Application of a Revised Molière Theory to the Description of the Landau–Pomeranchuk Effect

31 December 2013

Hrach Torosyan¹, Olga Voskresenskaya²,*

¹Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Joliot–Curie 6, 141980, Dubna, Moscow region, Russia
²Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot–Curie 6, 141980, Dubna, Moscow region, Russia

*Corresponding Author: voskr@jinr.ru

Abstract Using the Coulomb corrections to some important parameters of a revised Molière multiple scattering theory, we have obtained analytically and numerically the Coulomb corrections to the quantities of the Migdal theory of the Landau–Pomeranchuk (LPM) effect for sufficiently thick targets. We showed that the Coulomb correction to the spectral bremsstrahlung rate of this theory allows completely eliminating the discrepancy between the theory and experiment at least for high Z experimental targets.

Keywords Landau–Pomeranchuk–Migdal effect, multiple scattering, Coulomb corrections

1 Introduction

The theory of the multiple scattering of charged particles has been treated by several authors [1–7]. However, the most widely used at present is the multiple scattering theory of Molière [3] whose results are employed nowadays in most of the transport codes. It is of interest for numerous applications related to particle transport in matter; and it also presents the most used tool for taking into account the multiple scattering effects in experimental data processing. The DIRAC experiment [8] like many others [9] (the MuScat [10], MUCOOL [11] experiments, etc.) meets the problem of the excluding of multiple scattering effects in matter from obtained data. The standard theory of multiple scattering [8, 9, 10], proposed by Molière [3] and Fano [6], and some its modifications [10, 12, 13] are used for this aim.

As the Molière theory is currently used roughly for 10–300 GeV electron beams, the role of the high-energy corrections to the parameters of this theory becomes significant. Of special importance is the Coulomb correction to the screening angular parameter, as this parameter also enters into other important quantities of the Molière theory.

Landau and Pomeranchuk were the first to show [14] that multiplicity of electron scattering processes on atomic nuclei in an amorphous medium results in the suppression of soft bremsstrahlung. The quantitative theory of this phenomenon was created by Migdal [15, 16, 17] Therefore, it received the name Landau–Pomeranchuk–Migdal (LPM) effect.

The analogous effects are possible also at coherent radiation of relativistic electrons and positrons in a crystalline medium [18], in cosmic-ray physics [19] (e.g. in applications motivated by extremely high energy Ice-Cubes neutrino-induced showers with energies above 1 PeV [20]). Effects of this kind should manifest themselves in scattering of protons on the nuclei, what has recently been shown in Groning by the AGOR collaboration [21], at penetration of quarks and partons through the nuclear matter at the RHIC and LHC energies [22]. The QCD analogue of the LPM effect was examined in [23], a possibility studying the LPM effect in oriented crystal at GeV energy was analyzed in [24]. Theoretical, an analogue of the LPM effect was considered for nucleon-nucleon collisions in the neutron stars and supernovae [25], and also in relativistic plasmas [26].

The results of a series of experiments at the SLAC [27, 28, 29] and CERN-SPS [30, 31] accelerators on detection of the Landau–Pomeranchuk effect confirmed the basic qualitative conclusion that multiple scattering of ultrarelativistic charged particles in matter leads to suppression of their bremsstrahlung in the soft part of the spectrum. However, attempts to quantitatively describe the experimental data [27] faced an unexpected difficulty. For achieving satisfactory agreement of data with theory [15] the authors [27] had to multiply the results of their calculations in the Born approximation by a normalization factor R equal to $0.94 \pm 0.01 \pm 0.032$, which had no reasonable explanation.

The alternate calculations [32, 33] gave a similar result despite different computational basis [27]. The theoretical predictions are agreement with the spectrum

\[R = 0.94 \pm 0.01 \pm 0.032 \]

1See also [17] accounting the edge effects. Let us notice that Molière’s theory was not applied to the description of the LPM effect in these works. The previous results of the multiple scattering theory [2] were used here.
of photon bremsstrahlung measured for 25 GeV electron beam and 0.7–6.0% L_n, gold targets over the range 30 < ω < 500 MeV of the emitted photon frequency ω only within a normalization factor 0.94 [27] – 0.93 [32]. The origin of the above small but significant disagreement between data and theory needs to be better understood [28].

In [33] [34] [35] the multiphoton effects was taken into account, and a comparison with SLAC E-146 data was carried out. Nevertheless, the problem of normalization remained and is still not clear. The other authors, except [32] [35], do not discuss this normalization problem [29].

The aim of this work is to show that the discussed discrepancy can be explained at least for high Z targets if the corrections to the results of the Born approximation are appropriately considered on the basis of a revised version of the Molière multiple scattering theory [37] [38].

The paper is organized as follows. In Section 2 we present the results of the Migdal LPM effect theory, which differs from [1], can be derived from the Boltzmann transport equation by the Fokker–Plank method [41].

One of the most important results of the Molière theory is that the scattering is described by a single parameter, the so-called screening angle (θ_s or θ_s').

\[
\theta_s' = \sqrt{1.167} \theta_s = [\exp(C_Z - 0.5)] \theta_s \approx 1.080 \theta_s ,
\]

where $C_Z = 0.577\ldots$ is the Euler constant.

More precisely, the angular distribution depends only on the logarithmic ratio b

\[
b = \ln \left(\frac{\theta_s'}{\theta_s} \right)^2 \equiv \ln \left(\frac{\theta_s'}{\theta_s} \right)^2 + 1 - 2C_Z \quad (5)
\]

of the characteristic angle θ_c describing the foil thickness

\[
\theta_c^2 = 4\pi n_0 L \left(\frac{Z\alpha}{\beta p} \right)^2 , \quad p = mv ,
\]

to the screening angle θ_s', which characterizes the scattering atom.

In order to obtain a result valid for large angles, Molière defined a new parameter B by the transcendental equation

\[
B - \ln B = b .
\]

The angular distribution function can then be written as

\[
w_M(\theta, B) = \frac{1}{\theta_c^2} \int_0^\infty y dy J_0(y) y e^{-y^2/4}
\]

\[
\times \exp \left[\frac{y^2}{4B} \ln \left(\frac{y^2}{4} \right) \right] , \quad y = \theta_c \eta . \quad (8)
\]

The Molière expansion method is to consider the term $y^2 \ln(y^2/4)/4B$ as a small parameter. Then, the angular distribution function is expanded in a power series in $1/B$

\[
w_M(\theta, L) = \sum_{n=0}^\infty \frac{1}{n!} \frac{1}{B^n} w_n(\theta, L) ,
\]

in which

\[
w_n(\theta, L) = \frac{1}{\theta_c^2} \int_0^\infty y dy J_0 \left(\frac{\theta}{\theta_c y} \right) e^{-y^2/4}
\]
\[
\overline{\varphi} = \theta^2 B = 4 \pi n_p L \left(\frac{Z \alpha}{\beta p} \right)^2 B(L). \tag{11}
\]

This method is valid for \(B \geq 4.5 \) and \(\overline{\varphi} < 1 \).

The first function \(w_0(\varphi, L) \) has a simple analytical form
\[
w_0(\varphi, L) = \frac{2}{\varphi^2} \exp \left(-\frac{\varphi^2}{2} \right), \tag{12}
\]
\[
\overline{\varphi} \sim L \rightarrow \infty \frac{L}{L} \ln \left(\frac{L}{L} \right), \tag{13}
\]
where for small angles, i.e., \(\varphi / \overline{\varphi} = \varphi \sqrt{B} \) less than about 2, the Gaussian (12) is the dominant term. In this region, \(w_1(\varphi, L) \) is in general less than \(w_0(\varphi, L) \), so that the correction to the Gaussian is of order of 1/137, i.e., about 10%.

A good approximate representation of the distribution at any angle is
\[
w_\theta^M(\varphi, L) \approx w_0(\varphi, L) + \frac{1}{B} w_1(\varphi, L) \tag{14}
\]
with
\[
w_1(\varphi, L) = \frac{1}{\varphi^2} \int_0^\infty dy J_0 \left(\frac{\varphi}{\sqrt{\varphi^2 + y^2}} \right) e^{-y^2/4} \times \frac{y^2}{4} \ln \left(\frac{y^2}{4} \right). \tag{15}
\]

This approximation was applied by authors of [30] to the analysis of data [27] [28] over the region \(\omega < 30 \) MeV that will be shown in Section 3.

As shown the classical works of Molière [3], the quantity \(\nu(\eta) \) can be represented in the area of the important \(\eta \) values \(0 \leq \eta \leq 1/\theta_c \) as
\[
\nu(\eta) = -4\pi \left(\frac{Z \alpha}{\beta p} \right)^2 \eta^2 \ln \left(\frac{\eta \theta_a}{2} \right) + C_E - \frac{1}{2}, \tag{16}
\]
where the screening angle \(\theta_a \) depends both on the screening properties of the atom and on the \(\sigma_0(\theta) \) approximation used for its calculation.

Using the Thomas–Fermi model of the atom and an interpolation scheme, Molière obtained \(\theta_a \) for the cases where \(\sigma_0(\theta) \) is calculated within the Born and quasiclassical approximations:
\[
\theta_a^M = 1.20 \cdot \alpha \cdot Z^{1/3}, \tag{17}
\]
\[
\theta_a^{\varphi} = \theta_a^M \sqrt{1 + 3.34 \cdot (Z \alpha / \beta p)^2}. \tag{18}
\]

Here, \(Z \) is the nuclear charge number of the target atom, \(\alpha = 1/137 \) is the fine structure constant, and \(\beta = v/c \) is the velocity of a projectile in units of the velocity of light.

The latter result [18] is only approximate (see critical remarks on its derivation in [11]). Below we will present exact analytical and numerical results for the screening angle and some other parameters of the Molière theory.

2.2 Revised multiple scattering theory of Molière

Very recently, it has been shown [38] that for any model of the atom the following rigorous relation determining the screening angular parameter \(\theta_a^M \) is valid:
\[
\ln(\theta_a^M) = \ln(\theta_a^M)^n + \Re \left[\psi(1 + i Z \alpha / \beta) \right] + C_E \tag{19}
\]
or, equivalently,
\[
\Delta_{cc}[\ln(\theta_a^M)] = \ln(\theta_a^M)^n - \ln(\theta_a^M)^n = f(Z \alpha / \beta), \tag{20}
\]
where \(\Delta_{cc} \) is the Coulomb correction to the Born result, \(\psi \) is the logarithmic derivative of the gamma function \(\Gamma \), and \(f(Z \alpha / \beta) \) is an universal function of the Born parameter \(\xi = Z \alpha / \beta \), which is also known as the Bethe–Maximon function:
\[
f(\xi) = \xi^2 \sum_{n=1}^\infty \frac{1}{n(\pi^2 + \xi^2)} \tag{21}
\]

To compare the approximate Molière result [18] with the exact one [20], we first present [18] in the form
\[
\delta_{m}[\theta_a] \equiv \frac{\theta_a^{M} - \theta_a^n}{\theta_a^n} = \sqrt{1 + 3.34 \xi^2} - 1 \tag{22}
\]
and also rewrite [20] as follows:
\[
\delta_{cc}[\theta_a^n] = \frac{\theta_a^n - \theta_a^n}{\theta_a^n} = \frac{\theta_a^n - \left(\theta_a^{M} \right)^n}{\left(\theta_a^n \right)^n} = \exp \left[f(\xi) \right] - 1 \tag{23}
\]

Then we get:
\[
\delta_{cc}[\theta_a^n] = \delta_{cc}[\theta_a^{M}] - \delta_{cc}[\theta_a^n] = \frac{\Delta_{cc}[\theta_a^n]}{\delta_{cc}[\theta_a^{M}]} \tag{24}
\]

In order to obtain the relative difference between the approximate \(\theta_a^n \) and exact \(\theta_a \) results for the screening angle
\[
\delta_{cc}[\theta_a^n] \equiv \frac{\theta_a^n - \theta_a^n}{\theta_a^n} = \frac{\theta_a^n - \theta_a^n}{\theta_a^n} - 1 \tag{25}
\]
\[
= R_{cc}[\theta_a^n] - 1 \tag{26}
\]
we rewrite [22] and [23] in the following form
\[
\delta_{cc}[\theta_a^n] + 1 = \frac{\theta_a^n}{\theta_a^n}, \quad \delta_{cc}[\theta_a^n] + 1 = \frac{\theta_a^n}{\theta_a^n} \tag{27}
\]
and obtain for the ratio \(R_{cc}[\theta_a^n] \) the expression
\[
R_{cc}[\theta_a^n] \equiv \frac{\theta_a^n}{\theta_a^n} = \frac{\delta_{cc}[\theta_a^n] + 1}{\delta_{cc}[\theta_a^n] + 1} \tag{28}
\]
\[
= \frac{\delta_{cc}[\theta_a^n]}{\delta_{cc}[\theta_a^n] + 1}. \tag{29}
\]

We can also represent the relative difference [25] by the equation
\[
\delta_{cc}[\theta_a^n] = \frac{\Delta_{cc}[\theta_a^n]}{\delta_{cc}[\theta_a^n] + 1}. \tag{30}
\]
Table 1. Numerical results for the relative corrections \(\delta_M[\theta_a]\) [22], [23], relative differences \(\delta_{CCM}[\theta_a]\) [24], [26], and the ratio \(R_{CCM}[\theta_a]\) [28] in the range of nuclear charge \(73 \leq Z \leq 92\).

\(Z\)	\(\delta_M[\theta_a]\)	\(\delta_{CCM}[\theta_a]\)	\(\delta_{CCM}[\theta_a]\)	\(R_{CCM}[\theta_a]\)	
73	0.396	0.318	−0.198	−0.056	0.944
74	0.404	0.325	−0.196	−0.056	0.943
78	0.443	0.359	−0.189	−0.058	0.942
79	0.452	0.367	−0.188	−0.059	0.941
82	0.482	0.393	−0.185	−0.060	0.940
92	0.583	0.485	−0.169	−0.062	0.938

For some high Z targets used in [28] and \(\beta = 1\), we obtain the following values of the relative Molière corrections \(\delta_M[\theta_a]\) [22] and Coulomb \(\delta_{CCM}[\theta_a]\) [23] corrections and also the sizes of the difference \(\Delta_{CCM}[\Delta_{CC}]\) and relative differences \(\delta_{CCM}[\theta_a]\) [24], \(\delta_{CCM}[\theta_a]\) [26] as well as the ratio \(R_{CCM}[\theta_a]\) [28] (Table 1, Figure 1).

From the Table 1 it is evident that the Coulomb correction \(\delta_{CCM}[\theta_a]\) has a large value, which ranges from around 30% for \(Z \sim 70\) up to 50% for \(Z \sim 90\). The relative difference between the approximate and exact results for this Coulomb correction varies from 17 up to 20% over the range \(73 \leq Z \leq 92\).

The relative difference \(\Delta_{CCM}[\theta_a]\) between the approximative \(\theta_a^u\) and exact \(\theta_a\) results for the screening angle as well as \(R_{CCM}[\theta_a]\) = \(\Delta_{CCM}[\theta_a]\) value does not vary significantly from one target material to another. Their sizes are \(5.86 \pm 0.22\%\) for \(\Delta_{CCM}[\theta_a]\) and \(0.941 \pm 0.002\) for \(R_{CCM}[\theta_a]\) over the \(Z\) range studied. It is interesting that the latter value coincides with the normalization constant \(R = 0.94 \pm 0.01\) found in [27].

We show further that the above discrepancy between theory of the LPM effect and experiment [27, 28, 32] can be completely eliminated for heavy target elements on the basis of the Coulomb corrections to the screening angular parameter. For this purpose, we calculate also some additional Coulomb corrections to other important parameters of the Molière theory. Inserting [5] into [4] and differentiating the latter, we arrive at

\[
\Delta_{CC}[b] = - f(\xi) = \left(1 - \frac{1}{B^n}\right) \cdot \Delta_{CC}[B] . \tag{31}
\]

So \(\Delta_{CC}[B]\) becomes

\[
\Delta_{CC}[B] = \frac{f(\xi)}{1/B^n - 1} . \tag{32}
\]

Accounting \(\bar{\theta}^2 = \theta_a^2 B\) [11], we get

\[
\Delta_{CC}[\bar{\theta}^2] \equiv \bar{\theta}^2 - \left(\bar{\theta}^2\right)^u = \theta_a^2 \cdot \Delta_{CC}[B] . \tag{33}
\]

Finally, the relative Coulomb corrections can be represented as

\[
\delta_{CC}[\bar{\theta}^2] = \delta_{CC}[B] = \frac{f(\xi)}{1 - B^n} . \tag{34}
\]

The \(Z\) dependence of the corrections (31), (32), and (34) is presented in Table 2 (see also Figure 1).

Table 2. The Coulomb correction (31), (32), and (34) to the parameters of the Molière theory for \(B^n = 8.46\) and \(\beta = 1\).

\(M\)	\(Z\)	\(\Delta_{CC}[b]\)	\(\Delta_{CC}[B]\)	\(\delta_{CC}[B]\)	\(\delta_{CC}[\bar{\theta}^2]\)
Al	13	−0.0107	−0.0121	−0.0014	−0.0014
Fe	26	−0.0420	−0.0476	−0.0056	−0.0056
W	74	−0.2813	−0.3190	−0.0377	−0.0377
Au	79	−0.3125	−0.3545	−0.0419	−0.0419
Pb	82	−0.3316	−0.3760	−0.0445	−0.0445
U	92	−0.3951	−0.4481	−0.0530	−0.0530

Figure 1: The \(Z\) dependence of the Coulomb corrections to some parameters of the Molière theory and the differences between exact and approximate results [38].

3 Applications of the Molière theory to the description of the LPM effect and its analogue

3.1 Basic formulae of the Migdal LPM effect theory for sufficiently thick targets

There exist two methods that allow to develop a rigorous quantitative theory of the Landau–Pomeranchuk
effect. It is Migdal’s method of kinetic equation and the method of functional integration. Neglecting numerically small quantum-mechanical corrections, we will adhere to version of the Landau–Pomeranchuk effect theory developed in [15].

Simple though quite cumbersome calculations yield the following formula for the electron spectral bremsstrahlung intensity averaged over various trajectories of electron motion in an amorphous medium (hereafter the units \(h = c = 1 \), \(e^2 = 1/137 \) are used):

\[
\left\langle \frac{dI}{d\omega} \right\rangle = \Phi(s) \left\langle \frac{dI}{d\omega} \right\rangle_0 ,
\]

where \(\left\langle \frac{dI}{d\omega} \right\rangle_0 \) is the spectral bremsstrahlung rate without accounting for the multiple scattering effects in the radiation,

\[
\left\langle \frac{dI}{d\omega} \right\rangle_0 = \frac{2e^2}{3\pi} \gamma^2 q L, \tag{36}
\]

\[
q = \sqrt{q^2 + L} . \tag{37}
\]

and \(\gamma \) is the Lorentz factor of the scattered particle.

The function \(\Phi(s) \) accounts for the multiple scattering influence on the bremsstrahlung rate and reads

\[
\Phi(s) = 24s^2 \left[\int_0^\infty dx \, e^{-2sx} \cosh(x) \sin(2sx) - \frac{\pi}{4} \right] , \tag{38}
\]

\[
s^2 = \lambda^2 / \theta^2, \quad \lambda^2 = \gamma^2 . \tag{39}
\]

It has simple asymptotes at the small and large values of the argument:

\[
\Phi(s) \to \begin{cases} 6s, & s \to 0 , \\ 1, & s \to \infty , \end{cases} \tag{40}
\]

\[
s = \frac{1}{4\gamma^2} \sqrt{\frac{\omega}{q}} . \tag{41}
\]

For \(s \ll 1 \), the suppression is large, and \(\Phi(s) \approx 6s \). The intensity of radiation in this case is much less, than the corresponding result of Bethe and Heitler. If \(s \gg 1 \), the function \(\Phi(s) \) is close to a unit, and the following approximation is valid [18]:

\[
\Phi(s) \approx 1 - 0.012 / s^4 . \tag{42}
\]

The formula (35) is obtained with the logarithmic accuracy. At \(s \gg 1 \), (35) coincides within this accuracy with the Bethe–Heitler result

\[
\left\langle \frac{dI}{d\omega} \right\rangle_{BH} = \frac{L}{L_{BH}} \left[1 + \frac{1}{12 \ln(183Z^{-1/3})} \right] . \tag{43}
\]

If \(s \ll 1 \), we have the large LPM suppression in comparison with (43). Let us notice that effect of a medium polarization is not considered here, i.e. it is assumed that the absolute permittivity of the medium \(\varepsilon(\omega) = 1 \).

3.2 Applying the revised theory of Molière to the Migdal LPM effect theory

Now we obtain analytical and numerical results for the Coulomb corrections to the quantities of the Migdal LPM effect theory. In order to derive an analytical expression for the Coulomb correction to the Born spectral bremsstrahlung rate \((dI/d\omega)_0 \), we first write

\[
\Delta_{cc} \left[\left(\frac{dI}{d\omega} \right)_0 \right] = \left(\frac{dI}{d\omega} \right)_0 - \left(\frac{dI}{d\omega} \right)_0 = \frac{2e^2}{3\pi} \gamma^2 L \cdot \Delta_{cc}[q] , \tag{44}
\]

where

\[
\Delta_{cc}[q] \equiv q - q^n = \frac{1}{L} \cdot \Delta_{cc} \left[\frac{\theta^2}{q} \right] ,
\]

\[
\Delta_{cc} \left[\frac{\theta^2}{q} \right] \equiv \frac{\theta^2}{q} - \left(\frac{\theta^2}{q} \right)^n = \theta^2 \cdot \Delta_{cc} [B] ,
\]

\[
\Delta_{cc}[B] = \frac{f(\xi)}{1/B^n - 1} . \tag{45}
\]

In doing so, (44) becomes

\[
\Delta_{cc} \left[\left(\frac{dI}{d\omega} \right)_0 \right] = \frac{2(e\gamma \theta s)^2}{3\pi (1/B^n - 1)} \cdot f(\xi) , \tag{46}
\]

and the relative Coulomb correction reads

\[
\delta_{cc} [(dI/d\omega)_0] = \delta_{cc} [q] = \delta_{cc} \left[\frac{\theta^2}{q} \right] = R_{cc} [(dI/d\omega)_0] - 1 = \frac{f(\xi)}{1 - B^n} . \tag{47}
\]

Next, in order to obtain the relative Coulomb correction to the Migdal function \(\Phi(s) \), we first derive corresponding correction to the parameter \(s^2 \) [39]:

\[
\Delta_{cc} \left[s^2 \right] = \frac{\omega}{16\gamma^4} \left(\frac{1}{q} - \frac{1}{q^n} \right) , \tag{48}
\]

\[
\delta_{cc} \left[s^2 \right] \equiv \frac{q^n}{q} - 1 = \frac{\left(\frac{\theta^2}{q} \right)^n}{\theta^2} - 1 , \tag{49}
\]

\[
\frac{\left(\frac{\theta^2}{q} \right)^n}{\theta^2} = \frac{1}{\delta_{cc} \left[\frac{\theta^2}{q} \right] + 1} . \tag{50}
\]

This leads to the following relative Coulomb correction for \(s \) [41]:

\[
\delta_{cc} [s] = \sqrt{\frac{\theta^2}{q}} - 1 \]

\[
= \frac{1}{\sqrt{\delta_{cc} \left[\frac{\theta^2}{q} \right] + 1}} . \tag{51}
\]

For the asymptote \(\Phi(s) = 6s \) [40], we get

\[
\delta_{cc} [\Phi(s)] = \delta_{cc} [s] = \frac{1}{\sqrt{R_{cc} [(dI/d\omega)_0]}} - 1 . \tag{52}
\]

Then the total relative Coulomb correction to the spectral density of radiation in this asymptotic case becomes

\[
\delta_{cc} [(dI/d\omega)] = \delta_{cc} [(dI/d\omega)_0] + \delta_{cc} [\Phi(s)] . \tag{53}
\]
The regime of strong LPM suppression is not reached in the conditions of the experiment [27, 28, 29]. Therefore, we will carry out now calculation for the regime of small LPM suppression [12].

In order to obtain the relative correction \(\delta_{CC} \Phi(s) \) in this regime, we first derive an expression for the Coulomb correction \(\Delta_{CC} \Phi(s) \) to the Migdal function \(\Phi(s) \):

\[
\Delta_{CC} \Phi(s) = 0.012 \left(\frac{1}{s^4} - \frac{1}{s^4} \right) = \frac{0.012}{s^4} \delta_{CC} [s^4],
\]

\[
\delta_{CC} [s^4] = \left(\frac{\langle q^n \rangle}{q} \right)^2 - 1 = \left(\frac{\langle q^3 \rangle}{q^3} \right)^2 - 1.
\]

This leads to the following relative Coulomb correction for \(\Phi(s) \) [42]:

\[
\delta_{CC} \Phi(s) = \frac{0.012}{s^4} \delta_{CC} [s^4] \cdot \frac{(s^4)^{\frac{3}{2}}}{(s^4)^{\frac{1}{2}}} - 0.012.
\]

In Table 3 are listed the values of the relative Coulomb corrections to the quantities of [35] in the regime of small LPM suppression [12] for some separate \(s \) values from the range 1.0 \(\leq s \leq \infty \) (e.g., for \(s = 1.1 \) and \(s = 1.5 \)).

Table 3. Coulomb corrections to the quantities of the Migdal LPM theory, \(\delta_{CC} [\langle dI/d\omega \rangle] \) [17], \(\delta_{CC} [\Phi(s)] \) [55], and \(\delta_{CC} [\langle dI/d\omega \rangle] \) [53], in the regime of small LPM suppression for high Z targets of experiment [28].

Z	\(\delta_{CC} [\langle dI/d\omega \rangle] \)	\(\delta_{CC} [s^4] \)	\(\delta_{CC} [\Phi(s)] \)	\(\delta_{CC} [\langle dI/d\omega \rangle] \)
79	-0.0419	-0.0896	-0.0008	-0.0427
82	-0.0445	-0.0953	-0.0009	-0.0454
92	-0.0530	-0.1149	-0.0011	-0.0541

\[\delta_{CC} [\langle dI/d\omega \rangle] = -4.74 \pm 0.59\%; \]

Table 4. The dependence of the relative Coulomb correction \(-\delta_{CC} [\langle dI/d\omega \rangle] \) value (%) on the parameter \(s \) in the regime of small LPM suppression for high Z targets, \(\beta = 1 \), and \(B^n = 8.46 \).

Z \(\setminus s \)	1.0	1.1	1.2	1.3	1.5	2.0	\(\infty \)
79	4.32	4.28	4.26	4.24	4.22	4.21	4.19
82	4.58	4.54	4.51	4.49	4.47	4.46	4.45
92	5.45	5.41	5.36	5.34	5.33	5.31	5.30

\[\delta_{CC} [\langle dI/d\omega \rangle] = -4.50 \pm 0.05\% \ (Z = 82), \]

\[\delta_{CC} [\langle dI/d\omega \rangle] = -5.35 \pm 0.06\% \ (Z = 92), \]

\[\delta_{CC} [\langle dI/d\omega \rangle] = -4.70 \pm 0.49\%. \]

It will be seen from Table 4 that the Coulomb corrections \(\delta_{CC} [\langle dI/d\omega \rangle] \) change from \(-4.50 \pm 0.05\% \) for \(Z = 82 \) and \(\delta_{CC} [\langle dI/d\omega \rangle] = -5.35 \pm 0.06\% \) for \(Z = 92 \) coincide within the experimental error with the sizes of the normalization correction \(-4.5 \pm 0.2\% \) for \(2\%L_u \) lead target and \(-5.6 \pm 0.3\% \) for \(3\%L_u \) uranium target, respectively (Table II in [28]).

It is also obvious that the average \(\delta_{CC} [\langle dI/d\omega \rangle] \) value \(\delta_{CC} [\langle dI/d\omega \rangle] = -4.70 \pm 0.49\% \) excellent agrees with the weighted average \(-4.7 \pm 2\% \) of the normalization correction obtained in [28] for 25 GeV data.

We believe that this allows to understand an origin of the discussed in [27, 28] normalization problem for high Z targets.

3.3 Application of Molière’s theory to the description of the LPM effect analogue for a thin target

Experiment [27, 28] caused considerable interest and stimulated development of various approaches to the study of the LPM effect, including an application of Molière’s results to the description of an analogue of the LPM effect for a thin layer of matter [10].

In [10], it is shown that the region of the emitted photon frequencies naturally splits into two intervals, \(\omega > \omega_c \) and \(\omega < \omega_c \), in which the LPM effect for sufficiently thick targets takes place, and in the second, there is its analogue for thin targets. The quantity \(\omega_c \) is defined here as \(\omega_c = 2\gamma^2/L \).

Application of the Molière multiple scattering theory to the analysis of experimental data [27, 28] for a thin target in the second \(\omega \) range is based on the use of the expression for the spatial-angle particle distribution function [1], which satisfies the standard Boltzmann transport equation for a thin homogenous foil and differs significantly from the Gaussian particle distribution of the Migdal LPM effect theory.

Besides, it determines an another expression for the spectral radiation rate in the context of the coherent radiation theory [10], which reads:

\[
\frac{dI}{d\omega} = \int w_m(\vartheta) \frac{dI(\vartheta)}{d\omega} d^2\vartheta.
\]
Here
\[\frac{dI(\theta)}{d\omega} = \frac{2e^2}{\pi} \left[\frac{2\chi^2 + 1}{\sqrt{\chi^2 + 1}} \ln \left(\chi + \sqrt{\chi^2 + 1} \right) - 1 \right] \] (57)
with \(\chi = \gamma \theta / 2 \). The latter expression is valid for consideration of the particle scattering in both amorphous and crystalline medium.

The formula (57) has simple asymptotes at the small and large values of parameter \(\chi \):
\[\frac{dI(\theta)}{d\omega} \approx \frac{2e^2}{3\pi} \left\{ \begin{array}{ll}
\gamma^2 \theta^2, & \gamma \theta \ll 1, \\
3 \left[\ln(\gamma^2 \theta^2) - 1 \right], & \gamma \theta \gg 1,
\end{array} \right. \] (58)
Replacing in this formula \(\theta^2 \) by the average square value of the scattering angle \(\bar{\theta}^2 \), we arrive at the following estimates for the average radiation spectral density value:
\[\langle \frac{dI}{d\omega} \rangle = \frac{2e^2}{3\pi} \left\{ \begin{array}{ll}
\gamma^2 \bar{\theta}^2, & \gamma^2 \bar{\theta}^2 \ll 1, \\
3 \left[\ln(\gamma^2 \bar{\theta}^2) - 1 \right], & \gamma^2 \bar{\theta}^2 \gg 1.
\end{array} \right. \] (59)

In the experiment [27, 28], the above frequency intervals correspond roughly to the following \(\omega \) ranges: \((\omega > \omega_c) \sim (\omega > 30 \text{MeV}) \) and \((\omega < \omega_c) \sim (\omega < 30 \text{MeV}) \) for 25 GeV electron beam and 0.7 – 6.0\%\(L_n \) gold targets. Whereas in the first area the discrepancy between the LPM theory predictions and data is about 3.2 to 5\% that requires the use of normalization factor 0.94 ± 0.01 ± 0.032, in the second area this discrepancy reaches ~15\%.

Using the second-order representation of the Molière distribution function [14, 15] for computing the spectral radiation rate [50], the authors of [40] were able to agree satisfactorily theory and 25 GeV and 0.7\%\(L_n \) data over the range \(\omega < 30 \text{MeV} \).

This result can be understood by considering the fact that the correction to the Gaussian first-order representation of the distribution function \(w_{sl}(\theta) \) of order of 1/\(B^n \) is about 12\% for the used in calculations value \(B^n = 8.46 \) [40].

3.4 Coulomb corrections in the coherent radiation theory for a thin target

Let us obtain the relative Coulomb correction to the average value of the spectral density of radiation for two limiting cases [59].

In the first case \(\gamma^2 \bar{\theta}^2 \ll 1 \), taking into account the equality
\[\delta_{\text{cc}}[\gamma^2 \bar{\theta}^2] = \delta_{\text{cc}}[\bar{\theta}^2], \] (60)
[47], and [59], we get
\[\delta_{\text{cc}} \left[\frac{dI}{d\omega} \right] = \delta_{\text{cc}} \left[\frac{dI}{d\omega} \right]_0 = \frac{f(\xi)}{1 - B^n}, \] (61)
where \(B^n \approx 8.46 \) in the conditions of the discussed experiment [40].

In the second case \(\gamma^2 \bar{\theta}^2 \gg 1 \), we have
\[\Delta_{\text{cc}} \left[\ln(\gamma^2 \bar{\theta}^2) - 1 \right] = \Delta_{\text{cc}} \left[\ln(B) \right], \] (62)
For the latter quantity one can obtain
\[\Delta_{\text{cc}}[\ln(B)] = \Delta_{\text{cc}}[B] + f(\alpha) = \delta_{\text{cc}}[B]. \] (63)

The Coulomb correction becomes
\[\Delta_{\text{cc}} \left[\ln(\gamma^2 \bar{\theta}^2) - 1 \right] = \frac{\delta_{\text{cc}}[B]}{\ln(\gamma^2 \bar{\theta}^2) - 1}. \] (64)

Taking into account (47), we arrive at a result:
\[\delta_{\text{cc}} \left[\langle \frac{dI}{d\omega} \rangle \right] = \frac{f(\xi)}{\ln(\gamma^2 \bar{\theta}^2 - 1) \left(1 - B^n \right)}. \] (65)

The numerical values of these corrections are presented below.

Table 5. The relative Coulomb correction \(\delta_{\text{cc}}[\langle dI/d\omega \rangle] \) to the asymptotes of the Born spectral radiation rate over the range \(\omega < \omega_c \) for \(\beta = 1 \),
\[B^n \approx 8.46, \text{ and } \left(\gamma^2 \bar{\theta}^2 \right)^n \approx 7.61 \text{ [40].} \]

Target	\(Z \)	\(\gamma^2 \bar{\theta}^2 \)	\(-\delta_{\text{cc}} [\langle dI/d\omega \rangle] \)	\(R_{\text{cc}} \)
Au	79	\(\gamma^2 \bar{\theta}^2 \ll 1 \)	0.042	0.958
Au	79	\(\gamma^2 \bar{\theta}^2 \gg 1 \)	0.040	0.960

The second asymptote is not reached [40] in the conditions of experiment [27, 28]. Therefore we will also consider another limiting case corresponding to these experimental conditions and taking into account the second term of the Molière distribution function expansion [40].

Inserting the second-order expression [14] for the distribution function into [56] and integrating its second term [15], we can arrive at the following expression for the electron radiation spectrum at \(\mu^2 = \gamma^2 \bar{\theta}^2 \gg 1 \) [40]:
\[\langle \frac{dI}{d\omega} \rangle = \frac{2e^2}{\pi} \left[\ln(\mu^2) - C_e \left(1 + \frac{2}{\mu^2} \right) + \frac{2 + C_e}{B} - 1 \right]. \] (66)

In order to obtain the Coulomb correction to the Born spectral radiation rate from [66], we first calculate its numerical value at \(\mu^2 \approx 7.61 \) and \(B^n \approx 8.46 \). Then we become \(\langle dI/d\omega \rangle^n = 0.00542 \). The Bethe–Heitler formula in the Born approximation gets \(\langle dI/d\omega \rangle^n_{\text{BH}} = 0.00954 \).

Now we calculate the numerical values of \(B \) and \(\mu^2 \) parameters including the Coulomb corrections. From
\[\Delta_{\text{cc}}[B] = \frac{f(\xi)}{1 - B^n} = -0.355, \] (67)
we become $B = 8.105$ for $Z = 79$ and $B^g \approx 8.46$. The equality
\[
\Delta_{cc} [\ln \mu^2] = \Delta_{cc} [\ln B] = \Delta_{cc} [B] + f(\xi)
\]
gets $\ln \mu^2 = 1.987$ and $\mu^2 = 7.295$. Inserting these values into (66) we have $\langle dI/d\omega \rangle = 0.00531$. The relative Coulomb corrections to these parameters are presented in Table 6. These corrections are not large. Their sizes are between two to four percent, i.e. of order of the systematic error in the experiment [27].

Table 6. The relative Coulomb corrections in the analogue of the LPM effect theory for 0.07 L_A gold target, $\omega < \omega_c$, and $\beta = 1$.

$\delta_{cc} [\ln \mu^2]$	$\delta_{cc} [(dI/d\omega)_o]$	$\delta_{cc} [(dI/d\omega)]$	$\delta_{cc} [\Phi(s)]$
-0.021	-0.042	-0.020	-0.021

Accounting the relative Coulomb correction to the Bethe–Heitler spectrum of bremsstrahlung we find $(dI/d\omega)_{BH} = 0.00916$. So we get
\[
\langle dI/d\omega \rangle = 0.580 \langle dI/d\omega \rangle_{BH} .
\]

This leads to the value of the spectral radiation rate in terms of $dN/[d(\log \omega)] \times 1/L_A$, where N is the number of events per photon energy bin per incident electron, $dN/[d(\log \omega)]/L_A = 0.118 \times 0.580 = 0.068$, which agrees very well with the experimental result over the frequency range $\omega < 30$ MeV for 25 GeV and 0.7%L_A gold target.

This result additionally improves the agreement between the theory [39, 40] and experiment [27, 28] and coincides with the result of [33] obtained in the eikonal approximation (see Fig. 20a in [29]).

4 Summary and conclusions

1. We have calculated the Coulomb corrections ($\Delta_{cc} [b], \Delta_{cc} [B], \Delta_{cc} [\ln B], \Delta_{cc} [\mathcal{P}]$, $\Delta_{cc} [\ln (\mathcal{P})]$) and relative Coulomb corrections ($\delta_{cc} [\mathcal{P}], \delta_{cc} [B]$) to some important parameters of the Molière multiple scattering theory for high Z targets of experiment [27, 28], and we have showed that the corrections $-\Delta_{cc} [b], -\Delta_{cc} [B]$ have large values that increase up to 0.40 – 0.45 for $Z = 92$.

2. Using these corrections we have obtained the analytical results for the Coulomb corrections ($\Delta_{cc} [(dI/d\omega)_o], \Delta_{cc} [q], \Delta_{cc} [s^2], \Delta_{cc} [s], \Delta_{cc} [\mathcal{P}]$) and relative Coulomb corrections ($\delta_{cc} [(dI/d\omega)_o], \delta_{cc} [q], \delta_{cc} [s^2], \delta_{cc} [s], \delta_{cc} [(dI/d\omega)]$) to the quantities of the classical Migdal LPM theory in regimes of the large and the small LPM suppression.

3. We have performed the calculations for the regime of small LPM suppression over the range $1 \leq \omega \leq \infty$, and we have found that the Coulomb corrections $\delta_{cc} [(dI/d\omega)] = -4.50 \pm 0.05\%$ ($Z = 82$) and $\delta_{cc} [(dI/d\omega)] = -5.35 \pm 0.06\%$ ($Z = 92$) coincides with the sizes of the normalization corrections $-4.5 \pm 0.2\%$ for 2%L_A lead target and $-5.6 \pm 0.3\%$ for 3%L_B uranium target, respectively, within the experimental error.

4. The average $\delta_{cc} [(dI/d\omega)]$ value $\bar{\delta}_{cc} [(dI/d\omega)] = -4.70 \pm 0.49\%$ excellent agrees with the weighted average $-4.7 \pm 2\%$ of the normalization correction obtained for 25 GeV data in the experiment [28] in the regime of small LPM suppression.

5. Thus, we managed to show that the discussed discrepancy between theory and experiment [27, 28] over the range $20 < \omega < 500$ MeV can be explained at least for heavy target elements on the basis of the obtained Coulomb corrections to the Born bremsstrahlung rate within the Migdal LPM effect theory.

6. Finally, we found the numerical values of the relative Coulomb corrections $\delta_{cc} [(dI/d\omega)_o], \delta_{cc} [\Phi(s)]$, and $\delta_{cc} [(dI/d\omega)]$ in the LPM effect theory analogue for thin targets over the range $5 < \omega < 30$, and we demonstrated that these corrections additionally improve the agreement between the theory [39, 40] and experiment [27, 28].

7. The approach based on application of the improved Molière multiple scattering theory can be useful for the analysis of electromagnetic processes in strong crystalline fields at high energies, the description of cosmic-ray experiments, high-energy experiments with nuclear targets, etc.

Acknowledgements

We would like to thank Spencer Klein (Lawrence Berkeley National Laboratory, USA) for valuable information and illuminating discussion.

References

[1] E. J. Williams, Proc. Roy. Soc., 169 A, 531 (1939); S. A. Goudsmit, J. L. Saunderson. Phys. Rev., 57, 24 (1940); 58, 36 (1940).

[2] B. Rossi, K. Greisen. Rev. Mod. Phys., 13, 240 (1941).

[3] G. Molière. Z. Naturforsch., 2 a, 133 (1947); 3 a, 78 (1948); 10 a, 177 (1955).

[4] H. Snyder, W. T. Scott. Phys. Rev., 76, 220 (1949); W. T. Scott, Phys. Rev., 85, 245 (1952).
[5] H. A. Bethe. Phys. Rev., 89, 256 (1953).
[6] U. Fano. Phys. Rev., 93, 117 (1954).
[7] R. J. Glauber. Phys. Rev., 100, 242 (1955); R. J. Glauber. 1959 Lectures in Theoretical Physics, I, Eds. W. Brittain, L. Dunham, New York, 1959, p. 315.
[8] DIRAC-Collaboration: B. Adeva, L. Afanasyev, M. Benayoun et al. Phys. Lett., B 704, 24 (2011); B 619, 50 (2005); A. Dudarev et al. DIRAC note 2005-02.
[9] N. O. Elyutin et al. Instrum. Exp. Tech., 50, 429 (2007); J. Surf. Invest., 4, 908 (2010).
[10] MuScat Collaboration: D. Attwood et al. Nucl. Instrum. Meth., B 251, 41 (2006); A. Tollestrup. J. Monroe. NFMCC technical note MC-176, September 2000.
[11] R. C. Fernow. MUC-NOTE-COOL THEORY-336, April 2006; A. Van Ginneken. Nucl. Instr. Meth., B 160, 460 (2000); C. M. Ankebrandt et al. Proposal of the MUCOOL Collaboration, April 2012.
[12] S. I. Striganov. Radiat. Prot. Dosimetry, 116, 239 (2005); A. V. Butkevich, R. P. Kokoulin, G. V. Matsushko et al. Nucl. Instrum. Meth., Phys. Res., A 488, 282 (2002); V. I. Yurchenko. JETP, 89, 223 (1999).
[13] F. S. Dzheparov et al. JETP Lett., 72, 518 (2000); 78, 1011 (2003); J. Surf. Invest., 3, 665 (2009).
[14] L. D. Landau, I. Ya. Pomeranchuk. Dokl. Akad. of Science of SSSR, 92, 535 (1953); 92, 735 (1954).
[15] A. B. Migdal. Dokl. Akad. of Science of SSSR, 96, 49 (1954).
[16] A. B. Migdal. Phys. Rev., 103, 1811 (1956); JETP, 32, 633 (1957).
[17] I. I. Goldman. JETP, 38, 1866 (1960).
[18] N. F. Shul’ga, S. P. Fomin. JETP Lett., 27, 117 (1978); Probl. Atom. Sci. Technol., 2, 11 (2003); N. F. Shul’ga. Int. J. Mod. Phys., A 25, 9 (2010).
[19] L. Gerhardt, S. R. Klein. Phys. Rev., D 82, 074017 (2010).
[20] IceCube Collaboration: R. Abbasi R. et al. Phys. Rev. Lett., 111, 021103 (2013); S. R. Klein. Nucl. Phys. (Proc. Suppl.), B 00, 1 (2010).
[21] M. J. van Goethem, L. Aphecetche, J. C. S. Bacelar et al. Phys. Rev. Lett., 88, 122302 (2002).
[22] S. J. Brodsky, P. Hoyer. Phys. Lett., B 298, 165 (1993); B. Z. Kopeliovich, A. Schäfer, A. V. Tarasov. Phys. Rev., C 59, 1609 (1999).
[23] M. Gyulassy, X.-N. Wang. Nucl. Phys., B 420, 583 (1994); R. Baier, Yu. L. Dokshitzer, S. Peigné et al. Phys. Lett., B 345, 277 (1995); B.G. Zakharov. JETP Lett., 63, 952 (1996).
[24] V. N. Baier, V. M. Katkov. Phys. Lett., A 353, 91 (2006).
[25] G. Raffelt, D. Seckel. Phys. Rev. Lett., 67, 2605 (1991); C.J. Pethick, V. Thorsson. Phys. Rev. Lett., 72, 1964 (1994).
[26] S. Peigne, A. V. Smilga. Advan. Phys. Sci., 179, 697 (2009).
[27] P. L. Anthony, R. Becker-Szendy, P. E. Bosted et al. Phys. Rev. Lett., 75, 1949 (1995); 76, 3550 (1996).
[28] P. L. Anthony, R. Becker-Szendy, P. E. Bosted et al. Phys. Rev., D 56, 1373 (1997).
[29] S. R. Klein. Rev. Mod. Phys., 71, 1501 (1999).
[30] H. D. Hansen, U. I. Uggerhoj , C. Blüno et al. Phys. Rev. Lett., 91, 014801 (2003); Phys. Rev., D 69, 032001 (2004).
[31] J. U. Andersen, K. Kirsebom, S. P. Moller et al. Electromagnetic Processes in Strong Crystalline Fields, CERN-SPSC-2005-030; CERN-NA63 Collaboration. Phys. Lett., B 672, 323 (2009); Nucl. Instrum. Meth., B 268, 1412 (2010).
[32] B. G. Zakharov. JETP Lett., 64, 781 (1996).
[33] R. Blanckenbeckler, S. D. Drell. Phys. Rev., D 53, 6265 (1996); R. Blanckenbeckler. Phys. Rev., D 55, 190 (1997).
[34] V. N. Baier, V. M. Katkov. Phys. Rev., D 57, 3146 (1998).
[35] B. G. Zakharov. Yad. Fiz., 62, 1075 (1999).
[36] N. V. Laskin, A. S. Mazmanishvili, N. F. Shul’ga. Dokl. Akad. of Science of SSSR, 277, 850 (1984); Phys. Lett., A 112, 240 (1985); A. I. Akhiezer, N. V. Laskin, N. F. Shul’ga. Dokl. Akad. of Science of SSSR., 295, 1363 (1987).
[37] A. V. Tarasov, O. O. Voskresenskaya. In: Alexander Vasilievich Tarasov: To the 70th Birth Anniversary, Dubna: JINR, 2012. p. 276.
[38] E. A. Kuraev, O. O. Voskresenskaya, A. V. Tarasov. [arXiv:1312.7809 [hep-ph]], 2013.
[39] N. F. Shul’ga, S. P. Fomin. JETP Lett., 63, 873 (1996).
[40] N. F. Shul’ga, S. P. Fomin. JETP Lett., 113, 58 (1998).
[41] W. T. Scott. Rev. Mod. Phys., 35, 231 (1963).
[42] R. P. Feynman, A. R. Hibbs. Quantum mechanics and path integrals, New York, McGraw-Hill, 1965.
[43] M. L. Ter-Mikaelian. Zh. Eksp. Teor. Fiz., 25, 289 (1953); 25, 296 (1953); High Energy Electromagnetic Processes in Condensed Media, New York, Wiley Interscience, 1972.