified near Abydos, and their distribution was characterized by a power-law index of -4.0±0.3 (see Lucchetti et al. 2016, Fig. 2). Similar distributions were found in several other regions of the comet e.g. the Nut region of the small lobe (-3.9±0.3), the Khepry/Ash boundary in the big lobe (-3.8±0.1) and the Seth/Ash boundary also in the “body” lobe (-4.2±0.7), which suggest that the possible boulder formation processes were gravitational events due to sublimation and headward erosion caused by thermal fracturing (Pajola et al. 2015).

High-resolution post-March 2016 images of the Abydos surroundings reveal two regions that were not previously featured in Lucchetti et al. 2016: a layered “knobby” terrain (the “Bastet” side of Fig. 2) and a second area of talus deposits under a prominent mound under Abydos, which is a frequently shadowed ~9000 m² area covered in a number of small boulders of diameter below 10 m (as can be seen between the two major shadowed areas on the “Wosret” side of Fig. 2 as well as in panel 12 of Fig. 7 and the left side of Fig. 13).

The Abydos site is also at close distances to a flat and circular depression of the Hatmehit region that covers 0.49 km² in area, 900 m in diameter and 150 m in depth (La Forgia et al. 2015). 175 boulders of size above 7 m have been identified from the depression floor, from which two power-law index values of distribution were derived: -3.4±0.2 (7-13 m) and -1.0±0.1 (13-22 m). The first index value is similar to the Abydos surroundings, whereas the second value suggests that the bigger boulders were the result of an evolution of the original material or were present in areas of high and continuous sublimation in the past or at present (Pajola et al. 2015).

The Hatmehit region is separated from the Wesret and Bastet regions by consolidated terrains (Giacomini et al. 2016). While the Bastet/Hatmehit boundary (plus some of the Wesret/Hatmehit boundary) is a steep wall that shows layering at close inspection, the Wesret/Hatmehit boundary displays a complex terrace structure in high-resolution images taken in 2016: a big mound on top of the rim roughly 78 m long, 30 m wide and 48 m high; small, irregular “steps” from top to bottom and a roughly 10000 m² plateau (see Fig. 3).

Several differences between pre-perihelion and post-perihelion images of the Abydos surroundings have been found in the Bastet region (see the movie provided in the online supplementary material), however the lack of high-resolution observations and poor pre-perihelion illumination conditions prevented us from fully confirming that morphological changes had taken place. Possible sites of dust removal are located at the following coordinates: site AA, a V-shaped structure at (0.62°, -4.70°); site BB, a long fracture at (1.40°, -5.44°) and site CC, a ~288.9 m² shallow

4 Order: (longitude, latitude).
depression at (1.79°, -3.92°) (see Fig. 4). Since these features were often observed at high phase angles, their shadows could be used as a proxy for dimensions as expressed as follows:

\[h = L_{\text{shadow}} \times \tan(\pi/2 - i) \]

(1)

where \(h \), \(L_{\text{shadow}} \) and \(i \) are respectively the landmark height, shadow length and incidence angle as estimated from the average of all the facets that intercept the tops and tips of the shadow. This method of measurement has been carried out for other regions of comet 67P (El-Maarry et al. 2017; Hasselmann et al. 2019; Fornasier et al. 2019b) and other extraterrestrial bodies (Arthur 1974; Chappelow & Sharpton 2002).

A closer inspection revealed that the V-shaped structure composed of two “walls”, one was 1.7±0.3 m high and 28.6±0.6 m long (between features 1 and 2 of Fig. 4) and the other was 2.1±0.3 high and 29.9±0.6 m long (between features 1 and 3 of Fig. 4), both of which enclosed three small boulders that were also not visible in pre-perihelion images (see the bottom inset of Fig. 4). The length and height of the long fracture were respectively 36.0±0.5 m and 4.1±0.1 m, and its width ranged between 2.0±0.5 at the “waist” near the middle to 4.0±0.5 m near both ends; while the depression had an irregular surface with depths below 0.8 m. If one applies a mean density of 537.8±0.7 kg/m³ (Preusker et al. 2017), the approximate mass losses from the three sites were 0.9-1.9×10⁵ kg at site AA, 1.1-3.7×10⁵ kg at site BB and 0.16-1.2×10⁵ kg at site CC. These possible changes may have occurred during or close to the perihelion passage between June and October 2015 as the global cometary activity (Vincent et al. 2016; Fornasier et al. 2019a) caused dust removal on the whole surface of comet 67P, leading to an overall “bluer” spectral slope (Fornasier et al. 2016, also discussed in Section 5), and their corresponding estimated mass losses are comparable with a few morphological changes reported in other regions on the surface of comet 67P: a cliff retreat with estimated mass loss of 0.8×10⁵ kg in the Anhur region (Fornasier et al. 2019b); cavities C2 and C3 of the Khonsu region with estimated mass losses of (4.1±2)×10⁵ kg and (1.5±0.5)×10⁵ kg, respectively (Hasselmann et al. 2019). Other morphological changes reported by these two articles are linked to estimated mass losses ranging from a few to tens of million kilograms, which is 1-2 orders of magnitude higher than our estimations.

On the other hand, the area between boulders 12-13 and the nearby long fracture is a possible site of dust deposits, as the pre-perihelion fractured patterns appeared less pronounced post-perihelion. Another possible dust deposit site is located between site AA and CC (marked by features 3, 9 and 11 in Fig. 4), where the surface appears smoother post-perihelion than pre-perihelion (comparing the upper and lower panels of Fig. 4). Such dust may have been transferred from the three aforementioned sites of dust removal or nearby regions of the comet (e.g. Wosret, Sobek) when the surface dust fell back onto the surface of the comet as the level of cometary activity ceased with increasing distance from the Sun.

![Characterization of the Philae landing site](Image)

Figure 5. Evolution of the normal albedo of Abydos.

Figure 6. The area surrounding spots (1a) and (1b) as imaged by the NAC on 14 December 2014, 6h21, superposed with magnifications of the spots. (RGB setting: “red” = “green” = F22, “blue” = F24). The arrow points to the position of Abydos, while the circle indicates the bright “triangle” mentioned in Section 4.

4 ALBEDO

We studied the reflectance of Abydos by applying the Hapke 2008 model⁵ using the parameters derived from the global analysis from Hasselmann et al. 2017 (the “all data” set in Table 2): single-scattering albedo \(\omega = 0.027 \), shadow-hiding amplitude \(B_0 = 2.42 \), shadow-hiding width \(h_s = 0.081 \), asymmetry factor \(g_{sca} = -0.424 \), average macroscopic roughness slope \(\bar{\theta} = 26^\circ \) and porosity factor \(K = 1.245 \). Our dataset include 32 distinct observations at the orange filter, which covered two time periods: from when the Rosetta spacecraft first arrived at the comet in early August 2014 to June 2015, and from late November 2015 to near the end of the mission in late September 2016⁶. The ROI of each sequence covers a 0.5⁷ radius around Abydos (corresponding dimension 40-60 m)⁷. We also attempted to generate a unique set of

⁵ Pixels having incidence or emission angles above 70° were omitted from our calculations.

⁶ Sequences taken near perihelion were omitted since they were taken at low spatial resolution, i.e. over 4 m/px.

⁷ Unlike the spectral slope distributions which have a well-defined peak and can be Gaussian-fitted, the normal albedo distributions
Figure 7. RGBs of bright spots found at close distances to Abydos. The RGB setting in panels 8 and 9 is “red” = F22, “blue” = F16 (360.0 nm) and “green” = F24.
The average normal albedo of the dark terrain of the Abydos site is \(\sim 6.5 \pm 0.2 \% \) at \(\lambda = 649.2 \) nm. This behavior is comparable to previous results reported for other regions of the comet at the same wavelength: 6.5% for mostly dust-covered regions. Abydos was observed at similar phase angles (\(\sim 50^\circ \)) used by Fornasier et al. 2015 in their analysis on two occasions: on 6 August 2014 at a resolution of 2.2 m/px, during which most of the Wolst and Bastet side of Abydos were under poor illumination conditions, and on 14 June 2016 at resolution 49.5 cm/px, when most of the Abydos surroundings were illuminated, albeit Abydos itself was in shadows (see Fig. 10). The spectral slopes of Abydos fall between 16.5-17.5%/100 nm in all the aforementioned observations, placing Abydos into the higher end of the medium terrain group.

Post-perihelion images reveal the presence of two “stripes” of moderately bright and blue terrains near Abydos: a \(\sim 3800 \) m² stripe in the Bastet region that runs across a fracture and a couple of layers near the boundary with the Wolst region and a \(\sim 3000 \) m² stripe in the Wolst region that covers a few strata (marked by pairs of ellipses in Figures 9 and 10). The “stripes” were approximately 1.5-2.3× brighter than the reference dark terrain, and their spectral slopes at phase angles \(\sim 50^\circ \) (on 14 June 2016) were between 13.5-15.0 %/100 nm. It is likely that these stripes already existed since at least September 2014 as the visible part of the Bastet “stripe” appeared spectrally bluer compared to the surroundings (roughly 15-17 %/100 nm compared to

5 SPECTRAL PROPERTIES

The 67P nucleus has been found to be heterogeneous in colours at several spatial scales. Three types of terrains are identified based on their spectral slope in the 535-882 nm range obtained at \(\alpha \sim 50^\circ \): 10-14 %/100 nm - relatively “blue” terrains, 14-18 %/100 nm - “medium” terrains and 18-22 %/100 nm - “red” terrains (Fornasier et al. 2015). The first group is related to terrains somehow enriched in volatiles like Hapi or Seth while the last group has been linked to dust-covered regions. Abydos was observed at similar phase angles (\(\sim 50^\circ \)) used by Fornasier et al. 2015 in their analyses on two occasions: on 6 August 2014 at a resolution of 2.2 m/px, during which most of the Wolst and Bastet side of Abydos were under poor illumination conditions, and on 14 June 2016 at resolution 49.5 cm/px, when most of the Abydos surroundings were illuminated, albeit Abydos itself was in shadows (see Fig. 10). The spectral slopes of Abydos fall between 16.5-17.5%/100 nm in all the aforementioned observations, placing Abydos into the higher end of the medium terrain group.

Post-perihelion images reveal the presence of two “stripes” of moderately bright and blue terrains near Abydos: a \(\sim 3800 \) m² stripe in the Bastet region that runs across a fracture and a couple of layers near the boundary with the Wolst region and a \(\sim 3000 \) m² stripe in the Wolst region that covers a few strata (marked by pairs of ellipses in Figures 9 and 10). The “stripes” were approximately 1.5-2.3× brighter than the reference dark terrain, and their spectral slopes at phase angles \(\sim 50^\circ \) (on 14 June 2016) were between 13.5-15.0 %/100 nm. It is likely that these stripes already existed since at least September 2014 as the visible part of the Bastet “stripe” appeared spectrally bluer compared to the surroundings (roughly 15-17 %/100 nm compared to
19.9±2.4 of the 5° radius around Abydos, see panels 1 and 4 of Fig. 9), however poor illumination conditions in 2014 and the lack of pre-perihelion colour sequences at good spatial resolution complicate the detailed analysis.

From early August 2014 to late August 2016, OSIRIS/NAC has taken over 50 colour sequences of the Abydos surroundings (see Table 1). These images were taken under a phase angle range of 20.4-101.6°. Phase reddening i.e. the increase in spectral slope with increasing phase angle was observed throughout the aforementioned time period. During the perihelion passage, both the spectral slope values and the degree of phase reddening were lower compared to pre- and post-perihelion. Fig. 9 and Fig. A2 clearly show the spectral slope evolution of Abydos and its surroundings during different orbital periods: pre-perihelion in 2014, close to perihelion between June and October 2015, and post-perihelion in 2016.

We analysed the spectral slope evolution over time for the complete data set. The spectral slopes evaluated in the 535-882 nm and 480-882 nm are reported in Table 1 for the individual observations together with a description of the regions covered by the observations. The spectral slope evolution is synthesised in Fig. 8 (535-882 nm) and in Fig. A1 (480-882 nm). The decrease of the spectral slope observed in Bastet, Wosret and Hatmehit was previously reported for the whole cometary nucleus by Fornasier et al. 2016 and was attributed to the dust removal due to the intense cometary activity at close heliocentric distances (Vincent et al. 2016; Fornasier et al. 2019a).

Phase reddening appeared to be more prominent after perihelion, as its corresponding linear coefficients is highest in both wavelength ranges, although the difference between the pre- and post-perihelion coefficients is less prominent in the case of the 480-882 nm spectral slope. The largest linear coefficients in the 535-882 nm wavelength range is $0.0486 \pm 0.00751 \times 10^{-4}$ nm$^{-1}$/°, which is smaller than the value of 0.104×10^{-4} nm$^{-1}$/° reported in Fornasier et al. 2015, covering the July and August 2014 observations of (mostly) the northern hemisphere of comet 67P at smaller phase angle values ($\alpha = 1.3 - 54.0^\circ$). Our coefficients are also smaller than the value 0.0652×10^{-4} nm$^{-1}$/° for the area covered by the February 2015 flyby ($\alpha = 1.0 - 30.5^\circ$), which is located in the Imhotep region in the big lobe, close to the boundary with the neighbouring Ash region (Feller et al. 2015).
et al. 2016). Fornasier et al. 2016 reported a lower value of 0.041×10^{-4} nm$^{-1}/\circ$ for the observations between April and August 2015 at phase angles from 0 to 90$^\circ$, though it must be noted that this value is higher than the perihelion coefficient of $0.0350 \pm 0.00848 \times 10^{-4}$ nm$^{-1}/\circ$ (June-October 2015, $\alpha = 61.4 - 100.5^\circ$) here reported for Abydos.

6 EXPOSURES OF VOLATILES

A number of bright spots having a distinct flat spectrum compared to the comet average “dark and red” terrain was observed around the final landing site of Philae (see Fig. 11). Previous joint studies with OSIRIS and VIRTIS have shown that regions having flat spectrophotometric behaviour also show water ice absorption bands in the NIR region (Barucci et al. 2016; Filacchione et al. 2016). We estimate water ice content of bright patches using geographical mixtures of volatiles and comet dark terrain (see Table 2). In fact, the absence of water ice bands in the visible range prevents us from constraining relevant parameters necessary for more complex modelling (e.g. ice grain size). In the first step, normal albedo of the ROI was derived by correcting the illumination conditions and phase angle using the Hapke model parameters determined by Hasselmann et al. 2017. Then the water ice fraction ρ of a bright spot was estimated by applying a linear mixture between the dark terrain and water ice:

$$R_{\text{spot}} = \rho R_{\text{ice}} + (1 - \rho)R_{\text{DT}}$$

(2)

where R_{spot} and R_{DT} are the measured reflectance of the spot and a reference dark terrain after applying the Hapke correction, respectively. We derived the water ice reflectance R_{ice} using the optical constant for grain sizes of 30 and 100 μm published in Warren & Brandt 2008. These values are adopted based on previous measurements of water ice grains on cometary nuclei (Sunshine et al. 2006; Filacchione et al. 2016; Capaccioni et al. 2015). We also attempted modelling with larger grain size (up to 3000 μm) but the fit of the spectral behaviour of the bright spots was poor.

Before perihelion, only a few patches were observed (e.g. panels 1-2 of Fig. 7, the best example being spot (1a) as one of the biggest10, brightest and longest-lived spots found.

9 The analysis of spectral slope in this article was conducted over a shorter wavelength range of 535-743 nm, normalized to the 535.7 nm wavelength.

10 While the spot shown in panel 2 has a bigger estimated area, it was observed at relatively low spatial resolution of ~2.4 m/px on 16-17 May 2015.
Figure 11. The positions of the spots in Fig. 7 as superposed on the RGB map of the comet as captured by the NAC on 14 June 2016 at 10h30, with Abydos indicated by the red arrow. The area inside boxes 1, 2 and 9 represent the area inside the yellow boxes of the corresponding panel of Fig. 7. Note that the images shown in panels 2-7 and 10-11 were observed from the Hatmehit rim, which is a different perspective from this reference image.

Figure 12. Left: The Abydos (white arrow) surroundings as imaged by the NAC/F22 on 15 September 2014, 5h43, superposed with an RGB of spots (1a) and (1b). Middle: Spectra of spot (1a) (red star), (1b) (blue asterisk) and a reference dark terrain (black circle). Right: The reflectances of the chosen points after correction to zero phase angle, with the arrows indicating the lower limit in normal albedo because the pixels were saturated. The black line is a linear fit of the dark terrain while the red and blue dotted lines are the best fits of the compositional model for 30µm ice grain size, indicating water ice abundances of ∼57.6% (red) and ∼21.6%.

at close distances to Abydos. It was first observed with its neighbour (1b) on 2 September 2014 at resolution ∼1.0 m/px and later at better spatial resolution of ∼0.5 m/px on 15-16 September 2014. In these observations, the two patches were so bright that pixels were saturated (see Fig. 12). Estimation of the water ice content of spot (1a) yields a lower limit of 57.6-60.6% for the two adopted grain sizes (see Fig. 12 and Table 2), which may indicate a very fresh exposure of ice. Similar bright spots covering the same period were already reported by Pommerol et al. 2015 in different regions of the northern hemisphere of comet 67P.

The exposed patches of volatiles were observable up to December 2014, but the size of the spots progressively decreased to ∼4.6 m² (spot (1a)) and ∼1.6 m² (spot (1b)).
Other spots appeared nearby in November and December 2014 images (see Fig. 6); (1c) at (-3.5\°, -8.12\°), area ~ 3.6 m\(^2\); (1d) at (-3.2\°, -8.09\°), area 9.5 m\(^2\). A possible factor in the long duration of spots (1a) and (1b) is the relatively low temperature of the Abydos surroundings in 2014: ≤207 K at Abydos compared to the average 213\pm3 K for the dayside of the comet nucleus in August and September 2014 as recorded by VIRTIS (Tosi et al. 2019) and 90-150 K during mid-November 2014 according to in-situ measurements (Spohn et al. 2015; Lethuillier et al. 2016; Kömle et al. 2017). Volatile exposures were imaged much more frequently after perihelion, with some areas repeatedly showing multiple bright patches in image sequences. A prominent case is the rim that separates the Hatmehit depression with the neighbouring Wosret region, which was shown to contain several colour sequences (e.g. panels 3-7 of Fig. 7 captured between late November 2015 and duration varying from ≥30 minutes to at least one full day. The spots captured between late November 2015 and mid-December 2015 (e.g. panel 3-4 of Fig. 7) were relatively faint with estimated water ice percentage below 15%, while some of the later spots (from late December 2015 to mid-January 2016, e.g. panel 5-6 of Fig. 7) were bright with estimated volatile fraction exceeding 50% (see Fig. A3).

From March to May 2016, the Hatmehit rim was occasionally covered in tiny (≤1.0 m\(^2\)) bright materials under the shadows of its “walls” structure, however colour sequences of these spots were not available until 15 May (panel 10 of Fig. 7). These spots lasted for at least half an hour, and compared to the reference dark terrain, these spots could be more than 10\% brighter in the visible wavelength range and even brighter in the UV (NAC/F16, 360 nm), which corresponded to estimated local water ice abundance well above 50%. These spots are very likely frosts and show the same spectral behaviour of frost in other regions (Fornasier et al. 2016, 2019b).

Some images captured during the final four months of the Rosetta mission feature bright patches on the Hatmehit rim (see Fig. A4), although the only colour sequence of such bright spots was taken on 18 June, 12h21. They were previously observed by the NAC/F22 the day before, spot (11a) being the largest with a 3.5 m\(^2\) area and a fairly high estimated water ice fraction of ~40% (see Fig. A5).

Another relatively ice-rich region at close distances to the final landing site was the area of talus deposits under the prominent mound near Abydos (see panel 12 of Fig. 7). High-resolution observations between May and July 2016 occasionally revealed tiny patches (<2 m\(^2\)) under the shadows of these boulders, and while that the site was observable up to the end of the Rosetta mission, the few available images only show that the area was dominated by shadows; however it is possible that ice-rich spots still existed in this area as exposed volatiles could be protected from solar illumination. The area was best observed on 9 July 2016 at a relatively high spatial resolution of 22.7 cm/pixel by the NAC colour filters (wavelength range 360-990 nm) as well as the WAC/F12 fil-
ter (629.8 nm)12. On this day, several tiny bright spots were seen from this area with estimated water ice abundances ranging from 16\% to ~80\%, which lasted for at least half an hour. The brightest spot with highest estimated ice fraction (represented by a red star and a red asterisk in Fig. 13) appeared to be a fresh exposure of water ice, and it shows a negative slope in the NIR region that perhaps points to the presence of very large grains (i.e. a few mm) of ice or volatile species other than water or CO\textsubscript{2}.

7 ACTIVITY

No jets were directly observed from the Abydos site by the OSIRIS cameras, however the surroundings of the site did exhibit some level of cometary activity from March 2015 to September 2015 (see Fig. 14 and Table 3). All three pre-perihelion jets found within a 5° radius of Abydos (i.e. H-1, H-2 and H-3) originated from the shadowed part of the Hatmehit depression. The first two jets were shown to be less than 3\% as bright as the reference terrain in the orange NAC/F22 filter. Jet H-3 offers some clues about the composition of such faint jets as it was observed during its \geq 2 minutes duration by a sequence of 11 NAC colour filters on 22 May 2015, which showed that the jet was only \leq 10-16\% as bright and spectrally similar to the dark terrain (see Fig. 16).

The Wosret/Bastet side of the Abydos surroundings appeared to begin its activity about two weeks after perihelion, which coincided with the peak of activity of the whole comet nucleus (Fornasier et al. 2019a). The earliest jet from this area is jet W-1 (see the top right corner of Fig. 14), which was \sim 1.4x brighter than its immediate surroundings as captured by the NAC/F15 on 30 August 2015. Peak of the activity near Abydos seemed to occur near mid-September 2015 as a mini-outburst was seen by OSIRIS/NAC on 10 September (W-2), which lasted for nearly one hour and was up to 2.5 times brighter than the dark terrain. The mini-outburst displayed a relatively “bluer” spectra in the VIS+NIR region compared to the dark surface of the comet (see Fig. 15), e.g. the spectral slope in the 535-882 nm of the sampling points of jet H-3 was 7.6-9.7%/\(\lambda\) (100 nm) compared to 16.4±1.0 of the whole comet nucleus (at phase angle 120.2°), which could be attributed to a presence of water ice grains amongst the ejecta.

Although the jets were either observed from shadowed area (H-1, H-2 and H-3) or under very low spatial resolution (W-1 at 7.6 m/px, W-2 at 6.0 m/px), pre- and post-perihelion high-resolution images allowed us to observe the morphology of their sources in better details (see Fig. 14). All three Hatmehit jets originated from flat but moderately rough area of the Hatmehit terrains, with jet H-1 closest to the Hatmehit rim (~23 m) whereas the other two were at close distances to the boulder-rich portion of the depression. The locations of the other two jets feature more diverse morphologies: W-1 came from a fractured “knobby” surface and was \sim 30 m from a higher layer (see Fig. 2) and W-2 was probably located under the “walls” that serve as the Wosret/Bastet boundary, on an area covered in talus deposits that was dominated mostly by smaller-sized boulders (0.8-3m, see Figs. 1 and 2 of Lucchetti et al. 2016).

The main activity mechanism of the Abydos surroundings appears to be local insolation, as the jet sources were either submerged in shadows completely at their time of observation (i.e. the Hatmehit jets) or under/close to the shadows cast by nearby structures, similar to the majority of active jets during the perihelion passage (Fornasier et al. 2019a). The fractures of the Bastet region (see Fig. 2) could have played a role in producing jet W-1, as they permitted the heat wave to propagate through underlaying volatile-rich strata (Belton 2010; Bruck Syal et al. 2013). The mini-outburst W-2 were probably triggered by different mechanisms, one being a reservoir of volatiles below the comet surface as suggested for an outburst in the Imhotep region in July 2016 (Agarwal et al. 2017). Cliff collapse (Vincent et al. 2016; Pajola et al. 2017) is also a possible explanation, as the W-2 source was probably located under the Wosret/Bastet boundary “walls” with relatively high value of local gravitational slope (between approximately 20° and 50°, Lucchetti et al. 2016), however we did not find an evidence of a morphological change in the area under the boundary.

12 The area was also observed at high resolution on two different dates: 14 May 2016 (15.3-16.2 cm/px) with only three NAC filters: F22, F24, F16 and on 24 July 2016 (16.3 cm/px) with only the NAC/F22 filter.
8 CONCLUSION

The final landing site of Philae shows a number of similarities to the nucleus of comet 67P on a whole. It was located on a dark and moderately red terrain that has been linked with mixtures containing organics (Filacchione et al. 2016; Quirico et al. 2016). As observed for the whole nucleus, Abydos and the surrounding terrains show the spectral phase reddening phenomenon i.e. spectral slope increasing with phase angle, varying over time. The spectral reddening coefficients evolved and decreased close to perihelion as observed elsewhere, partially due to the removal of the dust coating. The linear coefficients of phase reddening calculated for Abydos are lower than what were reported in the northern hemisphere of comet 67P (Fornasier et al. 2015) and other local regions (Feller et al. 2016). Phase reddening is a common behaviour observed in many Solar System objects, including asteroids 110 Lydia (Taylor et al. 1971), 433 Eros (Clark et al. 2002), 21 Lutetia (Magrin et al. 2012), the Moon (Gehrels et al. 1964), Mercury (Warell & Bergfors 2008) and the three Uranian moons Ariel, Titania and Oberon (Nelson et al. 1987); and this phenomenon has been attributed to multiple scattering at high phase angles and/or small scale
Figure 16. **Left:** The comet nucleus as captured by NAC/F22 on 22 May 2015, 5h35. **Middle:** Spectra of the chosen points compared to a reference terrain (black), where the red star indicates jet H-3 and the blue asterisk points to one of several faint jets from the Ma’at region. **Right:** Spectral slope in the 535-882 nm range of the comet nucleus on 22 May 2015, 5h35, where reddest areas are often artefacts related to shadowed regions. The inset is a 2x magnification of the area inside the box, where jet H-3 is indicated by the circle.

Table 3. A list of jets found near Abydos, with α as the phase angle and D as the estimated diameter. The jets are classified in the same manner as in Vincent et al. 2016: A - collimated jet, B - broad plume and C - complex (broad+collimated). Note that the coordinates of the final jet was located on the limb at their time of observation, during which its actual source was obscured by the comet nucleus.

Label	Lon (°)	Lat (°)	Observation time	α (°)	Type	D (m)	Description
H-1	-4.75	-3.49	20 March 2015, 01:25:03	50.3	B	~18	A very faint jet from the Hatmehit depression, which was fully covered in shadows at the time. Only $\leq 2.2\%$ as bright as the dark terrains.
H-2	-2.83	-0.93	20 March 2015, 01:25:03	50.3	B	~12	A very faint jet from the Hatmehit depression, which was fully covered in shadows at the time. Only $\leq 1.8\%$ as bright as the dark terrains.
H-3	-5.94	-1.25	22 May 2015, 05:34:53 - 05:37:21	59.1	B	~25	A very faint and “fuzzy” jet from the shadowed part of the Hatmehit depression. Only $\leq 10-16\%$ as bright as the dark terrains. Relatively “blue” spectral slope of $\sim 14.4\%$/ (100 nm) at a phase angle of 59.1°.
W-1	2.98	-10.78	30 August 2015, 14:22:47	70.2	B	~30	A jet that originated from a rough and fractured surface in the Baaset region, which was well-illuminated at the time of observation.
W-2	-1.32	-6.80	10 September 2015, 09:44:37 - 10:34:51	120.2	C	~48	Mini-outburst that was up to more than 2.5 times brighter than a reference dark terrain and has a relatively blue spectra in the NIR.

Surface roughness. Other spectral behaviours also exist such as the phase bluing of asteroid 44 Nysa (Rosenbush et al. 2009) or the arched shape of the spectral slope of the Martian surface as a function of the phase angle (Guinness 1981). By combining numerical simulation and laboratory experiments, Schröder et al. 2014 showed that smooth surfaces resulted in an arched shape, whereas microscopically rough regolith results in a monotonous phase reddening. On the other hand, Grynik & Shkuratov 2008 studied the effects of particle size and scattering on phase reddening, and they found that single particle scattering produces monotonous phase dependence on the spectral slope while scattering by multiple components results in a non-monotonous dependence. The same study also show that phase reddening also depends on particle size, as particles larger than 250 microns result in phase blueing instead of reddening. Therefore, the phase reddening of comet 67P is probably caused by a microscopically rough regolith that covers the surface of the comet, and the relatively low coefficients of Abydos may indicate that its regolith layer is thinner than in other regions.

Unlike the spectral slope, the reflectance of Abydos did not appear to experience seasonal variations or any clear evolution trend. One possible explanation is that while the site likely experienced dust removal during the perihelion passage that exposed more volatile-rich contents below the surface, these volatiles were embedded below the outer layers or mixed with the dark terrains of the comet, making the dark terrain the dominant optical medium. Other possible factors include non-optimal observing conditions (especially before perihelion) and different spatial resolutions between observing sequences (from ~ 6 cm/px near the end of the Rosetta mission to over 6 m/px during the 2015 perihelion passage).

Bright patches of exposed volatiles were occasionally observed near Abydos throughout the Rosetta mission, but with higher frequency after perihelion, especially alongside the rim that serves as the Hatmehit/Wosret boundary. The spots were typically only a few m2 or smaller, and even the...
biggest spots were small compared to others found in other regions e.g. the two ~1500 m² spots in the Anhur region in the big lobe in April and May 2015 (Fornasier et al. 2016). Estimations of local water ice abundance ranges from a few percent to ~50%, and up to ~80% in one case, which possibly corresponded to a fresh exposure of volatiles. Many spots were found under the shadows of nearby structures (e.g. boulders, terraces), and the longest-lived spots (i.e. up to a few months) were found at a relatively colder location. Frosts were sometimes observable near Abydos but only after perihelion, which was also a common behaviour observed in other regions of comet 67P like Anhur (Fornasier et al. 2019b), with the notable exception of Hapi were frost were observed pre-perihelion (De Sanctis et al. 2015).

ACKNOWLEDGEMENTS

OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Goettingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d’Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Nordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politécnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.

The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission. We acknowledge the financial support from the France Agence Nationale de la Recherche (programme Classy, ANR-17-CE31-0004). VH, SF, PHH and MAB acknowledge founding support from CNES.

DATA AVAILABILITY

The data underlying this article are available in https://www.cosmos.esa.int/web/psa/rosetta.

REFERENCES

Acton C., Bachman N., Semenov B., Wright E., 2018, Planetary and Space Science, 150, 9
Agarwal J., et al., 2017, Monthly Notices of the Royal Astronomical Society, 469, S606
Arthur D. W., 1974, Icarus, 23, 116
Barucci M. A., et al., 2016, Astronomy and Astrophysics, 595, 1
Belton M. J., 2010, Icarus, 210, 881
Bertin E., 2012, Astronomical Data Analysis Software and Systems XXI. Proceedings of a Conference held at Marriott Rive Gauche Conference Center, 461, 263
Bibring J. P., et al., 2015, Science, 349, 8
Biele J., et al., 2015, Science, 349, 8
Bruck Syal M., Schlutz P. H., Sunshine J. M., A’Hearn M. F., Farnham T. L., Dearborn D. S., 2013, Icarus, 222, 610
Capaccioni F., et al., 2015, Science, 347
Chappelow J. E., Sharpston V. L., 2002, Meteoritics and Planetary Science, 37, 479
Clark B. E., et al., 2002, Icarus, 155, 189
De Sanctis M. C., et al., 2015, Nature, 525, 500
Deshapiya J. D., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, S274
El-Maarry M., Thomas N., Pajola M., Massironi M., Siera H., Barbieri C., Lamy P. L., 2016, Astronomy and Astrophysics, 110, 1
El-Maarry M., et al., 2017, Science, 355, 1392
Farnebäck G., 2003, Lecture Notes in Computer Science, 2749, 363
Feller C., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, S287
Filacchione G., et al., 2016, Icarus, 274, 334
Fornasier S., et al., 2015, Astronomy and Astrophysics, 583, 1
Fornasier S., et al., 2016, Science, 354, 1566
Fornasier S., et al., 2017, Monthly Notices of the Royal Astronomical Society, 469, 593
Fornasier S., et al., 2019a, Astronomy and Astrophysics, 7, 1
Fornasier S., Feller C., Hasselmann P., Barucci M., Sunshine J., 2019b, Astronomy & Astrophysics, 13, 1
Gehrels T., Coffeen T., Owings D., 1964, The Astronomical Journal, 69, 826
Giacomini L., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, S352
Grygol Y., Shkarotov Ya., 2008, Light scattering from particulate surfaces in geometrical optics approximation. pp 329–382, doi:10.1007/978-3-540-48546-9_9
Guinness E. A., 1981, Journal of Geophysical Research, 86, 7983
Hapke B., 2008, Icarus, 195, 918
Hasselmann P. H., et al., 2017, Monthly Notices of the Royal Astronomical Society, 469, S550
Hasselmann P. H., et al., 2019, Astronomy & Astrophysics, 8, 1
Heinisch P., et al., 2019, Astronomy & Astrophysics, 630, A2
Jorda L., et al., 2016, Icarus, 277, 257
Keller H. U., et al., 2007, Space Science Reviews, 128, 433
Knappmeyer M., Fischer H. H., Seidensticker K. J., Thiel K., Arnold W., Faber C., Möhlmann D., 2018, Icarus, 310, 165
Könne N. I., et al., 2017, Monthly Notices of the Royal Astronomical Society, 469, 52
La Forgia F., et al., 2015, Astronomy and Astrophysics, 583, 1
Lehuillier A., et al., 2016, Astronomy and Astrophysics, 591, 1
Li J. Y., Helfenstein P., Buratti B. J., Takir D., Clark B. E., 2015, Asteroids IV, pp 129–150
Lucchetti A., et al., 2016, Astronomy and Astrophysics, 585, 1
Magrin S., et al., 2012, Planetary and Space Science, 66, 43
Nelson R. M., Buratti B. J., Wallis B. D., Lane A. L., West R. A., Simmons K. E., Hord C. W., Esposito L. W., 1987, Journal of Geophysical Research, 92, 14905
O’Rourke L., et al., 2019, Acta Astronautica, 157, 199
Pajola M., et al., 2015, Astronomy and Astrophysics, 583, 1
Pajola M., et al., 2017, Nature Astronomy, 1, 92
Pommerol A., Groussin O., Josl B., Gracia A., Fornasier S., 2015, Astronomy & Astrophysics, 25, 1
Poulet F., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, S23
Preusker F., Schotens F., Matz K., Roatsch T., Willner K., Hvidt S. F., Knollenberg J., Jorda L., 2015, Astronomy & Astrophysics, 33, 1
Preusker F., et al., 2017, Astronomy & Astrophysics, 1, 1
Quirico E., et al., 2016, Icarus, 272, 32
Rosenbusch V. K., Shevchenko V. G., Kiselev N. N., Sergeev A. V.,
Figure A1. The spectral slope in the 480.7–882.1 nm wavelength range. “Perihelion” is defined the same way as in Fig. 8.

Shakhovskoy N. M., Velichko F. P., Kolesnikov S. V., Karpov N. V., 2009, Icarus, 201, 655
Schröder S. E., Grynkо Y., Pommerol A., Keller H. U., Thomas N., Roush T. L., 2014, Icarus, 239, 201
Schröder S. E., et al., 2017, Icarus, 285, 263
Spohn T., et al., 2015, Science, 349, 1
Sunshine J. M., et al., 2006, Science, 311, 1453
Taylor R., Gehrels T., Silvester A. B., 1971, The Astronomical Journal, 76, 141
Tosi F., et al., 2019, Nature Astronomy, 3, 649
Tubiana C., et al., 2015, Astronomy and Astrophysics, 583, 1
Ulamec S., et al., 2016, Acta Astronautica, 125, 80
Ulamec S., et al., 2017, Acta Astronautica, 137, 38
Van Der Walt S., Schönberger J. L., Nunez-Iglesias J., Boulogne F., Warner J. D., Yager N., Gouillart E., Yu T., 2014, PeerJ, 2014
Vincent J. B., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, S184
Warell J., Bergfors C., 2008, Planetary and Space Science, 56, 1939
Warren S. G., Brandt R. E., 2008, Journal of Geophysical Research Atmospheres, 113, 1

APPENDIX A: ADDITIONAL FIGURES

This paper has been typeset from a TEX/LATEX file prepared by the author.
Characterization of the Philae landing site

Figure A2. Top: The comet nucleus as imaged by NAC at phase angles $\alpha \approx 90^\circ$ on four different days, in which each box indicates the area around Abydos. Bottom: Spectral slope maps (535-882 nm) of the area within the corresponding boxes, where reddest areas are often artefacts related to shadowed regions. Abydos is indicated by an arrow in every panel of this figure.

Figure A3. Left: The Hatmehit rim near Abydos as imaged by NAC/F22 on 25 December 2015, 3h44. Middle: Spectra of several chosen points on the left. Note that the time shown on top of the plot is the timestamp of the image, which is about 70 seconds earlier than the start of the acquisition time. Right: The reflectances of the chosen points after correction to zero phase angle. The black line is a linear fit of the dark terrain while the red and blue dotted lines are the best fits of the compositional model for 30µm ice grain size, indicating water ice abundances of 72.9% (red), 27.8% (blue), 35.9% (green) and 66.3% (magenta).
Figure A4. Parts of the Hatmehit rim as imaged by NAC/F22 near the end of the Rosetta mission. The middle panel is superposed with 4× magnifications of spots 11a–d.

Figure A5. **Left:** Parts of the Hatmehit rim as captured by NAC/F22 on 18 June 2016, 12h21. **Middle:** Spectra of the chosen points compared to a reference terrain (black), with spots 11a–d respectively represented by the red star, blue asterisk, green triangle and magenta square. Note that the time shown on top of the plot is the timestamp of the image, which is about 70 seconds earlier than the start of the acquisition time. **Right:** The reflectances of the chosen points after correction to zero phase angle. The black line is a linear fit of the dark terrain while the dotted lines are the best fits of the compositional model for 30µm ice grain size, indicating the water ice abundances of 39.7% (red), 21.8% (blue), 14.6% (green) and 13.7% (magenta).