Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 risk and outcomes in adult asthmatic patients treated with biologics or systemic corticosteroids: Nationwide real-world evidence

Yochai Adir, MD, MHA,a,b Marc Humbert, MD, PhD,c,d,e and Walid Saliba, MD, MPHb,f

Haifa, Israel; and

Le Kremlin-Bicêtre and Le Plessis-Robinson, France

Background: Managing severe asthma during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is challenging, particularly due to safety concerns regarding the use of systemic corticosteroids and biologics.

Objectives: We sought to determine the association between biologics or systemic corticosteroids use and PCR positivity for SARS-CoV-2 and coronavirus disease 2019 (COVID-19) outcomes among asthmatic patients.

From athe Pulmonary Division, Lady Davis Carmel Medical Center, Faculty of Medicine Technion Institute of Technology and bRuth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa; cUniversité Paris-Saclay, Le Kremlin-Bicêtre; the Department of Respiratory and Intensive Care Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre; INSERM, UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson; and the Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa.

Disclosure of potential conflict of interest: Y. Adir reports personal fees from Teva and Sanofi and grants and personal fees from Glaxo Smith Kline (GSK) and Astra Zeneca, outside the submitted work. M. Humbert reports personal fees from Acceleron, GSK, Merck, Novartis, Astra Zeneca, and Sanofi and grants and personal fees from Actelion and Bayer, outside the submitted work. W. Saliba has nothing to disclose.

Received for publication February 20, 2021; revised May 31, 2021; accepted for publication June 3, 2021.

Available online June 15, 2021.

Corresponding author: Yochai Adir, MD, Pulmonary Division, Lady Davis Carmel Medical Center, 7 Michal St, Haifa, Israel. E-mail: adir-sh@zahav.net.il.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections.

© 2021 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.

https://doi.org/10.1016/j.jaci.2021.06.006
Methods: We used the computerized database of Clalit Health Services, the largest health care provider in Israel, to identify all asthmatic adult patients who underwent PCR testing for SARS-CoV-2, between March 1, 2020, and December 7, 2020. A cohort approach was used to assess the association between biologics use and steroids treatment and COVID-19 severity and 90-day mortality.

Results: Overall, 8,242 of 80,602 tested asthmatic patients had positive PCR testing result for SARS-CoV-2. Both biologics and systemic corticosteroids were not associated with increased risk of SARS-CoV-2 infection. Multivariate analyses revealed that biologics were not associated with a significantly increased risk of moderate to severe COVID-19, nor with the composite end point of moderate to severe COVID-19 or all-cause mortality within 90 days. Chronic systemic corticosteroid use was associated with significantly increased risk of all tested outcome. Recent (within the previous 120 days) systemic corticosteroid use, but not former use, was significantly associated with increased risk of both moderate to severe COVID-19 and the composite of moderate to severe COVID-19 or all-cause mortality.

Conclusions: Biologics approved for asthma and systemic corticosteroids are not associated with increased risk of SARS-CoV-2 infection. In contrast, systemic corticosteroids are an independent risk factor for worst COVID-19 severity and all-cause mortality. Our findings underscore the risk of recent or current exposure to systemic corticosteroids in asthmatic patients infected with SARS-CoV-2. (J Allergy Clin Immunol 2021;148:361-7.)

Key words: COVID-19, asthma, systemic corticosteroids, biologics

Several respiratory viral infections such as rhinovirus or influenza virus are definite risk factors for acute asthma exacerbations. Intriguingly, recent epidemiologic studies suggest that patients with asthma are not at increased risk of exacerbations when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and that asthmatic patients are not more susceptible to coronavirus disease 2019 (COVID-19) or to the development of severe COVID-19. The management of COVID-19 in severe asthma remains challenging, and it is unclear whether patients with severe asthma could be at a higher risk of worst outcomes at least in part because of safety concerns associated with therapies such as biologics or systemic corticosteroids (SCSs). Previous studies have suggested that the use of biologics for severe allergic and eosinophilic asthma was not associated with COVID-19 severity, but the number of patients included in the studies was small. Furthermore, an association has been suggested between recent SCS use and poor outcomes in asthmatic patients with COVID-19.

In the current study, we used a computerized database covering half of the Israeli population to evaluate the association between biologics or SCS use and PCR positivity for SARS-CoV-2, using case-control study approach in which patients with positive PCR test result constituted the cases and patients with negative PCR test result constituted the control group. In addition, a cohort approach was used to assess the association between biologics or SCS use and COVID-19 severity, among patients with positive PCR test result for SARS-CoV-2 (see Fig E1 in this article’s Online Repository at www.jacionline.org).

Selection of study population and study design

We used the computerized database of Clalit Health Services to retrospectively identify all adult (≥18 years) asthmatic patients (International Classification of Diseases Ninth Revision, 493.xx) who underwent PCR testing for SARS-CoV-2 between March 1, 2020, and December 7, 2020. Identified patients served to assess the association between biologics or SCS use and PCR positivity for SARS-CoV-2, using case-control study approach in which patients with positive PCR test result constituted the cases and patients with negative PCR test result constituted the control group. In addition, a cohort approach was used to assess the association between biologics or SCS use and COVID-19 severity, among patients with positive PCR test result for SARS-CoV-2 (see Fig E1 in this article’s Online Repository at www.jacionline.org).

Study variables

PCR test samples for SARS-CoV-2 are obtained from nasopharyngeal swabs. PCR testing is offered free of charge for all the population without a need for referral. Biologics or SCS use was determined on the basis of Clalit Health Services database. Since the start of the COVID-19 pandemic, the Israeli Ministry of Health has been collecting all COVID-19–related data and activities to a national database. Among these activities are active surveillance for all laboratory-confirmed SARS-CoV-2 infections, with mandatory daily reporting of PCR results, and active surveillance of COVID-19–associated hospitalizations by daily updates from all hospitals, including daily status definitions during hospitalization. The collected data are transferred daily to the health care providers.

Abbr. used

- COVID-19: Coronavirus disease 2019
- HR: Hazard ratio
- SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
- SCS: Systemic corticosteroid
The association of biologics or SCS was assessed with the following outcomes: (1) PCR positivity among asthmatic patients who were tested for SARS-CoV-2, (2) 90-day all-cause mortality, (3) moderate to severe COVID-19 as defined on the Israeli Ministry of Health’s guidelines, which are in accordance with the World Health Organization definitions,3 and (4) composite of moderate to severe COVID-19 or 90-day all-cause mortality.

In addition, for each patient the following baseline data were retrieved from the computerized database of the Clalit Health Services: demographic and other descriptive variables, smoking status (smoker, never smoker), and presence of selected chronic medical conditions including diabetes, hypertension, obesity, and ischemic heart disease.

Statistical methods

Statistical analyses were performed using IBM SPSS Statistics 24.0 (IBM, New York, NY). For all analyses, P less than .05 for the 2-tailed tests was considered statistically significant. Continuous variables were summarized with means and SD, and categorical variables were summarized with counts and proportions. Comparisons of baseline characteristics between patients with positive PCR test result and patients with negative PCR test result, and between patients on biologics and patients without biologics, were performed using the chi-square test for categorical variables and using the independent samples student t test for continuous variables.

Logistic regression models were used to examine the association between biologics or SCS use and PCR positivity among asthmatic patients who underwent PCR testing for SARS-CoV-2. Cox proportional hazard regression models were used to assess the association between recent biologics use or SCS use, among patients with positive PCR test result, and each of the following outcomes: (1) moderate to severe COVID-19, (2) 90-day all-cause mortality, and (3) the composite of moderate to severe COVID-19 or 90-day all-cause mortality. To examine the independent association of biologics and SCS use, the multivariate regression models were adjusted for age, sex, ethnicity, diabetes, hypertension, ischemic heart disease, obesity, and smoking. Time to event was defined as the time that elapsed from the date of positive PCR test result (date of cohort entry) until the first occurrence of study outcomes, death, or end of follow-up, whichever came first. Multivariate Cox regression models were used to depict the adjusted cumulative incidence curves of the study outcomes. An interaction between biologics and SCS use was tested by including an interaction factor of both variables into the multivariate Cox regression model.

RESULTS

Overall, 80,602 adult asthmatic patients (age ≥18 years) underwent PCR testing for SARS-CoV-2 between March 1, 2020, and December 7, 2020. For patients with at least 1 positive PCR test result, the first dated positive test was selected. For patients with consistently negative PCR test results, the first dated test was selected. Of them, 8242 (10.2%) were found to be positive for SARS-CoV-2 (Fig E1). The distribution of demographic and clinical baseline characteristics by PCR status (positive vs negative) is presented in Table E1 in this article’s Online Repository at www.jacionline.org. Asthmatic patients who tested positive for SARS-CoV-2 were more likely to be younger, female, of an Arabic origin, and with significantly higher prevalence of obesity and diabetes, as compared with those who tested negative. No significant differences in SCS and biologics use were found between the 2 groups. Only 464 (0.6%) patients with negative PCR test result and 50 (0.6%) patients with positive PCR test result were biologics users. The distribution of the different types of biologics was similar in both groups, with omalizumab being the most frequently used, followed by mepolizumab, benralizumab, dupilumab, and reslizumab (Table E1).

Biologics and SCS use was not associated with an increased risk of infection with SARS-CoV-2 in multivariate analyses (for biologics use: adjusted odds ratio, 0.99; 95% CI, 0.73-1.33; for SCS use: adjusted odds ratio, 0.96; 95% CI, 0.90-1.03), as compared with no use (see Tables E2 and Table E3 in this article’s Online Repository at www.jacionline.org).

The second phase of the analysis was restricted to the 8242 adult asthmatic patients with positive PCR test result for SARS-CoV-2 and aimed to assess the association of biologics or SCS use and outcomes. The baseline characteristics of biologics users (n = 50) and nonusers (n = 8192) are reported in Table I. Patients on biologics were older, mainly female with a significantly higher prevalence of diabetes, obesity, and hypertension, and had a significantly higher use of SCSs (Table I). Blood eosinophils count was available in 90% of biologics users. Among anti–IL-5 users, the mean absolute eosinophils count was 42 ± 39/μL.

![Table I. Baseline characteristics of the study population](image-url)
TABLE II. Multivariate analysis for the association between biologics use and COVID-19 severity (moderate-severe) among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.053 (1.050-1.060)	<.001
Sex		
Males	1.23 (1.02-1.48)	.033
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.67 (1.38-2.01)	<.001
Diabetes	1.30 (1.07-1.57)	.009
Hypertension	1.36 (1.07-1.73)	.012
Obesity	1.40 (1.16-1.70)	.001
IHD	1.33 (1.09-1.63)	.006
Smoking (ever)	1.09 (0.90-1.32)	.381
Steroids use in the previous year (no. of filled prescriptions)		
None	Reference	
1 prescription	1.06 (0.81-1.39)	.655
2 prescriptions	1.54 (1.10-2.15)	.012
≥3 prescriptions	2.09 (1.65-2.65)	<.001
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.28 (0.60-2.73)	.519

*IHD, Ischemic heart disease.

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.

Multivariate analyses revealed that biologics use was not associated with a significantly increased risk of moderate to severe COVID-19 (adjusted hazard ratio [HR], 1.28; 95% CI, 0.60-2.73; Table II), nor with the composite end point of moderate to severe COVID-19 or all-cause mortality within 90 days (adjusted HR, 1.42; 95% CI, 0.70-2.88; Table III), or all-cause mortality within 90 days (adjusted HR, 1.04; 95% CI, 0.14-7.59; see Table E4 in this article’s Online Repository at www.jacionline.org). The adjusted cumulative incidence curves of the composite end point are depicted, by biologics use status, in Fig E2, A, in this article’s Online Repository at www.jacionline.org. No significant interaction was found between biologics use and the composite end point are depicted, by the number of filled SCS prescriptions, in Fig E2, B. Chronic SCS use was associated with significantly increased risk of all tested outcomes: adjusted HR 2.19 (95% CI, 1.63-2.94) for moderate to severe COVID-19, HR 2.00 (1.18-3.40) for all-cause mortality, and HR 2.07 (95% CI, 1.55-2.76) for the composite of moderate to severe COVID-19 or all-cause mortality (Tables IV and V; see Tables E5-E7 in this article’s Online Repository at www.jacionline.org). Recent (within the previous 120 days) SCS use, but not former use, was significantly associated with increased risk of both moderate to severe COVID-19, HR 1.92 (95% CI, 1.55-2.38), and the composite of moderate to severe COVID-19 or all-cause mortality, HR 1.76 (95% CI, 1.43-2.17) (Tables IV and V; see Tables E8 and E9 in this article’s Online Repository at www.jacionline.org).

The independent association of the other covariates with the examined outcomes is presented in Tables II and III, and in Tables E4 and E6 to E11 in this article’s Online Repository at www.jacionline.org. In general, male sex, Arabic origin, diabetes, hypertension, obesity, and ischemic heart disease were all significantly associated with increased risk of moderate to severe COVID-19 and the composite of COVID-19 severity or all-cause mortality (Tables II and III and E6-E11).

DISCUSSION

Whether biologic therapies approved for severe allergic and eosinophilic asthma are risk factors for poor COVID-19 outcomes is still debated. Indeed, eosinophils have an active role in the innate immunity against respiratory viral infections, and previous studies have reported that eosinopenia was associated with...
In type 2 characteristic of allergic and/or eosinophilic asthma has opposite effects on SARS-CoV-2 receptors. On one hand, it enhances transmembrane serine protease 2 expression; on the other hand, it reduces SARS-CoV-2 receptors. On one hand, it enhances transmembrane serine protease 2 expression, thus making it difficult to predict how this could influence SARS-CoV-2 infection and subsequent COVID-19 severity and outcomes. The role of inhaled corticosteroids and SCSs in risk of SARS-CoV-2 infection and COVID-19 severity is not clear. Schultz et al using the OpenSAFELY platform reported an increased risk of death from COVID-19 among people with asthma prescribed high-dose inhaled corticosteroids; however, various sensitivity analyses indicated that this increased mortality risk could be explained by unmeasured confounders. In contrast, a large multicenter prospective cohort study by Bloom et al reported that patients with severe asthma were significantly more likely than those with no underlying respiratory condition to receive critical care and ventilatory support even after adjusting for severity on admission, age, and comorbidities. Interestingly, the use of inhaled corticosteroids in patients aged 50 years and older within 2 weeks of admission was associated with decreased mortality. Other studies did not provide clear evidence of increased risk of COVID-19 severity, hospitalization, or mortality in asthmatic patients. The data on SCSs in asthma and COVID-19 are scarce. The results of the Randomized Evaluation of Covid-19 Therapy (RECOVERY) trial showed that oral or intravenous administration of dexamethasone significantly reduces 28-day mortality among patients admitted to hospital with COVID-19 receiving invasive mechanical ventilation or oxygen, whereas Williamson et al using the OpenSAFELY platform to examine factors associated with COVID-19–related death reported that severe asthma defined by recent SCS use was associated with increased mortality. In a smaller group of 15 asthmatic patients who received SCSs (13 of them in the 2 weeks before COVID-19 diagnosis), Chhiba et al reported that SCS use was not associated with COVID-19–related hospitalization.

Our large nationwide study of 80,602 adult asthmatic patients shows that patients treated with biologics or SCSs are not at a higher risk of SARS-CoV-2 infection. In addition, there was no significant risk of moderate to severe COVID-19 and mortality in severe asthmatic patients treated with biologics, when compared with those not receiving biologics. In contrast, SCS use was an independent risk factor for worst COVID-19 severity and all-cause mortality. Therefore, our findings underscore the risk of recent or chronic SCS use in asthmatic patients infected with SARS-CoV-2.

Two recent studies had suggested a higher susceptibility of SARS-CoV-2 infection in asthmatic patients, when compared with the general population, especially in those with severe asthma on biologic therapy. In contrast, data from the Belgian Severe Asthma Registry reported a relatively low incidence of COVID-19 in patients with severe asthma and no association with a higher risk of SARS-CoV-2 infection. Moreover, asthmatic patients were not overrepresented in a cohort of consecutive patients with severe pneumonia due to SARS-CoV-2 infection who required hospitalization during the Spring 2020 outbreak in Paris. Our study shows that severe asthmatic patients treated with biologic therapies for severe allergic and eosinophilic asthma are not more likely to be infected with SARS-CoV-2, as compared with asthmatic patients who were not treated with biologics. Importantly, in our study, all cases of COVID-19 were diagnosed by positive PCR test result for SARS-CoV-2, whereas...
TABLE V. Multivariate analysis for the association between steroids use and the composite of moderate to severe COVID-19 or all-cause mortality within 90 d following PCR date among adult asthmatic patients with positive PCR test result for SARS-CoV-2, using different specifications of steroid use (n = 8242)

Variable	HR (95% CI)	P value	Adjusted*
Steroids use in the previous year			
None	Reference		
Yes	1.38 (1.16-1.64)	<.001	
Steroids use in the previous year			
None	Reference		
Recent (<120 d)	1.76 (1.43-2.17)	<.001	
Former (120-365 d)	1.04 (0.82-1.33)	.734	
Chronic steroids treatment (≥6 prescriptions in the previous year)			
None	Reference		
Yes	2.07 (1.55-2.76)	<.001	
Steroids use in the previous year (no. of filled prescriptions)			
None	Reference		
1 prescription	1.01 (0.78-1.30)	.955	
2 prescriptions	1.39 (1.001-1.93)	.049	
≥3 prescriptions	1.92 (1.52-2.41)	<.001	

Detailed multivariable models are shown in Tables III, E7, E9, and E11.
*Adjusted for age, sex, ethnicity, diabetes, hypertension, ischemic heart disease, obesity, smoking, and biologics use.

Clinical implication: Our results emphasize the need for optimized management of asthma to achieve disease control and avoid whenever possible the need for chronic or recurrent use of SCSs.

REFERENCES
1. Saita I, Cusack R, Greene JM, O’Byrne PM, Killian KJ, Johnston N. Prevalence and contribution of respiratory viruses in the community to rates of emergency department visits and hospitalizations with respiratory tract infections, chronic obstructive pulmonary disease and asthma. PLoS One 2020;15:e0228544.
2. Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory tract infections in asthma exacerbations. Lancet 2010;376:826-34.
3. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 2020;91:5.
4. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323:1239-42.
5. COVID View. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/pdf/covidview-05-01-2020.pdf. Accessed August 17, 2020.
6. Heffler E, Detoraki A, Contoli M, Papi A, Pasotti G, Malipiero G, et al. COVID-19 in Severe Asthma Network in Italy (SANI) patients: clinical features, impact of comorbidities and treatments. Allergy 2021;76:887-92.
7. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2023-9.
8. Maes T, Bracke K, Brusselle GG. Reply to: inhaled corticosteroids and COVID-19. Am J Respir Crit Care Med 2020;202:900-2.
9. Choi HG, Wee JH, Kim SY, Kim JH, Kim HI, Park J-Y, et al. Association between asthma and clinical mortality/morbidity in COVID-19 patients using clinical epidemiologic data from Korean Disease Control & Prevention. Allergy 2021;76:201-6.

10. Zhu Z, Hasegawa K, Ma B, Fujiygo M, Camargo CA, Liang L. Association of asthma and its genetic predisposition with the risk of severe COVID-19. J Allergy Clin Immunol 2020;146:327-9.

11. Green I, Merzon E, Vinker S, Golan-cohen A, Magen E. COVID-19 susceptibility in bronchial asthma. J Allergy Clin Immunol Pract 2020;8:684-92.

12. Lieberman-Cribbin W, Rapp J, Alpert N, Tuminello S, Taioli E. The impact of asthma on mortality in patients with COVID-19. Chest 2020;194:2019-20.

13. Hanon S, Brusselle G, Deschampheleire M, Louis R, Michils A, Peché R, et al. COVID-19 and biologics in severe asthma: data from the Belgian Severe Asthma Registry. Eur Respir J 2020;56:2002837.

14. Beurnier A, Jutant EM, Jevnikar A, Pichon J, Preda M, et al. Characteristics and outcomes of asthmatic patients with COVID-19 pneumonia who require hospitalisation. Eur Respir J 2020;56:2001875.

15. Izquierdo JL, Almonacid C, Gonzalez Y, Del Rio-Bermudez C, Ancochea J, Cardenas R, et al. The impact of COVID-19 on patients with asthma. Eur Respir J 2021;57:2003142.

16. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584:430-6.

17. Preis M, Hirsch J, Kotler A, Zoabi A, Stein N, Rennert G, et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood 2017;129:1210-5.

18. Saliba W, Barnett-Griness O, Gironch N, Molad J, Naftali J, Rennert G, et al. Association of diabetes and glycated hemoglobin with the risk of intracerebral hemorrhage: a population-based cohort study. Diabetes Care 2019;42:682-8.

19. World Health Organization. Clinical management of COVID-19. 2020. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMIo_XM_pik6wIVyrHtCh2-NA61EAAYASAAEgKZRPDBwE. Accessed August 17, 2020.

20. Morais-Almeida M, Aguiar R, Martin B, Anotejgui IJ, Ebswa W, Arruda LK, et al. COVID-19, asthma, and biological therapies: what we need to know. World Allergy Organ J 2020;13:100126.

21. Zhang J, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020;75:1730-41.

22. Lindsay AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol 2020;46:1-7.

23. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am J Respir Crit Care Med 2020;201:1372-9.

24. Sajadi SP, DeFord P, Li Y, Jackson ND, Montgomery MT, Everman JL, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nat Commun 2020;11:5139.

25. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al; COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy. JAMA 2020;323:1574-81.

26. Zhu J, Li P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3,062 COVID-19 patients: a meta-analysis. J Med Virol 2020;92:1902-14.

27. Schultze A, Walker AJ, MacKenna, Morton CE, Bhaskaran K, Brown JP, et al. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform. Lancet Respir Med 2020;8:1106-20.

28. Bloom CI, Drake TM, Docherty AB, Lipworth BJ, Johnston SL, Nguyen-Van-Tam JS, et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK [published online ahead of print Match 4, 2021]. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(21)00013-8.

29. Terry PD, Heidel RE, Dhand R. Asthma in adult patients with COVID-19: prevalence and risk of severe disease [published online ahead of print January 25, 2021]. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202008-3266OC.

30. Lovinsky-Desir S, Deshpande DR, De A, Murray L, Stingone JA, Chan A, et al. Asthma among hospitalized patients with COVID-19 and related outcomes. J Allergy Clin Immunol 2020;146:1027-34.

31. Chihaba KD, Patel GB, Yu TH, Chen MM, Guo A, Kudlaty E, et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allergy Clin Immunol 2020;146:307-14.

32. Ferarraozzi D, Hudes G, Sershow E, Jariwala S, Karagic M, de Vos G, et al. Eosinophilia in asthma patients is protective against severe COVID-19 illness. J Allergy Clin Immunol Pract 2021;9:1152-62.

33. Choi YJ, Park J-Y, Lee HS, Suh J, Song JY, Byun MK, et al. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur Respir J 2021;57:2002226.

34. Global Initiative for Asthma. Global strategy for asthma management and prevention, 2020. Available at: www.ginasthma.org.
80,602 adult (age ≥18 years) asthmatic patients from the CHS underwent PCR testing for SARS-CoV-2 between 01.03.2020 and 07.12.2020.

8,242 (10.2%) were found to have positive PCR test for SARS-CoV-2.

These patients were used to assess the association between biologics use and PCR positivity for SARS-CoV-2 using case-control approach:

Cases: 8,242 with positive PCR

Controls: 72,360 with negative PCR.

These patients were included in a cohort study to assess the association between biologics use and severity of COVID-19:

1. Moderate to severe COVID-19
2. 90-day all-cause mortality
3. Composite of moderate to severe COVID-19 and all-cause mortality within 90-day following PCR test date.

FIG E1. Flowchart describing the selection process and evaluation of the study population. CHS, Clalit Health Services.
FIG E2. Adjusted* cumulative incidence curves, (A) for biologics use and (B) for steroids use, of the composite of moderate to severe COVID-19 and all-cause mortality within 90 days following PCR test date among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242).
TABLE E1. Baseline characteristics of the study population

Variable	PCR for SARS-CoV-2 status	\(P \) value
Age (y)		\(<.001\)
Mean ± SD	43.3 ± 20.4	44.9 ± 20.4
Median (interquartile range)	37.5 (25.4-59.1)	39.1 (27.7-60.6)
Female sex	3,899 (47.3)	32,384 (45.4)
Ethnicity		\(<.001\)
Jews	6,076 (73.7)	60,907 (84.2)
Arabs	2,166 (26.3)	11,453 (15.8)
Diabetes	1,316 (16.0)	10,062 (13.9)
Hypertension	1,709 (20.7)	15,044 (20.8)
Obesity	2,673 (32.4)	20,846 (28.8)
Ischemic heart disease	627 (7.6)	6,051 (8.4)
Steroids use in the previous year		\(.018\)
Yes	1,358 (16.5)	12,474 (17.2)
No	6,884 (83.5)	59,886 (82.8)
Steroids use in the previous year		\(.074\)
No	6,884 (83.5)	59,886 (82.8)
Recent (≤120 d)	590 (7.2)	5,687 (7.9)
Former (120-365 d)	768 (9.3)	6,787 (9.4)
Chronic steroids treatment (≥6 prescriptions in the previous year)		\(.645\)
Yes	162 (2.0)	1,477 (2.0)
No	8,080 (98.0)	70,883 (98.0)
Steroid use in the previous year (no. of filled prescriptions)		\(.222\)
0 prescription	6,884 (83.5)	59,886 (82.8)
1 prescription	727 (8.8)	6,730 (9.3)
≥2 prescriptions	276 (3.3)	2,376 (3.3)
≥3 prescriptions	355 (4.3)	3,368 (4.7)
Biologics use		\(.881\)
None	8,192 (99.4)	71,896 (99.4)
Omalizumab	24 (0.3)	200 (0.3)
Benralizumab	7 (0.1)	71 (0.1)
Mepolizumab	13 (0.2)	122 (0.2)
Reslizumab	3 (0.04)	17 (0.02)
Dupilumab	3 (0.04)	54 (0.1)

Biologics use was defined as the documentation of filling at least 1 prescription of omalizumab, benralizumab, mepolizumab, reslizumab, or dupilumab in the 120 d before the PCR date.
TABLE E2. Multivariate analysis for the association between biologics use and PCR positivity among adult asthmatic patients who underwent PCR testing for SARS-CoV-2 (n = 80,602)

Variable	Adjusted odds ratio (95% CI)	P value
Age (for each year increase)	0.997 (0.995-0.998)	<.001
Sex		
Males	1.14 (1.08-1.19)	<.001
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.74 (1.64-1.83)	<.001
Diabetes	1.27 (1.18-1.38)	<.001
Hypertension	1.06 (0.98-1.15)	.150
Obesity	1.16 (1.10-1.22)	<.001
Ischemic heart disease	0.93 (0.84-1.02)	.139
Steroids use in the previous year (no. of filled prescriptions)		
None	Reference	
1 prescription	0.94 (0.87-1.02)	.163
2 prescriptions	1.04 (0.91-1.18)	.564
≥3 prescriptions	0.95 (0.84-1.06)	.343
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	0.99 (0.73-1.33)	.936
TABLE E3. Multivariate analysis for the association between steroid use and PCR positivity among adult asthmatic patients who underwent PCR testing for SARS-CoV-2 (n = 80,602)

Variable	Adjusted odds ratio (95% CI)	P value
Steroids use in the previous year		
None	Reference	
Yes	0.96 (0.90-1.03)	.234
Steroids use in the previous year		
None	Reference	
Recent (<120 d)	0.92 (0.84-1.01)	.084
Former (120-365 d)	0.99 (0.92-1.08)	.862
Chronic steroids treatment (≥6 prescriptions in the previous year)		
None	Reference	
Yes	1.00 (0.85-1.19)	.967
Steroids use in the previous year (no. of filled prescription)		
None	Reference	
1 prescription	0.94 (0.87-1.02)	.163
2 prescriptions	1.04 (0.91-1.18)	.564
≥3 prescriptions	0.94 (0.84-1.06)	.343

Presented are 4 models that include different classification of steroids treatment.
TABLE E4. Multivariate analysis for the association between biologics use and all-cause mortality within 90 d following PCR test date among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.11 (1.09-1.12)	<.001
Sex		
Males	1.63 (1.14-2.33)	.008
Females Reference		
Ethnicity		
Jews Reference		
Arabs	1.07 (0.71-1.63)	.723
Diabetes	1.73 (1.22-2.47)	.002
Hypertension	1.44 (0.87-2.37)	.154
Obesity	1.12 (0.79-1.59)	.514
IHD	1.85 (1.31-2.60)	<.001
Smoking (ever)	0.74 (0.50-1.09)	.124
Steroids use in the previous year (no. of filled prescriptions)		
None Reference		
1 prescription	0.91 (0.53-1.56)	.733
2 prescriptions	0.86 (0.42-1.78)	.694
≥3 prescriptions	1.64 (1.05-2.59)	.032
Biologics use (at least 1 prescription filled in the previous 120 d)		
None Reference		
Yes	1.04 (0.14-7.59)	.969

*IHD, Ischemic heart disease.

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
Multivariate analysis for the association between steroids use and *all-cause mortality* within 90 d following PCR test date among adult asthmatic patients with positive PCR test result for SARS-CoV-2, using different specifications of steroid use (*n* = 8242)

Variable	Adjusted* HR (95% CI)	P value
Steroids use in the previous year		
None	Reference	
Yes	1.16 (0.81-1.64)	.418
Steroids use in the previous year		
None	Reference	
Recent (<120 d)	1.40 (0.92-2.15)	.120
Former (120-365 d)	0.93 (0.57-1.51)	.769
Chronic steroids treatment (≥6 prescriptions in the previous year)		
None	Reference	
Yes	2.00 (1.18-3.40)	.010
Steroids use in the previous year (no. of filled prescriptions)		
None	Reference	
1 prescription	0.91 (0.53-1.56)	.733
2 prescriptions	0.86 (0.42-1.78)	.694
≥3 prescriptions	1.64 (1.04-2.59)	.032

*Adjusted for age, sex, ethnicity, diabetes, hypertension, ischemic heart disease, obesity, smoking, and biologics use.
Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.054 (1.047-1.060)	<.001
Sex		
Males	1.23 (1.02-1.49)	.029
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.72 (1.43-2.08)	<.001
Diabetes	1.32 (1.08-1.60)	.005
Hypertension	1.37 (1.07-1.74)	.011
Obesity	1.41 (1.16-1.71)	<.001
IHD	1.32 (1.07-1.61)	.008
Smoking (ever)	0.90 (0.74-1.09)	.285
Chronic steroids treatment (≥6 prescriptions in the previous year)		
None	Reference	
Yes	2.19 (1.63-2.94)	<.001
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.39 (0.65-2.97)	.391

*IHD, Ischemic heart disease.

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
TABLE E7. Multivariate* analysis for the association between *chronic steroids use* and the *composite of moderate to severe COVID-19 or all-cause mortality* within 90 d following PCR date among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.057 (1.051)	<.001
Sex		
Males	1.24 (1.03-1.48)	.020
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.60 (1.33-1.92)	<.001
Diabetes	1.38 (1.14-1.66)	.001
Hypertension	1.36 (1.08-1.72)	.009
Obesity	1.37 (1.14-1.64)	.001
IHD	1.36 (1.12-1.65)	.002
Smoking (ever)	0.93 (0.78-1.12)	.475
Chronic steroids treatment (≥6 prescriptions in the previous year)		
None	Reference	
Yes	2.07 (1.55-2.76)	<.001
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.50 (0.74-3.05)	.259

IHD, ischemic heart disease.

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
Table E8. Multivariate* analysis for the association between steroids use in the prior year (none/recent/former) and COVID-19 severity (moderate-severe) among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.053 (1.047-1.060)	<.001
Sex		
Males	1.23 (1.02-1.48)	.031
Females	Reference	
Ethnicity		
Jews	Reference	<.001
Arabs	1.66 (1.37-2.01)	
Diabetes	1.30 (1.07-1.58)	.009
Hypertension	1.36 (1.07-1.73)	.013
Obesity	1.40 (1.15-1.70)	.001
IHD	1.34 (1.09-1.64)	.005
Smoking (ever)	0.90 (0.75-1.09)	.295
Steroids use in the previous year		
None	Reference	
Recent (≤120 d)	1.92 (1.55-2.38)	<.001
Former (120-365 d)	1.16 (0.87-1.43)	.390
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.46 (0.67-3.09)	.325

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
TABLE E9. Multivariate* analysis for the association between steroids use in the prior year (none/recent/former) and the composite of moderate to severe COVID-19 or all-cause mortality within 90 d following PCR date among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.057 (1.050-1.063)	<.001
Sex		
Males	1.23 (1.03-1.48)	.022
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.55 (1.29-1.87)	<.001
Diabetes	1.36 (1.13-1.63)	.011
Hypertension	1.35 (1.07-1.70)	.001
Obesity	1.35 (1.13-1.63)	
IHD	1.38 (1.14-1.68)	.001
Smoking (ever)	0.94 (0.80-1.12)	.480
Steroids use in the previous year		
None	Reference	
Recent (≤120 d)	1.76 (1.43-2.17)	<.001
Former (120-365 d)	1.04 (0.82-1.33)	.734
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.61 (0.80-3.25)	.185

IHD, Ischemic heart disease.
*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
TABLE E10. Multivariate* analysis for the association between steroids use in the prior year (yes/no) and COVID-19 severity (moderate-severe) among adult asthmatic patients with positive PCR test result for SARS-CoV-2 (n = 8242)

Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.054 (1.047-1.060)	<.001
Sex		
Males	1.25 (1.03-1.50)	.021
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.66 (1.38-2.01)	<.001
Diabetes	1.30 (1.07-1.57)	.009
Hypertension	1.37 (1.08-1.75)	.010
Obesity	1.40 (1.16-1.70)	.001
IHD	1.31 (1.07-1.61)	.009
Smoking (ever)		.247
Steroids use in the previous year		
None	Reference	
Yes	1.49 (1.24-1.79)	<.001
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.50 (0.71-3.18)	.290

*IHD, Ischemic heart disease.

*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.
Variable	Adjusted* HR (95% CI)	P value
Age (for each year increase)	1.057 (1.051-1.063)	<.001
Sex		
Males	1.25 (1.04-1.50)	.015
Females	Reference	
Ethnicity		
Jews	Reference	
Arabs	1.56 (1.30-1.87)	<.001
Diabetes	1.36 (1.13-1.63)	.001
Hypertension	1.36 (1.08-1.72)	.008
Obesity	1.36 (1.13-1.63)	.001
IHD	1.36 (1.12-1.65)	.002
Smoking (ever)	0.93 (0.77-1.11)	.418
Steroids use in the previous year		
None	Reference	
Yes	1.38 (1.16-1.64)	<.001
Biologics use (at least 1 prescription filled in the previous 120 d)		
None	Reference	
Yes	1.65 (0.82-3.33)	.164

*IHD, Ischemic heart disease.
*Adjusted for age, sex, ethnicity, diabetes, hypertension, IHD, obesity, smoking, and steroids and biologics use.