Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality

Astra Vitkauskienė¹, Erika Skrodenienė¹, Asta Dambrauskiene¹, Andrius Macas², Raimundas Sakalauskas³

¹Department of Laboratory Medicine, Kaunas University of Medicine, ²Department of Anesthesiology, Kaunas University of Medicine, ³Department of Pulmonology and Immunology, Kaunas University of Medicine, Lithuania

Key words: Pseudomonas aeruginosa; bacteremia; risk factors.

Summary. The aim of our study was to determine the prevalence of Pseudomonas aeruginosa bacteremia, risk factors, and outcome of patients treated at the Hospital of Kaunas University of Medicine.

Material and methods. All hospitalized patients with blood culture positive for Pseudomonas aeruginosa during the 5-year period were included. A retrospective data analysis was performed to evaluate patients’ risk factors and mortality caused by P. aeruginosa bacteremia.

Results. A total of 47 (58.8%) bacteremia episodes occurred in an intensive care unit (ICU). A primary source of bacteremia was identified in 50 (62.5%) episodes. Overall mortality rate was 58.8%. Univariate risk factors analysis showed the factors, which significantly increased the risk of death: mechanical ventilation (13.67 times, P<0.001), patient hospitalization in the ICU (8.51 times, P<0.001), acute respiratory failure (8.44 times, P<0.001), infection site in the respiratory tract (4.93 times, P=0.003), and central vein catheter (4.44 times, P=0.002). Timely and appropriate treatment and surgery were significant protective factors for 30-day mortality (11.1 and 5.26 times, respectively; P=0.001). Meropenem-resistant Pseudomonas aeruginosa strains caused bacteremia more frequently in patients older than 65 years than meropenem-sensitive strains (57.9%, n=11). All 19 patients with meropenem-resistant Pseudomonas aeruginosa bacteremia received inappropriate empirical antibiotic therapy.

Conclusions. Treatment at the intensive care unit, mechanical ventilation, acute respiratory failure, source of infection in respiratory tract, and central vein catheter are the major risk factors associated with an increased mortality rate in patients with Pseudomonas aeruginosa bacteremia.

The patients older than 65 years are at increased risk for bacteremia caused by carbapenem-resistant Pseudomonas aeruginosa strains.

Carbapenems are not antibiotics of the choice of treatment for Pseudomonas aeruginosa bacteremia at the Hospital of Kaunas University of Medicine.

Introduction

Bacterial bloodstream infections are serious infections associated with significant mortality and health care costs (1). Despite the advances in hospital care and the introduction of a wide variety of antimicrobial agents, *Pseudomonas aeruginosa* (*P. aeruginosa*) continues to be a common cause of nosocomial infections (2) and is one of the most important microorganisms, which causes problems clinically as a result of its high resistance to antimicrobial agents (3). Mortality from *P. aeruginosa* bacteremia has remained high over the past few decades (4, 5). Most studies have found that mortality rates range from 33 to 61% among all patients with *P. aeruginosa* bacteremia (4, 5).

Risk factors traditionally associated with mortality include underlying diseases and site of infection as well (6). Inappropriate initial antimicrobial treatment of *P. aeruginosa* bloodstream infection is significantly associated with higher mortality as compared to initial treatment with an antimicrobial regimen when bacteria are sensitive to antibiotics administered (7–9). Inappropriate therapy is usually related to antibiotic-resistant strains, which cause infection. *P. aeruginosa* strains are generally resistant to many antibiotics, and treatment of nosocomial infections caused by *P. aeruginosa* strains is one of the major problems in many hospitals. Resistance rates are increasing and they might be different in different settings, so the surveillance of *P. aeruginosa* susceptibility is essential for the definition of empirical regimens. Multidrug resistance is common, and clinical isolates resistant to virtually all antipseudomonal agents are increasingly being reported (10). The emergence of resistance in *P. aeruginosa* limits future therapeutic choices and is associated

Correspondence to A. Vitkauskienė, Department of Laboratory Medicine, Kaunas University of Medicine, Eivenių 2, 50028 Kaunas, Lithuania. E-mail: astravitka@hotmail.com

Adresas susirašinėti: A. Vitkauskienė, KMU Laboratorinės medicinos klinika, Eivenių 2, 50028 Kaunas

El. paštas: astravitka@hotmail.com

Medicina (Kaunas) 2010; 46(7)
with increased rates of mortality and morbidity and higher costs (11).

The aim of our study was to determine the prevalence of *P. aeruginosa* bacteremia, resistance to antibiotics, risk factors, and outcome of patients treated in a tertiary hospital, the Hospital of Kaunas University of Medicine (KMUH).

Materials and methods

Study population. The present study was carried out at the KMUH in Lithuania (1987 beds). All hospitalized patients with blood culture positive for *P. aeruginosa* between January 1, 2003, and December 31, 2007, were included into the study. Only patients older than 18 years were enrolled into the study.

Study design. A retrospective data analysis was performed to evaluate patients’ risk factors and mortality caused by *P. aeruginosa* bacteremia. For all study patients, the following characteristics were recorded: demographic data, primary source of infection leading to secondary bloodstream infection. The source of bacteremia was confirmed if a localized infection was present before or coincident with the detection of bacteremia; otherwise, the portal of entry was categorized as unknown. The place of patients’ treatment at the time of infection, underlying diseases, antimicrobial agents administered during hospitalization, and causes of death were analyzed. The following predisposing conditions (when present for at least 72 hours before the onset of bloodstream infection) were also investigated: mechanical ventilation, intravascular bladder or urine catheters, and renal dialysis. In addition, previous surgery and previous use of immunosuppressive drugs (e.g. corticosteroids, antineoplastic agents) were taken into account when administered for at least two weeks before the onset of bloodstream infection. Patient mortality within 30 days from the first day of bacteremia was evaluated (30-day mortality).

Antibiotic treatment was defined as empirical when given before species identification and antimicrobial susceptibility test. Treatment was considered adequate when *P. aeruginosa* strain responsible for infection was subsequently found to be susceptible to the administered drug.

Blood culture technique and microbiological investigation. Blood culture testing was performed at the request of the attending physician who made the decision concerning patient’s diagnosis. Blood cultures were obtained from patient’s two peripheral sites. Before collecting the blood cultures, skin was disinfected with 70% isopropyl alcohol followed by 2% iodine tincture. All blood samples (10 mL) were inoculated into aerobic medium and processed using the BACTEC 9240 instrument (Becton Dickinson Diagnostics Systems, Sparks, MD). Blood cultures were routinely incubated for 5 days.

Pseudomonas strains were selected on *Pseudomonas* agar with cetrimide (Liofilchem, Italy), according to the manufacturer’s instructions for *P. aeruginosa* diagnosis. Cetrimide inhibits a wide variety of bacterial species including *Pseudomonas* species other than *P. aeruginosa*. The latter develops a blue-green pigment due to pyocyanin and fluorescein production. Isolates suspected to be *P. aeruginosa* or not clearly showing blue-green pigment and all strains resistant to carbapenems (imipenem or meropenem) by the disk diffusion method were further identified with the Phoenix ID system (Becton Dickinson, USA) to confirm the strains as *P. aeruginosa*.

For all cultures positive for *P. aeruginosa*, susceptibility testing was done by the Kirby-Bauer method and interpreted according to the guidelines of the Clinical and Laboratory Standards Institute (12). Minimal inhibitory concentration (MIC) values of carbapenem-resistant strains were determined by the E test method (AB Biodisk, Solna, Sweden). Strains with intermediate susceptibility were considered as sensitive.

Statistical analysis. Comparison of means between groups of cases and controls were performed by the Student *t* test or Mann-Whitney *U* test (non-parametric values). Proportions were compared using chi-square or Fisher’s exact test. Differences were considered significant at *P*<0.05. Odds ratios (OR) with 95% confidence intervals (CI) were calculated. Statistical package SPSS 13.0 for Windows release was used for the data analysis.

Results

The prevalence of P. aeruginosa bacteremia, patients’ characteristics, and demographic data. *P. aeruginosa* bacteremia accounted for 2.7% of all bacteremias and caused bloodstream infection in 96 patients treated at the KMUH during the 5-year period. Sixteen (16.7%) patients were excluded from analysis due to the presence of polymicrobial bloodstream infection or due to incomplete information. The data of 80 patients (56 males and 24 females) were evaluated. The mean age of patients was 56.7±16.71 years (range, 19–89 years). Patients developed *P. aeruginosa* bacteremia at 17.5±14.0 day on average after admission to the KMUH.

A total of 47 (58.8%) bacteremia episodes occurred in the intensive care unit (ICU) and 33 (41.3%) in other departments. Antibacterial treatment was administered for 49 (61.3%) patients before bloodstream infection occurred. Most of the patients (97.5%) had underlying diseases and conditions at the time of the bacteremia that are summarized in Table 1.

A primary source of bacteremia was identified in 50 (62.5%) episodes. The respiratory tract was the
most common infection site documented in 26 patients (52%); other sources were wounds (26%, n=13), urinary tract (18%, n=9), and bile cysts (4%, n=2).

Risk factors for mortality. Overall mortality from \textit{P. aeruginosa} bacteremia was 58.8%. Table 2 shows the risk factors that were evaluated and their influence on mortality in patients with \textit{P. aeruginosa} bacteremia.

Univariate risk factors analysis showed the factors, which significantly increased the risk of death: mechanical ventilation (13.67 times, \(P<0.001\)), patient hospitalization in the ICU (8.51 times, \(P<0.001\)), acute respiratory failure (8.44 times, \(P<0.001\)), infection site in the respiratory tract (4.93 times, \(P=0.003\)), and central vein catheter (4.44 times, \(P=0.002\)).

Timely and appropriate treatment and surgery were significant protective factors for 30-day mortality (11.1 and 5.26 times, respectively; \(P=0.001\)).

There were no significant differences in mortality regarding patients' age and underlying diseases.

\textit{P. aeruginosa} strains to antibiotics. The resistance of \textit{P. aeruginosa} isolates obtained from bloodstream to antibiotics during the study period is presented in Table 3.

\textit{P. aeruginosa} strains that caused bacteremia in ICU patients were more frequently resistant to

Table 1. Patients' underlying diseases and conditions in \textit{Pseudomonas aeruginosa} bacteremia episodes
Underlying disease and condition*
Surgery
Abdominal
Other
Pneumonia
Polytrauma
Burn
Oncology
Pyelonephritis
Posttransplantation
Chronic airway disease
Cardiovascular disease
Cerebrovascular disease
Diabetes
Other

*Some patients had more than one underlying condition.

Table 2. Univariate analysis of risk factors influencing mortality among patients with \textit{Pseudomonas aeruginosa} bacteremia
Risk factor
Age, mean±SD, years
Sex (male)
Age ≥65 years
Treatment in an intensive care unit
Surgery
Source known
Source respiratory tract
Source in wound
Source in urinary tract
Source other
Mechanical ventilation
Central vein catheter
Urinary catheter
Respiratory failure
Acute renal failure
Acute hepatic failure
Adequate treatment
Timely corrected treatment
Temperature, mean±SD, °C
CRP reactive protein, mean±SD, g/L
Leukocytes, mean±SD, 10³/L

Values are numbers (percentage) unless otherwise indicated.

Table 3. Antibiotic resistance of \textit{Pseudomonas aeruginosa} isolates from bloodstream of ICU and non-ICU patients
Antibiotic
\textit{P. aeruginosa} isolate from ICU patient (n=47)
Ceftazidime
Piperaclin
Gentamicin
Amikacin
Ceftaroline
Imipenem
Meropenem

\textit{Medicina} (Kaunas) 2010; 46(7)
Table 4. Risk factors for Pseudomonas aeruginosa resistance to meropenem

Risk factor	Meropenem-resistant P. aeruginosa strains (n=19)	Meropenem-sensitive P. aeruginosa strains (n=61)	P value
Treatment at ICU, n (%)	12 (63.2)	35 (57.4)	0.43
Age >65 years, n (%)	11 (57.9)	20 (32.8)	0.046
Central vein catheter, n (%)	12 (63.2)	38 (62.3)	0.58
Urinary catheter, n (%)	13 (68.4)	42 (68.8)	0.59
Respiratory failure, n (%)	12 (63.2)	37 (60.7)	0.85
Acute renal failure, n (%)	14 (73.7)	15 (24.6)	0.02
Mechanical ventilation, n (%)	13 (68.4)	38 (62.3)	0.42
Infection source respiratory tract, n (%)	5 (26.3)	22 (36.1)	0.31
Infection source wound, n (%)	5 (26.3)	12 (19.7)	0.37
Infection source urinary tract, n (%)	4 (21.1)	8 (13.1)	0.30
Inadequate treatment, n (%)	19 (100)	0	0.049

ceftazidime as compared with P. aeruginosa strains responsible for bacteremia in the non-ICU patients (21.3%, n=10 and 6.1%, n=2, respectively; P<0.05). There were no differences in resistance of P. aeruginosa strains to other antibiotics comparing the ICU and non-ICU patients.

In patients older than 65 years, meropenem-resistant P. aeruginosa strains were the cause of bacteremia more frequently than meropenem-sensitive P. aeruginosa strains (57.9%, n=11 versus 32.8%, n=20, P=0.046). All 19 patients with meropenem-resistant P. aeruginosa bacteremia received inappropriate empirical antibiotic therapy (Table 4).

Discussion

In our study, a primary source of bacteremia was identified in 50 (62.5%) episodes. The majority of patients had underlying diseases or conditions that predisposed them to the development of infection, being similar to the findings of other publications (13, 14). The respiratory tract was the most common site of infection. Infections of the lower respiratory tract were the predominant sources of P. aeruginosa bacteremia in other studies as well (6, 15, 16). Our study showed a high mortality in patients with P. aeruginosa bacteremia (58.8%). Von Dossow et al. and Kang et al. reported that high mortality rates were observed among patients with respiratory failure and mechanical ventilation, supporting the importance of these factors in overall mortality (17, 18). Mechanical ventilation, acute respiratory failure, and infection source in the respiratory tract were the risk factors associated with increased patients’ mortality in our study as well.

Surgical treatment plays the major role in the treatment of infections, while antimicrobial therapy is only supplementary. We found that surgery and appropriate antimicrobial therapy were significant protective factors for 30-day mortality. There was no significant difference in mortality regarding patients’ age and underlying diseases.

Amikacin showed the best antimicrobial activity (91.5% of susceptible strains were isolated from patients treated in the ICU and 90.9% from non-ICU patients). P. aeruginosa strains that caused bacteremia in the ICU patients were more frequently resistant to ceftazidime as compared with P. aeruginosa strains responsible for bacteremia in the non-ICU patients.

Recently, carbapenems are recommended for treatment of serious infections in the ICU (19). However, increasing antibiotic resistance is making many previously effective antibiotic regimens inappropriate. Our study demonstrated that patients’ age of >65 years was associated with a significantly greater risk of bacteremia caused by meropenem-resistant P. aeruginosa strains. It was showed that 25.5% and 19.1% of P. aeruginosa strains, which caused bacteremia in the ICU, were resistant to meropenem and imipenem, respectively, and our study demonstrated that P. aeruginosa bacteremia caused by meropenem-resistant strains was associated with an inappropriate empiric antibiotic treatment. High mortality in patients with P. aeruginosa bacteremia was most probably mediated by more frequent inappropriateness of antimicrobial therapy for P. aeruginosa bacteremia caused by carbapenem-resistant strains. We failed in proving that inappropriate treatment influenced the outcome of patients, but this may be related to relatively small number of cases investigated by us. Zelenitsky et al. demonstrated the clinical role of antibiotic pharmacodynamics in the treatment and outcome of P. aeruginosa bacteremia, and peak/MIC was the only variable independently associated with treatment outcome. An aggressive dosing with targeted peak/MICs for aminoglycosides and ciprofloxacin were strongly associated with clinical outcome and essential to the appropriate management of P. aeruginosa bacteremia (20). Other study showed that nosocomial infections caused by metallo-beta-lactamases (MBL)-producing P. aeruginosa were associated with increased mortality when compared with those infections caused by non-MBL P. aeruginosa isolates (21). However, the investigators noted high mortality rates for infections caused by P. aeruginosa despite adequate treatment based on
MICs (22). *P. aeruginosa* has different virulence factors, and these factors and inflammatory response can influence the outcome of patients (22–25).

Conclusions

Treatment in the intensive care unit, mechanical ventilation, acute respiratory failure, source of infection in the respiratory tract, and central vein catheter were the major risk factors associated with an increased mortality rate in patients with *Pseudomonas aeruginosa* bacteremia.

In patients older than 65 years, meropenem-resistant *P. aeruginosa* strains were the cause of bacteremia more frequently than meropenem-sensitive *P. aeruginosa* strains.

Carbapenems are not antibiotics of the choice of treatment for *Pseudomonas aeruginosa* bacteremia at the Hospital of Kaunas University of Medicine.

Pseudomonas aeruginosa bakteriemija: atsparumas antibiotikams, rizikos veiksniams ir pacientų mirštamumams

Astra Vitkauskienė¹, Erika Skrodenienė¹, Asta Dambraskevičienė¹, Andrius Macas², Raimundas Sakalauskas³

¹ Kauno medicinos universiteto Laboratorinės medicinos klinika, ² Kauno medicinos universiteto Anesteziologijos klinika, ³ Kauno medicinos universiteto Pulmonologijos ir imunologijos klinika

Raktažodžiai: *Pseudomonas aeruginosa*, bakteriemija, rizikos veiksnių.

Santrauka. Tyrimo tikslas. Nustatyti pacientų, gydytų Kauno medicinos universiteto klinikose, *Pseudomonas aeruginosa* sukeltos bakteriemijos dažnį, šių pacientų rizikos veiksnius ir mirštamumą.

Tyrimo metodai. Į tyrimą įtraukti visi pacientai, kuriems penkerių metų laikotarpiu iš kraujo buvo išautinta *Pseudomonas aeruginosa* padermė. Atlikta retrospektyvioji šių pacientų duomenų analizė, siekiant nustatyti rizikos veiksnius ir su bakteriemija susijusį mirštamumą.

Rezultatai. 47 (58,8 proc.) bakteriemijos epizodai buvo nustatyti intensyviosios terapijos skyriuje gydymais pacientams. Pirminios bakteriemijos židinys buvo nustatytas 50 (62,5 proc.) pacientų. Pacientų mirštamumus – 58,8 proc. Mirštamumo riziką statistiškai patikimai didino: dirbtinė plaučių ventiliacija – 13,67 karto (p<0,001), pacientų būklė, kai būtinas gydymas intensyviosios terapijos skyriuje – 8,51 karto (p<0,001), būtinos gydymas intensyviosios terapijos skyriuje – 8,44 karto (p<0,001), infekcijos židinys kvėpavimo taktuose – 4,93 kartu (p=0,003) ir centrinės venos kateteris – 4,44 kartu (p=0,002). Tinkamas empirinis antibakterinis gydymas ir chirurginė intervencija patikimai mažino mirštamumą, atitinkamai – 11,1 ir 5,26 kartu (p=0,001). Vyresniems nei 65 metų pacientams bakteriemiją dažniau sukėlė atsparios meropenemui *Pseudomonas aeruginosa* padermės, nors tai mirštamumui įtakos neturėjo.

Išvados. Dirbtinė plaučių ventiliacija, pacientų būklė, kai būtinas gydymas intensyviosios terapijos skyriuje, būtinos gydymas intensyviosios terapijos skyriuje – 8,44 karto (p<0,001), infekcijos židinys kvėpavimo taktuose ir centrinės venos kateteris – 4,44 kartu (p=0,002). Tinkamas empirinis antibakterinis gydymas ir chirurginė intervencija patikimai mažino mirštamumą, atitinkamai – 11,1 ir 5,26 kartu (p=0,001). Vyresniems nei 65 metų pacientams bakteriemiją dažniau sukėlė karbapenems atsparaus *Pseudomonas aeruginosa*. Karbapenems nėra pirmojo pasirinkimo vaistas gydant *Pseudomonas aeruginosa* sukeltą bakteriemiją Kauno medicinos universiteto klinikose.

References

1. Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, et al. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology and outcome of bacteremia and fungemia in adults. Clin Infect Dis 1997;24:584-602.
2. Richards M, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. Crit Care Med 1999;27:887-92.
3. Erdem B. *Pseudomonas*. In: Ustacelebi S, editor. Basic clinical microbiology. Ankara: Gunes Publication; 1999. p. 551-8.
4. Siegman-Igra Y, Ravona R, Primerman H, Giladi M. *Pseudomonas aeruginosa* bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis 1998;2:211-5.
5. Lodise TP, Patel N, Furuno JP, Graffunder E, et al. Predictors of 30-day mortality among patients with *Pseudomonas aeruginosa* bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51(10):3510-5.
6. Chadzinikolou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with *Pseudomonas aeruginosa* bacteremia in patients with cancer. Retrospective analysis of 245 episodes. Arch Inter Med 2007;61(10):3510-5.
2000;160:501-9.

7. Micek ST, Lloyd AN, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005;49(4):1306-11.

8. Lodise TP, Patel N, Kwa A, Graves J, Furuno JP, Graffunder E, et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51(10):3510-15.

9. Bhat S, Fujitani S, Potoski BA, Capitano B, Linden PK, Shurt K, et al. Pseudomonas aeruginosa infections in the Intensive Care Unit: can the adequacy of empirical beta-lactam antibiotic therapy be improved? Int J Antimicrob Agents 2007;30(5):458-62.

10. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multidrug-resistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005;4:17-32.

11. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006;50(1):43-8.

12. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility test. Approved standard M2-A9. National Committee for Clinical Laboratory Standards; 9th ed. 2008. Available from: URL: http://www.clsi.org

13. Nadeem SR, Rina K, Hamimah H, Savithri DP. Pseudomonas aeruginosa: epidemiology of bacteremia and antimicrobial susceptibility pattern in a teaching hospital in Kuala Lumpur. JMMMEC 2006;9(1):14-9.

14. Aliaga L, Mediavilla JD, Cobo F. A clinical index predicting mortality with Pseudomonas aeruginosa bacteremia. J Med Microbiol 2002;51:615-9.

15. Kuikka A, Valtomen VV. Factors associated with improved outcome of Pseudomonas aeruginosa bacteremia in a Finnish university hospital. Eur J Clin Microbiol Infect Dis 1998;17:701-8.

16. DambruSkiene A, Adukauskienė D, Jeroch J, Vitkauskienė A. Pseudomonas aeruginosa bacteremia: correlation with source of infection and antibiotic resistance. Medicina (Kaunas) 2009;45(1):1-7.

17. Von Dossow V, Rotard K, Redlich, Hein OV, Spies CD. Circulating immune parameters predicting the progression from hospital-acquired pneumonia to septic shock in surgical patients. Crit Care 2005;9:R662-9.

18. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003;37:745-51.

19. Colandry F. Appropriate and timely empirical antimicrobial treatment of ICU infections – a role for carbapenems. Acta Clin Belg 2005;51:62.

20. Zelenitsky SA, Harding GKM, Sun S, Ubbi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteremia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003;52:668-74.

21. Zavascki AP, Barth AL, Goncalves ALS, Moro ALD, Fernandes JF, Martins AF, et al. The influence of metallo-β-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother 2006;10:239-45.

22. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence on inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000;118:146-55.

23. Tang HB, Di Mango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in neonatal mouse model of infection. Infect Immun 1996;64:37-43.

24. Schroeder TH, Zaidi T, Pier GB. Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM1 on epithelial cells. Infect Immun 2001;69:719-29.

25. Vitkauskienė A, Scheufl S, Sakalauskas R, Dudzevicius V, Sahly H. Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum-resistant than P. aeruginosa strains from non-infectious respiratory colonization processes. Infection 2005;33:356-61.