SPLITTING SUBMANIFOLDS OF FAMILIES OF FAKE ELLIPTIC CURVES

PRISKA JAHNKE AND IVO RADLOFF

INTRODUCTION

Let M_m be a compact complex manifold and N_n a compact complex submanifold, $0 < n < m$. We say N splits in M if the holomorphic tangent bundle sequence

$$(0.1) \quad 0 \to T_N \to T_M|_N \to N_{N/M} \to 0$$

splits holomorphically. Recall that this is the case if and only if $id_{N_{N/M}}$ is mapped to zero under $H^0(N, N_{N/M}^* \otimes N_{N/M}) \to H^1(N, N_{N/M}^* \otimes T_N)$.

The splitting of (0.1) is not particularly geometric in certain cases ([J05]). The situation is different if one imposes strong conditions on M. The following result is due to Mok:

0.2. Proposition. ([Mok05]) Let M be compact Kähler–Einstein with constant holomorphic sectional curvature. Then a submanifold N splits in M if and only if N is totally geodesic.

The manifolds M in question here are $M = \mathbb{P}_m(\mathbb{C})$, finite étale quotients of complex tori and ball quotients, i.e., manifolds whose universal covering space \tilde{M} is $\mathbb{B}_m(\mathbb{C}) = \{z \in \mathbb{C}^m | |z| < 1\}$, the non–compact dual of $\mathbb{P}_m(\mathbb{C})$ in the sense of hermitian symmetric spaces. The compact submanifolds N that split in M can be described quite explicitly: in the case of $M = \mathbb{P}_m(\mathbb{C})$, N splits if and only if N is a linear subspace ([VdV58]); if M is a torus, then N splits if and only if N is a subtorus ([J05]). For the case M a ball quotient see [Yeung04].

The three types of M share the common property that the universal covering space \tilde{M} can be embedded into $\mathbb{P}_m(\mathbb{C})$ such that $\pi_1(M)$ acts as a subgroup of $PGL_m(\mathbb{C})$. Manifolds with this property carry a holomorphic projective structure in the sense of Gunning ([Gu78]). This property is important in Mok’s proof.

In the case M a compact Riemann surface or M a projective complex surface ([KO80]), the existence of such a structure already implies M
Kähler Einstein and of constant holomorphic sectional curvature. In three dimensions this is no longer true ([JR04]):

0.3. Theorem. A projective threefold M carries a holomorphic projective connection if and only if up to finite étale coverings

1.) $M \cong \mathbb{P}_m(\mathbb{C})$ or
2.) M is an abelian threefold or
3.) M is a modular family of fake elliptic curves or
4.) M is ball quotient.

In any case the connection is flat.

The above case 3.) is not covered by Mok’s result. A modular family of fake elliptic curves for our purposes is a projective threefold M that admits a holomorphic submersion

$$\pi : M \rightarrow C$$

onto a compact Shimura curve C such that every fiber is a smooth abelian surface A and such that for the general fiber $\text{End}_\mathbb{Q}(A)$ is an indefinite division quaternion algebra over \mathbb{Q}. We recall the construction in detail in §3. What we prove here is the following result which completes the classification in the projective case up to dimension three:

0.4. Proposition. Let $\pi : M \rightarrow C$ be a modular family of fake elliptic curves. A compact submanifold N of M of dimension $0 < \dim N < 3$ splits in M if and only if

1.) N is an étale multisection of π or
2.) N is an elliptic curve in a fiber of π.

Notations. Manifolds are complex manifolds, Ω^1_X denotes the bundle of holomorphic 1–forms, T_X the holomorphic tangent bundle. We do not distinguish between Cartier divisors and line bundles, e.g., $K_X = \omega_X = \det \Omega_X^1$.

For a vector bundle E, $\mathbb{P}(E)$ denotes the “hyperplane” bundle (defined by projectivizations of the transition functions of E^*).

1. Holomorphic normal projective connections

There are definitions of projective structures and connections in the language of principal bundles. We essentially follow Kobayashi and Ochiai ([KO80]).

We first recall the notion of the Atiyah class ([A57]) associated to a holomorphic vector bundle E on the complex manifold M: It is the
splitting class \(b(E) \in H^1(M, \text{Hom}(E, E) \otimes \Omega^1_M) \) of the first jet sequence
\[
(1.1) \quad 0 \rightarrow \Omega^1_M \otimes E \rightarrow J_1(E) \rightarrow E \rightarrow 0,
\]
i.e., the image of \(id_E \) under the first connecting homomorphism of (1.1) tensorized with \(E^* \).

If \(\Theta^{1,1} \) denotes the \((1, 1)\)-part of the curvature tensor of some differentiable connection on \(E \), then, under the Dolbeault isomorphism, \(b(E) \) corresponds to \([\Theta^{1,1}] \in H^{1,1}(M, \text{Hom}(E, E)) \). In particular, for \(M \) Kähler
\[
(1.2) \quad \text{trace}(b(E)) = -2i\pi c_1(E) \in H^1(M, \Omega^1_M).
\]
Because of (1.2) we consider \(a(E) := -\frac{1}{2\pi} b(E) \), the normalized Atiyah class. For properties and functorial behaviour of these classes see [A57].

1.1. Definitions. Let \(M \) be some \(m \)-dimensional compact complex Kähler manifold. Then \(M \) carries a holomorphic normal projective connection if the normalised Atiyah class of the holomorphic cotangent bundle has the form
\[
(1.3) \quad a(\Omega^1_M) = \frac{c_1(K_M)}{m+1} \otimes id_{\Omega^1_M} + id_{\Omega^1_M} \otimes \frac{c_1(K_M)}{m+1} \in H^1(M, \Omega^1_M \otimes T_M \otimes \Omega^1_M)
\]
where we use the identities \(\Omega^1_M \otimes T_M \otimes \Omega^1_M \simeq \text{End}(\Omega^1_M) \otimes \Omega^1_M \simeq \Omega^1_M \otimes \text{End}(\Omega^1_M) \).

A Čech-solution to (1.3) can be interpreted as a connection on \(T_M \) satisfying certain conditions similar to the Schwarzian derivative ([MM96]). We will not make use of this fact.

\(M \) is said to carry a projective structure if there exists a holomorphic projective atlas, i.e., an atlas whose charts can be embedded into \(\mathbb{P}_m(\mathbb{C}) \) such that the coordinate change is given by restrictions of projective automorphisms. A manifold with a projective structure carries a (flat) projective connection, meaning that zero is a cocycle solution to (1.3).

1.4. Example. Compact complex manifolds that admit a flat holomorphic projective connection:
1. \(M = \mathbb{P}_m(\mathbb{C}) \).
2. Any manifold \(M \) whose universal covering space \(\tilde{M} \) can be embedded into \(\mathbb{P}_m(\mathbb{C}) \) such that \(\pi_1(M) \) acts by restrictions of projective transformations admits a projective structure. In particular
 2.1. Ball quotients \(\mathbb{B}_m(\mathbb{C})/\Gamma \), where \(\Gamma \subset SU(1, m) \) is discrete and torsion free and
2.2.) tori \mathbb{C}^m/Λ where $\Lambda \simeq \mathbb{Z}^{2m}$, carry a projective structure ([KO80]). Note that 1) and 2) covers all compact Kähler Einstein manifolds with constant holomorphic sectional curvature.

3.) If M carries a holomorphic projective connection and $M' \to M$ is finite étale, then M' carries a holomorphic projective connection.

2. Holomorphic projective connections and splitting submanifolds

A general remark on coverings: Let N (resp. N') be a compact submanifold of some compact manifold M (resp. M'). Let $\nu : M' \to M$ be finite étale such that $\nu(N') = N$. Then N splits in M if and only if N' splits in M'.

Indeed, the tangent bundle sequence (0.1) of N in M is the pull back of the tangent bundle sequence of N in M. By the trace map, $\nu^* \Omega_M$ is a direct summand of $\nu^* \Omega_{M'}$. We have an inclusion in cohomology:

$$H^1(N, N_{N/M} \otimes T^*_N) \hookrightarrow H^1(N', N'_{N'/M'} \otimes T^*_{N'})$$

coming from Leray spectral sequence. The splitting class of (0.1) of N in M is mapped to the splitting class of (0.1) of N' in M'. In this sense, we can always replace a pair (M, N) by (M', N').

We give a necessary but not sufficient condition for a submanifold to be split (see example 2.9):

2.5. Proposition. Let M_m be compact Kähler carrying a holomorphic projective connection. Let $\iota : N_n \hookrightarrow M_m$ be a compact submanifold that splits in M_m. Then:

1.) N carries a holomorphic projective connection.
2.) $c_1(\iota^* K_M)_{m+1} = c_1(K_N)_{n+1}$ in $H^1(N, \Omega^1_N)$.
3.) $a(N^*_{N/M}) = \text{id}_{N_{N/M}} \otimes c_1(K_N)_{n+1} \in H^1(M, N^*_{N/M} \otimes N_{N/M} \otimes \Omega^1_N)$.

Proof. Sequence (1.1) for a direct sum $E_1 \oplus E_2$ of vector bundles is the direct sum of the sequences associated to E_1 and E_2, respectively ([A57], proposition 8). In particular $a(E_1 \oplus E_2)$ is the direct sum of $a(E_1)$ and $a(E_2)$ in a natural way.

By assumption, $\iota^* \Omega^1_M \simeq \Omega^1_N \oplus N^*_{N/M}$. Then we can compute $a(\Omega^1_N)$ and $a(N_{N/M})$ from $a(\iota^* \Omega^1_M)$ by projecting the class to the corresponding summands.

The class $a(\Omega^1_M)$ is given by (1.3) and hence

$$a(\iota^* \Omega^1_M) = \frac{i^* c_1(K_M)_{m+1}}{m+1} \otimes dt + i^* \iota^* \Omega^1_N \otimes \frac{c_1(\iota^* (K_M))_{m+1}}{m+1}$$
in $H^1(N, \iota^*\Omega^1_M \otimes \iota^*T_M \otimes \Omega^1_N)$, where $dt : \iota^*\Omega^1_M \to \Omega^1_N$. Note that we distinguish between pull back of cohomology classes and pull back of forms. Now denote the splitting map by $s : \iota^*T_M \to T_N$.

The class $a(\Omega^1_N)$ is the image of $a(\iota^*\Omega^1_M)$ under the map induced by $dt \otimes id$:

$$H^1(N, \iota^*\Omega^1_M \otimes \iota^*T_M \otimes \Omega^1_N) \to H^1(\Omega^1_M \otimes T_N \otimes \Omega^1_N).$$

Applying dt to the first factor maps $a(\iota^*\Omega^1_M)$ to the following class in $H^1(M, \Omega^1_N \otimes \iota^*T_M \otimes \Omega^1_N)$:

$$\frac{c_1(\iota^*K_M)}{m+1} \otimes dt + dt \otimes \frac{c_1(\iota^*K_M)}{m+1}.$$

The map s induces a map $H^0(N, \iota^*T_M \otimes \Omega^1_N) \to H^0(N, T_N \otimes \Omega^1_N)$, mapping dt to $id_{\Omega^1_N}$ by definition. We therefore obtain

$$a(\Omega^1_N) = \frac{c_1(\iota^*K_M)}{m+1} \otimes id_{\Omega^1_N} + id_{\Omega^1_N} \otimes \frac{c_1(\iota^*K_M)}{m+1}.$$

The trace obtained by contracting the first two factors $\Omega^1_N \otimes T_N$ yields $c_1(K_N) \in H^1(N, \Omega^1_N)$. Then [2.7] shows

$$trace(a(\Omega^1_N)) = \frac{c_1(\iota^*K_M)}{m+1} + n \frac{c_1(\iota^*K_M)}{m+1} = \frac{n+1}{m+1} c_1(\iota^*K_M)$$

and we obtain 2.) By (2.7) N carries a holomorphic projective connection. Formula 3.) is obtained in the same way using

$$H^1(N, \iota^*\Omega^1_M \otimes \iota^*T_M \otimes \Omega^1_N) \to H^1(\Omega^1_M \otimes T_N \otimes \Omega^1_N).$$

We only remark that $\frac{\iota^*c_1(K_M)}{m+1} \otimes dt$ is mapped to zero. \qed

2.8. Example. The Kähler–Einstein case:

1.) By a result of Van de Ven ([VdV58]), a compact complex submanifold N_n of $\mathbb{P}_m(\mathbb{C})$ splits if and only if N is a linear subspace. Here we have $O_{\mathbb{P}_m}(1) = O_{\mathbb{P}_m}(1)|_N$ and $N_{N/M} \cong O_{\mathbb{P}_m}(1)^{\oplus m-n}$.

In the case of tori \mathbb{C}^m/Γ and ball quotients $\mathbb{B}_m(\mathbb{C})/\Gamma$ a splitting submanifold may or may not exist depending on the choice of Γ:

2.1.) By a result of one of the authors ([J05]), a compact complex submanifold N_n of a torus $M = \mathbb{C}^m/\Lambda$ splits if and only if N is a subtorus. Here $O_N = O_T|_N$ and the normal bundle is trivial.

2.2.) See [Yeung04] for an example in the case $\mathbb{B}_2(\mathbb{C})/\Gamma$.

2.9. Example. The three conditions in proposition 2.5 are not sufficient for a submanifold to split: Let Γ be some torsion free congruence...
subgroup of $Sl_2(\mathbb{Z})$. Then Γ acts without fixed points on \mathcal{H}_1 as a group of Moebius transformations. The set of matrices

$$\gamma_{m,n} = \begin{pmatrix} 1 & m & n \\
0 & a & b \\
0 & c & d \end{pmatrix}, \quad \gamma = \begin{pmatrix} a & b \\
& & & c & d \end{pmatrix} \in \Gamma,$$

is a subgroup Γ_Λ of $Sl_3(\mathbb{C})$ that acts projectively on $\mathbb{C} \times \mathcal{H}_1$, i.e., $\gamma_{m,n}(z,\tau) = \left(\frac{z+m\tau+n}{c\tau+d}, \frac{a\tau+b}{c\tau+d}\right)$. The action is free, $U = \mathbb{C} \times \mathcal{H}_1/\Gamma_\Lambda$ is a smooth (non–compact) manifold. The canonical map

$$\pi : U \longrightarrow \mathcal{H}_1/\Gamma$$

is proper holomorphic with elliptic fibers $\pi^{-1}(\tau) \simeq \mathbb{C}/(\mathbb{Z}\tau + \mathbb{Z}) =: E_\tau$. The map has sections. For the standard groups $\Gamma = \Gamma_0(n), \Gamma_1(n)$, we obtain the usual `universal’ families of elliptic curves.

By construction, U has a projective structure. Any fiber E_τ satisfies the three conditions of proposition 2.5. Nevertheless E_τ does not split in U (This is well known or can be proved along the arguments of lemma 5.2).

3. Modular families of fake elliptic curves

In this section we recall the construction and basic properties of families of fake elliptic curves following Shimura ([Sh59]). The construction depends on the choice of a PEL datum.

3.1. Quaternions

Let B be an indefinite division quaternion algebra over \mathbb{Q}. Then $B \otimes_\mathbb{Q} \mathbb{R} \simeq M_{2 \times 2}(\mathbb{R})$. Fix once and for all an embedding

$$B \hookrightarrow M_{2 \times 2}(\mathbb{R})$$

such that the reduced norm and trace are given by usual determinant and trace, respectively. From now on think of B as a matrix group generated over \mathbb{Q} by

$$x = \begin{pmatrix} \sqrt{a} & 0 \\
0 & -\sqrt{a} \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 0 & b \\
1 & 0 \end{pmatrix}$$

where $a, b \in \mathbb{Q}$, $a > 0, b < 0$. We have $x^2 = aid = a, y^2 = b, xy = -yx$ and $B = \mathbb{Q} + \mathbb{Q}x + \mathbb{Q}y + \mathbb{Q}xy$. The usual quaternion (anti-) involution $'$ on B given by $(k + lx + my + nx)y) = k - lx - my - nx$. It extends to an involution on $M_{2 \times 2}(\mathbb{R})$ which we also denote by $'$.
3.2. The abelian surface A_τ. Any $\tau \in \mathcal{H}_1$, the upper half plane of \mathbb{C}, endows $\mathbb{R}^4 \cong M_{2 \times 2}(\mathbb{R})$ with a complex structure

\begin{equation}
M_{2 \times 2}(\mathbb{R}) \to \mathbb{C}^2, \quad m \mapsto m_\tau := m \begin{pmatrix} \tau \\ 1 \end{pmatrix}.
\end{equation}

For the construction we may take a maximal order $\mathcal{O}_B \subset B$. Define

\begin{equation}
\mathcal{O}_{B,\tau} := \mathcal{O}_B \begin{pmatrix} \tau \\ 1 \end{pmatrix}, \quad A_\tau := \mathbb{C}^2/\mathcal{O}_{B,\tau}.
\end{equation}

Then A_τ is an abelian surface and there is a natural inclusion map $\mathcal{O}_B \hookrightarrow \text{End}(A_\tau)$

given by multiplication from the left. The induced embedding $B \hookrightarrow \text{End}_\mathbb{Q}(A_\tau)$ is an isomorphism iff A_τ is simple (see for example the classification of possible $\text{End}_\mathbb{Q}$’s in [BiLa04]).

Projectivity can be seen as follows: Choose $\rho \in B$ such that $\rho = -\rho'$ and $\rho^2 < 0$. Then

$$E(m_1, m_2) := \text{trace}(\rho m_1 m_2')$$

is a symplectic, non degenerate form on $M_{2 \times 2}(\mathbb{R})$. Some rational multiple of E takes integral values on \mathcal{O}_B and satisfies the Riemann conditions for any τ, defining a polarization H_τ on A_τ.

3.3. Isomorphic A_τ's. Let $\mathcal{O}_{B, +}^* \subset \mathcal{O}_B$ be the group of units of positive norm. Then $\mathcal{O}_{B, +}^* \subset SL_2(\mathbb{R})$. The group therefore acts on \mathcal{H}_1 as a group of Moebius transformations.

If $\tau' = \gamma(\tau)$ for some $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_{B, +}^*$, then

$$\mathcal{O}_{B, \tau'} = \mathcal{O}_B \begin{pmatrix} \gamma(\tau) \\ 1 \end{pmatrix} = \frac{1}{cT + d} \mathcal{O}_B \gamma \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \frac{1}{cT + d} \mathcal{O}_B \begin{pmatrix} \tau \\ 1 \end{pmatrix}$$

Multiplication by $\frac{1}{cT + d}$ therefore induces an isomorphism $A_\tau \cong A_{\tau'}$. On the underlying real vector space $M_{2 \times 2}(\mathbb{R})$, this map is given by multiplication by γ from the right. The form E is invariant under this action, i.e. $E(m_1 \gamma, m_2 \gamma) = E(m_1, m_2)$ for any $m_1, m_2 \in M_{2 \times 2}(\mathbb{R})$. The isomorphism therefore is an isomorphism of polarized abelian varieties $(A_\tau, H_\tau) \cong (A_{\tau'}, H_{\tau'})$.

3.4. The modular family $\pi : M \to C$. Let $\Gamma \subset \mathcal{O}_{B, +}^*$ be of finite index and torsion free. The set of matrices

\begin{equation}
\gamma_\lambda := \begin{pmatrix} \text{id}_{2 \times 2} & \lambda \\ 0_{2 \times 2} & \gamma \end{pmatrix} \in \text{SL}_4(\mathbb{R}) \quad \lambda \in \mathcal{O}_B, \gamma \in \Gamma
\end{equation}

defines a group Γ_{O_B}. Think of $\mathbb{C}^2 \times \mathcal{H}_1$ as embedded into the standard chart $\{X_3 = 1\}$ of \mathbb{P}_3. Γ_{O_B} acts projectively on $\mathbb{C}^2 \times \mathcal{H}_1$:

$$\gamma\lambda(z, \tau) = \left(\frac{z + \lambda \tau}{c \tau + d}, \frac{a \tau + b}{c \tau + d} \right), \quad \lambda \in O_B, \gamma = \left(\begin{array}{cc} a & b \\
 c & d \end{array} \right) \in \Gamma$$

The action is free and properly discontinuously; the quotient M is a smooth threefold carrying a holomorphic projective structure.

The homomorphism $\Gamma_{O_B} \rightarrow \Gamma, \gamma \rightarrow \gamma$ gives a holomorphic map $\pi : M \rightarrow C = \Gamma/\mathcal{H}_1$. The fiber over $[\tau]$ is isomorphic to A_τ. Both M and C are compact and the H_τ glue to a π–ample H_π on M. The map $\mathcal{H}_1 \rightarrow \mathbb{C}^2 \times \mathcal{H}_1, \tau \mapsto (\tau, 0)$ induces a section $C \rightarrow M$ of π. In other words, M is an abelian scheme.

There is an inclusion $O_B \hookrightarrow End(M)$, i.e., any $\lambda \in O_B$ induces a C–endomorphism of M.

We call $\pi : M \rightarrow C$ a modular family of fake elliptic curves. For our purposes, M depends on a choice of $B, B \hookrightarrow M_{2 \times 2}(\mathbb{R}), O_B$ and Γ as above.

3.5. Factors of automorphy. The group Γ is torsion free. Then $a(\tau, \gamma) = (c \tau + d) \in H^1(\Gamma, O_{\mathcal{H}_1}^*)$ is a well defined factor of automorphy defining a theta characteristic on C which we denote by $\frac{K_C}{2}$ for simplicity.

The holomorphic tangent bundle T_M is defined by the following factor in $H^1(\Gamma_{O_B}, Gl_3(O_{\mathbb{C}^2 \times \mathcal{H}_1}))$:

$$a(\gamma, (z, \tau)) := \frac{1}{c \tau + d} \begin{pmatrix} id_{2 \times 2} & \frac{i \lambda - c(z + \lambda \tau)}{c \tau + d} \\ 0_{1 \times 2} & \frac{i \lambda - c(z + \lambda \tau)}{c \tau + d} \end{pmatrix},$$

where we introduce the following notation:

$1m$ denotes the first column of $m \in M_{2 \times 2}(\mathbb{R})$.

The block form of a corresponds to the exact sequence

$$0 \rightarrow T_{M/C} \simeq \pi^* \left(\frac{K_C}{2} \oplus \frac{-K_C}{2} \right) \rightarrow T_M \rightarrow \pi^* T_C \rightarrow 0.$$

Taking determinants we find in particular

$$K_M = 2\pi^* K_C.$$
4. Splitting submanifolds

From Proposition 2.5 we get the following possibilities:

4.1. Lemma. Let $\pi : M \rightarrow C$ be a modular family of fake elliptic curves as in §3. Let N be a compact submanifold that splits in M. Then either

1.) N is a fiber of π or
2.) N is a smooth elliptic curve in a fiber of π or
3.) N is an étale multisection of π.

In Lemma 5.2 below we show that, as in the case of modular families of elliptic curves, a fiber in fact never splits.

Proof. For the proof we may assume $g_C > 1$. We first show that N cannot be a surface:

1. Case. Let N be a complex surface that splits in M. By proposition 2.5 N carries a holomorphic projective connection. By [KOS80], $N \cong \mathbb{P}_2(\mathbb{C})$ or N is a finite étale quotient of an abelian surface or N is a ball quotient. As M does not contain a rational curve, $N \neq \mathbb{P}_2(\mathbb{C})$.

If N is not a fiber of π, then $\pi : N \rightarrow C$ is surjective. By proposition 2.5, $K_N \equiv \frac{3}{4} K_M|_N$. Since K_M is trivial on every fiber of π by (3.5), K_N is (numerically) trivial on every fiber of $\pi|_N$. The adjunction formula shows that π_N defines an elliptic fibration on N.

A ball quotient is hyperbolic and cannot contain an elliptic curve (any holomorphic map $\mathbb{C} \rightarrow \mathbb{B}_2(\mathbb{C})$ is constant). A torus does not have a surjective map to a curve of genus > 1 for the same reason (any holomorphic map $\mathbb{C}^2 \rightarrow \mathbb{B}_1(\mathbb{C})$ is constant). Therefore, N must be a fiber of π.

2. Case. Let N be a compact Riemann surface that splits in M. Then $g_N > 0$, as M does not contain rational curves. By Proposition 2.5, $K_N \equiv \frac{1}{2} K_M|_N$.

If N is contained in a fiber of π, then $\deg K_N = \frac{1}{2} K_M.N = 0$ and N is an elliptic curve. If $\pi : N \rightarrow C$ is surjective of degree d, then

$$K_N \sim \pi_N^* K_C + R$$

by Hurwitz formula, where R is effective and $R = 0$ iff π_N is étale. By (3.5), $K_M \equiv 2 \pi^* K_C$. Then Hurwitz' formula reads

$$K_N \equiv \frac{1}{2} K_M|_N + R.$$

Combining this with $K_N \equiv \frac{1}{2} K_M|_N$ from above we find $R = 0$ and π_N étale.
5. Fibers are non–split

Fix some \(\tau \in \mathfrak{H}_1 \). Then \(A_\tau \) from \((3.2)\) can be viewed as the fiber of \(\pi \) over \(\{ \tau \} \in \mathfrak{H}_1/\Gamma \). Denote by \(\iota : A_\tau \rightarrow M \) the inclusion map. Then we have

\[
0 \rightarrow N^*_{A_\tau/M} \simeq \mathcal{O}_{A_\tau} \rightarrow \iota^* \Omega^1_M \rightarrow \Omega^1_{A_\tau} \simeq \mathcal{O}^{\oplus 2}_{A_\tau} \rightarrow 0.
\]

The following lemma seems to be well-known within the theory of Kuga fiber spaces. Since we could not find a reference, we give a proof.

5.2. Lemma. The induced map \(H^0(A_\tau, N^*_{A_\tau/M}) \hookrightarrow H^0(A_\tau, \iota^* \Omega^1_M) \) is an isomorphism. In particular, \(A_\tau \) is non–split in \(M \).

Before the proof we first illustrate the general method. We have (see section 3 for notations)

\[
\iota_* : \pi_1(A_\tau) \simeq \mathcal{O}_B \rightarrow \pi_1(M) \simeq \Gamma_{\mathcal{O}_B}, \quad \iota_*(\lambda) = \text{id}_\lambda.
\]

The bundle \(\iota^* \Omega^1_M \) is given by the pull back to \(A_\tau \) of the factor of automorphy dual to \((3.4)\) (i.e., the pull back of \((a(\gamma_\lambda, (z, \tau))^{-1})^t \)). We get the following representation of the fundamental group

\[
\rho_A : \pi_1(A_\tau) \simeq \mathcal{O}_B \rightarrow \text{GL}_3(\mathbb{C}), \quad \lambda \mapsto \begin{pmatrix}
 id_{2\times 2} & 0_{2\times 1} \\
 -1 & 1
\end{pmatrix}.
\]

The bundle \(\iota^* \Omega^1_M \) is a flat bundle and \((5.1)\) is a sequence of flat bundles. In terms of representations, \(\mathbb{C}^3 \) as a \(\pi_1(A_\tau) \) module is the extension of the trivial one dimensional and the trivial two dimensional module.

5.4. Remark. Let \(0 \rightarrow K \rightarrow V \rightarrow Q \rightarrow 0 \) be a short exact sequence of complex vector spaces which are \(G \) modules, where \(G = \pi_1(G) \) for some complex manifold \(M \). We get a short exact sequence of flat vector bundles \(0 \rightarrow K \rightarrow V \rightarrow Q \rightarrow 0 \).

If \(V \simeq K \oplus Q \) as \(G \)–modules, then the sequence of flat vector bundles splits holomorphically. The convers, however, need not be true, the map

\[
H^1(G, Q^* \otimes K) \rightarrow H^1(M, Q^* \otimes K)
\]

of obstruction spaces might have a non trivial kernel.

Proof. (of Lemma 5.2) The space \(H^0(A_\tau, \iota^* \Omega^1_M) \) is isomorphic to the space of holomorphic \(f = (f_1, f_2, f_3) \in \mathcal{O}^3_{A_\tau} \) satisfying \((z = (z_1, z_2)^t)\)

\[
f(z + \lambda_\tau) = \rho_A(\lambda)f(z) \quad \text{for any } \lambda \in \mathcal{O}_B.
\]

The sections corresponding to \(H^0(A_\tau, N^*_{A_\tau/M}) \hookrightarrow H^0(A_\tau, \iota^* \Omega^1_M) \) are \(f = (0, 0, b)^t \), \(b \in \mathbb{C} \) constant. We have to show that these are all.

Let \(f \) satisfy \((5.3)\). Then \(f_i(z + \lambda_\tau) = f_i(z) \) for \(i = 1, 2 \) implies \(f_1, f_2 \) constant. The third equation reads \(f_3(z + \lambda_\tau) = -\lambda_{11} f_1 - \lambda_{21} f_2 + f_3(z) \),
\[\lambda \in \mathcal{O}_B \text{ arbitrary. Then } \frac{\partial f_3}{\partial z_i} \text{ are constant and hence } f_3(z_1, z_2) = a_1 z_1 + a_2 z_2 + b, a_1, a_2, b \in \mathbb{C}. \text{ After subtracting } (0, 0, b)^t \text{ we may assume } b = 0. \]

The third equation now reduces to
\[0 = \lambda_{11} f_1 + \lambda_{21} f_2 + (a_1, a_2) \lambda_{\tau} \text{ for any } \lambda \in \mathcal{O}_B. \]

The four generators \(\lambda_1, \lambda_2, \lambda_2, \lambda_4 \) of \(\mathcal{O}_B \) yield four linear equations in \((f_1, f_2, a_1, a_2) \). The defining matrix in \(M_{4 \times 4}(\mathbb{C}) \) is
\[
\begin{pmatrix}
\lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\
\lambda_{1, \tau} & \lambda_{2, \tau} & \lambda_{3, \tau} & \lambda_{4, \tau}
\end{pmatrix} =
\begin{pmatrix}
id_{2 \times 2} & 0 \\
\tau \cdot \id_{2 \times 2} & \id_{2 \times 2}
\end{pmatrix} \cdot
\begin{pmatrix}
\lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\
2 \lambda_1 & 2 \lambda_2 & 2 \lambda_3 & 2 \lambda_4
\end{pmatrix}.
\]

The determinant is nonzero since \(\lambda_1, \lambda_2, \lambda_2, \lambda_4 \) are \(\mathbb{R} \)-independent. The only solution therefore is \((f_1, f_2, a_1, a_2) = (0, 0, 0, 0) \).

6. Elliptic curves in fake elliptic curves

Let \(\pi : M \to C \) be a modular family of fake elliptic curves. We call matrices in the kernel of \(B^\times \to PGL_2(\mathbb{C}) \) projectively trivial. Under this map, any \(b \in B^\times \) acts on \(\mathbb{P}_1(\mathbb{C}) \). Identify
\[\mathcal{H}_1 = \{ [\tau : 1] \mid \tau \in \mathcal{H}_1 \}. \]

If some \(b \in B^\times \) fixes some \(\tau \in \mathcal{H}_1 \), then \(\det b > 0 \) and \(b \) fixes \(\mathcal{H}_1 \).

The next proposition shows the existence of elliptic curves in special fibers of \(\pi \):

6.1. Proposition. The abelian surface \(A_\tau \) from (3.2) is isogeneous to a product of elliptic curves if and only if \(\tau \) is a fixed point of some projectively non-trivial \(b \in B^\times \).

For a given elliptic curve \(E \) the following conditions are equivalent:

1. There exists a non constant holomorphic map \(f : E \to A_\tau \).
2. \(A_\tau \) is isogeneous to \(E \times E \).
3. \(\text{End}_\mathbb{Q}(A_\tau) \simeq M_{2 \times 2}(\text{End}_\mathbb{Q}(E)) \).

In any case \(E \) and \(A_\tau \) are CM.

For an elliptic curve \(E \), \(\text{End}_\mathbb{Q}(E) \simeq \mathbb{Q} \) or \(\text{End}_\mathbb{Q}(E) \) is an imaginary quadratic extension of \(\mathbb{Q} \). A given elliptic curve \(E \) appears in a fiber of the modular family if and only if \(\text{End}_\mathbb{Q}(E) \) is a splitting field of \(B \).

Proof. \(A_\tau \) is isogeneous to a product of elliptic curves if and only if there exists a non constant homomorphism \(\varphi : E_{\tau'} \to A_\tau \) for some
\[\tau' \in \mathcal{H}_1, \text{ where } E_{\tau'} = \mathbb{C}/\Lambda_{\tau'} \text{ for } \Lambda_{\tau'} = \mathbb{Z}\tau' + \mathbb{Z}. \] Such a homomorphism exists if and only if we find \(0 \neq \lambda, \mu \in \mathcal{O}_B\) such that

\[
(6.2) \quad \tau'\lambda \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \mu \begin{pmatrix} \tau \\ 1 \end{pmatrix}.
\]

Indeed, a given \(\varphi\) may be interpreted as a \(\mathbb{C}\)-linear map \(\varphi : \mathbb{C} \rightarrow \mathbb{C}^2\) satisfying \(\varphi(\mathbb{Z}\tau' + \mathbb{Z}) \subset \mathcal{O}_{B,\tau}\) and then \(\lambda\) and \(\mu\) are induced by \(\varphi(1)\) and \(\varphi(\tau')\), respectively. Conversely, given \(\mu, \lambda\) as above, \(\varphi\) is defined by \(\mathbb{C} \rightarrow \mathbb{C}^2, z \mapsto z\lambda\). The map \(\varphi\) is non-constant if and only if \(\lambda \neq 0\).

The existence of a non constant \(\varphi\) then implies \(\tau\) is a fixed point of \(b := \lambda^{-1}\mu \in B^\times\). If conversely \(\tau\) is a fixed point of some projectively non trivial \(b \in B^\times\), we immediately get (6.2).

The equivalence of the four points is not difficult to prove. We skip details since it is not important for our purposes. We only recall that \(End_Q(A_{\tau})\) always contains \(B\)

6.3. Remark. Let \(\varphi : E_{\tau'} \rightarrow A_{\tau}\) be as above induced by \(0 \neq \lambda, \mu \in \mathcal{O}_B\) such that (6.2) holds. Modulo isogenies we may assume \(\lambda = id_{2 \times 2}\).

Indeed, choose \(n \in \mathbb{N}\) such that \(\mu' := n\lambda^{-1}\mu \in \mathcal{O}_B\), consider \(\tilde{\varphi} : E_{n\tau'} \rightarrow A_{\tau}\) induced by \(z \mapsto (\tau, 1)^t z\). Then \(\lambda \circ \tilde{\varphi} = \varphi \circ p\) where \(p : E_{n\tau'} \rightarrow E_{\tau'}\) is the canonical map and \(\lambda \in End(A_{\tau})\).

Note that \(\lambda\) also induces an isogeny of \(M\).

7. Elliptic curves in fibers split

Let \(\iota : E \hookrightarrow A_{\tau}\) be an elliptic curve in the fiber \(A_{\tau}\) of \(\pi\). Then we have

\[
(7.1) \quad 0 \rightarrow N^*_{E/M} \rightarrow \iota^*\Omega^1_M \rightarrow \Omega^1_E = \mathcal{O}_E \rightarrow 0
\]

Our aim is to prove that an elliptic curve in a fiber of \(\pi : M \rightarrow C\) splits in \(M\). Choose \(\tau' \in \mathcal{H}_1\) and

\[\varphi : E_{\tau'} \rightarrow A_{\tau} \]

such that \(E = \varphi(E_{\tau'})\). Then (7.1) splits holomorphically if and only if \(\varphi^*\) of (7.1) splits. By Remark 6.3 we may assume that \(\varphi\) as a map \(\mathbb{C} \rightarrow \mathbb{C}^2\) is given by \(z \mapsto (\tau, 1)^t z\), sending \(\tau'\) to

\[
(7.2) \quad \tau' \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \mu \tau
\]

for some \(0 \neq \mu \in \mathcal{O}_B\). The matrix \(\mu\) remains fixed for the rest of this section.
The idea is the same as in §4: we will view (7.1) as a sequence of flat bundles coming from representations of \(\pi_1(E_{\tau'}) \) and compute dimensions of spaces of global sections. We have \(\varphi_* : \pi_1(E_{\tau'}) = \mathbb{Z}\tau' + \mathbb{Z} \longrightarrow \pi_1(M) \simeq \Gamma_{\mathcal{O}_B}, \quad \varphi_*(m\tau' + n) = id_{M + n\text{id}_{2 \times 2}} \) in the notation (3.3). The flat bundle \(\varphi^*\Omega^1_M \) is given by the pull back of the factor of automorphy dual to (3.4). We get the representation

\[
\rho_E : \pi_1(E_{\tau'}) \longrightarrow \text{Gl}_3(\mathbb{C}), \quad \rho(m\tau' + n) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m\mu_{11} - n & -m\mu_{21} & 1 \end{pmatrix}
\]

as in (5.3). It turns \(\mathbb{C}^3 \) into a \(\pi_1(E_{\tau'}) \)-module. The bundle \(\Omega^1_{E_{\tau'}} \) is given by the trivial one dimensional module, and \(d\varphi \) is induced by the \(\pi_1(E_{\tau'}) \)-map

\[
\mathbb{C}^3 \longrightarrow \mathbb{C}, \quad (z_1, z_2, z_3) \longmapsto (z_1\tau' + z_2).
\]

The kernel is the \(\pi_1(E_{\tau'}) \)-module corresponding to \(\varphi^*N^*_{E/M} \). Note that there is an inclusion map

\[
(7.3) \quad \varphi^*N^*_{A_{\tau}/M} \simeq \mathcal{O}_{E_{\tau'}} \hookrightarrow \varphi^*N^*_{E/M}
\]

into the subbundle \(\varphi^*N^*_{E/M} \) of \(\varphi^*\Omega^1_{M} \).

7.4. Proposition. Let \(\varphi : E_{\tau'} \rightarrow A_{\tau} \) be an elliptic curve in the fiber \(A_{\tau} \) of \(\pi \). Then \(\text{dim}_\mathbb{C} H^0(E_{\tau'}, \varphi^*\Omega^1_M) = 2 \) and the global differential map \(D\varphi : H^0(E_{\tau'}, \varphi^*\Omega^1_M) \longrightarrow H^0(E_{\tau'}, \Omega^1_{E_{\tau'}}) \) is surjective. In particular, elliptic curves in fibers of \(\pi \) split in \(M \).

Proof. The space \(H^0(E_{\tau'}, \varphi^*\Omega^1_M) \) is isomorphic to the space of holomorphic \(f = (f_1, f_2, f_3) \in \mathcal{O}^3_{E_{\tau'}} \) satisfying

\[
(7.5) \quad f(z + m\tau' + n) = \rho_E(m\tau' + n)f(z) \quad \text{for any } m, n \in \mathbb{Z}.
\]

The sections coming from \(\varphi^*N^*_{A_{\tau}/M} \simeq \mathcal{O}_{E_{\tau'}} \hookrightarrow \varphi^*N^*_{E/M} \) correspond to \(f = (0, 0, b)^t, b \in \mathbb{C} \) constant. We have to show that there is an additional dimension.

Let \(f = (f_1, f_2, f_3) \) satisfy (7.5). As in the proof of lemma 5.2 \(f_1, f_2 \) are constant while \(f_3(z) = az + b \) for some \(a, b \in \mathbb{C} \). We may assume \(b = 0 \). Then (7.5) reduces to

\[
amr' + an = -(m\mu_{11} + n)f_1 - m\mu_{21}f_2 \quad \text{for any } m, n \in \mathbb{Z}.
\]

After eliminating \(a \) from the equations obtained for \((m, n) = (1, 0) \) and \((0, 1) \) we get

\[
(7.6) \quad \tau'f_1 = \mu_{11}f_1 + \mu_{21}f_2.
\]
Conversely, if f_1, f_2 satisfies (7.6), then $f = (f_1, f_2, -f_1z)$ is a solution to (7.5). By (7.2), τ' is an eigenvalue of μ and therefore also of μ^t. A nonzero vector (f_1, f_2) satisfies (7.6) if and only if $(f_1, f_2)^t$ is an eigenvector of μ to the eigenvalue τ'. Therefore $\text{h}^0(E_{\tau'}, \varphi^*\Omega^1_M) = 2$.

The eigenspace of μ^t to τ' is
\[
\left\langle \left(\frac{1}{\bar{\tau}} \right) \right\rangle_C.
\]
Since $d\varphi(1, -\bar{\tau}, -z) = \tau - \bar{\tau} = 23m\tau \neq 0$, $D\varphi$ is surjective. □

Proof of Proposition 0.4. Lemma 4.1 and 5.2 show that a compact submanifold N that splits in M is an étale multisection of π or an elliptic curve in a fiber of π.

Étale multisections \tilde{C} split because of
\[
0 \to \pi^*K_C \to \Omega^1_M \to \Omega^1_{M/C} \to 0.
\]
The restriction to \tilde{C} shows $d\pi|_{\tilde{C}}$ splits $\Omega^1_M|_{\tilde{C}} \to K_{\tilde{C}}$. Elliptic curves in fibers split in M by Proposition 7.4. □

References

[A57] M.F. Atiyah: Complex analytic connections in fibre bundles. AMS Transactions 85 (1957), 181-207

[BiLa04] Ch. Birkenhake, H. Lange: *Complex abelian varieties*. Springer 2004

[Gu78] R. Gunning: Uniformizations of Complex Manifolds. Math. Notes 22 Princeton Univ. Press (1978)

[J05] P. Jahnke: Submanifolds with splitting tangent sequence. Math. Z. 251 (2005), 491-507

[JR04] P. Jahnke, I. Radloff: Threefolds with holomorphic normal projective connections. Math. Ann. 329 (2004), 379-400

[KO80] S. Kobayashi, T. Ochiai: Holomorphic projective structures on compact complex surfaces I, II. Math. Ann. 249 (1980), 75-94; 255 (1981), 519-521

[Mok05] N. Mok: On holomorphic immersions into Kähler manifolds of Constant Holomorphic Sectional Curvature. Sci. China, Ser. A 48, Suppl. (2005), 123-145

[MM96] R. Molzon, K. Mortensen: The Schwarzian derivative for maps between manifolds with complex projective connections. Tr. AMS 348, (1996), 3015-3036

[Sh59] G. Shimura: On the theory of automorphic functions. Ann. of Math. 70 (1959), 101-144

[VdV58] A. Van de Ven: A property of algebraic varieties in complex projective spaces. Coll. de géom. diff. gl., Bruxelles, 1958

[VZ02] E. Viehweg, K. Zuo: A characterization of certain Shimura curves in the moduli stack of abelian varieties. Preprint math.AG/0207228

[Yeung04] S.-K. Yeung: Integrality and Arithmeticity of co-compact lattice corresponding to certain complex two–ball quotients of picard number one. Asian J. Math. 8, No.1 (2004), 107-130
