Removing the Clock Machinery Lag from DCTCP/Prague

Bob Briscoe*
7 Sep 2022

Abstract

This report explains how DCTCP takes 2–3 rounds before it even starts to respond to congestion. This is due to the clocking machinery in its moving average of congestion feedback. Instead, per-ACK mechanisms are proposed, which cut out all the extra lag, leaving just the inherent single round of feedback delay. Even though clocking per ACK updates the average much more frequently, it is arranged to inherently smooth out variations over the same number of round trips, independent of the number of ACKs per round.

Evaluation of the v02 algorithm found design errors. This version (v04) is published prior to evaluation, in order to elicit early feedback on the design.

Keywords Data Communications, Networks, Internet, Data Centre, Performance, Latency, Delay, Responsiveness, Congestion, Control, Feedback, Smoothing, Filtering, Algorithm

1 Problem

Classic Active Queue Management (AQM), as in RED, CoDel or PIE, smooths out rapid variations in the queue before the AQM signals any congestion. In DCTCP [AGM+10], Alizadeh et al introduced the idea of an immediate AQM, that signals congestion without any filtering, then the sender smooths these signals using an EWMA, before using the smoothed average to control the load it applies to the network, via its congestion window.

In the classical approach, smoothing in the network introduces a worst-case round trip time (RTT) of smoothing delay (about 100 ms for AQMs used in the Internet), because it is hard for a network element to determine the actual RTTs of all the flows traversing it. This is the ‘good queue’ described by Nichols & Jacobson [NJ18].

However, when reducing delay, there is no such thing as a good queue. In the DCTCP approach, a sender can tailor its smoothing delay to its own RTT, which it measures anyway for other reasons. Then, it only introduces as much smoothing delay as is necessary to smooth itself.

However, this report shows that common implementations of DCTCP (e.g. in Windows, Linux, or FreeBSD [BTB+17]) add one to two rounds of lag before regulating their load in response to congestion. This lag is on top of the inherent round trip delay in the feedback loop. It is in the clocking machinery that ensures the feedback is smoothed over a set number of round trips.

Derivatives of DCTCP inherit the same machinery delay; for instance the Prague congestion control [DSTB22], which is intended for use over the wide area where unnecessary rounds of lag will be much more noticeable in absolute terms. Unless otherwise stated, the term DCTCP in this paper should be considered to include derivatives like Prague.

*research@bobbriscoe.net,
leading to more queue delay variation and less utilization than necessary. In turn, this means that a new flow must either build up a large queue before any established flow yields or, to avoid excessive queuing, it must enter the system much more tentatively than necessary. Therefore, the algorithm in this report is at least part of a solution to the ‘Prague Requirement’ for ‘faster convergence at flow start’ [DSBE22, Appx A.2.3].

The extra rounds are due to DCTCP’s two-stage process for responding to congestion (see Figure 2):

1. The first stage (shown in green) introduces one round of delay (RTT₁) while it accumulates the marking fraction before it can calculate the EWMA (α₁). It passes this to the second stage that reduces the congestion window (W) by α₁W₁/2.

2. The second extra round arises because the second stage is triggered by congestion feedback (a red ACKnowledgement in Figure 2) that occurs independently of the regularly clocked first stage. This is exacerbated by entering congestion window reduced (CWR) state (shown in pink) at the first sign of congestion, which in turn suppresses any further response for a round — just when more congestion feedback is likely.

So, after the one round of feedback delay, it takes up to two further rounds before a full round of the congestion that triggered the start of the second stage has fed through into the EWMA that the first stage passes to the second. Also, the lagged congestion response will tend to overrun into the subsequent round, causing undershoot.

DCTCP’s current clocking machinery is built to ensure that its EWMA smooths over a defined number of round trips, no matter the ack rate. To ensure stability¹, the damping of the control system is meant to depend solely on the RTT, which is the only inherent lag in the system. Otherwise, if the EWMA were updated on every ACK, the more ACKs there were per round, the shorter the duration over which the EWMA would smooth.

So, the problem boils down to how to update an EWMA on every ACK, but arrange for its value to evolve as if it is only updated once per round trip, even though the number of ACKs per round varies.

2 Per-ACK Machinery Design

2.1 Definitions of variables

\[g : (0 < g < 1) \] the gain or relative weight given to new data over old;

\[G = \frac{1}{g} (> 1) \] Characteristic smoothing delay in update cycles. By default in DCTCP \(G = 16; \)

¹ Actually DCTCP uses more smoothing than the minimum necessary for stability. This is so that long-running DCTCP flows will leave a degree of capacity headroom at the bottleneck for the prevailing level of short flows, which would otherwise cause spikes of queue variation.
av_up : EWMA of the marks per round upscaled by G; Alternatively, it might help to think of this as the EWMA of the marking probability (alpha in DCTCP) upscaled by $G \times \text{acks}_-$.

$cwnd$: no. of packets in the congestion window;

flight : no. of packets in flight now;

acks : no. of ACKs per round, used for dividing per-round changes into per-ACK increments;

acks_- : no. of ACKs per round used for upsampling;\(^2\)

ce_fb : no. of congestion-marked packets fed back on a particular ACK.

For simplicity, $cwnd$, flight and ce_fb are set in units of packets. However, units of bytes are preferable, to guard against ACK-splitting attacks [SCWA99] and to correctly respond to congestion marking on different sized packets.

2.2 Per-ACK EWMA

An EWMA of any variable x can be computed by repeated execution of

$$\bar{x} \leftarrow gx + (1 - g)\bar{x}.$$

In integer arithmetic, the EWMA would usually be upscaled by $1/g$;\(^3\) otherwise multiplying it by the fraction g would lose precision:

$$\bar{x}_{\text{up}} \leftarrow x + (1 - g)\bar{x}_{\text{up}}.$$

Rewriting this in terms of G, and rearranging:

$$\bar{x}_{\text{up}} = x - \bar{x}_{\text{up}}/G.$$

Whenever the upscaled EWMA is used, it has to be downscaled again, that is, divided by G.

To update the EWMA per-ACK rather than per-RTT, it is proposed to reduce the gain to g / acks_- where acks_- is the number of ACKs per round.\(^4\) Usually the gain of an EWMA is constant, but acks_- varies, so this makes the gain variable.\(^5\) As just described, this would be implemented by upsampling the EWMA by $\text{acks}_- \times G$.

Per-ACK clocking produces almost the same result as DCTCP, but without the extra complexity and lag of the machinery needed to explicitly clock the EWMA once per-round. Specifically, no matter how many ACKs there are per RTT, upsampling the EWMA by $\text{acks}_- \times G$ implicitly introduces almost the same characteristic smoothing delay ($\text{RTT} \times G$) as explicitly clocking once per round.

The following table shows the extra upsampling that compensates for the faster update frequency of the per-ACK EWMA, so that the smoothing time remains unchanged at G round trips (right-hand column).

Updates per RTT	Max incr	Upscaling	Smoothing time [RTT]
acks	1	$\text{acks}_- \times G$	G
acks	ce_fb	$\text{acks}_- \times G$	G

Table 1: Adjusting Upscaling to keep Smoothing Time Unchanged

The first row represents DCTCP (or Prague). The value '1' in the 'Max incr.' column indicates the maximum value fed into the EWMA per update event. In DCTCP this is limited to 1, because it feeds in the fraction of marked packets per round.

The second row represents an example per-ACK EWMA. Because there are more update events per round, the gain has to be reduced to compensate, which is achieved here by upsampling the EWMA by the number of ACKs per round. In this example, the max incr. is still 1, which implies that, on each ACK, the fraction of marked packets relative to all the packets covered by the ACK is fed into the EWMA.\(^6\) To extract the average fraction of marks from this EWMA, it would have to be downscaled again, by dividing by $\text{acks}_- \times G$.

In the third row, the EWMA is incremented by ce_fb, the number (not the proportion) of marked packets fed back by each ACK. To extract the average fraction of marks from this EWMA, it would have to be divided by $\text{acks}_- \times \text{pkt/ack} \times G = \text{flight} \times G$. Alternatively, just dividing this EWMA by G would give the EWMA of the number (not the proportion) of marks per round.\(^7\)

This comparison with DCTCP will now be written in pseudocode. In DCTCP the EWMA of the proportion of marks, α, is maintained per round trip as follows (in floating point arithmetic):

$$\alpha += (F - \alpha)/G,$$

where F is the fraction of marked bytes accumulated over the last round trip.

\(^2\) Initially, acks_- & acks are taken as the same, but see § 4.1.

\(^3\) This technique was used by Van Jacobson to implement the gain of TCP's smoothed RTT in integer arithmetic. It was also used to implement the upscaled EWMA of the congestion fraction (alpha) in TCP Prague (on top of the upsampling by 10 bits already applied in DCTCP). In these cases the upsampling was fixed. But the same principle applies for variable upsampling.

\(^4\) The approximation error is quantified in Appendix A.

\(^5\) Care is needed, because earlier values could have been fed into the EWMA when it was upscaled by a very different amount — see § 4.1.

\(^6\) This is prone to bias, which is why we use the third row (see § 4.4).

\(^7\) Note that increasing the max value fed into the EWMA merely increases the numerical value of the EWMA, but it does not need to be compensated by more upsampling (for example, it would not be appropriate to replace acks_- by flight in the upsampling).
In Prague, for integer arithmetic, this EWMA is upscaled to \(\alpha_{\text{up}} \) by not including \(F \) in the division, as follows:

\[
\alpha_{\text{up}} \leftarrow F - \frac{\alpha_{\text{up}}}{G}.
\]

This per-RTT EWMA can be approximated (see Appendix A) by repeatedly updating the EWMA on the feedback of every ACK, but scaling down each update by the number of ACKs in that round, \(\text{acks}_- \). That is:

\[
\text{av}_{\text{up}} \leftarrow \text{ce}_{\text{fb}} - \frac{\text{av}_{\text{up}}}{(\text{acks}_- \times G)}.
\]

The result, \(\text{av}_{\text{up}} \), can be thought of as either i) the EWMA of the proportion of marks upscaled by \(\text{flight} \times G \); or ii) the EWMA of the number of marks per round, upscaled by just \(G \).

2.3 Per-ACK Congestion Response

On first onset of congestion, DCTCP immediately responds with a tiny reduction (assuming absence of congestion for a while previously). But then, perversely, it suppresses any further response for a round trip. This suppression of any further response for a round mimics classical congestion controls. However, the response of a classical CC is large and fixed, so it makes sense to then hold back for a round because the initial response will usually have been sufficient. In contrast, DCTCP’s initial response is extent-based and typically small. So it makes no sense to then suppress any further response for a round, just when most congestion feedback is likely to be appearing. It would only make sense for DCTCP to mimic the timing of a Classic response if it also mimicked its size.

The approach proposed in this section is not necessarily the final word on how to use the per-ACK EWMA for scalable congestion control (see § 7 for further ideas). Nonetheless, as a first step, we build incrementally on DCTCP, using its teaching selectively, but not straying too far from its intent.

First, as with DCTCP, once feedback of a CE mark triggers the start of a congestion response, congestion window reduction (CWR) state is entered for 1 RTT, during which no further response will start. Then once CWR state ends, another congestion response will only start if new CE feedback arrives at the sender.

However, instead of one reduction at the start of CWR state, the reduction is spread over the duration of CWR state, to exploit each update of the EWMA marks (\(\text{av}_{\text{up}} \)) now that it is continually updated per-ACK. So, at one extreme, if the first CE mark is immediately followed by many others, the EWMA will rapidly increase early in the round of CWR, and \(\text{cwnd} \) will be rapidly decreased accordingly. While, at the other extreme, if the first CE mark is the only one in the round, \(\text{cwnd} \) will still have reduced by \(\frac{\text{av}_{\text{up}}}{(2 \times G)} \) by the end of the round, but \(\text{av}_{\text{up}} \) will hardly have increased above the value it took when the CWR round started.

This combination of the timing and size of the reduction keeps the ‘\(1/\mu\)’ congestion response of DCTCP. That is, the timing of the start of each reduction is the same as DCTCP, and the size of the spread out reduction ends up roughly the same size as if DCTCP had updated alpha and used it about a round trip after its (usually inadequate) first response. Except, in the proposed approach, the response starts immediately on feedback of the first congestion mark, rather than being lagged by 1–2 rounds.

As before, this comparison with DCTCP will now be described in pseudocode. In response to congestion, DCTCP (and Prague) multiplicatively decrease the window no more than once per round as follows:

\[
\text{cwnd} \leftarrow \alpha/2 \times \text{cwnd};
\]

where alpha is the EWMA of the marking proportion.

As explained earlier, the per-ACK EWMA, \(\text{av}_{\text{up}} \), represents the EWMA of the number (not proportion) of marks per round, upscaled by \(G \). So, a multiplicative decrease per-round would be implemented as follows:

\[
\text{cwnd} \leftarrow \frac{\text{av}_{\text{up}}}{(2 \times G)};
\]

However, instead of applying this reduction once, it is divided out over every ACK during CWR state, whatever the feedback on each ACK (much as many implementations divide out their additive increase over a round), as follows:

\[
\text{cwnd} \leftarrow \frac{\text{av}_{\text{up}}}{(2 \times G \times \text{acks}_-)};
\]

But \(\text{av}_{\text{up}} \) is updated each time an ACK arrives, so the spread out reduction picks up new values of the EWMA as it evolves.

Notice that there is no multiplication by \(\text{cwnd} \), because \(\text{av}_{\text{up}}/G \) is the averaged number of marks, which is broadly the same as the averaged proportion of marks multiplied by \(\text{cwnd} \).

\[8\] But with a subtle difference; the marks that drive the window reduction represent a proportion of the window actually used and acknowledged, not the maximum that the flow was entitled to use (\(\text{cwnd} \)). Thus, if an application-limited flow has only used a quarter of the available window, the proposed reduction will be only a quarter of that which would be applied by DCTCP (see § 4.6, which argues that this could be a good thing. Nonetheless, if it turns out not to be, an adjustment for \(\text{cwnd} \) can be made).
3 Implementation

3.1 Maintaining the EWMA

On every ACK event, the ce_fb term can be implemented by adding the number of marked packets fed back to av_up. The number of packets acknowledged in the current round is acks. So repeatedly subtracting av_up/(acks*G) on the arrival of every ACK would reduce av_up by av_up*acks/(acks*G) in a round. This approximates to av_up/G per round (see Appendix A and § 4.1).

```c
On_each_ACK'd_packet {
    acks_ = update_acks();
    // Update EWMA
    av_carry = div(
        av_carry.rem+av_up, acks_*G);
    av_up += ce_fb - av_carry.quot;
}
```

First the value of acks_is updated before it is used. Two fairly straightforward alternative implementations of update_acks() are given in § 3.4. The pseudocode uses an integer division function div() with the same interface as div() in C’s standard library. Specifically, it takes numerator and denominator as parameters and returns both the quotient and the remainder in the following structure:

```c
typedef struct {
    int quot;
    int rem;
} div_t;
```

The variable av_carry would be declared of type div_t. It is used to carry forward the remainder to the invocation on the next ACK. The quotient will typically be either 0 or 1, which is then used to decrement the EWMA.

In practice, values would need to be checked for underflow and/or overflow (for instance, av_up has to be prevented from going negative in the last line), but such details are omitted from the pseudocode in this paper.

Figure 3 compares toy simulations of the above EWMA and the DCTCP EWMA (both without changing cwnd). It can be seen that, whenever marks arrive, the algorithm always moves immediately, whereas DCTCP’s EWMA does nothing until the next round trip cycle.

![Figure 3: Initial verification of the first stage of the per-ACK EWMA algorithm (with constant cwnd).](image)

To initialize the EWMA, on the first CE marked feedback, av_up = cwnd * G would mimic the initialization of alpha in DCTCP and in the current implementation of Prague. It might be worth experimenting with possible improvements; for instance using av_up = flight * G instead.

3.2 Responding to Congestion

As outlined in § 2.3, a congestion reduction is divided over a whole round of ACKs during CWR state, which reduces cwnd as the EWMA updates, such that, by the end of the round it will still have reduced roughly as much as it would have done if the whole reduction had been applied at the end:

```
cwnd -= av_up / (acks*2*G);
```

To spread the reduction over the round, the proposed algorithm below does not divide the round into an arbitrary number of points where cwnd is altered by varying amounts. Instead, it calculates how much to carry on every ACK and decrements cwnd every time at least one packet of movement is possible.

```c
On_each_ACK’d_packet {
    acks_ = update_acks();
    // Update EWMA
    av_carry = div(
        av_carry.rem+av_up, acks_*G);
    av_up += ce_fb - av_carry.quot;
    if (!cwr && ce_fb) {
        // Record start of CWR state
        next_seq = snd_next;
    }
}
```

© bobbriscoe.net Ltd, 2020–22 Version 04 5 of 14
cwr = true;
}
if (cwr) {
 // Check still in CWR round
 if (snd_una < next_seq) {
 // Multiplicative Decrease
 cwnd_carry = div(
 cwnd_carry.rem+av_up, acks*G*2);
 cwnd -= cwnd_carry.quot;
 } else {
 cwr = false;
 }
}
As in DCTCP, the EWMA continues to be calculated whether or not there is congestion feedback, but it is only used in the round after there is actual congestion marking. However, unlike DCTCP, it continues to be applied per-ACK during the round of CWR rather than just once at the start of CWR.

CWR state then takes on a meaning that is nearly the opposite of its classical meaning. It no longer means ‘congestion window reduced; no further reduction for a round’. Instead it means ‘congestion window reduction in progress during this round’.

Although the motivation for this algorithm was not to prevent the stall caused by sudden decrease in cwnd, it would probably serve to address this problem as well. Therefore it should supplant proportional rate reduction (PRR [MD13]), at least when responding to ECN.

Details of cwnd processing are omitted from the pseudocode if they are peripheral to the proposed changes. For instance:

- in real code cwnd would be prevented from falling below a minimum (default 2 segments);
- the slow-start threshold would track reductions in cwnd (but see §7 for alternative ideas);
- as mentioned earlier, counting bytes instead of packets could be used to handle ECN markings on packets of different sizes;
- the value of G is chosen as a power of 2, so that multiplication by G can be implemented with a bit-shift.

The pseudocode does, nonetheless, inherently attend to details such as loss of precision due to integer truncation. And note that cwnd is not updated on the ACK that ends CWR state, because it is updated on the marked ACK that starts CWR state.

3.3 The Whole AIMD Algorithm

On_each_ACK’d_packet {
 acks_ = update_acks();
 // Update EWMA
 av_carry =
 div(av_carry.rem+av_up, acks_*G);
 av_up += ce_fb - av_carry.quot;
}
if (!ce_fb) {
 // Additive Increase
 // AI & MD denoms must be =
 cwnd_carry = divu(
 cwnd_carry.rem[0]+G*2,
 acks*G*2, 0);
 cwnd += cwnd_carry.quot;
} else if (!cwr) {
 // Record start of CWR state
 next_seq = snd_next;
 cwr = true;
}
if (cwr) {
 // Check still in CWR round
 if (snd_una < next_seq) {
 // Multiplicative Decrease
 cwnd_carry = divu(
 cwnd_carry.rem[1]+av_up,
 acks*G*2, 1);
 cwnd -= cwnd_carry.quot;
 } else {
 cwr = false;
 }
}
Additive Increase: For completeness, the pseudocode above includes a Reno-like additive increase. This is intended for periods when the congestion control is close to its operating point (if it is not, see §7).

Unlike DCTCP (but like Prague [DSTB22]), the proposed AI algorithm is not suppressed during CWR state, with the following reasoning. DCTCP-like congestion controls are designed to induce roughly 2 ECN marks per round trip in steady state, so RTTs without marks are meant to be rare. Confining increases to periods that are not meant to happen creates an internal conflict within DCTCP’s own design. Then, the algorithm’s only escape is to store up enough decrease rounds to make space for a compensating period of increase. This has been found to cause unnecessary queue variation [BDST^20].

Instead, we continue additive increase regardless of CWR state. In place of suspending additive in-
crease for a whole round, a fractional increase\(^{12}\), is skipped if an ACK carries congestion feedback. This thins down the additive increase as congestion rises (as recommended in §3.1 of [BDS17]).

Unlike DCTCP and unlike Prague, the increase in \(cwnd\) per round trip is divided over the actual number of ACKs, not over the congestion window (the latter would otherwise increase \(cwnd\) by 1 segment whether or not \(cwnd\) was fully used; see §4.6).

Shared Remainder The additive increase stores its remainder in the same \(*cwnd_carry\) variable as the multiplicative decrease. So both numerator and denominator are scaled up by \(G\times2\) so that AI uses the same denominator parameter as MD, otherwise the upsampling of the carry variable would be different.

For both the AI and the MD, it will be noticed that a different division function, \(\text{divu}()\), has been used to update \(cwnd_carry\). This allows the remainder to be used in both directions without relying on signed integers.

Before the division for AI, the numerator is added to the previous remainder. But, for MD, the numerator needs to be subtracted from the previous remainder. Using signed integers would halve the available number space. Instead, the remainder is always kept positive in the range \([0, \text{denom}-1]\). This is achieved by maintaining two positive remainders in a two-element array, \(\text{rem}[2]\). Then \(\text{rem}[0]\) is used as the remainder for an increase in \(cwnd\), while \(\text{rem}[1]\) is used for a decrease.

The unsigned division function, \(\text{divu}()\), is defined below. It wraps the kernel macro \(\text{do}_\text{div}()\), which is used for efficient integer division. \(\text{do}_\text{div}\) already returns the positive remainder, and writes the result of the division into the numerator that it was called with. \(\text{divu}()\) returns a structure containing both remainders, also defined below. And it takes an extra boolean flip parameter to say which of the remainders \(\text{do}_\text{div}\) should write into.

```c
typedef struct {
  int quot;
  int rem[2];
} divu_t;

struct divu_t divu(num, denom, flip) {
  struct divu_t qr;
  qr.rem[flip] = do_div(num, denom);
  qr.rem[!flip] = denom - qr.rem[flip];
  qr.quot = num;
  return qr;
}
```

Whenever either remainder changes the other is kept in sync as its complement by the following relation: \(\text{rem}[1] = \text{denom} - \text{rem}[0]\). For example, after a division by 1000, if the remainder is 400 for increases, the remainder for decreases will be 600. This can be thought of as a jump from the bottom to the top of the denominator number space and a flip to viewing everything in the negative direction as if it was positive.\(^{13}\)

This ensures that the final result of a division (\(\text{quot}\)) is always rounded down (in the negative direction) before altering \(cwnd\). Within any division that will be used for a decrease, the \(\text{denom}\) term added within \(\text{rem}[1]\) effectively rounds up, but only to keep everything positive within the division function—the result used outside the division function is still rounded down.

3.4 Maintaining \(\text{acks}_-\)

No known TCP implementation maintains the number of ACKs per round. One method would be to maintain the following variables in the transport connection’s state:

- \(\text{C.cumacks}\) Per-connection cumulative counter of the number of ACKs received during the connection;
- \(\text{P.cumacks}\) Per-packet record of the value of \(\text{C.cumacks}\) when packet P was sent (or retransmitted). An ACK often releases multiple packets, which would then all share the same value.

Then, on arrival of each ACK, the following pseudocode would maintain \(\text{acks}_-\):

```c
update_acks() { // Alternative #1
  C.cumacks++;
  if (new data ACKed or SACKed) {
    for latest SACKed or ACKed pkt P
      acks_ = C.cumacks - P.cumacks;
    for each pkt P released by the ACK
      P.cumacks = C.cumacks;
  }
  return acks_;
}
```

Alternatively, other methods could be developed that do not need per-packet state. For instance, an EWMA cov \(\text{avg}\) of the bytes covered by each ACK could be maintained,\(^{14}\) then divided into \(\text{flight}\) as follows:

\(^{12}\) Calculated per-ACK as in most TCP implementations

\(^{13}\) The two elements of \(\text{rem}\) might need to be set in one atomic operation, depending on how ACK interrupt handling is implemented.

\(^{14}\) Probably initialized to SMSS at the start of a connection.
update_acks() { // Alternative #2
 // EWMA of bytes covered by each ACK
 cov_avg +=
 (acked_or_sacked_bytes - cov_avg)/G2;
 acks_ = flight / cov_avg;
 return acks_;
}

If maintained in the kernel, integer division would be used, and flight would need to be increased by cov_avg/2 to avoid rounding bias. Otherwise, floating point arithmetic could be used.

Alternative #1 calculates the precise value of acks_ over the previous round. If the gain of the EWMA in alternative #2 were set so that, say, G2 = 32, the occasional ACK covering an anomalously large amount of data would have little impact, but acks_ would still immediately pick up variations in flight.

Receiver-side maintenance of acks_. For a peer that is predominantly receiving, not sending, alternative #2 would not be suitable. For a receiver, each arriving data packet is also an ACK, so it would clock the EWMA of marks and (if it fed back congestion on pure ACKs [BB22]) it would drive the multiplicative decrease of cwnd. But it would acknowledge no new data. So flight / cov_avg would become 0/0.

In the pseudocode for alternative #1, a predominant receiver would skip the ‘if’ block and just return the value of acks_ unchanged. This would probably be sufficient to maintain its EWMA and cwnd, for if it ever sent some data. It would either use a default initial value of acks_ or, an earlier value if it had calculated acks_ when it sent some data in the past (some request data in a single packet would have been sufficient).

If desired, it would be possible to add an ‘else’ to the ‘if’ block in alternative #1 so that a predominant receiver could fall-back to maintaining acks_ by using timestamps to estimate the RTT [MCJW00], and recording the time it sent each ACK (or one ACK per RTT), so it could look-up P.cumacks of the ACK that released an incoming data packet.

EWMA seems to vary. For instance, if there are 50 ACKs per round trip, the EWMA will be upscaled by 50 times.16 But, if cwnd is then halved (say) due to heavy congestion, in the next round the number of ACKs will halve to 25. Then, over the next round, the moving average fed through from one update to the next will gradually become upscaled by 25 — half as much as it was previously. This would seem to distort the meaning of the moving average.

However, whether this is a problem depends on what the moving average is meant to mean:

- If it’s meant to mean the upscaled moving average of the proportion of marks (alpha) then, once it is downscaled by the current value of acks_, its meaning will not track alpha exactly unless the window remains steady;

- If it’s meant to mean the moving average of the number of marks per round (v), then changes in the window will only have second-order effect on its meaning because, as the number of updates per round reduces, it is correct to upscale each update by less.

It is not obvious which is correct. In DCTCP currently, the multiplicative decrease can be written as:
\[
cwnd -= cwnd * \text{ewma}(v/cwnd) / 2,
\]
whereas the proposed approach is to use
\[
cwnd -= \text{ewma}(v) / 2.
\]
So, it could be argued that, in current DCTCP, dividing cwnd by an EWMA of cwnd distorts the meaning of cwnd.

There does not seem to be a good theoretical answer. So the question is really whether the new proposal works well in practice.

4 (Non-)Concerns

4.1 Variable Upscaling

In previous upscaled EWMA's, the upsampling factor was constant. Whereas here, the upsampling by acks_ varies. So, the meaning of the value of the

15In the Linux DCTCP implementation, when sending stops, the per-RTT clock of the EWMA also stops.

16Always upscaled by G as well, but that is set to one side here.

4.2 Circular Dependency?

There seems to be a circular dependency, because av_up is both upscaled by acks, then used to update cwnd, which determines acks.

Nonetheless, this is only the same as the circular dependency where cwnd is used to divide the additive increase over the window, so how fast cwnd increases depends on itself. In other words, by definition, incremental update algorithms are circular.

See also § 4.1 for how alpha in DCTCP depends on cwnd.

8 of 14 Version 04 © bobbriscoe.net Ltd, 2020–22
4.3 Anomalous ACK Order

When packets are acknowledged out of order or retransmissions are acknowledged, both the alternative algorithms for maintaining acks in § 3.4 are designed to just work, with no exceptions needed. For instance, if acks has been running at 25, but then one packet goes missing for, say, 4 ACKs, algorithm #1 will output 24 on each of the four ACKs. Then once the late packet appears, acks will jump to, say, 29 for one ACK before returning to 25. This sequence will feed into the decrementing side of the EWMA, while the congestion feedback on the ACKs feeds into the incrementing side. So, the effect of the congestion feedback on the delayed packet will hardly be impacted by the reordering.

4.4 Biased ACK Coverage

When the transition from per-RTT to per-ACK EWMA was explained in Table 1, the number of marks per-ACK (third row) was used, in preference to the proportion of marks per-ACK (second row). The fraction of marks per-ACK means, for example, that 1 mark on an ACK covering 4 packets would be fed into the EWMA as 1/4. However, to derive the average marking fraction requires the average of the denominators, which is not the same as the average of the fractions (unless all the denominators are the same). Put another way, using the fraction of marks per-ACK would give more weight to the feedback in ACKs covering fewer packets. This would also result in bias if the receiver’s policy was to trigger an ACK on receipt of a CE mark.

In contrast, using the number of marks per-ACK does not give more weight to ACKs that cover fewer packets, because the maximum number of marks on such ACKs is proportionately smaller. There is a slight inverse correlation between the coverage of an ACK and the number of ACKs per round. But this only slightly alters the decay rate. So any bias is doubly slight.

4.5 Stale Remainder Scaling?

The denominator of each division used to calculate the remainder is not constant because it contains acks. Therefore, if acks is growing, a remainder calculated using earlier values of acks will be smaller than it ought to be. And vice versa if acks is shrinking.

This is a second order effect that should not alter the steady state that the AIMD converges to; it only puts a slightly different curve on the path to reach the steady state.

However, it is important to keep the two remainders in sync straight after either one has been updated. Otherwise if the complementary remainder is calculated later, the denominator could have changed, leading to possible subtle underflow bugs (or more complex code to catch these cases).

4.6 Advantage to App-Limited Flows?

The repetitive reduction of cwnd is divided over acks updates in a round of CWR, so each reduction is scaled down by acks in the denominator of the call to divu(). This means that cwnd is actually decreased by a multiplicative factor of the actual packets in flight, not of cwnd.

If a flow is not application-limited, the two amount to the same thing. But for app-limited flows, flight can be lower than cwnd, so the reduction in cwnd will be lower.

If a flow is only using a fraction of its congestion window, but it is still experiencing congestion, there is an implication that other flow(s) must have filled the capacity that the app-limited flow is ‘entitled’ to but not using. Then, it could be argued that the other flows have a higher cwnd than they are ‘entitled’ to, so that the app-limited flow can reduce its ‘entitlement’ (cwnd) less than these other flows in response to congestion.

If this argument is not convincing, the reduction in cwnd could be scaled up by cwnd/flight. However, it is believed that the code is reasonable, perhaps better, as it stands.

Similar arguments can be used to motivate additive increase over the actual number of packets in flight, rather than the potential number in flight (the congestion window).

5 Evaluation Plan

For research purposes, we ought not to introduce more than one change at once, without evaluating each separately. Therefore, initially, we ought to use the continually updated EWMA, av_up to reduce cwnd in the classical way. That is, on the first feedback of a CE mark, reduce cwnd once by av_up/(2*G). Then suppress further response for a round (CWR state). This should remove one round of lag (originally spent accumulating the marking fraction), but not the rest (spent reducing cwnd in response to a single mark, then doing nothing for a round while the extent of marking is becoming apparent).

There are even two changes at once in the proposal to update the EWMA per ACK and to use variable
upscaling. It might be possible to evaluate each of these two innovations separately as well, although they are harder to separate.

On the same principle of one change at a time, A-B testing ought to use Prague not DCTCP as the base for comparisons, given Prague includes fixes to known problems with DCTCP’s EWMA. But it might also be interesting to compare this with the pre-2015 implementation of DCTCP that might have accidentally been more responsive in many scenarios. This would be possible without winding all the code back to that date by simply setting a floor for α at 15/1024 in the Prague code.

The actual comparison should focus on how quickly a Prague flow in congestion avoidance can reduce in response to a newly arriving flow or a reduction in capacity.

Pacing should be enabled in both A and B tests. But, initially, segmentation offload should be disabled in both, to simplify interpretation of the results before enabling offload in both A and B tests together.

Initially the same gain as DCTCP and Prague (1/16) ought to be used. But it is possible that the reason DCTCP’s gain had to be so low was because of the 1–2 rounds of built in lag in the algorithm. Therefore, it will be interesting to see if the gain can be increased (from 1/16 to 1/8 or perhaps even higher), although this will impact Prague’s ability to leave headroom for short flows based on the recent traffic pattern.\footnote{‘Bugs’ in the implementation of the EWMA in DCTCP have been fixed in TCP Prague. Prior to a 2015 patch [She15], the integer arithmetic for the EWMA in Linux floored at 15/1024, which ensured a minimum window reduction even after an extended period without congestion marking. That patch toggled the EWMA to zero whenever it tried to reduce α below that floor, and remained unresponsive until congestion was sufficient to toggle α back up to 16/1024. The TCP Prague reference implementation maintains the EWMA in an upscaled variant of α, as well as using higher precision and removing rounding bias.}

The thinking here is that a fixed amount of lag in a response is not the same as smoothing (see Figure 1). Lag applies the same response but later. Smoothing spreads the response out, adding lag to the end of the response, but not to the start. Given every DCTCP flow’s response to each change has been lagged by 1–2 rounds, it is possible that all flows have had to be smoothed more than necessary, in order to prevent the excessively lagged responses from causing over-reactions and oscillations.

One motivation for improving DCTCP’s responsiveness is to ensure established flows yield quickly when new flows are trying to enter the system, without having to build a queue. However, removing up to two rounds of unnecessary lag should also help to address the incast problem, at least for transfers that last longer than one round. Therefore, incast experiments could also be of interest.

It will also be necessary to check performance in the following cases that might expose poor approximations in the algorithm (relative to Prague):

1. When the packets in flight has been growing for some time;
2. . . or shrinking for some time;
3. When the flow is application limited, with packets in flight varying wildly, rather than tracking the smoother evolution of $cwnd$.

6 Related Work

In 2005 Kuzmanovic [Kuz05, §5] presaged the main elements of DCTCP showing that ECN should enable a naïve unsmoothed threshold marking scheme to outperform sophisticated AQMs like the proportional integral (PI) controller. It assumed smoothing at the sender, as earlier proposed by Floyd [Flo94].

Reducing $cwnd$ in one RTT by half of the marks per round trip ($av_{up}/2/G$) is similar but not the same as Relentless TCP [Mat09], which reduces $cwnd$ by half a segment on feedback of each CE-marked packet. The difference is that av_{up} is a moving average, so it does not depend on the number of marks in any specific round, whereas the Relentless approach does. Relentless was designed for the classical approach with smoothing in the network, so it immediately applies a full congestion response without smoothing. In contrast, using the moving average implements the smoothing in the sender.

Like DCTCP, the per-ACK congestion response proposed in section 5.2 of [AJP11] maintains an EWMA of congestion marking probability, α. But, unlike DCTCP, it reduces $cwnd$ by half of α (in units of packets) on feedback of each ECN mark. This is partway between Relentless and DCTCP, because it uses the smoothed average of marking, but it applies it more often in rounds with more marks. This still causes considerable jumpiness because, with common traffic patterns, marks tend to be bunched into one round then clear for a few rounds. In contrast, the approach proposed in

\footnote{Also see the calculation in Appendix A of the difference between per-round and per-ACK EWMA as gain increases.}
the present report limits the reduction within any one round to the averaged number of marks per round (as DCTCP itself does).

7 Ideas for Future Work

An EWMA of a queue-dependent signal is analogous to an integral controller. It filters out rapid variations in the queue that do not persist, but it also delays any response to variations that do persist. Faster control of dynamics should be possible by adding a proportional element, to create a proportional-integral (PI) controller within the sender’s congestion control. The proportional element would augment any reduction to the congestion window dependent on the rate of increase in av_{up}.

Separately, it would be possible to use the per-ACK EWMA of marks per round (av_{up}/G) as a good indicator of whether a flow has lost its closed-loop control signal, for instance because another flow has left the bottleneck, or capacity has suddenly increased. A flow could then switch into a mode where it searches more widely for a new operating point, for instance using paced chirping [MB19, §3]. To deem that the closed loop signal had significantly slowed, it might calculate the average distance between marks implied by the EWMA av_{up}, multiply this by a heuristic factor, then compare this with the number of packets since the last mark. Alternatively, it might detect when the EWMA of the marks per round had reduced below some absolute threshold (by definition, the marks per round of a scalable congestion control in steady state should be invariant for any flow rate).
References

[AGM+10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitu Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sritharan. Data Center TCP (DCTCP). In Proc. ACM SIGCOMM’10, Computer Communication Review, 40(4):63–74, October 2010.

[AJP11] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis of DCTCP: Stability, Convergence, and Fairness. In Proc. ACM SIGMETRICS'11, 2011.

[BB22] Marcelo Bagnulo and Bob Briscoe. ECN+ : Adding Explicit Congestion Notification (ECN) to TCP Control Packets. Internet Draft draft-ietf-tcpm-generalized-ecn-10, Internet Engineering Task Force, July 2022. (Work in Progress).

[BDS17] Bob Briscoe and Koen De Schepper. Resolving Tensions between Congestion Control Scaling Requirements. Technical Report TR-CS-2016-001; arXiv:1904.07605, Simula, July 2017.

[BSTB+20] Bob Briscoe, Koen De Schepper, Olivier Tilmans, Asad Sajjad Ahmed, and Joakim Misund. TCP Prague: a prototype for L4S Congestion Control. In Proc. IETF-109 (Presentation), November 2020.

[BTB+17] Stephen Bensley, Dave Thaler, Praveen Balasubramanian, Lars Eggert, and Glenn Judd. Data Center TCP (DCTCP). TCP Congestion Control for Data Centers. Request for Comments RFC8257, RFC Editor, October 2017.

[DSBE22] Koen De Schepper and Bob Briscoe (Ed.). Explicit Congestion Notification (ECN) Protocol for Very Low Queuing Delay (L4S). Internet Draft draft-ietf-tsvwg-ecn-l4s-id-26, Internet Engineering Task Force, July 2022. (Work in Progress).

[DSTB22] Koen De Schepper, Olivier Tilmans, and Bob Briscoe. Prague Congestion Control. Internet Draft draft-briscoe-iccrg-prague-congestion-control-01, Internet Research Task Force, July 2022. Work in Progress.

[Flo94] Sally Floyd. TCP and Explicit Congestion Notification. ACM SIGCOMM Computer Communication Review, 24(5):10–23, October 1994. (This issue of CCR incorrectly has ‘1995’ on the cover).

[Kuz05] Aleksandar Kuzmanovic. The Power of Explicit Congestion Notification. Proc. ACM SIGCOMM'05, Computer Communication Review, 35(4), 2005.

[Mat09] Matt Mathis. Relentless Congestion Control. In Proc. Int’l Wkshp on Protocols for Future, Large-scale & Diverse Network Transports (PFLDNet’09), May 2009.

[MB19] Joakim Misund and Bob Briscoe. Paced Chirping - Rethinking TCP start-up. In Proc. Netdev #13, March 2019.

[MCJW00] Ivan Tam Ming-Chit, Du Jinsong, and Weiguo Wang. Improving TCP Performance over Asymmetric Networks. Computer Communication Review, 30(3):45–54, July 2000.

[MD13] Matt Mathis and Nandita Dukkipati. Proportional Rate Reduction for TCP. Request for Comments 6937, RFC Editor, May 2013.

[NJ18] Kathleen Nichols and Van Jacobson. Controlled Delay Active Queue Management. Request for Comments RFC8289, RFC Editor, January 2018.

[SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP Congestion Control with a Misbehaving Receiver. ACM SIGCOMM Computer Communication Review, 29(5):71–78, October 1999.

[She15] Andrew G. Shewmaker. tcp: allow dctcp alpha to drop to zero. Linux GitHub patch; Commit: c80d9be0; https://github.com/torvalds/linux/commit/master/net/ipv4/tcp_dctcp.c, October 2015.
A Approximations

The per-ACK EWMA is not intended to mimic a per-RTT EWMA. Otherwise, the per-ACK EWMA would have to reach the same value by the end of the round, irrespective of whether markings arrived early or late in the round. It is more important for the EWMA to quickly accumulate any markings early in the round than it is to ensure that the EWMA reaches precisely the same value by the end of the round.

Neither is it important that a per-ACK EWMA decays at precisely the same rate as a per-round EWMA (assuming they both use the same gain). The gain is not precisely chosen, so if a per-ACK EWMA decays somewhat more slowly, it is unlikely to be critical to performance (if so, a higher gain value can be configured).

However, it is important that a per-ACK EWMA decays at about the same rate however many ACKs there are per round, although the decay rate does not have to be precisely the same.

The per-ACK approach uses the approximation that one reduction with gain $1/G$ is roughly equivalent to n repeated reductions with $1/nG$ of the gain. Specifically, that $(1 - 1/nG)^n \approx 1 - 1/G$.

$$
(1 - 1/nG)^n = 1 - \frac{n(n-1)}{2nG^2} + \cdots
\approx 1 - \frac{1}{G} + O \left(\frac{1}{G^2} \right)
$$

To quantify the error, we define the effective gain $(1/G')$ as the per-RTT gain that would give an equivalent reduction to multiple smaller per-ACK reductions using the original gain $(1/G)$. Numerically, we find that $G' \approx G + 1/2$ (see Figure 4).

Figure 4: Difference between gain used for multiple per-ACK reductions, G', and the gain of one equivalent reduction, G.

For instance, multiple reductions with $G \approx 15.5$ are roughly equivalent to one reduction with $G' = 16$.

This can be explained because most of the error comes from omission of the $O(1/G^2)$ term. So we set

$$
1 - \frac{1}{G'} \approx 1 - \frac{1}{G} + \frac{(n-1)}{2nG^2},
$$

which, in the worst case of large n, reduces to

$$
G' \approx \frac{2G^2}{2G-1}.
$$

Then the difference between the reciprocals of the effective and actual gains is

$$
G' - G \approx \frac{G}{(2G-1)}.
$$

Other than for low values of G this difference is indeed roughly $1/2$.

The worst-case error occurs when G is small and W is large. Multiple reductions using any high value of W and the lowest practical value of $G (= 2)$ would be equivalent to a single reduction using $G' \approx 2.54$ (i.e. the error in this worst-case is about 0.54).
Document history

Version	Date	Author	Details of change
00A	07 Nov 2020	Bob Briscoe	First draft.
00B	29 Nov 2020	Bob Briscoe	Added cwnd reduction and increase. Defined reusable function repetitive_div(). Corrected use of cwnd to flight, and distinguished current flight, from flight, when marks were averaged. Added abstract; schematic of problem; sections on evaluation plan, related work and future work; and appendix on approximations.
00C	02 Dec 2020	Bob Briscoe	Altered algorithms from hand-crafted repetitive_div() to div() in stdlib.
01	19 Jan 2021	Bob Briscoe	Added CC to title, altered abstract, added motivation to intro and issued.
02	20 Jan 2021	Bob Briscoe	Improved abstract, intro & eval’n plan.
03A	07 Feb 2021	Bob Briscoe	More care distinguishing DCTCP/Prague variants. Defined div2() to fix root cause of remainder underflow. Explained shared remainders properly. Changed g terminology to G. Added todo notes incl. EMWA init.
03B	06 Aug 2022	Bob Briscoe	Added context and extra schematic in introduction. Rewrote intuition section. New algorithm upscaling by acks, not flight, and feeding in the amount of CE marked packets (or bytes), not the proportion; to allow for ACKs covering multiple packets.
03	07 Aug 2022	Bob Briscoe	Minor updates and corrections throughout.
04	07 Sep 2022	Bob Briscoe	Added §3.4 on maintaining acks. Changed title from “Improving DCTCP/Prague Congestion Control Responsiveness”. Clarified and edited throughout, including rearrangement of first two sections.