Bioinformatics analysis of gene expression profiling for identification of potential key genes among ischemic stroke

Kaihua Zhai, MMa, Xiangli Kong, MMb, Boyu Liu, MDb, Jiyu Lou, MDa,∗

Abstract
This study aimed to identify the key differentially expressed genes (DEGs) following ischemic stroke (IS).

The GSE22255 microarray dataset, which contains samples from peripheral blood mononuclear cells of 20 IS patients and 20 sex- and age-matched controls, was downloaded from the Gene Expression Omnibus. After data pre-processing, DEGs were identified using the Linear Models for Microarray Data package in R. The Search Tool for the Retrieval of Interacting Genes database was used to predict the interactions among the products of DEGs, and then Cytoscape software was used to visualize the protein–protein interaction (PPI) network. DEGs in the PPI network were then analyzed using the Database for Annotation, Visualization, and Integrated Discovery online software to predict their underlying functions through functional and pathway enrichment analyses.

A total of 144 DEGs were identified in IS samples compared with control samples, including 75 upregulated and 69 downregulated genes. Genes with higher degrees in the PPI network included FOS (degree = 26), TP53 (degree = 22), JUN (degree = 20), EGR1 (degree = 18), JUNB (degree = 16), and ATF3 (degree = 15), and these genes may function in IS by interacting with each other (e.g., EGR1-JUN, EGR1-TP53, ATF3-FOS, and JUNB-FOS). Functional enrichment analysis indicated that the downregulated TP53 gene was enriched in immune response and protein targeting categories.

ATF3 and EGR1 may have an important protective effect on IS, whereas FOS, JUN, and JUNB may be associated with the development of IS. In addition, TP53 may function as an indicator of poor prognosis for IS through its association with the immune response and protein targeting.

Abbreviations: (IL-1β) interleukin-1β, APC = activated protein C, ATF3 = activating transcription factor 3, BCL2 = B-cell leukemia/lymphoma 2, BDNF = brain-derived neurotrophic factor, COX-2 = cyclooxygenase-2, CREB = responsive element-binding, CTMP = carboxyl-terminal modulator protein, DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, EGR1 = early growth response protein 1, GEO = Gene Expression Omnibus, HSP70 = heat shock protein 70, IS = ischemic stroke, JNK = Jun N-terminal kinase, KEGG = Kyoto Encyclopedia of Genes and Genomes, MCA = middle cerebral artery, mTOR = mechanistic target of rapamycin, NCBI = National Center of Biotechnology Information, NF-κB = nuclear factor-kappa B, OGD = oxygen and glucose deprivation, PBMCs = peripheral blood mononuclear cells, PPI = protein–protein interaction, STRING = Search Tool for the Retrieval of Interacting Genes, ZFHX3 = Zinc Finger Homeobox 3.

Keywords: differentially expressed genes, enrichment analysis, ischemic stroke, protein–protein interaction network
and suppression of apoptosis through the activation of the Akt–B-cell leukemia/lymphoma 2 (BCL2) signaling pathway and inhibition of oxidative stress.\cite{10} The 511C/T interleukin-1β (IL-1β) polymorphism plays roles in IS and myocardial infarction among young individuals and in the inflammatory response of mononuclear cells.\cite{10} The rs7193343-T sequence variant of the Zinc Finger Homeobox 3 (ZFXH3) gene on chromosome 16q22 is related to IS and cardioembolic stroke in an integrated analysis of 5 sets of stroke samples.\cite{11} However, despite all of this research, the mechanism underlying IS remains unclear.

Atherosclerosis of the thoracic aorta is an independent risk factor for IS, and peripheral blood mononuclear cells (PBMCs) are of significance because blood-borne white blood cells, first polymorphonuclear cells and then mononuclear cells (i.e., PBMCs), respond to IS. Mononuclear cells can selectively migrate and infiltrate into ischemic brain tissue and then adhere to vascular endothelial cells, which is a main event in the development of atherosclerosis.\cite{12,13} In addition, this early cellular inflammation and its consequences may evolve into cerebral infarct and reperfusion injury. In addition, the tail and damage DNA in the PBMCs of IS patients was significantly higher than that in those of convalescent patients.\cite{14} Thus, PBMCs are frequently chosen to detect differentially expressed genes (DEGs) for the prediction of gene changes related to IS.

In 2012, Krug et al\cite{15} performed microarray analysis in PBMCs from 20 IS patients and 20 matched controls and identified 580 DEGs. However, the interactions among gene products and the potential functions of these genes were not analyzed. In our study, the microarray data deposited by Krug et al\cite{15} were studied to further screen DEGs and analyze the protein–protein interaction (PPI) network of their products. Moreover, functions of DEGs in the PPI network were predicted by functional and pathway enrichment analyses. This study may provide new insights into therapeutic targets for IS.

2. Methods

2.1. Microarray data

The gene expression microarray data (GSE22255) deposited by Krug et al\cite{15} were downloaded from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), which was based on the platform of the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. GSE22255 included data on PBMCs from 20 IS patients (10 females and 10 males, mean age at examination, 60.2 ± 10.6 years) and 20 sex- and age-matched controls (10 females and 10 males, mean age at examination, 58.7 ± 11.0 years). All of the participants were adult Caucasians, and IS patients had only 1 stroke episode at least 6 months before blood collection. The controls did not have a family history of stroke. Individuals with active allergies or severe anemia were also excluded. The research by Krug et al\cite{15} was approved by the ethics committees of the participating institutions, and all subjects provided informed consent.

2.2. Data pre-processing and DEG screening

After the raw data were downloaded, the Affy package\cite{16} in Bioconductor was used for data pre-processing. Pre-processing included background correction, quantile normalization, and probe ID to gene symbol transformation. Probes were mapped to NCBI entrez genes using Gene ID converter.\cite{17} If there were multiple probes that corresponded to the same gene, their average value was taken as the final gene expression level. Then, the Linear Models for Microarray Data (limma) package in R was used to identify DEGs between IS and control samples. The cut-off criteria for DEGs were defined as a $P < .05$ and a log fold change (FC) > .3 because a $P < .05$ is commonly used for screening DEGs\cite{18,19} and the $\log_{10} FC > .3$ combined $P < .05$ was used to control the number of DEGs within a manageable but useful range, not too many or too few.

2.3. Construction of the PPI network

The Search Tool for the Retrieval of Interacting Genes (STRING)\cite{20}, a database that facilitates searching of both functional and physical interactions of proteins, was used to predict the interactions among the products of DEGs, with the default threshold of the combined score > .4 in STRING. Cytoscape software (http://www.cytoscape.org/), a standard tool for integrated analysis and visualization of biological networks, such as molecular interaction networks and biological pathways, with computer-based assistance, was used to visualize the PPI network.\cite{21} Cytoscape Core are available for layout, scripting, file formatting, and linking the network to databases with functional annotations.\cite{21} In addition, nodes and edges in the figures were used to represent large biological data in an easily interpretable manner. Nodes represent biological molecules and edges connect the nodes to indicate their relationship.\cite{22} The pivotal nodes in the PPI network were identified based on their connectivity degrees.

2.4. Functional and pathway enrichment analyses

GO analysis is dedicated to the functional study of large-scale transcriptomic or genomic data.\cite{23} The Kyoto Encyclopedia of Genes and Genomes (KEGG) database provides information on function of molecules or genes.\cite{24} The genes with their products included in the PPI network were subjected to the Database for Annotation, Visualization, and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov)\cite{25} algorithm to find significantly related biological processes and KEGG pathways. The thresholds were set at a $P < .05$ and an enriched gene count > .2.\cite{26}

3. Results

3.1. Identification of DEGs

After pre-processing, a total of 144 DEGs were identified in IS samples compared with control samples, including 75 upregulated genes [e.g., FOS, JUN, JUNB, early growth response protein 1 (EGR1), and activating transcription factor 3 (ATF3)] and 69 downregulated genes [e.g., tumor-suppressor protein p53 (TP53)].

3.2. PPI network analysis

The PPI network for DEGs is shown in Fig. 1, which has 59 nodes and 212 interactions. The top 20 nodes with higher degrees are listed in Table 1, including FOS (degree = 26), TP53 (degree = 22), JUN (degree = 20), EGR1 (degree = 18), JUNB (degree = 16), and ATF3 (degree = 15). In particular, EGR1, JUNB, and ATF3 could interact with each other and also had interactions with other proteins (e.g., EGR1-JUN, EGR1-FOS, EGR1-TP53, ATF3-FOS, ATF3-JUN, JUNB-JUN, and JUNB-FOS).
3.3. Enrichment analysis for DEGs in the PPI network

DEGs in the PPI network were further subjected to DAVID software analysis to find significant biological processes and KEGG pathways. Functional enrichment analysis revealed that the upregulated genes were significantly enriched in response to the organic substance category ($P = 1.86 \times 10^{-8}$, which involved \textit{EGR1}, \textit{FOS}, \textit{JUN}, and \textit{JUNB}), apoptosis ($P = 2.54 \times 10^{-8}$, which involved \textit{JUN}), and programmed cell death ($P = 2.99 \times 10^{-8}$, which involved \textit{JUN}) (Table 2). Moreover, these genes were mainly involved in the MAPK signaling pathway ($P = 3.01 \times 10^{-4}$, which involved \textit{FOS} and \textit{JUN}), T cell receptor signaling pathway ($P = 5.83 \times 10^{-4}$, which involved \textit{FOS} and \textit{JUN}), and cancer pathways ($P = 3.04 \times 10^{-2}$, which involved \textit{FOS} and \textit{JUN}) (Table 3).

Furthermore, the downregulated genes were involved in immune responses ($P = 5.80 \times 10^{-5}$, which involved \textit{TP53}), protein targeting ($P = 1.56 \times 10^{-3}$, which involved \textit{TP53}) and mitochondrial depolarization regulation ($P = 7.74 \times 10^{-3}$) (Table 2). However, no pathway was significantly enriched for the downregulated genes.

4. Discussion

In this study, a total of 144 DEGs were identified in IS samples compared with control samples, including 75 upregulated genes and 69 downregulated genes. \textit{FOS} (degree = 26), \textit{TP53} (degree = 22), \textit{JUN} (degree = 20), \textit{EGR1} (degree = 18), \textit{JUNB} (degree = 16), and \textit{ATF3} (degree = 15) had higher degrees in the PPI network of the DEGs. Importantly, \textit{EGR1}, \textit{JUNB}, and \textit{ATF3} could interact with each other and also had interaction with other proteins (e.g., \textit{EGR1-JUN}, \textit{EGR1-FOS}, \textit{EGR1-TP53}, \textit{ATF3-FOS}, \textit{ATF3-JUN}, \textit{JUNB-JUN}, and \textit{JUNB-FOS}). Thus, these genes might function in IS through such interactions.

Moonlighting proteins are a subset of multifunctional proteins that have 2 or more different functions performed by 1 polypeptide chain.\cite{27} Our predicted hub genes in the PPI network such as \textit{ATF3}, \textit{FOS}, and \textit{JUN} are reported to be moonlighting proteins in the Moonprot database\cite{28} and may be related to IS by regulating a variety of multifunctional mechanisms. \textit{ATF3} encodes a member of the activation transcription factor/adenosine 3’, 5’-monophosphate (cAMP) responsive element-binding (CREB) protein family.\cite{29} Because it exists in different isoforms and has many transcription factor binding sites, such as activation protein 1 (AP-1) and nuclear factor-kappa B (NF-κB), \textit{ATF3} plays a crucial role in cellular stress responses, wound healing, cell adhesion, oncogenesis, and multiple signal transduction pathways.\cite{30} Recently, \textit{ATF3} is found to be significantly overexpressed in brain ischemia. Its knockdown worsens the brain injury and inflammatory responses through activating the NF-κB signaling pathway, indicating that \textit{ATF3} may serve as a key protective regulator in ischemic injury.\cite{31} \textit{ATF3} inhibits carboxyl-terminal modulator protein (\textit{CTMP}) expression through binding to the ATF/cAMP/
CREB site and CTMP siRNA treatment maintains ATF3 levels. Furthermore, the ATF3 to CTMP signaling cascade may be endogenously neuroprotective and assist in repair of ischemic brain injury.\cite{32} ATF3 affects the pathways of caspase-dependent neuronal apoptotic signal transduction that are induced by reperfusion injury and focal cerebral ischemia.\cite{33,34} ATF3 expression and synaptic activity promote resistance of hippocampal neurons to loss of synapses and acute dendrotoxicity, which contributes to functional restoration of neuronal networks after excitotoxic insults.\cite{35} Therefore, ATF3 may have an important protective effect in IS.

FOS (including c-Fos, FosB, Fra1, and Fra2) and JUN (including c-Jun, JunB, and JunD), members of the AP-1 family, can dimerize in various combinations via a leucine zipper region.\cite{36} They have multiple biochemical functions, including cell proliferation, transformation, and apoptosis,\cite{37} as well as responding to DNA damage.\cite{38} Pathway enrichment suggested that the upregulated FOS and JUN were enriched in the MAPK signaling pathway, the T cell receptor signaling pathway, and cancer pathways. It has been demonstrated that the MAPK-c-Jun N-terminal kinase (JNK) signaling pathway is involved in cellular proliferation, transformation, and apoptosis\cite{39}, as well as inflammation and synaptic activity promote resistance of hippocampal neurons to loss of synapses and acute dendrotoxicity, which contributes to functional restoration of neuronal networks after excitotoxic insults.\cite{40,41} Therefore, ATF3 may have an important protective effect in IS.

Table 1
The top 20 gene products with higher degrees in the protein–protein interaction network for the differentially expressed genes (DEGs).

Gene	Degree	Gene	Degree	Gene	Degree	Gene	Degree
FOS	26	TNF	16	ATF3	15	CYCL2	12
TP53	22	TNFAP3	16	DUSP1	15	B2G2	11
JUN	20	NFkBIA	16	IL1B	14	JER2	11
EGR1	18	JUNB	16	CDKN1A	14	GADD45B	11
PTGS2	17	PPP1R15A	15	ZFP36	13	CXCR4	10

Table 2
The top 10 biological processes for both upregulated differentially expressed genes (DEGs) and downregulated DEGs in the protein–protein interaction (PPI) network.

DEGs	Term	Count	Gene symbol	P
Upregulated genes	G0:0010033 Response to organic substance	14	EGR1, BCL10, TNF, PTGS2, KLF10, NFkBIA, JUNB, FOS, CDKN1A, B2G2, DUSP1, JUN, IL1B, PPP1R15A	1.86E-08
	G0:0006915 Apoptosis	13	BCL10, TNF, NFkBIA, AHR, DIT14, OSM, CXCR4, JUN, IL1B, GADD45B, TNFAP3, PPP1R15A, SRGN	2.54E-08
	G0:0012501 Programmed cell death	13	BCL10, TNF, NFkBIA, AHR, DIT14, OSM, CXCR4, JUN, IL1B, GADD45B, TNFAP3, PPP1R15A, SRGN	2.99E-08
	G0:0051384 Response to glucocorticoid stimulus	7	FOS, CDKN1A, TNF, PTGS2, DUSP1, IL1B, JUNB	5.13E-08
	G0:0031960 Response to corticosteroid stimulus	7	FOS, CDKN1A, TNF, PTGS2, DUSP1, IL1B, JUNB	8.62E-08
	G0:0008219 Cell death	13	BCL10, TNF, NFkBIA, AHR, DIT14, OSM, CXCR4, JUN, IL1B, GADD45B, TNFAP3, PPP1R15A, SRGN	1.78E-07
	G0:0016265 Death	13	BCL10, TNF, NFkBIA, AHR, DIT14, OSM, CXCR4, JUN, IL1B, GADD45B, TNFAP3, PPP1R15A, SRGN	1.92E-07
	G0:0009617 Response to bacterium	8	BCL10, FOS, TNF, PTGS2, JUN, NFkBIA, IL1B, CTSG	6.35E-07
	G0:0014070 Response to organic cyclic substance	7	FOS, CDKN1A, PTGS2, B2G2, JUN, IL1B, JUNB	7.07E-07
	G0:0051051 Negative regulation of transport	7	OSM, TNF, PTGS2, NFkBIA, IL1B, M01, SRGN	1.35E-06
Downregulated genes	G0:0006955 Immune response	7	LILRA4, IL1, TP53, TNFRSF17, CLEC4C, OAS1, IFN	5.80E-05
	G0:0006605 Protein targeting	4	RTP4, TP53, BES3, YWHA	1.56E-03
	G0:0006886 Intracellular protein transport	4	RTP4, TP53, BES3, YWHA	7.45E-03
	G0:0051900 Regulation of mitochondrial depolarization	2	P2RX7, IFN	7E-03
	G0:0002110 T cell activation	3	CD48, P2RX7, TP53	8.35E-03
	G0:0034613 Cellular protein localization	4	RTP4, TP53, BES3, YWHA	9.65E-03
	G0:0070727 Cellular macromolecule localization	4	RTP4, TP53, BES3, YWHA	9.84E-03
	G0:0070070 Mitochondrion organization	3	P2RX7, TP53, IFN	9.94E-03
	G0:0043981 Regulation of apoptosis	5	P2RX7, TP53, IFN, YWHA, IFN	9.98E-03
	G0:0043087 Regulation of programmed cell death	5	P2RX7, TP53, IFN, YWHA, IFN	1.03E-02
regulator in IS through its induction in response to organic substances. Functional enrichment analysis indicated that downregulated TP53 was enriched in the immune response and protein targeting categories. The Arg/Arg genotype of TP53 and protein targeting categories. The Arg/Arg genotype of TP53 with the above criteria, we only identified a value is needed to screen for highly significant DEGs, a stricter threshold being identified in IS samples compared with control samples. In conclusion, through bioinformatics analysis, a total of 144 DEGs were identified in IS samples compared with control samples.

Table 3
The pathways involved in the upregulated genes in the protein–protein interaction (PPI) network.

DEGs	Term	Name	Count	Gene symbol	P
Upregulated genes	NOD-like receptor signaling pathway	TNF, CXCL2, NFKBIA, IL1B, TNFAIP3	5	6.77E-05	
	MAPK signaling pathway	FOS, TNF, DUSP2, DUSP1, JUN, IL1B, GADD45B	7	3.01E-04	
	Toll-like receptor signaling pathway	FOS, TNF, JUN, NFKBIA, IL1B	5	4.52E-04	
	Cytokine–cytokine receptor interaction	BCL10, FOS, TNF, JUN, NFKBIA	3	5.83E-04	
	B cell receptor signaling pathway	BCL2L1, FOS, TNF, JUN, NFKBIA	4	2.52E-03	
Pathways in cancer	Pathways in cancer	FOS, CDKN1A, PTGS2, JUN, NFKBIA	4	3.04E-02	
Chemokine signaling pathway	Chemokine signaling pathway	CXCL5, CXCR4, CXCL2, IL1B	3	4.10E-02	

References
[1] Dorrance AM, Greg F. Effects of stroke on the autonomic nervous system. Compr Physiol 2015;5:1241–63.
[2] Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet 2008;371:1612–23.
[3] Shah AS, Lee KK, McAllister DA, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015;350:h1295.
[4] Kernich CA. Living with stroke: A guide for families. Neurology 1994;44:1991–2001.
[5] Nowinski WL, Qian G, Prakash KB, et al. Stroke suite: CAD systems for acute ischemic stroke, hemorrhagic stroke, and stroke in ER. Medical Imaging and Informatics. 2008;Springer, Berlin, Heidelberg:4987:377–86.
[6] Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385:117–71.
[7] Shi G, OuYang Y, Shi J, et al. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun 2011;404:941–5.
[8] Liu C, Wu J, Xu K, et al. Neuroprotection by baicalicin in ischemic brain injury involves PTEN/AKT pathway. J Neurochem 2010;112:1500–12.
[9] Xia C-F, Yin H, Borlongan CV, et al. Kallikrein gene transfer protects against ischemic stroke by promoting gial cell migration and inhibiting apoptosis. Hum Genet 2013;134:117–77.
[10] Iacovelli L, Di Castelnuovo A, Gattone M, et al. Polymorphisms of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler Thromb Vasc Biol 2005;25:222–7.
[11] Guðbjarnarson DF, Holm H, Grettarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 2009;41:876–8.
[12] Kocanek PM, Hallenbeck JM, Kocanek PM, et al. Polymorphonuclear leukocytes and monocyte/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 1992;23:1367–79.
[13] del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Stroke Res 2000;98:73–81.
[14] Shi ZH. DNA damage and repair of mononuclear cells in the peripheral blood of patients with ischemic stroke. J Lanzhou Univ 2006;32:12–6.
[15] Krug T, Gabriel JP, Taipa R, et al. TTC7B emerges as a novel risk factor for ischemic stroke. J Cereb Blood Flow Metab 2012;32:1061–2.
[16] Irazary RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–64.
[17] Alibes A, Yankilevich P, Canada A, et al. ID converter and IDC light: conversion and annotation of gene and protein IDs. BMC Bioinform 2007;8:9.
[18] Gerring ZF, Powell JE, Montgomery GW, et al. Genome-wide analysis of leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 1992;23:1367–79.
[19] del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Stroke Res 2000;98:73–81.
[20] Shi ZH. DNA damage and repair of mononuclear cells in the peripheral blood of patients with ischemic stroke. J Lanzhou Univ 2006;32:12–6.
[21] Krug T, Gabriel JP, Taipa R, et al. TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches. J Cereb Blood Flow Metab 2012;32:1061–72.
[22] Irazary RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–64.
[23] Alibes A, Yankilevich P, Canada A, et al. ID converter and IDC light: conversion and annotation of gene and protein IDs. BMC Bioinform 2007;8:9.
[23] Hulsegge I, Kommadath A, Smits MA. Globaltest and GOEAST: Two different approaches for gene ontology analysis. BMC Proc 2009;3(S4): S10.

[24] Kaneshia M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30.

[25] Dennis GJr, Sherman BT, Hosack DA, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:43.

[26] Dua P, Jeong SH, Lee SE, et al. Evaluation of toxicity and gene expression changes triggered by quantum dots. Bull Korean Chem Soc 2010;31: 1555–60.

[27] Jeffery CJ. Moonlighting proteins. Genome Biol 2010;11:1–1.

[28] Mani M, Chen C, Amblee V, et al. MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res 2015;43:277–82.

[29] Liang G, Wolfgang CD, Chen BP, et al. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 1996;271: 1695–701.

[30] Limin MA. The member of transcriptional factor ATF3/CERB:ATF3. J Med Mol Biol 2007;4:147–9.

[31] Wang L, Deng S, Lu Y, et al. Increased in inflammation and brain injury after transient focal cerebral ischemia in activating transcription factor 3 knockout mice. Neuroscience 2012;220:100–8.

[32] Huang C-Y, Chen J-J, Wu J-S, et al. Novel link of anti-apoptotic ATF3 with pro-apoptotic CTMP in the ischemic brain. Mol Neurobiol 2015;53:54–57.

[33] Song D-Y, Oh K-M, Yu H-N, et al. Role of activating transcription factor 3 in ischemic penumbra region following transient middle cerebral artery occlusion and reperfusion injury. Neurosci Res 2011;70:428–34.

[34] Ahlgren H, Bas-Orth C, Freitag HE, et al. The nuclear calcium signaling target, activating transcription factor 3 (ATF3), protects against dendrotoxicity and facilitates the recovery of synaptic transmission after an excitotoxic insult. J Biol Chem 2014;289:9970–82.

[35] Barnes PJ. Transcription factors in airway diseases. Lab Invest 2006;86:867–72.

[36] Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072: 129.

[37] Bi BL, Wang HJ, Bian H, et al. Identification of therapeutic targets of ischemic stroke with DNA microarray. Eur Rev Med Pharmacol Sci 2015;19:4012–9.

[38] Wang J, Tr VDW, Bonny C, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 2003;23: 8596–607.