B(s) to D(s) semileptonic decays with NRQCD-HISQ valence quarks

Christopher Monahan
New High Energy Theory Center
Rutgers, The State University of New Jersey

HPQCD Collaboration

Heechang Na, Chris Bouchard, G. Peter Lepage, and Junko Shigemitsu
Semileptonic B to D decays
Semileptonic B to D decays

\[\frac{\mathcal{B}(B \to D\tau\nu_\tau)}{\mathcal{B}(B \to D\ell\nu_\ell)} \]

HFAG 2015 (exp.)

1606.08030
HPQCD (2015)
FNAL/MILC (2015)
FNAL/MILC (2012)
1205.5442 (HQET)
Motivation

$B_s \rightarrow D(s)\ell\nu$ semileptonic decays provide determination of V_{cb}

Two lattice calculations of $B_s \rightarrow D_s\ell\nu$ at or near zero recoil

- FNAL/MILC
 - Bailey et al [FNAL/MILC], PRD 85 (2012) 114502

- Twisted mass fermions
 - Atoui et al, EPJ C 74 (2014) 2861

First unquenched analysis at nonzero recoil

Combined analysis of $B_s \rightarrow D_s\ell\nu$ and $B \rightarrow D\ell\nu$ to reduce theoretical uncertainties in determination of $B(B_s \rightarrow \mu^+\mu^-)$

Forthcoming LHCb analysis of $B_s \rightarrow D_s\ell\nu$ and $B_s \rightarrow K\ell\nu$ for $|V_{ub}/V_{cb}|$
Form factors

\[q^\mu = p^\mu_{B_s} - p^\mu_{D_s} \]

\[\langle D_s(p_{D_s})| V^\mu | B_s(p_{B_s}) \rangle = f_+(q^2) \left[p^\mu_{D_s} + p^\mu_{B_s} - \frac{M^2_{B_s} - M^2_{D_s}}{q^2} q^\mu \right] + f_0(q^2) \frac{M^2_{B_s} - M^2_{D_s}}{q^2} q^\mu \]

Convenient to determine

\[\langle D_s(p_{D_s})| V^\mu | B_s(p_{B_s}) \rangle = \sqrt{2M_{B_s}} \left[f_\parallel(q^2) \frac{p^\mu_{B_s}}{M_{B_s}} + f_\perp(q^2) \left(p^\mu_{D_s} - \frac{p_{B_s} \cdot p_{D_s}}{M^2_{B_s}} p^\mu_{B_s} \right) \right] \]

In \(B_s \) rest frame

\[\langle D_s(p_{D_s})| V^0 | B_s(p_{B_s}) \rangle = \sqrt{2M_{B_s}} f_\parallel(q^2), \quad \langle D_s(p_{D_s})| V^k | B_s(p_{B_s}) \rangle = \sqrt{2M_{B_s}} p^k_{D_s} f_\perp(q^2) \]

Reconstruct form factors

\[f_+(q^2) = \frac{1}{\sqrt{2M_{B_s}}} \left[f_\parallel(q^2) (M_{B_s} - E_{D_s}) f_\perp(q^2) \right] \]

\[f_0(q^2) = \frac{\sqrt{2M_{B_s}}}{M^2_{B_s} - M^2_{D_s}} \left[(M_{B_s} - E_{D_s}) f_\parallel(q^2) \left(E^2_{B_s} - M^2_{D_s} \right) f_\perp(q^2) \right] \]
Heavy quark currents

NRQCD bottom and HISQ charm valence quarks

\[J^{(0)}_\mu = \bar{\psi}_c \gamma_\mu \psi_b, \quad J^{(1)}_\mu = -\frac{1}{M_b} \bar{\psi}_c \gamma_\mu \gamma \cdot \nabla \psi_b \]

Match currents via lattice perturbation theory

\[\langle V_\mu \rangle_{\text{QCD}} = (1 + \alpha_s \rho_\mu) \langle J^{(0)}_\mu \rangle + \langle J^{(\text{sub})}_\mu \rangle \]

\[J^{(\text{sub})}_\mu = J^{(1)}_\mu - \alpha_s \zeta_\mu J^{(0)}_\mu \]
Ensembles

MILC 2+1 asqtad ensembles

Cont. phys. point

area $\propto N_{tsrc}$

m_l^{sea}/m_s^{sea}

0.4
0.2
0.1
Correlators

B_s meson

$$ \Phi^{\alpha} \Phi^{\alpha^\dagger} = a^3 \sum_{x'} \overline{\Psi}_b(x', t_0) \phi^\alpha(x' - x) \gamma_5 \psi_s(x, t_0) $$

Construct 2x2 correlator matrix

$$ C_{B_s}^{\beta,\alpha}(t, t_0) = \frac{1}{L^3} \sum_{x,y} \langle \Phi_{B_s}^\beta(y, t) \Phi_{B_s}^{\alpha^\dagger}(x, t_0) \rangle $$

D_s meson

$$ \Phi^{\dagger} = a^3 \overline{\psi}_c(x, t_0) \gamma_5 \psi_s(x, t_0) $$

Two-point correlator function

$$ C_{D_s}(t, t_0; p) = \frac{1}{16 L^3} \sum_{x,y} e^{ip \cdot (x-y)} \langle \Phi_{D_s}(y, t) \Phi^{\dagger}_{D_s}(x, t_0) \rangle $$
Correlators

\[C^\alpha_J(t, t_0, T; \mathbf{p}) = \frac{1}{L^3} \sum_{x, y, z} e^{i \mathbf{p} \cdot (z-x)} \left\langle \Phi_{D_s}(x, t_0 + T) J_\mu(z, t) \Phi_{B_s}^{\alpha \dagger}(y, t_0) \right\rangle \]

Four momenta \([(0,0,0), (1,0,0), (1,1,0), (1,1,1)]\)

Four values of \(T\): \([12,13,14,15]\) and \([21,22,23,24]\)
Correlator fits

Bayesian multi-exponential fitting strategy \([\text{corrfitter, lsqfit}]\)

\[
C_\alpha^j(t, T; p) = \sum_{j=0}^{N_{Bs}-1} \sum_{k=0}^{N_{Ds}-1} A_{jk}^\alpha e^{-E_j^{Ds}t} e^{-E_k^{Ds}(T-t)} + \ldots
\]

Extract three-point amplitudes

\[
A_{jk}^\alpha = \frac{\langle 0 | \Phi_{Ds} | E_j^{Ds} \rangle \langle E_j^{Ds} | J_\mu | E_k^{Bs} \rangle \langle E_k^{Bs} | \Phi_{Bs}^\dagger | 0 \rangle}{(2a^3 E_j^{Ds})(2a^3 E_k^{Bs})}
\]

Obtain required matrix element

\[
\langle D_s | J_\mu | B_s \rangle = A_{00}^\alpha \frac{(2a^3 E_0^{Ds})(2a^3 M_{Bs})}{\langle 0 | \Phi_{Ds} | E_0^{Ds} \rangle \langle M_{Bs} | \Phi_{Bs}^\dagger | 0 \rangle}
\]
Two-point fits

Stability plots: multi-exponential fits

aM_{D_s}	aM_{D_s}
\[1.193\]	\[0.851\]
\[1.192\]	\[0.850\]
\[1.191\]	\[0.849\]
\[1.190\]	\[0.848\]
\[1.189\]	\[0.847\]
\[1.188\]	\[0.847\]
\[1.187\]	\[0.847\]

N_{\exp}	N_{\exp}
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8

Ensemble C1 | Ensemble F1

Preliminary
Two-point fits

D_s dispersion relation

$\frac{m^2+p^2}{E^2} = 1 + \frac{\alpha_s(ap)^2}{10}$
Three-point fits

Stability plots: T-combinations

$A_{00} \times 10^2$

Preliminary

Ensemble C2

Ensemble F1
Three–point fits

Correlations between momenta

Ensemble C2

Ensemble F1
Chiral–continuum fits

z-expansion

\[z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - q_{\text{max}}^2}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - q_{\text{max}}^2}} \]

\[t_+ = (M_{B_s} + M_{D_s})^2 \]

\[q_{\text{max}}^2 = (M_{B_s} - M_{D_s})^2 \]

Fit to BCL parameterisation

\[f_0 = \frac{1}{1 - q^2/M_0} \sum_{k=0}^{K-1} a_0^{(k)} z^k \]

\[f_+ = \frac{1}{1 - q^2/M_{B^*_c}} \sum_{k=0}^{K-1} a_+^{(k)} \left[z^k - (-1)^{k-K} \frac{k}{K} z^K \right] \]

Modified expansion coefficients

\[a_{0,+}^{(k)} = \tilde{a}_{0,+}^{(k)} D_{0,+}^{(k)} (m^{\text{val}}, m^{\text{sea}}, a) \]

chiral logs and discretisation effects

Bourrely et al, PRD 79 (2009) 013008

Na et al [HPQCD], PRD 82 (2010) 114506

Bouchard et al [HPQCD], PRL 111 (2013) 162002
Modified z-expansion

Results from coarse ensembles
Modified z-expansion

$B \rightarrow D\ell\nu$ form factors

Na et al [HPQCD], PRD 92 (2015) 054510
B to D form factors

With BaBar data

\[|V_{cb}| = 0.0402(17)(13) \quad R(D) = \frac{\mathcal{B}(B \to D\tau\nu_\tau)}{\mathcal{B}(B \to D\ell\nu_\ell)} = 0.300(8) \]

Aubert et al [BaBar], PRL 104 (2010) 011802
Existing results

Experimental data not yet available

Form factor ratio at (almost) zero recoil

\[\frac{f_0^{(s)}(M^2_\pi)}{f_0^{(d)}(M^2_\pi)} = 1.054(50) \]

[Atoui et al, EPJ C 74 (2014) 2861]

Form factor normalisation at zero recoil with twisted mass fermions

[Bailey et al [FNAL/MILC], PRD 85 (2012) 114502]
Conclusion...

$B_s \rightarrow D_s \ell \nu$ semileptonic decays provide determination of V_{cb}

Preliminary results for $B_s \rightarrow D_s \ell \nu$ form factors at non-zero recoil

... and outlook

Finalise chiral/continuum extrapolation

Simultaneous fit to determine form factor ratio at zero recoil

Combine data to extract $|V_{ub}/V_{cb}|$

previous HPQCD $B_s \rightarrow K \ell \nu$ analysis

forthcoming LHCb analysis
Thank you

chris.monahan@rutgers.edu
EXTRA SLIDES
ENSEMBLES

MILC 2+1 asqtad ensembles

Set	r_1/a	$m_l^{\text{sea}}/m_s^{\text{sea}}$	N_{conf}	N_{tsrc}	$L^3 \times N_t$	aM_b	am_l^{val}	am_s^{val}	am_c^{val}
C1	2.647	0.005/0.050	2096	4	$24^3 \times 64$	2.650	0.0070	0.0489	0.6207
C2	2.618	0.010/0.050	2256	2	$20^3 \times 64$	2.688	0.0123	0.0492	0.6300
C3	2.644	0.020/0.050	1200	2	$20^3 \times 64$	2.650	0.0246	0.0491	0.6235
F1	3.699	0.0062/0.031	1896	4	$28^3 \times 96$	1.832	0.00674	0.0337	0.4130
F2	3.712	0.0124/0.031	1200	4	$28^3 \times 96$	1.826	0.01350	0.0336	0.4120
CORRELATOR FITS

Meson correlators

\[C_{B_s}^{\beta,\alpha}(t) = \sum_{j=0}^{N_{B_s}-1} b^\beta_k b^{\alpha*}_k e^{-E_j^{B_s}\text{sim} t} + \sum_{j=0}^{N'_{B_s}-1} b'^\beta_k b'^{\alpha\dagger}_k (-1)^t e^{-E'_j^{B_s}\text{sim} t} \]

\[C_{D_s}(t, p) = \sum_{j=0}^{N_{D_s}-1} |d_k|^2 \left(e^{-E_j^{D_s} t} + e^{-E_j^{D_s} (N_t-t)} \right) + \sum_{j=0}^{N'_{D_s}-1} |d'_k|^2 (-1)^t \left(e^{-E'_j^{D_s} t} + e^{-E'_j^{D_s} (N_t-t)} \right) \]
CORRELATOR FITS

Three-point correlator

\[
C^\alpha_j(t, T; \mathbf{p}) = \sum_{j=0}^{N_{B_s}-1} \sum_{k=0}^{N_{D_s}-1} A_{jk}^\alpha e^{-E^D_j t} e^{-E^s_k (T-t)} \\
+ \sum_{j=0}^{N'_{B_s}-1} \sum_{k=0}^{N_{D_s}-1} B_{jk}^\alpha e^{-E^D_j t} e^{-E^s_k (T-t)} (-1)^{(T-t)} \\
+ \sum_{j=0}^{N_{B_s}-1} \sum_{k=0}^{N'_{D_s}-1} C_{jk}^\alpha e^{-E'^D_j t} e^{-E^s_k (T-t)} (-1)^t \\
+ \sum_{j=0}^{N'_{B_s}-1} \sum_{k=0}^{N'_{D_s}-1} D_{jk}^\alpha e^{-E'^D_j t} e^{-E'^s_k (T-t)} (-1)^T
\]
Chiral–continuum fits

“Modified z-expansion”

\[
f_0 = \frac{1}{1 - q^2/M_0} \sum_{k=0}^{K-1} a_0^{(k)} z^k
\]

\[
f_+ = \frac{1}{1 - q^2/M_{B_c^*}} \sum_{k=0}^{K-1} a_+^{(k)} \left[z^k - (-1)^{(k-K)} \frac{k}{K} z^K \right]
\]

Where

\[
a_{0,+}^{(k)} = \tilde{a}_{0,+}^{(k)} D_{0,+}^{(k)} (m_{\text{val}}, m_{\text{sea}}, a)
\]

\[
D^{(k)} = 1 + \frac{M_\pi^2}{(4\pi f_\pi)^2} \left\{ c_1^{(k)} + c_2^{(k)} \log \left[\frac{M_\pi^2}{(4\pi f_\pi)^2} \right] \right\}
\]

\[
+ c_3^{(k)} \left\{ \frac{(M_{\text{asqtad}}^2 - (M_{\pi}^{\text{HISQ}})^2)^2}{2(4\pi f_\pi)^2} + \frac{(M_K^{\text{asqtad}})^2 - (M_K^{\text{HISQ}})^2}{(4\pi f_K)^2} \right\}
\]

\[
+ d_1^{(k)} (a m_c^2) + d_2^{(k)} (a m_c)^4 + e_1^{(k)} \left(\frac{a E_{D_s}}{\pi} \right)^2 + e_2^{(k)} \left(\frac{a E_{D_s}}{\pi} \right)^4
\]