A Predictive Model for the Sequence-Dependent Fluorogenic Response of Forced-Intercalation Peptide Nucleic Acid (FIT-PNA)

Itamar Peled† and Eylon Yavin∗∗

†The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel.

∗E-mail: eylony@ekmd.huji.ac.il; Fax:+972-2-6757574; Tel:+972-2-6758692.
Tables of contents:

HPLC chromatograms of pure FIT-PNAs Figure S1 S3-S5
DNA sequences Table S1 S6
DNA sequences for generating figures 2 and 3 Table S2 S7
Calculation of ΔH NNI S8
Data used to generate Figure 6 Table S3 S9-S11
Figure S1. HPLC chromatograms of purified FIT-PNAs. Over 95% purity for all FIT-PNAs

RP-HPLC (Shimadzu LC2010), semi-preparative C18 reverse-phase column (Phenomenex, Jupiter 300 A) at a flow rate of 4 mL/min. Mobile phase: 0.1% TFA in H₂O (A) and acetonitrile (B).

Gradient: 0-10 min: 90% A, 10% B. 10-30 min: linear gradient from 90% A-10% B to 40% A-60% B. 30-37 min: linear gradient from 40% A-60% B to 10% A-90% B. 37-40 min: 5% A-95% B.
Table S1: A–W DNA sequences were hybridized to FIT-PNA’s to create a 114 mismatched FIT-PNA:DNA duplexes (‘A’ corresponds to K13-C580Y and ‘G’ to K13-WT.)
Table S2: DNA sequences used to create data in Figures 2 and 3:

- **'R' PNA's:**
 - 3TAGTCGATACBCTACAAAC
 - 5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT

- **'L' PNA's:**
 - 3TAGTCGATACBCTACAAAC

DNA SEQUENCES:*

A	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
B	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
C	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
D	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
E	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
F	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
G	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
H	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
I	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
J	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
K	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
L	5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT

A-L DNA sequences are hybridized to FIT-PNA’s to create a duplex with a mismatch at a position with a defined distance and direction from BisQ. (‘A’ corresponds to K13-C580Y and ‘B’ to K13-WT.)

K13-C580Y SNP position nucleotide is marked in red, mismatched position nucleotide is highlighted in yellow.

For example: the **0L**:**E** PNA:DNA mismatched duplex is a ‘-2’ mismatch, since the mismatch position of this duplex is 2 bases from BisQ towards the DNA 5’ direction:

- **'E' DNA:** 5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
- **'0L' PNA:** 3TAGTCGATACBCTACAAAC

The same DNA sequence will create a ‘-4’ mismatch when hybridized with **0R** FIT-PNA to create the **0R**:**E** PNA:DNA mismatched duplex, since now the mismatch position of the duplex is 4 bases from BisQ to the DNA 5’ direction:

- **'E' DNA:** 5CCCCTAGATCAGCTATGATACGTTTGTGATAATAAAAT
- **'0R' PNA:** 3TAGTCGATACBCTACAAAC

ACS Omega Supporting Information

S7
Calculation of ΔH_{NNI}

The predictive value for each duplex was calculated by summing the ΔH° (NNI) of the two NNI’s in the nucleobases triad opposite BisQ and the NNI of the base stack 5’ to 3’ from the DNA mismatched base. The general equation is shown below:

\[
\text{NNI factor} = \Delta H_{\text{NNI}}^0 (\text{BisQ triad}) + \Delta H_{\text{NNI}}^0 (\text{mismatch})
\]

\[
\Delta H_{\text{NNI}}^0 (\text{BisQ triad}) = \Delta H^0 (GT) + \Delta H^0 (TA) \quad \Delta H_{\text{NNI}}^0 (\text{mismatch}) = \Delta H^0 (TT)
\]

For a mismatch occurring adjacent to BisQ at the 5’ end, one of the NNI of the triad opposite BisQ is considered un-stacked, and therefore calculated as zero.

For example: the '-3L':'U' PNA:DNA mismatched duplex shown below has a GT+TA triad NNI and an AG NNI 5’ to 3’ from the mismatched DNA nucleobase.

\[
\begin{align*}
\text{U:} & \quad 5'\text{CCCCCTAGATCATCAGCTATGTATGTAGCTTTTGATAATAAAAT}^3 \\
\text{-3L:} & \quad 3'\text{TAGTCGATACTACAGGAAAC}^5
\end{align*}
\]

$\Delta H^\circ (GT) = 6.5, \Delta H^\circ (TA) = 6.0$ and $\Delta H^\circ (AG) = 7.8$.

Therefore the predicted value for the '-3L':'U' duplex is $\Delta H_{\text{total}}^0 = 6.5 + 6 + 7.8 = 20.3$ (Table 1 shows ΔH values).
Table S3: Data used to generate the scatter plot (Figure 6) including statistical analysis and NNI calculations:

exp1	exp2	exp3	NNI(MM)	NNI(BisQ)	
0.48	0.79	0.58	0.47	0.79	0.71
0.81	0.81	0.38	0.49	0.29	0.46
0.46	0.77	0.87	0.88	0.63	0.94
0.13	0.53	0.81	0.49	0.81	0.71

Figure 6: Statistical analysis and NNI calculation.
'R' N-3 results and outlier analysis

	M	L	K	H	I	J	E	B	Q	R	S	T	U	W	V				
exp1	0.63	0.84	0.94	0.91	0.77	0.84	0.54	0.76	0.89	0.98	0.62	0.49	0.82	0.75	0.98	0.74	0.56	1.24	0.96
exp2	0.62	0.94	1.06	0.73	0.74	0.86	0.68	0.75	1.20	0.83	0.73	0.50	0.84	0.77	0.94	0.97	0.81	1.34	1.21
exp3	0.68	1.02	1.06	0.95	0.85	0.68	0.65	0.73	0.86	0.76	0.51	0.88	0.82	0.82	0.88	0.78	1.35	1.17	

Outlier Analysis

- **N=3 results and outlier analysis**
- **Statistics after outlier (P<0.05, Grubbs test) removal**

'R' statistics after outlier removal (P<0.05, Grubbs test) removal

	M	L	K	H	I	J	E	B	Q	R	S	T	U	W	V				
Full Avg	0.74	1.02	0.92	0.84	0.86	0.87	0.87	0.77	0.95	0.73	0.67	0.50	0.80	0.64	0.77	0.93	0.70	1.26	1.09

SD

| | 0.13 | 0.13 | 0.18 | 0.19 | 0.24 | 0.06 | 0.07 | 0.06 | 0.16 | 0.14 | 0.06 | 0.04 | 0.10 | 0.12 | 0.16 | 0.17 | 0.10 | 0.08 | 0.09 |

MIN

| | 0.55 | 0.84 | 0.47 | 0.56 | 0.49 | 0.77 | 0.54 | 0.65 | 0.72 | 0.57 | 0.61 | 0.46 | 0.62 | 0.50 | 0.60 | 0.74 | 0.53 | 0.10 | 0.95 |

MAX

| | 0.92 | 1.27 | 1.06 | 1.25 | 1.30 | 0.95 | 0.76 | 0.85 | 1.20 | 0.98 | 0.77 | 0.61 | 0.97 | 0.82 | 0.98 | 1.33 | 0.81 | 1.35 | 1.21 |

AVG-MIN

| | 0.19 | 0.17 | 0.45 | 0.28 | 0.37 | 0.19 | 0.14 | 0.12 | 0.24 | 0.16 | 0.07 | 0.04 | 0.18 | 0.14 | 0.17 | 0.19 | 0.17 | 0.14 | 0.14 |

MAX-AVG

| | 0.18 | 0.25 | 0.14 | 0.40 | 0.44 | 0.07 | 0.08 | 0.04 | 0.25 | 0.25 | 0.09 | 0.11 | 0.16 | 0.18 | 0.21 | 0.40 | 0.11 | 0.09 | 0.12 |

G (max)

| | 1.36 | 1.99 | 0.81 | 2.24 | 1.86 | 1.18 | 1.19 | 1.31 | 1.55 | 1.84 | 1.41 | 2.29 | 1.67 | 1.60 | 1.35 | 2.43 | 1.08 | 1.14 | 1.34 |

G (min)

| | 1.49 | 1.37 | 2.51 | 1.51 | 1.58 | 1.61 | 2.14 | 1.87 | 1.47 | 1.16 | 1.05 | 0.89 | 1.88 | 1.24 | 1.07 | 1.15 | 1.73 | 2.03 | 1.65 |

G crit 0.05

| | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 1.94 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11 |

'R' statistics after outlier (P<0.05, Grubbs test) removal

| | 0.74 | 1.02 | 0.97 | 0.80 | 0.86 | 0.87 | 0.68 | 0.77 | 0.95 | 0.73 | 0.67 | 0.48 | 0.80 | 0.64 | 0.77 | 0.93 | 0.70 | 1.26 | 1.09 |

SD

| | 0.13 | 0.13 | 0.06 | 0.12 | 0.24 | 0.06 | 0.04 | 0.06 | 0.16 | 0.14 | 0.06 | 0.02 | 0.10 | 0.12 | 0.16 | 0.07 | 0.10 | 0.08 | 0.09 |
Table S3 shows the data analysis and NNI factor calculations for generating Figure 6 in manuscript. The two tables present the I/I_f values obtained for each PNA:DNA duplex (N=3 repetitions). Letters (in orange) notate the DNA sequences as given in Table S1 and -3\0\+3 (in light blue) notate the FIT-PNAs. Each data point corresponds to an I/I_f value. Next, the average I/I_f and standard deviation (SD) of each FIT-PNA frame (-3\0\+3) for N=3 is shown. Grubs test statistics to evaluate outliers in the data is shown next in the table, performed over the nine values of each averaged group. Outliers of P=0.05 (in red) were excluded and I/I_f and standard deviation was then recalculated. The NNI factor calculation table is shown beneath each data table; for each DNA sequence the BisQ triad and mismatch NNI values are shown followed by the total NNI factor as their sum. I/I_f and its standard deviation are shown again for convenience.