Oral manifestations, dental management, and a rare homozygous mutation of the \textit{PRDM12} gene in a boy with hereditary sensory and autonomic neuropathy type VIII: a case report and review of the literature

Karim Elhennawy1, Seif Reda1, Christian Finke1, Luitgard Graul-Neumann2,3, Paul-Georg Jost-Brinkmann1 and Theodosia Bartzela1*

Abstract

\textbf{Background:} Hereditary sensory and autonomic neuropathy type VIII is a rare autosomal recessive inherited disorder. Chen \textit{et al}. recently identified the causative gene and characterized biallelic mutations in the PR domain-containing protein 12 gene, which plays a role in the development of pain-sensing nerve cells. Our patient’s family was included in Chen and colleagues’ study. We performed a literature review of the PubMed library (January 1985 to December 2016) on hereditary sensory and autonomic neuropathy type I to VIII genetic disorders and their orofacial manifestations. This case report is the first to describe the oral manifestations, and their treatment, of the recently discovered hereditary sensory and autonomic neuropathy type VIII in the medical and dental literature.

\textbf{Case presentation:} We report on the oral manifestations and dental management of an 8-month-old white boy with hereditary sensory and autonomic neuropathy-VIII over a period of 16 years. Our patient was homozygous for a mutation of PR domain-containing protein 12 gene and was characterized by insensitivity to pain and thermal stimuli, self-mutilation behavior, reduced sweat and tear production, absence of corneal reflexes, and multiple skin and bone infections. Oral manifestations included premature loss of teeth, associated with dental traumata and self-mutilation, severe soft tissue injuries, dental caries and submucosal abscesses, hypomineralization of primary teeth, and mandibular osteomyelitis.

\textbf{Conclusions:} The lack of scientific knowledge on hereditary sensory and autonomic neuropathy due to the rarity of the disease often results in a delay in diagnosis, which is of substantial importance for the prevention of many complications and symptoms. Interdisciplinary work of specialized medical and dental teams and development of a standardized treatment protocols are essential for the management of the disease. There are many knowledge gaps concerning the management of patients with hereditary sensory and autonomic neuropathy-VIII, therefore more research on an international basis is needed.

\textbf{Keywords:} Case report, Dental, \textit{PRDM12} gene, Hereditary sensory and autonomic neuropathy, HSAN-VIII, Oral manifestations

* Correspondence: theodosia.bartzela@charite.de
1Center for Dental and Craniofacial Sciences, Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Charité – Universitätsmedizin Berlin, Allmannshausen Str. 4-6, 14197 Berlin, Germany

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Hereditary sensory and autonomic neuropathy (HSAN) comprises a group of genetic disorders involving sensory and autonomic dysfunctions [1]. HSAN was classified into five main types [2]. Later, it was modified into subtypes [3–5] according to gene mutations, mode of inheritance, and clinical characteristics. HSAN types VI and VII were mentioned in the classification of Haga et al. [5]: Online Mendelian Inheritance in Man (OMIM) 614653 and 615548 respectively. HSAN type VIII (OMIM 616488) was recently characterized by Chen et al. [6] as a rare autosomal recessive disorder. Our patient’s family was included in their study. General characteristics, mode of inheritance, onset, and genes involved in each type of HSAN are presented in Table 1.

HSAN-VIII is characterized by five main features: insensitivity to pain and thermal stimuli, self-mutilation behavior, altered sweat and tear formation, absence of corneal reflexes, and presence of repeated infections of the skin and bone [6]. The syndrome was confirmed in 21 patients [6] and 10 different homozygous mutations in the PR domain-containing protein 12 gene (PRDM12) were identified [6]. Mutations in the PRDM12 gene in humans cause developmental defects in the sensory neurons, leading to loss of pain perception. Great loss of the small myelinated Aδ fibers occurred in patients with HSAN-VIII. Skin biopsies revealed that the peripheral terminals of unmyelinated C fibers were altered [6].

Patients carrying PRDM12 mutations lack the sensation of acute pain and temperature. Thus, these patients have numerous injuries, which may lead to recurrent infections of skin and bones, and bone deformities later in life. In addition, they lack corneal reflexes, which leads to progressive corneal scarring. However, other senses like light touch, vibration, and proprioception are normal. The only autonomic dysfunction observed was the reduction in sweating and tears formation. Intellectual abilities in patients with HSAN-VIII are normal [6].

Insensitivity to pain leads to severe oral mutilations, such as tooth luxation, severe dental attrition, premature tooth loss, bite wounds, and ulcers [7–9]. The tongue, followed by the lips, and the oral mucosa, are the most common sites of self-inflicted injuries [10, 11].

The diagnosis of HSAN is challenging due to its rarity, similarity in clinical presentation to other auto-aggression or self-mutilation diseases, and lack of simple diagnostic tests [12]. It is mainly confirmed by the clinical presentation, genetic analysis, pharmacological tests, and neuropathological examinations [13]. Management of patients affected by HSAN-VIII is complicated due to the patients’ lack of awareness and perception of pain.

We aimed to present the manifestations and dental management of a patient with HSAN-VIII harboring the homozygous mutation c.516G>C (p. Glu172Asp) in the PRDM12 gene [6], who has been followed up in our clinic for 16 years. A review on PubMed library (January 1985 to December 2016) on patients with HSAN with oral manifestations was performed (Table 2).

Case presentation
An 8-month-old white boy of Turkish origin initially presented to the Department of Pedodontics, at Charité – Universitätsmedizin Berlin Hospital, due to an unexplained early loss of his primary lower central incisors. He was the first child of healthy consanguineous parents (second-degree relatives); their younger daughter was healthy. Our patient had multiple injuries on his face and body and in his oral cavity due to self-mutilation (Fig. 1). Further medical history revealed that he was born with a bilateral foot deformity (Fig. 2), which resulted in the mandatory use of an orthopedic appliance, enabling him to walk normally (Fig. 3). At the age of 6 years and 2 months, he had a fracture in the metatarsal bone, leading to bone necrosis. This resulted in the placement of bone plates and the use of a wheelchair for long walking distances. He had several accidents, such as severe burns from boiling water without feeling any pain.

Prior to the first visit to the Department of Pedodontics at the age of 8 months, he had lost both mandibular primary central incisors for unknown reasons only 3 months after they erupted. His mandibular left lateral incisor was loose (mobility, grade 2). In addition, his mandibular left primary second molar (75) showed signs of enamel hypoplasia. He experienced no pain or discomfort during the dental procedures. A year later, he presented at our department due to the further loss of ten of his primary teeth (Fig. 4). The early loss of so many teeth raised suspicion of a systemic disorder. He was referred to the Department of Human Genetics at Charité – Universitätsmedizin Berlin. The following differential diagnoses of auto-aggression syndromes were suspected: congenital insensitivity to pain and anhidrosis (CIPA), Smith–Magenis syndrome, Lesch–Nyhan syndrome, or pantothenate kinase-associated neurodegeneration (PKAN). In addition, the following systemic diseases, which might cause premature loss of teeth, were suspected: Langerhans cell histiocytosis, hypophosphatemia, and Papillon–Lefèvre syndrome. The diagnosis of CIPA syndrome was thought to be closest to his condition. All other suspected auto-aggression syndromes and systemic diseases were excluded based on blood tests, genetic diagnosis, and further clinical examination. However, after deeper investigations, the diagnosis HSAN-VIII was considered the definitive diagnosis of our patient.

Partial dentures for maxilla and mandible were constructed to prevent speech impairment and to enhance his lower facial height (Fig. 5). Due to his high caries...
Types of HSAN	OMIM	Inher.	Onset	Clinical characteristics	Somatosensory modalities	Sweating	Genes/locus
HSAN-IA [2, 25, 28, 33, 34]	162400	AD	Mostly adolescence to adulthood	Hearing loss, loss of distal reflexes/distal muscle weakness, (no autonomic dysfunction)	Loss of pain and temperature sensation, lancinating pain	Normal	SPTLC1/9q22.31
HSAN-IB [2, 25, 28, 33–35]	608088	AD	Adulthood	Chronic cough, gastroesophageal reflux, hearing loss, alacrima, impotence	Sensory loss, lancinating pain	Normal to mild distal hypohidrosis	SPTLC1/3p24-2p22
HSAN-IC [2, 25, 28, 33, 34, 36]	613640	AD	Mostly adulthood	Ulcerative mutilations, variable distal motor involvement, distal muscle weakness, osteomyelitis	Loss of pain, lancinating pain, loss of temperature sensation in parts of the body, sensory loss in the upper and lower limbs	Normal	SPTLC2/14q24.3
HSN-ID [2, 25, 28, 33, 34, 37]	613708	AD	Adulthood	Ulcerative mutilations, trophic skin and nail changes, distal amyotrophy in the lower limbs	Distal sensory loss of the lower limbs	Normal	ATL1/14q22.1
HSN-IE [2, 25, 28, 33, 34, 38]	614116	AD	Adulthood	Ulcerative mutilations, hearing loss, dementia	Loss of all somatosensory modalities, lancinating pain	Normal	DNMT1/19p13.2
HSAN-IF [2, 25, 28, 33, 34, 39]	615632	AD	Adulthood	No autonomic involvement, diminished tendon reflexes, painless ulceration of the feet	Distal sensory loss of the lower limbs	Normal	ATL3/11q13.1
HSAN-IIA [2, 25, 28, 33, 34, 40]	201300	AR	Childhood	Self-mutilation behavior resulting in extensive orofacial injuries, weakness, acroptopy	Loss of pain, temperature and touch sensation, no autonomic dysfunction	Normal	WNK1/12p13.33
HSAN-IIB [2, 25, 28, 33, 34, 41]	613014	AR	Childhood	Ulcerative mutilations of hands, feet, and orofacial structures, osteomyelitis, urge incontinence	Impaired nociception	Hyperhidrosis	FAM134B/5p15.1
HSN-IIIC [2, 25, 28, 33, 34, 42]	614213	AR	Childhood to adolescence	Ulcerative mutilation and orofacial injuries, absent deep tendon reflexes, minor distal weakness, distal numbness of the hands and feet	Impaired position vibration senses	N/A	KIF1A/2937.3
HSAN-IIID [2, 4, 25, 28, 33, 34, 43]	243000	AR	Congenital or adolescence	Autonomic nervous dysfunction, hearing loss, hyposmia, bone dysplasia, orofacial self-mutilation injuries	Loss of pain and temperature sensation, hypogeusia	Hypohidrosis	SCN9A/2q24.3
HSAN-III [2, 26, 29, 33, 34, 44, 45 58 63–66]	223900	AR	Congenital	Profound autonomic dysfunction, vasomotor instability, absence of deep tendon reflexes, alacrima, impaired blood pressure regulation, failure to thrive, orofacial self-mutilation, absent fungiform papillae on the tongue, increased salivation, low caries index	Loss of pain and temperature sensation	Hyperhidrosis	IKBP/9q31.3
HSAN-IV [2, 8, 9, 11, 13, 14, 26, 28, 29, 34, 35, 44–51]	256800	AR	Congenital	Self-mutilation with orofacial injuries, deep tendon reflexes usually intact, recurrent fever, corneal lesions, mental retardation, recurrent infections, skin hyperkeratosis and fissuring, generalized tonic-clonic seizures	Loss of pain and temperature sensation	Hypohidrosis to anhidrosis	NTRK1/1q23.1
HSAN-V [2, 26, 29, 34, 35, 52]	608064	AR	Congenital	Similar to HSAN IV	Loss of pain and reduced thermal sensation, loss of deep pain perception	Normal to hypohidrosis	NGFB/1p13.2
HSAN-VI [33, 53]	614653	AR	Congenital	Lack of psychomotor development, autonomic abnormalities, absence of deep tendon reflexes, feeding and respiratory difficulties, neonatal hypotonia, alacrima, blotching	Loss of pain and temperature sensation	N/A	DST/6p12.1
------------------	--------	----	------------	---	---------------------------------	------	------------
HSAN-VII [33, 54, 55]	615548	AD	Congenital	Self-mutilation, painless fractures, delayed motor development, gastrointestinal dysfunction	Loss of pain sensation	Hyperhidrosis	SCN11A/3p22.2
HSAN-VIII [6, 30]	616488	AR	Onset in infancy	Self-mutilation behavior with orofacial injuries, painless fractures, skin and bone infections, corneal injuries, no mental retardation	Reduced pain and temperature sensation	Hypohidrosis	PRDM12/9q34.12
HSN with spastic paraplegia [33, 34]	256840	AR	Early childhood	Mutilation acropaathy, septic paraplegia	Loss of all somatosensory modalities	Normal	CCT5/5p15.2

AD autosomal dominant, AR autosomal recessive, ATL1 atlastin GTPase 1, ATL3 atlastin GTPase 3, CCT5 chaperonin TCP1 subunit 5, DNMT1 DNA (cytosine-5)-methyltransferase 1, DST dystonin, FAM134B family with sequence similarity 134 member B, HSAN hereditary sensory and autonomic neuropathy, HSN hereditary sensory neuropathy, IKBKAP inhibitor of kappa light polypeptide gene enhancer in B-cells kinase complex-associated protein, Inhet. mode of inheritance, KIF1A kinesin family member 1A, N/A not available, NGF nerve growth factor (beta polypeptide), NTRK1 neurotrophic tyrosine kinase-1 receptor, OMIM Online Mendelian Inheritance in Man, PRDM12 PR domain-containing protein 12, SCN11A sodium channel, voltage gated type XI alpha subunit, SPTLC1, serine palmitoyltransferase long chain base subunit 1, SPTLC2, serine palmitoyltransferase long chain base subunit 2, WNK1 WNK lysine deficient protein kinase 1.
Year of pub.	Authors	Type	Gene	Country/ ethnic group	Ts	N	Age	G	General characteristics	Oral manifestations
2016	Eregowda et al. [56]	IV	NTRK1	India/ Indian	CR	1	11 y	F	Thermal insensitivity, anhidrosis, low intelligence, deformed interphalangeal joints of fingers, corneal scarring, skin infections, osteomyelitis	Oral self-mutilation, dental traumata
2015	Ravichandra et al. [13]	IV	NTRK1	India/ N/A	CR	1	7 y	F	Insensitivity to pain and temperature, anhidrosis, self-mutilation, preservation of other sensory modalities, recurrent fever	Orofacial self-mutilation, dental traumata
2015	Ashwin et al. [11]	IV	NTRK1	India/ N/A	CS	8	4–17 y	6 M 2 F	Insensitivity to pain, self-mutilation, recurrent fever, recurrent infection in the lower limbs	Oral self-mutilation
2015	Chen et al. [6]	VIII	PRDM12	Inter/ Inter	GA	21	3–40 y	13 M 8 F	Insensitivity to pain and temperature, hypohidrosis, self-mutilation behavior, skin and bone infections, painless fractures, corneal injuries, no mental retardation	Orofacial self-mutilation
2014	Özkaya et al. [57]	IV	NTRK1	Turkey/ N/A	CR	1	10 y	M	Recurrent fever, anhidrosis, ulcers on the skin, osteomyelitis, hyperkeratotic lesions on elbows and knees	Orofacial self-mutilation
2014	Guven et al. [44]	IV	NTRK1	Turkey/ Turkish descent	CS	2	1 y, 17 y	M	Insensitivity to pain and temperature, self-mutilation behavior, non-healing skin, ulcations on the dorsum of the hands, anhidrosis, hypo- and hyper-pigmented skin	Orofacial self-mutilation
2013	Gao et al. [8]	IV	NTRK1	China/ N/A	CR	1	8 m	M	Recurrent fevers, anhidrosis, dry warm skin, congenital corneits	Oral self-mutilation, dental caries, malocclusion, cleft palate
2013	Fruchtman et al. [58]	IV	N/A	Israel/ N/A	CS	30	1 m–15 y	16 M 14 F	Infections, fever, orthopedic lesions	Orofacial self-mutilation
2010	Hutton and McKaig [45]	V	N/A	UK/ N/A	CR	1	6 y	F	N/A	Orofacial self-mutilation
2010	Zilberman et al. [46]	III	N/A	Israel/ N/A	HA	17	N/A	N/A	Thicker enamel formation	
2009	Neves et al. [9]	IV	NTRK1	Brazil/ N/A	CR	1	2 y	F	Unexplained fever episodes, anhidrosis, self-mutilation behavior, mental retardation	Oral self-mutilation
2009	Paduano et al. [59]	IV	N/A	Italy/ Italian descent	CR	1	8.11 y	M	Self-mutilation, recurrent fever, osteomyelitis	Oral ulcers, limited mouth opening
2008	Romero et al. [60]	IV	N/A	Spain/ N/A	CR	1	22 m	F	Self-mutilation, recurrent fever	Orofacial self-mutilation
Year	Authors	Level of Evidence	Country of Origin	Gender	Age	Findings/Manifestations				
------	---------	-------------------	-------------------	--------	-----	-------------------------				
2008	Singla et al. [47]	V	India/Indian descent	CR 1	10 y M	Insensitivity to pain, normal response to thermal stimuli, bilateral corneal opacities, hypoplasia of the nipples, presence of severe maxillary ridge resorption, congenitally missing permanent teeth				
2006	Butler et al. [25]	IV	NTRK1	CR 1	9 m M	Self-mutilation injuries on wrist and feet, insensitivity to pain, normal reaction to thermal stimuli				
2006	Schalka et al. [27]	IV	Brazil/Caucasian	CR 1	16 m F	Lack of painful stimuli, episodes of unexplained fever, hypohidrosis				
2006	Siqueira et al. [48]	V	Brazil/N/A	CS 2	22 y, 16 y	Insensitivity to pain, self-mutilation behavior				
2003	Bonkowski et al. [12]	IV	NTRK1	USA/Northern European	CR 1	4 m M	Hyperkeratosis on palms, skin fissuring			
2002	Mass et al. [52]	III	Israel/Ashkenazi-Jewish descent	CS 28	N/A N/A	Low levels of mutans streptococci and lactobacilli in saliva, high salivary flow				
2002	Wolf et al. [61]	III	Israel/Ashkenazi-Jewish descent	CS 46	6–16 y	Impaired pain perception, skeletal deformities, small stature, failure to thrive, recurrent pneumonia, orthostatic hypotension				
2000	Theodorou et al. [62]	IV	Greece/N/A	CR 1	4 y M	Insensitivity to pain, self-mutilation, bone fractures, anhidrosis, mental retardation				
2000	Erdem et al. [49]	IV	Turkey/N/A	CR 1	10 y M	Acute tibia osteomyelitis, broken finger tips				
1999	Kim et al. [50]	IV	Korea/N/A	CR 1	16 m M	Self-mutilation, fever, anhidrosis, generalized tonic-clonic seizures				
1998	Amano et al. [7]	IV	Japan/Asian	CS 18	1–22 y	Self-mutilation behavior, insensitivity to pain, anhidrosis, infections, malnutrition				
1998	Roed et al. [51]	II	UK/Asian	CR 1	4 y M	Sensory loss affecting all modalities of sensation predominantly involving the limbs, mutilation, anhidrosis, acropathy of finger tips and feet				
1998	Mass et al. [63]	III	Israel/Ashkenazi-Jewish descent	CS 32	58–19.8 y	Decreased pain sensation, impaired temperature and blood pressure regulation, alacrima, absent tendon reflexes				
1996	Mass et al. [64]	III	Israel/Ashkenazi-Jewish descent	CS 20	5–39 y	Decreased pain sensation, impaired temperature and blood pressure regulation, alacrima, absent tendon reflexes				
1994	Mass and Gadot [65]	III	N/A	CS 38	N/A	Dental trauma				
Year	Authors	Ts Type of Study	Country/Gender (Ethnicity)	CR/CS	N/A	G	Conditions	Oral/Facial Mutilation		
------	---------	-----------------	---------------------------	------	-----	---	----------------	------------------------		
1992	Mass et al. [66]	III	Israel/Ashkenazi-Jewish descent	CS 66	N/A	M	Decreased pain sensation, impaired temperature and blood pressure regulation, alacrima, absent tendon reflexes	Orfacial self-mutilation, dental trauma, low caries index, hypersalivation, absence of the fungiform papillae on the tongue		
1989	Kouvelas and Terzoglou [28]	IV	Greece/	CR 1	55 y	M	Insensitivity to pain, self-mutilation, fever, anhidrosis	Orfacial mutilation		
1987	Brahim et al. [67]	IV	USA/	CR 2	11 y, 7 y	M	Self-mutilation, fever, anhidrosis, osteomyelitis	Orfacial mutilation		
1986	Thompson et al. [68]	III	USA/Caucasian	CR 1	31 y	M	Insensitivity to pain, blotching of skin, diminished lacrimation	Orfacial mutilation (including auto-extraction of teeth), diminished taste sensation		
2016	Zhang et al. [30]	VIII	PRDM12	CS 5	23–57 y	4 M 1 F	Insensitivity to pain, normal neurological examinations and intellect, corneal abrasions, lack of tear production, recurrent infections, unexplained self-mutilation	Unexplained orofacial mutilation		

Review articles

Year	Authors	Ts Type of Study	Country/Gender (Ethnicity)	CR/CS	N/A	G	Conditions	Oral/Facial Mutilation
2015	Haga et al. [5]	IV, V	NTRK1, NGFB	RA N/A	N/A	N/A	Repeated fractures, joint dislocations, arthritis, osteomyelitis, avascular necrosis, Charcot arthropathy	Oral self-mutilation (including auto-extraction of teeth)
2014	Kumar et al. [69]	IV	NTRK1	RA N/A	N/A	N/A	N/A	Oral self-mutilation, premature loss of teeth, osteomyelitis, fractures of the jaws
2013	Limeres et al. [26]	IV	N/A	RA N/A	N/A	N/A	N/A	Oral self-mutilation (including auto-extraction of teeth)
2012	Mass [70]	III	IKBKAP	RA N/A	N/A	N/A	Insensitivity to pain and temperature, vasomotor instability, respiratory distress, orthostatic hypotension, insensitivity to hypoxia, decreased deep tendon reflexes, alacrima	Absence of fungiform papillae, dental trauma, orofacial self-mutilation, proportionally small jaws, crowding of teeth, low caries rate, hypersalivation, impaired taste sensation
2003	Nagasako et al. [71]	HSAN	N/A	RA N/A	N/A	N/A	Insensitivity to pain, self-mutilation, painless fractures, fever, hypohidrosis	Orfacial self-mutilation

CR case report, CS case series, F female, G gender, GA genetics article, HA histological article, IKBKAP inhibitor of kappa light polypeptide gene enhancer in B-cells kinase complex-associated protein, Inter international, m month(s), M male, N number of patients, N/A not available, NGFB nerve growth factor (beta polypeptide), NTRK1 neurotrophic tyrosine kinase-1 receptor, PRDM12 PR domain-containing protein 12, Pub. publication, RA review article, Ts type of study, y year(s), UK United Kingdom, USA United States of America
activity, an intensive prophylaxis program with continuous follow-up was implemented to avoid further dental deterioration and improve his oral health status. Over the years, with the help of an interdisciplinary medical team and his parents, he has shown great cooperation and completely ceased any sort of self-mutilation behavior.

Discussion

The pediatric dentist was the first to refer our patient to the human genetics department with the suspicion of HSAN syndrome, based on the premature loss of primary teeth and self-mutilation behavior. The initial diagnosis of our patient of CIPA or HSAN-IV was not confirmed by molecular analysis, since it did not detect a mutation in the neurotrophic tyrosine kinase-1 receptor gene (NTRK1), which is the receptor for nerve growth factor (NGF) related to CIPA syndrome [12]. Our patient harbored a homozygous mutation in the recently discovered gene PRDM12 [6]. Therefore, HSAN-VIII was his final diagnosis. Deoxyribonucleic acid (DNA) sequencing of the parents confirmed the segregation of the mutation in the family. The mode of inheritance was autosomal recessive [6]. Self-mutilation behavior is one of the most outstanding characteristics of HSAN syndrome. However, it is also common in other auto-aggression diseases, which makes the diagnosis challenging. Smith–Magenis syndrome was a differential diagnosis concerning the self-inflicted injuries [14], but a causative 17p.11.2 microdeletion was excluded by fluorescence in situ hybridization. As for Lesch–Nyhan syndrome, patients have dystonia and ballism [15], which were not symptoms of our patient. Further analysis did not reveal defects in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme, confirming the false diagnosis. PKAN is also characterized...
by dystonia and therefore was ruled out [16–19]. Blood tests excluded the systemic diseases of Langerhans cell histiocytosis and hypophosphatasia [20]. Hypophosphatasia was also excluded because of our patient’s normal total serum alkaline phosphatase activity [21–23]. Papillon–Lefèvre syndrome was not confirmed due to the absence of the diffuse palmoplantar hyperkeratosis and the progressive periodontitis [24]. Oral manifestations of HSAN are important, since they are one of the first complaints presented by affected patients. They can be detected early in life, starting with the eruption of the primary dentition [25]. Because of the variability and rarity of the clinical presentation of HSAN, no standard dental management protocols have been established. Patients with HSAN should be treated individually [26]. The dental treatment planning can be affected by several factors, such as age, mental development, and patient’s and parents’ compliance [27]. In the 1960s, the treatment approach for patients with HSAN was extraction of all primary teeth and construction of dentures in order to prevent self-mutilation. Nowadays, there are many dental treatment options for the prevention of self-mutilating behavior, varying from the elimination of sharp tooth surfaces by grinding or restoring them with resin composite, to the use of intraoral appliances such as mouthguards. Since the self-mutilation behavior of patients with HSAN-VIII starts in infancy, it may prove difficult to use intraoral appliances at that point. However, tooth extractions should be considered the last line of treatment. Early loss of teeth is one of the most frequent dental complications of HSAN. It is important to be able to deal with its consequences, such as speech impairment and increased incidence of malocclusions [25, 26, 28]. Professional dental cleaning, behavioral management, and routine check-up appointments were the cornerstones of our treatment plan. Prevention of dental disease is required in patients with HSAN, since caries progression and pulpal involvement can occur without causing any pain or discomfort. The parents of patients with HSAN play a crucial role in the management of the condition, since their psychological support is necessary to help the child understand his or her condition and prevent further injuries [27, 28]. The most critical phase of managing patients with HSAN would be building an understanding of the emotional experience of pain. A psychological approach should be introduced as early as possible [27]. Cognitive behavioral models for self-management and distress regulation have been proposed [29].

The literature search revealed that HSAN-IV (CIPA) is the most discussed form of HSAN in dentistry. Self-mutilation and auto-aggression are the first and most common clinical characteristics in all mentioned HSAN types (Table 2). The literature review results mainly consisted of case reports and case series, which is understandable due to the rarity of the syndrome. In contrast to our case report, a long follow-up period was not reported in the majority of publications. Our case report is, to the best of our knowledge, the first to discuss the oral manifestations and management of HSAN-VIII. Zhang et al. [30] also reported on the clinical characteristics of five patients with HSAN-VIII and was in line with Chen et al. [6]. The clinical characteristics described by Zhang et al. [30] that were found in all patients were: insensitivity to pain, normal neurological examinations and intellect, corneal abrasions, lack of tear production, recurrent infections, and unexplained oral self-mutilation (especially tongue injuries). There is a need for further dental and medical management solutions for these patients, as well as for well-educated practitioners [29]. There are many obstacles that have to be overcome since often there is a lack of resources for research and international collaboration and for accessible database and diagnostic and treatment tools. By expanding our knowledge on genetic and epigenetic factors that are critical for pain sensation, new fields are opened for therapeutic intervention in chronic and neuropathic pain conditions [6, 31, 32].

Conclusions

HSAN-VIII is a rare, complex, recently identified condition mainly characterized by insensitivity to pain and thermal stimuli. The affected persons are vulnerable to various complications and in severe cases, self-mutilation can lead to death. Early identification of the disease is important to prevent all these consequences. The literature contains mainly case reports and case series of patients with HSAN, therefore, there are many knowledge gaps concerning preventive and therapeutic approaches. Treatment efficacy depends on educating the family and supporting the child psychologically. Moreover, an interdisciplinary treatment approach, in which there is medical and dental interdisciplinary cooperation, is required for such patients. A homozygous mutation of the PRDM12 gene, which is responsible for the HSAN-VIII condition, was identified in our patient. Mutations in this gene cause developmental defects in sensory neurons before their transition to nociceptors.
Abbreviations
CIPA: Congenital insensitivity to pain and anhidrosis; HSAN-VIII: Hereditary sensory and autonomic neuropathy type VIII; NGF: Nerve growth factor; OMIM: Online Mendelian Inheritance in Man; NTRK1: Neurotrophic tyrosine kinase-1 receptor; PANK2: Pantothenate kinase-associated neurodegeneration; PRDM12: PR domain-containing protein 12 gene.

Acknowledgements
Not applicable.

Funding
This study was funded by the authors and their institutions.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Authors’ contributions
All authors have read and approved the final manuscript. LG is the human geneticist who did the genetic analysis and interpretation. CF, KE, and SR were the pediatric dentists of the patient. CF followed the dental treatment of the patient from 8 months of age until the present time. TB, PI, and KE conceived and designed the work, reviewed the literature and the differential diagnosis, and delineated the critical point for the discussion. All the authors gave their contribution to the drafting and critical review of the article.

Ethics approval and consent to participate
No ethical approval was needed. Informed consent was obtained from the patient’s legal guardians involved in this study.

Consent for publication
Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Center for Dental and Craniofacial Sciences, Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Charité – Universitätsmedizin Berlin, Allmannshausener Str. 4-6, 14197 Berlin, Germany. 2 Ambulantes Gesundheitszentrum, Campus Virchow Clinic, Charité – Universitätsmedizin Berlin, Berlin, Germany. 3 Charité Campus Virchow, Department of Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.

Received: 1 March 2017 Accepted: 11 July 2017
Published online: 15 August 2017

References
1. Dearborn G. A case of congenital pure analgesia. J Nerv Ment Dis. 1932;75: 612–5.
2. Dyck PJ, Melleril JF, Reagan TJ, Horowitz SJ, McDonald JW, Litchy WJ, et al. Not ‘indifference to pain’ but varieties of hereditary sensory and autonomic neuropathy. Brain. 1983;106(PI 2):373–90.
3. Rotheril A, Auer-Grumbach M, Janssen K, Baets J, Penno A, Almeida-Souza L, et al. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet. 2010;87:513–22.
4. Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T, Nozuma S, et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCXVM mutation. Neurology. 2013;80:1641–9.
5. Haga N, Kubota M, Miwa Z. Japanese Research Group on Congenital Insensitivity to Pain. Hereditary sensory and autonomic neuropathy types IV and V in Japan. Pediatr Int. 2011;53:360–6.
6. Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocles AC, Strom TM, et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet. 2015;47:803–8.
7. Amano A, Akiyama S, Ikeda M, Morigaki I. Oral manifestations of hereditary sensory and autonomic neuropathy type IV. Congenital insensitivity to pain with anhidrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86:425–31.
8. Gao L, Guo H, Ye N, Bai Y, Liu X, Yu P, et al. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis. PLoS One. 2013;8:e66863.
9. Neves BG, Roza RT, Castro GF. Traumatic lesions from congenital insensitivity to pain with anhidrosis in a pediatric patient: dental management. Dent Traumatol. 2009;25:45–9.
10. Bodner L, Woldenberg Y, Pink A, Levy J. Orofacial manifestations of congenital insensitivity to pain with anhidrosis: a report of 24 cases. ASDC J Dent Child. 2002;69:289–6, 235.
11. Ashwin DP, Chandan GD, Jaseen HK, Rajguru KM, Rudresh KB, Prashanth R. Hereditary sensory and autosomal peripheral neuropathy-type IV: case series and review of literature. Oral Maxillofac Surg. 2015;19:117–23.
12. Bonkowski JL, Johnson J, Carey JC, Smith AG, Swoboda KJ. An infant with primary tooth loss and palmar hyperkeratosis: a novel mutation in the NTRK1 gene causing congenital insensitivity to pain with anhidrosis. Pediatrics. 2003;112:e237–41.
13. Ravichandra KS, Kandregula CR, Koya S, Lakhota D. Congenital insensitivity to pain and anhidrosis: diagnostic and therapeutic dilemmas revisited. Int J Clin Pediatr Dent. 2015;8:75–81.
14. Girirajan S, Elias LJ, Devriendt K, Eisea 2nd SH. RA11 variations in Smith–Magenis syndrome patients without 17p11.2 deletions. J Med Genet. 2005;42:820–8.
15. Pozzi M, Piccinini L, Gallo M, Motto F, Radice S, Clementi E. Treatment of motor and behavioural symptoms in three Lesch-Nyhan patients with intrathecal baclofen. Orphanet J Rare Dis. 2014;9:208.
16. Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D’Amato I, et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet. 2012;21:5294–306.
17. Gregory A, Hayflick SJ, et al. Pantothenate Kinase-Associated Neurodegeneration. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, editors. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington, Seattle; 1993. All rights reserved.
18. Gregory A, Hayflick SJ. PANK2 mutation screening recommended to confirm diagnosis of pantothenate kinase-associated neurodegeneration. AJNR Am J Neuroradiol. 2006;27:951.
19. Yapiçi Z, Akcakaya NH, Teketurk P, Iseri SA, Ozbek U. A novel gene mutation in PANK2 in a patient with severe jaw-opening dystonia. Brain Dev. 2016; 38(8):755–8.
20. Calming U, Henter JI. Elevated erythrocyte sedimentation rate and thrombocytosis as possible indicators of active disease in Langerhans’ cell histiocytosis. Acta Paediatr. 1998;87:1085–7.
21. Fraser D. Hypophosphatasia. Am J Med. 1957;22:730–46.
22. Januratanasirikul S, Chanvitan P. Hypophosphatasia: the importance of alkaline phosphatase in bone mineralization. J Med Assoc Thai. 1999;82: 1268–72.
23. Reibel A, Maniere MC, Caufs F, Droz D, Alenbik Y, Monnet E, et al. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis. 2009;4:6.
24. Dharnidharka VP. Papillon-Lefevre syndrome: clinical presentation and a brief review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e1–7.
25. Butler J, Fleming P, Webb D. Congenital insensitivity to pain — review and report of a case with dental implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:58–62.
26. Limeres J, Feijoo JF, Baluja F, Seoane JM, Dinz M, Diaz P. Oral self-injury: an update. Dent Traumatol. 2013;29:28–14.
27. Schalka MM, Corea MS, Camponi AL. Congenital insensitivity-to-pain with anhidrosis (CIPA); a case report with 4-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:769–73.
