Line and Plane Cover Numbers Revisited*

Therese Biedl¹, Stefan Felsner², Henk Meijer³, and Alexander Wolff⁴

¹ University of Waterloo, Waterloo, Canada
² TU Berlin, Berlin, Germany
³ University College Roosevelt, The Netherlands
⁴ Universität Würzburg, Würzburg, Germany

Abstract. A measure for the visual complexity of a straight-line crossing-free drawing of a graph is the minimum number of lines needed to cover all vertices. For a given graph G, the minimum such number (over all drawings in dimension $d \in \{2, 3\}$) is called the d-dimensional weak line cover number and denoted by $\pi^{l}_{d}(G)$. In 3D, the minimum number of planes needed to cover all vertices of G is denoted by $\pi^{3}_{3}(G)$. When edges are also required to be covered, the corresponding numbers $\rho^{l}_{d}(G)$ and $\rho^{3}_{3}(G)$ are called the (strong) line cover number and the (strong) plane cover number.

Computing any of these cover numbers—except $\pi^{1}_{2}(G)$—is known to be NP-hard. The complexity of computing $\pi^{1}_{2}(G)$ was posed as an open problem by Chaplick et al. [WADS 2017]. We show that it is NP-hard to decide, for a given planar graph G, whether $\pi^{1}_{2}(G) = 2$. We further show that the universal stacked triangulation of depth d, G_{d}, has $\pi^{1}_{2}(G_{d}) = d+1$. Concerning 3D, we show that any n-vertex graph G with $\rho^{3}_{3}(G) = 2$ has at most $5n - 19$ edges, which is tight.

1 Introduction

Recently, there has been considerable interest in representing graphs with as few objects as possible. The idea behind this objective is to keep the visual complexity of a drawing low for the observer. The types of objects that have been used are straight-line segments [5,8,14,15] and circular arcs [14,16]. Chaplick et al. [3] considered covering straight-line drawings of graphs by lines or planes and defined the following new graph parameters. Let $1 \leq l < d$, and let G be a graph. The l-dimensional affine cover number of G in \mathbb{R}^{d}, denoted by $\rho^{l}_{d}(G)$, is defined as the minimum number of l-dimensional planes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in the union of these planes. The weak l-dimensional affine cover number of G in \mathbb{R}^{d}, denoted by $\pi^{l}_{d}(G)$, is defined similarly to $\rho^{l}_{d}(G)$, but under the weaker restriction that only the vertices are contained in the union of the planes. Clearly, $\pi^{l}_{d}(G) \leq \rho^{l}_{d}(G)$, and if $l' \leq l$ and $d' \leq d$ then $\pi^{l'}_{d'}(G) \leq \pi^{l}_{d}(G)$ and $\rho^{l'}_{d'}(G) \leq \rho^{l}_{d}(G)$. It turns out that it suffices to study the parameters ρ^{2}_{2}, ρ^{1}_{3}, ρ^{3}_{3}, and π^{2}_{2}, π^{1}_{3}, π^{3}_{3}:

* S.F. was supported by DFG grant FE340/11-1, A.W. by DFG grant WO 758/9-1, and T.B. by NSERC.
Theorem 1 (Collapse of the Affine Hierarchy \[3\]) For any integers \(1 \leq l < 3 \leq d\) and for any graph \(G\), it holds that \(\pi^l_d(G) = \pi^3_d(G)\) and \(\rho^l_d(G) = \rho^3_d(G)\).

Disproving a conjecture of Firman et al. \[12\], Eppstein \[10\] constructed planar, cubic, 3-connected, bipartite graphs on \(n\) vertices with \(\pi^1_2(G) \geq \frac{n}{3}\). Answering a question of Chaplick et al. \[3\] he also constructed a family of subcubic series-parallel graphs with unbounded \(\pi^1_2\)-value. Felsner \[11\] proved that, for every 4-connected plane triangulation \(G\) on \(n\) vertices, it holds that \(\pi^1_2(G) \leq \sqrt{2n}\).

Chaplick et al. \[4\] also investigated the complexity of computing the affine cover numbers. Among others, they showed that in 3D, for \(l \in \{1, 2\}\), it is NP-complete to decide whether \(\pi^l_3(G) \leq 2\) for a given graph \(G\). In 2D, the question has still been open, but a related question was raised by Dujmović et al. \[7\] already in 2004. They investigated so-called track layouts which are defined as follows. A graph admits a \(k\)-track layout if its vertices can be partitioned into \(k\) ordered independent subsets such that any pair of subsets induces a plane graph (w.r.t. the order of the subsets). The track number of a graph \(G\), \(tn(G)\), is the smallest \(k\) such that \(G\) admits a \(k\)-track layout. See also \[6\] for some recent developments. Note that in general \(\pi^1_2(G) \neq tn(G)\); for example, \(\pi^1_2(K_4) = 2\), whereas \(tn(K_4) = 4\). Note further that a 3-track layout is necessarily plane (which is not the case for \(k\)-track layouts with \(k > 3\)). Dujmović posed the computational complexity of \(k\)-track layout as an open question.

While it is easy to decide efficiently whether a graph admits a 2-track layout, Bannister et al. \[1\] answered the open question of Dujmović et al. \[7\] already for 3-track layouts in the affirmative. They first showed that a graph has a leveled planar drawing if and only if it is bipartite and has a 3-track layout. Combining this results with the NP-hardness of level planarity, proven by Heath and Rosenberg \[13\], immediately showed that it is NP-hard to decide whether a given graph has a 3-track layout. For \(k > 3\), deciding the existence of a \(k\)-track layout is NP-hard, too, since it suffices to add to the given graph \(k - 3\) new vertices each of which is incident to all original vertices of the graph \[1\].

Our contribution. We investigate several problems concerning the weak line cover number \(\pi^1_2(G)\) and the strong plane cover number \(\rho^2_3(G)\):

- We settle the open question of Chaplick et al. \[4\], p. 268 by showing that it is NP-hard to test whether, for a given planar graph \(G\), \(\pi^2_3(G) = 2\); see Section 2.
- We show that \(G_d\), the universal stacked triangulation of depth \(d\), (which has treewidth 3) has \(\pi^1_2(G_d) = d + 1 = \log_d(2n_d - 5) + 1\), where \(n_d\) is the number of vertices of \(G_d\); see Section 3.
- Eppstein has identified classes of treewidth-2 graphs with unbounded \(\pi^1_2\)-value. We give an easy direct argument showing that some 2-tree \(H_d\) with \(n'_d\) vertices has \(\pi^1_2(H_d) \in \Omega(\log n'_d)\); see Appendix B.
- Concerning 3D, we show that any \(n\)-vertex graph \(G\) with \(\rho^2_3(G) = 2\) has at most \(5n - 19\) edges; see Section 4. This bound is tight.
2 Complexity of Computing Weak Line Covers in 2D

In this section we investigate the computational complexity of deciding whether a graph can be drawn on two lines.

Theorem 2 It is NP-hard to decide whether a given plane (or planar) graph G admits a drawing with $\pi_1^2(G) = 2$.

Proof. Our proof is by reduction from the problem Level Planarity, which Heath and Rosenberg [13] proved to be NP-hard. The problem is defined as follows. A planar graph G is leveled-planar if its vertex set can be partitioned into sets V_1, \ldots, V_m such that G has a planar straight-line drawing where, for every $i \in \{1, \ldots, m\}$, vertices in V_i lie on the vertical line $\ell_i: y = i$ and each edge v_jv_k of G connects two vertices on consecutive lines (that is, $|j - k| = 1$).

Chaplick et al. [3] have shown that every leveled-planar graph can be drawn on two lines. The converse, however, is not true. For example, K_4 is not leveled-planar, but $\pi_1^2(K_4) = 2$. Therefore, we modify the given graph in three ways.

(a) We replace each edge of G by a $K_{2,4}$-gadget where the two nodes in one set of the bipartition replace the endpoints of the former edge; see Fig. 1a. (b) We add to the graph G' that resulted from the previous step a new subgraph G_0 (two copies of K_4 sharing exactly two vertices), which we connect by a path to a vertex on the outer face of G. (If the outer face is not fixed, we can try each vertex.) In Fig. 1b G_0 is yellow and the path is red. The length L of the path is any upper bound on the number of levels of G', e.g., the diameter of G' (plus 1). (c) We attach to G_0 a triangulated spiral S (dark green in Fig. 1b). The spiral makes $L + 2$ right turns; its final vertex is identified with the outermost vertex of the previous turn. Hence, apart from its many triangular faces, the graph $S + G_0$ has a large inner face F of degree $2(L + 2)$ and a quadrangular outer face. Let G'' be the resulting graph. It remains to show that G is leveled-planar if and only if $\pi_1^2(G'') = 2$.

\Rightarrow: Fix a leveled-planar drawing of G. By doubling the layers and using the new layers to place the large sides of $K_{2,4}$’s, one easily sees that G' is also leveled-planar, see Fig. 1a. As shown in Fig. 1b, the large inner face F of $S + G_0$ can be drawn so that it partitions the halflines emanating from the origin into L levels. (It is no problem that consecutive levels are turned by 90°.) Since we chose L large enough (in particular $L \geq 2m - 1$), we can easily draw G' inside F. Note that the red path attached to G_0 is long enough to reach any vertex on the outer face of G', Hence, $\pi_1^2(G'') = 2$.

\Leftarrow: Fix a drawing of G'' on two lines. The two lines cannot be parallel since G'' contains $K_{2,4}$ and is not outer-planar; so after translation and/or skew we may assume that these two lines are the two coordinate axes. It is not hard to verify that G_0 must be drawn such that the origin is in its interior, at the common edge of the two K_4’s. Furthermore, given this drawing of G_0, the 3-connected spiral S must be drawn as in Fig. 1b. Due to planarity and the fact that G' is connected to G_0 via the red path, G' can only be drawn in the interior of F. The drawing of $S + G_0$ partitions the halflines emanating from the origin.
into levels, which we number 1, 2, . . . , starting from the innermost level that contains a vertex of G'. Inside this face, the only way to draw the $K_{2,4}$-gadgets is as in Fig. 1a, spanning three consecutive levels. This forces all vertices of G to be placed on the odd-numbered levels and the vertices in $G' - G$ on the even-numbered levels. Now we can get a level assignment for G by reverting the transformation in Fig. 1a. Hence, G is leveled-planar.

This shows that our reduction is correct. It runs in polynomial time. □

3 Weak Line Covers of Planar 3-Trees in 2D

In this section we consider the weak line cover number π_1^2 for planar graphs, i.e., we are interested in crossing-free straight-line drawings with vertices located on a small collection of lines. Clearly $\pi_1^2(G) = 1$ if and only if G is a forest of paths. The set of graphs with $\pi_1^2(G) = 2$, however, is already surprisingly rich, it contains all trees, outerplanar graphs and subgraphs of grids $[1,10]$.

Stacked triangulations, a.k.a. planar 3-trees or Apollonian networks, are obtained from a triangle by repeatedly selecting a triangular face T and adding a new vertex (the vertex stacked inside T) inside T with edges to the vertices of T. This subdivides T into three smaller triangles, the children of T.

For $d \geq 0$ let G_d be the universal stacked triangulation of depth d, defined as follows. The graph G_0 is a triangle T_0, and G_d (for $d \geq 1$) is obtained from G_{d-1} by adding a stack vertex in each bounded face of G_{d-1}. Graph G_d has $n_d = \frac{1}{2}(3^d+5)$ vertices and 3^d bounded faces. We show that its weak line cover number is $d + 1 = \log_3(2n_d - 5) + 1 \in \Theta(\log n_d)$. (A lower bound of d can also be found in Eppstein’s recent book [9, Thm. 16.13].)

Theorem 3 For $d \geq 1$ it holds that $\pi(G_d) = d + 1$.

Proof. Here we prove only the lower bound; the construction for the upper bound is illustrated in Fig. 2 and given in Appendix A. Let \mathcal{L} be a family of lines covering
the vertices of a drawing of G_d. Let a, b, and c be the vertices of T_0. We first argue that at least d lines are needed to cover $V \setminus T_0$. Let x_1 be stacked into T_0. There is a line $L_1 \in \mathcal{L}$ covering x_1. Note that L_1 can intersect only two of the three child triangles of T_0 (where “intersect” here means “in the interior”). Let T_1 be a child triangle avoided by L_1, and let x_2 be the vertex stacked into T_1. There is a line $L_2 \in \mathcal{L}$ covering x_2. Let T_2 be a child triangle of T_1 avoided by L_2. Iterating this yields d pairwise distinct lines in \mathcal{L}.

To find one additional line in \mathcal{L}, we distinguish some cases. If a line $L \in \mathcal{L}$ covers two vertices of T_0, then it covers no inner vertex, and we are done.

Assume some line $L_a \in \mathcal{L}$ intersects x_1 and one vertex of T_0, say a. Let L_b and L_c be the lines intersecting b and c. The lines L_a, L_b, and L_c are pairwise different, else we are in the previous case. Of the three child triangles of T_0, at most one is intersected by L_a and at most two each are intersected by L_b and L_c. Therefore, some child triangle T_1 of T_0 is intersected by at most one of L_a, L_b, or L_c. The graph G_{d-1} inside T_1 requires at least $d-1$ lines for its interior points, and at most one of those lines is L_a, L_b, or L_c, so in total at least $d+1$ lines are needed.

The argument is similar if no line covers two of a, b, c, and x_1. The four distinct lines supporting a, b, c, and x_1 then intersect at most two child triangles each. So one child triangle T_1 is intersected by at most two of these lines. Combining the $d-1$ lines needed for the interior of T_1 with the two lines that do not intersect it, shows that $d+1$ lines are needed. \hfill \square

4 Maximal Graphs on Two Planes in 3D

We now switch to dimension $d = 3$ and the strong cover number. Obviously any graph G with a drawing that is covered by two planes has at most $6n - 12$ edges since it is the union of two planar graphs. Using maximality arguments and counting, we show that in fact G has at most $5n - 19$ edges if $n \geq 7$. (The restriction $n \geq 7$ is required since for $n = 3, 4, 5, 6$ we can have $3, 6, 9, 12$ edges.)

We argue first that our bound is tight. The spine is the intersection of two planes A and B. Put a path with $n-4$ vertices on the spine. Add one vertex in each of the four halfplanes and connect each of these vertices to all vertices on the spine and to the vertex on the opposite halfplane; see Fig. 4 in Appendix C. This yields $n - 5$ edges on the path and $2(n-4) + 1$ edges in each of the two planes, so $5n - 19$ edges in total.
Theorem 4 Any graph G with $\rho^2_3(G) = 2$ and $n \geq 7$ vertices has at most $5n - 19$ edges.

Proof. Fix a drawing of G on planes A and B, inducing planar graphs G_A and G_B within those planes. Let G^+_A and G^+_B be the graphs obtained from G_A and G_B by adding any edge that can be inserted without crossing, within the same plane, and with at most one bend on the spine. Clearly it suffices to argue that G^+_A and G^+_B together have at most $5n - 19$ edges. Let s be the number of vertices on the spine, let a be the number of vertices of G^+_A not on the spine, and let b be the number of vertices of G^+_B not on the spine. Clearly, $a + b + s = n$. We may assume $a \leq b$. We also assume that $1 \leq s \leq n - 4$ and that at least one edge of G^+_A crosses the spine (so $2 \leq a \leq b$); see Appendix C.

Let t be the number of edges drawn along the spine. These are the only edges that belong to G^+_A and G^+_B. Since G^+_A and G^+_B have at least three vertices each, we can bound the number of edges of G, $m(G)$, as follows:

$$m(G) \leq m(G^+_A) + m(G^+_B) - t \leq 3(s + a) - 6 + 3(s + b) - 6 - t \leq 3n - 12 + 3s - t \leq 4n - 16 + 2s - t$$

So we must show that $2s - t \leq n - 3$. Let an internal gap be a line segment connecting two consecutive, non-adjacent vertices on the spine. There are $s - t - 1$ internal gaps. Let the external gap be the two infinite parts of the spine. Note that at least one edge of G^+_A must cross the external gap, because G^+_A has at least one vertex on each side of the gap, and we could connect the extreme such vertices (or re-route an existing edge) to cross the external gap, perhaps using a bend on the spine. We may further assume that even after such re-routing every internal gap is crossed by at least one edge of G^+_A. Otherwise we could delete all edges of G^+_B passing through the gap, insert the edge between the spine vertices, and re-triangulate the drawing of G^+_B where we removed edges. This would remove an internal gap, but would not decrease the number of edges. Since no edge can cross two gaps, at least $s - t$ edges of G^+_A cross gaps. These edges form a planar bipartite graph with at most a vertices; therefore $s - t \leq 2a - 3$. This yields $2s - t \leq s + 2a - 3 \leq s + a + b - 3 = n - 3$ as desired. \hfill \Box

We conjecture that the following more general statement holds:

Any n-vertex graph G with $\rho^2_3(G) = k$ has at most $(2k+1)(n-2k)+k-1$ edges, for all large enough n.

Acknowledgments. This research started at the Bertinoro Workshop on Graph Drawing 2017. We thank the organizers and other participants, in particular Will Evans, Sylvain Lazard, Pavel Valtr, Sue Whitesides, and Steve Wismath. We also thank Alex Pilz and Piotr Micek for enlightening conversations.

5 One might be tempted to write a bound of $2a - 4$ here, but we must allow for the possibility of $a = 2$, in case of which the planar bipartite graph may have $1 = 2a - 3$ edges.
References

1. Bannister, M.J., Devanny, W.E., Dujmović, V., Eppstein, D., Wood, D.R.: Track layouts, layered path decompositions, and leveled planarity. Algorithmica 81(4), 1561–1583 (2019). https://doi.org/10.1007/s00453-018-0487-5

2. Biedl, T., Felsner, S., Meijer, H., Wolff, A.: Line and plane cover numbers revisited. Arxiv report (2019). http://arxiv.org/abs/XXXX.YYYYY

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) Proc. 24th Int. Symp. Graph Drawing & Network Vis. (GD’16). LNCS, vol. 9801, pp. 166–180. Springer (2016). https://doi.org/10.1007/978-3-319-50106-2_14

4. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007). https://doi.org/10.1016/j.comgeo.2006.09.002

5. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Planar graphs have bounded queue-number. Arxiv report (2019). http://arxiv.org/abs/1904.04791

6. Eppstein, D.: Forbidden Configurations in Discrete Geometry. Cambridge Univ. Press (2018)

7. Felsner, S.: 4-connected triangulations on few lines. In: Archambault, D., Tóth, C.D. (eds.) Proc. 24th Int. Symp. Graph Drawing & Network Vis. (GD’16). LNCS, Springer (2019). https://arxiv.org/abs/1908.04524

8. Firman, O., Lipp, F., Straube, L., Wolff, A.: Examining weak line covers with two lines in the plane. In: Biedl, T., Kerren, A. (eds.) Proc. Int. Symp. Graph Drawing Graph Draw. Network Vis. (GD’18). LNCS, vol. 11282, pp. 643–645 (2018). https://link.springer.com/content/pdf/bbm:978-3-030-04414-5/1.pdf

9. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992). https://doi.org/10.1137/0221055

10. Hüllsachschnitt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives. J. Graph Alg. Appl. 22(2), 357–387 (2018). https://doi.org/10.7155/jgaa.00473

11. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. J. Graph Alg. Appl. 22(3), 501–518 (2018). https://doi.org/10.7155/jgaa.00474

12. Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412 (2015). https://doi.org/10.7155/jgaa.00366
Appendix: Missing Proofs

A Rest of the Proof of Theorem 3

For the upper bound, we draw G_k (for $k = 0, \ldots, d$) on $d + 2$ layers, i.e., distinct horizontal lines. For every bounded face of G_k, one edge is short (i.e., either horizontal or connecting two adjacent layers) while the other two edges each cross at least $d - k$ layers in their interior. See also Fig. 2. For G_0, do this by placing (b_0, c_0) horizontally on the lowest layer and a_0 on the highest layer.

Assume G_k (for $0 \leq k < d$) has been drawn in this way, and consider a bounded face $T_k = \{a_k, b_k, c_k\}$ of G_k into which we want to place the stacked vertex x_k to get a drawing of G_{k+1}. Say (b_k, c_k) is the short edge. Hence the two edges incident to a_k cross at least $d - k \geq 1$ layers in their interior. Place x_k on the layer adjacent to a_k and interior to T_k and verify all conditions. For $k = d$ we hence get a drawing of G_d on $d + 2$ layers. Observe that the top two layers contain only a_0 and the vertex x_0 stacked inside T_0. (This exists by $d \geq 1$.) Hence the line through a_0, x_0, together with the d lines through the other d layers, gives a set of $d + 1$ lines supporting the drawing.

B Weak Line Covers of 2-Trees

We already had the operation of stacking a vertex inside a triangle. We now introduce a similar operation, stacking a vertex onto an edge (a, b), which consists of adding a new vertex x adjacent to a and b. Define H_0 to be the graph consisting of a single edge (a, b), and let H_d (for $d \geq 1$) be the graph obtained from H_{d-1} by stacking a vertex onto every edge of H_{d-1}. The graph H_d has 3^d edges and (since it is a 2-tree) $n'_d = \frac{3^d + 3}{2}$ vertices.

Theorem 1. $\pi_2(H_d) \geq 1 + \lfloor \frac{d}{3} \rfloor \in \Omega(\log n'_d)$.

Proof. Fix an arbitrary straight-line planar drawing and line cover of H_{d+8} (for some $d \geq 0$); we will show that this line cover needs at least one line more than a line cover of H_d. The theorem then holds by induction since H_0 needs one line.

Let $H_0 = \{(a, b)\}$ be the original edge from which H_{d+8} was built. Let v_1, \ldots, v_5 be the common neighbours of a and b acquired as we extended H_0 to H_5 and hence stacked onto (a, b) five times. Let L be the line in the line cover of H_{d+8} that supports a. By the pigeon-hole principle, at least three of v_1, \ldots, v_5 must lie in one (closed) half-space h of L; say, $v_1, v_2,$ and v_3. Sort them such that the rotation at a contains (in counterclockwise order) a ray along L, (a, v_1), (a, v_2), (a, v_3), the other ray along L (with the first pair and last pair possibly coinciding). See Fig. 3.

Let Q be the quadrilateral (a, v_1, b, v_5). Observe that its sides are edges of H_5; hence, they have no crossings. When extending H_5 to H_8, we stack onto edge (a, v_2) three times; say with vertices $x_1, x_2,$ and x_3. We now distinguish two cases depending on the location of b:
Case 1: b is also in h. Then Q lies entirely within h, and its angle at a is convex or flat. In particular, edge (a, v_2) (which lies between (a, v_1) and (a, v_3)) enters the interior of Q. By planarity it crosses no edge of Q, so v_2 (and with it also x_1) lie strictly inside Q. Set $e = (v_2, x_1)$ and $P = Q$.

Case 2: b is not in h. Then the angle of Q at a is reflex or flat. This implies that v_2 (and with it x_1, x_2, x_3) lie outside Q. Therefore the edges (a, x_i) for $i \in \{1, 2, 3\}$ must lie between v_1 and v_3 in the rotation at x_1; say the rotation is v_1, x_1, x_2, x_3, v_3 (with v_2 somewhere inbetween). Since we have a straight-line drawing, $x_1, x_2,$ and x_3 lie in h, too. Let Q' be the quadrilateral (a, x_1, v_2, x_3). With the same argument as in the previous case (but using v_2 in place of b), we see that x_2 lies strictly within Q'. Set $e = (v_2, x_2)$ and $P = Q'$.

In both cases we have found a polygon P such that L does not intersect its interior, and an edge e that lies strictly inside P except perhaps at an endpoint (but that endpoint is not on L). Edge e has a graph H_d stacked onto it, and none of the vertices of this H_d (which are either ends of e or strictly inside P) can be supported by L. Hence, a line cover of H_{d+8} must contain at least one line more than a line cover of H_d. \hfill \quad \square

C Missing Cases for the Proof of Theorem 4

Now we consider the boundary cases.

- If $s = 0$ or $a = 0$ or $a + b \leq 2$ then G is planar and $m(G) \leq 3n - 6 < 5n - 19$ (since $n \geq 7$). Therefore we may assume $a \geq 1$, $a + b \geq 3$, and $s = n - a - b \leq n - 3$.

- If $s = n - 3$ then $a = 1$ and G consists of a planar graph in plane B on $n - 1$ vertices plus a unique other vertex in $A \setminus B$ adjacent to at most s vertices on the spine. Therefore $m(G) \leq 3(n - 1) - 6 + s \leq 4n - 12 \leq 5n - 19$ by $n \geq 7$. So we may assume $s \leq n - 4$, hence $b \geq 3$.

- Assume now that all vertices of G^*_A are to one side of the spine or on the spine. Observe that we may assume $s \geq 3$, for if $s \leq 2$ then, by Equation 1 (which did not use that the vertices of G^*_A occur on both sides), we have $m(G) \leq 3n - 12 + 3s \leq 3n - 6 < 5n - 19$.

 Since $s \geq 3$, the convex hull of the drawing of G^*_A contains at least $s + 1 \geq 4$ vertices, hence $m(G^*_A) \leq 3(s + a) - 7$. This strengthens Equation 1 to
Fig. 4: Example that shows that the bound $5n - 19$ for the number of edges of a 2-plane graph is tight.

$m(G) \leq 4n - 17 + 2s - t$, so it suffices to show $2s - t \leq n - 2$. We can therefore afford to have no edge in the external gap. There are no internal gaps (because those could be filled with edges with the same argument as before), so $s - t = 1$ and $2s - t = s + 1 \leq n - 2$ as desired.