Study on the change law of dew point pressure after gas injection in fracture-cavity condensate gas reservoir

Xinhao Fan 1, Aifen Li 2 and Junfeng Chu 2, *

1School of China University of Petroleum (Hua Dong), Petroleum Engineering, Qingdao, China

*Corresponding author e-mail: chujunfeng@upc.edu.cn

Abstract. In this paper, taking a condensate gas reservoir in the Middle Tarim Basin as an example, the fluid of the condensate gas reservoir was calculated according to the provided condensate oil sample, and the accuracy was verified by PVT experiment. The regularity of dewpoint pressure after adding different proportion of light component gas (produced gas) into the condensate gas was tested under reservoir conditions.

1. Introduction

At present, the degree of oil and gas exploration and development in China is getting higher and higher, and the difficulty is also getting more and more difficult. Fractured-vuggy carbonate reservoirs account for a large proportion and have great development potential.[1] The fracture-vuggy carbonate reservoir is a kind of special reservoir system, which is mainly controlled by karst fracture-vuggy reservoir and mainly controlled by karst fracture-vuggy reservoir, which is formed by multi-stage tectonic movement and palaeokarst interaction.[2] This type of hydrocarbon reservoir is characterized by diverse reservoir space types, deep burial, complex structure, strong reservoir heterogeneity, poor connectivity, and great difference in natural energy among different reservoirs, etc. It is characterized by network reservoir, and can be called the most complex and special carbonate reservoir in the world.[3]

Different from conventional gas reservoirs, reverse condensate occurs when the local pressure is lower than the dew point pressure, which is the main characteristic of condensate gas reservoirs.[4,5] When the pressure of condensate gas reservoir drops below the dew point pressure, condensate will be precipitated out of the reservoir. The precipitated condensate will be adsorbed on the pore surface of the rock, so it is difficult to recover.[6,10] For condensate gas reservoirs, the production method of maintaining formation pressure is the mainstream of the current production method, among which the gas injection to maintain pressure is more studied, but the influence of gas injection of different components on the dew point is less studied.[11] The determination of dew point pressure is an important basis to judge the saturation degree and fluid characteristics of condensate gas reservoir, so it is very important to calculate the dew point pressure accurately for the efficient development of condensate gas reservoir.[12,15]
2. The experiment to prepare

2.1. Formation fluid recombination
Two oil samples (2×1L) and two gas samples (2×15L) were obtained from the separator after stable production in order to realize the change of fluid properties and phase characteristics of the gas reservoir in the production of this well. According to the field sampling conditions: gas reservoir pressure 65.65MPa, gas reservoir temperature 134.6℃; After the sample is sent to the laboratory with the separator pressure of 1.01MPa and the temperature of 6.5℃, the sample is reduced and preset after heating and stirring. The original data of the samples are shown in Table 1.

Sample data	
Gas reservoir pressure/MPa	65.65
Gas reservoir temperature/℃	134.6
Producing gas oil ratio/m³/m³	1491
Gas oil ratio of separator/m³/m³	1527
Tank oil density (20℃)/g/cm³	0.768
Separator pressure/MPa	1.01
Separator temperature/℃	6.5
Separator gas deviation coefficient	0.9747

The gas composition of the separator is shown in Table 2. According to the composition of the gas in the separator, the compound calculation of the medieval condensate gas was carried out.

Component	Gas separator	
Component	mol%	g/m³
CO₂	2.333	/
N₂	1.858	/
C₁	89.807	/
C₂	3.587	44.839
C₃	1.336	24.491
iC₄	0.298	7.200
nC₄	0.482	11.646
iC₅	0.125	3.749
nC₅	0.101	3.029
C₆	0.059	2.060
C₇	0.013	0.519
C₈	0.001	0.044

The blending process was carried out at atmospheric pressure of 0.101MPa and temperature of 20℃. According to the equation of state of gas, the molar volume of gas under atmospheric pressure of 20℃ was obtained:

\[v_{20} = \frac{T_{20}}{T_0} v_0 = \frac{20 + 273}{273} \times 22.4L = 24.04L / mol \] (1)

According to the original data of the sample, the gas volume of 1mL condensate corresponding to the separator condition is 1527cm³, and the corresponding amount of substance is 0.0635g/mol, so as to obtain the molar number of single component gas of the separator gas. By referring to the molecular weight of the gas above C₅ and the compression factor under the sample pressure of 20℃, the volume of the gas corresponding to 1mL of the separator oil under the sample pressure can be obtained.
For liquid components above C₅, by referring to their molecular weight and liquid component density at 20°C atmospheric pressure, the volume of liquid components above C₅ in the separated gas corresponding to 1mL of separator oil at 20°C atmospheric pressure can be obtained. The calculation data is summarized in Table 3.

Table 3. Calculation and composition of gas mixture in separator.

Component	The number of moles of gas per component/g/mol	The molecular weight/Mi	Compression factor at 20°C sample pressure	Sample pressure was assigned to each group/MPa	Volume of gas corresponding to 1mL separator oil at sample pressure/mL	Liquid component density at atmospheric pressure of 20°C g/cm³	The volume of liquid components above C₅ corresponding to 1mL of separator oil in the separated gas/mL
CO₂	0.001482	44	0.96226	0.7	4.3367	/	/
N₂	0.001180	28	0.99544	2.5	1.1003	/	/
C₁	0.057045	16.04	0.94589	3	42.3869	/	/
C₂	0.002278	30.07	0.91631	1	4.6192	/	/
C₃	0.000849	44.09	0.90959	0.5	3.1287	/	/
C₄	0.000495	58	0.96200	0.15	4.6257	/	/
C₅	0.000144	72	/	/	/	0.6326	0.01634
C₆	0.000037	86	/	/	/	0.672	0.00480
C₇	0.000008	100	/	/	/	0.684	0.00121
C₈	0.000001	114	/	/	/	0.703	0.00010

According to the calculation results in the table above, 20mL of separator oil was taken for the mixture of condensate gas samples.

2.2. Experimental conditions and process
The dew point pressure was measured by the condensate gas fluid PVT phase analyzer. The experimental conditions/parameters were as follows: the working pressure was 0-70MPa, the volume of the visual PVT cylinder was 120mL, the accuracy was 0.01ml, and the working temperature was up to 150°C. The device diagram of the phase analyzer is shown in Figure 1.

Figure 1. Condensate gas fluid phase analyzer.

The experimental flow of phase analysis in PVT instrument is shown in Figure 2. Condensate gas samples are prepared in the sample mixer, V9, V12, V15 and V16 are opened and V13 and V10 are kept closed. At the same time, gas samples from the sample transfer pump and sample preparation pump are controlled to maintain pressure and transferred to the sample intermediate container through the sample transfer interface. After the sample transfer operation is completed, V9, V11 and V14 are closed and the pressure of V10 is controlled by controlling the sample transfer pump and pressure pump to transfer a certain volume of samples into the PVT cylinder. Then the inlet valve V10 is closed for the
experiment. At the end of the experiment or when sampling is needed, the gas can be discharged through the sample discharge port by controlling V10, V12 and V13 valves.

![Figure 2. Phase analyzer experiment flow.](image)

For the injected light component gas, the produced gas of the gas reservoir is selected in this paper and the parameters of the prepared light component gas are shown in Table 4.

Table 4. Light component gas parameters.

Component	Sample pressure was assigned to each group/MPa	The volume of a gas under sample pressure/mL
CO₂	0.7	65
N₂	2.5	16
C₁	3	636
C₂	1	69
C₃	0.5	47
C₄	0.15	69

The experimental procedures are as follows:

1. The configured condensate sample (134.6°C, 65MPa) was transferred to the PVT phase analyzer. After the pressure stabilized, the pressure was depressed by hand pump, and the phenomenon was observed after stabilizing for one hour until the dew point was observed.
2. Fill a certain volume of light component natural gas (at room temperature, the pressure is P₀, higher than the pressure in the sample preparation cylinder) into the PVT cylinder (the pressure remains P₀ after sampling conversion) to calculate the number of moles of the gas transferred;
3. Test the dew point pressure of condensate gas after adding light component natural gas;
4. Repeat steps (2) to (3) until no further hypotension can be achieved.

3. **Experimental results and analysis**

Constant mass expansion experiment, also known as P-V relation test experiment. It simulates the experiment of the P-V relationship and phase state change process of the pore space of the hydrocarbon reservoir with the gradual depressurized pressure when the condensate gas reservoir is in the unexploited and closed state.
To the analyzer PVT barrel to transfer a certain amount, compound with good condensate gas constant temperature to formation temperature, formation temperature in constant quality of condensate gas reservoir fluid samples were determined under the volume and pressure, the relationship between the dew point pressure of condensate gas reservoir fluid is obtained under different pressure, gas compressibility factor and fluid parameters such as the relative volume, its value shown in table 4, The P-V relationship of formation fluid is shown in Figure 3.

Table 5. Fluid pressure and volume relationship in condensate gas reservoir (134.6℃).

Pressure/MPa	Relative volume V_i/V_d	Deviation coefficient
65.65	0.9410	1.441
60.00	0.9696	1.357
55.46	1.0000	1.293
50.00	1.0431	/
45.00	1.0963	/
40.00	1.1658	/
35.00	1.2604	/
30.00	1.3983	/
25.00	1.6057	/
20.00	1.9335	/

Note: V_i/V_d: Volume ratio at grade I pressure to dew point pressure

![Figure 3. P-V relationship of formation fluids.](image)

It is found through experimental tests that when the pressure drops to 55.46MPa, white fog begins to appear in the observation window, and the gas-liquid two-phase state is formed, as shown in Figure 4. Therefore, the dew point pressure of the medieval condensate gas reservoir is 55.46MPa. Compared with PVT report, the dew point pressure is 55.45MPa, which verifies the accuracy of the experimental mixture.

![Figure 4. Analyzer window observation under dew point pressure.](image)

After the dew point pressure was observed, 10mL of light component gas was injected each time. After the pressure stabilized, the pressure was lowered and observed until the dew point phenomenon appeared again. The amount of substances added to the light component gas was recorded. The above steps were repeated until the dew point pressure was minimized. The experimental data were shown in
Table 5. When light component is added corresponding to dew point pressure, the observation window phenomenon of the analyzer is shown in Figure 5.

Table 6. Change of gas injection pressure and dew point pressure.

Gas injection pressure (MPa)	Gas injection pressure (MPa)	Dew point pressure (MPa)
0.391	56.00	49.84
0.667	50.00	39.89
0.918	40.00	22.88
1.164	23.00	2.00

Figure 5. Gas injection corresponds to the observation window phenomenon of the dew point pressure analyzer.

When the experimental pressure drops to 2MPa, the minimum pressure has been reached and the experiment is stopped. The relation data between gas composition of condensate gas and injection pressure is shown in Table 7. The relationship curves between the molar number of the injected light component gas and the dew point pressure and the relationship curves between the gas composition of the condensate gas and the injection pressure are shown in Figure 6.

Table 7. The relation between gas composition of condensate gas and injection pressure.

Component/Pressure	56.00MPa	50.00MPa	40.00MPa	23.00MPa	2.00MPa
CO₂	1.794	1.719	1.642	1.621	2.173
N₂	2.051	2.056	2.080	2.091	1.871
C₁	89.833	90.360	91.005	92.223	91.067
C₂	3.648	3.477	3.210	2.640	3.332
C₃	1.595	1.469	1.297	0.920	1.097
C₄	1.080	0.918	0.765	0.504	0.461
Figure 6. The relation curve of gas molar number, condensate gas composition and dew point pressure was added.

It can be seen from the image that the dew point pressure of the condensate gas is greatly affected by the composition. With the addition of the light component gas, the dew point pressure shows a downward trend, which is slow in the early stage and increases in the later stage and gradually shows a linear trend. Gas composition except carbon dioxide and methane content eventually decreases, but the change trend of gas is different and there will be inflection point. Through analysis, this is because the compression factor of different gases varies with the injection pressure. The relation between the compression factor of condensate gas and the injection pressure is shown in Table 8, and the relation curve between the compression factor and the injection pressure is shown in Figure 7.

Table 8. The relation between compression factor and injection pressure of condensate gas.

Component/Pressure	56.00MPa	50.00MPa	40.00MPa	23.00MPa	2.00MPa
CO₂	0.956	0.895	0.800	0.711	0.966
N₂	1.369	1.319	1.237	1.113	1.006
C₁	1.241	1.187	1.102	0.996	0.992
C₂	1.265	1.167	1.003	0.740	0.945
C₃	1.486	1.353	1.126	0.722	0.875
C₄	1.725	1.562	1.283	0.788	0.744
Figure 7. The relation curve between gas compression factor and injection pressure of condensate gas.

A comprehensive understanding of the various influencing factors of dew point pressure is not only of guiding significance for experimental research, but also can reasonably explain various physical phenomena in the actual reservoir during production, which plays a key role in the field optimization of injectors and when to carry out gas injection and pressure retention production.

4. Conclusion

(1) The dew point pressure is greatly affected by the composition of condensate gas.
(2) The injection of light component gas will lead to the decrease of dew point pressure.
(3) Gas composition except carbon dioxide and methane content eventually decreases, but there will be inflection point in different trends of gas, which is caused by the mutation of gas compression factor.
(4) A comprehensive understanding of various influencing factors of dew point pressure not only has guiding significance for experimental research and optimization of human injection agent, but also can reasonably explain various physical phenomena in actual reservoirs during production.

Acknowledgments
This work was financially supported by PetroChina Tarim Oilfield Company fund.

References
[1] Zhang Wei, He Xueqin, Tang Jing, He Chang, Li Zongrui. Discussion on the development technology of carbonate fracture-vuggy condensate gas reservoir [A]. Natural Gas Specialized Committee of China Petroleum Society, Sichuan Petroleum Society. Proceedings of 2015 National Natural Gas Academic Annual Conference [C]. Natural Gas Professional Committee of China Petroleum Society, Sichuan Petroleum Society: Natural Gas Professional Committee of China Petroleum Society, 2015: 7.
[2] Liu Jianxun. Development mode and key technology of high yield horizontal well optimization in Tazhong fracture-vuggy carbonate gas condensate reservoir. Tarim Oilfield Company, CNPC, Xinjiang Uygur Autonomous Region, 2015-04-30. Reference to a chapter in an edited book:
[3] Chaback JJ, Williams, M. L. p-x Behavior of a Rich-Gas Condensate in Admixture With CO2 and (N2 + CO2) [C]. SPE Res. Eng. 1994, 9(1):44-50.
[4] Song Hongcai, Jin Ye. Study on dew point pressure of condensate gas reservoir [J]. Heilongjiang Science, 2012, 3(01):5-6+31.
[5] Li Hu, Li Xiangfang, Zhao Lin, Li Jungang. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2009, 27(05): 12-16+23. (in Chinese)

[6] Mamora, D. D., & Seo, J. G. Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs. Society of Petroleum Engineers [C]. SPE 77347-MS. 2002.

[7] Shtepani, E. CO2 Sequestration in Depleted Gas/Condensate Reservoirs. Society of Petroleum Engineers [C]. SPE 102284, 2006.

[8] Tian Changbing, Luo Kai, Hu Yongle, Liu Henian, Zhong Taixian. Determination of dew point pressure of condensate gas and its influencing factors [J]. Acta Petrolei Sinica, 2003(06): 73-76.

[9] Wang Haiying, Liu Huang, Chang Lunjie, Wei Cong, Wang Haibo, Sun Changyu. Comparison and development of dew point pressure prediction models for condensate gas reservoirs [J]. Natural Gas Geoscience, 2013, 24(04): 853-858.

[10] Chen Liqun, Liu Min, Zhang Jianye, Chen Baoxin, Han Guofeng, Liu Lei. Establishment and comparative analysis of a new dew point pressure prediction model [A]. Natural Gas Professional Committee of China Petroleum Society, Sichuan Petroleum Society, Zhejiang Petroleum Society. Proceedings of 2017 National Natural Gas Academic Annual Conference [C]. Natural Gas Committee of China Petroleum Society, Sichuan Petroleum Society, Zhejiang Petroleum Society: Natural Gas Committee of China Petroleum Society, 2017: 10.

[11] ALAROUJ Mutlaq, ALOMAIR Osamah, ELSHARKAWY Adel. Petroleum Exploration and Development, 2020, 47(05): 1016-1026.

[12] JIA Liang, LI Gang. Influence of different gas injection media on enhancing the recovery of condensate gas reservoir [J]. Petrochemical Technology, 2016, 23(08): 134.

[13] Li Qian, Zhong Bing, Yang Hongzhi, Liu Yicheng, Yang Xuefeng. Study on reasonable gas injection timing of condensate gas reservoirs [J]. Natural Gas Industry, 2015, 35(10): 78-83.

[14] Chen Lei, Luo Ji, Rao Huawen, Feng Xinlun, Kang Aihong, Le Xiao. Xinjiang Petroleum Geology, 2019, 40(01): 98-102. (in Chinese)

[15] Moses, Phillip L., Wilson, Keith. Phase Equilibrium Considerations in Using Nitrogen for Improved Recovery From Retrograde Condensate Reservoirs [J]. Journal of Petroleum Technology, 1981, 33(02).