Never Ask for a Lighter Rain but a Stronger Umbrella

Anurag Pande
California Polytechnic State University, San Luis Obispo

Melissa Haeffner
Portland State University, melissahaeffner@pdx.edu

Günter Blöschl
Technische Universität Wien, Vienna, Austria

Mohammad Faiz Alam
International Water Management Institute

Cyndi Castro
University of Houston

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac

Part of the [Environmental Studies Commons](https://pdxscholar.library.pdx.edu/esm_fac)

Let us know how access to this document benefits you.

Citation Details

Pande, S., Haeffner, M., Blöschl, G., Alam, M. F., Castro, C., Di Baldassarre, G., ... & Sivapalan, M. (2022). Never Ask for a Lighter Rain but a Stronger Umbrella. Frontiers in Water, 204.

This Article is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Authors
Anurag Pande, Melissa Haeffner, Günter Blöschl, Mohammad Faiz Alam, Cyndi Castro, Giuliano Di Baldassarre, Fanny Frick-Trzebitzky, Rick Hogeboom, Heidi Kreibich, and multiple additional authors

This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/esm_fac/346
Never Ask for a Lighter Rain but a Stronger Umbrella

Saket Pande 1*, Melissa Haeffner 2, Günter Blöschl 3, Mohammad Faiz Alam 1, 4, Cyndi Castro 2, Giuliano Di Baldassarre 5, Fanny Frick-Trzebitzky 6, Rick Hogeboom 7, Heidi Kreibich 8, Jenia Mukherjee 9, Aditi Mukherji 10, Fernando Nardi 11, Marcus Nüsser 12, 13, Fuqiang Tian 14, Pieter van Oel 15 and Murugesu Sivapalan 16, 17, 18

1 Department of Water Management, Delft University of Technology, Delft, Netherlands, 2 Environmental Science and Management Department, Portland State University, Portland, OR, United States, 3 Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria, 4 International Water Management Institute (IWMI), New Delhi, India, 5 Department of Civil and Environmental Engineering, University of Houston, Houston, TX, United States, 6 Department of Earth Sciences, Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, Uppsala, Sweden, 7 ISOE—Institute for Social-Ecological Research, Frankfurt, Germany, 8 Multidisciplinary Water Management, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands, 9 Water Footprint Network, Enschede, Netherlands, 10 Section Hydrology, German Research Centre for Geosciences (GFZ), Potsdam, Germany, 11 Department of Humanities and Social Sciences, Indian Institute of Technology, Kharagpur, India, 12 Water Resources Research and Documentation Center (WARREDOC), University for Foreigners of Perugia, Perugia, Italy, 13 Department of Geography, South Asia Institute (SAI), Heidelberg University, Heidelberg, Germany, 14 Heidelberg Centre for the Environment (HCE), Heidelberg University, Heidelberg, Germany, 15 Department of Hydraulic Engineering, Tsinghua University, Beijing, China, 16 Water Resources Management Group, Wageningen University, Wageningen, Netherlands, 17 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 18 Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States

In a recent editorial in the journal Nature Sustainability, the editors raised the concern that journal submissions on water studies appear too similar. The gist of the editorial: “too many publications and not enough ideas.” In this response, we contest this notion, and point to the numerous new ideas that result from taking a broader view of the water science field. Drawing inspiration from a recently hosted conference geared at transcending traditional disciplinary silos and forging new paradigms for water research, we are, in fact, enthusiastic and optimistic about the ways scientists are investigating political, economic, historical, and cultural intersections toward more just and sustainable human-water relations and ways of knowing.

Keywords: first sociohydrology conference, conceptual and methodological pluralism, water crises, societal feedbacks within engineering designs, inclusive dialogues

The first sociohydrology conference (6–8 Sep 2021, https://delft2021sh.org/) brought together a vibrant community of ~300 natural, social and interdisciplinary scientists such as environmental scientists and historians, political ecologists, human and physical geographers, as well as practitioners, such as environmental engineers, who met on an equal footing. While hydrologists, historians, political scientists, ecologists, engineers, geographers, and economists have all studied water for decades, if not centuries (Wittfogel, 1953), we argue that consolidating scholarship under one umbrella (Figure 1) is relatively new and gathering momentum. During the conference, the causes of the recent water crises and new paradigms for addressing them were discussed. These included human and knowledge dimensions, environmental justice and sustainability concepts that are needed in every stage of solution-building.
Humanity is indeed facing multifaceted and intractable water crises, which are no longer effectively tackled by traditional water-centered technocratic solutions alone. India’s groundwater crisis, for example, stems from decisions made in the 1970s to feed a growing population by boosting agricultural production and subsidizing energy inputs, which facilitated excessive groundwater pumping (Mukherji, 2020). Increased pumping and drilling costs, however, were disproportionately borne by resource-poor farmers who thus became hostage to indebtedness and poverty (Sarkar, 2011), highlighting the critical role of social power not addressed by the policies. This role is also discernible in the differences in water security and the experiences of drought across different social groups in Cape Town during the 2015–2017 Day Zero water crisis (Savelli et al., 2021). The need for new ideas that go beyond technical dimensions is thus blatantly apparent.

The editorial emphasized that: “Engineering solutions … are portrayed in elegant terms that may appear simple and make us feel better, precisely because they ignore the messy institutions, norms and processes that underlie our relationship … with water.” We echo the need to incorporate complex institutional and societal feedbacks within engineering designs and are encouraged by many collaborative research efforts being made toward this goal. The broad field of systems thinking has embraced placing societal feedbacks within engineering designs and are encouraged by many collaborative research efforts being made toward this goal. The editorial emphasized that: “Engineering solutions …

1. Shreyashi Bhattacharya and Jenia Mukherjee. (Un)Choked: reconnotering ‘storylines’ across the pillaged hydrospheres of the Adi Ganga. https://surfdrive.surf.nl/files/index.php/s/MIIThScWnLoyfJL.

2. Alesia Ofori Dedaa. Can Pre-colonial Water Practices Save Ghana’s Polluted Rivers? A waterscape analysis of the water-mining nexus. https://surfdrive.surf.nl/files/index.php/s/Tb8kUSM56pLYthb.

3. Juliane Dame, Susanne Schmidt, Carina Zang and Marcus Nüsser. Hydro social dynamics and water conflicts in the Upper Huasco Valley, Chile – an integrative assessment. https://surfdrive.surf.nl/files/index.php/s/Tb8kUSM56pLYthb.

4. Ramsha Shahid, Klaas Schwartz and Janze Susnik. A socio-political approach to integrated flood risk management in Colombo. https://surfdrive.surf.nl/files/index.php/s/5WIdaydfjOpKGZU.
close link between media narratives and long-term change in decision-making and governance priorities in flood-prone regions of Northern India. She showed how case-by-case engineering solutions have complicated rather than resolved impending water problems. Willemin and Backhaus explored the histories of chemical pollution and the possible future of rivers in Switzerland, and found that farmers were motivated to protect water resources through new forms of solidarity between people and water. Making such human-water interactions transparent paves the way to new, more sustainable solutions.

We believe that the intellectual space where natural scientists, social scientists, engineers, artists and communities can come together on a level playing field and develop sustainable solutions to pressing water crises is materializing. The conference on sociohydrology has clearly demonstrated that new paradigms are emerging and that conceptual and methodological pluralism can exist under one umbrella. Further development and deepening of new, interdisciplinary paradigms need fostering by scientific journals, funding agencies, educational institutions, and professional associations. We encourage all those who are interested in pursuing new directions in water science, including the editors of all water-related journals, to lead by example in promoting new research initiatives and more inclusive dialogues.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SP, MH, GB, MFA, and MS contributed to conception and final version of the manuscript. All authors contributed to various sections of the manuscript, read, and approved the submitted version.

REFERENCES

Editorial: Too much and not enough. (2021). *Nat. Sustain.* 4:659. doi: 10.1038/s41893-021-00766-8

Hipel, K. W., Obeidi, A., Fang, L., and Kilgour, D. M. (2008). Adaptive systems thinking in integrated water resources management with insights into conflicts over water exports. *INFOR* 46, 51–69. doi: 10.3138/infor.46.1.51

Mukherji, A. (2020). Sustainable groundwater management in India needs a water-energy-food nexus approach. *Appl. Econ. Perspect. Policy* 2020:1–17. doi: 10.1002/aepp.13123

Sarkar, A. (2011). Socio-economic implications of depleting groundwater resource in Punjab: A comparative analysis of different irrigation systems. *Econ. Politi. Week.* 46, 59–66. Available online at: http://www.jstor.org/stable/27918148

Savelli, E., Rusca, M., Cloke, H., and Di Baldassarre, G. (2021). Don’t blame the rain: Social power and the 2015-2017 drought in Cape Town. *J. Hydrol.* 2021:594. doi: 10.1016/j.jhydrol.2020.123953

Wittfogel, K. A. (1953). Oriental despotism. *Sociologus* 3, 96–108.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Pande, Hueffner, Blöschl, Alam, Castro, Di Baldassarre, Frick-Trzebitsky, Hogeboom, Kreibich, Mukherjee, Mukherji, Nardi, Nüsser, Tian, van Oel and Sivapalan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.