Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids

Elmutaz Atta Awad, Idrus Zulkifli, Abdoreza Soleimani Farjam, Loh Teck Chwen
1Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
2Department of Poultry Production, University of Khartoum, Sudan
3Department of Animal Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Introduction

The availability of commercial amino acids (AA) in synthetic form has allowed to reduce crude protein (CP) in poultry diets. Low protein diets fortified with synthetic AA have been the subject of extensive research. Supplementing low-CP diets with synthetic AA has been shown to save cost (Dozier et al., 2008) and decrease nitrogen excretion (Bregendahl et al., 2002). However, excessive low-CP diets are still not recommendable even with AA fortification (Awad et al., 2014). Several studies investigated the potential of nonessential amino acids (NEAA) to enhance the performance of broilers fed low-CP, essential amino acids (EAA) supplemented diets with some discrepancies in their findings. Some studies showed similar growth performance when the low-CP diets were supplemented with NEAA either in individual (Dean et al., 2006; McGill et al., 2012a; Laudadio et al., 2012) or in combined form (Aletor et al., 2000; Fatufa and Rodehutsdorfi, 2005; Corzo et al., 2005; Dean et al., 2006). However, others failed to achieve performance equal to that of positive control group (Kidd et al., 1996; Hussein et al., 2001; Waldroup et al., 2005; Berres et al., 2010). In addition, many studies have been conducted to evaluate the effect of supplementing low-CP diets with EAA in levels higher than the requirements (Deschepper and DeGroote, 1995; Si et al., 2004; Waldroup et al., 2005). Although, Deschepper and DeGroote (1995) showed that equaling the EAA levels of low-CP diets to that of standard improved performance, Waldroup et al. (2005) and Si et al. (2004) found otherwise.

Most of previous research (Deschepper and DeGroote, 1995; Waldroup et al. 2005; Dean et al., 2006) dealing with NEAA or further EAA fortification to low-CP diets in poultry was carried out under temperate condition with little or no available data on such fortification effect under the hot and humid tropical condition. It is well-documented that high temperatures may alter CP and AA requirements in poultry (Ojano-Dirain and Waldroup, 2002; Balnave, 2004). Brake et al. (1998) showed that under heat stress condition, broilers required higher Arg:Lys ratio for optimum growth performance. Larbier et al. (1993) reported a significant decrease in protein and AA digestibility of rapeseed and soybean meals in broilers raised under heat stress condition. Thus, the objective of this study was to evaluate the effect of further EAA and NEAA supplementation to a low-CP (16.2% CP and already supplemented with all EAA) on growth performance, serum metabolites, organ weights, breast yield and abdominal fat weight in male broiler chicks during the starter period under the hot and humid tropical conditions.

Materials and methods

Birds and management

The study was conducted in accordance with the guidelines of the Research Policy on Animal Ethics of the Universiti Putra Malaysia, Serdang, Selangor, Malaysia. Three hundred day-old male broiler chicks (Cobb 500) were obtained from a commercial hatchery and housed in floor pens. Each pen measured 1.5x1.5 m and equipped with one tube feeder, one bell drinker, and wood shavings as litter material in a conventional open sided house. The profile of in-house temperature and relative humidity was recorded daily (Table 1; Figure 1). Chicks were raised under a continuous photoperiod programme. On arrival, chicks (300) were weighed and allotted randomly to five dietary groups (60 birds per group). Each group had five replicates with 12 chicks per pen. Mash feed and water were provided ad libitum.

Experimental diets

Prior to diet formulation, representative samples from the corn and soybean were analysed for CP using Kjeldahl method according to the procedure of AOAC (1990) and AA
content using high performance liquid chromatography (HPLC) as described previously (Ahmed et al., 2014) (Table 2). Briefly, 0.1 to 0.2 g of sample was hydrolysed by 5 mL of 6N HCl at 110°C for 24 h. Afterwards, a 4 mL of internal standard (L-9 amino-N-butyric acid; AABA) was added to the hydrolysate (analysis of all AA except Met, Cys, and Trp). After paper and syringe filtering, 10 µL of the sample was mixed with 70 µL of borate buffer and 20 µL of ACQ reagent (Waters Corporation, Milford, MA, USA). Then, an AA column (AccQ Tag 3.9 150 mm; Waters) was used for peaks separation. The latter was detected by a fluorescent detector (2475; Waters) using HPLC. Cystine and methionine were analysed as cystic acid and methionine sulphone, respectively by oxidation with performic acid for 16 h at 4°C and neutralisation with hydrobromic acid before hydrolysis. Tryptophan contents were determined following alkaline hydrolysis of sample with 4.3N LiOH•H2O for 16 h at 120°C and neutralisation with 6N HCl. Five isocoric [3000 metabolisable energy (ME)/kg] experimental diets were used as follows: i) 22.2% CP (positive control; PC); ii) 16.2% CP + all EAA to meet both National Research Council recommendations (1994) and the ideal AA ratios suggested by Baker (1997) (negative control; NC); iii) NC + further EAA to equal the levels in the PC diet; iv) NC + NEAA (Glycine, Proline, Glutamic, Alanine, and Asparatic) to equal the levels in the PC; and v) NC + EAA and NEAA to equal the AA levels in the PC diet. The compositions of the experimental diets are presented in Tables 3 and 4.

Data collection and sampling

Body weights (pen basis) were recorded on day 1 and 21, and weight gain (WG) was calculated accordingly. Feed intake (FI) from day 1 to 21 was measured, and feed conversion ratios (feed/gain) (FCR) were calculated. Protein efficiency ratio (PER) was calculated as the body weight/protein intake. Mortality was expressed as a percentage of the body weight (BW). Abdominal fat pad was defined as the tissue surrounding the gizzard and intestines, extending within the ischium, and surrounding the cloaca, bursa of Fabricius and adjacent to the abdominal muscles (Fancher and Jensen, 1989). Blood samples (3 mL) were collected during neck cut and placed in tubes and kept in ice. The blood samples were centrifuged at 4000×g at 4°C for 20 min. The haemolysis-free serum samples were collected and stored at -20°C. Serum concentrations of albumin (Alb), triglyceride (TG), total protein (TP), and uric acid (UA) were determined using an automated chemistry analyser (Hitachi 902 Automatic Analyzer; Hitachi, Tokyo, Japan) with commercial test kits (Roche Diagnostics, Basel, Switzerland).

Statistical analysis

Data were subjected to ANOVA using the GLM procedure of SAS software (SAS, 2005). Comparison among means was done by Duncan’s multiple-range test. Mortality data were analysed by chi-square test. Significance was considered at P≤0.05.

Results

The analysed values of the dietary AA are in close agreement with the calculated values (Table 4). The results of growth performance and mortality rate are presented in Table 5. Feeding the chicks with NC diet resulted in lower BW (P≤0.0003), DWG (P≤0.0003), and poorer FCR (P≤0.0003), and the highest PER (P≤0.0001) compared to PC and NC+NEAA groups. Supplementing the NC diet with further EAA to provide the same levels as in the PC diet failed to improve the BW, DWG, and FCR of the birds, although FI was not significantly different from the PC group. However, NEAA supplementation to the NC diet resulted in a similar BW, DWG, FCR, and better PER in the birds comparable to those fed PC diet. The BW, DWG, FI, FCR, and PER of the birds fed NC diet supplemented with both EAA and NEAA were not significantly different from birds fed PC diet. Mortality rate was not affected by diet.

Dietary treatment had no significant effect on serum Alb and TP (Table 6). However, there was a significant increase in serum UA when the NC diet was supplemented with EAA, NEAA, or the combination of EAA+NEAA. Serum TG of group fed NC diet was significant-

Table 1. Mean environmental temperature and relative humidity inside the house during the experimental period.
Temperature, °C
Humidity, %
Humidity, %

Table 2. Crude protein and amino acids content of corn and soybean (as-fed basis).
Corn
CP*, %
EAA, %
Lys
Arg
Met
Thr
Val
Ile
Phe
Trp
His
Leu
NEAA, %
Cys
Tyr
Glu
Ser
Glu
Pro
Ala
Asp

*CP: crude protein; EAA, essential amino acids; NEAA, nonessential amino acids; Lys, lysine; Arg, arginine; Met, methionine; Thr, threonine; Val, valine; Ile, isoleucine; Phe, phenylalanine; Trp, tryptophan; His, histidine; Leu, leucine; Cys, cysteine; Tyr, tyrosine; Glu, glutamic; Ser, serine; Gln, glutamine; Pro, proline; Ala, alanine; Asp, aspartic. °Each value represents the mean of three samples; †each value represents the mean of two samples. |

[page 632] [Ital J Anim Sci vol.13:2014]
ly higher compared to PC and NC+EAA+NEAA groups. Diet had no significant (P>0.05) on relative weights of heart, liver, abdominal fat, and breast meat yield (Table 7). Diet had no significant (P>0.05) effect on the aforementioned parameters.

Discussion

Feeding chicks with low-CP diet (NC) suppressed the growth performance of broilers under the hot and humid tropical conditions. This is in agreement with our earlier findings (Awad et al., 2014) and it could be attributed to insufficient nitrogen sources for NEAA synthesis (Han et al., 1992; Aletor et al., 2000; Corzo et al., 2005; Dean et al., 2006). In a standard broiler diet, the NEAA were synthesized from the extra balance of EAA (Waldroup, 2007). In the present study, further addition of EAA to NC did not improve growth performance of broilers. This finding supported the notion that the depressed growth performance in the NC group was probably not due to the reduced EAA concentrations. Work by Deschepper and DeGroote (1995), and Waldroup et al. (2005) under thermoneutral conditions suggested that the reduction in growth performance of broilers was not overcome by equaling the EAA levels of diets with 19 and 16% CP to that of 23 and 22% CP, respectively. The present findings suggested that the BW, DWG, FI and FCR of birds fed NC+NEAA were similar to those of PC. Previous work under temperate condition suggested that boilers provided low-CP diets with a combination of NEAA supplementation had similar growth performance to control groups (Deschepper and DeGroote, 1995; Aletor et al., 2000; Fatufe and Rodehutscord, 2005; Corzo et al., 2005; Dean et al., 2006). Others reported that supplementation with only single NEAA such as Glu (Han et al., 1992; McGill et al., 2012a) or Gly (Dean et al., 2006) also resulted in similar growth performance as control birds. In contrast, Waldroup et al. (2005) reported that isocaloric and low-CP diets with NEAA fortification failed to improve growth performance of broilers. There is no clear explanation for the discrepancies. However, the inconsistencies could be associated with factors such as CP level in the control diet, and concentration of supplemented AA (McGill et al., 2012b), energy level (Sklan and Plavnik, 2002), gender (Hernández et al., 2012), and age of chickens (Deschepper and DeGroote, 1995). Interestingly, in our study birds fed NC+EAA+NEAA diet had significantly poorer FCR comparable with those provided

| Table 3. Composition of the experimental diets (as-fed basis). |
|------------------|-----|-----|-----|-----|-----|
| Ingredient, % | PC | NC | NC+EAA | NC+NEAA | NC+EAA+NEAA |
| Corn | 52.80 | 63.48 | 63.48 | 63.48 | 63.48 |
| Soybean meal | 37.81 | 17.48 | 17.48 | 17.48 | 17.48 |
| Palm oil | 5.40 | 6.72 | 6.72 | 6.72 | 6.72 |
| Dicalcium phosphate | 1.62 | 1.86 | 1.86 | 1.86 | 1.86 |
| Limestone | 1.23 | 1.24 | 1.24 | 1.24 | 1.24 |
| Sodium Chloride | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Sand | 0.00 | 5.57 | 3.76 | 1.81 | 0.00 |
| Vitamin premix° | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| Mineral premix° | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| L-lys•HCl | 0.12 | 0.58 | 0.62 | 0.58 | 0.62 |
| L-arg | 0.00 | 0.46 | 0.67 | 0.46 | 0.67 |
| DL-met | 0.20 | 0.42 | 0.44 | 0.42 | 0.44 |
| L-thr | 0.02 | 0.30 | 0.37 | 0.30 | 0.37 |
| L-val | 0.00 | 0.27 | 0.44 | 0.27 | 0.44 |
| L-ile | 0.00 | 0.25 | 0.40 | 0.25 | 0.40 |
| L-phe | 0.00 | 0.33 | 0.64 | 0.33 | 0.64 |
| L-his | 0.00 | 0.07 | 0.25 | 0.07 | 0.25 |
| L-gly | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| L-trp | 0.00 | 0.07 | 0.12 | 0.07 | 0.12 |
| L-leu | 0.00 | 0.02 | 0.06 | 0.02 | 0.06 |
| L-pro | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| L-ala | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| L-glu acid | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| L-aspar acid | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| ChCl | 0.00 | 0.08 | 0.08 | 0.08 | 0.08 |

PC, positive control; NC, negative control; EAA, essential amino acids; NEAA, nonessential amino acids; Lys, lysine; Arg, arginine; Met, methionine; Thr, threonine; Val, valine; Ile, isoleucine; Phe, phenylalanine; His, histidine; Gly, glycine; Trp, tryptophan; Leu, leucine; Pro, proline; Ala, alanine; Glu, glutamic; Asp, aspartate. Lys, Met, Thr, and Trp were feed grade, while the rest of supplemented amino acids were pharmaceutical grade.°Supplied per kilogram of diet: vitamin A, 10,000 U; vitamin D3, 1000 U; vitamin E, 30 U; vitamin K3, 2.5 mg; vitamin B6, 1 mg; vitamin B12, 0.01 mg; niacin, 30 mg; d-biotin, 0.045 mg; vitamin C, 50 mg; d-pantothenate, 8 mg; folic acid, 0.5 mg.°Supplied per kilogram of diet: Mn, 70 mg; Fe, 35 mg; Zn, 70 mg; Cu, 8 mg; I, 1 mg; Se, 0.25 mg; Co, 0.2 mg.

![Figure 1](image-url)
Table 4. Nutrients composition of the experimental diets.

Ingredient	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA
ME, kcal/kg	3000	3000	3000	3000	3000
CP, %	22.2 (22.1)	16.2 (16.7)	18.0 (18.3)	19.9 (20.4)	21.8 (21.9)
ME:CP ratio	135	185	167	151	138
Ca, %	0.94	0.94	0.94	0.94	0.94
Available P, %	0.45	0.45	0.45	0.45	0.45
Total AA#, %					
Lys	1.23 (1.22)	1.19 (1.11)	1.23 (1.03)	1.19 (1.08)	1.23 (1.09)
Arg	1.55 (1.45)	1.34 (1.33)	1.55 (1.42)	1.34 (1.34)	1.55 (1.54)
Met	0.54 (0.53)	0.65 (0.65)	0.67 (0.55)	0.65 (0.54)	0.67 (0.66)
Met+cys	0.90 (0.91)	0.88 (0.88)	0.91 (0.89)	0.89 (0.90)	0.91 (0.89)
Thr	0.91 (0.90)	0.84 (0.88)	0.91 (0.85)	0.84 (0.77)	0.91 (0.87)
Val	1.14 (1.08)	0.97 (0.98)	1.14 (1.06)	0.97 (1.00)	1.14 (1.14)
Ile	0.97 (0.93)	0.82 (0.83)	0.97 (0.92)	0.82 (0.84)	0.97 (0.97)
Leu	1.98 (1.75)	1.37 (1.27)	1.98 (1.78)	1.37 (1.58)	1.98 (1.52)
Phe+tyr	1.65 (1.56)	1.34 (1.36)	1.65 (1.55)	1.34 (1.41)	1.65 (1.62)
Trp	0.26	0.21	0.26	0.21	0.26
His	0.65 (0.68)	0.47 (0.53)	0.65 (0.58)	0.47 (0.50)	0.65 (0.58)
Gly+ser	2.09 (1.99)	1.29 (1.31)	1.29 (1.41)	2.10 (1.93)	2.09 (2.03)
Glu	3.64 (3.58)	2.25 (2.34)	2.25 (2.67)	3.46 (3.39)	3.46 (3.45)
Ala	1.10 (0.97)	0.77 (0.71)	0.77 (0.79)	1.10 (1.02)	1.10 (1.04)
Asp	2.28 (2.01)	1.29 (1.23)	1.29 (1.39)	2.28 (1.86)	2.28 (1.99)
Pro	1.38 (1.23)	0.95 (0.91)	0.95 (0.87)	1.38 (1.42)	1.38 (1.43)

True digestible AA#, %

Item	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA
Lys	1.12	1.12	1.16	1.12	1.16
Arg	1.41	1.26	1.47	1.26	1.47
Met	0.52	0.63	0.65	0.63	0.65
Met+cys	0.83	0.83	0.83	0.83	0.83
Thr	0.79	0.76	0.83	0.76	0.83
Val	1.03	0.90	1.07	0.90	1.07
Ile	0.89	0.77	0.92	0.77	0.92
Leu	1.83	1.27	1.88	1.27	1.88
Phe+tyr	1.49	1.23	1.54	1.23	1.54
Trp	0.23	0.19	0.24	0.19	0.24
His	0.59	0.43	0.63	0.43	0.63
Gly+ser	1.75	1.06	1.06	1.06	1.06
Glu	3.11	2.03	2.03	3.24	3.24
Ala	0.96	0.68	0.68	1.02	1.02
Asp	1.94	1.09	1.09	1.09	1.09

PC, positive control; NC, negative control; EAA, essential amino acids; NEAA, nonessential amino acids; ME, metabolisable energy; CP, crude protein; Ca, calcium; P, phosphorus; AA, amino acids; Lys, lysine; Arg, arginine; Met, methionine; Gly, glycine; Val, valine; Ile, isoleucine; Leu, leucine; Phe, phenylalanine; Tyr, tyrosine; Trp, tryptophan; His, histidine; Glu, glutamic; Ala, alanine; Asp, asparatic; Pro, proline. Tryptophan, Gly, Ser, Glu, Ala, and Asp were calculated using apparent ileal digestibility coefficients from Huang et al. (2006). Tryptophan was calculated using standardised ileal digestibility coefficients from Hoofer et al. (2016).

Table 5. Effect of amino acids supplementation to a low-protein diet from 1 to 21 days on growth performance and mortality rate of broilers.

Item	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA	RMSE	P
BW, g	933a	823c	853bc	933a	882a	37.6	0.0003
DWG, g	42.3c	37c	38.5c	42.2a	39.9a	1.79	0.0003
FL, g	1198b	1132b	1173a	1175a	1171a	42.6	0.2301
FCR	1.35b	1.46a	1.45a	1.33	1.40a	0.04	0.0003
PER	3.34b	4.23a	3.83b	3.77a	3.28c	0.12	0.0001

Mortality, %

Item	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA	RMSE	P
Mortality, %	3.3	8.3	6.7	6.7	3.3	-	-

PC, positive control; NC, negative control; EAA, essential amino acids; NEAA, nonessential amino acids; RMSE, root-mean-square error; BW, body weight; DWG, daily weight gain; FL, feed intake; FCR, feed conversion ratio; PER, protein efficiency ratio. Data are mean for 5 replications of 12 birds per pen. *Means within rows followed by different superscript letters are significantly different (P<0.05).

Conclusions

Under the hot and humid environmental conditions, reduced growth performance of the broilers fed low-CP 16.2% CP diets with minimum EAA fortification can be restored by addition of NEAA. Moreover, increasing EAA more than requirements is unnecessary for optimum performance.
Table 6. Effect of amino acids supplementation to a low-protein diet on blood metabolites.

Diet	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA	RMSE	P
Alb, g/L	18.6	17.5	18.5	18.3	18.2	4.16	0.9825
TG, mmol/L	0.50^a	0.72^b	0.56^a	0.56^a	0.49^b	0.21	0.1343
TP, g/L	38.1	35.1	37.4	36.8	38.3	7.97	0.8999
UA, umol/L	579^c	238^d	463^c	470^c	603^d	204	0.0019

PC: positive control; NC: negative control; EAA: essential amino acids; NEAA: nonessential amino acids; RMSE: root-mean-square error. All birds per pen. Means within rows followed by different superscript letters are significantly different (P < 0.05).

Table 7. Effect of amino acids supplementation to a low-protein diet on relative weights of heart, liver, abdominal fat, and breast meat yield.

Diet	PC	NC	NC+EAA	NC+NEAA	NC+EAA+NEAA	RMSE	P
Heart	0.57	0.61	0.61	0.56	0.59	0.57	0.1799
Liver	2.11	2.46	2.45	2.23	2.19	0.34	0.1026
Abdominal fat	1.61	1.92	1.79	1.62	1.60	0.33	0.1326
Breast	20.5	20.3	20.3	20.6	20.4	1.73	0.9928

PC: positive control; NC: negative control; EAA: essential amino acids; NEAA: nonessential amino acids; RMSE: root-mean-square error. Data are means±SEM of 5 replications of 2 birds per pen.

References

Ahmed, A., Zulkifli, I., Soleimani, A.F., Abdullah, N., Liang, J.B., 2014. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens. Ital. J. Anim. Sci. 13:3022.

Aletor, V.A., Hamid, I.I., Niess, E., Pfeffer, E., 2000. Low protein amino acid supplemented diets in broiler chickens: effects on performance, carcass characteristics, whole body composition and efficiencies of nutrient utilisation. J. Sci. Food Agr. 80:547-554.

Breake, J., Balnave, D., Dibner, J.J., 1998. Optimum dietary arginine:lysine ratio for broiler chickens is altered during heat stress in association with changes in intestinal uptake and dietary sodium chloride. Brit. Poultry Sci. 39:639-647.

Bregendahl, K., Sell, J.L., Zimmerman, D.R., 2002. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poultry Sci. 81:1156-1167.

Cheng, T.K., Hambre, M.L., Coon, C.N., 1999. Responses of broilers to dietary protein levels and amino acid supplementation to low protein diets at various environmental temperatures. J. Appl. Poultry Res. 6:18-33.

Corzo, A., Fritts, C.A., Kidd, M.T., Kerr, B.J., 2005. Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Animal Feed Sci. Tech. 118:319-327.

Deschepper, K., DeGroote, G., 1995. Effect of dietary protein, essential and non-essential amino acids on the performance and carcass composition of male broiler chickens. Brit. Poultry Sci. 36:229-245.

Fatou, A.A., Rodeheutsording, M., 2005. Growth, body composition, and marginal efficiency of methionine utilization are affected by nonessential amino acid nitrogen supplementation in male broiler chicken. Poultry Sci. 84:1584-1592.

Hernández, E., López, M., Martínez, S., Megías, M.D., Catalá, P., Madrid, J., 2012. Effect of low-protein diets and single sex on productivity performance, plasma metabolites, digestibility, and nitrogen excretion in 1-to 48-day-old broilers. Poultry Sci. 91:683-692.

Hoehler, D., Lemme, A., Ravidran, V., Bryden, W.L., Rostagno, H.S., 2006. Feed formulation in broiler chickens based on standardized ileal amino acid digestibility. In: L.E. Cruz-Suarez, D. Rique-Marie, M. Tapia-Salazar, M.G. Nieto-Lopez, D.A. Villarreal-Cavazos, A.C. Puelo-Cruz and A. Garcia-Ortega (eds.) Advances in poultry nutrition, VIII. Universidad Autonoma de Nuevo Leon Publ., Monterrey, Nuevo Leon, Mexico, pp 197-212.

Kuipers, H., Li, X., Ravidran, V., Bryden, W.L., 2006. Comparison of apparent ileal amino acid digestibility of feed ingredients measured with broilers, layers, and roosters. Poultry Sci. 85:625-634.

Hurwitz, S., Weiselson, M., Eisner, U., Bartov, I., Riesenfeld, G., Shavit, M., Niv, A., Bornstein, S., 1980. The energy requirements and performance of growing chicks and turkeys as affected by environmental temperature. Poultry Sci. 59:2293-2299.

Hussein, A.S., Cantor, A.H., Pescatolu, A.J., Gates, R.S., Burnham, D., Ford, M.J., Paton, N.D., 2001. Effect of low protein diets with amino acid supplementation on broiler growth. J. Appl. Poultry Res. 10:354-362.

Leeson, S., 1986. Nutritional considerations of...
poultry during heat stress. World Poultry Sci. J. 42:69-81.

Kamran, Z., Mirza, M.A., Haq, A., Mahmood, S., 2004. Effect of decreasing dietary protein levels with optimal amino acids profile on the performance of broilers. Pak. Vet. J. 24:165-168.

Kidd, M.T., Kerr, B.J., Firman, J.D., Boling, S.D., 1996. Growth and carcass characteristics of broilers fed low-protein, threonine-supplemented diets. J. Appl. Poultry Res. 5:180-190.

Larbi, Z.M., Chagneau, A.M., Geraert, P.A., 1993. Influence of ambient temperature on true digestibility of protein and amino acids of rapeseed and soybean meals in broilers. Poultry Sci. 72:289-295.

Laudadio, V., Dambrosio, A., Normanno, G., Khan, R.U., Naz, S., Rowghani, E., Tufarelli, V., 2012. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol. Res. 5:88-92.

McGill, E., Kamyab, A., Firman, J.D., 2012a. Low crude protein corn and soybean meal diets with amino acid supplementation for broilers in the starter period. 1. Effects of feeding 15% crude protein. Int. J. Poult. Sci. 11:166-171.

McGill, E., Kamyab, A., Firman, J.D., 2012b. Low crude protein corn and soybean meal diets with amino acid supplementation for broilers in the starter period. 2. Effects of feeding 13% crude protein. Int. J. Poultry Sci. 11:166-171.

National Research Council, 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy Press, Washington, DC, USA.

Ojano-Dirain, C.P., Waldroup, P.W., 2002. Protein and amino acid needs of broilers in warm weather: a review. Int. J. Poultry Sci. 1:40-46.

SAS, 2005. SAS/STAT software, version 9.2. SAS Inst. Inc., Cary, NC, USA.

Si, J., Fritts, C.A., Waldroup, P.W., Burnham, D.J., 2004. Effects of excess methionine from meeting needs for total sulfur amino acids on utilization of diets low in crude protein by broiler chicks. J. Appl. Poultry Res. 13:579-587.

Sklan, D., Plavnik, I., 2002. Interactions between dietary crude protein and essential amino acid intake on performance in broilers. Brit. Poultry Sci. 43:442-449.

Smith, E.R., Pesti, G.M., Bakalli, R.I., Ware, G.O., Menten, J.F.M., 1998. Further studies on the influence of genotype and dietary protein on the performance of broilers. Poultry Sci. 77:1678-1687.

Sterling, K.G., Costa, E.F., Henry, M.H., Pesti, G.M., Bakalli, R.I., 2002. Responses of broiler chickens to cottonseed and soybean meal-based diets at several protein levels. Poultry Sci. 81:217-226.

Swennen, Q., Janssens, G.P., Collin, A., Le Bihan-Duval, E., Verbeke, K., Decuyper, E., Buyse, J., 2006. Diet-induced thermogenesis and glucose oxidation in broiler chickens: influence of genotype and diet composition. Poultry Sci. 85:731-742.

Swennen, Q., Janssens, G.P., Millet, S., Vansant, G., Decuyper, E., Buyse, J., 2005. Effects of substitution between fat and protein on feed intake and its regulatory mechanisms in broiler chickens: endocrine functioning and intermediary metabolism. Poultry Sci. 84:1051-1057.

Temim, S., Chagneau, A.M., Guillaumin, S., Michel, J., Peresson, R., Geraert, P.A., Tesseroad, S., 1999. Effects of chronic heat exposure and protein intake on growth performance, nitrogen retention and muscle development in broiler chickens. Reprod. Nutr. Dev. 39:145-156.

Temim, S., Chagneau, A.M., Guillaumin, S., Michel, J., Peresson, R., Tesseroad, S., 2000. Does excess dietary protein improve growth performance and carcass characteristics in heat-exposed chickens? Poultry Sci. 79:312-317.

Waldroup, P.W., 2007. Do crude protein levels really matter? pp 1-5 in 15th Annual ASAIM Southeast Asian Feed Technology and Nutrition Workshop, Conrad Bali Resort, Indonesia.

Waldroup, P.W., Jiang, Q., Fritts, C.A., 2005. Effects of supplementing broiler diets low in crude protein with essential and nonessential amino acids. Int. J. Poult. Sci. 4:425-431.

Waldroup, P.W., Mitchell, R.J., Payne, J.R., Hazen, K.R., 1976. Performance of chicks fed diets formulated to minimize excess levels of essential amino acids. Poultry Sci. 55:243-253.