Polyherbal Formulation for Kidney and Liver Protection

S J Kabilan, R Baskar, G Poorani

Abstract: The objectives of the study were to assess the potential of herbal formulation made up of Wedelia chinensis leaves and Boerhaavia diffusa roots in possessing activities like nephroprotectivity and hepatoprotectivity. Nephroprotective and hepatoprotective activity was evaluated using MTT cytotoxicity assay using mammalian cell culture. The results of the hepatoprotective and nephroprotective activities showed that the formulation mixture of herbs Wedelia chinensis and Boerhaavia diffusa roots is an excellent source of organ stimulator with high therapeutic importance. The hepatoprotective and nephroprotective properties make this formulation a unique one focusing on liver and kidney diseases.

Keywords: Hepatoprotectivity, Nephroprotectivity, Polyherbal formulation

I. INTRODUCTION

Nephroprotectivity is an activity of any compound protecting the kidney cells and functions [2]. Likewise, hepatoprotectivity was to protect the liver cells from harmful substances [7]. The above mentioned herbal plants contain few phytoconstituents that possess the ability to act as a nephroprotectant and hepatoprotectant [10]. They play a major role in maintenance of these organs and preventing them from getting damaged [19]. They also boost up their performance and have a cleansing activity on them [20]. They prevent aging of cells present in those organs keeping them healthy for longer time [21].

Wedelia chinensis (Manjalkarisalai in Tamil), Asteraceae is a well reputed herbal medicine in Siddha, Ayurveda and Unani system of traditional medicine. Recent studies show the presence of diterpenes, flavonoids, triterpenes, phytoestrogens and saponins. It is also reported to possess anti-inflammatory, antioxidative, analgesic, hepatoprotective, antimicrobial, CNS depressant, wound healing, antistress and anticancer activity [5].

Boerhaavia diffusa (Mookirattaikeerai in Tamil) is one of the well known medicinal plants that are used to treat variety of human diseased conditions as mentioned in Ayurveda, Charaka Samhita, and Sushrita Samhita. Huge variety of phytochemicals like flavonoids, alkaloids, glycosides, rotenoids, steroids, triterpenoids, lipids, lignans, carbohydrates, proteins, and glycoproteins etc have been reported from the herb. The promising therapeutical effects of this plant include diuretic, hepatoprotective, anti-inflammatory, anti-cancer, anti-fibrinolytic, immuno-modulatory, anti-diabetic, immuno-suppressive, analgesic, anti-lymphoproliferative and used for the treatment of TB [11].

The aim of this study is to develop an herbal formulation that possesses nephroprotective and hepatoprotective activity.

II. MATERIALS AND METHODS

A. Chemicals

DMEM medium, Fetal Bovine Serum (FBS), Trypsin, Saline, H2O2.

B. Sample Collection and Extraction

Sample Collection

Wedelia chinensis leaves and *Boerhaavia diffusa* root powder were collected from an FSSAI approved herbal powder manufacturer from Coimbatore, Tamil Nadu. All herbs were stored in air-tight, light resistant container for further use. The samples were labeled as the *Wedelia chinensis* leaves (WC), *Boerhaavia diffusa* (BD) and Formulation mix.

Sample extraction

About 20g of powdered mix of these herbs was successively extracted with 150 ml of distilled water. Then it is allowed to evaporate in open air to obtain aqueous extracts. The extracts were filtered using membrane filter.

C. Determination of Hepatoprotective activity

Human liver HepG2 cells were exposed to a medium containing H2O2 (1mM) along with /without various concentrations of the formulation (100, 200, 300, 400 and 500 mg/ml). Then cytotoxicity was assessed by estimating the viability of HepG2 cells by MTT reduction assay. HepG2 cells were grown in DMEM culture medium and made into single-cell suspension and seeded into a 96-well flat bottom plate with 1 × 104 cells per well. After 48 hr incubation, 100 μL of 1mM H2O2 was added to each well followed by the addition of 100 μL diluted extract at varying concentrations to the appropriate wells and the plates were incubated for further 48 hr at 37°C in a humidified incubator with 5% CO2. Supernatant was removed from each well, and 100 μL of MTT (0.5 mg/mL) was added. MTT enters the cell’s mitochondria, where it is reduced to an insoluble, colored (dark purple) formazan product. The cells were then solubilized with 100 μL of an organic solvent DMSO and the released, solubilized formazan reagent is measured spectrophotometrically. Hepatoprotective activities of the formulation extracts are measured against the toxicity caused by H2O2 on the liver cells and the readings were obtained at 540 nm (Surendran et al., 2011).

D. Determination of in-vitro nephroprotective activity

Fresh African green monkey normal kidney cells (Vero) were grown in DMEM culture medium and made into
single-cell suspension and seeded into a 96-well flat bottom plate with 1×10^4 cells per well. After 24 hr incubation, 100 µL of 1mM H$_2$O$_2$ was added to each well followed by the addition of 100 µL diluted extract at varying concentrations to the appropriate wells and the plates were incubated for further 24 hr at 37°C in a humidified incubator with 5% CO$_2$. Supernatant was removed from each well, and 100 µL of MTT (0.5 mg/mL) was added. MTT enters the cell’s mitochondria, where it is reduced to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with 100 µL of an organic solvent DMSO and the released, solubilized formazan reagent is measured spectrophotometrically. Nephroprotective activities of the formulation extracts are measured against the toxicity caused by H$_2$O$_2$ on the liver cells and the readings were obtained at 540 nm (Srinivasan et al., 2015).

III. RESULTS AND DISCUSSION

A. Determination of Hepatoprotective activity

Hepatotoxicity was induced by H$_2$O$_2$ in HepG2 cell lines. Formulation extract has been evaluated for its hepatoprotectiveness. The presence of phytoconstituents in formulation mix extract has inhibited the induced hepatotoxicity.

S.No	Test Concentration (µg/ml)	% of cell death in presence of formulation + H$_2$O$_2$
1	100	66.27 ± 2.68
2	200	54.25 ± 2.63
3	300	49.85 ± 3.51
4	400	43.98 ± 5.3
5	500	35.19 ± 5.85
H$_2$O$_2$ toxic control		88.56 ± 1.75

The above data shows that with increasing concentration of formulation, the cell death has been reduced, which shows the protective activity of the formulation.

Table II: Hepatoprotective activity of formulation mix over toxicant in HepG2 cell line

S.No	Test Concentration (µg/ml)	% Protection offered over toxicant control
1	100	25.16 ± 3.03
2	200	38.74 ± 2.98
3	300	43.70 ± 3.97
4	400	50.33 ± 5.98
5	500	60.26 ± 6.61

From the table, it is evident that the H$_2$O$_2$ toxicity was inhibited with increasing concentration of formulation.

B. Determination of nephroprotective activity

Nephrotoxicity was induced by H$_2$O$_2$ in Vero cell lines. Formulation mix extract has been evaluated for its nephroprotectiveness. The presence of various phytoconstituents and minerals in formulation mix extract has inhibited the induced nephrototoxicity (Ahmed et al., 2010).

S.No	Test Concentration (µg/ml)	% of cell death in presence of formulation + H$_2$O$_2$
1	100	89.63 ± 0.44
2	200	88.34 ± 0.77
3	300	83.41 ± 0.44
4	400	67.09 ± 1.18
5	500	63.21 ± 1.18
H$_2$O$_2$ toxic control		93.26 ± 0.44

The above data shows that with increasing concentration of formulation, the cell death has been reduced, which shows the protective activity of the formulation.

Table IV: Nephroprotective activity of formulation mix over toxicant in Vero cell line
The PC50 (Protective Concentration 50%) is 732.06μg/ml.

It has been shown from Table IV, that effective protection of about 50% over toxicant control has been attained at 732.06μg/ml concentration (Kiruba et al., 2014). *Boerhaaviadiffusa* possess nephroprotective activity and contains phytoconstituents having nephroprotective activity which results in moderate nephroprotective activity over the H2O2 toxicity in Vero cells.

IV. CONCLUSION

The results of hepatoprotective and nephroprotective activities showed that the formulation mixture of herbs *Wedelia chinensis* and *Boerhaaviadiffusa* roots is an excellent source of organ protector with high therapeutical importance. The hepatoprotective and nephroprotective properties make this formulation a unique one focusing on liver and kidney diseases. It may therefore be recommended for people to prevent and get rid of kidney and liver related disorders.

ACKNOWLEDGMENT

The authors acknowledge Department of Biotechnology and Re forum (Research Cell) of KCT for providing essential facilities and funding to perform the research.

REFERENCES

1. Ahmed, Mahgoub M. (2010). “Biochemical studies on nephroprotective effect of carob (Ceratonia siliqua L.) growing in Egypt.” *Nature and Science*, Vol. 8, 3: 41-47.
2. Alshawsh, M. A., Abdulla, M. A., Ismail, S., & Amin, Z. A. (2011). Hepatoprotective effects of Orthosiphon stamineus extract on thioacetamide-induced liver cirrhosis in rats. *Evidence-Based Complementary and Alternative Medicine*, 2011.
3. Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. *Toxicology letters*, 160(2), 171-177.

4. Hassan, S. W., Salawu, K., Ladan, M. J., Hassan, L. G., Umar, R. A., & Fatihu, M. Y. (2010). Hepatoprotective, antioxidant and phytochemical properties of leaf extracts of Newbouldia laevis. *International Journal of Pharm Tech Research*, 2(1), 573-584.
5. Herberg, J., Pahuri, A., Walters, S., & Levin, M. (2009). Infectious diseases and the kidney. In *Pediatric Nephrology* (pp. 1253-1273). Springer Berlin Heidelberg.
6. Kanniparambil Xavier, S., Haneefa, S. M., & Anand, D. R. (2017). Antioxidant and nephroprotective activities of the extract and fractions of Homonoia riparia Lour. *Pharmacognosy magazine*, 13(49), 25.
7. Kiruba, Arun K. P., Brindha P. (2014). In vitro studies on nephroprotective efficacy of *Cynodon dactylon* and *Gmelina asiatica*, *Asian Journal of Pharmaceutical and clinical research*, 7, 111-120.
8. Koul, S., Pandurangan, A., & Khosa, R. L. (2012). *Wedelia chinensis* (Asteraceae)—an overview. *Asian Pacific Journal of Tropical Biomedicine*, 2(2), S1169-S1175.
9. Lakshmi, M. S., Reddy, U. K., & Rani, S. R. K. S. (2012). A review on medicinal plants for nephroprotective activity. *Asian J Clin Res*, 5(4), 8-14.
10. Mahesh, A. R., Kumar, H., Ranganath, M. K., & Devkar, R. A. (2012). Detail study on *Boerhavia Difusa* plant for its medicinal importance—a review. *Res J Pharm Sci*, 1, 28-36.
11. Mandal, S., & Bapna, J. S. (2016). Pharmacological evaluation of *Boerhavia diffusa* plant extract for their potential in management of diabetic nephropathy in Streptozotocin induced Type I diabetic rats 5(12), 1097-1108.
12. Murti, K., Panchal, M. A., & Lambole, V. (2010). Pharmacological properties of *Boerhavia diffusa* - a review. *Int J Pharm Sci Res*, 5(2), 107-110.
13. Nayak, P., & Thirunavoukkarasu, M. (2016). A review of the plant *Boerhavia diffusa*: Its chemistry, pharmacology and therapeutic potential. *J. Phytopharmacol*, 5(2), 83-92.
14. Noman, I., Mazumder, A., & Chakraborthy, G. S. (2013). *Wedelia chinensis* (Asteraceae)-An Overview Of A Potent Medicinal Herb. *Int J PharmTech Res*, 5(3), 957-964.
15. Ramesh, K., Manohar, S., & Rajeshkumar, S. (2014). Nephroprotective activity of ethanolic extract of Orthosiphon stamineus leaves on ethylene glycol induced urolithiasis in albino rats. *J. PharmTech Res*, 6(1), 403-408.
16. Reshma, A. K., & Brindha, P. (2014). In Vitro Anti-Inflammatory, Antioxidant and Nephroprotective Studies on Leaves of Aegle Marmelos and Ocimum Sanctum. *Asian journal of pharmaceutical and clinical research*, 7, 121-124.
17. Sasidharan, S., Aravindran, S., Latha, L. Y., Vijenthi, R., Saravanaan, D., & Amutha, S. (2010). In vitro antioxidant activity and hepatoprotective effects of *Lentimula edodes* against paracetamol-induced hepatotoxicity. *Molecules*, 15(6), 4478-4489.
18. Srinivasan, V., Panneerselvam, R., & Gunasekaran, S. (2015). Nephro-protective Activity of Ethanolic Extract of Melia Azadirachta against H2O2 Induced Toxicity in Vero Cell Line.
19. Sundararajan, R., Bharappuram, A., & Koduru, R. (2014). A review on phytoconstituents for nephroprotective activity. *Pharmacophore*, 5(1).
20. Surendran, S., Eswaran, M. B., Vijayakumar, M., & Rao, C. V. (2011). In vitro and in vivo hepatoprotective activity of *Cissampelos pareira* against carbon-tetrachloride induced hepatic damage. *Talwani, R., Gilliam, B. L., & Howell, C.* (2011). Hepatoprotective effects of thioacetamide and carbon tetrachloride induced liver injury. *Sci Res J Pharm Sci*, 110.

Figure 2: % nephroprotectivity of formulation mix over toxic control

S.No	Test Concentration (μg/ml)	% Protection offered over toxicant control
1	100	3.89 ± 0.48
2	200	5.28 ± 0.83
3	300	10.56 ± 0.48
4	400	28.06 ± 1.27
5	500	32.22 ± 1.28
AUTHORS PROFILE

S J Kabilan, completed his B.Tech (Biotechnology) at Kalasalingam University and M.Tech (Biotechnology) at Kumaraguru College of Technology (Affiliated to Anna University). Both the Degrees completed with First class with Distinction. Also, pursuing PhD in the area of Herbal Drug Research.

Currently Employment: Assistant Professor, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, India.

Previous Publications: Kabilan, M. S. (2018). Antioxidant and anti-inflammatory properties of G-immune plus: A polyherbal formulation. *International Journal of Green Pharmacy (IJGP)*, 12(03).

Dr. R. Baskar, PhD in Medical Biochemistry. Currently working as Associate professor at Kumaraguru college of Technology, Coimbatore, Tamilnadu, India.

Memberships:
- Life Member in Indian Society for Technical Education
- Life Member in National Society for Ethnopharmacology.

Achievements:
1. INSA Summer Fellowship award during 2012 to work in the Laboratory of Plant-Microbe Interaction, School of Botany, University of Hyderabad on “Plant Growth Promoting Rhizobacteria”.
2. Reviewer in National and International Journals
3. Currently Academic Editor in Biotechnology Journal International.
4. No. of citations : 792; h index : 12; i10 index : 16

Recent Publications:
- **Baskar, R., Akshaya, S.B., Akshitha, R., Dhilip Kumar, G., Poorani, G.**(2018).Evaluation of antioxidant and phytochemical activity in solvent extracts of Delonix regia.*International Journal of Green Pharmacy*, Volume 12(3), July-September issue, S607-S616.
- **Baskar, R., Sweatha, S., Karunambika, R., G.Ramya, R.Santhi** (2017). Influence of methionine on ergothineine content and antioxidant activity of Pleurotus platypus.*Asian Journal of Microbiology, Biochemistry and Environmental Sciences*, Volume 19 (Supplementary issue), S34-S38.
- **Gurumallesh, P., Alagu, K., Ramakrishnan, B., and Muthusamy, S** (2019). A systematic reconsideration on proteases.*International Journal of Biological Macromolecules*, 128, 254-267 *(Impact Factor: 4.7)*
- **PooraniGurumallesh,** **Baskar Ramakrishnan** and **BhaarathiDhurai** (2019). A novel metalloprotease from banana peel and its biochemical characterization. *International Journal of Biological Macromolecules*, 134, 527-535 *(Impact factor: 4.7)*

Notable Publications:
- **INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES** (2019) IF 4.78 A novel metalloprotease from banana peel and its biochemical characterization
- **MATERIAL SCIENCE AND ENGINEERING C** (2019) IF 5.08 Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract
- **INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES** (2019) IF 4.78 A systematic reconsideration on proteases
- **PROCESS BIOCHEMISTRY** (2019) IF 2.88 Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their Antibacterial and Anticancer activities
- **JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLG Y** B: BIOLOGY (2018) IF 4.06 Improved Conductivity and Antibacterial activity of poly (2- aminothiophenol) - silver nanocomposite against human pathogens
- **JOURNAL OF MICROENCAPSLATION** (2016) IF 2.04 Formulation, characterization, in vitro and in vivo evaluation of castor oil based self-nano emulsifying levosulpiride delivery systems