Conflict-free connection number and independence number of a graph

Jing Wang1, Meng Ji2

1 Department of Mathematics, Changsha University, Changsha 410003, China
2 College of Mathematical Science, Tianjin Normal University, Tianjin, China

Abstract An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. The conflict-free connection number of a connected graph G, denoted by $cfc(G)$, is defined as the minimum number of colors that are required in order to make G conflict-free connected. In this paper, we investigate the relation between the conflict-free connection number and the independence number of a graph. We firstly show that $cfc(G) \leq \alpha(G)$ for any connected graph G, and an example is given showing that the bound is sharp. With this result, we prove that if T is a tree with $\Delta(T) \geq \alpha(T)+2$, then $cfc(T) = \Delta(T)$.

Keywords edge-coloring, conflict-free connection number, independence number, tree

MR(2000) Subject Classification 05C15, 05C40

1 Introduction

All graphs considered here are simple, finite and undirected. An edge-coloring of a graph G is proper if any two adjacent edges in this coloring receive different colors. If G is colored with a proper coloring, then we say that G is properly colored.

The rainbow connection number was introduced by Chartrand et al. \cite{9}. An edge-colored graph G is called rainbow connected if any two vertices are connected by a path whose edges have pairwise distinct colors. The rainbow connection number of a connected graph G, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. Chakraborty et al. \cite{5} showed that given a graph G, deciding if $rc(G) = 2$ is NP-complete. Bounds for the rainbow connection number of a graph have also been studied in terms of other graph parameters, see \cite{14, 17, 19, 18, 22} and the references therein.

As an extension of proper colorings and motivated by rainbow connections of graphs, Andrews et al. \cite{1} and independently Borozan et al. \cite{3} introduced the concept of proper connection of graphs. An edge-colored graph G is called properly connected if any two vertices are connected by a path which is properly colored. The proper connection number of a connected graph G, denoted by $pc(G)$, is the smallest number of colors that are needed in order to make G properly connected. One can find many results on proper connection, see \cite{4, 16, 20, 21} et al.

*This work was supported by Hunan Provincial Natural Science Foundation(No. 2018JJ2454) and Hunan Education Department Foundation(No. 18A382)
Very recently, inspired by rainbow connection colorings and proper connection colorings of graphs and by conflict-free colorings of graphs and hypergraphs [10, 11, 15, 23], Czap et al. [12] introduced the concept of conflict-free connection of graphs. An edge-colored graph G is conflict-free connected if any two vertices are connected by a path, which contains at least one color used on exactly one of its edges. This path is called a conflict-free path, and this coloring is called a conflict-free connection coloring of G. The conflict-free connection number of a connected graph G, denoted by $cfc(G)$, is defined as the minimum number of colors that are required in order to make G conflict-free connected.

An easy observation is that a rainbow edge-coloring of a connected graph G is a trivial conflict-free connection coloring, while the other way around is not true in general. Moreover, all above mentioned three parameters of a graph G with order n are bounded by $n - 1$, since one may color the edges of a given spanning tree of G with distinct colors and color the remaining edges with already used colors. There is an extensive research concerning on this topic, see [6, 7, 8, 13, 23, 24].

Recall that an independent set in a graph G is a set of vertices no two of which are adjacent. The cardinality of a maximum independence set in G is called the independence number of G and is denoted by $\alpha(G)$. The observation follows immediately from the concept.

Observation 1 Let G be a connected graph of order n. Then $1 \leq \alpha(G) \leq n - 1$. Moreover, $\alpha(G) = 1$ if and only if $G = K_n$, $\alpha(G) = n - 1$ if and only if $G = K_{1,n-1}$.

Dong and Li [14] gave a relation between the rainbow connection number and the independence number of a graph, they showed that if G is a connected graph without pendant vertices, then $rc(G) \leq 2\alpha(G) - 1$. Inspired by these results, we try to investigate the relation between the conflict-free connection number and the independence number of a graph and obtain our first main result.

Theorem 1 Let G be a connected graph of order n. Then

$$1 \leq cfc(G) \leq \alpha(G) \leq n - 1.$$

Moreover, $cfc(G) = 1$ if and only if $\alpha(G) = 1$, $cfc(G) = n - 1$ if and only if $\alpha(G) = n - 1$.

Czap et al. [12] proved that 2-connected graphs have conflict-free connection number 2, while deciding the conflict-free connection number of graphs with cut-edges is very difficult, including trees. Chang et al. [7] came up with a rapid approach to obtain the conflict-free connection number of a tree when its maximum degree is large. Motivated by these results, we find a method to determine the conflict-free connection number of a tree in terms of independence number and obtain our second main result.

Theorem 2 Let T be a tree with $\Delta(T) \geq \frac{\alpha(T)+2}{2}$. Then $cfc(T) = \Delta(T)$.
We organize this paper as follows. Some useful preliminaries are presented in Section 2. Then, the proofs of Theorem 1 and Theorem 2 can be given in Section 3 and Section 4, respectively.

We end this section with some terminology. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. We use $d_G(v)$, $N_G(v)$ and $\Delta(G)$ to denote the degree of v in G, the set of neighbours of v in G and the maximum degree of G, respectively. For $e \in E(G)$, we denote by $G \setminus e$ the graph obtained from G by deleting e. An edge e is said to be a cut-edge of G if $c(G \setminus e) = c(G) + 1$, where $c(G)$ is the number of components of G. Let G and F be two graphs, we use $F \subseteq G$ to denote that F is a subgraph of G. For notation not explained here, readers are referred to [2].

2 Preliminaries

This section is devoted to state several results which concerning on the conflict-free connection number of graphs. Czap et al. [12] showed that it is easy to obtain the conflict-free connection number for 2-connected graphs.

Lemma 1 ([12]) If G is a 2-connected and non-complete graph, then $cfc(G) = 2$.

Chang et al. [7] and independently Deng et al. [13] extended the result of Lemma 1 to 2-edge-connected graphs in the following.

Lemma 2 ([7], [13]) Let G be a non-complete 2-edge-connected graph, then $cfc(G) = 2$.

Compared with 2-edge-connected graphs, the problem of determining the conflict-free connection number of graphs with cut-edges is very difficult. This fact arises many authors’ attention to obtain lower or upper bounds of $cfc(G)$ for a connected graph. Chang et al. [7] gave sharp lower and upper bound of $cfc(G)$ and characterized graphs G for which $cfc(G) = 1$ or $cfc(G) = n - 1$.

Lemma 3 ([7]) Let G be a connected graph of order n ($n \geq 2$). Then $1 \leq cfc(G) \leq n - 1$. Moreover, $cfc(G) = 1$ if and only if $G = K_n$, $cfc(G) = n - 1$ if and only if $G = K_{1,n-1}$.

A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block. An edge is a block if and only if it is a cut-edge. A block consisting of a cut-edge is called trivial. Note that any nontrivial block is 2-connected.

Let $C(G)$ be the subgraph of G induced on the set of cut-edges of G, and let $h(G) = \max\{cfc(T) : T$ is a component of $C(G)\}$.
Lemma 4 ([12]) If \(G \) is a connected graph with cut-edges, then \(h(G) \leq cfc(G) \leq h(G) + 1 \). Moreover, these bounds are tight.

Chang et al. [7] gave a sufficient condition such that the lower bound in Lemma 4 is sharp for \(h(G) \geq 2 \).

Lemma 5 ([7]) Let \(G \) be a connected graph with \(h(G) \geq 2 \). If there exists a unique component \(T \) of \(C(G) \) satisfying (i) \(cfc(T) = h(G) \), (ii) \(T \) has an optimal conflict-free connection coloring which contains a color used on exactly one edge of \(T \), then \(cfc(G) = h(G) \).

It is seen from Lemma 4 that, to determine the conflict-free connection number of graphs relies on the conflict-free connection number of trees, with an error of only one. Thus, determining the conflict-free connection number of trees is of great importance. Here we list some known results concentrating on the conflict-free connection number of trees.

Lemma 6 ([12]) If \(P_n \) is a path on \(n \) edges, then \(cfc(P_n) = \lceil \log_2(n + 1) \rceil \).

Lemma 7 ([12]) If \(T \) is an \(n \)-vertex tree of maximum degree \(\Delta(T) \geq 3 \) and diameter \(d(T) \), then
\[
\max \{\Delta(T), \log_2 d(T)\} \leq cfc(T) \leq \frac{(\Delta(T) - 2) \cdot \log_2 n}{\log_2 \Delta(T) - 1}.
\]

The following result in [7] indicates that when the maximum degree of a tree is large, the conflict-free connection number is immediately determined by its maximum degree.

Lemma 8 ([7]) Let \(T \) be a tree of order \(n \), and \(t \) be a positive integer such that \(n \geq 2t + 2 \). Then \(cfc(T) = n - t \) if and only if \(\Delta(T) = n - t \).

We end this section with the following lemma, which is no more than an observation.

Lemma 9 Let \(T_1 \) and \(T_2 \) be two trees such that \(T_1 \subseteq T_2 \). Then \(cfc(T_1) \leq cfc(T_2) \).

3 The proof of Theorem 1

Proof of Theorem 1 By Observation 1 and Lemma 3, it suffices to prove that \(cfc(G) \leq \alpha(G) \) for a non-complete graph \(G \). Our main strategy is by induction on the number of cut-edges in \(G \). For simplicity, set \(k := |E(C(G))| \).

Since \(cfc(G) = 2 \) and \(\alpha(G) \geq 2 \) for a non-complete 2-edge-connected graph \(G \), we get that \(cfc(G) \leq \alpha(G) \) when \(k = 0 \) by Lemma 2 and Observation 1. Assume
that the statement holds for any graph with \(\leq k - 1 \) cut-edges, and let \(G \) be a graph with \(k \) cut-edges. We distinguish two cases.

Case 1. There exists a cut-edge, say \(e \), such that each component of \(G \setminus e \) is a subgraph of order greater than 1.

W.l.o.g., let \(e = u_1u_2 \) and let \(G_1 \) and \(G_2 \) be two components of \(G \setminus e \) with \(u_i \in V(G_i), i \in \{1, 2\} \).

For \(i \in \{1, 2\} \), it is seen that \(|V(G_i)| \geq 2 \); and that the number of cut-edges in \(G_i \) must be no more than \(k - 1 \). By induction hypothesis, we have

\[
cfc(G_i) \leq \alpha(G_i) \quad \text{for } i \in \{1, 2\}.
\]

W.l.o.g., assume that \(cfc(G_2) \leq cfc(G_1) \). Let \(S_1 \) be a maximum independent set in \(G_1 \). Moreover, since \(|V(G_2)| \geq 2 \), there must exist a vertex, say \(z \), such that \(z \in V(G_2) \setminus \{u_2\} \). Note that \(z \) is not adjacent to vertices in \(G_1 \), then \(S_1 \cup \{z\} \) is an independent set in \(G \) whose cardinality is

\[
\alpha(G_1) + 1 \leq \alpha(G).
\]

Now, we are able to assign \(cfc(G_1) + 1 \) colors to all the edges of \(G \) in order to make \(G \) conflict-free connected: first we color each component of \(G \setminus e \) with at most \(cfc(G_1) \) colors, next we color the edge \(e \) with a fresh color. We only need to prove that any pair of distinct vertices \(x \) and \(y \) of \(G \) are connected by a conflict-free path. If the vertices \(x \) and \(y \) are from the same component of \(G \setminus e \), then such a path exists. If they are in different components of \(G \setminus e \), then there is a \(x-y \) path through the edge \(e \) with a unique color.

The analyses above imply that

\[
cfc(G) \leq cfc(G_1) + 1 \leq \alpha(G_1) + 1 \leq \alpha(G).
\]

Case 2. Each cut-edge is a pendant edge.

Thus, each component of \(C(G) \) is a complete bipartite graph \(K_{1,r} \) where \(1 \leq r \leq n - 1 \). Let \(\tilde{G} \) be the graph obtained from \(G \) by deleting all the pendant vertices. Note that \(|V(\tilde{G})| \neq 2 \), otherwise \(\tilde{G} \) is a non-pendant cut-edge in \(G \), a contradiction.

Subcase 2.1. \(|V(\tilde{G})| = 1 \).

That means \(G = K_{1,n-1} \). By Observation \(\Box \) and Lemma \(\Box \), \(cfc(G) = n - 1 = \alpha(G) \).

Subcase 2.2. \(|V(\tilde{G})| \geq 3 \).

W.l.o.g., let \(v \) be a vertex of \(C(G) \) such that

\[
d_{C(G)}(v) = \max \{ d_{C(G)}(x) : x \in V(C(G)) \}.
\]

For simplicity, setting \(t := d_{C(G)}(v) \) and let \(y_1, \ldots, y_t \) be pendant vertices adjacent to \(v \) in \(G \). Thus,

\[
h(G) = cfc(K_{1,t}) = t.
\]
Since $|V(\tilde{G})| \geq 3$, we can choose a vertex, say z, such that $z \in V(\tilde{G}) \setminus \{v\}$. Note that $\{z, y_1, \cdots, y_t\}$ is an independent set in G with cardinality $t+1$, obviously

$$t + 1 \leq \alpha(G). \quad (2)$$

Therefore, Lemma 4 together with Eq.(1) and Eq.(2) yield

$$cfc(G) \leq h(G) + 1 = t + 1 \leq \alpha(G).$$

Thus, $1 \leq cfc(G) \leq \alpha(G) \leq n - 1$ for a connected graph G.

Moreover, Observation 1 together with Lemma 3 imply that $cfc(G) = 1$ if and only if $\alpha(G) = 1$, and that $cfc(G) = n - 1$ if and only if $\alpha(G) = n - 1$. \hfill \Box

By Theorem 1, it is easy to obtain the conflict-free connection number of a graph whose independence number is 2.

Corollary 1 Let G be a connected graph with $\alpha(G) = 2$. Then $cfc(G) = 2$.

By Theorem 1 and Lemma 7 we can give an upper bound on the conflict-free connection number of trees. Moreover, a sufficient condition for which the conflict-free connection number of a tree equals to its maximum degree is obtained.

Corollary 2 Let T be a tree. Then $\Delta(T) \leq cfc(T) \leq \alpha(T)$. Moreover, if $\Delta(T) = \alpha(T)$, then $cfc(T) = \Delta(T)$.

At the end of this section, an example is given showing that there exists non-complete graph whose conflict-free connection number can be any integer no more than its independence number. Thus the bound $cfc(G) \leq \alpha(G)$ in Theorem 1 is tight.

Example 1 Let l, k be integers such that $3 \leq l \leq n - 2$ and that $2 \leq k \leq l$. There exists a graph $G_{l,k}$ of order n for which $\alpha(G_{l,k}) = l$ and $cfc(G_{l,k}) = k$.

Proof. We will construct the desired graph $G_{l,k}$ by considering two cases: $k = l$ or $k < l$.

When $k = l$, let $G_{l,l}$ be a graph obtained by identifying a leaf vertex of $K_{1,l}$ with a vertex of the complete graph K_{n-l}. It is seen that $\alpha(G_{l,l}) = l = cfc(G_{l,l})$.

When $k < l$, we construct $G_{l,k}$ with vertex set

$$V(G_{l,k}) = \{w, v, u_1, \cdots, u_{n-2}\}$$

and edge set

$$E(G_{l,k}) = \{wu_i : 1 \leq i \leq n - 2\} \cup \{vu_i : k + 1 \leq i \leq n - 2\} \cup \{wv\} \cup \{u_iu_j : l \leq i \neq j \leq n - 2\}.$$

Note that the subgraph induced on vertices $\{v, w, u_l, \cdots, u_{n-2}\}$ is a clique on $n - l + 1$ vertices. We can get that $\alpha(G_{l,k}) = l$ since $\{u_1, \cdots, u_k, \cdots, u_l\}$ is a maximum independent set in $G_{l,k}$. Moreover, the subgraph induced on $\{w, u_1, \cdots, u_k\}$ is the unique component of $C(G_{l,k})$, thus $cfc(G_{l,k}) = k$ by Lemma 3 and Lemma \Box
4 The proof of Theorem 2

We firstly give some results on the conflict-free connection number of certain trees, which will be useful in the later discussions.

Lemma 10 Define H_k ($k \geq 3$) be a tree obtained by subdividing each edge of the complete bipartite graph $K_{1,k}$ to a path of length two, see Figure 1. Then $cfc(H_k) = k$.

Proof. By the definition of H_k and by Lemma 7, we have $cfc(H_k) \geq \Delta(H_k) = k$. To complete the proof, we only need to assign a conflict-free connected coloring $c : E(H_k) \to [k]$ as follows

$$c(e) = \begin{cases}
i, & \text{if } e = uu_i, \ 1 \leq i \leq k; \\
k, & \text{if } e = u_1v_1; \\
i - 1, & \text{if } e = u_iv_i, \ 2 \leq i \leq k. \end{cases}$$

It is not difficult to check that c is a conflict-free connected coloring of H_k, thus $cfc(H_k) \leq k$. The proof is done.

Now we are in a position to prove Theorem 2.
Proof of Theorem 2. We will prove the theorem by induction on \(k := \Delta(T) \).

Since a tree \(T \) satisfying \(\Delta(T) = 2 \) and \(\Delta(T) \geq (\alpha(T) + 2)/2 \) is the path \(P_2 \) or \(P_3 \), by Lemma 6, the theorem holds when \(k = 2 \). Assume that the result is true for any tree \(T' \) with \(\Delta(T') \leq k - 1 \) and \(\Delta(T') \geq (\alpha(T') + 2)/2 \). Now consider a tree \(T \) with \(\Delta(T) = k \) \((k \geq 3) \) and \(\Delta(T) \geq (\alpha(T) + 2)/2 \).

Let \(u \) be a vertex of \(T \) such that \(d_T(u) = \Delta(T) \) and let \(N_T(u) = \{u_1, \cdots, u_k\} \). Firstly, we claim that

Claim 1. If there exists a vertex \(w \neq u \) such that \(d_T(w) = \Delta(T) \), then \(w \in N_T(u) \).

Proof of Claim 1. Suppose to contrary that there is a vertex \(w \notin N_T(u) \) such that \(d_T(w) = \Delta(T) \). Then \(N_T(u) \cup N_T(w) \) is an independent set in \(T \), whose cardinality is at least

\[
2k - 1 = 2\Delta(T) - 1 \geq \alpha(T) + 1,
\]

the last inequality holds since \(\Delta(T) \geq (\alpha(T) + 2)/2 \). A contradiction. \(\square \)

It is inferred from the proof of Claim 1 that, in \(T \), the vertices of maximum degree must be adjacent to each other. Since \(T \) is a tree, there is at most one vertex of \(\{u_1, \cdots, u_k\} \) can be of maximum degree. W.l.o.g., let

\[
d_T(u_1) = \max\{d_T(u_i) : 1 \leq i \leq k\}.
\]

Therefore, we claim that

Claim 2. For any vertex \(x \in V(T) \setminus \{u, u_1\} \), it has \(d_T(x) \leq \Delta(T) - 1 \).

For \(1 \leq i \leq k \), let \(T_{i1} \) and \(T_{i2} \) be two components of \(T \setminus uu_i \) where \(u_i \in V(T_{i2}) \).

We discuss three cases.

Case 1. \(d_T(u_1) = 1 \).

Then \(T \) is the graph \(K_{1,k} \). By Lemma 3, \(cfc(T) = k = \Delta(T) \).

Case 2. \(d_T(u_1) = 2 \).

Subcase 2.1. \(|E(T_{i2})| \leq 1 \) for each \(1 \leq i \leq k \).

Then \(T \) is a subgraph of \(H_k \) which is defined in Lemma 10. By Lemma 9 and Lemma 10, we have \(cfc(T) \leq cfc(H_k) = k \). On the other hand, by Lemma 7, \(cfc(T) \geq \Delta(T) = k \). Thus, \(cfc(T) = k = \Delta(T) \).

Subcase 2.2. \(|E(T_{i2})| \leq 2 \) for each \(1 \leq i \leq k \), and there exists an integer \(i \) such that \(|E(T_{i2})| = 2 \).

Note that \(T_{i2} \) is a path \(P_2 \) when \(|E(T_{i2})| = 2 \). W.l.o.g., let \(w_i \) be an end vertex other than \(u_i \) in \(T_{i2} \). Since \(d_T(u_1) = 2 \), there are at most \(k - 2 \) integers \(i \) such that \(T_{i2} \) is a path \(P_2 \), otherwise \(S := \{u_1, \cdots, u_k\} \cup (I_i \{w_i\}) \) is an independent set in \(T \), moreover,

\[
|S| \geq k + k - 1 = 2\Delta(T) - 1 \geq \alpha(T) + 1,
\]
a contradiction.
Therefore, \(T \) is a subgraph of \(Q_k \) which is defined in Lemma 11. By Lemmas 7, 9 and 11, we have \(cf(T) = k = \Delta(T) \).

Subcase 2.3. There exists an integer \(i \) (1 \leq i \leq k) such that \(|E(T_{i2})| \geq 3 \).

Let \(e = uu_i \). Recall that \(T_{i1} \) and \(T_{i2} \) are two components of \(T \setminus e \) with \(u_i \in V(T_{i2}) \). Since \(d_T(u_i) = 2 < \Delta(T) \), thus \(\Delta(T_{i1}) = \Delta(T) - 1 \) and \(\Delta(T_{i2}) \leq \Delta(T) - 1 \) by Claim 2.

Firstly, we try to obtain the conflict-free connection number of \(T_{i1} \). Let \(S_1 \) be a maximum independent set in \(T_{i1} \). Since \(|E(T_{i2})| \geq 3 \), we always can choose at least two non-adjacent vertices, say \(x \) and \(y \), from \(V(T_{i2}) \setminus \{u_i\} \), such that \(S := S_1 \cup \{x, y\} \) is an independent set in \(T \). That means \(|S| = \alpha(T_{i1}) + 2 \leq \alpha(T) \)

\[
\Delta(T_{i1}) = \Delta(T) - 1 \geq \frac{\alpha(T)}{2} \geq \frac{\alpha(T_{i1}) + 2}{2},
\]

the above first inequality holds since \(\Delta(T) \geq \frac{\alpha(T) + 2}{2} \). By induction hypothesis, we have

\[
 cf(T_{i1}) = \Delta(T_{i1}) = \Delta(T) - 1.
\] (3)

Next, we consider the conflict-free connection number of \(T_{i2} \). Firstly, we claim that

Claim 3. \(\alpha(T_{i2}) \leq \alpha(T) - \Delta(T) + 1 \).

Proof of Claim 3. Suppose to contrary that \(\alpha(T_{i2}) > \alpha(T) - \Delta(T) + 1 \). Let \(S_2 \) be a maximum independent set in \(T_{i2} \), obviously, \(S' := S_2 \cup \bigcup \{u_j\} \) is an independent set in \(T \) with cardinality

\[
|S'| = |S_2| + k - 1 > \alpha(T) - \Delta(T) + 1 + k - 1 = \alpha(T),
\]
a contradiction. □

By Theorem 11 and Claim 3, we have

\[
 cf(T_{i2}) \leq \alpha(T_{i2}) \leq \alpha(T) - \Delta(T) + 1 \leq \Delta(T) - 1,
\] (4)

the last inequality holds since \(\Delta(T) \geq \frac{\alpha(T) + 2}{2} \).

By Eq. (3) and Eq. (4), we are now able to assign \(\Delta(T) \) colors to all the edges of \(T \) in order to make \(T \) is conflict-free connected: firstly we color \(T_{i1} \) and \(T_{i2} \) with at most \(\Delta(T) - 1 \) colors, next we color the edge \(e = uu_i \) with a fresh color. Therefore, \(cf(T) \leq \Delta(T) \). Combined this conclusion with Lemma 11, we have \(cf(T) = \Delta(T) \).

Case 3. \(d_T(u_1) \geq 3 \).

Let \(e = uu_1 \). Recall that \(T_{11} \) and \(T_{12} \) are two components of \(T \setminus e \) with \(u_1 \in V(T_{12}) \). By Claim 2, \(\Delta(T_{11}) = \Delta(T) - 1 \) and \(\Delta(T_{12}) \leq \Delta(T) - 1 \).

Using similar discussions in Subcase 2.3, we can get that \(cf(T_{11}) = \Delta(T) - 1 \) and that \(cf(T_{12}) \leq \Delta(T) - 1 \), moreover, \(cf(T) = \Delta(T) \).

The proof is completed. □
Remark 1 The sharpness example for Theorem 2 is given as follows. Let T be a tree obtained from two copies of $K_{1,k-1}$ with $k \geq 3$ by identifying a leaf vertex in one copy with a leaf vertex in the other copy. It is seen that $\alpha(T) = 2k - 3$ and that $\Delta(T) = k - 1 = \frac{\alpha(T)+1}{2}$. Furthermore, Theorem 5.5 in [8] showed that $\text{cfc}(T) = k$. Thus $\text{cfc}(T) > \Delta(T)$.

Remark 2 Theorem 2 gives a sufficient condition for the conflict-free connection number of a tree equals to its maximum degree. However, this condition is not necessary. Define G to be a tree obtained from two copies of $K_{1,k}$ ($k \geq 3$) by adding an edge joining a leaf vertex in one copy to a leaf vertex in the other copy. Figure 3 illustrates that we can assign $k = \Delta(G)$ colors to all the edges of G in order to make it conflict-free connected, thus $\text{cfc}(G) = \Delta(G)$. On the other hand, we can testify that $\alpha(G) = 2k - 1$ and thus $\Delta(G) < \frac{\alpha(G)+2}{2}$.

![Figure 3: The graph G.](image)

Acknowledgement 1 This work was done during the first author was visiting Nankai University. The authors would like to express their sincere thanks to Professor Xueliang Li for his helpful suggestions.

References

[1] E. Andrews, C. Lumduanhom, E. Laforge, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput., 97, (2016) 189-207.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, New York, Springer, (2008).

[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monter, Z. Tuza, Proper connection of graphs, Discrete Math., 312, (2012) 2550-2560.

[4] C. Brause, T. Doan, I. Schiermeyer, Minimum degree conditions for the proper connection number of graphs, Graphs and Combin., 33, (2017) 833-843.

[5] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim., 21, (2011) 330-347.

[6] H. Chang, T. Doan, Z. Huang, S. Jendrol’, X. Li, I. Schiermeyer, Graphs with conflict-free connection number two, Graphs and Combin., 34, (2018) 1553-1563.
[7] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math., 255, (2019) 167-182.

[8] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., (in press), https://link.springer.com/content/pdf/10.1007%2Fs10878-018-0363-x.pdf.

[9] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem., 133, (2008) 85-98.

[10] P. Cheilaris, B. Keszegh, D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math., 27, (2013) 1775-1787.

[11] P. Cheilaris, G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete Algorithms, 9, (2011) 241-251.

[12] J. Czap, S. Jendrol’, J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory, 38, (2018) 911-920.

[13] B. Deng, W. Li, X. Li, Y. Mao, H. Zhao, Conflict-free connection numbers of line graphs, in: Proc. COCOA 2017, Shanghai, China, in: Lecture Notes in Computer Science, vol. 10627, 141-151.

[14] J. Dong, X. Li, Rainbow connection number and independence number of a graph, Graphs and Combin., 32, (2016) 1829-1841.

[15] I. Fabrici, F. Göring, Unique-maximum coloring of plane graphs, Discuss. Math. Graph Theory, 36, (2016) 95-102.

[16] F. Huang, X. Li, Z. Qin, C. Magnant, K. Ozeki, On two conjectures about the proper connection number of graphs, Discrete Math., 340, (2017) 2217-2222.

[17] N. Kamčev, M. Krivelevich, B. Sudakov, Some remarks on rainbow connectivity, J. Graph Theory, 83, (2016) 372-383.

[18] A. Kemnitz, J. Przybyło, I. Schiermeyer, M. Woźniak, Rainbow connection in sparse graphs, Discuss. Math. Graph Theory, 33, (2013) 181-192.

[19] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math., 312, (2012) 1453-1457.

[20] X. Li, C. Magnant, Properly colored notions of connectivity—a dynamic survey, Theory Appl. Graphs, 0(1), (2015) Article 2, 1-30.

[21] X. Li, C. Magnant, Z. Qin, Properly colored connectivity of graphs, Springer Briefs in Math., Springer, Switzerland, (2018).
[22] X. Li, Y. Sun, An updated survey on rainbow connections of graphs-a dynamic survey, Theory Appl. Graphs, 0(1), (2017), Article 3, 1-67.

[23] X. Li, Y. Zhang, X. Zhu, Y. Mao, H. Zhao, S. Jendrol’, Conflict-free vertex-connections of graphs, Discuss. Math. Graph Theory (in press), http://dx.doi.org/10.7151/dmgt.2116.

[24] Z. Li, B. Wu, On the maximum value of conflict-free vertex-connection number of graphs, arXiv:1709.01225V1 [math.CO].

[25] J. Pach, G. Tardos, Conflict-free colorings of graphs and hypergraphs, Comb. Probab. Comput., 18, (2009) 819-834.