OBSTRUCTION OF C_∞-ALGEBRA MODELS AND CHARACTERISTIC CLASSES

TAKAHIRO MATSUYUKI

Abstract. In this paper, we consider an obstruction-theoretical construction of characteristic classes of fiber bundles by simplicial method. We can get a certain obstruction class for a deformation of C_∞-algebra models of fibers and a characteristic map from the exterior algebra of a vector space of derivations. Applying this construction for a surface bundle, we obtain the Euler class of a sphere bundle and the Morita-Miller-Mumford classes of a bundle with positive genus fiber.

1. Introduction

Our purpose of the paper is to construct characteristic classes of a smooth fiber bundle $X \to E \to B$ by obstruction theory for a certain simplicial bundle $Q \bullet (E) \to S \bullet (B)$ obtained from the original bundle. The base simplicial set $S \bullet (B)$ of the simplicial bundle $Q \bullet (E) \to S \bullet (B)$ is the simplicial set of singular simplices of B and the n-th set $Q_n(E)\sigma$ of the fiber over an n-simplex σ is the set of Chen’s formal homology connections [4, 5] on σ^*E. A formal homology connection on a manifold X has rational homotopical information of X, which is equivalent to a minimal C_∞-algebra model $f : (H, m) \to A$ of the reduced de Rham complex A such that m is a minimal C_∞-algebra structure and the first term of f induces the identity map on cohomologies (see [9]). The fiber of the bundle is the simplicial set $Q \bullet (X)$ of formal homology connections on $X \times \Delta^n$. This simplicial set is very close to the Maurer-Cartan simplicial set of the dgl $\hat{L}W \otimes A$, where $(\hat{L}W, \delta)$ is the dual of the bar-construction of the C_∞-algebra (H, m).

We introduce two versions of construction depending on whether the fiber $Q \bullet (X)$ is connected or not. The homotopy group of the Maurer-Cartan simplicial set is known in [7, 1, 2]. So the homotopy groups of $Q \bullet (X)$ can be also expressed as vector spaces by

$$\pi_n(Q \bullet (X), \tau) = H_n(Der(\hat{L}W), \delta)$$

for a formal homology connection $\tau = (\omega, \delta)$ on X.

In the case that $Q \bullet (X)$ is connected, under certain conditions, an obstruction class of existence of a partial section over the n-skeleton of $Q \bullet (E) \to S \bullet (B)$

$$o_n \in H^{n+1}(B; \Pi_n)$$

is obtained, where Π_n is the local system of the n-th homotopy groups of fibers of $Q \bullet (E) \to S \bullet (B)$. Then we get the characteristic map

$$(\Lambda^p H_n(Der(\hat{L}W), \delta^*)^G \to H^{p(n+1)}(B; \mathbb{R})$$

for any $p \geq 1$. Here G is the structure group of $E \to B$. As an application, this yields the Euler class of a sphere bundle.

1
On the other hand, if $Q_\bullet(X)$ is not connected, the local system Π_0 of sets has a free and transitive action of a certain local system $\text{QIAut}(E)$ of groups. Since this group has a natural filtration, we get the graded Lie algebra $\text{gr}(\text{QIAut}(E))$. The fiber of i-th part can be identified with a certain vector space $\text{gr}_i(\hat{LW})$. Using this vector space in stead of the homotopy groups of $Q_\bullet(X)$, we can obtain the obstruction $\sigma(i) \in H^1(B; \text{gr}_i(\text{QIAut}(E)))$ and the characteristic map $(\Lambda^* \text{gr}_i(\text{QDer}(\hat{LW})))^* \to H^*(B; \mathbb{R})$ according to the stage i of extension of a partial section. Applying for a surface bundle, the obstruction class for $i = 0$ corresponds the twisted Morita-Miller-Mumford class and the characteristic map gives the Morita-Miller-Mumford classes.

The paper is organized as follows. In Section 2 we define terms which we use in the paper. In Section 3 we review formal homology connections and investigate the simplicial set of these connections. In Section 4 we describe obstruction theory for simplicial sets by the form which is convenient to use. (The obstruction theory for simplicial sets are discussed in [3, 6].) In Section 5 we apply the discussion before the section for a smooth bundle and calculate for specific bundles.

Acknowledgment. I would like to thank my supervisor Y. Terashima for many helpful comments. This work was supported by Grant-in-Aid for JSPS Research Fellow (No.17J01757).

2. Preliminary

In this paper, all vector spaces are over the real number field \mathbb{R}. The standard n-simplex is described by

$$\Delta^n = \left\{ (t_i)_{i=0}^n; \sum_{i=0}^n t_i = 1 \right\}$$

and we fix its base point $(1, 0, \ldots, 0)$. Note that the base point is $\delta^n \cdots \delta^1(\Delta^n)$, where $\delta^i : \Delta^{n-1} \to \Delta^n$ is the i-th coface operator.

2.1. Graded vector space. Let V be a \mathbb{Z}-graded vector space. We denote V^i the subspace of elements of V of cohomological degree i and $V_i = V^{-i}$ the subspace of elements of homological degree i. Remark that the linear dual $V^* = \text{Hom}(V, \mathbb{R})$ of V is graded by $(V^*)^i = \text{Hom}(V_i, \mathbb{R})$.

The p-fold suspension $V[p]$ of V for an integer p is defined by

$$V[p]^i := V^{i+p}$$

and elements of $V[p]^i$ are presented by σx for $x \in V^{i+p}$ using the symbol σ of cohomological degree $-p$.

2.2. Graded Lie algebra. Let W be a \mathbb{Z}-graded vector space. In this paper, W is always homologically non-negatively graded. We denote by LW the graded free Lie algebra generated by W, and by \hat{LW} the completed free Lie algebra generated by W:

$$\hat{LW} := \lim_{\leftarrow \mathbb{n}} LW/\Gamma_n,$$

where $\{\Gamma_n\}_{n=1}^\infty$ is the lower central series of LW. The lower central series of \hat{LW} is denoted by $\{\hat{\Gamma}_n\}_{n=1}^\infty$.
We can also define $\hat{L}W$ as the primitive part of the completed tensor algebra TW. We often use the aspect.

2.3. Derivations. Let $(\hat{L}W, \delta)$ be a completed free dgl such that δ has the homological degree -1 and $\delta(W) \subset \hat{1}$. We consider the Lie algebra $\text{Der}(\hat{L}W)$ of Lie derivations on $\hat{L}W$. It is (completed) \mathbb{Z}-graded by

$$\text{Der}(\hat{L}W)_n := \{ D \in \text{Der}(\hat{L}W); \ D(W_i) \subset (\hat{L}W)_{n+i} \}.$$

Then $(\text{Der}(\hat{L}W), \text{ad}(\delta))$ is a completed dgl.

The Lie algebra $\text{Der}(\hat{L}W)$ has the decreasing filtration defined by

$$\mathcal{D}^i := \text{Der}^{\geq i}(\hat{L}W) := \{ D \in \text{Der}(\hat{L}W); \ D(W) \subset \hat{1} \}.$$

Then we have $\delta \in \mathcal{D}^1$ and $[\delta, \mathcal{D}^i] \subset \mathcal{D}^{i+1}$.

We introduce a filtration of the homology $\text{QDer}(\hat{L}W) = H_0(\text{Der}(\hat{L}W), \text{ad}(\delta))$ of $\text{Der}(\hat{L}W)$ by

$$\text{QDer}^{\geq 1}(\hat{L}W, \delta) := \text{Im}(Z_0(\mathcal{D}^i, \text{ad}(\delta)) \to \text{QDer}(\hat{L}W, \delta)).$$

Definition 2.1. The group $\text{IAut}(\hat{L}W, \delta)$ of automorphisms $f : (\hat{L}W, \delta) \to (\hat{L}W, \delta)$ such that $f : W \to \hat{L}W/\hat{1}_2 = W$ is the identity map id_W has the bijection $\exp : \mathcal{D}^1_0 \to \text{IAut}(\hat{L}W, \delta)$ from \mathcal{D}^1_0, which is called the *exponential map*, defined by

$$\exp(X) = \sum_{n=0}^{\infty} \frac{X^n}{n!} \in \text{End}(\hat{L}W).$$

The map has the inverse map $\log : \text{IAut}(\hat{L}W, \delta) \to \mathcal{D}^1_0$. The product of the group $\text{IAut}(\hat{L}W, \delta)$ and the Lie bracket of \mathcal{D}^1_0 are related by the Baker-Campbell-Hausdorff formula.

We denote by $\text{QIAut}(\hat{L}W, \delta)$ the quotient group of $\text{IAut}(\hat{L}W, \delta)$ by the normal subgroup $\exp([\delta, \text{Der}(\hat{L}W)_1])$. Then we can also obtain the exponential map

$$\exp : \text{QDer}^+ (\hat{L}W, \delta) := \text{QDer}^{\geq 1}(\hat{L}W, \delta) \to \text{QIAut}(\hat{L}W, \delta)$$

and the filtration \mathcal{F}^i of the group $\text{QIAut}(\hat{L}W, \delta)$ as the image of $\text{QDer}^{\geq i}(\hat{L}W, \delta)$.

If $\delta(W) \subset [W, W]$, we can define another grading of $\text{Der}(\hat{L}W)$ by

$$\text{Der}^i(\hat{L}W) := \{ D \in \text{Der}(\hat{L}W); \ D(W) \subset L^{i+1} \},$$

where $L^iW = LW \cap W^{\equiv i}$. Then δ has the degree 1 with respect to the grading. So we have the identification

$$\text{QDer}^i(\hat{L}W, \delta) := H_0^i(\text{Der}(\hat{L}W), \text{ad}(\delta)) \simeq \text{QDer}^{\geq i}(\hat{L}W, \delta)/\text{QDer}^{\geq i+1}(\hat{L}W, \delta),$$

where i is the second grading of $\text{Der}(\hat{L}W)$.

2.4. Manifolds and fiber bundles. Throughout the paper, we consider a smooth fiber bundle $X \to E \to B$ whose fiber X is a manifold with a base point, i.e., a fiber bundle with a section $B \to E$. We always suppose a manifold X with base point is connected and has the finite-dimensional rational homology group, so we call such a manifold X a **fiber manifold** for simplicity in the paper.

The structure group of the bundle, which is a subgroup of the diffeomorphism group $\text{Diff}(X)$, acts on the homology group of X. We call the image G in the automorphism group of $H_*(X; \mathbb{R})$ the **homological structure group**.
2.5. **Formal homology connections and C_∞-algebra models.** Let X be a fiber manifold (with base point \ast). We denote the deRham complex on X by $A^\bullet(X)$, the reduced deRham complex and cohomology by $A = \tilde{A}^\bullet(X) := \{ f \in A^0(X); f(\ast) = 0 \} \oplus A^\ast(X), \ H = \tilde{H}^\ast_{DR}(X)$ and the suspension of the reduced real homology by $W = \tilde{H}^\bullet_{\mathbb{R}}(X)[−1]$.

Definition 2.2 (Chen [4, 5]). A formal homology connection on X is a pair (ω, δ) satisfying the following conditions:

(i) an $\hat{L}W$-coefficient differential form $\omega \in A \otimes \hat{L}W$ with cohomological degree 1 is described by

$$\int _{x_p} \omega _p = 1,$$

where x_1, \ldots, x_n is a homogeneous basis of W, such that

(ii) a linear map $\delta : \hat{L}W \rightarrow \hat{L}W$ is a differential with homological degree $−1$ of $\hat{L}W$ such that

$$\delta(W) \subset \hat{Γ}_2.$$

(iii) the form ω is a Maurer-Cartan element of $(A \otimes \hat{L}W, d + \delta)$, i.e., the flatness condition $\delta \omega + d\omega + \frac{1}{2}[\omega, \omega] = 0$ holds. (Though the sign notation may be different from Chen’s original definition, they are equivalent.)

We call such a differential δ Chen’s differential of X. If X is simply connected, we can replace the free Lie algebra LW and its derivation $\delta : LW \rightarrow LW$ with $\hat{L}W$ and $\delta : \hat{L}W \rightarrow \hat{L}W$ respectively.

It is well-known that, given a formal homology connection on X, we can compute the real cohomology of the loop space ΩX [4, 5].

2.6. **C_∞-algebra and formal homology connection.** We shall mention the relation between a formal homology connection and a C_∞-algebra. For the concept of C_∞-algebra, we refer to [8].

Definition 2.3 (C_∞-algebra). Let A be a vector space and $m = \{m_i\}_{i=1}^\infty$ be a family of linear maps $m_i : A^\otimes i \rightarrow A$ with degree $2 − i$. The pair (A, m) satisfying the following conditions is called a C_∞-algebra:

- **(A_∞-relation)**

$$\sum_{k+i=1}^{k-1} \sum_{j=0}^{i-1} (-1)^{(j+1)(l+1)} m_k \circ (\text{id}_A^\otimes j \otimes m_l \otimes \text{id}_A^\otimes (i−j−l)) = 0$$

for $i \geq 1$, and

- **(commutativity)**

$$\sum_{\sigma \in \text{Sh}(j, i−j)} \epsilon \cdot m_i(a_{\sigma(1)}, \ldots, a_{\sigma(i)}) = 0$$

for $i > j > 0$ and homogeneous elements $a_1, \ldots, a_i \in A$, where $\text{Sh}(i, i−j)$ is the set of $(i, i−j)$-shuffles and ϵ is the Koszul sign.
If $m_1 = 0$, (A, m) is called **minimal**. If higher products are all zero, i.e. $m_3 = m_4 = \cdots = 0$, (A, m) can be regarded as differential graded commutative algebra (DGcA).

Remark 2.4 (Bar construction of a C_∞-algebra). Let (A, m) be a C_∞-algebra and $s : A \to A[1]$ be the suspension map. We denote the tensor coalgebra $T^c(A[1])$ generated by $A[1]$ by BA. It is a bialgebra by the tensor coproduct Δ and the shuffle product μ. Defining the suspension of m_i by $\bar{m}_i := s \circ m_i \circ (s^{-1})^{\otimes i}$ for all $i \geq 1$, then $\bar{m}_i : A[1]^{\otimes n} \to A[1]$ is degree 1 and satisfies the commutativity condition. Thus extending the unique coderivation $m_i : BA \to BA$ by the co-Leibniz rule $\Delta \circ m_i = (m_i \otimes id + id \otimes m_i) \circ \Delta$, then we have the Hopf derivation

$$m := \sum_{i=1}^{\infty} m_i.$$

Furthermore m is a degree 1 codifferential, i.e. $m^2 = 0$, from the A_∞-relations of m.

Definition 2.5 (C_∞-morphism). Let (A, m) and (A', m') be two C_∞-algebras and $f = \{f_i\}_{i=1}^{\infty}$ be a family of linear maps $f_i : A^{\otimes i} \to A'$ with degree $1 - i$ satisfying the following conditions:

- **(A_∞-morphism)**

$$\sum_{\substack{k_1 + \cdots + k_l = k \geq 1 \geq 1,}} (-1)^{\sum_{j=1}^{l} k_j (l-j) + \sum_{\nu < \mu} k_{\nu} k_{\mu}} f_{k_1} \otimes \cdots \otimes f_{k_l}$$

$$= \sum_{s+1+t=i, \ s+l+i=k} (-1)^{1+k+(s+1)(l+1)} f_i \circ (id_A^{\otimes s} \otimes m_l \otimes id_A^{\otimes t})$$

for $k \geq 1$, and

- **(commutativity)**

$$\sum_{\sigma \in \text{Sh}(j,i-j)} \epsilon \cdot f_i(a_{\sigma(1)}, \cdots, a_{\sigma(i)}) = 0$$

for $i > j > 0$ and homogeneous elements $a_1, \ldots, a_i \in A$.

Then f is called a C_∞-morphism. If f_1 is a quasi-isomorphism, f is called a C_∞-quasi-morphism.

Definition 2.6. Given C_∞-algebra (A, m^A), a pair $f : (H, m) \to (A, m^A)$ of a C_∞-algebra structure m on the cohomology $H := H(A, m^A)$ and a C_∞-quasi-isomorphism f such that f_1 induces the identity map on the cohomology H is called C_∞-algebra model.

Remark 2.7 (Bar construction of a C_∞-morphism). Let $f : (A, m) \to (A', m')$ be a C_∞-morphism. Defining the suspension of f_i by $\bar{f}_i := s \circ f_i \circ (s^{-1})^{\otimes i} : A[1]^{\otimes i} \to A'[1]$ for all $i \geq 1$, then the degree of \bar{f}_i is 0. Constructing the coalgebra map $BA \to BA'$

$$\bar{f} := \sum_{k=1}^{\infty} \sum_{\substack{i \geq 1, k_1 + \cdots + k_l = k \geq 1,}} \bar{f}_{k_1} \otimes \cdots \otimes \bar{f}_{k_l}$$

from maps \bar{f}_n, we have the equations

$$f \circ m = m' \circ f, \quad f \circ \mu = \mu \circ (f \otimes f).$$

So f is a differential bialgebra map $(BA, m) \to (BA', m')$ between bar constructions.
According to [9], a formal homology connection \((\omega, \delta)\) on \(X\) is equivalent to a minimal \(C_\infty\)-algebra model \(f : (H, m) \to A\), i.e., a pair of a minimal \(C_\infty\)-algebra structure on \(H\) and a \(C_\infty\)-algebra morphism \(f : (H, m) \to A\) such that the first term \(f_1\) induces the identity on \(H\). It is verified as follows: put
\[
\omega = - \sum_{i_1, \ldots, i_k} (-1)^i \sigma^{-1} \tilde{f}_n(x^{i_1}, \ldots, x^{i_k}) x_{i_1} \cdots x_{i_k},
\]
where
\[
\epsilon = |x_{i_1}|(|x_{i_2}| + \cdots + |x_{i_k}|) + \cdots + |x_{i_k-1}||x_{i_k}|,
\]
\[
\tilde{f}_n = \sigma f_n(\sigma^{-1})^n : H[1]^n \to A[1],
\]
\(x^i\) is the dual basis of \(x_i\), and \(m\) is the bar-construction of \(m\). Then the differential \(\delta\) on the dual \((BH)^* = TW\) of the bar-construction \(BH\) can be restricted on \(\hat{LW}\) since \(\delta\) is a coderivation. So the pair \((\omega, \delta)\) is a formal homology connection on \(X\). Conversely we can recover \(f : (H, m) \to A\) from \((\omega, \delta)\). Note that the condition that \(f\) is an \(A_\infty\)-morphism corresponds to the flatness.

3. Formal homology connections

3.1. The simplicial set of formal homology connections. Let \((X, *)\) be a fiber manifold. The set of formal homology connections on \(X\) is denoted by \(Q_0(X)\).

We define the simplicial deRham dga \(A_* = \{A_n\}_{n=0}^\infty\) on \(X\) by
\[
A_n := A^n(X \times \Delta^n).
\]
Its face maps and degeneracy maps are induced by the coface maps and codegeneracy maps of the cosimplicial space \(\Delta^* = \{\Delta^n\}_{n=0}^\infty\).

The family \(Q_*(X) = \{Q_n(X) := Q_0(X \times \Delta^n)\}_{n=0}^\infty\) of sets is a simplicial set by the induced structure by \(A_*.\) Given a Chen’s differential \(\delta\) on \(X\), the set of formal homology connections \((\omega, \delta)\) on \(X \times \Delta^n\) is denoted by \(Q_n(X, \delta)\). Then \(Q_*(X, \delta)\) is also a simplicial set. We denote the set of Maurer-Cartan elements of \((A_n \otimes \hat{LW}, d + \delta)\) by \(MC_n(X, \delta)\). We obtain the simplicial set \(MC_*(X, \delta)\), and then \(Q_*(X, \delta)\) is a subsimplicial set of \(MC_*(X, \delta)\).

Lemma 3.1. For any \(n\)-th simplicial Maurer-Cartan element \(\alpha \in MC_n(X, \delta)\), if \(\partial_i \alpha \in Q_{n-i}(X)\) for some \(0 \leq i \leq n\), then \(\alpha \in Q_n(X, \delta)\).

Proof. Regarding \(\alpha\) as a \(C_\infty\)-map \(f : H \to A_n\), \(f_1 : H \to H(A_n)\) is the identity map since \(\partial_i\) for any \(i\) gives the standard identification by \(H^n(X \times \Delta^n) \simeq H^n(X \times \Delta^{n-1})\) and \(\partial_i f_1 : H \to H(A_{n-1})\) is the identity map under the assumption.

Since the simplicial set \(MC(X, \delta)\) is a Kan complex (proved in Section 4 of [7]), the following lemma is obtained immediately from Lemma 3.1:

Lemma 3.2. The simplicial set \(Q_*(X)\) is a Kan complex. Furthermore the map induced by the inclusion
\[
\pi_0(Q_*(X, \delta)) \to \pi_0(MC_*(X, \delta))
\]
is injective, and the map
\[
\pi_n(Q_*(X, \delta), \tau) \to \pi_n(MC_*(X, \delta), \tau)
\]
for \(\tau \in Q_0(X, \delta)\) and \(n \geq 1\) is an isomorphism.
Theorem 3.3. The homotopy groups of the simplicial set \(Q_\bullet(X) \) are described by
\[
\pi_n(Q_\bullet(X), \tau) \simeq H_n(Der(\hat{LW}, \delta))
\]
for \(n \geq 1 \) and a formal homology connection \(\tau = (\omega, \delta) \) on \(X \), where \(H_1(Der(LW), \delta) \) is equipped with the Baker-Campell-Hausdorff product of \(H_0(A \otimes \hat{LW}) \).

Proof. From Proposition 5.4 and Theorem 5.5 in \([1]\), we have
\[
F = \pi_n(Q_\bullet(X), \tau) \simeq H_{n-1}(A \otimes \hat{LW}, d + \delta + [\omega, -]).
\]

We shall prove the suspension of \((A \otimes \hat{LW}, d + \delta + [\omega, -])\) and the chain complex \(\text{Der}_F(BH, BA) \) of Hopf derivations over the bar-construction \(F : BH \to BA \) of the \(C_\infty \)-morphism corresponding to \(\tau \) are isomorphic. Here the differential \(\mathcal{D} \) of the latter complex is defined by
\[
\mathcal{D}(D) = m^A \circ D - (-1)^D D \circ m,
\]
where \(m^A \) and \(m \) are the bar-constructions of \(C_\infty \)-structures of \(A \) and \((H, m) \) respectively.

Through the natural identification \(\hat{T}W = (BH)^* \), consider the linear isomorphism \(\Phi : A[1] \otimes \hat{LW} \to \text{Der}_F(BH, BA) \subset \text{Hom}(BH, A[1]) \) defined by
\[
\Phi(\alpha \otimes f)(x) = f(x)\alpha
\]
for \(x \in BH \). Here the differential on \(A[1] \otimes \hat{LW} \) is equal to \(\sigma(d + \delta + [\omega, -])\sigma^{-1} \).

Then, using \(F = \Phi(\sigma \omega) \), we have
\[
\begin{align*}
\Phi(\sigma(d + \delta + [\omega, -])\sigma^{-1}(\alpha \otimes f))(x) &= d\sigma f(x) + (-1)^{\alpha+1} \sigma \delta f(x) + \sigma [\omega, \sigma^{-1} \alpha \otimes f](x) \\
&= d\sigma f(x) - (-1)^{\alpha+1} \sigma \delta f(x) + m^A_\ast \circ (F \otimes \Phi(\alpha f))(x) + m^A_\ast \circ (\Phi(\alpha f) \otimes F)(x) \\
&= \mathcal{D}(\Phi(\alpha f))(x).
\end{align*}
\]
Thus the map \(\Phi \) is a chain isomorphism.

On the other hand, the map
\[
F \circ : (\text{Der}(\hat{LW}), \text{ad}(\delta)) = (\text{Der}(BH), \text{ad}(m)) \to (\text{Der}_F(BH, BA), \mathcal{D})
\]
is a quasi-isomorphism because \(F \) is a quasi-isomorphism. So we get the isomorphism
\[
H_{n-1}(A \otimes \hat{LW}, d + \delta + [\omega, -]) \simeq H_n(\text{Der}(\hat{LW}), \text{ad}(\delta)).
\]

The set \(\pi_0(Q_\bullet(X)) \) of connected components can be identified with the set of homotopy classes of \(C_\infty \)-morphisms \(f : (H, m) \to A \) such that \(f_1 \) induces the identity map on \(H \). The group \(\text{QIAut}(H, m) \) of \(C_\infty \)-automorphisms \(f : (H, m) \to (H, m) \) such that \(f_1 = \text{id}_H \) acts on the right on \(\pi_0(Q_\bullet(X, \delta)) \) freely and transitively (details in \([11]\)).

3.2. The simplicial bundle of formal homology connections. Let \(X \to E \to B \) be a smooth fiber bundle. In the section, we shall define the simplicial bundle of formal homology connections on fibers corresponding to a smooth bundle.

Definition 3.4. We define the simplicial bundle \(Q_\bullet(E) \to S_\bullet(B) \) over the simplicial set \(S_\bullet(B) \) of regular simplices as follows:

- the fiber over an \(n \)-simplex \(\sigma \in S_n(B) \) is \(Q_n(E)_\sigma := Q_0(\sigma^* E) \), and
the face maps and the degeneracy maps are the induced maps
\(Q_n(E)_{\sigma} \to Q_{n-1}(E)_{\partial,\sigma} \) and \(Q_n(E)_{\sigma} \to Q_{n+1}(E)_{s,\sigma} \) by the coface maps and the codegeneracy maps of \(\Delta^\bullet \) respectively.

We can check that \(Q_\bullet(E) \to S_\bullet(B) \) is a bundle of simplicial sets in the sense of May [15].

Proposition 3.5. The simplicial map \(Q_\bullet(E) \to S_\bullet(B) \) is a simplicial bundle with fiber \(Q_\bullet(X) \).

Proof. For an \(n \)-simplex \(\sigma \in S_n(B) \) and a trivialization \(\varphi_\sigma : \Delta^n \times X \simeq \sigma^*E \), we obtain the trivialization \(\hat{\varphi}_{\sigma,P} : \Delta^i \times X \simeq \sigma(P)^*E \) for \(P \in \Delta[n]_i \) by the diagram

\[
\begin{array}{ccc}
\Delta^n \times X & \xrightarrow{\varphi_\sigma} & \sigma^*E \\
\uparrow_{f_P \times \text{id}_X} & & \uparrow \\
\Delta^i \times X & \xrightarrow{\varphi_{\sigma,P}} & \sigma(P)^*E
\end{array}
\]

regarding \(\sigma \) as a simplicial map \(\sigma : \Delta[n] \to S_\bullet(B) \). Here the map \(f_P : \Delta^i \to \Delta^n \) is the induced map \(P : \Delta[i] \to \Delta[n] \).

Then we obtain the simplicial trivialization

\[
\hat{\varphi}_{\sigma} : \sigma^*Q_\bullet(E) \simeq \Delta[n] \times Q_\bullet(X)
\]

by \((P, \alpha) \mapsto (P, \varphi_{\sigma,P}^*\alpha) \), where

\[
\sigma^*Q_\bullet(E) = \{(P, \alpha) \in \Delta[n]_i \times Q_0(\sigma(P)^*E)\}.
\]

\[\square\]

We consider to fix a Chen’s differential on fibers.

Definition 3.6. Fix a Chen’s differential \(\delta \in \text{Der}(\hat{L}W)_{-1} \) of \(X \) is \(G \)-invariant with respect to the action of the homological structure group \(G \) on \(\text{Der}(\hat{L}W) \) (induced by the action on \(W \)). Then it gives the section \(\hat{\delta} \) of the bundle

\[
\mathcal{D}(E) \to B,
\]

where \(\mathcal{D}(E)_b := \{ \text{Chen’s differential of } E_b \} \) for \(b \in B \). We call \(\hat{\delta} \) a section of Chen’s differentials. Given this, we can consider the simplicial bundle \(Q_\bullet(E, \hat{\delta}) \to S_\bullet(B) \) defined by

\[
Q_n(E, \hat{\delta})_{\sigma} := Q_0(\sigma^*E, \hat{\delta}(\sigma))
\]

for \(\sigma \in S_n(B) \). Here \(\hat{\delta}(\sigma) \) is the Chen’s differential of \(\sigma^*E \) defined by \(\hat{\delta}(\sigma_0) \) through the isomorphism \(H(\sigma^*E) \simeq H(E_{\sigma_0}) \). Here \(\sigma_0 = \partial_1 \cdots \partial_n \sigma \) is the image of the base point of \(\Delta^n \).

For example, if \(X \) is formal, the differential \(\delta \) corresponding to the cohomology ring structure of \(X \) is \(\text{Diff}(X) \)-invariant.

4. Obstruction theory

Obstruction theory for simplicial sets is studied in [3, 6]. In Section 4.1 and 4.2, we shall review a part of them and rewrite obstruction theory as in Steenrod [19] for simplicial sets in order to fit our use briefly. In Section 4.2, we introduce obstruction classes to extend a section over the 0-skeleton stepwisely.
4.1. Local system. We shall define cohomology with local coefficients briefly. We can see definitions in this subsection in [3, 6].

Definition 4.1. Let \mathcal{X} be a Kan complex. We define the fundamental groupoid $\Pi_1(\mathcal{X})$ of \mathcal{X} such that the set of objects is \mathcal{X}_0 and the set of morphisms from x to y is the set of homotopy classes of $\gamma \in \mathcal{X}_1$ satisfying $\partial_0 \gamma = x$ and $\partial_1 \gamma = y$. A covariant functor $\Pi_1(\mathcal{X}) \to \text{Ab}$ is called a **local system** on \mathcal{X}. Here Ab is the category of abelian groups.

Let $E \to B$ be a Kan simplicial bundle with n-simple fiber \mathcal{X}, i.e., \mathcal{X} is a Kan complex and $\pi_1(\mathcal{X}, x)$ acts on $\pi_n(\mathcal{X}, x)$ trivially.

Definition 4.2. We define the local system $\Pi_n(E/B)$ on B as follows: for a vertex $v \in B_0$,

$$\Pi_n(E/B)_v := \pi_n(v^*E).$$

Note that we need not to choose a base point of v^*E because it is n-simple. For a path $\gamma \in B_1$ such that $v_0 = \partial_1 \gamma$ and $v_1 = \partial_0 \gamma$, take a trivialization $\varphi_\gamma : \Delta[1] \times v_0^*E \simeq v_1^*E$

such that

$$\Delta[1] \times v_0^*E \xrightarrow{\varphi_\gamma} \gamma^*E$$

Here $\delta^i : \Delta[0] \to \Delta[1]$ is the coface maps. Then we have the isomorphism $g_\gamma : v_0^*E \to v_1^*E$, which is called **holonomy** along γ, defined by

$$\Delta[1] \times v_0^*E \xrightarrow{\varphi_\gamma} \gamma^*E$$

So we put

$$\Pi_n(E/B)(\gamma) := (g_\gamma^{-1})_* : \pi_n(v_1^*E) \to \pi_n(v_0^*E).$$

We can prove that it is depend on only the homotopy class of γ since $E \to B$ is Kan fibration. In fact, for another path γ' homotopic to γ by a homotopy $\sigma \in B_2$, there exists a homotopy h satisfying the commutative diagram

$$\Lambda^2[2] \times v_0^*E \xrightarrow{\varphi_\gamma \cup \varphi_{\gamma'}} \sigma^*E$$

by Theorem 7.8 in [15]. Here $\Lambda^2[2]$ is the $(2, 2)$-horn.

The cochain complex and the cohomology with local coefficients are defined as follows.
Definition 4.3. Let X be a Kan complex, A a subsimplicial set of X, and $M : \Pi_1(X) \to \text{Ab}$ a local system on X. We define the cochain complex with coefficient M by

$$C^n(X, A; M) := \left\{ c : X_n \to \coprod_{v \in X_0} M(v); \ c(x) \in M(x_0), \ c|A = 0 \right\} ,$$

where $x_0 = \partial_1 \cdots \partial_n x$, and its normalized version by

$$N^n(X, A; M) := \bigcap_{i=0}^n \text{Ker}(s_i^* : C^n(X, A; M) \to C^{n-1}(X, A; M)).$$

The differential $\delta : C^n(X, A; M) \to C^{n+1}(X, A; M)$ is defined by

$$\delta c(x) = M(x_0) c(\partial_0 x) - c(\partial_1 x) + \cdots + (-1)^{n+1} c(\partial_{n+1} x),$$

where $x_0 = \partial_2 \cdots \partial_n x$. Its cohomology is denoted by $H^n(X, A; M)$.

4.2. Obstruction cocycles and difference cochains. Let A be a subsimplicial set of B. We call a simplicial map s satisfying the following diagram an n-partial section relative to A:

$$\begin{array}{ccc}
E & \xrightarrow{s} & \mathcal{E} \\
\downarrow & & \downarrow \\
\text{sk}_n(B) \cup A & \xrightarrow{s} & B
\end{array}$$

Given an n-partial section $s : \text{sk}_n(B) \cup A \to \mathcal{E}$ relative to A, we shall construct the obstruction cocycle of s

$$c(s) \in N^{n+1}(B, A; \Pi_n(\mathcal{E}/B))$$

to extend a partial section $\text{sk}_{n+1}(B) \cup A \to \mathcal{E}$ as follows: for an $(n+1)$-simplex $\sigma \in B_{n+1}$, we get the induced section s_{σ} such that

$$\begin{array}{ccc}
\sigma^* \mathcal{E} & \xrightarrow{s_{\sigma}} & \mathcal{E} \\
\downarrow & & \downarrow \\
\text{sk}_n(\Delta[n+1]) & \xrightarrow{\text{sk}_n(\sigma)} & \text{sk}_n(B)
\end{array}$$

So we put

$$c(s)(\sigma) := g_{\sigma}^{-1}[s_{\sigma}] \in \pi_n(\sigma^* \mathcal{E}),$$

where $g_{\sigma} : \pi_n(\sigma^* \mathcal{E}) \to \pi_n(\sigma^* \mathcal{E})$ is an isomorphism induced by the inclusion $\sigma^* \mathcal{E} \to \sigma^* \mathcal{E}$.

Proposition 4.4. The cochain $c(s)$ is a cocycle.

Proof. For an $(n+2)$-simplex $\sigma \in B_{n+2}$, we have

$$\begin{array}{ccc}
(\partial_1 \sigma)^* \mathcal{E} & \xrightarrow{s_{(\partial_1 \sigma)^* \mathcal{E}}} & \sigma^* \mathcal{E} & \xrightarrow{s_{\sigma}} & \mathcal{E} \\
\downarrow & & \downarrow & & \downarrow \\
\text{sk}_n(\Delta[n+1]) & \xrightarrow{\text{sk}_n(\sigma)} & \text{sk}_n(\Delta[n+2]) & \xrightarrow{\text{sk}_n(\sigma)} & \text{sk}_n(B)
\end{array}$$
Thus we obtain using the relation \(\sigma \) for 0. Here note that \([sk]_{\partial} \) imply the equations
\[
\sigma_{\partial}^{-1} \sigma_{0}^{-1} \sigma_{\partial} = g_{\partial, \tau}^{-1} (s_{\tau})_{\ast} [sk_{n} (\partial^{\ast})], \quad g_{\partial_{0}}^{-1} g_{\partial_{1}}^{-1} [s_{\partial_{0}} \sigma] = g_{\partial}^{-1} (s_{\partial})_{\ast} [sk_{n} (\partial^{0})].
\]
Here note that \([sk_{n} (\partial^{\ast})] \in \pi_{n}(sk_{n}(\Delta[n + 2]), 0) \) and \([sk_{n} (\partial^{0})] \in \pi_{n}(sk_{n}(\Delta[n + 2]), 1) \). Thus we obtain
\[
(\delta c(s))(\sigma) = g_{\partial}^{-1} (s_{\partial})_{\ast} \left((\sigma_{01})_{\ast} [sk_{n} (\partial^{0})] + \sum_{\ast = 0}^{(-1)^{i}} [sk_{n} (\partial^{i})] \right) = 0,
\]
using the relation \((\sigma_{01})_{\ast} [sk_{n} (\partial^{0})] + \sum_{\ast = 0}^{(-1)^{i}} [sk_{n} (\partial^{i})] = 0 \) in \(\pi_{n}(sk_{n}(\Delta[n + 2]), 0) \).

We shall define the difference cochain for n-partial sections \(s_{0}, s_{1} : sk_{n}(B) \to E \) and a fiberwise homotopy \(h : sk_{n-1}(B) \times \Delta[1] \to E \times \Delta[1] \) between their restriction on \(sk_{n-1}(B) \). Gluing these maps, we have the map
\[
\tilde{h}^{\square} : (sk_{n}(B) \times sk_{0}(\Delta[1])) \cup (sk_{n-1}(B) \times \Delta[1]) \to E \times \Delta[1].
\]
We consider the obstruction cocycle
\[
c(h^{\square}) \in N^{n+1}(sk_{n}(B) \times \Delta[1], (sk_{n}(B) \times sk_{0}(\Delta[1])) \cup (sk_{n-1}(B) \times \Delta[1]); \Pi_{n}^{\square}),
\]
where \(\Pi_{n}^{\square} = \Pi_{n}(E \times \Delta[1]/B \times \Delta[1]) \). Note that faces of non-degenerate simplices of \(sk_{n}(B) \times \Delta[1] \) are in \((sk_{n}(B) \times sk_{0}(\Delta[1])) \cup (sk_{n-1}(B) \times \Delta[1]) \). Through the Eilenberg-Zilber map
\[
\times : N_{n}(B) \otimes N_{1}(\Delta[1]) \to N_{n+1}(sk_{n}(B) \times \Delta[1], (sk_{n}(B) \times sk_{0}(\Delta[1])) \cup (sk_{n-1}(B) \times \Delta[1])),
\]
we can define the cochain \(d(s_{0}, h, s_{1}) \in N^{n}(B; \Pi_{n}(E/B)) \) by
\[
d(s_{0}, h, s_{1})(\sigma) := (-1)^{n} c(h^{\square})(\sigma \times I)
\]
for \(\sigma \in B_{n} \). Here I is the unique non-degenerate simplex in \(\Delta[1] \).

Proposition 4.5. The cochain \(d(s_{0}, h, s_{1}) \) satisfies
\[
\delta d(s_{0}, h, s_{1}) = c(s_{1}) - c(s_{0}).
\]

Proof. It is proved by the equations
\[
\delta d(s_{0}, h, s_{1})(\sigma) = g_{\sigma_{0}}^{-1} d(s_{0}, h, s_{1})(\partial_{0} \sigma) + \sum_{\ast = 0}^{(-1)^{i}} d(s_{0}, h, s_{1})(\partial_{i} \sigma)
\]
\[
= (-1)^{n} g_{\sigma_{0}}^{-1} c(h^{\square})(\partial_{0} \sigma \otimes I) + \sum_{\ast = 0}^{(-1)^{n+1} c(h^{\square})(\partial_{i} \sigma \otimes I)}
\]
\[
= c(h^{\square})(\sigma \otimes I) - \delta c(h^{\square})(\sigma \otimes I)
\]
\[
= c(s_{1}) - c(s_{0}).
\]

The next two propositions hold in the same way as in obstruction theory [19].
Proposition 4.6. An n-partial section $s : sk_n(B) \to E$ extends to an $(n+1)$-partial section $sk_{n+1}(B) \to E$ if and only if $c(s) = 0$.

Proposition 4.7. For n-partial sections $s, s' : sk_n(B) \to E$, if obstruction cocycles $c(s)$ and $c(s')$ are cohomologous, there is a homotopy between $s|sk_{n-1}(B)$ and $s'|sk_{n-1}(B)$.

Suppose a fiber \mathcal{X} of a Kan fiber bundle $E \to B$ is $(n-1)$-connected (and $\pi_1(\mathcal{X}, x)$ is abelian if $n = 1$). Then we can get an n-partial section $s : sk_n(B) \to E$. If we get another n-partial section s', these is a homotopy between $s|sk_{n-1}(B)$ and $s'|sk_{n-1}(B)$. So we obtain an invariant

$$\sigma_n(E) := [c(s)] \in H^{n+1}(B; \Pi_n(E/B)).$$

It is called the obstruction class of $E \to B$.

4.3. Obstruction for $n = 0$. We consider an extension of a 0-partial section under the following situation: for a simplicial bundle $E \to B$, suppose that the local system $\Pi_0(E/B)$ of sets has a free and transitive right action of a local system G of groups on B.

At first, we define the non-abelian obstruction class of a 0-partial section. For that, we remark the definition of the non-abelian cohomology with values in a local system of non-abelian groups. Here “non-abelian cohomology” is in the sense of [10].

Definition 4.8. Let X be a simplicial set and G a local system of groups on X. Define the (non-abelian) cochain complex of X with coefficient G

$$C^n(X; G) := \left\{ c : X_n \to \prod_{v \in X_0} G(v); \ c(x) \in G(x_0) \right\}$$

for $0 \leq n \leq 2$ and the following datum:

(i) the affine action φ of $C^0(X; G)$ on $C^1(X; G)$:

$$(\varphi(f)c)(\gamma) = f(\partial_1 \gamma)c(\gamma)(G(\gamma)^{-1}f(\partial_0 \gamma)^{-1})$$

for $f \in C^0(X; G)$ and $c \in C^1(X; G)$,

(ii) the action ψ of $C^0(X; G)$ on $C^2(X; G)$:

$$(\psi(f)c)(\sigma) = Ad(G(\partial_2 \sigma)^{-1}f(\partial_0 \partial_2 \sigma))(c(\sigma)),$$

(iii) the map $\delta : C^1(X; G) \to C^2(X; G)$ satisfying $\delta(1) = 1$ and $\delta(\varphi(f)c) = \psi(f)c$ for $f \in C^0(X; G)$ and $c \in C^1(X; G)$:

$$\delta c(\sigma) = (G(\partial_2 \sigma)^{-1}c(\partial_0 \sigma))c(\partial_1 \sigma)^{-1}c(\partial_2 \sigma)$$

for $c \in C^1(X; G)$ and $\sigma \in X_2$.

The we get the 0-th cohomology group

$$H^0(X; G) := \ker(C^0(X; G) \to \text{Aut}(C^1(X; G)) \times C^1(X; G) \to C^1(X; G))$$

and the 1-st cohomology set

$$H^1(X; G) := \delta^{-1}(1)/C^0(X; G).$$
Given a 0-partial section \(s : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \), put
\[
c(s)(\gamma) = [s(\partial_1 \gamma)]^{-1}(\Pi_0(\gamma)^{-1}[s(\partial_0 \gamma)]) \in \mathcal{G}_{\gamma_0}
\]
for \(\gamma \in \mathcal{B}_1 \), i.e., \(c(s)(\gamma) \in \mathcal{G}_{\gamma_0} \) is the unique element satisfying
\[
[s(\partial_1 \gamma)]c(s)(\gamma) = \Pi_0(\gamma)^{-1}[s(\partial_0 \gamma)].
\]
By definition, \(c(s) \in C^1(\mathcal{B}; \mathcal{G}) \) is a cocycle. For another section \(s' : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \), if we can get \(f \in C^0(\mathcal{B}; \mathcal{G}) \) uniquely such that
\[
s'(x) = s(x)f(x)
\]
for \(x \in X_0 \), then \(c(s') = \varphi(f)c(s) \) holds. We denote \(f \) by \(d(s,s') \) as in Section 4.2. Especially the cohomology class
\[
o_0(\mathcal{E}) := [c(s)] \in H^1(\mathcal{B}; \mathcal{G})
\]
is independent of a choice of a 0-partial section \(s : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \). As with usual obstructions, \(o_0(\mathcal{E}) = 1 \) if and only if there is a 1-partial section \(\text{sk}_1(\mathcal{B}) \to \mathcal{E} \). It follows from the following proposition:

Proposition 4.9. If \(o_0(\mathcal{E}) = 1 \), there exists a 0-partial section \(s : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \) such that \(c(s) = 1 \).

Proof. If \([c(s)] = 1 \), there exists \(f \in C^0(\mathcal{B}; \mathcal{G}) \) such that \(c(s) = \varphi(f)(1) \). So replacing \(s \) with \(sf^{-1} \), we get the proposition. \(\square \)

The non-abelian obstruction \(o_0(\mathcal{E}) \) is hard to deal with, we shall replace a certain abelian cocycle using a filtration \(\{\mathcal{F}_i\mathcal{G}_i\}_{i=1}^\infty \) of \(\mathcal{G} \) such that
\[
\mathcal{G}_b = \mathcal{F}_1\mathcal{G}_b \supset \mathcal{F}_2\mathcal{G}_b \supset \cdots,
\]
\[
[\mathcal{F}_i\mathcal{G}_b, \mathcal{F}_j\mathcal{G}_b] \subset \mathcal{F}_{i+j}\mathcal{G}_b
\]
for \(b \in \mathcal{B}_0 \), and the map \(\mathcal{G}(\gamma) \) for \(\gamma \in \mathcal{B}_1 \) preserves the filtration. Given such a filtration, we can consider the local system of Lie algebras
\[
\text{gr} \mathcal{G} := \bigoplus_{i=1}^\infty \text{gr}_i \mathcal{G} := \bigoplus_{i=1}^\infty \mathcal{F}_i \mathcal{G} / \mathcal{F}_{i+1} \mathcal{G}.
\]

If the image of \(c(s) \) to \(C^1(\mathcal{B}; \text{gr}_i \mathcal{G}) \) is trivial, i.e., \(c(s)(\gamma) \in \mathcal{F}_i \mathcal{G}_{\gamma_0} \) for \(\gamma \in \mathcal{B}_1 \), we get its image \(c_i(s) \) to the (abelian) chain complex \(C^1(\mathcal{B}; \text{gr}_i \mathcal{G}) \). For another partial section \(\text{sk}_0(\mathcal{B}) \to \mathcal{E} \) satisfying the same condition, we can also get the image \(d_i(s,s') \) of \(d(s,s') \) to \(C^1(\mathcal{B}; \text{gr}_i \mathcal{G}) \). Then it satisfies the equation
\[
c_i(s') - c_i(s) = \delta d_i(s,s').
\]
It means \(\phi^{(i)}(\mathcal{E}) := [c_i(s)] \in H^1(\mathcal{B}; \text{gr}_i \mathcal{G}) \) is obtained uniquely.

Proposition 4.10. If \(\phi^{(i)}(\mathcal{E}) \) is defined and trivial, there exists a partial section \(s : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \) such that \(c(s)(\gamma) \in \mathcal{F}_{i+1} \mathcal{G}_{\gamma_0} \) for \(\gamma \in \mathcal{B}_1 \).

Proof. Supposing \(\phi^{(i)}(\mathcal{E}) = [c_i(s)] = 1 \), we have \(1 = [c(s)] \in H^1(\mathcal{B}; \mathcal{G}/\mathcal{F}_{i+1} \mathcal{G}) \). Then there exists a 0-partial section \(s' : \text{sk}_0(\mathcal{B}) \to \mathcal{E} \) such that \(c(s') = 1 \in C^1(\mathcal{B}; \mathcal{G}/\mathcal{F}_{i+1} \mathcal{G}) \). This section satisfies the required condition. \(\square \)
5. Obstruction of the bundles of formal homology connections

Let $E \to B$ be a smooth fiber bundle with homological structure group G and fiber X. Fix a G-invariant Chen’s differential δ on LW, where $W = H_*(X; \mathbb{R})[-1]$.

5.1. Connected cases. Suppose $Q\text{Der}^+(\hat{L}W, \delta) = 0$ and $H_n(\text{Der}(\hat{L}W), \delta) = 0$ for $n > i > 0$. In addition, suppose, if $n = 1$, $H_1(\text{Der}(\hat{L}W), \delta) \simeq H_0(\hat{L}W \otimes A, d + \delta + [\tau, -])$ is abelian with respect to the Baker-Campbell-Hausdorff product. Then we get the obstruction class of the simplicial bundle $Q \to S\text{Der}(\hat{L}W, \delta) \to S_2(B)$

$$\mathfrak{o} = o_n(Q_\bullet(E, \delta)) \in H^{n+1}(B; \Pi_n),$$

where $\Pi_n = \Pi_n(Q_\bullet(E, \delta)/S_2(B))$, and the characteristic maps of a fiber bundle $E \to B$

$$(\Lambda^p H_n(\text{Der}(\hat{L}W), \delta)^*)^G \to H^{p(n+1)}(B; \mathbb{R})$$

by $\psi \mapsto \psi(o, \ldots, o)$ for $p \geq 1$.

5.2. Example of a sphere bundle. We consider the sphere bundle $S^2 \to E = S^3 \times_{S^1} S^2 \to S^2$ associated to the Hopf fibration $S^1 \to S^3 \to S^2$, where $U(1) = S^1$ acts on $S^2 = \mathbb{C} \cup \{\infty\}$ by rotations. Since the action of S^1 on S^2 has two fixed points 0 and ∞, this fiber bundle has a section $S^2 \to S^3 \times_{S^1} S^2$ defined by $[b] \mapsto [b, \infty]$. We fix the section.

Denote the volume form on the fiber $S^2 = \mathbb{C} \cup \{\infty\}$ by

$$\nu = \frac{\sqrt{-1}}{2\pi} \frac{dwd\bar{w}}{1 + |w|^2}$$

and the desuspension of the fundamental form by $x \in W = H_2(S^2)[-1]$. Then a dgl model of S^2 is given by

$$LW = L(x) \ (|x| = 1), \ \delta x = 0$$

and its Lie algebra of derivations

$$\text{Der}(LW) = \left\langle x \frac{\partial}{\partial x}, [x, x] \frac{\partial}{\partial x} \right\rangle.$$

Note that

$$H_1(\text{Der}(LW), \delta) = \text{Der}(LW)_1 = \left\langle [x, x] \frac{\partial}{\partial x} \right\rangle.$$

For simplicity, we restrict the bundle $Q_\bullet(E) \to S_\bullet(S^2)$ to the Kan complex defined by

$$K_n = \{ (\Delta^n, sk_1 \Delta^n) \to (S^2, \infty) \} \subset S_n(S^2).$$

If $n \leq 1$, K_n is described by

$$K_0 = \{p_\infty\}, \ K_1 = \{\gamma_\infty\},$$

where $p_\infty : \Delta^0 \to S^2$ and $\gamma_\infty : \Delta^1 \to S^2$ are constant maps to the point ∞. We put $Q_\bullet := Q_\bullet(E)|_{K_\bullet}$.

We use the map $\rho : D^2 \to S^2$ defined by

$$\rho(z) = \begin{cases}
2z/(1 - |z|^2) & (|z| < 1) \\
\infty & (|z| = 1),
\end{cases}$$
regarding $D^2 = \{ z \in \mathbb{C}; |z| \leq 1 \} \subset \mathbb{C}$, and trivializations $\varphi_\rho : D^2 \times S^2 \to \rho^*E$ defined by
$$\varphi_\rho(z, w) = \left(z, \left[\frac{2z}{1 + |z|^2}, \frac{1 - |z|^2}{1 + |z|^2} \right], w \right).$$
Choose an orientation-preserving diffeomorphism $h : \Delta^2/(\partial_1 \Delta^2 \cup \partial_2 \Delta^2) \to D^2$ such that
$$\Delta^1 \overset{\delta}{\to} \Delta^2/(\partial_1 \Delta^2 \cup \partial_2 \Delta^2) \overset{h}{\to} D^2$$
is given by $t \mapsto e^{2\pi \sqrt{-1} t}$. Then we get the 2-simplex in $K,$
$$\sigma : \Delta^2 \to \Delta^2/(\partial_1 \Delta^2 \cup \partial_2 \Delta^2) \overset{\delta}{\to} D^2 \overset{\rho}{\to} S^2$$
and the trivialization $\varphi_\sigma : \Delta^2 \times S^2 \simeq \sigma^*E$ induced by φ_ρ. The restriction $g : \Delta^1 \times S^2 \to \gamma_\infty E = \Delta^1 \times E_\infty \simeq \Delta^1 \times S^2$ of φ_σ on $\partial_0 \Delta^2$ is described by
$$g(t, w) = (t, \varphi_0^{-1}((-2\pi \sqrt{-1} t, 0), w)) = (t, e^{2\pi \sqrt{-1} t}w).$$

The partial section $s : sk_1 K \to \mathcal{Q}$ is defined as follows:
$$s(p_2) := v_0 x \in \mathcal{Q}_0(E)_{p_2}, \quad s(\gamma) := v_1 x \in \mathcal{Q}_1(E)_{\gamma_{\infty}},$$
where $v_0 := (\varphi_0^{-1})*v \in A^2(E_\infty)$ and $v_1 := (\varphi_0^{-1})*v \in A^2(\gamma_{\infty} E)$ if the trivialization $\varphi_0 : S^2 \cong \rho^*_\infty E = E_\infty$ and $\varphi_1 : \Delta^1 \times S^2 \cong \gamma_{\infty}E = \Delta^1 \times E_\infty$ are described by
$$\varphi_1(t, w) = (t, [(1, 0), w]), \quad \varphi_0(w) = [(1, 0), w].$$
Since $[s_\sigma] = [v_1 x] \in \pi_1(\sigma^*Q\bullet(E), v_0 x)$, we have
$$c(s)(\sigma) = g^*[s_\sigma] = g^*[v_1 x] = [g^*(v_1 x)] \in \pi_1(\mathcal{Q}\bullet(S^2), vx)$$
under the identification $\varphi_\sigma^1 : \pi_1(\mathcal{Q}\bullet(E_\infty), v_0 x) \simeq \pi_1(\mathcal{Q}\bullet(S^2), vx)$. Calculating directly, we get
$$g^*(v) = v + \xi dt,$$
where
$$\xi = -\frac{\bar{w}dw + wd\bar{w}}{(1 + |w|^2)^2} = df, \quad f(w) = 1 - \frac{1}{2} \frac{1}{1 + |w|^2}.$$
Then putting
$$\Xi = t_1 \xi dt_2 - t_2 \xi dt_1 + 2f dt_1 dt_2,$$
this satisfies the equation
$$(v + \Xi)^2 = 2v \Xi = 4fv dt_1 dt_2 = -4fv dt_0 dt_2 = -4(fv(t_0 dt_2 - t_2 dt_0)).$$
So we obtain the formal homology connection $\alpha = (v + \Xi)x - 4fv(t_0 dt_2 - t_2 dt_0)[x, x] \in \mathcal{Q}_2(S^2)$ satisfying
$$\partial_2 \alpha = (v + \Xi dt_0)x, \quad \partial_1 \alpha = vx + 4fvdz_0[x, x], \quad \partial_2 \alpha = vx.$$
Therefore the equation
$$[g^*(v_1 x)] = [(v + \Xi dt_0)x] = [vx + 4fvdz_0[x, x]] \in \pi_1(\mathcal{Q}\bullet(S^2), vx)$$
holds. Furthermore
$$\int_{S^2} 4fv = \int_{S^2} \sqrt{-1} \frac{dwd\bar{w}}{1 + |w|^2} = \frac{1}{\pi} \int_0^\infty 2rdr \left(\frac{1}{1 + r^2} \right)^3 \int_0^{2\pi} d\theta = 2 \int_0^{\infty} \frac{dx}{(1 + x)^3} = 1$$
means that the deRham cohomology class $[4f v] \in H^2(S^2)$ is non-trivial. According to Theorem 4.10 of [1], we have $c(s)(\sigma) \neq 0$ and
$$\phi = [c(s)] \neq 0 \in H^2(K; H_1(\text{Der}(LW))).$$
Finally evaluating the class with the dual basis ν of $[x,x] \partial / \partial x \in \text{Der}(LW)_1$, we get the non-trivial characteristic class

$$\nu(\alpha) \in H^2(K) = H^2(S^2),$$

which is the Euler class of the sphere bundle $E \to S^2$ (see [16]).

5.3. Non-connected cases. If $Q\text{Der}^+(\hat{LW}, \delta) \neq 0$, we can apply the construction in Section 4.3. Putting $\Pi_0 = \Pi_0(\mathcal{Q}(E, \delta)/\mathcal{S}_b(B))$, we have the identification

$$\Pi_0(b) = \{C_\infty\text{-algebra map } (H(E_b), m_b) \to A(E_b) \text{ s.t. } (f_1)_* = \text{id}_H \}/(C_\infty\text{-homotopic}),$$

where m_b is the C_∞-algebra structure on H corresponding to $\tilde{\delta}(b)$. According to the homotopy theory of C_∞-algebras, the group $\text{QIAut}(H(E_b), m_b)$ of homotopy classes of C_∞-automorphisms $(H(E_b), m_b) \to (H(E_b), m_b)$ such that $f_1 = \text{id}_{H(E_b)}$ acts on the set $\Pi_0(b)$ on the right freely and transitively.

The local system $\text{QIAut}(E)$ of groups is defined by

$$\text{QIAut}(E)_b := \text{QIAut}(H(E_b), m_b), \quad \gamma_b(f) := (g_{\gamma})^{-1} \circ f \circ (g_{\gamma})^*$$

for $b \in B$, $\gamma \in S_1(B)$ and $f \in \text{QIAut}(E_{\gamma(0)})$, where $g_{\gamma} : E_{\gamma(0)} \to E_{\gamma(1)}$ is the holonomy along γ. Then we get the non-abelian obstruction class

$$\alpha_0 = \alpha_0(Q_{\bullet}(E)) \in H^1(B; \text{QIAut}(E))$$

in Section 4.3.

Furthermore we have the filtration $\{\text{QIAut}^{\geq i}(E)\}_{i=1}^\infty$ of $\text{QIAut}(E)$ defined in Section 2.3. By the observations in Section 2.3, there exists the identification as local system of vector spaces

$$\text{gr}_i(\text{QIAut}(E)) \simeq \text{gr}_i(\text{QDer}^+(E)),$$

where the local system $\text{QDer}^+(E)$ of Lie algebras is defined in the same way as $\text{QIAut}(E)$. Here note that $\text{gr}(\text{QDer}^+(E))$ is defined similarly to $\text{gr}(\text{QIAut}(E))$ using its filtration.

Suppose we get the obstruction class $\alpha_i \neq 0 \in H^1(B; \text{gr}_i(\text{QDer}^+(E)))$ with respect to the filtration. In the same way as in Section 4.2, the characteristic map

$$(\Lambda^* \text{gr}_i(\text{QDer}^+(\hat{LW}, \delta))^*)^G \to H^*(B; \mathbb{R})$$

is obtained.

Especially, if X is formal and δ corresponds to the product of the cohomology H of X, we obtain the characteristic map

$$(\Lambda^* \text{QDer}^i(\hat{LW}, \delta))^*^G \to H^*(B; \mathbb{R}).$$

We shall show a relation between the characteristic map constructed in [11] and the construction above. By discussions in [11], given a metric of the fiber bundle $E \to B$, we have the map $s : B \to Q_0(E)$: for $b \in B$, the metric on E_b gives a Hodge decomposition of E_b, so let $s(b)$ be the C_∞-minimal model defined by the Hodge decomposition. Composing the natural projection $Q_0(E) \to \mathcal{D}(E)$ with s, we get a section of Chen’s differential $\tilde{\delta}$

Theorem 5.1. Let X be a pointed oriented closed manifold and $E \to B$ be a smooth bundle with section and metric. Suppose the metric gives a section $\tilde{\delta}$ of
Chen’s differentials corresponding to a G-invariant Chen’s differential δ of X. Then we have the commutative diagram of chain complexes

$$
\begin{array}{ccc}
C^\bullet_{CE}(\text{QDer}^+(\hat{L}W, \delta))^G & \xrightarrow{\Phi} & A^\bullet(B) \\
\downarrow \Phi_1 & & \downarrow f \\
(\Lambda^\bullet \text{gr}_1(\text{QDer}^+(\hat{L}W, \delta))^G & \xrightarrow{\Phi_1} & C^\bullet(B; \mathbb{R}),
\end{array}
$$

where the first row map Φ is the characteristic map in [11], the second row Φ_1 is the characteristic map defined by

$$
\Phi_1(\zeta)(\gamma) = \zeta(c_1(s)(\gamma), \ldots, c_1(s)(\gamma))
$$

for $\zeta \in (\Lambda^p \text{gr}_1(\text{QDer}^+(\hat{L}W, \delta))^G$ and $\gamma \in S_1(B)$, the first column is the natural projection and the second column f is the deRham map.

Proof. Take a base point $*$ of B and put the universal covering of B

$$
\tilde{B} = \{ \gamma : [0, 1] \rightarrow B; \gamma(0) = * \} / \text{(homotopy preserving boundary)}.
$$

We identify the fiber E_* on $*$ with the typical fiber X.

The smooth map $\mu : \tilde{B} \rightarrow Q(X, \delta)$ from the universal cover \tilde{B} of B to the moduli space $Q(X, \delta) := \pi_0(Q_\bullet(X, \delta))$ of C_{∞}-algebra models of X is defined by

$$
\mu([\gamma]) = g_\gamma^{-1} \cdot [s(\gamma(1))].
$$

Here $g_\gamma : E_* \rightarrow E_{\gamma(1)}$ is the holonomy along γ. Pull-backing the right-invariant Maurer-Cartan form defined by the right-action of $\text{QIAut}(\hat{L}W, \delta)$ on $Q(X, \delta)$

$$
\eta \in A^1(Q(X, \delta); \text{QDer}^+(\hat{L}W, \delta)),
$$

we get the flat connection

$$
\eta_\mu := \mu^* \eta \in A^1(\tilde{B}; \text{QDer}^+(\hat{L}W, \delta)).
$$

On the other hand, we can regard s as the 0-partial section $s : \text{sk}_0(S_\bullet(B)) \rightarrow Q_\bullet(E)$. Its non-abelian obstruction cocycle is described by

$$
c(s)(\gamma) = [s(\gamma(0))]^{-1} g_\gamma^{-1} [s(\gamma(1))] = g_l(\mu([l])^{-1} \mu([\gamma[l]])),
$$

where l is a path from $*$ to $\gamma(0)$ and a path $\tilde{\gamma} : [0, 1] \rightarrow \tilde{B}$ is the lift of γ such that $\tilde{\gamma}(0) = [l]$. The map $\Psi : Q(X, \delta) \rightarrow Q(X, \delta)$ defined by $\Psi(\alpha) = \mu([l])^{-1} \alpha$ satisfies the differential equation $d\Psi = \Psi \eta$. Thus, solving the equation over the path $\mu \tilde{\gamma}$, we have

$$
\mu([l])^{-1} \mu([\gamma[l]]) = \Psi(\mu \tilde{\gamma}(1)) = \sum \int_{\mu \tilde{\gamma}} \eta \cdots \eta.
$$

Therefore we get the description using iterated integrals

$$
c(s)(\gamma) = g_l \cdot \sum \int_{\mu \tilde{\gamma}} \eta \cdots \eta = g_l \cdot \sum \int_{\gamma} \eta_\mu \cdots \eta_\mu.
$$

Its projection to $\text{gr}_1(\text{QDer}^+(\hat{L}W, \delta))$ is equal to $c_1(s)(\gamma) = g_l \int \eta_\mu$ and

$$
\int \Phi(\xi) = \int \xi(\eta_\mu, \ldots, \eta_\mu) = \tilde{\xi} \left(\int \eta_\mu, \ldots, \int \eta_\mu \right) = \Phi_1(\tilde{\xi}) \in C^p(\tilde{B})
$$

for $\xi \in C^p_{CE}(\text{QDer}^+(\hat{L}W, \delta))^G$, where $\tilde{\xi}$ is the projection of ξ. Since the element is $\pi_1(B, *)$-invariant, we can regard it as element in $C^p(B)$.

\square
Furthermore, if \(c_1(s) = \cdots = c_{g−1}(s) = 0 \), we get the (cocycle-level) characteristic map \(\Phi_i : (A^\bullet \text{gr}_i(Q\text{Der}^+(\hat{L}W, δ))^G) \to C^\bullet(B; \mathbb{R}) \) defined by
\[
\Phi_i(\zeta(\gamma)) = (\zeta(c_1(s)(\gamma)), \ldots, \zeta(c_g(s)(\gamma)))
\]
for \(\zeta \in (\Lambda^p \text{gr}_i(Q\text{Der}^+(\hat{L}W, δ))^G \) and \(\gamma \in S_1(B) \) since \(\eta_p \in A^1(B; \text{QDer}^{\geq 1}(\hat{L}W, δ)) \). Then the same commutative diagram holds. So the construction above using obstructions is the “leading term” of the characteristic map obtained in [11]
\[
\Phi : C^\bullet_C(\text{QDer}^+(\hat{L}W, δ))^G \to A^\bullet(B).
\]

5.4. **Example of surface bundles.** We consider the case of \(X = \Sigma_g \), which is the closed oriented surface with genus \(g \geq 2 \). This is a formal manifold, so we can put
\[
\delta = \frac{\partial}{\partial v},
\]
where \(v \in W_1 \) is the fundamental form of \(\Sigma_g \) and \(\omega \in [W_0, W_0] \) is the intersection form, i.e., \(\omega = \sum_{i=1}^g [x^i, y^i] \) for a symplectic basis \(\{x^i, y^i\} \) of \(W_0 \) with respect to the intersection form of \(\omega \).

5.4.1. **The first obstruction for surface bundles.** For an oriented surface bundle (with section), its homologically structure group is in the symplectic group \(\text{Sp}(W_0) \) of \(W_0 \).

Proposition 5.2. We have the identification as \(\text{Sp}(W_0) \)-vector space
\[
Q\text{Der}^1(\hat{L}W, δ) \simeq \Lambda^3 W_0.
\]

Proof. An element \(D \in \text{Der}^1(\hat{L}W)_0 \) is described by the form
\[
D = D_0 + [v, z] \frac{\partial}{\partial v}
\]
for \(D_0 \in \text{Der}^1(LW_0) \) and \(z \in W_0 \). Then we can calculate the image by \(\text{ad}(\delta) \):
\[
[\delta, D] = -D_0(\omega) + [\omega, z] \frac{\partial}{\partial v}.
\]
So, \(D \) is in the kernel if and only if \(D_0(\omega) \in (\omega) \), where \((\omega) \) is the Lie ideal in \(LW_0 \) generated by \(\omega \). This condition is equivalent to the condition: \(D_0 \) induces a derivation on \(LW_0/\omega \).

On the other hand, an element \(P \in \text{Der}^0(\hat{L}W)_1 \) is described by
\[
P = \sum b_i v \frac{\partial}{\partial x_i}
\]
for \(b_i \in \mathbb{R} \), where \(\{x_i\}_{i=1}^{2g} \) is a basis of \(W_0 \). Its image of \(\text{ad}(\delta) \) is
\[
[\delta, P] = \sum b_i \omega \frac{\partial}{\partial x_i} - P(\omega) \frac{\partial}{\partial v}.
\]

Since we can prove \([v, W_0] = \{P(\omega); P \in \text{Der}^0(\hat{L}W)_1\} \) by direct calculus, for any \(D \in \text{Der}^1(\hat{L}W)_0 \), there exists \(P \in \text{Der}^0(\hat{L}W)_1 \) such that
\[
D_P := D + [\delta, P] \in \text{Der}^1(LW_0).
\]
Furthermore, for another \(P' \in \text{Der}^0(\hat{L}W)_1 \) such that \(D_{P'} = D + [\delta, P'] \in \text{Der}^1(LW_0) \), their difference \([\delta, P - P'] \) is in \(\text{Hom}(W_0, \mathbb{R}) \subset \text{Der}^1(LW_0) \). So if \(D \) is in the kernel, \(D_P \) and \(D_{P'} \) induce the same derivation on \(LW_0/\omega \). Therefore we get the isomorphism
\[
Q\text{Der}^1(\hat{L}W, δ)_0 \simeq \text{Der}^1(LW_0/\omega).
\]
According to [17], we have the isomorphism $\text{Der}^1(LW_0/(\omega)) \simeq \Lambda^3W_0$. □

By the proposition above, for a oriented surface bundle $E \to B$ with section, we get the obstruction class

$$\phi^{(1)} = \phi^{(1)}(Q(E, \hat{\delta})/S_\bullet(B)) \in H^1(B; \Lambda^3W_0(E)).$$

Here $\Lambda^3W_0(E)$ is the local system of vector spaces such that

$$\Lambda^3W_0(E)(b) = \Lambda^3\tilde{H}_1(E_b; \mathbb{R})[-1].$$

This local system is defined in the same way as $\text{QIAut}(E)$ and $\text{QDer}^+(E)$. Then we also get the characteristic map

$$(\Lambda^\bullet(\Lambda^3W_0))^\text{Sp}(W_0) \to H^\bullet(B; \mathbb{R}).$$

5.4.2. Twisted Morita-Miller-Mumford class.

We shall show that the obstruction $\phi^{(1)}$ can be regarded as one of the twisted Morita-Miller-Mumford classes. For the purpose, we use notations as follows:

- the mapping class group $\mathcal{M}_{g,*}$ of the oriented closed surface Σ_g with a base point,
- the space Met_g of Riemannian metrics which has constant curvature -1 on Σ_g,
- the Teichmüller space $\mathcal{T}_{g,*}$, which is the orbit space of Met_g by the action of the group $\text{Diff}_0(\Sigma_g, *)$ of diffeomorphisms of $(\Sigma_g, *)$ isotopic to identity,
- the moduli space $\mathcal{M}_{g,*} = \mathcal{T}_{g,*}/\mathcal{M}_{g,*}$ of Riemann surfaces with a base point, and
- the universal family $\mathcal{C}_{g,*} = \text{Met}_g \times_{\text{Diff}(\Sigma_g, *)} \Sigma_g$ of Riemann surfaces with a base point.

Applying the construction in Section 5.4.1 for the “universal surface bundle” $\mathcal{C}_{g,*} \to \mathcal{M}_{g,*}$, we get the obstruction

$$\phi^{(1)} \in H^1(\mathcal{M}_{g,*}; \Lambda^3W_0(\mathcal{C}_{g,*})).$$

Theorem 5.3. The obstruction class $\phi^{(1)}$ is equal to the minus of the twisted Morita-Miller-Mumford class

$$-m_{0,3} \in H^1(\mathcal{M}_{g,*}; \Lambda^3W_0).$$

Proof. Take the canonical metric of $\mathcal{C}_{g,*} \to \mathcal{M}_{g,*}$. According to the proof of Theorem 5.1, we have $\mu : \mathcal{T}_{g,*} \to Q(\Sigma_g, \delta)$ and the cocycle

$$c_1(\gamma) = \int_\gamma \eta_\mu = \int_\gamma \eta_1,$$

where η_1 is the QDer1-part of η_μ. So by the same discussion in [12], the cohomology class $\phi^{(1)} = [c_1(s)]$ is equal to the twisted Morita-Miller-Mumford class in $H^1(\mathcal{M}_{g,*}; \Lambda^3W_0)$. (The discussion is also used in Section 4 of [14].) □

So the obtained characteristic map

$$(\Lambda^\bullet(\Lambda^3W_0))^\text{Sp}(W_0) \to H^\bullet(\mathcal{M}_{g,*}; \mathbb{R}) = H^\bullet(\mathcal{M}_{g,*}; \mathbb{R})$$

gives Morita-Miller-Mumford classes by the result of [13].
References

[1] A. Berglund, Rational homotopy theory of mapping spaces via Lie theory for L_∞-algebras, Homology Homotopy Appl. 17 (2015), no.2, 343-369.
[2] U. Buijs, Y. Félix, A. Murillo and D. Tanré, Maurer-Cartan elements in the Lie models of finite simplicial complexes, Canad. Math. Bull. 60 (2017), no. 3, 470-477.
[3] M. Bullejos, E. Faro and M. A. García-Muñoz, Homotopy colimits and cohomology with local coefficients, Cahiers de topologie et géométrie différentielle catégoriques, tome. 44, no 1 (2003), 63-80.
[4] K.T. Chen, Extension of C^∞ function algebra by integrals and Malcev completion of π_1, Advances in Math. 23 (1977), no. 2, 181-210.
[5] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831-879.
[6] W.G. Dwyer and D.M. Kan, An obstruction theory for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math., 46 (2) (1984), 139-146.
[7] E. Getzler, Lie theory for nilpotent L_∞-algebras, Ann. of Math. (2) 170 (2009), no.1, 271-301.
[8] E. Getzler and J. D. S. Jones, A_∞-algebras and the cyclic bar complex, Illinois J. Math. 34, (1990), 256-283.
[9] V.K.A.M. Gugenheim, L.A. Lambe, and J.D. Stasheff, Algebraic aspects of Chen’s twisting cochain, Illinois J. Math, 34, (2) (1990), 485-502.
[10] J. Frenkel, Cohomology non abélienne et espaces fibrés, Bull. Soc. Math. France, 85, 2 (1957), 135-220.
[11] H. Kajiura, T. Matsuyuki and Y. Terashima, Homotopy theory of A_∞-algebras and characteristic classes of fiber bundles, arXiv:1605.07904.
[12] N. Kawazumi, Harmonic Magnus expansion on the universal family of Riemann surfaces, arXiv preprint math/0603158 (2006).
[13] N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli space of curves and cocycles for the stable characteristic classes, Math. Res. Lett. 3 (1996), no. 5, 629-641.
[14] T. Matsuyuki and Y. Terashima, Characteristic classes of fiber bundles, Algebr. Geom. Topol. 16 (2016), no. 5, 3029-3050.
[15] J.P. May, Simplicial Objects in Topology, University of Chicago Press, 1967.
[16] J.W. Milnor, On characteristic classes of spherical fiber spaces, Comment. Math. Heiv., 43 (1968), 51-77.
[17] S. Morita, A linear representation of the mapping class group of orientable surfaces and characteristic classes of surface bundles, in Proceedings of the Taniguchi Symposium on Topology and Teichmüller Spaces held in Finland, July 1995, World Scientific 1996, 159-186.
[18] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, arXiv:1211.1647.
[19] N. Steenrod, The topology of fiber bundles, Princeton University Press, (1974).
[20] D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, 1025, Springer-Verlag, Berlin, 1983.

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan.
E-mail address: matsuyuki.t.aa@m.titech.ac.jp