Measurement of the Ratio of Decay Amplitudes for $\bar{B}^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi K^{*0}$

B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Coudere,1 J.-M. Gaillard,1 A. Hicheur,1 Y. Karyotakis,1 J. P. Lees,1 V. Tisserand,1 A. Zghiche,1 A. Palano,2 A. Pompili,2 J. C. Chen,3 N. D. Qi,3 G. Rong,3 P. Wang,3 Y. S. Zhu,3 G. Eigen,4 I. Öfe,4 B. Stuug,4 G. S. Abrams,5 A. W. Borland,5 A. B. Breaun,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 E. Charles,5 C. T. Day,5 M. S. Gill,5 A. V. Gritsan,5 Y. Groysman,5 R. G. Jacobsen,5 R. W. Kadel,5 J. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 G. Lynch,5 L. M. Mir,5 P. J. Oddone,5 T. J. Orimoto,5 M. Pripstein,5 N. A. Roe,5 M. T. Ronan,5 V. G. Shelkov,5 W. A. Wenzel,5 K. E. Ford,6 T. J. Harrison,6 C. M. Hawkes,6 S. E. Morgan,6 A. T. Watson,6 M. Fritsch,7 K. Goetzenn,7 T. Held,7 H. Koch,7 B. Lewandowski,7 M. Pelaziea,7 M. Steinke,7 J. T. Boyd,8 N. Chevalier,8 W. N. Cottingham,8 M. P. Kelly,8 T. E. Latham,8 F. F. Wilson,8 T. Cuhadar-Donszelmann,9 C. Hearty,9 N. S. Knecht,9 T. S. Mattison,9 J. A. McKenna,9 D. Thiessen,9 A. P. Kyberd,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Bukan,11 V. P. Drzhinin,11 V. B. Golubev,11 V. N. Ivanchenko,11 E. A. Kravchenko,11 A. P. Omuchin,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 A. N. Yushkov,11 D. Best,12 M. Bruinsma,12 M. Chao,12 I. Eischrich,12 D. Kirkby,12 A. J. Lankford,12 M. Mandelkern,12 R. K. Mommsen,12 W. Roethel,12 D. P. Stoker,12 C. Buchanan,13 B. L. Hartfiel,13 J. W. Gary,14 B. C. Shen,14 K. Wang,14 D. del Re,15 H. K. Hadavand,15 J. H. Hill,15 D. B. MacFarlane,15 H. P. Paar,15 Sh. Rahatlou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnari,16 B. Dahmes,16 S. L. Levy,16 O. Long,16 A. Lu,16 M. A. Mazur,16 J. D. Richman,16 W. Verkerke,16 T. W. Beck,17 A. M. Eisner,17 C. A. Heusch,17 W. S. Lockman,17 T. Schalk,17 R. E. Schmitz,17 B. A. Schumm,17 A. Seiden,17 P. Spradlin,17 D. C. Williams,17 M. G. Wilson,17 J. Albert,18 E. Chen,18 G. P. Dubois-Felsmann,18 A. Dvoretsky,18 G. D. Hitlin,18 I. Narisky,18 T. Piatenko,18 F. C. Porter,18 A. Ryd,18 A. Samuel,18 S. Yang,18 S. Jayatilleke,19 G. Mancinelli,19 B. T. Meadows,19 D. M. Sokoloff,19 T. Abe,20 F. Blanc,20 P. Bloom,20 S. Chen,20 W. T. Ford,20 U. Nauenberg,20 A. Olivas,20 P. Rankin,20 J. G. Smith,20 J. Zhang,20 A. Chen,21 J. L. Horton,21 A. Sofer,21 W. H. Toki,21 R. J. Wilson,21 Q. L. Zeng,21 D. Altenburg,22 T. Brandt,22 J. Brose,22 T. Colberg,22 M. Dickopp,22 E. Feltresi,22 A. Hauke,22 H. M. Lackner,22 E. Maly,22 R. Müller-Pfefferkorn,22 R. Negovsk,22 S. Otto,22 A. Petzold,22 J. Schubert,22 K. R. Schubert,22 R. Schwierz,22 B. Spaan,22 J. E. Sundermann,22 D. Bernard,23 G. R. Bonneaud,23 F. Brochard,23 P. Grenier,23 S. Schrenk,23 Ch. Thiebaux,23 G. Vasileiadis,23 M. Verderi,23 D. J. Bard,24 P. J. Clark,24 D. Lavin,24 F. Muheim,24 S. Player,24 Y. Xie,24 M. Andreotti,25 V. Azzolini,25 D. Bettoni,25 C. Bozzi,25 R. Calabrese,25 G. Cibinetto,25 E. Luppi,25 M. Negrini,25 L. Pienontese,25 A. Sarti,25 E. Treadwell,26 R. Baldini-Ferroli,27 A. Calcabutra,27 R. de Sangro,27 G. Finocchiaro,27 P. Patteri,27 M. Piccolo,27 A. Zallo,27 A. Buizza,28 R. Contra,28 G. Crosetti,28 M. Lo Vetere,28 M. Macri,28 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 S. Bailey,29 G. Brandenburg,29 M. Morii,29 E. Won,29 R. S. Dubitzky,30 U. Langenegger,30 W. Bihimi,31 D. A. Bowerman,31 P. D. Dauncey,31 U. Egede,31 J. R. Gaillard,31 G. W. Matson,31 J. A. Nash,31 G. P. Taylor,31 M. J. Charles,32 G. J. Grenier,32 U. Malik,32 J. Cochran,33 H. B. Crawley,33 J. Lamsa,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 J. Yi,33 M. Davier,34 G. Grosdidier,34 A. Höcker,34 S. Laplace,34 F. Le Diberder,34 V. Lepeltier,34 A. M. Lutz,34 T. C. Petersen,34 S. Plaszczynski,34 M. H. Schune,34 L. Tantot,34 G. Wormser,34 C. H. Cheng,35 D. J. Lange,35 M. C. Simani,35 D. M. Wright,35 A. J. Bevan,36 J. P. Coleman,36 J. R. Frye,36 E. Gabathuler,36 R. Gamet,36 R. J. Parry,36 D. J. Payne,36 R. J. Sloane,36 C. Touramanis,36 J. J. Back,37 C. M. Cormack,37 F. P. Harrison,37 G. B. Mohanty,37 C. L. Brown,38 G. Cowan,38 R. L. Flack,38 H. U. Fleischer,38 M. G. Green,38 C. E. Marker,38 T. R. McMahon,38 S. Ricciardi,38 F. Salvaturo,38 G. Valitsas,38 M. A. Winter,38 D. Brown,39 C. L. Davis,39 J. Allison,40 N. R. Barlow,40 R. J. Barlow,40 P. A. Hart,40 M. C. Hodgkinson,40 G. D. Lafferty,40 A. J. Lyon,40 J. C. Williams,40 A. Farbin,41 W. D. Hulsbergen,41 A. Jawahery,41 D. Kovalskyi,41 C. K. Læ,41 V. Lillard,42 D. A. Roberts,42 G. Blaylock,42 C. Dallapiccola,42 K. T. Flood,42 S. S. Hertzbach,42 R. Kofler,42 V. B. Koptchev,42 T. B. Moore,42 S. Saremli,42 H. Staengle,43 W. Willocq,43 R. Cowan,43 G. Sciolla,43 F. Taylor,43 R. K. Yamamoto,43 J. D. J. Mangeol,44 P. M. Patel,44 S. H. Robertson,44 A. Lazzaro,45 F. Palombo,45 J. M. Bauer,46 L. Cremaldu,46 V. Eschenburg,46 R. Godang,46 R. Kroeger,46 J. Reidy,46 D. A. Sanders,46 D. J. Summers,46 H. W. Zhao,46 S. Brunet,47 D. Côté,47 P. Taras,47 H. Nicholson,48 N. Cavallo,49 F. Fabozzi,49 C. Gatto,49 L. Lista,49 D. Monorchio,49 P. Paolucci,49
D. Piccolo, 49 C. Sciacca, 49 M. Baak, 50 H. Buiten, 50 G. Raven, 50 L. Wilden, 50 C. P. Jessop, 51 J. M. LoSecco, 51 T. A. Gabriel, 52 T. Allmendinger, 52 B. Brau, 53 K. K. Gan, 53 K. Honscheid, 53 D. Hufnagel, 53 H. Kagan, 53 R. Kass, 53 T. Pulliam, 53 A. M. Rahimi, 53 R. Ter-Antonyan, 53 Q. K. Wong, 53 J. Brau, 54 R. Frey, 54 O. Igonkina, 54 C. T. Potter, 54 N. B. Sinev, 54 D. Strom, 54 E. Torrence, 54 F. Coleccia, 55 A. Dorigo, 55 F. Galeazzi, 55 M. Margoni, 55 M. Morandin, 55 M. Posocco, 55 M. Rotondo, 55 F. Simonetto, 55 R. Stroili, 55 G. Tiozzo, 55 C. Voci, 55 M. Benayoun, 56 H. Briaud, 56 J. Chauveau, 56 P. David, 56 Ch. de la Vaissi`ere, 56 L. Del Buono, 56 O. Hamon, 56 M. J. J. John, 56 Ph. Leruste, 56 J. Malcles, 56 J. Ocarioz, 56 M. Pivk, 56 L. Roos, 56 S. T. Jampens, 56 G. Therin, 56 P. F. Manfredi, 57 V. Re, 57 P. K. Behera, 58 L. Gladney, 58 Q. H. Guo, 58 J. Panetta, 58 F. Anulli, 27 M. Biasini, 59 I. M. Peruzzi, 27 M. Pioppi, 59 C. Angelini, 60 G. Batignani, 60 S. Bettarini, 60 M. Bondioli, 60 F. Bucci, 60 G. Calderini, 60 M. Carpinelli, 60 V. Del Gamba, 60 F. Forti, 60 M. A. Giorgi, 60 A. Lusiani, 60 G. Marchiori, 60 F. Martinez-Vidal, 60 M. Morganti, 60 N. Neri, 60 E. Paoloni, 60 M. Rama, 60 G. Rizzo, 60 F. Sandrelli, 60 J. Walsh, 60 M. Haire, 61 D. Judd, 61 K. Paik, 61 D. E. Wagoner, 61 N. Danielson, 62 P. Elmer, 62 Y. P. Lau, 62 C. Lu, 62 V. Mitakov, 62 J. Olsen, 62 A. J. S. Smith, 62 A. V. Telnov, 62 F. Bellini, 63 G. Cavoto, 63 F. Ferrarotto, 63 F. Ferroni, 63 M. Gaspero, 63 L. Li Giori, 63 M. A. Mazzoni, 63 S. Morganti, 63 M. Pierini, 63 G. Piredda, 63 F. Safari Tahran, 63 C. Voena, 63 S. Christ, 64 G. Wagner, 64 R. Waldi, 64 T. Adey, 65 N. De Groot, 65 B. Franek, 65 N. I. Geddes, 65 G. P. Gopal, 65 E. O. Olaiya, 65 R. Aleksan, 66 S. S. Emery, 66 A. Gaidor, 66 S. F. Ganzhur, 66 P. F. Giraud, 66 G. Hamel de Monchenault, 66 W. Kozanecki, 66 M. Langer, 66 M. Legrande, 66 G. W. London, 66 B. Mayer, 66 G. Schott, 66 G. Vasseur, 66 Ch. Yth~e, 66 M. Zito, 66 M. V. Purohit, 67 A. W. Weidemann, 67 J. R. Wilson, 67 F. X. Yumiceva, 67 D. Ashton, 68 R. Bartoldus, 68 N. Berger, 68 A. M. Boyarski, 68 O. L. Buchmueller, 68 M. R. Convery, 68 M. Cristinizza, 68 G. De Nardo, 68 D. Dong, 68 J. Dorfan, 68 D. Ducnic, 68 W. Dunwoodie, 68 E. E. Olsen, 68 S. Fan, 68 R. C. Field, 68 T. Glanzman, 68 S. J. Gowdy, 68 T. Hadig, 68 V. Halyo, 68 C. Hast, 68 T. Hryn’ova, 68 W. R. Innes, 68 M. H. Kelsey, 68 P. Kim, 68 M. L. Kocian, 68 D. W. G. S. Leith, 68 J. Libby, 68 S. Luitz, 68 V. Luth, 68 H. L. Lynch, 68 H. Marsiske, 68 R. Messner, 68 D. R. Muller, 68 C. P. O’Grady, 68 V. E. Ozcan, 68 A. Perazzo, 68 M. Perl, 68 S. Petrak, 68 B. N. Ratcliff, 68 A. Rooain, 68 A. A. Salnikov, 68 R. H. Schindler, 68 J. Schwiening, 68 G. Simi, 68 A. Snyder, 68 A. Soha, 68 J. Stelzer, 68 D. Su, 68 M. K. Sullivan, 68 J. Va’vra, 68 S. R. Wagner, 68 M. Weaver, 68 A. J. R. Weinstein, 68 W. J. Wisniewski, 68 M. Wittgen, 68 D. H. Wright, 68 A. K. Yarritu, 68 C. C. Young, 68 P. R. Burchat, 69 A. J. Edwards, 69 T. I. Meyer, 69 B. A. Petersen, 69 C. Roat, 69 S. Ahmed, 70 M. S. Alam, 70 J. A. Ernst, 70 M. A. Saeed, 70 M. Saleem, 70 F. R. Wappler, 70 W. Bugg, 71 M. Krishnanurthy, 71 S. M. Spanier, 71 R. Eckmann, 72 H. Kim, 72 J. L. Ritchie, 72 A. Satpathy, 72 R. F. Schwitter, 72 J. M. Izen, 73 I. Kitayama, 73 X. C. Lou, 73 S. Ye, 73 F. Bianchi, 74 M. Bona, 74 F. Gallo, 74 D. Gamba, 74 C. Borean, 75 L. Bosiolo, 75 C. Cartaro, 75 F. Cossutti, 75 G. della Ricca, 75 S. Dittongo, 75 S. Granacagnolo, 75 L. Lanceri, 75 P. Poropat, 75 L. Vitale, 75 G. Vaugnin, 75 R. S. Panvini, 76 Sw. Banerjee, 77 C. M. Brown, 77 D. Fortin, 77 P. D. Jackson, 77 R. Kowalewski, 77 J. M. Roney, 77 H. R. Band, 78 S. Dasu, 78 M. Datta, 78 A. M. Eichenbaum, 78 M. Graham, 78 J. J. Hollar, 78 J. R. Johnson, 78 P. E. Kutter, 78 H. Li, 78 R. Liu, 78 F. Di Lodovico, 78 A. Mihayli, 78 A. K. Mohapatra, 78 Y. Pan, 78 R. Prepost, 79 A. E. Rubin, 79 S. J. Sekula, 79 P. Tan, 79 J. H. von Wimmersberg-Toeller, 79 J. Wu, 79 S. L. Wu, 79 Z. Yu, 79 M. G. Greene, 79 and H. Neal 79

(The BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Universit`a di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universit"at Bochum, Institut f"ur Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Brookhaven National Laboratory, Upton, NY 11973, USA
12University of California at Los Angeles, Los Angeles, CA 90024, USA
13University of California at Riverside, Riverside, CA 92521, USA
14University of California at Santa Barbara, Santa Barbara, CA 93106, USA
15University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
16University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
17California Institute of Technology, Pasadena, CA 91125, USA
18University of Cincinnati, Cincinnati, OH 45221, USA
We have measured the time-dependent decay rate for the process $B \to J/\psi K^{*0}(892)$ in a sample of about 88 million $\Upsilon(4S) \to B \bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. In this sample we study flavor-tagged events in which one neutral B meson is reconstructed in the $J/\psi K^{*0}$ or $J/\psi K^{0}\bar{s}$ final state. We measure the coefficients of the cosine and sine terms in the time-dependent asymmetries for $J/\psi K^{*0}$ and $J/\psi K^{0}\bar{s}$, find them to be consistent with the Standard Model expectations, and set upper limits at 90% C.L. on the decay amplitude ratios $|A(B^0 \to J/\psi K^{*0})|/|A(B^0 \to J/\psi K^{0}\bar{s})| < 0.26$ and $|A(B^0 \to J/\psi K^{0}\bar{s})|/|A(B^0 \to J/\psi K^{*0})| < 0.32$. For a single ratio of wrong-flavor to favored amplitudes for B^0 and \bar{B}^0 combined, we obtain an upper limit of 0.25 at 90% C.L.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

The Standard Model of electroweak interactions describes CP violation in weak interactions of quarks by the presence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix \mathbb{U}. In this framework, the CP asymmetries in the proper-time distributions of neutral B decays to $J/\psi K^{0}_S$ and $J/\psi K^{0}_L$ are directly related to the CP-violation parameter $\sin 2\beta$ [2]. The time-dependent CP asymmetries for $J/\psi K^{0}_S$ and $J/\psi K^{0}_L$ are of opposite sign and, to a very good approximation, equal in magnitude [2]. The decay $B^0 \to J/\psi K^{0}_S$ ($B^0 \to J/\psi K^{0}_L$) proceeds through the CKM-favored, color-suppressed decay $B^0 \to J/\psi K^0$ [2] followed by $K^0 \to K^{0}_S$ ($K^{0}_L \to K^{0}_S$). The so-called wrong-flavor B^0 decay amplitude to the opposite strangeness final state $B^0 \to J/\psi K^{0}\bar{s}$ is expected to be negligible in the Standard Model [3].

Interference between a wrong-flavor amplitude and the favored amplitude can alter the relation between the measured values of $\sin 2\beta$ and $\sin 2\beta$ [2], and therefore the ratio of wrong-flavor to favored amplitudes can alter the relation between $\sin 2\beta$ and $\sin 2\beta$ [2]. The time-dependent $\sin 2\beta$ and $\sin 2\beta$ are directly related to the $\Upsilon(4S)$ resonance, corresponding to an integrated luminosity of 82 fb$^{-1}$, collected with the BABAR detector [3] at the PEP-II asymmetric-energy collider at SLAC.

Charged particles are detected, and their momenta measured, by a combination of a vertex tracker consisting of five layers of double-sided silicon microstrip detectors, and a 40-layer central drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid.
tagging B meson (B_{tag}), τ_{B^0} is the B^0 lifetime, and Δm_d is the B^0-\bar{B}^0 oscillation frequency. The corresponding decay rates \bar{f}_+ and \bar{f}_- for the charge-conjugate final state $J/\psi K^-\pi^+$ are obtained by replacing C with $-\bar{C}$ and S with $-\bar{S}$.

The C and S coefficients are related to the wrong-flavor and favored amplitudes by

$$C = \frac{a^2 - b^2}{a^2 + b^2}, \quad S = \frac{2\sum_\lambda \eta a_\lambda b_\lambda \sin(\phi + \delta_\lambda)}{a^2 + b^2},$$

with $a^2 = a_0^2 + a_1^2 + a_2^2$, $b^2 = b_0^2 + b_1^2 + b_2^2$, and $\eta = +1 (-1)$ for $\lambda = 0, \parallel, s$. The strong and weak phase differences are given by $\delta_\lambda = \delta_0^\lambda - \delta_1^\lambda$ and $\phi = \arg(q/p) + (\phi_0 - \phi_a)$, respectively, where (q/p) contains the weak phase of B^0-\bar{B}^0 oscillations. The C and S coefficients are given by the same expressions, replacing b_λ with \bar{b}_λ, δ_λ with $\bar{\delta}_\lambda$, and ϕ with $-\bar{\phi}$.

In the $B \rightarrow J/\psi K^{*0}$ selection, a J/ψ candidate must consist of two identified lepton tracks \mathcal{C} that form a good vertex. The lepton-pair invariant mass must be in the range 3.06–3.14 GeV/c^2 for muons and 2.95–3.14 GeV/c^2 for electrons. This corresponds to a $\pm 3\sigma$ interval for muons, and, for electrons, accommodates the remaining radiative tail after bremsstrahlung correction \mathcal{C}. We form $K^+\pi^-$ candidate pairs, where the track that is most consistent with being a kaon is assigned to be the kaon candidate. The $K^+\pi^-$ pair must have an invariant mass within 100 MeV/c^2 of the nominal $K^{*0}(892)$ mass \mathcal{C}. In the selected mass window the $K_0^*(1430)$ contributes $(7.3 \pm 1.6)\%$ of the $K^+\pi^-$ events.

The B-meson candidates are formed from J/ψ and $K^+\pi^-$ candidates with the requirement that the difference $\Delta E = E_{\text{ES}}^m - E_{\text{beam}}^m$ between their energy and the beam energy in the center-of-mass frame be less than 30 MeV from zero. The beam-energy-substituted mass $m_{\text{ES}} = \sqrt{(E_{\text{beam}}^m)^2 - (p_B^m)^2} \geq 8$ must be greater than 5.2 GeV/c^2, where p_B^m is the measured B momentum in the center-of-mass frame. We define a signal region with $m_{\text{ES}} > 5.27$ GeV/c^2 to determine event yields and purities, and a sideband region with $m_{\text{ES}} < 5.27$ GeV/c^2 to study background properties. If several B candidates are found in an event, the one with the smallest $|\Delta E|$ is retained.

A measurement of the asymmetry coefficients C, S, \bar{C}, and \bar{S} requires a determination of the experimental Δt resolution and the fraction w of events in which the flavor tag assignment is incorrect. This mistag fraction reduces the amplitudes of the observed asymmetries by a factor $1 - 2w$. Mistag fractions and Δt resolution functions are determined from a sample of neutral B mesons that decay to final states with one charmed meson (B_{dh}), and consists of the channels $D^{(*)}-h^+ (h^+ = \pi^+, \rho^+, \gamma)$.

The algorithm for B-flavor tagging is explained in Ref. $[\text{I}]$. The total efficiency for assigning a reconstructed B candidate to one of four hierarchical, mutually exclusive tagging categories is $(65.6 \pm 0.5)\%$. Un-tagged events are excluded from further consideration. The effective tagging efficiency $Q \equiv \sum_i \epsilon_i (1 - 2w_i)^2$, where ϵ_i and w_i are the efficiencies and mistag probabilities, for events tagged in category i, is measured to be $(28.1 \pm 0.7)\%$

The time interval Δt between the two B decays is calculated from the measured separation Δz between the decay vertices of the B_{rec} and B_{tag} along the collision (z) axis \mathcal{C}. We determine the z position of the B_{rec} vertex from its charged tracks. The B_{tag} vertex is determined by fitting tracks not belonging to the B_{rec} candidate to a common vertex, employing constraints from the beam spot location and the B_{rec} momentum \mathcal{C}. We accept events with a Δt uncertainty of less than 2.5 ps and $|\Delta t| < 20$ ps. The fraction of events satisfying these requirements is 95%.

![Figure 1: Distributions of m_{ES} a) for $J/\psi K^+\pi^-$ candidates and b) for $J/\psi K^-\pi^+$ candidates satisfying the tagging and vertexing requirements. The fit is described in the text.](image-url)

Figure 1 shows the m_{ES} distributions of the $J/\psi K^+\pi^-$ and $J/\psi K^-\pi^+$ candidates that satisfy the tagging and vertexing requirements. The m_{ES} distributions are fit with the sum of a threshold function $[\text{I}]$, which accounts for the background from random combinations of tracks in the event, and a Gaussian distribution describing the signal. In Table $[\text{I}]$ we list the event yields and signal purities for the tagged $B \rightarrow J/\psi K^+\pi^-$ and $B \rightarrow J/\psi K^-\pi^+$ candidates. The fraction of events in the Gaussian component of the m_{ES} fits due to other B decay modes is estimated to be $(1.6 \pm 0.4)\%$ based on simulated events.

We determine the C, S, \bar{C}, and \bar{S} coefficients with a simultaneous unbinned maximum likelihood fit to the Δt distributions of the tagged $B_{J/\psi K^+}$ and B_{dh} samples. In this fit the Δt distributions of the $J/\psi K^+\pi^-$ and $J/\psi K^-\pi^+$ samples are described by Eq. $[\text{I}]$. The Δt distributions of the B_{dh} sample are described by the same equation with $C = 1$ and $S = 0$. The observed amplitudes for the time-dependent asymmetries in the $B_{J/\psi K^+}$ sample and for flavor oscillation in the B_{dh} sample are reduced by the same factor, $1 - 2w$, due to flat-
Table I: Number of events, \(N_{\text{tag}} \), and signal purity, \(P \), in the signal region for the \(J/\psi K^+\pi^- \) and \(J/\psi K^-\pi^+ \) samples, and for the \(B_{Dh} \) sample. Errors are statistical only.

Sample	\(N_{\text{tag}} \)	\(P(\%) \)
\(J/\psi K^+\pi^- \) sample	860	95.5 \(\pm \) 0.7
\(J/\psi K^-\pi^+ \) sample	856	96.5 \(\pm \) 0.6
\(B_{Dh} \) sample	25375	84.9 \(\pm \) 0.2

FIG. 2: Number of \(J/\psi K^+\pi^- \) and \(J/\psi K^-\pi^+ \) candidates in the signal region a) with an opposite-flavor \(B \) tag, \(\Omega_{OF} \), b) with a same-flavor \(B \) tag, \(\Omega_{SF} \), and c) the observed asymmetry \((\Omega_{SF} - \Omega_{OF})/(\Omega_{OF} + \Omega_{SF}) \) as functions of \(\Delta t \). In each figure the solid (dashed) curves represent the fit projection in \(\Delta t \) for \(J/\psi K^+\pi^- \) (\(J/\psi K^-\pi^+ \)) candidates. The shaded regions in (a) and (b) represent the background contributions.
measurements the wrong-flavor to favored amplitude ratios for $B \to J/\psi K^{*0}(892)$ and $B \to J/\psi K^{*0}(1430)$ events contributing in the $B \to J/\psi K^+\pi^-$ selection, the upper limits for the decay amplitude ratios at 90% confidence level (C.L.) are found to be $|A(B^0 \to J/\psi K^{*0})|/|A(B^0 \to J/\psi K^{-})| < 0.26$ and $|A(B^0 \to J/\psi K^{*0})|/|A(B^0 \to J/\psi K^{*0})| < 0.32$. For the single ratio of wrong-flavor to favored amplitude for B^0 and \bar{B}^0 combined, we determine an upper limit of 0.25 at 90% C.L.

In conclusion, we observe no evidence for the wrong-flavor decays $B^0 \to J/\psi K^{*0}(892)$ and $B^0 \to J/\psi K^{*0}(1430)$. Together with theoretical information on the relation between the matrix elements for $B^0 \to J/\psi K^0$ and $B^0 \to J/\psi K^{*0}$, the results presented here can be used to set a limit on the difference between $A_{CP}(J/\psi K^0_S)$ and $-A_{CP}(J/\psi K^0_L)$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Now at Department of Physics, University of Warwick, Coventry, United Kingdom

1 Also with Università della Basilicata, Potenza, Italy
2 Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
3 Deceased

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981).
[3] Y. Grossman, A.L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).

Charge conjugation is implied throughout this letter, unless explicitly stated otherwise.
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[7] A.S. Dighe, I. Dunietz, H.J. Lipkin, and J.L. Rosner, Phys. Lett. B 369, 144 (1996).
[8] See, for example, L. Wolfenstein, in Phys. Rev. D 66, 011001 (2002).
[9] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).
[11] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[12] O. Long, M. Baak, R.N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 231801 (2002).