The impact of an orthogeriatric intervention in patients with fragility fractures: A cohort study

CURRENT STATUS: ACCEPTED

Charlotte Abrahamsen
University of Southern Denmark

cabrahamsen@health.sdu.dk
Corresponding Author
ORCiD: https://orcid.org/0000-0002-3700-289X

Birgitte Nørgaard
Syddansk Universitet Institut for Sundhedstjenesteforskning

Eva Draborg
Syddansk Universitet Det Sundhedsvidenskabelige Fakultet

Morten Frost Nielsen
Odense Universitetshospital

DOI:
10.21203/rs.2.13090/v1

SUBJECT AREAS
Geriatrics & Gerontology

KEYWORDS
Frail elderly, fragility fracture, osteoporotic fractures, orthogeriatric, postoperative complications
Abstract

Background: While orthogeriatric care to patients with hip fractures is established, the impact of similar intervention in patients with fragility fractures in general is lacking. Therefore, we aimed to assess the impact of an orthogeriatric intervention on postoperative complications and readmissions among patients admitted due to and surgically treated for fragility fractures.

Methods: A prospective observational cohort study with a retrospective control was designed. A new orthogeriatric unit for acute patients of sixty-five years or older with fragility fractures in terms of hip, vertebral or appendicular fractures was opened on March 1, 2014. Patients were excluded if the fracture was cancer-related or caused by high-energy trauma, if the patient was operated on at another hospital, treated conservatively with no operation, or had been readmitted within the last month due to fracture-related complications.

Results: We included 591 patients; 170 in the historical cohort and 421 in the orthogeriatric cohort. No significant differences were found between the two cohorts with regard to the proportion of participants experiencing complications (24.5% versus 28.3%, p = 0.36) or readmission within 30 days after discharge (14.1% vs 12.1%, p = 0.5). With both cohorts collapsed and adjusting for age, gender and CCI, the odds of having postoperative complications as a hip fracture patient was 4.45, compared to patients with an appendicular fracture (p < 0.001). Furthermore, patients with complications during admission were at a higher risk of readmission within 30 days than were patients without complications (22.3% vs 9.5%; p < 0.001).

Conclusions: In older patients admitted with fragility fractures, our model of orthogeriatric care showed no significant differences regarding postoperative complications or readmissions compared to the traditional care. However, we found significantly higher odds of having postoperative complications among patients admitted with a hip fracture compared to other fragility fractures. Additionally, our study reveals an increased risk of being readmitted within 30 days for patients with postoperative complications.

Background

For decades, hip fracture has been the most common fragility fracture among the elderly and a well-
known cause of significant health-related challenges in terms of increased mortality and comorbidity, as well as increased health care costs [1, 2]. To address these challenges, orthogeriatric care was developed as a model of collaboration between geriatricians, orthopaedic surgeons, and an interprofessional team of nurses, therapists, and others [3]. Orthogeriatric care has been shown to decrease the prevalence of postoperative complications [4-10], readmission rates [4, 5, 9, 11], and mortality [4, 6, 8, 11-16] in hip fracture patients, as compared to traditional orthopaedic care. The majority of these studies were designed as retrospective [6, 7, 9, 10, 12-14, 16] or prospective cohort studies with a historical cohort [4, 5, 11, 15], and only one study as a randomized controlled trial [8]. Until recently, orthogeriatric care was predominantly delivered to elderly patients with hip fractures; however, fragility fractures in elderly patients may occur in several bones within the appendicular or axial skeleton [17]. Thus, awareness of orthogeriatric care for patients with various fragility fractures is increasing [18, 19].

Only a limited number of investigations of the orthogeriatric care of patients with various fragility fractures have been published including two investigations that did not include comparisons to traditional orthopaedic care were performed [20, 21]. Furthermore, one study reported that, compared to conventional care, admission to wards where physician consultations and multidisciplinary care conferences were available increased the odds of one-year survival after hip or lower extremity injury in elderly patients [22].

Based on a review of the literature, a panel of experts in hip fracture management has recommended that twelve outcome parameters are used in the evaluation of orthogeriatric care—namely, mortality, length of stay, time to surgery, postoperative complications, readmission rate, mobility, quality of life, pain, activities of daily living, medication use, place of residence, and cost [23].

Postoperative medical complications in older hip fracture patients are common and are known to increase the length of stay in hospital and the overall cost of care [24]. Furthermore, these complications impair the patients’ ability to return to their previous functional status and increase mortality [8, 25].

In order to optimize the care pathway for elderly patients with fragility fractures and to gain more
knowledge about its effect, we implemented an orthogeriatric care unit.

The primary objective of our study was to assess the impact of an orthogeriatric intervention on postoperative complications in patients admitted due to and surgically treated for fragility fractures. We hypothesized that an orthogeriatric intervention in patients with fragility fractures would decrease the incidence of in-hospital postoperative complications. Secondly, we wanted to assess readmission rates with a notion of reduction.

Methods
The study concerned a regional hospital with no co-payment, serving a mixed rural and urban district in Denmark. The hospital provided 24-hour emergency assessment, orthopaedic surgery and internal medicine services. It furthermore had an ICU. A new orthogeriatric unit for acute patients of sixty-five years or older with various fragility fractures was opened on March 1, 2014. From that date, all patients of sixty-five years or older with fragility fractures in terms of hip and appendicular fractures were transferred directly to the new orthogeriatric unit after examination in the emergency room.

Intervention
The orthogeriatric unit was staffed by an interprofessional team consisting of orthopaedic surgeons, geriatric specialists, nurses, nursing assistants, physiotherapists, occupational therapists, and dieticians collaborating on the treatment and care of patients with fragility fractures. Each weekday, an interprofessional conference was conducted, in which treatment, training, nursing care, and discharge planning for each patient was discussed. Furthermore, on weekdays, patients were assessed in ward rounds and receiving daily physiotherapy training. Patients with severe functional challenges were offered training in daily living activities by occupational therapists. Where relevant, plans for early discharge were discussed with the patients and their families. For all patients who had previously received municipal home care, a discharge report was sent to the home care service. If major changes at home were needed, a video conference between patient, relatives, home care, and nurses from the ward was conducted. For further details on the distinction between orthogeriatric care and traditional orthopaedic care, see Fact box.

Please, insert Fact box here
Study design and participants

A prospective observational cohort study with a retrospective (historical) control was designed. The participants were all patients aged 65 years or older admitted to the orthogeriatric unit with a fragility fracture during two study periods: September 1, 2013 to January 31, 2014 (the historical cohort) and between September 1, 2014 and August 31, 2015 (the orthogeriatric cohort). Fragility fractures were diagnosed by the orthopaedic surgeon in the Emergency room by the definition: fractures occurring after minimal trauma, such as falling from a standing height or less, or after no identifiable trauma [26]. The fragility fractures included were hip fractures, clinical vertebral fractures, and appendicular fractures, with the exception of patients with fractures of the skull, face, fingers, hands, feet, toes, or kneecaps, as these fractures were not defined as fragility fractures. Hip fractures were identified as DS72, vertebral fractures as DS22 and DS32, and appendicular fractures as DS42, DS52, DS821-9, using codes from the International Classification of Diseases, version 10 (ICD10).

Outcome variables

The primary outcome of interest in our study was postoperative complications, defined as the proportion of patients with at least one of the following events; medical complications (cardiac, cerebral, thrombo-embolic, pulmonary, gastro-intestinal complications, urinary tract infection, delirium, pressure ulcer and subsequent fracture – new fractures during admission unrelated to the first fracture) or surgical complications (surgical site infections and surgical complications in terms of luxation) occurring at any time between operation and discharge, as recommended by Liem et al. [23]. Adverse drug reactions (ADR) and renal complications - i.e., transient or lasting increases in serum creatinine levels—were not included, as these cases were inappropriately defined and not systematically assessed. Additionally, the number of complications per patient was assessed numerically (0, 1 or more).

We differentiated between preoperative and postoperative complications by the time the complication was recognized. A medical complication was defined as a new medical condition or a destabilization of a previously stable illness.
Neither the Confusion Assessment Method (CAM) nor the guideline-specific initiatives of delirium management were systematically employed in the prior orthopaedic organization nor implemented during our investigation. Therefore, as both criteria were not met delirium was defined as the state of a patient described being delirious in the medical record and receiving haloperidol treatment as recommended in the local guideline.

The secondary outcome of interest was readmission—defined as any admission within 30 days from discharge.

Patient and admission-related characteristics

Patient characteristics included age, gender, marital status, BMI, place of residence, use of walking aid (yes/no), mobility before fracture using a mobility score validated for hip fracture patient (the Cumulated Ambulation Score (CAS) [27]; only collected for hip fracture patients), and comorbidity using Carlson’s Comorbidity Index (CCI). Comorbidity data were weighted according to the Charlson protocol and an index score was calculated for each patient [28].

Characteristics related to admission and operation included type of fracture, number of drugs at the time of admission, polypharmacy (defined as 5 or more different medications at admission), and the American Society of Anaesthesiologists Physical Status (ASA score) - a grading system from 1 to 6 used to evaluate patients’ physical state before choosing an anaesthetic. Furthermore, we assessed preoperative complications, patient ambulation within 24 hours after operation (yes/no), pain score on the second after the operation, mobility at discharge using CAS, time to surgery (TTS), and length of stay (LOS). Time to surgery (TTS) was defined as time (hours) from recorded admission time to the time anaesthesia began, and length of stay (LOS) was defined as the number of hours for which the patient was hospitalized.

Data sources

Data on age, gender, place of fall, type of fracture, TTS, and LOS were obtained from the patient administrative system, and data on ASA was sourced from the Danish Anaesthesia Database.

Comorbidity data and data on readmission were collected from a national registry using diagnoses listed from all hospital discharges for a period from 1994 until 1 month after current admission [29].
All remaining variables were collected from medical records.

Statistical analysis

The measurements of postoperative complications and readmission are expressed as proportions. Furthermore, postoperative complications and readmissions are examined using a binary logistic regression model on the individual patient level; adjusting for age and gender, and CCI or LOS, respectively. Subsequently regressions are made solely for hip fractures.

Numeric patient and admission-related characteristics are expressed as medians (quartiles) or mean values (±SDs) when appropriate; the unpaired Student’s t-test or the Mann–Whitney U-test is used depending on data distribution. When assessing categorical variables, we used proportions and the chi-squared test.

A two-sample comparison of proportions with a 1:2 patient ratio was chosen to generate more power to detect postoperative complications after implementing the intervention. On the basis of a significant 15% difference in postoperative complications in hip fracture patients assigned to multidisciplinary geriatric intervention versus the traditional orthopaedic care [8] and in the absence of results generated in study populations characterised by fragility fractures in general, a sample size of 183 (in the first period) and 366 (in the second period) hip fracture patients is necessary to detect a 15% decrease in postoperative complications in the intervention group, setting α at 0.05 and β at 0.9. In addition, patients with additional fragility fractures were concurrently included.

All analyses were performed using Stata 13 software (Stata Statistical Software: Release 13, 2013, College Station, TX).

Results

Patient characteristics and characteristics related to admission

We identified 814 patients eligible for inclusion. In total, 223 patients were excluded on the basis of the exclusion criteria or not having been operated on. We thus included 591 patients: 170 in the historical cohort and 421 in the orthogeriatric cohort (Fig 1).

Please, insert Figure 1 here

The mean age was 80.2 years (SD 8.4); 77.5% were women, 40.9% were cohabiting, and 79.5% were
living in their own home. The mean BMI was 23.7 (SD 4.4), and 46.9% of the participants used walking aids. Polypharmacy occurred in 61.9% of the patients. A total of 66.8% of the participants were admitted due to hip fracture (DS72), 6.4% due to humerus fracture (DS42), 21.2% due to radius fracture (DS52), and 5.6% due to tibia fracture (DS821-9). At admission, the patients had a mean CCI of 1.6 (SD 2.0), and a mean ASA-score of 2.5 (SD 0.7); the hip fracture patients at admission had a mean CAS of 4.8 (SD 1.8). Preoperative complications i.e. complications diagnosed from admission until entering the operating room were found in 9.4% of participants; including 2.4% with pneumonia and in 4.4% with urinary tract infection. In total, 88.3% of the hip fracture patients were ambulated within 24 hours. The mean time to surgery was 26.2 hours (SD 25.33) and the mean length of stay was 153.9 hours (SD 92.1).

The two cohorts were significantly different with regard to marital status, as a larger proportion in the historical cohort was living alone (67.3% vs 55.6%, p = 0.01). Furthermore, a significantly larger proportion of patients in the orthogeriatric cohort used walking aids at time of admission (34.7% vs 51.8%, p = 0.001) and had a better CAS before admission (median 6 vs 6, p < 0.001) and at discharge; CAS thus decreased from admission to discharge in both cohorts.

The overall time to surgery was longer in the orthogeriatric cohort (18.2 vs 20.5 hours, p = 0.01). In both cohorts, time to surgery was 2-5 hours longer in patients with appendicular fractures compared to those with hip fractures. The length of stay remained unchanged in the total orthogeriatric cohort (141.6 vs 145.7 hours, p = 0.14); yet was significantly prolonged among those with appendicular fractures (64.1 vs. 91.0 hours, p = 0.002) (Table 1).

Please, insert Table 1 here

Postoperative complications

We found no significant differences between the cohorts with regard to the proportion of participants experiencing complications (24.5% versus 28.3%, p = 0.36) (Table 2). Hence, medical complications occurred in 23.3% versus 27.1% of the study participants, respectively (p = 0.36). When adjusted for age, gender, and comorbidity, the odds of postoperative complication increased numerically in the orthogeriatric cohort, compared to the historic cohort, from 1.21 (CI: 0.80 to 1.83) to 1.35 (CI: 0.88 to
The most common medical complications were urinary tract infection and pneumonia; pneumonia was more common in the orthogeriatric cohort (p = 0.03). A total of 72.8% of all patients did not experience complications, with 20.1% experiencing one and 7.1% two complications; there were no differences between the two cohorts (Table 2).

When comparing postoperative complications among hip fracture patients in the two cohorts, differences remained insignificant (33.9 % vs. 37.7 %, p = 0.48).

Patients with complications were more likely to be older (84.0 vs 78.5, p < 0.001), male (29.9 vs 20.0, p = 0.02), with a hip fracture (89.2 vs 57.9, p < 0.001), with a higher CCI (1 vs 1, p = 0.02), and to have an ASA score of 3–4 (63.9 vs 48.3, p = 0.004) compared to patients without complications (Table 3). Additionally, patients with complications had longer stays in hospital (206.6 vs 117.5 hours, p < 0.001) (Table 3).

Readmission

Taking into account the readmissions within 30 days after discharge, we found no significant difference in the historical cohort vs the orthogeriatric cohort (14.1% vs 12.1%, p = 0.5) (Table 4).

When adjusted for age, gender, and LOS, the odds of readmission decreased numerically in the orthogeriatric cohort, compared to the historic cohort, from 0.84 (CI 0.50-1.41) to 0.80 (CI 0.46-1.38), but the results nonetheless remained insignificant (p = 0.42).

With both cohorts collapsed, 65 out of 75 readmissions occurred in patients with hip fractures (Table 4). Diagnosis at readmission included respiratory difficulties (n = 13; pneumonia and COPD), other causes (n = 12; fatigue, dizziness, pain, and syncope), complications to surgery (surgical (n = 4), haemorrhagic (n = 4), and infection (n = 2)), circulatory problems (n = 9; myocardial infarction, tachycardia, heart failure, and apoplexy), infection (n = 8; sepsis and bacterial infection), and anaemia (n = 4).

In the collapsed study population, patients with complications during admission had a higher risk of 2.08); the results nonetheless remained insignificant (p = 0.17).
readmission within 30 days than did patients who had not experienced complications during admission (22.3% vs 9.5%; p < 0.001) (Table 3).

Discussion
This study investigated the effect of an orthogeriatric intervention in patients of 65 years or older who were admitted with a fragility fracture and operated on at a Danish regional hospital. We found no significant differences in the proportion of patients with postoperative complications when comparing orthogeriatric care to the traditional care. A slight increase was nevertheless found in the orthogeriatric cohort, which could be explained by the greater focus of geriatricians on diagnosing and treating medical diseases, as mentioned by other researchers [13]. Our postoperative complication rate of 33.9% in the historical hip fracture cohort was distinctly lower than those reported in other studies [4, 6-9, 13]; in other studies, complication rates in units without orthogeriatric care varied from 46.3% to 71%. However, a wide range of different complications have been reported, as there has been no consensus regarding the definition, classification, or assessment of complications [30]. On closer examination, postoperative complications were measured differently regarding 1) their number (varying from 8 to 16), 2) whether they were solely medical, or included all complications, and 3) their type; this makes it challenging to compare results in terms of proportions. Finding no significant differences in postoperative complications between the two cohorts, we hypothesized that the effect of orthogeriatric care would appear as a decrease in the proportion of long-term readmissions (30 days). However, we found no differences in readmission rates when comparing orthogeriatric care to traditional care. The literature seems to reveal inconsistency in the study of readmission rates; two prospective observational studies with retrospective (historical) control cohorts found decreases in such rates [4, 5], while several studies found no differences [6, 9, 31, 32]; the time lapse before assessing readmission rates varied from 30 days [5, 6, 32] to 12 months [31]. Valid comparison of readmission rates was also hindered by variation as to the data sources. Some studies thus included readmission data from all wards in the hospital while other studies included only the orthogeriatric ward.

The main reason for readmission within 30 days was medical complications. One study of hip fracture
patients admitted to an orthopaedic ward and consulted immediately by a geriatrician differentiated among causes of readmissions within 30 days, showing that 1.8% of the complications were surgical and 8.5% were medical [33]. This distribution supports our findings on medical complications being the main cause.

Furthermore, we found an association between postoperative complications and readmission within 30 days. No similar association was reported in earlier studies investigating both postoperative complications and readmissions. Some studies report a decrease in postoperative complications comparing traditional care to orthogeriatric care, yet no difference in readmission rates were found [6, 9]; other studies [4, 5] found a significant decrease in both postoperative complications and readmissions. Thus, the overall changes in postoperative complications are not consistently associated with variations in readmission rates.

With both cohorts collapsed, we also found the risk of postoperative complications to be 4.5 times higher in patients admitted due to a hip fracture compared to those with an appendicular fracture. To our knowledge, no other researchers have reported similar results. The higher risk of complications in hip fracture patients may be explained by longer duration of surgery, more frequent risk of postoperative immobilization and higher proportion being frail than patients with other fragility fractures.

Moreover, with both cohorts collapsed, we found that patients with postoperative complications were most likely to be older, male, with more comorbidities, and to have ASA scores of 3–4 in comparison with patients without complications—corroborating other studies showing that postoperative complications are more common in patients who are older [6, 25], male [25], with ASA scores of 3–4 [34, 35], and with high comorbidity levels [3, 25, 36].

We additionally found a significantly prolonged length of stay among patients with postoperative complications, compared to patients without complications. These results were also found in other studies [24, 37].

Patients admitted with fragility fractures form a heterogeneous group with many different types of fractures, different comorbidity levels, and different levels of functional ability. We have provided
restricted analyses for hip fracture patients in order to relate our results to a well-known group of patients and to be able to compare results between patients with hip fractures and those with appendicular fractures. Our results did not change when we analysed the subgroup of hip fracture patients.

Since 1999, all orthopaedic surgery departments in Denmark have worked according to a national Reference Programme for hip patients [38]. The programme includes recommendations on time to surgery, early mobilization, clarifying ambulation status before fracture and at discharge, nutritional status, initiating in-hospital osteoporosis treatment, and fall prevention, in order to increase quality of care. Comparing the results of our study to the quality of care recommendations for hip fracture patients in Denmark, the mean time to surgery was below the recommended 24 hours, and ambulation within 24 hours of the operation occurred in about 90% of all hip patients in our investigation, indicating a good quality of care in our setting, both before and after implementing orthogeriatric care.

Patient characteristics in the two cohorts were comparable, although patients from the orthogeriatric cohort had a significantly higher CAS, higher use of walking aids, and were more likely to be cohabiting.

Strengths And Limitations

In examining postoperative complications, we did not distinguish between minor and major complications, and neither did we take into account the severity of complications. However, we have categorized complications as preoperative or postoperative and accounted for complications, as recommended [23]. However, ADR and renal complications are underrepresented, as these cases were inappropriately defined and not systematically documented in the records.

Calculating a sample size on the basis of a 2005 article [8] that showed a 15% decrease in postoperative complications may have overestimated the potential effects of orthogeriatric care. Furthermore, detecting a significant change of 15% from our initially low complication rate of 24.5% was next to impossible.

Conclusions
In older patients admitted with and surgically treated for fragility fractures, our model of orthogeriatric care showed no significant differences regarding postoperative complications or readmissions, compared to traditional care. We did, however, find higher risk of postoperative complications among patients admitted with a hip fracture compared to other fragility fractures. Additionally, our study reveals an increased risk of being readmitted within 30 day for patients with postoperative complications.

Our results contribute to the knowledge of the impact of orthogeriatric care in older patients with various types of fragility fractures.

Further studies on specific subgroups of fractures, as well studies on other relevant outcomes such as mortality, are recommended.

Abbreviations
ADR: Adverse drug reactions
ASA: The American Society of Anaesthesiologists Physical Status
CAM: The Confusion Assessment Method
CAS: The Cumulated Ambulation Score
CCI: Carlson’s Comorbidity Index
ICD: The International Classification of Diseases
ICU: Intensive care unit
LOS: Length of stay
TTS: Time to surgery

Declarations

Ethics approval and consent to participate
The study was approved by the Danish Data Protection Agency (2008-58-0035) on January 28, 2014 and the Danish Health and Medicines Authority (3-3013-612/1) on March 2, 2015. Under Danish law, approval from the Regional Scientific Ethical Committees of Southern Denmark was not required.

Consent for publication
Not applicable

Availability of data and material
The datasets generated and analysed during the current study are not publicly available due to Danish legislation. However, the corresponding author will be happy to answer any question about data.

Competing interests
The authors declare that they have no competing interest.

Funding
No funding was obtained for this study.

Authors’ contribution
All authors (CA, BN, ED & MFN) contributed in designing the study. CA accessed the data and performed the analyses. MFN, BN and CA interpreted the results. CA wrote the manuscript. All authors (CA, BN, ED & MFN) critically revised the manuscript and approved the final manuscript.

Acknowledgements
We gratefully acknowledge Per Gundtoft MD, PhD, Department of Orthopaedic Surgery, Kolding Hospital, for statistical supervision.

Authors’ information
Charlotte Abrahamsen (CA), MHS, PhD, Assistant Professor, Department of Public Health, University of Southern Denmark & Department of Orthopaedic Surgery, Kolding Hospital a part of Hospital Lillebaelt, Denmark; Birgitte Nørgaard (BN), MScN, PhD, Ass. Professor, Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public Health, University of Southern Denmark; Eva Draborg (ED), MSc, PhD Ass., Professor Department of Public
Health, University of Southern Denmark; Morten Frost Nielsen (MFN), MD, PHD, Ass. Professor, Endocrine Research Unit & KMEB, Odense University hospital, Odense, Denmark

References

1. Braithwaite, R. S., N. F. Col and J. B. Wong (2003). "Estimating hip fracture morbidity, mortality and costs." J Am Geriatr Soc 51(3): 364-370.

2. Cooper, C. and L. J. Melton, 3rd (1992). "Epidemiology of osteoporosis." Trends Endocrinol Metab 3(6): 224-229.

3. Kammerlander, C., T. Roth, S. M. Friedman, N. Suhm, T. J. Luger, U. Kammerlander-Knauer, et al. (2010). "Ortho-geriatric service--a literature review comparing different models." Osteoporos Int 21(Suppl 4): S637-646.

4. Fisher, A. A., M. W. Davis, S. E. Rubenach, S. Sivakumaran, P. N. Smith and M. M. Budge (2006). "Outcomes for older patients with hip fractures: the impact of orthopedic and geriatric medicine cocare." J Orthop Trauma 20(3): 172-178; discussion 179-180.

5. Folbert, E. C., R. S. Smit, D. van der Velde, E. M. Regtuijt, M. H. Klaren and J. H. Hegeman (2012). "Geriatric fracture center: a multidisciplinary treatment approach for older patients with a hip fracture improved quality of clinical care and short-term treatment outcomes." Geriatr Orthop Surg Rehabil 3(2): 59-67.

6. Friedman, S. M., D. A. Mendelson, K. W. Bingham and S. L. Kates (2009). "Impact of a comanaged Geriatric Fracture Center on short-term hip fracture outcomes." Arch Intern Med 169(18): 1712-1717.

7. Khasraghi, F. A., C. Christmas, E. J. Lee, S. C. Mears and J. F. Wenz, Sr. (2005). "Effectiveness of a multidisciplinary team approach to hip fracture management." J Surg Orthop Adv 14(1): 27-31.

8. Vidan, M., J. A. Serra, C. Moreno, G. Riquelme and J. Ortiz (2005). "Efficacy of a
comprehensive geriatric intervention in older patients hospitalized for hip fracture: a randomized, controlled trial." J Am Geriatr Soc 53(9): 1476-1482.

9. Dy, C. J., P. M. Dossous, Q. V. Ton, J. P. Hollenberg, D. G. Lorich and J. M. Lane (2012). "The medical orthopaedic trauma service: an innovative multidisciplinary team model that decreases in-hospital complications in patients with hip fractures." J Orthop Trauma 26(6): 379-383.

10. Katrancha, E. D., J. Zipf, N. Abrahams and R. Schroeder (2017). "Retrospective Evaluation of the Impact of a Geriatric Trauma Institute on Fragility Hip Fracture Patient Outcomes." Orthop Nurs 36(5): 330-334.

11. Duaso, E., F. Formiga, P. Marimon, M. Sandiumenge, M. T. Salgado, V. Murga, et al. (2018). "Advantages of care for patients with hip fractures in the acute geriatric unit: Hip study Anoia." Geriatr Gerontol Int 18(3): 407-414.

12. Barone, A., A. Giusti, M. Pizzonia, M. Razzano, E. Palummeri and G. Pioli (2006). "A comprehensive geriatric intervention reduces short- and long-term mortality in older people with hip fracture." J Am Geriatr Soc 54(7): 1145-1147.

13. Leung, A. H., T. P. Lam, W. H. Cheung, T. Chan, P. C. Sze, T. Lau, et al. (2011). "An orthogeriatric collaborative intervention program for fragility fractures: a retrospective cohort study." J Trauma 71(5): 1390-1394.

14. Zeltzer, J., R. J. Mitchell, B. Toson, I. A. Harris, L. Ahmad and J. Close (2014). "Orthogeriatric services associated with lower 30-day mortality for older patients who undergo surgery for hip fracture." Med J Aust 201(7): 409-411.

15. Baroni, M., R. Serra, V. Boccardi, S. Ercolani, E. Zengarini, P. Casucci, et al. (2019). "The orthogeriatric comanagement improves clinical outcomes of hip fracture in older adults." Osteoporos Int.

16. Forni, S., F. Pieralli, A. Sergi, C. Lorini, G. Bonaccorsi and A. Vannucci (2016).
Mortality after hip fracture in the elderly: The role of a multidisciplinary approach and time to surgery in a retrospective observational study on 23,973 patients. Arch Gerontol Geriatr 66: 13-17.

17. Lips, P. (1997). "Epidemiology and predictors of fractures associated with osteoporosis." Am J Med 103(2a): 3S-8S; discussion 8S-11S.

18. Aw, D. and O. Sahota (2014). "Orthogeriatrics moving forward." Age Ageing 43(3): 301-305.

19. Sabharwal, S. and H. Wilson (2015). "Orthogeriatrics in the management of frail older patients with a fragility fracture." Osteoporos Int.

20. Kammerlander, C., M. Gosch, M. Blauth, M. Lechleitner, T. J. Luger and T. Roth (2011). "The Tyrolean Geriatric Fracture Center: an orthogeriatric co-management model." Z Gerontol Geriatr 44(6): 363-367.

21. Chong, C., J. Christou, K. Fitzpatrick, R. Wee and W. K. Lim (2008). "Description of an orthopedic-geriatric model of care in Australia with 3 years data." Geriatr Gerontol Int 8(2): 86-92.

22. Adams, A. L., M. A. Schiff, T. D. Koepsell, F. P. Rivara, B. G. Leroux, T. M. Becker, et al. (2010). "Physician consultation, multidisciplinary care, and 1-year mortality in Medicare recipients hospitalized with hip and lower extremity injuries." J Am Geriatr Soc 58(10): 1835-1842.

23. Liem, I. S., C. Kammerlander, N. Suhm, M. Blauth, T. Roth, M. Gosch, et al. (2013). "Identifying a standard set of outcome parameters for the evaluation of orthogeriatric co-management for hip fractures." Injury 44(11): 1403-1412.

24. Khasraghi, F. A., E. J. Lee, C. Christmas and J. F. Wenz (2003). "The economic impact of medical complications in geriatric patients with hip fracture." Orthopedics 26(1): 49-53; discussion 53.
25. Roche, J. J., R. T. Wenn, O. Sahota and C. G. Moran (2005). "Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study." Bmj 331(7529): 1374.

26. Brown, J. P. and R. G. Josse (2002). "2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada." Cmaj 167(10 Suppl): S1-34.

27. Foss, N. B., M. T. Kristensen and H. Kehlet (2006). "Prediction of postoperative morbidity, mortality and rehabilitation in hip fracture patients: the cumulated ambulation score." Clin Rehabil 20(8): 701-708.

28. Charlson, M. E., P. Pompei, K. L. Ales and C. R. MacKenzie (1987). "A new method of classifying prognostic comorbidity in longitudinal studies: development and validation." J Chronic Dis 40(5): 373-383.

29. Thygesen, S. K., C. F. Christiansen, S. Christensen, T. L. Lash and H. T. Sorensen (2011). "The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients." BMC Med Res Methodol 11: 83.

30. Liem, I. S., C. Kammerlander, N. Suhm, S. L. Kates and M. Blauth (2014). "Literature review of outcome parameters used in studies of geriatric fracture centers." Arch Orthop Trauma Surg 134(2): 181-187.

31. Deschodt, M., T. Braes, P. Broos, A. Sermon, S. Boonen, J. Flamaing, et al. (2011). "Effect of an inpatient geriatric consultation team on functional outcome, mortality, institutionalization, and readmission rate in older adults with hip fracture: a controlled trial." J Am Geriatr Soc 59(7): 1299-1308.

32. Stenvall, M., B. Olofsson, L. Nyberg, M. Lundstrom and Y. Gustafson (2007). "Improved performance in activities of daily living and mobility after a multidisciplinary postoperative rehabilitation in older people with femoral neck
fracture: a randomized controlled trial with 1-year follow-up." J Rehabil Med 39(3): 232-238.

33. Kates, S. L., D. Blake, K. W. Bingham, O. S. Kates, D. A. Mendelson and S. M. Friedman (2010). "Comparison of an organized geriatric fracture program to United States government data." Geriatr Orthop Surg Rehabil 1(1): 15-21.

34. Kua, J., R. Ramason, G. Rajamoney and M. S. Chong (2016). "Which frailty measure is a good predictor of early post-operative complications in elderly hip fracture patients?" Arch Orthop Trauma Surg 136(5): 639-647.

35. Pedersen, S. J., F. M. Borgbjerg, B. Schousboe, B. D. Pedersen, H. L. Jorgensen, B. R. Duus, et al. (2008). "A comprehensive hip fracture program reduces complication rates and mortality." J Am Geriatr Soc 56(10): 1831-1838.

36. Friedman, S. M., D. A. Mendelson, S. L. Kates and R. M. McCann (2008). "Geriatric co-management of proximal femur fractures: total quality management and protocol-driven care result in better outcomes for a frail patient population." J Am Geriatr Soc 56(7): 1349-1356.

37. Biber, R., K. Singler, M. Curschmann-Horter, S. Wicklein, C. Sieber and H. J. Bail (2013). "Implementation of a co-managed Geriatric Fracture Center reduces hospital stay and time-to-operation in elderly femoral neck fracture patients." Arch Orthop Trauma Surg 133(11): 1527-1531.

38. [Referenceprogram for patienter med hoftebrud] Reference program for patients with hip fracture (2008) Denmark. ; http://www.ortopaedi.dk/fileadmin/Guidelines/Referenceprogrammer/Referenceprogram_for_patienter_med_hoftebrud2008.pdf. Accessed 20 May 2019.

Tables And Boxes

Table 1. Patient characteristics and characteristics related to admission		

19
Patient characteristics	Historical cohort (n = 170)	Orthogeriatric cohort (n = 421)	P-value
Age, median (p25-p75)	81 (73-81)	80 (73-80)	0.31
Female	78.2	77.2	0.78
Marital status, % (n = 540)			
Widow/living alone	67.3	55.6	0.01
Married/cohabiting	32.7	44.4	
Place of residence, % (n = 560)			
Nursing home	13.2	15.3	0.40
Sheltered housing	7.8	5.1	
Own home	79.0	79.6	
BMI, median (p25-p75) (n = 439)	23 (20-26)	23.2 (21-26)	0.44
Prefracture health status			
Use of walking aid, % (n = 437)	34.7	51.8	0.001
CAS, median (p25-p75) (n = 330, hip fracture)	6 (2-6)	6 (5-6)	< 0.001
Carlson Comorbidity Index, median (p25-p75)	1 (0-2)	1 (0-2)	0.05
Characteristics related to admission			
Type of fracture, %			
Hip fracture (DS72), (n = 395)	68.8	66.0	0.51
Appendicular fracture (n = 196)	31.2	34.0	
Clavicular, humeral (DS42)	5.9	6.5	
Radius, ulna, colles (DS52)	25.3	19.5	
Tibia, malleolus (DS82)	NA	7.8	
Medication at admission			
Polypharmacy (> 5 drugs) %	62.9	61.5	0.75
Medication at admission, median (p25-p75)	6 (3-9)	6 (3-9)	0.64
ASA-score, median (p25-p75) (n = 585)	3 (2-3)	3 (2-3)	0.50
Score 1, %	7.8	5.3	0.32
Score 2, %	39.5	42.1	
Score 3, %	48.5	44.5	
Score 4, %	4.2	7.9	
Score 6, %	NA	0.2	
Table 2. Analysis of postoperative complications between historical and orthogeriatric cohort

	Historical Cohort (n = 170)	Orthogeriatric cohort (n = 421)	Odds ratio of postoperative complications in historical versus orthogeriatric cohort
Overall complications (n = 577)	24.5%	28.3%	1.21 (0.80-1.85) 0.36 1.35 (0.88-2.08) 0.17
Medical complications (n = 577)	23.3%	27.1%	1.22 (0.80-1.85) 0.36 1.36 (0.88-2.10) 0.17
Delirium (n = 585)	3.0%	5.5%	1.90 (0.71-5.10) 0.20 2.07 (0.76-5.67) 0.16
Urinary tract infection (n = 585)	11.9%	11.0%	0.92 (0.52-1.60) 0.76 0.98 (0.56-1.74) 0.96
Pulmonary complications (n = 585)	8.3%	14.1%	1.81 (0.98-3.34) 0.06 2.00 (1.06-3.78) 0.03
Pneumonia	7.1%	13.7%	2.06 (1.07-3.94) 0.03 2.33 (1.18-4.59) 0.01
Exacerbation of COPD^	1.2%	1.2%	1.01 (0.19-5.24) 0.99 0.97 (0.18-5.28) 0.97
Cardiac complications	4.8%	4.3%	0.90 (0.38-2.12) 0.81 1.02 (0.42-2.47) 0.96
Arrhythmia	3.6%	4.1%	1.15 (0.44-2.96) 0.78 1.26 (0.48-3.32) 0.64
Congestive heart failure	0%	0.7%	1.0% 0.97 (4.5-10.2) 1.0 1
Myocardial infarction	1.2%	0.7%	0.60 (0.99-3.63) 0.58 0.75 (0.12-4.74) 0.76
Cerebral complications	0%	0.2%	1.0% 0.97 (4.5-10.2) 1.0 1

Preoperative complications, % (n = 587) 8.2 9.8 0.55
Ambulation within 24 hours after surgery, %

Hip fracture, (n = 360) 91.3 87.2 0.27
Pain on day 2 after surgery, % (n = 322)

NRS 0 8.0 10.8 0.30
NRS 1-3 35.0 42.8
NRS 4-6 49.0 38.3
NRS 7-10 8.0 8.1

Discharge CAS, median (p25-p75) (n = 339, hip fracture) 2 (1-5) 3 (2-5) 0.007
Time to surgery, median (p25-p75) 18.2 (11.4-25.2) 20.5 (13.0-31.0) 0.01
Hip fracture 17.8 (9.8-23.2) 19.4 (12.4-25.3) 0.06
Appendicular fracture 20.3 (14.1-36.0) 24.7 (13.7-46.8) 0.12

Length of stay, hours median (p25-p75) 141.6 (66.7-201.3) 145.7 (82.0-212.4) 0.14
Hip fracture 167.3 (126.8-225.3) 168.0 (119.2-231.5) 0.80
Appendicular fracture 64.1 (41.9-96.1) 91.0 (51.8-157.8) 0.002
	1.2	0.5	0.40 (0.56-2.86)	0.36	0.34 (0.05-2.49)	0.29
Thromboembolic complications						
Deep vein thrombosis	0.6	0.5	0.80 (0.72-8.94)	0.86	0.69 (0.61-7.80)	0.77
Pulmonary embolism	0.6	0.24	0.40 (0.25-6.45)	0.52	0.33 (0.02-5.61)	0.44
Gastrointestinal (GI) complications						
Ileus	0	1.9	1		1	
Gastrointestinal bleeding	0	1.7	1		1	
Pressure ulcer (n = 577)	0	0	1		1	
Subsequent fracture	0.6	0.5	0.80 (0.07-8.94)	0.86	0.82 (0.07-9.27)	0.87
Surgical complication (n = 585)	1.2	1.7	1.42 (0.29-6.89)	0.67	1.47 (0.30-7.21)	0.64
Surgical site infection	0.6	1.2	2.03 (0.24-17.48)	0.52	2.36 (0.27-20.7)	0.44
Surgical complication	1.2	0.7	0.61 (0.10-3.65)	0.58	0.54 (0.08-3.37)	0.51
Complications per patient (n = 577)						
= 0	75.4	71.7	1		1	
= 1	19.8	20.2	1.08 (0.68-1.70)	0.75	1.21 (0.76-1.93)	0.43
> 2	4.8	8.1	1.77 (0.79-3.93)	0.16	1.99 (0.87-4.54)	0.10

*COPD = Chronic Obstructive Pulmonary Disease
*p values were calculated using logistic regression, adjusted for age, gender and CCI
Table 3. Patient characteristics without and with postoperative complications

	Patients without postoperative complications (n = 420)	Patients with postoperative complications (n = 157)	P-value
Age, median (p25-p75)	78.5 (72-85)	84 (79-89)	< 0.001
Male, %	20.0	29.9	0.02
Type of fracture, %			
Hip fracture (DS72)	57.9	89.2	< 0.001
Appendicular fracture	42.1	10.8	
Prefracture health status			
Use of walking aid, %	41.4	59.9	< 0.001
Carlson Comorbidity Index, median (p25-p75)	1 (0-2)	1 (0-3)	0.007
ASA-score, median (p25-p75) (n = 571)	2 (2-3)	3 (2-3)	< 0.001
Score 1-2, %	51.4	36.1	0.004
Score 3-4, %	48.3	63.9	
Score 5-6, %	0.3	0	
Length of stay, hours median (p25-p75)	117.5 (65.4-173.7)	206.6 (147.3-265.3)	< 0.001
Readmission	9.5	22.3	< 0.001

Table 4. Analysis of readmissions between historical and orthogeriatric cohort

	Historical Cohort (n = 170)	Orthogeriatric cohort (n = 421)	Odds ratio of readmissions in historical versus orthogeriatric cohort			
	%	%	OR (95% CI)	P-value*	Adjusted OR (95% CI)	P-value*
Readmission (n = 75)	14.1	12.1	0.84 (0.50-1.41)	0.51	0.80 (0.46-1.38)	0.42
Hip fracture (n = 65)	17.9	15.8	0.86 (0.49-1.52)	0.60	0.85 (0.47-1.54)	0.60

*p values were calculated using logistic regression, adjusted for age, gender and LOS

Fact box. Outline of organizational, training, and care path differences between historical and orthogeriatric cohort

Activities	Traditional orthopaedic care	Orthogeriatric care	
Patients with hip fractures	Patients with other fragility fractures	Patients with fragility fracture	
Service	Description	Description	Description
------------------	---	---	---
Interprofessional conference	None	None	Interprofessional every weekday.
Ward round	The geriatrician attended the ward 2 × 1 hour per week, reading patient medical records and recommending further medical examination and treatment. The orthopaedic consultant was responsible for patient treatment.	The orthopaedic consultant had the sole responsibility for patient treatment	The geriatrician attended the ward every weekday. The orthopaedic consultant had the sole responsibility for patient treatment.
Treatment	Routine prescription of calcium and vitamin D and fall prevention, when relevant	No routine prescriptions	Systematic prescription of calcium and vitamin D and fall prevention, when relevant.
Follow-up round	None	None	Follow-up round by the orthopaedic consultant.
Training facilities in the ward	None	None	A dedicated room with exercise equipment used for group and individual training. Monday to Friday.
Physiotherapy	Individual training and evaluating walking aids (mean time 140 min per patient per admission)	Individual training and evaluating walking aids (time not assessed).	Daily individual training, group training and evaluating walking aids (mean time 250 min per hip patient during admission).
Occupational therapy	Assistance requested to evaluate the need for daily living aids. ADL assistance was offered to 2–3 patients per week	No ADL assistance	Evaluation of the need for daily living and occupational therapy (ADL) was offered thought to all patients (five patients per week).
Nutritional therapy	Assistance requested to develop nutrition plans (five minutes per patient)	No support from dieticians	Attending conferences, assessing patients’ nutritional status, and developing nutrition plans.
Discharge planning	Early discharge planning. Report sent to the municipality for all patients with established potential for discharge	Early discharge planning. Report was sent to the municipality for all patients with established potential for discharge	Early discharge planning was sent to the municipality for all patients with established potential for discharge.
Staff training

Contact	Video conference when major changes were needed	Contact	Video conference when major changes were needed	Contact	Video conference when major changes were needed
No specific training	No specific training	No specific training	A 6 × 3-hour course for carers in orthogeriatric care and medical knowledge including sessions on preventing, detecting, and treating various medical complications.		

Figures

- **Figure 1**
 - Flowchart

- Eligible for inclusion
 - (n = 814)
 - Excluded (n = 223)
 - Operated at another hospital (n = 21)
 - Pathological fracture (n = 9)
 - Traumatic fracture (n = 34)
 - Readmission (n = 25)
 - Not operated (n = 134)
 - Study population (n = 591)
 - Historical cohort (n = 170)
 - Study population (n = 421)