Introduction

The Cretaceous–Paleogene boundary (K/Pg), ~65.5 Ma ago, is marked by one of the major faunal extinctions during the Phanerozoic, which led to the disappearance of about 70% of existing marine and continental species [1]. In particular, more than 90% of Maastrichtian planktic species of foraminifera disappeared abruptly at this boundary [2], [3]. The hypothesis of an extraterrestrial impact [4], [5] to explain the extinction has been widely accepted [6], though some authors also relate this mass extinction event with the activity of the large igneous province of the Deccan Traps [7–9], and debate goes on in the literature regarding volcanism, impacts and mass extinctions [10]. However, the synchronicity of a bolide impact and the associated mass extinction has been demonstrated [11]. Despite intensive research, many open questions remain; how and when biological productivity recovered after the impact, and how different ecosystems responded to such environmental changes are still controversial matters. Further understanding of the response of marine ecosystems to global catastrophes calls for deeper study of environmental conditions across this boundary.

The Chicxulub impact [12], [13] involved a large bolide, about 10^{4}–10^{5} years, of pre-impact conditions in terms of oxygenation. Geochemical redox proxies point to oxygen levels comparable to those at the end of the Cretaceous shortly after impact, which is further evidenced by the contemporary macrobenthic colonization of opportunistic trackmakers. Recovery of the oxygen conditions was therefore several orders shorter than traditional proposals (104–105 years), suggesting a probable rapid recovery of deep-sea ecosystems at bottom and in intermediate waters.

Abstract

An ultra-high-resolution analysis of major and trace element contents from the Cretaceous–Paleogene boundary interval in the Caravaca section, southeast Spain, reveals a quick recovery of depositional conditions after the impact event. Enrichment/depletion profiles of redox sensitive elements indicate significant geochemical anomalies just within the boundary ejecta layer, supporting an instantaneous recovery ~108 years of pre-impact conditions in terms of oxygenation. Geochemical redox proxies point to oxygen levels comparable to those at the end of the Cretaceous shortly after impact, which is further evidenced by the contemporary macrobenthic colonization of opportunistic trackmakers. Recovery of the oxygen conditions was therefore several orders shorter than traditional proposals (104–105 years), suggesting a probable rapid recovery of deep-sea ecosystems at bottom and in intermediate waters.

Citation: Sosa-Montes De Oca C, Martínez-Ruiz F, Rodríguez-Tovar FJ (2013) Bottom-Water Conditions in a Marine Basin after the Cretaceous–Paleogene Impact Event: Timing the Recovery of Oxygen Levels and Productivity. PLoS ONE 8(12): e82242. doi:10.1371/journal.pone.0082242

Editor: Lorenzo Rook, University of Florence, Italy

Received July 31, 2013; Accepted October 21, 2013; Published December 13, 2013

Copyright: © 2013 Sosa-Montes De Oca et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Projects CGL2009-07603, CGL2008-03007, CGL2012-33281 and CGL2012-32659 (Secretaría de Estado de I+D+i, Spain), Projects RNM-3715 and RNM 05212, and Research Groups RNM-178 and 0179 (Junta de Andalucía). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fmruiz@ugr.es
has been extensively studied during the last three decades [5], [17], [21–23], and can be considered a highly representative distal section for analysis of the K/Pg impact event. Selection of the sampling interval based on absence of mixing and traces fossils across the boundary to ensure that sampling at a millimetric scale records the original distribution of geochemical signatures. Hence, we present a mm-scale resolution approach, based on geochemical proxies in combination with ichnological data, to gain insight into the timing of oxygen recovery and the recovery of biological productivity after the impact event.

Geologic Setting

The K/Pg boundary section at Caravaca (38°04′36.39″N, 1°52′41.45″W) is located on the NW side of road C-336, about 4 km southwest of the town of Caravaca (Murcia, Spain), in the Barranco del Gredero (Figure 1). The studied section belongs to the external Subbetic of the Betic Cordillera. Lithology consists of light marls in the upper levels of the Maastrichtian sediments (uppermost Cretaceous), followed by 7–10 cm of a lower Danian (lowermost Paleogene) blackish gray clay layer (the so-called boundary clay layer) with a 2–3 mm thick reddish brown layer at the base (ejecta layer) containing spherules and platinum group element (PGE) anomalies [16], [24–26]. The 7–10 cm lower Danian clay layer gradually increases its carbonate content to a gray argillaceous marl similar to that of the upper Cretaceous (Figure 1). The Caravaca section, like the nearby Agost section (115 km away, in Alicante, Spain) and the El Kef section (Tunisia), is one of the best-preserved distal sections in the world [27]. It is thought to represent deposition at paleowater depths of ~200 to 1,000 m [28], [29] and at around 27–30°N palolatitude [29–31].

Materials and Methods

In the framework of mm-scale resolution analysis across the K/Pg boundary, we focused on a 4.20 cm interval, from 1.20 cm below the K/Pg boundary to 3.0 cm above it, recording depositional conditions at the Latest Cretaceous, those of the ejecta layer, and the Earliest Danian. The fieldwork was carried out in public land and no specific permission was required. Samples were taken in continuous sampling every 0.2 cm. Ichnological analysis revealed a well-developed lowermost Danian trace fossil assemblage, even penetrating vertically into the Cretaceous sediments. Nonetheless, a careful selection of sampled
intervals was done to avoid disturbance across the boundary. Thus, this highly detailed sampling involved materials showing no evidence of discrete trace fossils and without any mixing by bioturbation. According to the sedimentation rates of 3.1 cm Kyr\(^{-1}\) estimated for the Maastrichtian sediments, and that of 0.8 cm Kyr\(^{-1}\) calculated for the boundary clay layer [23], the studied material would span a time interval from 400 years prior to the K/Pg boundary to 3,750 years afterward.

Major and trace element concentrations were respectively obtained by Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Mass Spectrometry (ICP-mass), at the Centre for Scientific Instrumentation (CIC), University of Granada, Spain. All samples were crushed in an agate mortar and digested with HNO\(_3\) + HF [32].

We used Al-normalized concentrations of redox sensitive elements (V/Al, Mo/Al, U/Al, Pb/Al, Ni/Al, Co/Al, Cu/Al, Zn/Al and Cr/Al ratios), the U/Mo ratio, authigenic factors (Aut), and enrichment factors (EFs) of U and Mo for the reconstruction of redox conditions.

Enrichment factors (EF) were calculated as:

\[
X_{EF} = \frac{\left(\frac{X}{Al} \right)_{sample}}{\left(\frac{X}{Al} \right)_{PAAS}}
\]

Authigenic factors (aut) were calculated as:

\[
X_{aut} = \frac{\left(X \right)_{sample} - \left(X \right)_{PAAS} \left(Al \right)_{PAAS} \cdot (Al)_{sample}}{(Al)_{PAAS} \cdot (Al)_{sample}}
\]

where X and Al represent the weight percentage concentrations of elements X and Al, respectively. Samples were normalized using post-Archean average shale (PAAS) compositions [33].

Rare earth element (REE) concentrations were also determined in order to show the nature of the ejecta layer regarding sediments deposited above and below the K/Pg boundary [16].

Results and Discussion

It is well known that the K/Pg boundary marks major changes in the chemical composition of sediments deposited across it. Some changes can be expected as a consequence of the sudden drop in carbonate production, and the subsequent change in sediment lithology. Geochemical changes across the boundary are particularly evident in distal sections where a significant extraterrestrial metal contribution is recognized. In contrast, at sections located closer to the impact site, such as Blake Nose [34] or Demerara Rise [35] in the Western Atlantic, the extraterrestrial metal contribution is highly diluted by target rocks.

In distal sections, as the one here studied, the bolide contribution together with the enhanced chemical alteration in emerged areas produced a high metal supply. Additionally, reduced oxygen levels, due to the greater input of organic matter (both terrestrial and marine), also promoted anomalous concentrations of trace elements across the K/Pg boundary [13], [16], [21]. Despite diagenesis and potential remobilization, original signatures are preserved, evidenced by PGE anomalies [16], [24–26] and the extraterrestrial nature of trace elements such as Cr [36] within the ejecta layer. After the ejecta deposition, the autochthonous terrigenous supply led to the deposition of the boundary clay; primarily as a consequence of the reduced carbonate production. Therefore, the ejecta layer and this clay layer record the impact and post-impact depositional conditions, respectively. Impact evidence at Caravaca section also includes
diagnostically altered spherules, largely composed of smectites and K-feldspar [37].

Our mm-scale resolution analysis of trace metal concentrations and elemental ratios (V/Al, Cr/Al, Co/Al, Ni/Al, U/Al, Cu/Al, Zn/Al, Mo/Al, Pb/Al, and U/Mo) support the significant geochemical anomalies of the ejecta layer (Figure 2). These ratios sharply peak just within the ejecta layer, with values (10^{-2}) of 31.65 for the V/Al ratio, 1.18 for the Mo/Al ratio, 2.25 for the U/Al ratio, 280.50 for the Ni/Al ratio, 34.98 for the Pb/Al ratio, 69.02 for the Co/Al ratio, 42.95 for the Cu/Al ratio, 160.70 for the Zn/Al ratio, and 34.98 for the Mo/Al ratio (1.91) (Table 1) [38] shows a noteworthy depletion. The abundance of U and Mo is a particularly useful proxy for paleoredox conditions [39], [40]. Significant enrichments of U and Mo in marine sediments may generally be imputed to authigenic uptake of these elements from seawater in subsoxic (for U) or euxinic conditions (for Mo) (Figure 5). The decrease in the U/Mo ratio thus suggests that sulfidic conditions at this time may have favored a major Mo uptake. The U$_{FE}$ vs Mo$_{FE}$ covariation (Figure 4) also indicates a change in redox conditions just within the K/Pg boundary, which implies a quick return to previous Cretaceous oxygen levels after the impact. Yet a comparison of redox proxies (Figure 2) between Late Cretaceous sediments and those deposited during the very Early Danian showed no major changes, which suggests that oxygenation conditions during the Early Danian were not dramatically different from pre-impact conditions. On a global scale, no evidence of global hypoxia is reported, only rather low oxygen conditions at a local scale for certain outcrops [41]. Our data therefore support that lower oxygenation was mostly restricted to the deposition of the ejecta layer, that was settled down instantly on a geological time scale [42], while sediments from the Early Danian and the Late Cretaceous are similar in terms of oxygenation. The distinct nature of the ejecta layer is moreover supported by the REE depletion (Figure 5), derived not only from the diagenetic alteration of the impact glass and subsequent loss of REE, but also from the relatively high contribution of REE-depleted extraterrestrial material [16], [21].

In view of the distribution profiles of trace metals in terms of timing, and the interval where pre-impact concentrations were reached (occurring at a distance between 0.2 and 0.3 cm above the K/Pg boundary), as well the sedimentation rates of the first centimeters of the Danian clay –0.8 cm kyr$^{-1}$ in Caravaca [23]– we infer that oxygenation conditions were recovered in less than 375 years (in the order of 103 years). This value is several orders less than intervals traditionally proposed (104–105 years) [22], [23]. Such timing differences with respect to previous works may derive from a much higher resolution sampling. Furthermore, the reconstruction of oxygen conditions was based on recently developed geochemical redox proxies that have proven to be reliable [36], [37], [38]. Accordingly, our data support that oxygenation conditions recovered very quickly, almost instantly on a geological time scale [42].

Such a conclusion is also in agreement with the rapid recovery interpreted for the macrobenthic tracer community based on the presence of Fe-oxide spherules in the infilling of Thalassinoides in the Agost section [43], and with the bioturbational disturbance of the 2–3-mm-thick K/Pg red boundary layer at the Caravaca

Table 1. Element content and elemental ratios.

SAMPLE	DISTANCE (cm)	Al	Ca	V/Al	Mo/Al	U/Al	Pb/Al	Ni/Al	Co/Al	Cu/Al	Zn/Al	Cr/Al	REE/Al	U/Mo	Mo$_{FE}$	U$_{FE}$	Mo$_{out}$	U$_{out}$
CA +2.8+3.0	3.00	5.25 18.94	18.31 0.10	0.36 2.34	15.29 3.45	3.20 14.37	17.39 21.57	3.53 1.01	1.15 0.48	1.71								
CA +2.6+2.8	2.80	8.17 16.16	19.56 0.09	0.22 2.62	14.77 3.71	4.17 16.03	18.81 17.78	2.52 0.87	0.71 0.63	1.54								
CA +2.4+2.6	2.60	8.40 6.13	19.21 0.08	0.21 2.50	16.13 3.50	4.55 16.44	17.58 17.49	2.49 0.84	0.68 0.63	1.51								
CA +2.2+2.4	2.40	8.69 6.57	19.72 0.09	0.21 2.19	16.32 3.57	3.73 15.31	17.48 17.28	2.49 0.85	0.68 0.65	1.57								
CA +2.0+2.2	2.20	8.50 6.59	19.57 0.08	0.23 2.36	16.92 3.74	3.67 15.31	17.79 17.36	2.93 0.79	0.74 0.59	1.70								
CA +1.8+2.0	2.00	8.37 6.99	19.58 0.09	0.23 2.36	16.87 3.65	3.84 15.44	18.51 17.29	2.53 0.90	0.73 0.67	1.64								
CA +1.6+1.8	1.80	8.22 7.28	19.59 0.09	0.24 2.54	18.09 3.59	4.25 15.74	19.06 17.28	2.62 0.90	0.76 0.66	1.69								
CA +1.4+1.6	1.60	7.40 8.31	19.92 0.10	0.25 2.65	19.03 3.91	4.43 16.26	19.96 18.58	2.51 1.01	0.82 0.68	1.65								
CA +1.2+1.4	1.40	7.50 7.74	19.90 0.10	0.26 2.62	18.29 3.81	4.30 15.83	19.92 19.30	2.72 0.96	0.84 0.65	1.73								
CA +1.0+1.2	1.20	7.56 8.51	20.36 0.09	0.27 2.88	19.22 3.86	4.75 15.90	19.99 18.76	3.00 0.89	0.86 0.59	1.78								
CA +0.8+1.0	1.00	7.56 8.01	19.03 0.09	0.25 3.02	18.20 4.07	4.55 14.94	18.88 16.36	2.86 0.86	0.79 0.57	1.63								
CA +0.6+0.8	0.80	7.69 7.31	18.78 0.09	0.23 3.13	16.49 3.56	4.53 14.34	18.26 14.70	2.61 0.87	0.73 0.59	1.51								
CA +0.4+0.6	0.60	6.95 7.38	19.69 0.11	0.24 3.89	20.40 3.61	4.88 14.79	27.77 15.17	2.25 1.05	0.76 0.66	1.42								
CA +0.2+0.4	0.40	6.95 8.84	19.94 0.09	0.23 3.63	18.33 3.45	4.68 15.57	25.24 13.76	2.42 0.93	0.73 0.58	1.35								
CA +0.0+0.2	0.20	7.44 6.78	15.70 0.08	0.19 1.75	13.35 1.95	1.73 9.07	22.78 6.25	2.47 0.78	0.62 0.51	1.20								

Al and Ca concentrations (%), and elemental ratios (10^{-2}) across the Cretaceous–Paleogene (K/Pg) boundary at the Caravaca section.

doi:10.1371/journal.pone.0082242.t001
Figure 3. MoEF-aut and UEF-aut variations. Profiles MoEF-aut and UEF-aut for the Cretaceous–Paleogene (K/Pg) boundary section at Caravaca (Southeast Spain).
doi:10.1371/journal.pone.0082242.g003

Figure 4. MoEF vs UEF covariation. MoEF vs UEF covariation for the Cretaceous–Paleogene (K/Pg) boundary section at Caravaca (Southeast Spain).
doi:10.1371/journal.pone.0082242.g004
References

1. D'Hondt S (2005) Consequences of the Cretaceous/Paleocene mass extinction for marine ecosystems. Annual Review of Ecology and Systematics 36: 295–317. doi:10.1146/annurev.ecolsys.35.021103.105715.

2. Smit J (1982) Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper 190: 329–352.

3. Arenillas I, Arz JA, Grajales-Nishimura JM, Muriello-Muneton G, Alvarez W, et al. (2006) Chicxulub impact event in Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth and Planetary Science Letters 249: 241–257. doi:10.1016/j.epsl.2006.07.020.

4. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208: 1095–1108. doi:10.1126/science.112130.

5. Smit J, Hertogen J (1980) Mass extinction and the Cretaceous–Tertiary extinction. Science 208: 1095–1108. doi:10.1126/science.10025829.

6. Chevret A, Courtillot V, Fluteau F, Gerard M, Quidelleur X, et al. (2009) Determination of rapid Deccan eruptions across the KT boundary using palaeomagnetic secular variation: [II] Constraints from analysis of 8 new sections and synthesis for a 3500 m-thick composite section. Journal of Geophysical Research 114: B06103. doi:10.1029/2008JB005644.

7. Keller G, Kerr AC, MacLeod N (2013) Exploring the Causes of Mass Extinction Events. Eos, Transactions American Geophysical Union 94(22): 200. doi:10.1029/2013EO220004.

8. Renne PR, Deino AD, Hafner FJ, Kuiper KF, Mark DF, et al. (2013) Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science 339: 684–687.

Author Contributions

Conceived and designed the experiments: CSM FMR FJRT. Performed the experiments: CSM. Analyzed the data: CSM FMR FJRT. Contributed reagents/materials/analysis tools: CSM. Wrote the paper: CSM FMR FJRT.

Conclusions

A mm-scale resolution geochemical analysis across the K/Pg boundary at the Caravaca section evidences a rapid return to pre-impact conditions in terms of oxygenation after this major catastrophe. According to the estimated sedimentation rates for this section, oxygen levels at bottom and intermediate waters recovered at a very fast rate, in a range of few hundred years after the K/Pg boundary event. Depositional conditions for the ejecta layer were highly anoxic, as a consequence of the enhanced contribution of metals to the basins, accompanied by a greater supply of terrestrial and marine organic material. However, shortly after the impact, oxygen levels rapidly recovered, favoring the earliest macrobenthic opportunistic colonization.

Acknowledgments

We are likewise grateful to D. Ortega and E. Holanda for their laboratory assistance. Analyses were performed at the Centre for Scientific Instrumentation (CIC), University of Granada (Spain).

Figure 5. REE variation profile. REE/Al ratio (Al normalized concentrations *10^4) for the Cretaceous–Paleogene (K/Pg) boundary section at Caravaca (Southeast Spain). doi:10.1371/journal.pone.0082242.g005
12. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo AZ, et al. (1991) Chicxulub crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatán Peninsula, México. Geology 19: 867–871. doi:10.1130/0091-7613(1991)019[0867:CCAPCT]2.3.CO;2.

13. Smir J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Science 27: 75–113.

14. Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 4–21. doi:10.1016/j.palaeo.2007.02.037.

15. Arinobu T, Ishiwatari R, Kahu K, Lamolida MA (1999) Spike of pyrosequinetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain. Geology 27: 723–726. doi: 10.1130/0091-7613(1999)027.

16. Martínez-Ruiz F, Ortega-Huertas M, Palomo I (1999) Positive Eu anomaly development during diagenesis of the K/T Boundary ejecta layer in the Agost section (SE Spain): implications for trace-element remobilization. Terra Nova 11: 296–307.

17. Mizokami K, Kahu K, Oba M (2013) Significant changes in land vegetation and oceanic redox across the Cretaceous/Paleogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 41–47.

18. Tribiullard N, Algeo TJ, Lyons T, Ribeulouare A (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232: 12–32. doi:10.1016/j.chemgeo.2006.02.012.

19. Calvert SE, Pedersen TF (2007) Chapter fourteen elemental proxies for palaeolimnic and palaeoceanographic variability in marine sediments: interpretation and application. Marine Geology 115: 67–88. doi:10.1016/S1572-5488(07)01019-6.

20. Smir J (2004) The section of the Barranco del Gredero (Caravaca, SE Spain): a crucial section for the Cretaceous/Tertiary boundary impact extinction hypothesis. Journal of Iberian Geology 31: 179–191.

21. Smir J, Ten Kate WGHZ (1982) Trace-element patterns at the Cretaceous-Tertiary boundary: consequences of a large impact. Cretaceous Research 3: 307–332. doi:10.1016/0147-6563(82)90031-3.

22. Martínez-Ruiz F, Ortega-Huertas M, Kroon D, Smit J, Palomo-Delgado I, et al. (2001) Geochemistry of the Cretaceous–Tertiary boundary at Blake Nose (ODP Leg 171B). Geological Society Special Publications 183: 131–148. doi:10.1144/GSL.SP.2001.183.01.07.

23. Bernt J, Deutsch A, Schulte P, Mezger K (2011) The Chicxulub ejecta deposit at Demerara Rise (western Atlantic): Dissecting the geochemical anomaly using laser-ablation mass spectrometry. Geology 39: 279–282. doi: 10.1130/G31599.1.

24. Shukolyukov A, Lagunawt GW (1998) Isotopic evidence for the cretaceous–tertiary impactor and its type. Science 282: 927–929.

25. Martínez-Ruiz F, Ortega-Huertas J, Palomo I, Acquafredia P (1997) Quench textures in altered spherules from the Cretaceous-Tertiary boundary layer at Agost and Caravaca, SE Spain. Sedimentary Geology 113: 137–147. doi:10.1016/S0037-0738(97)00057-2.

26. Zhou L, Paul B, Wignall PB, Su J, Feng Q, et al. (2012) U/Mo ratios and 87Sr/86Sr as local and global redox proxies during mass extinction events. Chemical Geology 324–325: 99–107. doi:10.1016/j.chemgeo.2012.03.020.

27. Algeo TJ, Tribiullard N (2009) Environmental analysis of palaeoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268: 211–225. doi:10.1016/j.chemgeo.2009.09.001.

28. Tribiullard N, Algeo TJ, Baudin F, Ribeulouare A (2012) Analysis of marine environmental conditions based on molybdenum-uranium covariation-Aplications to Mesozoic palaeoceanography. Chemical Geology 324–325: 46–58. doi:10.1016/j.chemgeo.2011.09.009.

29. Algeat A, Thomas E (2005) Cretaceous/Paleogene boundary benthic paleo-environments in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology 224: 53–82. doi:10.1016/j.palaeo.2005.03.031.

30. Artemiev NV, Morgan J (2009) Modeling the formation of the K-Pg boundary layer. Icarus 201:765–780. doi:10.1016/j.icarus.2009.01.021.

31. Rodríguez-Tovar FJ (2005) Fe-oxides spherules infilling Thalassinoides burrows at the Cretaceous-Paleogene (K-P) boundary: Evidence of a near-contemporaneous macrobenthic colonization during the K-P event. Geology 33: 585–588. doi:10.1130/G21257.1.

32. Rodríguez-Tovar FJ, Uchman A (2008) Bioturbation disturbance of the Cretaceous-Paleogene (K-Pg) boundary layer: implications for the interpretation of the K-Pg boundary impact event. Geobiology 41: 661–667. doi:10.1016/j.geobiology.2008.01.003.

33. Rodríguez-Tovar FJ, Martin-Peinado FJ (2009) The environmental disaster of Aznalcollar (southern Spain) as an approach to the Cretaceous-Paleogene mass extinction event. Geobiology 7: 533–543. doi:10.1111/j.1472-4669.2009.00213.

34. Rodríguez-Tovar FJ, Martin-Peinado FJ (2011) Colonization of contaminated sediments: Implications in recovery of mass extinction events. Mineralogical Magazine Goldschmit Conference Abstracts 1742.