Acceptance and willingness to pay for COVID-19 vaccine among school teachers in Gondar City, Northwest Ethiopia

Kegnie Shitu* 1, Maereg Wolde, Simegnew Handebo and Ayenew Kassie

Abstract

Background: Vaccination is one of the strategies to prevent the COVID-19 pandemic. COVID-19 vaccine acceptance and cost are important factors affecting its uptake. However, little is known about acceptance and willingness to pay (WTP) for the vaccine.

Objective: This study aimed to assess acceptance and WTP for the COVID-19 vaccine and its associated factors among school teachers.

Methods: An institution-based cross-sectional study was conducted among school teachers. A stratified simple random sampling technique was employed to select the participants. The contingent valuation method was used to assess each respondent’s willingness to pay for the COVID-19 vaccination. A multivariable logistic regression analysis was employed to identify significant factors associated with WTP for the COVID-19 vaccine. A p value of less than 0.05 and a 95% confidence interval were used to declare statistical significance.

Result: A total of 301 school teachers participated with a response rate of 99.6%. The mean age of participants was 39.5 (SD ± 8.7 years). The mean WTP for the COVID-19 vaccine is US$ 4.98 (± US$ 1.6). Less than half (40.8%) of participants were willing to accept the COVID-19 vaccine whereas only 36.9% (95% CI, (31.6%, 42.5%)) of them were WTP for the vaccine. Being male (AOR = 3.23; 95% CI, (1.70, 6.14)), being a private school teacher (AOR = 3.27; 95% CI, (1.76, 6.10)), having high perceived susceptibility to COVID-19 (AOR = 2.69; 95% CI, (1.38, 5.24)), having high perceived seriousness of COVID-19 (AOR = 4.04; 95% CI, (1.80, 9.1)), and having high perceived benefit of COVID-19 vaccine (AOR = 3.0; 95% CI, (1.41, 6.34)) were significant factors associated with WTP for COVID-19 vaccination.

Conclusion and recommendation: The magnitude of acceptance and WTP for the COVID-19 vaccine was low among school teachers. Male sex, private school affiliation, high perceived risk of COVID-19, and benefit of COVID-19 vaccine were the most important factors affecting school teacher’s WTP for COVID-19 vaccine. Thus, health communication programs should give due emphasis to raising teacher’s perceived risk of COVID-19 and the benefit of the COVID-19 vaccine to improve their acceptance and WTP for the vaccine. Furthermore, subsidizing the cost of the vaccine may improve their WTP.

Keywords: Willingness to pay, COVID-19, Ethiopia
COVID-19 is a virus that is very contagious with a fast-spreading rate to every part of the world. As of 30 March 2021, about 127,349,248 confirmed cases of COVID-19, including 2,787,593 deaths have been reported worldwide. Newly reported cases are increasing almost in all parts of the world since the last 2 weeks of March 2021 [1, 2].

Daily new COVID-19 infections reported in Ethiopia each day reaches a new high: As of 27 March 2021, about 2142 new cases and 15 new deaths bring the total cases and death to be 198,794 and 2784 respectively [3]. Regardless of this increment, preventive measures taken by the people are not satisfactory to tackle the pandemic [4, 5]. In this point of view, COVID-19 vaccination has a crucial role to reduce the transmission of the pandemic.

Various studies done in different parts of the world have been reported different levels of acceptance/willingness to pay (WTP) for COVID-19. For instance, a survey on willingness to vaccinate against COVID-19 in Australians revealed 4.9% said they would not get the vaccine whereas 85.8% of the participants are willing to get the vaccine if it became available [6].

There is a relatively high vaccine acceptance rate for COVID-19 vaccines in Chile, where a study claimed 90.6% of the general public would be willing to pay for a COVID-19 vaccine. In this study, only 55% of individuals are willing to pay the initial value and a second value, higher than the first; whereas 12% who said “yes” to the first value, are not willing to pay for the second higher value [7]. Another study from Indonesia revealed that 78.3% of participants were willing to pay for the COVID-19 vaccine with a mean and median willingness to pay of US$ 57.20 and US$ 30.94 respectively [8]. A similar study in Malaysia reported that the mean amount that participants were willing to pay for a dose of the COVID-19 vaccine was US$30.66 [9].

From preexisted literature, willingness to pay for vaccination against COVID-19 was found to be associated with various factors. For instance, the study done in Australia revealed that reluctance to be vaccinated against COVID-19 related to inadequate health literacy and lower education level were significant factors associated with COVID-19 vaccination [6]. Another study from Chile reported that willingness to pay depends on the preexistence of chronic disease, knowledge of COVID-19, being sick with COVID-19, perception of government performance, employment status, income, health care, adaptation to quarantine with children at home, and whether the person has recovered from COVID-19 [7]. Moreover, in Indonesia being a healthcare worker, having a high income, and having high perceived risk were associated with a higher willingness to pay [8].

Nowadays, vaccine hesitancy is becoming a common phenomenon because people are highly affected by untrusted messages transmitted via various channels (social media) [10]. In turn, this affects vaccine uptake and coverage directly. Given this, working intensively on messaging about the vaccine needs to be done well before the vaccine is available [11]. To do so, determining the level of acceptance and perceptions of the vaccine is somewhat vital to design a tailored vaccine communication program.

However, how developing countries should accept/pay for COVID-19 vaccine is not well investigated even if it is very important to know. High levels of vaccination coverages are a key indicator of vaccine acceptance. Therefore, building public confidence in vaccines is an important starting point toward acceptance and sufficient uptake of safe COVID-19 vaccines. In this regard, identifying and addressing possible gaps and COVID-19 vaccine-related misconceptions in the public is a key element to be taken into consideration [12]. Hence, this study aimed at assessing the acceptance and willingness to pay for COVID-19 and associated factors among school teachers in Gondar City. To the best of the authors’ knowledge, this study is not conducted in Ethiopia. Thus, the study also gives insights to the policymakers, vaccine developers, and distributors. Also, it may ignite a new insight for further studies that might be conducted on the study topic for example research on the strategies to leave this work.

Methods and materials
Study design and setting
A school-based cross-sectional study was conducted among primary and secondary school teachers in Gondar City from December 2020 to February 2021. The city is located about 727 km from Addis Ababa, the capital of Ethiopia, and 180 km from Bahir Dar, the capital of Amhara State. At 2019, the total population of the city was estimated to be 500,788, of which 300,000 were men and 200,788 were women. In the administration of the city, 3000 teachers are working in seventeen elementary and secondary schools of the city.

Population
The study participants were primary and secondary school teachers from both private and public schools in Gondar City. Teachers who were not in Gondar City throughout the data collection period; and those who were severely ill to the extent they were not able to fill the questionnaire were excluded from the study.

Sample size determination and sampling method
The sample size was determined using a single population proportion formula, where the following
assumptions were considered: P (78.3%, proportion of willingness to pay from the previous study in Indonesia [8]), d (margin of error = 5%), and $Z\alpha/2$ (the value of the standard normal curve corresponding to the given confidence interval = 1.96) corresponding to 95% confidence level. Indeed, finite population correction formula was employed because the study population was less than 10,000 and a 5% non-response rate was considered. Given this, the final sample size was computed to be 302.

A stratified simple random sampling technique was used to recruit the study participant. Firstly, stratification was done based on ownership of the schools into private (five schools) and public (twelve schools). Then, four governmental and two private schools were selected using the lottery method and the sample was proportionally allocated to each stratum. Finally, study participants were selected randomly using computer-generated random numbers.

Data collection procedure
Data were collected using a pretested structured self-administered questionnaire prepared by the investigators by reviewing different literature [13–18]. In the very beginning, the tool was prepared in English and then translated into the local Amharic language. Backward translation to English was also performed to check for consistency. Pretest was done on 5% of the total sample size and modifications were made accordingly. The final instrument was composed of socio-demographic characteristics, media exposure, health belief model constructs (perceived susceptibility, perceived severity, perceived benefit, perceived barrier), knowledge about COVID-19, preventive behaviors toward COVID-19, and willingness to pay for COVID-19 vaccine sections.

Data collection and supervision were done by public health professionals after they had received a 1-day training on the purpose of the study, procedures of data collection, and ethical considerations during data collection. Safety precautions toward COVID-19 preventions were taken during the data collection process. Each returned instrument was reviewed for completeness and consistency on daily basis.

Measurements
Willingness to pay
It was the outcome variable of the study and defined as the maximum amount of money that teachers were willing to pay for the COVID-19 vaccination. To evaluate willingness to accept (WTA) and willingness to pay (WTP) for COVID-19 vaccination, it was hypothesized that a COVID-19 vaccine had been developed and tested in human and showed a 95% efficacy to prevent COVID-19 in the non-immune population with a 5% chance to produce a mild adverse effect such as mild skin pain, skin rash, and fever [8]. A double bounded dichotomous contingent valuation method (CVM) was used [19]. The respondents were first asked whether they would be willing to pay for the COVID-19 vaccine (WTA). If they said “yes,” they were asked whether they were willing to first bid 200 Ethiopian Birr (ETB) (equivalent with USD 5.15 using a November 2020 exchange rate of USD1 = 38.5 ETB) and then, the bid was either increased by 50 ETB where the highest bid was 300 ETB or decreased by 50 ETB to the lowest bid (100 ETB). A participant who refused to pay at the lowest bid (100 ETB/US$ 2.6) was considered not willing to pay [8, 14].

Perceived susceptibility
Perceived susceptibility was defined as a person’s subjective perception of the risk of acquiring COVID-19 and it was measured by three five-point Likert scale items. It was categorized into high and low based on the cutoff point computed using the demarcation threshold formula: $[(\text{highest score} - \text{lowest score})/2] + \text{lowest score}$. Accordingly, participants who scored 9 and above were considered as having high perceived susceptibility to COVID-19 pandemic and those scored below 9 as having low perceived susceptibility to COVID-19 pandemic, ($\alpha = 0.78$) [17, 18].

Perceived severity
Perceived severity refers to a person’s perception of the seriousness of contracting COVID-19 and is measured by three five-point Likert scale items. It was categorized into high and low based on the cutoff point computed using the demarcation threshold formula: $[(\text{highest score} - \text{lowest score})/2] + \text{lowest score}$. Accordingly, participants who scored 9 and above were considered to have high perceived severity of COVID-19 pandemic, and those who scored below 9 were considered to have low perceived severity of COVID-19 pandemic, ($\alpha = 0.79$) [17, 18].

Perceived benefit
Perceived benefit refers to a person’s perception of the effectiveness of the COVID-19 vaccine to prevent COVID-19 and is measured by three five-point Likert scale items. It was categorized into high and low based on the cutoff point computed using the demarcation threshold formula: $[(\text{highest score} - \text{lowest score})/2] + \text{lowest score}$. Accordingly, participants who scored 9 and above were considered to have a high perceived benefit of taking the COVID-19 vaccine, and those who scored below 9 were considered to have a low perceived benefit from taking the COVID-19 vaccine, ($\alpha = 0.87$) [13, 17, 18].
**Perceived barriers**

Perceived barriers refers to a person’s perception of the obstacles to receiving the COVID-19 vaccine and is measured by five items with a five-point Likert scale. It was categorized into high and low based on the cutoff point computed using the demarcation threshold formula: \((\text{highest score} - \text{lowest score})/2 + \text{lowest score} = [(25 - 5)/2] + 5 = 15\). Accordingly, participants who scored 15 and above were considered to have a high perceived barrier to take COVID-19 preventive measures, whereas respondents who scored below 15 were considered to have a low perceived barrier to take COVID-19 preventive measures, \((\alpha = 0.73) \) [13, 17, 18].

**Knowledge about COVID-19**

Knowledge about COVID-19 refers to participant’s cognition about COVID-19 and it was measured by 11 items with three response categories (1 = True, 2 = False and 3 = I don’t know). A correct answer was coded as “1” point whereas, the incorrect and I don’t know responses were coded to “0.” The sum score was categorized based on the bloom’s cut-off as poor if the score was below 60% (< 9 points), moderate if the score was between 60 and 79% (9-10.9 points), and good if the score was 80% or above (≥ 10 points) \((\alpha = 0.87)\) [16].

**COVID-19 preventive practice**

COVID-19 preventive practice refers to the handwashing, physical distancing, and facemask-wearing practices and is measured by five items with a five-point Likert scale (1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Most of the time, and 5 = All the time). The sum score was categorized based on the bloom’s cut-off as poor if practice score was < 60% (< 12 points), moderate if practice score was between 60 and 79% (12-13.9 points), and good if practice score was ≥ 80% (≥ 14 points) \((\alpha = 0.78)\) [15].

**Data processing and analysis**

Data were coded and cleaned for completeness and consistency. Then, entered into EpiData version 4.6 and exported it into STATA version 14 statistical software for analysis. Descriptive analysis like medians, means, proportions, standard deviations, interquartile range, and frequencies were computed. Multicollinearity was checked using variance inflation factors (VIF) and the value of all variables was less than 5. Simple binary logistic regression analysis was employed and all independent variables with a p value less than 0.25 were entered in multiple binary logistic regression analysis. The overall model fitness of the final model was assessed with the Hosmer and Lemeshow goodness of fit test by which the model showed adequate model fitness. A P value less than 0.05 and a 95% CI were used for declaring statistical significance.

**Ethical considerations**

Ethical clearance was obtained from the Institutional Review Board of the University of Gondar a Ref. No: V/P/RCS/05/589/2020. Letter of the permission was obtained from the Gondar City administrative education office. After the purpose and objective of the study had been explained, written consent was obtained from each study participant. Any identifiers of the study participants were not recorded. Furthermore, the study was conducted following the Helsinki declaration.

**Result**

A total of 301 school teachers participated in this study with a response rate of 99.6%. The mean age of participants was 39.5 (SD ± 8.7 years) with the age range of 21 to 64 years. More than half (59.1%) of the participants were males. The majority (63.5%) of them were public schools. Moreover, the majority (85.1%) of the participants perceived they were healthy and nearly one-fifth (18.9%) of the participants reported that they had been diagnosed with chronic disease (Table 1).

**Perceptions of COVID-19 and its vaccine**

The study participants’ perception about the COVID-19 and its vaccine was evaluated based on the health belief model constructs (perceived susceptibility to COVID-19, perceived seriousness of COVID-19, perceived barrier for COVID-19 vaccination, and perceived benefits of COVID-19 vaccination) (Fig. 1).

**Perceived susceptibility for COVID-19**

More than half of (60.1%) the participants had high perceived susceptibility for COVID-19 (Fig. 1). About 45% (136), 41% (123), and 40% (121) of the participants believed getting COVID-19 is possible in their current status, perceived their chance of getting COVID-19 infection is high and worried about the likelihood of getting COVID-19 infection respectively (Fig. 2).

**Perceived seriousness of COVID-19**

More than half (55%) of the participants perceived the complications from COVID-19 are serious. In addition to this, 44% and 49% of the participants perceived they will be very sick if they get COVID-19 and they were afraid of getting COVID-19 infection (Fig. 3). The majority 71.8% (216) of the participants had high perceived seriousness of the pandemic (Fig. 1).

**Perceived benefits of COVID-19 vaccine**

The majority of the participants (69.4%) had higher perceived benefits of COVID-19 vaccination (Fig. 1). About 54% (163), 52% (157), and 53% (160) of the participants perceived COVID-19 vaccination will prevent them from death, decrease their chance of getting COVID-19
vaccination and let them feel less worried about the pandemic respectively (Fig. 4).

Perceived barriers of COVID-19 vaccination
From the total participants of the study, about 66.5% (200) of them had high perceived barriers to COVID-19 vaccinations (Fig. 1). Moreover, suspiciousness of the vaccine’s efficacy (67%), perceived cost of the vaccine (52%), and mistrusting the government that it may use the vaccine for another purpose (50%) were the commonest perceived barriers of COVID-19 vaccination mentioned by the respondents (Fig. 5).

Knowledge and preventive practice toward COVID-19
Participants’ knowledge of COVID-19 was evaluated by computing each item score and graded based on the bloom’s cut-off into poor, moderate, and good knowledge. Given this, 38.2% (115), 28.6% (86), and 33.2% (100) of the participants had poor, moderate, and good knowledge about the COVID-19 pandemic respectively.

Moreover, school teachers’ COVID-19 preventive practice (social distancing, facemask wearing, and hand-washing practice) was assessed. The overall COVID-19 preventive practice was computed and graded based on the bloom’s cut-off into poor, moderate, and good practice. In this regard, 45.9% (138), 30.9% (93), and 23.2% of the participants had poor, moderate, and good COVID-19 preventive practice respectively.

Willingness to pay and acceptance for COVID-19 vaccine
About 40.8 (95% CI, 35.4, 46.5) of the participants were willing to accept the hypothetical vaccine against the COVID-19 pandemic. The mean and median willingness to pay for the COVID-19 vaccine were US$ 4.98 (± US$ 1.6) and US$ 5.2. From participants who were willing to accept the vaccine about one-fifth were willing to pay US$ 2.59. Moreover, the majority (88.3%) of the participant’s willingness to pay was less than or equal to US$ 6.49. From the total participants, less than half 36.9% (95% CI: (31.6%, 42.5%) of them were willing to pay for the vaccine if it would be available in the market with a price of 100 ETB (US$ 2.6). The most common reasons for not willing to pay were “I don’t

Table 1 Sociodemographic characteristics of school teachers in Gondar City, Northwest, Ethiopia (n = 301)

| Variables                      | Frequency | Proportion |
|--------------------------------|-----------|------------|
| Age (years)                    |           |            |
| Less than 40                   | 53        | 17.61      |
| 40 and above                   | 114       | 37.87      |
| Sex                            |           |            |
| Female                         | 123       | 40.86      |
| Male                           | 178       | 59.14      |
| Religion                       |           |            |
| Orthodox Christian             | 251       | 83.39      |
| Islam                          | 31        | 10.3       |
| Protestant                     | 11        | 3.65       |
| Catholic                       | 4         | 1.33       |
| Others                         | 4         | 1.33       |
| Highest educational level      |           |            |
| Diploma                        | 60        | 19.93      |
| BA/BSc degree                  | 183       | 60.80      |
| Master’s degree                | 58        | 19.27      |
| Family size                    |           |            |
| 4 or below                     | 163       | 54.15      |
| Above 4                        | 138       | 45.85      |
| Monthly income                 |           |            |
| < 5500                         | 75        | 24.92      |
| 5500-6900                      | 78        | 25.91      |
| 6901-7834                      | 75        | 24.92      |
| >7834                          | 73        | 24.25      |
| School type                    |           |            |
| Government                     | 191       | 63.46      |
| Private                        | 110       | 36.54      |
| Listen to radio                |           |            |
| Less than once a week          | 160       | 53.16      |
| At least once a week           | 141       | 46.84      |
| Watch television               |           |            |
| At least once a week           | 139       | 86.05      |
| Less than once a week          | 42        | 13.95      |
| Read magazine/newspaper        |           |            |
| Less than once a week          | 238       | 79.07      |
| At least once a week           | 63        | 20.93      |
| Overall media exposure         |           |            |
| Yes                            | 279       | 92.69      |
| No                             | 22        | 7.31       |
| Presence of known chronic illness |         |            |
| Yes                            | 57        | 18.94      |
| No                             | 244       | 81.06      |
| Self-rated health              |           |            |

Table 1 Sociodemographic characteristics of school teachers in Gondar City, Northwest, Ethiopia (n = 301) (Continued)

| Variables                      | Frequency | Proportion |
|--------------------------------|-----------|------------|
| Healthy                        | 256       | 85.05      |
| Not Healthy                    | 45        | 14.95      |
| Know someone infected by COVID-19 |         |            |
| No                             | 254       | 84.39      |
| Yes                            | 47        | 15.61      |

Note: BA Bachelor of Art, BSC Bachelor of Sciences
trust the vaccine would be efficacious” (65%), “I can’t afford” (17.9%), and “I don’t worry about the pandemic” (12.6%) (Table 2).

Factors associated with willingness to pay for COVID-19 vaccine
In the first step, each independent variable was fitted to the outcome variable in the bivariable logistic regression model. Those variables showed a p value of less than 0.2 were entered into the final multivariable logistic regression model to identify factors associated with willingness to pay for the COVID-19 vaccine. As it is depicted in Table 3 below, male sex, being a private school teacher, high perceived susceptibility to COVID-19, high perceived seriousness of COVID-19, and high perceived benefit of COVID-19 vaccine were statistically significant factors associated with WTP for COVID-19 vaccine.

Male teachers were 3.23 times more likely willing to pay for the COVID-19 vaccine compared to females (AOR = 3.23, 95% CI, (1.70, 6.14)). Teachers from private schools were 3.27 times more likely willing to pay for the COVID-19 vaccine than teachers who were from public schools (AOR = 3.27, 95% CI, (1.76, 6.10)). Regarding perceptions of school teachers toward COVID-19 and its vaccine, teachers with high perceived susceptibility to COVID-19 (AOR = 2.69 95% CI, (1.38, 5.24)), high perceived seriousness of COVID-19 (AOR = 4.04 95% CI, (1.80, 9.1)) and high perceived benefit of COVID-19 vaccine (AOR = 3.0, 95% CI (1.41, 6.34) were more likely willing to pay for COVID-19 vaccine compared to teachers with low perceived susceptibility to COVID-19, low perceived serious of COVID-19, and low perceived benefit of COVID-19 vaccination respectively (Table 3).

Discussion
The main aim of this study was to assess willingness to pay for COVID-19 vaccination based on their perception of the pandemic and its vaccine. In this study, 40.8% of
participants responded they would be willing to accept vaccination against COVID-19 infection if it were proven effective and safe. This figure is below the global acceptance range (55-90%) [20], and other studies which were done in Australia [21], Greek [22], Chile [14], the USA [13], and Japan [10]. However, it is higher than the finding reported in France and comparable to findings of studies from Spain and Sweden [23]. In addition to this, the present study also revealed that only 36.9% of participants were willing to pay for the vaccine. This finding is very low when compared to previous studies done in Indonesia [8] and China [24], where 78.3% and 89.7% of their participants were willing to pay for the COVID-19 vaccine respectively. This discrepancy may be accounted for variations in the spread of the pandemic across the countries. For instance, COVID-19 cases reported in Indonesia are 86.8% higher cases that have been diagnosed in Ethiopia [25]. This can influence the participant’s perceptions of the importance of the vaccine and ultimately their willingness to pay for it. People pay for something when they look at the benefits they can get from it. Given this, participants of this study may have lower perceived benefit of the vaccine than the participants from Indonesia due to the higher COVID-19 infection spread in Indonesia compared to Ethiopia. In this study, the median willingness to pay was 6 times lower than the median willingness to pay reported from Indonesia [8] and Malaysia [26], 2.5 times lower than...
the median willingness to pay reported from China [24], and the mean WTP of this study is 47.4 times lower than the mean willingness to pay reported from Chile [14]. This can be explained by the fact that the per capita income of Ethiopia is lower than those countries where the aforementioned previous studies were conducted. For instance, the per capita income of Ethiopia is 94.4% lower than that of Chile [27]. Moreover, context-specific factors such as perception of the severity and risk of diseases, which varied across disease types or locations may be another reason for the observed [7, 24, 26]. For example, the perceived risk of getting sick by COVID-19 was 39.1% higher among Chile population compared to this study’s participants [7]. Therefore, this could be the reason why WTP of this study participants was lower than in Chile [27].

**Table 2** Willingness to accept and pay and reasons for not willing to pay for COVID-19 vaccine among school teachers in Gondar City, Northwest Ethiopia

| Willingness to accept (n = 301) | Proportion (%) | Std. err. | 95% CI |
|--------------------------------|----------------|-----------|--------|
| Yes                            | 40.8           | 0.028     | (35.4, 46.5) |
| No                             | 59.2           | 0.028     | (53.4, 64.5) |

| Willing to pay (n = 301) | Proportion (%) | Std. err. | 95% CI |
|--------------------------|----------------|-----------|--------|
| Yes                      | 36.9           | 0.031     | (31.6, 42.5) |
| No                       | 63.1           | 0.031     | (57.5, 68.4) |

| Willingness to pay in ETB (n = 111) | Frequency | Proportion (%) |
|-------------------------------------|-----------|----------------|
| 100                                 | 23        | 20.72          |
| 150                                 | 12        | 10.81          |
| 200                                 | 49        | 44.14          |
| 250                                 | 14        | 12.61          |
| 300                                 | 13        | 11.71          |

| Reasons for not willing to pay (n = 178) | Proportion (%) |
|-----------------------------------------|----------------|
| I don’t trust the vaccine               | 65.0           |
| I can’t afford the cost for the vaccine | 17.89          |
| I don’t worry about the disease          | 12.63          |
| Other                                   | 4.21           |
Table 3  Factors associated with willingness to pay for COVID-19 vaccine among school teachers in Gondar City, Northwest, Ethiopia (n = 301)

| Independent variables | Willingness to pay | COR (95% CI) | Sig. | AOR (95% CI) |
|-----------------------|--------------------|--------------|------|--------------|
|                       | No  | Yes  |                  |       |              |
| Sex                   |     |      |                  |       |              |
| Male                  | 103 | 75   | 1.76 (1.10, 2.87) | 0.024 | 3.23 (1.70, 6.14) ** |
| Female                | 87  | 36   | 1                | 1     |              |
| Age                   |     |      |                  |       |              |
| < 40                  | 95  | 55   | 1                | 1     |              |
| ≥ 40                  | 95  | 56   | 1.02 (0.64, 1.62) | 0.94  |              |
| Educational status    |     |      |                  |       |              |
| Diploma               | 32  | 28   | 1                | 1     |              |
| BSc/BA degree         | 121 | 62   | 0.59 (0.32, 1.06) | 0.08  | 0.68 (0.31, 1.51) |
| Master’s degree       | 37  | 21   | 0.65 (0.31, 1.35) | 0.25  | 0.64 (0.21, 1.95) |
| Religion              |     |      |                  |       |              |
| Christian             | 165 | 101  | 1                | 1     |              |
| Islam                 | 21  | 10   | 0.78 (0.35, 1.71) | 0.54  |              |
| School type           |     |      |                  |       |              |
| Private               | 51  | 59   | 3.09 (1.89, 5.06) | 0.00  | 3.27 (1.76, 6.10)** |
| Government            | 139 | 52   | 1                | 1     |              |
| Media exposure        |     |      |                  |       |              |
| No                    | 17  | 5    | 1                | 1     |              |
| Yes                   | 173 | 106  | 2.08 (0.75, 5.81) | 0.16  | 2.93 (0.89, 9.63) |
| Family size           |     |      |                  |       |              |
| 4 or below            | 108 | 55   | 1.34 (0.84, 2.14) | 0.22  |              |
| > 4                   | 82  | 56   | 1.48 (0.77, 2.83) | 0.24  | 1.42 (0.54, 3.70) |
| Monthly income (ETB)  |     |      |                  |       |              |
| < 5500                | 38  | 37   | 1.48 (0.77, 2.83) | 0.24  | 1.42 (0.54, 3.70) |
| 5500-6900             | 49  | 29   | 0.89 (0.47, 1.73) | 0.75  | 0.93 (0.37, 2.31) |
| 6901-7834             | 59  | 16   | 0.41 (0.20, 0.84) | 0.02  | 0.56 (0.22, 1.43) |
| > 7834                | 44  | 29   | 1                | 1     |              |
| Had known chronic illness |   |      |                  |       |              |
| Yes                   | 34  | 23   | 1.20 (0.66, 2.16) | 0.55  |              |
| No                    | 156 | 88   | 1                | 1     |              |
| Knew someone infected with COVID | | | | | |
| Yes                   | 25  | 22   | 1.63 (0.87, 3.10) | 0.13  | 1.44 (0.68, 3.0) |
| No                    | 165 | 89   | 1                | 1     |              |
| Self-rated health     |     |      |                  |       |              |
| Healthy               | 160 | 96   | 1.20 (0.61, 2.34) | 0.59  |              |
| Not healthy           | 30  | 15   | 1                | 1     |              |
| Perceived susceptibility|    |      |                  |       |              |
| High                  | 103 | 78   | 2.0 (1.21, 3.28)  | 0.006 | 2.69 (1.38, 5.24)* |
| Low                   | 87  | 33   | 1                | 1     |              |
| Perceived seriousness |     |      |                  |       |              |
| High                  | 125 | 91   | 2.36 (1.34, 4.18) | 0.003 | 4.04 (1.80, 9.1)** |
| Low                   | 65  | 20   | 1                | 1     |              |
The present study revealed that the willingness to pay was affected by various factors including the sex of the participant, the type of school where participants were working for, and participant’s perceptions about the pandemic and its vaccine. Male participants were two times more likely willing to pay than females. This finding is inconsistent with previous studies done to assess WTP for the COVID-19 vaccine in different parts of the world. However, it is in line with a study done in Japan [10]. The reason for this gender variation may be because males are more likely to have additional income sources than females in the local context. Consequently, they may have a higher willingness to pay than females. Moreover, teachers from private schools were also more likely to pay for the vaccine. This may be due to private school teachers may be paid a higher salary [8] or in the local context, almost all students who are attending their classes in private schools are students from wealthier families. In this case, teachers working in such kinds of schools may be expected to be vaccinated against the pandemic for the safety of students regardless of their willingness.

This study also claimed that participants with a high perceived risk of COVID-19 infection were more likely to be willing to pay for the vaccine. Furthermore, the perceived benefits of the COVID-19 vaccine emerged as another factor affecting participant’s WTP. This finding is in line with a previous survey from Japan, where the high perceived benefit of the vaccine was associated with willingness to accept the vaccine [10]. This is may be because individuals’ perception of the positive consequences (benefit) that are caused by taking an action (vaccination), enhances their readiness of taking the recommended action, WTP [28].

One of the limitations of this study is a bias associated with the use of hypothetical WTP before the actual availability of the vaccine. The use of WTP in real contexts would reflect consumers’ actual valuation of the vaccine. Lack of generalizability to the community should also be noted since the study was institution-based. Furthermore, though contingency valuation method (CVM) is widely used approach to assess WTP, some authors postulate that biases can be generated by the respondent’s lack of understanding of the contingent market [29]. Indeed, casual inferences may not be possible due to the cross-sectional nature of the study. Therefore, the findings of this survey should be interpreted in light of the abovementioned limitations.

Notwithstanding the above limitations, this study attempted to assess a contemporary issue that could open the door for successive researchers to conduct further community-based studies. This study can also

\begin{table}[h]
\centering
\caption{Factors associated with willingness to pay for COVID-19 vaccine among school teachers in Gondar City, Northwest, Ethiopia (n = 301) (Continued)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Independent variables & \multicolumn{2}{|c|}{Willingness to pay} & \multicolumn{2}{|c|}{COR (95% CI)} & \multicolumn{1}{|c|}{Sig.} & \multicolumn{1}{|c|}{AOR (95% CI)} \\
\hline
& No & Yes & & & & \\
\hline
Perceived benefit & & & & & & \\
High & 115 (55.0) & 94 (45.0) & 3.60 (2.0, 6.52) & 0.00 & 3.0 (1.41, 6.34) ** & \\
Low & 75 (81.5) & 17 (18.5) & 1 & 1 & & \\
\hline
Perceived barrier & & & & & & \\
High & 124 (62.0) & 76 (38.0) & 1.15 (0.70, 1.91) & 0.57 & & \\
Low & 66 (65.4) & 35 (34.6) & 1 & & & \\
\hline
Knowledge of COVID-19 & & & & & & \\
Poor & 77 (67.0) & 38 (33.0) & 1 & & & \\
Moderate & 50 (58.1) & 36 (41.9) & 1.46 (0.82, 2.60) & 0.19 & 1.23 (0.59, 2.57) & \\
Good & 63 (63.0) & 37 (37.0) & 1.19 (0.68, 2.09) & 0.54 & 0.94 (0.46, 1.90) & \\
\hline
COVID-19 preventive practice & & & & & & \\
Poor & 85 (61.6) & 53 (38.4) & 1 & & & \\
Moderate & 64 (68.8) & 29 (31.1) & 0.72 (0.42, 1.30) & 0.27 & & \\
Good & 41 (58.6) & 29 (41.4) & 1.13 (0.63, 2.03) & 0.67 & & \\
\hline
\end{tabular}
\end{table}

Note:
*Significant at p value < 0.05
**Significant at p value < 0.001
provide relevant information to those working for the production and/or distribution of COVID-19 vaccination. Moreover, teachers are a special group of population that are expected to be a role model to their students and to their community at large. If the acceptance of the COVID-19 vaccine low among this population, it is easy to guess that the COVID-19 vaccine acceptance would be low in the general community, even though community-based studies are required to verify. Furthermore, the findings of this study suggested that the concerned bodies are urgently required to design programs that promote vaccine acceptance among school teachers. Otherwise, it would be very challenging to create the expected hered immunity in the community. Currently, it is estimated that perhaps 60% of individuals need to be immune to attain herd immunity for COVID-19 [30]. According to the present study, it is unlikely that herd immunity through vaccination could be obtained without financial subsidies to vaccination and vaccine promotion activities.

Conclusion and recommendations

Willingness to accept and willingness to pay for COVID-19 was very low among school teachers. Sex, school type, perceived risk (susceptibility and seriousness) of COVID-19, and perceived benefit of COVID-19 vaccine were important factors associated with school teachers’ willingness to pay. The result indicated that the government needs to subsidize the cost of the vaccination whenever it becomes available in the market. Besides, health communication interventions targeted at modifying perceptions about COVID-19 and its vaccine are urgently required to improve COVID-19 vaccine acceptability and WTP. Indeed, community-based researches are required to assess the public’s acceptance and willingness to pay for COVID-19.

Abbreviations
AOR: Adjusted odds ratio; CI: Confidence interval; COR: Crude odds ratio; COVID-19: Coronavirus disease; WTA: Willingness to accept; WTP: Willingness to pay

Acknowledgements
We would like to express our gratitude to study participants, data collectors, the Gondar City education office, and directors of schools for their contribution to this research work.

Authors’ contributions
KS, MW, SH, and AK designed and managed the study; KS, MW, SH, and AK contributed to the study conceptualization and provided critical editorial input to the interpretation of the data. KS conducted the formal analysis and write the draft manuscript. MW, SH, and AK reviewed the drafted manuscript. The authors read and approved the final manuscript.

Funding
None

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request (Kegnie Shitu, E-mail: kegnsh@gmail.com).

Declarations

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 1 April 2021 Accepted: 26 May 2021
Published online: 09 August 2021

References

1. COVID-19 weekly epidemiological update 22. [Internet]. World Health Organization. 2020 [cited 2021 Jan 5]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly-epidemiological_update_22.pdf
2. Coronavirus disease (COVID-19) dashboard [Internet]. World Health Organization. 2021 [cited 2021 Apr 5]. Available from: https://covid19.who.int/%E0%A4%80%E0%A5%84%E0%A5%81%E0%A4%B6%E0%A5%8C%E0%A4%B5%E0%A4%BF%E0%A5%8D%E0%A4%BF%E0%A5%81%E0%A4%B0%E0%A4%AC%E0%A4%82%E0%A4%B8%E0%A5%8D%E0%A4%80%E0%A4%AA%E0%A4%B0%E0%A4%99%E0%A5%80%E0%A4%B0%E0%A5%8D%E0%A4%82%E0%A4%A1%E0%A4%96%E0%A4%A1%E0%A5%81%E0%A4%B8%E0%A4%9a%E0%A4%80%E0%A4%BF%E0%A5%8D%E0%A4%80%E0%A4%93%E0%A4%81%E0%A4%9c%E0%A4%A7%E0%A4%9c%E0%A4%80%E0%A4%9f%E0%A4%A1%E0%A4%9a%E0%A4%9f%E0%A4%80%E0%A4%B0%E0%A4%82%E0%A4%B0%E0%A4%9f%E0%A4%81%E0%A4%95/%E0%A4%A1%E0%A4%8B%E0%A4%B2%E0%A4%88%E0%A4%B6%E0%A5%8D%E0%A4%80%E0%A4%B0%E0%A4%99%E0%A5%80%E0%A4%B0%E0%A4%9c%E0%A4%B8%E0%A4%9a%E0%A4%80%E0%A4%BF%E0%A5%8D%E0%A4%80%E0%A4%93%E0%A4%81%E0%A4%9c%E0%A4%A7%E0%A4%9c%E0%A4%80%E0%A4%9f%E0%A4%A1%E0%A4%9a%E0%A4%9f%E0%A4%80%E0%A4%B0%E0%A4%82%E0%A4%B0%E0%A4%9f%E0%A4%81%E0%A4%95/
3. Coronavirus - Ethiopia (COVID-19 update) (27 March 2021) . [Internet]. [cited 2021 Apr 5]. Available from: https://www.who.int/collections/2021/03/28/coronavirus-ethiopia-covid-19-update-27-march-2021
4. Amsalu B, Guta A, Seyoum Z, Kassie N, Sema A, Dejene W, et al. Practice of COVID-19 prevention measures and associated factors among residents of dire DAWA city, eastern Ethiopia: community-based study. J Multidiscip Healthc. 2021;14:219–28. https://doi.org/10.2147/JMDH.S292409.
5. Bekele D, Tolosa T, Tesfaye A, Tesfome W. The knowledge and practice towards COVID-19 pandemic prevention among residents of Ethiopia. An online cross-sectional study. PLoS One. 2021;16:11–13.
6. Dodd RH, Cvejic E, Bonner C, Pickles K, McCaffery KJ, Ayre J, et al. Willingness to vaccinate against COVID-19 in Australia. Lancet Infect Dis. 2021;21(3):318–9. https://doi.org/10.1016/S1473-3099(20)30559-4.
7. Garcia LY, Cerda AA. Contingent assessment of the COVID-19 vaccine. Vaccine. 2020;38(34):5424–9. https://doi.org/10.1016/j.vaccine.2020.06.068.
8. Harapan H, Wagner AL, Yulika A, Winardt W, Anwar S, Gan AK, et al. Willingness-to-pay for a COVID-19 vaccine and its associated determinants in Indonesia. Hum Vaccines Immunother. 2020;16(12):3074–80. https://doi.org/10.1080/21645515.2020.1819741.
9. Wong LP, Alias H, Wong PF, Lee HY, Abu Bakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum Vaccin Immunother. 2020;16(9):2204–14. https://doi.org/10.1080/21645515.2020.1790279.
10. Machida M, Nakamura I, Kojima T, Saito R, Nakaya T, Hanibuchi T, et al. Acceptance of a COVID-19 vaccine in Japan during the COVID-19 pandemic. Vaccines. 2021 Mar 3;9(3):210. https://doi.org/10.3390/vaccines903210.
11. CDC. COVID-19 vaccination program interim operational guidance jurisdiction operations [Internet]. 2020 [cited 2021 Feb 20]. Available from: https://www.cdc.gov/vaccines/imz-managers/downloads/COVID-19-Vaccination-Program-Interim_Playbook.pdf
12. Commission E. Preparedness for COVID-19 vaccination strategies and vaccine deployment [Internet]. 2020 [cited 2021 Feb 20]. Available from: https://canvax.ca/preparedness-covid-19-vaccination-strategies-and-vaccine-deployment
13. Guidry JPD, Laestadius LI, Vraga EK, Miller CA, Perrin PB, Burton CW, et al. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am J Infect Control. 2021;49(2):137–42. https://doi.org/10.1016/j.ajic.2020.11.018.
14. Cerda AA, García LY. Willingness to pay for a COVID-19 vaccine. Appl Health Econ Healthc Policy. 2021. https://doi.org/10.1007/s40258-021-00644-6.19(3):343–51. https://doi.org/10.1007/s40258-021-00644-6.
15. Banik, R., Rahman, M., Skidler, M.T. et al. Knowledge, attitudes, and practices related to the COVID-19 pandemic among Bangladeshi youth: a web-based

Shitu et al. Tropical Medicine and Health (2021) 49:63
cross-sectional analysis. J Public Health (Berl.) (2021). https://doi.org/10.1007/s01389-020-01432-7.

16. Khaled A, Siddiqua A, Makki S. The knowledge and attitude of the community from the Aseer region, Saudi Arabia, toward covid-19 and their precautionary measures against the disease. Risk Manag Healthc Policy. 2020;13:1825–34. https://doi.org/10.2147/RMHP.S271889.

17. Araban M, Mesri M, Karimy M, Rouhani MR. Health beliefs associated with preventive health behaviors for COVID-19: findings in a sample drawn from a major city in Iran. JMIR Prepr. 2020;https://doi.org/10.2196/preprints.21710.

18. Jose R, Narendra M, Bindu A, Bievi N, Manju L, Benny PV. Public perception and preparedness for the pandemic COVID-19: a health belief model approach. Clin Epidemiol Glob Heal. 2020;9(1):41–6 https://doi.org/10.1016/j.cegh.2020.06.009.

19. Nguyen LH, Tran BX, Do CD, Hoang CL, Nguyen TP, Dang TT, et al. Feasibility and willingness to pay for dengue vaccine in the threat of dengue fever outbreaks in Vietnam. Patient Prefer Adherence. 2018;12:1917–26. https://doi.org/10.2147/PPA.S178444.

20. Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021;27(2):225–8 https://doi.org/10.1038/s41591-020-1124-9.

21. Roy Morgan. Willingness to take a COVID-19 vaccine increases [Internet]. 2021 [cited 2021 Feb 10]. Available from: www.roymorgan.com

22. Kourlaba G, Kourkouni E, Maistrelli S, Tsopela C-G, Molocha N-M, Triantafyllou C, et al. Willingness of Greek general population to get a COVID-19 vaccine. Glob Heal Res Policy. 2021;6(1):1–10.

23. Institute of Global Health Innovation. Global attitudes towards a COVID-19 vaccine [Internet]. Covid Data Hub. 2020 [cited 2021 Feb 19]. Available from: www.coviddatahub.com

24. Wang J, Lyu Y, Zhang H, et al. Willingness to pay and financing preferences for COVID-19 vaccination in China. Vaccine. 2021;39(14):1968–76. https://doi.org/10.1016/j.vaccine.2021.05.012.

25. Worldometer. Coronavirus update (Live): cases and deaths from COVID-19 virus pandemic [Internet]. Worldometers. 2021 [cited 2021 Apr 20]. Available from: https://www.worldometers.info/coronavirus/

26. Wong LP, Alias H, Wong PF, Lee HY, AbuBakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum Vaccines Immunother. 2020;16(9):2204–14. https://doi.org/10.1080/21645515.2020.1790279.

27. Country economy. Country comparison Ethiopia vs Chile 2021 [Internet]. [cited 2021 Apr 5]. Available from: https://countryeconomy.com/countries/compare/ethiopia/chile

28. M.D. Gellman & J.R. Turner, Encyclopedia of behavioral medicine, DOI 10.1007/978-1-4419-1005-9.

29. Hausman J. Contingent valuation: from dubious to hopeless. J Econ Perspect. 2012;26(4):43–56 https://dx.doi.org/10.1257/jep.26.4.43.

30. Lloyd J. Coronavirus: can herd immunity protect us from COVID-19? [Internet]. Science Focus. 2020 [cited 2021 Mar 10]. Available from: https://www.sciencefocus.com/news/coronavirus-can-herd-immunity-protect-us-from-covid-19/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.