Disturbance Bounds for Signal Temporal Logic Task Satisfaction: A Dynamics Perspective

Prithvi Akella, Aaron D. Ames

Abstract—This letter offers a novel approach to Test and Evaluation of pre-existing controllers from a control barrier function and dynamics perspective. More aptly, prior Test and Evaluation techniques tend to require apriori knowledge of a space of allowable disturbances. Our work, however, determines a two-norm disturbance-bound rejectable by a system’s controller without requiring specific knowledge of these disturbances beforehand. The authors posit that determination of such a disturbance bound offers a better understanding of the robustness with which a given controller achieves a specified task - as motivated through a simple, linear-system example. Additionally, we show that our resulting disturbance bound is accurate through simulation of 1000 randomized trials in which a Segway-controller pair successfully satisfies its specification despite randomized perturbations within our identified bound.

I. INTRODUCTION

While there exist multiple temporal logic formalisms, two of increasing interest in the controls community are Linear Temporal Logic and Signal Temporal Logic [1]–[3]. This interest arises as these formalisms offer succinct ways of expressing complex, desired behavior, while also providing necessary and sufficient criteria by which to determine if a system has achieved this behavior [3]–[6]. As a result, there has been significant work utilizing these specification schemes and associated satisfaction criteria to develop optimization-based control schemes that enforce satisfaction of these behavioral specifications [7]–[11]. Additionally, these formalisms and satisfaction criteria have also prompted the development of evaluation schemes to test a controllers ability to realize these desired system behaviors when experiencing environmental disturbances [12]–[18]. Finally, the authors note that there has also been significant work aimed at developing controllers that robustly reject these environmental disturbances, most recently with active work aimed at developing controllers that robustly reject disturbances within our identified bound and achieves its Signal Temporal Logic task. For context, the subset of STL tasks studied in the sequel is consistent with prior works in the controls literature [9], [10], [24].

Organization: Section II details some background material in Subsection II-A motivates our problem in Subsection II-B and formally states our problem in Subsection II-C. Then, Section III details our main contributions - the optimization problems determining two-norm disturbance-bounds rejectable by a system’s controller. Finally, Section IV illustrates our results through a simulated Segway example.

II. PROBLEM FORMULATION

This section will detail some necessary background material for the sequel - specifically Signal Temporal Logic and Control Barrier Functions. We will start with some notation.

Notation: \(\| \cdot \| \) is the 2-norm over \(\mathbb{R}^n \), \(\mathbb{R}_+ = \{ x \in \mathbb{R} | x \geq 0 \} \), \(\mathbb{R}_{++} = \{ x \in \mathbb{R} | x > 0 \} \). A function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) is Lipschitz continuous if and only if \(\exists L \in \mathbb{R}_+ \) such that \(|f(x) - f(z)| \leq L|x - z| \). A continuous function \(\alpha \in K_{e,\infty} \) if and only if \(\alpha: (-\infty, \infty) \rightarrow \mathbb{R}, \alpha(0) = 0, r > s \) implies \(\alpha(r) > \alpha(s) \), and \(\lim_{t \rightarrow \infty} \alpha(t) = \infty \). For any continuously differentiable function \(h: \mathbb{R}^n \rightarrow \mathbb{R}, a \in \mathbb{R} \) is a regular value if and only if \(D_y h(x) \neq 0 \) \(\forall \) \(x \) s.t. \(h(x) = a \). The space of all signals \(S^{\mathbb{R}^n} = \{ s | s: [0,T] \rightarrow \mathbb{R}^n, \forall T > 0 \} \) with \(s \) a signal. \(\| \cdot \|_{[a,b]} \) is an induced (semi)-norm over \(S^{\mathbb{R}^n} \) where \(\| s \|_{[a,b]} = \max_{t \in [a,b]} \| s(t) \| \) for \(s \in S^{\mathbb{R}^n} \).

A. Preliminaries

In this section, we will provide a brief description of Signal Temporal Logic and Control Barrier functions - two topics that are necessary for the sequel. Afterwards, we will motivate the specific problem under study with an example.
Signal Temporal Logic: Signal Temporal Logic (STL) is a language by which rich, time-varying system behavior can be succinctly expressed. This language is based on predicates $\mu \in \mathcal{A}$ which are boolean-valued variables taking a truth value for each state x. Predicates μ and specifications ψ are defined as follows, with \forall demarcating definitions:

$$\mu(x) = \text{True} \iff h_\mu(x) \geq 0, \ h_\mu : \mathbb{R} \to \mathbb{R},$$

$$\psi \triangleq \langle \rho \rangle \psi_1 \vee \psi_2, \ \psi_1 U[a,b] \psi_2, \ \psi \in \mathbb{S}.$$

Here, ψ_1, ψ_2 are specifications themselves, and $\psi_1 U[a,b] \psi_2$ reads as: ψ_1 should be true at time $t = a$ and should continue to be true until ψ_2 is true, which should be true by some time $t \leq b$ [2], [3]. Finally, \mathbb{S} is the set of all STL specifications.

We write $(s, t') \models \psi$ when a signal s satisfies a specification ψ for times $t \geq t'$. To be brief, will refrain from formally defining the satisfaction relation \models, as we will instead note that every STL specification ψ has a robustness measure ρ that is positive for signals s that satisfy ψ.

Definition 1. A function $\rho : \mathbb{S}^\mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ is a robustness measure for a Signal Temporal Logic specification ψ if it satisfies the following equivalency:

$$\rho(s,t) \geq 0 \iff (s,t) \models \psi.$$

For a more comprehensive definition of the satisfaction relation, please see Section 2.2 in [6]. Finally, to simplify notation, two commonly used temporal logic operators will be produced here. The first is $F_{a,b} \psi$ which reads as ψ should be true at some point in the future for some time $t \in [a,b]$. The second is $G_{a,b} \psi$ which reads as ψ should be true for all times $t \in [a,b]$. In both cases, $b > a$.

$$F_{a,b} \psi = \text{True} U[a,b] \psi, \ G_{a,b} \psi = \neg(\text{True} U[a,b] \neg \psi).$$

Control Barrier Functions: Originally inspired by their counterparts in optimization (see Chapter 3 of [25]), control barrier functions are a modern control tool used to ensure safety in safety-critical systems that are control-affine, i.e.,

$$\dot{x} = f(x) + g(x)u, \ x \in \mathcal{X} \subseteq \mathbb{R}^n, \ u \in \mathcal{U} \subseteq \mathbb{R}^m.$$

We will assume we have a feedback controller $k(x)$ for (1), which results in the following closed-loop dynamics:

$$\dot{x} = f_{cl}(x) \triangleq f(x) + g(x)k(x), \ x \in \mathcal{X}.$$

(2)

Now, solutions to (2) may not exist for all time [26]. As such, we denote this interval of existence of solutions to (2) emanating from x_0 as $I(x_0) = [0, t_{\text{max}}]$. We denote the corresponding solution as $\phi_t(x_0)$, where

$$\phi_t(x_0) = f_{cl}(\phi_t(x_0)), \ \phi_0(x_0) = x_0.$$

(3)

Then, forward invariance is defined as follows.

Definition 2. The set $\mathcal{C} \subset \mathbb{R}^n$ is forward invariant with respect to the dynamical system (2) if $\forall x_0 \in \mathcal{C}, \ \phi_t(x_0) \in \mathcal{C} \ \forall \ t \in I(x_0)$, with $\phi_t(x_0)$ as per (3).

Control barrier functions then, are a tool used to ensure forward invariance of their 0-superlevel sets. Specifically, for a continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$, define its 0-superlevel set \mathcal{C} and boundary $\partial \mathcal{C}$ as follows:

$$\mathcal{C} = \{x \in \mathcal{X} \mid h(x) \geq 0\}, \ \partial \mathcal{C} = \{x \in \mathcal{X} \mid h(x) = 0\}.$$

Then, the definition of control barrier functions is as follows.

Definition 3. (Adapted from Definition 5 in [27]) For the control-affine system (1), a continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ with 0 a regular value is a control barrier function if $\exists a \in \mathcal{K}_{\infty, \infty}$ such that $\forall x \in \mathcal{X}$,

$$\sup_{u \in \mathcal{U}} \left[\hat{h}(x,u) \triangleq \frac{\partial h}{\partial x} (f(x) + g(x)u) \right] \geq -a(h(x)).$$

This ends our brief overview of necessary topics. The next section motivates the specific problem under study.

B. A Motivating Example

To better motivate our problem statement, we will provide a brief example. Consider the following single integrator system subject to an STL specification ψ with associated robustness measure ρ and with $g = [0.75, 0.75]^T$:

$$\dot{x} = u, \ x \in [-1,1]^2, \ u \in [-0.5,0.5]^2,$$

$$\mu_g(x) = \text{True} \iff (h_{\mu}(x) \triangleq 0.1 - \|x - g\|_2) \geq 0,$$

$$\psi = F_{[0,2]} \mu_g, \ \rho(s,0) \triangleq \max_{t \in [0,2]} h_{\mu}(s(t)).$$

(4)

(5)

(6)

It is fairly simple to construct a controller U that ensures that $(\phi(0), 0) \models \psi$, where $\phi(0) \in \mathbb{S}^\mathbb{R}$ is the closed-loop solution of (5) and this controller U starting from $x_0 = 0$. Figure 1 shows an example controller and resulting trajectory $\phi(0)$. Indeed, this controller also ensures that $\rho(\phi(0), 0) = 0.09$, indicating that this controller robustly steers the system to satisfy ψ. However, if we introduce some disturbance to the system, as shown via the red trajectory in the same figure, the system fails to satisfy ψ. As a result, the controller is not as robust as once claimed. It is for this reason that we aim to develop techniques to discern the level of robustness - in a two-norm sense - that a controller can reject while
Problem 1. Let ψ be a Signal Temporal Logic specification of the form in (7). Determine a space $X \subseteq X$ and a disturbance bound δ_d such that $(CL-d) \models_X \psi$ if and only if,

$$\forall x \in X, (\phi(x), 0) \models \psi.$$

Then our problem statement is as follows.

In the sequel, the following definition of $P(\omega)$ for specifications ω as defined in equation (7) will be useful:

$$\mu \in \omega \iff (\omega(x) = True \implies \mu(x) = True),$$

$$P(\omega) = \{\mu \in A \mid \mu \in \omega\}.$$

This results in the following Lemma.

Lemma 1. The following equivalency holds:

$$\omega(x) \equiv (\land_{\mu \in P(\omega)} \mu(x)).$$

Proof: Follows by definition of ω (7) and $P(\omega)$ (9).

This ends our formal problem statement. We will now move to detailing our main contributions.

III. MAIN CONTRIBUTION

This section will be a series of optimization problems designed to identify spaces X and norm bounds δ_d such that $(CL-d) \models_X \psi$ for any STL specification ψ satisfying equation (7). We will start first with an optimization problem for specifications $\psi = G_{[a,b]} \omega$. We do so as these types of specifications admit a time-independent solution worth noting. As a result, our setting for the first optimization problem is as follows, with sets C_{ω_i} as per equation (4):

$$\psi = G_{[a,b]} \omega, \quad C_{\omega} = \{x \mid \mu \in P(\omega), \quad \forall \mu \in P(\omega)\}.$$

We will also define a feasible disturbance set Δ as follows:

$$\xi(x, e, \mu) = \frac{\partial h_{\mu}^T}{\partial x} (f_{cl}(x) - \frac{\partial h_{\mu}}{\partial x}(x)), \quad \Delta(x, \mu, \alpha_{\mu}) = \{e \in \mathbb{R} \mid \xi(x, e, \mu) \geq -\alpha_{\mu}(h_{\mu}(x))\}.$$

Then our proposed optimization problem determines an ω-specific bound δ_d^0 over C_{ω} such that $(CL-d) \models_{C_{\omega}} \psi$ i.e.,

$$\delta_d^0 = \min_{x \in C_{\omega}} \max_{e \in \mathbb{R}} e, \quad \text{subject to} \quad e \in \Delta(x, \mu, \alpha_{\mu}), \quad \forall \mu \in P(\omega).$$

The formal statement of this theorem will follow.

Theorem 1. For equation (10), let each $\alpha_{\mu} \in K_{[\infty, \infty]}$, let the specification ψ and set C_{ω} satisfy equation (9), and let each predicate function h_{μ} satisfy Assumption 7. Then,

$$\delta_d^0 \geq 0 \implies (CL-d) \models_{C_{\omega}} \psi \forall d \text{ s.t. } ||d|| \leq \delta_d^0.$$

Proof: To start, for any d, Cauchy-Schwarz provides that

$$\frac{\partial h_{\mu}^T}{\partial x} (f_{cl}(x) + d) \geq \frac{\partial h_{\mu}^T}{\partial x} (f_{cl}(x)) - \|\frac{\partial h_{\mu}}{\partial x}(x)\|d||.$$

Then for any d such that $||d|| \leq \delta_d^0$ we have that the derivative of h_{μ} with respect to the perturbed dynamics $(CL-d)$ satisfies the following inequality reminiscent of the CBF inequality in Definition 3 as $\delta_d^0 \geq 0$:

$$h_{\mu}(x, d) \geq -\alpha_{\mu}(h_{\mu}(x)), \quad \forall \mu \in P(\omega), \quad x \in C_{\omega}.$$

Via Peano’s Uniqueness Theorem (Theorem 1.3.1 in [28]) we know that $u = -\alpha_{\mu}(u)$ has a unique solution $\forall u_0 \geq 0$ as $-\alpha_{\mu}$ is a continuous, non-increasing function in u. Using this
Fig. 2. The robustness measure for 1000 trials of the Segway detailed in Section IV when perturbed by randomly distributed disturbances whose two-norm is less than the upper bound calculated by Theorem 1. ρ = 0.89. The robustness measure ρ is for the specification ψ = G_{[0, d]} μ2 as per equation (6). In all cases, the system satisfies its specification as ρ(φ(x, 0, 0)) ≥ 0. This success indicates that, with high probability, this Segway’s LQR controller rejects disturbances whose norm ∥d∥ ≤ δ_{d}.

uniqueness result in conjunction with a Comparison Lemma, Lemma 3.4 in [29], allows us to state that

\[h_\mu(\phi_t^d(x_0)) \geq 0, \forall \mu \in P(\omega), x_0 \in C_\omega, t \in I^d(x_0). \] (11)

Here, we note that this chain of logic was also utilized in the proof for Theorem 1 in [27] as the proof for Lemma 3.4 in [29] requires Lipschitz continuity of α_μ to guarantee a unique solution (see Appendix C.2 in [29]), and this is already provided for via Peano’s Uniqueness Theorem. As a result, equation (11) implies that

\[h_\mu(\phi_t^d(x_0)) \geq 0, \forall \mu \in P(\omega), x_0 \in C_\omega, t \geq 0. \]

By definition of h_\mu, we have that

\[(CL-d) \models \forall \mu \in P(\omega) \exists d \ s.t. \ \|d\| \leq \delta_{d}.\]

Then by Lemma 1 and equation (2) we have the following:

\[(CL-d) \models \psi \forall d \ s.t. \ \|d\| \leq \delta_{d}.\]

While this result may seem similar to working Input to State Safe control barrier functions [30], such work tends to enlarge the safe-set to account for disturbances. As our safe-set - e.g. the region where μ is true - is fixed, we require an analysis that does not enlarge the safe set while still accounting for disturbances, resulting in our Theorem 1.

For the second set of optimization problems, we will require the Gronwall-Bellman Inequality.

Theorem 2 (From Theorem 1.3.1 in [31].) Let u, f : J = [α, β] → R_+ be continuous over their domain, and let n : J → R_+ be continuous and non-decreasing. Then, ∀ t ∈ J

\[u(t) \leq n(t) + \int_{α}^{t} f(x)u(s)ds \implies u(t) \leq n(t) \exp \left(\int_{α}^{t} f(s)ds \right). \]

This theorem allows us to establish the following lemma bounding the difference between solutions to dynamical systems (CL) and (CL-d).

Lemma 2. For both systems (CL) and (CL-d), let f_cl be locally Lipschitz continuous with constant L for some x_0 ∈ X. Then, if ∀ d, ∥d∥ ≤ δ_{d},

\[\|\phi_t(x_0) - \phi_t^d(x_0)\| \leq \delta_d e^{Lt}, \forall t \in I(x_0) \cap I^d(x_0). \]

Proof: This proof amounts to one application of Gronwall-Bellman’s Inequality in Theorem 2. We can start with the norm difference between solutions which yields the following inequality for some t ∈ I(x_0) ∩ I^d(x_0):

\[\|\phi_t(x_0) - \phi_t^d(x_0)\| \leq \int_{0}^{t} \|f_cl(\phi_s(x_0)) - f_cl(\phi_s^d(x_0))\| ds + \int_{0}^{t} \|ds\| ds. \]

By assumption that f_cl is locally Lipschitz with constant L and that all d are such that ∥d∥ ≤ δ_{d} we have that

\[\|\phi_t(x_0) - \phi_t^d(x_0)\| \leq L \delta_d t + \int_{0}^{t} L \|\phi_s(x_0) - \phi_s^d(x_0)\| ds. \]

Applying Theorem 2 concludes the proof.

Our optimization problem for the remainder of the base specification types G_{[a, b]} ω, F_{[a, b]} ω, ω_c U_{[a, b]} ω_2 will make use of Lemma 2 and Assumption 2 to generate disturbance-bounds δ_{d} for the entire state space X. More aptly, our setting is as follows, with “\(\sim\)” demarcating different specifications:

\[ψ = G_{[a, b]} ω \mid F_{[a, b]} ω \mid ω_c U_{[a, b]} ω_2, \]

\[ρ(s, 0) ≥ 0 \iff (s, 0) \models ψ, \Delta_d = \min_{x \in X} ρ(φ(x), 0). \]

Then our theorem identifying a disturbance-bound δ_{d} for specifications ψ of the type in equation (12) is as follows.

Theorem 3. Let the closed-loop dynamics f_cl be locally Lipschitz continuous with constant L_f ∀ x_0 ∈ X, let the specification ψ be as per equation (12) and let the robustness measure ρ also satisfy Assumption 2 with Lipschitz constant L_ρ and time constant b. If Δ_d ≥ 0,

\[(CL-d) \models X \psi \forall d \ s.t. \ \|d\| \leq \frac{\Delta_d}{L_ρ b \sup_{L_f}} \triangleq \delta_{d}. \]

Proof: For this proof, we will assume that our disturbances d are such that ∥d∥ ≤ M, and show M = δ_{d}. As a result, by local Lipschitz continuity of f_cl and Lemma 2 we have that ∀ x_0 ∈ X,

\[\|\phi_t(x_0) - \phi_t^d(x_0)\| ≤ M e^{Lt}, \forall t \in I(x_0) ∩ I^d(x_0). \]

Then as the robustness measure ρ satisfies Assumption 2 with Lipschitz constant L_ρ and time constant b, we have that ∀ x_0 ∈ X and with ∥ \cdot ∥_{[a, b]} the induced signal norm,

\[|ρ(φ(x_0), 0) - ρ(φ^d(x_0), 0)| ≤ L_ρ \|φ(x_0) - φ^d(x_0)\|_{[a, b]} \]

Then, by definition of ∥ \cdot ∥_{[a, b]} and our fairness assumption that b ∈ I(x_0) ∩ I^d(x_0) ∀ x_0 ∈ X, we have that

\[L_ρ \|φ(x_0) - φ^d(x_0)\|_{[a, b]} ≤ L_ρ M e^{L_f b}, \forall x_0 ∈ X. \]

As a result, with M = Δ_d/(L_ρ b e^{L_f b}) we have that

\[|ρ(φ(x_0), 0) - ρ(φ^d(x_0), 0)| ≤ Δ_d, \forall x_0 ∈ X. \]
By definition of Δ_d and M and the above inequality holding $\forall x_0 \in X$, we have that
\[
\rho(\theta^t(x_0), 0) \geq 0, \forall x_0, d \text{ s.t. } x_0 \in X, \|d\| \leq \Delta_d \leq \|\theta\|.
\]
Then the result follows by Definitions 1 and 2.

Proof: To start, we can assume without loss of generality that there exist zero or more specifications $\psi_i \in P^1(\psi)$ that are of the form in equation (9). By definition of $\delta_T^d(\psi)$ in equation (16), C_ψ in equation (17), and Theorem 1, we have for each such specification ψ_i (should they exist),
\[
(C_{\psi})_d \models \psi_i \forall d \text{ s.t. } \|d\| \leq \delta_T^d(\psi).
\]
This follows as if we have two sets A, B such that $A \subset B$, a system S, and a specification ψ, then by Definition 2
\[
S \models B \psi \implies S \models A \psi.
\]
Then we can also assume without loss of generality that we have zero or more specifications $\psi_j \in P^1(\psi)$ such that ψ_j are not of the form in equation (9). For each such ψ_j, by definition of $\delta_T^d(\psi)$, C_ψ, and Theorem 3 we have that
\[
(C_{\psi})_d \models \psi_j \forall d \text{ s.t. } \|d\| \leq \delta_T^d(\psi).
\]
Then this result holds via Lemma 2.

This ends the series of optimization problems to determine our disturbance-bounds. We will now move to showcase these results through a simulated example on a Segway.

IV. SIMULATED EXAMPLES

For our example, we aim to determine the robustness with which a Segway’s LQR controller achieves two desired performance bounds. First, the Segway’s pendulum angle is never to deviate too far from the vertical. Second, the Segway is to reach its goal - its state should lie within a norm bounded ball around 0 - within two seconds. Mathematically this leads to the following setting:

\[
h_1(x) = 0.25 - ||x||, \quad h_2(x) = 10(0.3^2 - \theta^2) - 2\theta\dot{\theta},
\]
\[
\mu_i(x) \equiv (h_i(x) \geq 0), \quad \psi = F_{[0, 2]}\mu_1 \land G_{[0, 2]}\mu_2,
\]
\[
X \subset [-1, 1]^2 \times [-0.4, 0.4] \times [-1.5, 1.5],
\]
\[
x = [x, v, \theta, \dot{\theta}]^T \in X \subset \mathbb{R}^4.
\]

Figure 3 shows the Segway setup and example LQR controller steering the Segway to satisfy this specification ψ.

To start, it is clear that both predicate functions h_1, h_2 in equation (18) satisfy Assumption 1. Indeed as both are Lipschitz continuous, so too are the associated robustness...
measures generated from these predicate functions Lipschitz continuous as well, which satisfies Assumption\cite{2} As a result, we break our specification into two parts as required of Theorem\cite{2} \(\psi_1 = F_{[0,2]} \mu_1 \) and \(\psi_2 = G_{[0,2]} \mu_2 \). This resulted in a \(\delta_0^d = 0.89 \) after utilizing Theorem\cite{2} for \(\psi_2 \) and a \(\Delta_d = 0.2 \) after utilizing Theorem\cite{3} for \(\psi_1 \).

Figure 2 shows the results of 1000 randomized trials of the Segway undergoing disturbances \(d \) such that \(||d|| \leq \delta_0^d = 0.89 \). As can be seen, the LQR controller realizes a positive robustness measure indicating that the system-controller pair can reject disturbances whose norm is under the bound we identify through our procedure. Additionally, under the assumption that our Segway’s closed-loop dynamics \(f_{cl} \) are Lipschitz continuous with constant \(L_f \leq 1 \) and knowing the associated robustness measure \(\rho \) for \(\mu_1 \) as per \cite{19} is Lipschitz continuous with \(L_\rho = 1 \), Theorem\cite{3} provides a secondary disturbance-bound \(\delta_1^d \leq 0.01 \). As per Theorem\cite{4} this indicates that our Segway should satisfy its overall specification \(\psi \) if its disturbance \(d \) is such that \(||d|| \leq \delta_1^d(\psi) = 0.01 \). Indeed the Segway does satisfy its specification after 1000 randomized runs when perturbed by normally distributed disturbances \(d \) such that \(||d|| \leq 0.01 \). One such run is shown in Figure 3.

V. CONCLUSION

In this paper, we constructed a series of optimization problems to determine the level of disturbance - in a two-norm sense - that a given system’s controller can reject while satisfying its operational Signal Temporal Logic specification. Additionally, we showed that our optimization problems generate reasonable disturbance-bounds through simulating a Segway whose dynamics are perturbed by disturbances whose two-norm is less than our calculated bound. Future work aims to decrease the conservativeness of our calculated bounds and extend the class of specifications capable of being analyzed by our approach.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, D. Nardi, et al., The description logic handbook: Theory, implementation and applications. Cambridge university press, 2003.
[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.
[3] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in International Conference on Formal Modeling and Analysis of Timed Systems. Springer, 2010, pp. 92–106.
[4] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,” in Logics for concurrency. Springer, 1996, pp. 238–266.
[5] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly automatic verification of linear temporal logic,” in International Conference on Protocol Specification, Testing and Verification. Springer, 1995, pp. 3–18.
[6] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.
[7] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajectory generation with linear temporal logic specifications,” in 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014, pp. 5319–5325.
[8] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “Tulip: a software toolbox for receding horizon temporal logic planning,” in Proceedings of the 14th international conference on Hybrid systems: computation and control, 2011, pp. 313–314.
[9] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.
[10] ——, “Control barrier functions for multi-agent systems under conflicting local signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 3, pp. 757–762, 2019.
[11] ——, “Barrier function based collaborative control of multiple robots under signal temporal logic tasks,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1916–1928, 2020.
[12] M. Althoff and S. Lutz, “Automatic generation of safety-critical test scenarios for collision avoidance of road vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1326–1333.
[13] Y. Annupureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool for temporal logic falsification for hybrid systems,” in International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2011, pp. 254–257.
[14] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing s-taliro as an automatic test generation framework for autonomous vehicles,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1470–1475.
[15] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel, “Verification of automotive control applications using s-taliro,” in 2012 American Control Conference (ACC). IEEE, 2012, pp. 3567–3572.
[16] T. J. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravandbakhsh, M. Vazquez-Charlante, and S. A. Seshia, “Verifai: A toolkit for the formal design and analysis of artificial intelligence-based systems,” in International Conference on Computer Aided Verification. Springer, 2019, pp. 432–442.
[17] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. Jennings, “Identification of test cases for automated driving systems using bayesian optimization,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019, pp. 1961–1967.
[18] S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor, “Verifying controllers against adversarial examples with bayesian optimization,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 7306–7313.
[19] J. Han, “From pid to active disturbance rejection control,” IEEE transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009.
[20] Y. Huang and W. Xue, “Active disturbance rejection control: methodology and theoretical analysis,” ISA transactions, vol. 53, no. 4, pp. 963–976, 2014.
[21] Z. Gao, “Active disturbance rejection control: a paradigm shift in feedback control system design,” in 2006 American control conference. IEEE, 2006, pp. 7–pp.
[22] D. Sun, “Comments on active disturbance rejection control,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3428–3429, 2007.
[23] A. Corso, R. J. Moss, M. Koren, R. Lee, and M. J. Kochenderfer, “A survey of algorithms for black-box safety validation,” arXiv preprint arXiv:2005.02979, 2020.
[24] L. Lindemann and D. V. Dimarogonas, “Decentralized control barrier functions for coupled multi-agent systems under signal temporal logic tasks,” in 2019 18th European Control Conference (ECC). IEEE, 2019, pp. 89–94.
[25] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimization,” SIAM review, vol. 44, no. 4, pp. 525–597, 2002.
[26] F. Verhulst, Nonlinear differential equations and dynamical systems. Springer Science & Business Media, 2006.
[27] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
[28] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002, the book can be consulted by contacting: PH-AID: World Scientific, 1993, vol. 6.
[29] H. K. Khalil, Uniqueness and nonuniqueness criteria for ordinary differential equations. World Scientific, 1993, vol. 6.
[30] S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier functions,” IEEE control systems letters, vol. 3, no. 1, pp. 108–113, 2018.
[31] W. F. Ames and B. Pachpatte, Inequalities for differential and integral equations. Elsevier, 1997, vol. 197.