On leading charmed meson production in π-nucleon interactions

V.A. Bednyakov
Joint Institute for Nuclear Research, Dubna, Russia

Abstract

It is shown that the D–meson, whose light quark is the initial-pion valence quark and whose charmed quark is produced in annihilation of valence quarks and has got a large enough momentum, is really a leading meson in reactions like $\pi^- p \rightarrow DX$. If such annihilation of valence quarks from initial hadrons is impossible there must be no distinct leading effect.

Recently the E769 collaboration [1] has reported confirmation of previously obtained [2] enhanced leading production of D^\pm- and $D^{\ast\pm}$-mesons in 250 GeV π^\pm–nucleon interaction. A leading charmed meson is considered to be one with the longitudinal momentum fraction $x_F > 0$, whose light quark (or anti-quark) is of the same type as one of the quarks in the beam particle. At large x_F significant asymmetry was found:

$$A(x_F) \equiv \frac{\sigma(\text{leading}) - \sigma(\text{non-leading})}{\sigma(\text{leading}) + \sigma(\text{non-leading})}. \quad (1)$$

Such asymmetry for the production of charmed hadrons is not expected in perturbative quantum chromodynamics.

Some years ago a simple non-perturbative mechanism of leading charmed mesons production was considered [3] for data analysis of CERN experiment on D-mesons production in $\pi^- p$-collisions [4]. It was demonstrated that presence of a valence quark from the initial pion (so–called leading quark state) in the final charmed meson is a necessary but insufficient condition for the meson to be a leading one. Actually, those D are leading mesons whose light quarks are valence quarks of the pion and charmed quarks are produced in annihilation of valence quarks and carry a large momentum x_c.

The leading effect is a characteristic property of inclusive production of charmed hadrons [5]. A hadron H produced in the reaction $a + b \rightarrow H + \ldots$ and carrying the largest portion of the momentum, $p_H = O(\sqrt{s}/2)$, is regarded as a leading hadron. The corresponding momentum spectrum dN/dx_F usually parametrised in the form $(1 - x_F)^n$ at a large Feynman variable $x_F = \frac{2}{\sqrt{s}}P_\parallel$ is “hard” for leading hadrons ($0 < n \lesssim 3$) and “soft” for non–leading ones ($n \gtrsim 5$).

In the quark–parton approach the leading charmed meson H is a result of recombination of the spectator valence quark q_v with the charmed quark produced in a parton subprocess. Owing to the large momentum of the valence quark x_v, H turns to be a leading meson, its momentum is large enough $x_H = x_v + x_c > x_v$.

1
From this point of view $D^-(d\bar{c})$ and $D^0(\bar{u}c)$ directly produced in the reaction $\pi^-(d\bar{u}) + p \to D(d\bar{c}; \bar{u}c) + X$ must be both leading mesons, i.e. yields of $D^-(d\bar{c})$ and $D^0(\bar{u}c)$ have to be practically the same at large momentum (say, $x_F > 0.5$).

On the other hand, let us assume for a moment that hadrons consist of valence quarks alone. This picture takes place, for instance, in deep inelastic phenomena at quite large x_F, when all non-singlet parton distribution functions vanish.

In this case $D^0(\bar{u}c)$–mesons can by no means result form the reaction $\pi^-(d\bar{u}) + p(uud) \to D + X$ because there is no parton subprocess which can ensure c-quark creation. On the other hand, the \bar{c}–quark appears due to valence quarks annihilation $\bar{u}_v^s u_v^p \to c\bar{c}$, providing the $D^-(d\bar{c})$–meson in the final state. It is clear that some difference in π^-–nucleon production of leading $D^0(\bar{u}c)$ and $D^-(d\bar{c})$–meson has to take place at sufficiently large x_F. To demonstrate this feature quantitatively let us follow briefly the work [3].

The invariant differential cross section for the process $\pi^- p \to DX$ in the centre–of–mass system at the energy \sqrt{s} and $x_F > 0$ can be written down in the form [3]:

$$x^* \frac{d\sigma}{dx dp_T^2} = \exp \left\{-2p_T^2/\sqrt{s}\right\} \int R(x_{sp}, x_c; x) \frac{dx_{sp} dx_c}{x_{sp} x_c} \left\{ x^* x_{sp} \frac{d\sigma}{dx_sp dx_c dp_T^2} \right\}. \quad (2)$$

Here $x \equiv x_F$, x_{sp}, x_c are the Feynman variables of $D^-(D^0)$–meson, spectator $d(\bar{u})$– and produced $\bar{c}(c)$–quark; $x^* = 2E_D/\sqrt{s}$, $x_c^* = 2E_c/\sqrt{s}$.

The phenomenological recombination function [3], [7] $R(x_{sp}, x_c; x) \sim \delta(x - x_{sp} - x_c)$ provides a probability of producing a $D^-(D^0)$–meson (with the momentum x) by means of a $d(\bar{u})$–quark (x_{sp}) and a $\bar{c}(c)$–quark (x_c).

The probability of existence of spectator $d(\bar{u})$-quark and charmed $\bar{c}(c)$-quark is determined by the expression:

$$x^*_s x_{sp} \frac{d\sigma}{dx_{sp} dx_c dp_T^2} = x_s \int dx_L dR \sum_{i=q, u, d} f_{v i}^p(x_{sp}, x_L) f_{v i}^R(x_R) \frac{x^*_s d\sigma}{dx_c dp_T^2}. \quad (3)$$

Here $\frac{x^*_s d\sigma}{dx_c dp_T^2}$ is the quantum–chromodynamics cross section for the charm production parton subprocess $\bar{u}u \to c\bar{c}$ [3]. The single-particle proton distribution functions, $f_{vi}(x_R)$, are extracted from deep inelastic lepton-proton scattering [5]. The analytical form of two-particle pion distribution functions, $f_{vi}^p(x_{sp}, x_L)$, is given in the statistical parton model [3], [10]. The free parameters of these analytical forms can be fixed via comparison with the data.

It is clear from relation (3) that the above-mentioned difference in yields of $D^0(\bar{u}c)$ and $D^-(d\bar{c})$–mesons mainly arises due to different contributions of distribution functions: $\sum f_{v i}^\pi f_{v i}^p$.

For a D^0–meson the sum is

$$\sum D^0 = f_{v v}^\pi f_{v v}^p + f_{v s}^\pi f_{v s}^p (3 f_{s}^p + 6 f_{s}^p). \quad (4)$$
For a D^- meson we have

\[\sum D^- = f_{v\pi}^v \cdot f_s^p + f_{v\pi}^v \cdot (3f_{v}^p + 6f_{v}^p) + 2f_{v\pi}^v \cdot f_v^p = \sum D^0 + 2f_{v\pi}^v \cdot f_v^p , \tag{5} \]

where index v corresponds to valence quarks and s to sea quark. For simplicity flavour symmetric distributions were used and the gluon contribution was omitted.

Therefore the total momentum spectrum of D^- and D^0 meson production in $\pi^- p$-collisions can be put down in the form

\[\frac{d\sigma}{dx}(D^- + D^0) = 2\frac{d\sigma}{dx}(D^0) + \frac{d\sigma}{dx}(v) . \tag{6} \]

This formula was used for fixing distribution functions $f_{v\pi}^v$ by means of comparison with the data on leading D^- meson production in $\pi^- p$-collisions at $\sqrt{s} = 26$ GeV [4].

It was obtained that the ”valence” component, $\frac{d\sigma}{dx}(v)$, due to ”hard” shape of valence distributions, ensured the non-vanishing total spectrum for $x_F \gtrsim 0.5$.

At low x_F the total spectrum was saturated by the other component $-\frac{d\sigma}{dx}(D^0)$.

The term $\frac{d\sigma}{dx}(v)$ makes no contribution to the spectrum of D^0–mesons (see formula (4)), therefore the yield of neutral D^0–mesons at large x_F is small enough.

Figure 1 shows the ratio:

\[R(x_F) = \frac{\frac{d\sigma}{dx}(\pi^- p \rightarrow D^0 X)}{\frac{d\sigma}{dx}(\pi^- p \rightarrow D^- X)} , \tag{7} \]

which quantitatively illustrates the suppression of the D^0 yield as compared with the D^- one. The experimental points are recalculated from combined data on asymmetry $A(1)$ measured on nuclei [1]. The curves obtained in paper [3] and considered as a predictions successfully fit the new data [1].

Figure 2 shows two curves for asymmetry $A(1)$, calculated on the basis of the ratio (7). The curves also describe the data well.

Thus it is demonstrated that presence of a valence quark from the initial hadron (as a spectator) in the final charmed meson is a necessary but insufficient condition for the meson to have a ”hard” momentum spectrum (i.e. to be a leading meson).

Actually, the D-meson is a ”real” leading meson whose light quark is a spectator valence quark and charmed quark (anti-quark) is produced in annihilation of valence quarks from initial hadrons.

In addition, it is easy to construct relations like (7) for reactions similar to $\pi^- p \rightarrow DX$. Thus we have for $x_F > 0.5$ (denominators show the leading mesons):

\[\frac{\sigma(\pi^+ n \rightarrow D^+ X)}{\sigma(\pi^+ n \rightarrow D^0 X)} = \frac{\sigma(\pi^+ \bar{p} \rightarrow \bar{D}^0 X)}{\sigma(\pi^+ \bar{p} \rightarrow D^0 X)} = \frac{\sigma(\pi^- \bar{n} \rightarrow D^0 X)}{\sigma(\pi^- \bar{n} \rightarrow D^+ X)} = R(x_F) ; \]
\[
\frac{\sigma(K^-p \to \bar{D}^0X)}{\sigma(K^-p \to D^-sX)} = \frac{\sigma(K^+\bar{p} \to D^0X)}{\sigma(K^+\bar{p} \to D^+sX)} = R(x_F);
\]

\[
\frac{\sigma(\pi^-p \to D^-X)}{\sigma(\pi^-p \to D^0X)} = \frac{\sigma(\pi^+p \to D^+X)}{\sigma(\pi^+p \to D^0X)} = \frac{\sigma(\pi^-n \to D^0X)}{\sigma(\pi^-n \to D^-X)} = 2R(x_F);
\]

\[
\frac{\sigma(\pi^+\bar{n} \to \bar{D}^0X)}{\sigma(\pi^+\bar{n} \to \bar{D}^+X)} = \frac{\sigma(K^-n \to \bar{D}^0X)}{\sigma(K^-n \to \bar{D}^-sX)} = \frac{\sigma(K^+\bar{n} \to \bar{D}^0X)}{\sigma(K^+\bar{n} \to \bar{D}^+sX)} = 2R(x_F).
\]

References

[1] E769 Coll. G.A.Alves et al, Fermilab-Pub-93/310-E, Fermilab, October 1993 (Submitted to Phys.Rev.Lett).
[2] ACCMOR Coll. S. Barlag et al Z.Phys. C 49, (1991) 555; WA82 Coll. M. Adamovich et al Phys.Lett. B305, (1993) 402; E769 Coll. G.A.Alves et al, Phys.Rev.Lett. 69 (1992) 3147.
[3] Bednyakov V.A. "The fast charm quark and leading D^-mesons in \pi^-p-collisions", Preprint JINR, E2-86-789, Dubna, 1986. (unpublished.)
[4] Aguilar-Benitez M. et al. Phys.Lett., 1985, B161, p.400; Z.Phys.C, 1986, 31, p. 491; Begalli M. et al., Yad. Fiz. 1986, 44, p. 998.
[5] Basile M. et al., Nuovo Cim., 1981, A66, p. 129; Kerman A., Van Dalen G., Phys. Rep. 1984, 106, p. 209.
[6] Kartvelishvili V.G., Likhoded A.K., Slabospitsky S.R., Yad. Fiz. 1981, 33, p. 832; Likhoded A.K., Slabospitsky S.R., Suslov M.V., Yad. Fiz. 1983, 38, p. 727; Bednyakov V.A., Bunyatov S.A., Isaev P.S. JINR Communication, P2–86–739, Dubna, 1986.
[7] Takasugi E. et al., Phys. Rev. 1979, D20, p. 211.
[8] Glück M. et al., Phys. Rev. 1978, D17, p. 2324.
[9] Zlatev I.S. et al. Yad. Fiz. 1982, 35, p. 454.
[10] Bednyakov V.A., Isaev P.S., Kovalenko S.G. Yad. Fiz. 1984, 40, p. 1312.

Figure Captions

Fig. 1. D^0–to–D^- yield ratios (7) for π^-p–collisions (lower curve) and π^-n–collisions (upper curve). The points are recalculated from the data on asymmetry $A(1)$.

Fig. 2. Asymmetry $A(1)$ on the proton target (upper curve) and the neutron target (lower curve) calculated on the basis of the ratio (7). The data from ref. [1].
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403270v1