Some results on the Bazilevic functions $B_1(\alpha)$ related to the Lemniscate Bernoulli (LB)

Marjono1, N M Asih1,2, I N Purwanto3

1Department of Mathematics, Brawijaya University, Indonesia
2Department of Mathematics, Udayana University, Indonesia

E-mail: marjono@ub.ac.id, madeasih@unud.ac.id, wantoinp@ub.ac.id

Abstract. This research is concerned with Bazilevic $B_1(\alpha)$ on the unit disc $D = \{z : |z| < 1\}$, related to the Lemniscate Bernoulli (LB), defined by kind of subordination for some positive alpha. There will be determined the Hankel determinant, especially the third Hankel determinant which $B_1(\alpha)$ subordinates to LB, and we start with the case for starlike and convex functions, subset of $B_1(\alpha)$. In this article we improve the result of Kumar and Ravichandran.

1. Introduction and Preliminaries

Let S be the class of analytic normalized univalent functions f defined in $z \in D = \{z : |z| < 1\}$ and given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \tag{1}$$

Then for $\alpha \geq 0$, $f \in B_1(\alpha) \subset S$, if and only if, for $z \in D$

$$\text{Re} \left(\frac{z^{1-\alpha} f'(z)}{f(z)^{1-\alpha}} \right) > 0. \tag{2}$$

The Bazilević functions (2) with logarithmic growth, $B_1(\alpha) \subset S$ have been extensively studied (see e.g. [8], [5], [6], [2]). Some results have been obtained for the class $B_1(\alpha)$. Amongst other results, Singh [7], found sharp estimates for the modulus of the first four coefficients, $|a_2|$, $|a_3|$ and $|a_4|$.

Next, the coefficient bounds yield information regarding the geometric properties of some subclass of univalent functions. In 1916, Bieberbach [1] computed an estimate for the second coefficient of normalized univalent analytic function (1) and this bound provides the growth, distortion, and covering theorems.

The qth Hankel determinant of a function f given by (1) is defined for $q > 1$ and $n > 0$ as follows,
\[H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n+q-1} & \cdots & a_{n+2(q-1)} & \end{vmatrix} \]

In recent years a great deal of attention has been devoted to finding estimates of Hankel determinants whose elements are the coefficients of univalent (and p-valent) functions. For $f \in S$, growth results have been established for the general Hankel determinant $H_q(n)$. The second Hankel determinant $H_2(2) = |a_2a_4 - a_3^2|$ has received more attention of Janteng [3] and Marjono and Thomas [5], with significant results being obtained for $f \in S$.

In this paper we will see this for subclass Bazilevic functions $B_1(\alpha)$ and try to learn about third Hankel determinant which is defined as follows:

\[H_{3,1}(f) = a_3(a_2a_4 - a_3^2) - a_4(a_4 - a_2a_3) + a_5(a_5 - a_3^2). \]

We will also want to see about starlike and convex functions related to the third Hankel determinant as a subclass of Bazilevic functions $B_1(\alpha)$.

2. Known Result

Denote by P, the class of functions p satisfying $\text{Re} \; (p(z)) > 0$ for $z \in D$, with Taylor series

\[p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \]

There are some examples $p \in P$ i.e. $p(z) = \frac{1+z}{1-z}$, $p(z) = \frac{1+z^2}{1-z^2}$ and also we can define Lemniscate Bernoulli $(1+z)^{1/2}$.

We will use the following Lemmas:

Lemma 2.1. If $p \in P$ with coefficient p_n as above then for some complex valued x with $|x| \leq 1$ and some complex valued ζ with $|\zeta| \leq 1$,

\[2p_2 = p_1^2 + x(4 - p_1^2) \]
\[4p_3 = p_1^3 + 2(4 - p_1^2)p_1x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)\zeta \]

Lemma 2.2. If $p \in P$, then $|p_n| \leq 2$ for $n \geq 1$ and

\[|p_2 - \frac{\mu}{2}p_1| \leq \max \{2,2||\mu - 1||\} \]

Lemma 2.3. Let $p \in P$, then for all $n, m \in N$,

\[|\mu p_n p_m - p_{m+n}| \leq \begin{cases} 2, & 0 \leq \mu \leq 1; \\ 2|2\mu - 1|, & \text{elsewhere}, \end{cases} \]

The following theorem of Kumar and Ravichandran [4] gives an improvement to the existing estimate on the third Hankel determinant related to the starlike and convex functions with respect to the symmetric points.

Theorem 2.1 The third Hankel determinant for the functions in the classes $S*{s}$ and $K{S}$ are $5/4$ and $91/1728$, respectively.
Proof: In proving this theorem \cite{4} start by equating
\[\frac{zf(z)}{f(z) - f(-z)} = p(z), \]
then comparing coefficients on both sides of the above equation, such that we have
\[a_2 = \frac{p_1}{2}, \quad a_3 = \frac{p_2}{2}, \quad a_4 = \frac{1}{8} (p_1 p_2 + 2 p_3) \quad \text{and} \quad a_5 = \frac{1}{8} (p_2^2 + 2 p_4). \]
Using the above we can write
\[H_{3,1}(f) = a_5 (a_3 - a_2^2) + a_3 (a_2 a_4 - a_2^2 a_3) - a_4 (a_4 - a_2 a_3) \]
\[= \frac{1}{64} \left(p_2^2 (p_2^2 - 4 p_4) + 4 p_1 p_2 p_3 - 4 (p_3^2 - 2 p_2 p_4 + p_4^2) \right). \]
Further, by suitable arranging the terms, we have
\[|64 H_{3,1}(f)| = |8 p_2 p_4 - 4 p_2^2 p_4 + p_2^2 p_2^2 - 4 p_3^2 + 4 p_1 p_2 p_3 - 4 p_3^2| \]
\[\leq 4 p_4 (2 p_2 - p_2^2) + |p_2^2 (p_2^2 - 4 p_2)| + |4 p_3 (p_1 p_2 - 4 p_2)|. \] (3)
By using Lemma 2.3, we see that
\[|4 p_4 (2 p_2 - p_2^2)| \leq 32, \quad |p_2^2 (p_2^2 - 4 p_2)| \leq 32. \quad \text{and} \quad |4 p_3 (p_1 p_2 - 4 p_2)| \leq 16 \] (4)
Thus using (3) and (4), we have
\[|H_{3,1}(f)| \leq \frac{80}{64} = \frac{5}{4}. \] (5)
Now, let us take the class \(K_s \), by still considering class of positive real part \(p(z) \). Again we can write
\[\frac{2(z f'(z))'}{(f(z) - f(-z))'} = p(z) \]
On comparing on both sides of the above equation, we have
\[a_2 = \frac{p_1}{4}, \quad a_3 = \frac{p_2}{6}, \quad a_4 = \frac{1}{32} (p_1 p_2 + 3 p_3) \quad \text{and} \quad a_5 = \frac{1}{40} (p_2^2 + 2 p_4). \]
Using the above, we have
\[H_{3,1}(f) = \frac{1}{138240} \left(9 p_2^2 (p_2^2 - 48 p_4) + 180 p_2 p_3 - 4 (16 p_3^2 - 288 p_2 p_4 + 135 p_3^2) \right) \]
By suitably arranging terms, we obtain
\[H_{3,1}(f) = 1152 p_4 \left(p_2 - \frac{432}{1152} p_2^2 \right) + 64 p_2^2 \left(\frac{9}{64} p_2^2 - p_2 \right) + 540 p_3 \left(\frac{180}{540} p_1 p_2 - p_3 \right) \]
Next by using the fact that \(|p_4| \leq 2 \) and also using Lemma 2.3, we have
\[1152 \left| p_4 \left(p_2 - \frac{432}{1152} p_2^2 \right) \right| \leq 4608, \]
\[64 \left| p_2^2 \left(\frac{9}{64} p_2^2 - p_2 \right) \right| \leq 512, \]
\[\text{and} \quad 540 \left| 4 p_3 \left(\frac{180}{540} p_1 p_2 - p_3 \right) \right| \leq 2160 \] (6)
Now, by using (6), we get
\[|H_{3,1}(f)| \leq \frac{4608 + 512 + 2160}{138240} = \frac{91}{1728} \approx 0.052662 \approx 0.052662 < \frac{19}{135} \approx 0.140741 \]

By using the same method we obtain for \(f \in K_s \)
\[|H_{3,1}(f)| \leq \frac{91}{1728} \]

This completes the proof.

3. Results

Relate to the above result, we can remind two important classes \(M(\lambda) \) and \(N(\lambda) \) respectively subclasses of \(S \), which is defined as the following.
\[\Re\left(\frac{zf'(z)}{f(z)}\right) < \lambda \]
and
\[\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) < \lambda \]
for \(z \in D \).

Kumar and Ravichandran had the following theorem.

Theorem 3.1. The third Hankel determinant for the functions in the classes \(M \) and \(N \) are bounded by
\(\frac{579 + 8\sqrt{3}}{1728} \) dan \(\frac{144431 + 96\sqrt{141}}{6497280} \), respectively.

The proof is similar to the above proof, first start by equating the class which is functions with positive real part.

(a) Let \(f \in M \). Then, we can associate a function \(p(z) = 1 + p_1z + p_2z^2 + p_3z^3 + \cdots \in P \) such that
\[\frac{zf'(z)}{f(z)} = \frac{1}{2}(3 - p(z)). \]

Next continued by comparing its coefficients on both sides related to class \(M \) first. Then we compute the value of \(H_{3,1}(f) \) and arrange this into better representation. Finally we simplify and obtained the result for subclass \(M \), i.e.
\[|H_{3,1}f(z)| \leq \frac{579 + 8\sqrt{3}}{1728} \approx 0.343088 < \frac{81 + 16\sqrt{3}}{216} \approx 0.5033 \]

(a) Let \(f \in N \). Then, we can associate a function \(p(z) = 1 + p_1z + p_2z^2 + p_3z^3 + \cdots \in P \) such that
\[1 + \frac{zf''(z)}{f'(z)} = \frac{1}{2}(3 - p(z)). \]

Next continued by comparing its coefficients on both sides related to class \(N \) first. Then we compute the value of \(H_{3,1}(f) \) and arrange this into better representation. Finally we simplify and obtained the result for subclass \(N \), i.e.
\[|H_{3,1}f(z)| \leq \frac{579144431 + 96\sqrt{141}}{6497280} \approx 0.0224049 < \frac{139}{5760} \approx 0.0241319 \]

We have the following theorem for analytic functions especially convex and starlike functions.
Theorem 3.2. The sharp bound on the third Hankel determinant for the classes of starlike and convex functions with respect to symmetric point are 1/4 and 4/135, respectively.

Proof. In this case we will substitute $p(z)$ of Kumar and Ravichandran [4] i.e. $\frac{zf'(z)}{f(z)}$ by $\frac{zf'(z)}{f(z)}$, so we have

\[\frac{zf'(z)}{f(z)} = p(z). \] (7)

It means that $zf'(z) = f(z)p(z)$ such that by comparing its coefficients we have

\begin{align*}
2a_2 &= a_2 + p_1 \\
3a_3 &= a_3 + a_2p_1 + p_2 \\
4a_4 &= a_4 + a_3p_1 + a_2p_2 + p_3 \\
5a_5 &= a_5 + a_3p_2 + a_2p_3 + p_4
\end{align*}

i.e. we have

\begin{align*}
a_2 &= p_1 \\
a_3 &= \left(p_1^2 + p_2\right)/2 \\
a_4 &= \frac{1}{6}(p_1^3 + p_2p_1) + \frac{1}{3}(p_1p_2) + \frac{p_3}{3} \\
4a_5 &= \frac{1}{2}\left(p_1^2p_2 + p_2^2\right) + p_1p_3 + p_4
\end{align*}

Next by the similar method we obtain

\[H_{3,1}(f) = a_3(a_2a_4 - a_3^2) - a_4(a_4 - a_2a_3) + a_5(a_3 - a_2^2). \]

It means that

\[H_{3,1}(f) = A - B + C \]

where

\begin{align*}
A &= a_3(a_2a_4 - a_3^2), \\
B &= a_4(a_4 - a_2a_3),
\end{align*}

and

\[C = a_5(a_3 - a_2^2). \] (8)

So we can write (8) as the following

\begin{align*}
A &= \frac{p_1^2 + p_2}{12}\left[p_1^4 - 6p_1^3 + p_2p_1^2 - 2p_1p_2 + 2p_3\right] \\
B &= p_1^3 + \frac{1}{6}(5p_1p_2 + 2p_1 - 2p_3) \\
C &= \frac{1}{16}\left(p_1^2p_2 + p_2^2 + 2p_1p_3 + 2p_4\right)(p_2 - p_1^2) \tag{9}
\end{align*}

By considering (9) and that $|p_i| \leq 2$, finally we obtain

\[|H_{3,1}(f)| \leq \frac{1}{4} \]

and the equation will be hold when we choose function f equal to f_0 such that

\[\frac{2zf_0'(z)}{f_0(z) - f_0(-z)} = 1 + z^3 \]

Next, for the convex functions we can present similar (7) a follows
1 + \frac{zf''(z)}{f'(z)} = p(z)

It means that

\[f'(z) + zf'''(z) = f'(z)p(z)\] \hspace{1cm} (10)

where

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n\]

and

\[p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n\]

Comparing coefficients in both sides of (10), we have 4 expressions of \(a_2, a_3, a_4\) and \(a_5\) in terms of combination of \(p_i\) and \(p_j\). Then we can calculate \(H_{3,1}(f)\) such that finally we obtain the following

\[|H_{3,1}(f)| \leq \frac{4}{135}\]

for convex function \(f\) and the equation will be hold when we choose \(f = f_1\) such that

\[
\frac{2zf'_1(z)}{f_1(z) - f_1(-z)} = \frac{1 + z^2}{1 - z^2}
\]

The proof is complete. \hfill \Box

4. Conclusion

In this paper, we are working on the univalent functions based on the result of Marjono and Thomas [5]. We give the boundary for the third Hankle determinant for starlike and convex functions as subset of Bazilevic \(B_1(\alpha)\) as an improvement of the work of Kumar and Ravichandran. To prove this we use lemma for the functions with positive real part \(p(z)\).

Acknowledgments

Many thanks to Brawijaya University for supporting this research by “Hibah Guru Besar” grant. My appreciate to Ni Made Asih and Imam Nurhadi Purwanto for their big effort in completing this research. Ni Made Asih is my PhD student at the Department of Mathematics and Natural Sciences from Udayana University. Imam Nurhadi Purwanto is my colleague from our department who is doing his PhD in Postgraduate Program Brawijaya University. Also my big appreciation to the committee of the International Conference on Mathematical Analysis and Application (IcoMathApp 2020) Universitas Negeri Malang for holding this event such that our papers are published.

References

[1] Bieberbach L 1916 Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln S-B Preuss Akad Wiss 38 940-955.
[2] Fitri S, Marjono, Thomas D K and R B E Wibowo 2020 Coefficients Inequalities for a subclass of Bazilevic Functions Demonstratio Mathematica 53 1-11.
[3] Janteng A, Halim S and Darus M 2007 Hankel Determinants for Starlike and Convex Functions Int Journal Math Analysis 1(13) 619-625.
[4] Kumar V, Kumar S and Ravichandran V 2020 The Third Hankel Determinant for Certain Classes of Analytic Functions Mathematical analysis I : Approximation Theory, Springer Proceeding in Mathematics and Statistics 306 223-231. https://doi.org/10.1007/978-981-15-
1153-0_19

[5] Marjono and D K Thomas, 2016 The Second Hankel Determinant of functions Convex in One Direction *International Journal of Mathematical Analysis* 10(9) 423-428.

[6] Marjono, Fitri S and Daniswara K A 2020 The Higher Coefficients for Bazilevic Functions $B_{1}(\alpha)$ *Australian Journal of Mathematical Analysis and Applications* 17, no.2 Art.2 1-11.

[7] Singh R 1973 On Bazilevic Functions *Proc Amer Math Soc* 38 No.2 261-271.

[8] Thomas D K 2015 On the Coefficients of Bazilevic Functions with Logarithmic Growth *Indian Journal of Mathematics* 57(3) 403–418.