Basic Study

Assessing the accuracy of arthroscopic and open measurements of the size of rotator cuff tears: A simulation-based study

Dimitrios Kitridis, Dimosthenis Alaseirlis, Nikolaos Malliaropoulos, Byron Chalidis, Patrick McMahon, Richard Debski, Panagiotis Givissis

ORCID number: Dimitrios Kitridis 0000-0002-6063-8650; Dimosthenis Alaseirlis 0000-0003-1757-4089; Nikolaos Malliaropoulos 0000-0002-5220-8992; Byron Chalidis 0000-0003-1305-2734; Patrick McMahon 0000-0003-1479-4588; Richard Debski 0000-0001-8350-3321; Panagiotis Givissis 0000-0002-8649-1159.

Author contributions: Kitridis D wrote the manuscript and conducted the statistical analysis; Alaseirlis D designed and coordinated the study; Malliaropoulos N interpreted the data; Chalidis B conducted the literature search; McMahon P and Debski R performed the experiments, acquired and analyzed data; Givissis P supervised the paper; all authors read and approved the final manuscript.

Institutional review board statement: Not Applicable for the current simulation-based study. No patients or animals were involved.

Conflict-of-interest statement: All authors have nothing to disclose.

Data sharing statement: No additional data are available.

Abstract

BACKGROUND

Arthroscopic procedures are commonly performed for rotator cuff pathology. Repair of rotator cuff tears is a commonly performed procedure. The intraoperative evaluation of the tear size and pattern contributes to the choice and completion of the technique and the prognosis of the repair.

AIM

To compare the arthroscopic and open measurements with the real dimensions of three different patterns of simulated rotator cuff tears of known size using a plastic shoulder model.

METHODS

We created three sizes and patterns of simulated supraspinatus tears on a plastic shoulder model (small and large U-shaped, oval-shaped). Six orthopaedic surgeons with three levels of experience measured the dimensions of the tears arthroscopically, using a 5 mm probe, repeating the procedure three times, and then using a ruler (open technique). Arthroscopic, open and computerized measurements were compared.
Arthroscopic measurements of rotator cuff tears

RESULTS
A constant underestimation of specific dimensions of the tears was found when measured with an arthroscope, compared to both the open and computerized measurements (mean differences up to -7.5 ± 5.8 mm, \(P < 0.001 \)). No differences were observed between the open and computerized measurements (mean difference -0.4 ± 1.6 mm). The accuracy of arthroscopic and open measurements was 90.5% and 98.5%, respectively. When comparing between levels of experience, senior residents reported smaller tear dimensions when compared both to staff surgeons and fellows.

CONCLUSION
This study suggests that arthroscopic measurements of full-thickness rotator cuff tears constantly underestimate the dimensions of the tears. Development of more precise arthroscopic techniques or tools for the evaluation of the size and type of rotator cuff tears are necessary.

Key Words: Shoulder; Arthroscopy; Simulation model; Rotator cuff tear; Supraspinatus tear; Cuff tear size

INTRODUCTION
Rotator cuff (RC) tears are the most common tendon injury in adults, often resulting in debilitating symptoms related to both daily and sports activities[1-3]. After the failure of conservative regimens, these patients are usually treated with surgical repair of the tear[1]. Arthroscopy is the preferred surgical option for rotator cuff repair, giving a better intraoperative evaluation of the dynamic shoulder anatomy, preserves the muscle integrity, is associated with lower postoperative morbidity, and provides equal or better results compared to open techniques[4,5].

Repair techniques are based on many factors including patient characteristics, muscle quality, mobility of the tendons, and intraoperative evaluation of the size of the tear[4,6-9]. Therefore, accurate intraoperative measurement of the size of the rotator cuff tear is crucial. Especially in certain techniques such as superior capsule reconstruction, precise measurements of the tears’ dimensions are crucial for the correct sizing of the graft[10-12]. Previous studies have compared magnetic resonance imaging (MRI) measurements with arthroscopic evaluation, and focused on the MRIs ability to detect shoulder pathology in general, and not on the arthroscopic accuracy to evaluate the dimensions of different types of rotator cuff tears[13-15].

Our purpose was to compare the arthroscopic and open measurements with the real dimensions of three different patterns of simulated rotator cuff tears of known size using a plastic shoulder model. We utilized surgeons of three different levels of experience and compared the accuracy between them. The hypothesis of our study was that the size of a rotator cuff tear can be estimated accurately and equally with both arthroscopic and open techniques. To our knowledge, there is currently no research implementing this study design.
MATERIALS AND METHODS

The study took place at the Musculoskeletal Research Center in Pittsburgh, PA, USA. A plastic shoulder model (ALEX shoulder model, Sawbones Inc, Vashon, WA, Figure 1), a 30-degree arthroscope (Linvatec, Largo, FL) through the posterior portal, and a high-definition video system were utilized. Three sizes and patterns of full-thickness rotator cuff tears (a small U-shaped, a larger U-shaped, and a crescent-type, Figure 2) were created using computer software. Dimensions close to the cut-off point of medium and large tears (3 cm) were chosen, according to the DeOrio and Cofield classification system (Table 1) [16]. The simulated tear patterns were printed on paper with adhesive backing and placed in the location of the soft tissue element of the model simulating the supraspinatus tears location. The simulated tears with these computerized measurements had a precision of 0.1 mm.

Six orthopaedic surgeons were enrolled in the study and they were blinded to the computerized measurements: two senior residents with fellowship training, two fellows and two senior staff surgeons, all of the Sports Injuries and Shoulder Surgery Department. We asked them to measure the dimensions of the tears arthroscopically, repeating the procedure three times at weekly intervals. Viewing was from the lateral portal and measuring from the lateral portal, constantly. We used a probe calibrated in 5 mm intervals and with a 5 mm tip, reflecting the usual practice. During all arthroscopic measurements, the shoulder model was completely covered, so the observers could not have direct vision of the simulated tears (Figure 1B). When all arthroscopic measurements were completed, the shoulder model was uncovered and the plastic cover was also removed. Each surgeon used a surgical ruler for a single measurement to simulate the open technique.

Statistical analysis

The mean differences between the arthroscopic measurements of the tears compared to the open and computerized measurements were calculated. Comparisons between the overall mean differences between the groups in pairs, using Wilcoxon signed ranks test, with \(P < 0.016 \) as the level of significance using the Bonferroni correction were then performed.

Subsequently, the subgroups of the separate dimensions’ measurements were evaluated, using Wilcoxon signed ranks test, with \(P < 0.05 \) as the level of significance. Finally, the measurements between the surgeons with the different levels of experience were compared using Wilcoxon signed ranks test, with \(P < 0.016 \) as the level of significance using the Bonferroni correction.

The mean value of the three consecutive arthroscopic measurements were used for the analyses that was then performed with the Statistical Package for Social Sciences (SPSS, IBM) software version 24.

RESULTS

Arthroscopic vs computerized measurements

A statistically significant underestimation of the dimensions of the tears when measured arthroscopically was observed \((P < 0.001) \) (Table 2). The largest mean differences of the separate measurements were \(-7.6 \pm 5.8 \text{ mm}\) in the contour length of the small U-shape tear, \(-4.5 \pm 3.1 \text{ mm}\) in the anterior to posterior height of the crescent-type tear, and \(-3.1 \pm 3.1 \text{ mm}\) in the contour length of the large U-shaped tear (Table 3). All mean differences were negative (Table 3), showing the constant underestimation of the dimensions. The accuracy of the arthroscopic measurements was 90.5%.

Arthroscopic vs open measurements

The overall mean difference between arthroscopic and open measurements confirmed the trend of underestimation of the dimensions, when measured arthroscopically \((P < 0.001) \) (Table 2). The differences between separate measurements were all negative, and some of them were statistically significant (Table 3).

Open vs computerized measurements

The overall mean difference between open and computerized differences was smaller than between arthroscopic and computerized; \(-0.4 \pm 1.6 \text{ mm} \ vs \ -2.4 \pm 3.2 \text{ mm}\). The difference was statistically significant for the corrected level of significance between the groups \((P < 0.016) \), but we considered the mean value of 0.4 mm clinically insigni-
Table 1 The dimensions of the simulated tears measured by the surgeons (Layouts in Figure 2)

ID	Description	Standardized technique	Computerized dimensions (mm)
A1	Basis length	Anterior to posterior	15.2
A2	Contour length	Anterior to posterior	53.5
A3	Height	Medial to lateral, most distal length	22.9
B1	Basis length	Anterior to posterior	20.3
B2	Contour length	Anterior to posterior	31.9
B3	Height	Medial to lateral, most distal length	10.2
C1	Medial contour length	Upper in Figure 2	31.9
C2	Lateral contour length	Lower in Figure 2	31.6
C3	Medial to lateral height	Short height in Figure 2	7.6
C4	Anterior to posterior height	Long height in Figure 2	31.0

Table 2 Overall mean difference between the groups of measurements

Groups	mean difference, mm	P value
Arthroscopic vs computerized	-2.4 ± 3.2	< 0.001
Arthroscopic vs open	-2 ± 2.6	< 0.001
Open vs computerized	-0.4 ± 1.6	0.014

1Wilcoxon signed ranks test, level of significance P = 0.016 (Bonferroni correction).

Table 3 Comparison of mean differences between arthroscopic versus computerized, and arthroscopic and open measurements in millimeters (mean ± SD)

Dimension	Arthroscopic vs computerized	P value	Arthroscopic vs open	P value
A1	-0.5 ± 1.2	0.92	-0.3 ± 1.2	0.92
A2	-7.6 ± 5.8	0.03	-3.7 ± 4.9	0.12
A3	-2.1 ± 2.7	0.17	-2.0 ± 2.3	0.14
B1	-2.3 ± 1.9	0.03	-1.9 ± 1.9	0.04
B2	-3.1 ± 3.1	0.12	-3.2 ± 2.3	0.04
B3	-0.7 ± 0.8	0.05	-0.5 ± 0.8	0.20
C1	-1.8 ± 1.6	0.05	-2.5 ± 2.4	0.05
C2	-1.8 ± 1.8	0.05	-2.8 ± 2.1	0.03
C3	-0.1 ± 0.5	0.91	-0.3 ± 0.4	0.18
C4	-4.5 ± 3.1	0.03	-3.1 ± 3.5	0.06

1Wilcoxon Signed Ranks Test, level of significance P = 0.05.

Significant for the surgical decision-making. The accuracy of the open measurements was 98.5%.

Precision between surgeons with different levels of experience

No significant differences were observed between the senior staff surgeons and the fellows (P = 0.07). On the contrary, the senior residents reported smaller tear dimensions when compared both to the staff surgeons and the fellows (P < 0.001 for both comparisons). Measurements with the open technique were precise among all surgeons (P = 0.96), showing excellent inter-observer reliability.
DISCUSSION

Surgeons of three different levels of experience were found to constantly underestimate given dimensions of simulated rotator cuff tears with the arthroscopic technique. We utilized three common patterns of rotator tears (a small U-shaped, a larger U-shaped, and a crescent-type). We observed a constant underestimation of the dimensions of the tears when measured with a standard 5 mm probe arthroscopically.

We observed mean differences up to 7.5 mm when comparing the separate measurements of the tears’ dimensions compared to the computerized measurements. The accuracy of the arthroscopic and open measurements was 90.5% and 98.5%, respectively. When comparing the different levels of experience, the senior residents reported smaller tear dimensions when compared both to the staff surgeons and the fellows. It seems that more experienced surgeons tend to be more accurate, although the underestimation is constant to all levels of experience, implicating that the instrumentation used is not suitable for precise measurements. Measurements with an open technique were both accurate and precise.

There are numerous studies considering the intraoperative evaluation of the size of the tear as a factor influencing the choice of the most indicated repair technique and the outcomes of the repair. Park et al [4] reported that large-to-massive tears (> 3 cm) repaired with double-row fixation had significantly improved outcomes in terms of functional outcomes in comparison with those repaired with single-row fixation. Duquin et al [7] analyzed data from 23 studies and found re-tear rates significantly lower for double-row repairs when compared with single-row, especially for tears greater than 5 cm. A summary of meta-analyses reported that six meta-analyses found double row repair to be superior for tears greater than 3 cm, and recent studies also report that larger tears size increases re-tear risk [9,17-19]. Of course, several other factors influence the surgeon’s decision-making of the appropriate surgical technique, including patient characteristics, muscle quality, and mobility of the tendons, as mentioned before [4,6-9]. However, recent research has shown that the rotator cuff tear size at the time of surgery significantly affects supraspinatus integrity in the long-term,
thus greatly influences the prognosis of clinical and functional outcomes and patient satisfaction\[20\]. Moreover, in certain techniques such as superior capsule reconstruction for irreparable rotator cuff tears or reinforcement of cuff repair, precise measurements of the tears’ dimensions are crucial for the technique per se\[10,11\].

In the current study, we observed a constant underestimation of the tears’ dimensions with mean differences up to 7.5 mm, when measured arthroscopically. These differences could lead to inappropriate selection of procedures during surgery and affect the patients’ outcomes and prognosis. Our results agree with Bryant \textit{et al} \[21\], who reported arthroscopic measurements to have a 12% underestimation of the tear size compared to measurements with an open technique.

Previous studies have compared MRI measurements with the arthroscopic evaluation of rotator cuff tears and reported high sensitivity and specificity both for full and partial thickness tears\[13,14\]. However, Bryant \textit{et al}[21] reported magnetic resonance imaging to underestimate the size of rotator cuff tears by 30%. Additionally, Eren \textit{et al}[14] found significantly larger measurements during surgery when compared with MRI.

In our study, arthroscopic and open techniques were compared but the accuracy and precision were also determined. Combined with the three different levels of experience of the surgeons and the common clinical use of the 5 mm probe, our procedure is very close to daily routine surgical practice.

\textbf{Limitations of the study}

We used a relatively small sample size. The rationale for the sample selection was that separate measurements for ten specific tear dimensions provided a total of sixty observations in each group (arthroscopic, open, and computerized measurements), which were enough to draw conclusions. Secondly, the measurements were conducted in a plastic simulation shoulder model and not in real patients so that comparisons could be made to computerized measurements.

\textbf{CONCLUSION}

This study suggests that arthroscopic measurements of full-thickness rotator cuff tears constantly underestimate the dimensions of the tears. This underestimation, especially of specific dimensions (contour length of the small U-shape tear, anterior to posterior height of the crescent-type tear, and contour length of the large U-shaped tear), could lead to false documentation during surgery, unreliable prognostic suggestions, and even postoperative failures. Measurements with an open technique were accurate and precise. These observations raise the need for the development of better arthroscopic tools and techniques for the evaluation of the size of the rotator cuff tears.

\textbf{ARTICLE HIGHLIGHTS}

\textbf{Research background}

Arthroscopic procedures are commonly performed for rotator cuff pathology. The intraoperative evaluation of the tear size and pattern contributes to the choice and completion of the technique and the prognosis of the repair.

\textbf{Research motivation}

The accuracy of common arthroscopic instruments to evaluate the dimensions of different types of rotator cuff tears is not yet evaluated.

\textbf{Research objectives}

The purpose of the current study was to compare the arthroscopic and open measurements with the real dimensions of three different patterns of simulated rotator cuff tears of known size using a plastic shoulder model.

\textbf{Research methods}

Three sizes and patterns of simulated supraspinatus tears on a plastic shoulder model (small and large U-shaped, oval-shaped) were created. Six orthopaedic surgeons with three levels of experience measured the dimensions of the tears arthroscopically, using a 5 mm probe, repeating the procedure three times, and then using a ruler (open
technique). Arthroscopic, open and computerized measurements were compared.

Research results
A constant underestimation of specific dimensions of the tears was found when measured with an arthroscope, compared to both the open and computerized measurements. No differences were observed between the open and computerized measurements. The accuracy of arthroscopic and open measurements was 90.5% and 98.5%, respectively. When comparing between levels of experience, senior residents reported smaller tear dimensions when compared both to staff surgeons and fellows.

Research conclusions
This study suggests that arthroscopic measurements of full-thickness rotator cuff tears constantly underestimate the dimensions of the tears. This underestimation could lead to false documentation during surgery, unreliable prognostic suggestions, and even postoperative failures.

Research perspectives
Development of more precise arthroscopic techniques or tools for the evaluation of the size and type of rotator cuff tears are necessary.

ACKNOWLEDGEMENTS
The support of the Musculoskeletal Research Center and the facilities of the Wet Lab in Southside Hospital of UPMC, Pittsburgh are greatly appreciated.

REFERENCES
1. Sambandam SN, Khanna V, Gul A, Mounasamy V. Rotator cuff tears: An evidence based approach. World J Orthop 2015; 6: 902-918 [PMID: 26716086 DOI: 10.5312/wjo.v6.i11.902]
2. Eljabu W, Klinger HM, von Knoch M. The natural history of rotator cuff tears: a systematic review. Arch Orthop Trauma Surg 2015; 135: 1055-1061 [PMID: 25944157 DOI: 10.1007/s00402-015-2239-1]
3. Tsikopoulos K, Georgoulis A, Kitridis D. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc 2021; 29: 202-209 [PMID: 32152691 DOI: 10.1007/s00167-020-05916-7]
4. Park JY, Lhee SH, Choi JH, Park HK, Yu JW, Seo JB. Comparison of the clinical outcomes of single- and double-row repairs in rotator cuff tears. Am J Sports Med 2008; 36: 1310-1316 [PMID: 18413680 DOI: 10.1177/0363546508315039]
5. Colegate-Stone T, Allom R, Tavakkolizadeh A, Sinha J. An analysis of outcome of arthroscopic versus mini-open rotator cuff repair using subjective and objective scoring tools. Knee Surg Sports Traumatol Arthrosc. 2009; 17: 691-694 [PMID: 19002667 DOI: 10.1007/s00167-008-0661-4]
6. Havin B, Dolev E, Haber M, Mayo L, Biggs D. Arthroscopic rotator cuff repair: clinical outcome of 607 patients. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1707-1711 [PMID: 20217391 DOI: 10.1007/s00167-010-1091-7]
7. Duquin TR, Buyea C, Bisson LJ. Which method of rotator cuff repair leads to the highest rate of structural healing? Am J Sports Med 2010; 38: 835-841 [PMID: 20357403 DOI: 10.1177/0363546509359679]
8. Saridakis P, Jones G. Outcomes of single-row and double-row arthroscopic rotator cuff repair: a systematic review. J Bone Joint Surg Am 2010; 92: 732-742 [PMID: 2094334 DOI: 10.2106/JBJS.10.01295]
9. Spiegl UJ, Euler SA, Millett PJ, Hepp P. Summary of Meta-Analyses Dealing with Single-Row versus Double-Row Repair Techniques for Rotator Cuff Tears. Open Orthop J 2016; 10: 330-338 [PMID: 27708735 DOI: 10.2174/18743250016100101033]
10. Mihata T, Lee TQ, Hasegawa A, Fukunishi K, Kawakami T, Fujisawa Y, Ohue M, Doi M, Neo M. Superior Capsule Reconstruction for Reinforcement of Arthroscopic Rotator Cuff Repair Improves Cuff Integrity. Am J Sports Med 2019; 47: 379-388 [PMID: 30596519 DOI: 10.1177/03635465188161689]
11. Mihata T, Lee TQ, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, Kinoshita M. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy 2013; 29: 459-470 [PMID: 23369443 DOI: 10.1016/j.arthro.2012.10.022]
12. Kitridis D, Yiannakopoulos C, Sinopidis C, Givissis P, Galanis N. Superior Capsular Reconstruction of the Shoulder Using the Long Head of the Biceps Tendon: A Systematic Review of Surgical Techniques and Clinical Outcomes. Medicina (Kaunas) 2021; 57 [PMID: 33801508 DOI:...
Kitridis D et al. Arthroscopic measurements of rotator cuff tears

10.3390/medicina57030229

13 Bhatnagar A, Bhonsle S, Mehta S. Correlation between MRI and Arthroscopy in Diagnosis of Shoulder Pathology. *J Clin Diagn Res* 2016; **10**: RC18-RC21 [PMID: 27042543 DOI: 10.7860/JCDR/2016/14867.7309]

14 Eren I, Ozben H, Gunerbuyuk C, Koyuncu Ö, Aygün MS, Hatipoglu E, Aydingöz Ü, Demirhan M. Rotator cuff tear characteristics: how comparable are the pre-operative MRI findings with intra-operative measurements following debridement during arthroscopic repair? *Int Orthop* 2019; **43**: 1171-1177 [PMID: 30159803 DOI: 10.1007/s00264-018-4130-5]

15 Sharma G, Bhandary S, Khandige G, Kabra U. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy. *J Clin Diagn Res* 2017; **11**: TC24-TC27 [PMID: 28658874 DOI: 10.7860/JCDR/2017/27714.9911]

16 DeOrio JK, Cofield RH. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. *J Bone Joint Surg Am* 1984; **66**: 563-567 [PMID: 6707035]

17 Saccomanno MF, Sircana G, Cazzato G, Donati F, Randelli P, Milano G. Prognostic factors influencing the outcome of rotator cuff repair: a systematic review. *Knee Surg Sports Traumatol Arthrosc* 2016; **24**: 3809-3819 [PMID: 26197937 DOI: 10.1007/s00167-015-3700-y]

18 Lambers Heerspink FO, Dorrestijn O, van Raay JJ, Diercks RL. Specific patient-related prognostic factors for rotator cuff repair: a systematic review. *J Shoulder Elbow Surg* 2014; **23**: 1073-1080 [PMID: 24725900 DOI: 10.1016/j.jse.2014.01.001]

19 Kukkonen J, Kauko T, Virolainen P, Äärimaa V. The effect of tear size on the treatment outcome of operatively treated rotator cuff tears. *Knee Surg Sports Traumatol Arthrosc* 2015; **23**: 567-572 [PMID: 23996071 DOI: 10.1007/s00167-013-2647-0]

20 Randelli PS, Menon A, Nocerino E, Aliprandi A, Feroldi FM, Mazzoleni MG, Boveri S, Ambroggi F, Cucchi D. Long-term Results of Arthroscopic Rotator Cuff Repair: Initial Tear Size Matters: A Prospective Study on Clinical and Radiological Results at a Minimum Follow-up of 10 Years. *Am J Sports Med* 2019; **47**: 2659-2669 [PMID: 31411899 DOI: 10.1177/03635465198665529]

21 Bryant L, Shnier R, Bryant C, Murrell GA. A comparison of clinical estimation, ultrasonography, magnetic resonance imaging, and arthroscopy in determining the size of rotator cuff tears. *J Shoulder Elbow Surg* 2002; **11**: 219-224 [PMID: 12070492 DOI: 10.1067/mse.2002.121923]
