Collaborative Translational Metric Learning
[ICDM 2018]

Chanyoung Park¹, Donghyun Kim², Xing Xie³, Hwanjo Yu¹*
Dept. of Computer Science and Engineering, POSTECH, South Korea¹
Oath, USA²
Microsoft Research Asia, China³
{pcy1302, hwanjoyu}@postech.ac.kr, cartopy@gmail.com, xingx@microsoft.com

* Corresponding Author
Recommender System

- Movies
- Clothing
- Books
- Friends
- Citation
- Scientific paper
- News article
- TV programs
How useful is it?

• Want some evidence?

80% movies watched came from recommendation

30% page views came from recommendation

38% more click-through are due to recommendation

[Gomez-Uribe et al, 2016]
[Brent, 2017]
[Celma & Lamere, ISMIR 2007]

The value of Netflix recommendations is estimated at more than US$1 billion per year.
Implicit Feedback

• No explicit ratings
• Any type of interactions between users and items (abundant)

- Click
- Thumbs up
- Like

• Only positive feedback is available
• Not about rating prediction,
 • But about **modeling the relationships between different user/item pairs**
Matrix Factorization (MF)

- Matrix factorization-based recommendation methods are popular
MF violates “Triangle Inequality”

- MF is based on inner product operation, which violates triangle inequality
- A metric should satisfy...

1. \(d(x, y) \geq 0 \) non-negativity or separation axiom
2. \(d(x, y) = 0 \iff x = y \) identity of indiscernibles
3. \(d(x, y) = d(y, x) \) symmetry
4. \(d(x, z) \leq d(x, y) + d(y, z) \) subadditivity or triangle inequality

\[s(x, z) \leq s(x, y) + s(y, z) \]

- Counter example
 - \(x = [0,1], y = [1,1], z = [1,0] \)

\[d(\cdot) = -s(\cdot) \]

\[s(x, y) = 1 \]
\[s(x, z) = 0 \]
\[s(y, z) = 1 \]
MF violates “Triangle Inequality”

Violates triangle inequality, therefore, positive relationships between (U3,v1) and (U3,v2) are not propagated to (v1,v2)

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.
Metric Learning Approach

• MF Fails to precisely capture item-item and user-user similarity

• Solution: Metric learning approaches
 • Project users and items into a low-dimensional metric space
 • Triangle inequality is satisfied
 • Minimize the distance between each user-item interaction in Euclidean space
 • [Recsys10, KDD12, IJCAI15, WWW17]
[WWW17] Collaborative Metric Learning (CML)

- User should be closer to the items the user likes than those the user does not expect to capture the similarity among user-user and item-item pairs.

$$d(i, j) = \|u_i - v_j\|,$$ \hspace{1cm} \text{Euclidean distance}

$$L_m(d) = \sum_{(i,j)\in S} \sum_{(i,k)\notin S} [m + d(i, j)^2 - d(i, k)^2]_+,$$

Expect to capture the similarity among user-user and item-item pairs.

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.
Limitation of CML

• Each user is projected to a single point in the metric space

Hard to model the **intensity** and the **heterogeneity** of user–item relationships in implicit feedback
Intensity and Heterogeneity of Implicit Feedback

Intensity
- A user’s implicit feedback does not indicate the equal preference
- Some of the items are more relevant to the user than others

Intersity of user-item relationships

Heterogeneity
- A user may have a wide variety of tastes in different item categories
- The type of user–item relationship is heterogeneous with regard to the user’s tastes in various item categories

Preserving a user’s intense and heterogeneous relationships with items is not easy when a user is projected to a single point.
Solution: Adopt “translation mechanism”

- Effective for knowledge graph embedding
- Relations between entities are interpreted as translation operations between them
 - if a triplet \((h, r, t)\) is true?
 - \([\overrightarrow{h} + \overrightarrow{r} \approx \overrightarrow{t}]\): \(\overrightarrow{t}\) should be a nearest neighbor of \(\overrightarrow{h} + \overrightarrow{r}\)

Example
- (Barack Obama, place_of_birth, Honolulu)

 \[
 \text{Barack Obama} + \text{place_of_birth} \approx \text{Honolulu}
 \]

 Translation vector
Translation mechanism

- **Intensity**: Thickness
- **Heterogeneity**: Direction of vectors and angles between them
Technical Challenge

- Relations are not labeled in implicit feedback
 - In knowledge base, relations are labeled
 - ex) place_of_birth, city_of, nationality
 - In user-item graph, relations are not labeled (implicit feedback dataset)
 - Every “Observed” is not the same
 - Some items are more preferred by users

Goal: How to model the relationship (r) between user and item

Possible solution: Introducing new parameter for each user-item pair (?)
 - Prone to over-fitting (too many parameters)
 - The collaborative information is not explicitly modeled
Proposed Method: Neighborhood approach

• Neighborhood information is the core idea of CF
 • A **user** can be represented by the **items that the user consumed**
 \[\alpha_{u}^{nbr} = \frac{1}{|N_{u}^{I}|} \sum_{k \in N_{u}^{I}} \beta_{k} \]
 • An **item** can be represented by the **users that consumed the item**
 \[\beta_{i}^{nbr} = \frac{1}{|N_{i}^{u}|} \sum_{k \in N_{i}^{u}} \alpha_{k} \]
 • Model the relationship \((r)\) between a **user** and an **item** by modeling the interaction between the **[items the user rated]** and **[users that rated the item]**
 \[r_{ui} = f(\alpha_{u}^{nbr}, \beta_{i}^{nbr}) \]
Proposed Method: Neighborhood approach

• Benefit
 • Explicitly integrate the collaborative information into the model
 • CML does it implicitly by satisfying the triangle inequality
 • Does not introduce any new parameters
Proposed Method: Objective Function

• Margin-based pairwise ranking criterion: Hinge loss

$$\mathcal{L}(\Theta) = \sum_{u \in U} \sum_{i \in N^T_u} \sum_{j \notin N^T_u} [\gamma - s(u, i) + s(u, j)]_+$$

$$s(u, i) = -\|\alpha_u + r_{ui} - \beta_i\|_2^2$$

$$r_{ui} = \alpha_u^{nbr} \odot \beta_i^{nbr}$$

$$\alpha_u^{nbr} = \frac{1}{|N^T_u|} \sum_{k \in N^T_u} \beta_k$$

$$\beta_i^{nbr} = \frac{1}{|N^T_i|} \sum_{k \in N^T_i} \alpha_k$$

• N^I_u: Set of items rated by user u
• N^U_i: Set of users who rated by item i
Regularizer 1 - Neighborhood regularizer

- $reg_{nbr}(\Theta)$: Neighborhood regularizer
 - We implicitly assumed that α_u can be represented by α_{u}^{nbr}
 - However, if we can explicitly guide α_u to be close to α_{u}^{nbr}, the neighborhood information will be better reflected into our model

$$reg_{nbr}(\Theta) = \sum_{u \in U} \left(\alpha_u - \frac{1}{|\mathcal{N}_u^I|} \sum_{k \in \mathcal{N}_u^I} \beta_k \right)^2 + \sum_{i \in I} \left(\beta_i - \frac{1}{|\mathcal{N}_i^U|} \sum_{k \in \mathcal{N}_i^U} \alpha_k \right)^2$$
Regularizer 2 - Distance regularizer

• \(reg_{\text{dist}}(\Theta) \): Distance regularizer

 • Currently, item embedding is the nearest neighbor of the translated user embedding

 • Positive item will be pulled to user by pushing the negative item away from the user \(\rightarrow \) Push loss

 • However, the relations become more complex as the number of user-item interactions grows

 • Crucial to guarantee that the actual distance between them is small \(\rightarrow \) Pull loss

\[
reg_{\text{dist}}(\Theta) = \sum_{u \in U} \sum_{i \in N_u^I} -s(u, i) = \sum_{u \in U} \sum_{i \in N_u^I} \| \alpha_u + r_{ui} - \beta_i \|_2^2
\]
Proposed Method: Optimization

\[J(\Theta) = (L(\Theta) + \lambda_{nbr} \cdot reg_{nbr}(\Theta) + \lambda_{dist} \cdot reg_{dist}(\Theta)) \]

Margin-based loss Regularizers

Optimized by stochastic gradient descent (SGD)
Evaluation: Dataset

Dataset	#Users	#Items.	#Inter.	Density	Rat.	#Cat.
Delicious	1,050	1,196	7,698	0.61%	-	-
Tradesy	3,352	5,547	32,710	0.13%	-	-
Ciao	6,760	11,166	146,996	0.19%	1-5	28
Amazon	59,089	17,969	332,236	0.03%	1-5	45
Bookcr	19,571	39,702	605,178	0.08%	1-10	-
Flixster	69,482	25,687	8,000,690	0.45%	0.5-5.0	-
Pinterest	55,187	9,329	1,462,895	0.28%	-	-

To verify the heterogeneity

To verify the intensity
- Considered each observed rating as an implicit feedback record
Baseline Methods

1. **Learning-to-rank baselines**
 • Pointwise methods: eALS [SIGIR 2016], NeuMF [WWW 2017]
 • Pairwise methods: BPR [UAI 2009], AoBPR [WSDM 2014]

2. **Neighborhood-based baselines**
 • FISM [KDD 2013], CDAE [WSDM 2016]

3. **Metric learning-based baselines**
 • CML [WWW 2017]
 • $s(u, i) = -\|\alpha_u - \beta_i\|^2$
 • Ablation of TransCF
 • TransCF$^{\text{dot}}$
 • $s(u, i) = (\alpha_u + r_{ui})^T \beta_i$
 • TransCF$^{\text{alt}}$ (without neighborhood information)
 • $s(u, i) = -\|\alpha_u + r_{ui} - \beta_i\|^2, r_{ui} = f(\alpha_u, \beta_i)$
 • TransCF
 • $s(u, i) = -\|\alpha_u + r_{ui} - \beta_i\|^2, r_{ui} = f(\alpha_u^{nbr}, \beta_i^{nbr})$
Performance Comparison

- **TransCF > CML**
 - Benefit of the translation vectors that translate each user toward items according to the user’s relationships with those items
Performance Comparison

- **CML > TransCFalt**
 - Translation vectors should be carefully designed, otherwise the performance will rather deteriorate
Performance Comparison

Datasets	Metrics	BPR	FISM	AoBPR	eALS	CDAE	NeuMF	CML	TransCF$_{dnn}$	TransCF$_{alt}$	TransCF	Imp.
Delicious	H@10	0.1981	0.2203	0.2243	0.1992	0.1319	0.1164	0.2470	0.2150	0.2174	0.2586	4.70%
	H@20	0.3177	0.3391	0.3602	0.2942	0.2414	0.2171	0.3649	0.3377	0.3084	0.3786	3.75%
	N@10	0.1122	0.1124	0.1114	0.1035	0.0674	0.0558	0.1389	0.1101	0.1281	0.1475	6.19%
	N@20	0.1418	0.1424	0.1452	0.1271	0.0949	0.0789	0.1678	0.1412	0.1494	0.1781	6.14%
Tradesy	H@10	0.2481	0.2676	0.2597	0.2058	0.1652	0.1167	0.3031	0.2846	0.2648	0.3198	5.51%
	H@20	0.4174	0.4109	0.4256	0.3314	0.2867	0.2290	0.4413	0.4266	0.3823	0.4505	2.08%
	N@10	0.1248	0.1309	0.1300	0.1042	0.0831	0.0538	0.1685	0.1449	0.1466	0.1767	4.87%
	N@20	0.1673	0.1670	0.1715	0.1356	0.1136	0.0817	0.2031	0.1806	0.1760	0.2095	3.15%
Ciato	H@10	0.1569	0.2100	0.1873	0.1419	0.1700	0.1535	0.2085	0.2011	0.1991	0.2292	9.93%
	H@20	0.2811	0.3482	0.3146	0.2570	0.3153	0.2788	0.3337	0.3185	0.3270	0.3740	12.08%
	N@10	0.0751	0.1027	0.0891	0.0670	0.0862	0.0741	0.1053	0.1017	0.0989	0.1167	10.83%
	N@20	0.1063	0.1374	0.1209	0.0937	0.1208	0.1040	0.1358	0.1311	0.1309	0.1525	12.30%
Book-crossing	H@10	0.2425	0.2178	0.2563	0.1655	0.2244	0.2286	0.2885	0.2802	0.2828	0.3329	15.39%
	H@20	0.3761	0.3938	0.3916	0.2864	0.3610	0.3747	0.4053	0.3932	0.4069	0.4744	17.05%
	N@10	0.1250	0.1002	0.1238	0.0791	0.1164	0.1158	0.1663	0.1618	0.1578	0.1865	12.15%
	N@20	0.1585	0.1444	0.1676	0.1093	0.1506	0.1482	0.1956	0.1903	0.1890	0.2221	13.55%
Amazon C&A	H@10	0.2489	0.2470	0.2646	0.2161	0.2817	0.1317	0.3011	0.3003	0.3184	0.3436	14.11%
	H@20	0.3821	0.3782	0.3946	0.3480	0.4117	0.2390	0.4123	0.4184	0.4509	0.4658	12.98%
	N@10	0.1276	0.1247	0.1391	0.1064	0.1613	0.0613	0.1752	0.1648	0.1766	0.2019	15.24%
	N@20	0.1610	0.1577	0.1718	0.0739	0.1939	0.0880	0.2031	0.1945	0.2094	0.2323	14.38%

- **TransCF** > TransCF$_{alt}$
- Incorporating the neighborhood information is crucial in collaborative filtering
Translation in action

We want to show...

\[\| \alpha_u - \beta_i \|^2_2 > \| \alpha_u + r_{ui} - \beta_i \|^2_2 \]

Dataset	Obs.	Unobs.	Dataset	Obs.	Unobs.
Delicious	64.63%	43.75%	Amazon	75.57%	31.96%
Tradesy	56.02%	43.01%	Pinterest	36.25%	33.08%
Ciao	54.63%	38.42%	Flixster	22.24%	2.88%
Bookcr.	55.42%	35.57%			

Each translated user is placed closer to the observed (positive) items than to the unobserved (negative) items.
Intensity is encoded in Translation vectors

- **Assumption**: Rating information is a proxy for the intensity of user–item relationships
- **Task**: Rating prediction with translation vectors

\[r_{ui}^{CML} = (\alpha_u - \beta_i) \]
Learned by CML

\[r_{ui}^{TransCF_{emb}} = (\alpha_u - \beta_i) \]
Learned by TransCF

Acc. (%)	Ciao	Amazon	BookCr.	Flixster				
	Rand	RF	Rand	RF	Rand	RF	Rand	RF
CML					39.1		20.5	
TransCF_{emb}	19.9	50.3	20.1	50.3	13.8	40.1	10.0	20.5
TransCF		53.0		50.8		43.7		23.4

vs. CML 5.3% 1.5% 11.7% 14.2%

Rating prediction accuracy: TransCF > CML, TransCF_{emb}

Intensity of user–item relationships is best encoded in the translation vectors learned by TransCF
Intensity is encoded in Translation vectors

- High rating → High intensity → users are translated closer
- Expectation: more observed interactions to satisfy $\|\alpha_u - \beta_i\|_2^2 > \|\alpha_u + r_{ui} - \beta_i\|_2^2$ in higher rating groups.

	Rating						
	1-4	5	6	7	8	9	10
BookCr.	55.3%	52.7%	55.2%	56.1%	57.2%	58.4%	58.8%
Acc. Portion	3.8%	10.3%	7.9%	17.0%	24.5%	17.3%	19.2%
Flixster	0.5-2.5	3.0	3.5	4.0	4.5	5.0	
Acc. Portion	19.6%	19.9%	19.9%	22.2%	25.7%	27.2%	
Ciao	17.3%	17.0%	16.8%	19.6%	10.1%	19.2%	
Acc. Portion	1	2	3	4	5		
Amazon	61.5%	51.4%	55.4%	52.2%	55.4%		
Acc. Portion	4.8%	5.1%	11.4%	29.0%	49.7%		
	1	2	3	4	5		
Acc. Portion	76.7%	76.3%	75.1%	75.2%	75.4%		
Portion	7.0%	5.7%	10.7%	20.1%	56.5%		

High rating → More interactions satisfy $\|\alpha_u - \beta_i\|_2^2 > \|\alpha_u + r_{ui} - \beta_i\|_2^2$

Does not agree with our expectation
1) Range of ratings is small
2) Majority belongs to 4,5
→ Hard to infer users’ fine-grained preferences
Heterogeneity is encoded in Translation vectors

- **Assumption**: Item category = Users’ taste
- **Task**: Item category classification using \(r_{ui} \) and \(\beta_i \)

Dataset	Method	Rand.	Random Forest
Ciao	CML	1	67.86±0.47%
	TransCF\(_{\text{emb}}\)	10.01%	67.27±0.28%
	TransCF	1	**80.97±0.73%**
Amazon C&A	CML	1	54.26±0.74%
	TransCF\(_{\text{emb}}\)	10.40%	54.85±0.51%
	TransCF	1	**81.24±0.46%**

(a) Classification on translation vectors (\(r_{ui} \)).

TransCF > CML
- Translation vectors (\(r_{ui} \)) encode the category information \(\rightarrow \) Heterogeneity of the user–item relationships

Dataset	Method	Rand.	Random Forest
Ciao	CML	10.92%	80.41±1.59%
	TransCF		81.61±1.54%
Amazon C&A	CML	9.40%	47.94±3.34%
	TransCF		47.90±2.54%

(b) Classification on item embeddings (\(\beta_i \)).

TransCF ≈ CML
- Superior performance of TransCF is not derived from the high-quality embedding vectors
Heterogeneity is encoded in Translation vectors

Translation vectors **capture item category information** (without given any category information)