Survival analysis of pregnancy-associated breast cancer: multiparous women might have better outcomes

CURRENT STATUS: ACCEPTED

Bo-yue Han
Fudan University Shanghai Cancer Center

Xiao-guang Li
Fudan University Shanghai Cancer Center

Hai-yun Zhao
Fudan University Shanghai Cancer Center

Xin Hu
Fudan University Shanghai Cancer Center

Hong Ling
Fudan University Shanghai Cancer Center

linghong98@aliyun.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-9513-3994

DOI: 10.21203/rs.2.16735/v1

SUBJECT AREAS
Oncology

KEYWORDS
Pregnancy-associated breast cancer, first pregnancy, non-first pregnancy, lactation, survival
Abstract
Purpose: Pregnancy-associated breast cancer (PABC) is an aggressive disease and since China began to encourage childbearing in 2015, the incidence of PABC has increased. The study was to investigate the characteristics and survival rates of PABC patients.

Methods: Patients with PABC who underwent surgery at Fudan University, Shanghai Cancer Center, from 2005 to 2018 were enrolled. First, the study divided the population into two groups: first-pregnancy group and non-first pregnancy group. Second, patients were categorized as those having breast cancer during pregnancy with/without an abortion or during the lactation period.

Results: Overall, 203 patients were recruited. Since 2016, 63.9% patients were diagnosed with PABC during their second or third pregnancy, while at that time in Shanghai, only 25% of newborns were non-first births. Luminal B accounted for the highest proportion (38.4%), followed by triple-negative breast cancer (30.0%). Compared with the non-first pregnancy group, the first-pregnancy group preferred to delay treatment until the fetus was born (time from initial symptoms to treatment: 6.20 vs. 4.67 m, P=0.106). The patients in the first pregnancy group were presented with 57.0% of HR negative tumors and 26.6% of HER-2 positive tumors, while the HR negative tumors accounted for 47.6% (P=0.281) and the proportion of HER-2 positive tumors was 36.3% (P=0.108) in the non-first pregnancy group. The 3-year disease-free survival rate of the first-pregnancy group was 78.4%, and that of the non-first pregnancy group was 83.7% (P=0.325).

Conclusions: Our study proves that the proportion of PABC developed during the second or third pregnancy of women was extremely large relative to the newborn populations. Patients in the first-pregnancy group tended to be presented with less aggressive tumor pathological characteristics but a worse survival outcome than those in the non-first pregnancy group.

Background
Breast cancer is the most common cancer in women worldwide [1]. In a woman’s life, pregnancy and breastfeeding are important physiological activities, and when they collide with breast cancer, management becomes challenging. The concurrence of cancer and pregnancy is rare; however, breast cancer remains the most frequently diagnosed cancer during this period [2]. In the US, it is
estimated that approximately 3500 cases of newly diagnosed cancer occur in pregnant women every year, which is equivalent to one in every 1000 pregnancies have cancers [3]. The incidence of breast cancer related to pregnancy is approximately 0.2%–3.8% [4]. In western countries, the occurrence of breast cancer is estimated to range from 1 in 3000 to 1 in 10,000 pregnancies [5]. Pregnancy-associated breast cancer (PABC) is defined as breast cancer diagnosed during pregnancy or within one year after pregnancy [6]. In October 2015, to actively address the aging of the population, China abolished the restriction in which a couple can have only one child. Being able to have a second child means longer periods of pregnancy and breastfeeding and an older age at pregnancy, thereby increasing the risk of developing PABC than in women who only have one child [7]. Since then, at our clinical center, we have observed that the growth rate of PABC and sporadic breast cancer has been disproportionate. The growth rate of PABC, especially that in non-first-pregnancy women, has increased in recent years, which attracted our attention. Unfortunately, a thorough understanding of this problem is lacking, and further investigation based on the Chinese population is urgently needed. Therefore, we enrolled 203 women at Fudan University, Shanghai Cancer Center (FUSCC), to study the impact of parity and lactation on the clinical characteristics and prognosis of PABC.

Patients And Methods

Eligible Participants

In this retrospective study, we reviewed the medical records of patients who underwent surgery from January 2005 to December 2018 at the Department of Breast Surgery, FUSCC. Eligible patients were women who had local or regional invasive unilateral breast cancer, with their first symptoms occurring during pregnancy or lactation. The lactation period usually refers to the year after childbirth. Patients diagnosed with stage IV breast cancer who had recurrence or distant metastasis, bilateral breast cancer, benign lesions including fibroma, mastitis, breast hyperplasia and breast cysts, and non-epithelial-derived tumors including sarcomas and phylloides tumors were excluded from our study.

Study Design
This research was conducted with two classification schemes to study the clinical characteristics and prognosis of PABC. First, the population was divided into first-pregnancy and non-first-pregnancy groups. First-pregnancy patients were defined as women with breast cancer during the pregnancy or lactation period of their first child, while non-first-pregnancy patients were defined as women with PABC during the pregnancy or lactation period of their second, third or more child. Second, the population was redivided into the breast cancer during pregnancy group and breast cancer during the lactation period group. Breast cancer during pregnancy consisted of two subgroups: the abortion group, which included women who chose to terminate their pregnancies and receive immediate treatment (patients in the early stage of pregnancy were strongly recommended), and the non-abortion group, which included women who preferred to delay treatment until the fetus was born.

All patients diagnosed with PABC between January 2005 and December 2018 were enrolled in this study. To analyze the clinicopathological characteristics of PABC, study variables included the age of the patients, the gestational age at the appearance of the first symptoms (months), the family history of breast cancer, the surgery type and other treatments (adjuvant chemotherapy, neoadjuvant chemotherapy, radiotherapy, endocrine therapy and targeted therapy), the clinical tumor size and pathological lymph node stage, vascular invasion, the pathological type and histological grade of the tumor, the expression of hormone receptor (HR), the expression of human epidermal growth factor receptor-2 (HER-2), and the rate of Ki-67 positivity.

In the survival analysis, patients diagnosed with PABC after 2016 were excluded to ensure a follow-up time of more than 3 years. Disease-free survival (DFS) was defined as the time between the first date of diagnosis to any locoregional recurrence, including ipsilateral breast, local/regional lymph nodes of the disease, any contralateral breast cancer, any distant metastasis of the disease, or any secondary malignancy, whichever occurred first [8,9].

Statistical Analysis

Chi-square tests were used to compare the histopathological characteristics of the tumors and clinical features of the patients among the different subgroups. The Kaplan-Meier methods were used to perform the survival analysis. All tests were two-sided, and a P-value of less than 0.05 was considered
statistically significant. All statistical analyses were performed using SPSS statistical software version 25.0 package (IBM Corporation, Armonk, NY, USA).

Results

Tumor Characteristics

A total of 203 patients were diagnosed with PABC from 2005 to 2018 in FUSCC, and the median age of the study population was 33 years (range, 23 years to 46 years). Among the 203 patients diagnosed with PABC, 79 (38.9%) women developed breast cancer during their first pregnancies (first-pregnancy group), and 124 (61.1%) women developed breast cancer during their second or third pregnancies (non-first-pregnancy group). Since 2016, 63.9% of patients with PABC were diagnosed during their second or third pregnancies, while at that time in Shanghai, only 25% of newborns were non-first births (according to the China Health and Wellness Development Statistics). The mean age of the first-pregnancy group was 30.8 years, while that of the non-first-pregnancy group was 35.3 years. Table 1 shows the distribution of tumor characteristics according to first/non-first-pregnancy subgroup. The first-pregnancy group was younger than the non-first-pregnancy group (P = 0.000). The proportion of HR-positive tumors in the first-pregnancy group was 57.0%, and the proportion in the non-first-pregnancy group was 47.6% (P = 0.281). In the first-pregnancy group, the proportion of HER–2-positive tumors was 26.6%, while that in the non-first-pregnancy group was 36.3% (P = 0.108). Regarding the second classification, the tumor characteristics of the three subgroups are demonstrated in Table S1 (Additional file 1). A total of 89 women were diagnosed with breast cancer during pregnancy. Among them, 66 pregnant women (74.2%) gave birth to healthy surviving fetuses by vaginal delivery or cesarean section, and the other 23 pregnant women (25.8%) had spontaneous or elective abortions. A total of 114 (56.2%) of the women developed breast cancer during the lactation period, and the mean ages of the three subgroups were 34.4, 33.7 and 33.3 years, respectively. Compared with the pregnancy (non-abortion) group, the pregnancy (abortion) group tended to have smaller tumor sizes (P = 0.544), higher HR positivity rates (P = 0.319), lower HER–2 positivity rates (P = 0.527) and lower Ki–67 expression (P = 0.110).

The proportions of breast cancer subtypes among the total population are presented in Figure 1A,
demonstrating that luminal B accounted for the highest proportion (38.4%) among the total population, followed by triple-negative breast cancer (TNBC, 30.0%). The trend was similar in the first-pregnancy group (Figure 1B) and the non-first-pregnancy group (Figure 1C). Figure 2 shows the distribution of the breast cancer subtypes classified by pregnancy or lactation. Notably, the proportion of TNBC in the pregnancy (non-abortion) group (30.3%, Figure 2A) and the lactation group (32.5%, Figure 2B) was much higher than that in the pregnancy (abortion) group (17.4%, Figure 2C).

Treatments

Compared with the non-first-pregnancy group, the first-pregnancy group preferred to delay treatment until the fetus was born (proportion of non-abortion cases: 85.7% vs. 68.9%, P = 0.092). The times from initial symptoms to initiation of treatment, such as surgery or neoadjuvant chemotherapy, were 6.20 months and 4.67 months for the first-pregnancy and non-first-pregnancy groups (P = 0.106), respectively.

A total of 84 patients (41.4%) received neoadjuvant chemotherapy, and 18 (21.4%) achieved pathologic complete response (pCR). The proportions of neoadjuvant chemotherapy in the first-pregnancy and non-first-pregnancy groups were 46.8% and 37.9% (P = 0.208), respectively (Table 1). The proportions in the pregnancy (non-abortion) group and the pregnancy (abortion) group were 43.9% and 39.1% (P = 0.688), respectively (Table S1). All patients were treated with surgery, and the main surgical procedure was mastectomy with sentinel lymph node biopsy/axillary lymph node dissection. A total of 196 women (96.6%) received adjuvant/neoadjuvant chemotherapy, and anthracycline combined taxane chemotherapy (53.5%) was the most commonly used regimen. The general chemotherapy regimens were CEF (cyclophosphamide, epirubicin sequential fluorouracil), EC-T (epirubicin, cyclophosphamide sequential docetaxel), FEC-T (epirubicin, cyclophosphamide, fluorouracil sequential docetaxel) and EC-P (epirubicin, cyclophosphamide sequential paclitaxel).

Although trastuzumab was recommended for all patients with HER-2-overexpressing tumors, not all patients could afford the high cost. The proportions of HER-2-positive patients receiving targeted therapy with trastuzumab were 67.6%, 71.4%, and 72.7% in the lactation group, pregnancy (abortion) group, and pregnancy (non-abortion) group, respectively (Table S1).
Survival Analysis

For all patients diagnosed with PABC before 2016, the median follow-up period was 59.0 months (range, 2 months to 144 months). The 3-year DFS rates for the first-pregnancy group and non-first-pregnancy group were 78.4% and 83.7%, respectively. The survival curve showed the trend of a worse prognosis in the first-pregnancy group compared with the non-first-pregnancy group (Figure 3, P = 0.325). Regarding the other categorization, the 3-year DFS rates for the pregnancy (abortion) group, pregnancy (non-abortion) group and lactation group were 86.2%, 74.4% and 85.4%, respectively. Figure 4 shows that the lactation group and the pregnancy (abortion) group tended to have better survival than the pregnancy (non-abortion) group (P = 0.278).

Discussion

Although PABC is still relatively rare, with an incidence of only 0.2%–3.8% [9], the number of cases is likely to increase because it is common to delay childbearing in today’s society [10]. The older age at pregnancy usually indicates a higher risk of developing cancer [11]. Once a PABC diagnosis is made, challenges lie not only in deciding on the choice of the mother’s treatment and the survival of the fetus but also in addressing a series of complex problems, such as distant metastasis and preterm birth complications [5].

In this present study, we reviewed 25 studies in the past 20 years to gain a deeper understanding of PABC (Table 2). Almost all existing studies regarded PABC as the experimental group and non-PABC as the control group. PABC was defined as breast cancer occurring during pregnancy or within 1 year after pregnancy in 16 studies, while it was defined as breast cancer diagnosed during pregnancy or within 2 years postpartum in 8 studies. The survival rates for PABC compared to those for non-PABC were conflicting. Eight studies [12–17,7,18] showed no difference in survival between PABC and non-PABC after correcting for prognostic factors including age, tumor size, and lymph node status, while 12 studies [19–30] demonstrated a worse prognosis for PABC after excluding these factors. Five studies [31–35] classified PABC into antepartum and postpartum breast cancer, three studies showed that the prognosis of PABC occurring postpartum was worse than that of PABC during gestation, one study concluded that the prognosis of PABC occurring in the antepartum period was worse, and one
study indicated that PABC occurring postpartum had a worse survival rate than non-PABC. The reasons for the poor prognosis of PABC may include several factors. First, the physical changes in the mammary gland, including increased cell turnover and glandular tissue during pregnancy, make the diagnosis of PABC difficult [36]. In addition, fluctuations in hormone levels during pregnancy may promote tumor progression and breast involution; moreover, tissue remodeling of the breasts after breastfeeding may promote tumorigenesis [37,38].

The first part of the classification in our study was based on first-pregnancy and non-first-pregnancy status to explore the effect of parity on PABC. The frequency of PABC in women with more than one pregnancy has increased as more women have chosen to have a second child since China abolished the restriction in which one couple could only have one child. Our study proves that the proportion of PABC that developed during the second or third pregnancies of women was extremely high relative to the proportion of newborns. Our study also showed that compared with the non-first-pregnancy group, the first-pregnancy group presented with less aggressive tumors, which were more likely to be smaller in size, show HR positivity, exhibit lower Ki–67 expression and have a lower histological grade, which were related to a better prognosis. However, our survival analysis showed the opposite result: the PABC patients in the first-pregnancy group were more likely to have a worse outcome. There are several possible reasons for this result. First, our data showed that a woman in her first pregnancy was more likely to delay treatment until the fetus was born. Delayed treatment may be a vital factor for a poor prognosis. Second, there may be a protective effect from the previous pregnancy on women with PABC who have had more than one child [39]. In addition, the women in the first-pregnancy group were younger than those in the non-first-pregnancy group. Studies have indicated that breast cancer in young women is an invasive disease with a poor prognosis, and age may be a factor that is independent of pregnancy, resulting in a poorer survival rate for the younger first-pregnancy group [40–42]. In addition, previous studies have shown that a family history of breast cancer can increase the risk of PABC, so the family history of breast cancer should be assessed when studying PABC [43,44]. In our sample, more patients in the first-pregnancy group had a family history of breast cancer (10.1% in the first-pregnancy group vs. 8.9% in the nonpregnancy group); however,
whether this is related to the poor prognosis observed in this group requires further research.

The other part of our study classification divided the research population into three subgroups: the pregnancy (abortion) group, pregnancy (non-abortion) group and lactation group. Some scholars have proposed that there are two subtypes of PABC: breast cancer diagnosed during pregnancy and breast cancer diagnosed postpartum. The importance of this classification is emphasized because some epidemiological data indicate that postpartum cases may have specific deteriorating outcomes and that postpartum breast degeneration may increase the metastatic potential of PABC [45]; however, other studies present the opposite view that pregnancy was more detrimental [46]. In our study, the pregnancy group was subdivided into the pregnancy (abortion) group and pregnancy (non-abortion) group based on the different hormonal status and treatment methods of the groups to explore how pregnancy impacted DFS. The survival analysis results indicated that the pregnancy (abortion) group and the lactation group tended to have better survival rates than the pregnancy (non-abortion) group.

In our study, we found that patients in early pregnancy were more likely to terminate their pregnancies, while those in late pregnancy usually preferred to delay treatment until delivery of the fetus. Notably, the pregnancy (abortion) group tended to have smaller tumor sizes, less Ki–67 positivity, and a smaller proportion of TNBC, indicative of a good prognosis. Ki–67 is an independent prognostic factor for breast cancer [47], and TNBC has a higher rate of recurrence and worse prognosis than other breast cancer subtypes [48,49]. There are three possible reasons for the worse prognosis in the pregnancy (non-abortion) group. First, the poor prognosis was often because the mother in middle-late pregnancy chose not to receive treatment until the fetus was born to ensure normal fetal growth. Delayed treatment led to an increased risk of recurrence and distant metastasis. Second, the poor prognosis may be caused by fluctuating hormone levels and microenvironmental changes. Reproductive events can affect breast tissue differentiation through hormonal mechanisms. Estrogen levels increase steadily during pregnancy and peak in mid-late pregnancy. In addition, estrogen plays a variety of roles in tumor transformation in breast tissue, both as a carcinogen and as a tumor growth-inducing factor [50,2]. Furthermore, under the long-term influence of microenvironmental factors, such as growth factors, most patients in the pregnancy (non-abortion)
group had high HER-2 positivity rates and high Ki-67 expression during late pregnancy, which may have resulted in their poor prognosis [47].

Starting chemotherapy in mid-late pregnancy without delaying chemotherapy until after delivery is generally preferred, as unnecessary delays may result in a worse prognosis. FAC (fluorouracil, adriamycin and cyclophosphamide) is a commonly used chemotherapy regimen, and studies have shown that it is safe in mid-late pregnancy [51]. Doxorubicin and cyclophosphamide can be excreted through milk and are therefore prohibited during lactation [51]. However, in China, people generally do not undergo chemotherapy during mid-late pregnancy. Mid-pregnancy women with PABC choose to either terminate the pregnancy or delay chemotherapy until delivery, while late-pregnancy women usually start chemotherapy treatment after delivery. In our study population, 20 (30.3%) PABC patients with HER-2 positivity did not receive Herceptin treatment, 18 (85.7%) of whom were diagnosed with PABC before 2017. This may be because it was not until 2017 that Herceptin was included in the scope of medical insurance reimbursement in China. Before 2017, the high price of Herceptin restricted its use. Previous studies have also indicated that pregnant mothers cannot benefit from termination of pregnancy; therefore, it is not recommended for the purpose of improving prognosis [52,41]. However, in our study population, 23 (25.8%) patients diagnosed during pregnancy still had spontaneous or elective abortions. Nineteen (82.6%) of them were non-first pregnancies, which may have been because women who had already given birth to one baby were more likely to choose abortion.

It should be acknowledged that there were some limitations in our present study. First, the analysis was not adjusted for potential confounding factors, including age, tumor size and lymph node status, for the analysis of PABC survival. In addition, this study was a single-center study with a limited population, and the sample size enrolled in the study was not large enough to obtain a more reliable conclusion. However, the lack of statistically significant differences in the prognosis between the subgroups does not mean that we need to ignore the true relevance of these findings. Moreover, some information about the clinicopathological features of PABC is absent. HR status was lacking for 4 patients because their pathological biopsies from an external hospital were not promptly entered into
the electronic case system of our hospital 14 years ago. The HER-2 status of 9 people was unknown because the overexpression status of HER-2 in their tumors was unclear when detected by immunohistochemistry, and patients refused to undergo another biopsy for further FISH analyses due to the high cost at that time—up to approximately $350. Ki-67 information was lacking for 42 people because the clinical significance of Ki-67 was not realized more than a decade ago. Information about histological grades was lacking for 70 (34.5%) patients, which may be due to the reduction or even disappearance of tumor residuals after neoadjuvant chemotherapy.

In conclusion, PABC is an invasive disease with poor prognosis in young women, and because of fetal factors, women in mid-late pregnancy often choose to delay treatment until delivery. With the abolishment of China’s one-child policy, an increasing number of women are having more than one child, which underlies the upward trend in the occurrence of PABC. Our single-center study provides some information on the characteristics and survival rates of PABC patients. However, further research on PABC in a large population and investigations into the physiological mechanisms are needed in the future.

Declarations
Authors’ contributions
BH and HL conceived and designed the study. BH and HZ analyzed the data. XL and XH contributed reagents, materials, and analysis tools. BH and HZ wrote the paper. All authors read and approved the final manuscript.

Funding
This work was funded by the National Natural Science Foundation of China (Grant numbers 81602311) and Fudan University (Grant numbers 20043301).

Compliance with Ethical Standards
Competing Interests The authors have declared that no competing interests exist.

Research involving human and animal participants This study did not involve animals.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent This retrospective study was approved by the Ethics Committee Review Board of Fudan University Shanghai Cancer Center, who waived the need to obtain informed consent.

Acknowledgements

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68 (6):394–424. doi:10.3322/caac.21492

2. Van Calsteren K, Heyns L, De Smet F, Van Eycken L, Gziri MM, Van Gemert W, Halaska M, Vergote I, Ottevanger N, Amant F (2010) Cancer during pregnancy: an analysis of 215 patients emphasizing the obstetrical and the neonatal outcomes. J Clin Oncol 28 (4):683–689. doi:10.1200/JCO.2009.23.2801

3. Pavlidis NA (2002) Coexistence of pregnancy and malignancy. Oncologist 7 (4):279–287

4. Wang B, Yang Y, Jiang Z, Zhao J, Mao Y, Liu J, Zhang J (2019) Clinicopathological characteristics, diagnosis, and prognosis of pregnancy-associated breast cancer. Thorac Cancer. doi:10.1111/1759–7714.13045

5. Hartman EK, Eslick GD (2016) The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. Breast Cancer Research and Treatment 160 (2):347–360. doi:10.1007/s10549-016-3989-3

6. Amant F, Loibl S, Neven P, Van Calsteren K (2012) Breast cancer in pregnancy. The
7. Ibrahim EM, Ezzat AA, Baloush A, Hussain ZH, Mohammed GH (2000) Pregnancy-associated breast cancer: a case-control study in a young population with a high-fertility rate. Med Oncol 17 (4):293–300

8. Hudis CA, Barlow WE, Costantino JP, Gray RJ, Pritchard KL, Chapman JA, Sparano JA, Hunsberger S, Enos RA, Gelber RD, Zujewski JA (2007) Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 25 (15):2127–2132. doi:10.1200/JCO.2006.10.3523

9. Vinatier E, Merlot B, Poncelet E, Collinet P, Vinatier D (2009) Breast cancer during pregnancy. Eur J Obstet Gynecol Reprod Biol 147 (1):9–14. doi:10.1016/j.ejogrb.2009.06.030

10. Cardonick E, Dougherty R, Grana G, Gilmandyar D, Ghaffar S, Usmani A (2010) Breast cancer during pregnancy: maternal and fetal outcomes. Cancer J 16 (1):76–82. doi:10.1097/PPO.0b013e3181ce46f9

11. Bladström A, Anderson H, Olsson H (2003) Worse Survival in Breast Cancer Among Women with Recent Childbirth: Results from a Swedish Population-Based Register Study. Clinical Breast Cancer 4 (4):280–285. doi:10.3816/CBC.2003.n.033

12. Beadle BM, Woodward WA, Middleton LP, Tereffe W, Strom EA, Litton JK, Meric-Bernstam F, Theriault RL, Buchholz TA, Perkins GH (2009) The impact of pregnancy on breast cancer outcomes in women ≤35 years. Cancer 115 (6):1174–1184. doi:10.1002/cncr.24165

13. Aziz S, Pervez S, Khan S, Siddiqui T, Kayani N, Israr M, Rahbar M (2003) Case control study of novel prognostic markers and disease outcome in pregnancy/lactation-associated breast carcinoma. Pathol Res Pract 199 (1):15–21. doi:10.1078/0344-0338-00347
14. Murphy CG, Mallam D, Stein S, Patil S, Howard J, Sklarin N, Hudis CA, Gemignani ML, Seidman AD (2012) Current or recent pregnancy is associated with adverse pathologic features but not impaired survival in early breast cancer. Cancer 118 (13):3254–3259. doi:10.1002/cncr.26654

15. Framarino-dei-Malatesta M, Piccioni MG, Brunelli R, Iannini I, Cascialli G, Sammartino P (2014) Breast cancer during pregnancy: a retrospective study on obstetrical problems and survival. European Journal of Obstetrics & Gynecology and Reproductive Biology 173:48–52. doi:10.1016/j.ejogrb.2013.11.017

16. Genin AS, De Rycke Y, Stevens D, Donnadieu A, Langer A, Rouzier R, Lerebours F (2016) Association with pregnancy increases the risk of local recurrence but does not impact overall survival in breast cancer: A case-control study of 87 cases. Breast 30:222–227. doi:10.1016/j.breast.2015.09.006

17. Baulies S, Cusido M, Tresserra F, Fargas F, Rodriguez I, Ubeda B, Ara C, Fabregas R (2015) Biological and pathological features in pregnancy-associated breast cancer: a matched case-control study. Eur J Gynaecol Oncol 36 (4):420–423

18. Boudy AS, Naoura I, Selleret L, Zilberman S, Gligorov J, Richard S, Thomassin-Naggara I, Chabbert-Buffet N, Ballester M, Bendifallah S, Darai E (2018) Propensity score to evaluate prognosis in pregnancy-associated breast cancer: Analysis from a French cancer network. Breast 40:10–15. doi:10.1016/j.breast.2018.03.014

19. Johansson AL, Andersson TM, Hsieh CC, Cnattingius S, Lambe M (2011) Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum. Cancer Epidemiol Biomarkers Prev 20 (9):1865–1872. doi:10.1158/1055-9965.EPI-11-0515

20. Ali SA, Gupta S, Sehgal R, Vogel V (2012) Survival outcomes in pregnancy associated breast cancer: a retrospective case control study. Breast J 18 (2):139–144.
21. Dimitrakakis C, Zagouri F, Tsigginou A, Marinopoulos S, Sergentanis TN, Keramopoulos A, Zografos GC, Ampela K, Mpaltas D, Papadimitriou C, Dimopoulos MA, Antsaklis A (2013) Does pregnancy-associated breast cancer imply a worse prognosis? A matched case-case study. Breast Care (Basel) 8 (3):203–207. doi:10.1159/000352093

22. Madaras L, Kovács KA, Szász AM, Kenessey I, Tőkés A-M, Székely B, Baranyák Z, Kiss O, Dank M, Kulka J (2013) Clinicopathological Features and Prognosis of Pregnancy Associated Breast Cancer—A Matched Case Control Study. Pathology & Oncology Research 20 (3):581–590. doi:10.1007/s12253–013–9735–9

23. Rodriguez AO, Chew H, Cress R, Xing G, McElvy S, Danielsen B, Smith L (2008) Evidence of poorer survival in pregnancy-associated breast cancer. Obstet Gynecol 112 (1):71–78. doi:10.1097/AOG.0b013e31817c4ebc

24. Moreira WB, Brandao EC, Soares AN, Lucena CE, Antunes CM (2010) Prognosis for patients diagnosed with pregnancy-associated breast cancer: a paired case-control study. Sao Paulo Med J 128 (3):119–124

25. Sanchez C, Acevedo F, Medina L, Ibáñez C, Razmilic D, Elena Navarro M, Camus M (2014) Breast cancer and pregnancy: a comparative analysis of a Chilean cohort. Ecancermedicalscience 8:434. doi:10.3332/ecancer.2014.434

26. Kim YG, Jeon YW, Ko BK, Sohn G, Kim EK, Moon BI, Youn HJ, Kim HA, Korean Breast Cancer S (2017) Clinicopathologic Characteristics of Pregnancy-Associated Breast Cancer: Results of Analysis of a Nationwide Breast Cancer Registry Database. J Breast Cancer 20 (3):264–269. doi:10.4048/jbc.2017.20.3.264

27. Suleman K, Osmani AH, Al Hashem H, Al Twegieri T, Ajarim D, Jastaniyah N, Al Khayal W, Al Malik O, Al Sayed A (2019) Behavior and Outcomes of Pregnancy Associated
Breast Cancer. Asian Pac J Cancer Prev 20 (1):135–138. doi:10.31557/APJCP.2019.20.1.135

28. Bae SY, Kim SJ, Lee J, Lee ES, Kim EK, Park HY, Suh YJ, Kim HK, You JY, Jung SP (2018) Clinical subtypes and prognosis of pregnancy-associated breast cancer: results from the Korean Breast Cancer Society Registry database. Breast Cancer Res Treat 172 (1):113–121. doi:10.1007/s10549-018-4908-6

29. Bae SY, Jung SP, Jung ES, Park SM, Lee SK, Yu JH, Lee JE, Kim SW, Nam SJ (2018) Clinical Characteristics and Prognosis of Pregnancy-Associated Breast Cancer: Poor Survival of Luminal B Subtype. Oncology 95 (3):163–169. doi:10.1159/000488944

30. Johansson ALV, Andersson TML, Hsieh C-C, Jirström K, Cnattingius S, Fredriksson I, Dickman PW, Lambe M (2018) Tumor characteristics and prognosis in women with pregnancy-associated breast cancer. International Journal of Cancer 142 (7):1343–1354. doi:10.1002/ijc.31174

31. Johansson AL, Andersson TM, Hsieh CC, Jirstrom K, Dickman P, Cnattingius S, Lambe M (2013) Stage at diagnosis and mortality in women with pregnancy-associated breast cancer (PABC). Breast Cancer Res Treat 139 (1):183–192. doi:10.1007/s10549-013-2522-1

32. Yang YL, Chan KA, Hsieh FJ, Chang LY, Wang MY (2014) Pregnancy-associated breast cancer in Taiwanese women: potential treatment delay and impact on survival. PLoS One 9 (11):e111934. doi:10.1371/journal.pone.0111934

33. Halaska MJ, Pentheroudakis G, Strnad P, Stankusova H, Chod J, Robova H, Petruzela L, Rob L, Pavlidis N (2009) Presentation, management and outcome of 32 patients with pregnancy-associated breast cancer: a matched controlled study. Breast J 15 (5):461–467. doi:10.1111/j.1524-4741.2009.00760.x

34. Mathelin C, Annane K, Treiss A, Chenard MP,Tomasetto C, Bellocq JP, Rio MC
(2008) Pregnancy and post-partum breast cancer: a prospective study. Anticancer Res 28 (4C):2447-2452

35. Daling JR, Malone KE, Doody DR, Anderson BO, Porter PL (2002) The relation of reproductive factors to mortality from breast cancer. Cancer Epidemiol Biomarkers Prev 11 (3):235-241

36. Johansson ALV, Weibull CE, Fredriksson I, Lambe M (2019) Diagnostic pathways and management in women with pregnancy-associated breast cancer (PABC): no evidence of treatment delays following a first healthcare contact. Breast Cancer Res Treat 174 (2):489-503. doi:10.1007/s10549-018-05083-x

37. Lee GE, Mayer EL, Partridge A (2017) Prognosis of pregnancy-associated breast cancer. Breast Cancer Res Treat 163 (3):417-421. doi:10.1007/s10549-017-4224-6

38. Polyak K (2006) Pregnancy and breast cancer: the other side of the coin. Cancer Cell 9 (3):151-153. doi:10.1016/j.ccr.2006.02.026

39. Amant F, von Minckwitz G, Han SN, Bontenbal M, Ring AE, Giermek J, Wildiers H, Fehm T, Linn SC, Schlehe B, Neven P, Westenend PJ, Muller V, Van Calsteren K, Rack B, Nekljudova V, Harbeck N, Untch M, Witteveen PO, Schwedler K, Thomssen C, Van Calster B, Loibl S (2013) Prognosis of women with primary breast cancer diagnosed during pregnancy: results from an international collaborative study. J Clin Oncol 31 (20):2532-2539. doi:10.1200/JCO.2012.45.6335

40. Beadle BM, Woodward WA, Middleton LP, Tereffe W, Strom EA, Litton JK, Meric-Bernstam F, Theriault RL, Buchholz TA, Perkins GH (2009) The impact of pregnancy on breast cancer outcomes in women<or = 35 years. Cancer 115 (6):1174-1184. doi:10.1002/cncr.24165

41. Ezzat A, Raja MA, Berry J, Zwaan FE, Jamshed A, Rhydderch D, Rostom A, Bazarbashi S (1996) Impact of pregnancy on non-metastatic breast cancer: a case control study.
42. Lethaby AE, ONeill MA, Mason BH, Holdaway IM, Harvey VJ (1996) Overall survival from breast cancer in women pregnant or lactating at or after diagnosis. International Journal of Cancer 67 (6):751–755. doi:10.1002/(SICI)1097-0215(19960917)67:6<751::AID-IJC1>3.0.CO;2-Q

43. Johansson AL, Andersson TM, Hsieh CC, Cnattingius S, Dickman PW, Lambe M (2015) Family history and risk of pregnancy-associated breast cancer (PABC). Breast Cancer Res Treat 151 (1):209–217. doi:10.1007/s10549-015-3369-4

44. Subramani R, Lakshmanaswamy R (2017) Pregnancy and Breast Cancer. Prog Mol Biol Transl Sci 151:81–111. doi:10.1016/bs.pmbts.2017.07.006

45. Lyons TR, Schedin PJ, Borges VF (2009) Pregnancy and breast cancer: when they collide. J Mammary Gland Biol Neoplasia 14 (2):87–98. doi:10.1007/s10911-009-9119-7

46. Saad ED, Squifflet P, Burzykowski T, Quinaux E, Delaloge S, Mavroudis D, Perez E, Piccart-Gebhart M, Schneider BP, Slamon D, Wolmark N, Buyse M (2019) Disease-free survival as a surrogate for overall survival in patients with HER2-positive, early breast cancer in trials of adjuvant trastuzumab for up to 1 year: a systematic review and meta-analysis. The Lancet Oncology 20 (3):361–370. doi:10.1016/s1470-2045(18)30750-2

47. Viale G, Regan MM, Mastropasqua MG, Maffini F, Maiorano E, Colleoni M, Price KN, Golouh R, Perin T, Brown RW, Kovacs A, Pillay K, Ohlschlegel C, Gusterson BA, Castiglione-Gertsch M, Gelber RD, Goldhirsch A, Coates AS, International Breast Cancer Study G (2008) Predictive value of tumor Ki–67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Natl Cancer Inst 100 (3):207–212. doi:10.1093/jnci/djm289
48. Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7 (12):683–692. doi:10.1038/nrclinonc.2010.154

49. Dignam JJ, Dukic V, Anderson SJ, Mamounas EP, Wickerham DL, Wolmark N (2009) Hazard of recurrence and adjuvant treatment effects over time in lymph node-negative breast cancer. Breast Cancer Res Treat 116 (3):595–602. doi:10.1007/s10549-008-0200-5

50. Katuwal S, Tapanainen JS, Pukkala E, Kauppila A (2019) The effect of length of birth interval on the risk of breast cancer by subtype in grand multiparous women. BMC Cancer 19 (1):199. doi:10.1186/s12885-019-5404-z

51. Hahn KM, Johnson PH, Gordon N, Kuerer H, Middleton L, Ramirez M, Yang W, Perkins G, Hortobagyi GN, Theriault RL (2006) Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer 107 (6):1219–1226. doi:10.1002/cncr.22081

52. Azim HA, Jr., Botteri E, Renne G, Dell’orto P, Rotmensz N, Gentilini O, Sangalli C, Pruneri G, Di Nubila B, Locatelli M, Sotiriou C, Piccart M, Goldhirsch A, Viale G, Peccatori FA (2012) The biological features and prognosis of breast cancer diagnosed during pregnancy: a case-control study. Acta Oncol 51 (5):653–661. doi:10.3109/0284186X.2011.636069

Tables
Due to technical limitations, the table is only available as a download in the supplemental files section.

Figures
Figure 1

Molecular types of the total population (a), first pregnancy subgroup (b) and non-first pregnancy subgroup (c)
Molecular types of pregnancy (non-abortion) subgroup (a), lactation subgroup (b) and pregnancy (abortion) subgroup (c).

Figure 3

5-year disease free survival of first and non-first pregnancy subgroup.
Figure 4

5-year disease free survival of pregnancy (abortion) subgroup, pregnancy (non-abortion) and lactation subgroup

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Han BY et al. Table 1.xlsx
Han BY et al. Table S1.xlsx
Han BY et al. Table2.xlsx