Revised Mechanism for a Ruthenium-Catalyzed Coupling of Aldehyde and Terminal Alkyne

SUPPORTING INFORMATION

Anna Tomberg, Soumen Kundu, Feng Zhou, Chao-Jun Li*, and Nicolas Moïtessier*.

Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montréal, Quebec, Canada, H3A 0B8.

nicolas.moitessier@mcgill.ca; cj.li@mcgill.ca

Keywords: Olefination, Metal-vinylidene, Mechanism, Isotope Labeling, DFT
Table of Contents

S.1. Computational investigations. .. S3
 S.1.1. Gibbs free energy plots for mechanism proposals in schemes 4 and 6.. S3
 S.1.2. CO coordination to ruthenium in XVII.. S4
 S.1.3. Cartesian Coordinates ... S4

S.2. Experimental investigations ... S19
 S.2.1. Materials .. S19
 S.2.2. Methods .. S19
 S.2.3. Optimized Reaction Conditions .. S20
 S.2.4. 3H Isotope Labeling (Scheme 8) .. S20
 S.2.5. 18O Isotope Labeling .. S21
 S.2.6. Control Experiment with Methanol ... S22
 S.2.7. Aldehyde-Water Oxygen Exchange ... S26
 S.2.8. Role of additives ... S26

S.3. References ... S26
S.1. Computational investigations.

S.1.1. Gibbs free energy plots for mechanism proposals in schemes 4 and 6

Figure S1. Energies relative to intermediate VI are shown for mechanism proposals from schemes 4 (including 5) and 6. The red X indicates that from the TS₁ VI-VII it is not possible to obtain intermediate VII, which is illustrated in scheme 5.
S.1.2. CO coordination to ruthenium in XVII

Figure S2. Potential Energy Surface Scan for the loss of CO from XVII.

S.1.3. Cartesian Coordinates

I, Scheme 1(B)

ENERGY = -5814.92026139 a.u.

Ru 0.41281 -0.30500 0.10417
Cl 2.48214 0.30494 -0.41973
Cl 0.48769 -2.20770 1.26130
C -0.13343 1.82767 -0.09565
C -1.27112 2.22121 0.81075
C -0.27410 1.25489 -1.37085
C -1.59183 0.96956 -2.05307
C -2.40084 1.19020 0.85867
C -1.89141 -0.22397 0.75369
C -2.04630 -0.46981 -1.81648
C -1.76570 -0.95405 -0.42091
H 0.79192 2.36285 0.09416
H -1.65755 3.20827 0.50657
H -0.85837 2.35614 1.81829
C 0.57962 1.36194 -2.03232
H -2.34656 1.80684 -1.71961
H -2.94893 1.29799 1.80178
H -1.47369 1.14133 -3.12947
H -3.13200 1.37571 0.06582
H -1.87380 -0.79774 1.67486
H -3.11431 -0.60053 -2.05542
H -1.50346 -1.12918 -2.50484
H -1.71544 -2.03348 -0.30986

VI, Figure 1(B)

ENERGY = -6010.0053274 a.u.

Ru 0.07842 0.20554 0.81788
Cl 1.99338 1.45802 1.20582
Cl 0.66953 -1.28921 2.45936
C -1.78913 0.70099 -1.73050
C -0.67586 -1.41201 -0.99359
C -0.85226 2.08245 0.21188
C -2.14905 2.16665 0.97402
C -2.93898 0.85235 1.05922
VI, Figure 1(C)

ENERGY = \(-6009.99616485\) a.u.

	x	y	z
Ru	0.21181	0.15801	0.69859
Cl	0.95105	1.76009	2.26080
Cl	0.88160	-1.44246	2.25810
C	-0.51515	1.20101	-1.26058
C	0.08959	2.01201	-0.15401
C	1.99145	0.20397	0.57771
C	-2.74424	0.89724	0.85830
C	-1.81619	-0.27557	1.08601
C	1.40670	1.15113	0.06461
C	-1.83832	0.09136	-1.37146
C	1.08773	-2.13680	-4.03035
C	0.97443	-1.71497	-5.48911
C	0.86769	-0.73209	-0.72680
C	1.49118	-1.37219	-1.67298
C	1.58318	1.00535	3.12621
C	-1.42117	0.36901	-2.99827
C	-2.55152	1.01755	-1.82944
C	0.35779	1.41815	-1.68693
C	0.05763	2.77710	0.02097
C	-2.62853	2.90419	0.01495
C	1.74802	2.69169	1.52763
C	-1.77683	-0.67189	2.09730
C	1.13765	-2.15852	0.36790
C	1.25906	1.69703	-1.97493
C	-2.89054	1.29617	1.47985
C	3.42983	0.65328	0.03753
C	3.37070	1.03137	1.74688
C	0.11013	-2.48451	-3.66674
C	0.63706	-2.54440	-6.12103
C	1.76473	-2.99696	-3.93178
C	1.95740	-2.29793	-1.32596
C	0.25352	-0.89639	-5.61118
C	0.99033	-0.10232	-3.31404
C	1.93700	-1.36348	-5.88296
C	2.62190	-0.79128	-3.38454
Scheme 4

TS_{VI-VII}

Elemental	x1	y1	z1
Ru	-0.61336	0.34175	0.95485
Cl	1.58655	0.61231	1.74982
C1	-0.56696	-1.93501	1.50289
O	-0.51925	-1.19540	-1.63116
C2	-2.17033	2.69268	-0.50076
C3	-0.95494	2.49575	0.37887
C4	-0.95235	2.33184	1.75404
C5	-2.14765	2.15176	2.65064
C6	-3.30735	1.40506	1.98871
C7	-2.81379	0.22512	1.18267
C8	-2.56829	0.21412	-0.17584
C9	-2.69392	1.38845	-1.10312
C10	1.21331	3.14542	-2.56770
C11	1.85515	4.50387	-2.33205
C12	0.10052	0.33726	-0.79945
C13	0.91045	0.78968	-1.73725
C14	1.71748	2.04808	-1.62875
C15	0.06027	-2.27174	-1.76235
C16	1.38359	-2.69896	-1.36400
C17	2.18214	-2.03838	-0.41492
C18	1.85246	-3.87557	-1.97887
C19	3.42562	-2.56194	-0.08789
C20	3.89437	-3.71661	-0.71848
C21	3.11328	-4.37126	-1.67459
C22	-1.90060	3.37631	-1.31442
C23	-2.95479	3.20829	0.06376
H1	-0.03036	2.88114	-0.02697
H2	-0.03239	2.59259	2.27006
H3	-2.47636	3.13040	3.03828
H4	-1.81442	1.58055	3.53534
H5	-2.92283	-0.74796	1.65375
H6	-2.55549	-0.75774	-0.65526
H7	-2.11769	1.15684	-2.00628
H8	-3.73947	1.50294	-1.43127
H9	-3.90230	2.07823	1.36361
H10	-3.98635	1.03665	2.76691
H11	0.12353	3.23216	-2.45200
H12	1.45061	5.25849	-3.01641
H13	1.37745	2.62870	-3.60845
H14	1.02576	0.21611	-2.65009
H15	1.67031	4.85289	-1.30744
H16	1.73858	2.38830	-0.58713
H17	2.94224	4.47197	-2.48125
H18	2.76188	1.80450	-1.87590
H19	4.87016	-4.12009	-0.44973
H20	3.48221	-5.27092	-2.16329
H21	1.21900	-4.39504	-2.69777
H22	4.02541	-2.06250	0.67054
H23	1.82764	-1.14899	0.09842
H24	-0.51608	-3.03432	-2.31027

Intermediate formed after TS_{VI-VII}

From here, the formation of compound VII is not possible.

Scheme 5

Elemental	x1	y1	z1
Ru	-1.0104380000	0.4976460000	0.5386770000
Cl	-0.5903990000	-1.8348520000	1.4028590000
Cl	0.7667090000	1.3409930000	1.8198940000
O	-0.0699680000	-1.5834560000	-1.1697280000
C1	3.6785340000	-4.0403080000	-0.0941410000
C2	4.4177830000	-3.1336680000	0.6634120000
C3	3.8126670000	-1.9706500000	1.1436640000
C4	2.3310810000	-3.7908390000	-0.3492740000
Ts-VII (second step), Scheme 5

This TS was found using the product as starting point, since the intermediate that should have been the reactant side of the second step was not found. The total energy difference between compound VI and this second TS structure is 24.6 kcal/mol.

ENERGY = -6355.2209723 a.u.

IfQ = -331.0801

Ru = -0.7041810000 -0.2912830000 0.9475760000
Cl = -0.4349500000 -1.9418780000 1.5700190000
Cl = 1.4970890000 0.7633280000 1.6408900000
O = -0.6793720000 -1.2053280000 -1.5103800000
C = 3.3375520000 -3.8703190000 -2.0623300000
C = 3.8797730000 -3.5725190000 -0.8106900000
C = 3.2952580000 -2.5863430000 -0.0112030000
C = 2.2050930000 -1.5234370000 -0.6234000000
C = 2.5733880000 -0.5713430000 1.3582680000
H = -2.9270920000 2.7472600000 1.9938700000
H = -3.5172040000 3.5465690000 0.5522730000
H = -0.8904120000 3.1383660000 0.7771530000
H = -0.4179680000 2.2884740000 -1.3631900000
H = -3.3230720000 2.2270550000 -1.8418700000
H = -2.0246370000 1.9512180000 -2.9876770000
VI, Figure 2(A)

ENERGY = -6086.47720180 a.u.

Atom	x	y	z
C	-2.8271990000	0.0683990000	1.4214540000
C	-3.3293870000	1.3250730000	2.0978880000
C	-2.1737260000	2.2318660000	2.5280290000
C	-1.0872500000	2.3507800000	1.4916730000
C	-1.2346200000	2.2996350000	0.1144030000
C	-2.5405750000	2.3031060000	-0.6572470000
H	0.0593640000	-2.0537070000	-3.1758300000
H	1.7612070000	-1.1222030000	0.1821890000
H	3.7246600000	-2.3527800000	0.9545900000
H	1.7679590000	-3.4324200000	-3.4676120000
H	3.7953480000	-4.6300650000	-2.6929160000
H	4.7688590000	-4.0997480000	-0.4618880000
H	2.5968860000	1.1043280000	-1.9566300000
H	3.5619170000	3.2357410000	2.9246640000
H	1.7679140000	1.8285920000	-0.6007070000
H	2.9552600000	4.0427500000	-1.4711930000
H	0.2931230000	0.3671710000	-2.8722500000
H	1.2242780000	2.5681300000	-3.5498000000
H	2.5280640000	4.6671940000	-3.0729500000
H	0.5902610000	3.4116600000	-2.1508190000
H	-3.9094920000	1.0369870000	2.9826610000
H	-4.0226260000	1.8643290000	2.1442390000
H	-4.1497850000	0.9216950000	-1.1636510000
H	-2.6212250000	0.5640000000	-1.9379400000
H	-2.6935280000	-1.1526310000	-0.2844980000
H	-2.8219550000	-0.8317450000	2.0307270000
H	-1.7139000000	1.8205600000	3.4397930000
H	-2.5404990000	3.2315590000	2.8156200000
H	-0.1456160000	2.7406850000	1.8662430000
H	-0.3765740000	2.6561820000	-0.4404910000
H	-3.2919170000	2.8751300000	-0.1022990000
H	-2.3880490000	2.8566530000	-1.5913850000
Figure 2(B), Scheme 7(B)

ENERGY = -6162.90559890 a.u.

iFQ = -250.26 cm⁻¹

XIII (S) + 2H₂O, Scheme 7

ENERGY = -6162.9059890 a.u.
XIII (S→T), Scheme 7
ENERGY = -6162.89071413 a.u.

Ru -0.34862 0.24316 0.49582
Cl 1.14149 1.52132 2.00801
Cl 0.77792 -1.83718 1.14111
O 2.09816 0.39499 -1.03699
O 3.15526 -0.27255 1.16387
C -1.47658 2.06161 0.63862
C -2.45863 1.93220 1.77627
C -1.64705 1.57136 -0.65787
C -2.92223 0.92607 -1.17843
C -3.20287 0.58825 1.81307
C 3.17557 -2.47432 -3.63840
C -2.31132 -0.56048 1.43036
C 0.72368 0.20957 -1.23498
C 1.74967 -2.16631 -3.19922
C -2.95370 -0.59811 -1.03077
C -2.18920 -1.09147 0.16667
C 1.30425 -0.71527 -3.48033
C 0.33845 -0.21521 -2.44399
H 2.87171 -0.00925 0.21596
H 2.54875 0.31033 -1.88963
H -0.76617 2.87272 0.76529
H -3.18158 2.76422 1.74697
H -1.89014 2.05669 2.70798
H -1.03682 2.03786 -1.42173
H -3.78159 1.38295 -0.67419
H -3.58389 0.41272 2.82688
H -3.03621 1.18814 -2.23710
H -4.08152 0.61036 1.16043
H -1.83362 -1.10880 2.24127
H 3.32798 -2.30003 -4.71160

C -1.86476 0.93977 -1.79013
C -5.07246 0.63393 1.01304
C 2.01658 -2.24622 -5.57438
C -2.01418 -0.45042 0.99639
C 0.89342 -0.31316 -1.03489
C 1.61046 -2.41569 -4.11686
C -2.80704 -0.56036 -1.53349
C -1.54517 -1.01599 -0.19724
C 1.73034 -1.12853 -3.30459
C 0.94731 -1.18492 -2.02443
H 2.19539 1.07477 -0.24720
H 2.81957 0.31931 -1.55156
H -0.48452 2.90847 0.73252
H -3.16860 2.73886 0.46392
H -2.39466 2.41842 2.01626
H 0.00675 2.03841 -1.42092
H -2.81103 1.48587 -1.67522
H -3.68753 0.51027 1.91097
H -1.55434 1.08897 -2.83090
H -3.74593 0.47891 0.15999
H -1.91284 -1.04059 1.90148
H 1.37628 -1.50965 -6.07595
H -3.15247 -0.80804 -1.58733
H 1.34817 -0.29095 -3.91132
H -1.60713 -1.14027 -2.32885
H 0.56690 -2.79868 -4.07534
H -1.16532 -2.03298 -0.14551
H 1.92552 -3.18912 -6.12562
H 2.20447 -3.20540 -3.63897
H 2.80171 -0.91012 -3.14657
H 3.05382 -1.89871 -5.67200
H 0.24596 -2.00490 -1.92349
H 2.19941 0.17149 1.60821
H 1.58559 1.54503 1.97566

S10
XIII (T), Scheme 7
ENERGY = -5623.51223180 a.u.

Ru -0.13860 -0.11728 0.63729
Cl 0.88441 -1.06377 2.46761
O 1.99160 1.59214 -0.19447
C -1.13501 1.42747 -0.49005
C -2.07697 2.20237 0.39596
C -1.39910 0.19798 -1.11749
C -2.73135 -0.52726 -1.11621
C -2.98957 1.33058 1.26899
C 3.97631 -0.42751 -4.59128
C -2.28141 0.12977 1.84191
C 1.51623 0.32655 -0.36950
C 2.81722 -0.51784 -3.61183
C -2.86407 -1.56181 0.00672
C -2.25921 -1.12408 1.30958
C 3.22658 -0.33040 -2.14970
C 2.07616 -0.55620 -1.22196
H 2.82648 1.69700 -0.66985
H -0.34113 2.03463 -0.91735
H -2.68482 2.89267 -0.21178
H -1.46272 2.84269 1.04438
H -0.74612 -0.04635 -1.95058
H -3.54707 0.20225 -1.07112
H -3.37219 1.93889 2.09802
H -2.85109 -1.04029 -2.07817
H -3.86963 1.01098 0.70348
H -1.86706 0.24243 2.84064
H 4.46221 0.55662 -4.55268
H -3.91992 -1.84303 0.14924
H 3.66233 0.67497 -2.03047
H -2.35445 -2.48409 -0.29950
H 2.05271 0.23146 -3.86092
H -1.85958 -1.91260 1.94095
H 3.63278 -0.58997 -5.62012
H 2.32270 -1.49452 -3.71241
H 4.04385 -1.02961 -1.91250
H 4.74458 -1.17917 -4.37074
H 1.61676 -1.54035 -1.26489

XI, Scheme 6
ENERGY = -6086.39956781 a.u.

Ru 0.1633640000 0.2929200000 0.4951770000
Cl 1.1983640000 -1.6849480000 0.9731070000
O 1.4380470000 0.9274350000 2.7862810000
C 0.2498515000 0.1189850000 -1.0675700000
C 0.6574210000 -0.0514180000 -2.5078300000
C 1.5267100000 -0.6158670000 -3.5954070000
C -1.8923230000 -1.0855590000 0.0665420000
C -2.5193570000 -0.5497610000 -1.1874190000
C 1.9620350000 -2.0725380000 -3.3271020000
C 1.1667850000 0.1764400000 -1.2779110000
C -2.0666910000 -0.5731700000 1.3200420000
\[TS_{XIII-XIV} \text{(trans). Scheme 7} \]

ENERGY = -5968.74278924 a.u.

\[iFQ = 1114.44 \text{ cm}^{-1} \]

\[
\begin{align*}
\text{Ru} & : -1.21326, 0.50490, 1.02422 \\
\text{Cl} & : -0.16550, -0.55125, 2.78218 \\
\text{O} & : 1.17650, 1.76264, 0.50196 \\
\text{O} & : 0.32803, 0.28675, 0.60314 \\
\text{C} & : -2.08425, 2.07406, -0.19573 \\
\text{C} & : 2.89344, 3.02322, 0.65097 \\
\text{C} & : -2.50882, 0.83372, -0.69707 \\
\text{C} & : -3.91479, 0.27544, -0.57553 \\
\text{C} & : 3.83964, 2.34239, 1.64746 \\
\text{C} & : 3.26299, 0.55188, -4.22635 \\
\text{C} & : -3.23248, 1.12911, 2.30086 \\
\text{C} & : 0.45361, 0.84290, -0.04437 \\
\text{C} & : 2.03904, 0.08059, -3.45491 \\
\text{C} & : -4.13061, 0.61389, 0.65650 \\
\text{C} & : -3.39348, -0.15762, 1.88352 \\
\text{C} & : 1.86373, 0.82571, -2.13670 \\
\text{C} & : 0.89177, 1.18704, -1.18650 \\
\text{C} & : 2.70734, -3.83452, -1.82792 \\
\text{C} & : 3.89764, -3.56478, -2.51082 \\
\text{C} & : 2.21913, -2.92372, -0.89839 \\
\text{C} & : 4.60508, -2.39201, -2.24374 \\
\text{C} & : 2.91037, -1.72920, -0.65245 \\
\text{C} & : 4.11966, -1.47937, -1.31140 \\
\text{C} & : 2.35631, -0.75006, 0.28599 \\
\text{H} & : 2.22656, 1.16114, 0.70103 \\
\text{H} & : -1.25550, 2.55107, -0.71274 \\
\text{H} & : -3.46082, 3.71112, 0.00277 \\
\text{H} & : -2.18482, 3.65517, 1.20327 \\
\text{H} & : -1.92993, 0.44760, -1.53239 \\
\text{H} & : -4.63559, 1.10213, -0.58978 \\
\text{H} & : -4.31051, 3.06449, 2.42732 \\
\text{H} & : -4.13564, -0.31671, -1.47180 \\
\text{H} & : 4.77847, 2.06447, 1.15891 \\
\text{H} & : -2.75237, 1.27844, 3.26473 \\
\text{H} & : 3.18774, 1.61387, -4.49423
\end{align*}
\]
H \(-5.20680\) -0.7015 0.87808
H 1.53925 1.86063 -2.32997
H -3.78655 -1.62990 0.42581
H 1.13560 0.20525 -4.07033
H -3.05653 -0.93912 2.55857
H 3.40514 -0.01789 -5.15217
H 2.13260 -0.99620 -3.25494
H 2.64101 0.93415 -1.64001
H 4.16796 0.42904 -3.61809
H 0.29578 -0.64592 -1.54865
H 2.16341 -4.75646 -2.02677
H 4.27814 -4.27758 -3.24056
H 1.29010 -3.12032 -0.36240
H 1.57353 -1.10390 0.96312
H 5.53980 -2.18792 -2.76345
H 4.66313 -0.56662 -1.07748

\textbf{TS_{XIII-XIV}} (\textit{cis}), Scheme 7
ENERGY = \(-5968.7406835\) a.u.
iFQ = \(-1117.81\) cm\(^{-1}\)

Ru -1.21768 0.49641 0.9128
Cl -0.16992 -0.55974 2.73924
O 1.17208 1.75415 0.45902
O 3.02361 0.27826 2.55824
C -2.08867 2.06557 -0.23867
C -2.89786 3.01473 0.60803
C -2.51324 0.82523 -0.74001
C -3.91921 0.26695 -0.61847
C -3.84406 2.33390 1.60452
C 3.25857 0.54339 -4.26929
C -3.23690 1.12062 2.25792
C 0.44919 0.83441 -0.08731
C 2.03462 0.07210 -3.49785
C -4.13503 -0.62238 0.61356
C -3.39790 -0.36611 1.84058
C 1.85931 0.81722 -2.17964
C 0.88735 0.17855 -1.22944
C 2.70292 -3.84301 -1.87086
C 3.89322 -3.57327 -2.55376
C 2.21471 -2.93221 -0.94133
C 4.60066 -2.40058 -2.28668
C 2.90595 1.73769 -0.69539
C 4.11524 -1.48786 -1.35434
C 2.35189 -0.75855 0.24305
H 2.22214 1.15265 0.65809
H -1.25992 2.54258 -0.75568
H -3.46524 3.70263 -0.04017
H -2.18924 3.66668 1.16033
H -1.93435 0.43911 -1.57533
H -4.63801 1.09364 -0.63272
H -4.11473 0.35600 2.38438
H -4.14006 -0.32520 -1.51474
H -4.78289 2.05598 1.11597
H -2.75679 1.26995 3.22179
H 3.18332 1.60538 -4.53717
H -5.21130 -0.71564 0.82994
H 1.53483 1.85214 -2.37291
H -3.79097 -1.63839 0.38287
H 1.13118 0.19676 -4.11327
H -3.06095 -0.94761 2.51563
H 3.40072 -0.02638 -5.19511
H 2.12818 -1.00469 -3.29788
H 2.83659 0.92566 -1.68295
H 4.16354 0.42055 -3.66103
H 0.29136 -0.65441 -1.59159
H 2.15899 -4.76495 -2.06971
H 4.27372 -4.28607 -3.28359
H 1.28568 -3.12881 -0.40534
H 1.56911 -1.11239 0.92018
S13
XIV (cis), Scheme 7

\[
\begin{align*}
\text{ENERGY} & = -5968.78676196 \text{ a.u.} \\
\text{Ru} & = -1.14335 \ 0.46819 \ 0.77324 \\
\text{Cl} & = -0.65960 \ -1.50082 \ 1.86946 \\
\text{O} & = 1.32935 \ 2.06815 \ 0.47158 \\
\text{C} & = 1.64947 \ 2.55911 \ 0.68878 \\
\text{H} & = 4.65871 \ -0.57511 \ -1.12042 \\
\end{align*}
\]

XIV (trans), Scheme 7

\[
\begin{align*}
\text{ENERGY} & = -5968.79112263 \text{ a.u.} \\
\text{Ru} & = 0.46217 \ 0.84272 \ 0.66746 \\
\text{Cl} & = 1.00546 \ 0.70837 \ 2.50748 \\
\text{O} & = 2.02586 \ 2.39031 \ -0.56921 \\
\text{C} & = -1.91587 \ 1.80694 \ -0.56012 \\
\text{H} & = -0.51999 \ 0.48864 \ 1.49971 \\
\end{align*}
\]
C -2.85550 -0.61717 -0.72951
C -3.62600 1.48387 1.32234
C 4.50418 0.72889 -4.19944
C -2.56750 0.71761 2.05712
C 0.95788 1.21887 -0.65839
C 3.14049 0.31416 -3.66489
C -2.74022 0.71761 2.05712
C 1.67703 0.25454 -1.57860
C -0.51724 -3.65272 -1.25657
C -0.70978 -4.10780 0.05053
C 0.36560 -2.60549 -1.50542
C 0.86168 -2.44471 0.84531
C 2.15976 -0.98517 -0.79342
H 2.42169 -0.15408 0.96281
H -1.38106 2.53641 -1.16515
H -3.82112 2.78683 -0.40541
H -2.62048 3.30592 0.76369
H -1.22807 0.29909 -1.86953
H -3.85703 -0.18743 -0.86292
H -4.20116 2.08234 2.04047
H -2.74407 -1.36797 -1.52062
H -4.33687 0.78750 0.86717
H -2.12513 1.18351 2.93626
H 4.58114 1.62051 -4.28407
H -5.71978 -1.76862 0.99046
H 2.62816 1.99704 -2.41611
H -2.08691 -2.21714 0.47623
H 2.35275 0.60956 -4.37443
H -1.50559 -1.05295 2.43406
H 4.70288 0.29928 -5.18822
H 3.09346 -0.78457 -3.60474
H 3.72004 0.86169 -1.64891
H 5.30155 0.39677 -3.52285
H 0.91907 -0.07423 -2.30151
H -1.04567 -4.12733 -2.08242
H -1.39326 -4.93168 0.24951
H 0.53860 -2.28229 -2.53267
H 2.84256 -1.51020 -1.47306
H -0.18726 -3.83320 2.12037
H 1.41474 -1.99235 1.66459

XIV (cis) + LiCl, Figure 3

ENERGY = -6438.73453708 a.u.

Ru -1.27958 0.28067 0.01585
Cl -1.20457 -2.02553 0.01747
O 1.08617 1.96943 -0.33350
O 3.56973 0.89251 -1.22040
C -1.50131 2.01877 1.26222
C -2.50969 1.74368 2.34888
C -1.78237 2.42341 -0.05097
C -3.15198 2.76283 -0.60400
C -3.83637 1.14069 1.86247
C 0.00172 -0.55531 -4.48180
C -5.63556 0.09155 0.80803
C 0.63675 0.83569 -0.35700
C 0.01438 -0.58768 -2.96187
C -3.81295 1.56595 -1.28847
C -3.64300 0.27343 -0.53983
C 1.41021 -0.33132 -2.41231
C 1.52604 -0.30163 -0.88484
C 4.12927 -3.68846 0.27264
C 5.06215 -3.90490 -0.74440
C 3.46967 -2.46648 0.36433
C 5.32902 -2.89476 -1.66562

S15
Atom	X	Y	Z
C	3.73095	-1.44908	-0.56156
C	4.66424	-1.67047	-1.57562
C	2.98994	-0.13992	-0.43982
H	4.45278	1.11477	-0.89446
H	-0.50267	2.24931	1.62622
H	-2.70151	2.67168	2.91047
H	-2.04669	1.05597	3.06978
H	-0.94425	2.87975	-0.56677
H	-3.79096	3.17257	0.18474
H	-4.34537	0.67715	2.71625
H	-3.04182	3.56991	-1.33736
H	-4.50939	1.92077	1.49666
H	-3.58228	-0.93707	1.15398
H	0.33407	0.41930	-4.86272
H	-4.88065	1.76053	-1.47640
H	1.79360	0.61507	-2.81459
H	-3.35998	1.43441	-2.28017
H	-0.68641	0.17824	-2.57560
H	-3.64205	-0.62921	-1.14745
H	-0.99569	-0.75968	-4.88707
H	-0.96439	-1.54916	-2.59431
H	2.09188	-1.11073	-2.77823
H	0.68497	-1.31026	-4.88980
H	1.16192	-1.24549	-0.48025
H	3.91707	-4.47403	0.99634
H	5.58003	-4.85965	-0.81828
H	2.74130	-2.30084	1.5949
H	2.99301	0.15631	0.61814
H	6.05278	-3.05773	-2.45620
H	4.87295	-0.87797	-2.29198
Li	2.73262	2.66024	-0.98888
Cl	4.22353	4.11852	-0.93669

XV (cis), Figure 5

ENERGY $= -5892.32509360$ a.u.
XVI (cis), Figure 5
ENERGY = -5778.9569423 a.u.

Ru -1.00806 -0.01671 0.43158
Cl -0.72127 -1.96119 1.64336
C -1.16244 2.12629 0.24708
C -1.90300 2.72141 1.41395
C -1.73253 1.55607 -0.90302
C -3.21793 1.51275 -1.21358
C -3.21480 1.99963 1.77957
C 0.55620 -2.50462 -3.33244
C 0.50934 0.50282 1.69176
C 0.45606 -1.97169 -1.91369
C -3.90864 0.23329 -0.72515
C -3.42797 -0.25791 0.61190
C 0.95680 -0.53020 -1.79009
C 0.82453 -0.00315 -0.38931
C 5.43484 -0.97029 0.50169
C 5.99518 -0.35298 -0.61777
C 4.10551 -0.73297 0.84115
C 5.22020 0.51789 -1.38371
C 3.30210 0.10806 0.05507
C 3.88688 0.74723 -1.04838
C 1.87762 0.27531 0.40155
H -0.14032 2.48229 0.14708
H -2.10958 3.78752 1.21654
H -1.23673 2.70134 2.28237
H -1.08272 1.51550 -1.77265
H -3.70491 2.40115 -0.79784
H -3.49368 2.27302 2.80463
H -3.35220 1.58786 -2.29909
H -4.03712 2.34507 1.34692
H -2.85209 -0.02916 2.60721
H -0.05331 -1.90951 -4.02441
H -5.00165 0.36986 -0.70963
H 0.38736 0.10179 -2.48928
H -3.72187 -0.56816 -1.45170
H -0.58474 -2.03996 -1.55938
H -3.45665 -1.33399 0.76259
H 0.21061 -3.54371 -3.39552
H 1.03044 -2.60355 -1.22350
H 2.00147 -0.48467 -2.12700
H 1.59187 -2.47133 -3.69510
H 6.03687 -1.64330 1.11092
H 7.02960 -0.55321 -0.89443
H 3.66553 -1.22791 1.70633
H 1.68524 0.54603 1.44072
H 5.65609 1.02051 -2.24630
H 3.28393 1.43161 -1.64340

XVII (cis), Scheme 7
ENERGY = -5465.72010299 a.u.

Ru 0.42843 -0.24333 0.03903
Product olefin 1 (cis), Figure 5

ENERGY = -426.97590268 a.u.

Product olefin 1 (trans), Figure 5

ENERGY = -426.98225527 a.u.
S.2. Experimental investigations

S.2.1. Materials

Benzaldehyde and 4-anisaldehyde were purified by distillation under reduced pressure. 1- Decyne (98%, Aldrich), H2O18 (97% O18) and D2O (99.9% D, Cambridge Isotope Laboratories) were used as received. 2H-1-Decyne (>95% D incorporation, 86% isolated yield) was synthesized from 1-decyne following an established method. 2 Solvents were obtained in anhydrous form from a Pure-Solv Multiple Dispensing System. All work-up and purification procedures were carried out with reagent-grade solvents. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) or Sorbent Silica Gel 60 F254 plates. The developed chromatography was analyzed by UV lamp (254 nm) as visualization method.

S.2.2. Methods

All reactions were carried out under argon atmosphere unless otherwise stated. Flash column chromatography was performed with a Biotage Isolera One System and a Biotage ZIPTM 5g Si (40 – 63 μM) flash cartridge. Gas chromatography (GC-FID) analysis was conducted on a Shimadzu GC-2014 instrument equipped with a methanizer (a nickel hydrogenation catalyst which transforms CO to methane), a Porapak Q (80/100) column, and a flame-ionization detector (FID). Gas chromatography (GC-MS) were performed with a Restek Rxi®-XLB (30 m, 0.25 mm ID, 0.25 M) column using a Thermo Finnigan gas chromatograph (GC) equipped with a Trace DSQ mass spectrometer, a program-mable temperature vaporization (PTV) injector, and a COMBI PAL autosampler (LEAP technologies, CTC Analytics). High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (APCI) in a positive mode. The IR spectra were measured in KBr disks using ABB Bomem MB Series spectrometer with spectral resolution of 2 cm⁻¹. Nuclear magnetic resonance (NMR) spectra were recorded on Varian MERCURY plus-300 spectrometer (¹H 300 MHz, ¹³C 75 MHz) spectrometer or a MERCURY plus-400 spectrometer (¹H 400 MHz, ¹³C 100 MHz) or a MERCURY plus-500 spectrometer (¹H 500 MHz, ¹³C 125 MHz). Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.0 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of
doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), coupling constant (Hz), and integration.

S.2.3. Optimized Reaction Conditions

Unless otherwise mentioned, all reactions were performed under the previously optimized conditions.³ An oven-dried Biotage microwave tube was charged with [Ru(COD)Cl₂]₀ (5.6 mg, 0.02 mmol), CuCl₂·2H₂O (10.2 mg, 0.06 mmol), and LiCl (42.5 mg, 5 equiv.). Toluene (1.0 mL) was then added, followed by the addition of aldehyde (0.2 mmol) and terminal alkyne (0.8 mmol) of choice. The reaction tube was then sealed under argon and placed into a preheated oil bath at 120°C. The reaction was run for 16 h. After the reaction mixture was cooled to room temperature, it was filtered through a short silica gel plug and eluted with dichloromethane. The volatiles were removed in vacuo and the residue was purified by column chromatography (SiO₂).

S.2.4. ²H Isotope Labeling (Scheme 8)

The coupling between benzaldehyde and ²H-1-decyne under optimized conditions resulted in the desired product with scrambling of proton isotope information (²H/¹H = 42%/58% by ¹H NMR and 47%/53% by GC-MS) for the hydrogen connected to the olefinic C (C₂) bonded to C₈H₁₇ (Scheme 8A). On the other hand, the hydrogen connected to the olefinic C (C₁) bonded to the phenyl ring contained no deuterium (100% ¹H). When the reaction was performed with benzaldehyde and 1-decyne in the presence of D₂O (4 μL), similar to the previous case, the product exhibited partial incorporation of deuterium (²H/¹H = 14%/86% by ¹H NMR and 18%/82% by GC-MS) on C₂ and the hydrogen on C₁ contained only ¹H (Scheme 8C).

While ¹H NMR uses difference in integration values between the olefinic protons to ascertain percent deuterium incorporation, in a more direct evidence deuterium signals from C₂-²H for both E and Z isomers of the products were distinctly observed in the corresponding ²H-NMR spectra at 6.26 and 5.69 ppm, respectively (Figure S2).
Figure S2. 2H NMR spectrum of partially deuterated E- and Z-dec-1-en-1-ylbenzene formed in the reaction shown in Scheme 8.

S.2.5. 18O Isotope Labeling

Reaction head-space analysis and IR spectroscopy were used for these studies. Head-space of the final reaction mixture was analyzed by GC-MS to reveal CO (decarbonylation, GC-MS and GC-FID). The analysis of a typical reaction between 4-anisaldehyde and 1-decyne revealed the presence of CO (m/z 28, GC-MS), which was confirmed by matching the retention times of a CO standard and the head-space gas in a GC-FID instrument with an in-line methanizer (Scheme 3C1, Figure 6). When the reaction was performed in the presence of H$_2$O18 (6 μL), the head-space analysis revealed (Figure S6) the formation of both CO16 (100% rel. abundance) and CO18 (47% rel. abundance).

Moreover, IR spectrum of the solid formed at the end of the reaction revealed multiple metal–CO stretches, indicative of more than one CO occupying the coordination sites of ruthenium. Binding of CO to Ru has previously been implicated for the termination of the catalytic cycle. We have investigated the association between the formation of Ru–CO complex and the catalyst...
death in the theoretical section of this contribution (see text later). For the reaction in presence of H$_2$O16 (from hygroscopic LiCl or other sources), the IR ν(CO) bands of the Ru–CO complex were at 1989, 2038, and 2062 cm$^{-1}$ (Figure S4).4 The highest intensity ν(CO) bands for the reaction in presence of H$_2$O18 were at 1975, 2024, 2037, and 2063 cm$^{-1}$. The appearance of lower frequency IR bands at 1975 and 2024 cm$^{-1}$ is consistent with a Ru–CO18 complex.

Figure S3. Relative abundances of CO16 and CO18 produced in reactions in Scheme 3C$_1$ (Reaction 1, x-axis) and 3C$_2$ (Reaction 2, x-axis), respectively.

Figure S4. IR spectrum of the solid left over after the reaction.

S.2.6. Control Experiment with Methanol

Drying all the reagents, solvent, reaction tubes, the reactions were conducted in the presence of H$_2$O and MeOH respectively (at least 0.2 mmol/1.0 equiv each). In the case of H$_2$O, both
reactions should work; while with MeOH as proton source, if the reaction goes through mechanism in Scheme 6, intermediate XI would not be generated, and no product would be observed; however, the reaction will work following the mechanism in Scheme 4.

In glovebox, an oven-dried Biotage microwave tube were charged with \([\text{Ru(COD)Cl}_2]\) (5.6 mg, 0.02 mmol), CuCl (8.0 mg, 0.06 mmol), LiCl (42.4 mg, 5 equiv.). Then toluene (1.0 mL) was added, followed by injection of p-anisaldehyde (24 μL, 0.2 mmol), 1-decyne (144 μL, 0.8 mmol). The reaction tube was then sealed, moved out from glovebox, placed into the preheat oil bath (120 °C). The stirring rate was set to 750 rpm. The reaction was run for 18 h. After the reaction mixture was cooled to room temperature, it was filtered through a short silica gel plug eluted with EtOAc. The volatiles were removed in vacuo and the internal standard CH₃NO₂ (3.6 μL) was injected into the reaction mixture. The reaction yield was measured by crude ¹H NMR recorded by Bruker 400.

Figure S5. Control experiments with H₂O and Methanol.
Figure S6. 1H NMR spectrum of the product of reaction in Figure 9 using 1 eq. of H$_2$O.

Figure S7. 1H NMR spectrum of the result of reaction in Figure 9 using 1 eq. of MeOH: no product detected.
Figure S8. H₂O (1.0 eq., 3.6 μL) was added and product (m/z =246, 246) was detected by LC-MS.

Figure S9. MeOH (1.0 eq., 8.1 μL) was added and trace amount of product (m/z = 246, 276) was detected by GC-MS.
The two control experiments above were conducted with adding 1.0 equiv. of H\textsubscript{2}O and 1.0 equiv. of MeOH to the reaction mixture respectively. The experimental results undoubtedly show that water as proton source is essential for this Ru-catalyzed transformation; while the reaction doesn’t work with methanol as proton source. These observations are fully agreement with the experimental design to differentiate the mechanisms outlined above. In view of these results, the reaction mechanism highly favors the one in Scheme 6.

S.2.7. Aldehyde-Water Oxygen Exchange

![Scheme S1. Reaction carried out in presence of H\textsubscript{2}O18.](image)

The reaction was conducted with 3 equiv. of H\textsubscript{2}O18 under standard condition in the absence of alkyne for 18 hours. The starting material 4-methoxybenzaldehyde was recovered in 94% yield. The reaction indeed incorporated H\textsubscript{2}O18 into the substrate 4-methoxybenzaldehyde, which was detected by GC-MS with the ratio 1:1.

S.2.8. Role of additives.

The reaction between 4-anisaldehyde and 1-decyne (optimized conditions: Ru(COD)Cl\textsubscript{2}, CuCl\textsubscript{2}.2H\textsubscript{2}O, LiCl) resulted in a 86% product yield (GC-MS). Elimination of LiCl and CuCl\textsubscript{2}.dihydrate from the reaction resulted in diminished product yields of 78% and 30% (GC-MS), respectively. On the other hand, a reaction without Ru(COD)Cl\textsubscript{2} and in the presence of CuCl\textsubscript{2}.dihydrate (30 mol%) and LiCl (5 equiv) did not result in detectable product formation. This confirms that CuCl\textsubscript{2}.dihydrate and LiCl, while beneficial for improving the product yield are not prerequisites for the formation of the target alkenes. The presumed role of copper is likely to assist the removal of CO from Ru, thus improving catalyst turnover and the product yield.5

S.3. References

1. Armarego, W. L. F.; Chai, C. L. L. *Purification Of Laboratory Chemicals*; Fifth ed.; Elsevier Science, USA, 2003.
2. Bew, S. P.; Hiatt-Gipson, G. D.; Lovell, J. A.; Poullain, C. *Org. Lett.* **2012**, *14*, 456.
3. Guo, X.; Wang, J.; Li, C.-J. *J. Am. Chem. Soc.* **2009**, *131*, 15092.
4. Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. *J. Am. Chem. Soc.* **2001**, *123*, 11917.
5. Guo, X.; Wang, J.; Li, C.-J. *Org. Lett.* **2010**, *12*, 3176.