X-ray-induced Scintillation Governed by Energy Transfer Process in Glasses

Hirokazu Masai1, Go Okada2, Aya Torimoto1, Takaaki Usui3, Noriaki Kawaguchi2 & Takayuki Yanagida2

The efficiency of X-ray-induced scintillation in glasses roughly depends on both the effective atomic number Z_{eff} and the photoluminescence quantum efficiency Q_{eff} of glass, which are useful tools for searching high-performance phosphors. Here, we demonstrate that the energy transfer from host to activators is also an important factor for attaining high scintillation efficiency in Ce-doped oxide glasses. The scintillation intensity of glasses with coexisting fractions of Ce$^{3+}$ and Ce$^{4+}$ species is found to be higher than that of a pure-Ce$^{3+}$-containing glass with a lower Z_{eff} value. Values of total attenuation of each sample indicate that there is a non-linear correlation between the scintillation intensity and the product of total attenuation and Q_{eff}. The obtained results illustrate the difficulty in understanding the luminescence induced by ionizing radiation, including the energy absorption and subsequent energy transfer. Our findings may provide a new approach for synthesizing novel scintillators by tailoring the local structure.

Phosphors are a kind of energy converters that generate light in a broad range of wavelengths from ultraviolet (UV) to infrared (IR). Although most phosphors possess the ability to convert light 1^{-13}, some phosphors emit light as a result of mechanical stress 36^{-37}. Conventional phosphors are classified into two types: phosphors excited by UV or visible light 2^{-26} and phosphors excited by ionizing radiation 31^{-39}. For the latter, the photon energy is far beyond the band gap of materials and radiation-induced luminescence is brought about by energy transfer from the host matrix to activators 38^{-41}. Therefore, X-ray-induced scintillation is a complex process involving absorption of X-rays in the matrix and scintillation in the activators. The absorption of X-rays by a material, i.e. the total attenuation of ionizing radiation, which can be expressed in terms of an absorption cross-section, is proportional to the density of the material, ρ, and the fourth-power of effective atomic number of the material, Z_{eff}^{4} $38,39$. On the other hand, the scintillation efficiency, η, is typically expressed as $\eta = \beta_{\text{e-h}}S_{\text{trans}}Q_{\text{eff}}$, where $\beta_{\text{e-h}}$, S_{trans}, and Q_{eff} are the efficiencies of the processes for generating electron-hole pairs (generation of the secondary particles), transferring the energies of the secondary particles to luminescent centres, and exciting and emitting light at luminescent centres, respectively. The value of Q_{eff} is conventionally referred to as the internal quantum efficiency of photoluminescence (PL). Generally, the development of scintillators mainly focuses on the values of Z_{eff} and Q_{eff} because it is difficult to discuss quantitatively the efficiencies for the electron-hole generation or energy transfer processes. This is the reason why most studies have been performed using lanthanide-doped garnet crystals.

On the other hand, our group has focused on amorphous materials. Owing to their wide chemical composition range and good formability, glasses can be good candidates for detection of ionizing radiation 37^{-39}. One of the glasses reported for phosphor applications is a Ce-doped lithium borosilicate glass 37. Although this type of glass contains no heavy element, it is a good reference for the following reasons: (1) Since the glass can be prepared in an inert atmosphere, clear emission properties of Ce$^{3+}$ are observed. (2) The Q_{eff} values of the glasses are sufficiently high to discuss the changes of the scintillation efficiency. (3) Both B$_2$O$_3$ and SiO$_2$ can make glass networks, which correlates with the energy absorption and transfer process to the activators. (4) Valence states of Ce can be quantitatively discussed by using X-ray absorption near edge structure (XANES) analyses due to the lack of heavy cations whose absorption regions may overlap. A change in the compositional fraction of B$_2$O$_3$ and

1National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan. 2Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan. 3Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan. Correspondence and requests for materials should be addressed to H.M. (email: hirokazu.masai@aist.go.jp)
SiO₂ is equivalent to a change in the value of \(Z_{\text{eff}} \). Therefore, it is worthwhile to examine the PL and scintillation properties of Ce³⁺ in this glass system.

The aim of this study is to investigate the relationship between the valence state of activators in the lithium borosilicate glasses possessing different \(Z_{\text{eff}} \) values and the PL and scintillation efficiency. In order to discuss the valence state of cerium, the \(\text{Ce}^{3+} \) ratio in the glasses is introduced and defined as the ratio of the Ce³⁺ concentration to the sum of the concentrations for Ce³⁺ and Ce⁴⁺. Based on several analytical data, we have found that there is an anomalous relationship between the scintillation properties and the chemical composition of glass.

Results

The chemical composition of the present glass system is \(x\text{Ce}^{3+}-40\text{Li}_2\text{O}-(60-y)\text{SiO}_2 \) (in molar ratio), where an excess amount of Ce is added. Herein, the general glass system is abbreviated as \(x\text{Ce}:\text{LBS} \). First, we examined several Ce-doped Li₂O-B₂O₃-SiO₂ glasses in order to change the \(Z_{\text{eff}} \) value. An increase in the amount of SiO₂ increases the value of \(Z_{\text{eff}} \), which determines the effective absorption of X-ray energy. The chemical composition and the nominal \(Z_{\text{eff}} \) values of these glasses are listed in Table S1. Figure 1(a) shows the optical absorption spectra of 0.5Ce:LBS \(y \) glasses at room temperature (RT) for different values of \(y \). Comparison of the absorption spectra for 0.5Ce:LBS \(y \) glasses with those of non-doped LBS \(y \) glasses (Fig. 1(b)) demonstrates that most of the absorption is due to the addition of Ce. Furthermore, the shape of the spectra in Fig. 1(a) changes considerably with the value of \(y \) (i.e. the B₂O₃-SiO₂ ratio). On the other hand, Fig. 1(c) shows that the shape of the spectra slightly changes with the value of \(x \) (i.e. the Ce concentration)²⁷. As shown in the inset of Fig. 1(c), when the chemical composition of LBSy is fixed, the optical absorption edge is slightly red-shifted with increasing amounts of Ce³⁺ due to a broadening of the tail, i.e. a local coordination change (see Fig. S1). However, as shown in the inset of Fig. 1(a), the absorption coefficient at the tail region is largely red-shifted with increasing SiO₂ fractions. Therefore, it is expected that the absorption shape depends on both parameters \(x \) and \(y \). Since the absorption tail of Ce⁴⁺ is observed at low energy regions²⁸,²⁹, it is assumed that the red-shift of the absorption tail is correlated with the generation of Ce⁴⁺ species. Clear absorption bands are observed for LBS30 and LBS40 glasses. After a peak deconvolution using six absorption peaks with a half-width at half-maximum of approximately 2250 cm⁻¹, we found that the photon energy of each excitation peak is almost the same. The results suggest that the Ce³⁺ coordination is almost the same for both glasses and that the activators are dispersed homogeneously in the glass matrix.
In order to examine the valence state, we measured Ce L III-edge XANES spectra of 0.5Ce:LBSy glasses, as shown in Fig. 2(a). These white lines change with the B2O3-SiO2 ratio, especially near y = 10. The shape of the spectrum for the 0.5Ce:LBS40 glass is very similar to that of Ce(OCOCH3)3·H2O, as shown in Fig. S2, and noticeable differences for varying Ce concentrations are not observed (Fig. 2(b)). We can, therefore, conclude that the valence state of almost all (>95%) Ce centres in these LBS40 glasses are Ce3+, which is independent of the Ce concentration. Although precise fitting is difficult, the Ce3+ ratio of these glasses can be evaluated by spectra deconvolution using the spectra of Ce(OCOCH3)3·H2O and CeO2. Using these two reference materials, the Ce3+ ratios can be calculated as shown in Fig. 3. In the case of Ce:LBS30 and LBS40 glasses, the valence state of Ce is mostly the trivalent state. However, when the SiO2 fraction increases, the Ce3+ ratio decreases. It is notable that the XANES spectrum of the 0.5Ce:LBS10 glass is very similar to that of the 0.5Ce:LBS40 glass prepared in air (Fig S3), and that the Ce3+ ratio is less than 40%, although the preparation of 0.5Ce:LBS10 was performed in an Ar atmosphere.

Figure 4 shows PL and PL excitation (PLE) spectra of 0.5Ce:LBSy glasses at RT. The wavenumbers of both the excitation and emission peaks of Ce3+ for the present glass are lower than those in phosphate glasses19,20 while higher than those in silicate glasses20. As the B2O3 fraction decreases, both peaks are slightly red-shifted, i.e. a smaller excitation energy induces a smaller emission energy. This might be correlated with the behaviour of the optical absorption spectra shown in Fig. 1(a), in which the absorption tail red-shifts with decreasing B2O3 fraction. Figure 5 shows contour plots of the PL-PLE spectra of 0.5Ce:LBSy glasses, where the PL intensity was normalized in order to understand the shapes of the spectra. The vertical and horizontal axes show the photon wavenumbers of excitation and emission, respectively. The fact that the excitation band is broad suggests that it is associated with the continuous excitation band, which is characteristic of Ce3+ states. However, as shown in Figs 4 and 5, the spectrum shape of the LBS10 glass is quite different from the shapes of the spectra for other B2O3 fractions. Irregularities associated with the LBS10 glass are also evident in the PL decay curves of xCe:LBSy glasses shown in Fig. 6(a) for different B2O3 fractions. Specifically, a clear deviation from the linearity of the decay curves is observed for a B2O3 fraction of y = 10 shown in Fig. 6(b) and Fig S4. The decay constants of xCe:LBSy glasses are summarized in Table S2. The internal quantum efficiencies Qint of xCe:LBSy glasses are shown in Table S3 and Fig. 7. The values of Qint roughly depend on the Ce concentration and variations of Qint are probably due to differences in the local coordination state.

Figure 8(a) shows X-ray induced scintillation spectra of 0.5Ce:LBSy glasses obtained by and irradiation dose of 10 Gy. The scintillation intensities are normalized using the volume of the sample. We have confirmed that
the scintillation spectra were unchanged during irradiation and that there is a linear relationship between the irradiation dose and the scintillation intensity (Fig. S5(a) and (b)). Figure 8(a) also shows that emission peak wavenumbers of Ce$^{3+}$ red-shift with decreasing B$_2$O$_3$ fraction, as was observed in the PL spectra. It is noteworthy that the emission peak area of the 0.5Ce:LBS10 glass is much larger than that of the 0.5Ce:LBS40 glass, although we have confirmed that many Ce species are oxidized into Ce$^{4+}$ during melting. In order to discuss the Ce$^{3+}$ ratio quantitatively, the values of Q_{eff} and the scintillation peak area (normalized to the peak area of the 0.5Ce:LBS40 glass) are plotted in Fig. 8(b) as a function of Z_{eff} (bottom axis) and the B$_2$O$_3$ fraction (upper axis). It is evident that the scintillation intensity is proportional to Z_{eff} and inversely proportional to Q_{eff} and the Ce$^{3+}$ ratio.

Discussion
We have found that the chemical composition of glass affects the valence state of the activator in glasses. The results clearly suggest that the average Ce$^{3+}$ ratio is affected by the chemical composition of glass, i.e. the macroscopic basicity of glass. In order to explain the results, we use the concept of the ‘optical basicity’ defined by Duffy42,43. Optical basicity, i.e. the average basicity of oxides in the glass, is a concept based on the polarization of electrons. The idea of basicity of glasses is sometimes useful for evaluation of the physical properties of bulk glasses. The optical basicity of Li$_2$O, B$_2$O$_3$, and SiO$_2$ are reported to be 1, 0.42, and 0.48, respectively43. Therefore, when the optical basicity of glass increases by substitution of SiO$_2$ for B$_2$O$_3$, it is expected that an oxidation reaction of Ce$^{3+}$ into Ce$^{4+}$ occurs even in an Ar atmosphere. Since the starting materials of glass can affect the valence state of Ce cations29, it is not possible to reach a direct conclusion from the observed phenomena. However, an increase of the optical absorption in SiO$_2$-rich glasses is expected to be brought about by a redox reaction transforming Ce$^{3+}$ into Ce$^{4+}$.

Figure 3. Cerium L$_{III}$ XANES spectra of 0.5Ce:LBSy glasses along with fitting curves constructed by combination of XANES spectra of Ce(OCOCH$_3$)$_3$·H$_2$O and CeO$_2$.
To the best of our knowledge, the physics of ionizing radiation is still unclear because of the complexity of the process. Therefore, research on scintillators is often conducted by focusing on specific parameters. Although Q_{eff} is generally a useful parameter to develop scintillators, Z_{eff} has been found to play a more dominant role for X-ray-induced scintillators.

As mentioned above, an increase in the SiO$_2$ fraction causes an increase of Z_{eff}, which in turn increases the effective absorption of X-rays. Figure 9 shows the X-ray-induced scintillation peak area of xCe:LBS$_y$ glasses as a function of the product $\rho \cdot Z_{\text{eff}}^4$. Since the dopant concentration is less than 2 mol%, the density of glass, ρ, shown in Table S44 can be used for the discussion. With the exception of Ce:LBS10 glasses, in which a decrease in scintillation intensity is observed due to the strong self-absorption in the visible region, the scintillation peak areas are roughly dependent on the Ce concentration. Although the value of Q_{eff} for the 0.5Ce:LBS10 glass is much lower than that of the 0.5Ce:LBS40 glass because of the generation of Ce$^{4+}$ species, the scintillation peak area of the 0.5Ce:LBS10 glass is higher than the peak areas of most 0.5Ce:LBS$_y$ glasses in Fig. S9.

Figure 10(a) shows the total attenuation with coherent scattering of 0.5Ce:LBS$_y$ glasses, which was calculated using a previously published formula that takes into account the influence of Z_{eff}. The energy spectrum of the X-rays used in the present study is also shown in the figure with a scale given on the right axis. Here, the X-ray source is a conventional X-ray tube with a W target and a Be window. In the energy region of irradiated X-rays, the total attenuation of the 0.5Ce:LBS10 glass is the highest among the present samples. Moreover, the attenuation values without coherent scattering exhibit a similar tendency. Here, we determined the total absorption energy using the following expression:

$$\zeta = \int E N_0(E) \frac{\mu_{\text{EA}}(E)}{\mu_{\text{t}}(E)} \left[1 - \exp\left(-\mu_{\text{t}}(E) \cdot t\right)\right] dE$$

(1)

where ζ is the absorbed energy in the sample along the irradiation axis per unit area, E is the incident radiation energy, N_0 is the number of incident photons per unit area, $\mu_{\text{t}}(E)$ is the total attenuation coefficient of the sample, μ_{EA} is the energy absorption coefficient of sample, and t is the thickness of the sample.

Figure 10(b) shows the total absorption energy, ζ_{relative}, relative to that of the 0.5Ce:LBS10 glass. In the present X-ray energy region, the value of ζ for the 0.5Ce:LBS10 glass is approximately 1.2 times larger than that of the 0.5Ce:LBS40 glass. As mentioned above, the scintillation intensity I_{scint} is a product of the total absorption energy ζ and the scintillation efficiency $\eta = \beta_{e-h} \cdot S_{\text{trans}} \cdot Q_{\text{eff}}$ and is given by

$$I_{\text{scint}} = \zeta \cdot \beta_{e-h} \cdot S_{\text{trans}} \cdot Q_{\text{eff}}$$

(2)

Since we have no quantitative information about the values of β_{e-h} and S_{trans}, their product, $(\beta_{e-h} \cdot S_{\text{trans}})$, is treated as a coefficient that can be evaluated using I_{scint}, ζ_{relative}, and Q_{eff}, and represents the efficiency for generating electron-hole pairs followed by energy transfer to luminescent centres in each glass. Using the values depicted in Figs 3(b) and 4(b), we have found that the value of $(\beta_{e-h} \cdot S_{\text{trans}})$ for the 0.5Ce:LBS10 glass is more than 14 times larger than that of the 0.5Ce:LBS40 glass (see right axis of Fig. 4(b)). In other words, the absorbed X-ray energy is not converted into scintillation photons effectively in 0.5Ce:LBS40 glasses. Plausible reasons for the low conversion efficiency are the physical parameters of non-doped LBS glasses shown in Table S41. Since the molar volume of the LBS10 glass is smaller than that of the LBS40 glass, the network...
of the LBS10 glass is spatially denser than that of the LBS40 glass, i.e. there is larger free volume in the LBS40 glass. If there is no large difference in the phonon vibration energies of LBS\(_y\) glasses, the free volume in the glasses may work as an attenuator and inhibit the effective energy transfer to activators. On the other hand, another reason for the low conversion efficiency is the storage mechanism of irradiated energy proposed by Yanagida\(^{34}\). It was reported that a B\(_2\)O\(_3\)-containing glass exhibits storage luminescence by X-ray irradiation\(^{35}\). Because the irradiated energy is converted into scintillation, storage luminescence, or thermal vibration (non-radiative relaxation), high storage luminescence means low scintillation. Considering that the origin of storage luminescence is defects in glasses, we speculate that there are many defects that affect the energy transfer process to activators in B\(_2\)O\(_3\)-rich glass. As shown in Fig. S6 and Table S5, there are only small differences in the band gaps for LBS\(_y\) glasses and these differences cannot provide a plausible explanation for changes in the conversion efficiencies.

Recent studies have suggested that the fraction of Ce\(^{4+}\) in scintillators has an effect on scintillation properties\(^{49-52}\) and several of them claimed that coexistence of Ce\(^{3+}\) and Ce\(^{4+}\) is important for high scintillation efficiency\(^{49-51}\). However, if the coexistence of Ce\(^{3+}\) and Ce\(^{4+}\) was a critical factor for determining the intensity, the correlation between chemical composition and scintillation intensity, as shown in Fig. 3(a), would be quite different; i.e. Ce:LBS\(_y\) glasses would exhibit similar intensities with the exception of the Ce:LBS10 glass. Therefore, the present results do not support the hypothesis that coexistence of Ce\(^{3+}\) and Ce\(^{4+}\) is important for high scintillation efficiency, at least in the present glass system. In turn, this work shows that the energy transfer process of the generated charged secondary particles to activators is important for attaining high scintillation efficiency. Therefore, tailoring the energy transfer process is expected to enable fabrication of high-performance scintillators.

Conclusion

We have examined PL and X-ray-induced scintillation properties of several Ce-doped lithium borosilicate glasses. It was confirmed that only Ce\(^{3+}\) valence states exist in Ce:LBS40 glasses and that the Ce\(^{3+}\) \textit{ratio} decreases with increasing SiO\(_2\) fraction in the glasses. The oxidation reaction in the glass melt in an inert atmosphere can be

Figure 5. Contour plots of the PL-PLE spectra of 0.5Ce:LBS\(_y\) glasses. The vertical and horizontal axes represent excitation and emission wavenumbers, respectively.
explained by the optical basicity of the glass, and the amount of Ce\(^{4+}\) generated is the origin of the absorption tail in the visible region of the absorption spectra. Although the value of \(Q_{\text{eff}}\) for the Ce:LBS10 glass is the smallest among all \(Q_{\text{eff}}\) values for the present LBS glasses, the scintillation intensity of the Ce:LBS10 glass is the highest because it has the highest attenuation values. In terms of the emission mechanism of scintillators, the effective energy conversion after absorbing the ionizing radiation is prevented in the B\(_2\)O\(_3\)-rich glasses. Such energy transfer path will be important for further materials design of radiation detectors.

Methods

Preparation of Ce-doped lithium borosilicate glass. The \(x\text{Ce}^{3+}\cdot40\text{Li}_2\text{O}\cdot x\text{B}_2\text{O}_3\cdot (60-y)\text{SiO}_2\) (xCe:LBS\(_y\)) glasses were prepared according to a conventional melt-quenching method by employing a platinum crucible\(^{24}\).
mixture of Li$_2$CO$_3$ (99.99%), B$_2$O$_3$ (99.9%), SiO$_2$ (99.999%), and Ce(OCOCH$_3$)$_3$·2H$_2$O (99.9%) was melted in an electric furnace at 1100°C for 30 min in an Ar atmosphere (99.999%). The glass melt was quenched on a stainless plate at 200°C and then annealed at a temperature T_g, which was measured by differential thermal analysis (DTA) for 1 h. The bulk glasses were cut into several glass pieces (10 mm × 10 mm) using a cutting machine, and then, samples were mechanically polished (thickness ~ 1 mm) to obtain mirror surfaces. The temperature T_g was determined by a DTA system operating at a heating rate of 10 °C/min using a TG8120 instrument (Rigaku, Japan). The density of the samples was measured using the Archimedes method with pure water as an immersion liquid.

Luminescence properties. The PL and PLE spectra were recorded at 1 nm intervals at RT using an F7000 fluorescence spectrophotometer (Hitachi High-Tech, Japan). Band pass filters of 2.5 nm for the PL measurement were used for both excitation and emission. The absorption spectra at RT were recorded at 1 nm intervals using a U3500 UV-vis-NIR spectrometer (Hitachi High-Tech. Japan). The absolute quantum efficiencies, also known as quantum yields (QYs), of the glasses were measured using an integrating sphere Quantaurus-QY (Hamamatsu...
Photonics, Japan). The error bars were ±2. The emission decay at RT was measured using a Quantaurus-Tau system (Hamamatsu Photonics, Japan) with a 340 nm LED. The accumulated counts for evaluation were 50,000.

Scintillation (radioluminescence) spectra were measured by using a CCD-based spectrometer (Andor DU920P CCD and SR163 monochromator) under X-ray exposure23. The supplied bias voltage and tube current were 40 kV and 0.52 ~ 5.2 mA, respectively.

XANES measurement. The Ce L III-edge XANES spectra were measured at the BL01B1 and BL14B2 beamlines of SPring-8 (Hyogo, Japan). The storage ring energy was operated at 8 GeV with a typical current of 100 mA. The measurements were performed using a Si (111) double-crystal monochromator in the transmission mode (Quick Scan method), or in the fluorescence mode using 19-SSD detector at RT. The XANES spectra were recorded from 5.52 to 6.18 keV. Pellet samples for the measurements were prepared by mixing the granular sample with boron nitride. As references, XANES data for Ce(OCOCH 3)3·2H 2O and CeO 2 were collected using the same conditions. The corresponding analyses were performed by using Athena software 53.

References
1. Yen, W. M., Shionoya, S. & Yamamoto, H. Phosphor Handbook 2nd Edition (CRC Press, 2007).
2. Blasse, G. & Brill, A. Investigation of some Ce3+-activated phosphors. J. Chem. Phys. 47, 5139–5145 (1967).
3. Bachmann, V., Ronda, C. & Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 10, 2077–2084 (2009).
4. Pollnau, M., Gamelin, D. R., Luthi, S. R., Gudel, H. U. & Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337–3346 (2000).
5. Blasse, G. & Brill, A. Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+. J. Chem. Phys. 47, 1920–1926 (1967).
6. Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+ ,Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996).
7. Xie, R. I. & Hiroaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs - A review. Sci. Technol. Adv. Mater. 8, 588–600 (2007).
8. Reisfeld, R. Spectra and energy transfer of rare earths in inorganic glasses. Structure and Bonding 13, 53–98 (1973).
9. Layne, C. B., Lowdermilk, W. H. & Weber, M. J. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys. Rev. B 16, 10–20 (1977).
10. Shinn, M. D., Sibley, W. A., Drexhage, M. G. & Brown, R. N. Optical-transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 27, 6635–6648 (1983).
11. Schreiber, H. D. et al. Compositional dependence of redox equilibria in sodium-silicate glasses. J. Non-Cryst. Solids 177, 340–346 (1994).
12. Duffy, J. A. & Kyd, G. O. Ultraviolet absorption and fluorescence spectra of cerium and the effect of glass composition. Phys. Chem. Glass 37, 45–48 (1996).
13. Skuja, L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Crystal. Solids 239, 16–48 (1998).
14. Ebenroff-Heidepriem, H. & Ehrt, D. Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt. Mater. 15, 7–25 (2000).
31. Ishii, M.
32. Masai, H.
33. Torimoto, A.
34. Yanagida, T.
35. Nanto, H.
36. Boone, J. M.
37. Duffy, J. A.
38. Jackson, D. F.
39. Knoll, G. F.
40. Robbins, D. J.
41. Lempicki, A., Wojtowicz, A. J. & Berman, E. Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 718, 317–322 (2011).
42. Duffy, J. A. & Ingram, M. D. An interpretation of glass chemistry in terms of the optical basicity concept. Non-Cryst. Solids 21, 373–410 (1976).
43. Duffy, J. A. A review of optical basicity and its applications to oxide systems. Geochim. Cosmochim. Acta. 57, 3961–3970 (1993).
44. Masai, H., Matsushita, T., Ueda, J., Fujimoto, Y. & Tanabe, S. Optical and scintillation properties of Ce-doped ZnO-P2O5 glasses. J. Mater. Chem. C 2, 2137–2143 (2014).
Author Contributions
H.M. formulated the research project. H.M. and T.U. performed the materials preparation. H.M. and A.T. performed the XANES analysis. H.M., G.O., N.K. and T.Y. measured the X-ray-induced scintillation. H.M. and G.O. wrote the paper. All authors discussed the results.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18954-y.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018