Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

Ksenia Pougach1,2, Arnout Voet3, Fyodor A. Kondrashov4, Karin Voordeckers1,2, Joaquin F. Christiaens1,2, Bianka Baying5, Vladimir Benes5, Ryo Sakai6,7, Jan Aerts6,7, Bo Zhu1,2, Patrick Van Dijck8,9 & Kevin J. Verstrepen1,2

The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.
Gene duplication is believed to be an important driver of evolution because duplicated genes often diverge and evolve new functions1–10. Such gene duplication events occur relatively frequently, with at least 50% of prokaryotic genes and over 90% of eukaryotic genes estimated to have emerged by gene duplication11–14. The emergence of new genes with novel functions might require reprogramming and/or extension of the regulatory network to ensure that the new paralouges are properly expressed12,13–17. Specifically, differential regulation of newly duplicated genes may be important to avoid 'paralogue interference', a situation where the duplicates interfere with each other's function17. Gu et al.18 suggested a model of asymmetrical regulatory evolution of paralogue genes after the duplication, where the regulation of one gene copy evolves rapidly, while the other copy retains the ancestral expression profile. In keeping with this theory, several global genome-wide studies confirm that paralouges are often differentially expressed and show an increased rate of expression divergence. This likely reflects the need for cells to evolve specific regulatory programs for the ancestral and novel gene functions that emerge after the duplication8,12,15,16,18–22.

While the number of studies demonstrating divergent transcriptional regulation of paralouges is increasing, few studies have investigated the molecular details underlying regulatory divergence. Some authors emphasize the importance of loss and gain of cis-regulatory elements in the evolution of paralogue regulation19,22–26. It has been demonstrated that whereas the number of cis-regulatory elements shared between two paralouges drops with their age, the total number of regulatory elements in their promoters remains the same, implying that a loss of regulatory motifs is compensated by gain of novel regulatory motifs23. Similarly, Ihmels et al.22 reported a large-scale loss of a specific cis-regulatory element from the promoters of dozens of genes following the whole-genome duplication in the yeast lineage. This event led to a major transcription network reprogramming and allowed optimization of anaerobic growth in Saccharomyces cerevisiae.

Apart from the importance of cis changes in the promoters of duplicated genes, changes in trans-acting factors (that is, transcription factors that regulate the paralouges) may also play a crucial role in the evolution of paralogue gene regulation. It has been shown that only 2–3% of the divergence in paralogue expression is explained by changes in cis-regulatory motifs27. Several studies further suggested that duplication of transcription factors may be an important mechanism that allows rewiring of existing regulatory networks or the development of new regulatory circuits12,17,28,29.

Teichmann and Babu12 proposed three basic scenarios of gene regulation after duplication that contemplate changes in both cis and trans regulatory elements. In the first scenario, both copies of the gene can stay under regulation of the same transcription factor, which is an expected outcome if the paralouges do not develop different functions, but are conserved because of dosage effects7,11,30. Alternatively, a newly duplicated paralogue can become a part of another (existing) regulatory network, for example after gaining a novel cis-regulatory element (that is, a transcription factor binding site that did not occur in the promoter of the ancestral gene). However, some cases of neofunctionalization, where one of the paralouges acquires a completely new function, may require a completely novel regulatory circuit. A third scenario therefore involves the generation of a new regulatory cascade by duplication and functional divergence of an existing transcription factor, so that each of the two paralogue target genes becomes regulated by one of the two newly duplicated transcription factors. However, the concerted duplication and evolution of a target and its transcription factor seems unlikely and intuitively requires a large number of concerted evolutionary events, except perhaps following a whole-genome duplication event31–33.

To investigate these scenarios, we focus on the regulation of the MAL genes in yeast. The MAL genes comprise three-gene subfamilies (MAL\textsubscript{T}, MAL\textsubscript{S} and MAL\textsubscript{R}) that allow uptake and metabolism of various disaccharides, with each subfamily showing multiple duplication and neofunctionalization events35.

The MAL\textsubscript{T} subfamily encodes transporter proteins that allow active import of the sugars. Once inside the cell, the disaccharides are hydrolyzed by the Mal\textsubscript{S} glycosidases. Some of the intracellular disaccharides are believed to bind the Mal\textsubscript{R} regulator proteins, and these complexes activate the expression of the MAL\textsubscript{S} and MAL\textsubscript{T} genes37.

We have previously shown that the MAL\textsubscript{S} genes in S. cerevisiae underwent several duplication events, with some of the paralouges gaining a novel hydrolyzing activity towards 1–6 glycosidic bonds (found, for example, in isomaltose and palatinose), while other MAL\textsubscript{S} paralouges retained the ancestral preference for 1–4 glycosidic bonds (for example, in maltose)36. Similarly, the Mal\textsubscript{T} transporters also underwent duplication and functional divergence, with some of today’s paralouges importing 1–6 substrates, while others maintained the ancestral selectivity for 1–4 glycosides36.

Here we investigated how the regulation of the MAL\textsubscript{T} and MAL\textsubscript{S} genes evolved after their duplication and functional divergence. We show that the present-day S. cerevisiae MAL genes are regulated specifically; that is, the palatinose-specific genes are activated only in response to palatinose-like sugars, whereas the maltose-specific paralouges are only activated by maltose-like sugars. We demonstrate that this specific regulation of the two paralogue groups became possible because the ancestral transcription factor Mal\textsubscript{R} that regulated the ancestral MAL\textsubscript{S} and MAL\textsubscript{T} genes also underwent duplication. One new Mal\textsubscript{R} paralogue activates the expression of novel MAL\textsubscript{S} and MAL\textsubscript{T} responsible for palatinose utilization, while the other Mal\textsubscript{R} paralogue activates maltose-specific target genes. Furthermore, we establish a mutational path that explains how the differential regulation of both classes of paralogue target genes could have evolved without suffering from paralogue interference. Together, our results provide a detailed molecular view of how gene duplication can result in the emergence of a new transcriptional network.

Results
The MAL regulatory network allows specific regulation.

The genome of the laboratory strain S. cerevisiae KV5000 harbours two functional MAL\textsubscript{T} (transporter) and four functional MAL\textsubscript{S} (maltase/ismaltase) genes. Following duplication, the activity of the Mal\textsubscript{S} paralouges diverged, with Mal12 and Mal32 showing activity towards 1–4 glycosides like maltose, and Ima1 and Ima5 hydrolyzing 1–6 glycosides like isomaltose and palatinose. The two Mal\textsubscript{T} paralouges show a lower degree of specialization, with Mal31 exclusively transporting 1–4 glycosides, and Mal11 transporting both 1–4 and 1–6 disaccharides7,36.

We first investigated whether expression of different MAL\textsubscript{S} and MAL\textsubscript{T} genes is regulated specifically by the sugar they show activity for. We therefore fluorescently tagged each of the four MAL\textsubscript{S} and two MAL\textsubscript{T} target genes in the wild-type (wt) strain and evaluated their expression in medium containing either maltose (1–4 disaccharide) or palatinose (1–6 disaccharide) using fluorescence microscopy. Figure 1a shows that the MAL gene regulation in S. cerevisiae is specific: most of the genes are only activated in presence of their respective substrate sugars (maltose or palatinose), and not in presence of the sugar for
which they do not show activity. One notable exception is the MAL12 hydrolase gene, which shows activity towards α 1–4 disaccharides, but also seems to be activated by the α 1–6 disaccharide palatinose. However, this gene shares a bidirectional promoter with the MAL11 transporter gene, which transports both types of disaccharides. Hence, the aspecific activation of MAL12 in palatinose may be a consequence of the need to activate MAL11, which encodes the only transporter that allows uptake of α 1–6 disaccharides like palatinose.

We have demonstrated previously that the MALR transcription factor genes MALX3 and YFL052W are crucial for growth on maltose and palatinose, respectively. To further investigate which of these transcriptional regulator genes is responsible for activation of which target gene(s), we deleted these MALR genes and investigated the effect on MALT and MALS activation. Deletion of MALX3 (Fig. 1b) abolishes the expression of the maltose-specific hydrolase genes MAL12 and MAL32, and the maltose-specific transporter gene MAL31. Moreover, the MAL11 gene encoding the promiscuous transporter capable of transporting both α 1–4 and α 1–6 disaccharides is also no longer expressed in the presence of maltose, even though it is still activated in palatinose. Expression of IMA1 and IMA5 encoding α 1–6 hydrolases is not affected by deletion of MALX3. By contrast, deletion of the second MALR gene, YFL052W, abolishes expression of IMA1 and IMA5 (Fig. 1c), while the maltose-induced expression of genes encoding α 1–4-specific proteins (MAL12, MAL32 and MAL31) and the promiscuous MAL11 is not affected.

Table 1: Differential protein activities of transcription factors towards maltose and palatinose.

Gene tagged	Protein activity	WT Maltose	Palatinose	ΔMALX3 Maltose	Palatinose	ΔYFL052W Maltose	Palatinose
WT		+	–	+	–	+	–
MAL12	+	–	–	–	–	–	–
MAL32	+	–	–	–	–	–	–
IMA1	–	+	–	–	–	–	–
IMA5	–	+	–	–	–	–	–
MAL11	+	+	+	–	–	–	–
MAL31	+	+	+	–	–	–	–

Figure 1 | Maltose- and isomaltose-specific genes are differentially regulated. Representative brightfield and fluorescence microscopy images of yeast cells with various MALS or MALT genes fluorescently tagged are shown for WT cells (a) and strains carrying deletions of genes encoding transcriptional regulators (b: MALX3 and c: YFL052W). Cells were grown in presence of either palatinose (α 1–6 disaccharide) or maltose (α 1–4 disaccharide) as indicated above the pictures. Gene names are listed in the first column, and protein activities towards the two types of sugars (maltose or palatinose) are indicated in the second and third columns. Scale bar is included in the upper left image and equals 10 μm. The experiment was repeated at least three times.

Specifically, when the α 1–6 disaccharide palatinose is present, YFL052W binds the promoter regions of palatinose-specific genes (IMA1, IMA5 and YFL052W) and the MAL11 promiscuous transporter, but not the promoters of maltose-specific genes (Supplementary Fig. 1). Instead, these maltose-specific genes are known to be bound by MalX3 in the presence of maltose.

In addition, two novel noncanonical targets of YFL052W were identified in the ChIP-exo experiment—YHR210C and YJL217W (Supplementary Fig. 1). Both of these genes seem to have no role in α-disaccharide metabolism and they do not show sequence similarity with MAL genes. Deletion of any of the two does not change cell growth or expression patterns of the other MAL genes (IMA5 and MAL32) in palatinose or in maltose.

The MalR regulators belong to a family of fungal Zn-finger transcription factors, which typically bind short three-nucleotide CG-rich motifs separated by a spacer of fixed length. Figure 2 shows that the DNA-binding site of the palatinose-specific YFL052W regulator is very similar to that of the maltose-specific Malx3 regulator. Specifically, the YFL052W binding site consists of two CGG motifs separated by a nine nucleotide (nt) AT-rich spacer (Fig. 2a), while Malx3 DNA-binding sites contain a CGC motif, a nine nt spacer and a CGN motif (Fig. 2b). To confirm the binding sites of the different MalR regulators (Malx3 and YFL052W), we first deleted the binding sites in a strain carrying a fluorescent reporter fusion of a maltose-specific target gene (MAL32) and in a strain carrying a reporter for a palatinose-specific gene (IMA5). In both cases, deletion of the respective binding sites abolished induction of the target gene by its respective substrate sugar (Fig. 3a: lines 1 and 2 and Fig. 3b: lines 1, 2 and 3). Moreover, replacing one binding site with the other switches the sugar-specificity of the promoters as well as the specific transcription factor needed to activate the reporter gene (Fig. 3), further suggesting that these slightly different binding sites separate the two regulatory circuits. Finally, to further confirm that this single-nucleotide difference is indeed responsible for the different binding of both classes of transcription factors, we introduced a double point mutation in the promoter region of MAL32 gene, so that both CGC motifs in the MalX3 binding site were changed to CGG motifs. As shown in Fig. 4a,b, these mutations result in MAL32 gene expression in presence of palatinose, and this effect was dependent on the YFL052W gene.

Different MalR regulators bind different DNA sites. The previous results demonstrate that the MALS and MALT genes are regulated by two distinct regulatory networks, governed by different MalR transcription factors in response to different disaccharides. The limited crosstalk between the two regulatory networks suggests that the maltose- and palatinose-specific MalR regulators bind different DNA-binding sites. To test this, we determined the DNA-binding sites of the palatinose-specific regulator YFL052W using the chromatin immunoprecipitation (ChIP)-exo technique and compared these to the known binding sites of the maltose-specific regulator Malx3 (ref. 39). The ChIP-exo analysis supports the results reported in Fig. 1 and indicates that both transcription factors bind different sites.
Apart from the one-nucleotide difference between the binding motifs, we also noticed that the promoters of maltose-specific genes (MAL12, MAL32 and MAL31) and the promiscuous MAL11 transporter always contain three Malx3 binding sites, while palatinose-specific genes (IMA1, IMA5 and YFL052W) contain only one Yfl052w binding site. Interestingly, the results shown in Fig. 3 suggest that all three Malx3 binding sites are necessary to obtain full activation of the downstream gene, with one or even two binding sites only yielding partial activation.

Two key mutations in Yfl052w alter its binding preference. Next, we turned our attention to the MalR transcription factors. To determine which amino acid residues of palatinose-specific regulator Yfl052w could be responsible for its altered DNA-binding specificity, we modelled the three-dimensional structures of Yfl052w and Malx3 in complex with their DNA-binding sites (Fig. 5). Our model suggests that the amino acid in position 12 may explain the difference in DNA-binding preference between Malx3 and Yfl052w. In Malx3, position 12 is occupied by Arg, which is not involved in the base pair recognition, but does interact with the negatively-charged phosphate backbone of DNA. In Yfl052w, position 12 is taken by a Cys residue, which in contrast to the Arg residue in Malx3 does interact with the bases of the DNA-binding motif and specifically requires the presence of a G in the third position of CGG motif (Fig. 5b). In addition, Val in position 13 in Malx3 is substituted with Ile in Yfl052w. Both Val and Ile provide the hydrophobic environment required for amino acid in position 12. However, the Cys residue needs to be accompanied by a more hydrophobic amino acid, which might explain the exchange of Val (hydrophobicity index 79) to Ile (100).

To confirm whether the preference of Yfl052w to CGG motifs is indeed dictated by the two residues mentioned above, we mutated Cys12 in Yfl052w to Arg, and Ile13 to Val and tested the binding specificity of this mutated Yfl052w. As shown on Fig. 5c, the mutated Yfl052w is able to partially activate the expression of maltose-specific gene MAL32 in palatinose. Moreover, the fluorescence profile of these cells resembles that of wt cells with fluorescently tagged IMA5, which is also activated by Yfl052w. Interestingly, the mutated Yfl052w apparently also still activates its natural target promoter that drives IMA5.

Similarly, we introduced Arg12 to Cys and Val13 to Ile mutations in the Malx3 regulator. This mutated Malx3 regulator can no longer activate expression of its natural target MAL32 promoter (containing CGC motifs), nor can it activate the palatinose-specific IMA5 gene (Fig. 5d). However, we showed earlier that Malx3 requires several DNA-binding sites to activate expression of its target genes (Fig. 3b). Indeed, when a second CGG-containing binding site was introduced in the promoter of a
fluorescently labelled *IMA5* reporter strain, the mutated Malx3 was able to activate the expression of *IMA5* in maltose, which is in keeping with the observation that Malx3 requires multiple binding sites (Fig. 5e).

Malx3 binds both CGC and CGG motifs. Structural modelling of Malx3 bound to DNA predicts that Malx3 is promiscuous and can bind both CGC and CGG motifs. This reduced binding stringency compared with *Yfl052w* is predicted to be a result of the Arg12 residue in the Malx3 binding domain, which allows both C and G in the third position of the binding motif. This prediction is supported by the observation that *Yfl052w* carrying a Cys12Arg substitution still activates expression of its natural target *IMA5* that carries CGG motifs in its promoter (Fig. 5c). On the other hand, the results shown in Fig. 1 demonstrate that Malx3 does not activate expression from CGG-containing promoters of palatinose-specific target genes *in vivo*. However, the results from Fig. 3b show that Malx3 requires the presence of more than one binding site to activate expression, and promoters of palatinose-specific genes only contain one MalR binding site. In other words, whereas Malx3 is able to bind both CGG and CGG motifs, Malx3 may not be able to activate CGG-containing palatinose-specific promoters because they only contain one binding site; whereas maltose-specific promoters contain multiple sites. To verify this hypothesis, we introduced a second CGG-containing *Yfl052w* binding site in the promoter region of the fluorescently labelled *IMA5* gene and measured the expression of this palatinose-specific gene in the presence of maltose. As shown in Fig. 4c,d, the introduction of an additional binding site leads to the activation of *IMA5* gene expression by maltose to a level similar to its normal activation in palatinose, even in the absence of the *Yfl052w* transcription factor that normally activates *IMA5*.

Together, these results suggest that specific binding of *Yfl052w* to the promoter regions of palatinose-specific target genes is determined by the presence of CGG motifs. Promoters of maltose-specific genes contain CGG motifs and thus cannot be bound by *Yfl052w* because the Cys12 residue in the DNA-binding domain of this regulator prevents binding CGC sites. On the other hand, Malx3 is capable of binding both types of motifs (CGG and CGC), but requires the presence of several binding sites in the same promoter region to yield full gene activation. This prevents Malx3 from activating expression of

Figure 3 | Maltose- and palatinose-specific MalR regulators have different DNA-binding sites. Representative flow cytometry histograms of populations of fluorescent reporter strains carrying different types of DNA-binding sites in the promoters of a maltose-specific gene *MAL32* (red block arrow), or a palatinose-specific *IMA5* (blue block arrow), grown in maltose or palatinose. CGG-containing binding sites found in promoters of palatinose-specific genes are depicted as blue rectangles, CGG-containing DNA-binding sites found in promoters of maltose-specific gene are depicted as red rectangles. (a) DNA-binding specificity of the palatinose-specific regulator *Yfl052w*. (1) A fluorescently tagged *IMA5* gene under its native promoter shows a normal level of *IMA5* expression activated by *Yfl052w* in palatinose. (2) Deletion of the *Yfl052w* binding site abolishes the expression of *IMA5*. (3) A fluorescently tagged maltose-specific *MAL32* under its native promoter shows no expression on palatinose and is used to quantify autofluorescence. Introduction of a *Yfl052w* binding site from the promoter of *IMA5* (4) or *IMA1* (5) in front of the fluorescently tagged *MAL32* gene makes the expression of this gene responsive to palatinose. (6) Deletion of *Yfl052w* abolishes the expression of the *MAL32* gene from (4). (b) DNA-binding specificity of the maltose-specific regulator Malx3. (1) A fluorescently tagged *MAL32* under its native promoter shows a normal level of *MAL32* expression activated by Malx3 in maltose. (2) Deletion of one Malx3 binding site decreases the expression levels of fluorescently labelled *MAL32*. (3) Deletion of all three Malx3 binding sites abolishes the expression of *MAL32*. (4) A fluorescently tagged *IMA5* gene under its native promoter is used to show autofluorescence. Introduction of one (5), (6), two (7)–(9) or three (10) Malx3 binding sites in the promoter region of a fluorescently tagged *IMA5* gene makes the expression of this gene responsive to maltose, with increasing number of binding sites resulting in higher expression levels. (11)–(13) Deletion of the maltose-specific regulator *MAL32* abolishes the expression of strains from (7), (8) and (10). Each experiment was repeated at least three times with two biological replicates.
palatinose-specific genes, which carry only one MalR binding site in their promoters.

Evolutionary model of divergence of two regulatory networks. Taken together, our results uncover the mechanistic details underlying the emergence of two separate and specific regulatory circuits, one regulating maltose metabolism and the other regulating isomaltose and palatinose metabolism. We next wanted to establish the likely evolutionary path from the ancestral, pre-duplication circuit to the present-day situation.

The common ancestor of extant yeast species only had one copy of each of the three types of MAL genes (MALS, MALT and MALR)\(^7,36\). In some species, including S. cerevisiae, the MAL genes underwent several duplication events. In other species, like L. elongisporus, the MAL genes were not duplicated and the ancient, simple three-gene network seems to be preserved (Supplementary Fig. 3). Moreover, the activity of the MalS protein of L. elongisporus resembles that of the pre-duplication ancestral enzyme and can hydrolyze both maltose- and palatinose-like disaccharides\(^7\). This suggests that its MalR regulator may be able to activate the expression of both the promiscuous MalS and the promiscuous MalT in presence of any of the two types of sugars. To test this hypothesis, we compared mRNA levels of MALS and MALT genes in L. elongisporus cells grown on either maltose, palatinose or glucose. As shown in Supplementary Fig. 4, expression of MALT and MALS is indeed activated in presence of both maltose and palatinose, but not glucose.

Next, we investigated the timing of the duplication and divergence of the MALS and MALR genes (Supplementary Fig. 3). We have previously shown that the MALS genes duplicated and acquired a novel function at least at the branching of
Kluyveromyces thermotolerans\(^7\). A similar analysis shows that the functional diversification of MALR genes happened later in the evolution, around the branching of S. bayanus from the Saccharomyces clade. Specifically, the genome of S. bayanus contains only one MALR of the promiscuous MALX3 type (Arg12 in the position 12) and lacks the palatinose-specific Yfl052w-like regulator (containing a Cys12Arg mutation), which is present in S. cerevisiae, S. paradoxus and S. kudriavzevii. Expression analysis shows that the regulation of different MALS genes in S. bayanus is not specific, that is, maltose-specific and palatinose-specific MALS genes are equally activated in presence of maltose and palatinose, but not glucose (Supplementary Fig. 5).

Furthermore, the nucleotide sequences of the MALR binding sites in the genomes of S. bayanus, S. mikatae, S. paradoxus and S. kudriavzevii are remarkably conserved. Similar to the sites in S. cerevisiae, they fall into two classes: CGG and CGC containing (Supplementary Data 1). Analogous to S. cerevisiae, in S. mikatae, S. paradoxus and S. kudriavzevii (that is species in which the MALR regulator as well as the MALS genes has duplicated and diversified), CGG-containing sites are found in the promoter regions of palatinose-specific genes, and CGC-containing sites are situated upstream of homologues of maltose-specific genes. By contrast, in S. bayanus (which contains multiple MALS, but only one Arg12-type MALR), CGG and CGC sites are seemingly

Figure 5 | Differences in the DNA-binding domain of Malx3 and Yfl052w explain their different binding specificity. (a) Alignment of the Malx3 and Yfl052w DNA-binding domains. Amino acids predicted to interact with the DNA-binding site are indicated with a black rectangle. The key position 12 that differs between Malx3 and Yfl052w is highlighted with a blue arrow. (b) Molecular modelling of the interaction between the Zn-finger domain and its DNA-binding site. Important base pairs are represented as yellow and magenta sticks, important amino acids are represented as blue sticks. The Arg15 is shared between both transcription factors and is responsible for the recognition of the G in the middle of the CGG binding motif. Arg12 in Malx3 does not take part in recognition of the CGG motif, but Cys12 in Yfl052w does interact with the DNA and is responsible for the preference for a G nucleotide in the third position of the motif. (c) A mutated version of the palatinose-specific Yfl052w activator (Cys12Arg and Ile13Val) is able to partly activate the MAL32 promoter in response to palatinose and also retains its capacity to activate the IMA5 promoter. (d) A mutated version of the maltose-specific Malx3 activator (Arg12Cys and Val13Ile) is incapable to activate MAL32 or IMA5 in response to maltose. (e) A mutated version of the maltose-specific Malx3 activator (Arg12Cys and Val13Ile) is capable to partly activate an IMA5 promoter containing an additional Yfl052w binding site. Each experiment was repeated at least three times with two biological replicates.
...randomly distributed in the promoters of homologues of the different maltose- as well as palatinose-specific genes (Supplementary Data 1), which agrees with the nonspecific regulation of these genes in *S. bayanus*.

Together, these observations reveal that the MAL gene network evolved as depicted in Fig. 6. In this model, duplication and functional divergence of the MALS genes already happened in the common ancestor of *K. thermotolerans* and *S. cerevisiae* (Fig. 6, events 1 and 2), but these genes were still controlled by one promiscuous MalR regulator that resembled today’s *S. bayanus* Mal3 protein (which has an Arg residue in position 12). Similar to the present-day Mal3 regulator, the ancestral regulator was able to bind both CGG and CGC motifs and thus induced the expression of both maltose- and palatinose-specific genes in the presence of both types of sugars. The promoters of these genes probably did not yet diverge, with both CGC and CGG motifs present upstream of maltose as well as palatinose-specific genes similar to the genome of present-day *S. bayanus*. Yfl052w-like regulators most probably first appeared later in the evolution as a result of duplication (Fig. 6, event 3) and subsequent mutations, including the key Arg12Cys mutation (Fig. 6, event 4). This mutated Yfl052w-like paralogue can no longer bind the CGG motifs, which are selected for in the promoters of maltose-specific genes. By contrast, the Malx3-like regulator evolves a weaker activity, so that it loses the ability to activate expression of palatinose-specific genes, which are selected to have only one CGG-containing binding site, while retaining the ability to activate maltose-specific promoters that contain three CGC motifs so that they can still be activated by the weakened Malx3 paralogue (5, 6).

Discussion

Several studies have investigated the regulatory divergence between species on a genome-wide level. Together, these studies show that changes in gene regulation occur frequently and are important drivers of functional and morphological evolution. This is especially true for the evolution of the regulation of newly duplicated genes. Since paralogues often evolve different functions, these functionally diverged duplicates may need to be regulated independently. However, despite the importance of the evolution and divergence of gene regulation, the exact molecular mechanisms and mutational pathways that lead to the emergence of such novel regulatory networks remain largely unknown.

Our results show how duplication of a promiscuous transcription factor and its target genes led to the development of two separate regulatory networks, with one paralogue of the transcription factor regulating a set of target genes involved in maltose uptake and metabolism, and another regulating target genes responsible for palatinose consumption. Specifically, we...
researchers showed how duplication of the ancestral fungal
Mcm1 transcription factor resulted in two paralogues that each
evolved to regulate a subset of the original target genes. In
contrast to the MAL gene system, the Mcm1 target genes were not
duplicated, and duplication of the Mcm1 factor did not lead to
the development of a completely separate regulatory circuit, but
rather resulted in subfunctionalization and rewiring of the
existing network, with the two paralogues diverging to regulate
a subset of the original target genes. Moreover, whereas the MalR
paralogues evolved different DNA-binding sites, the Mcm1
paralogues primarily evolved specificity through mutations that
restrict their interaction with other transcription factors (Arg81
and Mat2), showing that this is a possible alternative route to
rewire networks.

At first, the scenario of the evolution of the MAL genes, where
both a transcription factor and its targets are duplicated, might
seem rare. However, such situations may occur relatively
frequently, either independently, or as a result of whole-genome
duplication events. Interestingly, the fungal lineage shows
evidence for at least one whole-genome duplication event (see
Supplementary Fig. 3). Several authors suggested that post whole-
genome duplication networks may undergo functional partitioning,
with the paralogues forming two independent subnetworks, which
resembles the MAL gene scenario. Moreover, a number of
studies report that after the whole-genome duplication, the
regulatory genes are preferentially retained compared with other
functional classes of genes. In the case of the MAL genes, the
observed duplication events do not coincide with the reported
whole-genome duplication event and instead seem to be the
results of (multiple) independent duplications of smaller
chromosomal regions. Interestingly, Lynch and Katju proposed
that such small-scale duplications might result in misregulation
of the duplicated gene when the respective promoter region is not
duplicated. However, in the case of the MAL genes, the
duplication events probably included the regulatory regions of the duplicated
genes, as well as a (subsequent) duplication of the gene encoding
the Mal regulator. While such events may be more rare than those
associated with whole-genome duplications, they may occur
relatively frequently in subtelomeric regions. Moreover, many
transcription factors show some level of promiscuity in their
recognition of target sites. As detailed above, such promiscuity
may greatly facilitate the expansion and rewiring of transcriptional
networks. Hence, whereas the molecular details may differ, the
general themes uncovered in this study of the MAL regulatory
circuit may be representative for a large number of similar events
throughout the tree of life.

Methods

Strain construction. A complete list of strains and plasmids used in this study is
listed in Supplementary Data 2. The primers used to make and confirm these
strains can also be found in Supplementary Data 2. All constructs were verified by
Sanger sequencing and/or PCR.

Microbial strains, plasmids and growth conditions. We showed earlier that the
S. cerevisiae feral isolates RM11 (from a vineyard) and YJM789 (from an AIDS
patient) as well as laboratory strain EM93, ancestral to S288c, can ferment maltose
due to the presence of a MAL3 regulator in their genomes, whereas S. cerevisiae
strain S288c lost its MAL3 regulator together with the ability to grow on maltose.

We re-introduced MAL3X in the genome of S. cerevisiae S288c to restore its ability
for growth on maltose and named the resulting strain KV5000. Therefore, KV5000
represents a reconstituted wild-type S. cerevisiae strain, and for this reason, we refer
to this strain as the wt strain.

Yeast cultures were grown in rich yeast extract and peptone (YP) media
consisting of 2% peptone (Difco), 1% yeast extract (Difco) and 2% sugar (Sigma-
Aldrich) at 30 °C in a rotating wheel or shaking incubator. The sugars used in this
study were purchased to their highest available purity and were filter-sterilized
before adding to rich media. Plasmid sets were obtained from EUROSCARF
(http://web.unl.frankfurt.de/5l3/micro/euroscarf/) for reusable markers (Deletion
Markers Plasmids) and overexpression/epitope tagging. Plasmids were used as
indicated by the manufacturer.

find that only two point mutations in the promoter regions of the
target genes, combined with two single-nucleotide mutations in
the DNA-binding domain of the transcription factor paralogues
are sufficient to ensure that each transcription factor parologue
specifically activates its target promoters, without interfering with
the regulation of the target genes of the other parologue.

While the predominant opinion in the field is that evolution on
the regulatory level precedes the actual changes in the protein
sequence of the target genes, our data indicate that the opposite is also possible. It seems likely that the pre-
duplication ancestral MAL gene regulatory network was very
simple and resembled the network in present-day L. elongisporus
(Supplementary Fig. 3). The L. elongisporus MalR regulator is
promiscuous and activates expression of a (bi-functional)
MalS hydrolase and a transporter in response to either maltose or
palatinose. Several duplication events of MALS genes followed by
optimization of either maltase or palatinase activity in different
paralogues led to emergence of two functional classes of MalS
hydrolases in S. cerevisiae. Interestingly, our analyses suggest
that the specialization of palatinate-specific MalR regulators and
the separation of the two regulatory networks likely occurred after
the neofunctionalization of MALS target genes, around the
branching of the S. bayanus and S. cerevisiae clades (Supplementary Fig. 3). The functional divergence of the MalS
enzymes generated a situation where it became beneficial for the
cells to regulate each of the MalS enzymes separately, so that each
enzyme is only activated by its proper substrate and paralogue
interference is avoided. In keeping with this hypothesis, we have
previously shown that activation of MAL genes in conditions
where they are not required comes at a considerable fitness cost.

The evolutionary path described in our study highlights how
promiscuity (or limited binding site specificity) may increase the
‘evolvability’ of transcription factors by facilitating the emergence
of distinct regulatory modules. Indeed, following a duplication
event, successive mutations may allow a gradual increase in the
specificity of the newly duplicated transcription factor paralogues
and promote a smooth emergence of two independent regulatory
circuits while avoiding misregulation of the target genes during
this process (that is, a so-called ‘fitness valley’ is avoided).

Importantly, only two key mutations in the Zn-finger DNA-
binding domain are needed to increase the binding specificity of
the Yl052w parologue. Together, these observations reveal how
the seemingly unlikely model for the emergence of a new
regulatory module through duplication of a transcription factor
proposed by Teichmann and Babu can in fact really occur.

However, in contrast with the theory that regulation evolves
asymmetrically, with only the regulation of the new function
diverging from that of the ancestral function, we find that in
this case the evolution of two separated regulatory networks
depends on concerted changes in both networks (one regulating α
1–4 glycoside metabolism and the other regulating α 1–6
glycoside metabolism).

Interestingly, the importance of promiscuity also emerges from
other studies that investigate the evolution of other proteins, such
as enzymes and receptors. For example, the ancestral pre-
duplication maltase showed activity towards both α 1–4 glyco-
sides like maltose, but also a (trace) activity for α 1–6 glycosides
such as isomalto. Similarly, promiscuity has also been shown in
other pre-duplication ancestral genes. Hence, whereas
promiscuity and ‘side activities’ are often regarded as
imperfections, they are emerging as crucial factors that promote
‘evolvability’ because the side activities can be selected for and
drive the evolution of a paralogue after duplication.

It is especially interesting to compare our results to those
reported in a recent elegant study by Baker et al. These
researchers showed how duplication of the ancestral fungal

Strain construction. A complete list of strains and plasmids used in this study is
listed in Supplementary Data 2. The primers used to make and confirm these
strains can also be found in Supplementary Data 2. All constructs were verified by
Sanger sequencing and/or PCR.

Microbial strains, plasmids and growth conditions. We showed earlier that the
S. cerevisiae feral isolates RM11 (from a vineyard) and YJM789 (from an AIDS
patient) as well as laboratory strain EM93, ancestral to S288c, can ferment maltose
due to the presence of a MAL3 regulator in their genomes, whereas S. cerevisiae
strain S288c lost its MAL3 regulator together with the ability to grow on maltose.

We re-introduced MAL3X in the genome of S. cerevisiae S288c to restore its ability
for growth on maltose and named the resulting strain KV5000. Therefore, KV5000
represents a reconstituted wild-type S. cerevisiae strain, and for this reason, we refer
to this strain as the wt strain.

Yeast cultures were grown in rich yeast extract and peptone (YP) media
consisting of 2% peptone (Difco), 1% yeast extract (Difco) and 2% sugar (Sigma-
Aldrich) at 30 °C in a rotating wheel or shaking incubator. The sugars used in this
study were purchased to their highest available purity and were filter-sterilized
before adding to rich media. Plasmid sets were obtained from EUROSCARF
(http://web.uni-frankfurt.de/5l3/micro/euroscarf/) for reusable markers (Deletion
Marker Plasmids) and overexpression/epitope tagging. Plasmids were used as
indicated by the manufacturer.
Fluorescent microscopy imaging. Cell were pre-grown overnight in YP 2% glucose medium and then transferred to YP media supplemented with either palatine (2%) or maltose (2%) for another 16 hours. The acquisition of the images was done with the Optoporm software (version 1.0.2) in combination with a Nikon Eclipse Ti microscope equipped with a DL-60M-VP camera (Andor technology). Images were processed and scaled with ImageJ software.

Flow cytometry to measure expression levels. Cell were grown in YP medium supplemented with maltose (2%) or palatine (2%) till the OD600¼ 0.1. Fluorescent histograms were acquired using a BD Biosciences Influx flow cytometer with 488 nm laser coupled to 530–540 nm detector.

RNA isolation and quantitative PCR. RNA was isolated with phenol/chloroform. Genomic DNA elimination and reverse transcription was performed using the QIAGEN QuantIT Reverse Transcription kit according to manufacturer’s instructions. Labrador SYBR Green PCR master mix was used for quantitative PCR.

Modelling. To investigate the difference between the MalR proteins, homology models were constructed. As there are no homologues template structures available for the C-terminal domain, only the N-terminal DNA-binding region was investigated. Sequence comparison andfold recognition using Phyre2 indicated pdb entry 1D66 (Gal4-DNA complex) as the most suitable template60,61. All complexes were modelled using the homology implementation in the Molecular Operating Environment (Chemical Computing Group, Montreal, Canada) with the implemented CHARMM force field in the presence of the 1D66 DNA structure62. Prior to modelling complexes, the base pair sequence of 1D66 sequence was further sorted following chromosome order by picard version 1.100 (http://picard.sourceforge.net). Genome wide Event finding and Motif discovery (GEM) version 2.41 was used to detect the positive peak and motif discovery62. Default parameters were used, except –k_min was set to 5, –k_max was set to 15, –a was set to 10,000 and –smooth was set to 3. After comparing the experimental sample with the control, the coordinate from resulted peaks were then visualized by using IGV 2.3 to confirm the accuracy66.

Bioinformatics analyses. Genomic sequences of *S. cerevisiae* S288C, *S. mikatae* IFO 1815 (AAB200000000.1), *S. kudriavzevii* IFO 1802 (AAC100000000.3), *S. paradoxus*) NRRL Y-17217 (AABY00000000.1), *L. elongisporus* NRRL YB-4239 (AAP00000000.1) were downloaded from the National Center for Biotechnology Information. *S. bayanus* CBS7001 genomic sequence is downloaded from www.SaccharomycesGenusStrictio.org. Homologues of different MalR, MalS and MalT genes were identified with local BLAST + suite. Upstream regions (~ 8000 nt from the translation start) of found homologues were used to determine possible MalR DNA-binding sites. Protein alignment and KS score calculations were performed using MEGA software (version 5.2).

References

1. Chen, S., Zhang, Y. E. & Long, M. New genes in Drosophila quickly become essential. *Science* 330, 1682–1685 (2010).
2. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. *Nat. Rev. Genet.*, 9, 938–950 (2008).
3. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. *Nat. Rev. Genet.*, 11, 97–108 (2010).
4. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. *Genome Biol.*, 3, RESEARCH0008 (2002).
5. Prince, V. E. & Pickett, F. B. Splitting pairs: the diverging fates of duplicated genes. *Nat. Rev. Genet.*, 3, 827–837 (2002).
6. Sidow, A. Gen(ome) duplications in the evolution of early vertebrates. *Curr. Opin. Genet. Dev.*, 6, 715–722 (1996).
7. Voordekers, K. et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. *PLoS Biol.*, 10, e1001446 (2012).
8. Wapinski, I., Pfeffer, A., Xu, Exp. N. & Reggey, A. Natural history and evolutionary principles of gene duplication in fungi. *Nature* 449, 54–61 (2007).
9. Zhang, J. Evolution by gene duplication: an update. *Trends Ecol. Evol.*, 18, 292–298 (2003).
10. Ohno, S. Evolution By Gene Duplication (Springer-Verlag, 1970).
11. Lynch, M. The evolutionary fate and consequences of duplicate genes. *Science*, 251, 1151–1155 (2000).
12. Teichmann, S. A. & Babu, M. M. Gene regulatory network growth by duplication. *Nat. Genet.*, 36, 492–496 (2004).
13. Teichmann, S. A., Park, J. & Chothia, C. Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. *Proc. Natl Acad. Sci. USA* 95, 14658–14663 (1998).
14. Gough, J., Karlipus, K., Hughey, R. & Chothia, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. *J. Mol. Biol.*, 313, 903–919 (2001).
15. Gu, X., Zhang, Z. & Huang, W. Rapid evolution of expression and regulatory diversities after yeast gene duplication. *Proc. Natl Acad. Sci. USA* 102, 707–712 (2005).
16. Gu, Z., Rikun, S. A., White, K. P. & Li, W.-H. Duplicate genes increase gene expression diversity within and between species. *Nat. Genet.*, 36, 577–579 (2004).
17. Baker, C. R., Hanson-Smith, V. & Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. *Science*, 342, 606–608 (2013).
18. Thompson, D. A. et al. Evolutionary principles of modular gene regulation in yeasts. *Elife* (2013), e00603 (2013).
19. Conant, G. C. & Wolfe, K. H. Functional partitioning of yeast co-expression networks after genome duplication. *PLoS Biol.*, 4, e109 (2006).
20. Tirosh, I. & Barkai, N. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. *Genome Biol.*, 8, R50 (2007).
21. Li, J.-H., Yang, J. & Friedman, J. D. Expression divergence between duplicate genes. *Trends Genet.*, 21, 602–607 (2005).
22. Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. *Science*, 309, 938–940 (2005).
23. Papp, B., Pál, C. & Hurst, L. D. Evolution of cis-regulatory elements in duplicated genes of yeast. *Trends Genet.*, 19, 417–422 (2003).
24. Hogues, H. et al. Transcription factor substitution during the evolution of fungal ribosome regulation. *Mol. Cell.*, 29, 552–562 (2008).
25. Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. *Proc. Natl Acad. Sci. USA* 104, 8605–8612 (2007).
26. Arnoult, L. et al. Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. *Science*, 339, 1423–1426 (2013).
27. Zhang, Z., Gu, J. & Gu, X. How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution? *Trends Genet.*, 20, 403–407 (2004).
28. Wapinski, I. et al. Gene duplication and the evolution of ribosomal protein gene regulation in yeast. *Proc. Natl Acad. Sci. USA* 107, 5505–5510 (2010).
29. Pérez, J. C. et al. How duplicated transcription regulators can diversify to govern the expression of nonoverlapping sets of genes. *Genes Dev.*, 28, 1272–1277 (2014).
30. Sugino, R. P. & Innan, H. Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. *Trends Genet.*, 22, 642–644 (2006).
31. Davis, J. C. & Petrov, D. A. Preferential duplication of conserved proteins in eukaryotic genomes. *PLoS Biol.*, 2, E55 (2004).
32. Seoige, C. & Wolfe, K. H. Yeast genome evolution in the post-genome era. *Curr. Opin. Microbiol.*, 2, 548–554 (1999).
33. Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient gene gene duplications. *PLoS Biol.*, 10, 725–733 (2009).
34. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. *Nature* 387, 708–713 (1997).
35. Blanc, G. & Wolfe, K. H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. *Plant Cell*, 16, 1679–1691 (2004).
36. Brown, C. A., Murray, A. W. & Verstrepen, K. J. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. *Curr. Biol.*, 20, 895–903 (2010).
37. Chow, T. H., Sollitti, P. & Marmur, J. Structure of the multigene family of MAL loci in Saccharomyces. *Mol. Gen. Genet.*, 217, 60–69 (1998).
38. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. *Cell*, 147, 1408–1419 (2011).
39. Sireno, O. I., Ni, R. & Needleman, R. B. Purification and binding properties of the Mal63p activator of *Saccharomyces cerevisiae*. *Curr. Genet.*, 27, 509–516 (1995).
40. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S. C. DNA recognition by GAl4: structure of a protein-DNA complex. Nature 356, 408–414 (1992).

41. Ronald, J., Brem, R. B., Whittle, J. & Kruglyak, L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 1, e25 (2005).

42. Tirosh, I., Reikavi, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324, 659–662 (2009).

43. Madan Babu, M. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 31, 1234–1244 (2003).

44. Stefflova, K. et al. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 154, 530–540 (2013).

45. Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. 39, 730–732 (2007).

46. Reed, R. D. et al. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).

47. Baker, C. R., Booth, L. N., Sorrells, T. R. & Johnson, A. D. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 151, 80–95 (2012).

48. Tirosh, I., Wong, K. H., Barkai, N. & Struhl, K. Extensive divergence of yeast stress responses through transitions between induced and constitutive activation. Proc. Natl Acad. Sci USA 108, 16693–16698 (2011).

49. King, M. & Wilson, A. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

50. Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. Nat. Genet. 37, 73–76 (2005).

51. Carroll, S. M., Ortlund, E. A. & Thornton, J. W. Mechanisms for the evolution of a derived function in the ancestral glucocorticoid receptor. PLoS Genet. 7, e1002117 (2011).

52. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 321, 97–101 (2006).

53. Aharoni, A. et al. The “evolvability” of promiscuous protein functions. Nat. Genet. 47, 1234–1244 (2013).

54. Gachon, C. M. M., Langlois-Meurinne, M., Henry, Y. & Saindrenan, P. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol. Biol. 58, 229–245 (2005).

55. Aharoni, A. et al. The “evolvability” of promiscuous protein functions. Nat. Genet. 47, 1234–1244 (2013).

56. Gachon, C. M. M., Langlois-Meurinne, M., Henry, Y. & Saindrenan, P. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol. Biol. 58, 229–245 (2005).

57. Kellis, M., Birren, B. W. & Lander, E. S. Proof and evolutionary analysis of network diversification. Science 321, 97–101 (2006).

58. Stormo, G. D. DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000).

59. Chan, S. K., Jaffe, L., Capovilla, M., Botas, J. & Mann, R. S. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78, 603–615 (1994).

60. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

61. Kelley, L. A. & Sternberg, M. J. E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

62. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

63. Rhee, H. S. & Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. Chapter 21, Unit 21.24 (2012).

64. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

65. Guo, Y., Mahony, S. & Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638 (2012).

66. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178–192 (2013).

Acknowledgements
K.P. acknowledges financial support from TRIPLE I and a Belspo mobility grant from the Belgian Federal Science Policy Office co-funded by the Marie Curie Actions from the European Commission. Research in the lab of K.J.V. is supported by ERC Starting Grant 241426, HFSP programme grant RGP0050/2013, VIB, EMBO YIP programme, KU Leuven Programme Financing, FWO, and IWT. A.V. acknowledges BIKEN for the FPR grant. The work of F.A.K. was supported by a grant of the HHMI International Early Career Scientist Programme (grant #55007424), the Spanish Ministry of Economy and Competitiveness (grant #BFU2012-31329) as part of the EMBO YIP programme, two grants from the Spanish Ministry of Economy and Competitiveness, “Centro de Excelencia Severo Ochoa 2013–2017 (grant #Sev-2012-0208)” and (grant #RES-2013-064004) funded by the European Regional Development Fund (ERDF), the European Union and the European Research Council (grant #335980_EinME). K.V. is supported by an FWO postdoctoral fellowship. Funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Authors contributions
K.J.V. and K.P. conceived and designed the study. K.P. performed the experiments. All authors contributed to the analysis and interpretation of the results and writing of the manuscript. K.P., R.B. and V.P. performed the ChIP-exo experiments. B.Z. analyzed the data. A.V. Modelled the MALR complexes with DNA. K.P. and F.A.K. conceived the evolutionary model and carried out corresponding bioinformatic analyses.

Additional information
Accession Codes. The sequences generated in the ChIP-exo experiment have been deposited in Gene Expression Omnibus database under the accession code GSE57902.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://www.nature.com/reprintsandpermissions/

How to cite this article: Pougach, K. et al. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nat. Commun. 5:4868 doi: 10.1038/ncomms5868 (2014).
Corrigendum: Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

Ksenia Pougach, Arnout Voet, Fyodor A. Kondrashov, Karin Voordeckers, Joaquin F. Christiaens, Bianka Baying, Vladimir Benes, Ryo Sakai, Jan Aerts, Bo Zhu, Patrick Van Dijck & Kevin J. Verstrepen

Nature Communications 5:4868 doi: 10.1038/ncomms5868 (2014); Published 10 Sep 2014; Updated 26 Feb 2015

Two affiliations for Fyodor A. Kondrashov were omitted from this Article. The correct affiliations are given below:

Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) 88 Dr. Aiguader, 08003 Barcelona, Spain.

Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.

Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, 08010 Barcelona, Spain.