SUPPLEMENTARY MATERIAL

LC-MS profiling of glucosinolates in the seeds of *Brassica elongata* Ehrh., and of the two stenoendemic *B. botteri* Vis and *B. cazzae* Ginzb. & Teyber

Sabine Montaut*a, Ivica Blaževićb, Mirko Ruščićc and Patrick Rollind

aDepartment of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; bDepartment of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Rudera Boškovića 35, 21000 Split, Croatia; cDepartment of Biology, Faculty of Science, University of Split, Rudera Boškovića 33, 21000 Split, Croatia; dUniversité d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orléans, France

* Corresponding author: Email: smontaut@laurentian.ca

Abstract

The glucosinolates (GLs) present in seed extracts of *Brassica elongata* Ehrh., *B. botteri* Vis and *B. cazzae* Ginzb. & Teyber from Croatia were identified by LC-MS. 4-Hydroxyindol-3-ylmethyl GL (3) was the major GL in the seeds of *B. elongata*, along with the four minor GLs 2-(R)-hydroxy-3-butenyl- (1), 3-butenyl- (2), 4-pentenyl- (4), and indol-3-ylmethyl (5) GLs. The seeds of *B. botteri* (Vis island) and *B. cazzae* (Sušac island) contained 2 as the major GL as well as 1, 3, 5 and 4-methoxyindol-3-ylmethyl GL (6). However, the GLs in *B. botteri* (Palagruža island) differed from other varieties having 2-propenyl GL (7) as the major GL in the seeds, and the four minor GLs 2, 3, 5, and 6. This first report of the GL content in the seeds of *B. elongata*, *B. botteri*, and *B. cazzae* indicates that the unique GL profiles could be specific to the geographical origin of the plant.

Keywords: *Brassica elongata*; *Brassica incana*; *Brassica botteri*; *Brassica cazzae*; glucosinolates; LC-MS
Experimental

General Experimental Procedures

All solvents were ACS grade and used as such. Formic acid was purchased from BDH (Toronto, ON, Canada). HPLC-grade MeOH and Et₃N (reagent grade) were purchased from Fisher Scientific (Whitby, ON, Canada). HPLC-grade H₂O was generated in the laboratory through a Nanopure Diamond Ultrapure water system provided by Barnstead (Dubuque, IA, USA). 2-(R)-hydroxy-3-butenyl GL and 3-butenyl GL were purchased from ChromaDex® Corporate (Irvine, CA, USA). 2-Propenyl GL was purchased from Fluka Sigma-Aldrich Canada (Oakville, ON, Canada). The intact 4-pentenyl-, indol-3-ylmethyl, and 4-methoxyindol-3-ylmethyl GLs were identified by comparison of the retention time, UV and mass spectra of authenticated standards (Blažević et al. 2013; Montaut et al. 2010).

Plant Material

Brassica elongata Ehrh. seeds were collected in July 2014, near Sinj, Croatia (315 meters above sea level (a.s.l.); Gauss-Kruger coordinates (GK): X = 5633757, Y = 4842246; voucher specimens number (v.s.n.) DBBE001). B. botteri Vis seeds were collected in July-August 2014, on Vis island (346 meters a.s.l.; GK: X = 5591104, Y = 4767578; v.s.n. DBBB001), and Palagruža island (31 meters a.s.l.; GK: X = 5603924, Y = 4695048; v.s.n. DBBB002), and B. cazzae on Sušac island (15 meters a.s.l.; GK: X = 5622381, Y = 4735344; v.s.n. DBBC001), open sea islands of central Adriatic Sea (Croatia). The plants were collected and identified by Dr. Mirko Ruščić at the Department of Biology, University of Split, Split, Croatia using Flora Europea (Tutin et al. 1968-1980). Voucher specimens are kept at the Department of Biology, University of Split, Split, Croatia.

LC-MS analysis of glucosinolates
Dried seeds (~ 500 mg) were frozen in liquid N$_2$, ground in a mortar, and immediately
extracted for 5 min at 80 °C twice with EtOH/H$_2$O (5 mL, 7:3 v/v). The solution was
filtered and concentrated to dryness. The extracts were dissolved in EtOH/H$_2$O (2 mL
for B. elongata and 3 mL for B. botteri and B. cazzae, 7:3 v/v). LC-MS analysis was
performed by injecting a 10 μL aliquot of the solution of crude extract into an Agilent
Technologies HP 1100 (New Castle, DE, USA) high-performance liquid chromatograph
equipped with a quaternary pump, automatic injector, diode-array detector (wavelength
range 190-600 nm), degasser, and a Hypersil ODS column (5 μm, 4.6 × 200 mm). The
two mobile phase solvents, MeOH and H$_2$O, were prepared with 0.15% Et$_3$N and 0.18%
HCO$_2$H, added as ion-pairing reagents. Both solutions were filtered using 0.45 μm
nylon membranes. The initial mobile phase was 100% HPLC-grade H$_2$O. At 10 min,
the mobile phase was switched to a linear gradient of 100% H$_2$O to 100% MeOH over
60 min. After each run, the initial mobile phase conditions were set and the system was
allowed to equilibrate. The flow rate was kept constant at 1 mL/min. The column
temperature was held at room temperature (Zrybko et al. 1997). The HPLC was
interfaced to an Agilent model 6120 mass spectrometer (Toronto, ON, Canada) with a
Chemstation data system LC-MSD B.03.01. The electrospray interface was a standard
ES source operating with a capillary voltage of 4 kV and temperature of 350 °C. The
system was operated in the negative and positive ion electrospray modes. Nitrogen was
used as nebulizing and drying gas at a flow rate of 10 L/min (35 psig). The mass
spectrometer was programmed to perform full scans between m/z 100 and 1,000 amu.
Fig. S1. HPLC chromatogram of *B. elongata* seed extract. 1: 2-(R)-hydroxy-3-butenyl GL, 2: 3-butenyl GL, 3: 4-hydroxyindol-3-ylmethyl GL, 4: 4-pentenyl GL, 5: indol-3-ylmethyl GL.

Fig. S2. HPLC chromatograms of stenoendemic *Brassica* seed extracts: a) *B. botteri* from Vis island (Croatia), b) *B. botteri* from Palagruža island (Croatia), and c) *B. cazzae* from Sušac island (Croatia). 1: 2-(R)-hydroxy-3-butenyl GL, 2: 3-butenyl GL, 3: 4-hydroxyindol-3-ylmethyl GL, 5: indol-3-ylmethyl GL, 6: 4-methoxyindol-3-ylmethyl GL, 7: 2-propenyl GL.
2-(R)-hydroxy-3-butenyl GL (1)
$C_6 H_7 NO_1 S_2$

3-butenyl GL (2)
$C_7 H_9 NO_2 S_2$

4-hydroxyindol-3-ylmethyl GL (3)
$C_9 H_4 NO_2 S_2$

4-pentenyl GL (4)
$C_{10} H_9 NO_2 S_2$

Indol-3-ylmethyl GL (5)
$C_{10} H_9 NO_2 S_2$
Fig. S3. ESI mass spectra of 2-(R)-hydroxy-3-butenyl GL (1), 3-butenyl GL (2), 4-hydroxyindol-3-ylmethyl GL (3), 4-pentenyl GL (4), indol-3-ylmethyl GL (5), 4-methoxyindol-3-ylmethyl GL (6), and 2-propenyl GL (7).
Table S1. ESI-LC/MS data of the chromatographic peaks depicted in Fig. S1, Fig. S2, and Fig. S3

Peaks no.	t_R (min)	[M]$^-$	Formula	Glucosinolate
1	7.6	388.0	C$_{11}$H$_{18}$NO$_{10}$S$_2$	2-(R)-hydroxy-3-butenyl GL
2	18.3	372.0	C$_{11}$H$_{18}$NO$_9$S$_2$	3-butenyl GL
3	20.9	463.0	C$_{16}$H$_{19}$N$_2$O$_{10}$S$_2$	4-hydroxyindol-3-ylmethyl GL
4	22.9	386.0	C$_{12}$H$_{20}$NO$_9$S$_2$	4-pentenyl GL
5	25.3	446.8	C$_{16}$H$_{19}$N$_2$O$_9$S$_2$	indol-3-ylmethyl GL
6	29.2	476.8	C$_{17}$H$_{21}$N$_2$O$_{10}$S$_2$	4-methoxyindol-3-ylmethyl GL
7	8.2	358.0	C$_{10}$H$_{16}$NO$_9$S$_2$	2-propenyl GL
Table S2. Distribution of glucosinolates in seeds of *Brassica botteri* Vis, *B. cazzea* Ginzb. & Teyber, and *B. elongata* Ehrh.

Plant	Glucosinolates* (%)						
	1	2	3	4	5	6	7
B. botteri (Vis	3.1	64.3	7.7	N.D.	4.8	20.1	N.D.
island)							
B. botteri (Palagruža	N.D.	27.0	25.1	N.D.	4.1	0.3	43.5
island)							
B. cazzea (Sušac	35.8	45.0	17.1	N.D.	1.3	0.8	N.D.
island)							
B. elongata (Sinj)	6.6	3.8	85	2.0	2.6	N.D.	N.D.

* Glucosinolates: 1 = 2-(R)-hydroxy-3-butenyl GL, 2 = 3-butenyl GL, 3 = 4-hydroxyindol-3-ylmethyl GL, 4 = 4-pentenyl GL, 5 = indol-3-ylmethyl GL, 6 = 4-methoxyindol-3-ylmethyl GL, 7 = 2-propenyl GL. N.D. = not detected.

References

Blažević I, De Nicola GR, Montaut S, Rollin P. 2013. Glucosinolates in two endemic plants of *Aurinia* genus and their chemotaxonomic significance. Nat Prod Commun. 8: 1463-1466.

Montaut S, Bleeker RS, Jacques C. 2010. Phytochemical constituents of *Cardamine diphylla*. Can J Chem. 88: 50-55.
Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. 1968-1980. Flora Europaea 1-5. Cambridge, University Press, Cambridge.

Zrybko CL, Fukuda EK, Rosen RT. 1997. Determination of glucosinolates in domestic and wild mustard by high-performance liquid chromatography with confirmation by electrospray mass spectrometry and photodiode-array detection. J Chromatogr A. 767: 43-52.