Regular irreducible representations of classical reductive groups over finite quotient rings

Koichi Takase

Abstract

A parametrization of irreducible representations associated with a regular adjoint orbit of a reductive group over finite quotient rings of a non-dyadic non-archimedean local field is presented. The parametrization is given by means of (a subset of) the character group of the centralizer of a representative of the regular adjoint orbit. Our method is based upon Clifford’s theory and Weil representations over finite fields.

1 Introduction

Let F be a non-dyadic non-archimedean local field. The integer ring of F is denoted by O with the maximal ideal p generated by ϖ. The residue class field $\mathbb{F} = O/p$ is a finite field of odd characteristic with q elements. For an integer $r > 0$ put $O_r = O/p^r$ so that $\mathbb{F} = O_1$.

Let G be a connected reductive group scheme over O. The problem on which we will consider in this paper is to determine the set $\text{Irr}(G(O_r))$ of the equivalence classes of the irreducible complex representations of the finite group $G(O_r)$.

This problem in the case $r = 1$, that is the representation theory of the finite reductive group $G(\mathbb{F})$, has been studied extensively, starting from Green [7] concerned with $GL_n(\mathbb{F})$ to the decisive paper of Deligne-Lusztig [3].

On the other hand, the study of the representation theory of the finite group $G(O_r)$ with $r > 1$ is less complete. The systematic studies are done mainly in the case of $G = GL_n$ [8, 9, 11, 12, 17, 18]. The purpose of this paper is to show that the method used in [18] works for greater range of reductive group schemes over O.

In this paper, we will establish a parametrization of the irreducible representations of $G(O_r)$ ($r > 1$) associated with the regular (more precisely smoothly regular, see subsection 2.4 for the definition) adjoint orbits. Taking a representative β of the adjoint orbit, the parametrization is given by means of a subset of the character group of $G(\mathbb{F})$ where G_{β} is the centralizer of β in G which is assumed to be smooth commutative group scheme over O. Our theory is based on Clifford theory and Weil representations over finite fields.

*The author is partially supported by JSPS KAKENHI Grant Number JP 16K05053, MSC2010: primary 20C15, secondary 20C33.
Keywords: Weil representation, reductive group, finite ring
The main results of this paper are Theorem 2.3.1 and Theorem 2.5.1. The latter is a paraphrase of the former with more emphasis posed on the regularity of Lie elements but being restricted to the groups of type A, B and C.

The situation is quite simple when r is even, and almost all of this paper is devoted to treat the case of $r = 2l - 1$ being odd. In this case Clifford theory requires us to construct an irreducible representation of $G_\beta(O_r) \cdot K_{l-1}(O_r)$ where $K_{l-1}(O_r)$ is the kernel of the canonical surjection $G(O_r) \to G(O_{l-1})$. To construct an irreducible representation of $K_{l-1}(O_r)$, we will use Schrödinger representation of the Heisenberg group associated with a symplectic space over finite field which is associated with β (Proposition 4.4.1). Then we will use Weil representation to extend the irreducible representation of $K_{l-1}(O_r)$ to an irreducible representation of $G_\beta(O_r) \cdot K_{l-1}(O_r)$. At this point appears a Schur multiplier as an obstruction to the extension (see subsection 4.5). The definition and a fundamental property of the Schur multiplier will be discussed in section 3.

In the case of $G = GL_n$, the extendability of the irreducible representation of $K_{l-1}(O_r)$ to that of $G_\beta(O_r) \cdot K_{l-1}(O_r)$ is proved by [17]. Based upon this result, we will prove the triviality of the Schur multiplier for general $G \subset GL_n$ under the condition that the reduction modulo p of the characteristic polynomial of $\beta \in g(O) \subset gl_n(O)$ is the minimal polynomial of $\beta (\mod p) \in M_n(F)$ (Proposition 4.6.1).

We will give in section 5 some examples of classical groups where the reduction modulo p of the characteristic polynomial of β is the minimal polynomial of $\beta (\mod p) \in M_n(F)$. In these cases the parametrization is given by a subset of the character group of the unit group of a tamely ramified extension of the base field F. See Propositions 5.2.1 for a special linear group, Proposition 5.3.1 for a symplectic group, Propositions 5.4.1 and 5.4.2 for a special orthogonal group with respect to a quadratic form of even and odd variables respectively.

The character group of a finite abelian group G is denoted by \hat{G}. The multiplicative group of the complex numbers of absolute value one is denoted by \mathbb{C}^1.

Acknowledgment The author express his thanks to the referee for giving a kind suggestion which is decisive to prove Proposition 4.6.1 the key stone of this paper.

2 Main results

2.1 Fix a continuous unitary character τ of the additive group F such that

$$\{ x \in F \mid \tau(xO) = 1 \} = O,$$

and define an additive character $\hat{\tau}$ of F by $\hat{\tau}(\overline{x}) = \tau(\overline{x}^{-1} x)$.

Let $G \subset GL_n$ be a closed smooth O-group subscheme, and g the Lie algebra of G which is a closed affine O-subscheme of gl_n the Lie algebra of GL_n. We may assume that the fibers $G \otimes O K$ ($K = F$ or $K = \mathbb{F}$) are non-commutative algebraic K-group (that is smooth K-group scheme).

For any O-algebra K (in this paper, an O-algebra means a commutative unital O-algebra) the set of the K-valued points $gln(K)$ is identified with the K-Lie algebra of square matrices $M_n(K)$ of size n with Lie bracket $[X, Y] =
The condition I) implies that $B(l) > \text{truncations of the exponential mapping}$.

The conditions II) and III) from Lie algebras to groups can be regarded as with the smallest integer l such that $0 < l' \leq l$. The smoothness of G implies that we have a canonical isomorphism $g(O)/\omega^r g(O) \cong g(O_r) = g(O) \otimes O_r$ (\cite[Chap.II, §4, Prop.4.8]{H}) and that the canonical group homomorphism $G(O) \to G(O_r)$ is surjective due to Hensel’s lemma. Then for any $0 < l < r$ the canonical group homomorphism $G(O_r) \to G(O_l)$ is surjective whose kernel is denoted by $K_l(O_r)$.

For any $g \in G(O)$ (resp. $X \in g(O)$), the image under the canonical surjection onto $G(O_l)$ (resp. onto $g(O_l)$) with $l > 0$ is denoted by $g_l = g \mod p^l \in G(O_l)$ (resp. $X_l = X \mod p^l \in g(O_l)$).

Since the rational points $G(K)$ (resp. $g(K)$) of the fiber $G\otimes_K K$ (resp. $g\otimes_K K$) with $K = F$ or $K = \mathbb{F}$ plays some special roles in our theory, let us denote by $\omega \in G(K)$ (resp. $X \in g(K)$) the image of $g \in G(O)$ (resp. $X \in g(O)$) under the canonical morphism $G(O) \to G(K)$ (resp. $g(O) \to g(K)$).

We will pose the following three conditions:

I) $B : g(F) \times g(F) \to F$ is non-degenerate,

II) for any integers $r = l + l'$ with $0 < l' \leq l$, we have a group isomorphism $g(O_l) \cong K_l(O_r)$

defined by $X \mod p^l' \mapsto 1 + \omega^l X \mod p^r$,

III) if $r = 2l - 1 \geq 3$ is odd, then we have a mapping $g(O) \to K_{l-1}(O_r)$

defined by $X \mapsto (1 + \omega^{l-1}X + 2^{-1}\omega^{2l-2}X^2) \mod p^r$.

The condition I) implies that $B : g(O_l) \times g(O_l) \to O_l$ is non-degenerate for all $l > 0$, and so $B : g(O) \times g(O) \to O$ is also non-degenerate. The mappings of the conditions II) and III) from Lie algebras to groups can be regarded as truncations of the exponential mapping.

From now on we will fix an integer $r \geq 2$ and put $r = l + l'$ with the smallest integer l such that $0 < l' \leq l$. In other word

$$l' = \begin{cases} l & : r = 2l, \\ l - 1 & : r = 2l - 1. \end{cases}$$
Take a $\beta \in \mathfrak{g}(O)$ and define a character ψ_β of the finite abelian group $K_1(O_r)$ by

$$\psi_\beta((1 + x^t X) (\text{mod } p^\ell)) = \tau(x^{-t}B(X, \beta)) \quad (X \in \mathfrak{g}(O)).$$

Then $\beta(\text{mod } p^{\ell'}) \mapsto \psi_\beta$ gives an isomorphism of the additive group $\mathfrak{g}(O_r)$ onto the character group $K_1(O_r)^\vee$. For any $g_r = g(\text{mod } p^{\ell'}) \in G(O_r)$, we have

$$\psi_\beta(g_r^{-1} h g_r) = \psi_{\mathrm{Ad}(g) \beta}(h) \quad (h \in K_1(O_r)).$$

So the stabilizer of ψ_β in $G(O_r)$ is

$$G(O_r, \beta) = \{ g_r \in G(O_r) \mid \text{Ad}(g) \beta \equiv \beta \pmod{p^{\ell'}} \}$$

which is a subgroup of $G(O_r)$ containing $K_1(O_r)$.

Now let us denote by $\text{Irr}(G(O_r) \mid \psi_\beta)$ (resp. $\text{Irr}(G(O_r, \beta) \mid \psi_\beta)$) the set of the isomorphism classes of the irreducible complex representation π of $G(O_r)$ (resp. σ of $G(O_r, \beta)$) such that

$$\langle \psi_\beta, \pi \rangle_{K_1(O_r)} = \dim_{\mathbb{C}} \text{Hom}_{K_1(O_r)}(\psi_\beta, \pi) > 0$$

(resp. $\langle \psi_\beta, \sigma \rangle_{K_1(O_r)} > 0$). Then Clifford’s theory says that

1) $\text{Irr}(G(O_r)) = \bigsqcup_{\beta(\text{mod } p^{\ell'})} \text{Irr}(G(O_r) \mid \psi_\beta)$ where $\bigsqcup_{\beta(\text{mod } p^{\ell'})}$ is the disjoint union over the representatives $\beta(\text{mod } p^{\ell'})$ of the $\text{Ad}(G(O_r))$-orbits in $\mathfrak{g}(O_r)$,

2) a bijection of $\text{Irr}(G(O_r, \beta) \mid \psi_\beta)$ onto $\text{Irr}(G(O_r) \mid \psi_\beta)$ is given by

$$\sigma \mapsto \text{Ind}_{G(O_r, \beta)}^{G(O_r)}(\psi_\beta).$$

So our problem is to give a good parametrization of the set $\text{Irr}(G(O_r, \beta) \mid \psi_\beta)$.

2.3 For any $\beta \in \mathfrak{g}(O)$, let us denote by $G_\beta = Z_G(\beta)$ the centralizer of β in G which is a closed O-group subscheme of G. The Lie algebra $\mathfrak{g}_\beta = Z_G(\beta)$ of G_β is a closed O-subscheme of \mathfrak{g} such that

$$\mathfrak{g}_\beta(K) = \{ X \in \mathfrak{g}(K) \mid [X, \overline{\beta}] = 0 \}$$

for any O-algebra K where $\overline{\beta} \in \mathfrak{g}(K)$ is the image of $\beta \in \mathfrak{g}(O)$ under the canonical morphism $\mathfrak{g}(O) \to \mathfrak{g}(K)$.

Now our main result is

Theorem 2.3.1 Take a $\beta \in \mathfrak{g}(O)$ such that

1) G_β is commutative smooth O-group scheme, and

2) the characteristic polynomial $\chi_{\overline{\beta}}(t) = \det(t \cdot 1_n - \overline{\beta})$ of $\overline{\beta} \in \mathfrak{g}(\mathbb{F}) \subset \mathfrak{g}_n(\mathbb{F})$ is the minimal polynomial of $\overline{\beta} \in M_n(\mathbb{F})$.

Then we have a bijection $\theta \mapsto \sigma_{\beta, \theta}$ of the set

$$\{ \theta \in G_\beta(O_r) \cap K_1(O_r) \mid \text{s.t. } \theta = \psi_\beta, \text{ on } G_\beta(O_r) \cap K_1(O_r) \}$$

onto $\text{Irr}(G(O_r, \beta) \mid \psi_\beta)$. 4
The explicit description of the representation $\sigma_{\beta, \theta}$ is given by (1) if r is even, and by (5) if r is odd.

The proof of this theorem in the case of even r is quite simple, and it will be given in subsection 2.6. The remaining part of this paper is devoted to the proof in the case of odd r.

These proves show that the second condition in the theorem is required only in the case of r being odd. The second condition is related with the smooth regularity of $\beta \in \mathfrak{g}(O)$ as presented in the next subsection.

2.4 We will present a sufficient condition on $\beta \in \mathfrak{g}(O)$ under which G_{β} is commutative and smooth over O.

Let us assume that the connected O-group scheme G is reductive, that is, the fibers $G \otimes O (K = F, F)$ are reductive K-algebraic groups. In this case the dimension of the maximal torus in $G \otimes O K$ is independent of K which is denoted by $\text{rank}(G)$. For any $\beta \in \mathfrak{g}(O)$ we have

$$\dim_K \mathfrak{g}_{\beta}(K) = \dim \mathfrak{g}_{\beta} \otimes O K \geq \dim G_{\beta} \otimes O K \geq \text{rank}(G).$$

We say β to be smoothly regular with respect to G over K (or $\beta \in \mathfrak{g}(K)$ is smoothly regular with respect to $G \otimes O K$) if $\dim_K \mathfrak{g}_{\beta}(K) = \text{rank}(G)$ (see [16, 1.4]). In this case $G_{\beta} \otimes O K$ is smooth over K. If β is smoothly regular with respect to G over F and over F, then β is said to be smoothly regular with respect to G.

We say β to be connected with respect to G if the fibers $G_{\beta} \otimes O K (K = F, F)$ are connected. See Remark 2.4.3 for a sufficient condition for the connectedness of $G_{\beta} \otimes O K$.

Proposition 2.4.1 If $\beta \in \mathfrak{g}(O)$ is smoothly regular and connected with respect to G, then G_{β} is commutative and smooth over O.

[Proof] Let G_{β}^0 be the neutral component of O-group scheme G_{β} which is a group functor of the category of O-scheme (see §3 of Exposé VI in [5]). The following statements are equivalent:

1) G_{β}^0 is representable as a smooth open O-group subscheme of G_{β},
2) G_{β} is smooth at the points of unit section,
3) each fibers $G_{\beta} \otimes O K (K = F, F)$ are smooth over K and their dimensions are constant

(see Th. 3.10 and Cor. 4.4 of [5]). So if β is smoothly regular with respect to G, then G_{β}^0 is smooth open O-group subscheme of G_{β}. If further β is connected with respect to G, then $G_{\beta}^0 = G_{\beta}$ is smooth over O. Let $\beta = \beta_s + \beta_n$ be the Jordan decomposition of $\beta \in \mathfrak{g}_{\beta}(F)$. Then the identity component G of the centralizer $Z_{G \otimes O F}(\beta_s)$ is a reductive F-algebraic group and

$$G_{\beta} \otimes O F = Z_F(\beta_n)$$

because $G_{\beta} \otimes O F$ is connected. Then [15] shows that $G_{\beta}(F)$ is commutative (F is the algebraic closure of F), and hence G_{β} is a commutative O-group scheme. ■
Let us present more detail description of the smooth regularity of Lie element. Assume that the characteristic of $K = F, \mathbb{F}$ is not bad with respect to $G \otimes O K$. The list of the bad primes is

type of $G \otimes O K$	A_r	B_r, D_r	C_r	E_6, E_7, F_4	E_8	G_2
bad prime	\emptyset	2	2	$2, 3$	$2, 3, 5$	$2, 3$

(see [2] p.178, I-4.3).

Take a $\beta \in g(O)$ and let $\overline{\beta} = \beta_s + \beta_n$ be the Jordan decomposition of $\beta \in g(K)$ into the semi-simple part $\beta_s \in g(K)$ and the nilpotent part $\beta_n \in g(K)$ ($\overline{\beta} \in g(K)$ is the image of $\beta \in g(O)$ under the canonical mapping $g(O) \to g(K)$). The identity component $L = Z_{G \otimes O K}(\beta_s)$ of the centralizer of β_s in $G \otimes O K$ is a reductive group over K and there exists a maximal torus T of $G \otimes O K$ such that

$$\beta_s \in \text{Lie}(T)(K)$$

(see [1] Prop.13.19 and its proof). Then $T \subset L$ and $\text{rank}(L) = \text{rank}(G)$. Put $l = \text{Lie}(L)$, then $l(K) = Z_{g(K)}(\beta_s)$. So $\overline{\beta} \in g(K)$ is smoothly regular with respect to $G \otimes O K$ if and only if $\beta_n \in l(K)$ is smoothly regular with respect to L.

Now fix a system of positive roots Φ^+ in the root system $\Phi(T, L)$ of L with respect to T such that

$$\beta_n = \sum_{\alpha \in \Phi^+} c_\alpha \cdot X_\alpha$$

where X_α is a root vector of the root α. Then the result of [2] p.228,III-3.5] implies

Proposition 2.4.2 $\overline{\beta} \in g(K)$ is smoothly regular with respect to G over K if and only if $c_\alpha \neq 0$ for all simple $\alpha \in \Phi^+$.

Remark 2.4.3 Assume that $\overline{\beta} \in g(K)$ is smoothly regular with respect to $G \otimes O K$. Then $G \otimes O K$ is connected if $Z_{G \otimes O K}(\beta_s)$ and its center are connected (see Theorem 5.9 b) of [15]).

Remark 2.4.4 If $G \otimes O K$ is of type A_r, B_r or C_r, then, putting $G \subset GL_n$ with suitable n (that is $n = r + 1, 2r + 1, 2r$ for type A_r, B_r, C_r respectively), an element $\beta \in g(O) \subset gl_n(O)$ is smoothly regular with respect to G over K if and only if β is smoothly regular with respect to GL_n over K.

Let us consider the case of GL_n ($n \geq 2$) which is a connected smooth reductive O-group scheme. For $\beta \in gl_n(O)$, the following statements are equivalent:

1) $\beta \in gl_n(O)$ is smoothly regular with respect to GL_n over \mathbb{F},

2) $\overline{\beta} \in M_n(\mathbb{F})$ is $GL_n(\mathbb{F})$-conjugate to

$$J_{n_1}(\alpha_1) \oplus \cdots \oplus J_{n_r}(\alpha_r) = \begin{bmatrix} J_{n_1}(\alpha_1) & & \\ & \ddots & \\ & & J_{n_r}(\alpha_r) \end{bmatrix},$$
where $\alpha_1, \ldots, \alpha_r$ are distinct elements of the algebraic closure \overline{F} of F and

$$J_m(\alpha) = \begin{bmatrix} \alpha & 1 \\ \alpha & \ddots \\ \ddots & \ddots & \ddots \\ & & \alpha \\ & & & 1 \end{bmatrix}$$

is a Jordan block of size m.

3) the characteristic polynomial $\chi(\beta) = \det(tI_n - \beta) \in \mathbb{F}[t]$ is the minimal polynomial of $\beta \in M_n(F)$,

4) $\{X \in M_n(\mathbb{F}) \mid X \beta = \beta X\} = \mathbb{F}[\beta]$,

5) $\{X \in M_n(\mathbb{O}) \mid X \beta \equiv \beta X \pmod{p^l}\} = \mathbb{O}[\beta]$ for all $l > 0$,

6) \mathbb{O}^n is a cyclic $\mathbb{O}[\beta]$-module, that is, there exists a vector $v \in \mathbb{O}^n$ such that $\mathbb{O}^n = \mathbb{O}[\beta]v$.

In this case we have

1) $\{X \in M_n(\mathbb{O}) \mid X \beta = \beta X\} = \mathbb{O}[\beta]$,

2) $\beta \in \mathfrak{gl}_n(\mathbb{O})$ is smoothly regular with respect to GL_n over F and

3) the centralizer $GL_{n,\beta}$ is commutative and smooth over O.

2.5 In order to give a presentation of the results directly connected with the regularity, let us put $G = GL_n, SL_n$ (with n prime to the characteristic of \mathbb{F}), Sp_n (with even n) or $SO(S)$ with a symmetric matrix $S \in \mathrm{Sym}_n(\mathbb{O})$ of odd size and

$$SO(S)(K) = \{g \in SL_n(K) \mid g^t S g = g\}$$

for any O-algebra K. Then G is a smooth O-group scheme which fulfills three conditions I), II) and III) of subsection 2.1.

Take a $\beta \in \mathfrak{g}(O)$ which is smoothly regular and connected with respect to G. Then the results of the preceding subsection show that G_{β} is a commutative smooth O-group scheme, and that the characteristic polynomial of $\beta \in \mathfrak{g}(\mathbb{F}) \subset \mathfrak{gl}_n(\mathbb{F})$ is the minimal polynomial of $\beta \in M_n(\mathbb{F})$. Then Theorem 2.3.1 gives the following

Theorem 2.5.1 Take a $\beta \in \mathfrak{g}(O)$ which is smoothly regular and connected with respect G. Then we have a bijection $\theta \mapsto \sigma_{\beta, \theta}$ of the set

$$\{\theta \in G_{\beta}(O_r) \mid \text{s.t. } \theta = \psi_{\beta} \text{ on } G_{\beta}(O_r) \cap K_l(O_r)\}$$

onto $\mathrm{Irr}(G(O_r, \beta) \mid \psi_{\beta})$.

7
2.6 Assume that \(r = 2l \) is even so that \(l' = l \). Since \(G_\beta \) is a smooth O-group scheme, the canonical map \(G_\beta(O_r) \to G_\beta(O_l) \) is surjective. Then we have

\[
G(O_r, \beta) = G_\beta(O_r) \cdot K_l(O_r)
\]

where \(G_\beta(O_r) \) is a commutative finite group. Let \(\theta \) be a character of \(G_\beta(O_r) \) such that \(\theta = \psi_\beta \) on \(G_\beta(O_r) \cap K_l(O_r) \). Then we have an one-dimensional representation \(\sigma_{\beta, \theta} \) of \(G(O_r, \beta) \) defined by

\[
\sigma_{\beta, \theta}(gh) = \theta(g) \cdot \psi_\beta(h) \quad (g \in G_\beta(O_r), h \in K_l(O_r)). \tag{1}
\]

Then \(\theta \mapsto \sigma_{\beta, \theta} \) is an injection of the set

\[
\{ \theta \in G_\beta(O_r) \mid \text{s.t. } \theta = \psi_\beta \text{ on } G_\beta(O_r) \cap K_l(O_r) \}
\]

into \(\text{Irr}(G(O_r, \beta) \mid \psi_\beta) \).

Take any \(\sigma \in \text{Irr}(G(O_r, \beta) \mid \psi_\beta) \) with representation space \(V_\sigma \). Then

\[
V_\sigma(\psi_\beta) = \{ v \in V_\sigma \mid \sigma(g)v = \psi_\beta(g)v \text{ for } \forall g \in K_l(O_r) \}
\]

is a non-trivial \(G(O_r, \beta) \)-subspace of \(V_\sigma \) so that \(V_\sigma = V_\sigma(\psi_\beta) \). Then, for any one-dimensional representation \(\chi \) of \(G(O_r, \beta) \) such that \(\chi = \psi_\beta \) on \(K_l(O_r) \), we have \(K_l(O_r) \subset \text{Ker}(\chi^{-1} \otimes \sigma) \). On the other hand \(G(O_r, \beta) / K_l(O_r) \) is commutative, we have \(\dim(\chi^{-1} \otimes \sigma) = 1 \) and then \(\dim \sigma = 1 \). Then \(\theta = \sigma|_{G_\beta(O_r)} \) is a character of \(G_\beta(O_r) \) such that \(\theta = \psi_\beta \) on \(G_\beta(O_r) \cap K_l(O_r) \), and we have \(\sigma = \sigma_{\beta, \theta} \).

3 Schur multiplier

Let \(G \subset GL_n \) be a closed \(\mathbb{F} \)-algebraic subgroup and \(\mathfrak{g} \) the Lie algebra of \(G \) which is a closed affine \(\mathbb{F} \)-subscheme of the Lie algebra \(\mathfrak{gl}_n \) of \(GL_n \). Let us assume that the trace form

\[
B : \mathfrak{g}(\mathbb{F}) \times \mathfrak{g}(\mathbb{F}) \to \mathbb{F} \quad ((X, Y) \mapsto \text{tr}(XY))
\]

is non-degenerate. Fix a \(\beta \in \mathfrak{g}(\mathbb{F}) \) such that \(\mathfrak{g}_\beta(\mathbb{F}) \leq \mathfrak{g}(\mathbb{F}) \).

3.1 The non-zero \(\mathbb{F} \)-vector space \(\mathbb{V}_\beta = \mathfrak{g}(\mathbb{F}) / \mathfrak{g}_\beta(\mathbb{F}) \) has a symplectic form

\[
\langle \dot{X}, \dot{Y} \rangle_\beta = B([X, Y], \overline{\beta})
\]

where \(\dot{X} = X \pmod{\mathfrak{g}_\beta(\mathbb{F})} \in \mathbb{V}_\beta \) with \(X \in \mathfrak{g}_\beta(\mathbb{F}) \). Then \(g \in G_\beta(\mathbb{F}) \) gives an element \(\sigma_g \) of the symplectic group \(Sp(\mathbb{V}_\beta) \) defined by

\[
X \pmod{\mathfrak{g}_\beta(\mathbb{F})} \mapsto \text{Ad}(g)^{-1}X \pmod{\mathfrak{g}_\beta(\mathbb{F})}.
\]

Note that the group \(Sp(\mathbb{V}_\beta) \) acts on \(\mathbb{V}_\beta \) from right. Let \(v \mapsto [v] \) be a \(\mathbb{F} \)-linear section on \(\mathbb{V}_\beta \) of the exact sequence

\[
0 \to \mathfrak{g}_\beta(\mathbb{F}) \to \mathfrak{g}(\mathbb{F}) \to \mathbb{V}_\beta \to 0. \tag{2}
\]

For any \(v \in \mathbb{V}_\beta \) and \(g \in G_\beta(\mathbb{F}) \), put

\[
\gamma(v, g) = \gamma_g(v, g) = \text{Ad}(g)^{-1}[v] - [v \sigma_g] \in \mathfrak{g}_\beta(\mathbb{F}).
\]
Take a character \(\rho \in \mathfrak{g}_\beta(\mathbb{F}) \). Then there exists uniquely a \(v_\rho \in \mathbb{V}_\beta \) such that
\[
\rho(\gamma(v, g)) = \hat{\tau}(v, v_\rho)\beta
\]
for all \(v \in \mathbb{V}_\beta \). Note that \(v_\rho \in \mathbb{V}_\beta \) depends on \(\rho \) as well as the section \(v \mapsto [v] \).
Let
\[
G_\beta(\mathbb{F})^{(c)} = \{ g \in G(\mathbb{F}) \mid \text{Ad}(g)Y = Y \text{ for } \forall Y \in \mathfrak{g}_\beta(\mathbb{F}) \}
\]
be the centralizer of \(\mathfrak{g}_\beta(\mathbb{F}) \) in \(G(\mathbb{F}) \), which is a subgroup of \(G_\beta(\mathbb{F}) \). Then for any \(g, h \in G_\beta(\mathbb{F})^{(c)} \), we have
\[
v_{gh} = v_h\sigma_g^{-1} + v_g
\]
because \(\gamma(v, gh) = \gamma(v, g) + \gamma(v\sigma_g^{-1}, h) \) for all \(v \in \mathbb{V}_\beta \). Put
\[
c_{\beta, \rho}(g, h) = \hat{\tau}(2^{-1}(v_g, v_{gh})\beta)
\]
for \(g, h \in G_\beta(\mathbb{F})^{(c)} \). Then the relation (3) shows that \(c_{\beta, \rho} \in Z^2(G_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times) \) is a 2-cocycle with trivial action of \(G_\beta(\mathbb{F})^{(c)} \) on \(\mathbb{C}^\times \). Moreover we have

Proposition 3.1.1 The cohomology class \([c_{\beta, \rho}] \in H^2(G_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times)\) is independent of the choice of the \(\mathbb{F} \)-linear section \(v \mapsto [v] \).

Proof Take another \(\mathbb{F} \)-linear section \(v \mapsto [v]' \) with respect to which we will define \(\gamma'(v, g) \in \mathfrak{g}_\beta \) and \(v'_\rho \in \mathbb{V}_\beta \) as above. Then there exists a \(\delta \in \mathbb{V}_\beta \) such that \(\rho([v] - [v]) = \hat{\tau}((v, \delta)\beta) \) for all \(v \in \mathbb{V}_\beta \). We have \(v'_\rho = v_\rho + \delta - \delta\sigma_g \) for all \(g \in G_\beta(\mathbb{F})^{(c)} \). So if we put \(\alpha(g) = \hat{\tau}(2^{-1}(v'_\rho - v_\rho, \delta)\beta) \) for \(g \in G_\beta(\mathbb{F})^{(c)} \), then we have
\[
\hat{\tau}(2^{-1}(v'_\rho, v_{gh})\beta) = \hat{\tau}(2^{-1}(v_\rho, v_{gh})\beta) \cdot \alpha(h)\alpha(g)^{-1}\alpha(g)
\]
for all \(g, h \in G_\beta(\mathbb{F})^{(c)} \). \(\blacksquare \)

3.2
Let us assume that there exists a closed smooth \(O \)-group subscheme \(H \subset GL_n \) of which our \(G \) is a closed \(O \)-group subscheme and that the trace form
\[
B : \mathfrak{h}(\mathbb{F}) \times \mathfrak{h}(\mathbb{F}) \rightarrow \mathbb{F}
\]
is non-degenerate where \(\mathfrak{h} \) is the Lie algebra of \(H \). Then we have
\[
\mathfrak{h}(\mathbb{F}) = \mathfrak{g}(\mathbb{F}) \oplus \mathfrak{g}(\mathbb{F})^\perp
\]
where \(\mathfrak{g}(\mathbb{F})^\perp = \{ X \in \mathfrak{g}(\mathbb{F}) \mid B(X, \mathfrak{g}(\mathbb{F})) = 0 \} \) is the orthogonal complement of \(\mathfrak{g}(\mathbb{F}) \) in \(\mathfrak{h}(\mathbb{F}) \).

Take a \(\beta \in \mathfrak{g}(O) \) such that \(\mathfrak{g}_\beta(\mathbb{F}) \subseteq \mathfrak{g}(\mathbb{F}) \). Then \(\beta \in \mathfrak{h}(O) \) and \(\mathfrak{h}_\beta(\mathbb{F}) \subseteq \mathfrak{h}(\mathbb{F}) \) where \(\mathfrak{h}_\beta = Z_\mathfrak{h}(\beta) \) is the centralizer. We have decompositions
\[
\mathfrak{h}_\beta(\mathbb{F}) = \mathfrak{g}_\beta(\mathbb{F}) \oplus (\mathfrak{g}(\mathbb{F})^\perp)_\beta
\]
where \((\mathfrak{g}(\mathbb{F})^\perp)_\beta = \mathfrak{h}_\beta(\mathbb{F}) \cap \mathfrak{g}(\mathbb{F})^\perp \), and
\[
\tilde{\mathbb{V}}_\beta = \mathfrak{h}(\mathbb{F})/\mathfrak{h}_\beta(\mathbb{F}) = \mathbb{V}_\beta \oplus (\mathfrak{g}(\mathbb{F})^\perp / (\mathfrak{g}(\mathbb{F})^\perp)_\beta)
\]
is an orthogonal decomposition of symplectic spaces.

Let \(v \mapsto [v] \) be a \(\mathbb{F} \)-linear section of the exact sequence

\[
0 \to \mathfrak{h}_\beta(\mathbb{F}) \to \mathfrak{h}(\mathbb{F}) \to \mathcal{V}_\beta \to 0
\]

of \(\mathbb{F} \)-vector space such that \([\mathcal{V}_\beta] \subset \mathfrak{g}(\mathbb{F})\) and \([\mathfrak{g}(\mathbb{F})^\perp / (\mathfrak{g}(\mathbb{F})^\perp)_\beta] \subset \mathfrak{g}(\mathbb{F})^\perp\).

Take \(\rho \in \mathfrak{g}_\beta(\mathbb{F}) \) and put

\[
\tilde{\rho} : \mathfrak{h}_\beta(\mathbb{F}) = \mathfrak{g}_\beta(\mathbb{F}) \oplus (\mathfrak{g}(\mathbb{F})^\perp)_\beta \xrightarrow{\text{projection}} \mathfrak{g}_\beta(\mathbb{F}) \cong \mathbb{C}^\times.
\]

For any \(g \in G_\beta(\mathbb{F}) \subset H_\beta(\mathbb{F}) \), there exists uniquely a \(v_g \in \mathcal{V}_\beta \) such that

\[
\rho(\gamma_g(v, g)) = \tilde{\tau}(\langle v, v_g \rangle_\beta)
\]

for all \(v \in \mathcal{V}_\beta \). Then we have

\[
\tilde{\rho}(\gamma_h(v, v_g)) = \tilde{\tau}(\langle v, v_g \rangle_\beta)
\]

for all \(v \in \mathcal{V}_\beta \). In fact if we put \(v = v' + v'' \) with \(v' \in \mathcal{V}_\beta \) and \(v'' \in (\mathfrak{g}(\mathbb{F})^\perp / (\mathfrak{g}(\mathbb{F})^\perp)^\perp)_\beta \), then we have \(\gamma_h(v, g) = \gamma_h(v', g) + \gamma_h(v'', g) \) with \(\gamma_h(v'', g) \in (\mathfrak{g}(\mathbb{F})^\perp)_{\beta'} \), since

\[
\text{Ad}(g)\mathfrak{g}(\mathbb{F})^\perp = \mathfrak{g}(\mathbb{F})^\perp, \quad \text{Ad}(g) (\mathfrak{g}(\mathbb{F})^\perp)^\perp = (\mathfrak{g}(\mathbb{F})^\perp)^\perp.
\]

Then we have

\[
\tilde{\rho}(\gamma_h(v, g)) = \rho(\gamma_h(v', g)) = \tilde{\tau}(\langle v', v_g \rangle_\beta)
\]

\[
= \tilde{\tau}(\langle v, v_g \rangle_\beta)
\]

because \(\langle v'', v_g \rangle_\beta = 0 \). Hence we have

Proposition 3.2.1 If \(G_\beta(\mathbb{F})^{(c)} \subset H_\beta(\mathbb{F})^{(c)} \) then the Schur multiplier \([c_{\beta, \rho}] \in H^2(G_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times)\) is the image under the restriction mapping

\[
\text{Res} : H^2(H_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times) \to H^2(G_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times)
\]

of the Schur multiplier \([c_{\beta, \rho}] \in H^2(G_\beta(\mathbb{F})^{(c)}, \mathbb{C}^\times)\).

4 Weil representation

Assume that \(r = 2l - 1 \geq 3 \) is odd so that \(l' = l - 1 \geq 1 \).

4.1 We have a chain of canonical surjections

\[
\varnothing : K_{l-1}(O_r) \to K_{l-1}(O_{r-1}) \to \mathfrak{o}(O_{l-1}) \to \mathfrak{g}(\mathbb{F}) \tag{4}
\]

defined by

\[
1 + \alpha^{l-1}X \pmod{p^r} \mapsto 1 + \alpha^{l-1}X \pmod{p^{r-1}}
\]

\[
\mapsto X \pmod{p^{r-1}} \mapsto X \pmod{p}.
\]
Let us denote by $Z(O_r, \beta)$ the inverse image under the surjection \triangleright of $g_\beta(F)$. Then $Z(O_r, \beta)$ is a normal subgroup of $K_{l-1}(O_r)$ containing $K_l(O_r)$ as the kernel of \triangleright.

Let us denote by Y_β the set of the group homomorphisms ψ of $Z(O_r, \beta)$ to \mathbb{C}^\times such that $\psi = \psi_\beta$ on $K_l(O_r)$. Then a bijection of $g_\beta(F)^\sim$ onto Y_β is given by

$$\rho \mapsto \psi_{\beta, \rho} = \tilde{\psi}_\beta \circ (\rho \circ \triangleright),$$

where a group homomorphism $\tilde{\psi}_\beta : Z(O_r, \beta) \to \mathbb{C}^\times$ is defined by

$$1 + \varpi^{l-1}X \pmod{p^r} \mapsto \tau (\varpi^{-1}B(X, \beta) - (2\varpi)^{-1}B(X^2, \beta))$$

with $\bar{X} = X \pmod{p} \in g_\beta(F)$.

Take a $\psi \in Y_\beta$. For two elements

$$x = 1 + \varpi^{l-1}X \pmod{p^r}, \quad y = 1 + \varpi^{l-1}Y \pmod{p^r}$$

of $K_{l-1}(O_r)$, we have $x^{-1} = 1 - \varpi^{l-1}X + 2^{-1}\varpi^{2l-2}X^2 \pmod{p^r}$ so that we have

$$xyz^{-1}y^{-1} = 1 + \varpi^{l-1}[X, Y] \pmod{p^r} \in K_{r-1}(O_r) \subset K_l(O_r)$$

and so $\psi_{\beta}(xyz^{-1}y^{-1}) = \tau (\varpi^{-1}B(X, \text{ad}(Y) \beta))$. Hence we have

$$\psi(xyz^{-1}y^{-1}) = \psi_{\beta}(xyz^{-1}y^{-1}) = 1$$

for all $x \in K_{l-1}(O_r)$ and $y \in Z(O_r, \beta)$ so that we can define

$$D_\psi : K_{l-1}(O_r)/Z(O_r, \beta) \times K_{l-1}(O_r)/Z(O_r, \beta) \to \mathbb{C}^\times$$

by

$$D_\psi(\hat{g}, \hat{h}) = \psi(ghg^{-1}h^{-1}) = \psi_{\beta}(ghg^{-1}h^{-1}) = \tau (\varpi^{-1}B([X, Y], \beta))$$

for $g = (1 + \varpi^{l-1}X)(\pmod{p^r}), h = (1 + \varpi^{l-1}Y)(\pmod{p^r}) \in K_{l-1}(O_r)$. Note that D_ψ is non-degenerate. Then Proposition 3.1.1 of [15] gives

Proposition 4.1.1 For any $\psi = \psi_{\beta, \rho} \in Y_\beta$ with $\rho \in g_\beta(F)^\sim$, there exists unique irreducible representation π_{ψ} of $K_{l-1}(O_r)$ such that $(\psi, \pi_{\psi})_{Z(O_r, \beta)} > 0$. Furthermore

$$\text{Ind}^{K_{l-1}(O_r)}_{Z(O_r, \beta)} \psi = \bigoplus_{\dim \pi_{\psi}} \pi_{\psi}$$

and $\pi_{\psi}(x)$ is the homothety $\psi(x)$ for all $x \in Z(O_r, \beta)$.

Fix a $\psi = \psi_{\beta, \rho} \in Y_\beta$ with $\rho \in g_\beta(F)^\sim$. Our problem is to extend the representation π_{ψ} of $K_{l-1}(O_r)$ to a representation of $G(O_r, \beta) = G_\beta(O_r) \cdot K_{l-1}(O_r)$. Now for any $g_r = g(\pmod{p^r}) \in G_\beta(O_r)$ and $x = (1 + \varpi^{l-1}X)(\pmod{p^r}) \in Z(O_r, \beta)$, we have

$$g_r^{-1}xg_rx^{-1} = (1 + \varpi^{l-1}g^{-1}Xg)(1 - \varpi^{l-1}X + 2^{-1}\varpi^{2l-2}X^2)(\pmod{p^r})$$

$$= 1 + \varpi^{l-1} (\text{Ad}(g)^{-1}X - X)(\pmod{p^r}) \in K_l(O_r),$$

and

$$\psi(g_r^{-1}xg_rx^{-1}) = \psi_{\beta}(g_r^{-1}xg_rx^{-1}) = \tau (\varpi^{-1}B(X, \text{Ad}(g)\beta - \beta)) = 1,$$
that is \(\psi(g^{-1}xg) = \psi(x) \) for all \(x \in Z(O_r, \beta) \). This means that, for any \(g \in G_\beta(O_r) \), the \(g \)-conjugate of \(\pi_\psi \) is isomorphic to \(\pi_\psi \), that is, there exists a group homomorphism \(U(g) \in GL_C(V_\psi) \) (\(V_\psi \) is the representation space of \(\pi_\psi \)) such that

\[
\pi_\psi(g^{-1}xg) = U(g)^{-1} \circ \pi_\psi(x) \circ U(g)
\]

for all \(x \in K_{l-1}(O_r) \), and moreover, for any \(g, h \in G_\beta(O_r) \), there exists a \(c_U(g, h) \in C^\times \) such that

\[
U(g) \circ U(h) = c_U(g, h) \cdot U(gh).
\]

Then \(c_U \in Z^2(G_\beta(O_r), C^\times) \) is a \(C^\times \)-valued 2-cocycle on \(G_\beta(O_r) \) with trivial action on \(C^\times \), and the cohomology class \([c_U] \in H^2(G_\beta(O_r), C^\times)\) is independent of the choice of each \(U(g) \).

In the following subsections, we will construct \(\pi_\psi \) by means of Schrödinger representations over the finite field \(F \) (see Proposition 4.6.1), and will show that we can construct \(U(g) \) by means of Weil representation so that we have

\[
c_U(g, h) = c_{\beta, \rho}(\overline{\nu}, \overline{\nu})
\]

for all \(g, h \in G_\beta(O_r) \), where \(\overline{\nu} \in G_\beta(F) \) is the image of \(g \in G_\beta(O_r) \) under the canonical surjection \(G(O_r) \to G(F) \) (see subsection 4.3). Furthermore, Proposition 4.6.1 tells us that the Schur multiplier \([c_U] \in H^2(G_\beta(F), C^\times)\) is trivial.

So let us assume that the Schur multiplier \([c_U] \in H^2(G_\beta(F), C^\times)\) is trivial. Then we have

Proposition 4.1.2 There exists a group homomorphism \(U_\psi : G_\beta(O_r) \to GL_C(V_\psi) \) such that

1) \(\pi_\psi(g^{-1}xg) = U_\psi(g)^{-1} \circ \pi_\psi(x) \circ U_\psi(g) \) for all \(g \in G_\beta(O_r) \) and \(x \in K_{l-1}(O_r) \)

and

2) \(U_\psi(h) = 1 \) for all \(h \in G_\beta(O_r) \cap K_{l-1}(O_r) \).

Proof Since the Schur multiplier \([c_U] \in H^2(G_\beta(O_r), C^\times)\) is trivial, there exists a group homomorphism \(U : G_\beta(O_r) \to GL_C(V_\psi) \) such that \(\pi_\psi(g^{-1}xg) = U(g)^{-1} \circ \pi_\psi(x) \circ U(g) \) for all \(g \in G_\beta(O_r) \) and \(x \in K_{l-1}(O_r) \). Then for any \(h \in G_\beta(O_r) \cap K_{l-1}(O_r) \) there exists a \(c(h) \in C^\times \) such that \(U(h) = c(h) \cdot \pi_\psi(h) \). On the other hand we have

\[
G_\beta(O_r) \cap K_{l-1}(O_r) \subset Z(O_r, \beta)
\]

since \((1 + \omega^{l-1}X)_r \in G_\beta(O_r) \cap K_{l-1}(O_r) \) means that

\[
\beta \equiv (1 + \omega^{l-1}X)\beta(1 + \omega^{l-1}X)^{-1} \pmod{p^l}
\]

\[
\equiv (\beta + \omega^{l-1}X\beta)(1 - \omega^{l-1}X) \pmod{p^l}
\]

\[
\equiv \beta + \omega^{l-1}[X, \beta] \pmod{p^l}
\]

and then \([X, \beta] \equiv 0 \pmod{p} \), that is \(X \pmod{p} \in g_\beta(F) \). Then \(\pi_\psi(h) \) is the homothety \(\psi(h) \) for all \(h \in G_\beta(O_r) \cap K_{l-1}(O_r) \). Extend the group homomorphism \(h \mapsto c(h)\psi(h) \) of \(G_\beta(O_r) \cap K_{l-1}(O_r) \) to a group homomorphism
\[\theta : G_\beta(O_r) \to \mathbb{C}^\times. \] Then \(g \mapsto U_\psi(g) = \theta(g)^{-1}U(g) \) is the required group homomorphism. ■

Let us denote by \(G_\beta(O_r) \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \) the set of \((\theta, \rho) \in G_\beta(O_r) \times g_\beta(\mathbb{F}) \) such that \(\theta = \psi_{\beta, \rho} \) on \(G_\beta(O_r) \cap K_{l-1}(O_r) \). Then \((\theta, \rho) \in G_\beta(O_r) \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \) defines an irreducible representation \(\sigma_{\theta, \rho} \) of \(G(O_r, \beta) = G_\beta(O_r) \cdot K_{l-1}(O_r) \) by

\[
\sigma_{\theta, \rho}(gh) = \theta(g) \cdot U_\psi(g) \circ \pi_\psi(h)
\]

for \(g \in G_\beta(O_r) \) and \(h \in K_{l-1}(O_r) \) with \(\psi = \psi_{\beta, \rho} \). Then we have

Proposition 4.1.3 A bijection of \(C \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \) onto \(\text{Irr}(G(O_r, \beta) \mid \psi_\beta) \) is given by \((\theta, \rho) \mapsto \sigma_{\theta, \rho} \).

Proof: Clearly \(\sigma_{\theta, \rho} \in \text{Irr}(G(O_r, \beta) \mid \psi_\beta) \) for all \((\theta, \rho) \in C \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \). Take a \(\sigma \in \text{Irr}(G(O_r, \beta) \mid \psi_\beta) \). Then

\[
\sigma \leftrightarrow \text{Ind}_{K_{l-1}(O_r)}^{G(O_r, \beta)} \psi_\beta = \text{Ind}_{Z(O_r, \beta)}^{G(O_r, \beta)} \left(\text{Ind}_{K_{l-1}(O_r)}^{Z(O_r, \beta)} \psi_\beta \right) = \bigoplus_{\psi \in \text{Irr}(Z(O_r, \beta))} \text{Ind}_{Z(O_r, \beta)}^{G(O_r, \beta)} \psi
\]

so that there exists a \(\psi = \psi_{\beta, \rho} \in Y_\beta \) with \(\rho \in g_\beta(\mathbb{F}) \) such that

\[
\sigma \leftrightarrow \text{Ind}_{Z(O_r, \beta)}^{G(O_r, \beta)} \psi = \text{Ind}_{K_{l-1}(O_r)}^{G(O_r, \beta)} \left(\text{Ind}_{Z(O_r, \beta)}^{K_{l-1}(O_r)} \psi \right) = \bigoplus_{\psi \in \text{Irr}(Z(O_r, \beta))} \text{dim} \pi_{\psi} \bigoplus_{\theta} \text{Ind}_{K_{l-1}(O_r)}^{G(O_r, \beta)} \pi_{\psi} = \bigoplus_{\theta} \sigma_{\theta, \psi},
\]

where \(\bigoplus \) is the direct sum over \(\theta \in G_\beta(O_r) \) such that \(\theta = \psi_{\beta, \rho} \) on \(G_\beta(O_r) \cap K_{l-1}(O_r) \). Then we have \(\sigma = \sigma_{\theta, \rho} \) for some \((\theta, \rho) \in G_\beta(O_r) \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \).

This proposition combined with the following proposition gives the bijection presented in our main Theorem 23.1 in the case of \(r \) being odd.

Proposition 4.1.4 \((\theta, \rho) \mapsto \theta \) gives a bijection of \(G_\beta(\mathbb{F}) \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \) onto the set

\[
\{ \theta \in G_\beta(O_r) \mid \text{s.t.} \theta = \psi_\beta \text{ on } G_\beta(O_r) \cap K_{l-1}(O_r) \}.
\]

Proof: Take a \((\theta, \rho) \in G_\beta(\mathbb{F}) \times_{K_{l-1}(O_r)} g_\beta(\mathbb{F}) \). The smoothness of \(G_\beta \) over \(O \) implies that the canonical mapping \(g_\beta(O) \to g_\beta(\mathbb{F}) \) is surjective. So take a \(X \in g_\beta(\mathbb{F}) \) with \(X \in g_\beta(O) \). Then we have

\[
g = 1 + \omega^{l-1}X + 2^{-l-1}\omega^{2l-2}X^2 \pmod{p^r} \in K_{l-1}(O_r) \cap G_\beta(O_r)
\]

so that

\[
\theta(g) = \psi_{\beta, \rho}(g) = \tau(\omega^{l-1}B(X + 2^{-l-1}\omega^{l-1}X^2, \beta) - 2^{-l-1}\omega^{-1}B(X, \beta)) \cdot \rho(X)
\]

\[
= \tau(\omega^{l-1}B(X, \beta)) \cdot \rho(X).
\]
Hence we have
\[\rho(X) = \tau \left(-\omega^{-1}B(X,\beta) \right) \cdot \theta \left(1 + \omega^{l-1}X + 2^{-1}\omega^{2l-2}X^2 \pmod{p^r} \right). \]

This means that the mapping \((\theta, \rho) \mapsto \theta\) is injective. Take \(X, X' \in \mathfrak{g}_\beta(O)\) such that \(X \equiv X' \pmod{p}\). Then we have \(X' = X + \omega T\) with \(T \in \mathfrak{g}_\beta(O)\) and
\[
\begin{align*}
1 + \omega^{l-1}X' + 2^{-1}\omega^{2l-2}X'^2 & \quad \pmod{p^r} \\
= 1 + \omega^{-1}X + 2^{-1}\omega^{2l-2}X^2 + \omega^lT & \quad \pmod{p^r} \\
= (1 + \omega^{l-1}X + 2^{-1}\omega^{2l-2}X^2)(1 + \omega^lT) & \quad \pmod{p^r},
\end{align*}
\]
where \(1 + \omega^lT \pmod{p^r} \in K_l(O_r)\) and hence
\[\theta(1 + \omega^lT \pmod{p^r}) = \psi_\beta(1 + \omega^lT \pmod{p^r}) = \tau \left(\omega^{-l-1}B(T, \beta) \right). \]

This and the commutativity of \(G_\beta\) show that
\[\rho(X) = \tau \left(-\omega^{-1}B(X,\beta) \right) \cdot \theta \left(1 + \omega^{l-1}X + 2^{-1}\omega^{2l-2}X^2 \pmod{p^r} \right) \]
with \(X \in \mathfrak{g}_\beta(F)\) with \(X \in \mathfrak{g}_\beta(O)\) gives an well-defined group homomorphism of \(\mathfrak{g}_\beta(F)\) to \(C^\times\). Then \((\theta, \rho) \in G_\beta(O_r)^{\times} \times K_{l-1}(O_r)\mathfrak{g}_\beta(F)^{\times}\) and our mapping in question is surjective.

4.2 A group extension

\[0 \to \mathfrak{g}(O_{l-1}) \xrightarrow{\phi} K_{l-1}(O_r) \xrightarrow{\psi} \mathfrak{g}(F) \to 0 \] (6)

is given by the canonical surjection \([\phi]\), whose kernel is \(K_l(O_r)\), with the group isomorphism
\[\phi : \mathfrak{g}(O_{l-1}) \xrightarrow{\sim} K_l(O_r) \]
defined by \(S(\mod{p^{l-1}}) \mapsto (1 + \omega^lS)(\mod{p^r})\).

In order to determine the 2-cocycle of the group extension \([\phi]\), choose any mapping \(\lambda : \mathfrak{g}(F) \to \mathfrak{g}(O)\) such that \(X = \lambda(X) (\mod{p})\) for all \(X \in \mathfrak{g}(F)\) and \(\lambda(0) = 0\), and define a section
\[l : \mathfrak{g}(F) \to K_{l-1}(O_r) \]
of \([\phi]\) by \(X \mapsto 1 + \omega^{l-1}\lambda(X) + 2^{-1}\omega^{2l-2}\lambda(X)^2 (\mod{p^r})\). Then we have
\[l(X)^{-1} = 1 - \omega^{l-1}\lambda(X) + 2^{-1}\omega^{2l-2}\lambda(X)^2 (\mod{p^r}) \]
for all \(X \in \mathfrak{g}(F)\) and
\[l(X)(1 + \omega^lS)(X)^{-1} \equiv 1 + \omega^lS (\mod{p^r}) \]
for all \(S_{l-1} \in \mathfrak{g}(O_{l-1})\). Furthermore we have
\[l(X)(Y)l((X + Y)^{-1} = 1 + \omega^l \left\{ \mu(X,Y) + 2^{-1}\omega^{l-2}\lambda(X),\lambda(Y) \right\} (\mod{p^r}) \]
for all \(X, Y \in \mathfrak{g}(F)\) where \(\mu : \mathfrak{g}(F) \times \mathfrak{g}(F) \to \mathfrak{g}(O)\) is defined by
\[\lambda(X) + \lambda(Y) - \lambda(X + Y) = \omega \cdot \mu(X, Y) \]

14
for all \(X, Y \in g(F)\). Now we have two elements (2-cocycle)
\[
\mu = [(X, Y) \mapsto \mu(X, Y)_{l-1}], \quad c = [(X, Y) \mapsto 2^{-l-2}[X, Y]_{l-1}]
\]
of \(Z^2(g(F), g(O_{l-1}))\) with trivial action of \(g(F)\) on \(g(O_{l-1})\).

Let us consider two groups \(M\) and \(G\) corresponding to the two 2-cocycles \(\mu\) and \(c\) respectively. That is the group operation on \(M = g(F) \times g(O_{l-1})\) is defined by
\[
(X, S_{l-1}) \cdot (Y, T_{l-1}) = (X + Y, (S + T + \mu(X, Y))_{l-1})
\]
and the group operation on \(G = g(F) \times g(O_{l-1})\) is defined by
\[
(X, S_{l-1}) \cdot (Y, T_{l-1}) = (X + Y, (S + T + 2^{-l-2}[X, Y])_{l-1}).
\]
Let \(G \times g(F) M\) be the fiber product of \(G\) and \(M\) with respect to the canonical projections onto \(g(F)\). In other word
\[
G \times g(F) M = \{(X; S, T) = ((X, S), (X, T)) \in G \times M\}
\]
is a subgroup of the direct product \(G \times M\). We have a surjective group homomorphism
\[
(*) : G \times g(F) M \to K_{l-1}(O_r)
\]
(7)
defined by
\[
(X; S_{l-1}, T_{l-1}) \mapsto m(X) \cdot (1 + \omega^l(S + T) \pmod{p^r})
\]
\[
= 1 + \omega^{l-1}\lambda(X) + 2^{-1}\omega^{2l-2}\lambda(X)^2 + \omega^l(S + T) \pmod{p^r}.
\]

4.3 The group homomorphism \(B_{\beta} : g(O_{l-1}) \to O_{l-1} (X \mapsto B(X, \beta_{l-1}))\) induces a group homomorphism
\[
B^{\beta}_2 : H^2(g(F), g(O_{l-1})) \to H^2(g(F), O_{l-1}).
\]
Let us denote by \(H_{\beta}\) the group associated with the 2-cocycle
\[
c_{\beta} = B_{\beta} \circ c = [(X, Y) \mapsto 2^{-1}\omega^{l-2}B([X, Y], \beta)_{l-1}] \in Z^2(g(F), O_{l-1}).
\]
That is \(H_{\beta} = g(F) \times O_{l-1}\) with a group operation
\[
([X, s], [Y, t]) = ([X + Y, s + t + 2^{-l-2}B([X, Y], \beta)_{l-1}]).
\]
Then the center of \(H_{\beta}\) is \(Z(H_{\beta}) = g_{\beta}(\mathbb{F}) \times O_{l-1}\), the direct product of two additive groups \(g_{\beta}(\mathbb{F})\) and \(O_{l-1}\).

The inverse image of \(Z(H_{\beta})\) with respect to the surjective group homomorphism
\[
\blacktriangle : G \times g(F) M \to H_{\beta} \quad ((X; S_{l-1}, T_{l-1}) \mapsto (X, B(S, \beta)_{l-1}))
\]
(8)
is \((G \times g(F) M)_{\beta} = \{(X; S, T) \in G \times g(F) M \mid X \in g(F)_{\mathbb{F}}\}\) which is mapped onto \(Z(O_{l-1}, \beta) \subset K_{l-1}(O_r)\) by the surjection \(\mathbb{F}\).

Take a \(\rho \in g_{\beta}(\mathbb{F})\) which defines group homomorphisms
\[
\chi_{\rho} = \rho \otimes [x_{l-1} \mapsto \tau(\omega^{-(l-1)}x)] : Z(H_{\beta}) = g_{\beta}(\mathbb{F}) \times O_{l-1} \to \mathbb{C}\)
By the polarization π defined in subsection 4.1. and $\beta(L)$ is isomorphic to the Heisenberg group of the symplectic \mathbb{F}-space $\mathbb{F}(\beta,\rho)$.

Then we have a group homomorphism

$$\xi: H_{\beta} \to \mathbb{C} \times (0,\chi_{\beta}).$$

Let us denote $H_{\beta} = \mathbb{C} \times Z(\mathbb{H}_{\beta})$.

Then \mathbb{H}_{β} is isomorphic to H_{β} by $(v, (Y, s)) \mapsto ([v] + Y, s)$.

Let H_{β} be the Heisenberg group of the symplectic \mathbb{F}-space \mathbb{V}_{β}, that is $H_{\beta} = \mathbb{V}_{\beta} \times \mathbb{C}$. with a group operation

$$(u, s) \cdot (v, t) = (u + v, s \cdot t \cdot \hat{\tau}(2^{-1}(u, v)_{\beta})).$$

Then we have a group homomorphism

$$\mathbb{H}_{\beta} = \mathbb{V}_{\beta} \times Z(\mathbb{H}_{\beta}) \to H_{\beta} \quad ((v, z) \mapsto (v, \chi_{\beta}(z))).$$

Fix a polarization $\mathbb{V}_{\beta} = \mathbb{W}' \oplus \mathbb{W}$ of the symplectic \mathbb{F}-space \mathbb{V}_{β}. Let us denote $L^{2}(\mathbb{W}')$ the complex vector space of the complex-valued functions f on \mathbb{W}' with inner product $\langle f, f' \rangle = \sum_{w \in \mathbb{W}'} f(w) \overline{f'(w)}$. The Schrödinger representation $(\pi^{\beta}, L^{2}(\mathbb{W}'))$ of H_{β} associated with the polarization is defined for $(v, s) \in H_{\beta}$ and $f \in L^{2}(\mathbb{W}')$ by

$$\langle \pi^{\beta}(v, s)f \rangle (w) = s \cdot \hat{\tau}(2^{-1}(v, w)_{\beta}) \cdot f(w + v_{-}).$$

4.4 Fix a $\rho \in \mathfrak{g}_{\beta}(\mathbb{F})$. Let us determine the 2-cocycle of the group extension

$$0 \to Z(\mathbb{H}_{\beta}) \to \mathbb{H}_{\beta} \to \mathbb{V}_{\beta} \to 0$$

(9)

where $\mathbb{H}_{\beta} : \mathbb{H}_{\beta} \to \mathbb{V}_{\beta}$ is defined by $(\mathbb{X}, \mathbb{Y}) \mapsto \mathbb{X}(\mathbb{X}, \mathbb{Y})$ of \mathbb{F}-vector spaces and define a section $l : \mathbb{V}_{\beta} \to \mathbb{H}_{\beta}$ of the group extension (9) by $l(v) = ([v], 0)$. Then we have

$$l(u)l(v)l(u + v)^{-1} = (0, 2^{-1} \omega l^{-2}B([X, Y], \beta) \mod p^{-1})$$

for $u = \mathbb{X}, v = \mathbb{Y} \in \mathbb{V}_{\beta}$ so that the 2-cocycle of the group extension (9) is

$$[(\mathbb{X}, \mathbb{Y}) \mapsto 2^{-1} \omega l^{-2}B([X, Y], \beta) \mod p^{-1}] \in Z^{2}(\mathbb{V}_{\beta}, \mathbb{O}_{1-1}).$$

Define a group operation on $H_{\beta} = \mathbb{V}_{\beta} \times Z(\mathbb{H}_{\beta})$

$$(\mathbb{X}, z) \cdot (\mathbb{Y}, w) = (\mathbb{X} + \mathbb{Y}, z + w + 2^{-1} \omega l^{-2}B([X, Y], \beta) \mod p^{-1}).$$

Then \mathbb{H}_{β} is isomorphic to H_{β} by $(v, (Y, s)) \mapsto ([v] + Y, s)$.

If we denote $\pi^{\beta} = \pi^{\beta}(\mathbb{W}')$ then $L^{2}(\mathbb{W}')$ is the vector space of the complex-valued functions f on \mathbb{W}' with inner product $\langle f, f' \rangle = \sum_{w \in \mathbb{W}' f(w) \overline{f'(w)}$. The Schrödinger representation $(\pi^{\beta}, L^{2}(\mathbb{W}'))$ of H_{β} associated with the polarization is defined for $(v, s) \in H_{\beta}$ and $f \in L^{2}(\mathbb{W}')$ by

$$\langle \pi^{\beta}(v, s)f \rangle (w) = s \cdot \hat{\tau}(2^{-1}(v, w)_{\beta}) \cdot f(w + v_{-}).$$
where \(v = v_− + v_+ \in V_\beta \) with \(v_- \in W', v_+ \in W' \).

Now an irreducible representation \((\pi^{β,ρ}, L^2(W'))\) of \(H_\beta \) is defined by \(\pi^{β,ρ}(v, z) = \pi^β(v, χ_\rho(z)) \), and an irreducible representation \((\tilde{\pi}^{β,ρ}, L^2(W'))\) of \(G \times g(\mathbb{F}) \bar{M} \) is defined by

\[\tilde{\pi}^{β,ρ} : G \times g(\mathbb{F}) \bar{M} \to H_\beta \to H_\beta \to GLC(L^2(W')). \]

Then \(\tilde{ψ}_0 \cdot \tilde{π}_β, ρ \) is trivial on the kernel of \((\ast) : G \times g(\mathbb{F}) \bar{M} \to K_{l-1}(O_r) \) so that it induces an irreducible representation \(π_{β, ρ} \) of \(K_{l-1}(O_r) \) on \(L^2(W') \).

Proposition 4.4.1 Take a \(g = 1 + \varpi^{l-1}T (\text{mod } p^r) \in K_{l-1}(O_r) \) with \(T \in gl_n(O) \). Then we have \(T \equiv \varpi^{-1}B(T, β) - 2^{-1}\varpi^{-1}B(T^2, β) \cdot ρ(Y) \cdot π^β(v, 1) \)

where \(T = [v] + Y \in g(\mathbb{F}) \) with \(v \in V_\beta \) and \(Y \in g_δ(\mathbb{F}) \). In particular \(π_{β, ρ}(h) \) is the homothety \(ψ_{β, ρ}(h) \) for all \(h \in Z(O_r, β) \).

[Proof] By the definition we have

\[π_{β, ψ}(l((X))(1 + \varpi^lS \ (\text{mod } p^r))) = \psi_0(X, 0) \cdot \tilde{π}^{β,ρ}([v] + Y; S_{l-1}, 0) \]

\[= \psi(l((Y))(1 + \varpi^lS \ (\text{mod } p^r))) \cdot \tau(\varpi^{-l}B(λ(X) - λ(Y), β) \cdot π^β(v, 1)) \]

\[= \varpi^{-l}B(S, β) + \varpi^{-l}B(λ(X), β) \cdot ρ(Y) \cdot π^β(v, 1) \]

where \(X = [v] + Y \in g(\mathbb{F}) \) with \(v \in V_β \) and \(Y \in g_δ(\mathbb{F}) \) and put \(1 + \varpi^{l-1}T = l((X))(1 + \varpi^lS) \ (\text{mod } p^r) \) with \(X \in g(\mathbb{F}) \) and \(S \in g(O) \). Then we have

\[1 + \varpi^{l-1}T \equiv 1 + \varpi^{l-1}λ(X) \ (\text{mod } p^r) \]

so that we have \(T \ (\text{mod } p) = X \in g(\mathbb{F}) \) and

\[\varpi S \equiv T - λ(T) - 2^{-1}\varpi^{-l}λ(T^2) \ (\text{mod } p^r). \]

Then we have

\[π_{β, ρ}(g) = π^{β,ρ}(l((T))(1 + \varpi^lS)), \]

\[= \varpi^{-l}B(S, β) + \varpi^{-l}B(λ(T), β) \cdot ρ(Y) \cdot π^β(v, 1) \]

\[= \varpi^{-l}B(T, β) - 2^{-1}\varpi^{-l}B(T^2, β) \cdot ρ(Y) \cdot π^β(v, 1). \]

\[\blacksquare \]

This proposition shows that the irreducible representation \((π_{β, ρ}, L^2(W'))\) \(K_{l-1}(O_r) \) is exactly the irreducible representation \(π_ψ \) with \(ψ = ψ_{β, ρ} \in Y_β \)

defined in Proposition 4.4.1.

4.5 Fix a \(ρ \in g_δ(\mathbb{F})^{-1} \). In this subsection we will study the conjugate action of \(g_ρ = g \ (\text{mod } p^r) \in G(O_r, β) \) on \(K_{l-1}(O_r) \) and on \(π_{β, ρ} \). For any \(X \in g(\mathbb{F}) \), we have

\[g^{-1}_ρ l((X))g_ρ = l\left(\text{Ad}(ρ)^{-1}X + \varpi^lν(X, g) \ (\text{mod } p^r)\right) \]
Then we have
\[g_t^{-1}l(X)(1 + \omega^I(S + T))g_r \]
\[= l(Ad(\overline{\pi}^{-1})^{-1} X) (1 + \omega^I(Ad(g)^{-1} S + Ad(g)^{-1} T + \nu(X,g)) \mod p^r) \]
and an action of \(g_r \in G(O_r, \beta) \) on \((X; S, T, S_l, T_l) \in G \times g(\overline{F}, \mathbb{M}) \) is defined by
\[(X; S_l, T_l)^{g_r} = (Ad(\overline{\pi})^{-1} X; (Ad(g)^{-1}) S_l, (Ad(g)^{-1} T + \nu(X,g))T_l) . \tag{10} \]
The action (10) is compatible with the action
\[(X, s)^{\eta} = (Ad(\overline{\pi})^{-1} X, s) \]
of \(g_r \in G(O_r, \beta) \) on \((X, s) \in H_\beta \) via the surjection \[3\]. If we put \(X = [v] + Y \in g(\overline{F}) \) with \(v \in \mathcal{V}_\beta \) and \(Y \in g(\overline{F}) \), then we have
\[Ad(\overline{\pi})^{-1} X = [v \sigma_{\overline{\pi}}] + \gamma(v, \overline{\pi}) + Ad(\overline{\pi})^{-1} Y \]
in the notations of subsection \[3\]. So \(g_r \in G(O_r, \beta) \) acts on \((v, (Y, s)) \in H_\beta \) by
\[(v, (Y, s))^{g_r} = (v \sigma_{\overline{\pi}}, (Ad(\overline{\pi})^{-1} Y + \gamma(v, \overline{\pi}), s) . \]
In particular \(g_r \in G_\beta(O_r) \) acts on \((v, z) \in H_\beta \) by
\[(v, z)^{g_r} = (v \sigma_{\overline{\pi}}, (\gamma(v, \overline{\pi}), 0) \cdot z) . \]
There exists a group homomorphism \(T : Sp(\mathcal{V}_\beta) \to GL_C(L^2(\mathcal{W}')) \) such that
\[\pi^\beta(v, s, T) = T(\sigma)^{-1} \circ \pi^\beta(v, T(\sigma) \circ T(\sigma) \]
for all \(\sigma \in Sp(\mathcal{V}_\beta) \) and \((v, s) \in H_\beta \) (see \[6\] Th.2.4). Then we have
\[\pi^\beta, (v, z)^{g_r} = \pi^\beta(v \sigma_{\overline{\pi}}, (\gamma(v, \overline{\pi}), 0) \cdot z) \]
\[= \pi^\beta(v \sigma_{\overline{\pi}}, \left(\gamma(v, \overline{\pi}), \chi_{\rho}(z)\right) \]
\[= \pi^\beta(v \sigma_{\overline{\pi}}, \left(\left(v, v_{\overline{\pi}}\right)_{\beta}, \chi_{\rho}(z)\right) \circ T(\sigma_{\overline{\pi}}) \]
\[= T(\sigma_{\overline{\pi}})^{-1} \circ \pi^\beta(\left(v, \left(v, v_{\overline{\pi}}\right)\right) \circ T(\sigma_{\overline{\pi}}) \]
\[= T(\sigma_{\overline{\pi}})^{-1} \circ \pi^\beta(\left(v, v_{\overline{\pi}}\right), (v, \chi_{\rho}(z))) \circ T(\sigma_{\overline{\pi}}) \]
\[= T(\sigma_{\overline{\pi}})^{-1} \circ \pi^\beta(\left(v, v_{\overline{\pi}}\right), 1) \circ \pi^\beta(v, z) \circ T(\sigma_{\overline{\pi}}). \]
If we put
\[U(g_r) = \pi^\beta(v, 1) \circ T(\sigma_{\overline{\pi}}) \in GL_C(L^2(\mathcal{W}')) \]
for \(g_r \in G_\beta(O_r) \) then we have
\[U(g_r) \circ U(h_r) = c_{\beta, \rho}(g, h) \cdot U((gh)r) \]
for all \(g_r, h_r \in G_\beta(O_r)\), in fact
\[
U(g_r) \circ U(h_r) = \pi^\beta(v_\beta, 1) \circ T(\sigma_\beta) \circ \pi^\beta(v_\beta, 1) \circ T(\sigma_\beta)
\]
\[
= \pi^\beta(v_\beta, 1) \circ \pi^\beta(v_\beta^{-1}, 1) \circ T(\sigma_\beta) \circ T(\sigma_\beta)
\]
\[
= \pi^\beta(\psi_\beta^{-1}, 1) \circ \beta(2^{-1}(v_\beta, v_\beta^{-1})_\beta) \circ T(\sigma_\beta)
\]
\[
= c_{\beta, \rho}(\beta, \beta) \cdot \pi^\beta(v_\beta^{-1}, 1) \circ T(\sigma_\beta).
\]

On the other hand
\[
\bar{\psi}_0 \left((X; S_{l-1}, T_{l-1})^{g_r^{-1}}\right) = \tau \left(\omega^{-1}B(\lambda(X) + \omega T, \text{Ad}(g))\right)
\]
\[
= \tau \left(\omega^{-1}B(\lambda(X) + \omega T, \beta)\right)
\]
for all \(g_r \in G_\beta(O_r)\). That is \(\bar{\psi}_0\) is invariant under the conjugate action of \(G_1(O_r, \beta)^{(1)}\). Hence we have
\[
\bar{\psi}_0(g_r^{-1}h g_r) = \bar{\psi}_0(g_r) \circ \bar{\psi}_0(h) \circ \bar{\psi}_0(g_r)
\]
for all \(g_r \in G_\beta(O_r)\) and \(h \in K_{l-1}(O_r)\).

4.6

The following proposition is the key stone of this paper.

Proposition 4.6.1 If the characteristic polynomial of \(\beta \in g\mathfrak{g}(F) \subset gl_n(F)\) is the minimal polynomial of \(\beta \in M_n(F)\), then the Schur multiplier \([c_{\beta, \rho}] \in H^2(G_\beta(F), \mathbb{C}^\times)\) is trivial for all \(\rho \in g\mathfrak{g}(F)^\times\).

Proof We will divide the proof into two parts.

1) The case of \(G = G_n\). In this case, Corollary 5.1 of [17] shows that the Schur multiplier \([c_\nu] \in H^2(G_\beta(O_r), \mathbb{C}^\times)\) is trivial. On the other hand we have the inflation-restriction exact sequence
\[
1 \rightarrow H^1(G_\beta(F), \mathbb{C}^\times) \xrightarrow{\text{inf}} H^1(G_\beta(O_r), \mathbb{C}^\times) \xrightarrow{\text{res}} H^1(K_1(O_r), \mathbb{C}^\times)^{G_\beta(F)}
\]
\[
\rightarrow H^2(G_\beta(F), \mathbb{C}^\times) \xrightarrow{\text{inf}} H^2(G_\beta(O_r), \mathbb{C}^\times)
\]
induced by the exact sequence
\[
1 \rightarrow K_1(O_r) \rightarrow G_\beta(O_r) \rightarrow G_\beta(F) \rightarrow 1.
\]
Since we have
\[
H^1(G_\beta(O_r), \mathbb{C}^\times) = \text{Hom}(G_\beta(O_r), \mathbb{C}^\times),
\]
\[
H^1(K_1(O_r), \mathbb{C}^\times)^{G_\beta(F)} = \text{Hom}(K_1(O_r), \mathbb{C}^\times)
\]
and \(K_1(O_r) \subset G_\beta(O_r)\) are finite commutative groups, the restriction mapping
\[
\text{res} : H^1(G_\beta(O_r), \mathbb{C}^\times) \rightarrow H^1(K_1(O_r), \mathbb{C}^\times)^{G_\beta(F)}
\]
is surjective. Hence the inflation mapping
\[
\text{inf} : H^2(G_\beta(F), \mathbb{C}^\times) \rightarrow H^2(G_\beta(O_r), \mathbb{C}^\times)
\]
is injective. Since the results of the preceding subsections show that the Schur multiplier \([c_{β,ρ}] \in H^2(G_β(O_n),\mathbb{C}_0^\times)\) is the image of \([c_{β,ρ}] \in H^2(G_β(F),\mathbb{C}_0^\times)\) under the inflation mapping, the statement of the proposition is established for the group \(G = GL_n\).

2) The general case of \(G \subset GL_n\). We have \(G_β(F) \subset GL_{n,β}(F)\). Then Proposition [2.2.4] says that the Schur multiplier \([c_{β,ρ}] \in H^2(G_β(F),\mathbb{C}_0^\times)\) is the image of the Schur multiplier \([c_{β,ρ}] \in H^2(GL_{n,β}(F),\mathbb{C}_0^\times)\) under the restriction mapping

\[
\text{res} : H^2(GL_{n,β}(F),\mathbb{C}_0^\times) \to H^2(G_β(F),\mathbb{C}_0^\times).
\]

Since we have shown in the part one of the proof that \([c_{β,ρ}] \in H^2(GL_{n,β}(F),\mathbb{C}_0^\times)\) is trivial, so is \([c_{β,ρ}] \in H^2(G_β(F),\mathbb{C}_0^\times)\). ■

It may be quite interesting if we can find a counter example to the following statement:

Let \(G\) be a connected reductive algebraic group defined over \(F\) and \(g\) the Lie algebra of \(G\). Take a \(β \in g(F)\) which is regular with respect to \(G\) and \(G_β\) is commutative. Then the Schur multiplier \([c_{β,ρ}] \in H^2(G_β(F),\mathbb{C}_0^\times)\) is trivial for all \(ρ \in g(F)^\ast\).

5 Examples

5.1 Let \(K/F\) be a tamely ramified field extension of degree \(n\) and \(O_K \subset K\) the integer ring with the maximal ideal \(p_K = \varpi_K O_K\). The residue class field \(F = O/p\) is identified with a subfield of \(K = O_K/p_K\). A prime element \(\varpi_K\) is chosen so that we have \(\varpi_K^e \in O_{K_{\varpi}}\) where \(K_0\) is the maximal unramified subextension of \(K/F\) and \(e = (K : K_0)\) is the ramification index of \(K/F\). Then we have \(O_K = O_{K_0}[\varpi_K]\).

For a \(β = \sum_{i=0}^{e-1} b_i \varpi_K^i \in O_K\) with \(b_i \in O_{K_0}\), [14, p.545, Lemma 4-7] shows that the following two statements are equivalent:

1) \(O_K = O[β]\),

2) \(b_0^e \neq b_0^e\) for all \(1 \neq σ \in \text{Gal}(K/F)\), and \(b_1 \in O_K^\times\) if \(e > 1\).

By means of the regular representation with respect to an \(O\)-basis of \(O_K\), we will identify \(K\) with a \(F\)-subalgebra of the matrix algebra \(M_n(F)\) where \(O_K = K \cap M_n(O)\). Take a \(β \in O_K\) such that \(O_K = O[β]\). Then [13, p.545, Cor.1] shows that the characteristic polynomial \(χ_β(t) = \det(t \cdot 1_n - β)\) of \(β \in M_n(O)\) has the following properties:

1) \(χ_β(t) (mod \ p) \in F[t]\) is the minimal polynomial of \(β \in M_n(F)\),

2) \(χ_β(t) (mod \ p) = p(t)^e\) with an irreducible polynomial \(p(t) \in F[t]\),

3) \(χ_β(t) (mod \ p^2) \in O_2[t]\) is irreducible.

By the abuse of the notation, the residue class of \(α \in O_K\) modulo \(p_K^n\) is denoted by \(\overline{α} \in O_K/p_K^n\).

[1]This argument is presented by the referee.
5.2 \(G = SL_n \) (\(n \geq 2 \)) is a smooth \(O \)-group scheme. If \(n \) is prime to the characteristic of \(\mathbb{F} \), then \(G \) fulfills three conditions I), II) and III) of subsection 2.1.

Let \(K/F \) be a field extension of degree \(n \) so that it is a tamely ramified extension. Take a \(\beta \in O_K \) such that \(O_K = O[\beta] \) and \(T_K/F(\beta) = 0 \). Under the identification of subsection 5.1, we have \(\beta \in \mathfrak{g}(O) \) such that \(G_\beta \) is commutative smooth \(O \)-group scheme. In this case, we have

\[
G_\beta(O_r) = \left\{ \varpi \in (O_K/p_K^n)^\times \mid \varepsilon \in U_{K/F} \right\}
\]

where \(e \) is the ramification index of \(K/F \) and

\[
U_{K/F} = \{ \varepsilon \in O_K \mid N_{K/F}(\varepsilon) = 1 \}.
\]

We have also

\[
G_\beta(O_r) \cap K_1(O_r) = \left\{ 1 + \varpi^t x \in (O_K/p_K^n)^\times \mid x \in O_K, T_{K/F}(x) \equiv 0 \pmod{p'} \right\}
\]

and \(\psi_\beta \left(1 + \varpi^t x \right) = \tau \left(\varpi^{-t} T_{K/F}(x) \beta \right) \) for \(x \in O_K \) such that \(T_{K/F}(x) \equiv 0 \pmod{p'} \). Then Theorem 2.3.1 gives

Proposition 5.2.1 There exists a bijection \(\theta : \text{Ind}_{G(O_\beta)}^{G(O_r)} \sigma_{\beta,\theta} \) of the set

\[
\left\{ \theta : U_{K/F} \rightarrow (O_K/p_K^n)^\times, \tau(\gamma) = \tau(\varpi^{-t} T_{K/F}(\beta x)) \text{ s.t. } \forall \gamma \in U_{K/F} \text{ s.t. } \gamma \equiv 1 + \varpi^t x \pmod{p_K^n}, x \in O_K \right\}
\]

onto \(\text{Irr}(G(O_r) \mid \psi_\beta) \).

5.3 \(G = Sp_{2n} \) be the \(O \)-group scheme such that

\[
Sp_{2n}(L) = \{ g \in GL_{2n}(L) \mid g J_n g = J_n \}
\]

\((J_n = \begin{bmatrix} 0 & 1_n \\ -1_n & 0 \end{bmatrix}) \) for all \(O \)-algebra \(L \). Then \(G \) is a connected smooth reductive \(O \)-group scheme. The Lie algebra \(\mathfrak{g} = \mathfrak{sp}_{2n} \) of \(G \) is an affine \(O \)-subscheme of \(\mathfrak{gl}_{2n} \) such that

\[
\mathfrak{sp}_{2n}(L) = \{ X \in \mathfrak{gl}_{2n}(L) \mid X J_n + J_n X = 0 \}
\]

for all \(O \)-algebra \(L \). The \(O \)-group scheme \(G \) satisfies the conditions I), II) and III) of the subsection 2.1.

Let \(K_+/F \) be a tamely ramified extension of degree \(n \) and \(K/K_+ \) a quadratic extension. Take a \(\omega \in O_K \) such that

\[
O_K = O_{K_+} \oplus \omega O_{K_+}, \quad \omega^\rho = -\omega
\]

where \(\rho \in \text{Gal}(K/K_+) \) is the non-trivial element. Then

\[
D(x, y) = \frac{1}{2} T_{K/F} \left(\omega^{-1} \omega_{K_+}^{-1} x \omega y \right) \quad (x, y \in K)
\]
with the ramification index e_+ of K_+/F is a symplectic form on the F-vector space K. Fix an O-basis $\{u_1, \ldots, u_n\}$ of O_K. Since K_+/F is a tamely ramified extension, there exists $u^*_j \in p_{K_+}^{1-e_+}$ ($1 \leq j \leq n$) such that $T_{K_+/F}(u_j u^*_j) = \delta_{ij}$. If we put $v_j = \omega \cdot \varpi_{K_+}^{e_+ - 1} \cdot u^*_j \in O_K$, then we have

$$D(u_i, u_j) = D(v_i, v_j) = 0, \quad D(u_i, v_j) = \delta_{ij} \quad (1 \leq i, j \neq n).$$

Identify the F-algebra K with a F-subalgebra of $M_{2n}(F)$ by means of the O-basis $\{u_1, \ldots, u_n, v_1, \ldots, v_n\}$ of O_K.

Take a $\beta \in O_K$ such that $O_K = O[\beta]$ and $\beta^p + \beta = 0$. Then $\beta \in \mathfrak{g}(O)$ such that G_β is a commutative smooth O-group subscheme of G. We have

$$G_\beta(O_\tau) = \{ \tau \in (O_K/p_K^{e+})^\times \mid \tau \in U_{K/K_+} \}$$

where e is the ramification index of K/F and

$$U_{K/K_+} = \{ \varepsilon \in O_K^\times \mid N_{K/K_+}(\varepsilon) = 1 \}.$$

We have also

$$G_\beta(O_\tau) \cap K_i(O_\tau) = \left\{ \frac{1 + \varpi^x}{1 + \varpi^y} \in (O_K/p_K^{e+})^\times \mid x \in O_K, T_{K/K_+}(x) \equiv 0 \pmod{p_K^{e+}} \right\}$$

and $\psi_\beta \left(\frac{1 + \varpi^x}{1 + \varpi^y} \right) = \tau \left(\varpi^{-y} T_{K/F}(\beta x) \right)$ for $x \in O_K$ such that $T_{K/K_+}(x) \equiv 0 \pmod{p_K^{e+}}$. Then Theorem 2.3.1 gives

Proposition 5.3.1 There exists a bijection $\theta \mapsto \text{Ind}^{G(O_\tau)}_{G(O_\beta)} \sigma_{\theta, \theta}$ of the set

$$\left\{ \theta : U_{K/K_+} \to (O_K/p_K^{e+})^\times \to \mathbb{C}^\times : \text{group homomorphism} \right\}$$

s.t. $\theta(\gamma) = \tau(\varpi^{-y} T_{K/F}(\beta x))$

for $\forall \gamma \in U_{K/K_+}, \gamma \equiv 1 + \varpi^y x \pmod{p_K^{e+}}, x \in O_K$

onto $\text{Irr}(G(O_\tau)) \mid \psi_\beta$.

5.4 Take a $S \in M_n(O)$ such that $^t S = S$ and det $S \in O^\times$. Let $G = SO(S)$ be the O-group scheme such that

$$G(L) = \{ g \in SL_n(L) \mid g S g = S \}$$

for all O-algebra L. Then G is a connected smooth reductive O-group scheme. The Lie algebra $\mathfrak{g} = \mathfrak{so}(S)$ of G is an affine O-subscheme of \mathfrak{gl}_n such that

$$\mathfrak{g}(L) = \{ X \in \mathfrak{gl}_n(L) \mid X S + S^t X = 0 \}$$

for all O-algebra L. The O-group scheme G satisfies the conditions I), II) and III) of the subsection 2.3.

Take a $\beta \in \mathfrak{g}(O)$ and assume that n is odd or that det $\beta \neq 0 \pmod{p}$. Let $\beta_s \in \mathfrak{g}(L)$ be the semisimple part of $\beta \in \mathfrak{g}(L)$ ($L = F$ or $L = \overline{F}$). Then the centralizer $Z_{G_{O_\beta}}(\beta_s)$ is connected and its center is also connected. Hence if $\beta \in \mathfrak{g}(O)$ is smoothly regular with respect to G, then G_{β} is a smooth commutative O-group scheme.
Assume that \(n = 2m \) is even. Let \(K/F \) be a tamely ramified Galois extension of degree \(2m \). Fix an intermediate field \(F \subset K_- \subset K \) such that \((K : K_-) = 2\), and assume that \(K/K_- \) is unramified. Take an \(\varepsilon \in O_{K_-}^* \) and put
\[
S_\varepsilon(x, y) = T_{K/F} \left(\varepsilon \cdot \varpi_{K_-}^{1-\varepsilon} \cdot xy^\rho \right) \quad (x, y \in K)
\]
where \(\rho \in \text{Gal}(K/K_-) \) is the non-trivial element and \(\varepsilon \) is the ramification index of \(K/F \). Then \(S_\varepsilon \) is a regular \(F \)-quadratic form on \(K \). Take an \(O \)-basis \(\{u_1, \cdots, u_n\} \) of \(K \) and put \(B = (u_i^{Tj})_{1 \leq i,j \leq n} \) with \(\text{Gal}(K/F) = \{\sigma_1, \cdots, \sigma_n\} \). Then we have
\[
(S_\varepsilon(u_i, u_j))_{1 \leq i,j \leq n} = B \begin{bmatrix} (\varepsilon \varpi_{K_-}^{1-\varepsilon})^{\sigma_1} & \cdots & (\varepsilon \varpi_{K_-}^{1-\varepsilon})^{\sigma_n} \end{bmatrix} \tau B^\rho
\]
so that the discriminant of the quadratic form \(S_\varepsilon \) is
\[
\det (S_\varepsilon(u_i, u_j))_{1 \leq i,j \leq n} = \pm (\det B)^2 \left(\varepsilon \varpi_{K_-}^{1-\varepsilon} \right)^{n}.
\]
Note that \((\det B)^\sigma = \pm \det B\) for any \(\sigma \in \text{Gal}(K/F) \). Since \(K/F \) is tamely ramified, its discriminant is
\[
D(K/F) = (\det B^2) = p^f(e-1)
\]
where \(n = ef \). Hence \(\det (S_\varepsilon(u_i, u_j))_{1 \leq i,j \leq n} \in O^* \). So the \(O \)-group scheme \(G = SO(S_\varepsilon) \) and its Lie algebra \(g = so(S_\varepsilon) \) is defined by
\[
G(L) = \left\{ g \in SL_L(O_K \otimes L) \mid S_\varepsilon(xg, yg) = S_\varepsilon(x, y) \quad \text{for all } x, y \in O_K \otimes L \right\}
\]
and by
\[
g(L) = \left\{ X \in \text{End}_L(O_K \otimes L) \mid S_\varepsilon(xX, y) + S_\varepsilon(x, yX) = 0 \quad \text{for all } x, y \in O_K \otimes L \right\}
\]
for all \(O \)-algebra \(L \). Note that \(\text{End}_F(K) \) acts on \(K \) from the right side.

Take a \(\beta \in O_K^* \) such that \(O_K = O[\beta] \) and \(\beta^o + \beta = 0 \). Identify \(\beta \in K \) with the element \(x \mapsto x\beta \) of \(g(O) \subset \text{End}_O(O_K) \). Then we have
\[
G_\beta(O_r) = \left\{ \tau \in (O_K/O_K^o)^{\times} \mid \varepsilon \in U_{K/K_+} \right\}
\]
where \(e \) is the ramification index of \(K/F \) and
\[
U_{K/K_+} = \{ \varepsilon \in O_K \mid N_{K/K_+}(\varepsilon) = 1 \}.
\]
We have also
\[
G_\beta(O_r) \cap K_i(O_r) = \left\{ \frac{1}{1 + \varpi^i} x \in (O_K/O_K^o)^{\times} \mid x \in O_K, T_{K/K_+}(x) \equiv 0 \pmod{p_{K_+}^{e+1}} \right\}
\]
and \(\psi_\beta \left(\frac{1}{1 + \varpi^i} x \right) = \tau (\varpi_{K/F}^{i\varepsilon} / (\beta x)) \) for \(x \in O_K \) such that \(T_{K/K_+}(x) \equiv 0 \pmod{p_{K_+}^{e+1}} \). Then Theorem 2.3.1 gives
Proposition 5.4.1 \(\text{There exists a bijection} \theta \mapsto \text{Ind}_{G(O_r)}^{G(O_{r,3})} \sigma_{\beta, \theta} \text{ of the set} \)

\[
\left\{ \begin{array}{l}
\theta : U_{K/K_+} \to (O_K/\mathfrak{p}_K^{\sigma})^\times \to C^\times : \text{group homomorphism} \\
\text{s.t.} \ \theta(\gamma) = \tau(\varpi^{-t} T_{K/F}(\beta x)) \\
\text{for } \forall \gamma \in U_{K/K_+}, \gamma \equiv 1 + \varpi^t x \pmod{\mathfrak{p}_K^{\tau}}, \ x \in O_K
\end{array} \right\}
\]

onto \(\text{Irr}(G(O_r) \mid \psi_{\beta}) \).

Let us consider the case of \(n = 2m + 1 \) being odd. Take a \(\eta \in O^\times \) and define a \(F \)-quadratic form \(S_{\epsilon, \eta} \) on the \(F \)-vector space \(K \times F \) by

\[S_{\epsilon, \eta}((x, s), (y, t)) = S_\epsilon(x, y) + \eta \cdot s. \]

Then the \(O \)-group scheme \(G = SO(S_{\epsilon, \eta}) \) and its Lie algebra \(\mathfrak{g} = \mathfrak{so}(S_{\epsilon, \eta}) \) is defined by

\[G(L) = \left\{ g \in SL_2((O_K \times O) \otimes L) \mid S_{\epsilon, \eta}(ug, vg) = S_{\epsilon, \eta}(u, v) \text{ for } \forall u, v \in (O_K \times O) \otimes O \right\} \]

and

\[\mathfrak{g}(L) = \left\{ X \in \text{End}_L((O_K \times O) \otimes L) \mid S_{\epsilon, \eta}(uX, v) + S_{\epsilon, \eta}(u, vX) = 0 \text{ for } \forall u, v \in (O_K \times O) \otimes O \right\} \]

for all \(O \)-algebra \(L \). An element \(X \in \text{End}_L((O_K \times O) \otimes O) \) is denoted by

\[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ with } \begin{cases} A \in \text{End}_L(O_K \otimes O), & B \in \text{Hom}_L(O_K \otimes O, L), \\ C \in \text{Hom}_L(L, O_K \otimes O), & D \in \text{End}_L(L) = L. \end{cases} \]

Put

\[\tilde{\beta} = \begin{bmatrix} \beta & 0 \\ 0 & 0 \end{bmatrix} \in \mathfrak{g}(O) \subset \text{End}_O(O_K \times O) \]

which corresponds to the element \((x, s) \mapsto (x; \tilde{\beta} 0) \) of \(\mathfrak{g}(O) \). The characteristic polynomial of \(\tilde{\beta} \in \text{End}_O(O_K \times O) \) is \(\chi_{\tilde{\beta}}(t) = t \cdot \chi_{\tilde{\beta}}(t) \). Since \(\tilde{\beta} \in O^\times_{K_+} \), the reduction modulo \(p \) of \(\chi_{\tilde{\beta}}(t) \in O[t] \) is the minimal polynomial of \(\tilde{\beta} (\text{mod } p) \in \text{End}_F(K \times F) \). We have

\[G_{\tilde{\beta}}(O_r) = \left\{ \gamma \pmod{\mathfrak{p}_K^{\tau}} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \mid \gamma \in U_{K/K_+} \right\} \]

and \(\psi_{\beta}(h) = \tau(\varpi^{-t} T_{K/F}(\beta_0 x)) \) for all

\[h = \begin{bmatrix} 1 + \varpi^t x & (\text{mod } \mathfrak{p}_K^{\tau}) \\ 0 & 1 \end{bmatrix} \in K_I(O_r) \cap G_{\tilde{\beta}}(O_r). \]

Then Theorem 2.3.1 gives

Proposition 5.4.2 \(\text{There exists a bijection} \theta \mapsto \text{Ind}_{G(O_r)}^{G(O_{r,3})} \sigma_{\beta, \theta} \text{ of the set} \)

\[
\left\{ \begin{array}{l}
\theta : U_{K/K_+} \to (O_K/\mathfrak{p}_K^{\tau})^\times \to C^\times : \text{group homomorphism} \\
\text{s.t.} \ \theta(\gamma) = \tau(\varpi^{-t} T_{K/F}(\beta x)) \\
\text{for } \forall \gamma \in U_{K/K_+}, \gamma \equiv 1 + \varpi^t x \pmod{\mathfrak{p}_K^{\tau}}, \ x \in O_K
\end{array} \right\}
\]

onto \(\text{Irr}(G(O_r) \mid \psi_{\beta}) \).

24
References

[1] A.Borel : Linear Algebraic Groups (Second Enlarged Edition, Springer-Verlag, 1991)

[2] A.Borel, et alii : Seminar on Algebraic Groups and Related Finite Groups (Lecture Notes in Math. 131, Springer-Verlag, 1970)

[3] P.Deligne, G.Lusztig : Representations of reductive groups over finite field (Ann. of Math. 103 (1976), 103–161)

[4] M.Demazure, P.Gabriel : Groupes Alg`ebriques (Masson, 1970)

[5] M.Demazure, A.Grothendieck : Schémas en groupes (Lecture Notes in Math. 151 (1970))

[6] P.Gérardin : Weil representations associated to finite fields (J.of Algebra, 46 (1977), 54–101)

[7] J.A.Green : The characters of the finite general linear groups (Trans. Amer. Math. Soc. 80 (1955), 402-447)

[8] G.Hill : A Jordan decomposition of representations for $GL_n(O)$ (Comm. Algebra 21 (1993), 3529-3534)

[9] G.Hill : On the nilpotent representations of $GL_n(O)$ (Manuscripta Math. 82 (1994), 293-311)

[10] G.Hill : Semisimple and cuspidal characters of $GL_n(O)$ (Comm. Algebra 23 (1995), 7-25)

[11] G.Hill : Regular elements and regular characters of $GL_n(O)$ (J. Algebra 174 (1995), 610-635)

[12] R.Krakovski : Regular characters of groups of type A_n over discrete valuation rings (J. Algebra 496 (2018), 116–137)

[13] B.Lou : The centralizer of a regular unipotent element in a semisimple algebraic group (Bull.Amer.Math.Soc. 74 (1968), 1144–1146)

[14] T.Shintani : On certain square integrable irreducible unitary representations of some p-adic linear groups (J. Math. Soc. Japan, 20 (1968), 522–565)

[15] T.A.Springer : Some arithmetical results on semi-simple Lie algebras (Pub. Math. I.H.E.S. 30 (1966), 115–141)

[16] T.A.Springer : Generalization of Green’s Polynomials (P.S.P.M. vol. 21 (1971),149-153, Amer. Math. Soc.)

[17] A.Stasinski, S.Stevens : The regular representations of GL_n over finite local principal ideal rings (Bull. London Math. Soc. 49 (2017), 1066–1084)

[18] K.Takase : Regular characters of $GL_n(O)$ and Weil representations over finite fields (Journal of Algebra 449 (2016), 184–213)

Sendai 980-0845, Japan
Miyagi University of Education, Department of Mathematics
e-mail : k-taka2@ipc.miyakyo-u.ac.jp