IDEAL CONTAINMENTS UNDER FLAT EXTENSIONS

SOLOMON AKESSEH

Abstract. Let \(\varphi : S = k[y_0, ..., y_n] \to R = k[y_0, ..., y_n] \) be given by \(y_i \to f_i \) where \(f_0, ..., f_n \) is an \(R \)-regular sequence of homogeneous elements of the same degree. A recent paper shows for ideals, \(I_\Delta \subseteq S \), of matroids, \(\Delta \), that \(I_\Delta^{(m)} \subseteq I^r \) if and only if \(\varphi_*(I_\Delta^{(m)}) \subseteq \varphi_*(I_\Delta)^r \) where \(\varphi_*(I_\Delta) \) is the ideal generated in \(R \) by \(\varphi(I_\Delta) \). We prove this result for saturated homogeneous ideals \(I \) of configurations of points in \(\mathbb{P}^n \) and use it to obtain many new counterexamples to \(I^{(rn-n+1)} \subseteq I^r \) from previously known counterexamples.

1. Introduction

Let \(R \) be a commutative Noetherian domain. Let \(I \) be an ideal in \(R \). We define the \(m \)th symbolic power of \(I \) to be the ideal

\[
I^{(m)} = R \cap \bigcap_{P \in \text{Ass}_R(I)} I^m R_P \subseteq R_{(0)}.
\]

In this note we shall be interested in symbolic powers of homogeneous ideals of 0-dimensional subschemes in \(\mathbb{P}^n \). In the case that the subscheme is reduced, the definition of the symbolic power takes a rather simple form by a theorem of Zariski and Nagata [11] and does not require passing to the localizations at various associated primes. Let \(I \subseteq k[\mathbb{P}^n] \) be a homogeneous ideal of reduced points, \(p_1, ..., p_k \), in \(\mathbb{P}^n \) with \(k \) a field of any characteristic. Then \(I = I(p_1) \cap \cdots \cap I(p_k) \) where \(I(p_i) \subseteq k[\mathbb{P}^n] \) is the ideal generated by all forms vanishing at \(p_i \), and the \(m \)th symbolic power of \(I \) is simply \(I^{(m)} = I(p_1)^m \cap \cdots \cap I(p_k)^m \).

In [10], Ein, Lazarsfeld and Smith proved that if \(I \subseteq k[\mathbb{P}^n] \) is the radical ideal of a 0-dimensional subscheme of \(\mathbb{P}^n \), where \(k \) is an algebraically closed field of characteristic 0, then \(I^{(mr)} \subseteq (I^{(r+1-n)})^m \) for all \(m \in \mathbb{N} \) and \(r \geq n \). Letting \(r = n \), we get that \(I^{(mn)} \subseteq I^m \) for all \(m \in \mathbb{N} \). Hochster and Huneke in [15] extended this result to all ideals \(I \subseteq k[\mathbb{P}^n] \) over any field \(k \) of arbitrary characteristic.

In [5] Bocci and Harbourne introduced a quantity \(\rho(I) \), called the resurgence, associated to a nontrivial homogeneous ideal \(I \) in \(k[\mathbb{P}^n] \), defined to be \(\sup \{s/t : I^{(s)} \not\subseteq I^t \} \). It is seen immediately that if \(\rho(I) \) exists, then for \(s > \rho(I)t \), \(I^{(s)} \subseteq I^t \). The results of [10] guarantee that \(\rho(I) \) exists since \(I^{(mn)} \subseteq I^m \) implies that \(\rho(I) \leq n \) for an ideal \(I \) in \(k[\mathbb{P}^n] \). For an ideal \(I \) of points in \(\mathbb{P}^2 \), \(I^{(mn)} \subseteq I^m \) gives \(I^{(4)} \subseteq I^2 \). According to [5] Huneke asked if \(I^{(3)} \subseteq I^2 \) for a homogeneous ideal \(I \) of points in \(\mathbb{P}^2 \). More generally Harbourne conjectured in [3] that if \(I \subseteq k[\mathbb{P}^n] \) is a homogeneous ideal, then \(I^{(rn-(n-1))} \subseteq I^r \) for all \(r \). This led to the conjectures by Harbourne and Huneke in [13] for ideals \(I \) of points...
that \(I^{(mn-n+1)} \subseteq m^{(m-1)(n-1)}I^m \) and \(I^{(mn)} \subseteq m^{m(n-1)}I^m \) for \(m \in \mathbb{N} \).

The second conjecture remains open. Cooper, Embree, Ha and Hoeful give a counterexample in [2] to the first for \(n = 2 = m \) for a homogeneous ideal \(I \subseteq k[\mathbb{P}^2] \). The ideal \(I \) in this case is \(I = (xy^2, y^2, x^2, xyz) = (x^2, y) \cap (y^2, z) \cap (z^2, x) \) whose zero locus in \(\mathbb{P}^2 \) is the 3 coordinate vertices of \(\mathbb{P}^2 \), \([0 : 0 : 1]\), \([0 : 1 : 0]\) and \([1 : 0 : 0]\) together with 3 infinitely near points, one at each of the vertices, for a total of 6 points. Clearly the monomial \(x^2y^2z^2 \in (x^2, y)^3 \cap (y^2, z)^3 \cap (z^2, x)^3 \) so \(x^2y^2z^2 \) is in \(I^{(3)} \). Note \(xyz \in I \) so \(x^2y^2z^2 \in I^2 \), but \(x^2y^2z^2 \notin I^2 \).

Shortly thereafter a counterexample to the containment \(I^{(3)} \nsubseteq I^2 \) was given by Dumnicki, Szemberg and Tutaj-Gasinska in [9]. In this case \(I \) is the ideal of the 12 points dual to the 12 lines of the Hesse configuration. The Hesse configuration consists of the 9 flex points of a smooth cubic and the 12 lines through pairs of flexes. Thus \(I \) defines 12 points lying on 9 lines. Each of the lines goes through 4 of the points, and each point has 3 of the lines going through it. Specifically \(I \) is the saturated radical homogeneous ideal \(I = (x(y^3-z^3), y(x^3-z^3), z(x^3-y^3)) \subset \mathbb{C}[\mathbb{P}^2] \). Its zero locus is the 3 coordinate vertices of \(\mathbb{P}^2 \) together with the 9 intersection points of any 2 of the forms \(x^3-y^3 \), \(x^3-z^3 \) and \(y^3-z^3 \). The form \(F = (x^3-y^3)(x^3-z^3)(y^3-z^3) \) defining the 9 lines belongs to \(I^{(3)} \) since for each point in the configuration, 3 of the lines in the zero locus of \(F \) pass through the point, but \(F \notin I^2 \) and hence \(I^{(3)} \nsubseteq I^2 \). (Of course this also means that \(I^{(3)} \nsubseteq mI^2 \).)

More generally, \(I = (x(y^n-z^n), y(x^n-z^n), z(x^n-y^n)) \) defines a configuration of \(n^2 + 3 \) points called a Fermat configuration [1]. For \(n \geq 3 \), we again have \(I^{(3)} \nsubseteq I^2 \) [14, 17] over any field of characteristic not 2 or 3 containing \(n \) distinct \(n \)th roots of 1.

Subsequent counterexamples to \(I^3 \subseteq I^2 \) were given in [11, 2, 14, 8] and [17] including related counterexamples to \(I^{(n-n+1)} \subseteq I^r \) for ideals of points in \(\mathbb{P}^n \) in positive characteristic given in [14]. All of the counterexamples to \(I^3 \subseteq I^2 \) are ideals of points where the points are singular points of multiplicity at least 3 of a configuration of lines. By considering flat morphisms \(\mathbb{P}^n \to \mathbb{P}^n \), we obtain many new counterexamples to \(I^{(rn-n+1)} \subseteq I^r \), taking \(I \) to be the ideal of the fibers over the points of previously known counterexamples.

The idea for this comes from [12]. Suppose \(\Delta \) is a matroid on \(s = \{1,..., s\} \) of dimension \(s-1-c \) and and let \(f_1,..., f_s \in R = k[y_0,..., y_n] \) be homogeneous polynomials that form an R-regular sequence, \(n \geq c \). Suppose now that \(\varphi : S = k[y_1,..., y_s] \to R \) is a \(k \)-algebra map defined by \(y_i \to f_i \). Then [12] shows that if \(I_\Delta \subseteq S \) is the ideal of the matroid and \(m \) and \(r \) are positive integers, then \(I^{(m)}_\Delta \subseteq I^{(r)}_\Delta \) if and only if \(\varphi_*(I^{(m)}_\Delta) \subseteq \varphi_*(I^{(r)}_\Delta) \) where \(\varphi_*(I^{(m)}_\Delta) \) denotes the ideal generated by \(\varphi(I^{(m)}_\Delta) \) in \(R \). Of course a natural question is whether \(I^{(m)} \subseteq I^{(r)} \) if and only if \(\varphi_*(I^{(m)} \subseteq \varphi_*(I^{(r)} \) for any saturated homogeneous ideal. The current note answers this question in the affirmative for ideals \(I \) of points in \(\mathbb{P}^n \), relying on the ideas in [12].

I would like to thank Brian Harbourne, my adviser, for suggesting the idea of this note and providing guidance throughout its writing. I would like to thank Tom Marley, Alexandra Seceleanu and Mark Walker for helpful conversations.
2. Results

Throughout this note, let \(R = S = k[y_0, ..., y_n] \) and let \(\{f_0, ..., f_n\} \subseteq R \) be an \(R \)-regular sequence of homogeneous elements of \(R \) of the same degree. Let \(\varphi : S \to R \) be the \(k \)-algebra map given by \(y_i \mapsto f_i \). For an ideal \(I \subseteq S \), let \(\varphi_*(I) \subseteq R \) denote the ideal generated by \(\varphi(I) \).

Lemma 1. Let \(\varphi : S \to R \) be as above. Then \(R \) is a free graded \(S \)-module, hence \(R \) is faithfully flat as an \(S \)-module.

Proof. It suffices to show that \(R \) is free over \(S \) since free modules are faithfully flat modules. Note that \(\varphi \) is injective since \(\{f_0, ..., f_n\} \) is a regular sequence. It follows that \(S \cong k[f_0, ..., f_n] \subseteq R \). So we identify \(S \) with \(k[f_0, ..., f_n] \) and show that \(R \) is free over \(k[f_0, ..., f_n] \). Since \(\{f_0, ..., f_n\} \) is a maximal homogeneous \(R \)-regular sequence, it is a homogeneous system of parameters (sop). The reason is that every regular sequence is part of an sop and because \(R \) is Cohen-Macaulay (CM), every sop is a regular sequence (\(\text{depth} R = \dim R \)) and so if \(\{f_0, ..., f_n\} \) is a maximal regular sequence, then it is an sop. Since \(R = k[\mathbb{P}^n] \) is a positively graded affine \(k \)-algebra, the fact that \(\{f_0, ..., f_n\} \) is a homogeneous sop is equivalent to \(R \) being a finite \(S \)-module by [6, Theorem 1.5.17]. Since both \(R \) and \(S \) are CM, \(\text{depth} R = \dim R = n + 1 = \dim S = \text{depth} S \). By the Auslander-Buchsbaum formula [11, Exercise 19.8] [16, Theorem 15.3], \(\text{pd}_S R + \text{depth} R = \text{depth} S \). It follows that \(\text{pd}_S R = 0 \). So looking at the minimal free resolution of \(R \) as an \(S \)-module, we see that \(R \) is a free \(S \)-module. Therefore \(R \) is a faithfully flat \(S \)-module. \(\square \)

Lemma 2. Let \(I \subseteq S \) be a homogeneous saturated ideal defining a 0-dimensional subscheme of \(\mathbb{P}^n \). Then \(\varphi_*(I) \subseteq R \) also defines a 0-dimensional subscheme of \(\mathbb{P}^n \).

Proof. We start by showing that \(R/\varphi_*(I) \) has the same Krull dimension as \(S/I \). By the graded Auslander-Buchsbaum formula, \(\text{pd}_S(R/\varphi_*(I)) + \text{depth}(R/\varphi_*(I)) = \text{depth}(S) = \text{pd}_S(S/I) + \text{depth}(S/I) \). By 3.1 in [12], \(S/I \) and \(R/\varphi_*(I) \) have the same graded Betti numbers so \(\text{pd}_S(S/I) = \text{pd}_S(R/\varphi_*(I)) \). Therefore \(\text{depth}(S/I) = \text{depth}(R/\varphi_*(I)) \). By 3.1 in [12] again, \(S/I \) is Cohen-Macaulay (CM) if and only if \(R/\varphi_*(I) \) is CM. Since \(I \) defines an ideal of points and is saturated, we have that \(S/I \) is CM. It follows that \(R/\varphi_*(I) \) is CM. For CM modules, the depth is the dimension so that \(\dim S/I = \dim R/\varphi_*(I) \). Now since \(S/I \) and \(R/\varphi_*(I) \) are both CM, \(\text{Ass}(R/\varphi_*(I)) \) and \(\text{Ass}(S/I) \) are both unmixed with their elements having height \(\text{ht}(\varphi_*(I)) \) and \(\text{ht}(I) \) respectively. But \(\text{ht}(\varphi_*(I)) = \text{ht}(I) \) since \(\dim S/I = \dim R/\varphi_*(I) \). It follows that the elements of \(\text{Ass}(R/\varphi_*(I)) \) are all ideals of points. It follows that \(\varphi_*(I) \) defines a 0-dimensional subscheme of \(\mathbb{P}^n \). \(\square \)

Lemma 3. Let \(I \subseteq S \) be a saturated homogeneous ideal such that the zero locus of \(I \) in \(\mathbb{P}^n \) is 0-dimensional. Let \(\varphi : S \to R \) be as above. Then \(\varphi_*(I^{(m)}) = \varphi_*(I)^{(m)} \).

Proof. By Lemma 2, \(\varphi_*(I) \) is the defining ideal of a 0-dimensional subscheme so that \((\varphi_*(I))^{(m)} = \text{Sat}((\varphi_*(I))^{(m)}) \) where \(\text{Sat}((\varphi_*(I))^{(m)}) \) denotes the saturation of the ideal \((\varphi_*(I))^{(m)} \). An ideal and its saturation have the same graded homogeneous components for high enough degree so that for \(t \gg 0 \), \(((\varphi_*(I))^{(m)})_t = ((\varphi_*(I))^{(m)})_t \).

Using again that the symbolic power of an ideal of a 0-dimensional subscheme in \(\mathbb{P}^n \) is the saturation of the ordinary power, \(I^{(m)} = \text{Sat}(I^m) \), we have that \((I^{(m)})_t = (I^m)_t \).
for \(t \gg 0 \). Therefore \((\varphi_*(I^{(m)}))_t = (I^{(m)} \otimes_S R)_t = (I^m \otimes_R R)_t = (\varphi_*(I^m))_t \) for \(t \gg 0 \). Since \(\varphi \) is a ring map, \(\varphi_*(I^m) = (\varphi_*(I))^m \). This gives that \((\varphi_*(I^{(m)}))_t = ((\varphi_*(I))^m)_t \) for \(t \gg 0 \).

The last two paragraphs imply that \((\varphi_*(I))^{(m)}_t = \varphi_*(I^{(m)})_t \) for \(t \gg 0 \). Recall that \((\varphi_*(I))^{(m)}_t \) is saturated since it is the saturation of \((\varphi_*(I))^m_t \) and \(\varphi_*(I^{(m)})_t \) is saturated by Lemma 3.1 in [12]. Two saturated graded homogeneous ideals that agree in degree \(t \) for \(t \gg 0 \), agree in all degrees. Hence \((\varphi_*(I))^{(m)}_t = \varphi_*(I^{(m)})_t \). \(\square \)

Theorem 4. Let \(I \subseteq S \) be a saturated homogeneous ideal such that \(V(I) \subseteq \mathbb{P}^n \) is a 0-dimensional subscheme. Let \(\varphi : S \to R \) be given by \(y_i \to f_i \), \(0 \leq i \leq n \), where \(\{f_0, \ldots, f_n\} \) is an \(R \)-regular sequence of homogeneous elements of \(R \) of the same degree.

Let \(\varphi_*(I) \) denote the ideal in \(R \) generated by \(\varphi(I) \). Then \(I^{(m)} \subseteq I^r \) if and only if \((\varphi_*(I))^{(m)} \subseteq (\varphi_*(I))^r \).

Proof. (\(\implies \)) Suppose that \(I^{(m)} \subseteq I^r \). Then \(\varphi(I^{(m)}) \subseteq \varphi(I^r) \) and so \(\varphi(I^{(m)}) \subseteq \varphi_*(I^r) \).

Since \(\varphi \) is a homomorphism, \(\varphi(I^r) = (\varphi(I))^r \). Note that \(\varphi(I^r) \) generates \(\varphi_*(I^r) \) in \(R \) and \((\varphi(I))^r \) generates \((\varphi_*(I))^r \) in \(R \). It follows that \(\varphi_*(I^r) = (\varphi_*(I))^r \) since they have the same generating set. Now applying Lemma 3 we have that \((\varphi_*(I))^{(m)} \subseteq (\varphi_*(I))^r \) concluding the forward direction.

(\(\impliedby \)) Suppose now that for some homogeneous ideals \(I \) and \(J \) of \(S \), \(I \not\subseteq J \) but \(\varphi_*(I) \subseteq \varphi_*(J) \). Then there is a homogeneous element \(f \in I \setminus J \) such that \(\varphi(f) \in \varphi_*(J) \). We may assume with no loss in generality that \(I = (f) \). We have the sequence

\[
0 \to I \cap J \to I \oplus J \to I + J \to 0
\]

with the first map given by \(g \mapsto (g, -g) \) and the second map given by \((h, r) \mapsto h + r \). It is clear that the sequence is exact. Since \(\varphi \) is faithfully flat, we get an exact sequence

\[
0 \to \varphi_*(I \cap J) \to \varphi_*(I) \oplus \varphi_*(J) \to \varphi_*(I + J) \to 0.
\]

Since \(\varphi_*(I) \subseteq \varphi_*(J) \), \(\varphi_*(I + J) = \varphi_*(J) \). Then the map \(\varphi_*(I) \oplus \varphi_*(J) \to \varphi_*(J) \) has kernel \(\varphi_*(I) \). It follows that \(\varphi_*(I \cap J) = \varphi_*(I) \). This is impossible since the generators of \(\varphi_*(I \cap J) \) are the images of the generators of \(I \cap J \) and thus have degree greater than degree \(f \) and hence greater than degree of \(\varphi(f) \) which generates \(\varphi_*(I) = I \otimes_S R \neq 0 \).

So it is the case that \(\varphi(f) \not\in \varphi_*(J) \). Hence \(\varphi_*(I) \not\subseteq \varphi_*(J) \). Therefore if \(I^{(m)} \not\subseteq I^r \), then by Lemma 3, \((\varphi_*(I))^{(m)} = \varphi_*(I^{(m)}) \not\subseteq (\varphi_*(I))^r \). Hence \((\varphi_*(I))^{(m)} \subseteq (\varphi_*(I))^r \) if and only if \(I^{(m)} \subseteq I^r \). \(\square \)

3. Examples

Using the above result, we obtain many new counterexamples to the containment \(I^{(3)} \subseteq I^2 \) of ideals in \(k[\mathbb{P}^2] \) and more generally counterexamples to the containment

\[
I^{(nr-n+1)} \subseteq I^r \quad (*)
\]

in \(\mathbb{P}^n \). In particular if \(I \subseteq k[\mathbb{P}^n] \) gives a counterexample to \((*)\), then \(\varphi_*(I) \) is a counterexample for any choice of homogeneous regular sequence \(\{f_0, \ldots, f_n\} \) of elements of the same degree. We illustrate this below with a few examples.
Example 1. In this example, we work over \(\mathbb{C} \). In [9], the Fermat configuration, for \(n = 3 \), was considered and its ideal \(I = (x(y^2 - z^3), y(x^3 - z^3), z(x^3 - y^3)) \subseteq \mathbb{C}[x, y, z] \) was found to be a counterexample to the containment \(I^{(3)} \subseteq I^2 \). Recall the configuration consists of the 3 coordinate vertices and the 9 intersection points of \(y^3 - z^3 \) and \(x^3 - z^3 \). The ideal \(I \) is radical and all of the points in the configuration are reduced points. Now let \(\varphi: \mathbb{C}[\mathbb{P}^2] \rightarrow \mathbb{C}[\mathbb{P}^2] \) be induced by \(x \mapsto f = x^2 + y^2, y \mapsto g = y^2 + z^2 \) and \(z \mapsto h = x^2 + z^2 \). One easily checks that \(\{ x^2 + y^2, y^2 + z^2, x^2 + z^2 \} \) is a \(\mathbb{C}[\mathbb{P}^2] \)-regular sequence. Then \(\varphi \) induces a map of schemes \(\varphi^#: \mathbb{P}^2 \rightarrow \mathbb{P}^2 \) which is faithfully flat. Consider the scheme-theoretic fibers of \(\varphi^# \) over the Fermat configuration and call it the fibered Fermat configuration. Note that the fibered Fermat configuration is 0-dimensional. Since \(\varphi^# \) has degree 4, the fibers consist of 48 points of \(\mathbb{P}^2 \) where we count with multiplicity. The fibered Fermat configuration gives rise to the radical ideal \(\varphi_*(I) = (f(g^3 - h^3), g(f^3 - h^3), h(f^3 - g^3)) \subseteq \mathbb{C}[\mathbb{P}^2] \) and by analyzing the ideal we see that the configuration consists of 4 multiplicity 1 points over each of the 3 coordinate vertices, given by \(f = 0 = g, f = 0 = h \) and \(g = 0 = h \). The remaining 36 points, each of multiplicity 1, in the configuration are the zero locus of \(f^3 - h^3 \) and \(f^3 - g^3 \). Since \(I^{(3)} \not\subseteq I^2 \), we have by Theorem 3 that \(\varphi_*(I)^{(3)} \not\subseteq \varphi_*(I)^2 \).

Example 2. We give another example of a fibered Fermat configuration whose ideal also gives a counterexample to the containment \(I^{(3)} \subseteq I^2 \). The difference here is that 36 of the points in the configuration have multiplicity 1 while the remaining 3 points each have multiplicity 4. So there are still 48 points counting with multiplicity. Let \(\varphi: \mathbb{C}[\mathbb{P}^2] \rightarrow \mathbb{C}[\mathbb{P}^2] \) be induced by \(x \mapsto f = x^2, y \mapsto g = y^2 \) and \(z \mapsto h = z^2 \). This faithfully flat ring map induces a morphism of schemes \(\varphi^#: \mathbb{P}^2 \rightarrow \mathbb{P}^2 \) that is also flat. The fibers of \(\varphi^# \) over the Fermat configuration gives the fibered Fermat configuration that consists of the 36 points, each of multiplicity 1, of intersection of the degree 6 forms \(f^3 - g^3 \) and \(g^3 - h^3 \). The configuration has 3 more points each of multiplicity 4 over the 3 coordinate points. They are the zero loci of \(f = 0 = g, f = 0 = h \) and \(g = 0 = h \). So the fibered Fermat configuration here has points that are not all reduced. By Theorem 3, its nonradical ideal \(\varphi_*(I) \) is a counterexample to the containment \(\varphi_*(I)^{(3)} \subseteq \varphi_*(I)^2 \).

Example 3. Similarly for the Fermat configurations considered in [14] for \(n \geq 3 \), we can construct new configurations of points, that may or may not be reduced in \(\mathbb{P}^2 \), that are the fibers of a morphism of schemes \(\varphi^#: \mathbb{P}^2 \rightarrow \mathbb{P}^2 \). The morphism \(\varphi^# \) is induced by the ring map \(\varphi: \mathbb{C}[\mathbb{P}^2] \rightarrow \mathbb{C}[\mathbb{P}^2] \) given by \(x \mapsto f, y \mapsto g \) and \(z \mapsto h \) where \(\{ f, g, h \} \) is a homogeneous \(\mathbb{C}[\mathbb{P}^2] \)-regular sequence of the same degree. The Fermat configuration gives rise to a radical ideal \(I = (x(y^i - z^j), y(x^j - z^i), z(x^j - y^i)) \subseteq \mathbb{C}[\mathbb{P}^2], j \geq 3, \) and for a choice of \(\{ f, g, h \} \), the fibered Fermat configuration gives rise to an ideal \(\varphi_*(I) = (f(g^j - h^i), g(f^j - h^i), h(f^j - g^i)), j \geq 3, \) not necessarily radical, that is also a counterexample to \(\varphi_*(I)^{(3)} \subseteq \varphi_*(I)^2 \). Here the Fermat configuration consists of the reduced \(j^2 \) points of intersection of \(y^i - z^j \) and \(x^j - y^i \) together with the 3 coordinate vertices for a total of \(j^2 + 3 \) points. If the degree of the homogeneous elements in \(\{ f, g, h \} \) is \(d \), then the fibered configuration consists of the \(d^2 j^2 \) points of intersection of \(g^i - h^j \) and \(f^j - h^i \) together with the 3\(d^2 \) fiber points over the three coordinate vertices that are the solutions of the three equations \(f = 0 = g, f = 0 = h \) and \(g = 0 = h \), counted with multiplicity. Again the points in the fibered configuration may or may not be reduced.
Example 4. Now we consider an example given in [4] that is inspired by the example of the Fermat configuration. Let \(k = \mathbb{Z}/3\mathbb{Z} \) and let \(K \) be an algebraically closed field containing \(k \). Note that \(\mathbb{P}^2_k \) has 13 \(k \)-points and 13 \(k \)-lines such that each line contains 4 of the points and each point is incident to 4 of the lines. The forms \(xy(x^2 - y^2), xz(x^2 - z^2) \) and \(yz(y^2 - z^2) \) vanish at all 13 points of \(\mathbb{P}^2_k \) but the form \(x(x^2 - y^2)(x^2 - z^2) \) does not vanish at the point \([1 : 0 : 0]\). One checks easily that the ideal \(I = (xy(x^2 - y^2), xz(x^2 - z^2), yz(y^2 - z^2), x(x^2 - y^2)(x^2 - z^2)) \subseteq k[\mathbb{P}^2_k] \) is radical and its zero locus is the 13 \(k \)-points of \(\mathbb{P}^2_k \). Then \(F = x(x-z)(x+z)(x^2-y^2)((x-z)^2-y^2)((x+z)^2-y^2) \) defines 9 lines meeting at 12 points with each point incident to 3 of the lines. It is not hard to see that \(F \in I^{(3)} \) but \(F \notin I^2 \). So the reduced configuration that comes from \(\mathbb{P}^2_k \) with the point \([1 : 0 : 0]\) removed together with all its incident lines gives rise to an ideal that is a counterexample to the containment \(I^{(3)} \subseteq I^2 \). Let \(\varphi : k[\mathbb{P}^2_k] \to k[\mathbb{P}^2_k] \) be the ring map \(x \to f = x^2, y \to g = y^2 \) and \(z \to h = z^2 \). Applying the degree 4 morphism of schemes \(\varphi^# : \mathbb{P}^2_k \to \mathbb{P}^2_k \), induced by \(\varphi \), and taking its fibers over the \(k \)-points, we get a configuration of 48 points. For each point in the original configuration, we get 4 points in the fibred configuration. The points in this new configuration are not all reduced. For instance over the point \([0 : 0 : 1]\), the fiber of \(\varphi^# \) is a point of multiplicity 4 in \(\mathbb{P}^2_k \) given by the vanishing of \(y^2 \) and \(x^2 \). The ideal of the fibred configuration as schemes is the ideal \(\varphi_*(I) = (fg(f^2 - g^2), fh(f^2 - h^2), gh(g^2 - h^2), f(f^2 - g^2)(f^2 - h^2)) \). This ideal is not radical and since \(\{f, g, h\} \subseteq \mathbb{P}^2_K \) is a regular sequence, we have by Theorem 3 that \(\varphi_*(I)^{(3)} \not\subseteq \varphi_*(I)^2 \). If instead we take \(f = x^2 + y^2, g = y^2 + z^2 \) and \(h = x^2 + z^2 \) in the above example, then the fibred configuration we obtain is a reduced configuration and the ideal \(\varphi_*(I) \) is a radical ideal satisfying \(\varphi_*(I)^{(3)} \not\subseteq \varphi_*(I)^2 \).

Variations of the above example are considered in \(\mathbb{P}^n \) for various \(n \) in [4], giving counterexamples for the more general conjecture \(I^{(nr-n+1)} \subseteq I^r \). We can apply our result to these to obtain new counterexamples to the more general containment.

References

[1] Michela Artebani and Igor Dolgachev. The Hesse pencil of plane cubic curves. *Enseign. Math. (2)*, 55(3-4):235–273, 2009.
[2] Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Jack Huizenga, Anders Lundman, Piotr Pokora, and Tomasz Szemberg. Bounded negativity and arrangements of lines. *Int. Math. Res. Not. IMRN*, (19):9456–9471, 2015.
[3] Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Michał Kapustka, Andreas Knutsen, Wioletta Syzdek, and Tomasz Szemberg. A primer on Seshadri constants. In *Interactions of classical and numerical algebraic geometry*, volume 496 of *Contemp. Math.*, pages 33–70. Amer. Math. Soc., Providence, RI, 2009.
[4] Cristiano Bocci, Susan M. Cooper, and Brian Harbourne. Containment results for ideals of various configurations of points in \(\mathbb{P}^N \). *J. Pure Appl. Algebra*, 218(1):65–75, 2014.
[5] Cristiano Bocci and Brian Harbourne. Comparing powers and symbolic powers of ideals. *J. Algebraic Geom.*, 19(3):399–417, 2010.
[6] Winfried Bruns and Jürgen Herzog. *Cohen-Macaulay rings*, volume 39 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1993.
[7] Susan M. Cooper, Robert J. D. Embree, Huy Tài Hà, and Andrew H. Hoefel. Symbolic powers of monomial ideals. *Proc. Edinb. Math. Soc. (2)*, 60(1):39–55, 2016.
[8] Adam Czapliński, Agata Gł ówka, Grzegorz Malara, Magdalena Lampaspacińska, Patrycja Ł uszcz Świdecka, Piotr Pokora, and Justyna Szpond. A counterexample to the containment $I^{(3)} \subset I^2$ over the reals. *Adv. Geom.*, 16(1):77–82, 2016.

[9] Marcin Dumnicki, Tomasz Szemberg, and Halszka Tutaj-Gasińska. Counterexamples to the $I^{(3)} \subset I^2$ containment. *J. Algebra*, 393:24–29, 2013.

[10] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith. Uniform bounds and symbolic powers on smooth varieties. *Invent. Math.*, 144(2):241–252, 2001.

[11] David Eisenbud. *Commutative algebra*, volume 150 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[12] A. V. Geramita, B. Harbourne, J. Migliore, and U. Nagel. Matroid configurations and symbolic powers of their ideals, 2015.

[13] Brian Harbourne and Craig Huneke. Are symbolic powers highly evolved? *J. Ramanujan Math. Soc.*, 28A:247–266, 2013.

[14] Brian Harbourne and Alexandra Seceleanu. Containment counterexamples for ideals of various configurations of points in \mathbb{P}^N. *J. Pure Appl. Algebra*, 219(4):1062–1072, 2015.

[15] Melvin Hochster and Craig Huneke. Comparison of symbolic and ordinary powers of ideals. *Invent. Math.*, 147(2):349–369, 2002.

[16] Irena Peeva. *Graded syzygies*, volume 14 of *Algebra and Applications*. Springer-Verlag London, Ltd., London, 2011.

[17] Alexandra Seceleanu. A homological criterion for the containment between symbolic and ordinary powers of some ideals of points in \mathbb{F}^2. *J. Pure Appl. Algebra*, 219(11):4857–4871, 2015.