Negative Priming Effect on Organic Matter Mineralisation in NE Atlantic Slope Sediments

Evangelia Gontikaki1*, Barry Thornton2, Veerle A. I. Huvenne3, Ursula Witte1

1 Institute of Biological and Environmental Sciences, Oceanlab, University of Aberdeen, Aberdeen, United Kingdom, 2 The James Hutton Institute, Aberdeen, United Kingdom, 3 National Oceanography Centre, Southampton, United Kingdom

Abstract

The priming effect (PE) is a complex phenomenon which describes a modification (acceleration or retardation) in the mineralisation rate of refractory organic matter (OM) following inputs of labile material. PEs are well-studied in terrestrial ecosystems owing to their potential importance in the evolution of soil carbon stocks but have been largely ignored in aquatic systems despite the fact that the prerequisite for their occurrence, i.e. the co-existence of labile and refractory OM, is also true for sediments. We conducted stable isotope tracer experiments in continental margin sediments from the NE Atlantic (550–950 m) to study PE occurrence and intensity in relation to labile OM input. Sediment slurries were treated with increasing quantities of the 13C-labelled diatom Thalassiosira rotula and PE was quantified after 7, 14 and 21 days. There was a stepwise effect of diatom quantity on its mineralisation although mineralisation efficiency dropped with increasing substrate amounts. The addition of diatomaceous OM yielded a negative PE (i.e. retardation of existing sediment OM mineralisation) at the end of the experiment regardless of diatom quantity. Negative PE is often the result of preferential utilisation of the newly deposited labile material by the microbial community (“preferential substrate utilization”, PSU) which is usually observed at excessive substrate additions. The fact that PSU and the associated negative PE occurred even at low substrate levels in this study could be attributed to limited amounts of OM subject to priming in our study area (~0.2% organic carbon (OC)) which seems to be an exception among continental slopes (typically >0.5%OC). We postulate that PEs will normally be positive in continental slope sediments and that their intensity will be a direct function of sediment OC content. More experiments with varying supply of substrate targeting C-poor vs. C-rich sediments are needed to confirm these hypotheses.

Introduction

Continental margin sediments (200–2000 m) cover merely 9% of the ocean’s seafloor but are responsible for ~30% of the global benthic mineralisation [1]. Understanding when these systems act as a source vs. sink of carbon (C) is thus of primary importance if we are to produce reliable global C budgets and predict the effects of future perturbations on the global C cycle. The chemical nature of organic matter (OM) is thought to be one of the major controls on the degradation/preservation balance in sediments [2,3]. Phytoplanktonic and macroalgal detritus are sources of highly reactive OM in surface sediments [4,5,6], whereas inputs of land-derived OM, microbial reworking of labile OM into less reactive forms and the accumulation of bacterial cell wall components contribute to the more refractory OM pool in marine sediments [7,8,9]. Labile and refractory OM pools degrade at different rates but not independently [10]. However, the interactions between these pools and their effect on C cycling are still poorly understood and most often ignored in global change models [11]. The term “priming effect” (PE) has been used to describe such links between labile and refractory OM pools in soils and refers to a modification, usually an increase, in the degradation rate of soil OM after input of a labile substrate. The mechanisms involved in PEs are not completely understood but theoretical approaches suggest that competitive or mutualistic interactions between labile and refractory OM degrading microbes may control the occurrence and intensity of PEs [12,13]. The potential importance of PEs in CO2 evolution in response to anthropogenic perturbations and climate change has attracted considerable attention to these phenomena among soil scientists [14,15]. Based on studies in terrestrial ecosystems, we know that PEs can be positive (labile OM addition increases soil OM mineralisation) or negative (labile OM addition decreases soil OM mineralisation) depending on the quantity and quality of the added substrate, nutrient levels, soil type and microbial community structure [14,15,16,17]. Our knowledge on PEs in aquatic systems is limited; Hee et al. [18] provided evidence for stimulated hydrolysis of relic (unreactive) sedimentary OM at the presence of fresh OM under anoxic conditions; In addition, the interaction between labile and
refractory OM pools has been shown to enhance nitrogen cycling in marine sediments [19], and the growth and respiration of bacterioplankton [20]. In the first experimental study of PEs using stable isotope labelled substrates, van Nugteren et al. [21] reported an increase in the mineralisation of existing sedimentary OM (positive PE) after deposition of phytoplankton-derived material in intertidal and subtidal estuarine sediments. Despite the so far limited number of PE studies in aquatic systems, awareness of the significance of these phenomena for C and nutrient cycling is increasing [11,22] and an upsurge of interest for PEs among aquatic scientists seems to be imminent.

Sediment metabolism in deep water sediments is mainly supported by phytoplankton detritus sinking from surface waters. Benthic C cycling studies using artificial pulses of isotopically-labelled marine algae, have repeatedly demonstrated the “awakening” of benthic communities at the arrival of this labile material as an overall increase in benthic metabolism [23,24,25,26]. However, whether this increase in sediment metabolism was coupled with priming phenomena is unknown. This is the first study to specifically address the issue of priming in continental slope sediments and was inspired by Guenet et al. [11] who hypothesized that under oligotrophic conditions, such as those prevailing in the deep sea, the occurrence of labile algal-derived OM would stimulate microbial production of extracellular enzymes and maximise the refractory OM mineralisation to reduce nutrient limitation (positive PE). We conducted stable isotope tracer experiments (TTEs) in continental slope sediments of the NE Atlantic (500–1000 m) using increasing quantities of 13C-labelled diatom detritus to test the hypotheses that: a) the addition of highly reactive diatom OM will enhance the mineralisation of existing sedimentary OM (positive PE), b) increasing amounts of diatom OM will result in stronger PE intensity [14,27] and c) PE intensity will become more pronounced with increasingly oligotrophic conditions from shallow- to deep-water stations. PE quantification was based on measurements of total CO2 and 13CO2 evolution in experimental vs. control slurry incubations.

Materials and Methods

Study Site and Sediment Sampling

The study was conducted on the RRS James Cook (cruise 60) in May-June 2011. Sediment cores were retrieved from 3 stations in the northern Rockall Trough, NE Atlantic using the NOC megacorer (core i.d. 10 cm) (Fig.1; Table 1). No specific permissions were required for these locations/activities. The sampling stations were close to but outside the boundaries of the Darwin Mounds Special Area of Conservation and the field study did not involve endangered or protected species. All cores were characterised by the presence of ~10 cm of sandy sediment overlying glacial mud [28]. Undisturbed sediment cores were transported into a temperature controlled room, set at the in situ temperature of 8°C, immediately after retrieval. Large animals and gravel were removed prior to sediment sectioning. The top 3 cm from 8 sediment cores per station were pooled and homogenised for use in the experiment (see below). Three replicate samples from the homogenised sediment (~20 ml) were frozen for biogeochemical analysis of bulk sediment (Table 1).

Experimental Set-up

Sediment slurries were prepared in 125 ml amber glass vials (EP Scientific Products) by adding 20 ml of sterile-filtered (0.2 μm) seawater to 20 ml sediment. As a priming agent, we used the 13C-labelled diatom Thalassiosira rotula, which was cultured and harvested as in Gontikaki et al. [23]. The final 13C enrichment of the diatoms was ~42%. At each station, the incubation vials were divided in 4 treatments (3 replicates per treatment); controls (no diatom addition) were used to determine background mineralisation, and low (LC), medium (MC) and high (HC) treatments contained increasing amounts of diatom detritus. The amount of added diatom C was equivalent to 0.03–0.07 mg C ml⁻¹ws, 0.12–0.28 mg C ml⁻¹ws, and 0.31–0.69 mg C ml⁻¹ws, in the LC; MC and HC treatments respectively. These amounts represent 5% (LC), 20% (MC) and 50% (HC) of the annual C flux at 400 m, 600 m and 800 m in the study area and were calculated based on the depth-dependent export flux equation given in Schluter et al. [29] and primary productivity values for the NE Atlantic from Sathyendranath et al. [30] (250 g C m⁻² y⁻¹). The simulated deposition of phytodetritus in our experiment exceeded the natural deposition occurring within the 3-week experimental time but covered the whole range of algal C pulses used in previous ITEs at continental slope and abyssal sediments [23,24,25,26,31]. Due to sampling difficulties, our final sampling stations were deeper than originally planned and although the depth difference between them was still ~200 m, the non-linear decrease in C flux with depth meant that the pre-weighed amount of diatoms per station deviated slightly from the planned annual flux %. The effect was more pronounced in treatment HC which represented 74% of the annual C flux at St500 and 61% at St900 (for comparison, the added C ranged between 6–7.5% and 24–30% of the annual C flux for the LC and MC treatments respectively).

Following the addition of the priming agent, the vials were sealed with screw caps fitted with PTFE/silicone septa and purged for 5 min with a gas mixture of N₂O (80:20 v/v; BOC). The vials were incubated at 8°C and samples were taken after 7, 14 and 21 days. Due to destructive sampling, a different set of vials were prepared for each sampling time. The vials were manually shaken daily for the duration of the experiment. A set of slurries were prepared and immediately processed to establish initial conditions (start values of concentration and isotopic signature of CO₂ in seawater and headspace).

Sample Processing

Sampling for CO₂ and 13CO₂ analysis in the headspace was performed by removing 12 ml of gas with a gas-tight syringe through the vial septum. The gas sample was transferred to nitrogen-flushed Exetainers® (Labco, U.K) and stored at experimental temperature until analysis. Water samples for dissolved inorganic C (DIC and DI13C) analysis were sterile-filtered (0.2 μm) into 3.6 ml Exetainers®, poisoned with 0.2% (vol) mercuric chloride and stored at experimental temperature. DIC samples were quantitatively converted to CO₂ by acidification before analysis. The concentration and C isotope ratios of CO₂ either in the headspace samples or in the CO₂ released by acidification were measured on a Gas-bench II connected to a DeltaCplus Advantage isotope ratio mass spectrometer (IRMS; both Thermo Finnigan, Germany). CO₂ concentrations were calculated from the combined area counts of masses 44, 45 and 46 given in the standard output of the IRMS in the manner of Joos et al. [32] and a calibration curve derived from known DIC concentration standards. Carbon isotopes were calculated using ISODAT NT software version 2.0 (ThermoElectron) and are expressed in the δ notation relative to Vienna Pee Dee Belemnite (VPDB): δ¹³C(‰) = [(Rsample/Rstandard) - 1] × 10⁶, where Rsample and Rstandard are the ¹³C/¹²C of the sample and standard, respectively.

The amount of CO₂ from priming was determined according to van Nugteren et al. [21]. First, the δ¹³C of total CO₂ (δ¹³C_total) was calculated as the concentration-weighed average of that
measured in the headspace and water after 1% correction for fractionation between CO$_2$ gas in the aqueous and gaseous phase

Table 1. Station list and sediment characteristics at each station.

Stations	Depth (m)	Lat	Long	TC (%)	TOC (%)	TN (%)	δ^{13}C-OM (%)	δ^{13}C-carbonate (%)
St500	558	59° 57' 36" N	7° 41' 46" W	3.16	0.15	0.02	-23.6	0.07
St700	741	59° 49' 55" N	7° 35' 56" W	2.43	0.15	0.02	-23.5	0.25
St900	945	59° 34' 12" N	7° 37' 19" W	4.11	0.27	0.04	-22.7	-0.01

TC: total carbon, TOC: total organic carbon, TN: total nitrogen, δ^{13}C-OM: stable carbon isotope signature of background sediment organic matter, δ^{13}C-carbonate: stable carbon isotope signature of background sediment inorganic matter.

doi:10.1371/journal.pone.0067722.t001
Fraction of carbonate dissolution was calculated from the 13C tracer in the LC, MC and HC treatments does not allow to estimate the maximum amount of CO₂ originating from carbonate dissolution as:

$$\delta^{13}C_{prod} = \frac{(\delta^{13}C_{prod} \times [CO_2]_{prod}) - (\delta^{13}C_{start} \times [CO_2]_{start})}{[CO_2]_{end} - [CO_2]_{start}}$$ \hspace{1cm} (2)

Finally, a two-end member linear mixing model was used to estimate the maximum amount of CO₂ originating from carbonate dissolution as:

$$F_{dist} = \frac{(\delta^{13}C_{prod} - \delta^{13}C_{com})}{(\delta^{13}C_{carb} - \delta^{13}C_{com})}$$ \hspace{1cm} (3)

where F_{dist} is the ratio of CO₂ originating from carbonate dissolution ($[CO_2]_{prod}$) to that from organic matter ($[CO_2]_{com}$). The presence of the 13C tracer in the LC, MC and HC treatments does not allow the direct calculation of F_{dist}. For that reason, the amount of CO₂ attributed to carbonate dissolution in 13C-amended vials was determined from the F_{dist} in the corresponding controls and was proportional to the total CO₂ production in the vial [21]. To verify the assumption that the proportion of carbonate dissolution will not change because of OM input, we calculated F_{dist} in parallel incubations amended with unlabelled diatoms (St700–MC treatment only). We found no significant difference in the fraction of produced CO₂ from dissolution caused by diatom addition (65±8% in controls vs. 63±15% in unlabelled diatom-amended treatments).

The total CO₂ (13C- and 12C-) originating from the mineralisation of diatom detritus ($[CO_2]_{diatom}$) was calculated as the product of excess 13C and $[CO_2]_{carb}$ divided by the fractional abundance of 13C in the algae (0.42). The mineralisation of existing sediment OM in 13C-amended treatments was calculated as:

$$OM_{miner,trace} = [CO_2]_{prod} - [CO_2]_{com} - [CO_2]_{diatom}$$ \hspace{1cm} (4)

Finally, priming C-CO₂ (μg C ml⁻¹ vs.) was calculated as the difference in sediment OM mineralisation between 13C diatom-amended treatments and controls:

$$PE = OM_{miner,trace} - OM_{miner,control}$$ \hspace{1cm} (5)

Statistical Analysis

The effect of time (continuous variable), treatment (categorical variable, levels: LC, MC, HC) and station (categorical variable, levels: St500, St700, St900) on total and diatom OM mineralisation, and priming intensity was tested using linear regression. A model validation was applied to check that the underlying statistical assumptions were not violated: homogeneity of variance was evaluated by plotting the residuals vs. the fitted values, normality was assessed by plotting the theoretical quantiles vs. the standardised residuals (qq plots) and independence was evaluated by plotting the residuals vs. each explanatory variable. Influential observations were identified using Cook’s distance [34]. Where model validation indicated instances of unequal variance, we used linear regression with the generalised least squares estimation procedure (GLS) [35]. This technique allows the residual spread to vary between individual levels of a particular explanatory variable or combinations of variables. To find the minimal adequate model, we followed the protocol described in Zuur et al. [33]. Initially, the optimal random structure was determined based on the Akaike Information Criteria (AIC) by comparing a model without any variance-covariates (equivalent to linear regression) with subsequent GLS models that contained different variance structures [36]. The selection of the optimal random structure was performed using restricted maximum likelihood estimation. Subsequently, the optimal fixed structure was determined by backward selection using the likelihood ratio (L ratio) test obtained by the maximum likelihood estimation. The final model, in terms of random and fixed structures was re-fitted using the restricted maximum likelihood estimation to obtain the numerical output and was evaluated as described above. The analysis was performed using the “nlme” package [37] in the “R” programming environment [39].

Results

Total Mineralisation

Background mineralisation rate (controls) was significantly higher at St500 compared to deeper stations but did not differ between St700 and St900 (F = 28.55, df₂,24, p<0.001) (Table 2). The addition of diatoms induced a stepwise increase in total CO₂ production in MC and HC treatments compared to background levels but low substrate quantity in LC treatment was not sufficient to induce a measurable increase in total CO₂ production (L = 64.99, df₁, p<0.001; File S1: Table 1). Total mineralisation rate did not change significantly between days 7 and 21 (L = 0.918). Highest activity was measured in St500 but no difference in total mineralisation was measured between the two deeper stations (L = 45.36, df₁, p<0.001).

Mineralisation of Diatom-derived OM

Mineralisation of diatom OM decreased with depth (L = 55.36, df₂, p<0.001) and increased with quantity (L = 128.86, df₂, p<0.001) but did not change significantly between days 7 and 21 (L = 0.28, df₁ = 1, p = 0.594; File S1: Table 2). In order to standardize for the differences in the absolute amount of added substrate, the same analysis was performed using substrate quantity as % of annual C flux at each station (continuous variable) instead of treatment levels. This model yielded the same outcome, i.e., diatom OM mineralisation increased with substrate quantity as % of annual C flux (L = 92.22, df₁, p<0.001) and decreased with depth (L = 48.78, df₁, p<0.001) (Fig.2). After 21 days, mineralisation of diatom C ranged from 30–40% of the total CO₂ production across treatments and stations with the exception of low treatment at St900 (Table 2). The efficiency of the benthic community to mineralise diatom OM dropped with increasing substrate quantity and [CO₂]_{diatom} represented <5% of the added C in all cases (Table 2).
The addition of diatom detritus yielded negative PE on sediment OM mineralisation which was dependant on treatment (Time x Treatment interaction; L = 8.58, df2, p = 0.013) and differed with station (L = 34.63, df2, p < 0.001; File S1: Table 3). The rate of negative priming was significantly different only between LC and HC treatments (t = 2.74, p = 0.008) but this was attributed to differences in PE intensity during the initial stages of the experiment; at the end of the incubation PE was comparable between treatments (Fig. 3). The intensity of negative priming was highest at St500 but did not differ significantly between St700 and St900 (St500–St700: t = 6.81, p < 0.001; St500–St900: t = 5.99, p < 0.001; St700–St900: t = −0.83, p = 0.405). At the end of the incubation, the decrease in sediment OM mineralisation due to PE corresponded to 60–85% (Table 3).

Table 2. Average total CO₂ production and diatom-derived C mineralisation at the end of the experiment.

Station	Treatment	[CO₂]ₚ₂ₙ₉,₅₇₀ (mg C-CO₂ ml⁻¹ ws)	Carbonate dissolution* (%) of [CO₂]ₚ₂ₙ₉,₅₇₀			
St500	Control	13.76	13.6	24.9	63	52–64
	LC	9.3	3.5	37.5	5.0	
	MC	13.6	5.4	40.0	2.0	
	HC	24.9	7.3	29.2	1.0	
St700	Control	4.2	4.9	30.2	3.5	63–70
	LC	4.9	1.5	30.2	3.5	
	MC	19.0	6.6	34.9	3.9	
	HC	36.2	10.8	30.0	2.5	
St900	Control	7.32	7.5	18.5	4.5	50–66
	LC	7.5	1.4	18.5	4.5	
	MC	12.4	4.6	37.3	3.8	
	HC	25.0	8.9	35.7	2.9	

*calculated from control vials sacrificed at all sampling intervals.

doi:10.1371/journal.pone.0067722.t002

Figure 2. Diatom-derived C mineralisation (µg C-CO₂ ml⁻¹ ws) as a function of substrate quantity. The diatom substrate quantity is expressed as % of annual C flux at the corresponding station.

doi:10.1371/journal.pone.0067722.g002
Numerous ITEs have demonstrated the rapid response of deep-sea benthic communities to the arrival of labile OM and the regulation of its intensity by the quantity and quality of the added substrate [23,24,25,26,31,39]. The technical challenges of conducting in situ and onboard incubations of undisturbed benthic communities have restricted deep-sea ITEs to short-term incubation times (<7 days, with the exception of Witte et al. [25]) and limited replication and experimental treatments. The slurry incubation methodology is an alternative that allows the study of the combined effects of several factors within a single experimental set-up. Recently, van Nugteren et al. [21] combined slurry incubations with ITEs to study priming effects in intertidal and subtidal coastal sediments. Here, we used the same methodology to generate the most comprehensive dataset so far on the effect of quantity on labile OM mineralisation and occurrence of PEs in continental slope sediments at intermediate time scales. As every experimental approach, slurry incubations involve disadvantages, one of them being their sensitivity to carbonate dissolution due to the possible exhaustion of alkalinity or buffer capacity [21]. However, appropriate corrections for dissolution have been applied and the parallel incubations with unlabelled diatoms confirmed the assumption that carbonate dissolution dynamics did not change with substrate addition. The small sediment amounts used in slurries are not representative of the whole benthic community and mineralisation rates cannot be compared to those obtained by in situ experimentation or whole-core incubations. However, the observed trends in PEs are not invalidated by our methodological approach since this is comparison-based and all data are obtained under the same experimental conditions.

Mineralisation of Labelled Diatoms

The mineralisation of diatom OM increased with quantity and was higher at St500 although it is not certain whether this is due to higher metabolic rates at shallower depth or the higher relative amount of substrate applied at this station. Previous studies using 13C-labelled diatoms to study benthic C cycling in deep-sea [26] and estuarine [40] sediments have also demonstrated a stepwise effect of substrate availability on its mineralisation. The addition of medium and high amounts of diatom C in our study led to a flush of CO2 during the first week of incubation possibly corresponding to the “awakening” of dormant or resting microbes into activity [41,42] and/or a switch in substrate utilization and rapid growth of opportunistic microorganisms capable of utilising the offered substrate [12]. Substrate addition at low levels did not cause a significant increase in total mineralisation suggesting no major changes to ecosystem functioning and microbial community structure in the LC treatment.

The efficiency of the microbial community to mineralise diatom-derived OM decreased with increasing substrate quantity (Fig.4). Similar effects have been observed in estuarine sediments at increasing levels of 13C-enriched diatom C [40] and soils after addition of increasing amounts of glucose [42,43]. This could be related to a greater proportion of assimilated C being allocated to maintenance metabolism (respiration) under limited resource availability as opposed to growth [40,44,45]. The amount of respired diatom C ranged from 3–5, 2–4 and 1–3% of the total substrate input in LC, MC and HC treatments respectively with the largest fraction mineralised within 7 days (Fig.4). In subtidal and intertidal sediments in the North Sea, van Nugteren et al. [21] and Hansen and Blackburn [46] found that 19–33% and 16–23%...
of the added phytodetritus was mineralised after 20–21 days respectively. Similarly to our results, 60% [21] and 80–90% [46] of algae mineralisation took place within 7 and 5 days respectively. The above suggest the existence of a particularly labile fraction in phytodetritus which is rapidly mineralised whereas the majority of algal material remains unutilised after several days of incubation. The initial rapid mineralisation of algal substrates could be explained by the addition of low molecular weight dissolved OM, together with the particulate diatom detritus, which is directly assimilated by bacteria without the need of extracellular enzymes, while the mineralisation of the remainder proceeds at a much slower pace [23]. Furthermore, microbial reworking of labile substrates has been shown to produce recalcitrant dissolved OM making it resistant to further degradation [47,48] and the incorporation of labile C into bacterial structural components contributes to the refractory OM pool in sediments [8,9]. The change in substrate lability due to microbial processing and secondary production could thus explain the low mineralisation efficiency of algal detritus following the initial rapid mineralisation rates.

Priming Effects

The addition of labelled diatoms induced negative PE in all treatments, i.e. the mineralisation of the existing sediment OM decreased as a result of enrichment with labile material. Based on model-derived priming C-CO₂ values, we calculated that the reduction in sediment OC mineralisation after 3 weeks could be up to 86% (Table 3). However, the magnitude of negative PE could be lower since the estimated carbonate dissolution represents a maximum value [21]. At 7 days, PE had a positive value in HC treatments. The positive PE at the initial stages of the incubation was most likely caused by the accelerated turnover or pool substitution of microbial biomass shortly after labile OM input, which was proportional to substrate quantity (“apparent” PE). However, the decrease in sediment OM mineralisation rate was steeper in HC treatment and reached similar levels of negative PE intensity to LC and MC treatments at the end of the experiment suggesting that “real” negative PE was not affected by substrate quantity (Fig.3).

Negative PE in our study is probably attributed to the microbial community switching to the more labile diatom detritus decomposition, a phenomenon called “preferential substrate utilization” (PSU) in soil sciences [49]. PSU and the associated negative PE are often encountered in cases of excessive substrate additions (>200% of microbial biomass) [17,49,50]. High diatom quantity resulting in the sudden increase in CO₂ production in MC and HC could explain the occurrence of PSU due to high substrate addition in these treatments. However this explanation is insufficient to explain PSU in the LC treatment where the quantity of diatoms ranged between 45–70% of microbial biomass [23,51] and did not cause major changes to the natural functioning of the system, as evidenced by the lack of increase in CO₂ production following substrate addition. Based on the observations from all treatments, PSU and consequently negative PE in our study are most likely attributed to the particularly low sediment organic C (OC) content at all stations (0.2%) and thus lack of abundant material subject to priming. This hypothesis can also explain the lack of diatom quantity effect on the intensity of negative PE. There is indeed evidence to suggest that OC content plays a role in PE regulation. PEs seem to be more pronounced in C-rich soils, increasing almost linearly with OC content (at least for the investigated range of 2.3–5.1%OC) [52]. This seems to be true even for extremely stable soils; Fontaine et al. [16] observed positive priming of ancient OM (~2500 year-old C, 3.2%OC)
after addition of fresh plant-derived material. On the contrary, the addition of a labile substrate to a particularly C-poor stabilised soil (0.5%OC) led to negative priming [53].

The accumulation of C in sediments is directly related to surface primary productivity, lateral particle transport and sediment texture, with grain size negatively correlated to OC concentration [54,55,56]. Continental slopes are considered to be sites of high C deposition as a result of intrinsically high rates of production in the marginal ocean and sediment transport from the shelf, and typically contain 0.3–2%OC [54]. Owing to its geological history and oceanographic regime, our study area is characterised by coarse sediments of particularly low sediment OC content despite moderately high surface productivity in overlying waters [29]. The negative PE observed here could thus be an exception among continental slopes owing to the unusual sediment characteristics of the study area. We postulate that PEs will normally be positive in continental slope sediments and that their intensity will be a direct function of sediment OC content. More experiments with varying supply of substrate targeting C-poor vs. C-rich sediments are needed to confirm these hypotheses.

Supporting Information

File S1 Optimal models from the analysis of total mineralisation (Table 1), diatom OM mineralisation (Table 2) and priming effect (Table 3) data for the effect of time (continuous variable), station (categorical variable, levels: St500, St700, St900) and treatment (categorical variable, levels: LC, MC, HC).

Acknowledgments

We gratefully acknowledge all scientists and crew onboard RRS, James Cook for their assistance in sampling. Special thanks go to Nick Joubert for his assistance in conducting this experiment. We would also like to thank Dr. Alex Douglas for his advice on the statistical analysis and Dr. Toyonobu Fujii for his help in producing the map of the study area. Prof. Jack Middelburg is acknowledged for his constructive review of the manuscript.

Author Contributions

Conceived and designed the experiments: EG UW. Performed the experiments: EG. Analyzed the data: EG. Contributed reagents/materials/analysis tools: BT. Wrote the paper: EG BT VAIH UW. Planning and leadership of cruise: JCO60. VAHI.

References

1. Middelburg JJ, Soetaert K, Herman PMJ (1997) Empirical relationships for use in global diagenetic models. Deep Sea Res Part 1 Oceanogr Res Pap 44(2): 327–344.

2. Wakeham SG, Canuel EA (2006) Degradation and preservation of organic matter in marine sediments. Hdb Env Chem 2N: 295–321.

3. Mayor DJ, Thornton B, Hay S, Zuur AF, Nicol GW, et al. (2012a) Resource quality affects carbon cycling in deep-sea sediments. ISME J 6: 1740–1748.

4. Harvey RH, Tittle JH, Bell TJ (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59(16): 3367–3377.

5. Canuel EA, Martens CS (1996) Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. Geochim Cosmochim Acta 60(10): 1793–1806.

6. Beaulieu SE (2002) Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol 46: 171–232.

7. Burdige DJ (2007) Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycans in northeastern Atlantic continental margin sediments. Limnol Oceanogr 47(3): 1521–1524.

8. Veuger B, van Oevelen D, Boschker HTS, Middelburg JJ (2006) Fate of peptidoglycan in an intertidal sediment: an in situ 13C-labeling study. Limnol Oceanogr 51(4): 1572–1580.

9. Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114(3–4): 315–329.

10. Guenet B, Dangor M, Abbadie L, Lacroix G (2010a) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91(8): 2550–2561.

11. Fontaine S (2003) The priming effect of organic matter: a question of microbial mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107(2): 467–85.

12. Grutters M, van Raaphorst W, Epping E, Helder J, de Leeuw JW, et al. (2002) Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycan in the northeastern Atlantic continental margin sediments. Limnol Oceanogr 47(3): 1521–1524.

13. Mayor DJ, Thornton B, Hay S, Zuur AF, Nicol GW, et al. (2012b) Resource quality affects carbon cycling in deep-sea sediments. ISME J 6: 1740–1748.

14. Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114(3–4): 315–329.

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e67722
35. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Model and Extensions in Ecology with R. New York: Springer Science+Business Media. 574 p.
36. Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-PLUS. New York: Springer Verlag. 520 p.
37. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Development Core Team (2012). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–105.
38. R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 Available: http://www.R-project.org/.
39. Aspetsberger F, Zabel M, Ferdelman T, Struck U, Mackensen A, et al. (2007) Instantaneous benthic response to different organic matter quality: In situ experiments in the Benguela Upwelling System. Mar Biol Res 3(5): 342–356.
40. Mayor DJ, Thornton B, Zuur AF (2012b) Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat. PloS One 7(6): e38582.
41. Luna GM, Manini E, Danovaro R (2002) Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determinations and ecological significance. Appl Environ Microbiol, 68(7): 3509–3513.
42. Schneckenberger K, Demin D, Staehr K, Kuzyakov Y (2008) Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil. Soil Biol Biochem 40(8): 1981–1988.
43. Bremer E, Kuikman P (1994) Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose additions. Soil Biol Biochem 26(4): 511–517.
44. del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29: 503–541.
45. López-Urrutia Á, Morán XAG (2007) Resource limitation of bacterial production disturts the temperature dependence of oceanic carbon cycling. Ecology 88(4): 817–822.
46. Hansen LS, Blackburn TH (1992) Effect of algal bloom deposition on sediment respiration and fluxes. Mar Biol 112(1): 147–152.
47. Ogasawara Y, Amagai Y, Kojima K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292(5518): 917–920.
48. Jiao N, Herndl GJ, Hansem DA, Benner R, Kattner G, et al. (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8(8): 593–599.
49. Kuzyakov Y (2002) Review: Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165(4): 392–396.
50. Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies, Appl Soil Ecol 37(1–2): 95–105.
51. Hepp CJR, Dainese G, Fisch G, Graf G, Hilger W, et al. (2003) The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep Sea Res Part 2 Top Stud Oceanogr 48(14–15): 3223–3243.
52. Kuzyakov Y, Bol R (2006) Sources and mechanisms of priming effect induced in two grassland soils amended with manure and sugar. Soil Biol Biochem 38(4): 747–756.
53. Guenet B, Lechop J, Raynaud X, Bardoux G, Abbadie L (2010c) Negative priming effect on mineralization in a soil free of vegetation for 80 years. Eur J Soil Sci 61(5): 384–391.
54. Premuzic ET, Benkovitz CM, Gaffney JS, Walsh JJ (1982) The nature and distribution of organic matter in the surface sediments of the world oceans and seas. Org Geochem 4: 63–77.
55. Calvert SE, Pedersen TF (1992) Organic carbon accumulation and preservation in marine sediments: How important is anoxia? In: Whelan JK, Farrington JN, editors. Organic matter: Productivity, Accumulation and preservation in recent and ancient sediments. New York: Columbia University Press, 231–263.
56. Inthorn M, Wagner T, Scheeder G, Zabel M (2006) Lateral transport controls distribution, quality and burial of organic matter along continental slopes in high-productivity areas. Geology 34: 205–208.
57. IOC IHO, BODC (2003) Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.