The Effects of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ Molar Ratios on SAPO-34 Catalyst in the Methanol to Olefin Process

Ehsan Kianfar1,2

Received: 22 February 2022 / Accepted: 10 June 2022 / Published online: 22 July 2022
© Springer Nature B.V. 2022

Abstract
Informed through synthesis and characterization of NH$_3$ TPD, BET techniques, the current study investigated the right contribution of silicon and water content on a 9 sample SAPO-34 catalyst with different molar ratios. The final prepared SAPO-34 catalytic performed reaction for the Methanol to olefin process was processed and reported at 410 °C a reactor of fixed-bed. It was shown that catalysts with different SiO$_2$ /Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ ratios demonstrated high ethylene and propylene selectivity, due to their intensified crystallinity and size of crystals (1.3 to 1.7 μm). The highest degrees of ethylene and propylene selectivity for 3 samples were 50.25, 21.20, and 48.44, 19.16 respectively. Samples with ratios of different that possess high density and acute acidic sites to deactivate rapidly. The high density of acute acidic sites promoted the ultimate response to saturated hydrocarbons and aromatics based on olefins’ hydrogen transfer to and resulted in the coke generation on the top layer of the catalyst.

Keywords Methanol to olefin · BET · Ethylene · Propylene

1 Introduction
SAPO-34 is formed by silicon substitution of the chabazite-type aluminophosphate framework resulting in Bronsted acid sites formation [1–9]. Chabazite is a three-dimensional molecular sieve with ellipsoidal cages of 6.7 A × 10 A interconnected via 8-membered ring windows with pore openings of 3.8 A × 3.8 A [10–16]. The adjustment of acidity, as well as shape selectivity to promote product selectivity and/or control coking behavior, are two key properties that help researchers modify the reactor performance of such acidic crystalline material [17–25]. The acidity of SAPO-34 molecular sieves would vary by their silicon content; however, the relation between the number of acid sites and the silicon content is not linear because it is controlled by at least two Si incorporation mechanisms into the SAPO-34 framework [26–33]. The structure acidity and catalytic performance of SAPO-34 directly depend on the number and distribution of Si in the framework, which is related closely to the Si incorporation mechanism and coordination environment [34–40]. Acidity adjustment can be considered as a way of delaying or decreasing the rate of deactivation of SAPO-34 [41–45]. The acidity of SAPO-34 molecular sieves could be varied through isomorphs substitution of captions, action exchange, and adjustment of Si/Al ratio [46–50]. Acidity adjustment of SAPO-34 through the Si/Al ratio regulation may be achieved easier and cheaper since it does not need any additional chemical materials [51–59]. However, there are extremely few publications on the role of water content on the morphology and size of the SAPO-34 crystals [60–67]. Furthermore, the simultaneous effects of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ on the synthesis gel have not been studied [68–75]. In this regard, this paper aims to investigate thoroughly the effect of the changing of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ on the morphology and structure of the SAPO-34 catalyst.

|1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

|2 Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
2 Experimental

2.1 Sample Preparation

SAPO-34 catalysts were synthesized by a hydrothermal method using different ratios of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ at the temperature 463 K. The molar composition of the reaction mixtures is given in Table 1. SAPO-34 was made by stirring and adding sequentially H$_3$PO$_4$, deionized water, and aluminum source (aluminum isopropoxide) in a PE beaker. Then, the source of silicon (silica gel) was added in small amounts and after that, the templates were used. Tetraethyl ammonium hydroxide (TEAOH, 20 wt% in water, Merck) and morpholine (Merck) were used as the organic templates. The mixture was then placed in a 100 mL Teflon-lined stainless steel autoclave. The solution was then transferred to a 100 mL teflon-lined stainless steel autoclave at 463 K for 24 h. The solid product was recovered and washed six times by centrifuging. The calcination of samples was done in air at 550 °C for 5 h to remove organic templates [76–82].

The molar composition of the reaction mixtures is given in Table 1.

2.2 Catalytic Test

Figure 1 is an overview of the laboratory unit. After the catalyst restoration, a mixture containing methanol and water (30% by weight methanol solution, 99.9%, Merck) is pumped into the furnace. The feed then enters the reactor from the bottom of the furnace. After the reaction, the outflow from the reactor enters the condenser and lowers the temperature to prevent secondary reactions. At this point, water and heavy hydrocarbons become liquid and accumulate in the condenser. The residual gas stream is transferred to the GC for analysis or to the outside environment. In addition to the feed stream of methanol and water entering the reactor, there is another stream that is attached to the nitrogen gas capsule. Because of the time gap between the synthesis and the reactor test, nitrogen gas was used to dehydrate and restore the catalysts. This step was performed before the reaction at 550 °C with a flow rate of approximately 40 ml/min for one hour [35, 83–86]. To adjust the current intensity before injection one Flow meter bubble was used. The furnace used in this laboratory unit, which is used to supply the heat required for the reactor and to perform the MTO reaction, is a pipe furnace manufactured by Azar Furnace Company. The furnace has a length of 45 cm and an inner diameter of 4.5 cm. GC unit used in a laboratory unit, Hewlett-Packard 5890 Flame Ionization Detector (FID), equipped with Agilent J&W GS-alumina column measuring 30 μm* 0.53* mm 30 m, manufactured by Hewlett-Packard and for the detection of hydrocarbon compounds. In this system, it is not possible to measure and detect hydrogen, carbon dioxide, and carbon monoxide, so the weight% of these three compounds in the gas sample are calculated by the elemental mass balance of the identified gases [35, 87–90].

2.3 XRD Characterization

Figure 2 shows the results of XRD analysis to determine the composition and crystallization of synthesized catalysts by various ratios of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$. According to the XRD patterns, the position and the intensity of the diffraction peaks of the synthesized samples, S2 and S3, confirmed the structure type SAPO-34 (CHA). The patterns and peak positions match the patterns reported for this structure [1, 2]. When low silicon content is used, the crystalline phase of synthesized sample S1 is found to be significantly different as it is seen in Fig. 2. The major product is SAPO-34 with the characteristic reflection at 20 ≈ 9.66°, 13°, 20.52° with the presence of minor one, i.e. SAPO-5 with the characteristic reflection at 20 = 6.58°. Depending on the different ratios of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ used for the synthesis, the degree of crystallinity of the investigated samples

Catalyst	(H$_2$O/Al$_2$O$_3$)	Synthesis gel composition (molar basis)	Time (h)
S1 85	1Al$_2$O$_3$:1P$_2$O$_5$:0.1SiO$_2$:0.5TEAOH,1.5MOR,85H$_2$O	24 0.1	
S2 25	1Al$_2$O$_3$:1P$_2$O$_5$:0.53SiO$_2$:0.5TEAOH,1.5MOR,60.25H$_2$O	24 0.53	
S3 120	1Al$_2$O$_3$:1P$_2$O$_5$:0.35SiO$_2$:0.5TEAOH,1.5MOR,120H$_2$O	24 0.35	
S4 75	1Al$_2$O$_3$:1P$_2$O$_5$:0.17SiO$_2$:0.5TEAOH,1.5MOR,109.75H$_2$O	24 0.17	
S5 25	1Al$_2$O$_3$:1P$_2$O$_5$:0.17SiO$_2$:0.5TEAOH,1.5MOR,60.25H$_2$O	24 0.17	
S6 85	1Al$_2$O$_3$:1P$_2$O$_5$:0.35SiO$_2$:0.5TEAOH,1.5MOR,85H$_2$O	24 0.35	
S7 50	1Al$_2$O$_3$:1P$_2$O$_5$:0.35SiO$_2$:0.5TEAOH,1.5MOR,50H$_2$O	24 0.35	
S8 75	1Al$_2$O$_3$:1P$_2$O$_5$:0.53SiO$_2$:0.5TEAOH,1.5MOR,109.75H$_2$O	24 0.53	
S9 85	1Al$_2$O$_3$:1P$_2$O$_5$:0.6SiO$_2$:0.5TEAOH,1.5MOR,85H$_2$O	24 0.6	
varied. Sample S3, prepared at ratios of SiO$_2$/Al$_2$O$_3$ = 0.35, and H$_2$O/Al$_2$O$_3$ = 120 possessed the highest crystallinity. Sample S5, prepared ratios of SiO$_2$/Al$_2$O$_3$ = 0.17 and H$_2$O/Al$_2$O$_3$ = 60.25 has a peak in 2θ = 6.58°. by examination the references, it can be attributed to the SAPO-5 catalyst. The reason for this combination seems to be a low ratio SiO$_2$/Al$_2$O$_3$ in gel for Sample S5 synthesis. The crystallinity percentage of the catalysts concerning the peaks and the area under the graph of the XRD calculated according to the intensity of the peaks and their subsurface, and the results are summarized in Table 2. The data in Table 2 show that in samples with a molar ratio of SiO$_2$ / Al$_2$O$_3$ Constant with increasing the amount of water in the catalyst, we will reduce crystallization except he cases of SiO$_2$ / Al$_2$O$_3$ = 35, which increases the water ratio by first reducing the amount of crystallization and then increasing it. Regarding the effect of water, it can be said that in the lowest and highest amount of water in the samples, the amount of crystallization decreases with increasing Si content, while in H$_2$O / Al$_2$O$_3$ ratio On average, as the number of water increases, the crystallization of the samples first decreases and then increases. A large amount of water in the synthesis gel leads to the diffusion of more material, resulting in irregular crystals with low crystallization. The highest crystallization percentage is related to sample S5, while if we are looking for

Sample	Crystal size(µm)
S1	1.5–2.2
S2	2.4–3.4
S3	2.2–3.1
S4	0.9–1.7
S5	1–1.5
S6	1.2–2.2
S7	1–1.9
S8	1.7–2.7
S9	1.5–3.4
the highest crystallization percentage among pure SAPO-34 samples, this sample of catalyst sample S5 with molecular ratios $\text{SiO}_2 / \text{Al}_2 \text{O}_3 = 0.53$ and $\text{H}_2\text{O} / \text{Al}_2 \text{O}_3 = 60.25$, That is, it is an example that has high Si content and low water content [44, 91–95].

2.4 SEM Characterization

The SEM image of the synthesized samples is presented in Fig. 3. The average crystal size of sample S2, S3 is approximately 3 μm. It is shown that sample S2 has more regular crystals. Sample S3 has an incomplete structure maybe there is more water content in the primary gel leads to imperfect networks. Sample S1, synthesized with ratios of $\text{SiO}_2 / \text{Al}_2 \text{O}_3 = 0.1$ and $\text{H}_2\text{O} / \text{Al}_2 \text{O}_3 = 85$, presents a smaller size, irregular shape in morphology, and impurities. Also, comparing between samples displayed that the cubic SAPO34 crystals S2 and S3 were well distributed and got more regular size than ones in the sample S1. Thus, the SEM studies endorsed that the morphology of the final product is highly dependent on the ratios of $\text{SiO}_2 / \text{Al}_2 \text{O}_3$ and $\text{H}_2\text{O} / \text{Al}_2 \text{O}_3$. The SEM images of the samples show that the morphology of all samples is cube-shaped as expected for SAPO-34. Sample S5 in addition

Fig. 2 XRD pattern of synthesized SAPO-34 with different Various Ratios of $\text{SiO}_2 / \text{Al}_2 \text{O}_3$ and $\text{H}_2\text{O} / \text{Al}_2 \text{O}_3$
to cube-shaped particles, contains objects with hexagonal geometry that are related to SAPO-34. XRD analysis also confirms the figures SEM for this sample S5. From the analysis of the SEM images, particle size is given in Table 2. The smallest crystal sizes were observed for sample 4 and the largest size was observed for sample S2, which has the highest percentage of crystallization among pure sapphire samples. The high crystallinity percentage in the larger size sample could be due to the presence of the silicone islands after a certain S1 ratio, it is formed and affects the degree and length of the bond T–O–T, the structure, and size of the crystals. In all cases, as the SiO$_2$ / Al$_2$O$_3$ ratio increases in constant water, the size of the crystals increases. Too much water in the samples leads to less decentralization, and the particles in the gel contribute more to the growth of crystals [3–5].

2.5 Infrared Spectral Analysis (FTIR)

Infrared spectra of the samples in the framework vibration frequency region are shown in Fig. 4. According to the spectra, it is obvious that there are no characteristic peaks of
the amorphous phase in samples S1–S9. The characteristic absorption bands of the SAPO-34, i.e. absorption peaks at 642 (T–O bending in D6 rings), 571 (T–O bending of the phosphorous tetrahedron), 530 (T–O bending of silicon and aluminum tetrahedrons), 480 (T–O bending of silicon tetrahedrons) cm⁻¹ are in good agreement with the published data [3, 4, 96–100]. All samples display an adsorption band at 3620 cm⁻¹ which is assignable to OH stretching vibrations originating from Si (OH) Al bridging hydroxyl group [5]. The hydroxyl groups that are active sites are stronger in sample S1 because of their low ratio of SiO₂/Al₂O₃. It can be seen that there was no considerable increase in the concentration of the strong acidic hydroxyl groups in the samples of S2 - S9, corresponding to varying the ratios of SiO₂/Al₂O₃ and H₂O/Al₂O₃.

2.6 BET Analysis

The catalysts show mesopore, micropore, total surface area, and total pore volume as represented in Table 3. Water molecules have the structural directing role for the mesopore of the catalyst. Water molecules also fill the empty volume of the structure and mechanically prohibit the crash of the framework. Increasing silicon content in the composition when the amount of water is constant, leads to an increase in the surface area of the catalysts, due to the decrease in the average size of the crystals. As the SiO₂ / Al₂O₃ ratio is constant, the increase in water in the catalyst composition reduces the surface area, which was predictable due to the increase in crystal size [5–8, 101–104]. sample S9 has the maximum area (693.70), due to the maximum crystallinity percentage (97.76) among the samples S1-S8 respectively.

![Fig. 4 FTIR pattern of synthesized SAPO-34 with different Various Ratios of SiO₂/Al₂O₃ and H₂O/Al₂O₃](image)

2.7 EDX Analysis

In order to determine the composition of the fabricated catalysts, we review the results of the EDX analysis. For the tested samples, the Si entered into the structure was calculated from the following equation.

\[
\text{Si incorporation} = \frac{(\frac{\text{Si}}{\text{Si}+\text{Al}+\text{P}})_\text{Product}}{(\frac{\text{Si}}{\text{Si}+\text{Al}+\text{P}})_\text{initialgel}}
\]

According to the general formula SAPO-34, which is \((\text{Si}_{x} \text{Al}_{y} \text{P}_{z}) \text{O}_{2}\) the molar components of Al, P and Si were calculated in the structure and are given in Table 4. In all samples, Si is attached to the structure more than one, except in sample S3 which has the highest amount of water. Examination of the results of Table 4 in constant Si ratio shows that as water increases in catalytic samples, the Si attached to the structure decreases, which is consistent with the results of other studies. However, at constant water content, Si increases in the samples, first and decreases then and there is a slight increase in the amount of Si introduced into the structure. The highest Si in the structure is related to sample S7 with molar ratios of Al₂O₃ / SiO₂ = 35 and Al₂O₃ / H₂O = 50. The presence of high Si in the final composition predicts the possibility of silicon islands and increased acidity. The lowest value of this quantity is related to sample S3 with molar ratios of Al₂O₃ / SiO₂ = 35 and Al₂O₃ / H₂O = 120. Therefore, it can be said that the presence of too much water in the composition of the initial catalyst gel due to the reduction of supersaturating leads to more.

Table 3 BET for prepared catalyst

Sample	Surface area, m²/g	Pore size, Å	Pore volume, cm³/g		
SAPO-34(S1)	508	18.9	0.22	0.08	0.33
SAPO-34(S2)	555	19.0	0.18	0.10	0.29
SAPO-34(S3)	585	18.9	0.23	0.07	0.30
SAPO-34(S6)	627	19.8	0.20	0.03	0.23
SAPO-34(S7)	627	21.2	0.26	0.06	0.32
SAPO-34(S9)	694	18.7	0.27	0.07	0.32

Table 4 Results of EDX analysis

Sample	Si_x	Al_y	P_z	Si incorporation
S1	0.0295	0.5367	0.4338	1.21
S3	0.0646	0.5253	0.4101	0.8
S6	0.0832	0.5310	0.3958	1.03
S7	0.1288	0.2167	0.6544	1.6
S9	0.1376	0.4998	0.3626	1.05
dispersion of particles and reduced Si in the structure of the final composition.

2.8 Temperature Programmed Desorption (TPD) Analysis

The temperature-programmed desorption of ammonia (NH₃-TPD) analysis to investigate the acidic properties and distinguish acid strength and the amounts of acid sites of 8 samples of S₁ - S₈ are shown in Table 5. These samples were selected for NH₃-TPD analysis to provide comparative conditions for the study of time and temperature changes. As previously reported, the NH₃-TPD profiles of SAPO-34 catalysts showed two maxima appeared at about 200 and 400 °C, corresponding to weak and strong acid sites, respectively. The first peak in the NH₃-TPD diagrams is generally related to the weak acidic sites, caused by T-O-H bonds (T can be Al, Si, or P). It is at the center of four-dimensional structures that are only capable of converting methanol to dimethyl ether and are not capable of converting dimethyl ether to light olefins [105–112]. The large area under this peak indicates the number of acidic sites and is proportional to the amount of ammonia excreted, which is higher for the sample S₇ than for the other two samples.

2.9 Catalyst Performance

In Fig. 5(s1-s9), light olefins selectivity of 9 samples in MTO process is shown as a function of reaction time on stream (TOS).

The reaction of methanol conversion over a SAPO-34 catalyst is appeared to include three stages: (a) the dehydration of methanol to DME, (b) the dehydration of DME to olefins and (c) converting olefins to aromatics and paraffin's. Different SiO₂/Al₂O₃ and H₂O/Al₂O₃ molar ratios affect physical and acidic properties of catalysts. Catalysts with various crystallinity, particle size, surface area and acid content show distinct performance in MTO process as displayed in Fig. 5(s1-s9). Low concentration of methanol in the feed beside narrow pore structure of SAPO-34 catalysts leads to gradual diffusion of methanol in active sites. When methanol molecules achieve active sites in SAPO-34 catalysts, products are formed and diffuse out of pore structure [16–35, 113–119]. The crystal size and external surface area of catalysts can help easy admission to active sites too. Samples S1 and S3 with relatively large crystal size and low surface area had long induction time in comparison with other samples. The selectivity of total light olefins reaches to maximum amount when methanol molecules achieve the active sites of catalysts. Catalysts with small crystal size and proper crystallinity showed high total light olefins selectivity according to literatures. Sample S4 showed high total light olefins selectivity, because of its relatively high crystallinity (76%) and small size of crystals (1.3 mm). The maximum ethylene and propylene selectivity for this sample are 50.25 and 21.20, respectively. The selectivity to ethylene is higher than that of propylene for all samples that can be related to propylene and butylene transformation. Propylene and butylene are more reactive than ethylene and transform more easily into oligomers and bigger molecules [120–127]. They might be entrapped in the pores of SAPO-34 samples and thereby could be cracked into ethylene. The cracking of oligomers is reported at around 300 8 C. Conversion of small molecules to larger ones and coke on the surface of catalyst through the secondary reactions leads to catalyst deactivation and prevents product diffusion out of catalyst. Sample S5 with SAPO-34 and SAPO-5 phases was deactivated faster rather than the other catalysts. SAPO-5 is a relative large pore molecular sieve with AFI topology where 1-D straight channel contains the 7.3 A⁺ * 7.3 A⁺ pore entrance and big product molecules can be easily escaped from pores of SAPO-5 without more reaction. Therefore, producing large molecules over sample 5 with SAPO-5 is higher than over SAPO-34 catalyst and blockage of pores.

Table 5 Acidity results determined with NH3-TPD

Sample no	Acid amount (mmol g⁻¹)	Max peak temperature			
	Weak	Strong	Total acidity	Tₚ₁	Tₚ₂
S1	0.32	0.49	0.81	201	419
S2	0.31	0.55	0.87	193	394
S3	0.34	0.54	0.89	189	416
S4	0.29	0.49	0.78	190	400
S5	0.49	0.88	1.37	201	420
S6	0.34	0.60	0.94	199	390
S7	0.28	0.50	0.78	202	388
S8	0.36	0.38	0.74	195	359
by coke production can lead to decrease in lifetime of the catalyst. The acid sites content and crystal size of catalysts are two main factors in deactivation rate of SAPO-34 catalyst. At SiO₂/Al₂O₃ = 0.35, with increasing H₂O/Al₂O₃ molar ratio the crystal size of catalysts increases as mentioned in Table 1. It is expected that the deactivation rate
Fig. 5 (continued)
increases but sample S6 with larger crystals was deactivated slower than S7 with smaller crystal size [128–134]. This is related to low strong acid content in sample S6 that reduces the deactivation rate of catalyst [135, 136]. Mild
acid content for catalyst S6 caused long life time because of decreasing in transformation of short chain olefins to higher molecular weight compounds, which can deactivate the catalyst. Sample S7 with strong and high density of acid sites related to its high Si incorporation, deactivated rapidly. High density of strong acid sites helps hydrogen transfer reaction of olefins to saturated hydrocarbons and aromatics and leads to coke formation on the surface of the catalyst. The large crystal size can also bring diffusion limitation for reactants and products especially in small pore molecular sieves, which may cause coke formation and following deactivation of the catalyst. Sample S6 with small crystal size (1.6 mm) and medium surface area and strong acid site concentration had high total light olefins selectivity and lifetime at investigated time. The smaller crystal size and high external surface area avoided the formation of heavier hydrocarbons because of quick product exit. Sample S8 with low crystallinity (47%) and large crystal size (2.3 mm) because of its high water content had a long intracrystalline diffusion length enough for converting the reaction intermediates to coke which consequently deactivate the catalyst and decrease the light olefins selectivity. The catalytic performances of prepared SAPO-34 samples at 410 °C and 30 wt% methanol in water were investigated in MTO process. For all catalysts, methanol conversion after the first test and before 200 min was obtained over 95%. Catalysts S4, S6 and S7 showed complete conversion. Methanol conversion over time on stream for catalysts S6, S7 and S8 is displayed in Fig. 6. Small crystal size, high acid site content and proper surface area for achieving these active sites can increase methanol conversion.

3 Conclusions

SAPO-34 catalysts were synthesized with 9 different ratios of SiO$_2$/Al$_2$O$_3$ and H$_2$O/Al$_2$O$_3$ under hydrothermal conditions. The morphology of samples was the similar cubic shape of typical SAPO-34. It was indicated that the low ratio of SiO$_2$/Al$_2$O$_3$ in the synthesis gel led to impurity and a high concentration of strong acid sites and an increase of water in the gel mixture led to the incomplete structure of the catalyst. Samples prepared with ratios SiO$_2$/Al$_2$O$_3$ = 0.35, H$_2$O/Al$_2$O$_3$ = 120, and SiO$_2$/Al$_2$O$_3$ = 0.35, H$_2$O/Al$_2$O$_3$ = 50 show less lifetime than other catalysts due to having more and stronger acidic places. The sample S5 prepared with SiO$_2$/Al$_2$O$_3$ = 0.17, H$_2$O/Al$_2$O$_3$ = 60.25. Thus, low water and Si in the catalyst compound lead to the production of SAPO-5 along with SAPO-34 which reduces the light olefin and inactivates the catalyst faster.

Acknowledgements Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

Author Contributions Not applicable.

Data Availability Not applicable.

Declarations

Ethics Approval Not applicable

Consent to Participate Not applicable

Consent for Publication Not applicable

Conflict of Interest The authors declare that they have no conflicts of interest.

Research Involving Human Participants and/or Animals Not applicable

References

1. Dubois DR, Obrzut DL, Liu J (2003) Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS Conversion of Methanol to Olefins over Cobalt-, Manganese- and Nickel-Incorporated SAPO-34 Molecular Sieves. Fuel Process Technol 83(1–3):203–218

2. Park JY, Lee YJ, Jun KW, Bae JW, Viswanadham N, Kim YH (2009) Direct conversion of synthesis gas to light olefins using dual bed reactor. J Ind Eng Chem 15(6):847–853

3. Fatourechi N, Sohrabi M, Royaee SJ, Mirarefin SM (2011) Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO). Chem Eng Res Des 89(6):811–816

4. Dahl IM, Kolboe M (1994) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-3. J Catal 149(1):458–464
5. Dahl IM (1993) On the reaction mechanism for propen formation in the MTO reaction over SAPO-34. Catal Lett 20(3–4):329–336
6. Echevskii GV, Ione KG, Nosyreva GN, Litvak GS (1988) Effect of the temperature regime of methanol conversion to hydrocarbons on coking of zeolite catalysts and their regeneration. Appl Catal 43(1):85–89
7. Chang CD, Lang WH, Smith RL (1979) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. pressure effects. J Catal 56(2):169–173
8. Comelli RA, Figoli NS (1991) Effect of pressure on the transformation of methanol into hydrocarbons on an amorphous silica-alumina. Appl Catal 73(2):185–194
9. Marchi AJ, Froment GF (1991) Catalytic conversion of methanol to light alkenes on SAPO molecular sieves. Appl Catal 71(1):139
10. Wu X, Anthony RG (2001) Effect of feed composition on methanol conversion to light olefins over SAPO-34. J Catal 218(1–2):241–250
11. Park TY, Froment G (2001) Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation. Ind Eng Chem Res 40(20):4187–4196
12. Froment GF, Dehertog WJH, Marchi AJ (1992) Zeolite catalysis in the conversion of methanol into olefins. Catalysis 9(1–64)
13. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 106(1–4):103–107
14. Pastore HO, Coluccia S, Marchese L (2005) Porous aluminophosphates: from molecular sieves to designed Acid Catalysts. First published online as a Review in Advance, 35, 351–95
15. Guangyu L, Peng T, Zhongmin L (2012) Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates. Chin J Catalytic 33(1):174–182
16. Xu R, Pang W, Yu J, Huo Q, Chen J (2006) Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons, Chap 3(52)
17. Salmasi M, Fatemi S, Najafabadi AT (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17(4):755–761
18. Inui T, Kang M (1997) Reliable procedure for the synthesis of Ni-SAPO-34 as highly selective catalyst for methanol to ethylene conversion. Appl Catal A 164(1–2):211–223
19. Djieugoue MA, Prakash AM, Kovan L (1999) Electron spin resonance and electron spin-echo modulation studies of synthesized NiAPSO-34 molecular sieve and comparison with ion-exchanged NiH-SAPO-34 molecular sieve. Chem B 103(5):804–811
20. Cola PL, Glaser R, Weitkamp J (2006) Non-oxidative propane dehydrogenation over Pt–Zn-containing zeolites. Appl Catal A 306(7):85–97
21. Hocht M, Jentsy A, Vink H (2001) Isomerization of 1-pentene over SAPO, CoAPO (AEL, AFI) molecular sieves and HZSM-5. Appl Catal A 207(1–2):397–405
22. Wilson S, Barger P (1999) The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous Mesoporous Mater 29(1–2):117–126
23. Zibrowius B, Loffler E, Hunger M (1992) Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites 12(2):167–174
24. Izadbaksh A, Farhari F, Khorasheh F, Sahabdelifar S, Asadi M, Yan ZF (2009) Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve. Microporous Mesoporous Mater 126(1–2):1–7
25. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis and modification of Zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for Methanol to Gasoline Conversion. Int J Chem React Eng 16(7):1–7
26. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2019) Methanol to gaslineconversionoverCuO/ZSM 5 catalyst synthesized using sonochemistry method. Int J Chem React Eng 17(2):1–10
27. Kianfar E (2018) Synthesis and characterizationofAlPO4/ZSM-5catalystformethanol conversion to dimethylether, Russ J Appl Chem 91(10):1710–1720
28. Kianfar E (2019) Recent advances in synthesized, properties, applications of Nano- zeolites. J Sol-Gel Sci Technol 91(2):415–429
29. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int J Appl Ceram Technol 15(3):734–741
30. Kianfar E (2019) Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: A review. Rev Inorg Chem 39(3):157–177
31. Kianfar E (2019) Ethylene to propylene over zeolite ZSM-5: Improved catalyst performance by treatment with CuO. Russ J Appl Chem 92(7):933–939
32. Kianfar E (2019) Ethylene to propylene Conversion over Ni-W/ ZSM-5 Catalyst Synthesize. Russ J Appl Chem 92(8):1094–1101
33. Liu H, Kianfar E (2020) Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett. https://doi.org/10.1007/s10562-02
34. Yang Z, Zhang L, Zhou Y, Wang H, Wen L, Kianfar E (2020) Investigation of effective parameters on SAPO-34 nanocatalyst in the methanol-to-olefin conversion process: a review. Rev Inorg Chem. https://doi.org/10.1515/reivc-2020-0003
35. Hajimirzaee S, Soleimani A, Mehr, Kianfar E. Modified ZSM-5 Zeolite for Conversion of LPG to Aromatic, Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2020.1830488,2020
36. Kianfar E (2021) Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet Chem 61:527–537
37. Liu H, Kianfar E (2021) Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett 151:787–802
38. Xiang G, Zhang Y, Gao X, Li H, Huang X (2021) Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures. Fuel 295. https://doi.org/10.1016/j.fuel.2021.126015
39. Yang M, Kong Q, Feng W, Yao W, Wang Q (2021) Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy. https://doi.org/10.1002/cey2.157
40. Wang R, Xie H, Lai X, Liu J, Li J, Qiu G (2021) Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Mol Catal. https://doi.org/10.1007/s10800-021-11881
41. Fan Z, Ji P, Zhang J, Segets D, Chen D, Chen S (2021) Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J Membr Sci 635:119503. https://doi.org/10.1016/j.memsci.2021.119503
42. Liu H, Li X, Liu X, Ma Z, Yin Z, Yang W, Yu Y (2021) Schiff-base-rich g-C3N4 supported PdAg nanowires as an efficient Mott–Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met 40(4):808–816. https://doi.org/10.1007/s12598-020-01637-5
43. Cheng J, Tan Z, Xing Y, Shen Z, Zhang Y, Liu L, Liu S (2021) Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J Mater Chem Mater
Energy Sustain 9(9):5787–5795. https://doi.org/10.1039/D0TA1479K
44. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588
45. Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater (Weinheim) 28(45):9979–9985. https://doi.org/10.1002/adma.201605735
46. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4
47. Li X, Sheng X, Guo Y, Lu X, Wu H, Chen Y, Gu J (2021) Multi-functional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179. https://doi.org/10.1016/j.jmst.2021.02.009
48. Wang Z, Lei Q, Wang Z, Yuan H, Cao L, Qin N, … Liu J (2020) In-situ synthesis of free-standing FeNi-oxhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chem Eng J (Lausanne, Switzerland : 1996) 395:125180. https://doi.org/10.1016/j.cej.2020.125180
49. Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, … Wang J (2021) Light-responsive, reversible emulsification and demulsification of oil-in-water Pickering emulsions for catalysis. Angew Chem (International ed.) 60(8):3928–3933. https://doi.org/10.1002/anie.2020010750
50. Bakhshkandi R, Ghoranneviss M (2019) Investigating the synthesis and growth of titanium dioxide nanoparticles on a cobalt catalyst. J Res Sci Eng Technol 7(4):1–3. https://doi.org/10.24200/jrset.vol7iiss4pp1-3
51. Shelu I (2018) Efficient and alternative characterization of transition aluminas (η, γ, Θ, δ-Al2O3) Derived from Aerogel: Application of FT-IR and SEM. J Med Chem Sci 1(2):33–35. https://doi.org/10.26655/jmchemsci.2018.9.4
52. Amar I, Sharif A, Ali M, Alshareef S, Althami F, Abdulqadir M, Awhidh MM (2020) Removal of methylene blue from aqueous solutions using nano-magnetic adsorbent based on zinc-doped cobalt ferrite. Chem Methodologies 4(1):1–18. https://doi.org/10.33945/sami/chemm.2020.1.1
53. Awadini A, Hussein R, Bader N, Elkailany R (2020) Propylene oxide – Ethylene oxide block polymer as a surfactant for cloud point extraction of some metal ions. Adv J Chem-Sec A 3(3):259–264. https://doi.org/10.33945/sami/ajca.2020.3.3
54. Kamble RD, Gaikwad MV, Tapare MR, Hese SV, Shuddhodan SN, Kadam AN, Ambhore AN, Dawane BS, Dawane (2021) Dtp/Sio2: An efficient and reusable heterogeneous catalyst for synthesis of Dihydropropyran[3,2-C]Chromene-3-Carbonitrile Derivatives. J Appl Organomet Chem 1(1):22–28. https://doi.org/10.20344/jaoac.2021.276239.1004
55. Shinde R, Vishnu AA (2021) Anti-microbial evaluation, experimental and theoretical insights into molecular structure, electronic properties, and chemical reactivity of (E)-(2-((1 h-Indol-3-Y1)Methylene)-2,3-Dihydro-1 h-Inden-1-One. J Appl Organomet Chem 1(2):48–58. https://doi.org/10.22034/jaoac.2021.278742.1011
56. Kaur N, Khan J, Kaleemullah M, Al-Dhalli S, Budiasih S, Florence M, Faller E et al (2018) Synthesis of cinnamic acid amide derivatives and the biological evaluation of A-Glucosidase inhibitor activity. Int J Med Toxicol Legal Med 21(3and4):216–220
57. Oji S, Friday K, Patrick C (2020) Schematic modelling of sustainable solid waste management in Nigeria. Int J Sustain Energy Environ Res 9(2):98–109. https://doi.org/10.18488/journal.13.2020.92.98.109
58. Davoodnia A, Heravi MM, Rezaei-Daghigh L, Tavakoli-Hoseini N (2009) Brunsted-acidic ionic liquid [HO 3 S (CH 2) 4 MIM] [HO 4] as efficient and reusable catalyst for one-pot synthesis of β-acetamido ketones. Monatsh Chem-Chemical Monthly 140(12):1499–1502. https://doi.org/10.1007/s00706-009-0193-8
59. Karimi N, Sarem R (2021) Seismic response of multi-storey building using different vibration technique-A review. Int J Innov Res Sci Eng Tech 4(1):1–13. https://doi.org/10.5394/ijirs.v4i1.49
60. Aldeen ODAS, Mahmoud MZ, Majdi, HS, Mutlak DA, Uktamov KF, Kianfar E (2022) Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from Naphtha. Adv Mater Sci Eng Article ID 6165180, 22 pages. https://doi.org/10.1155/2022/6165180
61. Zhao T-H, Castillo O, Jahanshahi H, Yusuf A, Alssafi MO, Alsaadi FE, Chu Y-M (2021) A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl Comput Math 20(1):160–176
62. Zhao T-H, Wang M-K, Chu Y-M (2022) On the bounds of the perimeter of an ellipse. Acta Math Sci 42B(2):491–501. https://doi.org/10.1007/s10473-022-0204-y
63. Zhao T-H, Wang M-K, Hai G-J, Chu Y-M (2022) Landen inequalities for Gaussian hypergeometric function, Rev. R. Acad. Cienc. Exactas Fis Nat Ser A Mat RACSAM 116(1), Paper No. 53, 23 pages. https://doi.org/10.1007/s13398-021-01197-y
64. Nazeer M, Hussain F, Khan MI, Asad-ul-Rehman, El-Zahar ER, Chu YM, Malik MY (2022) Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput 420(Paper No. 126688):15 pages. https://doi.org/10.1016/j.amc.2021.126688
65. Chu Y-M, Shankaralingappa BM, Gireesha BJ, Alzahrani F, Ijaz Khan M, Khan SU (2022) Combined impact of Cattaneo-Chisov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput 419(Paper No. 126883):14 pages. https://doi.org/10.1016/j.amc.2021.126883
66. Zhao T-H, Ijaz Khan M, Chu Y-M (2021) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Methods Appl Sci. https://doi.org/10.1002/mma.7310
67. Zhao T-H, He Z-Y, Chu Y-M (2021) Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput Methods Funct Theory 21(3):413–426. https://doi.org/10.4031/jmf.2021.040315-020-00352-7
68. Zhao T-H, Wang M-K, Chu Y-M (2021) Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal 15(2):701–724. https://doi.org/10.7153/jmi-2021-15-50
69. Zhao T-H, Wang M-K, Chu Y-M (2021) Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM 115(2), Paper No. 46, 13 pages. https://doi.org/10.1007/s13398-020-00992-3
70. Chu H-H, Zhao T-H, Chu Y-M (2020) Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca 70(5):1097–1112. https://doi.org/10.1515/ms-2017-0417
71. Zhao T-H, He Z-Y, Chu Y-M (2020) On some refinements for inequalities involving zero-balanced hypergeometric function.AIMS Math 5(6):6479–6495. https://doi.org/10.3934/math.2020418
72. Zhao T-H, Wang M-K, Chu Y-M (2020) A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math 5(5):4512–4528. https://doi.org/10.3934/math.2020290
105. Goudarzian N, Samiei S, Safari F, Mousavi SM, Hashemi SA, Mazaeddoost S (2020) Evaluation of Styrene Acrylo Nitrile (SAN), Butadiene Rubber (BR), Nano-silica (Nano SiO2) blend and nanocomposite in the presence of oxoperoxidation study. J Environ Treat Tech 9(1):24–32

106. Shen Z, Xing X, Wang S, Lv M, Li J, ... Li T (2022) Effect of K-modified blue coke-based activated carbon on low temperature catalytic performance of supported Mn–Ce/activated carbon. ACS Omega. https://doi.org/10.1021/acsomega.1c07076

107. Liu H, Li X, Ma Z, Sun M, Li M, Zhang Z, ... Guo S (2021) Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c03381

108. Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, ... Yang C (2022) PO43- Coordinated Robust Single-Atom Platinum Catalyst for Selective Polyol Oxidation. Angew Chem-Int Ed. https://doi.org/10.1002/ange.202116059

109. Cao M, Chang Z, Tan J, Wang X, Zhang P, Lin S, ... Li A (2022) Peroxide radical-mediated self-synthesized Au/ MoO3-x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Appl Mater Interfaces 14(11):15025–15037. https://doi.org/10.1021/acsami.1c23676

110. Hu Y, Yang G, Zhou J, Li H, Shi L, Xu X, ... Zhang X (2022) Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano. 10.1021/acsnano.1c11301

111. Yang N, Kang F, Liu Z, Ge X, Zhou Y (2022) An integrated CCL-plant scheme and assessment for conversion of captured CO2 into methanol. Int J Low-Carbon Technol 17:550–562. https://doi.org/10.1093/ijlct/cct038

112. Li H, Hou K, Xu X, Jia H, Zhu L, Mu Y (2022) Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures. Appl Energy 308:118326. https://doi.org/10.1016/j.apenergy.2021.118326

113. Cheng Z, Guo Z, Fu P, Yang J, Wang Q (2021) New insights into the effects of methane and oxygen on heat/mass transfer in reactive porous media. Int Commun Heat Mass Transfer 129:105652. https://doi.org/10.1016/j.icheatmasstransfer.2021.105652

114. Ji X, Cheng Y, Tian J et al (2021) Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chem Biol Technol Agric 8:54. https://doi.org/10.18616/s040538-021-00255-2

115. Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, Hou Y, Li R (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63

116. Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M, Hou Y, Zheng X (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115

117. Guo S, Li C, Zhang Y, Wang Y, Li B, Yang M, Zhang X, Lgu G (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076

118. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45(12):14908–14920

119. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248

120. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M (2016) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut 29(4):1084–1095

121. Jia D, Li C, Zhang D, Zhang Y, Zhang X (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanopart Res 16(12):1–15

122. Yanbin ZHANG, Hao Nan LI, Changhe LI, Chuanzhen HUANG, Hatiz Muhammad ALI, Xuefeng XU, Cong MAO, Wenfeng DING, Xin CUI, Min YANG, Tianbiao YU, Muhammad JAMIL, Munish Kumar GUPTA, Dongzhou JIA, Zafar SAID (2021) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

123. Cui X, Li CH, Ding WF, Chen Y, Mao C, Xu XF, Liu B, Wang DZ, Li HN, Zhang YB, Said Z, Deb Nath S, Jamil M, Muhammad Ali H, Sharma S (2021) Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2021.08.011

124. Liu M, Li C, Zhang Y, An Q, Yang M, Gao T, Mao C, Liu B, Cao H, Xu X, Said Z, Deb Nath S, Jamil M, Ali HM, Sharma S (2021) Cryogenic minimum quantity lubrication machining: From mechanism to application. Front Mech Eng 16(4):649–697. https://doi.org/10.1007/s11465-021-0654-2

125. Gao T, Zhang Y, Li C, Wang Y, An Q, Liu B, Said Z, Sharma S (2021) Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci Rep 11:22535

126. Gao T, Li C, Wang Y, Liu X, An Q, Li HN, Zhang Y, Cao H, Liu B, Wang D, Said Z, Deb Nath S, Jamil M, Ali HM, Sharma S (2022) Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos Struct 286:115232

127. Yang YG, Gong YD, Li CH, Wen XL, Sun JY (2021) Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J Mater Process Technol 291:117023. https://doi.org/10.1016/j.jmatprotec.2020.117023

128. Said Z, Arora S, Farooq S, Sundar LS, Li C, Allouhi A (2022) Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: Academic insights and perspectives. Sol Energy Mater Sol Cells 236:11504

129. Ejaz A, Babar H, Ali HM, Jamil F, Janjua MM, Fattah IR, Said Z, Li C (2021) Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustain Energy Technol Assess 46:101199

130. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Technol 102(5):2617–2632

131. Sheikh Ansari E, Ghiasi R, Forghaniha A (2020) Computational investigation into the solvent effect on the diels–alder reaction of isobenzofuran and ethylene. Chem Methodologies 4(3):220–233. https://doi.org/10.33945/SAMI/CHEMM/2020.3.1

132. Vojood A, Khodadadi-Moghaddam M, Ebrahimzadeh-Rajaei G, Mohajeri S, Shamel A (2021) Increasing in the selectivity of formose reaction for glyceraldehyde production in the presence of fumed silica and montmorillonite catalysts. Chem Methodologies 5(5):422–432. https://doi.org/10.22034/chemm.2021.135243

133. Hussein N, Abbas K (2022) Synthesis, spectroscopic characterization and thermal study of some transition metal complexes
derived from caffeine azo ligand with some of their applications. Eurasian Chem Commun 4(1):67–93. https://doi.org/10.22034/ecc.2022.307545.1245

134. Gujar J, Londhe B, Zambare R, Kavade R, Shingare M (2021) Glycine: An efficient catalyst for the synthesis of tetra-substituted imidazole derivatives in aqueous medium. J Appl Organomet Chem 1(3):134–142. https://doi.org/10.22034/jaoc.2021.294427.1030

135. Gharekhani F, Ardjmand M, Vaziri A (2021) Experimental study of drag reduction phenomena in the horizontal tube with nano SiO2 by neural network - Genetic algorithm. Iran J Chem Chem Eng (IJCCE) 40(4):1304–1314. https://doi.org/10.30492/ijcce.2021.131778.4256

136. Ghalibi Ahangary M, Ranjbar R (2020) Lanthanum hierarchical SAPO-34: Synthesis, characterization, and catalysis evaluation in methanol to propylene process. Iran J Chem Chem Eng (IJCCE) 39(5):71–78. https://doi.org/10.30492/ijcce.2019.35974

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.