Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Condens. Matter 29 225703
(http://iopscience.iop.org/0953-8984/29/22/225703)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 79.66.127.19
This content was downloaded on 29/04/2017 at 18:28

Please note that terms and conditions apply.

You may also be interested in:

Networks under pressure: the development of in situ high-pressure neutron diffraction for glassy and liquid materials
Philip S Salmon and Anita Zeidler

Establishing the structure of GeS2 at high pressures and temperatures: a combined approach using x-ray and neutron diffraction
Anita Zeidler, James W E Drewitt, Philip S Salmon et al.

Structure of glassy AsTe: the effect of adding a small quantity of Cu or Ag
Jonathan C Wasse, Ingrid Petri and Philip S Salmon

Structure of glassy and liquid
Philip S Salmon and Ingrid Petri

Structure of dysprosium and holmium phosphate glasses
Richard A Martin, Philip S Salmon, Henry E Fischer et al.

Mechanisms of network collapse in GeO2 glass: high-pressure neutron diffraction with isotope substitution as arbitrator of competing models
Kamil Wezka, Philip S Salmon, Anita Zeidler et al.

Structure of the liquid semiconductor GeSe
Ingrid Petri, Philip S Salmon and Henry E Fischer

Structure of molten lanthanum and cerium tri-halides by the method of isomorphic substitution in neutron diffraction
Jonathan C Wasse and Philip S Salmon
Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

James W E Drewitt1,2, Philip S Salmon1,3,7, Anita Zeidler1,3, Chris J Benmore4,5 and Alex C Hannon6

1 Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
2 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1JR, United Kingdom
3 Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439, United States of America
5 Intense Pulsed Neutron Source, Argonne National Laboratory, IL 60439, United States of America
6 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom

E-mail: james.drewitt@gmail.com and p.s.salmon@bath.ac.uk

Received 22 December 2016
Accepted for publication 23 March 2017
Published 28 April 2017

Abstract

The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses \((R_2X_3)_{0.05}(Ga_2X_3)_{0.33}(GeX_2)_{0.60} \) with \(R = \text{La or Ce} \) and \(X = S \) or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from Ge4 and Ga4 tetrahedra, and give \(R-S \) and \(R-Se \) coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour \(R-R \) distance associated with rare-earth clustering is discussed.

Keywords: glass structure, neutron diffraction, x-ray diffraction, rare-earth clustering

(Some figures may appear in colour only in the online journal)

1. Introduction

Many of the trivalent rare-earth ions exhibit intra-4f shell luminescence that can be exploited to make photonic glasses for, e.g. fibre amplifiers and lasers that operate at wavelengths compatible with fibre communications technology [1–3]. Here, the luminescence of the material will depend, e.g. on the solubility of rare-earth ions in the glass, and on the tendency of rare-earth ions to cluster within their matrix material. The latter leads to a non-uniform distribution of rare-earth ions that can limit the fluorescence lifetime, or lead to the formation of rare-earth compounds that are optically inactive. The luminescence can also be affected by multiphonon relaxation, wherein the probability of non-radiative channels is increased if the phonon energies of the host glass are close to gaps in energy between the 4f electron states of a rare-earth ion. It is therefore desirable to develop glassy materials in which the rare-earth ions are uniformly distributed within a glass matrix having appropriately small phonon energies and low transmission losses at the optical wavelengths of interest.

Chalcogenide glasses, containing one or more of the chalcogen elements (S, Se, Te), have photonic applications that range from digital memory storage to thermal imaging and infrared transmitting media [4–6]. They are also ideal hosts for luminescent rare-earth ions because their maximum phonon energies (e.g. \(\sim 460 \text{ cm}^{-1} \) for Ge–Ga–S versus \(\sim 340 \text{ cm}^{-1} \) for Ge–Ga–Se glasses in which the rare-earth solubility is high [7, 8]) are generally small as compared to silica (\(\sim 1100 \text{ cm}^{-1} \)) and fluoride glasses (\(\sim 400–650 \text{ cm}^{-1} \)) [3, 4, 9], although it is important to avoid an introduction of the vibrational bands associated with impurities to the phonon density of states [9–13]. The high refractive index of these materials (>2.1) helps to increase the cross section for stimulated emission [14, 15]. Even though rare-earth ions are barely soluble in the binary Ge–S system [10], germanium sulphide based
glasses have attracted much attention because of their transparency in the visible spectrum. Here, the rare-earth solubility can be enhanced by making multicomponent glasses such as R2S3–Ga2S3–GeS2 [7, 16–21], in which the ability of Ga to form negatively charged GaS4 tetrahedra helps to balance the positive charge on rare-earth ions. The incorporation of Ga also has a tendency to reduce rare-earth clustering [22–24]. This reduction will either (i) increase the fluorescence lifetime if all of the rare-earth ions initially form a single population of clustered species, or (ii) increase the fluorescence intensity corresponding to the longer fluorescence lifetime if the rare-earth ions initially form two populations of clustered versus dispersed species. Accordingly, there have been many investigations to characterise the physico-chemical, optical and luminescent properties of R2S3–Ga2S3–GeS2 glasses to explore their potential for use in, e.g. optoelectronic devices [7, 11, 13, 15–18, 20, 21, 23, 25–42]. There have been comparatively few investigations of the corresponding selenide or mixed sulphide/selenide glasses [9, 40–48].

In this paper, the method of neutron diffraction with isomorphic substitution (NDIS) of the rare-earth element [49–54] was employed to measure the structure of the rare-earth glasses (R(Xn)0.07(GaX2)n.33(GeX2)0.60, with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The aim is to provide a point of comparison for the effect of different chalcogens on the glass structure. The regions of glass formation in ternary R2X3–Ga2X3–GeX3 systems containing large rare-earth ions are described in [16, 18, 20, 21]. The composition chosen for study contains a relatively large atomic fraction of the rare earth species cR = 0.0368 which is necessary for an application of the NDIS method. Here, the assumption is made that the 4f electrons of La3+ and Ce3+, which characterise the difference between their electronic configurations, are sufficiently removed from the valence shell that the cations share a common structural chemistry and form isostructural compounds [1, 55]. This premise is supported by the similarity between the ionic radii of these trivalent cations (1.16 versus 1.14 Å for eightfold coordinated cations) [56] and the similarity between the Pettifor chemical parameters for La and Ce (0.705 versus 0.7025) [57]. There is a significant difference, however, between the neutron scattering lengths of La and Ce that will lead to a contrast between the measured neutron diffraction patterns for isostructural glasses containing one or other of these elements. In this way, it is possible to measure difference functions that separate, essentially, the R–R and R–I pair-correlation functions from the μ–μ’ pair-correlation functions, where μ (or μ’) denotes a matrix atom, i.e. Ge, Ga or X. This simplification in the structural complexity associated with a single diffraction pattern enables the NDIS method to provide the type of site-specific structural information that is required in the development of realistic structural models, a prerequisite for establishing the structure-function relationships for rare-earth chalcogenide glasses.

The paper is organised as follows. The essential diffraction theory is given in section 2, and the experimental methodology is described in section 3. The results for the sulphide and selenide glasses are presented in section 4, and are discussed in section 5 by reference to (i) the structural models that have been proposed and (ii) the presence of rare-earth clustering. Conclusions are drawn in section 6.

2. Theory

In an x-ray or neutron diffraction experiment on (R(Xn)0.07(GaX2)n.33(GeX2)0.60 glass, the desired structural information is described by the total structure factor [58]

\[F(Q) = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_{\alpha}c_{\beta}f_{\alpha}(Q)f_{\beta}^*(Q)[S_{\alpha\beta}(Q) - 1], \]

where \(\alpha \) and \(\beta \) denote the chemical species, \(n = 4 \) is the number of different chemical species, \(c_{\alpha} \) represents the atomic fraction of chemical species \(\alpha \), \(f_{\alpha}(Q) \) and \(f_{\alpha}^*(Q) \) are the scattering length (or atomic form factor) and its complex conjugate for chemical species \(\alpha \), respectively. \(S_{\alpha\beta}(Q) \) is a Faber–Ziman [59] partial structure factor, and \(Q \) is the magnitude of the scattering vector. \(S_{\alpha\beta}(Q) \) is related to the partial pair–distribution function \(g_{\alpha\beta}(r) \) by the Fourier transform relation

\[g_{\alpha\beta}(r) = \frac{1}{2\pi^2 n_{0} r} \int_{0}^{\infty} dQ Q [S_{\alpha\beta}(Q) - 1] \sin(Qr). \]

The scattering lengths are independent of \(Q \) for the case of neutron diffraction, but not for the case of x-ray diffraction. In order to compensate for this \(Q \) dependence, the total structure factor can be rewritten as

\[S(Q) = 1 + \frac{f(Q)}{(f(Q))^2} \]

where \(f(Q) = \sum_{\alpha} c_{\alpha}f_{\alpha}(Q) \) is the mean scattering length. The corresponding real-space information is contained in the total pair–distribution function

\[G(r) = 1 + \frac{1}{2\pi^2 n_{0} r} \int_{0}^{\infty} dQ Q [S(Q) - 1] \sin(Qr). \]

In x-ray diffraction experiments, the normalisation defined by equation (4) has the advantage that it allows for a better resolution of the peaks in \(G(r) \).

Consider a neutron diffraction experiment performed on two samples of R–Ge–Ga–X glass that are identical in every respect, except that \(R \) represents La, a 50:50 mixture of La and Ce, or Ce. Let the corresponding total structure factors be denoted by \(L^2F(Q) \), \(\text{Max}^2F(Q) \) and \(C^2F(Q) \), respectively, where \(b_{\text{La}} > b_{\text{Max}} > b_{\text{Ce}} \). Then, if the rare-earth elements can be regarded as isomorphic, the contribution to a total structure factor from the \(\mu–\mu’ \) pair–correlation functions can be eliminated by taking a difference function such as
Related difference functions are defined by \(\Delta F_{\alpha \beta}^{(i)}(Q) \equiv \Delta F_i(Q) - \Delta F_{\text{mix}}^{(i)}(Q) \). Similarly, it is possible to eliminate the \(R - \mu \) pair-correlations by taking a difference function such as

\[
\Delta F_{\mu \alpha}^{(i)}(Q) \equiv \Delta F_\mu(Q) - [b_{\mu \alpha}/(b_{\mu \alpha} - b_{\text{mix}})] \Delta F_{\mu \alpha}^{(i)}(Q)
= [b_{\mu \alpha} c_{\alpha \beta}(Q) - b_{\text{mix}} c_{\alpha \beta}(Q)] / (b_{\mu \alpha} - b_{\text{mix}})
= \Delta F_{\mu \alpha}^{(i)}(Q) - c_{\mu \alpha}^R b_{\mu \beta} c_{\beta \mu} [S_{sR}(Q) - 1],
\]

where \(\Delta F_{\mu \alpha}^{(i)}(Q) \equiv \sum_{\beta=1}^{m} \sum_{\mu=1}^{m} c_{\mu \beta} c_{\beta \mu} b_{\mu \beta} [S_{sR}(Q) - 1] \) contains only the \(\mu - \mu \) pair-correlations and \(m = 3 \) is the total number of matrix species. Related difference functions are defined by \(\Delta F_{\alpha \beta}^{(i)}(Q) \equiv \Delta F_i(Q) - [b_{\mu \alpha}/(b_{\mu \alpha} - b_{\text{mix}})] \Delta F_{\mu \alpha}^{(i)}(Q) \) and \(\Delta F_{\alpha \beta}^{(i)}(Q) \equiv \Delta F_{\text{mix}}^{(i)}(Q) - [b_{\mu \alpha}/(b_{\mu \alpha} - b_{\text{mix}})] \Delta F_{\mu \alpha}^{(i)}(Q) \). The coherent neutron scattering lengths are \(b_{\mu \alpha} \) and \(b_{\text{mix}} \) (4.84(2) fm, \(b_{\text{Ce}} = 5.64(4) \) fm, \(b_{\text{Co}} = 4.84(2) \) fm, \(b_{\text{Ga}} = 7.288(2) \) fm, \(b_{\text{Ge}} = 1.885(20) \) fm, \(b_{\text{Se}} = 2.847(1) \) fm and \(b_{\text{S}} = 7.970(9) \) fm [60]. The ratio of the \(R - R \) weighting factor \(c_{\mu \alpha}^R b_{\mu \beta} c_{\beta \mu} \) to the weighting factors for the \(\mu - \mu \) pair-correlations is small (e.g. in the case of \(\Delta F_{\mu \alpha}^{(i)}(Q) \), 0.285% for the sulphide glass versus 0.087% for the selendine glass), i.e. the \(\Delta F_{\alpha \beta}^{(i)}(Q) \) functions are dominated by the \(\mu - \mu \) pair-correlation functions.

The real-space functions corresponding to \(\Delta F_{\mu \alpha}^{(i)}(Q) \) and \(\Delta F_{\alpha \beta}^{(i)}(Q) \) \((i = 1, 2 \) or 3) are obtained by Fourier transformation, and are denoted by \(G_{\alpha \beta}^{(i)}(r) \) and \(G_{\alpha \beta}^{(i)}(r) \), respectively. The equations for, e.g. \(G_{\alpha \beta}^{(i)}(r) \) and \(G_{\alpha \beta}^{(i)}(r) \) are obtained from equations (6) and (7), respectively, by replacing each \(S_{sR}(Q) \) function by the corresponding partial pair-distribution function \(g_{sR}(r) \).

3. Experimental method

3.1. Glass synthesis and characterisation

Each sulphide glass was prepared in 3-g batches by loading high-purity elemental Ge (Aldrich, 99.9999%), Ga (Aldrich, 99.9999%) and S (Alfa Aesar Puratronic®, 99.9995%) along with LaS3 (Alfa Aesar, 99.9%) or CeS3 (Alfa Aesar, 99.9%), with the correct mass ratio, into a silica ampoule of 5-mm inner diameter and 1-mm wall thickness that had been etched using a 40 wt% solution of hydrofluoric acid, rinsed using distilled water then high-purity acetone, and baked dry under vacuum at 750 °C for 2 h. The ampoule was loaded in a high-purity argon-filled glove box, isolated using a Young’s tap, and then transferred to a vacuum line where it was sealed under a pressure of 10⁻⁵ Torr. The sealed ampoule was placed in a rocking furnace, which was heated at a rate of 1 °C min⁻¹ from ambient to a temperature \(T = 1100 °C \) dwelling for 4 h each at \(T = 112 °C \), \(T = 445 °C \) and \(T = 937 °C \), near to the melting and boiling points of S, and the melting point of Ge, respectively. The highest temperature was maintained for 24 h before the rocking motion was stopped, the furnace was placed vertically for 12 h to let the melt collect at the bottom of the ampoule, and the ampoule was then dropped into an ice/water mixture. The selendine glasses were prepared similarly, except that Se (Aldrich, 99.999%) and either La (Alpha Aesar, 99.9%) or Ce (Alpha Aesar, 99.9%) metal were used as starting ingredients, the lowest dwell temperatures were set at \(T = 221 °C \) and \(T = 685 °C \), corresponding to the melting and boiling points of Se, and the upper dwell temperature was set to either \(T = 920 °C \) or \(T = 795 °C \), corresponding to the melting temperatures of elemental La and Ce, respectively. Each sample was broken out of its ampoule inside a high-purity argon-filled glove box.

The density of each glass was measured using a Quantachrome helium gas pycnometer (table 1). The sulphide glasses were investigated by simultaneous differential scanning calorimetry and thermal gravimetric analysis using a TA Instruments SDT Q600 machine operated with oxygen free nitrogen gas at a scan rate of 10.00 °C min⁻¹. The samples started to lose mass in the vicinity of the crystallisation exotherm, i.e. at a temperature greater than the glass transition temperature \(T_\text{g} \) (table 1). For glassy \((\text{La}_2\text{Se}_3)_{0.07}(\text{Ga}_2\text{Se}_3)_{0.33}\) \((\text{GeSe}_2)_{0.60}\), \(T_\text{g} \) was taken from the reversible heat flow measured by modulated differential scanning calorimetry using a TA Instruments Q100 machine operated with oxygen free nitrogen gas at a scan rate of 3 °C min⁻¹ and modulation rate of ±1 °C min⁻¹.

3.2. High energy x-ray diffraction experiments

High energy x-ray diffraction experiments were performed on three \((\text{R}_2\text{S}_3)_{0.07}(\text{Ga}_2\text{S}_3)_{0.33}(\text{GeSe}_2)_{0.60}\) glasses, with \(\text{R} = \text{La} \), Mix or Ce, using beamline ID15B at the ESRF, France. Finely powdered samples were sealed between two layers of kapton 77–80 tape, giving a slab geometry with a sample thickness of 1 mm. The incident x-ray energy was 88.76 keV and the diffraction patterns were measured using a MAR345 two-dimensional image plate detector placed at a distance of 303.55 mm from the sample position. Diffraction patterns were measured at room temperature for each sample in its container, an empty kapton container, and the empty instrument. The program FIT2D [61, 62] was used to correct each data set for geometrical effects and polarisation of the incident beam.

Table 1. The measured mass density \(\rho \), atomic number density \(n_0 \) and glass transition temperature \(T_\text{g} \) (midpoint) (°C) for \((\text{R}_2\text{S}_3)_{0.07}(\text{Ga}_2\text{S}_3)_{0.33}(\text{GeSe}_2)_{0.60}\) glasses.

R	X	\(\rho \) (g cm⁻³)	\(n_0 \) (Å⁻³)	\(T_\text{g} \) (midpoint) (°C)
La	S	3.26(1)	0.040(1)	430(2)
Mix	S	3.27(1)	0.040(1)	444(5)
Ce	S	3.24(1)	0.040(1)	446(2)
La	Se	4.79(1)	0.037(1)	403(2)
Ce	Se	4.79(1)	0.037(1)	—
before integrating over the Debye–Scherrer cones to produce a one dimensional diffraction pattern, which was normalised to the incident beam intensity. The data sets for each sample were then corrected for background and container scattering, taking attenuation effects into account, and were scaled to fit the sum of the Compton scattering [63] and self-scattering \(\sum c_i f_i(Q)^2 \) contributions at high \(Q \) values, where neutral atom form factors \(f_i(Q) \) were taken from [64]. The Compton and self-scattering contributions were then subtracted to obtain \(F_X(Q) \), which was converted to the total x-ray structure factor \(S_X(Q) \) using equation (4).

3.3. Neutron diffraction experiments

Neutron diffraction experiments were performed on three \((R_2S_3)_{0.07}(GaS_3)_{0.33}(GeS_2)_{0.60} \) glasses, with \(R = \text{La}, \text{Mix} \) or Ce, using the GEM instrument [65] at the ISIS facility. Powdered samples (each of mass \(\sim 6 \text{g} \)) were held in a cylindrical vanadium container of 6.8 mm inner diameter and 0.1 mm wall thickness. Diffraction patterns were taken for each sample in its vanadium container, the empty container, the empty instrument, and a cylindrical vanadium rod of diameter 8.36 mm at ambient temperature \((\approx 25 \degree C \)). The intensities for each detector group were saved at regular intervals, and no deviation between these intensities was observed outside the statistical variation, which verified the diffractometer stability [66]. The data sets were processed using the GUDRUN analysis program [67], and the data sets for the Ce and Mix samples were also corrected for the paramagnetic scattering from \(\text{Ce}^{3+} \) by using the procedure described in [49]. Self-consistency checks were performed to ensure that (i) a measured neutron total structure factor \(S_N(Q) \) obeys the sum-rule relation \(\int_0^\infty Q^2 |S_N(Q)|^2 dQ - 1 = -2\pi^2 n_0 \) which follows from equation (5) by taking the limit as \(r \to 0 \); (ii) the low-\(r \) features in the corresponding \(G_N(r) \) function oscillate about their theoretical \(G_N(r \to 0) = 0 \) limit; and (iii) the back Fourier transform of \(G_N(r) \), after the low-\(r \) oscillations are set to \(G_N(r \to 0) = 0 \), is in good overall agreement with the measured \(S_N(Q) \) function [68].

Neutron diffraction experiments were also performed on two \((R_2Se_3)_{0.07}(GaSe_3)_{0.33}(GeSe_2)_{0.60} \) glasses, with \(R = \text{La} \) or Ce, using the GLAD instrument [69] at the intense pulsed neutron source (IPNS). Powdered samples (each of mass \(\sim 12 \text{g} \)) were held in cylindrical vanadium containers of 4.64 mm inner diameter and 0.13 mm wall thickness. The experimental procedure followed that described for GEM, except that a cylindrical vanadium rod of diameter 9.5 mm was used for calibration purposes, and the data sets were processed using the ISAW analysis program [70].

4. Results

4.1. Sulphide glasses

The x-ray total structure factors \(S_X(Q) \) measured for the rare earth sulphide glasses (figure 1(a)) have a first sharp diffraction peak (FSDP) at 1.08(2) \(\AA^{-1} \) (table 2) that is indicative of ordering on an intermediate length scale [71]. The atomic form factors for the rare-earth ions are similar because the atomic numbers for La and Ce are \(Z_{\text{La}} = 57 \) and \(Z_{\text{Ce}} = 58 \), respectively. Thus, the close similarity between the measured \(S_X(Q) \) functions (figure 1(b)) is indicative of structural isomorphism.

The first peak in \(G_X(r) \) at 2.25(2) \(\AA \) (figure 2) is attributed to a superposition of nearest neighbour Ga–S and Ge–S pair-correlations, and its position compares with Ga–S and Ge–S intra-tetrahedral bond distances of 2.19 \(\leq r_{\text{Ga-S}}(\AA) \leq 2.37 \) in crystalline GaS\(_2 \) [72–74] versus 2.17 \(\leq r_{\text{Ge-S}}(\AA) \leq 2.28 \) in crystalline GeS\(_2 \) [75–77]. The atomic form factors for Ga and Ge are similar because their atomic numbers are similar at \(Z_{\text{Ga}} = 31 \) and \(Z_{\text{Ge}} = 32 \). Hence, by converting \(S_X(Q) \) to \(F_X(Q) \) and dividing by \(c_{\text{Ga-S}}f_{\text{Ga-S}}(Q)f_X(Q) + c_{\text{Ge-S}}f_{\text{Ge-S}}(Q)f_X(Q) \), the \(Q \)-dependent weighting factors on the Ga–S and Ge–S partial structure factors are more-or-less removed. In this way [78], the Fourier transform of the resultant \(Q \)-space function enables the Ga–S and Ge–S coordination numbers to be extracted by direct integration of the first peak. If it is assumed that \(n_{\text{Ga}} = 4 \), then \(n_{\text{Ge}} = 4.1(1) \) is obtained by integrating over the range 1.90 \(\leq r(\AA) \leq 2.64 \) (table 2). The results are therefore consistent with the formation of both GaS\(_2 \) and GeS\(_2 \) tetrahedra. The second peak in \(G_X(r) \) at 3.03(3) \(\AA \) is attributed to nearest-neighbour R–Ga–Ge–S R–Ga–S and R–Ge–S materials with \(R = \text{La} \) or Ce (table 3). By converting
Table 1. First three peak positions, \(Q_i \), \(Q_i \) in the reciprocal-space functions measured for glassy \((R_2X)_{0.60}(Ga_2X_3)_{0.33}(GeX_2)_{0.06}\), where \(R \) represents La, Ce or Mix, and \(X \) represents S or Se. The peak positions \(r_1-r_4 \) in the corresponding real-space functions are also listed, together with the coordination number \(n_R^X \) obtained from the area under the peak at \(r_1 \) by assuming that \(n_R^X = 4 \), and the coordination number \(n_R^S \) obtained from the area under the peak at \(r_2 \).

\(X \)	Function	\(Q_1 \) (\(\AA^{-1} \))	\(Q_2 \) (\(\AA^{-1} \))	\(Q_3 \) (\(\AA^{-1} \))	\(r_1 \) (\(\AA \))	\(n_R^X \)	\(n_R^S \)	\(r_2 \) (\(\AA \))	\(r_3 \) (\(\AA \))	\(r_4 \) (\(\AA \))
S	\(\LaX_S(Q) \)	1.08(2)	2.19(2)	3.71(2)	2.25(2)	4.0(1)	3.03(3)	8.5(2)	3.66(5)	—
S	\(\CeX_S(Q) \)	1.08(2)	2.19(2)	3.71(2)	2.25(2)	4.1(1)	3.03(3)	8.4(2)	3.66(5)	—
S	\(\LaX_S(Q) \)	1.05(2)	2.18(2)	3.68(2)	2.25(2)	3.9(1)	3.01(3)	8.0(9)	3.63(5)	—
S	\(\CeX_S(Q) \)	1.07(2)	2.19(2)	3.68(2)	2.25(2)	3.9(1)	2.97(3)	11.8(9)	3.62(5)	—
Se	\(\LaX_S(Q) \)	1.05(2)	2.19(2)	3.68(2)	2.25(2)	3.9(1)	2.97(3)	10.2(9)	3.60(5)	—
Se	\(\CeX_S(Q) \)	1.05(2)	2.22(2)	3.67(2)	2.24(2)	4.0(1)	—	—	3.59(5)	—
Se	\(\LaX_S(Q) \)	1.05(2)	2.23(2)	3.67(2)	2.25(2)	4.1(1)	—	—	3.61(5)	—
Se	\(\CeX_S(Q) \)	1.05(2)	2.21(2)	3.67(2)	2.24(2)	4.1(1)	—	—	3.57(5)	—
Se	\(\LaX_S(Q) \)	1.05(2)	1.95(2)	—	—	—	3.05(3)	8.0(2)	3.89(5)	4.69(5)
Se	\(\CeX_S(Q) \)	1.02(2)	1.92(2)	—	—	—	3.16(3)	7.9(2)	3.84(5)	4.56(5)
Se	\(\LaX_S(Q) \)	1.06(2)	1.97(2)	—	—	—	3.07(3)	8.0(2)	3.85(5)	4.70(5)
Se	\(\CeX_S(Q) \)	1.03(2)	2.08(2)	3.50(2)	2.38(2)	3.9(1)	3.09(3)	8.1(9)	3.82(5)	—
Se	\(\LaX_S(Q) \)	1.03(2)	2.06(2)	3.50(2)	2.38(2)	3.9(1)	3.14(3)	9.8(9)	3.85(5)	—
Se	\(\CeX_S(Q) \)	1.03(2)	2.05(2)	3.50(2)	2.37(2)	4.0(1)	—	—	3.87(5)	—
Se	\(\LaX_S(Q) \)	1.09(2)	2.46(2)	—	—	—	3.11(3)	8.5(4)	3.84(5)	4.75(5)

\(S_X(Q) \) to \(F_X(Q) \), dividing by \(c_{GS} F_R(Q) f_R(Q) + f_R(Q) f_S(Q) \), and Fourier transforming into real-space \([78]\), a mean coordination number \(n_R^S = 8.4(2) \) is obtained by integrating over the range \(2.70 \leq r(\AA) \leq 3.19 \) (table 2).

The neutron total structure factors \(S_N(Q) \) measured for the rare-earth sulphide glasses are shown in figure 3, and the corresponding total pair-distribution functions \(G_N(r) \) are shown in figure 4. The positions of the leading peaks in both reciprocal and real space are listed in table 2. There is a small but measurable contrast between the reciprocal-space functions that is particularly marked in the region of the FSDP at \(\approx 1.05 \) \(\AA^{-1} \), as emphasised by the difference functions \(\Delta F_R^{(1)}(Q) \) shown in figure 5(a). As for the x-ray results, the first peak in \(G_N(r) \) at \(2.25(2) \) \(\AA \) is attributed to a superposition of nearest neighbour Ga–S and Ge–S pair-correlations. On the assumption that \(n_R^S = 4 \), integration of this peak over the range \(2.02 \leq r(\AA) \leq 2.64 \) gives \(n_R^S = 3.9(1) \). The second peak in \(G_N(r) \) at \(\approx 2.94-3.01 \) \(\AA \) is attributed to nearest neighbour R–S pair-correlations. The \(n_R^S \) values obtained by integrating this peak over the range \(2.76 \leq r(\AA) \leq 3.19 \) are not, however, the same (table 2), which indicates a contribution to the second peak from \(\mu^2-r^\mu \) pair-correlations. The height of the nearest-neighbour R–S peak is more pronounced in \(G_X(r) \) (figure 2) as compared to \(G_N(r) \) (figure 4), because the large atomic number of \(R \) gives larger weighting factors to the R–beta partial pair-distribution functions.

The difference functions \(\Delta F_R^{(1)}(Q) \) and \(\Delta F_N^{(1)}(Q) \) are shown in figure 5, and the corresponding real-space functions \(\Delta G_R^{(1)}(r) \) and \(\Delta G_N^{(1)}(r) \) are shown in figure 6. The first peak in \(\Delta G_N^{(1)}(r) \) at \(\approx 3.09 \) \(\AA \) is attributed to \(\mu \)-\(r^\mu \)-pair-correlations (table 3) and

Figure 2. The x-ray total pair-distribution functions \(\LaG_A(r) + 6 \), \(\CeG_A(r) + 3 \), and \(\CeG_X(r) \) obtained by Fourier transforming the \(S_X(Q) \) functions shown in figure 1 after truncating at a maximum scattering vector \(Q_\text{max} = 18 \) \(\AA^{-1} \). The broken (red) curves indicate the extent of the unphysical low-\(r \) oscillations.
its integration over the range $2.76 \leq r(\AA) \leq 3.50$ gives a mean coordination number $n_{Ga}^S = 8.0(2)$. This value is smaller than obtained from the second peak in $G_X(r)$ (table 2), which is consistent with a contribution to the latter from μ-μ' pair-correlations. The second peak in $\Delta G_{Ga}^{(ii)}(r)$ at ≈ 3.86 Å is attributed to a superposition of R–Ga and R–Ga pair-correlations (table 3). The third peak in $\Delta G_{X}^{(ii)}(r)$ at ≈ 4.65 Å is expected to have a contribution from nearest neighbour R–R pair-correlations on the basis that the minimum R–R distance is $r_{RR}^{min} = 4.02$–4.87 Å for the crystalline sulphides reported in table 3. As in the case of $G_X(r)$, the first peak in $\Delta G_{X}^{(ii)}(r)$ at 2.24(2) Å is attributed to a superposition of Ga–S and Ge–S pair-correlations and, if it is assumed that $n_{Ga}^S = 4$, a coordination number $n_{Ge}^S = 4.1(1)$ is obtained by integrating over the range $2.02 \leq r(\AA) \leq 2.64$. The second peak in $\Delta G_{X}^{(ii)}(r)$ at ≈ 3.59 Å overlaps with the first peak in $\Delta G_{X}^{(ii)}(r)$ at ≈ 3.09 Å, which confirms a contribution from μ-μ' pair-correlations to the second peak in $G_X(r)$.

It was not possible to extract reliably the R–R partial structure factor from the measured data sets by using difference function methods [51, 68, 94]. This situation is likely to have originated from the small atomic fraction of the rare-earth ions ($c_R = 0.0368$), and the possibility of some residual μ-μ' pair-correlations in $\Delta G_{X}^{(ii)}(r)$, i.e. the sample compositions may not have matched exactly.

4.2. Selenium glasses

The neutron total structure factors $S_N(Q)$ measured for the rare-earth selenide glasses are shown in figure 7, and the corresponding total pair-distribution functions $G_X(r)$ are shown in
functions (table 2), by integrating, and. The first 3. 4. at 3.11(3) functions shown in 8. a coordina-

cated at 2.37(2) functions shown in figure 4 after spline fitting the data and applying a cosine window function over the range 25–30 Å⁻¹. The broken (red) curves indicate the extent of the unphysical low-r oscillations.

Figure 3. The neutron total structure factors \(LaSe_n(Q) \), \(MaSe_n(Q) \), and \(CeSe_n(Q) \) for glassy \(R_2Se_3 \) \(GeS_2 \), \(GaSe_3 \). The vertical (dark grey) bars represent the measured data points with statistical errors, and the solid (red) curves are the D Fourier transforms of the corresponding \(G_n(r) \) functions shown in figure 4 after the unphysical low-r oscillations are set to the theoretical \(G_n(r \rightarrow 0) = 0 \) limit.

Figure 4. The neutron total pair-distribution functions \(LaG_n(r) \), \(MaG_n(r) \), and \(CeG_n(r) \) for glassy \(R_2Se_3 \) \(GeS_2 \), \(GaSe_3 \) as obtained by Fourier transforming the \(S_n(Q) \) functions shown in figure 3 after spline fitting the data and applying a cosine window function over the range 25–30 Å⁻¹. The broken (red) curves indicate the extent of the unphysical low-r oscillations.

The difference function \(\Delta F_{\mu}(Q) \) and its Fourier transform \(\Delta G_{\mu}(r) \) are shown in figures 9(a) and 10(a), respectively. The \(\Delta F_{\mu}(Q) \) function is relatively noisy, so the data set was truncated at \(Q_{\text{max}} = 10 \) Å⁻¹ to reduce Fourier transform artifacts in \(\Delta G_{\mu}(r) \). The first and second peaks in \(\Delta G_{\mu}(r) \) at 3.11(3) and 3.84(5) Å are attributed to the nearest-neighbour \(R-Se \) pair-correlations and to a superposition of the \(R-Ga \) and \(R-Ge \) pair-correlations, respectively. As compared to \(\Delta G_{R}(r) \) for the corresponding sulphide glass (figure 6(a)), the first peak is higher than the second peak because \(b_{Ge}/b_{Se} = 2.799 \). The first peak gives a coordination number \(n_{Ge}^R = 8.5(4) \) by integrating over the range 2.76 ≤ \(r(\AA) \) ≤ 3.56 to the first minimum, which compares to \(n_{Ge}^r = 8.9 \) for large rare earth ions in related crystalline materials (table 3). This coordination number is different to those found from the \(G_n(r) \) functions (table 2), which points to an overlap of the the \(R-Se \) and \(\mu-\mu' \) pair-correlation functions in \(G_n(r) \), and to the difficulty in extracting \(n_{Ge}^r \) from the total pair-distribution functions. The third peak in \(\Delta G_{R}(r) \) at 4.75(5) Å is likely to have a contribution from \(R-R \) pair-correlations on the basis that \(r_{\text{min}} \approx 4.52-4.59 \) Å for the crystalline selenides reported in table 2.

The difference function \(\Delta F_{\mu}(Q) \) and its Fourier transform \(\Delta G_{\mu}(r) \) are shown in figures 9(b) and 10(b), respectively. As for the case of \(G_n(r) \), the first peak in \(\Delta G_{\mu}(r) \) at 2.37(2) Å is attributed to a superposition of \(Ga-Se \) and \(Ge-Se \) pair-distribution functions and, if it is assumed that \(n_{Se}^r = 4 \), a coordination number \(n_{Se}^R = 4.0(1) \) is obtained by integrating this peak over the range 2.15 ≤ \(r(\AA) \) ≤ 2.64. The glass composition can be re-written as \((R_2Se_3)_{0.07}(Ga_2Se_3)_{0.3548}(GeSe_2)_{0.6452} \),
functions shown in figure 5 after spline fitting the data 7.

The vertical (dark grey) bars represent the measured data points with statistical errors. The solid (red) curves are the back Fourier transforms of the corresponding $\Delta F^i(Q)$ or $\Delta G^i(r)$ functions, shown in figure 6, after the unphysical low-r oscillations are set to the $\Delta G^0(r \to 0)$ or $\Delta G^0(r \to \infty)$ limits. For clarity of presentation, several of the data sets are displaced vertically.

Figure 5. The difference functions (a) $\Delta F^i_r(Q)$ ($i = 1, 2, 3$), and (b) $\Delta F^0_i(Q)$ ($i = 1, 2, 3$) for glassy $(R_S)_{0.07}(Ga_S)_{0.33}(Ge_S)_{0.60}$. The vertical (dark grey) bars represent the measured data points with statistical errors. The solid (red) curves are the back Fourier transforms of the corresponding $\Delta F^i(Q)$ or $\Delta G^i(r)$ functions shown in figure 5 after spline fitting the data and applying a cosine window function over the range 5–20 Å$^{-1}$ for $\Delta G^i(Q)$ or 25–30 Å$^{-1}$ for $\Delta G^0(r)$. The broken (red) curves indicate the extent of the unphysical low-r oscillations. For clarity of presentation, several of the data sets are displaced vertically.

5. Discussion

The local structure in R_S–Ga$_2$S$_3$–GeS$_2$ glasses containing La and Ce has been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy [30, 31]. In the case of glassy $(La_2S_3)_{0.4}(Ga_2S_3)_{0.6}$ glasses containing La and Ce, EXAFS investigations at the Ga and Ge K-edges indicate the formation of GaS$_4$ and GeS$_4$ tetrahedra with bond distances of $r_{GaS} \approx 2.31$ Å and $r_{GeS} \approx 2.21$ Å [30]. Similar observations were made for the Ga and Ge coordination environments for glasses in the $La_2S_3–Ga_2S_3–GeS_2$ system from other EXAFS investigations at the Ga and Ge K-edges in which the ratio of Ga$_2$S$_3$ to GeS$_2$ was varied [31]. In the case of glassy $(R_S)_{0.25}(Ga_S)_{0.47}(Ge_S)_{0.33}$, EXAFS investigations at the R L$_{III}$-edge gave a coordination number $n_{La}^S \approx 10.5$ with a bond distance $r_{LaS} \approx 2.99$ Å or a coordination number $n_{Ge}^S \approx 7.6$ with a bond distance $r_{GeS} \approx 2.96$ Å [30]. In comparison, EXAFS investigations of glasses in the $La_2S_3–Ga_2S_3$ system at the Ga K-edge and La L$_{III}$-edge indicate a network based on corner-sharing GaS$_4$ tetrahedra with a bond distance $r_{GaS} = 2.26–2.27$ Å, and a coordination number $n_{La}^S \approx 7$ with a bond distance $r_{LaS} = 2.91–2.93$ Å [99].

Raman spectroscopy was used to measure the structure of glassy $(La_2S_3)_{0.4}(Ga_S)_{0.6}(Ge_S)_{0.6}$ with $0 \leq x \leq 0.35$ [7].

i.e. the base glass is rich in GeSe$_2$. Hence, by comparison with the structure of glassy GeSe$_2$ [98], the shoulder in $\Delta G^{13}(r)$ at ≈ 3.1 Å may have a contribution from the Ge–Ge distances in edge-sharing GeSe$_4$ tetrahedra, the peak at 3.87(5) Å may have a contribution from Se–Se pair-correlations, and the low-r shoulder on this peak at ≈ 3.6 Å may have a contribution from the Ge–Ge pair-correlations in corner-sharing tetrahedra. In comparison, Raman and multinuclear (71Ga, 77Se) solid state nuclear magnetic resonance experiments on the base glass-forming system (Ga$_2$Se$_3$)$_1$(GeSe$_2$)$_{1-x}$ with $0.063 \leq x \leq 0.30$ support the formation of a network based primarily on corner-sharing GaSe$_4$ and GeSe$_4$ tetrahedra in which there are also some edge-sharing GeSe$_4$ tetrahedra and Ge–Ge homopolar bonds that appear in ethane-like Se$_2$Ge–GeSe$_2$ units [8]. With increasing x, the glass becomes increasingly Se deficient because the Ga:Se ratio is 1:3/2, i.e. less of the Ga and Ge atoms are able to take coordination environments in which they are bound exclusively to four Se atoms. In response, the fraction of homopolar bonds in ethane-like units increases, and Se atoms can also increase their coordination number from two to three by the formation of triclusters in which each higher coordinated Se atom is shared between three (Ga/Ge) Se$_4$ tetrahedra. In this way the Ga and Ge atoms can retain fourfold coordination environments.
For $x = 0$, the results were interpreted in terms of a network made from corner-sharing GaS$_4$ and GeS$_4$ tetrahedra, in which the S deficiency associated with the Ga:S ratio of 1:3/2 is compensated by the formation of Ga–Ge or Ge–Ge homopolar bonds. It was argued that Ge–Ge bonds predominate on the basis that Ge–S bonds are more easily ruptured than Ga–S bonds, for which the electronegativity difference between the atomic species is greater. Edge-sharing tetrahedral connections are allowed, especially in respect of Ga centered units. The negative charge on units such as GaS$_4$ is compensated by the positive charge on units such as (S$_3$GaGeS$_2$)$_2^+$, where these charges are calculated on the basis of bridging S atoms. When La$_3$S$_3$ is introduced, the provision of additional S atoms breaks homopolar bonds to enable all of the Ge and Ga atoms to form corner-sharing GaS$_4$ or GeS$_4$ tetrahedra in which some of the S atoms are non-bridging. In addition, edge-sharing tetrahedra are converted to corner-sharing tetrahedra, and the resultant motifs may also contain non-bridging S atoms. Hence, negatively charged tetrahedral units are formed that can balance the positive charge on the added La$^{3+}$ ions.

The present neutron and x-ray diffraction work on the structure of glassy $(R_5S_3)_{0.07}$Ga$_3S_3$Ge$_2$ where the composition can be re-written as $(R_5S_3)_{0.07}$[Ga$_2$S$_3$]$_{0.3548}$Ge$_2$S$_2$$_{0.6452}$, is consistent with the formation of GaS$_4$ and GeS$_4$ tetrahedra as network forming motifs. By contrast, in the crystalline structures of R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce, the Ga and Ge atoms can form either tetrahedral or octahedral motifs with S atoms, depending on the composition (table 3). The first peak in the measured $G_N(r)$ functions (figure 4) has a small high-r shoulder at $\sim 2.55\ $Å, a distance that is longer than typical intra-tetrahedral Ga–S and Ge–S distances (table 3). It may therefore originate from the longer bond lengths found in higher coordinated Ge or Ga centred polyhedra, or from Ga–Ga homopolar bonds, where the Ga–Ga nearest-neighbour distance is 2.45 Å in crystalline GaS$_2$ [100], 2.43–2.48 Å in crystalline GaSe [101], or 2.48–2.69 Å in the different polymorphs of crystalline Ga$_2$[102–105]. A shoulder at $\sim 2.55\ $Å does not, however, manifest itself as a notable feature in $\Delta G^N_2(r)$ (figure 6), i.e. this feature in $G_N(r)$ may have a contribution from Fourier transform artifacts. The coordination number $n^G_2 = 8.0(2)$ found from the measured $\Delta G^N_2(r)$ functions for glassy $(R_5S_3)_{0.07}$Ga$_3S_3$Ge$_2$$_{0.60}$ (table 2) compares to $n^S_2 = 8–9$ for large rare earth ions in related crystalline materials (table 3). For glassy $(R_5S_3)_{0.07}$Ga$_3S_3$Ge$_2$$_{0.60}$, a nearest-neighbour R–R distance of $\sim 4.65\ $Å, as estimated from the position of the third peak in $\Delta G_R(r)$ (table 2), compares to a minimum nearest-neighbour R–R distance $r_{RR} = 4.02–4.87\ $Å in crystalline R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce (table 3). In these crystalline materials,
4. The broken (red) curves indicate the results for the Ga
substitution. X-ray diffraction was also employed to measure the structure of the sulphide glass. The experiments on both the sulphide and selenide glasses reveal structures that are based on networks built from Ga\(_2\)S\(_3\) and Ge\(_2\)S\(_2\) tetrahedra in which the rare-earth ions reside with an average coordination number of 3.4 for La or Ce (table 3). For the latter, \(r_{\text{RR}}\) corresponds to \(R\rightleftharpoons S\rightleftharpoons R\) connections. In rare-earth glassy materials, a distance \(r_{\text{RR}}^{\text{min}} = r_{\text{RR}}^{\text{opt}}\) is desirable because it will minimise the non-radiative energy transfer between rare-earth ions, thereby helping to optimise the radiative quantum efficiency [14, 36].

6. Conclusions

The structure of \((R_3X_3)_{0.07}(Ga_2X_3)_{0.33}(GeX_2)_{0.60}\) glasses, where \(R\) denotes La or Ce and \(X\) denotes S or Se, was investigated by using the method of neutron diffraction with isomorphic substitution. X-ray diffraction was also employed to measure the structure of the sulphide glass. The experiments on both the sulphide and selenide glasses reveal structures that are based on networks built from Ga\(_2\)S\(_3\) and Ge\(_2\)S\(_2\) tetrahedra in which the rare-earth ions reside with an average coordination number of 3.4 for La or Ce (table 3). For the latter, \(r_{\text{RR}}\) corresponds to \(R\rightleftharpoons S\rightleftharpoons R\) connections. In rare-earth glassy materials, a distance \(r_{\text{RR}}^{\text{min}} = r_{\text{RR}}^{\text{opt}}\) is desirable because it will minimise the non-radiative energy transfer between rare-earth ions, thereby helping to optimise the radiative quantum efficiency [14, 36].

6. Conclusions

The structure of \((R_3X_3)_{0.07}(Ga_2X_3)_{0.33}(GeX_2)_{0.60}\) glasses, where \(R\) denotes La or Ce and \(X\) denotes S or Se, was investigated by using the method of neutron diffraction with isomorphic substitution. X-ray diffraction was also employed to measure the structure of the sulphide glass. The experiments on both the sulphide and selenide glasses reveal structures that are based on networks built from Ga\(_2\)S\(_3\) and Ge\(_2\)S\(_2\) tetrahedra in which the rare-earth ions reside with an average coordination number of 3.4 for La or Ce (table 3). For the latter, \(r_{\text{RR}}\) corresponds to \(R\rightleftharpoons S\rightleftharpoons R\) connections. In rare-earth glassy materials, a distance \(r_{\text{RR}}^{\text{min}} = r_{\text{RR}}^{\text{opt}}\) is desirable because it will minimise the non-radiative energy transfer between rare-earth ions, thereby helping to optimise the radiative quantum efficiency [14, 36].
hosted by the Royal Society of Chemistry. PSS and AZ are grateful to Corning Inc. for the award of Gordon S Fulcher Distinguished Scholarships during which this work was completed. AZ is supported by a Royal Society—EPSRC Dorothy Hodgkin Research Fellowship. The data sets created during this research are openly available from the University of Bath data archive at https://doi.org/10.15125/BATH-00343.

References

[1] Blass G 1979 Handbook on the Physics and Chemistry of Rare Earths vol 4, ed K A Gschneidner Jr and L Erying (Amsterdam: North-Holland) ch 34, pp 237–74
[2] Weber M J 1979 Handbook on the Physics and Chemistry of Rare Earths vol 4, ed K A Gschneidner Jr and L Erying (Amsterdam: North-Holland) ch 35, pp 275–315
[3] Kenyon A J 2002 Prog. Quantum Electron. 26 225
[4] Lezal D 2003 J. Optoelectron. Adv. Mater. 5 23
[5] Tver’yanovich Y S and Tver’yanovich A 2004 Semiconductors and Semimetals vol 80, ed R Fairman and B Ushkov (Amsterdam: Elsevier) ch 4, pp 169–207
[6] Greer A L and Mathur N 2005 Nature 437 1246
[7] Heo J, Yoon J M and Ryu Y S 1998 J. Non-Cryst. Solids 238 115
[8] Mao A W, Aitken B G, Youngman R E, Kaseman D C and Sen S 2013 J. Phys. Chem. B 117 16594
[9] Seddon A B, Tang Z, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
[10] Simons D R, Faber A J and de Waal H 1995 J. Non-Cryst. Solids 185 283
[11] Abe K, Takebe H and Morinaga K 1997 J. Non-Cryst. Solids 212 143
[12] Quimby R S and Aitken B G 2003 J. Non-Cryst. Solids 320 100
[13] Tver’yanovich A, Grigoriev Y G, Degtyarev S V, Kurochkin A V, Man’shina A A, Ivanova T Y, Povolotskiy A V and Tver’yanovich Y S 2003 J. Non-Cryst. Solids 326–7 311
[14] Jacobs R R and Weber M J 1976 IEEE J. Quantum Electron. 12 102
[15] Wei K, Machewirth D P, Wenzel J, Snitzer E and Sigel G H Jr 1994 Opt. Lett. 19 904
[16] Loireau-Lozac’h A M and Guittard M 1977 Mater. Res. Bull. 12 887
[17] Barnier S, Guittard M and Flahaut J 1980 Mater. Res. Bull. 15 689
[18] Kadono K, Higuchi H, Takahashi M, Kawamoto Y and Tanaka H 1995 J. Non-Cryst. Solids 184 309
[19] Aitken B G and Quimby R S 1997 J. Non-Cryst. Solids 213–4 281
[20] Man’shina A A, Kurochkin A V, Degtyarev S V, Grigor’ev Y G, Tver’yanovich A S, Tver’yanovich Y S and Smirnov V B 2001 Glasses of the GaS2–GeS2 system doped with rare-earth ions (Nd3+ , Er3+) as active optical materials Int. Seminar on Novel Trends in Nonlinear Laser Spectroscopy and High-Resolution Measurements in Optics (Proc. of SPIE vol 4429) ed S N Bagaev et al. (Bellingham, MA: SPIE) p 80
[21] Degtyarev S V, Man’shina A A, Kurochkin A V, Zhuzhel’skii D V, Grigor’ev Y G and Tver’yanovich Y S 2001 Glass Phys. Chem. 27 209
[22] Aitken B G, Ponader C W and Quimby R S 2002 C. R. Chim. 5 865
[23] Koughia K, Munzar M, Tonchev D, Haugen C J, Decorby R G, McMullin J N and Kasap S O 2005 J. Lumin. 112 92
[24] Lee T H, Simdyankin S I, Hegedus J, Heo J and Elliott S R 2010 Phys. Rev. B 81 104204
[25] Wei K, Machewirth D P, Wenzel J, Snitzer E and Sigel G H Jr 1995 J. Non-Cryst. Solids 182 257
[26] Shin Y B, Cho W Y and Heo J 1996 J. Non-Cryst. Solids 208 29
[27] Heo J, Cho W Y and Chung W J 1997 J. Non-Cryst. Solids 212 151
[28] Tver’yanovich Y S, Degtyarev S V, Pivovarov S S, Smirnov V B and Kurochkin A V 1999 J. Non-Cryst. Solids 256–7 95
[29] Park S H, Heo J and Kim H S 1999 J. Non-Cryst. Solids 259 31
[30] Higuchi H, Kanno R, Kawamoto Y, Takahashi M and Kadono K 1999 Phys. Chem. Glasses 40 49
[31] Higuchi H, Kanno R, Kawamoto Y, Takahashi M and Kadono K 1999 Phys. Chem. Glasses 40 122
[32] Tver’yanovich A, Grigoriev Y G, Degtyarev S V, Kurochkin A V, Man’shina A A and Tver’yanovich Y S 2001 J. Non-Cryst. Solids 286 89
[33] Ivanova T Y, Man’shina A A, Kurochkin A V, Tver’yanovich Y S and Smirnov V B 2002 J. Non-Cryst. Solids 298 7
[34] Kadono K, Yazawa T, Jiang S, Porque J, Hwang B C and Peyghambarian N 2003 J. Non-Cryst. Solids 331 79
[35] Ivanova Z G, Vassilev V S, Cernoskova E and Cernosek Z 2003 J. Phys. Chem. Solids 64 107
[36] Ivanova T Y, Man’shina A A and Povolotskiy A V 2005 J. Non-Cryst. Solids 351 1403
[37] Koughia K, Saitou D, Aoki T, Munzar M and Kasap S O 2006 J. Non-Cryst. Solids 352 2420
[38] Munzar M, Koughia K, Kasap S O, Haugen C, DeCorby R and McMullin J N 2006 Phys. Chem. Glasses 47 220
[39] Choi Y G and Song J H 2009 Chem. Phys. Lett. 467 323
[40] Munzar M et al 2005 Phys. Chem. Glasses 46 215
[41] Kasap S O, Koughia K, Munzar M, Tonceh D, Saitou D and Aoki T 2007 J. Non-Cryst. Solids 353 1364
[42] Ivanova T Y, Man’shina A A, Povolotskiy A V, Tver’yanovich Y S and Smirnov Y S, Liaw S K and Hsieh Y S 2008 J. Phys. D: Appl. Phys. 41 175110
[43] Némec P, Frumarová B, Frumar M and Oswald J 2000 J. Phys. Chem. Solids 61 1583
[44] Némec P, Frumarová B and Frumar M 2000 J. Non-Cryst. Solids 270 137
[45] Némec P and Frumar M 2002 J. Non-Cryst. Solids 299–302 1018
[46] Maeda K, Ikuta J, Arima T, Sakai T, Ikari T, Munzar M, Tonceh D and Kasap S 2006 Phys. Chem. Glasses 47 189
[47] Zhao D, Yang G, Xu Y, Zeng H, Némec P, Frumar M and Chen G 2008 J. Non-Cryst. Solids 354 1294
[48] Némec P and Frumar M 2008 Mater. Lett. 62 2799
[49] Wasse J C and Salmon P S 1999 J. Phys.: Condens. Matter. 11 1381
[50] Wasse J C, Salmon P S and Delaplane R G 2000 J. Phys.: Condens. Matter. 12 9539
[51] Martin R A, Salmon P S, Fischer H E and Cuello G J 2003 Phys. Rev. Lett. 90 185501
[52] Martin R A, Salmon P S, Benmore C J, Fischer H E and Cuello G J 2003 Phys. Rev. B 68 054203
[53] Martin R A, Salmon P S, Fischer H E and Cuello G J 2003 J. Phys.: Condens. Matter. 15 S235
[54] Martin R A, Salmon P S, Fischer H E and Cuello G J 2004 J. Non-Cryst. Solids 345–6 208
[55] Moeller T 1975 The Chemistry of the Lanthanides (New York: Pergamon)
[56] Shannon R D 1976 Acta Crystallogr. A 32 751
[57] Pettit G D 1986 J. Phys. C: Solid State Phys. 19 285
[58] Fischer H E, Barnes A C and Salmon P S 2006 Rep. Prog. Phys. 69 233
[59] Faber T E and Ziman J M 1965 Phil. Mag. 11 153
