Aspectos radiológicos na tomografia computadorizada determinantes no diagnóstico da tuberculose pulmonar em lactentes imunocompetentes

Radiological aspects in computed tomography as determinants in the diagnosis of pulmonary tuberculosis in immunocompetent infants

Teresa Cristina Sarmet dos Santos1,2,a, Sérgio Setúbal1,b, Alair Augusto Sarment Moreira Damas dos Santos1,c, Marcia Boechat2,d, Claudete Aparecida Araújo Cardoso3,e

1. Universidade Federal Fluminense (UFF) – Hospital Universitário Antônio Pedro (HUAP), Niterói, RJ, Brasil. 2. Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF/Fiocruz), Rio de Janeiro, RJ, Brasil. 3. Universidade Federal Fluminense (UFF) – Faculdade de Medicina, Departamento Materno-Infantil, Niterói, RJ, Brasil.

Correspondência: Dr. Alair Augusto Sarment Moreira Damas dos Santos. Hospital Universitário Antônio Pedro – Radiologia. Rua Marquês de Paraná, 303, 2º andar, Centro. Niterói, RJ, Brasil. 24033-900. E-mail: alairsarmet@globo.com.

a. https://orcid.org/0000-0002-0032-1328; b. https://orcid.org/0000-0001-5887-493X; c. https://orcid.org/0000-0002-8640-3657; d. https://orcid.org/0000-0002-8128-5073; e. https://orcid.org/0000-0002-7638-6814.

Recebido para publicação em 19/2/2018. Aceito, após revisão, em 16/4/2018.

Como citar este artigo:
Santos TCS, Setubal S, Santos AASMD, Boechat M, Cardoso CAA. Aspectos radiológicos na tomografia computadorizada determinantes no diagnóstico da tuberculose pulmonar em lactentes imunocompetentes. Radiol Bras. 2019 Mar/Abr;52(2):71–77.

Resumo Objetivo: Descrever achados radiológicos na tomografia computadorizada (TC) de tórax de crianças imunocompetentes menores de 36 meses com tuberculose pulmonar.

Materiais e Métodos: Esta série de casos foi desenvolvida na cidade do Rio de Janeiro, no período de janeiro de 2004 a julho de 2013, onde 20 pacientes foram submetidos à TC após a realização de radiografias de tórax que não definiram o diagnóstico.

Resultados: Todos os participantes tiveram linfonodomegalias e consolidações. Em 15 casos (75%) as consolidações tiveram atelectasia associada. Escavações pulmonares ocorreram em 10 casos (50%), havendo consolidações em 7 (35%). Áreas de escavação e destruição parenquimatosa em fase inicial não foram observadas nas radiografias simples.

Conclusão: A apresentação radiológica de tuberculose pulmonar em lactentes não foi a mesma descrita em crianças maiores e adultos. A TC é um método aplicável para o diagnóstico precoce de tuberculose pulmonar em lactentes imunocompetentes, permitindo a rápida instituição de tratamento específico, que é crucial para interromper a progressão da doença e prevenir suas complicações locais e sistêmicas.

Unitermos: Tuberculose pulmonar; Crianças; Tomografia computadorizada.

Abstract Objective: To describe the chest computed tomography (CT) findings in immunocompetent children under 36 months of age with pulmonary tuberculosis.

Materials and Methods: This was a descriptive case series conducted in the city of Rio de Janeiro, Brazil, between January 2004 and July 2013, involving 20 young children who underwent CT after undergoing chest X-rays that did not provide a definitive diagnosis.

Results: All of the participants had lymph node enlargement and consolidations. In 15 cases (75%) the consolidations were accompanied by atelectasia. Pulmonary cavitation was seen in 10 cases (50%), and cavitation within consolidations was seen in 7 (35%). The areas of cavitation and parenchymal destruction were not seen on conventional chest X-rays.

Conclusion: The radiological presentation of pulmonary tuberculosis in young children differs from that described in older children and adults. CT is an effective method for the early diagnosis of pulmonary tuberculosis in immunocompetent infants, allowing the rapid institution of specific treatment, which is crucial for halting disease progression, as well as for preventing local and systemic complications.

Keywords: Tuberculosis, pulmonary; Children; Computed tomography.

INTRODUÇÃO

A tuberculose permanece um grave problema de saúde pública mundial. De acordo com a Organização Mundial da Saúde, é a doença infecciosa que mais mata no mundo (1). Trata-se de uma importante causa de morbimortalidade em crianças moradoras em áreas endêmicas da doença (2,3). Somente em 2016, cerca de 10.400.000 casos novos de tuberculose foram diagnosticados no mundo, com aproximadamente 1.700.000 mortes no mesmo período em consequência da doença. O Brasil, no mesmo ano, apresentou 66.796 casos novos, ocupando a 18ª posição em carga de tuberculose, representando 0,9% dos casos estimados no mundo e 33% dos estimados nas Américas. O Rio de Janeiro é o estado com a segunda maior taxa de incidência de
tuberculose no Brasil, com 61,2/100.000 habitantes e com a maior taxa de mortalidade do país, chegando a 5/100.000 habitantes⁴.

A tuberculose é uma infecção das vias aéreas e a maioria das crianças se infecta no domicílio após contato com pais ou cuidadores com doença ativa. Os adultos com tuberculose podem infectar crianças em 30–40% desses casos, mesmo quando apresentam infecções paucibacilares com resultado negativo de escarro⁵. No entanto, grandes cavernas pulmonares são o fator determinante mais importante da contagiosidade, uma vez que a alta concentração de oxigênio nessas lesões favorece uma intensa multiplicação dos bacilos e transforma o paciente com tuberculose em importante fonte de contaminação ambiental⁶,⁷. A extensão do envolvimento pulmonar é um fator importante para a contagiosidade, em relação à carga bacteriana, à intensidade e frequência da tosse e ao número de cavidades que podem determinar a propagação do bacilo. Em indivíduos sem contato prévio com o bacilo, a infecção primária pode progredir de forma subclínica. Esta infecção primária é chamada de tuberculose primária quando se manifesta como uma doença⁸. A maioria dos casos de tuberculose pulmonar em crianças é primária⁹–¹⁴.

Dada a dificuldade em encontrar bacilos em espécimes clínicos coletados de crianças, o diagnóstico é frequentemente baseado na prova tuberculínica e evidências epidemiológicas, clínicas e radiológicas³. Na infância, o diagnóstico de tuberculose é um grande desafio e as crianças frequentemente apresentam achados clínicos inespecíficos e ou radiológicos não indicativos. Por todas essas razões, o diagnóstico de tuberculose nessa faixa etária depende de uma anamnese meticulosa, uma busca completa de contatos e da contribuição de imagens radiológicas³,⁶,⁹,¹². Mesmo na ausência de prova tuberculínica positiva, a Organização Mundial da Saúde recomenda que a tuberculose seja diagnosticada por história de contato e radiografia. No entanto, as radiografias de tórax são úteis principalmente para diagnosticar ou descartar a presença de tuberculose pulmonar, de acordo com os critérios adiante citados. Crianças com queixas respiratórias e/ou sintomas de tuberculose pulmonar devem ser submetidas a um diagnóstico evidenciado por prova tuberculínica positiva; e regressão de sinais radiológicos após a instituição de tratamento específico. O diagnóstico de tuberculose ativa é realizado radiograficamente por dois anos em média. As TCs podem ser úteis na identificação de lesões de tuberculose pulmonar, diagnosticar e monitorar a evolução do tratamento.

MATERIAIS E MÉTODOS

Trata-se de uma série de 20 casos consecutivos de tuberculose pulmonar em crianças imunocompetentes com idades entre 1 e 36 meses atendidas em dois hospitais públicos no período de janeiro de 2004 a julho de 2013. Os critérios de inclusão foram: realização de radiografia de tórax para diagnóstico eTC nos dois hospitais; idade inferior ou igual a 36 meses; diagnóstico de tuberculose pulmonar, de acordo com os critérios adiante citados. Crianças com qualquer forma de imunossupressão (HIV/AIDS, doenças imunoproliferativas, drogas imunossupressoras) foram excluídas do estudo. O estudo foi aprovado pelo comitê de ética em pesquisa em seres humanos das duas instituições, atendendo as normas éticas vigentes.

Considerou-se diagnóstico de tuberculose quando foram cumpridos dois ou mais dos seguintes critérios: cultura positiva de lavado broncoalveolar ou lavado gástrico; história de contato com um adulto com tuberculose ativa; prova tuberculínica positiva; e regressão de sinais radiológicos e clínicos após a instituição de tratamento específico. Em nenhum dos pacientes foram encontradas outras causas possíveis para os achados clínicos e radiológicos. Em todos os pacientes houve remissão completa dos sintomas e melhora radiológica após o início do tratamento da tuberculose pulmonar.

Dezenove participantes foram vacinados com a vacina BCG. A prova tuberculínica foi realizada em todos os participantes e foi positiva em 13 (65%). Dez pacientes (50%) tinham história positiva de contato com indivíduos com tuberculose pulmonar ativa.

Todos os participantes tinham radiografia simples de tórax em posteroanterior como avaliação inicial e foram seguidos radiograficamente por dois anos em média. As TCs foram realizadas entre 1 e 10 dias (média: 6 dias) após a radiografia de tórax. As indicações de realização das TCs incluíram: a presença de achados pouco usuais, como lesões pseudotumorais com aspecto de massa, nódulos difusamente distribuídos; confirmar ou encontrar linfonodomegalias; detectar ou avaliar complicações, como estreitamento de vias aéreas superiores, atelectasias, enfisemas,
tuberculose pleural ou pericárdica; e ainda em pacientes que vieram encaminhados com diagnóstico de malforma-
cação adenomatoide cística, tumor de mediastino, ou com-
plicações neurooclusivas infecciosas a esclarecer.

Todas as tomografias do tórax foram obtidas por aqui-
sição volumétrica e com colimação de 5 mm, após admi-
nistração intravenosa de contraste iodado para avaliação do
mediastino, sendo obtidos cortes de 0,6–1 mm de espessura e
e com intervalo de 8–12 mm, com técnica de alta resolu-
cão para avaliação do parênquima pulmonar. Seguindo os
princípios as low as reasonably achievable, que representa a
adesão obrigatória ao princípio de manter as doses de ra-
diação dos pacientes e do pessoal técnico tão baixas quanto
razoavelmente possível, os parâmetros de pico de quilovol-
tagem (kVp) e miliamperagem (mAs) foram ajustados para
120–100 kVp e entre 30 e 100 mAs, respectivamente27.
A sedação foi realizada quando necessário, com uma única
dose de 80 mg/kg de hidrato de cloral como solução oral a
16%, sem nenhuma complicação.

Foram revisadas todas as radiografias de tórax e, em
seguida, as TCs, e enumerados todos os achados radioló-
gicos, tendo em vista os termos radiológicos descritos pela
literatura brasileira28 de acordo com seu tipo, número,
localização e características. Foram registrados, também,
seu tipo e a frequência das complicações locais e sistêmicas.

Todas as imagens foram analisadas de forma independente
por dois radiologistas e os resultados discordantes foram re-
solvidos por consenso. Foram avaliados os seguintes dados:
idade e sexo; múltiplos achados radiológicos simultâneos;
consolidação/atelectasia; escavação; nódulos (tamanho e
tipo); opacidades de vidro fosco; linfonodomegalias hiliares
ou mediastinais com ou sem calcificação; doença do espaço
aéreo; sinais de obstrução das vias aéreas superiores; com-
plicações locais; complicações sistêmicas.

RESULTADOS

Vinte crianças imunocompetentes com tuberculose pulmonar – 12 meninos e 8 meninas; 1 a 36 meses de
idade (média de 18 meses) – foram avaliadas durante o
período de estudo (Tabela 1). Em todos os 20 casos os
achados radiológicos foram múltiplos e variados, sendo bi-
laterais em 90%.

Todos os participantes apresentaram linfonodomega-
lias e este foi o principal achado radiológico (Figura 1). Em
oito pacientes (40%) as linfonodomegalias estavam calcifi-
cadas e em oito (40%) (Figura 2) causaram compressão
brônquica direta. A frequência de envolvimento da cadeia
paratraqueal direita foi 95%. As linfonodomegalias pré-
traqueais foram observadas em 15 participantes (75%) e
as infracarinais em 13 (65%). Em 14 (70%) crianças os
linfonodos alterados apresentaram centro hipodeno (Fi-
gura 1) após infusão de contraste, sugerindo edema grave
ou necrose.

Consolidações do espaço aéreo com ou sem compo-
nente atelectásico foram observadas em todos os 20 pa-
cientes (Figuras 3 e 4). Uma consolidação configurando
massa (forma pseudotumoral) foi observada em apenas um
caso (Figura 5).

Escavações foram vista em 10 pacientes (50%) (Figu-
ras 2, 3, 4, 6 e 7) e foram diferentes em alguns aspectos.

\[\text{Tabela 1—Aspectos na TC em lactentes imunocompetentes com tuberculose pulmonar.} \]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Caso} & \textbf{Idade} & \textbf{Sexo} & \textbf{Achados múltiplos} & \textbf{Achados bilaterais} & \textbf{Consolidação/} & \textbf{Escavação} & \textbf{Nódulos} & \textbf{Linfonodomegalia} & \textbf{Aprisionamento} & \textbf{Obstrução} \\
\hline
\textbf{nº (meses)} & & & & & \textbf{atelectasia (n)} & \textbf{(n)} & \textbf{Descrição dos nódulos} & \textbf{(n)} & \textbf{aéreo} & \textbf{dias aéreas} \\
\hline
1 & 8 & F & Sim & Sim & 3 & 3 & Sim & Centrilobular & Sim & 5 & Centro hipodeno & Sim & Sim \\
2 & 3 & F & Sim & Sim & 2 & 2 & Sim & Centrilobular & Sim & 5 & Centro hipodeno & Sim & Sim \\
3 & 12 & M & Sim & Sim & 1 & - & - & - & - & - & - & - & - \\
4 & 12 & M & Sim & Sim & 2 & - & - & - & - & - & - & - & - \\
5 & 3 & M & Sim & Sim & 2 & 1 & - & - & Sim & 6 & Centro hipodeno & Sim & - \\
6 & 5 & M & Sim & Sim & 6 & 1 & Sim & Centrilobular & - & 4 & Calcificações & Sim & Sim \\
7 & 5 & M & Sim & Sim & 3 & 3 & Sim & Miliar & - & 6 & Centro hipodeno & Sim & - \\
8 & 24 & M & Sim & Sim & 2 & - & - & - & - & - & - & - & - \\
9 & 6 & F & Sim & Sim & 1 & 1 & Sim & Centrilobular & - & 3 & Calcificações & Sim & - \\
10 & 8 & F & Sim & Sim & 3 & - & - & - & Sim & 6 & Centro hipodeno & Sim & Sim \\
11 & 21 & F & Sim & Sim & 2 & 2 & Sim & Centrilobular & Sim & 6 & Calcificações & Sim & - \\
12 & 28 & M & Sim & Sim & 3 & - & Sim & Centrilobular & Sim & 2 & Centro hipodeno & - & Sim \\
13 & 36 & M & Sim & Sim & 2 & - & Sim & - & Sim & 4 & Centro hipodeno & Sim & Sim \\
14 & 3 & F & Sim & Sim & 4 & 2 & - & - & Sim & 6 & Centro hipodeno & Sim & Sim \\
15 & 1 & M & Sim & Sim & 3 & 2 & Sim & Centrilobular & Sim & 4 & Centro hipodeno & Sim & Sim \\
16 & 5 & M & Sim & Sim & 3 & - & Sim & Centrilobular & - & 2 & Centro hipodeno & - & - \\
17 & 7 & F & Sim & Não & 2 & 1 & - & - & - & - & - & - & - \\
18 & 12 & M & Sim & Sim & 1 & - & - & - & - & - & - & - & - \\
19 & 22 & F & Sim & Sim & 2 & 2 & - & - & - & - & 3 & Calcificações & Sim & Sim \\
20 & 5 & M & Sim & Não & 2 & 2 & - & - & - & - & 4 & Centro hipodeno & Sim & Sim \\
\hline
\end{tabular}

F, feminino; M, masculino.

Radiol Bras. 2019 Mar/Abr;52(2):71–77
Figura 1. Lactente, oito meses. TC com contraste (janela para partes moles) demonstrando linfonodomegalia retrocaval paratraqueal direita, com centro hipodeno e realce periférico pelo meio de contraste, inferindo centro necrótico.

Figura 2. Lactente, cinco meses. TC sem contraste (janela para partes moles) mostrando consolidação com broncogramas aéreos e escavação de per-meio localizada no segmento basal posterior do lobo inferior direito. Linfonodomegalias infracarinais com calcificações.

Figura 3. TC com janela para parênquima pulmonar mostrando consolidação com componente atelectásico do lobo inferior direito, com área de escavação. Opacidade em “vidro fosco” no lobo inferior esquerdo.

Figura 4. Lactente, três meses. TC com janela para parênquima pulmonar demonstrando lesões bolhosas, de características expansivas, no lobo inferior direito. Consolidação com componente atelectásico no lobo inferior esquerdo. Nota: Presença de artefatos de movimentos respiratórios na região retroesternal.

Figura 5. TC com contraste (janela para partes moles). Forma de apresentação pseudotumoral da tuberculose pulmonar em lactente de três meses. Linfonodomegalias hipodensas de características expansivas – pré-traqueais, paratraqueal direita, intercavo-aórtica – configurando massa, com compres-são parcial do brônquio fonte direito. Consolidações nos lobos superior e no segmento apical do lobo inferior esquerdo.

Em uma criança de seis meses houve uma escavação e opacidades retratóis acompanhadas de sinais de doença pulmonar crônica (faveolamento). Todas as escavações parenquimatosas foram associadas a achados radiológicos consistentes com consolidação pneumônica e disseminação intrabronquica (nódulos do espaço aéreo, nódulos cértrilobulares e aspecto de árvore em brotamento) e provavelmente resultaram da progressão a partir de um foco primário (Ghon). Em um paciente as escavações evoluíram para extensas lesões bolhosas lobares (Figura 4) e houve complicação sistêmica (meningoencefalite).

Nove pacientes (45%) apresentaram nódulos pulmonares disseminados com diâmetro entre 5 e 10 mm em quatro
19 pacientes (95%) o tratamento foi instituído imediatamente após a TC. Em apenas um participante o diagnóstico radiológico foi feito após o início do tratamento medicamentoso.

DISCUSSÃO

Crianças com tuberculose apresentam diferentes respostas fisiopatológicas e imunológicas quando comparadas com adultos. A maioria dos casos de tuberculose em crianças é primária e geralmente evolui com gânglios linfáticos aumentados e sem escavação. No entanto, em alguns casos de tuberculose infantil primária se desenvolvem escavações, causando confusão com pós-primária, reativação tardia ou tuberculose de tipo adulto. Portanto, o único preditor preciso da aparência radiográfica é a competência imune do paciente e não o tempo de aquisição da tuberculose. O conhecimento sobre a progressão fisiopatológica da doença é essencial para a compreensão da patogênese dos achados radiográficos.

Exames de imagem têm recebido destaque na literatura radiológica recente. Apesar de haver vários estudos sobre as imagens radiológicas da tuberculose infantil, nosso estudo é comparável apenas aos que utilizaram TC e analisaram a mesma faixa etária. Entre estes, os estudos de Delacour et al., Kim et al., Pereira et al. e Peng et al. são os mais parecidos, embora o estudo de Pereira et al. tenha analisado apenas quatro casos e o de Peng et al. tentou estabelecer diferenças entre imagens de tuberculose e pneumonia adquirida na comunidade. Nossos achados radiológicos foram semelhantes aos observados nesses estudos, exceto pelo achado de um maior número de casos com lesões escavadas.

A linfonodomegalia é muito comum na tuberculose infantil e muitas vezes se manifesta por compressão extrínseca das vias aéreas, uma complicaçao conhecida da linfadenopatia na tuberculose primária. Se a via aérea sofrer uma obstrução parcial, pode resultar um efeito variar, levando a uma hiperinflação distal, e se a obstrução for completa, o ar distal é reabsorvido, causando colapso do parênquima pulmonar e podendo haver necrose. Na tuberculose, é frequente a presença de linfonodos calcificados ou com necrose central, mas esses linfonodos são de difícil visualização em radiografias convencionais. Além disso, as radiografias simples são pouco sensíveis para detectar linfonodomegalias, que são os achados mais importantes e frequentes da tuberculose infantil. No presente estudo foram observadas linfonodomegalias em 100% dos casos, dos quais 35% calcificados. Em 40% desses casos, a linfadenopatia causou compressão brônquica. Em 95% dos casos esses linfonodos apresentaram necrose central. A obstrução das vias aéreas superiores pela compressão brônquica direta ou indireta (70%) também foi achado frequente. A frequência das linfonodomegalias e suas complicações está de acordo com o observado nos estudos citados e apoia a importância do uso da TC nesse contexto clínico.
Em vários estudos\(^{(3,5,6,8,9,11)}\) as consolidações foram o achado mais comum em imagens obtidas de crianças com tuberculose. O envolvimento de uma via aérea por linfadenopatia pode ocasionar disseminação da doença e desenvolvimento de consolidações broncopenumônicas. Os estudos citados indicam a importância, nessa faixa etária, de opacidades parenquimatosas persistentes que não melhoram após o uso de antibiótico. Existem também estudos\(^{(8,21,36)}\) que descrevem a presença de lesões pseudotumorais com aspecto de massa, sem linfonedomegalgia satélite, em crianças menores de dois anos, mas isso é considerado incomum. Todos os casos analisados no presente estudo tiveram consolidações. O padrão radiológico de consolidação lobar foi visto em 15 casos (75%). Consolidação com aspecto pseudotumoral, com efeito de massa, foi observada em um caso.

Cálculos parenquimatosos foram observados em apenas dois dos casos analisados no presente estudo, antes da instituição de tratamento específico. Cálculos parenquimatosos também foram observados em três dos quatro casos estudados por Pereira et al.\(^{(9)}\), também antes do tratamento específico. Na maioria dos estudos\(^{(5,10,21)}\) as calcificações foram observadas somente após seguimento de 10 meses ou mais. Marais et al.\(^{(2)}\) afirmam que as calcificações de crianças em idade pré-escolar podem ser observadas após um tempo relativamente curto e acreditam que seu surgimento pode estar relacionado à resposta imune, à progressão da doença e ao início do tratamento específico. Eles acreditam que essa constatação poderia, portanto, ser utilizada como um critério de diagnóstico adicional para tuberculose. Cálculos linfonodais e parenquimatosos ocorreram em 40% dos nossos casos e provavelmente estavam relacionadas a uma resposta imune após maior duração da doença, podendo ser considerado outro critério de diagnóstico. A associação com linfadenopatia, necrose central e sinais de disseminação broncogênica reforça o diagnóstico de tuberculose.

É comum que as escavações apareçam no interior das consolidações. As TCSs de tórax geralmente demonstram áreas de escavação e destruição parenquimatosas não vistas em radiografias simples\(^{(4)}\). No estudo de Kim et al.\(^{(6)}\), por exemplo, as radiografias apresentaram escavações dentro das lesões parenquimatosas em 2 dos 25 indivíduos (8%). No entanto, foram observadas áreas multifocais de baixa atenuação dentro das consolidações em 7 dos 17 pacientes (41%) submetidos a TC, sendo as escavações bem definidas em 5 dos 17 pacientes (29%) desse mesmo estudo, e em um paciente a escavação evoluiu para extensas lesões bolhosas bilaterais, finalizando em óbito\(^{(6)}\).

As escavações são classicamente consideradas manifestação de tuberculose pós-primária ou de tipo adulto, mas nas crianças\(^{(4)}\), dois outros mecanismos possíveis estão envolvidos na formação de escavações: a disseminação gradual do foco de Ghon e o surgimento destas decorrente de obstrução bronquônica por gânglios linfáticos. Houve escavações em 63% das crianças com pneumonía tuberculosa analisadas no estudo de Griffith-Richards et al.\(^{(5)}\). Dez dos 20 casos no presente estudo tiveram escavações. Em sete (35%) havia escavações em meio a consolidação. Em um lactente de três meses havia lesões bolhosas expansivas, com diagnóstico inicial de malformação adenomatoide cística.

A tuberculose miliar, uma das formas mais graves de tuberculose, é secundária à disseminação hematogênica de bacilos, pode ocorrer em qualquer momento da progressão da doença e corresponde à incapacidade de controlar a infeção. Essas lesões podem, portanto, coexistir com elementos do complexo primário, opacidades maiores ou escavações\(^{(24)}\). A tuberculose pulmonar é uma doença potencialmente fatal se não for diagnosticada e tratada precocemente. O diagnóstico pode ser difícil, já que os sintomas iniciais são inespecíficos e os achados típicos das radiografias do tórax parecem relativamente tardios\(^{(37)}\). A tuberculose miliar é intersticial, com semelhanças clínicas, radiológicas e fisiológicas com outras doenças do gênero, o que implica problemas para o diagnóstico precoce. Isto é de grande importância, porque a tuberculose miliar é uma doença tratável, enquanto muitas outras doenças pulmonares intersticiais não são, ou têm tratamentos muito mais difíceis\(^{(38)}\).

Complicações locais e sistêmicas da tuberculose pulmonar, observadas em 40% e 25% de nossos casos, respectivamente, são alertas para a potencial gravidade dessa doença. A TC é um método de valor inestimável nesse contexto e é importante que radiologistas e pediatras estejam atentos à importância desses achados em um bebê imunocompetente, e obrigatoriamente devem ser correlacionados com a história familiar. O diagnóstico precoce e a instituição urgente de tratamento adequado são cruciais para parar a progressão da doença e prevenir suas potenciais complicações locais e sistêmicas, que podem ser irreversíveis.

Agradecimentos
À médica pneumologista pediátrica da Universidade Federal Fluminense professora Selma Maria de Azevedo Sías, pelo apoio na seleção dos participantes do estudo.

REFERÊNCIAS
1. World Health Organization. Global tuberculosis report. Geneva: WHO; 2017. [cited 2017 Dec 5]. Available from: http://apps.who.int/iris/bitstream/10665/259366/1/9789241565516-eng.pdf?ua=1.
2. Marais BJ, Gie RP, Hesseling AC, et al. A refined symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatr. 2006;118:e1350–9.
3. Graham SM, Cuevas LE, Jean-Philippe P, et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: an update. Clin Infect Dis. 2015;61 Suppl 3:S179–87.
4. Secretaria de Estado de Saúde do Rio de Janeiro. Tuberculose. Boletim tuberculose 2014. [cited 2017 Dec 5]. Available from: http://www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=wXJ%2BKouHyU%3D.
5. Griffith-Richards SB, Goussard P, Andronikou S, et al. Cavitating pulmonary tuberculosis in children: correlating radiology with pathogenesis. Pediatr Radiol. 2007;37:798–804.
Santos TCS et al. / Aspectos tomográficos da tuberculose pulmonar em lactentes

6. Kim WS, Cho JJ, Cheon JE, et al. Pulmonary tuberculosis in infants: radiographic and CT findings. AJR Am J Roentgenol. 2006;187:1024–33.

7. Peng SS, Chan PC, Chang YC, et al. Computed tomography of children with pulmonary Mycobacterium tuberculosis infection. J Formos Med Assoc. 2011;110:744–9.

8. Jeong YJ, Lee KS. Pulmonary tuberculosis: up-to-date imaging and management. AJR Am J Roentgenol 2008;191:834–44.

9. Pereira BAF, Macêdo SGD, Nogueira RA, et al. Tomographic findings of lobar consolidation in primary pulmonary tuberculosis. Radiol Bras. 2009;42:109–13.

10. Theron S, Andronikou S. Comparing axillary and mediastinal lymphadenopathy on CT in children with suspected pulmonary tuberculosis. Pediatr Radiol. 2005;35:854–8.

11. Marais BJ, Gie RP, Schaaf HS, et al. A proposed radiological classification of childhood intra-thoracic tuberculosis. Pediatr Radiol. 2004;34:886–94.

12. Amadio J, Abramson S, Berdon W. Primary pulmonary tuberculosis in infancy: a resurgence in the urban United States. Pediatr Radiol. 1986;16:185–9.

13. Lamont AC, Cremin BJ, Pelteret RM. Radiological patterns of pulmonary tuberculosis in the paediatric age group. Pediatr Radiol. 1986;16:2–7.

14. Kim WS, Moon WK, Kim IO, et al. Pulmonary tuberculosis in children: evaluation with CT. AJR Am J Roentgenol. 1997;168:1005–9.

15. Delacourt C, Mani TM, Bonnerot V, et al. Computed tomography with normal chest radiograph in tuberculous infection. Arch Dis Child. 1993;69:430–2.

16. Schaaf HS, Gie RP, Beyers N, et al. Tuberculosis in infants less than 3 months of age. Arch Dis Child. 1993;69:371–4.

17. Vallejo JG, Ong LT, Starke JR. Clinical features, diagnosis, and treatment of tuberculosis in children. Pediatrics. 1994;93:1–7.

18. Jamieson DH, Cremin BJ. High resolution CT of the lungs in acute disseminated tuberculosis and a pediatric radiologie perspective of the term “miliary”. Pediatr Radiol. 1993;23:380–3.

19. Bourlière-Najean B, Boespflug MD, Dubus JC, et al. Thoracic standard radiology and X-ray computed tomography in mediastino-pulmonary tuberculosis in infants. J Radiol. 1995;76:347–52.

20. Gómez-Pastrena Durán D, Caro Mateo P, Torronteras Santiago R, et al. Computed tomography and polymerase chain reaction in tuberculosis infection in childhood. Arch Bronconeumol. 1996;32:500–4.

21. Kim KI, Lee JW, Park JH, et al. Pulmonary tuberculosis in five young infants with nursery exposure: clinical, radiographic and CT findings. Pediatr Radiol. 1998;28:836–40.

22. Leung AN, Müller NL., Pineda PR, et al. Primary tuberculosis in childhood: radiographic manifestations. Radiology. 1992;182:87–91.

23. Uzun K, Karahan OI, Dogan S, et al. Chest radiography and thoracic computed tomography findings in children who have family members with active pulmonary tuberculosis. Eur J Radiol. 2003;48:258–62.

24. Van Hest R, De Vries G, Morbano G, et al. Cavitating tuberculosis in an infant: case report and literature review. Pediatr Infect Dis J. 2004;23:667–70.

25. Skevaki CL, Kafetzis DA. Tuberculosis in neonates and infants: epidemiology, pathogenesis, clinical manifestations, diagnosis, and management issues. Paediatr Drugs. 2005;7:219–34.

26. González NE, Pawlik VO. Tuberculosis cavitaria en niños menores de 5 años. Arch Argent Pediatr. 2007;105:150–3.

27. Willis CE, Slovis TL. The ALARA concept in pediatric CR and DR: dose reduction in pediatric radiographic exams—a white paper conference executive summary. Pediatr Radiol. 2004;34 Suppl 3:S162–4.

28. Pereira-Silva JL, Kavakama J, Terra Filho M, et al. Consenso brasileiro sobre a terminologia dos descritores de tomografia computadorizada do tórax. J Bras Pneumol. 2005;32:149–56.

29. Dominguez MC, Pires CS, Stopiglia MCS, et al. Bilateral pulmonary interstitial emphysema in a preterm infant on continuous positive airway pressure: clinical and radiological correlation. Radiol Bras. 2018;51:137–8.

30. Moreira FP, Alhara AI, Lederman HM, et al. Cognitive map to support the diagnosis of solitary bone tumors in pediatric patients. Radiol Bras. 2018;51:297–302.

31. Dominguez MC, Alves BR. Pulmonary atelectasis in newborns with clinically treatable diseases who are on mechanical ventilation: clinical and radiological aspects. Radiol Bras. 2018;51:20–5.

32. Santos IGG, Mezzacappa MA, Alves BR. Radiological findings associated with the death of newborns with necrotizing enterocolitis. Radiol Bras. 2018;51:166–71.

33. Peçanha AS, Monteiro AM, Gazolla FM, et al. Ultrasound as a method to evaluate the distribution of abdominal fat in obese prepubertal children and the relationship between abdominal fat and metabolic alterations. Radiol Bras. 2018;51:293–6.

34. Vilela VM, Ribeiro VM, Paiva JC, et al. Clinical and radiological characterization of fibrous hamartoma of infancy. Radiol Bras. 2017;50:204–5.

35. Togni Filho PH, Casagrande JLM, Lederman HM. Utility of the inspiratory phase in high-resolution computed tomography evaluations of pediatric patients with bronchiolitis obliterans after allogeneic bone marrow transplant: reducing patient radiation exposure. Radiol Bras. 2017;50:90–6.

36. Andronikou S, Wieselthaler N. Modern imaging of tuberculosis in children: thoracic, central nervous system and abdominal tuberculosis. Pediatr Radiol. 2004;34:861–75.

37. Cherian MJ, Dahniya MH, al-Marzouk N, et al. Primary pulmonary tuberculosis presenting as mass lesions and simulating tumours in children. AustraI Radiol. 1998;42:309–12.

38. Ray S, Talukdar A, Kundu S, et al. Diagnosis and management of miliary tuberculosis: current state and future perspectives. Ther Clin Risk Manag. 2013;9:9–26.