Hyperbolic formulations and numerical relativity II:
Asymptotically constrained systems of the Einstein equations

Gen Yoneda
Department of Mathematical Sciences, Waseda University, Shinjuku, Tokyo, 169-8555, Japan

Hisa-aki Shinkai
Centre for Gravitational Physics and Geometry, 104 Davey Lab., Department of Physics,
The Pennsylvania State University, University Park, Pennsylvania 16802-6300, USA

yoneda@mn.waseda.ac.jp shinkai@gravity.phys.psu.edu

(December 10, 2000 (revised version) gr-qc/0007034 to appear in Class. Quant. Grav.)

We study asymptotically constrained systems for numerical integration of the Einstein equations,
which are intended to be robust against perturbative errors for the free evolution of the initial data.
First, we examine the previously proposed “λ-system”, which introduces artificial flows to constraint
surfaces based on the symmetric hyperbolic formulation. We show that this system works as expected
for the wave propagation problem in the Maxwell system and in general relativity using Ashtekar’s
connection formulation. Second, we propose a new mechanism to control the stability, which we
call the “adjusted system”. This is simply obtained by adding constraint terms in the dynamical
equations and adjusting its multipliers. We explain why a particular choice of multiplier reduces
the numerical errors from non-positive or pure-imaginary eigenvalues of the adjusted constraint
propagation equations. This “adjusted system” is also tested in the Maxwell system and in the
Ashtekar’s system. This mechanism affects more than the system’s symmetric hyperbolicity.

PACS numbers: 04.20.Cv 04.25.-g 04.25.Dm

I. INTRODUCTION

Numerical relativity, an approach to solve the Einstein equations numerically, is supposed to be the only way to
study highly non-linear gravitational phenomena. Although the attempt has already decades of history, we still do
not have a definite recipe for integrating the Einstein equations that will give us us accurate and long-term stable
time evolutions. Here and hereafter, we mean “stable evolution” that the system keeps the violation of the constraints
within a suitable small value in its free numerical evolution.

As the authors discussed in our preceding paper (Paper I) [1], one direction for obtaining a more stable system
is to apply a set of dynamical equations which have manifest hyperbolic form (or first-order form). The standard
Arnowitt-Deser-Misner (ADM) formulation does not have this feature, but there are many alternative proposals for
constructing a hyperbolic set of equations ([2–6], see also references in [1]). However, we showed in Paper I that a
symmetric hyperbolic form (mathematically, the “ultimate” level of hyperbolicity) does not necessary give the best
performance for stable numerical evolution compared with weakly and strongly hyperbolic systems. This experiment
was performed using Ashtekar’s connection variables [7], since this formulation enables us to compare three levels of
hyperbolic formulations keeping the same fundamental dynamical variables.

In this article, we discuss different (but somewhat related) approaches to obtaining stable evolution of the Einstein
equations. The idea is to construct a system robust against the perturbative error produced during numerical time
integration. We discuss the following two systems.

The first one is the so-called “λ-system”, which was proposed originally by Brodbeck, Frittelli, Hübner and Reula
(BFHR) [8]. The idea of this approach is to introduce additional variables, λ, which indicates the violation of the
constraints, and to construct a symmetric hyperbolic system for both the original variables and λ together
with imposing dissipative dynamical equations for λs. BFHR constructed their λ-system based on Frittelli-Reula’s
symmetric hyperbolic formulation of the Einstein equations [5], and we [9] have also presented a similar system for
Ashtekar’s connection formulation [7], based on its symmetric hyperbolic expression [10,11]. In §II, we review this
system and present numerical examples which show this system behaves as expected.

The second one has the same motivation but turns to be more practical, which we call “adjusted-system”. The
essential procedure is to to add constraint terms to the right-hand-side of the dynamical equations with multipliers,
and to choose the multipliers so as to decrease the violation of the constraint equations. This second step will be
explained by obtaining non-positive or pure-imaginary eigenvalues of the adjusted constraint propagation equations.
We remark that adjusting the dynamical equation using the constraints is not a new idea. This can be seen for example in a remedial ADM system by Detweiler [12], in a conformally decoupled trace-free re-formulation of ADM by Nakamura et al [13], and also in constructing hyperbolic formulations [2–5]. We also remark that this eigenvalue criterion is also the core part of the theoretical support of the above λ-system. In §III, we describe this approach and present numerical examples again in the Maxwell system and in the Ashtekar’s system.

This “adjusted-system” does not change the number of dynamical variables, and does not require hyperbolicity in the original set of equations. Therefore we think our results promote further applications in numerical relativity.

We will not repeat our explanation of Ashtekar’s connection formulation in our notation, nor of our detailed numerical procedures, since they are described in our Paper I [1].

II. ASYMPTOTICALLY CONSTRAINED SYSTEM 1: λ-SYSTEM

We begin by reviewing the fundamental procedures of the “λ-system” proposed by Brodbeck, Frittelli, Hübner and Reula (BFHR) [8]. We, then, demonstrate how this system works in Maxwell’s equations, and Ashtekar’s connection formulation of the Einstein equations in the following subsections.

A. The “λ system”

The actual procedures for constructing a λ system are followings.

(1) Prepare a symmetric hyperbolic evolution system which describe the problem; say

$$\partial_t u^\gamma = A^{\gamma \delta} \partial_i u^\delta + B^\gamma,$$

where u^γ ($\gamma = 1, \ldots, N$) is a set of dynamical variables, $A(u(x^i))$ forms a symmetric matrix (Hermitian matrix when u is complex variables) and $B(u(x^i))$ is a vector, where A and B do not include any further spatial derivatives in these components. The system may have constraint equations, which should be the first class. Ideally, we expect that the evolution equation of the set of constraints C^ρ ($\rho = 1, \ldots, M$), which hereafter we denote constraint propagation equation, forms a first order hyperbolic system (cf. [14]), say

$$\partial_t C^\rho = D^{\rho \sigma} \partial_i C^\sigma + E^\rho \sigma C^\sigma,$$

(2.2) where D, E are the same with A, B above) but this hyperbolicity may not be necessary.

(2) Introduce λ^ρ as a measure of violation of the constraint equation, $C^\rho \approx 0$. (\approx denotes “weakly equal”.) Here C^ρ is a given function of u and is assumed to be linear in its first-order space derivatives. We impose that λ obeys a dissipative equation of motion

$$\partial_t \lambda^\rho = \alpha(\rho) C^\rho - \beta(\rho) \lambda^\rho$$

(2.3) (we do not sum over ρ and ρ on right hand side) with the initial data $\lambda^\rho = 0$, and by setting $\alpha \neq 0, \beta > 0$. We remark that λ^ρ remains zero during the time evolution if there is no violation of the constraints.

(3) Take a set (u, λ) of dynamical variables, and modify the evolution equations so as to form a symmetric hyperbolic system. That is, the set of equations

$$\partial_t \left(\begin{array}{c} u^\gamma \\ \lambda^\rho \end{array} \right) \approx \left(\begin{array}{cc} A^{\gamma \delta} & 0 \\ F^{\rho \delta} & 0 \end{array} \right) \partial_i \left(\begin{array}{c} u^\delta \\ \lambda^\sigma \end{array} \right),$$

(2.4) (\approx means that we have extracted only the term which appears in the principal part of the system) can be modified as

$$\partial_t \left(\begin{array}{c} u^\gamma \\ \lambda^\rho \end{array} \right) \approx \left(\begin{array}{cc} A^{\gamma \delta} & F^{\gamma \sigma} \\ F^{\rho \delta} & 0 \end{array} \right) \partial_i \left(\begin{array}{c} u^\delta \\ \lambda^\sigma \end{array} \right),$$

(2.5) where the additional terms will not disturb the hyperbolicity of equations of u^γ, rather they make the whole system symmetric hyperbolic, which guarantees the well-posedness of the system.
Therefore the derived system, (2.5), should have unique solution. If a perturbative violation of constraints, \(\lambda^\rho \neq 0 \), occurs during the evolution, by choosing appropriate \(\alpha \)'s and \(\beta \)'s in (2.3), \(\lambda \)'s can be made decaying to zero, which means the total system evolves into the constraint surface asymptotically. We note that this procedure requires that the original system \(u \) forms a symmetric hyperbolic system, so that applications to the Einstein equations are somewhat restricted. BFHR [8] constructed this \(\lambda \)-system using a Frittelli-Reula’s formulation [5]. We [9] also applied this system to the symmetric hyperbolic version of Ashtekar’s formulation [10].

We next review a brief proof why the system (2.5) ensures that the evolution is constrained asymptotically. We first remark again that we only consider perturbative violations of constraints in our evolving system. The steps are following.

(a) Since we modify the equations for \(u^\gamma \), the propagation equation of the constraints are also modified; write them schematically as

\[
\partial_t C^\rho = D^{\mu \rho} \partial_\mu C^\sigma + E^{\rho \sigma} C^\sigma + G^{\mu \sigma} \partial_\mu \partial_\sigma \lambda^\sigma + H^{\rho \sigma} \partial_\rho \lambda^\sigma + I^\rho \lambda^\sigma .
\]

(2.6)

(b) In order to see the asymptotic behaviors of \((\lambda^\rho, C^\rho) \), we write them using their Fourier components so that their evolution equations take an homogenous form. That is, we transform \((\lambda^\rho, C^\rho) \) to \((\hat{\lambda}^\rho, \hat{C}^\rho) \) as

\[
\lambda(x, t)^\rho = \int \hat{\lambda}(k, t)^\rho \exp(ik \cdot x) d^3k, \quad C(x, t)^\rho = \int \hat{C}(k, t)^\rho \exp(ik \cdot x) d^3k.
\]

(2.7)

Then we see the evolution equations (2.3) and (2.6) become

\[
\partial_t \begin{pmatrix} \hat{\lambda}^\rho \\ \hat{C}^\rho \end{pmatrix} = \begin{pmatrix} -\beta^\rho_\sigma \delta_\sigma^\rho & \alpha_\rho^\sigma \delta_\sigma^\rho \\ -G^{\mu \rho} k_\mu k_\sigma + iH^{\rho \sigma} k_\rho + I^\rho \delta_\sigma^\rho & \alpha_\rho^\sigma \end{pmatrix} \begin{pmatrix} \hat{\lambda}^\sigma \\ \hat{C}^\sigma \end{pmatrix} =: P \begin{pmatrix} \hat{\lambda}^\sigma \\ \hat{C}^\sigma \end{pmatrix}.
\]

(2.8)

(c) If all eigenvalues of this coefficient matrix \(P \) have negative real part, a pair \((\hat{\lambda}, \hat{C}) \) evolves as \(\exp(-\Lambda t) \) asymptotically where \(-\Lambda \) is the diagonalized matrix of \(P \), which indicates that the original variables \((\lambda, C) \) evolves similarly. It would be best if we could determine the \(\alpha \) and \(\beta \) in such a way in general, but it is not possible. Therefore we extract the principal order of \(P \) and examine the condition for \(\alpha \) and \(\beta \) so that \(P \) only has negative (real) eigenvalues. We remark again that this procedure is justified when we only consider a perturbative error from the constraint surface.

B. Example 1: Maxwell equations

As a first example, we present the Maxwell equations in a form of \(\lambda \)-system. The Maxwell equations form linear and symmetric hyperbolic dynamical equations, together with two constraint equations, which might be the best system to start with.

1. \(\lambda \)-system

The Maxwell equations for an electric field \(E^i \) and a magnetic field \(B^i \) in the vacuum consist of two constraint equations,

\[
C_E := \partial_i E^i \approx 0, \quad C_B := \partial_i B^i \approx 0,
\]

(2.9)

(2.10)

and a set of dynamical equations,

\[
\partial_t \begin{pmatrix} E^i \\ B^i \end{pmatrix} = \begin{pmatrix} 0 & -\varepsilon^{i j l} \\ \varepsilon^{i j l} & 0 \end{pmatrix} \partial_i \begin{pmatrix} E^j \\ B^j \end{pmatrix},
\]

(2.11)

which satisfies symmetric hyperbolicity. The constraint evolutions become \(\partial_t C_E = 0 \) and \(\partial_t C_B = 0 \), which indicate (trivial) symmetric hyperbolicity. According to the above procedure, we introduce \(\lambda \)'s which obey
\[\partial_t \lambda_E = \alpha_1 C_E - \beta_1 \lambda_E, \]
\[\partial_t \lambda_B = \alpha_2 C_B - \beta_2 \lambda_B, \]
(2.12, 2.13)

with the initial data \(\lambda_E = \lambda_B = 0 \) and take \((E, B, \lambda_E, \lambda_B)\) as a set of variables to evolve:

\[
\begin{pmatrix}
\partial_t E^i \\
\partial_t B^i \\
\partial_t \lambda_E \\
\partial_t \lambda_B
\end{pmatrix}
= \begin{pmatrix}
0 & -\alpha_1 \delta^i_0 & 0 & 0 \\
-\alpha_1 \delta^i_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\partial_t E^j \\
\partial_t B^j \\
\partial_t \lambda_E \\
\partial_t \lambda_B
\end{pmatrix}
+ \begin{pmatrix}
0 \\
0 \\
-\beta_1 \lambda_E \\
-\beta_2 \lambda_B
\end{pmatrix}. \]
(2.14)

We obtain immediately an expected symmetric form as

\[
\begin{pmatrix}
\partial_t E^i \\
\partial_t B^i \\
\partial_t \lambda_E \\
\partial_t \lambda_B
\end{pmatrix}
= \begin{pmatrix}
0 & -\alpha_1 \delta^i_0 & 0 & 0 \\
-\alpha_1 \delta^i_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\partial_t E^j \\
\partial_t B^j \\
\partial_t \lambda_E \\
\partial_t \lambda_B
\end{pmatrix}
+ \begin{pmatrix}
0 \\
0 \\
-\beta_1 \lambda_E \\
-\beta_2 \lambda_B
\end{pmatrix}. \]
(2.15)

2. Analysis of eigenvalues

Now the evolution equations for the constraints \(C_E\) and \(C_B\) become

\[\partial_t C_E = \alpha_1 (\Delta \lambda_E), \quad \partial_t C_B = \alpha_2 (\Delta \lambda_B) \]
(2.16)

where \(\Delta = \partial_i \partial^i\). We take the Fourier integrals for constraints \(C_E\) \((2.12)\) and \(\lambda_B\) \((2.13)\), in the form of \((2.7)\), to obtain

\[
\begin{pmatrix}
\partial_t \hat{C}_E \\
\partial_t \hat{C}_B \\
\partial_t \hat{\lambda}_E \\
\partial_t \hat{\lambda}_B
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & -\alpha_1 k^2 & 0 \\
0 & 0 & 0 & -\alpha_2 k^2 \\
0 & \alpha_1 & 0 & -\beta_1 \\
0 & \alpha_2 & 0 & -\beta_2
\end{pmatrix}
\begin{pmatrix}
\hat{C}_E \\
\hat{C}_B \\
\hat{\lambda}_E \\
\hat{\lambda}_B
\end{pmatrix}. \]
(2.17)

where \(k^2 = k_i k^i\). We find the matrix is constant. Note that this is exact expression. Since the eigenvalues are \((-\beta_1 \pm \sqrt{\beta_1^2 - 4\alpha_1^2 k^2})/2\) and \((-\beta_2 \pm \sqrt{\beta_2^2 - 4\alpha_2^2 k^2})/2\), the negative eigenvalue requirement becomes \(\alpha_1, \alpha_2 \neq 0\) and \(\beta_1, \beta_2 > 0\).

3. Numerical demonstration

We present a numerical demonstration of the above Maxwell “\(\lambda\)-system”. We prepare a code which produces electromagnetic propagation in \(xy\)-plane, and monitor the violation of the constraint during time integration. Specifically we prepare the initial data with a Gaussian packet at the origin,

\[
\begin{align*}
E^i(x, y, z) &= (-Ay e^{-B(x^2+y^2)}, Ax e^{-B(x^2+y^2)}, 0), \\
B^i(x, y, z) &= (0, 0, 0),
\end{align*} \]
(2.18, 2.19)

where \(A\) and \(B\) are constants, and let it propagate freely, under the periodic boundary condition.

The code itself is quite stable for this problem. In Fig. 3, we plot L2 norm of the error \((C_E)\) over the whole grid as a function of time. The solid line (constant) in Fig. 3 (a) is of the original Maxwell equation. If we introduce \(\lambda_S\), then we see the error will be reduced by a particular choice of \(\alpha\) and \(\beta\). Fig. 3 (a) is for changing \(\alpha\) with \(\beta = 2.0\), while Fig. 3 (b) is for changing \(\beta\) with \(\alpha = 0.5\). Here, we simply use \(\alpha := \alpha_1 = \alpha_2\) and \(\beta := \beta_1 = \beta_2\). We see better performance for \(\beta > 0\) [Fig. 3 (b)], which is the case of negative eigenvalues of the constraint propagation equation. We also see the system will diverge for large \(\alpha\) [Fig. 3 (b)]. The upper bound of \(\alpha\) can be explained by the violation of the Courant-Friedrich-Lewy (CFL) condition, where the characteristic speed comes from the flux term of the dynamical equations \((2.15)\).
Fig. 1. Demonstration of the λ-system in the Maxwell equation. Fig. (a) is constraint violation (L2 norm of C_E) versus time with constant $\beta(=2.0)$ but changing α. Here $\alpha = 0$ means no λ-system. Fig. (b) is the same plot with constant $\alpha (=0.5)$ but changing β. We see better performance for $\beta > 0$, which is the case of negative eigenvalues of the constraint propagation equation. The constants in (2.18) were chosen as $A = 200$ and $B = 1$.

C. Example 2: Einstein equations (Ashtekar equations)

The second demonstration is of the vacuum Einstein equations in Ashtekar’s connection formalism [1]. Before going through the λ-system, we will briefly outline the equations. The fundamental Ashtekar variables are the densitized inverse triad, \tilde{E}_i^a, and the SO(3,C) self-dual connection, A_a^i, where the indices i,j,\cdots indicate the 3-spacetime, and a,b,\cdots is for SO(3) space. The total four-dimensional spacetime is described together with the gauge variables N, N^i, A_0^a, which we call the densitized lapse function, shift vector and the triad lapse function. Since the Hilbert action takes the form

$$S = \int d^4x [(\partial_t A_a^i) \tilde{E}_i^a + N C_H + N^i C_{Mi} + A_0^a C_{Ga}], \quad (2.20)$$

the system has three constraint equations, $C_H \approx C_{Mi} \approx C_{Ga} \approx 0$, which are called the Hamiltonian, momentum, and Gauss constraint equation, respectively. They are written as

$$C_H := (i/2) \epsilon^{ab}_c \tilde{E}_a^i \tilde{E}_b^j F_{ij}^c, \quad (2.21)$$

$$C_{Mi} := - F_a^i \tilde{E}_a^j, \quad (2.22)$$

$$C_{Ga} := D_i \tilde{E}_i^a, \quad (2.23)$$

where $F_{\mu\nu} := 2 \partial_{[\mu} A_{\nu]} - i \epsilon_{abc} A_{\mu}^b A_{\nu}^c$ is the curvature 2-form and $D_i \tilde{E}_a^i := \partial_i \tilde{E}_a^i - i \epsilon_{abc} A_b^i \tilde{E}_c^i$. The original dynamical equation for (\tilde{E}_a^i, A_a^i) constitutes a weakly hyperbolic form,

$$\partial_t \tilde{E}_a^i = -i D_j (\epsilon_a^b \epsilon_j^c N \tilde{E}_a^j \tilde{E}_c^i) + 2 i D_j (N^j \tilde{E}_a^i) + i A_0^b \epsilon_{abc} \tilde{E}_c^i, \quad (2.24)$$

$$\partial_t A_a^i = -i \epsilon_{abc} N \tilde{E}_a^j F_{ij}^c + N^j F_{ja}^i + D_i A_0^a \quad (2.25)$$

where $D_j X_{\mu}^{ij} := \partial_j X_{\mu}^{ij} - i \epsilon_{abc} A_{\mu}^b X_{\mu}^{ij}$, for $X_{\mu}^{ij} + X_{\mu}^{ji} = 0$. It is also possible to express (2.24) and (2.25) to reveal symmetric hyperbolicity [10,11]. For more detailed definitions and our notation, please see Appendix A of our Paper I [1].
1. λ-system for controlling constraint violations

Here, we only consider the λ-system which controls the violation of the constraint equations. In [1], we have also discussed an advanced version of the λ-system which controls the violations of the reality condition.

We introduce new variables $(\lambda, \lambda_i, \lambda_a)$, obeying the dissipative evolution equations,

$$\partial_t \lambda = \alpha_1 C_H - \beta_1 \lambda, \quad \partial_t \lambda_i = \alpha_2 C_{Mi} - \beta_2 \lambda_i, \quad \partial_t \lambda_a = \alpha_3 C_{Ga} - \beta_3 \lambda_a,$$

where $\alpha_i \neq 0$ (possibly complex) and $\beta_i > 0$ (real) are constants.

If we take $y_a := (\tilde{E}^i_a, A^i_a, \lambda, \lambda_i, \lambda_a)$ as a set of dynamical variables, then the principal part of (2.26)-(2.28) can be written as

$$\begin{align*}
\partial_t \lambda &\approx -i\alpha_1 \epsilon^{bcd} \tilde{E}_d^i \tilde{E}_d^j (\partial_t A^i_j), \\
\partial_t \lambda_i &\approx \alpha_2 [-c \bar{\delta}_i^j \tilde{E}_d^i + \bar{c} \delta_i^j \tilde{E}_d^i] (\partial_t A^i_j), \\
\partial_t \lambda_a &\approx \alpha_3 \partial_t \tilde{E}_d^i.
\end{align*}$$

The characteristic matrix of the system u_a is not Hermitian. However, if we modify the right-hand-side of the evolution equation of (\tilde{E}^i_a, A^i_a), then the set becomes a symmetric hyperbolic system. This is done by adding $\bar{\alpha}_3 \gamma^{ij} (\partial_t \lambda_a)$ to the equation of $\partial_t \tilde{E}_d^i$, and by adding $i\bar{\alpha}_1 \epsilon^{bcd} \tilde{E}_d^i \tilde{E}_d^j (\partial_t \lambda) + \bar{\alpha}_2 (-c \bar{\lambda}_i^j \tilde{E}_d^i + \bar{c} \delta_i^j \tilde{E}_d^i) (\partial_t \lambda_a)$ to the equation of $\partial_t A^i_a$. The final principal part, then, is written as

$$\begin{align*}
\partial_t \left(\begin{array}{c}
\tilde{E}_d^i \\
A^i_a \\
\lambda \\
\lambda_i \\
\lambda_a
\end{array} \right) &\approx \begin{pmatrix}
\mathcal{M}^{abij} & 0 & \alpha_1 \epsilon^{bcd} \tilde{E}_d^i \tilde{E}_d^j & \alpha_2 (\delta_i^j \tilde{E}_d^i - \bar{\gamma}^{ij} \tilde{E}_d^j) & 0 \\
0 & -i\alpha_1 \epsilon^{cd} \tilde{E}_d^i \tilde{E}_d^j & 0 & 0 & 0 \\
0 & \alpha_2 \epsilon^{cd} (\bar{\delta}_b^j - \delta_b^j) & 0 & 0 & 0 \\
\alpha_3 \delta_b^j & 0 & 0 & 0 & 0 \\
\end{pmatrix} \begin{pmatrix}
\tilde{E}_d^i \\
A^i_a \\
\lambda \\
\lambda_i \\
\lambda_a
\end{pmatrix} + \begin{pmatrix}
\bar{\alpha}_3 \gamma^{ij} \delta_a^b \\
0 \\
0 \\
0 \\
0
\end{pmatrix},
\end{align*}$$

where

$$\mathcal{M}^{abij} = i\epsilon^{abc} N \tilde{E}_c^{i} \gamma^{ij} + N^i \gamma^{ij} \delta_a^b,$$

$$\mathcal{N}^{abij} = i N (\epsilon^{abc} \tilde{E}_c^{i} \gamma^{ij}) - \epsilon^{abc} \tilde{E}_c^{i} \gamma^{ij} - e^{-2} \tilde{E}_c^{i} \epsilon^{bcd} \tilde{E}_d^{j} - e^{-2} \epsilon^{acd} \tilde{E}_d^{i} \tilde{E}_d^{j} + e^{-2} \epsilon^{acd} \tilde{E}_d^{i} \tilde{E}_d^{j} + N^i \delta^{ab} \gamma^{ij},$$

Clearly, the solution $(\tilde{E}^i_a, A^i_a, \lambda, \lambda_i, \lambda_a) = (\tilde{E}^i_a, A^i_a, 0, 0, 0)$ represents the original solution of the Ashtekar system.

2. Analysis of eigenvalues

After linearizing and taking the Fourier transformation [2,7], the propagation equation of the constraints (C_H, C_{Mi}, C_{Ga}) and $(\lambda, \lambda_i, \lambda_a)$ are written as,

$$\begin{align*}
\partial_t \left(\begin{array}{c}
\tilde{C}_H \\
\tilde{C}_{Mi} \\
\tilde{C}_{Ga} \\
\lambda \\
\lambda_i \\
\lambda_a
\end{array} \right) &\approx \begin{pmatrix}
0 & -i k_j & 0 & 0 & 0 & 0 \\
-i k_i & k_m \epsilon_m^{i} & 0 & 0 & 0 & 0 \\
0 & -2 \tilde{\delta}_a^i & e^{mb} a_{km} & 2 i \tilde{\alpha}_1 k_a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
\tilde{C}_H \\
\tilde{C}_{Mi} \\
\tilde{C}_{Ga} \\
\lambda \\
\lambda_i \\
\lambda_a
\end{pmatrix} + \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix},
\end{align*}$$

In order to link the discussion with our later demonstration in the plane symmetric spacetime, we here consider only the Fourier component of $k_i = (1, 0, 0)$ for simplicity. The eigenvalues, E_i ($i = 1, \cdots, 14$), of the characteristic matrix of (2.35) can be written explicitly as

6
\[(E_1, \cdots, E_{10}) = -(1/2)\beta_3 \pm (1/2)\sqrt{\beta_3^2 - 4|\alpha_3|^2},
- (1/2)(i + \beta_3) \pm (1/2)\sqrt{-1 - 4|\alpha_3|^2 - 2i\beta_3 + \beta_3^2},
- (1/2)(-i + \beta_3) \pm (1/2)\sqrt{-1 - 4|\alpha_3|^2 - 2i\beta_3 + \beta_3^2},
- (1/2)(i + \beta_2) \pm (1/2)\sqrt{-1 - 4|\alpha_2|^2 - 2i\beta_2 + \beta_2^2},
- (1/2)(-i + \beta_2) \pm (1/2)\sqrt{-1 - 4|\alpha_2|^2 - 2i\beta_2 + \beta_2^2},
\]

and as solutions \((E_{11}, \cdots, E_{14})\) of the quartic equation
\[x^4 + (\beta_2 + \beta_1)x^3 + (2|\alpha_1|^2 + 2|\alpha_2|^2 + 1 + \beta_1\beta_2)x^2 + (2|\alpha_2|^2\beta_1 + \beta_2 + \beta_1 + 2|\alpha_1|^2\beta_2)x + (\beta_1\beta_2 + 4|\alpha_1|^2|\alpha_2|^2) = 0,\]

\[(2.36)\]

where \(|\alpha_i|^2 = \alpha_i\bar{\alpha}_i\). We omit the explicit expressions of \(E_{11}, \cdots, E_{14}\) in order to save space.

A possible set of conditions on \(\alpha_\rho, \beta_\rho\), \((\rho = 1, 2, 3)\) for \(\Re(E_i) < 0\) are
\[\alpha_\rho \neq 0 \quad \text{and} \quad \beta_\rho > 0.\]

This is true (necessary and sufficient) for \(E_1, \cdots, E_{10}\), and also plausible for \(E_{11}, \cdots, E_{14}\) as far as our numerical evaluation tells (see Fig. 3).

3. Numerical demonstration

In this subsection, we demonstrate that the \(\lambda\)-system for the Ashtekar equation actually works as expected.

The model we present here is gravitational wave propagation in a planar spacetime under periodic boundary condition. We perform a full numerical simulation using Ashtekar’s variables. We prepare two +-mode strong pulse waves initially by solving the ADM Hamiltonian constraint equation, using York-O’Murchadha’s conformal approach. Then we transform the initial Cauchy data (3-metric and extrinsic curvature) into the connection variables, \((\tilde{E}_a, \tilde{A}_a)\), and evolve them using the dynamical equations. For the presentation in this article, we apply the geodesic slicing condition (ADM lapse \(N = 1\), with zero shift and zero triad lapse). We have used both the Brailovskaya integration scheme, which is a second order predictor-corrector method, and the so-called iterative Crank-Nicholson integration
scheme for numerical time evolutions. The details of the numerical method are described in the Paper I [1], where we also described how our code shows second order convergence behaviour.

In order to show the expected “stabilization behaviour” clearly, we artificially add an error in the middle of the time evolution. More specifically, we set our initial guess 3-metric as

\[
\hat{\gamma}_{ij} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 + K(e^{-(x-L)^2} + e^{-(x+L)^2}) & 0 \\
0 & 0 & 1 - K(e^{-(x-L)^2} + e^{-(x+L)^2}) \\
\end{pmatrix},
\]

in the periodically bounded region \(x = [-5, +5]\), and added an artificial inconsistent rescaling once at time \(t = 6\) for the \(A_2^y\) component as \(A_2^y \rightarrow A_2^y(1 + \text{error})\). Here \(K\) and \(L\) are constants and we set \(K = 0.3\) and \(L = 2.5\) for the plots.

![Diagram](image-url)

FIG. 3. Demonstration of the \(\lambda\)-system in the Ashtekar equation. We plot the violation of the constraint (L2 norm of the Hamiltonian constraint equation, \(C_H\)) for the cases of plane wave propagation under the periodic boundary. To see the effect more clearly, we added artificial error at \(t = 6\). Fig. (a) shows how the system goes bad depending on the amplitude of artificial error. The error was of the form \(A_2^y \rightarrow A_2^y(1 + \text{error})\). All the lines are of the evolution of Ashtekar’s original equation (no \(\lambda\)-system). Fig. (b) shows the effect of \(\lambda\)-system. All the lines are 20% error amplitude, but shows the difference of evolution equations. The solid line is for Ashtekar’s original equation (the same as in Fig.(a)), the dotted line is for the strongly hyperbolic Ashtekar’s equation. Other lines are of \(\lambda\)-systems, which produces better performance than that of the strongly hyperbolic system.

D. Remarks for the \(\lambda\)-system

In the previous subsections, we showed that \(\lambda\)-system works as we expected. The system evolves into a constraint surface asymptotically even if we added an error artificially. However, the \(\lambda\)-system can not be introduced generally, because (i) the construction of the \(\lambda\)-system requires that the original dynamical equation be in symmetric hyperbolic form, which is quite restrictive for the Einstein equations, (ii) the system requires many additional variables and we also need to evaluate all the constraint equations at every time steps, which is hard task in computation. Moreover, it is not clear that the \(\lambda\)-system can control constraint equations which do not have any spatial differential terms.
III. ASYMPTOTICALLY CONSTRAINED SYSTEM 2: ADJUSTED SYSTEM

We here propose another approach for obtaining stable evolutions, which we name the “adjusted-system”. The essential procedure is to add constraint terms to the right-hand-side of the dynamical equations with multipliers, and to choose the multipliers so as the adjusted equations decrease the violation of constraints during time evolution. This system has several advantages than the previous λ-system.

A. “Adjusted system”

The actual procedure for constructing an adjusted system is as follows.

1. Prepare a set of evolution equations for dynamical variables and the first class constraints which describe the problem. It is not required that the system is in the first order form nor hyperbolic form. However here we start from the same form with (2.1) and (2.2). We repeat them as

$$\partial_t u^\gamma = A^{\gamma}_{\delta} \partial_\delta u^\delta + B^\gamma,$$

$$\partial_t C^\rho = D^{\rho}_{\sigma} \partial_\sigma C^\sigma + E^\rho C^\sigma,$$

where $A(u(x))$ is not required to form a symmetric or Hermitian matrix.

2. Add the constraint terms, C^ρ, (and/or their derivatives) to the dynamical equation (3.1) with multipliers κ,

$$\partial_t u^\gamma = A^{\gamma}_{\delta} \partial_\delta u^\delta + B^\gamma + \kappa^\gamma_\rho C^\rho + \kappa^\gamma_i \partial_i C^\rho.$$

We call the added terms, $\kappa^\gamma_\rho C^\rho$ and/or $\kappa^\gamma_i \partial_i C^\rho$, “adjusted terms”, and leave κ^γ_ρ and κ^γ_i unspecified for the moment. Because of these adjusted terms, the original constraint propagation equations, (3.2), must also be adjusted:

$$\partial_t C^\rho = D^{\rho}_{\sigma} \partial_\sigma C^\sigma + E^\rho C^\sigma + F^{\rho}_{ij} \partial_i C^\sigma + G^{\rho}_{i\sigma} \partial_i C^\sigma + H^\rho C^\sigma.$$

The last three terms are due to the adjusted terms.

3. Specify the multipliers κ, by evaluating the eigenvalues that appear in the RHS of (3.4). Practically, by taking the Fourier transformation (2.7), we can reduce (3.4) to homogeneous form,

$$\partial_t \hat{C}^\rho = (ik_i D^{\rho}_{\sigma} + E^\rho_{\sigma} - k_i k_j F^{\rho}_{ij} \partial_j + i k_i G^{\rho}_{i\sigma} + H^\rho_{\sigma})\hat{C}^\sigma.$$

We, then, take a linearization against a certain background spacetime,

$$\partial_t (1) \hat{C}^\rho = (ik_i (0) D^{\rho}_{\sigma} + (0) E^\rho_{\sigma} - k_i k_j (0) F^{\rho}_{ij} \partial_j + i k_i (0) G^{\rho}_{i\sigma} + (0) H^\rho_{\sigma}) (1) \hat{C}^\sigma.$$

(here (n) indicates the order in linearization) and evaluate the eigenvalues of the coefficient matrix in (3.6).

For this process, we propose two guidelines.

(a) The first one is to obtain negative real-part of the eigenvalues. This is from the same principle in λ-system when we specified α and β, in order to force the system approach the constraint surface asymptotically. Provided that we obtain κ which produce all the negative-real-part eigenvalues, the Fourier component C decays to zero in time evolution, and the original constraint term C also.

1 This statement is not inconsistent with our previous work [9], in which we also proposed a λ-system that can control the secondary triad reality condition.
(b) An alternative guideline is to obtain as many non-zero eigenvalues as one can. More precisely, this case is supposed to have pure imaginary eigenvalues. In such a case, the constraint propagation equations (e.g. $\partial_t \dot{C} = \pm ik \dot{C}$) behave like the normal wave equations in its original component (e.g. $\partial_t C = \pm \partial_x C$), and its stability can be discussed using von Neumann stability analysis. As is well known, stability depends on the choice of numerical integration scheme, but it is also certain that we can control (or decrease) the amplitude of the constraint terms.

The advantage of this adjusted system is that we do not need to add variables to the fundamental set, while the above first guideline (3a) is the same mechanism which is applied for the λ-system. We note that the non-zero eigenvalue feature was conjectured in Alcubierre et. al. in order to show the advantage of the conformally-scaled ADM system, but the discussion there is of dynamical equations and not of constraint propagation equations.

The guideline (3b) is obtained heuristically as we will show in Fig. 3 that a system with three zero eigenvalues is more stable than one with five. We, however, conjecture that systems with non-zero (or pure-imaginary) eigenvalues in their constraint propagation equations have more dissipative features than that of zero-eigenvalue system. This is from the von Neumann’s stability analysis, evaluating dynamical variables with the finite-differenced quantities. See Appendix C for more details.

We remark that adding constraint terms to the dynamical equations is not a new idea. For example, Detweiler applied this procedure to the ADM equations and used the finiteness of the norm to obtain a new system. This is also one of the standard procedures for constructing a symmetric hyperbolic system (e.g. [4][5][6]). We believe, however, that the above guidelines yield the essential mechanism for our purpose, to constructing a stable dynamical system.

In the following subsections and the Appendix A, we demonstrate that this adjusted system actually works as desired in the Maxwell system and in the Ashtekar system of the Einstein equations, in which above two guidelines are applied respectively.

B. Example 1: Maxwell equations

1. adjusted system

We here again consider the Maxwell equations (2.9)-(2.11). We start from the adjusted dynamical equations

$$\partial_t E_i = c e_i^{jk} \partial_j B_k + P_i C_E + p^i (\partial_j C_E) + Q_i C_B + q^i (\partial_j C_B),$$

$$\partial_t B_i = -c e_i^{jk} \partial_j E_k + R_i C_E + r^j (\partial_j C_E) + S_i C_B + s^j (\partial_j C_B),$$

where P, Q, R, S, p, q, r and s are multipliers. These dynamical equations adjust the constraint propagation equations as

$$\partial_t C_E = (\partial_t P^i) C_E + P^i (\partial_j C_E) + (\partial_j Q^i) C_B + Q^i (\partial_j C_B) + (\partial_j P^j) (\partial_j C_E) + p^j (\partial_j C_E) + (\partial_j q^i) (\partial_j C_B) + q^j (\partial_j C_B),$$

$$\partial_t C_B = (\partial_t R^i) C_E + R^i (\partial_j C_E) + (\partial_j S^i) C_B + S^i (\partial_j C_B) + (\partial_j r^j) (\partial_j C_E) + r^j (\partial_j C_E) + (\partial_j s^j) (\partial_j C_B) + s^j (\partial_j C_B).$$

This will be expressed using Fourier components by

$$\partial_t \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} = \begin{pmatrix} \partial_t P^i + i P^i k_i + i k_j (\partial_j P^i) - k_i k_j p^j & \partial_j Q^i + i Q^i k_i + i k_j (\partial_j q^i) - k_i k_j q^j \\ \partial_t R^i + i R^i k_i + i k_j (\partial_j r^i) - k_i k_j r^j & \partial_j S^i + i S^i k_i + i k_j (\partial_j s^j) - k_i k_j s^j \end{pmatrix} \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} =: T \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix}. \quad (3.11)$$

Assuming the multipliers are constants or functions of E and B, we can truncate the principal matrix as

$$^0T = \begin{pmatrix} i P^i k_i - k_i k_j p^j & i Q^i k_i - k_i k_j q^j \\ i R^i k_i - k_i k_j r^j & i S^i k_i - k_i k_j s^j \end{pmatrix},$$

with eigenvalues

$$\Lambda^\pm = \frac{p + s \pm \sqrt{p^2 + 4 qr - 2ps + s^2}}{2}, \quad (3.13)$$

where $p := i P^i k_i - k_i k_j p^j$, $q := i Q^i k_i - k_i k_j q^j$, $r := i R^i k_i - k_i k_j r^j$, $s := i S^i k_i - k_i k_j s^j$.

If we fix $q = r = 0$, then $\Lambda^\pm = p, s$. Further if we assume $p^j, s^j > 0$, and set everything else to zero, then $\Lambda^\pm < 0$, that is we can get the all eigenvalues which have negative real part. That is, our guideline (a) is satisfied. (Conversely, if we choose $q = r = 0$ and $p^j, s^j < 0$, then $\Lambda^\pm > 0$.)
2. Numerical Demonstration

We applied the above adjusted system to the same wave propagation problem as in §II B 3. For simplicity, we fix $\kappa = p^{ij} = s^{ij}$ and set other multipliers equal to zero. In Fig. 4, we show the L2 norm of constraint violation as a function of time, with various κ. As was expected, we see better performance for $\kappa > 0$ (of the system with negative real part of constraint propagation equation), while diverging behavior for $\kappa < 0$ (of the system with positive real part of constraint propagation equation).

![Figure 4: Demonstrations of the adjusted system in the Maxwell equation.](image)

C. Example 2: Einstein equations (Ashtekar equations)

1. Adjusted system for controlling constraint violations

We here only consider the adjusted system which controls the departures from the constraint surface. In the Appendix, we present an advanced system which controls the violation of the reality condition together with numerical demonstration.

Even if we restrict ourselves to adjusted equations of motion for (\tilde{E}^i_a, A^a_i) with constraint terms (no their derivatives), generally, we could adjust them as

$$
\partial_t \tilde{E}^i_a = -i D_j (\epsilon^{cb} a N \tilde{E}^j_c \tilde{E}^i_b) + 2 D_j (N[i] \tilde{E}^j_a) + i A^b_0 \epsilon_{ai}^c \tilde{E}^i_c + X^i_a C_H + Y^{ij}_a C_{Mj} + P^{ib}_a C_{Gb},
$$

$$
\partial_t A^a_i = -i \epsilon^{ab} b N \tilde{E}^j_b F_{ij} + N^j F^n_j + D_j A^n_a + \Lambda \epsilon_{ai}^c \tilde{E}^c_i + Q^a_i C_H + R_i j a C_{Mj} + Z^{ab}_i C_{Gb},
$$

(3.14)

(3.15)

where $X^i_a, Y^{ij}_a, Z^{ab}_i, P^{ib}_a, Q^a_i$ and $R_i j a$ are multipliers. However, in order to simplify the discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations of motion [11], i.e.,

$$
X = Y = Z = 0, \quad P^{ib}_a = \kappa_1 (N[i] \delta^b_a + i N \epsilon_{ai}^c \tilde{E}^i_c), \quad Q^a_i = \kappa_2 (e^{-2 N} \tilde{E}^a_i), \quad R_i j a = \kappa_3 (i e^{-2 N} \epsilon^{ac}_b \tilde{E}^b_i \tilde{E}^a_c).
$$

(3.16)

Here $\kappa_1 = \kappa_2 = \kappa_3 = 1$ is the case of symmetric hyperbolic equation for (\tilde{E}^i_a, A^a_i), while $\kappa_1 = \kappa_2 = \kappa_3 = 0$ is the (Ashtekar’s original) weakly hyperbolic equation, and other choices of κs let the equation satisfy the level of strongly hyperbolic form.

With these adjusted terms, the constraint propagation equations become
\[\partial_t (1) C_H = (1 - 2\kappa_3) (\partial_t (1) C_{Mj}) , \]
\[\partial_t (1) C_{Mi} = (1 - 2\kappa_2) (\partial_t (1) C_H) + i\kappa_3 \epsilon^m_{mj} (\partial_m (1) C_{Mj}) , \]
\[\partial_t (1) C_{Ga} = -2\kappa_3 (1) C_{Ma} + i\kappa_1 \epsilon^a_{mb} (\partial_m (1) C_{Gb}) . \]

against the Minkowskii background. The eigenvalues of the coefficient matrix after the Fourier-transformation are

\[(0, \pm i\kappa_1 \sqrt{k^2}, \pm i\kappa_3 \sqrt{k^2}, \pm i(2\kappa_2 - 1)(2\kappa_3 - 1) \sqrt{k^2}) \]

where \(k^2 := k_i k^i \). For example,

\[(0 \text{ (multiplicity 5)}, \pm i\sqrt{k^2}) \text{ for } \kappa_1 = \kappa_2 = \kappa_3 = 0 : \text{original system} \]
\[(0 \text{ (multiplicity 3)}, \pm i\sqrt{k^2} \text{ (multiplicity 3)}) \text{ for } \kappa_1 = \kappa_2 = \kappa_3 = 1 : \text{symmetric hyperbolic system.} \]

That is, our guideline (b) is obtained.

The above adjustment, (3.14)-(3.16), will not produce negative-real-part eigenvalues, so our guideline (a) cannot be applied here. If we adjust the dynamical equation using the spatial derivatives of constraint terms, then it is possible to get all negative eigenvalues like in the Maxwell system (though this is complicated). However, since we found that this adjustment, (3.14)-(3.16), gives us an example of controlling the violation of constraint equations for our purpose, we only show this simpler version here.

2. Numerical Demonstration

As a demonstration, we use here the same model as in §II C 3, that is, gravitational wave propagation in the plane symmetric spacetime, with an artificial error in the middle of time evolution. We examine how the adjusted multipliers contribute to the system’s stability. In Fig. 5, we show the results of this experiment. We plot the violation of the constraint equations both \(C_H \) and \(C_{Mx} \). An artificial error term was added at \(t = 6 \), in the form of \(A^2_y \to A^2_y (1 + \text{error}) \), where the error amplitude is +20% as before. We set \(\kappa \equiv \kappa_1 = \kappa_2 = \kappa_3 \) for simplicity. The solid line is the case of \(\kappa = 0 \), that is the case of “no adjusted” original Ashtekar equation (weakly hyperbolic system). The dotted line is for \(\kappa = 1 \), equivalent to the symmetric hyperbolic system. We see other line \((\kappa = 2.0) \) shows better performance than the symmetric hyperbolic case.

![FIG. 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of the constraint for the same model with Fig 3(b). An artificial error term was added at t = 6, in the form of \(A^2_y \to A^2_y (1 + \text{error}) \), where error is +20% as before. Fig. (a) and (b) are L2 norm of the Hamiltonian constraint equation, \(C_H \), and momentum constraint equation, \(C_{Mx} \), respectively. The solid line is the case of \(\kappa = 0 \), that is the case of “no adjusted” original Ashtekar equation (weakly hyperbolic system). The dotted line is for \(\kappa = 1 \), equivalent to the symmetric hyperbolic system. We see other line \((\kappa = 2.0) \) shows better performance than the symmetric hyperbolic case.](image-url)
IV. DISCUSSION

With the purpose of searching for an evolution system of the Einstein equations which is robust against perturbative errors for the free evolution of the initial data, we studied two “asymptotically constrained” systems.

First, we examined the previously proposed “λ-system”, which introduces artificial flows to constraint surfaces based on the symmetric hyperbolic formulation. We showed that this system works as expected for the wave propagation problem in the Maxwell system and in Ashtekar’s system of general relativity. However, the λ-system cannot be applied to general dynamical systems in general relativity, since the system requires the base system to be symmetric hyperbolic form.

Alternatively, we proposed a new mechanism to control the stability, which we named the “adjusted system”. This is simply obtained by adding constraint terms in the dynamical equations and adjusting the multipliers. We proposed two guidelines for specifying multipliers which reduce the numerical errors; that is, non-positive-real-part or pure-imaginary eigenvalues of the adjusted constraint propagation equations. This adjusted system was also tested in the Maxwell system and in Ashtekar’s system.

As we denoted earlier, the idea of adding constraint terms is not new. However, we think that our guidelines for controlling the decay of constraint equations are appropriate for our purposes, and were not suggested before. Up to our numerical experiments, our guidelines give us clear indications whether the constraints decay (i.e. stable system) or not for perturbative errors, though we also think that this is not a complete explanation for all cases. This feature may be explained or proven in different ways, such as finiteness of the norm (of evolution equations or of constraint propagation equations), or by another mechanism in future.

Secondary conclusion is that the symmetric hyperbolic equation is not always the best one for controlling stable evolution. As we show in the wave propagation model in the adjusted Ashtekar’s equation, our eigenvalue guidelines affect more than the system’s hyperbolicity. (We found a similar conclusion in [16].) We think this result opens a new direction to numerical relativists for future treatment of the Einstein equations.

We are now applying our idea to the standard ADM and conformally scaled ADM system to explain these differences. Results will be reported elsewhere [17].

ACKNOWLEDGEMENTS

HS appreciates helpful comments by Abhay Ashtekar, Jorge Pullin, Douglas Arnold and L. Samuel Finn, and the hospitality of the CGPG group. We thank Bernard Kelly for careful reading the manuscript. Numerical computations were performed using machines at CGPG. This work was supported in part by the NSF grants PHYS95-14240, and the Everly research funds of Penn State. HS was supported by the Japan Society for the Promotion of Science as a research fellow abroad.

APPENDIX A: CONTROLLING REALITY CONDITION BY ADJUSTED SYSTEM

We demonstrate here that our adjusted system in the Ashtekar formulation also works for controlling reality conditions. As a model problem, we concern the degenerate point passing problem which we considered previously in [18]. In §A.1, we review this background briefly, and in §A.2 we show our numerical demonstrations.

1. Degenerate point passing problem

In [18], the authors had examined the possibility of dynamical passing of the degenerate point in the spacetime. There the authors found that we are able to pass (i.e. continue time evolutions) if we could foliate the time-constant hypersurface into complex plane assuming that such a degenerate point exists on the real plane. Such foliations are available within Ashtekar’s original formulation, since the fundamental variables are complex quantities. The trick is to violate the reality condition locally, only in the vicinity of a degenerate point.

As a model, we construct a metric, \(^{(4)}g \), which possesses a degenerate point (\(\det ^{(3)}g = 0 \)) at the origin \(t = x = 0 \) in Minkowski background metric:

\[
\begin{align*}
 ds^2 &= -[1 - (2tx \exp(-t^2 - x^2))^2]dt^2 + 4tx \exp(-t^2 - x^2)[1 - (1 - 2x^2) \exp(-t^2 - x^2)]dtdx \\
 &+ [1 - (1 - 2x^2) \exp(-t^2 - x^2)]^2dx^2 + dy^2 + dz^2.
\end{align*}
\]

(A1)
We consider the time evolution, which initial data is described by a particular time slice \(t < 0 \) of (A1), and whose time-constant hypersurfaces are foliated by the gauge condition,

\[
N = 1, \quad (N = e^{-1}),
\]
\[
N_x = 2tx \exp(-t^2 - x^2)[1 - (1 - 2x^2) \exp(-t^2 - x^2)] + i\alpha \exp(-b(t^2 + x^2)),
\]
\[
A^0_a = 0,
\]
which enables to detour into the complex plane. Our goal is to demonstrate that the time evolution comes back to the real plane without any divergence in variables and curvatures. Such a “recovering condition” can be described by

\[
\int_{t^-}^{t^+} \Re N(t, x)dt = 0, \quad \int_{t^-}^{t^+} \Re N^i(t, x)dt = 0, \quad \text{Foliation recovering condition (A5)}
\]

\[
\Re N(t, x) \to 0, \quad \Re N^i(t, x) \to 0, \quad \Re \left[\tilde{E}_a^i \tilde{E}^{ia}/\det \tilde{E}(t, x) \right] \to 0, \quad \text{Asymptotic reality condition (A6)}
\]
for all four limits \(x \to x_* \pm \Delta x, \quad t \to t_* \pm \Delta t \).

Numerically, this problem becomes an eigenvalue problem, since our boundary conditions, (A5) and (A6), specify much freedom. To see if the evolution satisfies the criteria or not, we introduced two measures

\[
F(t_{final}) := \max_x |\Re (e(t = t_{final}, x) - 1)| \quad \text{(asymptotically flat)} \quad (\text{A7})
\]
\[
R(t_{final}) := \max_x |\Re (e(t = t_{final}, x))| \quad \text{(asymptotically real)} \quad (\text{A8})
\]
and searched the parameters \(a \) and \(b \) in (A3).

If we apply our adjusted system to this model, then we expect that the allowed range for the parameters \(a \) and \(b \) becomes more general, since the real-surface-recovering feature is in the flow of the adjusted system’s foliation.

2. Application of the adjusted system

As was shown in the previous section, for this purpose, we have to foliate our hypersurface in the complex-valued region and foliate back to the real-valued surface. That is, we can treat the reality condition, both primary and secondary, as a part of the constraint equations.

For the above degenerate point-passing problem, we need to control only the violation of \(\Re \left(\tilde{E}_a^i \tilde{E}^{ia} \right) \). Therefore, similar to the proposal of the adjusted system discussed in [4] our adjusted dynamical equations can be written as

\[
\partial_t \tilde{E}_a^i = -i \Delta_j (c^{cb} N \tilde{E}_j^b \tilde{E}_b^i) + 2 \Delta_j (N^{ij} \tilde{E}_j^b) + i A^0_a c^{cb} \tilde{E}_c^i + X^i_a c_H + Y^{ij} c_{Mj} + P^{ab} c_{Gb} + T^{ia}_{ajk} \Re \left(\tilde{E}_a^i \tilde{E}_b^k \right), \quad (\text{A9})
\]
\[
\partial_t A^a_i = -i e^{ac} N \tilde{E}_b^c F^i_{aj} + N^j F^a_{ji} + D_i A^0_a + \Lambda N \tilde{E}_a^i + Q^i_a c_H + R^{aj} c_{Mj} + Z^{ab} c_{Gb} + V^{a}_{ijk} \Re \left(\tilde{E}_a^i \tilde{E}_b^k \right), \quad (\text{A10})
\]

where \(X^i_a, Y^{ij}, Z^{ab}, P^{ab}, Q^a_i, R^{ij}_{aik}, T^{ia}_{ajk} \) and \(V^{a}_{ijk} \) are adjusted multipliers.

If we simply set \(X^i_a = Y^{ij} = Z^{ab} = P^{ab} = Q^a_i = R^{ij}_{aik} = V^{a}_{ijk} = 0 \) and \(T^{ia}_{ajk} = -i \kappa \delta^i_j \delta_{ak} \), \(\text{where} \ \kappa \ \text{is real constant} \), then we obtain the constraint propagation equation

\[
\partial_t (\Re \left(\tilde{E}_a^i \tilde{E}_b^j \right)) = -2 \kappa (\Re \left(\tilde{E}_a^i \tilde{E}_b^j \right)) + \text{other constraint terms.} \quad (\text{A11})
\]

The eigenvalue of the Fourier-transformed RHS is \(-2\kappa\). That is, if we set \(\kappa > 0 \) \((< 0)\) then the eigenvalue is negative (positive), while \(\kappa = 0 \) recovers the original non-adjusted system.

The results of numerical demonstration are shown in Fig.3. We plot the L2 norm of the violation of the reality condition as a function of \(t \) (this evolution is from \(t = -5 \) to \(5 \)). Around the time \(t = 0 \) the error appears due to our “detour” slicing condition, and the original system (\(\kappa = 0 \)) will not recover the reality surface with the choice of \(a \) and \(b \) in (A3) for this plot. However, for the positive \(\kappa \) case, the foliation will be forced to recover the reality surface, while for negative \(\kappa \) case it will not.

Therefore this example again supports our guidelines, i.e. negative eigenvalue of constraint propagation equation will guarantee the evolution to the constraint surface.
APPENDIX B: VON NEUMANN ANALYSIS OF CONSTRAINT PROPAGATION EQUATIONS

Here we show von Neumann’s stability analysis for the constraint propagation equations, in order to support our guideline (3b) for the adjusted system (§III A). The von Neumann analysis (see e.g. [19]) gives us powerful predictions for the stability of a finite difference approximation. Briefly, the analysis consists from the Fourier decomposition in the spatial directions of the dynamical variables and its one-step time evolution with a particular time integration scheme. If we wrote the fundamental variable \(\phi(x, t) \), then the criteria for the stability is \(|\lambda_i| \leq 1 \) where \(\lambda_i \) are the eigenvalues of the amplification matrix \(G \), which is in the expression of the evolution equations in the form of \(\phi(x, t + \Delta t) = G\phi(x, t) \).

In our discussion, the constraint propagation equations are not directly used for numerical integrations, but are used as a guideline for the stability. The application of von Neumann analysis, however, is also allowed for the constraint propagation equations, as far as substituting the finite derivatives in the analysis using those of the fundamental dynamical variables. Here we show the most simplest cases for the adjusted Maxwell system and the adjusted Ashtekar system.

a. Adjusted Maxwell system
We start from choosing \(\kappa := P_1 = P_2 = P_3 \) and other multipliers zero in the system (3.7) and (3.8). The Fourier component of the propagation equation for \(C_E \) (3.11) becomes \(\partial_t C_E = i\kappa (k_x k_y + k_y k_z) C_E \), which eigenvalue (3.13) is \(i\kappa (k_x + k_y + k_z) \). That is, non-zero \(\kappa \) gives us a pure-imaginary eigenvalue. By applying von Neumann analysis, we obtain the amplitude \(G \) for FTCS (forward time and center space difference), Brašlovskaya and (2-iteration) iterative Crank Nicholson schemes as

\[
|G_{FTCS}|^2 = 1 + (\kappa \sigma)^2, \tag{B1}
\]
\[
|G_{Br}|^2 = 1 - (\kappa \sigma)^2 + (\kappa \sigma)^4, \tag{B2}
\]
\[
|G_{CN2}|^2 = 1 - (\kappa \sigma)^4 / 4 + (\kappa \sigma)^6 / 16, \tag{B3}
\]

respectively, where \(\sigma = (\Delta t/\Delta x)(\sin(k_y \Delta x) + \sin(k_y \Delta x) + \sin(k_z \Delta x)) \) and we assume 3-dimensional finite grid of equal space \(\Delta x \) in all directions. Except for the FTCS scheme, we see that non-zero \(|\kappa| \) (near \(\kappa = 0 \)) yields \(|G| < 1 \). The simulation we showed in §III B is not this case (since we tried to show the one which satisfy the guideline (3a)), but we also obtained the numerical results which confirm our conjecture here.

b. Adjusted Ashtekar system
Similarly, for the constraint propagation equations (3.17)-(3.19), with \(\kappa := \kappa_1 = \kappa_2 = \kappa_3 \), we obtain the eigenvalues \(\lambda_i \) of the amplification matrix \(G \) for the above three schemes,

\[
|\lambda|^2_{FTCS} = 1, \quad 1 + (\kappa \sigma)^2, \quad 1 + \{(1 - 2\kappa)(\kappa \sigma)\}^2, \tag{B4}
\]
\[
|\lambda|^2_{Br} = 1, \quad 1 - (\kappa \sigma)^2 + (\kappa \sigma)^4, \quad 1 - \{(1 - 2\kappa)\sigma\}^2 + \{(1 - 2\kappa)\sigma\}^4, \tag{B5}
\]
\[
|\lambda|^2_{CN2} = 1, \quad 1 - (\kappa \sigma)^4 / 4 + (\kappa \sigma)^6 / 16, \quad 1 - \{(1 - 2\kappa)\sigma\}^4 / 4 + \{(1 - 2\kappa)\sigma\}^6 / 16, \tag{B6}
\]
with multiplicity 1, 4 and 2, respectively. Here again we see that non-zero $|\kappa|$ makes the system $|G| < 1$ for Brailovskaya and 2-iteration Crank-Nicholson schemes. This analysis supports why the guideline (3b) works for our results shown in Fig. 3.