Environmental Research Letters

LETTER

The spatially varying influence of humans on fire probability in North America

Marc-André Parisien¹,², Carol Miller³, Sean A Parks¹, Evan R DeLancey¹,², François-Nicolas Robinne³ and Mike D Flannigan

¹ Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122nd Street, Edmonton, AB T6H 3S5, Canada
² Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, 790 E Beckwith Avenue, Missoula, MT 59801, USA
³ Western Partnership for Wildland Fire Science, University of Alberta, Department of Renewable Resources, 751 General Services Building, Edmonton, AB T6G 2H1, Canada

Abstract

Humans affect fire regimes by providing ignition sources in some cases, suppressing wild fires in others, and altering natural vegetation in ways that may either promote or limit fire. In North America, several studies have evaluated the effects of society on fire activity; however, most studies have been regional or subcontinental in scope and used different data and methods, thereby making continent-wide comparisons difficult. We circumvent these challenges by investigating the broad-scale impact of humans on fire activity using parallel statistical models of fire probability from 1984 to 2014 as a function of climate, enduring features (topography and percent nonfuel), lightning, and three indices of human activity (population density, an integrated metric of human activity [Human Footprint Index], and a measure of remoteness [roadless volume]) across equally spaced regions of the United States and Canada. Through a statistical control approach, whereby we account for the effect of other explanatory variables, we found evidence of non-negligible human–wildfire association across the entire continent, even in the most sparsely populated areas. A surprisingly coherent negative relationship between fire activity and humans was observed across the United States and Canada: fire probability generally diminishes with increasing human influence. Intriguing exceptions to this relationship are the continent’s least disturbed areas, where fewer humans equate to less fire. These remote areas, however, also often have lower lightning densities, leading us to believe that they may be ignition limited at the spatiotemporal scale of the study. Our results suggest that there are few purely natural fire regimes in North America today. Consequently, projections of future fire activity should consider human impacts on fire regimes to ensure sound adaptation and mitigation measures in fire-prone areas.

Introduction

Humans affect fire regimes worldwide, sometimes causing profound changes to ecosystem structure and function (McWethy et al. 2013). In many parts of the world, people increase fire activity beyond what is naturally expected by deliberately or accidentally setting fire to natural vegetation (Carcaill et al. 2009, Bowman et al. 2011). This is the case, for example, in African savannas, where cultural practices of frequent burning make it the archetype of a ‘human-tended’ fire regime (Archibald et al. 2012). Conversely, in other regions or ecosystems of the world, such as in parts of North America, land-use change and a culture of aggressive fire suppression may limit fire activity (Cumming 2005, Finney et al. 2009). Globally, humans are usually responsible for the majority of ignitions; however, many regions where human ignitions are prevalent are also subject to intense fire management programs aimed at extinguishing fires before they
become large (Stocks et al 2002, Stephens 2005). In addition to these direct effects on fire activity, humans may exert pervasive and enduring indirect effects on fire regimes by altering, or removing, the natural vegetation (e.g., change in forest structure, invasive annuals, logging, conversion to irrigated agriculture) (Cochrane 2003, Pausas and Keeley 2009, Perry et al 2012, Fréjaville and Curi 2015).

Several investigations of wildland fire in North America show a dramatic effect on fire activity following the arrival of Europeans. An initial surge in area burned at the time of settlement due to slash-and-burn practices in some areas (Weir and Johnson 1998) was followed by a large-scale reduction in fire activity that was largely the result of fire suppression and human modifications to the natural vegetation cover (Marlon et al 2008). Over the past three decades, however, substantial increases in wildfires have been reported, notably in the western United States (West erling et al 2006) and in the boreal zone (Kasischke and Turetsky 2006). Although this phenomenon has been largely attributed to a warmer and drier climate, it is increasingly recognized that, in some areas, humans may have played a role (Stephens et al 2007, McWethy et al 2013). Paradoxically, some of the recent increases in fire activity in parts of the continent, notably in the west, may be due to a legacy of fire management policies that were too successful (Stephens and Ruth 2005). Almost a century of active fire suppression has led to unintended biomass accumulation that consequently increased the average size and intensity, as well as ecological impact, of modern fires (Keane et al 2002). The impact of humans on fire is thus inherently complex: some human activities yield more fire, whereas the opposite is true of others (Sturtevant and Cleland 2007, Parks et al 2015), thereby challenging our assessment of the net effect of humans on wildland fire activity in North America and elsewhere.

In North America, the influence of humans on fire activity is assumed to be highly variable, ranging from extreme in areas of high population and altered land use to seemingly negligible in unmanaged wildlands. Areas with historically active fire regimes (whether natural or anthropogenic), notably in the northeastern United States and adjacent Canada, now experience virtually no wildland fire (Clark and Royall 1996, Nowacki and Abrams 2008). In contrast, the heavily populated regions of southeastern North America, where a culture of prescribed burning has existed for centuries, have highly active fire regimes that are largely human dominated (Waldrop et al 1992, Slocum et al 2007). In the center of the continent, in the American Midwest and Canadian Prairies, where vast grasslands were converted to agriculture, previous high fire activity has been greatly diminished or even excluded altogether (Collins and Wallace 1990, Brown et al 2005). Currently, most fire activity in North America occurs in the western United States and in the boreal forests of Canada and Alaska, where, in spite of large pockets of urbanization and agriculture, fire is promoted by expansive wildlands combined with fire-conducive climates and vegetation (Swetnam 1993, Westerling et al 2003). However, though quite active, it has been argued that fire regimes in most forests of western North America are far from natural, having been shaped by a century of fire suppression and forest management (Stephens and Ruth 2005). The most natural fire regimes of North America are presumed to occur in the northern forests of Canada and Alaska (Flannigan et al 2009). Not only are these regions sparsely populated, but, given their regimes of low-frequency, high-intensity fires, some have suggested that fire suppression is less effective here than it is in other forest types (Johnson et al 2001).

Most evaluations of the influence of human activity on North American fire regimes have been conducted for specific countries, subregions, or landscapes (e.g., Cardille et al 2001, Sturtevant and Cleland 2007, Syphard et al 2007, Gralewicz et al 2012, Hawbaker et al 2013, Liu and Wimberly 2015). Moreover, published studies have been carried out at various temporal and spatial scales and using different data types and modeling techniques, thereby preventing an unbiased comparison among regions (but see Bistinas et al 2013). A continent-wide assessment that uses a consistent approach would complement previous efforts with the added benefit of providing a baseline for large-scale policy or management plans. As such, the overarching goal of this study was to conduct a comprehensive evaluation of the effect of humans on fire activity across North America. Our specific objectives were to (1) assess the importance of human influence on fire activity and (2) evaluate the shape of this relationship (positive, negative, unimodal). This was achieved by partitioning the United States and Canada into 16 hexagonal polygons (size = 1.38×10^6 km2) and, for each hexagonal polygon, creating a statistical model of fire probability (based on area burned) for the 1984–2014 time period as a function of climate, enduring features (topography and percent nonfuel), lightning, and indices of anthropogenic influence. These models allowed us to (1) statistically control for the effect of other factors when assessing the influence of humans on fire activity and (2) evaluate the spatial variability in these relationships at a continental extent.

Methods

The study area covers the United States (US) and Canada (hereafter North America; 19 437 101 km2) (figure 1(a)), excluding Hawaii and the Caribbean islands. Full coverage of North America was not possible due to lack of data for Mexico. The study area was partitioned into 16 hexagonal polygons (hereafter hexels) (hex 1 to hex 16) having a width of 1260 km and an area of 1 374 902 km2 (figure 1(b)). Explorations showed that this size and placement of hexels represent a good tradeoff between capturing subcontinental variability in fire activity and producing robust models of fire activity across the study...
area. The response variable is sampled within burned areas, and consequently the modeled response quantifies the probability that any given pixel burned over the 1984–2014 time period (hereafter fire probability). For each hexel, we built a statistical model of fire probability as a function of climatic normals, enduring features (topography and nonfuel), lightning, and measures of anthropogenic influence.

The fire probability models were fully comparable among hexels, as they were built using the same set of explanatory variables and used the same model settings. We evaluated the importance of indices of anthropogenic influence to determine the human impact on fire activity by controlling (statistically) for the effect of climate, enduring features, and lightning patterns in each hexel. We then plotted the relationship of each of these metrics to assess whether fire probability decreased, increased, or had a nonlinear (e.g., unimodal) relationship to the anthropogenic variables in each hexel.

Data

Models of fire probability were built as a function of several explanatory variables likely to influence fire activity for each hexel. Although a large set of independent variables was initially considered for modeling, we selected a subset of variables that were not highly correlated with one another and also had good explanatory power for predicted area burned across North America (table I; figure B1). The description that follows focuses on the variables selected for the modeling. The full list of variables is found in table A1. We processed all model variables using a North America Albers equal-area conic projection at a 1 km pixel resolution.

Fire

The US fire data were obtained from the Monitoring Trends in Burn Severity (MTBS) project (Eidenshink et al 2007), whereas Canadian data were obtained from the Canadian Forest Service National Fire Database (Parisien et al 2006). Because only fires >400 ha are included in the western US, this size threshold was applied to the entire study area; fires <400 ha were numerous but represent a small fraction of the total area burned (<5%). Both datasets include prescribed burns, but these comprise <7% of the fires and <2% of the total area burned across the study area. We noted two limitations with these data: (1) fires were inconsistently reported from 1984 to 1995 in Ontario north of 54° N and (2) unburned islands were not mapped (or incorrectly mapped) for many of the fire perimeters in the dataset. Neither limitation is expected to greatly affect estimates of area burned at the spatial extent of a hexel.

Figure 1. The study area (United States and Canada) with political boundaries and area burned by fires for the 1984–2014 time period (in red) (a). Models are created for each of the hexels superimposed on the study area (b).
Table 1. Description of variables used in the statistical modeling of fire probability in the United States and Canada. The time period covered is 1984–2014 for the area burned and 1981–2010 for climate variables. The mean and range values of pixels are given for each variable. All variables were resampled to a resolution of 1 km.

Variable name	Description	Units	Mean (range)
Fire	US fires merged with Canadian fires. US fires from MTBS database 1984–2014. Canadian fires from Canadian National Fires database 1984–2014. Fires over 400 ha used.	ha	5311 (400–2 205 060)
Climate (1981–2010 normals)			
CMI	Hargreave’s climatic moisture index	Dimensionless	299.4 (0–1754)
DegDaysU18	Degree days under 18 °C	Degree days	5043 (0–11 539)
MeanPrecip	Mean annual precipitation	mm	722 (50–10 149)
RelHumid	Mean annual relative humidity	(%)	59.6 (36–85)
Enduring	Heat load index, an index calculating the southwestness of a slope	Dimensionless	0.64 (0.096–1.03)
SurfAreaRatio	Surface area ratio	Dimensionless	1.01 (1–1.40)
TopoPosIndex	Topographic position index calculated at 2000 m scale	Dimensionless	−0.34 (−489–483)
PctNonfuel	Percent nonfuel at a 1000 km² moving window size. Non-fuel classified as barren lands, water, snow, and ice. From 2005 land cover	%	4.5 (0–99.7)
Lightning	Average number of lightning strikes per year from 1995 to 2005	Flashes km⁻² year⁻¹	5.9 (0–46.4)
Anthropogenic			
HumanFoot	Human Footprint Index, an index of human influence for the year 2004. Calculated from a 100 km² moving window.	Dimensionless	16.5 (0–98.1)
LogPopDens	Log of population density for the year 2000	People km⁻²	−0.51 (−4 to 4.3)
RdisVol	Roadless volume calculated with a 10 000 km² moving window	km³	6.5 (0.067–100)

Fire occurrence, as integrated in the model, consists of points randomly sampled within fire perimeters of mapped fires ≥400 ha from 1984 to 2014. We considered areas as either burned or unburned over the 31 year time period and did not distinguish areas that may have burned more than once. This approach was deemed the most suitable given the low proportion of re-burned areas during the study time period (~8% of the total area burned). The points were sampled within the polygon data (rather than a raster dataset); therefore, there was no loss of spatial resolution in this process.

Climate

A suite of 30 year climate variables describing gradients of energy (temperature) and moisture (precipitation and humidity) for the 1981–2010 time period was generated. This time period represents a slight mismatch to that of the fire data (1984–2014), but is not expected to greatly influence the results. The Climate WNA software (Wang et al 2012) was used to interpolate the climate data from a digital elevation model. Of the climate variables selected for modeling, two depicted patterns of moisture: mean annual precipitation (MeanPrecip) and mean annual relative humidity (RelHumid). One variable was a measure of temperature, the degree days under 18 °C (DegDaysU18), and another, the climate moisture index (CMI), was an annual integrative measure of energy and moisture (precipitation–potential evapotranspiration).

Enduring features

Enduring features are those components of the landscape that vary little, if at all, during the time scale of the study. Elevation-derived metrics describing topography comprised most of this category of variables. Heat load index (HeatLoadIndex), which is a measure of potential solar exposure, and surface area ratio (SurfAreaRatio), which is a measure of surface roughness, were computed with Geomorphometry and Gradient Metrics Toolbox 2.0 (Evans et al 2014). Topographic position index (TopoPosIndex) describes the relative position along a valley-to-peak gradient; this metric was computed with a 2000 m window. Percent permanent nonfuel (PctNonfuel), which included open water, glaciers, barren ground, and urban areas from the 2005 global land cover (Friedl et al 2010), was computed at 100 and 10 000 km² scales.
using moving window averages at each of the radii to account for possible scale-dependent effects (Parisien et al 2012); vPCNonfuel at the 10 000 km² scale was retained for modeling.

Lightning
Patterns of lightning were used to describe natural ignition potential across the study area. The density of cloud-to-ground lightning strikes for the 1995–2005 time period was obtained from the NASA LIS/OTD 0.5° high-resolution annual climatology dataset (Christian et al 2003). In spite of the lightning dataset having only partial overlap with the time period of the study and a coarser resolution than the other variables, it was deemed acceptable for depicting lightning strike patterns at the spatial scale of this study.

Anthropogenic influence
Three anthropogenic variables were considered in our evaluation of the influence of humans on fire activity in North America. Population density (log10-transformed; LogPopDens) was obtained from the Center for International Earth Information Network (Balk et al 2006). High values of this metric are concentrated in urban areas and, as such, it effectively separates urban versus rural (including wild) areas. The Human Footprint Index (HumanFoot) is an integrated index of human influence derived from roads, urban areas, and nighttime light (Sanderson et al 2002). Because it is based on a range of features, this index reveals more about human activities than LogPopDens. We evaluated LogPopDens and HumanFoot variables at the 1 km² (resolution of raw data) and 100 km² scales (moving window average); only the best-performing scale was selected. Roadless volume (RdlsVol; Watts et al 2007) is a metric of isolation from human influence computed from road data (ESRI 2008). It represents the product of the footprint (area of cells containing roads) and the mean distance to roads and was computed at 100 and 10 000 km² scale. Though similar to HumanFoot, RdlsVol is simpler and better emphasizes remoteness. Road density was initially considered but subsequently dropped because of its strong correlation with RdlsVol.

Variable selection
A subset of 12 variables from the initial pool of explanatory variables (table A1) was selected for model building according to their degree of correlation and ability to predict fire activity (table 1; figure B1). First, correlations were computed between each pair of variables to identify those correlated at $r > 0.7$ across the study area and within each hexel. Although correlations varied among hexels, explorations showed that a hexel-wise selection yielded similar variable sets than for the entire study area. This variable selection approach thus provides a good trade-off between model performance and the ability to compare results among hexels. In each grouping of correlated variables, a single variable was chosen according to its ability to explain fire activity in bivariate MaxEnt models of fire activity to the area under the curve (AUC) metric (see Statistical modeling). Because we were primarily interested in human influences on fire activity, LogPopDens, HumanFoot, and RdlsVol were retained in spite of correlations $r > 0.7$. Of these variables, LogPopDens and RdlsVol were correlated to the DegDaysU18 climate variable at $r = 0.80$ and $r = -0.72$, respectively. Anthropogenic variables were also correlated with one another: LogPopDens–HumanFoot at $r = 0.86$; LogPopDens–RdlsVol at $r = -0.78$; and HumanFoot–RdlsVol at $r = -0.75$.

Statistical modeling
Statistical models of fire probability using 12 explanatory variables (table 1) were produced for each of the 16 hexels. Models were built using MaxEnt v.3.3.3k (Phillips et al 2006), a machine-learning technique designed for presence-only data (i.e., when true absences are unknown). A presence-only framework was deemed adequate because a lack of fire need not be interpreted as a true absence over the 31 years of fire data for which we conducted this study (i.e., many areas that did not burn will likely burn in future years); however, presence-only or presence–absence framework have been shown to produce similar models of fire probability (Parisien and Moritz 2009). MaxEnt evaluates the environmental space of the points sampled within the fire perimeters (‘fire presence’) in contrast to that of the entire environment of study area (‘background’). It does so by fitting the probability distribution of maximum entropy to the environmental variables at each fire–presence point. This modeling technique allowed us to model highly complex relationships without overfitting the responses. MaxEnt settings were selected following the advice of Elith et al (2011) and through careful explorations in which the aim was to produce robust models for the ensemble of hexels. To this end, we opted for a regularization value of four and did not use the ‘hinge’ feature, which tends to produce unrealistic (i.e., overfit) responses.

A large number of fire presences and background points were sampled to ensure that the appropriate degree of variability was captured for statistical modeling. Points were randomly sampled in burned areas at a density of 1 point per 5 km² for fire presences and across the hexel’s landmass at a rate of 1 point per 50 km² for the background. Points were never sampled within permanent nonfuels (water, glacier, urban, rock). Because of variation in both area burned and hexel landmass, the number of sample points varied among hexels. To reduce spatial autocorrelation in model residuals, a random subset of total fire–presence points were selected for model building. One hundred such subsets were used.
and their results were subsequently averaged (see Parisien et al. 2012). This strategy was appropriate across the study area because it limited overfitting while yielding robust models of area burned for each hexel.

Four models of fire probability were produced for each hexel. The first model (hereafter ‘full model’) was built using all 12 variables, and its output was used to determine the importance of the four categories of variables: climate, enduring features, lightning, and anthropogenic influence. The other three models (simply named after the variable of interest; e.g., LogPopDens) were created to highlight the singular effect of each of the anthropogenic variables. These three models were each built using a total of 10 explanatory variables, including climate, enduring features, lightning, and a single anthropogenic variable. These models were used to evaluate the response of area burned to each of the three anthropogenic variables. These three models were each built using a total of 10 explanatory variables, including climate, enduring features, lightning, and a single anthropogenic variable. These models were used to evaluate the response of area burned to each of the three anthropogenic variables; the reason for incorporating only one of these variables was to avoid any distortion of the response due to the anthropogenic variables’ correlation to one another.

Model evaluation was performed on each of the 100 subset models and subsequently averaged for each hexel. As a measure of overall of model performance, the AUC was computed from the true positives and false positives (Liu et al. 2005). AUC values may range from 0.5, where prediction accuracy is no better than if samples were randomly selected, to 1, which indicates perfect classification accuracy. However, in a presence–only framework, as in this study, it is impossible to achieve an AUC value of 1 because absences (hence false positives) are unknown. The maximum achievable AUC in a presence–only framework is equal to $1 - a/2$, where a is generally the fraction of the study area covered by fire (i.e., the prevalence). For the sake of adjusting the AUC value, we considered a to be the percentage of 1 km2 pixels where fire was observed. This provides a fair, yet underestimated, approximation of prevalence. Additional evaluation metrics are provided in table C1.

Assessment of anthropogenic influence

The contribution of each of the four variable categories (climate, enduring features, lightning, and anthropogenic influence) for each hexel was calculated from the full model by summing the relative importance of the variables in each category. Variable importance was calculated as the model gain associated with each variable (Phillips et al. 2006). Although it was impossible to compute an absolute measure of variable importance, this could be approximated by comparing the values to the model performance metrics (e.g., AUC). The relationship of each anthropogenic variable by hexel was then plotted from the results of the LogPopDens, HumanFoot, and RdlsVol models. We use partial dependence plots, which measure the effect

![Figure 2](environ-res-lett-11-075005-f002.png)

Figure 2. The relative contribution of variables for full models of fire probability by hexel in each of the four variable categories: climate (C), enduring features (E), lightning (L), and anthropogenic influence (A). The value (in red) in the top-center of each hexel represents the adjusted area under the curve (see methods). The y-axis is a percentage and is the same for all plots.
Table 2. Relative contribution of the three anthropogenic variables for models of fire probability for each hexel. Values were calculated according to model types: one that incorporates only the anthropogenic variable of interest (single) in combination with the other explanatory variables and the other (full) that incorporates all three anthropogenic variables. LogPopDens, population density (logged); HumanFoot, Human Footprint Index; RdlsVol, roadless volume.

	LogPopDens	HumanFoot	RdlsVol			
	Single	Full	Single	Full	Single	Full
Hex1	30.9	11.8	4.43	5.23	29.5	6.05
Hex2	44.4	50.3	23.9	0.31	24.3	0.276
Hex3	4.65	7.97	2.54	3.23	4.39	8.37
Hex4	44.5	34.4	44.4	15.3	75.7	4.58
Hex5	16.6	15.0	21.6	13.2	8.46	6.42
Hex6	13.9	10.2	2.12	0.764	18.8	1.84
Hex7	14.3	12.4	16.3	11.3	15.2	4.05
Hex8	33.3	32.9	9.13	6.18	20.0	7.24
Hex9	51.5	24.2	54.3	21.3	61.3	5.19
Hex10	6.32	3.12	9.09	8.25	10.6	5.30
Hex11	10.6	4.70	2.81	9.74	10.1	10.3
Hex12	9.91	3.52	51.6	52.7	21.5	3.83
Hex13	14.0	5.18	7.49	6.54	29.4	12.3
Hex14	6.37	0.924	29.4	32.4	8.59	4.06
Hex15	9.07	4.86	16.0	18.0	8.77	4.55
Hex16	2.00	5.32	25.4	20.0	4.23	3.10
Mean	19.5	14.2	20.0	14.0	21.9	5.46

of a variable when the value of all other variables are held constant at their means, to statistically control for the effect of non-anthropogenic variables on fire probability. To estimate the effect of this statistical control, bivariate relationships of fire probability as a function of individual anthropogenic variables were also produced.

Results

Overall, models of fire probability as a function of all variables (i.e., the full model) performed well (figure 2). The test AUC averaged 0.776 among hexels, and ranged from 0.672 (hex13) to 0.891 (hex8). AUC values increased, sometimes substantially, when adjusted for prevalence (mean 0.804).

The relative importance of climate, enduring features, lightning, and anthropogenic variables varied substantially among hexels (figure 2). For all hexels, the two most influential categories of variables were climate and anthropogenic. The anthropogenic category was ranked as the most important in four hexels (hex2, hex7, hex9, hex12) and the second-most important in the remaining 12 hexels. Climate was the most frequent dominant control on fire activity, having the highest variable importance in all but four hexels (i.e., the ones dominated by anthropogenic variables). Enduring features ranked third in terms of importance in all hexels except four (hex1, hex5, hex8, hex10), where this category was the least important and lightning had the third-highest contribution. Lightning was otherwise the least important variable. The importance of each anthropogenic variable, calculated both from the full model and models with a single anthropogenic variable, is reported by hexel in table 2. All three anthropogenic variables were useful in explaining fire probability models, but their relative importance varied substantially among hexels.

The relationship between fire activity and human influence varied as a function of the specific anthropogenic variable, but was overall fairly coherent among hexels. Area burned usually decreased as a function of increasing LogPopDens, except in hexels where there was a strong (hex8) or moderate unimodal response (hex1, hex2, and hex3) (figure 3). The HumanFoot variable had a decaying form in all hexels, though the range of slopes varied considerably (figure 4). The response to the RdlsVol was the most diverse of the three anthropogenic variables (figure 5). Fire activity increased monotonically as a function of RdlsVol in some hexels (hex3, hex4, hex5, hex6, hex7, hex13), decreased in some hexels (hex10, hex12, hex15, hex16), and was unimodal in others (hex3, hex8, hex9, hex14). The bivariate relationship between fire activity and anthropogenic variable show broadly similar patterns to the partial dependence plots (figure D1).

Discussion

Because of its extensive wildlands and low human densities over much of its territory, North America is often viewed as having fire regimes that are closer to natural than those in other parts of the world (Lavorel et al 2007). Although this may hold true to some degree, Cardille and Lambois (2010) have shown in the conterminous US that, even in seemingly ‘intact’ areas, very few landscapes are completely free of some human imprint. The results of this study similarly suggest that the human impact on fire regimes is widespread and pervasive. Climate is nevertheless the dominant environmental control on fire in most of North America, thereby supporting the claim that its fire activity today—as it has been for millennia—is mainly regulated by top-down controls (Swain 1973, Flannigan et al 2005, Guyette et al 2012). There are clearly, however, other ‘non-natural’ controls that exert an influence on fire, even overriding the effect of climate in some portions of the continent, as shown by Hawbaker et al (2013) in the conterminous US. We found a non-negligible impeding influence of humans on fire, even in some of the least densely populated areas. Though our results show a remarkably coherent negative influence of humans on fire, the specific nature—and hence outcome—of the human–fire relationship is far from uniform. A potentially interesting exception to the negative effect of people on fire is observed in some of North America’s most...
remote areas where, despite the lack of humans, we saw little fire activity.

One of the most surprising aspects of this study’s results is the relatively strong influence of humans on fire activity across North America. Anthropogenic effects were usually substantially greater than enduring features and lightning, and even greater than climate in some areas. Our expectations were that more sparsely populated parts of the continent would have a relatively lower anthropogenic effect on fire. As shown in all of the boreal hexels (hex10, hex12, hex13, hex14, hex15, hex16), this expectation did not bear out. More aligned with our expectations was the high anthropogenic impact of the Midwest (hex4, hex8), Great Plains (hex5, hex9), and Gulf of Mexico (hex2, hex4), areas that have undergone widespread land conversions and that are at a more advanced stage of anthropogenic fire-regime transformation (Guyette et al. 2002, Bowman et al. 2011). By contrast, some heavily human-altered hexels of the conterminous US show an unexpectedly moderate effect of humans on fire activity, perhaps because climate is simply much more dominant than other environmental controls. This may be the case in coastal California (hex3), where a clear anthropogenic effect (Syphard et al. 2008) may be masked by strong climate forcing (Moritz et al. 2010).

Any large-scale effect of population density on fire activity can be confounded by the type of human activities on the landscape (Hawbaker et al. 2013). For example, the culture of prescribed burning in the southeastern US and, more recently, the tolerance of lightning-ignited fire in some of the protected areas in western North America, may be idiosyncratic and not found elsewhere at similar population densities. Overall, our results agree with those of Knorr et al. (2014) and Hantson et al. (2015), who found a globally negative relationship between fire and population density, and are coherent with the conclusions of Marlon et al. (2008) and Mouillot and Field (2005), who reported a decrease in area burned in relation to increased population trends in boreal and temperate biomes. As observed in this study, Bistinas et al. (2013) found this relationship to be spatially variable, but there are discrepancies in the direction of relationships (positive and negative) between the two studies. In some parts of the continent (southwestern US, Florida, and the Great Lakes area), we observed the unimodal relationship reported by Syphard et al. (2007), whereby the peak in fire ignitions occurred at intermediate population densities, suggesting that both intense human activity and the near absence of humans is associated with fewer fires. We also observed that the per capita effect of humans on fire activity varies widely across North America. Notably, in the boreal zone we found a non-

Figure 3. Partial dependence plots of the modeled response of fire probability as a function of log10 of population density. The red line indicates the mean response, whereas the blue areas represent the standard deviation calculated from the 100 model subsets. Note that the x-axes are variable among hexels and its values have been scaled from 0 to 100 for ease of visualization; the y-axis is the same for all hexels.
negligible human impact on fire activity in spite of that region’s low population densities. This may be due in part to the spatially expansive nature of human features and policies of aggressive fire suppression (Cumming 2005, Martell and Sun 2008). In this region, the effects of humans on fire are spatially structured, in that most fires are ignited by humans close to roads, but it is the remote lightning-ignited fires that are responsible for the majority of the area burned (Gralewicz et al 2012).

While many large-scale wildland fire studies may include a single variable describing anthropogenic impacts on fire (e.g., Krawchuk et al 2009, Bistinas et al 2013), we included three conceptually different variables to capture varying aspects of the fire–human relationship. We were expecting the Human Footprint Index, which accounts for land use and infrastructure in addition to population density, to have a different relationship with area burned compared to population density. Results, however, show that population density and the Human Footprint Index have a remarkably similar (negative) relationship with fire. This provides further support to the idea that, at the spatiotemporal frame of this study, the anthropogenic factors that impede fire activity (e.g., suppression, landscape fragmentation) outweigh those that promote it (e.g., ignitions) in North America. Our third index, the roadless volume, tells a somewhat different story, and therefore we caution against using a single index to measure human influence on fire regimes. Even our use of multiple indexes can probably not describe all important human impacts. For instance, the invasion of exotic cheatgrass species (Bromus spp.) have profoundly modified fire regimes in parts of the western US (Balch et al 2013, Parks et al 2015), but are not fully captured by our three indexes. The same could be said for the effect of past fire management policies on current fire activity, given that these have likely altered the nature of the fire–environment relationship in some areas (Higuera et al 2015, Ruffault and Mouillot 2015).

The roadless volume represents a more accurate depiction of the degree of isolation from human activities than the population density and the Human Footprint Index. That is, the ‘stretch’ of values in this metric is more heavily weighted towards the distance from roads (i.e., low-impact areas), translating into a more diverse set of human–fire relationships. Much of the northern and western parts of North America, for instance, show a unimodal response of fire to roadless volume, which suggests less fire in the most isolated areas (mainly protected areas) compared to areas of moderate-to-high remoteness. These results are consistent with what Parisien et al (2012) reported in the western US; however, our results show that a

Figure 4. Partial dependence plots of the modeled response of fire probability as a function of Human Footprint Index. The red line indicates the mean response, while the blue areas represent the standard deviation calculated from the 100 model subsets. Note that x-axes are variable among hexels; the y-axis is the same for all hexels.
single response for the western US masks the variability in the fire responses across such a large area. Notwithstanding, there is a relative decrease in fire probability in some of the most remote areas of some hexels. Reasons why some remote areas may have experienced relatively less fire than adjacent anthropogenized areas may be due to differences in fire environments, past fire-management policies, or simply that there have experienced comparatively fewer ignitions (Cardille et al 2001, Miller et al 2012, Haire et al 2013). We suspect that the unimodal response of fire to human influence (roadless volume) in some areas of North America is the result of ignition limitation, as observed in some studies in California (Syphard et al 2007, Keeley et al 2011) and other parts of the globe (Bradstock 2009, Kraaij et al 2013). Flannigan et al (2005) hinted that this may be the case in the largely uninhabited parts of the lightning-poor boreal zone. Some of the most remote areas of the western US may also be ignition limited simply because they encompass some of the highest mountains and because lightning ignitions are deficient at very high elevations (Dissing and Verbyla 2003) (figure E1). It must be noted that some remote areas may have experienced more fire in the past if they were subjected to frequent burning by humans, but the extent to which these past fire regimes were ‘natural’ or not is debated and likely varies greatly among areas (Vale 2002, White et al 2011). Nevertheless, in an era of rapid and sometimes drastic change, it is important to evaluate the potential effect of changes in ignition loads, especially given the sensitivity of some ecosystems to changes in fire activity (McWethy et al 2013).

Limitations
As is the case with all modeling studies, this study’s results are subject to limitations both in terms of the data and the modeling approach. In spite of our dataset being largely comprehensive, the missing fire data of hex12 (northern Ontario and Manitoba) may have significantly affected the results; therefore, results for this hexel should be interpreted with caution. Although our systematic partitioning of the continent into hexels allows us to see broad patterns in human–fire relationships, comparison among hexels is complicated by the widely varying range of values in the three anthropogenic variables. For example, the maximum value for roadless volume in hex4 (southern Midwest) is lower than the minimum value for in hex16 (Alaska). The dichotomization of the response variable into burn and unburned precluded consideration of areas that burned more
than once. Although the fraction of these areas was low for the study time period it may be important to explicitly consider them as fire history atlases are updated with new data in future years. Interpretation may also be complicated by the modeling technique. For instance, even though an effort was made to statistically control for the effects of other variables, the influence of anthropogenic variables may still conflate with non-anthropogenic variables in some parts of North America. This may be the case at the forest/tundra transition characterizing the northernmost band of hexels, for example, where the presumed human influence may be partly masked by other gradients in climate and vegetation.

The difficulty in pinpointing specific mechanisms by which humans affect fire ignition and spread from statistical relationships is further exacerbated by the potential scale-dependence of these relationships. The fire–human relationships reported in this study are not necessarily expected to hold over much smaller or greater spatial extents. For instance, whereas the negative association of wildfire with humans over large areas, such as our hexels, is partly due to greater area burned in some protected areas, this relationship could in fact be positive over areas where humans are responsible for most (or all) of the fire ignitions. Parisien et al (2011) observed a consistently negative response of area burned to the Human Footprint Index at four spatial scales in the boreal forest of Canada. The scale-dependence of the fire–human relationship, however, requires further investigation and, as such, the results of this study should thus not be extrapolated to greatly varying spatio-temporal scales. Humans influence aspects of the fire regime other than fire frequency or area burned. For instance, human-induced changes to the seasonality of fire occurrence, though difficult to detect, may lead to fairly drastic ecological changes in some biomes (Le Page et al 2010). It would be interesting and important to consider other components to paint a more complete picture of human influence on this disturbance process (Whitman et al 2015), Liu and Wimberly (2015), for example, found that humans had a greater impact on fire size than fire occurrence of high-severity burns in the western US.

Except for the percentage of permanent nonfuel, the fire probability models of this study did not explicitly consider vegetation. There is compelling evidence that biota affects spatial and temporal patterns of fire activity (Girardin et al 2013, Terrier et al 2013), and vegetation-related variables have been often incorporated into large-scale biophysical models of fire (Sturtevant and Cleland 2007, Hawbaker et al 2013, Liu and Wimberly 2015). Although these variables can be very useful in explaining fire activity, they are also highly correlated with climatic gradients at the spatio-temporal scale of study. In fact, Parisien and Moritz (2009) showed there was virtually no loss of model performance when vegetation class was removed from models of fire activity built for the conterminous US that included several climate variables. Information on vegetation is certainly useful in explaining potential feedback mechanisms that can regulate fire occurrence via postfire succession, but this level of detail is beyond the scope of this large-scale study. Another reason for focusing on climate and not incorporating vegetation composition into this study is that it is usually impossible to know the state of the vegetation at the time of burning. This caveat convinced us that, to meet the goal of our study, it was more appropriate to use climatic gradients; however, it must be acknowledged that detailed vegetation information at the time of burn would have likely substantially improved our models.

Conclusion

The results of this study suggest that there may be few truly natural fire regimes in North America today. While this study points to a general impeding effect of people on fire across North America, it also paints a complex picture of anthropogenic effects on fire across the continent—one where fire is as variable as the biophysical environment that defines it. Because of this complexity, the specific mechanisms by which humans alter fire ignition and spread may be difficult, or even impossible, to identify. Further, humans can indeed distort or mask fire–climate relationships, thereby undermining our ability to predict current and future fire activity in a changing climate (Parks et al 2014). Consequently, this study’s results should be viewed as another building block towards more in-depth investigations of the spatial variability of human impacts on North American fire regimes. The statistical relationships reported here could, for example, be incorporated into a process-based model to enhance our understanding of changing human–fire relationships (e.g., Thonicke et al 2010). As adaptation and mitigation measures are developed for fire-prone areas, it will become imperative that wildland fire scientists and land managers account for human influences in projections of future fire.

Acknowledgments

This study was partially funded by the Adaptation Program of Natural Resources Canada. We are grateful to Nicolas Mansuy and two anonymous reviewers for constructive comments.
Appendix A

Table A1. List of all variables initially considered for the modeling of fire probability. A subset of variables was selected to build the fire probability models in this study.

Variable name	Description	Units	Mean (range)
\(^{\text{Climate (1981–2010 normals)}}\)			
StartFrostFree	Julian date on which the frost-free period begins	Day of year	135 (0–208)
CMI	Hargreave’s climatic moisture index	Dimensionless	299 (0–1754)
DegDaysA18	Degree days above 18 °C	Degree days	345 (0–3044)
GrowDegDays	Degree days above 5 °C (growing degree days)	Degree days	2081 (0–7643)
ChillDegDays	Degree days under 0 °C (chilling degree days)	Degree days	1358 (0–5339)
DegDaysU18	Degree days under 18 °C	Degree days	5043 (0–11539)
EndForstFree	Julian date on which the frost-free period ends	Day of year	271 (0–365)
MinTemp	Extreme minimum temperature over 30 years	°C	–35 to 10
Eref	Hargreave’s reference evaporation	Dimensionless	749 (0–1924)
MaxTemp	Extreme maximum temperature over 30 years	°C	36 (19–53)
FrostFree	frost-free period	Days	136 (0–365)
MeanPrecip	Mean annual precipitation	mm	722 (50–10149)
MeanTemp	Mean annual temperature	°C	4.9 (–13 to 26)
MeanTempCold	Mean temperature of the coldest month	°C	–9.1 (–32 to 22)
SumPrecip	Mean summer (May–September) precipitation	mm	347 (6–3175)
MeanTempWarm	Mean temperature of the warmest month	°C	18.7 (2–38)
NumFrostFree	Number of frost-free days		179.9 (0–365)
SnowPrecip	Precipitation as snow	mm	154.2 (0–6608)
SumPrecip	Summer (June–August) precipitation	mm	217.5 (0–1678)
WintPrecip	Winter (December–February) precipitation	mm	150.5 (8–3013)
RelHumid	Mean annual relative humidity	%	59.6 (36–85)
SumHeatMoist	Summer heat moisture index, calculated as MWMT/ (MSP/1000)	°C mm⁻¹	89.9 (1–4085)
SumTemp	Summer (June–August) mean temperature	°C	17.3 (1–36)
WintTemp	Winter (December–February) mean temperature	°C	–7.7 (–31 to 22)
\(^{\text{Anthropogenic}}\)			
HumanFoot	Human Footprint Index, an index of human influence for the year 2004	Dimensionless	16.3 (0–100)
LogPopDens	Population density for the year 2000	People km⁻²	0.51 (–4 to 4.3)
RdsDens	Road density using 2014 roads data with only primary and secondary roads used	Roads area⁻¹	0.11 (0–4.3)
RdsVol	Roadless volume	km³	6.5 (0–100)
\(^{\text{Enduring}}\)			
HeatLoadIndex	Heat load index, an index calculating the southwestness of a slope	Dimensionless	0.64 (0.096–1.03)
SurfAreaRatio	Surface area ratio		8178 (8100–42944)
TopoPosIndex	Topographic position index calculated at 2000 m scale	Dimensionless	–0.34 (–489 to 843)
PetNonfuel	Percent nonfuel. Non-fuel classified as barren lands, water, snow, and ice. From 2005 land cover.	%	4.5 (0–99.7)
GPP	Gross primary productivity from 2014	kg_carbon m⁻²	7144.6 (0–35508)
\(^{\text{Lightning}}\)			
Lightning	Average number of lightning strikes per year from 1995 to 2005	Flashes km⁻² year⁻¹	5.9 (0–46.4)
\(^{\text{Fire}}\)			
Area burned	US fires merged with Canadian fires. US fires from MTBS database 1984–2014. Canadian fires from Canadian National Fires database 1984–2014. Fires >400 ha used.	ha	5311 (400–205060)

\(^{a}\) Variables calculated at 1 and 100 km² scale.

\(^{b}\) Variables calculated at 10, 30, and 100 km² scale.

\(^{c}\) Variables calculated at 100 and 10 000 km² scale.
Appendix B

Model evaluation followed the method of Parisien et al. (2012) and was performed on each of the 100 subset models and subsequently averaged for each hexel. As a measure of overall model performance, the AUC was computed from the true positives and false positives. AUC values may range from 0.5, where prediction accuracy is no better than if samples were randomly selected, to 1, which indicates perfect classification accuracy. However, in a presence-only framework, as in this study, it is impossible to achieve an AUC value of 1 because absences (hence false positives) are unknown. The maximum achievable AUC in a presence-only framework is equal to $1 - \alpha/2$, where α is generally the fraction of the study area covered by fire (i.e., the prevalence). For the sake of adjusting the AUC value, we considered α to be the percentage of pixels where fire was observed. This provides a fair, yet underestimated, approximation of prevalence. Also calculated were the estimated fraction of the suitable (i.e., burnable) area, which represents an approximation of the false positive rate, and the omission, which is the false negative rate. These two metrics were measured at the fire probability

![Map of the explanatory variables incorporated in the statistical models of fire probability for each hexel.](image)

Figure B1. Map of the explanatory variables incorporated in the statistical models of fire probability for each hexel.

Appendix C

Model evaluation followed the method of Parisien et al. (2012) and was performed on each of the 100 subset models and subsequently averaged for each hexel. As a measure of overall model performance, the AUC was computed from the true positives and false positives. AUC values may range from 0.5, where prediction accuracy is no better than if samples were randomly selected, to 1, which indicates perfect classification accuracy. However, in a presence-only framework, as in this study, it is impossible to achieve an AUC value of 1 because absences (hence false positives) are unknown. The maximum achievable AUC in a presence-only framework is equal to $1 - \alpha/2$, where α is generally the fraction of the study area covered by fire (i.e., the prevalence). For the sake of adjusting the AUC value, we considered α to be the percentage of pixels where fire was observed. This provides a fair, yet underestimated, approximation of prevalence. Also calculated were the estimated fraction of the suitable (i.e., burnable) area, which represents an approximation of the false positive rate, and the omission, which is the false negative rate. These two metrics were measured at the fire probability
threshold that minimizes the sum of these errors of the two metrics (Liu et al 2005). As such, they can be interpreted as the expected rate of false negatives for a given predicted suitable area.

Appendix D

Hex	Test AUC	Adjusted AUC	Suitable area (%)	Omission error (%)
Hex1	0.752	0.776	0.370	0.247
Hex2	0.831	0.858	0.293	0.172
Hex3	0.797	0.831	0.333	0.191
Hex4	0.827	0.836	0.231	0.273
Hex5	0.700	0.711	0.295	0.411
Hex6	0.881	0.877	0.249	0.118
Hex7	0.701	0.749	0.424	0.281
Hex8	0.891	0.894	0.211	0.115
Hex9	0.839	0.860	0.298	0.167
Hex10	0.837	0.875	0.308	0.155
Hex11	0.700	0.706	0.394	0.315
Hex12	0.704	0.765	0.539	0.154
Hex13	0.672	0.684	0.507	0.192
Hex14	0.746	0.827	0.501	0.094
Hex15	0.715	0.764	0.487	0.184
Hex16	0.818	0.849	0.343	0.137
Mean	0.776	0.804	0.361	0.200

Figure D1. Modeled fire probability as a function of the three anthropogenic variables obtained from bivariate models (i.e., area burned as a single anthropogenic variable, without controlling for the effects of climate, enduring features, and lightning). The red line indicates the mean response, whereas the blue areas represent the standard deviation, calculated from the 100 model subsets.
Figure D1. (Continued.)
Appendix E

Figure E1. The relationship between roadless volume (x-axis) and lightning density (y-axis), as used in the statistical models of fire probability. The red line indicates the fit between the two variables using a self-fitting generalized additive model. Note that in some of the hexels the most remote areas (high values of roadless volume) have lower ignition densities than in the areas of higher human influence.

References

Archibald S, Staver A C and Levin S A 2012 Evolution of human-driven fire regimes in Africa Proc. Natl Acad. Sci. USA 109 847–52

Balch J K, Bradley B A, D’Antonio C and Gomez-Dans J 2013 Introduced annual grass increases regional fire activity across the arid western USA (1980–2009) Glob. Change Biol. 19 173–83

Balk D L, Deichmann U, Yetman G, Pozzi F, Hay S I and Nelson A 2006 Determining global population distribution: methods, applications and data Adv. Parasitol. 62 119–56

Bistinas I, Oom D, Sá A C, Harrison S P, Prentice I C and Pereira J M 2013 Relationships between human population density and burned area at continental and global scales PloS One 8 e81188

Bowman D M et al 2011 The human dimension of fire regimes on Earth J. Biogeogr. 38 2225–36

Bradstock R A 2009 Effects of large fires on biodiversity in southeastern Australia: disaster or template for diversity? Int. J. Wildland Fire 17 809–22

Brown K J, Clark J S, Grimm E C, Donovan J J, Mueller P G, Hansen B C S and Stefanova I 2005 Fire cycles in North American interior grasslands and their relation to prairie drought Proc. Natl Acad. Sci. USA 102 8865–70

Carcaillot C, Ali A A, Blarquez O, Grenier A, Mourièr B and Bremont I 2009 Spatial variability of fire history in subalpine forests: from natural to cultural regimes Ecoscience 16 1–12

Cardille J A and Lambois M 2010 From the redwood forest to the Gulf Stream waters: human signature nearly ubiquitous in representative US landscapes Front. Ecol. Environ. 8 130–4

Cardille J A, Ventura S J and Turner M G 2001 Environmental and social factors influencing wildfires in the Upper Midwest, United States Ecol. Appl. 11 111–27

Christian H J et al 2003 Global frequency and distribution of lightning as observed from space by the Optical Transient Detector J. Geophys. Res. 108 4005

Clark J S and Royall P D 1996 Local and regional sediment charcoal evidence for fire regimes in presettlement north-eastern North America J. Ecol. 365 382

Cochrane M A 2003 Fire science for rainforests Nature 421 913–9

Collins S L and Wallace L L (ed) 1990 Fire in North American Tallgrass Prairies (Norman: University of Oklahoma Press)

Cumming S G 2005 Effective fire suppression in boreal forests Can. J. For. Res. 35 770–82

Dissing D and Verbyla D L 2003 Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation Can. J. For. Res. 33 770–82

Eidenshink J, Schwid B, Breuer K, Zhu Z-L, Quayle B and Howard S 2007 A project for monitoring trends in burn severity Fire Ecology 3 3–21

Elith J, Phillips S J, Hastie T, Dudik M, Chee Y E and Yates J C 2011 A statistical explanation of MaxEnt for ecologists Divers. Distrib. 17 43–57

ESRI 2008 TeleAtlas North America: StreetMap 2008 North America (Redlands, California: ESRI)

Evans J S, Oakleaf J, Cushman S and Theobald D 2014 An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0.0 (http://evansmurphywixcom/evanspatial)

Finney M, Grenfell I C and McHugh C W 2009 Modeling containment of large wildfires using generalized linear mixed-model analysis Forest Sci. 55 249–55
Flannigan M D, Krawchuk M A, de Groot W J, Wotton B M and Govan M J 2009 Implications of changing climate for global wildland fire Int. J. Wildland Fire 18 483–507

Flannigan M D, Logan K A, Amiro B D, Skinner W R and Stocks B J 2005 Future area burned in Canada Clim. Change 72 1–16

Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A and Huang X 2010 MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets Remote Sens. Environ. 114 168–82

Fréjaville T and Curt T 2015 Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin) Clim. Change 129 239–51

Girardin M P, Ali A A, Carcaillet C, Blarquez O, Hély C, Terrier A, Higuera P E, Abatzoglou J T, Littell J S and Morgan P 2015 The impact of forest fire suppression, vegetation and weather on burned area in Ontario Can. J. For. Res. 38 1547–63

Graweicz N, Nelson T A and Wulder M A 2012 Factors influencing national scale wildfire susceptibility in Canada Forest Ecol. Manage. 265 20–9

Guyette R P, Muzzika R M and Dey D C 2002 Dynamics of an anthropogenic fire regime Ecosystems 5 472–86

Guyette R P, Stambaugh M C, Dey D C and Muzzika R M 2012 Predicting fire frequency with chemistry and climate Ecosystems 15 322–35

Haire S L, McGarigal K and Miller C 2013 Wilderness shapes landscape fire probability across the western United States Ecosphere 4 15

Hawbaker T J, Radeloff V C, Stewart S I, Hammer R B, Keuler N S and Hantson S, Lasslop G, Kloster S and Chuvieco E 2015 Wilderness shapes landscape fire probability across the western United States Ecosphere 4 15

Hawkes B 2002 The cascading effects of fire regime across the North American boreal region Ecosphere 3 385–404

Higuera P E, Abatzoglou T J, Littell J S and Morgan P 2015 The changing strength and nature of fire–climate relationships in the Northern Rocky Mountains, USA, 1902–2008 PloS One 10 e0127563

Higuera P E, Abatzoglou T J, Littell J S and Morgan P 2015 The cascading effects of fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska Geophys. Res. Lett. 33 L09703

Hincks R, Ryan K C, Veblen T T, Allen C D, Logan J A and Hawkes B 2002 The cascading effects of fire exclusion in Rocky Mountain ecosystems Rocky Mountain Forests: an Ecological Perspective ed J Barlin (Washington, DC: Island) pp 133–52

Kasischke E S and Turetsky M R 2006 Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska Geophys. Res. Lett. 33 L09703

Kasischke E S and Turetsky M R 2006 Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska Geophys. Res. Lett. 33 L09703

Kasulke C and Schrumpf E 2006 Maximum entropy modeling of species geographic distributions Ecol. Model. 190 313–52

Kraijt T, Cowling R M and van Wilgen B W 2013 Lightning and fire weather in eastern coastal fynbos shrublands: seasonality and long-term trends Int. J. Wildland Fire 22 288–95

Liu C, Berry P M, Dawson T P and Pearson R G 2005 Selecting thresholds of occurrence in the prediction of species distributions Ecol. Model. 190 313–52

Liu C, Berry P M, Dawson T P and Pearson R G 2005 Selecting thresholds of occurrence in the prediction of species distributions Ecol. Model. 190 28385–393

Liu Z and Wimberly M C 2015 Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States PLoS One 10 e0140839

Marlon J R, Barlein P J, Carcaillet C, Gavin D G, Harrison S P, Higuera P E, Joos F, Power M J and Prentice I C 2008 Climatic and human influences on global biomass burning over the past two millennia Nat. Geosci. 1 697–702

Marent G L and Post H 2008 The impact of forest fire suppression, vegetation and weather on burned area in Ontario Can. J. For. Res. 38 1547–63

McWethy D B et al 2013 A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes Glob. Ecol. Biogeogr. 22 900–12

Miller J D, Collins B M, Lutz J A, Stephens S L, van Wagendonk J W and Yusuda D A 2012 Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA Ecosphere 3 80

Moritz M A, Moody T J, Krawchuk M A, Hughes M and Hall A 2010 Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems Geophys. Res. Lett. 37 L04801

Mouillot F and Field C B 2005 Fire history and the global carbon budget: a × 1 fire history reconstruction for the 20th century Glob. Change Biol. 11 398–420

Nowacki G J and Abrams M D 2008 The demise of fire and ‘mesophication’ of forests in the eastern United States BioScience 58 123–38

Parisien M A and Moritz M A 2009 Environmental controls on the distribution of wildfire at multiple spatial scales Ecol. Monog. 79 1–35

Parisien M A, Parks S A, Krawchuk M A, Flannigan M D, Bowman L M and Moritz M A 2011 Scale-dependent factors controlling area burned in boreal Canada Ecol. Appl. 21 789–805

Parisien M A, Peters V S, Wang Y, Little J M, Bosch E M and Stocks B J 2006 Spatial patterns of forest fires in Canada 1980–1999 Int. J. Wildland Fire 15 361–74

Parisien M A, Snesinger S, Greenberg J A, Nelson C R, Schoennagel T, Dobrowski S Z and Moritz M A 2012 Spatial variability in wildfire probability across the western United States Int. J. Wildland Fire 21 313–27

Parks S A, Miller C, Parisien M A, Holsinger L M, Dobrowski S Z and Abatzoglou J 2013 Wildland fire deficit and surplus in the western United States 1984–2012 Ecosphere 6 13

Parks S A, Parisien M A, Miller C and Dobrowski S Z 2014 Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture PloS One 9 e99699

Pausas J G and Keeley J E 2009 A burning story: the role of fire in the history of life BioScience 59 593–601

Penry G L, Wilmhurst J M, McGloine M S and Napier A 2012 Reconstructing spatial vulnerability to forest loss by fire in pre-historic New Zealand Glob. Ecol. Biogeogr. 21 1029–41

Phillips S J, Anderson R P and Schapire R E 2006 Maximum entropy modeling of species geographic distributions Ecol. Model. 190 231–59

Ruffault J and Mouillot F 2015 How a new fire-suppression policy can abruptly reshape the fire–weather relationship Ecosphere 6 19

Sanderson E W, Jaitie M, Levy M A, Redford K H, Wannebo A V and Woolmer G 2002 The human footprint and the last of the wild Bioscience 52 891–904

Slocum M G, Platt W J, Beckage B, Pankob and Lushine J B 2007 Decoupling natural and anthropogenic fire regimes: a case study in Everglades National Park, Florida Nat. Area J. 27 41–55

Stephens S L 2005 Forest fire causes and extent on United States Forest Service lands Int. J. Wildland Fire 14 213–22

Stephens S L, Martin R E and Clinton N E 2007 Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands For. Ecol. Manage. 251 205–16
Stephens S L and Ruth L W 2005 Federal forest fire policy in the United States Ecol. Appl. 15 532–42
Stocks B J et al 2002 Large forest fires in Canada 1959–1997 J. Geophys. Res.—Atmos. 108 FFR3–1–FFR3–12
Sturtevant B R and Cleland D T 2007 Human and biophysical factors influencing modern fire disturbance in northern Wisconsin Int. J. Wildland Fire 16 398–413
Swain A M 1973 A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments Quat. Res. 3 383IN1391–90IN2396
Swetnam T W 1993 Fire history and climate change in giant sequoia groves Science 262 885–885
Syphard A D, Radeloff V C, Keeley J E, Hawbaker T J, Clayton M K, Stewart S I and Hammer R B 2007 Human influence on California fire regimes Ecol. Appl. 17 1388–402
Syphard A D, Radeloff V C, Keuler N S, Taylor R S, Hawbaker T J, Stewart S I and Clayton M K 2008 Predicting spatial patterns of fire on a southern California landscape Int. J. Wildland Fire 17 602–13
Terrier A, Girardin M P, Périé C, Legendre P and Bergeron Y 2013 Potential changes in forest composition could reduce impacts of climate change on boreal wildfires Ecol. Appl. 23 21–35
Thonicke K, Spessa A, Prentice I C, Harrison S P, Dong L and Carmona-Moreno C 2010 The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model Biogeosciences 7 1991–2011
Vale T 2002 Fire, Native Peoples, and the Natural Landscape (Washington, DC: Island)
Waldrop T A, White D L and Jones SM 1992 Fire regimes for pine-grassland communities in the southeastern United States For. Ecol. Manage. 47 193–210
Wang T, Hamann A, Spittlehouse D and Murdock T N 2012 ClimateWNA—High-resolution spatial climate data for western North America J. Appl. Meteorol. Clim. 61 16–29
Watts R D, Compton B W, McCammon J H, Rich C L, Wright SM, Owens T and Ouren D S 2007 Roadless space of the conterminous United States Science 316 736–8
Weir J M H and Johnson E A 1998 Effects of escaped settlement fires and logging on forest composition in the mixedwood boreal forest Can. J. For. Res. 28 459–67
Westerling A L, Gershunov A, Brown T J, Cayan D R and Dettinger M D 2003 Climate and wildfire in the western United States Br. Am. Meteorol. Soc. 84 595–604
Westerling A L, Hidalgo H G, Cayan D R and Swetnam T W 2006 Warming and earlier spring increase western US forest wildfire activity Science 313 940–3
White C A, Perrakis D D B, Kafka V G and Ennis T 2011 Burning at the edge: integrating biophysical and eco-cultural fire processes in Canada’s parks and protected areas Fire Ecol. 7 74–106
Whitman E, Batllori E, Parisien M-A, Miller C, Coop J D, Krawchuk MA, Chong G W and Haire S L 2015 The climate space of fire regimes in north-western North America J. Biogeogr. 42 1736–49