Classification of *Colletotrichum lindemuthianum* races in differential cultivars of common bean

Tamires Ribeiro¹*, Jose Antonio de Fatima Esteves², Daiana Alves Silva¹, Joao Guilherme Ribeiro Goncalves¹, Sergio Augusto Morais Carbonell² and Alisson Fernando Chiorato²

¹Programa de Pós-graduação em Agricultura Tropical e Subtropical, Centro de Análise e Pesquisa Tecnológica do Agronegócio dos Grãos e Fibras, Instituto Agronômico, Avenida Barão de Itapura, 1481, 13020-902, Botafogo, Campinas, São Paulo, Brazil. ²Centro de Análise e Pesquisa Tecnológica do Agronegócio dos Grãos e Fibras, Instituto Agronômico, Campinas, São Paulo, Brazil. *Author for correspondence. Email: tamires_r1@yahoo.com.br

ABSTRACT. Anthracnose caused by the fungus *Colletotrichum lindemuthianum* is one of the main diseases affecting the common bean (*Phaseolus vulgaris* L.), and the pathogen is characterized by wide variability, with more than 50 physiological races identified in Brazil. Greater occurrences of races 65, 73, and 81 have been observed in Brazil along with the occurrence of pathogenic variability among isolates of a single race, destabilizing the resistance of commercial cultivars. Therefore, the aim of this study was to identify physiological races of *C. lindemuthianum* isolates collected in the states of São Paulo and Santa Catarina, Brazil, and to test for variability among the isolates of race 65. The classification of 51 isolates resulted in the identification of 10 different physiological races: 4, 38, 55, 65, 73, 81, 83, 85, 321, and 351. Races 65 and 81 predominated, with frequencies of 37.25 and 35.29%, respectively. Regarding the isolates of race 65, wide physiological variability was evident, suggesting that a new differential set should be applied to detect the levels of variation among isolates of a single race of the pathogen.

Keywords: physiological variability, levels of variation, anthracnose.

Introduction

Anthracnose, caused by the fungus *Colletotrichum lindemuthianum* (Sacc. & Magn.) Scribner, is one of the main diseases affecting the common bean (*Phaseolus vulgaris* L.), and the disease may occur in all crop seasons (dry, winter, and rainy seasons), causing lower yield and grain quality. The crop may suffer losses of up to 100% when the infection occurs at the beginning of the cycle along with low temperatures and high relative humidity (Dalla Pria & Silva, 2010). The most effective means to control the pathogen is using resistant cultivars, though the wide physiological variability of the pathogen may break down the resistances of commercial cultivars (Davide & Souza, 2009).

Approximately 50 physiological races of the pathogen have been identified in Brazil: 1, 5, 7, 8, 17, 23, 31, 55, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 83, 85, 86, 87, 89, 93, 95, 96, 97, 101, 102, 105, 109, 111, 117, 119, 121, 123, 125, 127, 137, 193, 217, 249, 320, 321, 337, 339, 343, 453, and 585, but races 65, 73, and 81 have been identified with greater...
frequency due to their aggressiveness (Silva, Souza, & Ishikawa, 2007). Physiological races are identified following Pastor-Corrales (1991) by evaluating the resistance response of twelve differential cultivars; however, using these cultivars has not been effective in determining the variability exhibited by the pathogen.

This deficiency in detecting the variability of the species was also seen by Davide and Souza (2009), suggesting that the pathogen race diversity is greater than currently known. Souza, Camargo Júnior, and Pinto (2010) indicated that certain cultivars are resistant to certain isolates and susceptible to others of the same race of the pathogen, suggesting variability within races and making the introduction of resistance in new common bean genotypes even more difficult. This situation was also observed by Ishikawa, Ramalho, and Souza (2011), who suggested a new group of differential cultivars to detect variation among isolates of race 65 of C. Lindemuthianum. This high variability shows the difficulty in controlling the disease and the importance of identifying new resistance genes.

The aim of this study was to classify the physiological variability of 48 C. lindemuthianum isolates collected in the state of São Paulo and 3 collected in the state of Santa Catarina as well as to classify the levels of physiological variability among isolates of race 65.

Material and methods

To obtain C. lindemuthianum isolates, tissues of symptomatic plants were collected from different common bean production regions in São Paulo and Santa Catarina State, Brazil.

Each sample was handled in the Plant Health Research and Development Center laboratory of the Agronomic Institute - IAC (Campinas/São Paulo State, Brazil), where direct isolations from infected organs (leaf, stem, or pod) were made followed by monosporic cultures. After obtaining the monosporic cultures, the isolates were transferred to new oatmeal agar media and kept for 10 days in a BOD at 24°C and in absence of light for spore production.

The physiological variability of the isolates was classified according to the evaluated resistance response to C. lindemuthianum in twelve differential cultivars using the binary value system suggested by Pastor-Corrales (1991), listed in Table 1.

Table 1. Classification of physiological races of Colletotrichum lindemuthianum according to the reaction of twelve differential cultivars of the common bean (Pastor-Corrales, 1991).

Order	Differential Variability	Binary Value
1	Michelite	1
2	MDRK	2
3	Perry Marrow	4
4	Cornell 402	8
5	Tipia	16
6	Kaboon	32
7	México 222	64
8	PI 207262	128
9	TO	32
10	TU	64
11	AB 135	128
12	G 2255	256

*The designation of races is obtained by summing the binary values of the differential cultivars susceptible to the pathogen. aAndean genotypes; bMesoamerican genotypes.

To evaluate the variability within race 65, we adapted the methodology of Ishikawa et al. (2011), who suggested using eight differential cultivars for isolates collected in the state of Minas Gerais (with their respective binary values): BRS Estilo (29), BRSMG Majestoso (21), BRS Supremo (22), BRSMG União (23), BRS Valente (24), Ouro Vermelho (25), BRSMG Madrepérola (26), and BRSMG Talismã (27). However, for the isolates evaluated in this study collected from São Paulo and Santa Catarina States, it was necessary to attribute binary values to the Ouro Negro (28), BRS Cometa (29), and BRS Espelendor (210) cultivars (Table 2).

Table 2. Classification of isolates of race 65 of Colletotrichum lindemuthianum based on the methodology proposed by Ishikawa et al. (2011).

Order	Differential Variability	Binary Value
1	Ouro Negro	29
2	BRSMG Majestoso	21
3	Pérola	1
4	BRSMG Talismã	27
5	BRS Valente	24
6	BRSMG Madrepérola	23
7	BRS Supremo	22
8	BRS Estilo	29
9	BRS Cometa	23
10	BRS Espelendor	24
11	Ouro Vermelho	25
12	BRSMG União	23

*Control of susceptibility. The designation of variability within race 65 of the pathogen is obtained by summing the binary values of the differential cultivars susceptible to the isolate tested.
Thirteen isolates previously classified as race 65 originating from samples collected from São Paulo and Santa Catarina States were evaluated: 14779 and 14780 (Botucatu - São Paulo State), 14781 (Jaú - São Paulo State), 14790 (Campos Novos - Santa Catarina State), 14782 and 14783 (Botucatu - São Paulo State), 14784 and 14834 (Campinas - São Paulo State), 14789 (Mococa - São Paulo State), 14835 (Campinas - São Paulo State), 14788 (Capão Bonito - São Paulo State), 14652 (Cerqueira César - São Paulo State), and 14670 (Iguacu - São Paulo State). The variability within this race was evaluated by summing the binary values of the differential cultivars susceptible to each isolate tested.

Results and discussion

Ten physiological races of *C. lindemuthianum* were identified as races 4, 38, 55, 65, 73, 81, 83, 85, 321, and 351 in São Paulo State, and one was identified (race 65) in the three isolates collected in Santa Catarina State (Table 3).

According to Carbonell et al. (1999), the main races of the pathogen found in São Paulo State were 31, 65, 81, and 89. In Santa Catarina State, according to Gonçalves-Vidigal, Silva, Vidigal Filho, Gonela, and Kvitschial (2007), race 65 was the most frequent, identified in 11 of the 32 isolates evaluated. Those results agree with the results obtained in this study, in which races 65 and 81 were the most frequent among the 51 isolates classified (Table 3). Nineteen of the 51 isolates were classified as race 65 and 18 isolates as race 81 with a frequencies of 37.25 and 35.29%, respectively. These two races were the most aggressive to the crop and are widely disseminated throughout all common bean producing areas in Brazil.

This dissemination is facilitated by the free trade of grains among the states and because many producers reuse the grains previously produced in the same growing area, thus increasing the potential of the inoculum from one crop season to another and favoring the pathogenic variability of *C. lindemuthianum* (Talamini et al., 2004).

Races 4, 38, 55, 83, 85, 321, and 351 were found with lesser frequency, and races 4, 38, 321, and 351 were classified only once among the 51 isolates. Races 38 and 351 had not previously been reported in Brazil. Gonçalves-Vidigal, Thomazella, Vidigal Filho, Kvitschial, and Elias (2008) also identified races 67, 83, 101, 103, 105, and 581 for the first time in the state of Santa Catarina, showing the wide variability and dissemination of the pathogen.

Isolate	Location	Race	Isolate	Location	Race
4759-1	Capão Bonito	38	14829	Avaré	
4759-2	São Paulo State	38	14830	Araras	
4759-3	São Paulo State	38	14831	Colina	321
9253	Piracicaba São Paulo State	65	14832	Pindorama	
9876-3	Campinas	83	14833	Imperatriz	
9876-5	Campinas	85	14834	Campinas	65
9876-6	São Paulo State	4	10888-2	Taquaritinga	73
142-45		38	10888-3		73
142-46		55	13099-2		65
146-41	São Paulo State	351	13160-3		81
146-50	Cerqueira César São Paulo State	13160-1	Monte Alegre do Sul	81	
146-52	São Paulo State	65	13160-4	Monte Alegre do Sul	65
146-70	São Paulo State	65	13348-1		81
147-78	São Paulo State	65	13348-2		65
147-79	São Paulo State	65	13348-3		65
147-80	São Paulo State	65	13371-2	Miguélopolis	81
147-81	São Paulo State	65	13371-3	Miguélopolis	81
147-82	São Paulo State	65	13371-4	Miguélopolis	81
147-83	São Paulo State	65	13371-5	Miguélopolis	81
147-84	São Paulo State	65	13371-6	Miguélopolis	81
147-85	São Paulo State	81	13373-1	Barreos	81
147-86	São Paulo State	81	13373-3	Barreos	83
147-87	São Paulo State	65	13445-1		81
147-88	São Paulo State	65	1445-2	Mococa	81
147-89	São Paulo State	65	1445-3	Mococa	81
147-90	São Paulo State	65	1445-4	Mococa	81
147-91	São Paulo State	65	1445-5	Mococa	81
147-92	São Paulo State	65	1445-6	Mococa	81

Table 3. Classification of physiological races of *Colletotrichum lindemuthianum* isolates.

Races classified according to inoculation response in differential cultivars proposed by Pastor-Corrales (1991). *Non-pathogenic isolates.*
According to Ishikawa et al. (2012), this wide variability can also occur from fusions by conidial anastomosis tubes (CAT), which provides the source of the pathogen variants. The diversity of the pathogen variability by CAT was also studied in the \textit{Glomerella cingulata} (Stonem.) Spauld. et Schenk f. sp. phaseoli, the sexual form of \textit{C. lindemuthianum}, where the authors reported their ability to achieve sexual recombination as well the ability to form CAT. Moreover, they report the possibility of CAT formation between \textit{C. lindemuthianum} and \textit{G. cingulata}, increasing the pathogen variability (Barcelos, Pinto, Vaillancourt, & Souza, 2014). The genetic diversity of \textit{C. lindemuthianum} was also reported by molecular markers using IRAP (Inter-retrotransposon Amplified Polymorphism) and Remap (retrotransposon Microsatellite), indicating high variability between groups of the pathogen and effectiveness in performing genetic diversity analysis (Santos et al., 2012; Gonzaga, Costa, Santos, Araújo, & Queiroz, 2014).

Thus, periodically mapping common bean production regions is important for assisting breeding programs to develop resistant cultivars. Although genetic resistance is considered the most economical control strategy also with less environmental impact, the broken resistance of these cultivars is probably due to the wide use in successive crops, leading to a selection pressure and giving rise to pathogen race variants. Therefore, breeding programs have invested in new strategies to prolong the cultivars’ resistance, such as pyramiding multiple genes in a single plant variety.

In agreement with the literature, the present study also showed high physiological variability among isolates of race 65. The isolate 14790 was considered the most aggressive among the 13 tested, pathogenic to eight cultivars. Isolates 14835 and 14834 were pathogenic to six isolates; isolates 14789, 14788, 14652, and 14782 were pathogenic to five isolates; and the other isolates, 14779, 14783, 14781, 14784, 1467, and 14780, were pathogenic in four cultivars or fewer (Figure 1). The interaction between \textit{P. vulgaris} and \textit{C. lindemuthianum} was studied by Campa, Rodríguez-Suárez, Giraldez, and Ferreira (2014), and the authors reported that this interaction is specific and complex, conditioned by the pathogenic variation and by the genotype. They identified by mapping the RIL’s population ‘Cornell49242 x Xana’ two resistance genes for race 65, which exhibited a dominance action mode unlike the other races, which exhibited different action modes in both parents and might be eventually additive or dominant.

All cultivars tested in this study exhibited divergent reactions to the isolates. The cultivar Ouro Vermelho was resistant to all of the isolates tested, this cultivar may be used in crosses to introduce the resistance gene in new genotypes and the cultivar BRS Estilo was susceptible to 10 isolates, reacting similarly to the Pérola cultivar, which is used as a control for susceptibility to the pathogen. This result was also reported by Ishikawa et al. (2011), who observed that the BRS Estilo cultivar was susceptible to 9 of the 12 isolates evaluated, and Ouro Vermelho was resistant to all of the isolates.

![Figure 1. Number of Colletotrichum lindemuthianum isolates compatible with each differential cultivar of race 65 of the pathogen.](image)

According to Faria et al. (2004) and Abreu et al. (2011) the cultivars BRSMG Talismã and BRSMG Madrepérola were released as resistant to race 65; however, in this study, the BRS Talismã cultivar showed a susceptible reaction to three isolates of race 65 and BRSMG Madrepérola was susceptible to two, showing a high variability for this race and proving the resistance was broken in these cultivars. According to Melotto and Kelly (2000) and Chiorato, Carbonell, Moura, Ito, and Colombo (2006) a strategy for reducing the susceptibility of cultivars to the wide variability of the pathogen is the insertion of both resistant gene pools (Andean and Mesoamerican) therefore, this combination could provide the most wide and durable resistance. This behavior likely occurs because the Andean cultivars tend to be more resistant to Mesoamerican races, which have high variability and aggressiveness.

The results of this study showed the importance of incorporating new differential cultivars to identify the pathogenic variability of \textit{C. lindemuthianum} isolates in different regions of Brazil.
evaluation is highly relevant for the identification of the most aggressive isolates of each race of the pathogen, assisting Genetic Breeding Programs in incorporating new sources of resistance in commercial common bean cultivars as a tool to minimize the resistance breaking of widely used cultivars in the production system by the pathogen variability.

Conclusion

Ten races of \(C. \) lindemuthianum were identified in the state of São Paulo, but only race 65 was identified in the state of Santa Catarina.

Races 65 and 81 were notable for their high frequency among the isolates classified, and races 38 and 351 were identified in Brazil for the first time.

The isolates of race 65 showed wide physiological variability, and it is necessary to incorporate new differential cultivars to identify the pathogen variability levels.

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) for granting a scholarship and to Professor Magno Antonio Patto Ramalho of the Universidade Federal de Lavras (UFLA), who provided the differential cultivars of race 65 of \(C. \) lindemuthianum.

References

Abreu, Á. F. B., Carneiro, J. E. S., Ramalho, M. A. P., Melo, L. C., Junior, T. J. P., Filho, I. A. P., ... Wendland, A. (2011). BRSMG Madrepérola: cultivar de feijão tipo carioca com escurecimento tardio dos grãos. (Comunicado Técnico 200). Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão.

Barcelos, Q. L., Pinto, J. M. A., Vaillancourt, L. J., & Souza, E. A. (2014). Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil. \(PLoS \) ONE, 9(3), 1-17.

Camara, A., Rodríguez-Suárez, C., Giraldez, R, & Ferreira, J. J. (2014). Genetic analysis of the response to eleven \(\text{Colletotrichum lindemuthianum} \) races in a RIL population of common bean (\(\text{Phaseolus vulgaris} \) L.). \(\text{BMC Plant Biology} \), 14(115), 1-12.

Carbonell, S. A. M., Imo, M. F., Pompeu, A. S., Francisco, P. G., Ravagnani, S., & Almeida, A. L. L. (1999). Raças fisiológicas de \(\text{Colletotrichum lindemuthianum} \) e reação de linhagens e cultivares de feijoeiro no Estado de São Paulo. \(\text{Fitopatologia Brasileira} \), 24(1), 60-65.

Chiorato, A. F., Carbonell, S. A. M., Moura, R. R., Imo, M. F., & Colombo, C. A. (2006). Co-evolução entre raças fisiológicas de \(\text{Colletotrichum lindemuthianum} \) e feijoeiro. \(\text{Biotecnologia} \), 65(3), 381-388.

Dalla Pria, M., & Silva, O. C. (2010). Antracnose. In M. Dalla Pria, & O. C. Silva (Orgs.), \(\text{Coltura do feijoeiro: doenças e controle} \) (p. 49-56). Ponta Grossa, PR: UEPG.

Davide, L. M. C., & Souza, E. A. (2009). Pathogenic variability within race 65 of \(\text{Colletotrichum lindemuthianum} \) and its implications for common bean breeding. \(\text{Crop Breeding and Applied Biotechnology} \), 9(1), 23-30.

Faria, L. C., Diaz, J. L. C., Del Peloso, M. J., Abreu, Á. F. B., Ramalho, M. A. P., Carneiro, J. E. S., ... Rava, C. A. (2004). BRSMG Talismã: uma nova opção de cultivar de feijoeiro comum com grão carioca para o Estado do Paraná. (Comunicação Técnica 75). Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão.

Gonçalves-Vidigal, M. C., Silva, C. R., Vidigal Filho, P. S., Gonela, A., & Kritschal, M. V. (2007). Allelic relationships of anthracnose (\(\text{Colletotrchi} \) \(\text{cium lindemuthianum} \)) resistance in the common bean (\(\text{Phaseolus vulgaris} \) L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. \(\text{Genetics and Molecular Biology} \), 30(3), 589-593.

Gonçalves-Vidigal, M. C., Thomazella, C., Vidigal Filho, P. S., Kritschal, M. V., & Elias, H. T. (2008). Characterization of \(\text{Colletotrichum lindemuthianum} \) isolates using differential cultivars of common bean in Santa Catarina State, Brasil. \(\text{Brazilian Archives of Biology and Technology} \), 51(5), 883-888.

Gonzaga, L. L., Costa, L. E. O., Santos, T. T., Araujo, E. P., & Queiroz, M. V. (2014). Endophytic fungi from the genus \(\text{Colletotrichum} \) are abundant in the \(\text{Phaseolus vulgaris} \) and have high genetic diversity. \(\text{Journal of Applied Microbiology} \), 118(2), 485-496.

Ishikawa, F. H., Ramalho, M. A. P., & Souza, E. A. (2011). Common bean lines as potential differential cultivars for race 65 of \(\text{Colletotrichum lindemuthianum} \). \(\text{Journal of Plant Pathology} \), 93(2), 461-464.

Ishikawa, F. H., Souza, E. A., Shoji, J., Connolly, L., Freitag, M., Read, N. D., & Roca, M. G. (2012). Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. \(\text{PLoS ONE} \), 7(2), 1-12.

Melotto, M., & Kelly, J. D. (2000). An allelic series at the \(\text{Co-1} \) locus conditioning resistance to anthracnose in the common bean \(\text(L.) \) cultivar Michelite and the \(\text{Colletotrichum} \) \(\text{lindemuthianum} \) resistance of the \(\text{Phaseolus vulgaris} \) L. \(\text{Crop Breeding and Applied Biotechnology} \), 9(1), 60-65.

Pastor-Corales, M. A. (1991). Estandarizacion de variedades diferenciales de designacion de racas de \(\text{Colletotrichum lindemuthianum} \). \(\text{Phytopathology} \), 81(6), 694.

Santos, L. V., Queiroz, M. V., Santana, M. F., Soares, M. A., Barros, E. G., Araujo, E. F., & Langin, T. (2012). Development of new molecular markers for the \(\text{Colletotrichum} \) genus using \(\text{Retro C11} \) sequences. \(\text{World Journal Microbiol Biotechnol} \), 28(3), 1087-1095.
Silva, K. J. D., Souza, E. A., & Ishikawa, F. H. (2007). Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais, Brazil. *Journal of Phytopathology, 155*(4), 241-247.

Souza, E. A., Camargo Junior, O. A., & Pinto, J. M. A. (2010). Sexual recombination in Colletotrichum lindemuthianum occurs on a fine scale. *Genetics and Molecular Research, 9*(3), 1759-1769.

Talamini, V., Souza, E. A., Pozza, E. A., Carrijo, F. R. F., Ishikawa, F. H., Silva, K. J. D., & Oliveira, F. A. (2004). Identificação de raças patogênicas de Colletotrichum lindemuthianum a partir de isolados provenientes de regiões produtoras de feijoeiro comum. *Summa Phytopathologica, 30*(3), 371-375.

Received on May 19, 2015.
Accepted on August 1, 2015.

License Information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.