Finite groups with \mathbb{P}-subnormal and strongly permutable subgroups

V. S. Monakhov, I. L. Sokhor

Abstract: Let H be a subgroup of a group G. The permutizer $P_G(H)$ is the subgroup generated by all cyclic subgroups of G which permute with H. A subgroup H of a group G is strongly permutable in G if $P_U(H) = U$ for every subgroup U of G such that $H \leq U \leq G$. We investigate groups with \mathbb{P}-subnormal or strongly permutable Sylow and primary cyclic subgroups. In particular, we prove that groups with all strongly permutable primary cyclic subgroups are supersoluble.

Keywords: finite group, permutizer, \mathbb{P}-subnormality, simple group, supersoluble group.

1 Introduction

All groups in this paper are finite. A group of prime power order is called a primary group.

Let H be a subgroup of a group G. The permutizer of H in G is the subgroup generated by all cyclic subgroups of G which permute with H, i.e.

$$P_G(H) = \langle x \in G \mid \langle x \rangle H = H \langle x \rangle \rangle.$$

The permutizer $P_G(H)$ contains the normalizer $N_G(H)$, see [1, p. 26]. X. Liu and Y. Wang [2] proved that a group G has a Sylow tower of supersoluble type if $P_G(X) = G$ for every Sylow subgroup X of G. A. F. Vasil’ev, V. A. Vasil’ev and T. I. Vasil’eva [3] described the structure of a group G in which $P_Y(X) = Y$ for every Sylow subgroup X of G and every subgroup $Y \geq X$. They proposed the following notation.

Definition 1. A subgroup H of a group G is

(1) permutable in G if $P_G(H) = G$;
(2) strongly permutable in G if $P_U(H) = U$ for every subgroup U of G such that $H \leq U \leq G$.

We note that a quasinormal subgroup is strongly permutable. In the symmetric group S_n, $n \in \{3, 4, 6\}$, a Sylow 2-subgroup is strongly permutable, but it is not quasinormal.

A. F Vasil’ev, V. A. Vasil’ev and V. N. Tyutyanov [4] proposed the following notation.

Definition 2. Let \mathbb{P} be the set of all primes. A subgroup H of a group G is called \mathbb{P}-subnormal in G if there is a subgroup chain

$$H = H_0 \leq H_1 \leq \ldots \leq H_n = G$$

such that $|H_i : H_{i-1}| \in \mathbb{P} \cup \{1\}$ for every i.

The class of all groups with \mathbb{P}-subnormal Sylow subgroups is denoted by $w\mathfrak{A}$ and the class of all groups with \mathbb{P}-subnormal primary cyclic subgroups is denoted by $v\mathfrak{A}$. These classes are quite well studied [4, 5]. In particular, these classes are subgroup-closed saturated formations.

In a soluble group, a \mathbb{P}-subnormal Hall subgroup (in particular, a Sylow subgroup) is strongly permutable [3, 3.8]. We prove that in a soluble group, the converse is true, see Proposition [1]. As a result we obtain new criteria for the supersolubility of a group and also [7, Theorem A]: a group $G \in w\mathfrak{A}$ if and only if every Sylow subgroup is \mathbb{P}-subnormal or strongly permutable in G.

In the following theorem, we enumerate all simple non-abelian groups with a \mathbb{P}-subnormal or strongly permutable Sylow subgroup.

1 Scorina Gomel State University, Gomel, Belarus; Victor.Monakhov@gmail.com
2 Brest State A.S. Pushkin University, Brest, Belarus; irina.sokhor@gmail.com
Theorem A. Let G be a simple non-abelian group and let R be a Sylow r-subgroup of G.

(1) If R is \mathbb{P}-subnormal in G, then $r = 2$ and G is isomorphic to $L_2(7)$, $L_2(11)$ or $L_2(2^m)$ and $2^m + 1$ is a prime.

(2) If R is strongly permutable and \mathbb{P}-subnormal in G, then $r = 2$ and $G \cong L_2(7)$.

For a primary cyclic subgroups we prove two following theorems.

Theorem B. If all primary cyclic subgroups of a group G are strongly permutable, then G is supersoluble.

Theorem C. If every primary cyclic subgroup of a group G is \mathbb{P}-subnormal or strongly permutable, then $G \in \mathfrak{U}$.

2 Preliminaries

Let G be a group. We use $\pi(G)$ to denote the set of all prime devisors of $|G|$. If r is a maximal element of $\pi(G)$, then we write $r = \max \pi(G)$. By $H \leq G$ ($H < G$, $H \triangleleft G$, $H \triangleleft G$) we denote a (proper, maximal, normal) subgroup H of G.

We use the GAP system [8] to build examples. Note that GAP package Permut [9] is especially useful for testing subgroups permutability.

Lemma 1. Let H and L be subgroups of a group G and let N be a normal subgroup of G.

(1) If H is \mathbb{P}-subnormal in G, then $H \cap N$ is \mathbb{P}-subnormal in N and HN/N is \mathbb{P}-subnormal in G/N [3, Lemma 3].

(2) If H is \mathbb{P}-subnormal in a soluble group G and $U \leq G$, then $H \cap U$ is \mathbb{P}-subnormal in U [5, Lemma 4 (1)].

(3) If $H \leq L$, H is \mathbb{P}-subnormal in L and L is \mathbb{P}-subnormal in G, then H is \mathbb{P}-subnormal in G [5, Lemma 3].

Lemma 2 ([5, Lemma 2 (2)]). Every subgroup of a supersoluble group is \mathbb{P}-subnormal.

Lemma 3. Let H be a \mathbb{P}-subnormal subgroup of a group G. If $r = \max \pi(G)$, then $O_r(H) \leq O_r(G)$.

Proof. By the hypothesis, there is a subgroup chain

$$H = H_0 \leq H_1 < H_2 < \ldots < H_n = G$$

such that for every i, $|H_i : H_{i-1}| \in \mathbb{P}$. Assume that $O_r(H) \leq O_r(H_{i-1})$, we prove $O_r(H) \leq O_r(H_i)$. Let $H_{i-1} = A$ and $H_i = B$. If A is normal in B, then $O_r(A)$ is subnormal in B, and $O_r(H) \leq O_r(A) \leq O_r(B)$. If A is not normal in B, then $|B : A| = q \in \mathbb{P}$ and $A = N_B(A)$. Consider the representation of B by permutations on the right cosets of A [10] 1.6.2. Note that B/A_B is isomorphic to a subgroup of the symmetric group S_q and $|B/A_B : A/A_B| = q$. Since $|S_q| = q! = (q-1)!q$ and $|B/A_B|$ divides $|S_q|$, we get $|A/A_B|$ divides $(q-1)!$. As $q \in \pi(B) \subseteq \pi(G)$ and $r = \max \pi(G)$, we have $q \leq r$ and A/A_B is an r'-group. Therefore $O_r(A) \leq A_B$. Since $O_r(A)$ is normal in A_B, we get $O_r(A)$ is subnormal in B and $O_r(H) \leq O_r(A) \leq O_r(B)$. Hence $O_r(H) \leq O_r(G)$ by induction. \qed

The following lemma contains permutable and strongly permutable subgroups properties we need.
Lemma 4. Let H be a subgroup of a group G and let N be a normal subgroup of G.

1. If H is (strongly) permutable in G, then HN/N is (strongly) permutable in G/N [3, lemma 3.2. (1),(4)].

2. If $N \leq H$, then H is (strongly) permutable in G if and only if H/N is (strongly) permutable in G/N.

3. If H is strongly permutable in G and $H \leq U$, then H is strongly permutable in U.

Proof. (2) This statement is known for permutable subgroups [3, lemma 3.2 (3)]. We prove it for strongly permutable subgroups. If H is a strongly permutable subgroup of G, then in view of Statement (1), H/N is strongly permutable in G/N. Conversely, let H/N be strongly permutable in G/N and let A be a subgroup of G containing H. Then $P_{A/N}(H/N) = A/N$. In view of [3, Lemma 3.6], $P_{A/N}(H/N) = P_A(H)/N$ and $P_A(H) = A$, hence H is strongly permutable in G.

(3) This is evident in view of Definition 1(2). \square

Lemma 5. Let $r = \max \pi(G)$ and let R be a Sylow r-subgroup of a group G. Then $N_G(R) = P_G(R)$. In particular, if R is permutable in G, then R is normal in G.

Proof. Let $x \in G$ and $R(x) = \langle x \rangle R$. It is clear $\langle x \rangle = \langle x_1 \rangle \times \langle x_2 \rangle$, where $\langle x_1 \rangle$ is a Sylow r-subgroup of $\langle x \rangle$ and $\langle x_2 \rangle$ is a Hall r'-subgroup of $\langle x \rangle$. In view of [10, VI.4.7], $R = R(x_1)$, therefore $R(x) = R(x_2)$. Now, all Sylow r'-subgroups of $R(x)$ are cyclic. As $r = \max \pi(R(x))$, it implies that R is normal in $R(x)$ by [10, IV.2.7], and $\langle x \rangle \leq N_G(R)$. Since $P_G(R)$ is generated by elements x such that $R(x) = \langle x \rangle R$, we conclude $P_G(R) = N_G(R)$. \square

Lemma 6. If every Sylow subgroup of a group G is a subgroup of G and let R be a Sylow r-subgroup of a group G. Then $N_G(R) = P_G(R)$. In particular, if R is permutable in G, then R is normal in G. If $P_G(R)$ is generated by elements x such that $R(x) = \langle x \rangle R$, we conclude $P_G(R) = N_G(R)$. \square

Lemma 7 ([11, Lemma 2.1]). Let M be a maximal subgroup of a soluble group G, and assume that $G = MC$ for a cyclic subgroup C. Then $|G : M|$ is a prime or 4. Also, if $|G : M| = 4$, then $G/M_G = S_4$.

We will also repeatedly use the following statement.

Lemma 8 ([5, Lemma 2.2]). Let \mathfrak{F} be a saturated formation and let G be a group. Suppose that $G \notin \mathfrak{F}$ but $G/N \in \mathfrak{F}$ for any normal subgroup N of G, $N \neq 1$. Then G is a primitive group.

3 Groups with permutable and \mathbb{P}-subnormal Sylow subgroups

Proposition 1. Let G be a soluble group and let H be a Hall subgroup. Then H is \mathbb{P}-subnormal in G if and only if H is strongly permutable in G.

3
Proof. Let H be \mathbb{P}-subnormal in G. According to \cite[3.8]{}, H is strongly permutable in G. For completeness, we give the proof of this statement. We use induction on the order of G. Since H is \mathbb{P}-subnormal in G, there is a maximal subgroup M of G such that $H \leq M$, $|G : M| \notin \mathbb{P}$ and H is \mathbb{P}-subnormal in M. By induction, H is strongly permutable in M and $M = P_M(H) \leq P_G(H)$. Since M is a maximal subgroup of G, we assume $P_G(H) = M$. Suppose that $M_G \neq 1$ and L is a minimal normal subgroup of G that is contained in M_G. According to Lemma \cite[(1)]{}, HL/L is \mathbb{P}-subnormal in G/L, and by induction, HL/L is permutable in G/L. Hence HL is permutable in G in view of Lemma \cite[(3)]{}. Since G is soluble, we conclude L is an elementary abelian q-group for some $q \in \pi(G)$. If $q \in \pi(H)$, then $HL = H$ and H is permutable in G, a contradiction. Therefore we can assume that $q \notin \pi(H)$. Since HL is permutable in G, then $P_G(HL) = G$ and there is $x \in G \setminus M$ such that $\langle x \rangle HL = HL(x) = A$. Suppose that A is a proper subgroup of G. As H is \mathbb{P}-subnormal in G, by Lemma \cite[(2)]{}, it follows that H is \mathbb{P}-subnormal in A, and by induction, H is permutable in A. Therefore $A = P_A(H) \leq P_G(H) = M$ and $x \in M$, a contradiction. Hence $G = \langle x \rangle HL$. If $L \leq \Phi(G)$, then $G = \langle x \rangle H$ and $x \in P_G(H) = M$, a contradiction. Consequently, L is not contained in $\Phi(G)$ and there is a maximal subgroup K of G that does not contain L. In that case, $G = LK$ and we can assume $H \leq K$. By induction, H is permutable in K and $K = P_K(H) \leq P_G(H) = M$. Hence we get $M = K$ and $L \leq K$, a contradiction. Thus, $M_G = 1$ and G is a primitive group. Consequently, $G = N \rtimes M$, where $N = F(G)$ is a unique minimal normal subgroup of G. Since $|G : M| \notin \mathbb{P}$, we deduce N is a cyclic subgroup and $N \leq P_G(H) = M$, a contradiction. Thus H is permutable in G, and in view of Lemma \cite[(2)]{}, H is strongly permutable in G.

Conversely, let H be a Hall strongly permutable subgroup of a soluble group G. Using induction on the order of G we prove that H is \mathbb{P}-subnormal in G. Let $H \leq M < G$. By Lemma \cite[(3)]{}, H is strongly permutable in M, and by induction, H is \mathbb{P}-subnormal in M. If $|G : M| \notin \mathbb{P}$, then H is \mathbb{P}-subnormal in G by Lemma \cite[(3)]{}. Hence we can assume that $|G : M| \notin \mathbb{P}$, in particular, M is not normal in G. According to Lemma \cite[(1)]{}, G/M_G contains a strongly permutable Hall subgroup HM_G/M_G. As $HM_G \leq M$, we obtain that H is \mathbb{P}-subnormal in HM_G by induction. If $M_G \neq 1$, then HM_G/M_G is \mathbb{P}-subnormal in G/M_G by induction. By Lemma \cite[(1)]{}, HM_G is \mathbb{P}-subnormal in G, and H is \mathbb{P}-subnormal in G in view of Lemma \cite[(3)]{}.

Therefore we can assume that $M_G = 1$. Since G is soluble, we get $G = N \rtimes M$, $N = F(G) = C_G(N) = O_p(G)$ is a unique minimal normal subgroup in G. Let $HN < G$. By induction, HN/N is \mathbb{P}-subnormal in G/N, and H is \mathbb{P}-subnormal in G. Finally, we consider the case, when $H = M$ is a Hall subgroup. By the hypothesis, there is $x \in G \setminus H$ such that $\langle x \rangle H = H(x) = G$. Let $\langle x \rangle = \langle x_1 \rangle \times \langle x_2 \rangle$, where $\langle x_1 \rangle$ is a p-subgroup and $\langle x_2 \rangle$ is a p'-subgroup. Since N is a normal Sylow p-subgroup of G, we conclude $\langle x_1 \rangle \leq N$ and $|x_1| = p$. According to \cite[VI.4.6]{}, $H = \langle x_2 \rangle H$. Now, $G = \langle x \rangle H = \langle x_1 \rangle H$ and $|G : H| = p$.

Corollary 1.1. \cite{Theorem A} If every Sylow subgroup of a group G is \mathbb{P}-subnormal or strongly permutable, then $G \in \mathfrak{w1}$. Conversely, if $G \in \mathfrak{w1}$, then every Sylow subgroup is \mathbb{P}-subnormal and strongly permutable in G.

Proof. Assume that every Sylow subgroup of G is \mathbb{P}-subnormal or strongly permutable. By Lemma \cite{} G has a Sylow tower of supersoluble type, which means that G is soluble. Hence by Proposition \cite{} every strongly permutable Sylow subgroup of G is \mathbb{P}-subnormal and $G \in \mathfrak{w1}$.

Conversely, let $G \in \mathfrak{w1}$. By the definition of $\mathfrak{w1}$, every Sylow subgroup is \mathbb{P}-subnormal in G. Since G is soluble, according to Proposition \cite{} every Sylow subgroup is strongly permutable in G.

Corollary 1.2. Let G be a group. The following statements are equivalent.

1. G is supersoluble.
2. Every Hall subgroup of G is \mathbb{P}-subnormal or strongly permutable.
3. Every Hall subgroup of G is \mathbb{P}-subnormal or permutable.
According to properties of primitive groups, \(\pi \) for subgroup. If \(M \) normal subgroup in \(G \), then \(P \subseteq \pi(G) \). In view of Lemma 7, then \(P \) is a Hall subgroup-closed saturated formation, we deduce \(P \) is a Hall subgroup in \(G \). From Lemma 4 (1), thus the hypothesis holds for \(G \) by Lemma 8.

Let \(N \) be a normal subgroup of \(G \), \(N \neq 1 \), and let \(H \) be a Hall \(\pi \)-subgroup of \(G = G/N \) for \(\pi \subseteq \pi(G) \). Then \(H = HN/N \) for a Hall \(\pi \)-subgroup \(H \) of \(G \). If \(H \) is \(\pi \)-subnormal in \(G \), then \(H \) is \(\pi \)-subnormal in \(G \) by Lemma 1 (1). If \(H \) is permutable in \(G \), then \(H \) is permutable in \(G \) by Lemma 4 (1). Thus the hypothesis holds for \(G \), and by induction, \(G \in \mathfrak{U} \). As \(\mathfrak{U} \) is a subgroup-closed saturated formation, we deduce \(G \) is a primitive group by Lemma 8.

According to properties of primitive groups, \(\Phi(G) = 1 \), \(G = R \rtimes M \), \(R = F(G) \) is a minimal normal subgroup in \(G \), \(|R| > r \), \(M \) is a maximal subgroup in \(G \), \(M \in \mathfrak{U} \). Note that \(M \) is a Hall subgroup. If \(M \) is \(\pi \)-subnormal in \(G \), then \(|G : M| = r = |R| \), a contradiction. Suppose that \(M \) is permutable in \(G \), i.e. \(P_0(M) = G \). In that case, there is \(x \in G \setminus M \) such that \(G = M \langle x \rangle \). In view of Lemma 7, \(|G : M| = 4 \), but \(r = \max \pi(G) \). Hence \(G \) is a 2-group.

Corollary 1.3. If every Sylow subgroup of a biprimary group \(G \) is \(\mathbb{P} \)-subnormal or permutable, then \(G \) is supersolvable. Conversely, in a supersolvable biprimary group every Sylow subgroup is \(\mathbb{P} \)-subnormal and strongly permutable.

According to Proposition 11 for a Hall subgroup of a soluble group, \(\mathbb{P} \)-subnormality and strongly permutability are equivalent. In simple groups, this is not true.

Example 1. In \(L_2(8) \), a Hall \(\{2, 7\} \)-subgroup is strongly permutable, but it is not \(\mathbb{P} \)-subnormal.

Example 2. In \(L_2(9) \), a Sylow 2-subgroup is strongly permutable, but it is not \(\mathbb{P} \)-subnormal.

Example 3. In \(L_2(5) \), a Sylow 2-subgroup is \(\mathbb{P} \)-subnormal, but it is not permutable.

Theorem A. Let \(G \) be a simple non-abelian group and let \(R \) be a Sylow \(r \)-subgroup of \(G \).

1. If \(R \) is \(\mathbb{P} \)-subnormal in \(G \), then \(r = 2 \) and \(G \) is isomorphic to \(L_2(7) \), \(L_2(11) \) or \(L_2(2^m) \) and \(2^m + 1 \) is a prime.

2. If \(R \) is strongly permutable and \(\mathbb{P} \)-subnormal in \(G \), then \(r = 2 \) and \(G \cong L_2(7) \).

Proof. Since \(R \) is \(\mathbb{P} \)-subnormal in \(G \), there is a subgroup chain

\[R = H_0 \leq H_1 \leq H_2 \leq \ldots \leq H_{n-1} = H \leq H_n = G \]

such that \(|H_{i+1} : H_i| \in \mathbb{P} \). It is clear that \(R \) is \(\mathbb{P} \)-subnormal in \(H \). Let \(|G : H| = p \). Since \(H_G = 1 \), the representation of \(G \) on the set of left cosets by \(H \) is exactly of degree \(p \) and \(G \) is isomorphic to a subgroup of the symmetric group \(S_p \) of order \(p \) for \(p = \max \pi(G) \), \(H \) is a Hall \(p' \)-subgroup of \(G \). From Lemma 3 it follows that a Sylow \(p \)-subgroup of \(G \) is not \(\mathbb{P} \)-subnormal in \(G \), therefore \(r < p \). Since the unit subgroup is \(\mathbb{P} \)-subnormal in \(R \), the unit subgroup is \(\mathbb{P} \)-subnormal in \(H \) and in \(G \). According to [12], [13, p. 342], \(G \) is isomorphic to one of the following groups

\[L_2(7), \ L_2(11), \ L_3(3), \ L_3(5), \ L_2(2^m), \ 2^m + 1 \text{ is prime.} \]

Let \(G \cong L_2(7) \). Then \(|G| = 2^3 \cdot 3 \cdot 7 \), \(p = 7 \), \(H \cong S_4 \). In \(S_4 \), a Sylow 2-subgroup is \(\mathbb{P} \)-subnormal, a Sylow 3-subgroup is not \(\mathbb{P} \)-subnormal, therefore \(r = 2 \). In \(L_2(7) \), there are two conjugate classes that are isomorphic to \(S_4 \). Since all Sylow 2-subgroups are conjugate, we get \(R \) is contained in two non-conjugate subgroups \(A \leq G \) and \(B \leq G \) that are isomorphic to \(S_4 \).
Since $A = RC_3$, $B = RC_3^x$, $x \in G$, we obtain $G = \langle A, B \rangle \leq P_G(R)$. So R is permutable in G. If $R < U < G$, then $U \cong S_4$, therefore R is strongly permutable in G.

Let $G \cong L_2(11)$. Then $|G| = 2^5 \cdot 3 \cdot 5 \cdot 11$, $p = 11$, $H \cong L_2(5)$. In $L_2(5)$, only a Sylow 2-subgroup is \mathbb{P}-subnormal, therefore $r = 2$. But R is not permutable in $H \cong L_2(5)$, hence R is not strongly permutable in $G \cong L_2(11)$.

Let $G \cong L_3(3)$. Then $|G| = 2^4 \cdot 3^3 \cdot 13$, $p = 13$ and $H \cong M_9 : S_3 \cong C_3^2 : GL_2(3)$. Since $|H| = 2^4 \cdot 3^3$ and H is not 3-closed, we have $r \neq 3$ by Lemma 3 and $r = 2$. But a Sylow 2-subgroup R is not \mathbb{P}-subnormal in H according to [14]. Therefore in $G \cong L_3(3)$, there are no \mathbb{P}-subnormal Sylow subgroups.

Let $G \cong L_3(5)$. Then $|G| = 2^5 \cdot 3 \cdot 5^3 \cdot 31$, $p = 31$ and $H \cong C_5^2 : GL_2(5)$. Since $|H| = 2^5 \cdot 3 \cdot 5^3$ and H is not 5-closed, we get $r \neq 5$ by Lemma 3 and $r \in \{2, 3\}$. But a Sylow 2-subgroup and 3-subgroup are not \mathbb{P}-subnormal in H according to [14]. Therefore in $G \cong L_3(5)$, there are no \mathbb{P}-subnormal Sylow subgroups.

Let $G \cong L_2(2^m)$, where $2^m + 1$ is prime. Then $|G| = 2^m(2^m - 1)(2^m + 1)$, $p = 2^m + 1$ and $H = N_G(Q) \cong C_{2^m}^3 : C_{2^m - 1}$, $Q \cong C_2^m$ is a Sylow 2-subgroup of G. Since Q is \mathbb{P}-subnormal in H, we deduce Q is \mathbb{P}-subnormal in G. Suppose that $\langle g \rangle Q = Q \langle g \rangle$ for some $g \in G$. Then $\langle g \rangle Q \leq N_G(Q)$ according to [10] II.8.27. Hence $P_G(Q) = N_G(Q)$ and a Sylow 2-subgroup of $G \cong L_2(2^m)$ is \mathbb{P}-subnormal in G, but it is not permutable in G. Suppose that $r \neq 2$. Then $R \leq N_G(Q) = H$ and R is \mathbb{P}-subnormal in RQ by Lemma 2, since R is \mathbb{P}-subnormal in H and H is soluble. By Lemma 3 R is normal in RQ and $R \leq C_G(Q)$, which is impossible in $G \cong L_2(2^m)$.

Corollary A.1 ([15] Theorem 2.1]). If a Sylow r-subgroup of a group G is \mathbb{P}-subnormal and $r > 2$, then G is r-soluble.

Proof. By Theorem A.1(1), G is not simple. Let N be a normal subgroup of G, $1 \neq N \neq G$. Then $R \cap N$ is a Sylow r-subgroup of N and $R \cap N$ is \mathbb{P}-subnormal in N in view of Lemma 1(1). By induction, N is r-soluble. Note that RN/N is a Sylow r-subgroup of G/N and RN/N is \mathbb{P}-subnormal in G/N in view of Lemma 1(1). By induction, G/N is r-soluble. Therefore G is r-soluble.

Corollary A.2 ([15] Corollary 2.1.1]). If a Sylow 3-subgroup and Sylow 5-subgroup of a group G is \mathbb{P}-subnormal, then G is soluble.

Proof. By Corollary A.1 G is 3-soluble and 5-soluble. Hence G has a normal series, in which factors are 3-groups, 5-groups or $\{3, 5\}$-groups. Since $\{3, 5\}$-groups are soluble [16] Theorem, p.18], we conclude G is soluble.

4 Groups with permutable and \mathbb{P}-subnormal primary cyclic subgroups

Let \mathfrak{F} be a class of groups. A group G is called a minimal non-\mathfrak{F}-group if $G \notin \mathfrak{F}$ but every proper subgroup of G belongs to \mathfrak{F}. Minimal non-\mathfrak{N}-groups are also called Schmidt groups. We remind the properties of Schmidt groups and minimal non-supersoluble groups we need.

Lemma 9 ([17] Theorem 1.1, 1.2, 1.5, [18] Theorem 3]). Let S be a Schmidt group. Then the following statements hold.

1. $S = P \rtimes Q$, where P is a normal Sylow p-subgroup and Q is a non-normal Sylow q-subgroup, p and q are different primes and
2. If P is abelian, then P is elementary abelian of order p^m, where m is the order of p modulo q.
(1.2) if P is not abelian, then $Z(P) = P' = \Phi(P)$ and $|P/Z(P)| = p^m$;
(1.3) if $p > 2$, then P has the exponent p; for $p = 2$, the exponent of P is not more than 4.
(1.4) $Q = \langle y \rangle$ is a cyclic subgroup and $y^q \in Z(S)$.

(2) G has exactly two classes of conjugate maximal subgroups

\[\{P \times \langle y^q \rangle\}, \{\Phi(P) \times \langle x^{-1}yx \rangle \mid x \in P \setminus \Phi(P)\}. \]

Lemma 10 (19,20). Let G be a minimal non-supersoluble group. Then the following statements hold.

1. G is soluble and $|\pi(G)| \leq 3$;
2. If G is not a Schmidt group, then G has a Sylow tower of supersolvable type;
3. G has a unique normal Sylow subgroup P and $P = G^4$;
4. $|P/\Phi(P)| > p$ and $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$;
5. If $\Phi(G) = 1$, then $O_p'(G) = 1$ and Q is either nonabelian of order q^3 and exponent q, or Q is a cyclic q-group, or Q is a q-group with a cyclic subgroup of index q, or Q is a supersoluble Schmidt group.

Lemma 11 (21 Lemma 1). Let $S = P \times Q$ be a supersoluble Schmidt group. Then $P = \langle x \rangle$ is a normal subgroup of order p, $Q = \langle y \rangle$ is a cyclic subgroup of order q^6, where q divides $p - 1$.

Lemma 12. Let $G = P \times Q$ be a Schmidt group, $Q = \langle y \rangle$. If $x \in G$ and $|y|$ does not divide $|x|$, then $x \in P \times \langle y^q \rangle$.

Proof. Let $\langle x \rangle = \langle x_1 \rangle \times \langle x_2 \rangle$, where $\langle x_1 \rangle$ is a Sylow p-subgroup and $\langle x_2 \rangle$ is a Sylow q-subgroup of $\langle x \rangle$. Since P is normal in G, $\langle x_1 \rangle \leq P$. Let $\langle x_2 \rangle \leq Q^y = \langle y^q \rangle$, $g \in G$. As $|y|$ does not divide $|x_2|$, we conclude $\langle x_2 \rangle < \langle y^q \rangle$ and $x_2 \in \langle (y^q)^q \rangle$. But $y^q \in Z(G)$, therefore

\[(y^q)^q = \underbrace{y^q \cdot y^q \cdot \ldots \cdot y^q}_{q} = g^{-1}y^qg = y^q \]

and $x_2 \in \langle y^q \rangle$. Consequently, $\langle x \rangle \leq P \times \langle y^q \rangle$. \qed

Lemma 13. (1) In a supersoluble Schmidt group, every subgroup is strongly permutable.
 (2) Let $G = P \times Q$ be a non-supersoluble Schmidt group. Then the following statements hold.

 2.1) Q is not permutable and $N_G(Q) = P_C(Q) = \Phi(P) \times Q \leq G$.
 2.2) If $H \leq P$ and $P_C(H) = G$, then either $H = P$ or $H \subseteq \Phi(G)$.
 2.3) Every primary permutable subgroup is normal in G, and so it is strongly permutable in G.

 (3) In Schmidt group G, every subgroup of prime order and every cyclic subgroup of order 4 is strongly permutable if and only if G is supersoluble.

Proof. In view of Lemma 9(2), maximal subgroups of G are reduced to $N_G(Q^q) = \Phi(P) \times Q^q$, $g \in G$ and $P \times \langle y^q \rangle \not\leq G$, $\langle y \rangle = Q$.

1. Let $G = P \times Q$ be a supersoluble Schmidt group. Then $|P| = p$ and q divides $p - 1$, where $|Q| = q^1$ by Lemma 11. It is clear that P and Q are strongly permutable in G. Let $Q_1 \leq Q$. Note that $P \times Q_1$ is cyclic and normal in G. Hence all subgroups of $P \times Q_1$ is normal in G and strongly permutable.

2. Let $G = P \times Q$ be a non-supersoluble Schmidt group.
 2.1) Suppose that there is $x \in G \setminus N_G(Q)$ such that $\langle x \rangle Q = Q(x)$. Let $\langle x \rangle = \langle a \rangle \langle b \rangle$, where $\langle a \rangle$ is a Sylow p-subgroup and $\langle b \rangle$ is a Sylow q-subgroup of $\langle x \rangle$. Since $\langle b \rangle Q = Q$ according to [10 VI.4.7],

\[\langle x \rangle Q = \langle a \rangle Q = \langle a \rangle \times Q, \quad a \in N_G(Q) = \Phi(P) \times Q, \]

7
If all primary cyclic subgroups of a group G are strongly permutable, then G is supersoluble. Conversely, if G is a supersoluble Schmidt group, then by Statement (1), every subgroup of prime order and every cyclic subgroup of order 4 is strongly permutable.

Lemma 14. Let H be a p-group of exponent p and $x \not\in Z(H)$. Then $N_H(\langle x \rangle) = P_H(\langle x \rangle)$ and $\langle x \rangle$ is not permutable in H.

Proof. It is clear that $N_H(\langle x \rangle) \leq P_H(\langle x \rangle)$. Choose $y \in H \setminus \langle x \rangle$ such that $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$. Since H is a p-group of exponent p, we get $|\langle x \rangle \langle y \rangle| = p^2$. Consequently, H is abelian and $\langle x \rangle \langle y \rangle = \langle x \rangle \times \langle y \rangle$, and so $y \in N_H(\langle x \rangle)$ and $N_H(\langle x \rangle) = P_H(\langle x \rangle)$. As $x \not\in Z(H)$, we have $H \neq N_H(\langle x \rangle) = P_H(\langle x \rangle)$ and $\langle x \rangle$ is not permutable in H.

Theorem B. If all primary cyclic subgroups of a group G are strongly permutable, then G is supersoluble.

Proof. We use induction on the group order. In view of Lemma 4(3) and by induction, all proper subgroups of G are supersoluble. Hence $G = P \rtimes S$ is a minimal non-supersoluble group, $P = G^{ab}$. By Lemma 13(3), G is not a Schmidt group, therefore G has a Sylow tower of supersoluble type and P is a Sylow p-subgroup of G for $p = \max \pi(G)$. In particular, $p > 2$ and all nontrivial elements in P are of order p by Lemma 10.

From Lemma 14 it follows that P is an elementary abelian p-subgroup, and by Lemma 10 P is a minimal normal subgroup in G.

Assume that N is a normal subgroup of G, $N \neq 1$, and V/N is a cyclic t-subgroup, $t \in \pi(G)$. Let U be a subgroup of least order such that $U \leq V$, $U \cap N = \Phi(U)$, $V/N = U/N \cong U/\langle x \rangle$, and therefore U is a cyclic t-subgroup. By the hypothesis, U is strongly permutable in G, and by Lemma 4(1), V/N is strongly permutable in G/N. By induction, G/N is supersoluble, hence $\Phi(G) = 1$. From Lemma 10(5) it follows that S is either a cyclic primary group or supersoluble Schmidt group, and $O_p(G) = 1$.

Let S be either a cyclic primary group or $|\pi(S)| = 2$. In that case, all Sylow subgroups of S are cyclic. Assume that $A \leq P$, $|A| = p$ and $g \in G \setminus N_G(A)$ such that $\langle g \rangle A \leq G$. Since $G = PS$, we conclude $g = bx$, $b \in P$, $x \in S$ and $\langle g \rangle = \langle b \rangle \times \langle x \rangle$. If $x = 1$, then $g = b \in P \leq N_G(A)$, a contradiction. If $b = 1$, then $g = x$ and $\langle g \rangle A = A \times \langle g \rangle$, since $\langle g \rangle A$ is p-closed. So, $g \in N_G(A)$, a contradiction. Thus, $b \neq 1$, $x \neq 1$, $S^b \neq S$, $x^b = x \in S \cap S^b = D \neq 1$.

If S is abelian, then $D < \langle S, S^b \rangle = G$, $D \leq O_p(G) = 1$, a contradiction. Therefore S is not abelian and $S = Q \rtimes R$ is supersoluble Schmidt group by Lemma 10 in view of $\Phi(G) = 1$.

Now, $|Q| = q$, $R = \langle y \rangle$ is an r-subgroup, r divides $q - 1$ and $y^r \in Z(S)$.

If q divides $|D|$, then $Q \leq D$ and $Q \lhd \langle S, S^b \rangle = G$, a contradiction. So, D is an r-subgroup. If $y^r \neq 1$, then $D_1 = D \cap \langle y^r \rangle \neq 1$ and $D_1 \lhd \langle S, S^b \rangle = G$, a contradiction. Consequently, $y^r = 1$, $D = \langle y \rangle = R$ and $|R| = r$. Since $D = \langle x \rangle$, we get $\langle x \rangle = R \leq N_G(\langle b \rangle)$.
If \(b \sub P Q \), then \(N_G((b)) \geq \langle P Q, R \rangle = G \) and \(b \sub G \), a contradiction. Hence \(b \) is not normal in \(P Q \) and there is \(u \in P Q \setminus N_{PQ}(b) \) such that \(\langle b \rangle \langle u \rangle \not\subseteq \langle u \rangle \langle b \rangle \subseteq P Q \). Let \(u = cf \), \(c \in P \), \(f \in Q \). If \(c = 1 \), then \(\langle b \rangle \langle u \rangle = \langle b \rangle \times \langle f \rangle \) and \(u = f \in N_{PQ}(b) \), a contradiction. If \(f = 1 \), then \(u = c \in P \leq N_{PQ}(b) \), a contradiction. Consequently, \(c \neq 1 \), \(f \neq 1 \) and \(\langle u \rangle = \langle c \rangle \times \langle f \rangle \), \(\langle f \rangle = Q \). \(\langle c \rangle \subseteq S \cap S^c \) and \(S^c \neq S \), since \(c \in P \), \(c \notin N_G(S) = S \). But now \(Q \not\subseteq \langle S, S^c \rangle = G \), a contradiction.

Finally, we consider the case when \(S = R \) is a noncyclic Sylow \(r \)-subgroup of \(G \). Assume that in \(S \), there is a cyclic subgroup \(Z \) of index \(r \). Let \(A \leq P \) such that \(|A| = p \) and let \(g \in G \setminus N_G(A) \) such that \(\langle g \rangle A \leq G \). Since \(G = P R \), we deduce \(g = bx \), \(b \in P \), \(x \in R \) and \(\langle g \rangle = \langle b \rangle \times \langle x \rangle \). If \(b = 1 \), then \(g = \langle x \rangle \) and \(\langle g \rangle A = A \times \langle g \rangle \), since \(\langle g \rangle A \) is \(p \)-closed and \(A \) is a Sylow \(p \)-subgroup of \(\langle g \rangle A \). Hence \(g \in N_G(A) \), a contradiction. If \(x = 1 \), then \(g = b \in P \leq N_G(A) \). This contradicts with the choice of \(g \). So, \(b \neq 1 \), \(x \neq 1 \), \(R^b \neq R \), \(x^b = x \in R \cap R^b \).

If \(\langle x_1 \rangle = \langle x \rangle \cap Z \neq 1 \), then \(\langle x_1 \rangle \not\subseteq R \). Since \(x_1^b = x_1 \in Z^b \cap R^b \), we get \(\langle x_1 \rangle \not\subseteq R^b \). Therefore \(\langle x_1 \rangle \not\subseteq \langle R, R^b \rangle = G \). This contradicts with \(R_G = 1 \). So, \(\langle x \rangle \cap Z = 1 \) and \(R = Z \times \langle x \rangle \), \(|x| = r \), \(x \in C_G((b)) \leq N_G((b)) \).

If \(\langle b \rangle \subseteq P Z \), then \(\langle b \rangle \subseteq G \), a contradiction. Thus, \(N_{PZ}((b)) \subseteq P Z \) and there is \(u \in P Z \setminus N_{PZ}((b)) \) such that \(\langle u \rangle \langle b \rangle \subseteq G \). Since \(u \in P Z \), we conclude \(\langle u \rangle = \langle c \rangle \times \langle y \rangle \), \(\langle c \rangle \subseteq P \), \(\langle y \rangle \subseteq Z \). Verification shows that \(c \neq 1 \), \(y \neq 1 \). From \(N_G(Z) = R \) it follows that \(Z^c \neq Z \) and \(y^c = y \in Z \cap Z^c \). Now, \(\langle y \rangle \not\subseteq \langle R, R^c \rangle = G \), a contradiction.

If \(S \) is not an abelian group of order \(r^3 \) and exponent \(r \), then by Lemma [14] \(S \) contains a nonpermutable cyclic primary subgroup, which contradicts with the choice of \(G \).

Theorem C. If every primary cyclic subgroup of a group \(G \) is \(P \)-subnormal or strongly permutable, then \(G \in vU \).

Proof. We use induction on the group order. Let \(N \) be a normal subgroup of a group \(G \), \(N \neq 1 \), and let \(\langle a \rangle \) be a cyclic primary subgroup of \(N \). By the choice of \(G \), \(\langle a \rangle \) is \(P \)-subnormal or strongly permutable in \(G \). If \(\langle a \rangle \) is \(P \)-subnormal in \(G \), then by Lemma 1, \(\langle a \rangle \) is \(P \)-subnormal in \(N \). If \(\langle a \rangle \) is strongly permutable in \(G \), then by Lemma 3, \(\langle a \rangle \) is strongly permutable in \(N \). Now assume that \(A/N \) is a cyclic \(t \)-subgroup. \(t \in \pi(G) \). Let \(B \) be a subgroup of least order such that \(B \leq A \). \(B N = A \). Then \(B \cap N \leq \Phi(B) \), \(A/N = B N/N \cong B / B \cap N \), hence \(B \) is a cyclic \(t \)-subgroup. By the choice of \(G \), \(B \) is \(P \)-subnormal or strongly permutable in \(G \). As \(A/N = B N/N \), according to Lemma 1 and Lemma [3](1), \(A/N \) is \(P \)-subnormal or strongly permutable in \(G \). Thus the hypothesis holds for all normal subgroups of \(G \) and all quotients subgroups.

Suppose that \(G \) is a simple group. If every primary cyclic subgroup of \(G \) is strongly permutable, then \(G \) is supersoluble by Theorem [3]. Consequently, \(G \) contains a cyclic primary subgroup \(A \) such that \(A \) is \(P \)-subnormal in \(G \). Since the unit subgroup is \(P \)-subnormal in \(A \), then it is \(P \)-subnormal in \(G \). According to [12], [13] p. 342, \(G \) is isomorphic to one of the following groups.

\[
L_2(7), L_2(11), L_3(3), L_3(5), L_2(2^m), 2^m + 1 \text{ is prime.}
\]

In every of these groups, a Sylow \(r \)-subgroup \(R \) is cyclic for \(r = \max \pi(G) \). By the choice of \(G \), \(R \) is \(P \)-subnormal or strongly permutable in \(G \). If \(R \) is \(P \)-subnormal in \(G \), then by Lemma [3] \(R \) is normal in \(G \). If \(R \) is strongly permutable in \(G \), then in view of Lemma [3] \(R \) is normal in \(G \). Consequently, \(R \) is normal in \(G \) and \(G \) is not a simple group, a contradiction.

Thus in \(G \), there is a normal subgroup \(N \), \(N \neq 1 \), and by induction, \(G/N \in vU \) and \(N \notin vU \). Hence \(G \) is soluble. In view of Lemma [1](2) and by induction, every proper subgroup of \(G \) belongs to \(vU \) and \(G \) is a minimal non-\(vU \)-group. According to [3, Theorem B (4)], \(G \) is a biprimary minimal non-supersoluble group in which non-normal Sylow subgroups are cyclic. Hence \(G = R \times Q \) is a group such that a Sylow \(r \)-subgroup \(R \) is normal in \(G \) and a Sylow
q-subgroup Q is cyclic and P-subnormal or strongly permutable in G by the choice of G. By Corollary 1.3, $G \in \mathcal{U} \subseteq \mathcal{V}$.

Example 4. In A_4, every subgroup of order 2 is P-subnormal, but it is not permutable.

Example 5. In $L_2(7)$, every subgroup of order 3 is permutable, but it is not P-subnormal.

References

[1] Weinstein M. Between Nilpotent and Solvable. Polygonal. Passaic, N.J. 1982.

[2] Liu X., Wang Y. Implications of permutizers of some subgroups in finite groups. Comm. Algebra. 2005. Vol. 33. 559–565.

[3] Vasil’ev A. F., Vasil’ev V. A., Vasil’eva T. I. On permuteral subgroups in finite groups. Siberian Math. J. 2014. Vol. 55(2). 230–238.

[4] Vasil’ev A. F., Vasil’eva T. I., Tyutyanov V. N. On the finite groups of supersoluble type. Siberian Math. J. 2010. Vol. 51(6). 1004–1012.

[5] Monakhov V. S., Kniahina V. N. Finite group with P-subnormal subgroups. Ricerche Mat. 2013. Vol. 62. 307–323.

[6] Monakhov V. S., Finite groups with abnormal and \mathcal{U}-subnormal subgroups. Siberian Math. J. 2016. Vol. 57(2). 352–363.

[7] Chen R., Zhao X., Li X. P-subnormal subgroups and the structure of finite groups. Ricerche Mat. 2021. https://doi.org/10.1007/s11587-021-00582-4.

[8] The GAP Group: GAP — Groups, Algorithms, and Programming. Ver. 4.11.0 released on 29-02-2020. http://www.gap-system.org.

[9] Ballester-Bolinches A., Cosme-Ll`{o}pez E., Esteban-Romero R. GAP Package Permut. Ver. 2.0.3 released on 19-08-2018. https://gap-packages.github.io/permut.

[10] Huppert B. Endliche Gruppen I. Berlin, Springer, 1967.

[11] Qiao S., Qian G., Wang Y. Finite groups with the maximal permutizer cindition. J. Algebra Appl. 2013. Vol. 12(5). 1250217 (5 pages).

[12] Kazarin L. S. On groups with factorization. Dokl. Akad. Nauk SSSR. 1981. Vol. 256 (1). 26–29.

[13] Cameron P. J., Solomon R. Chains of Subgroups in Symmetric Groups. J. Algebra. 1989. Vol. 127. 340–352.

[14] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, Clarendon Press, 1985.

[15] Kniahina V. N., Monakhov V. S. Finite groups with P-subnormal Sylow subgroup. Ukrain’s’kyi Matematychnyi Zhurnal. 2020. Vol. 72(10). 1365–1371.

[16] Gorenstein D. Finite simple groups. An introduction to their classification. New York, Plenum Publ. Corp., 1982.
[17] Monakhov V.S. The Schmidt subgroups, its existence, and some of their applications. Proceedings of the Ukrainian Mathematical Congress-2001. Inst. Mat. NAN Ukrainy, Kyiv, 2002. 81–90.

[18] Ballester-Bolinches A., Esteban-Romero R., Robinson D.J.S. On finite minimal non-nilpotent groups. Proceedings of the American Mathematical Society. 2005. Vol. 133(12). 3455–3462.

[19] Doerk K. Minimal nicht überraflösbare, endliche gruppen. Math. Zeit. 1966. Z. 91. 198–205.

[20] Ballester-Bolinches A., Esteban-Romero R. On minimal non-supersoluble groups. Rev. Mat. Iberoamericana. 2007. Vol. 23(1). 127–142.

[21] Monakhov V.S. Finite groups with a given set of Schmidt subgroups. Math. Notes. 1995. Vol. 58(5). 1183–1186.