Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping

N Parkin¹, D Zaccaro², S Avila-Rios³, C Brumme⁴, G Hunt⁵, H Ji⁶, R Kantor⁷, JL Mbisa⁸, R Paredes⁹, V Rivera-Amill¹⁰, Y Zhang¹¹, S Zhou¹², C Jennings¹³

¹ Data First Consulting, Inc., Belmont, CA, USA; 2 RTI International, Research Triangle Park, NC, USA; 3 Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; 4 British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada; 5 AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa; 6 National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Center, Public Health Agency of Canada, Winnipeg, Canada; 7 Brown University, Providence, RI, USA; 8 Public Health England, Colindale, UK; 9 IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain; 10 AIDS Research Program-Immunology Reference Laboratory, Ponce School of Medicine, Puerto Rico; 11 Johns Hopkins University, Baltimore, MD, USA; 12 University of North Carolina, Chapel Hill, NC, USA; 13 Virology Quality Assurance Program, Rush University Medical Center, Chicago, IL, USA
Background

• WHO HIVDR Laboratory Network performs genotyping in support of WHO surveys of HIVDR

• Regional and global analyses depend on standardization of methods to allow comparison of results from different labs
 ◦ Assay validation standards and annual EQA

• Sanger-based sequencing is the norm (kits or in-house)

• NGS methods are being adopted in some labs

• Need to establish parameters to maximize comparability between NGS and Sanger-based methods
Next-generation Sequencing (NGS)

- Full sequence of multiple individual variants
- Objective quantitation of low-abundance variants
- Potential for increased sensitivity (5% or lower) (clinically relevant threshold unknown)
- Potential for lower cost
Study Rationale and Objectives

- In an exploratory manner, compare NGS “consensus” sequences from multiple labs, generated using different thresholds for low-abundance variants, to gold standard Sanger-based reference.
- Evaluate agreement between NGS and Sanger, and between labs.
- Determine the threshold that maximizes agreement and minimizes inter-laboratory variability.
Methods (1)

• Virology Quality Assurance (VQA) HIV genotyping proficiency panels (Rush University Medical Center) 24 and 26 (n=10 specimens) distributed to 10 labs

• VQA (Sanger) consensus sequences
 ◦ The VQA consensus covers PR amino acids 4-99 and RT 38-247
 ◦ Based on over 30 results generated by independent laboratories using a commercial genotyping kit (ViroSeq or TruGene)
 ◦ Where 80% absolute agreement was not reached, an N is inserted at that position, and differences at these positions amongst individual submitted sequences were ignored
Methods (2)

- Assay methodologies
 - Front end (RT-PCR then nested PCR); variable input volume
 - Illumina MiSeq
 - Analysis pipeline (HyDRA, PASEq, MiCall, HMMER, other in-house)
 - Amino acids covered variable

- Labs submitted “Sanger-like” sequences in fasta format based on a minimum nucleotide variant frequency of 5%, 10%, 15% or 20%

- Sequence evaluation
 - vs. VQA Sanger consensus (all positions or just DRM)
 - Pairwise comparisons
 - vs. group consensus (identity vs. majority base)
| Specimen ID | Viral load | Subtype | PR DRM s | RT DRM s | % mixed bases in VQA consensus |
|------------|------------|---------|----------|----------|-------------------------------|
| 24.1 | 7,815 | B | none | T215T/C/S | 2.3% |
| 24.2 | 18,023 | F | K20R, M36I | none | 0.0% |
| 24.3 | 26,372 | C | M36I | M41L, V75T, V90I, V106M, V179D | 0.0% |
| 24.4 | 29,139 | C | M36I | M41L, K103N, M184V, T215Y | 0.1% |
| 24.5* | 6,424 | B | L10I, L33F, M46L, I54V, A71I/T, V82A, L90M (also N88G) | M41L, E44D, A62V, D67N, L74V, L100I, K103N, H208Y, L210W, T215Y, H221Y, K238K/N (also M184L) | 0.8% |
| 26.1 | 16,685 | C | M36I, T74S | D67N, K70R, V90I, M184V | 0.9% |
| 26.2* | 4,513 | B | L10I, L33F, M46L, I54V, A71I/T, V82A, L90M (also N88G) | M41L, E44D, A62V, D67N, L74V, L100I, K103N, H208Y, L210W, T215Y, H221Y (also M184L) | 1.1% |
| 26.3 | 18,213 | C | K20R, M36I | A62A/V, K65K/R, D67D/N, V75V/A/I/T, K101Q, K103N, V106M, E138A, M184V K219K/N | 2.1% |
| 26.4 | 6,506 | D | M36I | none | 1.1% |
| 26.5* | 3,656 | B | none | V90I, K103K/N | 3.8% |

* same donor plasma
Sequence Identity vs. VQA Sanger Consensus

LAB THRESHOLD	VQA	Sanger
	218	GCAAA
	219	GCAAA
	220	GCAAA
	221	GCAAA
	222	GCAAA

Table

VQA	Sanger	
1	5	G A C A A R A A A C A Y C A G
1	10	G A C A A R A A A C A Y C A G
1	15	G A C A A R A A A C A Y C A G
1	20	G A C A A R A A A C A Y C A G
2	5	G A C A A R A A A C A Y C A G
2	10	G A C A A R A A A C A Y C A G
2	15	G A C A A R A A A C A Y C A G
2	20	G A C A A R A A A C A Y C A G
6	5	G A C A A R A A A C A Y C A G
6	10	G A C A A R A A A C A Y C A G
6	15	G A C A A R A A A C A Y C A G
6	20	G A C A A R A A A C A Y C A G
9	5	G A C A A R A A A C A Y C A G
9	10	G A C A A R A A A C A Y C A G
9	15	G A C A A R A A A C A Y C A G
9	20	G A C A A R A A A C A Y C A G
10	5	G A C A A R A A A C A Y C A G
10	10	G A C A A R A A A C A Y C A G
10	15	G A C A A R A A A C A Y C A G
10	20	G A C A A R A A A C A Y C A G
11	5	G A C A A R A A A C A Y C A G
11	10	G A C A A R A A A C A Y C A G
11	15	G A C A A R A A A C A Y C A G
11	20	G A C A A R A A A C A Y C A G
Sequence Identity vs. Sanger Consensus (group 1)
Sequence Identity vs. Sanger Consensus (group 2)

Summary statistics across all labs

	5%	10%	15%	20%
Number	94	94	94	85
Minimum	95.0	95.7	98.2	98.3
Median	98.9	99.6	99.7	99.9
Mean	98.7	99.4	99.6	99.7
Std. Deviation	0.95	0.63	0.41	0.40
Lower 95% CI of mean	98.5	99.2	99.5	99.6
Upper 95% CI of mean	98.9	99.5	99.7	99.8

All comparisons of % identity between thresholds p<0.0001 by Wilcoxon test or paired t-test
Sequence Identity vs. VQA Sanger Consensus

LAB THRESHOLD	218	219	220	221	222
VQA		G	C	A	A
Sanger		R	A	A	C
1	5	A	A	Y	C
1	10	A	A	Y	C
1	15	A	A	Y	C
1	20	A	A	Y	C
2	5	A	A	C	A
2	10	A	A	C	A
2	15	A	A	C	A
2	20	A	A	C	A
3	5	A	A	C	A
3	10	A	A	C	A
3	15	A	A	C	A
3	20	A	A	C	A
4	5	A	A	C	A
4	10	A	A	C	A
4	15	A	A	C	A
4	20	A	A	C	A
5	5	A	A	C	A
5	10	A	A	C	A
5	15	A	A	C	A
5	20	A	A	C	A
6	5	A	A	C	A
6	10	A	A	C	A
6	15	A	A	C	A
6	20	A	A	C	A
7	5	A	A	C	A
7	10	A	A	C	A
7	15	A	A	C	A
7	20	A	A	C	A
8	5	A	A	C	A
8	10	A	A	C	A
8	15	A	A	C	A
8	20	A	A	C	A
9	5	A	A	C	A
9	10	A	A	C	A
9	15	A	A	C	A
9	20	A	A	C	A
10	5	A	A	C	A
10	10	A	A	C	A
10	15	A	A	C	A
10	20	A	A	C	A
11	5	A	A	C	A
11	10	A	A	C	A
11	15	A	A	C	A
11	20	A	A	C	A
Pairwise Sequence Identity

Average % nt identity

VL (SUBTYPE): 7,815 (B) 18,023 (F) 26,372 (C) 29,139 (C) 6,424 (B)* 16,685 (C) 4,513 (B)* 18,213 (C) 6,506 (D) 3,656 (B)

% mixed (VQA): 2.3% 0% 0% 0.1% 0.8% 0.9% 1.1% 2.1% 1.1% 3.8%

Legend:
- 5%
- 10%
- 15%
- 20%
Limitations

• Sequence analysis performed over PR-RT uniformly; different optimal thresholds may exist for specific DRM positions

• Many positions with low % identity do not affect the amino acid

• Influence of additional variables not tested
 ◦ Input copy number
 ◦ Sampling bias related to procedural bottlenecks
 ◦ Analysis pipeline methodology
Conclusions

• Highest identity to Sanger consensus and inter-lab agreement was seen at a threshold of 20%

• Lower agreement at <20% was not simply a result of better sensitivity of NGS, as inter-laboratory agreement also decreased

• If clinically relevant thresholds <20% are demonstrated, sources of inter-laboratory variability in sequence determination must be addressed
Name of laboratory	Location of laboratory (City, Country)	Additional contributors
AIDS Research Program-Immunology Reference Laboratory, Ponce School of Medicine	Ponce, Puerto Rico (USA)	Vanessa Rivera-Amill, Nayra Rodriguez, Raphael Sanchez, Andrea Arias
AIDS Virus Research Unit, National Institute for Communicable Diseases	Johannesburg, South Africa	Gillian Hunt, Johanna Ledwaba, Mukhlid Yousif
Brown University	Providence, Rhode Island (USA)	Rami Kantor, Mia Coetzer, Mark Howison
Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias	Mexico City, Mexico	Santiago Avila-Rios, Margarita Matías-Florentino, Gustavo Reyes-Terán
Irsi Caixa	Barcelona, Spain	Roger Paredes, Marc Noguera, Maria Casadellà
Johns Hopkins University	Baltimore, Maryland (USA)	Yinfeng Zhang, Sue Eshleman
National Laboratory for HIV Genetics	Winnipeg, Canada	Hezhao Ji, Emma R Lee, Eric Enns, Paul Sandstrom
Public Health England, Colindale	London, UK	Tamyo Mbisa, David Bibby
BC Centre for Excellence in HIV/AIDS, University of British Columbia	Vancouver, Canada	BCCfE: Don Kirkby, Jeff Knaggs, Conan Woods
		UBC: Richard Harrigan
University of North Carolina	Chapel Hill, North Carolina (USA)	Shuntai Zhou, Ron Swanstrom, Julie Nelson
Acknowledgements

- Participating laboratories and contributors
- NIH/NIAID contract to Rush University for VQA and ongoing support to WHO laboratories
- Giovanni Ravasi (PAHO)