H_∞ state feedback for linear systems with decentralized control inputs

Helisyah Nur Fadhilah1, Guisheng Zhai2,*, Dieky Adzkiya1, Erna Apriliani1

1Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama, Japan

Received: 1st December 2019
Revised: 13th December 2019
Published: 24th December 2019

Copyright © All rights are reserved by Helisyah Nur Fadhilah, Guisheng Zhai, Dieky Adzkiya, Erna Apriliani

Corresponding author: *Email: zhai@shibaura-it.ac.jp
Abstract

This paper considers H_{∞} state feedback with decentralized structure for interconnected systems. The connection between subsystems is described by a directed graph. To design a decentralized H_{∞} controller, we use the information from its own subsystem and other subsystems based on the interconnection. Decentralized controller is defined as a solution of bilinear matrix inequality (BMI) problem, which is then solved by using the homotopy approach. Two numerical examples are performed to show validity of the design procedure.

Keywords: H_{∞} state feedback, decentralized controller, homotopy method, bilinear matrix inequality (BMI), linear matrix inequality (LMI).

The invented contribution: A newly smart design of a decentralized H_{∞} controller with numerical examples for the validity of the design procedure was invented by using homotopy method with the information from its own subsystem and other subsystems based on the interconnection.

ARTICLES

I. Introduction

In recent years, many engineering systems consist of the interconnection of systems. One can develop system model by modelling the individual subsystem and then connect these models together. For example, an aircraft hydraulic system consists of many individual components each with their own inputs and outputs by making models of the components and then connecting the models together. The interconnected system makes the chance of system overload reduced.

In [1], the control method is divided into two categories, i.e., centralized and decentralized controller. The centralized controller is a single control strategy. If the system to be designed for control is a large scale system, the centralized control is not efficient. If the centralized controller is damaged, the whole system will be uncontrolled automatically. For large scale system, decentralized controller is one way to control the system efficiently. In this sense, it is necessary to decompose the large scale system into a number of interconnected subsystems [2].

In [3], the authors propose an approach to design a decentralized control using a solution of linear matrix inequality (LMI). The approach requires that the input matrix of each subsystem is invertible, i.e. the number of independent control inputs is the same with the number of state variables in each subsystem. The authors in [4] design a decentralized output feedback controller for large-scale systems using LMI where the solution does not require
invertibility of the input matrix of each subsystem. In [5], decentralized and semi-decentralized state-feedback H_∞ controllers, which only require local state information, can be efficiently computed using the powerful linear matrix inequality (LMI) solvers. In [6], the authors design a decentralized H_∞ controller by using homotopy method to find a feasible solution of bilinear matrix inequality (BMI) problems. Moreover, the authors in [7] design a robust decentralized H_∞ controller for uncertain large scale interconnected systems using homotopy method.

In this paper, we design a decentralized H_∞ controller for interconnected systems. The connection between subsystems is described by a directed graph. Each subsystem is represented by a node in the graph. To design a decentralized H_∞ controller, we use the information from its own subsystem and other subsystems based on the interconnection. Because of that, the structure of decentralized controller is based on the interconnection of systems. Our approach to obtain decentralized H_∞ controller is similar to that of [6]. More precisely, we first consider a centralized controller, i.e., H_∞ state feedback based on LMI [8], then deform the centralized H_∞ controller to decentralized H_∞ controller by using the homotopy method. Two numerical examples are presented to show validity of the design procedure.

Notations: In standard matrix notation, each element of R^n is typically written as $n \times 1$ column vectors and sometimes as $1 \times n$ row vector. A matrix $X \in R^{m \times n}$ is a rectangular array of real numbers with m rows and n columns. Let X be a matrix with size $m \times n$, the transpose matrix of X is written as X^T with size $n \times m$.

The notation of $\text{diag}\{X_1, X_2, \ldots, X_n\}$ denotes a block diagonal matrix whose diagonal blocks are X_1, X_2, \ldots, X_n in order. For a symmetric matrix X, we use $X > 0$ ($X < 0$) to mean that it is symmetric positive (negative) definite.

The H_∞ norm of a transfer function matrix $G(s)$ is defined as [9].

$$\|G(s)\|_\infty = \max_{\omega} \bar{\sigma}(G(j\omega))$$

where $\bar{\sigma}$ is equal to maximum singular value. Generally, the system $G(s)$ is selected to be a transfer function between exogenous inputs (commands, disturbance, and noise) and exogenous output (error signals to be minimize).

Hadamard product is the element-wise multiplication which takes two matrices of the same dimensions and produces another matrix of the same dimension as the operands. The Hadamard product is commutative, associative and distributive over addition:

$$U \odot V = V \odot U,$$

$$U \odot (V \odot W) = (U \odot V) \odot W,$$

$$U \odot (V + W) = U \odot V + U \odot W,$$
\[(kU) \odot V = U \odot (kV) = k(U \odot V),\]
\[U \odot 0 = 0 \odot U = 0,\]

where \(U, V, W, 0 \) are matrices of the same dimension, \(k \in \mathbb{R} \) and \(0 \) is a matrix whose elements are all zeros.

II. Problem Formulation

Consider a large-scale system consisting of \(N \) subsystems described by

\[
\dot{x}_i = \sum_{j=1}^{N} A_{ij}x_j + B_1w_i + B_2u_i ,
\]

\[
z_i = C_i x_i + D_i w_i ,
\]

where \(x_i \in \mathbb{R}^{n_i} \) is the state vector, \(w_i \in \mathbb{R}^{r_i} \) is the disturbance, \(u_i \in \mathbb{R}^{m_i} \) is the control input, and \(z_i \in \mathbb{R}^{p_i} \) is the performance output of subsystem \(i \) \((i = 1, 2, \ldots, N)\). \(A_{ij}, B_{1i}, B_{2i}, C_i, \) and \(D_i \) are constant matrices of the \(i \)-th subsystem with appropriate sizes.

For system (1), we assume that the connection among subsystems is described by a directed graph. Each subsystem is represented by a node in the graph. There is an edge from \(j \) to \(i \) if the controller in the \(i \)-th subsystem can use the information from the \(j \)-th subsystem. There is a self loop in every node because the controller in each subsystem can use the information from its own subsystem. The directed graph can be represented as a matrix \(L = [\ell_{ij}] \in \{0,1\}^{N \times N} \), where \(\ell_{ij} = 1 \) if there is an edge from \(j \)-th node to \(i \)-th node, and \(\ell_{ij} = 0 \) otherwise.

We consider the following static state-feedback control law

\[
u_i = \sum_{j=1}^{N} K_{ij}z_{ij} x_j ,
\]

where \(K_{ij} \in \mathbb{R}^{m_i \times n_j} \) are gain matrices to be determined.

The problem is to find the controller (2) stabilizing system (1) such that the influence of the disturbance \(w \) on the controlled output \(z \) is attenuated to a specified level. For the whole system, we define the disturbance and the performance output by

\[
w = [w_1^T \ w_2^T \ \ldots \ w_N^T]^T \in \mathbb{R}^r, r = r_1 + \ldots + r_N,
\]

\[
z = [z_1^T \ z_2^T \ \ldots \ z_N^T]^T \in \mathbb{R}^p, p = p_1 + \ldots + p_N,
\]

and the transfer function from \(w \) to \(z \) of the closed-loop system is denoted by \(T_{zw}(s) \). The control problem discussed in this paper is formulated as follows:

Decentralized \(H_\infty \) control problem. For a given disturbance attenuation level \(\gamma > 0 \), design a decentralized controller (2) for system (1) such that the closed-loop system is stable and \(\|T_{zw}(s)\|_\infty < \gamma \).

We assume that there exists a centralized \(H_\infty \) controller with the same disturbance attenuation level \(\gamma \), because the decentralized controllers cannot achieve better performance than the best centralized controller.
III. Existence Condition for a Decentralized H_∞ Controller

In this section, we summarize the existence condition for a decentralized H_∞ controller. First of all, we formulate the closed-loop system. The closed-loop system obtained by substituting the control law (2) to the system (1) is as follows

$$\dot{x}_i = \sum_{j=1}^{N} A_{ij} x_j + B_{1i} w_l + B_{2i} \sum_{j=1}^{N} K_{ij} \ell_{ij} x_j ,$$
$$z_i = C_i x_i + D_i w_l. \tag{3}$$

Observe that there is state, disturbance, performance output and several feedback gains in every subsystem. We collect the state x_i and the interconnection coefficient ℓ_{ij} as

$$x = [x_1^T \ x_2^T \ \ldots \ x_N^T]^T \in \mathbb{R}^n, n = n_1 + \cdots + n_N,$$
$$L_D = \begin{bmatrix} \ell_{11} J_{m_1,n_1} & \ell_{12} J_{m_1,n_2} & \cdots & \ell_{1N} J_{m_1,n_N} \\ \ell_{21} J_{m_2,n_1} & \ell_{22} J_{m_2,n_2} & \cdots & \ell_{2N} J_{m_2,n_N} \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{N1} J_{m_N,n_1} & \ell_{N2} J_{m_N,n_2} & \cdots & \ell_{NN} J_{m_N,n_N} \end{bmatrix}, \tag{4}$$

where $J_{m,n}$ denotes a matrix of size $m \times n$ whose elements are all 1.

In order to summarize the closed-loop system (3) by using (4), we define the following matrices

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{bmatrix} \in \mathbb{R}^{n \times n},$$
$$B_1 = \text{diag}\{B_{11}, B_{12}, \ldots, B_{1N}\} \in \mathbb{R}^{n \times r},$$
$$B_2 = \text{diag}\{B_{21}, B_{22}, \ldots, B_{2N}\} \in \mathbb{R}^{n \times m}$$
$$C = \text{diag}\{C_1, C_2, \ldots, C_N\} \in \mathbb{R}^{p \times n},$$
$$D = \text{diag}\{D_1, D_2, \ldots, D_N\} \in \mathbb{R}^{p \times r}. \tag{5}$$

Finally, by using (4) and (5), the closed-loop system (3) can be written in a compact form as

$$\dot{x} = (A + B_2 (L_D \odot K)) x + B_1 w,$$
$$z = C x + D w, \tag{6}$$

where \odot is the Hadamard product operator. The decentralized controller gain matrix K_D is defined as $L_D \odot K$. In the above formulation (6), the unknown quantity is matrix K, whereas the other matrices are derived from the system (1).

In order to formulate the existence condition of decentralized H_∞ controller, we use the following fundamental result of H_∞ control [8-10].

Lemma 3.1 The following statements are equivalent:

- A is a stable matrix and $\|C(sI - A)^{-1}B + D\|_{\infty} < \gamma$.
- There exists a matrix $P > 0$ such that
 $$\begin{bmatrix} A^T P + PA & PB & C^T \\ B^T P & -\gamma I & D^T \\ C & D & -\gamma I \end{bmatrix} < 0.$$
Next, we apply Lemma 3.1 to (6). With the definition

\[F(L, K, P) = \begin{bmatrix} A^T P + PA & PB_1 & C^T \\ B_1^T P & -\gamma I_r & D^T \\ C & D & -\gamma I_p \end{bmatrix} + \begin{bmatrix} PB_2 \\ 0_{r \times m} \\ 0_{p \times m} \end{bmatrix} (L \odot K) \begin{bmatrix} I_n & 0_{n \times r} & 0_{n \times p} \end{bmatrix} \]

\[+ \begin{bmatrix} PB_2 \\ 0_{r \times m} \\ 0_{p \times m} \end{bmatrix} (L \odot K) \begin{bmatrix} I_n & 0_{n \times r} & 0_{n \times p} \end{bmatrix}^T, \]

we state the following result:

Theorem 3.1 System (1) is stabilizable with the disturbance attenuation level \(\gamma \) by a decentralized controller (2) if and only if there exist a matrix \(K \) and a matrix \(P > 0 \) such that

\[F(L_D, K, P) < 0. \quad (7) \]

Observe that (7) is a Bilinear Matrix Inequality (BMI). In order to compute the decentralized controller, we use the homotopy method, originally proposed in [6]. The first step of homotopy method is computing the centralized \(H_\infty \) controller.

IV. Computation of Centralized Controller

This section describes a method to compute the centralized \(H_\infty \) controller. In centralized \(H_\infty \) controller, each subsystem can use the information from all subsystems, i.e. \(\mathcal{L} = J_{N,N} \) and \(L_F = J_{m,n} \). It follows that the centralized controller \(K_F \) is the solution of the following BMI

\[\begin{bmatrix} A^T P + K_F^T B_2^T P + PA + PB_2 K_F & PB_1 & C^T \\ B_1^T P & -\gamma I_r & D^T \\ C & D & -\gamma I_p \end{bmatrix} < 0. \quad (8) \]

The BMI in (8) can be transformed into an LMI by multiplying the above matrix from the left and right by \(\text{diag}(P^{-1}, I, I) \). When we introduce \(Q = P^{-1} \) and \(M = K_F Q \), the following LMI is obtained

\[\begin{bmatrix} QA^T + M^T B_2^T + AQ + B_2 M & B_1 & QC^T \\ B_1 & -\gamma I_r & D^T \\ CQ & D & -\gamma I_p \end{bmatrix} < 0, \]

where \(Q > 0 \). The centralized controller \(K_F \) and matrix \(P \) are obtained by using \(K_F = M Q^{-1} \) and \(P = Q^{-1} \), respectively.

One way of generating a centralized \(H_\infty \) controller randomly is solving the following LMI

\[\begin{bmatrix} QA^T + M^T B_2^T + AQ + B_2 M & B_1 & QC^T \\ B_1 & -\gamma I_r & D^T \\ CQ & D & -\gamma I_p \end{bmatrix} < -\Phi, \quad (9) \]

where \(\Phi \) is a small positive-definite matrix.

V. Computation of Decentralized Controller

In this section, we discuss the homotopy method to find the decentralized controller. In
order to use the homotopy method, we introduce the following matrix function:

\[H(K, P, \lambda) = F((1 - \lambda)L_F + \lambda L_D, K, P), \]

where \(\lambda \in [0, 1] \) is a real number and \(L_F = J_{m,n} \) represents the interconnection of centralized \(H_\infty \) controller. To construct the homotopy path, we define \(\lambda_k = k/\mu \), where \(\mu \) is a positive integer and \(k = 0, 1, 2, \ldots, \mu \). If the following problem

\[H(K, P, \lambda_k) < 0 \]

is feasible, we denote the solution by \((K_k, P_k)\). The algorithm for computing decentralized \(H_\infty \) controller is as follows.

1: Initialize \textit{maxIter} to a positive integer, e.g. \textit{maxIter} := 50
2: Set \textit{iter} := 1
3: \textbf{while} \textit{iter} \leq \textit{maxIter} \textbf{do}
4: Generate a small positive-definite matrix \(\Phi \) randomly
5: Compute centralized \(H_\infty \) controller \(K_F \) and matrix \(P \) using (9)
6: Set \(k := 0, K_0 := K_F \) and \(P_0 := P \)
7: Initialize \(\mu \) to a positive integer and its upper bound \(\mu_{\text{max}}, \text{e.g.,} \mu := 2 \) and \(\mu_{\text{max}} := 2^{10} \)
8: \textbf{while} \(k < \mu \) and \(\mu \leq \mu_{\text{max}} \) \textbf{do}
9: Set \(\lambda_{k+1} := (k + 1)/\mu \)
10: Compute a solution \(K \) of LMI
11: \(H(K, P_k, \lambda_{k+1}) < 0 \)
12: \textbf{if} step 6 is feasible \textbf{then}
13: Set \(K_{k+1} := K \)
14: Compute a solution \(P \) of
15: \(LMI \ H(K_{k+1}, P, \lambda_{k+1}) < 0, \)
16: \textbf{else}
17: Compute a solution \(P \) of
18: \(LMI \ H(K_k, P, \lambda_{k+1}) < 0 \)
19: \textbf{if} step 12 is feasible \textbf{then}
20: Set \(K_{k+1} := K \)
21: \textbf{else}
22: Set \(\mu := 2\mu, \)
23: \(P_{2k} := P_k \)
24: \(K_{2k} := K_k \)
25: \textbf{end if}
26: \textbf{end while}
27: \textbf{if} \(k = \mu \) \textbf{then}
28: The pair \((K_\mu, P_\mu)\) is a solution of \(\text{the BMI} \)
29: \textbf{else}
30: Set \textit{iter} := \textit{iter} + 1
31: \textbf{end if}
32: \textbf{end while}

\textbf{VI. Numerical Example 1}

In this section, we present an example to demonstrate the homotopy method based algorithm to compute the decentralized controller. Consider a system consisting of four subsystems, where the connection among four
subsystems is described by directed graph in Fig. 1.

\[A_{21} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \ A_{22} = \begin{bmatrix} -1 & -2 \\ 4 & 2 \end{bmatrix}, \]

\[A_{23} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ A_{24} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \]

\[A_{31} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ A_{32} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \]

\[A_{33} = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}, \ A_{34} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \]

\[A_{41} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ A_{42} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \]

\[A_{43} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ A_{44} = \begin{bmatrix} -2 & 2 \\ 3 & 1 \end{bmatrix}, \]

where

\[A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}, \quad (10) \]
The state matrix in (10) is unstable because some eigenvalues have positive real parts. We obtain the centralized controller in (15). One can check that the closed-loop system is asymptotically stable by showing that H_∞ is Hurwitz.

For system (10)-(14), the minimum H_∞ disturbance attenuation level achieved by a centralized controller is **1.675**.

When we use the homotopy method to compute the decentralized controller, and use $\gamma = 2.675$ as the desired disturbance attenuation level. **Equation (16)** is the decentralized controller K_D.

According to (6), the state matrix of the closed-loop system by using decentralized H_∞ controller is $A + B_2 K_F$. Since $A + B_2 K_D$ is Hurwitz, the closed-loop system is asymptotically stable. The H_∞ disturbance attenuation level achieved by decentralized H_∞ controller (16) is **1.7915**.

VII. Numerical Example 2

In this section, we apply the proposed method to five storey building systems. Each storey building is defined as a subsystem, which is represented by a node. The connection among five storey buildings is described by the directed graph depicted in **Fig. 2**.
The equation of motion for \(i \)-th subsystem is the second-order differential equation

\[
M_i \ddot{x}(t) + C_i \dot{x}(t) + K_i x(t) = E_i w(t) + G_i u(t),
\]

(17)

where \(M_i, K_i, \) and \(C_i \) are the mass, spring, and damper coefficients of the \(i \)-th subsystem respectively, \(u \) is a force vector, and \(w \) is an external interference. Matrices \(E_i \) and \(G_i \) represent external disturbance and control force coefficients, respectively. The parameter values in storey building systems shown in Table 1.

Table 1. Parameter values for five storey building systems [11].

\(i \)	\(M_i \)	\(K_i \)	\(C_i \)	\(G_i \)	\(E_i \)
1	215200	\(147 \times 10^6 \)	171800	\(-10^3\)	\(10^3\)
2	209200	\(113 \times 10^6 \)	182000	\(-10^3\)	\(10^3\)
3	207000	\(99 \times 10^6 \)	202500	\(-10^3\)	\(10^3\)
4	204800	\(89 \times 10^6 \)	231100	\(-10^3\)	\(10^3\)
5	266100	\(84 \times 10^6 \)	251100	\(-10^3\)	\(10^3\)

To write the state-space equation for \(i \)-th subsystem, we introduce

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= -M_i^{-1}K_ix_1 - M_i^{-1}C_ix_2 + M_i^{-1}E_i w
+ M_i^{-1}G_i u.
\end{align*}
\]

By substituting the above equations into (17), we obtain the following system:

\[
\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -M_i^{-1}K_ix_1 - M_i^{-1}C_ix_2 + M_i^{-1}E_i w
+ M_i^{-1}G_i u.
\end{align*}
\]

The five storey building systems can be written as (1), where

\[
A_i = \begin{bmatrix}
0 & 1 \\
-M_i^{-1}K_i & -M_i^{-1}C_i
\end{bmatrix},
\]

\[
B_{1i} = \begin{bmatrix}
0 \\
M_i^{-1}E_i
\end{bmatrix},
B_{2i} = \begin{bmatrix}
0 \\
M_i^{-1}G_i
\end{bmatrix},
\]

\[
C_i = [0 \; 1], \; D_i = 1.
\]

The performance output of \(i \)-th subsystem is defined as

\[
z = C_i x + D_i w,
\]

and the interconnection is represented as

\[
L = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}.
\]

The coefficient matrix in this example are...
\[A = \text{diag} \begin{bmatrix} 0 & 1 \\ -683.08 & -0.7983 \\ 0 & 1 \\ -478.26 & -0.9782 \\ 0 & 1 \\ -315.67 & -0.9436 \end{bmatrix} \]

\[K_F = 10^5 \times \begin{bmatrix} -1.4808 & 0.0067 & -0.0090 & -0.0077 & -0.0096 & -0.0374 & -0.0082 & -0.0263 & -0.0060 & -0.0114 \\ 0.0001 & 0.0073 & -1.1286 & 0.0080 & -0.0007 & -0.0102 & 0.0003 & -0.0039 & -0.0004 & -0.0052 \\ 0.0118 & 0.0371 & 0.0082 & 0.0115 & -0.9813 & 0.0085 & 0.0066 & -0.0053 & 0.0050 & 0.0026 \\ 0.0094 & 0.0260 & 0.0065 & 0.0054 & 0.0069 & 0.0077 & -0.841 & 0.0077 & 0.0036 & 0.0035 \\ 0.0066 & 0.0149 & 0.0058 & 0.0080 & 0.0046 & -0.0010 & 0.0045 & 0.0064 & -0.8361 & 0.0099 \end{bmatrix} \]

\[K_D = \begin{bmatrix} -0.89 & 528.62 & 4.52 & -5.05 & 0 & 0 & 0 & 0 & 0 & 0 \\ -5.98 & -2.14 & -1.78 & 527.92 & 0.80 & -0.68 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.59 & -0.11 & -2.05 & 524.91 & -0.14 & 0.12 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.01 & 0.04 & -3.1 & 520.09 & 0.79 & -0.42 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.47 & -0.29 & -2.24 & 517.16 \end{bmatrix} \]

\[B_1 = \text{diag} \begin{bmatrix} 0 & 0 \\ 0.0046 & 0 \\ 0 & 0.0048 \\ 0.0048 & 0.0037 \end{bmatrix} \]

\[B_2 = \text{diag} \begin{bmatrix} 0 & 0 \\ -0.0046 & 0 \\ 0 & -0.0047 \\ -0.0047 & -0.0037 \end{bmatrix} \]

\[C = \text{diag} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\} \]

\[D = \text{diag} \{ [1], [1], [1], [1] \} \]

We obtain the centralized \(H_\infty \) controller in (18). One can check that the closed-loop system is asymptotically stable by showing that \(A + B_2 K_F \) is Hurwitz. In this example, matrix \(A + B_2 K_F \) is Hurwitz, i.e. all eigenvalues have negative real parts.
For this system, the H_∞ disturbance attenuation level achieved by a centralized controller is 1.0010.

When we use the homotopy method to compute the decentralized controller, and use $\gamma = 1.150$ as the desired disturbance attenuation level. The homotopy method produces the matrix K_D in (19).

According to (6), the state matrix of the closed-loop system by using decentralized H_∞ controller is $A + B_2 K_D$. Since $A + B_2 K_D$ is Hurwitz, the closed-loop system is asymptotically stable. The H_∞ disturbance attenuation level achieved by decentralized H_∞ controller is 1.0014.

VIII. Conclusions

This paper is concerned with the static state feedback with decentralized structure for interconnected systems using homotopy method. The connection between subsystems is represented as a directed graph, which represents that a subsystem can use other subsystem information. There is a self loop in every node because the controller in each subsystem can use the information from its own subsystem. Based on the simulation results, the decentralized H_∞ controller gives a pretty good disturbance attenuation level compared with the centralized H_∞ state feedback controller.

References

[1] R. Zaeim and M. A. Nekoui, “Centralized and decentralized controller design for FGS using linear and nonlinear model,” in 2009 Second International Conference on Computer and Electrical Engineering, vol. 1, pp. 56–60, 2009.

[2] R. Ben Amor and S. Elloumi, “Decentralized control approaches of large-scale interconnected systems,” Advances in Science, Technology and Engineering Systems Journal, vol. 3, pp. 394–403, 02 2018.

[3] D. Siljak and D. Stipanovic, “Autonomous decentralized control,” in 2001 ASME International Mechanical Engineering Congress and Exposition ; Conference date: 11-11-2001 Through 16-11-2001, pp. 1713–1717, Dec. 2001.

[4] Y. Zhu and P. R. Pagilla, “Decentralized output feedback control of a class of large-scale interconnected systems,” IMA Journal of Mathematical Control and Information, vol. 24, no. 1, pp. 57–69, 2007.

[5] Y. Wang, J. P. Lynch, and K. H. Law, “Decentralized H_∞ controller design for large-scale civil structures,” Earthquake Engineering & Structural Dynamics, vol. 38, no. 3, pp. 377–401, 2009.

[6] G. Zhai, M. Ikeda, and Y. Fujisaki, “Decentralized H_∞ controller design: a matrix inequality approach using a homotopy method,” Automatica, vol. 37, no. 4, pp. 565–572, 2001.

[7] N. Chen, M. Ikeda, and W. Gui, “Design of robust H_∞ control for interconnected systems: A homotopy method,” International Journal of
state feedback for linear systems with decentralized control inputs

Control, Automation and Systems, vol. 3, no. 2, pp. 143-151, June 2005.

[8] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H_{∞} control,” International Journal of Robust and Nonlinear Control, vol. 4, 4, pp. 421–448, 1994.

[9] Skogestad, Sigurd & Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and Design.

[10] T. Iwasaki and R. Skelton, “All controllers for the general H_{∞} control problem: LMI existence conditions and state space formulas,” Automatica, vol. 30, no. 8, pp. 1307–1317, 1994.

[11] J. Mesbahi and A. Malek, “Synchronized control for five-story building under earthquake loads,” Journal of Applied Mathematics, vol. 2015, Article ID 507306, 8 pages, 2015. doi:10.1155/2015/507306.

A Brief CV of Corresponding author

Guisheng Zhai received his BS degree from Fudan University, China, in 1988, and received his ME and PhD degrees, both in system science, from Kobe University, Japan, in 1993 and 1996, respectively. After two years of industrial experience, Dr. Zhai moved to Wakayama University, Japan, in 1998, and then to Osaka Prefecture University, Japan, in 2004. He held visiting professor positions at University of Notre Dame, Purdue University, Taiyuan University of Technology, and Hubei University of Technology, etc. In April 2010, he joined Shibaura Institute of Technology, Japan, where he currently is a full Professor of Mathematical Sciences. His research interests include large scale and decentralized control systems, robust control, switched systems and switching control, networked control and multi-agent systems, neural networks and signal processing, etc. Dr. Zhai is on the editorial board of several academic journals including IET Control Theory and Applications, International Journal of Applied Mathematics and Computer Science, Journal of Control and Decision, Frontiers of Mechanical Engineering, Science Nature, Data Analytics and Applied Mathematics, etc. He is a Senior Member of IEEE, a member of ISCIIE, SICE, JSST and JSME.