Does valvuloarterial impedance impact prognosis after surgery for severe aortic stenosis in the elderly?

Minako Katayama, Mohammad Q Najib, Punnaiah C Marella, M’hamed H Temkit, Marek Belohlavek, Hari P Chaliki

ABSTRACT

Background: Valvuloarterial impedance (Zva) was introduced as a prognostic measure in patients with aortic stenosis (AS). However, it is unclear whether Zva has a prognostic impact on survival after surgical aortic valve replacement (AVR) in patients with severe AS with preserved ejection fraction (EF).

Methods: We retrospectively reviewed 929 consecutive patients who had AVR. We investigated 170 elderly patients (age >65 years, mean 76 years) who had AVR secondary to severe AS (mean gradient ≥40 mm Hg; aortic valve area ≤1 cm²; peak velocity ≥4 m/s). Patients with EF <50%, greater than moderate aortic regurgitation, prior heart surgery and concomitant mitral or tricuspid valve surgery were excluded. Zva was calculated and the patients were divided into two groups; low Zva, Zva <4.3 (n=82) and high Zva, Zva ≥4.3 (n=88). The end point was all-cause of death. Survival curves were calculated according to Kaplan-Meier method.

Results: Age, prevalence of hypertension, diabetes, chronic kidney disease (CKD), atrial fibrillation, symptoms, EF, E/e' and concomitant coronary artery bypass graft were not different between the groups. Survival was not different between the groups at 5 years (70% in low Zva and 81% in high Zva; p=0.21) and for the entire follow-up period (p=0.23). Only age was a significant factor in predicting survival by multivariate analyses in Cox proportional hazards model after adjusting for Zva, CKD, atrial fibrillation and hypertension.

Conclusions: Our results suggest that preoperative Zva does not have a prognostic impact on postoperative survival in elderly patients with severe AS with preserved EF. Further investigation is needed to elucidate the controversial results.

INTRODUCTION

In the elderly, aetiologies of aortic stenosis (AS) are degeneration and calcification of the valve, which are closely related to atherosclerosis and other comorbidities such as hypertension, hypercholesterolaemia, coronary artery disease and chronic kidney disease. A stenotic aortic valve is the biggest factor in increased left ventricular (LV) afterload, but afterload due to systemic hypertension such as hypertension is also significant.

Recent studies emphasised the importance of a new concept called ‘valvulo-arterial impedance (Zva)’, which not only takes the valvular load into account but also does so for the arterial load in the assessment of AS. It was suggested that Zva is superior to standard measures of AS severity. More importantly, several reports support the significance of Zva as a good prognostic measure in patients with AS.

However, it is unclear whether Zva retains its prognostic impact on survival after conventional aortic valve replacement (AVR), given continued excess of afterload in some patients. We hypothesised that patients with severe AS with preserved ejection fraction...
Echocardiography, and mean gradient of aortic valve

Systolic blood pressure was measured at the time of

who satisfy mean gradient
determined by Doppler echocardiography to be those
calculated by the continuity method. Severe AS was
detect the optimal signal. Aortic valve area (AVA) was
continuous wave Doppler using all possible windows to

and peak gradient of the aortic valve were measured by

LV out
from an apical long-axis view or

mitral annulus velocity by tissue Doppler were measured

per the American College of

mitral or tricuspid valve surgery. As a result, we
selected 177 patients (age >65 years old) with AVR sec-
moderate aortic regurgitation, prior valve surgery, con-
comitant mitral or tricuspid valve surgery. As a result, we
selected 177 patients (age >65 years old) with AVR sec-
ondary to severe AS with preserved EF (≥50%). The
study was approved by the Mayo Foundation Institutional
Review Board. Detailed baseline demographics including
symptoms, comorbidities and echocardiographic vari-
ables, were recorded from the existing medical records
documented at the time of preoperative assessment.

Echocardiography

Comprehensive echocardiographic examinations were
performed before AVR using standardised methods.9–11
Blood pressure was measured by an arm-cuff sphygmo-
manometer at the time of echocardiography. LVEF was
measured using biplane Simpson’s method. Mitral valve
flow velocities by pulsed wave Doppler and septal
mitral annulus velocity by tissue Doppler were measured
and E/e’ was calculated. The time velocity integral of LV
outflow was measured by pulsed wave Doppler method
from an apical long-axis view or five-chamber view, and
LV outflow tract diameter was measured from a parastral-
lar long-axis view for calculation of stroke volume (SV).
SV was indexed by body surface area. Mean gradient and peak gradient of the aortic valve were measured by
continuous wave Doppler using all possible windows to
detect the optimal signal. Aortic valve area (AVA) was
calculated by the continuity method. Severe AS was
determined by Doppler echocardiography to be those
who satisfy mean gradient ≥40 mm Hg, AWA ≤1 cm²
and peak velocity ≥4 m/s as per the American College of
Cardiology/American Heart Association guidelines.12
Zva was calculated according to the formula:2 3 5

Zva=(Systolic Blood Pressure
+Mean Gradient of Aortic Valve)
/Stroke Volume Index

Systolic blood pressure was measured at the time of
echocardiography, and mean gradient of aortic valve

and stroke volume index were obtained from the exist-
ing echocardiographic report.

Although Hachicha et al6 presented prognostic signi-
cance of discrete ranges of Zva values (Zva≤3.5, 3.5<Zva<4.5, Zva≥4.5), we chose two group comparison
divided by median value of Zva in order to maintain
adequate statistical power. Patients were divided into two
groups based on Zva.

Low Zva Zva <4.3 mm Hg/mL m²
High Zva Zva ≥4.3 mm Hg/mL m²

Pulse pressure (PP) was measured as the difference
between systolic and diastolic blood pressures. Systemic
arterial compliance (SAC) was calculated according to
the formula:2

SAC = Stroke Volume Index (SVI)/Pulse Pressure (PP)

Follow-up

The end point of this study was all-cause of death. The
survival data were collected from medical records and
the Social Security Death Index.

Statistical analysis

Before initiating the study, a power calculation was per-
formed. The sample from our existing database
included 177 patients with 77% survival at 5 years and
52% survival at 10 years. Power was approximated by
considering a comparison of survival in participants with
baseline Zva above the median level versus participants
with baseline Zva no more than the median level. A sample of 88 participants with Zva above the median
and 89 participants with Zva below the median has 80%
power (α 0.05) if survival at 5 years differs by at least
18% points (68% vs 86%). This difference of 18% was
estimated according to the study by Hachicha et al,
which shows survival difference at 4-years of 23%
between high Zva vs low Zva and 13% between high Zva
vs moderate Zva.4

Continuous variables were presented as mean±SD.
Differences between groups were tested by unpaired
t test in continuous variables and χ² test or Fisher’s exact
test for categorical variables. Postoperative survival
curves were calculated according to the Kaplan-Meier
method and comparisons between groups were made
with the log-rank test. The Cox proportional hazards
model was used for univariate and multivariate analysis.
Age, Zva, E/e’, SAC, SVI and PP were incorporated into
the model as continuous variables. Male gender, CKD,
concomitant coronary artery bypass graft (CABG), atrial
fibrillation and hypertension (HT) were incorporated as
categorical variables. Variables that had p value <0.20 in
univariate analysis were incorporated into multivariate
analysis. Statistical analyses were performed using JMP
pro 10.0.0 (SAS Institute Inc, Cary, North Carolina,
USA). A p<0.05 was considered statistically significant.
RESULTS

Zva was calculated in 170 patients (7 patients were excluded due to missing data) and divided into two groups: low Zva (Zva <4.3, n=82); high Zva (Zva ≥4.3, n=88).

Patient characteristics and haemodynamic data were presented in table 1. There were no significant differences in age, gender, prevalence of hypertension, diabetes, CKD (CKD, estimated glomerular filtration rate <60 mL/min/1.73 m²), symptoms related to AS and atrial fibrillation.

LVEF, E/e′, and the rate of concomitant CABG at the time of AVR. Calculated AVA was significantly different between the groups and was smaller in the high Zva group as expected. Systolic blood pressure and mean gradient of aortic valve were significantly higher in the high Zva group, and stroke volume index (SVI) was significantly lower in the low Zva group, also as expected. Pulse pressure was higher and SAC was lower in the high Zva group.

We found the rate of death to be 25 out of 82 (30%) in the low Zva group and 22 out of 88 (25%) in the high Zva group. There was no significant difference in postoperative survival at 5 years (70% in low Zva <4.3, 81% in high Zva ≥4.3, p=0.21 by log-rank test) and for the entire follow-up period (p=0.23 by log-rank test; figure 1). Zva ≥4.3 presented a HR for mortality of 0.70 (95% CI 0.39 to 1.25, p=0.23) for the entire follow-up period.

We investigated the usefulness of Zva as a prognostic value in elderly patients with severe AS with preserved EF who underwent surgical AVR. A main finding of our study is that Zva does not have a prognostic impact on postoperative survival in patients with AS with preserved EF. Therefore, we had to reject our hypothesis. The significance of this study is that only elderly patients with

Table 1 Baseline characteristics and haemodynamic data

	Low Zva <4.3 (n=82)	High Zva ≥4.3 (n=88)	p Value
Age	77±6	76±6	0.8287
Male, %	57%	68%	0.1427
HT, %	73%	74%	0.9185
DM, %	21%	17%	0.4882
CKD, %	35%	34%	0.8162
CABG, %	49%	53%	0.5463
Symptom, %	71%	77%	0.3306
Atrial fibrillation, %	5%	8%	0.5380
LVEF, %	66±6	64±7	0.1664
E/e′	18±8	19±10	0.5141
AVA, cm²	0.79±0.14	0.64±0.12	<0.0001
BP, mm Hg	128±17	142±18	<0.0001
MG, mm Hg	54±13	59±15	0.0162
S VI, mL/cm²	51±7	40±5	<0.0001
BSA, cm²	1.88±0.24	1.97±0.20	0.0055
Zva, mm Hg/mL m²	3.6±0.4	5.1±0.7	<0.0001
Pulse pressure, mm Hg	58±14	66±17	0.0007
SAC, mL/m²/mm Hg	0.92±0.23	0.63±0.16	<0.0001

AVA, aortic valve area; BP, blood pressure; BSA, body surface area; CABG, coronary artery bypass graft; CKD, chronic kidney disease; DM, diabetes mellitus; HT, hypertension; LVEF, left ventricular ejection fraction; MG, mean gradient; SAC, systemic arterial compliance; SVI, stroke volume index.

DISCUSSION

We investigated the usefulness of Zva as a prognostic value in elderly patients with severe AS with preserved EF who underwent surgical AVR. A main finding of our study is that Zva does not have a prognostic impact on postoperative survival in patients with AS with preserved EF. Therefore, we had to reject our hypothesis. The significance of this study is that only elderly patients with
severe high-gradient AS are targeted for prognostic observation after traditional surgical AVR.

Zva was introduced as a measure of global LV afterload in patients with AS. The systolic arterial pressure to SVI ratio, which is an approximation of arterial impedance, was employed in the formula. At the same time, decreased SVI due to excess concentric hypertrophy or decreased LV contraction, which are particularly observed in low-flow AS, is taken into consideration. That is to say, in addition to the valvular load imposed by AS, poor prognostic elements such as high-blood pressure, low arterial compliance and low SVI, are summed up in this formula. This composite measure of LV afterload, Zva, has shown prognostic significance in patients with AS in several reports. Results from our study are contradictory to these studies, likely due to a difference in the definition of primary end point, patient characteristics and length of follow-up.

Specifically, two studies by Rieck et al. and Lancellotti et al. showed that Zva was predictive of major cardiovascular events, that is, the combined end points of mostly aortic valve replacements and ischaemic cardiac events; Rieck et al. showed poorer survival in high Zva group in mild-moderate AS (mean age 67 years) with less numbers of deaths, unlike our study, which enrolled patients with severe AS with AVR (mean age 76 years). A study by Hachicha et al. had a mixed population of patients with moderate and severe AS, with a mean gradient ranging from 25±10 mm Hg to 34±17 mm Hg, unlike our study with only severe AS patients, all of whom had a mean gradient of ≥40 mm Hg. Although 176 patients (34%) who had AVR, among 522 patients, were presented as a subgroup, the details of haemodynamic data and patient characteristics of the subgroup were not shown. More importantly, most of the deaths, 78 out of 91 deaths (86%), occurred in patients who were treated medically. It is not clear from the study whether some of the increased mortality in the higher Zva groups is related to denial of surgery despite symptomatic AS and/or comorbidities versus increased Zva.

In contrast to our study results, a recent study by Katsanos et al. reported that Zva had an independent prognostic value in terms of overall mortality in 116 patients who underwent transcatheter aortic valve replacement (TAVR). However, higher occurrences of hypertension (49% vs 31%; p=0.06) and atrial fibrillation (29% vs 14%; p=0.06) in patients with elevated Zva were not adjusted in the multivariate analysis. More importantly, patients undergoing TAVR were typically older and likely with more comorbidities causing severe vascular burden when compared to our surgical AVR. This could explain the difference between the referenced and our study results.

Similar to our study, except for the EF criteria, Levy et al. investigated the prognostic significance of Zva in 184 patients who had severe AS with decreased LVEF, and concluded that Zva did not have a prognostic role after AVR, which supports the results of our study, although the targeted patients had different characteristics. Another study by Jander et al. reported that patients with ‘low gradient’ severe AS despite preserved EF, who likely have high Zva, have a prognosis similar to patients with moderate AS in comparison to ‘high gradient’ severe AS, which suggests that prognosis may be mostly impacted by ‘valvular load’ rather than ‘arterial load’. Therefore, it appears that in patients with severe AS (mean gradient ≥40 mm Hg) with preserved EF, reduction in valvular load is the primary determinant of outcome rather than the arterial load imposed by high-blood pressure.

After successful AVR, the high-haemodynamic load caused by the stenotic valve is released and Zva is decreased. Thus, the prognosis of those patients after AVR would not be affected by preoperative Zva. Although Zva is an additional measure of global haemodynamic load to the myocardium, this parameter may not directly correlate with the amount of myocardial damage, which is determined not only by the one-time value of Zva (haemodynamic load), but is also determined by the length of the load to which the myocardium is exposed.

Table 2 Univariate and multivariate cox analysis for predictors of survival after AVR

	Univariate analysis		Multivariate analysis	
	p Value	HR (95% CI)	p Value	HR (95% CI)
Age	<0.0001	1.10 (1.05 to 1.15)	0.0004	1.10 (1.04 to 1.17)
Male gender	0.2762	0.72 (0.40 to 1.30)	0.4980	0.89 (0.63 to 1.23)
Zva (mm Hg/mL m²)	0.3268	0.85 (0.62 to 1.15)	0.6293	1.17 (0.61 to 2.19)
CKD	0.1647	1.52 (0.83 to 2.73)	0.2243	1.90 (0.63 to 4.60)
CABG	0.3198	1.33 (0.75 to 2.41)	0.0864	0.79 (0.92 to 3.78)
Atrial fibrillation	0.1061	2.35 (0.81 to 5.42)	0.7662	0.99 (0.95 to 1.02)
E/e	0.1833	1.56 (0.81 to 2.24)	0.9961	0.99 (0.27 to 3.24)
HT	0.8117	1.00 (0.96 to 1.03)	0.8437	0.99 (0.97 to 1.01)

CABG, coronary artery bypass graft; CKD, Chronic Kidney Disease; HT, hypertension; SAC, systemic arterial compliance; SVI, stroke volume index; PP, pulse pressure.
LIMITATIONS
This was a retrospective study performed in a single echocardiography laboratory, and, therefore, variability of the echocardiographic data was minimised. However, the results may not be applicable to other institutions due to differences in healthcare and patient population. Second, Zva is consisted of multiple factors including blood pressure. It is possible that Zva measure may be highly variable according to the systolic blood pressure at the time of echocardiography. Also, the Zva parameter is based on echocardiographic measurements, so participants with fundamental limitations of ultrasonography may have influenced the data. Third, given the retrospective nature of the study, there may have been unmeasured variables that affected the prognosis. Lastly, the sample size may be too small to be able to detect difference in survival of <18% between the groups. Therefore, it is possible that a smaller difference in survival between the groups could have been present, but was not detected in our study. Nevertheless, we did not find a major difference between the groups.

CONCLUSION
Our results indicate that preoperative Zva does not have independent prognostic value in elderly patients with severe AS with preserved EF after AVR. Careful interpretation and application of Zva with other risk parameters are essential. Further larger prospective studies are needed to elucidate these controversial results in order to apply Zva parameter more efficiently in clinical practice.

Acknowledgements The authors thank Gillian Murphy for secretarial help. Preliminary results of this study were presented as an abstract at the 19th World Congress on Heart Disease meeting held in Boston, MA, U.S.A. in 2014.

Contributors MK conceived, designed, participated in data collection, analysis, interpretation and drafting of the manuscript. MQN and PCM participated in data collection, analysis and interpretation and provided intellectual content. MHT participated in data analysis and interpretation, and provided intellectual content. MB and HPC interpreted data and provided intellectual content. All authors approved the final version of the manuscript.

Funding This study was supported by American Heart Association Clinical Research Programme 13 CRP17300021 and A J and Sigismunda Palumbo Charitable Trust.

Competing interests None declared.

Ethics approval Mayo Foundation Institutional Review Board.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Our institutional review board policy for this study will not allow data sharing.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J 2003;24:1231–43.
2. Briand M, Dumesnil JG, Kadem L, et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol 2005;46:291–8.
3. Hachicha Z, Dumesnil JG, Bogaty P, et al. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007;115:2856–64.
4. Hachicha Z, Dumesnil JG, Pibarot P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol 2009;54:1003–11.
5. Lancellotti P, Donal E, Magne J, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart 2010;96:1364–71.
6. Rieck AE, Gerdts E, Lonnebakken MT, et al. Global left ventricular load in asymptomatic aortic stenosis: covariates and prognostic implication (the SEAS trial). Cardiovasc Ultrasound 2012;10:43.
7. Katsanos S, Yiu KH, Clavel MA, et al. Impact of valvuloarterial impedance on 2-year outcome of patients undergoing transcatheter aortic valve implantation. J Am Soc Echocardiogr 2013;26:691–8.
8. Levy F, Luc Monin J, Rusinaru D, et al. Valvuloarterial impedance does not improve risk stratification in low-ejection fraction, low-gradient aortic stenosis: results from a multicentre study. Eur J Echocardiogr 2011;12:358–63.
9. Lang RM, Biering M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440–63.
10. Naguerr SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009;22:107–33.
11. Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 2009;22:1–23; quiz 101–2.
12. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014;129:e521–643.
13. Jander N, Minners J, Holme I, et al. Outcome of patients with low-gradient “severe” aortic stenosis and preserved ejection fraction. Circulation 2011;123:887–95.