Research Article

Sevoflurane Suppresses the Growth, Metastasis, and Invasion of Endometrial Carcinoma Cells via miR-195-5p/JAK2 Axis

Guowei Fu,¹ Junlan Huang,² Zhouquan Wu,¹ and Lin Zhao³

¹The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
²Changzhou Wujin Hospital of Traditional Chinese Medicine, Changzhou 213161, China

Correspondence should be addressed to Lin Zhao; zhaolin1659@163.com

Received 10 November 2021; Revised 11 December 2021; Accepted 22 December 2021; Published 22 February 2022

Background. Highly invasive and destructive endometrioma is one of the most familiar primary malignant tumors among women. It has been studied that sevoflurane can influence the development of various malignancies. But whatever sevoflurane could influence endometrial tumors is unknown. Materials and Methods. Through CCK8 and transwell analysis, we investigated the influence of sevoflurane on the development of endometrial tumors in vitro. Then, we studied the function of miRNA-195-5p to promote sevoflurane to inhibit the development of endometrial tumors. Then, we predicted the target genes of miRNA-195-5p by online software and focused on JAK2. Through luciferase assay, we proved the direct binding and regulation of miRNA-195-5p to JAK2. Results. We showed that sevoflurane could inhibit the growth, metastasis, and invasion of endometrial tumors via miRNA-195-5p/JAK2 axis. Conclusions. Our research shows the function of sevoflurane in inhibiting the development of endometrial tumors via miRNA-195-5p/JAK2 axis. Our findings proved that sevoflurane is potentially beneficial for endometrial carcinoma patients with surgery and may be helpful for the choice of anesthetics in endometrial carcinoma operations.
2. Material and Methods

2.1. Cell Culture. Normal human endometrial epithelial cells, HEC1A, and Ishikawa were purchased from Lonza and cultured in DMEM medium (Lonza) containing 10% fetal bovine serum (Lonza).

2.2. Transfection. miR-195-5p inhibitor, NC inhibitor, miR-195-5p mimics, and miR-NC were obtained from Thermo Fisher Biotechnology. Transfection was performed using Lipofectamine 2000 (Thermo Fisher) according to the protocol of the manufacturer.

2.3. Treatment of Sevoflurane. Cells were cultured with sevoflurane at a concentration of 1%, 2%, or 4% for 4 h. Then, the cells were cultured at normal condition for 24 h and used for other experiments.

2.4. CCK-8 Proliferation. Cells were plated in 96-well plates with a concentration of 2000 cells per well. Then, the cells were performed with different treatments for 18 h at 37°C. Then, each well was added with 10μl CCK-8 reagent (Abcam) and cultured at 37°C for 1 h. A microplate reader (Thermo Fisher) was used for measurement, and the absorption values were used to calculate the cell viability.

2.5. Measurement of Cell Metastasis and Invasion. Transwell assay was used for determining the ability of cell metastasis and invasion.

For cell migration, invasion chambers which carry membrane with 8 μm pores (Corning) were used for the assay. The upper chambers were seeded with cells in serum-free medium (BD Biosciences). The lower chambers were added with complete medium containing 10% FBS. After incubation at 37°C for 24 h, the cells in the lower chambers were fixed, stained with crystal violet solution, and counted using a microscope.

For cell invasion, the upper chambers were coated with Matrigel (BD Biosciences, Bedford, MA) before adding the cells. The upper chambers were seeded with cells in serum-free medium (BD Biosciences). The lower chambers were added with complete medium containing 10% FBS. After incubation at 37°C for 24 h, the cells in the lower chambers were fixed, stained with crystal violet solution, and counted using a microscope.

2.6. RNA Isolation and qRT-PCR. We isolated the total RNA with Trizol (Invitrogen). cDNA library was constructed with an miRNA Reverse Transcription Kit (Qiagen). qPCR was performed on a CycleLighter (Roche), and the RNA levels on an miRNA Reverse Transcription Kit (Qiagen). qPCR was performed with Trizol (Invitrogen). cDNA library was constructed with Trizol (Invitrogen). cDNA library was constructed using Lipofectamine 2000 (Thermo Fisher) according to the protocol of the manufacturer.

2.7. Western Blot Analysis. Western blot was performed according to the previous work [17]. We got primary and secondary antibodies from Abcam. The bands were developed with an ECL kit (Thermo Fisher). The pictures were captured with ChemiDoc (Bio-Rad). The following primary antibodies were used: E-cadherin (ab1416), N-cadherin (ab18203), and GAPDH (ab8245).

2.8. Luciferase Reporter System. Dual-Glo Luciferase Assay System (Promega) was used. We introduced WT or mutant binding site sequences of JAK2 3'UTR (Figure 1(a)) into pmirGLO (Promega) was used for cotransfection of miR-195-5p mimics, and plasmids containing WT or mutant binding site were cotransfected into HEC1A or Ishikawa using Lipofectamine 2000 (Invitrogen). After culturing for 48 h, MicroLumatPlus LB986 V luminometer (Berthold) was used for the analysis of the luciferase activity of the cells.

2.9. Statistical Analysis. Data are illustrated with a form of mean ± S.E.M. Analysis of significant differences between groups was calculated by SPSS using Tukey's test or two-tailed Student's t-tests. P < 0.05 was considered statistically significant.

3. Results

3.1. Sevoflurane Inhibits the Development of EC. We first proved that sevoflurane had no effect on normal human endometrial epithelial cells (Sup Figure 1). To detect if sevoflurane could affect the development of EC, HEC1A and Ishikawa cells were treated with different sevoflurane concentrations (1%, 2%, and 4%) for 4 h. CCK-8 analysis showed that the cell growth could be significantly reduced by sevoflurane in a dose-dependent manner (Figures 2(a) and 2(b)). Furthermore, transwell assay was performed to detect the influence of sevoflurane on EC cell metastasis and invasion. We found that the metastasis and invasion of EC cells could be dramatically suppressed by sevoflurane with a dose-dependent manner (Figures 2(c) and 2(d)).

Combined the results above together, we investigated that the growth, metastasis, and invasion of EC cells could be vitally suppressed by sevoflurane in a dose-dependent manner. And according to the results, we chose 4% sevoflurane as the treatment concentration for the following study.

3.2. Sevoflurane Suppresses the Development of EC via miR-195-5p. It has been revealed that the development of EC cells could be suppressed by miR-195-5p [7]. Researchers of different groups have observed that miR-195-5p in EC tissues was downregulated using bulk RNA sequencing [8, 9, 11]. Therefore, we raised a hypothesis that sevoflurane may affect the growth, metastasis, and invasion of EC cells via miR-195-5p. Firstly, we confirmed that miR-195-5p expression in HEC1A and Ishikawa cells was reduced compared to normal human endometrial cells by qRT-PCR (Figure 3(a)). However, after treatment with 4% sevoflurane, miR-195-5p expression in HEC1A and Ishikawa cells was significantly increased compared to the control group (Figure 3(b)). Then, we knocked down miR-195-5p expression in HEC1A and Ishikawa cells and tested the relative features. We confirmed the knockdown efficiency of miR-195-5p inhibitors (Figure 3(c)). Furthermore, compared to the control group, significantly decreased ability of cell proliferation (Figure 3(d)), migration (Figure 3(e)), and
Figure 1: miR-195-5p directly binds to JAK2 3′ UTR. (a) Prediction of the binding sites of miR-195-5p and JAK2. (b, c) Luciferase reporter gene experiments were conducted in HEC1A and Ishikawa cells to verify the targeting relationship. (d, e) Detecting the expression level of JAK2 mRNA and protein after overexpression of miR-195-5p in HEC1A and Ishikawa cells. (f, g) Analysis of the mRNA and protein expression levels of JAK2 in HEC1A and Ishikawa cells after sevoflurane treatment using qRT-PCR. *P < 0.05, **P < 0.01, n = 3.
invasiveness (Figure 3(f)) was observed after 4% sevoflurane treatment. Knocking down miR-95-5p expression could promote the growth, metastasis, and invasion of EC cells treated with sevoflurane when compared to cells treated with sevoflurane only (Figures 3(d)–3(f)). Thus, the inhibition function of sevoflurane on EC cell growth, metastasis, and invasion could be diminished by the knockdown of miR-195-5p. Those results above demonstrated that sevoflurane may function as an EC suppressor through the upregulation of miR-195-5p.

3.3. Direct Binding of mir-195-5p and JAK2. In order to explore whether JAK2 plays a key role in EC cells, we obtained the potential miRNA (miR-195-5p) that interacting with JAK2 3’UTR through the online software starbase, and we mutate the binding site of JAK2 3’UTR to miR-195-5p (Figure 1(a)). Compared with miR-NC transfection, the luciferase activity of JAK2-3’UTR-WT in EC cells could be suppressed by miR-195-5p overexpression (Figures 1(b) and 1(c)). However, miR-195-5p could not suppress the luciferase activity of JAK2-3’UTR-WUT compared with miR-NC (Figures 1(b) and 1(c)). Those above proved that miR-195-5p could directly regulate JAK2 mRNA through binding to JAK2 3’UTR. Furthermore, we confirmed that miR-195-5p overexpression could downregulate JAK2 expression in both mRNA and protein level compared to

Figure 2: Sevoflurane inhibits endometrial tumor cell growth, metastasis, and invasion. (a, b) The CCK-8 analysis method was used to evaluate the proliferative ability of sevoflurane on HEC1A and Ishikawa cells. (c, d) The transwell test evaluated the influence of sevoflurane on the metastasis and invasion of HEC1A and Ishikawa cells. *P < 0.05, **P < 0.01, n = 3.
miR-NC (Figures 1(d) and 1(e)). Similarly, the expression of JAK2 in EC cells was significantly reduced in mRNA and protein levels with the treatment of sevoflurane (Figures 1(f) and 1(g)). These data indicated that miR-195-5p could reduce JAK2 expression by directly binding to the 3′ UTR of JAK2 mRNA. Moreover, sevoflurane could suppress JAK2 expression through upregulating the expression of miR-195-5p.

3.4. Overexpression of JAK2 Rescue the Effect of Sevoflurane in EC Cells. Then, we investigated the effect of JAK2 on the suppression ability of sevoflurane on EC development. We overexpressed JAK2 in EC cells and confirmed JAK2 expression using Western blot (Figure 4(a)). However, the suppression function of sevoflurane on the growth, metastasis, and invasion of EC cells was vitally diminished by the overexpression of JAK2 (Figures 4(b)–4(d)). These findings...
profoundly indicated that overexpression JAK2 diminishes the effect of sevoflurane in EC cells.

4. Discussion

Of the female reproductive system, EC is one of the most familiar primary malignancies. Surgical removal of the primary foci and postoperative radiotherapy and chemotherapy are the most effective methods for treating endometrial cancer. However, due to the resistance to chemotherapy and radiation, relapse of cancer results in a more than 95% 5-year mortality [18]. Recently, increasing studies revealed that the use of anesthetics could influence cancer cells and reduce the 5-year mortality of cancer patients [18]. Several clinical studies have shown that anesthetics can influence the relapse of cancers after surgery; however, the mechanism

![Figure 4](image-url)
behind the phenomenon is still unknown. Therefore, our research is aimed at exploring the influence of sevoflurane on EC, including the cell growth, migration, and invasion of EC cells.

Sevoflurane is a common anesthetic drug used in the treatment of tumors and has been shown to have antitumor effects. Sevoflurane is a kind of colorless, transparent, aromatic, and nonirritating liquid and can relax the airway smooth muscle. The road stimulation of sevoflurane is small, and the intraoperative hemodynamics was stable using sevoflurane [18]. Clinically, sevoflurane is used to maintain anesthesia no more than 4% [19]. Therefore, the concentration we used in this study is usual and safe. Our data about sevoflurane’s toxicity on normal human endometrial epithelial cells also proved this. Early studies have shown that sevoflurane inhibited breast cancer cell proliferation by upregulating miR-203 [13]. Another study proved that sevoflurane could reduce the invasion of colorectal carcinoma cells by suppressing the formation of MMP-9 in lymphocytes [20]. In addition, sevoflurane acts on colorectal cancer, glioma, liver cancer, and other cancer cells and can inhibit cancer cell metastasis and invasion [3, 5, 6]. The findings of these studies revealed that sevoflurane could dramatically downregulated the proliferation, invasion, and metastasis of cancer cells.

miRNA is a class of endogenous regulatory noncoding RNAs which could directly bind to and degrade the target mRNAs [8]. Several groups have shown that sevoflurane may influence the expression of a set of genes in the endometrium [21]. Since miRNA plays an important role in regulating gene expression, so sevoflurane may induce the changes in gene expression which are mediated by miRNA. In our research, we have proved that miR-195-5p expression in EC cells was significantly increased after the treatment of sevoflurane. Double luciferase reporter gene detection revealed that miR-195-5p overexpression can inhibit luciferase activity of JAK2-3′UTR-WT in the cells. When the predicted JAK2 binding site was mutated, the suppressive function of miR-195-5p will disappear, thus confirming that JAK2 is the target of miR-195-5p. Our study is consistent with previous works, which illustrated that miR-195-5p was deceased in other cancers. Li et al. demonstrated that the tumor tissues of esophageal cancer patients had vastly lower miR-195-5p expression than that normal tissues [17]. Jiang et al. reported that miR-195-5p expression in tumor tissues of esophageal cancer patients was significantly reduced compared with normal tissues, while CDC42 expression was decreased [22].

In order to explore the influence of miR-195-5p on the biological effects of endometrial cancer, we overexpressed miR-195-5p in endometrial cancer cells. We observed that transfection of miR-195 mimics significantly decreased JAK2 expression and further inhibited the development of endometrial cancer, indicating that miR-195-5p exerts a suppressive effect, which may reduce the malignant biological characteristics of endometrial cancer cells by targeting JAK2. Li et al. demonstrated that transfection of miR-195-5p mimics in esophageal cancer EC109 and EC9706 cells can significantly increase miR-195-5p, downregulate its target gene HMGA2, and inhibit the proliferation activity of esophageal cancer cells EC109 and EC9706 [17]. Fu et al. revealed that transfection of miR-195 mimics dramatically decreased the proliferation activity of esophageal cancer cells Eca109 and TE13 and inhibited their clonal formation and invasion ability [23]. Zhao et al. showed that miR-195-5p targeting SOX4 can inhibit the epithelial-mesenchymal transition (EMT) in esophageal cancer cells and further suppress their metastasis and invasion [24]. Our study revealed that miR-195-5p could directly bind to JAK2 3′UTR and suppress JAK2 expression, attenuating the malignant biological features in endometrial cancer.

JAK/STAT pathway is widely participated in biological metabolisms, such as cell reproduction, differentiation, transformation, and immune regulation. Furthermore, JAK/STAT pathway is also involved in various cellular biological functions during tumorigenesis, such as apoptosis, metastasis, and invasion [25, 26]. JAK inhibitors can selectively inhibit JAK kinase, suppress JAK/STAT pathway, and serve as cancer suppressors. Our findings indicated that sevoflurane could act as a JAK inhibitor and downregulate JAK2 expression in mRNA and protein levels by enhancing miR-195-5p levels. Furthermore, sevoflurane intervenes JAK2 signaling pathway through the miR-195-5p/JAK2 axis in endometrial tumor cells. Knocking down miR-195-5p could restore JAK2-mediated tumor suppression of sevoflurane.

Taken together, sevoflurane could upregulate miR-195-5p expression, thereby inhibiting the JAK2 signaling pathway. These findings make a contribute to deeply understand the pharmacological effects of absorption of anesthetics and provide experimental basis for cancer patients to choose more reasonable anesthetics.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare no competing interests.

Supplementary Materials

Supplementary Figure 1: sevoflurane has no effect on the cell viability of normal human endometrial epithelial cells. (Supplementary Materials)

References

[1] S. Arora, S. Balasubramaniam, W. Zhang et al., “FDA approval summary: pembrolizumab plus lenvatinib for endometrial carcinoma, a collaborative international review under project Orbis,” Clinical Cancer Research, vol. 26, no. 19, pp. 5062–5067, 2020.

[2] M. Herreros-Villanueva, C. C. Chen, E. M. Tsai, and T. K. Er, “Endometriosis-associated ovarian cancer: what have we learned so far?,” Clinica Chimica Acta, vol. 493, pp. 63–72, 2019.
3. C. Gao, J. Shen, Z. X. Meng, and X. F. He, “Sevoflurane inhibits glioma cells proliferation and metastasis through miRNA-124-3p/ROCK1 Axis,” Pathology Oncology Research, vol. 26, no. 2, pp. 947–954, 2020.

4. L. Fan, Y. Wu, J. Wang, J. He, and X. Han, “Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203,” European Journal of Pharmacology, vol. 850, pp. 43–52, 2019.

5. L. Wang, T. Wang, J. Q. Gu, and H. B. Su, “Volatile anesthetic sevoflurane suppresses lung cancer cells and miRNA interference in lung cancer cells,” Oncotargets and Therapy, vol. 11, pp. 5689–5693, 2018.

6. S. Q. Sun, L. J. Ren, J. Liu, P. Wang, and S. M. Shan, “Sevoflurane inhibits migration and invasion of colorectal cancer cells by regulating microRNA-34a/ADAM10 axis,” Neoplasma, vol. 66, no. 6, pp. 887–895, 2019.

7. Y. Li, D. Wu, P. Wang, X. Li, and G. Shi, “miR-195 inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by downregulating YAP1,” International Journal of Clinical and Experimental Pathology, vol. 12, no. 1, pp. 275–281, 2019.

8. L. R. Song, D. Li, J. C. Weng et al., “MicroRNA-195 functions as a tumor suppressor by directly targeting fatty acid synthase in malignant meningioma,” World Neurosurgery, vol. 136, pp. e355–e364, 2020.

9. J. Luo, J. Pan, Y. Jin, M. Li, and M. Chen, “MiR-195-5p inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by targeting CEP55,” Oncotargets and Therapy, vol. 12, pp. 11465–11474, 2019.

10. Z. Liu, L. Gan, Z. Zhou, W. Jin, and C. Sun, “SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte,” Immunobiology, vol. 220, no. 8, pp. 947–953, 2015.

11. J. Gao, J. Tian, Y. Lv et al., “Leptin induces functional activation of cyclooxygenase-2 through JAK2/STAT3, MAPK/ERK, and PI3K/AKT pathways in human endometrial cancer cells,” Cancer Science, vol. 100, no. 3, pp. 389–395, 2009.

12. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.

13. Y. Li, D. Wu, P. Wang, X. Li, and G. Shi, “miR-195 regulates proliferation and apoptosis through inhibiting the mTOR/p70s6k signaling pathway by targeting HMGA2 in esophageal carcinoma cells,” Disease Markers, vol. 2017, Article ID 8317913, 9 pages, 2017.