Mechanistic connotations of restriction of intramolecular motions (RIM)

Yujie Tu¹, Zheng Zhao¹, Jacky W. Y. Lam¹ and Ben Zhong Tang¹,²,³*

1. Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: tangbenz@ust.hk
2. AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China.
3. Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.

Molecules are all in constant motions that influence their properties. For example, in photophysics, the light emission behavior of a luminogen is determined by its electronic and nuclear motions in the excited state. Flexible molecular motions usually favor nonradiative decay along with the transformation of excited-state energy to other forms such as thermal energy. Therefore, the restriction of intramolecular motions (RIM) is commonly adopted to achieve luminescent materials with high emission brightness.

In the old days, scientists often believe that the properties of a substance are determined by the properties of a molecule. Thus, the early researches of luminescent materials mainly focus on the properties of isolated molecules in the dilute solution. Accordingly, the strategy of RIM much relies
on structural rigidification at the molecular level such as introducing fused aromatic rings. However, in reality, new properties that molecules lack may emerge in aggregates. For example, 1) hydrophilic amino acids can form hydrophobic proteins in hierarchical structures, and 2) some nonconjugated molecules such as sugar can emit light when clustered in a compact aggregate. Therefore, there is no need to keen on RIM by designing molecules with rigid structures. Instead, we can suppress molecular motions at the mesoscopic level.[1, 2]

The exploration on the aggregation-induced emission (AIE) is a good practice to achieve turn-on luminescence by RIM at the aggregate level. Scientists attempt to design AIE luminogens (AIEgens) with rotors/vibrators which are non-emissive in the solution state but highly emissive in the aggregate state due to the restriction of intramolecular rotation/vibration (RIR/RIV) (Fig. 1A).[1] However, not all motions cause luminescence quenching. In recent years, numerous studies were conducted to identify the critical molecular motions responsible for nonradiative transitions and elucidate the excited-state deactivation pathways of AIEgens from the quantum-chemical perspective. Different models have been established to disclose the connotation of the RIM mechanism (Fig.1B).

First, for AIE systems with active molecular motions, the internal conversion caused by the S_1-S_0 vibronic coupling is often very fast to surpass the fluorescence. For example, AIEgen 1 undergoes phenyl-ring torsion and double-bond twisting upon excitation (Fig. 2A), which allows strong vibronic interactions between S_1 and S_0. [3] However, due to RIM in aggregates, its potential energy surfaces (PESs) become sharp and steep. A small scale of nuclear displacement may give rise to a big potential energy elevation. In the aggregate state, there are fewer vibrational modes in S_1 and S_0, and their wavefunctions overlap is less effective.[4] Thus, the AIEgens are now emissive in the aggregate state due to the restriction of S_1-S_0 vibronic coupling (RVC) (Fig. 1C).

Second, many AIE molecules in the excited state undergo flexible molecular motions and rapidly relax to a conical intersection (CI) where the S_1 and S_0 are degenerate, the magnitude of vibronic interactions approaches infinity, and the exciton decays nonradiatively. However, the molecular motions that lead to the CI geometry such as the molecular motions of AIEgen 2/3/4 indicated in figure 2B can be restricted upon aggregation. [5-7] The emission is restored due to the restriction of access to conical intersection (RACI) (Fig.1C).

Third, excited states have different characteristics due to the differences in terms of the transition origin (e.g. (π,π^*), (n,π^*), (n,σ^*),(π,σ^*)), the spatial overlap of transition orbitals (e.g. locally excited
(LE) or charge transfer (CT)), the state of multiplicity (e.g. singlet or triplet), and the symmetry of transition (e.g. symmetry-allowed or symmetry-forbidden). Some excited states exhibit small molar absorptivity and oscillator strength, thus consequently lead to a low transition probability and a much larger nonradiative decay constant than the radiative decay one \((k_{nr} \gg k_r) \). These kinds of excited states favor the nonradiative decay thus defined as dark states. The \((\pi,\pi^*)\) state/CT state/triplet state/symmetry-forbidden transition are dark states for fluorescence when compared to \((\pi,\pi^*)\) state/LE state/singlet state/symmetry-allowed transition, respectively. Take heteroatom-containing AIEgens 5/6/7 as examples, their weak fluorescence in the solution state are ascribed to photo-induced electron transfer (PET), twisted intramolecular charge transfer (TICT), and intersystem crossing (ISC), respectively.[8-10] In fact, these photophysical processes can be unified as the quenching effect of \((n,\pi^*)\) dark states. The twisting of lone pair-bearing moieties can modulate the overlap between n orbital and \(\pi \) plane to result in the \(n-\pi \) orbital ordering reversal and the transformation of the \((\pi,\pi^*) \) bright state to the \((n,\pi^*) \) dark state (Fig. 2C). However, in the aggregate state, the molecular motions that lead to the dark state are restricted or the energy of the dark state is raised, which makes the dark state kinetically or thermodynamically inaccessible. Therefore, the emission is recovered due to the restriction of access to dark state (RADS) (Fig. 1C).

Besides the photophysical decay pathways, the excited-state AIEgens may undergo photochemical reactions such as photoisomerization and photocyclization (Fig. 2D). Upon excitation, AIEgens such as 8 and 9 undergo conformational changes along the reaction coordinate to a “watershed” between the reactant and the product, where the nonradiative decay is dominant due to either the strong vibronic coupling or the presence of a conical intersection.[11, 12] Meanwhile, the new products formed are possibly non-emissive based on their own photophysical properties. However, in the aggregates, the emission is turned on due to the suppression of photochemical reaction (SPCR) by restricting the molecular motions that lead to product formation (Fig. 1C).

Above all, in this concise perspective, four mechanistic models related to different nonradiative pathways have been summarized with schematic illustrations and straightforward examples to disclose the connotation of the RIM mechanism. In future research, besides revealing the deactivation pathways and identifying the exact molecular motions that account for luminescence quenching, other mechanistic topics regarding molecular motions are also worthy to be explored including the solid-state molecular motion, the intermolecular translational motions, the frequency
and amplitude of molecular motions, etc. Meanwhile, clearer and more comprehensive mechanistic explanations are required on AIE systems with clusterization-triggered emission, room temperature phosphorescence, and so on. Hopefully, by gradually completing the AIE mechanistic picture, we can gain a better understanding of the science in mesoscopic aggregates and achieve novel and diverse AIE materials with intriguing applications.
Figure 1. (A) Working mechanism of aggregation-induced emission (AIE): restriction of intramolecular motions (RIM) including rotation (RIR) and/or vibration (RIV). Adapted with permission from Ref. [1], Copyright Wiley-VCH. (B) Activation of RIM through blocking various nonradiative pathways. k_r = radiative decay constant, k_{nr} = nonradiative decay constant. (C) Potential energy surfaces for the nonradiative and radiative pathways at molecular and aggregate levels, respectively.
Figure 2. Examples of excited-state molecular motions leading to different nonradiative pathways including (A) $S_1 - S_0$ vibronic coupling (adapted with permission from Ref. [3], Copyright Royal Society of Chemistry), (B) conical intersection (adapted with permission from Ref. [5,6], Copyright Royal Society of Chemistry and Ref. [7] Copyright, American Chemical Society), (C) dark state (adapted with permission from Ref. [8,9], Copyright Wiley-VCH and Ref. [10], Copyright ChemRxiv) and (D) photochemical reaction (adapted with permission from Ref. [11,12]. Copyright American Chemical Society, further permissions related to Ref. [12] should be related to the American Chemical Society). Abbreviations: CI = conical intersection, PET = photoinduced electron transfer, TICT = twisted intramolecular charge transfer, ISC = intersystem crossing.
FUNDING

This work was supported by the National Natural Science Foundation of China (21788102), the Research Grants of Council of Hong Kong (N_HKUST609/19 and C6009-17G), the Innovation of Technology Commission (ITC-CNREC14SC01) and the Ming Wai Lau Centre for Reparative Medicine Associate Member Programme (MWLC19SC02).

Conflict of interest statement. None declared.

References

1. Zhao, Z, Zhang, HK and Lam, JWY et al. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chem. Int. Ed. 2020; 59(25): 9888-9907.
2. Zhang, HK, Zhao, Z and Turley AT, et al. Aggregate Science: From Structures to Properties. Adv. Mater. 2020.
3. Zhang, HK, Liu, JK and Du, LL et al. Drawing a clear mechanistic picture for the aggregation-induced emission process. Mater. Chem. Front. 2019; 3(6): 1143-1150.
4. Bu, F, Duan, RH and Xie, YJ et al. Unusual Aggregation-Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. Angew. Chem. Int. Ed. 2015; 54(48): 14492-14497.
5. Peng, XL, Ruiz-Barragan, S and Li, ZS et al. Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilolole. J. Mater. Chem. C 2016; 4(14): 2802-2810.
6. Li, QS and Blancafort, L. A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem. Commun. 2013; 49(53): 5966-5968.
7. Zhou, P, Li, P and Zhao, Y et al. Restriction of flip-flop motion as a mechanism for aggregation-induced emission. The J. Phys.Chem. Lett. 2019; 10(21): 6929-6935.
8. Tu, YJ, Liu, JK and Zhang, HK et al. Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom-Containing AIE Systems. Angew. Chem. Int. Ed. 2019; 58(42): 14911-14914.
9. Tu, YJ, Yu, YQ and Xiao, DW et al. An Intelligent AIEgen with Nonmonotonic Multiresponses to Multistimuli. Adv. Sci. 2020; 2001845.
10. Tu, YJ, Liu, JK and Zhang, XP et al. The Importance of Solid-state Molecular Motion to Room temperature phosphorescence. 2020; DOI: 10.26434/chemrxiv.12629903.
11. Chung, JW, Yoon, SJ and An, BK et al. High-Contrast On/Off Fluorescence Switching via Reversible E-Z Isomerization of Diphenylstilbene Containing the alpha-Cyanostilbenic Moiety. J. Phys. Chem. C. 2013; 117(21):
12. Gao, YJ, Chang, XP and Liu, XY et al. Excited-State Decay Paths in Tetraphenylethene Derivatives. *J. Phys. Chem. A*. 2017; 121(13): 2572-2579.