MicroRNA-1468 promotes tumor progression by activating PPAR-γ-mediated AKT signaling in human hepatocellular carcinoma

Zhikui Liu†, Yufeng Wang†, Changwei Dou*, Liangang Sun†, Qing Li†, Liang Wang†, Qiurang Li†, Wei Yang†, Qingguang Liu†* and Kangsheng Tu†*

Abstract

Background: Accumulating evidence confirm that aberrant microRNAs (mi RNAs) expression contributes to hepatocellular carcinoma (HCC) development and progression. Previous study reported that miR-1468 showed an up-regulated tendency and might be a potential prognostic biomarker in HCC samples derived from TCGA database. However, the role of miR-1468 and its underlying mechanisms involved in the growth and metastasis of HCC remain poorly investigated.

Methods: CCK-8, EdU, colony formation and flow cytometry were used to determine proliferation, cell cycle progression and apoptosis of HCC cells in vitro. The subcutaneous tumor model in nude mice was established to detect tumor growth of HCC in vivo. The direct binding of miR-1468 to 3'UTR of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (CITED2) and UPF1 frameshift protein 1 (UPF1) was confirmed by luciferase reporter assay.

Results: Here, we demonstrated that miR-1468 expression was up-regulated in HCC tissues and cell lines. Clinical analysis revealed that increased miR-1468 level was significantly correlated with malignant prognostic features and shorter survival. Gain- and loss-of-function experiments indicated that miR-1468 promoted cell proliferation, colony formation, cell cycle progression and induced apoptosis of HCC cells in vitro and in vivo. Moreover, CITED2 and UPF1 were identified as direct downstream targets of miR-1468 in HCC cells, and mediated the functional effects of miR-1468 in HCC, resulting in peroxisome proliferator-activated receptor-γ (PPAR-γ)/AKT signaling activation. In clinical samples of HCC, miR-1468 inversely correlated with the levels of CITED2 and UPF1, which were confirmed to be down-regulated in HCC. Restoration of CITED2 or UPF1 expression at least partially abolished the biological effects of miR-1468 on HCC cells. Moreover, alteration of PPAR-γ or AKT phosphorylation could reverse the function of miR-1468 in HCC.

Conclusions: Taken together, this research supports the first evidence that miR-1468 plays an oncogenic role in HCC via activating PPAR-γ/AKT pathway by targeting CITED2 and UPF1, and represents a promising therapeutic strategy for HCC patients.

Keywords: miR-1468, Hepatocellular carcinoma, CITED2, UPF2, PPAR-γ, Tumor growth
Background

Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide and the second leading cause of cancer-related death worldwide which contribute to increasing morbidity and mortality in China according to world health organization (WHO) [1, 2]. Despite great advancement in diagnosis and therapeutic strategy, including novel chemotherapeutic interventions and liver transplantation, the long-term survival remains dismal because of high rate of intrahepatic and distal metastasis [3, 4]. Therefore, it is urgent to elucidate the molecular mechanisms underlying HCC progression and develop promising biomarkers for cancer treatment.

MicroRNAs (miRNAs), a family of small, single-stranded and non-coding evolutionarily conserved RNAs of approximately 21–25 nucleotides in sequence length, act as post-transcriptional modulator of gene expression in cancer progression by interacting with complementary sequences within the 3′-untranslated region (UTR) of target mRNA to induce mRNA degradation or translational repression [5–7]. Increasing evidence confirm that dysregulated miRNAs are involved in various biological processes in HCC [8], including cell proliferation, cell cycle, apoptosis and metastasis [9, 10]. Therefore, miRNAs have been recognized as promising therapeutic and prognostic biomarkers in HCC diagnosis and treatment. MiR-1468, a novel cancer related microRNA, was dysregulated and could predict patients’ survival in diverse cancers [11]. Jiang et al. continued that miR-1468 inhibited cell proliferation and induced cell cycle arrest by targeting ribonucleotide reductase M1 subunit M1 (RRM1) in glioma [12]. In papillary renal cell carcinoma (pRCC), miR-1468 was significantly associated with patient survival and identified by multivariate Cox regression analyses as potential independent prognostic factors in pRCC [13]. In lung adenocarcinoma (PPAR-γ), miR-1468 expression was significantly correlated with recurrence-free survival [14]. Moreover, miR-1468 was decreased in blood-based microRNA biomarker in early diagnosis of pancreatic cancer [15]. Previous study reported that miR-1468 showed an up-regulated tendency and might be a potential prognostic biomarker in HCC samples derived from The Cancer Genome Atlas (TCGA) database [16]. Nevertheless, the function of miR-1468 and its underlying molecular mechanisms in HCC remain unknown.

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-activated transcription factor, which belongs to the nuclear receptor superfamily and exerts its function on tumor promotion, cellular differentiation, cell cycle and apoptosis [17, 18]. In HCC, PPAR-γ has been identified as a tumor suppressor gene and mediated apoptosis of HCC cells depends on modulation of phosphatidylinositol 3-kinase (PI3K) pathway [19, 20]. Moreover, recent findings using PPAR-γ knockout mice suggest that PPAR-γ reduces HCC carcinogenesis and metastasis and acts as a tumor-suppressor gene in the liver [21]. PPAR-γ agonist induces apoptosis by triggering the intrinsic apoptosis pathway and inhibiting PI3K/AKT survival pathway in human cervical cancer cells [22]. Our previous study confirms that miR-130b promotes cell aggressiveness by inhibiting PPAR-γ in human HCC [23]. These findings indicate that PPAR-γ regulates HCC tumorigenesis and progression.

In present research, we demonstrated that miR-1468 overexpression was associated with poor prognostic features and reduced survival of HCC patients. MiR-1468 promoted the growth of HCC cells in vitro and in vivo. Furthermore, we confirmed that miR-1468 inhibited PPAR-γ/AKT signaling activity through directly suppression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (CITED2) and Upframeshift protein 1 (UPF1). Therefore, our results confirm that miR-1468 exerts a critical role in HCC progression and represents a potential target for HCC diagnosis and treatment.

Methods

Patients’ tissues and cell culture

Patients’ tissues and paired adjacent non-tumor tissues were obtained from 99 patients in our hospital after the informed consent were obtained from all patients. All patients didn’t receive any therapy including radiotherapy, chemotherapy or radiofrequency ablation before surgery. The clinicopathological and demographic information of the patients was described in Table 1. The normal immortalized human hepatocyte LO2 and a panel of HCC cells (Hep3B, HepG2, Huh7, MHCC-97 L and SMMC-7721) (Chinese Academy of Sciences, Shanghai, China) were maintained in DMEM (Invitrogen, Carlsbad, USA) containing 10% FBS (Gibco, GrandIsland, USA) in 37 °C with 5% CO2.

Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was conducted as reported previously [10, 24, 25]. All RNA was extracted based on the protocol of TRIzol reagent (Invitrogen, Carlsbad, CA, USA).

qPCR primer against miR-1468 (HmiRQP0193), U6 (HmiRQP9001), CITED2 (HQP062677), UPF1 (HQP071077) and GAPDH (HQP006940) were ordered from Genecopoeia (Guangzhou, China).

Immunohistochemical staining (IHC)

The sections were dewaxed, dehydrated, and rehydrated. CITED2, UPF1 (1:100, Cell Signaling, Danvers, MA, USA) were added to the sections and incubating at 4 °C overnight. Then applying the biotinylated secondary antibodies (Goldenbridge, Zhongshan, China) according to SP-IHC assays. Specific experiment was conducted similar to previously reported [24, 26].
Immunofluorescence (IF)
We used 4% paraformaldehyde to fix transfected cells and used 0.3% Triton X-100 to permeabilize. The primary antibody CITED2 (Novous Biologicals, Inc. Littleton, CO, USA), UPF1 (Cell Signaling Technology, Danvers, USA) was used. Then the Alexa Fluor-conjugated secondary antibody was performed the next experiment. Lastly, the images were taken by Microscope (Zeiss, Germany).

Western blot analysis
We separated proteins by SDS–PAGE and transferred proteins to PVDF membranes. Detailed experiment was performed similar to previously reported [24, 26].

RNA interference transfection
The CITED2, UPF1 and a negative control siRNA were synthesized by GenePharm (Shanghai, China). Hep3B and MHCC-97 L cells (2 x 10^5 per well) were transfected in a concentration of 100 nM siRNA.

Cell proliferation, cell cycle and apoptosis detection
Cell Counting Kit-8 (CCK8) reagents (Dojindo, Kumamoto, Japan), EdU, cell cycle, colony formation and apoptosis were carried as described previously [10, 27].

Luciferase reporter assay
The 3'-UTR sequence of CITED2 and UPF1, together with a corresponding mutated sequence within the predicted target sites, were synthesized and inserted into the pmiR-GLO dual-luciferase miRNA target expression vector (Promega, Madison, WI, USA). The assays were carried out as described previously [10, 28].

In vivo experiments
Four-to-six-week-old male BALB/c nude mice (Centre of Laboratory Animals, The Medical College of Xi’an Jiaotong University, Xi’an, China) were used to establish the nude mouse xenograft model. Hep3B (5 x 10^6) cells that were transfected with miR-1468 or miR-control vectors or MHCC-97 L cells with anti-miR-1468 were mixed in 150 μl of Matrigel and were inoculated subcutaneously into the flank of nude mice. The tumor volume for each mouse was determined by measuring two of its dimensions and then calculated as tumor volume = length × width × width/2. After 3 weeks, the mice were sacrificed by cervical dislocation under anesthesia with ether and the xenograft tumor tissue was explanted for examination. Animal protocols were approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University.

Statistical analysis
Results are managed as the mean ± SD and analyzed by SPSS software, 16.0 (SPSS, Chicago, USA). The statistical approaches mainly included a two-tailed Student’s t test, a Kaplan–Meier plot, Pearson chi-squared test and so on. Difference with \(P < 0.05 \) was regard to be significant. Graphs were mainly made by GraphPad Prism 6 (GraphPad, San Diego, USA).

Results
miR-1468 is up-regulated in HCC and correlates with patients’ survival
To explore the expression level of miR-1468 in HCC, we performed qRT-PCR to measure its expression in 40 pairs of randomly selected tumor tissues and matched adjacent non-tumor tissues. We found that miR-1468 was significantly up-regulated in HCC tissues compared

Table 1 Clinical correlation of miR-1468 expression in hepatocellular carcinoma (n = 99)

Clinical parameters	Number	Expression level	P value	
miR-1468^high (n = 50)	miR-1468^low (n = 49)	miR-1468^high (n = 50)	miR-1468^low (n = 49)	0.006*
Age (years)				
< 50	50	43	0.429	
≥ 50	50	32	0.632	
Gender				
Male	30	36	0.018*	
Female	30	14	0.006*	
Tumor size (cm)				
< 5	20	24	0.006*	
≥ 5	30	18	0.006*	
Tumor number				
Solitary	85	53	0.684	
Multiple	14	7	0.7	
Edmondson-Steiner grading				
I + II	77	53	0.018*	
III + IV	22	6	0.018*	
TNM stage				
I + II	79	44	0.018*	
III + IV	20	5	0.538	
Venous infiltration				
Present	15	8	0.538	
Absent	84	42	0.487	
AFP (ng/ml)				
< 400	27	12	0.018*	
≥ 400	72	35	0.538	
HBsAg				
Positive	90	44	0.487	
Negative	9	6	0.538	

AFP, alpha-fetoprotein; TNM, tumor-node-metastasis
* Statistically significant
with matched non-tumor tissues \((P < 0.05, \text{Fig. } 1\text{a}).\) Similarly, miR-1468 was obviously increased in a group of HCC cell lines as compared with normal hepatic cell line LO2 \((P < 0.05, \text{respectively, Fig. } 1\text{b}).\) Next, we divided all HCC patients into miR-1468 high \((n = 50)\) and low \((n = 49)\) group according to median value. As shown in Table 1, increased miR-1468 level was markedly associated with large tumor size \((\geq 5 \text{ cm}; P = 0.006),\) high histological grade \((\text{Edmondson-Steiner grade III + IV}; P = 0.018)\) and advanced tumor stage \((\text{TNM stage III + IV}; P = 0.014).\) Furthermore, Kaplan-Meier analysis revealed that HCC patients with high miR-1468 level showed a significant shorter overall survival \((P = 0.0004, \text{Fig. } 1\text{c})\) and disease-free survival \((P = 0.0006, \text{Fig. } 1\text{d}).\) In addition, miR-1468 was an independent factor for predicting 5-year overall and disease-free survival in HCC patients \((P = 0.003 \text{ and } 0.007, \text{respectively, Table } 2).\) Our data indicates that miR-1468 may server as a novel predictive biomarker for HCC patients.

miR-1468 promotes cell growth and inhibits apoptosis of HCC cells

To further investigate the biological function of miR-1468 in HCC, miR-1468 was stably overexpressed in Hep3B cells by lentivirus system and knocked down in MHCC-97 L cells, which contained different endogenous miR-1468 levels. As measured by qRT-PCR, we confirmed that miR-1468 was effectively upregulated in Hep3B or downregulated in MHCC-97 L cells \((P < 0.05, \text{Fig. } 2\text{a}).\) CCK8 and EdU proliferation assays found that miR-1468 overexpression enhanced cell proliferation \((P < 0.05, \text{Fig. } 2\text{b, c}).\) The colony formation assay revealed that ectopic expression of miR-1468 significantly increased cell colonies \((P < 0.05, \text{Fig. } 2\text{d}).\) As determined by flow cytometry, overexpression of miR-1468 promoted cell cycle transition from G1 to S phase \((P < 0.05, \text{Fig. } 2\text{e})\) and apoptosis resistance \((P < 0.05, \text{Fig. } 2\text{f}).\) In addition, immunoblotting analysis confirmed that up-regulated miR-1468 level obviously increased Cyclin D1 and Bcl-2 expression, while reduced the levels of p21 and Bax \((P < 0.05, \text{respectively, Fig. } 2\text{g}).\) In accordance, miR-1468 knockdown inhibited the growth and induced apoptosis of MHCC-97 L cells \((P < 0.05, \text{Fig. } 2\text{b-g}).\) Thus, these data demonstrate that miR-1468 regulates HCC cell proliferation, cell cycle progression, colony formation and apoptosis in vitro.

To measure the effect of miR-1468 on cell tumorigenicity in vivo, we established a subcutaneous tumor model. The tumor growth curves revealed that miR-1468 overexpression significantly promoted the tumor growth, while miR-1468 knockdown inhibited the tumor growth of HCC cells in mice \((P < 0.05, \text{Fig. } 3\text{a}).\) Next, we evaluated the proliferative and apoptotic rate in vivo by Ki67 and TUNEL staining in the xenografted tissues. As measured by Ki67 staining, proliferation rate was obviously increased in the high miR-1468 group compared with the low miR-1468 group \((P < 0.05, \text{Fig. } 3\text{b}).\) In contrast, TUNEL staining showed that the apoptotic rate was significantly lower in the high miR-1468 group than in the low miR-1468 group \((P < 0.05, \text{Fig. } 3\text{c}).\)

![Fig. 1](image-url) **Fig. 1** MiR-1468 is down-regulated in HCC and correlates with HCC progression and survival. Comparing differences in the expression of miR-1468 between (a) HCC and matched tumor-adjacent tissues and (b) HCC cell lines and the immortalized hepatic cell line LO2. HCC patients with higher expression of miR-1468 had worse overall survival (c) and disease-free survival (d). *\(P < 0.05, **P < 0.01\)**
Table 2 Multivariate Cox regression analysis of 5-year overall and disease-free survival of hepatocellular carcinoma patients

Variables	Overall survival				Disease-free survival			
	HR	95% CI	P	HR	95% CI	P		
miR-1468	4.762	1.756–11.482	0.003*	3.854	1.527–9.485	0.007*		
Tumor size	2.745	1.249–5.898	0.012*	2.212	1.153–4.675	0.014*		
Edmondson-Steiner grading	2.168	1.102–4.254	0.018*	3.612	1.119–4.856	0.008*		
TNM stage	3.328	2.245–5.989	0.001*	3.478	2.241–6.345	0.010		

TNM tumor-node-metastasis, HR hazard ratio, CI confidence interval
*statistically significant

Fig. 2 MiR-1468 promotes cell proliferation, cell cycle progression, colony formation and inhibits apoptosis in HCC cells in vitro. a Hep3B and MHCC-97 L cells that were transfected with corresponding miRNA vectors were subjected to qRT-PCR for miR-1468 expression. Overexpression of miR-1468 promoted cell proliferation (b, c), colony formation (d), cell cycle progression (e) and inhibited apoptosis (f) in Hep3B cells, while down-regulation of miR-1468 inhibited cell proliferation (b, c), colony formation (d), cell cycle progression (e) and promoted apoptosis (f) in MHCC-97 L cells. g Western blot analysis of cycle regulator Cyclin D1 and p21, apoptosis-related protein Bcl2/Bax expression in the presence and absence of miR-1468. n = six independent experiments. *P < 0.05, **P < 0.01
expected, miR-1468 overexpression increased the number of Ki67 positive staining cells and reduced the number of apoptotic cells \((P < 0.05, \text{Fig. 3b, c}) \). However, miR-1468 knockdown inhibited proliferation and induced apoptosis in vivo \((P < 0.05, \text{Fig. 3b, c}) \). Taken together, these results demonstrate that miR-1468 promotes tumor growth of HCC in vitro and in vivo.

CITED2 and UPF1 are downstream targets of miR-1468 in HCC

We used target algorithm (TargetScan and miRNA) to predict candidate targets of miR-1468 and found that the 3′-UTR of CITED2 and UPF1 matched the “seed sequence” of miR-1468 (Fig. 4a). Luciferase reporter assay showed that miR-1468 overexpression inhibited, while
Fig. 4

(See legend on next page.)
miR-1468 knockdown increased the luciferase activity of wild-type (wt) CITED2 or UPF1 3'–UTR but not the mutant (mt) CITED2 or UPF1 3'–UTR (P < 0.05, Fig. 4b). Furthermore, miR-1468 overexpression significantly inhibited the mRNA and protein expression of CITED2 and UPF1 in Hep3B cells (P < 0.05, respectively, Fig. 4c, d). By contrast, the expression of CITED2 and UPF1 were significantly increased by miR-1468 knockdown in MHCC-97 L cells (P < 0.05, respectively, Fig. 4c, d). In addition, IF data further confirmed the above results (Fig. 4e, f). These results reveal that miR-1468 inhibits CITED2 and UPF1 expression by directly binding to their 3'–UTR.

miR-1468 inversely correlates with CITED2 and UPF1 expression in HCC tissues

Next, we measured the expression of CITED2 and UPF1 in different miR-1468 groups. Our data revealed that both CITED2 and UPF1 levels in HCC tissues with high miR-1468 level were significantly lower than those in low miR-1468 group (P < 0.05, Fig. 5a, b). Moreover, we found that the mRNA level of CITED2 and UPF1 was inversely correlated with miR-1468 expression in the HCC tissues (R² = 0.5753 and 0.5636, P < 0.0001, Fig. 5c). Consistently, CITED2 and UPF1 protein expression in miR-1468 high-expressing tumors were obviously lower than those in miR-1468 low-expressing tumors as suggested by IHC, and both CITED2 and UPF2 staining were weaker than adjacent nontumor tissues (P < 0.05, Fig. 5d). In addition, western blot demonstrated that CITED2 and UPF1 were significantly down-regulated in HCC tissues compared with matched non-tumor tissues (P < 0.05, Fig. 5e). We further evaluated the expression of CITED2 and UPF1 in xenografted tissues and found that miR-1468 overexpression group showed a weak CITED2 and UPF1 staining, however, miR-1468 knockdown group showed opposite effects (P < 0.05, Fig. 5f). Taken together, these data suggest that CITED2 and UPF1 expression are inversely associated with miR-1468 in HCC tissues.

Restoration of CITED2 and UPF1 reverses the biological effects of miR-1468 on HCC cells

To investigate the importance of CITED2 and UPF1 in the biological function of miR-1468 in HCC cells, CITED2 or UPF1 was respectively restored in miR-1468-overexpressing Hep3B cells, and inhibited by corresponding siRNA in miR-1468-suppressive MHCC-97 L cells (P < 0.05, Fig. 6a). CITED2 or UPF1 restoration reversed the promotive effects of miR-1468 on cell proliferation (P < 0.05, Fig. 6b-c), colony formation (P < 0.05, Fig. 6d), cell cycle progression (P < 0.05, Fig. 6e) and apoptosis (P < 0.05, Fig. 6f). Moreover, CITED2 or UPF1 knockdown abolished the inhibitory effects of miR-1468 inhibition on cell growth (P < 0.05, Fig. 6b-f). In addition, alteration of CITED2 or UPF1 expression also abolished the effect of miR-1468 on cell cycle and apoptosis-related protein (P < 0.05, Fig. 6g). Moreover, inhibition of CITED2 or UPF1 mimics miR-1468-induced effects in control cells (Additional file 1: Figure S1). These results confirm that CITED2 and UPF1 are functional mediators of miR-1468 in HCC cells.

PPAR-γ/AKT signaling is essential for the biological function of miR-1468 in HCC

Previous studies confirm that the target genes of miR-1468 are significantly enriched in PPAR signaling pathway and CITED2 is involved in PPAR-γ effects on HCC growth [16, 29]. Therefore, we explored the PPAR-γ/AKT signaling by western blot. As shown in Fig. 7a, overexpression of miR-1468 significantly inhibited, while miR-1468 knockdown promoted PPAR-γ/AKT pathway in HCC cells (P < 0.05, Fig. 7a), with change of p-AKT level rather than total AKT (P < 0.05, Fig. 7a). Moreover, CITED2 or UPF1 overexpression promoted PPAR-γ/AKT pathway in HCC cells (Additional file 2: Figure S2). To investigate whether PPAR-γ mediated miR-1468-induced biological function in HCC cells, we treated miR-1468-overexpressing Hep3B cells with the agonist rosiglitazone (40 μM). We found that rosiglitazone at least partially inhibited miR-1468-induced cell proliferation, cell cycle progression, colony formation and apoptosis resistant in HCC cells (P < 0.05, Fig. 7b-f). Conversely, T0070907 (50 μM), an antagonist of PPAR-γ, rescued the effects of miR-1468 knockdown on biological function of HCC (P < 0.05, Fig. 7b-f) in miR-1468-suppressive MHCC-97 L cells. Moreover, alternation of PPAR-γ also abolished the effects of miR-1468 on cell cycle and apoptosis-related proteins (P < 0.05, Fig. 7g). In conclusion, our results indicate that PPAR-γ/
AKT signaling plays an essential role in miR-1468-induced HCC growth.

AKT phosphorylation is critical for the biological effects of miR-1468 in HCC

Previous studies report that PPAR-γ exerts its function by inhibiting activation of AKT signaling pathway [30, 31]. To confirm that AKT phosphorylation contributes to the biological function of miR-1468 in HCC cells, we used AKT inhibitor MK2206 or AKT activator IGF-1 (insulin-like growth factor 1) to alter AKT activation. Inactivation of AKT phosphorylation by MK2206 in miR-1468-overexpressing Hep3B cells significantly decreased cell proliferation, cell cycle progression, colony formation, and induced apoptosis (P < 0.05, Fig. 8a-d). In addition, AKT phosphorylation activator, IGF-1, increased cell proliferation, cell cycle progression, colony formation, and inhibited apoptosis (P < 0.05, respectively, Fig. 8a-e) in MHCC-97 L-anti-miR-1468 cells. Accordingly, the expression of cell cycle and apoptosis-related proteins were also significantly changed after p-AKT alteration (P < 0.05, Fig. 8f). Taken together, our results demonstrate that AKT phosphorylation exerts an important role in miR-1468-mediated HCC growth.

Discussion

Increasing evidence confirm that dysregulation of miRNAs plays a critical role in cancer initiation, development and progression, including HCC [32]. Recently, miRNAs have been recognized as diagnostic, therapeutic and prognostic markers [33, 34]. In present study, we
confirmed that miR-1468 was up-regulated in HCC tissues and cell lines, which was consistent with TCGA data. Moreover, increased miR-1468 level was obviously correlated with malignant clinicopathological features, including large tumor size, high histological grade and advanced tumor stage. Moreover, miR-1468 was an independent prognostic factor in predicting survival of HCC patients. These data suggest that miR-1468 is involved in HCC progression and represents as a promising biomarker for HCC therapy.

Previous study has confirmed that blood-based circulating miR-1468 is evaluated as a diagnostic marker panel for early diagnosis of pancreatic cancer [15]. In this study, we demonstrated that miR-1468 promoted cell proliferation, cell cycle progression, colony formation and inhibited apoptosis by gain- and loss-of-function experiment in vitro and in vivo. Moreover, we provided the first evidence that the target genes of miR-1468 were CITED2 and UPF1. First, miR-1468 negatively modulated CITED2 and UPF1 expression in HCC cells.
Second, miR-1468 affected the luciferase activity of wt 3'UTR but not mt 3'UTR of CITED2 and UPF1. Third, miR-1468 was inversely correlated with the expression of CITED2 and UPF1 in HCC tissues. Furthermore, CITED2 and UPF1 were down-regulated in HCC tissues, and modulating their expression could reverse the biological function of miR-1468 in HCC cells. CITED2 is a transcriptional co-regulator that directly interacts with host of transcription factors and co-activators, and influences the activation of gene transcription \[35, 36\]. CITED2 is a potent prognostic predictor and associated with proliferation, migration and chemoresistance in
breast cancer [37]. Moreover, CITED2 serves as a coactivator of hepatocyte nuclear factor 4α (HNF4α) in liver development [38]. CITED2 is a novel direct effector of PPAR-γ in suppressing HCC cell growth [29]. UPF1 is essential for accomplishing DNA replication during S phase of cell cycle [39]. The human RNA surveillance factor UPF1 inhibits hepatic cancer progression and EMT progress by targeting MRP2/ABC2 [40]. Moreover, UPF1 regulates HCC tumorigenesis by up-regulation of Smad family member 7 (Smad7) and affecting transforming growth factor β (TGF-β) pathway [41]. In this research, we also confirmed that CITED2 and UPF1 were down-regulated in HCC tissues compared to adjacent non-tumor tissues. These data provide more evidence for establishing therapeutic strategies in miRNA-modulating networks.

Previous study reveals that the target genes of miR-1468 are enriched in PPAR signaling pathway [16]. CITED2 signals through PPAR-γ to regulate death of cortical neurons after DNA damage [30]. Moreover, CITED2 is a novel effector of PPAR-γ in inhibiting HCC cell growth [29]. In HCC, PPAR-γ inhibits cell invasion by up-regulating plasminogen activator inhibitor-1. The PPAR-γ agonist has been shown to inhibit HCC development. In this study, alteration of PPAR-γ activation could abolish the effects of miR-1468 on HCC growth. Moreover, PPAR-γ exerted its biological function through AKT signaling. Here, AKT phosphorylation was critical for the biological effects of miR-1468 in HCC. Taken together, we confirm that miR-1468 promotes HCC cell growth by modulation of PPAR-γ/AKT signaling (Additional file 3: Figure S3).

In summary, we demonstrate that miR-1468 overexpression acts as an independent biomarker for indicating poor prognosis of HCC patients. Furthermore, we confirm that miR-1468 promotes cell proliferation, colony formation, cell cycle progression and inhibits apoptosis by directly targeting CITED2 and UPF1 mediated PPAR-

Fig. 8 AKT phosphorylation is essential for the biological function of miR-1468 in HCC. AKT inhibitor MK2206, or AKT phosphorylation activator IGF-1, abolished the cell proliferation (a, b), colony formation (c), cell cycle progression (d) and apoptosis (e) of HCC cells which were transduced of miR-1468 vectors. f Western blot analysis indicated that modulating AKT phosphorylation reversed the effects of miR-1468 alteration on cell cycle and apoptosis associated factors of HCC cells. P < 0.05
γ/AKT pathway. Our data reveal a novel role for miR-1468 in HCC development and progression, and suggest miR-1468 as a potential target for HCC diagnosis and treatment.

Conclusions
To conclude, our data offer the promising evidence that miR-1468 overexpression acts as an independent risk factor for indicating poor prognosis of HCC patients. miR-1468 facilitates HCC cell proliferation and cell cycle progression, and induces apoptosis in vitro and in vivo. More significantly, CITED2 and UPF1-mediated PPAR-γ/AKT pathway may be directly implicated in the oncogenic function of miR-1468 in HCC. Our study considers miR-1468 as a potential diagnostic marker and therapeutic target for HCC.

Additional files

Additional file 1: Figure S1. Modulation of CITED2 or UPF1 mimics miR-1468-induced cellular processes in HCC. (A) Hep3B-miR-control cells that were transfected with empty vector (EV) or CITED2, UPF1 overexpression plasmids were subjected to western blot for CITED2 and UPF1. MHCC-97 L-anti-miR-NC cells that were transfected with scrambled siRNA or CITED2, UPF1 siRNA were subjected to western blot for CITED2, UPF1. (B) CITED2 or UPF1 restoration mimics the effects of miR-1468 knockdown on cell proliferation (B, C), colony formation (D), cell cycle progression (E) and apoptosis (F) of Hep3B cells. CITED2 or UPF1 knockdown mimics effects of miR-1468 overexpression in MHCC-97 L cells (B-F). (G) Alteration of CITED2 or UPF1 mimics the effects of miR-1468 on cell cycle and apoptosis associated factors. *P < 0.05. (TIFF 704 kb)

Additional file 2: Figure S2. CITED2 or UPF1 overexpression promoted PPAR-γ expression and inhibited AKT phosphorylation in HCC cells. (TIFF 1034 kb)

Additional file 3: Figure S3. Overview of miR-1468-induced tumor progression and activates PPAR-γ-mediated AKT signaling in human hepatocellular carcinoma. (TIFF 77 kb)

Abbreviations
CCK-8: Cell Counting Kit-8; CD320: CD 63; miR-300: Interacting transactivator with Glu/Asp-rich carboxy-terminus 1; (miR)-15A: Hepatocellular carcinoma; HNF4α: Hepatocyte nuclear factor 4α; IF: Immunofluorescence; iHC: Immunohistochemistry; miRNA: microRNAs; P38K: Phosphatidylinositol 3-kinase; PPAR-γ: Peroxisome proliferator-activated receptor-γ; pRCC: papillary renal cell carcinoma; qRT-PCR: real-time quantitative reverse transcription polymerase chain reaction; RRM1: Ribonucleotide reductase large subunit; TGF-β: Transforming growth factor β; UPF1: Up-framenate protein 1

Acknowledgements
No conflicts.

Funding
This study was supported by grants from the National Natural Science Foundation of China (81773123, 81572847, 81502092); the Zhejiang Provincial Natural Science Foundation of China (LY17H160043); the Open Foundation from Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province (ZJZLSYS002).

Availability of data and materials
All data generated or analyzed during this study are included either in this article or in the supplementary information files.

Authors’ contributions
QL and KT conceived and designed the experiments; ZL, YW, CD, LS, QL and LW performed the experiments; ZL and YW analyzed the data; QX and WY contributed reagents/materials/analysis tools; ZL and KT wrote the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the Research Ethics Committee of The First Affiliated Hospital of Xi’an Jiaotong University and with the Helsinki declaration and its later amendments. All written informed consents to participate in the study was obtained from HCC patients for samples to be collected from them.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, 777 Yanta West Road, Xian 710061, China. 2Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China. 3Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.

Received: 18 January 2018 Accepted: 22 February 2018

Published online: 06 March 2018

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
2. Forcer A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.
3. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.
4. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62(6):394–9.
5. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.
6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
7. Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. TheScientificWorldJOURNAL. 2013;2013:924206.
8. Wei R, Huang GL, Zhang MY, Li BK, Zhang HZ, Shi M, Chen XQ, Huang L, Zhou QM, Ja WH, et al. Clinical significance and prognostic value of miRNA expression signatures in hepatocellular carcinoma. Clin Cancer Res. 2013;19(7):4780–91.
9. Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Ja Y, Li Q, Zhang H, Tu K, et al. Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget. 2016;7(24):36909–23.
10. Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Ja Y, Li Q, Zhang H, Tu K, et al. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget. 2016;7(18):25350–65.
11. Niu N, Schaid DJ, Abo RP, Kalari K, Fridley BL, Feng Q, Jenkins G, Bätzler A, Brisbin AG, Cunningham JM, et al. Genetic association with overall survival of taxane-treated lung cancer patients - a genome-wide association study in human lymphoblastoid cell lines followed by a clinical association study. BMC Cancer. 2012;12:2422.
12. Jiang K, Zhi T, Xu W, Xu X, Wu W, Yu T, Nie E, Zhou X, Bao Z, Jin X, et al. MicroRNA-1468-5p inhibits glioma cell proliferation and induces cell cycle arrest by targeting RRM1. Am J Cancer Res. 2017;7(4):784–800.
13. Ge YZ, Xu LW, Xu Z, Wu R, Xin H, Zhu M, Lu TZ, Geng LG, Liu H, Zhou CC, et al. Expression profiles and clinical significance of MicroRNAs in papillary renal cell carcinoma: a STROBE-compliant observational study. Medicine. 2015;94(16):e749.

14. Lin K, Xu T, He BS, Pan YQ, Sun HL, Peng HK, Hu XX, Wang SK. MicroRNA expression profiles predict progression and clinical outcome in lung adenocarcinoma. OncoTargets and Therapy. 2016;9:5679–92.

15. Ganepola GA, Rutledge JR, Suman P, Yingprukasawan A, Chang DH. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J Gastro Int Oncol. 2016;4(1):22–33.

16. Liu G, Wang H, Fu JD, Liu JY, Yan AG, Guan YY. A five-miRNA expression signature predicts survival in hepatocellular carcinoma. APMS. 2017;125(6):1–22.

17. Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res. 2003;9(11):1–9.

18. Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol. 2004;5(7):149–20.

19. Yu J, Qiao L, Zimmermann L, Ebert MP, Zhang H, Lin W, Rocken C, Wu CW, Farrell GC, Yu J. Functional role of peroxisome proliferator-activated receptor gamma in cancers. J Clin Oncol. 2003;21(11):1665–9.

20. Wu CW, Farrell GC, Yu J. Functional role of peroxisome proliferator-activated receptor gamma in hepatocellular carcinoma. J Gastroenterol Hepatol. 2012;27(11):1665–9.

21. Yu J, Shen B, Chu ES, Teoh N, Cheung KF, Wu CW, Wang S, Lam CN, Feng H, Zhao J, et al. Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro. Hepatology. 2010;51(6):2008–19.

22. Hyun S, Kim MS, Song YS, Bak Y, Ham SY, Lee DH, Hong J, Yoon DY. Peroxisome proliferator-activated receptor-gamma agonist 4-O-methylhonokiol induces apoptosis by triggering the intrinsic apoptosis pathway and inhibiting the PI3K/Akt survival pathway in SiHa human cervical cancer cells. J Microbiol Biotechnol. 2015;25(3):334–42.

23. Tu K, Zheng X, Dou C, Li C, Yang W, Yao Y, Liu Q. MicroRNA-138b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(11):20486–99.

24. Liu Z, Dou C, Jia Y, Li Q, Zheng X, Yao Y, Liu Q, Song T. RIG-I suppresses tumor migration and invasion of hepatocellular carcinoma cells by regulating MMP9. Int J Oncol. 2015;46(4);1710–20.

25. Dou C, Wang Y, Li C, Liu Z, Ji Y, Li Q, Wang W, Yao Y, Li Q. Tumor suppressor microRNA-212 suppresses tumor growth of human hepatocellular carcinoma by targeting FOXA1. Oncotarget. 2016;7(13);20316–28.

26. Liu Z, Dou C, Wang Y, Ji Y, Li Q, Zheng X, Yao Y, Liu Q, Song T. Highmobility group box 1 has a prognostic role and contributes to epithelial-mesenchymal transition in human hepatocellular carcinoma. Mol Med Rep. 2015;12(4);6097–6104.

27. Tu K, Liu Z, Yao B, Han S, Yang W, MicroRNA-138b promotes tumor growth by targeting PTEN/PK/AKT axis in hepatocellular carcinoma. J Int Oncol. 2015;46(8):965–74.

28. Xu Q, Liu X, Liu Z, Zhou Z, Wang H, Zeng L, Bao H, Yang L, Tu K. MicroRNA-236 inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting SRF/MER. Mol Cancer. 2017;16(11);965–9.

29. Cheung WC, Zhao J, Hu J, Lowe AW, Cheng AS, Sung JJ, Yu J. CITED2 is a novel direct effector of peroxisome proliferator-activated receptor gamma in regulating hepatocellular carcinoma cell growth. Cancer. 2013;119(6):954–66.

30. Esgaraz Y, Fang Y, Behzadpoor D, Cregan S, Bamforth S, Slack RS, Park DS. CITED2 signals through peroxisome proliferator-activated receptor gamma to regulate death of cortical neurons after DNA damage. J Biol Chem. 2008;282(15);5559–69.

31. Venugurukal BK, Yang HH, Sung PJ, Weng CF. Excavatolide B inhibits nonsmall cell lung cancer proliferation by altering peroxisome proliferator activated receptor gamma expression and PTEN/AKT/NF-kappa beta expression. Environ Toxicol. 2017;32(1);290–301.

32. Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer: current status and prospective. Int J Cancer. 2012;130(5);653–60.

33. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11);857–66.

34. Ji J, Shi J, Budhia A, Yu Z, Forgues M, Roessler S, Amba S, Chen Y, Meltzer PS, Croce CM, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15);1437–47.

35. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003;278(18);16021–9.

36. Ten ES, Davis JW, Vanden Heuvel JP. Identification of the CREB-binding protein/p300-interacting protein CITED2 as a peroxisome proliferator-activated receptor alpha coregulator. J Biol Chem. 2004;279(23);24653–24663.

37. Minemura H, Takagi K, Sato A, Takahashi H, Miki Y, Shibahara Y, Watanabe M, Ishida T, Saiano H, Suzuki T. CITED2 in breast carcinoma as a parent prognostic predictor associated with proliferation, migration and chemoresistance. Cancer Sci. 2016;107(12);1898–908.

38. Qu X, Lam E, Doughman YQ, Chen Y, Chou YT, Lam M, Tutakha A, Dunwoodie SL, Watanabe M, Xu B, et al. Cited2, a coactivator of HNF4alpha, is essential for liver development. EMBO J. 2007;26(1);54–61.

39. Azzalin CM, Lingner J. The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol. 2010;20(4);433–9.

40. Zhang H, You Y, Zhu Z. The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. J Clin Cancer Res. 2016;35(8):33.