Genetically determined metabolism of nicotine and its clinical significance

Marcin Delijewski1, Aleksandra Bartoń1, Paulina Delijewska2, Radosław Balwierz3, Grzegorz K. Jakubiak1, Leon Kośmider5 and Natalia Pawlas1

1Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland; 2Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland; 3Silesian Medical College in Katowice, Mickiewicza 29, Katowice 40-065, Poland; 4Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA

Enzymes of the cytochrome P-450 (CYP 450) which belong to the family of oxidase enzymes, are present in cells of all organisms and play a major role in the first phase of xenobiotic metabolism. There are several isoenzymes of CYP 450 that show differences in the speed of metabolism: poor-, extensive- and ultra-rapid. Nicotine undergoes biotransformation in the liver mainly by the CYP2A6 isof orm of CYP 450. There are many polymorphic isof orms of CYP2A6 affecting the metabolism of nicotine. There are also several CYP2A6 activity inhibitors and inducers among commonly used drugs. The ability of CYP2A6 isoenzymes to activate certain procarcogenetic substances present in cigarette smoke makes their polymorphism more significant. Moreover, some isof orms may have also influence on the risk of lung cancer development by affecting the enzymatic activation of tobacco-specific nitrosamines. Metabolism of nicotine, mainly through CYP2A6, has also many clinical implications, such as efficacy and safety of the nicotine replacement therapy (NRT) or occurrence of several diseases. In summary, type of the nicotine metabolism may be a potential predictor of the clinical outcomes in patients with cardiovascular disease, addicted to nicotine and in those using NRT. The purpose of this work is to summarize current knowledge on variation in genetically determined metabolism of nicotine and its clinical significance.

Key words: nicotine, cytochrome P-450, nicotine metabolism, clinical significance

Received: 17 July, 2018; revised: 15 April, 2019; accepted: 10 September, 2019; available on-line: 04 October, 2019

E-mail: mdelijewski@sum.edu.pl

Acknowledgements of Financial Support: LK is supported by the National Institute on Drug Abuse of the National Institutes of Health under Award Number P50DA036105 and the Center for Tobacco Products of the U.S. Food and Drug Administration. The content is solely the responsibility of the authors and does not necessarily represent the views of the NIH or the FDA.

Abbreviations: CYP 450, cytochrome P-450; NRT, nicotine replacement therapy; PM, poor metabolizer; EM, extensive metabolizer; UM, ultrarapid metabolizer; FMO3, flavin-containing monoxygenase 3; UGT, glucurononyltransferases; NMR, nicotine metabolite ratio; PXR, pregnane X receptors; TSNA, tobacco specific nitrosamines; NF-kB, nuclear factor kappa B; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; COPD, chronic obstructive pulmonary disease

CYTOCHROME P450 ENZYMES

Cytochrome P-450 (CYP 450) enzymes belong to the family of oxidase enzymes. They are present in cells of all organisms, including humans, and play a major role in phase I of xenobiotic metabolism, as well as in the metabolism of certain endogenous substances, such as steroid hormones. The catalytic activity of CYP 450 includes a number of different reactions. These are mainly oxidations (C-, N- and S-oxidations) and dealkylations (O-, S- and N-dealkylations). The core element of the cytochrome activity is the electron transport chain in which crucial role plays the human NADPH-cytochrome P-450 oxidoreductase (Purnapatre et al., 2008; Di et al., 2009). The primary structure of the enzyme protein determines different isoenzymes of CYP 450. These isof orms of the enzyme have been classified into families and subfamilies. In human body, CYP1, CYP2, and CYP3 are involved in drug metabolism and biotransformation of xenobiotics (Purnaparte et al., 2008).

There are three CYP2A genes in humans (CYP2A6, CYP2A7, and CYP2A13) and one pseudogene (CYP2A18). CYP2A6 expression is mainly found in the liver, but its protein or mRNA is also expressed in other tissues (Godoy et al., 2002; Ding & Kaminsky, 2003). CYP2A6 is responsible for the critical step in conversion of nicotine to cotinine in human liver. CYP2A6 is also responsible for further conversion of cotinine to trans-3'-hydroxycotinine (Nakajima et al., 1996).

Different metabolic groups have been characterized due to genetic differences in the speed of metabolism, including poor- (PM), extensive- (EM) and ultra-rapid metabolizers (UM). The activity of CYP2A6 enzyme may be altered by genetic and environmental factors. Modification of CYP2A6 activity by drugs is a very important issue in medical and pharmaceutical practice (Di et al., 2009). The majority of cytochrome P-450 enzymes is present in the liver, mostly in the endoplasmic reticulum of hepatocytes. However, in much smaller amounts, they are also present in cells of other organs, such as the brain, kidneys, lungs, heart, and even skin.

The amount of CYPs in the brain parallels approximately 0.5–2% of that in the liver and is too low to significantly influence the overall pharmacokinetics of drugs and hormones in the body, but can play a role in modulating sensitivity to exogenous and endogenous compounds. Distribution of CYPs in the human brain varies among different brain regions. Within cortex, CYP2B6 is highly expressed in astrocytes surrounding cerebral blood vessels, whereas CYP2D6 is highly found in pyramidal neurons and also in the white matter. There are also differences between smokers and non-smokers. In the cerebellum of non-smokers, CYP2B6 and CYP2D6 are expressed in neurons within the molecular and granular layers, but are undetectable in Purkinje cells, however, in smokers, CYP2B6 and CYP2D6
are highly expressed in the Purkinje cells of the cerebellum (Miksys et al., 2003; Howard et al., 2003). Smokers and alcoholics have higher levels of CYP2B6, CYP2E1, and CYP2D6 in specific brain regions. They may respond differently to certain drugs and toxins due to the elevated levels of CYPs in the brain. CYP2B6, which can also metabolize nicotine, is expressed in the brain. The CYP2B6 gene is polymorphic and smokers who are CYP2B6 slow metabolizers have increased withdrawal symptoms, higher craving and lower quitting rates (Lee et al., 2007; Lerman et al., 2002).

**DRUGS METABOLISM**

Cytochrome P-450 enzymes are responsible for the metabolism of about 78% of drugs. The most significant CYP 450 isoforms are: CYP3A4 (50% of drugs), CYP2D6 (30% of drugs), CYP2C9 (10% of drugs), CYP1A2 (4% of drugs), CYP2A6 (2% of drugs), CYP2C19 (2% of drugs), and CYP2E1 (2% of drugs) (Guengerich, 2006). Other groups are mainly responsible for the metabolism of endogenous substances and ensure the proper functioning of the cell (Purnapatre et al., 2008).

CYP3A subfamily, representing nearly 30% of liver- and 70% of intestinal CYP 450 enzymes, is responsible for biotransformation of more than 50% of medicines (Zuber et al., 2002). In contrast, CYP2D6 isoform is responsible for the metabolism of 25–30% clinically used drugs (Ma et al., 2002).

**METABOLISM OF NICOTINE**

Nicotine is metabolized in the liver to six major metabolites (Fig. 1). The major metabolite is cotinine, to which about 70–80% of the absorbed nicotine is metabolized. This process consists of two stages. The first step is the formation of nicotine-Δ1′(5′)-iminium ion, which is in balance with the 5′-hydroxycotinine. This step is catalyzed by CYP2A6 isofrom. The second step involves oxidation of nicotine-Δ1′ (5′)-iminium ion to cotinine under the influence of cytoplasmic aldehyde oxidase (Benowitz et al., 2009). A small amount of nicotine (4–7%) is metabolized by flavin-containing monoxygenase 3 (FMO3) to another significant metabolite, nicotine N'-oxide. The nicotine N'-oxide does not undergo significant changes, except reduction to nicotine in the intestinal epithelium. In addition to oxidation reactions, nicotine is metabolized by glucuronidation to form N-beta- (S) nicotine glucuronide. The last reaction is catalyzed by glucuronyltransferases (UGT). 3–5% of nicotine is converted in this reaction. A final important metabolite directly formed from nicotine through oxidative N-demethylation is nornicotine (Hukkanen et al., 2005). As much as 70–80% of nicotine is metabolized to cotinine in humans, but only 10–15% is excreted as free cotinine in urine. The major metabolites of cotinine are cotinine glucuronide and trans-3'-hydroxycotinine (Crawford et al., 1998; Raunio et al., 2001; Benowitz et al., 2009). Also, other CYP 450 isofroms, such as CYP2B6, CYP2D6, and CYP2E1, are involved in the metabolism of nicotine and its clinical significance (Cashman et al., 1992; Berkman et al., 1995; Nakajima et al., 1996; Crawford et al., 1998; Raunio et al., 2001; Dempsey et al., 2004; Hukkanen et al., 2005; Benowitz et al., 2009; Kosmider et al., 2017; Green et al., 2002; Vezina et al., 2007; Dani et al., 1996; IARC 2004; Moran et al., 2012).

1. increase in pulse rate and blood pressure; 2. increase in plasma free fatty acids and the level of catecholamines in the blood; 3. desensitization of the GABAergic neurons by chronic stimulation by nicotine (addiction); 4. insulin resistance and predisposition to metabolic syndrome; 5. activation of signal transduction pathways, allowing the survival of damaged epithelial cells; 6. precursor of tobacco specific nitrosamines (TSNAs) through nitrosation; 7. substrate for arachidonic acid metabolites which cause increased cell division; 8. acceleration of tumor growth by increased angiogenesis mediated by β-adrenergic activation; 9. activation of nuclear factor kappa B (NF-kB)-dependent survival of cancer cells and proliferation; 10. promotion of the growth of lung tumor by inhibiting anti-apoptotic pathway; 11. cause of resistance to the chemotherapeutic agents; 12. plays a contributory role in tobacco dependence; 13. modulation of the nAChR sensitivity to agonists.
of nicotine (Hukkanen et al., 2005). Both, in vitro and in vivo studies indicate that CYP2A6 is mainly responsible for oxidation of nicotine to cotinine. In studies on the activity of microsomal enzymes, cotinine formation from nicotine and trans-3'-hydroxycotinine formation from cotinine, were correlated with the activity of coumarin 7-hydroxylase, which was strictly related to the activity of CYP2A6 (Cashman et al., 1992; Berkman et al., 1995; Nakajima et al., 1999). The ratio of the concentrations of 3-hydroxycotinine to cotinine in plasma and saliva is known as the nicotine metabolite ratio (NMR). This ratio is widely used for phenotyping CYP2A6 metabolic activity thanks to long half-life of cotinine (Dempsey et al., 2004). This non-invasive method, enabling to assess CYP2A6 activity, may be helpful in predicting the nicotine intake (Ross et al., 2016) and the effectiveness of smoking cessation therapies, like NRT (Chen et al., 2013).

DRUGS AFFECTING CYP2A6 ACTIVITY

CYP2A6 activity can be modified by drugs. There are several inhibitors, as well as inducers, of CYP2A6 among medicaments. It has been shown that 8-methoxypsoralen (a furanocoumarin used in the treatment of psoriasis, vitiligo and cutaneous T-cell lymphoma) is a potent, irreversible CYP2A6 inhibitor in vitro (Koenigs et al., 1997) and moderately effective human CYP2A6 inhibitor in vivo (Kharasch et al., 1996). Pilocarpine, a natural cholinomimetic alkaloid derived from Pilocarpus jaborandi, inhibits CYP2A6 and other enzymes involved in drug metabolism in mice and humans (Kimono et al., 1995). Tranylcypromine, a nonselective monoaminoxidase inhibitor for the treatment of depression, is a selective potent CYP2A6 inhibitor (Taavitsainen et al., 2001). Also, selegiline, a selective monoaminoxidase B inhibitor used in the treatment of Parkinson's disease, was shown to be a CYP2A6 inhibitor (Siù & Tyndale, 2008). Antifungal drugs, such as klorotrimazole, ketoconazole, and mikonazole are strong inhibitors of the CYP2A6 enzymes (Draper et al., 1997). Dexamethasone induces CYP2A6 activity by facilitating HNF4α (hepatic nuclear factor 4α) binding to HNF4α-RE (HNF4α response element) which increases the CYP2A6 transcripational activity. This may be caused by changed histone H4 acetylation in proximal promoter of the CYP2A6 gene (Onica et al., 2008). Rifampin and phenobarbital also belong to CYP2A6 inducers (Maurice et al., 1991; Rač et al., 2001). Interestingly, atorvastatin, fluvastatin, and rosuvastatin are associated with activation of pregnane X receptors (PXR) and increase in the CYP2A6 activity. A degree of this effect depends on statin and its enantiomer (Korhonova et al., 2015).

GENETIC POLYMORPHISM OF CYP2A6

There are more than 37 different allelic variants of CYP2A6 (Gaeckig et al., 2018). Studies have shown that among homozygous individuals with the CYP2A6 gene, there is a lack of detectable cotinine level in the plasma (Nakajima et al., 2000; Swan et al., 2009). Wild type refers to CYP2A6*1A. Polymorphic variants of this enzyme’s gene may cause alterations in enzymatic activity of the encoded enzyme. Each allele accompanied with another allele can form a homozygote or heterozygote of the CYP2A6 locus. CYP2A6*2 goes together with CYP2A6*2 composing homozygote with slow metabolism. Similarly, CYP2A6*2 and CYP2A6*4 form a “poor metabolizer” (PM) heterozygote and both also form a PM heterozygote when present together with CYP2A6*1 (Benowitz et al., 2006). CYP2A2*1A determines rapid metabolism of nicotine, whereas CYP2A6 alleles *2 and *4 are responsible for the reduced metabolism ratio. Their occurrence is closely associated with the ethnicity. Alleles *2 and *4 are present in 1% of Caucasian and 20% of Japanese populations, respectively (Nakajima et al., 2006). In vitro and in vivo studies on the CYP2A6*2 variant had shown that this allele determines the total lack of activity of the encoded enzyme (Fernandez-Salgueiro et al., 1995). CYP2A6*4 with total deletion of the gene has no enzymatic activity (Oscarson et al., 1999). Variants associated with a single nucleotide polymorphism (SNP) are: CYP2A6*2, CYP2A6*5, *6 CYP2A6 , CYP2A6, CYP2A6*7 and *9 (O’Loughlin et al., 2004). CYP2A6*10 has reduced enzymatic activity (Yoshida et al., 2002). The same polymorphism could have a different effect on different substrates, thus it should be examined in regard to the individual substrates (Tyndale & Sellers, 2002). The differences also apply to medicines used in cancer treatment, such as letrozole. CYP2A6*12 heterozygote individuals are intermediate nicotine metabolizers and simultaneously slow letrozole metabolizers (Fukami et al., 2005).
FREQUENCY OF CYP2A6 ISOFORMS IN THE HUMAN POPULATION

Proportion of people with slow nicotine metabolism by CYP2A6 (activity less than 50%) ranges from about 10% in the Caucasian population to approximately 60% in the Japanese population (Fukami et al., 2005). The frequency of CYP2A6 alleles determining slow type of metabolism, such as: CYP2A6*4, *7 and *9, is much higher among Chinese (7%, 3%, 16%, respectively), Japanese (17%, 11%, 20%, respectively), and Korean populations (11%, 4%, 22%, respectively) in comparison to Caucasians, where frequency of these variants is extremely rare (1% and 0% for alleles *4 and *7, respectively). The incidence of *9 in the Swedish population is at 5%, and it is at 7% in the Turkish population (Minematsu et al., 2006).

POSSIBLE ROLE OF CYTOCHROME P-450 POLYMORPHISM IN CARCINOGENESIS

The ability of CYP2A6 enzymes to activate certain procarcinogens present in the cigarette smoke makes their polymorphism more significant. The complexity of carcinogens and compounds present in tobacco smoke results in an indirect link between a particular carcinogen and specific tumor (Rossini et al., 2008).

The overlapping substrate specificity between CYP2A6 and CYP2A13 results in the involvement of these two enzymes in the metabolism of tobacco constituents. CYP2A13 has a higher catalytic efficiency towards 4-(methylnitrosamine)-1-(3-pyridyl)-1-butaneone (NNK) and 2'-hydroxylation of N-nitrosonornicotine and expression of this enzyme varies between different tissues (Wong H et al., 2005; Su et al., 2000) (Fig. 2).

Hecht and others (Hecht et al., 2000) reported a new pathway of 2'-hydroxylation of nicotine via 2'-hydroxynicotine, which leads to the formation of 4-(methylamino)-1-(3-pyridyl)-1-butaneone. This compound can be converted in vitro into a carcinogenic nitrosamine. However, endogenous production of NNK in the human body has not yet been established. Taking into consideration the ability of CYP2A6 metabolism to generate nitrosamines, London and others (London et al., 1999) hypothesized that individuals with slower metabolism may have a lower risk of smoking-associated lung cancer. Lower rate of nicotine metabolism by CYP 450 enzymes is correlated with a lower risk of addiction to nicotine. According to Tyndale and others (Tyndale et al., 2002), individuals with alleles responsible for defective nicotine metabolism had a decreased risk of becoming a smoker or they smoked less in comparison to extensive nicotine metabolizers. Slower metabolizers may also activate less tobacco-related procarcinogens in comparison to extensive metabolizers. The type of metabolism also affects nicotine obtained from NRT. Also, the CYP2A6 polymorphism has influence on the risk of lung cancer development by affecting enzymatic activation of tobacco-specific nitrosamines, both, in conjunction with and regardless of the activity of the CYP2A6 enzyme (Wassenaar et al., 2013).

| CYP 450 isoforms | Alleles | Type of nicotine metabolism | Clinical significance | Source |
|------------------|---------|-----------------------------|----------------------|--------|
| CYP2A6           | CYP2A6*2 | poor                        | associated with more likely quitting of smoking (Gu et al., 2000) |
| CYP2A6           | CYP2A6*4 | poor                        | the impairment of the enzyme is associated with protection from hepatoxic effect of drugs, such as valproic acid (Sadeque et al., 1997) |
| CYP2A6           | CYP2A6*10| poor                        | associated with protective role against nicotine addiction (Oscarson et al., 1999) |
| CYP2A6           | CYP2A6*3 | poor                        | wild type of gene is associated with higher risk of lung cancer, as it was proved to be more frequent in cancer patients than in control group (Miyamoto et al., 1999) |
| CYP2A6           | CYP2A6*1 | extensive                   | unable to activate nicotine-derived carcinogens, N-nitrosamines such as NNK, which results in lower risk of cancer (Miyamoto et al., 1999) |
| CYP2A6           | CYP2A6*1B| ultrapid                    | higher NMR in comparison to wildtype homozygotes. Association with smoking behaviour and response to NRT. Increased likelihood of being a smoker and higher amount of cigarettes smoked per day (Gambier et al., 2005) |
| CYP2A6           | CYP2A6*7 | poor                        | lower cigarette consumption per day, shorter smoking duration (Liu et al., 2011) |
| CYP2A6           | CYP2A6*35| poor                        | increased ability to quit smoking habit (Al Koudsi et al., 2009) |

IMPLICATIONS FOR SMOKING CESSATION THERAPY

Smokers that have alleles associated with high activity of the enzyme (CYP2A6*1/*1B) experience serious symptoms of abstinence during breaking the habit. This correlation is more visible in NRT- using individuals when the delivered dose of nicotine is reduced during the duration of therapy (Kubota et al., 2006). People with a low rate of nicotine metabolism smoke less cigarettes and therefore need lower doses of nicotine from NRT (O'Loughlin et al., 2004). Individuals with normal enzyme activity become more easily addicted than those with a lower rate of metabolism and expressing CYP2A6*9, CYP2A6*2 or CYP2A6*4 alleles (Audrain-McGovern et al., 2007). According to Lerman and others (Lerman et al., 2006), in the group using transdermal nicotine, the intensity of cravings increased linearly with the increased duration of therapy (Kubota et al., 2007). According to Lerman and others (Lerman et al., 2006), in the group using transdermal nicotine, the intensity of cravings increased linearly with the increased duration of therapy (Kubota et al., 2007). Also, in individuals with normal enzyme activity, smoking behaviour and response to NRT. Increased likelihood of being a smoker and higher amount of cigarettes smoked per day (Gambier et al., 2005).
is an example of CYP2A6 inhibitor (Damaj et al., 2007). In pharmacokinetic studies on methoxalen, after its oral administration post an overnight period of abstinence, higher concentrations of nicotine in the plasma were observed. A reduced desire for smoking was also observed (Sellers & Tyndale, 2000). Therefore, it is thought that inhibition of the CYP2A6 activity could be considered as a smoking cessation strategy. The polymorphism of CYP2A6 is also connected with the age of smoking initiation and the age of occurrence of chronic obstructive pulmonary disease (COPD) in smoking patients (Siedlinski et al., 2011). Inhibition of CYP2A6 could enhance the effectiveness of nicotine gums, patches and other forms of NRT, due the fact that these forms provide about 50% of the plasma concentration obtained by smoking (Sellers et al., 2003; Benowitz et al., 1997).

CLINICAL IMPLICATIONS OF NICOTINE METABOLISM

Metabolism of nicotine, mainly through CYP2A6, also has many clinical implications, including efficacy and safety of NRT and occurrence of several diseases. This makes the type of nicotine metabolism a potential predictor of clinical outcomes in patients with cardiovascular disease, addicted to nicotine, and those using NRT, as well as taking other medications. The most significant clinical implications related to the type of nicotine metabolism are summarized in Table 1.

CONCLUSIONS

The variety of cytochrome P-450 isoforms that take part in nicotine metabolism makes this topic significant due to its clinical consequences. In reference to CYP2A6, likelihood of becoming a smoker, consumption of cigarettes per day, and response to nicotine replacement therapy are often mentioned in contrast to other processes, such as metabolism of drugs and carcinogenesis. Genotyping toward CYP2A6 may be a helpful clinical tool in a group of patients using nicotine, irrespectively of the way of its administration, in order to assess their type of nicotine metabolism and its clinical significance.

Conflicts of interest

L.K. works as an expert for the Polish National Committee for Standardization and for the European Committee for standardization of requirements and test methods for e-liquids and emissions. L.K. was also an employee of the Institute of Occupational Medicine and Environmental Health. One of the institute’s objectives is outsourcing for the industrial sector, including manufacturers of e-cigarettes. However, this has no influence on the study’s design.

REFERENCES

Al Koudsi N, Ahlawati JS, Lin SK, Sellers EM, Tyndale RF (2009) A novel CYP2A6 allele (CYP2A6*35) resulting in an amino-acid substitution (Arg438Thr) is associated with lower CYP2A6 activity in vivo. Pharmacogenomics J 9: 74–282. https://doi.org/10.1038/ pg.2009.11
Audrain-McGovern J, Al Koudsi N, Rodriguez D, Willey EP, Shields PG, Tyndale RF (2007) The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatr Res 61: 264–274. https://doi.org/10.1203/peds.2006.1583
Benowitz NL, Zevin S, P. Jacob, 3rd (1997) Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol 43: 259–267
Benowitz NL, Swan GE, Jacob P 3rd, Lessov-Schlaggar CN, Tyndale RF (2006) CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80: 457–467. https://doi.org/10.1016/j.cpt.2006.08.011
Benowitz NL, Hukkanen J, Jacob P 3rd (2000) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 192: 29–60. https://doi.org/10.1007/107578-50.092-5007-3
Berkman CE, Park SB, Wrighton SA, Cashman JR (1995) In vitro–in vivo correlations of human (S)-nicotine metabolism. Biochem Pharmacol 50: 565–570
Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P 3rd, Benowitz NL (1992) Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N-oxide. Chem Res Toxicol 5: 556–564
Chen LS, Bloom AJ, Baker TB, Smith SS, Willey WC, Martinez M, Sae- cone N, Hutsukami D, Goate A, Bierut L (2013) Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6). Addiction 108: 129–137
Crawford EL, Weaver DA, DeMuth JP, Jackson CM, Khuder SA, Frampton MW, Uret M, Thilly WG, Willey JC. (1998) Measurement of cytochrome P450 2A6 and 2E1 gene expression in primary human bronchial epithelial cells. Carcinogenesis 19: 1867–1871
Damaj MI, Liu FC, Sellers EM, Tyndale RF, Martin BR (2007) Inhibition of nicotine metabolism by methoxalen: Pharmacokinetic and pharmacological studies in mice. J Pharmacol Exp Ther 320: 250–257. https://doi.org/10.1124/jpet.106.111227
Dantje JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neurou 16: 905–908
Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, Benowitz NL (2004) Nicotine metabolism ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther 76: 64–72. https://doi.org/10.1016/j.clpt.2004.02.011
Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: a function in xenobiotics metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43: 149–173
Di YM, Chow VD, Yang LP, Zhou SF (2009) Function, structure, regulation and polymorphism of human cytochrome P450 2A4, Cardio Metab Dis 10: 754–780
Draper AJ, Madan A, Parkinson A (1997) Inhibition of cytochrome P-450: hydroxylase activity in human liver microsomes. Arch Biochem Biophys 344: 47–61
Fernandez-Salguero P, Hoffman SM, Choleron S, Mohnenheiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR (1995) A genetic polymorphism in cytoarin 7-hydroxylizion: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 57: 651–660
Fukami T, Nakajima M, Yoshioka R, Tsushima Y, Fujiki Y, Kato M, McLeod HL, Yokoi T (2004) A novel polymorphism of human CYP2A6 gene CYP2A6*1H is an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo. Clin Pharmacol Ther 76: 519–527. https://doi.org/10.1016/j.clpt.2004.08.014
Fukami, T, Nakajima M, Higashi E, Yamanaka H, Sakai H, McLeod HL, Yokoi T (2005) Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity. Drug Metab Dispos 33: 1202–1210. https://doi.org/10.1124/dmd.105.004994
Gaida LA, Ingelman-Sundberg M, Miller NA, Leeder JS, Whirl-Carillo M, Klein TE; PharmVar Steering Committee (2018) The pharmacogene variation (PharmVar) consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther 103: 399–401. https://doi.org/10.1002/cpt.910.
Gambier N, Batt AM, Marie B, Pfitzer M, Siest G, Visvikis-Siest S (2005) Association of CYP2A6*1B genetic variant with the amount of smoking in French adults from the Stanislas cohort. Pharmacol Genet Environ 7: 399–401. https://doi.org/10.3233/PG-2004-5-2
Grodow W, Albano RM, Moraes EG, Pinho PR, Nunes RA, Saito EH, Fukami, T, Nakajima M, Higashi E, Yamanaka H, Sakai H, McLeod HL, Yokoi T (2005) Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity. Drug Metab Dispos 33: 1202–1210. https://doi.org/10.1124/dmd.105.004994
Green TA, Brown RW, Phillips SB, Dworkin LP, Bartol MT (2002) Locomotor stimulant effects of nicotine: role of dopamine. Pharmacol Biochem Behav 74: 87–94
Gu DF, Hinks LJ, Morton NE, Day IN (2000) The use of long PCR to confirm three common alleles at the CYP2A6 locus and the reiteration between genotypic and smoking habit. Ann Hum Genet 64: 383–390
Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8: 101–111. https://doi. org/10.1208/s00033-005-0011-2
Hecht SS, Hochalter JB, Villalta PW, Murphy SE (2000) 2-Hydroxylation of nicotine by cytochrome P450 2A6 and human micro-
somes: formation of a lung carcinogen precursor. Proc Natl Acad Sci U S A 97: 12493–12497. https://doi.org/10.1073/pnas.220207697
Ho MK, Mwenifumbo J, Al Kousal N, Okuyemi KS, Ahlawat JS, Benowitz NL, Tyndale RF (2009) Association of nicotine metabo-
lique ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin Pharmacol Ther 85: 635–1386.
https://doi.org/10.1038.cptl.2009.19
Howard, L.C, Miksys S, Hoffmann E, Mas D, Tyndale RF (2003) Blood cotinine induced by nicotine and ethanol in rats is higher in smokers and alcoholics. Br J Pharmacol 138: 1376–1386.
Hukkainen JP, Jacob P 3rd, Benowitz NL. (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57: 79–115. https://doi.org/10.1124/pr.113.112457.
LARC Working Group on the Evaluation of Carcinogenic Risks to Hu-
mans. Tobacco smoke and involuntary smoking (2004) LARC Mon-
ey Eval Carcinog Risks Hum 83: 1–139. https://doi.org/10.1124/mol.107.039353.
Kharitonov SA, Turadaj JK (2000) Single dose methox-
afen effects on human cytochrome P-450 2A6 activity. Drug Metab Dispos 28: 28–33.
Kimonen, T, Juvonen RO, Alhava E, Pasanen M (1995) The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br J Pharmacol 114: 832–836.
Koengis LL, Peter RM, Thompson SJ, Rettie AE, Trager WF (1997) Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxyloxazolone. Drug Metab Dispos 25: 1407–1415.
Korhonen M, Doricakova A, Dvorak Z. (2015) Optical isomers of atorvastatin, rosuvastatin and fluvastatin enantiospecifically activate pregnancy X receptor, PXR and induce CYP2A6, CYP2B6, and CYP-
3A4 in human liver microsomes. PLoS ONE 10: e0137720. https://doi.org/10.1371/journal.pone.0137720.
Kosmider L, Delijewski M, Koszowski B, Sobczak A, Benowitz NL, Koenigs LL, Peter RM, Thompson SJ, Rettie AE, Trager WF (1997) Isolation and characterization of a cytochrome P450 of the IIA sub-
family from human liver microsomes. Eur J Biochem 254: 2061–2069.
Kozarek EA, Simonelli C, Kaukonen T, Juvonen RO, Alhava E, Pasanen M (2019) The inhibition of CYP4A11 in human liver microsomes. J Pharmacol Exp Ther 277: 1010–1015.
Nakajima M, Yamagishi S, Yamamoto H, Yamamoto T, Kuroiwa Y, Yokoi T (2000) Deficient cotinine formation from nicotine is at-
tributed to the whole deletion of the CYP2A6 gene in humans. Clin Pharmacol Ther 67: 57–69. https://doi.org/10.1067/mpt.2000.103957.
Nakajima M, Fukami H, Yamanaka H, Higashi E, Saito H, Yoshida R, Kwon JT, Meledin HL, Yokoi T (2006) Comprehensive evalu-
ation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther 80: 282–297.
O’Loughlin J, Paradis G, Kim W, DiFranza J, Meshedfeidian G, Mc-
Mullan-Davey E, Wong S, Hanley T, Tyndale RF (2004) Genetically decreased CYP2A6 and the risk of tobacco dependence: a prospec-
tive study of novice smokers. Tob Control 13: 422–428. https://doi.org/10.1136/tc.2003.007007.
Onica, T, Nichols K, Larin M, Ng L, Maslen A, Dvorak Z, Pascus-
iu JM, Vilarem MJ, Maule P, Kirby GM (2008) Dexamethasone-
mediated up-regulation in human CYP4A6 involves the glucocor-
tiocoid receptor and increased binding of hepatic nuclear factor 4a to the proximal promoter. Mol Pharmacol 73: 451–460. https://doi.org/10.1124/mol.107.039353.
Oscarsson, M, McLellan RA, Hullstein G, Agündez JA, Benitez J, Rautio A, Raunio H, Pelkonen O, Ingelman-Sundberg M (1999) Identifi-
cation and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism. FEBS Lett 460: 321–327.
Purnapatte K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259: 1–15. https://doi.org/10.1016/j.canlet.2007.10.024.
Rae JM, Johnson MD, Lippman ME, Folkhall DA (2001) Rifampin is a selective, pleiotropic inducer of cytochrome P450 polymor-
sisms in human hepatocytes: studies with cDNA and oligonucleotide expression ar-
rays. J Pharmacol Exp Ther 299: 849–857.
Rautio A, Rutoitio G, Guttién H, Pelkonen O (2001) Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol 52: 357–363.
Ross KC, Gubner NR, Tyndale RF, Hawk LW Jr, Lerman C, George TP, Cinquepirla P, Schnorr RA, Benowitz NL. (2016) Racial differ-
ces in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking. Pharmacol Biochem Behav 148: 1–7. https://doi.org/10.1016/j.pbb.2016.05.002.
Rossini A, de Almeida Simão T, Albar M, Milolo LF (2008) CY-
P2A6 polymorphisms and risk for tobacco-related cancers. Pharma-
cogenomics II: 1737–1752.
Sadeque AJ, Fisher MB, Korzewska KR, Gonzalez FR, Rettie AE (1997) Human CYP2C9 and CYP2A6 mediate formation of the hepato-
toxin 4-ene-valproic acid. J Pharmacol Exp Ther 283: 698–703.
Sellers EM, Kaplan HL, Tyndale RF (2000) Inhibition of cytochrome P450 2A6 increases nicotine’s oral bioavailability and decreases smoking. Clin Pharmacol Ther 68: 35–43. https://doi.org/10.1067/ mcp.2000.107651.
Sellers EM, Tyndale RF (2000) Mimicking gene defects to treat smoking dependence. Nat N Y Acad Syr 909: 233–246.
Sellers EM, Tyndale RF, Ferrante LC (2003) Decreasing smoking be-
haviour and risk through CYP2A6 inhibition. Drug Discov Today 8: 487–493.
Siedlinski, M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Andersen W, Kong X, Renthal S, Woodcock J, Lassen PK, Dhillon EK, COPDGene Investigators, ECLIPSE Investigators (2011) Genome-wide association study of smoking behaviours in patients with COPD. Thorax: 66: 894–902. https://doi.org/10.1136/thoraxjnl-2011-200154.
Su EC, Tyndale RF (2008) Seleglidine is a mechanism-based inactiva-
tor of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 324: 992–999. https://doi.org/10.1124/ jpet.107.133900.
Su, T, Bao Z, Zhang QY, Smith Tj, Hong JY, Ding X. (2000) Human cytochrome P450 CYP2A13: predominant expression in the respira-
tory tract and its high efficiency metabolic activation of a tobacco-
specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 60: 5074–5079.
Swan GE, Lessov-Slagcrag CN, Bergen AW, He Y, Tyndale RF, Benowitz NL. (2009) Genetic and environmental influences on the ratio of 3-hydroxycotinine to cotinine in plasma and urine. Pharmacogenet Genomics 19: 388–398. https://doi.org/10.1097/ FPC.0b013e32823a4044.
Tavarespanen I, Juvonen R, Pelkonen O (2001) In vitro inhibition of cytochrome P450 to long-chain saturated human liver microsomes by a po-
cent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcyp-
romine), and its nonamine analog, cyclopropylbenzene. Drug Metab Dispos 29: 217–222.
Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gilles J, Sayyah J, Dennis PA (2005) Tobacco components stimulate Akt-
dependent proliferation and NF-kappaB-dependent survival in lung cancer cells. Carcinogenesis 26: 1183–1195.
Tyndale RF, Pianezza ML, Sellers EM (1999) A common genetic de-
cet in nicotine metabolism decreases risk for dependence and low-
ers cigarette consumption. Nicotine Tabl Res 1: 63–7; 69–70.
Tyndale RF, Sellers EM (2002) Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. *Ther Drug Monit* **24**:163–171

Vezina P, McGehee DS, Green WN (2007) Exposure to nicotine and sensitization of nicotine-induced behaviors. *Prog Neuropsychopharmacol Biol Psychiatry* **31**:1625–1638

Wassenaar CA, Dong Q, Amos CI, Spitz MR, Tyndale RF (2013) Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis. *Int J Mol Sci* **14**:8381–8392. https://doi.org/10.3390/ijms14048381

Wong HL, Murphy SE, Hecht SS (2005) Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic nitrosamines: N-nitrosonornicotine enantiomers, N-nitrosopiperidine, and N-nitrosopyrrolidine. *Chem Res Toxicol* **18**:61–69

Yoshida, R, Nakajima M, Watanabe Y, Kwon JT, Yokoi T (2002) Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. *Br J Clin Pharmacol* **54**:511–517

Zuber R, Anzenbacherova E, Anzenbacher P (2002) Cytochromes P450 and experimental models of drug metabolism. *J Cell Mol Med* **6**:189–198