Chern Classes and Lie-Rinehart Algebras

Helge Maakestad

Abstract. Let A be a F-algebra where F is a field, and let W be an A-module of finite presentation. We use the linear Lie-Rinehart algebra V_W of W to define the first Chern-class $c_1(W)$ in $H^2(V_W|_U, O_U)$, where U in Spec(A) is the open subset where W is locally free. We compute explicitly algebraic V_W-connections on maximal Cohen-Macaulay modules W on the hypersurface-singularities $B_{mn} = x^m + y^n + z^2$, and show that these connections are integrable, hence the first Chern-class $c_1(W)$ vanishes. We also look at indecomposable maximal Cohen-Macaulay modules on quotient-singularities in dimension 2, and prove that their first Chern-class vanish.

Contents

Introduction 1
1. Kodaira-Spencer maps and linear Lie-Rinehart algebras 2
2. Explicit examples: Algebraic V_W-connections 4
3. Chern-classes 7
4. Surface quotient-singularities 8
References 9

Introduction

Classically, the Chern-classes of a locally free coherent A-module W are defined using the curvature R_V of a connection $\nabla : W \to W \otimes \Omega^1_X$. A connection ∇ gives rise to a covariant derivation $\nabla : \text{Der}_F(A) \to \text{End}_F(W)$. If we more generally consider a coherent A-module W, a connection ∇ might not exist. In this paper we will consider the problem of defining Chern-classes for A-modules W using a covariant derivation defined on a certain sub-Lie-algebra V_W of $\text{Der}_F(A)$: For an arbitrary A-module W there exists a sub-Lie-algebra V_W of $\text{Der}_F(A)$ called the linear Lie-Rinehart algebra, and also the notion of a V_W-connection. There exists a complex, the Chevalley-Hochschild complex $C^\bullet(V_W, W)$ for the A-module W with a flat V_W-connection, generalizing the classical deRham-complex. If A is a regular ring, the derivation module $\text{Der}_F(A)$ is locally free, and it follows that the complex $C^\bullet(\text{Der}_F(A), A)$ is quasi-isomorphic to the complex $\Omega^\bullet_{A/F}$, hence the Chevalley-Hochschild complex of $\text{Der}_F(A)$ can be used to compute the algebraic...
deRham-cohomology of A. The complex $C^\bullet(V_W, A)$ generalizes simultaneously the algebraic deRham-complex and the Chevalley-Eilenberg complex. This is due to $\mathbb{22}$. A natural thing to do is to investigate possibilities of defining Chern-classes of A-modules equipped with a V_W-connection, generalizing the classical Chern-classes defined using the curvature of a connection. Invariants for Lie-Rinehart algebras have been considered by several authors (see $\mathbb{8}$, $\mathbb{10}$ and $\mathbb{14}$), however invariants for A-modules with a V_W-connection, where V_W is the linear Lie-Rinehart algebra of W does not appear to be treated in the litterature and that is the aim of this work. In this paper we also develop techniques to do explicit calculations of Chern-classes of maximal Cohen-Macaulay modules on hypersurface singularities and two-dimensional quotient singularities.

We define for any F-algebra A where F is any field, and any A-module W which is locally free on an open subset U of $\text{Spec}(A)$, the first Chern-class $c_1(W)$ in $H^2(V_W|_U, \mathcal{O}_U)$, where $H^2(V_W|_U, \mathcal{O}_U)$ is the Chevalley-Hochschild cohomology of the restricted linear Lie-Rinehart algebra V_W of W, with values in the sheaf \mathcal{O}_U. This is Theorem $\mathbb{3.2}$. We also prove in Theorem $\mathbb{2.1}$ existence of explicit V_W-connections $\nabla^{\psi, \phi}$ on a class of maximal Cohen-Macaulay modules W on the Brieskorn singularities $B_{m,n,2}$, which in fact are defined over any field F of characteristic prime to m and n. We prove in Theorem $\mathbb{3.3}$ that the V_W-connections defined in Theorem $\mathbb{2.1}$ are all regular, hence the first Chern-class is zero. Finally we prove in Theorem $\mathbb{4.2}$ that for any maximal Cohen-Macaulay module W_ρ on any two-dimensional quotient-singularity C^2/G, the first Chern class $c_1(W_\rho)$ is zero.

1. **Kodaira-Spencer maps and linear Lie-Rinehart algebras**

Let A be an F-algebra, where F is any field, and let W be an A-module. In this section we use the Kodaira-Spencer class and the Kodaira-Spencer map to define the linear Lie-Rinehart algebra V_W of W, and the obstruction $l_c(W)$ in $\text{Ext}^1_A(V_W, \text{End}_A(W))$ for existence of a V_W-connection on W.

Definition 1.1. Let P be an A-bimodule. The *Hochschild-complex* of A with values in P $C^\bullet(A, P)$ is defined as follows:

$$C^p(A, P) = \text{Hom}_F(A^p, P)$$

with differentials $d^p : C^p(A, P) \to C^{p+1}(A, P)$ defined by

$$d^p\phi(a_1 \otimes \cdots \otimes a_p \otimes a_{p+1}) = a_1\phi(a_2 \otimes \cdots \otimes a_{p+1}) + \sum_{1 \leq i \leq p} (-1)^i\phi(a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{p+1}) + (-1)^{p+1}\phi(a_1 \otimes \cdots \otimes a_p)a_{p+1}.$$

We adopt the convention that $C^0(A, P) = P$, and $d^0(p)(a) = pa - ap$ for all p in P, and a in A. The i'th cohomology $H^i(C^\bullet(A, P))$ is denoted $HH^i(A, P)$.

There exists an exact sequence

$$0 \to HH^0(A, P) \to P \to \text{Der}_F(A, P) \to HH^1(A, P) \to 0,$$

and it is well known that if we let $P = \text{Hom}_F(W, V)$ where W and V are A-modules, then $HH^i(A, P)$ equals $\text{Ext}^i_A(W, V)$. Recall the definition of a *connection* on W: it is an F-linear map $\nabla : W \to W \otimes \Omega^1_{A/F}$, with the property that $\nabla(aw) = a\nabla(w) + w \otimes da$, where $d : A \to \Omega^1_{A/F}$ is the *universal derivation*. Put $P = \text{Hom}_F(W, W \otimes \Omega^1_{A/F})$.
in 11.1 and construct an element \(C \) in \(\text{Der}_F(A, \text{Hom}_F(W, W \otimes \Omega^1_{A/F})) \) in the following way: \(C(a)(w) = w \otimes da \).

Definition 1.2. The class \(C = \text{ks}(W) \) in \(\text{Ext}^1_A(W, W \otimes \Omega^1_{A/F}) \) is the **Kodaira-Spencer class** of \(W \).

Note that \(\text{ks}(W) \) is also referred to as the **Atiyah-class** of \(W \).

Proposition 1.3. Let \(A \) be any \(F \)-algebra, and let \(W \) be any \(A \)-module, then \(\text{ks}(W) = 0 \) if and only if \(W \) has a connection.

Proof. We see that \(\text{ks}(W) = 0 \) if and only if there exists an element \(\nabla : W \to W \otimes \Omega^1_{A/F} \) with the property that \(d^W \nabla = C \). This is if and only if

\[
(\nabla a - a \nabla)(w) = \nabla(aw) - a \nabla(w) = C(a)(w) = w \otimes da,
\]

hence \(\nabla \) is a connection, and the claim follows. \(\square \)

Definition 1.4. Let \(A \) be an \(F \)-algebra where \(F \) is any field. A **Lie-Rinehart algebra** on \(A \) is a \(F \)-Lie-algebra and an \(A \)-module \(g \) with a map \(\alpha : g \to \text{Der}_F(A) \) satisfying the following properties:

\[
\begin{align*}
(1.4.1) & \quad \alpha(a\delta) = a\alpha(\delta) \\
(1.4.2) & \quad \alpha([\delta, \eta]) = [\alpha(\delta), \alpha(\eta)] \\
(1.4.3) & \quad [\delta, \alpha \eta] = a[\delta, \eta] + \alpha(\delta)(a)\eta
\end{align*}
\]

for all \(a \in A \) and \(\delta, \eta \in g \). Let \(W \) be an \(A \)-module. A **\(g \)-connection** \(\nabla \) on \(W \), is an \(A \)-linear map \(\nabla : g \to \text{End}_F(W) \) which satisfies the **Leibniz-property**, i.e.

\[
\nabla(\delta)(aw) = a\nabla(\delta)(w) + \alpha(\delta)(a)w
\]

for all \(a \in A \) and \(w \in W \). We say that \((W, \nabla) \) is a **\(g \)-module** if \(\nabla \) is a homomorphism of Lie-algebras. The **curvature** of the \(g \)-connection, \(R_\nabla \) is defined as follows:

\[
R_\nabla(\delta \wedge \eta) = [\nabla \delta, \nabla \eta] - \nabla[\delta, \eta].
\]

Example 1.5. Any connection \(\nabla \) on \(W \), gives an action \(\nabla : \text{Der}_F(A) \to \text{End}_F(W) \) with the property that \(\nabla(\delta)(aw) = a\nabla(\delta)(w) + \delta(a)w \) for any \(\delta \) in \(\text{Der}_F(A) \), \(a \) in \(A \) and \(w \) in \(W \). The Lie-algebra \(g = \text{Der}_F(A) \) is trivially a Lie-Rinehart algebra, hence \(W \) has a \(g \)-connection.

Given any Lie-algebroid \(g \), and any \(A \)-module \(W \) with a \(g \)-connection, the set of \(g \)-connections on \(W \) is a **torsor** on the set \(\text{Hom}_A(g, \text{End}_A(W)) \). Put \(P = \text{Hom}_F(W, W) \) in 1.1.1 and define for all \(\delta \) in \(\text{Der}_F(A) \) the following element \(C(\delta) \) in \(\text{Der}_F(A, \text{Hom}_F(W, W)) \): \(C(\delta)(a)(m) = \delta(a)m \). We get an \(A \)-linear map

\[
C : \text{Der}_F(A) \to \text{Der}_F(A, \text{Hom}_F(W, W)).
\]

Definition 1.6. Let \(A \) be any \(F \)-algebra, and let \(W \) be any \(A \)-module. We define the **Kodaira-Spencer map**

\[
g : \text{Der}_F(A) \to \text{Ext}^1_A(W, W)
\]

as follows: \(g(\delta) = C(\delta) \) in sequence 1.1.1. We let \(\text{ker}(g) = V_W \) be the **linear Lie-Rinehart algebra** of \(W \).
One immediately checks that the A-sub module V_W of $\text{Der}_F(A)$ satisfies the axioms of definition 1.4, hence V_W is indeed a Lie-Rinehart algebra.

Proposition 1.7. Let A be any F-algebra and W any A-module. There exists an F-linear map

$$\rho : V_W \to \text{End}_F(W)$$

with the property that $\rho(\delta)(aw) = a\rho(\delta)(w) + \delta(a)w$ for all δ in V_W, a in A and w in W.

Proof. Assume that $g(\delta) = 0$. Then there exists a map $\rho(\delta)$ in $\text{Hom}_F(W,W)$ with the property that $d^0 \rho(\delta) = C(\delta)$. This is if and only if $\rho(\delta)(aw) = a\rho(\delta)(w) + \delta(a)w$, hence for all δ in V_W we get a map $\rho(\delta)$, and the assertion follows. \square

Given any A-module W, we now pick any map $\rho : V_W \to \text{End}_F(W)$ with the property that $\rho(\delta)(aw) = a\rho(\delta)(w) + \delta(a)w$, which exists by proposition 1.7. Put $P = \text{Hom}_F(V_W, \text{End}_A(W))$ in sequence 1.1.1 and consider the element L in $\text{Der}_F(A,P)$ defined as follows: $L(a)(\delta)(w) = a\rho(\delta)(w) - \rho(\eta\delta)(w)$.

Definition 1.8. Let $lc(W) = \mathcal{L}$ in $\text{HH}^1(A,P) = \text{Ext}_A^1(V_W, \text{End}_A(W))$.

One verifies that the class $lc(W)$ is independent of choice of map ρ, hence it is an invariant of W.

Theorem 1.9. Let A be any F-algebra, and W any A-module, then $lc(W) = 0$ if and only if W has a V_W-connection.

Proof. Assume $lc(W) = 0$. Then there exists a map η in $\text{Hom}_F(V_W, \text{End}_A(W))$ with the property that $d^0 \rho(\delta) = L$. Then the map $\rho + \eta = \nabla : V_W \to \text{End}_A(W)$ is a V_W-connection, and the assertion follows. \square

From a groupoid in schemes (roughly speaking an algebraic stack, see [16]) one constructs a Lie-Rinehart algebra in a way similar to the way one constructs the Lie-algebra from a group-scheme. A natural problem is to find necessary and sufficient criteria for the linear Lie-Rinehart algebra to be integrable to a groupoid in schemes.

Note that for any A-submodule and k-sub-Lie algebra g of $\text{Der}_k(A)$, there exists a generalized universal enveloping algebra $\text{U}(A,g)$ which is a sub-algebra of $\text{D}(A)$, where $\text{D}(A)$ is the ring of differential-operators of A. The algebra $\text{U}(A,g)$ has the property that there is a one-to-one correspondence between A-modules with a flat g-connection and left $\text{U}(A,g)$-modules. There exists a generalized PBW-theorem for the algebra $\text{U}(A,g)$ when g is a projective A-module (see [23]). The dual algebra $\text{U}(A,g)^\ast$ is commutative and its spectrum $\text{Spec}(\text{U}(A,g)^\ast)$ is a formal equivalence-relation in schemes. Note also that all constructions in this section globalize.

2. **Explicit examples: Algebraic V_W-connections**

In this section we apply the theory developed in the previous section to compute explicitly algebraic V_W-connections on a class of maximal Cohen-Macaulay modules on isolated hypersurface singularities $B_{mn2} = x^m + y^n + z^2$. Let in the following F be a field of characteristic zero, and $A = F[[x,y,z]]/x^m + y^n + z^2$. We are interested in maximal Cohen-Macaulay modules on A, and such modules have
a nice description, due to [6]: Consider the two matrices

\[
\phi = \begin{pmatrix}
x^{m-k} & y^{n-l} & 0 & z \\
y' & -x_k & z & 0 \\
z & 0 & -y^{n-l} & -x_k \\
0 & z & x^{m-k} & -y'
\end{pmatrix}
\]

and

\[
\phi = \begin{pmatrix}
x^k & y^{n-l} & z & 0 \\
y' & -x_{m-k} & 0 & z \\
z & 0 & -y' & x^k \\
0 & 0 & -x_{m-k} & -y^{n-l}
\end{pmatrix},
\]

where \(1 \leq k \leq m\) and \(1 \leq l \leq n\). Let \(f\) be the polynomial \(x^m + y^n + z^2\). The matrices \(\phi\) and \(\psi\) have the property that \(\phi\psi = \psi\phi = f I\) where \(I\) is the rank 4 identity matrix. Hence we get a complex of \(A\)-modules

\[
\cdots \rightarrow \psi P \rightarrow \phi P \rightarrow \psi P \rightarrow \phi P \rightarrow W(\phi, \psi) \rightarrow 0.
\]

Note that the sequence \((2.0.1)\) is a complex since \(\phi\psi = \psi\phi = f I = 0\). By [6], the module \(W = W(\phi, \psi)\) is a maximal Cohen-Macaulay module on \(A\). The ordered pair \((\phi, \psi)\) is a matrix-factorization of the polynomial \(f\). We want to compute explicitly algebraic \(V_W\)-connections on the modules \(W = W(\phi, \psi)\) for all \(1 \leq k \leq m\) and \(1 \leq l \leq n\), i.e. we want to give explicit formulas for \(A\)-linear maps \(\nabla^{\phi, \psi} = \nabla : V_W \rightarrow \text{End}_F(W)\) satisfying \(\nabla(\delta)(aw) = a\nabla(\delta)(w) + \delta(a)w\) for all \(a\) in \(A\), \(w\) in \(W\) and \(\delta\) in \(V_W\). Hence first we have to compute generators and syzygies of the derivation-modules \(\text{Der}_F(A)\). A straight-forward calculation shows that \(\text{Der}_F(A)\) is generated by the derivations

\[
\delta_0 = 2nx\partial_x + 2my\partial_y + mnz\partial_z
\]

\[
\delta_1 = mx^{m-1}\partial_y - ny^{n-1}\partial_z
\]

\[
\delta_2 = -2z\partial_x + mx^{m-1}\partial_z
\]

\[
\delta_3 = -2z\partial_y + ny^{n-1}\partial_z,
\]

hence we get a surjective map of \(A\)-modules \(\eta : A^4 \rightarrow \text{Der}_F(A) \rightarrow 0\). A calculation shows that the syzygy-matrix of \(\text{Der}_F(A)\) is the following matrix

\[
\rho = \begin{pmatrix}
y^{n-1} & z & 0 & x^{m-1} \\
2x & 0 & -2z & -2y \\
0 & nz & ny^{n-1} & -nz \\
-mz & ny & -mx^{m-1} & 0
\end{pmatrix},
\]

hence we get an exact sequence of \(A\)-modules

\[
\cdots \rightarrow A^4 \rightarrow^\rho A^4 \rightarrow^\eta \text{Der}_F(A) \rightarrow 0.
\]

A calculation shows that the Kodaira-Spencer map \(g : \text{Der}_F(A) \rightarrow \text{Ext}^1_A(W, W)\) is zero for the modules \(W\), hence \(V_W = \text{Der}_F(A)\), and the calculation also provides us with elements \(\nabla(\delta_i)\) in \(\text{End}_F(W)\) with the property that \(\nabla(\delta_i)(aw) = a\nabla(\delta_i)(w) + \delta_i(a)w\) for \(i = 0, \ldots, 3\). Hence we get an \(F\)-linear map \(\nabla : V_W \rightarrow \text{End}_F(W)\). Given any map \(e_i\) in \(\text{End}_A(W)\), it follows that the map \(\nabla(\delta_i) + e_i\) again is an element in \(\text{End}_F(W)\) with desired derivation-property, hence we seek endomorphisms \(e_0, \ldots, e_3\) in \(\text{End}_A(W)\) with the property that the adjusted map \(\nabla : V_W \rightarrow \text{End}_F(W)\) defined by \(\nabla(\delta_i) = \nabla(\delta_i) + e_i\) is \(A\)-linear. We see that we have to solve equations in the ring \(\text{End}_A(W)\). In the examples above, it turns out if one looks closely that one can
find elements in $\text{End}_A(W)$ by inspection so as to reduce the problem to solve linear equations in the field F. If one does this, one arrives at the following expressions:

\[(2.0.2)\quad \nabla_{\delta_0} = \delta_0 + A_0 =
\begin{pmatrix}
\frac{nk + ml}{2mn} & 0 & 0 & 0 \\
0 & \frac{2mn - ml - nk}{2mn} & 0 & 0 \\
0 & 0 & \frac{1}{2}mn + ml - nk & 0 \\
0 & 0 & 0 & \frac{1}{2}mn + nk - ml
\end{pmatrix}.
\]

(2.0.3) $\nabla_{\delta_1} = \delta_1 + \begin{pmatrix} 0 & b_2 & 0 & 0 \\ b_1 & 0 & 0 & 0 \\ 0 & 0 & b_4 & 0 \\ 0 & b_3 & 0 & 0 \end{pmatrix} = \delta_1 + A_1,$

with $b_1 = \frac{1}{4}(mn - 2nk - 2ml)x^{k-1}y^{l-1},$ $b_2 = \frac{1}{4}(3mn - 2ml - 2nk)x^{m-k-1}y^{n-l-1},$

$b_3 = \frac{1}{4}(2nk - mn - 2ml)x^{m-k-1}y^{l-1}$ and $b_4 = \frac{1}{4}(2nk - 2ml + mn)x^{k-1}y^{n-l-1}.$

(2.0.4) $\nabla_{\delta_2} = \delta_2 + \begin{pmatrix} 0 & 0 & c_3 & 0 \\ 0 & 0 & 0 & c_4 \\ c_1 & 0 & 0 & 0 \\ c_2 & 0 & 0 & 0 \end{pmatrix} = \delta_2 + A_2,$

with $c_1 = \frac{1}{m}(\frac{1}{2}mn - ml - nk)x^{k-1},$ $c_2 = \frac{1}{n}(\frac{1}{2}mn - ml - nk)x^{m-k-1},$ $c_3 = \frac{1}{n}(\frac{1}{2}mn + ml - nk)x^{m-k-1}$ and $c_4 = \frac{1}{n}(ml - nk - \frac{1}{2}mn)x^{k-1}.$

(2.0.5) $\nabla_{\delta_3} = \delta_3 + \begin{pmatrix} 0 & 0 & 0 & d_4 \\ 0 & 0 & d_3 & 0 \\ 0 & d_2 & 0 & 0 \\ d_1 & 0 & 0 & 0 \end{pmatrix} = \delta_3 + A_3,$

where $d_1 = \frac{1}{m}(\frac{1}{2}mn - ml - nk)y^{l-1},$ $d_2 = \frac{1}{n}(ml + nk - \frac{3}{2}mn)y^{n-l-1},$ $d_3 = \frac{1}{m}(\frac{3}{2}mn + ml - nk)y^{l-1}$ and $d_4 = \frac{1}{m}(\frac{1}{2}mn - ml + nk)y^{n-l-1}.$

Theorem 2.1. For all $1 \leq k \leq m$ and $1 \leq l \leq n$ the equations (2.0.2)-(2.0.5) define algebraic V_W-connections $\nabla^{\phi,\psi} : V_W \to \text{End}_F(W)$ where $W = W(\phi, \psi).

Proof. The module W is given by the exact sequence

$\cdots \to^{\psi} A^4 \to^{\phi} A^4 \to W \to 0,$

hence an element w in W is an equivalence class \overline{a} of an element a in $A^4.$ Let a in A^4 be the element

\[a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}\]

and consider the class $w = \overline{a}$ in $W = A^4/im\phi.$ Define the V_W-connection ∇ as follows:

$\nabla(\delta_i)(w) = (\delta_i + A_i) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}.$
Then one verifies that this definition gives a well-defined A-linear map $\nabla^{\phi,W} = \nabla: V_W \to \text{End}_F(W)$, and we have proved the assertion. \qed

Note that the connections $\nabla^{\phi,W}$ from Theorem 2.1 exist over any field F of characteristic prime to m and n.

In Theorem 2.1 we saw examples where V_W was the whole module of derivations for a class of modules on some hypersurface singularities. In [19], Theorem 5.1 the splitting type of the principal parts $P^k(\mathcal{O}(d))$ is calculated on the projective line over a field of characteristic zero. When $d \geq 1$, he following formula is shown:

$$\mathcal{P}^1(\mathcal{O}(d)) \cong \mathcal{O}(d-1) \oplus \mathcal{O}(d-1).$$

It follows that the Atiyah sequence (see [2])

$$0 \to \Omega^1 \otimes \mathcal{O}(d) \to \mathcal{P}^1(\mathcal{O}(d)) \to \mathcal{O}(d) \to 0$$

does not split hence $\mathcal{O}(d)$ does not have a connection $\nabla: \mathcal{O}(d) \to \Omega^1 \otimes \mathcal{O}(d)$.

It follows that there does not exist an action

$$\rho: T_{\mathbb{P}^1} \to \text{End}(\mathcal{O}(d)),$$

hence we see that for $\mathcal{O}(d)$ on \mathbb{P}^1 over a field of characteristic zero, the linear Lie-Rinehart algebra $V_{\mathcal{O}(d)}$ is a strict sub-sheaf of the tangent sheaf $T_{\mathbb{P}^1}$.

3. Chern-classes

In this section we define for any F-algebra A where F is any field, and any A-module W of finite presentation with a V_W-connection the first Chern-class $c_1(W)$ in $H^2(V_W|_U, \mathcal{O}_U)$, where U in Spec(A) is the open subset where W is locally free, and $H^1(V_W|_U, \mathcal{O}_U)$ is the Chevalley-Hochschild cohomology of the restricted Lie-Rinehart algebra $V_W|_U$ with values in the sheaf \mathcal{O}_U.

Definition 3.1. Let g be a Lie-Rinehart algebra and W a g-module. The Chevalley-Hochschild complex $C^*(g, W)$ is defined as follows:

$$C^p(g, W) = \text{Hom}_A(g^{\wedge p}, W),$$

with differentials $d^p: C^p(g, W) \to C^{p+1}(g, W)$ defined by

$$d^p\phi(g_1 \wedge \cdots \wedge g_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} g_i \phi(g_1 \wedge \cdots \wedge \bar{g}_i \wedge \cdots \wedge g_{p+1}) +$$

$$\sum_{i<j} (-1)^{i+j} \phi([g_i, g_j] \wedge \cdots \wedge \bar{g}_i \wedge \cdots \wedge \bar{g}_j \wedge \cdots \wedge g_{p+1}).$$

Here $g \phi(g_1 \wedge \cdots \wedge g_p) = \nabla(g) \phi(g_1 \wedge \cdots \wedge g_p)$ and overlined elements should be excluded. The cohomology $H^i(C^*(g, W))$ is denoted $H^i(g, W)$.

Note that $C^*(g, W)$ is a complex if and only if the g-connection ∇ is flat, i.e a morphism of Lie-algebras. The complex $C^*(g, W)$ is a complex generalizing simultaneously the algebraic deRham-complex and Chevalley-Eilenberg complex. Now given a V_W-connection ∇ on W, we immediately get a V_W-connection on $\text{End}_A(W)$, denoted $ad\nabla$. We see that if ∇ is flat, it follows that $ad\nabla$ is flat. Consider the open subset U of Spec(A) where W is locally free. We restrict the V_W-connection to U, to get a connection $\nabla: V_W|_U \to \text{End}_{\mathcal{O}_U}(W|_U)$. Since $W|_U$ is
Define an affine scheme with an isolated singularity. Pick a representation G of dimension two, and let $\ker c^2(\mathbb{V}_W|\mathcal{U}_i, \mathcal{O}_{\mathcal{U}_i})$. One checks that the element $c^i = \text{trace} \circ R\mathcal{C}_i|U_i$ is a cocycle of the complex $C^*(\mathbb{V}_W|U_i, \mathcal{O}_{U_i})$ for all i. We have constructed elements

$$c^i \in C^2(\mathbb{V}_W|U_i, \mathcal{O}_{U_i})$$

which coincide on intersections since trace is independent with respect to choice of basis, hence the sheaf-structure on $C^2(\mathbb{V}_W|U, \mathcal{O}_U)$ gives a uniquely defined element c in $C^2(\mathbb{V}_W|U, \mathcal{O}_U)$, such that $c|U_i = c^i$ for all i. There exists a commutative diagram

$$
\begin{array}{ccc}
C^p(\mathbb{V}_W|U, \mathcal{O}_U) & \xrightarrow{\rho^p} & C^{p+1}(\mathbb{V}_W|U, \mathcal{O}_U) \\
|U_i & & |U_i \\
C^p(\mathbb{V}_W|U_i, \mathcal{O}_{U_i}) & \xrightarrow{\rho^p} & C^{p+1}(\mathbb{V}_W|U_i, \mathcal{O}_{U_i})
\end{array}
$$

which proves that the element c is a cocycle in the complex $C^*(\mathbb{V}_W|U, \mathcal{O}_U)$.

Theorem 3.2. There exists a class $c_1(W)$ in $H^2(\mathbb{V}_W|U, \mathcal{O}_U)$ which is independent with respect to choice of \mathbb{V}_W-connection.

Proof. Existence of the class $c_1(W)$ follows from the argument above. Independence with respect to choice of connection is straightforward.

Note that if the \mathbb{V}_W-connection is flat, the first Chern-class $c_1(W)$ is zero. Note also that the construction in this section can be done with any A-module W of finite presentation with a g-connection, where g is any Lie-Rinehart algebra.

Theorem 3.3. The \mathbb{V}_W-connections $\nabla^{\phi,\psi}$ calculated in Theorem 2.1 are flat hence $c_1(W(\phi, \psi)) = 0$ for all the modules $W(\phi, \psi)$ on the singularities B_{mn}.

Proof. Easy calculation.

Note that the flat \mathbb{V}_W-connections in Theorem 3.3 give rise to a class of left modules on the algebra of differential operators $D(A)$ where A is the ring $k[x,y,z]/f$ and $f = x^n + y^n + z^2$. Note also that Kolmo has in [13] computed the Alexander-polynomial of an irreducible plane curve C in \mathbb{C}^2 using a certain logarithmic deRham-complex $\Omega^*_{\mathbb{C}_C}(\ast C)$. It would be interesting to see if the Alexander-polynomial can be computed in terms of a g-connection.

4. **Surface Quotient-Singularities**

In this section we consider maximal Cohen-Macaulay modules on quotient singularities of dimension two, and their first Chern-class. Let now $F = C$ be the complex numbers, and let $G \subseteq GL(2, F)$ be a finite sub-group with no pseudo-reflections. Consider the natural action $G \times F^2 \to F^2$, and the quotient $X = F^2/G$. It is an affine scheme with an isolated singularity. Pick a representation $\rho : G \to GL(V)$ where V is an F-vectorspace, and consider the A-module $V \otimes_F A$ where $A = F[x, y]$. Define a G-action as follows: $g(v \otimes a) = \rho(g)v \otimes ga$, and let $W_\rho = (V \otimes_F V)^G$ be the G-invariants of the G-action defined. Then by [9] W_ρ is a maximal Cohen-Macaulay
module on A^G. If ρ is indecomposable, M_ρ is irreducible. The McKay correspondence in dimension 2 says that all maximal Cohen-Macaulay modules on A^G arise this way. Define a G-action on $g = \text{Der}_F(A)$ as follows: $(g\delta)(a) = g\delta(g^{-1}a)$, and let g^G be the G-invariant derivations. The module $V \otimes_F A$ is a free A-module, hence there exists trivially a regular g-connection on $V \otimes_F A$. This implies that we get an induced g^G-connection on $V \otimes_F A$.

Proposition 4.1. There exists an action of g^G on W_ρ.

Proof. Straightforward. □

From [24] it follows that g^G is isomorphic to $\text{Der}_F(A^G)$, hence we have proved that all maximal Cohen-Macaulay modules W_ρ on $\text{Spec}(A^G)$ possess a $\text{Der}_F(A^G)$-connection, and these are all regular connections since they are induced by the trivial one on $V \otimes_F A$.

Theorem 4.2. Let $X = \text{Spec}(A^G)$ be a 2-dimensional quotient singularity and let W_ρ be a maximal Cohen-Macaulay module on X then $c_1(W_\rho) = 0$.

Proof. Follows from the argument above. □

Acknowledgements This paper is a slight extension of my master-thesis written at the University of Oslo under supervision of A.O Laudal, and I want to thank him for suggesting the problems discussed in this paper. Thanks also to J. Christophersen for pointing out to me the existence of the connections in section 5.

References

[1] N. A’Campo, Sur la monodromie des singularités isolées d’hypersurfaces complexes, *Invent. Math.* 20 (1973)
[2] M. F. Atiyah, Complex analytic connections in fibre bundles, *Trans. Amer. Math. Soc.* vol. 85 (1957)
[3] M. Crainic, R. L. Fernandes, Integrability of Lie-brackets, *math.DG/0105033*
[4] P. Deligne, Equations différentielles à points singuliers réguliers, *Springer Lecture Notes*, Vol. 163 (1970)
[5] P. Deligne, La conjecture de Weil I, *Publ. Math. IHES* no. 43 (1974)
[6] D. Eisenbud, Homological algebra on a complete intersection with an application to group representations, *Trans. Amer. Math. Soc.* vol. 260 (1980)
[7] H. Esnault, Reflexive modules on quotient singularities, *J. Reine Angew. Math.* 362 (1985)
[8] R. L. Fernandes, Invariants for Lie-algebroids, *preprint server* [math.DG/0202254](http://arxiv.org/abs/math.DG/0202254)
[9] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay Moduln, *Math. Ann.* 234 (1978)
[10] J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, *Cont. Maths.* Vol. 227 (1999)
[11] J. Huebschmann, Poisson cohomology and quantization, *J. für die reine und angewandte Mathematik* vol. 408 (1990)
[12] F. W. Kamber, P. Tondeur, Invariant differential operators and the cohomology of Lie-algebra sheaves, *Mem. of the AMS* no. 113 (1971)
[13] T. Kohno, An algebraic computation of the Alexander-polynomial of a plane algebraic curve, *Proc. Japan. Acad. Ser. A Math. Sci* 59 (1983)
[14] J. Kubarski, The Chern-Weil homomorphism of regular Lie-algebroids, *Publ. du Dept. de Mathématiques*, Université Claude Bernard-Lyon I, 1-69 (1991)
[15] A. O. Laudal, A framework for change, *Preprint series*, University of Oslo (1995)
[16] G. Laumon, L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik un ihrer Grenzgebiete no. 39, *Springer-Verlag* (2000)
[17] S. Kaplan, H. Maakestad, D. T. Pho, M. Teicher, Alexander polynomials and Zariski pairs of sextics, *Manuscript* (2002)
[18] H. Maakestad, Chern-klasser for maximale Cohen-Macaulay moduler paa normale kvotient-
singulariteter, Master thesis, University of Oslo, (1995)

[19] H. Maakestad, On the splitting type of the principal parts on the projective line,
\texttt{math.AG/0402279}

[20] H. Maakestad, The Chern-character for Lie-algebroids, Manuscript (2000)

[21] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, \textit{London Math. Soc.
Lecture Note Series}, Cambridge University Press vol. 124 (1987)

[22] R. Palais, The cohomology of Lie-rings, Amer. Math. Soc., Providence, R. I., \textit{Proc. Symp.
Pure. Math. III} (1961)

[23] G. Rinehart, Differential forms for general commutative algebras, \textit{Trans. Amer. Math. Soc.}
vol. 108 (1963)

[24] M. Schlessinger, Rigidity of quotient singularities, \textit{Inventiones Math.} 14 (1971)

[25] N. Teleman, A characteristic ring of a Lie-algebra extension, \textit{Accad. Naz. Lincei. Rend. Cl.
Sci. Fis. Mat. Natur.} (8) 52, 498-506 (1972)

\textbf{Emmy Noether Institute for Mathematics, Israel}
\textit{Email address: makesth@macs.biu.ac.il}