Role of Flagella in the Pathogenesis of *Helicobacter pylori*

Haiying Gu

Abstract This review aimed to investigate the role of *Helicobacter pylori* flagella on the pathogenicity of this bacterium in humans. *Helicobacter pylori* is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of *H. pylori* flagella is to provide motility. We believe that *H. pylori* flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between *H. pylori* flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in *H. pylori*.

Introduction

Helicobacter pylori is a flagellated microaerophilic gram-negative bacillus that is known to colonize the gastrointestinal mucosa of almost half the global human population with varying prevalence rates across different geographical regions [13]. *Helicobacter pylori* is perhaps the most infectious of all known bacteria. Although some believe that *H. pylori* is a type of “commensal bacterium” [52], it cannot be classified as normal flora because all patients with gastroduodenal *H. pylori* colonization show histological gastroenteritis [39], which can develop into a number of gastric diseases such as chronic gastritis, duodenitis, peptic ulcers (gastric and duodenal), mucosa-associated lymphoid tissue (MALT), atrophic gastritis, and gastric adenocarcinoma. This bacterium exhibits allelic diversity and genetic variability. Thus, infection might appear as a high rate of mixed infections, indicating that one person might be infected with multiple strains of *H. pylori*. The mixed infection rate is high in epidemic areas with a high incidence [35]. The pathogenesis of *H. pylori* infection is partly dependent on colonization and virulence factors [39], and flagella play an important role in the colonization of the gastrointestinal mucosa [24]. The difference (heterogeneity) in the motilities of colonizing strains was first reported by [17], but failed to attract much attention. The role of heterogeneity in the motility of *H. pylori* has not been sufficiently explored.

Morphology and Structure of *H. pylori* Flagella

The bacterial flagellum is a complex motility organ composed of multiple types of protein subunits [46]. Each flagellum consists of three components [44, 53]: the basal body, hook, and filament. Electron microscopic observation of the *H. pylori* flagellum reveals the presence of a sheath and a terminal bulb [68]. The function of the membrane-like flagellar sheath of *H. pylori* is hitherto unknown, and little is known of its composition [47]. *Helicobacter pylori* has 4–8 unipolar flagella [42]; however, it remains controversial whether the flagella are unipolar or bipolar [25]. Table 1 presents the structural composition and functions of *H. pylori* flagellar structures.
Table 1 Composition and functions of *H. pylori* flagellar structures

Structure	Composition	Function	References
Flagellar basal body	C ring (FliM, FliN, FliY, FliG)	Transfers proteins, regulates motor rotation and conversion, and coordinates protein secretion	[9, 46, 82]
	MS ring (FliF)	Involved in the synthesis of FlaA, FlaB, and FlgE	[3]
	Type III secretion system (FliA, FliO, FliB, FliP, FliQ, FliR)	Transports the majority of the flagellar proteins to the end of the flagellar structure	[31, 38, 77]
	Motor (MotA, MotB)	Fixes and rotates the flagellum	[16, 59]
Flagellar hook	Flagellar export chaperone (FlIS)	Prevents premature polymerization of flagellin, and participates in flagellum assembly	[3, 41]
	Flagellar hook protein (FlgE)	Connects the basal body and the flagellar filament, and is closely related to the powerful driving force in a viscous environment	[14, 61, 71]
	FlgK	Controls the length of the flagellar hook during flagellum assembly	[14]
Flagellar filament	FlaA, FlaB	Plays an important role in bacterial motility	[3, 32]
	FliD	As a filament-capping protein in flagellar assembly	[36, 37]
Flagellar sheath	HpaA, FaaA	Protect against depolymerization of the flagellin subunits at low pH	[10, 21, 68]
colonization load in gastric mucosa was positively correlated with motility in animal infection models.

Colonization Site

Colonization by *H. pylori* is not evenly distributed. Colonization in the stomach is usually observed at the gastric antrum [51]. However, *H. pylori* colonies can also be found in other sites. For example, *H. pylori* has been known to colonize the duodenum and is recognized as the primary cause of idiopathic duodenal ulcers [65, 66]. Although the incidence is low (6.9%), it can be assumed that the strains colonizing different gastrointestinal sites might have different origins, because *H. pylori* infection in the stomach has been demonstrated to be heterogeneous [35]. *Helicobacter pylori* may also colonize the colon [57, 58, 81], but its origin remains unclear.

Immune Inflammation and Evasion

The motility and colonization load of *H. pylori* are positively correlated with neutrophil infiltration [1, 34, 49]. Colonization is the basis of the inflammatory reaction induced by *H. pylori*, and motility is a critical colonization determinant that affects the infection outcome. Furthermore, the flagellum also influences inflammation and immune evasion.

Immune Inflammation

The main structural proteins of the *H. pylori* flagellum include HpaA, FlaA, FlaB, FliD, and FlgK. Of these, HpaA, FlaA, and FlaB have been found to be expressed in *H. pylori* strains isolated from biopsy specimens of patients with stomach disease. These flagellins are the primary targets of the humoral immunity after infection, and induce antibody responses [79]. In contrast, an important study showed that FlaA was antigenic but not immunogenic [72]. The role of *H. pylori* flagellins in immune inflammation is yet unknown.

Immune Evasion

Helicobacter pylori infections usually occur during childhood and last for a lifetime if left untreated with antibiotics [45]. The human immune system cannot eliminate these bacteria primarily because of the bacterial ability of immune evasion. Although *H. pylori* flagellin can induce anti-flagellin antibodies in infected patients, it is not recognized by toll-like receptor 5 (TLR5), a member of the toll-like receptor family, which is activated by most bacterial flagellins [1, 54]. One possible reason may be that the flagellins, especially FlaA, are not exposed, and thus cannot be detected in the infected gastric epithelial cells [22]. Other bacterial flagella induce interleukin 8 (IL-8) secretion, leading to an inflammatory reaction. However, *H. pylori* flagellin does not typically induce IL-8 secretion in gastric epithelial cells. Although highly motile strains of *H. pylori* have been shown to elicit a higher level of IL-8 production [42], the flagellar sheath HpaA probably shields the flagellin from recognition by TLR5 [10].

Relationship Between *H. pylori* Flagellar Structure, Motility, Chemotaxis, and Colonization

In the flagellar structure, the C ring complex is composed of FliM, FliN, FliY, and FliG. Typically, *fliM*, *fliY*, and *fliG* mutant *H. pylori* strains cannot produce flagella. Although the *fliN* mutant strain can produce flagella, they are “paralyzed” and unable to move [46], resulting in a non-motile bacterium. In the flagellar structure, the “motor” is important for bacterial motility. *motB*-deficient *H. pylori* have been reported to exhibit normal flagellar structure but no motility, and the colonization load of this strain is significantly lower than controls containing *motB* in infected mice [62]. *fliF*, *fliS*, *fliB*, *fliQ*, *fliG*, or *fliM* mutant strains did not produce any flagella and were non-motile, while the *fliA* mutant strain produced short flagella [3]. FlgE is the main protein of the flagellar hook, and strains lacking the *flgE* gene expectedly showed no motility [61]. FlaA and FlaB are the components of the flagellar filament and are important for motility. Strains lacking the *fliA* and *fliB* genes exhibit reduced irregular flagella and lower motility. The *fliA* and *fliB* double-mutant strain is completely non-motile. The *fliA* and *fliB* mutant strains have reduced colonizing ability [18, 32], and cannot colonize even with a longer period of incubation in animal models [18]. Mutation of the flagellar filament *fliD* gene results in non-motile bacteria with short flagella, and this strain is unable to colonize the gastric mucosa of mice [37]. The FaaA protein is required for flagellar and proper flagellar localization as well as for optimal flagellar function. This protein is exported to the outer membrane and subsequently becomes a component of the flagellar sheath. *Helicobacter pylori* mutant strains deficient in *faaA* exhibited decreased motility and less efficient colonization of the stomach in mice compared to the wild-type *H. pylori* strain at the early stages of infection [10, 68].

Flagellar hook substructure reaches its optimal length sensed by the ‘checkpoint control’ protein FliK. Export of the anti-sigma factor FlgM is triggered releasing σ28 from a σ28-FlgM complex which in turn allows the subsequent expression of σ28 dependent genes. In *fliK*, mutants hook to filament transition do not occur and long hooks of unregulated length termed polyhooks are formed [55]. It is
demonstrated that FliK is necessary for upregulation of cagA. Expression and flagellar regulatory system of *H. pylori* is directly required for upregulation of the major virulence gene *cagA* in gastric cell associated *H. pylori*.

The direction of flagellar rotation is cooperatively controlled by the chemotaxis-signaling protein CheY and the flagellar rotor protein FliN [44]. Strains with mutant chemotaxis genes *cheW*, *cheV* [67], *cheY*, *cheA* [8], and *tlpB* [49] have less motility and reduced colonization load [49, 80]. In contrast, a study by Williams et al. demonstrated that chemotaxis gene mutants (ΔcheY, ΔcheW) displayed an adequate colonization load but a reduced inflammatory response [83]. Reference [30] investigated a new protein, ChePep, located in the flagellar pole, which regulates flagellar rotation and controls *H. pylori* chemotaxis. Strains with the ChePep gene mutation exhibited reduced flagellar motility.

The only known phosphatase in *H. pylori* is CheZ, called CheZHP in this system. It is reported that CheZHP localization depends on the ChePep chemotaxis protein [29] and conversely ChePep localization depends on CheZHP, which raises the intriguing possibility that some phosphatases, including CheZHP and ChePep, exist in a complex that is distinct from the core chemotaxis signaling and flagellar complexes [43].

Reference [70] demonstrated that the colonization of a TlpD-controlled chemotaxis gene mutant strain in the gastric antrum was significantly reduced. Similarly, it was found that the colonization of strains with chemotaxis gene mutants (ΔcheY) and especially the motility gene mutants (ΔmotB) was reduced [1]. Future studies should clarify the relationship between chemotaxis and colonization.

All members of the *Epsilonproteobacteria* have their flagella located at either one or both cellular poles [2, 27, 40, 64, 73, 75, 84]. *Campylobacter jejuni* and *Helicobacter pylori* are the most studied epsilonproteobacteria because they are important human pathogens. In addition to their unique structural features revealed by cryoelectron tomography [11], *Campylobacter* and *Helicobacter* flagella exhibit unique aspects in the regulation of the expression of their flagellar genes and in the assembly of their flagellar structure [23, 44]. Regulation of flagellar gene expression in *Campylobacter* and *Helicobacter* is also unique, involving a two-component system (FlgRS), the FlhF GTPase, and the transcription factors σ^54_ and σ^28_ [7, 33, 63].

Discussion

Although many components of the *H. pylori* lagella have been characterized and data regarding flagellar function and regulation are rapidly increasing, certain aspects of the *H. pylori* system, in particular those that differ from the well-studied model systems, are still poorly understood and require further investigation. These regulatory mechanisms appear to act at the bottom of the putative transcriptional hierarchy that governs flagellar biosynthesis in *H. pylori*. In contrast, the mechanisms at the top of the hierarchy that actually trigger the initiation of flagellar gene transcription are completely unknown.

Previous studies have explored the spreading and swarming motilities; however, whether these two types of motility are equivalent remains unclear.

Adhesion is an important factor that mediates the pathogenic role of bacterial flagellum [19, 26]. However, unlike other bacteria, *H. pylori* adhesion on gastric epithelial cells is not dependent on flagellin [12] and is not influenced by reduction in bacterial flagella. Moreover, it is related to mutations of flagellar genes. For example, the adhesion ability of a flaA::cat/flaB::km mutant strain without flagella is adequate while that of the flaB mutant strain is significantly reduced.

Exploring the relationship between *H. pylori* flagellar motility and gastrointestinal mucosa colonization can facilitate the understanding of *H. pylori* pathogenesis, especially the heterogeneity of motility in mixed infections, and needs to be further investigated.

Acknowledgements

This study was funded by the Zhejiang Provincial Natural Science Foundation (LZ14H2000001).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no any conflict of interests.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aihara E, Closson C, Matthias AL, Schumacher MA, Engevik AC, Zavros Y, Ottemann KM, Montrose MH (2014) Motility and chemotaxis mediate the preferential colonization of gastric injury sites by *Helicobacter pylori*. PLoS Pathog 10(7):e1004275
2. Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Raguènes G, Cuffe V, Cambon-Bonavita MA (2002) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323
Role of Flagella in the Pathogenesis of *Helicobacter pylori*

3. Allan E, Dorrell N, Foynes S, Anyim M, Wren BW (2000) Mutational analysis of genes encoding the flagellar components of *Helicobacter pylori*: evidence for transcriptional regulation of flagellin A biosynthesis. J Bacteriol 182(18):5274–5277

4. Andersen AP, Elliott DA, Lawson M, Barland P, Hatcher VB, Puszkina EG (1997) Growth and morphological transformations of *Helicobacter pylori* in broth media. J Clin Microbiol 35(11): 2918–2922

5. Asakura H, Churin Y, Bauer B, Boettcher JP, Bartfeld S, Hashii N, Kawasaki N, Mollenkopf HJ, Jungblut PR, Brinkmann V, Meyer TF (2010) *Helicobacter pylori* HP0518 affects flagellin glycosylation to alter bacterial motility. Mol Microbiol 78(5): 1130–1144

6. Atherton JC, Tham KT, Peek RM Jr, Cover TL, Blaser MJ (1996) Density of *Helicobacter pylori* infection in vivo as assessed by quantitative culture and histology. J Infect Dis 174(3):552–556

7. Balaban M, Hendrixson DR (2011) Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in *Campylobacter jejuni*. PLoS Pathog 7:e1002420

8. Bansil R, Celli JP, Hardcastle JM, Turner BS (2013) The influence of mucus microstructure and rheology in *Helicobacter pylori* and a regulator of flagellar number influence spatial parameters of cell division in *Campylobacter jejuni*. PLoS Pathog 7:e1002420

9. Carlsohn E, Nystrom J, Bolin I, Nilsson CL, Svennerholm AM, Ottemann KM, Amieva MR (2011) ChePep controls *Helicobacter pylori* infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. mBio 2(4):e00098-11

10. Carlsbohn E, Nyström J, Bolin I, Nilsson CL, Svennerholm AM (2006) HpaA is essential for *Helicobacter pylori* colonization in mice. Infect Immun 74(2):920–926

11. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981

12. Clyne M, Ocroinin T, Suerbaum S, Josenhans C, Drumm B (2000) Adherence of isogenic flagellum-negative mutants of *Helicobacter pylori* and Helicobacter mustelae to human and ferret gastric epithelial cells. Infect Immun 68(7):4335–4339

13. Cover TL, Blaser MJ (2009) *Helicobacter pylori* infection in health and disease. Gastroenterology 137(4):1863–1873

14. Douillard FP, Ryan KA, Hinds J, O’Toole PW, Josenhans C, Blaser MJ (2009) Effect of FlgSR two-component system is linked to the bacterial flagellar type III export apparatus. J Bacteriol 181(22):6969–6976

15. Duarte C, El-Sadek M, Clyne M (2014) Factors that mediate colonization of the human stomach by *Helicobacter pylori*. World J Gastroenterol 20(19):5610–5624

16. Dyer CM, Vartanian AS, Zhou H, Dhalquist FW (2009) A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 388(1):71–84

17. Eaton KA, Morgan DR, Krakowka S (1992) Motility as a factor in the colonisation of gnotobiotic piglets by *Helicobacter pylori*. J Med Microbiol 37(2):123–127

18. Eaton KA, Suerbaum S, Josenhans C, Krakowka S (1996) Colonization of gnotobiotic piglets by *Helicobacter pylori* deficient in two flagellin genes. Infect Immun 64(7):2445–2448

19. Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J (2013) Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci USA 110(14):5624–5629

20. Furuta T, Kaneko E, Suzuki M, Arii H, Futami H (1996) Quantitative study of *Helicobacter pylori* in gastric mucus by competitive PCR using synthetic DNA fragments. J Clin Microbiol 34(10):2421–2425

21. Geis G, Suerbaum S, Forshoff B, Leying H, Opferkuch W (1993) Ultrastructure and biochemical studies of the flagellar sheath of *Helicobacter pylori*. J Med Microbiol 38(5):371–377

22. Gewirtz AT, Yu Y, Krishna US, Israel DA, Lyons SL, Peek RM Jr (2004) *Helicobacter pylori* flagellin evades toll-like receptor 5-mediated innate immunity. J Infect Dis 189(10):1914–1920

23. Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR (2011) Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera *Campylobacter* and *Helicobacter*. Microbiol Mol Biol Rev 75:84–132

24. Gu HY (2008) The study on the mechanisms of *Helicobacter pylori* motility in gastric mucosal colonization. Chin J Lab Med 31:733–736 (Chinese)

25. Gu HY (2013) Bacterial flagella staining technology and its application. Chin J Microbiol Immunol 33:462–464 (Chinese)

26. Haiko J, Westerland-Wikstrom B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2(4):1242–1267 (Basel)

27. Han C, Kotsuyukenbo O, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hamilton N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitzluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Patti A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Spring S, Sikorski J, Goker M, Woyke T, Bristow J, Eisa JE, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC (2012) Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph *Sulfuriicurvum kuyiense* type strain (YK-1t1(T)). Stand Genom Sci 6:94–103

28. Ho B, Vijayakumari S (1993) A simple and efficient continuous culture system for *Helicobacter pylori*. Microbios 76(306):59–66

29. Howitt, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM, Ottemann KM, Amieva MR (2001) ChePep controls *Helicobacter pylori* Infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. EMBO J 30:2972–2981

30. Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM, Ottemann KM, Amieva MR (2011) ChePep controls *Helicobacter pylori* infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. MBio 2(4):e00098-11

31. Ikuta T, Uchida Y, Hirooka Y, Namba K, Imada K, Minamino T (2013) Interaction between FljJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 195(3):466–473

32. Josenhans C, Labigne A, Suerbaum S (1995) Comparative ultrastructural and functional studies of *Helicobacter pylori* and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlIA and FlIB, are necessary for full motility in Helicobacter species. J Bacteriol 177(11):3010–3020

33. Joslin SN, Hendrixson DR (2009) Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus. J Bacteriol 191:2656–2667

34. Kao CY, Sheu BS, Sheu SM, Yang HB, Chang WL, Cheng HC, Wu JJ (2012) Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with *Helicobacter pylori*. Helicobacter 17(6):411–416

35. Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Markowitsch R, Zarnani AH, Hosseini M, Busch DH, Shirazi MH, Gerhard M (2013) Bacterial flagella and hollows to increase adhesion. Proc Natl Acad Sci USA 108(12):5033–5038. doi:10.1073/pnas.1018444108

36. Khalifeh Gholi M, Kalali B, Formichella L, Gottner G, Shamisour F, Zarnani AH, Hosseini M, Busch DH, Shirazi MH, Gerhard M (2013) *Helicobacter pylori* FljD protein is a highly sensitive and specific marker for serologic diagnosis of *H. pylori* infection. Int J Med Microbiol 303(8):618–623

37. Kim JS, Chang JH, Chung SI, Yum JS (1999) Molecular cloning and characterization of the *Helicobacter pylori* FlaD gene, an essential factor in flagellar structure and motility. J Bacteriol 181(22):6969–6976
38. Kinoshita M, Hara N, Imada K, Namba K, Minamino T (2013) Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol Microbiol 90(6):1249–1261
39. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490
40. Labrenz M, Grote J, Mammitzsch K, Boschker HT, Laue M, Jost G, Glaubitz S, Jürgens K (2013) Sulfitomonas gotlandica sp. nov., a chemoaerotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus Sulfitomonas. Int J Syst Evol Microbiol 63:4141–4148
41. Lam WW, Woo EJ, Kotaka M, Tam WK, Leung YC, Ling TK, Au SW (2010) Molecular interaction of flagellar export chaperone FliS and chaperone HP1076 in Helicobacter pylori. FASEB J 24(10):4020–4032
42. Lawson AJ (2011) Helicobacter. In: James V, Karen C, Guido F (eds) Manual of clinical microbiology, 10th edn. ASM, Washington, pp 900–915
43. Lertsethtakarn P, Howitt MR, Castellon J, Amieva MR, Ottmann KM (2011) Helicobacter pylori cheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the corechemotaxis signaling proteins and the flagellar motor. Mol Microbiol 97(6):1063–1078
44. Lertsethtakarn P, Ottmann KM, Hendrixson DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65:389–410
45. Lima TT, Alizahrai S, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE (2014) Immune evasion strategies used by Helicobacter pylori. World J Gastroenterol 20(36):12753–12766
46. Lowenthal AC, Hill M, Sycuro LK, Mehmood K, Salama NR, Ottmann KM (2009) Functional analysis of the Helicobacter pylori flagellar switch proteins. J Bacteriol 191(23):7147–7156
47. Luke CJ, Penn CW (1995) Identification of a 29 kDa flagellar sheath protein in Helicobacter pylori using a murine monoclonal antibody. Microbiology 141(Pt 3):597–604
48. Mascellino MT, Margoli A, O’Neill J, Xie M, Hajnen M, Roujeinikova A (2011) Role of the motB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 67(Pt 12):1009–1016
49. Osaki T, Hanawa T, Manzoku T, Fukuda M, Kawakami H, Suzuki H, Yamaguchi H, Yan X, Taguchi H, Kurata S, Kamiya S (2006) Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a Mongolian gerbil model. J Med Microbiol 55(Pt 11):1477–1485
50. Pereira L, Hoover TR (2005) Stable accumulation of sigma54 in Helicobacter pylori requires the novel protein HP0958. J Bacteriol 187(8):4463–4469
51. Pérez-Rodríguez I, Ricci J, Voordeekers JW, Stavrovyovt V, Vetriani C (2010) Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 60:1182–1186
52. Pietroiusti A, Forlini A, Magrini A, Galante A, Bergamaschi A (2008) Isolated Helicobacter pylori duodenal colonization and idiopathic duodenal ulcers. Am J Gastroenterol 103(1):55–61
53. Pietroiusti A, Luzzi I, Gomez MJ, Magrini A, Bergamaschi A, Forlini A, Galante A (2005) Helicobacter pylori duodenal colonization is a strong risk factor for the development of duodenal ulcer. Aliment Pharmacol Ther 21(7):909–915
54. Pittman MS, Goodwin M, Kelly DJ (2001) Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV phosphorylation. Microbiology 147(Pt 9):2393–2504
55. Radin JN, Gaddy JA, Gonzalez-Rivera C, Loh JT, Algood HM, Cover TL (2013) Flagellar localization of a Helicobacter pylori autotransporter protein. MBio 4(2):e00613-12
56. Roessler BM, Rabelo-Goncalves EM, Zeitune JM (2014) Virulence Factors of Helicobacter pylori: a review. Clin Med Insights Gastroenterol 7:9–17
57. Rolig AS, Shanks J, Carter JE, Ottmann KM (2012) Helicobacter pylori requires TlpD-driven chemotaxis to proliferate in the antrum. Infect Immun 80(10):3713–3720
58. Sanders CJ, Yu Y, Moore DA 3rd, Williams IR, Gewirtz AT (2006) Humoral immune response to flagellin requires T cells and activation of innate immunity. J Immunol 177(5):2810–2818
59. Schuster SC, Baeuerlein E (1992) Location of the basal disk and a ringlike cytoplasmic structure, two additional structures of the flagellar apparatus of Wolinella succinogenes. J Bacteriol 174:263–268
60. Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G (1998) The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114(1):58–70
75. Sikorski J, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, Bruce D, Goodwin L, Priluck S, Ovchinnikova G, Pati A, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Chain P, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Detter JC, Han C, Rohde M, Lang E, Spring S, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Sulfurospirillum deleyianum type strain (5175). Stand Genom Sci 2:149–157

76. Slonczewski JL, McGee DJ, Phillips J, Kirkpatrick C, Mobley HL (2000) pH-dependent protein profiles of Helicobacter pylori analyzed by two-dimensional gels. Helicobacter 5(4):240–247

77. Smith TG, Pereira L, Hoover TR (2009) Helicobacter pylori FlhB processing-deficient variants affect flagellar assembly but not flagellar gene expression. Microbiology 155(Pt 4):1170–1180

78. Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, Vollmer W, Salama NR (2012) Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog 8(3):e1002603

79. Tang RX, Luo DJ, Sun AH, Yan J (2008) Diversity of Helicobacter pylori isolates in expression of antigens and induction of antibodies. World J Gastroenterol 14(30):4816–4822

80. Terry K, Williams SM, Connolly L, Ottemann KM (2005) Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun 73(2):803–811

81. Thomson JM, Hansen R, Berry SH, Hope ME, Murray GL, Mukhopadhyay I, McLean MH, Shen Z, Fox JG, El-Omar E, Hold GL (2011) Enterohepatic helicobacter in ulcerative colitis: potential pathogenic entities? PLoS ONE 6(2):e17184. doi:10.1371/journal.pone.0017184

82. Tsang J, Smith TG, Pereira LE, Hoover TR (2013) Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression. Microbiology 159(Pt 1):58–67

83. Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM (2007) Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 75(8):3747–3757

84. Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68:316–325

85. Zhang J, Qian J, Zhang X, Zou Q (2014) Outer membrane inflammatory protein A, a new virulence factor involved in the pathogenesis of Helicobacter pylori. Mol Biol Rep 41(12):7807–7814