Properties of elastic fabrics with treated and untreated Co/PBT yarns in weft direction

M Bizjak¹, H Kadoğlu², K Kostajnšek¹, P Çelik², G Başal Bayraktar², D Duran², T Bedez Üte², M Ertekin and K Dimitrovski¹

¹University of Ljubljana, Faculty for Natural Sciences and Engineering, Department of Textiles, Graphics Art and Design, Snežniška 5, Ljubljana, Slovenia
²Ege University, Faculty of Engineering, Department of Textile Engineering, Bornova, Izmir, Turkey

mateja.bizjak@ntf.uni-lj.si

Abstract. Studies in the field of elasticised woven fabrics made of Co/ PBT yarns indicate great potential of PBT use in woven fabrics. Weaving experiments demonstrate that elasticity of Co/PBT fabrics gained after treatment depends not only on woven fabric settings but also on on-loom settings. Therefore, it is difficult to predict precisely the degree of shrinkage of the Co/PBT fabric after treatment. Six samples of woven fabrics were produced, three samples with the pre-treated core spun Co/PBT weft, each in a different weave. Other three samples were woven with untreated core spun Co/PBT weft, in the same weaves and afterwards the samples were treated. The results indicated big differences between samples with pre-treated Co/PBT yarns in weft direction and samples treated after weaving.

1. Introduction

The theme of elastic fabrics is well researched topic, however the general use of elastic fabric in everyday life dictates further search for new, and better products. The usual production of elastic woven fabric is performed by weaving with elastic yarns, which affects the production process, the final product price and applicable properties. Studies in the field of elasticised woven fabrics made of Co/ PBT yarns indicate great potential of PBT use in woven and knitted fabrics. PBT (polybutylene terephthalate) is a textured polyester filament yarn with chemical structure that enable permanent elastic properties (stretch and recovery), which are achieved by the finishing processes. [1, 2]

Previous studies of elastic woven fabric containing PBT yarns were carried out on finished fabrics (treated in a boiling water at 100 °C for 30 min.), wherein the fabrics obtained elastic properties. By weaving point of view, this is an ideal solution, since the process of weaving is undemanding compared to weaving with elastic yarns. Properties of finished Co/PBT woven fabrics are of great dependence on constructional parameters. [3, 4, 5]

During the finishing process of Co/PBT fabric PBT filaments gain elastic properties, at the same time occurs shrinkage and swelling of cotton fibers. Shrinkage of Co/PBT yarns in the loose state differs from shrinkage in the clamped state (meaning yarns in fabric structure), which is affected by many factors, particularly by the weave and thread density. A larger number of interlacing points in the structure means more friction surfaces that inhibit the contraction of fibers/threads in the fabric.
Weaving experiments demonstrate that elasticity of Co/PBT fabrics gained after finishing depends not only on woven fabric settings (the share of PBT component in the yarn; the yarn structure and already mentioned fabrics settings) but also on on-loom settings (thread tension, speed, weft insertion technology, etc.). Therefore, it is difficult to predict precisely the degree of shrinkage of the Co/PBT fabric after finishing. By producing woven samples out of treated and untreated Co/PBT yarns, all with the same production parameters, we tried to demonstrate the influence of fabrics setting and sequence of treatment process (finishing) onto the fabric properties.

2. Experimental part

2.1. Sample preparation

All woven samples were produced on the sample loom Minifaber, on the same warp and with the same on-loom setting (Table 1).

Sample designation	Weft Yarn	Weave	Treatment
Co/PBT – UN1	Co/PBT core spun yarn	plain	Fabrics treated in boiling water
Co/PBT – UN2	40 tex with PBT core yarn	Twill 1/3 Z	
Co/PBT – UN3	83 dtex	Twill 1/5 Z	
Co/PBT – TR1	Co/PBT core spun yarn	plain	Co/PBT yarn treated in boiling water before weaving
Co/PBT – TR2	40 tex with PBT core yarn	Twill 1/3 Z	
Co/PBT – TR3	83 dtex	Twill 1/5 Z	

2.2. Methods used

After weaving and thermal treatment, basic properties of yarns and woven fabrics were analyzed:

- dimensional change (shrinkage) of Co/PBT yarn after treatment,
- number of threads per unit length - warp and weft density, SIST EN 1049-2,
- warp and weft crimp percentage in woven fabric, ISO 7211-3:1984,
- mass per unit area, SIST EN 12127,
- thickness, ISO 5084:1996,
- dimensional changes of treated fabrics, ISO 3759:2011,
- air permeability (Air-Tronic, Mesdan), ISO 9237:1995.
Dimensional changes (shrinkage) of samples in warp and weft directions were assessed according to the standard before and after thermal treatment. Dimensional changes of Co/PBT yarn after treatment were assessed by measuring the yarn length before and after treatment in boiling water. During treatment in boiling water for 30 minutes, in loose condition, the Co/PBT yarn shrunk by 36,5 %, which consequently resulted in a change of yarn fineness.

Pictures of samples were obtained using the stereo microscope 65.560 NOVEX with the digital camera CMEX 5000, magnification 6.5 x 0.65 (Fig. 1).

![Figure 1: Pictures of samples before and after treatment](image-url)
The fabric structure affected changes (thickness and weight) that occur after treatment dramatically. The longer the floats (in twill 1/5 Z) the higher contraction after treatment, thus increased weight more than 60% and increased thickness for 169.6% of sample Co/PBT-UN3. There is a noticeable difference between samples made of pre-treated Co/PBT yarns and samples treated after weaving. The differences in thickness and weight values of Co/PBT-TR samples derived only from floating length and thus ability of thread contraction.

Table 3. Thickness and mass per unit area of samples

Sample designation	Thickness (mm)	Mass per unit area (g/m²)				
	Before treatment	After treatment	Difference (%)	Before treatment	After treatment	Difference (%)
Co/PBT – UN1	0,35	0,61	74,3	110,75	124,14	12,1
Co/PBT – UN2	0,47	0,93	97,9	117,75	151,46	28,6
Co/PBT – UN3	0,46	1,24	169,6	118	196,2	66,3
Co/PBT – TR1	0,39	/	137,1	/	/	/
Co/PBT – TR2	0,53	/	145,5	/	/	/
Co/PBT – TR3	0,58	/	145,4	/	/	/

Table 4. Warp and weft yarns per unit length (density) and crimp of warp and weft yarns

Sample designation	Warp/weft density (yarns/10 cm)	Warp/weft crimp (%)				
	Before treatment	After treatment	Difference (%)	Before treatment	After treatment	Difference (%)
Co/PBT – UN1	208/154	248/170	19,3/10,4	9,5/9,5	11/11,4	15,8/20
Co/PBT – UN2	210/152	290/166	38,1/9,2	9,5/8,7	12,1/18,9	27,4/117,2
Co/PBT – UN3	210/152	369/164	75,7/7,9	4,5/14,3	11,8/36	162,2/151,7
Co/PBT – TR1	212/148	/	6,4/7,9	/	/	/
Co/PBT – TR2	220/150	/	3,6/7,3	/	/	/
Co/PBT – TR3	220/150	/	5/5,1	/	/	/

After treatment, thread density of Co/PBT-UN1 sample was increased 19,3% in warpwise and 10% in weftwise, while these values of Co/PBT-UN2 sample in warp-and weftwise were increased 38% and 9% respectively, and values of Co/PBT-UN3 sample in warp-and weftwise were increased 75,7% and 8% respectively. When compared the warp density of Co/PBT-UN samples, the fabrics with longer weft floats had higher warp density. As it was expected, the opposite phenomenon was observed for warp and weft crimp percentage. After treatment, the samples with longer floats and increased warp density had higher weft crimp percentage (Co/PBT-UN3: increased for more than 150%).

The results shown in Table 4, revealed that all Co/PBT-TR samples had similar warp and weft density with minor deviation due to different weaves. The lowest weft crimp percentage was obtained from Co/PBT-TR3 fabric sample following by Co/PBT-TR2 and 1 fabric samples. These samples exhibited similar properties as those of conventional cotton fabrics.
Table 5. Air permeability (measurement conditions: 100 cm², 100 Pa) and dimensional changes

Sample designation	Air permeability	Dimensional changes (shrinkage) of fabrics after treatment			
	Before treatment (l/min)	After treatment (l/min)	Difference (%)	Warpwise (%	Weftwise (%)
Co/PBT – UN1	126,1	56,5	-55,1	-12,8	-18,6
Co/PBT – UN2	185,7	60,9	-67,2	-11,1	-34,15
Co/PBT – UN3	196,5	63	-67,9	-10,8	-46,45
Co/PBT – TR1	109,6	/	/	/	/
Co/PBT – TR2	120,92	/	/	/	/
Co/PBT – TR3	135,44	/	/	/	/

The air permeability values of the Co/PBT fabric samples before and after treatment as well as values of the Co/PBT samples made of pre-treated yarns were given in Table 5. After treatment, the values of air permeability of Co/PBT-UN samples were decreased for more than 50%, while these values of samples with pre-treated Co/PBT weft yarns demonstrated better air permeability properties (with more than 100 l/min). The results and pictures revealed that treatment of Co/PBT samples after weaving worsened the air permeability significantly, since the fabrics with longer floats had very dense surface (Figure 1).

After treatment, the dimensional changes of Co/PBT-UN samples had negative values in both directions, meaning shrinkage after treatment and thus denser surface structure. Shrinkage values were approximately 10%. The highest shrinkage value in warpwise was obtained from Co/PBT-UN3 sample. The results revealed that weave structure with longer floats had tendency to excessive dimensional changes.

3. Conclusion
The results indicated big difference between samples with pretreated Co/PBT yarns in weft direction and Co/PBT samples treated after weaving:

- the samples with Co/PBT in weft direction treated after weaving had higher weight and higher thickness, these values increased in dependence on the weave (length of floating threads),
- the differences in thickness and weight values of Co/PBT-TR samples were slightly higher comparing to untreated Co/PBT-UN samples and derived only from floating length and thus ability of thread contraction,
- after treatment, the thread density of Co/PBT-UN samples were increased and these affected higher warp and weft shrinkage, where it is obvious that samples with longer floats and increased warp density had higher crimp percentage weft wise.
- 3D fabric surface, achieved by treatment and thus shrinkage of Co/PBT-UN samples, were similar to crêpe fabrics and gave a sense of fabric soft touch. However, there were two disadvantages, the decreased values of air permeability and excessive dimensional changes in terms of change of width of the fabric.

4. References
[1] Wang F, Li J, Wu X and Li H 2003 Comparison of elasticity of PTT and other elastic fibers Proc. Int. Conf. & Exhib. of AATCC (American Association of Textile Chemists & Colorists) pp
A

49-53A

[2] Štrukelj D and Dimitrovski K 2012 Study of cotton woven fabrics with added PBT yarns Tekstil, Journal of Textile and Clothing Technology (Zagreb) vol 61 (Croatian Association of Textile engineering) Another reference

[3] Verdu P, Rego M and Nieto J 2009 Analysis of woven cotton/polyester fabrics modifies with a new elastic fiber, Part I Preliminary Analysis of comfort and mechanical properties Textile research journal vol 79

[4] Kadoglu H, Dimitrovski K, Marmaralı A, Çelik P, Başal Bayraktar G, Bedez Üte1T, Ertekin G, Demšar A and Kostanjšek K 2016 Investigation of the characteristics of elasticised woven fabric by using PBT filament yarns AUTEX research journal (Autex Association) vol 16

[5] Dimitrovski K et al. 2012 Properties of Cotton-Like Woven Fabrics Containing Different Types of PBT Yarns in the weft Proc. 6th Int. Textile Clothing & Design Conference - Magic world of Textiles (Dubrovnik) pp 153-158

Acknowledgement: The paper is a part of research bilateral project no. BI-TR/17-17-006 entitled “Production of terry fabrics with improved elasticity and product from them”, between Slovenia and Turkey and supported by national research agencies ARRS and TUBITAK.