The space of coset partitions of F_n and Herzog-Schönheim conjecture

Fabienne Chouraqui

Abstract

Let G be a group and $H_1,...,H_s$ be subgroups of G of indices $d_1,...,d_s$ respectively. In 1974, M. Herzog and J. Schönheim conjectured that if \{H,\alpha_i\}_{i=1}^s, \alpha_i \in G, is a coset partition of G, then $d_1,...,d_s$ cannot be distinct. We consider the Herzog-Schönheim conjecture for free groups of finite rank. We define Y the space of coset partitions of F_n and show Y is a metric space with interesting properties. In a previous paper, we gave some sufficient conditions on the coset partition of F_n that ensure the conjecture is satisfied. Here, we show that each coset partition of F_n, which satisfies one of these conditions, has a neighborhood U in Y such that all the partitions in U satisfy also the conjecture.

1 Introduction

Let G be a group and $H_1,...,H_s$ be subgroups of G. If there exist $\alpha_i \in G$ such that $G = \bigcup_{i=1}^s H_i \alpha_i$, and the sets $H_i \alpha_i$, $1 \leq i \leq s$, are pairwise disjoint, then \{H,\alpha_i\}_{i=1}^s is a coset partition of G (or a disjoint cover of G). We denote by $d_1,...,d_s$ the indices of $H_1,...,H_s$ respectively. The coset partition \{H,\alpha_i\}_{i=1}^s has multiplicity if $d_i = d_j$ for some $i \neq j$. The Herzog-Schönheim conjecture is true for the group G, if any coset partition of G has multiplicity.

In 1974, M. Herzog and J. Schönheim conjectured that if \{H,\alpha_i\}_{i=1}^s, $\alpha_i \in G$, is a coset partition of G, then $d_1,...,d_s$ cannot be distinct. In the 1980’s, in a series of papers, M.A. Berger, A. Felzenbaum and A.S. Fraenkel studied the Herzog-Schönheim conjecture [1, 2, 3] and in [4] they proved the conjecture is true for the pyramidal groups, a subclass of the finite solvable groups. Coset partitions of finite groups with additional assumptions on the subgroups of the partition have been extensively studied. We refer to [5, 19, 20, 17] and also to [18]. In [9], the authors very recently proved that the conjecture is true for all groups of order less than 1440.

In [6], we study the Herzog-Schönheim conjecture in free groups of finite rank, and develop a new approach based on the machinery of covering spaces. The fundamental group of the bouquet with n leaves (or the wedge sum of n circles), X, is F_n, the free group of finite rank n. For any subgroup H of F_n of finite index d, there exists a d-sheeted covering space (\tilde{X}_H, p) with a fixed
basepoint, which is also a combinatorial object. Indeed, the underlying graph
of \hat{X}_H is a directed labelled graph, with d vertices, that can be seen as a finite
complete bi-deterministic automaton; fixing the start and the end state at the
basepoint, it recognises the set of elements in H. It is called the Schreier coset
diagram for F_n relative to the subgroup H [16, p.107] or the Schreier automaton
for F_n relative to the subgroup H [15, p.102].

In \hat{X}_H, the d vertices (or states) correspond to the d right cosets of H, each
element (or transition) $Hg \rightarrow Hga$, $g \in F_n$, a a generator of F_n, describes
the right action of a on Hg. We call \hat{X}_H, the Schreier graph of H, where the d
vertices $x_0, x_1, ..., x_{d-1}$ are identified with the corresponding d cosets of H.
The transition group T of the Schreier automaton for F_n relative to H des-
cribes the action of F_n on the set of the d right cosets of H, and is generated
by n permutations. The group T is a subgroup of S_d such that $T \simeq F_n/\langle N_H \rangle$,
where $N_H = \bigcap_{g \in F_n} g^{-1}Hg$ is the normal core of H.

Let $\{H_i\alpha_i\}_{i=1}^s$ be a coset partition of F_n, $n \geq 2$, with $H_i < F_n$ of index
d_i > 1, $\alpha_i \in F_n$, $1 \leq i \leq s$. Let \hat{X}_i be the Schreier graph of H_i, with transition
group T_i, $1 \leq i \leq s$. In [6], we give some sufficient conditions on the transition
groups of the Schreier graphs \hat{X}_i, $1 \leq i \leq s$, that ensure the coset partition
$\{H_i\alpha_i\}_{i=1}^s$ has multiplicity. We state the following Theorems from [6] that we
need for the paper:

Theorem A. [6, Theorem 1] Let F_n be the free group on $n \geq 2$ generators.
Let $\{H_i\alpha_i\}_{i=1}^s$ be a coset partition of F_n with $H_i < F_n$ of index d_i, $\alpha_i \in F_n$,
$1 \leq i \leq s$, and $1 < d_1 \leq ... \leq d_s$. Let \hat{X}_i denote the Schreier graph of
H_i, with transition group T_i, $1 \leq i \leq s$. If there exists a d_s-cycle in T_s, then
the index d_s appears in the partition at least p times, where p is the smallest
prime dividing d_s.

The transition group T_s is a subgroup of the symmetric group S_{d_s}, generated
by $n \geq 2$ permutations. Dixon proved that the probability that a ran-
dom pair of elements of S_n generate S_n approaches $3/4$ as $n \to \infty$, and the
probability that they generate A_n approaches $1/4$ [7]. As $d_s \to \infty$, the probability
that T_s is the symmetric group S_{d_s} approaches $3/4$. So, asymptoti-
cally, the probability that there exists a d_s-cycle in T_s is greater than $3/4$.
If T_s is cyclic, there exists a d_s-cycle in T_s, since d_s divides the order of T_s.
That is, Theorem A is satisfied with very high probability and the conjecture is
“asymptotically satisfied with probability greater than $3/4$” for free groups
of finite rank.

Theorem B provides a list of conditions on a coset partition that ensure
multiplicity. Let $w \in F_n$. We denote by $a_{s_i}(w)$ the minimal natural num-
ber, $1 \leq a_{s_i}(w) \leq d_i$, such that $w^{a_{s_i}(w)}$ is a loop at the vertex $H_i\alpha_i$ in \hat{X}_i. Let
$o_{\text{max}}(w) = \max\{a_{s_i}(w) | 1 \leq i \leq s\}$ and $k = \max\{o_{\text{max}}(v) \mid v \in F_n\}$, k is the
maximal length of a cycle in $\bigcup_{i=1}^s T_i$. Let p denote the smallest prime dividing
k. We show there exists $u \in F_n$ such that $o_{\text{max}}(u) = k$ and $\# \geq 2$, where
\# = \{1 \leq i \leq s \mid o_{\alpha_i}(u) = k\}. Using this notation, we show the following result, which implies under the assumption \(k > d_1\), that there is a finite number of cases not covered by Theorem B.

Theorem B. [6, Theorem 2] Let \(F_n\) be the free group on \(n \geq 2\) generators. Let \(\{H_i\alpha_i\}_{i=1}^s\) be a coset partition of \(F_n\) with \(H_i < F_n\) of index \(d_i\), \(\alpha_i \in F_n\), \(1 \leq i \leq s\), and \(1 < d_1 \leq \ldots \leq d_s\). Let \(r\) be an integer, \(2 \leq r \leq s - 1\). If \(k\), \(p\) and \#, as defined above, satisfy one of the following conditions:

(i) \(k > d_{s-2}\).

(ii) \(k > d_{s-3}\), \(p \geq 3\).

(iii) \(k > d_{s-3}\), \(p = 2\), and \(# = 2\) or \(# \geq 4\).

(iv) \(k > d_{s-r}\) and \(p \geq r\), or \(# = p\), or \(# \geq r + 1\).

Then the coset partition \(\{H_i\alpha_i\}_{i=1}^s\) has multiplicity.

Inspired by [14], in which the author defines the space of left orders of a left-orderable group and show it is a compact and totally disconnected metric space, we define \(Y\) to be the space of coset partitions of \(F_n\) (under some equivalence relation) and show \(Y\) is a metric space. In our case, the metric defined induces the discrete topology.

Theorem 1. Let \(F_n\) be the free group on \(n \geq 2\) generators. Let \(Y\) be the space of coset partitions of \(F_n\) (under some equivalence relation). Then \(Y\) is a metric space with a metric \(\rho\) and \(Y\) is (topologically) discrete.

We extend the results from [6] and show that for each coset partition of \(F_n\), which satisfies one of the conditions in Theorems A or B, there exists a neighborhood \(U\) in \(Y\) such that all the coset partitions in \(U\) have multiplicity.

Theorem 2. Let \(F_n\) be the free group on \(n \geq 2\) generators. Let \(Y\) be the space of coset partitions of \(F_n\) (under some equivalence relation) with metric \(\rho\). Let \(P_0 = \{H_i\alpha_i\}_{i=1}^s\) be in \(Y\), with \(1 < d_1 \leq \ldots \leq d_s\).

(i) If \(P_0\) satisfies the condition of Theorem A, then every \(P \in Y\) with \(\rho(P, P_0) < \frac{1}{2}\) satisfies the same condition and hence has multiplicity.

(ii) If \(P_0\) satisfies (i) or (ii) of Theorem B, with some \(2 \leq r \leq s - 1\), then every \(P \in Y\) with \(\rho(P, P_0) < 2^{-(r+1)}\) satisfies the same condition and hence has multiplicity.

(iii) If \(P_0\) satisfies (iii) or (iv) of Theorem B, with some \(2 \leq r \leq s - 1\), then every \(P \in Y\) with \(\rho(P, P_0) < 2^{-(r+1)}\) has multiplicity.

The paper is organized as follows. In the first section, we introduce the space of coset partitions of \(F_n\), an action of \(F_n\) on it, a metric and prove Theorem 1. We also give another proof of [6, Theorem 3] using the action defined. In Section 2, we prove Theorem 2.
2 The space of coset partitions of F_n

2.1 Action of F_n on the space of its coset partitions

Let F_n be the free group on $n \geq 2$ generators. We define Y' to be the space of coset partitions of F_n (only with subgroups of finite index). For each subgroup H of F_n of finite index $d > 1$, there exists a partition of F_n by the d cosets of H. Generally, if $P \in Y'$, then $P = \{H_i\alpha_i\}_{i=1}^{\lambda}$, a coset partition of F_n with $H_i < F_n$ of index d_i, $\alpha_i \in F_n$, $1 \leq i \leq s$, and $1 < d_1 \leq \ldots \leq d_s$.

To get some intuition on Y', it is worth recalling that the subgroup growth of F_n is exponential. There exists a natural right action of F_n on Y'. Indeed, if $w \in F_n$, then $P \cdot w = P'$, with $P' = \{H_i\alpha_i w\}_{i=1}^{\lambda}$ in Y'.

Lemma 2.1. The natural right action of F_n on Y' is faithful

Proof. Let $w \in F_n$. Then $P \cdot w = P$ for every $P \in Y'$ if and only if w belongs to the intersection of all the subgroups of finite index of F_n. As F_n is residually finite [12, p.158], the intersection of all the subgroups of finite index of F_n is trivial, so $w = 1$, that is the action is faithful.

Let $P = \{H_i\alpha_i\}_{i=1}^{\lambda}$ in Y' and let \tilde{X}_i be the Schreier graph of H_i, $1 \leq i \leq s$ (as defined in the introduction). Let $w \in F_n$. We denote by $o_{\alpha_i}(w)$ the minimal natural number, $1 \leq o_{\alpha_i}(w) \leq d_i$, such that $w^{o_{\alpha_i}(w)}$ is a loop at the vertex $H_i\alpha_i$ in \tilde{X}_i or equivalently $w^{o_{\alpha_i}(w)} \in \alpha_i^{-1}H_i\alpha_i$ [6, Section 4.1].

Lemma 2.2. Let $P = \{H_i\alpha_i\}_{i=1}^{\lambda}$ in Y'. Then $|\text{Orb}_{F_n}(P)| \leq d_1 \ldots d_s$, where $\text{Orb}_{F_n}(P)$ denotes the orbit of P under the action of F_n. Furthermore, for $w \in F_n$, $|\text{Orb}_w(P)| = \text{lcm}(o_{\alpha_1}(w), \ldots, o_{\alpha_s}(w))$, where $\text{Orb}_w(P)$ denotes the orbit of P under the action of $\langle w \rangle$.

Proof. From the definition of the action of F_n on P, F_n permutes between the cosets of H_1, between the cosets of H_2 and so on. So, $|\text{Orb}_{F_n}(P)| \leq d_1 \ldots d_s$. The size of $\text{Orb}_w(P)$ is equal to the minimal natural number such that $P \cdot w^k = P$, that is $k = \text{lcm}(o_{\alpha_1}(w), \ldots, o_{\alpha_s}(w))$. Indeed, $P \cdot w^k = P$, if and only if $w^k \in \bigwedge_{i=1}^{\lambda} \alpha_i^{-1}H_i\alpha_i$, that is if and only if $\text{lcm}(o_{\alpha_1}(w), \ldots, o_{\alpha_s}(w))$ divides k [6, Lemma 4.10]. As $k = \text{lcm}(o_{\alpha_1}(w), \ldots, o_{\alpha_s}(w))$ is minimal such that $P \cdot w^k = P$, $|\text{Orb}_w(P)| = \text{lcm}(o_{\alpha_1}(w), \ldots, o_{\alpha_s}(w))$.

In [6, Theorem 3], we give a condition on a partition P that ensures the same subgroup appears at least twice in P. We state a shortened version of the result and give another proof using the action of F_n on Y'.

Theorem C. [6, Theorem 3] Let $P = \{H_i\alpha_i\}_{i=1}^{\lambda}$ in Y'. If there exist $1 \leq j, k \leq s$ such that $\bigcap_{i=1}^{\lambda} \alpha_i^{-1}H_j\alpha_i \subseteq \bigcap_{i \neq j, k} \alpha_i^{-1}H_i\alpha_i$. Then $H_j = H_k$.

4
Proof. From the assumption, there exists \(w \in \bigcap_{i \neq j, k} \alpha_i^{-1} H_i \alpha_i \), \(w \notin \bigcap_{i = 1}^{i=s} \alpha_i^{-1} H_i \alpha_i \). Then \(P \cdot w = \{ H_i \alpha_i w \}_{i=1}^{i=s} \) gives \(F_n = \bigcup_{i \neq j, k} H_i \alpha_i \cup H_j \alpha_j w \cup H_k \alpha_k w \). So, \(H_j \alpha_j w \cup H_k \alpha_k w = H_j \alpha_j \cup H_k \alpha_k \), with \(H_i \alpha_i w \neq H_j \alpha_j \) and \(H_k \alpha_k w \neq H_k \alpha_k \). As \(H_j \alpha_j w \cap H_k \alpha_k \alpha_j = 0 \) and \(H_k \alpha_k w \cap H_k \alpha_k = \emptyset \), \(H_j \alpha_j w \subseteq H_k \alpha_k \) and \(H_k \alpha_k w \subseteq H_j \alpha_j \). From \(H_j \alpha_j w \cup H_k \alpha_k w = H_j \alpha_j \cup H_k \alpha_k \) again, we have \(H_j \alpha_j w = H_k \alpha_k \) and \(H_k \alpha_k w = H_k \alpha_k \), that is \(H_k \alpha_k w \alpha_j^{-1} = H_j \) a subgroup, so \(H_k \alpha_k w \alpha_j^{-1} = H_k \), that is \(H_k = H_j \). Further, we recover \(\alpha_j(w) = o_k(w) = 2 \) and \(w^2 \in \bigcap_{i=1}^{i=s} \alpha_i^{-1} H_i \alpha_i \), as in the proof of [6, Theorem 3]. \(\square \)

We recall that for each subgroup \(H \) of index \(d \) in \(F_n \) (or in any group), there is a transitive action of the group on the set of right cosets of \(H \), that is given two cosets \(H \alpha \) and \(H \beta \) of \(H \), there exists \(w \) such that \(H \alpha \cdot w = H \beta \). So, the following question arises:

Question 2.3. Let \(P = \{ H_i \alpha_i \}_{i=1}^{i=s} \) and \(P' = \{ H_i \beta_i \}_{i=1}^{i=t} \) in \(Y' \). Does there necessarily exist \(w \in F_n \) such that \(P' = P \cdot w \)?

2.2 Topology in the space of coset partitions of \(F_n \)

We refer to [10] for more details. Let \(Y' \) be the space of coset partitions of \(F_n \). Given \(P = \{ H_i \alpha_i \}_{i=1}^{i=s} \) in \(Y' \), with \(d_s \geq ... \geq d_1 > 1 \), we identify \(P \) with the \(s \)-tuple \((H_s, ..., H_1) \) and we consider \(H_s \) at the first place, \(H_{s-1} \) at the second place and so on. Let \(P' \in Y' \), \(P' = \{ K_i \beta_i \}_{i=1}^{i=t} \). We define a function \(d : Y' \times Y' \to \mathbb{R} : \)

\[
d(P, P') = \begin{cases}
2^{-k} & \text{if } k \text{ is the first place at which } K_i \neq H_i \\
0 & \text{if } t = s; \ H_i = K_i, \forall 1 \leq i \leq s
\end{cases}
\]

The function \(d : Y' \times Y' \to \mathbb{R} \cup \{ \infty \} \) is a semi-metric if for all \(P, P', P'' \in Y' \), \(d \) satisfies \(d(P, P') = d(P', P) \) (symmetry) and \(d(P, P'') \leq d(P, P') + d(P', P'') \) (triangle inequality). A standard argument shows:

Lemma 2.4. The function \(d \) is a semi-metric.

Proof. Let \(P, P', P'' \in Y' \). Clearly, \(d(P, P') = d(P', P) \). Assume \(d(P, P') = 2^{-k} \), \(d(P', P'') = 2^{-\ell} \), and \(d(P, P'') = 2^{-m} \). If \(k > 1 \) or \(\ell > 1 \), then \(m = \min \{k, \ell\} \) and \(d(P, P'') = 2^{-\min(k, \ell)} \leq 2^{-k} + 2^{-\ell} \). If \(k = \ell = 1 \), then \(m \geq 1 \) and \(d(P, P'') = 2^{-m} < 1 \). \(\square \)

A metric is a semi-metric with the additional requirement that \(d(P, P') = 0 \) implies \(P = P' \). Identifying points with zero distance in a semi-metric \(d \) is an equivalence relation that leads to a metric \(\tilde{d} \). The function \(\tilde{d} \) then is a metric in \(Y'/\equiv \), with \(P \equiv P' \) if and only if \(d(P, P') = 0 \). If the answer to Question 2.3 is positive, then \(Y'/\equiv \) is the same as the quotient of \(Y' \) by the action of \(F_n \). We denote \(Y'/\equiv \) by \(Y \) and \(\tilde{d} \) by \(\rho \).
We denote by $B_r(P_0) = \{ P \in Y \mid \rho(P, P_0) < 2^{-r}\}$, the open ball of radius 2^{-r} centered at P_0. A set $U \subset Y$ is open if and only if for every point $P \in U$, there exists $\epsilon > 0$ such that $B_\epsilon(P) \subset U$. A space Y is **totally disconnected** if every two distinct points of Y are contained in two disjoint open sets covering the space. A point P in a metric space Y is an isolated point of Y if there exists a real number $\epsilon > 0$ such that $B_\epsilon(P) = \{ P \}$. If all the points in Y are isolated, then Y is discrete. The space Y is (topologically) discrete if Y is discrete as a topological space, that is the metric may be different from the discrete metric.

Theorem 2.5. The metric space Y is (topologically) discrete.

*Proof. We show that all the points in Y are isolated. Let $P = \{ H_i \alpha_i \}_{i=1}^s$ in Y, with $d_s \geq ... \geq d_1 > 1$. Then for $\epsilon < 2^{-(s+1)}$, $B_\epsilon(P) = \{ P \}. \square$

This implies that Y is Hausdorff, bounded and totally disconnected, facts that could be easily proved directly using ρ. A metric space X is uniformly discrete, if there exists $\epsilon > 0$ such that for any $x, x' \in X$, $x \neq x'$, $\rho(x, x') > \epsilon$. The space Y is not uniformly discrete.

Remark 2.6. Given an arbitrary group G, one can define in the same way the space Y, the metric ρ and obtain the same topological properties. The action of G on Y can also be defined in the same way, but it is not necessarily faithful anymore.

3 Extension of Theorem B: Proof of Theorem 2

Proof of Theorem 2. Let $P_0 = \{ H_i \alpha_i \}_{i=1}^s$, with $1 < d_{H_1} \leq ... \leq d_{H_s}$. Let $P \in Y$, $P = \{ K_i \beta_i \}_{i=1}^t$, with $1 < d_{K_1} \leq ... \leq d_{K_t}$.

(i) If $\rho(P, P_0) < \frac{1}{2}$, then $K_i = H_s$. So, if there exists a d_s-cycle in T_{H_s}, the index d_s appears in P_0 and in P at least p times, where p is the least prime dividing d_s. Note that this implies necessarily $\rho(P, P_0) \leq 2^{-p-1}$.

(ii), (iii) If $\rho(P, P_0) < 2^{-(s+1)}$, $2 \leq r \leq s - 1$, then $K_i = H_s$, $K_{t-1} = H_{s-1}$, ..., $K_{t-r} = H_{s-r}$. If k, the maximal length of a cycle in $\bigcup_{i=1}^s T_{H_i}$, satisfies $k > d_{H_{s-r}}$, then $k > d_{K_{t-r}}$ also. Furthermore, k occurs in $\bigcup_{i=1}^s T_{H_i}$ and also in $\bigcup_{j=t-r}^{j=t} T_{K_j}$, since $\bigcup_{i=s-r}^{i=s} T_{H_i} \bigcup_{j=t-r}^{j=t} T_{K_j}$. If P_0 satisfies condition (i) or (ii) of Theorem B, then P satisfies the same condition and hence has multiplicity.

If P_0 satisfies condition (iii) or (iv) of Theorem B, then P_0 has multiplicity, with $d_{H_{s-i}} = d_{H_{s-j}}$ for some $i \neq j$, $0 \leq i, j \leq r$. So, $d_{K_{t-i}} = d_{K_{t-j}}$ also, that is P has multiplicity. \square

To conclude, we ask the following natural question: does there exist a metric on the space of coset partitions Y' that induces a non-discrete topology and yet can give rise to a result of the form of Theorem 2?
References

[1] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, *Improvements to two results concerning systems of residue sets*, Ars Combin. 20 (1985), 69-82.

[2] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, *The Herzog-Schönheim conjecture for finite nilpotent groups*, Canad. Math. Bull. 29 (1986), 329-333.

[3] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, *Lattice paralleloptopes and disjoint covering systems*, Discrete Math. 65 (1987), 23-44.

[4] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, *Remark on the multiplicity of a partition of a group into cosets*, Fund. Math. 128 (1987), 139-144.

[5] M.A. Brodie, R.F. Chamberlain, L.C Kappe, *Finite coverings by normal subgroups*, Proc. Amer. Math. Soc. 104 (1988), 669-674.

[6] F. Chouraqui, *The Herzog-Schönheim conjecture for finitely generated groups*, ArXiv 1803.08301.

[7] J. D. Dixon, *The probability of generating the symmetric group*, Math. Z. 110 (1969), 199-205.

[8] M. Herzog, J. Schönheim, *Research problem no. 9*, Canad. Math. Bull., 17 (1974), 150.

[9] L. Margolis, O. Schnabel, *The Herzog-Schönheim conjecture for small groups and harmonic subgroups*, ArXiv 1803.03569.

[10] J. Munkres, *Topology*, Pearson Modern Classics for Advanced Mathematics Series, 2000.

[11] Š. Porubský, J. Schönheim, *Covering systems of Paul Erdős. Past, present and future. Paul Erdős and his mathematics*, Júnos Bolyai Math. Soc., 11 (2002), 581-627.

[12] D.J.S. Robinson, *A Course in the Theory of Groups*, Graduate Texts in Mathematics 80, Springer-Verlag, Berlin, Heidelberg, New York (1980).

[13] J.J. Rotman, *An Introduction to Algebraic Topology*, Graduate Texts in Mathematics 119, Springer-Verlag, Berlin, Heidelberg, New York (1988).

[14] A. Sikora, *Topology on the spaces of orderings of groups*, Bull. London Math. Soc. 36 (2004), 519-526.

[15] C.C. Sims, *Computation with finitely presented groups*, Encyclopedia of Mathematics and its Applications 48, Cambridge University Press (1994).

[16] J. Stillwell, *Classical Topology and Combinatorial Group Theory*, Graduate Texts in Mathematics 72, Springer-Verlag, Berlin, Heidelberg, New York (1980).
[17] Z.W. Sun, *Finite covers of groups by cosets or subgroups*, Internat. J. Math. 17 (2006), n.9, 1047-1064.

[18] Z.W. Sun, *Classified publications on covering systems*, http://math.nju.edu.cn/zwsun/Cref.pdf.

[19] M.J. Tomkinson, *Groups covered by abelian subgroups*, London Math. Soc. Lecture Note Ser. 121, Cambridge Univ. Press (1986).

[20] M.J. Tomkinson, *Groups covered by finitely many cosets or subgroups*, Comm. Algebra 15(1987), 845-859.

Fabienne Chouraqui,
University of Haifa at Oranim, Israel. E-mail: fabienne.chouraqui@gmail.com
fchoura@sci.haifa.ac.il