1. Introduction

Hydrolysis of Mg-based materials is a promising technology for the development of portable hydrogen fuel cells. However, the Mg(OH)₂ layer impedes the diffusion of water molecules into inner particles, resulting in sluggish hydrolysis performance. The hydrolysis performances of Mg-based materials (Mg, MgH₂, MgH₂-BM and MgH₂-RBM) with water are effectively improved under light-activation. The hydrolysis performance could be tailored by the light energy (frequency and intensity). The combination of ball-milling and light-activation could further enhance the hydrolysis performance of MgH₂. In particular, the hydrolysis yield of MgH₂-RBM reached 95.7% of the theoretical yield under 90 W green light-activation. Thus, raising the light energy (by using purple light and UV, or higher power lights) and the combination of ball-milling could lead to better hydrolysis performance of Mg-based materials. The Mg(OH)₂ layer was considered as a barrier to MgH₂ hydrolysis of MgH₂. Interestingly, under light-activation, the Mg(OH)₂ layer can act as a catalyst to enhance the decomposition of MgH₂ and improve the hydrolysis yield and kinetics of Mg-based materials.

2. Results and discussion

2.1 Hydrolysis kinetics of Mg and MgH₂ under light-activated

They found that light-activated hydrogen storage could lead to an effective approach for hydrogen uptake and release from hydrides at low temperature.

Sunlight may also be an effective means of driving hydrolysis reactions. In this work, the influence of light-activated the hydrolysis properties of Mg-based materials were investigated at RT (25 °C). Since the potential for damage to the skin and eye form UV, we limit the experiment scope in visible spectrum. According to standard electrode potentials of Mg²⁺/Mg (−2.36 eV) and H⁺/H (0 eV), we assume the band gap energy of Mg is 2.36 eV. According to the Scherer equation, the limiting wavelength, E₉, was the band gap energy. We found the corresponding wavelength is 525 nm, which is in the green light spectrum (530 to 520 nm). So we chose green light and the adjacent light (blue and yellow light) as experiment light source. An unexpectedly light-activated of the hydrolysis of Mg-based materials was found. Interestingly, the hydrolysis performance can be tailored by changing the color and power of the spotlight. Our findings provide a green, simple and effective solution in enhance the hydrolysis performance of metal-based materials, and this solution is expected to be used for other hydrogen generation materials, such as borohydrides and ammonia borane.
curves of (a) Mg and (b) MgH$_2$ under different colors (yellow, green and blue) light-activated at RT. As shown in Fig. 1(a), the hydrolysis performance of the single Mg without light-activated is rather sluggish, delivering only 2.3 mL g$^{-1}$ H$_2$ in 60 min. Under light-activated, the hydrolysis kinetics of Mg was significantly improved. Under yellow, green and blue light-activated, the hydrogen yields of Mg increased to 14.3, 16.4 and 20.1 mL g$^{-1}$ in 60 min, respectively. Furthermore, the hydrolysis yields and kinetics of Mg increase with the color frequency of light.

Fig. 1(b) shows the hydrogen evolution curves of MgH$_2$ under different color (yellow, green and blue) light-activated. Similar to Mg, the hydrolysis kinetics of MgH$_2$ was significantly improved by light-activated. The hydrogen yields of MgH$_2$ under yellow, green and blue light-activated are 29.1, 45.1 and 52.9 mL g$^{-1}$ H$_2$ in 60 min, while the hydrogen yields of MgH$_2$ without light-activated is only 25.6 mL g$^{-1}$ H$_2$ in 60 min. The hydrolysis yields and kinetics of MgH$_2$ also increase with the color frequency of light.

Thus, the hydrolysis performance of Mg and MgH$_2$ are improved by light-activated and can be tuned by the light color (frequency).

2.2 Hydrolysis kinetics of MgH$_2$-BM and MgH$_2$-RBM with light-activated

Ball-milling is an effective method to improve the hydrolysis performance of MgH$_2$ since it can reduce the particle size of MgH$_2$. MgH$_2$-BM and MgH$_2$-RBM were prepared by planetary ball mill under argon and hydrogen atmosphere, and their hydrolysis evolution curves under light-activated were tested (Fig. 2). As shown in Fig. 2(a), MgH$_2$-BM could generate 864.6 mL g$^{-1}$ H$_2$ in 120 min without light-activated. While the hydrogen yields of MgH$_2$-BM under yellow, green and blue light-activated increased to 972.5, 1066.7 and 1137.7 mL g$^{-1}$ in 120 min, respectively.

The hydrogen evolution curves of MgH$_2$-RBM under light-activated were shown in Fig. 2(b). MgH$_2$-RBM can release 1039.1 mL g$^{-1}$ H$_2$ in 120 min without light-activated. The hydrogen yields of MgH$_2$-RBM under yellow, green and blue light-activated were enhanced to 1287.7, 1334.2 and 1385.8 mL g$^{-1}$ in 120 min, respectively. The hydrolysis yield of MgH$_2$-RBM under blue light-activated is up to 78.3% of the theoretical yield.

Thus, light-activated is also work on the hydrolysis performance of MgH$_2$-BM and MgH$_2$-RBM, and the strategy that combined ball-milling and light-activated is an effective method to enhance the hydrolysis performance of MgH$_2$.

2.3 Effect of stirring combined with light-activated

To further improve the hydrolysis performance, the effect of stirring combined with light-activated was investigated. Fig. 3 is the hydrogen evolution curves of MgH$_2$-BM with (a) stirring and (b) stirring combined green light-activated at RT. Unexpectedly, the hydrolysis performance of MgH$_2$-BM with stirring was
inferior to that without stirring. Under green light, the hydrolysis yield of MgH$_2$-BM with and without stirring were 1019.7 and 1066.7 mL g$^{-1}$ in 120 min. Thus, the hydrolysis performance of MgH$_2$-BM was hinder by stirring.

2.4 Effect of heating combined with light-activated
To further study the hydrolysis properties of MgH$_2$ under light-activated, the hydrogen evolution curves for MgH$_2$ at different temperatures were investigated. The hydrogen evolution curves for MgH$_2$ under different color ((a) void, (b) yellow, (c) green, and (d) blue) light-activated at various temperature (35, 45 and 55 °C) were shown in Fig. 4, and their hydrolysis yield were shown in Table 1. The hydrogen evolution curves of MgH$_2$ under light-activated is similar to those without light-activated. The hydrolysis yields of MgH$_2$ under different color light-activated were irregular due to the temperature fluctuation of the water bath. Additionally, the hydrolysis activation energies were failed to calculate, since the hydrogen evolution curves are so straight.

2.5 Effect of higher power (90 W) light-activated
To study the effect of light power, we doubled the power of light-activated by adding spot another light source. Fig. 5 is the hydrogen evolution curves of (a) Mg, (b) MgH$_2$, (c) MgH$_2$-BM and (d) MgH$_2$-RBM under different power (0, 45 and 90 W) green light-activated at RT, and their hydrolysis yields of Mg-based materials (Mg, MgH$_2$, MgH$_2$-BM and MgH$_2$-RBM) are summary in Table 2. As the Fig. 5 shows, the light power can significantly enhance the hydrolysis performance of Mg-based materials. Compared with that at 45 W, the hydrolysis yield of Mg and MgH$_2$ are raised 60.4% and 166.3% under 90 W light-activated. Meantime, the hydrolysis yield of MgH$_2$-BM and MgH$_2$-RBM are raised 15.3% and 22.2% at double power light-activated. Thus, the hydrolysis performance of Mg-based materials can be tuned by the light power.

Furthermore, the hydrolysis yield of MgH$_2$-BM and MgH$_2$-RBM under 90 W green light-activated is up to 72.2% and 95.7% of the theoretical yield, respectively. Table 3 Hydrolysis properties at ambient temperature of MgH$_2$ reported in the
literature. As Table 3 shows, the hydrolysis properties of MgH₂-BM and MgH₂-RBM under 90 W green light-activated are superior to that without additive. The hydrolysis properties of MgH₂-RBM under 90 W green light-activated is comparable to that with NH₄Cl and CaH₂ additive. Mentionable, the method of light-activated has more advantage: (1) the hydrolysis kinetics are controlled during the hydrolysis process since the power of light-activated can be tuned; (2) there is not impurity in the byproduct after hydrolysis process.

2.6 Hydrolysis mechanism of MgH₂ under light-activated

To study the catalytic mechanism of MgH₂ under light-activated, the hydrolysis product after freeze-drying was characterized by XRD. Fig. 6 shows the XRD patterns of MgH₂ hydrolysis product with and without green light-activated. As Fig. 6 shows, the MgH₂ hydrolysis product under light-activated is the same as that without light-activated, both of them are merely composed of Mg(OH)₂.

Considering that Mg(OH)₂ is the only hydrolysis product after the hydrolysis reaction of MgH₂, the photocatalytic activity of Mg(OH)₂ may effect on the hydrolysis mechanism. In fact, Mg(OH)₂ has been widely applied in photovoltaic devices and solid-state electronics owing to its rapid electron transport, low exciton recombination rate and efficient photon-harvesting capacity.21–23

In Section 3.1, 3.2 and 3.5, we found that the hydrolysis yield and kinetics of MgH₂ can be tuned by the energy of light-activated (frequency and power). However, in Section 3.3 and 3.4, we found that other driving force (stirring and heating) could not improve the hydrolysis performance. Therefore, the light energy and the photocatalytic activity of Mg(OH)₂ play the key role on the hydrolysis mechanism of MgH₂. Usually, Mg(OH)₂ layer is deposited on the MgH₂ surface impedes the

Light-activated	Hydrolysis yield at 35 °C	Hydrolysis yield at 45 °C	Hydrolysis yield at 55 °C
Void	61.5	91.8	194.0
Yellow	61.9	105.5	201.1
Green	67.9	105.1	195.6
Blue	69.8	97.2	205.8

Table 2 Hydrolysis yields of Mg-based materials at different power (0, 45 and 90 W) green light-activated

Mg-based materials	0 W	45 W	90 W	Increasing rate (90/45 W)
Mg	2.3	16.4	26.3	60.4%
MgH₂	25.6	45.1	106.8	136.8%
MgH₂-BM	864.6	1066.7	1230	15.3%
MgH₂-RBM	1039.1	1334.2	1630.6	22.2%

Fig. 5 Hydrogen evolution curves for (a) Mg, (b) MgH₂, (c) MgH₂-BM and (d) MgH₂-RBM at different power (0, 45 and 90 W) green light-activated at RT.
diffusion of water, resulting in the sluggish hydrolysis kinetics of MgH₂. However, Mg(OH)₂ layer may provide the rapid transport for H⁻ under light-activated, improving the hydrolysis performance of MgH₂. Consequently, the hydrolysis mechanism of MgH₂ in the presence of light-activated may be as shown in Fig. 7. Under light-activated, the Mg(OH)₂ layer on the surface of MgH₂ is excited and functions as a catalyst, accelerating the decomposition of MgH₂, similar to the photocatalytic water splitting. And then, Mg²⁺ combine with OH⁻ to form new Mg(OH)₂ layer, while H⁻ transfer through the Mg(OH)₂ layer and react with H₂O to generate H₂. Finally, the Mg(OH)₂ layer becomes thicker during the reaction progress, reducing the lighting energy reach the interface of MgH₂/Mg(OH)₂, so the hydrolysis yield of MgH₂ comes to a platform.

3. Experimental

3.1 Preparation

The starting materials, Mg (99.8%, 300 mesh, Tangshan Weihao Magnesium Powder) and MgH₂ (99.5%, 400 mesh, MG Power) were used as raw materials without other treatment. MgH₂-BM and MgH₂-RBM were prepared by ball mill under argon and 2 MPa hydrogen atmosphere, respectively. Around 2 g sample and 80 g steel ball was loaded in the pressure ball-milled jar, and milled for 4 h at 400 rpm at room temperature by planetary ball mill (P5, FRITSCH), as Fig. 8 shown.

The 45 W spot lights with different color (blue: 470–465 nm; green: 530–520 nm; yellow: 595–585 nm) were purchased from Jiangsu Xincai Illumination.

3.2 Characterization

The phase structure of samples was characterized by X-ray diffraction (Bruker, D8 advance X-ray Diffraction) with Cu-Kα radiation, performed with a step size of 0.02° in the range of 10–90°.

Hydrogen-generation measurements of samples were performed using in house-developed equipment, as Fig. 9 shown. The test steps are as follow:

Material	Hydrolysis yield (mL g⁻¹)	Hydrolysis time (min)	Ref.
MgH₂ milled 20 h in Ar (Spex 8000)	1370	1200	15
MgH₂ milled 1 h in Ar (P6)	470	50	16
MgH₂ milled 10 h in Ar (Spex 8000)	300	20	17
MgH₂-BM under 90 W green light-activated	912/1230	60/120	This work
MgH₂ milled 3 h in H₂ (Retsch PM100)	580	23	18
MgH₂-RBM under 90 W green light-activated	1331/1630.6	60/120	This work
MgH₂/3 M MgCl₂ milled for 30 min	946	60	19
MgH₂/5% MgCl₂ milled for 5 h	1094	60	7
MgH₂/10% NH₄Cl milled for 5 h	1331	60	7
MgH₂/10 mole% CaH₂ milled for 1 h	1389	60	20

Table 3 Hydrolysis properties at ambient temperature of selected Mg-based materials reported in the literature.
The hydrolysis reaction of Mg-based materials (Mg, MgH₂, MgH₂-BM and MgH₂-RBM) with water has been effectively improved by light-activated. In addition, the hydrolysis performance of Mg-based materials could be tuned by the light energy (frequency and intensity). The combination of ball-milling and light-activated could further enhance the hydrolysis performance of MgH₂. The degree of conversion of MgH₂-RBM with light-activated could further enhance the hydrolysis performance of Mg-based materials.

Due to the photocatalytic activity of Mg(OH)₂, Mg(OH)₂ layer under light-activated can act as a catalyst and enhances decomposition of MgH₂, improving the hydrolysis yield and kinetics of Mg-based materials.

This work provide a green, simple and effective solution in enhancement the hydrolysis performance of metal-based materials, and this solution is hopefully to work on other hydrogen generation materials, such as borohydrides and ammonia borane.

4. Conclusions

The hydrolysis reaction of Mg-based materials (Mg, MgH₂, MgH₂-BM and MgH₂-RBM) with water has been effectively improved by light-activated. In addition, the hydrolysis performance of Mg-based materials could be tuned by the light energy (frequency and intensity). The combination of ball-milling and light-activated could further enhance the hydrolysis performance of MgH₂. The degree of conversion of MgH₂-RBM with 90 W green light-activated is up to 95.7%. Thus, raising the light energy (by using purple light and UV, or higher power lights) and combination of ball-milling could lead to better hydrolysis performance of Mg-based materials.

Due to the photocatalytic activity of Mg(OH)₂, Mg(OH)₂ layer under light-activated can act as a catalyst and enhances decomposition of MgH₂, improving the hydrolysis yield and kinetics of Mg-based materials.

This work provide a green, simple and effective solution in enhancement the hydrolysis performance of metal-based materials, and this solution is hopefully to work on other hydrogen generation materials, such as borohydrides and ammonia borane.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by MOST Scientific Project (2018YFE0100700), Guangdong Scientific Project (No. 2017B030314081), GDAS Project of Science and Technology Development (No. 2020GDASYL-20200103105), Regional Joint Fund project of Basic and Applied Basic Research Fund of Guangdong Province (No. 2020B1515120006) and Baotou Natural Science Foundation (Grant No. XM2020BT04).

Notes and references

1 D. Wu, et al., Hydrogen generation properties and the hydrolysis mechanism of Zr(BH₄)₄·8NH₃, J. Mater. Chem. A, 2017, 5(32), 16630–16635.
2 L. Ouyang, et al., Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 2020, 832.
3 Z. Liu, et al., Hydrolysis of Mg-based alloys and their hydrides for efficient hydrogen generation, Int. J. Hydrogen Energy, 2021, 46(36), 18988–19000.
4 C. Zhou, et al., Controllable hydrogen generation behavior by hydrolysis of MgH₂-based materials, J. Power Sources, 2021, 494.
5 Y. Liu, et al., Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl₃, Energy, 2013, 53, 147–152.
6 S. D. Kushch, et al., Hydrogen-generating compositions based on magnesium, Int. J. Hydrogen Energy, 2011, 36(1), 1321–1325.
7 S. Li, et al., Influence of chloride salts on hydrogen generation via hydrolysis of MgH₂ prepared by hydriding combustion synthesis and mechanical milling, Trans. Nonferrous Met. Soc. China, 2017, 27(3), 562–568.
8 S. A. Pighin, et al., Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH₂ milling and dehydriding, J. Alloys Compd., 2020, 827.
9 M. Grosjean, et al., Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials, Int. J. Hydrogen Energy, 2006, 31(1), 109–119.
10 L. Xie, et al., Improved Hydrogen Generation Performance via Hydrolysis of MgH₂ with Nb₂O₅ and CeO₂ Doping, Mater. Trans., 2021, 62(6), 880–886.
11 K. Yang, et al., The Effect of Graphite and Fe₂O₃ Addition on Hydrolysis Kinetics of Mg-Based Hydrogen Storage Materials, Int. J. Photoenergy, 2021, 2021, 1–8.
12 Y. Sun and K. F. Aguey-Zinsou, Light-Activated Hydrogen Storage in Mg, LiH and NaAlH₄, Chempluschem, 2018, 83(10), 904–908.
13 S. G. Bratsch, Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, J. Phys. Chem. Ref. Data, 1989, 18(1), 1–21.
14 X. Li, et al., Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation, *J. Korean Ceram. Soc.*, 2016, **53**(6), 665–669.

15 J. Huot, G. Liang and R. Schulz, Magnesium-based nanocomposites chemical hydrides, *J. Alloys Compd.*, 2003, **353**(1–2), L12–L15.

16 M. Tegel, et al., An efficient hydrolysis of MgH2-based materials, *Int. J. Hydrogen Energy*, 2017, **42**(4), 2167–2176.

17 J. P. Tessier, et al., Hydrogen production and crystal structure of ball-milled MgH2–Ca and MgH2–CaH2 mixtures, *J. Alloys Compd.*, 2004, **376**(1–2), 180–185.

18 T. Tayeh, et al., Production of hydrogen from magnesium hydrides hydrolysis, *Int. J. Hydrogen Energy*, 2014, **39**(7), 3109–3117.

19 M.-H. Grosjean and L. Roué, Hydrolysis of Mg–salt and MgH2–salt mixtures prepared by ball milling for hydrogen production, *J. Alloys Compd.*, 2006, **416**(1–2), 296–302.

20 Y. Xiao, et al., Hydrogen generation by CaH2-induced hydrolysis of Mg17Al12 hydride, *Int. J. Hydrogen Energy*, 2011, **36**(24), 15698–15703.

21 B.-J. Wang, et al., Blue Phosphorus/Mg(OH)2 van der Waals Heterostructures as Promising Visible-Light Photocatalysts for Water Splitting, *J. Phys. Chem. C*, 2018, **122**(13), 7075–7080.

22 Y. Luo, et al., Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study, *Phys. Chem. Chem. Phys.*, 2019, **21**(4), 1791–1796.

23 X. Zheng, et al., CuInS2/Mg(OH)2 Nanosheets for the Enhanced Visible-Light Photocatalytic Degradation of Tetracycline, *Nanomaterials*, 2019, **9**(11), 1–12.