REMARKS ON LOCAL BOUNDEDNESS AND LOCAL HÖLDER CONTINUITY OF LOCAL WEAK SOLUTIONS TO ANISOTROPIC p-LAPLACIAN TYPE EQUATIONS

EMMANUELE DIBENEDETTO, UGO GIANAZZA, AND VINCENZO VESPRI

Abstract. Locally bounded, local weak solutions to a special class of quasilinear, anisotropic, p-Laplacian type elliptic equations, are shown to be locally Hölder continuous. Homogeneous local upper bounds are established for local weak solutions to a general class of quasilinear anisotropic equations.

1. Introduction

Consider quasi-linear, elliptic differential equations of the form

\begin{equation}
\text{div} \ A(x, u, Du) = 0 \quad \text{weakly in some open set } E \subset \mathbb{R}^N
\end{equation}

where the function $A = (A_1, \ldots, A_N) : E \times \mathbb{R}^{N+1} \to \mathbb{R}^N$ is only assumed to be measurable and subject to the structure conditions

\begin{align}
& A_i(x, u, Du) \cdot u_{x_i} \geq C_{o,i} |u_{x_i}|^{p_i}, \\
& |A_i(x, u, Du)| \leq C_{1,i} |u_{x_i}|^{p_i-1},
\end{align}

where $p_i > 1$ and $C_{o,i}$ and $C_{1,i}$ are given positive constants. Such elliptic equations are termed anisotropic, their prototype being

\begin{equation}
\sum_{i=1}^N \left(|u_{x_i}|^{p_i-2} u_{x_i} \right)_{x_i} = 0 \quad \text{in } E.
\end{equation}

For a multi-index $\mathbf{p} = \{p_1, \ldots, p_N\}$, $p_i \geq 1$, let

\[W^{1, \mathbf{p}}(E) = \{ u \in L^1(E) : u_{x_i} \in L^{p_i}(E), \ i = 1, \ldots, N \}, \]

and

\[W^{1, \mathbf{p}}_o(E) = W^{1, \mathbf{p}}(E) \cap W^{1,1}_o(E). \]

A function $u \in W^{1, \mathbf{p}}(E)$ is a local, weak solution to (1.1) if for every compact set $K \subset E$

\begin{equation}
\int_K A(x, u, Du) : D\varphi \ dx = 0 \quad \text{for all } \varphi \in C^\infty_0(K).
\end{equation}

The parameters $\{N, p_i, C_{o,i}, C_{1,i}\}$ are the data, and we say that a generic constant $\gamma = \gamma(N, p_i, C_{o,i}, C_{1,i})$ depends upon the data, if it can be quantitatively determined a priori only in terms of the indicated parameters.
Define,

\[\bar{p} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_i}, \]

\[p_{\min} = \min\{p_1, \ldots, p_N\}, \]

\[p_{\max} = \max\{p_1, \ldots, p_N\}. \]

For a compact set \(K \subset E \) introduce the intrinsic, elliptic \(p \)-distance from \(K \) to \(\partial E \) by

\[p - \text{dist}(K; \partial E) \overset{\text{def}}{=} \inf_{x \in K, y \in \partial E} \left(\sum_{j=1}^{N} \|u\|_{p_{\max} - p, E}^{p_{\max} - p} |x_j - y_j|^{p_{\max}} \right). \]

Theorem 1. Let \(u \) be a bounded, local, weak solution to \((1.1) - (1.2)\), and assume \(\bar{p} < N \).

There exists a positive quantity \(q > 1 \), depending only on the data, such that if

\[p_{\max} - p_{\min} \leq \frac{1}{q}, \]

then \(u \) is locally Hölder continuous in \(E \), i.e. there exist constants \(\gamma > 1 \) and \(\alpha \in (0, 1) \) depending only on the data, such that for every compact set \(K \subset E \),

\[|u(x_1) - u(x_2)| \leq \gamma \|u\|_{\infty, E} \left(\sum_{i=1}^{N} \|u\|_{p_{\max} - p, E}^{p_{\max} - p} |x_{1,i} - x_{2,i}|^{p_{\max}} \right)^{\alpha} \]

for every pair of points \(x_1, x_2 \in K \).

Remark 1. For a general distribution of the \(p_j \), unbounded weak solutions might exist \((\[7, 12\])\). In \([6, 9, 1]\) it is shown that local weak solutions are locally bounded provided

\[\bar{p} < N, \quad p_{\max} \leq \frac{N \bar{p}}{N - \bar{p}}. \]

In Section 6 we revisit and improve these boundedness estimates.

Remark 2. The Hölder continuity of solutions holds also for \(\bar{p} \geq N \); indeed, when \(\bar{p} = N \), a straightforward modification of our arguments suffices, strictly analogous to the one used in the isotropic case when \(p = N \); when \(\bar{p} > N \), the embedding results of \([8, \text{Theorem 2}]\) (see also \([16]\)), ensure that \(u \) is Hölder continuous.

Remark 3. The constants \(\gamma \) and \(\alpha \) deteriorate as either \(p_i \to \infty \) or \(p_i \to 1 \), in the sense that \(\gamma(p) \to \infty \) and \(\alpha \to 0 \) as either \(p_i \to \infty \), or \(p_i \to 1 \).

Acknowledgements - We thank Prof. P. Marcellini, E. Mascolo and G. Cupini for enlightening conversations on embeddings for anisotropic Sobolev spaces.

\section*{2. Novelty and Significance}

If the coefficients in \((1.1) - (1.2)\) are differentiable, and satisfy some further, suitable structure conditions, Lipschitz estimates have been derived by Marcellini \([13, 14]\). If the coefficients are merely bounded and measurable, Hölder continuity has been established in \([11]\) in the special case of \(p_1 = 2 < p_2 = p_3 = \cdots = p_N \), i.e., the \(p_j \) are all the same except the smallest one. The main idea is to regard the equation as “parabolic” with respect to the variable \(x_1 \), corresponding to \(p_1 \), and to apply the techniques of \([3, 4]\). An extension to the case \(1 < p_1 < p_2 = p_3 = \cdots = p_N \), by the same techniques, is in \([5]\).

Theorem \([1] \) is a further step in understanding the regularity of solutions of anisotropic elliptic equations, with full quasi-linear structure. Our approach is “elliptic” in nature, it is
modelled after \[2\], no variable is regarded as “parabolic,” and no restriction is placed on the distribution of the \(p_j\) other that \(p_{\text{max}} - p_{\text{min}} \ll 1\). In particular, the \(p_j\) could all be different.

While partial, Theorem \[1\] disproves the claim in \[7\] by which, Hölder continuity of weak solutions to \((1.1)-(1.2)\), holds if and only if \(p_{\text{min}} = p_{\text{max}}\), i.e., if no anisotropy is present.

Finally, Theorem \[1\] can be seen as a stability result of the Hölder continuity of solutions, when \(p_i \to p_{\text{min}}\), and correspondingly, the anisotropic \(p\)-laplacian tends to the \(p_{\text{min}}\)-laplacian.

3. Preliminaries and Intrinsic Geometry

Lemma 1 (Sobolev-Troisi Inequality, \[17\]). Let \(E \subset \mathbb{R}^N\) be a bounded, open set and consider \(u \in W^{1,p}_o(E), p_i > 1\) for all \(i = 1, \ldots, N\). Assume \(\bar{p} < N\) and let

\[
(3.1) \quad p_\ast = \frac{N\bar{p}}{N - \bar{p}}.
\]

Then there exists a constant \(c\) depending only on \(N, p\), such that

\[
\|u\|_{L^{p_\ast}(E)} \leq c \prod_{i=1}^N \|u_{x_i}\|_{L^{p_i}(E)}.
\]

For \(\rho > 0\) consider the cube \(K_\rho = (-\rho, \rho)^N\), with center at the origin of \(\mathbb{R}^N\) and edge \(2\rho\), and set

\[
(3.2) \quad \mu^+ = \text{ess sup}_{K_\rho} u; \quad \mu^- = \text{ess inf}_{K_\rho} u; \quad \omega = \mu^+ - \mu^- = \text{ess osc}_{K_\rho} u.
\]

These numbers being determined, construct the cylinder

\[
(3.3) \quad Q_\rho = \prod_{j=1}^N (-\rho_j, \rho_j),
\]

with \(0 < \rho_j \leq \rho\) to be determined. This implies that \(Q_{2\rho} \subset K_\rho\), and hence \(\text{ess osc}_{Q_\rho} u \leq \omega\).

3.1. Basic Equation and Energy Inequalities. For \(\sigma \in (0,1)\) let \(\zeta_j\) be a non-negative, piecewise smooth cutoff function in the interval \((-\rho_j, \rho_j)\) which equals 1 on \((-\sigma \rho_j, \sigma \rho_j)\), vanishes at \(\pm \rho_j\), and such that \(|\zeta_j| \leq \left|(1 - \sigma)\rho_j\right|^{-1}\).

Set \(\zeta = \prod_{j=1}^N \zeta_j^p\), and in the weak formulation of \((1.1)-(1.2)\) take the testing function \(\pm (u - k)\zeta\). This gives, after standard calculations,

\[
(3.4) \quad \sum_{j=1}^N \int_{Q_\rho} \left| \frac{\partial}{\partial x_j} [(u - k)\zeta^p] \right|^{p_j} dx \leq \gamma \sum_{j=1}^N \frac{1}{(1 - \sigma)^{p_j} \rho_j^{p_j}} \int_{Q_\rho} (u - k)^{p_j} dx.
\]

The constant \(\gamma\) depends only upon the data, and is independent of \(\rho\).

4. DeGiorgi Type Lemmas

Taking \(k = \mu^+ - \frac{\omega}{2^s}\), for \(s \geq 1\), and \((u - k)\) in \((3.4)\) yields

\[
(4.1) \quad \sum_{j=1}^N \int_{Q_\rho} \left| \left[(u - \left(\mu^+ - \frac{\omega}{2^s} \right) \right] \zeta^p \right|^{p_j} dx
\]

\[
\leq \frac{\gamma}{(1 - \sigma)^{p_{\text{max}}}} \sum_{j=1}^N \frac{1}{\rho_j^{p_j}} \left(\frac{\omega}{2^s} \right)^{p_j} |Q_\rho \cap \{ u > \mu^+ - \frac{\omega}{2^s} \}|.
\]
Likewise, taking $k = \mu^- + \frac{\omega}{2^q}$, for $s \geq 1$, and $-(u - k)_-$ in (3.4) yields
\[
\sum_{j=1}^{N} \int_{Q_{\rho_j}} \left| \left(u - \left(\mu^- + \frac{\omega}{2^q} \right) \right)_- \right|^p \, dx
\leq \frac{\gamma}{(1 - \sigma)^{p_{\max}}} \sum_{j=1}^{N} \frac{1}{\rho_j^p} \left(\frac{\omega}{2^q} \right)^p \left| Q_{\rho_j} \cap \left| u < \mu^- + \frac{\omega}{2^q} \right| \right|.
\]
Choose
\[
\rho_j = \left(\frac{\omega}{2^q} \right)^p \rho_j^\alpha \quad \text{for some } q > 0 \text{ and } \alpha \geq p_{\max} \text{ to be chosen}
\]
and let Q_{ρ_j} the cylinder in (3.3) for such a choice of ρ_j. Without loss of generality, may assume $\omega \leq 1$, so that $0 < \rho_j \leq \rho$ as required.

Lemma 2. There exists a number $\nu \in (0, 1)$ depending only upon the data, such that if
\[
\left| \left[u > \mu^+ - \frac{\omega}{2^q} \right] \cap Q_{\rho_j} \right| < \nu |Q_{\rho_j}|,
\]
for some $q \in \mathbb{N}$, then
\[
u \leq \mu^+ - \frac{\omega}{2^q+1} \quad \text{a.e. in } Q_{\frac{1}{2}\rho}.
\]

Likewise

Lemma 3. There exists a number $\nu \in (0, 1)$ depending only upon the data, such that if
\[
\left| \left[u < \mu^- + \frac{\omega}{2^q} \right] \cap Q_{\rho_j} \right| < \nu |Q_{\rho_j}|,
\]
for some $q \in \mathbb{N}$, then
\[
u \geq \mu^- + \frac{\omega}{2^q+1} \quad \text{a.e. in } Q_{\frac{1}{2}\rho}.
\]

We prove only Lemma 2, the proof of Lemma 3 being analogous.

Proof. For each $j \in \{1, \ldots, N\}$ consider the sequence of radii
\[
\rho_{j,n} = \frac{1}{2} \rho_j \left(1 + \frac{1}{2^n} \right), \quad \text{for } n = 0, 1, \ldots.
\]
This is a decreasing sequence with $\rho_{j,0} = \rho_j$ and $\rho_{j,\infty} = \frac{1}{2} \rho_j$. The corresponding cylinders
\[
Q_n \stackrel{\text{def}}{=} Q_{\rho_{n+1}} = \prod_{j=1}^{N} \left(-\rho_{j,n}, \rho_{j,n} \right) \quad \text{for } n = 0, 1, \ldots
\]
are nested, i.e., $Q_{n+1} \subset Q_n$, with $Q_0 = Q_{\rho_j}$ and $Q_\infty = Q_{\frac{1}{2}\rho_j}$, since $\alpha \geq 1$. For each $j \in \{1, \ldots, N\}$ let $\zeta_{j,n}$ be a standard non-negative cutoff function in $(-\rho_{j,n}, \rho_{j,n})$ which equals 1 on $(-\rho_{j,n+1}, \rho_{j,n+1})$, vanishes at $\pm \rho_{j,n}$ and such that $|\zeta_{j,n}'| \leq 2^{n+2} \rho_{j,n}^{-1}$. Then set $\zeta_n = \prod_{j=1}^{N} \zeta_{j,n}^{\rho_{j,n}}$ to be a cutoff function in Q_n that equals 1 on Q_{n+1}. Consider also the increasing sequence of levels
\[
k_n = \mu^+ - \frac{\omega}{2^q+1} \left(1 + \frac{1}{2^n} \right), \quad \text{for } n = 0, 1, \ldots
\]
and in the weak formulation of (4.1) – (4.2), take the test function $(u - k_n)_+ \zeta_n$. This leads to analogues of (4.1) over the cylinders Q_n, with $1 - \sigma > 2^{-n+2}$, and $q \leq s < q+1$. Rewriting (4.1) with these specifications gives
\[
\sum_{j=1}^{N} \int_{Q_n} \left| \left(u - k_n \right)_+ \zeta_n \right|^p \, dx \leq \frac{\gamma}{\rho_j^{p_{\max}}} \left| Q_n \cap \left| u > k_n \right| \right|.
\]
Since \((u - k_n)_+ \zeta_n\) vanishes on \(\partial Q_n\), by the anisotropic embedding of Lemma 11, we have

\[
(4.12) \quad \left(\int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^p \, dx \right)^{\frac{1}{p}} \leq c \prod_{j=1}^N \left(\int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^{p_j} \, dx \right)^{\frac{1}{p_j}}.
\]

where \(p_j\) is as in (3.1), \(p_j > 1\) for \(j = 1, \ldots, N\), \(\bar{p} < N\). Since \(0 \leq \zeta_n \leq 1\) and \(p_j > 1\) estimate

\[
\int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^{p_j} \, dx \leq \gamma \int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^{p_j} \, dx.
\]

Therefore, combining this with (4.12) and (4.11) gives

\[
(k_{n+1} - k_n) |Q_{n+1} \cap [u > k_{n+1}]| \leq \int_{Q_{n+1} \cap [u > k_{n+1}]} (u - k_n) \, dx
\]

\[
\leq \int_{Q_n} (u - k_n) \zeta_n \, dx \leq \left(\int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^p \, dx \right)^{\frac{1}{p}} |Q_n \cap [u > k_n]|^{1 - \frac{1}{p}}
\]

\[
\leq \gamma \prod_{j=1}^N \left(\int_{Q_n} \left[\left(u - k_n \right) \zeta_n \right]^{p_j} \, dx \right)^{\frac{1}{p_j}} \left(|Q_n \cap [u > k_n]| \right)^{1 - \frac{1}{p}}
\]

\[
\leq \gamma \left(\frac{2^{p_{\text{max}}}}{\omega_2 \rho_\omega} \right)^n \frac{1}{\rho_\omega^n} |Q_n \cap [u > k_n]|^{1 + \frac{1}{p} - \frac{1}{p}}
\]

\[
= \gamma b^n \left(\frac{\omega_2}{\rho_\omega} \right)^n \frac{1}{\rho_\omega^n} |Q_n \cap [u > k_n]|^{1 + \frac{1}{p}}
\]

where we have set \(b = 2^{p_{\text{max}}} / \bar{p}\). By the definition of \(k_n\) in (4.10), the first term in round brackets on the left hand side is

\[
k_n - k_{n+1} = \left(\frac{\omega_2}{\rho_\omega} \right) \frac{1}{2^{n+1}}.
\]

Combining these remarks and inequalities, and setting

\[
Y_n = \frac{|Q_n \cap [u > k_n]|}{|Q_\rho|}
\]

yields the recursive inequalities

\[
Y_{n+1} \leq C(2b)^n Y_n^{1 + \frac{1}{p}}
\]

for constants \(C\) and \(b\) depending only upon the data. It follows from these and Lemma 5.1 of [4, Chapter 2], that there exists a number \(\nu \in (0, 1)\) depending only on \(\{C, b, N\}\), and hence only upon the data, such that \(\{Y_n\} \to 0\) as \(n \to \infty\) provided

\[
Y_0 = \frac{|Q_\rho \cap [u > k_n - \frac{\mu^+}{2\rho_\omega}]|}{|Q_\rho|} \leq \nu.
\]

By these lemmata the Hölder continuity of \(u\) will follow by standard arguments, if one can determine \(q\), and hence the intrinsic cylinders \(Q_\rho\), for which either (3.3) or (3.6) holds.\]
5. Proof of Theorem \(\square \)

Assume that

\[
\left| \left[u < \mu - \frac{1}{2} \omega \right] \cap Q_\rho \right| \geq \frac{1}{2} |Q_\rho|.
\]

For each \(s \in \mathbb{N} \) with \(s \leq q \), introduce the two complementary sets

\[
A_s = \left[u > \mu + \frac{\omega}{2s} \right] \cap Q_\rho; \quad Q_\rho - A_s = \left[u \leq \mu + \frac{\omega}{2s} \right] \cap Q_\rho
\]

and consider the doubly truncated function

\[
v_s = \begin{cases}
0 & \text{for } u < \mu + \frac{\omega}{2s}; \\
- \left(\mu + \frac{\omega}{2s} - u \right) & \text{for } \mu + \frac{\omega}{2s} \leq u < \mu + \frac{\omega}{2s+1}; \\
\frac{\omega}{2s+1} & \text{for } \mu + \frac{\omega}{2s+1} \leq u.
\end{cases}
\]

By construction \(v_s \) vanishes on \(Q_\rho - A_s \). Pick any two points $x = (x_1, \ldots, x_N) \in A_s$ and $y = (y_1, \ldots, y_N) \in Q_\rho - A_s$ and construct a polygonal joining \(x \) and \(y \) and sides parallel to the coordinate axes, say for example $P_N = x$ and

\[
\begin{align*}
P_{N-1} &= (x_1, \ldots, x_{N-1}, y_N); \\
P_{N-2} &= (x_1, x_2, \ldots, y_{N-1}, y_N); \\
P_1 &= (x_1, y_2, \ldots, y_{N}); \\
P_o &= (y_1, \ldots, y_N).
\end{align*}
\]

By elementary calculus

\[
v_s(x) = [v_s(P_N) - v_s(P_{N-1})] + \cdots + [v_s(P_1) - v_s(P_o)]
\]

\[
= \int_{y_N}^{x_N} \frac{\partial}{\partial x_N} v_s(x_1, \ldots, x_{N-1}, t) dt + \int_{y_{N-1}}^{x_{N-1}} \frac{\partial}{\partial x_{N-1}} v_s(x_1, \ldots, x_{N-2}, t, y_N) dt \\
+ \cdots + \int_{y_1}^{x_1} \frac{\partial}{\partial x_1} v_s(t, y_2, \ldots, y_N) dt
\]

\[
\leq \sum_{j=1}^{N} \int_{-\rho_j}^{\rho_j} |v_{s,x_j}| (x_1, \ldots, t, \ldots, y_N) dt
\]

where the quantities \(\rho_j \) are defined in (4.3). Integrate in \(dx \) over \(A_s \) and in \(dy \) over \(Q_\rho - A_s \), and take into account (5.1) to get

\[
\frac{1}{2} |Q_\rho| \int_{Q_\rho} v_s dx \leq 2 |Q_\rho| \sum_{j=1}^{N} \rho_j \int_{Q_\rho} |v_{s,x_j}| dx.
\]
From this, by the definitions \([\omega_{2s+1}]\) and \([\nu_{2s}]\) of \(A_s\) and \(v_s\),

\[
\frac{\omega}{2s+1} |A_{s+1}| \leq 4 \sum_{j=1}^{N} \rho_j \int_{A_s - A_{s+1}} |u_{x_j}| \, dx
\]

(5.4)

\[
\leq 4 \sum_{j=1}^{N} \rho_j \left(\int_{A_s - A_{s+1}} |u_{x_j}|^{p_{min}} \, dx \right)^{\frac{1}{p_{min}}} |A_s - A_{s+1}|^{1 - \frac{1}{p_{min}}}
\]

\[
\leq 4 \sum_{j=1}^{N} \rho_j \left(\int_{A_s - A_{s+1}} |u_{x_j}|^{p_j} \, dx \right)^{\frac{1}{p_j}} |Q_{\rho}|^{\frac{1}{p_{min} - \frac{1}{p_j}}} |A_s - A_{s+1}|^{1 - \frac{1}{p_{min}}}.
\]

For each \(j\) fixed, the integrals involving \(u_{x_j}\) are estimated by means of (4.1) applied over the pair of cubes \(Q_{\rho}\) and \(Q_{2\rho}\), as follows:

\[
\left(\int_{A_s - A_{s+1}} |u_{x_j}|^{p_j} \, dx \right)^{\frac{1}{p_j}} \leq \left(\int_{Q_{\rho}} \left| \frac{\partial}{\partial x_j} (u - (\mu^+ - \frac{\omega}{2^s})) \right|^{p_j} \, dx \right)^{\frac{1}{p_j}}
\]

\[
\leq \gamma \left(\frac{1}{\rho^a} \sum_{\ell=1}^{N} \left(\frac{\omega}{2^s} \right)^{p_{\ell}} \left(\frac{\omega}{2^s} \right)^{-p_{\ell}} |Q_{\rho}| \right)^{\frac{1}{p_j}}
\]

\[
\leq \gamma \left(\frac{1}{\rho^a} \sum_{\ell=1}^{N} \left(\frac{q}{2^s} \right)^{p_{\ell}} |Q_{\rho}| \right)^{\frac{1}{p_j}}
\]

\[
= \gamma \left(\frac{1}{\rho^a} \left(\frac{\omega}{2^s} \right)^{p_j} \sum_{\ell=1}^{N} \left(\frac{q}{2^s} \right)^{p_{\ell}} |Q_{\rho}| \right)^{\frac{1}{p_j}}.
\]

If \(p_{\ell} \leq p_j\), since \(s \leq q\) estimate

(5.5) \[
\left(\frac{2^q}{2^s} \right)^{p_{\ell}} \leq \left(\frac{2^q}{2^s} \right)^{p_j} = \left(\frac{\omega}{2^s} \right)^{p_j} \left(\frac{\omega}{2^s} \right)^{-p_j}, \quad \text{(case of} \ p_{\ell} \leq p_j)\)
\]

If \(p_{\ell} > p_j\) since \(s \leq q\) compute and estimate

(5.6) \[
\left(\frac{2^q}{2^s} \right)^{p_{\ell}} \leq \left(\frac{2^q}{2^s} \right)^{p_j} \left(\frac{2^q}{2^s} \right)^{p_{\ell} - p_j} = \left(\frac{\omega}{2^s} \right)^{p_j} \left(\frac{\omega}{2^s} \right)^{-p_j} 2^{q(p_{\max} - p_{\min})}, \quad \text{(case of} \ p_{\ell} > p_j)\)
\]

Assume momentarily that the number \(q\) has been chosen. Then stipulate that \(q(p_{\max} - p_{\min}) \leq 1\). For such a choice we have in all cases

\[
\left(\int_{A_s - A_{s+1}} |u_{x_j}|^{p_j} \, dx \right)^{\frac{1}{p_j}} \leq \gamma \frac{1}{\rho_j} \left(\frac{\omega}{2^s} \right)^{\frac{1}{p_j}} |Q_{\rho}|^{\frac{1}{p_{min} - \frac{1}{p_j}}}.
\]

Combining these estimates in (5.4) yields

\[
|A_{s+1}| \leq \gamma |Q_{\rho}|^{\frac{1}{p_{min} - \frac{1}{p_j}}} \left(|A_s| - |A_{s+1}| \right)^{1 - \frac{1}{p_{min}}}.
\]

Take the \(\left(\frac{p_{\min}}{p_{\min} - \frac{1}{p_j}}\right)\) power and add for \(s = 1, \ldots, (q - 1)\) to get

\[
(q - 1) |A_q|^{\frac{p_{\min}}{p_{\min} - \frac{1}{p_j}}} \leq \gamma^{\frac{p_{\min}}{p_{\min} - \frac{1}{p_j}}} |Q_{\rho}|^{\frac{1}{p_{min} - \frac{1}{p_j}}} |A_0|.
\]
From this
\[|A_q| \leq \frac{\gamma}{(q - 1) \rho_{\min}} |Q_p|, \]

In the DeGiorgi-type Lemma, the number \(\nu \) is independent of \(q \). Now choose \(q \) so that
\[(5.7) \quad |A_q| \leq \nu |Q_p|, \quad \text{for} \quad \nu = \frac{\gamma}{(q - 1) \rho_{\min}}. \]

Notice that \(q \) is determined in terms of \(p_{\min} \) and not in terms of the difference \(p_{\max} - p_{\min} \).

Thus, one determines first \(q \) from (5.7) in terms only of the data. Then (1.6), for such a choice of \(q \), serves as a condition of Hölder continuity for \(u \).

6. Boundedness

Continue to denote by \(u \in W^{1,p}(E) \) a local weak solution to (1.1)–(1.2), in the sense of (1.3), with \(\bar{p} < N \). The estimations below use that \(u \in L^{p_\ast}_{\text{loc}}(E) \). When \(p_{\max} < p_\ast \) this is insured by the embeddings in [10, Theorem 1] or [15]. If \(p_{\max} = p_\ast \) in what follows the membership \(u \in L^{p_\ast}_{\text{loc}}(E) \), is assumed.

When \(\bar{p} = N \), then [8, Theorem 1] ensures that \(u \in L^q_{\text{loc}}(E) \) for any arbitrary \(1 \leq q < \infty \), and the arguments below can be repeated verbatim, to obtain a quantitative estimate of the local boundedness of \(u \). Finally, when \(\bar{p} > N \), as we mentioned in Remark [2] proper Morrey-type embeddings directly ensure the boundedness of \(u \).

6.1. Some General Recursive Inequalities

Let \(\rho_j \) as in (3.3) to be defined, and for each \(j \in \{1, \ldots, N\} \) consider the sequence of radii,
\[(6.1) \quad \rho_{j,n} = \frac{1}{2} \rho_j \left(1 + \frac{1}{2^n} \right), \quad \text{for} \quad n = 0, 1, \ldots. \]

This is a decreasing sequence, with \(\rho_{j,n} = \rho_j \) and \(\rho_{j,\infty} = \frac{1}{2} \rho_j \). The corresponding cylinders
\[(6.2) \quad Q_n \overset{\text{def}}{=} Q_{\rho_n} = \prod_{j=1}^N (\rho_{j,n} - \rho_{j,n+1}) \quad \text{for} \quad n = 0, 1, \ldots \]

are nested, i.e., \(Q_{n+1} \subset Q_n \), with \(Q_0 = Q_{\rho} \) and \(Q_\infty = Q_{\rho_\ast} \), since \(\alpha \geq p_j \). For each \(j \in \{1, \ldots, N\} \) let \(\zeta_{j,n} \) be a standard non-negative cutoff function in \((\rho_{j,n+1} - \rho_{j,n}) \) which equals 1 on \((\rho_{j,n+1} - \rho_{j,n}) \) vanishes at \(\pm \rho_{j,n} \) and such that \(|\zeta_{j,n}'| \leq 2^{n+2} \rho_{j,n}^{-1} \). Then set \(\zeta_n = \prod_{j=1}^N \zeta_{j,n}^{\rho_j} \) to be a cutoff function in \(Q_n \) that equals 1 on \(Q_{n+1} \).

Consider also the increasing sequence of levels
\[(6.3) \quad k_n = \left(1 - \frac{1}{2^n} \right) k, \quad \text{and} \quad \bar{k}_n = \frac{k_{n+1} + k_n}{2} \]

for \(n = 0, 1, \ldots, k > 0 \) to be chosen. By the definition \(k_0 = 0 \) and \(k_\infty = k \). Write (3.4) for \((u - \bar{k}_n) + \zeta_n \), over the cylinders \(Q_n \), with \(1 - \sigma > 2^{-\nu(n+2)} \). Since \((u - \bar{k}_n) + \zeta_n \) vanishes on \(\partial Q_n \), by the anisotropic embedding of Lemma [11]
\[(6.4) \quad \left(\int_{Q_n} \left| (u - \bar{k}_n) + \zeta_n \right|^{p_j} dx \right)^{\frac{1}{p_j}} \leq \gamma \left(\prod_{j=1}^N \int_{Q_n} \left| (u - \bar{k}_n) + \zeta_n \right|_{x_j}^{p_j} dx \right)^{\frac{1}{p_j}}. \]

where \(p_\ast \) has been defined in (5.1).

Since \(0 \leq \zeta_n \leq 1 \) and \(p_j \geq 1 \) estimate
\[\int_{Q_n} \left| (u - \bar{k}_n) + \zeta_n \right|^{p_j} dx \leq \gamma \int_{Q_n} \left| (u - \bar{k}_n) + \zeta_n \right|_{x_j}^{p_j} dx. \]
Therefore, combining this with (3.4) and (6.4) gives

\[
\left(\int_{Q_{n+1}} (u - \bar{k}_n)^{p_\ell^*} \right)^{\frac{1}{p_\ell^*}} \leq \gamma \prod_{j=1}^{N} \left(\int_{Q_n} \left[(u - \bar{k}_n) + \zeta_{n,j} \right]^{p_j^*} dx \right)^{\frac{1}{N p_j^*}} \]

\[
\leq \gamma \prod_{j=1}^{N} \left(\sum_{k=1}^{N} \frac{2^{p_j^*}}{\rho_j^*} \int_{Q_n} (u - \bar{k}_n)^{p_j^*} dx \right)^{\frac{1}{N p_j^*}} \]

\[
= \gamma \left(\sum_{k=1}^{N} \frac{2^{p_j^*}}{\rho_j^*} \int_{Q_n} (u - \bar{k}_n)^{p_j^*} dx \right)^{\frac{1}{p_j^*}} \]

From this homogenizing with respect to the measure of \(Q_n \) and with respect to the integrand,

\[
\left(\frac{1}{k_{p_\ell^*}} \int_{Q_{n+1}} (u - \bar{k}_n)^{p_\ell^*} \right)^{\frac{1}{p_\ell^*}} \]

\[
\leq \gamma \left(|Q_{\rho_{p_\ell^*}}| \sum_{k=1}^{N} 2^{p_j^*} \frac{k_{p_j^*-p_\ell^*}}{\rho_j^*} \frac{1}{k_{p_\ell^*}} \int_{Q_n} (u - \bar{k}_n)^{p_j^*} dx \right)^{\frac{1}{p_j^*}} \]

For each \(\ell \in \{1, \ldots, N\} \), estimate

\[
\frac{1}{k_{p_\ell^*}} \int_{Q_n} (u - \bar{k}_n)^{p_\ell^*} dx \leq \left(\frac{1}{k_{p_\ell^*}} \int_{Q_n} (u - \bar{k}_n)^{p_\ell^*} \right)^{\frac{1}{p_\ell^*}} \left(\frac{|[u > \bar{k}_n] \cap Q_n|}{|Q_n|} \right)^{1 - \frac{p_\ell^*}{p_\ell^*}} \]

Also

\[
\frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - k_n)^{p_{j^*}} dx \geq \frac{1}{k_{p_{j^*}}} \int_{Q_n \cap |u > \bar{k}_n|} (k_n - k_n)^{p_{j^*}} dx \]

\[
\geq \frac{1}{2^{p_{j^*}(n+2)}} \frac{|[u > \bar{k}_n] \cap Q_n|}{|Q_n|} \]

Therefore,

\[
\frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - \bar{k}_n)^{p_{j^*}} dx \leq 2^{(p_{j^*}-p_{\ell^*})(n+2)} \frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - k_n)^{p_{j^*}} dx \]

Combine these calculations in (6.5), to get

\[
\left(\frac{1}{k_{p_{j^*}}} \int_{Q_{n+1}} (u - k_{n+1})^{p_{j^*}} \right)^{\frac{1}{p_{j^*}}} \]

\[
\leq \gamma 2^{p_{j^*}} \left[|Q_{\rho_{p_{j^*}}}| \sum_{k=1}^{N} \frac{k_{p_{j^*} - p_{\ell^*}}}{\rho_j^*} \right]^{\frac{1}{p_{j^*}}} \left[\left(\frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - k_n)^{p_{j^*}} dx \right)^{\frac{1}{p_{j^*}}} \right]^{\frac{1}{p_{j^*}}} \]

Set

\[
Y_n = \left(\frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - k_n)^{p_{j^*}} dx \right)^{\frac{1}{p_{j^*}}} \]

\[
(6.6) \]

\[
Y_n \leq \gamma 2^{p_{j^*}} \left[|Q_{\rho_{p_{j^*}}}| \sum_{k=1}^{N} \frac{k_{p_{j^*} - p_{\ell^*}}}{\rho_j^*} \right]^{\frac{1}{p_{j^*}}} \left[\left(\frac{1}{k_{p_{j^*}}} \int_{Q_n} (u - k_n)^{p_{j^*}} dx \right)^{\frac{1}{p_{j^*}}} \right]^{\frac{1}{p_{j^*}}} \]

\[
(6.6) \]
and rewrite the previous inequalities in the form

\[Y_{n+1} \leq \gamma 2^{\frac{p}{p^*}} \left(Q_p \right)^{\frac{p}{p^*}} + \sum_{\ell=1}^{N} \frac{k^{p_\ell - p}}{p_\ell^{p_\ell}} Y_n^{1 + \frac{p_\ell - p}{p}}. \]

Recall that the radii \(\rho_j \) are still to be chosen.

6.2. A Quantitative, Homogeneous Estimate for \(p_{max} < p_* \). Choose

\[\rho_j = \rho^\alpha_j, \]

where \(\alpha \) is an arbitrary positive parameter. Stipulate to take \(k \geq 1 \) and estimate

\[\left(\left| Q_\rho \right|^{\frac{p}{p^*}} \sum_{\ell=1}^{N} \frac{k^{p_\ell - p}}{p_\ell^{p_\ell}} \right)^{\frac{1}{p}} \leq 2Nk^{\frac{p_{max} - p}{p}}. \]

For such choices \(6.7 \) yield

\[Y_{n+1} \leq \gamma 2^{\frac{p}{p^*}} k^{\frac{p_{max} - p}{p}} Y_n^{1 + \frac{p_\ell - p}{p}} \]

for a new constant \(\gamma \) depending only on \(\{N, p_1, \ldots, p_N\} \). It follows from these that \(\{Y_n\} \to 0 \) as \(n \to \infty \), provided

\[Y_0 = \frac{1}{k} \left(\int_{Q_\rho} u_{+}^{p_*} \, dx \right)^{\frac{1}{p_*}} \leq \gamma^{-\frac{p}{p^*}} 2^{\frac{p}{p^*}} \left(\frac{p}{p^*} \right)^2 k^{-\frac{p_{max} - p}{p}}. \]

Thus, choosing

\[k = \gamma^{\frac{p}{p^*}} 2^{\frac{p}{p^*}} \left(\frac{p}{p^*} \right)^2 k^{-\frac{p_{max} - p}{p}} \]

yields

\[\text{ess sup}_{Q_{\frac{1}{2}\rho}} u_{+} \leq 1 \land C \left(\left(\int_{Q_\rho} u_{+}^{p_*} \, dx \right)^{\frac{1}{p_*}} \right)^{\frac{p_{max} - p}{p}} \]

where

\[C = \gamma^{\frac{p}{p^*}} 2^{\frac{p}{p^*}} \left(\frac{p}{p^*} \right)^2. \]

Write now \(6.10 \) over the pair of cubes \(Q_{\sigma \rho} \subset Q_\rho \), where \(\sigma \in \left(\frac{1}{2}, 1 \right) \) is an interpolation parameter. Then

\[\text{ess sup}_{Q_{\frac{1}{2}\rho}} u_{+} \leq 1 \land C' \left(\int_{Q_\rho} u_{+}^{p_{max}} \, dx \right)^{\frac{1}{p_{max}}}. \]

Remark 4. The estimates in \(6.10 \) and \(6.11 \) are homogeneous with respect to the cube \(Q_\rho \), i.e., they are invariant for dilations of the variables \((x_1, \ldots, x_N) \) that keep invariant the relative intrinsic geometry of \(3.3 \) and \(6.8 \). In this sense they are an improvement with respect to the estimates of Kolodii [9, Theorem 2]. If \(p_j = \bar{p} \) for all \(j = 1, \ldots, N \) this reproduces the classical estimate for isotropic elliptic equations.

Remark 5. The constants \(C \) and \(C' \) in \(6.10 \) and \(6.11 \), can be quantitatively determined only in terms of \(N \) and the \(p_j \) for \(j = 1, \ldots, N \). However, they tend to infinity as \(p_{max} \wedge p_* \).
6.3. A Quantitative, Homogeneous Estimate for $p_{\text{max}} = p_\ast$. Redefine the levels in \ref{eq:pmax} as
\begin{equation}
k_n = \left(1 - \frac{1}{2^{n+1}}\right)k, \quad \text{and} \quad \bar{k}_n = \frac{k_{n+1} + k_n}{2}, \quad \text{for } n = 0, 1, \ldots.
\end{equation}
This implies that $k_0 = \frac{1}{2}k$ and $k_\infty = k$. All estimations remain unchanged and yield \ref{eq:est}, with a slight modification of the constant γ and with the same definition \ref{eq:yn} of the Y_n. Continue to choose $\rho_j = \rho_\alpha^{\frac{p_j}{p_\ast}}$, and stipulate to take $k \geq 1$. This yields the analogues of \ref{eq:ineq} with $p_{\text{max}} = p_\ast$, i.e.,
\begin{equation}
Y_{n+1} \leq \gamma 2^{\frac{p_\ast}{p}} k^{\frac{p_\ast - k}{p}} Y_n^{1 + \frac{p_\ast - k}{p}}.
\end{equation}
Taking into account the definition \ref{eq:yn} of the Y_n, in this last inequality, the parameter k scales out. Thus, setting
\begin{equation}
X_n = \left(\int_{Q_n} \left(u - k_n\right)^{p_\ast} dx\right)^{\frac{1}{p_\ast}},
\end{equation}
the recursive inequalities \ref{eq:ineq} are
\begin{equation}
X_{n+1} \leq \gamma 2^{\frac{p_\ast}{p}} X_n^{1 + \frac{p_\ast - k}{p}}.
\end{equation}
It follows from these that $\{X_n\} \to 0$ as $n \to \infty$, provided
\begin{equation}
\forall \frac{p_\ast}{p} \text{ ess sup}_{Q_{\frac{1}{2}k}} u_+ \leq 1 \wedge k.
\end{equation}

Remark 6. The estimate in \ref{eq:ineq} is homogeneous with respect to the cube Q_k, i.e., it is invariant for dilations of the variables (x_1, \ldots, x_N) that keep invariant the relative intrinsic geometry of \ref{eq:geo} and \ref{eq:6.8}. In this sense, it is an improvement with respect to the estimates of Fusco-Sbordone \cite[Theorem 1]{6}.

Remark 7. In \ref{eq:ineq} the number $\kappa = \frac{p_\ast - k}{p}$ by which the power of X_n exceeds one, is precisely determined by the estimations, and not arbitrary as it seems to be permitted in \cite{6}. In view of this, the alternative, in the argument of \cite{6}, by which
\begin{equation}
2^{\frac{p_\ast}{p}} X_n^{1 + \frac{p_\ast - k}{p}} > 1 \quad \text{for all } n \geq n_0 \text{ for some } n_0 \in \mathbb{N} \text{ sufficiently large}
\end{equation}
is not needed. Since n_0 in \cite{6} is determined only qualitatively, the resulting boundedness estimates seem to be qualitative.

Remark 8. If one had the additional information that $u \in L^q_{\text{loc}}(E)$, for some $q > p_\ast$, then k in \ref{eq:ineq} could be precisely quantified. Indeed, given a non negative function $f \in L^q(E)$ and $\varepsilon > 0$, consider finding $k > 0$ such that
\begin{equation}
\int_E (f - k)^{p_\ast} dx < \varepsilon \quad \text{where } 0 < p < q.
\end{equation}
By Chebyshev’s inequality $||f > t|| \leq t^{-q}||f||^{q}_{q,E}$, for all $t > 0$. Then for $p < q$,

$$\int_{E} (f - k)^{p}_{+} dx = p \int_{0}^{\infty} s^{p-1} ||(f - k)_{+} > s|| ds$$

$$= p \int_{k}^{\infty} (t - k)^{p-1} ||f > t|| dt \leq p \int_{k}^{\infty} t^{p-1} ||f > t|| dt$$

$$\leq p \|f\|^{q}_{q,E} \int_{k}^{\infty} t^{-(q-p)-1} dt = \frac{p}{q-p} \frac{1}{k^{q-p}} \|f\|^{q}_{q,E}.$$

Then choose

$$k^{q-p} = \frac{p}{\varepsilon q-p} \|f\|^{q}_{q,E}.$$

References

[1] G. Cupini, P. Marcellini, E. Mascolo, *Regularity of minimizers under limit growth conditions*, Nonlinear Anal., in press.

[2] E. De Giorgi, *Sulla differenzabilità e l’analiticità delle estremali degli integrali multipli regolari*, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. **3** (3), (1957), 25–43.

[3] E. DiBenedetto, *Degenerate Parabolic Equations*, Springer Verlag, Series Universitext, New York, 1993.

[4] E. DiBenedetto, U. Gianazza and V. Vespri, *Harnack’s inequality for degenerate and singular parabolic equations*, Springer Monographs in Mathematics, Springer, 2012.

[5] F.G. Düzgün, P. Marcellini and V. Vespri, *Space expansion for a solution of an anisotropic p-Laplacian equation by using a parabolic approach*, Riv. Math. Univ. Parma, **5**, (2014), 93–111.

[6] N. Fusco and C. Sbordone, *Local boundedness of minimizers in a limit case*, Manuscripta Math., **69**, (1990) 19–25.

[7] M. Giaquinta, *Growth conditions and regularity, a counter example*, Manuscripta Math., **59**, (1987), 245–248.

[8] J. Haskovec and C. Schmeiser, *A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems*, Monatsh. Math., **158**, (2009), 71–79.

[9] I.M. Kolodii, *The boundedness of generalized solutions of elliptic differential equations*, Vestnik Moskov. Univ. Ser. I Mat. Meh., **25**, (1970), 44–52 (Russian). English transl.: Moscow Univ. Math. Bull. **25** (1970), 31–37.

[10] S.N. Kruzhkov and I.M. Kolodii, *On the theory of embedding of anisotropic Sobolev spaces*, Uspekhi Mat. Nauk, **38**, (1983), 207–208 (Russian). English transl.: Russian Math. Surveys **38** (1983), 188–189.

[11] V. Liskevich and I.I. Skrypnik, *Hölder continuity of solutions to an anisotropic elliptic equation*, Nonlinear Anal., **71**, (2009), 1699–1708.

[12] P. Marcellini, *Un exemple de solution discontinue d’un problème variationnel dans le cas scalaire*, Preprint 11, Ist. Mat. “U. Dini”, Firenze, 1987–88.

[13] P. Marcellini, *Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions*, Arch. Ration. Mech. Anal., **105**, (1989), 267–284.

[14] P. Marcellini, *Regularity and existence of solutions of elliptic equations with p, q-growth conditions*, J. Differential Equations, **90**, (1991), 1–30.

[15] S.M. Nikol’siki, *Imbedding theorems for functions with partial derivatives considered in different metrics*, Izd. Akad. Nauk SSSR, **22**, (1958), 321–336 (Russian). English transl.: Amer. Math. Soc. Transl., **90**, (1970), 27–44.

[16] J. Rákosník, *Some remarks to anisotropic Sobolev spaces II*, Beiträge Anal. **15**, (1980), 127–140.

[17] M. Troisi, *Teoremi di inclusione per spazi di Sobolev non isotropi*, Ricerche Mat., **18**, (1969), 3–24.
