The Crystal and Electronic Structures of Cd$_3$As$_2$, the
3D Electronic Analogue to Graphene

Mazhar N. Ali,∗,† Quinn Gibson,† Sangjun Jeon,‡ Brian B. Zhou,‡ Ali Yazdani,‡
and R. J. Cava∗,†

Department of Chemistry, Princeton University, Princeton New Jersey 08544, USA., and Joseph
Henry Laboratories and Department of Physics, Princeton University, Princeton New Jersey
08544, USA.

E-mail: mnali@princeton.edu; rcava@princeton.edu

Abstract

The structure of Cd$_3$As$_2$, a high mobility semimetal reported to host electrons that act as
Dirac particles, is reinvestigated by single crystal X-ray diffraction. It is found to be centrosym-
metric rather than noncentrosymmetric as previously reported. It has a distorted superstructure
of the antifluorite (M_2X) structure type with a tetragonal unit cell of $a = 12.633(3)$ and $c =
25.427(7)$ Å in the centrosymmetric I4$_1$/acd space group. The antifluorite superstructure can
be envisioned as consisting of distorted Cd$_6\Box_2$ cubes (where \Box = an empty cube vertex) in
parallel columns, stacked with opposing chirality. Electronic structure calculations performed
using the experimentally determined centrosymmetric structure are similar to those performed
with the inversion symmetry absent, but with the important implication that Cd$_3$As$_2$ is a 3D-
Dirac semimetal with no spin splitting; all bands are spin degenerate and there is a four-fold
degenerate bulk Dirac point at the Fermi Energy along Γ-Z in the Brillouin zone. This makes

∗To whom correspondence should be addressed
†Department of Chemistry, Princeton University, Princeton New Jersey 08544, USA.
‡Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton New Jersey 08544, USA.
Cd$_3$As$_2$ a 3D electronic analog to graphene. Scanning Tunneling Microscopy experiments identify a 2x2 surface reconstruction in the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction.

Introduction

The topology-dependent electronic properties of solids are the subject of considerable current research. Although theoretical and experimental exploration of the electronic implications of topology fall clearly in the realm of materials physics, the compounds of interest for displaying those properties have a well-defined set of chemical characteristics, including constituent elements with similar electronegativities and strong spin orbit coupling; crystal symmetry also plays a critical role. The fact that such properties are in many cases predictable by theory has generated a wide interest in finding compounds that display them. Although the edges and surfaces of crystals and extremely thin crystals such as graphene might reasonably be expected to display electronic properties dependent on their topology, there are also cases where topological properties have been predicted for electrons within bulk three dimensional crystals. Such is the case for the recently emergent compounds Na$_3$Bi and Cd$_3$As$_2$, where early characterization of the real materials indicates that this may indeed be the case. One important prediction within this category is that in some cases the electrons will behave like they obey the “Weyl Hamiltonian”, a previously unobserved electronic state. In this instance the presence or absence of a center of symmetry in the host crystal is a critical structural characteristic for the stability of the electronic phase.

Cd$_3$As$_2$ has been well studied in the past but not in this context. Of particular interest have been its semimetallic character and very high electron mobility. It is also of interest for solar cells and as an analog for graphene in exploratory device applications. Theoretical work on the electronic structure of Cd$_3$As$_2$ has been done, but the calculations were performed using either the primitive tetragonal (P4$_2$/nmc) intermediate temperature structure (475 °C - 600 °C) or the noncentrosymmetric low temperature (Below 475 °C) structure (I4$_1$cd) proposed by Steigmann.
and Goodyear.19 The primitive tetragonal structure (1935) ($a = 8.95$ Å, $c = 12.65$ Å) has As in a FCC array, with 6 Cd in fluorite-like positions - 2 of the 8 vertices of the distorted cube are fully empty. The empty vertices lie diagonally opposite each other in one face of the cube, and are ordered in a two-dimensional array. The low temperature structure (1968) has a larger unit cell ($a = 12.67$ Å, $c = 25.48$ Å) where the empty cube vertices order in a three-dimensional rather than a two-dimensional array. Recent theoretical calculations performed with the reported non-centrosymmetric low temperature $I4_1$cd structure19 indicate that Cd_3As_2 may be a new type of 3D-Dirac semi-metal in part due to the lack of inversion symmetry, which causes the lifting of the spin degeneracy of certain bands in the vicinity of the Dirac point, raising the possibility that Cd_3As_2 may be an example of a Weyl semimetal. Thus the presence or absence of inversion symmetry has important implications for the electronic properties of Cd_3As_2.

Here we re-examine the crystal structure of Cd_3As_2 using current single crystal X-ray diffraction (SXRD) and analysis methods. We also identify the growth direction of needle crystals and the cleavage plane as the [110] and (112), respectively. Through the use of Scanning Tunneling Microscopy (STM) experiments, we identify a 2x2 surface reconstruction of the (112) plane cleavage surface. We find that earlier researchers failed to appreciate the near centrosymmetricity of their reported structure, and that Cd_3As_2 in its low temperature phase is in fact centrosymmetric, with the space group $I4_1/acd$. The higher symmetry forbids any spin splitting and keeps all bands at least two fold degenerate; this has significant implications for the behavior of the electrons near the Fermi Energy. The inversion symmetry constrains Cd_3As_2 to be a non-spin-polarized 3D-Dirac semi-metal, and therefore implies that it is a 3D analog to graphene, where the electronic states are also non-spin-polarized.

Experimental

Silvery, metallic colored single crystals of Cd_3As_2 were grown out of a Cd-rich melt with the stoichiometry $(\text{Cd}_5)\text{Cd}_3\text{As}_2$. The elements were sealed in an evacuated quartz ampoule, heated
to 825 °C, and kept there for 48 hours. The sample was then cooled at a rate of 6 degrees per hour to 425 °C and was subsequently centrifuged. Only Cd$_3$As$_2$ crystals were formed, with a crystal to flux ratio of 1:5, consistent with the equilibrium phase diagram.20 Chemical analysis of the crystals was performed in an FEI Quanta 200 FEG Environmental-SEM by energy dispersive x-ray analysis (EDX), which found them to have a Cd:As ratio of 1.500(1):1. Powder X-ray diffraction (PXRD) patterns were collected using Cu Kα radiation on a Bruker D8 Focus diffractometer with a graphite monochromator on ground single crystals to confirm the identity of the compound as being Cd$_3$As$_2$ in the low temperature structure. The single crystal X-ray diffraction study was performed on a 0.04 mm x 0.04 mm x 0.4 mm crystal on a Bruker APEX II diffractometer using Mo Kα radiation ($\lambda = 0.71073$ Å) at 100 K. Exposure time was 35 seconds with a detector distance of 60 mm. Unit cell refinement and data integration were performed with Bruker APEX2 software. A total of 1464 frames were collected over a total exposure time of 14.5 hours. 21702 diffracted peak observations were made, yielding 1264 unique observed reflections (centrosymmetric scaling) collected over a full sphere. No diffuse scattering was observed. The crystal structure was refined using the full-matrix least-squares method on F2, using SHELXL2013 implemented through WinGX. An absorption correction was applied using the analytical method of De Meulenaer and Tompa21 implemented through the Bruker APEX II software. The crystal surfaces were studied with in a home-built cryogenic scanning tunneling microscope at 2 K. No twinning was observed in either the STM or single crystal diffraction measurements. Electronic structure calculations were performed in the framework of density functional theory using the Wien2k code22 with a full-potential linearized augmented plane-wave and local orbitals basis together with the Perdew-Burke-Ernzerhof parameterization of the generalized gradient approximation.23 The plane wave cutoff parameter RMTK$_{\text{max}}$ was set to 7 and the Brillouin zone (BZ) was sampled by 250 k-points. The experimentally determined structure was used and spin orbit coupling (SOC) was included.
Results and Discussion

X-ray Diffraction

From SXRD, a body-centered tetragonal unit cell of \(a = 12.633(3) \) and \(c = 25.427(7) \) was found, matching PXRD measurements. The systematic absences of the reflections in the SXRD reciprocal lattice are consistent with the possible space groups \(\text{I}4_1\text{cd} \) and \(\text{I}4_1/\text{acd} \) as previously described.\(^{18}\) It has previously been theorized that \(\text{Cd}_3\text{As}_2 \) has the ideal \(\text{Mn}_7\text{SiO}_{12} \) structure type in the \(\text{I}4_1/\text{acd} \) space group,\(^{24}\) but no experimentally determined atomic positions were reported. Here, initial refinements in setting 2 of the centrosymmetric space group \(\text{I}4_1/\text{acd} \) were performed with all atoms on the idealized positions of the \(\text{Mn}_7\text{SiO}_{12} \) structure type. This idealized model gave very poor fits to the data, with \(R_1 \) only falling to 60%. It was clear from analysis of the electron density maps that the atoms are in fact not at the ideal positions. In the final refinement, atomic positions as well as anisotropic thermal parameters for all atoms were allowed to vary freely. The refinement results are summarized in Table 1. Table 2 lists final positions for all atoms and Table 3 lists the Cd-As bond lengths. Refined atomic displacement parameters may be found in the .cif file.

Resolving the ambiguity between a centrosymmetric crystal structure and a noncentrosymmetric crystal structure that is nearly centrosymmetric can sometimes be difficult, and is a well-known problem in crystallography.\(^{25,26}\) Unless a clear choice can be made in favor of the noncentrosymmetric model, structures must be described centrosymmetrically.\(^{25}\) The authors of the previous non-centrosymmetric structure report did not appreciate the fact that an alternative origin choice would allow for a centrosymmetric structure and thus did not check a centrosymmetric model against their observed intensities, which were estimated from exposed film densities.\(^{18}\) In order to compare a noncentrosymmetric model for \(\text{Cd}_3\text{As}_2 \) to the centrosymmetric model, we carried out a refinement in the noncentrosymmetric \(\text{I}4_1\text{cd} \) space group, using the published model as a template. The final refinements (see supplementary information) with atomic positions and anisotropic displacement parameters allowed to vary yielded a \(wR_2 \) of 0.0489 for 2481 data (with noncentrosymmetric scaling) with 93 parameters and an \(R_1 = 0.0265 \) for 1639 \(\text{Fo} > 4\text{Fσ} \). The centrosymmetric
Table 1: Refinement Parameters for Cd₃As₂

Phase	Cd₃As₂
Symmetry	Tetragonal, I₄/acd (No. 142)
Cell Parameters (Å)	\(a = b = 12.633(3), c = 25.427(7)\)
\(\alpha = \beta = \gamma = 90^\circ\)	
Wavelength (Å)	Mo K\(\alpha\) - 0.71073
Temperature (K)	100
\(V (\text{Å}^3)\)	4058.0(2)
\(Z\)	32
Calculated Density (g/cm³)	6.38
Formula Weight (g/mol)	487.1
Absorption Coefficient (mm⁻¹)	25.07
Observations	21702
\(F_000\)	6720
Data/Restrains/Parameters	1264/0/48
R1 (all reflections)	0.0480
R1 \(F_0 > 4\sigma(F_0)\)	0.0220 (893)
wR2 (all)	0.040 (1264)
\(R_{int}/R(\sigma)\)	0.0617/0.0238
Difference \(e^-\) density (e/Å³)	1.24/-1.25
\(GooF\)	1.035

model displays significantly better R-values. The R1 value for example for all data for the I₄/acd solution is 0.0481 while for the I₄\(1\)cd solution it is 0.0611. This is an improvement by a factor of 1.22 for the centrosymmetric structure. In addition, we used PLATON\(^22\) to check for and detect missed symmetry.\(^{28}\) The ADDSYM analysis (Le Page algorithm for missing symmetry) was used on the previously reported I₄\(1\)cd noncentrosymmetric structure. For that noncentrosymmetric model, PLATON detected a missing inversion center at \((0, \frac{1}{4}, \frac{1}{4})\) in the unit cell and recommended a 180° rotation around the \(c\)-axis followed by an origin shift to \((0, -\frac{1}{4}, \frac{1}{4})\), and a suggested space group of I₄/acd. Further, the deviations of the atoms in the noncentrosymmetric model from their equivalents in the centrosymmetric model are calculated and found to be very small (≈0.03 Å, supplementary info). Finally the Flack parameter (supplementary info) indicated that the structure was not noncentrosymmetric.\(^{29}\) This analysis thus further confirmed that the centrosymmetric crystal structure is the correct one.
Crystal Structure

Cd₃As₂ has different but related crystal structures as a function of temperature, which all can be considered defect antifluorite types; the Cd is distributed in the cube-shaped array occupied by F in CaF₂, while the As is in the FCC positions that are occupied by Ca. Thus in Cd₃As₂, the formally Cd²⁺ ions are four-coordinated by As and the formally As³⁻ ions are eight-coordinated by Cd. With As³⁻ in VI fold coordination expected to have a radius of about 2.22 Å and Cd²⁺ in IV coordination expected to have a radius of about 0.92 Å, the $r_{\text{Cd}^{2+}}/r_{\text{As}^{3-}} = 0.41$, which is near the ideal 0.414 cutoff for tetrahedral coordination of the metal in the CaF₂-type structure ($r_M/r_X = 0.15 - 0.414$). Further, as evidenced by the stoichiometry, Cd₃As₂ is Cd deficient of the ideal Cd₄As₂ antifluorite formula, missing $\frac{1}{4}$ of the Cd atoms needed to form a simple cube around the As. Thus the (distorted) cube can be written as Cd₆□₂, where □ = an empty vertex. The As and Cd coordinations in our Cd₃As₂ structure are shown in Figure 1. In the ordered, lower temperature variants, the Cd atoms shift from the ideal antifluorite positions toward the empty vertices of the cube (shown in Figure 2a). This distortion makes occupancy of the empty vertices highly energetically unfavored. At high temperatures ($T > 600 ^\circ$C) the Cd ions are disordered and so Cd₃As₂ adopts the ideal antifluorite space group Fm-3m with $a = 6.24$ Å (The HT structure). Between 600 °C and 475 °C, the intermediate temperature (IT) P4₂/nmc structure is found, where the Cd ions order so that the empty vertices are located on diagonally opposite corners of one face of the Cd₆□₂ cubes (see below). These cubes then stack so that the empty vertices form channels parallel to the a and b axes at different levels along the c axis. On further cooling, another ordering scheme is found. Below 475 °C, the Cd atoms further order in a three-dimensional fashion, such that each distorted Cd₆□₂ cube stacks on top of the previous one after a 90° rotation (either clockwise or counter-clockwise depending on the particular chain) about the stacking axis (parallel to the c axis). This is the low temperature (LT) centrosymmetric I₄₁/acd structure of the crystals whose structure is determined here and whose physical properties are of current interest. This also appears to be a new structure type. Figures 2b and 2c show how the three structures are related: the P4₂/nmc structure is a supercell of the disordered Fm-3m structure, and the I₄₁/acd
Table 2: Refined atomic positions for Cd₃As₂ in space group I₄₁/acd

Atom	Wyckoff	x	y	z
Cd1	32g	0.13955(3)	0.36951(3)	0.05246(2)
Cd2	32g	0.11162(3)	0.64230(3)	0.07243(2)
Cd3	32g	0.11863(3)	0.10598(4)	0.06247(2)
As1	32g	0.24602(4)	0.25779(5)	0.12315(2)
As2	16d	0	0.99931(2)	
As3	16e	0.51070(7)	0	

The I₄₁/acd structure has 3 unique Cd atoms and 3 unique As atoms and is schematically shown in Figure 3. Since the empty vertices of the Cd₆□₂ cubes sit diagonally opposite each other in a face of the distorted cube, the incomplete Cd cube can be thought of as having only one “closed face”. This “closed face” changes position in either a clockwise or counter-clockwise fashion as the cubes stack along the c direction, resulting in a screwing chain of cubes. These chains then align
so that each chain is next to a chain of an opposite handedness; a right-handed chain is surrounded by left-handed chains. This results in an inversion center being present between each chain.

For physical property measurements, it is important to identify characteristic planes and directions in the as-grown crystals. Cd$_3$As$_2$ grown as described here forms both irregular and rod-like crystals, all of which appear to have planar pseudo-hexagonal surfaces, often in steps, perpendicular to the long crystal axis. While the detailed SXRD measurements for structural refinement were carried out on small crystals, which gave the cleanest diffraction spots, larger crystals are employed for property measurements. Several of these larger crystals (e.g. with typical dimensions of 0.15 mm by 0.05 mm by 1.2 mm) were used in order to ascertain the growth direction of the needles. The crystals were mounted onto flat kapton holders and the Bruker APEX II software was used to indicate the face normals of the crystal after the unit cell and orientation matrix were determined. The largest crystals were also placed onto PXRD slides and oriented diffraction experiments were conducted. The long axis of the needles was consistently found to be the [110] direction. The planar pseudo-hexagonal crystal surfaces with normals perpendicular to the growth direction are the (112) planes; these correspond to the close packed planes in the cubic antifluorite phase transformed into the LT structure supercell Miller indices. STM studies find that the cleavage plane of Cd$_3$As$_2$ is the pseudo-hexagonal (112) plane found here as a well-developed face in the bulk crystals. Figure 4a shows a projection of the structure with the (112) plane shaded in orange. Figure 4b is a topographic STM image ($V_{bias} = -250$ mV, $I = 50$ pA, Temp = 2 K) of the (112) cleavage plane. The nearest neighbor spacing is found to 4.4±0.1 Å, which is consistent with the As-As spacing or Cd-Cd spacing on a (112) type plane. Also visible in the inset of Figure 4b is the appearance of a 2x2 surface reconstruction, likely due to dangling bonds from the termination of the (112) plane during cleavage. Figure 4c is a projection slightly off of the [110] direction, with the corresponding lattice plane shaded in green. Figure 4d shows the unit cell axes and the growth directions of a large needle crystal of Cd$_3$As$_2$ that is suitable for physical property measurements.

A [110] needle direction for a tetragonal symmetry crystal is relatively uncommon. The crystal growth conditions employed in this study were such that the majority of the slow cooling
took place through the stable temperature region of the IT P42/nmc structure. We hypothesize that the fastest growing direction in this phase is along the chain axis of the empty cube vertices, which is a principal axis of the structure (either the a or b axis). Thus the needle crystals have already grown before the last 50 degrees of the cooling, during which the low temperature annealing results in the ordering of the Cd atoms that yields the I41/acd structure. As can be seen from Figure 2, the principal axes of the P42/nmc structure become the set of [110] directions in the I41/acd structure. Variation of the growth temperature and conditions in future crystal growth studies may result in different types of needle axes, but the (112) close packed plane for crystal face development and cleavage is likely to be strongly preferred.

Electronic Structure

The electronic structure calculated from the experimentally determined centrosymmetric structure found here (Table 2) is shown in Figure 5. This band structure is similar to that reported previously for the incorrect noncentrosymmetric crystal structure. Crucially, however, due to the inversion symmetry present in the I41/acd structure, there is no spin splitting around the Dirac point (where the bands cross between Γ and Z at E_F and all bands are at least two-fold degenerate. Thus, the centrosymmetric structure indicates that Cd$_3$As$_2$ is a 3D-Dirac semi-metal with two fold degenerate bands that come together to a four-fold degenerate Dirac point at the Fermi level. It is therefore the 3D analog to graphene, where there is also no spin-splitting at the Dirac point. Furthermore, the states at the Γ point can now be characterized by their full symmetry (including their inversion eigenvalue) thus allowing parity counting to demonstrate the nontrivial topology in this ground state.

Conclusion

In conclusion, we report the correct crystal structure of Cd$_3$As$_2$ in the low temperature, three-dimensionally ordered phase, as well as the corresponding electronic structure. We identify that
for crystals grown as reported here, the needle growth direction is the \([110]\) and the cleavage plane and most developed face in crystals is the pseudo-hexagonal \((112)\) plane. Also present is a 2x2 surface reconstruction of the \((112)\) plane cleavage surface. We found that \(\text{Cd}_3\text{As}_2\) crystallizes in the centrosymmetric, \(\text{I}_4\overline{1}\text{acd}\) space group, and as such appears to be a new structure type. The \(\text{Cd}_6\square_2\) cubes order in a spiral, corkscrew fashion along an axis parallel to \(c\). Each corkscrew is surrounded by corkscrews of the opposite handedness, which results in the overall structure having inversion symmetry. The previously reported model in the \(\text{I}_4\text{1cd}\) space group (# 110), where an inversion center was omitted, can be related to this structure by rotating by \(180^\circ\) about the \(c\)-axis and then shifting the origin to \(0, \frac{1}{4}, \frac{1}{4}\). Since the correct centrosymmetric structural model uses only 6 unique atoms to describe the structure, electronic structure calculations become much more facile, which will help with the theoretical analysis of the electronic structure of this phase. In electronic structure calculations based on the centrosymmetric crystal structure, we find that the previously reported bulk band crossing along \(\Gamma\)-\(Z\) at the Fermi level is maintained, however due to the inversion symmetry, no spin splitting is allowed. Therefore \(\text{Cd}_3\text{As}_2\) is expected to be a non-spin-split 3D-Dirac semi-metal, and a three-dimensional analog to graphene.

Acknowledgement

This research was supported by the Army Research Office, grant W911NF-12-1-0461.

References

(1) Hasan, M. Z.; Kane, C. L. *Rev. Mod. Phys.* **2010**, *82*, 3045–3067.

(2) Cava, R. J.; Ji, H.; Fuccillo, M. K.; Gibson, Q. D.; Hor, Y. S. *J. Mater. Chem. C* **2013**, *1*, 3176–3189.

(3) Hasan, M. Z.; Moore, J. E. *Annual Review of Condensed Matter Physics* **2011**, *2*, 55–78.
(4) Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Grigorieva, M. K. I.; Dubonos, S.; Firsov, A. *Nature* **2005**, *438*, 197–200.

(5) Young, S. M.; Zaheer, S.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. *Phys. Rev. Lett.* **2012**, *108*, 140405.

(6) Xu, G.; Weng, H.; Wang, Z.; Dai, X.; Fang, Z. *Phys. Rev. Lett.* **2011**, *107*, 186806.

(7) Borisenko, S.; Gibson, Q.;Evtushinsky, D.; Zabolotnyy, V.; Buechner, B.; Cava, R. J. *arXiv preprint arXiv:1309.7978 2013*,

(8) Neupane, M.; Xu, S.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, F.; Hasan, M. Z. *arXiv preprint arXiv:1309.7892 2013*,

(9) Liu, Z. K.; Zhou, B.; Zhang, Y.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.; Mo, S.-K.; Shen, Z. X.; Fang, Z.; Dai, X.; Hussain, Z.; Chen, Y. L. *Science* **2014**,

(10) Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. *Phys. Rev. B* **2011**, *83*, 205101.

(11) Balents, L. *Physics* **2011**, *4*, 36.

(12) Lin-Chung, P. *Physical Review* **1969**, *188*, 1272–1280.

(13) Rosenberg, A. J.; Harman, T. C. *Journal of Applied Physics* **1959**, *30*, 1621–1622.

(14) Wallace, P. *Physica Status Solidi (b)* **1979**, *92*, 49–55.

(15) Saraswat, K.; Chui, C. O.; Kim, D.; Krishnamohan, T.; Pethe, A. High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs. 2006.

(16) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. *Inorganic Chemistry* **2013**, *52*, 9019–9038.

(17) Stackelberg, M.; Paulus, R. Z. *Physik. Chem.* **1935**, *28B*, 427.
(18) Steigmann, G.; Goodyear, J. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1968, 24, 1062–1067.

(19) Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z. Phys. Rev. B 2013, 88, 125427.

(20) Cahn, R. W. Advanced Materials 1991, 3, 628–629.

(21) de Meulenaer, J.; Tompa, H. Acta Crystallographica 1965, 19, 1014–1018.

(22) Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S. Computer Physics Communications 1990, 59, 399–415.

(23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.

(24) Zdanowicz, W.; Lukaszewicz, K.; Trzebiatowski, W. Bulletin de l’Academi Polonaise des Sciences, Serie des Sciences Chimiques 1964, 12, 169–176.

(25) Marsh, R. E. Acta Crystallographica Section B 1986, 42, 193–198.

(26) Ermer, O.; Dunitz, J. D. Acta Crystallographica Section A 1970, 26, 163.

(27) Spek, A. L. Acta Crystallographica Section D: Biological Crystallography 2009, 65, 148–155.

(28) Flack, H.; Bernardinelli, G.; Clemente, D.; Linden, A.; Spek, A. Acta Crystallographica Section B: Structural Science 2006, 62, 695–701.

(29) Flack, H. D. Acta Crystallographica Section A 1983, 39, 876–881.

(30) Müller, U. Inorganic Structural Chemistry; New York, 1993.

(31) Pietraszko, A.; Lukaszewicz, K. Acta Crystallographica Section B: Structural Science 1982, 25, 988–990.

(32) Bruker, APEX II; Bruker AXS Inc Madison, Wisconsin, USA, 2013.
(33) Buerger, M. *Elementary Crystallography: An Introduction to the Fundamental Geometrical Features of Crystals*; Wiley, 1956; pp 134–142.
Figure 1: (color online): a) The three coordination environments around the As atoms in Cd₃As₂. Due to the two vacancies per As-Cd cube, the remaining Cd atoms shift toward the vacancies resulting in different bond lengths. b) The coordination of As around the Cd atoms, where the As form regular tetrahedra but the Cd atoms sit off-center.
Figure 2: (color online): a) Single As-Cd cube with the Cd atoms displaced towards the Cd vacancies, resulting in distorted cubes. These cubes stack in corkscrews along the c-axis in the LT form. b) The relationship of the cubic Cd$_3$As$_2$ structure to the ordered lower temperature derivatives. Left to right, the high temperature (HT) Fm-3m structure, the intermediate temperature (IT) structure (P4$_2$/nmc), followed by the centrosymmetric I4$_1$/acd low temperature (LT) structure. c) The Cd cubes and their ordering for each structure. In the cubic phase, the Cd atoms are disordered over all of the pseudo-cube sites. In the P4$_2$/nmc structure the Cd vacancy channels are shown running along the b axis with the x symbol. The I4$_1$/acd structure is shown along the [110] direction, which is equivalent to the channel direction in the P4$_2$/nmc structure, to illustrate that chains of vacancies are no longer present.
Figure 3: (color online): a) As-Cd cubes with Cd vacancies diagonally opposite each other in one face of each cube, resulting in a single closed face of each cube (shaded). Stacking along c-axis is shown with the numbers corresponding to the layer in which each cube sits. The pink and green spheres represent Cd and As, respectively. b) Schematic diagram of the corkscrew stacking of As-Cd cubes; c-axis is coming out of the page. The squares are the projection of the cubes looking down the c-axis and the bolded lines with the numbers beside them represent the closed face of the cube and the layer in which it sits. Four layers of As-Cd cubes stack before the pattern repeats. Orange circles show the inversion centers, black spiral symbols show the screw axis and the dotted black line is the unit cell.
Figure 4: (color online): a) Projection of Cd$_3$As$_2$ into the pseudo-hexagonal (112) plane, which is shaded in orange. This is the cleavage plane, and also a developed large facet in bulk crystals. b) Topographic STM image of the cleaved surface of a Cd$_3$As$_2$ crystal. The pseudo-hexagonal symmetry corresponding to the (112) plane is seen. The inset shows (orange dots) the (112) plane projection with nearest neighbor spacing of 4.4±0.1 Å and the red dashed lines identify a 2x2 surface reconstruction. c) Projection along the [110] direction of Cd$_3$As$_2$ with the plane normal shaded in green. This is the needle axis direction. d) A single crystal of Cd$_3$As$_2$ with the needle growth direction and "plate" normal direction labeled ([110] and [1-12], respectively).
Figure 5: (color online): The calculated electronic structure of Cd$_3$As$_2$. A symmetry allowed crossing is observed along Γ-Z at E_F, representative of the Dirac point. No spin splitting is allowed due to the presence of inversion symmetry.
The structure of Cd$_3$As$_2$, a high mobility semimetal reported to host electrons that act as Dirac particles, is reinvestigated by single crystal X-ray diffraction. It is found to be centrosymmetric rather than noncentrosymmetric as previously reported. It has a distorted superstructure of the antifluorite (M$_2$X) structure type with a tetragonal unit cell of $a = 12.633(3)$ and $c = 25.427(7)$ Å in the centrosymmetric I4_1/acd space group. Electronic structure calculations performed using the experimentally determined centrosymmetric structure are similar to those performed with the inversion symmetry absent, but with the important implication that Cd$_3$As$_2$ is a 3D-Dirac semimetal with no spin splitting; there is a four-fold degenerate bulk Dirac point at the Fermi Energy along Γ-Z in the Brillouin zone. This makes Cd$_3$As$_2$ a 3D electronic analog to graphene.