Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli

Paula P. Navarro, Andrea Vettiger, Virly Y. Ananda, Paula Montero Llopis, Christoph Allolio, Thomas G. Bernhardt and Luke H. Chao

The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli. We identify a wedge-like sPG structure that fortifies the ingrowing septum. Experiments with strains defective in sPG biogenesis revealed that the septal architecture and mode of division can be modified to more closely resemble that of other Gram-negative (Caulobacter crescentus) or Gram-positive (Staphylococcus aureus) bacteria, suggesting that a conserved mechanism underlies the formation of different septal morphologies. Finally, analysis of mutants impaired in amidase activation (ΔenvC ΔnlpD) showed that cell wall remodelling affects the placement and stability of the cytokinetic ring. Taken together, our results support a model in which competition between the cell elongation and division machineries determines the shape of cell constrictions and the poles they form. They also highlight how the activity of the division system can be modulated to help generate the diverse array of shapes observed in the bacterial domain.

Bacterial cells are typically surrounded by a multi-layered cell envelope of varying complexity depending on species. Gram-positive bacteria possess a single membrane surrounded by a thick cell wall, whereas Gram-negative bacteria have a thinner wall covered by an outer membrane (OM). The cell wall determines cell shape and protects cells against osmotic lysis. It is assembled from peptidoglycan (PG), which consists of glycan chains with repeating disaccharide units of N-acetylmuramic acid (MurNAc) and N-acetylmuramic acid (MurNac). Short peptides are attached to each MurNac sugar and used to form amide crosslinks between adjacent glycans, generating a covalent mesh encapsulating the cytoplasmic membrane.

Rod-shaped cells such as Escherichia coli (E. coli) lengthen their cell body through the action of the elongation machinery (Rod complex, elongasome), which incorporates new PG material at dispersed locations throughout the cylinder. Cell division is then initiated by the tubulin-like FtsZ protein, which at midcell forms the Z-ring that recruits dozens of proteins to form a divisome. This apparatus promotes localized synthesis of PG to generate the cross-wall/septum that divides the daughter cell formed cells. Furthermore, whether the different septal architectures observed in diverse bacteria reflect fundamental differences in the division mechanism between species or arise from changes in the spatiotemporal regulation of conserved processes remains a major outstanding question. We therefore investigated the structure and dynamics of the septal PG layer of E. coli using both in situ cryo-electron tomography (cryo-ET) imaging and live-cell fluorescence microscopy.

Results

Architecture of the E. coli division site. Bacterial lamellae 150–250 nm thick were generated by cryo-focused ion beam (cryo-FIB) milling for in situ cryo-ET imaging (Extended Data Fig. 1). A total of 22 tilt-series of wild-type cells were acquired and three-dimensionally (3D) reconstructed (Fig. 1a, and Supplementary Tables 1 and 2). To gain better visualization of the sPG, nonlinear anisotropic diffusion (NAD) filtering was applied to denoise the cryo-electron tomograms (Fig. 1b and Supplementary Video 1). Densities corresponding to the OM, PG, and inner membrane (IM) were traced and 3D segmented (see Methods). Cells with an IM-1M distance >300 nm were classified as undergoing constriction. They had a V-shaped constriction with a relatively uniform invagination of the two membranes and an indented mesh of PG (Fig. 1a,b, Extended Data Fig. 2a and Supplementary Table 3). Cells classified as undergoing septation had an IM-1M distance <110 nm. They displayed a partial septum where the IM was more deeply invaginated than the OM, with an average difference of 138.5 ± 24.51 nm (Fig. 1a,b and Extended Data Fig. 2b). Strikingly,

1Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. 2Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. 3Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. 4MicroRN Core, Harvard Medical School, Boston, MA, USA. 5Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic. 6Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA. 7These authors contributed equally, and sequence was determined alphabetically: Paula P. Navarro, Andrea Vettiger. *E-mail: thomas_bernhardt@hms.harvard.edu; chao@molbio.mgh.harvard.edu
the denoised tomograms showed an elongated, triangular wedge of PG close to the invaginating IM (Fig. 1b). In cells at the final stages of cytokinesis, where IM fission was complete (Extended Data Fig. 2c), two layers of PG signal comprising the septum were readily visible (Fig. 1b). We performed subtomogram averaging to compare the envelope structure between the side wall and septum of dividing cells, which also showed two layers of PG signal within partial septa and a single layer of PG signal in the side wall (Extended Data Fig. 3a).

To investigate the mechanism of partial septum formation, we followed the constriction dynamics of each membrane. The IM was tracked using a superfolder green fluorescent protein (sfGFP) fusion to the IM-anchored Z-ring binding protein ZipA (ZipA-sfGFP), while constriction of the OM was followed using mCherry fused to the OM-lipoprotein Pal (Pal-mCherry) (Fig. 1c and Supplementary Video 2). The Pal-mCherry and ZipA-sfGFP signal distribution at the division site confirmed the deeper constriction of IM with respect to the OM (Fig. 1d) observed by cryo-ET (Fig. 1a,b). The invagination rate of each membrane was calculated from kymographs (Fig. 1e, f and Extended Data Fig. 4). We found that the IM constriction rate increased faster than linear as the septum closed, with an average rate of 64.26 ± 33.98 nm min⁻¹, in line with previous measurements²⁰,²¹. The increase in the OM constriction rate during division was less pronounced than that of the IM (Fig. 1f, g and Extended Data Fig. 4b–d). The different rates of change in constriction velocity between the two membranes account for the two membranes becoming increasingly separated as division proceeds, by 147 nm at late stages in cell division, which is in good agreement with our cryo-ET data. Thus, E. coli divides by a mixed constriction/septation mechanism, with the partial septum containing two layers of sPG signal (Fig. 1b and Extended Data Fig. 3a).
sPG synthesis and remodelling defines septal architecture. We next determined how the architecture of the division site and the dynamics of its constriction are altered by mutations affecting sPG synthesis and remodelling. The essential PG synthase of the divisome is formed by FtsW and FtsI (FtsWI)\(^22\). Following Z-ring assembly, a regulatory pathway is initiated that activates sPG synthesis by this synthase\(^23–26\) (Fig. 2a). Activation is mediated in part via an interaction between FtsWI and the FtsQ-FtsL-FtsB (FtsQLB) complex\(^27\). Genetic evidence suggests that FtsQLB activation is stimulated by an essential peptide within FtsN\(^28\). Another domain of FtsN called SPOR concentrates the activation peptide at the division site through binding to sPG that was processed by PG amidases\(^28–30\). Amidases generate peptide-free (denuded) PG recognized by the SPOR domain as they split the sPG septum to promote OM

---

**Fig. 2 | Divisome mutants display altered division site ultrastructure and constriction kinetics in *E. coli*.**

a, Schematic overview of the septal PG loop pathway for the activation of sPG synthesis (see text for details).

b, Left: NAD-filtered cryo-electron tomograms of division sites in the indicated division mutants of *E. coli* shown as in Fig. 1b. Right: summary diagrams of the cell envelope architecture visualized. Black arrowheads indicate the side of the division site represented in the schemes. Segmented PG signal is not indicative of specific glycan strand network.

c, Top: representative time-lapse series from 3 biological replicates of indicated *E. coli* division mutants expressing Pal-mCherry and ZipA-sfGFP as OM and IM markers, respectively, imaged as in Fig. 1. Bottom: kymograph analysis and line scans of fluorescence intensity profiles of cytokinesis, from division sites marked with yellow triangles in the top row.

d, Constriction velocities of the IM and OM were determined as in Fig. 1. Black line indicates mean. Data from wild type are replotted from Fig. 1f for comparison. Brown-Forsythe and Welch ANOVA test with Dunnett’s correction for multiple comparisons, significance of differences is tested relative to wild type (wt); **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not significant (P = 0.09); N = 150 (wt), 48 (ftsN-ΔSPOR), 74 (ΔenvC), 68 (ftsL*)

e, Instantaneous constriction velocities for IM (top) and OM (bottom) are plotted against normalized cell width. Second order polynomial fits with 95% confidence intervals are shown. See Extended Data Fig. 4b,c for individual instantaneous constriction velocity traces. Data from wild type are replotted from Fig. 1g for comparison. Scale bars: b, 100 nm; c, top row, 2 µm; bottom row kymographs, 200 nm (vertical), 5 min (horizontal).
constriction and daughter separation\textsuperscript{31}. The interplay between sPG synthesis activation by FtsN and amidase processing bringing more FtsN to the division site promotes a positive feedback loop, the sPG loop, that has been proposed to drive cell division\textsuperscript{32}. We imaged several mutants defective in this process (Supplementary Tables 4 and 5): (1) one lacking the SPOR domain of FtsN (ftsN-ΔSPOR), (2) mutants defective for one (ΔenvC) or both (ΔenvC ΔnlpD) amidase activators\textsuperscript{33} and (3) a mutant (ftsL\textsuperscript{*}) encoding a variant of FtsL that hyperactivates sPG synthesis\textsuperscript{34} (Fig. 2a, Extended Data Figs. 3b–f and 5, and Supplementary Tables 1–3 and 6). All mutants displayed similar growth rates (Extended Data Fig. 6).

Division sites from ftsN-ΔSPOR cells resembled those observed previously for Caulobacter crescentus\textsuperscript{33} (Fig. 2b). By cryo-ET, there appeared to be greater coordination between IM and OM constriction throughout division (Fig. 2b, Extended Data Figs. 3b–f and 5, and Supplementary Video 3). Tracking of membrane constriction dynamics confirmed that the rate of constriction for the two membranes was nearly identical in the mutant (Fig. 2c–f, Extended Data Fig. 4b–e and Supplementary Video 2). As a result of the close opposition of IM and OM, the wedge of sPG observed in filtered tomograms was not as elongated as in wild-type cells, and separate plates of material forming ahead of the wedge were not observed (Fig. 2b).

Cells defective for both amidase activators (ΔenvC ΔnlpD) formed a near-complete septum in which the constriction of the IM was accomplished without much observable invagination of the OM (Fig. 2b, and Supplementary Figs. 3b–f and 4b–e). NAD-filtering revealed signal corresponding to sPG that was even more clearly discernible as two distinct plates of material than in wild-type cells, and separate plates of material forming ahead of the wedge were not observed (Fig. 2b).

To better understand the mechanism(s) by which changes in division site architecture and therefore to track poorly with the leading edge of the invagination, we imaged cells of the ftsL\textsuperscript{*} mutant, we noticed that one side of the cell constricted faster than the other (Fig. 2c). When we compared the constriction velocity for each side of the division site and assessed the degree of anisotropy (Extended Data Fig. 4a), ftsL\textsuperscript{*} cells showed a higher but not statistically significant anisotropy score for both IM and OM constriction compared with other strains (Extended Data Fig. 7a–d). Additionally, when cells were imaged in vertical orientation, the constriction of ftsL\textsuperscript{*} cells was less isotropic than in wild-type cells, indicative of uneven closure of the division ring (Extended Data Fig. 7c). This, circumvention of the normal controls regulating sPG biogenesis in the ftsL\textsuperscript{*} mutant results in aberrant division site geometry and abnormal thickening of the envelope at the poles. These cells also lack an observable sPG wedge, which may destabilize the division site and help explain why these mutants were originally found to lyse at elevated temperatures\textsuperscript{35,36}.

**sPG degradation activates its synthesis.** To better understand the mechanism(s) by which changes in division site architecture are caused by mutations altering division components, we measured the rates of sPG synthesis and degradation using two different cytological assays (Fig. 3a and Extended Data Fig. 8a). The first assay used a pair of cooperatively labelled fluorescent ω-amino acids (FDAs), YADA and HADA\textsuperscript{37}, and the other used HADA and MurNac-alkyne\textsuperscript{38}. In both cases, cells were labelled extensively with an FDA, pulsed with the second label for different lengths of time and then subsequently fixed and imaged in extended focal planes with cryo-ET.

**Fig. 3** | Measuring cell wall synthesis and hydrolysis rates during division and elongation in E. coli. a, Labelling patterns observed for an FDA pulse-chase experiment. New cell wall material is labelled with HADA (blue), while old material is stained with YADA (yellow). b, Representative images from 3 biological replicates of indicated strains after 2, 4 and 8 min pulses with HADA. Overlay images are provided in Extended Data Fig. 8l,m. c, d, Mean fluorescence intensity was measured at the division site for new (c) and old (d) PG. c, Data were fit to a linear regression to derive sPG synthesis rates. Data points represent median ± 95% confidence intervals. d, Reduction in old (YADA) fluorescence intensity was fit to a one-phase exponential decay curve. e, Mean sPG hydrolysis rates were derived from decay curves in d. Points represent the average value of the three biological replicates and bars indicate mean ± 1 s.d. N = 10,054 (wt), 716 (ftsN-ΔSPOR), 819 (ΔenvC), 880 (ftsL\textsuperscript{*}) cells. f, Side wall incorporation of new cell wall material (HADA fluorescence intensity) was measured after 8 min due to low signal intensities in earlier time points. Black line indicates median, one-way ANOVA with Dunnett’s correction for multiple comparisons, significance of difference is tested relative to wild type; NS, P = 0.06; ***, P < 0.001, ****P < 0.0001; N = 103 (wt), 107 (ftsN-ΔSPOR), 101 (ΔenvC), 100 (ftsL\textsuperscript{*}) cells. g, The ratio between sPG and side wall synthesis was calculated by dividing the mean HADA fluorescence intensity after the 8 min pulse. h, i, Labelling patterns observed for the pulse-chase experiment in cells with inhibited division by SulA expression (h). New cell wall material is labelled with Alexa488-labelled MurNac-alkyne probes (yellow), while old material is stained with HADA (blue). Mean fluorescence intensity was measured along the side wall for both MurNac-alkyne (i) and HADA (j) and fitted to a quadratic exponential Malathusian exponential growth function (i) or one-phase exponential decay (j). Data points represent median ± 95% confidence intervals. N = 578 (wt), 456 (ftsN-ΔSPOR), 427 (ΔenvC), 501 (ftsL\textsuperscript{*}) cells. k, Representative images from 3 biological replicates of indicated strains after 15, 20 and 30 min pulses with MurNac-alkyne. Scale bar, 2 μm.
and then fixed before visualization. The intensity of the second label appearing at midcell after the pulse was used as a proxy for sPG synthesis. Additionally, the signal intensity of the first label before and after the pulse was used as a proxy for sPG degradation. Both assays yielded qualitatively similar results (Fig. 3a–g and Extended Data Fig. 8a–g). The \( ftsL^+ \) mutant synthesized sPG faster than all other strains just as it had the fastest rate of IM invagination (Figs. 2d and 3b,c, and Extended Data Fig. 8b–d). This result confirms that activated FtsQLB complexes indeed hyperactivate sPG synthesis, as suggested by recently reported effects on the dynamic motions of the cell wall.
Fig. 4 | sPG hydrolysis is required for normal Z-ring placement and condensation in *E. coli*. **a** Distribution of cell wall material in ΔenvC cells was assessed by FDAA staining in 3 biological replicates. Images are sum-projections of a 1 µm spanning z-stack and were deconvolved. White arrowheads indicate double septa. **b** Representative time-lapse series from 3 biological replicates of a ΔenvC mutant expressing Pal-mCherry and ZipA-sfGFP as OM and IM markers, respectively. An example of double septum formation is shown. **c** Examples of membrane blebbing (yellow arrowheads) and polar septa (blue arrowheads) formation are highlighted. **d** Formation of double constrictions observed in cryo-electron tomograms of ΔenvC ΔnlpD cells. Black arrowheads indicate constriction sites. **e** The frequency of double septum formation was quantified from counting the number of Pal-mCherry doublets per cell. No Pal doublets were found in >10,000 cells for wild-type or *ftsN-ΔSPOR* cells in 3 biological replicates (N.A., not applicable). Data are represented as median +95% confidence interval. **f** The distance between Pal doublets was measured manually using the line tool in Fiji. *N=91 (ΔenvC), 46 (ftsL* ΔenvC) Pal doublets measured.** **g** The frequency of polar septa per cell was measured for the indicated strains. No polar septa were observed in >10,000 wild-type or *ftsN-ΔSPOR* cells. Data are represented as median +95% confidence interval. **h**-**j** Three-dimensional maximum intensity renderings showing Z-ring condensation based on ZipA-sfGFP localization. **h** The degree of Z-ring condensation was quantified from averaged fluorescence intensity projections from summed 3D volumes (**i** or from 5 time points (corresponding to 10 min) of a time-lapse series (**j**) (see Methods). Insets: FWHM of the fluorescence signal, with data represented as boxplots; line represents median, error bars depict minimum–maximum range. Inserts show average fluorescence intensity projection at the septum. Significance was tested against wild type by one-way ANOVA with Dunnett’s correction for multiple comparisons: *P<0.05. N=100 (wt, ΔenvC, ftsL* ΔenvC, *ftsN-ΔSPOR*) Z-rings from 3 biological replicates. Averaged Z-rings are shown and colour-coded according to graphs. Scale bars: **a-c**, 2 µm; **d**, 200 nm; **h**, 2 µm; **i** and **j**, 200 nm.

of FtsWl38. Notably, the dual FDAA assay detected an increased amount of old PG at the division sites before the HADA pulse, and this material appeared to be relatively stable during the time course. Additionally, bright foci of old material were also observed at the poles of many cells after extended YADA labelling (Fig. 3b and Extended Data Fig. 8h,i). This accumulation of old material probably corresponds to the thickened areas of cell wall in nascent poles observed by cryo-ET of the *ftsL* mutant (Extended Data Figs. 5 and 8j,k), reinforcing the conclusion that short-circuiting the normal controls governing sPG biogenesis not only leads to more rapid sPG synthesis and septal closure, but also aberrant accumulation of PG within the developing poles.

Both the *ftsN-ΔSPOR* and ΔenvC mutants displayed a reduced rate of sPG synthesis relative to wild-type cells (Fig. 3b,c and Extended Data Fig. 8c,d). Although the sPG synthesis rates were similar, the two mutants differed in their rates of sPG degradation. The *ftsN-ΔSPOR* mutant displayed relatively normal rates of sPG degradation, whereas ΔenvC cells showed reduced turnover of sPG.
as expected for a mutant lacking an amidase activator (Fig. 3d,e and Extended Data Fig. 8e). The combination of slower sPG synthesis with normal sPG degradation explains the well-coordinated constriction phenotype displayed by the ftsN-ΔSPOR mutant in the cryo-ET analysis. The reduced rate of sPG synthesis in the ΔenvC cells is notable because it indicates that proper sPG processing by the amidases is required for normal rates of sPG synthesis. This result along with the reduced rate of sPG synthesis observed for the ftsN-ΔSPOR mutant provides strong support for the sPG loop model.

sPG degradation is required for normal Z-ring formation. Cells lacking EnvC commonly displayed closely spaced sPG labels. sPG degradation is required for normal Z-ring formation. Consistent with the reflection fluorescence (SIM-TIRF) imaging. Consistent with the Green fusion to MreB in wild-type and mutant cells using a combination of structured illumination microscopy and total internal reflection fluorescence (SIM-TIRF) imaging. Consistent with the advantage of the PG labelling assays to quantify side wall PG synthesis measurements, the total number of directionally moving MreB filaments per area was significantly reduced in ftsL* cells (Fig. 5a,b, Extended Data Fig. 10a,b and Supplementary Video 7), which had an increased cell width (Extended Data Fig. 10c,d) indicative of reduced Rod complex activity. All mutants displayed a similar density of directionally moving MreB filaments following the inhibition of cell division (Extended Data Fig. 10e,f and Supplementary Video 7), providing further support for a competition between the processes of elongation and division.

Notably, the interplay between cell elongation and division impacted the geometry of the division site and the shape of the daughter cell poles (Fig. 5c,d). The ftsN-ΔSPOR mutant, which elongates more rapidly and constricts slower, displayed an elongated division site and a shallower OM invagination angle at midcell as compared with wild-type cells (Fig. 5e–g). This altered constriction geometry was also observable by cryo-ET and correspondingly gave rise to daughter cells with pointed poles rather than wild-type cells (Fig. 5e–g). On the other hand, the rapidly constricting ftsL* mutant formed daughter cells with relatively blunt cell poles (Fig. 5c–g).

We reasoned that the variation in division site and polar geometry among the different strains could be related to the activity of the Rod complex at or near the division site. The number of directionally moving MreB filaments in proximity (≤200 nm) to cell constrictions was therefore quantified (Fig. 5a,b and Supplementary Video 8). Such filaments were readily observed to pass through division sites in both early and late pre-divisional cells in all strains tested. Notably, however, the ftsN-ΔSPOR mutant displayed more MreB tracks at the division site at late stages of division than all other strains, and the ftsL* mutant showed the least number of total MreB tracks at the division site (Fig. 5b). Thus, the density of MreB tracks at the division site for these cells correlates well with the steepness of the constriction site and the extent of cell pole elongation observed for the different strains. The outlier was the ΔenvC mutant, which had an inverted trend of having fewer directionally moving MreB tracks at early division stages than at later points (Fig. 5b). We suspect that this change is due to the defect in sPG splitting, which causes a steep curvature of the inner membrane at early points in division that is probably unfavourable for MreB localization. However, at later stages when sPG processing eventually allows for slow constriction of the OM, this curvature probably becomes more favourable for MreB localization, allowing elongation to occur near the division site to generate a shallow constriction such as that of the ftsN-ΔSPOR mutant. Overall, these results not only provide strong support for a competition between the PG biosynthetic machineries involved in cell elongation and division, but also highlight the potential for this competition to define the morphology of the daughter cell poles.

**Discussion**

**Architecture of the sPG layer.** Here we combined cryo-FIB milling with cryo-ET to visualize the division site of E. coli in situ. In cells just starting to constrict, all three envelope layers appeared to be invaginating in concert, and little change in the sPG relative to the side wall PG was evident. However, the speed of IM invagination and sPG synthesis increases faster than PG splitting and OM constriction, leading to the formation of a partial septum (Fig. 6a) similar to that previously observed in fixed samples. In NAD-filtered tomograms, a triangular wedge of what is likely to be sPG is observed at the lagging edge of the septum closest to the tip of the invaginating OM (Fig. 6a). The wedge thins as it approaches the leading edge of the closing IM. In this narrow portion of the septum, two dense tracks of material are often discernible, which correspond to the PG layers that will eventually fortify the daughter cell poles. In ftsN-ΔSPOR cells with reduced sPG synthesis activity and slower IM constriction, a more uniform constriction of all envelope layers is observed, generating a division site architecture that

**Competition between elongation and sPG biogenesis.** We took advantage of the PG labelling assays to quantify side wall PG synthesis (Fig. 3f and Extended Data Fig. 8f) and found that it was inversely correlated with sPG synthesis. Side wall PG incorporation was highest in the ftsN-ΔSPOR mutant, which had one of the lowest rates of sPG synthesis (Fig. 3c,f,g and Extended Data Fig. 8d,f,g). Conversely, side wall PG synthesis was lowest in the ftsL* mutant that made sPG most rapidly (Fig. 3c,f,g and Extended Data Fig. 8d,f,g). In support of a competition with cell division being responsible for the differing rates of side wall PG synthesis, the rates were found to be the same in all cells when cell division was blocked (Fig. 3h–k and Extended Data Fig. 8n–q).

Another measure of cell elongation activity is the circumferential motion of the Rod complex associated cytoskeletal element MreB around the cell cylinder. We tracked the motion of an mNeonGreen fusion to MreB in wild-type and mutant cells using a combination of structured illumination microscopy and total internal reflection fluorescence (SIM-TIRF) imaging. Consistent with the
Fig. 5 | Competition between the divisome and elongation machinery defines polar cell shape in *E. coli*. a, MreB dynamics were followed by SIM-TIRF in indicated strains (see Methods). Time-lapse series were sum projected and overlaid with single-particle tracking results from TrackMate and 3D-SIM Pal-mCherry reference images. The Pal-mCherry signal serves to identify constricting cells. Early division site (yellow arrowheads) displayed Pal foci that were resolvable as two distinct foci, whereas late division sites (blue arrowheads) displayed a continuous Pal signal across the cell, indicative of complete or near-complete cytokinesis. b, Directionally moving MreB tracks were filtered by MSD analysis (see Methods), represented as boxplots (line indicates median; error bars depict minimum–maximum range) and normalized by cell area. Significance in each group was tested against wild type by one-way ANOVA with Dunnett’s correction for multiple comparisons: *P < 0.05, **P < 0.01; NS, P ≥ 0.05. N = 30 (wt, ftsN−∆SPOR, ∆envC, ftsL*) time-lapse series from 3 biological replicates. c, Representative phase-contrast micrographs showing segmented cells in ‘Morphometrics’ for the indicated division mutants. d, Summed, projected central 3D slices through cryo-electron tomograms of indicated strains visualizing cell poles. Black arrowheads indicate 3D-rendered pole. The corresponding 3D-volume renderings show polar curvature determined by shape index (see Methods). e–g, Polar curvature was measured by the two highest points of positive cell outline curvature (f), while constriction curvature was assessed by measuring the opposing contour-matched lowest curvature values at the division site (g) using Morphometrics and normalized to cell width (see Methods). Polar and division site curvatures are negatively correlated ($R^2 = 0.27$) (e). Data are represented as mean ± s.d. For f and g, significance was tested against wild type by one-way ANOVA with Dunnett’s correction for multiple comparisons: ***P < 0.001, ****P < 0.0001; NS, P = 0.057. N = 460 (wt), 999 (ftsL*), 292 (ftsN−∆SPOR), 164 (∆envC) cells from 3 biological replicates. Scale bars: a, 1 µm; c, 2 µm; d, summed projection images, 200 nm and 3D renderings, 100 nm.
resembles that of *C. crescentus* (Fig. 6b). However, in cells defective in sPG splitting, OM constriction is almost completely blocked and a Gram-positive-like septum is formed, with two visible tracks of PG reminiscent of the two tracks observed in the developing septa of *Staphylococcus aureus* (Fig. 6b). These results suggest that the activity of the same basic cell division machinery can generate different septal architectures observed in diverse bacteria. All that may be required is to change the relative activities of the sPG synthesis and remodelling systems.

In cells defective in sPG processing by the amidases, the sPG wedge structure is more prominent than in wild-type cells and it appears to impede the invagination of the OM. We thus infer that amidases process this structure to allow constriction of the OM (Fig. 6a). Furthermore, because the sPG wedge is observed in deeply constricted wild-type cells as well as unconstricted amidase activation mutants, we suspect that the structure is dynamic, with its lagging edge being degraded as new wedge material is deposited at the leading edge. Such a spatial separation of synthesis and degradation would allow the sPG wedge to move in a treadmill-like fashion ahead of the OM as the septum closes.

The enzymes responsible for creating the sPG wedge remain to be identified, but our results with the *ftsL* mutant suggest that it is not made by FtsWI. This mutant is thought to hyperactivate FtsWIP26–27. Therefore, if the wedge were produced by the FtsWI synthase, the *ftsL* mutant would be expected to produce a thicker or otherwise larger wedge. Instead, it lacks a wedge altogether, suggesting that enhanced FtsWI activity disrupts biogenesis of the sPG wedge by other synthases. An attractive candidate for this additional synthase is the class A penicillin-binding protein (aPBP) PBPlb. Inactivation of PBPlb is synthetically lethal with defects in FtsWI activation. The affected mutants were found to lyse due to septal lesions, suggesting that this aPBP promotes division site stability24,47. The location of the wedge at the lagging edge of the division site closest to the OM is also consistent with a role for PBPlb in its construction, given that this enzyme requires an OM lipoprotein for activity48,49. Thus, the outer fork of the division site where the wedge is located is the only place where aPBPs would be predicted to be functional. Although further work will be required to test this model, it provides an attractive explanation for the division of labour between the aPBP and FtsWI synthases during constriction, with the FtsWI synthase promoting ingrowth of the PG layer and the aPBPs providing backfill to stabilize the septum and prevent lysis.

The sPG activation loop. Our results support the proposal that FtsN and the amidases cooperate in a positive feedback loop that promotes sPG synthesis50. In addition to stimulating sPG synthesis, our results indicate that the sPG activation pathway also appears
to be important for normal septal architecture. The FtsL* mutant hyperactivates the FtsW1 synthase and eliminates the strict FtsN requirement for SPG biogenesis94. This short-circuiting of the normal division activation pathway not only causes the loss of the SPG wedge structure, but also promotes the aberrant accumulation of PG within the developing poles. Whether this accumulation results from inappropriate activation of PG synthesis by FtsW1 or PBP1b, the improper turnover of the deposited material, or some combination of the two remains unknown. Nevertheless, what is clear is that bypassing the normal controls involved in SPG activation has adverse consequences on the architecture of the poles that are formed. We therefore infer that the normal divisome activation pathway serves an important function in coordinating different activities of the machinery to ensure that division is successfully completed once it is initiated and that the polar end products have a uniform surface.

PG hydrolysis and the Z-ring. Our results have uncovered an unexpected connection between the activation of SPG processing by the amidases and the Z-ring structure, suggesting that there is feedback to the Z-ring from events downstream of SPG synthesis activation (Fig. 6a). Z-rings were found to be poorly condensed in mutant cells lacking the amidase activator EnvC (Fig. 4h–j). Additionally, closely spaced constrictions or areas of SPG biogenesis were also observed at an elevated frequency in these cells, suggesting that division sites are unstable and fail before they complete the division process (Fig. 4a–g). Taken together, these results suggest the counterintuitive notion that SPG degradation by the amidases is required to stabilize the divisome, most probably via a positive influence on Z-ring condensation. Given that the amidases act on SPG in the periplasm, they are unlikely to directly modulate FtsZ activity. Rather, their effect is probably mediated through SPOR domain proteins such as FtsN and DedD that bind the amidase-processed glycans95,96. These proteins have transmembrane domains and N-terminal cytoplasmic tails, which in the case of FtsN is known to associate with the FtsZ-binding protein FtsA97,98. Thus, the status of SPG biogenesis in the periplasm could be communicated to the Z-ring in the cytoplasm using the binding of SPOR domain proteins to denuded glycans as a proxy. Whether the effect might be mediated simply by concentrating the cytoplasmic domains of SPOR proteins at the division site to modulate the activity of FtsZ-binding proteins or via more complex mechanisms requires further investigation, but the emerging picture is that the divisome activation pathway is not a one-way street from Z-ring formation to SPG synthesis and processing. The Z-ring probably also returns stabilized/activating signals from the PG biogenesis machinery.

Cell shape and the balance between division and elongation. The idea that the cell elongation and division machineries may be in competition with one another has been discussed in the field for some time99,100. However, it has only been recently that evidence for such a competition has been presented101,102. Here we used several independent assays to demonstrate that septal and side wall PG synthesis rates are inversely correlated to each other, providing strong support for antagonism between the activities of the elongation and division systems, which most probably stems from a competition for the limited supply of the lipid II PG precursor. Importantly, our results indicate that this competition does not just affect cell width or how long or short cells are. It also influences the geometry of the septum and the shape of the daughter cell poles. Thus, modulation of the relative activities of the elongation and division systems is likely to play an important role in generating the diversity of shapes observed among different bacteria.

Methods

Media, bacterial strains and mutagenesis. Indicated strain derivatives of E. coli MG1655 used in this study are listed in Supplementary Tables 4 and 5. Bacteria were grown in LB (1% Tryptone, 0.5% yeast extract, 0.5% NaCl) or M9 media103 each supplemented with 0.2% d-glucose and casamino acids. For selection, antibiotics were used at 10 μg ml⁻¹ (tetracycline), 25 μg ml⁻¹ (chloramphenicol) and 50 μg ml⁻¹ (kanamycin, ampicillin). Mutant alleles were moved between strains using phage P1 transduction. If necessary, the antibiotic cassette was removed using FLP recombinase expressed from pCP20104. All mutagenesis procedures were confirmed by PCR.

Cryo-EM specimen preparation. Extended Data Fig. 1 summarizes the cryo-FIB- cryo-ET pipeline utilized in this study. Bacteriophage strains were grown overnight in LB media, and back diluted 1:1,000 and incubated at 37°C and 250 rpm to optical density (OD)600 = 0.3. Cells were collected by centrifugation (2 min, 5,000 g, r.t.) and resuspended in LB media to a final OD600 = 0.6. This cell suspension (3 μl) was applied to Cilat-2/1 200 mesh copper or gold grids (Electron Microscopy Sciences) that were glow discharged for 30 s at 15 mA. Grids were plunged-frozen in liquid ethane105 with an FEI Vitrobot Mark IV (Thermo Fisher Scientific) for cryo-ET and plunge-frozen in liquid ethane105 with an FEI Vitrobot Mark IV (Thermo Fisher Scientific) for cryo-ET and plunge-frozen in liquid ethane105 with an FEI Vitrobot Mark IV (Thermo Fisher Scientific) for cryo-ET and plunge-frozen in liquid ethane105 with an FEI Vitrobot Mark IV (Thermo Fisher Scientific).

Cryo-FIB milling. Grids were loaded in an Aquilos 2 Cryo-FIB (Thermo Fisher Scientific) with a Gatan BioQuantum K3 energy filter (20 eV zero-loss filtering) and a Gatan K3 direct electron detector. Before data collection, a full K3 gain reference was collected, and ZLP and BioQuantum energy filters were finely tuned. The nominal magnification for data collection was ×42,000 or ×33,000, giving a calibrated 4 K pixel size of 2.193 Å and 2.565/2.758 Å, respectively. Data collection was performed in the nanoprobe mode using the SerialEM106 or Thermo Scientific Tomography 5.3 software. The tilt range varied depending on the lamella, but was generally from −70° to 70° in 2° steps following the dose-symmetric tilt scheme107. Tilt images were acquired as 8 K×11 K super-resolution movies of 4–8 frames with a set dose rate of 1.5–3 e⁻ Å⁻² s⁻¹. Tilt series were collected at a range of nominal defoci between −3.5 and −5.0 μm and a target total dose of 80–180 e⁻ Å⁻² (Supplementary Table 1).

Cryo-ET image processing. Acquired tilted super-resolution movies were motion corrected and Fourier cropped to 4 K×5 K stacks, using ‘Tomalign’ from IMOD108. Tilt series were aligned using ‘tomalign’ in IMOD108. Contrast transfer function (CTF) estimation was performed in IMOD. CTF correction was performed using the ‘ctphaseslip’ program in IMOD108. CTF-corrected unbinned tomograms were reconstructed by weighted back projection with and without a SIRT-like filter and subsequently 2x, 4x and 8x binned in IMOD108.

Bandpass filtering and summed projection of cryo-tomogram slices were performed in Dynamic109 complemented with customized MATLAB scripts. Gaussian and NAD-filtering were performed in Amira (Thermo Fisher Scientific) for visualization purposes. NAD-filtering was applied using the command ‘Anisotropic Diffusion’ in 3D mode for 5 iterations. Gaussian filtering was done by applying the command ‘Gaussian Filter’ under 3D mode with a kernel size factor of 3. Whole 3D-volume FFT filtering was performed in IMOD.

Segmentation. Segmentation was performed on FFT filtered and NAD-filtered tomograms using Amira (Thermo Fisher Scientific) by non-biased semi-automated approaches. Manual annotation was required every 10 slices, then Amira’s interpolation function was applied to automatically trace slices in between. Annotation was done in two-dimensional (2D) slices where features of interest were visible by eye. The segmented PG signal is not indicative of specific glycan strand network, but rather serves as a visual guide to relevant cell wall features.

Curvature. Three-dimensional pole curvature rendering was performed in Amira by applying the command ‘Curvature’ on the basis of the triangulated 3D mesh and ‘Shape Index’ as implemented in Amira110. Shape index (SI) computes the surface scalar field, which is calculated as

\[
SI = \frac{\tan C_1 + C_2}{2}
\]

where \(C_1\) and \(C_2\) are the two principal curvatures. Shape index ranges from −1 to 1, negative values indicate negative curvature, positive values indicate positive curvature.
positive curvature and values close to 0 indicate flatness of the surface. Values are normalized with respect to neighbouring triangles' SI values^7. (Fig. 5d).

Quantification of cryo-ET data. Division site dimensions. Summed projection images of cryo-ET tomograms were used to quantitatively measure cell dimensions at the division site^4. Measurements were performed in Fiji^7 using the 'point to point' measuring tool. Measurements were from IM to IM and from OM to OM.

Periplasmic space. Measurements of periplasmic space thickness were performed from the centre of the OM to the centre of the IM in the cell areas referred to here as ‘side wall’, ‘pole’ and ‘curve’ as well as the invagination tip of the OM to the IM at the constriction division stage. Measurements from centre to centre of opposing IMs were performed in the cell area defined in this study as the septum (Supplementary Figs. 2 and 3). We used a customized macro in Fiji that measures 30 cross-section distances from surface-to-surface areas^7 in nm, for example, from IM to IM at the septum and from IM to OM at the rest of the areas (side wall, pole, curve and initiation). For these 30 single measurements, the mean was calculated, yielding a final single value per defined subcellular localization, for example, septum, curve, pole and side wall.

Subtomogram averaging. Subtomogram averaging was performed in Dynamo64. From the full wild-type cryo-ET data set, particles were identified using ‘dtmelsce’ interface in Dynamo65,66. In 4x-binned tomograms, subtomograms with a size of (77.6, 77.6, 77.6) Å were extracted from 4x-binned tomograms. Initial angles were assigned following the maximum density in the IM. A starting reference generated for both side wall and septum particles. A total of 16 iterations were used to align particles and obtain final averages. Final averages were generated from 8,076 subtomograms for the side wall and 212 particles for the septum. Notice that side wall regions were much more abundant in the cell than septum regions. EM densities were visualized in Chimera^7.

Sample preparation for live cell imaging. Overnight cultures of indicated E. coli strains were grown in LB supplemented with appropriate antibiotics at 37°C. The next day, cells were collected by centrifugation (2 min, 5,000 x g, r.t.) and washed 2x with M9 medium. Day cultures were back diluted (1:1,000) and grown in M9 (0.2% d-glucose, 0.2% casamino acids) supplemented with 50μM Isopropyl-β-D-1-thiogalactopyranoside (IPTG) and appropriate antibiotics at 30°C until OD600 = 0.2–0.4. For filamentation experiments, S. algal was produced from pNP164 by the addition of 0.2% l-arginine during the last 10 min of the incubation period. Cells were collected (2 min, 5,000 x g, r.t.) and resuspended in 1/10th of their original volume. Two microlitres of this cell suspension were added onto a 1% (w/v) agarose in M9 (0.2% d-glucose, casamino acids) pad supplemented with 50μM IPTG and covered with a #1.5 coverslip. For filamentation experiments, the agar pad was also supplemented with 0.2% l-arginine.

Live-cell imaging. All samples were imaged on a Nikon Ti-E inverted widefield microscope equipped with a fully motorized stage and perfect focus system. Images were acquired using a 1.45 NA Plan Apo x100 Ph3 DM objective lens with Cargille Type 37 immersion oil. Fluorescence was excited using a Lumenere SpectraX LED light engine and filtered using ET-GFP (Chroma, 49002) and ET-mCherry (Chroma, 49088) filter sets. Images were recorded on an Andor Zyla 4.2 Plus sCMOS camera (6.5 μm pixel size) using Nikon Elements (v5.10) acquisition software. For subsequent deconvolution procedures, two 200 nm spaced Z-planes were acquired for both fluorescence channels using 100% LED output power and 50 ms exposure. Temperature was maintained at 30°C using a custom-made environmental enclosure. After a 20 min acclimatization period, cells were imaged at a 2.5 min acquisition frame rate for a total observation time of 1–4 h.

Image processing for fluorescence microscopy. First, time-lapse series and Z-stacks were drift corrected using a customized StackReg plugin in Fiji7,8. Subsequently, fluorescence images were deconvolved using the classical maximum likelihood estimation algorithm in Huygens Essential v19.10 (SVI), employing an exponentially decaying spread function (PSF) of a 100 nm long and 1.5 μm wide photo-resist pillars was generated following high aspect ratio photolithography procedures with an adhesion layer. The dimension of these pillars reaches the practically feasible aspect ratio for photolithography designs and thus impedes increasing pillar length without concomitantly increasing width, precluding use of 3D-confocal or scanning division monitors for this imaging mode. A modified silanization surface treatment with plasma cleaning was applied to increase the surface hydrophobicity of the silicon wafer to minimize agarose accumulation. Agarose micro holes were generated by pouring degassed 6% agarose (w/v) in H2O on the silicon wafer. Agarose was allowed to solidify for 40 min at r.t., was peeled off, cut into 5 × 5 mm pieces, and incubated in M9 medium supplemented with 0.4% d-glucose, casamino acids, 25μM α-chloramphenicol and 50μM ampicillin overnight.

Cells were grown as described for sample preparation for live-cell imaging and added on agarose pads. Cells that were not trapped in micro holes were washed off gently using 1 ml of growth medium. Five micrometre spanning Z-stacks (at a 200 nm step size) were acquired and subsequently deconvolved.

Circularity quantification was carried using the software package ‘Morphotometrics’76. Fluorescence signals were segmented using Laplacian algorithm in combination with the peripheral fluorescence setting. Circularity (C) is calculated in Morphometrics as:

\[ C = \frac{p^2}{4\pi A} \]

where P is the perimeter and A is the area enclosed by the circle and is a dimensionless measure. A perfect circle displays a circularity of 1, while increasing values correspond to less circular objects. Cells that were trapped tilted in agar holes were manually excluded from the analysis (15 out of 573 analysed cells).

Measuring Z-ring condensation from time-lapse data. Condensation of cytokinetic elements was addressed using previously described procedures79. Briefly, five frames (corresponding to 10 min) from recorded time-lapse series were sum-projected into a single plane. Z-rings extracted, aligned and averaged as described above. Fluorescence intensity profiles were measured identically as for time-lapse data. Snapshots for 3D maximum intensity projections were rendered in Huygens.

Measuring cell wall synthesis rates by biot orthogonal MurNac–alkyne probes. Septal cell wall synthesis rates were measured as described previously90. MurNac–alkyne was purchased as a custom synthesis product from Tocris following the procedures of ref. 91. All experiments were carried out in ΔmurQ background and in the presence of pCF4368 for IPTG-inducible expression of AmgK and MurU. Filamentation was induced by expressing the FtsZ antagonist sulA from arabinoside-inducible plasmid pNP164. Overnight cultures were back diluted 1:1000 into fresh LB containing 15 μg ml^-1 gentamycin. Cells were grown at 37°C until OD600 = 0.4. Subsequently, 1.5 ml of cells was collected (2 min, 5,000 x g, r.t.) and resuspended in 300 μl LB containing 1 mM IPTG and 0.5 mM HADA to label all cell wall material with FDAAs. For filamentation experiments,
SuLA expression was induced by the addition of 0.2% L-arabinose. Samples were incubated by rotating at 37°C for 30 min. Endogenous UDP-MurNAc production was inhibited by the addition of 200 µM L-arabinose. After 10 min incubation, cells were washed with 5 ml LB, 1 ml IMPP and 200 µM L-arabinose. Next, cells were incubated for 15 min in the presence of 0.2% (w/v) MurNAc-alkyne, 1 mM IPTG and 200 µM L-arabinose at 37°C. Cells were fixed using ice-cold 70% (v/v) ethanol for 20 min at 4°C. Next, cell pellets were washed 3x with 1x PBS. Biorhodochromic MurNAc-alkyne probes were labelled by click chemistry using 5µM Alexa680 azide substrate according to the manufacturer’s instructions. Samples were stored in 20µl PBS 4°C and imaged within 48h of the labelling experiment.

Samples were imaged on a Nikon Ti2-E inverted widefield microscope equipped with a Lumenmca Spectra III light engine, Semrock dichroics (LED-CFP/ YFP/Cmph-3X-A-000, LED-DA/FR/TP/Cy7/CG5-SX-A-000) and emission filters (FF01-432/36, FF01-515/30, FF01-544/24). Images were recorded using a 1.45× Plan Apo X100 IR oil objective with Olympus Type F immersion oil and a pco.edge 4.2bi blue illuminated cooled sCMOS camera using Nikon Elements 5.2.

One micrometre spanning Z-stacks (separated by 200 nm) were acquired and subsequently deconvolved as described above. Z-stacks were sum-projected using Fiji. De novo septal PG synthesis was assessed by measuring the mean fluorescence intensity of NAM-Alexa680 along the division site using the line tool (width, 3 pixels). Levels of cell wall hydrolysis were assessed by measuring the overall reduction in HADA fluorescence as compared to baseline signal intensity derived from fixing cells before MurNAc-alkyne chase. Reduction in fluorescence intensity of FADAs is indicative of cell wall remodelling mediated by amidases, endoepitides or transglycosylases.

Measuring cell wall remodelling by FDA incorporation. For FDA pulse-chase experiments, cells grown overnight were back diluted 1:1,000 in fresh LB and grown until OD₆₀₀ = 0.4 at 37°C. For the filamentation experiment, suLA was expressed from pNP146 by the addition of 0.2% L-arabinose to cultures during the last 10 min of the incubation period. Subsequently, 1.5 ml of cells were collected (2 min, 5,000 x g, r.t.), centrifuged and resuspended in 300 µl LB containing 0.5 mM YADA. Samples were incubated while rotating at 37°C for 40 min. Cells were washed once in 1.5 ml LB and resuspended in 300 µl LB containing 0.5 mM HADA. Samples were incubated at 37°C for either 2 min, 4 min or 8 min before immediate fixation with 70% ethanol. After fixation, cells were washed 3x in PBS, stored in the dark at 4°C and imaged within 48 h. The same image acquisition and analyses procedures were carried out as described for MurNAc-alkyne probes. Fluorescence intensity values were fit to a linear regression for HADA and an exponential one-phase decay for YADA. Levels of cell wall hydrolysis were assessed by subtracting the average fluorescence intensity from cells fixed before chase (0 min) and the respective time point, and fit to a linear regression model. Reduction in fluorescence intensity of FADAs is indicative of cell wall remodelling mediated by amidases, endopeptidases or transglycosylases. In addition to the division site, fluorescence intensity measurements were also performed along the side wall and polar region of the cells at the 8 min time point. For filamenting cells, HADA fluorescence intensity values were fit to a Multiplanar exponential equation, assuming cells keep elongation at the same rate before SulA induction.

Bulk growth curve measurements. Overnight cultures of indicated E. coli strains were grown in LB supplemented with appropriate antibiotics at 37°C. The next day, cells were collected by centrifugation (2 min, 5,000 x g, r.t.) and washed 2x with the respective growth medium (M9 or LB). Dilution cultures were back diluted (1:1,000) and grown in the respective media supplemented with corresponding IPTG concentration (50 µM for Zpap-sGFP induction, 1 mM for AmpK/MurU expression) and appropriate antibiotics at 30°C until OD₆₀₀ = 0.3. Cells were collected (2 min, 5,000 x g, r.t.) and resuspended to an initial OD₆₀₀ of 0.01 in a final volume of 100 µl. Growth curves were measured in a Tecan M-plex 96-well plate reader by OD₆₀₀ read out. Plates were incubated with shaking at 30°C for a total of 18 h.

Cell shape quantification analyses. Bacterial cells were segmented and analysed from phase-contrast images using the software package ‘Morphometrics’. Results from Morphometrics were post-processed using customized MATLAB scripts to exclude erroneously segmented cell debris in live-image data on the basis of area. Cell width, length and pole curvature per segmented cell were directly extracted from Morphometrics. Since curvature (k = 1/r, where r is the radius of the cell cylinder) is dependent on the cell cylinder width, curvature values were normalized by multiplying half-cell width to each respective curvature value. Thus, spherical poles display curvature values of k = 1, while pointy (elongated) poles display stretched curvature values (k < 1). Dumbbells display reduced curvature values k < 1, respectively. We obtained division site curvature from both sides of the cell at the invagination site. The invagination site is defined as the narrowest segment of the cell, for example, lowest cell width value, that presents negative curvature on both sides of the cell. Division site curvature was normalized to the half-cell width of the invagination site.

SIM-TIRF microscopy and MreB tracking. Samples were prepared as described for live-cell imaging. To block cell division, suLA was expressed from pNP146 by the addition of 0.2% L-arabinose during the last 10 min of the incubation period. Cells were added to high precision 1.5 coverslips (Marienfeld) and placed on a 1% (w/v) agarose pad in M9 (0.2% d-glucose, casamino acids, supplemented with 0.5% (w/v) L-arabinose). Imaging was performed on a Nikon Ti2 N-SIM microscope equipped with N-SIM spatial light modulator illumination, TIRF (emission filter, 488 and 561 nm laser lines, an N-SIM 488/561 dual band dichroic mirror, SR HP Airo TIRF x100 1.5 NA oil objective with automated correction collar and a Hamamatsu Orca Flash 4.0 camera) and an ET525/500 emission filter (for MreB-sw-mNeonGreen or Pal-mCherry fusion, respectively). The refractive index of the immersion oil (1.512) (GE Healthcare) was optimized for MreB-sw-mNeonGreen signal and corrected using the automated correction collar for the Pal-mCherry fusion. Alignment of the 488 and 561 lasers for SIM-TIRF and 3D-SIM, and of the N-SIM optics and illumination was performed before each experiment at the image plane. First, a 3 min time-lapse series (at 3 s acquisition frame rate) in SIM-TIRF mode was collected using 20× laser power with 100 µs exposure time to follow MreB-sw-mNeonGreen dynamics. Then, a single slice of a 3D-SIM Pal-mCherry (40% laser power, 100 ms exposure) and a brightfield reference image was acquired. Raw fluorescence images were reconstructed using Nikon Elements 5.1 acquisition software with indicated settings: MreB illumination contrast 0.8, noise suppression 0.3 and blur suppression 0.05; Pal illumination contrast 3.75, noise suppression 0.1 and blur suppression 0.5. Only reconstructed images with a quality score ≥ 2 and passed SIMcheck quality test were used for further analysis. Subsequently, MreB time-lapse series were overlaid with the reference channel in Fiji.

Polar tracking was performed in Fiji using the TrackMate v0.1 plugin. MreB filaments were detected using the LoG-detector with an estimated radius of 0.3 µm. Spurious spots were filtered using a quality threshold of 50. Spots were linked using a Kalman filter with an initial search radius of 0.2 µm and search radius of 0.1 µm. No frame gaps were allowed. Only tracks consisting of ≥ 4 continuous spots (12 s) and that travelled less than 1 µm in total distance were kept for further analysis. To analyse the nature of the displacement of each track, the mean square displacement (MSD) was calculated using the MATLAB class md analyzer. Slopes (α) of the individual MSD curves were extracted using the log-log fit of the MSD and the delay time τ. As the maximum delay time of 75% of the track length was used, tracks with an R² for log (MSD) versus log (t) below 0.95 indicative of a poor fit to the MSD curve were excluded from the analysis.

MreB filaments engaged in active cell wall synthesis are displaced by the enzymatic activities of RodA and PBP2b, hence their MSD curves display slopes of α ≈ 2 indicative of a transported particle motion above the rate of Brownian diffusion (Extended Data Fig. 10b). MreB filaments in constricting cells, as determined by the presence of Pal-mCherry foci at the division site, were analysed by fitting a continuous fluorescent signal across the cell, respectively.

Statistical analysis. All data measurements were plotted and analysed using GraphPad Prism 9 (Version 9.3.1). In general, (log-) normal distribution was tested using Shapiro-Wilk test. For comparisons of two groups, significance was determined by two-tailed, unpaired Student’s t-test with Welch correction and F-test for variance analysis. One-way analysis of variance (ANOVA) was used for comparison of more than two groups using the recommended post-test for selected pairwise comparisons. All experiments were carried out with at least 3 independent biological replicates. P values less than 0.05 were considered statistically significant.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The data, plasmids and strains that support the findings of this study are available from the corresponding authors on reasonable request. Representative tomograms are deposited in EMDB: EMD-27479 (wild-type), EMD-27484 (ΔnlpD, ΔenvC and ΔnlpDΔenvC) and EMD-27486 (βl). Corresponding raw data files (series and stacks) are available in the extended data (EMDB). The data, plasmids and strains that support the findings of this study are available from the corresponding authors on reasonable request.

References. S. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000144 (2010).

Received: 8 October 2021; Accepted: 21 July 2022; Published online: 12 September 2022
2. Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539–556 (2017).
3. Rohs, P. D. A. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-020518-120056 (2021).
4. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7, 642–653 (2009).
5. Mahone, C. R. & Golay, E. D. Bacterial cell division at a glance. J. Cell Sci. 133, 6237–6257 (2020).
6. Beveridge, T. J. in International Review of Cytology Vol. 72 (eds Bourne, G. H. et al.) 229–317 (Academic Press, 1981).
7. Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64, 195–206 (2007).
8. Matias, V. R. F. & Beveridge, T. J. Murein (peptidoglycan) binding property of the essential FtsQ-LB subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 71, 5523–5530 (1989).
9. Uehara, T., Dinh, T. & Bernhardt, T. G. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 191, 5094–5107 (2009).
10. Ishino, F. et al. New mutations tfs-36, lts-33, and RtsW clustered in the mrA region of the Escherichia coli chromosome induce thermosensitive cell growth delay and division. J. Bacteriol. 171, 5523–5530 (1989).
11. Ueki, M., Wachi, M., Jung, H. K., Ishino, F. & Matsumashi, M. Escherichia coli mraT gene involved in cell growth and division. J. Bacteriol. 174, 7841–7843 (1992).
12. Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-diamino acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).
13. Hae, C. A. & de Boer, P. A. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175–183 (1997).
14. Buss, J. et al. In vivo organization of the FtsZ ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol. Microbiol. 89, 1099–1120 (2013).
15. Squires, G. R. et al. Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis. Nat. Microbiol. 6, 553–562 (2021).
16. Duarte-Minguéz-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).
17. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).
18. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).
19. Dion, M. F. et al. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat. Microbiol. 4, 1294–1305 (2019).
20. Huesman, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7, e32471 (2018).
21. Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl Acad. Sci. USA 111, E1025–E1034 (2014).
22. Truong, T. T., Vettiger, A. & Bernhardt, T. G. Cell division is antagonized by the activity of peptidoglycan endopeptidases that promote cell elongation. Mol. Microbiol. 114, 966–978 (2020).
23. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).
24. Byers, B. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010).
25. Wanner, K. E. & Margrepp, W. A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol. Microbiol. 92, 1212–1226 (2014).
26. Lyu, Z. et al. FtsN activates septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthase in E. coli. Preprint at bioRxiv https://doi.org/10.1101/2021.08.23.457437 (2021).
27. Heidrich, C. et al. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).
28. Uehara, T., Parach, K. R., Dinh, T. & Bernhardt, T. G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).
29. Judd, E. M. et al. Distinct constrictive processes, separated in time and space, divide Caulobacter inner and outer membranes. J. Bacteriol. 187, 6874–6882 (2005).
30. Bhushan, B. & Beveridge, T. J. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-diamino acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).
31. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
32. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).
33. Wolf, G. et al. Mind the gap: micro-expansion joints drastically decrease the binding of FIB-mulled cryo-lamellae. J. Struct. Biol. 208, 107389 (2019).
34. Wagner, F. R. & Preparata, F. S. Unfused samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041–2070 (2020).
35. Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).
60. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-series scheme optimized for high resolution subtomogram averaging. *J. Struct. Biol.* **197**, 191–198 (2017).

61. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. *J. Struct. Biol.* **116**, 71–76 (1996).

62. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. *J. Struct. Biol.* **197**, 102–113 (2017).

63. Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. *J. Struct. Biol.* **168**, 378–387 (2009).

64. Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. *J. Struct. Biol.* **178**, 139–151 (2012).

65. Castaño-Díez, D., Kudryashev, M. & Stahlberg, H. Dynamo catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. *J. Struct. Biol.* **197**, 135–144 (2017).

66. Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services. *Acta Crystallogr. D* **73**, 478–487 (2017).

67. Castaño-Díez, D., Kudryashev, M. & Stahlberg, H. Dynamo catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. *J. Struct. Biol.* **197**, 135–144 (2017).

68. Navarro, P. P., Stahlberg, H. & Castaño-Díez, D. Protocols for subtomogram averaging of membrane proteins in the Dynamo software package. *Front. Mol. Biosci.* **5**, 82 (2018).

69. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

70. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

71. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

72. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

73. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

74. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

75. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

76. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

77. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

78. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

79. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

80. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

81. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

82. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

83. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

84. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

85. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

86. Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. *J. Math. Imaging Vis.* **26**, 3142–3145 (2007).

Author contributions

PPN and A.V. conceived the project, performed experiments, and analysed and interpreted the data. PPN performed cryo-FIB/cryo-ET and image processing. A.V. generated mutants and performed fluorescence microscopy experiments. V.Y.A. performed 3D segmentations of cryo-ET data. P.M.L. established the SIM-TIRF workflow and assisted in data collection. C.A. contributed to cell morphology analyses. L.H.C and T.G.B provided infrastructure and scientific advice. P.P., A.V., L.H.C. and T.G.B. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41564-022-01210-z.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41564-022-01210-z.

Correspondence and requests for materials should be addressed to Thomas G. Bernhardt or Luke H. Chan.

Peer review information *Nature Microbiology* thanks Kanika Khanna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022
Extended Data Fig. 1 | Cryo-FIB / cryo-ET pipeline utilized in this study. Schematic cartoons showing the steps in sample preparation for cryo-ET. In brief, bacteria are grown to OD$_{600}$ = 0.3 and applied onto an EM grid for vitrification in liquid ethane$^5$. Cryo-EM grids are kept in liquid nitrogen until transfer into the cryo-FIB microscope for milling. An illustration shows the result of milling vitrified bacteria distributed onto the holey carbon film on the mesh EM grid. (a-d) Images taken from the Aquilos Thermo Fisher Scientific graphical user interface during cryo-FIB milling performance. (a) Target bacteria (red circles) are first identified by SE, e$^-$ beam. Yellow box indicates region visualized in (b) and magenta box indicates the area visualized in (c). (b) Corresponding FIB, ion Ga$^+$ beam, view (52° with respect to the e$^-$ beam$^5$) of the targeted grid square in (a) (yellow box). Green box indicates region visualized in (d). (c) SEM view of the same region shown in (a) and (b) after platinum deposition and milling. Cyan box indicates obtained lamella shown in (e). (d) FIB view of region shown in (b) (green box) after platinum deposition and milling. Scale bars in (a-d) are indicated on each image. After milling, cryo-EM grids containing bacterial lamellae are transferred into a TEM microscope. (e) Low magnification TEM 2D image of the lamella shown in (c-d). Cyan box. Dashed black box indicates target region for cryo-ET acquisition. Dashed white line indicates the tilt axis for cryo-ET data acquisition. (f) 3D slice of the cryo-electron tomogram obtained from 3D reconstruction of aligned cryo-ET tilt series acquired in (e) (dashed black box). Scale bars: e = 1000 nm; f = 200 nm. (g) A representative lamella from a wild-type *E. coli* cell imaged at indicated imaging conditions. White box highlights region for corresponding high-magnification acquisition. Scale bars = 1 µm (low magnification); 200 nm (high magnification and cryo-electron tomogram).
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Distance measurements in cryo-ET data of dividing E. coli cells. Three dimensional slices visualizing the division site during (a) constriction, (b) septation and (c) cytokinesis. Dashed white line indicates OM-OM distance and white bold line indicates IM-IM distance. (a.i-c.i) Measured distances in nm of IM-IM, OM-OM and the difference between these distances at (a.i) constriction (N = 7 (wt); 10 (ftsN-ΔSPOR); 5 (ΔenvC); 4 (ΔnlpD ΔenvC); 8 (ftsL*) images), (b.i) septation (N = 5 (wt); 4 (ftsN-ΔSPOR); 3 (ΔenvC); 2 (ΔnlpD ΔenvC); 3 (ftsL*) images), and (c.i) cytokinesis (N = 5 (wt); 4 (ftsN-ΔSPOR); 11 (ΔenvC); 3 (ΔnlpD ΔenvC); 4 (ftsL*) images). (a.ii-b.ii) Measured distances in nm for each strain grouped. Scale bars = 200 nm. All data are expressed as mean ± SEM. (d-f) Schematic representing the division stages color-coded at where periplasmic width was measured. Thirty euclidean distances were measured per region (see Methods), N values for each region per stage are: (d) at septum (N = 14 (wt); 16 (ftsN-ΔSPOR); 7 (ΔenvC); 6 (ΔnlpD ΔenvC); 10 (ftsL*)); at curve (N = 15 (wt); 27 (ftsN-ΔSPOR); 13 (ΔenvC); 8 (ΔnlpD ΔenvC); 19 (ftsL*)); (e) at septum (N = 10 (wt); 8 (ftsN-ΔSPOR); 6 (ΔenvC); 6 (ΔnlpD ΔenvC); 6 (ftsL*)); at curve (N = 19 (wt); 23 (ftsN-ΔSPOR); 12 (ΔenvC); 6 (ΔnlpD ΔenvC); 12 (ftsL*)); (f) at septum (N = 4 (wt); 3 (ftsN-ΔSPOR); 12 (ΔenvC); 3 (ΔnlpD ΔenvC); 6 (ftsL*)); at curve (N = 16 (wt); 12 (ftsN-ΔSPOR); 39 (ΔenvC); 6 (ΔnlpD ΔenvC); 7 (ftsL*)). All analyzed data points are displayed, bar represents mean ± SD. Significance was tested using unpaired t-test with Welch correction for paired groups when data followed gaussian distribution and Mann-Whitney when data did not follow gaussian distribution. Significance difference among all groups compared was tested using Welch ANOVA and Brown-Forsythe when data followed gaussian distribution and Kruskal-Wallis test when data did not follow gaussian distribution. In (a.ii) difference plot, statistical significance is shown based on F-test statistics. Ns = non-significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Subtomogram averaging, NAD filtering and segmentation of the cell envelope of *E. coli*. (a) STA 3D structure of the cell envelope at the septum and side wall are displayed in Chimera using solid and surface rendering. 3D slices of averages are shown. 212 particles contributed to the septum average while 8072 particles from N = 5 tomograms contributed to the side wall average. Blue dots plotted on a tomogram slice represent particles that contribute to ‘side wall’ and yellow dots represent particles contributing to septum average. Scale bar = 40 nm. In the tomogram rendering, 100 pixels blocks in the cartesian axes correspond to 102.6 nm. (b–f) Gallery of corresponding zoom-in summed projected central slices of cryo-electron tomograms visualizing the indicated division mutants. First column shows original image, second column shows filtered image, and third column shows filtered image with segmentation layers indicating IM = green, PG = cyan and OM = magenta. A full cryo-ET gallery can be found in Extended Data Fig. 5. A complete overview of the number of tomograms is reported in Supplementary Tables 2, 3. Scale bars = 100 nm.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Measuring cell envelope constriction from kymograph data. (a) Schematic representation of workflow for the generation of kymographs using Kymoclear and KymographDirect software. Instantaneous constriction velocity for (b) IM (ZipA-sfGFP) and (c) OM (Pal-mCherry) are plotted against normalized cell width. Bold lines show second order polynomial fits as in Fig. 2e,f. N = 150 cells (wt); N = 48 (ftsN-ΔSPOR); N = 81 (ΔenvC); N = 68 (ftsL*) kymographs. (d) Additional examples of cell envelope constriction kymographs for the corresponding strains in panels b–c. (e) Duration of IM (left) and OM (right) constriction was derived from kymograph measurements. Data are represented as boxplots. The line represents median; error bars depict Min–Max range. The significance of differences were tested relative to wild-type by one-way ANOVA with Dunnett’s correction for multiple comparisons; ns = non-significant (p = 0.99), *= p < 0.05, **= p < 0.001, ***= p < 0.0001; N = 150 cells (wt); N = 48 (ftsN-ΔSPOR); N = 81 (ΔenvC); N = 68 (ftsL*). Scale bar = 2 μm, in kymographs = 200 nm horizontal and 10 min vertical.
Extended Data Fig. 5 | Cell division and polar morphology of E. coli viewed by cryo-ET. Gallery of summed projected central slices of cryo-electron tomograms visualizing the indicated division mutants. Black arrowhead = division site; green arrowhead = envelope bulging. Dashed white box indicates corresponding zoom-in region show in Extended Data Fig. 3. A complete overview of number of tomograms is reported in Supplementary Tables 2, 3. Scale bars = 200 nm.
Extended Data Fig. 6 | Measuring bulk growth rates of *E. coli* cell division mutants analyzed in this study. Growth curves were measured in biological triplicates by OD_{600} readings in a 96-well plate reader at 30 °C. Data is represented as mean ± SD. (a) Untagged strains used for cryo-ET and FDAA labeling as well as (b) ΔmurQ mutants expressing ΔmurQ mutants expressing *amgK* and *murU* for MurNAc-alkyne labeling experiments were grown in LB. Cells harboring fluorescent fusion proteins for live-cell imaging of (c) cell envelope constriction or (d) MreB tracking were grown in M9 medium supplemented with 0.2% glucose and casamino acids.
Extended Data Fig. 7 | A hyperactivated divisome leads to anisotropic cell envelope constriction. (a) Orthogonal views of XZ and XY slices of 3D cryo-electron tomograms of the indicated division mutants. Magenta and green arrowheads indicate OM and IM, respectively. 3D volumes are displayed in cartesian 3D grids with axes indicating the dimensions in pixels. For wild-type and ΔenvC ΔnlpD 100 pixels = 102.6 nm, and for ftsN-ΔSPOR and ftsL* 100 pixels = 110.3 nm. (b) Corresponding 3D surface segmentation renderings of OM (magenta) and IM (green) are shown on the right. (c) Schematic overview of a theoretical kymograph for an isotropic (left) and anisotropic (right) constriction of the cell envelope. Representative examples form 3 biological replicates for wild-type (left) and ftsL* (right) are provided. Scale bars: 200 nm (vertical); 5 min (horizontal). (d) An anisotropy score was calculated by taking the ratio of the constriction velocity from both sides of the cell. Red line (e = 1) indicates a perfectly isotropic cell envelope constriction process. Data are represented as mean ± SD, Kruskal-Wallis with Dunn’s correction for multiple comparisons among all values was calculated, exact p values are shown. N = 65 (wt); 24 (ftsL*); 23 (ftsN-ΔSPOR); 44 (ΔenvC) constriction were analyzed (e) Cells were vertically immobilized using small micro pillars imprinted into agarose pads, allowing to image the cell division site along its long axis. Representative example of the cell envelope position in vertically imaged wt and ftsL* cells. Scale bar = 2 µm. Circularity was quantified using Morphometrics. Red line (circularity = 1) indicates a perfect circle. Black line indicates median. Two-way ANOVA with Sidak’s multiple comparison test; * = p < 0.05; ** = p < 0.001. N = 132 (wt); 172 (ftsL*) cells imaged in three biological replicates.
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | Cell wall synthesis and hydrolysis measurements. (a) New and old cell wall material were detected with Alexa488 labelled MurNAc-allyl (yellow) or HADA (blue), respectively. (b) Representative images from labeling. (c) Label incorporation at the division site. Bars show the mean and dots show the average from 9 different images. ftsN-ΔSPOR labeling example. (d) Rate of sPG synthesis (line = median). (e) Septal PG hydrolysis. Bar represents median ± 95% confidence interval; points indicate the average of three biological replicates. (f) Side wall labeling (line = median). (g) sPG and side wall synthesis ratio. (h) Representative YADA labeling pattern. Yellow arrow heads indicate polar label accumulation. (i) Average polar YADA fluorescence. Black line indicates mean, one-way ANOVA with Dunnett’s correction for multiple comparison. Significant differences are relative to wild-type; ns = non-significant (p = 0.76), p < 0.00. (j) Summed projected central 3D slices through tomograms of poles. Yellow arrowhead indicates enlarged periplasm. (k) Periplasm thickness in cryo-ET data at the side wall (green) and pole (red) (mean ± SD). Thirty Euclidean distances were measured per region. One-way ANOVA (side wall) and Kruskal-Wallis test (pole); significance was tested among all groups within each region; ns = non-significant (p = 0.91), **** = p < 0.0001, N.A. = not applicable. (l) Labeling patterns observed for the pulse-chase. (m) Sum-projection of deconvolved images after HADA pulses as shown in Fig. 3b. (n) Expected labeling patterns for cells expressing sulA. New and old wall is labelled with HADA (blue) and YADA (yellow), respectively. (o) Representative images of indicated strains after HADA pulses. Mean side wall fluorescence intensity for (p) HADA and (q) YADA fit to a (p) Malthusian exponential function or (q) one phase exponential decay. Mean fluorescence intensity ± one SD is shown, N = 360 cells each. (r) Fluorescence intensity (p,q) was measured in original non-deconvolved (raw) SUM projections. Linear regression shows strong positive (R² = 0.87) correlation to deconvolved fluorescence intensity values. N = 1035 values. Scale bars = 2 µm (fluorescence) or 200 nm (cryo-ET).
Extended Data Fig. 9 | Z-ring views during constriction in cryo-electron tomograms of *E. coli*. Summed projections of 10 slices of XZ and XY views during constriction of indicated strains. Representative examples of all strains are shown. Green arrowheads indicate IM, magenta arrowheads indicate OM, red arrowheads indicate cytoskeletal ring and red asterisks indicate zones of diffuse signal. Note, Z-ring signal is weaker in ∆envC mutants due to issues with Z-ring condensation as shown by fluorescence microscopy (Fig. 4h-j). Scale bar = 100 nm.
Extended Data Fig. 10 | The balance between elongation and division affects cell morphology. (a) MreB-sw-mNeonGreen dynamics were followed by SIM-TRIF microscopy for 3 min at 3 s acquisitions per frame in indicated mutants. Time-lapse series was sum-projected and overlayed over a 3D-SIM Pal-mCherry and brightfield reference image. Larger fields of view are shown as compared to Fig. 5g and are representative from three biological replicates. Bar = 1 µm (b) Slopes of MSD curves (α) were analyzed following log-log fit to log[MSD] versus log[t] using the MATLAB class msdanalyzer.

Particles displaced by diffusive motion are characterized by a slope of their log[MSD] = 1, while transported particles have slopes of 2 and constrained particles display slopes < 1. No significant difference (ns = non-significant, p = 0.0693; Kruskal Wallis test with Dunn’s correction for multiple comparisons) in the slopes of MSD curves were found indicating that MreB is displaced at a similar rate and manner in all strains. Box plot bars displaying Min-Max range of values, blackline represents median. Tracks fit to log[MSD] log[t] with R2 ≤ 0.95 (c) Cell length and (d) width was measured from three independent biological replicates for the indicated mutants using Morphometrics. Line represents median. Differences in significances were tested relative to wild-type using Kruskal-Wallis one-way ANOVA with Dunnett’s correction for multiple comparisons; * = p < 0.05, **** = p < 0.0001, ns = non-significant, p = 0.69. (e) MreB dynamics were imaged as in (a). Representative temporal SUM projections of MreB-mNeon trajectories were overlayed to brightfield images. Bar = 2 µm. (f) Directionally moving MreB tracks were filtered by MSD analysis (see Methods) and represented as boxplots (line indicating median; error bars depicting Min-Max range) and normalized by cell area. Significance in each group was tested against non-filamented control (-Ara) by two-sided unpaired t-test; ** p < 0.01, ns = non-significant, wt p = 0.053, ftsN-∆SPOR = 0.253. (g) Constriction curvature values of wild-type cells are plotted against division site width in 566 cells. Linear regression (R2 = 0.135) indicates the negative correlation between cell width at the division site and constriction angle.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

| Item                                                                 | Yes | No |
|---------------------------------------------------------------------|-----|----|
| n/a                                                                |     |    |
| Confirmed                                                          |     |    |
| ☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement |     |    |
| ☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly |     |    |
| ☐ The statistical test(s) used AND whether they are one- or two-sided |     |    |
| Only common tests should be described solely by name; describe more complex techniques in the Methods section. |     |    |
| ☐ A description of all covariates tested                           |     |    |
| ☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons |     |    |
| ☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) |     |    |
| ☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable. |     |    |
| ☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings |     |    |
| ☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes |     |    |
| ☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated |     |    |

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

| Data collection | SerialEM 3.2 (open source, cited) and Thermo Fisher Scientific Tomography v5.3.0 (Thermo Fisher Scientific) for operation of electron microscopes (references in Methods). Light microscopy data was acquired using Nikon Elements 5.1 (referenced in Methods). |
| Data analysis   | Cryo-ET data processing (all available and referenced in Methods); IMOD v4.11.4 (open source, cited), Amira-Avizo 2020.2 (Thermo Fisher Scientific), Dynamo 1.1.454 (open source, cited), MATLAB 2019b (MathWorks). Light Microscopy: Fiji (open source, cited); Huygens Essentials (SVI) 19.1. All particle tracking was done with the Trackmate plugin within Fiji (open source, cited), then analyzed in MATLAB 2019b using M50analyzr 1.1 (open source, cited) and Morphometrics 1.1.02. KymographClear 2.0 and KymographDirect 2.1. Codes are available (Github): https://github.com/NavarroVettiger/Navarro-et-al_2022 |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data. All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Cryo-ET data: Representative tomograms deposited in EMDB: EMD-24749 (wild-type), EMD-27484 (ftsN-ΔSPOR), EMD-27485 (ΔenvC and ΔenvC ΔnpD), EMD-27486 (ftsL*). Corresponding raw movie frames and stacks of tilt-series deposited as EMPIAR-11090 (wild-type), EMPIAR-11087 (ftsN-ΔSPOR), EMPIAR-11089 (ΔenvC and ΔenvC ΔnpD) and EMPIAR-11088 (ftsL*). Data will be available upon publication of the manuscript in Nature Microbiology.

Light microscopy: key data to support the conclusions of the manuscript are shown in the main figures and Extended Data figures (Source Data. Additional substantiati, data, including raw data for all figures, are available upon request. Image analysis scripts are provided on GitHub: https://github.com/NavarroVettiger/Navarro-et-al_2022

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender
Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in study design. Whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for sharing of individual-level data; present overall numbers in this Reporting Summary. Please state if this information has not been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Population characteristics
Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write "See above."

Recruitment
Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

Ethics oversight
Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [ ] Behavioural & social sciences
- [ ] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
Sample sizes were determined by available cryo-electron microscopy and cryo-FIB instrument time. A total of 109 tomograms were acquired (see Methods and Extended Data).

For light microscopy experiments no specific sample size calculation was made, since in general large number of cells were analyzed (965 cells for morphology quantification, ≥1000 cells in cell wall labeling experiments, ≥2000 single MreB trajectories etc.) over three independent biological replicates. Even when few cells (e.g., N ≤ 100) were analyzed for measuring constriction rates due to the slow nature of this process, significant differences among groups were detected.

Data exclusions
For cryo-ET, tilt-series exhibiting errors during data collection were excluded. Exclusion of error-containing or incomplete tilt-series is a standard, pre-established practice for cryo-ET processing.

For light microscopy data were excluded based on criteria described in Methods: 15-20% of kymographs were excluded from analysis due to cell movement during constriction, 2.5% of vertically imaged cells were trapped tilted and removed from circulancy analysis. Particle tracking was limited to tracks consisting of ≥ 4 spots and log-log fits of MSD were calculated for tracks with R-square ≥ 0.95.

Replication
Tomograms were acquired from multiple cells, grid replicates (at least 5 grids per strain) were possible and come from cells vitriified on different days and from different batch cultures.

All light microscopy experiment were successfully repeated over three biological replicates.
Randomization

We did not randomize any of our data, as after data collection, all measurements and analysis were performed the same over all conditions. Cells for cryo-FIB and tilt-series collection were chosen at random on each TEM autogrid. For light microscopy, sample were imaged in random intervals. For live-cell imaging, cells one field of view from the edge of the agarose pad were imaged.

Blinding

It was not possible to blind any of our data during acquisition and analysis, since the cell morphology of the strains analyzed in this study is fundamentally different. Image processing and analysis procedures were carried out mostly computer-based using unbiased automated procedures.

---

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

| Materials & experimental systems | Methods |
|----------------------------------|---------|
| n/a | Involved in the study |
| ☒ | Antibodies |
| ☒ | Eukaryotic cell lines |
| ☒ | Palaeontology and archaeology |
| ☒ | Animals and other organisms |
| ☒ | Clinical data |
| ☒ | Dual use research of concern |
| n/a | Involved in the study |
| ☒ | ChiP-seq |
| ☒ | Flow cytometry |
| ☒ | MRI-based neuroimaging |