RELATIVE HOFER–ZEHNDER CAPACITY AND PERIODIC ORBITS IN TWISTED COTANGENT BUNDLES

VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

Abstract. The main theme of this paper is a relative version of the almost existence theorem for periodic orbits of autonomous Hamiltonian systems. We show that almost all low levels of a function on a geometrically bounded symplectically aspherical manifold carry contractible periodic orbits of the Hamiltonian flow, provided that the function attains its minimum along a closed symplectic submanifold. As an immediate consequence, we obtain the existence of contractible periodic orbits on almost all low energy levels for twisted geodesic flows with symplectic magnetic field. We give examples of functions with a sequence of regular levels without periodic orbits, converging to an isolated, but very degenerate, minimum.

The proof of the relative almost existence theorem hinges on the notion of the relative Hofer–Zehnder capacity and on showing that this capacity of a small neighborhood of a symplectic submanifold is finite. The latter is carried out by proving that the flow of a Hamiltonian with sufficiently large variation has a non-trivial contractible one-periodic orbit, when the Hamiltonian is constant and equal to its maximum near a symplectic submanifold and supported in a neighborhood of the submanifold.

1. Introduction

In the framework of symplectic topology, Viterbo’s proof of the Weinstein conjecture, [V1], and its refinement, the almost existence theorem, are among the most important results concerning the existence of periodic orbits of autonomous Hamiltonian systems. The almost existence theorem, proved by H. Hofer and E. Zehnder, [HZ], and by M. Struwe, [St], asserts that almost all (in the sense of measure theory) regular levels of a proper C^2-smooth function on \mathbb{R}^{2n} carry periodic orbits of the Hamiltonian flow. In the last decade, these theorems have been extended to a broad class of symplectic manifolds; see, e.g., [FHV, HV1, HV2, LT, Lu1, Ma]. However, as has been noted by E. Zehnder, the almost existence theorem fails for a general symplectic manifold (see [HZ, Ze]).

In this paper, we prove a relative version of the almost existence theorem. Namely, consider a function F on a geometrically bounded symplectically aspherical manifold W, with its minimum (say, equal to zero) attained along a closed symplectic submanifold M. The relative almost existence theorem asserts that the levels $F = \epsilon$ carry contractible periodic orbits of the Hamiltonian flow of F for
almost all small $\epsilon > 0$. This result strengthens a theorem of [CGK] guaranteeing the existence of periodic orbits for a dense set of values of F near zero.

This investigation has been inspired by the existence problem for periodic orbits of twisted geodesic flows (see Section 2.3 for definitions). As an immediate consequence of the relative almost existence theorem, we obtain the existence of contractible twisted geodesics on almost all low energy levels, provided that the magnetic field is symplectic – a result strengthening or complementing numerous other results on the existence of twisted geodesics; see, e.g., [CGK, Gi2, GK1, GK2, Ke1, Lu1, Mac1, Pol2].

When M is a Morse non-degenerate minimum of F as is the case, for instance, for twisted geodesic flows, the flow has, hypothetically, a periodic orbit on every low energy level. Moreover, one can expect a certain lower bound on the number of such periodic orbits in terms of the cohomology and codimension of M. This conjecture can be thought of as a plausible generalization of the Weinstein–Moser theorem, [Mo, We]. (We refer the reader to [GK1, Ke1] for a detailed discussion of this conjecture and the proofs of certain particular cases.) The relative almost existence theorem provides further evidence supporting the conjecture.

Note that unless the minimum of F along M is assumed to be Morse–Bott non-degenerate, periodic orbits of the flow need not exist on all levels of F near the minimum. In a variety of settings, we construct Hamiltonians F such that for some sequence of regular values $\epsilon_k \to 0^+$ the levels $F = \epsilon_k$ carry no periodic orbits of the flow; see Section 2.4. In these examples, zero is an isolated, but very degenerate, critical value. Such Hamiltonians also exist on the standard cotangent bundles to spheres. These examples are obtained by combining A. Katok’s construction, [Ka, Zi], the elimination of periodic orbits as in [Gi4, GG2, Ke2], and a suitable smoothing procedure, [Se]; see Sections 2.4 and 7.

Similarly to the original almost existence theorem and to many other results of this type, the proof of the relative almost existence theorem is comprised of two steps.

The first step is showing that the flow of a Hamiltonian with sufficiently large variation has a non-trivial contractible one-periodic orbit. More precisely, we consider a Hamiltonian H supported in a neighborhood of M, constant near M, and attaining its maximum along M. Then, if the maximum is large enough, the flow has a non-trivial contractible one-periodic orbit. This is proved by showing that the Floer homology of H does not vanish for an interval of actions (a, b) with $\max H < a$ (to ensure that the orbit is non-trivial). Note that establishing the existence of non-trivial one-periodic orbits is a common first step in proving almost existence theorems. For instance, our theorem generalizes a theorem proved in [HZ]. Similar theorems, under no assumptions on W, but with some additional constraints on the normal bundle to M (e.g., that the normal bundle is trivial), have been proved in [HV2, LT, Lu2]. We also prove a (relatively easy) version of this theorem for time-dependent flows along the lines of [BPS]. Here, the orbits are still contractible, but not necessarily non-trivial.

The second step is to introduce the relative Hofer–Zehnder capacity. This capacity is defined as in [HZ], but for functions constant near M. The existence theorem for one-periodic orbits guarantees that the capacity of a small neighborhood of M relative to M is finite. The almost existence theorem follows now, exactly as in
RELATIVE HOFER–ZEHNDER CAPACITY

[HZ], from the fact that the capacity of the sets \(\{ F < \epsilon \} \) is an increasing function of \(\epsilon > 0\).

The idea to consider the relative Hofer–Zehnder capacity goes back to [La], and a number of existence results akin to those proved here can be interpreted as calculations of this capacity; see, e.g., [HV2, LT, Lu2]. Certain other versions of relative capacity have been recently introduced, [CGK, BPS, Lu2, Sc], but, to the best of our knowledge, the relative Hofer–Zehnder capacity has not been put to systematic use till now. It should be noted that it is not known whether or not this capacity differs from the original Hofer–Zehnder capacity for neighborhoods of symplectic submanifolds (see Example 2.12 and Section 6.3). Yet, in this setting, we can only establish finiteness of the relative capacity, and hence this capacity readily lends itself as a convenient tool for proving almost existence results.

The paper is organized as follows. In Section 2, we state the main results of the paper and define and briefly discuss the relative Hofer–Zehnder capacity. The version of the theorem on the existence of one-periodic orbits for time-dependent Hamiltonians is stated in Section 3. The rest of the paper is essentially devoted to the proofs. The main goal of Section 4 is to recall some background results and definitions needed for the proofs, in particular, those concerning filtered Floer homology. In Section 5, we prove the main theorems on the existence of one-periodic orbits (both the autonomous and time-dependent cases). In Section 6, we further discuss the relative Hofer–Zehnder capacity, compare it with some other capacities, and prove its properties stated in Section 2. The flows without periodic orbits on a sequence of levels are constructed in Section 7.

Acknowledgments. The authors are deeply grateful to Paul Biran, Ely Kerman, Debra Lewis, Cesar Niche, Leonid Polterovich, Felix Schlenk, and Anthony Serra for useful discussions and suggestions. The authors would also like to thank the Instituto Superior Técnico, Lisbon for its hospitality during the period when a part of this work was carried out.

2. Contractible periodic orbits of autonomous flows

In this paper we are primarily concerned with almost existence theorems. However, all known proofs of these theorems rely on first establishing the existence of one-periodic orbits for Hamiltonians with sufficiently large variation. Hence, we begin this section by stating some results of this type.

2.1. Periodic orbits of autonomous Hamiltonian systems. The main theme of this subsection is the general principle asserting that under suitable additional hypotheses a compactly supported Hamiltonian must have a fast non-trivial periodic orbit, provided that the maximum of the Hamiltonian is sufficiently large. Here, we focus on Hamiltonians supported in a neighborhood of a closed symplectic submanifold \(M\) and constrained on \(M\). Let us start with a result which holds for a relatively broad class of Hamiltonians.

Theorem 2.1. Assume that \(M\) is a closed symplectic submanifold of a geometrically bounded symplectically aspherical manifold \(W\) (see the definitions below) and \(U\) is a sufficiently small neighborhood of \(M\). Then there exists a finite constant \(C > 0\), depending on \(U\), such that for every smooth function \(H\) supported in \(U\) with \(\min_M H > C\), the Hamiltonian flow of \(H\) has a non-trivial contractible periodic orbit of period less than or equal to one.
Remark 2.2. When \(W = M \times \mathbb{R}^{2n} \), equipped with the product symplectic structure, the neighborhood \(U \) can be taken arbitrarily large but bounded. For \(W = \mathbb{R}^{2n} \), Theorem 2.1 is due to H. Hofer and E. Zehnder; see [HZ, Theorem 12, p. 183], where an explicit upper bound on the period is given in terms of the capacity of \(U \). A similar upper bound exists in terms of the relative capacity of \((U, M)\); see Remark 2.18.

Note also that it is not known whether or not the function \(H \) in Theorem 2.1 must have a contractible orbit of period exactly equal to one.

Theorem 2.1, proved in Section 6, is a soft consequence of a result which, under more restrictive assumptions on \(H \), allows one to control the actions on periodic orbits and thus distinguish trivial and non-trivial orbits and establish the existence of one-periodic orbits. To state this result, we need first to recall some definitions (including those used in Theorem 2.1) and introduce necessary notations.

For a compact subset \(Z \) of a symplectic manifold \((V, \omega)\) without boundary, denote by \(H(Z) \) the class of smooth functions \(H: V \to \mathbb{R} \) such that

- \((H0) \) \(H \) vanishes on a non-empty open set (depending on \(H \)) whose complement is compact;
- \((H1) \) \(H \) is constant on a neighborhood of \(Z \); and
- \((H2) \max_V H = H|_Z \).

When \(V \) is not compact, the condition \((H0) \) is equivalent to requiring \(H \) to have compact support. For a compact \(V \), this condition is equivalent to that \(H \) vanishes on a neighborhood of a point.

If \(V \) is a manifold with boundary and \(Z \) is disjoint from the boundary \(\partial V \), we set \(H(V, Z) = H(V \setminus \partial V, Z) \). Note that then every function \(H \in H(V, Z) \) extends to a smooth function on \(V \) vanishing near \(\partial V \).

Let \(\omega|_{\pi_2(V)} = 0 \). Recall that for a time-dependent Hamiltonian \(H: S^1 \times V \to \mathbb{R} \) the action functional on the space of smooth contractible loops is then defined as

\[
A_H(x) = -\int_{D^2} \bar{x}^* \omega + \int_{S^1} H(t, x) dt,
\]

(2.1)

where \(x: S^1 \to V \) is a contractible loop and \(\bar{x}: D^2 \to V \) is a map of a disk, bounded by \(x \).

A smooth compactly supported function \(H \) on an open subset \(U \) of \(V \) will always be regarded as a smooth compactly supported function on \(V \) by extending it as zero to \(V \setminus U \). In particular, \(H(U, Z) \subset C^\infty(V) \) when \(Z \subset U \) and, for \(H \in H(U, Z) \), the action functional \(A_H \) is defined on all contractible loops \(x \) in \(V \).

The main tool utilized in this paper to prove the existence of periodic orbits of Hamiltonian flows is Floer homology. To have the Floer homology of \(H \) defined, we need to impose some additional conditions on the ambient manifold \(V \) which will guarantee that the compactness theorem holds for \(V \). The first of these conditions is that \((V, \omega)\) is \textit{symplectically aspherical}, i.e.,

\[
\omega|_{\pi_2(V)} = 0 \quad \text{and} \quad c_1(TV)|_{\pi_2(V)} = 0.
\]

Furthermore, since \(V \) is not assumed to be compact, we need a way to control the geometry of \(V \) at infinity. One standard way to do this is to require the manifold to be convex at infinity. However, this requirement is not met in general by twisted cotangent bundles which serve as one of the motivating examples for this investigation. Hence, we impose a slightly weaker condition and require the
manifold to be geometrically bounded. Although the precise definition is immaterial for what follows, we will recall it for the sake of completeness.

Definition 2.3. A symplectic manifold \((W, \omega)\) is said to be *geometrically bounded* if \(W\) admits an almost complex structure \(J\) and a complete Riemannian metric \(g\) such that

- \(J\) is uniformly \(\omega\)-tame, i.e., for some positive constants \(c_1\) and \(c_2\) we have
 \[
 \omega(X, JX) \geq c_1 \|X\|^2 \quad \text{and} \quad |\omega(X, Y)| \leq c_2 \|X\| \|Y\|
 \]
 for all tangent vectors \(X\) and \(Y\) to \(W\).
- The sectional curvature of \((W, g)\) is bounded from above and the injectivity radius of \((W, g)\) is bounded away from zero.

We refer the reader to Chapters V (by J.-C. Sikorav) and X (by M. Audin, F. Lalonde, and L. Polterovich) in [AL] and to [CGK, Lu1] for a discussion of the concept of geometrically bounded manifolds. Here we only mention that among these manifolds are compact manifolds, manifolds convex at infinity (e.g., \(\mathbb{C}^n\)), and twisted cotangent bundles.

In what follows, we will always denote a geometrically bounded symplectically aspherical manifold by \(W\), while \(V\) will stand for a general symplectic manifold. Likewise, \(M\) will denote a closed (symplectic, in many instances) submanifold of \(W\) or \(V\) and \(Z\) will be just a compact subset.

Now we are in a position to state the main technical result of this section which is the key to the proof of Theorem 2.1 and to the relative almost existence theorem discussed later.

Theorem 2.4. Assume that \(M\) is a closed symplectic submanifold of a geometrically bounded symplectically aspherical manifold \(W\) and \(U\) is a sufficiently small neighborhood of \(M\). Then there exists a finite constant \(C > 0\), depending on \(U\), such that for every \(H \in \mathcal{H}(U, M)\) with \(\max H > C\) the Hamiltonian flow of \(H\) has a non-trivial contractible one-periodic orbit with action greater than \(\max H\).

This theorem will be proved in Section 5.

Remark 2.5. When \(W = M \times \mathbb{R}^{2n}\), equipped with the product symplectic structure, in Theorem 2.4, as in Theorem 2.1, the neighborhood \(U\) can be taken arbitrarily large but bounded. The proof of Theorem 2.4 gives also an upper bound on the value of the constant \(C\) (see Theorem 5.1). Namely, it is sufficient to take \(C = \pi R^2\), where \(R\) is the radius of a symplectic tubular neighborhood of \(M\) containing \(U\); see Section 4.1 for the definition. Note also that the constant \(C\) in Theorem 2.1 can be taken the same as in Theorem 2.4. Furthermore, the function \(H\) from Theorem 2.4 must have non-trivial periodic orbits for every period \(T \geq 1\). (Indeed, the orbits of period \(T \geq 1\) for \(H\) are exactly one-periodic orbits for the function \(T \cdot H\) which clearly satisfies the hypotheses of the theorem.)

Example 2.6. Let \(W = \mathbb{R}^{2n}\) be equipped with the standard symplectic structure. Then \(M\) is necessarily a point. In this case, Theorem 2.4 is established by H. Hofer and E. Zehnder in [HZ] under the additional assumption that \(H\) is non-negative.

When the normal bundle to \(M\) in \(W\) is trivial, a result similar to Theorem 2.4 was proved by H. Hofer and C. Viterbo by a different method, [HV1]. In [HV2], the manifold \(W\) need not be symplectically aspherical, but the function \(H\) is required to be non-negative.
Remark 2.7. In Theorem 2.4 and in the almost existence theorems stated below, the assumptions that W is geometrically bounded and symplectically aspherical appear to be superfluous. When $H \geq 0$, it should be possible to prove a version of the theorem without these assumptions, e.g., by utilizing the methods of [HV2, LT, Lu1]. (Some preliminary results in this direction have been obtained by E. Kerman, [Ke3], and L. Macarini, [Mac2].) However, we feel that the Floer homology proof given here is of interest by itself (even for $W = \mathbb{R}^{2n}$, at least because it allows one to eliminate the assumption $H \geq 0$) and this argument may have some other applications.

As stated, Theorem 2.4 does not hold when the assumption (H1) that H is constant near M is replaced by the less restrictive assumption that H is constant on M; see Example 5.4. However, the hypotheses of Theorem 2.4 can be replaced by the weaker condition $\min_M H > C$, as Theorem 2.1 indicates, at the cost of loosing control of the value of the action (and, to some extent, of the period of the orbit). Then, the flow still has a non-trivial contractible periodic orbit with period not exceeding one, but the action on this orbit does not have to be greater than or equal to $\max H$.

Furthermore, as will be clear from the proof, the assumption (H1) can be replaced by that all partial derivatives of H at M vanish up to fourth order. One can also allow H to be time-dependent. In this case, we need to require $H_t, t \in [0, 1]$, to be periodic in time and belong to the class $\mathcal{H}(U, M)$ for every t, and the maximum of H has to be independent of time. It is not clear whether or not this last condition can be relaxed.

Finally note that Theorem 2.4 does not extend to arbitrarily large bounded neighborhoods of M if periodic orbits are still required to be contractible; see Example 2.20.

2.2. Relative Hofer–Zehnder capacity and almost existence. A relative version of the Hofer–Zehnder capacity can be defined in variety of ways depending on whether or not (and how) the homotopy class of an orbit is incorporated into the definition.

2.2.1. Relative Hofer–Zehnder capacity. The simplest definition of the capacity imposes no requirement on the homotopy class of periodic orbits.

Let (V, ω) be a symplectic manifold. A non-trivial periodic orbit of a Hamiltonian flow on V will be called fast if the orbit has period less than or equal to one. When the period is greater than one we will call the periodic orbit slow. The next definition, in which we follow [La], is the key to deriving the almost existence theorem from Theorem 2.4.

Definition 2.8. Let Z be an arbitrary compact non-empty subset of V. The relative Hofer–Zehnder capacity $c_{HZ}(V, Z) \in (0, \infty]$ is defined as

$$c_{HZ}(V, Z) = \sup_{H \in \mathcal{H}(V, Z)} \{\max_H \mid \text{all non-trivial periodic orbits of } H \text{ are slow}\}.$$

When the dependence of this capacity on ω is essential, we will use the notation $c_{HZ}(V, Z, \omega)$.

Thus, a function $H \in \mathcal{H}(V, Z)$ with $\max H > c_{HZ}(V, Z)$ must have a non-trivial fast periodic orbit.
As we have pointed out above, the assumptions (H1) and (H2) in the definition of the class $\mathcal{H}(V, Z)$ can be replaced by the weaker conditions. Namely, for $C > 0$, set

$$\tilde{\mathcal{H}}_C(V, Z) = \{ H \in C^\infty(V) \mid H \text{ satisfies (H0) and } \min_Z H > C \}.$$

Theorem 2.9.

1. $c_{HZ}(V, Z) = \inf C$, where the infimum is taken over $C > 0$ such that every $H \in \tilde{\mathcal{H}}_C(V, Z)$ has a non-trivial fast periodic orbit.
2. The capacity $c_{HZ}(V, Z)$ does not change when functions in $\mathcal{H}(V, Z)$ or $\tilde{\mathcal{H}}_C(V, Z)$ are required to be non-negative.

The proof of this theorem, nearly identical to the proof of Theorem 2.1, will be given in Section 6.

Corollary 2.10. $c_{HZ}(V, \text{point})$ is equal to $c_{HZ}(V)$, the standard Hofer–Zehnder capacity of V (see [HZ] for the definition).

The main point of this corollary is that the conditions on the function H in the definition of the standard Hofer–Zehnder capacity can be relaxed, [HZ, p. 70]. Namely, it is not necessary to assume that H vanishes on an open set (rather at one point) or that H attains its maximal value on the complement to a compact set (only that H is constant outside a compact set). Strangely, this fact is not mentioned in [HZ] although all the ingredients needed for the proof are already there.

The properties of the relative capacity are summarized in the following

Theorem 2.11.

1. [Invariance]. The relative capacity c_{HZ} is an invariant of symplectomorphisms.
2. [Monotonicity]. Let $Z' \subset Z \subset V \subset V'$. Then $c_{HZ}(V, Z) \leq c_{HZ}(V', Z')$. In particular, $c_{HZ}(V, Z) \leq c_{HZ}(V)$.
3. [Homogeneity]. $c_{HZ}(V, Z, a\omega) = a c_{HZ}(V, Z, \omega)$, for any constant $a > 0$.
4. [Normalization]. Assume that M is a closed symplectic submanifold of a geometrically bounded symplectically aspherical manifold W and let U_r be a symplectic tubular neighborhood of M in W of radius $r > 0$ (see Section 4.1 for the definition). Then $c_{HZ}(U_r, M) = \pi r^2$.

Here all assertions, but the last one, are obvious. Regarding the normalization assertion, we note that Theorem 2.4 and Remark 2.5 give the upper bound $c_{HZ}(U_r, M) \leq \pi r^2$. On the other hand, it is straightforward to construct, for any positive $m < \pi r^2$, a function $H \in \mathcal{H}(U_r, M)$ with $\max H = m$ having no fast periodic orbits. This shows that $c_{HZ}(U_r, M) \geq \pi r^2$ and, thus, proves the last assertion.

A number of results on the Weinstein conjecture can be interpreted as calculations of the relative Hofer–Zehnder capacity.

Example 2.12. Let M be a compact symplectic manifold and $W = M \times \mathbb{C}^n$. Let $U_r = M \times B^{2n}_r$, where B^{2n}_r is the ball of radius $r > 0$ in \mathbb{C}^n. Then, as has been established in [HV2],

$$c_{HZ}(U_r, M) = \pi r^2,$$

provided that $r > 0$ is small enough. If $\omega|_{\tau M} = 0$, this holds for any $r > 0$. Note also that when W is symplectically aspherical, this can be proved similarly to
the last assertion of Theorem 2.11. Furthermore, when $\omega|_{\pi_2(M)} = 0$, we also have $c_{HZ}(U_r) = \pi r^2$ as is proved in [FHV, Ma]. Hence, in this case, $c_{HZ}(U_r, M) = \pi r^2 = c_{HZ}(U_r)$. We also refer the reader to [LT, Lu1] for further results in this direction.

Example 2.13. In general, the relative capacity $c_{HZ}(V, Z)$ need not be equal to the capacity $c_{HZ}(V)$. For example, $c_{HZ}(V, Z) < c_{HZ}(V)$ whenever $c_{HZ}(V) < \infty$ and Z is the closure of an open subset of V; see Section 6.2 and, in particular, Proposition 6.4. Furthermore, it appears that the two capacities may differ for small neighborhoods of a Lagrangian submanifold Z.

2.2.2. Almost existence

As for the ordinary Hofer–Zehnder capacity, the finiteness of relative capacity implies almost existence of periodic orbits:

Theorem 2.14 (Relative almost existence theorem). Assume that $c_{HZ}(V, Z) < \infty$ and let $H: V \to \mathbb{R}$ be a proper smooth function constant on Z and such that $H|_Z = \min H$. Then for almost all (in the sense of measure theory) regular values c in the range of H, the level $H = c$ carries a periodic orbit.

The proof of this theorem, omitted here, is identical to the proof of the standard almost existence theorem, see [HZ, Section 4.2]. We will further discuss the almost existence theorem and some elements of its proof in Section 6.2.

The notion of capacity considered above does not allow one to control the homotopy class of periodic orbits. There are a number of ways to deal with this shortcoming; see [BPS, Sc]. Here we take an alternative approach by restricting our attention to a collection of subsets of a fixed symplectic manifold V. The resulting notion which henceforth we refer to as the restricted relative Hofer–Zehnder capacity, even though lacking the flexibility of the capacities introduced in [BPS, Sc], is very simple and sufficient for our purpose to detect periodic orbits contractible in the ambient manifold V.

2.2.3. Restricted Hofer–Zehnder capacity

Let, as above, (V, ω) be a symplectic manifold, Z a compact subset of V, and U an open subset of V containing Z.

Definition 2.15. The restricted relative Hofer–Zehnder capacity

$$\bar{c}_{HZ}(U, Z) \in (0, \infty]$$

is defined as $\sup \max H$, where the supremum is taken over $H \in H(U, Z)$ such that all non-trivial, contractible in V, periodic orbits of H are slow. When the dependence of the restricted capacity on ω is essential, we will use the notation $\bar{c}_{HZ}(U, Z, \omega)$.

By definition, the restricted capacity is an invariant of (U, Z) with respect to symplectomorphisms of the ambient manifold V. Furthermore, it is clear that

$$c_{HZ}(U, Z) \leq \bar{c}_{HZ}(U, Z)$$

and

$$c_{HZ}(U, Z) = \bar{c}_{HZ}(U, Z) \quad \text{if } U \text{ is simply connected.}$$

Assume now that the ambient manifold is geometrically bounded and symplectically aspherical. In accordance with our conventions, we denote it by W.

Theorem 2.16. Theorems 2.9, 2.11, and 2.14 hold, with obvious modifications (e.g., V replaced by U), for the restricted relative Hofer–Zehnder capacity. In particular,

$$c_{HZ}(U_r, M) = \pi r^2 = \bar{c}_{HZ}(U_r, M),$$ \hspace{1cm} (2.2)
RELATIVE HOFR-ZEHNDER CAPACITY

when M is a closed symplectic submanifold of a geometrically bounded symplectically aspherical manifold W. In the almost existence theorem, the flow of H has contractible in W non-trivial periodic orbits on the level $H = c$ for almost all regular values c in the range of H.

This result can be easily verified by scrutinizing the proofs of Theorems 2.9, 2.11, and 2.14. The normalization assertion, i.e., (2.2), readily follows from the fact that Theorem 2.4 guarantees the existence of contractible periodic orbits.

As a consequence, we have

Corollary 2.17. Let M be a closed symplectic submanifold of W and let $H : W \rightarrow \mathbb{R}$ attain its absolute minimum $H = 0$ on M. Then the levels $H = \epsilon$ carry contractible in W periodic orbits for almost all small $\epsilon > 0$.

This corollary generalizes a theorem of [CGK] where the existence of periodic orbits is established for a dense set of small $\epsilon > 0$. Note also that another version of an almost existence theorem for convex manifolds (also using the notion of relative capacity) has been recently proved in [FS].

Remark 2.18. As in [HZ], it is easy to see that the constant in Theorem 2.1 is in fact equal to $\bar{c}_{HZ}(U, M)$ and there exists a contractible orbit of period no greater than $\min_M H / \bar{c}_{HZ}(U, M)$. (When the orbits are not required to be contractible, one should replace $\bar{c}_{HZ}(U, M)$ by $c_{HZ}(U, M)$.)

2.3. Application: the motion of a charge in a magnetic field. Let M be a closed Riemannian manifold and let σ be a closed two-form (magnetic field) on M. Equip $W = T^*M$ with the twisted symplectic structure $\omega = \omega_0 + \pi^*\sigma$, where ω_0 is the standard symplectic form on T^*M and $\pi : T^*M \rightarrow M$ is the natural projection. It is known that (W, ω) is geometrically bounded for any σ. (We refer the reader to [AL, CGK, Lu1] for a discussion of this question.) Finally, let H be the standard kinetic energy Hamiltonian on T^*M. The Hamiltonian flow of H on W, called a twisted geodesic flow, is of interest because it describes, for example, the motion of a charge on M in the magnetic field σ.

In this setting, as a particular case of Corollary 2.17, we have

Corollary 2.19. Assume that (M, σ) is symplectically aspherical. Then for almost all small $\epsilon > 0$, the energy level $H = \epsilon$ carries a periodic orbit whose projection to M is contractible.

Example 2.20. Let M be a closed surface with a metric of constant curvature equal to -1 and let σ be the area form on M. All orbits of the twisted geodesic flow on the levels $H = \epsilon$ are periodic and contractible in T^*M for $0 < \epsilon < 1/2$; for $\epsilon = 1/2$, the level carries no periodic orbits; and for $\epsilon > 1/2$ the flow is smoothly equivalent to the geodesic flow on the unit cotangent bundle ST^*M. In particular, the levels $H = \epsilon$ with $\epsilon > 1/2$ carry no periodic orbit with contractible projections to M. (We refer the reader to, e.g., [Gi2] for proofs of these standard facts and further references.) As a consequence, we see that Corollary 2.19 does not extend to large values of ϵ as long as the orbits are required to have contractible projections. Likewise, Theorem 2.4 for contractible orbits does not extend to arbitrarily large bounded neighborhoods of M. Furthermore, set $W_\epsilon = \{ H < \epsilon \}$. Now, it is easy to see from Theorem 2.4 that $c_{HZ}(W_\epsilon, M) = \bar{c}_{HZ}(W_\epsilon, M) < \infty$ as long as $0 < \epsilon < 1/2$. For $\epsilon > 1/2$, we have $\bar{c}_{HZ}(W_\epsilon, M) = \infty$ and it is not known if $c_{HZ}(W_\epsilon, M)$ is still finite.
Corollary 2.19 strengthens or complements a number of other results on periodic orbits of twisted geodesic flows. Under the hypotheses of the corollary, the existence of a dense set of low energy levels with contractible periodic orbits has been proved in [CGK]. It is also known that when σ is symplectic, but under no assumptions on $\pi_2(M)$, there exists a sequence of energy values $\epsilon_k \to 0$ such that the levels $H = \epsilon_k$ carry contractible periodic orbits, [GK2]. The same is true for any $\sigma \neq 0$, provided that $\pi_2(M) = 0$, [Mac1, Pol2]. When M is a torus, periodic orbits (not necessarily contractible, e.g., if $\sigma = 0$) exist on almost all energy levels for any σ. In fact, in this case the ordinary Hofer–Zehnder capacity of any bounded domain is finite; see, e.g., [GK1] and references therein, cf. [Ji]. This is also true for the restricted Hofer–Zehnder capacity of small neighborhoods of M, when $\sigma \neq 0$ is exact and $\pi_2(M) = 0$, [FS].

Furthermore, under suitable additional conditions, every low energy level admits a number of periodic orbits when σ is symplectic. We refer the reader to [GK1, Ke1] for some recent results and to, e.g., the survey [Gi2] and references therein for a discussion of the results obtained prior to 1995.

Corollary 2.19 and the results quoted above suggest that conjecturally, for any closed σ, every low energy level $H = \epsilon$ carries a periodic orbit. However, this conjecture cannot be established by purely symplectic topology methods: one should make use, in an essential way, of the fact that H is convex along the fibers, as the the results of the next subsection indicate.

2.4. Counterexamples. We start with an example showing that in Corollary 2.17, already for $W = \mathbb{R}^{2n}$, one cannot expect to have periodic orbits on all levels of H unless the minimum of H is non-degenerate. Note that in the non-degenerate case every low energy level $H = \epsilon$ carries at least n distinct periodic orbits. This is the Weinstein–Moser theorem; see [Mo, We].

Proposition 2.21. For $2n \geq 6$, there exists a proper C^∞-function $H : \mathbb{R}^{2n} \to \mathbb{R}$ whose only critical point is the origin, where H has an absolute minimum (say, $H(0) = 0$), and such that the levels $H = \epsilon_k$ carry no periodic orbits for some sequence of regular values $\epsilon_k \to 0$. The levels $H = \epsilon_k$ are isotopic to the standard sphere in \mathbb{R}^{2n}. When $2n = 4$, there is a C^2-smooth function with these properties.

The construction of H as well as the constructions of the other two counterexamples below will be given in Section 7.

Remark 2.22. The function H has a very degenerate (flat) minimum at the origin. One can also modify the construction of H so that H has two critical sets: a non-degenerate minimum $H(0) = 0$ and a critical set $H = \epsilon > 0$, diffeomorphic to S^{2n-1}, and $\epsilon_k \to \epsilon$. These results were stated in [Gi5] without proof.

The next counterexample concerns Hamiltonian flows on T^*S^n with the standard symplectic structure.

Proposition 2.23. For $n \geq 3$, there exists a C^∞-function $H : T^*S^n \to \mathbb{R}$ attaining its absolute minimum $H = 0$ at the zero section and such that for some sequence of regular values $\epsilon_k \to 0$ the levels $H = \epsilon_k$ carry no periodic orbits of the Hamiltonian flow of H with respect to the standard symplectic structure ω_0 on T^*S^n. The zero section is the only critical set of H and the levels $H = \epsilon_k$ are isotopic to the unit cotangent bundle ST^*S^n. When $n = 2$, there exists a C^2-smooth function with
these properties. Moreover, the same is true for some exact non-zero magnetic field σ on S^n, $n \geq 2$.

This proposition shows that in the results of [HV1, Vi3] concerning the Weinstein conjecture in the cotangent bundles the contact type condition cannot, in general, be omitted.

Finally, let us turn to magnetic flows for non-degenerate magnetic fields. Let σ be the standard symplectic form on $M = \mathbb{CP}^n$ and, as above, $\omega = \omega_0 + \pi^*\sigma$ the twisted symplectic form on $W = T^*\mathbb{CP}^n$.

Proposition 2.24. The assertions of Proposition 2.23 hold when (T^*S^n, ω_0) is replaced by $(T^*\mathbb{CP}^n, \omega)$ with a C^∞-smooth Hamiltonian H for $n \geq 2$ and a C^2-smooth Hamiltonian for $n = 1$.

Remark 2.25. In this example, M is not symplectically aspherical. It appears plausible that similar examples exist for symplectically aspherical manifolds.

Remark 2.26. As in Proposition 2.21, the function H in Propositions 2.23 and 2.24 has a very degenerate (flat) minimum along the zero section.

3. Time-dependent Hamiltonian flows

So far we have been concentrating on the existence problem for non-trivial periodic orbits of autonomous Hamiltonians. The main technical tool in our dealing with this problem has been Theorem 2.4 which guarantees that an independent of time Hamiltonian $H \in \mathcal{H}(W, M)$ with sufficiently large variation has a non-trivial contractible one-periodic orbit.

An analogue of this result holds for periodic in time Hamiltonians. In this setting, inspired by Arnold’s conjecture, the requirement that the orbit be non-trivial appears to make little sense. Furthermore, once this requirement is dropped, the existence result can be established under conditions much less restrictive than in Theorem 2.4. Below we prove only the simplest version of the theorem one can expect to hold for time-dependent Hamiltonians (see Remark 5.3), for our goal is to emphasize the difference between the autonomous and time-dependent cases rather than to analyze the time-dependent case in detail.

Let, as in Section 2, W be a geometrically bounded symplectically aspherical manifold and let M be a closed symplectic submanifold of W. Consider a one-periodic in time Hamiltonian $H: S^1 \times W \to \mathbb{R}$ supported in $S^1 \times U$, where U is an open set containing M. Then, along the lines of [BPS], we have the following analogue of Theorem 2.4:

Theorem 3.1. Assume that U is a sufficiently small neighborhood of M. Then for every $H \geq 0$ supported in $S^1 \times U$ and such that $\min_{S^1 \times M} H > 0$, the Hamiltonian flow of H has a contractible one-periodic orbit with positive action. If the periodic orbits of H with positive action are non-degenerate, the number of these orbits is no less than the sum of Betti numbers of M with \mathbb{Z}_2 coefficients.

This theorem is an immediate consequence of the following

Theorem 3.2. Assume that U is a sufficiently small neighborhood of M and let $H \geq 0$, supported in $S^1 \times U$, be such that $\min_{S^1 \times M} H > 0$. Then, for every small $a > 0$, there exists an epimorphism $HF^{[a, \infty)}(H) \to H_*(M; \mathbb{Z}_2)$.
Theorem 3.2 will be proved in Section 5.

Theorem 3.1 holds under much weaker hypotheses than its autonomous counterpart, Theorem 2.4. However, the trade-off is that Theorem 3.1 cannot guarantee the existence of non-trivial periodic orbits. As is well known, for any C^2-small autonomous Hamiltonian H, one-periodic orbits of the flow of H are trivial (cf. the construction in Example 5.4 with $c > 0$ small). Moreover, in sharp contrast with Theorem 2.4, even when M is a point in the setting of Theorem 3.1, there exists a Hamiltonian H with arbitrarily large $\min_{S^1 \times M} H$ such that all its positive actions are arbitrarily small (see Example 5.5). In other words, the value of a in Theorem 3.2 cannot be expressed in terms of $\min_{S^1 \times M} H$ only. Furthermore, Example 5.5 also shows that there exists a compactly supported Hamiltonian H (not satisfying $H \geq 0$) such that $\min_{S^1 \times M} H$ is arbitrarily large but all the action values for H are non-positive and the time-one flow of H is non-trivial. These examples demonstrate that for a small neighborhood of M the relative symplectic capacities introduced in [BPS] are trivial.

Further comparing Theorems 3.1 and 3.2 with the results of [BPS] note that when M is a Lagrangian submanifold and the orbits are sought in a non-trivial homotopy class α, the assumption $\min_{S^1 \times M} H > C_\alpha > 0$ from [BPS] is clearly logical and necessary. However, when the orbits looked for are contractible the role of the condition $\min_{S^1 \times M} H > 0$ is less apparent, in particular, if the requirement that the action is positive replaced by that the action is non-zero. More specifically, it is possible that the first assertion of Theorem 3.1 still holds when $H \geq 0$, but the condition that $\min_{S^1 \times M} H > 0$ is replaced by the requirement that H is not identically zero. When W is convex, this can be proved using the monotonicity of the Schwarz action selector (cf. [FS, Sc]). When H is not assumed to be non-negative, the assumption that the time-one flow of H is non-trivial should be added and in this case one should look for the orbits with non-zero action. This would lead to a partial generalization of theorem of C. Viterbo, [Vi2]. (Note that when $H \geq 0$ is not identically zero, the time-one flow is non-trivial, at least when the symplectic manifold is exact, since the Calabi invariant of the flow is positive; see [McDS].) For convex manifolds, this version of Viterbo’s theorem has been proved in [FS]. However, the methods of [FS] heavily rely on a somewhat different definition of Floer homology, making use of convexity and resulting in the homology defined for all intervals of actions. This approach does not readily extend to geometrically bounded symplectic manifolds.

4. Preliminaries

4.1. Symplectic tubular neighborhoods. Let M be a compact symplectic submanifold of a symplectic manifold (V, ω). Denote by $E \to M$ the symplectic normal bundle to M. Recall that a neighborhood of the zero section in E has a natural symplectic structure ω_E. Moreover, on this neighborhood, there exists a fiberwise quadratic Hamiltonian whose flow is periodic. This can be seen as follows.

Let us equip E with a Hermitian metric compatible with the fiberwise symplectic structure on E and denote by $\rho: E \to \mathbb{R}$ the square of the fiberwise norm, i.e., $\rho(z) = \|z\|^2$. Recall that E has a canonical fiberwise one-form whose differential is the fiberwise symplectic form. (The value of this form at $z \in E$ is equal to the

1The authors are grateful to Leonid Polterovich for this remark.
contraction of the fiberwise symplectic form with z.) Fixing a Hermitian connection on E, we extend this fiberwise one-form to a genuine one-form θ on E. Then the form

$$\omega_E = \frac{1}{2}d\theta + \sigma$$

is symplectic on a neighborhood of the zero section in E. Here we have identified $\sigma = \omega|_M$ with its pull-back to E. By the symplectic neighborhood theorem, the neighborhood $\{\rho < r^2\}$ of M in (E, ω_E) is symplectomorphic to a neighborhood of M in (V, ω) for some $r > 0$. From now on, we denote this neighborhood by U_r, assume the identification of $\{\rho < r^2\}$ and U_r, and refer to U_r together with this identification as a symplectic tubular neighborhood of M in V of radius r. In particular, in what follows, $\omega = \omega_E$ and ρ is regarded as a function on a neighborhood of M in V. Sometimes, we will write $\rho(x)$ as $\|x\|^2$.

It is not hard to see that all orbits of the Hamiltonian flow of the function $\frac{1}{2}\rho: E \to \mathbb{R}$ are periodic with period 2π, just as for the square of the standard norm on \mathbb{R}^{2n}. This fact will be essential for the calculation of the Floer homology of a small tubular neighborhood of M in V.

4.2. Floer homology. In this section, we will recall a few facts concerning Floer homology needed for the proofs. The reader interested in a detailed treatment of this material should consult the Floer’s papers [Fl1, Fl2, Fl3] or, for example, [HZ, Sa] for a general introduction to Floer homology, and [BPS, CFH, CFHW, CGK, FH, FHW] for the definition and properties of symplectic homology.

4.2.1. The definition of filtered Floer homology. Let, as in Section 2, (W, ω) be a geometrically bounded symplectically aspherical manifold. Denote by \mathcal{H} the space of smooth, compactly supported Hamiltonians $H: S^1 \times W \to \mathbb{R}$. To each $H \in \mathcal{H}$, we associate the action functional A_H, defined by (2.1), on the space of smooth contractible loops in W. The critical points $\mathcal{P}(H)$ of A_H are exactly contractible one-periodic orbits of the time-dependent Hamiltonian flow of H. The set of critical values of A_H is called the action spectrum of H and we denote it by $S(H) = \{A_H(x) \mid x \in \mathcal{P}(H)\}$.

It is known that $S(H)$ is compact and nowhere dense in \mathbb{R}, [HZ, Sc].

The Floer homology of H for a certain interval of actions is the homology of the (relative) Morse complex of A_H on the space of all contractible loops. However, when W is not compact, every point in the complement of $\text{supp } H$ is a degenerate one-periodic orbit, i.e., a critical point of A_H, with zero action. To avoid this set, we will only consider the homology generated by the contractible one-periodic orbits with action in an interval that does not contain zero.

To make this description more precise, let us first recall, following [CFH], the definition of the Floer homology $\text{HF}^{(a,b)}(H)$ for the negative range of actions $a < b < 0$. For a fixed $a < 0$ such that $a \notin S(H)$, let

$$\mathcal{P}^a(H) = \{x \in \mathcal{P}(H) \mid A_H(x) < a\}.$$

Assume first that H satisfies the following condition:

Every one-periodic orbit $x \in \mathcal{P}^a(H)$ is nondegenerate. (4.1)
Since $c_1(TM)|_{\pi_2(M)} = 0$, the elements of $\mathcal{P}^a(H)$ are graded by the Conley-Zehnder index μ_{CZ} (see, e.g., [Sa]) and the Floer complex of H for actions less than a is the graded \mathbb{Z}_2-vector space

$$\text{CF}^a(H) = \bigoplus_{x \in \mathcal{P}^a(H)} \mathbb{Z}_2 x.$$

Note that for the action functional (2.1), the Hamiltonian vector field X_H is given by $dH = -i_{X_H} \omega$ (differing by sign from the Hamiltonian vector field in, say, [Sa]) and the direction of X_H effects the sign of Conley–Zehnder indices.

To define the Floer boundary operator, we first fix an almost complex structure J_{gb} for which (W, ω) is geometrically bounded as in [CGK]. Let \mathcal{J} be the set of smooth t-dependent ω-tame almost complex structures which are ω-compatible near $\text{supp}(H)$ and are equal to J_{gb} outside some compact set. Each $J \in \mathcal{J}$ gives rise to a positive–definite bilinear form on the space of contractible loops in W. We can then consider the moduli space $\mathcal{M}(x, y, H, J)$ of downward gradient-like trajectories of A_H which go from x to y and have finite energy. For a dense subset, $\mathcal{J}_{\text{reg}}(H) \subset \mathcal{J}$, each moduli space $\mathcal{M}(x, y, H, J)$ is a smooth manifold of dimension $\mu_{\text{CZ}}(x) - \mu_{\text{CZ}}(y)$.

As usual, the Floer boundary operator is then defined by

$$\partial^{H,J} x = \sum_{y \in \mathcal{P}^a(H) \text{ with } \mu_{\text{CZ}}(x) - \mu_{\text{CZ}}(y) = 1} \tau(x, y) y,$$

where $\tau(x, y)$ stands for the number (mod 2) of elements in $\mathcal{M}(x, y, H, J)/\mathbb{R}$ and \mathbb{R} acts (freely) by translation on the gradient-like trajectories. The operator $\partial^{H,J}$ satisfies $\partial^{H,J} \circ \partial^{H,J} = 0$ and the resulting Floer homology groups $\text{HF}^a(H)$ are independent of the choice of $J \in \mathcal{J}_{\text{reg}}(H)$.

Remark 4.1. Since (W, ω) with J_{gb} is geometrically bounded and H is compactly supported, there is a uniform C^0-bound for the elements of $\mathcal{M}(x, y, H, J)$ (see, for example, Chapter V in [AL]). Hence, the compactness of the appropriate moduli spaces follows by the usual arguments. It is unclear whether or not $\text{HF}^a(H)$ depends on the choice of J_{gb}. It is independent of this choice if the set of almost complex structures for which W is geometrically bounded is connected.

For any pair $a < b$, set

$$\mathcal{H}^{a,b} = \{ H \in \mathcal{H} \mid a, b \notin S(H) \}.$$

Assume that H has property (4.1) for b (and hence for a). (Note that this can only happen when $a < b < 0$.) Then the complexes $\text{CF}^a(H)$ and $\text{CF}^b(H)$ are defined and $\text{CF}^a(H)$ is a subcomplex of $\text{CF}^b(H)$. By definition, $\text{HF}^{[a,b]}(H)$ is the homology of the quotient complex $\text{CF}^{[a,b]}(H) = \text{CF}^b(H)/\text{CF}^a(H)$ with the induced boundary operator.

The set $\mathcal{H}^{a,b}$ is open in \mathcal{H} with respect to the strong Whitney C^∞-topology. Moreover, in each component of $\mathcal{H}^{a,b}$, the functions with the property (4.1) holding for b form a dense set. For any function $H \in \mathcal{H}^{a,b}$, we define the Floer homology $\text{HF}^{[a,b]}(H)$ as $\text{HF}^{[a,b]}(K)$ where K is a small perturbation of H such that $K \in \mathcal{H}^{a,b}$ and K satisfies (4.1) for b. A version of Floer’s continuation then shows that $\text{HF}^{[a,b]}(K)$ is independent of K as long as K is close to H. Hence, $\text{HF}^{[a,b]}(H)$ is well defined.
When $0 < a < b$, the condition (4.1) for a or b is never satisfied and we adopt a different, and more naive, approach to the definition of Floer homology. Namely, we simply work with the complex generated by periodic orbits with action in (a, b). To be more precise, assume that $H \in \mathcal{H}^{a,b}$ and let

$$
\mathcal{P}^{a,b}(H) = \{ x \in \mathcal{P}(H) \mid a < A_H(x) < b \}.
$$

Also, let us temporarily assume that the following condition holds:

Every one-periodic orbit $x \in \mathcal{P}^{a,b}(H)$ is nondegenerate. (4.3)

Consider the \mathbb{Z}_2-vector space

$$
\text{CF}^{[a,b)}(H) = \bigoplus_{x \in \mathcal{P}^{a,b}(H)} \mathbb{Z}_2 x
$$

graded by the Conley–Zehnder index. The differential $\partial^{H,J}$ is defined similarly to (4.2), but with summation extending only to $y \in \mathcal{P}^{a,b}$. As before, $\partial^{H,J} = 0$, and we set $\text{HF}^{[a,b)}(H)$ to be the cohomology of the resulting complex. Since the functions satisfying (4.3) for $a < b$ are dense in $\mathcal{H}^{a,b}$, a small perturbation argument as above allows us to define $\text{HF}^{[a,b)}(H)$ for any $H \in \mathcal{H}^{a,b}$.

Note that this construction can also be used when $a < b < 0$ and in this case the two definitions lead to the same complex $\text{CF}^{[a,b)}(H)$.

The behavior of Floer homology when the interval of actions is shrunk is described by a long exact sequence. Namely, assume that $a < b < c$, none of these points is in $\mathcal{S}(H)$, and $0 \not\in [a, c]$. Then we have the exact sequence

$$
\ldots \rightarrow \text{HF}^{[a,b)}_*(H) \rightarrow \text{HF}^{[a,c)}_*(H) \rightarrow \text{HF}^{[b,c)}_*(H) \rightarrow \text{HF}^{[a,b)}_{*+1}(H) \rightarrow \ldots .
$$

Indeed, for either of the above definitions of the Floer complex, we obviously have the exact sequence of complexes

$$
0 \rightarrow \text{CF}^{[a,b)}(H) \rightarrow \text{CF}^{[a,c)}(H) \rightarrow \text{CF}^{[b,c)}(H) \rightarrow 0,
$$

which induces the required exact sequence in Floer homology.

In particular, this shows that the end points of the interval $[a, b]$ can be continuously varied without changing $\text{HF}^{[a,b)}(H)$ as long as a and b stay away from $\mathcal{S}(H)$.

Remark 4.2. We will use the Floer homology $\text{HF}^{[a,b)}(H)$ with $0 < a < b$ to prove that the function H from Theorem 2.4 has a non-trivial one-periodic orbit with positive action. In this setting, one can easily avoid making use of the above construction by replacing H by $-H$ or by working with cohomology, i.e., considering the differential defined by counting upward gradient-like trajectories. However, we have found the setting of positive functions and downward trajectories visually more pleasing, which has motivated our choice.

4.2.2. Monotone homotopies and monotone homotopy invariance of Floer homology. Let $H, K \in \mathcal{H}^{a,b}$ be two functions with $H(t, x) \geq K(t, x)$ for all $(t, x) \in S^1 \times W$. Then there exists a monotone homotopy $s \mapsto K_s$ from H to K, i.e., a family of functions K_s such that $s \mapsto K_s(t, x)$ is monotone decreasing for all (t, x) and

$$
K_s = \begin{cases}
H & \text{for } s \in (-\infty, -1], \\
K & \text{for } s \in [1, \infty).
\end{cases}
$$
Such a homotopy induces a Floer chain map
\[\text{CF}^{[a, b)}(H) \to \text{CF}^{[a, b)}(K), \]
and hence a homomorphism of Floer homology
\[\sigma_{KH} : \text{HF}^{[a, b)}(H) \to \text{HF}^{[a, b)}(K). \]
Note that \(K_s \) is not required to be in \(\mathcal{H}^{a,b} \).

The following facts concerning these homomorphisms are well known; see, e.g., [CFH, FH, Vi3] and [BPS, Sections 4.4 and 4.5]: The homomorphism \(\sigma_{KH} \) is independent of the choice of the monotone homotopy \(K_s \) and has the following properties:
\[\sigma_{KH} \circ \sigma_{HG} = \sigma_{KG} \text{ for } G \geq H \geq K, \]
\[\sigma_{HH} = \text{id} \text{ for every } H \in \mathcal{H}^{a,b}. \]

Furthermore, Floer homology is homotopy invariant in the following sense: Assume that \(K_s \in \mathcal{H}^{a,b} \) for all \(s \in [0, 1] \). Then \(\sigma_{KH} \) is an isomorphism.

This shows that the only way in which the map \(\sigma_{KH} \) can fail to be an isomorphism is if periodic orbits, with action equal to \(a \) or \(b \), are created during the homotopy.

4.2.3. Calculations of Floer homology. The main tool used in this paper to calculate Floer homology is a theorem of Poźniak, [Poz], which equates filtered Floer homology and the ordinary homology of a connected Morse–Bott non-degenerate set of periodic orbits.

Recall that a subset \(P \subset \mathcal{P}(H) \) is said to be a Morse–Bott non-degenerate manifold of periodic orbits if the set \(C_0 = \{ x(0) \mid x \in P \} \) is a compact submanifold of \(W \) and \(T_{x_0}C_0 = \ker(D\phi_1^H(x_0) - \text{id}) \) for every \(x_0 \in C_0 \). Here \(\phi_1^H \) is the time-one flow of \(X_H \).

For such sets of periodic orbits we have the following result which holds for geometrically bounded, symplectically aspherical manifolds.

Theorem 4.3. (Poźniak, [Poz, Corollary 3.5.4]) Let \(a < b \) be outside of the action spectrum of \(H \) and such that \([a, b] \) does not contain zero. Also, suppose that the set \(P = \{ x \in \mathcal{P}(H) \mid a < A_H < b \} \) is a connected Morse–Bott manifold of periodic orbits. Then \(\text{HF}^{[a, b)}(H) \) is isomorphic to \(H_s(P; \mathbb{Z}_2) \).

Note that this isomorphism does not preserve the grading, i.e., \(\text{HF}^{[a, b)}_s(H) = H_{s-s}(P; \mathbb{Z}_2) \), where the shift \(s \) depends on the behavior of \(H \) near \(P \).

We will also need the following elementary (essentially, trivial) observation which sometimes allows one to extend Poźniak’s isomorphism in a particular degree to the case where \(P \) is disconnected.

Lemma 4.4. Let \(a < \gamma < b \) be outside of the action spectrum of \(H \) and such that \([a, b] \) does not contain zero.

1. Suppose that \(\text{HF}^{[\gamma, b]}_{n_0+1}(H) = \text{HF}^{[\gamma, b]}_{n_0}(H) = 0 \). Then the natural map \(\text{HF}^{[a, \gamma]}_{n_0}(H) \to \text{HF}^{[a, b]}_{n_0}(H) \) is an isomorphism.
2. Suppose that \(\text{HF}^{[a, \gamma]}_{n_0-1}(H) = \text{HF}^{[a, \gamma]}_{n_0}(H) = 0 \). Then the natural map \(\text{HF}^{[a, b]}_{n_0}(H) \to \text{HF}^{[\gamma, b]}_{n_0}(H) \) is an isomorphism.
We will use this lemma in the situation where Poźniak’s theorem applies to the intervals $[\gamma, b]$ or $[a, \gamma]$. Then the Floer homology groups for these intervals vanish in degrees outside of a certain range $[\mu_-, \mu_+]$ of Conley–Zehnder indices. Therefore, $HF_{n_0}^{[a, \gamma]}(H) \to HF_{n_0}^{[a, b]}(H)$ is an isomorphism when, for instance, $n_0 > \mu_+$ and $HF_{n_0}^{[a, b]}(H) \to HF_{n_0}^{[\gamma, b]}(H)$ is an isomorphism when $n_0 - 1 > \mu_+$. This line of reasoning has been used in [CGK] to calculate the Floer homology in a given degree for large intervals of actions.

Proof of Lemma 4.4. To prove the first assertion, consider the exact sequence

$$HF_{n_0 + 1}^{[\gamma, b]}(H) \to HF_{n_0}^{[a, \gamma]}(H) \to HF_{n_0}^{[a, b]}(H) \to HF_{n_0}^{[\gamma, b]}(H).$$

The first and the last group in this sequence vanish. Hence, the middle map in the exact sequence is an isomorphism.

In a similar vein, to prove the second assertion, we consider the exact sequence

$$HF_{n_0}^{[a, \gamma]}(H) \to HF_{n_0}^{[a, b]}(H) \to HF_{n_0}^{[\gamma, b]}(H) \to HF_{n_0 - 1}^{[\gamma, b]}(H).$$

Here again the first and the last group vanish, and therefore the middle map is an isomorphism. □

5. **Proofs of Theorems 2.4 and 3.2**

5.1. **Proof of Theorem 2.4.** First note that it suffices to prove the theorem in the case where U is a tubular symplectic neighborhood, say U_R, of M in W. Then the theorem and Remark 2.5 are consequences of the following result giving the exact value of the constant C for U_R.

Theorem 5.1. Assume that M is a closed symplectic submanifold of a geometrically bounded symplectically aspherical manifold W. Then for $R > 0$ small enough and for every $H \in \mathcal{H}(U_R, M)$ with $\max H > \pi R^2$, the Hamiltonian flow of H has a non-trivial contractible one-periodic orbit with action in the interval $(\max H, \max H + \pi R^2]$.

This theorem, in turn, is based on

Proposition 5.2. Let $H \in \mathcal{H}(U_R, M)$ and $\max H > \pi R^2$. Then there exist functions K_+ and K_-, supported in U_R, such that $K_- < H < K_+$ and

$$Z_2 = HF_{n_0}^{[a, b]}(K_+) \to HF_{n_0}^{[a, b]}(K_-) = Z_2$$

is an isomorphism for some constants $\max H < a < b$, not in the action spectra of K_\pm, and $n_0 = \frac{1}{2}(\text{codim } M - \dim M) + 1$. The functions K_\pm can be chosen so that b is arbitrarily close to $\max H + \pi R^2$.

To prove Theorem 5.1, we factor the monotonicity isomorphism as

$$Z_2 = HF_{n_0}^{[a, b]}(K_+) \to HF_{n_0}^{[a, b]}(H) \to HF_{n_0}^{[a, b]}(K_-) = Z_2.$$

It follows that $HF_{n_0}^{[a, b]}(H) \neq 0$. Thus, H must have a contractible one-periodic orbit with action in the interval $[a, b]$. Since $a > \max H$, this orbit is non-trivial.

To complete the proof of Theorems 2.4 and 5.1, it remains to prove the proposition.
5.2. Proof of Proposition 5.2. The idea of the proof is to pick K_- and K_+ depending only on ρ and squeezing H from above and below as tightly as possible (see Fig. 1). This will guarantee that $[a, b]$ with the required properties does exist. This interval contains more than one value of the action spectrum of K_+ or K_-. However, only one one-periodic level of K_\pm contributes \mathbb{Z}_2 in degree n_0 to the Floer homology of K_\pm and the remaining levels with actions in (a, b) contribute to the Floer homology in degrees either less than $n_0 - 1$ or greater than $n_0 + 1$. Then the exact sequence argument (Lemma 4.4) shows that the interval $[a, b]$ can be shrunk to contain only the action value essential in degree n_0 without changing the homology in this degree. Applying Pożniak’s theorem, we see that $HF^{[a, b]}(K_\pm) = \mathbb{Z}_2$. A similar argument shows that the Floer homology in degree n_0 remains constant in the course of a monotone homotopy from K_+ to K_- even though a and b do not stay outside of the action spectrum.

5.2.1. The definitions of K_\pm. The graphs of functions K_\pm are shown in Fig. 1.\(^2\) These functions depend only on ρ and in what follows we do not distinguish, for the sake of brevity, the functions of ρ from the corresponding functions on U_R. The shape of the functions is similar to that used in [BPS], however $\max K_\pm$ are chosen so that these functions bound H from below and above as tightly as possible. Let us now specify some details in the definitions of K_\pm.

\[\begin{align*}
\max H & \quad \text{max } K_+ \\
\max K_- & \quad \text{max } K_+ \\
& \quad \text{max } K_- \\
& \quad \rho^2
\end{align*}\]

The function K_+ is constant and equal to $\max K_+$ until ρ becomes nearly equal to R^2. Then the function rapidly decreases to zero and is identically zero when ρ

\(^2\)Here we break a recent but well-established tradition to define the functions explicitly and in every detail, as is done for example in [BPS, CGK], and revert to describing only the essential features of the functions, cf. [FHW].
is very close to R^2. The slope of K_+, on the interval where this function is non-constant linear, is not an integer multiple of π. Hence, the Hamiltonian flow of K_+ has non-trivial one-periodic orbits on a finite sequence of levels where ρ assumes values:

$$x_1^+ < x_2^+ < x_3^+ < \ldots < y_3^+ < y_2^+ < y_1^+ < R^2.$$

The points x_i^+ are located where the value of the function is still close to $\max K_+$ and the points y_i^+ are located where the value of the function is close to zero. Note that $x_1^+ \approx R^2$ due to our choice of K_+.

The function K_- is constant and equal to $\max K_-$ until ρ becomes nearly equal to r^2 for a sufficiently small constant r such that $0 < r < R_r$ to be specified later. Then the function rapidly decreases to $\min K_-$. The value $\min K_-$ is chosen so that $K_- < H$. Hence, $\min K_-$ is negative if H assumes negative values and we can take $\min K_- = 0$ if $H \geq 0$. In what follows, we describe K_- in the former case.

The function K_- remains constant and equal to $\min K_-$ until ρ nearly reaches R^2. Then the function rapidly increases to zero and becomes identically zero for ρ very close to R^2. On the intervals where K_- is non-constant linear, the slopes are chosen not to be integer multiples of π.

The Hamiltonian flow of K_- has non-trivial one-periodic orbits on four finite sequences of levels. The first two of them,

$$r^2 < x_1^- < x_2^- < x_3^- < \ldots < y_3^- < y_2^- < y_1^-,$$

are located where K_- is decreasing and $K_- \approx \max K_-$ and $K_- \approx \min K_-$, respectively. Note that $y_1^- \approx r^2$ by the construction of K_-. The other two sequences of levels are located where K_- is increasing. For these levels the actions are negative and hence the periodic orbits on these levels do not contribute to the Floer homology $HF^{(a,b)}(K_-)$.

Note that the points x_i^+ and y_i^+ are labelled so that the slope of K_\pm increases from x_i^+ to x_{i+1}^+ and from y_i^+ to y_{i+1}^+, and the periodic orbits on the levels $\rho = x_i^+$ and $\rho = y_i^+$ have multiplicity l.

Particular attention should be given to the choice of $\max K_\pm$. To describe how these maximal values are chosen, denote by $A(x_i^\pm)$ and $A(y_i^\pm)$ the action of K_\pm on the periodic orbits occuring on the levels $\rho = x_i^\pm$ and $\rho = y_i^\pm$, respectively. Then we require that

$$\max K_- < \max H < \max K_+ < A(x_1^-) < A(x_1^+).$$ \hspace{1cm} (5.1)$$

Let us show that this choice is possible. The value $\max H$ is given and we also know that H is constant near M. Then we can chose K_- and $r > 0$ so that $K_- < H$ near M and

$$\max K_- < \max H < A(x_1^-) \approx \max K_- + \pi r^2.$$

Note that this can be done for an arbitrarily small $r > 0$. Finally, pick $\max K_+$ so that

$$\max H < \max K_+ < A(x_1^-) < A(x_1^+) \approx \max K_+ + \pi R^2.$$

This is clearly possible since $r > 0$ is small and R is fixed.

Finally note that the functions K_\pm are strictly convex or concave outside of the intervals where these functions are constant or linear. This ensures that the energy levels $\rho = x_i^\pm$ and $\rho = y_i^\pm$ are Morse–Bott non-degenerate. Furthermore, the functions K_\pm can be chosen so that all action values $A(x_i^\pm)$ and $A(y_i^\pm)$ are distinct.
Table 1. The Conley–Zehnder indices and actions for \(x_l\) and \(y_l\).

\(\rho\)	Degrees	Actions for \(K_+\)	Actions for \(K_-\)
\(x_1\)	\([n - m + 1, 3n + m]\)	\(\max K_+ + \pi R^2 \pm \ldots\)	\(\max K_- + \pi r^2 \pm \ldots\)
\(x_2\)	\([3n - m + 1, 5n + m]\)	\(\max K_+ + 2\pi R^2 \pm \ldots\)	\(\max K_- + 2\pi r^2 \pm \ldots\)
\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)
\(x_l\)	\([(2l - 1)n - m + 1, (2l + 1)n + m]\)	\(\max K_+ + l\pi R^2 \pm \ldots\)	\(\max K_- + l\pi r^2 \pm \ldots\)
\(y_1\)	\([n - m, 3n + m - 1]\)	\(\pi R^2 \pm \ldots\)	\(\min K_- + \pi r^2 \pm \ldots\)
\(y_2\)	\([3n - m, 5n + m - 1]\)	\(2\pi R^2 \pm \ldots\)	\(\min K_- + 2\pi r^2 \pm \ldots\)
\(y_3\)	\([5n - m, 7n + m - 1]\)	\(3\pi R^2 \pm \ldots\)	\(\min K_- + 3\pi r^2 \pm \ldots\)
\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)
\(y_l\)	\([(2l - 1)n - m, (2l + 1)n + m - 1]\)	\(l\pi R^2 \pm \ldots\)	\(\min K_- + l\pi r^2 \pm \ldots\)
\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)

5.2.2. Periodic orbits, actions and Conley–Zehnder indices for \(K_\pm\). When \([\alpha, \beta]\) is an interval of (positive) actions containing only one of the points \(A(x_l^\pm)\) and \(A(y_l^\pm)\), the Floer homology \(HF^{[\alpha, \beta]}(K_\pm)\) can be determined by Poźniak’s theorem, [Poz], (see Theorem 4.3). Namely, we have

\[
HF^{[\alpha, \beta]}(K_\pm) = H_{s-\pm}(SM; \mathbb{Z}_2),
\]

(5.2)

where \(SM\) is the unit normal sphere bundle to \(M\) in \(W\). The shift \(s\) depends on whether the function is increasing or decreasing and concave or convex near \(x_l^\pm\) or \(y_l^\pm\) and on the multiplicity of the orbits on the level. Hence, the Floer homology in (5.2) can be non-zero only for the range of degrees bounded by the Conley–Zehnder indices \(*\) such that \(* - s = 0\) and \(* - s = \dim SM\). These degree ranges and approximate values of actions \(A(x_l^\pm)\) and \(A(y_l^\pm)\) are given in Table 1. Here we use the notations

\[
2m = \dim M \quad \text{and} \quad 2n = \codim M, \quad \text{so that} \quad n_0 = n - m + 1,
\]

and the dots in the expressions for actions stand for the terms which can be made arbitrarily small by a suitable choice of \(K_\pm\) while keeping \(\max K_\pm\) and \(r\) and \(R\) constant; namely by shortening the convexity/concavity intervals. The calculation of the actions and degree ranges from Table 1 is straightforward (but somewhat tedious for the degrees). For the sake of completeness we will outline it in Section 5.2.5 at the end of the proof.

Returning to the definition of \(K_\pm\), observe that since \(\max H > \pi R^2\), the function \(K_+\) can be chosen so that

\[
A(y_1^+) < \max H < \max K_+ < A(x_1^+) \quad \text{and} \quad A(y_2^+) < A(x_1^+).
\]

(5.3)

In a similar vein, since \(\min K_- \leq 0\) and \(r > 0\) can be taken arbitrarily small, \(K_-\) can be chosen so that

\[
A(y_1^-) < A(y_2^-) < A(y_1^+) < \max H
\]

(5.4)
Now we are in a position to specify the conditions on the action interval endpoints a and b. Namely, we only require that these points be outside of the action spectra of K_\pm and
\[
\max K_+ < a < A(x_1^-) < A(x_1^+) < b.
\] (5.5)
In particular, b can be taken arbitrarily large or arbitrarily close to $A(x_1^+)$. Thus, the actions $A(x_1^-)$ and $A(x_1^+)$ are necessarily in the interval (a, b) and the interval automatically contains neither the points
\[
A(y_1^-) < A(y_2^-) < A(y_2^+) < \max H < \max K_+,
\] nor max K_-. The interval may contain $A(y_2^+)$, but then necessarily $a < A(y_2^+) < A(x_1^+)$. In addition, the interval may contain some of the points $A(x_1^l)$ with $l \geq 2$ and some of the points $A(y_2^l)$ with $l \geq 3$.

5.2.3. Showing that $\operatorname{HF}^{[a, b]}_n(K_\pm) = \mathbb{Z}_2$. Let us first calculate the Floer homology for K_+. By our choice of (a, b), only the periodic orbits on the levels
\[
\rho = x_1^+, x_2^+, \ldots \quad \text{and} \quad \rho = y_2^+, y_3^+, \ldots
\] can contribute to the homology.

If the interval $[a, b]$ contains only the action $A(x_1^+)$, the identity $\operatorname{HF}^{[a, b]}_n(K_+) = \mathbb{Z}_2$ follows immediately from (5.2) and the calculation of the degrees in Table 1. (Note that n_0 is exactly the left endpoint of the range of Conley–Zehnder indices for x_1^+.)

Now we argue inductively (as in [CGK]) to show that the interval $[a, b]$ can be shrunk to an interval containing only $A(x_1^+)$. For example, let b' be outside of the action spectrum of K_+ and such that
\[
a < A(x_1^+) < b' < b
\] and the interval (b', b) contains only one point $A(x_1^l)$, $l \geq 2$, or $A(y_2^l)$, $l \geq 3$. (Since $A(y_2^+) < A(x_1^+)$, the action $A(y_2^l)$ cannot occur in the interval (b', b).) We need to show that
\[
\operatorname{HF}^{[a, b]}_n(K_+) \to \operatorname{HF}^{[a, b]}_n(K_+).
\] is an isomorphism. As can be easily seen from the table,
\[
\operatorname{HF}^{[b', b]}_n(K_+) = 0 \quad \text{for} \quad \begin{cases} \ast < (2l - 1)n - m + 1 & \text{if } A(x_1^l) \in (b', b), l \geq 2, \\ \ast < (2l - 1)n - m & \text{if } A(y_2^l) \in (b', b), l \geq 3. \end{cases}
\]
Since $n_0 = n - m + 1$, we have $\operatorname{HF}^{[b', b]}_{n_0+1}(K_+) = \operatorname{HF}^{[b', b]}_{n_0}(K_+) = 0$, and the map in question is an isomorphism by Lemma 4.4. (Note that the lemma would not apply when $n = 1$ if we had $A(y_2^2) \in (b', b)$.)

Arguing inductively, we can move $b > A(x_1^+)$ to the left as close to $A(x_1^+)$ as we wish without changing the homology in degree n_0.

Next observe that there can be some points $A(y_1^l)$, $l \geq 2$, in the interval $(a, A(x_1^+))$. We repeat the same argument. Let a' be such that
\[
a < a' < A(x_1^+)
\] and the interval (a, a') contains only one of the points $A(y_1^l)$, $l \geq 2$. Then again using the table and applying Lemma 4.4, we see that
\[
\operatorname{HF}^{[a, b]}_n(K_+) \to \operatorname{HF}^{[a', b]}_n(K_+).
\]
is an isomorphism. Indeed, now we need n_0 to be outside of the range of degrees for y_{l}^+, i.e., $n_0 < (2l - 1)n - m$ for $l \geq 2$, which is clearly true with y_{2}^+ being the worst case scenario. (Then $n_0 - 1$ is automatically outside of the range of degrees.) Therefore, we can move $a < A(x_1^+)$ to the right as close to $A(x_1^+)$ as we wish, without changing the homology in degree n_0.

Hence, for the above choice of $[a, b)$, the homology $\text{HF}^{[a, b)}(K_\pm)$ is the same as when $[a, b)$ contains only $A(x_1^+)$ and we conclude that this group is \mathbb{Z}_2.

5.2.4. Monotone homotopy and the isomorphism $\text{HF}^{[a, b)}(K_\pm) \rightarrow \text{HF}^{[a, b)}(K_-)$. Before describing the monotone homotopy, let us observe that without loss of generality the functions K_\pm can be assumed to have approximately equal slopes and hence equal number of periodic levels x_l^+ and y_l^\pm. This can be achieved by either starting with functions satisfying this requirement or by increasing the slope of one of them through a monotone homotopy. (In the latter case, new periodic levels are created with actions inside of (a, b), but the homotopy can be arranged so that a and b stay away from the action spectrum.)

The monotone homotopy K_s, $s \in [0, 1]$, from $K_0 = K_+$ to $K_1 = K_-$ is shown in Fig. 2. In the course of this homotopy, the bottom part of K_+ moves down eventually reaching $\min K_-$. Then, at the second stage of the homotopy, max K_+ moves down to max K_- in a monotone fashion and the linear part of the function moves to the left. It is easy to see that the homotopy can be arranged so that the periodic energy levels considered above persist under the homotopy and remain Morse–Bott non-degenerate. Thus, x_l^+ (or y_l^+) moves to x_l^- (y_l^-, respectively) through a family of periodic levels x_l^+ (y_l^+, respectively) and x_l^+ and y_l^+ are smooth functions of $s \in [0, 1]$. Furthermore, as is clear from Fig. 2, the actions $A(x_l^-)$ and $A(y_l^-)$ can be assumed to be monotone decreasing functions of s.

Figure 2. The homotopy from K_+ to K_-
Our goal is to show that $HF_{n_0}^{[a, b]}(K_s)$ remains constant during the homotopy. If a and b were always away from the action spectrum of K_s, this would follow (for all degrees) from the homotopy invariance of Floer homology. However, this is not the case and we have to analyze the behavior of periodic orbits under the homotopy more closely.

For the sake of simplicity, let us first assume that b is to the right of the action spectra of all K_s. (Recall that b can be taken arbitrarily large.) Then the actions $A(x_l^s)$, $l \geq 1$, are inside the interval (a, b) for all $s \in [0, 1]$. Furthermore, $A(y_l^s)$ is outside of (a, b) for all s. Thus we have

$$A(y_l^s) < a < A(x_1^s) < A(x_2^s) < A(x_3^s) < \ldots < b$$

for all s. The actions $A(y_l^s)$ with $l \geq 2$ may cross the left end-point of the interval.

Finally, new periodic levels are necessarily created within the interval where K_s is increasing. However, the orbits on these levels have negative actions and hence do not contribute to the homology.

Hence, we only need to examine the effect of $A(y_l^s)$, $l \geq 2$, crossing the left end-point a of the interval at some moment s_0. This effect is the same as when moving a through the action value $A(x_0^s)$ in the opposite direction. The exact sequence argument used in the previous section applies in this case, and the homology in degree n_0 remains unchanged.

For the sake of completeness, let us outline a rigorous proof of this fact. Let $A(y_l^{s_0}) = a$. Since $A(y_l^s)$ is a monotone decreasing function of s, without loss of generality we may assume that there exists a small interval $I = (s_1, s_2)$ containing s_0 and a small interval (a_1, a_2) containing a such that for every $s \in (s_1, s_2)$

- $a_1 < A(x_l^{s_1}) < a = A(x_l^{s_0}) < A(x_l^{s_2}) < a_2$ and
- $A(y_l^s)$ is the only point of the action spectrum of K_s in (a_1, a_2).

Then the monotone homotopy map

$$HF_{n_0}^{[a, b]}(K_{s_2}) \to HF_{n_0}^{[a, b]}(K_{s_1})$$

factors as

$$HF_{n_0}^{[a, b]}(K_{s_2}) \to HF_{n_0}^{[a_1, b]}(K_{s_2}) \to HF_{n_0}^{[a_1, b]}(K_{s_1}) \to HF_{n_0}^{[a, b]}(K_{s_1}).$$

Here, the first map is an isomorphism because K_{s_2} does not have action spectrum values in $[a_1, a]$. The second map is an isomorphism by homotopy invariance. Finally, the third map is an isomorphism by the exact sequence argument. Namely, first note that y_l^s has the same range of indices as y_l^s. Then, using Table 1, we see that $HF_{n_0}^{[a_1, a]}(K_{s_1}) = HF_{n_0}^{[a_1, a]}(K_{s_1}) = 0$ and hence, by Lemma 4.4, the third map is also an isomorphism.

A similar argument shows that the monotone homotopy induces an isomorphism of the Floer homology in degree n_0 for any $b > A(x_l^1)$.

This concludes the proof of Proposition 5.2 and of Theorems 5.1 and 2.4. In the remaining section of the proof, we outline the calculation of the actions and degree ranges given in Table 1

5.2.5. Calculation of the actions and degree ranges from Table 1

The actions $A(x_l^s)$ and $A(y_l^s)$ are easy to determine. For instance, the periodic orbits of K_s on the level x_l^s are the l-iterated Hopf circles in the fibers of the symplectic normal bundle to M. These circles have radius $\sqrt{x_l^s}$, i.e., approximately R, and are traversed in...
the negative direction, for K_+ is decreasing. Thus, the symplectic area bounded by the circles is approximately $-l\pi R^2$ and the value of K_+ is near $\max K_+$. Hence, the action is approximately max $K_+ + l\pi R^2$.

Let us now turn to the ranges of Conley–Zehnder indices. For the sake of brevity we indicate only the main steps of the calculation. Assume first that M is the origin in $W = \mathbb{C}^n$. Considering an explicit perturbation of K_+ near x_1^\pm and y_i^\pm and using the definition of the Conley–Zehnder index, it is not hard to see that the range of degrees is $[-n+1, n]$ when K_+ is convex near the level (i.e., for y_i^\pm) and $[-n, n-1]$ when K_+ is concave near the level (i.e., for x_1^\pm). These perturbations can be obtained by taking a small non-degenerate quadratic form on $\mathbb{C}P^{n-1}$ and then making a time-dependent perturbation supported near now-isolated periodic orbits. The indices are easy to calculate in the trivializations arising from those of the tangent spaces to $\mathbb{C}P^{n-1}$ at the projections of the orbits. Then, passing to the standard trivialization of \mathbb{C}^n amounts to shifting the range of indices by $2n$. (We refer the reader to, e.g., [Sa] for the definition of the Conley–Zehnder index, its properties, and further references. The reader should keep in mind that the sign convention of [Sa] is different from the one used here and this difference affects Conley–Zehnder indices. For example, for the action defined by (2.1), a non-degenerate critical point with Hessian S of an autonomous C^2-small Hamiltonian has Conley–Zehnder index $\text{signature}(S)/2$, but not signature$(S)/2$ as in [Sa].)

For iterated orbits, i.e., the levels x_i^\pm and y_i^\pm, these ranges are further shifted by $2n(l-1)$. This again can be seen as a result of a trivialization change. Finally, to deal with the general case of a tubular neighborhood of M as above, we will find functions K_+ and K_- (independent of time) supported in U_R, such that $K_- < H < K_+$ and

$$\text{HF}^{[a, b]}(K_+) \to \text{HF}^{[a, b]}(K_-)$$

(5.6)

is an isomorphism for some constants $0 < a < b$, not in the action spectra of K_\pm, with $a > 0$ being arbitrarily small. Then the theorem will follow from (5.6).

The function K_+ has the same shape as its counterpart in Fig. 1 with the only modification that at the top part K_+ is now slowly monotone decreasing with constant slope. Thus K_+ has a Morse–Bott non-degenerate maximum along M (with small eigenvalues). It is clear that such a function can be chosen so that $H \leq K_+$. The function K_+ has one-periodic levels at ρ equal to x_1, \ldots, y_1, with actions and Conley–Zehnder indices as in Table 1. In addition to this, M is a Morse–Bott non-degenerate set of one-periodic orbits of K_+. The range of indices for M is $[n-m, n+m]$ and the action is $\max K_+$. As is clear from Table 1, the action spectrum of K_+ is strictly positive except the action on the trivial orbits with $K_+ = 0$.

Let $K_-(\rho) = \epsilon K_+(\epsilon \rho)$, where $0 < \epsilon < 1$. In other words, the graph of K_- is obtained from the graph of K_+ by scaling by ϵ. Since $H \geq 0$ and $\min_{S^1 \times M} H > 0$, we clearly have $K_- \leq H$ if $\epsilon > 0$ is small enough.

Consider now the homotopy $K_s(\rho) = sK_+(s \rho)$ with $s \in [\epsilon, 1]$ from K_- to K_+. Again, all action values of K_s (on periodic levels where $K_s > 0$) are separated
from zero. It follows from homotopy invariance of Floer homology that for any sufficiently large \(b \) and any sufficiently small \(a > 0 \), the monotonicity map

\[
\HF^{[a, b]}(K_+) \rightarrow \HF^{[a, b]}(K_-)
\]
is an isomorphism in all degrees.

Now it is sufficient to show that \(\HF^{[a, b]}(K_-) \cong H_*(M; \mathbb{Z}_2) \). To this end, consider the monotone (increasing) homotopy \(F_s(\rho) = \epsilon K_+(s \rho) \) with \(s \in [\epsilon, r] \). This homotopy begins with \(F_\epsilon = K_- \) and ends with \(F_r \geq K_- \). (Note that \(F_s \) is obtained by dilating the graph of \(K_- \) along the \(\rho \)-axis; the homotopy is defined only if \(r > \epsilon \) is small enough, e.g., \(r < R \).) In the course of the homotopy \(F_s \) from \(s = \epsilon \) to \(s = r \), the periodic levels \(x_l \) and \(y_l \) come close to each other, collide, and disappear. No new periodic levels with action close to zero are created. Thus

\[
\HF^{[a, b]}(F_r) \rightarrow \HF^{[a, b]}(K_-),
\]
is an isomorphism if \(b \) is sufficiently large and \(a > 0 \) is sufficiently small. If \(\epsilon > 0 \) is small enough and, say, \(r = R/2 \), all periodic levels \(x_l \) and \(y_l \) of \(F_r \) are destroyed. In other words, \(F_r \) does not have one-periodic orbits other than the critical manifold \(M \) (in the region where \(F_r > 0 \)). By Poźniak’s theorem,

\[
\HF^{[a, b]}(F_r) \cong H_*(M; \mathbb{Z}_2)
\]
with some shift in degrees, which completes the proof of the theorem.

Remark 5.3. It should be possible to show directly that \(\HF^{[a, b]}(K_+) \cong H_*(M; \mathbb{Z}_2) \). Note, however, that since the ranges of Conley–Zehnder indices of \(x_1 \) and \(y_1 \) are close to that for \(M \), the exact sequence argument utilized in the proof of Proposition 5.2 does not apply. Hence, a more delicate reasoning is required, e.g., a calculation of the differential in the Floer complex (cf. [FHW]). Although this approach is more involved than the homotopy argument above, it can perhaps be utilized to relax the hypotheses of Theorem 3.1.

5.4. Discussion. As has been pointed out, Theorem 2.4 does not hold if the assumption that \(H \) is constant near \(M \) is replaced by the weaker assumption that \(H \) is constant on \(M \). Namely, as the example below shows, for any \(R > 0 \) and \(c > 0 \) there exists a smooth non-negative function \(H \), constant on \(M \) and supported in \(U_R \), such that \(c = \max H \) and all non-trivial one-periodic orbits of \(H \) have action less than or equal to \(c \). The Hamiltonian flow of \(H \) has numerous non-trivial one-periodic orbits (it should, by Theorem 2.1, have a fast non-trivial periodic orbit), but these orbits are not detected by the Floer homology with the range of actions greater than \(\max H \).

Example 5.4. Fix \(b = \pi k + \pi/2 \), where \(k \) is a positive integer, large enough so that \(c/b \) (the solution of \(c - by = 0 \)) is in the interval \([0, R^2]\). Let \(H = f(\rho) \), where \(f \) is a smooth function of the form

\[
\begin{cases}
 c - by & \text{for } y \in [0, \delta_-], \\
 \text{monotone decreasing} & \text{for } y \in (\delta_-, \delta_+), \\
 0 & \text{for } y \in [\delta_+, \infty).
\end{cases}
\]

Here, \([\delta_-, \delta_+]\) is an arbitrarily small interval containing \(c/b \) and contained in \((0, R^2)\).
Non-trivial one-periodic orbits of \(H \) occur on the sphere bundles \(\rho = y_l \), where \(y_l \) is the solution of the equation
\[
 f'(y_l) = -\pi l, \quad l \in \mathbb{Z}_+.
\]

Since \(b \) is not an integer multiple of \(\pi \), we have \(y_l \in (\delta_-, \delta_+) \) and \(l \in [1, b/\pi) \). All orbits on the level \(\rho = y_l \) have action
\[
 A_l = \pi l y_l + f(y_l)
 = \pi l y_l + (c - by_l) + (f(y_l) - (c - by_l))
 = c + (\pi l - b)y_l + (f(y_l) - (c - by_l)).
\]

It is easy to see that \((\pi l - b)y_l < -\pi \delta_-/2 \) and \(f(y_l) - (c - by_l) < c - b\delta_+ \) since \(y_l \in (\delta_-, \delta_+) \). Thus,
\[
 A_l - c < -\pi \delta_-/2 + (c - b\delta_+) < 0
\]
if \(\delta_+ \) is taken sufficiently close to \(c/b \) while \(\delta_- \) is fixed. Therefore, \(A_l < c \) for all \(l \).

Note also that when \(c > 0 \) is small, all one-periodic orbits of \(H \) are trivial.

Example 5.5 (Polterovich). In this example, due to Leonid Polterovich, we show that in contrast with Theorem 2.4, the action value in Theorem 3.1 cannot be bounded from below via \(\min_{S^1 \times M} H \) even when \(M \) is a point. To be more specific, for any \(\epsilon > 0 \) and \(C > 0 \), there exists a non-negative Hamiltonian \(H: S^1 \times \mathbb{R}^{2n} \to \mathbb{R} \) with arbitrarily small support such that \(\min H|_{S^1 \times 0} \geq C \) and every one-periodic orbit of \(H \) has action less than \(\epsilon \).

Indeed, first note that the condition that \(H \) is periodic in time can be dropped by [BPS, Proposition 2.1.3]. (Here some extra care is needed to keep \(H \) non-negative.) Let \(K \) be a \(C^2 \)-small non-negative Hamiltonian supported in some ball, such that the time-one flow of \(K \) displaces a ball \(B \) centered at the origin and such that \(\max K < \epsilon \). Let \(F \) be a bump-function supported in \(B \) with \(F(0) \geq C \). Consider the compactly supported Hamiltonian \(H_t \) generating the time-dependent flow \(\psi_t \phi_t \), where \(\psi_t \) is the flow of \(F \) and \(\phi_t \) is the flow of \(K \). It is easy to see that \(H_t(0) \geq C \) and the only one-periodic orbits of \(H_t \) are the critical points of \(K \). Hence, all non-zero action values for \(H_t \) are less than \(\epsilon \).

A similar construction with \(K \) now being non-positive shows that for any \(\epsilon > 0 \) and \(C > 0 \), there exists a Hamiltonian \(H: S^1 \times \mathbb{R}^{2n} \to \mathbb{R} \) with arbitrarily small support such that \(\min H|_{S^1 \times 0} \geq C \), every one-periodic orbit of \(H \) has a non-positive action, and the time-one flow of \(H \) is non-trivial.

Remark 5.6. We conclude this discussion by pointing out the location of orbits from Theorems 2.1 and 3.1 for the function \(H \) from Example 5.4. The orbits from Theorem 3.1 lie on the critical manifold \(M \). The orbits from Theorem 2.1, obtained via Theorem 2.4, lie on the level set \(\rho = x_1 \), in the notations of Table 1. Finally, the orbits which make the homological capacity from [CGK] non-vanish are located on the level \(\rho = y_1 \) (see also Section 6.3). A suitably adapted version of the Schwarz action selector (see [FS, Sc]) will pick either max \(K_+ \) or \(A(y_1^+ \), whichever is smaller.

6. Capacity: proofs and remarks

6.1. Proof of Theorems 2.1 and 2.9. The key to the proof of these theorems is the following elementary observation, essentially contained already in [HZ, p. 184], which allows one to cut off an autonomous Hamiltonian without creating new fast periodic orbits.
Lemma 6.1. Let, in the notations of Section 2.2.1, \(H \in \hat{\mathcal{H}}_0(V,Z) \) be such that the flow of \(H \) has no (contractible) non-trivial fast periodic orbits. Then, for any \(C \) with \(0 < C < \min_Z H \), there exists a function \(K \in \mathcal{H}(V,Z) \) such that \(C \leq \max K < \min_Z H \) and the flow of \(K \) has no non-trivial fast periodic orbits.

Remark 6.2. This lemma and Lemma 6.3 stated below still hold when all fast non-trivial periodic orbits of \(H \) and \(K \) are replaced by contractible in \(V \) non-trivial fast periodic orbits.

Theorem 2.1 immediately follows from Lemma 6.1 and Theorem 2.4; Remark 2.18 is a consequence of Lemma 6.1, Theorem 2.4, and the definition of relative Hofer–Zehnder capacity.

For the sake of completeness, we outline the proof of Lemma 6.1.

Proof. Without loss of generality, we may assume that \(H \neq 0 \). Pick a constant \(C < \min_Z H \). Let \(\epsilon > 0 \) be sufficiently small so that \(0 < C - \epsilon \) and \(C + \epsilon < \min_Z H \). Then the function \(K \) is obtained by cutting \(H \) off at the level \(H = C \) and then smoothening up the resulting function. More precisely, let \(f: [C - \epsilon, C + \epsilon] \to \mathbb{R} \) be a function with \(0 \leq f' \leq 1 \) such that \(f(y) = y \) for \(y \) near the left end-point of the interval and \(f(y) = C \) for \(y \) near the right end-point of the interval. Set

\[
K(z) = \begin{cases}
H(z) & \text{when } H(z) \leq C - \epsilon, \\
 f(H(z)) & \text{when } C - \epsilon \leq H(z) \leq C + \epsilon, \\
C & \text{when } C + \epsilon \leq H(z).
\end{cases}
\]

Then \(K \) is constant (and equal to \(C \)) near \(Z \) and equal to \(H \) near the boundary of \(supp H \), i.e., \(K \in \mathcal{H}(V,Z) \). Furthermore, \(\max K = C \) and \(K \) does not have fast periodic orbits since \(|f'| \leq 1 \). \(\square \)

Let us prove the first assertion of Theorem 2.9, i.e.,

\[
c_{HZ}(V,Z) = \inf E,
\]

where

\[
E = \{ C > 0 \mid \text{every } H \in \hat{\mathcal{H}}_C(V,Z) \text{ has a non-trivial fast periodic orbit}\}.
\]

Note that \(E \) is a semi-infinite interval of the form \([\inf E, \infty)\) or \((\inf E, \infty)\) or the empty set. With this in mind, we have \(c_{HZ}(V,Z) \leq \inf E \), by definition. (Indeed, if \(H \in \mathcal{H}(V,Z) \) is such that all periodic orbits of \(H \) are slow, then \(\max H \) must be outside of this interval.) To prove the opposite inequality, assume that \(H \in \hat{\mathcal{H}}_C(V,Z) \) has no fast non-trivial periodic orbits. Then \(C \) is in the complement of \(E \). By Lemma 6.1, for any small \(\epsilon > 0 \) there exists \(K \in \mathcal{H}(V,Z) \) without fast non-trivial periodic orbits and such that \(\max K > C - \epsilon \). Thus, \(c_{HZ}(V,Z) \geq C \) and, since the complement of \(E \) is also an interval, \(c_{HZ}(V,Z) \geq \inf E \).

Likewise, the second assertion of Theorem 2.9 is an easy consequence of

Lemma 6.3. Let \(H \in \mathcal{H}(V,Z) \) \((H \in \hat{\mathcal{H}}_C(V,Z) \text{ with } C > 0)\) be such that the flow of \(H \) has no non-trivial fast periodic orbits. Then, there exists a non-negative function \(K \in \mathcal{H}(V,Z) \) (respectively, \(K \in \hat{\mathcal{H}}_C(V,Z) \)) with \(\max K = \max H \) having no non-trivial fast periodic orbits.

Proof. Recall that a \(C^2 \)-small function (with support in a given compact set) does not have fast non-trivial periodic orbits; see, e.g., \([HZ, \text{pp. 185, 200}] \). Using this fact, it is not hard to modify \(H \) so that it becomes non-negative near the boundary
Let \(c > 0 \) be a small regular value of \(H \). Denote by \(Y_1, \ldots, Y_k \) the connected components of \(\{ H \leq c \} \) on which \(H \) assumes negative values. Let also \(\epsilon > 0 \) be so small that \(c - \epsilon > 0 \) and different connected components \(Y_1, \ldots, Y_k \) are contained in different connected components of \(\{ H \leq c + \epsilon \} \). (As a consequence, \(c + \epsilon < \max H \).)

Now, separately for each \(Y_i \), we cut off \(H \) along \(\partial Y_i \) and smoothen it up exactly as in the proof of Lemma 6.1. It is clear that the resulting function \(K \) has the required properties. \(\square \)

This concludes the proof of the theorems.

6.2. **Almost existence theorem.** The proof of the almost existence theorem, both the standard (see [HZ]) and relative (Theorem 2.14) versions, can be broken down into the following two results which may be of independent interest.

Proposition 6.4. Let \(U \) be a connected, open subset of a symplectic manifold \(V \) with compact closure \(\overline{U} \) and let \(Z \subset U \) be compact. Then

\[
c_{HZ}(V, \overline{U}) \leq c_{HZ}(V, Z) - c_{HZ}(U, Z).
\]

In particular,

\[
c_{HZ}(V, \overline{U}) \leq c_{HZ}(V) - c_{HZ}(U).
\]

Example 6.5. Let \(B_R \) be the ball of radius \(R > 0 \) in \(\mathbb{R}^{2n} \), centered at the origin. An argument similar to the proof of Theorem 2.4 shows that \(c_{HZ}(B(R), B(\bar{r})) = \pi(R^2 - \bar{r}^2) \). It is not clear whether the inequalities in Proposition 6.4 are not in fact equalities.

To further deal with the almost existence problem, let us, following [HZ], analyze the existence of periodic orbits on a given hypersurface \(S \) bounding a domain \(U \) in \(V \). Let \(S_\epsilon \) be a thickening of \(S = S_0 \) in \(V \). Denote by \(U_\epsilon \) the domain bounded by \(S_\epsilon \). We say that \(S \) has relative Lipschitz type if

\[
\limsup_{\epsilon \to 0} \frac{c_{HZ}(U_\epsilon, \overline{U_\epsilon})}{\epsilon} < \infty.
\]

It is easy to see that this is a well-defined property, i.e., independent of the choice of the thickening \(S_\epsilon \). Note that, by Proposition 6.4, a Lipschitz type hypersurface (see [HZ]) is automatically of relative Lipschitz type.

Proposition 6.6. A hypersurface of relative Lipschitz type carries a closed characteristic.

We leave both of these propositions without proofs, for the arguments are implicitly contained in [HZ, Section 4.2]. Similar results hold for the restricted Hofer–Zehnder capacity \(\overline{c}_{HZ} \).

Remark 6.7. It is not clear if there exist hypersurfaces of relative Lipschitz type which are not of Lipschitz type.
6.3. Concluding remarks. Arguments used to prove finiteness of a capacity or the existence of periodic orbits can often be turned into a definition of a new capacity, bounding the original one from above; see, e.g., [BPS, CGK, FHW]. The proof of Theorem 2.4 is no exception. This leads to the notion of a restricted homological capacity \(\bar{c}_{\text{hom}} \) which bounds \(\bar{c}_{HZ} \) from above and is equal to \(\pi r^2 \) on \((U_r, M)\). (Here we assume that the ambient manifold \(W \) is geometrically bounded and symplectically aspherical; \(M \) is a closed symplectic submanifold of \(W \).) The definition of this homological capacity is a straightforward (but cumbersome) axiomatization of the proof, and we omit it here. The only advantage the capacity \(\bar{c}_{\text{hom}} \) seems to have over \(\bar{c}_{HZ} \) is that \(\bar{c}_{\text{hom}} \) gives some information about the actions of periodic orbits. It is not clear, however, how to use this extra information.

Let us briefly discuss the relation of the capacity \(c_{HZ} \) or \(\bar{c}_{HZ} \) with the capacities introduced in [BPS] and [CGK].

The restricted relative capacity of [CGK] is a relative version of the homological capacity from [FHW]. The finiteness of this capacity results in the “nearby existence theorem” – the existence of periodic orbits on a dense set of levels (see [CGK]) – but falls short of leading to the almost existence theorem. We are not aware of any inequalities relating this capacity with \(\bar{c}_{HZ} \) or \(\bar{c}_{\text{hom}} \).

For the trivial homotopy class, the relative capacity (homological or not) of [BPS] does not allow one to control whether the periodic orbit detected by the capacity is trivial or not (cf. Example 5.4). Thus, for the trivial homotopy class this capacity appears to be unrelated to \(c_{HZ} \). On the other hand, when the homotopy class is non-zero, the orbit is automatically non-trivial and in this case the capacity of [BPS] gives an upper bound for \(c_{HZ} \) (but not \(\bar{c}_{HZ} \)).

Example 6.8. Let \(Z \) be a closed Lagrangian submanifold of a geometrically bounded symplectically aspherical manifold \(W \). When \(Z \) is a torus or admits a metric of negative sectional curvature, \(c_{HZ}(U, Z) < \infty \), where \(U \) is a small neighborhood of \(Z \), as immediately follows from the results of [BPS]. The results of [HV1, Vi3] also suggest, but apparently do not imply, that \(c_{HZ}(U, Z) < \infty \) in general for a closed Lagrangian submanifold.

Note also that in this case \(\bar{c}_{HZ}(U, Z) = \infty \), when \(Z \) admits a metric without contractible geodesics and \(\pi_1(Z) \to \pi_1(W) \) is a monomorphism. The restricted capacity \(\bar{c}_{HZ} \) is specifically “tuned up” to detect contractible periodic orbits near a compact submanifold and Theorem 2.4 guarantees the existence of such orbits near a symplectic submanifold. For a general submanifold, such periodic orbits may fail to exist, and the restricted capacity \(\bar{c}_{HZ} \) may be infinite even when non-contractible orbits exist in abundance.

As was pointed out by L. Polterovich, one may expect that \(c_{HZ}(V, M) = c_{HZ}(V) \) when \(M \) is a symplectic submanifold or even when \(\omega|_M \neq 0 \) and some natural topological conditions hold, e.g., the normal bundle to \(M \) in \(V \) admits a non-vanishing section; cf. [Pol1] and Example 2.12. (Note that finiteness of \(c_{HZ}(V) \) or \(\bar{c}_{HZ}(V, \text{point}) \) leads to a non-relative, stronger than Theorem 2.14, almost existence theorem in \(V \).) Along these lines, E. Kerman has recently shown, [Ke3], that \(\bar{c}_{HZ}(U_r, M) = \bar{c}_{HZ}(U_r) \) for \(r > 0 \) small, provided that \(M \) is a closed rational symplectic submanifold of \(W \) and the homology of the unit normal bundle to \(M \) splits.
Remark 6.9 (Capacity of the cylinder and ellipsoids). It is not surprising that the method used in the proof of Theorem 2.4 readily lends itself for calculations of capacities of some other manifolds. For example, one can easily recover the well-known calculation of the Hofer–Zehnder capacity of ellipsoids (see, e.g., [HZ]), bypassing the calculation for the cylinder, and then derive from it the result for the cylinder. Namely, consider the solid ellipsoid

\[U = \{ z \in \mathbb{C}^n \mid Q(z) < 1 \} \]

where

\[Q(z) = \frac{|z_1|^2}{r_1^2} + \cdots + \frac{|z_n|^2}{r_n^2} \]

and \(0 < r_1 \leq \cdots \leq r_n \). As is easy to see, \(c_{HZ}(U) \geq \pi r_1^2 \). On the other hand, arguing as in the proof of Proposition 5.2 with \(K_{\pm} \) being now functions of \(Q \), one can show that \(c_{HZ}(U) \leq \pi r_1^2 \) and, hence, \(c_{HZ}(U) = \pi r_1^2 \).

Note now that \(c_{HZ}(V) = \sup_U c_{HZ}(U) \), where the supremum is taken over all \(U \subset V \) with compact closure. (The same is true for relative capacities, as long as \(Z \subset U \).) Applying this to an exhaustion of a symplectic cylinder by ellipsoids, we obtain that \(c_{HZ}(B_2^{2n} \times \mathbb{R}^{2m}) = \pi r^2 \), where \(B_2^{2n} \) is the ball of radius \(r > 0 \).

7. CONSTRUCTIONS OF COUNTEREXAMPLES

In this section we prove Propositions 2.21, 2.23, and 2.24. Before getting into technical details of the proofs let us outline the basic line of reasoning in these constructions. All three arguments are similar concatenations of the following standard steps:

- Finding or creating, if not readily available, a function with a finite number of periodic orbits on a given level.
- Eliminating periodic orbits on this level.
- Applying the preceding two steps to a sequence of levels converging to zero.
- Smoothening up the resulting function at zero.

Hence, we describe the proofs with a varying degree of detail, focusing only on essential points.

7.1. Smoothing lemma. The last step is identical in all three proofs and we state it here as a lemma.

Lemma 7.1. Let \(Z \) be a closed submanifold of a manifold \(W \) and let \(F : W \to \mathbb{R} \) be a function such that

1. \(F \) is non-negative, continuous, and vanishes on \(Z \);
2. \(F \) is \(C^m \)-smooth on the complement of \(Z \) for some \(0 \leq m \leq \infty \).

Then there exists a monotone increasing \(C^\infty \)-smooth function \(\varphi : [0, \infty) \to [0, \infty) \) with \(\varphi(0) = 0 \) and \(\varphi'(y) > 0 \) for \(y > 0 \), and such that \(H = \varphi \circ F \) is \(C^m \)-smooth.

Remark 7.2. We will need this lemma only in the cases where \(m = 2 \) and \(m = \infty \). Below we prove it for \(m = \infty \). The \(m = 2 \) case requires only obvious modifications.

Proof. Fix a compact neighborhood \(K \) of \(Z \). Let \(\varphi_l : [0, 1] \to [0, \infty), l = 0, 1, 2, \ldots, \) be a sequence of smooth function such that

1. \(\varphi_l(y) = 0 \) when \(0 \leq y \leq b_l^- \) and \(\varphi_l(y) = c_l \) when \(b_l^- \leq y \leq 1 \),
2. \(\varphi'(y) > 0 \) when \(b_l^- < y < b_l^+ \)

3The authors are grateful to Antóny Serra for the proof of the lemma; [Se].
for some intervals \((b^+_l, b^+_r) \subset (0, 1)\) and constants \(c_l > 0\), chosen so that the adjacent intervals overlap, \(b^+_l \to 0\), and

\[
\| \varphi_l \|_{C^1([0,1])} \leq \frac{1}{2l} \quad \text{and} \quad \| \varphi_l \circ F \|_{C^1(K)} \leq \frac{1}{2l}.
\] \tag{7.1}

The first condition in (7.1) guarantees that \(\varphi = \sum \varphi_l\) is a smooth function on a neighborhood of zero, vanishing at zero, and such that \(\varphi'(y) > 0\) for \(y > 0\), by (S2) and since the intervals overlap. Let us extend this function from a neighborhood of zero to \([0, \infty)\) so that the resulting function \([0, \infty) \to [0, \infty)\), denoted again by \(\varphi\), is smooth and still has these properties. Then, by the second condition of (7.1), \(\varphi \circ F\) is smooth, i.e., \(\varphi\) is the required function.

7.2. Proof of Proposition 2.21. We start with an irrational positive-definite quadratic form \(G: \mathbb{R}^{2n} \to \mathbb{R}\). Clearly, every level \(G = a\) has exactly \(n\) distinct periodic orbits.

Assume first that \(n > 2\) so that \(\dim \mathbb{R}^{2n} > 4\). By inserting symplectic plugs as in [Gi1, Gi3, Gi4, He, Ke2], we can eliminate periodic orbits on a sequence of levels \(G = a_k\) with \(a_k \to 0\). As a result, we obtain a function \(F: \mathbb{R}^{2n} \to \mathbb{R}\) with the following properties:

- \(F\) meets the requirements of Lemma 7.1 with \(W = \mathbb{R}^{2n}\), \(Z = \{0\}\), and \(m = \infty\);
- \(F\) attains its absolute minimum at zero;
- the levels \(F = a_k\) carry no periodic orbits of the flow of \(F\).

By Lemma 7.1, there exists a monotone increasing smooth function \(\varphi: [0, \infty) \to [0, \infty)\) with \(\varphi(0) = 0\) and \(\varphi'(y) > 0\) for \(y > 0\) and such that \(H = \varphi \circ F\) is \(C^\infty\)-smooth. Then it remains to set \(\epsilon_k = \varphi(a_k)\).

When \(n = 2\), the argument is similar, but the result of [GG1, GG2] is applied to eliminate periodic orbits. In this way we obtain a function \(F\) which is only \(C^2\)-smooth on the complement of the zero section. As a consequence, the function \(H\) is also only \(C^2\)-smooth. This completes the proof of Proposition 2.21.

7.3. Proof of Proposition 2.23. Here, we start with a non-symmetric Finsler metric \(G: T^* S^n \to \mathbb{R}\) whose geodesic flow has a finite number of closed geodesics. A metric with this property has been constructed by A. Katok, [Ka]; see also [Zi]. The rest of the proof is identical to that of Proposition 2.21.

To deal with the case of the twisted geodesic flow for \(\sigma \neq 0\), we observe that the flow of \(G\) can be viewed as the twisted geodesic flow of the standard metric on \(S^n\) for some exact non-zero magnetic field \(\sigma\). The construction is finished in the same way as for the geodesic flow of \(G\).

7.4. Proof of Proposition 2.24. The starting point of the construction is again a function \(G\) whose flow has only finitely many periodic orbits on a given level or a sequence of levels converging to zero. The argument is particularly transparent when \(n = 1\), i.e., for \(M = \mathbb{C}P^1\).

7.4.1. The construction for \(T^* \mathbb{C}P^1\). Let \(g\) be the standard metric Hamiltonian on \(W = T^* \mathbb{C}P^1 \to \mathbb{R}\) equipped with the twisted symplectic structure. Note that all orbits of the flow of \(g\) on \(W\) are periodic. Let \(U\) be a neighborhood of a level \(g = a\). The universal cover \(\mathring{U}\) of \(U\) is symplectomorphic to a neighborhood of a sphere \(S^3\) in \(\mathbb{C}^2\), centered at the origin. Let \(\mathring{\Sigma}\) be an ellipsoid in \(\mathring{U}\) which is close to
S^3, invariant under deck transformations (the multiplication by -1), and carrying only finitely many closed characteristics. Then, Σ descends to a hypersurface Σ in U with a finite number of closed characteristics, which is close to $g = a$. Note that Σ can be taken arbitrarily close to S^3 and hence Σ can be made arbitrarily close to $g = a$. Let now $\delta > 0$ be small and $U = g^{-1}(a - \delta, a + \delta)$. Then we can modify g within U so that the resulting function G is isotopic to g but has Σ as the level $G = a$. The next step is eliminating, as above, all periodic orbits on the level $G = a$. The resulting function is now C^2-smooth.

Let us now pick a sequence $a_k \to 0$ and apply this process to each $a = a_k$. As a result, we obtain a continuous function F which is C^2-smooth outside of the zero section and has the same properties as the functions F constructed in the two previous proofs. As before, the proof for $n = 1$ is concluded by applying Lemma 7.1.

Remark 7.3. A. Katok’s example of a Finsler metric on S^2 with only two closed geodesics can be easily described via a similar construction of the hypersurface Σ, starting with the level $g = 1$, in the standard T^*S^2, and then symplectically embedding its double cover into \mathbb{C}^2.

7.4.2. The general case: $T^*\mathbb{C}P^n$.

Let g_0 be the standard metric Hamiltonian on $W = T^*\mathbb{C}P^n$. As before, all orbits of the flow of g_0 on W are periodic and all orbits on a given level have the same period.

Fix a level $g_0 = a$. The first observation is that we can change g_0 in a neighborhood of $g_0 = a$ to a function of the form $g = f \circ g_0$, without altering the level sets of the function or creating critical points, so that the new function g is equal to g_0 outside the neighborhood and its flow has constant period (say, equal to one) near the level $g_0 = a$. Without loss of generality, we may assume that $f(a) = a$, and hence the level we are working with is again $g = a$.

The next step is to notice that Ziller’s method, [Zi], applies to the function g near the level $g = a$, i.e., one can modify g near the level to a C^∞-function G, isotopic to g, so that the level $G = a$ carries only a finite number of periodic orbits.

For the sake of completeness, let us describe this modification in detail. As in [Zi], consider the action of $S^1 = \mathbb{R}/\mathbb{Z}$ on $\mathbb{C}P^n$ induced by the following diagonal S^1-action on \mathbb{C}^{n+1}:

$$t \cdot (z_0, \ldots, z_n) = (e^{2\pi i \lambda_0 t}z_0, \ldots, e^{2\pi i \lambda_n t}z_n),$$

where $\lambda_0, \ldots, \lambda_n$ are mutually distinct integers and $\lambda_0 = 1$. This action preserves σ and g_0 and hence the lift ψ_t of this action to $T^*\mathbb{C}P^n$ preserves g and the twisted symplectic structure ω. The flow ψ_t is Hamiltonian. Denote the Hamiltonian of ψ_t by g_1 and set

$$G = g + \alpha g_1,$$

where $\alpha > 0$ is a small irrational number. Note that since α is small, the level $G = a$ lies near $g = a$ and, hence, is entirely contained in the region where the flow of g has period one. We claim that the flow of G on $T^*\mathbb{C}P^n$ has a finite number of periodic orbits on the level $G = a$ (and on nearby levels).

To prove this, let us first note that the closed orbits of the flow of G near the level are in fact the closed orbits of g which are invariant under the flow ψ_t. This can be easily checked by using the fact that the two flows commute and repeating word-for-word the reasoning from [Zi, p. 138]. It follows that the projections of
these periodic orbits of g to \mathbb{CP}^n are invariant under the S^1-action. Next observe that every orbit of g is a reparametrized orbit of the twisted geodesic flow on $g_0 = a$.

Hence, it suffices to show that the number of S^1-invariant twisted geodesics on \mathbb{CP}^n coming from $g_0 = a$ is finite. Let γ be a twisted geodesic. The initial conditions $(\gamma(0), \gamma'(0))$ determine a projective line $\mathbb{CP}^1 \subset \mathbb{CP}^n$ and γ is tangent to this \mathbb{CP}^1. Furthermore, this projective line is invariant under the S^1-action if γ is invariant. (These facts can be seen as follows. It is well known that γ the Hopf map of a great circle $\tilde{\gamma}$ fibers is determined by a and lies in the interval $(0, \pi/2)$. Thus $\tilde{\gamma}(0)$ and $\tilde{\gamma}'(0)$ span a complex plane in \mathbb{C}^{n+1}. This complex plane gives rise to the projective line corresponding to γ and is invariant under the action (7.2) if γ is invariant.)

It is easy to see that there are only finitely many (in fact, $n(n + 1)/2$) projective lines invariant under the action (7.2). (These projective lines arise from the z_iz_j-planes, $0 \leq i < j \leq n$.) On such a projective line, the twisted geodesic γ is an (oriented) S^1-invariant spherical circle whose geodesic curvature is determined by a. There are only two such oriented circles.

Thus, as we have shown, the flow of G on the level $G = a$ has a finite number of periodic orbits. Let us modify G outside of a small neighborhood of $G = a$ so that the resulting function, which we denote by g, is C^∞-smooth, equal to g outside the neighborhood of $g = a$, and isotopic to g.

The proof is finished in the same way as for $n = 1$. Namely, as the next step, we eliminate all periodic orbits on the level $G = a$. This leads to a C^∞-smooth (since dim $T^*\mathbb{CP}^n > 4$) function which is again isotopic to g. Next, we apply this construction to a sequence $a_k \to 0$ of values of g_0 and obtain a continuous function F, C^∞-smooth outside of the zero section and it remains to again utilize Lemma 7.1. This concludes the proof of Proposition 2.24 for all n.

Remark 7.4. The above argument also shows, along the lines of [Zi], that the flow of G has exactly $n(n + 1)$ periodic orbits on the level $G = a$.

References

[AL] M. Audin, J. Lafontaine (Eds), Holomorphic curves in symplectic geometry, Progress in Mathematics, 117, Birkhäuser Verlag, Basel, 1994.

[BPS] P. Biran, L. Polterovich, D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Preprint 2001, math.SG/0108134; to appear in Duke Math. J.

[CFH] K. Cieliebak, A. Floer, H. Hofer, Symplectic homology, I. A general construction, Math. Z., 218 (1995), 103–122.

[CFHW] K. Cieliebak, A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology, I. Stability of the action spectrum, Math. Z., 223 (1996), 27–45.

[CGK] K. Cieliebak, V. Ginzburg, E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Preprint 2002; math.DG/0210468.

[Fl1] A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geom., 28 (1988), 513–547.

[Fl2] A. Floer, Witten’s complex and infinite dimensional Morse Theory, J. Diff. Geom., 30 (1989), 202–221.

[Fl3] A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys., 120 (1989), 575–611.

[FH] A. Floer, H. Hofer, Symplectic homology, I. Open sets in \mathbb{C}^n, Math. Z., 215 (1994), 37–88.

[FHV] A. Floer, H. Hofer, C. Viterbo, The Weinstein conjecture in $P \times \mathbb{C}$, Math. Z., 203 (1990), 469–482.

[FHW] A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology, I. Math. Z., 217 (1994), 577–606.
[FS] U. Frauenfelder, F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds, Preprint 2003, math.SG/0303282.

[Gi1] V.L. Ginzburg, An embedding $S^{2n-1} \to \mathbb{R}^{2n}$, $2n - 1 \geq 7$, whose Hamiltonian flow has no periodic trajectories, IMRN, (1995), no. 2, 83–98.

[Gi2] V.L. Ginzburg, On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, in Contact and symplectic geometry (Cambridge, 1994), 131–148, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996.

[Gi3] V.L. Ginzburg, A smooth counterexample to the Hamiltonian Seifert conjecture in \mathbb{R}^6, IMRN, (1997), no. 13, 641–650.

[Gi4] V.L. Ginzburg, Hamiltonian dynamical systems without periodic orbits, in Northern California Symplectic Geometry Seminar, 35–48, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999.

[Gi5] V.L. Ginzburg, The Hamiltonian Seifert conjecture: examples and open problems, in Proceedings of the Third European Congress of Mathematics, Barcelona, 2000; Birkhäuser, Progress in Mathematics, 202 (2001), vol. II, pp. 547–555.

[GG1] V.L. Ginzburg, B.Z. Gürel, On the construction of a C^2-counterexample to the Hamiltonian Seifert Conjecture in \mathbb{R}^4, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 1–10.

[GG2] V.L. Ginzburg, B.Z. Gürel, A C^2-smooth counterexample to the Hamiltonian Seifert conjecture in \mathbb{R}^4, Preprint 2001, math.DG/0110047; to appear in Ann. of Math.

[GH1] V.L. Ginzburg, E. Kerman, Periodic orbits in magnetic fields in dimensions greater than two, in Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), 113–121, Contemp. Math., 246, Amer. Math. Soc., Providence, RI, 1999.

[GH2] V.L. Ginzburg, E. Kerman, Periodic orbits of Hamiltonian flows near symplectic extrema, Pacific J. Math., 206 (2002), 69–91.

[He] M.R. Herman, Examples of compact hypersurfaces in \mathbb{R}^{2p}, $2p \geq 6$, with no periodic orbits, in Hamiltonian systems with three or more degrees of freedom, C. Simó (Editor), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999.

[Hv1] H. Hofer, C. Viterbo, The Weinstein conjecture in cotangent bundles and related results, Annali Sc. Norm. Sup. Pisa, Serie IV, Fasc III, 15 (1988), 411–445.

[Hv2] H. Hofer, C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math., 45 (1992), 583–622.

[HZ] H. Hofer, E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser, Advanced Texts; Basel–Boston–Berlin, 1994.

[Ja] M.Y. Jiang, Periodic solutions of Hamiltonian systems on hypersurfaces in a torus, Manuscripta Math., 85 (1994), 307–321.

[Ke1] E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds, IMRN (1999), no. 17, 954–969.

[Ke2] E. Kerman, New smooth counterexamples to the Hamiltonian Seifert conjecture, J. Symplectic Geom., 1 (2002), 253–267.

[Ke3] E. Kerman, Private communication.

[La] F. Lalonde, Energy and capacities in symplectic topology, in Geometric Topology (Athens, GA, 1993), 328–374, AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997.

[Lt] G. Liu, G. Tian, Weinstein conjecture and GW invariants, Commun. Contemp. Math., 2 (2000), 405–459.

[Lu1] G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math., 52 (1998), 331–351.

[Lu2] G. Lu, Gromov-Witten invariants and pseudo symplectic capacities, Preprint 2001, math.SG/0103195.

[Ma] R. Ma, A remark on Hofer-Zehnder symplectic capacity in symplectic manifolds $M \times \mathbb{R}^{2n}$, Chinese Ann. Math. Ser. B, 18 (1997), 89–98.

[Mac1] L. Macarini, Hofer–Zehnder capacity and Hamiltonian circle actions, Preprint 2002, math.SG/0205030.
RELATIVE HOFER–ZEHNDER CAPACITY

[Mac2] L. Macarini, Hofer–Zehnder semicapacity of cotangent bundles and symplectic submanifolds, Preprint 2003, math.SG/0303230.

[McDS] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford University Press, New York, (1995).

[Mo] J. Moser, Periodic orbits near equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727–747.

[Pol1] L. Polterovich, An obstacle to non-Lagrangian intersections, in The Floer memorial volume, 575–586, Progr. Math., 133, Birkhäuser, Basel, 1995.

[Pol2] L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 401–410 (electronic).

[Po] M. Poźniak, Floer homology, Novikov rings and clean intersections, in Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999.

[Sa] D.A. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology, Eds: Y. Eliashberg and L. Traynor, IAS/Park City Mathematics series, 7, 1999, pp. 143–230.

[Sc] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419–461.

[Se] A. Serra, Private communication.

[St] M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surfaces, Bol. Soc. Bras. Mat., 20 (1990), 49–58.

[Vi1] C. Viterbo, A proof of Weinstein’s conjecture in \mathbb{R}^{2n}, Ann. Inst. Poincaré, Anal. Non Linéaire, 4 (1987), 337-356.

[Vi2] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685–710.

[Vi3] C. Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal., 9 (1999), 985–1033.

[We] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), 377–410.

[Ze] E. Zehnder, Remarks on periodic solutions on hypersurfaces, in Periodic solutions of hamiltonian systems and related topics, Ed.: Rabinowitz et al., Reidel Publishing Co. (1987), 267–279.

[Zi] W. Ziller, Geometry of the Katok examples, Ergodic Theory Dynam. Systems, 3 (1983), 135–157.

DEPARTMENT OF MATHEMATICS, UC SANTA CRUZ, SANTA CRUZ, CA 95064, USA
E-mail address: ginzburg@math.ucsc.edu, basak@math.ucsc.edu