AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF \(r\)-STIRLING NUMBERS OF THE SECOND KIND

BAI-NI GUO, ISTVÁN MEZŐ, AND FENG QI

Abstract. In the paper, the authors establish an explicit formula for computing Bernoulli polynomials at non-negative integer points in terms of \(r\)-Stirling numbers of the second kind.

1. Introduction

It is well known that Bernoulli numbers \(B_k\) for \(k \geq 0\) may be generated by

\[
\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!} = 1 - \frac{x}{2} + \sum_{k=1}^{\infty} B_{2k} \frac{x^{2k}}{(2k)!}, \quad |x| < 2\pi
\]

and that Bernoulli polynomials \(B_n(x)\) for \(n \geq 0\) and \(x \in \mathbb{R}\) may be generated by

\[
\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad |t| < 2\pi.
\]

In combinatorics, Stirling numbers of the second kind \(S(n, k)\) are equal to the number of partitions of the set \(\{1, 2, \ldots, n\}\) into \(k\) non-empty disjoint sets. Stirling numbers of the second kind \(S(n, k)\) for \(n \geq k \geq 0\) may be computed by

\[
S(n, k) = \frac{1}{k!} \sum_{\ell=0}^{k} (-1)^{k-\ell} \binom{k}{\ell} \ell^n.
\]

In the paper [1], among other things, Stirling numbers \(S(n, k)\) were combinatorially generalized as \(r\)-Stirling numbers of the second kind, denoted by \(S_r(n, k)\) here, for \(r \in \mathbb{N}\), which may be alternatively defined as the number of partitions of the set \(\{1, 2, \ldots, n\}\) into \(k\) non-empty disjoint subsets such that the numbers \(1, 2, \ldots, r\) are in distinct subsets.

Note that

\[
S(0, 0) = 1, \quad S_0(n, k) = S(n, k),
\]

and, when \(n \in \mathbb{N}\),

\[
S(n, 0) = 0, \quad S_1(n, k) = S(n, k),
\]

In [4, p. 536] and [5, p. 560], the simple formula

\[
B_n = \sum_{k=0}^{n} (-1)^{k} \frac{k!}{k+1} S(n, k), \quad n \in \{0\} \cup \mathbb{N}
\]

2010 Mathematics Subject Classification. Primary 11B73; Secondary 05A18.

Key words and phrases. explicit formula; Bernoulli number; Bernoulli polynomial; Stirling number of the second kind; \(r\)-Stirling number of the second kind.

This paper was typeset using AM\TeX.
for computing Bernoulli numbers B_n in terms of Stirling numbers of the second kind $S(n, k)$ was incidentally obtained. Recently, four alternative proofs for the formula (4) were supplied in [7] and its preprint [6]. For more information on calculation of Bernoulli numbers B_n, please refer to the papers [8, 9, 11, 13, 14, 15], especially to the article [3], and plenty of references therein.

The aim of this paper is to generalize the formula (4). Our main result may be formulated as the following theorem.

Theorem 1. For all integers $n, r \geq 0$, Bernoulli polynomials $B_n(r)$ may be computed in terms of r-Stirling numbers of the second kind $S_r(n + r, k + r)$ by

$$B_n(r) = \sum_{k=0}^{n} \frac{(-1)^k k!}{k+1} S_r(n + r, k + r).$$

(5)

In the final section of this paper, several remarks are listed.

2. **Proof of Theorem 1**

We are now in a position to verify our main result.

For $n, r \geq 0$, let

$$F_{n,r}(x) = \sum_{k=0}^{n} k! S_r(n + r, k + r) x^k.$$

(6)

By [1, p. 250, Theorem 16], we have

$$\sum_{n=0}^{\infty} S_r(n + r, k + r) \frac{t^n}{n!} = \sum_{n=k}^{\infty} S_r(n + r, k + r) \frac{t^n}{n!} = \frac{1}{k!} e^{rt} (e^t - 1)^k,$$

where $S_r(n, m) = 0$ for $m > n$, see [1, p. 243, (10)]. Accordingly, we obtain

$$\sum_{n=0}^{\infty} F_{n,r}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} k! x^k S_r(n + r, k + r) \frac{t^n}{n!}$$

$$= \sum_{k=0}^{\infty} k! x^k \sum_{n=k}^{\infty} S_r(n + r, k + r) \frac{t^n}{n!}$$

$$= e^{rt} \sum_{k=0}^{\infty} x^k (e^t - 1)^k$$

$$= e^{rt} \frac{1 - x(e^t - 1)}{1 - x(e^t - 1)}.$$

Integrating with respect to $x \in [0, s]$ for $s \in \mathbb{R}$ on both sides of the above equation yields

$$\sum_{n=0}^{\infty} \left[\int_{0}^{s} F_{n,r}(x) \, dx \right] \frac{t^n}{n!} = -e^{rt} \frac{\ln(1 + s - se^t)}{e^t - 1}.$$

(7)

On the other hand,

$$\int_{0}^{s} F_{n,r}(x) \, dx = \sum_{k=0}^{n} \frac{k!}{k+1} S_r(n + r, k + r) s^{k+1}.$$
Substituting this into the equation (7) concludes that
\[
\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{k!}{k+1} S_r(n+r,k+r+1) \frac{t^n}{n!} = -e^{et} \ln(1 + s - se^t) = e^{et} - 1.
\]
Taking \(s = -1 \) in the above equation and making use of the generating function (2) result in
\[
\sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \frac{(-1)^{k+1} k!}{k+1} S_r(n+r,k+r) \right] \frac{t^n}{n!} = -\frac{te^{rt}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{[B_n(r)] t^n}{n!},
\]
which implies the formula (5). The proof of Theorem 1 is complete.

3. Remarks

Finally we would like to give several remarks on Theorem 1 and its proof.

Remark 1. Since \(B_n(0) = B_n \) and \(S_0(n,k) = S(n,k) \), when \(r = 0 \), the formula (5) becomes (4). Therefore, our Theorem 1 generalizes the formula (4).

Remark 2. It is easy to see that
\[
F_{n,0}(1) = \sum_{k=0}^{n} k! S(n,k),
\]
which are just the classical ordered Bell numbers. For more information, please refer to the papers [2, 12] and closely related references therein.

Remark 3. In the PhD thesis [10], the second author defined a variant of the polynomials \(F_{n,r}(x) \). Hence, a simple combinatorial study and interpretation of the polynomials \(F_{n,r}(x) \) is available therein.

References

[1] A. Z. Broder, The \(r \)-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241–259; Available online at http://dx.doi.org/10.1016/0012-365X(84)90161-4. 1, 2
[2] M. B. Can and M. Joyce, Ordered Bell numbers, Hermite polynomials, skew Young tableaux, and Borel orbits, J. Combin. Theory Ser. A 119 (2012), no. 8, 1798–1810; Available online at http://dx.doi.org/10.1016/j.jcta.2012.06.002. 3
[3] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44–51. 2
[4] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics—A Foundation for Computer Science, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. 1
[5] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics—A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. 1
[6] B.-N. Guo and F. Qi, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, available online at http://arxiv.org/abs/1401.4257. 2
[7] B.-N. Guo and F. Qi, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Munich) 34 (2014), in press; Available online at http://dx.doi.org/10.1515/anly.2014.1238. 2
[8] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568–579; Available online at http://dx.doi.org/10.1016/j.cam.2013.06.020. 2
[9] S.-L. Guo and F. Qi, Recursion formulae for \(\sum_{m=1}^{n} m^k \), Z. Anal. Anwendungen 18 (1999), no. 4, 1123–1130. 2
[10] I. Mező, Combinatorial Interpretation of Some Combinatorial Numbers, PhD thesis, University of Debrecen, Hungary. (Hungarian) 3
[11] F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, available online at http://arxiv.org/abs/1401.4255.

[12] F. Qi, An explicit formula for computing Bell numbers in terms of Lah and Stirling numbers, available online at http://arxiv.org/abs/1401.1625.

[13] F. Qi, Explicit formulas for computing Euler polynomials in terms of the second kind Stirling numbers, available online at http://arxiv.org/abs/1310.5921.

[14] F. Qi, Explicit formulas for derivatives of tangent and cotangent and for Bernoulli and other numbers, available online at http://arxiv.org/abs/1202.1205.

[15] A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201–207; Available online at http://dx.doi.org/10.1016/j.cam.2013.09.077.

(Guo) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
E-mail address: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
URL: https://www.researchgate.net/profile/Bai-Ni_Guo/

(Mező) Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing City, 210044, China
E-mail address: mezo.istvan@inf.unideb.hu
URL: http://www.inf.unideb.hu/valseg/dolgozok/mezoistvan/mezoistvan.html

(Qi) Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
URL: http://qifeng618.wordpress.com