Teaching case 2-2019: Macrophagic scavenging of Aβ

Ellen Gelpi¹,², Sigrid Klotz¹, Alexandra Lang¹, Elisabeth Stögmann³, and Gabor G. Kovacs¹

¹Institute of Neurology, Medical University of Vienna, Vienna, Austria, ²Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain, and ³Department of Neurology, Medical University of Vienna, Vienna, Austria

Key words
Aβ peptides – intracellular – scavenging – macrophages – microglia – astrocytes

The extracellular accumulation of Aβ peptides (generated by enzymatic cleavage of the amyloid precursor protein by β- and γ-secretases) in form of dense amyloid plaques in the brain is considered one of the histological hallmarks of sporadic and genetic Alzheimer’s disease (AD) as well as of Down syndrome. These deposits disrupt the surrounding neuronal processes in the grey matter neuropil and generate dystrophic neurites (= neuritic plaques) and neuronal dysfunction. It is known that Aβ may have different assembly states: monomers, dimers, trimers that arrange in protofibrils and fibrils, or globulomers and unstructured oligomers into fibrils, with different physiopathological consequences, oligomers most likely with being the most toxic species [1]. Diffuse Aβ deposits are observed in the aging brain throughout the cortical and subcortical grey matter and in subpial regions, especially in areas affected by cerebral amyloid angiopathy. Whether diffuse deposits progressively condensate and eventually evolve into cored or dense plaques is a matter of debate [2]. Moreover, the presence of intracellular Aβ peptides has been widely discussed, especially whether its detection depends on technical issues (e.g., tissue pretreatment and fixation strategies) [3, 4] and whether it represents a physiological or pathological state. But it is increasingly suggested, especially from animal models, that intracellular Aβ accumulation may represent an early phenomenon in the pathogenic cascade of AD [5, 6, 7, 8, 9], that would lead to early neuronal and synaptic dysfunction [10].

Microglia, as part of the innate immune system of the CNS, could be considered to be one of the cellular elements responsible for environmental supervision, and as such, capable of scavenging abnormal protein aggregates including Aβ in its activated, phagocytic, and proinflammatory state. At the same time, the release of cytokines and other inflammatory mediators by microglia contributes to Aβ oligomerisation, cross-seeding and aggregation [11], and to synaptic damage. Concurrently, Aβ peptides are able to activate microglia, which in turn generates a vicious cycle between microglia and Aβ [12].

Here we show that macrophages, coming from peripheral blood, are also capable to phagocytose extracellular Aβ peptides, either diffuse, primitives, or cored plaques [13]. This can be well identified in areas affected by an ischemic infarction, as shown in Figure 1A1, A2, and A3, where macrophages are filled with Aβ peptides (Figure 1A3), suggesting their digestion and degradation. As already described before [15] we show in the lower figure panel (Figure 1B1, B2, B3) early diffuse cloudy extracellular deposits of Aβ peptides in cerebral cortex surrounding neurons and astroglial cells that accumulate Aβ within their cytoplasm (Figure 1A1) [15]. This is frequently observed in postmortem brains of elderly subjects. In contrast, while extracellular plaques condensate (Figure 1A2, A3), the intracellular Aβ component progressively disappears or gets – at least – less evident.

Wisniewski et al. [16] already observed in ultrastructural studies that Aβ peptides in macrophages are located in lysosomes, suggesting phagocytosis, while in microglia they were observed in the reticulum, suggesting production. Some studies have suggested that microglia scavenging of Aβ peptide is...
less efficient than that by macrophages [13]. However, it is unclear whether peripheral macrophages can easily infiltrate the brain in AD patients. Efficiency of microglia clearing has been experimentally increased in a pro-inflammatory state. Therefore, disrupting the vicious cycle between Aβ and microglia and enhancing immunocompetency in the CNS regulating the imbalance between protection and toxicity, might be an important therapeutic approach in AD and other Aβ-related conditions.

Funding

The authors declare no financial disclosures.

Conflict of interest

The authors declare no competing interests.

References

[1] McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999; 46: 860-866. CrossRef PubMed
[2] Cuello AC. Intracellular and extracellular Abeta, a tale of two neuropathologies. Brain Pathol. 2005; 15: 66-71. CrossRef PubMed
[3] D’Andrea MR, Reiser PA, Polkovitch DA, Gumula NA, Branchide B, Hertzog BM, Schmidtheiser D, Bełkowski S, Gastard MC, Andrade-Gordon P. The use of formic acid to embellish amyloid plaque detection in Alzheimer’s disease tissues misguides key observations. Neurosci Lett. 2003; 342: 114-118. CrossRef PubMed
[4] Aho L, Pikkurainen M, Hilunen M, Leinonen V, Alafuzoff I. Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis. 2010; 20: 1015-1028. PubMed
[5] LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007; 8: 499-509. CrossRef PubMed
[6] Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR. Intr-
neuronal Abeta42 accumulation in human brain. Am J Pathol. 2000; 156: 15-20. CrossRef PubMed

[7] Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Buyer TA. Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett. 2001; 306: 116-120. CrossRef PubMed

[8] Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry. 2000; 39: 10831-10839. CrossRef PubMed

[9] Duyckaerts C, Potter MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008; 115: 5-38. CrossRef PubMed

[10] Bayer TA, Wirths O. Intracellular accumulation of amyloid-Beta – a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci. 2010; 2: 8. PubMed

[11] Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S, Santarelli F, Kummer MP, Griep A, Gelpi E, Beilharz M, Riedel D, Golenbock DT, Geyer M, Walter J, Latz E, Heneka MT. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017; 552: 355-361. CrossRef PubMed

[12] Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014; 124: 307-321. CrossRef PubMed

[13] Lai AY, McLaurin J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012; 7: 165-176. CrossRef PubMed

[14] Wisniewski HM, Barcikowska M, Kida E. Phagocytosis of beta/A4 amyloid fibrils of the neuritic neocortical plaques. Acta Neuropathol. 1991; 81: 588-590. CrossRef PubMed

[15] Funato H, Yoshimura M, Yamazaki T, Saito TC, Ito Y, Yokosuji T, Okeda R, Ibara Y. Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am J Pathol. 1998; 152: 983-992. PubMed

[16] Wisniewski HM, Wegiel J, Wang KC, Kajava M, Lach B. Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can J Neurol Sci. 1989; 16 (Suppl): 535-542. CrossRef PubMed