Strict site-occupation constraint in 2d Heisenberg models and dynamical mass generation in QED$_3$ at finite temperature.

Raoul Dillenschneider and Jean Richert
Laboratoire de Physique Théorique, UMR 7085 CNRS/ULP, Université Louis Pasteur, 67084 Strasbourg Cedex, France
(Dated: March 23, 2022)

We study the effect of site occupation in 2d quantum spin systems at finite temperature in a π-flux state description at the mean-field level. We impose each lattice site to be occupied by a single SU(2) spin. This is realized by means of a specific prescription. We consider the low-energy Hamiltonian which is mapped into a QED$_3$ Lagrangian of spinons. We compare the dynamically generated mass to the one obtained by means of an average site occupation constraint.

PACS numbers: 71.27+a, 75.10.Jm, 11.10.Kk

I. INTRODUCTION

Quantum Electrodynamics QED$^{(2+1)}$ is a common framework aimed to describe strongly correlated systems such as quantum spin systems in 1 time and 2 space dimensions, as well as related specific phenomena like high-T_c superconductivity $^{[12]}$. A gauge field formulation of antiferromagnetic Heisenberg models in $d = 2$ dimensions leads to a QED$_3$ action for spinons, see f. i. Ghaemi and Senthil $^{[2]}$ and Morinari $^{[10]}$. This description raises the problem of the mean-field solution and the correlated question of the confinement of test charges which leads to the impossibility to determine the quantum fluctuation contributions through a loop expansion in this approach $^{[21]}$. $^{[22]}$ $^{[23]}$.

We consider here the π-flux state approach introduced by Affleck and Marston $^{[5]}$ $^{[6]}$. The occupation of sites of the system by a single particle is generally introduced by means of a Lagrange multiplier procedure $^{[2]}$ $^{[5]}$. In the present work we implement a strict site-occupation. It can be constructed by means of constraints imposed through a specific projection operator which introduces an imaginary chemical potential. This has been proposed by Popov and Fedotov $^{[1]}$ for SU(2) spins and generalized by Kiselev et al. $^{[27]}$ to SU(N) semi-fermionic Hamiltonians. It is our aim in the present work to confront the outcome of the two approaches.

Here we concentrate on the behaviour of the spinon mass which is generated dynamically by an U(1) gauge field. Appelquist et al. $^{[21]}$ $^{[22]}$ $^{[23]}$ showed that at zero temperature the originally massless fermion can acquire a dynamically generated mass when the number N of fermion flavors is lower than the critical value $N_c = 32/\pi^2$. Later Maris $^{[26]}$ confirmed the existence of a critical value $N_c \approx 3.3$ below which the dynamical mass can be generated. Since we consider only spin-1/2 systems, $N = 2$ and hence $N < N_c$.

At finite temperature Dorey and Mavromatos $^{[12]}$ and Lee $^{[13]}$ showed that the dynamically generated mass vanishes at a temperature T larger than the critical one T_c.

We shall show below that the imaginary chemical potential introduced by Popov and Fedotov $^{[1]}$ modifies noticeably the effective potential between two charged particles and doubles the dynamical mass transition temperature, in agreement with former work at the same mean-field level $^{[15]}$.

The outline of the paper is the following. In section II we recall the projection procedure introduced by Popov and Fedotov (PFP) leading to a rigorous constraint on the lattice site occupation. In section III we derive the Lagrangian which couples a spinon field to a U(1) gauge field. Section IV is devoted to the comparison of the effective potential constructed with and without strict occupation constraint. In section V we present the calculation of the mass term using the Schwinger-Dyson equation of the spinon.

II. SITE OCCUPATION CONSTRAINT FOR QUANTUM SPIN SYSTEMS AT FINITE TEMPERATURE.

Heisenberg quantum spin Hamiltonians of the type

$$H = \frac{1}{2} \sum_{i,j} J_{ij} S_i S_j$$

with $\{J_{ij}\} > 0$ can be projected onto Fock space by means of the transformation

$$S_i^+ = f_{i,\uparrow}^\dagger f_{i,\downarrow}$$
$$S_i^- = f_{i,\downarrow}^\dagger f_{i,\uparrow}$$
$$S_i^z = \frac{1}{2} (f_{i,\uparrow}^\dagger f_{i,\uparrow} - f_{i,\downarrow}^\dagger f_{i,\downarrow})$$

where $\{f_{i,\sigma}, f_{i,\sigma}^\dagger\}$ are anticommuting fermion operators which create and annihilate spinon with $\sigma = \pm 1/2$.

*E-mail address : rdillen@lpt1.u-strasbg.fr
†E-mail address : richert@lpt1.u-strasbg.fr
This transformation is not bijective because the dimensionality of Fock space is larger than the dimensionality of the space in which the spin operators \(\{ \vec{S}_i \} \) are acting. Indeed, in Fock space, each site \(i \) can be occupied by 0, 1 or 2 fermions corresponding to the states \(|0,0>,|1,0>,|0,1>,|1,1> \) where \(|0,0>\) is the particle vacuum, \(|1,0>=|+1/2,0>,|0,1>=-|1/2,1> \) and \(|1,1>=|+1/2,-1/2\) in terms of spin 1/2 projections. Since one wants to keep states with one fermion per site the states \(|0,0> \) and \(|1,1>\) have to be eliminated. This can be performed on the partition function for a system at inverse temperature \(\beta \)

\[
Z = Tr \left[e^{-\beta H} \right]
\]

where the trace is taken over the whole Fock space by the introduction of a projection operator

\[
Z = Tr \left[e^{-\beta (H-\mu N)} \right]
\]

where \(N \) is the particle number operator and \(\mu = i\pi/2\beta \) an imaginary chemical potential \(i\pi \). Indeed, the presence of the states \(|0,0> \) and \(|1,1>\) on site \(i \) leads in \(Z \) to phase contributions which eliminate each other

\[
e^{i\pi 0}+e^{i\pi \pi }=0
\]

and hence the contributions of these spurious states are cancelled as a whole.

The common alternative approximate projection procedure would be to introduce a chemical potential in terms of real Lagrange multipliers \(\{ \lambda_i \} \)

\[
Z = Tr \left[e^{-\beta H} \prod_i \int d\lambda_i e^{\lambda_i(n_i-1)} \right]
\]

where \(n_i \) is the particle number operator on site \(i \) and the \(\{ \lambda_i \} \) are fixed by means of a saddle point procedure.

III. SPIN STATE MEAN-FIELD ANSATZ IN 2D

In 2d space the Heisenberg Hamiltonian given by Eq.(1) can be written in terms of composite non-local operators \(\{ D_{ij} \} \) (“diffusons”) \(2 \) defined as

\[
D_{ij} = f^\dagger_{i,\uparrow} f_{j,\downarrow} + f^\dagger_{i,\downarrow} f_{j,\uparrow}
\]

If the coupling strengths are fixed as

\[
J_{ij} = J \sum_{\vec{n}} \delta(\vec{r}_i - \vec{r}_j + \vec{n})
\]

where \(\vec{n} \) is a lattice vector \(\{ a_1,a_2 \} \) in the \(\vec{O}_x \) and \(\vec{O}_y \) directions the Hamiltonian takes the form

\[
H = -J \sum_{<ij>} \left(\frac{1}{2} D^\dagger_{ij} D_{ij} - \frac{n_i}{2} + \frac{n_i n_j}{4} \right)
\]

where \(i \) and \(j \) are nearest neighbour sites.

The number operator products \(\{ n_i n_j \} \) in Eq.(3) are quartic in terms of creation and annihilation operators in Fock space. In principle the formal treatment of these terms requires the introduction of a mean field procedure. One can however show that the presence of this term has no influence on the results obtained from the partition function. As a consequence we leave it out from the beginning as well as the contribution corresponding to the \(\{ n_i \} \) terms.

A. Exact occupation procedure

Starting with the Hamiltonian

\[
H = -J \sum_{<ij>} D^\dagger_{ij} D_{ij} - \mu N
\]

the partition function \(Z \) can be written in the form

\[
Z = \int \prod_{i,\sigma} D(\{ \xi^\ast_{i,\sigma}, \xi_{i,\sigma} \}) e^{-A(\{ \xi^\ast_{i,\sigma}, \xi_{i,\sigma} \})}
\]

where the \(\{ \xi^\ast_{i,\sigma}, \xi_{i,\sigma} \} \) are Grassmann variables corresponding to the operators \(\{ f^\dagger_{i,\sigma}, f_{i,\sigma} \} \) defined above. They depend on the imaginary time \(\tau \) in the interval \([0,\beta] \). In the continuum limit the action \(A \) is given by

\[
A(\{ \xi^\ast_{i,\sigma}, \xi_{i,\sigma} \}) = \int_0^\beta d\tau \left(\sum_{i,\sigma} \xi^\ast_{i,\sigma}(\tau) \partial_\tau \xi_{i,\sigma}(\tau) + \mathcal{H}(\{ \xi^\ast_{i,\sigma}(\tau), \xi_{i,\sigma}(\tau) \}) \right)
\]

where

\[
\mathcal{H}(\tau) = H(\tau) - \mu N(\tau)
\]

and \(N(\tau) \) is the total particle number operator. A Hubbard-Stratonovich transformation on the corresponding functional integral partition function in which the action contains the occupation number operator as seen in Eq.(3) eliminates the quartic contributions generated by Eq.(2) and introduces the mean fields \(\{ \Delta_{ij} \} \). The Hamiltonian takes then the form
\[\mathcal{H} = \frac{2}{|J|} \sum_{<ij>} \Delta_{ij} \Delta_{ij} + \sum_{<ij>} \left[\Delta_{ij} D_{ij} + \Delta_{ij} D_{ij}^\dagger \right] - \mu N \] (6)

The fields \{\Delta_{ij}\} and their complex conjugates \(\bar{\Delta}_{ij}\) can be decomposed into a mean-field contribution and a fluctuation term

\[\Delta_{ij} = \Delta_{ij}^{mf} + \delta \Delta_{ij} \]

The field \(\Delta_{ij}^{mf}\) can be chosen as a complex quantity \(\Delta_{ij}^{mf} = |\Delta_{ij}^{mf}| e^{i\phi_{ij}^{mf}}\).

The phase \(\phi_{ij}^{mf}\) is fixed in the following way. Consider a square plaquette \(\square \equiv (i, i + \vec{e}_x, i + \vec{e}_x, i + \vec{e}_y)\) where \(\vec{e}_x\) and \(\vec{e}_y\) are the unit vectors along the directions \(\hat{O}x\) and \(\hat{O}y\) starting from site \(i\) on the lattice. On this plaquette we define

\[\phi = \prod_{(ij) \in \square} \phi_{ij}^{mf} \]

which is taken to be constant. If the gauge phase \(\phi_{ij}^{mf}\) fluctuates in such a way that \(\phi\) stays constant the average of \(\Delta_{ij}^{mf}\) will be equal to zero in agreement with Elitzur’s theorem \[3\]. In order to guarantee the \(SU(2)\) invariance of the mean-field Hamiltonian along the plaquette we follow \[3\] and introduce

\[\phi_{ij} = \begin{cases} e^{i \frac{\pi}{2} (-1)^i}, & \text{if } \vec{r}_j = \vec{r}_i + \vec{e}_x \\ e^{-i \frac{\pi}{2} (-1)^i}, & \text{if } \vec{r}_j = \vec{r}_i + \vec{e}_y \end{cases} \]

where \(\vec{e}_x\) and \(\vec{e}_y\) join the site \(i\) to its nearest neighbours \(j\). Then the total flux through the fundamental plaquette is such that \(\phi = \pi\) which guarantees that the \(SU(2)\) symmetry of the plaquette is respected \[3\].

At the mean-field level the partition function reads

\[Z_{mf} = e^{-\beta (\mathcal{H}_{mf} - \mu N)} \]

where

\[\mathcal{H}_{mf} = \frac{2}{|J|} \sum_{<ij>} \Delta_{ij}^{mf} \Delta_{ij}^{mf} + \sum_{<ij>} \left[\Delta_{ij}^{mf} D_{ij} + \Delta_{ij}^{mf} D_{ij}^\dagger \right] - \mu N \] (7)

as read immediately from Eq. (6).

After a Fourier transformation the Hamiltonian \(\mathcal{H}\) takes the form

\[\mathcal{H} = \frac{4}{|J|} \sum_{<ij> \in SBZ} \frac{\bar{\Delta}^\dagger \bar{\Delta}}{\pi} + \frac{2}{|J|} \sum_{<ij> \in SBZ} \left[\bar{\Delta} \bar{D} + \bar{D}^\dagger \bar{\Delta}^\dagger \right] - \mu N \]

where \(\bar{\Delta} = \Delta \cos \frac{\pi}{2}\) is the “light velocity”, and \(\{\gamma^\mu\}\) are the Dirac gamma matrices in (2+1) dimensions. Spinons move in a “gravitational” field and the metric can be handled in a Minkowskian (or Euclidean) metric \[11\] assuming \(\Delta = 1\) without altering the physics of the problem.
Since the Heisenberg Hamiltonian is gauge invariant in the transformation \(\psi \rightarrow e^{i\delta a_\mu} \psi \) the Dirac action has to be written in the form
\[
S_E = \int_0^\beta d^2\vec{r} \left\{ -\frac{1}{2} a_\mu (\partial \delta^{\mu\nu} + (1 - \lambda) \partial^\mu \partial^\nu) a_\nu \right. \\
+ \left. \sum_\sigma \bar{\psi}_\sigma \left[\gamma_\mu (\partial - ig a_\mu) \right] \psi_\sigma \right\}
\] (10)

Here \(g \) is the coupling strength between the gauge field \(a_\mu \) and the Dirac spinons \(\psi \). In (10) the first term corresponds to the “Maxwell” term \(-\frac{1}{2} f^{\mu\nu} \mu_\nu \) of the gauge field \(a_\mu \) where \(f^{\mu\nu} = \partial_\mu a_\nu - \partial_\nu a_\mu \), \(\lambda \) is the parameter of the Faddeev-Popov gauge fixing term \(-\lambda (\partial_\mu a_\mu)^2 \) and \(\delta^{\mu\nu} \) the Kronecker delta. \(\Box = \partial^2 + \vec{\nabla}^2 \) is the Laplacian in Euclidean space-time. This form of the action originates from a shift of the imaginary time derivation \(\partial_\tau \rightarrow \partial_\tau + \mu \) and leads to a new definition of the Matsubara frequencies only for the fermion fields \(\psi \) which read then
\[\tilde{\omega}_{F,n} = \omega_{F,n} - \mu/i = \frac{2\pi}{\beta} (n + 1/4) \]

This modification will induce substantial consequences as it will be shown in the following.

IV. THE “PHOTON” PROPAGATOR AT FINITE TEMPERATURE

Integrating over the fermion fields \(\psi \) leads to a pure gauge Lagrangian \(L_a = \frac{1}{2} a_\mu \Delta_\nu^\mu \delta_\nu^\mu \) where \(\Delta_\nu^\mu \) is the dressed photon propagator from which we shall extract an effective interaction potential \(V(R) \) between two test particles and extract a dynamically generated fermion mass.

The finite-temperature photon propagator in Euclidean space (imaginary time formulation) verifies the Dyson equation
\[
\Delta_\nu^\mu = \Delta^{(0)}_\nu^\mu - \Pi_\nu^\mu
\] (11)

The detailed calculation of the polarisation function \(\Pi_\nu^\mu \) is given in appendix 14.

Since the system is at finite temperature and “relativistic” covariance should be kept the polarisation function may be put in the form
\[\Pi_\nu^\mu = \Pi_A A_\nu^\mu + \Pi_B B_\nu^\mu \]

where \(\Pi_A \) and \(\Pi_B \) are related to \(\tilde{\Pi}_k \) by \(\Pi_A = \tilde{\Pi}_1 + \tilde{\Pi}_2 \) and \(\Pi_B = \tilde{\Pi}_3 \). The expressions of \(\Pi_1, \Pi_2 \) and \(\Pi_3 \) are explicitly worked out in appendix 14. \(A_\nu^\mu \) and \(B_\nu^\mu \)

![FIG. 2: The dressed photon propagator. Wavy lines correspond to the photon and solid loops to the fermion insertions.](image)

generate an orthogonal tensor basis transversal to the photon momentum \(q^\mu \)
\[
A_\nu^\mu = \tilde{a}_\nu \frac{q_\mu}{q^2} \\
B_\nu^\mu = \frac{q_\mu}{q^2} \bar{u}_\nu \tilde{u}_\nu
\]

with \(\tilde{a}_\nu = \delta_\nu - \frac{q_\mu q_\nu}{q^2} \), \(\bar{u}_\nu = u_\nu - \frac{(q_\mu)}{q^2} q_\mu \) and \(\tilde{u}_\nu = q_\nu - \frac{(q_\mu)}{q^2} q_\mu \). Here \(u_\mu = (1,0,0) \) is the three-vector of the thermal bath.

The dressed photon propagator \(\Delta_\nu^\mu \) is obtained by the summation of the geometric series shown in figure 2 and reads
\[
\Delta_\nu^\mu = \frac{A_\nu^\mu}{q^2 + \Pi_1 + \Pi_2} + \frac{B_\nu^\mu}{q^2 + \Pi_3} - (1 - 1/\lambda) \frac{q_\mu q_\nu}{(q^2)^2}
\] (12)

A. Effective potential between test particles

The effective static potential between two test particles of opposite charges \(g \) at distance \(R \) is given by
\[
V(R) = -g^2 \int_0^\beta d\tau \Delta_{00}(R, R) \\
= -g^2 \frac{1}{2\pi} \int_0^{2\pi} d\phi (2\pi)^2 \Delta_{00}(Q^0 = 0, Q) e^{iq.R} \\
= -g^2 \frac{1}{2\pi} \int_0^{2\pi} dq qJ_0(qR) \frac{1}{q^2 + \Pi_3(m = 0)}
\]

where \(J_0(qR) \) is the zero order Bessel function. The polarisation contribution \(\tilde{\Pi}_3(q^0 = 0, Q) \) is equal to \(\frac{2\pi}{q} \int_0^\beta dx \log 2 (\cosh \beta \sqrt{x(1-x)}) \) when taking the PFP imaginary chemical potential into account. This has to be compared to the expression \(\frac{2\pi}{q} \int_0^\beta dx \log 2 (\cosh \frac{2q}{\beta} \sqrt{x(1-x)}) \) when the Lagrange multiplier method for which \(\lambda = 0 \) is used 12.

For small momentum \(q \rightarrow 0 \), \(\tilde{\Pi}_3(m = 0) \) can be identified as a mass term \((M_0^{PF} / \beta)^2 \). For \(R \gg (M_0^{PF} / \beta)^{-1} \) the effective potential reads
spinon propagator at finite temperature reads

\[G^{-1}(k) = G^{(0)}^{-1}(k) - \frac{g^2}{\beta} \sum_{\omega_{F,n}} \int \frac{d^2 \vec{P}}{(2\pi)^2} \gamma_{\mu} G(p) \Delta_{\mu\nu}(k-p) \Gamma_{\nu} \]

where \(p = (p_0 = \bar{\omega}_{F,n}, \vec{P}) \), \(G \) is the spinon propagator, \(\Gamma_{\nu} \) the spinon-“photon” vertex which will be approximated here by its bare value \(g_\gamma \) and \(\Delta_{\mu\nu} \) is the dressed photon propagator \([12]\). The second term in (13) is the fermion self-energy \(\Sigma, (G^{-1} = G^{(0)}^{-1} - \Sigma) \). Performing the trace over the \(\gamma \) matrices in equation (13) leads to a self-consistent equation for the self-energy

\[\Sigma(k) = \frac{g^2}{\beta} \sum_{\omega_{F,n}} \int \frac{d^2 \vec{P}}{(2\pi)^2} \Delta_{\mu\nu}(k-p) \gamma_{\mu} \frac{\Sigma(p)}{p^2 + \Sigma(p)^2} \]

In the low energy and momentum limit \(m(\beta) = \Sigma(k) \approx \Sigma(0) \) the equation (14) simplifies to

\[1 = \frac{g^2}{\beta} \sum_{\omega_{F,n}} \int \frac{d^2 \vec{P}}{(2\pi)^2} \Delta_{\mu\nu}(-p) \frac{1}{p^2 + m(\beta)^2} \]

If the main contribution comes from the longitudinal part \(\Delta_{\mu\nu}(0, -\vec{P}) \) of the photon propagator \([15]\) goes over to

\[1 = \frac{g^2}{\beta} \sum_{\omega_{F,n}} \int \frac{d^2 \vec{P}}{(2\pi)^2} \gamma_{\mu} \frac{1}{\vec{P}^2 + \bar{\omega}_{F,n}^2 + \vec{P}^2 + m(\beta)^2} \]

Performing the summation over the fermion Matsubara frequencies \(\bar{\omega}_{F,n} \) the self-consistent equation takes the form

\[1 = \frac{\alpha}{4\pi N} \int_0^\Lambda \frac{d^2 \vec{P}}{(2\pi)^2} \gamma_{\mu} \frac{P \tanh \beta \sqrt{\vec{P}^2 + m(\beta)^2}}{\sqrt{\vec{P}^2 + \bar{\omega}_{F,n}(m = 0) + \vec{P}^2 + m(\beta)^2}} \]

Eq. (17) can be solved numerically with a cutoff \(\Lambda \) fixed at \(\infty \) in an analytical calculation. By inspection of equation (17) and the corresponding result obtained by Dorey and Mavromatos \([12]\) and Lee \([13]\) one sees that the imaginary chemical potential used which fixes rigorously one spin per lattice site of the original Hamiltonian \([11]\) doubles the transition temperature. This result is coherent with the results obtained elsewhere \([17]\) where spinons are massless.

V. DYNAMICAL MASS GENERATION

We show now how the PFP doubles the “chiral” restoring transition temperature of the dynamical mass generation. The Schwinger-Dyson equation for the spinon propagator at finite temperature reads

\[V(R, \beta) \simeq \frac{g^2}{2\pi} \int_0^\infty dq \frac{q J_0(qR)}{q^2 + M_0^{PF}q^2} \]

\[= -\frac{\alpha}{N} \sqrt{\frac{1}{8\pi R M_0^{PF}e^{-M_0^{PF}R}}} \]

where \(N = 2 \) since we consider only \(S = 1/2 \) spins.

Figure 3 shows the effective potential between two opposite test charges at distance \(R \gg (M_0^{PF})^{-1} \). The screening effect is smaller when the imaginary chemical potential \(\mu \) is implemented rather than the Lagrange multiplier \(\lambda \). By inspection one sees that \((M_0^{PF})^{-1} = \sqrt{2}(M_0^{\lambda=0})^{-1} \).
Since the mass can be identified with a superconducting gap one can evaluate the parameter \(r = \frac{2m(0)}{k_B T_c} \) where \(m(0) \) is the mass at zero temperature and \(T_c \) the transition temperature for which the mass becomes zero. Dorey and Mavromatos \cite{Dorey12} obtained \(r \approx 10 \) and Lee \cite{Lee13} computed the mass by taking into account the frequency dependence and obtained \(r \approx 6 \). We have shown above that the imaginary chemical potential doubles the transition temperature so that the parameter \(r \approx 4.8 \) for \(\alpha/\Lambda = \infty \) to compare with the result of Dorey and Mavromatos and \(r \approx 3 \) to compare with Lee’s result. Recall that the BCS parameter \(r \) is roughly equal to 3.5 and the \(YBaCuO \) parameter \(r \approx 8 \) as given by the experiment \cite{Raju18}.

VI. CONCLUSION

We mapped a Heisenberg 2d Hamiltonian describing an antiferromagnetic quantum spin system into a \(QED_{(2+1)} \) Lagrangian coupling a Dirac spinon field with a \(U(1) \) gauge field. In this framework we showed that the implementation of the constraint which fixes rigorously the site occupation in a quantum spin system described by a 2d Heisenberg model leads to a substantial quantitative modification of the transition temperature at which the dynamically generated mass vanishes in the \(QED_{(2+1)} \) description. It modifies consequently the effective static potential which acts between two test particles of opposite charges.

The imaginary chemical potential \cite{Marston30} reduces the screening of this static potential between test fermions when compared to the potential obtained from standard \(QED_{(2+1)} \) calculations by Dorey and Mavromatos \cite{Dorey12} who implicitly used a Lagrange multiplier procedure in order to fix the number of particles per lattice site \cite{Raju18} since \(\lambda = 0 \) at the mean-field level.

We showed that the transition temperature to “chiral” symmetry restoration corresponding to the vanishing of the spinon mass \(m(\beta) \) is doubled by the introduction of the Popov-Fedotov imaginary chemical potential. The trend is consistent with earlier results concerning the value of \(T_c \) \cite{Raju17}. It reduces sizably the parameter \(r = \frac{2m(0)}{k_B T_c} \) determined by Dorey and Mavromatos \cite{Dorey12} and Lee \cite{Lee13}.

Marston \cite{Marston30} showed that in order to remove “forbidden” \(U(1) \) gauge configuration of the antiferromagnet Heisenberg model a Chern-Simons term should be naturally included in the \(QED_3 \) action and fix the total flux through a plaquette. When the magnetic flux through a plaquette is fixed the system becomes \(2\pi \)-invariant in the gauge field \(a_\mu \) and instantons appear in the system. This is the case when the present non-compact formulation of \(QED_3 \) is replaced by its correct compact version \cite{Kapustin32}.

It is our next aim to implement a Chern-Simons term \cite{Marston30} in a system constrained by a rigorous site occupation.

Acknowledgments

One of us (R.D.) would like to thank M. Rausch de Traubenberg and J.-L. Jacquot for interesting and fruitful discussions.

APPENDIX A: DERIVATION OF THE EUCLIDEAN QED ACTION IN \((2+1) \) DIMENSIONS

At low energy near the two independent points \(\vec{k} = (\pm \pi, \pi) + \vec{k} \) of the Spin Brillouin Zone (see figure 1) the Hamiltonian \cite{Marston30} can be rewritten in the form

\[
H = \sum_{\vec{k} \in SBZ} \sum_\sigma \left(f_{1,k,\sigma}^\dagger f_{1,k+\pi,\sigma} + f_{2,k,\sigma}^\dagger f_{2,k+\pi,\sigma} \right)
\]

\[
\left\{
-\mu \mathbb{I} + \sqrt{2} \Delta \left[-k_x (\tau_3 0 0) - k_y \right]
+ \sqrt{2} \Delta \left[-k_x (0 0 \tau_3) + k_y i \mathbb{I} \right]
\right\}
\]

\[
f_{1,k,\sigma} \text{ and } f_{1,k+\pi,\sigma} \text{ and } f_{2,k,\sigma} \text{ and } f_{2,k+\pi,\sigma}
\]

are fermion creation and annihilation operators near the point \((\pi, \pi) \) \((\pi, \pi)\).

Rotating the operators

\[
\begin{pmatrix}
 f_{\vec{k}} &=& \frac{1}{\sqrt{2}} \left(f_{a,\vec{k}} + f_{b,\vec{k}} \right) \\
 f_{\vec{k}+\pi} &=& \frac{1}{\sqrt{2}} \left(f_{a,\vec{k}} - f_{b,\vec{k}} \right)
\end{pmatrix}
\]

leads to

\[
H = \sum_{\vec{k} \in SBZ} \sum_\sigma \psi_{\vec{k}\sigma}^\dagger \left[-\mu \mathbb{I} + \tilde{\Delta} \kappa_+ \left(\tau_1 0 \tau_2 \right) - \tilde{\Delta} \kappa_- \left(\tau_2 0 \tau_3 \right) \right] \psi_{\vec{k}\sigma}
\]

where \(\kappa_+ = k_x + k_y \) and \(\kappa_- = k_x - k_y \), \(\tilde{\Delta} = 2\Delta \cos \frac{x}{2} \), and

\[
\psi_{\vec{k}\sigma} = \begin{pmatrix}
 f_{1a,\vec{k}\sigma} \\
 f_{1b,\vec{k}\sigma} \\
 f_{2a,\vec{k}\sigma} \\
 f_{2b,\vec{k}\sigma}
\end{pmatrix}
\]
In the Euclidean metric the action reads

\[
S_E = \int_0^\beta d\tau \sum_{\mathbf{k} \in \text{SBZ}} \sum_{\sigma} \psi_{-\mathbf{k}\sigma}^\dagger \begin{pmatrix} \tau_3 & 0 & 0 \\ 0 & \tau_1 & 0 \\ 0 & 0 & \tau_2 \end{pmatrix} \begin{pmatrix} \partial_\tau - \mu \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \tau_3 & 0 & 0 \\ 0 & \tau_1 & 0 \\ 0 & 0 & \tau_2 \end{pmatrix} \psi_{-\mathbf{k}\sigma} + i \Delta k_+ \begin{pmatrix} \tau_2 & 0 & 0 \\ 0 & \tau_1 & 0 \\ 0 & 0 & \tau_2 \end{pmatrix} \psi_{+\mathbf{k}\sigma}
\]

Through the unitary transformation

\[
\psi_{-\mathbf{k}\sigma} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{i\frac{\pi}{2} \tau_3} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \psi_{-\mathbf{k}\sigma}
\]

and writing \(k_+ = k_2 \) and \(k_- = k_1 \)

\[
S_E = \int_0^\beta d\tau \sum_{\mathbf{k} \in \text{SBZ}} \sum_{\sigma} \bar{\psi}_{\mathbf{k}\sigma} \begin{pmatrix} \gamma^0 (\partial_\tau - \mu) + \Delta i k_1 \gamma^1 + \Delta i k_2 \gamma^2 \end{pmatrix} \psi_{\mathbf{k}\sigma}
\]

where \(\bar{\psi} = \psi^\dagger \gamma^0 \) and the gamma matrices are defined as

\[
\gamma^0 = \begin{pmatrix} \tau_3 & 0 & 0 \\ 0 & \tau_1 & 0 \\ 0 & 0 & \tau_2 \end{pmatrix}, \quad \gamma^1 = \begin{pmatrix} \tau_3 & 0 & 0 \\ 0 & -\tau_1 & 0 \\ 0 & 0 & -\tau_2 \end{pmatrix}, \quad \gamma^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \tau_3 & 0 \\ 0 & 0 & -\tau_3 \end{pmatrix}
\]

Using the inverse Fourier transform \(\psi_{\mathbf{k}\sigma} = \int d^2 \vec{r} \bar{\psi}_{\mathbf{k}\sigma} e^{i \vec{k} \cdot \vec{r}} \) the Euclidean action finally reads

\[
S_E = \int_0^\beta d\tau \int d^2 \vec{r} \sum_{\sigma} \bar{\psi}_{\mathbf{r}\sigma} \begin{pmatrix} \gamma^0 (\partial_\tau - \mu) + \Delta i k \delta \end{pmatrix} \psi_{\mathbf{r}\sigma}
\]

With a "light velocity" \(v_\mu = (1, \vec{0}, \vec{\Delta}, \vec{0}) \). The covariant derivative which takes \(v_\mu \) into account [11] reads

\[
D_\mu = \partial_\mu + \frac{1}{8} \omega_{\alpha \beta} \begin{pmatrix} \gamma^\alpha, \gamma^\beta \end{pmatrix}
\]

where \(\omega_{\alpha \beta} = e^\nu_{\alpha} (\partial_\nu e^\rho_{\beta} - \Gamma^\rho_{\alpha \beta} e^\nu_{\rho}) \), \(e^\nu_{\alpha} \) are the vierbein [29] for which the metric is defined as \(g^\mu_{\nu} = \eta^{\eta \eta} e^\eta_{\mu} e^\eta_{\nu} = e^\rho_{\mu} \delta^\rho_{\nu} \) with \(\eta_{00} = -1, \eta_{11} = \delta^2 \) and \(\Gamma^\rho_{\alpha \beta} \) is the Christoffel symbols. Since \(\Delta \) is constant we see clearly that the vierbein are also constant, \(\omega_{\alpha \beta} = 0 \) in a dilated flat space-time with the Euclidean metric \(g_{\mu \nu} = v_\mu \partial_{\nu} \).

APPENDIX B: DERIVATION OF THE PHOTON POLARISATION FUNCTION AT FINITE TEMPERATURE

The Fourier transformation of the spinon action given by Eq. [11] reads

\[
S_E[\psi] = \sum_{\sigma} \int \frac{d^2 \mathbf{k}_1}{(2\pi)^2} \int \frac{d^2 \mathbf{k}_2}{(2\pi)^2} \bar{\psi}_{\mathbf{k}_1}(1) \begin{pmatrix} i\gamma^\mu k_1^{-2} \delta(k_1 - k_2) - ig^\mu_a k_1^{-2} \delta(k_1 - k_2) \end{pmatrix} \psi_{\mathbf{k}_2}(2)
\]

with \(k = (\vec{\omega}_F \equiv 2\pi/(n + 1/4), \vec{k}) \). Integrating over the fermion field \(\psi \) and keeping the second order in the gauge field leads to the effective gauge action

\[
S_{\text{eff}}[a] = \frac{1}{2} Tr [G_F \cdot i g^\mu_a a^\mu]
\]

with \(Tr = \sum_{\omega} \int \frac{d^2 \mathbf{k}_2}{(2\pi)^2} \int \frac{d^2 \mathbf{k}_1}{(2\pi)^2} Tr \). The trace \(Tr \) extends over the \(\gamma \) matrix space, and \(G_F^{-1}(k_1 - k_2) = i g^\mu_a k_1^{-2} \delta(k_1 - k_2) \). The pure gauge action comes as

\[
S_{\text{eff}}[a] = -g^2 \frac{1}{2\beta} \sum_{\omega} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \bar{\eta}_\mu(-q) \Pi^{\mu\nu}(q) a^\nu(q)
\]

With the change of variables \(k_1 - k'' = q \) and \(k_1 = k \)

\[
S_{\text{eff}} = -g^2 \frac{1}{2\beta} \sum_{\omega} \int \frac{d^2 q}{(2\pi)^2} \bar{\eta}_\mu(-q) \Pi^{\mu\nu}(q) a^\nu(q)
\]

where \(q = (\omega_B = 2\pi / m, q) \) and the polarisation function is given by

\[
\Pi^{\mu\nu}(q) = \frac{g^2}{\beta} \sum_{\omega} \sum_{\mathbf{k}} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} Tr \begin{pmatrix} \gamma^\rho k_\rho \gamma^\mu, \gamma^\eta (k_\eta + q_\eta) \end{pmatrix} \gamma^\nu
\]

Then using the Feynmann identity \(\frac{1}{\omega_{\alpha \beta}} = \int_0^1 dx \frac{1}{(a x (1 - x) b)} \). \(\Pi^{\mu\nu} \) can be rewritten as

\[
\Pi^{\mu\nu}(q) = \frac{g^2}{\beta} \sum_{\omega} \sum_{\mathbf{k}} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} Tr \begin{pmatrix} \gamma^\rho k_\rho \gamma^\mu, \gamma^\eta \end{pmatrix} \gamma^\nu.
\]

By means of a change of variables \(k \to k' = q x \) and using the identity \(Tr \begin{pmatrix} \gamma^\rho \gamma^\mu, \gamma^\eta \end{pmatrix} = 4 \begin{pmatrix} \delta_{\rho \mu} \eta_{\gamma \nu} - \delta_{\rho \mu} \eta_{\gamma \nu} + \delta_{\rho \mu} \eta_{\gamma \nu} \end{pmatrix} \) one obtains
\[\Pi^{\mu\nu}(q) = 4\alpha \int_0^1 dx \frac{1}{\omega_{\nu}} \sum_{\nu'} \int \frac{d^2k'}{(2\pi)^2} \left\{ 2k'_{\mu}k'_{\nu} + (1 - 2x)(k'_{\mu}q_\nu + q_{\mu}k'_{\nu}) - \delta_{\mu\nu} \sum_{\eta} (k'_{\eta}^2 + (1 - 2x)k'_{\eta}q_{\eta} - x(1 - x)q_{\eta}^2) \right\} / \left[k' + x(1 - x)q_\nu \right]^2 \]

where \(\alpha = g^2 \sum_{\sigma = 1}^{N = 2} \). Following Dorey and Mavromatos [12], Lee [13], Aitchison et al. [14] and Gradsteyn [15] we define

\[S_1 = \sum_{n=-\infty}^{\infty} \frac{1}{k^2 + x(1 - x)q^2} = \frac{\beta^2}{4\pi Y} \frac{\sinh(2\pi Y)}{\cosh(2\pi Y) - \cos(2\pi X)} \]

\[S_2 = \sum_{n=-\infty}^{\infty} \frac{1}{k^2 + x(1 - x)q^2} = \frac{\beta^2}{8\pi^2 Y} \frac{\partial S_1}{\partial Y} \]

\[S^* = \sum_{n=-\infty}^{\infty} \frac{\omega'}{k^2 + x(1 - x)q^2} = -\frac{\beta}{4\pi} \frac{\partial S_1}{\partial X} \]

with \(X = x.m + 1/4 \) and \(Y = \frac{\beta}{4\pi} \sqrt{k^2 + x(1 - x)q^2} \). The polarisation can be expressed in terms of these sums and reads

\[\Pi^{00} = \frac{\alpha}{\beta} \int_0^1 dx \int \frac{d^2k^2}{(2\pi)^2} \left[S_1 - 2 \left[k^2 + x(1 - x)q^0 \right] S_2 + (1 - 2x)q_0 S^* \right] \]

for the temporal component and

\[\Pi^{ij} = \frac{\alpha}{\beta} \int_0^1 dx \int \frac{d^2k^2}{(2\pi)^2} \left[2x(1 - x)(q^2\delta_{ij} - q_iq_j)S_2 - (1 - 2x)q_0\delta_{ij}S^* \right] \]

for the spatial components.

Integrating over the fermion momentum \(k' \) one gets

\[\Pi^{00} = \tilde{\Pi}_3 - \frac{q_0^2}{q^2} \tilde{\Pi}_1 - \tilde{\Pi}_2 \]

\[\Pi^{ij} = \tilde{\Pi}_1 \left(\delta_{ij} - \frac{q_iq_j}{q^2} \right) + \tilde{\Pi}_2 \delta_{ij} \]

where

\[\tilde{\Pi}_1 = \frac{\alpha q}{\pi} \int_0^1 dx \sqrt{x(1 - x)\sinh(2\pi\sqrt{x(1 - x)}} \]

\[\frac{\sinh(2\pi\sqrt{x(1 - x)}}{D(X,Y)} \]

\[\tilde{\Pi}_2 = \frac{\alpha m}{\beta} \int_0^1 dx \left(1 - 2x \right) \cos 2\pi xm \]

\[\frac{D(X,Y)}{D(X,Y)} \]

\[\tilde{\Pi}_3 = \frac{\alpha}{\pi} \int_0^1 dx \log 2D(X,Y) \]

and \(D(X,Y) = \cosh \left(\beta q \sqrt{x(1 - x)} \right) + \sin(2\pi xm) \).
J. B 22, 53 (2001)
[28] C. Itsykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1986
[29] P. Ramond, Field Theory : A Modern Primer, Addison-Wesley, 1989

[30] J. Brad Marston, Phys. Rev. Lett. 61, 1914 (1988)
[31] G. V. Dunne, [hep-th/9902115](1999)
[32] A. M. Polyakov, Nucl. Phys. 120, 429 (1977); "Gauge Fields and Strings", Harwood Academic Publishers