Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach

Patrizia Sarogni, Maria M Pallotta, Antonio Musio

ABSTRACT
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatic cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.

INTRODUCTION
The cohesin complex, composed of four core subunits, SMC1A, SMC3, RAD21 and STAG, forms a ring-shaped structure that encircles chromatin. It is evolutionarily conserved from prokaryotic to eukaryotic organisms. Additional factors, such as NIPBL, PDS5, WAPL, HDAC8 and ESCO, finely regulate the activity of cohesin during the cell cycle (figure 1). Cohesin loading onto chromatin is mediated by NIPBL, in association with its molecular partner MAU2. It occurs in G1 in yeast or at the end of telophase of the previous cell cycle in mammalian cells. ESCO proteins (1 and 2) allow cohesin establishment in the S phase, and PDS5 (A and B) guarantees its maintenance. WAPL contributes to cohesin dissolution and HDAC8 is necessary for cohesin recycling during the cell cycle. Though cohesin was first identified for its role in establishing sister chromatid cohesion, which is important for proper chromosome segregation, cohesin is a key regulator in gene expression and 3D genome organisation. In fact, cohesin cooperates with the sequence-specific DNA binding protein CTCF to organise the mammalian genome into structural topologically associated domains (TADs), chromatin loops and contact domains. It is thought that these features compartmentalise genes and bring together distant enhancers with promoter sequences to orchestrate gene expression. The disruption of TADs and the removal of cohesin or CTCF binding sites result in abnormal DNA domain topology, thus leading to gene expression dysregulation. Cohesin is also essential for genome integrity as it controls fork replication speed and promotes DNA repair by homologous recombination. DNA damage response and gene transcription are intimately associated via cohesin. In fact, in presence of DNA double-strand breaks, cohesin represses transcription in the flanking chromatin. Because of this role, it is not surprising that cohesin’s pathogenetic variants are frequently found in cancer, including colorectal and urothelial carcinomas, Ewing sarcomas and acute myeloid leukaemia.

Cohesin and Cornelia de Lange syndrome
The finding that germinal pathogenetic variants in cohesin structural and regulatory genes are associated with human diseases collectively called ‘cohesinopathies’ may be less counterintuitive. Cornelia de Lange syndrome (CdLS; OMIM 122470, 300590, 610759, 614701, 300882) is the most frequently represented among these. CdLS is a rare multiorgan development disease with a prevalence ranging from 1:10,000 to 1:30,000 live births without differences between ethnic groups. Its clinical presentation is characterised by facial dysmorphism (arched eyebrows with synophrys, long philtrum, thin lips, hirsute forehead), prenatal and postnatal growth retardation, cognitive impairment ranging from mild to severe, gastrointestinal malformations, congenital heart abnormalities and limb defects. At present, five CdLS-causative genes have been identified. Pathogenetic variants in NIPBL account for about 60% of patients with CdLS whereas about 5%–10% of CdLS probands carry pathogenetic variants in SMC1A, SMC3, RAD21 or HDAC8. This observation suggests that other genes responsible for CdLS have to be identified.
Developmental defects

Analysis of the mutational spectrum reveals a genotype–phenotype correlation (figure 2). NIPBL truncating, nonsense, splice site and frame shift pathogenic variants leading to a truncated and likely non-functional NIPBL protein are associated with a severe phenotype. The clinical picture of CdLS carrying SMCA, SMC3 and RAD21 pathogenic variants is more uniform, characterised by a mild to moderate phenotype more similar to NIPBL-mutated probands who carry missense changes. Finally, patients harbouring pathogenic variants in HDAC8 gene show clinical traits overlapping to some extent with classic forms of CdLS characterised by typical facial dysmorphism and severe cognitive delay. 53

The molecular diagnosis of CdLS is complicated by both the presence of somatic mosaicism and the overlap with other diseases. In fact, sequencing of DNA extracted from fibroblasts or buccal mucosa allowed the identification of mosaic variants in all five CdLS genes in patients originally reported to be mutation negative by Sanger sequencing on DNA isolated from blood. 54–58 In order to provide an accurate diagnosis, these variants are of particular interest since they may escape routine molecular diagnostics and indicate that sequencing should not be restricted to DNA from blood samples. Furthermore, patients presenting CdLS or CdLS-like phenotype have been described, and interestingly they carried pathogenic variants in chromatin-associated factors (table 1) such as BRD4 and AFF4 (responsible for CHOPS syndrome, OMIM 616368); ANKRD11 (associated with KBG syndrome, OMIM 148050); EP300 (responsible for Rubinstein-Taybi syndrome (RSTS), OMIM 613684) and KMT2A (causal gene for Wiedemann-Steiner syndrome (WDSTS), OMIM 605130); and ARID1B, ARID1A, SMARCB1, SMARCA4, SMARCE1, ARID2, SOX11 and DPF2 (associated with Coffin-Siris syndrome (CSS), OMIM 614556, 603024, 601607, 603254, 603111, 609539, 600898, 601671). 59–71 Interestingly, all of these disorders display a significant clinical overlap with CdLS, each presenting with shared features that embrace facial dysmorphism, intellectual disability, growth and developmental delay and that are regularly considered in the differential diagnosis of CdLS. These findings suggest that the clinical overlap of these syndromes is mirrored by molecular interactions belonging to the same path, and chromatin dysregulation is a common step towards the pathogenesis of developmental disorders that share phenotypical features with CdLS.

Table 1 Human diseases overlapping Cornelia de Lange syndrome (CdLS)

Disease	Gene(s)	Role
CdLS-like	BRD4	It binds to hyperacetylated genomic regions that encompass promoters and enhancers; regulates transcription elongation by paused RNA polymerase II
CHOPS	AFF4	It is a scaffold protein comprising the core component of the super elongation complex
CSS	ARID1B, ARID1A, ARID2, DPF2, SMARCB1, SMARCA4, SMARCE1, SOX11	They are subunits of the ATP-dependent SWI/SNF (SWItch/Sucrose non-fermentable) chromatin remodelling complex involved in transcription
KBG	ANKRD11	It is associated with transcription through chromatin modification
RSTS	EP300	It functions as histone acetyltransferase that regulates transcription via chromatin remodelling
WDSTS	KMT2A	It is a histone methyltransferase that regulates chromatin-mediated transcription

Biological processes dysregulated in CdLS

Sister chromatid cohesion is not affected in CdLS; 72 73 thus, the molecular mechanisms underlying CdLS remain elusive. Several dysregulated biological pathways have been documented in CdLS, including gene transcription, RNA biogenesis, DNA repair and oxidative stress response (figure 3). 74–78 The cohesin complex, in association with its loader NIPBL and the insulator protein CTCF, regulates enhancer–promoter interaction and is responsible for creating the TADs. 18 20 79 Genome-wide data show that cohesin binds more frequently to promoter and downstream regions and is associated with active gene in patients with CdLS. 74 75 In addition, CdLS cells harbouring SMCA1A pathogenic variants or the partial decrease in NIPBL expression caused a distinctive profile of gene expression changes. 74 75 For this reason, CdLS is now grouped in a growing broader class of neurodevelopmental diseases, called disorders of transcriptional regulation (DTRs). 80 In addition to CdLS, DTRs include genetic diseases resulting from mutations in gene coding proteins for the transcriptional machinery, histone modification and chromatin remodelling. For example, CSS is characterised by facial dysmorphism, developmental delay, cognitive impairment, absence of terminal phalanges and fifth fingernail hypoplasia. 51 CSS is a disorder of chromatin remodelling. In fact, it is caused by mutations in genes belonging to the SWI/SNF chromatin remodeller complex. 58 60 CHOPS syndrome is characterised by round faces and arched eyebrows, intellectual disability, heart defects and short stature. 59 CHOPS patients carry a mutation in AFF4 gene that encodes a component of the super elongation complex. 59 82 Therefore, CHOPS syndrome may be considered a disorder of transcriptional elongation. KBG syndrome is characterised by facial dysmorphism, macrodontia of the upper central incisor, skeletal defects and cognitive impairment. 58 KBG syndrome is caused by mutations in ANKRD11 gene which regulates histone acetylation, 68 thus it is a disorder of histone modifications. Gene transcription regulation is a fundamental biological process involving many aspects of cell life such as the interaction between enhancer and promoter...
by chromatin loop, histone modification and the formation of transcription apparatus. The observation that the number of diseases belonging to DTRs is increasing over the years indicates that perturbations in transcription regulation cause multiple developmental syndromes. In addition to gaining insight into the pathogenetic basis of human disorders, the study of DTRs also contributes to dissecting the molecular mechanism of gene transcription regulation.

The findings that CdLS cells show gene expression dysregulation and no defects in sister chromatid cohesion reveal a dosage-sensitive functional hierarchy of cohesin. Mitotic functions appear to be the least dose sensitive, while gene regulation is more dose sensitive. This view is further supported by the findings that the depletion of cohesin or Nipped-B (homologue of human NIPBL) in Drosophila cells and Nipbl in mice affected expression but did not cause cohesion or chromosome segregation defects.85 86

The notion that gene transcription is dysregulated in CdLS is further supported by studies in animal models.86–88 Up to 1000 genes have been found dysregulated, but interestingly their fold changes were modest74 75 86 87 suggesting that phenotypic consequences arise from multiple collective perturbations in gene expression. The mechanism leading to gene dysregulation in CdLS is still poorly understood. However, pieces of data may help us to set up the puzzle. In fact, though cohesin is preferentially associated with transcription site start, the number of cohesin sites on differentially expressed genes is significantly reduced in CdLS, whereas the reduction is moderate for the non-differentially expressed genes.8 In addition, mutant cohesin displays an increased affinity for chromatin making the cohesin–DNA binding more stable and impairs PolIII recruitment at the promoter regions of dysregulated genes.72 73 It is reasonable to deduce that cohesin mutations cause chromatin modification, leading to global transcription disturbance in CdLS.

Cohesin binds to the ribosomal DNA, plays a role in nucleolus organisation and facilitates protein translation.89 90 It has been shown that rRNA production and protein synthesis are decreased in a zebrafish model of CdLS.91 This finding suggests that cohesin has the potential to affect the functions of the nucleolus, and some of the transcriptional changes observed in CdLS may occur as a result of translational defects.

CdLS cells are characterised by genome instability, as evidenced by the presence of chromosomal rearrangements and aberrations such as translocations, deletions, gaps and breaks.88 89 92 In addition, cells are sensitive to genotoxic drugs such as aphidicolin and mytomycin C, and X-ray exposure,92 93 suggesting that CdLS cells have a reduced ability to tolerate DNA damage, likely as a result of reduced DNA repair capability. These data raise the possibility that mutant cohesin may contribute to DNA damage sensitivity by altering the dynamic association of cohesin with DNA, which in turn impairs the recruitment of proteins involved in DNA repair. Oxidative stress could provide a further contribution to the genome instability detected in CdLS. In fact, it is well known that high levels of oxidative stress promote genome instability, apoptosis and cell growth arrest.94–98 Of note, experimental evidence shows the downregulation of proteins involved in the response to oxidative stress and an increase in global oxidative stress in CdLS cell lines.98

Figure 3 Most of CdLS are caused by mutations in cohesin and cohesin-regulatory genes. These mutations cause alterations in many fundamental biological processes such as transcription, DNA repair and translation, leading to gene expression dysregulation, high levels of oxidative stress and genome instability. A few cases are instead due to mutations in genes coding transcription machinery members or involved in chromatin remodelling and histone modification, which in turn cause gene changes.

Therapeutic approaches in CdLS

The discoveries made in recent years regarding both the identification of CdLS-causative genes and the cellular and molecular characterisation of CdLS cells (figure 3) are the basis for attempting a therapeutic approach in CdLS.

As reported above, CdLS is associated with defects in ribosome biogenesis and translation.91 It has been shown that treatment with l-leucine improves rRNA production, protein synthesis and cell survival and partially rescues developmental defects (embryo length, cartilage formation, and head and eye size) in a zebrafish model of CdLS.91 l-Leucine treatment results in TOR (target of rapamycin) pathway activation through a mechanism that involves the activity of leucyl tRNA synthase and of GTP activating protein97 98. The TOR pathway controls cell proliferation, protein translation and ribosome biogenesis.99–101 Treatment with lithium chloride (LiCl) partially rescues neural development in nipblb knockdown zebrafish embryos and cell death in fibroblasts of patients with CdLS.102 Interestingly, LiCl promotes the activation of both Wnt-b-catenin and TOR signalling pathways.103

CdLS is characterised by several phenotypic markers, including growth delay, short stature and delayed puberty.104 Recently, a girl carrying a de novo splicing mutation in NIPBL gene was treated at 4.3 years of age with recombinant human growth hormone (r-HGH). The r-HGH treatment led to a height gain of 1.6 SD score over 8 years105 suggesting that hormonal therapy may be effective for patients with CdLS with short stature.

The relationship between oxidative stress and genome instability in neurodegeneration and senescence is well established.106–108 Oxidative stress is induced by the accumulation of reactive oxygen species. Interestingly, an intriguing link between oxidative stress and TOR pathway has been described, in particular related to age-dependent cognitive decline, pathogenesis of Alzheimer disease and Down syndrome.109–111 Treatment with antioxidant drugs reduces both the level of oxidative stress and genome instability, leading to the extension of in vitro lifespan of CdLS cell lines. In addition, treatment ameliorates the phenotypic feature of zebrafish modelling of CdLS.92 Antioxidant drugs
Developmental defects

protect the DNA from damage and prevent cell death, as shown in cerebellar cells using N-acetyl-cysteine.112 113 Altogether, these data indicate that antioxidant therapy could provide a means of improving specific phenotypic features of CdLS.

CONCLUSION

There is increasing evidence that CdLS is caused by a combination of cellular damage and cellular phenotype ageing, which collectively contribute to the CdLS phenotype. CdLS therapy is taking its first steps. Chemical or hormonal treatment represents a valuable attempt to identify potential therapeutic targets for future treatment of patients with CdLS, and hopefully clinical trials are now becoming accessible.

Acknowledgements

We acknowledge the financial support of Fondazione Pisa to AM.

Contributors

PS and MMP wrote the paper. AM conceived the structure and content, wrote and revised the manuscript.

Funding

This study was funded by Fondazione Pisa.

Disclaimer

The funder had no involvement.

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Antonio Musio http://orcid.org/0000-0001-7701-6543

REFERENCES

1. Nasmith K, Haring CH. Cohesin: its roles and mechanisms. Annu Rev Genet 2009;43:525–58.
2. Ciclo R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmith K. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 2000;5:243–54.
3. Haring CH, Farcas A-M, Arumugam P, Metzien J, Nasmith K. The cohesin ring concatenates sister DNA molecules. Nature 2008;454:297–301.
4. Royle Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F. E.coli-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 2008;321:563–6.
5. Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Orr I, Gygi SP, Koshland DE. A molecular determinant for the establishment of sister chromatid cohesion. Science 2008;321:566–9.
6. Paroza S, Tanaka T, Hochwagen A, Eisenhaber F, Nasmith K. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 2000;10:1557–64.
7. Losada A, Yokoi T, Hirano T. Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 2005;118:2133–41.
8. Tedeschi A, Wutz G, Huet S, Jirat J, Winisch A, Schübirger E, Davidson IF, Tang W, Cinneros DA, Bhaskara V, Nishiya T, Vaziri A, Wutz A, Ellenberg J, Peters J-M. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nat Commun 2013;4:564–8.
9. Deardorff MA, Bando M, Nakato R, Watanabe E, Ichigo T, Mimano M, Hatake K, Matsuo Y, Clark D, Cole KE, Da Baere E, Decosio C, Donato N, Ernst S, Fancey LJ, Gyftodimou Y, Hirahama K, Mullings M, Ishikawa Y, Jaulin C, Mair K, Miyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Smeulders MC, Takigawa K, Wilde JJ, Willens FIJ, Prigent C, Gillesse-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Horta T, Krantz JS, Krames L, K-ie J, Lajoie S, Kolarich D, Kielbasa S, Tanaka T, Hochwagen A, Shiekhe M, Toyoda M, Shilton J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Kasels L, Rander E, Aiden EL. Cohesin loss eliminates all loop domains. Cell 2017;171:e24305–20.
10. Vian I, Pekovska A, Rao SSP, Kefler-Kwon K-R, Jung S, Baranello H, Huang S-C, El Khatib L, Dose M, Preet N, Sanborn AL, Caralez A, Maman Y, Okansen A, Resch W, Li X, Lee B, Kovalich AL, Tang Z, Nelson S, Di Pierto M, Cheng RR, Machol I, Shilt H, Gilaire ND, Shamim MS, Stamenova EK, Onuchic JN, Ruan Y, Nussenzweig L, Levens D, Aiden EL, Casellas R. The energetics and physiological impact of cohesin exclusion. Cell 2018;175:292–4.
11. Haahrus JvH, van der Weide RH, Blomen VA, Yäähä-Cuno JA, Amendola M, van Ruiten MS, Krijger PHL, Teunissen H, Medema RH, van Steensel B, Brummelkamp TR, de Wit E, Rowland BD. The cohesin release factor WAPL restricts chromatin loop expansion. Cell 2017;169:1288–303.
12. Bando M, Nakato R, Watanabe E, Ichigo T, Mimano M, Hatake K, Matsuo Y, Clark D, Cole KE, Da Baere E, Decosio C, Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirahama K, Mullings M, Ishikawa Y, Jaulin C, Mair K, Miyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Smeulders MC, Takigawa K, Wilde JJ, Willens FIJ, Prigent C, Gillesse-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Horta T, Krantz JS, Krames L, K-ie J, Lajoie S, Kolarich D, Kielbasa S, Tanaka T, Hochwagen A, Shiekhe M, Toyoda M, Shilton J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Kasels L, Rander E, Aiden EL. Cohesin loss eliminates all loop domains. Cell 2017;171:e24305–20.
13. Conte F, Palumbo L, Camerini S, D’Alessio B, Quaia EC, Casellas R, Ilia Aiden EL, Casellas R. The energetics and physiological impact of cohesin exclusion. Cell 2018;175:292–4.
14. Narendra V, Rocha PP, An D, Raviram S, Skok JA, Mazzoni EO, Reinberg D. CTCF establishes discrete functional cohesin domains at the Hox clusters during differentiation. Science 2015;347:1017–21.
15. Conte F, Palumbo L, Camerini S, D’Alessio B, Quaia EC, Casellas R, Ilia Aiden EL, Casellas R. The energetics and physiological impact of cohesin exclusion. Cell 2018;175:292–4.
16. Conte F, Palumbo L, Camerini S, D’Alessio B, Quaia EC, Casellas R, Ilia Aiden EL, Casellas R. The energetics and physiological impact of cohesin exclusion. Cell 2018;175:292–4.
17. Conte F, Palumbo L, Camerini S, D’Alessio B, Quaia EC, Casellas R, Ilia Aiden EL, Casellas R. The energetics and physiological impact of cohesin exclusion. Cell 2018;175:292–4.
58 Muisman SA, Reedeker EJW, Maas SM, Mannens MM, Hennekam RC. High rate of mosaicisms in individuals with Cornelia de Lange syndrome. J Med Genet 2013;50:339–44.

59 Ansari M, Pike J, Perry W, Williamson K, Aldridge R, Meynart AM, Bhan CH, Cipriani AD, Bayramyan AA, Bampou AD, Cooper NS, Carter D, Deshpande H, Bennett C, Nielsen H, Graham JF, Kaur M, Konczal K, Crome CA, Corteville JE, Nowaczyk MJ, Byrne JL, Jackson LG, Krantz ID. Germline mosaicism in Cornelia de Lange Syndrome. Am J Med Genet A 2012;158A:1481–5.

60 Santen GWE, Ate E, Sunyl Alroman P, Giessen C, Niessen M, Kari ST, Snoop G, Snoop J, Peeters EA, Hill-Horsthof F, Wessels MW, den Hollander NS, Ruivenkamp CA, van Ommen GB, Breuning MH, den Dunnen JT, van Haeringen A, Kriek M. Developmental defects

Sarogni P, et al. J Med Genet 2020;57:289–295. doi:10.1136/jmedgenet-2019-106277

Developmental defects
Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Cornelia de Lange syndrome. *Nat Genet* 2012;44:379–80.

Tsurusaki Y, Okamoto N, Ohashi H, Koshio T, Imai Y, Hibi-Kyo Y, Kaname T, Naritomi K, Kawase H, Waku K, Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Iishi T, Nagai T, Shirina M, Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saito H, Miyake N, Matsunoto M. Mutations affecting components of the SWI/SNF complex cause Cornelia de Lange syndrome. *Nat Genet* 2012;44:376–8.

Hempel A, Pagnotterna AT, Blyth M, Mansour S, McConnell V, Kou I, Ikegawa S, Tsurusaki Y, Matsunoto N, Lo-Castro A, Plessis G, Albrecht B, Battaglia A, Taylor JC, Howard MT, Keays D, Shaloh AS, Kuhl SJ, Kini U, McNellin A, DDD Collaboration. Deletions and de novo mutations of 50X?T are associated with a neurodevelopmental disorder with features of Cornelia de Lange syndrome. *J Med Genet* 2013;50:152–2.

Bramswig NC, Calusieru O, Lüeddecke-H, Boulduc F, Noel NCL, Wieland T, Survoy HM, Christen H-J, Engels H, Strom TM, Wieczorek D. Heterozygosity for ARID2 loss-of-function mutations in individuals with a Cornelia de Lange syndrome-like phenotype. *Hum Genet* 2017;136:297–305.

Revenkova E, Focarelli MJ, Susini L, Paulis M, Bassi MT, Mannini L, Frattini A, Delia D, Krantz I, Vezzoni P, Jezzoni P, Russo S, Aragon L, Amon A. Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. *Mol Cell Biol* 2011;31:10065–5.

Bosse T, Lee KK, Lu S, Xu B, Harris B, Slaughte B, Unruh J, Garrett A, McDowell W, Box A, Li H, Peak A, Ramachandran S, Seidel C, Gerton J. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. *Plos Genet* 2012;8:e1002749.

Xu B, Sowa N, Caderas ME, Gerton J. L-Leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. *Hum Mol Genet* 2015;24:1540–55.

Cukrow D, Newman TAC, Leask M, Beeke L, Saroggi P, Patino A, Kline AD, Krantz ID, Horsfield JA, Musio A. Antioxidant treatment ameliorates phenotypic features of SMCA1-mutated Cornelia de Lange syndrome in vitro and in vivo. *Hum Mol Genet* 2018;27:3022–31.

Vassone MG, Elghalbi-Maghreni E, Meijers M, Schouten P, Godtfred H, Bhuylau ZA, Redeker EJ, Mannens MM, Mullenders LH, Pastink A, Darouss F. Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. *Hum Mol Genet* 2007;16:1478–87.

Gorini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. *Nat Rev Drug Discov* 2012;13:931–47.

Birch-Machin MA, Bowman A. Oxidative stress and ageing. *Br J Dermatol* 2012;167:58–69.

Chamorro Angel, Dinargu U, Urea X, Planas MA. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. *Lancet Neurol* 2016;15:869–81.

Bonifils G, Jaenquel M, Bontron S, Ostorocz C, Ungermand C, De Vigilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. *Mol Cell* 2012;46:105–10.

Han HS, Jeong Y, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. *Cell 2012;149:410–24.

Schmelze T, Hall MN. Tor, a central controller of cell growth. *Cell 2000;103:233–62.

Holm MK, Ballaf BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interaction and ordered phosphorylation events. *Cell 2007;130:659–80.

Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4EBP1/eukaryotic translation initiation factor 4e. *Cell Mol Bio 2004;24:200–16.

Pistocchi A, Fazio G, Cereda A, Ferrari I, Bettini L, Messina G, Cotelli F, Bondi A, Sellicomi A, Massa V. Cornelia de Lange syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patient fibroblasts. *Cell Death Dis* 2013;4:e4866.

Hung J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein FS. Maintenance of mammalian stem cells through regulation of Wnt and mTOR pathways. *Nat Med* 2012;18:1778–85.

Kline AD, Grados M, Spooner P, Levy HP, Biaglow ND, Scochell C, Rampolla J, Pullen P, Clemens DK, Krantz ID, Fischer P, Schiestl RH. NIPBL haploinsufficiency regulates canonical and non-canonical Wnt pathway in fetal and adult mammalian tissues. *J Clin Invest* 2012;123:366–70.

Lee Y, McKinnon PJ. Responding to DNA double strand breaks in the nervous system. *Neuroscience* 2007;145:1365–74.

Falcone G, Mazzola A, Michelini F, Bossi C, Censi F, Bifuli MG, Minngetti L, Floridia G, Federico M, Musio A, Crescenzi M. Cytogenetic analysis of human cells reveals specific patterns of DNA damage in replicative and oncogene-induced senescence. *Aging Cell* 2013;12:312–5.

d’Adda di Fagagna F. Liu on a break: cellular senescence as a DNA-damage response. *Nat Rev Cancer 2008;8:512–22.

Butterfield DA, Di Domenico F, Swomley AM, Head E, Perluigi M. Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overloads in Down’s syndrome and Alzheimer’s disease brain. *Biochim J* 2014;463:177–89.

Di Domenico F, Barone E, Perluigi M, Butterfield DA. The triangle of death in Alzheimer’s disease brain: the aberrant cross-talk among energy metabolism, mammalian target of rapamycin signaling, and protein homeostasis revealed by redox proteomics. *Antioxid Redox Sign* 2017;26:364–87.

Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. *Biochim Biophys Acta* 2014;1842:1693–706.

Reine L, Fischer E, Schiestl RH. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in ATM-deficient mice. *Cancer Res* 2004;64:1548–53.

Arakawa M, Ushimaru N, Osada N, Oda T, Ishige K, Ito Y. N-Acetylcysteine selectively protects cerebellar granule cells from 4-hydroxynonenal-induced cell death. *Neurosci Res* 2006;55:255–63.

Kanno T, Kanno Y, LeRoy G, Campos E, Sun H-W, Brooks SR, Vahedi G, Heightman TD, Garcia B, Reinberg D, Seibertn U, O’Shea JI, Ozato K. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. *Nat Struct Mol Biol* 2014;21:1047–57.
Developmental defects

115 Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. *Front Mol Neurosci* 2017;10:243.

116 Zhang A, Yeung PL, Li C-W, Tsai S-C, Dinh GK, Wu X, Li H, Chen JD. Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. *J Biol Chem* 2004;279:33799–805.

117 Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YI, Zhang W, Jiang J, Loh Y-H, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong R, Shahab A, Ruan Y, Bourque G, Sung W-K, Clarke ND, Wei C-L, Ng H-H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. *Cell* 2008;133:1106–17.

118 Nakamura T, Mori T, Tada S, Krajewska W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. *Mol Cell* 2002;10:1119–28.