Antibacterial Activity of Some Plant Extracts Against Extended-Spectrum Beta-Lactamase Producing Escherichia coli Isolates

Saeide Saeidi 1; Negar Amini Boroujeni 1,2; Hassan Ahmadi 1; Mehdi Hassanshahian 3

1Agricultural Biotechnology Research Institute, Zabol University, Zabol, IR Iran
2Department of Microbiology, Science and Research Branch, Islamic Azad University, Kerman, IR Iran
3Department of Biology, Faculty of Sciences, Shahid Beheshti University, Kerman, IR Iran

Background: The extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates make many serious infections, especially urinary tract infections.

Objectives: The purpose of this study was to determine the antibacterial activities of some natural plant extracts against ESBL-producing E. coli isolates, which harbor the TEM gene in urine samples of the patients who have urinary tract infections.

Materials and Methods: Evaluation has to be exactly determined for both methods of disk diffusion test and polymerase chain reaction (PCR), separately. We evaluated 120 strains of E. coli isolates from the urine culture of the patients in Boo-Al Hospital (Zahedan, southeastern Iran) who were suffering from urinary tract infections. The ESBL-producing E. coli isolates were evaluated by disk diffusion test and PCR through TEM gene detection. The minimal inhibitory concentration (MIC) of commonly used antibiotics including ceftazidime, ceftiraxone, amikacin, gentamicin, and ciprofloxacin along with the MIC of the alcoholic extract of different natural plants including Myrtus communis L (Myrtaceae), Amanthus retroflexus (Amaranthaceae), Cyminum cuminum L (Apiaceae), Marrubium vulgare (Lamiaceae), and Peganum harmala (Zygophyllaceae) against the ESBL-producing E. coli isolates, which harbor the TEM genes, were determined using the microdilution method.

Results: Results of this study showed that in disk diffusion method, 80 samples of E. coli produced ESRLs. In PCR method, the TEM gene distribution in the isolated ESBL-producing organisms was 50 (41.6%). Amikacin was the most effective anti-bacterial agent and ciprofloxacin was the least effective against E. coli isolates. All the natural plant extracts mentioned above, especially P. harmala, were effective against the selected isolates of ESBL-producing E. coli. The most frequent ESBL rate producing E. coli isolates (32 out of 50) had MIC of 2.5 mg/mL in ethanol extract of P. harmala.

Conclusions: The alcoholic extract of P. harmala was very effective against the selected ESBL-producing E. coli isolates harboring the TEM gene. Therefore, it could be suggested as an antibacterial agent in the future. More researches are necessary for detecting the mechanism of this plant’s behavior and its pharmacological effects.

Keywords: Escherichia coli; Plant Extract; Urinary Tract

1. Background

Escherichia coli isolates of the Enterobacteriaceae family are important causes of infections, especially urinary tract infections (UTIs) (1). It is estimated that about 35% of healthy individuals suffer from symptoms of UTI at some stages in their lives (2). Since 1980 the beta-lactam antibiotics have been widely used for the treatment of serious infections which were made by Gram-negative bacteria, but resistance against these antibiotic groups was developed quickly worldwide (3, 4). In general, extended-spectrum beta-lactamase (ESBL) -productions are most frequently observed in E. coli isolates and rarely observed among other bacteria (3). The most important mechanism of resistance against beta-lactam antibiotics is beta-lactamase production (5). The ESBLs which are able to hydrolyze and inactivate a wide variety of beta-lactams including third generation cephalosporins, penicillins, and aztreonam (6) are plasmid mediated enzymes. Most of ESBL enzymes that have been observed in many countries (8) are members of TEM and SHV families (7). In Gram-negative bacteria, TEM-1 is the most commonly encountered beta-lactamase. Up to 90% of the ampicillin resistance in E. coli is due to TEM-1 production (8). Although TEM-type beta-lactamasases are most often found in E. coli and Klebsiella pneumoniae, they are found in other species of Gram-negative bacteria with increasing frequency (8). Bacterial resistance to antimicrobial is a global problem; thus; discovery of newer antibacterial agents is...
always necessary. As a result of this problem, researchers are usually focusing on natural products to develop better medications against multidrug-resistant microbial strains (9). A wide variety of secondary metabolites, which are used either directly as precursors or as compounds in the pharmaceutical industry are produced by plants. It is expected that other than plant used by antibiotics, plant extracts showing target sites will be more active against drug-resistant microbial pathogens (10). The antimicrobial potency of plants is believed to be due to tannins, saponins, phenolic compounds, essential oil, and flavonoids (11).

Myrtus communis L. (*Myrtaceae*) is a perennial shrub belonging to the *Myrtaceae* family and subfamily (*Myrtoideae*). The leaves contain tannins, flavonoids such as quercetin, catechin, and myricetin derivatives along with volatile oils (12). The antimicrobial activity of essential oil of leaves (*M. communis*) against *E. coli* was recorded in some studies (13, 14). Cumin (*Cuminum cyminum* L) is an aromatic plant of the *Apiaceae* family. The antimicrobial characteristics of herbs are due to various chemical compounds including volatile oil, alkaloids, tannins and lipids that are presented in their tissue (15). *Cuminum cyminum* L. essential oil exhibited stronger antimicrobial activity against *E. coli* (16). In the study of Soniya, the largest diameter of an inhibition zone was observed from methanol extracts of *C. cyminum* against *E. coli* (17). *Marrubium vulgare* L. as a medicinal plant possesses tonic, aromatic, stimulant, expectorant and diuretic properties. It was formerly much esteemed in various uterine, visceral and hepatic affections and in phthisis (18).

Some biological and antibacterial properties of essential oil extracted from this plant and their constituents have been recently investigated. The study of Kahlouche-Riachi revealed that the *M. vulgare* methanolic extract showed higher antibacterial activity on *E. coli* with the minimum inhibitory concentration (MIC) of 0.195 mg/mL (19). In the study of Bokaeian, the least MIC value of extract *M. vulgar* against *Staphylococcus aureus* was 2.5 mg/mL and the highest MIC value of essential oil *M. vulgar* was 2.5 mg/mL (20). *Peganum harmala* has been known as “Espand” in Iran. It belongs to *Zygophyllaceae* family, *Zygophyllales* contains about 22 genera and more than 250 species (21). Darapour showed the MIC of 0.625 mg/mL against *E. coli* isolates (22). In another study, extract of the seeds of *P. harmala* at concentration of 0.3 mg/mL had a greater inhibitory effect on *E. coli* O157 (23). The results from the study of Shiri showed that *P. harmala* and *M. communis* have a potent antimicrobial activity against Gram-positive (*S. aureus*) and Gram-negative (*E. coli* and *E. cloacae*) bacteria, respectively (24). In the *Amaranthaceae* family, *Amaranthus retroflexus* is a species of flowering plant that is known by these common names, including red-root amaranth, red-root pigweed, ped-rooted pigweed, common amaranth, and common tumbleweed (25).

2. Objectives

This study aimed to investigate the antibacterial activity of some plant extracts against extended-spectrum beta-lactamase-producing *E. coli* isolates harboring the TEM gene.

3. Materials and Methods

3.1. Isolation of *Escherichia coli*

The urine culture of the patients suffering from urinary tract infections hospitalized in Boo-Ali Hospital (Zahedan, south-eastern Iran) were collected from September 2010 to March 2011. First the samples were examined by microscopic Gram stain examination. Samples with Gram-negative results were inoculated on plates of nutrient agar, Cled agar, MacConkey’s, and blood agar (Merck, Germany) and then incubated at 37°C for 24 hours. The colony that showed fermenting of lactose on MacConkey agar and Cled agar media were purified and identified according to their morphology as circular, rose-pink to red colonies on MacConkey agar medium and yellow colonies on Cled agar. The isolates were identified by some biochemical reactions (e.g. catalase enzyme, potassium hydroxide test, Indole and methyl red test, Voges Proskauer reaction, urease and citrate, H₂S and oxidase test). A total of 120 strains of *E. coli* were isolated according to the following steps.

3.2. Extended-Spectrum Beta-Lactamase Detection by Confirmatory Tests

3.2.1. Double Disk Synergy Test

A disk of ceftriaxone (30 μg) and ceftazidime (30 μg) (Patan Teb-Iran) were placed 16 to 20 mm apart from the Augmentin disc (center to center). After incubation (37°C for 24 hours), the zone of cephalosporin disc towards the clavulanic acid disc was considered as the ESBL producer (26).

3.2.2. Phenotypic Disc Confirmatory Test

The test was performed as recommended by CLSI (Clinical and Laboratory Standards Institute). Disks of ceftazidime (CA) 30 μg and ceftazidime-clavulanic acid (CAC) 20 + 10 μg or ceftriaxone (CE) 30 μg and ceftiraxone-clavulanic acid (CEC) 20 + 10 μg were placed on MHA (Muller Hinton Agar) at a distance of 30 mm between each other. An increase in the zone diameter (= 5 mm) for CAC versus CA or CEC versus CE is confirmed as ESBL-producing organisms (26). *E. coli* ATCC 25922 was used as a control strain.

3.3. DNA Extraction and Polymerase chain Reaction

The colonies of ESBL-producing organisms were sus-
The MIC of antibiotics was defined using the bacterial broth dilution method used by Baron and Finegold (27). To evaluate the effect of antibiotics, the nutrient broth (Merck, Darmstadt, Germany) (pH = 6.5) containing different concentrations (512, 256, 128, 64, 32, and 2 µg/mL) were prepared from some antibiotics (ceftazidime, ceftriaxone, amikacin, gentamicin, ciprofloxacin; Farabi Pharmaceutical Co, Isfahan, Iran). As the control media, nutrient broth without antibiotic was used. The MIC was defined as the lowest drug concentration, which prevents visible growth of bacteria and E. coli ATCC 25922 was used as control strain.

3.5. Plant Materials

The leaves of M. communis L (Myrtaceae), A. retrorflexus (Amaranthaceae), M. vulgaris (Laminaceae), and seed of P. harmala (Zygophyllaceae), and C. cuminum L (Apiaceae) were collected in Iran (Zahedan and Kerman, southeastern, Iran). Samples were identified and approved by a botanist at Kerman branch, Islamic Azad University’s Herbarium and were dried at room temperature. Samples were crashed and transferred into glass containers and were preserved for the extraction procedures, which were performed in the laboratory.

3.6. Preparation of Extracts

As reported by Hanafy and Hatem, plants were properly dried and pulverized into a coarse powder (28). Each of 20 g ground powders was soaked in 60 mL of ethanol (95%), separately for one day (shaken occasionally with a shaker). After one day of the dissolving process, materials were filtered (Whatman no. 1 filter paper). Then the filtrates were evaporated using a rotary evaporator. At last, 0.97 g of dried extracts were obtained and then stored at 4°C in air tight screw-cap tube.

3.7. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Plant Extracts

The broth microdilution method was used to determine MIC and minimum bactericidal concentration (MBC) according to Yu et al. (29). All tests were performed in Mueller Hinton broth supplemented with TWEEN 80 at a final concentration of 0.5% (v/v). Briefly, serial doubling dilutions of the extract were prepared in a 96-well microtitrator plate ranged from 0.3 mg/mL to 10.00 mg/mL (30). To each well, 10 µL of indicator solution (prepared by dissolving a 10-mg extract in 2 mL of DMSO) and 10 µL of Mueller Hinton Broth were added. Finally, 10 µL of bacterial suspension (10^6 CFU/mL) was added to each well to achieve a concentration of 10^4 CFU/mL. The plates were wrapped loosely with cling film to ensure that the bacteria did not get dehydrated. The plates were prepared in triplicates, and then they were placed in an incubator at 37°C for 18-24 hours. The color change was then assessed visually. The lowest concentration at which the color change occurred was taken as the MIC value. The average of 3 values was calculated providing the MIC values for the tested extract. The MIC is defined as the lowest concentration of the extract at which the microorganism does not demonstrate the visible growth. The microorganism growth was indicated by turbidity.

3.8. Sample Size and Statistical Analysis

Regarding the theoretical proportion, P_t = 0.6 and the sample proportion, P_2 = 0.7 with α = 0.05 and β = 80% (according to the following formula) the calculated sample size was estimated. Therefore, approximately 120 samples of E. coli were examined.

\[
 n = \frac{Z_1^2 \times (1 - P_1) + Z_2^2 \times (1 - P_2)}{P_2 - P_1}^2
\]

Absolute and relative frequencies of antibiotics and plant extracts used against ESBL-producing E. coli isolates were calculated according to the MIC.

4. Results

In this study, 80 (66.6%) out of 120 E. coli isolates were ESBL-producing organisms. In PCR method the distribution of TEM gene in isolated ESBL-producing organisms were 50 (41.6%) (Figure 1). Among 50 ESBL-producing E. coli isolates, 20 had MICs of 128 µg/mL for ceftazidime and one of the isolates revealed the MIC of 8 µg/mL for gentamicin and ciprofloxacin. Fifteen isolates showed MIC of 128 µg/mL for ciprofloxacin and gentamicin. A total of 49 isolates were resistant to ciprofloxacin (MIC ≥ 8 µg/mL) (27) and 46 isolates were resistant to gen-
aminoglycoside (MIC ≥ 8 µg/mL) (27). Therefore, ciprofloxacin showed the least effect on the isolated Enterobacteriaceae. Twelve Enterobacteriaceae isolates showed MIC of 32 µg/mL for amikacin and overall 27 isolates were resistant to amikacin (MIC ≥ 32 µg/mL) (27). Hence, amikacin was the most effective antibacterial agent against Enterobacteriaceae isolates. The most frequent number of isolates (n = 19) demonstrated MIC of 256 µg/mL for ceftriaxon.

The results of MIC for different antibiotics were shown in Table 1. Different inhibitory effects of alcoholic extract from different plant extracts against most Enterobacteriaceae isolates are demonstrated in Table 2. The results in Table 2 showed that the ethanol extract of Matricaria chamomilla had an inhibitory effect against most isolates. The most frequent number of ESBL-producing Enterobacteriaceae isolates (33 out of 50) had MIC of 5 mg/mL to ethanol extract of Myrtus communis. Thirty-two out of 50 Enterobacteriaceae isolates had MIC of 2.5 mg/mL for ethanol extract of Peganum harmala. Therefore, Peganum harmala was the most effective among all the other studied plants. One Enterobacteriaceae isolate showed MIC of 0.62 mg/mL for the ethanol extract of Amaranthus retrorsus.

5. Discussion

According to the results of this study, the prevalence of ESBL-producing Enterobacteriaceae was high, 66.6% by the disk diffusion test and 41.6% by TEM gene distribution using the PCR method. Most ESBLs have evolved by mutation from native β-lactamases, particularly TEM-1, TEM-2 and SHV-1. These parent enzymes are commonly found in Gram-negative bacteria, especially Enterobacteriaceae (31). TEM is the most common of them are derivatives of TEM enzymes (32). The reported ESBL-producing rates in Enterobacteriaceae isolates from various parts of Iran varied from 8.9% to 67% (33); In Isfahan 51% of isolated Enterobacteriaceae was ESBL-producing bacteria (34). The results of this study showed the resistance to some Enterobacteriaceae isolates in MIC of 128 mg/mL for amikacin and MIC of 512 mg/mL for gentamicin, ceftriaxon and ciprofloxacin.

Table 1. Minimum Inhibitory Concentration for Antibiotics Used Against Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Isolates (%)

Antibiotic	2 µg/mL	4 µg/mL	8 µg/mL	16 µg/mL	32 µg/mL	64 µg/mL	128 µg/mL	256 µg/mL	512 µg/mL
AN	5 (10)	7 (14)	6 (12)	5 (10)	12 (24)	8 (16)	7 (14)	0	0
Gm	2 (4)	2 (4)	1 (2)	2 (4)	7 (14)	9 (18)	15 (30)	10 (20)	2 (4)
CAZ	0	0	0	0	11 (22)	7 (14)	20 (40)	12 (24)	0
CRO	0	0	0	0	0	11 (22)	13 (26)	19 (38)	7 (14)
Cip	0	1 (2)	1 (2)	2 (4)	3 (6)	12 (24)	15 (30)	11 (22)	5 (10)

Abbreviations: AN, Amikacin; Gm, Gentamicin; CAZ, Ceftazidime; CRO, Ceftriaxon and Cip, Ciprofloxacin.

Table 2. Minimum Inhibitory Concentration for Different Natural Plant Extract Used Against Isolates of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae (%)

Extract Plant	0.3 mg/mL	0.62 mg/mL	1.25 mg/mL	2.5 mg/mL	5 mg/mL	10 mg/mL
MSL	0	0	1 (2)	10 (20)	30 (60)	8 (16)
CCL	0	0	2 (4)	12 (24)	12 (24)	6 (12)
MV	0	0	5 (10)	5 (10)	33 (66)	7 (14)
PH	0	0	4 (8)	32 (64)	14 (28)	0
AR	0	1 (2)	0	9 (18)	28 (56)	12 (24)

Abbreviations: MSL, Myrtus communis L; CCL, Cuminum cuminum L; MV, Marrubium vulgare; PH, Peganum harmala; AR, Amaranthus retrorsus.

Data are presented as No. (%).
Saeidi S et al.

Historically, plants have been a good source of new drug compounds. Today, in many parts of the world, the extracts of medicinal plants are used for their antibacterial, antifungal, and antiviral properties (35). Some groups have reported that there is a relationship between the chemical compounds and the antimicrobial activity of the plants. In the present study, the ethanol extracts of *M. communis*, *A. retraflexus*, *C. cuminum*, *M. vulgare*, and especially *P. harmala* extracts had a potent antimicrobial activity against ESBL-producing *E. coli*. *Peganum harmala* has been used as a folklore medicine for the treatment of various conditions, such as lumbago, asthma, colic and jaundice (36). It has also been reported that this plant had antibacterial, antifungal and antiviral effects (37). The observed antibacterial activity of *P. harmala* might also be attributed to the high quantity of polyphenols, which are known to possess efficient antibacterial activity (22). It has been shown that seed and root extracts of *P. harmala* had the best antibacterial activity against some Gram-positive and Gram-negative bacterial species, especially *E. coli* (22, 38).

In the present study, the MIC of *P. harmala* ranged from 1.25 mg/mL to 5 mg/mL against the strains of *E. coli* and the most frequent number of isolates showing inhibitory effect were seen in the MIC of 2.5 mg/mL. *M. communis* were frequently used for treatment of burns, antidiuretics, antifungal, and anti-diabetic (39). The antimicrobial activity of essential oil of *M. communis* leaves against *E. coli* was reported (14). In our study the range of MIC was between 1.25 to 10 mg/mL and the most frequent number of isolates showing inhibitory effect was observed in MIC of 5 mg/mL. *M. vulgare* is helpful for bronchial asthma and nonproductive cough. It was formerly esteemed in various uterine, vesical and hepatic affections and in phthisis. The in vitro antibacterial activity of essential oil of *M. vulgare*’s leaves showed a significant activity against microorganisms, especially Gram positive bacteria with inhibition zones and MIC values in the range of 6.6 - 25.2 mm and 1120-2600 μg/mL, respectively, whereas Gram-negative bacteria exhibited a higher resistance (40).

In our study the MIC of *V. vulgaris* ranged from 1.25 mg/ ml to10 mg/mL against the strains of *E. coli* and 33 strains demonstrated an MIC of 5 mg/mL. *C. cuminum* Seeds have cooling affect and had been used for gonorrhoea, chronic diarrhea and dyspepsia. Externally they are applied in the form of poultice to allay pain and irritation of worms in the abdomen (41). Some researchers noted that cumin could be used as an emerging alternative antimicrobial agent for human applications. A study in Tehran revealed that cumin essential oils possessed antibacterial effect against all isolates of *Pseudomonas aeruginosa*, with MIC and MBC value in the range of 0.015 to 0.25 mg/mL (42). In the present study the MIC of *C. cuminum* ranged from 1.25 to 10 mg/mL against the strains of *E. coli*, as 12 strains of *E. coli* showed MIC of 2.5 and 5 mg/mL.

The oil extracted from *A. retraflexus* contains mainly non-polar lipid compounds especially triglycerides. Amaranthus oil has a light to medium color, highly unsaturated liquid with a delicate, agreeable aroma and taste, allowing greater usage versatility. It also provides an excellent resource for omega series fatty acids (43). Results obtained from the study of Shiri showed that *P. harmala* and *M. communis* I have a potent antimicrobial activity against Gram-positive (*S. aureus*) and Gram-negative (*E. coli* and *E. cloace*) bacteria, respectively (30). In our study, the MIC of *A. retraflexus* ranged between 0.62 and 10 mg/mL against the strains of *E. coli*, as 28 strains of *E. coli* showed MIC of 5 mg/mL. Medicinal plants could be sources of compounds, which might be useful in managing beta-lactam resistant bacteria and ESBL-producing *E. coli*. However, further studies about the isolation of active compounds and the absence of toxicity of plant extracts are necessary to propose these plants as alternative approaches to resistance management.

Acknowledgements

This study was supported by Institute of Plant Biotechnology, University of Zabol, Zabol, Iran.

References

1. Rytleweska M, Liberek A, Sikorska-Wisniewska G, Zalewska B, Kurelenda J, Korzon M. [Molecular analysis of uropathogenic strains of Escherichia coli and the clinical course of urinary tract infection in children]. Med Wieku Rozwoj. 2005;9(4):577–39.
2. Black HK, Rubinstein RL. Themes of suffering in later life. *J Gerontol B Psychol Sci Soc Sci*. 2004;59(5):S67–24.
3. Kim SK, Sims CI, Woziak SE, Drude SH, Whitson D, Shaw RW. Antitibiotic resistance in bacteria: novel metalloenzyme inhibitors. *Chem Biol Drug Des*. 2007;74(4):343–8.
4. Nozaki Y, Katayama N, Ono H, Tsutobani S, Harada S, Okazaki H, et al. Binding of a non-beta-lactam antibiotic to penicillin-binding proteins. *J Antimicrob Chemother*. 1999;27(3):263–71.
5. Perez-Llarena FJ, Bou G. Beta-lactamase inhibitors: the story so far. *Curr Med Chem*. 2009;16(28):3740–65.
6. Iyobe S. [Appearance of extended-spectrum beta-lactamases]. *Nihon Rinsho*. 1997;55(9):229–24.
7. Bush K. Extended-spectrum beta-lactamas in North America, 1987-2006. *Clin Microbiol Infect*. 2008;14 Suppl 1:S14–43.
8. Hujer AM, Kesler KS, Dietenberger NJ, Bethel CR, Endimiani A, Bonomo RA. Detection of SHV beta-lactamases in Gram-negative bacilli using fluorescein-labeled antibodies. *MBMC Microbiol*. 2009;9:46.
9. Miyasaki Y, Nichols WS, Morgan MA, Kwan JA, Van Benschoten MM, Kettell PE, et al. Screening of herbal extracts against multi-drug resistant Acinetobacter baumannii. *Phytotther Res*. 2010;24(6):812–6.
10. Nasim SA, Dhir B. Heavy metals alter the potency of medicinal plants. *Rev Environ Contam Toxicol*. 2010;201:139–49.
11. Serrano J, Puupponen-Pimia R, Dauer A, Auran MA, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. *Mol Nutr Food Res*. 2009;53 Suppl 2:S30–29.
12. Nasser MA, Aboutalib el SA, Ahmed RF, El-Khrisy ED, Ibrahim KM, Sleem AA. Secondary metabolites and bioactivities of Myrtus communis. *Pharmacognosy Res*. 2010;2(6):255–9.
13. Salvagnini LE, Oliveira JRS, dos Santos LE, Moreira RR, Pietro RC. Evaluation of the antibacterial activity of Myrtus communis leaves I. (Myrtaceae). *Braz J Pharmacogn*. 2008;18(2):241–4.
14. Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. *Phytochemistry*. 2006;67(12):1242–55.
15. Wanner J, Bail S, Jirovetz L, Buchbauer G, Schmidt E, Gochev V, et al. Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Nat Prod Commun. 2010;3(1):355–8.

16. In: Stefanini MB, Figueiredo RO, Ming LC, Junior AF editors. Antimicrobial activity of the essential oils of some spice herbs. International Conference on Medicinal and Aromatic Plants (Part II) 597. 2003 ISHS: pp. 25–6.

17. Keskin D, Toroglu S. Studies on antimicrobial activities of solvent extracts of different spices. J Environ Biol. 2012;32(2):251–6.

18. El Baradai S, Lyoussi B, Wilbo M, Morel N. Pharmacological evidence of hypotensive activity of Marrubium vulgare and Foeniculum vulgare in spontaneously hypertensive rats. Clin Exp Hypertens. 2001;23(4):329–41.

19. Kahlouche-Riahi F, Mansour-Djaalab H, Serakta-Delmi M, Djerrou Z, Hamimmed S, Moulahoum T, et al. Evaluation of antibacterial activity of some wild plants of Algeria. Int J Med Aromat Plants. 2012;2(2):275–80.

20. Bokaeian M, Saboori E, Saeidi S, Niazi AA, Amini NA, Khaje H. Phytochemical analysis, antibacterial activity of Marrubium vulgare L. against Staphylococcus aureus in vitro. Zuhedan J Res Med Sci. 2004;16.

21. Arshad N, Zitterl-Eglseer K, Hasnain S, Hess M. Effect of Peganum harmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry. Phytother Res. 2008;22(11):1533–8.

22. Darabpour E, Motamed H, Poshtkouhian Bavi A, Seyyed Nejad SM. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. Excli Clin Sc. 2011;10:252–63.

23. Mashreghi M, Nikinia S. The Effect of Peganum harmala and Teucrium polium Alcoholic Extracts on Growth of Escherichia coli O57, Jundishapur J Microbiol. 2012;3(3):530–5.

24. Shiri Y, Solouki M, Saeidi S. Activity of Some Iranian Plant Extracts against Multi-Drug Resistant Human Pathogens Isolated from Urinary Tract Infections. Zuhedan J Res Med Sci. 2014;16(10):50–4.

25. Schambor GJ, Misek AR. Amaranthus retroflexus (redroot pig-weed); inability to cause renal toxicosis in rabbits. Am J Vet Res. 1985;46(1):266–7.

26. Jabeen K, Zafar A, Hasan R. Comparison of double disc and combined disc method for the detection of extended spectrum beta lactamases in enterobacteriaceae. J Pak Med Assoc. 2003;53(11):534–6.

27. Baron EJ, Finegold SM. Bailey and Scott’s Diagnostic Microbiology; 1990.

28. Hanafy MS, Hatem ME. Studies on the antimicrobial activity of Nigella sativa seed (black cumin). J Ethnopharmacol. 1998;54(2–3):275–8.

29. Yu J, Lei J, Yu H, Cai X, Zou G. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry. 2004;65(7):881–4.

30. Shiri Y, Solouki M, Saeidi S. Activity of some Iranian plant extracts against multi-drug resistant human pathogens isolated from urinary tract infections. Zuhedan J Res Med Sci. 2014.

31. Gniadkowski M. Evolution of extended-spectrum beta-lactamases by mutation. Clin Microbiol Infect. 2008;14 Suppl 1:3–2.

32. Rawat D, Nair D. Extended-spectrum beta-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2(1):263–74.

33. Behroouzi A, Rahbar M, Yousefi V. Frequency of extended spectrum beta-lactamase (ESBLs) producing Escherichia coli and Klebsiella pneumoniae isolated from urine in an Iranian 1000-bed tertiary care hospital. Afj J Microbiol Res. 2010;4(9):881–4.

34. Masjedian Jazi F, Valeghi F, Talebi A, Rastegar Lari A, [Molecular characterization of resistance to Extended Spectrum antibiotics in Escherichia coli and Klebsiella pneumoniae]. Iran J Med Microbiol. 2007;27–34.

35. Cos P, Herrmans N, De Bruyne T, Appers S, Sindambwe JB, Vanden Berghé D, et al. Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities. J Ethnopharmacol. 2012;139(1):153–8.

36. Hamden K, Maxmoudi H, Elouz F, ElFeki A, Carreau S. Protective effects of Peganum harmala extracts on thiourea-induced diseases in adult male rat. J Environ Biol. 2008;29(1):73–7.

37. Asgarpashah J, Ramezanloo F. Chemistry, pharmacology and medicinal properties of Peganum harmala L. Afj J Pharm Pharmacol. 2012;6(2):173–80.

38. Minan YH. Antimicrobial Effects of Aqueous and Alcoholic Extract of Peganum harmala L. Seeds on Two Types of Salivary Isolated Microorganisms in Al-Ramadi City. Pharmacol J Med Sci. 2010;37(4):3–17.

39. Mansouri S, Foroumadi A, Ghaniee T, Gholamhosseinian Najar A. Antibacterial Activity of the Crude Extracts and Fractionated Constituents of Myrtus communis. Pharm Bio 2001; 39(5):399–401.

40. Zarai Z, Kadri A, Ben Chobba I, Ben Mansour R, Bekir A, Mejdoub H, et al. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011;10:161.

41. Shahnaz H, Hifza A, Bushra K, Khan JI. Lipid studies of Cuminum cyminum fixed oil. Pak J Bot. 2004;36(2):395–402.

42. Hosseini Jazani N, Zartoshtii M, Shahabi S. Antibacterial Effects of Iranian Cuminum cyminum Essential Oil on Burn Isolates of Pseudomonas aeruginosa. Int J Pharm. 2008;4(2):257–9.

43. Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, Kratky E, et al. Cholesterol-lowering properties of amaranth grain and oil in hamsters. Int J Vitam Nutr Res. 2001;73(1):39–47.