“High-resolution paleoclimate reconstruction of the last 9000 years based on speleothem isotope records from northeastern Venezuela”

NATHALIE MELISSA MARTINEZ MEDINA

Dissertação apresentada ao Programa Geociências (Geoquímica e Geotectônica) para a obtenção do título de Mestra em Ciências.

Área de concentração: Geoquímica dos Processos Exógenos

Orientador: Prof. Dr. Francisco William da Cruz Junior

SÃO PAULO
2022
M. Medina, Nathalie Melissa
High-resolution paleoclimate reconstruction of the last 9000 years based on speleothem isotope records from northeastern Venezuela / Nathalie Melissa M. Medina; orientador Francisco William da Cruz Junior. -- São Paulo, 2022.
102 p.

Dissertação (Mestrado - Programa de Pós-Graduação-em Geoquímica e Geotectônica) -- Instituto de Geociências, Universidade de São Paulo, 2022.

1. Inter-tropical Convergence Zone. 2. Holocene. 3. Venezuela. 4. Speleothems. 5. Cariaco Basin. I. da Cruz Junior, Francisco William, orient. II. Título.
“High-resolution paleoclimate reconstruction of the last 9000 years based on speleothem isotope records from northeastern Venezuela”

NATHALIE MELISSA MARTINEZ MEDINA

Orientador: Dr. Francisco William da Cruz Junior

Dissertação de Mestrado

Nº 889

COMISSÃO JULGADORA

Dr. Francisco William da Cruz Junior
Dra. Marília de Carvalho Campos Garcia
Dr. Valdir Felipe Novello

SÃO PAULO
2022
RESUMO

Medina, N.M.M., 2022, High-resolution paleoclimate reconstruction of the last 9000 years based on speleothem isotope records from northeastern Venezuela [Master’s Thesis], São Paulo, Instituto de Geociências, Universidade de São Paulo, 102 p.

 Existem poucos registros paleoclimáticos de alta resolução disponíveis de regiões localizadas sob influência direta da Zona de Convergência Inter-tropical (ZCIT) na América do Sul, sendo a Bacia de Cariaco uma das áreas com maior número de estudos. O presente trabalho é baseado em registros isotópicos de alta resolução de δ¹⁸O e δ¹³C de espeleotemas de duas cavernas localizadas nas adjacências da Bacia de Cariaco, os quais cobrem a maior parte dos últimos 9,0 ka, durante o Holoceno. Os dados isotôpicos obtidos indicam oscilações climáticas em escalas de tempo multidecenal a secular, ainda pouco estudadas na região da ZCIT, que são comparadas a outros registros isotópicos de alta resolução no Atlântico Norte, Caribe e região tropical da América do Sul. Os dados isotôpicos sugerem que as condições climáticas mais frias no Atlântico Norte durante os eventos Bond estão associadas com mudanças na precipitação no nordeste da Venezuela, assim como na produtividade primária na Bacia de Cariaco. Entretanto, a relação climática com registros caribenhos depende da magnitude destes eventos e da fase de insolação vigente. O clima predominantemente úmido é observado na Venezuela e Caribe durante o Holoceno médio entre 8,1-6,5 ka, enquanto condições mais secas ocorrem no evento de maior magnitude, Bond (4), por volta de 5,5 ka. Já em eventos de menor intensidade e de mais curta duração, como o Bond 3, a comparação entre registros isotópicos sugere um estreitamento da ZCIT entre Venezuela e Barbados, que resultou em condições mais secas a norte em Cuba e a sul no Peru. O registro de espeleotema da caverna Caripe, nordeste da Venezuela, difere significativamente do registro das concentrações de titânio da Bacia de Cariaco durante os últimos 2300 anos. Durante este período, é observado o predomínio de uma relação climática antífásica com os registros caribenhos e em fase com os registros mais a sul, no domínio do Sistema de Monção Sul Americana (SMSA). Contrário ao que foi descrito em estudos anteriores da Bacia de Cariaco, os dados de espeleotemas indicam um clima mais seco na região
costeira da Venezuela no período correspondente a Anomalia Climática do Período Medieval (900-1100 CE). Já o período da Pequena Idade do Gelo, foi marcado pela não deposição de espeleotema, possivelmente associada a condições mais secas e o deslocamento mais a sul da ZCIT, que intensificou o regime de chuvas do SMSA em parte do continente sul-americano.

Palavras chave: Zona de Convergência Inter-tropical, Holoceno, Venezuela, espeleotemas, Bacia de Cariaco, paleoclima, isótopos estáveis, América do Sul, Caribe, Ciclos Bond.
ABSTRACT

Medina, N.M.M., 2022, High-resolution paleoclimate reconstruction of the last 9000 years based on speleothem isotope records from northeastern Venezuela [Master’s Thesis], São Paulo, Instituto de Geociências, Universidade de São Paulo, 102 p.

Few high-resolution paleoclimate proxy records exist in the region located under the direct influence of the Inter-tropical Convergence Zone (ITCZ) in South America (SA); most of them retrieved from the Cariaco Basin (CB) off the coast of Venezuela. Here we present new high-resolution δ^{18}O and δ^{13}C records of speleothems collected in caves in the region adjacent to the CB in Venezuela, covering the Mid and Late Holocene. We document previously undetected multidecadal- to secular-scale climate variability in the core region of the ITCZ, which is being compared to other high-resolution records from the North Atlantic (NA), Caribbean and southern tropical South America. We show that the northeastern Venezuelan Holocene hydroclimate variability and the input of nutrients, productivity and oxygen demand in the CB has primary (but not exclusively) responded to NA climate (Bond cycles). However, the magnitude of those events and the background insolation conditions might have been the main determinants. Increased Northern Hemisphere (NH) insolation during the Mid-Holocene likely led to mostly in-phase relation between Venezuela and eastern Caribbean records (i.e. wet conditions occurred between 8.1-6.5 ka despite coinciding with Bond 5, due to the enhanced NH insolation and northward position of the ITCZ, whereas dry conditions were observed during the strongest of the Bond Cycles (4) around 5.5 ka). In addition, the comparison between the speleothem record of this study and other ones suggest that ITCZ stayed between Venezuela and Barbados as a narrower band during weaker and shorter events such as the Bond 3 with drying conditions observed to the north in Cuba and to the south in Peru. Our NE Venezuela record from Caripe Cave considerably differs from the Cariaco Basin Ti record during the last 2.3 ka. Pointing to non-previously reported relations to Caribbean and southern hemisphere tropical high-resolution records. During this period an out-phase relation is observed between Venezuela and Caribbean records and rather appears to be closely related to the South American Monsoon System (SAMS).
dynamics. Contrary to results from previous studies in Cariaco, our results point out to drier conditions during Medieval Climate Anomaly (MCA, 900-1100 CE) close to the coast in Venezuela. No speleothem deposition occurred during most of Little Ice Age (LIA) which might be related to dryer conditions in response to a southward position that led to major moisture income to the SASM domain.

Key words: Inter-tropical Convergence Zone, Holocene, Venezuela, speleothems, Cariaco Basin, paleoclimate, stable isotopes, South America, Caribbean, Bond Cycles.
1. INTRODUCTION

1.1. What is the ITCZ?

The Inter-tropical Convergence Zone (ITCZ) is defined as a narrow or confined latitudinally low-pressure band of atmospheric deep convective clouds along the equator, where northerly and southerly trade winds converge and most of the rain of the Earth falls (Philander et al., 1996; Waliser & Gautier, 1993). During a year cycle the ITCZ migrates meridionally depending on the amount of solar radiation received on Earth by season and by latitude. Similarly, on longer time scales, paleo-records (Deplazes et al., 2013; Haug et al., 2001; Lea et al., 2003;) and modeling studies (Broccoli et al., 2006; Chiang & Bitz, 2005) have revealed that the ITCZ migrates, with some exceptions, towards a differentially warming hemisphere (Schneider, Bischoff, & Haug, 2014; Adam, Bischoff, & Schneider, 2016). Although the solar radiation has a maximum at the equator, the ITCZ location is not uniform around the globe. Currently, over the central Atlantic and Pacific oceans, the ITCZ migrates between 9°N in boreal summer and 2°N in boreal winter. And over the Indian Ocean and adjacent land surfaces, between 20°N in boreal summer and 8°S in boreal winter. Then, mean position of the ITCZ around the Earth’s middle situates further north at 6°N (Schneider et al., 2014).

The explanation for this asymmetry is the northwards heat transport across the equator by the Atlantic Meridional Overturning Circulation (AMOC). Compensated by the southward atmospheric heat transport achieved by shifting the tropical circulation northward of the equator (Marshall et al., 2014).

Given that there is no unambiguous definition for the ITCZ in reason of the number of different variables used to describe it, in addition to the confusion derived from the extrapolation of the ITCZ concept to land (Nicholson, 2018); two parameters have been frequently used to track the ITCZ position. The latitude of maximum precipitation (above a specific quantile) and minimum outgoing longwave radiation (OLR) in each longitude (Gu & Zhang, 2002; Mamalakis et al., 2021). Reminding that quantity of OLR is inversely related to the deep convective cloudiness (Poveda et al., 2006), as the cloud cover hamper the emission of electromagnetic radiation from the Earth and its atmosphere out to the space. However, continuing research based on observations and simulations has intended to unify the above parameters into a formula to describe the position...
of the ITCZ and its rainfall intensity: the atmospheric energy balance equation (Schneider, Bischoff & Haug, 2014). Defined as the absorbed solar radiation at the top of the atmosphere, minus the outgoing longwave radiation and any ocean energy uptake owing to transport or storage in the oceans (Schneider, Bischoff & Haug, 2014).

The ITCZ must be seen as an atmosphere-ocean interplay coupled by the trade winds near the surface. Which are especially important over the Atlantic and Pacific Oceans, where the continents are less influential (Philander et al., 1996).

The Hadley cell meridional overturning circulation is the atmospheric process controlling zonal-mean ITCZ position. While the belt of ocean currents (Meridional Overturning Circulation-MOC) has a key role in transporting large amounts of heat and salt around the world and thus in determining the inter-hemispheric heat balance (Manabe and Stouffer, 1999).

Hadley cells rise tropical air masses to the upper troposphere through evaporation (Schneider, Bischoff & Haug, 2014; Davis, et al., 2016). As the sun-warmed ocean heats the overlying air, air becomes less dense due to an increase in the particle’s kinetic energy and rises. As air rises, loses temperature and its capacity of retaining moisture, becomes supersaturated and some of its water vapor condenses into water droplets. Those condensed water droplets form clouds. When enough moisture has condensed and the droplets have grown too heavy to stay suspended by air currents, fall as rain. This rising air near the ocean surface is replaced by air masses from north and south of the equator which are deflected to the west due to the Coriolis effect, creating the easterly trade winds. Trade winds blow southwest toward the equator in the Northern Hemisphere (northeasterlies), and northwest toward the equator in the Southern Hemisphere (southeasterlies). In the upper troposphere, air masses detrain from clouds and diverge in the Northern and Southern hemispheres and subside at approximately 30°N and 30°S, respectively, in the extra-tropics at the subtropical highs. From here, air masses flow back to the equator through warm and moist surface zonal winds (Schneider, Bischoff & Haug, 2014; Davis, et al., 2016). Because these trade winds converge near the equator, the tropical rain belt occurring over the ocean is known to meteorologists as the Inter-tropical Convergence Zone. Whereas, the expression of the convectively equatorial active zone over the
inland area is observed as rather scattered cloud masses known as the equatorial trough (Riehl, 1979).

The AMO (Manabe and Stouffer, 1999) is manifested in the Atlantic Ocean as the AMOC. As is described by Kuhlbrodt et al., (2007), the AMOC consist of four main branches: the wind-driven processes that transport cold depth water near to the surface through upwelling at the Southern Ocean; the surface currents that accumulate warm and less saline waters on their path through the tropical waters toward northern high latitudes; the Southern (Antarctic Bottom Water, AABW) and the North Atlantic Deep Water (NADW) formation branches; together with the deep currents closing the loop.

Since the AMOC effectively contributes to the warming of the North Atlantic it is reasonable to think that a change in some of this branches would have its strongest response around this region (Vellinga & Wood, 2002; Schmittner et al., 2005). However, significant changes may occur over the entire globe. Various climate reconstructions/simulations of past and future scenarios, shows that increasing meltwater input into the North Atlantic may cause a slowdown of the AMOC (negative AMOC phase) or even the collapse of the oceanic heat transport (Vellinga & Wood, 2002; Schmittner et al., 2005). Not only triggering colder and drier conditions in much of the Northern Hemisphere, but also a relatively warmer Southern Hemisphere, stronger northeasterly winds, southward shift of the ITCZ over the Atlantic and eastern Pacific Basins, and enhanced precipitation in South America and Africa monsoon regions (Vellinga & Wood, 2002).

1.2. High Resolution Western Atlantic ITCZ Paleorecords: Cariaco Basin Sedimentary and Stable Isotope Records in Speleothems

Since the recovery of the first sediments cores from Cariaco Basin (CB) in 1957 (Peterson et al., 2000b), several proxy data sets were analyzed. Some of them reaching a temporal depth of up to 600,000 years BP (Gibson & Peterson, 2014; Peterson et al., 2000b), covering over five glacial cycles, with an extraordinary sampling interval of up to 5 years for the last 14 ka (Haug et al., 2001). Hence, CB located at 10°N has become the biggest source of information of northern South American paleoclimate and a worldwide reference to the ITCZ position. However, the spatial distribution of ITCZ rainfall over continental northern South
America remained more speculative. Until the high-resolution δ^{18}O speleothem record from Caracos Cave located in the eastern Andean Cordillera at 6°N came into light, revealing the complementary picture of ITCZ variability for a period spanning almost the entire last glacial cycle (Ramirez, 2018).

CB off the coast of Venezuela is an east-west trending pull apart basin that actually consist of two small sub-basins reaching depths of ~1400 mbsl, separated by a shallower central saddle of ~900 mbsl. Surrounding this structural depression to the north, the much shallower Tortuga Bank that extends from the Margarita Island to the east, to Cabo Cordera to the west, acts like a barrier that limits the exchange of waters with the rest of the Caribbean (Fig. 1) (Peterson et al., 2000b; Sweere et al., 2016). This key feature in combination with the large sedimentation rates (0.3 to >1 mm/year) make the CB a particularly sensitive repository to high-latitude climatic events. Such as the expansion and demise of polar ice sheets during glacial-interglacial transitions accompanied by dramatic sea level changes. And the trigger of a rapid tropical feedback through atmospheric-ocean teleconnections (Chiang & Bitz, 2005; Lea et al., 2003). Indeed, the correlation between Greenland temperatures (ice core δ^{18}O in ‰; Wolff et al., 2010) to past changes in CB ventilation (Mo in cps, Gibson & Peterson, 2014), upwelling (gray scale from 0-255; Hughen et al., 2000 and total reflectance in L*; Deplazes et al., 2013), surface productivity (alkenone concentration in µg/g sediment, Herbert & Schuffert, 2000) and sea surface temperatures (Mg/Ca in mmol/mol; Lea et al., 2003) point to a link between NH cooling and the strengthening of trade wind-driven upwelling in a situation analogous to the nowadays boreal winter dry season (December-January-February).

Like northern Venezuela, central Colombia also experiences a dry season during boreal winter due to the southward shift of the ITCZ. However, Ramirez, (2018) showed that during the Last Glacial Cycle there was a prevalence of an antiphased relationship with the Cariaco Basin at orbital (Marine Isotopes Stages) and millennial (Greenland Stadials and Interstadials) scales. Exceptions were observed in extreme cold events known as Heinrich Stadials (HS) in which both, the Cariaco Basin and central Colombia experienced a shortfall of precipitation. Providing evidence to the southward displacement of the ITCZ, already suggested by the enhancement of the South American Monsoon System (SAMS)
(Cruz et al., 2009; X. Wang et al., 2004), weakening of the AMOC (Bohm et al., 2015; McManus et al., 2004; Mulitza et al., 2017) and a suite of water-hosing modeling studies (Kageyama et al., 2013).

Dry (wet) periods were observed in the Caracos speleothem stable-isotope record as enriched (depleted) δ¹⁸O values. Whilst, in the CB were interpreted/observed in the lithology and geochemistry proxies as oxic (anoxic) bottom waters, colder (warmer) sea surface temperatures, and as lighter (darker), inorganic-biogenic (organic-carbon-rich), typically bioturbated (laminated) sediments. Besides, high detrital Fe and Ti abundances during periods of warm interstadials are thought to indicate increased terrigenous input to the Cariaco Basin, implying higher rainfall and increased runoff from the local watersheds. Namely of the small drainages of Cumaná, Neverpi, Unare and Tuy rivers (Fig. 1) (Deplazes et al., 2019; González et al., 2008; Haug et al., 2001; Peterson et al., 2000).

The coherence of the above-mentioned proxies has certainly probed to reflect ITCZ past meridional migrations in close synchronicity with NH climate in orbital to millennial time scales. Particularly for the Holocene, the consistency between the variability observed in the numerous proxy records from the CB is less apparent. Still, the Ti concentrations in sediments (Haug et al., 2001) have been used in several proxy comparisons and modeling studies as unequivocally evidence for the southward displacement of the ITCZ, following the gradual decrease in local insolation since the mid-Holocene, leading to rainfall diminution in northern Venezuela. Other Holocene data from the CB such of oxygen balance (Gibson & Peterson, 2014) and sediment color (Deplazes et al., 2013) instead shows a marked cyclicity pattern during the Mid Holocene. And for the Late Holocene, an opposite scenario to the Ti interpretation is exposed by progressively darker sediments approaching the present (Hughen et al., 2000), which might indicate a greater terrigenous input by increased river discharges expected by an ITCZ directly overhead. Then, the present study aims to reconcile the exposed discrepancies by providing new independent high-resolution δ¹⁸O and δ¹³C hydroclimate proxies from stalagmites collected in two caves located just 20 km of the Cariaco Basin. And contribute to northern South America hydroclimate reconstructions by giving important time windows of the Holocene period.
2. CONCLUSIONS

Precipitation in northeastern Venezuela is subjected to the geographic location that mainly determines the exposure to the moisture carrying trade winds. Whereas, isotopic composition imprint on rainfall represents more regional mechanisms. Based on the available data, we suggest that on monthly scales, $\delta^{18}O$ isotopic variability mainly responds to the amount effect related to the latitudinal migration of the ITCZ convective activity. Which in turn is associated to the evaporative enrichment of the raindrops during the dry months from January to March leading to heavier $\delta^{18}O$ values. And enhanced Rayleigh distillation during the wet season from May to December inducing lighter $\delta^{18}O$ values in precipitation (Frölich et al., 2002; Rozanski et al., 1993). More data are needed for further supporting this hypothesis and the possible influence of local sources of moisture during the last month of the year.

The negative correlation between annual weighted $\delta^{18}O$ values and precipitation totals point to the amount effect. However, the non-significance (p-value=0.1759>0.05) might be related to the few data included in the correlation. Again, we highlight the need for producing more continuous meteorological data with information on the isotope composition of water. As well as conducting parallel monitoring surveys of dripping waters and calcite precipitates in Venezuelan Caves of paleoclimatic interest.

Covariation between $\delta^{18}O$ and $\delta^{13}C$-speleothem values in northeastern Venezuela and molybdenum concentration in CB sediments points to a close relation between hydroclimate, vegetation density/soil cover and oxygen balance in the CB. We suggest that wet conditions and increased delivery of organic matter-rich terrigenous-sediments likely led to necessary reductive conditions to accumulate Mo in CB sediments through the increase in primary productivity and O_2 consumption. Those observations were accompanied by minor, almost negligibly variations in Ti and sediment reflectance. Except for the last 2300 yrs, in which the relation to $\delta^{18}O$ and CB Ti concentration in sediments considerable differs.

Venezuelan records are strategically located to track the mean position of the ITCZ during important climate perturbations. An attempt that has been previously assessed indirectly by Caribbean (Fensterer et al., 2012, 2013; Mangini et al.,
and tropical SH paleorecords (Apaéstegui et al., 2014; Bird et al., 2011; Novello et al., 2012; Stríkis et al., 2011; Vuille et al., 2012). We show that Holocene hydroclimate variability in Venezuela has primary (but not exclusively) responded to NA climate (Bond cycles) (Bond et al., 2001) with repercussions in the Cariaco Basin dynamics (Black et al., 1999; Gibson & Peterson, 2014; Haug et al., 2001; Hughen et al., 2000). The magnitude of those events as depicted by the concentration of HSG in the sub-polar NA sediments and the background insolation conditions might have been the main determinants. Increased NH insolation during the Mid-Holocene likely led to mostly in-phase relations between Alfredo Jahn and eastern Caribbean records. Contrasting the invariable convective activity observed over Central America (Serrato Marks et al., 2021; Winter et al., 2020). Whereas, during the Late-Holocene and out-phase relation is observed between Caripe and Caribbean records. During this particular period Caripe record appears to be closely related to the SAMS dynamics.

Apparent wet conditions are observed during peak Bond Cycle 5 in Cuba (Fensterer et al., 2013) and Venezuela, suggesting an ITCZ overhead and warmer Caribbean SSTs (LoDico et al., 2006). Conversely, between 5.8 and 5.2 ka, cold and windy NH climate in sync with the strongest of the Bond events (Bond 4) (Bond et al., 2001; Jackson et al., 2005b; Oppo et al., 2003), induced the southward displacement of the ITCZ and enhancement of the SAMS (Bustamante et al., 2016). Wet conditions in Venezuela and the southern Lesser Antilles (Mangini et al., 2007) were observed during the relative weak Bond Cycle 3, suggesting a subtle displacement of the mean position of the ITCZ, hence diminished convection in the SAMS region.

The Late Holocene Caripe record shows two distinct periods. From 350 BCE to 870 CE the convection was high and relatively stable, with variability apparently related to the Diva de Maura record from the NEB (Novello et al., 2012) likely also forced by the AMO in a common 40-yr periodicity. During the last 1000 years, instead, Caripe closely resembled the SAMS paleorecords in timing and direction (Apaéstegui et al., 2014; Bird et al., 2011; Della Libera et al., 2022). Relatively higher δ¹⁸O values during the MCA reflects a further north position of the ITCZ. And lower values during the first part of the LIA point to mean ITCZ position over
the Guianas, which apparently by this time was enough to drive important moisture influx to the SAMS domain.
3. REFERENCES

Adam, O., Bischoff, T., & Schneider, T. (2016). Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. *Journal of Climate, 29*(9), 3219–3230. https://doi.org/10.1175/JCLI-D-15-0512.1

Algeo, T. J., & Rowe, H. (2012). Paleoceanographic applications of trace-metal concentration data. *Chemical Geology, 324–325*, 6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002

Apaéstegui, J., Cruz, F. W., Sifeddine, A., Vuille, M., Espinoza, J. C., Guyot, J. L., Khodri, M., Strikis, N., Santos, R. V., Cheng, H., Edwards, L., Carvalho, E., & Santini, W. (2014). Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1600 years. *Climate of the Past, 10*(6), 1967–1981. https://doi.org/10.5194/cp-10-1967-2014

Berger, A., & Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. *Quaternary Science Reviews, 10*(4), 297–317. https://doi.org/10.1016/0277-3791(91)90033-Q

Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., & Rosenmeier, M. F. (2011). A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. *Proceedings of the National Academy of Sciences of the United States of America, 108*(21), 8583–8588. https://doi.org/10.1073/pnas.1003719108

Bischoff, T., & Schneider, T. (2014). Energetic constraints on the position of the intertropical convergence zone. *Journal of Climate, 27*(13), 4937–4951. https://doi.org/10.1175/JCLI-D-13-00650.1

Black, D. E., Peterson, L. C., Overpeck, J. T., Kaplan, A., Evans, M. N., & Kashgarian, M. (1999). Eight centuries of North Atlantic ocean atmosphere variability. *Science, 286*(5445), 1709–1713. https://doi.org/10.1126/science.286.5445.1709
Bohm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., & Deininger, M. (2015). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. *Nature, 517*(7532), 73–76. https://doi.org/10.1038/nature14059

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on north atlantic climate during the Holocene. *Science, 294*(5549), 2130–2136. https://doi.org/10.1126/science.1065680

Broccoli, A. J., Dahl, K. A., & Stouffer, R. J. (2006). Response of the ITCZ to Northern Hemisphere cooling. *Geophysical Research Letters, 33*(1), 1–4. https://doi.org/10.1029/2005GL024546

Brumsack, H. (2006). *The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation.* 232, 344–361. https://doi.org/10.1016/j.palaeo.2005.05.011

Bunn, A. G. (2008). A dendrochronology program library in R (dplR). *Dendrochronologia, 26*(2), 115–124. https://doi.org/10.1016/j.dendro.2008.01.002

Bustamante, M. G., Cruz, F. W., Vuille, M., Apaéstegui, J., Strikis, N., Panizo, G., Novello, F. V., Deininger, M., Sifeddine, A., Cheng, H., Moquet, J. S., Guyot, J. L., Santos, R. V., Segura, H., & Edwards, R. L. (2016). Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. *Quaternary Science Reviews, 146*, 274–287. https://doi.org/10.1016/j.quascirev.2016.05.023

Chiang, J. C. H., & Bitz, C. M. (2005). Influence of high latitude ice cover on the marine Intertropical Convergence Zone. *Climate Dynamics, 25*(5), 477–496. https://doi.org/10.1007/s00382-005-0040-5

Chiessi, C. M., Mulitza, S., Taniguchi, N. K., Prange, M., Campos, M. C., Häggi, C., Schefuß, E., Pinho, T. M. L., Frederichs, T., Portilho-Ramos, R. C., Sousa, S. H. M., Crivellari, S., & Cruz, F. W. (2021). Mid- to Late Holocene Contraction of
the Intertropical Convergence Zone Over Northeastern South America.

Paleoceanography and Paleoclimatology, 36(4), 1–20. https://doi.org/10.1029/2020PA003936

Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. In *Environmental Geology* (Vol. 43, Issue 5). CRC Press. https://doi.org/10.1029/99eo00169

Craig, H. (1961). Isotopic variations in meteoric waters. *Science, 133*(3465), 1702–1703. https://doi.org/10.1126/science.133.3465.1702

Cruz, F. W., Vuille, M., Burns, S. J., Wang, X., Cheng, H., Werner, M., Lawrence Edwards, R., Karmann, I., Auler, A. S., & Nguyen, H. (2009). Orbitally driven east-west antiphasing of South American precipitation. *Nature Geoscience, 2*(3), 210–214. https://doi.org/10.1038/ngeo444

Dansgaard, W. (1964). Stable isotopes in precipitation. *Tellus, 16*(4), 436–468. https://doi.org/10.3402/tellusa.v16i4.8993

Davis, N. A., Seidel, D. J., Birner, T., Davis, S. M., & Tilmes, S. (2016). Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. *Atmospheric Chemistry and Physics, 16*(15), 10083–10095. https://doi.org/10.5194/acp-16-10083-2016

Della Libera, M. E., Novello, V. F., Cruz, F. W., Orrison, R., Vuille, M., Maezumi, S. Y., de Souza, J., Cauhy, J., Campos, J. L. P. S., Ampuero, A., Utida, G., Stríkis, N. M., Stumpf, C. F., Azevedo, V., Zhang, H., Edwards, R. L., & Cheng, H. (2022). Paleoclimatic and paleoenvironmental changes in Amazonian lowlands over the last three millennia. *Quaternary Science Reviews, 279*. https://doi.org/10.1016/j.quascirev.2022.107383

Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., & Haug, G. H. (2013). Links between tropical rainfall and North Atlantic climate during the last glacial period. *Nature Geoscience, 6*(3), 213–217. https://doi.org/10.1038/ngeo1712
Deplazes, G., Meckler, A. N., Peterson, L. C., Hamann, Y., Aeschlimann, B., Günther, D., Martínez-García, A., & Haug, G. H. (2019). Fingerprint of tropical climate variability and sea level in sediments of the Cariaco Basin during the last glacial period. *Sedimentology, 66*(5), 1967–1988. https://doi.org/10.1111/sed.12567

Diaz, H. F., & Pulwarty, R. S. (1992). A comparison of Southern Oscillation and El Nino events in the Tropics. In H. F. Diaz & V. Markgraf (Eds.), *El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation* (pp. 175–192). Cambridge University Press.

Dorale, J. A., Edwards, R. L., Alexander, E. C. J., Shen, C.-C., Richards, D. A., & Cheng, H. (2004). Uranium-series dating of speleothems: current techniques, limits, & applications. In I. D. Sasowsky & J. Mylroie (Eds.), *Studies of Cave Sediments. Physical and chemical records of paleoclimate* (pp. 177–197). Kluwer Academic/Plenum Publishers. https://doi.org/10.1007/978-1-4419-9118-8

Dorale, J. A., & Liu, Z. (2009). Limitations of hendi test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. *Journal of Cave and Karst Studies, 71*(1), 73–80.

Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. *Geophysical Research Letters, 28*(10), 2077–2080.

Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. (2006). Modification and preservation of environmental signals in speleothems. *Earth-Science Reviews, 75*(1–4), 105–153. https://doi.org/10.1016/j.earscirev.2005.08.003

Fensterer, C., Scholz, D., Hoffmann, D. L., Spötl, C., Schröder-Ritzrau, A., Horn, C., Pajón, J. M., & Mangini, A. (2013). Millennial-scale climate variability during the last 12.5ka recorded in a Caribbean speleothem. *Earth and Planetary Science Letters, 361*, 143–151. https://doi.org/10.1016/j.epsl.2012.11.019

Fensterer, C., Scholz, D., Hoffmann, D., Spötl, C., Pajón, J. M., & Mangini, A.
Cuban stalagmite suggests relationship between Caribbean precipitation and the Atlantic Multidecadal Oscillation during the past 1.3 ka. https://doi.org/10.1177/0959683612449759

Forti, P., Urbani, F., & Rossi, A. (1999). Minerales secundarios de las Cuevas del Indio y Alfredo Jahn, Estado Miranda, Venezuela. Boletín Informativo de La Comisión de Geoespeleología (Federación Espeleológica de América Latina y El Caribe -FEALC-), 7, 1–6.

Frajka-Williams, E., Beaulieu, C., & Duchez, A. (2017). Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-11046-x

Fröhlich, K., Gibson, J. J., & Aggarwal, P. K. (2002). Deuterium excess in precipitation and its climatological significance. International Atomic Energy Agency, 54–66.

Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24, 225–262. https://doi.org/10.1146/annurev.earth.24.1.225

Gat, J. R. (1971). Comments on the Stable Isotope Method in Regional Groundwater Investigations. Water Resources Research, 7(4), 980–993. https://doi.org/10.1029/WR007i004p00980

Gibson, K. A., & Peterson, L. C. (2014). A 0.6 million year record of millennial-scale variability in the tropics. Geophysical Research Letters, 41, 969–975. https://doi.org/10.1002/2013GL058846.Received

Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474–479. https://doi.org/10.1126/science.1060040

Gonfiantini, R. (1986). Environmental isotopes in lake studies. Handbook of Environmental Isotope Geochemistry, the Terrestrial Environment, 2, 113–168.

Gschwendtner, J. V. G. (1963). Valencia lake as a hydrological indicator 1901–
62. International Association of Scientific Hydrology. Bulletin, 8(3), 64–70. https://doi.org/10.1080/02626666309493338

Gu, G., & Zhang, C. (2002). Cloud components of the intertropical convergence zone. Journal of Geophysical Research Atmospheres, 107(21), 1–12. https://doi.org/10.1029/2002JD002089

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Ro, U. (2001). Southward Migration of the ITCZ Holocene. Science, 293(5533), 1304–1309.

Hendy, C. H. (1971). The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35(8), 801–824. https://doi.org/10.1016/0016-7037(71)90127-X

Herbert, T. D., & Schuffert, J. D. (2000). Alkenone unsaturation estimates of sea-surface temperatures at Site 1002 over a full glacial cycle. Proceedings of the Ocean Drilling Program: Scientific Results, 165(June), 239–247. https://doi.org/10.2973/odp.proc.sr.165.030.2000

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hetzinger, S., Pfeiffer, M., Dullo, W. C., Keenlyside, N., Latif, M., & Zinke, J. (2008). Caribbean coral tracks Atlantic Multidecadal Oscillation and past hurricane activity. Geology, 36(1), 11–14. https://doi.org/10.1130/G24321A.1

Hodell, D. A., Curtis, J. H., Jones, G. A., Higuera-Gundy, A., Brenner, M., Binford,
M. W., & Dorsey, K. T. (1991). Reconstruction of Caribbean climate change over the past 10,500 years. *Nature, 352*, 790–793. https://doi.org/10.1038/255242a0

Huffman, G. J., Stocker, D. T., Bolvin, E. J., & Nelkin, J. (2019). *GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree* (No. V06). Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC).

Hughen, K. A., Southon, J. R., Lehman, S. J., & Overpeck, J. T. (2000). Synchronous radiocarbon and climate shifts during the last deglaciation. *Science, 290*(5498), 1951–1954. https://doi.org/10.1126/science.290.5498.1951

Jackson, M. G., Oskarsson, N., Trønnes, R. G., McManus, J. F., Oppo, D. W., Grönnovld, K., Hart, S. R., & Sachs, J. P. (2005a). Holocene loess deposition in Iceland: Evidence for millenial-scale atmosphere-ocean coupling in the North Atlantic. *Geology, 33*(6), 509–512. https://doi.org/10.1130/G21489.1

Jackson, M. G., Oskarsson, N., Trønnes, R. G., McManus, J. F., Oppo, D. W., Grönnovld, K., Hart, S. R., & Sachs, J. P. (2005b). Holocene loess deposition in Iceland: Evidence for millenial-scale atmosphere-ocean coupling in the North Atlantic. *Geology, 33*(6), 509–512. https://doi.org/10.1130/G21489.1

Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., & Zhang, X. (2013). Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. *Climate of the Past, 9*, 935–953. https://doi.org/10.5194/cp-9-935-2013

Kayano, M. T., & Capistrano, V. B. (2014). How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. *International Journal of Climatology, 34*(1), 162–178. https://doi.org/10.1002/joc.3674

Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. *Science, 288*(5473), 1984–1986. https://doi.org/10.1126/science.288.5473.1984

Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic
multidecadal oscillation. *Geophysical Research Letters, 33*(17), 2–5. https://doi.org/10.1029/2006GL026242

Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, A., & Rahmastorf, S. (2007). On the driving processes of the Atlantic Meridional Overturning Circulation. *Reviews of Geophysics, 45*(RG2001), 1–32. https://doi.org/10.1029/2004RG000166

Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. *Quaternary Science Reviews, 28*(5–6), 412–432. https://doi.org/10.1016/j.quascirev.2008.10.021

Lachniet, M. S., Asmerom, Y., Burns, S. J., Patterson, W. P., Polyak, V. J., & Seltzer, G. O. (2004). Tropical response to the 8200 yr B.P cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. *Geology, 32*(11), 957–960. https://doi.org/10.1130/G20797.1

Lapointe, F., Bradley, R. S., Francus, P., Balascio, N. L., Abbott, M. B., Stoner, J. S., St-Onge, G., de Coninck, A., & Labarre, T. (2020). Annually resolved Atlantic sea surface temperature variability over the past 2,900 y. *Proceedings of the National Academy of Sciences of the United States of America, 117*(44), 27171–27178. https://doi.org/10.1073/pnas.2014166117

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. *Astronomy and Astrophysics, 428*(1), 261–285. https://doi.org/10.1051/0004-6361:20041335

Lea, D. W., Pak, D. K., Peterson, L. C., & Hughen, K. A. (2003). Synchronicity of tropical and high-latitude Atlantic temperatures over the last glacial termination. *Science, 301*(5638), 1361–1364. https://doi.org/10.1126/science.1088470

Ledru, M. P. (2001). Late Holocene rainforest disturbance in French Guiana. *Review of Palaeobotany and Palynology, 115*(3–4), 161–170. https://doi.org/10.1016/S0034-6667(01)00068-9

LoDico, J. M., Flower, B. P., & Quinn, T. M. (2006). Subcentennial-scale climatic
and hydrologic variability in the Gulf of Mexico during the early Holocene. *Paleoceanography*, 21(3), 1–9. https://doi.org/10.1029/2005PA001243

López Pérez, N. (2012). The influence of El Niño Southern Oscillation episodes (ENSO) on rainfall in Monagas State, Venezuela. *Revista Científica UDO Agrícola*, 12(2), 400–406. https://dialnet.unirioja.es/servlet/articulo?codigo=4688576&info=resumen&idioma=SPA%0Ahttps://dialnet.unirioja.es/servlet/articulo?codigo=4688576&info=resumen&idioma=ENG%0Ahttps://dialnet.unirioja.es/servlet/articulo?codigo=4688576

Mamalakis, A., Randerson, J. T., Yu, J. Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., Levine, P. A., Yu, S., & Foufoula-Georgiou, E. (2021). Zonally contrasting shifts of the tropical rain belt in response to climate change. *Nature Climate Change*, 11(2), 143–151. https://doi.org/10.1038/s41558-020-00963-x

Mangini, A., Blumbach, P., Verdes, P., Spötl, C., Scholz, D., Machel, H., & Mahon, S. (2007). Combined records from a stalagmite from Barbados and from lake sediments in Haiti reveal variable seasonality in the Caribbean between 6.7 and 3 ka BP. *Quaternary Science Reviews*, 26(9–10), 1332–1343. https://doi.org/10.1016/j.quascirev.2007.01.011

Mann, M. E., & Emanuel, K. A. (2006). Atlantic Hurricane trends linked to climate change. *Eos*, 87(24), 233–241. https://doi.org/10.1029/2006EO240001

Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Fenbiao, N. (2009). Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. *Science*, 326(November), 1256–1260.

Marshall, J., Donohoe, A., Ferreira, D., & McGee, D. (2014). The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. *Climate Dynamics*, 42(7–8), 1967–1979. https://doi.org/10.1007/s00382-013-1767-z

Martinez, C., Goddard, L., Kushnir, Y., & Ting, M. (2019). Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. *Climate Dynamics*, 53(1–
2), 825–846. https://doi.org/10.1007/s00382-019-04616-4

McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. *Quaternary Science Reviews*, 23(7–8), 901–918. https://doi.org/10.1016/j.quascirev.2003.06.021

McManus, J., Francois, R., Gherardi, J. M., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. *Nature*, 428(April), 834–837.

Medina-elizalde, M., Burns, S. J., Lea, D. W., Asmerom, Y., Gunten, L. Von, Polyak, V., Vuille, M., & Karmalkar, A. (2010). High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. *Earth and Planetary Science Letters*, 298(1–2), 255–262. https://doi.org/10.1016/j.epsl.2010.08.016

Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, M. H., & Karlén, W. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. *Nature*, 433(7026), 613–617. https://doi.org/10.1038/nature03265

Mulitza, S., Chiessi, C. M., Schefuß, E., Lippold, J., Wichmann, D., Antz, B., Mackensen, A., Paul, A., Prange, M., Rehfeld, K., Werner, M., Bickert, T., Frank, N., Kuhnert, H., Lynch-Stieglitz, J., Portilho-Ramos, R. C., Sawakuchi, A. O., Schulz, M., Schwenk, T., … Zhang, Y. (2017). Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. *Paleoceanography*, 32(6), 622–633. https://doi.org/10.1002/2017PA003084

Nicholson, S. E. (2018). The ITCZ and the seasonal cycle over equatorial Africa. *Bulletin of the American Meteorological Society*, 99(2), 337–348. https://doi.org/10.1175/BAMS-D-16-0287.1

Novello, Valdir F., Cruz, F. W., Karmann, I., Burns, S. J., Strikis, N. M., Vuille, M., Cheng, H., Lawrence Edwards, R., Santos, R. V., Frigo, E., & Barreto, E. A. S. (2012). Multidecadal climate variability in Brazil’s Nordeste during the last 3000
years based on speleothem isotope records. *Geophysical Research Letters*, 39(23), 1–6. https://doi.org/10.1029/2012GL053936

Novello, Valdir Felipe, William da Cruz, F., Vuille, M., Pereira Silveira Campos, J. L., Strikis, N. M., Apaéstegui, J., Moquet, J. S., Azevedo, V., Ampuero, A., Utida, G., Wang, X., Paula-Santos, G. M., Jaqueto, P., Ruiz Pessenda, L. C., Breecker, D. O., & Karmann, I. (2021). Investigating δ13C values in stalagmites from tropical South America for the last two millennia. *Quaternary Science Reviews*, 255. https://doi.org/10.1016/j.quascirev.2021.106822

O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S., & Whitlow, S. (1995). Reconstructed from a Greenland Ice Core. *Science*, 270(21), 1962–1964.

Oppo, D. W., McManus, J. F., & Cullen, J. L. (2003). Deepwater variability in the Holocene epoch. *Nature*, 422(6929), 277–277. https://doi.org/10.1038/422277b

Pérez, W. (1970). Comportamiento fisiológico humano en condiciones subterráneas durante un mes dentro de la Cueva del Guácharo, Venezuela. *Boletín de La Sociedad Venezolana de Espeleología*, 3(1), 37–49.

Peterson, L. C., Haug, G. H., Hughen, K. A., & Rohl, U. (2000). Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. *Science*, 290(5498), 1947–1951. https://doi.org/10.1126/science.290.5498.1947

Peterson, L. C., Haug, G. H., Murray, R. W., Yarincik, K. M., King, J. W., Bralower, T. J., Kameo, K., Rutherford, S. D., & Pearce, R. B. (2000). Late Quaternary stratigraphy and sedimentation at Site 1002, Cariaco Basin (Venezuela). *Proceedings of the Ocean Drilling Program: Scientific Results*, 165, 85–99. https://doi.org/10.2973/odp.proc.sr.165.017.2000

Peterson, Larry C., & Haug, G. H. (2006). Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). *Palaeogeography, Palaeoclimatology, Palaeoecology*, 234(1), 97–113. https://doi.org/10.1016/j.palaeo.2005.10.021
Pfahl, S., & Sodemann, H. (2014). What controls deuterium excess in global precipitation? *Climate of the Past, 10*(2), 771–781. https://doi.org/10.5194/cp-10-771-2014

Philander, S. G. H., Gu, D., Halpern, D., Lambert, G., Lau, N. C., Li, T., & Pacanowski, R. C. (1996). Why the ITCZ is mostly north of the equator. *Journal of Climate, 9*, 2958–2972. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

Polissar, P. J., Abbott, M. B., Wolfe, A. P., Bezada, M., Rull, V., & Bradley, R. S. (2006). Solar modulation of little ice age climate in the tropical andes. *Proceedings of the National Academy of Sciences of the United States of America, 103*(24), 8937–8942. https://doi.org/10.1073/pnas.0603118103

Poveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. *Palaeogeography, Palaeoclimatology, Palaeoecology, 234*(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031

Pulwarty, R. S., Barry, R. G., & Riehl, H. (1992). Annual and Seasonal Patterns of Rainfall Variability over Venezuela (Jährliche und jahreszeitliche Muster der Niederschlagsvariabilität in Venezuela). *Erdkunde, 46*(3/4), 273–289.

R Core Team. (2022). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. https://www.r-project.org/.

Ramirez, V. M. (2018). *Influência da zona de Convergência Intertropical na Monção Sul-Americana durante o Último Período Glacial com base em registros geoquímicos de espeleotemas da Colômbia*. [Tese de doutorado, Universidade de São Paulo].

Riehl, H. (1979). Occurrence and structure of the equatorial trough zone in Venezuela. *Quarterly Journal of the Royal Meteorological Society, 105*, 217–229.

Rod, E. (1959). Cueva del Guacharo (Notas Geológicas). *Boletin de Geología, 5*(10), 107–116.
Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic Patterns in Modern Global Precipitation. *Climate Change in Continental Isotopic Records: American Geophysical Union Geophysical Monograph, 78*, 1–36. https://doi.org/10.1029/gm078p0001

Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., & Zahn, R. (1999). Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. *Nature, 402*, 511–514.

Schmittner, A., Latif, M., & Schneider, B. (2005). Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. *Geophysical Research Letters, 32*(23), 1–4. https://doi.org/10.1029/2005GL024368

Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. *Nature, 513*(7516), 45–53. https://doi.org/10.1038/nature13636

Scholz, D., & Hoffmann, D. L. (2011). StalAge - An algorithm designed for construction of speleothem age models. *Quaternary Geochronology, 6*(3–4), 369–382. https://doi.org/10.1016/j.quageo.2011.02.002

Scholz, D., Hoffmann, D. L., Hellstrom, J., & Bronk Ramsey, C. (2012). A comparison of different methods for speleothem age modelling. *Quaternary Geochronology, 14*, 94–104. https://doi.org/10.1016/j.quageo.2012.03.015

Schulz, M., & Mudelsee, M. (2002). REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. *Computers and Geosciences, 28*(3), 421–426. https://doi.org/10.1016/S0098-3004(01)00044-9

Serrato Marks, G., Medina-Elizalde, M., Burns, S., Weldeab, S., Lases-Hernandez, F., Cazares, G., & McGee, D. (2021). Evidence for Decreased Precipitation Variability in the Yucatán Peninsula During the Mid-Holocene. *Paleoceanography and Paleoclimatology, 36*(5), 1–21. https://doi.org/10.1029/2021PA004219

SEV. (1973). Catastro Espeleológico de Venezuela. Mi. 35-Cueva Alfredo Jahn.
Sharp, Z. (2017). *Principles of Stable Isotope Geochemistry* (2nd Edition). https://doi.org/10.25844/h9q1-0p82

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). Noaa’s Hysplit atmospheric transport and dispersion modeling system. *Bulletin of the American Meteorological Society*, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

Stríkis, N. M., Cruz, F. W., Cheng, H., Karmann, I., Edwards, R. L., Vuille, M., Wang, X., de Paula, M. S., Novello, V. F., & Auler, A. S. (2011). Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. *Geology*, 39(11), 1075–1078. https://doi.org/10.1130/G32098.1

Sutton, R. T., & Hodson, D. L. R. (2005). Ocean science: Atlantic Ocean forcing of North American and European summer climate. *Science*, 309(5731), 115–118. https://doi.org/10.1126/science.1109496

SVE. (1968). Catastro Espeleológico de Venezuela. Mo.1-Cueva del Guácharo. 1ra Parte. *Boletín de La Sociedad Venezolana de Espeleología*, 1(2), 97–118.

SVE. (1971). Catastro Espeleológico de Venezuela. Mo.1-Cueva del Guácharo. 2da Parte. *Boletín de La Sociedad Venezolana de Espeleología*, 3(2), 116–131.

Sweere, T., van den Boorn, S., Dickson, A. J., & Reichart, G. J. (2016). Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. *Chemical Geology*, 441, 235–245. https://doi.org/10.1016/j.chemgeo.2016.08.028

Tannenbaum, B., & Wrege, P. (1978). Ecología del Guácharo en Venezuela (Steatornis caripensis). *Boletín de La Academia de Ciencias Físicas Matemáticas y Naturales*, 115, 73–81.

Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. *Bulletin of the American Meteorological Society*, 79(1), 61–78.
Urbani, F. (1971). Carsos de Venezuela, Parte 1: Serranía del Interior, Oriente de Venezuela. Boletin de La Sociedad Venezolana de Espeleología, 3(2), 87–97.

Urbani, F. (1973). Carsos de Venezuela, Parte 2: Calizas Metamórficas de la Cordillera de la Costa. Boletin de La Sociedad Venezolana de Espeleología, 4(1), 15–37.

Utida, G., Cruz, F. W., Santos, R. V., Sawakuchi, A. O., Wang, H., Pessenda, L. C. R., Novello, V. F., Vuille, M., Strauss, A. M., Borella, A. C., Stríkis, N. M., Guedes, C. C. F., Dias De Andrade, F. R., Zhang, H., Cheng, H., & Edwards, R. L. (2020). Climate changes in Northeastern Brazil from deglacial to Meghalayan periods and related environmental impacts. Quaternary Science Reviews, 250. https://doi.org/10.1016/j.quascirev.2020.106655

Vellinga, M., & Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54(3), 251–267. https://doi.org/10.1023/A:1016168827653

Vuille, M., Bradley, R. S., Werner, M., Healy, R., & Keimig, F. (2003). Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. Journal of Geophysical Research: Atmospheres, 108(6). https://doi.org/10.1029/2001jd002038

Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., & Novello, V. F. (2012). A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past, 8(4), 1309–1321. https://doi.org/10.5194/cp-8-1309-2012

Waliser, D. E., & Gautier, C. (1993). A Satellite-derived Climatology of the ITCZ. Journal of Climate, 6, 2162–2174.

Wang, C., & Enfield, D. B. (2001). The tropical western hemisphere warm pool. Geophysical Research Letters, 28(8), 1635–1638.
Wang, Chunzai, Lee, S. K., & Enfield, D. B. (2007). Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. *Journal of Climate, 20*(20), 5021–5040. https://doi.org/10.1175/JCLI4304.1

Wang, X., Auler, A. S., Edwards, L. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., & Shen, C. C. (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. *Nature, 432*(7018), 740–743. https://doi.org/10.1038/nature03067

Winter, A., Miller, T., Kushnir, Y., Sinha, A., Timmermann, A., Jury, M. R., Gallup, C., Cheng, H., & Edwards, R. L. (2011). Evidence for 800 years of North Atlantic multi-decadal variability from a Puerto Rican speleothem. *Earth and Planetary Science Letters, 308*(1–2), 23–28. https://doi.org/10.1016/j.epsl.2011.05.028

Winter, A., Zanchettin, D., Lachniet, M., Vieten, R., Pausata, F. S. R., Ljungqvist, F. C., Cheng, H., Edwards, R. L., Miller, T., Rubinetti, S., Rubino, A., & Taricco, C. (2020). Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP. *Nature Communications, 11*(1), 1–8. https://doi.org/10.1038/s41467-020-14490-y

Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., & Svensson, A. (2010). Millennial-scale variability during the last glacial: The ice core record. *Quaternary Science Reviews, 29*(21–22), 2828–2838. https://doi.org/10.1016/j.quascirev.2009.10.013

Wurtzel, J. B., Black, D. E., Thunell, R. C., Peterson, L. C., Tappa, E. J., & Rahman, S. (2013). Mechanisms of southern Caribbean SST variability over the last two millennia. *Geophysical Research Letters, 40*(22), 5954–5958. https://doi.org/10.1002/2013GL058458

Yarincik, K. M., Murray, R. W., Lyons, T. W., Peterson, L. C., & Haug, G. H. (2000). Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from redox-sensitive metals (Mo, V, Mn, and Fe). *Paleoceanography, 15*(6), 593–604.
