Comparison of Conventional and Microwave-assisted Synthesis of Benzimidazole Derivative from Citronellal in Kaffir lime oil (Citrus hystrix DC.)

W Warsito1,2,*, Noorhamdani A.S3, Suratmo1,2, R Dwi Sapri1,2, D Alkaroma1, A Z Azhar1

1 Department of Chemistry, Faculty of Science, Brawijaya University, Jl Veteran Malang, 65145, Indonesia
2 Essential Oil’s Institute, Brawijaya University, Jl Veteran Malang 65145, Indonesia
3 Department of Medical Faculty, Brawijaya University, Jl Veteran Malang 65145, Indonesia

*Corresponding author: warsitoub88@yahoo.com

Abstract. Simple method has been used for the synthesis of benzimidazole derivative from citronellal in kaffir lime oil under microwave irradiation. These compounds were synthesized also by conventional heating for comparison. In addition, microwave-assisted synthesis was also compared between using to dichloromethane and methanol solvents with variation of reaction time for 30 to 70 minutes and 4 to 12 h for conventional heating. The 2-citronellyl benzimidazole compound synthesized were characterised by FT-IR, GC-MS, 1H and 13C NMR spectroscopy. Comparison between conventional and microwave-assisted synthesis was done by comparing between correlation of reaction time and percentage yield. The time optimum of microwave-assisted and conventional synthesis using dichloromethane solvent respectively at 60 minutes (yield 19.23%) and 8 hours (yield 11.54%). In addition, microwave-assisted synthesis increasing 157.81 times compared by conventional heating. While using methanol solvent tends to increase linearly however the percentage of yield only 0.77 times of synthesis using dichloromethane solvent.

1. Introduction
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities [1]. At the core of these molecules have basic and acidic characters that can form salts with different acids. Optimization of the structure of benzimidazole has been widely practiced, such as changes in substituents in aryl groups, benzyl groups and or indole groups that can provide various bioactivity [2].

Benzimidazole and its derivatives are reported to be physiologically and pharmacologically active and some applications are found in the treatment of several diseases including epilepsy, diabetes and infertility [3]. These compounds show a wide range of biological activities like anti-inflammatory as well as analgesic activity [4,5]. antibacterial and antifungal [6,7], antitubercular [6], antiviral [8], anthelmintic and antiproliferative [9,10], antimalarial [11], antiulcerative, antioxidant [12,13], antiproliferative [14], antihypertensive [15, 16], antitumor [17,18]. Some benzimidazoles have also been
evaluated as cholinesterase inhibitors [19,20], drugs against parasites [21,22] while some derivatives have been synthesized and evaluated for inhibition of HIV-1 [23].

The efficient and economical methods of synthesizing benzimidazole by condensation reaction between ortho phenylene diamine and various compounds in the presence of various reaction condition [24]. Nowadays, microwave-assisted organic synthesis is gaining widespread acceptance in drug discovery laboratories. Microwave technology, by accelerating chemical reactions from hours or days to minutes, provides quick results [25]. In this study, benzimidazole derivative of citronellal in kaffir lime oil were synthesized utilizing both microwave and conventional methods. The performance of two methods was compared and studying the reaction kinetics.

2. Material and Methods

2.1 Materials and Instrumentation

The kaffir lime oil was obtained from Essential Oil’s Institute, Brawijaya University. The products were prepared by steam distillation.

All chemicals and solvents were supplied by Sigma Aldrich and were used without further purification. Microwave reaction was carried out in domestic microwave oven (LG 1200W 245 MHz). GC/MS 5977 Agilent Tech. with HP-5MS capillary column used to make TIC and mass spectra. Nuclear magnetic resonance (NMR) spectra were recorded on JEOL ECS 400 MHz NMR spectrometer using methanol d4 as solvent. Chemical shifts were reported in parts per million relative to internal standard tetramethylsilane. IR spectra of the compounds were recorded on Perkin Elmer FT-IR spectrometer with KBr pellets.

2.2 Methods

The Essential Oil Extraction

The kaffir lime oils were obtained by steam distillation. 375 kg of leaf and twig mix (w/w) 1:1 distilled with vapor pressure 2.5-4 bar for 4h. The essential oil was characterized by refractometer, picnometer and GC type HP 5895 with HP-5MS capillary column.

Conventional Method

A mixture of 6.0 mL of kaffir lime oils (5.1 g), 1.4 g o-phenylenediamine and 10 mL dichloromethane were fed into a round bottom flask. The reflux condensation was carried out for 4 hours. Then, the mixture was cooled to room temperature and the next cooled in the refrigerator for 24 hours. The crystals are filtered and washed with cold dichloromethane, dried in air and stored. Variations of reflux condensation have been done for 4, 6, 8, 10, 12 and 14 hours.

Microwave Method

A mixture of 6.0 mL (5.1 g) of kaffir lime oils, 1.4 g o-phenylenediamine and 10 mL dichloromethane were fed into a round bottom flask and microwaved at 1200W for 60 min. The reaction was monitored by TLC silica with ethylacetate: n-hexane: methanol (3: 2 : 1) as eluent. Then, the mixture was cooled to room temperature and then kept in the refrigerator for 24 hours. The crystals are filtered and washed with cold dichloromethane, dried in air and stored. Variations of reaction time in microwave have been done for 30, 40, 50, 60 and 70 minutes. Another variation in synthesis used methanol solvent.

3. Result and Discussion

Kaffir lime oil as a citronellal source was obtained from steam distillation. The characteristic of kaffir lime oil that is liquid yellow with unique aromatic scent and refractive index, specific gravity, percentage of rendemen, percentage of citronellal are 1,439; 0.85 g/ml, 0.5% and 60.40% respectively.

2-Citronellyl benzimidazole were synthesised by both conventional synthesis and microwave-assisted synthesis by synthetic schemes (Fig. 1). The products of benzimidazole compounds
synthesized using dichloromethane solvent appear purer in the form of white crystals, while using methanol obtained yellow crystals. The structures of the synthesized compounds were confirmed using IR, GC-MS and NMR. Character of benzimidazole compound synthesized on the IR spectra contained a distinctive band at 1661 cm\(^{-1}\) and 1271 cm\(^{-1}\) as C = N str and C-N str of imidazole group, C = C str of benzene group at 1622 cm\(^{-1}\) and 1456 cm\(^{-1}\) and (C = C str) of alkene group at 1379 cm\(^{-1}\). GC-MS analysis showed pure (tR 15.339 minute) and m/z 242 as molecular ion (M\(^{+}\)) and m/z 145 as base peak of mass-spectra. The NMR spectroscopic character exhibited \(^1\)H-NMR and \(^{13}\)C-NMR were characterized by 11 proton spectra types and 16 carbon-13 spectra as shown in Fig.2.

![Fig. 1 Synthesis benzimidazole derivative compound](image)

The comparative data of the synthesized compounds are provided graph in Fig.3. The reaction time for the synthesis of all compounds by conventional heating methods was 4 to 10 h, in comparison with the microwave heating (30-60 min), an obvious many-fold time reduction. Overall approximately, the rate of synthesis of benzimidazole by microwave method is greater than the conventional heating method. The time optimum of microwave-assisted syntheses using dichloromethane solvent at 60 minute with yield 19.23% and increase 157.81 times compared by conventional hating.

![Fig 2. NMR spectra pattern of 2-citronellyl benzimidazole](image)

A. \(\delta\) (ppm) of \(^1\)H-NMR spectra B. \(\delta\) (ppm) of \(^{13}\)C-NMR

In addition, the microwave-assisted synthesis using methanol tends to increase linearly with increasing reaction time with percent yield only 0.77 times of synthesis using dichloromethane solvent.
4. Conclusion

The time optimum of microwave-assisted and conventional synthesis using dichloromethane solvent respectively at 60 minutes (yield 19.23%) and 8 hours (yield 11.54%). In addition, the microwave-assisted synthesis increasing 157.81 times compared by conventional heating. While using methanol solvent tends to increase linearly however the percentage of yield only 0.77 times of synthesis using dichloromethane solvent.

Acknowledgments

On this occasion, thank you to: (1) Directorate General of Higher Education that has funded this research; (2) Essential Oil’s Institute that gave a facilities for the research activities in essential oils.

References

[1] Wasim Akhtar a, Mohammed Faraz Khan, Garima Verma, M. Shaquiquzzaman, M.A. Rizvi b, Syed Hassan Mehdi, Mymoona Akhter, M. Mumtaz Alam, Therapeutic evolution of benzimidazole derivatives in the last quinquennial period, European Journal of Medicinal Chemistry 126 (2017) 705-753.

[2] Oztekin Algul, Andre Kaessler, Yagmur Apcin, Akin Yilmaz and Joachim Jose, Comparative Studies on Conventional and Microwave Synthesis of Some Benzimidazole, Benzothiazole and Indole Derivatives and Testing on Inhibition of Hyaluronidase, Molecules 2008, 13, 736-748.

[3] Pavel Kopel, Dorota Kawczak, Vratislav Langer, Kristyna Cihalova, Dagmar Chudobova, Radek Vesely, Vojtech Adam and Rene Kizek, Iiological Activity and Molecular Structures of Bis(benzimidazole) and Thiolciyanurate Complexes, Molecules 2015, 20, 10360-10376; doi:10.3390/molecules200610360.

[4] Mohammed A.F., Abdel-Moty S.G., Hussein M.A., Abdel-Alim A.A., Design, synthesis and molecular docking of some new 1,2,4-triazolobenzimidazol-3-yl acetohydrazide derivatives with anti-inflammatory-analgistic activities, Arch. Pharm. Res. 36 (2013) 1465-1479.

[5] Eman S. Nossier, Hoda H. Fahmy, Nagy M. Khalifa, Wafa I. El-Eraky and Marawan A. Baset, Design and Synthesis of Novel Pyrazole-Substituted Different Nitrogenous Heterocyclic Ring Systems as Potential Anti-Inflammatory Agents, Molecules 2017, 22, 512; doi:10.3390/molecules22040512.
[6] Ranjith, P.K.; Rajeev, P.; Haridas, K.R.; Susanta, N.K.; Row, T.N.G.; Rishikesan, R.; Kumari, N.S., Design and synthesis of positional isomers of 5 and 6-bromo-1-(phenyl)sulfonyl-2-(4-nitrophenoxy)methyl-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2013, 23, 5228–5234.

[7] Kankatea R.S., Gide P.S., Belsare D.P., Design, synthesis and antifungal evaluation of novel benzimidazole tertiary amine type of fluconazole analogues, Arab. J. Chem. (2015). http://dx.doi.org/10.1016/j.arabjc.2015.02.002.

[8] Evans C.W., Atkins C., Pathak A., Gilbert B.E., Noah J.W., Benzimidazole analogs inhibit respiratory syncytial virus G protein function, Antivir. Res. 121 (2015) 31-38.

[9] Mavrova A.T., Wesselinova D., Vassilev N., Tsenov J.A, Design, synthesis and antiproliferative properties of some new 5-substituted-2-iminobenzimidazole derivatives, Eur. J. Med. Chem. 63 (2013) 696e701.

[10] Hranjec M., Pavlovic G., Zamola G.K., Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2-a]benzimidazoles, J. Mol. Struct. 1007 (2012) 242-251.

[11] Toro, P.; Klahn, A.H.; Pradines, B.; Lahoz, F.; Pascual, A.; Biot, C.; Arancibia, R. Organometallic benzimidazoles: Synthesis, characterization and antimalarial activity. Inorg. Chem. Commun. 2013, 35, 126–129.

[12] Haque, R.A.; Iqbal, M.A.; Asekunowo, P.; Majid, A.; Ahamed, M.B.K.; Umar, M.I.; Al-Rawi, S.S.; Al-Suede, F.S. Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbene complexes (Part-II). Med. Chem. Res. 2013, 22, 4663–4676.

[13] Nile, S.H.; Kumar, B.; Park, S.W. In Vitro Evaluation of Selected Benzimidazole Derivatives as an Antioxidant and Xanthine Oxidase Inhibitors. Chem. Biol. Drug Des. 2013, 82, 290–295.

[14] Kralova, V.; Hanusova, V.; Stankova, P.; Knoppova, K.; Canova, K.; Skalova, L. Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anti-Cancer Drugs 2013, 24, 911–919.

[15] Jain, A.; Sharma, R.; Chaturvedi, S.C. A rational design, synthesis, characterization, and antihypertensive activities of some new substituted benzimidazoles. Med. Chem. Res. 2013, 22, 4622–4632.

[16] Sharma M.C., Sharma S., Sahu N.K., Kohli D.V., 3D QSAR kNN-MFA studies on 6-substituted benzimidazoles derivatives as nonpeptide angiotensin II receptor antagonists: a rational approach to anti-hypertensive agents, J. Saudi. Chem. Soc. 17 (2013) 167-176.

[17] Kahveci, B.; Mentes, E.; Ozil, M.; Ulker, S.; Erturk, M. An efficient synthesis of benzimidazoles via a microwave technique and evaluation of their biological activities. Mon. Chem. 2013, 144, 993–1001.

[18] Purushottamachar, P.; Godbole, A.M.; Gediya, L.K.; Martin, M.S.; Vasaitis, T.S.; Kwegyir-Afful, A.K.; Ramalingam, S.; Ates-Alagoz, Z.; Njar, V.C.O. Systematic Structure Modifications of Multitarget Prostate Cancer Drug Candidate Galterone To Produce Novel Androgen Receptor Down-Regulating Agents as an Approach to Treatment of Advanced Prostate Cancer. J. Med. Chem. 2013, 56, 4880–4898.

[19] Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Masand, V.H.; Osman, H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem. 2013, 49, 33–39.

[20] Zhu, J.M.; Wu, C.F.; Li, X.B.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.X.; Zhu, M.X.; Hong, X.C.; Luo, H.R. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem. 2013, 21, 4218–4224.

[21] Ceballos, L.; Virkel, G.; Elissondo, C.; Canton, C.; Canevari, J.; Murno, G.; Denegri, G.; Lanusse, C.; Alvarez, L. A pharmacology-based comparison of the activity of albendazole and flubendazole against Echinococcus granulosus metacestode in sheep. Acta Trop. 2013, 127, 216–225.
[22] Perez-Villanueva, J.; Hernandez-Campos, A.; Yepez-Mulia, L.; Mendez-Cuesta, C.; Mendez-Lucio, O.; Hernandez-Luis, F.; Castillo, R. Synthesis and antiprotozoal activity of novel 2-[2-(1H-imidazol-1-yl)ethyl sulfanyl]-1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 4221–4224.

[23] Roth T, Morningstar ML, Boyer PL, Hughes SH, Buckheit RW, Michejda CJ,. Synthesis and Biological Activity of Novel Non nucleoside Inhibitors of HIV1 Reverse Transcriptase 2-Aryl-Substituted Benzimidazoles. J Med Chem 1997; 40: 4199 4207.http://dx.doi.org/10.1021/jm970096g.

[24] Shatha Ibrahim Alaqeel, Synthetic approaches to benzimidazoles from o-phenylenediamine : A literature review, Journal of Saudi Chemical Society (2017)21, 229–237.

[25] Shah, J.J and Krishnapriya Mohanraj, Comparison of Conventional and Microwave-assisted Synthesis of Benzotriazole Derivatives, Indian J Pharm Sci 2014; 76(1): 46-53.