Natural variation among Arabidopsis thaliana accessions in tolerance to high magnesium supply

Yaofang Niu1, Ping Chen1, Yu Zhang1, Zhongwei Wang1, Shikai Hu1, Gulei Jin2, Caixian Tang3 & Longbiao Guo1

High magnesium (Mg\(^{2+}\)) in some extreme serpentine soils or semi-arid regions is an important factor affecting crop growth and development. Specific loci that form the genetic framework underlying high Mg\(^{2+}\) homeostasis, however, are not well understood. By using GWA mapping on 388 accessions of Arabidopsis thaliana selected from a worldwide collection and genotyped at approximately 250,000 SNPs, we successfully identified 109 and 74 putative genetic regions associated in nutrient traits under normal (1,000 \(\mu\)M) and high Mg\(^{2+}\) (10,000 \(\mu\)M), respectively. Above 90% SNPs associated with nutrients including Mg\(^{2+}\) and only two SNPs shared between normal and high Mg\(^{2+}\). A single strong peak of SNPs associated with Ca concentration corresponding to candidate gene At1g60420 ARABIDOPSIS NUCLEOREDOXIN (AtNRX1) under high Mg\(^{2+}\) was further determined. Compared with wildtype, mutants of Atnrx1-1 and Atnrx1-2 supplied with high Mg\(^{2+}\) had higher Ca concentrations in the plant, and higher cytosolic Ca\(^{2+}\) concentrations during root elongation, as well as higher fresh weight and lateral-root number. This suggests that AtNRX1 was a critical gene negatively regulating Ca uptake under high Mg\(^{2+}\) conditions. The discovery could help to breed/select crops that can adapt to high-Mg\(^{2+}\) soils such as serpentine soils (high ratio of Mg\(^{2+}\):Ca\(^{2+}\)) or Mars soil with high levels of magnesium sulfate.

Magnesium (Mg) is the 8th most abundant mineral element on earth and the fourth abundant mineral element in plants following nitrogen (N), potassium (K) and calcium (Ca). Magnesium in soils originates from source rock material containing various types of silicates and carbonates. In extreme serpentine (high magnesium: calcium) soils and in semi-arid regions, where water stress conditions can lead to Mg accumulation. In addition, Mars regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems. However, analyses by the Mars Exploration Rover Landers at Meridiani Planum and Gusev Crater have also suggested there are particularly high levels of magnesium sulfate minerals in outcrops and soils.

Although plants rely on a sufficient supply of Mg\(^{2+}\) for normal growth and development, excessive Mg\(^{2+}\) accumulation often causes toxicity to plant cells. Plants grown in high-Mg\(^{2+}\) soils like serpentine or Mars soils may alleviate Mg toxicity by limiting internal Mg accumulation, Mg excretion from leaves and/or increasing plant tolerance to high Mg\(^{2+}\) concentrations via altering leaf size, sclerophylls, stature and root systems. Previous reciprocal transplant experiments between serpentine populations (or species) and their spatially adjacent populations (or sister species) growing on serpentine soils demonstrated unequivocally that adaptation to serpentine soils had a genetic basis. Several quantitative trait loci that control contrasting adaptive traits in serpentine-tolerant Microseris douglasii and serpentine-intolerant M. bigelovii have also been identified. A high degree of polymorphism has been reported among plant species in terms of growth tolerance to serpentine soils.

This present study employed genome-wide association studies (GWAS), an approach that has been applied successfully to identify many different traits ranging from genetically simple traits to more complex features, to identify candidate genes likely to be involved in adaptation to high Mg\(^{2+}\), based on 388 accessions of Arabidopsis thaliana.
The 388 accessions of Arabidopsis thaliana were grown under 2 Mg$^{2+}$ treatments, which were achieved by altering the concentration of MgSO$_4$ in the basal medium. To minimise maternal effects prior to phenotyping, natural accessions were grown for one generation during 2015 under controlled greenhouse conditions at Zhejiang University (N30°18′25″, E120°04′54″). For surface sterilisation, seeds of various accessions were placed for 1 h in open 200-μL PCR tubes in a sealed box producing chlorine gas generated from 13 mL of 10% sodium hypochlorite and 350 μL of 37% hydrochloric acid. Sterile seeds were then put on the surface of 30 mL agar media, containing 1.2% (w/v) agar and 0.6% (w/v) sucrose (A-1296; Sigma–Aldrich; http://www.sigmaaldrich.com) in 10×10-cm2 plates with grid schematic engraved below the plate. Plates were positioned in racks and oriented in a vertical position, and were kept at 4°C for 48 h in the dark for seed stratification. Thereafter, the racks containing the plates were transferred to a growth chamber under a 10-h light/14-h dark photoperiod at constant temperature of 22°C, 60% relative humidity and light intensity of 120 μmol photons m$^{-2}$ s$^{-1}$. Twelve seedlings were grown in each plate and each treatment received at least four independent replicates. The racks were removed to the image acquisition room once per day and then immediately returned to the growth chamber. Throughout the experiments, the plate position within the box and box position in the growth chamber were re-randomized daily. For assays on agar plates, studies were performed on 8-d-old plants; that is, at an early stage of their stability and homogeneity growth phase. Moreover, many previous publications adopted 6- to 8-d-old Arabidopsis seedlings under stresses for determining Arabidopsis morphology, physiology, and development as well as responses to nutrient stresses.$^{28–31}$

Mg$^{2+}$ Treatments. The basal medium (Normal Mg$^{2+}$, N), which was used as control, contained (μM) 1500 KNO$_3$, 500 NaH$_2$PO$_4$, 1000 CaCl$_2$, 250 (NH$_4$)$_2$SO$_4$, 1000 MgSO$_4$-7H$_2$O, 25 Fe–EDTA, 10 H$_2$BO$_3$, 0.5 MnSO$_4$, 0.5 ZnSO$_4$, 0.1 CuSO$_4$ and 0.1 (NH$_4$)$_6$Mo$_7$O$_24$. The normal and high Mg$^{2+}$ treatments contained 1,000, and 10,000 μM MgSO$_4$, respectively, which was in accordance with Mg$^{2+}$ concentrations in soil solutions.32 10,000 μM Mg$^{2+}$ was selected in the present study for the quantitative analysis of the natural variation of Arabidopsis in response to high Mg$^{2+}$ stress because this concentration had an adverse effect on growth without toxic symptoms of most natural accessions.27,32 Besides, the concentrations of Mg$^{2+}$ in the control were 1000 μM, that has been adopted for Arabidopsis growth by many plant biologists.$^{33–35}$ Though the concentration of SO$_4$$^{2−}$ increased 10 times comparing with that in the normal medium, SO$_4$$^{2−}$ had hardly affected morphogenesis of Arabidopsis.27,36 The pH of the growing media was adjusted to pH 5.8 with MES (N-morpholino) ethane-sulphonic acid)-KOH buffer before autoclaving.

Phenotype analysis. Each line had four biological replicates for each treatment. Seeds that had not germinated at day 6 were discarded from further analysis, resulting in approximately 3–4 seedlings analyzed per genotype per treatment. The 21 traits under each treatment were classified into 2 categories: 7 morphological traits and 14 nutrient traits. Seedlings were photographed with a high-resolution digital camera (Sony RX100, Japan) daily for determination of root and shoot growth. Root or shoot biomass, and the number of days from seeding to emergence (>50% seedlings having the first radicle or cotyledon), were recorded. Meanwhile, photographs after 8 days of treatment were analyzed for genotype using the public domain image analysis program ImageJ version 1.43 (http://rsb.info.nih.gov/ij/)27 The length of primary roots, rosette diameter and epicotyl were determined across the median seedling using ImageJ. Lateral-root number was determined by counting the number of true roots (>1 mm long lateral root primordia) per primary root. For each condition, an independent sample accession consisted of four plants at the same growth stage, and the time of sampling was the end of the light period of day 8.

Analyses of mineral homeostasis. After 8-d growth at various Mg$^{2+}$ concentrations, plants were harvested. All fully-expanded seedlings without lesions were collected, and weighed. The results were the average value across all available replicates. Seedlings were washed thoroughly with ultrapure water and dried in an oven at 75°C for 24 h. The dried root and shoot samples were then wet-digested in the concentrated HNO$_3$/H$_2$O$_2$ at 90, 120
and 140 °C for 2 h, respectively, until there was no brown fume, and then further digested at 180 °C until the digest became clear. Concentrations of potassium (K), calcium (Ca), Magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn) and sodium (Na) in the digests were analyzed by ICP-MS (Inductively coupled plasma mass spectrometer, Agilent 7500a, USA), the contents per plant were calculated. Mineral analysis was done in the whole-plant.

Fluo 4-AM loading and confocal imaging of cytosolic Ca2+ concentration in root. The Ca2+-sensitive fluorescent dye 1-[2-amino-5-(2,7-difluoro-6-hydroxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid, pentaacetylxyethyl ester (Fluo-4/AM) ester was used to estimate cytosolic Ca2+ concentration in the roots. The Fluo-4/AM ester was loaded into the root at 37 °C in the dark at a final concentration of 5 μM Fluo 4-AM dye and Pluronic F-127 (0.05%) in the Hank’s Balanced Salt Solution (HBSS) solution. After 1-h incubation, the roots were washed with the standard HBSS medium three times and left at 25 °C for 30 min. The samples were mounted and photographed with a Zeiss LSM 780 (Zeiss Co., Germany). Fluorescence was detected using 488 nm excitation and 505–545 nm band pass filter. Roots including root hairs were placed on the stage of a Zeiss Axiovert inverted microscope attached to a LSM780 laser scanning confocal microscope, and imaged using a Zeiss 20×, NA 0.74, wet objective. Each frame represents a 7-s scan of the laser.

Phylogenetic and Statistical Analyses. DNA sequences were obtained from the 1001 Genomes project (www.1001genomes.org). All statistical analyses were conducted with DPS software (Stirling Technologies Inc., China). Means were compared by the t test or the Fisher’s least significant difference test at P = 0.05.

Results

Distribution and correlation of different 21 traits under normal and high Mg2+. Distribution of 388 Arabidopsis accessions collected from the wild and available in the stock center or soon-to-be-released collections is shown in Fig. 1A. In general, high Mg2+ supply (10,000 μM) had an adverse effect on the growth of most natural accessions. This high Mg2+ concentration induced a large degree of phenotypic variation and thus was selected for the quantitative analysis of the natural variation of Arabidopsis in response to high Mg2+ stress (Fig. 1B). A subset of 388 accessions (250 K SNPs) was characterized phenotypically for multiple traits, including root emergence (RG), shoot emergence (SG), primary root length (PR), lateral root number (LR), epicotyl length (EL), rosette width (WD), fresh weight (FW) of the plants and fourteen nutrient traits, including absorption per plant and concentration of K, Ca, Mg, S, Fe, Mn and Na under normal and high Mg2+ supplies (see Table 1 and 1'Phenotype analysis’ in Materials and Methods).

Before performing the quantitative genetic analyses, we assessed the distributions of all traits based on all raw data (Supporting Information Table S1). The phenotypic analysis of the 388 accessions showed that the frequency distribution of all traits was close to normality (Fig. 1C; Table 1). Further detailed analysis showed that...
distribution of Mg-A-H (Mg$^{2+}$ absorption under high Mg$^{2+}$) and Mg-C-H (Mg$^{2+}$ concentration under high Mg$^{2+}$) showed a great right-skewed probability density with the right-skewed being greater for Mg-C-H than that for Mg-A-H, suggesting that high Mg$^{2+}$ supply increased Mg concentration of most Arabidopsis accessions at least in the early phase of development. However, only slight skewness and kurtosis was observed for S absorption and concentration (Fig. 1C). Distribution of RW, EL, PR, FW, Ca-A (Ca absorption), Ca-C (Ca concentration), Na-A (Na absorption) and Na-C (Na concentration) presented a standard normal distribution but with a sharp peak upon high Mg$^{2+}$ as compared with normal Mg$^{2+}$ (Fig. 1C), indicating that the high Mg$^{2+}$ treatment resulted
Furthermore, the initial comparison of 21 plant traits between normal and high Mg^{2+} conditions (Table 2) showed positive correlations between normal and high Mg^{2+} treatments \((r^2 = 0.53)\) (Table 2). A weak correlation was observed for nutrient traits, especially Ca, Fe and Mg concentrations between normal and high Mg^{2+} treatments \((r^2 < 0.2)\), suggesting different physiological functions of nutrients under different Mg^{2+} supplies.

Cluster of Pearson's correlation coefficient between phenotypes (Heat map) showed a negative correlation between Ca-C-H, Fe-C-H and Na-C-H and Mg-C-H (Fig. 2C), suggesting that Mg^{2+} would compete for uptake with Ca^{2+}, Fe^{2+} and Na^{2+} in most *Arabidopsis* accessions when supplied with high Mg^{2+}. Increased Mg^{2+} absorption would decrease the uptake of these ions and hence plant growth. However, Mg-A, Mg-C, S-A, S-C, K-A and K-C were positively correlated only under high Mg^{2+} (Fig. 2C), indicating a common mechanism or genetic pathway between Mg^{2+}, S and K under high Mg^{2+} (Fig. 2C). In contrast, there were highly significant positive correlations between PR, RW, LR, FW as well as S-A, Mg-A and K-A of the phenotypes under normal but not high Mg^{2+} supply (Fig. 2C).

GWAS analysis for nutrient metabolism in response to high Mg^{2+}. The phenotypic data collected from normal and high-Mg^{2+} conditions (Supporting Information Table S1) were used as an input for genome-wide association study (GWAS). All SNPs were converted to homozygote or heterozygote according to previously described. The ‘Nutrient absorption(A)’ was expressed as total amount of nutrient per plant; ‘Nutrient concentration(C)’ was calculated by total amount of nutrient per plant / plant fresh weight (FW). The results are the average value across all available replicates.

Table 1. Summary for 21 *Arabidopsis* traits.

Traits	Full name of the trait	Unit	Trait description
RG	Days to root germination	day	The number of days from seeding until emergence, with more than half of the seedlings having a first radicle.
PR	Primary root length	cm	After 8 days of growth under the two treatment conditions, the plants were flattened directly on agar and imaged using a camera. The primary root length and lateral root number were determined across the median seedling using ImageJ.
LR	Lateral root number	cm	After 8 days of growth under the two treatment conditions, the plants were flattened directly on agar and imaged using a camera. The epicotyl length and rosette width were determined across the median seedling using ImageJ.
SG	Days to seed germination	day	The number of days from seeding until emergence, with more than half of the seedlings having the first cotyledon.
EL	Epicotyl length	cm	All fully-expanded seedlings without lesions were collected from each of 4 plants for each accession and weighed to obtain the fresh weight. The results are the average value across all available replicates.
RW	Rosette width	cm	All fully-expanded seedlings without lesions were collected from each of 4 plants for each accession and weighed to obtain the fresh weight. The results are the average value across all available replicates.
FW	Fresh weight of plants	mg	All fully-expanded seedlings without lesions were collected from each of 4 plants for each accession and weighed to obtain the fresh weight. The results are the average value across all available replicates.
K-A	The amount of potassium absorbed per plant	mg K/plant	
K-C	Potassium concentration per fresh weight	mg K/g (FW)	
Ca-A	The amount of calcium absorbed per plant	mg Ca/plant	
Ca-C	Calcium concentration per fresh weight	mg Ca/g (FW)	
Mg-A	The amount of magnesium absorbed per plant	mg Mg/plant	
Mg-C	Magnesium concentration per fresh weight	mg Mg/g (FW)	
S-A	The amount of sulfur absorbed per plant	mg S/plant	
S-C	Sulfur concentration per fresh weight	mg S/g (FW)	
Fe-A	The amount of iron absorbed per plant	mg Fe/plant	
Fe-C	Iron concentration per fresh weight	mg Fe/g (FW)	
Mn-A	The amount of manganese absorbed per plant	mg Mn/plant	
Mn-C	Manganese concentration per fresh weight	mg Mn/g (FW)	
Na-A	The amount of sodium absorbed per plant	mg Na/plant	
Na-C	Sodium concentration per fresh weight	mg Na/g (FW)	

Elemental analysis was performed with an ICP-MS (Agilent 7500a, USA). All samples were normalized to calculated weights as total amount of nutrient per plant. In a more focused response in those traits. Notably, the right side of the curve of absorption and concentration of Ca, Fe and Mn under both normal and high Mg^{2+} fitted a normal distribution, but the left-hand side deviated significantly from the normal distribution, displaying a decapitation tail (Fig. 1C).

Despite the similarity of the effects of high Mg^{2+} on all phenotypes, the effects of high Mg^{2+} on all phenotypes can be divided into two types. First, high Mg^{2+} had a similar promoting effect on LR, Mg-A, Mg-C, S-A and S-C of most accessions. Second, high Mg^{2+} enhanced traits of PR, EL, RW, FW and absorption and concentrations of K, Ca, Fe and Mn in the accessions with low value while reduced them in the accessions with high value as compared with normal Mg^{2+} supply.

Furthermore, the initial comparison of 21 plant traits between normal and high Mg^{2+} was performed using statistical analysis by a paired two-tailed Student t test, with a \(P\)-value < 0.01 (Table 2). Accordingly, the above first type traits were consistently changed by high Mg^{2+} as compared with normal Mg^{2+}. Apart from this, the above second traits were inconsistently altered by high Mg^{2+} (Table 2, Fig. 2A,B).

Pearson's correlation coefficients \((r^2)\) were used to examine the natural variation within the population of quantified traits between normal and high Mg^{2+} conditions (Table 2). The RG and SG showed positive correlations between normal and high Mg^{2+} treatments \((r^2 = 0.53)\) (Table 2). A weak correlation was observed for nutrient traits, especially Ca, Fe and Mg concentrations between normal and high Mg^{2+} treatments \((r^2 < 0.2)\), suggesting different physiological functions of nutrients under different Mg^{2+} supplies.
on chromosomes (Chr) 1, 2, 3, 4, and 5, respectively, under normal Mg\(^{2+}\), and 79 hits in total, 14, 13, 18, 10 and 19 located on chromosomes 1, 2, 3, 4, and 5, respectively, under high Mg\(^{2+}\) (Fig. 3A,B). There were 2 shared hits between normal and high Mg\(^{2+}\) supplies (Fig. 3C).

Under normal Mg\(^{2+}\) supply, 41 and 22 loci were associated with Mn absorption (Mn-A-N) and concentration (Mn-C-N), and accounted for 7.47% and 2.67% of the total phenotypic variance, respectively. 17 and 21 loci were associated with Fe absorption (Fe-A-N) and concentration (Fe-C-N), and accounted for 3.60% and 5.04% of total phenotypic variance individually (Fig. 3B, Supporting Information Table S3). In comparison, under high Mg\(^{2+}\) supply, 16 and 13 loci were associated with Mn absorption (Mn-A-H) and concentration (Mn-C-H), and

| Normal Mg\(^{2+}\) | Min | Max | Mean | SD | p-value (normality test) | r\(^2\) (H vs N) | p-value (t-test) |
|-------------------|-----|-----|------|-----|--------------------------|----------------|----------------|----------------|
| RG | 1.5000 | 7.0000 | 2.4000 | 0.8200 | 1.07E-28 | 0.53 | 0.3607 |
| PR | 0.1155 | 4.6749 | 1.6712 | 1.0430 | 4.61E-10 | 0.3115 | 0.0019 |
| LR | 0 | 9.0000 | 2.4845 | 1.7004 | 2.00E-16 | 0.4146 | 1.86E-18 |
| SG | 2.0000 | 7.0000 | 2.8814 | 0.7949 | 6.67E-22 | 0.2886 | 0.0092 |
| EL | 0.1305 | 1.1846 | 0.4088 | 0.1590 | 1.73E-12 | 0.1079 | 0.4147 |
| RW | 0.1493 | 1.2021 | 0.5823 | 0.2241 | 7.13E-05 | 0.3430 | 0.0052 |
| FW | 0.1000 | 4.025 | 1.2242 | 0.7383 | 3.26E-11 | 0.1911 | 6.01E-08 |
| K-A | 0.2105 | 14.185 | 3.6072 | 2.3203 | 8.73E-11 | 0.0520 | 6.06E-22 |

Table 2. Minimum (Min), maximum (Max), mean and standard deviation (SD) values of individual traits for 21 phenotypes under high (10,000 \(\mu\)M) and normal Mg\(^{2+}\) (1,000 \(\mu\)M). The correlations (r\(^2\)) between values of individual traits of the plants grown at high and normal Mg\(^{2+}\) are also shown. aSharpi test was used for normality test; bHigh and normal date-sample student’s t-test at p value < 0.01.

Under normal Mg\(^{2+}\) supply, 41 and 22 loci were associated with Mn absorption (Mn-A-N) and concentration (Mn-C-N), and accounted for 7.47% and 2.67% of the total phenotypic variance, respectively. 17 and 21 loci were associated with Fe absorption (Fe-A-N) and concentration (Fe-C-N), and accounted for 3.60% and 5.04% of total phenotypic variance individually (Fig. 3B, Supporting Information Table S3). In comparison, under high Mg\(^{2+}\) supply, 16 and 13 loci were associated with Mn absorption (Mn-A-H) and concentration (Mn-C-H), and
accounted for 2.93% and 12.04% of total phenotypic variance individually. Thirty three and 11 loci were associated with Fe absorption (Fe-A-H) and Fe concentration (Fe-C-H), which accounted for only 5.07% and 2.60% of total phenotypic variance individually (Fig. 3B, Supporting Information Table S2). The GWAS analysis confirmed that only 2 common loci were detected differed between normal Mg\(^{2+}\) and high Mg\(^{2+}\) (Fig. 3C).

Single nucleotide polymorphisms (SNP) 1_3884526 (Chromosome 1, 3884526bp) was found to associate with SG-H, RG-H, RG-N and Na-C-N. It had a Minor allele frequency (MAF) of 0.0633, and is within the OST3A, a gene related to oligosaccharyl transferase complex/magnesium transporter family (Supporting Information Table S2). SNP 4_2080234 was associated with Mn-C-H and Fe-C-N. It had a MAF of 0.0.050 and is within AT4G042960 and AT4G04293, both transposable element genes.

No significant associations were observed for the Mg\(^{2+}\) (Mg-A) and Ca absorption (Ca-A) under normal Mg\(^{2+}\), but 2 loci were identified to associate with these traits under high Mg\(^{2+}\). Furthermore, no significant associations were found for Mg\(^{2+}\) (Mg-C) and S concentration (S-C) under high Mg\(^{2+}\), whereas 7 and 6 loci were identified to associate with these traits under normal Mg\(^{2+}\) (Fig. 3B). No significant associations for K absorption (K-A) were identified under normal and high Mg\(^{2+}\).

We speculated that the absorption and concentration of nutrients should share many candidate loci associated with the same element under the same Mg\(^{2+}\) level. However, this was not the case in our data set, as no common candidate loci were observed to associate with absorption and concentrations of K, Ca, Mg, Na and under either normal or high Mg\(^{2+}\) (Supporting Information Table S2). Though common loci were found between the absorption and concentration of Fe or Mn in plants grown under both normal and high Mg\(^{2+}\), these only accounted for a small part of the variance in attitudes. While six common loci were detected between the traits of Fe-A-H and Fe-C-H, only 2 common SNPs were for Fe-A-N and Fe-C-N. Likewise, 10 common loci were associated with Mg-A-H and Mg-C-H, and 6 common loci associated with Mn-A-N and Mn-C-N (Fig. 4A,B). Furthermore, manhattan plot showed the detailed distribution of the GWAS hits for Fe and Mn (Fig. 4C,D).

Characterization of Atnrl mutants in response to high Mg\(^{2+}\) treatment. GWAS is conducted to identify causative/predictive factors for a given trait, or to determine aspects of the genetic architecture of the trait (i.e. the number of loci that contribute to the phenotype)\(^{41}\). A single strong peak of SNPs 22262848 between position of 22262147 and 22266148 bp on chromosomes, which is associated with Ca concentration, was identified under high but not normal Mg\(^{2+}\) (Fig. 5A,B). This SNP accounted for 0.326% of the total variance of an estimated 2.20% of the total variance in Ca concentration under high Mg\(^{2+}\). It contained three neighboring significant SNP hits (−log\(_{10}(p) > 6.9\)) corresponding to only a candidate gene At1g60420 (AtNRX1) (Fig. 5C), and was calcium locus CD-domain containing protein.

To validate the GWAS results in the present study, the above putative significant candidate gene was determined through a collection of well-characterized mutants (Atnrx1-1 and Atnrx1-2) and physiological and morphological comparisons in mutants and wild-types. Before this, we further verified that the mutant stocks were homozygous T-DNA insertion lines, by PCR with gene-specific primers LP, RP and LB. As expected, the results confirmed that both Atnrx1-1 and Atnrx1-2 were only mutation in At1g60420 (Fig. 6A). Moreover, the expression of AT1G60420 were greatly reduced in two mutants under both normal and high Mg\(^{2+}\) conditions as compared to wildtype (Fig. 6B). Compared with normal Mg\(^{2+}\), high Mg\(^{2+}\) increased the fresh weight of Atnrx1-1 and Atnrx1-2 but did not affect that of wildtype. It is worth mentioning that compared with wildtype, fresh weight of two mutants was not changed under high Mg\(^{2+}\) but was reduced under normal Mg\(^{2+}\) (Fig. 6C). It is suggested that high Mg\(^{2+}\) reduced wildtype growth but had little effect on the growth of Atnrx1 mutant.

As shown in Fig. 6D, a tip-focused [Ca\(^{2+}\)] gradient was formed during the initiation and elongation of roots of both wildtype and mutants, and such a tip-focused gradient of [Ca\(^{2+}\)] was weak under normal Mg\(^{2+}\). In contrast, under high Mg\(^{2+}\), Atnrx1-1 and Atnrx1-2 but not wildtype formed a strong tip-focused [Ca\(^{2+}\)] gradient in the initiation and elongation of root of the mutant (Fig. 6D). Furthermore, high Mg\(^{2+}\) greatly enhanced concentration of Ca in Atnrx1-1 and Atnrx1-2 but decreased it in wildtype as compared with normal Mg\(^{2+}\) (Fig. 6E). Meanwhile, when compared with wildtype, Ca concentration of high Mg-fed Atnrx1-1 and Atnrx1-2 mutants was greater while that of normal Mg-fed Atnrx1-1 and Atnrx1-2 mutants was similar (Fig. 6E). As expected, high Mg\(^{2+}\) enhanced Mg concentrations in both mutants and wildtype (Fig. 6F).

Compared with the wildtype, both Atnrx1-1 and Atnrx1-2 had shorter primary root and less number of lateral roots under normal Mg\(^{2+}\) but had greater length of primary roots and a similar number of lateral roots under high Mg\(^{2+}\) (Fig. 6G,H). Under high Mg\(^{2+}\), there is no significant difference in K, Fe, Mn and S concentrations in plants between the two mutants and wildtype, but the mutant had a higher Na content (Data not shown). These results indicate that AtNRX1 is a special and critical negative gene regulating Ca uptake and probably the plant growth under high Mg\(^{2+}\) stress.

Discussion

To adapt to the constantly high availability of Mg\(^{2+}\) in the environment, plants have evolved mechanisms of reduced ion uptake and/or sequestering excessive ions in the vacuole or developing higher Mg\(^{2+}\) requirement for the maximum growth, which finally improves the tolerance to the stress of certain elements. By linking the mapping with reverse genetic experiments, we identified the causal gene and established that polymorphisms at AtNRX1 were the major genetic determinant for the variation in Ca concentration in this global A. thaliana population (Fig. 6). Atnrx1 mutants have most of the phenotypes that would associate with the tolerance to serpentine soils, including survival in solutions with a low Ca\(^{2+}\): Mg\(^{2+}\) ratio; requirement for a high concentration of Mg\(^{2+}\) for maximum growth; greater biomass and more lateral roots, reduced leaf tissue concentration of Mg; and poor growth performance on ‘normal’ levels of Mg\(^{2+}\).
Shoot and root morphology variation in response to high Mg\(^{2+}\). In order to understand molecular mechanisms of plant adaptation to high Mg\(^{2+}\) stress, we grew 388 wild Arabidopsis accessions at normal and high Mg\(^{2+}\) concentrations, and observed a substantial quantitative variation in plant growth between these accessions (Fig. 1; Table 1). We also showed a diversity in shoot and root morphology across two levels of Mg\(^{2+}\) supply and among these natural accessions. High Mg\(^{2+}\) supply resulted in an overall reduction in primary root length, lateral root number, epicotyl length and fresh weight but its effect on the rosette width varied among the accessions (Fig. 2; Table 2). The phenotypic data indicate that Arabidopsis thaliana has evolved some capacities to adapt to high Mg\(^{2+}\) stress and that the number of lateral roots of seedlings is a suitable index of high-Mg\(^{2+}\) responses.

Figure 2. Natural variation in traits of Arabidopsis accessions grown at normal (1,000 µM) (A) and high Mg\(^{2+}\) (10,000 µM). (B) The average value per accession was calculated, and values of individual traits were plotted using the `ggplot2` package in R. Accessions representing outliers for a trait are indicated by closed circles. (C) Heat map represents cluster of the pearson correlation coefficient between each pair of 42 phenotypes, the pearson's correlation coefficients were normalized (z-score) and represented with blue-red color scheme.
By using the phenotypic data of 388 Arabidopsis accessions (Supporting Information Table S1) and GWAS, this study showed that a great extent of variation in the length of primary and lateral roots, rosette growth and hypocotyl length among the accessions tested was strongly Mg-dependent. As we known, the growth of primary and lateral roots, hypocotyl and rosette is determined by a number of extrinsic and intrinsic factors in addition to Mg\(^{2+}\) supply. The significant associations with the leaf or root growth-related phenotypes according to \(-\log_{10}(p) > 6.15\) reflects the high complexity of the underlying genetic architecture or that these traits were not influenced by any of the SNPs alone. This notion is supported by the presence of obvious sub-threshold peaks associated with shoot and root morphology under both normal and high Mg\(^{2+}\) supply. Meanwhile, the low heritability of investigated traits in the present study suggested a weak genetic component determining the observed phenotypic variability. Hopefully, it is known that many traits of Arabidopsis are polygenic with small effect size, and that increasing the sample size would improve the power to recover meaningful associations. Increasing sampling size was likely to underestimate the range natural variation in photomorphogenic responses or growth-related pathways and processes that strongly interact with the high Mg\(^{2+}\) stress.

Arabidopsis showed remarkable natural genotypic variation for ionomics under high Mg\(^{2+}\). The present study showed that most of the SNPs were derived from the nutrient concentration and uptake, SNPs differed between normal and high Mg\(^{2+}\), the effective number of SNPs \(-\log_{10}(p) > 6.15\) was also different (Fig. 3; Supporting Information Table S2). For example, positive SNPs associated with Ca-A and Mg-A were located only under high Mg\(^{2+}\) (Fig. 3B). Likewise, no significant associations were observed for either Mg-C and S-C under high Mg\(^{2+}\) but seven and six significant SNPs were associated with them under normal Mg\(^{2+}\) (Fig. 3), indicating that different genetic systems were responsible for Mg\(^{2+}\) and S uptake under normal and high Mg\(^{2+}\). Meanwhile, the SNP significance tests showed that different traits were generally associated with different genes or gene regions, but many of the traits also shared common genes or gene regions. The significant score > 10 association was for the SNP on Mn under high Mg\(^{2+}\) in a narrow region of chr3, where multiple SNPs were associated with different traits in Chr1, 3, 4 and 5 under normal Mg\(^{2+}\) (Fig. 3).

Though not all cases, the chromosomal regions harbouring the significantly associated SNPs are coincided with the location of the gene(s) co-expressed with known-function genes that control these traits. Of the 105 loci under normal Mg\(^{2+}\), the majority of the loci were associated with Mn-A and Mn-C then with Fe-A and
Fe-C. Among these, SNP 1_3953597, which is within the SS3, a gene encoding a starch synthase, is co-expressed with SPLICING ENDONUCLEASE 1 (SEN1)\(^4\). Likewise, SNP 3_19424421 of \(p\)-value 12.55, associated with Mn-C under the normal Mg\(^{2+}\) condition, had a MAF of 0.058 and was within gene AT3G52380 CHLOROPLAST RNA-BINDING PROTEIN 33 (CP33) that is co-expressed with SEN1. The SEN1 gene was reported encoding an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar Fe/Mn transporter of Saccharomyces cerevisiae of Arabidopsis\(^4\). Besides, SNP 1_210424, associated with Fe-C, had a MAF of 0.055 and was within gene FRO2 which encodes the low-Fe-inducible ferric chelate reductase. It is suggested to be the major Fe(III) chelate reductase in Arabidopsis\(^4\). The most SNP hits under high Mg\(^{2+}\) were identified associations with Fe-A and Fe-C and then Mn-A and Mn-N. SNP 1_26930918 had a MAF of 0.074 and was within gene AT1G71480 ALBINO OR GLASSY YELLOW 1 (AGY1) gene which was co-expressed with MAGNESIUM CHELATASE I2 (CHLI2) while CHLI2 regulates the function of Mg\(^{2+}\) chelatase\(^4\). It should be

Figure 4. Venn diagrams representing differentially nutrient (including absorption and concentration) GWAS hits was defined as the one had \(-\log_{10}(p) > 6.15\) in high Mg\(^{2+}\) (A) and normal Mg\(^{2+}\) (B) of Arabidopsis. Each list in the venn diagram denotes by a transparent shape and overlaps shape indicates elements shared between lists or more often the corresponding counts. Four lists of input data of Fe-A, Fe-C, Mn-A and Mn-C were highlighted for both high Mg\(^{2+}\) and normal Mg\(^{2+}\) in green, blue, pink and yellow, respectively. Genome-wide association mapping results for the absorption and concentration of Fe and Mn in Arabidopsis under high Mg\(^{2+}\) (C) and normal Mg\(^{2+}\). (D) The 'Manhattan setting' plate for customized chromosome color, fixed pixel size, or dynamic pixel size proportional to \(p\)-values in Manhattan plot. The 5 chromosomes are represented by different shades of gray with the x-axis as the physical position. The highlighted positions represent the physical positions of the regions sharing common SNP between absorption and concentration of Fe and Mn.
mentioned that SNP 1_21762851 of P-value 9.05, associated with S-C under the normal Mg $^{2+}$, had a MAF of 0.090 and contained only one gene, AT1G51980, which encodes an insulinase and is co-expressed with SULFATE TRANSPORTER 1;2 (SULTR1;2) that is involved in sulfur metabolism. As discussed above, changing the Mg$^{2+}$ availability in the soil would alter absorption and utilization of other elements, and transporters, channels, or/ and the genes that encode and regulate them in Arabidopsis. However, a few of the genes in proximity of the most significant associations were among the major known regulators of ion uptake or transport, highlighting the potential of GWAS to identify previously unknown regulators.

Changes in nutrient availability influence plant vegetative growth and phenotypic traits of A. thaliana, but the effect may vary among populations or genotypes. Decreases in nutrient availability result in phenotypic responses (such as smaller leaf areas, shorter primary root and reduced lateral root formation) that vary across A. thaliana genotypes.

A novel candidate gene AtNRX1 negatively regulates Ca concentration at high Mg$^{2+}$ supply. Calcium is an essential plant macronutrient with key structural and signaling roles. Calcium ions (Ca$^{2+}$) act as an osmoticum within vacuoles, a stabilizing element in the membranes, a strengthening agent in cell walls, and a secondary messenger for a multitude of signals. By using GWAS mapping on the 388 A. thaliana accessions, we successfully identified a single strong peak of SNP 1_22263976/22264331/22262848 (Chromosome 1, 22263976bp) associated with Ca concentration under high Mg$^{2+}$ (Fig. 5). Mutants of Atnr1-1 and Atnr1-2 supplied with high Mg$^{2+}$ had higher cytosolic Ca$^{2+}$ concentrations ([Ca$^{2+}$]c) during root elongation, meanwhile produced higher biomass and more lateral roots as compared with wildtype (Fig. 6). This suggested that the increase in Ca concentration in mutants of Atnr1-1 and Atnr1-2 by high Mg$^{2+}$ cannot be attributed to increased biomass or photosynthesis alone, but also to the improved Ca nutrition of the plants through morphological, physiological and molecular responses to high Mg$^{2+}$.

It has been known that AtNRX1 is involved in DC1 domain-containing protein, which is co-expressed with calcineurin B-like Ca sensor 1–protein kinase gene CBL–INTERACTING PROTEIN KINASE 23 (CIPK23). Study of Tang et al. showed that tonoplast CBL–CIPK calcium signaling network regulated ion homeostasis and vacuolar sequestration of Mg$^{2+}$, thereby protecting plants from Mg$^{2+}$ toxicity. Besides, loss-of-function cax1 (gene encoding vacuolar H$^{+}$/Ca$^{2+}$) mutations could produce phenotypes characteristic of plants adapted to serpentine.

This locus has a MAF of 0.0712 and is within the AT1G60420 (AtNRX1), a gene involved in catalytic activity of NADP-NADPH and disulide-reductase activity. In special cases, toxic ROS molecules are largely accumulated under excess stresses and diverse enzymes played as ROS scavengers. Arabidopsis contains 3 NADPH-dependent thioredoxin reductases (NTRs) for scavenging ROS and Nucleoredoxins (NRX) are potential nuclear TRX found in most eukaryotic organisms. Recently, excellent research presents evidence that activity of the plant...
stresses-inducible TRX superfamily member, NRX1 is necessary for the integrity of antioxidant systems. Meanwhile, it is the fact that many publications indicated ROS produced by NADPH oxidase activates Ca2+ channels at the plasma membrane, leading to an increase in Ca2+ concentration and a tip-focused Ca2+ concentration.

Figure 6. Validation and physiological phenotypes of Atrnx1 mutatant. Image of mutant Atrnx1-1 and Atrnx1-2 and wild plants in media with normal or high Mg2+ (A); results of T-DNA insertion mutant Atrnx1-1 and Atrnx1-2 by PCR with gene-specific primers LP, RP and LB (B); relative expression levels (C); fresh weight (D); confocal images of cytosolic Ca2+ concentration distribution (Fluo-4/AM imaging) during the initiation and tip growth of root hairs (E); concentrations of Ca (F); concentrations of Mg2+ (G); number of lateral root per plant (H) and the length of primary root (I) of wild-type and Atrnx1 mutatant (8-day-old seedlings) grown at supply of normal (1,000 \(\mu \)M) and high Mg2+ (10,000 \(\mu \)M). Levels of cytosolic Ca2+ concentration have been color-coded according to the inset scale (Quantitative values under the scale in nM). Bar = 200 \(\mu \)m applies to all photographs in D. The images are representative of at least three independent experiments. Data are means \(\pm \) SD (n = 5). Means followed by a common letter within a root segment are not significantly different at P < 0.05. FW, fresh weight.
gradient and subsequent signaling inherent to plant growth\(^2,63–66\). Withal, our previous study also showed that high Mg\(^{2+}\) could inactivate NADPH and the production of ROS\(^2\) probably through regulating ABA–DELLA signaling\(^2,67\).

To sum up, it is likely that under high Mg, the wild-type plant is associated with cellular accumulation of ROS and redox imbalance, which triggers class of antioxidant enzymes activation and subsequently results in a decrease of intracellular ROS. ROS restrains ion channels and Ca\(^{2+}\) concentration; While in the \(nr1\) mutants, ROS could not be effectively removed without protection of \(NRX1\) due to \(NRX1\) mutation, which leads to ROS accumulation. Then ROS activate Ca\(^{2+}\)-channels at the plasma membrane and promote cytosolic Ca\(^{2+}\) concentration. When both wild-type and \(nr1\) mutants under normal Mg conditions, the cell is normally controlled with H\(_2\)O, and redox balance, thus the protective effect of \(NRX1\) gene is not prominent, or maybe even little dedication.

Notably, Mg\(^{2+}\) concentrations in \(Atnr1-1\) and \(Atnr1-2\) mutants was increased compared to that in the wildtype plants under high Mg\(^{2+}\) supply. This implied that \(nr1\) mutants required for a high concentration of Mg\(^{2+}\) for the maximum growth associating with tolerance to high Mg\(^{2+}\) soils. The \(AtNRX1\) gene is co-expressed with MAGNESIUM TRANSPORTER 4 (\(MRS2-3\)), a transport gene related to Mg\(^{2+}\) nutrition\(^68\). These indicate that Mg\(^{2+}\) transporter genes have some interactions with \(AtNRX1\). However, there is no significant difference in K, Fe, Mn and S concentration in plants between the two mutants and wildtype, but the mutant had a higher Na content (Data not shown). These was consistent with other study showed that the \(chb2\) \(chb3\) double mutant was hypersensitive to a handful cations but not to Na\(^{+}\)\(^9\). Further work will be directed to identify other key components in this novel of NRX-signaling pathway in regulation of Ca uptake and how the positive effects of \(AtNRX1\) can be maximized through plant adaptive strategies to improve the tolerance to high Mg\(^{2+}\).

To sum up, our study suggests that \(AtNRX1\) was a critical gene negatively regulating Ca uptake and probably improving the plant tolerance to high Mg\(^{2+}\) soils. The discovery of the functions of \(AtNRX1\) gene helps to breed/ select crops that can adapt to high-Mg\(^{2+}\) soils such as serpentine soils (high Mg\(^{2+}\); Ca) and those in semi-arid regions or even serpentine or Mars soils with high levels of magnesium sulfate. Also, new genes associated with natural variation in \(A. thaliana\) can be used for future bioengineering.

References
1. Maguire, M. E. & Cowan, J. A. Magnesium chemistry and biochemistry. *Biometals* 15, 203–210 (2002).
2. Brady, K. U., Kruckeberg, A. R. & Bradshaw, H. D. Jr. Evolutionary ecology of plant adaptation to serpentine soils. *Annu. Rev. Ecol. Evol. Syst.* 36, 243–266 (2005).
3. Hawkesford, M. et al. Functions of macronutrients. In ‘Marscher’s mineral nutrition of higher plants’. 3rd edn (Ed. P Marschner) pp. 135–190 (2012).
4. Christensen, P. R. et al. Mineralogy at meridiani planum from the Mini-TES experiment on the opportunity rover. *Science* 306, 1733–1739 (2004).
5. Haskin, L. A. et al. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. *Nature* 436, 66–69 (2005).
6. Ming, D. W. et al. Geochemical and mineralogical indicators for aequous processes in the Columbia Hills of Gusev crater, Mars. *J. Geophys. Res.: Planets,* 111(E2) (2006).
7. Tyndall, R. W. & Hull, J. C. Vegetation, flora, and plant physiological ecology of serpentine barrens of eastern North America. In: Anderson, R. C., Fralish, J. S. & Baskin, J. M. eds *Savannas, Barrens, and Rock Outcrop Plant Communities of North America.* Cambridge: Cambridge University Press 67–82 (1999).
8. Bradshaw, H. D. Jr. Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. *New Phytol* 167, 81–88 (2005).
9. Kruckeberg, A. R. An experimental inquiry into the nature of endemism on serpentine soils PhD thesis, University of California, Berkeley, CA, USA (1950).
10. Kruckeberg, A. R. The ecology of serpentine soils: a symposium. III. Plant species in relation to serpentine soils. *Ecology* 35, 267–274 (1954).
11. Rajakaruna, N., Siddiqi, M. Y., Whitton, J., Bohm, B. A. & Glass, A. D. Differential responses to Na\(^{+}\) with H\(_2\)O\(_2\) and redox balance, thus the protective effect of \(NRX1\) gene is not prominent, or maybe even little dedication.
13. Gailing, O., Macnair, M. R. & Bachmann, K. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred panel. *Curr. Opin. Biometals* 81–88 (2005).
14. Patterson, T. B. & Givnish, T. J. Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. *New Phytol* 161, 253–264 (2004).
15. Turner, T. L., Bourne, E. C., Von Wettberg, E. J., Hu, T. T. & Nuzhdin, S. V. Population resequencing reveals local adaptation of *Arabidopsis thaliana* to serpentine soils. *Nat. Genet.* 42, 260–263 (2010).
16. Huard-Chauveau, C. et al. An atypical kinase under balancing selection confers broad-spectrum disease resistance in *Arabidopsis*. *Plant Sci.* 19, e1003766 (2013).
17. Chevalier, F., Pata, M., Nacey, P., Doumas, P. & Rossignol, M. Effects of phosphate availability on the root system architecture, large-scale analysis of the natural variation between *Arabidopsis* accessions. *Plant, Cell Environ.* 26, 1839–1850 (2003).
18. Chevalier, F. & Rossignol, M. Proteomic analysis of *Arabidopsis thaliana* ecotypes with contrasted root architecture, in response to phosphate efficiency. *Plant Physiol.* 168, 1885–1890 (2011).
19. Hoffmann, M. H. Biogeography of *Arabidopsis thaliana* (L.) Heynh. (Brassicaceae). *J. Biogeogr.* 29, 125–134 (2002).
20. Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide *Arabidopsis thaliana* accessions from the RegMap panel. *Nat. Genet.* 44, 212–216 (2012).
21. Tisné, S. et al. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. *Plant J.* 74, 534–544 (2013).
22. Wuyts, N., Dhondt, S. & Inze, D. Measurement of plant growth in view of an integrative analysis of regulatory networks. *Curr. Opin. Plant Biol.* 25, 90–97 (2015).
23. Flood, P. J. et al. Phenomics for photosynthesis, growth and reflectance in *Arabidopsis thaliana* reveals circadian and long-term fluctuations in heritability. *Ethology* 12, 14 (2016).
65. Samaj, J., Baluska, F. & Menzel, D. New signalling molecules regulating root hair tip growth.
64. Miller, G.
63. Marchal, C.
62. Tang, R. J.
61. Luan, S. The network in plant calcium signaling.
59. Cheong, Y. H.
58. Gruber, B. D., Giehl, R. F., Friedel, S. & von Wirén, N. Plasticity of the root system under nutrient deficiencies.
57. Seren, Ü.
56. Meijón, M., Satbhai, S. B., Tsuchimatsu, T. & Busch, W. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis thaliana (L.) Heynh. under elevated CO₂.
55. Gilliham, M.
54. Dayod, M., Tyerman, S. D., Leigh, R. A. & Gilliham, M. Calcium storage in plants and the implications for calcium biofortification.
53. Gruber, B. D., Giehl, R. F., Friedel, S. & von Wirén, N. Plasticity of the root system under nutrient deficiencies.
52. Pigliucci, M., Whitton, J. & Schlichting, C. D. Reaction norms of plant, Cell Environ., 37, 2795–2813 (2014).
51. Languar, V. et al. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21, 3610–3622 (2009).
50. Meijón, M., Satbhai, S. B., Tsuchimatsu, T. & Busch, W. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis thaliana (L.) Heynh. under elevated CO₂.
49. Visscher, A. M., et al. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biol. 13, 1 (2013).
48. Gruber, B. D., Giehl, R. F., Friedel, S. & von Wirén, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179 (2013).
47. Seren, Ü. et al. GWAPP, a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24, 4793–4805 (2012).
46. Waters, B. M., Blevins, D. G. & Eide, D. J. Characterization of FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant J. 133, 1102–1110 (2003).
45. Jeong, J. & Connolly, E. L. Iron uptake mechanisms in plants, functions of the AUXIN RESPONSE FACTOR17. Science Signal. 7, ra45–ra45 (2009).
44. Hakoyama, T. et al. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxities in Arabidopsis thaliana. BMC Plant Biol. 9, 32 (2009).
43. Zhao, C. R. et al. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxities in Arabidopsis thaliana. BMC Plant Biol. 9, 9 (2013).
42. Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS, a review. Plant Methods. 9, 29 (2013).
41. Hakoyama, T. et al. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodule cells. Plant Cell Physiol. 53, 225–236 (2012).
40. Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS, a review. Plant Methods. 9, 29 (2013).
39. Niu, Y. F. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana imbredlines. Nature 465, 627–631 (2010).
38. Niu, Y. F. et al. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO₂. Plant Cell Environ. 34, 1304–1317 (2011).
37. Seren, Ü. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana imbredlines. Nature 465, 627–631 (2010).
36. Gruber, B. D., Giehl, R. F., Friedel, S. & von Wirén, N. Plasticity of the root system under nutrient deficiencies.
35. Costa, M. et al. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biol. 13, 1 (2013).
34. Yang, J. Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol. Biol. 80, 519–537 (2012).
33. Shibaoka, N. et al. Selenate–resistant mutants of Arabidopsis thaliana identify SULTR1; 2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 29, 475–486 (2002).
32. Pignucchi, M., Whotton, J. & Schlichting, C. D. Reaction norms of Arabidopsis. I. Plasticity of characters and correlations across water, nutrient and light gradients. J. Evol. Biol. 8, 421–438 (1995).
31. Dorn, L. A., Pyle, E. H. & Schmitt, J. Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54, 1982–1994 (2000).
30. Czarnecki, O. et al. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxities in Arabidopsis thaliana. BMC Plant Biol. 9, 9 (2013).
29. Niu, Y. F. et al. Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4, 154–164 (2011).
28. Du, S. Y. et al. Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol. Biol. 80, 519–537 (2012).
27. Miyawaki, A. et al. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in Arabidopsis thaliana. PLoS Genet. 5, e1000621 (2009).
26. Cheong, Y. H. et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant Cell 15, 223–239 (2007).
25. Visscher, A. M. et al. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-Like levels of Magnesium sulfate. PLoS ONE 5, e12348 (2010).
24. Yamanaka, T. et al. MCA1 and MCA2 that mediate Ca²⁺ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol. 152, 1284–1296 (2010).
23. Niu, Y. F. et al. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. J. Exp. Bot. 66, 3841–3854 (2015).
22. Guo, W. L. The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ARB–DELLA signaling in Arabidopsis. Plant Cell Physiol 55, 1713–1726 (2014).
21. Weber, A. P., Weber, K. L., Carr, K., Willerson, C. & Ohrogge, J. B. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42 (2007).
Acknowledgements
This work was financially supported the Natural Science Foundation of China (NSFC, No. 31601277), the Ninth Special Post-Doctoral Fund of China (No. 2016T90156) and the China Postdoctoral Science Foundation to YFN (2014M551754 and 2015M581216). We are thankful to Hangzhou Guhe Information and Technology Co., Ltd for the help with bioinformatics analysis and the 985-Institute of Agrobiology and Environmental Sciences of Zhejiang University for providing the experimental equipment.

Author Contributions
Y.F.N. developed the concept and designed the study; Y.F.N., P.C. and Y.Z. performed the experiments; Y.F.N. and G.L.J. analyzed the data; Z.W.W. and S.K.H. interpreted the results of the experiments; C.X.T. and L.B.G. edited and revised the manuscript; All authors approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31950-0.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018