MITOGENOME ANNOUNCEMENT

Complete mitochondrial genome of nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae: Cassidinae)

Sanqiang Yan, Baoqian Lyu, Xue Tang, Hui Lu, Jihong Tang, Rui Meng, Bo Cai, and Fan Yang

ABSTRACT

Octodonta nipae (Maulik 1921) is a dangerous forestry quarantine pest, which mainly harms palms. In the present study, we determined complete mitogenome of O. nipae. This mitogenome was 15,397 bp in length (GenBank Accession no. MW802252), which contained 2 ribosomal RNA genes, 13 protein-coding genes (PCGs) and one non-coding AT-rich region with the length of 883 bp. All of the 22 tRNA genes displayed a typical clover-leaf structure, with the exception of tRNA Phe, tRNA Leu, tRNA Asn, tRNA Pro and tRNA Thr. Twelve PCGs were initiated by ATN codons, and NAD1 started with TTT. Ten PCGs used the typical stop codons ‘TA’ and ‘TA’, while three PCGs (COX2, COX3, NAD4) used the incomplete stop codons ‘TA’ or ‘T’. Phylogenetic tree demonstrated that O. nipae belongs to the family Chrysomelidae and closer to the superfamily Cassidinae.

ARTICLE HISTORY

Received 31 March 2021
Accepted 17 May 2021

KEYWORDS

Octodonta nipae (Maulik 1921); mitochondrial genome; phylogenetic relationship; phylogenetic analysis
vide essential and important DNA molecular data for further phylogenetic and evolutionary analysis of Chrysomeloidea.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the Hainan province major scientific and technological projects [No. ZDKJ202002]; Special project for basic scientific research business expenses of Chinese Academy of Tropical Agricultural Sciences [1630042017011].

ORCID

Bo Cai http://orcid.org/0000-0001-8091-0407

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession No. MW802252. The associated BioProject, BioSample and SRA numbers are PRJNA723914, SAMN18837207 and SRR14306651, respectively.

References

Fu L, Tang BZ, Hou YM. 2020. Progress in research on Octodonta nipae, an invasive pest of palms. J Environ Entomol. 42(4):829–837.

Guo QY, Xu JS, Dai XH, Liao CQ, Long CP. 2017. Complete mitochondrial genome of a leaf-mining beetle, Rhadinosa nigrocyanea (Coleoptera: Chrysomelidae) with phylogenetic consideration. Mitochondrial DNA Part B. 2(2):446–448.

Liu P, Guo QY, Xu JS, Liao CQ, Dai XH. 2018. Complete mitochondrial genome of a leaf beetle, Callispa bowringi (Coleoptera: Chrysomelidae). Mitochondrial DNA Part B. 3(1):213–214.

Meng GL, Li YY, Yang CT, Liu SL. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47(11):e63–e363.

Meng R, Ao S, Xu W, Lv BQ, Cai B. 2019. Complete mitochondrial genome of coconut hispine beetle Brontispa longissima (Coleoptera: Chrysomelidae: Cassidinae). Mitochondrial DNA Part B. 1(5):1126–1127.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Yu FY, Qin WQ, Ma ZL, Li ZX, Huang SC, Han CW. 2009. Effects of host plants on development and fecundity of Octodonta nipae. Plant Prot. 35(2):72–74.

Zhang D, Gao FL, Li WX, Jakovlić I, Zou H, Zhang J, Wang GT. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 20(1):348–355.