Impact of previous cyst-enterostomy on patients’ outcome following resection of bile duct cysts

Mehdi Ouaissi, Reza Kianmanesh, Emilia Ragot, Jacques Belghiti, Pietro Majno, Gennaro Nuzzo, Remi Dubois, Yann Revillon, Daniel Cherqui, Daniel Azoulay, Christian Letoublon, François-René Pruvot, François Paye, Patrick Rat, Karim Boudjema, Adeline Roux, Jean-Yves Mabrut, Jean-François Gigot

Mehdi Ouaissi, Department of General and Digestive Surgery, La Timone Hospital, 13009 Marseille, France
Reza Kianmanesh, Department of Digestive and Endocrine Surgery, Robert Debré Hospital, 51090 Reims, France
Emilia Ragot, Jacques Belghiti, Department of HPB Surgery, Beaujon Hospital, 92110 Clichy, France
Pietro Majno, Department of Digestive Surgery, Geneva University Hospital, 1205 Geneva, Switzerland
Gennaro Nuzzo, Department of HPB Surgery, Gemelli University Hospital, 00168 Roma, Italy
Remi Dubois, Department of Pediatric Surgery, Mother and Children Hospital, 69677 Bron, France
Yann Revillon, Department of Pediatric Digestive Surgery, Necker Hospital, 75175 Paris, France
Daniel Cherqui, Department of Digestive and HPB Surgery, Paul Brousse Hospital, 94800 Villejuif, France
Daniel Azoulay, Department of Digestive and HPB Surgery, Henri Mondor Hospital, 94000 Creteil, France
Christian Letoublon, Department of Digestive Surgery, Michallon Hospital, 38043 Grenoble, France
François-René Pruvot, Department of Digestive surgery and Transplantation, Claude Huriez Hospital, 59037 Lille, France
François Paye, Department of Digestive Surgery, Saint Antoine Hospital, 75012 Paris, France
Patrick Rat, Department of Digestive Surgery, Dijon University Hospital, 21000 Dijon, France
Karim Boudjema, Department of HPB Surgery, Pontchaillou Hospital, 35033 Rennes, France

Adeline Roux, Pôle Information Médicale Evaluation Recherche, Unité de Recherche Clinique, 69317 Lyon, France
Jean-Yves Mabrut, Department of Digestive Surgery and Hepatic Transplantation, La Croix-Rousse Hospital, 69317 Lyon, France
Jean-François Gigot, Department of Abdominal Surgery and Transplantation Division of Hepato-Biliary and Pancreatic Surgery Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium

Author contributions: All the authors contribute to the manuscript.

Institutional review board statement: A multicenter retrospective study was conducted under the auspices of the Association Française de Chirurgie among their members, surgeons coming mainly from European countries. The patients’ medical records were included on a website database (http://www.chirurgie-viscerale.org) using an online computerized standardized questionnaire.

Informed consent statement: A multicenter retrospective study was conducted under the auspices of the Association Française de Chirurgie among their members, surgeons coming mainly from European countries.

Conflict-of-interest statement: All the authors have no conflicts of interest.

Data sharing statement: No data was created, so no data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
INTRODUCTION

In contrast to Asian countries\(^1\), congenital bile duct cysts (BDC) are rare in the United States and in Europe\(^2\), with an incidence between 1 in 13000 and 1 in 2 million live births\(^3\), respectively. Whereas the incidences vary from 1 in 1000 in Japan\(^4\), to 1 in 13500 in United States\(^5\) and 1 in 15000 in Australia\(^6\). For this reason, there are few published series concerning the Western experience with this disease process\(^7\). The optimal surgical procedure for the management of BDC is still debated with cyst-enterostomy (CE) having been preferred in the past owing to its technical simplicity\(8,9\). However, CE has been reported to be associated with increased morbidity (especially biliary complications) and higher reoperation rates during short- and long-term follow-up in comparison to primary BDC resection\(9,10\). Additionally, a few series have emphasized the negative impact of previous CE on results of secondary BDC resection\(11\). Lastly, CE has been shown to be associated with an increased risk of cholangiocarcinoma\(12,13\). Consequently, primary resection has been considered as the treatment of choice for BDC\(9,14,15\). The purpose of the present study was to investigate the role of a previous CE on short and long-term outcomes after secondary cyst resection in a large European multicenter cohort of patients.

MATERIALS AND METHODS

Study population and patients’ data collection

A multicenter retrospective study was conducted under the auspices of the Association Française de Chirurgie. During a 37 years period (between 1974 and 2011), 33 centers (including 24 academic centers) from 6 different European countries have included a total of 505 patients operated from Todani type I, IVb, II, III, IV/A BDC.

The patients’ medical records were included on a website database (http://www.chirurgie-viscerale.org) using an online computerized standardized questionnaire. Patients’ demographic data, previous history of surgical and/or endoscopic interventions for hepatobiliary and pancreatic (HBP) disease, clinical symptoms, biochemical and imaging studies, details of surgical procedures, pathological data, duration of follow-up and short- and long-term postoperative outcome were collected.
Additional data were obtained from e-mail exchanges or phone calls with the referral centers. Operative reports, pathology reports and imaging studies were systematically reviewed by the 3 senior authors (Jean-Yves Mabrut, Reza Kianmanesh and Jean François Gigot) in order to establish homogeneous disease classifications. Patients’ operative risk was evaluated by using the American Society of Anesthesiology physical status score (ASA).[16] A pediatric patient was defined as under 15 years of age.

Complicated clinical presentation was defined by the presence of severe episodes of cholangitis or pancreatitis, portal hypertension, biliary peritonitis or coexistent synchronous carcinoma. Disease involvement of the main biliary confluence (MBC) was also classified according to the classification reported by two of the co-authors.[17] Postoperative morbidity and mortality were defined at 3 mo or during hospital stay. Postoperative morbidity was graded according to Dindo-Clavien’ classification[18]. Long-term outcome was evaluated according to the classification reported by the Mayo Clinic.[2] Complete cyst excision was defined as without macroscopic dilatation of bile duct after resection.

BDC subtypes were defined based on imaging studies in accordance with the Todani classification[14]. Todani BDC subtypes included type I in 47.3% (n = 239), type II in 3.7% (n = 19), type III in 2.5% (n = 13), type IVA in 14.4% (n = 73), type IVB in 1.2% (n = 6) and type V in 30.7% (n = 155). Only patient with isolated, extrahepatic BDC disease (Type I and IVB) were included (n = 245). Two additional patients that did not undergoing resection were excluded and thus 243 were ultimately analyzed.

A pediatric patient was defined as being aged under 15 years of age. Patients’ operative risk was evaluated by using the ASA[16]. Complicated clinical presentation was defined by the presence of severe episodes of cholangitis or pancreatitis, portal hypertension, biliary peritonitis or coexistent synchronous carcinoma. Disease involvement of the MBC was also classified according to the classification reported by two of the co-authors[17]. Postoperative morbidity and mortality were defined at 3 mo or during hospital stay. Postoperative morbidity was graded according to Dindo-Clavien’ classification[18]. Long-term outcome was evaluated according to the classification reported by the Mayo Clinic[2].

Statistical analysis

Comparisons between patient with and without CE were performed using the 2 test (or the Fisher’s exact test when conditions for the 2 test were not fulfilled) for categorical variables and using the Student t test (or the Mann-Whitney nonparametric rank sum test in case of non-normality) for continuous variables. Predictive factors of poor or fair result during long-term follow-up were analyzed by multivariate statistical analysis. Significant variables at the 0.15 level in univariate analysis were introduced in the multivariate logistic regression model. Kaplan-Meier analysis was used to predict the postoperative survival rate at 1 year and at 3 years. The log-rank test was used to compare subgroups of patients at 1 year and at 3 years. Statistical analysis was performed using SAS® version 9.2 (SAS Institute Inc, Cary, North Carolina, United States).

RESULTS

Patients were stratified based on a history of a previous CE. Demographic data, Todani BDC subtypes, types

Table 1 Patients’ demographic data, todani bile duct cyst subtypes and imaging studies

Patient with previous CE	Patient without previous CE	Total	P value
Patients			
Median age (yr)			
at the time of BDC resection			
Sex ratio F/M			
Adults/children			
ASA score			
1 or 2			
> 3			
Types of imaging studies			
None (incidental detection)			
Percutaneous ultrasound			
Computed tomography			
MR-cholangiography			
ERCP			
Endoscopic ultrasound			
Percutaneous cholangiography			
Intravenous cholangiography			
Intraoperative cholangiography			
Todani bile duct cyst types			
Type I			
Type IVA			
MBC adequately analyzed			
Cyst involvement of MBC			
Presence of PBM adequately explored			
Presence of anomalous PBM			

1The American Society of Anesthesiology physical status score; CE: Cyst-enterostomy; ERCP: Endoscopic retrograde cholangio-pancreatography; PBM: Pancreato-biliary malunion; MBC: Main biliary confluence.
of imaging studies (Table 1), clinical presentations (Table 2), coexistent HBP diseases (Table 3), types of surgical procedures (Table 4), and short- and long-term postoperative outcomes (Table 5) were then compared between the two cohorts. Finally, predictive variables of poor/fair long-term outcome are reported in Table 6.

Patients’ demographic data, Todani BDC subtypes and types of imaging studies

During a 37-year period (1974-2011), 243 patients underwent resections for Todani types I and I/v congenital BDC at 33 centers (including 24 academic centers). The patients’ gender ratio was largely female (193/50, i.e., 3.86%). Median age was 30.8 years old (range: 0.1-81 years) and 79 patients were classified at pediatric. Patients’ characteristics are detailed in Table 1. Sixteen patients had undergone previous CE (16/243, i.e., 6.58%), they were all adults (100% vs 65.2%; \(P = 0.0041 \)) and significantly older (47.8-year-old vs 29.2-year-old; \(P = 0.0074 \)) than those without a history of CE. Imaging studies used for the diagnosis of BDC were different between the 2 groups: Patients without previous history of CE were offered more non-invasive studies, whereas those patients with previous CE had been submitted to significantly more endoscopic techniques. There was no difference concerning the CE had been submitted to significantly more endoscopic studies, whereas those patients with previous CE were offered more non-invasive studies, whereas those patients with previous CE had been submitted to significantly more endoscopic techniques. There was no difference concerning the end in the present cohort and was significantly more frequent in patients with previous CE (12.5% vs 45.8%; \(P = 0.009 \)).

Clinical presentation

The median delay between the disease’s first symptoms and the diagnosis of BDC was 2 mo (0-486) and was similar between the 2 groups of patients. Abdominal pain was the most common presenting symptom (43.6%) for the whole population and significantly more frequent in patients without previous CE (12.5% vs 45.8%; \(P = 0.009 \)). The group of patients with previous CE was observed to have a significantly increased prevalence of cholangitis (75.0% vs 22.9%; \(P < 0.0001 \)) and complicated presentation (75.0% vs 40.5%; \(P = 0.007 \)) (Table 2).

Coexistent HBP diseases

Coexistent biliary disease (liver disease, pancreatic disease, and biliary disease) occurred in 25.1% of the present cohort and was significantly more frequent in

Table 1. Sixteen patients had undergone previous CE at pediatric centers. Patients’ characteristics are detailed in Table 5.

Table 2. Patients’ clinical presentation

	Patients with previous CE	Patients without previous CE	Total	\(P \) value	
	\(n = 16 \)	\(n = 227 \)			
Median delay between symptoms and diagnosis (mo) (range)	2 (0-486)	2 (0-360)	2 (0-486)	0.8848	
Type of symptoms and signs	Asymptomatic	2 (12.5%)	31 (13.7%)	33 (13.6%)	1.0000
	Isolated pain	2 (12.5%)	104 (45.8%)	106 (43.6%)	0.0094
	Cholangitis	12 (73%)	52 (22.9%)	64 (26.3%)	< 0.0001
	Pancreatitis	2 (12.5%)	49 (21.6%)	51 (21.0%)	0.5344
	Abdominal mass	2 (12.5%)	22 (9.7%)	24 (9.9%)	0.6631
	Jaundice	1 (6.3%)	59 (26.0%)	65 (27.2%)	0.3843
	Pruritus	1 (6.2%)	2 (0.9%)	3 (1.2%)	0.1855
	Weight loss	2 (12.5%)	6 (2.6%)	8 (3.2%)	0.9093
	Complicated presentation	12 (75%)	92 (40.5%)	104 (42.8%)	0.0071
Number of patients with > 2 symptoms	9 (56.25%)	92 (40.5%)	102 (42.0%)	0.2942	

CE: Cyst-enterostomy; \(^1\) without fever.

Table 3. Coexistent hepato-biliary and pancreatic diseases

	Patients with previous CE	Patients without previous CE	Total	\(P \) value
	\(n = 16 \)	\(n = 227 \)		
Biliary disease	9 (56.2%)	52 (22.9%)	61 (25.1%)	0.0059
Common biliary atresia	0	1 (0.4%)	1 (0.4%)	1.0000
Stones	4 (25%)	37 (16.3%)	41 (16.9%)	0.3216
Gallbladder	0	16 (7.0%)	16 (6.6%)	-
Cyst	3 (18.8%)	9 (4.0%)	12 (4.9%)	-
Common bile duct	1 (6.3%)	22 (9.7%)	23 (9.5%)	-
Intra hepatic duct	0	4 (1.8%)	4 (1.6%)	-
Synchronous cancer	5 (31.3%)	14 (6.2%)	19 (7.8%)	0.0043

CE: Cyst-enterostomy; MBC: Main biliary convergence; \(^1\)secondary central hepatotomy was performed after good response of chemotherpay.
patients with previous CE (56.2% vs 22.9%; \(P = 0.006 \)). The occurrence of associated calculus disease (16.9%) was similar between the two groups. Synchronous biliary cancer occurred in 7.8% of the total cohort and was significantly more frequent in patients with previous CE (31.3% vs 6.2%; \(P = 0.004 \)) (Table 3).

Preoperative treatment and type of surgery

Preoperative biliary drainage was performed in 6.6% of the whole cohort. All patients underwent surgical exploration. However, 5 adult patients without CE did not undergo BDC resection, one for no specified reason, the others respectively for locally advanced gallbladder cancer, peritoneal carcinomatosis, severe inflammation of the hepatic pedicle, performance of simple cholecystectomy. Only one patient with previous CE had severe hepatic pedicle inflammation prohibiting cyst resection. Associated bile duct stone extraction rates were similar between the two subgroups. Complete cyst excision was accomplished in 93.8% of all patients and there was no significant difference between the two groups of patients. Associated hepatectomy was more frequently performed in patients with previous CE but the difference was not significant (12.5% vs 1.8%; \(P = 0.0523 \)). Associated pancreaticoduodenectomy was significantly more frequent in patients with previous CE (25% vs 1.8%; \(P = 0.008 \)) (Table 4).

Postoperative mortality, morbidity and early postoperative outcome (within 3 mo)

Postoperative death due to cardiac arrhythmia, occurred in 1 patient (0.4%). Overall morbidity and severe complications rates were 36.2% and 14%, respectively. Patients with previous CE had significantly higher morbidity rates (75.0% vs 33.5%; \(P < 0.0008 \)), more severe complications (Grade III-IV) (43.8% vs 11.9%; \(P = 0.003 \)), more hemorrhagic complications (31.3% vs 1.3%; \(P < 0.0001 \)), a greater reoperation rate (37.5% vs 8.8%; \(P = 0.003 \)) and a longer median length of stay (16 vs 10 d; \(P < 0.001 \)) than those without previous CE (Table 5).

Postoperative long-term outcome

A total of 44 patients were lost for follow-up at 3 mo, only 3 of whom belonged to the subgroup of patients with previous CE. The median follow-up in the 198 remaining patients was 37.5 mo (range: 4 to 732 mo) for the whole cohort, without any difference between both subgroups. According to the dedicated Mayo Clinic Risk score evaluating long-term results, there were significantly more patients with fair and poor results in the subgroup of patients with previous CE (\(P = 0.001 \)). The overall 3-year survival rate was significantly lower in patients with prior CE (82.5% vs 95.9%; \(P = 0.01 \)) (Figure 1) (Table 5).

Univariate and multivariate analysis

Predictive variables of poor and fair long-term results (according to the Mayo Clinic clinical score) were

Table 5 Early postoperative and long term outcome of patients
**Patients with previous CE \(n = 16 \)
Median postoperative hospital stay (d) (range)
Mortality rate
Overall complications
Grade I-II
Grade III-IV
Surgical complications
Biliary
Mixed pancreatic and biliary fistula
Pancreatic
Bleeding
Reoperation rate
Long-term outcome of patients
Patients with previous CE
Median follow-up (mo) (range)
Mayo clinic score
Excellent
Good
Fair
Poor
Mayo clinic score
Excellent + good
Fair + poor

CE: Cyst-enterostomy.
evaluated in the 198 patients surviving surgery and with a follow-up over 3 mo. Univariate statistical analysis indicated that predictive variables of poor or fair long-term results were to be an adult patient, with prior CE, postoperative complications, postoperative biliary complications and coexistent synchronous cancer. By multivariate analysis, predictive variables of poor or fair long-term results were previous CE, synchronous cancer and postoperative biliary complications (Table 6).

DISCUSSION

The present retrospective series shows that patients submitted to secondary resection of congenital BDC following a previous cyst-enterostomy suffered more complications before, during and after surgery with poorer results during long-term follow-up. Strengths of the present series include the relatively large cohort of patients issued from a multicentric European series, and the central revision of radiological, operative and pathological data, thereby ensuring a homogeneous classification of patients and their symptoms and signs both prior and after surgery, with the use of a dedicated clinical score for long-term results. Furthermore, the analysis was performed in a homogeneous group of BDC with only extrahepatic biliary involvement, namely patients suffering from Todani types I and IV b BDC. Indeed, patients with Todani type IVA were excluded from the present series so that poor results could not be due to residual non-resected intrahepatic biliary disease.

According to the results of the present study, primary complete excision of BDC, with the construction of a wide bilio-digestive anastomosis to a healthy proximal bile duct should be the “gold standard” surgical management of patients suffering from BDC\(^2,7,14,19\). Cyst-enterostomy must definitively be abandoned as a treatment option. Limitations of the study include its retrospective design, its long period (37 years) of patients inclusion and the number of patients without available long-term follow-up. The comparison between patients with previous cyst-enterostomy and the control group should also be considered with caution due to the small number of patients in the CE group.

However, despite cyst-enterostomy being no longer the primary approach for the surgical management of BDC, its prevalence was 17.2% in 186 patients operated on after 1980\(^2,7,20-22\) and previous cyst-enterostomy was still observed in 7.3% of 354 patients operated on after 1990\(^23-26\). Practically, this means that previous CE still remains a challenge during the management of BDC.

Indeed, the consequences of having undergone a cyst-enterostomy, regardless of the technique used, easily explain the more complicated clinical presentation of previously operated patients encountered in the present series: Possible mechanisms include reflux of digestive juice through the entire biliary tract, activation of pancreatic juice by enterokinases linked to pancreatico-biliary malunion\(^27\) or even anastomotic stricture of the CE on diseased cystic biliary tissue\(^28,29\). Any of these can lead to severe biliary inflammation\(^30\), cholangitis, hepatolithiasis\(^28,29\) and increase the risk of carcinogenesis\(^12,13,19,27\). The latter is estimated to be over 50% by Todani et al\(^27\). Indeed, malignant degeneration of BDC occurs more than 15 years earlier in patients with previous CE than in patients with primary carcinomas, with a median delay of 4 years in a series by Flanigan et al\(^13\) to 10 years (range: 1-53 years of delay) in yet another by Todani et al\(^27\) and, overall, is associated with a very poor prognosis. Finally, the reoperation rate after previous CE is high, ranging from 15.7% to 87.5%\(^9,10,30,31\).

The present series also shows that more complex surgical procedures had to be used for patients with a previous CE, mainly due to an increased need for a pancreaticoduodenectomy. Such an extensive procedure was linked, for half of these patients, with the presence of coexistent carcinoma, thereby, requiring tumor resection with a wide tumor-free margin. The other pancreaticoduodenectomies were mainly performed because of severe inflammation within the hepatic pedicle, probably as a result of repeated episodes of cholangitis. This feature observed during secondary BDC resection in patients with previous CE has not been reported until now.

According to several surgical series which compared primary CE with primary BDC resection with Roux-en-Y hepaticojejunostomy have reported an increased mortality rate (range: 8.3%-10% vs 0%-7%), morbidity rate (range: 17%-93% vs 0%-17%) and reoperation rate (range: 29.7%-87.5% vs 0%) in patients with primary CE\(^9,10,30\). At the time of writing, there are only
3 studies that compared the morbidity and mortality rates between primary BDC resection and secondary BDC resection with previous CE, and these concerned series with only small numbers of patients.2,15,10 For patients with previous CE, Chijiwa \textit{et al.}19 and Gigot \textit{et al.}20 observed significantly more early postoperative complications, whilst Kaneko \textit{et al.}15 reported significantly increased operative blood losses, operative time, early postoperative complications and wound infections. The present series demonstrates similar findings of an increased rate of overall and severe postoperative complications as well as hemorrhagic complications and reoperation rates for patients operated following previous CE.

The key-messages of this first large European multicenter study are that BDC patients who have undergone previous CE have more complications including carcinoma, that long-term results and survival rate are worse and that the reoperation rate is greater. It should be emphasized that these results cannot be attributed to intrahepatic disease alone as only Todani type I and IVb lesions were studied in this analysis. Late complications were also increased in the series reported by Kaneko \textit{et al.}15, especially regarding late development of hepatolithiasis and pancreatic stones, though this was not reported in the series by Chijiwa \textit{et al.}19. Finally, multivariate statistical analysis confirmed in the present series that previous CE was representing an independent predictive factor of fair or poor prognosis after secondary BDC resection. Weaknesses of the present study include its retrospective nature, the number of patients excluded from long-term follow-up after 3 mo (18.1% of the whole series), the limited median follow-up duration of 37.5 mo and the small numbers of patients with previous CE.

In conclusion, this European retrospective series showed that previous CE was associated with a more complicated presentation, more coexistent HPB diseases including synchronous cancer, more complex surgery and worse early and long-term postoperative outcomes. These features confirmed the abandonment of cyst-enterostomy for the surgical management of congenital bile duct cysts.

ACKNOWLEDGMENTS

The AFC Working Group

Jean De Ville de Goyet1, Catherine Hubert1, Jan Lerut1, Jean-Bernard Otte1, Raymond Reding1, Olivier Farges1, Alain Sauvanet1, Gilles Mentha1, Oulhaci Wassila1, Barbara Wildhaber1, Felice Giulante2, Francesco Ardito2, Maria De rose Agostino2, Thomas Gelas2, Pierre-Yves Mure2, Jacques Baulieux3, Christian Partensky3, Taore Alhassane3, Catelin Tiucu Dane4, Yves-Patrice Le Treut4, Mathieu Rinaudo4, Jean Hardwigsen5, Hélène Martelli6, Frédéric Gauthier6, Sophie Branchereau6, Simon Msika7, Daniel Sommacale7, Jean-Pierre Palot8, Ahmet Ayav9, Charles-Alexandre Laurain9, Massimo Falconi10, Denis Castaing10, Oriana Ciaccio10, René Adam10, Eric Vibert11, Roberto Troisi11, Aude Vanlander12, Stéphane Geiss12, Gilles De Taffin12, Denis Collet13, Antonio Sa Cunha13, Laurent Dugué13, Bouzid Chafik14, Kamal Bentabak14, Abdelaziz Grabi14, Nicolas Meurisse15, Jacques Pirenne15, Lorenzo Capussotti16, Serena Langelle16, Nermin Halkic16, Nicolas Demartines17, Alessandra Cristaudi17, Gaëtan Molle18, Baudouin Mansvelt18, Massimo Saviano18, Gelmini Roberta19, Ousema Baraket19, Samy Bouchoucha20, Bernard Sastre20.

From

1 Cliniques Universitaires Saint- Luc, Brussels, Belgium, 2 Beaujon Hospital, Clichy, France, 3 Geneva University Hospital, Geneva, Switzerland, 4 Gemelli University Hospital, Roma, Italy, 5 Mother and Children Hospital, Lyon, France, 6 La Croix-Rousse Hospital, Lyon, France, 7 Necker Hospital, Paris, France, 8 Henri Mondor Hospital, Creteil, France, 9 Michallon Hospital, Grenoble, France, 10 Claude Huriez Hospital, Lille, France, 11 Dijon University Hospital, Dijon, France, 12 Saint Antoine Hospital, Paris, France, 13 Edouard-Herriot Hospital, Lyon, France, 14 Rennes University Hospital, Rennes, France, 15 Conception Hospital, Marseille, France, 16 Bicetre Hospital, Paris, France, 17 Louis Mourier Hospital, Colombes, France, 18 Robert Debré Hospital, Reims, France, 19 Nancy University Hospital, Nancy, France, 20 Negrar University Hospital, Verona, Italy, 21 Paul-Brousse Hospital, Paris, France, 22 Amiens University Hospital, Amiens, France, 23 Ghent University Hospital, Ghent, Belgium, 24 Le Parc Hospital, Colmar, France, 25 Bordeaux University Hospital, Bordeaux, France, 26 Sainte Camille Hospital, Bry-sur-Marne, France, 27 Pierre et Marie Curie Hospital, Alger, Algeria, 28 UZ Leuven University Hospital, Leuven, Belgium, 29 Mauriziano University Hospital, Torino, Italy, 30 Vaudois University Hospital, Lausanne, Switzerland, 31 Jolimont Hospital, La Louvière, Belgium, 32 Modena University Hospital, Modena, Italy, 33 Habib Boughefta Hospital, Bizert, Tunisia, 34 La Timone Hospital, Marseille, France.

The authors thank all the staff and patients of all the participating hospitals for helping with the gathering of all the necessary information for this retrospective study. They are also grateful to Professor Claire Craddock-de Burbure for her meticulous reading of the manuscript.

COMMENTS

Background

Congenital bile duct cysts (BDC) are rare in the United States and in Europe. Cyst-enterostomy has been reported to be associated with increased morbidity (especially biliary complications) and higher reoperation rates during short- and
long-term follow-up in comparison to primary BDC resection. Consequently, primary resection has been considered as the treatment of choice for BDC. The purpose of the present study was to investigate the role of a previous cyst-enterostomy (CE) on short and long-term outcomes after secondary cyst resection in a large European multicenter cohort of patients.

Research fronts

Limitation of the study includes its retrospective design, its long period (37 years), included patients and the number of patients without available long-term follow-up. The comparison between patients with previous cyst-enterostomy and the control group should also be considered with caution due to the small number of patients in the CE group. However, despite cyst-enterostomy being no longer the primary approach for the surgical management of BDC, its prevalence was 17.2% in 186 patients operated on after 1980 and previous cyst-enterostomy was still observed in 7.3% of 354 patients operated on after 1990. Practically, this means that previous CE still remains a challenge during the management of BDC.

Innovations and breakthroughs

This European retrospective showed that previous CE was associated with a more complicated presentation, more coexistent HPB diseases including synchronous cancer, more complex surgery and worse early and long-term postoperative outcomes. These features confirmed the abandonment of cyst-enterostomy for the surgical management of congenital bile duct cysts.

Applications

These features confirmed the abandonment of cyst-enterostomy for the surgical management of congenital bile duct cysts.

Peer-review

The results of this European multicenter study are very interesting and the manuscript is well-written.

REFERENCES

1. Yamaguchi M. Congenital choledochal cyst. Analysis of 1,433 patients in the Japanese literature. Am J Surg 1980; 140: 653-657 [PMID: 6776832 DOI: 10.1016/0002-9610(80)90051-3]
2. Gigot JF, Nagorney DM, Farnell MB, Moir C, Istrup D. Bile duct cysts: a changing spectrum of presentation. J Hepatol Pancreat Surg 1996; 3: 405-411
3. Söreide K, Körner H, Havnen J, Söreide JA. Bile duct cysts in adults. Br J Surg 2004; 91: 1538-1548 [PMID: 15549778 DOI: 10.1002/bjs.4815]
4. Kimura K, Tsugawa C, Ogawa K, Matsumoto Y, Yamamoto T, Kubo M, Asada S, Nishiyama S, Ito H. Choledochal cyst. Etiological considerations and surgical management in 22 cases. Arch Surg 1978; 113: 159-163 [PMID: 6265788 DOI: 10.1001/archsurg.1978.01370140049010]
5. Hays DM, Goodman GN, Snyder WH, Woolley MM. Congenital cystic dilatation of the common bile duct. Arch Surg 1969; 98: 457-461 [PMID: 5775925 DOI: 10.1001/archsurg.1969.0140010008011]
6. Jones PG, Smith ED, Clarke AM, Kent M. Choledochal cysts: experience with radical excision. J Pediatr Surg 1971; 6: 112-120 [PMID: 5578633 DOI: 10.1016/0022-3468(71)90303-4]
7. Lenriot JP, Gigot JF, Segol P, Fagniez PL, Fingerhut A, Adloff M. Bile duct cysts in adults: a multi-institutional retrospective study. French Associations for Surgical Research. Ann Surg 1998; 228: 159-166 [PMID: 9712559 DOI: 10.1097/00000658-199808000-00031]
8. Alonso-Lej F, Rever WB, Pessagno DJ. Congenital choledochal cyst, with a report of 2, and an analysis of 94, cases. Int Abstr Surg 1959; 108: 1-30 [PMID: 13625059]
9. Flanagan PD. Biliary cysts. Ann Surg 1975; 182: 635-643 [PMID: 1103760 DOI: 10.1097/00000658-197511000-00017]
Takiff H, Stone M, Fonkalsrud EW. Choledochal cysts: results of primary surgery and need for reoperation in young patients. *Am J Surg* 1985; 150: 141-146 [PMID: 4014565 DOI: 10.1016/0002-9610(85)90023-6]

Powell CS, Sawyers JL, Reynolds VH. Management of adult choledochal cysts. *Ann Surg* 1981; 193: 666-676 [PMID: 7235770 DOI: 10.1097/00000658-198105000-00018]

Ouaissi M *et al*. Previous cyst-enterostomy and bile duct cysts
