ON G-RADICAL SUPPLEMENT SUBMODULES

HASAN HÜSEYIN ÖKreten AND AYTEN PEKIN

Received 23 June, 2020

Abstract. In this work, we give some new properties of Rad-supplement and g-radical supplement submodules. Let V be a g-radical supplement of U in M and U or V be essential submodule of M. Then $\text{Rad}_g V = V \cap \text{Rad}_g M$. Let V be a g-radical supplement of U in M, U or V be essential submodule of M and $x \in V$. Then $Rx \ll_g V$ if and only if $Rx \ll_g M$. In this work, some relations between Rad-supplement, g-radical supplement, β^* and β^*_g relations are also studied. Let $\beta^*_g M$ in M. If V is a g-radical supplement of X in M and $V \subseteq M$, then V is also a g-radical supplement of Y in M. Let M be an R-module. It is proved that M is semilocal (g-semilocal) if every submodule of M β^* equivalent to a Rad-supplement (g-radical supplement) submodule in M.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, radical, g-supplemented modules, g-radical supplemented modules

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If $L = M$ for every submodule L of M such that $M = N + L$, then N is called a small submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that $M = N + K$ and $N \cap K = 0$, then N is called a direct summand of M and it is denoted by $M = N \oplus K$. A submodule N of an R-module M is called an essential submodule of M, denoted by $N \triangleleft M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap K = 0$ implies that $K = 0$. Let M be an R-module and K be a submodule of M. K is called a generalized small (briefly, g-small) submodule of M if for every $T \leq M$ with $M = K + T$ implies that $T = M$, this is written by $K \ll_g M$ (in [13], it is called an e-small submodule of M and denoted by $K \ll_e M$). It is clear that every small submodule is a generalized small submodule but the converse is not true generally. Let U and V be submodules of M. If $M = U + V$ and V is minimal with respect to this property, or equivalently, $M = U + V$ and $U \cap V \ll V$, then V is called a supplement of U in M. M is called a supplemented module if every
submodule of M has a supplement in M. Let M be an R-module and $U, V \leq M$. If $M = U + V$ and $M = U + T$ with $T \subseteq V$ implies that $T = V$, or equivalently, $M = U + V$ and $U \cap V \ll_g V$, then V is called a g-supplement of U in M. M is said to be g-supplemented if every submodule of M has a g-supplement in M. The intersection of all maximal submodules of an R-module M is called the radical of M and denoted by $\text{Rad}(M)$. If M have no maximal submodules, then we denote $\text{Rad}(M) = M$. M is said to be semilocal if $M/\text{Rad}(M)$ is semisimple, i.e. every submodule of $M/\text{Rad}(M)$ is a direct summand of $M/\text{Rad}(M)$. Let M be an R-module and $U, V \leq M$. If $M = U + V$ and $U \cap V \leq \text{Rad}(V)$, then V is called a generalized (radical) supplement (briefly Rad-supplement) of U in M. M is said to be generalized (radical) supplemented (briefly Rad-supplemented) if every submodule of M has a Rad-supplement in M. More informations about supplemented modules are in [2, 8, 12]. More informations about g-small submodules and g-supplemented modules are in [3, 7, 10]. The definition of generalized supplemented modules and some properties of them are in [11]. The definition of g-semilocal modules and some properties of them are in [5].

Definition 1. Let M be an R-module and $U, V \leq M$. If $M = U + V$ and $U \cap V \leq \text{Rad}(V)$, then V is called a g-radical supplement of U in M. If every submodule of M has a g-radical supplement in M, then M is called a g-radical supplemented module. (See [4, 6].)

Lemma 1. Let M be an R-module. The following assertions hold.

1. For every $m \in \text{Rad}(M)$, $\text{Rad}(m) \ll_g M$.
2. If $N \leq M$, then $\text{Rad}(N) \leq \text{Rad}(M)$.
3. $\text{Rad}(M) = \sum_{L \ll_g M} L$.

Proof. See [4, Lemma 2 and Lemma 3].
Clearly we can see that every g-supplemented module is g-radical supplemented. But the converse is not true in general. Every Rad-supplemented module is g-radical supplemented.

Lemma 2. Let V be a g-radical supplement of U in M and $U \trianglelefteq M$. Then $\text{Rad}_g V = V \cap \text{Rad}_g M$.

Proof. By Lemma 1, $\text{Rad}_g V \leq V \cap \text{Rad}_g M$. Let T be an essential maximal submodule of V. Then $U \cap V \leq \text{Rad}_g V \leq T$ holds. By \(\frac{M}{U + T} = \frac{V}{U + T} = \frac{V}{V \cap (U + T)} \), $U + T \leq M$, $U + T$ is an essential maximal submodule of M and $\text{Rad}_g M \leq U + T$. Hence $V \cap \text{Rad}_g M \leq V \cap (U + T) = U \cap V + T = T$. Thus $\text{Rad}_g V = V \cap \text{Rad}_g M$, as desired. □

Theorem 1. Let V be a g-radical supplement of U in M, $U \trianglelefteq M$ and $x \in V$. Then $Rx \ll_g V$ if and only if $Rx \ll_g M$.

Proof.

\implies Clear.

\iff Since $Rx \ll_g M$, by Lemma 1, $Rx \leq \text{Rad}_g M$ and $x \in \text{Rad}_g M$. Then $x \in V \cap \text{Rad}_g M$. By Lemma 2, $\text{Rad}_g V = V \cap \text{Rad}_g M$. Hence $x \in \text{Rad}_g V$ and by Lemma 1, $Rx \ll_g V$. We can also prove this part as follows:

Let T be an essential maximal submodule of V. Here $U \cap V \leq \text{Rad}_g V \leq T$. Assume that $Rx \nless T$. Then $Rx + T = V$ and $M = U + V = U + Rx + T$. Since $Rx \ll_g M$ and $U + T \leq M$, $U + T = M$. Then $V = V \cap M = V \cap (U + T) = U \cap V + T = T$, a contradiction. Hence $Rx \leq T$ for every essential maximal submodule T of V and $Rx \leq \text{Rad}_g V$. Thus $x \in \text{Rad}_g V$ and by Lemma 1, $Rx \ll_g V$.

□

Corollary 1. Let V be a Rad-supplement of U in M, $U \trianglelefteq M$ and $x \in V$. Then $Rx \ll_g V$ if and only if $Rx \ll_g M$.

Proof. Clear from Theorem 1. □

Corollary 2. Let V be a Rad-supplement of U in M, $U \trianglelefteq M$ and $x \in V$. Then $Rx \ll_g V$ if and only if $Rx \ll_g M$.

Proof. Clear from Theorem 1. □

Theorem 2. Let V be a g-radical supplement of U in M, $V \subseteq M$ and $x \in V$. The following assertions hold.

1. $\text{Rad}_g V = V \cap \text{Rad}_g M$.
2. $Rx \ll_g V$ if and only if $Rx \ll_g M$.

Proof.
(1) By Lemma 1, $\text{Rad}_g V \leq V \cap \text{Rad}_g M$. Let T be an essential maximal submodule of V. Then $U \cap V \leq \text{Rad}_g V \leq T$ holds. Since $T \leq V$ and $V \leq M$, then $T \leq M$ and $U + T \leq M$. Then by $M = \frac{U + T + V}{U + T} \cong \frac{V}{V \cap (U + T)} = \frac{V}{U \cap V + T} = T$. $U + T$ is an essential maximal submodule of M and $\text{Rad}_g M \leq U + T$. Hence $V \cap \text{Rad}_g M \leq V \cap (U + T) = U \cap V + T = T$. Thus $\text{Rad}_g V = V \cap \text{Rad}_g M$, as desired.

(2) \implies Clear.

\Leftarrow Since $Rx \leq \text{Rad}_g M$, by Lemma 1, $Rx \leq \text{Rad}_g M$ and $x \in \text{Rad}_g M$. Then $x \in V \cap \text{Rad}_g M$. By Theorem 2 (1), $\text{Rad}_g V = V \cap \text{Rad}_g M$. Hence $x \in \text{Rad}_g V$ and by Lemma 1, $Rx \leq \text{Rad}_g V$. We can also prove this part as follows:

Let T be an essential maximal submodule of V. Here $U \cap V \leq \text{Rad}_g V \leq \leq T$. Assume that $Rx \subseteq T$. Then $Rx + T = V$ and $M = U + V = U + Rx + T$. Since $T \leq V$ and $V \leq M$, then $T \leq M$ and $U + T \leq M$. Since $Rx \leq \text{Rad}_g M$, $U + T = M$. Then $V = V \cap M = V \cap (U + T) = U \cap V + T = T$, a contradiction. Hence $Rx \leq T$ for every essential maximal submodule T of V and $Rx \leq \text{Rad}_g V$. Thus $x \in \text{Rad}_g V$ and by Lemma 1, $Rx \leq \text{Rad}_g V$.

\[\square\]

Corollary 3. Let V be a Rad-supplement of U in M and $V \leq M$. Then $\text{Rad}_g V = V \cap \text{Rad}_g M$.

Proof. Clear from Theorem 2 (1).

\[\square\]

Corollary 4. Let V be a Rad-supplement of U in M, $V \leq M$ and $x \in V$. Then $Rx \leq \text{Rad}_g V$ if and only if $Rx \leq \text{Rad}_g M$.

Proof. Clear from Theorem 2 (2).

\[\square\]

Example 1. Consider the \mathbb{Z}-module \mathbb{Q}. For $\mathbb{Z} \leq \mathbb{Q}$, $\text{Rad}_g \mathbb{Z} = \text{Rad} \mathbb{Z} = 0$. Since $\text{Rad}_g \mathbb{Q} = \text{Rad} \mathbb{Q} = \mathbb{Q}$, $\mathbb{Z} \cap \text{Rad}_g \mathbb{Q} = \mathbb{Z} \cap \mathbb{Q} = \mathbb{Z}$. Hence $\text{Rad}_g \mathbb{Z} \neq \mathbb{Z} \cap \text{Rad}_g \mathbb{Q}$.

Proposition 1. Let $X\beta_g Y$ in M. If V is a g-radical supplement of X in M and $V \leq M$, then V is also a g-radical supplement of Y in M.

Proof. By hypothesis, $M = X + V$ and $X \cap V \leq \text{Rad}_g V$. Since $X\beta_g Y$ and $V \leq M$, $Y + V = M$. Let T be any essential maximal submodule of V. Since $T \leq V$ and $V \leq M$, then $T \leq M$. Assume that $Y \cap V \leq T$. Then $Y \cap V + T = V$. Here $M = Y + V = Y + Y \cap V + T = Y + T$ and since $X\beta_g Y$ and $T \leq M$, $X + T = M$. Then $V = V \cap M = V \cap (X + T) = V \cap X + T$ and since $X \cap V \leq \text{Rad}_g V \leq T$, $V = V \cap X + T$. This is a contradiction. Hence $Y \cap V \leq T$ for every essential maximal submodule of V and $Y \cap V \leq \text{Rad}_g V$. Thus V is a g-radical supplement of Y in M.

\[\square\]

Lemma 3. Let $X\beta_g Y$ in M. If X and Y have Rad-supplements in M, then they have the same Rad-supplements in M.

Proof. Let \(C \) be a Rad-supplement of \(X \) in \(M \). Then \(M = X + C \) and \(X \cap C \leq \text{Rad} \). Since \(X \beta^*Y, Y + C = M \). Let \(T \) be any maximal submodule of \(C \). Assume that \(Y \cap C \nmid T \). Then \(Y \cap C + T = C \). Here \(M = Y + C = Y + Y \cap C + T = Y + T \) and since \(X \beta^*Y, X + T = M \). Then \(C = C \cap M = C \cap (X + T) = X \cap C + T \) and since \(X \cap C \leq \text{Rad} \), \(C = X \cap C + T = T \). This is a contradiction. Hence \(Y \cap C \leq T \) for every maximal submodule of \(C \) and \(Y \cap C \leq \text{Rad} \). Thus \(C \) is a Rad-supplement of \(Y \) in \(M \). Similarly, the interchanging the roles of \(X \) and \(Y \), we can prove that every Rad-supplement of \(Y \) in \(M \) is also a Rad-supplement of \(X \) in \(M \). □

Corollary 5. Let \(X \) lies above \(Y \) in \(M \). If \(X \) and \(Y \) have Rad-supplements in \(M \), then they have the same Rad-supplements in \(M \).

Proof. Clear from Lemma 3. □

Lemma 4. Let \(X \beta^*Y \) in \(M \). If \(X \) has a g-radical supplement \(V \) in \(M \), then \(V \) is also a g-radical supplement of \(Y \) in \(M \).

Proof. By hypothesis, \(M = X + V \) and \(X \cap V \leq \text{Rad} \). Since \(X \beta^*Y, Y + V = M \). Let \(T \) be any essential maximal submodule of \(V \). Assume that \(Y \cap V \nmid T \). Then \(Y \cap V + T = V \). Here \(M = Y + V = Y + Y \cap V + T = Y + T \) and since \(X \beta^*Y, X + T = M \). Then \(V = V \cap M \cap (X + T) = X \cap V + T \) and since \(X \cap V \leq \text{Rad} \), \(V = V \cap X + T = T \). This is a contradiction. Hence \(Y \cap V \leq T \) for every essential maximal submodule of \(V \) and \(Y \cap V \leq \text{Rad} \). Thus \(V \) is a g-radical supplement of \(Y \) in \(M \). □

Corollary 6. Let \(X \) lies above \(Y \) in \(M \). If \(X \) and \(Y \) have g-radical supplements in \(M \), then they have the same g-radical supplements in \(M \).

Proof. Clear from Lemma 4. □

Lemma 5. Let \(X \beta^*Y \) and \(Y \) be a Rad-supplement of \(U \) in \(M \). Then \(U \cap X \leq \text{Rad} \).

Proof. Since \(Y \) is a Rad-supplement of \(U \) in \(M \), \(M = U + Y \) and \(U \cap Y \leq \text{Rad} \). Since \(M = U + Y \) and \(X \beta^*Y, M = U + X \). Let \(T \) be any maximal submodule of \(M \). Here \(U \cap Y \leq \text{Rad} \). Assume that \(U \cap X \nmid T \). Then \(U \cap X + T = M \) and since \(M = U + X \), by [2, Lemma 1.24], \(X + U \cap T = M \). Since \(X \beta^*Y, Y \cap T = M \) and since \(U + T = M \), by [2, Lemma 1.24] again, \(U \cap Y + T = M \). Then by \(U \cap Y \leq T \), \(M = U \cap Y + T = T \). This is a contradiction. Hence \(U \cap X \leq T \) for every maximal submodule \(T \) of \(M \) and \(U \cap X \leq \text{Rad} \). □

Corollary 7. Let \(X \) lies above \(Y \) and \(Y \) be a Rad-supplement of \(U \) in \(M \). Then \(U \cap X \leq \text{Rad} \).

Proof. Clear from Lemma 5. □

Lemma 6. Let \(M \) be an \(R \)-module. If every submodule of \(M \) is \(\beta^* \) equivalent to a Rad-supplement submodule in \(M \), then \(M \) is semilocal.
Theorem 3. Let $X \beta^* Y$ and Y be a g-radical supplement of U in M. Then $U \cap X \leq \text{Rad}_g M$.

Proof. Since Y is a g-radical supplement of U in M, $M = U + Y$ and $U \cap Y \leq \text{Rad}_g Y \leq \text{Rad}_g M$. Since $M = U + Y$ and $X \beta^* Y$, $M = U + X$. Let T be any essential maximal submodule of M. Here $U \cap Y \leq \text{Rad}_g M \leq T$. Assume that $U \cap X \notin T$. Then $U \cap X + T = M$ and since $M = U + X$, by [2, Lemma 1.24], $X + U \cap T = M$. Since $X \beta^* Y$, $Y + U \cap T = M$ and since $U + T = M$, by [2, Lemma 1.24] again, $U \cap Y + T = M$. Then by $U \cap Y \leq T$, $M = U \cap Y + T = T$. This is a contradiction. Hence $U \cap X \leq T$ for every essential maximal submodule T of M and $U \cap X \leq \text{Rad}_g M$.

Corollary 9. Let X lies above Y and Y be a g-radical supplement of U in M. Then $U \cap X \leq \text{Rad}_g M$.

Proof. Clear from Theorem 3.

Theorem 4. Let M be an R-module. If every submodule of M lies above a g-radical supplement submodule in M, then M is g-semilocal.

Proof. Let $X / \text{Rad}_g M \leq M / \text{Rad}_g M$. Since $X \leq M$, by hypothesis, there exists a g-radical supplement submodule Y in M such that $X \beta^* Y$. Let Y be a g-radical supplement of U in M. By Theorem 3, $U \cap X \leq \text{Rad}_g M$. Since $X \beta^* Y$ and $Y + U = M$, $X + U = M$. Then $\frac{M}{\text{Rad}_g M} = \frac{X + U}{\text{Rad}_g M} = \frac{X}{\text{Rad}_g M} + \frac{U + \text{Rad}_g M}{\text{Rad}_g M}$ and $\frac{X}{\text{Rad}_g M} \cap \frac{U + \text{Rad}_g M}{\text{Rad}_g M} = \frac{X \cap (U + \text{Rad}_g M)}{\text{Rad}_g M} = \frac{U \cap X + \text{Rad}_g M}{\text{Rad}_g M} = \frac{\text{Rad}_g M}{\text{Rad}_g M} = 0$. Hence $\frac{M}{\text{Rad}_g M} = \frac{X}{\text{Rad}_g M} \oplus \frac{U + \text{Rad}_g M}{\text{Rad}_g M}$ and $M / \text{Rad}_g M$ is semisimple. Thus M is g-semilocal.

Corollary 10. Let M be an R-module. If every submodule of M lies above a g-radical supplement submodule in M, then M is g-semilocal.

Proof. Clear from Theorem 4.
ON G-RADICAL SUPPLEMENT SUBMODULES

REFERENCES

[1] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, “Goldie*-supplemented modules,” Glasgow Mathematical Journal, vol. 52A, pp. 41–52, 2010, doi: 10.1017/s0017089510000212.

[2] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics), 2006th ed. Basel: Birkhäuser, 8 2006. doi: 10.1007/3-7643-7573-6.

[3] B. Koşar, C. Nebiyev, and N. Sökmez, “G-supplemented modules,” Ukrainian Mathematical Journal, vol. 67, no. 6, pp. 861–864, 2015, doi: 10.1007/s11253-015-1127-8.

[4] B. Koşar, C. Nebiyev, and A. Pekin, “A generalization of g-supplemented modules,” Miskolc Mathematical Notes, vol. 20, no. 1, pp. 345–352, 2019, doi: 10.18514/mi2019.2586.

[5] C. Nebiyev and H. H. Ökten, “Weakly g-supplemented modules,” European Journal of Pure and Applied Mathematics, vol. 10, no. 3, pp. 521–528, 2017.

[6] C. Nebiyev, “g-radical supplemented modules,” in Antalya Algebra Days XVII, Şirince, İzmir, Turkey, 2015.

[7] C. Nebiyev, “On a generalization of supplement submodules,” International Journal of Pure and Applied Mathematics, vol. 113, no. 2, pp. 283–289, 2017, doi: 10.12732/ijpam.v11i32.8.

[8] C. Nebiyev and A. Pancar, “On supplement submodules,” Ukrainian Mathematical Journal, vol. 65, no. 7, pp. 1071–1078, 2013, doi: 10.1007/s11253-013-0842-2.

[9] C. Nebiyev and N. Sökmez, “Beta g-star relation on modules,” European Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 238–243, 2018.

[10] N. Sökmez, B. Koşar, and C. Nebiyev, “Genelleştirilmiş küçük alt modüller,” in XIII. Ulusal Matematik Sempozyumu. Kayseri: Erciyes Üniversitesi, 2010.

[11] Y. Wang and N. Ding, “Generalized supplemented modules,” Taiwanese Journal of Mathematics, vol. 10, no. 6, pp. 1589–1601, 2006, doi: 10.11650/twjm/1500404577.

[12] R. Wisbauer, Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991. doi: 10.1201/9780203755552.

[13] D. X. Zhou and X. R. Zhang, “Small-essential submodules and morita duality,” Southeast Asian Bulletin of Mathematics, vol. 35, pp. 1051–1062, 2011.

Authors’ addresses

Hasan Hüseyin Ökten
Amasya University, Technical Sciences Vocational School, Amasya, Turkey
E-mail address: hokten@gmail.com

Ayten Pekin
(Corresponding author) Istanbul University, Department of Mathematics, Vezneciler, Istanbul, Turkey
E-mail address: aypokin@istanbul.edu.tr, aspekinh@hotmail.com