MATHEMATICAL MODEL OF THE DEVELOPMENT OF A SINGLE TWIN LAYER IN METAL CRYSTALS

By analyzing the experimental data available in the scientific literature, a mathematical model of the development of a single twin layer in metal crystals has been obtained. The model has the form of a differential equation, the order of which is determined by the required accuracy of obtaining the results associated with the solution of this equation. Even in the linear approximation of one of the main parameters of the phenomenological model, the latter gives qualitatively the same dependences of the development of single twins under different loading conditions compared to the experiment. Despite a large number of experimental works devoted to twinning, there is still no rigorous quantitative theory of the development of twinning layers in different media and under different conditions. However, in these works, the mathematical approach was demonstrated only in relation to elastic twins. This work is an introduction to the creation of a quantitative theory of twinning in metal crystals. Comparisons with the experimental results of the proposed phenomenological model were limited in this work to the task of demonstrating the performance of the model in the sense of predicting the most specific effects of the development of twins under various conditions and loading modes. In particular, the model implies the effect of loss and restoration of hardening by twin boundaries during stress pulsations, the Bauschinger effect upon a change in the sign of the applied voltage, and a number of other effects observed experimentally on a number of different metal crystals.

Key words: model, twin, crystal, loading mode, differential equation, forest dislocations.

M. Е. БОСИН, Е. П. ГОМОЗОВ, Т. Г. ДРЫГАЧ

MATHEMATICAL MODEL OF THE DEVELOPMENT OF A SINGLE TWIN LAYER IN METAL CRYSTALS

Немає летакії десять десять дійсних, які знаходяться у науковій літературі, отримана математична модель розвитку однієї двойникової прослойки в металевих кристалах. Модель має вид диференціального рівняння, порядок якого визначається необхідною точністю отримання результатів, пов’язаних з розв’язком цього рівняння. Навіть у лінійному наближенні одного із основних параметрів феноменологічної моделі, отримання дає якісно однакові із експериментом залежності розвитку однієї двойникової прослойки при різних режимах навантаження. Незва- жаючи на велику кількість експериментальних робіт, присвячених двойниковій прослойці, у різних середовищах та в різних умовах поки що немає. В деяких роботах описувався розвиток двійників в термінах дислокаційних взаємодій. Однак, в цих роботах математичний підхід продемонстровано тільки стосовно пружних двійників. Ця робота є вступом до створення кількісної теорії двойників в металевих кристалах. Порівняння з експериментальними результатами запропонованої феноменологічної моделі були обмежені у цій роботі задачею демонстрації працездатності моделі в сенсі передбачення найбільш специфічних ефектів розвит-ку двойників за різних умов та режимів навантаження. Зокрема, з моделі слідує ефект втрати та подальшого відновлення зміцнення межами двойників при пульсації прикладеної напруги, ефект Башингера при зміні знаку прикладеної напруги та ряд інших ефектів, що спостерігаються експериментально на ряді різних металевих кристалів.

Ключові слова: модель, двойник, кристал, режим навантаження, диференціальне рівняння, дислокації лісу.

M. Е. БОСИН, Е. П. ГОМОЗОВ, Т. Г. ДРЫГАЧ

MATHEMATICAL MODEL OF THE DEVELOPMENT OF A SINGLE TWIN LAYER IN METAL CRYSTALS

У останні десять років двійникування почало досить активно використовуватися при створенні наноструктур та нанотехнологій. За допомогою аналізу експериментальних даних, які знаходяться у науковій літературі, отримана математична модель розвитку однієї двойникової прослойки в металевих кристалах. Модель має вид диференціального рівняння, порядок якого визначається необхідною точністю отримання результатів, пов’язаних з розв’язком цього рівняння. Навіть у лінійному наближенні одного із основних параметрів феноменологічної моделі, отримання дає якісно однакові із експериментом залежності розвитку однієї двойникової прослойки при різних режимах навантаження. Незважаючи на велику кількість експериментальних робіт, присвячених двойниковій прослойці, у різних середовищах та в різних умовах поки що немає. В деяких роботах описувався розвиток двійників в термінах дислокаційних взаємодій. Однак, в цих роботах математичний підхід продемонстровано тільки стосовно пружних двійників. Ця робота є вступом до створення кількісної теорії двойників в металевих кристалах. Порівняння з експериментальними результатами запропонованої феноменологічної моделі були обмежені у цій роботі задачею демонстрації працездатності моделі в сенсі передбачення найбільш специфічних ефектів розвитку двойників за різних умов та режимів навантаження. Зокрема, з моделі слідує ефект втрати та подальшого відновлення зміцнення межами двойників при пульсації прикладеної напруги, ефект Башингера при зміні знаку прикладеної напруги та ряд інших ефектів, що спостерігаються експериментально на ряді різних металевих кристалів.

Ключові слова: модель, двойник, кристал, режим навантаження, диференціальне рівняння, дислокації лісу.

M. Y. Bosin, Y. P. Gomozov, T. G. Drygach, 2021

© M. Y. Bosin, Y. P. Gomozov, T. G. Drygach, 2021

ISSN 2222-0631 (print)
ondly, under different loading conditions: under creep [9], under shock loads [11], under cyclic loads [12], under uniform loads [4; 7], under stress pulsations [8]. It was also interesting to take into account the presence of defects in crystals, for example, the type and density of forest dislocations [7], radiation defects [10].

Formulation of the problem. In this work, an attempt is made to obtain an *isotropic mathematical model* of the behavior of twinning layers, the conclusions of which would correspond to the experimental results. We emphasize that so far we are not talking about the creation of a rigorous mathematical theory; only after clarifying the exact meaning of the phenomenological parameters can we talk about the transformation of the phenomenological model into a *physical and mathematical theory*.

Mathematical model. Fig. 1 shows a particular case of the arrangement of a twinning layer in the parent crystal. Particularly, firstly, the twin is plane-parallel (most of the twins are wedge-shaped, and the top of the twinned wedge can be located inside the crystal), and secondly, twin boundaries are perpendicular to the faceting of the sample only at a certain orientation of the latter. The initial thickness of the twin is indicated in Fig. 1 through «b₀». After the load P is applied (as shown in Fig. 1), the thickness of the twin increases and reaches the value Δb. We denote the relative thickening of the twin by ε:

$$\varepsilon = \frac{\Delta b}{b_0}. \quad (1)$$

Taking into account the property of twin boundaries to accumulate and possibly lose hardening which is irreversibility and reversibility observed during the development of twins, we represent the relative thickening of the twin in the form:

$$\varepsilon = \varepsilon_e + \varepsilon_p, \quad (2)$$

where \(\varepsilon_e\) – is the elastic part of the thickening, which disappears after stress relief, and \(\varepsilon_p\) – the plastic (irreversible) part of the thickening.

For \(\varepsilon_e\) by analogy with *Hooke's law*, we write

$$\varepsilon_e = \frac{\sigma}{G_2}, \quad (3)$$

here \(G_2\) plays the role of an elastic modulus for a single twin.

For \(\varepsilon_p\), using the concept of *viscous resistance forces* that cause irreversibility of the displacement of twin boundaries, we can write by analogy with the well-known *Newton's law* (the stress of resistance to plastic shear is proportional to the strain rate):

$$\frac{d\varepsilon_p}{dt} = \dot{\varepsilon}_p = \frac{\sigma}{\eta}, \quad (4)$$

here \(\eta\) is a parameter that has the dimension of the usual viscosity coefficient.

With the growth of the twin, the value of \(\eta\) changes in connection with a change in the dislocation structure in the vicinity of the twin boundaries and, consequently, with a change in the "viscous resistance" forces. That's why

$$\eta = \eta(\varepsilon_p). \quad (5)$$

Restricting ourselves to the linear part of the expansion of \(\eta(\varepsilon_p)\) in the *Maclaurin series*, we write:

$$\eta(\varepsilon_p) \approx \eta_0 + \frac{d\eta}{d\varepsilon_p}\varepsilon_p, \quad (6)$$

here \(\eta_0\) is the value of \(\eta\) at \(\varepsilon_p = 0\). From (6) and (4) we find:

$$\sigma = \left(\eta_0 + \frac{d\eta}{d\varepsilon_p}\varepsilon_p\right)\dot{\varepsilon}_p = \eta_0\dot{\varepsilon}_p + \frac{d\eta}{d\varepsilon_p}\varepsilon_p\dot{\varepsilon}_p = \eta_0\dot{\varepsilon}_p + \eta_\dot{\varepsilon}_p. \quad (7)$$

The parameter \(\eta\) has the dimension of the elastic modulus, so we introduce the notation:

$$\eta = G_1. \quad (8)$$

From (2), (3), (7) and (8) we obtain a differential equation connecting \(\sigma\) and \(\varepsilon\):

$$\sigma + \tau_\varepsilon \dot{\varepsilon} = G\left(\varepsilon + \tau_\varepsilon \dot{\varepsilon}\right), \quad (9)$$

here

$$\tau_\varepsilon = \frac{\eta}{G_1 + G_2}, \quad G = \frac{G_1 G_2}{G_1 + G_2}, \quad \tau_\sigma = \frac{\eta_0}{G_1}. \quad (10)$$
Note that equation (9) has a form similar to the equation of the *standard linear body*. The value of G in this model is the *relaxed elastic modulus*, τ_ε and τ_σ are the stress relaxation times (at constant deformation) and deformation (at constant stress), respectively.

Solving equation (9) with either law $\sigma(t)$ or $\varepsilon(t)$ given, we find the other function. Comparing the curves $\varepsilon(t)$ and $\sigma(t)$, that is, making a formal change in the solution $t \to t(\sigma)$ or $t \to t(\varepsilon)$, one can construct diagrams $\sigma - \varepsilon$. Comparing these diagrams with the experimental curves $\sigma(\varepsilon)$, it is possible to recover the parameters G_1, G_2, η_0 (see below).

Equation (9) is an approximate model of the twin development process. To increase the accuracy, one can take into account the next (quadratic) term in the expansion of $\eta(\varepsilon_p)$ in powers of ε_p. Then instead of equation (6) we get the formula:

$$
\eta(\varepsilon_p) \approx \eta_0 + \frac{d\eta}{d\varepsilon_p} \varepsilon_p + \frac{1}{2} \frac{d^2\eta}{d\varepsilon_p^2} \varepsilon_p^2,
$$

and instead of (9), the equation

$$
\sigma = \eta_0 \left(\dot{\varepsilon} - \frac{\dot{\varepsilon}}{G_2} \right) + G_1 \left(e - \frac{\varepsilon}{G_2} \right) + \frac{1}{2} \left(\dot{\varepsilon} - \frac{\dot{\varepsilon}}{G_2} \right)^2 \left(\dot{\varepsilon} - \frac{\dot{\varepsilon}}{G_2} - G_1 \left(e - \frac{\varepsilon}{G_2} \right) \right).
$$

Here ξ is a new parameter, the meaning of which, like the meaning of other parameters, can be determined by studying their dependence on various factors (temperature, speed and loading mode, structure, etc.).

Let’s consider the main loading modes.

1. **Creep mode.**

 Equation (9) can be written under the condition $\sigma = \text{const}$:

 $$
 \dot{\varepsilon} + \frac{1}{\tau_\varepsilon} \varepsilon = \frac{\sigma}{G \tau_\sigma}.
 $$

 The solution of this equation under the initial condition $\varepsilon(0) = 0$ has the form:

 $$
 \varepsilon = \frac{\sigma}{G} \left(1 - e^{-\frac{t}{\tau_\sigma}} \right).
 $$

2. **Active loading mode at $\sigma = \text{const}$**.

 We put $\sigma = \xi$, that is,

 $$
 \sigma = \xi t.
 $$

 Equation (9) then takes the form

 $$
 \dot{\varepsilon} + \frac{1}{\tau_\varepsilon} \varepsilon = \frac{\xi}{G \tau_\sigma} (t + \tau_\varepsilon).
 $$

 The solution to this equation under the initial condition $\varepsilon(0) = 0$ is the function

 $$
 \varepsilon = \frac{\xi}{G} \left(\frac{\tau_\varepsilon}{\tau_\sigma} - 1 \right) \left(1 - e^{-\frac{t}{\tau_\sigma}} \right) + \frac{\xi}{G} \tau_\sigma.
 $$

 The relaxation times τ_ε and τ_σ in metals are most often related by the inequality $\tau_\varepsilon \ll \tau_\sigma$, that is, $G_2 \gg G_1$. For a loading duration $t \ll \tau_\sigma$ from equation (18) we obtain:
\[\varepsilon = \frac{C}{2\eta_0} t^2. \]

Substituting (16) into a more precise equation (12), we get:

\[\ddot{\varepsilon} = 2 \left(\dot{\varepsilon} - \frac{C}{G_2} t \right)^2 \left[\frac{\eta_0}{G_1} \left(\dot{\varepsilon} - \frac{C}{G_2} t \right) + \left(\dot{\varepsilon} - \frac{C}{G_2} t \right) - \frac{C}{G_1} t \right] + \frac{\ddot{\varepsilon}}{G_1} \left(\dot{\varepsilon} - \frac{C}{G_2} t \right). \]

(20)

If we introduce an auxiliary function \(\varphi(t) = \dot{\varepsilon} - \frac{C}{G_2} t \), then instead of (20) we can write

\[\ddot{\varphi} = 2 \left(\frac{\varphi}{t} \right) \left[\frac{\eta_0}{G_1} \varphi + \varphi - \frac{C}{G_2} t \right] + \frac{\ddot{\varphi}}{G_1} \ddot{\varphi}. \]

(21)

Recall that \(\frac{C}{G_2} t = \sigma \) is the elastic part of the deformation, so that the function \(\varphi(t) \) has the meaning of the irreversible part of the deformation \(\varepsilon_p = \varepsilon - \varepsilon_e \).

3. Active loading mode at \(\varepsilon = \text{const} \).

Let \(\varepsilon = \dot{\varepsilon} t \), i.e., the rate of deformation change is \(\dot{\varepsilon} = k \).

Equation (9) then takes the form

\[\sigma + \frac{1}{\tau_e} \sigma = \frac{kG}{\tau_e} (t + \tau_e). \]

(23)

The solution of this equation with the initial condition \(\sigma(t=0) = 0 \) leads to the function

\[\sigma = kGt + \frac{kG}{\tau_e} (\tau_e - t) \left(1 - e^{-\frac{t}{\tau_e}} \right). \]

(24)

Expression (24) can be simplified by expanding the exponent in a Maclaurin series and choosing 2 – 3 terms in the expansion. But this requires the fulfillment of the inequality \(t \ll \tau_e \) which should be dictated by the conditions of the experiment.

Substituting (22) into equation (12), we obtain:

\[\varphi = 2 \frac{G_2}{G_1} \left[\frac{k - \sigma}{G_2} \right]^2 \left[\sigma - \eta_0 \left(k - \frac{\sigma}{G_2} \right) - G_1 \left(G_2 - \frac{G_1}{G_2} \right) \right] - \frac{G_2}{G_1} \left(k - \frac{\sigma}{G_2} \right) \xi. \]

(25)

We introduce an auxiliary function

\[\psi(t) = kt - \frac{\sigma}{G_2}. \]

(26)

This function has the same meaning as \(\varphi(t) \), introduced earlier, that is, it is the difference between deformation and its elastic part. But since plastic deformation in the modes \(\dot{\varepsilon} = \text{const} \) and \(\dot{\varepsilon} = \text{const} \) proceeds in different ways, the functions \(\psi(t) \) and \(\varphi(t) \) are significantly different. Taking into account (26), equation (25) can be written in the form:

\[\ddot{\psi} = 2 \frac{\psi^2}{\gamma^2} \left[\frac{\eta_0}{G_1} \psi + \frac{G_2}{G_1} \left(\frac{G_2}{G_1} + \gamma \right) \right] - \frac{G_2}{G_1} \xi \dot{\psi}. \]

(27)

The solution of this equation under the initial condition \(\sigma(t=0) = 0 \) or, which is the same, \(\psi(t=0) = 0 \) gives the dependence \(\sigma(t) \) during loading. The latter can be measured experimentally. Comparison, firstly, provides information about the effectiveness of the model, and secondly, it allows to determine the parameters \(G_1 \), \(G_2 \), \(\eta_0 \), \(\xi \).

4. Mode of pulsating loads.

Let us choose for the pulsation the regime \(\dot{\sigma} = \text{const} = \overline{C} \) during loading and \(\dot{\sigma} = \text{const} = \overline{C'} \) during unloading. Let also the loading rate be significantly less than the unloading rate \(\overline{C} \ll \overline{C'} \), as it was in the experiments [8]. The voltage ripple amplitude is denoted by \(\sigma_0 \). Solving equation (9) sequentially, first for loading at a rate of \(\dot{\sigma} = \overline{C} \), then for unloading at a rate of \(\dot{\sigma} = \overline{C'} \), then for repeated loading at the same rate \(\overline{C} \) and for unloading at a rate \(\overline{C'} \), etc., we obtain a diagram similar to that obtained experimentally in [8]: with each cycle, a certain displacement of twin boundaries is ob-
served, which decays with the number of cycles. For each repeated cycle, the relative displacement of twin boundaries is equal to

\[\beta_k = \varepsilon' e^{-kG\sigma_0/\eta} \]

(28)

here \(\varepsilon' = \varepsilon_0 - \sigma_0 / G_2 \) is the relative displacement of twin boundaries during the first loading cycle minus the elastic part \(\sigma_0 / G_2 \). Experiments [8, 12] show that the most stable measure of this loss effect and the subsequent restoration of hardening by twin boundaries under voltage pulsations is the value \(\delta = \sum \beta_k \). The series with terms given by (28) is convergent, it is easy to calculate its sum:

\[\delta = \sum_{k=1}^{\infty} \beta_k = \varepsilon' \frac{1}{\frac{G\sigma_0}{\eta} - 1}. \]

(29)

Relation (29) is in satisfactory agreement with experiment.

5. Mode of alternating loads.

Let us apply equation (9) to study the behavior of twin boundaries under alternating loading of the sample. Let the second loading, in contrast to the case considered above, be performed at a speed \(\sigma = -\sigma_0 \), that is, a load of the opposite sign \(\sigma = -\sigma \) is applied (the time is counted from the beginning of repeated loading). Under the initial condition \(\varepsilon|_{t=0} = \varepsilon' \) for \(\varepsilon(t) \) we find:

\[\varepsilon = \left[\varepsilon' + \frac{\eta}{G}(\tau_\varepsilon - \tau_{\sigma}) \right] e^{-\frac{t}{\tau_\sigma}} + \frac{\eta}{G}(\tau_\sigma - \tau_\varepsilon - t). \]

(30)

By the time \(t_0 \), stress \(\sigma_0 \) and deformation \(\varepsilon_2 \) will be reached, which is calculated by substituting the value \(t_0 = \frac{\sigma_0}{\eta} \) into expression (30). If we postpone the \(\varepsilon(\sigma) \) curve under loading of the opposite sign in the positive direction of the coordinate axes, as is done in the illustration of the Bauschinger effect [13], then for \(\sigma = \sigma_0 \) the deformation value will be

\[\varepsilon'_2 = 2\varepsilon' - \varepsilon_2. \]

(31)

The measure of the Bauschinger effect is usually taken as the measure of the discrepancy between the curves of repeated loading in the forward and reverse directions at \(\sigma = \sigma_0 \). Denoting it by \(B \), we obtain

\[B = 2\varepsilon' \left(1 - e^{-\frac{t}{\tau_\sigma}} \right). \]

(32)

or, making the substitution \(t_0 = \frac{\sigma_0}{\eta} \), instead of (32) we write

\[B = 2\varepsilon' \left(1 - e^{-\frac{\sigma_0}{\eta\tau_\sigma}} \right). \]

(33)

Expressions (32) and (33) make it possible to estimate the measure of the Bauschinger effect in twinning within the framework of the phenomenological consideration described above. To simplify calculations, consider the limiting case \(\tau_\varepsilon \ll \tau_{\sigma} \) and \(t \ll \tau_{\sigma} \). Moreover, from (32) we find:

\[B \approx 2\varepsilon' \frac{G_1}{\eta_0} t_0, \]

(34)

and from (19) for \(t_0 \) we have

\[t_0 \approx \sqrt{\frac{2\eta_0\varepsilon_0}{\eta}}. \]

(35)

Substituting (35) into (34), we obtain

\[B \approx \frac{G_1}{\eta_0} \sqrt{\frac{2\varepsilon_0}{\eta}} \]

(36)

or, setting \(\varepsilon' \approx \varepsilon_0 \) (since for \(G_2 \gg G_1 \), \(\varepsilon_\varepsilon \ll \varepsilon_p \), \(\varepsilon_\varepsilon \approx \varepsilon \)), instead of (36) we can write

\[B \approx 2\sqrt{\frac{G_1}{\eta_0}} \varepsilon_0^\frac{2}{3}. \]

(37)
Approximate formula (37) is more convenient for analyzing the dependences of β_g on various factors.

6. Values of phenomenological parameters.

Thus, the mechanical behavior of twin boundaries under different loading conditions within the framework of the proposed phenomenological consideration is described in terms of three parameters G_1, G_2, and η_0. These parameters are determined both by the characteristics of the twin boundaries themselves and by the defect structure of their surroundings and should, therefore, depend on the degree of incoherence of twin boundaries, the type and density of forest dislocations in crystals, the presence of clusters of point defects, etc.

The parameter η_0 is most easily determined by comparing the experimental dependence $\varepsilon(t)$ during the loading period with the approximate formula (19), which includes only this parameter. The comparison showed that this parameter is sensitive to the density of dislocations of the body in crystals: with an increase in the initial density of the pyramidal forest in Zn crystals from 10^3 to 10^5 cm$^{-2}$, the value of η_0 increases from 9.103 to 4.5.104 MPa·s. This makes it possible to assume that the viscous deceleration of twin boundaries is largely due to the presence of forest dislocations in the crystal.

The parameter G_1 with a known value of η_0 can be found from the measured values δ or β_g using formulas (29) and (36). The order of this value for twins in Bi and Zn crystals is 10 MPa.

The parameter G_2 is easily estimated from the reverse displacement of the twin boundaries after unloading the crystal, that is, from the value of the elastic part of the relative deformation ε_e using formula (3). The order of this value $G_2 \sim 10^2$ MPa (for Bi) and $G_2 \sim 10^4$ MPa (for Zn), which confirms the condition $G_2 \gg G_1$ used above.

Results of work. Thus, the proposed model predicts the behavior of twin boundaries under various loading conditions. After obtaining a mathematical model by comparing its conclusions and experimental data, some conclusions were made about the meaning of the phenomenological parameters included in the model equation.

In particular, the model implies the effect of loss and subsequent restoration of hardening by twin boundaries during stress pulsations, the Bauschinger effect when the applied voltage changes sign, described in the literature, and a number of other effects observed experimentally on a number of different metal crystals.

Prospects for further research. In the future, the authors intend, by analyzing all the experimental data available in the literature, to clarify the meaning of all the phenomenological parameters of the phenomenological model proposed in the work. Only after this can we talk about the creation of a quantitative theory of twinning.

Conclusions. This work is an introduction to the creation of a quantitative theory of twinning in metal crystals. Comparisons with the experimental results of the proposed phenomenological model were limited in this work to the task of demonstrating the performance of the model in the sense of predicting the most specific effects of the development of twins under various conditions and loading modes.

Bibliography

1. Бойко В. С., Гарбер Р. И., Хосевич А. М. Обратимая деформация кристаллов. – М.: «Наука», 1991. – 268 с.

2. Christian I. W., Mahajan S. Deformation Twinning. Progress in Materials Science. – 1995. – Vol. 39 – P. 157 – 167.

3. Bosin M. E., Lavrentiev F. F., Nikiorenko V. H., Zaitsova H. O. Особенности двойникования в ростовых бикристаллах цинку двойниковой ориентации // УФЖ. – 1995. – T. 40. – № 6. – С. 559 – 562.

4. Bosin M. E., Lavrentiev F. F., Nikiorenko V. H. О движении ростовой межзеренной границы двойниковой ориентации в бикристалле сплава (Fe+3,5% Si) // ФТТ. – 1996. – Т. 38, – № 12. – С. 3625 – 3627.

5. Bosin M. E., Lavrentiev F. F., Nikiorenko V. N. On the Motion of a Crown Intergranular Boundary with Twin Orientation in Bicrystals of Pure Zine // Physica status solidi (a). – 1996. – Vol. 157. – P. 213 – 216.

6. Bosin M. E. Specific features of twin boundaries motion in beryllium single crystals at the twinning and untwining // Functional materials. – 1997. – Vol. 4. – № 4. – P. 557 – 559.

7. Bosin M. E., Lavrentiev F. F., Nikiorenko V. H. Область аккомодации – мера релаксации напряжений, локализованных на границах двойников в монокристаллах цинка // The XXI International Conference on Relaxation Phenomena In Solids (RPS-21). – Voronezh, 2004.

8. Bosin M. E., Lavrentiev F. F., Nikiorenko V. H. Дультим влияния дислокаций леса на развитие двойникования в монокристаллах цинка // The Third International Conference «Deformation and Fracture of Materials and Nanomaterials». – Москва. – 2009. – С. 82 – 83.

9. Bosin M. E., Russev V. M. Особенности влияния дислокаций леса на скорость движения границ двойников в монокристаллах цинка на границе деформации // Сб. докладов Международной научной конференции «Актуальные проблемы физики твердого тела» (ФТТ – 2011). – Минск, 2011. – С. 260 – 262.

10. Bosin M. E., Головко Е. И. Влияние нейтронного облучения на движение границ двойников в монокристаллах высоколегированной стали // Материалы до-кладов XX Петербургских чтений по проблемам прочности. – Санкт-Петербург, 2012. – С. 217 – 219.

11. Bosin M. E., Омельченко Н. В. Двигательная пластика двойников в монокристаллах цинка при ударном нагружении // Сб. трудов Международной конференции: «Актуальные проблемы прочности». – Харьков, 2014. – С. 123 – 124.

12. Bosin M. E., Russev V. M. Закономерности движения двойниковых границ в монокристаллах цинка и его сплавах с медью при магнитном использовании нагружении // Сб. трудов XIX Международной конференции «Физика прочности и пластичности материалов». – Самара, 2015. – С. 643 – 644.

13. Башманов М. М., Босин М. Е., Папиров И. И. Циклический эффект Баушингера на границах механических двойников цинка // ФММ. – 1973. – Т. 35. – № 1. – С. 220 – 221.
References (transliterated)

1. Boyko V. S., Garber R. I., Khosevich A. M. Obratimaya deformatsiya kristallov [Reversible deformation of crystals]. Moscow, Nauka Publ., 1991. 268 p.
2. Christian I. W., Mahajan S. Deformation Twinning. Progress in Materials Science. 1995, vol. 39, pp. 157–167.
3. Bosin M. E., Lavrent'ev F. F., Nikiforenko V. N. Geometric and physical features of twin boundaries in the crystals of monocrystalline zinc. UFZh [Ukrainian Journal of Physics]. 1995, vol. 40, no. 6, pp. 559–562.
4. Bosin M. E., Lavrent'ev F. F., Nikiforenko V. N. O dvizhenii rostovoy mezhdvuzhnernoy granitsy dvynkovoy orientatsii v kristalste splava (Fe + 3.5% Si) [On the motion of the growth boundary in the crystal orientation in the bicrystal of the alloy (Fe + 3.5% Si)]. FTT [Solid State Physics]. 1996, vol. 38, no. 12, pp. 3625–3627.
5. Bosin M. E., Lavrent'ev F. F., Nikiforenko V. N. On the Motion of a Crown Integrangular Boundary with Twin Orientation in Bicrystals of Pure Zine. Physica status solidi (a). 1996, vol. 157, pp. 213–216.
6. Bosin M. E. Specific features of twining boundaries motion in beryllium single crystals at the twinning and untwining. Functional materials. 1997, vol. 4, no. 4, pp. 557–559.
7. Bosin M. E., Lavrent'ev F. F., Nikiforenko V. N. Oblast' akkomodatsii – mera relaksatsii napryazheniy, lokalizovannykh na granitsakh dvynkov v monokristallakh zinka [The accommodation region is a measure of relaxation of stresses localized at the boundaries of twins in single crystals]. The XXI International Conference on RELAXATION PHENOMENA IN SOLIDS (RPS-21). Voronezh, 2004.
8. Bosin M. E., Lavrent'ev F. F., Nikiforenko V. N. Dualism vliyaniya dislokatsiy na dvizhenie granit v monokristallakh [Dualism of the influence of forest dislocations on the development of twinning in single crystals]. The Third International Conference "Deformation and Fracture of Materials and Nanomaterials." Moscow, 2009, pp. 82–83.
9. Bosin M. E., Russkin V. M. Osobennosti vliyaniya dislokatsiy na dvizhenie granit v monokristallakh zinka [Features of the influence of forest dislocations on the speed of motion of twin boundaries in single crystals during creep]. Sb. dokladov Mezhdunarodnyy nauchnoy konferentsii "Aktual'nye problemy fiziki tvyierdogo tela" (FTT – 2011) [Sat. reports of the International Scientific Conference "Actual Problems of Solid State Physics" (SSP – 2011)]. Minsk, 2011, pp. 260–262.
10. Bosin M. E., Gomozov E. P. Vliyanie neytronnogo oblucheniya na dvizhenie granit v monokristallakh bismuta [Influence of neutron irradiation on the motion of twin boundaries in bismuth single crystals]. Materialy dokladov XX Peterburgskikh chenii po problemam prochnosti [Proceedings of the XX St. Petersburg Readings on Strength Problems]. St. Petersburg, 2012, pp. 217–219.
11. Bosin M. E., Ome/chenko N. V. Dvizhenie granit dvynkov v monokristalakh zinka [Vanishing of twin boundaries in single crystals under shock loading]. Sb. trudov Mezhdunarodnoy konferentsii "Aktual'nye problemy prochnosti" [Sat. Proceedings of the International Conference "Actual Problems of Strength"]. Kharkov, 2014, pp. 123–124.
12. Bosin M. E., Russkin V. M. Zakonomernosti dvizheniya dvynkovykh granit v monokristalakh berillia i ego splavakh s med'yu pri mnogokratnom tsiklicheskom nagruzhenii [Regularities of motion of twin boundaries in single crystals of beryllium and its alloys with copper under multiple cyclic loading]. Sb. trudov XIX Mezhdunarodnoy konferentsii "Fizika prochnosti i plasticnosti materialov" [Sat. Proceedings of the XIX International Conference "Physics of Strength and Plasticity of Materials"]. Samara, 2015, pp. 643–644.
13. Bashmanov V. M., Bosin M. E., Papirov I. I. Taikicheksky eylefekt Baushingera na granitsakh mechanicheskikh dvynkov berillia [Cyclic Bau- schinger effect on the boundaries of mechanical twins of beryllium]. FMM [Physics of Metals and Metal Science]. 1973, vol. 35, no. 1, pp. 220–221.

Received (надійшла) 05.11.2021

Відомості про авторів / Сведения об авторах / Information about authors

Босин Марк Євгенович – доктор фізико-математичних наук, професор, завідувач кафедри математики та фізики, Харківська гуманітарно-педагогічна академія, м. Харків; тел.: (057) 732-87-33; e-mail: kafedramath.ph36@gmail.com.

Богдан Марк Євгенович – доктор фізико-математичних наук, професор, заведуючий кафедри математики та фізики, Харківська гуманітарно-педагогічна академія, м. Харків; тел.: (057) 732-87-33; e-mail: kafedramath.ph36@gmail.com.

Гомозов Євген Павлович – кандидат фізико-математичних наук, доцент, Національний технічний університет «Харківський політехнічний інститут», м. Харків; тел.: (057) 707-63-51; e-mail: Yevgen.Gomozov@khpi.edu.ua.

Гомозов Евгеній Павлович – кандидат фізико-математичних наук, доцент, Національний технічний університет «Харківський політехнічний інститут», м. Харків; тел.: (057) 707-63-51; e-mail: Yevgen.Gomozov@khpi.edu.ua.

Гомозов Євген Павлович – PhD in Physics and Mathematics, Associate Professor of Computer Mathematics and Data Analysis, National Technical University "Kharkiv Polytechnic Institute", Kharkiv; tel.: (057) 707-63-51; e-mail: Yevgen.Gomozov@khpi.edu.ua.

Дрижчи Тетяна Григорівна – кандидат педагогічних наук, старший викладач, Харківська гуманітарно-педагогічна академія, м. Харків; тел.: (057) 732-87-33; e-mail: kafedramath.ph36@gmail.com.

Дрижча Татьяна Григорьевна – кандидат педагогических наук, старший преподаватель кафедры математики и физики, Харьковская гуманитарно-педагогическая академия, г. Харьков; тел.: (057) 732-87-33; e-mail: kafedramath.ph36@gmail.com.

Dryyczch Tetyana Gyyzorivina – Candidate of Pedagogics Sciences, Senior Lecturer at the Department of Higher Mathematics and Physics, Ukrainian Engineering Pedagogics Academy, Kharkiv; tel.: (057) 732-87-33; e-mail: kafedramath.ph36@gmail.com.

Вісник Національного технічного університету «ХПІ». Серія: Математичне моделювання в техніці та технологіях, № 2 ’2021.