The $\pi N \rightarrow e^+e^-N$ reaction close to the vector meson production threshold

Madeleine Soyeur1, Matthias F.M. Lutz2 and Bengt Friman2

1 DAPNIA/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
2 GSI, Planckstrasse 1, D-64291 Darmstadt, Germany

Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany

Abstract. The $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ reaction cross sections are calculated below and in the vicinity of the vector meson (ρ^0, ω) production threshold. These processes are largely responsible for the emission of e^+e^- pairs in pion-nucleus reactions and contribute to the dilepton spectra observed in relativistic heavy ion collisions. They are dominated by the decay of low-lying baryon resonances into vector meson-nucleon channels. The vector mesons materialize subsequently into e^+e^- pairs. Using $\pi N \rightarrow \rho^0N$ and $\pi N \rightarrow \omega N$ amplitudes calculated in the center of mass energy interval $1.4 < \sqrt{s} < 1.8$ GeV, we compute the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ reaction cross sections in these kinematics. Below the vector meson production threshold, the $\rho^0 - \omega$ interference in the e^+e^- channel appears largely destructive for the $\pi^-p \rightarrow e^+e^-n$ cross section and constructive for the $\pi^+n \rightarrow e^+e^-p$ cross section. The pion beam and the HADES detector at GSI offer a unique possibility to measure these effects. Such data would provide strong constraints on the coupling of vector meson-nucleon channels to low-lying baryon resonances.

Keywords: Vector meson production; Baryon resonances; Dileptons

PACS: 13.20; 13.75.G; 14.20.G

1. Introduction

The study of the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ processes described in this work aims at gaining understanding of the $\pi N \rightarrow \rho^0N$ and $\pi N \rightarrow \omega N$ scattering amplitudes for center of mass energies close and below the vector meson production threshold ($1.5 < \sqrt{s} < 1.8$ GeV). There are well-known baryon resonances in this energy range, which contribute to the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ scattering

\begin{itemize}
 \item This talk is based on the work published in Ref. [1].
\end{itemize}
amplitudes through their coupling to the πN, $\rho^0 N$ and ωN channels. These amplitudes involve in addition significant non-resonant processes. The phenomenological $\rho N N^*$ and $\omega N N^*$ coupling strengths needed to understand the data related to the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ amplitudes are pivotal quantities for baryon structure studies [2].

The exclusive observation of neutral vector mesons through their e^+e^- decay presents definite advantages over their observation through final states involving pions. Firstly, there are no competing processes, such as $\pi \Delta$ production which leads to the same $\pi\pi N$ final state and impairs consequently the identification of the ρ-meson in that channel. Secondly, both the ρ^0- and ω-mesons decay into the e^+e^- channel. This leads to a quantum interference pattern which is expected to reflect sensitively the structure and relative sign of the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ scattering amplitudes.

A proper understanding of the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ reactions appears also as a necessary step towards a detailed interpretation of the production of lepton pairs off nuclei induced by charged pions. Such reactions would be particularly sensitive to the propagation of ω-mesons in nuclei [3].

In Section 2, we present the relativistic coupled-channel model [2] used to describe the $\pi N \rightarrow e^+e^-N$ reaction for e^+e^- pair invariant masses ranging from ~ 0.4 to ~ 0.8 GeV. Assuming Vector Meson Dominance for the electromagnetic current [4], the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ amplitudes are the basic quantities entering the calculation of the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ cross sections in the Vector Meson Dominance model. Our numerical results for these cross sections are displayed in Section 3. We discuss the $\rho^0 - \omega$ quantum interference pattern in the e^+e^- spectrum for both the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ reactions. We conclude briefly in Section 4.

2. Calculation of the $\pi^-p \rightarrow e^+e^-n$ and $\pi^+n \rightarrow e^+e^-p$ cross sections close to the vector meson production threshold

We describe the $\pi N \rightarrow e^+e^-N$ reaction for e^+e^- pair invariant masses ranging from ~ 0.4 to ~ 0.8 GeV. Assuming Vector Meson Dominance for the electromagnetic current [4], the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ amplitudes are the basic quantities entering the calculation of the $\pi N \rightarrow e^+e^-N$ cross section. This assumption is illustrated in Fig. 1, where we show the diagrams contributing to the $\pi^-p \rightarrow e^+e^-n$ process.

We use the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ amplitudes obtained in the recent relativistic and unitary coupled-channel approach to meson-nucleon scattering of Ref. [2]. The available data on pion-nucleon elastic and inelastic scattering and on meson photoproduction off nucleon targets are fitted in the energy window $1.4 < \sqrt{s} < 1.8$ GeV, using an effective Lagrangian with quasi-local two-body meson-baryon interactions and a generalized form of Vector Meson Dominance to describe the coupling of vector mesons to real photons. The scheme comprises the πN, $\pi \Delta$, ρN, ωN, $K\Lambda$, $K\Sigma$ and ηN hadronic channels. The coupling constants entering the effective Lagrangian are parameters which are adjusted to reproduce the data. In view of the kinematics, only s-wave scattering in the ρN and ωN channels is
The $\pi N \rightarrow e^+ e^- N$ reaction

Fig. 1. Diagrams contributing to the $\pi^- p \rightarrow e^+ e^- n$ amplitude with intermediate ρ^0- and ω-mesons.

included, restricting πN and $\pi \Delta$ scattering to s- and d-waves. The pion-nucleon resonances in the S_{11}, S_{31}, D_{13} and D_{33} partial waves are generated dynamically by solving Bethe-Salpeter equations \[2\]. In the $\rho^0 N$- and ωN-channels, the restriction to s-wave scattering means that the model applies to situations where the vector meson is basically at rest with respect to the scattered nucleon ($\sqrt{s} \simeq M_N + M_V$).

This assumption implies that the range of validity of the present calculation is limited to $e^+ e^-$ pairs with invariant masses $m_{e^+ e^-}$ close to \sqrt{s} and to values of \sqrt{s} below and very close to threshold i.e. $1.5 < \sqrt{s} \leq 1.75$ GeV.

The $\pi N \rightarrow \rho N$ amplitude has isospin 1/2 and isospin 3/2 components while the $\pi N \rightarrow \omega N$ amplitude selects the isospin 1/2 channel. Both amplitudes have spin 1/2 and spin 3/2 parts.

The invariant transition matrix elements for the $\pi N \rightarrow \rho N$ and $\pi N \rightarrow \omega N$ reactions are given by

$$\langle \rho^j(\overline{q}) N(\overline{p}) | T | \pi^i(q) N(p) \rangle = (2\pi)^4 \delta^4(q + p - \overline{q} - \overline{p}) \overline{\pi}(\overline{q}) \epsilon^\mu(\overline{q}) T^{ij}_{(\pi N \rightarrow \rho N) \mu} u(p),$$

$$\langle \omega(\overline{q}) N(\overline{p}) | T | \pi^i(q) N(p) \rangle = (2\pi)^4 \delta^4(q + p - \overline{q} - \overline{p}) \overline{\pi}(\overline{p}) \epsilon^\mu(\overline{q}) T^{ij}_{(\pi N \rightarrow \omega N) \mu} u(p),$$

where $T^{ij}_{(\pi N \rightarrow \rho N) \mu}$ and $T^{ij}_{(\pi N \rightarrow \omega N) \mu}$ are functions of the three kinematic variables $w = p + q = \overline{p} + \overline{q}$ ($\sqrt{w^2} = \sqrt{s}$), q and \overline{q}. These scattering amplitudes can be
decomposed into isospin invariant components as

\[T_{ij}^{(\pi N \rightarrow \rho N)\mu}(q, q; w) = \sum_I T_{ij}^{(I)}(\pi N \rightarrow \rho N)\mu (q, q; w) P_{(\rho)}^{ij}, \]

\[T_{ij}^{(\pi N \rightarrow \omega N)\mu}(q, q; w) = \sum_I T_{(\pi N \rightarrow \omega N)\mu}^{(I)} (q, q; w) P_{(\omega)}^{ij}, \]

in which \(P_{(\rho)}^{ij} \) and \(P_{(\omega)}^{ij} \) are isospin projectors [1]. The isospin invariant amplitudes can be expanded further into components of total angular momentum,

\[T_{ij}^{(\pi N \rightarrow V N)\mu}(q, q; w) = M_{\pi N \rightarrow V N}^{(J=\frac{3}{2})}(s) Y_{(J=\frac{1}{2})\mu}(q, q; w) + M_{\pi N \rightarrow V N}^{(J=\frac{1}{2})}(s) Y_{(J=\frac{3}{2})\mu}(q, q; w). \]

\(V \) stands for \(\rho \) or \(\omega \) and \(Y_{(J=\frac{1}{2})\mu}(q, q; w) \) and \(Y_{(J=\frac{3}{2})\mu}(q, q; w) \) are relativistic angular momentum projectors [1].

The \(\pi N \rightarrow \rho N \) and \(\pi N \rightarrow \omega N \) amplitudes in the \(S_{11}, S_{31}, D_{13} \) and \(D_{33} \) channels obtained in Ref. [2] are displayed in Figs. 2 and 3. The quantities shown are the amplitudes \(M_{\pi N \rightarrow \rho N}^{(J)} \) and \(M_{\pi N \rightarrow \omega N}^{(J)} \) defined by Eq. (5), which depend only on the center of mass energy \(\sqrt{s} \).

![Fig. 2. Real and imaginary parts of the \(\pi N \rightarrow \rho^0 N \) amplitudes in the pion-nucleon \(S_{11}, S_{31}, D_{13} \) and \(D_{33} \) partial waves [1].](image)

The coupling to subthreshold resonances is clearly exhibited in these pictures. In the \(S_{11} \) channel, the \(N(1535) \) and the \(N(1650) \) resonances lead to peak structures.
in the imaginary parts of the amplitudes. The pion-induced ω production amplitudes in the D_{13} channel reflect the strong coupling of the $N(1520)$ resonance to the ωN channel. The $\pi^-p \rightarrow \rho^0n$ and $\pi^-p \rightarrow \omega n$ amplitudes are obtained from the

\[
M_{\pi^-p \rightarrow \rho^0n} = \frac{\sqrt{2}}{3} M_{\pi N \rightarrow \rho N}^{(1/2,J)} + \frac{\sqrt{2}}{3} M_{\pi N \rightarrow \rho N}^{(3/2,J)},
\]

(6)

\[
M_{\pi^-p \rightarrow \omega n} = \sqrt{\frac{2}{3}} M_{\pi N \rightarrow \omega N}^{(1/2,J)}.
\]

(7)

Similarly the $\pi^+n \rightarrow \rho^0p$ and $\pi^+n \rightarrow \omega p$ amplitudes are given by

\[
M_{\pi^+n \rightarrow \rho^0p} = \frac{\sqrt{2}}{3} M_{\pi N \rightarrow \rho N}^{(1/2,J)} - \frac{\sqrt{2}}{3} M_{\pi N \rightarrow \rho N}^{(3/2,J)},
\]

(8)

\[
M_{\pi^+n \rightarrow \omega p} = \sqrt{\frac{2}{3}} M_{\pi N \rightarrow \omega N}^{(1/2,J)}.
\]

(9)
The phases of the isospin coefficients appearing in Eqs. (1) and (3) play a crucial role in determining the $\rho^0 - \omega$ interference in the $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ reaction cross sections. The real and imaginary parts of the $\pi^- p \rightarrow \omega n$ and of the $\pi^+ n \rightarrow \omega p$ amplitudes are the same and mostly positive. In contrast, the $\pi^- p \rightarrow \rho^0 n$ and $\pi^+ n \rightarrow \rho^0 p$ amplitudes have opposite signs. The $\pi^- p \rightarrow \rho^0 n$ amplitudes are predominantly negative and will therefore interfere destructively with the $\pi^- p \rightarrow \omega n$ amplitudes. The $\pi^+ n \rightarrow \rho^0 p$ and $\pi^+ n \rightarrow \omega p$ amplitudes have the same sign over a large \sqrt{s} interval, leading to a constructive interference.

The $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ cross sections are calculated from the $\pi^- p \rightarrow \rho^0 n$, $\pi^- p \rightarrow \omega n$, $\pi^+ n \rightarrow \rho^0 p$ and $\pi^+ n \rightarrow \omega p$ amplitudes, assuming Vector Meson Dominance of the electromagnetic current [4, 5]. This assumption can be enforced in the effective Lagrangian by introducing vector meson-photon interaction terms of the form,

$$L^{\gamma V}_{\gamma} = \frac{f_{\rho}}{2M^{2}_{\rho}} F^{\mu \nu}_{\rho} \rho^{\mu \nu} + \frac{f_{\omega}}{2M^{2}_{\omega}} F^{\mu \nu}_{\omega} \omega^{\mu \nu}, \quad (10)$$

where the photon and vector meson field tensors are defined by

$$F^{\mu \nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}, \quad (11)$$

$$V^{\mu \nu} = \partial^{\mu} V^{\nu} - \partial^{\nu} V^{\mu}. \quad (12)$$

In equation (10), M_{ρ} and M_{ω} are the ρ- and ω-masses and f_{ρ} and f_{ω} are dimensional coupling constants. Their magnitude can be determined from the $e^+ e^-$ partial decay widths of the ρ- and ω-mesons to be [6]

$$|f_{\rho}| = 0.036 \text{ GeV}^2, \quad (13)$$

$$|f_{\omega}| = 0.011 \text{ GeV}^2. \quad (14)$$

The relative sign of f_{ρ} and f_{ω} is fixed by vector meson photoproduction amplitudes [2]. We assume that the phase correlation between isoscalar and isovector currents is identical for real and virtual photons as in Sakurai’s realization of the Vector Meson Dominance assumption [4, 5]. With the conventions used in this paper, both f_{ρ} and f_{ω} are positive.

3. Numerical results

With the $\pi N \rightarrow \rho N$ and $\pi N \rightarrow \omega N$ amplitudes and the Vector Meson Dominance assumption discussed in Section 2, we have calculated the differential cross section $\frac{d\sigma}{d\omega}$ for the $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ reactions. The magnitude of the 4-vector 7 is the invariant mass $m_{e^+ e^-}$ of the $e^+ e^-$ pair. We refer to [7] for calculational details.
The differential cross sections for the \(\pi^-p \rightarrow e^+e^-n \) and the \(\pi^+n \rightarrow e^+e^-p \) reactions are computed for values of the total center of mass energy \(\sqrt{s} \) ranging from 1.5 GeV up to 1.75 GeV. We explore the dependence of the \(\rho^0 - \omega \) interference pattern in the \(e^+e^- \) channel on \(\sqrt{s} \) in this energy range, in particular in the vicinity of the \(\omega \)-meson production threshold (\(\sqrt{s}=1.72 \) GeV). We illustrate our results below threshold by displaying in Figs. 4 and 5 the differential cross sections for the \(\pi^-p \rightarrow e^+e^-n \) and the \(\pi^+n \rightarrow e^+e^-p \) reactions at \(\sqrt{s}=1.5 \) GeV, where the N(1520) and N(1535) baryon resonances play a dominant role. These figures show very clearly the isospin effects discussed in Section 2. For the two reactions, the \(\omega \) and \(\rho^0 \) contributions to the cross section are the same. The \(\rho^0-\omega \) interference for the \(\pi^-p \rightarrow e^+e^-n \) reaction and constructive for the \(\pi^+n \rightarrow e^+e^-p \) process. Consequently, the \(\pi^-p \rightarrow e^+e^-n \) differential cross section is extremely small in the range of invariant masses considered in this calculation. In contrast, the constructive \(\rho^0-\omega \) interference for the \(\pi^+n \rightarrow e^+e^-p \) reaction leads to a sizeable differential cross section. This is a very striking prediction, linked to the resonant structure of the scattering amplitudes \(M^{1/2}_{\pi N \rightarrow V N} \) and \(M^{3/2}_{\pi N \rightarrow V N} \). Data on differential cross sections for the \(\pi^-p \rightarrow e^+e^-n \) and \(\pi^+n \rightarrow e^+e^-p \) reactions at \(\sqrt{s}=1.5 \) GeV would be very useful for making progress in the understanding of the couplings of both the N(1520) and N(1535) baryon resonances to the vector meson-nucleon channels.

![Differential cross section for the \(\pi^-p \rightarrow e^+e^-n \) reaction at \(\sqrt{s}=1.5 \) GeV as function of the invariant mass of the \(e^+e^- \) pair. The \(\rho^0 \) and the \(\omega \) contributions are indicated by short-dashed and dotted lines respectively. The long-dashed line shows the \(\rho^0 - \omega \) interference. The solid line is the sum of the three contributions.](image-url)
Fig. 5. Differential cross section for the $\pi^+ n \rightarrow e^+ e^- p$ reaction at $\sqrt{s}=1.5$ GeV as function of the invariant mass of the $e^+ e^-$ pair. The ρ^0 and the ω contributions are indicated by short-dashed and dotted lines respectively. The long-dashed line shows the $\rho^0 - \omega$ interference. The solid line is the sum of the three contributions.

The differential cross sections for the $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ reactions below threshold have been calculated also at $\sqrt{s}=1.55$, 1.60, 1.65 and 1.70 GeV [1]. The cross sections vary smoothly with the total center of mass energy. They exhibit the features discussed for $\sqrt{s}=1.5$ GeV, reflecting however dynamics associated with higher-lying resonances. Just below threshold ($\sqrt{s}=1.70$ GeV), the ω-contribution begins to increase, while the general features of the $e^+ e^-$ production in the two isospin channels remain the same.

The interference pattern changes drastically above the ω-meson threshold. Figs. 6 and 7 show the $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ differential cross sections at $\sqrt{s}=1.75$ GeV. At this energy, the differential cross sections for the $\pi^- p \rightarrow e^+ e^- n$ and $\pi^+ n \rightarrow e^+ e^- p$ reactions are completely dominated by the ω-contribution. The magnitudes of the cross sections for the two reactions are comparable. The $\rho^0 - \omega$ interference is still destructive in the $\pi^- p \rightarrow e^+ e^- n$ channel and constructive in the $\pi^+ n \rightarrow e^+ e^- p$ channel, albeit very small. In both reactions, crossing the ω-production threshold leads to a sharp increase in the cross section, by two orders of magnitude in the $\pi^- p \rightarrow e^+ e^- n$ channel and by one order of magnitude in the $\pi^+ n \rightarrow e^+ e^- p$ channel.
4. Conclusion

We have computed the e^+e^- pair invariant mass distributions for the $\pi^- p \rightarrow e^+e^- n$ and $\pi^+ n \rightarrow e^+e^- p$ reactions below and close to the vector meson production threshold. We took as input the $\pi N \rightarrow \rho^0 N$ and $\pi N \rightarrow \omega N$ amplitudes obtained in a recent relativistic and unitary coupled-channel approach to meson-nucleon scattering [2]. Using the Vector Meson Dominance assumption, we have shown that the differential cross sections for the $\pi^- p \rightarrow e^+e^- n$ and $\pi^+ n \rightarrow e^+e^- p$ reactions below the ω-threshold are very sensitive to the coupling of low-lying baryon resonances to vector meson-nucleon final states contributing to the ρ^0- and ω-meson production amplitudes. We find that the $\rho^0 - \omega$ interference is destructive in the $\pi^- p \rightarrow e^+e^- n$ channel and constructive in the $\pi^+ n \rightarrow e^+e^- p$ channel (see also Ref. [7]). We predict a very small cross section for the $\pi^- p \rightarrow e^+e^- n$ reaction below threshold and a sizeable cross section for the $\pi^+ n \rightarrow e^+e^- p$ reaction in this energy range. Above the ω-meson production threshold, both cross sections are comparable and much larger.

The magnitude of the $\pi^- p \rightarrow e^+e^- n$ and $\pi^+ n \rightarrow e^+e^- p$ differential cross sections below the ω-threshold depends strongly on the structure and dynamics of baryon resonances. These reactions deserve experimental studies. Such a programme could be carried at GSI (Darmstadt) using the available pion beam and the HADES spectrometer [8]. These measurements would provide a necessary step towards the understanding of e^+e^- pair production in pion-nucleus reactions and in general significant constraints on the propagation of vector mesons in the nuclear medium.
Fig. 7. Differential cross section for the $\pi^+ n \to e^+ e^- p$ reaction at $\sqrt{s}=1.75$ GeV as function of the invariant mass of the $e^+ e^-$ pair.

References

1. M.F.M. Lutz, B. Friman and M. Soyeur, nucl-th/0202049.
2. M.F.M. Lutz, Gy. Wolf and B. Friman, nucl-th/0112052.
3. W. Schön et al., Acta Physica Polonica B 27 (1996) 2959.
4. J.J. Sakurai, Currents and Mesons, The University of Chicago Press, 1969.
5. N.M. Kroll, T.D. Lee and B. Zumino, Phys. Rev. 157 (1967) 1376.
6. B. Friman and M. Soyeur, Nucl. Phys. A 600 (1996) 477.
7. A.I. Titov and B. Kämpfer, Eur. Phys. J. A. 12 (2001) 217.