Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients

Wing-Yan Au, Annie Pang, Carolyn Choy, Chor-Sang Chim, and Yok-Lam Kwong

In Epstein-Barr-virus (EBV)–positive lymphomas in immunocompetent patients, release of EBV DNA from tumor cells into the plasma might be useful for disease monitoring and prognostication. To test this hypothesis, we quantified serially plasma EBV DNA by quantitative polymerase chain reaction in 39 cases of EBV-positive (natural killer [NK] cell, n = 23; T cell, n = 8; B cell, n = 4; Hodgkin, n = 4) lymphomas. As control, EBV DNA was undetectable in 34 cases of EBV-negative lymphomas at diagnosis and during chemotherapy. In all cases of EBV-positive lymphomas, EBV DNA was detectable (10^5–10^10 copies/mL) at diagnosis. It paralleled the clinical course, with EBV DNA becoming undetectable at remission and remaining elevated in refractory disease. On multivariate analysis, high-presentation EBV DNA (> 7.3 × 10^7 copies/mL) was significantly associated with an inferior overall survival (OS). Subgroup analysis of NK cell lymphomas, the largest cohort in this study, showed that presentation EBV DNA was correlated with disease stage and lactate dehydrogenase. On multivariate analysis, high-presentation EBV DNA (> 6.1 × 10^7 copies/mL) was significantly associated with an inferior disease-free survival. During treatment, patients with EBV DNA that showed further increases or failed to become undetectable had significantly inferior OS. In EBV-positive lymphomas, plasma EBV DNA is valuable as a tumor biomarker and for prognostication.

© 2004 by The American Society of Hematology
patients with EBV-related lymphoid malignancies at diagnosis and during follow-up. To ensure that the quantification of EBV during treatment might represent tumor load, it would be important to exclude a possible reactivation of EBV owing to the immunosuppressive effects of chemotherapy. To this end, patients with EBV-negative lymphomas receiving chemotherapy were tested as a model of mild immunosuppression, and patients undergoing hematopoietic stem cell transplantation (HSCT) were tested as a model of intense immunosuppression.

Patients, materials, and methods

Patients and sample preparation

Consecutive lymphoma patients diagnosed during a 6-year period (1998-2003) were prospectively studied. Lymphomas were classified according to the World Health Organization classification criteria. The presence of EBV was confirmed by in situ hybridization for EBV-encoded RNA (EBER) in the neoplastic cells on histopathologic examination. Cell-free plasma was separated immediately after venipuncture by centrifugation at 1200g for 15 minutes, and frozen at −20°C until assay. DNA was extracted from 500 μL plasma in a QIAamp DNA mini blood kit (Qiagen GmbH, Hilden, Germany) and eluted with 100 μL AE buffer (Qiagen). For each experiment, 5 μL DNA eluate (or 25 μL plasma volume equivalent) was used. The protocol was approved by the institutional review board at Queen Mary Hospital, Hong Kong.

Quantitative polymerase chain reaction (Q-PCR)

Q-PCR was performed by a real-time PCR assay with the ABI Prism 7700 Sequence Detector (PE Biosystems, Foster City, CA). PCR primers for the EBV gene EBNA1 (forward primer E5, 5′- ATG ACC TCA TCA TCA TCC GGG TCT C-3′, and reverse primer E6, 5′- CCT ACA GGG TGG AAA AAT GGC-3′) and the TaqMan probe (E5, 5′-GCC AGG CCC CCT CCA GTT AGA-3′) dual-labeled at the 5′ end with 6-carboxyfluorescein (FAM) and the 3′ end with 6-carboxytetramethylrhodamine (TAMRA) were designed by the Primer Express software (PE Biosystems). The amplicon size of the EBNA1 Q-PCR product was 68 base pair (bp), being optimized by the Primer Express software. Q-PCR was set up in a volume of 50 μL with use of the TaqMan Universal PCR Master Mix (PE Biosystems), containing 5 μL purified DNA, 300 nM E5/E6, and 200 nM E6. Thermal cycling was initiated with a 2-minute incubation at 50°C, followed by a first denaturation step of 10 minutes at 95°C, and then 40 cycles of 95°C for 15 seconds (denaturation) and 60°C for 1 minute (annealing and extension). Real-time PCR data were collected continuously and analyzed with the Sequence Detection System (PE Biosystems). Cycle thresholds (Ct), at which a significant increase in fluorescence signal was first detected, were set at a minimum of 10 standard deviations above the mean baseline fluorescence, calculated from cycles 1 to 15. As the larger the starting quantity of target sequence there was, the earlier a significant increase in fluorescence would be observed, the Ct was inversely proportional to the starting target gene copy number.

Cloning of plasmid pB-EBNA1 containing EBNA1 gene sequences

A fragment of the EBV EBNA1 gene detected by Q-PCR was amplified from an EBV-immortalized lymphoblastoid cell line with appropriate primers (5′-CAUAGGGCCAGGAGTGCCAGTAC3′ and 5′-CAUCATCTCTATCGCTCCCGGATG3′). The PCR products were cloned into the pAMPI vector (Gibco BRL, Life Technologies, Rockville, MD) to give the plasmid pB-EBNA1. The sequence of the cloned EBNA1 gene fragment was confirmed by DNA sequencing in both directions (ABI Prism 377, PE Biosystems).

Quantification of EBV EBNA1 gene

Standard curves were constructed by plotting the Ct against the logarithm of the starting amount of a serial dilution of pB-EBNA1, over an 8-log range from 5 ng to 0.5 fg (Figure 1A). Patient samples were tested in triplicates. The amplification profiles of the patient samples were comparable, so that all results were determined, and the initial starting sequence amount was calculated from the standard curve (Figure 1C). EBV genome equivalent copies were calculated with the following formula: copy number = X × 10⁻¹² × (660 NP⁻¹ × 6.023 × 10⁻¹²), where X is the amount in picograms, 660 is the average molecular weight of a nucleotide pair, NP is the number of nucleotide pairs in the plasmid (NP = 4289 for pB-EBNA1), and 6.023 × 10⁻¹² is the number of gene copies in one mole of plasmid.

PCR precautions

All precautions preventing contamination were rigorously adhered to. DNA extraction, cloning of pB-EBNA1, and Q-PCR were performed in 3 different laboratories. All samples were handled with positive displacement pipettes with aerosol-resistant tips. Negative blanks included in each PCR did not give positive results.

Quality assurance of Q-PCR

To control for plate-to-plate variation in PCR efficiencies, so that all results were comparable, a standard curve was constructed in each Q-PCR experiment with serial dilutions of the same stock solution of pB-EBNA1, which was prepared at the start of the project and frozen at −20°C in small aliquots for single use only.

Statistical analysis

Overall survival (OS) was measured from diagnosis to death or last follow-up. Disease-free survival (DFS) was measured from complete remission (CR) to the date of relapse. The International Prognostic Index
(IPI) was calculated according to published criteria. To evaluate prognostic significance, the IPI, age (older or younger than 60 years), sex, lactate dehydrogenase (LDH) level (above or below 2 times the upper limit of normal, 550 IU/L), stage (I/II and III/IV), and diagnostic EBV DNA level (above or below the median EBV DNA level) were analyzed with a Kaplan Meier model using logistic regression computation (SPSS 7.0; SPSS, Chicago IL).

Results

Patients and controls

A total of 39 patients with EBV-positive lymphomas were investigated (Table 1), together with 7 patients with PTLD. Thirty-four cases of EBV-negative lymphomas, 16 patients after allogeneic HSCT (donors, 7 human leukocyte antigen [HLA]–matched unrelated, 4 HLA-identical sibling, 2 HLA-matched parents) were also studied. A total of 427 patient plasma samples were assayed with Q-PCR, of which 378 were from patients with EBV-positive lymphoma and from 49 patients with EBV-negative lymphoma.

Increases of EBV DNA during immunosuppression

In all the 34 cases of EBV-negative lymphomas, EBV DNA was undetectable at diagnosis, during chemotherapy, or at any stage of the illness (Table 2). However, in patients after HSCT, EBV DNA was detectable in 10 of 16 cases, which ranged from \(1.6 \times 10^{5}\) to \(1.6 \times 10^{10}\) copies/mL (median, \(5.8 \times 10^{6}\) copies/mL). This had all cases of EBV-negative lymphomas, 16 patients after allogeneic HSCT (donors, 7 human leukocyte antigen [HLA]–matched unrelated, 4 HLA-identical sibling, 2 HLA-matched parents) were also studied. A total of 427 patient plasma samples were assayed with Q-PCR, of which 378 were from patients with EBV-positive lymphoma and from 49 patients with EBV-negative lymphoma.

Table 1. Clinicopathologic features of 39 cases of EBV-positive lymphomas, 7 cases of posttransplantation lymphoproliferative disease (PTLD), and 36 cases of EBV-negative lymphomas, studied serially for quantification of plasma EBV DNA

Diagnoses	Sex	Median age, y (range)	Stage	Treatment (n)	Outcome	Median survival, mo
EBV-positive lymphomas						
Natural killer cell lymphoma	23	17 6 52 (22-81)	I/II	CEPD (10), ProMACE-CytaBOM (11), Nili (2)	7 16	4.2
Angioimmunoblastic T-cell lymphoma	6	4 2 54 (32-89)	I	M-BACOD (2), CEPD (1), IMVP16 (2)	2 4	4.2
Diffuse large B-cell lymphoma	4	0 4 57 (13-69)	I	CEPD (2), M-BACOD (1), AntiCD20 (1)	4 0	Not reached (FU, 4-33)
Hodgkin lymphoma	4	3 1 47 (31-78)	I	ABVD (2), Stanford V (2)	3 1	40.2
Peripheral T-cell lymphoma	2	1 1 29, 58	I	CEPD (2)	0 2	4.2
PTLD	7	4 3 41 (24-65)	I	CEPD (5), antiCD20 (2)	2 5	3.2
EBV-negative lymphomas						
Hodgkin lymphoma	13	5 8 39 (22-75)	I	ABVD (8), Stanford V (5)	12 1	45.2
Peripheral T-cell lymphoma	7	6 1 57 (34-69)	I	CEPD (4), M-BACOD (1), FND (1), Nili (1)	6 1	Not reached (FU, 44-3)

N: number; M: male; F: female; CR, complete remission; NR, nonremission; FU, follow-up; CEPD, cyclophosphamide, etoposide, prednisolone; M-BACOD, methotrexate, bleomycin, Adriamycin, cyclophosphamide, vincristine, dexamethasone; ProMACE-CytaBOM, cyclophosphamide, doxorubicin, etoposide, prednisolone, cytarabine, bleomycin, vincristine, methotrexate; AntiCD20, Rituximab; Stanford V, Adriamycin, vinblastine, cyclophosphamide, etoposide, vincristine, bleomycin, prednisolone; COMP, cyclophosphamide, vincristine, methotrexate, prednisolone; IMVP16, Ifosfamide, methotrexate, etoposide; ABVD, Adriamycin, bleomycin, vinblastine, dacarbazine; FND, fludarabine, mitoxantrone, dexamethasone; RT, radiotherapy; Stanford, cyclophosphamide, vincristine, Adriamycin, prednisolone, methotrexate.

Table 2. Quantification of EBV DNA in EBV-positive lymphomas, EBV-negative lymphomas, and nonlymphomatous conditions

Diagnoses	Median level of plasma EBV DNA/mL (range)		
EBV-positive lymphomas			
NK cell lymphoma	23 \(6.1 \times 10^6\) (2.7 \times 10^5 - 7.2 \times 10^1) \(3.9 \times 10^6\) (2.8 \times 10^6 - 2.4 \times 10^1) 0 (0-2.1 \times 10^6)	\(2.8 \times 10^6\) (6.7 \times 10^5 - 2.4 \times 10^1)	
Angioimmunoblastic T-cell	6 \(2.7 \times 10^6\) (6.7 \times 10^5 - 4.7 \times 10^5) \(5.3 \times 10^6\) (6.7 \times 10^5 - 6.5 \times 10^5) 0 (0-1.5 \times 10^6)	\(3.7 \times 10^6\) (2.3 \times 10^6 - 1.5 \times 10^5)	
DLBCL	4 \(2.2 \times 10^6\) (3.0 \times 10^5 - 8.2 \times 10^1) \(2.7 \times 10^6\) (3.0 \times 10^5 - 4.6 \times 10^1) 0 0	NA	
HD	4 \(2.3 \times 10^6\) (3.7 \times 10^5 - 6.3 \times 10^0) \(2.3 \times 10^6\) (3.7 \times 10^5 - 6.7 \times 10^1) 0 0	NA	
PTCL	2 \(9.3 \times 10^6\) (3.3 \times 10^5) \(1.3 \times 10^6\) (2.0 \times 10^6) 0, 1.6 \times 10^6	NA	1.1 \times 10^6
PTLD	7 \(3.1 \times 10^6\) (0.8-6.3 \times 10^5) \(5.1 \times 10^6\) (3.1 \times 10^5 - 1.4 \times 10^1) 0 0	5.1 \times 10^6\) (9.1 \times 10^5 - 1.4 \times 10^1)	

EBV-negative lymphomas

Diagnoses	Median level of plasma EBV DNA/mL (range)	
HD	13 0 0 0 0 0	0
DLBCL	14 0 0 0 0 0	0
PTCL	7 0 0 0 0 0	0

Non-lymphomatous

Diagnoses	Median level of plasma EBV DNA/mL (range)	
HSCT	16 0 5.8 \times 10^6\) (8.5 \times 10^5 - 1.6 \times 10^6) 0 0	6.4 \times 10^6\) (0.1-2 \times 10^9)

N indicates number of cases; NK, natural killer cell; PTLD, posttransplantation lymphoproliferative disease; TCL, T-cell lymphoma; NA, not available; DLBCL, diffuse large B-cell lymphoma; HD, Hodgkin disease; PTCL, peripheral T-cell lymphoma.

*Peak level was the highest level detectable, either at diagnosis or during treatment.
†Trough level was the lowest level detected during the clinical course.
occurred during immunosuppression (antithymocyte globulin, n = 4; high-dose intravenous steroid, n = 10) for graft-versus-host-disease (GVHD) (grade II, n = 2; grade III, n = 4; grade IV, n = 4). However, none of these patients subsequently developed any EBV-related lymphoproliferative disorders. In patients who recovered from GVHD, EBV DNA eventually declined to undetectable levels after cessation of immunosuppression. However, in patients who died of GVHD, EBV DNA remained elevated until death. Therefore, EBV DNA was not increased during the mild immunosuppression typically associated with conventional chemotherapy but might be elevated during intense immunosuppression.

Posttransplantation lymphoproliferative disorder

Seven cases of PTLD after organ allografting (bone marrow, n = 3; kidney, n = 3; liver, n = 1) were studied (Table 2). The median EBV DNA at presentation was 3.1 × 10^7 copies/mL. PTLD after HSCT did not differ from PTLD after solid organ allografting (median, 5.1 × 10^6 versus 0.9 × 10^6 copies/mL, P = .16). For cases that responded to treatment (n = 3), EBV DNA fell from a median peak of 3.4 × 10^7 copies/mL to undetectable when CR was reached. However, for refractory cases (n = 4), EBV DNA remained elevated, ranging from 9.1 × 10^6 to 1.4 × 10^11 copies/mL until death.

NK cell lymphoma

Twenty-three cases of NK cell lymphomas were studied. The median EBV DNA at presentation was 6.1 × 10^7 copies/mL (range, 2.7 × 10^7 to 7.1 × 10^10). NK cell lymphomas might be classified clinically into nasal, nonnasal, and disseminated subtypes. These subtypes, however, were associated with similar median EBV DNA at presentation (Table 3). Two patients died shortly after diagnosis. For 21 patients serially monitored, EBV DNA paralleled treatment responses. In 7 cases that achieved CR, EBV DNA became undetectable. However, in 14 refractory or relapsing cases, EBV DNA remained high (range, 6.7 × 10^7-2.4 × 10^11; median, 2.8 × 10^8 copies/mL) with persistent disease and until death (Figure 2A-B). Clinicalpathologic correlations showed that plasma EBV DNA at presentation was positively correlated with disease stage and LDH (Table 3). The peak EBV DNA level, defined as the highest level in the clinical course of the patients (in 10 cases this was the presentation level, and in 13 cases a further peaking of EBV DNA occurred during treatment) was also positively correlated with advanced stage (Table 3). As patients in stage III/IV have much more widespread tissue involvement than patients in stage I/II, the 20- to 30-fold increase in EBV DNA in the former as compared with the latter group most likely reflected a much larger tumor load.

EBV-positive non-Hodgkin lymphoma (NHL)

Twelve EBV-positive NHLs were studied (Table 2). The median EBV DNA at presentation, as well as the peak EBV DNA, was comparable in angioimmunoblastic T-cell lymphoma, diffuse large B-cell lymphoma, and peripheral T-cell lymphoma. Similar to NK cell lymphomas, the EBV DNA changed with treatment in both B- and T-cell lymphomas (Figure 3A-B), with 5 cases reaching CR having undetectable EBV DNA, and 7 refractory cases maintaining a high EBV DNA (2.3 × 10^6-1.5 × 10^10 copies/mL) until death.

Hodgkin lymphoma

Seventeen consecutive cases of Hodgkin lymphoma (nodular sclerosis, n = 15; mixed cellularity, n = 1, lymphocyte depleted, n = 1) were studied, of which 4 cases (all nodular sclerosis) were EBER positive,

Table 3. Clinicopathologic correlations of plasma EBV DNA levels in 23 cases of natural killer cell lymphomas

Characteristics	Median EBV DNA levels, copies/mL			
	Presentation	Peak	P*	P*
Histologic subtype				
Nasal (n = 14)	2.7 × 10^7	3.4 × 10^9		
Nonnasal (n = 4)	3.4 × 10^7	4.1 × 10^9		
Disseminated (n = 5)	8.4 × 10^8	.075	6.5 × 10^8	.19
Sex				
Male	6.5 × 10^7	4.3 × 10^9	.36	.10
Female	2.3 × 10^7	4.9 × 10^9	.36	.10
Age, y				
Younger than 60 (n = 14)	6.2 × 10^7	2.9 × 10^9	.06	.25
Older than 60 (n = 9)	9.9 × 10^7	.06	7.5 × 10^8	.25
Stage				
I/II (n = 14)	3.2 × 10^7	3.4 × 10^9	.032	.041
III/IV (n = 9)	8.3 × 10^8	.032	6.5 × 10^9	.041
LDH				
Less than 2 times normal (n = 10)	2.1 × 10^7	3.8 × 10^9	.027	.28
More than 2 times normal (n = 13)	1.9 × 10^7	.027	5.7 × 10^9	.28
IPI				
Up to 1 (n = 12)	2.1 × 10^7	3.4 × 10^9	.06	.25
More than 1 (n = 11)	8.3 × 10^8	.06	3.9 × 10^9	.25

N, indicates number of patients; NS, not significant; LDH, lactate dehydrogenase, IPI, International Prognostic Index. *Mann-Whitney U test.
and 13 cases were EBER negative. EBV DNA was detectable in all the EBER-positive cases and undetectable in any of the EBER-negative cases (Table 2). For the 4 EBER-positive cases, EBV DNA became undetectable in 3 patients who achieved CR and remained negative at the latest follow-up. In the last patient, death because of sepsis occurred shortly after the initiation of chemotherapy, so that changes in EBV DNA could not be evaluated.

Prognostic significance of EBV DNA for the whole group of EBV-positive lymphoma

This series comprised lymphomas of various histologic subtypes, so that the prognosis and treatment were heterogeneous. Excluding PTLD, the median presentation EBV DNA of all 39 cases of EBV-positive lymphoma was 7.3 \(\times \) 10^7 copies/mL. This median presentation EBV DNA level was found to be a significant cutoff. Patients with EBV DNA of more than 7.3 \(\times \) 10^7 copies/mL (n = 20), when compared with those with EBV DNA of less than or equal to 7.3 \(\times \) 10^7 copies/mL (n = 19), had significantly inferior OS (2.0 versus 30.6 months, \(P = .0015 \)) and DFS (0.5 versus 8.7 months, \(P = .0023 \)). When presentation EBV DNA (\(\leq \) versus \(> \) 7.3 \(\times \) 10^7 copies/mL), disease stage (I/II versus III/IV), age (\(\leq \) versus > 60 years), and LDH (\(\leq \) versus > 2 times normal) were entered into multivariate analysis, EBV DNA remained the only significant factor negatively affecting OS (\(P = .041 \)). For DFS, only advanced-stage (\(P = .067 \)) and high EBV DNA (\(P = .0023 \)) showed a trend toward significance.

Prognostic significance of EBV DNA in NK cell lymphoma

Subgroup analysis was performed for NK cell lymphoma, the most prevalent EBV-positive lymphoma in the Chinese population, and the largest group in this series (Table 4). The prognostic effect of the clinicopathologic factors at presentation, including clinical subtypes, age, stage, LDH, IPI, and EBV DNA, was evaluated (Table 4). On univariate analysis, the DFS was significantly related to the clinical subtypes, stage, and the presentation EBV DNA (with the median presentation level of all the cases of NK cell lymphomas, 6.1 \(\times \) 10^7 copies/mL, as a cutoff). On multivariate analysis, only the presentation EBV DNA remained as a significant factor negatively affecting DFS (\(P = .25 \)). Similarly, the OS was significantly related to clinical subtypes, stage, and presentation EBV DNA on univariate analysis. On multivariate analysis, only the presentation EBV DNA showed a trend toward negatively affecting OS (\(P = .06 \)). As EBV DNA changed during treatment, the prognostic significance of 2 dynamic parameters was also evaluated (Table 5). Two patients died soon after diagnosis, so that only 21 patients could be serially assessed. Patients who showed a rise of EBV DNA that exceeded the presentation level at any stage of their disease (n = 13) had a significantly inferior median OS as compared with those who did not have a rise (n = 8). Furthermore, patients whose EBV DNA never became undetectable at any stage of their illness (n = 5, all dead from disease) had a significantly inferior median OS as compared with those who had an undetectable EBV DNA during some stage in their clinical course (n = 16, 7 alive and in continuous remission).

Discussion

This is to date the first comprehensive study of plasma EBV DNA as a surrogate tumor biomarker in a wide variety of EBV-related

Table 4. Prognostic factors in 23 cases of natural killer cell lymphomas: significance of presentation parameters

Parameters	Median DFS, mo	\(P \)	\(P \)			
	Univariate	Multivariate	Median OS, mo	Univariate	Multivariate	
Histologic subtypes						
Nasal	21.5		30.6			
Nonnasal	0.3		1.5			
Disseminated	0.0	.001	NS (.43)	0.7	.009	NS (.57)
Age, y						
Younger than 60	1.4		4.2			
Older than 60	1.2	NS (.9)	—	4.3	NS (.8)	—
Stage						
I/II	21.5		30.6			
III/IV	0.5	.004	NS (.59)	2.1	.008	NS (.56)
LDH						
Less than 2 times normal	2.7		4.5			
More than 2 times normal	1.2	NS (.30)	—	3.7	NS (.48)	—
IPI						
Up to 1	2.7		30.6			
More than 2	0.5	NS (.059)	—	2.7	NS (.075)	—
EBV DNA at presentation						
Less than 6.1 \(\times \) 10^7 copies/mL	>27.0		>54.0			
At least 6.1 \(\times \) 10^7 copies/mL	0.5	.002	.025	2.1	.008	.06

NS indicates not significant; —, not done.

Table 5. Prognostic factors in 23 cases of natural killer cell lymphomas: significance of dynamic parameters

Parameter	No.*	Overall survival, mo	\(P \)
Peak EBV DNA			
Equal to presentation EBV DNA	8	26.9	
Greater than presentation EBV DNA	13	3.6	.05
Trough EBV DNA			
Equal to 0 at any time during the clinical course	16	24.6	
Never equal to 0 at any time during the clinical course	5	2.1	.02

*Twenty-one patients were evaluated, as 2 patients died soon after diagnosis and could not be fully evaluated.
lymphoid malignancies in immunocompetent patients. Previous studies have only focused on the quantification of EBV in EBV-related PTLD after organ allografting. In these immunocompromised patients, reactivation of latent EBV infection was considered an important pathogenetic mechanism. In fact, reactivation of EBV infection was found to be frequent in patients after allogeneic HSCT. Patients with low levels of EBV might remain asymptomatic. However, those with high EBV load had a much-increased risk of PTLD. In these cases, the monitoring of plasma EBV DNA might be a direct measurement of viral activity. Other studies have, however, measured the number of EBV-infected lymphocytes, or EBV-infected tumor cells, which reflected viral reactivation or the direct presence of circulating lymphoma cells. Both approaches are valid in the setting of organ allografting, as a lack of immune control of EBV proliferation is the underlying mechanism.

In patients with EBV-related lymphomas who are immunocompetent, an unchecked EBV proliferation is unlikely to happen. Indeed, in EBV-related solid tumors, circulating EBV DNA exists as short fragments of less than 200 bp. This finding implies that the increase of EBV DNA is due to tumor release of EBV fragments instead of virion reactivation. Similarly, the circulating EBV DNA in patients with lymphoma has also been shown to be about 180 bp. We, therefore, hypothesized that the release of EBV from EBV-positive lymphoma cells might be a general phenomenon and could be a target for disease monitoring. This proposition was validated by the finding that plasma EBV DNA was detectable at high levels in all the EBV-positive lymphomas at diagnosis. None of the EBV-negative lymphomas showed demonstrable plasma EBV DNA. Interestingly, the presenting levels of EBV DNA in EBV-positive lymphomas (medians ranging from 10 to 10 copies/mL) were comparable with those in PTLD after allografting (median at 10 copies/mL). Therefore, plasma EBV DNA, whether derived putatively from the lymphoma or from reactivation of EBV infection, appears to be significantly elevated at diagnosis, thereby providing a useful biomarker for EBV-related lymphoid malignancies.

To further confirm this hypothesis, the plasma EBV DNA levels were tested serially through therapy. We first showed that the mild degree of immunosuppression found in chemotherapy was not associated with an increase in EBV DNA, validating that during therapy any detectable EBV DNA was tumor derived and not due to reactivation of latent EBV infection. Furthermore, we showed that EBV DNA levels paralleled the clinical course of the patients. For patients responding to chemotherapy, there was a rapid decline of EBV DNA, sometimes from very high levels to undetectable within a few weeks. As plasma DNA has a rapid clearance, with a half-life only in minutes, the measurement of EBV DNA may in fact give a much quicker and convenient measurement of tumor mass, as compared with more conventional serologic measurements or imaging studies. These observations were comparable with those in PTLD. Lucas et al showed that successful treatment of PTLD was associated with corresponding falls in EBV DNA. Similarly, Stevens et al, using unfractionated blood, showed that EBV DNA correlated with disease activity in patients with multiple episodes of PTLD. Collectively, these results show that the quantification of EBV DNA in EBV-related lymphoid malignancies is a valid tumor biomarker and a valuable adjunct in disease monitoring.

If EBV DNA reflected tumor load, it might reasonably be expected to be prognostically relevant. To evaluate this assumption, we used the median presentation EBV DNA of the whole group of EBV-related lymphomas as a cutoff. Despite the limitation that this series comprised a mixture of lymphomas with different histopathology and treatment, cases with diagnostic EBV DNA above the median presentation level could still be shown to have a significantly inferior OS. A similar trend was shown for DFS, although owing to the heterogeneous patient population, statistical significance was not reached.

Therefore, to analyze a more homogeneous population, we further studied our cohort of patients with NK cell lymphoma, who formed the largest subgroup in this series. NK cell lymphomas are highly aggressive malignancies with a peculiar geographic distribution. They are very uncommon tumors, occurring predominantly in Asian and Central American patients, and are exceptionally rare in Western countries. NK cell lymphomas are almost universally associated with EBV infection in the tumor cells. Owing to its rarity, prognostic markers for this tumor have not been well defined. Furthermore, NK cell lymphomas can be divided clinically into nasal, nonnasal, and disseminated subtypes, and it is undefined if each subtype may have different prognostic factors. We showed recently, for nasal NK cell lymphomas, that the IPI was the most significant factor in predicting CR rate and OS. In this study, with one of the largest series of patients with NK cell lymphomas reported to date, we showed that for all 3 clinical subtypes, the presentation EBV DNA was the most significant prognostic factor for disease-free survival (DFS). It was also one of the significant prognostic factors in univariate analysis of OS for all 3 subtypes. Furthermore, analysis of EBV DNA during treatment showed that a rise of EBV DNA that exceeded the presentation level, and failure to attain an undetectable EBV DNA, were also associated with an inferior OS. Biologically, the high-presentation EBV DNA might mean a high tumor load, the rise of EBV DNA a progression of disease, and the failure to attain undetectable EBV DNA an absence of a complete response. Therefore, EBV DNA provides an important means for prognostication of EBV-positive lymphomas at diagnosis and during treatment. This has important implications for the management of these patients. NK cell lymphomas have a poor treatment outcome, even with combined chemotherapy and radiotherapy. We have shown that the use of autologous HSCT might be beneficial to selected patients with NK cell lymphomas. Our observations suggest that EBV DNA may be used as a stratification factor at presentation and during treatment to identify bad-risk patients who may benefit from early high-dose chemotherapy and autologous HSCT. Accordingly, we are now conducting a prospective study to validate this proposition.

Quantification of EBV DNA by Q-PCR is highly sensitive and can be conveniently performed in the peripheral blood. A current problem of this assay is the use of various sources of EBV, including cell lines and plasmids, as standards for quantification, which might affect the assay in different ways. EBV-positive cell lines have been used as the starting standard, with the EBV copy number per cell enumerated either by electron microscopy or previous or in situ hybridization. Others have used EBV DNA fragments in competitive PCR methods. Apart from affecting the actual numerical values of the assays, cellular or plasmid DNA might have different amplification efficiencies. Consequently, the reported EBV DNA, quantified with comparable technologies from patients with similar diseases, might appear to differ by several logs in different studies. Although this spurious difference because of the use of different standards hinders a direct comparison of the numerical results of these studies, the biologic phenomena that they showed were nevertheless consistent. Therefore, for this test to be comparable and more extensively validated, an agreed EBV standard is ultimately needed. Notwithstanding this limitation, EBV DNA is potentially useful in the diagnosis and follow-up of patients with EBV-related lymphomas, as well as in the assessment of the efficacies of

From www.bloodjournal.org by guest on July 21, 2018. For personal use only.
chemotherapeutic regimens and monoclonal antibodies such as rituximab in the treatment for these tumors. It may be particularly helpful in lymphomas in which clonal markers evaluable by PCR are not available. These include NK cell lymphomas and Hodgkin lymphoma, whereby clonal rearrangement of the immunoglobulin and T-cell receptor genes could not be applied for detection of minimal residual disease. In NK cell lymphomas in which zonal necrosis is a prominent feature, the definition of neoplastic cells, particularly in re-biopsies after treatment, is often challenging even to the experienced histopathologist.31 In Hodgkin lymphoma, the early detection of relapse and the distinction between residual tumor or fibrotic lymph nodes is difficult.32 Preliminary data in a small number of patients with Hodgkin lymphomas have shown that quantification of EBV DNA might be useful in these situations.33,34 Finally, prospective studies are needed to validate the role of EBV DNA testing in the management algorithms of EBV-positive lymphomas, as has been defined for patients with PTLD.16,17

References

1. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001; 1:75-82.
2. Maccween KF, Crawford DH. Epstein-Barr virus: recent advances. Lancet Infect Dis. 2003;3:131-140.
3. Timms JM, Bell A, Flavel JR, et al. Target cells of Epstein-Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin's lymphoma. Lancet. 2003;361: 217-223.
4. Siu LL, Chan JK, Kwong YL. Natural killer cell lineages: a clinicopathological and molecular analysis. Histol Histopathol. 2002; 17:539-554.
5. Horenstein MG, Nador RG, Chadburn A, et al. Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kapoisi's sarcoma-associated herpesvirus/human herpesvirus-8. Blood. 1997;90:1186-1191.
6. Fukayama M, Ikuta T, Hayashi Y, Ooba T, Kolk M, Mizutani S. Epstein-Barr virus in pyothorax-associated pleural lymphoma. Am J Pathol. 1993;143:1044-1049.
7. zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;226:1056-1058.
8. Osato T, Imai S. Epstein-Barr virus and gastric carcinoma. Semin Cancer Biol. 1996;7:175-182.
9. Timms JM, Bell A, Flavel JR, et al. Target cells of Epstein-Barr-virus (EBV) positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin's lymphoma. Lancet. 2003;361:217-223.
10. Knowles DM, Cesaran E, Chadburn A, et al. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of post-transplantation lymphoproliferative disorders. Blood. 1995;85:552-565.
11. KwongYL, Lam CC, Chan TM. Post-transplantation lymphoproliferative disease of natural killer cell lineage: a clinicopathological and molecular analysis. Br J Haematol. 2000;110:197-202.
12. Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 2003;4:22-29.
13. Savoie A, Perpete C, Carpentier L, Jonas C, Alleri C. Direct correlation between the load of Epstein-Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease. Blood. 1994;83:2715-2722.
14. Lucas KG, Burton RL, Zimmerman SE, et al. Semiquantitative Epstein-Barr virus (EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation. Blood. 1998;91:3654-3661.
15. Stevens SJ, Verschuuren EA, Pronk I, et al. Frequent monitoring of Epstein-Barr virus DNA load in unfractioined whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood. 2001;97:1165-1171.
16. van Esser JW, van der Holt B, Meijer E, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after autologous stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood. 2001;97:927-978.
17. van Esser JW, Niesters HG, van der Holt B, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and pre-emptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood. 2002;99:4364-4369.
18. Lo YM, Chan AT, Chan LY, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878-6881.
19. Chan AT, Lo YM, Zee B, et al. Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst. 2002;94:1614-1619.
20. Jaffe ES, Harris NL, Stein H, Vardiman JW. Tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2001:104-105.
21. Leung AY, Suen CK, Lie AK, Liang R, et al. Autologous stem cell transplantation for nasopharyngeal carcinoma: a progress report on its value. Ann Oncol. 2003;14:1673-1676.
22. Chan JK, Jaffe E, Pfaff E, Extramodal NK/T cell lymphoma, nasal type. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001:204-207.
23. Fallowfield JA, Eardley A, Woodman C, Crowther D. Follow up policy after treatment for Hodgkin's disease: too many clinic visits and routine tests? A review of hospital records. Br Med J. 1997;314:343-346.
24. Gallagher A, Armstrong AA, MacKenzie J, et al. Detection of Epstein-Barr virus (EBV) genomes in the serum of patients with EBV-associated Hodgkin's disease. Int J Cancer. 1999;84:442-448.
25. Wagner HJ, Schlager F, Claveix A, Bucsky P. Detection of Epstein-Barr virus DNA in peripheral blood of paediatric patients with Hodgkin's disease by real-time polymerase chain reaction. Eur J Cancer. 2001;37:1853-1857.
Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients

Wing-Yan Au, Annie Pang, Carolyn Choy, Chor-Sang Chim and Yok-Lam Kwong