Frequency and Effectiveness of Empirical Anti-TNF Dose Intensification in Inflammatory Bowel Disease: Systematic Review with Meta-Analysis

Laura Guberna 1,2, Olga P. Nyssen 1,2, Maria Chaparro 1,2* and Javier P. Gisbert 1,2,*

1 Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; lauragubern@hotmail.com (L.G.); opn.aegredcap@aegastro.es (O.P.N.); mariachs2005@gmail.com (M.C.)
2 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
* Correspondence: javier.p.gisbert@gmail.com

Abstract: Loss of response to antitumor necrosis factor (anti-TNF) therapies in inflammatory bowel disease occurs in a high proportion of patients. Our aim was to evaluate the loss of response to anti-TNF therapy, considered as the need for dose intensification (DI), DI effectiveness and the possible variables influencing its requirements. Bibliographical searches were performed. Selection: prospective and retrospective studies assessing DI in Crohn’s disease and ulcerative colitis patients treated for at least 12 weeks with an anti-TNF drug. Exclusion criteria: studies using anti-TNF as a prophylaxis for the postoperative recurrence in Crohn’s disease or those where DI was based on therapeutic drug monitoring. Data synthesis: effectiveness by intention-to-treat (random effects model). Data were stratified by medical condition (ulcerative colitis vs. Crohn’s disease), anti-TNF drug and follow-up. Results: One hundred and seventy-three studies (33,241 patients) were included. Overall rate of the DI requirement after 12 months was 28% (95% CI 24–32, I2 = 96%, 41 studies) in naïve patients and 39% (95% CI 31–47, 18 studies) in non-naïve patients. The DI requirement rate was higher both in those with prior anti-TNF exposure (p = 0.01) and with ulcerative colitis (p = 0.02). The DI requirement rate in naïve patients after 36 months was 35% (95% CI 28–43%; I2 = 98%; 18 studies). The overall short-term response and remission rates of empirical DI in naïve patients were 63% (95% CI 48–78%; I2 = 99%; 32 studies) and 48% (95% CI: 39–58%; I2 = 92%; 25 studies), respectively. The loss of response to anti-TNF agents—and, consequently, DI—occurred frequently in inflammatory bowel disease (approximately in one-fourth at one year and in one-third at 3 years). Empirical DI was a relatively effective therapeutic option.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis; anti-TNF-α; loss of response; dose intensification

1. Introduction

Biologic therapies have become the mainstay of treatment in inflammatory bowel disease (IBD). Antibodies targeting tumor necrosis factor-alpha (anti-TNF) have become essential in the armamentarium for the treatment of both ulcerative colitis (UC) and Crohn’s disease (CD). TNF is a key proinflammatory cytokine that plays an important role in several autoimmune disorders, including IBD. Elevated stool and mucosal TNF concentrations in UC and CD patients have been shown to correlate with the disease activity [1]. Anti-TNF drugs operate via a multitude of mechanisms: they bind and clear soluble TNF but, also, cell-bound TNF, inducing cytotoxicity on immune cells, like T-cell apoptosis [2]. They are effective at inducing symptom relief, disease remission and mucosal healing and reducing the need for surgery and hospitalizations among patients with moderate-to-severe IBD. The current clinical guidelines recommend anti-TNF agents for patients who are refractory to other treatments [3–6].
However, a considerable proportion of these patients does not respond to induction therapy (primary nonresponse) or lose response over time (secondary nonresponse or loss of response, LOR). In patients who experience LOR to a particular anti-TNF agent, dose escalation or intensification (DI), either by increasing the dose or decreasing the dosing intervals, is commonly used as a rescue strategy to regain the therapeutic effect. Nevertheless, the exact incidence and chronology of this intensification, and its efficacy, are still not well-known.

The aim of this systematic review was to evaluate the incidence of LOR (defined as the need for DI) over time and DI efficacy in regaining both the response and remission in inflammatory bowel disease. The secondary objectives were to identify the possible variables (baseline medical condition, anti-TNF therapy and time of follow-up) influencing the DI requirement and its efficacy.

2. Materials and Methods

2.1. Literature Search and Study Selection

Bibliographic searches were performed in four electronic databases (Medline, Embase, Cochrane Library CENTRAL and CINAHL) from inception up to January 2020. The search strategy (with corresponding keywords in all fields) was: “(inflammatory bowel disease OR Crohn’s disease OR ulcerative colitis) AND (infliximab OR adalimumab OR certolizumab OR golimumab OR antiTNF OR anti-TNF) AND (intensification OR escalation OR optimization OR optimisation)”. Additional hand searches were performed by the cross-referencing of eligible studies in order to identify further relevant publications. Abstracts were screened to discard duplicates. When the literature search yielded two or more studies by the same author assessing the same populations, only the most recent one was chosen, irrespective of the time interval, as it was assumed the latter published would include the most comprehensive and complete data.

The process of study selection is depicted in a flow diagram following the PRISMA statement [7]. The present systematic review was registered in PROSPERO (CRD42017073757). The selection process, data extraction and analyses were performed by two authors (LG and OPN) independently. If discrepancies occurred, consensus was reached by a third reviewer (JPG). The corresponding authors of the studies without sufficient data were contacted for additional information.

2.2. Selection Criteria

Prospective and retrospective studies assessing the LOR to anti-TNF therapy, considered as the need for DI in patients with CD and UC treated for at least 12 weeks with an anti-TNF drug, were selected for inclusion. There were no language restrictions.

Articles in which an anti-TNF was used as the prophylaxis for postoperative recurrence in CD and those where DI was based during therapeutic drug monitoring were excluded. Systematic or narrative reviews, case studies and congress abstracts were excluded from this systematic review.

2.3. Data Extraction and Quality Assessment

A predefined, pre-piloted data extraction form was used to collect the data. The variables recorded were: year of publication; study design (prospective or retrospective); age of the study population (adults ≥ 18 years and children < 18 years); type of inflammatory bowel disease (UC or CD); therapeutic regimens (infliximab (IFX), adalimumab (ADA), certolizumab-pegol, and golimumab); previous anti-TNF treatments (naïve or non-naïve); length of follow-up in months; sample size; and outcome measures (DI requirement and DI efficacy).

The Cochrane risk of bias tool [8] was used to assess the quality of the randomized controlled trials, as they were considered the most reliable method of outcome assessment. The decision was reached post-hoc after performing an exploratory mapping review and confirming the wide range of observational studies in terms of the number and design available in the literature responding to our topic of interest.
2.4. Data Synthesis and Statistical Analysis

All analyses were preplanned a priori. The primary outcomes were the DI requirement measured as the number of patients receiving a DI out of the total of patients studied and DI efficacy in the short term as the number of patients responding out of the total of patients receiving a DI, expressed as the response rate with its standard error. These outcomes were thereafter combined using the inverse variance method, providing 95% confidence intervals (CIs). The statistical significance threshold was set at p-value < 0.05. A random effects model was used.

The study heterogeneity was analyzed using the I^2 statistic: according to the I^2 values, the heterogeneity was considered as: not important ($I^2 < 40\%$), moderate (40–75%) and considerable (>75%). Such interpretations also adjusted for the magnitude of the effect and/or the strength of the evidence given (i.e., p-value < 0.1 of the χ^2 test). Begg’s funnel plot [9] was used to estimate the possibility of publication bias.

Post-hoc sensitivity analyses were performed for each meta-analysis subgroup by excluding those studies that were identified as potentially introducing a critical risk of bias that could likely modify the outcome.

Data were analyzed using the Review Manager program (version 5.2).

3. Results

A total of 173 studies (including 33,241 patients) met the inclusion criteria and were finally included in the systematic review and meta-analysis (Figure 1).

![Figure 1. PRISMA flowchart of the screening and selection.](image)

The description of each included study is summarized in Table 1.

There were six randomized, placebo-controlled trials (RCTs) [10–15], 48 prospective open-label observational trials and 119 retrospective studies.

A total of 157 studies assessed the need for DI; the response rate was evaluated in 52 studies, and the remission rate was reported in 33 studies.

One hundred and one studies focused on naïve patients, and 29 evaluated non-naïve patients, while 50 studies included both naïve and non-naïve patients in their assessments. In six studies, prior anti-TNF exposure was not reported. One hundred and seven studies reported the data from IFX users and 92 from ADA users. Only five studies included patients receiving golimumab [16–20], and four studies evaluated patients receiving certolizumab [21–24]; thus, a meta-analysis was not performed.
Table 1. Studies included in the meta-analysis.

Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
1 Afif 2009 [25]	P A	UC	ADA	Naïve and non-naïve	6	7	20	35						
2 Albisi 2019 [26]	R C	CD	ADA	Non-naïve	12	3	44	7	ID	Response	2	3	67	
3 Armuzzi 2013 [27]	R A	UC	ADA	Naïve and non-naïve	12	31	88	35						
4 Assa 2013 [28]	R C	UC+CD	IFX+ADA	Non-naïve	-	20	10	102	10					
5 Baert 2014 [29]	R A	UC	ADA	Non-naïve	12	22	73	30						
6 Baert 2013 [30]	R A	CD	ADA	Naïve and non-naïve	14	208	605	34	RI	Response	139	208	67	
7 Baki 2015 [31]	R A	UC	IFX	Naïve and non-naïve	4	17	37	46						
8 Balint 2018 [32]	P A	UC	IFX	Naïve	12	20	61	33						
9 Balint 2016 [33]	P A+C	UC	ADA	Naïve and non-naïve	12	13	73	18						
10 Bhalme 2013 [34]	R A	CD	IFX	Naïve	13	4	76	5						
11 Black 2016 [35]	R A	UC	ADA	Naïve	12	66	155	43						
12 Bor 2017 [36]	R A	CD	IFX	Naïve and non-naïve	-	14	48	29	ID	Remission	3	14	21	
13 Bortlik 2013 [37]	R A	CD	IFX	Naïve and non-naïve	24	6	84	7						
14 Bossuyt 2019 [38]	P A	UC	GOL	Naïve and non-naïve	6	8	91	9						
15 Bouguen 2015 [39]	P A	CD	ADA	Naïve and non-naïve	-	Response	23	42	55					
16 Bramuzzo 2019 [40]	R C	UC+CD	IFX	Naïve	12	44	172	26						
17 Brandes 2019 [41]	R A	UC+CD	ADA	Naïve and non-naïve	12	76	502	15						
18 Bultman 2012 [42]	P A	CD	ADA	Non-naïve	12	23	49	47	-	Response	20	46	43	
Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
----------------------------	--------------	------------	-------------------	----------	----------------	-------------------	----	----	-------------	--------------------------	-------------------	----	----	----------------
19 Cameron 2015 [43]	R C	UC+CD	IFX	Naïve	Naïve and non-naïve	23	23	72	32					
20 Casanova 2019 [21]	R A	UC+CD	IFX+ADA+CZP	Naïve and non-naïve	18	230	1122	20.5	RI or ID	Remission	161	230	42	
21 Casellas 2015 [44]	P A	CD	ADA	Naïve	36	3	28	11						
22 Castaño 2015 [45]	R A	CD	ADA	Naïve	12	9	46	20	RI	Remission	3	9	33	
23 Caviglia 2007 [46]	R A	UC	IFX	-	24	0	10	0	RI	Remission	3	9	33	
24 Cesarini 2014 [47]	R A	UC	IFX	Naïve	24	3	40	7.5	RI or ID	Response	37	41	90	
25 Chaparro 2011 [48]	R A	CD	IFX	Naïve	41	127	309	43	RI or ID	Response	122	127	96	
26 Chaparro 2012 [49]	R A	CD	IFX	Naïve	22	33	197	17	-	Remission	11	33	33	
27 Cheng, 2017 [50]	R C	UC	IFX	Naïve	24	60	113	53	RI or ID	Response	36	60	60	
28 Choi 2014 [51]	R A	CD	ADA	Naïve	18	5	36	14	RI	Remission	10	15	67	
29 Choi 2017 [52]	R C	CD	IFX	Naïve	16	14	29	48	RI or ID	Response	17	21	80	
30 Church 2014 [53]	R C	CD	IFX	Naïve	16	7	10	70	RI	Remission	11	33	33	
31 Clark 2019 [54]	R A	CD	IFX	-	24	10	17	59	RI	Remission	36	60	60	
32 Cohen 2012 [55]	R A	CD	ADA	Naïve and non-naïve	55	31	75	41	RI or ID	Response	122	127	96	
33 Cordero 2011 [56]	P A	CD	ADA	Non-naïve	12	18	25	72	RI, ID	Remission	65	103	63	
34 DeRidder 2008 [57]	R C	CD	IFX	Naïve	41	40	66	61	RI	Response	24	45	53	
35 DeBruyn 2017 [58]	R C	CD	IFX	Naïve	19	102	178	57	RI	Response	33	45	73	
36 D’Haens 2018 [10]	P A	CD	IFX	Naïve	12	16	40	40	RI	Remission	8	13	61	
37 Dignass 2019 [17]	R A	UC	IFX	Naïve	24	75	114	66	RI, ID, RI+ID	Response	65	103	63	
38 Dreesen 2018 [59]	R A	CD	IFX	Naïve	24	27	47	57	RI, ID	Response	65	103	63	
Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
-------------------------	--------------	------------	-------------------	--------------	---------------	-------------------	----	-----	-------------	-------------------------	-------------------	----	----	----------------
Dubinsky 2016 [60]	P	C	CD	ADA	Naïve and non-naïve	12	35	93	38	RI	Response	20	35	57
					Naïve	12	18	51	35	RI	Remission	11	35	31
					Non-naïve	12	17	42	40	RI	Response	7	17	41
Dumitrescu 2015 [61]	R	A	UC	IFX	Naïve	-	65	187	35	RI or ID	Response	87	157	55
Dupont 2016 [62]	R	C	CD	IFX	Naïve	-	124	430	29	RI or ID	Response	99	124	80
Duveau 2016 [63]	R	A	CD	ADA	Naïve and non-naïve	-	124	430	29	RI or ID	Response	99	124	80
Echarri 2015 [64]	P	A	CD	ADA	Naïve	24	12	68	18	RI	Remission	9	12	75
Falaiye 2014 [65]	R	A	UC+CD	IFX	Naïve	12	18	29	62	RI or ID	Response	7	18	39
Fernandes 2019 [66]	R	A	UC+CD	IFX	Naïve and non-naïve	12	25	149	17	RI or ID	Response	28	157	18
			UC+CD	IFX	Naïve and non-naïve	24	38	149	25.5	RI or ID	Response	87	157	55
Fernández-Salazar 2015 [67]	R	A	UC	IFX	Naïve	38	53	144	37	RI or ID	Response	15	18	83
Fiorino 2017 [68]	P	A+C	UC+CD	IFX	Naïve and non-naïve	3	74	399	16	RI or ID	Response	15	18	83
Fortea-Ormaechea 2011 [69]	R	A	CD	ADA	Naïve and non-naïve	9	57	174	33	RI or ID	Response	8	18	44
Frederiksen 2014 [70]	R	A	UC+CD	ADA	No naïve	9	21	57	37	RI or ID	Response	0	73	55
García bosch 2013 [71]	R	A	UC	ADA	Naïve and non-naïve	12	18	48	37.5	RI or ID	Response	10	15	67
			UC+CD	IFX	Naïve and non-naïve	24	33	112	29	RI or ID	Response	10	15	67
Ghaly 2015 [72]	R	A	CD	IFX+ADA	Naïve and non-naïve	40	73	73	18	RI or ID	Response	40	73	55
Gofin 2019 [73]	R	C	CD	IFX+ADA	Naïve	19	18	98	18	RI or ID	Response	0	73	55
Gonczi 2017 [74]	P	A	UC+CD	ADA	Naïve and non-naïve	12	22	112	20	RI or ID	Response	10	15	67
Gonzaga 2009 [75]	R	A	CD	IFX	Naïve	49	56	111	50	RI or ID	Response	7	13	54
González Lama 2008 [76]	R	A	CD	IFX	Naïve	28	15	114	13	RI or ID	Response	7	13	54
Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n’	N’	DI Efficacy (%)
----------------	-------------	------------	-------------------	----------	--------------	------------------	---	---	-------------	----------------------	-------------------	----	----	-----------------
57 Guerbau 2017 [78]	P	A	CD	IFX	Naive and non-naïve	12	43	140	30					
58 Guidi 2018 [79]	P	A	UC+CD	IFX	Naive	3	37	52	71					
59 Ho 2008 [80]	R	A	CD	ADA	Non-naïve	12	13	22	59					
60 Ho 2009 [81]	R	A+C	CD	ADA	Naive and non-naïve	12	2	10	20					
61 Hussey 2016 [82]	R	A	UC	ADA	Naive and non-naïve	19	13	55	24					
62 Hyams 2010 [83]	P	C	UC	IFX	Naive	30	11	34	33					
63 Hyams 2007 [11]	P	C	CD	IFX	Naive	12	9	52	17	ID	Response	5	9	56
64 Iborra 2017 [84]	R	A	UC	ADA	Naive and non-naïve	12	93	263	35					
65 Inokuchi 2019 [85]	R	A	CD	IFX	Naive	83	54	183	29.5					
66 Juillerat 2015 [86]	R	A	CD	IFX	Naive	19	13	55	24					
67 Juliao 2013 [87]	R	A	UC	IFX	Naive	27	4	28	14	RI	Response	4	4	100
68 Kang 2016 [88]	P	C	CD	IFX	Naive	12	7	72	10					
69 Karmiris 2009 [89]	P	A	CD	ADA	Non-naïve	20	102	156	65	RI or ID	Response	73	102	72
70 Katz 2012 [90]	R	A	CD	IFX	Naive	-	77	250	31	RI	Response	37	56	66
71 Kelly 2017 [91]	R	A	UC+CD	IFX	Naive	82	143	57						
72 Kierkus 2015 [12]	P	C	CD	IFX	Naive	12	16	84	19					
73 Kiss 2011 [92]	R	A	CD	ADA	Naive and non-naïve	12	33	201	16					
74 Knyazev 2018 [22]	P	A	CD	CRP	Naive and non-naïve	24	3	39	8					
75 Knyazev 2016 [93]	R	A	UC	IFX	Naive	-	5	45	11	-	Remission	4	5	80
76 Knyazev 2017 [94]	P	A	CD	ADA	Naive and non-naïve	28	6	70	9					
77 Kopylov 2011 [95]	R	A	CD	IFX	Naive	RI	Response	38	55	70				
										ID	Response	26	39	67
Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n’	N’	DI Efficacy (%)
----------------	--------------	------------	-------------------	----------	---------------	-------------------	---	---	-------------	------------------------	------------------	----	---	--------------
Kunovski 2020 [96]	R A	UC	IFX	naïve	12	43	396	11						
Lam 2014 [97]	R A	CD	ADA	naïve	12	34	172	20						
Lees 2009 [98]	R A+C	UC+CD	ADA	non-naïve	12	16	30	53						
Lin 2012 [99]	R A	CD	IFX	naïve	60	34	94	36						
Lindsay 2013 [100]	R A+C	CD	IFX	naïve	12	9	380	2						
Lindsay 2017 [101]	R A	UC	IFX+ADA	naïve	24	19	380	5						
Ling 2018 [102]	R C	CD	IFX+ADA	naïve	24	139	538	26						
Llaó 2016 [103]	P A	UC	IFX	naïve	24	26	43	60						
Lofberg 2012 [104]	P A	CD	ADA	naïve and non-naïve	-	5	131	945	14					
Lopez Palacios 2008 [105]	R A	CD	ADA	non-naïve	24	6	22	27						
Ma 2015 [106]	R A	UC	IFX	naïve	158	36	66	54						
Ma 2014 [107]	R A	CD	IFX	naïve	139	18	36	50						
Ma 2016 [108]	R A	CD	IFX+ADA	naïve	28	23	38	61						
Ma 2014 (bis) [109]	R A	CD	ADA	naïve and non-naïve	-	-	-	-						
Magro 2011 [110]	R A	CD	ADA	naïve and non-naïve	-	-	-	-						
Martineau 2017 [111]	R A	CD	GOL	non-naïve	18	51	115	44						
Merras 2016 [112]	P	CD	GOL	non-naïve	12	3	35	9						
Molnar 2012 [113]	R A	CD	ADA	naïve	12	3	10	30						
Moon 2015 [23]	R A	CD	CZP	naïve and non-naïve	26	43	358	12						
Motoya 2018 [114]	P A+C	CD	ADA	naïve and non-naïve	RI	Response	16	28	57					
CD	ADA	naïve and non-naïve	RI	Remission	10	28	35							
ADA	naïve	RI	Response	6	9	67								
ADA	naïve	RI	Remission	5	9	56								
ADA	non-naïve	RI	Response	10	19	53								
ADA	non-naïve	RI	Remission	5	19	26								
Author and Year	Study Design	Population	Medical Condition	Anti-TNF Prior	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n	N	DI Efficacy (%)	
----------------	--------------	------------	-------------------	----------------	-------------------	---	---	-------------	------------------------	-------------------	---	---	---------------	
Moroi 2019 [113]	R	A	CD	IFX	Naïve	36	17	62	27					
Murthy 2015 [114]	R	A	UC	IFX	Naïve	36	0	7	0					
Narula 2016 [115]	P	A	CD	IFX	Naïve	12	39	116	51					
Narula 2016 [115]	P	A	CD	ADA	Naïve	24	9	111	8					
Nedelkopolou 2018 [116]	R	C	UC	IFX	Naïve	20	2	10	20					
Ng 2009 [117]	P	A	CD	ADA	Non-naïve	12	2	7	29					
Nichita 2010 [118]	R	A	CD	ADA	Naïve and non-naïve	12	13	55	24					
Nuti 2014 [119]	R	C	CD	IFX+ADA	Naïve and non-naïve	36	27	78	35					
O’Donnell 2015 [120]	R	A+C	CD	IFX	Naïve	36	133	287	46					
Olivares 2019 [121]	P	A	UC+CD	ADA	Naïve	18	15	33	45					
Orlando 2012 [122]	P	A	CD	ADA	Naïve and non-naïve	14	15	110	14					
Osterman 2017 [123]	R	A	CD	ADA	Naïve	12	42	381	11					
Oussalah 2009 [124]	R	A	CD	ADA	Non-naïve	36	7	53	13					
Oussalah 2010 [125]	R	A	UC	IFX	Naïve	18	36	80	45					
Panaccione 2010 [126]	P	A	CD	ADA	Naïve	12	71	260	27					
Paredes 2020 [127]	P	A	UC+CD	IFX	Naïve	12	2	31	6					
Paredes 2020 [127]	P	A	UC+CD	IFX	Naïve	24	12	31	39					
Pariente 2012 [128]	R	A	UC+CD	IFX	Naïve	14	3	31	10					
Park 2016 [129]	R	A	CD	IFX	Naïve	36	86	582	15					
Table 1. Cont.

Author and Year	Study Design	Population	Medical Condition	Anti-TNF Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
115 Patel 2017 [130]	R	A	CD	IFX+ADA+ CZP+GOL Naïve	6	640	4569	14					
				Naïve	12	1097	4569	24					
				Naïve	24	1553	4569	34					
				Naïve	36	1792	4569	39					
				UC	IFX+ADA+ CZP+GOL Naïve	6	272	1699	16				
				Naïve	12	475	1699	28					
				Naïve	24	680	1699	40					
				Naïve	36	748	1699	44					
116 Paul 2013 [131]	P	A	UC+CD	IFX	Naïve and non-naïve	ID Remission	30	52	58				
117 Peters 2014 [132]	R	A	CD	ADA	Naïve	24	45	167	27				
118 Peyrin 2007 [133]	P	A	CD	ADA	Non-naïve	24	135	271	50				
119 Pollinger 2019 [134]	R	A	UC	ADA	Naïve	12	6	24	25				
				Naïve	12	48	154	31					
120 Preda 2016 [135]	R	A	CD	IFX	Naïve	36	26	129	20				
				Naïve	20	19	136	14					
				UC	ADA	Naïve	24	10	75				
121 Qazi 2016 [136]	P	A	UC+CD	IFX	Naïve	30	54	108	50				
				Naïve and non-naïve	RI or ID Response	41	54	76					
122 Regueiro 2007 [137]	R	A	CD	IFX	Naïve and non-naïve	10	50	118	42				
				Naïve	36	1	58						
123 Reinisch 2013 [138]	P	A	UC	ADA	Naïve and non-naïve	RI Response	23	50	46				
124 Renna 2016 [139]	P	A	UC	ADA	Non-naïve	< 6	1	16	6				
				Naïve	< 6	1	17	6					
125 Renna 2018 [140]	R	A	UC	ADA	Naïve and non-naïve	RI or ID Response	23	50	46				
126 Riis 2012 [141]	R	A	CD	IFX	Naïve and non-naïve	RI	30	20	83	25			
127 Roblin 2014 [142]	P	A	UC+CD	ADA	Naïve	20	30	119	25				
128 Roblin, 2016 [143]	P	A	CD	IFX	Naïve	20	10	93	11				
129 Roblin 2015 [144]	P	A	UC+CD	IFX	Naïve	20	10	93	11				
130 Rostholder 2012 [145]	R	A	UC	IFX	Naïve	12	27	50	54				
				RI or ID Remission	5	27	19						
131 Rubin 2012 [146]	R	A	CD	ANTI TNF	Naïve	24	531	1398	38				
132 Russo 2009 [147]	R	A	UC	IFX	Naïve	15	2	38	5				
				Naïve and non-naïve	RI or ID Response	0	2	0					
133 Rutka 2016 [148]	R	A	UC	ADA	Naïve and non-naïve	RI	12	13	73	18			
134 Sandborn 2007 [13]	P	A	CD	ADA	Naïve	12	89	204	44				
135 Sandborn 2016 [149]	R	A	UC	IFX	Naïve	11	166	424	39				
				UC	ADA	11	138	380	36				
Table 1. Cont.

Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
136 Sands 2004 [14]	P	A	CD	IFX	Naïve	12	28	96	29	RI	Response	12	21	57
137 Sartini 2018 [150]	R	A	UC	ADA	Naïve and non-naïve	24	17	32	53	RI and ID	Remission	29	74	39
138 Sazuka 2012 [151]	R	A	CD	IFX	Naïve	21	30	74	40	RI	Response	8	14	57
139 Schnitzler 2009 [152]	P	A	CD	IFX	Naïve	55	218	547	40	RI	Response	8	14	57
140 Seo 2017 [153]	R	A	CD	ADA	Naïve and non-naïve	17	45	254	18	RI	Response	30	35	86
141 Seow 2010 [154]	P	A	UC	IFX	Naïve	14	74	115	64	RI or ID	Remission	29	74	39
142 Shapiro 2015 [155]	R	C	UC+CD	IFX	Naïve	12	35	87	40	RI or ID	Remission	29	74	39
143 Sierra 2016 [156]	R	A	UC	ADA	Naïve and non-naïve	12	16	37	43	RI	Response	29	74	39
144 Sprakes 2012 [157]	P	A	CD	IFX	Naïve	24	18	173	10	RI	Response	29	74	39
145 Srinivasan 2018 [158]	R	A	CD	IFX+ADA	Naïve and non-naïve	12	55	423	13	RI	Response	29	74	39
146 Stein 2014 [24]	R	A	CD	CZP	Naïve and non-naïve	124	10	87	11	RI	Response	19	36	53
147 Steendholt 2015 [15]	P	A	CD	IFX	Naïve	9	14	37	43	RI	Response	9	14	64
148 Sutharsan 2013 [159]	P	A	CD	ADA	Naïve	12	36	190	19	RI	Response	12	9	62.5
149 Suzuki 2015 [160]	P	A	CD	IFX	Naïve	12	5	17	29	RI	Remission	2	4	50
150 Suzuki 2019 [161]	R	A	CD	ADA	Naïve and non-naïve	12	14	95	15	RI	Remission	8	12	67
151 Suzuki 2017 [162]	P	A	UC	ADA	Naïve	12	9	78	12	RI	Remission	5	8	62.5
152 Swoger 2010 [163]	R	A	CD	ADA	Naïve	12	9	78	12	RI	Remission	2	4	50
153 Tajiri 2018 [164]	P	C	CD	IFX	Naïve	12	5	14	36	ID	Remission	3	5	60
154 Takeuchi 2019 [165]	R	C	UC+CD	IFX	Naïve	12	11	17	65	ID	Remission	54	79	68
155 Taxonera 2015 [166]	R	A	UC	IFX	Naïve	13	16	59	27	-	Response	54	79	68
156 Taxonera 2014 [167]	R	A	CD	IFX	Naïve	9	16	38	42	-	Remission	41	79	52
Author and Year	Study Design	Population	Medical Condition	Anti-TNF	Prior Anti-TNF	FOLLOW up (Months)	n	N	DI Rate (%)	Intensification Regimen	Response/Remission	n'	N'	DI Efficacy (%)
-------------------------	--------------	------------	-------------------	----------	----------------	-------------------	----	----	-------------	------------------------	------------------	----	----	-----------------
157 Taxonera 2017 (bis) [168]	R	A	UC	ADA	Naive	24	12	68	18	RI or ID	Response	7	12	58
				ADA	Non-naïve	24	64	116	55	RI or ID	Response	2	12	17
										RI or ID	Response	26	64	41
										RI or ID	Response	13	64	20
158 Taxonera 2017 [169]	R	A	UC	GOL	Naive and non-naïve	12	31	114	27	RI or ID	Response	22	31	71
159 Taxonera 2011 [170]	R	A	UC	ADA	Non-naïve	12	11	30	37	RI	Response	8	11	73
160 Tigue 2017 [171]	R	A	UC	IFX + ADA	Non-naïve	12	2	24	8	RI	Response	2	24	8
161 Tkacz 2014 [172]	R	A	CD	IFX	Naive	9	18	106	17	RI	Response	18	18	17
162 Tursi 2018 [173]	R	A	UC	ADA	Naïve and non-naïve	18	9	56	16	RI	Response	18	18	16
163 Vahabnejad 2014	R	A	CD	IFX	Naïve	30	65	89	73	RI or ID	Response	40	65	62
164 Vanassche 2012 [175]	P	A	UC	IFX	Naïve	25	7	13	54	RI or ID	Response	4	7	57
165 Vandevondel 2018	P	A	CD	IFX	Naïve	12	6	13	16	RI	Response	6	13	16
166 Vatansever 2014	P	A	CD	IFX + ADA	Non-naïve	34	40	79	51	DI	Response	19	27	50
167 Verstock 2018 [178]	R	A	CD	ADA	Naïve	12	27	116	23	RI or ID	Response	12	27	23
168 Viazis 2015 [179]	P	A	CD	IFX + ADA	Naïve	28	31	132	23	RI or ID	Response	16	132	23
169 Watanabe 2014. [180]	P	A	CD	ADA	Naïve and non-naïve	34	40	79	51	DI	Response	16	17	94
170 West 2008 [181]	R	A	CD	ADA	Naïve	12	8	30	27	RI	Response	8	8	100
171 Wolf 2014 [182]	P	A	UC	ADA	No naïve	3	20	123	16	RI	Response	9	20	45
172 Yamada 2014 [183]	R	A	UC	IFX	Naïve	36	17	24	71	RI or ID	Response	16	17	94
173 Yokoyama 2016 [184]	R	A	CD	IFX + ADA	Naïve	8	18	107	7	RI or ID	Response	18	107	7

DI: Dose intensification. R: Retrospective. P: Prospective. UC: Ulcerative colitis. CD: Crohn’s disease. IFX: Infliximab. ADA: Adalimumab. CZP: Certolizumab pegol. GOL: Golimumab. n: number of patients undergoing dose intensification. N: total number of patients included. ID: Increase of dose. RI: Reduction of the interval of administration. n’: number of patients with a clinical response or remission after dose intensification. N’: total number of patients undergoing dose intensification.
3.1. Dose Intensification Requirements

3.1.1. Twelve-Month Follow-Up

Naïve vs. Non-Naïve Patients

A total of 68 studies with a median follow-up of 12 months were analyzed. In naïve patients, the DI rates ranged from 2% (100) to 80% (165), with an overall pooled rate of 28% (95% CI 24-32, $I^2 = 96\%$, 41 studies) (Figure 2).

In non-naïve patients, the DI rate ranged from 7% (26) to 81% (111), with an overall pooled rate of 39% (95% CI 31-47, $I^2 = 86\%$, 41 studies) (Figure 2).

Figure 2. Dose intensification requirements after the 12-month follow-up in anti-TNF naïve and non-naïve patients.

In non-naïve patients, the DI rate ranged from 7% (26) to 81% (111), with an overall pooled rate of 39% (95% CI 31-47, $I^2 = 86\%$, 18 studies) (Figure 2).
The DI requirement after the 12-month follow-up was statistically higher in non-naïve than in naïve patients (test for subgroup differences: $\chi^2 = 6.13, p = 0.01, I^2 = 83.7\%$).

Anti-TNF Use by Medical Condition in Naïve Patients

The DI requirement rate after the 12-month follow-up with all the anti-TNF agent data was statistically higher in UC than in CD patients (test for subgroup differences: $\chi^2 = 5.29, p = 0.02, I^2 = 81.1\%$). No other subgroup differences were reported by the medical condition or anti-TNF used (Table 2).

Table 2. Dose intensification rate after the 12-month follow-up by the anti-TNF agent and medical condition.

Anti-TNF	UC/CD	DI Requirement (% 95% CI)	I2 (%)	Number of Included Studies
IFX UC+CD	29 (22–36)	96	26	
IFX UC	40 (24–56)	97	8	
IFX CD	21 (15–28)	92	15	
ADA UC+CD	28 (22–34)	93	16	
ADA UC	29 (23–35)	86	6	
ADA CD	28 (17–38)	94	10	

Anti-TNF: anti-tumor necrosis factor. UC: ulcerative colitis. CD: Crohn’s disease. DI: dose intensification. IFX: Infliximab. ADA: Adalimumab.

3.1.2. Thirty-Six Month Follow-Up

A total of 25 studies with a median follow-up of 36 months were analyzed. There was only one study reporting the DI rate in non-naïve patients, and therefore, no subgroup analysis was performed.

The DI rates in naïve patients ranged from 0% (113) to 70% (183), with an overall rate of 35% (95% CI 28–43%, $I^2 = 98\%$, 18 studies) (Figure 3).

Figure 3. Dose intensification requirements after the 36-month follow-up in anti-TNF naïve patients.

Anti-TNF Use by Medical Condition in Naïve Patients

No statistical differences ($p > 0.05$) in the medical conditions or the anti-TNF drug used were found between the subgroups (Table 3).
Table 3. The DI rate after 36-month follow-up by the anti-TNF agent and medical condition.

Anti-TNF	UC/CD	DI Requirement (% 95% CI)	I2 (%)	Number of Included Studies
IFX	UC/CD	38 (30–46)	96	15
IFX	UC	48 (34–62)	82	4
IFX	CD	35 (26–43)	96	12
ADA	UC/CD	24 (7–40)	92	4
ADA	UC	34 (3–64)	92	2
ADA	CD	3 (4–11)	80	2

Anti-TNF: anti-tumor necrosis factor. UC: ulcerative colitis. CD: Crohn’s disease. DI: dose intensification. IFX: Infliximab. ADA: Adalimumab.

3.1.3. Short-Term Follow up

A total of 17 studies with a median of three to nine months of follow-up were included. The DI rates in naïve patients ranged from 14% (130) to 71% (79) with an overall pooled rate of 29% (95% CI 31–37, I2 = 96%, five studies).

A subgroup analysis evaluating the follow-up time (short-term vs. 12 months vs. 36 months) showed no statistical differences (p > 0.05) in terms of the DI requirements in naïve patients.

3.2. Dose Intensification Efficacy

3.2.1. Response Rate

The response rates ranged from 0% (147) to 96% (48) in naïve patients and from 41% (60) to 75% (181) in non-naïve patients.

The overall rate of the short-term response to the empirical DI was 63% (95% CI: 48–78%, I2 = 99%, 32 studies) and 58% (95% CI: 47–70%, I2 = 68%, nine studies) in the naïve and non-naïve patients, respectively (Figure 4). No statistical differences were found between the groups (p > 0.05).

Figure 4. Response rate after the empirical dose intensification in anti-TNF naïve vs. non-naïve patients.
No statistical differences were found when comparing CD vs. UC patients or the anti-TNF drugs used (Table 4). Neither were found ($p > 0.05$) between different intensification regimens (i.e., intensification of dosing vs. reduction of the interval of administration).

Table 4. Response rate by the anti-TNF agent and medical condition.

Anti-TNF	UC/CD Response Rate (%)	I^2 (%)	Number of Included Studies
IFX UC+CD	65 (49–80)	99	26
IFX UC	62 (29–95)	99	8
IFX CD	67 (59–75)	91	16
ADA UC+CD	63 (55–70)	0	5
ADA UC	58 (48–68)	NA	1
ADA CD	69 (58–80)	0	4

Anti-TNF: anti-tumor necrosis factor. UC: ulcerative colitis. CD: Crohn’s disease. IFX: Infliximab. ADA: Adalimumab.

3.2.2. Remission Rate

The remission rates ranged from 17% (168) to 94% (183) in naïve patients and from 17% (60) to 85% (124) in non-naïve patients. The overall remission rate to empirical DI was 48% (95% CI: 39–58%, $I^2 = 92\%$, 25 studies) and 44% (95% CI: 17–71%, $I^2 = 95\%$, six studies) in naïve and non-naïve patients, respectively (Figure 5). No significant differences were found between the subgroups ($p > 0.05$).

Table 5. Remission rate by the anti-TNF agent and medical condition in naïve patients.

Anti-TNF	UC/CD Remission Rate (%)	I^2 (%)	Number of Included Studies
IFX UC+CD	46 (34–59)	93	14
IFX UC	46 (34–59)	93	14
IFX CD	46 (34–59)	93	14
ADA UC+CD	46 (34–59)	93	14
ADA UC	46 (34–59)	93	14
ADA CD	46 (34–59)	93	14

Figure 5. Remission rates after the empirical dose intensification in anti-TNF naïve vs. non-naïve patients.

No statistical differences were found when comparing CD vs. UC patients or the anti-TNF drugs used (Table 5). Neither were found between the different intensification regimens.
Table 5. Remission rate by the anti-TNF agent and medical condition in naïve patients.

Anti-TNF	UC/CD	Remission Rate (%, 95% CI)	I² (%)	Number of Included Studies
IFX	UC+CD	46 (34–59)	93	14
IFX	UC	50 (25–74)	96	7
IFX	CD	43 (33–53)	60	6
ADA	UC+CD	44 (31–58)	86	10
ADA	UC	17 (07–27)	NA	1
ADA	CD	50 (36–64)	79	8

Anti-TNF: anti-tumor necrosis factor. UC: ulcerative colitis. CD: Crohn’s disease. IFX: Infliximab. ADA: Adalimumab.

3.3. Pediatric Population

A total of 24 studies reported data on children (<18 years) (Table 1). When compared to the adult population, no statistical differences were found in terms of the DI required or its efficacy. The random-effects pooled DI rate in naïve patients after a 12-month follow-up was 29% (95% CI 21–37%, I² = 81%, n = 9).

3.4. Randomized Controlled Trials

A total of five randomized controlled trials (Table 1) assessed the DI requirements after a 12-month follow-up in naïve patients. The random-effects pooled DI rate was 29% (95% CI 18–41%, I² = 88%, five studies). No statistical differences were found when this subgroup was compared to the group of observational studies.

3.5. Sensitivity Analyses and Risk of Bias

We further investigated potential sources of heterogeneity by excluding studies that included extreme or diverging values in certain subgroups, such as the DI requirements after 12 months [34,100,123,127,147,165] and 36 months [85,113] of follow-up or the response [147] and remission [61,145,168,183] rates. The effects of including different follow-up periods in the same subgroup [34,147,149] or the use of different induction dosing regimens [13,126,138] were also explored. In all cases, the results were stable, with no significant variations after the sensitivity analysis, although the heterogeneity remained considerable.

Among the six RCTs evaluated for a potential risk of bias, five had a low risk of bias for randomization, and four of them reported on the implementation of the random allocation sequence preserving concealment. Four studies also reported the adequate blinding of participants and personnel. Three studies showed low risks of attrition bias; in two of them, the number of excluded patients was not specified, and in the remaining one, there was a difference in the proportion of the outcome data. Finally, none of the studies was considered to show reporting biases. In conclusion, for most of the RCT items assessed, there was a low potential risk of bias detected.

4. Discussion

A LOR to the anti-TNF agents represents a therapeutic challenge to gastroenterologists, as these drugs are usually indicated in severe forms of the disease, and the remaining treatment options in such situations are limited. However, there is no unanimous definition of LOR in the literature [185,186]; it has been defined as an increase in clinical activity (which can be assessed by numerous activity indices) or, alternatively, as the need to modify or discontinue the current treatment. Thus, several authors have proposed that the DI requirement, which has been shown to recapture the response in multiple studies [187], would be a more objective and reliable measure [188] and, therefore, a useful surrogate for the LOR. Several reviews have previously assessed the incidence of a LOR, mainly in CD [185–191]. When compared to previous reviews, our study includes a considerably higher number of studies, up to January 2020, assessing both UC and CD patients and, therefore, conferring more robustness and reliability to our work.
4.1. Prior Anti-TNF Exposure

Several studies have estimated that approximately one-third of inflammatory bowel disease patients experience LOR and require DI, and that occurs more frequently in patients with prior anti-TNF exposure [188–191].

In our study, the overall rate of the DI requirements at a one-year follow-up was 28% in naïve and 39% in non-naïve patients, respectively. This shows no relevant differences with the previous data and constitutes one main finding of our study: dose escalation was needed more often in patients with prior anti-TNF use. In fact, the vast majority of the included studies evaluating both naïve and non-naïve patients showed a greater incidence in the loss of response in those non-naïve [30,34,35,60,81,111,121,132,161,163,168,192,193].

4.2. Time of Follow-Up

Additionally, the time course of LOR remains poorly understood. The median time from the first anti-TNF exposure to the need for a DI varied widely among the studies, from 2.7 to 18 months. However, there is increasing evidence showing that such events occur mostly within the first year of anti-TNF therapy [186].

In our study, no differences were found in the rate of DI for the short term, 12 and 36 months of follow-up, supporting the fact that the LOR and consequent DI occur mainly during the first year of treatment.

4.3. Medical Baseline Condition

Another relevant finding in our study was that a DI was required more frequently in UC than in CD patients. Previous data indicated that some patients with active UC have a higher inflammatory burden and accelerated anti-TNF clearance [194–196]; therefore, they could require a higher drug exposure to achieve a response to TNF antagonists. This could be the rational explanation UC patients need for an earlier and more frequent DI than CD patients [110,120,167]. However, there is also evidence not supporting these results [174]. Further research should be conducted, as no randomized trials have focused on this subgroup of patients; they seem to have the highest DI rate and could benefit the most from alternative treatment strategies.

4.4. Anti-TNF Agent

The comparison between the IFX and ADA DI rates is also a matter of interest. Immunogenicity is believed to be a common cause of LOR due to the formation of antidrug antibodies. Some authors have argued that the chimeric nature of IFX, as opposed to the fully humanized ADA, could render the former more prone to generate an antibody response. However, in our study, we did not find significant differences in the DI rate between IFX and ADA patients, as in previous comparative reports [115].

4.5. Dose Intensification Efficacy

Several clinical trials and open-label cohorts included in a previous review reported DI to restore the response in 50–70% of patients [186]. Billioud et al. also found that DI restored the response in 71% and remission in 40% of the patients [189].

In our study, the response and remission rates to empirical DI in naïve patients were 63% and 48%, respectively. Although no significant differences were reported between the naïve and non-naïve patients, either in the response or remission rates, a trend towards a reduced DI efficacy in the patients with prior anti-TNF exposure was shown.

Our findings support that using all the available treatment options with the first anti-TNF agent through DI (even if it is not based on therapeutic drug monitoring) should be considered before switching to another anti-TNF agent or to another therapeutic target. Nevertheless, it should be noted that almost all studies do assess the DI efficacy in the short term; additional research regarding the long-term response and remission rates after DI should be performed.
4.6. Limitations

Our study had some limitations. First of all, the DI can result in an equivocal interpretation of the LOR if it is done without accurately confirming the disease activity. In addition, there were also some possible predictors for the LOR or DI that were not evaluated in our study, such as the concomitant use of immunomodulators. However, recent guidelines (three) have suggested monotherapy with anti-TNF in patients with long-term remission rather than the use of a combination therapy. Finally, we excluded studies in which the DI was made based on therapeutic drug monitoring, with the aim to assess the effectiveness of empirical DI. In this respect, the current guidelines (three) do not recommend either proactive or reactive therapeutic drug monitoring as a standard clinical practice due to insufficient evidence. Finally, we did not perform a quality assessment of all the included studies given the high heterogeneity of the observational studies encountered in terms of the design and number. It was decided to perform a risk of bias assessment exclusively in RCTs, which represented no more than 1.5% of the total of patients included in our systematic review but, including 512 patients, was a sufficient sample size to drawn robust conclusions. In terms of quality, most studies showed a low risk of bias for the majority of the items assessed, highlighting both an adequate random sequence generation and allocation concealment, as well as blinding; items that were usually preserved. Additionally, a subgroup analysis was performed to control for heterogeneity in terms of study design, and no significant differences in the DI requirement between the RCTs and observational studies were reported.

5. Conclusions

A LOR to anti-TNF agents—and, consequently, DI—occurs frequently in inflammatory bowel disease, with an overall rate of DI requirement of approximately one-fourth at one year and one-third at three years. DI is required more frequently in patients with prior exposure to anti-TNF agents and in UC patients. Empirical DI is a relatively effective therapeutic option, achieving a response in two-thirds and remission in one-half of those patients naïve to anti-TNF treatment.

Author Contributions: Conceptualization, O.P., M.C. and J.P.; methodology and software, L.G., O.P. and J.P.; validation, O.P., M.C. and J.P.; formal analysis, investigation, resources and data curation, L.G., O.P. and J.P.; writing—original draft preparation, L.G. and O.P.; writing—review and editing, J.P. and M.C. and supervision and project administration, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: Dr. Gisbert served as a speaker, a consultant and advisory member for or has received research funding from MSD, Abbvie, Pfizer, Kern Pharma, Biogen, Mylan, Takeda, Janssen, Roche, Sandoz, Celgene, Gilead, Ferring, Faes Farma, Shire Pharmaceuticals, Dr. Falk Pharma, Tillotts Pharma, Chiesi, Casen Fleet, Gebro Pharma, Otsuka Pharmaceutical and Vifor Pharma. Dr. Chaparro served as a speaker or has received research or educational funding from MSD, Abbvie, Hospira, Pfizer, Takeda, Janssen, Ferring, Shire Pharmaceuticals, Dr. Falk Pharma and Tillotts Pharma.

References

1. Feldman, M.; Friedman, L.S.; Brandt, L.J. *Sleisenger and Fordtran’s Gastrointestinal and Liver Disease E-Book: Pathophysiology, Diagnosis, Management, Expert Consult. Premium Edition—Enhanced Online Features*; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010.

2. Van Deventer, S.J. Review article: Targeting TNF alpha as a key cytokine in the inflammatory processes of Crohn’s disease—the mechanisms of action of infliximab. *Aliment. Pharmacol. Ther.* 1999, 13, 3–8, discussion 38. [CrossRef] [PubMed]
25. Afif, W.; Leighton, J.A.; Hanauer, S.B.; Loftus, E.V., Jr.; Faubion, W.A.; Pardi, D.S.; Tremaine, W.J.; Kane, S.V.; Bruining, D.H.; Cohen, R.D.; et al. Open-label study of adalimumab in patients with ulcerative colitis including those with prior loss of response or intolerance to infliximab. Inflamm. Bowel Dis. 2009, 15, 1302–1307. [CrossRef] [PubMed]

26. Alvisi, P.; Arrigo, S.; Cucchiara, S.; Lionetti, P.; Miele, E.; Romano, C.; Ravelli, A.; Knaefel, D.; Martelossi, S.; Guarisco, G.; et al. Efficacy of adalimumab as second-line therapy in a pediatric cohort of Crohn’s disease patients who failed infliximab therapy: The Italian society of pediatric gastroenterology, hepatology, and nutrition experience. Biol. Targets Ther. 2019, 13, 13–21. [CrossRef]

27. Armuzzi, A.; Biancone, L.; Daperno, M.; Coli, A.; Annese, V.; Ardizzzone, S.; Balestrieri, P.; Bossa, F.; Castiglia, F.; Cicala, M.; et al. Adalimumab in active ulcerative colitis: A “real-life” observational study. Gastroenterology 2012, 142, S351. [CrossRef]

28. Assa, A.; Hartman, C.; Weiss, B.; Broide, E.; Rosenbach, Y.; Zevit, N.; Bujanover, Y.; Shamir, R. Long-term outcome of tumor necrosis factor alpha antagonist’s treatment in pediatric Crohn’s disease. J. Crohn Colitis 2013, 7, 369–376. [CrossRef] [PubMed]

29. Baert, F.; Vande Casteele, N.; Tops, S.; Noman, M.; Van Assche, G.; Rutgeerts, P.; Gils, A.; Vermeire, S.; Ferrante, M. Prior response to infliximab and early serum drug concentrations predict effects of adalimumab in ulcerative colitis. Aliment. Pharmacol. Ther. 2014, 40, 1324–1332. [CrossRef] [PubMed]

30. Baert, F.; Glorieus, E.; Reenaers, C.; D’Haens, G.; Peeters, H.; Franchimont, D.; Dewit, O.; Caenepeel, P.; Louis, E.; Van Assche, G. Adalimumab dose escalation and dose de-escalation success rate and predictors in a large national cohort of Crohn’s patients. J. Crohn Colitis 2013, 7, 154–160. [CrossRef]

31. Baki, E.; Zwickel, P.; Zawierucha, A.; Ehehalt, R.; Gotthardt, D.; Stremmel, W.; Gauss, A. Real-life outcome of anti-tumor necrosis factor factor α in the ambulatory treatment of ulcerative colitis. World J. Gastroenterol. 2015, 21, 3282–3290. [CrossRef] [PubMed]

32. Bálint, A.; Rutka, M.; Kolar, M.; Bortlik, M.; Duricova, D.; Hruba, V.; Lukas, K.; Mitrova, K.; Malickova, K.; Lukas, M.; et al. Infliximab biosimilar CT-P13 therapy is effective in maintaining endoscopic remission in ulcerative colitis—Results from multicenter observational cohort. Expert Opin. Biol. Ther. 2018, 18, 1181–1187. [CrossRef]

33. Bálint, A.; Farkas, K.; Palatka, K.; Lakan, L.; Miheroller, P.; Rácz, I.; Hegede, G.; Vinceze, A.; Horváth, G.; Szabó, A.; et al. Efficacy and safety of adalimumab in ulcerative colitis refractory to conventional therapy in routine clinical practice. J. Crohn Colitis 2016, 10, 26–30. [CrossRef] [PubMed]

34. Bhalme, M.; Sharma, A.; Keld, R.; Willert, R.; Campbell, S. Does weight-adjusted anti-tumour necrosis factor treatment favour obese patients with Crohn’s disease? Eur. J. Gastroenterol. Hepatol. 2013, 25, 543–549. [CrossRef] [PubMed]

35. Black, C.M.; Yu, E.; McCann, E.; Kachroo, S. Dose escalation and healthcare resource use among ulcerative colitis patients treated with adalimumab in English hospitals: An analysis of real-world data. PLoS ONE 2016, 11, e0149692. [CrossRef] [PubMed]

36. Bor, R.; Farkas, K.; Fabian, A.; Bálint, A.; Milassin, Á.; Rutka, M.; Matuz, M.; Nagy, F.; Szepes, Z.; Molnár, T. Clinical role, optimal timing and frequency of serum infliximab and anti-infliximab antibody level measurements in patients with inflammatory bowel disease. PLoS ONE 2017, 12, e0172916. [CrossRef] [PubMed]

37. Bortlik, M.; Duricova, D.; Malickova, K.; Machkova, N.; Bouzkova, E.; Hrdlicka, L.; Komarek, A.; Lukas, M. Infliximab trough levels may predict sustained response in infliximab patients with Crohn’s disease. J. Crohn Colitis 2013, 7, 736–743. [CrossRef] [PubMed]

38. Bossuyt, P.; Baert, F.; D’Hegere, F.; Nakad, A.; Louis, E.; Fontaine, F.; Franchimont, D.; Dewit, O.; Van Hootegem, P.; Vandenbroucke, F.; et al. Efficacy and safety of adalimumab 80 mg weekly in luminal Crohn’s disease. Inflamm. Bowel Dis. 2015, 21, 1047–1053. [CrossRef] [PubMed]

39. Bramuzzo, M.; Arrigo, S.; Romano, C.; Filardi, M.C.; Lionetti, P.; Agrusti, A.; Dipasquale, V.; Paci, M.; Zuin, G.; Aloiz, M.; et al. Efficacy and safety of infliximab in very early onset inflammatory bowel disease: A national comparative retrospective study. United Eur. Gastroenterol. J. 2019, 7, 759–766. [CrossRef] [PubMed]

40. Brandes, A.; Groth, A.; Gottschalk, F.; Wilke, T.; Ratsch, B.A.; Orzechowski, H.D.; Fuchs, A.; Deiters, B.; Bokemeyer, B. Real-world biologic treatment and associated cost in patients with inflammatory bowel disease. Z. Fur Gastroenterol. 2019, 57, 843–851. [CrossRef] [PubMed]

41. Bulman, E.; de Haar, C.; van Liere-Baron, A.; Verhoog, H.; West, R.L.; Kuipers, E.J.; Zelinkova, Z.; van der Woude, C.J. Predictors of dose escalation of adalimumab in a prospective cohort of Crohn’s disease patients. Aliment. Pharmacol. Ther. 2012, 35, 335–341. [CrossRef] [PubMed]

42. Cameron, F.L.; Wilson, M.L.; Basheer, N.; Jamison, A.; McGrogen, P.; Bisset, W.M.; Gillett, P.M.; Russell, R.K.; Wilson, D.C. Anti-TNF therapy for paediatric IBD: The scottish national experience. Arch. Dis. Child. 2015, 100, 399–405. [CrossRef] [PubMed]

43. Casellas, F.; Herrera De Guise, C.; Robles, V.; Torrejon, A.; Navarro, E.; Borruel, N. Long-term normalization of quality of life in patients with Crohn’s disease following maintenance therapy with adalimumab. Enferm. Inflamatoria Intest. 2015, 14, 5–10. [CrossRef] [PubMed]

44. Caviglia, R.; Ribolsi, M.; Rizzi, M.; Emerenziani, S.; Annunziata, M.; Cicila, M. Maintenance of remission with infliximab in inflammatory bowel disease: Efficacy and safety long-term follow-up. World J. Gastroenterol. 2007, 13, 5238–5244. [CrossRef] [PubMed]
47. Cesarini, M.; Katsanos, K.; Papamichael, K.; Ellul, P.; Lakatos, P.L.; Caprioli, F.; Kopylov, U.; Tsiason, E.; Mantzaris, G.J.; Ben-Horin, S.; et al. Dose optimization is effective in ulcerative colitis patients losing response to infliximab: A collaborative multicentre retrospective study. *Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver* 2014, 46, 135–139. [CrossRef] [PubMed]

48. Chaparro, M.; Martínez-Montiel, P.; Van Domselaar, M.; Bermejo, F.; Pérez-Calle, J.L.; Casis, B.; Román, A.L.; Algabe, A.; Maté, J.; Gisbert, J.P. Intensification of infliximab therapy in Crohn’s disease: Efficacy and safety. *J. Crohn Colitis* 2012, 6, 62–67. [CrossRef]

49. Cheng, J.; Hamilton, Z.; Smyth, M.; Barker, C.; Israel, D.; Jacobson, K. Concomitant therapy with immunomodulator enhances infliximab durability in pediatric inflammatory bowel disease. *Inflamm. Bowel Dis.* 2017, 23, 1762–1773. [CrossRef] [PubMed]

50. Choi, G.K.; Collins, S.D.; Greer, D.P.; Warren, L.; Dowson, G.; Clark, T.; Hamlin, P.J.; Ford, A.C. Costs of adalimumab versus infliximab as first-line biological therapy for luminal Crohn’s disease. *J. Crohn Colitis* 2014, 8, 375–383. [CrossRef]

51. Cordero Ruiz, P.; Castro, M.; Pérez, C.; García, V.; Márquez, M.; Esteve, M.; Merino, O.; Andreu, M.; Gutiérrez, A.; Gomollón, F.; Cabrera, J.L.; et al. Long-term durability of infliximab treatment in Crohn’s disease and efficacy of dose “escalation” in patients losing response. *J. Clin. Gastroenterol.* 2011, 45, 113–118. [CrossRef] [PubMed]

52. Cordero Ruiz, P.; Mancini, J.; Jiménez, C.; García, V.; Márquez, M.; Esteve, M.; Merino, O.; Andreu, M.; Gutiérrez, A.; Gomollón, F.; Cabrera, J.L.; et al. Long-term durability of infliximab treatment in Crohn’s disease and efficacy of dose “escalation” in patients losing response. *J. Clin. Gastroenterol.* 2011, 45, 113–118. [CrossRef] [PubMed]

53. Cordero Ruiz, P.; Mancini, J.; Jiménez, C.; García, V.; Márquez, M.; Esteve, M.; Merino, O.; Andreu, M.; Gutiérrez, A.; Gomollón, F.; Cabrera, J.L.; et al. Long-term durability of infliximab treatment in Crohn’s disease and efficacy of dose “escalation” in patients losing response. *J. Clin. Gastroenterol.* 2011, 45, 113–118. [CrossRef] [PubMed]

54. Clark-Snustad, K.D.; Singla, A.; Lee, S.D. Efficacy of infliximab in Crohn’s disease patients with prior primary-nonresponse to infliximab. *J. Crohn Colitis* 2014, 8, 375–383. [CrossRef] [PubMed]

55. Cordero Ruiz, P.; Mancini, J.; Jiménez, C.; García, V.; Márquez, M.; Esteve, M.; Merino, O.; Andreu, M.; Gutiérrez, A.; Gomollón, F.; Cabrera, J.L.; et al. Long-term durability of infliximab treatment in Crohn’s disease and efficacy of dose “escalation” in patients losing response. *J. Clin. Gastroenterol.* 2011, 45, 113–118. [CrossRef] [PubMed]

56. Cordero Ruiz, P.; Mancini, J.; Jiménez, C.; García, V.; Márquez, M.; Esteve, M.; Merino, O.; Andreu, M.; Gutiérrez, A.; Gomollón, F.; Cabrera, J.L.; et al. Long-term durability of infliximab treatment in Crohn’s disease and efficacy of dose “escalation” in patients losing response. *J. Clin. Gastroenterol.* 2011, 45, 113–118. [CrossRef] [PubMed]

57. Coelho, D.; Cesarini, M.; Katsanos, K.; Papamichael, K.; Ellul, P.; Lakatos, P.L.; Caprioli, F.; Kopylov, U.; Tsiason, E.; Mantzaris, G.J.; Ben-Horin, S.; et al. Dose optimization is effective in ulcerative colitis patients losing response to infliximab: A collaborative multicentre retrospective study. *Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver* 2014, 46, 135–139. [CrossRef] [PubMed]
69. Forteа-Ormaеchа, J.I.; González-Lama, Y.; Casis, B.; Chaparro, M.; López Serrano, P.; Van Domselaar, M.; Bermejo, F.; Pajares, R.; Ponferrada, A.; Vera, M.I.; et al. Adalimumab is effective in long-term real life clinical practice in both luminal and perianal Crohn's disease. The Madrid experience. *Gastroenterol. Y Hepatol.* 2011, 34, 443–448. [CrossRef] [PubMed]

70. Frederiksen, M.T.; Ainsworth, M.A.; Brynskov, J.; Thomsen, O.O.; Bendtzen, K.; Steenholdt, C. Antibodies against infliximab are associated with de novo development of antibodies to adalimumab and therapeutic failure in infliximab-to-adalimumab switchers with IBD. *Inflamm. Bowel Dis.* 2014, 20, 1714–1721. [CrossRef] [PubMed]

71. García-Bosch, O.; GISbert, J.P.; Cañas-Ventura, A.; Merino, O.; Cabriada, J.L.; García-Sánchez, V.; Gutiérrez, A.; Nos, P.; Peñalva, M.; Hinojosa, J.; et al. Observational study on the efficacy of adalimumab for the treatment of ulcerative colitis and predictors of outcome. *J. Crohn Colitis* 2013, 7, 717–722. [CrossRef]

72. Ghaly, S.; Costello, S.; Beswick, L.; Pudipeddi, A.; Agarwal, A.; Sechi, A.; Antoniades, S.; Headon, B.; Connor, S.; Lawrance, I.C.; et al. Dose tailoring of anti-tumour necrosis factor-alpha therapy delivers useful clinical efficacy in Crohn disease patients experiencing loss of response. *Intern. Med. J.* 2015, 45, 170–177. [CrossRef] [PubMed]

73. Gofin, Y.; Matar, M.; Shamir, R.; Assa, A. Therapeutic drug monitoring increases drug retention of anti-Tumor necrosis factor alpha agents in pediatric patients with Crohn's disease. *Inflamm. Bowel Dis.* 2020, 26, 1267–1282. [CrossRef] [PubMed]

74. Gonczi, L.; Kurti, Z.; Rutka, M.; Vegh, Z.; Farkas, K.; Lovasz, B.D.; Golovics, P.A.; Geese, K.B.; Szalay, B.; Molnar, T.; et al. Drug persistence and need for dose intensification to adalimumab therapy: the importance of therapeutic drug monitoring in inflammatory bowel diseases. *BMC Gastroenterol.* 2017, 17, 97. [CrossRef] [PubMed]

75. Gonzaga, J.E.; Ananthakrishnan, A.N.; Issa, M.; Beaulieu, D.B.; Headon, B.; Connor, S.; Lawrance, I.C.; et al. Dose tailoring of anti-tumour necrosis factor-alpha therapy delivers useful clinical efficacy in Crohn disease patients experiencing loss of response. *Intern. Med. J.* 2015, 45, 170–177. [CrossRef] [PubMed]

76. González-Lama, Y.; López-San Román, A.; Marín-Jiménez, I.; Casis, B.; Vera, I.; Bermejo, F.; Pérez-Calle, J.L.; Taxonera, C.; Martínez-Silva, F.; Menchén, L.; et al. Open-label infliximab therapy in Crohn's disease: A long-term multicenter study of efficacy, safety and predictors of response. *Gastroenterol. Y Hepatol.* 2008, 31, 421–426. [CrossRef] [PubMed]

77. Grover, Z.; Biron, R.; Carman, N.; Lewindon, P. Predictors of response to Infliximab in children with luminal Crohn's disease. *J. Crohn Colitis* 2014, 8, 739–746. [CrossRef]

78. Guerbau, L.; Gerard, R.; Duveau, N.; Staumont-Sallé, D.; Branche, J.; Maunoury, V.; Cattan, S.; Wils, P.; Boualit, M.; Libier, L.; et al. Patients with Crohn's disease with high body mass index present more frequent and rapid loss of response to infliximab. *Inflamm. Bowel Dis.* 2017, 23, 1853–1859. [CrossRef]

79. Guidi, L.; Pugliese, D.; Tonucci, T.P.; Berrino, A.; Tolusso, B.; Basile, M.; Cantoro, L.; Balestrieri, P.; Civitelli, F.; Bertani, L.; et al. Therapeutic drug monitoring is more cost-effective than a clinically based approach in the management of loss of response to infliximab in inflammatory bowel disease: An observational multicentre study. *J. Crohn Colitis* 2018, 12, 1079–1088. [CrossRef]

80. Ho, G.T.; Smith, L.; Atiken, S.; Lee, H.M.; Ting, T.; Fennell, J.; Lees, C.W.; Palmer, K.R.; Pennman, I.D.; Shand, A.G.; et al. The use of adalimumab in the management of refractory Crohn's disease. *Aliment. Pharmacol. Ther.* 2008, 27, 308–315. [CrossRef]

81. Ho, G.T.; Mowat, A.; Potts, L.; Cahill, A.; Mowat, C.; Lees, C.W.; Hare, N.C.; Wilson, J.A.; Boulton-Jones, R.; Priest, M.; et al. Efficacy and complications of adalimumab treatment for medically-refractory Crohn's disease: Analysis of nationwide experience in Scotland (2004–2008). *Aliment. Pharmacol. Ther.* 2009, 29, 527–534. [CrossRef] [PubMed]

82. Hussey, M.; Mc Garrigle, R.; Kennedy, U.; Hollerin, G.; Kevans, D.; Ryan, B.; Breslin, N.; Mahmud, N.; McNamara, D. Long-term assessment of clinical response to adalimumab therapy in refractory ulcerative colitis. *Eur. J. Gastroenterol. Hepatol.* 2016, 28, 217–221. [CrossRef]

83. Hyams, J.S.; Lerer, T.; Griffiths, A.; Pfefferkorn, M.; Stephens, M.; Evans, J.; Otley, A.; Carvalho, R.; Mack, D.; Bousvaros, A.; et al. Outcome following infliximab therapy in children with ulcerative colitis. *Am. J. Gastroenterol.* 2010, 105, 1430–1436. [CrossRef] [PubMed]

84. Iborra, M.; Pérez-Gisbert, J.; Bosca-Watts, M.M.; López-García, A.; García-Sánchez, V.; López-Sanromán, A.; Hinojosa, E.; Márquez, L.; García-López, S.; Chaparro, M.; et al. Effectiveness of adalimumab for the treatment of ulcerative colitis in clinical practice: Comparison between anti-tumour necrosis factor-naive and non-naïve patients. *J. Gastroenterol.* 2017, 52, 788–799. [CrossRef] [PubMed]

85. Inokuchi, T.; Takahashi, S.; Hiraoka, S.; Toyokawa, T.; Takagi, S.; Takemoto, K.; Miiyake, J.; Fujimoto, T.; Higashi, R.; Morito, Y.; et al. Long-term outcomes of patients with Crohn’s disease who received infliximab or adalimumab as the first-line biologics. *J. Gastroenterol. Hepatol.* 2019, 34, 1329–1336. [CrossRef] [PubMed]

86. Juillerat, P.; Sokol, H.; Yajnik, V.; Froehlich, F.; Beaugerie, L.; Cosnes, J.; Bournand, B.; Macpherson, A.J.; Korzenik, J.R.; Lucchi, M. Factors associated with durable response to infliximab 5 years and beyond: A multi center international cohort. *United Eur. Gastroenterol.* J. 2013, 1, A33. [CrossRef]

87. Juliao, F.; Marquez, J.; Aristizabal, N.; Carlos, Y.; Julio, Z.; GISbert, J.P. Clinical efficacy of infliximab in moderate to severe ulcerative. *Inflamm. Bowel Dis.* 2012, 18, S18. [CrossRef]

88. Kang, B.; Choi, S.Y.; Kim, H.S.; Kim, K.; Lee, Y.M.; Choe, Y.H. Mucosal healing in paediatric patients with moderate-to-severe luminal Crohn's disease under combined immunosuppression: Escalation versus early treatment. *J. Crohn Colitis* 2016, 10, 1279–1286. [CrossRef]
98. Lees, C.W.; Ali, A.I.; Thompson, A.I.; Ho, G.T.; Forsythe, R.O.; Marquez, L.; Cochrane, C.J.; Aitken, S.; Fennell, J.; Rogers, P.; et al. Time of infliximab therapy initiation and dose escalation in Crohn’s disease. Inflamm. Bowel Dis. 2012, 18, 2026–2033. [CrossRef] [PubMed]

99. Kiss, L.S.; Szamosi, T.; Molnar, T.; Miheller, P.; Lakatos, L.; Vincze, A.; Palatka, K.; Barta, Z.; Gasztonyi, B.; Salamon, A.; et al. Early clinical remission and normalisation of CRP are the strongest predictors of efficacy, mucosal healing and dose escalation during the first year of adalimumab therapy in Crohn’s disease. Aliment. Pharmacol. Ther. 2011, 34, 911–922. [CrossRef] [PubMed]

100. Kopylov, U.; Mantzaris, G.J.; Katsanos, K.H.; Reenaers, C.; Ellul, P.; Rahier, J.F.; Israeli, E.; Lakatos, P.L.; Fiorino, G.; Cesarini, M.; et al. The safety profile of anti-tumour necrosis factor therapy in inflammatory bowel disease in clinical practice: Analysis of 620 patient-years follow-up. Aliment. Pharmacol. Ther. 2009, 29, 286–297. [CrossRef] [PubMed]

101. Lin, K.K.; Velayos, F.; Fisher, E.; Terdian, J.P. Durability of infliximab dose intensification in Crohn’s disease. Dig. Dis. Sci. 2012, 57, 1013–1019. [CrossRef] [PubMed]

102. Lindsay, J.O.; Chipperfield, R.; Giles, A.; Wheeler, C.; Orchard, T. A UK retrospective observational study of clinical outcomes and healthcare resource utilisation of infliximab treatment in Crohn’s disease. Aliment. Pharmacol. Ther. 2013, 38, 52–61. [CrossRef] [PubMed]

103. Lindsay, J.O.; Armuzzi, A.; Gisbert, J.P.; Bokemeyer, B.; Peyrin-Biroulet, L.; Nguyen, G.C.; Smyth, M.; Patel, H. Indicators of suboptimal tumour necrosis factor antagonist therapy in inflammatory bowel disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2017, 49, 1086–1091. [CrossRef]

104. Ling, J.; Buurman, D.; Ravikumara, M.; Mews, C.; Thacker, K.; Grover, Z. Accelerated step-up infliximab use is associated with sustained primary response in pediatric Crohn’s disease. Dig. Dis. Sci. 2018, 63, 1003–1010. [CrossRef]

105. Llao, J.; Naves, J.E.; Ruiz-Cerulla, A.; Romero, C.; Mañoso, M.; Labotán, T.; Cabré, E.; Guardiola, J.; García-Planella, E.; Domínech, E. Tratamiento de mantenimiento con azathioprina o infliximab en pacientes con colitis ulcerosa corticoerectractarios respondedores a las 3 dosis de inducción de infliximab. Enferm. Inflamatoria Intest. 2017, 16, 15–20. [CrossRef]

106. Löfberg, R.; Louis, E.; Reinsich, W.; Robinson, A.; Kron, M.; Camaño, A.; Pollack, P. Clinical outcomes in patients with moderate versus severe Crohn’s disease at baseline: Analysis from CARE. J. Crohn Colitis 2012, 6, S94. [CrossRef]

107. López Palacios, N.; Mendoza, J.L.; Taxonera, C.; Lana, R.; Fuentes Ferrer, M.; Díaz-Rubio, M. Adalimumab induction and maintenance therapy for Crohn’s disease. An open-label study. Rev. Esp. Enferm. Dig. Organo Of. Soc. Esp. Patol. Dig. 2008, 100, 676–681.

108. Ma, C.; Huang, V.; Fedorak, D.K.; Kroeker, K.I.; Dieleman, L.A.; Halloran, B.P.; Fedorak, R.N. Outpatient ulcerative colitis primary anti-TNF responders receiving adalimumab or infliximab maintenance therapy have similar rates of secondary loss of response. J. Clin. Gastroenterol. 2015, 49, 675–682. [CrossRef] [PubMed]

109. Ma, C.; Huang, V.; Fedorak, D.K.; Kroeker, K.I.; Dieleman, L.A.; Fedorak, R.N. Adalimumab dose escalation is effective for managing secondary loss of response in Crohn’s disease. Aliment. Pharmacol. Ther. 2014, 40, 1044–1055. [CrossRef] [PubMed]
132. Peters, C.P.; Eshuis, E.J.; Toxopeüs, F.M.; Hellemans, M.E.; Jansen, J.M.; D’Haens, G.R.; Fockens, P.; Stokkers, P.C.; Tuynman, H.A.; van Bodegraven, A.A.; et al. Adalimumab for Crohn’s disease: Long-term sustained benefit in a population-based cohort of 438 patients. J. Crohn Colitis 2014, 8, 866–875. [CrossRef]

133. Preda, C.; Fulger, L.; Gheorghe, L.; Gheorghe, C.; Goldis, A.; Trifan, A.; Tantau, M.; Tantau, A.; Negreanu, L.; Manuc, M.; et al. Adalimumab and Infliximab in Crohn’s disease-real life data from a national retrospective cohort study. Curr. Health Sci. J. 2016, 42, 115–124. [PubMed]

134. Pöllinger, B.; Schmidt, W.; Seiffert, A.; Imhoff, H.; Emmert, M. Costs of dose escalation among ulcerative colitis patients treated with adalimumab in Germany. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2019, 20, 195–203. [CrossRef]

135. Peña, V.; Van Bodegraven, A.A.; et al. Adalimumab for Crohn’s disease: Long-term sustained benefit in a population-based cohort of 438 patients. J. Crohn Colitis 2014, 8, 866–875. [CrossRef] [PubMed]

136. Qazi, T.; Shah, B.; El-Dib, M.; Farraye, F.A. The Tolerability and efficacy of rapid infliximab infusions in patients with inflammatory bowel disease. Dig. Dis. Sci. 2016, 61, 589–596. [CrossRef] [PubMed]

137. Regueiro, M.; Siemanowski, B.; Kip, K.E.; Plevy, S. Infliximab dose intensification in Crohn’s disease. Am. J. Gastroenterol. 2015, 110, 475–484. [CrossRef] [PubMed]

138. Reineisch, W.; Sandborn, W.J.; Panaccione, R.; Huang, B.; Pollack, P.F.; Lazar, A.; Thakker, R.B. 52-week efficacy of adalimumab in patients with moderately to severely active ulcerative colitis who failed corticosteroids and/or immunosuppressants. Inflamm. Bowel Dis. 2013, 19, 1700–1709. [CrossRef]

139. Renna, S.; Orlando, E.; Macaluso, F.S.; Maida, M.; Affronti, M.; Giunta, M.; Sapienza, C.; Rizzuto, G.; Orlando, R.; Dimarco, M.; et al. Letter: A prospective real life comparison of the efficacy of adalimumab vs. golimumab in moderate to severe ulcerative colitis. Aliment. Pharmacol. Ther. 2016, 44, 310–311. [CrossRef]

140. Renna, S.; Mocciaro, F.; Ventimiglia, M.; Orlando, R.; Macaluso, F.S.; Cappello, M.; Fries, W.; Mendolaro, M.; Privitera, A.C.; Ferracane, C.; et al. A real life comparison of the effectiveness of adalimumab and golimumab in moderate-to-severe ulcerative colitis, supported by propensity score analysis. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2018, 50, 1292–1298. [CrossRef]

141. Riis, A.; Martinsen, T.C.; Waldum, H.L.; Fossmark, R. Clinical experience with infliximab and adalimumab in a single-center cohort of patients with Crohn’s disease. Scand. J. Gastroenterol. 2012, 47, 649–657. [CrossRef] [PubMed]

142. Roblin, X.; Rinaudo, M.; Del Tedesco, E.; Phelip, J.M.; Genin, C.; Peyrin-Biroulet, L.; Paul, S. Development of an algorithm incorporating pharmacokinetics of adalimumab in inflammatory bowel diseases. Am. J. Gastroenterol. 2014, 109, 1250–1256. [CrossRef] [PubMed]

143. Roblin, X.; Duru, G.; Williet, N.; Del Tedesco, E.; Cuilleron, M.; Jarlot, C.; Phelip, J.M.; Boschetti, G.; Flourié, B.; Nancey, S.; et al. Development and internal validation of a model using fecal calprotectin in combination with infliximab trough levels to predict clinical relapse in Crohn’s disease. Inflamm. Bowel Dis. 2017, 23, 126–132. [CrossRef] [PubMed]

144. Roblin, X.; Marotte, H.; Leclerc, M.; Del Tedesco, E.; Phelip, J.M.; Peyrin-Biroulet, L.; Paul, S. Combination of C-reactive protein, infliximab trough levels, and stable but not transient antibodies to infliximab are associated with loss of response to infliximab in inflammatory bowel disease. J. Crohn Colitis 2015, 9, 525–531. [CrossRef]

145. Rostholder, E.; Ahmed, A.; Cheifetz, A.S.; Moss, A.C. Outcomes after escalation of infliximab therapy in ambulatory patients with moderately active ulcerative colitis. Aliment. Pharmacol. Ther. 2012, 35, 562–567. [CrossRef] [PubMed]

146. Rubin, D.T.; Uluscu, O.; Sederman, A. Response to biologic therapy in Crohn’s disease is improved with early treatment: An open-label study. Aliment. Pharmacol. Ther. 2007, 25, 657–660. [CrossRef] [PubMed]

147. Pollinger, B.; Schmidt, W.; Seiffert, A.; Imhoff, H.; Emmert, M. Costs of dose escalation among ulcerative colitis patients treated with adalimumab in Germany. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2019, 20, 195–203. [CrossRef]

148. Russo, E.A.; Harris, A.W.; Campbell, S.; Lindsay, J.; Hart, A.; Arebi, N.; Milestone, A.; Tsai, H.H.; Walters, J.; Carpani, M.; et al. Experience of maintenance infliximab therapy for refractory ulcerative colitis from six centres in England. Aliment. Pharmacol. Ther. 2012, 35, 1263–1271. [CrossRef] [PubMed]

149. Sazuka, S.; Katsuno, T.; Nakagawa, T.; Saito, M.; Saito, K.; Matsumura, T.; Arai, M.; Sato, T.; Yokosuka, O. Concomitant use of enteral nutrition therapy is associated with sustained response to infliximab in patients with Crohn’s disease. Eur. J. Clin. Nutr. 2012, 66, 1219–1223. [CrossRef]

150. Schnitzler, F.; Fidder, H.; Ferrante, M.; Noman, M.; Arij, I.; Van Assche, G.; Hoffman, I.; Van Steen, K.; Vermeire, S.; Rutgeerts, P. Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: Results from a single-centre cohort. Gut 2009, 58, 492–500. [CrossRef]
