Factors Affecting Survival in Egyptian Patients Suffering from Urinary Bladder Cancer: A Multicenter Retrospective Study

Ahmed Aly Nagy, MD, MSc, PhD1, Hosam Darweish, MD, MSc, PhD2, Hend M. Hamdey Rashed Elkalla, MD, MSc PhD3, Heba Abdu-allah, MSc4, Lamiaa Moustafa Ahmed, MSc5, Ebeehal Mohamed Salah, MSc6, Rasha Haggag, MD, MSc, PhD7

1Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2Department of Medical Oncology, Damietta Oncology Center, Damietta, Egypt
3Department of Clinical Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
4Department of Medical Oncology, Damietta Oncology Center, Damietta, Egypt
5Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
6Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Mansoura, Egypt
7Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt

Abstract

Background: Bladder cancer is the second most common malignancy among Egyptian males.

Patients and methods: To investigate the factors affecting survival in Egyptian patients suffering from urinary bladder cancer, we analyzed the geographical patterns of 564 bladder cancers patients from Oncology Departments of Ain Shams University, Mansoura University, Zagazig University and Damietta oncology center over a period of 7 years between January 2006 and September 2013.

Results: Among the included 564 patients, Males represented 72.5% of the patients. While, 27.5% were female with a male to female ratio of 2.6. 227 patients presented with non-metastatic and 337 patients with metastatic urinary bladder cancer. Grade III was found in 36% of our patients and 60% of them had stage IV. Mean DFS was (9.15 ± 0.5) and (4.4 ± 0.1) while, mean OS was (13.5 ± 0.7) and (7.5 ± 0.15) months for non-metastatic, and metastatic patients, respectively. In univariate analysis, patients with no bilharzial infection, Non-SCC, responding patients had significant better DFS and OS vs. patients with bilharzial infection, SCC, non-responding patients (respectively, p<0.001 for all). In multivariate analysis, response (OS and PFS), SCC (OS and PFS) and bilharzial is (OS and PFS) where found to be highly statistically significant (Cox regression, P<0.001 for all) in the metastatic and non-metastatic group of patients.

Conclusion: Non-responding, SCC type and bilharzial infected patients had significant independent poor prognostic factors for OS and PFS in the metastatic and non-metastatic group of patients.

Keywords: Bladder cancer; Prognostic factors; Survival; Egypt

Introduction

Worldwide, bladder cancer is considered the ninth most common cancer with a higher incidence in the western world [1] with transitional cell carcinoma (TCC) as the most common histology [2]. The risk factors for development of TCC of the urinary bladder include smoking and occupational toxin exposure [2-8]. Previously published studies have reported a 2.6-fold risk of developing bladder cancer in smokers compared to nonsmokers with adjustment for age, education and marital status [9]. Other studies report a 5.5 increase in bladder cancer risk comparing male regular-smokers to never-smokers after adjusting for high risk occupations [10]. Unlike TCC, the main risk factors for SCC are not environmental exposures, but exposure to infectious agents [7,11]. The main cause of SCC in developing countries is Schistosoma haematobium [12,13]. Bladder cancer is one of the most prevalent malignancy among Egyptian males (16%), accounting for >7900 deaths per year, which is considerably higher than most other parts of the world [14]. Countries geographically close to Egypt have lower recorded rates of bladder cancer [15].

Bladder cancer has the second-high prevalence in Egypt it accounts for 12.7% of male cancers with the majority of cases presented with invasive cancer [16]. In our study, we tried to investigate the factors affecting survival in Egyptian patients suffering from urinary bladder cancer.

Patients and methods

This is a descriptive, retrospective study of histologically confirmed cases of urinary bladder cancer, seen at Oncology departments of Ain Shams University, Mansoura University, and Zagazig University and Damietta oncology center over a period of 7 years between January 2006 and September 2013. Data was retrieved from the records of departments. Patients’ files kept in the Medical Records and Surgical department were also used for clinical and demographic information. Patients with incomplete data (complete clinical history, age, failure to retrieve histology slides) were excluded from the study. Data were entered and analyzed using SPSS computer software version 15 and STATA 11. Student t-test and Chi square tests were used to establish associations, and significant association was considered when p value was less than 0.05.

Results

This study included urinary bladder cancer patients presented to

*Corresponding authors: Rasha Haggag, Faculty of Medicine, Department of Medical Oncology, Zagazig University, Sharkia, Egypt, Tel: 201151600020; E-mail: dr_mmmh@yahoo.com

Received January 25, 2018; Accepted February 13, 2018; Published February 15, 2018

Citation: Nagy AA, Darweish H, Hamdey HM, Elkalla R, Abdu-allah H, et al. (2018) Factors Affecting Survival in Egyptian Patients Suffering from Urinary Bladder Cancer: A Multicenter Retrospective Study. J Cancer Sci Ther 10: 031-035. doi:10.4172/1948-5956.1000513

Copyright: © 2018 Nagy AA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Hospitals of Ain Shams, Mansoura, Zagazig University hospitals and Damietta oncology center during the period from the beginning of 2006 to the end of 2013. Five hundred and sixty-four (564) patients with newly diagnosed 227 patients with non-metastatic and 337 patients with metastatic urinary bladder cancer where included in this study.

Clinico-pathological characteristics of the patients were summarized in Table 1 and Figure 1. For all patients, the median age was 60 years old with a range of (40-80 years), males represented 72.5% of the patients while; 27.5% were female with a male to female ratio of 2.6. Regarding smoking history, nearly smokers and non-smokers were equal. ECOG Performance status of 61% of patients was <2 while, 39% of them were ≥ 2. Bilharziasis infection was noted in 74% of patients and only 26% of them were free. Diabetes mellitus (DM) and viral hepatitis were found in our cases by about 39% and 55.7% respectively. The most common pathological types were TCC in about 60% of patients followed by SCC in 26% of the patients (Table 2). So, the non-squamous cell carcinoma to squamous cell carcinoma ratio was 2.8. Fifty-seven percent (57%) of tumors were of grade II while grade III found in 36% of them only. So, high grade tumors in our study cases (36%) were less in occurrence compared with the low-grade tumors (64%). Three hundred and thirty-seven (337) patients were presented with stage IV and they form about 60% of all the patients while the other stages were 40% of the patients (227). Stage II was forming about 25% of the whole patients (Table 2).

Clinico-pathological characteristics of the patients were summarized in Table 1 and Figure 1. For all patients, the median age was 60 years old with a range of (40-80 years), males represented 72.5% of the patients while; 27.5% were female with a male to female ratio of 2.6. Regarding smoking history, nearly smokers and non-smokers were equal. ECOG Performance status of 61% of patients was <2 while, 39% of them were ≥ 2. Bilharziasis infection was noted in 74% of patients and only 26% of them were free. Diabetes mellitus (DM) and viral hepatitis were found in our cases by about 39% and 55.7% respectively. The most common pathological types were TCC in about 60% of patients followed by SCC in 26% of the patients (Table 2). So, the non-squamous cell carcinoma to squamous cell carcinoma ratio was 2.8. Fifty-seven percent (57%) of tumors were of grade II while grade III found in 36% of them only. So, high grade tumors in our study cases (36%) were less in occurrence compared with the low-grade tumors (64%). Three hundred and thirty-seven (337) patients were presented with stage IV and they form about 60% of all the patients while the other stages were 40% of the patients (227). Stage II was forming about 25% of the whole patients (Table 2).

As shown in Table 2, the group of non-metastatic patients (227 patients) showed that 61.7% of them were diagnosed with stage II bladder cancer while stage III showed 32.6% approximately. Only 5 cases presented with stage I and the total number of cases presented with positive pelvic nodes and received adjuvant treatment (stage IV) were just 8 cases. In patients who were treated with curative intent (227), Sixty percent of them (135 patients) received the protocol of Gemzar-cisplatin. Cisplatin and 5FU were given in 25.5% (58 patients). The rest of patients were received Gemzar-carboplatin and MVAC equally by about 7%. Local recurrence occurred in 46% while distant metastasis in 56%. One hundred sixty-one patients (71%) were treated for the relapse by taxanes and 27% of them (61 patient) with BSC. One hundred and forty-three patients (63%) showed response after the 1st line treatment for the relapse while 84 patients (37%) showed progressive disease as mentioned in Table 3. In the metastatic group of patients (337), there was lung metastasis in about 41.5% of the patients which is the highest percent of recurrence events followed by local pelvic recurrence by about 33% of the total number of the metastatic patients. Bone metastasis was 13.5% followed by 11.5% for the liver metastasis. For those patients with metastasis, the 1st line treatments were gemzar-cisplatin, cisplatin-5FU and gemzar-carboplatin with the percent of 60%, 26% and 14% respectively. The patients with stable disease after 1st line treatment was 59.3%; while those with progressive

Variable	No.	%
Pathology		
Adenocarcinoma	34	6.0
Mixed	45	8.0
Squamous cell carcinoma	148	26.2
Transitional cell carcinoma	337	59.8
Grade		
I	40	7.1
II	321	56.9
III	203	36.0
Grading		
High Grade (III)	203	36.0
Low Grade (I +II)	361	64.0

Table 2: Tumor characteristics.

| Table 1: Clinicopathological Characteristics of the 564 patients. |
|-----------------|----------|----------|
| Factor | No. | Percent |
| PS (ECOG) | | |
| <2 | 344 | 61.0 |
| ≥ 2 | 220 | 39.0 |
| Age | | |
| Median | 60 (range:40-80 years) | |
| Sex | | |
| Female | 155 | 27.5 |
| Male | 409 | 72.5 |
| Occupation | | |
| Not Working | 155 | 27.5 |
| Working | 409 | 72.5 |
| Diabetes Miletus| | |
| No | 343 | 60.8 |
| Yes | 221 | 39.2 |
| Viral Hepatitis | | |
| No | 314 | 55.7 |
| Yes | 250 | 44.3 |
| Bilharziasis | | |
| No | 416 | 73.8 |
| Yes | 148 | 26.2 |
| Smoking | | |
| No | 280 | 49.6 |
| Yes | 284 | 50.4 |

Figure 1: The distribution of the clinico-pathological characteristics between the patients.
disease were 26.1%. Partial response just occurred in 14.5%. Fifty six percent (189 cases) of the cases received taxanes as 2nd line treatment. Only 9% of the cases received salvage palliative radiotherapy. The rest of the patients (117 cases) forming about 34.5% just had best supportive care (BSC) as shown in Table 4.

Survival data

For non-metastatic patients, mean DFS was (9.15 ± 0.5) while, mean OS was (13.5 ± 0.7). For metastatic patients, mean PFS was (4.4 ± 0.1) while, mean OS was (7.5 ± 0.15). In univariate analysis, patients with no bilharzial infection, non-SCC, responding patients had significant better DFS and OS vs. patients with bilharzial infection, SCC, non-responding patients (respectively, p=0.001 for all; (Figures 2 and 3). In multivariate analysis, no response, SCC type and bilharzial

Adjuvant treatment	No.	%
Cisplatin/5FU	58	25.6
Gemcitabine/Carb	16	7.0
Gemcitabine/cisplatin	135	59.5
MVAC	18	7.9

Site of Relapse	No.	%
Local and Regional (L)	105	46.3
Distant (M)	122	53.7

Treatment after Relapse	No.	%
Supportive (BSC)	61	26.9
Gemcitabine	5	2.2
Taxanes	161	70.9

Response after relapse	No.	%
Non-Responding (PD)	84	37.0
Responding	143	63.0

Table 3: Treatment and outcome

infection where found to be significant independent poor prognostic factors for OS and PFS in the metastatic and non-metastatic group of patients (P<0.001 for all; (Tables 5 and 6).

Discussion

In Egypt, bladder cancer has been the most common cancer during the past 50 years. A significant decline in the relative frequency of bladder cancer (from 27.6% to 11.7%) was observed in the past 37 years by analysis of 9843 patients at the department of pathology, NCI, Cairo University [17]. A series of 564 bladder cancer data were analyzed for clinico-pathological characteristics, systemic management and outcome as well as the prognostic factors that affect the survival, the results were compared with findings reported from other studies.
Table 5: Multivariate analyses by Cox regression model for non-metastatic patients.

Variables	DFS Hazard ratio (HR)	P-value	OS Hazard ratio (HR)	P-value
Age	1.109	0.489	1.118	0.456
PS	1.087	0.576	1.133	0.406
Sex	0.877	0.499	0.733	0.106
Diabetes	1.560	0.055	1.134	0.573
Hepatitis	0.660	0.074	0.724	0.147
Bilharziasis	0.107	<0.001	0.017	<0.001
Smoking	1.270	0.178	1.347	0.092
Squamous cell carcinoma	0.100	<0.001	0.015	<0.001
Grading	1.543	0.087	1.577	0.089
Response			4.704	<0.001

Table 6: Multivariate analyses by Cox regression model for metastatic patients.

Variables	PFS Hazard ratio (HR)	P-value	OS Hazard ratio (HR)	P-value
Age	1.068	0.579	1.086	0.4
PS	1.021	0.859	1.012	0.9
Sex	1.133	0.318	1.205	0.4
Diabetes	1.100	0.671	0.971	0.89
Hepatitis	0.876	0.549	0.971	0.7
Bilharziasis	0.027	<0.001	0.024	<0.001
Squamous cell carcinoma	0.027	<0.001	0.024	<0.001
Grading	0.19	1.299	1.186	0.4
Response	37.678	<0.001	41.955	<0.001

This study found that the median age at diagnosis for urinary bladder cancer, was 60 (range: 40-80 years) which is in agreement with previous Egyptian studies [18-20]. In the present study, bilharzial infection was in 73% of the patients, comparable to that reported by El- Bolkainy [21] Egyptian studies [18-20]. In the present study, bilharzial infection was in (140/227) 61.7% and (74/227) 32.6% while incidence of noninvasive bladder cancer, was 60 (range: 40-80 years) which is in agreement with previous studies [18-20].

In our study, 337 patients (59.8%) had TCC and 148 patients (26.2%) had SCC. This is comparable to that was found by Band et al. [25], in other countries [22]. We found that the incidence is nearly equal between smokers and nonsmokers, the same reported by Salem et al. [23]. Of the non-metastatic patients, stage II, III were represented in (140/227) 61.7% and (74/227) 32.6% while SCC decreased from 78% to 73% of bladder diagnoses in 2005, while SCC decreased from 78% to 72.5% of the patients. While, 27.5% were female with a male to female ratio of 2.6 to 1 in our study, approximately three times as many as males reported a pattern similar to that found in previous Egyptian studies [14] and in other countries [22].

In our study, 337 patients (59.8%) had TCC and 148 patients (26.2%) had SCC. This is comparable to that was found by Band et al. [25], who demonstrated significant changes in the histo-pathological types of bladder cancer in Egypt over the past 26 years; the relative frequency of TCC in this multi-year sample increased from 22% in 1980 to 73% of bladder diagnoses in 2005, while SCC decreased from 78% to 73% of diagnosed bladder tumors. Decline in SCC may be explained by reductions in schistosomal infection, increases in cigarette smoking and chemical exposures related to occupational hazards. Males represented 72.5% of the patients. While, 27.5% were female with a male to female ratio of 2.6 to 1 in our study, approximately three times as many as males as females, a pattern similar to that found in previous Egyptian studies [14] and in other countries [22]. We found that the incidence is nearly equal between smokers and nonsmokers, the same reported by Salem et al. [23]. Of the non-metastatic patients, stage II, III were represented in (140/227) 61.7% and (74/227) 32.6% while incidence of noninvasive bladder cancer (stage I) were found in (5/227) 2.2% of the patients, this correlates with findings of Mohktar et al. 2007 [24] and Amin et al. [25]. In multivariate analysis of our study, no response, SCC type and bilharzial infection were found to be significant independent poor prognostic factors for OS and PFS in the metastatic and non-metastatic group of patients. While, in Schistosoma-associated bladder cancer, Ghoneim et al. [26], the multivariate analysis proved that tumor cell type is not an independent working factor determining the OS. In concordance with our results, many authors cautiously concluded that treatment end-results were not affected by tumor histology or etiology but affected by other prognostic factors like stage, grade, nodal involvement [26-29].

Conclusion

The epidemiology of bladder cancer was dramatically shifted in Egypt with a lower incidence of SCC, a greater incidence of TCC, older age at diagnosis, and a decrease in the male/female ratio. Non-SCC, responding patients and non bilharzial BC had significant better DFS and OS. More prospective using these poor prognostic markers may be for risk stratification and predictive for other alternative therapies is recommended.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55: 108.
2. Golka K, Wiese A, Assenatno G, Bolt HM (2004) Occupational exposure and urological cancer. World J Urol 21: 391.
3. Morales K, Ryan L, Kuo T, Wu M, Chen C (2000) Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108: 662.
4. Smith A, Goycolea M, Haque R, Biggs M (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 147: 660-669.
5. Chen GJ, Chuang YC, You SL, Lin TM, Wu HY (1986) A retrospective study on malignant neoplasms of bladder, lung, and liver in Blackfoot disease endemic area in Taiwan. Br J Cancer 53: 405.
6. Office of the Surgeon General (US); Office on Smoking and Health (US) (2004) The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US).
7. Murta NC, Schnitz DB, Zweegers M, Steinbeck G, Kogevinas M, et al. (2007) Epidemiology of urinary bladder cancer: from tumor development to patient’s death. World J Urol 25: 285-295.
8. Pitard A, Brennan AP, Clavel J, Greiser E, Lopez AG, et al. (2001) Cigar, pipe and cigarette smoking and bladder cancer risk in European men. Cancer Causes Control 12: 551-556.
9. Alberg AJ, Kozuis A, Genkinger JM, Gallicchio L, Burke AE, et al. (2007) A prospective cohort study of bladder cancer risk in relation to active cigarette smoking and household exposure to secondhand cigarette smoke. Am J Epidemiol 165: 660-666.
10. Samanic C, Kogevinas M, Dosemeci M, Malats N, Real F, et al. (2006) Smoking and bladder cancer in Spain: effects of tobacco type, timing, environmental tobacco smoke, and gender. Cancer Epidemiol Biomarkers Prev 15: 1348-1354.
11. Shokeri A (2004) Squamous cell carcinoma of the bladder: pathology, diagnosis and treatment. BJU Int. 93: 216-220.
12. Mostafa M, Shewelta S, O’Connor P (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12: 97-117.
13. International Agency for Research on Cancer (1994) IARC monographs on the evaluation of the carcinogenic risk to humans. Volume 61, Schistosomes, liver flukes, and Helicobacter pylori. IARC.
14. Khaled H (2005) Systematic management of bladder cancer in Egypt: revisited. J Egypt Natl Canc Inst 17: 127-131.
15. Freedman LS, Edwards BK, RiesLAG, Young IL (2006) Cancer Incidence in Four Member Countries (Cyprus, Egypt, Israel, and Jordan) of the Middle East Cancer Consortium (MECC) Compared with US SEER.
16. Ibrahim AS, Khaled HM, Mikhail NH, Baraka H, and Kamel H (2014) Cancer Incidence in Egypt: Results of the National Population-Based Cancer Registry Four Member Countries (Cyprus, Egypt, Israel, and Jordan) of the Middle East Cancer Consortium (MECC) Compared with US SEER.
17. Gouda I, Mohktar N, Bilal D, El-Bolkainy T, El-Bolkainy NM (2007) Bilharziasis and bladder cancer: A Time trend analysis of 9843 Patients. J Egypt Natl Canc Inst 19: 158-162.
18. Khaled HM, Aly MS, Magrath IT (2000) Loss of Y chromosome in bilharzial bladder cancer. Cancer Genet Cyogenet 117: 32-36.
19. Khaled H, Emara ME, Gaafar RM, Mansour O, Abdel Warith A, et al. (2008) Primary chemotherapy with low-dose prolonged infusion gemcitabine and cisplatin in patients with bladder cancer: A Phase II trial. Urol Oncol 26: 133-136.

20. Haggag R, Farag K, Abu-Taleb F, Shamaa S, Zeki AR, et al. (2014) Low-dose versus standard-dose gemcitabine infusion and cisplatin for patients with advanced bladder cancer: a randomized phase II trial-an update. Med Oncol 31: 811.

21. El BMN, Mokhtar NM, Ghoneim MA, Hussein MH (1981) The impact of schistosomiasis on the pathology of bladder carcinoma. Cancer 48: 2643-2648.

22. Band P, Le N, MacArthur A, Fang R, Gallagher R (2005) Identification of occupational cancer risks in British Columbia: A population-based case-control study of 1129 cases of bladder cancer. J Occup Environ Med 47: 854-858.

23. Salem HK, Mahfouz S (2012) Changing patterns (age, incidence, and pathologic types) of schistosoma-associated bladder cancer in Egypt in the past decade. Urology 79: 379-383.

24. Mohktar N, Gouda I, Adel I (2007) Malignant urinary system tumors Cancer pathology registry.

25. Amin AF (2013) Epidemiological study of bladder cancer and risk factors in Upper Egypt. AAMJ 11: 305-316.

26. Ghoneim MA, Abdel-Latif M, El-Mekresh M, Abol-Enein H, Mosbah A, et al. (2010) Radical cystectomy for carcinoma of the bladder: 2,720 consecutive cases 5 year later. J Urol 180: 121-127.

27. Zaghloul MS (2010) Adjuvant and neoadjuvant radiotherapy for bladder cancer: revisited. Future Oncol 6: 1177-1191.

28. Scosyrev E, Yao J, Messing E (2009) Urothelial carcinoma versus squamous cell carcinoma of bladder: is survival different with stage adjustment? Urology 73: 822-73827.

29. Ploeg M, Aben KK, Hulsbergen CA, Schoenberg MP, Wijes JA, et al. (2010) Clinical epidemiology of nonurothelial bladder cancer: analysis of The Netherlands Cancer Registry. J Urol 183: 915-920.