EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand

Hoogstrate, Youri; Vallentgoed, Wies; Kros, Johan M; de Heer, Iris; de Wit, Maurice; Eoli, Marica; Sepulveda, Juan Manuel; Walenkamp, Annemiek M E; Frenel, Jean-Sebastien; Franceschi, Enrico; Clement, Paul M; Weller, Michael; van Royen, Martin E; Ansell, Peter; Looman, Jim; Bain, Earle; Morfouace, Marie; Gorlia, Thierry; Golfinopoulos, Vassilis; van den Bent, Martin; French, Pim J

Abstract: Background: The randomized phase II INTELLANCE-2/EORTC 1410 trial on EGFR−amplified recurrent glioblastoma temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research. Targeted DNA−sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit. We first defined the tumor genomic landscape in this well−annotated patient population. We find that tumors harboring EGFR nucleotide variations (SNVs) have improved outcome in the depatux−m + TMZ combination arm. Such SNVs are commonly low affinity EGFR ligands. These hypersensitizing SNVs and ligand−independent EGFR V1171Y variant are inversely correlated. Increased ligand−induced activation will result in increased exposure of the epitope to the antibody−drug conjugate. Weaker kinase inhibitors, providing a potential alternative treatment strategy. Conclusions: These data can help guide treatment for EGFR mutation−positive glioblastoma.

DOI: https://doi.org/10.1093/noajnl/vdz051

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-191401
Journal Article
Accepted Version

Originally published at:
Hoogstrate, Youri; Vallentgoed, Wies; Kros, Johan M; de Heer, Iris; de Wit, Maurice; Eoli, Marica; Sepulveda, Juan Manuel; Walenkamp, Annemiek M E; Frenel, Jean-Sebastien; Franceschi, Enrico; Clement, Paul M; Weller, Michael; van Royen, Martin E; Ansell, Peter; Looman, Jim; Bain, Earle; Morfouace, Marie; Gorlia, Thierry; Golfinopoulos, Vassilis; van den Bent, Martin; French, Pim J (2020). EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand. Neuro-oncology advances, 2(1):vdz051.
DOI: https://doi.org/10.1093/noajnl/vdz051
EGFR-mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand.

Y. Hoogstrate¹, W. Vallentgoed¹, J.M. Kros³, I.de Heer¹, M. de Wit¹, M. Eoli⁴, J. Sepulveda⁵, A. Walenkamp⁶, J-S Frenel⁷, E. Franceschi⁸, P.M. Clement⁹, M. Weller¹⁰, M. van Royen³,¹¹, P. Ansell¹², J. Looman¹², E. Bain¹², M. Morfouace¹³, T. Gorlia¹³, V. Golfinopoulos¹³, M. van den Bent¹, P. J. French¹,¹¹*

¹dept Neurology, ²Urology, ³Pathology and ¹¹Cancer Treatment Screening Facility, Erasmus MC, Rotterdam, Netherlands; ⁴Carlo Besta, Milano, Italy; ⁵12 Octubre Hospital, Madrid, Spain; ⁶UMCG, Groningen, the Netherlands; ⁷Gauducheau, Nantes, France; ⁸AUSL/IRCCS Institute of Neurological Sciences, Bologna, Italy; ⁹Leuven Cancer Institute, KU Leuven, Leuven, Belgium; ¹⁰Department of Neurology, University Hospital and University of Zurich, Switzerland; ¹²AbbVie, North Chicago, IL, United States, ¹³EORTC Headquarters, Brussels, Belgium.

Correspondance to:

Pim J. French,
Dept Neurology
Erasmus MC
POBox 2040
3000CA, Rotterdam
The Netherlands
P: +31 10 70 44333
M: p.french@erasusmc.nl

Running title: EGFR receptor hypersensitivity and response to depatux-m
Funding: We are grateful to AbbVie Inc. for supporting this independent EORTC study. This research was sponsored by a grant from the ‘Westlandse ride’.

Conflict of interest: PJF received research funding by AbbVie, MJvdB consultancy for Abbv, cellgene, boehringer, BMS, AGIOS. PA, JL and EB are employees of AbbVie and may own stock. MW has received research grants from Abbvie, Adastra, Bayer, Merck, Sharp & Dohme (MSD), Dracen, Merck (EMD), Novocure, OGD2, Piqur und Roche, and honoraria for lectures or advisory board participation or consulting from Abbvie, Basilea, Bristol Meyer Squibb, Celgene, Merck, Sharp & Dohme (MSD), Merck (EMD), Novocure, Orbus, Roche, Teva and Tocagen. JMS received research funding from Pfizer and Catalysis, consulting or advisory board for Abbvie, Celgene and Pfizer and travel expenses from Astellas and Abbvie. PC consultancy for Abbvie, Astra Zeneca, BMS, Merck Serono, MSD, Daiichi Sankyo, Vifor and Leo pharma, and received a research grant from Astra Zeneca. EORTC (MMO, TGO, VGO) has received research funding from AbbVie.

Authorship: Conceptualization, PJF, MvdB; Methodology, YH, WV, TG, PJF; Investigation, YH, WV, IdH, MdW, JMK; Writing – Original Draft, P.J.F; Writing – Review & Editing, all authors; Funding Acquisition, PJF; Resources, ME, JS, AW, J-SF, EF, PMC, MW, PA, JL, EB; Data Curation: MM, TG, MvR; Supervision, PJF, MvdB.

Unpublished papers cited: Our manuscript refers to one unpublished manuscript: The clinical report of the INTELLANCE 2/EORTC 1410 randomized phase 2 clinical trial by Martin van den Bent et al. This manuscript has been submitted to Neuro-Oncology.
Abstract

Background: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment.

Methods: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit.

Results: We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harbouring EGFR single nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitising SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signalling in glioblastomas. Ligand-hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody-drug conjugate. We also identified tumors harbouring mutations sensitive to ‘classical’ EGFR tyrosine-kinase-inhibitors, providing a potential alternative treatment strategy.

Conclusions: These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR-signalling in these tumors.

Keywords: Depatux-m; EGFR; amphiregulin; extracellular domain mutations; ligand hypersensitivity
Importance of the Study

Recurrent glioblastoma patients have a dismal prognosis; the median survival is ~6-8 months and there is no standard of care. Depatux-m is an antibody-drug conjugate with signs of clinical activity in recurrent glioblastomas when given in combination with temozolomide. Here, we used material from a randomized phase II trial and identified patients that have survival benefit from this combination.

We show that specific mutations increase sensitivity to EGFR ligands and this ‘hypersensitivity’ can explain the observed treatment benefit. Our results indicate that ligand-hypersensitivity and ligand-independence are two, inversely correlated, mechanisms to increase EGFR-signalling. We also identified tumors harbouring mutations sensitive to ‘classical’ EGFR tyrosine-kinase-inhibitors, providing a potential alternative treatment strategy. These data can help guide treatment for recurrent glioblastoma patients.

Keypoints

1. SNVs in EGFR are correlated with improved survival to depatux-m + temozolomide
2. Common SNVs in EGFR increase sensitivity of the receptor to its ligands.
3. Some gliomas harbour EGFR tyrosine kinase inhibitor sensitive mutations
Introduction

The epidermal growth factor receptor (EGFR) gene is amplified in approximately half of all glioblastoma patients1,2. Unfortunately, and despite EGFR being a driver mutation in glioblastomas, pharmacological inhibition of the receptor has not been demonstrated to affect patient survival or tumor growth3-5. Depatuxizumab mafodotin (depatux-m, ABT414), is an antibody–drug conjugate that consists of an antibody directed against EGFR6,7, conjugated to a toxin (monomethyl auristatin F) that blocks microtubule polymerization. The antibody is specific for tumors that overexpress EGFR and preferentially binds to the active conformation of the receptor and the constitutively active variant EGFRvIII6-8. Depatux-m therefore should specifically target glioblastoma cells by using the high expression level of EGFR. Phase I clinical trials have tested the drug for safety and toxicity, and showed some encouraging responses especially in recurrent glioblastoma patients with EGFR amplification9-11.

INTELLANCE-2/EORTC_1410 was a randomized phase II trial on EGFR-amplified recurrent glioblastomas that showed a trend towards improved overall survival (HR 0.71, 95% CI [0.50, 1.02], p=0.06 in the primary analysis, HR 0.66, 95% CI [0.48, 0.93], p=0.024 in follow-up analysis) when patients were treated with depatux-m and temozolomide (TMZ) compared with the control arm of alkylating chemotherapy only. In the present study, we aimed to identify patients that benefit from this combination and to understand the mechanism of increased sensitivity.
Methods:

Patient samples

Recurrent GBM patients were considered eligible for the INTELLANCE-2/EORTC_1410 trial (NCT02343406) if they had been diagnosed with a histologically confirmed, \textit{EGFR-amplified} glioblastoma at first occurrence. Amplification of the EGFR locus was centrally determined using FISH in one of three laboratories (Histogenex, Antwerp Belgium, Mosaic, Lake Forest California, Peter MacCallum Cancer Institute (Melbourne Australia) using the Vysis EGFR CDx Assay (Abbott Molecular, Des Plaines, IL, USA; not on market)12. A tumor was considered EGFR-amplified when the EGFR/centromere chromosome 7 (CEP7) ratio was ≥ 2 in $\geq 15\%$ recorded nuclei, with 50 nuclei/tumor analyzed. Tumors with polysomy for chromosome 7 (CEP7 copy number > 3) but without focal amplification of the EGFR gene in $\geq 15\%$ nuclei were considered to be EGFR-nonamplified and not included. 260 patients were randomized in the trial to receive either i) TMZ or, if progressing within 16 weeks of day 1 of the last temozolomide cycle, CCNU (n=26 and n=60 respectively); ii) depatux-m (n=86) or; iii) TMZ plus depatux-m (n=88). For this analysis, the database was locked on 12th of January 2018 (longer term follow-up data). \textit{MGMT} promoter methylation status data were previously described and determined using a methylation-specific PCR13. All patients gave written informed consent for trial participation, pathology review and molecular testing.

Sequencing

Material, either tissue sections or tissue blocks were centrally collected at Erasmus MC. Evaluation of the area with highest tumor content was done by the pathologist (JMK) on a hematoxylin and eosin stained section. One to twenty 5μ sections were then sent to Almac Diagnostics (Craigavon, UK) for macro-dissection, DNA and RNA extraction and sequencing. DNA/RNA extraction was performed using the Allprep DNA/RNA FFPE kit (Qiagen, Venlo, the Netherlands). Sequencing was done on the Trusight Tumor 170 panel (Illumina, Eindhoven, the Netherlands) which uses a combination of DNA and RNA sequencing to interrogate SNVs in ~150 genes, amplification of 59 genes, and fusion and splice-variant
expression in 55 genes. SNV, copy-number, fusion-gene and splice-variant expression calling was done using the Illumina Basespace sequence hub. Very deep sequencing was performed to enable quantification of subclonal \textit{EGFR} variants. All variants with a variant allele fraction (VAF) $> 15\%$ were included in the analysis, except for \textit{EGFR}, where all VAFs were included as all variants in \textit{EGFR} are subclonal. SNVs with quality scores <70 and/or present in the Exac database at fractions >0.001 were omitted from the analysis. Splice variants/mutations were calculated as the ‘spliced-in fraction’; the number of mutant reads as fraction of the total reads over that particular variant. Data were further analyzed in R using \textit{ggplot2}, \textit{survival} and \textit{GenVisR} packages. Expression values were estimated using \textit{featureCounts} using \textit{gencode-29} as gene annotation. One sample yielding only 707 reads was excluded from further analysis.

Whole transcriptome sequencing of rRNA depleted cDNA was done on the same isolate by GenomeScan (Leiden, the Netherlands) at a depth of 50 million paired-end reads per sample. \textit{HTStream} was used to remove duplicate reads, \textit{fastp} for low base quality trimming and adaptor removal and further quality assessment. Alignment to \textit{hg38} was done using \textit{STAR} (2.6.1d). Stranded read-counts were estimated with STARs builtin ‘--quantMode GeneCounts’ option. Samples with read-count $<750,000$ were excluded from further analysis (29 samples). \textit{DESeq2} was used for expression analysis and its VST-normalization for survival analysis using Coxph regression in R.

\textit{Data analysis}

For generating the waterfall plot of chromosomal changes, we defined trisomy as whole chromosome copy-number > 2.4 and LOH as copy-number < 1.6. For generating the waterfall plot per gene we set a threshold for high-copy amplification to > 6 copies per cell, copy number gain (including trisomy) between 3 and 6, and deep (homozygous) deletions at < 1 copy per cell. All analyses to define variants associated with survival were done on samples with high copy amplification of \textit{EGFR} only; samples without such high-level amplification may represent a different molecular entity.
Constructs and image analysis

EGFR mutation constructs were generated by in-fusion cloning into a piggybac vector (System Biosciences, Palo Alto, Ca) with eGFP cloned 3’ to the transmembrane domain as described \(^{14}\). This position was chosen to avoid potential interference with ligand binding or receptor internalization signaling sites. These constructs retain the important physical properties of EGFR with respect to signal transduction and protein-protein interactions\(^{14}\). Stable HeLa cell-lines (ATCC, Manassas, Virginia) were created for all constructs. Cells were plated in 96 or 384 well plates for further analysis. Following transfection, we selected for cells that expressed the (mutant) EGF receptor using FACS. As we did not select for a single cell clone, levels of EGFR expression was variable between individual cells. This way the observed responses can be evaluated across a wide range of expression levels. Quantification of EGFR signals intensities shows a high correlation between intensity and mRNA expression levels. This was done by comparing mRNA expression with signal intensities in various lung-cancer cell lines (manuscript in preparation). Using this approach we show that the various mutation constructs had expression levels comparable to the endogenous EGFR expression in these cells (except for the cell lines expressing the EGFR_A289D or EGFRvIII mutation, where the construct is expressed at slightly lower levels; for EGFRvIII this was despite repeated attempts). Moreover, expression levels were highly similar between the various mutation constructs, again except for the cell line expressing the EGFR_A289D or EGFRvIII mutation).

All images were obtained using an Opera Phenix high-throughput high-content confocal microscope (Perkin Elmer, Hamburg, Germany). At least 10 images were obtained per well so that hundreds of individual cells per condition were analysed ensuring robustness of measurements. Image analysis was performed using Harmony software (Perkin Elmer) using identical settings for all conditions within each experiment and further analysed using R. Experiments were performed at least in three independent replicates.

EGFR antibody (clone H11, DAKO, Amstelveen, the Netherlands) and a phospho-specific EGFR antibody (AB32430, anti phospho Y1068, Abcam, Cambridge, UK) were used at 1:500 dilution.
Secondary antibodies used were alexafluor 647 goat anti-mouse, alexafluor 594 rabbit anti-mouse and alexafluor 488 goat anti-rabbit (A21240, A11062 and A11008 respectively, Invitrogen, Bleiswijk, the Netherlands). Hoechst was used as counterstain to visualize nuclei.

Statistical analysis

Distribution of frequencies were compared between subtypes using the Chi-squared test. A Fisher’s exact test was used in case the assumptions for chi-square distribution were violated as indicated in the respective tables. Kaplan–Meier survival curves were generated using the survival package in R\(^1\). Overall survival was used to identify the molecular markers associated with outcome, with survival defined from the point of randomization until the date of death. If unavailable, the date of day known to be alive was used. The significance of prognostic factors was determined using Cox regression in univariate analysis. Differential gene expression was determined using de DESeq2 bioconductor package. P values less than 0.05, which were adjusted for a false discovery rate < 0.05, were considered significant.

Results:

Mutational landscape of INTELLANCE-2/EORTC_1410 trial samples

We first analysed the molecular characteristics of tumors from patients included in the INTELLANCE-2/EORTC_1410 trial. This is important as this allows defining the genomic landscape in tumors of patients that are eligible for clinical trial inclusion. Glioblastomas often have trisomy of chromosome 7 and loss of chromosome 10 and, of the large scale genomic changes, these were indeed the two most commonly found (204 and 184 samples for chromosome 7 and 10 respectively, figure 1a). Combined trisomy 7, LOH 10 was observed in 176 of 236 samples (75%). Other common large chromosomal changes included gain of chromosomes 19 and 20 which are also frequently observed in glioblastomas.
On the gene level, most, but not all, samples harboured high copy amplification of the **EGFR** locus (copy number > 6 in 200 tumors\(^\text{16}\)); this was mainly observed in tumors with trisomy 7 (166/200, figure 1b). Other high copy amplified genes included **MDM2** (n=20), **MDM4** (n=21), **CDK4** (n=24) and **CDK6** (n=4). Most samples also harboured a homozygous deletion of the **CDKN2A** locus, and a small population had such deletions in the **PTEN** locus.

Mutations were identified in driver genes common to GBMs and included **EGFR** (n=115), **PTEN** (n=62), **TP53** (n=48), **CREBBP** (n=21), and **PIK3CA** (n=16) (figure 1c). Mutational hotspots were identified in **TP53** (supplementary figure 1), **PTEN** (see below) and **EGFR**. As may be expected, truncating mutations were common to tumor suppressor genes (**PTEN, RB1** and **NF1**).

Common missense mutations identified in **EGFR** clustered on the extracellular domain of the protein and included R108, A289 and G598. Interestingly, we identified a new hotspot at the 3' (intracellular) end of the gene where truncating mutations tended to cluster (figure 2a). Such mutations often involved amino acids L1001 and M1002. We also identified three mutations in EGFR that, in lung cancer, are associated with response to EGFR tyrosine kinase inhibitors (TKIs)\(^\text{17}\). These mutations, G719A, G719D and S786I (~1.3% of analysed samples), were present at a relatively high mutant allele fraction (in two samples, the variant allele fraction, VAF, exceeded >20%). Since the type of mutation may predict response to EGFR tyrosine kinase inhibitors, such inhibitors may provide a new treatment option for these patients\(^\text{18-20}\).

The most common (oncogenic) splice variant identified was the glioblastoma-specific in-frame deletion of exons 2-7 (**EGFRvIII**), present in approximately half of all **EGFR**-amplified samples (n=101, figure 2b). Other variants present at significant population frequency included deletions of exons 9-10 (n=14), exons 25-26 (n=14) and exons 25-27 (n=22), the latter two affecting the intracellular domain. **EGFR** fusion genes were identified in 13 samples, with fusion partners often located in the vicinity of the **EGFR** gene locus (**SEPT14, SEC61G, LANCL2**). Similar to previously reported for glioblastomas, the mutations, splice variants and fusion genes identified in **EGFR** were almost always
subclonal and many samples harboured more than one genetic change (figure 2b). Only 13/200 EGFR-amplified samples did not harbour any genetic change in the EGFR locus.

A289 missense mutations and 3’ truncating mutations in EGFR are associated with response to depatux-m + TMZ

We performed correlative analysis on genetic changes to identify those associated with survival in the depatux-m + TMZ arm. Interestingly, the presence of SNVs (any protein altering SNV within the coding region) in EGFR was associated with survival in univariate analysis: the HR was 0.495 with 95% CI [0.283, 0.865], p = 0.014 in the combination arm and 0.751, 95%CI [0.444, 1.272], p = 0.287 in the depatux-m monotherapy arm, compared to the CCNU or TMZ control arm (table 1, figure 3). Multivariable analysis confirmed that depatux-m + TMZ treatment was associated with survival in samples with EGFR-SNVs, independent of known prognostic factors such as age and MGMT promoter methylation status (HR 0.45, 95% CI[0.26, 0.76], p = 0.003, supplementary table 1). No such association was found in the samples without EGFR-SNVs (HR 0.85, 95% CI[0.48, 1.50], p = 0.57). Since depatux-m specifically targets EGFR, we focussed further on individual variants to determine which of these were most associated with survival. A trend was observed in tumors harbouring A289 hotspot mutations (HR 0.386, 95% CI[0.138, 1.082], p=0.070, table 1, figure 4a). No other individual SNV reached such statistical values, but this may be related to the low number of samples harbouring individual SNVs and the corresponding limited statistical power.

On the splice variant level, we found that a deletion of exons 25-27, affecting the C-terminal intracellular domain, was also associated with survival in the depatux-m + TMZ arm. Although there are relatively few samples (n=22) with this genetic change, the HR was 0.255 with 95% CI [0.077, 0.846] and p=0.026 (table 1, figure 5). The Δex 25-27 splice variants introduces a frame shift in exon 28 resulting in a deletion of the C-terminal tail (exons 25-28) of EGFR. We therefore included C-terminal truncating mutations (SNVs leading to frameshifts and premature termination codons and fusion genes at the ‘3 end of the gene) in this analysis and found that the association remained significant.
(HR 0.175, 95% CI [0.054, 0.574], p = 0.004 for the combination of depatux-m + TMZ). The association also remained significant when other 3’ mutations were included in the analysis: 3’ end missense mutations (n=10) center around two hotspots at amino acids 993-1014 and 1065-1070 and it is possible that they affect a functional domain similar to the domain lost in the truncating mutations (table 1, figure 5). Exon deletions overlapping the hotspots Δex 25-26 or Δex 27, identified in 14 and 5 samples respectively, may affect a similar domain. When all C-terminal mutations were combined (Δex 25-28, Δex 25-26, Δex 27, protein truncation SNVs and/or other 3’SNVs fusion genes, n=28 samples) the HR for depatux-m + TMZ was 0.309 [0.130, 0.735], p = 0.008. Depatux-m monotherapy was not significantly associated with survival (HR 0.514 [0.229, 1.155], p = 0.107, table 1, figure 5). We acknowledge that care should be taken when conducting such post-hoc and combinatorial analyses, therefore, the analysis of each variant type is listed separately (table 1).

Expression of EGFRvIII is common in glioblastomas and, since depatux-m also has affinity for this deletion variant, we were particularly interested in association with survival. In contrast to what might be expected, the absence of EGFRvIII expression showed a trend towards association with survival: the HR was 0.582, 95% CI [0.311, 1.088], p = 0.090 in the combination arm and 1.004, 95% CI [0.570, 1.771], p = 0.988 in the depatux-m monotherapy arm both compared to the CCNU or TMZ control arm (table 1, figure 3, all treatment arms shown in supplementary figure 2). Multivariable analysis including MGMT promoter methylation status and age confirmed the trend towards association of depatux-m + TMZ with survival in samples without EGFRvIII expression-SNVs (HR 0.57, 95% CI [0.31, 1.03], p = 0.064, supplementary table 1).

Because MGMT status is predictive for response to TMZ chemotherapy, we stratified the molecular markers associated with survival (EGFR-SNVs and absent EGFRvIII expression) by this factor. Although sample size is relatively small, both depatux-m + TMZ and MGMT promoter methylation status were
associated with improved outcome and both associations remained significant in a multivariable analysis containing both factors (supplementary figure 3).

Extracellular missense mutations result in a receptor with increased ligand sensitivity

We next aimed to determine why SNVs in EGFR are associated with response to depatux-m + TMZ. First, the presence of SNVs and absence of EGFRvIII expression identify a similar population: the majority of samples expressing EGFRvIII do not express additional EGFR mutation variants (18/96) and the majority of samples harboring SNVs do not express EGFRvIII (18/57), $P=0.004$ (Chi square test, figure 3c). The level of EGFRvIII expression is also lower in samples expressing SNVs: The spliced-in fraction (the number of mutant reads as fraction of the total EGFR reads) was 0.12 ± 0.22 vs 0.29 ± 0.36, $P<0.001$. Conversely, the level of EGFR SNVs was lower in samples expressing EGFRvIII compared to those that do not express EGFRvIII (spliced-in fraction, calculated only using reads covering the affected base, was 0.11 ± 0.22 vs 0.35 ± 0.38, $P<0.001$). The difference in expression is even larger when only focusing on hotspot mutations (i.e. any mutation occurring in at least four samples) where the spliced in fraction of EGFRvIII was 0.09 ± 0.18 vs 0.45 ± 0.33 in mutation positive vs negative tumors ($p<0.001$). The inverse correlation between expression of EGFRvIII and SNVs was not specific to samples included in this study; glioblastoma samples included in the randomized phase II BELOB trial and in TCGA samples show a near identical and statistically significant inverse correlation supplementary figure 3. This inverse correlation suggests a divergent evolution where, after the initial amplification of EGFR, glioblastomas develop either EGFRvIII or other EGFR mutations.

To understand why SNVs in EGFR are associated with survival in the depatux-m + TMZ arm, we performed functional analysis on various EGFR-mutation constructs. The majority of hotspot mutations in glioblastomas are localized in the extracellular, ligand binding domain of EGFR, and we hypothesized they may affect ligand-induced activation. We therefore stimulated various mutation
constructs with two different EGFR ligands, one high affinity ligand (EGF) and one low affinity ligand (Amphiregulin, AREG). Stimulation with 200 ng/ml EGF resulted in a strong increase EGFR-phosphorylation in all constructs (except for EGFRvIII; this constitutively active variant is ligand independent \(^{22,23}\)) (figure 4, 6). In contrast, the low affinity EGFR ligand amphiregulin (AREG, 200 ng/ml) only marginally activated the control constructs EGFR-wt and EGFR\(^{V834L}\) and did not activate EGFRvIII. Interestingly, AREG stimulation had a strong effect on all constructs harboring extracellular missense mutations found in glioblastomas (EGFR\(^{R108K}\), EGFR\(^{G598V}\), EGFR\(^{A289V}\)). AREG activated these EGFR-mutation constructs at levels 40%-80% of that observed by EGF stimulation, a 3-8 fold increase compared to EGFRwt constructs (p<0.02 for any extracellular mutation construct vs EGFRwt and p<0.05 for any of the extracellular mutation constructs vs EGFR\(^{V834L}\), figure 4). Mutations commonly found in lung cancer (EGFR\(^{L858R}\) and EGFR\(^{A746-E750\text{del}}\)) responded to EGF and AREG similar to the control constructs.

To determine whether extracellular domain mutations were also more sensitive to other EGFR ligands, we tested all seven known ligands for EGFR activation. For each ligand, we performed a dose response analysis ranging from 200 ng/ml (maximal stimulation) to 0.8 ng/ml. In the control constructs, all high affinity EGFR ligands (EGF, TGF\(\alpha\), HB-EGF and BTC) resulted in a strong activation and all low affinity ligands AREG, EREG and EPGN resulted in a markedly weaker activation (figure 6). In contrast however, all extracellular missense mutations, EGFR\(^{A298V}\), EGFR\(^{G598V}\) and EGFR\(^{R108K}\), showed strong activation towards all EGFR ligands, including the low affinity ligands AREG, EPGN, and EREG (figure 6). EGFRvIII did not respond to any of the ligands. These experiments therefore show that EGFR containing extracellular missense mutations render the receptor more sensitive to stimulation, especially by the weak activators AREG, EREG and EPGN.

The hypersensitivity of extracellular domain mutations may explain the increased responsiveness to depatux-m: receptors are more easily activated and, as activation leads to receptor internalization, increased internalization with the antibody/drug conjugate. Hypersensitivity likely also leads to an increased exposure of the epitope for the antibody (i.e. the activated conformation of EGFR) \(^{24}\).
Our molecular imaging analysis also showed that EGFRvIII mainly has an intracellular localization (supplementary figure 4). This is in contrast to control constructs which are mainly localized to the membrane. Other activating mutations such as EGFR^{L858R} also showed a certain degree of increased intracellular localization, but only EGFRvIII showed such prominent intracellular localization. The increased responsiveness in samples without EGFRvIII expression therefore can be explained by the near absence of EGFRvIII on the extracellular membrane: this may prevent effective binding to depatux-m.

Functional analysis indeed confirmed the direct correlation between receptor internalization and EGFR antibody internalization: EGFR receptor internalization still occurred in the presence of either ABT806 or cetuximab, regardless of ligand or mutation present, whereas this internalization could be completely inhibited by erlotinib or lapatinib (respectively type I and II tyrosine kinase inhibitors). The internalization was accompanied by uptake of EGFR antibodies as demonstrated by staining cells only with secondary antibodies directed at the FC fragment (supplementary figure 6).

Additional genetic events associated with survival in the depatux-m + TMZ arm

We also performed correlative analysis to screen for other events associated with patient survival in the depatux-m + TMZ arm. We focussed on genetic events (SNVs and CNVs) present in at least nine samples and selected those showing a trend (p<0.10) by Cox regression analysis. Of the 149 genes examined, inactivating PTEN mutations were associated with outcome to depatux-m + TMZ; the HR was 0.499 with 95% CI [0.241, 1.034], p=0.061 (table 1, supplementary figure 5). For this analysis, we combined samples with homozygous deletion and SNVs (individual mutation types showed a similar trend, table 1). Combining homozygous deletion with SNVs was warranted as many of the SNVs in PTEN led to premature stop codons and most of the missense mutations are listed in the COSMIC database with high pathogenic prediction scores (FATHMM) (supplementary table 2).

A second gene associated with survival was ARID1A, a tumor suppressor gene that is mutated in various cancer types including ovarian, endometrial and uterine cancer. Mutations in this gene are
often heterozygous which suggests that inactivation of one allele is sufficient to relieve the tumor suppressive effect of the protein \(^\text{27}\). The identified SNVs in \textit{ARID1A} in our samples were also heterozygous. When combining samples with \textit{ARID1A} LOH (n=10) and missense mutations (n=12), the HR for depatux-m + TMZ was 0.27 (95% CI [0.074, 0.961], p= 0.04) (table 1, supplementary figure 6, analysis of LOH and SNVs individually are also listed). SNVs in dihydro-folate reductase (DHFR, a gene required for the de novo synthesis of purines) and RP11.770J1.4 (a long intragenic noncoding RNA) were also associated with response to the combination of depatux-m + TMZ (HR 0.587, p=0.050 and HR 0.322, p=0.057 respectively, supplementary figure 6).

Because inactivating alterations in PTEN and TP53 are associated with EGFR kinase inhibitor response in several cancer types (see e.g. \(^\text{28}\)), we performed a multivariate analysis including these genes and show that depatux-m + TMZ remained a factor associated with survival (supplementary table 3).

\textit{Gene expression analysis}

Whole transcriptomic analysis identified genes associated with survival in each of the three treatment arms (supplementary tables 4-6). For each of these gene-lists, several genes were co-expressed which is suggestive for higher order interactions (supplementary figure 7) Gene-set enrichment analysis identified various pathways associated with survival including ‘cell cycle’, ‘cell activation’ and ‘meiotic cell cycle process’, and various pathways associated with immune response including ‘immune system development’ and ‘lymphocyte activation’. We did not find a correlation between the level of immune infiltration and survival as determined by Immunophenoscore analysis\(^\text{29}\). One gene, N-MYC downstream regulated gene 2 (\textit{NDRG2}), was specifically associated with survival in the depatux-m + TMZ arm and not in the other two arms of the study (supplementary figure 6) suggesting this gene is predictive for response to the combination treatment. Other studies have also shown similar correlation between expression and survival of \textit{NDRG2} in glioblastomas\(^\text{30}\).
The survival curves in both depatux-m treated arms shows a tail suggesting more long survivors (>365 days from randomization) when treated with the drug. Gene expression analysis between long and short survivors identified 15 differentially expressed genes, including CDK4 and 6 genes that neighbour it. We find approximately 2.2 times more CDK4-amplified samples in patients with survival < 365 days (p=0.004, see also 31). Expression of FOXF1 was significantly higher in short- compared to long survivors (p=0.010, supplementary figure 8).
Discussion

In this study, we have performed detailed molecular analyses on glioblastomas of patients treated within the INTELLANCE-2/EORTC_1410 randomized phase II clinical trial. Our results suggest that patients harbouring tumors with EGFR SNVs may derive more benefit from the combination of depatux-m + TMZ.

Three mechanisms can explain the survival benefit of these variants to depatux-m + TMZ. First, we show that extracellular domain mutations result in a receptor that is hypersensitive to activation by the various EGFR ligands. Since EGFR is internalized after receptor activation\(^\text{32}\), the hypersensitivity likely increases internalization and so increase uptake of the antibody-drug conjugate. Second, hypersensitive mutations increase transformation towards the active conformation of the protein. EGFR can switch between inactive (closed) and active (domain II exposed) conformation; the presence of ligand locks the protein in the active conformation\(^\text{20,33}\). Hypersensitive mutations may shift the equilibrium towards the active conformation of the protein. Indeed, such mutations have been demonstrated to increase exposure of the epitope for the ABT806 antibody, and so result in increased binding of depatux-m\(^\text{24}\). Thirdly, we show that EGFRvIII expression is inversely correlated with the presence of SNVs in EGFR. Since EGFRvIII mainly has an intracellular localization (see also \(^\text{34}\)), its near absence on the extracellular membrane may prevent binding to depatux-m, samples without EGFRvIII expression (i.e. predominantly those with EGFR SNVs) are more likely to respond to depatux-m. Other mechanisms however, may also determine sensitivity/resistance\(^\text{35}\).

Our results are in line with two recent publications both using mice engrafted with cell lines specifically overexpressing either EGFR\(^\text{A289V}\) or EGFR\(^\text{G598V}\) ECD mutations. Both studies showed significant survival benefit from treatment with ABT806 (i.e. the antibody used in depatux-m)\(^\text{24,36}\). Since our study also suggested benefit when such mutations are present, and given the mechanistic insight of its possible mode of action, further investigation into the efficacy of depatux-m in glioblastoma patients with ECD mutations is warranted.
We also show that intracellular EGFR truncating mutations and splice variants are associated with response to depatux-m + TMZ. Other studies have shown that such truncating mutations result in altered receptor internalization37,38 and this altered internalization therefore may be linked to treatment response and survival benefit. Similarly, bi-allelic inactivation of PTEN also was associated with response to depatux-m + TMZ. Since poly-phosphoinositides are key regulators of membrane trafficking, they also may contribute to altered receptor endocysis. PtdIns(4,5)P\textsubscript{2} for example, is required in the progression of early endocytosis39 and PtdIns(4,5)P\textsubscript{2} is produced from PTEN substrate PtdIns(3,4,5)P\textsubscript{3}.

One important caveat of this study is that the correlative analysis are post-hoc, and therefore these observations require confirmation in an independent dataset: our analysis may have incorrectly identified markers associated with survival in the depatux-m + TMZ arm due to multiple testing. Such dataset may be available in the INTELLANCE-1 trial that examined the effect of depatux-m in combination with chemoradiation compared to chemoradiation only in newly diagnosed glioblastoma patients (clinicaltrials.gov identifier NCT02573324). Of note, this trial did not meet its primary endpoint, though trial results have not been published to date. The difference between the two trials may lie in the fact that the patients treated within INTELLANCE-1 received surgery prior to treatment. The remaining tumor cells in INTELLANCE-1 therefore were likely in areas with an intact blood-brain barrier, which may have reduced accessibility to depatux-m. In addition, most of the samples analysed in current study were derived from primary tumors (in \textasciitilde80\% of cases) as surgery at recurrence is seldom performed. Various changes can occur during tumor evolution and some specifically affect EGFR variants40-42. \textit{EGFRvIII} expression for example, is often lost at tumor recurrence43-45; \textasciitilde1/3 of EGFR-mutations are also lost at tumor recurrence 46. Nevertheless, the copy number changes, gene amplifications/deletions and mutations are similar to observed in other (EGFR-amplified) glioblastoma datasets and therefore patients included in the INTELLANCE-2/EORTC_1410 trial did not select for a specific and molecularly defined tumor type1. Another limitation of our study is the that response is
extrapolated from survival data. Correlation of response as seen on MRI with molecular features may identify different genetic markers.

Our data also provides a model for tumor evolution with respect to EGFR-dependency. GBMs require EGFR signaling for growth and EGFR amplification is the first step in GBMs to meet this requirement. After this initial amplification, the tumor evolves to facilitate the need for EGFR signaling by gaining additional and activation mutations. Our data show that there are at least two different modes of evolution in glioblastomas: by becoming independent of ligand (EGFRvIII) or by becoming hypersensitive to ligand (extracellular hotspot mutations). Since both EGFRvIII and extracellular domain mutations have tumorigenic properties, only one of these mutations is required to facilitate the need for EGFR-signaling. This explains why, in all the glioblastoma datasets examined, EGFRvIII expression is inversely correlated with presence of EGFR-missense mutations (figure 3 and supplementary figure 2).

In addition to finding associations of specific EGFR variants associated with response to depatux-m + TMZ, we also found rare mutations that, in pulmonary adenocarcinoma patients, respond to EGFR-TKIs. Several lines of evidence suggest that responses to EGFR-TKIs are dependent on the type of mutation and not on the type of tumor. For example, TKI-sensitive mutations in pulmonary adenocarcinomas are also sensitive to these TKIs in other tumor types. Such responses have also been documented for the mutations identified in this study. These TKI-sensitive mutations have been identified in other glioblastoma datasets, and although present in only a small minority (~1-2%) of EGFR-amplified GBMs, EGFR-TKIs may prove an interesting treatment option for patients harbouring such tumors. However, one complicating factor is that EGFR mutations in glioblastomas almost invariably are subclonal. In addition, they often show high intratumoral (and temporal)
heterogeneity46. It is therefore possible that EGFR-TKIs may only be effective in tumors with a high variant allele fraction of the TKI-sensitive mutation.
References

1. Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. *Cell*. 2013; 155(2): 462-477
2. Lassman AB, Aldape KD, Ansell PJ, et al. Epidermal growth factor receptor (EGFR) amplification rates observed in screening patients for randomized trials in glioblastoma. *J Neurooncol*. 2019; 144(1): 205-210
3. van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. *J Clin Oncol*. 2009; 27(8): 1268-1274
4. Uhm JH, Ballman KV, Wu W, et al. Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. *International journal of radiation oncology, biology, physics*. 2011; 80(2): 347-353
5. Sepulveda-Sanchez JM, Vaz MA, Balana C, et al. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. *Neuro-oncology*. 2017; 19(11): 1522-1531
6. Johns TG, Stockert E, Ritter G, et al. Novel monoclonal antibody specific for the de2-7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene. *Int J Cancer*. 2002; 98(3): 398-408
7. Luwor RB, Johns TG, Murone C, et al. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. *Cancer Res*. 2001; 61(14): 5355-5361
8. Johns TG, Adams TE, Cochran JR, et al. Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. *J Biol Chem*. 2004; 279(29): 30375-30384
9. Lassman AB, van den Bent MJ, Gan HK, et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. *Neuro-oncology*. 2019; 21(1): 106-114
10. Gan HK, Reardon DA, Lassman AB, et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. *Neuro-oncology*. 2018; 20(6): 838-847
11. van den Bent M, Gan HK, Lassman AB, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multicenter, international study. *Cancer Chemother Pharmacol*. 2017; 80(6): 1209-1217
12. Lassman AB, Roberts-Rapp L, Sokolova I, et al. Comparison of Biomarker Assays for EGFR: Implications for Precision Medicine in Patients with Glioblastoma. *Clin Cancer Res*. 2019;
13. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. *N Engl J Med*. 2005; 352(10): 997-1003
14. Erdem-Eraslan L, Gao Y, Kloosterhof NK, et al. Mutation specific functions of EGFR result in a mutation-specific downstream pathway activation. *Eur J Cancer*. 2015; 51(7): 893-903
15. Therneau T. (2015) A Package for Survival Analysis in S. In., 2.38 Ed.
16. French PJ, Eoli M, Sepulveda JM, et al. Defining EGFR amplification status for clinical trial inclusion. *Neuro-oncology*. 2019;
17. Taylor AD, Micheel CM, Anderson IA, Levy MA, Lovly CM. The Path(way) Less Traveled: A Pathway-Oriented Approach to Providing Information about Precision Cancer Medicine on My Cancer Genome. *Transl Oncol*. 2016; 9(2): 163-165
18. Voss JS, Holtegaard LM, Kerr SE, et al. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. *Hum Pathol*. 2013; 44(7): 1216-1222
19. Agatsuma N, Yasuda Y, Ozasa H. Malignant Pleural Mesothelioma Harboring Both G719C and S768I Mutations of EGFR SUCCESSFULLY TREATED WITH AFATINIB. *Journal of thoracic oncology :*
20. Gao Y, Valentgoed WR, French PJ. Finding the Right Way to Target EGFR in Glioblastomas; Lessons from Lung Adenocarcinomas. *Cancers (Basel).* 2018; 10(12): e141-e143

21. Erdem-Eraslan L, van den Bent MJ, Hoogstrate Y, et al. Identification of patients with recurrent glioblastoma who may benefit from combined bevacizumab and CCNU therapy, a report from the BELOB trial. *Cancer Res.* 2016; 76(3): 525-534

22. Nishikawa R, Ji XD, Harmon RC, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. *Proc Natl Acad Sci U S A.* 1994; 91(16): 7727-7731

23. Huang HS, Nagane M, Klingbeil CK, et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. *J Biol Chem.* 1997; 272(5): 2927-2935

24. Orellana L, Thorne AH, Lema R, et al. Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. *Proc Natl Acad Sci U S A.* 2019; 116(20): 10009-10018

25. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. *Nucleic Acids Res.* 2017; 45(D1): D777-D783

26. Rogers MF, Shihab HA, Mort M, et al. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. *Bioinformatics.* 2018; 34(3): 511-513

27. Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor? *Cancer discovery.* 2013; 3(1): 35-43

28. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. *N Engl J Med.* 2005; 353(19): 2012-2024

29. Skiriute D, Steponaitis G, Vaitkiene P, et al. Glioma Malignancy-Dependent NDRG2 Gene Methylation and Downregulation Correlates with Poor Patient Outcome. *J Cancer.* 2014; 5(6): 446-456

30. Cimino PJ, McFerrin L, Wirsching HG, et al. Copy number profiling across glioblastoma populations has implications for clinical trial design. *Neuro-oncology.* 2018; 20(10): 1368-1373

31. Kaplan M, Narasimhan S, de Heus C, et al. Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. *Cell.* 1989; 59(1): 33-43

32. Scott AM, Roberts-Rapp L, Gan H, et al. Determinants of responses to ABT-414: results of next generation sequencing. *Neuro-oncology.* 2015; 17(Suppl 5): v10

33. Chen WS, Lazar CS, Lund KA, et al. Ligand-induced internalization and increased cell calcium are mediated via distinct structural elements in the carboxyl terminus of the epidermal growth factor receptor. *J Biol Chem.* 1991; 266(34): 23467-23470
39. Bohdanowicz M, Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. *Physiol Rev.* 2013; 93(1): 69-106
40. Kim H, Zheng S, Amini SS, et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. *Genome Res.* 2015; 25(3): 316-327
41. Kim J, Lee IH, Cho HJ, et al. Spatiotemporal Evolution of the Primary Glioblastoma Genome. *Cancer Cell.* 2015; 28(3): 318-328
42. Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. *Nat Genet.* 2016; 48(7): 768-776
43. Felsberg J, Hentschel B, Kaulich K, et al. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors. *Clin Cancer Res.* 2017; 23(22): 6846-6855
44. van den Bent MJ, Gao Y, Kerkhof M, et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. *Neuro-oncology.* 2015; 17(7): 935-941
45. Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet Oncol.* 2017; 18(10): 1373-1385
46. Draaisma K, Chatzipli A, Taphoorn M, et al. Molecular Evolution of IDH Wild-Type Glioblastomas Treated With Standard of Care Affects Survival and Design of Precision Medicine Trials: A Report From the EORTC 1542 Study. *J Clin Oncol.* 2019; JCO1900367
47. Lee JC, Vivanco I, Beroukhim R, et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. *PLoS medicine.* 2006; 3(12): e485
48. Feng H, Hu B, Vuori K, et al. EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180. *Oncogene.* 2014; 33(19): 2504-2512
49. Iyevleva AG, Novik AV, Moiseyenko VM, Imyanitov EN. EGFR mutation in kidney carcinoma confers sensitivity to gefitinib treatment: a case report. *Urologic oncology.* 2009; 27(5): 548-550
50. Masago K, Asato R, Fujita S, et al. Epidermal growth factor receptor gene mutations in papillary thyroid carcinoma. *Int J Cancer.* 2009; 124(11): 2744-2749
51. Ali SM, Alpaugh RK, Buell JK, et al. Antitumor response of an ERBB2 amplified inflammatory breast carcinoma with EGFR mutation to the EGFR-TKI erlotinib. *Clin Breast Cancer.* 2014; 14(1): e14-16
Figure legends

Figure 1: Genomic landscape of samples included in the INTELLANCE-2/EORTC_1410 trial. Shown are waterfall plots of chromosomal changes (A), gains and losses of individual genes (B) and SNVs within individual genes (C). The copy number changes, gene amplifications/deletions and mutations are similar to observed in other (EGFR-amplified) glioblastoma datasets. Patients included in this study therefore were not selected for a specific molecularly subtype. LOH: loss of heterozygosity, HD: homozygous deletion.

Figure 2: Genetic changes within the EGFR gene of samples from patients included in the INTELLANCE-2/EORTC_1410 trial. A) lolliplot of SNVs identified showing characteristic hotspot mutations in the extracellular domain. B) waterfall plots of genetic changes subdivided in copy number gains, splice variant expression, and mutations. The waterfall plot is colour coded to represent the level of copy number gain (in the CNV plot) or the percentage of mutant alleles (percentage spliced in).

Figure 3: Genetic changes within the EGFR gene that were associated with prolonged survival with depatux-m + TMZ. A) presence of SNVs; B) absence of EGFRvIII expression. Hazard rates of these changes are listed in table 1. Both genetic changes are correlated as samples containing SNVs often do not express EGFRvIII and vice versa (C).

Figure 4: A) A289x hotspot mutations are associated with response to depatux-m + TMZ. B) example of microscopic images of EGFR-wt and EGFRR108K stimulated with either EGF or AREG. Green: EGFR, red: phospho-EGFR, Blue: Hoechst. AREG resulted in increased receptor endocytosis and phospho-EGFR signal in EGFRR108K compared to EGFR-wt. C) Example of analysis depicting the level of phospho-EGFR (y-axis) against total EGFR (x-axis) within individual EGFR positive vesicles. Each dot represents one EGFR-positive submenbranous vesicle. D) averages of experiments plotted in C. E) Similar to B) the level of phospho-EGFR (y-axis) is plotted against total EGFR (x-axis) within individual EGFR positive vesicles. As can be seen, apart from EGFRvIII, all constructs responded, dose dependently, to the high
affinity ligands EGF, HB-EGF, TGFA and BTC by an increase in EGFR phosphorylation. Low affinity ligands AREG, EREG and EPGN were not able to stimulate EGFR-wt constructs, but resulted in a strong activation of extracellular domain mutations EGFR^{R108K}, EGFR^{A289V} and EGFR^{G598V}. The absence of responses in EGFRvIII expressing cells is in line with the notion that this mutation is independent of ligand. Images were taken at 40x magnification.

Figure 5: C-terminal truncating mutations are associated with response to depatux-m + TMZ. Deletion of exons 25-27 result in a frame shift of the protein. Such changes are associated with response to depatux-m + TMZ (top right). Nonsense and frameshift mutations show a similar trend (middle panels, left lolliplot of individual mutations, right survival analysis), as do the C-terminal SNVs (bottom panels, left lolliplot of individual mutations, right survival analysis). Hazard rates of individual changes are listed in table 1.
Supplementary table 1 multivariable analysis

	HR	95% CI	p	
EGFR SNV present				
depatux-m	0.718	0.430	1.199	0.206
TMZ+depatux-m	0.448	0.263	0.760	0.003
MGMT Methylated	0.447	0.285	0.702	0.000
Age >40, <60	1.128	0.316	2.488	0.819
Age >60	1.434	0.508	4.053	0.496
EGFRvIII absent				
depatux-m	1.096	0.601	1.999	0.764
TMZ+depatux-m	0.566	0.310	1.033	0.064
MGMT Methylated	0.519	0.315	0.853	0.010
Age >40, <60	1.030	0.308	3.443	0.962
Age >60	1.62568	0.4952	5.337	0.423
Supplementary table 2: PTEN mutations in intelligence 2 samples.

PATID	sex	treatment arm	censor	OS (months)	COSMIC_ID	variantFreq	consequence	Mutation			
68	F	dep-m	1	19.0	COSM1675407	0.721	missense	p.Tyr46Cys			
88	M	TMZ+dep-m	1	3.1	COSM5027	0.886	missense	p.Asp162Glu			
107	M	TMZ+dep-m	1	3.7	COSM28917	0.534	missense	p.Gly129Glu			
124	M	TMZ+dep-m	1	1.1		0.738	frameshift	p.Ile101SerfsTer12			
149	F	TMZ	CCNU	1	4.2	COSM44896	0.736	frameshift	p.Thr319LysfsTer24		
178	F	dep-m	1	3.8	COSM5109	0.677	missense	p.Ile101Thr			
188	M	dep-m	0	18.7		0.368	missense	p.Arg159Gly			
191	F	TMZ	CCNU	1	19.1	COSM23643	0.468	frameshift	p.Glu106Ter		
191	F	TMZ	CCNU	1	19.1	COSM30611	0.381	missense	p.Asp107Tyr		
191	F	TMZ	CCNU	1	19.1	COSM23643	0.422	stop_gained	p.CysGlu105TerGln		
267	M	dep-m	1	3.4	COSM13459	0.722	frameshift	p.Ser113ArgfsTer2			
295	M	TMZ	CCNU	1	2.9	COSM249839	0.762	missense	p.Tyr68Asn		
299	M	TMZ+dep-m	1	9.4	COSM1173628	0.375	stop_gained	p.Arg233Ter			
321	M	TMZ+dep-m	1	24.1		0.503	missense	p.Gly209Glu			
322	F	TMZ+dep-m	1	6.0	COSM23566	0.843	missense	p.Asp92Tyr			
323	M	TMZ	CCNU	1	8.9	COSM4894833	0.609	frameshift	p.Glu43LysfsTer11		
330	M	TMZ	CCNU	1	5.2	COSM4995	0.602	missense	p.Cys136Arg		
340	M	dep-m	1	14.3	COSM1627662	0.222	frameshift	p.Cys296Ter			
361	M	dep-m	1	7.1	COSM5347060	0.654	missense	p.Phe195Ser			
375	M	dep-m	0	18.2	COSM5033	0.816	missense	p.Arg130Gln			
375	M	dep-m	0	18.2	COSM5033	0.288	frameshift	p.Arg130GlnfsTer4			
391	F	TMZ	CCNU	1	8.0	COSM249825	0.728	stop_gained	p.Gly127Ter		
396	F	dep-m	1	8.4	COSM5347090	0.226	missense	p.His259Pro			
418	M	TMZ+dep-m	1	6.8	COSM5151	0.159	stop_gained	p.Arg335Ter			
435	M	TMZ	CCNU	1	13.9	COSM5160	0.704	stop_gained	p.Gln261Ter		
447	M	TMZ	CCNU	1	7.4	COSM5157	0.759	missense	p.Trp111Ser		
454	M	TMZ	CCNU	1	8.8	COSM921142	0.629	frameshift	p.Ile300MetsfsTer7		
457	M	TMZ+dep-m	0	10.6	COSM1666994	0.747	missense	p.Met35Val			
490	M	dep-m	1	3.0	COSM1173628	0.587	stop_gained	p.Arg233Ter			
512	M	TMZ+dep-m	1	4.5	COSM4898	0.630	frameshift	p.Thr319Ter			
538	F	TMZ	CCNU	1	6.5	COSM1666994	0.467	missense	p.Met35Val		
555	F	dep-m	1	5.9	COSM4936	0.652	frameshift	p.Phe347SerfsTer5			
576	M	dep-m	1	1.9	COSM921127	0.399	frameshift	p.Pro248ThrfsTer5			
594	M	TMZ+dep-m	1	18.3	COSM4936	0.623	frameshift	p.Phe347TyrfsTer13			
631	M	TMZ	CCNU	1	9.6	COSM428079	0.273	missense	p.Arg47Lys		
636	M	dep-m	1	17.8	COSM13578	0.445	missense	p.Cys124Tyr			
649	M	dep-m	1	5.5	COSM1744939	0.891	frameshift	p.Asn329LysfsTer14			
657	F	dep-m	1	1.2	COSM4963	0.569	missense	p.Tyr76Asn			
695	M	TMZ+dep-m	0	20.6	COSM1173647	0.232	missense	p.Pro246Leu			
696	M	TMZ+dep-m	0	20.3	COSM5295	0.534	stop_gained	p.Ser229Ter			
730	F	dep-m	0	21.0	COSM23654	0.631	frameshift	p.Glu235LysfsTer21			
768	M	dep-m	0	19.5	COSM5090	0.620	missense	p.Pro96Leu			
786	M	dep-m	1	7.8	COSM5151	0.455	stop_gained	p.Arg335Ter			
----	---	------------	---	-----------	-------	-------	-------	----------------	----------------	----------------	
791	F	TMZ+dep-m	0	19.2	COSM5033	0.533	missense	p.Arg130Gln			
816	F	TMZ+dep-m	1	5.4	COSM1173628	0.731	stop_gained	p.Arg233Ter			
867	M	TMZ+dep-m	1	4.1	COSM5163	0.740	stop_gained	p.Gln87Ter			
869	M	TMZ+dep-m	0	19.3		0.609	frameshift	p.Asn311Ter			
892	M	TMZ	CCNU	1	9.4	COSM28884	0.399	missense	p.Ala126Gly		
919	F	TMZ+dep-m	1	8.9	COSM5082	0.381	missense	p.Lys125Gln			
962	M	dep-m	1	0.2		0.699	missense	p.Gly209Glu			
974	M	TMZ	CCNU	1	10.2	COSM4408405	0.479	missense	p.Ile33Thr		
976	M	TMZ	CCNU	1	7.0	COSM35849	0.729	frameshift	p.Glu242Ter		
999	M	TMZ+dep-m	1	2.2	COSM5313	0.546	stop_gained	p.Ser59Ter			
1017	M	TMZ+dep-m	1	11.0	COSM5103	0.701	missense	p.Gly156Arg			
1032	M	TMZ+dep-m	0	18.4	COSM5039	0.612	missense	p.Arg173His			
1057	M	TMZ+dep-m	0	17.9	COSM3736942	0.192	missense	p.Leu247Ser			
1062	M	TMZ+dep-m	1	6.1	COSM27635	0.418	missense	p.Phe341Cys			
1065	F	dep-m	1	4.2	COSM5291	0.734	stop_gained	p.Tyr225Ter			
1077	M	dep-m	1	10.5	COSM1744939	0.696	frameshift	p.Asn329LysfsTer14			
1083	M	dep-m	1	9.0	COSM5105	0.536	missense	p.Pro95Leu			
1096	M	TMZ+dep-m	1	17.3	COSM428084	0.358	stop_gained	p.Tyr88Ter			
1099	F	TMZ+dep-m	1	2.0	COSM5123	0.828	missense	p.Gly132Asp			
1110	M	dep-m	1	13.0	COSM308347	0.363	stop_gained	p.Arg130Ter			
1120	M	TMZ+dep-m	1	15.4	COSM921068	0.463	missense	p.Asp52Val			
1128	F	TMZ+dep-m	1	6.3	COSM1173628	0.902	stop_gained	p.Arg233Ter			
Supplementary table 3: Multivariable analysis on PTEN and TP53

	HR	95% CI	p	
depatux-m	0.867	0.601	1.252	0.447
TMZ+depatux-m	0.603	0.416	0.875	0.008
MGMT Methylated	0.550	0.402	0.752	0.000
PTEN LOH	0.874	0.422	1.809	0.717
PTEN wt	0.749	0.289	1.939	0.552

	HR	95% CI	p	
depatux-m	0.872	0.600	1.266	0.470
TMZ+depatux-m	0.615	0.419	0.903	0.013
MGMT Methylated	0.534	0.390	0.732	0.000
TP53 mut	1.561	1.038	2.346	0.032
Supplementary table 4: Genes associated with overall survival in the CCNU|TMZ arm

gene.id	Beta	Z	P	Wald	HR		
AC078906.1	chr8:72M	1.4571	4.0197	0.0001	0.0001	4.2933	
DLGAP1	chr18:4M	0.4927	4.0999	0	0	1.6368	
TIAM2	chr6:155M	0.8737	4.0329	0.0001	0.0001	2.3957	
MIR3691	chr6:5M	1.8868	3.8936	0.0001	0.0001	6.5985	
AC026358.1	chr12:124M	0.9745	3.8199	0.0001	0.0001	2.6498	
ZNF518B	chr4:10M	-0.447	-3.6262	0.0003	0.0003	0.6395	
CACNG4	chr17:67M	0.3723	3.5885	0.0003	0.0003	1.4511	
THAP12P2	chr3:86M	0.6191	3.573	0.0004	0.0004	1.8573	
KLF11	chr2:10M	-0.7748	-3.5452	0.0004	0.0004	0.4608	
AC092111.1	chr12:8M	0.7364	3.4893	0.0005	0.0005	2.0884	
AC078842.1	chr7:137M	0.8516	3.5559	0.0004	0.0004	2.3433	
MPPED2	chr11:30M	0.4112	3.4334	0.0006	0.0006	1.5087	
LINGO1-AS1	chr15:78M	0.8874	3.4435	0.0006	0.0006	2.4288	
PLPPR5	chr1:99M	0.4524	3.3994	0.0007	0.0007	1.572	
CHRNA6	chr8:43M	-0.9506	-3.3905	0.0007	0.0007	0.3865	
AC021212.1	chr5:99M	1.0861	3.4171	0.0006	0.0006	2.9627	
KCNMB1	chr5:170M	-0.7434	-3.4392	0.0006	0.0006	0.4755	
SR5F12	chr6:89M	0.6848	3.4171	0.0006	0.0006	1.9833	
TNFSF10	chr3:173M	-0.6256	-3.4294	0.0006	0.0006	0.5349	
TRIM54	chr2:27M	0.841	3.4064	0.0007	0.0007	2.3188	
ZNF485	chr10:44M	-1.1614	-3.3717	0.0007	0.0007	0.3131	
HPX	chr11:6M	0.8625	3.3836	0.0007	0.0007	2.3691	
P2RY4	chrX:70M	1.0243	3.3601	0.0008	0.0008	2.785	
AFDN	chr6:168M	0.9076	3.3759	0.0007	0.0007	2.4785	
ST8SIA5	chr18:47M	0.2713	3.3194	0.0009	0.0009	1.3116	
AC027801.1	chr15:50M	0.5133	3.3209	0.0009	0.0009	1.6707	
AC124947.1	chr12:93M	-1.8773	-3.2929	0.001	0.001	0.153	
GREB1	chr2:12M	0.49	3.3113	0.0009	0.0009	1.6323	
DISP2	chr15:40M	0.4255	3.3284	0.0009	0.0009	1.5303	
AF121898.1	chr5:88M	1.3601	3.2639	0.0011	0.0011	3.8966	
GAD1	chr2:171M	0.25	3.2604	0.0011	0.0011	1.284	
OACYP1	chr18:59M	0.6397	3.2863	0.001	0.001	1.8959	
ADAMTS7P4	chr15:85M	0.6119	3.3071	0.0009	0.0009	1.8439	
BMS1P2	chr10:48M	0.9866	3.3293	0.0009	0.0009	2.6821	
LINC00475	chr9:92M	-0.4167	-3.2173	0.0013	0.0013	0.6592	
ZNF662	chr3:43M	0.849	3.2276	0.0012	0.0012	2.3372	
AC108215.1	chr4:57M	0.3885	3.2032	0.0014	0.0014	1.4747	
HEG1	chr3:125M	-0.9015	-3.2191	0.0013	0.0013	0.406	
NCAPD3	chr11:134M	1.4635	3.2152	0.0013	0.0013	4.3212	
C2orf80	chr2:208M	0.4878	3.2069	0.0013	0.0013	1.6288	
ACSL5	chr10:112M	-0.6688	-3.1932	0.0014	0.0014	0.5123	
Gene Symbol	Chromosome	Start Position	BMax	BMin	p-Value	FDR	Fold Change
-------------	------------	----------------	------	------	---------	-----	-------------
DRD2	chr11:113M	0.4139	3.1899	0.0014	0.0014	1.5127	
AP004608.1	chr11:134M	0.6228	3.2575	0.0011	0.0011	1.8642	
TTC24	chr1:157M	0.6928	3.1743	0.0015	0.0015	1.9993	
HS6ST2	chrX:133M	0.332	3.175	0.0015	0.0015	1.3937	
ABI3BP	chr3:101M	-0.274	-3.1476	0.0016	0.0016	0.7603	
HAPLN1	chr5:84M	0.3172	3.1293	0.0018	0.0018	1.3732	
TRMT9B	chr8:13M	0.4713	3.1394	0.0017	0.0017	1.6021	
COL28A1	chr7:7M	0.2533	3.119	0.0018	0.0018	1.2882	
ZNF433	chr19:12M	0.8285	3.1524	0.0016	0.0016	2.2898	
Supplementary table 5: Genes associated with survival in the deptux-m monotherapy arm

gene.id	Beta	Z	P	Wald	HR		
TRIM22	chr11:6M	-1.0041	-4.0092	0.0001	0.3664		
BANK1	chr4:102M	-0.9445	-4.0117	0.0001	0.3889		
AC115522.1	chr19:44M	1.6241	3.8821	0.0001	5.074		
VNN1	chr6:133M	-1.5262	-4.0537	0.0001	0.2174		
XAF1	chr17:7M	-0.4941	-3.7976	0.0001	0.6101		
ZFHX3	chr16:73M	-1.5297	-3.828	0.0001	0.2166		
PITHD1	chr12:113M	1.4973	3.6849	0.0002	4.4695		
AL162431.1	chr1:181M	-1.4981	-3.5314	0.0004	0.2235		
UBE3B	chr12:110M	-2.5423	-3.517	0.0004	0.0787		
LBR	chr1:225M	0.9501	3.5107	0.0004	2.586		
KIAA1671	chr22:25M	-1.0162	-3.497	0.0005	0.362		
EMC1	chr1:19M	1.4416	3.5236	0.0004	4.2275		
ATP5MGL	chr22:43M	-1.5804	-3.4824	0.0005	0.2059		
FCO1	chr3:46M	-1.1549	-3.465	0.0005	0.3151		
TFR2	chr7:101M	0.531	3.4423	0.0006	1.7005		
Tmprss2	chr21:41M	-0.7576	-3.3367	0.0008	0.4688		
Tmem221	chr19:17M	-0.6403	-3.4369	0.0006	0.5272		
SSTR3	chr22:37M	0.8569	3.3997	0.0007	2.3557		
Mybphl	chr1:109M	0.9547	3.473	0.0005	2.5978		
Ugt2	chr13:96M	0.8662	3.4205	0.0006	2.3778		
Rnf219	chr13:79M	0.904	3.4486	0.0006	2.4695		
Zdhhc2	chr8:17M	-0.7237	-3.4311	0.0006	0.485		
Ac009831.1	chr18:32M	-1.426	-3.4312	0.0006	0.2403		
Pyr1	chr17:82M	0.6483	3.3838	0.0007	1.9123		
Apobec3f	chr22:39M	-0.721	-3.3344	0.0009	0.4863		
Gimap8	chr7:150M	-0.8466	-3.3177	0.0009	0.4289		
Tnfsf10	chr3:173M	-0.6548	-3.2858	0.001	0.5195		
Ip05	chr13:98M	1.1989	3.279	0.001	3.3166		
Rf0091	chr9:46M	0.7265	3.2461	0.0012	2.0679		
Unc5a	chr5:177M	0.4481	3.2576	0.0011	1.5653		
Tfrc	chr3:196M	0.7306	3.2512	0.0011	2.0764		
Slc25a15	chr13:41M	0.9712	3.2035	0.0014	2.6411		
Npas2	chr2:101M	-0.4377	-3.2475	0.0012	0.6455		
Krt8	chr12:53M	-0.9224	-3.2741	0.0011	0.3976		
KCNJ4	chr22:38M	0.476	3.2011	0.0014	1.6096		
Flil	chr11:129M	-0.8218	-3.2209	0.0013	0.4397		
Ac091826.2	chr5:88M	1.027	3.2019	0.0014	2.7927		
Morc4	chrX:107M	-1.2272	-3.2367	0.0012	0.2931		
Utrn	chr6:145M	-0.9107	-3.2264	0.0013	0.4023		
Ccdc69	chr5:151M	-0.6505	-3.181	0.0015	0.5218		
Gene	Chr/MM	Value 1	Value 2	p Value 1	p Value 2	FDR Value 1	FDR Value 2
------------	------------	----------	----------	-----------	-----------	-------------	-------------
EPHB6	chr7:143M	0.4757	3.1677	0.0015	0.0015	1.6092	
ADA2	chr22:17M	-0.4813	-3.1768	0.0015	0.0015	0.618	
SNORD91A	chr17:2M	1.5316	3.1813	0.0015	0.0015	4.6255	
MAF	chr16:80M	-0.7646	-3.1995	0.0014	0.0014	0.4655	
GBAP1	chr1:155M	0.9165	3.1533	0.0016	0.0016	2.5005	
CASP10	chr2:201M	-0.9303	-3.1604	0.0016	0.0016	0.3944	
LTA4H	chr12:96M	-1.1694	-3.1557	0.0016	0.0016	0.3106	
RTBDN	chr19:13M	1.3057	3.112	0.0019	0.0019	3.6901	
APOC1P1	chr19:45M	-1.1163	-3.1376	0.0017	0.0017	0.3275	
Supplementary table 6: Genes associated with survival in the deptux-m + TMZ combination arm

gene.id	Beta	Z	P	Wald	HR			
YEATS2	chr3:184M	1.3252	3.667	0.0002	0.0002	3.7628		
HIST1H4K	chr6:28M	0.9528	3.524	0.0004	0.0004	2.5929		
SLC2A4	chr14:92M	-0.3454	-3.4523	0.0006	0.0006	0.708		
FOXN3	chr14:89M	-1.6641	-3.3232	0.0009	0.0009	0.1894		
DNMBP	chr10:100M	1.024	3.2998	0.001	0.001	2.7842		
AC005609.5	chr5:141M	-1.2471	-3.2581	0.0011	0.0011	0.2873		
DGLUCY	chr14:91M	-1.3433	-3.2956	0.001	0.001	0.261		
NDRG2	chr14:21M	-0.6052	-3.2525	0.0011	0.0011	0.546		
HEATR4	chr14:74M	-0.6854	-3.2447	0.0012	0.0012	0.5039		
DBF4P1	chr10:64M	2.1913	3.2992	0.001	0.001	2.7842		
GHRL	chr3:10M	-1.2013	-3.2083	0.0013	0.0013	0.3008		
PEbp4	chr8:23M	-1.2872	-3.1392	0.0017	0.0017	0.276		
COL4A3	chr2:227M	-0.3814	-3.1369	0.0017	0.0017	0.681		
VMAC	chr19:6M	-1.0008	-3.0733	0.0021	0.0021	0.3676		
GTF2H2B	chr5:70M	0.5182	3.0141	0.0026	0.0026	1.679		
LINC01285	chrX:119M	-0.6189	-3.0685	0.0022	0.0022	0.5385		
DCHS2	chr1:7M	1.0314	3.0571	0.0022	0.0022	2.8051		
AL713852.1	chr1:185M	-0.6638	-3.0049	0.0027	0.0027	0.5149		
LINC01198	chr13:46M	0.6149	2.9892	0.0022	0.0022	1.8494		
MAD2L1BP	chr6:44M	1.464	3.0195	0.0025	0.0025	4.3231		
DCHS2	chr4:154M	-0.4987	-2.9584	0.0031	0.0031	0.6073		
EML5	chr1:7M	1.0314	3.0571	0.0022	0.0022	2.8051		
XPOS	chr6:44M	1.6162	2.9655	0.003	0.003	5.034		
AL109615.1	chr6:44M	1.3522	2.9455	0.0032	0.0032	3.8658		
LINC00628	chr1:204M	0.9164	2.8936	0.0038	0.0038	2.5003		
GUSBP9	chr5:71M	1.3134	2.9304	0.0034	0.0034	3.7187		
TMEM1311	chr4:154M	0.6672	2.9144	0.0036	0.0036	1.9487		
AC006487.2	chr1:7M	-1.1308	-2.9185	0.0035	0.0035	0.3228		
FMO2	chr1:171M	-0.6225	-2.9264	0.0034	0.0034	0.5366		
ZC3H11B	chr1:220M	1.1361	2.9291	0.0034	0.0034	3.1145		
PEL1	chr14:56M	-0.7798	-2.8948	0.0038	0.0038	0.4585		
FAM20B	chr1:179M	1.2708	2.881	0.004	0.004	3.5639		
NAP1L2	chrX:73M	-0.3979	-2.8705	0.0041	0.0041	0.6717		
GSG1L	chr16:28M	-0.3134	-2.8455	0.0044	0.0044	0.731		
HSD17B7P2	chr10:38M	0.7211	2.8532	0.0043	0.0043	2.0568		
SMIM7	chr19:17M	-1.3593	-2.8815	0.004	0.004	0.2568		
GGTA1P	chr9:121M	-0.4849	-2.8945	0.0038	0.0038	0.6158		
TTY15	chrY:13M	-0.3591	-2.7624	0.0057	0.0057	0.6983		
KLHL31	chr6:54M	-1.0894	-2.8264	0.0047	0.0047	0.3364		
AC093752.3	chr4:119M	-1.0293	-2.8155	0.0049	0.0049	0.3573		
Gene	Chromosome	Start	Strand	Direction	Log2 Fold Change	p-value	q-value	FDR Value
-----------------	------------	-------	--------	-----------	-----------------	---------	---------	-----------
METTL7A	chr12:51M				-0.4612	0.0051	0.0051	0.6305
AC109361.1	chr4:106M	-1.3182			-2.8015	0.0047	0.0047	0.2676
CABLES2	chr20:62M	0.8582			2.791	0.0053	0.0053	2.359
TPGS2	chr18:37M	1.0585			2.759	0.0058	0.0058	2.8821
PLSCR2	chr3:146M	-0.8467			-2.7271	0.0064	0.0064	0.4288
ACO51619.3	chr15:45M	-0.5114			-2.7462	0.006	0.006	0.5997
AP0000793.1	chr11:83M	-0.8667			-2.7259	0.0064	0.0064	0.4203
DVL3	chr3:184M	1.2316			2.8266	0.0047	0.0047	3.4267
Supplementary figure 1: Lolliplot of hotspot mutations in TP53.								
Supplementary figure 2: The absence EGFRvIII mutations are associated with response to depatux-m + TMZ. Listed are data from all treatment arms.								
Supplementary figure 3: Markers associated with survival stratified by treatment arm and MGMT promoter methylation status. Because MGMT status is predictive for response to TMZ chemotherapy, the molecular markers associated with survival (EGFR-SNVs and absent EGFRvIII expression) were stratified for this factor. Although sample size is small, MGMT promoter methylation was associated with improved outcome in the various treatment arms. A) presence of EGFR SNVs stratified by MGMT promoter methylation status. B) absence of EGFRvIII expression stratified by MGMT promoter methylation status. Tables are included listing the multivariable analysis including treatment and MGMT status (top tables) and the median survival per group (bottom tables). Multivariable analysis confirms that both the combination treatment and MGMT promoter methylation are associated with improved survival.								
Supplementary figure 4: Glioblastoma samples containing SNVs often do not express \textit{EGFRvIII} and vice versa in samples of the BELOB trial (top panel) and in TCGA samples (bottom panel).								
Supplementary figure 5: Subcellular localization of various EGFR-mutation constructs. A) Representative images showing predominant membrane localization of EGFRwt and cytoplasmic localization of EGFRVIII. B) Quantification of images in A. Images were taken at 40x magnification.								
Supplementary figure 6: EGFR activation is associated with antibody internalization. A) EGFR activation by various stimuli (EGF, HBEGF, BTC, EPN and AREG, lower panels: unstimulated) results in the internalization of EGFR (number of EGFR-positive vesicles/endosomes) regardless of the presence of blocking antibodies (ABT806 or cetuximab/erbixtux) and type of stimulus. Internalization and activation can be blocked by type I (erlotinib) and type II (lapatinib) inhibitors. B) to demonstrate antibody uptake, we incubated live cells with cetuximab for 2 hr, and after fixation, we stained for cetuximab using only a secondary antibody (green). EGFR counterstaining is shown in red. Unstimulated (starved) cells predominantly show extracellular localization (left). After EGF stimulation, an increase in the number of EGFR-positive vesicles (endosomes) is seen, all of which stain positive for cetuximab. C) Quantification of images in B. As can be seen, EGF stimulation results in an increase in EGFR-positive vesicles in EGFRwt, EGFR_{R108K} and EGFR_{G598V} and these spots stain positive for cetuximab (Y-axis) confirming increased uptake. Images were taken at 40x magnification.								
Supplementary figure 7: mutations in PTEN are associated with response to depatux-m + TMZ. Top: lollipops showing hotspot mutations in PTEN. Bottom, survival curves of samples containing biallelic inactivation of PTEN. Individual variants are listed in table 2.								
Supplementary figure 8: mutations in ARID1A, DHFR and RP11.770j4.1 are associated with response to depatux-m + TMZ. Top: lollipop showing hotspot mutations in ARID1A. Bottom, survival curves of samples containing SNVs and LOH of ARID1A (individual variants are listed in table 2), SNVs in DHFR and SNVs in RP11.770j4.1.								
Supplementary figure 9: A) Coexpression of genes associated with survival in each of the treatment arms of the study. B) pathway analysis of genes associated with survival. C) NDRG2 was specifically associated with survival in the depatux-m + TMZ arm. Such association was absent in the other two arms of the study.								
Supplementary figure 10: VST normalized expression of CDK4 (left) and FOXF1 (right) in relation to overall survival (y-axis). Red dots depict short survivors (< 1y) and in black long survivors (>= 1y).								
EGFR mutation	Treatment	HR	95% CI					
---	---	---	---	---	---	---	---	
any mutation	TMZ	CCNU	0.751	0.444	1.272			
	ABT414	0.495	0.283	0.865				
	TMZ+ABT414	0.1058	0.530	2.113				
	TMZ+ABT414	0.510	0.247	1.055				
hotspot mutation	TMZ	CCNU	1.058	0.530	2.113			
	ABT414	0.799	0.313	2.037				
	TMZ+ABT414	0.386	0.138	1.082				
A289	TMZ	CCNU	0.799	0.313	2.037			
	ABT414	0.386	0.138	1.082				
	TMZ+ABT414	0.254	0.027	2.370				
G598	TMZ	CCNU	1.814	0.325	10.120			
	ABT414	1.076	0.207	5.590				
	TMZ+ABT414	1.004	0.570	1.771				
	TMZ+ABT414	0.582	0.311	1.088				
R108	TMZ	CCNU	0.894	0.553	1.446			
	ABT414	0.673	0.412	1.099				
	TMZ+ABT414	0.285	0.087	0.937				
	TMZ+ABT414	0.255	0.077	0.846				
EGFRvIII absent	TMZ	CCNU	1.691	0.399	7.166			
	ABT414	0.629	0.104	3.804				
	TMZ+ABT414	2.145	0.117	39.265				
	TMZ+ABT414	0.351	0.031	3.978				
EGFRvIII present	TMZ	CCNU	1.414	0.085	23.570			
	ABT414	0.000	0.000	Inf				
	TMZ+ABT414	0.107	0.009	1.278				
	TMZ+ABT414	0.077	0.005	1.192				
∆ex25-27	TMZ	CCNU	0.514	0.229	1.155			
	ABT414	0.309	0.130	0.735				
	TMZ+ABT414	0.480	0.181	1.271				
	TMZ+ABT414	0.175	0.054	0.574				
Pr(>	z)	n	events	survival (months)			
---------	----	--------	-------------------					
0.287	28	26	6.8					
	37	31	8.4					
0.014	33	26	11.7					
0.873	15	14	7.1					
0.070	21	20	7.0					
	21	16	10.5					
0.638	8	8	7.5					
0.070	11	11	6.2					
	11	8	10.4					
0.229	4	4	4.2					
	1	0	NA					
	2	1	7.8					
0.497	3	2	5.2					
0.931	5	5	7.8					
	6	6	9.3					
0.988	22	20	9.1					
0.090	35	30	7.9					
	28	21	14.1					
0.649	43	40	7.5					
0.114	33	29	7.3					
	33	27	9.8					
0.039	11	11	5.1					
0.026	6	5	9.4					
	5	4	16.9					
0.476	5	3	8.4					
0.614	6	5	5.5					
	3	2	14.4					
0.607	2	2	6.6					
0.398	1	1	3.9					
	2	2	14.1					
0.809	2	2	6.8					
0.999	1	1	3.5					
	3	1	NA					
0.077	3	3	5.1					
0.067	4	2	17.8					
	3	1	NA					
0.107	16	14	5.1					
0.008	15	12	8.5					
	13	9	16.9					
0.140	13	13	5.1					
0.004	8	7	8.8					
	7	4	18.3					
EGFR mutation/Gene	Treatment	HR	95% CI	Pr(>	z)	n	
--------------------	-----------	-----	----------	----------	----			
any mutation	TMZ	CCNU	0.751	0.444 1.272	0.287	28		
	ABT414	0.495	0.283 0.865	0.014	37			
	TMZ+ABT414	1.058	0.530 2.113	0.873	15			
	ABT414	0.510	0.247 1.055	0.070	21			
hotspot mutation	TMZ	CCNU	1.058	0.530 2.113	0.873	15		
	ABT414	0.510	0.247 1.055	0.070	21			
	TMZ+ABT414	0.495	0.283 0.865	0.014	33			
A289	TMZ	CCNU	0.799	0.313 2.037	0.638	8		
	ABT414	0.386	0.138 1.082	0.070	11			
	TMZ+ABT414	0.254	0.027 2.370	0.229	11			
G598	TMZ	CCNU	1.814	0.325 10.120	0.497	9		
	ABT414	1.076	0.207 5.590	0.931	11			
	TMZ+ABT414	0.285	0.087 0.937	0.039	6			
R108	TMZ	CCNU	1.044	0.570 1.771	0.988	22		
	ABT414	0.582	0.311 1.088	0.090	35			
	TMZ+ABT414	0.285	0.087 0.937	0.039	6			
EGFRvIII absent	TMZ	CCNU	0.894	0.553 1.446	0.649	33		
	ABT414	0.673	0.412 1.099	0.114	33			
	TMZ+ABT414	0.254	0.027 2.370	0.229	11			
EGFRvIII present	TMZ	CCNU	0.914	0.570 1.446	0.649	33		
	ABT414	0.673	0.412 1.099	0.114	33			
	TMZ+ABT414	0.254	0.027 2.370	0.229	11			
∆ex25-27	TMZ	CCNU	0.285	0.087 0.937	0.039	6		
	ABT414	0.255	0.077 0.846	0.026	5			
	TMZ+ABT414	0.254	0.027 2.370	0.229	11			
∆ex25-26	TMZ	CCNU	1.691	0.399 7.166	0.476	6		
	ABT414	0.629	0.104 3.804	0.614	3			
	TMZ+ABT414	0.255	0.077 0.846	0.026	5			
∆ex27	TMZ	CCNU	2.145	0.117 39.265	0.607	2		
	ABT414	0.351	0.031 3.978	0.398	2			
	TMZ+ABT414	0.255	0.077 0.846	0.026	5			
C-term del	TMZ	CCNU	1.414	0.085 23.570	0.809	2		
	ABT414	0.351	0.031 3.978	0.398	2			
	TMZ+ABT414	0.000	0.000 Inf	0.999	3			
C-term SNV	TMZ	CCNU	0.107	0.009 1.278	0.077	3		
	ABT414	0.077	0.005 1.192	0.067	4			
	TMZ+ABT414	0.000	0.000 Inf	0.999	3			
all-C-term	TMZ	CCNU	0.514	0.229 1.155	0.107	16		
	ABT414	0.309	0.130 0.735	0.008	15			
	TMZ+ABT414	0.175	0.054 0.574	0.004	13			
all-C-term trunc	TMZ	CCNU	0.480	0.181 1.271	0.140	8		
	ABT414	0.175	0.054 0.574	0.004	7			
	TMZ+ABT414	0.175	0.054 0.574	0.004	7			

| PTEN all | TMZ|CCNU | 16 |
Gene	TMZ	CCNU	ABT414	TMZ+ABT414					
PTEN HD	TMZ	CCNU	1.291	0.392					
	ABT414	0.540	0.125	0.475					
	TMZ+ABT414	3.088	1.229	0.914	14				
PTEN SNV	TMZ	CCNU	0.876	0.659					
	ABT414	0.636	0.475	0.914	18				
	TMZ+ABT414	1.207	0.417	0.013	15				
ARID1A SNV	TMZ	CCNU	0.541	0.139					
	ABT414	0.086	0.015	0.125	10				
	TMZ+ABT414	3.410	1.258	0.079	15				
ARID1A LOH	TMZ	CCNU	0.286	0.269					
	ABT414	0.047	0.075	0.961	21				
	TMZ+ABT414	1.745	0.395	0.043	15				
ARID1A SNV+LOH	TMZ	CCNU	0.572	0.322					
	ABT414	0.158	0.100	1.036	27				
	TMZ+ABT414	2.070	1.063	0.057	15				
RP11.770J1.4	TMZ	CCNU	0.831	0.322					
	ABT414	0.379	0.100	1.001	28				
	TMZ+ABT414	1.821	1.036	0.057	15				
DHFR	TMZ	CCNU	1.003	0.587					
	ABT414	0.599	0.345	1.001	36				
	TMZ+ABT414	1.677	0.992	0.050	36				
Events	Survival (months)								
--------	------------------								
26	6.8								
31	8.4								
26	11.7								
14	7.1								
20	7.0								
16	10.5								
8	7.5								
11	6.2								
8	10.4								
4	4.2								
0	NA								
1	7.8								
2	5.2								
5	7.8								
6	9.3								
20	9.1								
30	7.9								
21	14.1								
40	7.5								
29	7.3								
27	9.8								
11	5.1								
5	9.4								
4	16.9								
3	8.4								
5	5.5								
2	14.4								
2	6.6								
1	3.9								
2	14.1								
2	6.8								
1	3.5								
1	NA								
3	5.1								
2	17.8								
1	NA								
14	5.1								
12	8.5								
9	16.9								
13	5.1								
7	8.8								
4	18.3								
16	8.4								
---	-----								
19	8.4								
15	10.2								
13	5.4								
9	5.5								
6	8.2								
13	8.8								
15	8.7								
11	11.0								
2	2.6								
5	5.4								
3	16.6								
3	10.5								
0	NA								
5	15.1								
5	4.2								
5	8.2								
8	15.4								
10	6.7								
17	8.4								
4	14.8								
27	9.5								
32	7.9								
28	11.7								
Gene	Treatment	HR	95% CI	Pr(>	z)	n	events	survival (months)
--------------	---------------	------	-----------	---------	----	--------	------------------		
PTEN all	TMZ	CCNU	0.692	0.353	1.353	0.282	16	16	8.4
	ABT414	0.499	0.241	1.034	0.061		23	19	8.4
	TMZ+ABT414						20	15	10.2
PTEN HD	TMZ	CCNU	1.291	0.540	3.088	0.566	14	13	5.4
	ABT414	0.392	0.125	1.229	0.108		9	9	5.5
	TMZ+ABT414						7	6	8.2
PTEN SNV	TMZ	CCNU	0.876	0.636	1.207	0.417	13	13	8.8
	ABT414	0.659	0.475	0.914	0.013		18	15	8.7
	TMZ+ABT414						15	11	11.0
ARID1A SNV	TMZ	CCNU	0.541	0.086	3.410	0.513	2	2	2.6
	ABT414	0.139	0.015	1.258	0.079		5	5	5.4
	TMZ+ABT414						5	3	16.6
ARID1A LOH	TMZ	CCNU	0.286	0.047	1.745	0.175	3	3	10.5
	ABT414						1	0	NA
	TMZ+ABT414						6	5	15.1
AIRD1A SNV+LOH	TMZ	CCNU	0.572	0.158	2.070	0.395	5	5	4.2
	ABT414	0.269	0.075	0.961	0.043		6	5	8.2
	TMZ+ABT414						11	8	15.4
RP11.770J1.4	TMZ	CCNU	0.831	0.379	1.821	0.643	10	10	6.7
	ABT414	0.322	0.100	1.036	0.057		19	17	8.4
	TMZ+ABT414						8	4	14.8
DHFR	TMZ	CCNU	1.003	0.599	1.677	0.992	28	27	9.5
	ABT414	0.587	0.345	1.001	0.050		36	32	7.9
	TMZ+ABT414						36	28	11.7
------------------------	---------	---------	---------						
EGFR SNV present									
	HR	95% CI							
ABT414	0.718	0.430	1.199						
TMZ+ABT414	0.448	0.263	0.760						
MGMT Methylated	0.447	0.285	0.702						
Age >40, <60	1.128	0.316	2.488						
Age >60	1.434	0.508	4.053						
EGFRvIII absent									
	HR	95% CI							
ABT414	1.096	0.601	1.999						
TMZ+ABT414	0.566	0.310	1.033						
MGMT Methylated	0.519	0.315	0.853						
Age >40, <60	1.030	0.308	3.443						
Age >60	1.62568	0.4952	5.337						
p									
-----	-------								
0.206	0.003								
0.000	0.819								
0.496									
p									
0.764	0.064								
0.010	0.962								
0.423									
PATID	sex	treatment arm	censor	OS (months)	COSMIC_ID	variantFreq			
-------	-----	---------------	--------	-------------	-------------	-------------			
68	F	ABT414	1	19.0	COSM1675407	0.721			
88	M	TMZ+ABT414	1	3.1	COSM5027	0.886			
107	M	TMZ+ABT414	1	3.7	COSM28917	0.534			
124	M	TMZ+ABT414	1	1.1		0.738			
149	F	TMZ	CCNU	1	4.2	COSM4896	0.736		
178	F	ABT414	1	3.8	COSM5109	0.677			
188	M	ABT414	0	18.7		0.368			
191	F	TMZ	CCNU	1	19.1	COSM23643	0.468		
191	F	TMZ	CCNU	1	19.1	COSM30611	0.381		
191	F	TMZ	CCNU	1	19.1	COSM23643	0.422		
267	M	ABT414	1	3.4	COSM13459	0.722			
295	M	TMZ	CCNU	1	2.9	COSM249839	0.762		
299	M	TMZ+ABT414	1	9.4	COSM1173628	0.375			
321	M	TMZ+ABT414	1	24.1		0.503			
322	F	TMZ+ABT414	1	6.0	COSM23566	0.843			
323	M	TMZ	CCNU	1	8.9	COSM4894833	0.609		
330	M	TMZ	CCNU	1	5.2	COSM4995	0.602		
340	M	ABT414	1	14.3	COSM1627662	0.222			
361	M	ABT414	1	7.1	COSM5347060	0.654			
375	M	ABT414	0	18.2	COSM5033	0.816			
375	M	ABT414	0	18.2	COSM5033	0.288			
391	M	TMZ	CCNU	1	8.0	COSM249825	0.728		
396	F	ABT414	1	8.4	COSM5347090	0.226			
418	M	TMZ+ABT414	1	6.8	COSM5151	0.159			
435	M	TMZ	CCNU	1	13.9	COSM5160	0.704		
447	M	TMZ+ABT414	1	7.4	COSM5157	0.759			
454	M	TMZ	CCNU	1	8.8	COSM921142	0.629		
457	M	TMZ+ABT414	0	10.6	COSM1666994	0.747			
490	M	ABT414	1	3.0	COSM1173628	0.587			
512	M	TMZ+ABT414	1	4.5	COSM4898	0.630			
538	F	TMZ	CCNU	1	6.5	COSM1666994	0.467		
555	F	ABT414	1	5.9	COSM4936	0.652			
576	M	ABT414	1	1.9	COSM921127	0.399			
594	M	TMZ+ABT414	1	18.3	COSM4936	0.623			
631	M	TMZ	CCNU	1	9.6	COSM428079	0.273		
636	M	ABT414	1	17.8	COSM13578	0.445			
649	M	ABT414	1	5.5	COSM1744939	0.891			
657	F	ABT414	1	1.2	COSM4963	0.569			
695	M	TMZ+ABT414	0	20.6	COSM1173647	0.232			
696	M	TMZ+ABT414	0	20.3	COSM5295	0.534			
730	F	ABT414	0	21.0	COSM23654	0.631			
768	M	ABT414	0	19.5	COSM5090	0.620			
786	M	ABT414	1	7.8	COSM5151	0.455			
791	F	TMZ+ABT414	0	19.2	COSM5033	0.533			
816	F	TMZ+ABT414	1	5.4	COSM1173628	0.731			
867	M	TMZ+ABT414	1	4.1	COSM5163	0.740			
869	M	TMZ+ABT414	0	19.3		0.609			
892	M	TMZ	CCNU	1	9.4	COSM28884	0.399		
---	---	---	---	---	---				
	F	TMZ+ABT414	1	8.9	COSM5082	0.381			
	M	ABT414	1	0.2		0.699			
962	M	TMZ	CCNU	1	10.2	COSM4408405	0.479		
974	M	TMZ	CCNU	1	7.0	COSM35849	0.729		
999	M	TMZ+ABT414	1	2.2	COSM5313	0.546			
1017	M	TMZ+ABT414	1	11.0	COSM5103	0.701			
1032	M	TMZ+ABT414	0	18.4	COSM5039	0.612			
1057	M	TMZ+ABT414	0	17.9	COSM3736942	0.192			
1062	M	TMZ+ABT414	1	6.1	COSM27635	0.418			
1065	F	ABT414	1	4.2	COSM5291	0.734			
1077	M	ABT414	1	10.5	COSM1744939	0.696			
1083	M	ABT414	1	9.0	COSM5105	0.536			
1096	M	TMZ+ABT414	1	17.3	COSM428084	0.358			
1099	F	TMZ+ABT414	1	2.0	COSM5123	0.828			
1110	M	ABT414	1	13.0	COSM308347	0.363			
1120	M	TMZ+ABT414	1	15.4	COSM921068	0.463			
1128	F	TMZ+ABT414	1	6.3	COSM1173628	0.902			
consequence	Mutation								
-------------	--------------------------------								
missense_variant	p.Tyr46Cys								
missense_variant	p.Asp162Glu								
missense_variant	p.Gly129Glu								
frameshift_variant	p.Ile101SerfsTer12								
frameshift_variant	p.Thr319LysfsTer24								
missense_variant	p.Ile101Thr								
missense_variant	p.Arg159Gly								
frameshift_variant	p.Glu106Ter								
missense_variant	p.Asp107Tyr								
stop_gained	p.CysGlu105TerGln								
frameshift_variant	p.Ser113ArgfsTer2								
missense_variant	p.Tyr68Asn								
stop_gained	p.Arg233Ter								
missense_variant	p.Gly209Glu								
missense_variant	p.Asp92Tyr								
frameshift_variant	p.Glu43LysfsTer11								
missense_variant	p.Cys136Arg								
frameshift_variant	p.Cys296Ter								
missense_variant	p.Phe195Ser								
missense_variant	p.Arg130Gln								
frameshift_variant	p.Arg130GlnfsTer4								
stop_gained	p.Gly127Ter								
missense_variant	p.His259Pro								
stop_gained	p.Arg335Ter								
stop_gained	p.Gln261Ter								
missense_variant	p.Trp111Ser								
frameshift_variant	p.Ile300MetfsTer7								
missense_variant	p.Met35Val								
stop_gained	p.Arg233Ter								
frameshift_variant	p.Thr319Ter								
missense_variant	p.Met35Val								
frameshift_variant	p.Phe347SerfsTer5								
frameshift_variant	p.Pro248ThrfsTer5								
frameshift_variant	p.Phe347TyrfsTer13								
missense_variant	p.Arg47Lys								
missense_variant	p.Cys124Tyr								
frameshift_variant	p.Asn329LysfsTer14								
missense_variant	p.Tyr76Asn								
missense_variant	p.Pro246Leu								
stop_gained	p.Ser229Ter								
frameshift_variant	p.Glu235LysfsTer21								
missense_variant	p.Pro96Leu								
stop_gained	p.Arg335Ter								
missense_variant	p.Arg130Gln								
stop_gained	p.Arg233Ter								
stop_gained	p.Gln87Ter								
frameshift_variant	p.Asn311Ter								
missense_variant	p.Ala126Gly								
Type	Variant								
---------------------------	---------------								
missense_variant	p.Lys125Gln								
missense_variant	p.Gly209Glu								
missense_variant	p.Ile33Thr								
frameshift_variant	p.Glu242Ter								
stop_gained	p.Ser59Ter								
missense_variant	p.Gly156Arg								
missense_variant	p.Arg173His								
missense_variant	p.Leu247Ser								
missense_variant	p.Phe341Cys								
stop_gained	p.Tyr225Ter								
frameshift_variant	p.Asn329LysfsTer14								
missense_variant	p.Pro95Leu								
stop_gained	p.Tyr88Ter								
missense_variant	p.Gly132Asp								
stop_gained	p.Arg130Ter								
missense_variant	p.Asp52Val								
stop_gained	p.Arg233Ter								
	HR	95% CI	p						
----------------	------	--------	-------						
ABT414	0.867	0.601	1.252	0.447					
TMZ+ABT414	0.603	0.416	0.875	0.008					
MGMT Methylated	0.550	0.402	0.752	0.000					
PTEN LOH	0.874	0.422	1.809	0.717					
PTEN wt	0.749	0.289	1.939	0.552					
ABT414	0.872	0.600	1.266	0.470					
TMZ+ABT414	0.615	0.419	0.903	0.013					
MGMT Methylated	0.534	0.390	0.732	0.000					
TP53 mut	1.561	1.038	2.346	0.032					
gene.id	Beta	Z	P	Wald	HR				
----------	---------	---------	--------	--------	--------				
AC078906.1	1.4571	4.0197	0.0001	0.0001	4.2933				
DLGAP1	0.4927	4.0999	0	0	1.6368				
TIAM2	0.8737	4.0329	0.0001	0.0001	2.3957				
MIR3691	1.8868	3.8936	0.0001	0.0001	6.5985				
AC026358.1	0.9745	3.8199	0.0001	0.0001	2.6498				
ZNF518B	-0.447	-3.6262	0.0003	0.0003	0.6395				
CACNG4	0.3723	3.5885	0.0003	0.0003	1.4511				
THAP12P2	0.6191	3.573	0.0004	0.0004	1.8573				
KLF11	-0.7748	-3.5452	0.0004	0.0004	0.4608				
AC092111.1	0.7364	3.4893	0.0005	0.0005	2.0884				
AC078842.1	0.8516	3.5559	0.0004	0.0004	2.3433				
MPPED2	0.4112	3.4334	0.0006	0.0006	1.5078				
LINGO1-AS1	0.8874	3.4435	0.0006	0.0006	2.4288				
PLPPR5	0.4524	3.3994	0.0007	0.0007	1.572				
CHRNA6	-0.9506	-3.3905	0.0007	0.0007	0.3865				
AC022121.1	1.0861	3.4171	0.0006	0.0006	2.9627				
KCNM8	-0.7434	-3.4392	0.0006	0.0006	0.4755				
SRSF12	0.6848	3.4171	0.0006	0.0006	1.9833				
TNFSF10	-0.6256	-3.4294	0.0006	0.0006	0.5349				
TRIM54	0.841	3.4064	0.0007	0.0007	2.3188				
ZNF485	-1.1614	-3.3717	0.0007	0.0007	0.3131				
HPX	0.8625	3.3836	0.0007	0.0007	2.3691				
P2RY4	1.0243	3.3601	0.0008	0.0008	2.785				
AFDN	0.9076	3.3759	0.0007	0.0007	2.4785				
ST8SIA5	0.2713	3.3194	0.0009	0.0009	1.3116				
AC027801.1	0.5133	3.3209	0.0009	0.0009	1.6707				
AC124947.1	-1.8773	-3.2929	0.001	0.001	0.153				
GREB1	0.49	3.3113	0.0009	0.0009	1.6323				
DISP2	0.4255	3.3284	0.0009	0.0009	1.5303				
AF121898.1	1.3601	3.2639	0.0011	0.0011	3.8966				
GAD1	0.25	3.2604	0.0011	0.0011	1.284				
OACYLP	0.6397	3.2863	0.001	0.001	1.8959				
ADAMTS7P4	0.6119	3.3071	0.0009	0.0009	1.8439				
BMS1P2	0.9866	3.3293	0.0009	0.0009	2.6821				
LINCO0475	-0.4167	-3.2173	0.0013	0.0013	0.6592				
ZNF662	0.849	3.2276	0.0012	0.0012	2.3372				
AC108215.1	0.3885	3.2032	0.0014	0.0014	1.4747				
HEG1	-0.9015	-3.2191	0.0013	0.0013	0.406				
NCAPD3	1.4635	3.2152	0.0013	0.0013	4.3212				
C2orf80	0.4878	3.2069	0.0013	0.0013	1.6288				
ACSL5	-0.6688	-3.1932	0.0014	0.0014	0.5123				
DRD2	0.4139	3.1899	0.0014	0.0014	1.5127				
AP004608.1	0.6228	3.2575	0.0011	0.0011	1.8642				
TTC24	0.6928	3.1743	0.0015	0.0015	1.9993				
HS6ST2	0.332	3.175	0.0015	0.0015	1.3937				
ABI3BP	-0.274	-3.1476	0.0016	0.0016	0.7603				
HAPLN1	0.3172	3.1293	0.0018	0.0018	1.3732				
Gene	Chromosome	Position	p-value	p-value	Size				
--------	------------	----------	----------	----------	-------				
TRMT9B	chr8:13M	0.4713	3.1394	0.0017	0.0017	1.6021			
COL28A1	chr7:7M	0.2533	3.119	0.0018	0.0018	1.2882			
ZNF433	chr19:12M	0.8285	3.1524	0.0016	0.0016	2.2898			
Genes associated with survival in the depatux-m monotherapy arm

gene.id	Beta	Z	P	Wald	HR		
TRIM22	chr11:6M	-1.0041	-4.0092	0.0001	0.0001	0.3664	
BANK1	chr4:102M	-0.9445	-4.0117	0.0001	0.0001	0.3889	
AC115522.1	chr19:44M	1.6241	3.8821	0.0001	0.0001	5.074	
VNN1	chr6:133M	-1.5262	-4.0537	0.0001	0.0001	0.2174	
XAF1	chr17:7M	-0.4941	-3.7976	0.0001	0.0001	0.6101	
ZFHX3	chr16:73M	-1.5297	-3.828	0.0001	0.0001	0.2166	
PITHD1	chr1:24M	1.4973	3.6849	0.0002	0.0002	4.4695	
OAS1	chr12:113M	-0.4908	-3.5998	0.0003	0.0003	0.6121	
AL162431.1	chr12:110M	-1.4981	-3.5314	0.0004	0.0004	0.2235	
UBE3B	chr12:110M	-2.5423	-3.517	0.0004	0.0004	0.0787	
LBR	chr1:225M	0.9501	3.5107	0.0004	0.0004	2.586	
KIAA1671	chr22:25M	-1.0162	-3.497	0.0005	0.0005	0.362	
EMC1	chr1:19M	1.4416	3.5236	0.0004	0.0004	4.2275	
ATP5MGL	chr22:43M	-1.5804	-3.4824	0.0005	0.0005	0.2059	
FYCO1	chr3:46M	-1.1549	-3.465	0.0005	0.0005	0.3151	
TF2	chr7:101M	0.531	3.4423	0.0006	0.0006	1.7005	
TMRPSS2	chr21:41M	-0.7576	-3.3367	0.0008	0.0008	0.4688	
TMEM221	chr19:17M	-0.6403	-3.4369	0.0006	0.0006	0.5272	
SSTR3	chr22:37M	0.8569	3.3997	0.0007	0.0007	2.3557	
MYBPHL	chr1:109M	0.9547	3.473	0.0005	0.0005	2.5978	
UGGT2	chr13:96M	0.8662	3.4205	0.0006	0.0006	2.3778	
RNF219	chr13:79M	0.904	3.4486	0.0006	0.0006	2.4695	
ZDHC2	chr8:17M	-0.7237	-3.4311	0.0006	0.0006	0.485	
AC009831.1	chr18:32M	-1.426	-3.4312	0.0006	0.0006	0.2403	
PYCR1	chr17:82M	0.6483	3.3838	0.0007	0.0007	1.9123	
APOBEC3F	chr22:39M	-0.721	-3.3344	0.0009	0.0009	0.4863	
GIMAP8	chr7:150M	-0.8466	-3.3177	0.0009	0.0009	0.4289	
TNFSF10	chr3:173M	-0.6548	-3.2858	0.001	0.001	0.5195	
IPO5	chr13:98M	1.1989	3.279	0.001	0.001	3.3166	
RFO0091	chr4:68M	0.7265	3.2461	0.0012	0.0012	2.0679	
UNC5A	chr5:177M	0.4481	3.2576	0.0011	0.0011	1.5653	
TFRC	chr3:196M	0.7306	3.2512	0.0011	0.0011	2.0764	
SLC25A15	chr13:41M	0.9712	3.2035	0.0014	0.0014	2.6411	
NPAS2	chr2:101M	-0.4377	-3.2475	0.0012	0.0012	0.6455	
KRT8	chr12:53M	-0.9224	-3.2741	0.0011	0.0011	0.3976	
KCNJ4	chr22:38M	0.476	3.2011	0.0014	0.0014	1.6096	
FLI1	chr11:129M	-0.8218	-3.2209	0.0013	0.0013	0.4397	
AC091826.2	chr5:88M	1.027	3.2019	0.0014	0.0014	2.7927	
MORC4	chrX:107M	-1.2272	-3.2367	0.0012	0.0012	0.2931	
UTRN	chr6:145M	-0.9107	-3.2264	0.0013	0.0013	0.4023	
CCDC69	chr5:151M	-0.6505	-3.181	0.0015	0.0015	0.5218	
EPBH6	chr7:143M	0.4757	3.1677	0.0015	0.0015	1.6092	
ADA2	chr22:17M	-0.4813	-3.1768	0.0015	0.0015	0.618	
SNORD91A	chr17:2M	1.5316	3.1813	0.0015	0.0015	4.6255	
MAF	chr16:80M	-0.7646	-3.1995	0.0014	0.0014	0.4655	
GBAP1	chr1:155M	0.9165	3.1533	0.0016	0.0016	2.5005	
CASP10	chr2:201M	-0.9303	-3.1604	0.0016	0.0016	0.3944	
Gene	Chromosome	Start (bp)	End (bp)	p-value1	p-value2	p-value3	
----------	------------	------------	----------	----------	----------	----------	
LTA4H	chr12	96M	-1.1694	-3.1557	0.0016	0.0016	0.3106
RTBDN	chr19	13M	1.3057	3.112	0.0019	0.0019	3.6901
APOC1P1	chr19	45M	-1.1163	-3.1376	0.0017	0.0017	0.3275
gene.id	Beta	Z	P	Wald	HR		
---------	----------	---------	----------	---------	---------		
YEATS2	chr3:184M	1.3252	3.667	0.0002	0.0002	3.7628	
HIST1H4K	chr6:28M	0.9528	3.524	0.0004	0.0004	2.5929	
SLC24A4	chr14:92M	-0.3454	-3.4253	0.0006	0.0006	0.708	
FOXN3	chr14:89M	-1.6641	-3.3232	0.0009	0.0009	0.1894	
DNMBP	chr10:100M	1.024	3.2998	0.001	0.001	2.7842	
AC005609.5	chr5:141M	-1.2471	-3.2581	0.0011	0.0011	0.2873	
DGLUCY	chr14:91M	-1.3433	-3.2956	0.001	0.001	0.261	
NDRG2	chr14:21M	-0.6052	-3.2525	0.0011	0.0011	0.546	
HEATR4	chr14:74M	-0.6854	-3.2447	0.0012	0.0012	0.5039	
DBF4P1	chr10:64M	2.1913	3.2929	0.001	0.001	8.9471	
GHRL	chr3:10M	-1.2013	-3.2083	0.0013	0.0013	0.3008	
PEBP4	chr8:23M	-1.2872	-3.1392	0.0017	0.0017	0.276	
COL4A3	chr2:222M	-0.3841	-3.1369	0.0017	0.0017	0.681	
VMAC	chr19:6M	-1.0008	-3.0733	0.0021	0.0021	0.3676	
GTF2H2B	chr5:70M	0.5182	3.0141	0.0026	0.0026	1.679	
LINC01285	chrX:119M	-0.6189	-3.0685	0.0022	0.0022	0.5385	
TTTY14	chrY:19M	1.0314	3.0571	0.0022	0.0022	2.8051	
CAVIN2	chr2:192M	-0.4773	-3.0058	0.0026	0.0026	0.6205	
PHF13	chr1:7M	0.6149	2.9892	0.0028	0.0028	1.8494	
AL713852.1	chr6:44M	1.464	3.0195	0.0025	0.0025	4.3231	
DCHS2	chr4:154M	-0.4987	-2.9584	0.0031	0.0031	0.6073	
EML5	chr14:89M	-0.564	-2.986	0.0028	0.0028	0.5689	
XPO5	chr6:44M	1.6162	2.9655	0.003	0.003	5.034	
AL109615.1	chr6:44M	1.3522	2.9455	0.0032	0.0032	3.8658	
LINC00628	chr1:204M	0.9164	2.8936	0.0038	0.0038	2.5003	
GUSBP9	chr5:71M	1.3134	2.9304	0.0034	0.0034	3.7187	
TMEM131L	chr4:154M	0.6672	2.9144	0.0036	0.0036	1.9487	
AC006487.2	chr17:50M	-1.1308	-2.9185	0.0035	0.0035	0.3228	
FMO2	chr1:171M	-0.6225	-2.9264	0.0034	0.0034	0.5366	
ZC3H11B	chr1:220M	1.1361	2.9291	0.0034	0.0034	3.1145	
PEL1	chr14:56M	-0.7798	-2.8948	0.0038	0.0038	0.4585	
FAM20B	chr1:179M	1.2708	2.881	0.004	0.004	3.5639	
NAP1L2	chrX:73M	-0.3979	-2.8705	0.0041	0.0041	0.6717	
GSG1	chr16:28M	-0.3134	-2.8455	0.0044	0.0044	0.731	
HSD17BP2	chr10:38M	0.7211	2.8532	0.0043	0.0043	2.0568	
SMIM7	chr19:17M	-1.3593	-2.8815	0.004	0.004	0.2568	
GGT1P	chr9:121M	-0.4849	-2.8945	0.0038	0.0038	0.6158	
TTTY15	chrY:13M	-0.3591	-2.7624	0.0057	0.0057	0.6983	
KLHL31	chr6:54M	-1.0894	-2.8264	0.0047	0.0047	0.3364	
AC093752.3	chr4:119M	-1.0293	-2.8155	0.0049	0.0049	0.3573	
METTL7A	chr12:51M	-0.4612	-2.8015	0.0051	0.0051	0.6305	
AC109361.1	chr4:106M	-1.3182	-2.8239	0.0047	0.0047	0.2676	
CABLES2	chr20:62M	0.8582	2.791	0.0053	0.0053	2.359	
TPGS2	chr18:37M	1.0585	2.759	0.0058	0.0058	2.8821	
PLSCR2	chr3:146M	-0.8467	-2.7271	0.0064	0.0064	0.4288	
Gene	Chromosome	Position	Log2FoldChange	Log10Pval	Log10FDR	qValue	
--------	------------	----------	----------------	------------	-----------	--------	
AC051619.3	chr15:45M	-0.5114	-2.7462	0.006	0.006	0.5997	
AP000793.1	chr11:83M	-0.8667	-2.7259	0.0064	0.0064	0.4203	
DVL3	chr3:184M	1.2316	2.8266	0.0047	0.0047	3.4267	
