Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis

Stefanie Schlager,* Madeleine Goeritzer,* Katharina Jandl,† Robert Frei,‡ Nemanja Vujic,* Dagmar Kolb,‡ Heimo Strohmaier,‡ Juliane Dorow,§,‖ Thomas O. Eichmann,† Angelika Rosenberger,§ Albert Wößler,§ Achim Lass,§ Erin E. Kershaw,** Uta Ceglarek,§,‖ Andrea Dichlberger,‖ Akos Heinemann,‡ and Dagmar Kratky*†

Institutes of *Molecular Biology and Biochemistry and †Experimental and Clinical Pharmacology, ‡Center for Medical Research, and §Division of Laboratory Medicine, Medical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; †ELEF-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; §Institute of Molecular Biosciences, University of Graz, Graz, Austria; ‡Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and †Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland

RECEIVED MAY 13, 2015; REVISED JUNE 8, 2015; ACCEPTED JUNE 9, 2015. DOI: 10.1189/jlb.3A0515-206R

Introduction

NLSD describes a group of rare, autosomal-recessive disorders of lipid metabolism with systemic deposition of neutral lipids in multiple tissues. The disease was discovered initially in 1953 by Jordans [1], who reported a case of progressive muscular dystrophy accompanied by fat-containing vacuoles in leukocytes, which, since then, has been termed Jordans’ anomaly. Lipid-laden leukocytes were confirmed in further clinical reports of NLSD [2–4]. Given the consistent presence of Jordans’ anomaly on an otherwise heterogeneous background of clinical phenotypes (e.g., variable degrees of ichthyosis, liver steatosis, hepatosplenomegaly, skeletal and cardiac myopathy, hearing loss, growth, and mental retardation) [5], Jordans’ anomaly was proposed as hallmark criterion for the diagnosis of NLSD [6]. In 2001 and 2007, mutations in CGI-58 (also termed α/β hydrolase domain-containing 5) and ATGL (also termed desnutrin or PNPLA2) were linked to NLSD with ichthyosis and NLSDM, respectively [7, 8]. ATGL and CGI-58 are key regulators of lipolysis. The catabolism of TG-rich intracellular LDs takes place predominantly in adipose tissue. It is initiated by ATGL, followed by the action of HSL and MGL, and it largely depends on the presence of the ATGL coactivator CGI-58 [9]. As LDs have been recognized as functional and dynamic organelles beyond lipid storage depots for metabolic fuel, novel implications of LDs and their associated proteins in various cell types are steadily emerging. LDs have been linked to a variety of biologic functions, such as cellular regulation of lipid homeostasis and signaling, protein folding, storage and degradation, infection, and reproduction in any medium, provided the original work is properly cited.

Abbreviations: 5-oxo-ETE = 5-oxo-eicosatetraenoic acid, 12(S) HHT = 12(S)-hydroxy-5,8,10 (Z,E,E)-heptadecatrienoic acid, AA = arachidonic acid, APC = allophycocyanin, ATGL = adipose triglyceride lipase, ATGL-/− = adipose triglyceride lipase-deficient, [Ca2+]i = intracellular Ca2+, CE = cholesterol ester, CGI-58 = comparative gene identification-58, CLP = common lymphoid progenitor, COX = cyclooxygenase, cPLA2α = cytosolic (continued on next page)

The online version of this paper, found at www.jleukbio.org, includes supplemental information.
immunity (reviewed in refs. [10–12]). Several human diseases (e.g., inflammatory arthritis, respiratory distress syndrome, and atherosclerosis) are associated with LD accumulation in various types of leukocytes, implicating LDs as critical regulators of inflammation. Significant inflammation-relevant functions that have been associated with LDs (often termed lipid bodies in the context of inflammation) include the regulation of host/pathogen interactions [13], virus assembly [14], nutrient source for intracellular pathogens [15], and functions in antigen cross-presentation [16]. Numerous studies have provided substantial evidence that LDs serve as major organelles for the generation of AA-derived lipid mediators (reviewed in ref. [17]).

In cells of the myeloid lineage (e.g., neutrophils, eosinophils, basophils, mast cells), TGs are the major lipid class of the LD core [18–20]. However, the function of lipolytic enzymes that use this TG pool in cells of the innate or adaptive immune system is largely unexplored. Here, we investigated the role of ATGL in leukocyte LD biology and immune cell function by examining neutrophils lacking ATGL. Our study shows that similar to humans with defective ATGL, Atgl−/− mice exhibit Jordans’ anomaly. In addition, ATGL−/− leads to alterations in immune cell function and a marked reduction in lipid mediator generation. To our knowledge, this is the first report providing detailed information about the functional consequences of Jordans’ anomaly caused by ATGL−/−.

MATERIALS AND METHODS

Animals

Global Atgl−/− mice were generated, as described elsewhere [21]. Mice carrying a Leu-expressed Atgl allele (B6.129-Ptgat1mk1mk mice; backcrossed onto C57BL/6 × N3; herein designated as Atgl+/− mice) were generated as described [22]. Mice with a targeted deletion of Atgl in myeloid cells (myeloid Atgl−/− mice) were obtained by crossing Atglfl/fl mice with transgenic mice that express Cre recombinase under the control of the murine Mlysozyme promoter (LysMCre; C57BL/6 background; provided by Dr. Thomas Ruelicke, University of Veterinary Medicine Vienna, Austria). Atglfl/fl mice were used as controls (myeloid WT). Mice were kept on a standard chow diet (4% fat and 19% protein; Altromin Spezialfutter GmbH & Co., Lage, Germany) and water ad libitum on a regular light-dark cycle (12 h light, 12 h dark). Mice were genotyped by use of the following primers: Atgl-forward 5′-AGAGAGAAGTTGAAGCTG-3′; Atgl-reverse 5′-GGCCAGCCATGAGATGTCG-3′; Atglfl/fl-forward 5′-CGGTTAGGGGAGGAGGAGTCG-3′, Atglfl/fl-reverse 5′-CAGGAGGCGAGCTGACGAG-3′; Cre-forward 5′-CCGAGATGCGAGATTACG-3′; Cre-reverse 5′-CGGGCGGAGCTGAC-3′, Cre WT-5′-TTACAGTGCCGAGCTGAC-3′. Animal protocols were approved by the Austrian Federal Ministry of Science, Research and Economy, Division of Genetic Engineering and Animal Experiments (Vienna, Austria; BMFW-66.010/0085-II/3b/2013, BMFW-66.010/0081-II/3b/2013, BMFW-66.010/0076-WF-II/3b/2014).

Isolation of neutrophils

Neutrophils were isolated from peritoneal exudate or bone marrow. Cells of peritoneal exudate were collected 1 d after intraperitoneal injection of 2.5 ml 3% thiglycollate by rinsing the peritoneum with 10 ml HBSS containing 1 mM EDTA. For bone marrow isolation, cells were collected, flushed with HBSS-EDTA, and pushed through a cell strainer to disperse cell clumps. The cell suspension was centrifuged (400 g, 10 min, 4°C), and neutrophils were purified by use of a Percoll gradient, as described [23]. In brief, cell suspensions were layered on top of a 34layer Percoll gradient of 78, 69, and 52% Percoll and centrifuged (1500 g, 30 min, room temperature) with brakes off. Neutrophils from the 69–78% interphase were harvested and counted. After washing with HBSS-EDTA containing 1% BSA, cells were suspended in HEPES buffer plus 9 mM glucose and used immediately for further experiments.

Isolation of inflammatory cells for quantitative real-time PCR

Cells were flow sorted by use of a BD FACSAria III cell sorter (BD Biosciences, San Jose, CA, USA). Peritoneal lavages from WT mice, 2 d after thiglycollate injection, were used to sort eosinophils, neutrophils, monocytes, and macrophages. B and T lymphocytes were sorted from peripheral blood after RBC lysis in ammonium-chloride-potassium lysis buffer (150 mM NaCl, 10 mM KHCO3, 0.1 mM Na2EDTA, pH 7.2). Total RNA from cells was extracted by use of TRIzol reagent, according to the manufacturer’s protocol (Peqlab, Erlangen, Germany). Total RNA (1 μg) was reverse transcribed by use of the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA). Quantitative real-time PCR was performed on a LightCycler 480 (Roche Diagnostics, Rotkreuz, Switzerland) by use of the QuantiFast SYBR Green PCR kit (Qiagen, Hilden, Germany). For data normalization, GAPDH was used as an endogenous control, and the relative units for gene expression were calculated by use of the 2−ΔΔCt method. The following primer sequences were used for quantitative PCR: GAPDH-forward 5′-AGTTGGGTGTGAGACTATTG-3′, GAPDH-reverse 5′-GGCGGGCTTGTAGACACAA-3′; ATGL-forward 5′-GCCAATCATCATACGAACG-3′, ATGL-reverse 5′-GCCAGCCATGAGATGTCG-3′; HSL-forward 5′-GCTGGTGAGCATCGCCAGGAG-3′, HSL-reverse 5′-TGATGCTGTCTGTCGCTGTCGG-3′; MGL-forward 5′-CACCATTCTACGGAGCAG-3′, MGL-reverse 5′-GACACCGGAGATGTTGTCGG-3′.

Immunophenotyping and lipid staining of peripheral blood and peritoneal and bone marrow cells

Peripheral blood cells were collected by retrobulbar puncture from isoflurane-anesthetized mice. Peritoneal lavage cells were collected as mentioned above. After RBC lysis, remaining cells were fixed with 10% methanol-free formalin for 10 min at 4°C and blocked with PBS containing 10% FCS for 10 min at 4°C. After the incubation, cells were stained in PBS containing 3% FCS for 10 min at 4°C with the following antibodies against surface markers: CD11b-Alexa Fluor 647, Siglec-F-PE, and Gr-1-APC-Cy7 (all purchased from BD Biosciences); CD115-PE-Cy7, CD19-eFlour 660, and CD3-eFluor 450 antibodies (all purchased from eBioscience, San Diego, CA, USA) for peripheral blood cells; F4/80-eFlour 450 (eBioscience); and Siglec-F-PE, Gr-1-PerCP-Cy5.5, CD10-PE-Cy7, and CD3-APC antibodies (all purchased from BD Biosciences) for peritoneal cells. All antibodies were titrated before use. The frequencies of specific cell types were calculated as the percentage of living cells. Intracellular Lds were quantified by staining with the fluorescent dye BODIPY 493/503 (1 μg/ml; Life Technologies, Carlsbad, CA, USA). After 10 min of incubation at 4°C, cells were washed, resuspended in PBS, and analyzed (1 × 10^6 cells/measurement) by use of an LSR II flow cytometer (BD Biosciences). Data were acquired by use of DIVA 6.1.2 software (BD Biosciences), and the analysis was performed by use of FlowJo (Tree Star, San Carlos, CA, USA). For bone marrow analysis, femurs and tibias were collected, and the marrow was...
Transmission electron microscopy

Bone marrow cells were fixed in 2.5% glutaraldehyde (w/v) and 3% methyl alcohol-formalin in 0.1 M phosphate buffer (pH 7.4) for 2 h at room temperature, postfixed in 2% osmium tetroxide (w/v) for 2 h, dehydrated in a graded series of ethanol, and embedded in a TAAB epoxy resin. Ultrathin sections (75 nm) were cut with a Leica UC6 Ultramicrotome (Leica Microsystems, Wetzlar, Germany). The HRP peroxidase-conjugated goat anti-rabbit antibody cocktail and incubated at room temperature for 10 min. For Western blotting analysis, bone marrow-derived neutrophils were suspended in HBSS containing Ca2+ and Mg2+ (2 × 106 cells/ml). Cell suspension (50 μl/well) were placed onto the top plate of an AP48 micro-Boroden chemotaxis chamber with a 5 μm pore-size polycarbonate filter (Neuro Probe, Gaithersburg, MD, USA). Cells were allowed to migrate toward 30 μM FMLP and KC in the bottom wells of the plate for 1 h at 37°C. The membrane was removed carefully, and migrated cells were enumerated by flow cytometric counting.

Phagocytosis and ROS measurement

Neutrophils were isolated from peritoneal lavages, 1 d after thioglycolate injection. After 1 h of preincubation in culture medium (DMEM, 4 mM glucose, 1 mM pyruvate, 10% lipoprotein-deficient serum, 1% penicillin/streptomycin) in the absence of glucose for 1 h, neutrophils (1 × 106) were incubated with 100 μM fluorescent-labeled Escherichia coli particles (Vybrant phagocytosis assay; Molecular Probes, Life Technologies) for 1 h at 37°C in the dark under gentle rotation. The suspension was removed, and 100 μl trypan blue was added for 1 min to quench extracellular fluorescent-labeled bacteria. Cells were washed with cold HBSS-EDTA and stained with a neutrophil-specific marker (Lyc6C-PE; BD Biosciences), and the amount of phagocytosed E. coli was measured by flow cytometry. Data are expressed as geometric means of fluorescence intensity of the intracellular fluorescence detected. Intracellular ROS generation, during phagocytosis and after a 20 min exposure to KC (20 ng/ml) and IMLP (1 μM), was measured according to the manufacturer’s protocol (Life Technologies).

Inhibition of ATGL in vitro after FA loading

Peritoneal neutrophils were cultivated in culture medium containing 25 mM glucose, supplemented with 300 μM OA or AA (Sigma-Aldrich), complexed to deficient serum, 1% penicillin/streptomycin, for 1 h at 37°C in the dark under gentle rotation. The suspension was removed, and 100 μl trypan blue was added for 1 min to quench extracellular fluorescent-labeled bacteria. Cells were washed with cold HBSS-EDTA and stained with a neutrophil-specific marker (Lyc6C-PE; BD Biosciences), and the amount of phagocytosed E. coli was measured by flow cytometry. Data are expressed as geometric means of fluorescence intensity of the intracellular fluorescence detected. Intracellular ROS generation, during phagocytosis and after a 20 min exposure to KC (20 ng/ml) and IMLP (1 μM), was measured according to the manufacturer’s protocol (Life Technologies).

Quantification of PUFA and lipid mediators

Peritoneal neutrophils were preincubated in culture medium (containing 25 mM glucose), with or without 40 μM Aglstatin, for 6 h. Thereafter, the medium was replaced by HBSS containing Ca2+ and Mg2+ in the absence or presence of the Ca2+ ionophore A23187 (0.5 μM; Sigma-Aldrich) for 1 h. Then, cells were placed on ice, transferred into tubes, and centrifuged at 400 g for 10 min at 4°C. Supernatants were immediately frozen in liquid N2 and stored at −80°C (maximum 1 wk) until analysis. To determine PUFA and lipid mediator concentrations in peritoneal lavage fluids, the peritoneum was rinsed with 3 ml HBSS-EDTA. The cell-free exudate was snap frozen in liquid N2 and stored at −80°C. A QTRAP 5500 mass spectrometer (AB Sciex, Darmstadt, Germany), operating in negative ESI mode, was applied for LC/MS/MS analysis by use of 200 μl cell supernatant or peritoneal lavage fluid, as described previously [26].
Statistical analysis
Statistical analyses were performed by use of GraphPad Prism 5.0 software (GraphPad Software, La Jolla, CA, USA). Significance was calculated by Student’s t test or ANOVA, followed by Bonferroni correction. Data are shown as means ± SEM. For statistical analysis of PUFAs and lipid mediators, nonparametric Wilcoxon signed-rank tests and Mann-Whitney U tests were used. Data are expressed as median with minimum and maximum range. Statistical significance is indicated in the figure legends.

RESULTS
Atgl\(^{-/-}\) mice exhibit Jordans’ anomaly in neutrophil granulocytes
Immunophenotyping of peripheral blood by flow cytometry revealed comparable blood counts between WT and Atgl\(^{-/-}\) mice (Fig. 1A). By use of BODIPY 493/503 as a neutral lipid dye, we observed increased fluorescence intensity, exclusively in neutrophils of Atgl\(^{-/-}\) mice (Fig. 1B). To gain insight into the ultrastructural morphology of the cells, we performed transmission electron microscopy of WT and Atgl\(^{-/-}\) bone marrow cells. As shown in Fig. 1C, intracellular LDs were present in the cytoplasm of Atgl\(^{-/-}\) bone marrow cells as electron-lucent, round-shaped structures, whereas no LDs were visible in WT cells. Next, we evaluated by flow cytometry whether hematopoietic precursor cells of Atgl\(^{-/-}\) mice accumulate LDs. Relative populations of bone marrow cells were comparable between WT and Atgl\(^{-/-}\) mice (Fig. 1D). We observed an increased amount of LDs exclusively in mature Gr-1\(^{+}\) neutrophils of Atgl\(^{-/-}\) mice but not in hematopoietic stem cells, such as LSK, or any of the investigated precursor cells, such as CLPs, MDPs, and GMPs (Fig. 1E).

Pronounced accumulation of LDs under inflammatory conditions in the absence of ATGL
In naive lavages, resident peritoneal cells include predominantly macrophages, lymphocytes, and small numbers of granulocytes and monocytes (Fig. 2A). Similar to our findings in peripheral blood, we observed a selective LD accumulation in neutrophils of

Figure 1. Atgl\(^{-/-}\) mice accumulate LDs in neutrophils of peripheral blood and bone marrow. (A) Relative counts of peripheral blood from WT and Atgl\(^{-/-}\) mice were determined by immunophenotyping by use of flow cytometry. (B) LDs in peripheral blood cells were quantified by use of BODIPY 493/503 as a neutral lipid stain. WT and Atgl\(^{-/-}\) bone marrow were analyzed by transmission electron microscopy (C) and flow cytometry (D and E). LSK, hematopoietic precursors. Data are shown as geometric means of fluorescence intensity ± SEM (n = 5). *** P ≤ 0.001.
naive lavages from Atgl^{−/−} mice (Fig. 2B). To elucidate the effect of ATGL^{−/−} under inflammation-driven conditions, we used a thioglycolate-induced peritonitis model [27]. The cellular infiltration into the peritoneum was unchanged between WT and Atgl^{−/−} mice, 1 d (Fig. 2C) and 3 d (Fig. 2E) postinjection. An increased LD abundance in neutrophils and monocytes was observed on d 1 (Fig. 2D) and in neutrophils, monocytes, and macrophages on d 3 postinjection (Fig. 2F) in peritoneal lavages from Atgl^{−/−} mice. Oil Red O staining of sedimented peritoneal cells confirmed this increased abundance of LDs in cells from Atgl^{−/−} mice, whereas in WT cells, only few LDs were visible (data not shown). Lipid parameters of peritoneal cells isolated from mice 1 d after thioglycolate injection showed a 2.6-fold TG accumulation in Atgl^{−/−} cells.

TC, FC, and CE concentrations were unaffected (Fig. 3A). With the use of LC-ESI/MS analysis, we found that the relative FA composition of the most abundant TG species (abundance >3% of total TGs), ranging from C₃₆ to C₅₆, differed significantly between WT and Atgl^{−/−} cells (Fig. 3B). In neutrophils from Atgl^{−/−} mice, TG species with >4 double bonds, including predominantly 18:1, 18:2, 20:3, and 20:4, showed an increased relative abundance, whereas TG species with up to 3 double bonds, containing mostly 16:0, 18:0, and 18:1, were decreased. Absolute concentrations of the most abundant phospholipid species, PC, were unchanged (Fig. 3C, inset). The relative PC composition was changed to an increase in 36:2 and a reduction in 34:1 in Atgl^{−/−} neutrophils (Fig. 3C). No alterations were observed in phosphatidylethanolamine.

Figure 2. Pronounced accumulation of LDs in Atgl^{−/−} cells under inflammatory conditions.
Peritoneal lavage of naive (A and B), 1 d (C and D), and 3 d (E and F) thioglycolate-injected WT and Atgl^{−/−} mice was collected and immunophenotyped by use of BODIPY 493/503 as a neutral lipid stain. Data are shown as geometric means of fluorescence intensity ± SEM (n = 5). **P ≤ 0.01; ***P ≤ 0.001.
between WT and Atgl\(^{-/-}\) neutrophils, neither in absolute (Fig. 3D, inset) nor relative amounts (Fig. 3D).

Inflammatory cells express the full cascade of metabolic lipases

Next, we investigated whether lipolytic enzymes are expressed in immune cells. We analyzed flow-sorted macrophages, eosinophils, neutrophils, monocytes (derived from thioglycolate-elicited lavage), as well as B and T lymphocytes (derived from blood) for mRNA expression of \(\text{ATGL}, \text{HSL}, \text{and MGL}\) (Fig. 4A) by quantitative real-time PCR. mRNA expression of \(\text{ATGL}\) was highest in neutrophils, followed by B lymphocytes, eosinophils, T lymphocytes, monocytes, and macrophages. \(\text{HSL}\) was highly expressed in B lymphocytes and in comparable amounts in eosinophils and neutrophils. T lymphocytes, monocytes, and macrophages showed the lowest levels of \(\text{HSL}\) mRNA. \(\text{MGL}\) was most abundant in eosinophils, whereas all other cell types showed little expression. We confirmed the presence of \(\text{ATGL}\) (54 kDa), \(\text{HSL}\) (84 kDa), and \(\text{MGL}\) (33 kDa) in lysates of purified WT neutrophils via immunoblotting (Fig. 4B). Together, our data demonstrate that metabolic lipases are expressed in inflammatory cells.

Agonist-induced \(\text{Ca}^{2+}\) flux and chemotaxis are increased in Atgl\(^{-/-}\) neutrophils

Of particular interest was to examine the functionality of LD-rich Atgl\(^{-/-}\) neutrophils. Therefore, we determined agonist-induced, \([\text{Ca}^{2+}]\)\(_i\), flux and chemotaxis. As agonists, we used the bacterial peptide fMLP and the neutrophil-specific chemoattractant KC (also known as growth-related oncogene \(\alpha\) or CXCL1). Compared with WT cells, which reached a maximal \([\text{Ca}^{2+}]\)\(_i\) response of \(\sim 230\%\) over baseline, we observed an enhanced mobilization of \([\text{Ca}^{2+}]\)\(_i\) by \(\sim 300\%\) in Atgl\(^{-/-}\) neutrophils with fMLP concentrations ranging from 1 to 5 \(\mu\text{M}\) (Fig. 5A). KC (5 and 50 \(\mu\text{M}\)) induced an even higher response in Atgl\(^{-/-}\) cells with peak values of 369% and 447% over baseline in WT and Atgl\(^{-/-}\) neutrophils, respectively (Fig. 5A). We next examined the cellular phenotype of Atgl\(^{-/-}\) cells by measuring in vitro migration. These studies revealed that neutrophils from Atgl\(^{-/-}\) mice possessed increased chemotactic properties toward both tested agonists compared with WT neutrophils (Fig. 5B). As another marker for neutrophil activation, we determined agonist-induced CD11b expression by flow cytometry. fMLP- and KC-mediated stimulation showed a slight yet nonsignificant trend.
for an increased activation in Atgl^{−/−} neutrophils (Supplemental Fig. 1). By use of PMA to achieve a maximal and robust activation of neutrophils, we found an increased responsiveness in Atgl^{−/−} neutrophils compared with WT cells.

The intracellular TG accumulation in Atgl^{−/−} neutrophils might be caused by alterations in cellular uptake. After 10 min exposure to fluorescently labeled FAs, neutrophils from Atgl^{−/−} mice showed 2.9-fold increased uptake of FAs compared with control cells (Fig. 5C). Next, we addressed whether the lack of ATGL affects phagocytosis and ROS production of neutrophils.

In vitro phagocytosis assays revealed comparable phagocytosis rates between neutrophils from WT and Atgl^{−/−} mice (Fig. 5D). Simultaneously, we measured intracellular ROS formation following synchronized phagocytosis, as well as ROS production, in response to KC and fMLP. All conditions tested showed comparable fluorescence intensities, indicating unchanged ROS concentrations (Fig. 5E). Moreover, we assessed apoptosis under various conditions, which was unaltered between WT and Atgl^{−/−} neutrophils, as Annexin V/propidium iodide staining revealed the same amount of alive, early, and late apoptotic, as well as necrotic, cells (Supplemental Fig. 2).

Similar but less pronounced phenotype in myeloid-specific Atgl^{−/−} mice

To elucidate whether Jordans’ anomaly is caused by the specific lack of ATGL in immune cells or by the systemic lack of ATGL, we included mice with a targeted deletion in myeloid cells. Similar to our observations from global Atgl^{−/−} mice with a 3.7-fold increase in LD abundance in peripheral blood neutrophils, myeloid-specific Atgl^{−/−} mice showed a 1.7-fold increase in neutrophil LDs (Fig. 6A). Under inflammatory conditions, myeloid-specific Atgl^{−/−} mice showed an increased LD abundance exclusively in neutrophils, both 1 d (Fig. 6B) and 3 d (Fig. 6C) post-thioglycolate injection, which was of lower magnitude compared with global Atgl^{−/−} mice (2.2-fold in myeloid Atgl^{−/−} vs. 3.1-fold in global Atgl^{−/−} mice). Ga²⁺ flux assays with neutrophils isolated from myeloid-specific Atgl^{−/−} mice that use fMLP and KC as agonists showed a comparable response as WT cells (Fig. 6D). Chemotaxis was increased in response to fMLP but compared with WT cells after KC stimulation (Fig. 6E). Comparable with neutrophils from global Atgl^{−/−}, we found increased FA uptake (Fig. 6F) and no alterations in phagocytosis (Fig. 6G) and ROS formation (Fig. 6H). Together, these observations indicate a similar yet less pronounced phenotype in neutrophils from myeloid-specific versus global Atgl^{−/−} mice.

Pharmacological inhibition of ATGL results in LD accumulation and reduced release of lipid mediators from neutrophils

To exclude potential systemic effects caused by ATGL^{−/−}, we inhibited ATGL in neutrophils ex vivo by treatment with the specific inhibitor Atglistatin [28]. By use of thioglycolate-elicited neutrophils collected from WT mice 1 d after thioglycolate injection, we determined whether Atglistatin effectively inhibited ATGL in these cells. To induce LD formation, we loaded WT neutrophils with 300 μM OA (18:1), and thereafter, we cultured cells in serum-free medium in the absence and presence of Atglistatin. After 4 and 6 h of starvation, we quantified LDs and observed an increased LD content in the presence of Atglistatin (Fig. 7A). These results indicate that the inhibitor blocks FA mobilization, which consequently results in TG accumulation. The combined use of Atglistatin and Hi tended to promote accumulation further of LDs in neutrophils. Similar results were observed after loading neutrophils with 300 μM AA (20:4; Fig. 7B).

Next, we studied the release of PUFAs and lipid mediators from thioglycolate-elicited WT neutrophils after Atglistatin-mediated ATGL inhibition. Atglistatin treatment resulted in reduced release of 18:2 and 20:3 by 58%; 22:6 trended to be decreased, whereas 20:5 levels were unchanged (Fig. 8; thioglycolate −Atglistatin vs. +Atglistatin). Concentrations of 20:4 were below the detection limit after ATGL inhibition. As shown in Supplemental Table 1, detected lipid mediators, derived from all 3 major enzymatic pathways—COX, LOX, and CYP—were present in the media after 1 h ex vivo culture of thioglycolate-elicited peritoneal neutrophils. Upon ATGL inhibition, predominantly 20:4-derived metabolites were less abundant compared with media from cells without inhibitor (Fig. 8 and Supplemental Table 1). Reduced metabolites included the COX-derived TXB₂, PGD₂, PGE₂, and PGF₂, 6-keto-PGF_{1α}, and COX-derived PGG₂, PGE₂, and PGF_{2α}.
and 12(S)-HHT, the LOX-derived LTB₄, LTE₄, and 5-oxo-ETE, the COX/CYP-derived 11-HETE, and the LOX/CYP-derived 15(S)-HETE, 5-HETE, and 14,15-EET. The effect of ATGL inhibition was not restricted to eicosanoids arising from 20:4. We also observed significantly reduced levels of the 20:3-derived PGD₁ and end products, which further induce proinflammation-mediated induction of LDs in immune cells from WT and Atgl⁻/⁻ mice. This is evident by an increased amount of LDs in cells from thioglycollate-injected compared with naive lavages. Glycosylated proteins in the thioglycollate medium activate receptors for advanced glycation end products, which further induce proinflammatory responses through NF-κB-mediated secretion of cytokines and inflammatory factors [30]. In Atgl⁻/⁻ cells, this proinflammatory stimulus boosts LD accumulation to increased amounts of LDs in neutrophils, monocytes, and macrophages, whereas eosinophils and B and T lymphocytes do not show any alterations in LD content between WT and Atgl⁻/⁻ mice. This finding is somehow unexpected, as all immune cells investigated express ATGL. However, as inflammation-mediated induction of LDs in leukocytes is highly cell and stimulus dependent [31], it remains to be determined whether other stimuli are required to trigger ATGL-mediated functions in these cells.

Reduced concentrations of lipid mediators in peritoneal exudates from Atgl⁻/⁻ mice

To substantiate our in vitro findings and to test the in vivo impact of ATGL⁻/⁻, we examined cell-free lavage fluids of 1 d thioglycollate-elicited peritoneal lavages from WT and global Atgl⁻/⁻ mice with respect to lipid mediator concentrations. PUFAs in the lavage fluids of global Atgl⁻/⁻ mice showed reduced concentrations of 18:2, 18:3, 20:5, and 22:6, whereas 20:3 and 20:4 levels were comparable between WT and Atgl⁻/⁻ lavages (Fig. 9). The lipid mediator profile revealed the presence of metabolites arising from all 3 major enzymatic pathways. The amount of the COX-derived TXB₂ (the stable metabolite of TXA₂), 6-keto-PGF₁α, and 12(S)-HHT, LOX-derived tetranor-12(S)-HETE and 5-HETE, and CYP-derived 8,9-DHET was reduced significantly in peritoneal exudates from Atgl⁻/⁻ compared with WT mice. Among these, TXB₂ and 5-HETE are mediators typically released from neutrophils under inflammatory conditions. Several detectable mediators, such as LTB₂ and PGE₂, various HETEs [11-HETE, 15(S)-HETE, 18-HETE], and DHETs, the diol metabolites of EETs, showed a trend for reduced levels, which, however, did not reach statistical significance.

DISCUSSION

Lipolysis is mainly catalyzed by ATGL, which specifically cleaves TG in cytosolic LDs. We show here that the systemic loss of ATGL in mice results in an increased abundance of TG-rich LDs specifically in neutrophil granulocytes from bone marrow, peripheral blood, and peritoneal lavage under basal conditions. Under inflammatory conditions, we observed that thioglycollate-elicited inflammation triggers LD formation in all investigated immune cells from WT and Atgl⁻/⁻ mice. This is evident by an increased amount of LDs in cells from thioglycollate-injected compared with naive lavages. Glycosylated proteins in the thioglycollate medium activate receptors for advanced glycation end products, which further induce proinflammatory responses through NF-κB-mediated secretion of cytokines and inflammatory factors [30]. In Atgl⁻/⁻ cells, this proinflammatory stimulus boosts LD accumulation to increased amounts of LDs in neutrophils, monocytes, and macrophages, whereas eosinophils and B and T lymphocytes do not show any alterations in LD content between WT and Atgl⁻/⁻ mice. This finding is somehow unexpected, as all immune cells investigated express ATGL. However, as inflammation-mediated induction of LDs in leukocytes is highly cell and stimulus dependent [31], it remains to be determined whether other stimuli are required to trigger ATGL-mediated functions in these cells.
LDs have a dual function within cells by controlling lipid storage, thereby protecting cells from lipotoxicity and by serving as energy fuel upon starvation. In contrast to many other cell types, in which ATGL-mediated lipolysis represents an important biochemical mechanism to generate FAs as energy substrates, most lymphoid and myeloid cells (including neutrophils) derive their energy exclusively from glycolysis [32]. In accordance, we did not observe alterations in cell viability or any limitations in highly energy-demanding processes, such as migration and phagocytosis in Atgl^{−/−} neutrophils. Of note, the absence of

Figure 6. Less pronounced phenotype in neutrophils from myeloid-specific Atgl^{−/−} mice. Cellular LD content in peripheral blood (A) and 1 d (B) and 3 d (C) thioglycolate-elicited peritoneal lavage was quantified by use of BODIPY 493/503. Ca²⁺ flux (D) and chemotaxis assays (E) in response to fMLP and KC. Data are shown as fold change relative to vehicle-treated control cells ± SEM (n = 5). FA uptake (F), phagocytosis (G), and ROS (H) measurements were performed as described above (n = 5). *P < 0.05; **P ≤ 0.01; ***P ≤ 0.001.
ATGL was associated with an elevated Ca\(^{2+}\) mobilization and increased chemotaxis of neutrophils toward chemoattractants, indicating a proinflammatory phenotype of these cells. This phenotype was more pronounced in cells from global compared with myeloid-specific Atgl\(^{-/-}\) mice, indicating that these alterations are likely caused by secondary effects as a result of systemic ATGL\(^{-/-}\) rather than by the cell-specific lack of ATGL. A causative reason for this might be additional factors provoked by the severe phenotype of global ATGL\(^{-/-}\), including perivascular oxidative stress and endothelial dysfunction [33], ER stress, and mitochondrial dysfunction in various tissues [34], with the most dramatic phenotype in cardiac muscle resulting in lethal cardiomyopathy within a few months after birth [35].

cPLA2\(_a\) (also known as group IVA PLA2) is assigned a central role in stimulus-dependent 20:4 mobilization from phospholipids during eicosanoid generation. Subcellular eicosanoid-generating compartments include membranes of the ER, phagosome, nuclear envelope, and LD but not the plasma membrane [17]. In a recent study, the TG-rich core of LDs in human mast cells has been identified as an additional substrate reservoir for eicosanoid precursors, with ATGL being critically involved in the release of these precursor FAs [36]. Our observations further support and extend this study showing that ATGL inhibition leads to an accumulation of TG-rich cytoplasmic LDs in neutrophils, monocytes, and macrophages and results in a reduced production of lipid mediators from neutrophils. A central question arising from the mast cell study was whether ATGL provides substrates for lipid mediator synthesis by its TG hydrolase activity [37] or its putative phospholipase activity [38]. Furthermore, it remained to be determined whether ATGL-mediated 20:4 release provides substrates directly for eicosanoid generation or indirectly by replenishing 20:4 in glycerophospholipids for the subsequent release by cPLA2\(_a\). Our lipidomics data clearly show a pronounced increase of 18:1, 18:2, and 20:4 in the TG fraction in the absence of ATGL and no accumulation of linoleyl- or arachidonyl-containing PC or phosphatidylethanolamine, demonstrating that ATGL acts as a TG hydrolase and directly liberates FAs. FA mobilization and release are critical processes, and Atgl\(^{-/-}\) neutrophils try to compensate for defective lipolysis by increased FA uptake from extracellular sources.

Genetic and pharmacological ATGL inhibition, both in vivo and in vitro, reduces the release of some but not all lipid mediators derived from all 3 enzymatic pathways. Lipid mediator generation is regulated in a highly time-dependent manner at various levels, e.g., through the availability of enzymes and substrates, as well as the site of mediator generation within different cellular compartments [17]. Our results indicate that lipid mediators, which remain unaffected by ATGL inhibition, are derived from non-LD compartments, whereas mediators with a reduced release upon ATGL inhibition are specifically generated from the TG-LD pool in an ATGL-dependent manner. Recently, a comprehensive work describing the cellular and molecular events, including lipid mediator generation in mice with thioglycolate-induced peritonitis, has been published [27]. This study revealed that in this model, the inflammatory response after 24 h is characterized by high levels of 20:4-derived proinflammatory eicosanoids, such as PGD\(_2\), LT\(_B_2\), PGE\(_2\), 5-HETE, and TXB\(_2\). This time point correlates with a high infiltration of the peritoneal cavity with neutrophils, rendering 24 h a suitable time point to investigate neutrophil-mediated lipid mediator release. In accordance, we detected a release of these eicosanoids from lavages collected from 1 d thioglycolate-stimulated mice, which were reduced in Atgl\(^{-/-}\) mice. As eicosanoids are critical determinants for the modulation of an inflammatory response, a dysregulation in any dimension might have pathologic consequences, such as chronic inflammation, failure of pathogen clearance, and both local and distal tissue damage [39, 40]. The physiologic significance of ATGL\(^{-/-}\) associated with reduced eicosanoid generation remains to be determined.

Clinical reports from patients with mutations in the ATGL gene describe an analogous phenotype as Atgl\(^{-/-}\) mice: they suffer from massive TG accumulation in multiple tissues and develop severe myopathy, which often requires cardiac transplantation [41]. In humans, Jordans’ anomaly affects various immune cells, predominantly granulocytes [42, 43]. In some case reports of NLSDM, an increased prevalence of reoccurring infections was observed [44]. Unfortunately, it is not elusive whether these immune defects can be linked to Jordans’ anomaly and whether eicosanoid production by blood leukocytes is altered in these patients. In general, a direct correlation between LD number and eicosanoid release was described in human and murine leukocytes [45]. Thus, the increased presence of LDs in neutrophils from humans and mice with Jordans’ anomaly should result in an increased potential of these cells to generate lipid mediators. As a result of inhibited lipid mobilization from LDs in Atgl\(^{-/-}\) conditions, however, the release of lipid mediators is partly inhibited, further underlining the important role of ATGL in the regulation of eicosanoid generation. Observations that mutations in the ATGL coactivator CGI-58 also result in Jordans’ anomaly in humans raise the possibility of a similar phenotype in immune cells deficient in CGI-58.
Figure 8. Reduced lipid mediator release upon pharmacological ATGL inhibition. Neutrophils were cultured for 6 h in medium in the absence or presence of Atglistatin. Media were collected from thioglycolate-elicited neutrophils and activated neutrophils (0.5 μM A23187, 1 h). PUFA and lipid mediator concentrations were measured by LCMS/MS analysis and are presented as median and range (n = 6). Ai, Atglistatin; n.d., not detectable; Thio, thioglycolate. *P < 0.05.
Figure 9. Reduced lipid mediator concentrations in peritoneal lavages from Atgl^{--/-} mice. Cell-free fluids of peritoneal lavages from WT and Atgl^{--/-} mice, 1 d post-thioglycolate injection, were collected. PUFA (A) and lipid mediator (B) concentrations were measured by LC-MS/MS. HODE, hydroperoxyoctadecadienoic acid. Data are shown as median and range (n = 4–5). *P < 0.05, **P ≤ 0.01.
Macrophages lacking ATGL or CGI-58, however, showed opposing phenotypes in terms of macrophage function and atherosclerosis susceptibility [46], rendering expectations in this context rather speculative.

In summary, our work strengthens the hypothesis that “lipolysis meets inflammation” with ATGL and probably other lipid hydrolases participating in inflammatory signaling processes [47]. Our data provide mechanistic insights that the release of lipid mediator-synthesizing LDs are not only restricted to neutrophils but are also present in many other immunomodulatory, endothelial, epithelial, and neoplastic cells, it is reasonable to speculate that ATGL regulates FA availability and consequently, the release of lipid mediators also in these cells. Our work provides an important basis for future experiments exploring the role of ATGL-mediated lipid mediator release in the context of inflammatory and neoplastic diseases.

AUTHORSHIP
S.S. and D. Kratky conceived of the study and wrote the manuscript. S.S., D. Kratky, H.S., and U.C. designed the research. S.S., M.G., N.V., K.J., R.F., D. Kolb, J.D., T.O.E., and A.R. performed experiments. E.E.K. provided myeloid-specific Atgl knockout mice. S.S., A.W., and J.D. analyzed data. A.L., A.D., and A.H. critically revised the manuscript.

ACKNOWLEDGMENTS
This work was supported by the Austrian Science Fund (DK-MCD 9,444, 9,445, 9,446, 9,447) and the Ph.D. Program Molecular Medicine at the Medical University of Graz. The authors gratefully acknowledge S. Rainer, I. Hindler for mice care. University of Graz. The authors gratefully acknowledge S. Rainer, I. Hindler for mice care. This work was supported by the Austrian Science Fund (DK-MCD 9,444, 9,445, 9,446, 9,447) and the Ph.D. Program Molecular Medicine at the Medical University of Graz. The authors gratefully acknowledge S. Rainer, I. Hindler for mice care. This work was supported by the Austrian Science Fund (DK-MCD 9,444, 9,445, 9,446, 9,447) and the Ph.D. Program Molecular Medicine at the Medical University of Graz. The authors gratefully acknowledge S. Rainer, I. Hindler for mice care.

REFERENCES
1. Jordans, G. H. (1953) The familial occurrence of fat containing vacuoles in the leukocytes diagnosed in two brothers suffering from dystrophia musculorum progressiva (ERB). Acta Med. Scand. 145, 419–423.
2. Chanarin, I., Patel, A., Slavin, G., Wills, E. J., Andrews, T. M., Stewart, G. (1975) Neutrophilic lipid storage disease: a new disorder of lipid metabolism. BMJ 1, 553–555.
3. Dorfman, M. L., Hershko, C., Eisenberg, S., Sagher, F. (1974) Ichthyosiform dermatosis with systemic lipidosis. Arch. Dermatol. 110, 541–547.
4. Rozenzajt, L., Klajman, A., Yaffe, D., Efrati, P. (1996) Jordans’ anomaly in white blood cells. Report of case. Blood 88, 258–265.
5. Igai, R. A., Rhoads, J. M., Coleman, R. A. (1997) Neutrophilic lipid storage disease with fatty liver and cholestasis. J. Pediatr. Gastroenterol. Nutr. 25, 541–547.
6. Wolf, R., Zarsky, A., Pollak, S. (1988) Value of looking at leukocytes in every case of ichthyosis. Dermatologica 177, 237–240.
7. Lefèvre, C., Jobard, F., Caux, F., Bouscarat, J., Karaduman, A., Heier, C., Mrak, I., Lass, A., Forst, R., Wagner, E. F., Zechner, R. (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.
8. Obrowsky, S., Chandak, P. G., Patankar, J. V., P קוד, S., Schlager, S., Kershaw, E. E., Fledelius, C., Kratky, D., Wagner, E. F., Klingenspor, M., Hofer, G., Zechner, R. (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.
9. Boxio, R., Bossemeyer-Pourel, C., Steinwick, N., Dournon, C., Nüsse, O. (2004) Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 76, 604–611.
10. Kretzschmar, M., Bishai, W. R., O'Donnell, C., Chichili, A., F救人, G., Fledelius, C., Kratky, D., Zechner, R., Zimmermann, R., Breinbauer, R. (2013) Development of small-molecule inhibitors targeting adipose triglyceride lipase. J. Biol. Chem. 288, 42547–42554.
11. Krauss, R. M., Havel, P. J., Goldstein, J. L., Sussman, J. L., Anderson, J. W. (1987) Atherogenicity and transcellular metabolism of leukotrienes in murine bone marrow cells. J. Lipid Res. 28, 718–728.
12. Kretzschmar, M., Bishai, W. R., O'Donnell, C., Chichili, A., F救人, G., Fledelius, C., Kratky, D., Zechner, R., Zimmermann, R., Breinbauer, R. (2013) Development of small-molecule inhibitors targeting adipose triglyceride lipase. J. Biol. Chem. 288, 42547–42554.
13. Gijon, M. A., Zarini, S., Murphy, R. G. (2007) Biosynthesis of eicosanoids and transcellular metabolism of leukotrienes in murine bone marrow cells. J. Lipid Res. 48, 718–725.
14. Crabtree, P., Pileggi, R., Bhattacharyya, I., Caudle, R., Perez, F., Riley, J., Vertucci, F., Katz, J. (2008) RAGE mRNA expression and its correlation with ATGL function in immune cells.
with nuclear factor kappa beta mRNA expression in inflamed human periradicular tissues. J. Endod. 34, 689–692.
31. Ong, K. T., Mashek, M. T., Bu, S. Y., Greenberg, A. S., Mashek, D. G. (2011) Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53, 116–126.
32. Borregaard, N., Herlin, T. (1982) Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557.
33. Schrammel, A., Mussbacher, M., Wölkart, G., Stessel, H., Pail, K., Winkler, S., Schweiger, M., Haemmerle, G., Al Zoughbi, W., Höller, G., Lametschrandtner, A., Zeichner, R., Mayer, B. (2014) Endothelial dysfunction in adipose triglyceride lipase deficiency. Biochim. Biophys. Acta 1841, 906–917.
34. Kratky, D., Obrowsky, S., Kolb, D., Radovic, B. (2014) Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis. Biochimia 96, 106–112.
35. Haemmerle, G., Mosfata, T., Woelkart, G., Büttrich, S., Schmidt, A., van de Weijer, T., Hesselink, M., Jakob, D., Niessenberger, P. C., Zerler, K., Schreiber, R., Eichmann, T., Kolb, D., Kotzbeck, P., Schweiger, M., Kumari, M., Erd, S., Schols, G., Wong, S., Pollak, N. M., Radner, F. P., Preiss-Laendl, K., Kolbe, T., Flucke, T., Fieske, R., Trauner, M., Lass, A., Zimmermann, R., Hoffler, G., Cinti, S., Kershaw, E. E., Schrauwen, P., Madeo, F., Mayer, B., Zeichner, R. (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPARα and PGC-1. Nat. Med. 17, 1076–1085.
36. Dichlberger, A., Schlager, S., Maaninka, K., Schneider, W. J., Kovane, P. T. (2014) Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J. Lipid Res. 55, 2471–2478.
37. Zimmermann, R., Straus, J. G., Haemmerle, G., Schols, G., Biner-Gruenberg, R., Riederer, M., Lass, A., Neuberger, G., Eisenhauer, F., Hermetter, A., Zeichner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1585–1586.
38. Jenkins, C. M., Mancuso, D. J., Yan, W., Sim, H. F., Gibson, B., Gross, R. W. (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975.
39. Serhan, C. N. (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am. J. Pathol. 177, 1576–1591.
40. Nathan, C., Ding, A. (2010) Nonresolving inflammation. Cell 140, 871–882.
41. Hirano, K., Ikeda, Y., Zaima, N., Sakata, Y., Matsumiya, G. (2008) Triglyceride deposit cardiomyosvasculopathy. N. Engl. J. Med. 359, 2396–2398.
42. Reilich, P., Horvath, R., Krause, S., Schramm, N., Turnbull, D. M., Treem, M., Hollingsworth, K. G., Gorman, G. S., Hans, V. H., Reimann, J., MacMillan, A., Turner, L., Schollen, A., Witter, G., Cezmier, B., Holinski-Feder, E., Walter, M. C., Schober, B., Lochmüller, H. (2011) The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. J. Neurol. 258, 1987–1997.
43. Missaglia, S., Tasca, G., Angelini, C., Moro, L., Tavian, D. (2015) Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol. Genet. Metab. 115, 110–117.
44. Janssen, M. C., van Engelen, B., Kapusta, L., Lammens, M., van Dijk, M., Fischer, J., van der Graaf, M., Wevers, R. A., Fahrleitner, M., Zimmermann, R., Morava, E. (2015) Symptomatic lipid storage in carriers for the PNPLA2 gene. Eur. J. Hum. Genet. 21, 807–815.
45. Bozza, P. T., Payne, J. L., Morham, S. G., Langenbach, R., Smithies, O., Weller, P. F. (1996) Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent inhibition by aspirin. Proc. Natl. Acad. Sci. USA 93, 11091–11096.
46. Goeritzer, M., Schlager, S., Radovic, B., Madreiter, C. T., Rainer, S., Thomas, G., Lord, C. C., Sacks, J., Brown, A. L., Vujic, N., Obrowsky, S., Sachdev, V., Kolb, D., Chandak, P. G., Graier, W. F., Satller, W., Brown, J. M., Kratky, D. (2014) Deletion of CGI-58 or adipose triglyceride lipase differently affects macrophage function and atherosclerosis. J. Lipid Res. 55, 2562–2575.
47. Schreiber, R., Zeichner, R. (2014) Lipolysis meets inflammation: arachidonic acid mobilization from fat. J. Lipid Res. 55, 2447–2449.

KEY WORDS: inflammatory cells · arachidonic acid · eicosanoids · lipolysis