On the edge of the Shivaliks: An insight into the origin and taxonomic position of Pakistani toads from the *Duttaphrynus melanostictus* complex (Amphibia, Bufonidae)

Daniel Jablonski¹, Rafaqat Masroor², Sylvia Hofmann³

1 Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia
2 Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Islamabad 44000, Pakistan
3 LIB - Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, D-53113 Bonn, North Rhine-Westphalia, Germany

https://zoobank.org/6623BB8C-693D-4836-91BD-E24FE3AA8E2C

Corresponding author: Daniel Jablonski (daniel.jablonski@uniba.sk)

Academic editor: Umilaela Arifin ♦ Received 11 December 2021 ♦ Accepted 31 May 2022 ♦ Published 13 July 2022

Abstract

The common Asian toad *Duttaphrynus melanostictus* (Schneider, 1799) complex has a wide distribution ranging from western foothills of the Himalaya to the easternmost range of the Wallacea, with the evidence of human-mediated introductions to some other areas. In the entire distribution range, the complex is formed by several evolutionary clades, distributed mostly in South-East Asia with unresolved taxonomy. In the northwestern edge of its distribution (Pakistan), the name *D. melanostictus* hazarensis (Khan, 2001) has been assigned to local populations but its biological basis remained, so far, understudied and unvalidated. Therefore, we re-evaluated the available genetic data (mitochondrial and nuclear) to show the relationships between Pakistani populations (including the type locality of *D. m. hazarensis*) and others from across the range. Our results showed that Pakistani populations are associated with one, deeply diverged, well-supported and widely distributed clade (so-called *Duttaphrynus* sp. 1 according to 16S, or clade B based on tRNAGly-ND3), that has already been detected in previous studies. This clade is further distributed in India, Nepal, Bangladesh, Malaysia, Singapore, and Indonesia and is characterized by a low level of genetic variability. This further suggests that both natural, as well as potential human-mediated dispersal, might have played an important role in setting up the current phylogeographic and distribution pattern of this clade. The clade is deeply divergent from other clades of the complex and represents a taxonomically unresolved entity. We here argue that the clade *Duttaphrynus* sp. 1/B represents a distinct species for which the name *Duttaphrynus bengalensis* (Daudin, 1802) comb. nov. is applicable, while the description of *D. m. hazarensis* does not satisfy the rules of the International Code of Zoological Nomenclature.

Key Words

Bufo, Bufonidae, Indian subcontinent, invasions, phylogeography, taxonomy

Introduction

The distribution of the *Duttaphrynus melanostictus* (Schneider, 1799) complex (Dubois and Ohler 1999) more or less corresponds to the area of the Oriental zoogeographic realm. It is a widespread group of toads with a geographic range throughout South and South-East Asia, southern China, including islands of Taiwan, Hainan, Sumatra, Java, Borneo, and Sumba (Frost 2021). The group has a high potential to spread into new localities and was artificially introduced to many regions of Asia as well as out of Asia (see Reilly et al. 2017; Vences et al. 2017; Othman et al. 2020; Soorae et al. 2020). These introductions are well-monitored because they can pose a serious threat to the local native fauna (Pettit et al. 2021).
The Indian subcontinent and northern Pakistan form the western border of the _D. melanostictus_ complex natural range where its distribution is limited to the edge of Shivalik Hills, i.e. to several districts of Khyber Pakhtunkhwa, Punjab, and Azad Jammu and Kashmir Provinces (Mertens 1969; Khan 1972, 2001; Masroor 2012). Also, the presence of the complex in Sindh Province cannot be excluded (Masroor 2012) as this toad is known from several localities in Gujarat (India) close to the Pakistani border (Sarkar 1984). Such a distribution pattern signifies that _D. melanostictus_ has been recorded in both the Palearctic and Oriental region, which are the main zoogeographic realms of Pakistan, including the locality of “hazarensis” (Datta, Khyber Pakhtunkhwa; 34.2962°N, 73.2649°E). Our main goals of the study are to (i) find out the genetic affiliation of the Pakistani population of _D. melanostictus_ in the context of known molecular phylogeny of the complex, (ii) show phylogeographic relationships of the western populations to others inside the detected clade, and (iii) comment on the validity and taxonomy of the Pakistani taxon in the _D. melanostictus_ complex.

Materials and methods

Sampling and DNA extraction

Tissue samples of six individuals of the _Duttaphrynus melanostictus_ complex from northern Pakistan were collected from five different localities of the Khyber Pakhtunkhwa Province during the field studies between 2018 and 2019. Individuals were documented photographically by DJ (Nikon D810, and 105 mm macro lens) and sampled for toe or blood before release or being deposited in scientific collections (Suppl. material 1: Table S1). Tissue samples were transferred into 96% ethanol, kept at ambient temperature during the time of the fieldwork, and later stored at -20 °C. DNA was isolated using the DNeasy Tissue Kit (QIAGEN), following the manufacturer’s protocols, and stored at -20 °C.

Amplification and sequencing

We amplified a fragment of the nuclear (nDNA) rhodopsin (Rho) gene (~316 bp), of the 16S rRNA (~560 bp), and approximately 469 bp of mitochondrial DNA (mtDNA) that encodes part of the cytochrome oxidase c subunit III (COIII), tRNA glycine (tRNAGly), and part of the NADH dehydrogenase subunit 3 (ND3) using the primers and PCR conditions following previous studies (Vences et al. 2017; Hofmann et al. 2019; Bisht et al. 2021). PCR products were Sanger-sequenced in both directions by Macrogen Europe (Amsterdam, The Netherlands; http://www.macrogen-europe.com) and sequence data edited where necessary in Sequencher 5.4 by eye.

Dataset and phylogenetic analyses

We complemented our new mitochondrial and nuclear DNA sequences dataset with published and unpublished sequence data from GenBank (for details see Suppl.
Results

The newly generated sequences of 16S, tRNAGly-ND3, and Rho from Pakistan belong to one, well-supported, monophyletic group in all investigated markers (Figs 1–3). This clade is known from previous studies, particularly Wogan et al. (2016), Vences et al. (2017) and Bisht et al. (2021).

For 16S, populations from Pakistan correspond with the clade called Duttaphrynus sp. 1 (sensu Bisht et al. [2021]) that includes populations from Bangladesh, India, Nepal, and surprisingly, Malaysia (continental as well as Borneo part; Figs 1A, 2A). This clade has a sister position to clade Duttaphrynus sp. 2 (sensu Bisht et al. 2021) including populations from China, Laos, Malaysia, Myanmar, and Vietnam. Overall, seven clades of the D. melanostictus complex were detected in the 16S phylogeny. Uncorrected p-distances between these clades range from 2.3 to 4.9% (Table 1). The genetic distance between Duttaphrynus sp. 2 and Duttaphrynus sp. 1 clades is 2.7%. The clade Duttaphrynus sp. 1 is formed by 12 haplotypes in 24 sequences with low internal sequence variation (π=1.0%). Sequences from Pakistan have a closer relationship (one mutation step) to sequences from peninsular India (KU589218, EU071749, EU071752, EU071754, EU071755, KY000453–KY000456) and Nepal (MF319517; Fig. 1B). Other sequences (haplotypes) differ by two to six mutation steps. Surprisingly, two sequences from Malaysia (including Borneo; AB530648, AB331714) are separated by only two mutation steps from Pakistani sequences, or are even identical to some sequences from India or Nepal (Figs 1B, 2A). Significantly, some sequences from India could not be georeferenced and, thus, not displayed on the map in Fig. 2A (see Suppl. material 1: Table S1). However, the overall phylogeographic pattern suggests a distribution of the clade Duttaphrynus sp. 1 in the northern part of the Indian subcontinent with a potential range limit in Myanmar, where it is replaced by the sister clade Duttaphrynus sp. 2.
Populations of this ‘sp. 1’ clade in Western Malaysia and Borneo (Sarawak) might have been artificially introduced (see Discussion below and Fig. 2A).

For tRNAGly–ND3, Pakistani sequences correspond to the clade B (sensu Vences et al. [2017]) that includes populations from Indonesia (Kalimantan), West Malaysia, and Singapore (Figs 1C, 2B). This clade has a sister relationship with the clade C distributed in Myanmar. Overall, we confirmed seven clades of the *D. melanostictus* complex in the phylogeny of tRNAGly–ND3. Uncorrected genetic distances between clades range from 2.7 to 9.3% (Table 2). The genetic distance between closely related clade B and C is 5.6%. The clade B includes three haplotypes. Two of them are found in Pakistan and differentiated by one mutation step from each other. The third haplotype differs by four mutation steps from the Pakistani sequences and can be found in Indonesia (KU183404), Malaysia (KU183466, KU183468–KU183470), and Singapore (KU183475, KU183476, KU183484). Internal sequence variation in clade B is very low (π = 0.3%). Insufficient sampling across the Indian subcontinent did not allow for assessing range limits of the clade B in relation to other clades in the resulting phylogeny. However, detection of the clade B in Singapore, West Malaysia, and Indonesia, (Borneo; Kalimantan, Fig. 2B) suggests an artificial, probably human-mediated introduction.

The results on rhodopsin (*Rho*) confirm mitochondrial data. It shows that *D. melanostictus* from Pakistan...
represents an independent group (Fig. 3). This group is formed by sequences from Pakistan and differs by three mutation steps from populations from Vietnam (DQ283967; based on the geographic position it probably represents the mtDNA clade Duttaphrynus sp. 2 in 16S, or clade G in tRNAGly-ND3, respectively) and by two to six mutation steps from D. melanostictus from India (AF249097; without precise locality). The Indian sequence cannot be related to any known mitochondrial phylogenetic clade due to insufficient sampling and unknown geographic origin. The uncorrected genetic distances between Rho sequences of the D. melanostictus complex range between 0.7 and 1.3%.

Discussion

The most prominent results of our study are the following: (i) the “hazarensis” population from Pakistan belongs to a widely distributed and taxonomically so far unresolved clade (see below), (ii) Pakistani mitochondrial sequences represent unique haplotypes with a close relationship to other populations from northern parts of the Indian subcontinent, (iii) comparing the overall phylogeographic pattern, the clade Duttaphrynus sp. 1/clade B has been most likely artificially translocated to South-East Asia, probably from the Indian subcontinent, (iv) the name for the clade Duttaphrynus sp. 1/clade B is available and, thus, should be applied (see Taxonomy). These results are thus important for both, evolution and taxonomy of the D. melanostictus complex. However, they still underline previous conclusions that the complex needs comprehensive biogeographical research with taxonomic revision based on dense DNA sampling, especially from the Indian subcontinent (see Wogan et al. 2016; Vences et al. 2017; Bisht et al. 2021).

Genetic affiliation and origin of Pakistani populations

By re-analysing 16S sequences of the D. melanostictus complex we showed a pattern of three main, geographically widely distributed clades (called as Duttaphrynus melanostictus melanostictus, Duttaphrynus sp. 1, and sp. 2 sensu Bisht et al. 2021) with potential distribution boundary between them in western Myanmar and Malay Peninsula/Sumatra (Fig. 2). Populations from Pakistan belong to the Duttaphrynus sp. 1 clade that is distributed in the northern part of the Indian subcontinent (Fig. 1; Bisht et al. 2021). Unfortunately, limited sampling in central India does not allow delimitating the range of this clade in the southern parts of India. The Indian subcontinent is, however, absolutely crucial to understand the range of this clade as southern India is inhabited by different evolutionary clades of the complex, i.e. D. brevirostris, D. microtypanum, and D. melanostictus sensu Bisht et al. 2021; Figs 1, 2). Re-evaluation of tRNAGly-ND3 sequence data of the complex revealed similar results as for 16S, showing two widely distributed clades (A and G) and four geographically disjunct clades assigned to the northern and western parts of Indochina (C, E, D, F; Wogan et al. 2016; Vences et al. 2017; Figs 1, 2). Clade B (sensu Vences et al. 2017 as a part of the “mainland clade” sensu Wogan et al. 2016), where Pakistani toads belong to, was previously reported from Indonesia (Kalimantan, Borneo), Malaysia, and Singapore (Wogan et al. 2016; Vences et al. 2017). However, since these former studies did not focus on this specific clade, no conclusions were drawn about its distribution area. Despite limited data from the Indian subcontinent, the genetic clustering of Pakistani samples within clade B, and the similar phylogenetic placement observed in the 16S tree suggest a wide distribution range of this clade. The low level of intra-clade sequence differentiation and star-like pattern of the haplotype networks

Table 1. Uncorrected genetic distances (%) between investigated 16S clades of the Duttaphrynus melanostictus complex as shown in the Fig. 1A. Given are p-distance values (lower-left) and standard error estimates (upper-right).

Clade	D. melanostictus						
	melanostictus						
cf. microtypanum	0.7	0.7	0.8	0.6	0.9	0.9	0.9
brevirostris	2.3	2.3	2.3	2.3	2.3	2.3	2.3
parientalis	3.0	3.0	3.0	3.0	3.0	3.0	3.0
melanostictus ?	3.4	3.4	3.4	3.4	3.4	3.4	3.4
melanostictus	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Duttaphrynus sp. 2	3.6	3.6	3.6	3.6	3.6	3.6	3.6
D. bengalensis comb. nov. (Duttaphrynus sp. 1)	3.7	3.7	3.7	3.7	3.7	3.7	3.7

Table 2. Uncorrected genetic distances (%) between investigated tRNAGly-ND3 clades of the Duttaphrynus melanostictus complex as shown in the Fig. 1C. Given are p-distance values (lower-left) and standard error estimates (upper-right).

Clade p-distances (%)	A	B	C	D	E	F	G
A	–	3.4	3.4	2.8	2.7	3.2	2.9
B	9.3	–	2.4	2.9	2.1	3.0	2.7
C	9.3	5.6	–	2.6	2.3	2.6	2.4
D	7.9	7.2	6.8	–	1.8	1.9	1.9
E	7.4	4.9	5.4	4.2	–	1.7	1.6
F	8.4	7.2	6.1	4.3	3.6	–	1.2
G	8.0	6.7	5.9	4.7	3.6	2.7	–

zse.pensoft.net
implies a very close relationship between geographically distant populations and potentially rapid expansions to wider areas, supplemented by recent human-mediated introductions (see below).

For the clade *Duttaphrynus* sp. 1/clade B, we revealed a phylogeographic structure resembling patterns detected in other widely distributed amphibians of the Indo-Gangetic plain. These species colonized Pakistan from the Oriental
Figure 3. Median-joining alleles network of sequences from the Duttaphrynus melanostictus complex and closely related members of western Palearctic Bufonidae based on rhodopsin (Rho) gene available in GenBank and from own data. The colors correspond to those used in Fig. 1. Note, the origin of sequence AF249097 from India cannot be assigned due to unknown geographic details. The pictured individual represents a population of Duttaphrynus bengalensis comb. nov. (Daudin, 1802) from Datta, Mansehra, Pakistan.

Recently, two basic biogeographic scenarios have been hypothesized for the origin of different amphibian taxa distributed in northern Pakistan: i) dispersal of ancestral lineages during the Miocene from East or Southeast China into the far northwestern part of the Himalaya-Tibet orogen along a warm temperate corridor that existed in significant parts of Paleo-Tibet’s interior (Hofmann et al. 2021), this corridor played probably an important role in the initial diversification process of Himalayan faunal organisms (Schmidt et al. 2012), (ii) dispersion on widely distributed species characterized by the low level of genetic divergence that followed Shivalik Hills and the Indo-Gangetic plain and reached the territory of Pakistan (Jablonski et al. 2020, 2021) as a result of the Pleistocene or Holocene colonisations (see Othman et al. 2020). Although these are presumable biogeographic models, the second scenario could be now applied for D. melanostictus from Pakistan.

It is well known that the D. melanostictus complex is considered an invasive organism, with several evolutionary clades that were introduced out of its native range (Reilly et al. 2017; Vences et al. 2017; Othman et al. 2020; Soorae et al. 2020; Pettit et al. 2021). Evidence for potentially human-mediated introductions is visible from our analyzed data, showing large geographic distances between the source and apparently introduced populations (Fig. 2). Consistent with previous studies (Reilly et al. 2017; Vences et al. 2017; Othman et al. 2020; Soorae et al. 2020), probably clades A and G were sources of introduced populations (sensu Vences et al. 2017, Fig. 1). These clades are widely distributed and covered by dense sampling. Moreover, these clades are distributed also in and around populated cities and ports of South-East Asia from where the artificial, human-mediated introduction to other areas is highly evident (even to Madagascar or the United Arab Emirates; Vences et al. 2017; Soorae et al. 2020). On the other hand, limited sampling of the clade B (sensu Vences et al. 2017 which is equal to clade Duttaphrynus sp. 1 sensu Bisht et al. [2021]...
in the 16S dataset) did not allow to evaluate the origin of this clade in the Malay Peninsula or Borneo. Based on the combination of 16S and tRNAGly-ND3 data and the distribution pattern of both detected clades (Duttaphrynus sp. 1/clade B) we can hypothesize that Malaysian, Singapore, and Indonesian populations are results of the expansion of the range during ice-ages followed by recent introductions due to human activities (Othman et al. 2020) from a hitherto unknown region of the Indian subcontinent (Fig. 2).

Taxonomy

All the hereby presented markers and overall phylogenetic pattern of the clade to which sequences of *D. melanostictus* from Pakistan belong to (see Figs 1–3) support previous studies discussing the unsettled taxonomy of this toad complex in its entire distribution (Wogan et al. 2016; Bisht et al. 2021). The taxonomy of this group is difficult to resolve due to missing data from different regions, especially from the western part of the range, and similar morphology. In our study, we provide, for the first time, the evidence that the “hazarensis” population from Pakistan belongs to the widely distributed clade specified as *Duttaphrynus* sp. 1 (16S, sensu Bisht et al. 2021), or clade B (tRNAGly-ND3; sensu Vences et al. 2017), respectively. It implies that Khan (2001) correctly observed morphological differences on these toads (see Introduction) but the lack of broader comparative material probably did not allow to compare specimens from Pakistan with other specimens, especially from the Indian subcontinent. The description, moreover, is formally invalid, since the holotype lacks information about the name and location of the repository where it has been deposited (Art. 16.4, ICZN 1999). Khan (2001) compared the Pakistani population with island populations from Taiwan (which, genetically, probably belong to *Duttaphrynus* sp. 2 clade in the 16S tree, and clade G in the tRNAGly-ND3 tree, respectively) and Sri Lanka from where genetic data are lacking.

Following the recommendation of Dubois and Ohler (1999), i.e. “If further studies demonstrate that a distinct species, close to *Bufo melanostictus*, occurs in Bengal, the name *Bufo bengalensis* Daudin, 1802 is available for it”, and based on the 16S phylogeny, the geographic distribution of *Duttaphrynus* sp. 1 clade (sensu Bisht et al. 2021), and the Principle of priority rule (ICZN 1999), we suggest that the name *Duttaphrynus bengalensis* (Daudin, 1802) comb. nov. (type locality “Bengale”, neotype MNHN 4967; for description see Dubois and Ohler 1999) is applicable for this clade. “Bengale” is equal to the area that is divided between Bangladesh and several states in neighbouring India (states West Bengal, Jharkhand, Bihar and the Cachar region of Assam matching the distribution of the *Duttaphrynus* sp. 1 clade (Fig. 2A). According to our data, the clade is native to Bangladesh, India, Nepal and Pakistan, and apparently introduced to Indonesia, Malaysia, and Singapore. (see above and Fig. 2). Morphologically, the descriptions of *D. m. hazarensis* (Khan, 2001) and *D. bengalensis* (Daudin, 1802) comb. nov. are almost identical in several aspects: the interorbital space is concave in both “hazarensis” and *D. bengalensis* comb. nov., the space is larger than the width of the upper eyelid and internarial distance. Tympanic oblique, its diameter in both these species is about two thirds of the eye diameter; the tympanic-eye distance is about less than one half of its distance. Moreover, the larger size of “hazarensis” (max. SVL of female up to 111.0 mm) and *D. bengalensis* comb. nov. (max. SVL of female neotype up to 133.2 mm) differentiates this species from *D. melanostictus* (Schneider, 1799) specimens from India whose maximum SVL is 71.6 mm (lectotype ZMB 3462; Dubois and Ohler 1999). The snout length in *D. bengalensis* comb. nov. and “hazarensis” is longer than the horizontal diameter of eye (vs. shorter in *D. melanostictus*). The canthus rostralis in *D. bengalensis* comb. nov. and “hazarensis” is sharp, with a ridge in comparison to *D. melanostictus* whose canthus rostralis is angular. The tympanum diameter in *D. bengalensis* comb. nov. and “hazarensis” is oval, oblique, its diameter about two-thirds of the eye diameter, whereas it is vertical and its diameter is more than half of the eye diameter in *D. melanostictus*. The tympanum-eye distance in *D. bengalensis* comb. nov. and “hazarensis” is about less than one half of its diameter, whereas it is less than one sixth of its diameter in *D. melanostictus*. Thus we recommend to assign the name *D. bengalensis* (Daudin, 1802) for the clade *Duttaphrynus* sp. 1/clade B for future studies.

Acknowledgements

We would like to thank our colleagues, friends and local people for their help during the field work in Pakistan. For technical and laboratory support we thank Martina Lawson and Jana Poláková. For recommendations regarding the taxonomy we thank Frank Tillack. We are also grateful to S. R. Chandramouli and one anonymous reviewer for their useful comments on the manuscript. This work was supported to DJ by the Slovak Research and Development Agency under the contract APVV-19-0076, and by the German Research Foundation (DFG, grant no. HO 3792/8-1) to SH.

References

Akram A, Rais M, Lopez-Hervas K, Tarvin RD, Saeed M, Bolnick DI, Cannatella DC (2021) An insight into molecular taxonomy of bufonids, microhylids, and dicoglossids: First genetic records from Pakistan. Ecology and Evolution 11(20): 14175–14216. https://doi.org/10.1002/ece3.8134

Bisht K, Garg S, Akalabya Sarmah AND, Sengupta S, Biba SD (2021) Lost, forgotten, and overlooked: Systematic reassessment of two lesser-known toad species (Anura, Bufonidae) from Peninsular India and another wide-ranging northern species. Zoosystematics and Evolution 97(2): 451–470. https://doi.org/10.3897/zse.97.61770

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109

Dubois A, Ohler A (1999) Asian and Oriental toads of the *Bufo melanostictus*, *Bufo scaber* and *Bufo stepneegeri* groups (Amphibia,
Anura: A list of available and valid names and redescription of some name-bearing types. Journal of South Asian Natural History, Colombo 4: 133–180.

Frost DR (2021) Amphibian Species of the World: an Online Reference. Version 6.1 (23 November 2021). Electronic Database accessible at https://amphibiaoftheworld.amnh.org/index.php. American Museum of Natural History, New York, USA.

GBIF.org (4 December 2021) GBIF Occurrence Download: https://doi.org/10.15468/dlf.tdbg7m

Hasan M, Islam MM, Khan MMR, Iqwa T, Alam MS, Djong HT, Kurbayashi A, Joshy H, Sen YH, Belabat DM, Kurbayashi A, Kuramoto M, Suninda M (2014) Genetic divergences of South and Southeast Asian frogs: a case study of several taxa based on 16S ribosomal RNA gene data with notes on the generic name Fejervarya. Turkish Journal of Zoology 38(4): 389–411. https://doi.org/10.3906/zoo-1308-36

Hofmann S, Stöck M, Zheng Y, Ficetola FG, Li JT, Scheidt U, Schmidt J (2017) Molecular phylogenies indicate a paleo-Tibetan origin of Himalayan lazy toads (Scutigerinae). Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/sys032

Reilly SB, Wogan GOU, Stubbs AL, Ariza E, Iskandar DT, McGuire JA (2017) Toxophil invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Global Change Biology 23(12): 5029–5031. https://doi.org/10.1111/gcb.13877

Hofmann S, Baniya CB, Litvinchuk SN, Miehe G, Li JT, Schmidt J (2019) Phylogeny of spiny frogs Nanorana (Anura: Dicroglossidae) supports a Tibetan origin of a Himalayan species group. Ecology and Evolution 9(24): 14498–14511. https://doi.org/10.1002/ece3.5909

Hofmann S, Jablonski D, Litvinchuk SN, Masroor R, Schmidt J (2021) Relict groups of spiny frogs indicate Late Paleogene-Early Neogene trans-Tibet dispersal of thermophile faunal elements. PeerJ 9: e11793. https://doi.org/10.7717/peerj.11793

Hussain S, Bukhari SM, Javid A, Hussain A, Rashid M, Ali W (2020) Molecular identification of genus Duttaphrynus from Punjab, Pakistan. Mitochondrial DNA. Part B, Resources 5(3): 3218–3220. https://doi.org/10.1080/23802359.2020.1810143

Hofmann S, Baniya CB, Litvinchuk SN, Miehe G, Li JT, Schmidt J (2017) Molecular phylogenies indicate a paleo-Tibetan origin of Himalayan lazy toads (Scutigerinae). Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/sys032

Schneider. Biologia (Lahore) 18: 131–133.

Hofmann S, Masroor R, Hofmann S (2021) Revisited molecular phylogeny of the genus Sphaerotheca (Anura: Dicroglossidae): the biogeographic status of northernmost populations and further taxonomic changes. Diversity (Basel) 13(5): e216. https://doi.org/10.3390/d13050216

Khan MS (2021) Genetic and efficient reconstruction of deep phylogenies from structured RNA. Nucleic Acids Research 37(18): 6184–6193. https://doi.org/10.1093/nar/gkp600

Khan MS (2006) Amphibians and reptiles of Pakistan. Krieger Publishing Company, Malabar, Florida, 311 pp.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Khan MS (2002) Amphibians and reptiles of Pakistan. Krieger Publishing Company, Malabar, Florida, 311 pp.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 29(6): 1695–1701. https://doi.org/10.1093/molbev/msy020

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 29(6): 1695–1701. https://doi.org/10.1093/molbev/msy020

Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110–1116. https://doi.org/10.1111/2041-210X.12410

Masroor R (2012) A contribution to the herpetology of northern Pakistani: The amphibians and reptiles of Margalla Hills National Park and surrounding regions. Society for the Study of Amphibians and Reptiles (SSAR), Ithaca, New York and Chimaira Buchhandelsgesellschaft mbH, Edition, Frankfurt, 217 pp.

Mertens R (1969) Die Amphibien und Reptilien West-Pakistans. Stuttgart Beiträge zur Naturkunde 197: 1–96.

Ohman SN, Chen Y-H, Chuang M-F, Andersen D, Jang Y, Borsée A (2020) Impact of the Mid-Pleistocene revolution and anthropogenic factors on the dispersion of Asian Black-spined toads (Duttaphrynus melanostictus). Animals (Basel) 10(7): e1157. https://doi.org/10.3390/100711157

Petit I, Somaweera R, Kaiser S, Ward-Fear G, Shine R (2021) The impact of invasive toads (Bunophinae) on monitor lizards (Varanidae): An overview and prospectus. The Quarterly Review of Biology 96(2): 106–125. https://doi.org/10.1086/744833

Rampilu A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/sys029

Sarkar AK (1984) Ecological studies on the amphibians of Gujrat. Bulletin Zoological Society India 6: 87–93.

Schmidt J, Opgoenooth L, Holt S, Bastrop R (2012) Into the Himalayan exyle: The phylogeography of the ground beetle Ethira clade supports the Tibetan origin of forest-dwelling Himalayan species groups. PLoS ONE 7(9): e45482. https://doi.org/10.1371/journal.pone.0045482
Supplementary material 1

Table S1

Authors: Daniel Jablonski, Rafaqat Masroor, Sylvia Hofmann
Data type: excel file
Explanation note: Dataset of sequences used for the study.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zse.98.79213.suppl1