Original Article

Numerical investigation of particle dispersion in the preprocessing stage for a static cell cultivation

Atsushi Sekimoto a, * , Yoshiki Kanemaru a , Yasunori Okano a , Kei Kanie b , Ryuji Kato b , Masahiro Kino-oka c

a Department of Materials Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
b Department of Basic Medicinal Science, Nagoya University, Furocho, Chiaia-Ku, Aichi 464-8601, Japan
c Department of Biotechnology, Osaka University, 1-2, Yamadaoka, Suita, Osaka 565-0971, Japan

Article info

Article history:
Received 4 December 2018
Received in revised form 1 April 2019
Accepted 5 April 2019

Keywords:
Static cell cultivation
Cell seeding
Particle dispersion
Reciprocal shaking

A B S T R A C T

In order to produce high-quality cells in a static culture, the initial placement of the cells is one of the most important factors. Dense distribution of the cells increases the risk of cell death. Thus, the cells need to be uniformly distributed during the preprocessing of a static culture. This process depends on the operator’s experience and has not been standardized. In this study, we have performed numerical simulations to investigate the efficiency of cell dispersion by using OpenFOAM. The numerical domain is a square-shaped dish. Two shaking methods, one-direction and multi-direction reciprocal shaking, were considered and calculations were conducted under five oscillation frequencies. The cell colony was assumed as a solid spherical particle. The initial particles were densely positioned at the center. The numerical result showed that the multi-direction reciprocal shaking was more effective to disperse the particles than the one-direction reciprocal shaking. In addition, at a low frequency, almost all particles sank to the bottom and hardly dispersed. These results indicate that strong fluctuations can lift particles from the bottom and that frequent changes in the flow direction make for more even distribution.

© 2019, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Induced Pluripotent Stem (iPS) cells have the ability to differentiate into another tissue cell [1, 2]. Compared with Embryonic Stem (ES) cells [3] that have similar characteristics, iPS cells do not have ethical and immunological problems because iPS cells can be produced from the patient’s somatic cells. They are expected to contribute to regenerative medicine and the development of new drugs. However, culturing iPS cells needs delicate techniques and this process depends on the operator’s experience. In addition, a large number of cells cannot be cultured by one operation. An automated process for massive production of cells is required, which is a common demand in cell cultivation in general. In our previous study, we focused on the suspension culture and investigated numerically the shear stress acting on particles which were the model of cell colonies of 1000 of iPS cells [4].

In a static culture, the initial placement of the cells is one of the most important factors to produce high-quality cells. Cells have to be positioned uniformly in a culture dish because the dense distribution of cells increases the risk of cell death. To obtain an optimal shaking method, we have to quantify the particle distribution and find out exactly what happens in a culture dish. However, there are few reports that investigate the cell seeding process by using numerical simulation. In this study, we have performed numerical simulations to investigate the cell dispersion in a bioreactor with three horizontal reciprocating movements.

2. Numerical methodologies

The iPS-cell colonies are modelled as rigid spherical particles whose shape remains unchanged for the duration of the simulation. The discrete element method (DEM) coupled with computational fluid dynamics (CFD) is applied to investigate the dynamics of the particles in the culture fluid.

* Corresponding author.
E-mail address: asekimoto@cheng.es.osaka-u.ac.jp (A. Sekimoto).

Peer review under responsibility of the Japanese Society for Regenerative Medicine.
The following assumptions are applied in the simulations:

- The culture fluid is Newtonian and incompressible.
- The temperature and the physical properties of the system remain constant and homogeneous during the process.
- The collision between particles is neglected since the number of particles is small enough.
- Biological, biochemical or chemical reactions do not occur during the simulation.
- The particle behaviour does not affect the fluid motion due to the very low cell concentration. A one-way coupling is assumed in the present simulations.

The modelled square dish has a length of 74 mm on each side (d) and its height (H) is 37 mm. The culture fluid phase is water and the height (h) is 3 mm as in Fig. 1(a).

2.1. Numerical model and governing equations

2.1.1. Fluid phase

The governing equations for the fluid phase (air and water) are the continuity and the Navier–Stokes equations:

$$\nabla \cdot \mathbf{v}_t = 0 \tag{1}$$

$$\frac{\partial \rho_t \mathbf{v}_t}{\partial t} + \nabla \cdot (\rho_t \mathbf{v}_t \mathbf{v}_t) = -\nabla p + \nabla \cdot (\mu_t \nabla \mathbf{v}_t) + \rho_t \mathbf{a} + \sigma \mathbf{n} \delta \tag{2}$$

where t is time, ρ_t is the density, \mathbf{v}_t is the velocity vector, μ_t is the viscosity of the fluid, p is the pressure, \mathbf{a} is the centrifugal acceleration, σ is the surface tension of the water, k is the curvature of the air–water interface, δ is the delta function and \mathbf{n} is a unit vector normal to the liquid surface. The density (ρ_t) of water and air is 996 and 1.2 kg/m3, respectively. The kinematic viscosity ($v = \mu_t/\rho_t$) is 1.1×10^{-6} m2/s for water and 1.5×10^{-5} m2/s for the air.

The acceleration is $\mathbf{a} = d\mathbf{u}/dt = d^2\mathbf{r}/dt^2$, where \mathbf{u} is the velocity vector of the trajectory of the vessel and \mathbf{r} is the position of the vessel centre. The last term in Eq. (2) represents a surface tension called Continuum Surface Force (CSF) model [5]. A volume of fluid (VOF) method is used to represent the free surface of the gas–liquid interface in a reciprocal shaking dish [6,7].

The shaking trajectory is modelled as a cosine curve and the position of the square dish is set as

$$\mathbf{r} = (x, y, z) = n|R_0\cos(\omega t)| \tag{3}$$

where n represents the shaking direction as illustrated in Fig. 1(b). $T_p = 2\pi/\omega$ is the time period of one cycle of shaking, and eight cycles are considered. At each period, $(m-1)/T_p < t < m(T_p)$, the direction of shaking is $n = (1, 0, 0)$ for $1 \leq m \leq 8$ in the single-reciprocal shaking (SRS) method,

$$n_i = \begin{cases} (1, 0, 0) & \text{for } m = 1, 3, 5, 7 \\ (0, 1, 0) & \text{for } m = 2, 3, 6, 8 \end{cases}$$

for the multi-reciprocal shaking method (MRS1), which alternates the shaking direction every period, and

$$n_i = \begin{cases} (1, 0, 0) & \text{for } m = 1, 2, 5, 6 \\ (0, 1, 0) & \text{for } m = 3, 4, 7, 8 \end{cases} \tag{5}$$

After the eight cycle ($t/T_p > 8$), the process is stopped and the final particle distribution is measured at $t = 14$ s.

2.1.2. Solid phase

Discrete element method (DEM) [8,9] was used to calculate the movement of the particle, which is governed by Newton’s second law of motion as:

$$m_p \frac{\partial \mathbf{v}_p}{\partial t} = \mathbf{F}_D + \mathbf{F}_C - m_p \frac{\partial \mathbf{U}}{\partial t} \tag{6}$$

where $m_p = \pi d_p^3/6$ is the mass of the particle, and d_p is the particle diameter, and \mathbf{v}_p is the velocity vector of the particle.

$$\mathbf{F}_D = C_D A_p \frac{\rho_t}{\rho} \frac{|\mathbf{v}_t - \mathbf{v}_p|^2}{2} \frac{\mathbf{v}_t - \mathbf{v}_p}{|\mathbf{v}_t - \mathbf{v}_p|} \tag{7}$$

is the force from the liquid phase, $A_p = \pi d_p^2/4$ is the projected area of a particle, and

$$\mathbf{F}_C = m_p \mathbf{g} \left(1 - \frac{\rho_t}{\rho} \right) \tag{8}$$

is the net gravitational force acting on a particle considering the buoyancy force that stems from the density difference between fluid and the particle. The empirical drag coefficient

$$C_D = \begin{cases} \frac{24}{Re} \left(1 + \frac{1}{6} Re^{2/3}\right) & Re \leq 1000 \\ 0.424 & Re \geq 1000 \end{cases} \tag{9}$$

is applied, where $Re = |\mathbf{v}_t - \mathbf{v}_p|d_p/\nu$ is the particle Reynolds number based on the relative velocity, $|\mathbf{v}_t - \mathbf{v}_p|$, of particles to the fluid. In this study, the particle diameter is $d = 0.3$ mm, the specific gravity of the particles is set as 1.08, and the total number of particles is 990. Initially, the particles are densely distributed at the center of the dish, and the fluid is stationary.

Fig. 1. (a) Configuration of the reciprocal shaking method. (b) The top view.
2.2. The nondimensional control parameters

By choosing the reference velocity as \(U_{\text{ref}} = Ra_u \) and the reference length as the dimension of the square dish \(L_{\text{ref}} = d \), the nondimensional equation for \(\frac{v}{C_3} = v_f / U_{\text{ref}} \) is obtained as:

\[
\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \mathbf{v} \mathbf{v} = -\nabla p + \frac{1}{Re_u} \nabla^2 \mathbf{v} + 2 \frac{Fr_d}{Re} \mathbf{e}_z - \frac{\mathbf{a}^*}{Dr} + \frac{1}{We} \mathbf{n} s,
\]

(10)

where \(\mathbf{e}_z \) is the unit vector in the vertical direction, \(\mathbf{a}^* \) is the nondimensional acceleration by the apparent forcing:

\[
\mathbf{a}^* = -\mathbf{n} \cos(\omega t)
\]

(11)

The nondimensional control parameters for the system are the shaking Reynolds number for water \((Re_u = Ra_u d / \nu) \), the Froude number \((Fr = Ra_u^2 / \sqrt{g}) \) which represents the ratio of the inertial centrifugal force and gravitational body force, the ratio of the diameters of the trajectory of the shaking method and the square vessel \((Dr = R_s / d = 0.46) \), and the Weber number \((We = \rho_f R_s^2 u^2 d / \sigma) \). The effect of surface tension is weak in our model and also in a large-scale orbital shaking vessel.

2.3. Numerical scheme

The governing equations are discretized using the finite volume method and a second-order linear interpolation scheme is used for the spatial discretization. The velocity and pressure fields are coupled by using the Pressure Implicit with Splitting Operator (PISO algorithm) [10]. The interface curvature is estimated using the Van Leer scheme [11]. The total number of grid points in the simulation is 237,000. The validation was checked in a previous study [12], and the computational accuracy of the numerical codes was confirmed by comparing with Zalc et al. (2002) [13].

2.4. Dispersion rate and shear stress acting on particles

The Numerical results are quantified in 6 s after the shaking process was stopped. The number density \((N_D) \) of the particle position is calculated in the square dish.

\[
N_D(x, y) = \frac{\text{Number of particles in a bin}}{\text{Total number of particles}} \times 100
\]

(12)

The dispersion efficiency can be evaluated by using the standard deviation \((\sigma_D) \) of \(N_D \). Small \(\sigma_D \) indicates high dispersion rate.

The shear stress acting on particles is an important factor which affects the quality of undifferentiated iPS cells. We also examine quantitatively the shear stress \((\tau) \) on the particles from our simulation data. Applying Stokes’ approximation for very slow flow around a sphere, the magnitude of total shear stress over the surface of a spherical particle can be estimated as,

\[
|\tau| = 2 \pi \rho_f \mu_4 |v_f - v_p|
\]

3. Results and discussion

A typical snapshot of the particle dispersed at the end of the shaking process of MRS1 is shown in Fig. 2(a) for \(Fr = 1.08 \). The particle distribution is measured at the end of the shaking process. The number density of the particles is computed as in
Fig. 2(b), where the yellow (or light grey) region represents highly aggregated particles, more than 1%. Note that the ideal equally distributed case has $N_D = 0.25\%$. The uniformity of the particle distribution can be improved by using a large Fr, however, attention should be paid to the damaging of the cells. Fig. 3 shows the mean shear stress $|\tau|$ on the particles during the shaking process, where it is clear that the strong shaking increases $|\tau|$ monotonically, so that we should choose as small Fr as possible, keeping the distribution of particles uniform.

Fig. 4 shows the particle distribution for MRS1 method at different Fr. For small Fr, the particle sank quickly and the shaking could not disperse the particles, while a strong Fr distributed the particles in the whole square dish, although some regions had a large aggregation of particles. The uniformity of the particle distribution is evaluated by the standard deviation of N_D as in Fig. 5. As Fr increases, the standard deviation decreases for $Fr < 1$, however, there is a saturation of σ_D for a larger Fr. Since we consider the optimal shaking process where the energy consumption and the shear stress acting on the particles $|\tau|$ should be minimized, $Fr \approx 1.1$ is a better choice.

The profiles of σ_D are similar for these three methods. The particle distributions of the three methods (SRS, MRS1, MRS2) are, however, different as in Fig. 6 and the distribution of SRS has a line band as seen in Fig. 6(a). We further quantify the anisotropy of σ_D in the x and y directions as in Table 1. It is clear that the SRS method shows strong anisotropy regarding the particle distribution, while MRS1 and MRS2 exhibit homogeneous particle dispersions. Fig. 7 shows the effect of the number of shaking cycles for MRS1 method, which reveals that the standard deviation is almost independent of the number of cycles for $Fr > 1$. For $Fr < 1$, σ_D may approach the asymptotic value as the number of cycles increases, however, the longer shaking process may affect the quality of cells.

![Fig. 4. The number density of particles, $N_D(x,y)$, for the MRS1 method.](image)
4. Conclusion

We have developed a numerical method, using CFD and DEM methods to evaluate the cell dispersion rate during the pre-processing of the static culture. There is an optimal $Fr = 1.08$, i.e., the optimal combination of shaking distance and speed. Our approach using a computational model can be also useful to find an optimal cultivation condition and significantly reduce the cost to develop a new automated culture method.

Acknowledgement

This research is partially supported by the project of “Development of Cell Production and Processing Systems for Commercialization of Regenerative Medicine” from Japan Agency for Medical Research and Development, AMED, and by a Grant-in-Aid for Scientific Research (B) (No. 15H04173) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and supported partly by Collaborate Research Program for Young Scientist of ACCMS and IIMC, Kyoto University. We also would like to thank the computational resources of Research Institute for Information Technology, Kyushu University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.reth.2019.04.003.

References

[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663–76.
[2] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861–72.
[3] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.
[4] Yamamoto T, Yano M, Okano Y, Kino-oka M. Numerical investigation for the movement of cell colonies in bioreactors: stirring and orbital shaking tanks. J Chem Eng Jpn 2018;51(5):423–30.
[5] Brackbill J, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys 1992;100(2):335–54.
[6] Rusche H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Imperial College London (University of London); 2003. Ph.D. thesis.
[7] Hirt C, Nichols B. Volume of fluid (VOF) method for dispersed two-phase flows at high phase fractions. J Comput Phys 1981;39(1):201–25.
[8] Moukalled F, Darwish M. The finite volume method in computational fluid dynamics. Springer International Publishing; 2016.
[9] Jing L, Kwok CY, Leung YF, Sobral YD. Extended CFD-DEM for free-surface flow with multi-size granules. Int J Numer Anal Methods Geomech 2016;40(1):62–79.
[10] Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 1986;62(1):40–65.
[11] Van Leer B. Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. J Comput Phys 1974;14(4):361–70.
[12] Yano M, Yamamoto T, Okano Y, Kanamori T, Kino-oka M. Numerical study of fluid dynamics in suspension culture of iPS cells. ASEAN J Chem Eng 2017;1:73–81.
[13] Zalc J, Alvarez M, Muzzio F, Ark B. Extensive validation of computed laminar flow in a stirred tank with three Rushton turbines. AIChE J 2001;47(10):2144–54.