Greedy Algorithms
Set of Algorithm Design Paradigms

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network flow
Greedy: Make Locally Optimal Choices

Greedy algorithms build solutions by making **locally optimal** choices at each step of the algorithm. Our hope is that we eventually reach a global optimum.

- **Intuitive example:** How do you navigate the Manhattan street grid on foot?
- Suppose you are trying to get to a location that is South and East of your starting location.

 - **Bill’s Navigation Algorithm:** Choose a direction (South or East) and walk until you hit a red light or reach your target street. Then walk in the other direction until you hit a red light or reach your target street.
 - Each decision uses only local information, but your choices always bring you closer to your goal (always makes progress).

- Surprisingly, greedy algorithms *sometimes* produce globally optimal solutions!
An Optimal Greedy Example: Filling Up on Gas

Suppose you are on a road trip on a long straight highway

- **Goal**: minimize the number of times you stop to get gas
- Many possible ways to choose which gas station to stop at
- Greedy: wait until you are just about to run out of gas (i.e., you won’t make it to the *next* gas station), then stop for gas
 - This turns out to be an optimal solution!
A Typical Problem Structure

Have a **global objective**. E.g., want to minimize or maximize a quantity

Make **local optimizations**. At every step, an algorithm can make several choices; a greedy algorithm makes this choice *myopically*

- For some problems, a greedy algorithm ends up being optimal
 - Greedy happens to be *one way* to reach an optimal solution
High-Level Problem Solving Steps

• Formalize the problem

• Design the algorithm to solve the problem
 • Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct
 • This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 • This is the hard part! (which is why we will focus on it)

• Analyze running time
 • Often more straightforward for greedy algorithms than others
Problem Example: Class Scheduling

Class scheduling. Suppose you have a single classroom.

You are given the list of start times s_1, \ldots, s_n and finish times f_1, \ldots, f_n of n classes (labeled $1, \ldots, n$).

What is the maximum number of non-conflicting classes you can schedule?

![Figure 4.1. A maximum conflict-free schedule for a set of classes.](image)
Problem Example: Interval Scheduling

Job scheduling. Here is a general job scheduling problem:

Suppose you have a machine that can run one job at a time.

You are given \(n \) job requests with start and finish times: \(s_1, \ldots, s_n \) and \(f_1, \ldots, f_n \).

How do you determine the maximum number of compatible requests?
What to be Greedy About?

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- Lets start with some of the obvious ones: **job start time**
 - **Greedy algorithm 1:** schedule jobs with **earliest start time** first
- Is this the best way?
 - If not, can we come up with a counter example?

counterexample for earliest start time
Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- **Greedy algorithm 2:** schedule jobs with *shortest interval* first
 - That is, smallest value of $f_i - s_i$
- Is this the best way?
 - If not, can we come up with a counter example?

 counterexample for shortest interval
Many Ways to be Greedy

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- **Greedy algorithm 3:** schedule jobs that conflict with the fewest other jobs first

- Is this the best way?
 - If not, can we come up with a counter example?

 counterexample for fewest conflicts
Many Ways to be Greedy. Not all are equal…

Algorithmic idea: Pick a criterion to be greedy about. Keep choosing compatible jobs based on chosen criterion.

- We’ve identified criteria that do not work:
 - Earliest start time first
 - Shortest interval first
 - Fewest conflicts first

- How about: **earliest finish time first?**
 - Surprisingly, this results in an optimal algorithm!
 - But we need to **prove** why it is optimal
 - Intuition: earliest finish time first frees the shared resource as soon as possible (but this is not a proof!)
Earliest-Finish-Time-First Algorithm

\textbf{Earliest-Finish-Time-First} \ (n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)

\textbf{Sort} jobs by finish times and renumber so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

\(S \leftarrow \emptyset. \quad \text{set of jobs selected} \)

\textbf{For} \ \ j = 1 \ \ \textbf{To} \ \ n

\textbf{If} job \(j \) is compatible with \(S \)

\(S \leftarrow S \cup \{ j \}. \)

\textbf{Return} \(S. \)
Proving Algorithm Correctness

- We first want to prove our algorithm yields a valid schedule S

 - Valid here means S consists of compatible requests

 - This is true by construction!

- We next want to prove our algorithm yields an optimal schedule

 - Optimal here means S schedules the maximum number of requests

 - Note: there can be more than one optimal solution; we just need to prove our algorithm always finds one of them
Proving Algorithm Correctness

- If we let \mathcal{O} be some optimal set of jobs, then
 - **Goal:** show $|S| = |\mathcal{O}|$, i.e., our greedy solution also selects the same number of jobs and is therefore optimal
 - Notice, we don’t know exactly what \mathcal{O} is, and we don’t know how to find it. But there must be *at least one* optimal schedule, and we’ll prove that it doesn’t schedule more jobs than S does by making an exchange argument.
Exchange Argument

Idea behind proof by exchange argument:

- Transform O into G one step at a time, without hurting solution (that is, each of our transformations must preserve optimality)

- Let $O = o_1, o_2, \ldots, o_m$ be the sequence of jobs scheduled by the optimal algorithm, and let $G = g_1, g_2, \ldots, g_k$ be the sequence of jobs scheduled by greedy, such that $O \neq G$

- Our goal is to modify O to produce a new solution O' that is:
 - No worse than O, and
 - Closer to G in some measurable way

O (optimal) \rightarrow O' (optimal) \rightarrow O'' (optimal) \rightarrow \cdots \rightarrow G (optimal)
Exchange Argument Proof Example

- Let $O = o_1, o_2, \ldots, o_m$ be the sequence of jobs scheduled by the optimal algorithm, and
Let $G = g_1, g_2, \ldots, g_k$ be the sequence of jobs scheduled by greedy, both ordered by increasing finish time

- By induction, we will show that we can exchange each job scheduled by optimal with a non-conflicting job scheduled by greedy to create a new optimal schedule

Base case: $j = 1$. In the beginning, greedy picks the job with the earliest finish time, so $f_{g_1} \leq f_{o_1}$, thus g_1 does not conflict with any of the jobs o_2, \ldots, o_m

- We can therefore exchange o_1 with g_1 to get a new conflict-free optimal schedule $g_1, o_2, o_3, \ldots, o_m$
Inductive hypothesis: Assume we have an optimal conflict-free schedule that is the same as greedy from job 1 up to job \(j - 1 \)

- In other words, we have: \(O' = g_1, g_2, \ldots, g_{j-1}, o_j, \ldots, o_m \)
- Because both \(G \) and \(O' \) consist on non-conflicting jobs, neither \(g_j \) nor \(o_j \) conflict with \(g_1, g_2, \ldots, g_{j-1} \)
- Recall, greedy picks earliest finish time among non-conflicting jobs
 - Since \(f_{g_j} \leq f_{o_j} \leq s_{o_{j+1}} \) which means \(g_j \) does not conflict with any remaining jobs \(o_{j+1}, \ldots o_m \)
- We can exchange \(o_j \) with the greedy choice \(g_j \) to construct a new optimal schedule \(g_1, g_2, \ldots, g_j, o_{j+1}, \ldots, o_m \)
Are We Done? Almost

• We can keep replacing every job scheduled by the optimal algorithm with a non-conflicting job scheduled by greedy until we have an optimal schedule that contains all the greedy jobs.

• But what if $k < m$? Then we’s have:

$$O' = g_1, g_2, \ldots, g_k, o_{k+1}, \ldots, o_m$$

• We next need to prove that $k = m$.

• That is, our greedy schedule schedules the same number of jobs as an optimal schedule, and its therefore optimal.
Lemma 2. Greedy is optimal, that is, \(k = m \).

Proof. (By contradiction) Suppose \(m > k \).

- That is, we assume that there is a job \(o_{k+1} \) that starts after \(g_k \) ends.
- What is the contradiction?
 - Greedy keeps selecting jobs until no more compatible jobs left. Since \(f_{g_k} \leq f_{o_k} \), greedy would also select compatible job \(o_{k+1} \).

(\(\Rightarrow \Leftrightarrow \)) \blacksquare
Review: Exchange Argument Idea

- Assume there is an optimal solution O that is different from the greedy solution G
- Show that we can modify O to produce a new solution O' that is:
 - No worse than O
 - Closer to G in some measurable way

Idea behind proof by exchange argument:

- Transform O into G one step at a time, without hurting solution (that is, each transformation preserves optimality)

\[O \text{ (optimal)} \rightarrow O' \text{ (optimal)} \rightarrow O'' \text{ (optimal)} \rightarrow \cdots \rightarrow G \text{ (optimal)} \]
Caution: Not Uniquely Optimal

We did not prove that greedy was the only optimal solution: there can be more than one optimal solution.
Caution: Induction Often Necessary

When making an exchange argument, we’re often recursively applying some rule.

Induction and recursion are intimately related. Induction lets us rigorously argue why we can continue to make these exchanges at every step of the way.
Greedy: Proof Techniques

The textbook (reading) talks about two approaches to proving correctness of greedy algorithms

- **Greedy stays ahead**: Partial greedy solution is, at all times, as good as an "equivalent" portion of any other solution
 - Simple induction, *often has an implicit exchange argument at its heart*

- **Exchange Property**: An optimal solution can be transformed into a greedy solution without sacrificing optimality

- **Structural bounds**: There may be some lower (upper) bound that a valid solution cannot exceed. Sometimes we can prove greedy optimality by showing that greedy achieves this bounds.

Can use any approach that proves correctness
Example: Running Time Analysis

Let’s analyze all the steps of our job-scheduling algorithm:

• Sorting and relabelling jobs by finish times

 \[O(n \log n) \]

• For each selected job \(i \), find next job \(j \) such that \(s_j \geq f_i \)

 \[i = 1 \ldots n, \]
 considering each job once

• Identifying compatibility is \(O(1) \) per interval (job), so

 \[O(n) \]

• Overall \(O(n \log n) \) time
Review: Problem Solving Steps

• Formalize the problem

• Design the algorithm to solve the problem
 • Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct
 • This means proving that greedy is optimal (i.e., the resulting solution minimizes or maximizes the global problem objective)
 • This is the hard part! (which is why we spent most of our time on it)

• Analyze running time
 • Often straightforward, since greedy rules are often simple
Acknowledgments

• The pictures in these slides are taken from
 • Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf)
 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 • Much of the content was based on slides developed by Shikha Singh