Significance of vascular endothelial growth factor expression and its correlation with inducible nitric oxide synthase in gastric cancer

Zhen-Ya Song, Shu-Qun Wen, Jia-Ping Peng, Xuan Huang, Ke-Da Qian

Abstract

AIM: To investigate the clinical significance of the expression of VEGF mRNA and the correlation with vascular endothelial growth factor (VEGF) protein and inducible nitric oxide synthase (iNOS) in human gastric cancer.

METHODS: We tested VEGF mRNA expression in 31 cases of resected gastric cancer specimens and normal paired gastric mucosa by RT-PCR. Total RNA was extracted with TRIzol reagents, transcribed into cDNA with oligo (dT) priming, inner controlled with β-actin expression and agarose gel isolated after PCR. VEGF expression was quantitated with IS1000 imaging system. Meanwhile we also examined expression levels of VEGF protein and iNOS in 85 cases of gastric cancer. All paraffin-embedded samples were immunohistochemically stained by streptavidin - peroxidase method (SP).

RESULTS: The mean expression of VEGF mRNA in gastric cancer was 1.125±0.356, significantly higher than that of normal paired mucosaes, which was 0.760±0.278. The data indicated that the expression level of VEGF mRNA is well related to lymph node metastasis and TNM stages of UICC. The expression levels in patients with lymph node metastasis and without lymph node metastasis were 1.219±0.377 and 0.927±0.205 respectively (P<0.05). The expression in stages I, II, III, IV was 0.934±0.194, 1.262±0.386 respectively (P<0.01). Further analysis showed the lymph node metastasis rate in the group with over-expression of VEGF was higher than that in the group with low expression of VEGF (83.3% vs 46.2%), and the ratio of stage II+IV in the group with over-expression of VEGF was also higher than that in the group with low expression with VEGF (77.8% vs 33.8%) (P<0.05). The positive rates of expression of VEGF protein and iNOS in 85 cases of gastric cancer were 75.4% and 58.8% respectively, and 50.1% of the patients showed positive staining both for iNOS and VEGF, the correlation with the two factors was significant (P=0.018). But more intensive analysis showed the immunoreactive grades of VEGF were not associated with that of iNOS.

CONCLUSIONS: The expression of VEGF mRNA is well related with lymph node metastasis and TNM stages of UICC in gastric cancer, and is concerned with the invasiveness and metastasis of gastric cancer. The relationship can be observed between the expression of VEGF and iNOS in gastric cancer.

INTRODUCTION

Many observations have shown that angiogenesis plays an important role in the growth, progression and metastasis of solid tumors. Several potential angiogenic factors have been identified, vascular endothelial growth factor (VEGF) is known as one of the most powerful and specific molecules in vascularization. VEGF is the major isoform among the five different VEGF species[1,2]. Studies have demonstrated that tumor cells could produce and secrete VEGF periodically by themselves, which binding with the VEGF receptor in the vascular endothelial cells and then promote the angiogenesis in tumors[3]. Inducible nitric oxide synthase (iNOS) is one of the isofroms of nitric oxide synthase that catalyzes the formation of nitric oxide, a regulator of vascular permeability. Expression of VEGF protein and iNOS has been shown by immunohistochemistry in gastric cancer[4,5]. However, the relationship has not been well evaluated between the VEGF mRNA and the clinical pathological features, and between VEGF and iNOS, the two angiogenic regulators in gastric cancer.

The present study detected the expression of VEGF mRNA by RT-PCR and the expression of VEGF protein and iNOS by immunohistochemistry in surgically resected human gastric cancer specimens, and characterized the correlation that mentioned above.

MATERIALS AND METHODS

Materials

Specimens of cancer tissue from 85 cases of gastric cancer were confirmed pathologically and at the second Affiliated Hospital of Medical College of Zhejiang University from August 1998 to January 2002. Of these, 54 patients were male, and 23 female, with a median age of 54 (31-77) years. All the cases were classified by WHO criteria histologically and TNM staging of UICC. Fresh resected gastric mucosa obtained from 31 cases of them were frozen quickly by liquid nitrogen and stored at -80 °C until used for RT-PCR. All the specimens from 85 cases were fixed in 40 g/L buffered formaldehyde and embedded in paraffin for immunohistochemistry.
RT-PCR
Total RNA was extracted from 100 mg each frozen tissue using TRIzol reagents according to the manufacturer’s instructions (GIBCO BRL) and the purity and quality were identified by an ultraviolet spectrophotometer and denatured gel electrophoresis.

First-strand cDNA was synthesized from 2 µg of total RNA in a 40 µL reaction volume by reverse transcription (RT) using 50 pmol oligo (dT)₁₂-20 µL, RNasin 40 U, 10 mmol/L dNTP 2 µL, M-MLV reverse transcriptase 10 U (PROMEGA). The RNA template and oligo (dT)₁₂ were incubated at 65 °C for 10 min first, and were then added to the total reaction system at 37 °C for 1 h, stored at -20 °C for PCR. cDNA of 5 µL was amplified by PCR in a 25 µL reaction volume, containing 10 mmol/L dNTP 0.5 µL, Taq 1.5 U, per primer 10 pmol, and was inner controlled with β-actin. VEGF primers according to Tischfr’s design were the upper primer: 5’-CAAGGATCCATGAAC TTTCCTGCTGTCIT-3’, the lower primer: 5’-CTTAAAGCTTTGCC TCTTCCTCTCCTGCCCCGGC-3’. The upper primer of β-actin: 5’-TCGACAACGGCTCCGGCATC-3’, the lower primer of β-actin: 5’-CGTACATGGCTGGTTGTT-3’. The recombinated plasmid pGEM-T-VEGF₁₆₅ was used as positive control (provide by the Surgery Laboratory in our hospital). PCR condition of VEGF₁₆₅: pre-denaturation 94 °C for 5 min, then 30 cycles of amplification at 94 °C for 45 s, at 60 °C for 45 s, and at 72 °C for 45 s, extension at 72 °C for 10 min.

Aliquots of the PCR products (10 µL) were separated and visualized with ethidium bromide staining after electrophoresis in a 15 g/L agarose gel in Tris acetate ethylenediaminetetraacetic acid buffer at 100 V for 20 min, and quantitated with IS 1000 imaging system (Alpha Inotech). The expression of VEGF₁₆₅mRNA was expressed as follow: numeral value of VEGF₁₆₅mRNA was 655 bp and the value less than 1 was regarded as lower expression of VEGF₁₆₅mRNA. As shown by RT-PCR, the amplification products of VEGF and β-actin were 655 bp and 370 bp, respectively. Over-expression of VEGF₁₆₅ was detected in gastric cancer mucosae, and the over-expression rate was 58%, whereas 16% in normal paired mucosae. The mean value of the VEGF₁₆₅mRNA expression in gastric cancer tissues was significantly higher than that in normal paired tissues, which was 1.125±0.356 and 0.760±0.278 respectively (Figure 1 and Table 1).

Immunohistochemical analysis
Paraffin-embedded samples were serially sectioned at 4 µm, and mounted onto the histosticked-coated slides. Sections were dewaxed in xylene, and dehydrated in ethanol, and then heated at 98 °C in EDTA retrieved solution for the antigens. Endogenous peroxidase was blocked by incubation of samples in hydrogen peroxide blocking reagent (Maixin Bio, Fuzhou). After washed with phosphate-buffered saline solution, the samples were incubated for 60 min with the primary antibodies. The anti-VEGF antibody is a polyclonal mouse anti-serum against VEGF of human origin and recognizes an amino-terminal epitope found in VEGF₁₂₁,₁₆₅,₁₈₉, and the anti-iNOS antibody is a monoclonal mouse anti-serum against the C-terminal domain of iNOS of human origin (The two antibodies were from Santa Cruz Biotechnology, Inc., CA). Location of the primary antibodies was achieved by subsequent application of a biotinylated anti-primary antibody, an avidin-biotin complex conjugated to horseradish peroxidase. The reaction products were visualized with diamino-benzidine. The slides were counter-stained by hematoxylin. Negative controls were established by replacing the primary antibody with PBS and normal rabbit serum. Known immunostaining-positive slides were used as positive controls. Immunoreactivity was diagnosed depending on the shade of cells staining assigned to 0-3 scores (0: negative reaction, 1: weak brown-color staining, 2: moderate brown-color staining, 3: strong brown-color staining), and the percent of positive staining cells, the average percentage of positive cells was determined in at least 5 areas

RESULTS
Expression of VEGF₁₆₅mRNA in gastric cancer
As shown by RT-PCR, the amplification products of VERF and β-actin were 655 bp and 370 bp, respectively. Over-expression of VEGF₁₆₅ was detected in gastric cancer mucosae, and the over-expression rate was 58%, whereas 16% in normal paired mucosae. The mean value of the VEGF₁₆₅mRNA expression in gastric cancer tissues was significantly higher than that in normal paired tissues, which was 1.125±0.356 and 0.760±0.278 respectively (Figure 1 and Table 1).

Relationship between expression of VEGF₁₆₅mRNA and clinical pathological features of gastric cancer
As shown in Table 2, the expression level of VEGF₁₆₅mRNA in the group of positive lymph node metastasis was higher than that in the group of negative lymph node metastasis (P<0.05), and the expression level in stages III and IV was also higher than that in stages I and II (P<0.05). The expression levels had no correlation with age, sizes of tumors and degree of histological differentiation.

Another observation shown in Table 3 and Table 4 was that the rate of lymph node metastasis and the ratio of stages III and IV in the group with over-expression of VEGF₁₆₅mRNA were also higher than those in the group with low-expression of VEGF₁₆₅mRNA (83.3% vs 46.2%, 77.8% vs 30.8% respectively, P<0.05).

Correlation between VEGF and iNOS in gastric cancer
Positive immunostaining for iNOS and VEGF was observed in cancer cells, and weakly positive or negative staining was observed in the normal gastric epithelial tissues. VEGF and iNOS immunoreactivity was located mainly in the cytoplasm and cell membrane (Figure 2). The positive expression rate of iNOS was 58.8% (50/85), and that of VEGF was 75.4% (64/85). There were 50.1% (43/85) patients showing positive staining both for iNOS and VEGF, 16.5% (14/85) showing negative staining both for iNOS and VEGF. Correlation with the two factors was significant (P<0.05).

But more intensive analysis by Kendall test showed that the immunoreactive grades of VEGF had no association with that of iNOS (P>0.05, see Table 5).
Table 1 Expression of VEGF₁₆₅mRNA in gastric cancer and non-cancerous mucosa by RT-PCR

No.	Sex	Age (yr)	Histological type	Depth of invasion	Lympho node metastasis	Stage of TNM	VEGFmRNA	
1	M	67	PD muscularis	-	I	1.286	0.782	
2	M	67	WD extraserosa	+	III	1.568	1.086	
3	F	41	PD serosa	+	III	1.624	0.925	
4	M	54	PD extraserosa	+	IV	0.815	0.729	
5	M	35	PD extraserosa	+	III	1.204	0.627	
6	M	50	MD extraserosa	+	III	1.111	0.335	
7	F	34	WD extraserosa	+	III	1.347	0.845	
8	M	46	MD serosa	+	III	0.785	0.701	
9	M	60	WD submucosae	-	I	0.833	0.807	
10	F	70	WD serosa	-	I	0.627	0.525	
11	M	62	WD serosa	+	IV	0.850	0.646	
12	F	31	WD mucosae	-	I	0.815	1.136	
13	M	55	MD extraserosa	+	IV	1.545	0.872	
14	M	70	WD serosa	+	III	0.765	0.577	
15	M	64	MD serosa	-	III	1.082	0.842	
16	M	66	MD serosa	+	III	1.069	0.422	
17	M	77	PD serosa	+	IV	1.383	10.28	
18	M	40	PD serosa	+	II	1.156	1.381	
19	M	50	PD serosa	+	II	0.989	0.874	
20	M	52	PD serosa	+	III	1.895	0.356	
21	F	38	PD extraserosa	+	III	1.667	0.759	
22	F	68	WD mucosae	-	I	0.884	0.682	
23	F	53	WD extraserosa	+	III	1.456	0.682	
24	M	61	MD extraserosa	+	III	1.574	0.098	
25	M	43	PD serosa	-	I	1.198	0.429	
26	M	43	PD serosa	+	III	0.368	0.994	
27	M	57	PD serosa	+	II	1.052	0.661	
28	F	44	PD mucosae	-	I	0.952	0.793	
29	M	71	WD extraserosa	-	II	0.750	0.728	
30	M	77	PD extraserosa	+	IV	1.375	10105	
31	F	50	PD mucosae	-	I	0.842	0.794	
						Mean value	1.125	0.760

Table 2 Relationship between expression of VEGF₁₆₅mRNA and clinical pathological features in gastric cancer tissue

Variable	No	Expression of VEGF (mean±SD)	P value
Age (yr)			
<55	16	1.139±0.393	>0.05
>55	15	1.139±0.393	
Sizes of tumor			
≤2 cm	2	0.993±0.271	>0.05
2-3 cm	6	1.171±0.375	
>3 cm	23	1.171±0.375	
Histological type			
Well differentiated	10	0.979±0.339	>0.05
Moderate or poorly differentiated	21	1.1937±0.350	
Lymph node metastasis			
Positive	21	1.219±0.377	=0.03
Negative	10	0.927±0.205	=0.009
Stage of UICC			
I	8	0.934±0.194	=0.009
II	5	1.262±0.386	
III	13	1.262±0.386	
IV	5	1.262±0.386	
Table 3 Relationship between level of VEGF165 mRNA expression and lymph node metastasis

Variable	Lymph node metastasis			
	Positive cases	Negative cases	Total	Metastasis rate
Over-expression	15	3	18	83.3%
Low-expression	6	7	13	46.2%
Total	19	10	31	

$\chi^2=4.775, P=0.02.$

Table 4 Relationship between level of VEGF165 mRNA expression and stages of UICC

Variable	Stages of UICC	Total	Ratio of III+IV	
	I+II	III+IV		
Over-expression	4	14	18	77.8%
Low-expression	9	4	13	30.8%
Total	13	18	31	

$\chi^2=6.85, P=0.009.$

Table 5 Association with immunoreactive grades of VEGF protein and iNOS in gastric cancer

iNOS (N)	VEGF (N)
-	-
+	-
++	-
+++	-
Total	-

$\chi^2=5.615, P=0.132.$

DISCUSSION

VEGF is well characterized by its potent, specific angiogenesis-promoting effect. Native VEGF is a basic, heparin-binding, homodimeric glycoprotein of M_r 43 000-46 000. Five human VEGF mRNA species encoding VEGF isoforms of 121, 145, 165, 189, and 206 amino acids have been identified by alternative splicing of VEGF mRNA. An important biological property that distinguishes the different VEGF isoforms is their heparin and heparin-sulfate binding ability. VEGF165 is the predominant form. VEGF has been found to be a highly specific mitogen for endothelial cells, and a prime regulator of angiogenesis and vasculogenesis, and could also contribute to the development of tumors because of its ability to induce permeabilization of blood vessels[1,2,10,11]. Numerous studies have demonstrated that the high expression level of VEGF in many kinds of tumor cells[12-14]. The same observations have also been seen in gastric cancer cells by in vitro and in vivo[3-6,15,16]. We tested VEGF165 mRNA expression in 31 cases of resected gastric cancer specimens and normal paired gastric mucosae by RT-PCR, the results showing that the mean expression of VEGF165 mRNA in gastric cancer was significantly higher than that of normal paired mucosae. VEGF in high expression could combine with its receptors Flt-1 or KDR to exert its powerful function of promoting angiogenesis[1]. Furthermore, some studies showed the high expression of Flt-1 and KDR in gastric tumor specimens by RT-PCR and immunohistochemistry, and exogenous VEGF165 stimulated the growth of KDR positive carcinoma cells[17,18]. These findings indicate there is a possible autocrine pathway for VEGF in gastric cancer, which is very important in the development of gastric cancer.

VEGF induces the formation of fenestrations in blood vessels and vesiculo-vacuolar organelles that form channels through which blood-borne proteins can extravasate. This could lead to the formation of an extravascular fibrin gel, which provides a matrix that supports the growth of endothelial cells and tumor cells and allows invasion of stromal cells into the development of tumors[20]. A substantial number of studies have demonstrated a strong association between elevated tumor...
expression of VEGF and advanced disease or poor prognosis in various cancers[1,2]. In our study, the expression of VEGF mRNA was well related with lymph node metastasis and TNM stage. VEGF mRNA elevated in lymph node positive or stages III and IV patients, and was consistent with many immunohistochemical results. Kakeji et al. also revealed VEGF to be an independent prognostic factor and independent risk factor for liver metastasis. Kanayanakiss et al. showed there was a significant association between serum VEGF levels and disease stage, as well as invasion depth of the tumor and the presence of distant metastasis. It was concerned with the invasiveness and metastasis of gastric cancer, and might be a predictive of tumor stage and prognosis in advanced gastric cancer patients, and could provide new prognostic information not afforded by conventional clinicopathologic prognostic indicators[23-26].

Early gastric cancer patients have high survival rates, but there is lymph node metastasis in early gastric cancer, especially in submucosa, the rate of lymph node metastasis was about 20%, resulting in the decrease of 5-year survival of early gastric cancers. In our study, the expression of VEGF mRNA in the 5 cases of early gastric cancer had no difference with the normal paired mucosae, which the mucosae or submucosae were invaded, and lymph node metastasis was negative in the 5 cases. Recently Amioka et al. demonstrated VEGF was associated with lymphatic invasion and lymph node metastasis in early gastric cancer[27-29]. The clinical significance of VEGF expression in early gastric cancer should be intensively studied.

VEGF production has been found to be regulated by growth factors, cytokines, oncogenes, anti-oncogenes and other extra cellular molecules, such as hypoxia, p53 gene, TGF- α[26-29]. But few investigations have been concerned with relationship between VEGF and iNOS. Nitric oxide produced through iNOS induction could enhance vasodilation, increase vascular permeability and accelerate nutrient supply of tumor tissues and promote neovascularization, thereby facilitating tumor growth[30,31]. It has been shown that the expression of iNOS in most tumor tissues was higher than that in normal tissues. There were many reports concerning the high expression of iNOS in gastric cancer, which increased with the stage of the cancer and lymph node metastasis[32,33]. We found the expression rate of iNOS in gastric cancer was 58.8%, and iNOS and VEGF had co-expressions in 50.1% of the patients, there was a correlation between the two factors. According to some reports[34], VEGF could induce the release of NO from endothelial cells, on the other hand, endogenous NO enhanced VEGF synthesis in rat vascular smooth muscle cells; Host expression of NO could contribute to induction of NO in tumor and melanoma growth in mice, possibly by regulating the amount and availity of VEGF. The positive interaction between endogenous NO and VEGF might have implications for endothelial regeneration[35]. Kisley et al. examined the effect of iNOS deficiency on VEGF protein concentration in mouse lung tumors, and showed VEGF concentration was lower than 54% in lung tumors isolated from iNOS(-/-)mice versus controls(wild-type +/-). NO enhanced the transcription of VEGF gene by inducing HIF-1 (hypoxia-inducible factor-1) binding activity in glioblastoma A-172 cells and hepatoma Hep3B cells. HIF was the best-characterized regulator of VEGF gene transcription[36]. The high coincidental expression of iNOS and VEGF protein accumulation may be important events to enhance gastric carcinogenesis and poor clinical features. But in our present work, more intensive analysis showed that the immunoactive grades of VEGF were no association with that of iNOS, indicating that many other factors may induce the production and angiogenesis of VEGF besides iNOS in gastric cancer.

REFERENCES

1 Ferrara N. Role of Vascular Endothelial Growth Factor in the Regulation of Angiogenesis. Kidney International 1999; 56: 794-814

2 Neufeld G. Cohen T, Gaengrinovitch S, Polorak A.Z. Vascular endothelial growth factor (VEGF) and its receptors. The FASEB J 1999; 13: 9-22

3 Tian X, Song S, Wu J, Meng L, Dong Z, Shou C. Vascular endothelial growth factor: acting as an autocrine growth factor for human gastric adenocarcinoma cells MG63. Biochem Biophys Res Commun 2001; 286: 505-512

4 Kakeji Y, Koga T, Sumiyoshi Y, ShibaHarada K, Oda S, Maehara Y, Sugimachi K. Clinical significance of vascular endothelial growth factor expression in gastric cancer. J Exp Clin Cancer Res 2002; 21: 125-129

5 Liu DH, Zhang XY, Fan DM, Huang YX, Zhang JS, Huang WQ, Zhang YQ, Huang QS, Ma WY, Chai YB, Jin M. Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma. World J Gastroenterol 2001; 7: 500-505

6 Ichikura T, Tomimatsu S, Ohkura E, Mochizuki H. Prognostic significance of the expression of vascular endothelial growth factor (VEGF) and VEGF-C in gastric cancer. J Surg Oncol 2001; 80: 132-137

7 Rajnakova A, Moochhala S, Goh PM, Ngoi S. Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric cancer. Cancer Lett 2001; 172: 177-185

8 Feng CW, Wang D, Zhao LH, Liu B, Zheng S, Xie XJ. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous lesion: correlation with clinical features. BM C Cancer 2002; 2: 8-15

9 Tisher E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266: 11947-11954

10 Ferrara N, Gerber H, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669-676

11 Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 2003; 29: 225-237

12 Whang YE, Godley PA. Renal cell carcinoma. Curr Oncol 2003; 15: 213-216

13 Shinzarku S, Bayle M, Lain C, Deleris G. Vascular endothelial growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anti Canc Agents 2003; 3: 95-117

14 Meesters RM. Angiogenesis in hematologic malignancies. Ann Hematol 2002; 81: 572-74

15 Song ZY, Pang JP, Zhu YL, Qian KD, Zheng S, O-chloroacetylcarbamoyl fumagillol combined with 5-fluorouracil in suppression of the growth of gastric cancer. Chin J Pharmacol Toxicol 2003; 17: 24-28

16 Du JR, Jiang Y, Zhang YM, Fu H. Vascular endothelial growth factor and microvascular density in esophageal and gastric carcinomas. World J Gastroenterol 2003; 9: 1604-1606

17 Ren J, Dong L, Xu CB, Pan BR. The role of KDR in the interactions between human gastric carcinoma cell and vascular endothelial cell. World J Gastroenterol 2002; 8: 596-601

18 Zhang H, Wu J, Meng L, Shou CC. Expression of vascular endothelial growth factor and its receptors KDR and Flt-1 in gastric cancer cells. World J Gastroenterol 2002; 8: 994-998

19 Karayianakiss AJ, Syrigos KN, Polychondrissos A, Zbar B, Kourakis G, Simopoulos C, Karatzas G. Circulating VEGF levels in the serum of gastric cancer patients: correlation with pathological variables, patient survival, and tumor surgery. Ann Surg 2002; 236: 37-42

20 Kimura H, Konishi K, Nakui T, Kaji M, Maeda K, Yabushita K, Tamau T, Miwa A. Prognostic significance of expression of thymidine phosphorylase and vascular endothelial growth factor in human gastric cancer. J Surg Oncol 2001; 76: 31-36

21 Maehara Y, Kabashima A, Koga T, Tokunaga E, Takeuchi H, Kakeji Y, Sugimachi K. Vascular invasion and potential for tumor angiogenesis and metastasis in gastric carcinoma. Surgery 2000; 128: 408-416
Saito H, Tsujitani S, Kondo A, Ikeguchi M, Maeta M, Kaibara N. Expression of vascular endothelial growth factor correlated with hematogenous recurrence in gastric carcinoma. Surgery 1999; 125: 195-201

Ohta M, Konno H, Tanaka T, Baba M, Kamiya K, Syouji T, Kondoh K, Watanabe M, Terada M, Nakamura S. The significance of circulating vascular endothelial growth factor (VEGF) protein in gastric cancer. Cancer Lett 2003; 192: 215-225

Poon RT, Fan ST, Wong J. Clinical significance of angiogenesis in gastrointestinal cancers: a target for novel prognostic and therapeutic approaches. Ann Surg 2003; 238: 9-28

Amioka T, Kitadai Y, Tanaka S, Haruma K, Yoshihara M, Yasui W, Chayama K. Vascular endothelial growth factor-C expression predicts lymph node metastasis of human gastric carcinomas invading the submucosa. Eur J Cancer 2002; 38: 1413-1419

Maeda K, Kang SM, Onoda N, Ogawa M, Kato Y, Sawada T, Chung KH. Vascular endothelial growth factor expression in preoperative biopsy specimens correlates with disease recurrence in patients with early gastric carcinoma. Cancer 1999; 86: 566-571

Konno H, Baba M, Tanaka T, Kamiya K, Ota M, Oba K, Sheji A, Kaneko T, Nakamura S. Overexpression of vascular endothelial growth factor is responsible for the hematogenous recurrence of early-stage gastric carcinoma. Eur Surg Res 2000; 32: 177-181

Kim YB, Han JY, Kim TS, Kim PS, Chu YC. Overexpression of c-H-ras p21 is correlated with vascular endothelial growth factor expression and neovascularization in advanced gastric carcinoma. J Gastroenterol Hepatol 2000; 15: 1393-1399

Saito H, Tsujitani S, Ikeguchi M, Ikeguchi M, Maeta M, Kaibara N. Neoagogenesis and relationship to nuclear p53 accumulation and vascular endothelial growth factor expression in advanced gastric carcinoma. Oncology 1999; 57: 164-172

Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 2003; 93: 664-673

Joo TE, Sohn YH, Joo SY, Lee WS, Min SW, Park CH, Rew JS, Choi SK, Park CS, Kim YJ, Kim SJ. The role of vascular endothelial growth factor (VEGF) and p53 status for angiogenesis in gastric cancer. Korean J Intern Med 2002; 17: 211-219

Joo YE, Rew JS, Seo YH, Choi SK, Kim YJ, Park CS, Kim SJ. Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer. J Chin Gastroenterol 2003; 37: 28-33

Song ZJ, Gong P, Wu YE. Relationship between the expression of iNOS, VEGF, tumor angiogenesis and gastric cancer. World J Gastroenterol 2002; 8: 591-595

DulaK J, Jozkowicz A, Dembinska KA, Guevara I, Zdzienicka A, Zmudzinska GD, Florlok I, Wojtowicz A, Szuba A, Cooke JP. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20: 659-666

Konopka TE, Barker JE, Bamford TL, Guida E, Anderson RL, Stewart AG. Nitric oxide synthase II gene disruption—Implications for tumor growth and vascular endothelial growth factor production. Cancer Res 2001; 61: 3182-3187

Kisley LR, Barrett BS, Bauer AK, Dwyer Nied LD, Barthel B, Meyer AM, Thompson DC, Malkinson AM. Genetic ablation of inducible nitric oxide synthase decreases mouse lung tumorigenesis. Cancer Res 2002; 62: 6850-6856

Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Adddeo R, Makuuchi M, Esumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 2000; 95: 189-197

Edited by Zhao M and Wang XL. Proofread by Xu FM