Activation of EGFR signaling by Tc-Vein and Tc-Spitz regulates the metamorphic transition in the red flour beetle *Tribolium castaneum*

Silvia Chafino, David Martín* & Xavier Franch-Marro*

Animal development relies on a sequence of specific stages that allow the formation of adult structures with a determined size. In general, juvenile stages are dedicated mainly to growth, whereas last stages are devoted predominantly to the maturation of adult structures. In holometabolous insects, metamorphosis marks the end of the growth period as the animals stops feeding and initiate the final differentiation of the tissues. This transition is controlled by the steroid hormone ecdysone produced in the prothoracic gland. In *Drosophila melanogaster* different signals have been shown to regulate the production of ecdysone, such as PTTH/Torso, TGFß and Egfr signaling. However, to which extent the roles of these signals are conserved remains unknown. Here, we study the role of Egfr signaling in post-embryonic development of the basal holometabolous beetle *Tribolium castaneum*. We show that Tc-Egfr and Tc-pointed are required to induced a proper larval-pupal transition through the control of the expression of ecdysone biosynthetic genes. Furthermore, we identified an additional Tc-Egfr ligand in the *Tribolium* genome, the neuregulin-like protein Tc-Vein (Tc-Vn), which contributes to induce larval-pupal transition together with Tc-Spitz (Tc-Spi). Interestingly, we found that in addition to the redundant role in the control of pupa formation, each ligand possesses different functions in organ morphogenesis. Whereas Tc-Spi acts as the main ligand in urogomphi and gin traps, Tc-Vn is required in wings and elytra. Altogether, our findings show that in *Tribolium*, post-embryonic Tc-Egfr signaling activation depends on the presence of two ligands and that its role in metamorphic transition is conserved in holometabolous insects.

Animal development consists of a number of stage-specific transitions that allows the growth of the organism and the proper morphogenesis of adult structures. Whereas growth mostly takes place during juvenile stages, final adult differentiation and sexual maturity occurs mainly by tissue remodeling. Thus, the transition from juvenile to adult stage determines the final size of the animal. Examples of this particular transition are puberty in humans and metamorphosis in insects. Despite its importance, however, the precise mechanisms underlying the regulation of this developmental transition are far from being clearly understood.

Holometabolous insects are a paradigm for the study of the precise control of the transition between the immature larva and the adult, which happens through a transitional metamorphic stage, the pupa. In these insects, a pulse of the steroid hormone 20-hydroxyecdysone (20E) at the end of the larval period triggers the onset of metamorphosis1-4. Biosynthesis of ecdysone, the precursor of 20E, takes place in a specialized organ called the prothoracic gland (PG) and is controlled by the restricted expression of several biosynthetic enzymes encoding genes collectively referred to as the *Halloween* genes. These include the Rieske-domain protein *neverland* (*nvd*)3-4, the short-chain dehydrogenase/reductase *shroud* (*sro*)5 and the P450 enzymes *spook* (*spo*), *spookier* (*spok*), *phantom* (*phm*), *disembodied* (*dib*) and *shadow* (*sad*)6-11. Work carried out in the fruit fly *Drosophila melanogaster* revealed that the proper function of the PG at the metamorphic transition, including the timely expression of the *Halloween* genes, involves the integrated activity of different signaling pathways such as TGFß/activin12, Insulin receptor (InR)13-16, and PTTH/Torso pathways17-19. Whereas insulin and PTTH/Torso pathways promote the...
up-regulation of the *Halloween* genes at the appropriate developmental time to trigger metamorphosis\(^2\), TGFβ/activin signaling regulates insulin and PTTH/Torso pathways in the PG by controlling the expression of their respective receptors\(^2\). In addition to these pathways, we have recently shown that the activation of the Epidermal Growth Factor Receptor (Egfr) signaling pathway in PG cells is also critical for ecdysone production at the metamorphic transition\(^3\). Thus, Egfr pathway activation controls *Halloween* gene expression and ecdysone vesicle secretion during the last larval stage. Importantly, it has been shown that the control of the metamorphic transition by TGFβ/activin, Insulin receptor (InR), and PTTH/Torso pathways is conserved in other non-dipteran holometabolous insects\(^21–28\). However, the grade of conservation of the Egfr signaling pathway in this process has not been well established.

In *Drosophila*, Egfr is activated by four ligands with a predicted Egf-like motif: the TGF-like proteins Gurken (Grk), Spitz (Spi) and Keren (krn), and the neuregulin-like protein Vein (Vn). The specific expression and activity of these ligands in different tissues appear to be responsible for different levels of EGF signaling activation in particular developmental contexts\(^29,30\). For example, Krn acts redundantly with Spi in the embryo, during eye development and in adult gut homeostasis\(^31–33\), whereas Grk is specific of the germine, where it acts to establish egg polarity\(^34,35\). In contrast, Vn acts as the main ligand in the wing, in muscle attachment sites, during the air sac primordium development and in the patterning of the distal leg region\(^36–40\). Once Egfr is activated by any of its ligands, the signal is relayed through the sequential activation of the MAPK/ERK kinase pathway to the nucleus, where is finally mediated by the transcription factor Pointed (Pnt)\(^41,42\).

In the present work, we aim to study the role of Egfr signaling pathway in the control of the metamorphic transition in the more basal holometabolous insect, the red flour beetle *Tribolium castaneum*, which diverged from *Drosophila* \(~250\) million years ago. Despite the early divergence between both species, the role of this pathway in the control of several developmental processes has been revealed to be conserved. For example, it induces the encapsulation of the oocyte by the somatic follicle cell layer and establishes the polarity of the egg chambers and the D–V axis of the embryo during oogenesis\(^43\). It also controls the formation and patterning of the legs and the proper development of the abdomen and Malpighian tubules during embryogenesis\(^43–45\), and regulates distal development of most appendages such as leg, antenna, maxilla and labium, and promotes axis elongation of the mandibles\(^46–48\). Despite this functional conservation, a remarkable difference between *Drosophila* and *Tribolium* is found in the number of Egfr ligands identified, for only a single TGF-EGF ligand, Tc-Spi, has been found in the beetle\(^44\).

In here, we confirm that Tc-Egfr signaling is required for a normal ecdysone-dependent transition from larval to pupal stages in *Tribolium*. We found that inactivation of Tc-Egfr signaling in the last larval stage results in the arrest of larval development at the larval-pupal transition, with arrested larvae presenting reduced levels of the *Halloween* gene *Tc-phm*, as well as of the ecdysone-dependent transcription factors *Tc-Hr3*, *Tc-E75* and *Tc-Broad Complex (Tc-Br-C)*. Importantly, we provided evidence of the existence of an additional Tc-Egfr ligand in *Tribolium*, the neuregulin-like protein Tc-Vein (Tc-Vn). We show that Tc-Vn and Tc-Spi act redundantly in the control of larval-pupal transition, while functioning separately during pupal morphogenesis. Taken together, our results strongly suggest that Egfr signaling pathway plays a conserved central role in the control of the ecdysone-dependent larval-pupal transition and during the morphogenesis of the pupa in holometabolous insects.

Results

Egfr signaling is required for larval-pupal transition in *Tribolium*. As a first step towards the characterization of Egfr signaling in post-embryonic *Tribolium*, we measured mRNA levels of Tc-Egfr and Tc-*pnt* by RT-qPCR in staged penultimate (L6) and last (L7) instar larvae. Expression of Tc-Egfr and Tc-*pnt* was low at the onset of both instars, and then steadily increased to reach the maximal level at the final part of each instar, which suggests a role of Egfr signaling during stage transitions (Fig. 1A). To examine this possibility, we analyzed the functions of both factors depleting Tc-Egfr and Tc-*pnt* by injecting dsRNAs for each transcript in L6 instar larvae (Tc-Egfr\(^\text{RNAi}\) and Tc-*pnt*\(^\text{RNAi}\) animals). Specimens injected with dsMock were used as negative controls (Control animals). All Tc-Egfr\(^\text{RNAi}\) and Tc-*pnt*\(^\text{RNAi}\) L6 larvae molted to normal L7 larvae but then failed to pupate at the ensuing molt, as did Control larvae. Instead, they arrested development during the larval-pupal transition (Fig. 1B and S1 Table). Remarkably, removing the larval cuticle of these animals revealed a larval-like morphology (Fig. 1B and S1 Table). To discard a possible effect in the nature of the affected transition in the arrested animals, from larva to pupa, we analyzed the expression levels of the juvenile hormone transducer *Kruepell homolog 1 (Tc-Kr-h1)*\(^49\) and the metamorphosis-triggering factor Tc-E93\(^50,51\). As Fig. 1C shows, arrested Tc-Egfr\(^\text{RNAi}\) and Tc-*pnt*\(^\text{RNAi}\) animals showed the proper downregulation of Tc-Kr-h1 and upregulation of Tc-E93 that is characteristic of larvae being in the last larval instar, thus indicating that lack of Egfr signaling did not affect the nature of the larval-pupal transition (Fig. 1C).

Since Tc-Egfr and Tc-*pnt* were also expressed in L6, we studied whether Egfr signaling was also required in earlier larval-larval transitions. To this aim, we injected dsRNA of Tc-Egfr in antepenultimate L5 larvae. Under these conditions, all L5 Tc-Egfr\(^\text{RNAi}\) larvae developed normally and underwent two successive molts until reaching L7 (S2 Table), when larvae arrested development before pupation confirming that Egfr signaling is only required for the last larval transition.

Since the larval-pupal transition is ecdysone-dependent, the phenotype presented by Tc-Egfr\(^\text{RNAi}\) and Tc-*pnt*\(^\text{RNAi}\) larvae is consistent with an ecdysone-signaling deficiency. To assess this hypothesis, we injected the active form 20E into Egfr-depleted larvae. Ectopic addition of 20E partially rescued the developmental arrest phenotype as animals underwent pupation pation although showing morphological defects in elytra, wings and legs, probably due to the pleiotropic effect of the Egfr signaling (Fig. 1B and S1 Table). To confirm the action of Egfr pathway on ecdysone biosynthesis, we measured mRNA expression levels of the direct ecdysone-dependent genes *Tc-Hr3*, *Tc-E75* and *Tc-Br-C* in late L7 larvae, which are commonly used as proxies for ecdysone levels\(^17,52\). As Fig. 1D
shows, Tc-EgfrRNAi and Tc-pntRNAi larvae presented significantly reduced expression levels of these genes compared to Controls. Consistently, the expression of the Halloween gene phm was also decreased in Tc-EgfrRNAi and Tc-pntRNAi larvae (Fig. 1E). However, the expression of three other Halloween genes, Tc-dib, Tc-spo and Tc-shd, was not affected by the absence of Tc-Egfr (Fig. 1E), indicating that the downregulation of Tc-phm is specific and not due to a general transcriptional effect. Interestingly, in addition to the transcriptional regulation of Tc-phm, the gene expression levels of Tc-dib and Tc-spo were also downregulated in Tc-pntRNAi larvae compared to Controls (Fig. 1E), indicating a stronger inactivation of Tc-Egfr signalling upon depletion of this transcription factor. Taken together, these results indicate that Tc-Egfr signaling is specifically required for a proper ecdysone-dependent larval-pupal transition in Tribolium.

Identification of the Tc-Egfr ligand Tc-Vein in Tribolium. The next question was to determine which EGF ligand was responsible for the activation of the Tc-Egfr pathway during the larval-pupal transition. As stated before, the TGFα-like protein Tc-Spi is the only Tc-Egfr ligand identified in Tribolium. Expression analysis of Tc-spi during the last two larval instars revealed that it is expressed in a similar pattern to Tc-Egfr (Fig. 2A), which suggests that Tc-Spi might act as the Tc-Egfr ligand during the transition. We studied this possibility by injecting dsTc-spi into L6 larvae (Tc-spiRNAi animals). Unexpectedly, and in contrast to Tc-EgfrRNAi and Tc-pntRNAi larvae, all L7-Tc-spiRNAi larvae molted to L7 and then to pupa on a normal schedule (Fig. 2B and S3 Table), suggesting the occurrence of different Tc-Egfr ligands during the post-embryonic development of Tribolium.

In Drosophila four different Egf ligands have been identified: Dm-Grk, Dm-Ker and Dm-Spi are TGF-like proteins, whereas Dm-Va belongs to the neuregulin-like family. Tc-Spi is highly similar to the three Drosophila genes Dm-Grk, Dm-Spi and Dm-Ker being the only TGF-like ligand that activates Egfr in Tribolium. In contrast, no neuregulin-like protein has been identified in Tribolium. To investigate the presence of a neuregulin-like
Egf ligand, we performed a detailed Tblastn search in the beetle genome database with the Dm-Vn sequence of Drosophila. This search revealed the presence of a Tc-Vn orthologue in Tribolium. The predicted Tc-Vn protein has 380 amino acids and presents conserved EGF-like and neuregulin Ig-like domains as well as a PEST region, all of which are characteristic of Vn proteins. Additionally, Tc-Vn contains a hydrophobic region at the amino terminus that is typical of a signal sequence, a feature that is consistent with Tc-Vn being a secreted protein. The neuregulin Ig-like domain consists of 100 amino acids and presents the two invariant cysteine residues typical of the domain. The EGF-like domain is 47 amino acids long and presents the six invariant cysteines and highly conserved glycine and arginine residues characteristic of the motif.

Figure 2. Tc-Spi is not the sole ligand of Tc-Egfr signaling during larval-pupal transition in Tribolium. (A) Tc-spi mRNA levels measured by qRT-PCR in penultimate (L6) and ultimate (L7) instar larvae. Transcript abundance values are normalized against the Tc-Rpl32 transcript. Fold changes are relative to the expression of Tc-Egf and Tc-pnt in day 0 of L6 larvae, arbitrarily set to 1. Error bars indicate the SEM (n = 5). (B) L6 larvae were injected with dsMock (Control) or with dsTc-spi (Tc-spiRNAi) and left until the ensuing molts. Ventral views of Control and Tc-spiRNAi pupae. Scale bar represents 0.5 mm.

The fact that the depletion of neither Tc-vn nor Tc-spi prevents larval-pupal transition raises the possibility that both ligands might redundantly activate the Egfr signaling pathway at this stage of development. To address this question, we interfered Tc-vn and Tc-spi simultaneously in penultimate L6 larvae (Tc-vnRNAi + Tc-spiRNAi animals). Interestingly, all Tc-vnRNAi + Tc-spiRNAi animals molted to L7 but then arrested development at the end of the last larval stage, as Tc-Egfr or Tc-pnt larvae (Fig. 5B and S5 Table). This observation was further confirmed by the analysis of Tc-HR3, Tc-E75, Tc-Br-C mRNA levels, which were strongly reduced in Tc-vnRNAi + Tc-spiRNAi larvae compared to the Control (Fig. 5C). Likewise, the expression of Tc-E93 was not significantly affected indicating that depletion of both ligands does not influence to nature of molt as when the Tc-Egfr receptor was depleted (Figs. 1C, 5D). Furthermore, the expression of Tc-phm was also decreased in double knockdown animals whereas the expression levels of Tc-dib, Tc-spok and Tc-shd were not affected (Fig. 5E). Altogether, these results demonstrate that Tc-vn and Tc-spi can act redundantly in the control of the metamorphic transition in Tribolium.
Tc-Spi and Tc-Vn control different aspects of *Tribolium* metamorphosis. As previously showed, Tc-vnRNAi and Tc-spiRNAi animals were able to pupate, although with morphological defects (compare Figs. 2B, 5B). Interestingly, some of those defects were ligand specific. For example, Tc-spiRNAi pupae lacked gin traps and well developed urogomphi, whereas Tc-vnRNAi pupae showed normal gin traps and urogomphi (Fig. 6A–B’) but presented curved and smaller elytra and wings compared to Tc-spi RNAi animals (Fig. 6D–E’’). In contrast, both knockdown pupae showed similar morphological defects in the segmentation of the distal part of the legs and the antenna (Fig. 6C–C’’ ,F–F’’). These results suggest that Tc-Vn and Tc-Spi activate the Egfr signaling pathway in a tissue specific manner during the pupal transformation.

Discussion

Egfr signaling in insects is involved in the regulation of multiple processes during organism development such as cell survival, proliferation, and differentiation. In addition to these functions, it has been recently shown in *Drosophila* that regulates the metamorphic transition by controlling ecdysone biosynthesis in the PG20. Interestingly, our study suggests that this role is conserved in the more basal holometabolous insect *Tribolium*, as the activity of this pathway is specifically required for the larval-pupal transition in this beetle. Furthermore, our study revealed the existence of an additional EGF ligand in *Tribolium*, the neuroglianin Tc-Vn, which, together with the already described Tc-Spi ligand, activates Egfr in a redundant manner for the induction of the metamorphic transition. In contrast, we report different requirements of both ligands for the formation of pupal structures, such as wings, elytra or gin traps, suggesting a ligand-specific activation of Egfr signaling during metamorphosis.

Egfr signaling regulates larval-pupal transition in *Tribolium*. In *Drosophila* Egfr signaling regulates larval-pupal transition through the control of PG size and the expression of ecdysone biosynthetic genes in this gland20. Our results in *Tribolium* suggest that such regulation might be general feature of holometabolous insects. Several evidences support this possibility: (1) depletion of both Tc-Egfr ligands, Tc-vn and Tc-spi, is

Figure 3. The structure of *Tribolium* Tc-Vn protein. (A) Predicted amino acid sequence of Tc-Vn. The signal peptide is shown in horizontal striped box. Two highly conserved protein domains Ig-like (grey box) and EGF-like (black box) are indicated. The PEST region is represented by vertical striped box. (B) Protein alignment of Ig-like domain and (C) Egfr-like domain. Asterisks in red indicate the invariant highly conserved cysteines, in green the conserved Glycine and in blue the conserved Arginine from Ig-like and Egfr-like domains.
required to induce the arrested development phenotype whereas individual depletion of each ligand results in pupa formation with specific morphological defects; (2) depletion of the main transductor of the Egfr signaling Tc-pnt results in the same phenotype; (3) the requirement of Egfr signaling is restricted to the last larval stage as larval-larval molting is unaffected upon inactivation of Tc-Egfr in early larval stages, and (4) depletion of Tc-Egfr or its ligands results in reduced levels of the Halloween gene Tc-phm as well as of several 20E-dependent genes during the larva-pupa transition. However, we need to take into consideration that the use of systemic RNAi to inactivate Tc-Egfr signaling in Tribolium cannot discard an indirect effect on ecdysone production. In this regard, further studies in other holometabolous group of insects would help confirm this evolutionarily conserved trait.

It is interesting to note that 20E controls not only the metamorphic switch but also all the previous larval-larval transitions. The fact that Egfr signaling is involved specifically in triggering pupa formation suggests that other factors might control the production of ecdysone in the previous transitions. In this sense, several transcription factors such as Ventral veins lacking (Vvl), Knirps (Kni) and Molting defective (Mld) have been shown to be involved in the control of ecdysteroid production during early larval stages in Drosophila. Orthologues of Drosophila kni and vvl have been identified in Tribolium, showing conserved functions during embryogenesis. Interestingly Tc-vvl has been shown to be a key factor coordinating ecdysteroid biosynthesis as well as molting in larval stages, supporting the idea that Tc-Vvl also exerts similar function in the PG during early larval development. Nevertheless, further studies are required to confirm the role of these genes and to elucidate ecdysone biosynthesis regulation in all larval transitions.

Then, why is Egfr signaling specifically required during the larva-pupa transition? One possibility is that the peak of 20E required to trigger metamorphosis demands the growth of PG cells to increase the biosynthetic enzyme transcription. Interestingly, this process has recently been related to the nutritional state of the animal. In fact, it has been shown in Drosophila that surpassing a critical weight checkpoint that occurs at the onset of the last larval instar is required for the growth of the PG cells and the increase of ecdysone production, which implies that PG cells must reach a certain size to produce enough ecdysone to trigger metamorphosis. Similarly, in Tribolium exists a correlation between the attainment of a threshold size, defined as the mass that determines the initiation of metamorphosis at the ensuing molt. Such activation will ensure the proper increase of ecdysone production to induce the formation of the pupa. In this sense, it is interesting to note that the highest expression of Tc-Egfr is detected at the last larval stage. Similarly,
the expression of both ligands Tc-spi and Tc-vn are up-regulated during the late part of the last larval instar, supporting the fact that both ligands are required for Egfr signaling at this stage.

Tribolium possesses two Egfr ligands. To date, a single Tc-Egfr ligand with high sequence similarity to Drosophila Dm-Spi had been identified in the genome of Tribolium probably due to incomplete annotation of the beetle genome and the fact that its depletion in the embryo phenocopied Tc-Egfr knockdown. However, our in silico analysis has revealed the presence of a second Tc-Egfr ligand, the neurogulin Tc-Vn, revealing that Tribolium, in contrast to Drosophila, possesses only two EGF ligands. We have confirmed the identity of Tc-Vn in Tribolium by analyzing its protein sequence and its role during development. Phylogenetic analysis clustered Tc-Vn with its coleopteran orthologous proteins. Interestingly, based on the length of the phylogenetic arm, Tc-Vn presents a high range of change, probably due to its minor role on oogenesis and embryogenesis that has reduced the evolutive pressure on Tc-Vn ligand. In contrast, a lower divergence of Tc-Spi is observed, clustering closely to the Drosophila Dm-Egf ligands Dm-Krn and Dm-Spi. This observation is consistent with Tc-Spi exerting a key role during early development as main activator of Tc-Egfr signaling.

Our results indicate that both Egf ligands Tc-Vn and Tc-Spi function redundantly in the control of larval-pupal transition in Tribolium similarly to what occurs in Drosophila. In contrast, the requirement of each ligand is specific for the development of different structures during the pupal stage. Thus, Tc-Vn is required for the formation of wings and elytra, whereas Tc-Spi is responsible of the proper development of gin traps and the urogomphi as well as the mouthpart. In addition, depletion of either Tc-spi or Tc-vn produce distinct defects on the distal part of the leg and the antenna suggesting again a different role on the activation of Egfr signaling in these structures. This different ligand requirement is similar to what has been described in Drosophila. Thus, Dm-Vn is required for wing identity during early imaginal disc development41, whereas later on, the combination

Figure 5. Tc-Vn and Tc-Spi activate redundantly the larval-pupal transition in Tribolium. (A) Tc-vn mRNA levels measured by qRT-PCR in penultimate (L6) and ultimate (L7) instar larvae. Transcript abundance values are normalized against the Tc-Rpl32 transcript. Fold changes are relative to the expression of Tc-vn in day 0 of L6 larvae, arbitrarily set to 1. Error bars indicate the SEM (n = 5). (B) L6 larvae were injected with dsMock (Control), dsTc-spi (Tc-spiRNAi) or both dsTc-spi and dsTc-vn simultaneously (Tc-spiRNAi+ Tc-vnRNAi) and left until the ensuing molts. Ventral views of Control and Tc-spiRNAi pupae and a Tc-spiRNAi+ Tc-vnRNAi larva arrested at the larval-pupal transition. Scale bar represents 0.5 mm. (C) Transcript levels of Tc-Hr3, Tc-E75 and Tc-Br-C, (D) Tc-E93 and (E) biosynthetic ecdysone genes Tc-phm, Tc-dib, Tc-spok and Tc-shd measured by qRT-PCR in 5-day-old Control, and Tc-spiRNAi+ TcvnRNAi L7 larvae. Transcript abundance values were normalized against the Tc-Rpl32 transcript. Average values of three independent datasets are shown with standard errors (n = 7). Asterisks indicate differences statistically significant at *p < 0.05 and **p < 0.001 (t-test) ***p < 0.0001 (t-test).
of Dm-Spi and Dm-Vn are necessary for vein formation. Similarly, both ligands Dm-Spi and Dm-Vn control leg patterning and growth, although Dm-Vn seems to have a predominant role in the formation of the tarsus.

Figure 6. Differential role of Tc-Vn and Tc-Spi in the morphogenesis of pupal structures. Comparison of the external morphology of pupal appendages between (A–F) Control, (A’–F’) Tc-vnRNAi and (A”–F”) Tc-spiRNAi pupae. The pupal structures are (A–A”) Gin traps, (B–B”) urogomphi, (C–C”) hindlegs, (D–D”) elytra, (E–E”) wing and (F–F”) antenna. The scale bars represent 0.1 mm in (A–A”), 0.3 mm in (B–B”) and 500 μm in (C–C”), (D–D”), (E–E”) and (F–F”).

the most distal part of the leg30,66. In addition, our data also show that the activation of the Tc-Egfr pathway in oogenesis rely entirely on Tc-Spi. In this context, the similarity of Tc-Spi to the Dm-Egf\textit{Drosophila} ligand Dm-gfr30, a dedicated ligand specific of the ovaries, might explain this exclusive requirement in this process in \textit{Tribolium}. Therefore, our results confirmed that Egfr signaling is activated by at least two different ligands in most of the holometabolous insects in morphogenetic processes. The different expression and activity of those ligands probably has favored the co-option of Egfr signaling in different processes, from oogenesis to the biosynthesis of ecdysone, contributing to the generation of new organ and shapes along evolution.

Materials and methods

\textit{Tribolium castaneum}. The enhancer-trap line pu11 of \textit{Tribolium} (obtained from Y. Tomoyasu, Miami University, Oxford, OH) was reared on organic wheat flour containing 5% nutritional yeast and maintained at 29 \textdegree C in constant darkness.

Conserved domains analysis and alignment of Vein sequences. Tc-Vn (TC014604) amino acid sequence was analyzed by different online applications to detect its protein domains. Thus, peptide signal was predicted by SignalP67 4.1 software that detects the presence and the location of signal peptide cleavage sites. Multiple alignment was performed by ClustalW software69. Vein sequence of \textit{PEST} region was predicted using EPESTFIND online software that detects PEST motifs as potential proteolytic cleavage sites. Multiple alignment was performed by ClustalW software69. Vein sequence of \textit{PEST} region was predicted using EPESTFIND online software that detects PEST motifs as potential proteolytic cleavage sites. Multiple alignment was performed by ClustalW software69. Vein sequence of \textit{PEST} region was predicted using EPESTFIND online software that detects PEST motifs as potential proteolytic cleavage sites.

Phylogenetic analysis of Tc-Vn. To understand the phylogenetic relationship of Vein proteins, amino acid sequences from Vein proteins were collected from different insect taxa, including that of \textit{Tribolium} as well as from four primates species as an outgroup (S3 Table) and aligned using MAFFT70 v7.130b. Ambiguously aligned positions were trimmed using trimAl1.2 71, with the parameters –gt 80 and –cons 20. A maximum-likelihood tree was reconstructed using RAXML v8.0.1772 with the PROTGAMMAW AG model.

Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Total RNA from individual larva of \textit{Tribolium} was extracted using the GenElute7 Mammalian Total RNA kit (Sigma). cDNA synthesis was carried out as previously described73,74. Relative transcript levels were determined by quantitative real-time RT-PCR (qPCR) inputs, a master mix that contained Power SYBR Green PCR Mastermix (Applied Biosystems). To standardize the quantitative real-time RT-PCR (qPCR) inputs, a master mix that contained Power SYBR Green PCR Mastermix and forward and reverse primers was prepared to a final concentration of 100 \mu M for each primer. The qPCR experiments were conducted with the same quantity of tissue equivalent input for all treatments, and each sample was run in duplicate using 2 \mu l of cDNA per reaction. As a reference, same cDNAs were subjected to qRT-PCR with a primer pair specific \textit{Tribolium} Ribosomal Tc-Rpl32. All the samples were analyzed on the iCycler iQReal Time PCR Detection System (Bio-Rad). Primer sequences used for qPCR for \textit{Tribolium} are:

\begin{verbatim}
Tc-EGFR-F: 5′-TCAGCATCGAATGTTATGAT-3′
Tc-EGFR-R: 5′-CTATTCTCGAGTCGGAAT-3′
Tc-Pnt-F: 5′-AGATTTCCTCCCTGAATGC-3′
Tc-Pnt-R: 5′-TCTCGACAACATCCAATGTCT-3′
Tc-Spi-F: 5′-AAACATACCATTCCACAGTC-3′
Tc-Spi-R: 5′-TCTCGCAACTCCGAAATTGAT-3′
Tc-Vn-F: 5′-GAAGTCCCAAGACACAACTC-3′
Tc-Vn-R: 5′-CTTTGATAGGTACAGTTGCT-3′
Tc-Kr-h1-F: 5′-AATCTCTTCGCTCATCCGACACTA-3′
Tc-Kr-h1-R: 5′-CAGGATTGGACTAGGAGGTTGA-3′
Tc-E93-F: 5′-CTCTCGAAACCTGCTCTATAC-3′
Tc-E93-R: 5′-TTGGGTGTGGGTGCTGCAGAAAT-3′
Tc-HR3-F: 5′-TCACAGATGACTTCTGTTAAACT-3′
Tc-HR3-R: 5′-TCTCGCTGCTTCTGGCAGAT-3′
Tc-E75-F: 5′-CGGTTCTCATTGGGAAAGA-3′
Tc-E75-R: 5′-TTGTTGTGTTGTTAGGCTC-3′
Tc-Br-C-F: 5′-TCTTCTCTCCAGGCTGAAAGT-3′
Tc-Br-C-R: 5′-CCTCACCATACTTGTGGTGAGCT-3′
Tc-Phm-F: 5′-TGAACAAATGCCATGTTGGCACA-3′
Tc-Phm-R: 5′-TCTATGGACTCGTGTGGGAAACCTT-3′
Tc-Rpl32-F: 5′-CAGGCACCATCCTGGGTTATGCT-3′
Tc-Rpl32-R: 5′-CATGTGTCTGGTTGGCCATTGG-3′
\end{verbatim}

Larva and adult RNAi injection. Tc-Egfr dsRNA (IB_00647), Tc-Pnt dsRNA (IB_02295), Tc-Spi dsRNA (IB_03555) and Tc-Vn dsRNA (IB_05654) were synthesized by the Eupheria Biotech Company. Control dsRNA consisted of a non-coding sequence from the pSTBlue-1 vector (dsMock). A concentration of 1 \mu g/\mu l dsRNA was injected into larvae from penultimate instar and antepenultimate instar. In case of co-injection of two dsRNAs, the same volume of each dsRNA solution was mixed and applied in a single injection. A dose of 1 \mu g/\mu l dsRNA was injected into 40 female adults in the abdominal body cavity laterally to avoid damaging genitals as previ-
ously described. Both Tc-EgfrRNAi and Tc-VnRNAi injected females were crossed with wild-type males in order to obtain knockdown embryos.

20E injection. 20E (Abcam, ab142425) dissolved in absolute ethanol at a concentration of 1 mg/ml was diluted with distilled water to obtain an optimal concentration of 200 ng /100 nl to inject into *Tribolium*, as previously reported. Penultimate staged larvae treated with Egfr dsRNA were injected with a dose of 1 µg of 20E upon molting to the last larval stage.

Microscopy analysis. All ovaries were dissected in PBS, fixed with 3.7% formaldehyde/PBS and incubated with Phallaidin. The stained ovaries were mounted in Vectashield with DAPI and mounted in Vectashield with DAPI to visualize the nucleus. All pictures were obtained with AxioImager.Z1 (ApoTome 213 System, Zeiss) microscope, and images were subsequently processed using Fuji and Adobe photoshop.

References

1. Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).
2. Yamanaka, N., Rewitz, K. F. & O’Connor, M. B. Ecdysone control of developmental transitions: Lessons from drosophila research. Annu. Rev. Entomol. 58, 497–516 (2013).
3. Yoshiyama-Tanagawa, T., Namiki, T., Mita, K., Kataoka, H. & Niwa, R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 133, 2565–2574 (2006).
4. Yoshiyama-Yanagawa, T. et al. The conserved Rieske oxygenase DAF-36/Neveryland is a novel cholesterol-metabolizing enzyme. J. Biol. Chem. 286, 25756–25762 (2011).
5. Niwa, R. et al. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid biosynthesis pathway. Development 137, 1991–1999 (2010).
6. Namiki, T. et al. Cytochrome P450 CYP306A1/Spook: A regulator for ecdysone synthesis in insects. Biochem. Biophys. Res. Commun. 337, 367–374 (2005).
7. Niwa, R. et al. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysone biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem. 279, 55942–55949 (2004).
8. Ohno, H. et al. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev. Biol. 298, 555–570 (2006).
9. Rewitz, K. F., Rybczynski, R., Warren, J. T. & Gilbert, L. I. Identification, characterization and developmental expression of Haloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 36, 188–199 (2006).
10. Warren, J. T. et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 99, 11043–11048 (2002).
11. Warren, J. T. et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: A P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34, 991–1010 (2004).
12. Gibbens, Y. Y., Warren, J. T., Gilbert, L. I. & O’Connor, M. B. Neuroendocrine regulation of Drosophila metamorphosis requires TGF/activin signaling. Development 138, 2693–2703 (2011).
13. Colombani, J. et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310, 667–670 (2005).
14. Mirth, C., Truman, J. W. & Riddiford, L. M. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796–1807 (2005).
15. Layalle, S., Arquier, N. & Léopold, P. The TOR pathway couples nutrition and developmental timing in drosophila. Dev. Cell 15, 568–577 (2008).
16. Caldwell, P. E., Walkiewicz, M. & Stern, M. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785–1795 (2005).
17. McBrayer, Z. et al. Prothoracicotropic hormone regulates developmental timing and body size in drosophila. Dev. Cell 13, 857–871 (2007).
18. Rewitz, K. F., Yamanaka, N., Gilbert, L. I. & O’Connor, M. B. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326, 1403–1405 (2009).
19. Shimell, M. J. et al. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 145, dev59699-13 (2018).
20. Cruz, J., Martinez, D. & Franch-Marro, X. Egfr signaling is a major regulator of ecdysone biosynthesis in the drosophila prothoracic gland. Curr. Biol. https://doi.org/10.1016/j.cub.2020.01.092 (2020).
21. He, L. L. et al. Mechanism of threshold size assessment: Metamorphosis is triggered by the TGF-beta/Activin ligand Myoglianin. Insect Biochem. Mol. Biol. https://doi.org/10.1016/j.ibmb.2020.103452 (2020).
22. Smith, W. A., Lamattina, A. & Collins, M. Insulin signaling pathways in lepidopteran ecdysone secretion. Insect Biochem. Mol. Biol. 36, 188–199 (2006).
23. Smith, W. A., Rybczynski, R. Prothoracicotropic hormone regulates developmental timing and body size in drosophila. Dev. Cell 13, 857–871 (2007).
24. Shimell, M. J. et al. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 145, dev59699-13 (2018).
25. Smith, W. A., Lamattina, A. & Collins, M. Insulin signaling pathways in lepidopteran ecdysone secretion. Front. Physiol. 5, 19 (2014).
26. Kemirembe, K., Liebmann, K., Boetes, A., Smith, W. A. & Suzuki, Y. Amino acids and TOR signaling promote prothoracic gland growth and the initiation of larval molts in the tobacco hornworm manduca sexta. PLoS ONE 7, e44429 (2012).
27. Hatem, N. E., Wang, Z., Nave, K. B., Koyama, T. & Suzuki, Y. The role of juvenile hormone and insulin/TOR signaling in the growth of Manduca sexta. BMC Biol. 13, 1–2 (2015).
28. Smith, W. A., Rybczynski, R. Prothoracicotropic Hormone. In Insect Endocrinology 1–62 (Elsevier, 2012). https://doi.org/10.1016/ B978-0-12-384749-2.10001-9.
29. Uchibori-Asano, M., Kayukawa, T., Sezutsu, H., Shinoda, T. & Daimon, T. Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 87, 14–25 (2017).
30. Zhang, Z., Liu, X., Yu, Y., Yang, F. & Li, K. The receptor tyrosine kinase torso regulates ecdysone homeostasis to control developmental timing in Bombyx mori. Insect Sci. https://doi.org/10.1111/1744-7917.12879 (2020).
29. Freeman, M. Complexity of EGF receptor signalling revealed in Drosophila. *Curr. Opin. Genet. Dev.* **8**, 407–411 (1998).
30. Shilo, B. Z. Regulating the dynamics of EGF receptor signaling in space and time. *Development* **132**, 4017–4027 (2005).
31. Reich, A. & Shilo, B. Z. Keren, a new ligand of the Drosophila epidermal growth factor receptor, undergoes two modes of cleavage. *EMBO J.* **21**, 4287–4296 (2002).
32. Jiang, H. & Edgar, B. A. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. *Development* **136**, 483–493 (2009).
33. Brown, K. E., Kerr, M. & Freeman, M. The EGFR ligands Spitz and Keren act cooperatively in the Drosophila eye. *Dev. Biol.* **307**, 105–113 (2007).
34. Roth, S., Shira Neuman-Silberberg, F., Barcelo, G. & Schüpbach, T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. *Cell* **81**, 967–978 (1995).
35. González-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in drosophila by gurken-torpedo signalling. *Nature* **375**, 654–658 (1995).
36. Simcox, A. A. et al. Molecular, phenotypic, and expression analysis of vein, a gene required for growth of the Drosophila wing disc. *Dev. Biol.* **177**, 475–489 (1996).
37. Campbell, G. Distalization of the Drosophila leg by graded EGF-receptor activity. *Nature* **418**, 781–785 (2002).
38. Yarnitzky, T., Min, L. & Völkl, T. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. *Genes Dev.* **11**, 2691–2700 (1997).
39. Cruz, J., Bota-Rabassedas, N. & Franch-Marro, X. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PnT2. *Sci. Rep.* **5**, 1 (2015).
40. Galindo, M. I., Bishop, S. A., Greig, S. & Couso, J. P. Leg patterning driven by proximal-distal interactions and EGF signaling. *Science* **297**, 256–259 (2002).
41. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for drosophila eye development are modulated by the Ras/MAPK pathway. *Cell* **78**, 137–147 (1994).
42. Brunner, D. et al. The ETS domain protein Pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway. *Nature* **370**, 386–389 (1994).
43. Lynch, J. A., Peel, A. D., Drechsler, A., Averof, M. & Roth, S. EGF signaling and the origin of axial polarity among the insects. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 1042–1047 (2010).
44. Grossmann, D. & Prpic, N. M. Egfr signaling regulates distal as well as medial fate in the embryonic leg of Tribolium castaneum. *Dev. Biol.* **370**, 264–272 (2012).
45. King, B. & Denholm, B. Malpighian tubule development in the red flour beetle, Tribolium castaneum. *Arthropod Struct. Dev.* **43**, 605–613 (2014).
46. Angelini, D. R., Kikuchi, M. & Jockusch, E. L. Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. *Dev. Biol.* **327**, 240–251 (2009).
47. Angelini, D. R., Smith, F. W., Aspiras, A. C., Kikuchi, M. & Jockusch, E. L. Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. *Genetica* **190**, 639–654 (2012).
48. Angelini, D. R., Smith, F. W. & Jockusch, E. L. Extent with modification: Leg patterning in the beetle Tribolium castaneum and the evolution of serial homologs. *G3 Genes Genomes Genet.* **2**, 235–248 (2012).
49. Minakuchi, C., Namkì, T. & Shinoda, T. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. *Dev. Biol.* **325**, 341–350 (2009).
50. Ureañì, E., Manjón, C., Franch-Marro, X. & Martìn, D. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 7024–7029 (2014).
51. Gilbert, L. I., Rybczynski, R. & Warren, J. T. Control and biochemical nature of the ecysderoidogenic pathway. *Annu. Rev. Entomol.* **47**, 883–916 (2002).
52. King-Jones, K. & Thummel, C. S. Nuclear receptors: A perspective from Drosophila. *Mol. Biol. Evol.* **25**, 1972–1973 (2009).
53. Groenen, L. C., Nice, E. C. & Burgess, A. W. Structure-function relationships for the EGF/TGF-alpha family of mitogens. *Growth Factors* **11**, 235–257 (1994).
54. Schneppe, B., Grumbiling, G., Donaldson, T. & Simcox, A. Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. *Genes Dev.* **10**, 2302–2313 (1996).
55. Danielsen, E. T. et al. Transcriptional control of steroid biosynthesis genes in the drosophila prothoracic gland by ventral veins lacking and knirps. *PLoS Genet.* **10**, e1004334 (2014).
56. Cerny, A. C., Grossmann, D., Bucher, G. & Klingler, M. The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. *Dev. Biol.* **321**, 284–294 (2008).
57. Burns, K. A., Gutzwiller, L. M., Tomoyasu, Y. & Gebelein, B. Oenocyte development in the red flour beetle Tribolium castaneum. *Dev. Genes Evol.* **222**, 77–88 (2012).
58. Ko, C., Chiaieh, A., Koyama, L. & Sawar, T. The POU factor ventral veins lacking/driver directs the timing of metamorphosis through ecysderoid and juvenile hormone signaling. *PLoS Genet.* **10**, 1004425 (2014).
59. Callier, V. & Nijhout, H. F. Body size determination in insects: A review and synthesis of size- and brain-dependent and independent mechanisms. *Biol. Rev. Camb. Philos. Soc.* **88**, 944–954 (2013).
60. Revitz, K. F., Tamanaka, N. & O'Connor, M. B. Developmental checkpoints and feedback circuits time insect maturaiton. *Curr. Top. Dev. Biol.* **103**, 1–33 (2013).
61. Chafino, S. et al. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle tribolium castaneum. *Cell Rep.* **27**, 1039–1049.e2 (2019).
62. Wang, S. H., Simcox, A. & Campbell, G. Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. *Genes Dev.* **14**, 2271–2276 (2000).
63. De Celis, J. F. Pattern formation in the Drosophila wing: The development of the veins. *BioEssays* **25**, 443–451 (2003).
64. Galindo, M. I., Bishop, S. A. & Couso, J. P. Dynamic EGFR-Ras signalling in Drosophila leg development. *Dev. Dyn.* **233**, 1496–1508 (2005).
65. Petersen, T. N., Brunsk, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. *Nat. Methods* **8**, 785–786 (2011).
66. Marchler-Bauer, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. *Nucleic Acids Res.* **45**, D200–D203 (2017).
67. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydrophatic character of a protein. *J. Mol. Biol.* **157**, 105–132 (1982).
68. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).
69. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973 (2009).
72. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).
73. Cruz, J. *et al.* Quantity does matter: Juvenile hormone and the onset of vitellogenesis in the German cockroach. *Insect Biochem. Mol. Biol.* **33**, 1219–1225 (2003).
74. Mané-Padrós, D. *et al.* The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. *Dev. Biol.* **346**, 150–160 (2010).
75. Tomoyasu, Y. & Denell, R. E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. *Dev. Genes Evol.* **214**, 575–578 (2004).
76. Tatun, N., Kumdi, P., Tungjitwitayakul, J. & Sakurai, S. Effects of 20-hydroxyecdysone on the development and morphology of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). *Eur. J. Entomol.* **115**, 424–431 (2018).

Acknowledgements

We would like to specially thank Lidia Escoda for technical assistance in the phylogenetic analysis. Support for this research was provided by the Spanish MINECO (Grants CGL2014-55786-P and PGC2018-098427-B-I00 to D.M. and X.F.-M.) and by the Catalan Government (2014 SGR 619 to D.M. and X.F.-M.). The research has also benefited from FEDER funds. S.C. is a recipient of a pre-doctoral research Grant from the MINECO.

Author contributions

Conception and design of the project was done by S.C., D.M. and X.F.-M. S.C. and X.F.-M. performed the experiments. The analysis of the data was conducted by S.C., D.M. and X.F.-M. X.F.-M. wrote the manuscript and S.C. and D.M. revised the manuscript. All authors approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-98334-9.

Correspondence and requests for materials should be addressed to D.M. or X.F.-M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021