Activation of p34-cdc2 Kinase by Cyclin A

Linda M. Roy,* Katherine I. Swenson,† Duncan H. Walker,* Brian G. Gabrielli,* Run Sheng Li,* Helen Piwnica-Worms,§ and James L. Maller*

*Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262; †Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115; and §Department of Physiology, Tufts University, Boston, Massachusetts 02111

Abstract. Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in \textit{Xenopus} in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated \textit{Xenopus} egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous \textit{Xenopus} cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A.

Recently, there has been significant progress in understanding control of the cell cycle restriction point governing transit from G\textsubscript{2} phase into M phase (Pines and Hunter, 1990, for review). Genetically, studies in the fission yeast \textit{Schizosaccharomyces pombe} demonstrated that the \textit{cdc2+} gene, which encodes a 34-kD serine/threonine protein kinase, was a major locus of control over the G\textsubscript{2} \rightarrow M transition (Nurse and Bisset, 1981; Simanis and Nurse, 1986; Nurse et al., 1976). The human homologue of \textit{cdc2+} was cloned by complementation in \textit{S. pombe}, providing evidence of functional conservation of cell cycle control elements over a billion years of evolution (Lee and Nurse, 1987). Biochemically, the product of the \textit{cdc2+} gene, designated p34-cdc2, was found to be the protein kinase subunit of purified maturation-promoting factor (MPF) (Gautier et al., 1988; Dunphy et al., 1988). MPF had been identified many years ago as an activity able to cause entry into mitosis or meiosis in vivo or in vitro in a variety of systems, suggesting it was a fundamental regulatory element (Masui and Markert, 1971; Kishimoto et al., 1982). As purified, MPF contains p34-cdc2 complexed with a B-type cyclin (Gautier et al., 1990; Labbé et al., 1989). Cyclins were first identified in fertilized marine invertebrate eggs as proteins that accumulated during interphase but were then quantitatively degraded near the metaphase/anaphase transition (Evans et al., 1983; Standaert et al., 1987). Subsequent studies have shown that cyclins fall into two classes, designated A and B, that can be distinguished by sequence similarity as well as by their kinetics of degradation in the cell cycle (Westendorf et al., 1989; Minshull et al., 1989, 1990). B-type cyclins are related in sequence to the \textit{cdccl3+} gene in \textit{S. pombe}, whose product is known to form a complex with p34-cdc2 and to be degraded at metaphase (Booher and Beach, 1988; Solomon et al., 1988; Goebel and Byers, 1988; Hagan et al., 1988).

Many aspects of cell cycle control appear to be explained by changes in the abundance or activity of the cyclin component, which in turn is thought to affect the protein kinase activity of p34-cdc2 by mechanisms that include stimulation of the phosphorylation and dephosphorylation of the kinase itself on both tyrosine and threonine residues (Solomon et al., 1991). Interest in the action of cyclin came originally from the finding that injection of synthetic mRNA for clam cyclin A or B into \textit{Xenopus} oocytes stimulated the G\textsubscript{2} \rightarrow M transition (Swenson et al., 1986; Westendorf et al., 1989). Because of the regulated nature of cyclin abundance in fertilized marine eggs, it seemed likely from these results that the synthesis of cyclin represented the well-documented protein synthesis requirement for meiosis I and II in \textit{Xenopus} (Wasserman and Masui, 1975; Gerhart et al., 1984). However, subsequent studies by Sagata, Vande Woude, and co-workers and others have demonstrated that increased synthesis of the \textit{mos+} protooncogene, which encodes a serine/threonine protein kinase, is both necessary and sufficient for meiotic cell cycles in \textit{Xenopus} (Sagata et al., 1988, 1989a; Freeman et al., 1989a; Barrett et al., 1990). Consistent with a requirement for the synthesis of \textit{mos+} during the meiotic cycles of oocyte maturation and the amplification of MPF activity

1. Abbreviations used in this paper: CSF, cytostatic factor; MPF, M-phase promoting factor; PMSG, pregnant mare's serum gonadotropin.

© The Rockefeller University Press, 0021-9525/91/05/507/8 $2.00
The Journal of Cell Biology, Volume 113, Number 3, May 1991 507-514

507
in cycloheximide-treated oocytes (Wasserman and Masui, 1975), recent work demonstrates that cyclin B preexists in resting G2 phase oocytes and is already partially phosphorylated and associated with p34\(^{cd2}\) in an inactive complex called pre-MPF (Gautier and Maller, 1991). In extracts of activated eggs, B-type cyclins, and mos kinase are thought to be degraded at exit from M phase (Murray and Kirschner, 1989; Watanabe et al., 1989), and activation of p34\(^{cd2}\) kinase in the first mitotic cell cycle is dependent on the synthesis of cyclin B (Minshull et al., 1989; Murray and Kirschner, 1989). Expression in extracts of nondegradable forms of cyclin B leads to a stable arrest in metaphase, and a high level of H1 protein kinase activity of p34\(^{cd2}\) (Murray et al., 1989).

In nearly all this previous work, the focus has been on cyclin B rather than cyclin A, and functional cyclin B has been produced by translation of synthetic mRNA in cells or in extracts. A number of important questions about the role of cyclin A merit urgent attention. These questions include whether cyclin A mRNA or protein can drive mitotic cell cycles in the absence of cyclin B or other new proteins. Is the mechanism whereby cyclin A activates p34\(^{cd2}\) kinase the same as cyclin B? We believe these questions are difficult to answer when expressing cyclin by translation of synthetic mRNA because the concentration of cyclin is continuously changing throughout the experiment. To begin to address these questions biochemically, we have used insect cells (SF9) infected with recombinant baculovirus encoding clam cyclin A and B genes to produce functional cyclin proteins, permitting us to carry out experiments with defined concentrations of cyclin without the need for protein synthesis. In this paper we have compared these cyclins for their ability to stimulate meiotic cell cycles and probed the mechanism of activation of p34\(^{cd2}\) kinase by cyclin A in mitotic cycles.

Materials and Methods

Preparation of Murray and Cytostatic Factor (CSF) Extracts

Female *Xenopus laevis* (Xenopus 1, Ann Arbor, MI) were primed with 50 and 25 U of PMSG (pregnant mare's serum gonadotropin) 5 and 3 days, respectively, before the experiment. The frogs were then injected with 100 U HCG (human chorionic gonadotropin) 14–16 h before the experiment. The eggs were laid in 1x Maller Modified Ringer's (MMR) (10 mM NaCl, 1.8 mM KCl, 1 mM MgCl\(_2\), 2 mM CaCl\(_2\), 5 mM Na Hepes, pH 7.8). Oscillating extracts were prepared as described by Murray and Kirschner (1989) with several modifications. Instead of electrical activation, the eggs were activated by a 60–80-s treatment in 0.2x MMR with the calcium ionophore and a further 1 mM MgCl\(_2\). The eggs were not activated before being crushed, and thus the extracts remained arrested in M phase until treatment with 0.2 mM CaCl\(_2\) released them into interphase (Lohka and Maller, 1985).

Histone H1 Kinase Activity

Histone H1 kinase assays were carried out as previously described (Gautier et al., 1989). The samples were analyzed by SDS-PAGE (Laemmli, 1970), excision of histone H1 band, and determination of incorporated radioactivity by Cherenkov counting. The conditions under which these assays were carried out have been previously shown to be specific for p34\(^{cd2}\) kinase as judged by analysis of sites phosphorylated in histone H1 as well as by the lack of effect of known inhibitors of other H1 kinases (Langan et al., 1989). In addition, oscillatory behavior reported here has also been observed with kinase activity adsorbed to p31\(^{SUC1}\) Sepharose beads, a reagent with high affinity for p34\(^{cd2}\).

Isolation of Xenopus cdc2/Cyclin Complexes on p31\(^{SUC1}\)

p31\(^{SUC1}\) was purified from an overproducing *Escherichia coli* BL21 (DE3) strain after a procedure modified from Brizuela et al. (1987). The p31\(^{SUC1}\) protein was coupled to activated CH-Sepharose CL-4B beads (Pharmacia Fine Chemicals) at 4°C for 1 h at pH 6.5, with a final concentration of SUC\(_1\) on the bead of 5 mg/ml of resin. To adsorb the cdc2/cyclin complexes from the Xenopus extracts, 5-m1 samples were diluted with 150 µl of buffer containing 20 mM Hepes, pH 7.5, 15 mM MgCl\(_2\), 20 mM EGTA, 15 mM DTT, 80 mM βGTP, 0.5 mM PMSE, 3 µg/ml leupeptin, 50 mM NaF, 1 mM sodium vanadate, 0.2 mM ammonium molybdate, 30 mM p-nitrophosphatase, and precleared with 50 µl of 50% Sepharose beads. After centrifugation at 16,000 g for 5 min, the supernatant was transferred to fresh tubes and mixed with 25 µl of a 50% p3-Sepharose suspension for 1 h. The isolated complexes were prepared for the H1 kinase assay by washing the beads with a buffer containing 20 mM Tris pH 7.4, 5 mM EDTA, 100 mM NaCl, 1% TX-100, twice with the same buffer containing 1 M NaCl, and finally twice with the H1 kinase buffer. The 32P-labeled complexes were washed three times with RIPA buffer (20 mM Tris pH 7.4, 5 mM EDTA, 100 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-40), twice with RIPA containing 1 M NaCl, and twice more with RIPA buffer. The p31\(^{SUC1}\) precipitates were analyzed by electrophoresis on 10% Anderson gels (Anderson et al., 1973) and fluorography.

Cell Lines and Generation of Recombinant Baculovirus

Spodoptera frugiperda (SF9) cells were obtained from the American Type Tissue Culture Collection (Rockville, MD). SF9 cells were cultured in Grace's Antheraea medium supplemented with 10% FBS, 3.3 glitier of yeastolate, 3.3 g/liter of lactalbumin hydrolysate, and 50 µg/ml gentamicin at 27°C. All procedures relating to viral propagation, isolation, and plaqueing were performed as suggested by Summers and Smith (1987). pCDI02 containing the gene encoding clam cyclin B (Westendorf et al., 1989) was linearized with HindIII and a BglII linker was inserted. The resulting plasmids were purified and cotransfected into tobacco cells with XbaI and a BglII linker was inserted to generate pCDI02(BglII). pCDI02(BglII) was then digested with BglII and the 1.7-kb fragment containing the cyclin B gene was cloned into the BamHI site of pVL941 (Luckow and Summers, 1988) to generate pVL941(B). pAXH(+), containing the gene encoding cyclin A (Swenson et al., 1986), was linearized with HindIII and a BamHI linker inserted. The resulting plasmid was digested with BamHI and the 1.5-kb fragment containing the cyclin A gene was cloned into the BamHI site of pVL941 to generate pVL941(A).

SF9 cells were transfected with a mixture of 1 µg of purified wild-type viral DNA and 2 µg of either pVL941(A) or pVL941(B). 5 d after transfection, medium supernatants containing both wild-type and recombinant viruses were collected and plated onto a monolayer of SF9 cells. Recombinant viruses were identified by their occlusion-negative phenotype and were isolated by plaque purification as described previously (Piwnica-Worms et al., 1990). Recombinant proteins were detected by immunoblot analysis (Fig. 1).

To generate active cyclin lysates, baculovirus-infected cells were sonicated five times (3-s bursts) using a Kontes microultrasonic cell disrupter (Vineland, NJ) in a buffer containing 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM EDTA, 0.1% TX-100, 2x with the same buffer containing 1 M NaCl, and finally twice with the H1 kinase buffer. The 32P-labeled complexes were washed three times with RIPA buffer (20 mM Tris pH 7.4, 5 mM EDTA, 100 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-40), twice with RIPA containing 1 M NaCl, and twice more with RIPA buffer. The p31\(^{SUC1}\) precipitates were analyzed by electrophoresis on 10% Anderson gels (Anderson et al., 1973) and fluorography.

The Journal of Cell Biology, Volume 113, 1991 508
sates of Sf9 cells with wild-type baculovirus. Simiar results were obtained in at least three independent experiments with multiple preparations of cyclins. Cyclin activity was stable to freeze-thawing, and experiments employing aliquots of the same lysates. Quantitation of cyclin A and B content in Sf9 cell lysates was assessed by densitometric scanning of Coomassie blue-stained gels containing either cyclin lysates at various dilutions or known amounts of glutamate dehydrogenase (M, = 48 kD). A standard curve of glutamate dehydrogenase densitometric units was then constructed to assess the concentration of cyclin A or B in samples diluted to fit in the linear portion of the standard curve. The stock concentration of cyclin A and B in the lysates used in this paper was 4 µM, constituting ~10% of the total protein. This is ~200 times greater than the effective concentration in extracts, and inasmuch as cyclin was a major Coomassie blue staining band, equivalent to a 2,000-fold purification from eggs, no further purification of cyclin beyond the level achieved by overexpression was carried out. Intracellular concentrations of cyclins after microinjection of 50-nl volumes into oocytes were calculated on the basis of 0.5 µl of cell water per oocyte (Stith and Maller, 1985). In all injection experiments stage VI oocytes from frogs primed 3 d earlier were used. Stage VI oocytes were cultured on the ovary and cultured in modified medium OR-2 containing 10 mM NaHCO3, pH 7.8.

Anti-cyclin Antibodies and Immunoblot Analysis

Affinity-purified anti-cyclin A and anti-cyclin B antibodies were produced and characterized as described by Swenson et al. (1986) and Westendorf et al. (1989) respectively. Lysates of insect cells infected with wild-type or cyclin recombinant baculoviruses were dissolved in SDS sample buffer and separated by SDS-PAGE and blotted onto nitrocellulose paper in parallel with samples made from mitotic clam embryos prepared 75 min after fertilization, as described by Swenson et al. (1986). Gel blots were incubated with affinity-purified antibodies, then with an alkaline-phosphatase conjugated secondary antibody (Promega Biotec), and developed according to the manufacturer's instructions.

Results

Cyclins Stimulate Meiosis I and II in the Absence of Protein Synthesis

Since all previous reports on the ability of cyclins to stimulate oocyte maturation have used injection of synthetic mRNA for clam cyclin A or B (Swenson et al., 1986; Westendorf et al., 1989), it is unclear whether synthesis of other proteins is required for cyclin-induced oocyte maturation and more specifically, whether the mos+ protein kinase is required. To address this question, we overproduced active clam cyclin A and B proteins in Sf9 (Spodoptera frugiperda) cells using a baculovirus expression system. Fig. 1 I shows total lysate proteins prepared from cells infected with wild-type virus or recombinant virus encoding either cyclin A or cyclin B. Immunoblot analysis using anti-cyclin A or B antibodies demonstrated that the prominent overproduced Coomassie blue staining bands were in fact cyclin and that they co-migrated with the cyclin produced in intact clam eggs (Fig. 1, II and III). Analysis of lysates from cells infected with wild-type baculovirus showed neither a prominent Coomassie staining band at the relative molecular mass of cyclin A or B nor any immunoreactive band (Fig. I). In insect cells, both cyclins associate with coexpressed edc2 and activate p34cdc2 kinase activity to equivalent extents; both complexes are also phosphorylated on tyrosine 15 of edc2 kinase when co-expressed with the wee1 gene (Parker et al., 1991). To determine whether baculovirus-produced cyclins were functionally active in regulating Xenopus meiotic cell cycles, we microinjected cyclin A lysates into oocytes in the presence or absence of cycloheximide and monitored germinal vesicle breakdown (GVBD) as a measure of entry into meiosis I. As shown in Fig. 2 A, cyclin A was able to induce GVBD very rapidly (1–2 h), causing 100% GVBD in the presence or absence of cycloheximide. Control injections with lysates of Sf9 cells infected with wild-type virus had no detectable activity. Cycloheximide treatment has previously been shown to reduce mos+ below levels functional for GVBD (Sagata et al., 1989a). Therefore these results indicate cyclin A-induced maturation meets the criteria for MPF-induced maturation and does not require the c-mos+ protein kinase or any other newly synthesized protein.

An important question concerns whether cyclins A and B have identical properties in cell cycle control. Therefore, as shown in Fig. 2 B, lysates containing various concentrations of cyclin A and B were microinjected into cycloheximide-treated oocytes, and the frequency of GVBD was assessed 2 h later. Both cyclins were able to induce GVBD, but cyclin B was only about one-fifth as potent as cyclin A. Half-maximal stimulation occurred at 50 nM for cyclin A and 250 nM for cyclin B. Lysates of cells infected with wild-type virus had no effect even when injected at much higher concentrations. Previous work by Gerhart et al. (1984) has shown that protein synthesis is also required for the transition between meiosis I and meiosis II in Xenopus. During normal

Figure 1. Characterization of clam cyclin A and B expressed in a recombinant baculovirus system. (I) Coomassie blue-stained proteins evident in aliquots of Sf9 cell lysates infected with wild-type virus (lane 1), recombinant cyclin A virus (lane 2), and recombinant cyclin B virus (lane 3). The arrows in lanes 2 and 3 mark the prominent cyclin bands. (II) Samples as in I, lanes 1 and 2, were subjected to Western blotting with anti-cyclin A antibody. Lane 1, wild-type; lane 2, fertilized clam egg lysate; lane 3, lysate from Sf9 cells infected with virus encoding cyclin A. (III) The same experiment as in II was carried out except anti-cyclin B antibody was used and lane 3 contained lysates of Sf9 cells infected with virus encoding cyclin B.
Figure 2. Induction of meiosis by cyclins A and B. (A) Clam cyclin A induces GVBD. Oocytes were injected with cyclin A lysates and the rate of germinal vesicle breakdown (GVBD) was assessed. When present, cycloheximide was used at 10 μg/ml for 30 min before injection as well as during and after microinjection. The final intracellular concentration of cyclin A was 250 nM. Control injections of lysates from cells infected with wild-type virus had no effect. (B) Quantitative comparison of cyclin A and B for GVBD. Oocytes were incubated in medium OR-2 containing 10 μg/ml cycloheximide for 30 min before injection as well as during and after injection. Oocytes were injected to the indicated final intracellular concentration of either cyclin A or B in Sf9 cell lysates and the frequency of GVBD assessed after 2 h. Half-maximal induction occurred at 50 nM for cyclin A (○—○) and 250 nM for cyclin B (●—●). No GVBD occurred with lysates of wild-type infected cells at concentrations corresponding to extracts containing 1,200 nM cyclin. (C) Effect of cycloheximide on p34cdc2 kinase in meiosis II. Oocytes were treated with progesterone (10 μg/ml) at zero time and the time course of activation of the H1 histone kinase activity of p34cdc2 assessed (○—○). GVBD occurred at 3.5 h. In some cases, oocytes which had undergone GVBD within the previous 10 min (denoted by the arrow) were injected with cycloheximide in OR-2 to give an intracellular concentration of 5 μg/ml and the time course of p34cdc2 kinase activity assessed (●—●). Control injections of OR-2 had no effect (not shown). (D) Reactivation of meiosis II by clam cyclins A or B. The same experiment as in C is shown for oocytes injected with cycloheximide just after GVBD (○—○). At 5 h (cyclin A) or 5.25 h (cyclin B) lysates containing cyclin A (○—○) or cyclin B (●—●) were microinjected to give intracellular concentrations of 66 and 200 nM, respectively and the activity of p34cdc2 kinase assessed for a subsequent 3–4 h period. Control injections of lysates from wild-type baculovirus-infected Sf9 cells had no effect.

progesterone-induced oocyte maturation, the level of MPF activity as measured by the oocyte microinjection assay declines by ~50% 1–2 h after GVBD in conjunction with the metaphase/anaphase transition of meiosis I. This decline in MPF is transient and levels soon return to that seen in a metaphase II-arrested egg; however, if cycloheximide is in-

jected just after GVBD, MPF declines abruptly to undetectable levels and remains low (Gerhart et al., 1984). Fig. 2 C shows that the same effect of cycloheximide can also be measured by assessing the H1 kinase activity of p34cdc2 rather than MPF activity for GVBD in the microinjection assay.

Studies by Sagata and Van de Woude have shown that the metaphase II arrest of the egg is dependent on expression of mos which appears to have a very short half-life (Sagata et al., 1989b). Therefore, it seems likely the protein synthesis requirement for Meiosis II, like Meiosis I, is also accounted for by synthesis of the mos kinase. Since a possible target for phosphorylation by mos is cyclin B2 in pre-MPF (Roy et al., 1990), it seemed plausible that functional cyclin could rescue a meiosis II cell cycle made defective by the absence of c-mos. To assess this possibility, either cyclin A or B lysates were microinjected into oocytes that had been previously injected with cycloheximide immediately after undergoing progesterone-induced GVBD. As shown in Fig. 2 D, both cyclins caused an immediate increase in the H1 kinase activity of p34cdc2 in the presence of cycloheximide. At the concentration of cyclin used, this increase reached the same level as in metaphase II-arrested oocytes, but unlike controls, which exhibit a stable metaphase II H1 kinase activity (cf. Fig. 2 A), cyclin-injected oocytes underwent a rapid decline in H1 kinase activity after reaching metaphase II levels, presumably reflecting exit from second meiotic metaphase into interphase. This might be a consequence of the absence of c-mos, which is necessary for metaphase II arrest (Sagata et al., 1989b). This rescue of a cycloheximide-inhibited cell cycle by cyclin occurred at concentrations of cyclin similar to those that caused GVBD and meiosis I. However, at higher concentrations of cyclin A, H1 kinase activity was elevated to levels higher than progesterone controls at GVBD, and H1 kinase activity remained high for a prolonged period (data not shown).

Figure 3. Cyclin A drives mitotic cell cycles. (A) Effects of RNase on oscillation of p34cdc2 kinase. Oscillating extracts were prepared as described in Materials and Methods with (○—○) or without (●—●) treatment with RNase. The RNased extract was supplemented with a wild-type Sf9 cell lysate. (B) Effect of cyclin A on p34cdc2 kinase. To the same RNased extracts depicted in A, lysates containing various concentrations of cyclin A were added at zero time and the activity of p34cdc2 kinase assessed over a 2-h period encompassing two oscillations in controls (cf. A). Inset: The maximal amplitude of H1 kinase activity at 45 min is plotted (ordinate) as a function of the final concentration of cyclin A in the extract (abscissa). Units on the axes in the inset are the same. ○—○, wild-type; ●—●, 25 nM cyclin A; ○—○, 50 nM cyclin A; ●—●, 100 nM cyclin A; (■—■), 250 nM cyclin A.
Table 1. Effect of Cyclin A on Nuclear Morphology

Minutes	Control	RNase	Cyclin A-treated
0	+	+	+
10	+	+	+
20	+	?	+
30	+	+	+
40	+	+	+
50	+	+	+
60	-	-	+
70	-	-	+
80	+	-	+
90	+	-	+
100	+	-	+
110	-	-	+
120	-	-	+
130	+	-	+

The effect of oscillating extracts on nuclear morphology was determined by adding sperm pronuclei (100,000/ml) to the different extracts at time zero. Samples were taken at different times, stained with DAPI, and examined by phase and fluorescence microscopy to identify the phases of the nuclei. Cyclin A-treated extracts contained 250 nM cyclin A. +, mitotic chromosomes; -, interphase nuclei.

Figure 4. Clam cyclin A blocks degradation of Xenopus cyclins A, B1, and B2. Oscillating extracts were prepared and supplemented with [35S]Trans-label (ICN Radiochemicals, Irvine, CA) (1 μCi/μl extract before shifting to 23°C). Labeled cyclin/cdc2 complexes were isolated using pl3SUc1-Sepharose beads and analyzed by SDS-gel electrophoresis as described in Materials and Methods. Parallel samples were taken to determine the histone H1 activity of the isolated complexes. (Top) Untreated oscillating extracts (control). (Bottom) Oscillating extracts treated with lysate containing clam cyclin A (final concentration 250 nM).

Cyclin A Activation of p34\(^{cd2}\) for Mitotic Cell Cycles

Murray and Kirschner (1989) modified the original *Xenopus* egg extraction protocol of Lohka to produce mitotic extracts that would oscillate spontaneously between DNA replication and mitosis. These oscillatory egg extracts have been called by many investigators Murray extracts to distinguish them from Lohka extracts, which require addition of exogenous components to transit cell cycle restriction points. They demonstrated that in extracts made shortly after egg activation sea urchin cyclin B mRNA alone could drive a *Xenopus* cell cycle from interphase into M-phase, and cyclin B degradation was required to exit M phase (Murray and Kirschner, 1989; Murray et al., 1989). Within a certain range, the length of the cell cycle before the activation of MPF appeared to be dependent on the concentration of newly translated cyclin B added in a reticulocyte lysate, suggesting the amount of cyclin B present controlled the rate of p34\(^{cd2}\) kinase activation and cell cycle progression (Murray et al., 1989).

However, only a twofold range of active cyclin mRNA was tested for effectiveness in driving the cycle (Murray and Kirschner, 1989).

None of the previous work in mitotic extracts has addressed the function of cyclin A. To address whether cyclin A translation was sufficient for entry into mitotic cell cycles, we developed a sensitive and quantitative assay for cyclin A activation of cdc2 kinase utilizing addition of defined concentrations of baculovirus-produced clam cyclin A protein to RNase-treated Murray extracts. As shown in Fig. 3A, control extracts carried out two consecutive cycles with a periodicity of 40-50 min that were absent in RNase-treated extracts to which lysates from wild-type-infected cells were added. These oscillations exhibited identical kinetics whether assayed in extracts or after immobilization on Sepharose beads covalently linked to pl3SUc1. Fig. 3B shows the effect of adding increasing amounts of cyclin A to an RNased extract. After a lag of 10 min, as little as 25 nM cyclin was able to restore one cycle of activation of p34\(^{cd2}\) kinase to approximately the same level as at metaphase in a control cycle (Fig. 3A). However, increasing amounts of cyclin A caused cycles with the same initial lag but with elevated maxima of p34\(^{cd2}\) kinase activity. The kinase activity maxima occurred at 45 min regardless of the amount of cyclin added, but initial rates of activation were higher as cyclin concentration increased. At high concentrations of cyclin (>250 nM), p34\(^{cd2}\) kinase activity became hyperactivated about eightfold at the metaphase (45 min) point in the cycle, and it maintained high activity for several hours, behaving essentially like a CSF-arrested extract. Examination of nuclear morphology in such extracts confirmed that H1 kinase activity was a consistent measure of cell cycle stage (Table I). The inset in Fig. 3B shows a linear relation between a 10-fold range of cyclin A protein added and the maximal level of p34\(^{cd2}\) kinase activation, suggesting a direct interaction between cyclin A and cdc2 kinase. Consistent with the expected association of MPF subunits, experiments with [35S]methionine-labeled cyclin A from Sf9 cells showed that added cyclin could rapidly be recovered bound to cdc2 kinase on pl3SUc1-Sepharose beads (data not shown).
cyclin A, 25 nM). Emetine alone, open triangles. (B) CSF extracts were prepared as described in Materials and Methods. 0.2 mM CaCl₂ was added at 0 min and 80 min to all extracts. The control extract (○—○) was performed in the absence of emetine, and is the same extract in both B and C. 100 μM emetine was added to the extracts at 0 min, then supplemented with either 250 nM cyclin A or wild-type Sf9 cell lysate (■—■) at 25 min (thin arrow), and the activity of cdc2 kinase monitored by HI kinase activity. (C) CSF extract was treated with calcium at 0 min and allowed to progress until arrest at first mitotic metaphase was evident. 100 μM emetine was added to the extracts along with 0.2 mM CaCl₂ (80 min, thick arrow), which caused release from mitotic metaphase arrest. The extracts were then supplemented with either 250 nM cyclin A (a—a) or wild-type infected Sf9 cell lysate (■—■) at 105 min (thin arrow) and the activity of cdc2 kinase monitored.

rate of p34cdc2 kinase deactivation at progressively higher concentrations of cyclin (Fig. 3 B). To determine if this represented effects on cyclin degradation, studies were carried out with [35S]methionine in Murray extracts to which unlabeled cyclin A had been added. As shown in Fig. 4, clam cyclin A addition delayed the degradation of both the A- and B-type endogenous Xenopus cyclins in Murray extracts. This supports the idea that the level of cyclin A determines the rate of exit from M phase (like cyclin B, Murray and Kirschner, 1989) but does not normally control the rate of entry into M phase.

These results suggested that cyclin A in the absence of protein synthesis was sufficient to stimulate a round of cdc2 kinase activation as well as subsequent degradation of the cyclin and kinase inactivation. A similar conclusion relative to cyclin B has been made earlier from the work of Murray and Kirschner. However, in the preparation of Murray extracts, eggs are activated for 30 min before crushing (see Materials and Methods) raising the possibility that the extract contained some level of newly synthesized cyclin or some other protein. This level would have to be rather low since RNase treatment caused arrest of the cell cycle (Fig. 3) and okadaic acid addition to extracts made at this time does not cause pre-MPF activation (Felix et al., 1990). To assess the ability of cyclin A to act alone more rigorously, we investigated cyclin A action in extracts that had already completed one cycle of MPF activation and inactivation in vitro. Fig. 5 A shows that addition of emetine after one cycle in an oscillating Murray extract abolishes further activation of cdc2 kinase, but cyclin A addition still causes activation of cdc2 kinase to the metaphase level. Control experiments have confirmed that all newly synthesized cyclins bound to p135cdc14 beads are degraded in these extracts at exit from M phase (Fig. 4, control). Other experiments examined cyclin A action after release of an extract from a CSF arrest. Such extracts retain the metaphase arrest of the unfertilized egg and can be stimulated to degrade cyclin, exit meiosis II, and enter mitotic cell cycles by addition of calcium ion, the normal trigger occurring intracellularly at fertilization (Lohka and Mallar, 1985; Solomon et al., 1991). As shown in Fig. 5 B, cyclin A addition to emetine-treated CSF extracts that had exited from meiosis II was able to cause a marked and stable hyperactivation of cdc2 kinase. CSF extracts treated with calcium normally arrest again at first mitotic metaphase (Fig. 5 C), but a second addition of calcium also causes release from first mitotic metaphase. As shown in Fig. 5 C, cyclin A was able to activate cdc2 kinase after a second M phase in vitro, indicating cyclin A does not require cyclin B or any other newly synthesized protein to activate cdc2 kinase after exit from meiosis or mitosis.

Discussion

The results presented in this paper provide new insights into the role of cyclin A in the cell cycle and the mechanism of activation of p34cdc2. Although both cyclins could stimulate both Xenopus meiotic cell cycles in the absence of protein synthesis, functional cyclin A protein was five times more potent than cyclin B. Previous work has shown that mRNA for both cyclin A and B can also drive meiotic cycles, although no quantitative comparison was made, and it could not be determined if synthesis of other proteins was required (Swenson et al., 1986; Westendorf et al., 1989). It is not immediately obvious why cyclin A should be more potent than cyclin B. One possibility, proposed by Hunt (Minshull et al., 1990), is that cyclin A/cdc2 complexes activate cyclin B/cdc2 complexes. This idea is made somewhat attractive by the fact that cyclin B/cdc2 complexes preexist in the resting oocyte as "pre-MPF", whereas cyclin A is synthesized only after progesterone treatment (Gautier and Mailar, 1991). Another possibility is that the oocyte maintains a mechanism to inactivate B-type cyclins as indicated by the store of inactive B-type "pre-MPF". Potentially, some of the injected cyclin B could be diverted to the inactive "pre-MPF" pool. Since cyclin A is absent in oocytes containing pre-MPF (Minshull et al., 1990), no inactivation mechanism for cyclin A might be
present, resulting in an apparent greater potency. Finally, it is conceivable cyclin B requires modification (phosphorylation, association with other components, etc.) before it can act.

Because both cyclin A and B proteins induce maturation after prolonged incubation in cycloheximide, it is evident both cyclins act downstream or independently of the mos proto-oncogene product, whose synthesis is required for meiosis in Xenopus (Sagata et al., 1988, 1989a). We previously demonstrated that Xenopus cyclin B2 could be phosphorylated in vitro by the mos kinase (Roy et al., 1990). This may indicate cyclin protein acts downstream of the mos product rather than independently. This idea is also supported by the absence of a stable metaphase II activation of p34\(^{\text{cdk2}}\) by cyclin in the absence of the mos kinase (Fig. 2 B). Theoretically, mos could be present in insect cells and act together with cyclin to stimulate meiotic cycles. This seems unlikely because the SF9 cell lysates are greatly diluted due to the enormous over-expression of cyclin, reducing the concentration of any noncyclin protein to trace levels. In addition, the mos proto-oncogene has not been detected below vertebrate phyla (Vande Woude, G., personal communication), and wild-type SF9 cell lysates, even at high concentration, did not display the CSF activity of mos in oocytes or oscillating Murray extracts. Moreover, Western blotting of concentrated SF9 cell lysates with an antibody to a highly conserved domain of mos (residues 37-55 of mouse v-mos, Maxwell and Arlinghaus, 1985) did not show any detectable mos protein (Roy, L. M., and J. L. Maller, unpublished data).

The experiments with cyclin A in both Murray extracts and CSF extracts provide the first evidence that A-type cyclins alone can also drive mitotic cell cycles. The potency of cyclin A to restore H1 kinase to normal metaphase levels (25 nM) is similar to that previously found with sea urchin cyclin B (Murray and Kirschner, 1989; Solomon et al., 1991). But cyclin A was also able to hyperactivate p34\(^{\text{cdk2}}\), mostly likely by recruitment of additional monomeric cdc2 kinase molecules into a complex, as judged by the ability to rapidly recover added cyclins on p13\(^{\text{SRC}}\)-Sepharose beads. At the highest concentration of cyclin A added, cdc2 kinase appeared to reach a stably activated state that caused a metaphase arrest (Table I) and cyclin stabilization (Figs. 3 B and 5 B). This level of kinase activity is about 8-10 \(x\) greater than that seen in a normal metaphase. Since newly added cyclin A could be recovered bound to cdc2 kinase on p13\(^{\text{SRC}}\)-beads, the increase is due to an increased number of cyclin/cdc2 complexes. This suggests ~90% of the cdc2 in a control M phase extract is not normally activated. This idea is consistent with the recent work of Solomon et al. (1991) using cyclin B addition to egg extracts. In addition, gel filtration of Xenopus egg extracts coupled with Western blotting of cdc2 shows 80-90% of the protein migrates with a monomer molecular weight, but all kinase activity is associated with a minor fraction eluting with other components at \(M_r = 170,000\) (Gabrielli, B., and J. Maller, in preparation).

That cyclin A could prevent degradation of both Xenopus B-type cyclins suggests that the same protease acts on both types of cyclin, or alternatively, the same type of modification (phosphorylation?, ubiquitination?, etcetera) is required for degradation of both cyclins, and clam cyclin A competes for this reaction. In this connection Giotzer et al. (1991) have recently reported that a protein A-sea urchin cyclin B hybrid molecule becomes multi-ubiquitinated at M phase in Xenopus egg extracts, suggesting the possibility that the ubiquitin conjugating system can be easily saturated. The rate of deactivation of cdc2 kinase was progressively decreased as cyclin concentration increased, providing evidence that degradation of cyclin A is necessary to exit mitosis and may be the rate-limiting step for this cell cycle transition. Previous work with sea urchin cyclin B (Murray et al., 1989) indicates its degradation is also required, suggesting either cyclin is sufficient to maintain metaphase arrest.

When cyclin A was added to egg extracts, there was a consistent 10-min lag before kinase activation was evident. This lag was independent of cyclin concentration added, suggesting it was reflective of an event involved in altering the rate of cdc2 kinase activation. Recent studies that appeared after submission of this paper suggest that a similar lag seen with cyclin B addition to egg extracts reflects tyrosine and threonine phosphorylation and dephosphorylation events on cdc2 kinase (Solomon et al., 1991). Other studies show that the cdc25 gene product causes tyrosine and threonine dephosphorylation of cdc2 in egg extracts and reduces the lag seen with saturating concentrations of cyclin B (Kumagai and Dunphy, 1991). Apparently cyclin is only rate-limiting for cdc2 kinase activation if its level is below that needed to form adequate amounts of MPF, a situation probably not seen in vivo. Therefore, it seems possible that the cyclin-independent lag in activation seen here with cyclin A may also reflect the recent work of Solomon et al. (1991) have added cyclin A at a single time point late in interphase, it may be useful in future work to examine other times of addition in the interest of finding differences in the properties of A- and B-type cyclin/cdc2 complexes. Recently Hunt and co-workers (Minshull et al., 1990) found in time course studies of Murray extracts that cyclin A/cdc2 complexes became activated shortly after cyclin synthesis, whereas B; and B; cyclin complexes accumulated in an inactive form and only became activated near the interphase/M phase boundary. This difference in the timing of A and B cdc2 complexes may reflect a fundamental difference in the roles of the two cyclins, which so far have been largely indistinguishable by all available functional measurements. Further experiments with baculovirus-produced cyclin A and B should prove useful for studies comparing A- and B-type cyclins.

We thank Andrew Murray (University of California, San Francisco) for providing the highly detailed protocol necessary for preparation of Murray extracts.

This work was supported by grants from the National Institutes of Health (K. I. Swenson, H. Piwonia-Worms, and J. L. Maller), by general laboratory support from the Howard Hughes Medical Institute (J. L. Maller), and in part by a grant to the Molecular Biology Program from the Lucille P. Markey Charitable Trust (J. L. Maller). R. S. Li was an Exchange Scientist under the NCI-Chinese Academy of Sciences Program and is on leave from the Institute of Cell Biology, Shanghai, China. L. M. Roy was supported by a National Research Service Award (F32 CA08914).

Received for publication 17 August 1990 and in revised form 22 January 1991.
References

Anderson, C. P. R. Brown, and R. F. Gesteland. 1973. Processing of adenovirus 2-induced proteins. J. Virol. 12:241–252.

Barrett, C. B., R. M. Schroeter, F. A. Van der Hoorn, S. K. Nordeen, and J. L. Maller. 1980. [Val12, Thr13]Haa-raft activates kinase and p34-cdk kinase in Xenopus oocytes: evidence for c-mos-dependent and independent pathways. Mol. Cell. Biol. 10:310–315.

Booher, R., and D. Beach. 1988. Involvement of cdc31/MPF in mitotic control of Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. EMBO (Eur. Mol. Biol. Organ.). J. 7:2321–2327.

Brintzilo, L., G. Draetta, and D. Beach. (1987). p34cyc acts in the fission yeast cell division cycle as a component of the p34-cdc2 protein kinase. EMBO (Eur. Mol. Biol. Organ.). 6:350–354.

Dunphy, W. G., L. Brintzilo, D. Beach, and J. Newport. 1988. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 54:423–431.

Evans, T. E., T. Rostenthal, J. Youngblood, D. Distel, and T. Hunt. 1983. Cyc: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 33:389–396.

Felix, M. A., P. Cohen, and E. Karstent. 1990. cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid. EMBO (Eur. Mol. Biol. Organ.). J. 9:675–683.

Gautier, J., M. Wu, and G. S. Martin. 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a MAP kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. in press.

Gerhart, J., M. Wu, and M. Kirschner. 1984. Cell cycle dynamics of an embryonic cell cycle control gene cdc2. Cell. 34:433–439.

Gautier, J., T. Matsukawa, P. Nurse, and J. Mailer. 1988. Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature (Lond.). 339:626–629.

Gautier, J., J. Minshull, M. Lohka, M. Glotzer, T. Hunt, and J. L. Maller. 1990. Cyclin B2 and pre-MPF activation in Xenopus oocytes. EMBO (Eur. Mol. Biol. Organ.). J. 9:178–182.

Gautier, J., C. Norbury, M. Lohka, P. Nurse, and J. Maller. 1988. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2. Cell. 54:763–770.

Gautier, J., and J. L. Mailer. 1991. Cyclin B2 and pre-MPF activation in Xenopus oocytes. EMBO (Eur. Mol. Biol. Organ.). J. 10:177–182.

Kaghad, J.-M., I. elias, A. Picard, and M. Dorte. 1989. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing 1 molecule of cyclin B in meiosis. Mol. Cell. Biol. 9:3860–3868.

Lohka, M. J., and J. L. Maller. 1985. Induction of nuclear envelope break-down, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101:518–523.

Lukow, V. A., and M. D. Sumners. 1988. Trends in the development of baculovirus expression vectors. Bio/Technology. 6:47–55.

Masui, Y., and C. L. Markert. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177:129–146.

Maxwell, S. A., and R. B. A. Ranglithaus. 1985. Serine kinase activity associated with Moloney murine sarcoma virus-124-encoded p37kinase. Virology. 143:321–333.

Minshull, J., J. Blow, and T. Hunt. 1989. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 56:947–956.

Minshull, J., R. Golsteyn, C. Hill, and T. Hunt. 1990. The A- and B-type cyclin-associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO (Eur. Mol. Biol. Organ.). J. 9:2865–2875.

Murray, A. W., and M. W. Kirschner. 1989. Cyclin synthesis drives the early embryonic cell cycle. Nature (Lond.). 339:280–286.

Nurse, P., and Y. Bissett. 1981. Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature (Lond.). 292:558–560.

Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 164:167–178.

Parker, L., S. Atherton-Fessler, M. S. Lee, S. Ogg, J. L. Falk, K. I. Swenson, and H. Piwnica-Worms. 1991. Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee 1-dependent manner. EMBO (Eur. Mol. Biol. Organ.). J. In press.

Pines, J., and T. Hunter. 1990. p34cdc2: The S and M kinase? New Biol. 2:389–401.

Piwnica-Worms, H., N. G. Williams, S. H. Cheng, and T. M. Roberts. 1990. Regulation of p60src and its interaction with polyoma virus middle T antigen in insect cells. J. Virol. 64:61–68.

Roy, L. M., B. Singh, J. Gautier, R. A. A. Ranglithaus, S. K. Nordeen, and J. L. Maller. 1990. The cyclin B2 component of MPF is a substrate for the c-mos proto-oncogene product. Cell. 61:825–831.

Sagata, N., M. Oskarsson, T. Copeland, J. Brumbaugh, and G. F. Vande Woude. 1988. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature (Lond.). 335:519–525.

Sagata, N., I. Daar, M. Oskarsson, S. D. Showalter, and G. F. Vande Woude. 1989a. The product of the mos proto-oncogene as candidate "initiator" for oocyte maturation. Science (Wash. DC). 245:643–646.

Sagata, N., N. Watanahe, G. F. Vande Woude, and Y. Ikawa. 1989b. The c-mos proto-oncogene product is a cytosstatic factor (CSF) responsible for meiotic arrest in vertebrate eggs. Nature (Lond.). 342:512–518.

Simanis, V., and P. Nurse. 1986. The cell cycle control gene cdc2 of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell. 45:261–265.

Solomon, M. J., M. Glotzer, T. Lee, M. Philippe, and M. W. Kirschner. 1991. Cyclin activation of p34cdc2. Cell. 63:1013–1024.

Standart, N., J. Minshull, J. Pines, and T. Hunt. 1987. Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Dev. Biol. 124:248–258.

Strith, B. J., and J. L. Maller. 1985. Increased intracellular pH is not necessary for ribosomal protein S6 phosphorylation, increased protein synthesis, or germinal vesicle breakdown in Xenopus oocytes. Dev. Biol. 107:460–469.

Sumners, M. D., and G. E. Smith. 1987. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas agricultural experiment station bulletin No. 1555. College Station, TX.

Swenson, K. I., M. K. Farrell, and J. V. Ruderman. 1986. The clam embryo protein cyclin A induces entry into M-phase and the resumption of meiosis in Xenopus oocytes. Cell. 47:861–870.

Wasserman, W. J., and Y. Masui. 1975. Effects of cycloheximide on a cytoplasmic factor initiating mitotic entry in yeast and frog cells. Mol. Cell. Biol. 9:3860–3868.

Lee, M., and P. Nurse. 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature (Lond.). 327:31–35.