ABSTRACT. Chemical evolution of galaxies brings together ideas on stellar evolution and nucleosynthesis with theories of galaxy formation, star formation, and galaxy evolution, with all their associated uncertainties. In a new perspective brought about by the Hubble Deep Field and follow-up investigations of global star formation rates, diffuse background, and so on, it has become necessary to consider the chemical composition of dark baryonic matter as well as that of visible matter in galaxies.

1. INTRODUCTION

The seeds of an idea of galactic chemical evolution were planted by Sir Fred Hoyle a long time ago (Hoyle 1946). In the ensuing half-century those seeds have grown and proliferated like a cashew-nut tree, with many roots and branches, some firmer than others; but it is not a mature subject in the sense that, say, stellar evolution is, with the basic ideas well understood and steady progress being made on the basis of previous knowledge. There is still a lot of guesswork involved in the physics of star formation, and the very origin of galaxies like our own depends on an as yet unknown balance between monolithic collapse (Eggen, Lynden-Bell, & Sandage 1962), accretion of dwarf galaxies (Searle & Zinn 1978), hierarchical clustering (White & Rees 1978), mergers (Toomre 1977), inflows, and outflows. These issues were already raised in the classic conference proceedings edited by Tinsley & Larson (1977).

2. INGREDIENTS OF CHEMICAL EVOLUTION MODELS

A chemical evolution model needs to put together at least five ingredients.

2.1. Stellar Yields

Starting with Arnett (1978) and Renzini & Voli (1981), there have been numerous systematic investigations of stellar element production and ejection, as a function of the initial mass and chemical composition of the star. The broad outlines are clear, but not the details: massive stars explode as core-collapse supernovae, but above some mass limit, which could be of the order of 50 M_\odot, the outer layers may fall back into a black hole, reducing or eliminating ejection into the interstellar medium (ISM). Such stars will, however, have ejected significant amounts of helium and carbon at earlier stages in stellar winds (Maeder 1992). Uncertainties arise from the 12C (α, γ)16O reaction rate, the treatment of convection and mass loss, the explosion mechanism, and the mass cut, which is put in by hand partly to get a Y-value appropriate for the observed composition of the iron group (Woosley & Weaver 1995; Thielemann, Nomoto, & Hashimoto 1996). The bulk of the iron group (say, two-thirds in the Solar System) comes, however, from thermonuclear supernovae, Type Ia (SNIa), consisting of a white dwarf that explodes after accreting matter from a companion (Thielemann, Nomoto, & Yokoi 1986). Currently, departures from spherical symmetry are being investigated.

Similar uncertainties apply to intermediate-mass stars, which are responsible for a significant part of nitrogen and 13C and for the main s-process (van den Hoek & Groenewegen 1997; Marigo, Bressan, & Chiosi 1998; Gallino et al. 1998).

Talbot & Arnett (1974) introduced the distinction between “primary” and “secondary” nucleosynthesis products, according to whether the yields were insensitive, or sensitive, to the composition of the progenitor star. There is little abundance evidence for “secondary” behavior among many elements for which it was once expected (e.g., s-process), but carbon displays secondary-like behavior, not because of its nuclear progenitors but because higher metallicity favors stronger stellar winds (Gustafsson et al. 1999). Nitrogen, while behaving as a primary element in low-metallicity H II regions, shows a gradually increasing N/O ratio that finally increases even more steeply than that of a secondary element, because of its dependence on the quasi-secondary carbon (Henry et al. 2000).

2.2. The Initial Mass Function

The overall yield from a generation of stars depends on the initial mass function (IMF), first investigated by Salpeter
(1955). Many references to the Salpeter function nowadays refer explicitly or implicitly to a function with the Salpeter slope extending to 0.1 M_\odot at the low-mass end, which is neither accurate nor any part of what Salpeter originally claimed. While investigations of field stars in the solar neighborhood have led to significantly steeper functions at the high-mass end (Scalo 1986), extragalactic studies almost invariably confirm Salpeter’s slope above 1 M_\odot or so (e.g., Madau et al. 1996). This leads to some intriguing consequences for galactic chemical evolution models, as the full Salpeter function (extending between 0.1 and 100 M_\odot, say) leads to an overall yield around 2 Z_\odot, too high for the solar neighborhood; modelers using that function then either adopt a still lower low-mass truncation and/or assume an upper limit of 50 M_\odot or less to stars that become supernovae, more massive stars locking themselves in black holes. The Miller-Scalo and Scalo functions do not need this device, but their lower overall yield has a problem explaining the metallicity of X-ray gas in clusters of galaxies.

Is the IMF invariable? As there is no real theory, the question is wide open, but it is of interest to explore how much can be explained on the basis that it is, apart from random realizations of an underlying universal function. In this spirit, Pagel & Tautvaïšienë (1998) have attempted to model the chemical evolution of the Magellanic Clouds on the basis of yields identical to those prevailing in the solar neighborhood (regardless of what particular combination of stellar yields and IMF is responsible for them), rather than blame their low metallicities on a steeper or more bottom-heavy IMF. Observations tend to favor a universal Salpeter slope above some critical mass below which it flattens or turns over; that critical mass may or may not be variable (Elmegreen 2000).

2.3. Star Formation Rates

Schmidt (1959) proposed a star formation law depending on a power between 1 and 2 of the volume or surface density of gas; such laws have been used in many models and can give a good account of the distribution of gas density and abundances in the Milky Way (e.g., Matteucci & François 1989), especially when some form of self-regulation is incorporated in the coefficients (Dopita & Ryder 1994). In dwarf and starburst galaxies, on the other hand, star formation often occurs in sporadic bursts, perhaps involving both negative and positive feedback mechanisms. Kennicutt (1998) has given observational evidence for an overall correlation of star formation rates with the surface density of H I, with a definite threshold of order a few M_\odot pc$^{-2}$ which may be related to dynamical stability criteria; this idea has been used by Chiappini, Matteucci, & Gratton (1997) to account for the hiatus in star formation that appears to have occurred between the formation of the thick and thin disks.

2.4. Stellar Populations

One issue that has to be addressed, most notably in modeling the Milky Way, is the relationship between different stellar populations—the halo, the bulge, the thick disk, and the thin disk. To what extent have they evolved concurrently, either in space or in time, successively or independently? Partly because of angular momentum considerations (Wyse & Gilmore 1992), opinion has veered away from the older idea of a temporal succession—halo, thick disk, thin disk (Burkert, Truran, & Hensler 1992)—toward the view that the halo and disks evolved independently, gas lost from the halo ending up in the bulge or the intergalactic medium. The thick disk is old and preceded the thin one, but with a considerable hiatus (Fuhrmann 1998), either because of the above-mentioned threshold effect or because of a merger which led to the thickening of the disk in the first place.

2.5. Interaction with Other Galaxies and the Intergalactic Medium

Since the pioneering paper by Larson (1972), it has become clear that inflow of relatively unprocessed material is potentially an important factor, notably in helping to solve the notorious G dwarf problem (see below), and it was also Larson who developed models of terminal galactic winds to account for the luminosity-metallicity relation and predicted the presence of heavy elements in intracluster gas (Larson & Dinerstein 1975). More recent “chemodynamical” models also take into account the multiphase structure of the ISM, with stellar ejecta supplying the hot medium and fresh stars forming in the cool one (Šamland, Hensler, & Theis 1997).

3. WHAT HAVE WE LEARNED FROM OBSERVATIONS?

3.1. The G Dwarf Problem

Sometimes dismissed as a little local difficulty, the G dwarf problem (van den Bergh 1962; Schmidt 1963; Pagel & Patchett 1975; Lynden-Bell 1975) has proved to be a severe constraint on chemical evolution models, not only in the solar neighborhood but in elliptical galaxies (Bressan, Chiosi, & Fagotto 1994; Worthey, Dorman, & Jones 1996) and the Magellanic Clouds (Cole, Smecker-Hane, & Gallagher 2000) as well. The problem is that in all these cases there is a narrow distribution of metallicity (MDF), whereas naive concepts of chemical evolution lead to the expectation of a broad one. Such a narrow distribution probably helped to hold up the abandonment of the idea of a universal cosmic abundance distribution (cf. Sandage 2000), and it also explains why stellar population synthesis models assuming just a single metallicity (SSPs) have been quite successful—more so than models incorporating chemical evolution up to now. These models are gradually becoming more refined, often with an indication of a bimodal metallicity distribution (Maraston & Thomas 2000), which may be understandable as a consequence of mergers. Closely related to the G dwarf problem is the lack of a single clear age-metallicity relation in the solar neighborhood, explainable only in part by the mixing of populations from different galacto-
centric distances evolving on different timescales (Edvardsson et al. 1993).

The MDF is broader in the Galactic bulge and broader still in the halo, with an apparently higher yield (at least for α-elements) in the former case and a lower one in the latter, where a modified Simple model assuming outflow actually fits the MDF rather well (Hartwick 1976). If the outflow went into the bulge, that might give an explanation for its higher apparent yield on the lines of the “concentration model” of Lynden-Bell (1975) and the models of elliptical galaxy formation by Larson (1976). The halo MDF is becoming well known from the heroic efforts of Beers et al. (1998), and it fits the modified Simple model down to about [Fe/H] ≈ −3; below that it falls short, and below −4 there are two stars or fewer when nearly 10 might have been expected. If significant, this discrepancy could indicate the presence of a distinct Population III of massive stars only, or it could merely be the result of low-mass stars being formed in the neighborhood of exploding supernovae, for which there is other evidence (see below).

3.2. Abundance Patterns

Abundance ratios are a better “clock” than metallicities themselves (however defined). The “α-rich” effect (Wallerstein 1962) and the O/Fe enhancement (Gasson & Pagel 1966; Conti et al. 1967) are a steady function of metallicity in the thin disk, reaching more or less a plateau in the thick disk and halo, and attributed to the diminishing contribution of SNIa to the elements in increasingly old stars (Wheeler, Sneden, & Truran 1989). There is currently controversy as to whether O/Fe actually has a plateau or rises steadily with diminishing Fe/H (Israelian, Garcia Lopez, & Rebolo 1999; Boesgaard et al. 1999; Fulbright & Kraft 1999). Numerical galactic chemical evolution models predict a steeper rise in ratios like [Mg/Fe] than is observed, but this depends on assumptions about SNII yields that may be invalid, and the predicted slope is reduced in any case when finite mixing times are taken into account (Thomas, Greggio, & Bender 1999). Complications in this pattern have been found in two respects: (i) some halo stars have more solar-like α/Fe ratios than do thick-disk stars and other halo stars at the same Fe/H (Nissen & Schuster 1997), maybe because they came from more slowly evolving dwarf galaxies like the Magellanic Clouds, which show a similar pattern; and (ii) the α-rich pattern persists among thick-disk stars right up to solar metallicity, indicating a fast-evolving “get-rich-quick” population, which may extend into the bulge, and a hiatus with no star formation, just delayed iron-group production combined with some dilution of overall metallicity, before the first stars of the thin disk were formed (Fuhrmann 1998; Gratton et al. 2000).

The time-delay model for α/Fe effects comes up against some difficulties in the case of elliptical galaxies, where there is a very well marked correlation between Mg$_2$ and velocity dispersion, but a less well marked one for iron features (Worthey, Faber, & Gonzales 1992). This should imply a faster star formation timescale for larger galaxies, which is hard to understand on the basis of either monolithic or hierarchical clustering models (Thomas & Kaufmann 1999).

At very low metallicities like [Fe/H] ≈ −3, just where the modified Simple model MDF is breaking down, new abundance patterns emerge, with a large scatter in r/Fe and other ratios, indicating the influence of individual supernovae (Ryan, Norris, & Beers 1996; McWilliam 1997). One bonus from this is the case of CS 22892−052 with low metallicity and enhanced r-process, enabling a credible thorium chronology to be applied (Cowan et al. 1999). The incidence of this scatter is consistent with the view that stars are formed in globular cluster-sized superbubbles of the order of $10^4 M_{\odot}$, dominated by output from a single supernova ($2 M_{\odot}$ of oxygen) if the oxygen mass fraction in the ISM is under 2×10^{-5}, i.e., 2×10^{-3} of solar. As the metallicity of the ISM increases, the influence of an individual supernova is diluted and there is a semblance of smooth chemical evolution (Tsujimoto, Shigeyama, & Yoshii 1999).

4. METAL SUPPLY TO THE INTRAcluster MEDIUM

Hot X-ray gas in clusters of galaxies has a mean metallicity of the order of −0.4, whether measured in [Fe/H] or [α/H], and the mass of metals is proportional to that of stars in E and S0 galaxies in the cluster (Arnaud et al. 1992). As discussed by Renzini et al. (1993) and Pagel (1997), this requires a large yield of the order of $2 Z_{\odot}$ if the metals are supplied by stars in the galaxies, reminiscent of what comes from the conventional form of the Salpeter IMF but high compared with the yield of 0.7 Z_{\odot} or so required to fit the MDF in the solar neighborhood (e.g., Pagel & Tautvaišienė 1995). Does this imply a more top-heavy IMF (e.g., Arimoto & Yoshii 1987)? Because of the metallicity-luminosity relation (e.g., Zaritsky, Kennicutt, & Huchra 1994) and considerations of cosmic chemical evolution outlined below, I prefer to think of a universal IMF with a high yield, modified by outflow from the smaller galaxies. While an effective blowout due to supernova feedback may be difficult to achieve in medium-sized galaxies as we see them now (Mac Low & Ferrara 1999), there are other mechanisms like tides and ram-pressure stripping, and the galaxies that we see today may have been smaller in the past, before being built up by inflow or put together by hierarchical clustering.

5. COSMIC CHEMICAL EVOLUTION AND DARK METALS

Observations at high redshifts, both of emission from star-forming galaxies (Madau et al. 1996; Blain et al. 1999) and of absorption lines in Lyα systems (Pettini et al. 2000), have led to interesting investigations of cosmic chemical evolution (Pei,
Fall, & Hauser 1999). These may account for only a fraction of the metals in the universe, however. From big bang nucleosynthesis, we believe that the smoothed-out density of baryonic matter is

$$\Omega_b h^2 = 0.035$$ \hspace{1cm} (1)$$

(Tytler et al. 2000), a value just consistent within errors with recent deductions from BOOMERANG and MAXIMA microwave background observations (Tegmark & Zaldarriaga 2000; Balbi et al. 2000) or possibly even a slight underestimate, whereas the density of stars is only 1/10 as much (Fukugita, Hogan, & Peebles 1998). The remainder could be in the form of diffuse intergalactic gas, low surface brightness galaxies, MACHOs, or something else. For the first two of these, the metal content is certainly an issue. Mushotzky & Loewenstein (1997) have argued that the intergalactic gas dominates, with the same metallicity as the intracluster gas, implying a yield of 2.5 Z_\odot, while numerical simulations by Cen & Ostriker (1999) imply a somewhat lower metallicity such as 0.1 Z_\odot, requiring a yield of about 1.5 Z_\odot (cf. Pagel 1999); thus half or more of the heavy elements in the universe are as yet unseen, although there is a hint of their presence in recent $FUSE$ observations of O vi (Tripp, Savage, & Jenkins 2000). Models of cosmic chemical evolution disregard the silent majority of dark metals at their peril!

REFERENCES

Arimoto, N., & Yoshii, Y. 1987, A&A, 173, 23
Arnaud, M., et al. 1992, A&A, 254, 49
Arnett, W. D. 1978, ApJ, 219, 1008
Baade, W. 1963, in Evolution of Stars and Galaxies, ed. C. Payne-Gaposchkin (Cambridge: Harvard Univ. Press), 256
Balbi, A., et al. 2000, ApJ, 545, L1
Beers, T. C., Rossi, S., Norris, J. E., Ryan, S. G., Molaro, P., & Rebolo, R. 1998, Space Sci. Rev., 84, 139
Blain, A., Smail, I., Ivison, R. J., & Kneib, J. P. 1999, MNRAS, 302, 632
Boesgaard, A., King, J. R., Deliyannis, C. P., & Vogt, S. S. 1999, AJ, 117, 492
Bressan, A., Chiosi, C., & Fagotto, F. 1994, ApJS, 94, 63
Burkert, A., Truran, J. W., & Hensler, G. 1992, ApJ, 391, 651
Cen, R., & Ostriker, J. P. 1999, ApJ, 541, 1
Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765
Cole, A. A., Smecker-Hane, T. A., & Gallagher, J. S., III. 2000, AJ, 120, 1808
Conti, P. S., Greenstein, J. L., Spinrad, H., Wallerstein, G., & Vardy, M. S. 1967, ApJ, 148, 105
Cowan, J. J., et al. 1999, ApJ, 521, 194
Dopita, M. A., & Ryder, S. D. 1994, ApJ, 430, 163
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J., et al. 1993, A&A, 275, 101
Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748
Elmegreen, B. G. 2000, in Star Formation from the Small to the Large Scale, Proc. 33th ESLAB Symp, ed. F. Favata, A. A. Kaas, & A. Wilson (ESA SP-445; Noordwijk: ESA), in press (astro-ph/0005189)
Fuhmann, K. 1998, A&A, 338, 161
Fukugita, M., Hogan, C. J., & Peebles, P. J. E. 1998, ApJ, 503, 518
Fulbright, J. P., & Kraft, R. P. 1999, AJ, 118, 527
Gallino, R., et al. 1998, ApJ, 497, 388
Gannon, R. E. M., & Pagel, B. E. J. 1966, Observatory, 86, 196
Gratton, R., Carretta, E., Matteucci, F., & Sneden, C. 2000, A&A, 358, 671
Gustafsson, B., Karlsson, T., Olsson, E., Edvardsson, B., & Ryde, N. 1999, A&A, 342, 426
Hartwick, F. D. A. 1976, ApJ, 209, 418
Henry, R. B. C., Edmunds, M. G., & Köppen, J. 2000, ApJ, 541, 640
Hoyle, F. 1946, MNRAS, 106, 343
Israelian, G., Garcia Lopez, R. J., & Rebolo, R. 1998, ApJ, 507, 805
Kennicutt, R. C. 1998, ApJ, 498, 541
Larson, R. B. 1972, Nature Phys. Sci., 236, 7
Larson, R. B., & Dinerstein, H. 1975, PASP, 87, 911
Larson, R. B., & Hauser, T. C. 1996, ApJ, 471, 254
Larson, R. B., & Pagel, B. E. J., & Patchett, B. E. 1975, MNRAS, 172, 13
Larson, R. B. 1976, MNRAS, 176, 31
Larson, R. B., & Dinerstein, H. 1975, PASP, 87, 911
Lynden-Bell, D. 1975, Vistas Astron., 19, 299
Mac Low, M.-M., & Ferrara, A. 1999, ApJ, 513, 142
Madau, P., et al. 1996, MNRAS, 283, 1388
Maeder, A. 1992, A&A, 264, 105
Maraston, C., & Thomas, D. 2000, ApJ, 541, 126
Marigo, P., Bressan, A., & Chiosi, C. 1998, A&A, 331, 564
Matteucci, F., & François, P. 1989, MNRAS, 239, 885
McWilliam, A. 1997, ARA&A, 35, 503
Mushotzky, R. F., & Loewenstein, M. 1997, ApJ, 481, L63
Nissen, P. E., & Schuster, W. A. 1997, A&A, 326, 751
Pagel, B. E. J. 1997, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge Univ. Press)
———, 1999, in Ringberg Workshop: Galaxies in the Young Universe II, ed. H. Hippelein (Berlin: Springer), in press (astro-ph/9911204)
Pagel, B. E. J., & Patchett, B. E. 1975, MNRAS, 172, 13
Pagel, B. E. J., & Tautvaišienė, G. 1998, MNRAS, 299, 535
———, 1995, MNRAS, 276, 505
Pei, Y. C., Fall, M., & Hauser, M. G. 1999, ApJ, 522, 604
Pettini, M., Ellison, S. L., Steidel, C. C., Shapley, A. E., & Bowen, D. V. 2000, ApJ, 532, 65
Renzini, A., Ciotti, L., D’Ercole, A., & Pellegrini, S. 1993, ApJ, 419, 52
Renzi, N., & Voli, M. 1981, A&A, 94, 175
Rich, R. M. 2000, in From Extrasolar Planets to Cosmology: The VLT Opening Symposium, ed. J. Bergeron & A. Renzini (Berlin: Springer), 275
Ryan, S., Norris, J., & Beers, T. C. 1996, ApJ, 471, 254
Salpeter, E. E. 1955, ApJ, 121, 161
Samland, M., Hensler, G., & Theis, Ch. 1999, ApJ, 476, 544
Sandage, A. R. 2000, PASP, 112, 293
Scalo, J. 1986, Fundam. Cosmic Phys., 11, 1
Schmidt, M. 1959, ApJ, 129, 243
———, 1963, ApJ, 137, 758
Searle, L., & Sargent, W. L. W. 1972, ApJ, 173, 25
Searle, L., & Zinn, R. 1978, ApJ, 225, 357
Talbot, R. J., & Arnett, W. D. 1974, ApJ, 190, 605
Tegmark, M., & Zaldarriaga, M. 2000, Phys. Rev. Lett., 85, 2240
Thielemann, F.-K., Nomoto, K., & Hashimoto, M. 1996, ApJ, 460, 408
Thielemann, F.-K., Nomoto, K., & Yokoi, K. 1986, A&A, 158, 17
Thomas, D., Greggio, L., & Bender, R. 1999, MNRAS, 302, 537

2001 PASP, 113:137–141
Thomas, D., & Kauffmann, G. 1999, in ASP Conf. Ser. 192, Spectrophotometric Dating of Stars and Galaxies, ed. I. Hubeny, S. R. Heap, & R. H. Cornett (San Francisco: ASP), 261

Tinsley, B. M., & Larson, R. B., eds. 1977, The Evolution of Galaxies and Stellar Populations (New Haven: Yale Univ. Press)

Toomre, A. 1977, in The Evolution of Galaxies and Stellar Populations, ed. B. M. Tinsley & R. B. Larson (New Haven: Yale Univ. Press), 401

Tripp, T. M., Savage, B. D., & Jenkins, E. B. 2000, ApJ, 534, L1

Tsujimoto, T., Shigeyama, & Yoshii, Y. 1999, ApJ, 519, L63

Tytler, D., O’Meara, J. M., Suzuki, N., & Lubin, D. 2000, Phys. Rep. 333(4), 409

van den Bergh, S. 1962, AJ, 67, 486

van den Hoek, L. B., & Groenewegen, M. A. T. 1997, A&AS, 123, 305

Wallerstein, G. 1962, ApJS, 6, 407

Wheeler, J. C., Sneden, C., & Truran, J. W. 1989, ARA&A, 27, 279

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341

Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181

Worley, G., Dorman, B., & Jones, L. A. 1996, AJ, 112, 948

Worley, G., Faber, S. M., & Gonzalez, J. J. 1992, ApJ, 398, 69

Wyse, R. F. G., & Gilmore, G. 1992, AJ, 104, 144

Zaritsky, D., Kennicutt, R. C., Jr., & Huchra, J. P. 1994, ApJ, 420, 87