Physicochemical and physicomechanical studies of dolomite binder

V I Vinnichenko¹, A N Riazanov², R Z Rakhimov³, A A Riazanov² and O V Vinnichenko*¹

¹Cool Clean Researches & Technologies, 37 Rue Sainte Catherine, Le Cannet, 06110, France
²Ufa State Petroleum Technological University, 1 Kosmonavtov st., Ufa, 450064, Republic of Bashkortostan, Russia
³Kazan State University of Architecture and Engineering, 1 Zelenaya st., Kazan, 420043, Tatarstan, Russia
⁴Kharkiv National University of Civil Engineering and Architecture, 40 Sumska st., Kharkiv, 61002, Ukraine

*E-mail: vvinnichenko@ukr.net

Abstract. To obtain dolomite cement, it is proposed to use screenings of dolomite stone and coal waste. Both physicochemical and physicomechanical studies of cement samples are carried out. It is shown that, in contrast to the existing dolomite binders, the proposed cement has the ability to harden when mixed with water.

1. Relevance
According to literature analysis the magnesia binders have a number of significant advantages, i.e. quite fast setting, quick hardening, effective protection against the harmful effects of electromagnetic and high frequency radiation. There are significant reserves of dolomite stocks in Ukraine, with technological off-quality waste of dolomitic stone screenings being largely accumulating at mining combines, refractory making plants and metallurgical enterprises. Amount of waste in the piles is approaching millions of tons, with the quantity thereof constantly increasing, thereby generally resulting in environmental pollution and ecological problems [1]. On the other hand, the technology for the production of binders from dolomite waste has advantages over the Portland cement technology: lower fuel consumption for heat treatment; reduction in energy and operating costs, since crushing of raw materials and the use of expensive crushing equipment is no longer required; release of land plots used for landfills; the production process uses only one-component raw materials, such as dolomite, which does not require corrective additives; the firing temperature of dolomite cement is lower than that of Portland cement, therefore, the furnaces should not be lined with expensive refractory materials. All this makes it possible to reduce the production cost of dolomite cement at least twice as compared to Portland cement. In addition, the thermal processing of raw materials for the production of dolomite binders produces less greenhouse gases.

2. Problem setting
Currently, there is no unified and generally accepted theory of cement hardening [2,3]. The first theoretical concept of cement hardening was proposed by Le Chatelier. In accordance with his theory (crystallization theory), the cement hydration occurs through the solution [4]. Due to higher solubility of clinker minerals as compared with the formed crystalline hydrates, the latter, forming supersaturated solutions, are released from the cement-water suspension thereby forming a crystalline aggregate. The main position of Le Chatelier's theory of the fact that cement hydration occurs through the mortar is the starting point in current concepts for the hardening of mineral binders. According to the V. Michaelis theory (1893 - colloid theory), water directly interacts with the surface of cement
minerals, and the hydration processes proceed without dissolution thereof (topochemical mechanism) [5]. Michaelis did not deny the occurrence of crystalline hydrates formation in the process of cement hardening, but paid less attention thereto. In 1923 A.A. Baikov tried to combine these theories (unified colloid chemical theory) [6]. He identified three periods: dissolution (before the start of setting); colloidation (hydration) and crystallization with the formation of a crystalline aggregate. The main position of Baikov's theory, current theoretical concepts are adhered to, is the ability of a significant part of the binder to hydrate according to the topochemical scheme.

P.A. Rehbinder divides the hardening process into three stages: dissolution of unstable clinker phases in water and separation of crystals; the formation of a coagulation structure; growth and aggregation of crystals [7].

As far as the magnesia binder is concerned, the forming Mg(OH)\textsubscript{2} layer is known to prevent from the diffusion of water into MgO grains. The process is strongly accelerated, if salt electrolyte is dissolved in water. For caustic magnesite to form an artificial stone, it is tempered with FeSO\textsubscript{4}, MgSO\textsubscript{4}, H\textsubscript{2}SO\textsubscript{4}, NaHSO\textsubscript{4}, FeCl\textsubscript{2}, ZnCl\textsubscript{2} and mainly MgCl\textsubscript{2} • 6H\textsubscript{2}O solutions [8-18, 46].

Regarding the process of curing magnesia binder M. Sorel [13], and then other researchers [14-18] found that when the magnesia binder hardened with an aqueous solution of magnesium chloride, an artificial stone is formed with different properties depending on the compounds formed. In theory, magnesium chloride reacts with MgO to form oxychlorides like nMgO ∙ MgCl\textsubscript{2} mH\textsubscript{2}O. According to various scientists, n ranges from 3 to 7, and m - from 6 to 17 [14-29]. When magnesium oxide is mixed with highly concentrated solutions of MgCl\textsubscript{2}, the structure of magnesia stone is usually formed mainly by 5- and 3-hydroxychlorides, since the formation and appearance of magnesium hydroxide in it becomes energetically unfavorable.

The composition of the end products in magnesia cement is determined by ratio of initial components, since under insufficient solution content in conditions of high density of structure and under a significant change in MgCl\textsubscript{2} concentration due to crystalline hydrates formation, the phase transitions of metastable compounds into stable ones may be stopped at one of the stages, and only 3MgO ∙ MgCl\textsubscript{2} ∙ 11H\textsubscript{2}O or 5MgO ∙ MgCl\textsubscript{2} ∙ 13H\textsubscript{2}O may be the end products, as well as mixtures thereof or mixtures of these oxychlorides with Mg(OH)\textsubscript{2} or MgCl\textsubscript{2}.

In the majority of scientific works devoted to magnesian binder based on dolomite and materials based on it, much attention is paid to the problems of improving the quality of binders and materials [30-52].

The use of saline solutions negates the advantages of dolomite binder production due to the high price of this salt compared to water.

Modern theoretical and practical data suggest research on obtaining a magnesia binder that can harden in water.

3. **Research hypothesis**

Under aqueous conditions, magnesium oxide hydrates so slowly that this method has not found wide application, but when it is mixed with saline solutions (most often with a solution of MgC12 6H2O), the process is accelerated. An increase in the solubility of the Mg (OH) 2 layer appearing on the MgO surface and the involvement of magnesium oxide in the hydration process can be achieved due to the formation of minerals in the binder during its heat treatment, obtained by joint firing of dolomites and coal waste. The minerals formed during firing play the role of a salt mixture, and the interaction reactions proceed through the formation of calcium and magnesium hydroxides, which take part in the hardening process.

4. **Theoretical**

We have investigated the thermodynamic conditions for the decomposition of dolomite in a mixture with silicon dioxide - SiO2. The changes in the Gibbs free energy (ΔG) in the temperature range from 900 to 1500K are calculated.
The possibilities of forming the following connections are thermodynamically considered: calcium and magnesium oxides (reaction 1); calcium carbonate and magnesium oxide (reaction 2); β-wollastonite and magnesium oxide (reaction 3); α-wollastonite and magnesium oxide (reaction 4); magnesium silicate and calcium oxide (reaction 5); 2Ca SiO2β and magnesium and silicon oxides (reaction 6); 2Ca SiO2γ and magnesium and silicon oxides (reaction 7); clinoestatite (reaction 8); diopside (reaction 9); ackermanite (reaction 10); mervenite (reaction 11); monticellite (reaction 12).

Possible reactions in the mixture of dolomite and coal enrichment wastes are presented below:

1. \(CaCO_3 + MgCO_3 + SiO_2 = CaO + MgO + SiO_2 + 2CO_2\)
2. \(CaCO_3 + MgCO_3 + SiO_2 = CaCO_2 + MgO + SiO_2 + CO_2\)
3. \(CaCO_3 + MgCO_3 + SiO_2 = \beta CaO SiO_2 + MgO + 2CO_2\)
4. \(CaCO_3 + MgCO_3 + SiO_2 = \alpha CaO SiO_2 + MgO + 2CO_2\)
5. \(CaCO_3 + MgCO_3 + SiO_2 = MgO SiO_2 + CaO + 2CO_2\)
6. \(CaCO_3 + MgCO_3 + SiO_2 = 1/2(2CaO SiO_2β) + MgO + 1/2SiO_2 + 2CO_2\)
7. \(CaCO_3 + MgCO_3 + SiO_2 = 1/2(2CaO SiO_2γ) + MgO + 1/2SiO_2 + 2CO_2\)
8. \(CaCO_3 + MgCO_3 + SiO_2 = 1/2(MgO SiO_3) + CaO + 1/2SiO_2 + 2CO_2\)
9. \(CaCO_3 + MgCO_3 + SiO_2 = 1/2(CaO MgO 2SiO_2) + 1/2CaO + 1/2MgO + 2CO_2\)
10. \(CaCO_3 + MgCO_3 + SiO_2 = 1/2(CaO MgO 2SiO_2) + 1/2MgO + 2CO_2\)
11. \(CaCO_3 + MgCO_3 + SiO_2 = 1/3(3CaO MgO 2SiO_2) + 2/3MgO + 2CO_2 + 1/3SiO_2\)
12. \(CaCO_3 + MgCO_3 + SiO_2 = CaO MgO SiO_2 + 2CO_2\)

Table 1 shows the results of the thermodynamic identification of the Gibbs energy of these reactions.

Reaction No	\(\Delta G\), kCal/Mol at, K						
	900	1000	1100	1200	1300	1400	1500
1	-3117.40	-10808.88	-18378.13	-25824.91	-33149.16	-40350.89	-47430.16
2	-9470.24	-13368.47	-17189.48	-20931.18	-24591.86	-28170.08	-31664.62
3	-200670.00	-203732.10	-206650.40	-209421.80	-212043.90	-214514.50	-216831.90
4	-201508.40	-204777.40	-207899.00	-210870.70	-213690.30	-216356.20	-218866.80
5	-187658.60	-190663.00	-193522.70	-196235.00	-198797.90	-201209.60	-203468.60
6	-107364.40	-112886.10	-118286.00	-123563.20	-128717.10	-133747.30	-138653.40
7	-111561.80	-117501.50	-123331.10	-129053.00	-134669.40	-140182.40	-145593.80
8	-103807.00	-111089.00	-118537.00	-126149.40	-133924.60	-141886.60	-149959.30
9	-194460.30	-197254.90	-199909.60	-202421.30	-204787.20	-207005.00	-209072.80
10	-31607.10	-39722.50	-47821.10	-55920.30	-64002.70	-72074.90	-80137.50
11	-26189.05	-34010.30	-41812.61	-49598.91	-57385.21	-65149.51	-72876.81
12	-224951.00	-230422.50					

The dependence of the Gibbs function change in the temperature range of (900 - 1500) K is represented by a diagram in Figure 1.
Figure 1. Dependence of Gibbs energy on temperature in 1-12 reactions.

An analysis of the results obtained shows that there is a thermodynamic probability of the formation of compounds during firing, capable of solidifying when mixed in water.

5. Characteristics of original materials

Dokuchaevsky dolomitic stone screenings (DSS) and waste coal (WAC) from Belorechensk processing plant are used as raw stock, with the chemical composition of DSS (mass %) being CaO – 28.89; MgO – 19.02; SiO₂ – 6.37; Fe₂O₃ – 0.85; Al₂O₃ – 1.21; ignition loss – 42.81, and that of WAC (mass %) CaO – 3.8; MgO – 1.3; SiO₂ – 55.3; Fe₂O₃ – 10.9; Al₂O₃ – 20.6; SO₃ – 2.8; K₂O – 2.6; Na₂O – 1.0.

X-ray patterns of dolomite screening and waste coal are shown in Figure 2 and Figure 3, respectively.

Figure 2. X-ray pattern of dolomitic stone screening.
6. Experimental results
The prepared composition of DSS to WAC being as 1:1; 1:2, 1:3 was isothermally fired in a muffle furnace at 1000°C for 1 hour. After being fired the resulting material was cooled down in the muffle to 150-180°C for 6-8 hours. Afterwards the material was grounded in a ball mill up to a specific surface area of 3200-3300 cm²/g.

The X-ray diagram of the obtained dolomite binder is shown in Figure 4.

The results of X-ray analysis show that the binder contains compounds capable of hydrating when tempered with water, and having hydraulic properties. Then the binder and sand mixture was mixed with water. The water-cement ratio was taken considering cone flow of 109-110 mm on the shaker table.

The strength properties were determined with 40x40x160 mm and 31.6x31.6x31.6 mm samples with a binder-to-sand composition as 1:3. The samples were heat- and moisture-treated at 95°C according to 2+8+2h steam curing regime, with the prior exposition thereof to air for 2-3 hours. The physical and mechanical properties of the binder are given in table 2.

Dolomite binder samples with DSS-WAC composition of 1:3 are seen from table 2 to have the best strength properties characterized by strength of 4.0MPa after 28 days of leaving in moist room, and that of 21.0MPa after heat- and moisture-treated.
Table 2. Physical and mechanical properties of dolomite binder.

Mixture composition	True density, kg/m³	Normal consistency of paste, %	Setting time	Distance b/n Le Chatelier mold indicator stems, mm	Water cement ratio	Compressive strength, MPa	
DSS	50	2520	38	0-38 3-40	3.5	0.40	6.82
WAC	34	2480	33	0-40 3-35	2.7	0.45	6.91
	25	2390	30	0-46 3-47	2.0	0.40	9.13

Therefore, the usage of DSS - WAC mixture under the heat treatment enabled to get a binder capable of hardening when mixed with water.

7. Results
- 1. Principles of binding properties found in the dolomite binder when mixed with water are theoretically verified and experimentally confirmed.
- 2. The research in making a dolomite binder by mutual firing of dolomitic stone screenings and waste coal with further grinding thereof to a specific surface area of 3200-3300 cm²/g. The minerals capable of interacting with water and acting as a saline grout are found in the products of firing.
- 3. The dolomite binder was mixed with water at a water-cement ratio of 0.4-0.45.
- 4. Both physical and mechanical and physical and chemical studies have been carried out. The compressive strength of a dolomite binder in the cement to sand composition as 1:3 after being heat- and moisture-treatment is 14-21 MPa.

References
[1] Yermakova E V 2000 Environmental assessment in the area of the Dokuchaev Flux-Dolomite Combine and possible ways to improve it Donets DonNTU pp 1-11
[2] Pashchenko O O, Serbin V P and Starchevskaya O O 1995 Binding materials Kyiv, Higher school p 440
[3] Mchedlov-Petrosyan O P 1998 Chemistry of inorganic construction materials (Moscow: Stroyizdat) 304
[4] Le Chatelier H 1919 Cristalloids against colloids in the theory of cements Trans. Faraday Soc 14 8
[5] Michaelis W 1893 Über Den Portland Cement J fur Prakt Chemie Chem Zeitung 17 p 982
[6] Baikov A A 1923 Portland cement and water-hardening cement theory Technical and Engineering Bulletin 3 6-7
[7] Rehbinder P A 1958 Physical-chemical mechanics Moscow Znanie pp 321-322
[8] Vinnichenko V I and Ryazanov A N 2013 Cement production from dolomite wastes Ecology and Industry 2 pp 111-114
[9] Ryazanov A N, Vinnichenko V I, Shcheblykin S V and Telyatnikova N I 2013 The study of cement from dolomite seed Visnyk NTU “HPI” No 64 (1037)
[10] Borisov I N, Vinnichenko V I and Ryazanov A N 2013 Energy efficient construction materials of dolomite and waste coal Energy efficient technology complexes and equipment for making construction materials. Interuniversity collection of papers BSTU named after V. G. Shukov Belgorod Issue XX pp 114-117
[11] Ryazanov A N, Vinnichenko V I and Plugin A A 2013 Theoretical arguments for comprehensive application of dolomite and waste coal for the production of construction materials Collection of scientific papers Issue 138 Kharkiv, Ukr press pp 77-85
[12] Vinnichenko V and Ryazanov A. 2017 Ecological indices of manufacture of Portland cement
clinker and production of the dolomite clinker MATEC Web of Conferences 116 01020

[13] Sorel S 1866 Improved composition to be used as a cement and as a plastic material for molding Various articles United States Patent Office Patent 53/092 Paris France

[14] Baikov A A 1913 Caustic magnesite, its properties and hardening Russian Metallurgical Society J No 3 1 pp 311-334

[15] De Wolff P M and Walter-Levy M L 1953 Hydratations prozesse und Erhartungs eigenschaften in Systemen MgO-MgCl2 Zement-Kalk-Gips II 4 pp 125-137

[16] Kasai J, Ichiba M and Nakanara M 1956 Mechanism of the Hydration of Magnesia Cement. J. of Chem. Soc. of Japan 63 7 pp 1182–1184

[17] Vyrodov I P and Bergman A G 1959 Problem of magnesia cement hardening J of Applied Chemistry 32 4 pp 716–723

[18] Vyrodov I P 1960 Magnesia cement structure formation J of Applied Chemistry 33 11 pp 2399-2404

[19] Smirnov B I, Smirnova Ye S and Segalova Ye Ye 1967 Investigation of chemical interaction of magnesium oxide with solutions of magnesium chloride of various concentrations J of Applied Chemistry 7 3 pp 505-514

[20] Solovyova Ye S, Smirnov B I, Segalova Ye Ye and Rehbinder P A 1968 Physical and chemical properties of magnesia cement hardening J of Applied Chemistry 30 3 pp 754-759

[21] Belyankin D S 1956 Petrography of technical stone Moscow Nedra 780

[22] Vayvad A Ya 1971 Magnesia binders Riga Science 315

[23] Kaminaskas A Yu 1987 Construction materials technology based on magnesia raw stock Riga Mokslas Press 342

[24] Vereshchagin V I, Zyryanova M A, Savinkina M A, Zyryanova V N and Filins S V 1991 Making of a waterproof magnesia binder based on magnesium-containing silicates and Sorel cement Proc. Int. Conf on Cement Chemistry Moscow p 76

[25] Zyryanova V N, Berdov G I and Tyulenova N I 2007 Composite magnesia binders Current problems in the construction and architecture. Education. Science, Practice: Proc. All-Russian Science and Technology Conf Samara p 189

[26] Zyryanova V N, Berdov G I and Vereshchagin V I 2009 Physical and chemical processes in hydration hardening of composite magnesia binders Current problems of production and application of composite building materials: Proc. All-Russian Conf. Novosibirsk pp 50-52

[27] Berdov G I, Zyryanova V N, Mashkin A N and Khritankov V F 2009 Nanoprocesses in the technology of composite construction materials Current problems of production and application of composite construction materials: Proc. All-Russian Conf Novosibirsk pp 10-12.

[28] Zyryanova V N, Berdov G I and Vereshchagin V I 2009 Magnesia binders from sludge of magnesium chloride brines Current problems of production and application of composite construction materials: Proc. All-Russian Conf. Novosibirsk pp 168-170

[29] Zyryanova V N, Berdov G I and Vereshchagin V I 2009 Water-resistant composite magnesia binders with the application of natural and technological raw stock Proc. III (XI) Int. Meeting on Cement Chemistry Moscow pp 97-100

[30] Kozlova V K, Sweet T F, Dushevena A M, Chelyshev A S and Pimenov A T 2004 Comprehensive application of Taenzinsky deposit dolomites Construction materials 1 pp 29-31

[31] Kozlova V K, Dushevena A M and Chelyshev A S 2003 Dolomite-based construction materials of the Taenzinsky deposit Reliability and durability of construction materials and structures:Proc. III Int. Sci-Tech Conf. Volgograd: VolgaGASA Part 3 pp 108-110

[32] Kozlova V K, Dushevena A M and Pimenov A T 2001 Features of hydration and hardening of caustic dolomite Current Problems of Construction Material Science. Seventh Academic Readings of the RAA3V Belgorod pp 223-227

[33] Piven N I 1972 Production and analysis of water-resistant magnesia cement Author's abstract by
PhD in Engineering Kharkiv p 20

[34] Rogacheva I N 1975 Research and development of water-resisting magnesia cement technology
Author's abstract by PhD in Engineering Kharkiv p 22

[35] Ved Ye I, Bludov B F, Zharov Ye F and Piven N I 1972 Production of water-resistant magnesia cement Proc. Belgorod TISM. Chemistry and chemical technology Issue 2 pp 38-41

[36] A S 338505 Ved Ye I, Bludov B F and Piven N I 1972 Magnesia cement, kl S 04 V 9/04.

[37] Biryuleva D K, Shelikhov N S and Rakhimov R Z 1997 Mechanism of dolomite cement hardening Abstracts of three academic readings "Current problems of construction materials" Saransk p 119

[38] Biryuleva D K, Shelikhov N S and Rakhimov R Z 1999 Dolomite cement modified with silicate additives Abstracts of the Anniversary Int. Sci-Pract. Conf. Construction 99 Rostov-on-Don p 49

[39] Komlev P G, Ivanov L K and Kurkina I D 1992 Production of Melekhopsy deposit dolomite-based magnesia binder Construction materials waste utilization Abstracts Penza

[40] Komlev P G and Ivanov L K 1993 Melekhopsy deposit dolomite-based magnesia binder Resource-saving technologies of construction materials, items and structures. Abstracts: Belgorod pp 53-54

[41] Erdman S V 1996 Natural magnesium-containing silicates in production of binders and ways to increase the water resistance of magnesia binders: abstract of Ph.D. thesis in Engineering Tomsk p 22

[42] Kramar L Ya 2006 The requirements of the standard for magnesia binder to be applied in construction Construction materials 1 pp 52-54

[43] Kramar L Ya, Chernykh T N and Trofimov B Ya 2006 Peculiarities of magnesia binder hardening Cement and application thereof 09 pp 58-61

[44] Zimich V V and L Ya Kramar 2009 Modified chlorine-magnesium binder for the production of heat-insulating materials Problems of the construction complex of Russia: proceedings XIII Int. sci-tech Conf./Ufa, USPTU pp 107-109

[45] Shabanova G M, Taranenkov V V, Smal G L and Kuzmenkov E D 2012 Research of hydration products of caustic dolomite-based magnesia binder Bulletin NTU Kharkiv: NTU press 32 pp 184-188

[46] Vinnichenko V and Ryazanov A 2018 Energy Efficiency of Binder Application in Concrete Int. J of Engineering Technology pp 335-338 7 4,3

[47] A A Riazanov et al 2020 Resource saving and energy saving at the simultaneous production of two types of cemen IOP Conf. Ser.: Mater. Sci. Eng. 907 012034

[48] Shinkevich E and Lutsikin Y 2007 The Influence of Structure Modification of Silicate Materials after Hardening in Non-autoclave Conditions on Their Coefficient of Heat Conductivity. Proceeding of International Conference “Alkali Activated Materials – Research, Production and Utilization” pp 621–635

[49] Shinkevich E S and Zaytsev Y V 2010 Structural durability, deformation properties and fracture mechanics parameters of advanced silicate materials 18th European conference on fracture: fracture of materials and structures from micro to macro scale Dresden Germany

[50] Shinkevich E 2011 Kinetic-mathematical model of hydration of lime-silica binder, which activated together with a fine-grained filler Proceeding of 13th International Congress on the Chemistry of Cement Madrid Spain 351

[51] Lutsikin E and Shinkevich E 2015 Analysis of the relationship between microstructure and properties of activated lime-silica composites on the basis of experimentally-statistical modelling Tehnički glasnik 9 1 pp 27-32

[52] Lyashenko T, Barabash I, Shinkevich E, Shcherbina S and Voznesensky V 1998 Experimental Statistical Modelling the Effect of Multi-Fractional Filler on Rheological Indices of Compositions Progress and Trends in Rheology V pp 104-105