Antenatal dexamethasone treatment transiently alters diastolic function in the mouse fetal heart

Citation for published version:
Agnew, E, Garcia-Burgos, A, Richardson, R, Manos, H, Thomson, A, Sooy, K, Just, G, Homer, N, Moran, C, Brunton, PJ, Gray, GA & Chapman, K 2019, 'Antenatal dexamethasone treatment transiently alters diastolic function in the mouse fetal heart', Journal of Endocrinology. https://doi.org/10.1530/JOE-18-0666

Digital Object Identifier (DOI):
10.1530/JOE-18-0666

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
Journal of Endocrinology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
ANTENATAL DEXAMETHASONE TREATMENT TRANSIENTLY ALTERS DIASTOLIC FUNCTION
IN THE MOUSE FETAL HEART

Agnew EJ1,*, Garcia-Burgos A1, Richardson RV1,*, Manos H1, Thomson AJW1, Sooy K2, Just G2, Homer NZM2, Moran CM1, Brunton PJ3, Gray GA1, Chapman KE1

1Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ
*Current address, EJA: Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229., RVR: Cardio Respiratory, York NHS Teaching Hospital Foundation Trust, York, YO31 8HE
2Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ
3Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK

ABSTRACT
Endogenous glucocorticoid action is important in the structural and functional maturation of the fetal heart. In fetal mice, although glucocorticoid concentrations are extremely low before E14.5, glucocorticoid receptor (GR) is expressed in the heart from E10.5. To investigate whether activation of cardiac GR prior to E14.5 induces precocious fetal heart maturation, we administered dexamethasone in the drinking water of pregnant dams from E12.5-E15.5. To test direct effects of glucocorticoids upon the cardiovascular system we
used SMGRKO mice, with Sm22-Cre-mediated disruption of GR in cardiomyocytes and vascular smooth muscle. Contrary to expectations, echocardiography showed no advancement of functional maturation of the fetal heart. Moreover, litter size was decreased 2 days following cessation of antenatal glucocorticoid exposure, irrespective of fetal genotype. The myocardial performance index and E/A wave ratio, markers of fetal heart maturation, were not significantly affected by dexamethasone treatment in either genotype. Dexamethasone treatment transiently decreased the myocardial deceleration index (MDI; a marker of diastolic function), in control fetuses at E15.5, with recovery by E17.5, 2 days after cessation of treatment. MDI was lower in SMGRKO than in control fetuses and was unaffected by dexamethasone. The transient decrease in MDI was associated with repression of cardiac GR in control fetuses following dexamethasone treatment. Measurement of glucocorticoid levels in fetal tissue and hypothalamic corticotropin-releasing hormone (Crh) mRNA levels suggest complex and differential effects of dexamethasone treatment upon the hypothalamic-pituitary-adrenal axis between genotypes. These data suggest potentially detrimental and direct effects of antenatal glucocorticoid treatment upon fetal heart function.

INTRODUCTION

Levels of glucocorticoid hormones rise markedly shortly prior to birth, to promote fetal organ and tissue maturation in preparation for birth and subsequent postnatal life (Fowden et al., 1998). This is mimicked with the administration of potent synthetic glucocorticoids (betamethasone or dexamethasone) to pregnant women at risk of preterm delivery, in order to mature fetal organs, thereby reducing neonatal morbidity and mortality should
preterm birth ensue (Roberts et al., 2017, Agnew et al., 2018). A great deal is known about
the maturational effects that endogenous as well as exogenous glucocorticoids have on the
lungs (Bird et al., 2015, Roberts et al., 2017). However, the role of glucocorticoids in the
maturation of other fetal organs has not been well characterised and concerns have been
raised that non-optimal antental glucocorticoid therapy might increase adverse outcomes,
including perinatal death (reviewed, Kemp et al., 2017). The effects of endogenous
glucocorticoids upon fetal heart maturation were, until recently, unclear. We demonstrated
an important role for endogenous glucocorticoids, acting via the glucocorticoid receptor
(GR), in fetal heart maturation. At embryonic day (E) 17.5, global GR knock-out mice show
impaired heart structure and function and fail to show the normal maturational changes in
late gestation cardiac expression of genes involved in contractile function, calcium handling
and energy metabolism (Rog-Zielinska et al., 2013). Tissue-specific knock-out of GR by
smooth muscle protein 22 (SM22)-Cre-driven recombination showed that most of these
maturational effects are attributable to direct actions of GR within cardiomyocytes and/or
vascular smooth muscle cells (VSMC) (Rog-Zielinska et al., 2013). Expression profiling and in
silico transcription factor analysis in sheep heart suggest that endogenous glucocorticoids
similarly promote the metabolic transitions that occur close to birth in large animals
(Richards et al., 2015). In contrast, although a number of animal studies have investigated
the effects of fetal exposure to exogenous glucocorticoids upon subsequent heart structure
and function in adulthood (termed “fetal programming” (Agnew et al., 2018, Rog-Zielinska
et al., 2014)), few have examined the impact of exogenous glucocorticoid administration
upon the heart in utero, likely to underpin the long-term effects. Studies in fetal sheep
hearts have shown that late gestation maternal hypercortisolemia impacts the myocyte
transcriptome, with some changes indicative of precocious maturation, but others not
(Richards et al., 2014). However, whether these effects are mediated by alterations in maternal or placental physiology, or reflect direct actions upon fetal cardiomyocytes is unknown. A clear consensus regarding the direct impact of exogenous glucocorticoid upon the fetal heart has yet to emerge.

Here, we hypothesised that early activation of GR would advance fetal heart maturation and that this would be via direct activation of GR in fetal cardiomyocytes. We tested our hypothesis by administering antenatal dexamethasone in mice, from E12.5 to E15.5 (prior to the natural late gestation peak in endogenous glucocorticoid levels at E16.5 to E17.5). To assess the direct involvement of GR in cardiomyocytes we used SMGRKO mice, with SM22-Cre-driven deletion of GR in cardiomyocytes and VSMC. The effect on heart function in utero was investigated at E15.5 and at E17.5, during and 2 days following cessation of treatment, respectively. Parameters of glucocorticoid action were investigated ex vivo, including GR (Nr3c1) and GR target genes (Fkbp5, Kcnj12) as well as markers of cardiac maturation - genes encoding calcium handling proteins that are indirectly regulated by GR in heart (Rog-Zielinska et al., 2015).

MATERIALS AND METHODS

Animals

All animal experiments were approved by the University of Edinburgh Animal Welfare and Ethical Review Body and were carried out in strict accordance with accepted standards of humane animal care under the auspices of the Animal (Scientific Procedures) Act UK 1986. SMGRKO mice (on a C57Bl/6 genetic background) have been previously described (Rog-Zielinska et al., 2013). They carry a deletion of exon 3 of the Nr3c1 gene (encoding GR) in
cardiomyocytes and vascular smooth muscle, the result of Sm22-Cre mediated recombination of a ‘floxed’ GR allele (GR^{fl/fl}). Experimental SMGRKO fetuses and control littermates were generated by mating male SMGRKO (GR^{fl/fl} Sm22-Cre⁺) mice with control females (GR^{fl/fl} Sm22-Cre⁻). The morning of the day the vaginal plug was found was designated E0.5. Singly housed pregnant females received either dexamethasone (100μg/kg/d, dose calculated based on daily weight and water intake measurements per mouse)(Sigma-Aldrich, St Louis, USA) or vehicle (EtOH, approx 0.023% depending on body weight and water consumption) in their drinking water from E12.5 to E15.5. Cre genotyping was carried out on tissue biopsies using primers: 5′-GATCGCTGCCAGGATATACG-3′ and 5′-AGGCCAGGTATCTCTGACCA-3′. Fetuses were weighed then killed by decapitation at either E15.5 or E17.5. Fetal heads were rapidly frozen on dry ice for in situ mRNA hybridisation. For RNA extraction, fetal hearts were dissected, weighed and rapidly frozen on dry ice. For liquid chromatography mass-spectrometry (LC-MS/MS), fetal and maternal livers were dissected, weighed and rapidly frozen on dry ice. Tissues were stored at -80°C prior to extraction and analysis.

High-resolution ultrasound analysis

Fetal cardiac function was assessed at E15.5 or E17.5 using a Visualsonics Vevo 770 High Resolution Ultrasound Scanner. Briefly, pregnant mice were anaesthetised with 2% isoflurane gas, laid supine with all limbs taped to electrocardiogram electrodes to monitor heart rate (~450bpm) and body temperature maintained at 37°C. Fetuses were counted for identification purposes and all were scanned. Abdominal hair was removed using a commercially available depilating cream, then pre-warmed ultrasound gel (Aquasonic 100; Parker Laboratories, Orange, NJ, USA) was applied. A 30 MHz RMV 707B (real-time
microvisualization) transducer was used, with a focal length of 12.7mm and a depth of field of 20mm. Pulse-wave Doppler was used to measure blood flow across the mitral valve using the apical four chamber view. Vevo 770 image analysis software was used to measure and analyse B-mode images and Doppler waveform traces. Following imaging, the dam was killed by cervical dislocation. Scanned fetuses were excised following identification by validation of position from the scanned images, then weighed, decapitated and tissues collected.

RNA analysis

RNA was extracted from fetal hearts by homogenisation in TRIzol (Thermo Fisher Scientific) followed by purification using a Purelink RNA mini kit (Thermo Fisher Scientific). cDNA was synthesised using a QuantiTect Reverse Transcription Kit (Qiagen) then subject to quantitative (q)PCR (in triplicate) using the Roche Lightcycler 480 system with gene-specific primer sets and Universal Probe Library (Roche) (Supplementary Table 1). A standard curve was prepared from pooled cDNA samples. Relative quantification was provided by LightCycler software using the maximum second derivative method. mRNA levels are expressed relative to a combination of the mean of 2 or more of 18s, Actb, Hprt and Tbp mRNA levels, used as internal standards (as detailed in the figure legends).

In situ mRNA hybridisation

Coronal sections (10µm) of fetal heads were cut using a cryostat, collected onto Polysine® slides and stored at −75°C until processing. Corticotropin-releasing hormone (Crh) mRNA was measured using a 35S-UTP radio-labelled cRNA probe used extensively by ourselves and others (Welberg et al., 2000, Brunton et al., 2015, Grundwald and Brunton, 2015, Harris et
al., 2001) under conditions optimised in our laboratory. Briefly, 35S-cRNA was synthesized from a linearized pBluescript vector expressing a 518bp Crh cDNA fragment (a gift from Dr. Robert Thompson, University of Michigan, Ann Arbor, MI, USA). The plasmid was linearized with HindIII or XbaI and transcribed from the T7 or T3 promoters, respectively to synthesize the sense and antisense probes. ISH was performed as previously described (Brunton et al., 2009), except that following the RNase A step, slides were washed 3 x 50 minutes in 0.1 x SSC at 60°C. Following the post-hybridization washes, sections were dehydrated in an ascending series of ethanol containing 300mM ammonium acetate, air-dried and then exposed to autoradiographic film (Amersham Hyperfilm MP, GE Healthcare, Buckinghamshire, UK) at room temperature. Films were developed (Ilford Phenisol) and fixed (Ilford Hypam fixer). To optimise exposure times for autoradiographic film, a trial set of slides were exposed to film and developed at 2 day intervals until the exposure time which produced the best signal to noise ratio was identified and this exposure time (6 days) was used for the experimental tissue. Slides were subsequently dipped in autoradiographic emulsion and exposed at 4°C for 5 weeks then developed, counterstained with haematoxylin and eosin and viewed under a light microscope to confirm neuroanatomical localisation of the PVN. CRH mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus was examined bilaterally in 3-6 sections/mouse with measurements taken from the mid-section on which CRH was apparent. Semiquantitative densitometric analysis of autoradiographic films using ImageJ software was used to calculate mean grey density. Sections hybridized with sense probes served as negative controls and showed no signal above background.
Western Blot

Protein was extracted from fetal heart tissue by homogenising in RIPA lysis and extraction buffer, followed by protein quantification using a Pierce BCA assay (both Thermo Fisher Scientific). Samples (20μg protein) were added to NuPAGE Sample Reducing Buffer and NuPAGE LDS Sample Buffer (both Thermo Fisher Scientific), and denatured at 70°C for 10 minutes prior to electrophoresis on a NuPAGE Novex 4–12% Bis Tris gel in NuPAGE MES SDS running buffer (Thermo Fisher Scientific). Following protein transfer to a nitrocellulose membrane, non-specific binding was blocked by incubation in 5% blotting-grade blocker (BioRad) in TBS-T for 1 hour. Membranes were incubated with primary antibodies: GR (1:400; G-5: sc-393232, Santa Cruz) and β-tubulin (1:1000; MAB3408, Merck MilliPore) overnight at 4°C. Membranes were then washed and incubated with secondary antibodies IRDye 800CW Goat anti-mouse IgG (1:10000; 926-32210, Licor Biosciences) and IRDye® 680RD Goat anti-Mouse IgG (1:10000; 925-68070, Licor Biosciences), followed by quantification of GR protein levels relative to β-tubulin using an Odyssey infrared imaging system (Licor Biosciences).

Liquid chromatography-mass spectrometry (LC-MS/MS)

Livers were pooled from all fetuses from a litter to accumulate a weight of approximately 100mg tissue (1 sample per litter). Tissues were homogenised in 3ml methanol:water (7:2, v/v) and enriched with 5ng internal standard solution (Epi-corticosterone d4-dexamethasone, d4-cortisol) added to each sample. Homogenates were shaken then centrifuged at 3200g for 45 minutes at 4°C before collecting the supernatant and reducing to dryness using oxygen-free nitrogen at 60°C. For simultaneous quantification of dexamethasone, 6-hydroxydexamethasone, 11-dehydrodexamethasone, corticosterone and
11-dehydrocorticosterone, calibration standards (1mg/ml) of each steroid were diluted to
10µg/mL stock in methanol to generate a calibration curve (range, 0.0001-50ng, geometric
progressions of 25) enriched with 5ng internal standard solution (Epi-corticosterone d4-
dexamethasone, d4-cortisol) and reduced to dryness under oxygen-free nitrogen. Samples
and calibration standards were resuspended in 2ml 20% methanol and transferred to Classic
Sep-pak columns (2mg, Waters®, Borehamwood, UK) that had been primed with methanol
(2ml) and water (2ml) before sample loading. Sep Paks were washed with 2ml water and
steroids were eluted with 2ml 100% methanol and collected into a glass vial, before
reducing to dryness under oxygen-free nitrogen at 60°C. Samples were resuspended in
100µl 70:30 water/acetonitrile for LC-MS/MS analysis.

Samples were injected (20µl) onto a C18-AR column (ACE Excel 150 x 2.1mm; 2µm, ACT
Technologies, Aberdeen, UK) at 40°C using a flow rate of 0.5ml/min, mobile phase A – water
0.1% formic acid, B- acetonitrile 0.1% formic acid from 20-90% B over 10 minutes, protected
by a Kinetex KrudKatcher® (Phenomenex, Macclesfield, UK), followed by analysis on a
QTrap® 5500 LC-MS/MS System (Sciex) or QTrap 6500 Triple Quadrupole, Mass
Spectrometer (Sciex) system.

The peak areas of each steroid and each internal standard were integrated using
MultiQuant™ version 3.0.8 software (Version number 3.0.8664.0 2015 AB SCIEX with
Scheduled MRM™ Algorithm support) (Sciex, 2015). Linear regression analysis of calibration
standards, calculated using peak area ratios of steroid of interest to internal standard, was
used to determine the concentration of the steroid of interest in the samples. R²>0.99 was
considered acceptable and within each batch of samples the accuracy at the upper and
lower limits were only accepted if accuracy <20%. The amount of steroid was calculated using linear regression analysis of the peak area ratio and was expressed as ng of analyte per g liver.

Statistical analysis

All numerical data are presented as means ± SEM, with p<0.05 deemed significant. GraphPad Prism 6 software was used for statistical analysis, with unpaired Student’s t-test and two-way ANOVA with post-hoc Tukey or Bonferroni tests, as appropriate. All data were subject to Shapiro-Wilk normality testing prior to further analysis.

RESULTS

Dexamethasone treatment reduced fetal number at E17.5, irrespective of genotype with no effect on heart weight. Body weight was increased in SMGRKO mice at E17.5.

Dexamethasone treatment from E12.5 to E15.5 had no effect on litter size at E15.5 (Figure 1A). We noted that, irrespective of treatment, E15.5 litters contained more SMGRKO than control fetuses (Figure 1B). There was no effect of dexamethasone on fetal weight at E15.5, nor did this differ between genotypes (Table 1), and there was no association between fetal weight and litter size (Supplementary Figure 1A). Heart weight at E15.5 was unaffected by dexamethasone treatment and was similar between control and SMGRKO mice (Table 1). In contrast, 2 days after cessation of dexamethasone treatment, at E17.5, litter size was reduced (Figure 1C). Both genotypes were affected (Figure 1D), suggesting the decrease in litter size is not due to a direct effect of dexamethasone on the fetal heart via GR. Fetal weight did not show any relationship to litter size at E17.5 (Supplementary Figure 1B), nor did we see any direct evidence for an increase in fetal deaths at E17.5 (2 dead/resorbed
fetuses across all 24 litters at E17.5, versus 4 across 24 litters at E15.5). However, at E17.5, dexamethasone treated SMGRKO fetuses weighed more than littermate controls and were also heavier than vehicle treated SMGRKO fetuses (Table 1). This is suggestive of oedema in SMGRKO fetuses, as previously identified (Rog-Zielinska et al., 2013), 2 days following cessation of dexamethasone treatment, however, this requires experimental confirmation. There were no differences in fetal heart weights between genotypes or treatment groups at E17.5 (Table 1).

Dexamethasone treatment transiently altered cardiac diastolic function at E15.5 in a GR-dependent manner, with no effect on systolic function.

Fetal adrenal glucocorticoid synthesis in mice initiates at E14.5 and peaks around E17.5 (Michelsohn and Anderson, 1992). To investigate whether antenatal dexamethasone treatment prior to this can advance the maturation of fetal heart function, echocardiography was performed at E15.5 (end of treatment) or at E17.5 (2 days after cessation of treatment). Heart rate was not significantly affected by genotype or treatment at either time point and was in the normal range for these gestational ages (Supplementary Table 2)(Corrigan et al., 2010). There was no difference in the Doppler-derived myocardial performance index (MPI; a measure of combined systolic and diastolic function) between genotypes at either E15.5 or E17.5, nor was it altered by dexamethasone at either time point. There were also no effects of dexamethasone on any of the components of MPI (IVCT, IVRT, ET), although the IVRT showed the expected maturational decrease between E15.5 and E17.5, irrespective of dexamethasone treatment (Supplementary Table 2). The Doppler-derived E/A wave ratio (the ratio of peak blood flow velocity in early ‘passive’ diastole to peak velocity in late ‘active’ diastole) was also unaffected by dexamethasone.
treatment, nor did it differ between genotypes (Supplementary Table 2). However, at E15.5, compared to control mice, SMGRKO mice showed a lower mitral deceleration index (MDI), calculated by normalising the early filling deceleration time (DT) for peak E wave velocity. This suggests altered diastolic heart function. Moreover, whilst the MDI of SMGRKO fetuses was unaffected following dexamethasone treatment, dexamethasone decreased the MDI in control mice to a level similar to that of SMGRKO mice (Figure 2A), suggesting MDI is responsive to GR activation in cardiomyocytes/VSMC. By E17.5, the MDI of dexamethasone treated control fetuses had recovered to the same level as in vehicle treated controls, although the reduction in the MDI in SMGRKO mice compared to controls persisted (Figure 2B).
Calcium-handling genes, markers of fetal heart maturation, are down-regulated by dexamethasone treatment.

In their report of the application of high-frequency ultrasound to assess the maturation of the mouse fetal heart, Corrigan et al failed to detect a change in MPI between E16.5 and E18.5 (Corrigan et al., 2010, Rog-Zielinska et al., 2013), suggesting that MPI alone might not be a reliable marker of heart maturation. We therefore examined expression of genes involved in calcium handling that normally increase during fetal heart maturation and which are indirectly induced by GR in fetal cardiomyocytes (Rog-Zielinska et al., 2015). At E15.5, 2-way ANOVA showed a significant effect of dexamethasone in reducing cardiac expression of Atp2a2, Cacna1c and Slc8a1 (encoding SERCA2a, Ca\textsubscript{v}1.2 and NCX1, respectively); Ryr2 was unaffected (Supplementary Figure 2A). By E17.5, expression had recovered in dexamethasone-exposed fetuses, with Cacna1c even increased in dexamethasone-exposed control fetuses (Supplementary Figure 2B). Overall, these findings are not consistent with an advancement in fetal heart maturation and moreover, suggest that dexamethasone may transiently impair fetal heart function by reducing capacity for calcium handling. This occurred in both genotypes and is therefore independent of GR expression in cardiomyocytes/VSMC.

Glucocorticoid signalling in fetal heart may be down-regulated by dexamethasone treatment.

The decrease in MDI following dexamethasone treatment in control fetuses at E15.5, to the same level as that in SMGRKO fetal hearts, suggests that dexamethasone may have down-regulated GR signalling in control fetal hearts, causing MDI (a dynamic measure) to be
equivalent to that in the GR-deficient SMGRKO hearts. Consistent with this idea, levels of

Nr3c1 mRNA (encoding GR) in control fetal hearts tended to be reduced (p=0.07) following 3
days dexamethasone treatment (Figure 3A). There was also a non-significant trend for
down-regulation of GR protein levels in hearts of control fetuses at E15.5 following
dexamethasone treatment (Supplementary Figure 3). As expected, *Nr3c1* mRNA levels were
lower in SMGRKO fetal hearts at E15.5 compared to control littermates and were unaffected
by dexamethasone (Figure 3A). By E17.5, 2 days after cessation of dexamethasone
treatment, cardiac *Nr3c1* mRNA levels had largely recovered in control fetuses (Figure 3D).

Levels of *Fkbp5* mRNA, a glucocorticoid target gene, did not show the expected increase
with dexamethasone treatment in control fetal hearts at E15.5, nor were they different in
SMGRKO hearts (Figure 3B). At E17.5, *Fkbp5* mRNA levels remained unaffected by prior
dexamethasone treatment (Figure 3E). Similarly, *Kcnj12*, a direct target of GR in fetal
cardiomyocytes (Rog-Zielinska et al., 2015), was down-regulated by dexamethasone in
control fetuses at E15.5 (Figure 3C), with recovery of normal levels by E17.5 (Figure 3F).

These data are consistent with an acute down-regulation of glucocorticoid signalling
following 3 days of dexamethasone treatment.

Fetal glucocorticoid levels are altered by dexamethasone treatment.

To establish that dexamethasone reached the fetal circulation and to determine effects on
endogenous glucocorticoid concentrations, the level of dexamethasone and its major
metabolites 6-hydroxydexamethasone and 11-dehydrodexamethasone were measured. We
have previously measured corticosterone levels in the mid- and late-gestation fetal heart
(Rog-Zielinska et al., 2013), in which the rise in glucocorticoid levels reflected the late-
gestation rise in plasma and tissue glucocorticoid levels. Because we had limited amounts of
heart tissue, we reasoned that the concentration of steroids in liver, as an important target of glucocorticoid action as well as steroid and drug metabolism, would be indicative of overall exposure. Fetal livers were pooled from each litter to obtain sufficient sample for mass spectrometry measurement of steroid concentration. The endogenous glucocorticoids, corticosterone and 11-dehydrocorticosterone (11-DHC) were simultaneously measured. At E15.5, dexamethasone was detected in the livers of treated fetuses, though at lower levels than 6-hydroxydexamethasone (Figure 4A, B). 11-dehydrodexamethasone was undetectable (over a dynamic range of assay, 0-10ng). By E17.5, neither dexamethasone nor its metabolites were detectable in fetal livers, nor were they present in vehicle-treated fetuses at either time point (data not shown). Similarly, dexamethasone and 6-hydroxydexamethasone were detected in the livers of dexamethasone-treated pregnant dams at E15.5 (Supplementary Figure 4), but not at E17.5, while 11-dehydrodexamethasone was undetectable (data not shown).

Consistent with the low glucocorticoid environment of the fetus, corticosterone levels were low in pools of fetal livers at E15.5 and were reduced by dexamethasone treatment (Figure 5A). Corticosterone levels remained suppressed in dexamethasone-exposed fetuses at E17.5, 2 days after cessation of treatment (Figure 5C). In contrast, 11-dehydrocorticosterone levels were not significantly affected by dexamethasone treatment at either time point (Figure 5B, D). Corticosterone levels in the liver of the dam were much higher than in the fetus, and although hepatic corticosterone levels in the dam tended to be reduced following dexamethasone treatment, this was not statistically significant (Supplementary Figure 5). Fetal hepatic 11-dehydrocorticosterone concentrations were an order of magnitude lower than corticosterone in the dams and were reduced by dexamethasone-treatment at E15.5.
However, levels had recovered by E17.5. These data could reflect hypothalamic-pituitary-adrenal (HPA) axis suppression, reducing levels of corticosterone and/or 11-dehydrocorticosterone (plasma levels of 11-dehydrocorticosterone increase following HPA axis activation (Kotelevtsev et al., 1997, Harris et al., 2001, Verma et al., 2018)). Alternatively, alterations in absolute or relative activities of maternal or fetal 11β-hydroxysteroid dehydrogenases, which interconvert active and intrinsically inert glucocorticoids (Chapman et al., 2013), could account for the effects of dexamethasone on endogenous glucocorticoid levels. To try to distinguish between these possibilities, we carried out in situ mRNA hybridisation to measure levels of Crh mRNA in the fetal paraventricular nucleus of the hypothalamus. However, whilst the expected Crh down-regulation was seen in dexamethasone-treated SMGRKO fetuses at E15.5, there was no significant effect in control fetuses at this age, nor were there any significant treatment differences between fetuses at E17.5 (Supplementary Figure 6). Thus, the reduced corticosterone levels in dexamethasone-treated fetuses may result from altered placental and/or fetal glucocorticoid metabolism and/or transport. Alternatively, they may be a consequence of changes in pituitary and/or adrenal sensitivities, which were not assessed here.

DISCUSSION

Contrary to our hypothesis, administration of dexamethasone from E12.5-E15.5 does not advance fetal heart maturation in mice. MPI, a marker of fetal heart maturity (Corrigan et al., 2010, Rog-Zielinska et al., 2013), was not significantly affected by antenatal dexamethasone, nor were calcium handling genes induced. Heart function was altered though. Dexamethasone transiently decreased the MDI in control fetuses, with recovery by
2 days after cessation of treatment. Other parameters of diastolic function (DT, E/A Doppler velocity ratio, IVRT) were not significantly affected by dexamethasone. There was no effect of dexamethasone on the MDI in SMGRKO fetuses. In an adult population with a high prevalence of hypertension and diabetes but free of prevalent cardiovascular disease, MDI predicted cardiovascular events (Mishra et al., 2007). In another human study, MDI was significantly associated with age and aortic root diameter (Cuspidi et al., 2011). However, the impact of an alteration in MDI during development is unknown, both in the fetus and longer-term in adulthood. Thus, whether the reduction in the MDI in dexamethasone-treated control fetuses is detrimental, beneficial or simply reflects different loading conditions, is currently unclear. Diastolic function is strongly dependent on haemodynamic status and alterations in either preload or afterload affect mitral flow velocity curves (Nishimura et al., 1989a, Nishimura et al., 1989b). The U-shaped relationship between DT and cardiovascular outcomes is strengthened by normalising for the E wave velocity, thereby correcting for loading conditions in calculating the MDI (Chinali et al., 2009, Mishra et al., 2007). Here, DT itself was unaffected by dexamethasone. This suggests that the effect of dexamethasone on the MDI in control fetuses is likely due to alterations in loading, possibly through the well-known increase in fetal blood pressure following antenatal corticosteroid administration (Derks et al., 1997, Bennet et al., 1999). In the surviving dexamethasone-treated control fetuses, MDI was normalised by E17.5. Although diastolic dysfunction in human fetuses with cardiomyopathy is associated with an 8-fold increased risk of fetal mortality compared to systolic dysfunction (Pedra et al., 2002), it is unlikely that any diastolic dysfunction reflected in the lower MDI at E15.5 contributes to the reduced fetal survival at E17.5. Dexamethasone treatment has a similar effect in reducing the number of SMGRKO and control fetuses at E17.5, yet the MDI in SMGRKO mice is
unaffected by dexamethasone. Nevertheless, it is possible that systemic factors, particularly haemodynamic, differentially affect diastolic function in SMGRKO and control fetuses. The increase in wet weight at E17.5 in SMGRKO fetuses with prior dexamethasone treatment is consistent with our previous finding of mild oedema in untreated SMGRKO fetuses at E17.5 (Rog-Zielinska et al., 2013) and suggests genotype-specific cardiac and/or haemodynamic effects of dexamethasone. Whether dexamethasone causes or exacerbates oedema in SMGRKO fetuses requires experimental confirmation. SMGRKO mice have normal blood pressure as adults (Richardson et al., 2017). However, in an independent line of mice with GR deletion in VSMC (as in our SMGRKO mice) dexamethasone-induced hypertension is attenuated in adulthood (Goodwin et al., 2008). Whether GR action in VSMC contributes to the fetal heart phenotype observed here remains to be established.

The lack of difference in MPI between genotypes and with dexamethasone treatment, was surprising, as was the lack of genotype difference in calcium handling gene expression, at least at E17.5. We have previously described an increase in MPI at E17.5 in SMGRKO fetuses compared with controls, and SMGRKO fetuses have lower cardiac expression of Atp2a2 and Ryr2 than littermate controls at E17.5 (Rog-Zielinska et al., 2013). The reason we failed to see those differences here is unclear; a reduction in cardiac GR expression in SMGRKO mice was confirmed. However, the SMGRKO mice used here have undergone several generations of breeding since the original line was generated and characterised, and it is possible that compensatory genetic changes have occurred (e.g. due to selection of surviving Cre+ male mice from which to breed), accounting for these findings. It is also possible that the difference in experimental conditions (e.g. daily weighing of the mice or factors unknown to
us that alter haemodynamic status) could account for the discrepancies between this and
our previous study. Ongoing and future studies will investigate this.

Nevertheless, a genotype-specific impact of dexamethasone upon the fetus is evident in this
study. Our steroid measurements confirm dexamethasone in fetal livers, albeit at a
concentration ~10-fold lower than in the maternal liver. This is consistent with previous
reports of a gradient of this magnitude between maternal and fetal serum in the late
gestation rat (Varma, 1986). Interestingly, levels of 6-hydroxydexamethasone, an active
metabolite of dexamethasone (Ritchie et al., 1992), are at least as high in the fetal liver as in
the maternal liver. This relatively high level of 6-hydroxydexamethasone in the fetal liver
suggests metabolism of dexamethasone to 6-hydroxydexamethasone by the feto-placental
unit. This is the first known example of evidence for 6-hydroxydexamethasone expression in
the mouse fetal liver.

Because, at E15.5, dexamethasone had no effect on the MDI in SMGRKO fetuses, but
decreased the MDI in control fetuses (to be the same as in SMGRKO), we hypothesised that
GR was down-regulated in cardiomyocytes and/or VSMC of control mice after the 3 days of
dexamethasone treatment. Down-regulation of GR in response to dexamethasone
treatment is well known (Wilkinson et al., 2018) and lower GR expression in the heart of
control animals may explain the lack of dexamethasone effect on Fkbp5, a well-known GR
target gene as well as Kcnj12, a GR target in cardiomyocytes (Rog-Zielinska et al., 2015). Any
reduction in glucocorticoid sensitivity due to reduced GR expression is transient, recovering
2 days after termination of dexamethasone administration. Genes involved in calcium
handling are normally induced following GR activation in cardiomyocytes, albeit by indirect
mechanisms. The transient decrease at E15.5 with recovery by E17.5 is also consistent with
down-regulation of GR. However, the decrease in GR that impacts calcium handling is likely
not in cardiomyocytes/VSMC, as calcium handling was also affected by dexamethasone in
SMGRKO mice. The locus of this regulation of cardiac gene expression by dexamethasone is
currently unclear. Dexamethasone treatment also perturbs endogenous fetal glucocorticoid
levels, and the effect on the HPA axis appears complex. Prolonged suppression of the fetal
HPA axis is suggested by the decrease in fetal corticosterone concentration without a
significant change in 11-dehydrocorticosterone following dexamethasone treatment to
E15.5 and persisting 2 days after cessation of treatment at E17.5. Whether or not this
suppression of the fetal HPA axis persists beyond E17.5 was not investigated here, though
antenatal glucocorticoid exposure is known to exert long-term programming effects upon
HPA axis activity (Agnew et al., 2018, Rog-Zielinska et al., 2014). Contrary to expectations,
Crh mRNA was not down-regulated by dexamethasone in control animals, though it was in
SMGRKO fetuses at E15.5, with recovery observed by E17.5. Because, for methodological
reasons, fetal livers from both genotypes were pooled for steroid measurements, we could
not determine whether hepatic corticosterone levels in the SMGRKO and control livers were
similarly affected by dexamethasone treatment. Thus, it remains possible that there is a
differential effect of dexamethasone upon fetal corticosterone levels in SMGRKO and
control fetuses, as well as upon the HPA axis. Whilst speculative, this naturally raises the
question of how HPA axis suppression could arise in SMGRKO but not control fetuses. It has
been suggested that resistance to negative feedback by glucocorticoids is essential to allow
the late gestation increase in glucocorticoid levels (Matthews and Challis, 1996). CRH is not
suppressed by antenatal betamethasone treatment in the late gestation sheep fetus,
despite reduced cortisol levels (Li et al., 2013). In contrast, in the late gestation guinea pig
fetus, CRH expression is reduced by repeated injection of synthetic glucocorticoids, demonstrating sensitivity to negative feedback (McCabe et al., 2001). Interestingly, in the late gestation fetal sheep hypothalamus, basal CRH synthesis is resistant to hypercortisolaemia, whereas increased CRH synthesis in response to hypoxia is highly sensitive to glucocorticoid negative feedback (Matthews and Challis, 1995b, Matthews and Challis, 1995a). Whether such a mechanism operates in mice requires investigation. CRH synthesis is sensitive to haemodynamic variation in the fetus (Ng, 2000), and conceivably, may be differentially regulated in SMGRKO and control fetuses, if haemodynamic forces differ between the genotypes in response to dexamethasone. It is also possible that sex differences may account for some of the differential effects. For example, the HPA axis of male guinea pig fetuses is more sensitive to negative feedback by maternally administered glucocorticoids at the pituitary level than that of the female fetuses (Owen et al., 2005). Males and females were not distinguished here.

Dexamethasone reduces survival of both SMGRKO and control fetuses at E17.5 (2 days after cessation of dexamethasone treatment). The cause of death is currently unknown, but plausibly could relate to reduced capacity for calcium handling, which was affected in both genotypes. It is possible that the dexamethasone-related deaths have biased our findings at E17.5, if deaths occurred in more severely impacted fetuses; indeed, a limitation of the current study is that data from all fetuses were included, irrespective of litter size. Thus, the analysis could possibly have been subject to maternal bias. Of note, in a large clinical study in low and mid-income countries, antenatal dexamethasone treatment increased the incidence of neonatal death (Althabe et al., 2015). The risk was greatest in those babies born close to term and importantly, only 16% of the women who received antenatal
corticosteroid actually went on to deliver their baby preterm. This raises concerns about possible harmful effects of non-optimally administered antenatal corticosteroids. Our study is consistent with these clinical data and suggest cessation of glucocorticoid treatment confers an increased vulnerability to sudden death. Whilst undoubtedly life saving when appropriately administered, many women administered antenatal corticosteroids in high income countries do not deliver their babies within 1-7 days following treatment (reviewed, Kemp et al., 2017). This highlights a need for further research to fully understand the consequences of antenatal glucocorticoid administration, to inform and refine antenatal corticosteroid therapy.

In sheep, late gestation maternal hypercortisolemia causes perinatal death (Keller-Wood et al., 2014), associated with cardiac arrhythmias and decreased fetal aortic pressure (Antolic et al., 2018). Thus, there appears an inverted U-shaped relationship between glucocorticoid levels and fetal survival with both glucocorticoid deficiency and glucocorticoid excess reducing perinatal survival. At least some of this effect is likely to be mediated by the complex effects of glucocorticoids on haemodynamic parameters and cardiac function described by us (Richardson et al., 2017, Gray et al., 2016, Rog-Zielinska et al., 2013), and by others (Richards et al., 2014, Reini et al., 2008, Feng et al., 2013, Antolic et al., 2018, Oakley et al., 2013). Unravelling these complex relationships, and the impact of genetic variation in glucocorticoid signalling upon fetal haemodynamic function, will be important for future therapy in preterm birth and in managing the consequences of extreme maternal stress. Effects on placental function were not investigated here. However, placental vascularisation and haemodynamic forces are critical regulators of cardiac maturation (Burton et al., 2016, Thornburg et al., 2010, Morrison et al., 2007). Moreover, recent data in Hsd11b2 mice suggest pharmacological rescue of impaired placental vasculature also rescues normal fetal
cardiac maturation (Wyrwoll et al., 2016). Future research should address the impact of synthetic glucocorticoid administration upon placental vasculature and haemodynamics, in conjunction with effects on heart.

The long-term consequences of the dexamethasone treatment utilised here were not examined. However, in humans and in animals there is an association between excessive glucocorticoid exposure \textit{in utero} and an increased risk of cardiovascular disease in adult offspring (reviewed, (Rog-Zielinska et al., 2014, Agnew et al., 2018)). There are relatively few studies of the effects of antenatal glucocorticoid treatment upon adult cardiovascular disease risk in mice. A previous study in which mice were administered dexamethasone from E12.5 to E15 reported growth restriction and a trend for decreased heart weight at E14.5, with catch up by E17.5. As adults, the dexamethasone-exposed mice had normal hearts, but increased blood pressure and pulse pressure compared to controls (O'Sullivan et al., 2013). Mice are born relatively immature compared to humans. However, the scant evidence available suggests that early postnatal cardiomyocyte maturation, including capacity for proliferation and heart repair, is similar in mice and humans. In both humans and mice there is a period in which cardiomyocytes continue to proliferate after birth (albeit possibly over a longer period in humans than the 1 week postnatally in mice) (Porrello et al., 2011, Mollova et al., 2013, Bergmann et al., 2015, Haubner et al., 2015, Yutzey, 2017). Whether mid to late gestation cardiomyocyte maturation is similar in humans and mice is currently unknown. Our data, however, suggest that even transient effects of antenatal dexamethasone can interfere with the normal trajectory of cardiac maturation, possibly through altered haemodynamics, known to be affected by antenatal dexamethasone in humans (Mulder et al., 2009), thus potentially impacting on adult cardiovascular health. Thus, whilst antenatal glucocorticoids are undoubtedly of clinical benefit in infants born
preterm, there may be detrimental effects on the heart and other organs, as seen here in an animal model. Future studies should establish the short as well as long-term effects of antenatal corticosteroid therapy on human heart. The benefit versus risk balance must be carefully considered by clinicians before administering antenatal glucocorticoids. Further research is needed to optimize the timing and dosage to provide the most beneficial outcome overall.

ACKNOWLEDGEMENTS

We are grateful to staff at the University of Edinburgh Central Bioresource Services for their assistance with animal care. We also thank Dr Jess Ivy, Dr Martin Denvir, Professor Megan Holmes and other colleagues in the Centre for Cardiovascular Science for helpful advice and discussions.

FUNDING

This work was supported by an MRC project grant (MR/P002811/1). EJA was supported by a scholarship from the British Heart Foundation (FS/13/52/30637). Additional support was provided by a British Heart Foundation Centre of Research Excellence Award (RE/08/001).

AUTHOR CONTRIBUTION STATEMENT:

Designed research: E.J.A, G.A.G, K.E.C. Execution: E.J.A, A.G.B, R.V.R, H.M, A.J.W.T, K.S, G.J, N.Z.M.H, P.B. Interpretation: E.J.A, A.J.W.T, K.S, G.J, N.Z.M.H, C.M.M, P.B, G.A.G, K.E.C. Manuscript preparation: E.J.A, K.E.C.

DECLARATION OF INTEREST
None of the authors has any conflicts of interest to declare.

REFERENCES

AGNEW, E. J., IVY, J. R., STOCK, S. J. & CHAPMAN, K. E. 2018. Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. *J Mol Endocrinol*, 61, R61-R73.

ALTHABE, F., BELIZAN, J. M., MCCLURE, E. M., HEMINGWAY-FODAY, J., BERRUETA, M., MAZZONI, A., CIGANDA, A., GOUCHAR, S. S., KODKANY, B. S., MAHANTSHTI, N. S., et al. 2015. A population-based, multifaceted strategy to implement antenatal corticosteroid treatment versus standard care for the reduction of neonatal mortality due to preterm birth in low-income and middle-income countries: the ACT cluster-randomised trial. *Lancet*, 385, 629-39.

ANTOLIC, A., WOOD, C. E. & KELLER-WOOD, M. 2018. Chronic maternal hypercortisolemia in late gestation alters fetal cardiac function at birth. *Am J Physiol Regul Integr Comp Physiol*, 314, R342-R352.

BENNET, L., KOZUMA, S., MCGARRIGLE, H. H. & HANSON, M. A. 1999. Temporal changes in fetal cardiovascular, behavioural, metabolic and endocrine responses to maternally administered dexamethasone in the late gestation fetal sheep. *Br J Obstet Gynaecol*, 106, 331-339.

BERGMANN, O., ZDUNEK, S., FELKER, A., SALEHPOUR, M., ALKASS, K., BERNARD, S., SJOSTROM, S. L., SZEWCZYKOWSKA, M., JACKOWSKA, T., DOS REMEDIOS, C. *et al.* 2015. Dynamics of Cell Generation and Turnover in the Human Heart. *Cell*, 161, 1566-1575.

BIRD, A. D., MCDUGALL, A. R., SEOW, B., HOOPER, S. B. & COLE, T. J. 2015. Glucocorticoid regulation of lung development: Lessons learned from conditional GR knockout mice. *Mol Endocrinol*, 29, 158-171.

BRUNTON, P. J., DONADIO, M. V., YAO, S. T., GREENWOOD, M., SECKL, J. R., MURPHY, D. & RUSSELL, J. A. 2015. 5α-Reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats. *J Neurosci*, 35, 666-677.
BRUNTON, P. J., MCKAY, A. J., OCHEDALSKI, T., PIASTOWSKA, A., REBAS, E., LACHOWICZ, A. & RUSSELL, J. A. 2009. Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. *J Neurosci*, 29, 6449-6460.

BURTON, G. J., FOWDEN, A. L. & THORNBURG, K. L. 2016. Placental Origins of Chronic Disease. *Physiol Rev*, 96, 1509-1565.

CHAPMAN, K. E., HOLMES, M. C. & SECKL, J. R. 2013. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. *Physiol Rev*, 93, 1139-1206.

CHINALI, M., AURIGEMMA, G. P., DE SIMONE, G., MISHRA, R. K., GERDTS, E., WACHTELL, K., BOMAN, K., DAHLOF, B. & DEVEREUX, R. B. 2009. Mitral E wave deceleration time to peak E velocity ratio and cardiovascular outcome in hypertensive patients during antihypertensive treatment (from the LIFE echo-substudy). *Am J Cardiol*, 104, 1098-1104.

CORRIGAN, N., BRAZIL, D. P. & MCAULIFFE, F. M. 2010. High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. *Reprod Sci*, 17, 147-157.

CUSPIDI, C., NEGRI, F., SALA, C. & MANCIA, G. 2011. Mitral deceleration index is associated with aortic root dilatation and not to biventricular structural changes in essential hypertension. *Blood Press*, 20, 190-195.

DERKS, J. B., GIUSSANI, D. A., JENKINS, S. L., WENTWORTH, R. A., VISser, G. H., PADbury, J. F. & NATHANIELSZ, P. W. 1997. A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. *J Physiol*, 499, 217-226.

FENG, X., REINI, S., RICHARDS, E., WOOD, C. E. & KELLER-WOOD, M. 2013. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors. *Am J Physiol Regul Integr Comp Physiol*, 305, 343-350.
FOWDEN, A. L., LI, J. & FORHEAD, A. J. 1998. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? *Proc Nutr Soc*, 57, 113-122.

GOODWIN, J. E., ZHANG, J. & GELLER, D. S. 2008. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. *J Am Soc Nephrol*, 19, 1291-1299.

GRAY, G. A., WHITE, C. I., CASTELLAN, R. F., MCSWEENEY, S. J. & CHAPMAN, K. 2017. Getting to the heart of glucocorticoid regeneration: 11β-HSD1 and the myocardium. *J Mol Endocrinol*, 58, R1-R13.

GRUNDWALD, N. J. & BRUNTON, P. J. 2015. Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner. *Psychoneuroendocrinology*, 62, 204-216.

HARRIS, H. J., KOTELEVTSY, Y., MULLINS, J. J., SECKL, J. R. & HOLMES, M. C. 2001. Intracellular regeneration of glucocorticoids by 11β-hydroxysteroid dehydrogenase (11β-HSD)-1 plays a key role in regulation of the hypothalamic-pituitary-adrenal axis: analysis of 11β-HSD-1 deficient mice. *Endocrinology*, 142, 114-120.

HAUBNER, B. J., SCHNEIDER, J., SCHWEIGMANN, U. U., SCHUETZ, T., DICHTL, W., VELIK-SALCHNER, C., STEIN, J. I. & PENNINGER, J. M. 2016. Functional recovery of a human neonatal heart after severe myocardial infarction. *Circ Res*, 118, 216-221.

KELLER-WOOD, M., FENG, X., WOOD, C. E., RICHARDS, E., ANTHONY, R. V., DAHL, G. E. & TAO, S. 2014. Elevated maternal cortisol leads to relative maternal hyperglycemia and increased stillbirth in ovine pregnancy. *Am J Physiol Regul Integr Comp Physiol*, 307, R405-R413.

KEMP, M. W., JOBE, A. H., USUDA, H., NATHANIELSZ, P. W., LI, C., KUO, A., HUBER, H. F., CLARKE, G. D., SAITO, M., NEWNHAM, J. P. *et al*. 2018. Efficacy and safety of antenatal steroids. *Am J Physiol Regul Integr Comp Physiol*, 315, R825-R839.

KOTELEVTSY, Y., HOLMES, M. C., BURCHELL, A., HOUSTON, P. M., SCHMOLL, D., JAMIESON, P., BEST, R., BROWN, R., EDWARDS, C. R. W., SECKL, J. R. *et al*. 1997. 11β-hydroxysteroid
dehydrogenase type 1 knockout mice show attenuated glucocorticoid inducible responses and resist hyperglycaemia on obesity or stress. *Proc Natl Acad Sci USA*, 94, 14924-14929.

LI, S., MOSS, T. J., NITSOS, I., MATTHEWS, S. G., CHALLIS, J. R., NEWNHAM, J. P. & SLOBODA, D. M. 2013. The impact of maternal synthetic glucocorticoid administration in late pregnancy on fetal and early neonatal hypothalamic-pituitary-adrenal axes regulatory genes is dependent upon dose and gestational age at exposure. *J Dev Orig Health Dis*, 4, 77-89.

MATTHEWS, S. G. & CHALLIS, J. R. 1995a. Levels of pro-opiomelanocortin and prolactin mRNA in the fetal sheep pituitary following hypoxaemia and glucocorticoid treatment in late gestation. *J Endocrinol*, 147, 139-146.

MATTHEWS, S. G. & CHALLIS, J. R. 1995b. Regulation of CRH and AVP mRNA in the developing ovine hypothalamus: effects of stress and glucocorticoids. *Am J Physiol*, 268, E1096-1107.

MATTHEWS, S. G. & CHALLIS, J. R. 1996. Regulation of the hypothalamo-pituitary-adrenocortical axis in fetal sheep. *Trends Endocrinol Metab*, 7, 239-246.

MCCABE, L., MARASH, D., LI, A. & MATTHEWS, S. G. 2001. Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. *J Neuroendocrinol*, 13, 425-431.

MICHELSOHN, A. M. & ANDERSON, D. J. 1992. Changes in Competence Determine the Timing of 2 Sequential Glucocorticoid Effects On Sympathoadrenal Progenitors. *Neuron*, 8, 589-604.

MISHRA, R. K., GALLOWAY, J. M., LEE, E. T., BEST, L. G., RUSSELL, M., ROMAN, M. J. & DEVEREUX, R. B. 2007. The ratio of mitral deceleration time to E-wave velocity and mitral deceleration slope outperform deceleration time alone in predicting cardiovascular outcomes: the Strong Heart Study. *J Am Soc Echocardiogr*, 20, 1300-1306.

MOLLOVA, M., BERSELL, K., WALSH, S., SAVLA, J., DAS, L. T., PARK, S. Y., SILBERSTEIN, L. E., DOS REMEDIOS, C. G., GRAHAM, D., COLAN, S. *et al*. 2013. Cardiomyocyte proliferation contributes to heart growth in young humans. *Proc Natl Acad Sci U S A*, 110, 1446-1451.
MORRISON, J. L., BOTTING, K. J., DYER, J. L., WILLIAMS, S. J., THORNBURG, K. L. & MCMILLEN, I. C.
2007. Restriction of placental function alters heart development in the sheep fetus. *Am J Physiol Regul Integr Comp Physiol*, 293, R306-313.

MULDER, E. J., DE HEUS, R. & VISSER, G. H. 2009. Antenatal corticosteroid therapy: short-term effects on fetal behaviour and haemodynamics. *Semin Fetal Neonatal Med*, 14, 151-156.

NG, P. C. 2000. The fetal and neonatal hypothalamic-pituitary-adrenal axis. *Arch Dis Child Fetal Neonatal Ed*, 82, F250-254.

NISHIMURA, R. A., ABEL, M. D., HATLE, L. K., HOLMES, D. R., JR., HOUSMANS, P. R., RITMAN, E. L. & TAJIK, A. J. 1989a. Significance of Doppler indices of diastolic filling of the left ventricle: comparison with invasive hemodynamics in a canine model. *Am Heart J*, 118, 1248-1258.

NISHIMURA, R. A., ABEL, M. D., HOUSMANS, P. R., WARNES, C. A. & TAJIK, A. J. 1989b. Mitral flow velocity curves as a function of different loading conditions: evaluation by intraoperative transesophageal Doppler echocardiography. *J Am Soc Echocardiogr*, 2, 79-87.

O'SULLIVAN, L., CUFFE, J. S., PARAVICINI, T. M., CAMPBELL, S., DICKINSON, H., SINGH, R. R., GEZMISH, O., BLACK, M. J. & MORITZ, K. M. 2013. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring. *PLoS One*, 8, e69149.

OAKLEY, R. H., REN, R., CRUZ-TOPETE, D., BIRD, G. S., MYERS, P. H., BOYLE, M. C., SCHNEIDER, M. D., WILLIS, M. S. & CIDLOWSKI, J. A. 2013. Essential role of stress hormone signaling in cardiomyocytes for the prevention of heart disease. *Proc Natl Acad Sci U S A*, 110, 17035-17040.

OWEN, D., BANJANIN, S., GIDREWICZ, D., MCCABE, L. & MATTHEWS, S. G. 2005. Central regulation of the hypothalamic-pituitary-adrenal axis during fetal development in the Guinea-pig. *J Neuroendocrinol*, 17, 220-6.
PEDRA, S. R., SMALLHORN, J. F., RYAN, G., CHITAYAT, D., TAYLOR, G. P., KHAN, R., ABDOLELL, M. & HORNBERGER, L. K. 2002. Fetal cardiomyopathies: pathogenic mechanisms, hemodynamic findings, and clinical outcome. *Circulation*, 106, 585-591.

PORRELLO, E. R., MAHMOUD, A. I., SIMPSON, E., HILL, J. A., RICHARDSON, J. A., OLSON, E. N. & SADEK, H. A. 2011. Transient regenerative potential of the neonatal mouse heart. *Science*, 331, 1078-1080.

REINI, S. A., DUTTA, G., WOOD, C. E. & KELLER-WOOD, M. 2008. Cardiac corticosteroid receptors mediate the enlargement of the ovine fetal heart induced by chronic increases in maternal cortisol. *J Endocrinol*, 198, 419-427.

RICHARDS, E. M., RABAGLINO, M. B., ANTOLIC, A., WOOD, C. E. & KELLER-WOOD, M. 2015. Patterns of gene expression in the sheep heart during the perinatal period revealed by transcriptomic modeling. *Physiol Genomics*, 47, 407-419.

RICHARDS, E. M., WOOD, C. E., RABAGLINO, M. B., ANTOLIC, A. & KELLER-WOOD, M. 2014. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum. *Physiol Genomics*, 46, 547-559.

RICHARDSON, R., BATCHEN, E., THOMSON, A., DARROCH, R., PAN, X., ROG-ZIELINSKA, E., WYRZYKOWSKA, W., SCULLION, K., AL-DUJAILI, E. A., DIAZ, M., et al. 2017. Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. *J Endocrinol*, 232, 437-450.

RITCHIE, J. C., OWENS, M. J., MAYER, H., WATSON, J. T., KILTS, C. & CARROLL, B. J. 1992. Preliminary studies of 6β-hydroxydexamethasone and its importance in the DST. *Biol Psychiatry*, 32, 825-833.

ROBERTS, D., BROWN, J., MEDLEY, N. & DALZIEL, S. R. 2017. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. *Cochrane Database Syst Rev*, 3, CD004454.
ROG-ZIELINSKA, E. A., CRAIG, M. A., MANNING, J. R., RICHARDSON, R. V., GOWANS, G. J., DUNBAR, D. R., GHARBI, K., KENYON, C. J., HOLMES, M. C., HARDIE, D. G. et al. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α. Cell Death Differ, 22, 1106-1116.

ROG-ZIELINSKA, E. A., RICHARDSON, R. V., DENVIR, M. A. & CHAPMAN, K. E. 2014. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol, 52, R125-135.

ROG-ZIELINSKA, E. A., THOMSON, A., KENYON, C. J., BROWNSTEIN, D. G., MORAN, C. M., SZUMSKA, D., MICHALIDOU, Z., RICHARDSON, J., OWEN, E., WATT, A. et al. 2013. Glucocorticoid receptor is required for fetal heart maturation. Hum Mol Genet, 22, 3269-3282.

THORNBURG, K. L., O’TIERNEY, P. F. & LOUEY, S. 2010. Review: The placenta is a programming agent for cardiovascular disease. Placenta, 31 Suppl, S54-59.

VARMA, D. R. 1986. Investigation of the maternal to foetal serum concentration gradient of dexamethasone in the rat. Br J Pharmacol, 88, 815-820.

VERMA, M., KIPARI, T. M. J., ZHANG, Z., MAN, T. Y., FORSTER, T., HOMER, N. Z. M., SECKL, J. R., HOLMES, M. C. & CHAPMAN, K. E. 2018. 11β-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav Immun, 69, 223-234.

WELBERG, L. A. M., SECKL, J. R. & HOLMES, M. C. 2000. Inhibition of 11β-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci, 12, 1047-1054.

WILKINSON, L., VERHOOG, N. J. D. & LOUW, A. 2018. Disease and treatment associated acquired glucocorticoid resistance. Endocr Connect.

WYRWOLL, C. S., NOBLE, J., THOMSON, A., TESIC, D., MILLER, M. R., ROG-ZIELINSKA, E. A., MORAN, C. M., SECKL, J. R., CHAPMAN, K. E. & HOLMES, M. C. 2016. Pravastatin ameliorates placental
vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess. Proc Natl Acad Sci U S A, 113, 6265-6270.

YUTZEY, K. E. 2017. Cardiomyocyte Proliferation: Teaching an Old Dogma New Tricks. Circ Res, 120, 627-629.
FIGURE LEGENDS

Figure 1: Dexamethasone treatment reduces fetal number and litter size at E17.5 without affecting either at E15.5.

Dexamethasone (Dex, stippled bars: 100µg/kg/day) or vehicle (Veh, white bars) was administered to pregnant dams in their drinking water from E12.5 to E15.5. Individual data points represent mean values per litter. Data are means ± SEM and were analysed by Student’s t-test (A, C) or 2-way ANOVA with post-hoc Tukey tests (B, D). Significant effect of treatment, *p<0.05, **p<0.01; significant effect of genotype, #p<0.05, n=12-13 litters per group.

Figure 2: Dexamethasone transiently reduces the mitral deceleration index, dependent on GR.

Dexamethasone (100µg/kg/day; stippled bars) or vehicle (Veh, white bars) was administered to pregnant dams from E12.5 to E15.5. Mitral deceleration index (MDI) was measured by in vivo ultrasound imaging at (A) E15.5 and (B) E17.5. Data are means ± SEM and were analysed by 2-way ANOVA with post-hoc Tukey tests: significant effect of treatment, *p<0.05; significant effect of genotype, #p<0.05, n=8-28 fetuses from 5-6 litters per group.

Figure 3: Glucocorticoid signalling in hearts of control fetuses is down-regulated by dexamethasone at E15.5.

Dexamethasone (100µg/kg/day, stippled bars) or vehicle (Veh, white bars) was administered to pregnant dams in their drinking water from E12.5 to E15.5. qRT-PCR
measurements at E15.5 of cardiac levels of (A) *Nr3c1* mRNA, (B) *Fkbp5* mRNA, (C) *Kcnj12*
mRNA, all relative to the mean of *Actb*, *Hprt* and *Tbp* mRNA levels, and at E17.5 of (D) *Nr3c1*
mRNA, (E) *Fkbp5* mRNA and (F) *Kcnj12* mRNA, all relative to the mean of 18s, *Hprt* and *Tbp*
mRNA levels. Data, in arbitrary units (A.U.), are means ± SEM and were analysed by 2-way
ANOVA with post-hoc Tukey tests (###p<0.001, ##p<0.01, #p<0.05 vs vehicle-treated
control mice), n=7-17 fetuses from 6 litters per group.

Figure 4: Dexamethasone and its metabolite 6-hydroxydexamethasone are present in
livers of dexamethasone-treated fetuses at E15.5.

Dexamethasone (Dex, stippled bars: 100µg/kg/day) or vehicle (Veh, white bars) was
administered to pregnant dams from E12.5 to E15.5, with no further treatment to E17.5.
Dexamethasone (A) and 6-hydroxydexamethasone (B) were measured in fetal livers pooled
from each litter (approximately 100mg tissue), by mass spectrometry. The detectable range
for dexamethasone was 0.01-5ng and for 6-hydroxydexamethasone 0.5-25ng. Values are
expressed as ng steroid/g fetal liver. Each data point represents a single pool of fetal livers
from one litter. Data are means ± SEM and were analysed by unpaired Student’s t-test
(**p<0.01, ***p<0.001), n=4-6.

Figure 5: Suppression of corticosterone levels in fetal liver following dexamethasone
treatment.

Dexamethasone (Dex, stippled bars: 100µg/kg/day) or vehicle (Veh, white bars) was
administered to pregnant dams from E12.5 to E15.5, with no further treatment to E17.5.
Steroids were measured in fetal livers pooled from each litter (approximately 100mg tissue),
by mass spectrometry. The upper and lower limits of detection of both corticosterone and
11-dehydrocorticosterone (11-DHC) was 0.05-10ng. Levels of (A) corticosterone at E15.5, (B) 11-DHC at E15.5, (C) corticosterone at E17.5 and (D) 11-DHC at E17.5. Values are expressed as ng steroid/g fetal liver with each data point representing a single pool of fetal livers from one litter. Data are means ± SEM and were analysed by unpaired Student’s t-test; **p<0.01, n=4-6.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. No association between mean fetal weight per litter and litter size, in vehicle and dexamethasone treated mice.

Dexamethasone (Dex: 100µg/kg/day) or vehicle (Veh) was administered from E12.5 to E15.5. Individual data points represent mean fetal weight per litter (g). R2 values were as follows, (A) E15.5 vehicle: 0.127, (B) E15.5 dexamethasone: 0.041, (C) E17.5 vehicle: 0.01, (D) E17.5 dexamethasone: 0.009. n=10-12 litters.

Supplementary Figure 2. Levels of mRNA encoding calcium handing proteins are altered at E15.5 by dexamethasone treatment. Dexamethasone (100µg/kg/day, stippled bars) or vehicle (Veh, white bars) was administered to pregnant dams in their drinking water from E12.5 to E15.5. qRT-PCR measurements at (A) E15.5 and (B) E17.5 of cardiac levels of (left to right, respectively) Ryr2 mRNA (encoding RYR2), Atp2a2 mRNA (encoding SERCA2a), Slc8a1 mRNA (encoding NCX1) and Cacna1c mRNA (encoding Cav1.2). E15.5 measurements are relative to the mean of Actb, Hprt and Tbp mRNA levels and E17.5 are relative to the mean of 18s, Hprt and Tbp mRNA levels. Data, in arbitrary units (A.U.), are means ± SEM and were analysed by 2-way ANOVA with post-hoc Tukey tests. At E15.5, ANOVA showed a borderline significant genotype effect (p=0.054) for Ryr2, and significant effects of treatment for Atp2a2 (p<0.05), Slc8a1 (p<0.01) and Cacna1c (p<0.001). At E17.5, ANOVA showed a significant effect of treatment for Cacna1c (p<0.01). Post-hoc tests: ##p<0.01, #p<0.05, n=7-17 fetuses from 6 litters per group.

Supplementary Figure 3. GR protein levels in control fetal hearts at E15.5.

Western blotting (representative image in upper panel) was used to measure protein levels in hearts of vehicle (V/Veh) and dexamethasone (D/Dex) treated mice. Graph shows quantification of GR protein levels relative to β-tubulin. Data are means ± SEM and were analysed by unpaired Student’s t-test, n= 4 (number of fetuses, from n=2-4 litters per group).

Supplementary Figure 4. Dexamethasone and its 6-hydroxydexamethasone metabolite are present in livers of dexamethasone-treated dams at E15.5.
Dexamethasone (Dex: 100µg/kg/day) or vehicle (Veh) was administered from E12.5 to E15.5. Steroids were measured in maternal livers by mass spectrometry. The detectable range for (A) dexamethasone was 0.5-50ng, and for (B) 6-hydroxydexamethasone 0.1-5ng. Values are expressed as ng steroid/g liver. Data are means ± SEM and were analysed by unpaired Student’s t-test (*p<0.05, **p<0.01). Each data point represents a single dam, n=4-6.

Supplementary Figure 5. Endogenous glucocorticoid levels in dam liver at E15.5 and E17.5.

Dexamethasone (Dex: 100µg/kg/day) or vehicle (Veh) was administered from E12.5 to E15.5. Steroid levels were measured in maternal livers by mass spectrometry: (A) corticosterone at E15.5, (B) 11-dehydrocorticosterone (11-DHC) at E15.5, (C) corticosterone at E17.5 and (D) 11-DHC at E17.5. For E15.5 samples, the detectable range for corticosterone was 0.025-50ng and 11-DHC, 0.1-50ng. For E17.5 samples, the detectable range for corticosterone was 0.0025-10ng and 11-DHC, 0.0025-50ng. Values are expressed as ng steroid/g liver. Data are means ± SEM and were analysed by unpaired Student’s t-test,***p<0.001. Each data point represents a single dam, n=4-6.

Supplementary Figure 6. SMGRKO fetal HPA axis is downregulated at E15.5 following dex exposure, with no change at E17.5 or in the control ‘floxed’ group. Corticotropin releasing hormone (Crh) mRNA levels were measured bilaterally in the PVN of the hypothalamus by in situ hybridisation. (A) Representative images of autoradiographs of sections of fetal brain showing hybridisation of Crh mRNA in E15.5 (top panels) and E17.5 (bottom panels) control (left two panels) and SMGRKO (right 2 panels) fetal brains. Fetuses were vehicle or dexamethasone exposed, as indicated. (B, C) Densitometric quantification of Crh mRNA at (B) E15.5 and (C) E17.5. Levels of mRNA are expressed in arbitrary units (A.U.) with vehicle treated control set to 1. Data are means ± SEM and were analysed by 2-way ANOVA with post-hoc Tukey tests. (B) There was no significant effect of genotype or dexamethasone treatment individually, but there was a significant interaction (p=0.040). (C) Two-way ANOVA showed a significant effect (p=0.037) effect of genotype. n= 5-13 (number of fetuses, from n=2-5 litters per group).
TABLE 1: Dexamethasone treatment increased body weight of SMGRKO fetuses at E17.5 but had no effect on fetal body weight or heart weight at E15.5.

Dexamethasone (100µg/kg/day) or vehicle was administered to pregnant dams in drinking water, from E12.5 to E15.5. Fetuses were collected at E15.5 or E17.5. Fetal body and heart weights are in mg with heart weight also expressed relative to body weight. Data are means ± SEM and were analysed using 2-way ANOVA with post-hoc Tukey’s test; **p<0.01 vs untreated SMGRKO, †p<0.05 vs dexamethasone-treated controls. Body weight: n= 29-52 fetuses from 5-12 litters/treatment). Heart weight: n=11-28 fetuses from 5-6 litters/treatment).

	E15.5			
	Vehicle	Dexamethasone		
	Control	SMGRKO	Control	SMGRKO
Body weight (mg)	420.7 ± 20.1	435.6 ± 18.0	459.0 ± 14.6	428.6 ± 14.9
Heart weight (mg)	12.4 ± 1.0	12.8 ± 0.7	13.7 ± 0.7	14.0 ± 0.9
Heart weight/ body weight	0.034 ± 0.003	0.035 ± 0.002	0.036 ± 0.003	0.035 ± 0.003
	E17.5			
Body weight (mg)	873.9 ± 14.3	850.8 ± 13.4	855.2 ± 22.0	954.5 ± 36.4**, †
Heart weight (mg)	13.1 ± 0.7	13.2 ± 0.7	13.8 ± 0.5	14.3 ± 0.12
Heart weight/ body weight	0.015 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.018 ± 0.002
Figure 1

A) E15.5

B) E15.5

C) E17.5

D) E17.5

Figure 1
Figure 2

A

E15.5

Control | SMGRKO

B

E17.5

Control | SMGRKO

Figure 2
Figure 3
Figure 4

A

Dexamethasone (ng/g liver)

Veh Dex

B

6-Hydroxydexamethasone (ng/g liver)

Veh Dex

** ***
Figure 5

(A) E15.5

Corticosterone (ng/g liver)

Veh	Dex

(B) E15.5

11-DHC (ng/g liver)

Veh	Dex

(C) E17.5

Corticosterone (ng/g liver)

Veh	Dex

(D) E17.5

11-DHC (ng/g liver)

Veh	Dex
Supplementary Table 1. Primer sequences and the corresponding probes used for qRT-PCR analysis of mRNA.

Sequences of forward and reverse primers and the Universal Probe Library probe number used in qRT-PCR assays to measure levels of specific mRNAs.

mRNA	Sequence 5′-3′	Probe	
	Forward	**Reverse**	
Actb	CTAAGGCCAACCGTGAAAAAG	ACCAGAGGCATACAGGGACA	64
Atp2a2	TCGACCAGTCAATTCTTACAGG	CAGGGACAGGTCAGTATGC	94
Cacna1c	CCTGACAAGGGCTCTTTTC	AGATGAGGGACACGCTAACC	62
Fkbp5	AAACGAAGGAGCAACGGTAA	TCAAATGTCTTCCACCACA	97
Hprt	TCCTCCTCGACCGCTTTT	CCTGGTTCATCACTGCCTAATC	95
Kcnj12	GGCCTAGACCGTATCTTCTGT	TGGCCTCATCAATCTCGTG	9
Nr3c1	CAAAGATTGCAGGTATCCTATGAA	CTTGGCTCTTCAGACCTTCC	91
Ryr2	TTCAACACGCTACGGAGTA	TGCCAGGCTCTGCTGATT	81
Slc8a1	GTCAGCCTCAGAGCTGGT	GACCTCCAACCTGCTCAAACC	42
Tbp	GGGAGAATCATGGACCAGAA	GATGGGAATTCAGGAGTCA	97
Supplementary Table 2. Echocardiography parameters measured in E15.5 and E17.5 fetal mice.

Pregnant dams were administered dexamethasone (Dex, 100µg/kg/day) or vehicle (Veh) in their drinking water from E12.5 to E15.5. Fetal cardiac function was assessed at E15.5 or E17.5 using a Visualsonics Vevo 770 High Resolution Ultrasound Scanner using Doppler mode. IVCT: isovolumetric contraction time, IVRT: isovolumetric relaxation time, ET: ejection time, MPI: myocardial performance index, calculated as (IVCT+IVRT)/ET, HR: heart rate measured as beats per minute (bpm), E/A: E/A wave ratio, DT: deceleration time. Data are means ± SEM and were analysed by 2-way ANOVA, with post-hoc Bonferroni tests. P values are stated where p=0.1 to 0.05. Significantly different compared to same treatment and genotype at E15.5,  p<0.05,  p<0.001, n=7-29 fetuses, from 5-6 litters per group.

Parameter	E15.5		E17.5	
	Veh	Dex	Veh	Dex
IVCT (ms)	27.36 ± 1.62	27.97 ± 1.11	29.09 ± 1.77	32.71 ± 2.14
IVRT (ms)	40.92 ± 1.48	42.66 ± 1.33	40.67 ± 1.09	32.71 ± 2.14
ET (ms)	109.44 ± 4.44	106.60 ± 2.41	106.22 ± 2.65	104.31 ± 2.20
MPI	0.64 ± 0.04	0.66 ± 0.02	0.66 ± 0.03	0.66 ± 0.03
E/A	0.33 ± 0.03	0.34 ± 0.02	0.32 ± 0.02	0.32 ± 0.02
DT (ms)	56.34 ± 3.68	48.87 ± 2.91	53.97 ± 3.52	53.97 ± 3.52
HR (bpm)	211.1 ± 6.6	216.7 ± 4.3	214.4 ± 5.9	214.4 ± 5.9

E15.5

Parameter	ANOVA				
	Veh	Dex	Treatment	Genotype	Interaction
IVCT (ms)	p=0.068	NS	NS		
IVRT (ms)	NS	NS	NS		
ET (ms)	NS	p<0.090	NS		
MPI	NS	NS	NS		
E/A	NS	NS	NS		
DT (ms)	NS	p=0.054	NS		
HR (bpm)	NS	p=0.092	NS		

E17.5

Parameter	ANOVA				
	Veh	Dex	Treatment	Genotype	Interaction
IVCT (ms)	NS	NS	NS		
IVRT (ms)	NS	p<0.05	NS		
ET (ms)	NS	p=0.091	NS		
MPI	NS	NS	NS		
E/A	NS	NS	NS		
DT (ms)	NS	NS	NS		
HR (bpm)	NS	NS	NS		

Copyright © 2019 Society for Endocrinology
Supplementary Figure 2

A

E15.5	Ryr2	E15.5	Atp2a2	E15.5	Slc8a1	p=0.067
mRNA levels (A.U.)	3.0	2.0	1.5	1.0	0.5	0.0
Control	SMGRKO	Control	SMGRKO	Control	SMGRKO	Control

B

E17.5	Ryr2	E17.5	Atp2a2	E17.5	Slc8a1
mRNA levels (A.U.)	4.0	3.0	2.0	1.0	0.5
Control	SMGRKO	Control	SMGRKO	Control	SMGRKO

Notes:
- Figures A and B show mRNA levels for different genes at E15.5 and E17.5.
- Control and SMGRKO conditions are compared.
- Significant differences are indicated by p-values.
Supplementary Figure 3

GR-β-tubulin ratio in different groups:

- **D**: No treatment
- **V**: Vehicle treatment
- **D**: Dex treatment

Bar graph showing the ratio of GR to β-tubulin in Veh (Vehicle) and Dex (Dex treatment) groups.

- Veh group: The ratio is around 1.0.
- Dex group: The ratio is lower, closer to 0.5.
Supplementary Figure 5

A

E15.5

Corticosterone (ng/g liver)

B

E15.5

11-DHC (ng/g liver)

C

E17.5

Corticosterone (ng/g liver)

D

E17.5

11-DHC (ng/g liver)
Supplementary Figure 6

A

E15.5

Control SMGRKO

Vehicle Dexamethasone Vehicle Dexamethasone

E17.5

B

E15.5

C

E17.5

p=0.057

Crf mRNA levels (A.U.)

Control SMGRKO

Control SMGRKO