Research Article

Mohammed Kbiri Alaoui*

Parabolic inequalities in Orlicz spaces with data in L^1

https://doi.org/10.1515/math-2021-0092
received July 9, 2020; accepted July 5, 2021

Abstract: In this paper, we provide existence and uniqueness of entropy solutions to a general nonlinear parabolic problem on a general convex set with merely integrable data and in the setting of Orlicz spaces.

Keywords: nonlinear parabolic inequalities, entropy solution, Orlicz-Sobolev

MSC 2020: 35K55, 49J40, 46E30

1 Introduction

In this paper, we deal with the boundary value problems

$$\begin{align*}
\frac{\partial u}{\partial t} + A(u) &= f & &\text{in } Q, \\
\frac{\partial u}{\partial t} &= 0 & &\text{on } \partial Q = \partial \Omega \times (0, T), \\
u(x, 0) &= u_0 & &\text{in } \partial \Omega,
\end{align*}$$

where

$$A(u) = -\operatorname{div}(a(, t, \nabla u)).$$

$Q = \Omega \times [0, T], \ T > 0$ and Ω is a bounded domain of \mathbb{R}^N, with the segment property. $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function such that for all $\xi, \xi^* \in \mathbb{R}^N, \xi \neq \xi^*$,

$$a(x, t, \xi) \xi \geq a M(|\xi|),$$

$$[a(x, t, \xi) - a(x, t, \xi^*)][\xi - \xi^*] > 0,$$

$$|a(x, t, \xi)| \leq c(x, t) + k_i M^{-1} M(|\xi|),$$

where $c(x, t)$ belongs to $E_{\mathbb{R}}(Q), \ c \geq 0$ and $k_i (i = 1, 2)$ to \mathbb{R}^+ and α to \mathbb{R}_+^*. $f \in L^1(Q), \ f \geq 0$, $u_0 \in L^1(\Omega), \ u_0 \geq 0$.

There exists a real $\gamma > 1$ such that

$$\sup_{t > 0} \frac{t^{1+\frac{1}{\gamma}}}{M(t)} < +\infty.$$
The problem \((P)\) has several applications in engineering, game theory, finance, and economics. For example, one of the most important problems in finance is the optimal investment problem of a constant relative risk aversion. This problem leads to an obstacle parabolic problem with free boundaries (see [1]). Other important cases are the obstacle problem for parabolic minimizers studied in [2], where the obstacle is irregular, the pricing of American options (see [3]), as well as the models of pricing a double defaultable interest rate swap for which the solutions converge to a solution of a PDE coupled with two-obstacle problem.

On a physical area, the use of PDE in the convex set takes considerable importance, for example, the Boltzmann equation in a strictly convex domain with the specular, bounce-back, and diffuse (see [4]), dissipation inequalities for nonlinear PDEs which can be applied according to the choice of the so-called supply rate [5], Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP) equation, etc.

It is well known that \((P)\) admits at least one solution (see Leray and Lions [6], Browder and Brézis [7], and Puel [8]). In those papers, the function \(a(x, t, \xi)\) was assumed to satisfy a polynomial growth condition with respect to \(Vu\). When trying to generalize the last condition of \(a(\cdot, \xi)\) to the non-polynomial one, we are led to replace the space \(L^p(0, T; W^{1,p}(\Omega))\) by an inhomogeneous Sobolev space \(W^{1,X}_{LM}\) built from an Orlicz space \(L_M\) instead of \(L^p\), where the \(N\)-function \(M\), which defines \(L_M\), defines the new growth of the operator. Such type of extension of the growth condition is more realistic and appears in several physical phenomena.

Partial differential equations with data-only integrable received special attention. The cornerstone of the theory was initially developed by DiPerna and Lions [9], where they introduced the notion of renorma-

2 Preliminaries

Let us recall the following definitions of spaces and topologies that will be used later (for the detail, we refer the reader to the rich literature in [16–19]).

2.1 \(N\)-function and Orlicz space

\(M : \mathbb{R}^+ \to \mathbb{R}^+\) be an \(N\)-function, i.e., \(M\) is continuous, convex, with \(M(t) > 0\) for \(t > 0\), \(\frac{M(t)}{t} \to 0\) as \(t \to 0\) and \(\frac{M(t)}{t} \to \infty\) as \(t \to \infty\).

The Orlicz space \(L_M(\Omega)\) is defined as the equivalence classes of real-valued measurable functions \(u\) on \(\Omega\) such that: \(\int_{\Omega} M\left(\frac{|u|}{\lambda}\right) dx < +\infty\) for some \(\lambda > 0\). Note that \(L_M(\Omega)\) is a Banach space under the norm \(\|u\|_{L_M(\Omega)} = \inf\{\lambda > 0 : \int_{\Omega} M\left(\frac{|u|}{\lambda}\right) dx \leq 1\}\). The closure in \(L_M(\Omega)\) of the set of bounded measurable functions with compact support in \(\Omega\) is denoted by \(E_M(\Omega)\).

Let us recall that two equivalent \(N\)-functions defined the same Orlicz space.
2.2 Inhomogeneous Orlicz-Sobolev spaces

The inhomogeneous Orlicz-Sobolev spaces are defined as follows: \(W^{1,s} L_0(Q) = \{ u \in L_0(Q) : D_1^s u \in L_0(Q) \} \) and \(W^{1,s} (E_0(Q)) = \{ u \in E_0(Q) : D_2^s u \in E_0(Q) \} \). The last space is a subspace of the first one, and both are Banach spaces under the norm \(\| u \| = \sum_{|\alpha| \leq s} \| D_1^s u \|_{s,Q} \). These spaces are considered as subspaces of the product space \(\Pi L_0(Q) \), which have as many copies as there are \(\alpha \)-order derivatives, \(|\alpha| \leq 1 \).

We shall also consider the weak topologies \(\sigma(\Pi L_0, E_0) \) and \(\sigma(\Pi L_0, \Pi E_0) \). The space \(W^{1,s} E_0(Q) \) is defined as the \((\|\|) \) closure in \(W^{1,s} L_0(Q) \) of \(D(Q) \). We can easily show as in [17] that when \(\Omega \) has the segment property, then each element \(u \) of the closure of \(D(Q) \) with respect to the weak \(* \) topology \(\sigma(\Pi L_0, E_0) \) is limit, in \(W^{1,s} L_0(Q) \), of some subsequence \((u_i) \in D(Q) \) for the modular convergence, i.e., there exists \(\lambda > 0 \) such that for all \(|\alpha| \leq 1 \), \(\int_\Omega M(\frac{Du_i}{\lambda}) \text{d}x \to 0 \) as \(i \to \infty \), and this implies that \((u_i) \) converges to \(u \) in \(W^{1,s} L_0(Q) \) for the weak topology \(\sigma(\Pi L_0, \Pi E_0) \). Consequently, \(D(Q) = (\Pi E_0, \Pi E_0) = D(Q) = (\Pi E_0, \Pi E_0) \), and this space will be denoted by \(W^{1,s} L_0(Q) \). Furthermore, Poincaré’s inequality also holds in \(W^{1,s} L_0(Q) \).

The dual space of \(W^{1,s} L_0(Q) \) is defined as \(W^{-1,s} E_0(Q) = \{ f = \sum_{|\alpha| \leq s} D_1^s f : f \in E_0(Q) \} \) and equipped with the usual quotient norm. We also denote \(W^{-1,s} E_0(Q) = \{ f = \sum_{|\alpha| \leq s} D_1^s f : f \in E_0(Q) \} \).

3 Main results

The following lemmas will be of interest in the proof of our main results.

Let us denote \(X_\alpha = N C_\alpha^\alpha, C_\alpha \) is the measure of the unit ball of \(\mathbb{R}^N \), and for a fixed \(t \in [0, T] \), \(\mu(\theta) = \text{meas}\{x \in \Omega : |u(x, t)| > \theta\} \).

Lemma 3.1. [20] Let \(u \in W^{1,s} L_0(Q) \), and let fixed \(t \in [0, T] \), then we have

\[
-\mu'(\theta) \leq -\frac{1}{X_\alpha \mu(\theta)^\frac{1}{s}} \left(-\frac{1}{X_\alpha \mu(\theta)^\frac{1}{s}} \frac{d}{d\theta} \int_{|u| > \theta} M(|\nabla u|) \text{d}x \right), \quad \forall \theta > 0,
\]

where \(S \) is defined by \(\frac{1}{S(s)} = \sup \{ t : B(t) \leq s \}, B(s) = \frac{M(s)}{s} \).

Lemma 3.2. Under the hypotheses (1.1)–(1.3), if \(f, u_0 \) are regular functions and \(f, u_0 \geq 0 \), then there exists at least one positive weak solution of the problem:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div} a(x, t, u, \nabla u) &= f \quad \text{in } Q, \\
u(x, 0) &= u_0 \quad \text{on } \partial Q = \partial \Omega \times (0, T), \\
u(x, 0) &= u_0 \quad \text{in } \partial \Omega,
\end{aligned}
\]

such that

\[
\frac{\partial u}{\partial t} \geq 0, \quad \text{a.e. } t \in (0, T).
\]

Proof. Let \(u \) be a continuous function, we say that \(u \) satisfies \((\beta)\) condition if there exists a continuous and increasing function \(\beta \) such that \(\| u(t) - u(s) \|_s \leq \beta(\| u_0 \|_s) |t - s| \), where \(u_0(x) = u(x, 0) \).

Let \(X = \{ u \in W^{1,s} L_0(Q) \cap L^2(Q), u \text{ satisfies } (\beta) \text{ condition and } \frac{\partial u}{\partial t} \in L^\infty(0, T, L^2(\Omega)) \} \).

Let us consider the set \(C = \{ v \in X : v(t) \in C, \frac{\partial v}{\partial t} \geq 0 \text{ a.e. } t \in (0, T) \} \), where \(C \) is a closed convex of \(W^{1,s} L_0(\Omega) \). It is easy to see that \(C \) is a closed convex (since all its elements satisfy \((\beta)\) condition).
We claim that the problem
\[\begin{aligned}
\begin{cases}
 u \in C \cap L^2(Q), \\
 \frac{\partial u}{\partial t} - \text{div} \ a(x, t, u, \nabla u) = f & \text{in } Q, \\
 u = 0 & \text{on } \partial Q = \partial \Omega \times (0, T), \\
 u(x, 0) = u_0 & \text{in } \partial \Omega
\end{cases}
\end{aligned}\]

has a weak solution, which is unique in the sense defined in [21].

Indeed, let us consider the approximate problem:
\[\begin{aligned}
\begin{cases}
 \frac{\partial u_n}{\partial t} + A(u_n) + nT_n(\Phi(u_n)) = f & \text{in } Q, \\
 u_n(., 0) = u_0 & \text{in } \Omega,
\end{cases}
\end{aligned}\]

where the functional \(\Phi \) is defined by \(\Phi : X \rightarrow \mathbb{R} \cup \{+\infty\} \) such that
\[\Phi(v) = \begin{cases} 0 & \text{if } v \in C, \\ +\infty & \text{otherwise}. \end{cases}\]

The existence of such \(u_n \in X \) was ensured by Kacur [22].

Following the same proof as in [21], we can prove the existence of a solution \(u \) of the problem \((P') \) as limit of \(u_n \).

Theorem 3.1. Under hypotheses (1.1)–(1.6), the problem \((P) \) has at least one entropy solution in the following sense:
\[\begin{aligned}
\begin{cases}
 u \in \mathcal{K}, T_k(u) \in W^{1,s}_{0}(\mathbb{R}) \cap L^q(Q), \ \forall k > 0, \\
 \int \mathcal{S}_k(u(T) - v(T))dx + \int \frac{\partial v}{\partial t} T_k(u - v)dxdt + \int a(., \nabla u)\nabla T_k(u - v)dxdt \leq \langle f, T_k(u - v) \rangle + \int S_k(u_0 - v(0))dx, \\
 \end{cases}
\end{aligned}\]

for all \(v \in \mathcal{K} \cap L^\infty(Q) \cap D, \) where
\[D = \{ v \in W^{1,s}_{0}(\mathbb{R}) : \frac{\partial v}{\partial t} \in W^{1,1}L^\infty(Q) + L^1(Q), \mathcal{S}_k(t) = \int T_k(s)ds \}.\]

Proof. Let us define the indicator functional, \(\Phi : M(Q) \rightarrow \mathbb{R} \cup \{+\infty\} \) such that:
\[\Phi(v) = \begin{cases} 0 & \text{if } v \in \mathcal{K}, \\ +\infty & \text{otherwise.} \end{cases}\]

\(\Phi \) is weakly lower semicontinuous.

I. A priori estimate

Let us consider the following approximate problem:
\[\begin{aligned}
\begin{cases}
 \frac{\partial u_n}{\partial t} + A(u_n) + nT_n(\Phi(u_n)) = f_n & \text{in } Q, \\
 u_n(., 0) = u_{0n} & \text{in } \Omega,
\end{cases}
\end{aligned}\]

where \((u_{0n}) \in \mathcal{D}(\Omega) \) such that \(u_{0n} \rightarrow u_0 \) strongly in \(L^q(\Omega) \), \((f_n) \in \mathcal{D}(\Omega) \) such that \(|f_n| \leq |f| \) a.e., in \(Q \) and \(f_n \rightarrow f \) strongly in \(L^q(Q). \)

For the existence of a weak solution \(u_n \in W^{1,s}_{0}(\mathbb{R}) \), \(u_n \geq 0 \) of the aforementioned problem, see [23], and also \((u_n) \) satisfies \(\frac{\partial u_n}{\partial t} \in W^{1,1}L^\infty(Q) + L^1(Q). \)
Let $v = T_k(u_n)$ be a test function in (P_n), then
\begin{equation*}
\left\langle \frac{\partial u_n}{\partial t}, T_k(u_n) \right\rangle + \int_Q a(\nabla u_n, \nabla T_k(u_n))dxdt + \int_Q nT_k(\Phi(u_n))T_k(u_n)dxdt = \langle f, T_k(u_n) \rangle.
\end{equation*}

We deduce easily that
\begin{equation*}
\int_Q a(\nabla u_n, \nabla T_k(u_n))dxdt \leq Ck,
\end{equation*}
\begin{equation*}
\int_Q nT_k(\Phi(u_n))T_k(u_n)dxdt \leq Ck.
\end{equation*}

So, $T_k(u_n)$ is bounded in $W^{1,1}_0(Q)$. Then, there exist a subsequence (also denoted (u_n)) and a measurable function u such that
\begin{equation*}
T_k(u_n) \rightharpoonup T_k(u), \text{ weakly in } W^{1,1}_0(Q) \text{ for } \sigma(\Pi_M, \Pi E_M), \text{ strongly in } E_M(Q) \text{ and a.e. in } Q. \tag{3.3}
\end{equation*}

Coming back to the inequality (3.2), we have \(\int_Q nT_k(\Phi(u_n)) \frac{T_k(u_n)}{k} dxdt \leq C, \) and by letting k to infinity and using Fatou lemma, one has
\begin{equation*}
\int_Q T_k(\Phi(u_n)) dxdt \leq \frac{C}{n}.
\end{equation*}

Suppose there exists a subsequence (u_n) such that $u_n \notin \mathcal{K}$ for all n, then
\begin{equation*}
n^2|Q| = \int_Q nT_k(\Phi(u_n))dxdt \leq C,
\end{equation*}
which is a contradiction. Then, there exists a subsequence that we denote as also (u_n) such that $u_n \in \mathcal{K}$ for all n.

In what follows, we only consider this subsequence.

To prove that $u \in \mathcal{K}$, we need to prove that $u \in M(Q)$. For this reason, let us consider φ as the truncation defined by
\begin{equation*}
\varphi(\zeta) = \begin{cases}
0 & \text{if } 0 \leq \zeta \leq \theta, \\
\frac{1}{h}(\zeta - t) & \text{if } \theta < \zeta < \theta + h, \\
1 & \text{if } \zeta \geq \theta + h, \\
-\varphi(-\zeta) & \text{if } \zeta < 0.
\end{cases}
\end{equation*}

The function $\varphi(\zeta)$

for all $\theta, h > 0$.

Using $v = \varphi(u_n)$ as a test function in the approximate problem (P_n), we obtain
\begin{equation*}
-\frac{d}{d\theta} \int_{\{|u_n| > \theta\}} M(\nabla u_n)dx \leq C \int_{\{|u_n| > \theta\}} \left(f_n - \frac{\partial u_n}{\partial t} \right)dx, \tag{3.4}
\end{equation*}
since $nT_k(\Phi(u_n)) = 0$.

By using Lemma 3.1, we obtained by following the same way as in [20], we have for a good N -function D
\begin{equation*}
-\frac{d}{d\theta} \int_{\{|u_n| > \theta\}} D(\nabla u_n)dx \leq (-\mu'(\theta))D\left(\frac{1}{\lambda N \mu(\theta)^{\frac{1}{\alpha}}} \frac{d}{d\theta} \int_{\{|u_n| > \theta\}} M(\nabla u_n)dx \right), \tag{3.5}
\end{equation*}
Let us denote $k(t, s) = \int_0^t u_n(t, \rho) d\rho$, then $\frac{\partial k}{\partial t}(t, s) = \int_0^s \frac{\partial u_n(t, \rho)}{\partial \rho} d\rho$, and $F(t, \mu(\theta)) = \int_0^{\mu(\theta)} (f_n(\rho)) d\rho$. Using Lemma 3.1, one has
\[
1 \leq -\frac{\mu'(\theta)}{\lambda N(\mu(\theta))^{1 + \frac{1}{N}}} B^{-1} \left(\frac{1}{\lambda N(\theta)} \left[F(t, \mu(\theta)) - \frac{\partial k}{\partial t}(t, \mu(\theta)) \right] \right).
\] (3.6)

Since $F(t, s) \geq \frac{\partial k}{\partial t}(t, s)$ and using Lemma 3.2, we have $\frac{\partial k}{\partial t}(t, s) \leq F(t, s)$. Combining (3.5)–(3.6) we obtain,
\[
\frac{d}{d\theta} \int_{\{|u_n| > \theta\}} D(\nabla u_n) dx \leq (-\mu'(\theta)) DoB^{-1} \left(\frac{1}{\lambda N(\mu(\theta))^{1 + \frac{1}{N}}} \left[F(t, \mu(\theta)) - \frac{\partial k}{\partial t}(t, \mu(\theta)) \right] \right),
\] (3.7)

\[
\int_{\Omega} D(\nabla u_n) dx = \int_{0}^{\infty} \left(-\frac{d}{d\theta} \int_{\{|u_n| > \theta\}} D(\nabla u_n) dx \right) d\theta \leq \frac{C}{\lambda} \int_{0}^{\infty} DoB^{-1} \left(\frac{C}{\lambda^{1 + \frac{1}{N}}} \right) ds.
\]

Case 1: If there exists D an N-function such that $\int_{0}^{\infty} DoB^{-1} \left(\frac{C}{\lambda^{1 + \frac{1}{N}}} \right) ds < +\infty$.

The sequence (u_n) is bounded in $W_0^{1, 1} L_\delta(Q)$ and also $u \in W_0^{1, 1} L_\delta(Q)$.

Case 2: If $\int_{0}^{\infty} DoB^{-1} \left(\frac{C}{\lambda^{1 + \frac{1}{N}}} \right) ds < +\infty$.

Then, if we take $D(t) = t$, the sequence (u_n) is bounded in $W_0^{1, 1} L_\delta(Q)$. Then, there exists a measurable function $u \in L^\gamma(Q) \left(\gamma = \frac{N}{N-1} \right)$ such that $u_n \rightharpoonup u$ in $L^\gamma(Q)$. By using [24] (see Proposition 2.3), it follows that
\[
\|\nabla u\|_M \leq \lim_n \|\nabla u_n\|_{L^\gamma(Q)} \leq C,
\]
where $\|\nabla u\|_M = \sup_\{ \int u \text{ div } v : v \in (Z(Q))^N \text{ and } \|v\|_{L^\gamma} \leq 1 \} < \infty$.

Then, $u \in BV_\gamma(Q) = \{ u \in L^\gamma(Q) : \text{ div } u \in (M(Q))^N \}$.

Case 3: General case.

Let $0 < \lambda \leq k$, then
\[
\text{meas}(|u_n| > \lambda) = \text{meas}(|T_k(u_n)| > \lambda) \leq \frac{1}{M(\lambda)} \int_{\Omega} M(|T_k(u_n)|) dx \leq \frac{Ck}{M(\lambda)}.
\]

Let us take $\lambda = k$, we have
\[
\lambda \text{meas}(|u_n| > \lambda)^{\frac{1}{\gamma}} \leq \frac{\lambda^{1 + \frac{1}{\gamma}}}{M(\lambda)^\gamma} \leq C \sup_{t > 0} \frac{t^1 + \frac{1}{\gamma}}{M(t)^\gamma} = H.
\]

Then, (u_n) is bounded in $M^\gamma(Q) \subset L^\gamma(Q)$ (since $\gamma > 1$). Note that $M^\gamma(Q)$ is the Marcinkiewicz space. Then, $u \in M(Q)$.

Finally, since $\int_Q T_k(\varphi(u_n)) dx dt \leq \int_Q T_k(\varphi(u_n)) dx dt \leq \frac{C}{\lambda}$. Then, we deduce, $\int_Q \varphi(u) dx dt = 0$, which ensure $u \in \mathcal{K}$.

II. Almost everywhere convergence of the gradients

The main tool in this step proves
\[
\lim_{n \to \infty} \int_Q (a(\cdot, \nabla T_k(u_n)) - a(\cdot, \nabla T_k(u)))(\nabla T_k(u_n) - \nabla T_k(u)) dx dt = 0,
\]
which gives by the same argument as in [25] and adapted to the parabolic case, $\nabla u_n \rightharpoonup \nabla u$ a.e. in Q.
This is possible by using the following regularization principle \(\omega_{\mu,j}^i = (T_k(v))_\mu + e^{-\mu T_k(\psi)} \), where \(v \in D(Q) \) such that \(v \rightarrow T_k(u) \) with the modular convergence in \(W^{1,1}_{0,0}L_M(Q) \), \(\psi \) is a smooth function such that \(\psi \rightarrow T_k(u_0) \) strongly in \(L^1(Q) \), and \(\omega_\mu \) is the mollifier function defined by Landes [26], \(\omega_\mu(x, t) = \mu \int_{-\infty}^t \omega(x, s) \exp(s - t)ds \), where \(\omega \) is the zero extension of \(\omega \) for \(s > T \). The function \(\omega_{\mu,j}^i \) have the following properties:

\[
\begin{align*}
\frac{\partial \omega_{\mu,j}^i}{\partial t} &= \mu(T_k(v_j) - \omega_{\mu,j}^i), \quad \omega_{\mu,j}^i(0) = \psi, \quad |\omega_{\mu,j}^i| \leq k, \\
\omega_{\mu,j}^i &\rightarrow T_k(u)_\mu + e^{-\mu T_k(\psi_j)} \quad \text{in} \quad W^{1,1}_{0,0}L_M(Q) \quad \text{for the modular convergence with respect to} \ j, \\
T_k(u)_\mu + e^{-\mu T_k(\psi_j)} &\rightarrow T_k(u) \quad \text{in} \quad W^{1,1}_{0,0}L_M(Q) \quad \text{for the modular convergence with respect to} \ \mu.
\end{align*}
\]

Consider, for \(m > k \), the following truncation

\[
\rho_m(s) = \begin{cases}
1 & |s| \leq m, \\
1 - |s| & m < |s| < m + 1, \\
0 & |s| \geq m + 1,
\end{cases}
\]

and let \(R_m(s) = \int_s^\infty \rho_m(t)dt \).

Consider \(v = (T_k(u_m) - \omega_{\mu,j}^i)\rho_m(u_m) \) as a test function in the approximate problem \((P_n)\), then we have

\[
\left\langle \frac{\partial u_n}{\partial t}, v \right\rangle + \int_Q a(\nabla u_n)(\nabla T_k(u_n) - \nabla \omega_{\mu,j}^i)\rho_m(u_n) dxdy \\
+ \int_Q a(\nabla u_n)\nabla u_n(T_k(u_n) - \omega_{\mu,j}^i)\rho_m(u_n) = \int_{\partial Q} f_n v dxdy + \int_0^T \int_O f_n v dxdy dt.
\]

We will be interested to estimate the elements of the aforementioned equation.

Since \(u_m \in W^{1,1}_{0,0}L_M(Q) \), there exists a smooth function \(u_{\text{reg}} \) (see [23]) such that,

\[
u_{\text{reg}} \rightarrow u_m \quad \text{for the modular convergence in} \quad W^{1,1}_{0,0}L_M(Q) \quad \text{and} \\
\frac{\partial u_{\text{reg}}}{\partial t} \rightarrow \frac{\partial u_n}{\partial t} \quad \text{for the modular convergence in} \quad W^{1,1}_{0,0}L_M(Q) + L^1(Q).
\]

\[
\left\langle \frac{\partial u_m}{\partial t}, v \right\rangle = \lim_{\sigma \rightarrow 0} \int_Q (u_{\text{reg}})'(T_k(u_{\text{reg}}) - \omega_{\mu,j}^i)\rho_m(u_{\text{reg}})dxdy \\
= \lim_{\sigma \rightarrow 0} \left(\int_Q (R_m(u_m) - T_k(u_{\text{reg}}))'(T_k(u_{\text{reg}}) - \omega_{\mu,j}^i) + \int_Q (T_k(u_{\text{reg}}))'(T_k(u_m) - \omega_{\mu,j}^i)dxdy \right) \\
= \lim_{\sigma \rightarrow 0} \left(\int_Q (R_m(u_m) - T_k(u_{\text{reg}}))(T_k(u_{\text{reg}}) - \omega_{\mu,j}^i) + \int_Q (T_k(u_{\text{reg}}))'(T_k(u_{\text{reg}}) - \omega_{\mu,j}^i)'dxdy \right) \\
+ \int_Q (T_k(u_{\text{reg}}))'(T_k(u_m) - \omega_{\mu,j}^i)dxdy \\
= \lim_{\sigma \rightarrow 0} I_{\sigma}(\sigma) + I_{\sigma}(\sigma) + I_{\sigma}(\sigma).
\]

We deal now with the terms \(I_{\sigma}(\sigma), I_{\sigma}(\sigma), \) and \(I_{\sigma}(\sigma) \) to prove \(\left\langle \frac{\partial u_m}{\partial t}, v \right\rangle \geq \epsilon(n, j, i, \mu, s, m). \)
Claim 1: \(\lim_{\sigma \to 0} I_1(\sigma) \geq \varepsilon(n, j, i, \mu) \).

\[
I_1(\sigma) = \int_{\Omega} \left((R_m(u_{n0})(T) - T_k(u_{n0})(T))(T_k(u_{n0})(T) - \omega_{\mu, j}(T)) \right) dx
- \int_{\Omega} \left((R_m(u_{n0})(0) - T_k(u_{n0})(0))(T_k(u_{n0})(0) - \omega_{\mu, j}(0)) \right) dx
= \int_{u_{n0}(T) \leq k} \left((R_m(u_{n0})(T) - T_k(u_{n0})(T))(T_k(u_{n0})(T) - \omega_{\mu, j}(T)) \right) dx
+ \int_{u_{n0}(T) > k} \left((R_m(u_{n0})(T) - T_k(u_{n0})(T))(T_k(u_{n0})(T) - \omega_{\mu, j}(T)) \right) dx
- \int_{u_{n0}(0) \leq k} \left((R_m(u_{n0})(0) - T_k(u_{n0})(0))(T_k(u_{n0})(0) - \omega_{\mu, j}(0)) \right) dx
- \int_{u_{n0}(0) > k} \left((R_m(u_{n0})(0) - T_k(u_{n0})(0))(T_k(u_{n0})(0) - \omega_{\mu, j}(0)) \right) dx
= J_1 + J_2 + J_3 + J_4.
\]

If \(u_{n0} \leq k \), we have \(R_m(u_{n0}) = T_k(u_{n0}) \) (since \(m > k \)), and if \(u_{n0} \geq k \), we have \(R_m(u_{n0}) > k \geq |\omega_{\mu, j}| \). Then,

\[
J_1 = \int_{u_{n0}(T) \leq k} \left((R_m(u_{n0})(T) - T_k(u_{n0})(T))(T_k(u_{n0})(T) - \omega_{\mu, j}(T)) \right) dx = 0,
\]

\[
J_2 = \int_{u_{n0}(T) > k} \left((R_m(u_{n0})(T) - k)(k - \omega_{\mu, j}(T)) \right) dx \geq 0,
\]

\[
J_3 = -\int_{u_{n0}(0) \leq k} \left((R_m(u_{n0})(0) - T_k(u_{n0})(0))(T_k(u_{n0})(0) - \omega_{\mu, j}(0)) \right) dx = 0.
\]

About \(J_4 \), we have \(\lim_{\sigma \to 0} J_4 = -\int_{u_{n0}(T) > k} \left((R_m(u_{n0})(0) - u_{n0}(0))(T_k(u_{n0})(0) - \omega_{\mu, j}(0)) \right) dx dt = \varepsilon(n, i) \).

We conclude that

\[
\lim_{\sigma \to 0} I_1(\sigma) \geq \varepsilon(n, j, i, \mu).
\]

Claim 2: \(\lim_{\sigma \to 0} I_2(\sigma) \geq \varepsilon(n, j, i, \mu) \).

It is easy to remark that \(T_k(u_{n0})' = 0 \), if \(u_{n0} > k \), and \((R_m(u_{n0}) - T_k(u_{n0}))(T_k(u_{n0}) - \omega_{\mu, j})' \chi_{u_{n0} > k} \geq 0 \).

Then,

\[
I_2(\sigma) = -\int_{u_{n0} \leq k} \left((R_m(u_{n0}) - T_k(u_{n0}))(T_k(u_{n0}) - \omega_{\mu, j})' \right) dx dt + \int_{u_{n0} > k} \left((R_m(u_{n0}) - T_k(u_{n0}))(\omega_{\mu, j})' \right) dx dt.
\]

For the first term and as for \(I_1 \), we have

\[
\int_{u_{n0} \leq k} \left((R_m(u_{n0}) - T_k(u_{n0}))(\omega_{\mu, j})' \right) dx dt \geq \mu \int_{u_{n0} \leq k} \left((R_m(u_{n0}) - T_k(u_{n0}))(T_k(v_j) - \omega_{\mu, j}) \right) dx dt.
\]

Then,

\[
\lim_{\sigma \to 0} I_2(\sigma) \geq \varepsilon(n, j, i, \mu).
\]

Claim 3: \(\lim_{\sigma \to 0} I_3(\sigma) \geq \varepsilon(n, j, i, \mu) \).

Since,

\[
I_3(\sigma) = \int_Q \left((T_k(u_{n0}))'(T_k(u_{n0}) - \omega_{\mu, j}) \right) dx dt
= \int_Q \left((T_k(u_{n0}) - \omega_{\mu, j})'(T_k(u_{n0}) - \omega_{\mu, j}) \right) dx + \int_Q \left((\omega_{\mu, j})'(T_k(u_{n0}) - \omega_{\mu, j}) \right) dx dt.
\]
= \left[\int_{\Omega} \frac{(T_k(u_{mn}) - \omega^j_{\mu,j})^2}{2} \, dx \right]^T + \mu \int_{Q} (T_k(v_j) - \omega^j_{\mu,j})(T_k(u_{mn}) - \omega^j_{\mu,j}) \, dx \, dt \\
\geq \varepsilon(n, j, i, \mu) - \int_{\Omega} \frac{(T_k(u_{mn}(0)) - \psi^j_k)^2}{2} \, dx + \mu \int_{Q} (T_k(v_j) - \omega^j_{\mu,j})(T_k(u_{mn}) - \omega^j_{\mu,j}) \, dx \, dt.

Then,

\lim_{\sigma \to 0^+} l_{I_{\varepsilon}}(\sigma) \geq \varepsilon(n, j, i, \mu) - \int_{\Omega} \frac{(T_k(u_{mn}) - \psi^j_k)^2}{2} \, dx + \mu \int_{Q} (T_k(v_j) - \omega^j_{\mu,j})(T_k(u_{mn}) - \omega^j_{\mu,j}) \, dx \, dt \\
= \varepsilon(n, j, i, \mu) - \int_{\Omega} \frac{(T_k(u_{nn}) - \psi^j_k)^2}{2} \, dx + \mu \int_{Q} (T_k(v_j) - \omega^j_{\mu,j})(T_k(u_{nn}) - \omega^j_{\mu,j}) \, dx \, dt \\
= \varepsilon(n, j, i, \mu).

Finally, we have \(\left\{ \frac{\partial u_{mn}}{\partial t}, (T_k(u_{nn}) - \omega^j_{\mu,j}) \right\} \geq \varepsilon(n, j, i, \mu).

We will now treat the terms \((3.8) \)–\((3.9) \). Before that, we will give some convergence results.

Let \(s > 0, Q_s = \{(x, t) \in \Omega : |\nabla T_k(v_j)| \leq s\}, Q^s_j = \{(x, t) \in \Omega : |\nabla T_k(v_j)| \leq s\}, \) and \(\chi^s, \chi^s_j \) be their characteristic function, respectively.

Using \((1.1) \) and \((1.3) \), there exist some measurable function \(h_k \) such that

\[a(\cdot, \nabla T_k(u_{mn})) \rightarrow h_k \text{ in } L^1(Q) \text{ for } a(\Pi L^1, \Pi E_1^1), \]

and we also have \(\nabla T_k(v_j) \chi^s_j \rightarrow \nabla T_k(v_j) \chi^s \) strongly in \((L^1(Q))^N \) and \(a(\cdot, \nabla T_k(v_j) \chi^s_j) \rightarrow a(\cdot, \nabla T_k(v) \chi^s) \) strongly in \((E_1(Q))^N \).

Concerning \((3.9) \)

On the hand, we have

\[\int_{Q} a(\cdot, \nabla u_{nn}) \nabla u_{nn}(T_k(u_{nn}) - \omega^j_{\mu,j}) \rho^j_m(u_{nn}) \, dx \, dt \geq 0. \]

On the other hand, since \(|f_n| \leq |f| \) and by using Lebesgue theorem with respect to \(n, j, i, \) and \(\mu, \) one get

\[\int_{Q} f_n(T_k(u_{nn}) - \omega^j_{\mu,j}) \rho^j_m(u_{nn}) = \varepsilon(n, j, i, \mu). \]

Concerning the second term of \((3.8) \)

\[\int_{Q} a(\cdot, \nabla u_{nn}) (\nabla T_k(u_{nn}) - \nabla \omega^j_{\mu,j}) \rho^j_m(u_{nn}) \, dx \, dt \]

\[= \int_{Q} a(\cdot, \nabla T_k(u_{nn})) - a(\cdot, \nabla T_k(v_j) \chi^s_j) \nabla T_k(u_{nn}) - \nabla \omega^j_{\mu,j} \rho^j_m(u_{nn}) \, dx \, dt + \int_{Q} a(\cdot, \nabla T_k(v_j) \chi^s_j) \nabla T_k(u_{nn}) - \nabla T_k(v_j) \chi^s_j \, dx \, dt \\
+ \int_{Q} a(\cdot, \nabla T_k(u_{nn})) \nabla \omega^j_{\mu,j} \rho^j_m(u_{nn}) \, dx \, dt + \int_{Q} a(\cdot, \nabla u_{nn}) \nabla \omega^j_{\mu,j} \rho^j_m(u_{nn}) \, dx \, dt \]

\[= I_1 + I_2 + I_3 + I_4. \]

\[I_2 = \int_{Q} a(\cdot, \nabla T_k(v_j) \chi^s_j) (\nabla T_k(u) - \nabla T_k(v_j) \chi^s_j) \, dx \, dt + \varepsilon(n) = \varepsilon(n, j). \]

For \(I_3, \) we have

\[I_3 = \varepsilon(n) + \int_{Q} h_k \nabla T_k(v_j) \chi^s \, dx = \varepsilon(n, j) + \int_{Q} h_k \nabla T_k(u) \chi^s. \]
For J_4, recall that $\rho_m(s) = 0$ if $|s| \geq m + 1$, then

$$J_4 = \int_Q a(\cdot, \nabla u_n) \nabla \omega^{i_j}_\mu \rho_m(u_n) \, dx \, dt$$

$$= - \int_{|u_n| \leq m + 1} a(\cdot, \nabla u_n) \nabla \omega^{i_j}_\mu \rho_m(u_n) \, dx \, dt$$

$$= - \int_{|u_n| \leq k} a(\cdot, \nabla u_n) \nabla \omega^{i_j}_\mu \rho_m(u_n) \, dx \, dt - \int_{k < |u_n| \leq m + 1} a(\cdot, \nabla u_n) \nabla \omega^{i_j}_\mu \rho_m(u_n) \, dx \, dt$$

$$= \int h_k \nabla T_k(u) \, dx \, dt - \int_{k < |u_n| \leq m + 1} h_{m + 1} \nabla T_k(u) \rho_m(u) \, dx \, dt + \varepsilon(n, j, i, \mu)$$

$$= \int h_k \nabla T_k(u) \, dx \, dt + \varepsilon(n, j, i, \mu).$$

Using the aforementioned results, we obtain

$$\int_Q a(\cdot, \nabla u_n)(\nabla \nabla T_k(u_n) - \nabla \omega^{i_j}_\mu) \rho_m(u_n) \, dx \, dt$$

$$= \int_Q (a(\cdot, \nabla T_k(u_n)) - a(\cdot, \nabla T_k(v_j)\chi_j^s))(\nabla \nabla T_k(u_n) - \nabla \nabla T_k(v_j)\chi_j^s) \, dx \, dt + \varepsilon(n, j, i, \mu, s).$$

Combining (3.8)–(3.9), we obtain the almost everywhere convergence of the gradients.

III. Modular convergence of the gradients

For all $k > 0$, $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ for the modular convergence in $(L^\infty(Q))^N$. Indeed, we have proved that

$$\int_Q (a(\cdot, \nabla T_k(u_n)) - a(\cdot, T_k(u_n), \nabla T_k(v_j)\chi_j^s))(\nabla \nabla T_k(u_n) - \nabla \nabla T_k(v_j)\chi_j^s) \, dx \, dt \leq \varepsilon(n, j, \mu, s, m).$$

Then,

$$\int_Q a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \, dx \, dt$$

$$\leq \int_Q a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \, dx \, dt + \int_Q a(\cdot, \nabla T_k(u)\chi^s)(\nabla \nabla T_k(u_n) - T_k(u)\chi^s) \, dx \, dt + \varepsilon(n, j, \mu, s, m),$$

$$\lim_{n} \int_Q a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \, dx \, dt \leq \int_Q a(\cdot, \nabla T_k(u)) \nabla T_k(u) \, dx \, dt + \lim_{n} \varepsilon(n, j, \mu, s, m).$$

Also we have,

$$\lim_{n} \int_Q a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \leq \int_Q a(\cdot, \nabla T_k(u)) \nabla T_k(u) \leq \lim_{n} \int_Q a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n).$$

Then, we deduce that $a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \rightarrow a(\cdot, \nabla T_k(u)) \nabla T_k(u) \chi^s$ in $L^1(Q)$.

As mentioned earlier, we obtain $a(\cdot, \nabla T_k(u_n)) \nabla T_k(u_n) \rightarrow a(\cdot, \nabla T_k(u)) \nabla T_k(u)$ in $L^1(Q)$.

Using Vitali’s theorem and (3.1) gives $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ for the modular convergence in $(L^\infty(Q))^N$.
IV. Passage to the limit

The passage to the limit is an easy task by taking \(v \in K \cap L^\infty(Q) \cap D \) and \(T_k(u_n - v) \) as test function in \((P_n) \).

V. Uniqueness

Following the same way as Theorem 5.1 [14] for the parabolic case, we obtain the uniqueness.

4 Conclusion

In this paper, we have focused on the existence, uniqueness, and regularity of a class of inequalities in a general convex set and in a nonstandard functional framework, which is the Sobolev Orlicz spaces. The techniques used are not standard and require a very particular handling of the test functions and the approximated problems.

Acknowledgements: The author extends his appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia, for funding this work through a research group program under grant number R.G.P-2/88/41.

Conflict of interest: The author states no conflict of interest.

References

[1] M. Dai and F. Yi, Finite-horizon optimal investment with transaction costs: A parabolic double obstacle problem, J. Differ. Equ. 246 (2009), 1445–1469.
[2] V. Bogelein, F. Duzaar, and C. Scheven, The obstacle problem for parabolic minimizers, J. Evol. Equ. 17 (2017), 1273–1310.
[3] Y. Achdou and O. Pironneau, American Options, Pricing and Volatility Calibration Control Systems: Theory, Numerics and Applications, 30 March–1 April 2005, Rome.
[4] Y. Guo, C. Kim, and D. Tonon, Regularity of the Boltzmann equation in convex domains, Invent. Math. 207 (2017), 115–290.
[5] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, Dissipation inequalities for the analysis of a class of PDEs, Automatica 66 (2016), 163–171.
[6] J. Leray and J. L. Lions, Quelques résultats de Visick sur les problèmes elliptiques non linéaires pour les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97–107.
[7] F. E. Browder and H. Brézis, Strongly nonlinear parabolic inequalities, Proc. Natl. Sci. USA 77 (1980), no. 2, 713–715.
[8] J. Puel, Inéquations variationnelles daévolution paraboliques du 2ème ordre, Séminaires Équations aux dérivés partielles (Polytechnique) 2 (1974–1975), 1–12.
[9] R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. 130 (1989), no. 2, 321–366.
[10] L. Boccardo, D. Giachetti, J. I. Diaz, and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differ. Equ. 106 (1993), no. 2, 215–237.
[11] F. Murat, Soluciones renormalizadas de edp elipticas no lineales, Publ. Laboratoire d’Analyse Numérique, Univ. Paris 6 (1993), R 93023.
[12] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), no. 1, 149–169.
[13] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differ. Equ. 17 (1992), 3–4, 641–655.
[14] P. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J.-L. Vazquez, An L^1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), no. 2, 241–273.
[15] L. Boccardo, T. Gallouët, and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincare Anal. Non Lineaire 13 (1996), no. 5, 539–551.
[16] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), 17–24.
[17] J.-P. Gossez, *Nonlinear elliptic boundary value problems for equations with rapidly or (slowly) increasing coefficients*, Trans. Amer. Math. Soc. **190** (1974), 163–205.

[18] T. Donaldson, *Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial-boundary value problems*, J. Diff. Equ. **16** (1974), 201–256.

[19] M. Krasnosel’skiĭ and Ya. Rutickiĭ, *Convex Functions and Orlicz Spaces*, Noordhoff, Groningen, 1969.

[20] G. Talenti, *Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces*, Annali di Matematica Pura ed Applicata **120** (1979), 159–184.

[21] B. Achchab, A. Agouzal, N. Debit, M. Kbiri-Alaoui, and A. Souissi, *Nonlinear parabolic inequalities on a general convex*, J. Math. Inequal. **4** (2010), no. 2, 271–284.

[22] J. Kacur, *Nonlinear Parabolic Boundary Value Problems in the Orlicz-Sobolev Spaces*, Partial Differential Equations, Banach Center Publications, vol. 10, PWN Polish Scientific Publishers, Warsaw, 1983.

[23] A. Elmahi and D. Meskine, *Parabolic equations in Orlicz space*, J. London Math. Soc. **72** (2005), no. 2, 410–428.

[24] T. De Pauw and M. Torres, *On the distributional divergence of vector fields vanishing at infinity*, Proc. Roy. Soc. Edinburgh **141A** (2011), 65–76.

[25] A. Benkirane and A. Elmahi, *Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application*, Nonlinear Anal. T.M.A. **28** (1997), no. 11, 1769–1784.

[26] R. Landes, *On the existence of weak solutions for quasilinear parabolic initial-boundary value problems*, Proc. Roy. Soc. Edinburgh Sect. A **89** (1981), 217–137.