Here we critically evaluate the role of elevated hematocrit as the principal determinant of thrombotic risk in polycythemia and erythrocytosis, defined by an expansion of red cell mass. Since red cell volume determination is no longer readily available, in clinical practice, polycythemia and erythrocytosis are defined by elevated hemoglobin and hematocrit. Thrombosis is common in Chuvash erythrocytosis and polycythemia vera. Although the increased thrombotic risk is assumed to be due to the elevated hematocrit and an associated increase in blood viscosity, thrombosis does not accompany most types of erythrocytosis. We review studies indicating that the occurrence of thrombosis in Chuvash erythrocytosis is independent of hematocrit, that the thrombotic risk is paradoxically increased by phlebotomy in Chuvash erythrocytosis, and that, when compared to chemotherapy, phlebotomy is associated with increased thrombotic risk in polycythemia vera. Inherited and environmental causes that lead to polycythemia and erythrocytosis are accompanied by diverse cellular changes that could directly affect thrombotic risk, irrespective of the elevated hematocrit. The pressing issue in these disorders is to define factors other than elevated hematocrit that determine thrombotic risk. Defining these predisposing factors in polycythemia and erythrocytosis should then lead to rational therapies and facilitate development of targeted interventions.

Introduction

Polycythemia and erythrocytosis

There are several different parameters for diagnosis of polycythemia and erythrocytosis based on a blood count: the number of red blood cells, the hematocrit, and the hemoglobin concentration. Elevations in these measures can occur on a primary or secondary basis (Table 1). Primary polycythemia results from functional abnormalities intrinsic to erythroid progenitors, causing them to be hypersensitive to or independent of erythropoietin. This category includes polycythemia vera (PV), which is associated with acquired somatic mutations in the Janus kinase 2 gene (JAK2), dominantly inherited primary familial and congenital polycythemia or erythrocytosis, caused by germline gain-of-function erythropoietin receptor (EPOR) mutations, and erythrocytosis due to \(\text{SH2B3} \) mutations. Primary familial and congenital polycythemia or erythrocytosis predisposes patients to cardiovascular disorders, perhaps due to chronic augmented erythropoietin signaling in all tissues bearing EPOR. In contrast, in secondary erythrocytosis, functionally normal erythroid progenitors are exposed to increased levels of circulating erythropoiesis-stimulating factors. In most instances, the erythropoiesis-stimulating factor is erythropoietin, but cobalt, insulin growth factor 1, increased angiotensin signaling and manganese may also stimulate erythropoiesis.

Acquired causes of secondary erythrocytosis include erythrocytosis of pulmonary disease, high altitude erythrocytosis, Eisenmenger syndrome, smoking, carboxyhemoglobinemia, erythropoietin-producing tumors, doping with erythropoietin, post-
reduced renal transplant erythrocytosis, exogenous testosterone use, and cobalt and manganese toxicities.12,13 Congenital secondary erythrocytosis can be caused by high oxygen affinity hemoglobin variants, inherited low 2,3-diphosphoglycerate leading to high hemoglobin oxygen affinity, congenital methemoglobinemia, and a recently described gain-of-function mutation of the gene encoding erythropoietin (EPO).1 Other congenital conditions include rare germline mutations in hypoxia sensing pathway genes, including loss of function mutations of VHL encoding von Hippel Lindau (VHL) protein and EGLN1 encoding prolyl hydroxylase 2 (PHD2), and gain-of-function mutations of EPAS1 encoding hypoxia inducible factor (HIF)-2α.1

Chuvash erythrocytosis (CE) is an autosomal recessive condition, endemic to Chuvashia in Russia and Ischia in Italy, which results from homozygosity for a C→T missense mutation of VHL (VHL c.598C>T or VHL E200K).8,10 The mutated protein impacts interactions of VHL with the HIF-α subunits, thereby reducing the rate of ubiquitin-mediated HIF-α degradation by the proteasome. As a result, the levels of HIF-1 and HIF-2 heterodimers increase, leading to increased expression of their target genes, including EPO, vascular endothelial growth factor (VEGF), and GLUT1, tissue factor (F3) and a plethora of other genes.9,11 In endothelial cells, more than 3% of genes are upregulated by HIF-1.11 CE erythrocytogenitors are hyper-sensitive to erythropoietin, a feature of primary polycythemia, but affected subjects also have increased erythropoietin levels mediated by increased HIF-2, a feature of secondary erythrocytosis.11,12 Similar combined features of both primary and secondary elevations in hematocrit are seen in certain other germline mutations of VHL (loss-of-function mutations) and EPAS1 (gain-of-function mutations).1

Viscosity, hematocrit and blood volume
Both PV and erythrocytosis secondary to hypoxia or upregulated hypoxia sensing are characterized by an increased red cell mass and total blood volume, but the two conditions may at times be divergent with regard to plasma volume. The plasma volume is increased in PV, potentially causing the hematocrit to underestimate the degree of erythrocytosis, whereas the plasma volume may not be increased in all types of erythrocytosis secondary to hypoxia or to upregulated hypoxia sensing.11,12 Some clinical manifestations of erythrocytosis, such as headaches and tinnitus, appear to be related to increased viscosity of blood resulting from the expanded red cell mass and elevated hematocrit. An increase in blood viscosity at higher hematocrits is associated with blood volume in the normal range impairs blood flow and reduces the transport of oxygen.17 In vitro, the viscosity of blood increases exponentially with an increase in hematocrit. However, mitigating factors in patients with erythrocytosis serve to improve oxygen transport, a process that is dependent on both cardiac output and hemoglobin concentration.14 Most importantly, the increase in blood volume accompanying erythrocytosis enlarges the vascular bed, decreases peripheral resistance and increases cardiac output. In addition, the blood flow is axial, with a central core of circulating red cells sliding over a peripheral layer of lubricating plasma. Therefore, optimum oxygen transport with increased blood volume occurs at a higher hematocrit value than with normal blood volume,15,16 and a moderate increase in hematocrit may be beneficial despite the increased viscosity. This may not hold true when there is a more pronounced increase in hematocrit, a circumstance in which high viscosity causes reduced blood flow19,20 that may be responsible for cerebral and cardiovascular impairment in some high-altitude dwellers21 or in patients with severely elevated hematocrit.22,23 In those instances, hematocrit has been reported to reach extreme values, sometimes exceeding 90%.24 In normovolemic individuals, cerebral blood flow decreases at a certain point of hematocrit elevation.25 However, blood flow is also influenced by the oxygen demand of tissues through incompletely understood mechanisms26 and cerebral blood flow remains high at high hematocrits when oxygen delivery is impaired. This was elegantly illustrated in six patients with high hemoglobin oxygen-affinity variants whose cerebral blood flow was 81% higher than that of 11 subjects of comparable age, matched for hematocrit and viscosity, but without the hemoglobin variant.27 Furthermore, cerebral blood flow decreases at much higher levels of hematocrit with any accompanying increased percentage of fetal hemoglobin,28 which also has high oxygen-affinity.29

Elevated hematocrit and thrombosis
Thrombotic events are well documented in patients with PV and CE, apparently less so in those with primary familial and congenital polycythemia or erythrocytosis and HIF-2α gain-of-function mutations, but not in patients with secondary erythrocytosis such as Eisenmenger syndrome,30,31 other cyanotic heart disorders,32,33 high altitude dwellers,34

Table 1. Classification of polycythemia and erythrocytosis.

Primary - functional abnormalities expressed in erythroid progenitors	Familial	Secondary to increased erythropoietin	Acquired
Primary familial & congenital polycythemia or erythrocytosis	Acquired Polycythemia vera (JAK2 mutations)	Acquired Carboxyhemoglobinemia	Smoking
(EPOR mutations)		Erythropoietin-doping Erythropoietin-secreting tumor	Lung or heart disease
Erythrocytosis due to SH2B3 mutations	Acquired to increased exposures other than erythropoietin	High altitude	Smoking
			Secondary to increased erythropoietin
			Acquired Smoking
			Carboxyhemoglobinemia
			Erythropoietin-doping
			Erythropoietin-secreting tumor
			Lung or heart disease
			Smoking
			High altitude

Table 1. Classification of polycythemia and erythrocytosis.			
and subjects with high oxygen-affinity hemoglobins. Several lines of evidence suggest that an isolated elevation in hematocrit does not, per se, lead to thrombosis. For example, cerebral infarction in young children with cyanotic heart disease is attributed to iron deficiency and relative anemia rather than to erythrocytosis.34,51 In the Framingham study hematocrit was associated with risk of stroke but this association disappeared in multivariate analysis when smoking, a well-established risk factor for stroke,36 was removed.37 In a UK study of 7,346 men, an increased risk of stroke was not seen at higher hematocrit levels (≥51%) in normotensive men but was apparent in hypertensive individuals.28 Coronary blood flow is decreased in secondary erythrocytosis,22 but there is equivocal evidence as to whether the risk of coronary thrombosis is increased in patients with a high hematocrit.6,38 Secondary erythrocytosis reportedly does not pose a thrombotic risk in surgical patients.61

Studies of the influence of elevated hematocrit on the risk of thrombosis in animal models of PV and erythrocytosis secondary to elevated erthropoietin have failed to find a consistent positive relationship.62,63 A study of a murine model in which erythrocytosis was induced by transfusing packed red blood cells, with evaluation of thrombotic risk 24 hours later, found that an elevated hematocrit promoted arterial thrombus formation.64 However, acute erythrocytosis induced by transfusion may not reflect the physiology of the chronic elevation of hematocrit seen in PV and secondary erythrocytosis.7 Furthermore, it is not certain how well the ferric chloride-induced thrombosis model in mice reflects thrombosis formation in humans. Thus, in this review, we focus on thrombosis in human conditions of chronic elevation in hematocrit.

Chuvash erythrocytosis and polycythemia vera share thrombosis as the principal cause of morbidity and mortality

Chuvash erythrocytosis

The propensity to thrombosis is even higher in CE than in PV.65 Although endemic in Chuvashia and Ischia, CE is distributed worldwide.29,66 This form of erythrocytosis is characterized by a high risk of both arterial and venous thrombosis in subjects living near sea level. It protects from anemia in heterozygotes20 but causes augmented hypoxia sensing with elevated hematocrit in homozygotes.7,22 The VHLV617F variant is not associated with tumors characteristic of the VHL tumor predisposition syndrome. Thrombosis largely accounts for the morbidity and mortality of CE although affected individuals have lower body mass index, systolic blood pressure, glucose and HbA1c levels, and white blood cell and platelet counts compared to controls.62,23 The high rate of thrombosis in CE begins in childhood1 and increases with age.66 However, higher hematocrit is not an independent predictor of thrombotic risk in either children or adults.31 Furthermore, a history of therapeutic phlebotomy in CE is associated with an increased risk of thrombosis.48 Thus, the thrombotic risk in CE appears to be independent of viscosity, but rather to be related to changes in the upregulated hypoxic responses associated with the homozygous VHLV617F mutation. We found many HIF-regulated transcripts to be differentially upregulated in CE peripheral blood mononuclear cells, including IL1B, encoding interleukin 1β (2.1-fold), TSP1, encoding thrombospondin-1 (1.5-fold), NLRP3, encoding NLR family pyrin domain containing 3 (1.4-fold), SERpine1, encoding plasminogen activator inhibitor-1 (PAI-1) (1.2-fold), and F3 encoding tissue factor (1.1-fold).11 We also found differential gene expression in granulocytes and reticulocytes, and increased TSP-1 concentrations in plasma.68 Thus, increased HIF may cause a pro-thrombotic milieu in CE.44,54,68 The positive association of phlebotomy with thrombosis in CE parallels observations in the Polycythemia Vera Study Group (PVSG) 01 and 05 studies.69 We postulate that the heightened thrombotic risk is likely due to upregulation of HIF-controlled prothrombotic genes such as tissue factor64,65 and thrombospondin.46 It is likely that other HIF-regulated plasma or vascular factors also play contributory roles.70 In aggregate, these data demonstrate that the thrombotic risk in CE is independent of hematocrit.

Polycythemia vera

Thrombosis is the most common complication of PV.50-62 One-half to three-quarters of these events are arterial.63 Ischemic strokes and transient ischemic attacks account for the majority of thrombotic complications, followed in frequency by myocardial infarction, deep vein thrombosis, and pulmonary embolism. Cerebral venous thrombosis and splanchic thrombosis, including Budd-Chiari syndrome, occur with increased frequency in PV. While it is not unusual for Budd-Chiari syndrome to present as the first indicator of PV, we have been unable to find the exact prevalence of this complication in any large published study of PV.

Studies of the influence of elevated hematocrit on the risk of thrombosis in animal models of PV and erythrocytosis secondary to elevated erthropoietin have failed to find a consistent positive relationship.62,63 A study of a murine model in which erythrocytosis was induced by transfusing packed red blood cells, with evaluation of thrombotic risk 24 hours later, found that an elevated hematocrit promoted arterial thrombus formation.64 However, acute erythrocytosis induced by transfusion may not reflect the physiology of the chronic elevation of hematocrit seen in PV and secondary erythrocytosis.7 Furthermore, it is not certain how well the ferric chloride-induced thrombosis model in mice reflects thrombosis formation in humans. Thus, in this review, we focus on thrombosis in human conditions of chronic elevation in hematocrit.

Hematocrit and thrombotic risk in erythrocytosis
chlorambucil and 32P arms if the hematocrit was $>45\%$ despite the chemotherapy regimen. In 1987, with a maximal follow-up of 19 years, 37.8% of the patients had experienced thrombosis as a major study outcome and 14.8% had died from thrombosis. Overall, therapeutic phlebotomy was independently and significantly associated with an increased risk of thrombosis compared to chemotherapy, but hematocrit level was not independently associated with thrombotic risk. The increased risk of thrombosis in patients undergoing phlebotomy compared to that in patients treated with myelosuppressive therapy seemed to be limited to the first 3 years of therapy.\(^{57}\) The increased thrombotic risk did not seem to be related to poorer disease control as reflected by hematocrit and platelet count: in a retrospective analysis that paired patients with thrombosis to those without thrombosis within the same treatment group, neither hematocrit nor platelet count was associated with thrombosis.\(^{53}\) As of 1987, 10.2% of the patients in the PVSG 01 study had developed acute leukemia and 11.8% had died from a hematologic malignancy. Acute leukemia had developed in 11.8% of the PVSG 01 study patients with PVSG 01 study who had developed acute leukemia and 11.8% of the PVSG 01 study patients who had developed acute leukemia. Acute leukemia was more common in the 32P arm (9.6%) and the chlorambucil arm (13.5%) than in the phlebotomy alone arm (1.5%), and this contributed to the finding that the overall survival of patients treated with phlebotomy was comparable to that of patients treated with 32P and slightly better than that of patients treated with chlorambucil.\(^{57}\)

The increased risk of thrombosis with phlebotomy compared to chemotherapy observed in the PVSG 01 study was followed up in the PVSG 05 study. Patients were initially phlebotomized to achieve a hematocrit $\leq 40\%$ and then randomized to treatment with phlebotomy and the combination of aspirin (300 mg) and dipyridamole (75 mg) three times daily ($n = 88$) versus 32P ($n = 90$) to maintain the hematocrit $<45\%$.\(^{57}\) The study was stopped at a median follow-up of <2 years when seven (8.0%) patients in the phlebotomy, aspirin and dipyridamole group had experienced a major thrombosis versus two (2.2%) in the 32P group, providing further evidence of a higher rate of thrombosis with therapeutic phlebotomy versus chemotherapy for PV.

The European Collaboration on Low-Dose Aspirin in the Polycythemia Vera study (ECLAP), which included 1,638 patients, found that survival of PV patients correlated negatively with leukocytosis, older age, venous thrombosis, and atypical karyotype.\(^{56}\) It was also reported that PV may be associated with tissue factor expression in polymorphonuclear leukocytes in the absence of any in vitro challenge, and that expression is decreased after treatment with hydroxyurea.\(^{56}\) An additional risk for thrombotic events in PV may be environmental hypoxia. We found that PV patients residing in Salt Lake City at approximately 1,400 meters have a higher rate of arterial and venous thromboses than that of patients residing at sea level in Baltimore,\(^{51}\) even though they are only exposed to modest hypoxia.\(^{51}\) In a multivariate analysis, living in Salt Lake City was an independent thrombotic risk factor in PV.\(^{51}\) This may be explained by the recent observation that hypoxia decreases protein S levels in normal subjects by an HIF-1-mediated mechanism.\(^{51}\)

Conclusion

Certain disorders with elevated hematocrit, such as PV, CE, primary familial and congenital polycythemia or erythrocytosis (EPOR mutation), and EPAS1 gain-of-function mutations, are associated with thrombotic complications. These conditions are characterized by diverse cellular and metabolic changes that could be directly associated with thrombotic risk, irrespective of hematocrit level. The challenge in these conditions is to elucidate factors for the thrombotic risk other than the elevated hematocrit, and to define what, if any, role that viscosity plays in thrombotic risk. Defining these thrombosis-predisposing factors would provide the basis for iden-
tifying and developing novel targeted therapies for these disorders. The evidence we have presented here points to favoring the use of myelosuppressive therapy for intermediate- and high-risk PV, as this approach has been proven to decrease the risk of thrombosis in PV. Furthermore, we trust that the urge to correct any abnormal laboratory data by a therapeutic intervention should be tempered by consideration of the risk-benefit ratio of any such intervention. The routine practice of phlebotomy for elevated hematocrit, with its inevitable iron deficiency (which leads to inhibition of PHD2, increased HIF, and increased erythropoietin) and potential detrimental thrombotic effects, should be re-evaluated. We hope that this review will encourage more studies to pursue the challenge of defining the specific molecular basis of thrombosis in diverse types of polycythemia and erythrocytosis. Improved knowledge of the pathophysiolo-

gy of these entities should be extended to the development of targeted approaches for the prevention and therapy of thrombotic complications. A review of potential molecular mechanisms contributing to thrombosis in myeloproliferative neoplasms was published at the time of the submission of this manuscript.87

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health, R01HL137991 (to JP), and institutional funds from the University of Illinois at Chicago.

References

1. Prchal JT. Primary and secondary erythrocytosis. In: Lichtman MA, Williams WJ, eds. Williams Hematology. 9th Edition. New York: McGraw-Hill Medical, 2015.
2. Prchal JT, Semenza GL, Prchal J, Sokol L. Familial polycythemia. Science. 1995;268(5219):1851-1852.
3. McMullin MF, Wu C, Percy MJ, Wong A. A nonsynonymous LNK polymorphism associated with idiopathic erythrocytosis. Am J Hematol. 2011;86(11):962-964.
4. Giani FC, Fiorini C, Wakabayashi A, et al. Targeted application of human genetic variation can improve red blood cell production from Stem Cells. Cell Stem Cell. 2016;18(1):73-78.
5. Tuschl K, Mills PB, Parsons H, et al. Hapetic cirrhosis, dysstemia, polycythaemia and hypermanganesaemia—a new metabolic disorder. J Inherit Metab Dis. 2006;3(1):151-156.
6. Quadri M, Federico A, Zhao T, et al. Mutations in SLC30A10 cause parkinsonism and dysstemia with hypermanganesaemia, polycythaemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):476-477.
7. Zmajkovic J, Lundberg P, Nienhold R, et al. A gain-of-function mutation in EPO in familial erythrocytosis. N Engl J Med. 2016;378(10):924-930.
8. Polyakova LA. Familial erythrocytosis among inhabitants of the Chuvash ASSR. Problem Genetolog I Pereliv Krovi]. 1974;10:30-36.
9. Ang SO, Chen H, Hiraoka H, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32(4):614-621.
10. Perrotta S, Nobili B, Ferraro M, et al. Von Hippel-Lindau-dependent polycythemia is endemic on the island of Ischia: identification of a novel cluster. Blood. 2006;107(2):514-519.
11. Zhang X, Zhang W, Ma SF, et al. Iron deficiency modifies gene expression variation induced by augmented hypoxia sensing. Blood Cells Mol Dis. 2014;52(4):35-45.
12. Gondek VR, Seregeya AV, Masnikova GY, et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombo-
sis and vascular abnormalities but not tumors. Blood. 2004;103(10):3924-3932.
13. Manalo DJ, Rowan A, Lavioe T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659-669.
14. Hickey MM, Lam JC, Bezman NA, Rathnall WK, Simon MC. Von Hippel-Lindau muta-
tion in mice recapitulates Chuvash polycy-
themia via hypoxia-inducible factor-

28. Cui MH, Billett HH, Suzuki S, et al. Fetal hemoglobin improves cerebral blood flow and decreases brain inflammation in trans-
genic-sickle Mice. Blood. 2016;128(22):3639.
29. Papassotiriou I, Kuster J, Griffon N, et al. Modulating the oxygen affinity of human fetal hemoglobin with synthetic allosteric modulators. Br J Haematol. 1998;102(5):1165-1171.
30. Vongpatanasin W, Brickner ME, Hills LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med. 1996;128(9):745-755.
31. Martin-Garcia AC, Arachchilage DR, Kempny A, et al. Platelet count and mean platelet volume predict outcome in adults with Eisenmenger syndrome. Heart. 2018;104(1):45-50.
32. Thorne SA. Management of polycythemia in adults with cyanotic congenital heart dis-
ease. Heart. 1998;79(4):315-316.
33. Perloff JK, Marelli AJ, Miner FD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1995;92(7):1954-1959.
34. Thorne SA. Management of polycythemia in adults with cyanotic congenital heart dis-
 ease. Am J Dis Child. 1973;125(4):484-487.
35. Shinton R, Reever GS. Meta-analysis of rela-
tion between cigarette smoking and stroke. BMJ. 1989;298(6767):789-794.
36. Kannel WB, Gordon T, Wolf PA, McNamara FP. Hemoglobin and the risk of cerebral infarction: the Framingham study. Stroke. 1972;3(4):409-420.
37. Wannamethee G, Perry IJ, Shaper AG. Hematocrit, blood viscosity, cerebral blood flow, and vascular occlusion. In: Lowe GD, ed. Clinical Aspects of Blood Viscosity and Cell Deformability. New York: Springer-Verlag, 1981.
38. Monge C. Life in the Andes and chronic mountain sickness. Science. 1942;95(2456):79-84.
39. Kershovichov S, Modiano M, Ewy GA. Markedly decreased coronary blood flow in secondary polycythemia. Am Heart J. 1992;123(2):521-525.
40. Conley CL, Russell RE, Thomas CB, Tumulty PA. Hematocrit values in coronary artery disease. Arch Intern Med. 1964;113:170-176.
41. Jefferson JA, Escudero E, Hurtado ME, et al. Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet. 2002;359(9304):407-408.
42. Thomas DJ, du Boulay GH, Marshall J, et al. Cerebral blood-flow in polycythemia. Lancet. 1977;2(8030):161-163.
43. Borzage MT, Bush AM, Choi S, et al. Predictors of cerebral blood flow in patients with and without anemia. J Appl Physiol (1985); 2016;120(8):976-981.
44. Wade JP, du Boulay GH, Marshall J, et al. Cerebral blood flow, haematocrit and vis-
osity in subjects with a high oxygen affini-
ty haemoglobin variant. Acta Neurol Scand. 1980;61(4):210-215.
45. Cui MH, Billett HH, Suzuki S, et al. Fetal hemoglobin improves cerebral blood flow and decreases brain inflammation in trans-
genic-sickle Mice. Blood. 2016;128(22):3639.
46. Papassotiriou I, Kuster J, Griffon N, et al. Modulating the oxygen affinity of human fetal hemoglobin with synthetic allosteric modulators. Br J Haematol. 1998;102(5):1165-1171.
47. Vongpatanasin W, Brickner ME, Hills LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med. 1996;128(9):745-755.
48. Martin-Garcia AC, Arachchilage DR, Kempny A, et al. Platelet count and mean platelet volume predict outcome in adults with Eisenmenger syndrome. Heart. 2018;104(1):45-50.
49. Thorne SA. Management of polycythemia in adults with cyanotic congenital heart dis-
ease. Heart. 1998;79(4):315-316.
50. Perloff JK, Marelli AJ, Miner FD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1995;92(7):1954-1959.
51. Thorne SA. Management of polycythemia in adults with cyanotic congenital heart dis-
ease. Am J Dis Child. 1973;125(4):484-487.
52. Shinton R, Reever GS. Meta-analysis of rela-
tion between cigarette smoking and stroke. BMJ. 1989;298(6767):789-794.
53. Kannel WB, Gordon T, Wolf PA, McNamara FP. Hemoglobin and the risk of cerebral infarction: the Framingham study. Stroke. 1972;3(4):409-420.
54. Wannamethee G, Perry IJ, Shaper AG. Hematocrit, hypertension and risk of stroke. J Intern Med. 1994;235(2):163-168.
55. Mayer GA. Hematocrit and coronary heart disease. Can Med Assoc J. 1965;93(22):1151-1155.
56. Hershberg PI, Wells RE, McGandy RB. Hematocrit and thrombotic risk in erythrocytosis

In: Lichtman MA, Williams WJ, eds. Williams Hematology. 9th Edition. New York: McGraw-Hill Medical, 2015.
56. Narita I, Shimada M, Yamabe H, et al. NF-kappaB-dependent increase in tissue factor expression is responsible for hypoxic podocyte injury. Clin Exp Nephrol. 2016;20(9):679-688.

57. Berk P, Wasserman L, Fruchtman S. Treatment of polycythemia vera. A summary of clinical trials conducted by the Polycythemia Vera Study Group. In: Wasserman L, Berk P, Berlin N, eds. Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia: WB Saunders; 1995.

58. Reeves BN, Song J, Kim SJ, et al. Upregulation of tissue factor may contribute to thrombosis in FV and ET. American Society of Hematology Annual Meeting. San Diego, CA; 2018.

59. Gordeuk VR, Chung DW, Shah BN, et al. Thrombosis and von Willebrand factor in Chuvash polycythemia. Blood. 2017;130(Suppl 1):2377.

60. Marchioli R, Finazzi G, Landolfo R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(4):2242-2252.

61. Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2012;57:1551.

62. Wehmeier A, Daum I, Jamin H, Schneider LA, Nouraie M, Prchal JT, Gordeuk VR. Incidence and clinical risk factors for cardiovascular complications in children and adolescents with Chuvash polycythemia. Blood. 2007;108(6):2131; author reply 2131-2132.

63. Landolfi R, Marchioli R, Kutti J, et al. Functional conservation of erythropoietin in the myeloproliferative neoplasms. Thromb Haemost. 2015;113(2):414-425.

64. De Stefano V, Testoli L, Leone G, Michiels JJ. Spontaneous erythroid colony formation as the clue to an underlying myeloproliferative disorder in patients with Budd-Chiari syndrome or portal vein thrombosis. Semin Thromb Hemost. 1997;23(5):411-418.

65. Colaizzo D, Amiratano L, Tiscia GL, et al. The JAK2 V617F mutation frequently occurs in patients with portal vein thrombosis. J Thromb Haemost. 2007;5(4):708-714.

66. Reikvam H, Tiu RV. Venous thromboembolism in patients with essential thrombocythemia and polycythemia vera. Leukemia. 2012;26(4):563-571.

67. Spirvak JL. Polycythemia vera: myths, mechanisms, and management. Blood. 2002;100(5):4272-4290.

68. Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med. 2010;5(5):177-184.

69. Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythemia. Lancet. 1972;2(7912):1219-1222.

70. Berk PD, Goldberg JD, Donovan PB, Fruchtman SM, Berk PD, Wasserman LR. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol. 1986;23(2):152-148.

71. Berlin NI, Wasserman LR. Polycythemia vera: a retrospective and reappraisal. J Clin Lab Med. 1997;130(4):365-373.

72. Di Nisco M, Barbui T, Di Gennaro L, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol. 2007;136(5):249-259.

73. Barbi T, Vannucchi AM, Finazzi G, et al. A reappraisal of the benefit-risk profile of hydroxyurea in patients with myeloproliferative disorders: a propensity-matched study. Am J Hematol. 2017;92(11):1131-1136.

74. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22-33.

75. Dingli D, Tefferi A. Hydroxyurea: the drug of choice for polycythemia vera and essential thrombocythemia. Curr Hematol Malig Rep. 2006;1(2):69-74.

76. Barbui T, Finazzi G. Evidence-based management of polycythemia vera. Best Pract Res Clin Haematol. 2006;19(5):485-495.

77. Fruchtman SM, Mack K, Kaplan ME, Peterson P, Berk PD, Wasserman LR. From efficacy to safety: a Polycythemia Vera Study Group report on hydroxyurea in patients with polycythemia vera. Semin Hematol. 1997;34(1):17-23.

78. Landolfo R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109(6):2446-2452.

79. Barbui T, De Stefano V, Ghiardelli A, Masciulli A, Finazzi G, Vannucchi AM. Different effect of hydroxyurea and phlebotomy on prevention of arterial and venous thrombosis in polycythemia vera. Blood Cancer J. 2018;8(12):124.

80. Falanga A, Marchetti M, Evangelista V, et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood. 2000;96(13):4261-4266.

81. Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med. 2010;5(5):177-184.

82. Tefferi A, Rumi E, Finazzi G, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1674-1681.

83. Maugeri N, Giordano G, Petrilli MP, et al. Inhibition of tissue factor expression by hydroxyurea in polymorphonuclear leucocytes from patients with myeloproliferative disorders: a new effect for an old drug? J Thromb Haemost. 2006;4(12):2589-2598.

84. Zangari M, Fink L, Tolomelli G, et al. Could hydroxyurea increase the prevalence of thrombotic complications in polycythemia vera? Blood Coagul Fibrinolysis. 2015;24(3):311-316.

85. Ruiz-Angelues CJ. Altitude above sea level as a variable for definition of anemia. Blood. 2006;108(6):2131; author reply 2131-2132.

86. Filli VS, Datta A, Afreen S, Catalano D, Szabo G, Majundar R. Hypoxia downregulates protein S expression. Blood. 2018;132(4):452-459.

87. Bar-Natan M, Hoffman R. New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches. Haematologica. 2019;104(1):5-6.