Recurrent Chondromyxoid Fibroma of the Thoracic Spine 30 Years After Primary Excision

Case Report and Review of the Literature

Fumihito Kikuchi, MD,* Howard D. Dorfman, MD,* and Philip B. Kane, MD†

We report a case of late recurrence of chondromyxoid fibroma (CMF) arising in a thoracic vertebra in an 11-year-old male. This was treated by curettage, and 30 years later, the patient noticed shoulder pain and leg weakness. A recurrent mass appeared at the same site in the spinous process of T6. The histologic features of the recurrent tumor were similar to those of the primary lesion. A total of 38 cases of CMF of the vertebra have been reported. Only 3 of 38 previously reported vertebral CMF recurred. Tumors recurred 2 years after operation in 2 cases, and 7 years after operation in 1 case. *Int J Surg Pathol 9(4):323–329, 2001

Key words: chondromyxoid fibroma, thoracic spine, recurrence.

Chondromyxoid fibroma (CMF) was first described by Jaffe and Lichtenstein [1] in 1948. They described 8 cases with tumor arising in the tibia (3 cases), femur (2 cases), metatarsal bone (2 cases), and calcaneus (1 case). CMF is a rare skeletal neoplasm. It accounts for less than 1% of all benign and malignant tumors of bone. The tumor has a predilection for males, with a male/female sex ratio of about 1.5:1, and commonly occurs in the second and third decades of life. The metaphyseal regions of major tubular bones such as the tibia and femur, small bones of the feet, and pelvic bone are the most frequent sites of involvement [2]. CMF of the spine is rare. Zillmer and Dorfman [3] reported that vertebral involvement occurs in about 8% of CMF cases. Wu et al. [4] reported 10% in 1998. Overall recurrence rates of CMF were reported by Dorfman and Czerniak [2], Wu et al. [4], and Gherlinzoni et al. [5] are 20%, 26.3%, and 27%, respectively.

Case Report

The patient was a 41-year-old man who presented at age of 11 years with a radiolucent lesion in the spinous process of the 6th thoracic vertebra. The tumor was excised from a “cystic” lesion of the spinous process. Dr. Henry L. Jaffe at the Hospital for Joint Disease in New York City was consulted, and the pathologic diagnosis was confirmed as chondromyxoid fibroma. The patient remained asymptomatic until 30 years later, when he presented with shoulder pain and leg weakness. A computed axial tomography (CAT) scan revealed an expansile and irregularly shaped lytic lesion with sclerotic borders involving the posterior elements of the 6th thoracic vertebra, predominantly the left pedicle and spinous process. The spinal cord at this level was displaced to the right and slightly compressed (Fig. 1). At the level of T6, axial magnetic resonance images
Fig. 1. Axial CT scan shows recurrent tumor of the 6th thoracic vertebra involving the left side of the posterior neural arch.

(MRI) showed a low-signal-intensity lesion with high-signal-intensity foci in the posterior vertebra (Fig. 2). Sagittal MRI showed an ill-defined and high-signal-intensity lesion in the posterior vertebral arch (Fig. 3). The patient underwent surgical excision of the recurrent lesion.

The resected tissue consisted of several fragments measuring up to $2.4 \times 1.8 \times 0.4$ cm. After formalin fixation, routine histopathological sections were made and stained with hematoxylin and eosin. Slides of the original specimen removed from the 6th spinous process of the thoracic vertebra were still available for review, but none of the original radiographs had been retained.

Histologic Findings

The lesion was predominantly composed of immature myxoid tissue with a pseudolobular appearance. Myxoid areas consisting of stellate and plump spindle cells alternating with areas of solid cellularity with plump, oval mononuclear cells and multinucleated giant cells were present. The tumor cells showed moderate nuclear hyperchromatism. Occasionally, large, bizarre hyperchromatic nuclei were present. No mitotic figures were found. Scant reactive bone formation was seen at the periphery (Fig. 4). The histologic features of the recurrent tumor were similar to those of the primary tumor lesion excised 30 years earlier, except for the presence of a focus of necrosis in the primary lesion (Fig. 5).

Discussion

The first report of occurrence of CMF in the vertebral column was presented by Benson and Bass [6] in 1955. They reported CMF of thoracic vertebral bodies (T1, 2, 3) of a 34-year-old woman.
Recurrent Chondromyxoid Fibroma of Spine • Kikuchi et al. 325

Fig. 4. Histologic features of primary tumor of the 6th thoracic vertebra (1969). A. Low-power photomicrograph shows loose fibromyxoid tissue and peripheral zone of high cellularity with several scattered multinucleated giant cells. B. High-power photomicrograph shows stellate and spindle cells in myxoid stroma.

Fig. 5. Recurrent tumor tissue of the 6th thoracic vertebra (1999). A. Low-power photomicrograph shows pseudolobulation with greater cellularity at periphery of fibromyxoid lesion. B. Higher magnification of the peripheral area of pseudolobule shows stellate and spindle cells, and several multinucleated giant cells.

Curettage and postoperative radiation therapy were performed. Fifteen months after the operation, the patient had no recurrence. Only 38 cases of vertebral CMF have been reported so far. These cases involved cervical vertebrae in 7 cases [3,4,7–10], thoracic vertebrae in 14 cases [3,4,6,11–17], lumbar vertebrae in 7 cases [4,18–21], and sacrum in 7 cases [3,4,22–25]. Precise locations were not described in 3 cases [26,27] (Table 1).

The ages and sexes of the patients were available for 23 of 39 cases, including our case. The patients in 23 cases ranged in age from 6 to 58 years (average age, 26.0 years); 78% of cases occurred in the second, third, and fourth decades. The 23 tumors occurred in 9 male and 14 female patients. The sex ratio was approximately 0.6:1. Zillmer and Dorfman and Wu et al. reported that all CMF patients, including spinal CMF, ranged in age from 3 to 70 years [3] and 6 to 87 years [4], respectively (average age, 31.1 years). Peak incidence was in the second and third decades of life [3,4]. Dorfman and Czerniak [2] stated that the male/female sex ratio was approximately 1.5:1.

The average age of patients with spinal CMF was younger than that of patients with CMF in general. The sex ratio was different in cases of spinal CMF, when compared with all cases of CMF. There was a female predominance in spinal CMF cases.
Follow-up data, including our case, were mentioned in 17 of 39 cases (Table 1). The range of follow-up data was from 2 months to 8 years after operation. Thirteen of 17 cases had no evidence of recurrence after operation; 4 of 17 cases, including our case, had recurrence. The first recurrent case (case no. 11) was reported by Nunez et al. [14]. The patient was a 38-year-old woman who had a tumor of the 5th thoracic vertebra with a compression fracture. Two years after curettage, she had recurrence and a transthoracic excision was performed. She had no evidence of recurrence 9 months after reexcision. The second recurrent case of spinal CMF (case no. 16) was reported by Zillmer and Dorfman [3]. The patient was a 20-year-old woman who had a tumor of the 7th cervical vertebra. Intralasional excision and radiation therapy were performed. Seven years later she had a tumor containing recurrent CMF and malignant fibrous histiocytoma. The latter was considered to be a radiation-induced tumor. A third recurrent case of CMF of spine (case no. 21) was reported by Leal Filho et al. [16]. The patient was a 32-year-old woman who had a tumor of the 5th costovertebral junction with spread into the spinal canal. Laminectomy and removal of an epidural tumor were performed. Two years after operation, she had recurrent tumor, which was resected. Two years after the second operation, there was no further evidence of recurrent tumor. It is interesting that 3 of 4 recurrent cases of spinal CMF, including our case, arose in thoracic vertebrae.

Review of the literature shows the lag period before the first recurrence of CMF in all sites ranged between 0.5 year and 9 years (Table 2) [28-44]. The longest interval before recurrence was 18 years in second recurrence of metatarsal CMF [41]. Zillmer and Dorfman [3] mentioned that the overall time to recurrence was less than 2 years, and Wu et al. [4] reported that it was between 5 months and 10 years (average age, 3.2 years), and the first recurrence was usually noted within 1 year. The 30-year interval before recurrence in our case is the longest yet reported.

The sex ratio of recurrent cases was 1:1.5, with 10 males and 15 females (Cases no. 11, 16, 21, 27 in Tables 1 and 2). The average age of these cases was 21.9 years, and 44% of the patients were younger than 15 years of age.

Ralph [45] stated that CMF was more aggressive in younger patients. He noted a higher local recur-

Case No./Author(s)	Age/Sex	Location	Follow-up
1. Benson and Bass [6], 1955	34/F	T1,2,3	15 months, NED
2. Gudsha [18], 1968	23/F	L3	6 months, NED
3. Schajowicz [7], 1971	6/F	C3	—
4. Spjut et al. [26], 1971	—	Vertebral (2 cases)	—
5. Rahimi et al. [27], 1972	34/M	T12	—
6. Raja-Reddy et al. [11], 1973	44/M	T10	—
7. RamanI [12], 1974	9/M	L4	2 months, NED
8. Tsuji et al. [19], 1975	11/M	T10	4 years, NED
9. Merli et al. [13], 1978	23/M	L2	20 months, NED
10. Mayer [20], 1978	38/F	T5	Recurrence 2 years after operation
11. Nunez et al. [14], 1982	20/F	C7	15 months, NED
12. Standefer et al. [8], 1982	—	S	—
13. Makley et al. [22], 1982	15/M	S	2 years, NED
14. Shulman et al. [23], 1985	32/M	C4	2 years, NED
15. Provelegios et al. [9], 1988	20/F	C7	7 years after operation, recurrence with MFH
16. Zillmer and Dorfman [3], 1989	36/F	T10	—
17. Zillmer and Dorfman [3], 1989	58/F	S1,2	—
18. Zillmer and Dorfman [3], 1989	41/F	C5	10 months, NED
19. Rivierez et al. [10], 1991	19/F	T2	2 years, NED
20. Tsuichia et al. [15], 1992	32/F	T5	Recurrence 2 years after operation
21. Leal Filho et al. [16], 1995	19/F	L1,2	5 years, NED
22. Cabral et al. [21], 1997	17/F	S	8 years, NED
23. Rodgers et al. [24], 1997	—	C (2 cases)	—
24. Wu et al. [4], 1998	—	T (5 cases)	—
25. Bruder et al. [17], 1999	27/F	T5	1 year, NED
26. Brat et al. [25], 1999	30/M	S2,3,4	1 year, NED
27. Present case, 2000	11/M	T6	Recurrence 30 years after operation

NED = no evidence of disease.
Table 2. Cases of Recurrent CMF

Case No./Author(s)	Age/Sex	Location	Follow-up
1. Jaffe [28], 1958	13/M	Calcaneus	One recurrence from 1st to 2nd operation, 9 months
2. Iwata, Coley [29], 1958	17/M	Fibula	Two recurrences from 1st to 2nd operation, 1 year, from 2nd to 3rd operation, 6 months
3. Crabbe [30], 1962	11/M	Tibia	Two recurrences from 1st to 2nd operation, 6 months, from 2nd to 3rd operation, 1 year
4. Mikulowski, Ostberg [31], 1971	42/M	Tibia	Two recurrences from 1st to 2nd operation, 9 years, from 2nd to 3rd operation, 10 years
5. Browne, Rivas [32], 1977	13/M	Mandible	One recurrence from 1st to 2nd operation, 2 years
6. Kyriakos [33], 1979	33/F	Femur	Two recurrences from 1st to 2nd operation, 1 year 10 months, from 2nd to 3rd operation, 3 years 6 months
7. Heydemann et al. [34], 1985	12/F	Tibia	Two recurrences from 1st to 2nd operation, 2 years, from 2nd to 3rd operation, 2 years
8. Kreicbergs et al. [35], 1985	11/M	Humerus	One recurrence from 1st to recurrence 6 months, follow-up without 2nd operation
9. van Horn, Lemmens [36], 1986	11/F	Calcaneus	Three recurrences from 1st to 2nd operation, 2 years, from 2nd to 3rd operation, 1 year, from 3rd to 4th operation, 1 year, from 2nd to 3rd operation, 7 years
10. Danielsen et al. [37], 1991	22/F	Mandible	One recurrence from 1st to 2nd operation, 3 years
11. Campus Filho et al. [38], 1992	23/F	Tibia	Two recurrences from 1st to 3rd operation unknown, from 3rd to 4th operation, 3 years
12. Campus Filho et al. [38], 1992	33/F	Periacetabular	One recurrence from 1st to 2nd operation, 1 year, 2 months
13. Campus Filho et al. [38], 1992	19/M	Tibia	One recurrence from 1st to 2nd operation, 2 years
14. Lingen et al. [39], 1993	10/M	Mandible	One recurrence from 1st to 2nd operation, 3 years
15. Troncoso et al. [40], 1993	14/F	Tibia	Two recurrences from 1st to 2nd operation, 4 years, from 2nd to 3rd operation, 13 years
16. O’Connor et al. [41], 1996	14/F	Metatarsal	Four recurrences from 1st to 2nd operation, 2 years, from 2nd to 3rd operation, 9 months, from 3rd to 4th operation, 3 years, from 4th to 5th operation, 4 years
17. O’Connor et al. [41], 1996	9/F	Phalanx	One recurrence from 1st to 2nd operation, 1 year, 6 months
18. O’Connor et al. [41], 1996	18/M	Metatarsal	Two recurrences from 1st to 2nd operation, 1 year, from 2nd to 3rd operation, 18 years
19. Keel et al. [42], 1997	66/F	Sphenoidoccipital bone	One recurrence from 1st to 2nd operation, 6 months
20. Patino-Cordoba et al. [43], 1998	41/F	Clivus	One recurrence from 1st to 2nd operation, 1 year
21. Shek et al. [44], 1999	16/F	Skull base	Three recurrences from 1st to 2nd operation, 4 years, from 2nd to 3rd operation, 3 years, from 3rd to 4th operation, 3 years

Rerence rate after initial curettage in young children, particularly in those under the age of 15 years. On the other hand, Gherlinzoni et al. [5] stated that the recurrence rate had nothing to do with the age of the patient. They reported equal rates of recurrence above and below the age of 20 years [5]. In 1998, Wu et al. [4] reported that the average age of patients with recurrent CMF was 22.6 years, and 40.6% of the patients were younger than 15 years of age.

Zillmer and Dorfman [3], Gherlinzoni et al. [5], and Schajowicz and Gallardo [7] stated that the histologic findings had no prognostic significance. In our case, there is no conspicuous difference in the histologic features in the primary and the recurrent lesions.

Conclusion
We report a case of CMF arising in a thoracic vertebra with recurrence, 30 years after the initial operation. CMF arising in the vertebral column is rare. Extensive review of the literature showed this case was the only instance in which the lag period before recurrence was as prolonged as 30 years. This case indicates the need for long-term follow-up in cases of CMF.
References

1. Jaffe HL, Lichtenstein L. Chondromyxoid fibroma of bone: A distinctive benign tumor likely to be mistaken especially for chondrosarcoma. Arch Pathol 45:541–551, 1948
2. Dorfman HD, Czerniak B. Bone tumors. Mosby, St. Louis, 1998
3. Zillmer DA, Dorfman HD. Chondromyxoid fibroma of bone: Thirty-six cases with clinicopathologic correlation. Hum Pathol 20:952–964, 1989
4. Wu CT, Inwards CY, O’Laughlin S, Rock MG, Beabout JW, Unni KK. Chondromyxoid fibroma of bone: A clinicopathologic review of 278 cases. Hum Pathol 29:438–446, 1998
5. Gherlinzoni F, Rock M, Picci P. Chondromyxoid fibroma. J Bone Joint Surg Am 65:198–204, 1983
6. Benson WR, Bass S. Chondromyxoid fibroma. First report of occurrence of this tumor in vertebral column. Am J Clin Pathol 25:1290–1292, 1955
7. Schajowicz F, Gallardo H. Chondromyxoid fibroma (fibromyxoid chondroma) of bone. J Bone Joint Surg Br 53:198–216, 1971
8. Standefer M, Hardy RW, Marks K, Cosgrove DM. Chondromyxoid fibroma of the cervical spine—a case report with a review of the literature and a description of an operative approach to the lower anterior cervical spine. Neurosurgery 11:288–292, 1982
9. Provelegios S, Markakis P, Markaki S. Chondromyxoid fibroma of the cervical spine. Neurosurgery 6:49–52, 1988
10. Rivierez M, Richard S, Pradat P, Devred C. Fibrome chondromyxide du rachis cervical. A propos d’un cas traité par vertebrectomie partielle. Neurochirurgie 37:264–268, 1991
11. Raja-Reddy D, Prabhakar V, Dayananda Rao B, Subrahmanian MV. Chondromyxoid fibroma involving vertebral column and ribs. Indian J Radiol 27:59–61, 1973
12. Ramani PS. Chondromyxoid fibroma: A rare case of spinal cord compression. Case report. J Neurosurg 40:107–109, 1974
13. Merli GA, Angiari P, Botticelli A, Galli V, Pescico L. Chondromyxoid fibroma with spinal cord compression. Surg Neurol 10:123–125, 1978
14. Nunez C, Bennett T, Bohlman HH. Chondromyxoid fibroma of the thoracic spine. Case report and review of the literature. Spine 7:436–439, 1982
15. Tsuchiya H, Tomita K, Tuchida T, Ueda Y, Roessner A, Suzuki M. Case report 741. Skeletal Radiol 21:339–342, 1992
16. Leal Filho MB, Pereira Neto A, Pereira LC, Franco PS, Suzuki K, De Mello PA, Burnett JC. Chondromyxoid fibroma compressing the spinal cord: Case report of the literature. Arq Neuropsiquiatr 53:837–840, 1995
17. Bruder E, Zanetti M, Boos N, von Hochstetter AR. Chondromyxoid fibroma of two thoracic vertebrae. Skeletal Radiol 28:286–289, 1999
18. Gudscha A. A case of chondromyxoma of the spine. Ortop Traum Protez 29:50–52, 1968
19. Tsuji H, Otsuka Y, Tamaki T, Takada N. Chondromyxoid fibroma of the vertebra. Report of a case. J Jpn Orthop Assoc 49:305–312, 1975
20. Mayer BS. Chondromyxoid fibroma of lumbar spine. J Can Assoc Radiol 29:271–272, 1978
21. Cabral CEL, Romano S, Guedes P, Nascimento A, Nogueira J, Smith J. Chondromyxoid fibroma of the lumbar spine. Skeletal Radiol 26:488–492, 1997
22. Makley JT, Cohen AM, Boada E. Sacral tumors: A hidden problem. Orthopedics 5:996–1003, 1982
23. Shulman L, Bale P, De Silva M. Sacral chondromyxoid fibroma. Pediatr Radiol 15:138–140, 1985
24. Rodgers WB, Kennedy JG, Zimbler S. Chondromyxoid fibroma of the ala of the sacrum presenting as a cause of lumbar pain in an adolescent. Eur Spine J 6:351–353, 1997
25. Brat HG, Renton P, Sandison A, Cannon S. Chondromyxoid fibroma of the sacrum. Eur Radiol 9:1800–1803, 1999
26. Sjoult HJ, Dorfman HD, Fechner RE, Ackerman LV. Tumors of bone and cartilage In: Atlas of tumor pathology 2nd ser fasc 5. Armed Forces Institute of Pathology, Washington, DC, pp. 50–59, 1971
27. Rahimi A, Beabout JW, Ivins JC, Dahlin DC. Chondromyxoid fibroma: A clinicopathologic study of 76 cases. Cancer 30:726–736, 1972
28. Jaffe HL. Tumors and tumorous conditions of the bones and joints. Lea & Febiger. Philadelphia, pp. 203–212, 1958
29. Iwata S, Coley BL. Report of six cases of chondromyxoid fibroma of bone. Surg Gynecol Obstet 107:571–576, 1958
30. Crabbe WA. Chondromyxoid fibroma of bone. Proc Roy Soc Med 55:353–354, 1962
31. Mikulowski P, Ostberg G. Recurrent chondromyxoid fibroma. Acta Orthop Scand 42:385–390, 1971
32. Browne RM, Rivas PH. Chondromyxoid fibroma of the mandible: A case report. Br J Oral Surg 15:19–25, 1977
33. Kyriakos M. Soft tissue implantation of chondromyxoid fibroma. Am J Surg Pathol 3:363–372, 1979
34. Heydemann J, Gillespie R, Mancer K. Soft tissue recurrence of chondromyxoid fibroma. J Pediatr Orthop 5:725–727, 1985
35. Kreicbergs A, Lonnquist PA, Willems J. Chondromyxoid fibroma. A review of the literature and a report on our own experience. Acta Pathol Microbiol Immunol Scand[A] 93:189–197, 1985
36. van Horn JR, Lemmens JAM. Chondromyxoid fibroma of the foot. A report of a missed diagnosis. Acta Orthop Scand 57:375–377, 1986
37. Danielsen B, Ritzau M, Wenzel A. Recurrence of chondromyxoid fibroma: A case report. Dento-maxillo-facial Radiol 20:65–67, 1991
38. Campos Filho R, de Camargo OP, Croci AT, de Oliveira NR. Chondromyxoid fibroma: A study based on 18 cases. Rev Paul Med 110:59–62, 1992
39. Lingen MW, Solt DB, Polverini PJ. Unusual presentation of a chondromyxoid fibroma of the mandible. Report of a case and review of the literature. Oral Surg Oral Med Oral Pathol 73:615–621, 1993
40. Troncoso A, Ro JY, Edeiken J, Carrasco CH, Murray JA, Ayala AG. Case report 798. Skeletal Radiol 22:445–448, 1993
41. O’Connor PJ, Gibbon WW, Hardy G, Butt WP. Chondromyxoid fibroma of the foot. Skeletal Radiol 25:143–148, 1996
42. Keel SB, Bhan AK, Liebsch NJ, Rosenberg AE. Chondromyxoid fibroma of the skull base: A tumor which may be confused with chordoma and chondrosarcoma. A report of three cases and review of the literature. Am J Surg Pathol 21:577–582, 1997
43. Patino-Cordoba JL, Turner J, McCarthy SW, Fagan P. Chondromyxoid fibroma of the skull base. Head Neck Surg 118:415–418, 1998
44. Shek TWH, Peh WCG, Leung G. Chondromyxoid fibroma of skull base: A tumor prone to local recurrence. J Laryngol Otol 113:380–385, 1999
45. Ralph LL. Chondromyxoid fibroma of bone. J Bone Joint Surg Br 44:7–24, 1962