Epidemiology of vampire bat-transmitted rabies virus in Goiás, central Brazil: re-evaluation based on G-L intergenic region

Shinji Hirano, Takuya Itou*, Adolorata AB Carvalho, Fumio H Ito, Takeo Sakai

Abstract

Background: Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region.

Findings: The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges.

Conclusions: This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations.

Background

Rabies is a zoonosis that kills infected mammals, including humans, and is mainly transmitted by carnivores. In the Americas, chiropterans (insectivorous, frugivorous and hematophagous bat) are another reservoir of this disease. Although dog-transmitted rabies in central Brazil has been reduced by aggressive vaccination programs [1], chiroptera (particularly the common vampire bat, Desmodus rotundus)-transmitted rabies remains endemic in this region, and harms both the livestock industry and the public health sector [2,3].

To date, vampire bat-transmitted rabies in livestock has been controlled by reducing the population of vampire bats and by vaccinating livestock [3,4]. However, the depopulation of vampire bats has limitations and the effects are temporary, while vaccination of livestock is only carried out for some animals and is ineffective in decreasing rabies levels in vampire bats.

For the sustainable and effective control of vampire bat rabies, further knowledge of epidemiological features, such as vampire bat ecology and the dynamics of vampire bat-transmitted rabies, is necessary. Molecular epidemiological analysis of vampire bat-transmitted cattle rabies cases using the partial nucleoprotein gene, which is the most conserved gene in the rabies virus (RABV) genome, has suggested that the distribution of variants in Brazil is delimited by mountain chains and clustered in tens of thousands of square kilometers [5]. However, the vampire bats migrate several kilometers from their nests [6]. To elucidate a more detailed genetic clustering and geo-distribution of genetic clades of vampire bat-transmitted RABV, 204 isolates from Goiás, which includes the 185 isolates analyzed previously, were employed and analyzed by a phylogenetic method based on a nucleotide sequence encompassing the G-L intergenic region locating between glycoprotein...
(G) and polymerase (L) gene loci, which is the most divergent region in the RABV genome and is used for monitoring epidemiological changes in the evolution of RABV [7,8].

Results

Phylogenetic analysis
The 204 RABV isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values (Figure 1; details shown in Table 1). Isolates of the C-5 and C-6 lineages designated by Kobayashi et al. belonged to the A-lineage, while the B-lineage consisted of some isolates of C-5. The C-, D-, F- and J-lineages included isolates belonging to C-12, C-1, C-22 and C-3, respectively. Isolates of C-20 belonged to the I-lineage, and C-21 was divided into three lineages; G-, H- and I-lineages. Two isolates not belonging to any lineages in previous studies were assigned to the E-lineage.

Geographical plotting
In this study, geographical areas in Goiás were divided by mountain chains into the Northwest, North central, Northeast and South regions (Figure 2). Most isolates of the A-lineage were distributed in the South region. The B-lineage was likely to exist in the Northeast and North central regions. The isolates belonging to the C-, E-, F-, G-, H- and I-lineages were distributed in the Northwest region. The G-, H- and I-lineages have narrow distributions and are apparently separated by mountain ridges (Figure 2; Area I), while the A-lineage was distributed in a wide range throughout a Southeastern basin (Figure 2; Area II). The isolates of the D-lineage were plotted on an eastern edge of the North central region. The J-lineage had a wide geographical distribution in Goiás.

Discussion
Previous studies had elucidated that the distributions of vampire bat and transmitted RABV are delimited by mountain chains [5]. In the present study, it was reconfirmed that mountain chains divide the distribution patterns of each viral lineage. Furthermore, the isolates belonging to C-5 having a wide range in Goiás were divided into the A- and B-lineages, and were found to be distributed in the South and North regions on either side of a mountain chain. This finding supports Kobayashi’s hypothesis that distribution of vampire bat-transmitted RABV is affected by mountain chains.

The same variants of vampire bat-transmitted RABV were spread widely in flat low lands (< 800 m), but at higher elevations (800-1600 m), they had a narrower distribution [9]. However, the G-, H- and I-lineages were found to be separated by mountain ridges in low areas (400-800 m) located in a southern undulating area of the Northwestern region (Figure 2; Area I). Furthermore, the A-lineage was located in an eastern basin of the South region (> 800 m; Figure 2; Area II). Considering that the higher lands showed an undulating
Table 1 Isolates from Goiás

Sample	Species	Location	Year	This study	Previous study	N203-nt	Partial G & GL
BRbv371	Cattle	Caldas Novas	2002	A	C-5	AB307182	AB544082
BRbv372	Cattle	Água Limpa	2002	A	C-5	AB307183	AB544083
BRbv373	Cattle	Caldas Novas	2002	A	C-5	AB307184	AB544084
BRbv375	Cattle	Santa Cruz de Goias	2002	A	C-5	AB307186	AB544085
BRbv379	Cattle	Corumbaíba	2002	A	C-5	AB307190	AB544089
BRbv380	Cattle	Corumbaíba	2002	A	C-5	AB307191	AB544090
BRbv381	Cattle	Cristalina	2002	A	C-5	AB307192	AB544091
BRbv386	Cattle	Ipameri	2002	A	C-5	AB307197	AB544095
BRbv391	Cattle	Caldas Novas	2002	A	C-5	AB307201	AB544099
BRbv392	Cattle	Água Limpa	2002	A	C-5	AB307202	AB544100
BRbv393	Cattle	Itumbiara	2002	A	C-5	AB307203	AB544101
BRbv395	Cattle	Itumbiara	2002	A	C-5	AB307205	AB544102
BRbv396	Cattle	Itumbiara	2002	A	C-5	AB307206	AB544103
BRbv397	Cattle	Buriti Alegre	2002	A	C-5	AB307207	AB544104
BRbv398	Cattle	Itumbiara	2002	A	C-5	AB307208	AB544105
BRbv400	Cattle	Buriti Alegre	2002	A	C-5	AB307210	AB544107
BRbv404	Cattle	Buriti Alegre	2002	A	C-5	AB307214	AB544111
BRbv405	Cattle	Buriti Alegre	2002	A	C-5	AB307215	AB544112
BRbv407	Cattle	Goiandira	2002	A	C-5	AB307217	AB544114
BRbv412	Cattle	Itapaci	2002	A	C-5	AB307222	AB544118
BRbv413	Cattle	Caldas Novas	2002	A	C-5	AB307223	AB544119
BRbv416	Cattle	Morrinhos	2002	A	C-5	AB307226	AB544122
BRbv421	Cattle	Nova Aurora	2002	A	C-5	AB307231	AB544124
BRbv429	Cattle	Corumbaíba	2002	A	Ud*	AB307238	AB544129
BRbv432	Cattle	Ipameri	2002	A	C-5	AB307241	AB544132
BRbv438	Cattle	Buriti Alegre	2002	A	C-5	AB307247	AB544137
BRhr441	Horse	Buriti Alegre	2002	A	Ud	AB307251	AB544140
BRbv442	Cattle	Buriti Alegre	2002	A	C-5	AB307252	AB544141
BRbv447	Cattle	Urutaí	2002	A	C-6	AB307255	AB544143
BRbv449	Cattle	Caldas Novas	2002	A	C-5	AB307256	AB544145
BRbv451	Cattle	Ipameri	2002	A	C-5	AB307258	AB544147
BRbv453	Cattle	São Luís de Montes Belos	2002	A	C-5	AB307260	AB544149
BRbv456	Cattle	Orízona	2002	A	Ud	AB307263	AB544150
BRbv457	Cattle	Água Limpa	2002	A	C-5	AB307264	AB544151
BRbv458	Cattle	Buriti Alegre	2002	A	C-5	AB307265	AB544152
BRbv466	Cattle	Itumbiara	2002	A	C-5	AB307273	AB544157
BRbv469	Cattle	Ipameri	2002	A	C-6	AB307275	AB544159
BRbv471	Cattle	Santa Cruz de Goias	2002	A	C-6	AB307277	AB544161
BRbv472	Cattle	Ipameri	2002	A	C-6	AB307278	AB544162
BRbv473	Cattle	Itumbiara	2002	A	C-5	AB307279	AB544163
BRbv475	Cattle	Caldas Novas	2002	A	C-5	AB307281	AB544165
BRbv477	Cattle	Itumbiara	2002	A	C-5	AB307283	AB544166
BRbv478	Cattle	Itumbiara	2002	A	C-5	AB307284	AB544167
BRhr483	Horse	Panamá	2002	A	C-5	AB307288	AB544170
BRbv486	Cattle	Itumbiara	2002	A	Ud	AB307291	AB544171
BRbv489	Cattle	Itumbiara	2002	A	Ud	AB307295	AB544174
BRbv493	Cattle	Ipameri	2002	A	C-6	AB307298	AB544177
BRbv495	Cattle	Panamá	2002	A	C-5	AB307300	AB544179
BRbv496	Cattle	Panamá	2002	A	C-5	AB307301	AB544180

Hirano et al. BMC Research Notes 2010, 3:288 [http://www.biomedcentral.com/1756-0500/3/288]
Isolates from Goiás (Continued)
BRbv497 Cattle
BRbv498 Cattle
BRbv502 Cattle
BRbv503 Cattle
BRbv509 Cattle
BRbv514 Cattle
BRbv516 Cattle
BRbv521 Cattle
BRbv524 Cattle
BRbv526 Cattle
BRbv527 Cattle
BRbv684 Cattle
BRbv685 Cattle
BRbv686 Cattle
BRbv687 Cattle
BRbv690 Cattle
BRbv691 Cattle
BRbv694 Cattle
BRbv697 Cattle
BRbv698 Cattle
BRbv699 Cattle
BRbv700 Cattle
BRbv701 Cattle
BRbh704 Horse
BRbv705 Cattle
BRbv707 Cattle
BRbh708 Sheep
BRbv710 Cattle
BRbv711 Cattle
BRbv717 Cattle
BRbv718 Cattle
BRbv741 Cattle
BRbv742 Cattle
BRbv745 Cattle
BRbv747 Cattle
BRbv748 Cattle
BRbv752 Cattle
BRbh755 Horse
BRbv770 Cattle
BRbv771 Cattle
BRbv780 Cattle
BRbv785 Cattle
BRbv786 Cattle
BRbv796 Cattle
BRbv797 Cattle
BRbv402 Cattle
BRbv406 Cattle
BRbv459 Cattle
BRbv461 Cattle
BRbv462 Cattle
BRbv479 Cattle
BRbv481 Cattle
Isolates from Goiás (Continued)

BRbv490 Cattle
BRbv494 Cattle
BRbv500 Cattle
BRbv505 Cattle
BRhr506 Horse
BRhr507 Horse
BRbv510 Cattle
BRbv511 Cattle
BRbv518 Cattle
BRbv525 Cattle
BRbv753 Cattle
BRbv762 Cattle
BRbv387 Cattle
BRbv401 Cattle
BRbv424 Cattle
BRbv692 Cattle
BRbv712 Cattle
BRbv751 Cattle
BRbv383 Cattle
BRbv384 Cattle
BRbv409 Cattle
BRbv411 Cattle
BRbv452 Cattle
BRbv767 Cattle
BRbv793 Cattle
BRbv440 Cattle
BRbv519 Cattle
BRhr389 Horse
BRbv434 Cattle
BRbv439 Cattle
BRbv488 Cattle
BRbv749 Cattle
BRbv757 Cattle
BRbv763 Cattle
BRbv773 Cattle
BRbv774 Cattle
BRpv787 Sheep
BRbv378 Cattle
BRbv425 Cattle
BRbv445 Cattle
BRbv448 Cattle
BRhr467 Horse
BRbv474 Cattle
BRbv501 Cattle
BRbv515 Cattle
BRbv522 Cattle
BRbv523 Cattle
BRbv764 Cattle
BRbv385 Cattle
BRbv414 Cattle
BRbv415 Cattle
BRbv426 Cattle
Isolates

BRbv427
BRbv431
BRbv437
BRbv693
BRhr703
BRbv736
BRbv744
BRbv370
BRbv376
BRbv377
BRbv388
BRbv399
BRbv403
BRbv410
BRbv420
BRbv430
BRbv435
BRbv436
BRbv450
BRbv460
BRbv470
BRbv491
BRbv499
BRbv513
BRbv681
BRbv682
BRbv683
BRbv696
BRbv709
BRbv720
BRbv721
BRbv722
BRbv734
BRbv735
BRbv738
BRbv743
BRbv746
BRbv756
BRbv758
BRbv759
BRbv760
BRbv765
BRbv769
BRbv772
BRhr782
BRbv784
BRbv790
BRbv508
BRbv754
BRbv792

*Undefined; †No data; ‡Kobayashi et al. (2008)
landscape, the results suggest that the distribution patterns of vampire bat-transmitted RABV variants depend on such undulations. On the other hand, the distribution of common vampire bats in a valley is limited by the ridges that form the valley [10], thus supporting the notion that the distribution of RABV variants is affected by smaller topography than mountain chains.

Conclusions
The present study analyzed the epidemiology of vampire bat-transmitted RABV using a 619-nt region containing the partial glycoprotein gene and the G-L intergenic region, and indicated that the isolates can be further divided into several phylogenetic lineages with significant bootstrap values when compared to characterization based on the 203-nt partial N gene. Furthermore, the phylogenetic lineages were divided by both mountain chains and mountain ridges. In future studies, it will be important to analyze samples from different time points and to elucidate the dynamics of vampire bat-transmitted rabies in order to establish effective and sustainable control measures for preventing rabies circulation among vampire bats.

Methods
Samples
A total of 204 samples obtained from 192 cattle, 10 horses and 2 sheep in Goiás from October 2001 to August 2002 were employed, which had been confirmed as rabies positive through fluorescent antibody test and mouse inoculation test (Table 1). Viral RNA was extracted from the brain as described previously [11]. Lineages of the 164 cattle isolates, C-1, C-3, C-5, C-6, C-12, C-20, C-21 and C-22, were previously characterized based on a 203-nt sequence of the nucleoprotein gene [5], and are shown in Table 1.

Determination of nucleotide sequences
RT-PCR and direct sequencing with the HmG5-1302 \(_{4615}TGTGAGATTCACCCTCCGTG_{4642} \) positions
relative to PV strain genome (Accession No. M13215) and
RVLa-1 (5325ATRGGTTACATCAAAACCTG5414) primer
pair were performed as described previously [11]. The tar-
get sequence includes the partial glycoprotein gene and G- L
intergenic region. Nucleotide sequences were deter-
mined using the ATGC program version 4.0 (GENETYX
Co., Tokyo, Japan).

Phylogenetic analysis
Multiple nucleotide sequence alignments of the partial gly-
coprotein gene and G-L intergenic region were generated
by the ClustalW package in MEGA ver. 4.0 [12]. A phylo-
genetic tree was constructed by the neighbor joining (NJ)
method with bootstrap analysis (1000 pseudoreplicates)
under the p-distance model. Phylogenetic clustering sup-
ported by a bootstrap value exceeding 70% was regarded
as a reliable lineage [13]. Results were validated by the
maximum likelihood method using PhyML [14]. In order
to reconfirm the shape of the NJ tree, the ML tree was
constructed under HKY substitution model justified by
MODELETEST packaged in Hyphy program [15].

Geographical plotting
The 204 RABV isolates were plotted onto a geographical
map described using the DIVA-GIS program [16] with
GIS data from Instituto Brasileiro de Geografia e Estatis-	ica [17] and DIVA-GIS gData [18].

Acknowledgements
This work was partly supported by the “Strategic Research Base
Development” Program for Private Universities subsidized by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author details
1Nihon University Veterinary Research Center, 1866 Kameino, Fujisawa 252-
0880, Kanagawa, Japan. *Faculty of Agriculture and Veterinary Science,
Department of Preventive Veterinary Medicine, UNESP, Via de Acesso Prof.
Paulo Donato Castellano, Jaboricabal, São Paulo 14884-900, Brazil.
2Department of Preventive Veterinary Medicine and Animal Health, Faculty
of Veterinary Medicine and Zootchny, University of São Paulo, Av. Prof. Dr.
Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo 05508-000,
Brazil.

Authors’ contributions
SH participated in the design of the study, performed the experimental
procedures and the data analysis, and wrote the manuscript. TI, AABC, FHI
and TS elaborated the study design, management, coordination, and
drafting the manuscript. The authors have read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 26 May 2010 Accepted: 8 November 2010
Published: 8 November 2010

References
1. Romijn PC, van der Heide R, Cattaneo CA, Silva RC, van der Poel WH: Study
of lyssaviruses of bat origin as a source of rabies for other animal
species in the State of Rio De Janeiro, Brazil. Am J Trop Med Hyg 2003,
69(1):81-86.
2. Goncalves MA, Sa Neto RJ, Brazil TK: Outbreak of aggressions and
transmission of rabies in human beings by vampire bats in northeastern
Brazil. Rev Soc Bras Med Trop 2002, 35:461-464.
3. Mayen F: Haematophagous bats in Brazil, their role in rabies
transmission, impact on public health, livestock industry and alternatives
to an indiscriminate reduction of bat population. J Vet Med B Infect Dis
Vet Public Health 2003, 50:469-472.
4. Massad E, Coutinho FA, Burattini MN, Sallum PC, Lopez LF: A mixed
ectoparasite–microparasite model for bat-transmitted rabies. Theor Popul
Biol 2001, 60:265-279.
5. Kobayashi Y, Sato G, Mochizuki N, Hirano S, Itou T, Carvalho AA, Albas A,
Santos HP, Ito FH, Sakai T. Molecular and geographic analyses of vampire
bat-transmitted cattle rabies in Brazil. BMC Vet Res 2008, 4:44.
6. Arelano-Sota C, Biology, ecology, and control of the vampire bat. Rev
Infect Dis 1988, 10:561-619.
7. Nel LH, Sabela CT, von Techman B, Jathra JB, Rupprecht CE, Bingham J: Mongoose rabies in southern Africa: a re-evaluation based on molecular
epidemiology. Virus Res 2005, 109:165-173.
8. Ngoepe CE, Sabela C, Nel L. The spread of canine rabies into Free State
province of South Africa: A molecular epidemiological characterization.
Virus Res 2009, 142:175-180.
9. Kobayashi Y, Ogawa A, Sato G, Sato T, Itou T, Samara SI, Carvalho AA,
Nociti DP, Ito FH, Sakai T. Geographical distribution of vampire bat-
related cattle rabies in Brazil. J Vet Med Sci 2006, 68:1097-1100.
10. Trajano E: Movements of Cave Bats in Southeastern Brazil, with Emphasis
on the Population Ecology of the Common Vampire Bat, Desmodus rotundus
(Chiroptera). Biotropica 1996, 28:121-129.
11. Sato G, Itou T, Shoji Y, Miura Y, Mikami T, Ito M, Kurane I, Samara SI,
Carvalho AA, Nociti DP, Ito FH, Sakai T. Genetic and phylogenetic analysis
of glycoprotein of rabies virus isolated from several species in Brazil. J
Vet Med Sci 2004, 66:747-753.
12. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007,
24:1596-1599.
13. Hilly DM, Bull J: An empirical test of bootstrapping as a method for
assessing confidence in phylogenetic analysis. Syst Biol 1993, 42:182-192.
14. Guindon S, Lethiec F, Duroux P, Gascuel O: PHYML: Online–a web server
for fast maximum likelihood-based phylogenetic inference. Nucleic Acids
Res 2005, 33:W557-559.
15. Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies.
Bioinformatics 2005, 21:676-679.
16. Hijmans RJ, Guarino L, Cruz M, Rojas E: Computer tools for spatial analysis
of plant genetic resources data: 1. DIVA-GIS. Plant Genet Res Neotrop 2002,
127:15-19.
17. Instituto Brasileiro de Geografia e Estatistica (IBGE). [http://www.ibge.gov.
br/servidor_arquivos_geo].
18. DIVA-GIS gData. [http://www.diva-gis.org/gData].

doi:10.1186/1756-0500-3-288
Cite this article as: Hirano et al: Epidemiology of vampire bat-
transmitted rabies in Goiás, central Brazil: re-evaluation based on
G-L intergenic region. BMC Research Notes 2010 3:288.