Coordinate scaling in time-dependent current density functional theory

Maxime Dion and Kieron Burke
Department of Chemistry and Chemical Biology,
Rutgers University, 610 Taylor Rd., Piscataway, NJ 08854, USA
(Dated: March 23, 2022)

The coupling constant dependence is derived in time-dependent current density functional theory. The scaling relation can be used to check approximate functionals and in conjunction with the adiabatic connection formula to obtain the ground-state energy from the exchange-correlation kernel. The result for the uniform gas using the Vignale-Kohn approximation is deduced.

PACS numbers: 31.15.Ew, 71.65.Gm

...
where the prime means that the quantity is evaluated at \((r', t')\). \(V_{\text{ext},\lambda} = \sum_{i=1}^{N} v_{\text{ext}}(\lambda r_i', \lambda^2 t')\), and the scaled normalized wavefunction is \(\Psi'_\lambda = \lambda^{3N/2} \Psi(\lambda r_1', \ldots, \lambda r_N', \lambda^2 t')\). Consistent with Ref. \[27\], we define the scaled density by \(n_\lambda(r, t) = \lambda^3 n(\lambda r, \lambda^2 t)\). Now we also define the scaled current density

\[
j'_\lambda(r, t) = \lambda^4 j(\lambda r, \lambda^2 t).
\]

Continuity (Eq. \[6\]) remains satisfied for all \(\lambda\). Multiplying Eq. \[6\] by \(\lambda^2\) and omitting the primes,

\[
\left\{ \frac{1}{2} \sum_{i=1}^{N} \left(\dot{p}_i + \lambda a_{\text{ext}}(\lambda r_i, \lambda^2 t) \right)^2 + \lambda^2 V_{\text{ext},\lambda} + \lambda V_{\text{ee}} \right\} \Psi_\lambda = \frac{i}{\hbar} \frac{\partial}{\partial t} \Psi_\lambda.
\]

We define \(a_{\text{ext}}[j, \Psi_0][r, t] = \lambda a_{\text{ext}}[j, \Psi_0](\lambda r, \lambda^2 t)\). Thus we identify

\[
a_{\text{ext}}[j_\lambda, \Psi_0, \lambda](r, t) = \lambda a_{\text{ext}}[j, \Psi_0](\lambda r, \lambda^2 t).
\]

Although the \(\lambda\)-dependence of the external potentials in Eq. \[8\] is generally complicated, by virtue of the one-to-one correspondence between current and potentials \[17\] and \[29\], the vector potential appearing in Eq. \[8\] is that unique potential producing current density \(j_\lambda(r, t)\) from the initial wavefunction \(\Psi_0\), with electron-electron interaction \(\lambda V_{\text{ee}}\).

Next we apply the same argument to the Kohn-Sham system, where the electrons are non-interacting (\(V_{\text{ee}} = 0\)) and \(a_{\text{ext}}(r, t)\) is replaced by an effective vector potential, \(\mathbf{a}_\lambda(r, t)\), defined to reproduce the same current as the interacting system. Since our previous argument does not depend on the interaction, \(\mathbf{a}_\lambda(r, t)\) also satisfies Eq. \[6\] and the Hartree vector potential, \(\mathbf{a}_\mathbf{h}(r, t) = \nabla \int dt' \int dr' e^2 n(r', t')/|r - r'|\), satisfies the same scaling. From the definition of the exchange-correlation potential, \(\mathbf{a} = \mathbf{a}_{\text{ext}} + \mathbf{a}_\mathbf{h} + \mathbf{a}_{\text{xc}}\), we see that it must obey the same scaling as the other vector potentials:

\[
a_{\text{xc}}[j; \Psi_0, \Phi_0][r, t] = \lambda a_{\text{xc}}[j_1/\lambda; \Psi_0, 1/\lambda; \Phi_0](\lambda r, \lambda^2 t),
\]

where there is also a functional dependence on the initial Kohn-Sham wavefunction \(\Phi_0\), from \(a_{\text{xc}}(r, t)\). This is the central result of this work.

When the vector potential is irrotational, i.e. can be gauge-transformed to a scalar potential, the TDDFT \(\lambda\)-dependence of Ref. \[24\] can be derived from these more general results. From the gauge transformation, Eqs. \[24\] and \[26\], one can see that an irrotational vector potential is transformed to a scalar potential through \(\partial \mathbf{a}/\partial t = \nabla v_{\text{xc}}\). Inserting Eq. \[10\], we find

\[
\nabla v_{\text{xc}}^\lambda(r, t) = \lambda \partial a_{\text{xc}}(\lambda r, \lambda^2 t)/\partial t = \lambda^3 \nabla\lambda v_{\text{xc}}(\lambda r, \lambda^2 t),
\]

where \(\nabla\lambda = \partial/\partial(\lambda r)\). Requiring the potential to vanish far from the system we recover \(v_{\text{xc}}^\lambda(r, t) = \lambda^2 v_{\text{xc}}(\lambda r, \lambda^2 t)\) from Ref. \[27\]. This relation can also be derived directly from Eq. \[8\] by the same arguments used for the vector potential.

While Eq. \[9\] represents the most general form, applicable to all TDDCDFT applications, we next look at the special case of the linear response of an electronic system. The susceptibility, \(\chi\), is usually defined by \(\delta n(r, t) = \int dr' dt' \chi(r, t; r', t') \delta v(r', t')\), where \(\delta n\) is a small change in density due to a small perturbation in the potential, \(\delta v\). We sometimes represent the previous equation as \(\delta n = \chi \delta v\). Since we now have a vector potential, we can generalize the linear response to \(\delta j = \nabla \cdot \mathbf{a} + \mathbf{J}\). We restrict ourselves to applying (time-dependent) perturbations on systems for which the external potentials are static. The response can then be considered as a functional of the ground-state density only, not the current.

The scaling relation for the linear response exchange-correlation kernel in TDDFT is given in Ref. \[30\]. In TDDCDFT the tensor analog is defined as \(f_{\text{xc}} = \delta a_{\text{xc}}/\delta j\) and we can find the scaling relation with the functional differentiation

\[
a_{\text{xc}}[n + \delta n][r, t] - a_{\text{xc}}[n][r, t] = \lambda (a_{\text{xc}}[n_{1/\lambda}(\lambda r, \lambda^2 t)] - a_{\text{xc}}[n][\lambda r, \lambda^2 t]) = \lambda \int dr' dt' f_{\text{xc}}[n_{1/\lambda}(\lambda r, \lambda^2 t; \lambda r', \lambda^2 t)] \delta j_{1/\lambda}(\lambda r', \lambda^2 t) = \lambda \int (\lambda^3 dr)(\lambda^2 dt) f_{\text{xc}}[n_{1/\lambda}(\lambda r, \lambda r', \lambda^2(t - \bar{t})) \delta j(r, \bar{t})/\lambda^4
\]

Eq. \[10\] implies

\[
f_{\text{xc}}[n_{1/\lambda}][r, \lambda r', \lambda^2(t - \bar{t})] = \lambda^2 f_{\text{xc}}[n_{1/\lambda}](\lambda r, \lambda r', \lambda^2(t - \bar{t}))].
\]

or, in frequency space,

\[
f_{\text{xc}}[n_{1/\lambda}][r, \lambda r', \omega] = f_{\text{xc}}[n_{1/\lambda}](\lambda r, \lambda r', \omega/\lambda^2).
\]

These results are needed to implement the TDDCDFT version of the adiabatic connection formula as shown below.

In the special case of a uniform electron gas

\[
f_{\text{xc}}[n][\mathbf{q}, \omega] = \frac{1}{\lambda^2} f_{\text{xc}}[n_{1/\lambda}](\mathbf{q}, \omega/\lambda).
\]

The above relation implies that, for a uniform gas, knowing the exchange-correlation kernel as a functional of the density is the same as knowing the coupling constant dependence; this was used for the equivalent TDDFT case \[30\] and \[31\].

There have been various approximations proposed for \(f_{\text{xc}}\) \[32\] and \[34\] and \[35\] and \[37\] since they are such important quantities. The main TDDCDFT approximate functionally currently in use is the Vignale-Kohn (VK) functional \[17\]. This is the gradient expansion in the current density, and uses as input the \(q \to 0\) limit of both the longitudinal exchange-correlation kernel, \(f_{\text{xc}}^L(\omega)\) (which is precisely the scalar \(f_{\text{xc}}(\omega)\) of TDDFT), and the transverse kernel, \(f_{\text{xc}}^T(\omega)\) of the uniform gas. We have checked that the VK functional respects the above scaling relation, Eq. \[13\], provided that \(f_{\text{xc}}^L[T](\omega)\) used in constructing the functional also respect the appropriate
scaling. The most recent approximation for these kernel components is that of Qian and Vignale [37]. We verified that it satisfies Eq. (14), assuming the Landau parameters are invariant under simultaneous scaling of the density and the coupling constant.

Just as for the exchange-correlation potential, the scaling relation for the exchange-correlation can be derived from TDCDFT. When the vector potential is irrotational, the scaling relation of f_{xc} reduces to that of the scalar kernel f_{xc} via

$$\nabla \nabla \cdot f_{\text{xc}}^\lambda [n_0](\mathbf{r}, \mathbf{r}', \omega) = \omega^2 f_{\text{xc}}^\lambda [n_0](\mathbf{r}, \mathbf{r}', \omega)$$

$$= \omega^2 f_{\text{xc}}^\lambda [n_0, \lambda](\lambda \mathbf{r}, \lambda \mathbf{r}', \omega/\lambda^2)$$

Then, since $f_{\text{xc}} \to 0$ as $\mathbf{r} \to \infty$ for any finite system, integration implies that the kernel of the current reduces to the scaling of the scalar kernel, $f_{\text{xc}}^\lambda [n_0](\mathbf{r}, \mathbf{r}', \omega) = \lambda^2 f_{\text{xc}}[n_0, \lambda](\lambda \mathbf{r}, \lambda \mathbf{r}', \omega/\lambda^2)$, as in Ref. [38].

Similarly to the adiabatic connection formula used in ground-state DFT [3, 4, 5, 38], which relates the exchange-correlation energy to the susceptibility, we introduce the adiabatic connection for the ground-state of a system with a static scalar potential using current DFT susceptibility

$$E_{\text{xc}} = -\frac{1}{2} \int_0^1 d\lambda \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \text{Tr} \left(\chi^\lambda - n_0(\mathbf{r}) \mathbf{1} \right) \cdot \nabla \nabla \cdot \mathbf{F}_{\text{xc}}^\lambda$$

The trace is $\text{Tr} \left(\nabla^2 \right) = \int d\mathbf{r} \sum_i a_{ii} \delta(\mathbf{r} - \mathbf{r}')$. The symbol $\mathbf{1}$ stands for $\delta(\mathbf{r} - \mathbf{r}') \delta_{ij}$. The tensor susceptibility is related to the exchange-correlation kernel through [38]

$$\chi^\lambda = \chi^\lambda + \chi^\lambda \left(\lambda \mathbf{F}^\lambda + f_{\text{xc}}^\lambda \right) \chi^\lambda$$

where χ^λ is the tensor susceptibility for the Kohn-Sham system

$$\chi_{\lambda, ij}(\mathbf{r}, \mathbf{r}', \omega) = n_0(\mathbf{r}) \mathbf{1} +$$

$$\sum_{\alpha, \beta} \left(f_{\alpha} - f_{\beta} \right) \phi_{\alpha}^*(\mathbf{r}) \phi_{\beta}^*(\mathbf{r}) \phi_{\alpha}(\mathbf{r}') \phi_{\beta}(\mathbf{r}')}}{\omega - (\epsilon_{\beta} - \epsilon_{\alpha}) + i\eta}$$

where f is the occupation number, i.e. 1 for an occupied state, 0 for an unoccupied one, and η is infinitesimal. The Kohn-Sham wavefunctions and energies are denoted by ϕ and ϵ.

In the special case of a homogeneous gas, the longitudinal and transverse responses decouple, and reordering the terms within the trace of Eq. (16) shows that only the longitudinal components contribute to E_{xc}, i.e., it reduces to the usual scalar case. Lein et al [30] tested a variety of approximations to the scalar f_{xc} for the uniform gas, to see how well they reproduced the known correlation energy. To perform the same test for the VK functional, we first note that, although VK is a gradient expansion in the current, yielding terms of order q^2, these terms are actually zero-order in q when transformed back to the equivalent scalar kernel via Eq. (16). So we find that VK, inserted in the current adiabatic connection formula, reduces to inserting $f_{\text{xc}}^\lambda(\omega) = f_{\text{xc}}^\text{unif}(q \to 0, \omega)$ in the usual scalar adiabatic connection formula. This approximation was already tested by Lein et al, and is labelled ‘local RA’ in their work. (Although they used a different parametrization [36] from QV [37], the results are unlikely to depend strongly on such details.) They found that the special case of the uniform gas, the VK approximation, inserted in the current adiabatic connection formula, improves over ALDA.

Carrying out a calculation of Eq. (16) on molecules or solids is much more computationally demanding than the usual ground-state calculations with approximate exchange-correlation energy functionals, but is probably not much more expensive than the scalar case. Such calculations are presently being performed [34, 36] because the use of the adiabatic connection formula correctly describes the dissociation of molecules [3] and dispersion energies [3, 4, 11, 12]. The exchange-correlation kernel of TDCDFT being better suited to local or semi-local approximations than the pure density theory [17], we would expect that it would supersede TDDFT when used within the adiabatic connection formula.

To summarize, we have used coordinate scaling to derive the coupling-constant dependence of the exchange-correlation potential in TDCDFT. We have derived the adiabatic connection formula for TDCDFT, and shown how the VK approximation performs for a uniform gas. We have also given explicit formulas relating both potentials and kernels in TDCDFT to their counterparts in TDDFT. Given both the recent use of TDDFT exchange-correlation kernels in the adiabatic connection formula, for calculating bond dissociation curves, and the use and tests of TDDFT for excitations in which TDDFT has shown limitations, it is clear that an important application of this work is likely to be realized in the near future.

Work supported by NSF grant CHE-0355405.

[1] E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[2] J. Werschnik, E.K.U. Gross, and K. Burke, to appear in J. Chem. Phys. (2005), http://xxx.lanl.gov/abs/cond-mat/0410362.
[3] F. Furche and K. Burke, in Annual reports in computational chemistry, ed. D. C. Spellmeyer (Elsevier, Amsterdam, 2005).
[4] M.A.L. Marques and E.K.U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
[5] D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).
[6] O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
[7] D.C. Langreth and J.P. Perdew, Phys. Rev. B 15, 2884 (1977).
[8] M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116 (2005).
[9] W. Kohn, Y. Meir, and D.E. Makarov, Phys. Rev. Lett., 80, 4153 (1998).
[10] A.J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 91, 033201 (2003).
[11] M. Levy, H. Rydberg, E. Schröder, D.C. Langreth, and B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
[12] M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1985).
[13] S. Erhard and E.K.U. Gross, Phys. Rev. A 53, R5 (1996).
[14] M. Levy, in Density Functional Theory, eds. R. Dreizler and E. K. U. Gross, NATO ASI Series (Plenum, New York, 1995).
[15] G. Vignale, Phys. Rev. Lett. 77, 2037 (1996).
[16] C.A. Ullrich, G. Vignale, Phys. Rev. B, 58, 7141 (1998).
[17] C.A. Ullrich and G. Vignale, Phys. Rev. Lett. 87, 037402 (2001).
[18] C.A. Ullrich and K. Burke, J. Chem. Phys. 121, 28 (2004).
[19] M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, and J.G. Snijders, Phys. Rev. Lett. 88, 186401 (2002).
[20] M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, and J.G. Snijders, J. Chem. Phys. 118, 1044 (2003).
[21] M. van Faassen and P.L. de Boeij, J. Chem. Phys. 120, 8353 (2004).
[22] M. van Faassen and P.L. de Boeij, J. Chem. Phys. 121, 10707 (2004); (e) ibid. 121, 7035 (2004).
[23] K. Burke, Roberto Car, and Ralph Gebauer, Phys. Rev. Lett. 94, 146803 (2005).
[24] K. Burke, M. Koentropp, and F. Evers, submitted, Spring 05, http://xxx.lanl.gov/abs/cond-mat/0502385.
[25] P. Hessler, J. Park, and K. Burke, Phys. Rev. Lett. 82, 378 (1999); Phys. Rev. Lett. 83, 5184 (1999) (E).
[26] S.K. Ghosh and A.K. Dhara, Phys. Rev. A 38, 1149 (1988).
[27] G. Vignale, Phys. Rev. B 70, 201102(R) (2004).
[28] M. Lein, E.K.U. Gross, and J.P. Perdew, Phys. Rev. B 61, 13431 (2000).
[29] R. Asgari, M. Polini, B. Davoudi and M.P. Tosi, Phys. Rev. B 68, 235116 (2003).
[30] E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985); 57, 923 (1986) (E).
[31] E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 57, 923 (1986).
[32] M. Petersilka, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
[33] C.F. Richardson and N.W. Ashcroft, Phys. Rev. B 50, 8170 (1994).
[34] R. Nifosi, S. Conti, and M. P. Tosi, Phys. Rev. B, 58, 12758 (1998).
[35] Z. Qian and G. Vignale, Phys. Rev. B 65 235121 (2002)
[36] F. Furche and T. Van Voorhis, J. Chem. Phys. 122, 164106 (2005).
[37] G. Vignale and W. Kohn, in Electronic Density Functional Theory: Recent Progress and New Directions, eds. J.F. Dobson, G. Vignale, and M.P. Das (Plenum, NY, 1998), pg. 199.
[38] M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109 (2002).