Interpreting the \(W \)-Mass and Muon (\(g_\mu - 2 \)) Anomalies within a 2-Higgs Doublet Model

R. Benbrik, M. Boukidi, and B. Manaut

1Polydisciplinary Faculty, Laboratory of Fundamental and Applied Physics, Cadi Ayyad University, Sidi Bouzid, B.P. 4162, Safi, Morocco.
2Recherche Laboratory in Physics and Engineering Sciences, Team of Modern and Applied Physics, FPBM, USMS -Morocco.

In this study, we investigate the anomalous magnetic moment of the muon (\(g_\mu - 2 \)) as reported by Fermilab (FNAL), along with the recent measurement of the \(W \)-boson mass by the CDF-II collaboration. Both findings show significant deviations from the predictions of the Standard Model (SM), hinting at the possibility of new physics. Our focus is on the Type III two-Higgs-doublet model (2HDM), wherein both Higgs doublets couple with all fermions, leading to the induction of flavour-changing neutral currents (FCNCs) at the tree level. Within this framework, we investigate a lepton-flavour-violating (LFV) scenario, aiming to explain both observed anomalies, while satisfying the up-to-date theoretical and experimental constraints.

I. INTRODUCTION

In recent years, a series of experimental results have increasingly suggested the existence of physics beyond the Standard Model (SM). A key example is the measurement of the muon magnetic moment. This measurement, as reported by Fermilab’s ‘Muon \(g - 2 \)’ experiment [1], indicates a significant deviation from the SM’s theoretical predictions. This discrepancy is quantified as \(\Delta g_\mu = (25\pm4.8) \times 10^{-10} \), constituting a 5.0\(\sigma \) discrepancy between theory and experiment.

Concurrently, a major anomaly has been introduced by the CDF-II collaboration’s 2022 measurement of the \(W \)-boson mass [2]. The reported value of \(m_W = 80.4335 \pm 0.0094 \) GeV diverges by 7 standard deviations from the SM’s expected value of \(m_W = 80.357 \pm 0.006 \) GeV [3]. This divergence, along with the muon (\(g_\mu - 2 \)) anomaly, suggests the potential for new physics (NP). Various studies have been conducted to explore these anomalies, focusing on the new \(W \) mass measurement, the (\(g_\mu - 2 \)) anomaly, or both [4–101].

In response to these anomalies, the two-Higgs-doublet model (2HDM) has gained attention as a promising framework for new physics beyond the SM. The 2HDM introduces an additional SU(2)_L Higgs doublet, leading to the prediction of two neutral CP-even Higgs bosons (\(h \) and \(H \)), a neutral pseudoscalar (\(A \)), and charged Higgs bosons (\(H^{\pm} \)). This model is particularly notable for its potential to correct gauge boson masses and address the muon (\(g_\mu - 2 \)) anomaly through specific lepton interactions.

In this work, we explore a lepton-flavour-violating \(\mu - \tau \) (LFV) scenario [102] within a generic 2HDM (Type-III) [103–105], incorporating Flavour Changing Neutral Currents (FCNCs) in the Yukawa sector. Our aim is to simultaneously explain both the \(m_W \) and (\(g_\mu - 2 \)) anomalies while adhering to current theoretical and experimental constraints.

II. GENERAL 2HDM

The 2HDM serves as one of the most straightforward extensions of the SM. It comprises two complex doublets of Higgs fields, denoted as \(\Phi_i \) (\(i = 1, 2 \)), each with a hypercharge of \(Y = \pm 1 \). The scalar potential, invariant under the SU(2)_L \(\times \) U(1)_Y gauge symmetry, can be expressed as [106]:

\[
\mathcal{V} = m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left[m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{H.c.}\right] + \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + \frac{1}{2} \left[\lambda_5 (\Phi_1^\dagger \Phi_1)^2 + \text{H.c.}\right] + \left[\lambda_6 (\Phi_1^\dagger \Phi_1) + \lambda_7 (\Phi_2^\dagger \Phi_2)\right] (\Phi_1^\dagger \Phi_2) + \text{H.c.}\right] \quad (1)
\]

The hermiticity of this potential implies that the parameters \(m_{11}^2, m_{22}^2 \), and \(\lambda_{1,2,3,4} \) are real. In contrast, \(\lambda_{5,6,7} \) can be complex, although they are considered real in the CP-conserving version of the 2HDM. Notably, the \(\lambda_{6,7} \) terms, while influencing the \(h \gamma \gamma \) process through triple Higgs couplings, have a minimal effect in this study and are thus set to zero. This simplification leaves the model with seven independent parameters, reduced to six in our analysis with the assumption of \(H \) as the observed SM-like Higgs boson with a mass of 125 GeV.

The Yukawa sector of the 2HDM involves general scalar-to-fermion couplings, expressed as:
\[-\mathcal{L}_Y = Q_i Y_{1i}^u U_R \Phi_1 + Q_i Y_{2i}^d U_R \Phi_2 + Q_i Y_{1i}^d D_R \Phi_1 \\
+ \bar{Q}_i Y_{2i}^d D_R \Phi_2 + \bar{L}_i Y_{1i}^e \ell_R \Phi_1 + \bar{L}_i Y_{1i}^e \ell_R \Phi_2 + H.c. \quad (2)\]

Before Electro-Weak Symmetry Breaking (EWSB), the Yukawa matrices \(Y^f\), which govern the interactions between the Higgs fields and fermions, are arbitrary \(3 \times 3\) matrices. In this state, fermions do not yet represent physical eigenstates. This allows us the flexibility to choose diagonal forms for the matrices \(Y^1\), \(Y^2\), and \(Y^3\). Specifically, we can set \(Y^1 = \text{diag}(y_1^1, y_2^1, y_3^1)\) and \(Y^2 = \text{diag}(y_1^2, y_2^2, y_3^2)\).

\[
\mathcal{L}^{eff} = \sum_{f=u,d,e} \frac{m_f}{v} \left((\xi^f_{A})_{ij} f_{L1} f_{Rj} h + (\xi^f_{W})_{ij} f_{L1} f_{Rj} H - i(\xi^f_{A})_{ij} f_{L1} f_{Rj} A \right) \\
+ \frac{\sqrt{2}}{v} \sum_{k=1}^3 \left(\bar{u}_i (m_i^u (\xi^{u*}_{A})_{k1} V_{kj} P_L + V_{ik} (\xi^{d}_{A})_{kj} m_j^d P_R) \right) d_j H^+ \\
+ \frac{\sqrt{2}}{v} \bar{v}_i (\xi^{e*}_{A})_{ij} m_j^e P_R \ell_j H^+ + H.c. \quad (3)\]

Here, \(V_{kj}\) represents the Cabibbo-Kobayashi-Maskawa (CKM) matrix, while the specific reduced Yukawa couplings are elaborated in Table I, with expressions defined in relation to the mixing angle \(\alpha, \tan \beta\), and the independent parameters \(\chi_{ij}^f\).

III. \(m_W\) AND \((g_\mu - 2)\) IN THE 2HDM

Within the framework of the 2HDM, the \(W\) boson mass stands out as a pivotal Electroweak Precision Observable (EWPO). Its significance is underscored by the precision achieved in experimental measurements. This mass can be expressed as a function of the oblique parameters \(S\), \(T\), and \(U\). These parameters quantify deviations from SM predictions due to new physics influences, as elaborated in [109, 110].

Specifically in the 2HDM, the contributions to the oblique parameters \(S\), \(T\), and \(U\) predominantly stem from additional Higgs boson loops and altered interactions of the SM-like Higgs bosons. This results in a modified expression for the \(W\)-boson mass, as given by [46]:

\[
m_W^2 = m_W^2 |_{SM} \left[1 + \frac{\alpha(M_Z)}{c_W^2 - s_W^2} \left(-\frac{1}{2} S + \frac{c_W^2}{4 s_W^2} T + \frac{c_W^2 - s_W^2}{4 s_W^4} U \right) \right], \quad (4)\]

with established SM values being \(m_W^2 |_{SM} = 80.357\) GeV and \(\sin^2 \theta_{eff} |_{SM} = 0.231532\).

In addressing the muon anomalous magnetic moment \((g_\mu - 2)\), the Type-III 2HDM notably contributes through one-loop diagrams featuring the Higgs bosons \(h, H, A\), as well as lepton flavour-violating (LFV) interactions. The contribution to the anomalous magnetic moment, \(\Delta a_\mu\), can be approximated as [111–113]:

\[
\Delta a_\mu \approx \frac{m_\mu m_\tau X^2_{21}(X_{12})^2}{8 \pi^2 c^2_\beta} Z_\phi. \quad (6)\]

where \(c_W = \cos \theta_W\) and \(s_W = \sin \theta_W\) are the cosine and sine of the Weinberg angle, respectively. In many scenarios involving new physics, the \(U\) parameter’s contribution is typically minor compared to \(S\) and \(T\). Consequently, we assume \(U = 0\) for simplicity in our analysis.

Furthermore, changes in the \(W\)-boson mass impact the effective weak mixing angle \(\sin^2 \theta_{eff}\), crucial in electroweak theory. This angle, when adjusted for new physics contributions, can be calculated as [70]:

\[
\sin^2 \theta_{eff} = \sin^2 \theta_{eff} |_{SM} - \frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \left(T - \frac{s_W^2}{c_W^2} S + \frac{1}{2} U \right), \quad (5)\]

\(\phi \)	\((\xi^\phi_{ij})_{ij} \)	\((\xi^h_{ij})_{ij} \)	\((\xi^A_{ij})_{ij} \)
\(h \)	\(\frac{\mu}{m} \delta_{ij} - \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(-\frac{\mu}{\sqrt{2} v} \delta_{ij} + \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(-\frac{\mu}{\sqrt{2} v} \delta_{ij} + \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)
\(H \)	\(\frac{\mu}{m} \delta_{ij} + \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(\frac{\mu}{\sqrt{2} v} \delta_{ij} - \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(\frac{\mu}{\sqrt{2} v} \delta_{ij} - \frac{\mu}{2\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)
\(A \)	\(\frac{\mu}{m} \delta_{ij} - \frac{1}{\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(\frac{\mu}{\sqrt{2} v} \delta_{ij} - \frac{1}{\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)	\(\frac{\mu}{\sqrt{2} v} \delta_{ij} - \frac{1}{\sqrt{2} v} \sqrt{m_i^2 x_{ij}} \)

TABLE I. Yukawa couplings of the neutral Higgs bosons \(h \), \(H \), and \(A \) to the quarks and leptons in the 2HDM Type-III.

where \(X_{23}^f = \sqrt{m_\mu m_\tau} / v \chi_{23}^f \) and \(Z_\phi \) is defined as:

\[
Z_\phi = \frac{c_{2\alpha}^2 \left(\ln \left(\frac{m_{h}^2/m_{H}^2}{m_{H}^2} \right) - \frac{3}{2} \right)}{m_{H}^2} + \frac{s_{2\alpha}^2 \left(\ln \left(\frac{m_{H}^2/m_{A}^2}{m_{A}^2} \right) - \frac{3}{2} \right)}{m_{A}^2}
\]

\[
- \frac{\ln \left(\frac{m_{A}^2/m_{H}^2}{m_{H}^2} \right) - \frac{3}{2}}{m_{A}^2}.
\]

In this analysis, the terms \(X_{23}^f \) and \(X_{12}^f \) are treated symmetrically, reflecting the symmetric nature of the \(\mu - \tau \) interactions within this model. More details can be found in [111].

A. Theoretical and experimental constraints

In our work, we employ a diverse set of theoretical and experimental constraints that must be met to establish a viable model.

- **Unitarity:** Scattering processes in the 2HDM must satisfy the requirement of unitarity [114].

- **Perturbativity:** The quartic couplings of the scalar potential should be perturbative, with absolute values satisfying \(|\lambda_i| < 8\pi \) for each \(i = 1, \ldots, 5 \) [106].

- **Vacuum Stability:** The scalar potential must be bounded from below and positive in all field directions. Therefore, the parameter space must satisfy the conditions [115, 116]:

\[
\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - |\xi_0| > -\sqrt{\lambda_1 \lambda_2}.
\]

- **SM-like Higgs Boson Discovery:** The compatibility of the SM-like scalar with the observed Higgs boson is tested. The relevant quantities calculated with HiggsSignals-3 [117, 118] via HiggsTools [119] must satisfy the measurements at 95% confidence level (C.L.).

- **BSM Higgs Boson Exclusions:** Exclusion limits at 95% C.L. from direct searches for Higgs bosons at LEP, Tevatron, and LHC are taken into account using HiggsBounds-6 [120-123] via HiggsTools, and includes considerations of lepton violation processes, such as the decay \(h \rightarrow \tau \nu \) [124].

- **LEP Measurement Compatibility:** For a given parameter point in our model to be allowed, the corresponding partial width \(\Gamma(Z \rightarrow hA) \) must be within 2\(\sigma \) experimental uncertainty of the measurement when it is kinematically open. The total width of the \(Z \) boson is taken to be \(\Gamma_Z = 2.4952 \pm 0.0023 \text{ GeV} \) [125].

- **B-physics observables:** The constraints from B-physics observables are implemented using the code SuperIso_v4.1 [126] as described in Ref. [104]. The relevant experimental measurements used are as follows:

1. \(BR(B \rightarrow X_{s} \gamma) |_{E_{\gamma} < 1.6 \text{ GeV}} (3.32 \pm 0.15) \times 10^{-4} \) [127]
2. \(BR(B^+ \rightarrow \tau^+ \nu_\tau) (1.06 \pm 0.19) \times 10^{-4} \) [127]
3. \(BR(D_{s} \rightarrow \tau \nu_{\tau}) (5.51 \pm 0.18) \times 10^{-2} \) [127]
4. \(BR(B_{s} \rightarrow \mu^+ \mu^-) \) (LHCb) (3.09^{+0.46}_{-0.43}) \times 10^{-9} \) [128, 129]
5. \(BR(B_{s} \rightarrow \mu^+ \mu^-) \) (CMS) (3.83^{+0.38}_{-0.36}) \times 10^{-9} \) [130]
6. \(BR(B^0 \rightarrow \mu^+ \mu^-) \) (LHCb) (1.2^{+0.8}_{-0.7}) \times 10^{-10} \) [128, 129]
7. \(BR(B^0 \rightarrow \mu^+ \mu^-) \) (CMS) (0.37^{+0.75}_{-0.47}) \times 10^{-10} \) [130]

IV. NUMERICAL RESULTS

Considering both the Normal Scenario (NS) and Inverted Scenario (IS), where the observed 125 GeV Higgs boson at the LHC is assigned to either the CP-even state \(h \) (NS) or \(H \) (IS), we perform a random scan of the parameter space of the 2HDM Type-III using the public code 2HDMC-1.8.0. The ranges for the scanned parameters are shown in Table II. Each scanned point must satisfy the theoretical and experimental constraints discussed earlier.

A. Part I: Inverted scenario

In this scenario, we identify the light CP-even Higgs boson, \(h \), as the signal observed at the LHC, fixing its mass at \(m_h = 125.09 \text{ GeV} \). We initially conduct a targeted scan...
FIG. 1. The allowed regions (1-and 2σ) by the oblique parameter fit for 2HDM Type-III in the plane of $m_H - m_{H^\pm}$ versus $m_A - m_{H^\pm}$. The gray area shows the 2σ allowed region by Δa_μ.

TABLE II. 2HDM input parameters.

m_h [GeV]	m_H [GeV]	m_A [GeV]	m_{H^\pm} [GeV]	$c_{\beta - \alpha}$	$\tan \beta$	Z_3	Z_4	$\chi^{f,\ell}_{ij}$
NS	125.09	[126; 1000]	[80; 1000]	0: 0: 4	2: 100	$1/(v(m_A^2 + m_{H^\pm}^2 - m_{H^\mp}^2) + Z_5)$	$-10: 10$	$m_{H^\pm} - m_{H^\mp}$ [GeV]
IS	[20; 120]	125.09	[80; 1000]	0.6: 1	2: 100	$1/(v(m_A^2 + m_{H^\pm}^2 - m_{H^\mp}^2) + Z_5)$	$-10: 10$	$m_{H^\pm} - m_{H^\mp}$ [GeV]

focused on mass splitting, with specific values set for $\tan \beta$, $c_{\beta - \alpha}$, and $\chi^{f,\ell}_{ij}$. The results of this targeted scan are de-
The plot demonstrates the existence of viable points within the 2σ range that account for the muon $(g_\mu - 2)$ anomaly while adhering to other relevant theoretical and experimental constraints. These points also fall within the 1σ ellipse for the CDF W-boson mass measurement, suggesting that the 2HDM Type-III can aptly fit the CDF(2022) W-boson mass data and explain the muon $(g_\mu - 2)$ anomaly.
Figs. 3 and 4 present the scan results for the EWPOs S and T in the $(m_W, \sin^2 \theta_{\text{eff}})$ plane, with the colour gauge indicating S and T values respectively. The light red (gray) band represents the CDF measured value of m_W with its 1σ uncertainty, and the orange band represents the world average value for the effective weak mixing angle within its 1σ range [3, 125]. The light blue band signifies the SLD collaboration’s most precise measurement of the effective weak mixing angle [125], also within its 1σ uncertainty.

The plot indicates that m_W values near the CDF measurement align well with the expected range in the 2HDM Type-III, satisfying other theoretical and experimental constraints, including the muon $(g_\mu - 2)$ anomaly at the 2σ level. Additionally, the m_W values within the CDF’s 1σ interval correlate well with the SLD reported values but deviate from the world average $\sin^2 \theta_{\text{eff}}$.

Interestingly, in this scenario, our model predictions for the new CDF m_W and the muon $(g_\mu - 2)$ anomaly receive both negative and positive corrections from S, indicated by the colour gauge values of $S \sim -0.02$ and $S \sim 0.06$, while only positive corrections come from T. The 2HDM Type-III (IS) effectively reproduces the new CDF m_W measurement and provides a coherent explanation for the muon $(g_\mu - 2)$ anomaly.

Given that the mass splitting among H, A, and H^\pm can influence both $(g_\mu - 2)$ and m_W, we showcase the scan results in the $(m_A, m_H - m_{H^\pm})$ plane in Figs. 5 and 6. The grey crosses represent parameter sets that meet all established constraints, including the $(g_\mu - 2)$ anomaly at the 2σ level, yet do not include the EWPOs. In contrast, the coloured points comply with these constraints while also integrating the EWPOs, as indicated by the CDF (2022) data and PDG (2021). A noticeable observation from these results is that compatibility with both the CDF (2022) findings and the $(g_\mu - 2)$ data necessitates a non-zero mass splitting among H, A, and H^\pm. Furthermore, the mass differential between H and H^\pm is observed to vary, ranging from a minimum of -439 GeV to a maximum of 45 GeV.

FIG. 5. Same points as in Fig. 2 mapped into the $(m_A, m_H - m_{H^\pm})$ plane. The colour coding indicates the value of m_{H^\pm} using the CDF 2022 data. The gray crosses represent the points allowed only by theoretical and experimental constraints.

FIG. 6. Same as Fig. 5 but showcasing PDG-2021 data.

B. Part II: Normal scenario

In the normal scenario, we consider the heavy CP-even Higgs boson H to be the Higgs-like particle with a mass of $m_H = 125.09$ GeV. Adhering to a methodology similar to that used previously, we perform a reduced parameter scan with fixed parameters such as c_2, $\tan \beta$, and χ^2_{ij}. This scan is represented in Fig. 7, showing the allowed 1 and 2σ regions by PDG (2021) and CDF (2022) in the mass splitting $m_H - m_{H^\pm}$ and $m_H - m_A$ plane, alongside the 2σ region permitted by Δa_μ. Notably, this phase of the analysis excludes the theoretical and experimental constraints discussed earlier. The figure indicates that mass degeneracy scenarios are disfavoured by the CDF results and the muon anomalous magnetic moment measurements.

Proceeding to the more extensive analysis as outlined in Table II, Fig. 8 showcases parameter points that reconcile the muon $(g_\mu - 2)$ anomaly within the 2σ range, in compliance with further theoretical and experimental constraints. The plot’s colour coding, representing $\sin^2 \theta_{\text{eff}}$, reveals a distinct range of values. Specifically, for CDF, it lies between [0.23107, 0.23130], and for PDG, between [0.2314, 0.2316]. This indicates that the new CDF W-mass measurement can only be explained within the 2σ confidence level in this scenario, a finding contrasting with

Table II

Parameter	Value	PDG (2021)	CDF (2022)
Δa_μ	0.2315	0.2314	0.2316
$\sin^2 \theta_{\text{eff}}$	0.2310	0.2312	0.2313

FIG. 7. The allowed regions (1-and 2σ) by the oblique parameter fit for 2HDM Type-III in the plane of $m_h - m_{H^\pm}$ versus $m_A - m_{H^\pm}$. The gray area shows the 2σ allowed region by Δa_μ.

The inverted scenario.

Figs. 9 and 10 extends this analysis, mapping the same parameter sets onto the $(m_W, \sin^2 \theta_{\text{eff}})$ plane. The vertical red and grey lines, alongside the corresponding bands, represent the CDF and PDG m_W values and their 1σ ranges. The horizontal orange and blue lines, with their associated bands, reflect the world average and SLD’s measurements of the effective weak mixing angle. This plot underscores a pronounced agreement between the CDF m_W measurement and the SLD value, with only negative S val-
Fig. 8. Allowed points by all constraints including $g - 2$ superimposed onto the fit limits in the (S, T) plane from EWPO data at 68% (solid lines) and 95% dashed lines Confidence Level (CL) with a correlation of 92(93)% PDG(CDF) with $U = 0$. The colour coding indicates the value $\sin^2 \theta_{\text{eff}}$.

Fig. 9. Same points as in Fig. 8 mapped into the $(m_W, \sin^2 \theta_{\text{eff}})$ plane. The colour coding indicates the value of S. The light-red line represent the CDF-II measured W boson mass and its 1σ range (light-red band). The gray line represent the PDG value for the W boson mass with the gray band showing the 1σ range. The orange line represent the world averaged value 0.23153 ± 0.00016 [3, 125] with its 1σ range (orange band), while the light blue line illustrates the SLD measured value 0.23098 \pm 0.00026 [125] of $\sin^2 \theta_{\text{eff}}$ with the light blue band showing the 1σ range. The red cross indicates the SM prediction.

Fig. 10. Same as in Fig. 6 but with colour bar indicating the T parameter.

Fig. 11. Same points as in Fig. 2 mapped into the $(m_A, m_H - m_{H^\pm})$ plane. The colour coding indicates the value of m_{H^\pm} using the CDF-2022 data. The gray crosses represent the points allowed only by theoretical and experimental constraints.

Finally, in Figs. 11 and 12, we display our results in the $(m_A, m_H - m_{H^\pm})$ plane. The grey crosses represent parameter combinations that satisfy all the established constraints, including the $(g - 2)$ anomaly within the 2σ level, but do not incorporate EWPOs. In contrast, the col-

Fig. 8. Allowed points by all constraints including $g - 2$ superimposed onto the fit limits in the (S, T) plane from EWPO data at 68% (solid lines) and 95% dashed lines Confidence Level (CL) with a correlation of 92(93)% PDG(CDF) with $U = 0$. The colour coding indicates the value $\sin^2 \theta_{\text{eff}}$.

Fig. 9. Same points as in Fig. 8 mapped into the $(m_W, \sin^2 \theta_{\text{eff}})$ plane. The colour coding indicates the value of S. The light-red line represent the CDF-II measured W boson mass and its 1σ range (light-red band). The gray line represent the PDG value for the W boson mass with the gray band showing the 1σ range. The orange line represent the world averaged value 0.23153 ± 0.00016 [3, 125] with its 1σ range (orange band), while the light blue line illustrates the SLD measured value 0.23098 \pm 0.00026 [125] of $\sin^2 \theta_{\text{eff}}$ with the light blue band showing the 1σ range. The red cross indicates the SM prediction.

Fig. 10. Same as in Fig. 6 but with colour bar indicating the T parameter.

Fig. 11. Same points as in Fig. 2 mapped into the $(m_A, m_H - m_{H^\pm})$ plane. The colour coding indicates the value of m_{H^\pm} using the CDF-2022 data. The gray crosses represent the points allowed only by theoretical and experimental constraints.
ordered points are those that meet these constraints and also include the EWPOs, consistent with the data from CDF (2022) and PDG (2021) respectively. Notably, the plots indicates a required negative and non-zero mass difference $m_H - m_{H^\pm}$ to simultaneously accommodate the findings from both $(g_\mu - 2)$ and CDF-II.

V. CONCLUSION

In this work, we investigated the Type III two-Higgs-doublet model (2HDM) to address the recent experimental anomalies in the muon magnetic moment $(g_\mu - 2)$ and the W-boson mass m_W, as reported by FNAL and CDF-II. Our analysis included both normal (NS) and inverted (IS) scenarios in the context of the 125 GeV Higgs boson.

Our study concludes that the 2HDM Type-III, incorporating lepton-flavour violation (LFV), successfully predicts the m_W measurements reported by CDF-II, as well as aligns with the muon $(g_\mu - 2)$ data, while remaining consistent with the up-to-date theoretical and experimental constraints. A key observation in both NS and IS scenarios is the preference for non-zero mass splitting among the Higgs bosons H, A, and H^\pm. This outcome, which aligns with the recent $(g_\mu - 2)$ and m_W measurements, highlights the impact of mass splittings among these Higgs bosons in reconciling the observed experimental anomalies.

VI. ACKNOWLEDGMENTS

M.Boukidi is grateful for the technical support of CNRST/HPC-MARWAN.

[1] Muon g-2 collaboration, D. P. Aguillard et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (2023) 161802, [2308.06230].
[2] CDF collaboration, T. Aaltonen et al., High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170–176.
[3] Particle Data Group collaboration, P. A. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01.
[4] G. Grilli di Cortona and E. Nardi, Probing light mediators at the MuonE experiment, Phys. Rev. D 105 (2022) L111701, [2204.04227].
[5] C.-T. Lu, L. Wu, Y. Wu and B. Zhu, Electroweak precision fit and new physics in light of the W boson mass, Phys. Rev. D 106 (2022) 035034, [2204.03796].
[6] J. Heeck, W-boson mass in the triplet seesaw model, Phys. Rev. D 106 (2022) 015004, [2204.10274].
[7] X. K. Du, Z. Li, F. Wang and Y. K. Zhang, Explaining The New CDF II W-Boson Mass Data In The Georgi-Machacek Extension Models, 2204.05760.
[8] P. Mondal, Enhancement of the W boson mass in the Georgi-Machacek model, 2204.07844.
[9] T. A. Chowdhury and S. Saad, Leptoquark-vectorlike quark model for the CDF m_W, $(g_\mu - 2)_\mu$, RK(+) anomalies, and neutrino masses, Phys. Rev. D 106 (2022) 055017, [2205.03917].
[10] H. Bharadwaj, S. Dutta and A. Goyal, Leptonic $g - 2$ anomaly in an extended Higgs sector with vector-like leptons, JHEP 11 (2021) 056, [2109.02586].
[11] H. Bahl, J. Braathen and G. Weiglein, New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector, Phys. Lett. B 833 (2022) 137295, [2204.05269].
[12] Y.-P. Zeng, C. Cai, Y.-H. Su and H.-H. Zhang, Z boson mixing and the mass of the W boson, Phys. Rev. D 107 (2023) 056004, [2204.09487].
[13] K. Ghorbani and P. Ghorbani, W-boson mass anomaly from scale invariant 2HDM, Nucl. Phys. B 984 (2022) 115980, [2204.09001].
[14] Y. H. Ahn, S. K. Kang and R. Ramos, Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model, Phys. Rev. D 106 (2022) 055038, [2204.06485].
[15] J. Kawamura, S. Okawa and Y. Omura, W boson mass and muon g-2 in a lepton portal dark matter model, Phys. Rev. D 106 (2022) 015005, [2204.07022].
[16] A. L. Cherchiglia and O. L. G. Peres, On the viability of a light scalar spectrum for 3-3-1 models, JHEP 04 (2023) 017, [2209.12063].
[17] E. Bagnaschi, M. Chakraborti, S. Heinemeyer, I. Saha and G. Weiglein, Interdependence of the new “MUON G-2” result and the W-boson mass, Eur. Phys. J. C 82 (2022) 474, [2203.15710].
[18] K. Sakurai, F. Takahashi and W. Yin, Singlet extensions and W boson mass in light of the CDF II result, Phys. Lett. B 833 (2022) 137324, [2204.04770].

[19] M.-D. Zheng, F.-Z. Chen and H.-H. Zhang, The W/ν-vertex corrections to W-boson mass in the R-parity violating MSSM, AAPPs Bull. 33 (2023) 16, [2204.06541].

[20] H. M. Lee and K. Yamashita, A Model of Vector-like Leptons for the Muon $g-2$ and the W Boson Mass, 2204.05024.

[21] A. Ghoshal, N. Okada, S. Okada, D. Raut, Q. Shafi and A. Thapa, Type III seesaw with R-parity violation in light of m_W (CDF), Nucl. Phys. B 989 (2023) 116099, [2204.07138].

[22] H. Song, W. Su and M. Zhang, Electroweak phase transition in 2HDM under Higgs, Z-pole, and W precision measurements, JHEP 10 (2022) 048, [2204.05085].

[23] M. Blennow, P. Coloma, E. Fernández-Martínez and M. González-López, Right-handed neutrinos and the CDF II anomaly, 2204.04659.

[24] X. K. Du, Z. Li, F. Wang and Y. K. Zhang, Explaining The Muon $g-2$ Anomaly and New CDF II W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation, 2204.04286.

[25] J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803, [2203.06579].

[26] M. Chakrabarti, S. Iwamoto, J. S. Kim, R. Masełek and A. Strumia, Interpreting electroweak precision data including the W-mass CDF anomaly, 2204.04191.

[27] O. Atkinson, M. Black, A. Lenz, A. Rusov and J. Wynne, The triplet Dirac seesaw in the view of the recent CDF-II W mass anomaly, Phys. Lett. B 840 (2023) 137837, [2204.08568].

[28] G. Arcadi and A. Djouadi, 2HD plus light pseudoscalar model for a combined explanation of the possible excesses in the CDF II W mass and (g-2)$_\mu$, Phys. Rev. D 106 (2022) 059505, [2204.05942].

[29] P. Agrawal, D. E. Kaplan, O. Kim, S. Rajendran and M. Reig, Searching for axion forces with precision precession in storage rings, Phys. Rev. D 108 (2023) 015017, [2201.17547].

[30] Y. Heo, D.-W. Jung and J. S. Lee, Impact of the CDF W-mass anomaly on two Higgs doublet model, Phys. Lett. B 833 (2022) 137274, [2204.05728].

[31] B. M. Blennow, P. Coloma, E. Fernández-Martínez and M. González-López, Right-handed neutrinos and the CDF II anomaly, [2204.04659].

[32] J. J. Heckman, Extra W-boson mass from a D3-brane, Phys. Lett. B 833 (2022) 137387, [2204.05302].

[33] A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Large tcZ as a sign of vectorlike quarks in light of the W mass, Phys. Rev. D 106 (2022) L031704, [2204.05962].

[34] S. Baek, Implications of CDF W-mass and (g - 2)$_\mu$ on $U(1)'_L\to U(1)_L$ model, 2204.09858.

[35] W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81–96, [0802.4353].

[36] M. Alguero, J. Matias, A. Crivellin and C. A. Manzari, Unified explanation of the anomalies in semileptonic B decays and the W mass, Phys. Rev. D 106 (2022) 033005, [2201.08170].

[37] L. M. Carpenter, T. Murphy and M. J. Smylie, Changing patterns in electroweak precision fits with new color-charged states: Oblique corrections and the W-boson mass, Phys. Rev. D 106 (2022) 059508, [2204.08546].

[38] D. Borah, S. Mahapatra and N. Sahu, Singlet-doublet fermion origin of dark matter, neutrino mass and W-mass anomaly, Phys. Lett. B 831 (2022) 137196, [2204.09671].

[39] C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia, Z.-H. Yu, X. Huang, Q. Yuan et al., GeV antiproton/\gamma-ray excesses and the W-boson mass anomaly: three faces of $\sim 60 – 70$ GeV dark matter particle?, 2204.03767.

[40] M. Du, Z. Liu and P. Nath, CDF W mass anomaly with a Stueckelberg-Higgs portal, Phys. Lett. B 834 (2022) 137454, [2204.09024].

[41] B.-Y. Zhu, S. Li, J.-G. Cheng, X.-S. Hu, R.-L. Li and Y.-F. Liang, Using γ-ray observations of dwarf spheroidal galaxies to test the possible common origin of the W-boson mass anomaly and the GeV γ-ray and antiproton excesses, Phys. Rev. D 108 (2023) 083034, [2204.04688].

[42] F. Arias-Aragon, E. Fernández-Martínez, M. González-López and L. Merlo, Dynamical Minimal Flavour Violating inverse seesaw, JHEP 09 (2022) 210, [2204.04672].

[43] J. J. Heckman, Extra W-boson mass from a D3-brane, Phys. Lett. B 833 (2022) 137387, [2204.05302].

[44] A. Crivellin, M. Kirk, T. Kitahara and F. Mescia, Large tcZ as a sign of vectorlike quarks in light of the W mass, Phys. Rev. D 106 (2022) L031704, [2204.05962].

[45] S. Baek, Implications of CDF W-mass and (g - 2)$_\mu$ on $U(1)'_L\to U(1)_L$ model, 2204.09858.

[46] W. Grimus, L. Lavoura, O. M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81–96, [0802.4353].

[47] M. Alguero, J. Matias, A. Crivellin and C. A. Manzari, Unified explanation of the anomalies in semileptonic B decays and the W mass, Phys. Rev. D 106 (2022) 033005, [2201.08170].

[48] L. M. Carpenter, T. Murphy and M. J. Smylie, Changing patterns in electroweak precision fits with new color-charged states: Oblique corrections and the W-boson mass, Phys. Rev. D 106 (2022) 059508, [2204.08546].

[49] D. Borah, S. Mahapatra, D. Nanda and N. Sahu, Type II Dirac seesaw with observable ΔNeff in the light of W-mass anomaly, Phys. Lett. B 833 (2022) 137297, [2204.08266].

[50] W. Abdallah, R. Gandhi and S. Roy, LSND and MiniBooNE as guideposts to understanding the muon (g-2) results and the CDF II W mass measurement, Phys. Lett. B 840 (2023) 137841, [2208.02264].

[51] G. Arcadi and A. Djouadi, 2HD plus light pseudoscalar model for a combined explanation of the possible excesses in the CDF MW measurement and (g-2)$_\mu$ with dark matter, Phys. Rev. D 106 (2022) 095008, [2204.08406].

[52] X.-F. Han, F. Wang, L. Wang, J. M. Yang and Y. Zhang, Joint explanation of W-mass and muon g-2 in the 2HD*, Chin. Phys. C 46 (2022) 103105, [2204.06505].

[53] O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov and J. Wynne, The flavourful present and future of 2HDMs at the collider energy frontier, JHEP 11 (2022) 139, [2202.08807].

[54] X. Liu, S.-Y. Guo, B. Zhu and Y. Li, Correlating Gravitational Waves with W-boson Mass, HIMP Dark Matter, and Majorana Seesaw Mechanism, Sci. Bull. 67 (2022) 1437–1442, [2204.04834].
Y. Cheng, X.-G. He, Z.-L. Huang and M.-W. Li, Type-II Seesaw Triplet Scalar and Its VEV Effects on Neutrino Trident Scattering and W mass, 2204.05031.

S. Arora, M. Kashav, S. Verma and B. C. Chauhan, Muon $(g - 2)$ and the W-boson mass anomaly in a model based on Z4 symmetry with a vector-like fermion, PTEP 2022 (2022) 113806, [2207.08580].

L. Di Luzio, R. Gröber and P. Paradisi, Higgs physics confronts the M_W anomaly, Phys. Lett. B 832 (2022) 137250, [2204.05284].

E. d. S. Almeida, A. Alves, O. J. P. Eboli and M. C. Gonzalez-Yuan, L. Zu, L. Feng, Y.-F. Cai and Y.-Z. Fan, Hint on new physics from the W-boson mass excess—axion-like particle, dark photon or Chameleon dark energy, 2204.04183.

K. S. Babu, S. Jana and V. P. K., T. A. Chowdhury, J. Heeck, A. Thapa and S. Saad, On Z4 symmetry with a vector-like fermion, Phys. Lett. B 832 (2022) 137371, [2204.07144].

J. Cao, L. Meng, L. Shang, S. Wang and B. Yang, Interpreting the W mass anomaly in vector-like quark models, Phys. Rev. D 106 (2022) 055042, [2204.09477].

Y. Cheng, X.-G. He, F. Huang, J. Sun and Z.-P. Xing, Explaining the W mass anomaly at CDF II in the Higgs triplet model with a electroweak phase transition, Phys. Rev. D 106 (2022) 055011, [2204.10156].

T. Biekötter, S. Heinemeyer and G. Weiglein, The Low-Scale Seesaw Solution to the M_W and $(g - 2)_\mu$ Anomalies, Fortsch. Phys. 71 (2023) 2300020, [2205.10315].

J. M. Yang and Y. Zhang, Implications of New CDF-II W Boson Mass Shift with Muon $g-2$ in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803, [2204.05303].

A. Addazi, A. Marciano, A. P. Morais, R. Pasechnik and H. Yang, CDF II W-mass anomaly faces first-order electroweak phase transition, Eur. Phys. J. C 83 (2023) 207, [2204.04183].

S. Kanemura and K. Yagyu, Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference, 2204.07511.

N. V. Krasnikov, Nonlocal generalization of the SM as an explanation of recent CDF result, 2204.06327.

Z. Pélai and Z. Trócsányi, Vacuum stability and scalar masses in the superweak extension of the standard model, 2204.07100.

P. Atronh, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger and A. Voigt, Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY, 2204.05285.

R. K. Barman, P. S. B. Dev and A. Thapa, Constraining lepton flavor violating Higgs couplings at the HL-LHC in the vector boson fusion channel, Phys. Rev. D 107 (2023) 075018, [2210.16287].

T. A. Chowdhury, J. Heeck, A. Thapa and S. Saad, W boson mass shift and muon magnetic moment in the Zee model, Phys. Rev. D 106 (2022) 035004, [2204.08390].

A. Bhaskar, A. A. Madathil, T. Mandal and S. Mitra, Combined explanation of W-mass, muon $g - 2$, $R_{K^{(*)}}$ and $R_{D^{(*)}}$ anomalies in a singlet-triplet scalar leptoquark model, 2204.09031.

K. I. Nagao, T. Nomura and H. Okada, A model explaining the new CDF II W boson mass linking to muon $g - 2$ and dark matter, Eur. Phys. J. Plus 138 (2023) 365, [2204.07411].

R. A. Wilson, A toy model for the W/Z mass ratio, 2204.07970.

K.-Y. Zhang and W.-Z. Feng, Explaining the W boson mass anomaly and dark matter with a U(1) dark sector, Chin. Phys. C 47 (2023) 023107, [2204.08067].

H. Song, X. Wan and J.-H. Yu, Custodial symmetry violation in scalar extensions of the standard model, Chin. Phys. C 47 (2023) 103103, [2211.01543].

H. Bahl, W. H. Chiu, C. Gao, L.-T. Wang and Y.-M. Zhong, Tripling down on the W boson mass, Eur. Phys. J. C 82 (2022) 944, [2207.08580].

A. Crivellin, M. Kirk and A. Thapa, Minimal model for the W-boson mass, $(g - 2)_\mu$, and the $b \rightarrow s \ell^+ \ell^-$ transitions, 2305.02920.

A.-L. Liu, The influence of supersymmetric quark particles on the W mass increment and the muon $g-2$ anomaly, 2306.02564.

P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, A. De Iorio, A. O. M. Iorio et al., Radiative flavor template at the LHC: $g-2$ and the W mass, Phys. Rev. D 107 (2023) 115004, [2302.00494].

C.-H. Chen, C.-W. Chiang and C.-W. Su, Top-quark FCNC decays, LFVs, lepton $g - 2$, and W mass anomaly with inert Higgses, 2301.07070.

G. Arcadi and A. Djouadi, A model for fermionic dark matter addressing both the CDF MW and the $(g - 2)_\mu$ anomalies, Front. in Phys. 11 (2023) 1143932, [2301.06476].

G. Cacciapaglia, A. Cagnotta, R. Calabrese, F. Carnevali, A. De Iorio, A. O. M. Iorio et al., Radiative flavor template at the LHC: $g-2$ and the W mass, Phys. Rev. D 107 (2023) 055033, [2210.07131].

N. Chakraborty, Muon g-2 and W-mass anomalies explained and the electroweak vacuum stabilized by extending the minimal type-II seesaw model, Phys. Rev. D 108 (2023) 075024, [2206.11771].

S.-R. Kim, H. M. Lee, A. G. Menkara and K. Yamashita, SU(2)D lepton portals for the muon g-2, W-boson mass, and dark matter, Phys. Rev. D 106 (2022) 015008, [2206.04016].
g−2 anomalies*, Chin. Phys. C 47 (2023) 043102, [2205.02088].

[92] R. Druel and A. Thapa, W boson mass shift, dark matter, and (g-2)μ in a scotogenic-Zee model, Phys. Rev. D 107 (2023) 015002, [2205.02217].

[93] J. Kim, Compatibility of muon (g − 2), W mass anomaly in type-X 2HDM, Phys. Lett. B 832 (2022) 137220, [2205.01437].

[94] J. Kim, S. Lee, P. Sanjaly and Y. Song, CDF W-boson mass and muon g-2 in a type-X two-Higgs-doublet model with a Higgs-phobic light pseudoscalar, Phys. Rev. D 106 (2022) 035002, [2205.01701].

[95] F. J. Botella, F. Cornet-Gomez, C. Miró and M. Nebot, Muon and electron g − 2 anomalies in a flavor conserving 2HDM with an oblique view on the CPDM C-framework, Eur. Phys. J. C 82 (2022) 915, [2205.01115].

[96] Q. Zhou, X.-F. Han and L. Wang, The CDF W-mass, muon g − 2, and dark matter in a U(1)α ⊗ U(1)β ⊗ U(1)γ model with vector-like leptons, Eur. Phys. J. C 82 (2022) 1135, [2204.13027].

[97] T.-F. Tang, M. Abdughani, L. Feng, Y.-L. S. Tsai, J. Wu and Y.-Z. Fan, NMSSM neutralino dark matter for CDF II W-boson mass and muon g − 2 and the promising prospect of direct detection, Sci. China Phys. Mech. Astron. 66 (2023) 239512, [2204.04356].

[98] M. Chakraborti, S. Heinemeyer and I. Saha, (g − 2)μ and SUSY, Int. J. Mod. Phys. A 37 (2022) 2246010.

[99] M. I. Ali, M. Chakraborti, U. Chattopadhyay and S. Mukherjee, Muon and electron (g − 2) anomalies with non-holomorphic interactions in MSSM, Eur. Phys. J. C 83 (2023) 60, [2112.09867].

[100] M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g − 2)μ measurements and wino/higgsino dark matter, Eur. Phys. J. C 81 (2021) 1069, [2103.13403].

[101] A. S. de Jesus, F. S. Queiroz, J. W. F. Valle and Y. Villamizar, Vector-like Fermions and Inert Scalar Solutions to the Muon g-2 Anomaly and Collider probes at the HL-LHC and FCC-hh, 2312.03851.

[102] A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031, [1303.5877].

[103] J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Off-diagonal terms in Yukawa textures of the Type-II 2-Higgs doublet model and light charged Higgs boson phenomenology, JHEP 07 (2013) 044, [1212.6818].

[104] R. Benbrik, M. Boukidi, S. Moretti and S. Semlali, Explaining the 96 GeV Di-photon anomaly in a generic 2HDM Type-III, Phys. Lett. B 832 (2022) 137245, [2204.07470].

[105] R. Benbrik, M. Boukidi, B. Manaut, M. Ouchemhou, S. Semlali and S. Taj, New charged Higgs boson discovery channel at the LHC, 2112.07502.

[106] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1–102, [1106.0034].

[107] T. P. Cheng and M. Sher, Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets, Phys. Rev. D 35 (1987) 3484.

[108] J. L. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Mass matrix ansatz and lepton flavor violation in the THDM-III, Phys. Rev. D 69 (2004) 095002, [hep-ph/0401194].

[109] M. E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964–967.

[110] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381–409.

[111] R. Benbrik, C.-H. Chen and T. Nomura, h, Z → ℓℓ, ξ, Δμ, τ → (3μ, μγ) in generic two-Higgs-doublet models, Phys. Rev. D 93 (2016) 095004, [1511.08544].

[112] K. A. Assamagan, A. Deandrea and P.-A. Delsart, Search for the lepton flavor violating decay A0 / H0 → τμ−+ at hadron colliders, Phys. Rev. D 67 (2003) 035001, [hep-ph/0207302].

[113] S. Davidson and G. J. Grenier, Lepton flavour violating Higgs and tau to mu gamma, Phys. Rev. D 81 (2010) 095016, [1001.0434].

[114] S. Kanemura, T. Kubota and E. Takasugi, Lee-Qiugg-Thacker bounds for Higgs boson masses in a doublet model, Phys. Lett. B 313 (1993) 155–160, [hep-ph/9303283].

[115] A. Barroso, P. M. Ferreira, I. P. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045, [1303.5098].

[116] N. G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574.

[117] P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein et al., HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era, Eur. Phys. J. C 80 (2020) 1211, [2006.06007].

[118] P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein and J. Wittbrodt, HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era, Eur. Phys. J. C 81 (2021) 145, [2012.09197].

[119] H. Bahl, T. Biekötter, S. Heinemeyer, C. Li, S. Paasch, G. Weiglein et al., HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals, Comput. Phys. Commun. 291 (2023) 108803, [2210.09332].

[120] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138–167, [0811.4169].

[121] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605–2631, [1102.1898].

[122] P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein et al., HiggsBounds – 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693, [1311.0055].

[123] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421, [1507.06706].

[124] ATLAS collaboration, G. Aad et al., Searches for lepton-flavour-violating decays of the Higgs boson in √s = 13 TeV pp collisions with the ATLAS detector, Phys.
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, *Phys. Rept.* **427** (2006) 257–454, [hep-ex/0509008].

F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, *Comput. Phys. Commun.* **180** (2009) 1579–1613, [0808.3144].

HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, *Eur. Phys. J. C* **77** (2017) 895, [1612.07233].

LHCb collaboration, R. Aaij et al., Measurement of the $B^0_s \to \mu^+\mu^-$ decay properties and search for the $B^0 \to \mu^+\mu^-$ and $B^0_s \to \mu^+\mu^-\gamma$ decays, *Phys. Rev. D* **105** (2022) 012010, [2108.09283].

LHCb collaboration, R. Aaij et al., Analysis of Neutral B-Meson Decays into Two Muons, *Phys. Rev. Lett.* **128** (2022) 041801, [2108.09284].

CMS collaboration, A. Tumasyan et al., Measurement of the $B^0_s\mu^+\mu^-$ decay properties and search for the $B^0\mu^+\mu^-$ decay in proton-proton collisions at $s=13$TeV, *Phys. Lett. B* **842** (2023) 137955, [2212.10311].