Draft genome sequence of *Actinomadura* sp. K4S16 and elucidation of the nonthmicin biosynthetic pathway

Hisayuki Komaki\(^\text{1}\), Enjuro Harunari\(^2\), Natsuko Ichikawa\(^3\), Akira Hosoyama\(^3\), Moriyuki Hamada\(^1\), Kannika Duangmal\(^4\), Arinthip Thamchaipenet\(^4\), Yasuhiro Igarashi\(^2\)

\(^1\) Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba 292-0818, Japan.
\(^2\) Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan.
\(^3\) NBRC, Shibuya-ku, Tokyo 151-0066, Japan.
\(^4\) Faculty of Science, Kasetsart University, Bangkok, Thailand.

\(^\text{\#} \) Corresponding author: Hisayuki Komaki, NBRC, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan. E-mail: komaki-hisayuki@nite.go.jp.

\(© \) The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).

Received: 2020.02.07; Accepted: 2020.04.21; Published: 2020.05.17

Abstract

Actinomadura sp. K4S16 (=NBRC 110471) is a producer of a novel tetronate polyether compound nonthmicin. Here, we report the draft genome sequence of this strain together with features of the organism and assembly, annotation and analysis of the genome sequence. The 9.6 Mb genome of *Actinomadura* sp. K4S16 encoded 9,004 putative ORFs, of which 7,701 were assigned with COG categories. The genome contained four type-I polyketide synthase (PKS) gene clusters, two type-II PKS gene clusters, and three nonribosomal peptide synthetase (NRPS) gene clusters. Among the type-I PKS gene (*t1pks*) clusters, a large *t1pks* cluster was annotated to be responsible for nonthmicin synthesis based on bioinformatic analyses. We also performed feeding experiments using labeled precursors and propose the biosynthetic pathway of nonthmicin.

Key words: *Actinomadura*, biosynthesis, nonthmicin, polyether, polyketide, tetronate

Introduction

Actinomycetes are well known as a promising source for diverse bioactive secondary metabolites. Especially, members of *Streptomyces* have attracted attention as the most useful screening sources for new drug leads and a large number of bioactive compounds have been identified from cultures of this genus [1,2]. Consequently, the chance of finding novel secondary metabolites from *Streptomyces* members has recently dwindled. Thus, the focus of screening has recently moved to less exploited genera of rare actinomycetes [3]. In our screening for novel bioactive compounds from rare actinomycetes, *Actinomadura* sp. K4S16 was isolated from rice field soil in Thailand and found to produce a tetronate polyether designated nonthmicin along with ecteinamycin (Fig. 1) [4]. Nonthmicin shows inhibitory activity against tumor cell invasion and protective activity for neuronal cell damage. This new polyether compound is characterized by the tetronic acid functionality modified by a chlorine atom. Halogenated tetronic acids are not known from nature except nonthmicin. In this study, we conducted whole genome shotgun sequencing of the strain to elucidate the biosynthetic pathway of nonthmicin. We herein present the draft genome sequence of *Actinomadura* sp. K4S16, together with the taxonomical identification of the strain, description of its genome properties and annotation of the gene cluster for nonthmicin biosynthesis. Biosynthetic pathway for nonthmicin was predicted by bioinformatics analysis and confirmed by precursor-incorporation experiments.

Materials and Methods

Sequenced strain

In the course of screening for novel bioactive substances from rare actinomycetes, *Actinomadura* sp. K4S16 was isolated from rice field soil collected in Thailand and found to produce a novel polyketide...
compound named nonthmicin and its known congener ecteinamycin (Fig. 1) [4]. Actinomadura sp. K4S16 was preserved as TP-A0891 at the Toyama Prefectural University, deposited into the NBRC culture collection, and publicly available from the collection as NBRC 110471.

Chemotaxonomic analyses

The isomer of diaminopimelic acid in the whole-cell hydrolysate was analyzed according to the method described by Hasegawa et al. [5]. Isoprenoid quinones and cellular fatty acids were analyzed as described previously [6].

Phylogenetic analysis based on 16S rRNA gene sequences

PCR template was prepared according to the protocol for Gram-positive bacteria of DNeasy Blood & Tissue kit (Qiagen). The gene encoding 16S rRNA was amplified by PCR using two universal primers, 9F and 1541R. After purification of the PCR product by AMPure (Beckman Coulter), the sequencing was carried out according to an established method [7]. Homology search of the sequence was conducted using EzBioCloud [8]. A phylogenetic tree was reconstructed by on the basis of the 16S rRNA gene sequence together with taxonomically close type strains showing more than 98% similarities by ClustalX2 [9].

Growth conditions and genomic DNA preparation

A monoisolate of Actinomadura sp. K4S16, isolated as single colony, was grown on polycarbonate membrane filter (Advantec) on double-diluted NBRC 227 agar medium (0.2% yeast extract, 0.5% malt extract, 0.2% glucose, 2% agar, pH 7.3) at 28°C. High quality genomic DNA for sequencing was extracted and isolated from the mycelia with an EZ1 DNA Tissue Kit and a BioRobot EZ1 (Qiagen) according to the manufacturer's protocol for extraction of nucleic acid from Gram-positive bacteria. The size, purity, and double-strand DNA concentration of the genomic DNA were measured by pulsed-field gel electrophoresis, ratio of absorbance values at 260 nm and 280 nm, and Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies), respectively, to assess the quality of genomic DNA.

Genome sequencing and assembly

Shotgun and paired-end libraries were prepared and subsequently sequenced using 454 pyrosequencing technology and MiSeq (Illumina) paired-end technology, respectively (Table 1). The 82 Mb shotgun sequences and 707 Mb paired-end sequences were assembled using Newbler v2.8 and subsequently finished using GenoFinisher [10] to yield 43 scaffolds larger than 500 bp. The draft genome sequence has been deposited in the INSDC database under the accession number BDDE01000001-BDDE01000043. The project information and its association with MIGS version 2.0 compliance are summarized in Table 1 [11].

![Chemical structures of nonthmicin and ecteinamycin.](image)

Table 1. Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	Improved-high-quality draft
MIGS 28	Libraries used	454 shotgun library, Illumina paired-end library
MIGS 29	Sequencing platforms	454 GS FLX+, Illumina MiSeq
MIGS 31.2	Fold coverage	8.6 x, 73 x, respectively
MIGS 30	Assemblers	Newbler v2.8, GenoFinisher
MIGS 32	Gene calling method	Prodigal
Locus tag	K4S16	
GenBank ID	BDDE01000000	
GenBank date of release	Aug, 2019	
GOLD ID	Not registered	
BioProject	PRJD4748	
MIGS 13	Source material identifier	NBRC 110471
Project relevance	Industrial	

Genome annotation

Coding sequences were predicted with Prodigal [12] and tRNA-scanSE [13]. The gene functions were assigned using an in-house genome annotation pipeline, and domains related to polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) were searched using the SMART and PFAM domain databases. PKS and NRPS gene clusters and their domain organizations were determined as reported previously [7]. Substrates of adenylation (A) and acyltransferase (AT) domains were predicted using antiSMASH [14]. Protein-protein BLAST search against the NCBI Non-redundant protein sequences (nr) database was also used for predicting function of proteins encoded in the nonthmicin biosynthetic gene cluster.

Digital DNA-DNA hybridization

Digital DNA-DNA hybridization (DDH) between Actinomadura sp. K4S16 and A. mexicana DSM 44485T (FZNP01000001-FZNP01000053) was conducted using Formula 2 of Genome-to-Genome Distance Calculator 2.1 [15].
Feeding experiments using labeled precursors

Inoculation, cultivation, extraction, and purification were performed in the same manner as previously reported [4]. Supplementation of sodium [1-13C]acetate or [1-13C]propionate (20 mg/100 ml medium/flask, 10 flasks) was initiated at 48 h after inoculation and periodically carried out every 24 h for four times. After further incubation for 24 h, the whole culture broths were extracted with 1-butanol and several steps of purification yielded 55 mg and 100 mg of 13C-labeled nonthmicin, respectively.

Results and Discussion

Feature, classification, and genome properties

The general feature of Actinomadura sp. K4S16 is shown in Table 2. This strain grew well on ISP 2 and ISP 4 agar media, but poorly on ISP 5 and ISP 7. The color of aerial mycelia was white and that of the ISP 4 agar media, but poorly on ISP 5 and ISP 7. The strain utilized arabinose, fructose, glucose, mannitol, rhamnose, sucrose, and xylose as sole carbon source for energy and growth, but not raffinose (all at 1%).

Growth occurred at 20–45 °C (optimum 28 °C) and pH 5–8 (optimum pH 7). Strain K4S16 exhibited growth on ISP 2 agar medium. The aerial mycelium formed short chains of arthrospores. A scanning electron micrograph of this strain (Fig. 2) shows that spore chains are hooked or spiral (1 turn) and the spore surface is rugose.

The whole-cell hydrolysate of strain K4S16 contained meso-diaminopimelic acid as its diagnostic peptidoglycan diamino acid. The predominant menaquinones were identified as MK-9(H4) and MK-9(H6); in addition, MK-9(H2) and MK-9(H8) were also detected as minor components. The major cellular fatty acids (>10%) were C16:0 and C18:1 ω9c. The 16S rRNA gene sequence of the strain indicated the highest similarity (99.58 %, 1415/1421) to Actinomadura mexicana A290T (AF277195) as the closest type strain. The phylogenetic analysis confirmed that the strain belongs to the genus Actinomadura (Fig. 3).

A draft genome size of Actinomadura sp. K4S16 was 9,647,292 bp and the G+C content was 72.4 % (Table 3). Of the total 9,068 genes, 9,004 were protein-coding genes and 64 were RNA genes. The classification of genes into COGs functional categories is shown in Table 4. Digital DDH between Actinomadura sp. K4S16 and the type strain of the closest species, A. mexicana DSM 44485T suggested that the DNA-DNA relatedness was 49.0 %, which is below 70 %, the cut-off point for the assignment of bacterial strains to the same species [16]. This suggests that Actinomadura sp. K4S16 is a novel independent genomospecies.

Table 2. Classification and general features of Actinomadura sp. K4S16 [11]

MIGS ID	Property	Term	Evidence code
Classification	Domain	Bacteria	TAS [25]
	Phylum	Actinobacteria	TAS [26]
	Class	Actinomycetales	TAS [27]
	Order	Actinomycetales	TAS [27-30]
	Suborder	Streptosporangiineae	TAS [27]
	Family	Thermomonosporaceae	TAS [27,30-31]
	Genus	Actinomadura	TAS [29,32]
	Species	Undetermined	This study
	(a new genomospecies)	strain: K4S16	TAS [4]
Gram stain	Not tested	Not reported	
Cell shape	Branched mycelia	IDA	
Motility	Not reported	NAS	
Sporulation	Sporulating	IDA	
Temperature range	20 °C to 45 °C	IDA	
Optimum temperature	28 °C	IDA	
pH range; Optimum	5 to 8; 7	IDA	
Carbon source	Arabinose, fructose, glucose, mannitol, rhamnose, sucrose, xylose	IDA	
MIKS-6	Habitat	Rice-field soil	NAS
MIKS-6.3	Salinity	0 % to 2 % NaCl	IDA
MIKS-22	Oxygen requirement	Aerobic	IDA
MIKS-15	Biotic relationship	Free-living	IDA
MIKS-14	Pathogenicity	Not reported	NAS
MIKS-4	Geographic location	Thailand	TAS [4]
MIKS-5	Sample collection	March 13, 2010	NAS
MIKS-4.1	Latitude	Not reported	NAS
MIKS-4.2	Longitude	Not reported	NAS
MIKS-4.4	Altitude	Not reported	NAS

a Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [33].

Figure 2. Scanning electron micrograph of Actinomadura sp. K4S16 grown on double-diluted ISP 2 agar for 7 days at 28 °C. Bar, 2 µm.
Figure 3. Phylogenetic tree based on 16S rRNA gene sequences of Actinomadura sp. K4S16 and its phylogenetically close type strains showing over 98.0% sequence similarities. Accession numbers for 16S rRNA genes are shown in parentheses. The tree uses sequences aligned by ClustalX2 [9] and constructed by the neighbor-joining method [24]. All positions containing gaps were eliminated. The building of the tree also involves a bootstrapping process repeated 1,000 times to generate a majority consensus tree, and only bootstrap values above 50% are shown at branching points. Streptospora ngium roseum DSM 43021T was used as an outgroup.

Table 3. Genome statistics of Actinomadura sp. K4S16

Attribute	Value	% of Total
Genome size (bp)	9,647,292	100
DNA coding (bp)	8,684,283	90.0
DNA C+G (bp)	6,982,736	72.4
DNA scaffolds	43	-
Total genes	9,068	100
Protein coding genes	9,004	99.3
RNA genes	64	0.7
Pseudogenes	-	-
Genes in internal clusters	4,198	46.6
Genes with function prediction	5,358	59.5
Genes assigned to COGs	7,071	85.5
Genes with Plam domains	2,655	29.5
Genes with signal peptides	618	6.8
Genes with transmembrane helices	2,022	22.5
CRISPR repeats	1	-

PKS and NRPS gene clusters in the genome

We analyzed biosynthetic gene clusters for polyketides and nonribosomal peptides in the genome. Actinomadura sp. K4S16 harbored four type-I PKS gene (t1pks) clusters, two type-II PKS gene (t2pks) clusters, and three NRPS gene (nrps) clusters, as shown in Table 5. T1pks-1 cluster encoded only a PKS composed of ACP–KS/AT/DH/KR/ACP/ACP–TE domains, which showed 87% sequence identity to phenolthiocerol synthesis type-I polyketide synthase PpsD of Mycobacterium tuberculosis 401416 (CND43678), suggesting it may synthesize phenolthiocerol-like compounds. T1pks-2 cluster encoded two PKSs whose domain organizations are KS/AT/KR and KS/AT, respectively. Since these PKSs did not show sequence similarities to PKSs whose products are identified and the domain organization is unusual, we are not able to predict the product. T1pks-3 cluster encoded a PKS composed of KS/AT/KR/DH domains. Because such domain organization is specific to iterative PKSs for enediyne syntheses, this gene cluster likely synthesizes enediyne-type polyketide compounds. T1pks-4 cluster is responsible for nontoxic synthesis as stated in the following section. T2pks-1 cluster might synthesize aromatic compounds similar to tetramycin A or mithramycin, because its KSα showed 70 to 71% sequence identities to TamM (AFY23044) and MtmP (CAA61989). T2pks-2 cluster did not show high sequence similarities (less than 55% identities) to any PKSs registered in GenBank, suggesting that the product will be unique. Nrps-1 gene cluster harbored six NRPS modules and the products were predicted to be peptides containing amino dihydroxybenzoic acid, cysteine, glycine, and methyl ornithine. Nrps-2 gene cluster encoded four modules and the products will be composed of starter molecule-Cys-Cys-methyl Cys. Nrps-3 gene cluster had seven modules and the products are likely hexapeptides including amino acid residues such as alanine and threonine. The presence of these PKS and NRPS gene clusters suggests that this strain has the potential to produce diverse polyketide- and nonribosomal peptide-compounds as the secondary metabolites.
The chemical structure of nonthmicin suggested that their carbon skeletons are assembled from five malonyl-CoA, four methylmalonyl-CoA, and three ethylmalonyl-CoA molecules by a type-I PKS pathway. We therefore searched for a t1pks cluster consisting of 12 PKS modules. Among all of the four t1pks clusters present in Actinomadura sp. K4S16 (Table 5), t1pks-4 cluster encoded six large PKSs and several enzymes related to secondary metabolite syntheses (Table 6, Fig 4a) and its assembly line contains 12 PKS modules. Substrates of AT domains in modules 1, 3 and 6 were predicted to be ethylmalonyl-CoA, whereas those in modules 5, 7, 8 and 9 were methymalonyl-CoA. According to the collinearity rule of type-I PKS pathways [17] and the chemical structure of nonthmicin, the polyketide backbone biosynthesis and polyketide backbone backbone was predicted as shown in Fig. 4b. The predicted structure is in good accordance with the nonthmicin backbone. The elongated polyketide chain is then converted to form three polyether moieties by an epoxide and epoxide hydrase/cyclase(s) in a similar manner for the nanchangmycin biosynthesis [18]. The tetrone acid part may be synthesized by ORFs K4S16_09_00680 to K4S16_09_00720 as proposed for tetrone acid-containing polyketides such as tetrorcarcin A, chlorothricin, abyssomicin, and quatromycin [19–22], because these ORFs are orthologues of TcaDs, ChlM and ChlDs, AbyAs and QunDs. Two cytochrome P450s (K4S16_09_00590 and K4S16_09_00730) and a methyltransferase (K4S16_09_00740) are probably responsible for the introduction of one hydroxy group and one methoxy group to produce ecteinamycin. Chlorination to the tetrone moiety is presumably catalyzed by a halogenase (K4S16_09_00450) to yield nonthmicin. On the basis of these bioinformatic evidences, we here propose the biosynthetic pathway of nonthmicin and ecteinamycin as shown Fig. 4b.

Feeding experiments using labeled precursors

To verify the predicted biosynthetic pathway for nonthmicin, feeding experiments were carried out using 13C-labeled precursors such as [1-13C]acetate and [1-13C]propionate. The signal intensities in 13C NMR spectrum of these labeled nonthmicin is shown in Table 7. Feeding of sodium [1-13C]acetate gave enrichments at twelve carbons at C4, C6, C14, C18, C20, C22, C24, C25, C26, C31, C34, and C36. [1-13C]propionate feeding enriched four methyl carbons at C28, C29, C30, and C33 (Fig. 5). These results unambiguously established that the polyether polyketide structure of nonthmicin is assembled from five malonyl-CoA, four methylmalonyl-CoA, and three ethylmalonyl-CoA. Labeling of C4 and C5 by acetate and non-labeling of C1, C2, and C3 by any precursors indicated that tetrone acid moiety is
derived from one acetate and one glycerate units [23]. These results also supported by annotated ORFs of t1pks-4 cluster (K4S16_09_00690, K4S16_09_00700, K4S16_09_00710) (Fig. 4b, Table 6).

Figure 4. Genetic map of nonthnicin biosynthetic gene cluster of Actionomadura sp. K4S16 (a) and the predicted biosynthetic pathway (b). Pink, PKS; yellow, transcriptional regulator; light blue, transporter; gray, genes related to secondary metabolite synthesis. AT, acyltransferase for malonyl-CoA; ATm, acyltransferase for methylmalonyl-CoA; ATe, acyltransferase for ethylmalonyl-CoA; kr, inactive KR.
Table 6. ORFs of tIpkS-4 gene cluster responsible for the synthesis of nonthnicin

ORF	Size (aa)	Deduced function	Closest protein homolog [origin]	Id/Si (%)	Accession number
00450	551	halogenase	halogenase B [Actinoplanes sp. ATCC 53002]	56/72	AKQ04685
00460	188	flavin reductase	flavin reductase-like, FMN-binding [Saccharopolyspora erythraea NRRL 2338]	47/62	CAM04194
00470	220	two-component system response regulator	response regulator receiver protein, partial [Microbispora rosea]	65/78	WP_003509695
00480	353	two-component system histidine kinase	hypothetical protein [Herbidiopora cretae]	43/63	WP_003450128
00490	906	transcriptional regulator	ATPase [Microbispora sp. ATCC PTA-5024]	41/54	ETK35445
00500	576	3-hydroxybutyryl-CoA dehydrogenase	3-hydroxybutyryl-CoA dehydrogenase [Streptomyces rapamycinicus NRRL 5491]	56/65	AGP59282
00510	340	3-oxoacyl-ACP synthase	3-oxoacyl-ACP synthase III [Streptomyces sp. C]	61/70	EFL20299
00520	4,859	polypetide synthase	polypetide synthase [Streptomyces albus]	54/64	AEZ35945
00530	442	crotonyl-CoA reductase	NADP-dependent quinone reductase [Streptomyces albus PD-1]	74/83	EXU89989
00540	258	type-II thioesterase	thiosterase [Streptomyces sp. C]	59/69	EFL20221
00550	224	transcriptional regulator	hypothetical protein [Actinomadura madurae]	54/70	WP_021595170
00560	310	ABC transporter ATP-binding protein	hypothetical protein [Lechevalieria aerosolanus]	77/86	WP_03471487
00570	531	ABC transporter permease protein	hypothetical protein [Actinoplanomurpa alba]	60/74	WP_025598181
00580	388	transcriptional regulator	LuxR-family transcriptional regulator [Actinomadura sp. EG49]	42/52	EWC36761
00590	398	cytochrome P450	cytochrome P450 [Streptomyces bischheggenensis BCW-1]	52/68	ADQ34501
00600	136	epoxide hydrolase/cyclase	epoxide hydrolase [Streptomyces longisporoflavus]	53/67	ACR05076
00610	467	epoxidase	hypothetical protein SBI_01389 [S. bischheggenensis BCW-1]	58/70	ADQ34510
00620	183	epoxide hydrolase/cyclase	putative epoxide hydrolase/cyclase [Streptomyces albus subsp. albus]	53/66	CC31907
00630	3,941	polypetide synthase	lasalicid modular polypetide synthase [Streptomyces sp. C]	54/64	EFL20211
00640	3,165	polyketide synthase	polypetide synthase [Streptomyces graminifaciens]	50/61	BAJ16467
00650	263	transcriptional regulator	putative pathway specific activator [S. longisporoflavus]	55/67	ACR05289
00660	1,563	ABC transporter permease protein	Beta-ketoacetyl synthase [Streptomyces violaceoniger Tu 4113]	50/62	AEM87323
00670	576	ABC transporter permease protein	Putative exporter of polyketide antibiotics-like protein	45/60	ACZ200124

00680	342	3-oxoacyl-ACP synthase	3-oxoacyl-ACP synthase [Streptomyces sp. CNQ665]	65/77	WP_027767626
00690	637	glycerol-ACP biosynthesis protein	methyoxymycolyl-ACP biosynthesis protein FbkH [Streptomyces monomaccens]	60/69	WP_033040949
00700	75	ACP	ACP [Amoebolastis orientalis]	72/81	AFJ50725
00710	265	2-oxoglutarate dehydrogenase	acetyltransferase [Streptomyces olindensis]	66/81	KDN76174
00720	365	hydroxylase or acyltransferase	2-oxoacid dehydrogenase/acyltransferase [Micromonospora chalcea]	54/65	ACR83748
00730	398	cytochrome P450	cytochrome P450 [S. bischheggenensis BCW-1]	53/71	ADQ34501
00740	288	methyltransferase	SAM-dependent methyltransferase [Streptomyces sp. NRRL F-2890]	46/59	WP_030734046
00750	5,524	acetyl transferase	[Streptomyces violaceoniger Tu 4113]	50/61	AEM94952
00770	2,121	polypetide synthase	PropA2 [Streptomyces piniogenus]	51/62	AEZ54375

* locus tag number after K4S16_09; \(^{a}\) identity/similarity; \(^{b}\) encoded in the complementary strand.
Precursor-directed biosynthesis of bromo-analogue of nonthmicin

A putative halogenase gene (K4S16_09_00450), showing 56% identity and 72% similarity of amino acid sequence to HalB from Actinoplanes sp. ATCC 33002, present in the nonthmicin biosynthetic gene cluster was expected to be responsible for the halogenation (Table 6). If this gene product is also active for bromine, it can be used for the precursor-directed biosynthesis of a brominated analogue. In fact, supplementation of sodium bromide into the culture resulted in the production of a new nonthmicin congener (Fig. 6a) in which the chlorine atom was replaced by the bromine atom. The structure of the bromo analogue was confirmed analysing data by MS (Fig. 6b) and NMR (data not shown).

Table 7. Incorporation of 13C-labeled precursors into nonthmicin

Position	δC	Relative enrichments (13C-labeled)	[13C]acetate	[13C]propionate
1	-86.9	0.78	0.80	
2	-84.7	0.79	0.64	
3	-82.1	0.78	0.89	
4	-79.5	2.56	0.98	
5	-76.9	0.82	0.62	
6	-74.5	2.28	0.84	
7	-72.1	0.94	1.24	
8	-71.7	1.33	4.25	
9	-70.2	0.86	0.87	
10	-68.8	1.09	4.85	
11	-67.4	1.10	0.74	
12	-66.0	1.60	4.70	
13	-64.6	1.06	0.95	
14	-63.2	2.25	0.89	
15	-61.8	0.87	0.80	
16	-60.4	1.28	4.49	
17	-59.0	0.80	0.64	
18	-57.6	2.41	0.88	
19	-56.2	1.13	0.95	
20	-54.8	2.14	0.95	
21	-53.4	0.71	0.84	
22	-52.0	2.64	0.90	
23	-50.6	0.96	0.98	
24	-49.2	2.19	1.15	
25	-47.8	2.49	1.15	
26	-46.4	2.47	0.89	
27	-45.0	1.00	0.90	
28	-43.6	1.01	0.86	
29	-42.2	0.97	0.91	
30	-40.8	0.94	0.75	
31	-39.4	3.11	0.87	
32	-38.0	0.93	0.72	
33	-36.6	0.86	1.00	
34	-35.2	2.19	0.96	
35	-33.8	0.91	1.05	
36	-32.4	3.25	0.96	
37	-31.0	0.82	0.87	
38	-29.6	0.82	0.93	

*13C signal intensity of each peak in the labeled 1 divided by that of the corresponding signal in the unlabeled 1, respectively, normalized to give an enrichment ratio of 1 for the unenriched peak of C27 and C33. The numbers in bold type indicate 13C-enriched atoms from 13C-labeled precursors.

Conclusion

We successfully found the type-I PKS gene cluster for nonthmicin biosynthetic and proposed a plausible biosynthetic pathway by the genome analysis of Actinomadura sp. K4S16, a producer of nonthmicin. Incorporation experiments of 13C-labeled precursors also suggested that nonthmicin is biosynthesized by PKS pathway. These findings will provide significant information not only for the biosynthetic mechanism but also for the genetic engineering to synthesize more potential bioactive molecules based on the nonthmicin structure.

Abbreviations

A: adenylation; ABC: ATP-binding cassette; ACP: acyl carrier protein; Ala: alanine; AT: acyltransferase; ATP: adenosine triphosphate; BLAST: Basic Local Alignment Search Tool; C: condensation; CLF: chain length factor; CoA: coenzyme A; COG: Clusters of Orthologous Groups; Cys: cysteine; DH: dehydratase; DHB: dihydroxybenzoic acid; E: epimerase; ER: enoylreductase; Gly: glycine; ISP: International Streptomyces project; KS: ketosynthase; KR: ketoreductase; kr: inactive KR; MIGS: minimum information about a genome sequence; MT: methyltransferase; NBRC: Biological Resource Center, National Institute of Technology and Evaluation; NMR: nuclear magnetic resonance; NRPS: nonribosomal peptide synthetase; nrps: NRPS gene; PKS: polyketide synthase; t1pks: type-I PKS gene; t2pks: type-II PKS gene; T: thiolation; TE: thioesterase; Thr: threonine.

Acknowledgements

This research was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, and Technology of Japan to YI. We also thank Dr. Akane Kimura, Ms. Tomoko Hanamaki, Ms. Aya Uohara, Ms. Satomi Miura, Ms. Satomi Saitou and Ms. Chiyo Shibata for assistance to this study.

Competing Interests

The authors have declared that no competing interest exists.

References

1. Berdy J. Bioactive microbial metabolites. J Antibiot. 2005; 58: 1-26.
2. Watve MG, Tickoo K, Jog MM and Bhole BD. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001; 176: 386-390.
3. Lazzarini A, Cavaletti L, Toppo G and Marinelli F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 2000; 78: 399-405.
4. Igarashi Y, Matsuoka N, In Y, Kataura T, Tashiro E, Saiki I, Sudo Y, Duangmal K and Thamchaipenet A. Nonthmicin, a polyether polyketide bearing a halogen-modified tetronate with neuroprotective and...
antiinvasive activity from Actinomadura sp. Org Lett. 2017; 19: 1406-1409.

5. Hasegawa T, Takizawa M and Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983; 29: 379-372.

6. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K and Hayakawa M. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antimicrob Chemother. 2012; 67: 452-453.

7. Komaki H, Ichikawa N, Hosoyama A, Fujita N and Igarashi Y. Draft genome sequence of marine-derived Streptomyces sp. TP-A0598, a producer of anti-MRSA antibiotic lycidacmycins. Stand Genomic Sci. 2015; 10: 58.

8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H and Chun J. Introducing EzBioCloud: a taxonomically unified database of 165 rRNA gene sequences and whole-genome assemblies. Int System Evol Microbiol. 2017; 67: 1613-1617.

9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and Higgins GC. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947-2948.

10. Ohtsubo Y, Maruyasi F, Mitsuhi N, Nagata Y and Tsuda M. Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader. J Bacteriol. 2012; 194: 6970-6971.

11. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, Ashburner M, Axelrod N, Baldea S, Ballard S, Boeke J, Cochrane G, Cole J, Dowyanidt P, De Vos P, Defamphils C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Gibson TJ and Higgins GC. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947-2948.

12. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW and Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11: 19.

13. Lowe TM and Eddy SR. RfamScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25: 953-964.

14. Weber T, Bli K, Duddela S, Dr K, HU Bruc Bli, Le Sy, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E and Meirnas AH. antisSMASH 3.0.1a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015; 43: W237-243.

15. Meier-Kolthoff JP, Auch AF, Klenk HP and Goker M. Genome sequence-based species delineation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60.

16. W237-243.

17. Fischbach MA and Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006; 106: 3468-3496.

18. Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B and Deng Z. A complete gene cluster from Streptomyces nanchangensis SS226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol. 2003; 10: 431-441.

19. Fang J, Zhang Y, Huang L, Jia X, Zhang Q, Zhang X, Tang G and Liu W. Cloning and characterization of the tetrocarcin A gene cluster from Micromonomospora chalcea NRRL 11289 reveals a highly conserved strategy for tetrone biosynthesis in spirotetronate antibiotics. J Bacteriol. 2008; 190: 6014-6025.

20. Gottardi EM, Kwak K, von Suchodoletz H, Schadt S, Muhlenweg A, Urgor CU, Pelser S, Fieider HP, Bibb MJ, Stach JE and Stussuad RD. Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. ChemBioChem 2011; 12: 1401-1410.

21. He HY, Pan HY, Wu LF, Zhang BB, Chai HB, Liu W and Tang GL. Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem Biol. 2012; 19: 1313-1323.

22. Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL and Liu W. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol. 2006; 13: 575-585.

23. Sun Y, Hong H, Gillies F, Spencer JB and Leadlay PF. Glyceryl-S-acyl carrier protein as an intermediate in the biosynthesis of tetrone antibiotics. ChemBioChem 2008; 9: 150-156.

24. Saitou N and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406-425.

25. Woese CR, Kandler O and Woese CR. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Nat Acad Sci USA. 1990; 87: 4567-4579.

26. Winter RE. Studies in the nomenclature and classification of the bacteria: II. The primary subdivisions of the Schizomycetes. J Bacteriol. 1917; 2: 155-164.

27. Skerman VBD, McGowan V and Sneath PHA. Approved lists of bacterial names. Int System Evol Microbiol. 1980; 30: 225-420.

28. Zhi XY, Li WJ and Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int System Evol Microbiol. 2009; 59: 589-606.

29. Zhang Z, Kudo T, Nakajima Y and Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rRNA sequences and chemotaxonomic analyses. Int System Evol Microbiol. 2001; 51: 373-383.

30. Lechevalier HA, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In The Actinomycetales (edited by Prauser H). Jenz Gustav Fischer Verlag, 1970: 95-405.

31. Fischbach MA, Ball CA, Blake JA, Botstein D, Butler H, cherry JM, Davis AP, Dolsinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Josel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM and Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25: 25-29.