Types of Retears After Knot-tying and Knotless Suture Bridge Rotator Cuff Repair

A Systematic Review and Meta-analysis

Niti Prasathaporn,* MD, Napatpong Thamrongskulsiri,†‡ MD, Thun Itthipanichpong,‡ MD, and Danaithep Limskul,‡§ MD

Investigation performed at the Faculty of Medicine, Chulalongkorn University; and Ramkhamhaeng Hospital, Bangkok, Thailand

Background: In conventional double-row repair for rotator cuff tears, tying the medial row of anchor sutures can strangulate the tendon. The knotless medial row technique has been recommended to improve vascularity and reduce retear rates. The researchers divided the retear pattern into 2 categories: type 1 (failure at the tendon-bone interface) and type 2 (failure at the musculotendinous junction with healed footprint).

Purpose: To compare studies on knot-tying versus knotless double-row repair for rotator cuff tears according to retear type and clinical and radiological outcomes.

Study Design: Systematic review; Level of evidence, 3.

Methods: A search of the PubMed, Embase, Scopus, and Cochrane databases was performed following the 2020 Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) guidelines. Included were studies that directly compared the knot-tying and knotless double-row techniques and provided postoperative patient-reported outcomes and retear rates. The Methodology Index for Non-Randomized Studies (MINORS) criteria were used for methodological quality assessment of the included studies. Odds ratios (ORs) were calculated for dichotomous outcomes, and mean differences (MDs) were calculated for continuous outcomes.

Results: Included were 12 studies (n = 1411 shoulders); 1 study had level 1 evidence, 3 studies had level 2 evidence, and 8 studies had level 3 evidence. The MINORS score ranged from 15 to 19, indicating that the methodology was fair to good. There was no statistically significant difference in retear rate between techniques (OR, 0.99; 95% CI, 0.67-1.47; P = .96); however, more type 1 retears were seen in the knotless technique (OR, 0.42; 95% CI, 0.23-0.77; P = .005), and more type 2 retears were seen in the knot-tying technique (OR, 3.15; 95% CI, 1.70-5.83; P = .0003). Higher postoperative Constant scores were seen in the knot-tying technique (MD, 1.28; 95% CI, 0.03-2.53; P = .04); however, there were no significant differences between techniques regarding other postoperative outcomes.

Conclusion: There was no significant difference in overall retear rates between the knotless and knot-tying techniques, and both techniques demonstrated similar clinical outcomes. However, type 2 retear rates were significantly greater after knot-tying repair, and type 1 retear rates were significantly greater after knotless repair.

Keywords: systematic review; rotator cuff; double-row repair; suture bridge; knotless; knot-tying; knotted; clinical outcome; retear; failure

Although single-row repair for rotator cuff tears has produced favorable clinical outcomes, the retear rate is high.2,4,8 The double-row repair technique was developed to help decrease the retear rate.21 The goals of double-row repair are to increase fixation strength, decrease gap formation under cyclic loading, and improve the restoration of the anatomic footprint of the humeral head.1,17,25,26 A meta-analysis by Prasathaporn et al21 concluded that double-row rotator cuff repair can increase tendon healing, enabling patients to have greater external rotation and a significantly higher rate of tendon healing compared with single-row repair.

This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For article reuse guidelines, please visit SAGE’s website at http://www.sagepub.com/journals-permissions.
Cho et al. divided the rotator cuff retear pattern on post-operative magnetic resonance imaging into 2 categories: type 1 (failure at the tendon-bone interface) and type 2 (failure at the musculotendinous junction with healed footprint). In conventional double-row repair, knot-tying of the medial row of anchor sutures can strangulate the tendon and impair vascular inflow, resulting in a type 2 retear. Recently, the knotless medial row technique has been recommended to improve vascularity and prevent type 2 failure. A systematic review of biomechanical factors (ultimate load, stiffness, gap formation, and contact area) reported that when medial knots are tied in double-row repairs, they perform significantly better than knotless medial row repairs.

Many studies have compared clinical and radiological outcomes between the knot-tying and knotless double-row repair techniques for rotator cuff tears. A meta-analysis by Kunze et al. concluded that clinical outcomes, retear rates, and location of retears after knot-tying versus knotless double-row repairs were not significantly different. Recent retrospective comparative studies confirmed no retear rate differences between both techniques. However, a recent prospective randomized controlled trial comparing clinical and radiological outcomes between knot-tying and knotless medial row techniques found type 2 failure rates to be significantly higher when using the knot-tying medial row technique.

The purpose of the present study was to compare studies on knot-tying versus knotless double-row repair of rotator cuff tears according to retear type and clinical and radiological outcomes.

METHODS

Literature Search and Study Eligibility

A systematic literature search was performed in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement by 2 authors (N.P., N.T.), who queried the PubMed, Embase, Scopus, and Cochrane databases for studies involving arthroscopic rotator cuff repair with knotless and knot-tying double-row techniques. All relevant studies were published between 2008 and 2021. The search terms used for this review were (“rotator cuff” OR “supraspinatus” OR “infraspinatus” OR “subscapularis” OR “teres minor”) AND “repair” AND (“knot” OR “knotted” OR “knotless”). Eligible studies were included based on the following criteria: (1) clinical studies with evidence level 1 to 3, (2) English-language articles, (3) studies making direct comparisons between knot-tying and knotless double-row techniques of arthroscopic rotator cuff repair, (4) studies reporting post-operative patient-reported outcomes and retear rates, and (5) full-text availability. The exclusion criteria were (1) basic science or biomechanics articles, (2) case series or case reports, (3) study reviews, (4) studies on rotator cuff repair associated with shoulder arthroplasty or trauma, and (5) overlap of patient populations when the study was conducted by the same authors or institutions.

Data Extraction and Bias Assessment

The 2 reviewers (N.P., N.T.) independently screened all titles, abstracts, and the full texts of the retrieved studies to determine study eligibility. Any disagreements were resolved by a third author (T.I.). Data extracted from the included studies were (1) article information, (2) patient characteristics, (3) surgical techniques and implants, (4) retear rate and retear location (type 1 or type 2 according to Cho classification), (5) functional outcome scores, (6) range of motion, and (7) muscle strength.

The Methodology Index for Non-Randomized Studies (MINORS) criteria were used for methodological quality assessment of the included studies.

Statistical Analysis

The retrieved data were analyzed by use of RevMan version 5.3 (The Cochrane Collaboration). For each study, odds ratios (ORs) with 95% CIs were calculated for dichotomous outcomes, and mean differences (MDs) with 95% CIs were calculated for continuous outcomes. Statistical heterogeneity was proven by the chi-square test. If the test showed $P < .1$, the included studies had statistical heterogeneity. A fixed-effects model was applied if there was no statistical and graphical evidence of heterogeneity. A random-effects model was used when there was statistical or graphical evidence of heterogeneity.

RESULTS

Included Studies

Using the identified search criteria, 698 studies were deemed eligible. After an initial screening, 416 duplicate studies were excluded. Of the remaining 282 abstracts...
screened, 249 were excluded. The final subjective synthesis included 12 articles. Figure 1 summarizes the study selection process.

The 12 articles included a total of 1411 shoulders, with tear sizes being medium in 4 studies,12,13,16,22 medium to large in 3 studies,9,28,29 small to massive in 2 studies,10,23 and not reported in 3 studies.3,11,19 One study23 was categorized as having level 1 evidence, 3 studies3,13,22 had level 2 evidence, and 8 studies9-12,16,19,28,29 had level 3 evidence. The studies had a MINORS score ranging from 15 to 19, indicating that the methodology was fair to good. Details of the included studies are shown in Table 1 and Appendix Table A1.

Retear Rate and Type

Eleven studies3,9-13,16,19,22,23,28 reported the overall retear rate of both knot-tying and knotless techniques. The overall retear rates of the knot-tying and knotless group were 20.1% and 20.4%, respectively. No statistically significant difference was found between the 2 techniques (OR, 0.99; 95% CI, 0.67-1.47; P = .96) (Figure 2). However, type 1 retear rates were significantly higher in knotless double-row rotator cuff repair (OR, 3.15; 95% CI, 1.70-5.83; P = .0003) (Figure 3), while type 2 retear rates were significantly higher in knot-tying double-row rotator cuff repair (OR, 0.42, 95% CI, 0.23-0.77; P = .005) (Figure 4).

Clinical Outcomes

For postoperative clinical outcomes, 7 studies3,9,11,13,16,23,28 reported the Constant score, 3 studies13,16,28 reported the American Shoulder and Elbow Surgeons (ASES) shoulder score, and 3 studies10,13,28 reported the University of California at Los Angeles (UCLA) shoulder rating scale. In comparison with the knotless technique, the knot-tying technique had a statistically higher postoperative Constant score (MD, 1.28; 95% CI, 0.03-2.53; P = .04). (Figure 5A) However, there was no statistically significant difference between the ASES score (MD, 0.95; 95% CI, –0.67 to 2.57; P = .25) (Figure 5B) and the UCLA score (MD, 0.18; 95% CI, –0.70 to 1.06; P = .69) (Figure 5C).

Range of Motion

For range of motion, 5 studies3,9,16,23,29 reported postoperative flexion, 2 studies23,29 reported postoperative abduction, and 3 studies16,23,29 reported postoperative external rotation. There was no statistically significant difference for postoperative flexion (MD, –1.22; 95% CI, –4.45 to 2.00; P = .46) (Figure 6A), abduction (MD, –1.01; 95% CI, –6.48 to 4.46; P = .72) (Figure 6B), and external rotation (MD, –0.48; 95% CI, –3.62 to 2.66; P = .77) (Figure 6C).

DISCUSSION

The main finding of this review was that there was no significant difference in overall retear rates between the knotless and knot-tying techniques (OR, 0.99; 95% CI, 0.67-1.47; P = .96). However, type 2 retear (failure at the musculotendinous junction) rates were significantly higher in the knot-tying technique (OR, 0.42; 95% CI, 0.23-0.77; P = .005), while type 1 retear (failure at the tendon-bone interface) rates were significantly higher in the knotless technique (OR, 3.15; 95% CI, 1.70-5.83; P = .0003). Both techniques had similar clinical results.

Double-row rotator cuff repair can improve fixation strength, footprint contact area, and tendon healing.1,17,21,25,26 The knot-tying and knotless double-row repair of rotator cuff tears is the contentious issue. Eleven of the 12 studies in the

References 3, 9–13, 16, 19, 22, 23, 28, 29.
TABLE 1
Details of the Included Studies and MINORS Score

Lead Author (Year)	LOE	Mean Age, y	Knotless/Knot-tying Groups, n	Tear Size, cm	Imaging Modality	Mean Follow-up, mo	PROs	MINORS Score
Rhee (2012)	2	61.0	51/59	1-3	MRI	21.7	VAS	16
Kim (2014)	3	59.9	61/96	1-4	MRI	NR	6.2	15
Boyer (2015)	2	58.5	35/38	NR	MRI	25.2	VAS, CS	17
Hug (2015)	2	63.3	22/20	NR	MRI	24.4	CS, WORC, SSV	16
Lee (2017)	3	59.0	69/59	Knotless: 1.76; knot-tying: 1.87	MRI	38.3	VAS, CS, ASES	17
Millett (2017)	3	59.0	109/39	NR	MRI	34.8	ASES, SF-12 PCS	15
Honda (2018)	3	63.8	24/29	NR	MRI	24.0	UCLA, JOA	17
Kim (2018)	3	59.7	50/50	1-4	MRI/US	24.0	VAS, CS, UCLA, ASES	19
Gürpınar (2019)	3	56.7	57/64	1-5	MRI	19.0	VAS, CS	18
Zwolak (2020)	3	61.9	19/64	1-5	NR	12.0	QuickDASH, SPADI	17
Xu (2021)	3	63.2	134/158	3-5	MRI	15.6	CS, UCLA, ASES	17
Şahin (2021)	3	55.1	53/51	NR	MRI	24.3	VAS, CS	18

aASES, American Shoulder and Elbow Surgeons shoulder score; CS, Constant score; JOA, Japanese Orthopaedic Association Score; LOE, level of evidence; MINORS, Methodological Index for Non-Randomized Studies; MRI, magnetic resonance imaging; NR, not reported; PRO, patient-reported outcome; QuickDASH, Quick Disabilities of the Arm, Shoulder and Hand Questionnaire; SP-12 PCS, 12-Item Short Form Health Survey–Physical Component Score; SPADI, Shoulder Pain and Disability Index; SSV, Subjective Shoulder Value; UCLA, University of California at Los Angeles Shoulder Scale; US, ultrasound; VAS, visual analog scale; WORC, Western Ontario Rotator Cuff Index.

Figure 2. Forest plot comparing the overall retear rate between techniques. M-H, Mantel-Haenszel.
current review assessed the overall retear rate and found no significant differences. In their series of 110 patients, Rhee et al. found that knotless double-row repair had a statistically lower retear rate (5.9%) than knot-tying double-row repair (18.6%). Similarly, Millett et al. reported that knotless double-row repairs had a statistically lower retear rate (7.5%) than knot-tying double-row repairs (33.3%). A review by Kunze et al. found no difference in the location of the retear between knotless and knot-tying double-row repairs. In the present systematic review, we analyzed studies by Gürpınar et al., Xu et al., and Şahin et al. The level 1 study by Şahin et al. suggested that knot-tying repair causes more type 2 failures.

Although we found significantly higher Constant scores after knot-tying versus knotless repair, this does not indicate a clinical difference. In patients with rotator cuff tears, the minimal clinically significant difference for the
Constant score is 10.4 points. In addition, there were no significant differences between techniques in the postoperative ASES score, UCLA score, or range of motion.

The knot-tying repair technique may not be suitable in cases that have a higher risk of musculotendinous junction failure, such as a short tendon stump. Meanwhile, it may be reasonable to consider not using a knotless repair technique in those patient conditions in which there is a high risk of failure at the tendon-bone interface, such as osteoporosis, hypovitaminosis D, diabetes, and smoking.

Limitations

This study has several limitations. First, as with any systematic review, some studies may have been missed by the search criteria used, and the inherent biases of each included study may have affected the results. Second, the included studies vary in terms of surgical techniques, surgical implants, patient data, follow-up periods, and imaging protocols. Third, the study heterogeneity in terms of other operations undertaken (eg, biceps tenotomy, tenodesis, acromioplasty, or distal clavicle excision) may influence outcomes. Fourth, retrospective studies are included in this study, meaning there is a potential for reporting and publication bias. There was no assessment of the publication bias. The majority of the included studies were level 3, indicating a poor level of evidence. Only one of the included studies was a level 1 randomized controlled trial. Finally, the clinical outcome scores used were variable, which complicates making comparisons between studies.

Figure 5. Forest plot comparing the (A) Constant score, (B) American Shoulder and Elbow Surgeons shoulder score (ASES), and (C) University of California at Los Angeles (UCLA) shoulder rating scale between techniques. IV, inverse variance.
CONCLUSION

From the reviewed studies, there was no significant difference in overall retear rates between knotless and knot-tying techniques. Furthermore, both techniques demonstrated similar clinical outcomes. However, the type 2 failure rate is significantly higher in knot-tying repair, and the type 1 failure rate is significantly higher in knotless repair.

ACKNOWLEDGMENT

The authors thank Mr. David James Sims for language editing.

REFERENCES

1. Apreleva M, Ozbaydar M, Fitzgibbons PG, Warner JJ. Rotator cuff tears: the effect of the reconstruction method on three-dimensional repair site area. Arthroscopy. 2002;18(5):519-526. doi:10.1053/jars.2002.32930

2. Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am. 2005;87(6):1229-1240. doi:10.2106/JBJS.D.02035

3. Boyer P, Bouthors C, Delcourt T, et al. Arthroscopic double-row cuff repair with suture-bridging: a structural and functional comparison of two techniques. Knee Surg Sports Traumatol Arthrosc. 2015;23(2):478-486. doi:10.1007/s00167-013-2401-7

4. Brislin KJ, Field LD, Savoie FH III. Complications after arthroscopic rotator cuff repair. Arthroscopy. 2007;23(2):124-128. doi:10.1016/j.arthro.2006.09.001

5. Cho NS, Lee BG, Rhee YG. Arthroscopic rotator cuff repair using a suture bridge technique: is the integrity actually maintained? Am J Sports Med. 2011;39(10):2108-2116. doi:10.1177/0363546510350081

6. Cho NS, Yi JW, Lee BG, Rhee YG. Retear patterns after arthroscopic rotator cuff repair: single-row versus suture bridge technique. Am J Sports Med. 2010;38(4):664-671. doi:10.1177/0363546509350081

7. Chung SW, Oh JH, Gong HS, Kim JY, Kim SH. Factors affecting rotator cuff healing after arthroscopic repair: osteoporosis as one of

Figure 6. Forest plot comparing postoperative range of motion between techniques: (A) flexion, (B) abduction, and (C) external rotation. IV, inverse variance.

The Orthopaedic Journal of Sports Medicine
Knot-Tying vs Knotless Suture Bridge Repair
the independent risk factors. *Am J Sports Med.* 2011;39(10): 2099-2107. doi:10.1177/0363546511415659

8. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. *J Bone Joint Surg Am.* 2000;82(4):505-515. doi:10.2106/00004623-200004000-00006

9. Gürpınar T, Polat B, Tekin SB, Esin Polat A, Çarkçı E, Öztürkmen Y. Comparison of early clinical results and re-tear rates of transosseous-equivalent rotator cuff repairs with or without medial knots. *J Orthop Relat Surg.* 2019;30(3):193-200. doi:10.5060/ejhbc/2019.70137

10. Honda H, Gotoh M, Mitsui Y, et al. Clinical and structural outcomes after arthroscopic rotator cuff repair: a comparison between suture bridge techniques with or without medial knot tying. *J Orthop Surg Res.* 2018;13(1):297. doi:10.1186/s13018-018-0990-z

11. Hug K, Gerhardt C, Haneveld H, Scheibel M. Arthroscopic knotless-anchor rotator cuff repair: a clinical and radiological evaluation. *Knee Surg Sports Traumatol Arthrosc.* 2015;23(9):2628-2634. doi:10.1007/s00167-014-3026-1

12. Kim KC, Shin HD, Cha SM, Park JY. Comparisons of retear patterns for 3 arthroscopic rotator cuff repair methods. *Am J Sports Med.* 2014;42(3):558-565. doi:10.1177/0363546514521577

13. Kim KC, Shin HD, Lee WY, Yeon KW, Han SC. Clinical outcomes and repair integrity of arthroscopic rotator cuff repair using suture-bridge technique with or without medial tying: prospective comparative study. *J Orthop Surg Res.* 2018;13(1):212. doi:10.1186/s13018-018-0921-z

14. Kukkonen J, Kauko T, Vahlberg T, Joukainen A, Ärimaa V. Investigating minimal clinically important difference for Constant score in patients undergoing rotator cuff surgery. *J Shoulder Elbow Surg.* 2013;22(12):1650-1655. doi:10.1016/j.jse.2013.05.002

15. Kunze KN, Rossi LA, Beletsky A, Chahla J. Does the use of knotted versus knotless transosseous-equivalent rotator cuff repair technique influence the incidence of retears? A systematic review. *Arthroscopy.* 2020;36(6):1738-1746. doi:10.1016/j.arthro.2020.01.052

16. Lee SH, Kim JW, Kim TK, et al. Is the arthroscopic suture bridge technique suitable for full-thickness rotator cuff tears of any size? *Knee Surg Sports Traumatol Arthrosc.* 2017;25(7):2138-2146. doi:10.1007/s00167-016-4415-4

17. Lo IK, Burkart SS. Double-row arthroscopic rotator cuff repair: re-establishing the footprint of the rotator cuff. *Arthroscopy.* 2003;19(9):1035-1042. doi:10.1016/j.arthro.2003.09.036

18. Mall NA, Lee AS, Chahla J, et al. Transosseous-equivalent rotator cuff repair: a systematic review on the biomechanical importance of tying the medial row. *Arthroscopy.* 2013;29(2):377-386. doi:10.1016/j.arthro.2012.11.008

19. Millett PJ, Espinoza C, Horan MP, et al. Predictors of outcomes after arthroscopic transosseous-equivalent rotator cuff repair in 155 cases: a propensity score weighted analysis of knotted and knotless self-reinforcing repair techniques at a minimum of 2 years. *Arch Orthop Trauma Surg.* 2017;137(10):1399-1408. doi:10.1007/s00402-017-2750-7

20. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ.* 2021;372:n71. doi:10.1136/bmj.n71

21. Prasathaporn N, Kuptniratsaikul S, Kongrukgreathyos K. Single-row repair versus double-row repair of full-thickness rotator cuff tears. *Arthroscopy.* 2011;27(7):978-985. doi:10.1016/j.arthro.2011.01.014

22. Rhee YG, Cho NS, Parke CS. Arthroscopic rotator cuff repair using modified Mason-Allen medial row stitch: knotless versus knot-tying suture bridge technique. *Am J Sports Med.* 2012;40(11):2440-2447. doi:10.1177/0363546512459170

23. Şahin K, Şentürk F, Ersin M, Arzu U, Chodza M, Erşen A. Repair integrity and functional outcomes between knot-tying and knotless suture-bridge arthroscopic rotator cuff repair: a prospective randomized clinical trial. *Orthop J Sports Med.* 2021;9(4):23259671211002482. doi:10.1177/23259671211002482

24. Silim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological Index for Non-Randomized Studies (MINORS): development and validation of a new instrument. *ANZ J Surg.* 2003;73(9):712-716. doi:10.1016/S0003-0229(03)00274-X

25. Smith CD, Alexander S, Hill AM, et al. A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair. *J Shoulder Joint Surg Am.* 2006;88(11):2425-2431. doi:10.1016/j.bjsu.2006.09.007

26. Tuoheti Y, Itoi E, Yamamoto N, et al. Contact area, contact pressure, and pressure patterns of the tendon-bone interface after rotator cuff repair. *Am J Sports Med.* 2005;33(12):1869-1874. doi:10.1177/0363545605278256

27. Vaishnav S, Millett PJ. Arthroscopic rotator cuff repair: scientific rationale, surgical technique, and early clinical and functional results of a knotless self-reinforcing double-row rotator cuff repair system. *J Shoulder Elbow Surg.* 2010;19(2)(suppl):83-90. doi:10.1016/j.jse.2009.12.012

28. Xu X, Liu H, Pan X, Yu H, Hu Y. Modified double-pulley suture-bridge techniques with or without medial knot tying show comparable clinical and radiological outcomes in arthroscopic rotator cuff repair. *Knee Surg Sports Traumatol Arthrosc.* 2021;29(12):3997-4003. doi:10.1007/s00462-021-08308-7

29. Zvolak P, Meyer P, Molnar L, Kröber M. The functional outcome of arthroscopic rotator cuff repair with double-row knotless vs knot-tying anchors. *Arch Orthop Trauma Surg.* 2020;142(1):25-31. doi:10.1007/s00402-020-03584-3
APPENDIX

TABLE A1
Details of the Included Studies: Retears, Inclusion/Exclusion Criteria, and Surgical Technique

Lead Author (Year)	Retears, Knotless/Tying, n	Inclusion Criteria	Exclusion Criteria	Surgical Technique	Suture Type Used	Footprint Preparation
Rhee (2012)\(^{22}\)	3/11	Primary, medium-sized tear that could be repaired without undue tension with a suture bridge repair technique based on arthroscopic findings	SLAP lesion, distal clavicle resection, osteoarthritis, workers' compensation, biceps procedure, revision surgery	Conventional suture bridge and knotless suture bridge	FiberWire suture (Arthrex)	Using a shaver to decorticcate the footprint
Kim (2014)\(^{12}\)	22/22	Full-thickness rotator cuff tear, tear size 1-4 cm	Subscapularis tear, revision surgery, severe tendon retraction, poor tendon quality, neurological involvement	Conventional suture bridge and knotless suture bridge	NR	Using a bur to decorticcate the footprint
Boyer (2015)\(^{3}\)	6/9	Full-thickness supraspinatus tendon tear, minimum follow-up of 12 mo, Goutallier stage <2, repair by a suture bridging technique	Shoulder stiffness, arthropy, subscapularis tear	Knotted suture bridge and knotless bridge taping	FiberWire suture (Arthrex)	Using a bur to decorticcate the footprint
Hug (2015)\(^{11}\)	5/5	Repairable rotator cuff tear of the supraspinatus tendon, crescent-shaped concerning Bateman grade 2-3, Patte stage 1-2	Shoulder stiffness, osteoarthritis, traumatic tears, and revision surgery	Knotless-anchor speed bridge and modified suture bridge knot-tying	FiberTape (Arthrex)	Using a bur to decorticcate the footprint
Lee (2017)\(^{16}\)	13/8	Full-thickness rotator cuff tear, repair of the tear using either knotted suture bridge or modified knotless tension band, follow-up MRI at 6 mo, minimum follow-up period of 24 mo, no history of fractures or surgeries on the affected shoulder, adherence to postoperative rehabilitation protocol	Subscapularis tear, osteoarthritis, revision surgery	Knotted suture bridge and modified knotless tension band	NR	NR
Millett (2017)\(^{19}\)	3/4	Full-thickness rotator cuff tear, age >18 y, repair of the tear using either knotted suture bridge or knotless bridge taping	Conversion to an open surgery, used a patch to augment the repair, subscapularis tear, labral repair, microfracture, fracture fixation	Knotted suture bridge and knotless bridge taping	Knot-tying: suture; knotless: TAPE	NR

(continued)
Lead Author (Year)	Retears, Knotless/ Knot-Tying, n	Inclusion Criteria	Exclusion Criteria	Surgical Technique	Suture Type Used	Footprint Preparation
Honda (2018)10	14/18	Retear, Knotless/ Knot-Tying, n	Partial repair, open repair, revision surgery, fracture, osteoarthritis, rheumatic condition, neurological involvement	Conventional suture bridge and knotless suture bridge	FiberWire suture (Arthrex)	Using a bur to decorticate the footprint
Kim (2018)13	14/8	Full-thickness rotator cuff tear, tear size 1-4 cm	Tear < 1 cm, tear > 4 cm, subscapularis tear, neurological involvement, revision surgery, partial-thickness rotator cuff tear, osteoarthritis	Conventional suture bridge and knotless suture bridge	FiberWire suture (Arthrex)	NR
Gürpinar (2019)9	5/7	Rotator cuff tear diagnosed by MRI, tear size 1-5 cm, Patte stage 1-2	Patte stage 3, small tear (< 1 cm), massive tear (> 5 cm), subscapularis tear, traumatic tear, revision surgery, age > 75 y, osteoarthritis, Goutallier stage > 2	Conventional suture bridge and knotless suture bridge	NR	NR
Zwolak (2022)29	NR	Full-thickness rotator cuff tear, repair of the tear using either conventional suture bridge or knotless-anchor speed bridge, completed 12-mo follow-up, adherence to postoperative rehabilitation protocol	Failure to adhere to postoperative rehabilitation protocol, missed one of the follow-up appointments, follow-up < 12 mo, Bankart lesion, osteoarthritis, previous surgery, shoulder instability	Conventional suture bridge and knotless-anchor speed bridge	Knot-tying: Orthocord (DuPuy Mitek); knotless: Ultratape and Ultrabraid (Smith & Nephew)	NR
Xu (2021)28	20/27	Full-thickness rotator cuff tear, size 3-5 cm, persistent symptoms > 3 mo after adequate nonoperative treatment, adherence to postoperative rehabilitation protocol	Follow-up < 12 mo, subscapularis tear, labral tear, Hill-Sachs lesion, fracture, Goutallier stage > 2	Knot-tying: modified double-pulley suture bridge; knotless: modified double-pulley suture bridge	Orthocord (DuPuy Mitek)	The footprint was prepared
Şahin (2021)23	13/8	Full-thickness rotator cuff tear, repair of the tear using either knot-tying or knotless suture bridge	Age < 18 y, partial-thickness rotator cuff tear, subscapularis tear, osteoarthritis, previous surgery, neurological disease, rheumatic condition, revision surgery	Conventional suture bridge and knotless suture bridge	Knot-tying: Ultrabraid (Smith & Nephew); knotless: Ultratape and Ultrabraid (Smith & Nephew)	Using a shaver and bur to decorticate the footprint

MRI, magnetic resonance imaging; NR, not reported; SLAP, superior labrum from anterior to posterior.