Does comorbidity interact with colorectal cancer to increase mortality? A nationwide population-based cohort study

R Erichsen *,1, E Horváth-Puhó1, L H Iversen 2, T L Lash1,3 and H T Sørensen1

1Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Alle 43-45, 8200 Aarhus N, Denmark; 2Department of Surgery P, Aarhus University Hospital, Tage Hansens gade 2, 8000 Aarhus C, Denmark and 3Department of Epidemiology, Rollins School of Public Health, 1518 Clifton Road, NE, CNR 4013, Atlanta, GA 30322, USA

Background: It is unknown whether comorbidity interacts with colorectal cancer (CRC) to increase the rate of mortality beyond that explained by the independent effects of CRC and comorbid conditions.

Methods: We conducted a cohort study (1995–2010) of all Danish CRC patients (n = 56 963), and five times as many persons from the general population (n = 271 670) matched by age, gender, and specific comorbidities. To analyse comorbidity, we used the Charlson Comorbidity Index (CCI) scores. We estimated standardised mortality rates per 1000 person-years, and calculated interaction contrasts as a measure of the excess mortality rate not explained by the independent effects of CRC or comorbidities.

Results: Among CRC patients with a CCI score = 1, the 0–1 year mortality rate was 415 out of 1000 person-years (95% confidence interval (CI): 401, 430) and the interaction accounted for 9.3% of this rate (interaction contrast = 39 out of 1000 person-years, 95% CI: 22, 55). For patients with a CCI score of 4 or more, the interaction accounted for 34% of the mortality (interaction contrast = 262 out of 1000 person-years, 95% CI: 215, 310). The interaction between CRC and comorbidities had limited influence on mortality beyond 1 year after diagnosis.

Conclusion: Successful treatment of the comorbidity is pivotal and may reduce the mortality attributable to comorbidity itself, and also the mortality attributable to the interaction.
To our knowledge, however, no study of CRC mortality has (1) included a comparison cohort free of CRC and (2) accounted for comorbidity. Therefore, it is not known whether comorbidity interacts with CRC to increase the rate of mortality beyond that explained by CRC and comorbidity acting independently. Such information is needed to improve our biological understanding of the influence of comorbidity on CRC mortality, may be helpful in clinical practice, and would contribute to improving outcomes after CRC. On this basis, we conducted a nationwide cohort study of all Danish CRC patients diagnosed during a recent 16-year period and a matched population-based comparison cohort free of CRC, in order to study the interaction between comorbidity and CRC, and subsequent risk of death.

MATERIALS AND METHODS

We conducted this cohort study in the setting of the entire Danish population (accumulated 6.9 million people during the 1995–2010 study period). The Danish healthcare system provides tax-supported healthcare to all Danish residents. The unique civil registration number assigned to all Danes at birth or upon immigration by the Civil Registration System allows unambiguous linkage between databases (Frank, 2000; Pedersen, 2011). The Civil Registration System also tracks vital status and the residence of all Danish citizens, and is updated daily.

The study was approved by the Danish Data Protection Agency.

TheCRC cohort. We used the Danish Cancer Registry to identify all patients diagnosed with incident CRC between 1 January 1995 and 31 December 2010 (Storm et al, 1997; Gjerstorff, 2011). The Danish Cancer Registry maintains records on all incident malignant neoplasms diagnosed in Denmark since 1943, including patients’ civil registration number, month and year of cancer diagnosis, cancer type according to the International Classification of Disease (ICD), 10th revision (ICD-10), and tumour spread at diagnosis (see Appendix for ICD-10 codes for CRC).

Population comparison cohort. We used the Danish National Registry of Patients and Civil Registration System to match each CRC patient with five persons from the general population, who were alive and were without a CRC diagnosis as of the CRC patient’s diagnosis date (index date). Matching criteria were age (5-year intervals), gender, and history of the comorbid diseases included in the CCI (see below and Appendix) (Andersen et al, 1999; Pedersen, 2011). The Danish National Registry of Patients has recorded all non-psychiatric hospitalisations in Denmark since 1977 and hospital outpatient contacts since 1995. It recorded dates of admission and discharge, treatment and procedure codes, and up to 20 diagnoses coded by physicians according to ICD-8 from 1977 to 1993 and ICD-10 since 1994. In an event in which an individual from the comparison cohort developed CRC during the study period, follow-up time was terminated and the individual joined the CRC cohort. In total, 4895 (1.8%) subjects from the comparison cohort were later diagnosed with CRC.

Comorbidity. On the basis of the Danish National Registry of Patients records dating to 1977, we defined comorbidities according to diagnoses of the conditions in the CCI, excluding CRC. The CCI’s scoring system assigns weights between one and six to a range of diseases (see Appendix). In addition to the original conditions in the CCI, we also included a prior diagnosis of atrial fibrillation/flutter and obesity (both assigned a weight of one). The CCI disease groups were not only considered individually for matching and analysis, but also as the components of a summed, aggregate score that we classified as follows: score of 0 (no comorbidity), score of 1 (low comorbidity), score of 2–3 (moderate comorbidity), and score of 4 or more (high comorbidity; Thygesen et al, 2011).

Statistical analysis. We calculated the frequency and proportion of persons in the CRC and the matched comparison cohorts within categories of demographic variables and comorbidities. CRC patients and persons matched to them were followed from the index date to the date of death from any cause, emigration, or end of follow-up (31 December 2011), whichever came first. We calculated mortality rates by dividing the number of deaths by total follow-up time for the CRC and matched comparison cohorts. To evaluate short-term and long-term mortality separately, we computed mortality rates between the index date and 365 days (0–1 year) and from 366 days to 5 years (2–5 years). The analysis within strata of follow-up period required that we dissolve the matching, as the age and gender distribution was different among 1-year survivors than among all participants. For all analyses, we standardised the mortality rates to the age and gender distribution of the CRC inception cohort. Furthermore, as a measure of mortality rate ratios, we calculated hazard ratios (HRs) using Cox regression analysis comparing CRC patients with matched persons from the general population, adjusting for age (as a continuous variable), gender, year of index date (1995–1999 vs 2000–2004 vs 2005–2010), and, in the overall analysis, comorbidity scores.

We computed interaction contrasts to estimate the excess mortality rate in patients with both CRC and comorbid diseases, beyond that expected from the independent effects of these diseases (Greenland et al, 2008). We used standardised rates for this analysis, using the persons without comorbidity from the general population as the reference. Positive interaction contrasts describe the excess mortality rate caused by the interaction (i.e., the synergy between comorbidity and CRC that increases the mortality hazard); a negative interaction contrast would indicate a protective or antagonistic interaction. We also calculated the proportion of the mortality rate that could be explained by the interaction as the interaction contrast divided by the standardised mortality rate of the relevant comorbidity strata.

Analyses were stratified by CRC stage (non-metastatic vs metastatic, see Appendix), age group (0–69, 70–79, and 80 + years), gender, and cancer site (i.e., colon and rectal cancer). We also calculated standardised mortality rates and interaction contrasts restricted to CRC patients without metastatic disease undergoing colorectal surgery, as defined by relevant procedure codes (see Appendix), within 60 days before and 180 days after the diagnosis date, and persons matched to them from the general population. These patients were followed for 30 days after the date of first surgery/index to evaluate the influence of interaction on post-operative mortality. Finally, we calculated standardised mortality rates and interaction contrasts for each individual disease included in the CCI (with the reference group of persons free of any comorbidity, as above).

RESULTS

Characteristics. We identified 56 963 CRC patients and 271 670 persons from the general population, who were matched by age (median age = 72 years), gender (men = 51%), year of index date, and comorbidity (Table 1). As we were unable to match five persons from the general population to all CRC patients, small differences occurred between the characteristics of the CRC patients and general population comparison cohort. At the aggregated CCI level, however, it was mainly among CRC patients with a high comorbidity burden that these differences were noticeable (CCI score of 4 or more: 4.9% vs 2.8%).
Table 1. Characteristics of CRC patients and a population-based comparison cohort matched by gender, age, year of diagnosis, and comorbidity, Denmark 1995–2010

	CRC cohort		Population-based comparison cohort	
	Number	%	Number	%
Sex				
Female	27,665	49	132,537	49
Male	29,298	51	139,133	51
Age at diagnosis/index (years)				
0–59	10,285	18	51,467	19
60–69	14,541	26	70,613	26
70–79	18,547	33	87,444	32
80+	13,590	24	62,146	23
Year of diagnosis/index date				
1995–1999	16,230	29	78,136	29
2000–2004	17,359	31	83,088	31
2005–2010	23,374	41	110,446	41
Stage of CRC				
Non-metastatic	37,381	66	NA	—
Metastatic	12,687	22	NA	—
Unknown	6,895	12	NA	—
Cancer location				
Colon	37,859	67	NA	—
Rectal	19,014	33	NA	—
Colon and rectal	90	0.2	NA	—
Comorbidities included in the CCI				
Myocardial infarction	3,270	5.7	13,825	5.1
Congestive heart failure	2,783	4.9	10,652	3.9
Peripheral vascular disease	2,322	4.1	9,299	3.4
Cerebrovascular disease	5,014	8.8	21,852	8.0
Dementia	594	1.0	2,297	0.8
Chronic pulmonary disease	4,009	7.0	17,061	6.3
Connective tissue disease	1,567	2.8	6,293	2.3
Ulcer disease	3,026	5.3	12,711	4.7
Mild liver disease	478	0.8	1,670	0.6
Diabetes type I and II	3,007	5.3	11,945	4.4
Haemiplegia	100	0.2	252	0.1
Moderate to severe renal disease	811	1.4	2,557	0.9
Diabetes with end-organ failure	1,384	2.4	4,901	1.8
Any tumour (excluding CRC)	5,037	8.8	22,517	8.3
Leukemia	158	0.3	494	0.2
Lymphoma	295	0.5	1,010	0.4
Moderate to severe liver disease	113	0.2	311	0.1
Metastatic solid tumour	519	0.9	1,944	0.7
AIDS	10	0.0	25	0.0
Diseases not originally included in the CCI				
Atrial fibrillation/flutter	1,164	2.0	4,213	1.6
Obesity	1,197	2.1	4,320	1.6
CCI scores				
0 (No comorbidity)	34,918	61	172,041	63
1 (Low comorbidity)	9,747	17	47,139	17
2–3 (Moderate comorbidity)	9,522	17	44,788	17
4+ (High comorbidity)	2,776	4.9	7,702	2.8

Abbreviations: CCI—Charlson Comorbidity Index; CRC—colorectal cancer; NA—not applicable.

*Matched on age, gender, year of CRC diagnosis, and the presence of individual comorbidities listed in this table.

The CCI included the 19 diseases from the original index with the addition of atrial fibrillation/flutter and obesity (both assigned one point).
Short-term mortality. CRC patients had a 0–1 year standardised mortality rates of 400 (95% confidence interval (CI): 394, 406) per 1000 person-years, compared with 48 (95% CI: 47, 48) per 1000 person-years in the population comparison cohort, confirming overall higher mortality among patients with CRC (adjusted mortality rate ratio = 8.3, 95% CI: 8.1, 8.5). Our findings indicated substantial synergy/interaction between CRC and comorbidities, and the synergy seemed to increase with increasing level of comorbidity (Table 2). For instance, the difference in mortality rates between CRC patients and comparison cohort members was 586 deaths (761 – 175) per 1000 person-years for those with the highest comorbidity burden (CCI = 4). This difference in mortality rates can be assigned to CRC, because the CRC patients and the comparison cohort members are matched on comorbidity. In the group of people without comorbidity (CCI = 0), the difference in mortality rates was 324 deaths (351 minus 27) per 1000 person-years. The interaction contrast equals the difference in these two rate differences, 262 deaths (586 – 324) per 1000 person-years, and represents the excess mortality in individuals with both CRC and severe comorbidity attributable to CRC and the comorbidities affecting mortality synergistically. As the mortality rate for CRC patients with the highest comorbidity burden (CCI = 4) was 761 deaths per 1000 person-years, 34% of this rate was due to the synergy.

Long-term mortality. Although to a lesser extent than during the first year after diagnosis, CRC remained associated with increased subsequent mortality (overall adjusted 2- to 5-year mortality rate ratio = 3.0, 95% CI: 2.9, 3.0). The 2- to 5-year standardised mortality rates increased with higher CCI scores. However, only among CRC patients with a CCI score of 4+ did the mortality increase more than among matched persons in the population comparison cohort, with the interaction accounting for 14% of the mortality rate (Table 2).

Stratified and restricted analyses. Tables 3 and 4 present the standardised mortality rates and interaction contrasts by CRC stage at diagnosis. These results confirm that CRC mortality during the period 0–1 year after diagnosis interacted with comorbidity among CRC patients with both metastatic and non-metastatic disease. For example, among patients with a CCI score of 4+, the interaction accounted for 28% of the mortality rates in patients without metastases and 24% in patients with metastatic spread. Consistent with the overall results, interaction between CRC and comorbidity had less impact on mortality among CRC patients, regardless of non-metastatic and metastatic disease, during the period 2–5 years after the CRC diagnosis (Tables 3 and 4).

For mortality within 0–1 year after the index date, the interaction between CRC and comorbidity was particularly important for the younger age groups (0–69 years). For example, the interaction contrast was 257 per 1000 person-years (95% CI: 176, 338) for CRC patients with a CCI score of 4+, accounting for 45% of the total mortality rate. The interaction contrasts for the older age groups were closer to the overall estimates (Supplementary Table S1). For mortality within 2–5 years, the interaction between CRC and comorbidity was only evident for the age group 0–69 years with a CCI score of 4+ (Supplementary Table S1). We observed nearly identical patterns of interaction for colon and rectal cancers (Supplementary Table S2).

Table 2. Mortality, MRR, and interaction contrasts for CRC patients compared with persons in a matched population-based comparison cohort, overall and by CCI score

CCI score	Cohort	No. of persons	No. of deaths	Person-years	Standardised mortality rates per 1000 person-years (95% CI)	Adjusted MRRs* (95% CI)	Interaction contrast (95% CI)	Proportion of the mortality explained by interaction
0–1 Year of follow-up								
All	CRC	56963	17089	45559	400 (394, 406)	8.3 (8.1, 8.5)	NA	—
All	Comparison	271670	11962	265223	351 (343, 359)	15 (14, 15)	Ref	NA
0	CRC	34918	8881	29245	27 (26, 28)	1.7 (1.6, 1.8)	37 (7.0, 68)	14%
0	Comparison	172041	2652	170208	415 (401, 430)	7.4 (7.0, 7.7)	39 (22, 55)	9.4%
1	CRC	9747	3254	102813	48 (47, 48)	8.3 (8.1, 8.5)	NA	—
1	Comparison	47139	2755	45723	53 (51, 55)	7.4 (7.0, 7.7)	39 (22, 55)	9.4%
2–3	CRC	9522	3548	7035	489 (477, 501)	5.1 (4.9, 5.3)	79 (36, 121)	16%
2–3	Comparison	44788	4234	42521	86 (83, 89)	5.1 (4.9, 5.3)	79 (36, 121)	16%
4+	CRC	2776	1406	1771	761 (715, 807)	3.9 (3.7, 4.3)	262 (215, 310)	34%
4+	Comparison	7702	1321	6971	175 (165, 185)	3.9 (3.7, 4.3)	262 (215, 310)	34%
Two to 5 years of follow-up								
All	CRC	39862	14274	102813	143 (141, 146)	3.0 (2.9, 3.0)	NA	—
All	Comparison	258729	40310	808019	50 (49, 50)	4.2 (4.1, 4.3)	Ref	NA
0	CRC	26029	8606	69909	131 (128, 134)	2.3 (2.2, 2.4)	9.8 (–17, –3.1)	NA
0	Comparison	167766	17549	549904	36 (36, 37)	2.3 (2.2, 2.4)	9.8 (–17, –3.1)	NA
1	CRC	6490	2482	16193	146 (140, 152)	7.4 (7.0, 7.7)	39 (22, 55)	9.4%
1	Comparison	44215	9585	131313	61 (60, 62)	7.4 (7.0, 7.7)	39 (22, 55)	9.4%
2–3	CRC	5973	2491	13917	172 (165, 179)	2.0 (1.9, 2.0)	–3.0 (–11, 4.9)	NA
2–3	Comparison	40390	10902	111329	80 (79, 82)	2.0 (1.9, 2.0)	–3.0 (–11, 4.9)	NA
4+	CRC	1370	695	2793	261 (231, 290)	1.7 (1.6, 1.8)	37 (7.0, 68)	14%
4+	Comparison	6358	2274	15473	129 (123, 134)	1.7 (1.6, 1.8)	37 (7.0, 68)	14%

Abbreviations: CCI = Charlson Comorbidity Index, CI = confidence interval, CRC = colorectal cancer, MRR = mortality rate ratios; NA = not applicable; Ref = reference.

*Adjusted for age, gender, and CRC/index year. For the overall analysis, we also adjusted for CCI scores.
Table 3. Mortality, MRR, and interaction contrasts for patients with non-metastatic CRC compared with persons in a matched population-based comparison cohort, by CCI scores

CCI score	Cohort	No. of persons	No. of deaths	Person-years	Standardised mortality rates per 1000 person-years (95% CI)	Adjusted MRRs* (95% CI)	Interaction contrast (95% CI)	Proportion of the mortality explained by interaction		
0–1 Year of follow-up										
0 CRC	20211	5487	59101	101	(98, 104)	3.2 (3.1, 3.3)	Ref.	—	—	
0 Comparison	112638	11875	376876	37	(36, 37)	Ref.	—	—	—	
1 CRC	6420	1407	5448	241	(228, 254)	4.7 (4.4, 5.1)	40 (26, 55)	17%		
1 Comparison	31049	1728	30161	49	(47, 52)	Ref.	—	—	—	
2–3 CRC	6004	1481	4983	288	(251, 326)	3.1 (2.9, 3.3)	52 (14, 90)	18%		
2–3 Comparison	28299	2620	26892	85	(82, 88)	Ref.	—	—	—	
4+ CRC	1529	551	1145	441	(401, 481)	2.6 (2.3, 2.9)	125 (83, 168)	28%		
4+ Comparison	4237	700	3850	164	(151, 177)	Ref.	—	—	—	

Table 4. Mortality, MRRs, and interaction contrasts for patients with metastatic CRC compared with persons in a matched population-based comparison cohort, by CCI scores

CCI score	Cohort	No. of persons	No. of deaths	Person-years	Standardised mortality rates per 1000 person-years (95% CI)	Adjusted MRRs* (95% CI)	Interaction contrast (95% CI)	Proportion of the mortality explained by interaction		
0–1 Year of follow-up										
0 CRC	37956	4476	5138	1023	(990, 1055)	53 (49, 58)	Ref.	—	—	
0 Comparison	39232	681	38819	22	(20, 24)	Ref.	—	—	—	
1 CRC	2030	1313	1148	1166	(1102, 1231)	1.9 (1.8, 2.0)	116 (44, 189)	9.9%		
1 Comparison	9839	528	9570	60	(59, 62)	Ref.	—	—	—	
2–3 CRC	2005	1314	1093	1244	(1062, 1426)	1.6 (1.5, 1.7)	13 (12, 15)	14%		
2–3 Comparison	9442	815	9009	74	(69, 80)	Ref.	—	—	—	
4+ CRC	696	515	332	1548	(1403, 1693)	7.9 (6.9, 9.1)	373 (224, 523)	24%		
4+ Comparison	2051	338	1858	174	(154, 193)	Ref.	—	—	—	

Two to 5 years of follow-up

0 CRC | 3479 | 2409 | 5035 | 490 | (470, 511) | 22 (21, 23) | Ref. | — | — | |
0 Comparison | 38400 | 3425 | 123082 | 26 | (25, 27) | Ref. | — | — | — | |
1 CRC | 716 | 495 | 1020 | 496 | (450, 542) | 10 (9.2, 11) | 16 (– 67, 35) | NA | |
1 Comparison | 9272 | 1792 | 27385 | 48 | (45, 50) | Ref. | — | — | — | |
2–3 CRC | 691 | 478 | 924 | 492 | (444, 540) | 6.3 (5.7, 7.0) | 40 (– 92, 13) | NA | |
2–3 Comparison | 8595 | 2241 | 23084 | 67 | (63, 70) | Ref. | — | — | — | |
4+ CRC | 181 | 133 | 233 | 590 | (449, 730) | 4.9 (4.0, 5.9) | 15 (– 127, 158) | 2.5% | |
4+ Comparison | 1704 | 529 | 4278 | 110 | (99, 121) | Ref. | — | — | — | |

Abbreviations: CCI = Charlson Comorbidity Index; CI = confidence interval; CRC = colorectal cancer; MRR = mortality rate ratios; NA = not applicable; Ref = reference.

*Adjusted for age, gender, and CRC/index year.
Whereas there was no material difference in interaction for men and women in the first 0–1 year, the overall interaction observed for the 2- to 5-year mortality among CRC patients with a CCI score of 4 or more was mainly found in women (interaction contrast = 49 per 1000 person-years, 95% CI: 9.4, 89) and to a lesser extent in men (interaction contrast = 27 per 1000 person-years, 95% CI: −19, 72).

In patients with non-metastatic CRC undergoing colorectal resection, interaction accounted for 32% of the 30-day post-operative mortality among those with a CCI score of 1 (interaction contrast = 310 per 1000 person-years, 95% CI: 210, 410), 34% among those with a CCI score of 2–3 (interaction contrast = 369 per 1000 person-years, 95% CI: 261, 478), and 47% among those with a CCI score of 4+ (interaction contrast = 745 per 1000 person-years, 95% CI: 486, 1004; Supplementary Table S3).

Individual comorbidities. Table 5 presents standardised mortality rates for CRC patients according to the presence of individual comorbidities. For CRC patients, a variety of comorbidities interacted with CRC to increase mortality during the first 0–1 year following diagnosis, in particular dementia, liver disease, haemiplegia, renal diseases, and leukemia. In contrast, the interactions had limited influence on mortality during the subsequent 2–5 years.

DISCUSSION

In this large, nationwide, population-based matched cohort study, we found that comorbidity interacted with CRC to increase mortality, particularly in the first year after diagnosis. The interaction accounted for 9% of the total mortality in patients with low comorbidity (CCI score of 1), but as much as 34% in those with high comorbidity burdens (CCI score of 4+). Nearly the same results were found for men and women, both when CRC patients with either non-metastatic or metastatic disease were evaluated, and for colon and rectal cancers. The interaction seemed particularly important for patients aged 69 years or younger, and was evident for a wide variety of comorbidities in CRC patients.

Except for the interaction between CRC and a high comorbidity burden (CCI score of 4+) accounting for 14% of mortality 2–5 years after diagnosis, mortality in this period was not higher than that explained by CRC and comorbidity acting independently. Finally, the interaction between comorbidity and CRC also had substantial impact on the 30-day post-operative mortality.

Our study extends the existing literature by including a population comparison cohort free of CRC, thereby allowing evaluation of the excess mortality caused by the interaction between comorbidity and CRC. Our findings strongly suggest that

Table 5. Standardised mortality rates (per 1000 person-years) and interaction contrasts for CRC patients compared with persons in a matched population-based comparison cohort, according to the presence of selected comorbidity included in the CCI
Myocardial infarction
Congestive heart failure
Peripheral vascular disease
Cerebrovascular disease
Dementia
Chronic pulmonary disease
Connective tissue disease
Ulcer disease
Mild liver disease
Diabetes type I and II
Haemiplegia
Moderate to severe renal disease
Diabetes with end-organ failure
Any tumour (excluding CRC)
Leukemia
Lymphoma
Moderate to severe liver disease
Metastatic solid tumour
AIDS

Diseases not originally included in the CCI

	0–1 Year of follow-up	Two to 5 years of follow-up				
Anal fibrosis/flush	450 (405, 494)	53 (6.7, 99)	12%	175 (152, 197)	5.2 (−18, 29)	3.0%
Obesity	485 (425, 545)	102 (41, 163)	21%	177 (153, 202)	11 (−16, 37)	6.2%

Abbreviations: CCI — Charlson Comorbidity Index, CI — confidence interval, CRC — colorectal cancer, NA — not applicable.

aProportion of the mortality explained by interaction.
Impact of comorbidity on colorectal cancer mortality

BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.541

2011

treatment of comorbidities should be considered an integral part of clinical care for newly diagnosed CRC patients. Successful treatment of comorbidity would reduce the mortality attributable to comorbidity itself, and also the mortality attributable to the synergy (i.e., interaction) between comorbidity and CRC.

No earlier study has evaluated the independent effects of CRC and comorbidity, or their synergistic effect on mortality, although they have generally demonstrated that CRC patients with comorbidities have poorer survival than CRC patients without comorbidities; a pattern also observed in our study. Impaired survival has been demonstrated over the short-term (Panis et al., 2011; Sarfati et al., 2011; Jorgensen et al., 2012) and long-term (Iversen et al., 2009; Panis et al., 2011) and single-centre studies (Ouellette et al., 2004; Read et al., 2004). Impaired survival has been also found when comorbidities were evaluated using indices, such as CCI or Adult Comorbidity Index (ACE-27; Ouellette et al., 2004; Read et al., 2004; Iversen et al., 2009) and for individual diseases, including cardiovascular disease, pulmonary disease, diabetes, previous malignancy, and renal disease (Lemmens et al., 2005; Gross et al., 2006a, b; Janssen-Heijnen et al., 2007; Sarfati et al., 2009). In addition, impaired survival of CRC patients with comorbidities has been demonstrated regardless of treatment received, anatomical site of CRC, gender, and age (Ouellette et al., 2004; Janssen-Heijnen et al., 2005; Iversen et al., 2009). Nonetheless, at least two studies have indicated that comorbidity does not have as important a role in mortality among patients with late-stage CRC. A recent study from North America (exploratory analysis of the CO.17 clinical trial), including 572 patients with metastatic CRC, found that patients with more comorbidity had improved survival compared with patients with less comorbidity (HR = 0.8, 95% CI 0.65, 1.00; Asmis et al., 2011). A single-centre German study of 233 CRC patients with metastatic disease undergoing non-curative elective surgery found no association between comorbidities (measured by number of affected organs) and the 30-day mortality (Kleespies et al., 2009). These findings suggest that among patients severely ill with CRC, the coexistence of other often less-aggressive diseases has little effect on their poor prognosis. In our study, however, we found that the synergy between comorbidity and CRC had a substantial role for mortality in CRC patients with metastatic disease, although primarily during the first year of follow-up and among those with high comorbidity burdens. The same pattern is likely to be observed with increasing age, which our study also confirmed.

Although it was beyond the scope of our study to evaluate underlying reasons for excess mortality among CRC patients with comorbidities, there are several possibilities. First, it has been shown that diseases, such as diabetes and inflammatory bowel disease, increase CRC risk, and it has been speculated that this association might result in particularly aggressive CRC with poor survival (Ording et al., 2013). Had this been true, we would have expected to observe interaction between CRC and comorbidities also after the first year of follow-up, which we did not. Second, severe comorbidities might impair or delay cancer diagnosis or interfere with diagnostic follow-up, leading to more advanced spread (Bjerager et al., 2006), although some studies have shown decreased delays among comorbid CRC patients (Mitchell et al., 2008). Our results also do not support any difference in interaction between CRC stages. Third, physician behaviour and patient compliance may be affected by the presence of other diseases. Finally, treatment and post-treatment care might be suboptimal in the presence of comorbidities, and comorbidity can result in a higher frequency of complications eventually leading to death (Lemmens et al., 2005, 2007; Sarfati et al., 2009; Koroukian et al., 2010). This potential mechanism is supported by our findings of the interaction being restricted primarily to the first year of follow-up. However, all potential explanations remain speculative and need to be confirmed in future investigations.

The strengths of our study include its population-based cohort design and a setting providing free access to healthcare, which virtually eliminates referral bias. We were able to study a large, well-defined population with complete follow-up owing to computerised nationwide registries, thus making selection biases negligible. Because of the large number of CRC patients and matched persons from the general population without CRC, we were able to estimate the independent effects of cancer and other conditions, and how their co-occurrence affects mortality. Earlier research has called for such an investigation (Gross et al., 2006b).

Our study also had several limitations. Inaccurate coding in the nationwide registries is an important concern in registry-based analyses such as ours. Fortunately, the completeness and positive predictive values of diagnoses in the Danish Cancer Registry have been found to be 95–98% (Storm et al., 1997; Gjerstorff, 2011). The positive predictive value of the coding of comorbidities also has been shown to be high, whereas the completeness of coding is likely to be lower (Thygesen et al., 2011). In addition, even though we included comorbidities in the CCI, with the addition of atrial fibrillation/flutter and obesity, we may have missed other diseases affecting mortality. These factors could have led us to underestimate comorbidity burdens and to classify patients with comorbidities in the group without comorbidity, resulting in more uniform mortality rates and mortality rate ratios approaching 1.0. Furthermore, although we attempted to deal with potential confounding caused by age and gender by matching, standardisation, and adjustment, our results may have been affected by confounding by unmeasured factors, such as alcohol consumption, smoking, and medication use. Nevertheless, given the strength of the associations, we find it unlikely that these unmeasured factors could explain our results completely. Finally, we did not include data on causes of death and were therefore unable to compare causes of death between CRC patients and the population comparison cohort. However, as we would not expect comparison cohort members to die of CRC, and because deaths due to CRC in the CRC cohort would affect the distribution of deaths from other causes, such a comparison would be of limited value.

In conclusion, our population-based matched cohort study showed that comorbidities interacted with CRC to increase mortality beyond that explained by CRC and comorbidities acting independently, particularly in the first year after CRC diagnosis. Successful treatment of the comorbidity is pivotal, as it would delay death from the comorbidity and death caused by the interaction.

ACKNOWLEDGEMENTS

The work was supported by a grant from the Danish Agency for Science Technology and Innovation, a grant from the Danish Cancer Society (R73-A2284-13-S17), and from the Karen Elise Jensen Foundation. RE was supported by a scholarship from Aarhus University.

CONFLICT OF INTEREST

The Department of Clinical Epidemiology, Aarhus University Hospital, receives funding for other studies from companies in the form of research grants to (and administered by) Aarhus University. None of these studies have any relation to the present study. The authors declare no conflict of interest.
Andersen TF, Madsen M, Jorgensen J, Mellemkjoer L, Olsen JH (1999) The
BRITISH JOURNAL OF CANCER
Impact of comorbidity on colorectal cancer mortality
Asmis TR, Powell E, Karapetis CS, Jonker DJ, Tu D, Jeffery M, Pavlakis N,
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates
Bjerager M, Palshof T, Dahl R, Vedsted P, Olesen F (2006) Delay in diagnosis
Frank L (2000) Epidemiology. When an entire country is a cohort.
Gross CP, McAvay GJ, Krumholz HM, Paltiel AD, Bhasin D, Tinetti ME
Greenland S, Lash T, Rothman K (2008) Concepts of interaction. In
Ingle SB, Limburg P (2007) Colorectal carcinoma. In
Iversen LH, Norgaard M, Jacobsen J, Laurberg S, Sorensen HT (2009) The
Comorbidity, age and overall survival in cetuximab-treated patients with
advanced colorectal cancer (ACRC)—results from NCIC CTG CO.17: a
phase III trial of cetuximab versus best supportive care. Ann Oncol 22(1):
Bjerager M, Palshof T, Dahl R, Vedsted P, Olesen F (2006) Delay in diagnosis
of lung cancer in general practice. Br J Gen Pract 56(532): 863–868.
De Marco MF, Janssen-Heijnen ML, van der Heijden LH, Coebergh JW
(2000) Comorbidity and colorectal cancer according to subsite and stage: a
population-based study. Eur J Cancer 36(1): 95–99.
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates
of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer
127(12): 2893–2917.
Frank L (2000) Epidemiology. When an entire country is a cohort. Science
287: 2398–2399.
Gjerstorff ML (2011) The Danish Cancer Registry. Scand J Public Health
39(7 Suppl): 42–45.
Greenland S, Lash T, Rothman K (2008) Concepts of interaction. In Modern
Epidemiology. 3rd edn, pp 71–83. Lippincott Williams & Wilkins.
Gross CP, Guo Z, McAvay GJ, Allore HG, Young M, Tinetti ME (2006a)
Multimorbidity and survival in older persons with colorectal cancer. J Am
Geriatr Soc 54(12): 1989–1994.
Gross CP, McAvay GJ, Krumholz HM, Paltiel AD, Bhasin D, Tinetti ME
(2006b) The effect of age and chronic illness on life expectancy after a
diagnosis of colorectal cancer: implications for screening. Ann Intern Med
145(9): 646–653.
Ingle SB, Limburg P (2007) Colorectal carcinoma. In GI Epidemiology.
(1st edn), Talley NJ, Locke GR, Saito JA (eds). pp 170–175. Blackwell
Publishing: MA, USA.
Iversen LH, Norgaard M, Jacobsen J, Laurberg S, Sorensen HT (2009) The
impact of comorbidity on survival of Danish colorectal cancer patients
from 1995 to 2006—a population-based cohort study. Dis Colon Rectum
52(1): 71–78.
Janssen-Heijnen ML, Houterman S, Lemmens VE, Louwman MW, Maas HA,
Coebergh JW (2005) Prognostic impact of increasing age and co-
morbidity in cancer patients: a population-based approach. Crit Rev Oncol
Hematol 55(3): 231–240.
Janssen-Heijnen ML, Maas HA, Houterman S, Lemmens VE, Rutten HI,
Coebergh JW (2007) Comorbidity in older surgical cancer patients:
influence on patient care and outcome. Eur J Cancer 43(15): 2179–2193.
Jorgensen TL, Hallas J, Friis S, Herrstedt J (2012) Comorbidity in elderly
cancer patients in relation to overall and cancer-specific mortality.
Br J Cancer 106(7): 1353–1360.
Kleespies A, Fusil KE, Seeliger H, Eichhorn ME, Muller MH, Rentsch M,
Thasler WE, Angele MK, Kreis ME, Jauch KW (2009) Determinants of
morbidity and survival after elective non-curative resection of stage IV
colon and rectal cancer. Int J Colorectal Dis 24(9): 1097–1109.
Koroukian SM, Xu F, Bakaki PM, Diaz-Insua M, Towe TP, Owusu C (2010)
Comorbidities, functional limitations, and geriatric syndromes in relation
to treatment and survival patterns among elders with colorectal cancer.
J Gerontol A Biol Sci Med Sci 65(3): 322–329.
Lemmens VE, Janssen-Heijnen ML, Houterman S, Verheij KD, Martijn H,
Poll-Franse L, Coebergh JW (2007) Which comorbid conditions predict
complications after surgery for colorectal cancer? World J Surg 31(1):
192–199.
Lemmens VE, Janssen-Heijnen ML, Verheij KD, Houterman S, Repelaer van
Dried OJ, Coebergh JW (2005) Co-morbidity leads to altered treatment and
worse survival of elderly patients with colorectal cancer. Br J Surg
92(5): 615–623.
Mitchell E, Macdonald S, Campbell NC, Weller D, Macleod U (2008)
Influences on pre-hospital delay in the diagnosis of colorectal cancer: a
systematic review. Br J Cancer 98(1): 60–70.
Ording AG, Horvath-Puho E, Eriehsen R, Long MD, Baron JA, Lash TL,
Sorensen HT (2013) Five-year mortality in colorectal cancer patients with
ulcerative colitis or Crohn’s disease: a nationwide population-based cohort
study. Inflamm Bowel Dis 19(4): 800–805.
Ouellette JR, Small DG, Termuhlen PM (2004) Evaluation of Charlson-AGE
Comorbidity Index as predictor of morbidity and mortality in patients with
colorectal carcinoma. J Gastrointest Surg 8(8): 1061–1067.
Pantis Y, Maggiori L, Caranagah C, Bretagnol F, Vicaut E (2011) Mortality after
colorectal cancer surgery: a French survey of more than 84,000 patients.
Ann Surg 254(5): 738–743.
Pederesen CB (2011) The Danish Civil Registration System. Scand J Public
Health 39(7 Suppl): 22–25.
Read WL, Tierney RM, Page NC, Costs I, Govindan R, Spitznagel EL,
Piccirillo JP (2004) Differential prognostic impact of comorbidity. J Clin
Oncol 22(15): 3099–3103.
Rieker RJ, Hammer E, Eisele R, Schmid E, Hogel J (2002) The impact of
comorbidity on the overall survival and the cause of death in patients after
colorectal cancer resection. Langenbecks Arch Surg 387(2): 72–76.
Sarfati D, Hill S, Blakely T, Robson B, Purdie G, Dennett E, Cormack D,
Dew K (2009) The effect of comorbidity on the use of adjuvant
chemotherapy and survival from colon cancer: a retrospective cohort
study. BMC Cancer 9: 116.
Sarfati D, Tan L, Blakely T, Pearce N (2011) Comorbidity among patients with
colon cancer in New Zealand. NZ Med J 124(1338): 76–88.
Storm HH, Michelsen EV, Clemmensen IH, Pihl J (1997) The Danish
Cancer Registry—history, content, quality and use. Dan Med Bull 44:
535–539.
Thygesen SK, Christiansen CF, Christiansen S, Lash TL, Sorensen HT (2011)
The predictive value of ICD-10 diagnostic coding used to assess Charlson
comorbidity index conditions in the population-based Danish National
Registry of Patients. BMC Med Res Methodol 11: 83.
Yancik R, Wesley MN, Ries LA, Havlik RJ, Long S, Edwards BK, Yates JW
(1998) Comorbidity and age as predictors of risk for early mortality of
male and female colon carcinoma patients: a population-based study.
Cancer 82(11): 2123–2134.
This work is published under the standard license to publish agree-
ment. After 12 months the work will become freely available and
the license terms will switch to a Creative Commons Attribution-
NonCommercial-Share Alike 3.0 Unported License.
Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)
APPENDIX

Codes used in the present study

Cancer Type	ICD-10	ICD-10 Description
Colorectal cancer: Colon	C18	
Rectal	C19-20	
Surgery codes for colorectal resection	KJFB20-97, KJFH00-33, KJFH96, KJGB00-50, and KJGB96-97	

Charlson’s Comorbidity Index

Diseases	ICD-8	ICD-10	Score
1 Myocardial infarction	410	I21; I22; I23	1
2 Congestive heart failure	427.09; 427.10; 427.11; 427.19; 428.99; 782.49	I56; I11.0; I13.0; I13.2	1
3 Peripheral vascular disease	440; 444; 442; 443; 444; 445	I70; I71; I72; I73; I74; I77	1
4 Cerebrovascular disease	430–438	I60-I69; G45; G46	1
5 Dementia	290.09–290.19; 293.09	F60–F63; F05.1; F06	1
6 Chronic pulmonary disease	490–493; 515–518	I40–I47; I60–I67; J06.4; J07.1; J07.3; J84.1; J92.0; J96.1; J98.2; J98.3	1
7 Connective tissue disease	712; 716; 734; 446; 135.99	M05; M06; M08; M09;M30;M31; M32; M33; M34; M35; M36; D86	1
8 Ulcer disease	530.91; 530.98; 531–534	K22.1; K25–K28	1
9 Mild liver disease	571; 573.01; 573.04	B18; K70.0–K70.3; K70.9; K71; K73; K74; K76.0; D818	1
10 Diabetes type1	249.00; 249.06; 249.07; 249.09; 250.00; 250.06; 250.07; 250.09	E10.0; E10.1; E10.9; E11.0; E11.1; E11.9	1
11 Haemiplegia	344	G81; G82	2

Impact of comorbidity on colorectal cancer mortality

BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.541

2013

Additions to the original definition

Atrial fibrillation/ flutter Obesity

ICD-8	Score
427.93	1
277	1
1489	1
66	1

Definition of colorectal cancer stage in the Danish Cancer Registry

Stage	Dukes 1995-2003	TNM 2004-2010
Non-metastatic (i.e., localised and regional spread)	A, B, and C	T0–4x; N0–3; M0
Metastatic	D	T0–4x; N1–3; M1
Unknown	T2–4x; N3; M0x	T3–4x; N0; Mx

www.bjcancer.com | DOI:10.1038/bjc.2013.541

2013