Tumor mutational profile of triple negative breast cancer patients in Thailand revealed distinctive genetic alteration in chromatin remodeling gene

Suvimol Niyomnaitham 1, Napa Parinyanitikut 2, Ekkapong Roothumpong 3,4, Worapoj Jinda 4,5, Norasate Samarnthai 6, Taywin Atikankul 7, Bhoom Suktitipat 4,8,9, Wanna Thongnoppakhun 4,5, Chanin Limwongse 3,4,5, Manop Pithukpakorn Corresp. 3,4

1 Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
2 Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
3 Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
4 Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
5 Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
6 Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
7 Department of Pathology, Queen Savang Vadhana Memorial Hospital, Thai Red Cross Society, Chonburi, Thailand
8 Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
9 Integrative Computational Bioscience Center, Mahidol University, Bangkok, Thailand

Corresponding Author: Manop Pithukpakorn
Email address: manop.pit@mahidol.ac.th

Background. Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by absence of both hormonal receptors and human epithelial growth factor receptor 2 (HER2). TNBC accounts for 15-20% of breast cancer. TNBC is associated with more aggressive disease and worse clinical outcome. Though the underlying mechanism of TNBC is currently unclear, the heterogeneity of clinical characteristics in various population may relate to the difference in tumor mutational profile. There were studies on TNBC gene mutations in various ethnic groups but the tumor genome data on Thai TNBC patients is currently unknown. This study aims to investigate mutational profile of Thai TNBC.

Methods. The patients were Thai individuals who were diagnosed with primary breast carcinoma between 2014 and 2017. All surgically removed primary tumor tissues were carefully examined by pathologists and archived as formalin-fixed paraffin embedded tumor. TNBC was defined by absence of hormonal receptors and HER2 by immunohistochemistry. Genomic DNA (gDNA) was extracted, enriched, and sequenced of all exomes on the Illumina HiSeq. Genomic data were then processed through bioinformatics platform to identify genomic alterations and tumor mutational burden.

Results. A total of 116 TNBC patients were recruited. Genomic analysis of TNBC samples identified 81,460 variants, of which 5,906 variants were in cancer associated genes. The result showed that Thai TNBC has higher tumor mutation burden than previously reported data. The most frequently mutated cancer-associated gene was TP53 similar to other TNBC cohorts. Meanwhile KMT2C was found to be more commonly mutated in Thai TNBC than previous studies. Mutational profile of Thai TNBC patients also revealed difference in many frequently mutated genes when compare to other Western TNBC cohorts.

Conclusion. This result supported that TNBC breast cancer patients from various ethnic background showed diverse genome alteration pattern. Although TP53 is the most commonly mutated gene across all cohorts, Thai TNBC showed different gene mutation frequencies, especially in KMT2C. In particular, the cancer gene mutations are more prevalent in Thai TNBC patients. This result provides important insight
on diverse underlying genetic and epigenetic mechanisms of TNBC that could translate to a new treatment strategy for patients with this disease.
Tumor Mutational Profile of Triple Negative Breast Cancer Patients in Thailand Revealed

Distinctive Genetic Alteration in Chromatin Remodeling Gene

Suvimol Niyomnaitham¹, Napa Parinyanitikul², Ekkapong Roothumrong³, Worapoj Jinda⁴,⁵, Norasate Samarnthai⁶, Taywin Atikankul⁷, Bhoom Suktitipat⁴,⁸,⁹, Wanna Thongnoppakhun⁴,⁵, Chanin Limwongse³,⁴,⁵, Manop Pithukpakorn³,⁴*

¹Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
²Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
³Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
⁴Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
⁵Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
⁶Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
⁷Department of Pathology, Queen Savang Vadhana Memorial Hospital, Thai Red Cross Society, Chonburi, Thailand
⁸Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
⁹Integrative Computational Bioscience Center, Mahidol University, Bangkok, Thailand
*Corresponding Author

Manop Pithukpakorn

Department of Medicine

Faculty of Medicine Siriraj Hospital, Mahidol University

2 Wang Lang Road, Bangkoknoi

Bangkok, THAILAND 10700

Tel: 66-2-419-2727

Email: manop.pit@mahidol.ac.th

Running Title: Tumor Mutational Profile of Thai Triple Negative Breast Cancer

Keyword: Breast, Cancer, Thai, Asian, Genome

Total Word Count: 4,241

Abstract Word Count: 350
Abstract

Background. Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by absence of both hormonal receptors and human epithelial growth factor receptor 2 (HER2). TNBC accounts for 15-20% of breast cancer. TNBC is associated with more aggressive disease and worse clinical outcome. Though the underlying mechanism of TNBC is currently unclear, the heterogeneity of clinical characteristics in various population may relate to the difference in tumor mutational profile. There were studies on TNBC gene mutations in various ethnic groups but the tumor genome data on Thai TNBC patients is currently unknown. This study aims to investigate mutational profile of Thai TNBC.

Methods. The patients were Thai individuals who were diagnosed with primary breast carcinoma between 2014 and 2017. All surgically removed primary tumor tissues were carefully examined by pathologists and archived as formalin-fixed paraffin embedded tumor. TNBC was defined by absence of hormonal receptors and HER2 by immunohistochemistry. Genomic DNA (gDNA) was extracted, enriched, and sequenced of all exomes on the Illumina HiSeq. Genomic data were then processed through bioinformatics platform to identify genomic alterations and tumor mutational burden.

Results. A total of 116 TNBC patients were recruited. Genomic analysis of TNBC samples identified 81,460 variants, of which 5,906 variants were in cancer associated genes. The result showed that Thai TNBC has higher tumor mutation burden than previously reported data. The most frequently mutated cancer-associated gene was TP53 similar to other TNBC cohorts. Meanwhile KMT2C was found to be more commonly mutated in Thai TNBC than previous studies. Mutational profile of Thai TNBC patients also revealed difference in many frequently mutated genes when compare to other Western TNBC cohorts.
Conclusion. This result supported that TNBC breast cancer patients from various ethnic background showed diverse genome alteration pattern. Although \textit{TP53} is the most commonly mutated gene across all cohorts, Thai TNBC showed different gene mutation frequencies, especially in \textit{KMT2C}. In particular, the cancer gene mutations are more prevalent in Thai TNBC patients. This result provides important insight on diverse underlying genetic and epigenetic mechanisms of TNBC that could translate to a new treatment strategy for patients with this disease.
Introduction

Triple negative breast cancer (TNBC) accounts for approximately 15-20% of breast cancer (Blows et al. 2010). Breast cancer patients with TNBC are not eligible for effective selective hormonal modulator or anti-HER2 treatments because of the absence of both hormonal and growth factor receptor overexpression. Chemotherapy was therefore the only available treatment of patients with TNBC. Women with TNBC displayed a clinical aggressiveness and high risk of metastasis. TNBC has also been shown to associated with the poorer prognosis and reduced 5-year survival than other breast cancer subtypes (Malorni et al. 2012). Several studies showed the substantial racial variations of clinical behavior and prevalence of TNBC, likely owing to a heterogeneous nature of the disease. African descents are more often to present with TNBC, higher histologic grade and more aggressive breast tumors than whites (Chen & Li 2015). Both Hispanic and African women tend to be diagnosed in more advanced stage (Banegas & Li 2012). Studies in Asian population demonstrated that 11% of breast cancer patients in Singapore was TNBC while this subtype accounted for 19% of Korean breast cancer patients (Rhee et al. 2008; Thike et al. 2009). The heterogeneity of TNBC on the clinical presentation as well as histologic differences may relate to variation in genetic background. The genomic profiles of TNBC in African Americans patients have been studied (Ademuyiwa et al. 2017; Huo et al. 2017). This study addressed the lack of data on the genomic profiles of TNBC in Thai and Asian population and investigated racial differences in the genetic landscape of breast cancer that could potentially identify targets suitable for specific population.
Methods

Study Population

The study protocol was approved by the Siriraj and King Chulalongkorn Memorial Hospital Institutional Review Boards (Protocol No. 175/2559 and 642/2557). The study was conducted according to the Good Clinical Practice and the Declaration of Helsinki. All participates provided written informed consent. One hundred and sixteen Thai patients who were diagnosed with primary TNBC and treated at both hospitals between 2014 and 2017 were included. All 116 patients were female. The average age at diagnosis was 56.47 ± 11.90 years (±SD) with an age range between 25 and 79 years. The BMI was 26.28 ± 5.89 kg/m2. Majority of the patients (87%) were categorized as early stage breast cancer (20% as stage I and 67% as stage IIa). Fifty-five patients had follow-up period up to 3 years. There were 6 clinical relapses with in the 3-years follow-up period; 4 cases were in stage IIa and 2 cases were in stage IV. One patient died during follow-up period whose cause of death did not appear to be cancer-related.

Primary tumor tissues and lymph nodes were surgically removed as a standard treatment at Siriraj and King Chulalongkorn Memorial Hospitals and examined by board-certified pathologists. The tissues were dissected for histological diagnosis and immunohistochemistry staining then archived as FFPE tumor block. TNBC subtype was defined by absence of estrogen receptor (ER), progesterone receptor (PR) and HER2 by immunohistochemistry staining with appropriate positive control. No amplification of HER2 was also confirmed by fluorescence in-situ hybridization (FISH). Independent pathologists determined only the samples of primary TNBC tumors, which had more than 50% tumor content after dissection, to be analyzed in this study. The FFPE primary tumors were sectioned into 10 micrometers using a new blade and
preserved in 1.5ml Eppendorf tubes. Blade was changed for every tissue block to prevent the contamination of DNA.

Tumor Genome Sequencing and Variant Calls

The genomic DNA (gDNA) was extracted using Qiagen DNeasy DNA Isolation Kit (Hilden, Germany). FFPE gDNA (50–150 ng) was converted into libraries and enriched for whole exome sequencing using Agilent’s SureSelect Human All Exon V5 + UTR Sample Prep kit. Sequencing was performed on the Illumina HiSeq 2500/4000 platform with average 300x sequencing depth. Genomic data were then processed through bioinformatics platform and knowledge base (Wuxi NextCODE Genomics, Boston, MA, USA) to identify genomic alterations including single nucleotide polymorphisms/substitutions (SNPs) and small insertions/deletions (indels). A threshold of 5% allelic fraction was used for SNPs and indels. Any variants presented at allele frequency above 1% in dbSNP, 1000 Genomes and ExAC databases were removed. To assess somatic status of mutations in a tumor-only setting, we used both MuTect2 (Broad Institute, Boston, MA, USA) and VarScan2 (Washington University, St. Louis, MO, USA) on the aligned sequence data to determine somatic variants. All variants are further annotated with the extensive pipeline including COSMIC data annotations. Additional annotation includes HGMD Professional, ClinVar, OMIM, and multiple missense functional predictors including polyphen2, SIFT, LRT, MutationTaster, MutationAssessor, and CADD. The effect of the sequence variants on all protein coding genes in the RefSeq database was further annotated using the Variant Effect Predictor, which predicts the consequence of each sequence variant on all neighboring RefSeq genes based on a set of 35 consequence terms defined by the Sequence Ontology (SO) (McLaren et al. 2016). Only variants predicted to cause strong and moderate alteration on gene functions, such as stop gained/lost variants, frameshift, indels, donor/acceptor splice variants, initiator
codon variants, missense variants, in-frame indels and splice region variants were selected for analysis. Finally, the results were manually reviewed by molecular geneticists. These analysis methods applied to the TCGA tumor variants and expression data have distinguished different molecular or histologic subtypes of breast cancer at over 97% accuracy.

Data Comparison with Other Breast Cancer Cohorts

To compare frequency of cancer gene alterations between this study and previously published data, breast cancer mutation data from The Cancer Genome Atlas (TCGA), METABRIC and French cohorts were downloaded from the cBioPortal for Cancer Genomics (http://www.cbioportal.org). TCGA cohort consisted of cancer genome data form primary breast cancer patients in the United States (Network 2012). METABRIC cohort data was collected from primary breast cancer patients in the United Kingdom and Canada (Pereira et al. 2016). French cohort data was primarily from the patients with metastatic breast cancers from 4 different prospective trials in France (Lefebvre et al. 2016). Cancer gene mutation data from TCGA database were selected only from breast invasive ductal carcinoma that was classified as PAM50 basal subtype, which is closely related to triple negative subtype of breast cancer, while data from METABRIC and French cohorts were selected from samples with negative ER, PR and HER2, similar to this study. The comparison of mutation frequency of each cancer genes was trimmed to 173 genes due to data limitation from 173-gene panel in METABRIC cohort.

Statistical Analysis and Data Visualization

Genomic characteristics were compared across cohorts using one-way analysis of variance for continuous variables. The prevalence of somatic mutations was compared across cohorts. Descriptive statistics was used to show the average age and BMI of population. Statistical
analyses were conducted using SAS software (version 9.4, SAS Institute, Cary, NC). A two-tailed p-value less than 0.05 was considered significant. Landscape of co-occurrence and mutual exclusion of cancer gene mutations was generated with OncoPrinter (version 1.0.1, cBioPortal for Cancer Genomics, New York, NY). Mutational spectrum of 3 most commonly mutated genes in lollipop plot format was generated with MutationMapper (version 1.0.1, cBioPortal for Cancer Genomics, New York, NY) (Gao et al. 2013).

Results

Comparison of Gene Alterations between Thai TNBC and Other TNBC Cohorts

A total of 1,088,237 variants were detected from the whole exome sequencing data of 116 patients. Variant filtering with MuTect2 and VarScan2 identified 81,460 somatic variants that passed data analysis algorithms. When all 969 known or potential cancer-associated genes were examined, only 5,906 somatic variants were identified. We found an average of 222 variants per sample (range 104-388 variants) with an average of 20 altered cancer genes (range 5-35 genes). The 10 most commonly mutated genes were *TP53, KMT2C, SYNE1, PIK3CA, BRCA1, NF1, BRCA2, PTEN, RB1* and *ARID1B* (Figure 1 and Table 1 and 2). Comparing to the cancer gene mutation frequencies from TCGA, METABRIC and French cohorts, Thai TNBC had significantly higher mutation frequencies in *KMT2C, SYNE1, PIK3CA, NF1, PTEN, BRCA1* and *BRCA2*. On the contrary, significant differences were observed only in *SYNE1* and *BRCA1* among TCGA, METABRIC and French cohorts.

Driver Gene Analysis

We performed analysis of the filtered cancer genes to identify potential genes of interest. We first examined for genes mutated in multiple samples and found that 14 genes were mutated in at
least 10% of the samples. *SYNE1* was excluded from analysis due to unclear role in cancer. *TP53* was the most frequently mutated gene with variants found in 88 samples. *KMT2C*, which encodes for the lysine methyltransferase MLL3, was the next most frequently mutated gene with mutations in 67 samples. The third most frequently mutated gene was *PIK3CA*, which was shared by 27 samples. Together, 111 of the 116 samples had an alteration in at least *TP53*, *KMT2C*, or *PIK3CA* (Figure 2). The most commonly recurring mutation was the *PIK3CA* H1074R mutation, which was found in the majority of the *PIK3CA* mutant samples (16 out of 27 samples; 59%). Within these genes, we also found a number of recurrent variants including the previously reported mutations in *KMT2C* S338L (21 samples; 31%), *TP53* R175H (10 samples; 11%), R248Q (5 samples; 6%), Y220C (4 samples; 5%), and R273H (4 samples; 5%) and *PIK3CA* K733R (6 samples; 22%) and E545K (4 samples; 15%) (Figure 3).

TP53 Mutation Status and Co-occurring Mutations

As previously shown, *TP53* was the most commonly mutated gene in the cohort with 88 of the 116 samples (76%) containing a mutation. To identify roles of *TP53* and its association with the other 2 most commonly mutated genes; *KMT2C* and *PIK3CA*, we subdivided the cohort as *TP53* wild-type and *TP53* mutant groups. In the *TP53* wild-type samples (n=28), the PI3K pathway appeared to be a predominant driver with 19 samples (68%) containing a mutation in either the *PIK3CA* gene or PI3K pathway members, including *PIK3C2B*, *PIK3CG*, and *PTEN*. In the *TP53* mutant group, 67 samples (76%) had one or more mutations in genes encoding chromatin remodeling proteins, including *ATRX*, *DNMT3A*, and *KMT2C*, which have been reported to be involved in cancer. This mutation co-occurrence may suggest a complex interplay in triple negative breast cancer. However, there was no association between *TP53*, *PIK3CA* or *KMT2C* mutation status and cancer staging.
Tumor Mutation Burden

One of the biological hallmarks in cancer is genome instability. Genome alterations, which either involve in carcinogenesis or occur as a result of widespread genome instability, can create neoantigens and trigger immune response. We used the variant data to calculate the tumor mutation burden for each sample and employed the same filtering scheme accounted for all variants including both nonsynonymous and synonymous calls. Tumor mutation burden was defined as the number of somatic base substitutions, and indels per megabase of coding genome sequence examined. Synonymous mutations are counted in order to reduce sampling noise. Though majority of synonymous mutations are not likely to cause tumor immunogenicity, they may reflect mutational processes that will also result in nonsynonymous mutations and neoantigens elsewhere in the genome (Diederichs et al. 2016; Supek et al. 2014). We found that Thai TNBC has an average tumor mutation 7.3 variants per megabase (95% CI 6.9-7.6), which consists of nonsynonymous mutation 3.9 variants per megabase (95% CI 3.7-4.1) and synonymous mutation 3.4 variants per megabase (95% CI 3.3-3.6). This data showed significantly higher tumor mutation burden than median value (3.6 variants per megabase) found in invasive ductal breast carcinoma cohort (Chalmers et al. 2017).

Discussion

Triple negative breast cancer (TNBC) is a heterogeneous disease with marked variation in clinical characteristics and response to treatment (Blows et al. 2010). Genome data from previous studies confirmed spectrum of mutational profiles in TNBC are diverse between each patients and cohorts (Network 2012; Pereira et al. 2016; Shah et al. 2012; Stephens et al. 2012). Though there are several explanations for diverse genome landscape in TNBC, patient’s ethnicity could play a significant role in this discrepancy. For the first time, this study provided
the mutation profile of TNBC from Thai breast cancer patients. The data from our cohort showed that, besides \textit{TP53} which is the most frequently mutated gene in TNBC, Thai TNBC patients have much higher mutation frequencies in many cancer genes than Western patients. This increase could be due to its exceptionally different pattern of somatic genome alterations in Thai TNBC or its representation of higher tumor mutation burden that occurs extensively throughout cancer genome or both.

\textit{TP53} remains the most commonly mutated gene in Thai TNBC similar to other reported studies (Lefebvre et al. 2016; Network 2012; Pereira et al. 2016). This gene is widely considered guardian of the genome due to its crucial function in maintaining genome integrity, regulating cell cycle and initiating apoptosis. Numerous types of mutations in \textit{TP53} are found in various cancers and mutations occur throughout the entire \textit{TP53} as expected in loss-of-function (LOF) mutations in tumor suppressor gene. We also identify several recurring mutations in \textit{TP53} including R175H, Y220C, R248Q, and R273H, which together account for 26% of \textit{TP53} mutant group. These 4 mutations are hotspot mutations that believed to be oncogenic missense variants (Soussi & Wiman 2015). Previous study in breast cancer showed that oncogenic \textit{TP53} variants in DNA binding domain (amino acid position 102-292) are associated with reduced survival compared to wild-type \textit{TP53} with an exception of Y220C, which is associated with better survival in breast cancer (Olivier et al. 2006). However, such association could not be identified likely due to very few mortality during our 3-year follow-up period.

\textit{PIK3CA} mutations are usually enriched in hormonal receptor positive tumor at 29-45%, with lower frequency in TNBC (Network 2012). \textit{PIK3CA} is the most commonly mutated oncogene in Thai TNBC cohort similar to other breast cancer studies. Nevertheless, the mutation frequency of \textit{PIK3CA} in Thai TNBC is much higher than previously published data (Network 2012; Pereira et
al. 2016; Shah et al. 2012). H1074R is the major PIK3CA hotspot mutation followed by K733R and E545K. These variants are known oncogenic gain-of-function mutations found in multiple types of cancers. Together with other PI3K pathway members, TNBC harboring mutations in PIK3CA and its related genes could be potential targets for PI3K inhibitors.

BRCA1 and BRCA2 encode proteins that become parts of a complex that repairs double-strand DNA breaks. They are critical for maintaining genome integrity. Breast cancers occurred in most germline BRCA1 mutation carriers are TNBC. By contrast, there is no characteristic breast cancer subtype in BRCA2 carriers (Atchley et al. 2008). Most TNBC patients do not harbor germline BRCA1 or BRCA2 mutations. However, pathological high-grade breast cancers and TNBC often showed somatic mutations or abnormal expression of BRCA1 or BRCA2 (von Wahlde et al. 2017). Thai TNBC displayed high prevalence of somatic alterations in both genes. By comparison with 3 Western cohorts, the difference was less obvious because the mutation frequencies did vary from one cohort to another. Nevertheless, defects in genome repair machinery related to BRCA1 and BRCA2 mutations could make treatment with platinum-based chemotherapy or PARP inhibitors more effective in those patients (Papadimitriou et al. 2018; Vollebergh et al. 2014).

The KMT2C is noticeable because it is the second most commonly mutated gene (58%) in our Thai TNBC cohort. KMT2C is a gene in myeloid/lymphoid or mixed-lineage leukemia (MLL) family and encodes MLL3 lysine-specific histone methyltransferase enzyme. H3 'Lys-4' methylation in histone by the enzyme represents a specific tag for epigenetic transcriptional activation (Rao & Dou 2015). LOF mutations in KMT2C are found in myeloid leukemia, melanoma, glioblastoma multiforme, hepatocellular carcinoma, esophageal cancer, colorectal cancer and pancreatic cancer (Fujimoto et al. 2012; Garcia-Sanz et al. 2017; Liu et al. 2015; Lu...
et al. 2016; Song et al. 2014). Though the biological role of MLL3 histone methyltransferase in carcinogenesis remains unknown, LOF mutations and downregulation of this gene in cancers suggest that KMT2C may act as tumor suppressor gene (Xia et al. 2015). KMT2C mutations are also reported in TNBC (Liu et al. 2015). However, Thai TNBC demonstrates substantially higher prevalence of KMT2C mutations than TNBC data from Caucasian population (Network 2012; Pereira et al. 2016). A study from African American TNBC also displayed higher KMT2C mutations than Caucasian patients (Ademuyiwa et al. 2017). A recently published data identified KMT2C mutations in 21% of breast cancer patients from Singapore and Korea (Yap et al. 2018). Interestingly, KMT2C has one identified hotspot variant; S338L (31%) which has been previously reported in colorectal cancer (Lu et al. 2016). This observation suggests that epigenetic change may contribute to the development of TNBC and play significant role in Thai TNBC patients. This data could lead to a new insight on epigenetic role of breast carcinogenesis. Further investigation is warranted to provide better understanding on mechanisms of KMT2C and a novel treatment strategy.

As previously mentioned, Thai TNBC has generally higher mutation burden than breast cancer in Western patients. The reason of this finding remains not fully explained. Previous study showed that a subset of TNBC harbors somatic mutations in genome repair system (Shah et al. 2012; Stephens et al. 2012). Higher tumor mutational load was observed in hormonal receptor negative than hormonal receptor positive breast cancer (Barrett et al. 2018; Haricharan et al. 2014). Early phase of anti-PD-1 clinical trials also showed higher response rate in TNBC than hormonal receptor positive breast cancer (Nanda et al. 2016; Rugo et al. 2018). Our finding suggests that immunotherapy could provide benefit to some Thai TNBC patients.
In this study, the data from Thai TNBC would contribute much-needed information from Asian patients to breast cancer genome landscape and provide another evidence on role of KMT2C in breast carcinogenesis. However, our study has 3 major limitations. First, only patients from Siriraj and King Chulalongkorn Memorial Hospitals were recruited. Both Bangkok-based university hospitals were the largest hospitals in Thailand and served as major referral centers of Thailand’s healthcare system. Though breast cancer patients treated at our hospitals came from all over the country, many patients from other regions of Thailand who could be treated locally did not participate in the study. The data may not represent the whole picture of Thai TNBC patients. Second, the follow-up period up to 3 years was not long enough to observe clinically meaningful association between genomic alterations and clinical outcomes. Further study would be required. Third, genome sequencing was done on only tumor gDNA extracted from FFPE samples. It has been recognized that the quality of gDNA from FFPE is lower than fresh samples and potentially causes variant call discrepancy. Our study chose to focus on list of cancer-associated genes and apply variant call only when genomic regions have sufficient sequencing depth. This approach has shown to minimize erroneous variant calls, improve precision and acceptable correlation with matched normal-tumor pair sequencing (Chalmers et al. 2017; Oh et al. 2015; Teer et al. 2017). Nevertheless, comparison of our TMB data with previously published studies could be limited by differences in study designs and data analysis methods.

Conclusion

In conclusion, this study is the first cohort of Thai TNBC patients that demonstrated a distinctive genome alterations including higher mutational burden, higher mutation frequencies on several cancer-associated genes and mutations in *KMT2C*. These results support the genomic heterogeneity between Caucasian and Thai TNBC and could present the new therapeutic
approach on histone modification and immunotherapy in TNBC patients. Further investigation is warranted to provide better understanding on role of KMT2C in breast carcinogenesis.

Acknowledgement

We wish to thank all participants for their cooperation and contribution to our study. We thank all physicians and health professionals for their patient’s clinical care. We also thank the Research University Network (RUN) - Thailand for the administrative support.

References

1. Ademuyiwa FO, Tao Y, Luo J, Weilbaecher K, and Ma CX. 2017. Differences in the mutational landscape of triple-negative breast cancer in African Americans and Caucasians. *Breast Cancer Res Treat* 161:491-499. 10.1007/s10549-016-4062-y

2. Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagy GN, and Arun BK. 2008. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. *J Clin Oncol* 26:4282-4288. 10.1200/jco.2008.16.6231

3. Banegas MP, and Li CI. 2012. Breast cancer characteristics and outcomes among Hispanic Black and Hispanic White women. *Breast Cancer Res Treat* 134:1297-1304. 10.1007/s10549-012-2142-1

4. Barrett MT, Lenkiewicz E, Malasi S, Basu A, Yearley JH, Annamalai L, McCullough AE, Kosiorek HE, Narang P, Wilson Sayres MA, Chen M, Anderson KS, and Pockaj BA. 2018. The association of genomic lesions and PD-1/PD-L1 expression in resected triple-negative breast cancers. *Breast Cancer Research* 20:71. 10.1186/s13058-018-1004-0
5. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevalinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Caouferek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, and Huntsman D. 2010. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. *PLoS Med* 7:e1000279. 10.1371/journal.pmed.1000279

6. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, and Frampton GM. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. *Genome Med* 9:34. 10.1186/s13073-017-0424-2

7. Chen L, and Li CI. 2015. Racial disparities in breast cancer diagnosis and treatment by hormone receptor and HER2 status. *Cancer Epidemiol Biomarkers Prev* 24:1666-1672. 10.1158/1055-9965.epi-15-0293

8. Diederichs S, Bartsch L, Berkmann JC, Frose K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, Maulhardt T, Mohrmann L, Morstein J, Paffenholtz SV, Ropenack P, Ruckert T, Sandig L, Schell M, Steinmann A, Voss G, Wasmuth J, Weinberger ME, and Wullenkord R. 2016. The dark matter of the cancer genome: aberrations in
regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. *EMBO Mol Med* 8:442-457. 10.15252/emmm.201506055

9. Fujimoto A, Totoki Y, Abe T, Boroевич KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Arai Y, Takahashi H, Shirakihara T, Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Tanaka H, Nakamura H, Kusuda J, Ojima H, Shimada K, Okusaka T, Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotoh K, Ishikawa O, Ariizumi S, Yamamoto M, Yamada T, Chayama K, Kosuge T, Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, and Nakagawa H. 2012. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. *Nat Genet* 44:760-764. 10.1038/ng.2291

10. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, and Schultz N. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal* 6:pl1. 10.1126/scisignal.2004088

11. Garcia-Sanz P, Trivino JC, Mota A, Perez Lopez M, Colas E, Rojo-Sebastian A, Garcia A, Gatius S, Ruiz M, Prat J, Lopez-Lopez R, Abal M, Gil-Moreno A, Reventos J, Matias-Guiu X, and Moreno-Bueno G. 2017. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma. *Int J Cancer* 140:1551-1563. 10.1002/ijc.30573

12. Haricharan S, Bainbridge MN, Scheet P, and Brown PH. 2014. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data. *Breast Cancer Res Treat* 146:211-220. 10.1007/s10549-014-2991-x
13. Huo D, Hu H, Rhie SK, Gamazon ER, Cherniack AD, Liu J, Yoshimatsu TF, Pitt JJ, Hoadley KA, Troester M, Ru Y, Lichtenberg T, Sturtz LA, Shelley CS, Benz CC, Mills GB, Laird PW, Shriver CD, Perou CM, and Olopade OI. 2017. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. *JAMA Oncol* 3:1654-1662. 10.1001/jamaoncol.2017.0595

14. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, Massard C, Levy C, Arnedos M, Lacroix-Triki M, Garrabey J, Boursin Y, Deloger M, Fu Y, Commo F, Scott V, Lacroix L, Dieci MV, Kamal M, Dieras V, Goncalves A, Ferrerro JM, Romieu G, Vanlemmens L, Mouret Reynier MA, Thery JC, Le Du F, Guiu S, Dalenc F, Clapissone G, Bonnefoi H, Jimenez M, Le Tourneau C, and Andre F. 2016. Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis. *PLoS Med* 13:e1002201. 10.1371/journal.pmed.1002201

15. Liu L, Kimball S, Liu H, Holowatyj A, and Yang ZQ. 2015. Genetic alterations of histone lysine methyltransferases and their significance in breast cancer. *Oncotarget* 6:2466-2482. 10.18632/oncotarget.2967

16. Lu YW, Zhang HF, Liang R, Xie ZR, Luo HY, Zeng YJ, Xu Y, Wang LM, Kong XY, and Wang KH. 2016. Colorectal Cancer Genetic Heterogeneity Delineated by Multi-Region Sequencing. *PLoS One* 11:e0152673. 10.1371/journal.pone.0152673

17. Malorni L, Shetty PB, De Angelis C, Hilsenbeck S, Rimawi MF, Elledge R, Osborne CK, De Placido S, and Arpino G. 2012. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. *Breast Cancer Res Treat* 136:795-804. 10.1007/s10549-012-2315-y
18. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, and Cunningham F. 2016. The Ensembl Variant Effect Predictor. *Genome Biology* 17:122. 10.1186/s13059-016-0974-4

19. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, and Buisseret L. 2016. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. *J Clin Oncol* 34:2460-2467. 10.1200/jco.2015.64.8931

20. Network CGA. 2012. Comprehensive molecular portraits of human breast tumours. *Nature* 490:61-70. 10.1038/nature11412

21. Oh E, Choi YL, Kwon MJ, Kim RN, Kim YJ, Song JY, Jung KS, and Shin YK. 2015. Comparison of Accuracy of Whole-Exome Sequencing with Formalin-Fixed Paraffin-Embedded and Fresh Frozen Tissue Samples. *PLoS One* 10:e0144162. 10.1371/journal.pone.0144162

22. Olivier M, Langerod A, Carriери P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I, Varley J, Bignon Y, Uhrhammer N, Winqvist R, Jukkola-Vuorinen A, Niederacher D, Kato S, Ishioka C, Hainaut P, and Borresen-Dale AL. 2006. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. *Clin Cancer Res* 12:1157-1167. 10.1158/1078-0432.CCR-05-1029

23. Papadimitriou M, Mountzios G, and Papadimitriou CA. 2018. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality. *Cancer Treatment Reviews* 67:34-44. 10.1016/j.ctrv.2018.04.010

24. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DW, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF,
Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Borresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, and Caldas C. 2016. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479. 10.1038/ncomms11479

25. Rao RC, and Dou Y. 2015. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15:334-346. 10.1038/nrc3929

26. Rhee J, Han S-W, Oh D-Y, Kim JH, Im S-A, Han W, Ae Park I, Noh D-Y, Bang Y-J, and Kim T-Y. 2008. The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer 8:307. 10.1186/1471-2407-8-307

27. Rugo HS, Delord JP, Im SA, Ott PA, Piha-Paul SA, Bedard PL, Sachdev J, Tourneau CL, van Brummelen EMJ, Varga A, Salgado R, Loi S, Saraf S, Pietrangelo D, Karantza V, and Tan AR. 2018. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. Clin Cancer Res 24:2804-2811. 10.1158/1078-0432.ccr-17-3452

28. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattraj A, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhallan N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra
29. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, Ma X, Liu L,
Zhao Z, Huang X, Fan J, Dong L, Chen G, Ma L, Yang J, Chen L, He M, Li M, Zhuang X,
Huang K, Qiu K, Yin G, Guo G, Feng Q, Chen P, Wu Z, Wu J, Ma L, Zhao J, Luo L, Fu M,
Xu B, Chen B, Li Y, Tong T, Wang M, Liu Z, Lin D, Zhang X, Yang H, Wang J, and Zhan
Q. 2014. Identification of genomic alterations in oesophageal squamous cell cancer. Nature
509:91-95. 10.1038/nature13176

30. Soussi T, and Wiman KG. 2015. TP53: an oncogene in disguise. Cell Death Differ 22:1239-
1249. 10.1038/cdd.2015.53

31. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S,
Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton
A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S,
McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D,
Langerod A, Oslo Breast Cancer C, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A,
Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S,
Mariani O, Lakhani SR, van de Vijver M, van ’t Veer L, Foekens J, Desmedt C, Sotiriou C,
Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Borresen-Dale AL, Richardson
AL, Campbell PJ, Futreal PA, and Stratton MR. 2012. The landscape of cancer genes and
mutational processes in breast cancer. Nature 486:400-404. 10.1038/nature11017

32. Supek F, Minana B, Valcarcel J, Gabaldon T, and Lehner B. 2014. Synonymous mutations
frequently act as driver mutations in human cancers. Cell 156:1324-1335.
10.1016/j.cell.2014.01.051
33. Teer JK, Zhang Y, Chen L, Welsh EA, Cress WD, Eschrich SA, and Berglund AE. 2017. Evaluating somatic tumor mutation detection without matched normal samples. *Hum Genomics* 11:22. 10.1186/s40246-017-0118-2

34. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, and Tan PH. 2009. Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. *Modern Pathology* 23:123. 10.1038/modpathol.2009.145

35. Vollebergh MA, Lips EH, Nederlof PM, Wessels LF, Wesseling J, Vd Vijver MJ, de Vries EG, van Tinteren H, Jonkers J, Hauptmann M, Rodenhuis S, and Linn SC. 2014. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. *Breast Cancer Res* 16:R47. 10.1186/bcr3655

36. von Wahlde M-K, Timms KM, Chagpar A, Wali VB, Jiang T, Bossuyt V, Saglam O, Reid J, Gutin A, Neff C, Lanchbury JS, Hatzis C, Hofstatter E, and Pusztai L. 2017. Intratumor Heterogeneity of Homologous Recombination Deficiency in Primary Breast Cancer. *Clinical Cancer Research* 23:1193.

37. Xia M, Xu L, Leng Y, Gao F, Xia H, Zhang D, and Ding X. 2015. Downregulation of MLL3 in esophageal squamous cell carcinoma is required for the growth and metastasis of cancer cells. *Tumour Biol* 36:605-613. 10.1007/s13277-014-2616-3

38. Yap Y-S, Singh AP, Lim JHC, Ahn J-H, Jung K-H, Kim J, Dent RA, Ng RCH, Kim S-B, and Chiang DY. 2018. Elucidating therapeutic molecular targets in premenopausal Asian women with recurrent breast cancers. *npj Breast Cancer* 4:19. 10.1038/s41523-018-0070-x

PeerJ reviewing PDF | (2018:12:33436:1:1:REVIEW 6 Jan 2019)
Abbreviation	Description	
BMI	Body mass index	
CADD	Combined Annotation Dependent Depletion	
COSMIC	Catalogue of Somatic Mutations in Cancer	
DNA	Deoxyribonucleic acid	
ER	Estrogen receptor	
ExAC	Exome Aggregation Database	
FFPE	Formalin-fixed, paraffin-embedded	
gDNA	Genomic deoxyribonucleic acid	
HER2	Human epidermal growth factor receptor 2	
HGMD	Human Gene Mutation Database	
LOF	Loss of function	
LRT	Likelihood Ratio Test	
OMIM	Online Mendelian Inheritance in Men	
PAM50	Prosigna Intrinsic Subtype of Breast Cancer	
PARP	Poly (ADP-ribose) polymerase	
PI3K	Phosphatidylinositide 3-kinases	
PR	Progesterone receptor	
Page	Term	Description
------	--------	----------------------------------
528	SIFT	Sorting Intolerance from Tolerance
529	SNP	Single nucleotide polymorphism
530	SO	Sequence Ontology
531	TCGA	The Cancer Genome Atlas
532	TNBC	Triple negative breast cancer
533	UTR	Untranslated region
Table 1 (on next page)

Frequencies of ten most commonly mutated genes in Thai TNBC compared to other cohorts.

n indicated number of patients in each cohort
Gene	Thai TNBC	TCGA	METABRIC	French	Pearson Chi Square
TP53	75.86%	82.80%	80.00%	74.51%	0.519
KMT2C	57.76%	6.45%	8.16%	1.96%	<0.001
SYNE1	31.71%	5.38%	16.73%	5.88%	<0.001
PIK3CA	23.28%	8.60%	18.37%	11.76%	0.027
BRCA1	21.55%	15.05%	4.49%	1.96%	<0.001
BRCA2	18.10%	6.45%	1.63%	3.92%	<0.001
NF1	14.66%	2.15%	3.27%	3.92%	<0.001
PTEN	11.21%	1.08%	6.53%	5.88%	0.033
RB1	10.34%	4.30%	4.90%	5.88%	0.19
ARID1B	6.90%	4.30%	4.08%	1.96%	0.495

1. Table 1 – Frequencies of ten most commonly mutated genes in Thai TNBC compared to other cohorts. (n indicated number of patients in each cohort)
Table 2 (on next page)

Frequencies of mutated genes among 3 published cohorts

n indicated number of patients in each cohort
Gene	TCGA (n=93)	METABRIC (n=245)	French (n=51)	Pearson Chi Square p-value
TP53	82.80%	80.00%	74.51%	0.494
KMT2C	6.45%	8.16%	1.96%	0.278
SYNE1	5.38%	16.73%	5.88%	0.006
PIK3CA	8.60%	18.37%	11.76%	0.063
BRCA1	15.05%	4.49%	1.96%	0.001
BRCA2	6.45%	1.63%	3.92%	0.068
NF1	2.15%	3.27%	3.92%	0.812
PTEN	1.08%	6.53%	5.88%	0.123
RB1	4.30%	4.90%	5.88%	0.915
ARID1B	4.30%	4.08%	1.96%	0.749

Table 2 – Frequencies of mutated genes among 3 published cohorts (n indicated number of patients in each cohort)
Figure 1

Somatic Mutation Frequencies among 4 TNBC cohorts. Bar chart showed 10 most commonly mutated in Thai TNBC comparing to TCGA, METABRIC and French cohorts.

* indicated the difference was statistically significant
Figure 2

Landscape of co-occurrence and mutual exclusion of cancer gene mutations in Thai TNBC
Figure 3

Mutational Spectrum of TP53, KMT2C and PIK3CA in TNBC. The images showed protein domains and the positions of specific mutations with most common type of mutations in each genes labelled.

A block dot indicated a truncating mutation; a green dot indicated a missense mutation; and a purple dot indicated other types of mutation.
