Cross-sections of large-angle hadron production in proton– and pion–nucleus interactions II: beryllium nuclei and beam momenta from ± 3 GeV/c to ± 15 GeV/c

A. Bolshakova, I. Boyko, G. Chelkov, D. Dedovitch, A. Elagin, M. Gostkin, S. Grishin, A. Gusakov, Z. Kroumchtein, Yu. Nefedov, K. Nikolaev, A. Zhemchugov, F. Dydak, J. Wotschack, A. De Min, V. Ammosov, V. Gapienko, V. Koreshev, A. Semak, Yu. Svirdov, E. Usenko, V. Zaets

1Joint Institute for Nuclear Research, Dubna, Russia
2CERN, Geneva, Switzerland
3Politecnico di Milano and INFN, Sezione di Milano-Bicocca, Milan, Italy
4Institute of High Energy Physics, Protvino, Russia
5Present address: Texas A&M University, College Station, USA
6Present address: Institute for Nuclear Research RAS, Moscow, Russia

Received: 12 March 2009 / Revised: 8 June 2009 / Published online: 9 July 2009
© Springer-Verlag / Società Italiana di Fisica 2009

Abstract We report on double-differential inclusive cross-sections of the production of secondary protons and charged pions, in the interactions with a 5% λ_{abs} thick stationary beryllium target, of proton and pion beams with momentum from ± 3 GeV/c to ± 15 GeV/c. Results are given for secondary particles with production angles $20^\circ < \theta < 125^\circ$.

PACS 13.85.Ni · 25.40.Qa

1 Introduction

The HARP experiment arose from the realization that the inclusive differential cross-sections of hadron production in the interactions of few GeV/c protons with nuclei were known only within a factor of two to three, while more precise cross-sections are in demand for several reasons. Consequently, the HARP detector was designed to carry out a programme of systematic and precise measurements of hadron production by protons and pions with momenta from 1.5 to 15 GeV/c.

The detector combined a forward spectrometer with a large-angle spectrometer. The latter comprised a cylindrical Time Projection Chamber (TPC) around the target and an array of Resistive Plate Chambers (RPCs) that surrounded the TPC. The purpose of the TPC was track reconstruction and particle identification by dE/dx. The purpose of the RPCs was to complement the particle identification by time of flight.

The HARP experiment was performed at the CERN Proton Synchrotron in 2001 and 2002 with a set of stationary targets ranging from hydrogen to lead, including beryllium.

Here, we report on the large-angle production (polar angle θ in the range $20^\circ < \theta < 125^\circ$) of secondary protons and charged pions in the interactions with a 5% λ_{abs} Be target of protons and pions with beam momenta of ± 3.0, ± 5.0, ± 12.0, and ± 15.0 GeV/c. We have reported earlier [1] on results from beam momenta of $+8.9$ and -8.0 GeV/c.

Our work involves only the HARP large-angle spectrometer. The detector characteristics and our analysis algorithms have been described in Ref. [1].

The data analysis presented in this paper rests exclusively on the calibrations of the TPC and the RPCs that we, the HARP–CDP group, published in Refs. [2] and [3]. As discussed in Refs. [4] and [5], and summarized succinctly in the appendix of Ref. [1], our calibrations disagree with those published by the ‘HARP Collaboration’ [6–9]. Conclusions of independent review bodies on the discrepancies between our results and those from the HARP Collaboration can be found in Refs. [10, 11].
2 The T9 proton and pion beams, and the target

The protons and pions were delivered by the T9 beam line in the East Hall of CERN’s Proton Synchrotron. This beam line supports beam momenta between 1.5 GeV/c and 15 GeV/c, with a momentum bite $\Delta p/p \sim 1\%$.

Beam particle identification was provided for by two threshold Cherenkov counters, BCA and BCB, filled with nitrogen, and by time of flight over a flight path of 24.3 m. Table 1 lists the beam instrumentation that was used at different beam momenta for p/π^+ and for π/e separation.

The pion beam had a contamination by muons from pion decays. It also had a contamination by electrons from converted photons from π^0 decays. Only for the beam momenta of 3 and 5 GeV/c were electrons identified by a beam Cherenkov counter and rejected.

The fractions of muon and electron contaminations of the pion beam were experimentally determined [12, 13] and are listed in Table 2 for all beam momenta.\(^1\) For the determination of interaction cross-sections of pions, the muon and electron contaminations must be subtracted from the incoming flux of pion-like particles (except electrons at the beam momenta of 3 and 5 GeV/c).

The kaon contamination in the proton and pion beams is at the per-cent level. Beam kaons are rejected either by TOF or suppressed by the beam Cherenkov response; only at 5 GeV/c kaons are indistinguishable from pions. Because the kaon interaction cross-sections are close to the proton and pion interaction cross-sections, this contamination is ignored.

The beam trajectory was determined by a set of three multiwire proportional chambers (MWPCs), located upstream of the target, several meters apart. The transverse error of the impact point on the target was 0.5 mm from the resolution of the MWPCs, plus a contribution from multiple scattering of the beam particles in various materials in the beam line. Excluding the target itself, the latter contribution is 0.2 mm for a 8.9 GeV/c beam particle.

We select ‘good’ beam particles by requiring the unambiguous reconstruction of the particle trajectory with good χ^2. In addition we require that the particle type is unambiguously identified. We select ‘good’ accelerator spills by requiring a minimal intensity and a ‘smooth’ variation of beam intensity across the 400 ms long spill.\(^2\)

The target was a cylinder made of high-purity (99.95%) beryllium, with a density of 1.85 g/cm\(^3\), a radius of 15 mm, and a thickness of 20.5 ± 0.1 mm (5% λ_{abs}).

The finite thickness of the target leads to a small attenuation of the number of incident beam particles. The attenuation factor is $f_{att} = 0.975$.

The size of the beam spot at the position of the target was several millimeters in diameter, determined by the setting of the beam optics and by multiple scattering. The nominal beam position\(^3\) was at $x_{beam} = y_{beam} = 0$, however, excursions by several millimeters could occur.\(^4\) A loose fiducial cut $\sqrt{x_{beam}^2 + y_{beam}^2} < 12$ mm ensured full beam acceptance. The muon and electron contaminations of the pion beam, stated above, refer to this acceptance cut.

3 The HARP large-angle detectors

Our calibration work on the HARP TPC and RPCs is described in detail in Refs. [2] and [3], and in references cited therein. In particular, we recall that static and dynamic TPC track distortions up to 10 mm have been corrected to better than 300 μm. Therefore, TPC track distortions do not affect the precision of our cross-section measurements.

\(^{2}\)A smooth variation of beam intensity eases corrections for dynamic TPC track distortions.

\(^{3}\)A right-handed Cartesian and/or spherical polar coordinate system is employed; the z axis coincides with the beam line, with +z pointing downstream; the coordinate origin is at the center of the beryllium target, 500 mm downstream of the TPC’s pad plane; looking downstream, the $+x$ coordinate points to the left and the $+y$ coordinate points up; the polar angle θ is the angle with respect to the $+z$ axis.

\(^{4}\)The only relevant issue is that the trajectory of each individual beam particle is known, whether shifted or not, and therefore the amount of matter to be traversed by the secondary hadrons.

\(^{1}\)For the -8.0 GeV/c beam, the same electron contamination was taken as in the $+8.9$ GeV/c beam.

Table 1 Beam instrumentation for p/π^+ and π/e separation

Beam momentum [GeV/c]	p/π^+ separation	π/e separation
±3.0	TOF	BCB (1.05 bar)
±5.0	TOF	BCB (2.05 bar)
−8.0 and +8.9	BCA (1.25 bar)	BCB (1.50 bar)
±12.0 and ±15.0	BCA (3.50 bar)	BCB (3.50 bar)

Table 2 Contaminations of the pion beams by muons and electrons

Beam momentum [GeV/c]	Muon fraction [%]	Electron fraction [%]
±3.0	4.1 ± 0.4	rejected
±5.0	5.1 ± 0.4	rejected
−8.0	1.9 ± 0.5	1.2 ± 0.5
+8.9	1.7 ± 0.5	1.2 ± 0.5
±12	0.6 ± 0.6	0.5 ± 0.5
±15	0.0 ± 0.5	0.0 ± 0.5
The resolution $\sigma(1/p_T)$ is typically 0.2 (GeV/c)$^{-1}$ and worsens towards small relative particle velocity β and small polar angle θ.

The absolute momentum scale is determined to be correct to better than 2%, both for positively and negatively charged particles.

The polar angle θ is measured in the TPC with a resolution of \sim9 mrad, for a representative angle of $\theta = 60^\circ$. To this a multiple scattering error has to be added which is \sim7 mrad for a proton with $p_T = 500$ MeV/c and $\theta = 60^\circ$, and \sim4 mrad for a pion with the same characteristics. The polar-angle scale is correct to better than 2 mrad.

The TPC measures dE/dx with a resolution of 16% for a track length of 300 mm.

The intrinsic efficiency of the RPCs that surround the TPC is better than 98%.

The intrinsic time resolution of the RPCs is 127 ps and the system time-of-flight resolution (that includes the jitter of the arrival time of the beam particle at the target) is 175 ps.

To separate measured particles into species, we assign on the basis of dE/dx and β to each particle a probability of being a proton, a pion (muon), or an electron, respectively. The probabilities add up to unity, so that the number of particles is conserved. These probabilities are used for weighting when entering tracks into plots or tables.

4 Monte Carlo simulation

We used the Geant4 tool kit [14, 15] for the simulation of the HARP large-angle spectrometer.

We had expected that Geant4 would provide us with reasonably realistic spectra of secondary hadrons. We found this expectation met by Geant4's so-called QGSP_BIC physics list, but only for the secondaries from incoming beam protons with momentum less than 12 GeV/c. For the secondaries from beam protons at 12 and 15 GeV/c momentum, and from beam pions at all momenta, we found the standard physics lists of Geant4 unsuitable [16].

To overcome this problem, we built our own physics list (HARP_CDP) for the production of secondaries from incoming beam pions. It starts from Geant4’s standard QBBC physics list, but the Quark–Gluon String Model is replaced by the FRITIOF string fragmentation model for kinetic energy $E > 6$ GeV; for $E < 6$ GeV, the Bertini Cascade is used for pions, and the Binary Cascade for protons; elastic and quasi-elastic scattering is disabled. Examples of the good performance of the HARP_CDP physics list are given in Ref. [16].

5 Systematic errors

The systematic precision of our inclusive cross-sections is at the few-per-cent level, from errors in the normalization, in the momentum measurement, in particle identification, and in the corrections applied to the data.

The systematic error of the absolute flux normalization is taken as 2%. This error arises from uncertainties in the target thickness, in the contribution of large-angle scattering of beam particles, in the attenuation of beam particles in the target, and in the subtraction of the muon and electron contaminations of the beam. Another contribution comes from the removal of events with an abnormally large number of TPC hits above threshold.\footnote{Very rarely, because of apparatus malfunction, the number of TPC hits was much larger than possible for a physics event. Such events are considered unphysical and eliminated.}

The systematic error of the track finding efficiency is taken as 1% which reflects differences between results from different persons who conducted eyeball scans. We also take the statistical errors of the parameters of a fit to scan results as systematic error into account [1]. The systematic error of the correction for losses from the requirement of at least 10 TPC clusters per track is taken as 20% of the correction which itself is in the range of 5 to 30%. This estimate arose from differences between the four TPC sectors that were used in our analysis, and from the observed variations with time.

The systematic error of the p_T scale is taken as 2% as discussed in Ref. [2].

The systematic errors of the proton, pion, and electron abundances are taken as 10%. We stress that errors on abundances only lead to cross-section errors in case of a strong overlap of the resolution functions of both identification variables, dE/dx and β. The systematic error of the correction for migration, absorption of secondary protons and pions in materials, and for pion decay into muons, is taken as 20% of the correction, or 1% of the cross-section, whichever is larger. These estimates reflect our experience with rema

6 Cross-section results

In Tables A.1–A.36, collated in the Appendix, we give the double-differential inclusive cross-sections $d^2\sigma/dp\,d\Omega$ for all 36 combinations of incoming beam particle and secondary particle, including statistical and systematic errors. In each bin, the average momentum at the vertex and the average polar angle are also given.

The data of Tables A.1–A.36 are available in ASCII format in Ref. [17].
Cross-sections are only given if the total error is not larger than the cross-section itself. Since our track reconstruction algorithm is optimized for tracks with p_T above ~ 70 MeV/c in the TPC volume, we do not give cross-sections from tracks with p_T below this value. Because of the absorption of slow protons in the material between the vertex and the TPC gas, and with a view to keeping the correction for absorption losses below 30%, cross-sections from protons are limited to $p > 350$ MeV/c at the interaction vertex. Proton cross-sections are also not given if a 10% error on the proton energy loss in materials between the interaction vertex and the TPC volume leads to a momentum change larger than 2%. Pion cross-sections are not given if pions are separated from protons by less than twice the time-of-flight resolution.

The larger than usual error bars for the +15 GeV/c pion beam are caused by scarce statistics because the beam composition was dominated by protons.

We present in Figs. 1 to 7 what we consider salient features of our cross-sections. In these figures, we also show the data from the +8.9 GeV/c and −8.0 GeV/c beams that we published in Ref. [1].

Figure 1 shows the inclusive cross-sections of the production of protons, π^+'s, and π^-'s, from incoming protons between 3 GeV/c and 15 GeV/c momentum, as a function of their charge-signed p_T. The data refer to the polar-angle range $20^\circ < \theta < 30^\circ$. Figures 2 and 3 show the same for incoming π^+'s and π^-'s.

Figure 4 shows the inclusive cross-sections of the production of protons, π^+'s, and π^-'s, from incoming protons between 3 GeV/c and 15 GeV/c momentum, this time as a function of their charge-signed polar angle θ. The data refer to the p_T range $0.24 < p_T < 0.30$ GeV/c. In this p_T range pions populate nearly all polar angles, whereas protons are absorbed at large polar angle and thus escape measurement. Figures 5 and 6 show the same for incoming π^+'s and π^-'s.

These figures highlight the rather strong differences in the production of proton, π^+ and π^- secondaries for different beam particles and beam momenta.

In Fig. 7, we present the inclusive cross-sections of the production of secondary π^+'s and π^-'s, integrated over the momentum range $0.2 < p < 1.0$ GeV/c and the polar-angle range $30^\circ < \theta < 90^\circ$ in the forward hemisphere, as a function of the beam momentum.

7 Comparison of our results with results from other experiments

7.1 Comparison with E802 results

Experiment E802 [18] at Brookhaven National Laboratory measured secondary charged pions in the polar-angle range $5^\circ < \theta < 58^\circ$ from the interactions of +14.6 GeV/c protons with beryllium nuclei.

Figure 8 shows their published Lorentz-invariant cross-section of π^+ and π^- production by +14.6 GeV/c protons, in the rapidity range $1.2 < y < 1.4$, as a function of $m_T - m_\pi$, where m_T denotes the pion transverse mass. Their data are compared with our cross-sections from the interactions of $+15.0$ GeV/c protons with beryllium nuclei, expressed in the same unit as used by E802. Since E802 quoted only statistical errors, our data in Fig. 8 are also shown with their statistical errors.

The E802 π^\pm cross-sections are in good agreement with our cross-sections measured nearly at the same proton beam momentum, taking into account the normalization uncertainty of (10–15)% quoted by E802. We draw attention to the good agreement of the slopes of the cross-sections over two orders of magnitude.

7.2 Comparison with E910 results

Experiment E910 [19] at Brookhaven National Laboratory measured secondary charged pions in the momentum range 0.1–6 GeV/c from the interactions of +12.3 GeV/c protons with beryllium nuclei. This experiment used a TPC for the measurement of secondaries, with a comfortably large track length of ~ 1.5 m. This feature, together with a magnetic field strength of 0.5 T, is of particular significance, since it permits considerably better charge identification and proton–pion separation by dE/dx than is possible in the HARP detector. Figure 9 shows their published cross-section $d^2\sigma / dp d\Omega$ of π^\pm production by +12.3 GeV/c protons, in the polar-angle range $0.8 < \cos \theta < 0.9$. Since E910 quoted only statistical errors, our data in Fig. 9 from the interactions of $+12.0$ GeV/c protons are also shown with their statistical errors. The normalization uncertainty quoted by E910 is $\leq 5\%$.

Also here, the E910 data are shown as published, and our data are expressed in the same unit as used by E910. We draw attention to the good agreement in the π^+/π^- ratio between the cross-sections from E910 and our cross-sections. See also Fig. 10(b) in Sect. 7.3.

7.3 Comparison with results from the HARP Collaboration

Figure 10(a) shows the comparison of our cross-sections of pion production by +12.0 GeV/c protons off beryllium nuclei with the ones published by the HARP Collaboration [20], in the polar-angle range $0.35 < \theta < 0.55$ rad. The latter cross-sections are plotted as published, while we expressed our cross-sections in the unit used by the HARP Collaboration. Figure 10(b) shows our ratio π^+/π^- as a function of the polar angle θ in comparison with the ratios
Fig. 1 Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, by protons on beryllium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different proton beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 2 Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, by π^+'s on beryllium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different π^+ beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 3 Inclusive cross-sections of the production of secondary protons, π⁺'s, and π⁻'s, by π⁻'s on beryllium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different π⁻ beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 4 Inclusive cross-sections of the production of secondary protons, π⁺'s, and π⁻'s, with p_T in the range $0.24-0.30$ GeV/c, by protons on beryllium nuclei, for different proton beam momenta, as a function of the charge-signed polar angle θ of the secondaries; the shown errors are total errors.
Fig. 5 Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, with p_T in the range 0.24–0.30 GeV/c, by π^+'s on beryllium nuclei, for different π^+ beam momenta, as a function of the charge-signed polar angle θ of the secondaries; the shown errors are total errors.
Fig. 6 Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, with p_T in the range $0.24-0.30$ GeV/c, by π^-'s on beryllium nuclei, for different π^- beam momenta, as a function of the charge-signed polar angle θ of the secondaries; the shown errors are total errors.
Fig. 7 Inclusive cross-sections of the production of secondary π^+'s and π^-'s, integrated over the momentum range $0.2 < p < 1.0$ GeV/c and the polar-angle range $30^\circ < \theta < 90^\circ$, from the interactions on beryllium nuclei of protons (top row), π^+'s (middle row), and π^-'s (bottom row), as a function of the beam momentum; the shown errors are total errors and mostly smaller than the symbol size.
Fig. 8 Comparison of our cross-sections (black circles) of π^\pm production by $+15.0\text{ GeV/c}$ protons off beryllium nuclei, with the cross-sections published by the E802 Collaboration for the proton beam momentum of $+14.6\text{ GeV/c}$ (open circles); all errors are statistical only.

Fig. 9 Comparison of our cross-sections of π^\pm production by $+12.0\text{ GeV/c}$ protons off beryllium nuclei with the cross-sections published by the E910 Collaboration for the proton beam momentum of $+12.3\text{ GeV/c}$ (open circles); all errors are statistical only.

Published by the E910 Collaboration (at the slightly different proton beam momentum of $+12.3\text{ GeV/c}$) and by the HARP Collaboration.

The discrepancy between our results and those published by the HARP Collaboration is evident. We note the difference especially of the π^+ cross-section, and the difference in the reported momentum range. The discrepancy is even more serious as the same data set has been analysed by both groups.

We hold that the discrepancy is caused by problems in the HARP Collaboration’s data analysis. They result primarily, but not exclusively, from a lack of understanding TPC track distortions and RPC timing signals. These problems, together with others that affect the HARP Collaboration’s data analysis, are discussed in detail in Refs. [4, 5, 21–23] and in the Appendix of Ref. [1].

8 Summary

From the analysis of data from the HARP large-angle spectrometer (polar angle θ in the range $20^\circ < \theta < 125^\circ$), double-differential cross-sections $d^2\sigma/dp d\Omega$ of the production of secondary protons, π^+’s, and π^-’s, have been
obtained. The incoming beam particles were protons and pions with momenta from ± 3 to $\pm 15 \text{ GeV}/c$, impinging on a 5\% λ_{abs} thick stationary beryllium target. Our cross-sections for π^+ and π^- production agree with results from the BNL experiments E802 and E910 but disagree with the results from the HARP Collaboration that were obtained from the same raw data.

Acknowledgements We are greatly indebted to many technical collaborators whose diligent and hard work made the HARP detector a well-functioning instrument. We thank all HARP colleagues who devoted time and effort to the design and construction of the detector, to data taking, and to setting up the computing and software infrastructure. We express our sincere gratitude to HARP’s funding agencies for their support.

Appendix: Cross-section tables

Table A.1 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c str)] of the production of protons in $p + \text{Be} \rightarrow p + X$ interactions with $+3.0 \text{ GeV}/c$ beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	20 $\leq \theta < 30$	30 $\leq \theta < 40$				
(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.20–0.24	0.221	24.7	58.52 \pm 2.79 \pm 3.92	0.271	34.9	54.76 \pm 2.16 \pm 2.96
0.24–0.30	0.269	25.1	64.24 \pm 2.38 \pm 3.63	0.330	35.1	51.23 \pm 2.05 \pm 2.50
0.30–0.36	0.329	24.9	58.05 \pm 2.24 \pm 2.98	0.390	34.9	52.43 \pm 2.11 \pm 2.44
0.36–0.42	0.390	24.9	57.81 \pm 2.23 \pm 2.75	0.460	34.9	43.86 \pm 1.69 \pm 1.83
0.42–0.50	0.459	24.8	54.37 \pm 1.85 \pm 2.27	0.549	34.8	35.55 \pm 1.37 \pm 1.47
0.50–0.60	0.548	24.8	43.78 \pm 1.50 \pm 1.80	0.654	34.9	24.47 \pm 1.03 \pm 1.26
0.60–0.72	0.656	24.8	35.71 \pm 1.28 \pm 1.73	0.800	35.0	16.01 \pm 0.71 \pm 1.08
0.72–0.90	0.800	35.0	16.01 \pm 0.71 \pm 1.08			

p_T	40 $\leq \theta < 50$	50 $\leq \theta < 60$				
(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.30–0.36	0.332	45.0	45.49 \pm 1.88 \pm 2.08	0.390	55.1	41.48 \pm 1.80 \pm 1.82
0.36–0.42	0.391	45.0	46.83 \pm 1.96 \pm 2.13	0.461	55.3	35.87 \pm 1.47 \pm 1.49
0.42–0.50	0.461	45.1	37.82 \pm 1.52 \pm 1.55	0.551	55.0	32.08 \pm 1.27 \pm 1.42
0.50–0.60	0.551	45.0	33.10 \pm 1.32 \pm 1.44	0.663	55.2	24.47 \pm 1.08 \pm 1.41
0.60–0.72	0.659	44.9	27.41 \pm 1.14 \pm 1.42	0.803	54.7	12.21 \pm 0.63 \pm 1.00
0.72–0.90	0.806	44.9	13.53 \pm 0.64 \pm 0.96	1.030	54.7	16.9 \pm 0.14 \pm 0.32
0.90–1.25	1.037	44.8	2.97 \pm 0.20 \pm 0.46	0.389	113.6	6.77 \pm 0.48 \pm 0.51

p_T	60 $\leq \theta < 75$	75 $\leq \theta < 90$				
(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.36–0.42	0.391	67.3	40.49 \pm 1.46 \pm 1.60	0.459	81.5	20.38 \pm 0.89 \pm 0.97
0.42–0.50	0.460	67.2	35.62 \pm 1.20 \pm 1.31	0.547	81.4	13.19 \pm 0.65 \pm 0.81
0.50–0.60	0.549	67.1	30.01 \pm 1.01 \pm 1.33	0.660	81.3	6.31 \pm 0.44 \pm 0.69
0.60–0.72	0.660	66.9	14.59 \pm 0.65 \pm 0.94	0.791	81.1	1.68 \pm 0.19 \pm 0.26
0.72–0.90	0.803	66.4	5.20 \pm 0.32 \pm 0.57	1.031	81.5	0.17 \pm 0.04 \pm 0.09
0.90–1.25	1.027	66.1	0.67 \pm 0.08 \pm 0.17	0.389	113.6	6.77 \pm 0.48 \pm 0.51

p_T	90 $\leq \theta < 105$	105 $\leq \theta < 125$				
(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.36–0.42	0.458	96.5	10.78 \pm 0.64 \pm 0.79	0.456	113.0	4.70 \pm 0.36 \pm 0.40
0.42–0.50	0.549	96.0	5.78 \pm 0.42 \pm 0.52	0.539	111.7	1.45 \pm 0.20 \pm 0.21
0.50–0.60	0.659	95.5	1.58 \pm 0.23 \pm 0.23	0.659	112.3	0.23 \pm 0.08 \pm 0.08
0.60–0.72	0.785	94.8	0.38 \pm 0.11 \pm 0.12			
Table A.2 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+’s in $p +$ Be → π^+ + X interactions with +3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$												
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$								
0.10–0.13	0.116	24.5	26.72	±	2.52	±	2.91	0.113	35.8	25.91	±	2.50	±	3.03
0.13–0.16	0.146	24.6	38.71	±	2.79	±	3.07	0.146	34.7	34.51	±	2.55	±	2.95
0.16–0.20	0.180	25.0	54.17	±	2.77	±	3.39	0.179	34.5	36.55	±	2.23	±	2.41
0.20–0.24	0.220	24.9	59.69	±	2.68	±	3.04	0.220	34.8	39.25	±	2.24	±	2.35
0.24–0.30	0.269	25.0	34.60	±	1.75	±	1.83	0.268	34.6	33.40	±	1.69	±	1.72
0.30–0.36	0.328	25.3	27.87	±	1.58	±	1.53	0.329	35.2	24.06	±	1.44	±	1.35
0.36–0.42	0.388	25.0	16.61	±	1.17	±	1.18	0.386	35.1	16.13	±	1.16	±	1.04
0.42–0.50	0.458	25.1	11.44	±	0.83	±	0.77	0.458	34.8	9.70	±	0.79	±	0.65
0.50–0.60	0.548	25.0	4.88	±	0.44	±	0.45	0.549	34.9	5.58	±	0.50	±	0.46
0.60–0.72	0.656	24.9	3.72	±	0.33	±	0.58	0.654	35.3	3.21	±	0.34	±	0.40
0.72–0.90	0.798	34.7	1.73	±	0.18	±	0.59							

p_T	$40 < \theta < 50$	$50 < \theta < 60$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.10–0.13	0.116	45.4	20.82	±	2.28	±	2.40
0.13–0.16	0.146	45.0	27.15	±	2.32	±	2.26
0.16–0.20	0.180	45.0	35.34	±	2.19	±	2.32
0.20–0.24	0.219	44.4	32.30	±	2.05	±	2.01
0.24–0.30	0.271	44.6	25.09	±	1.47	±	1.44
0.30–0.36	0.329	44.6	18.15	±	1.23	±	1.10
0.36–0.42	0.391	44.7	12.60	±	1.02	±	0.86
0.42–0.50	0.457	44.9	8.79	±	0.77	±	0.63
0.50–0.60	0.544	45.1	3.35	±	0.41	±	0.29
0.60–0.72	0.649	44.4	2.43	±	0.31	±	0.33
0.72–0.90	0.806	44.0	1.24	±	0.17	±	0.33
0.90–1.25	1.048	54.2	0.14	±	0.03	±	0.04

p_T	$60 < \theta < 75$	$75 < \theta < 90$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.13–0.16	0.145	67.5	19.57	±	1.66	±	1.71
0.16–0.20	0.180	67.5	21.09	±	1.41	±	1.39
0.20–0.24	0.221	67.3	20.59	±	1.36	±	1.29
0.24–0.30	0.269	67.0	13.53	±	0.88	±	0.76
0.30–0.36	0.329	66.6	8.32	±	0.69	±	0.53
0.36–0.42	0.390	66.8	7.22	±	0.65	±	0.58
0.42–0.50	0.461	66.4	3.92	±	0.41	±	0.33
0.50–0.60	0.549	66.7	2.49	±	0.29	±	0.26
0.60–0.72	0.659	67.0	1.01	±	0.17	±	0.16
0.72–0.90	0.803	66.0	0.34	±	0.08	±	0.11

p_T	$90 < \theta < 105$	$105 < \theta < 125$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.13–0.16	0.145	97.6	14.79	±	1.42	±	1.45
0.16–0.20	0.183	97.8	15.13	±	1.19	±	1.14
0.20–0.24	0.218	97.3	11.01	±	1.01	±	0.87
0.24–0.30	0.264	96.7	6.15	±	0.61	±	0.49
0.30–0.36	0.330	96.6	3.62	±	0.46	±	0.39
0.36–0.42	0.386	96.2	2.62	±	0.40	±	0.36
0.42–0.50	0.457	95.5	0.87	±	0.19	±	0.15
0.50–0.60	0.548	96.3	0.40	±	0.11	±	0.11
0.60–0.72	0.662	92.0	0.11	±	0.05	±	0.06
Table A.3 Double-differential inclusive cross-section $d^2\sigma/dp
d\Omega$ [mb/(GeV/c ster)] of the production of π^-’s in $p + Be \rightarrow \pi^- + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$		$30 < \theta < 40$	
	(pt) (\theta)	$d^2\sigma/dp		
d\Omega$	(pt) (\theta)	$d^2\sigma/dp		
d\Omega$				
0.10-0.13	0.115 25.5 17.40 ± 2.00 ± 2.06	0.115 34.5 19.48 ± 2.02 ± 2.28		
0.13-0.16	0.145 24.7 24.57 ± 2.20 ± 2.55	0.146 34.3 17.52 ± 1.79 ± 1.73		
0.16-0.20	0.179 24.9 23.25 ± 1.76 ± 1.91	0.181 34.9 19.27 ± 1.55 ± 1.57		
0.20-0.24	0.220 24.9 21.48 ± 1.70 ± 1.69	0.219 34.7 22.12 ± 1.69 ± 1.65		
0.24-0.30	0.268 25.2 15.72 ± 1.18 ± 1.09	0.270 35.0 16.90 ± 1.19 ± 1.17		
0.30-0.36	0.327 25.2 9.18 ± 0.90 ± 0.73	0.330 34.8 11.79 ± 0.99 ± 0.85		
0.36-0.42	0.391 24.7 5.31 ± 0.68 ± 0.54	0.390 35.3 7.60 ± 0.81 ± 0.66		
0.42-0.50	0.453 25.4 4.17 ± 0.53 ± 0.47	0.461 34.8 3.53 ± 0.48 ± 0.37		
0.50-0.60	0.537 26.2 1.39 ± 0.27 ± 0.24	0.551 34.8 2.62 ± 0.37 ± 0.37		
0.60-0.72	0.645 24.9 0.38 ± 0.13 ± 0.12	0.647 35.5 1.07 ± 0.22 ± 0.24		
0.72-0.90		0.767 36.4 0.25 ± 0.09 ± 0.13		
Table A.4 Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Be} \rightarrow p + \text{X}$ interactions with +3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$		$30 < \theta < 40$			
	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$
0.20–0.24	0.220	24.9	50.34 ± 1.88 ± 3.48	0.270	34.9	43.21 ± 1.37 ± 2.53
0.24–0.30	0.271	24.9	53.95 ± 1.58 ± 3.07	0.329	35.1	43.86 ± 1.37 ± 2.23
0.30–0.36	0.330	24.9	47.07 ± 1.46 ± 2.45	0.389	34.9	38.22 ± 1.30 ± 1.77
0.36–0.42	0.390	25.1	42.80 ± 1.37 ± 2.06	0.459	34.9	36.01 ± 1.10 ± 1.48
0.42–0.50	0.460	24.9	39.00 ± 1.11 ± 1.73	0.547	35.0	31.06 ± 0.91 ± 1.31
0.50–0.60	0.549	25.0	32.73 ± 0.91 ± 1.38	0.654	34.8	21.63 ± 0.68 ± 1.10
0.60–0.72	0.655	25.1	24.05 ± 0.73 ± 1.26	0.799	35.0	14.33 ± 0.47 ± 0.97

p_T	$40 < \theta < 50$		$50 < \theta < 60$			
	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$
0.30–0.36	0.331	44.9	40.03 ± 1.27 ± 2.00	0.392	55.0	34.14 ± 1.18 ± 1.68
0.36–0.42	0.390	44.9	38.72 ± 1.29 ± 1.78	0.461	54.9	28.83 ± 0.95 ± 1.26
0.42–0.50	0.461	45.2	30.71 ± 1.00 ± 1.31	0.549	54.9	22.78 ± 0.78 ± 1.08
0.50–0.60	0.551	44.9	26.80 ± 0.86 ± 1.14	0.658	55.0	17.89 ± 0.67 ± 1.06
0.60–0.72	0.659	45.0	20.70 ± 0.71 ± 1.15	0.804	54.9	9.14 ± 0.39 ± 0.67
0.72–0.90	0.804	45.2	11.04 ± 0.41 ± 0.77	1.035	54.6	1.45 ± 0.09 ± 0.21
0.90–1.25	1.040	45.0	2.59 ± 0.13 ± 0.30			

p_T	$60 < \theta < 75$		$75 < \theta < 90$			
	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$
0.36–0.42	0.391	67.4	32.41 ± 0.95 ± 1.35	0.460	81.9	19.96 ± 0.65 ± 1.00
0.42–0.50	0.461	67.3	28.38 ± 0.78 ± 1.06	0.548	82.0	12.18 ± 0.45 ± 0.77
0.50–0.60	0.549	67.0	22.20 ± 0.63 ± 1.01	0.655	81.4	5.92 ± 0.30 ± 0.52
0.60–0.72	0.658	67.0	11.22 ± 0.41 ± 0.73	0.804	82.2	2.17 ± 0.15 ± 0.29
0.72–0.90	0.803	66.7	4.69 ± 0.22 ± 0.46	1.035	81.3	0.24 ± 0.04 ± 0.06
0.90–1.25	1.041	66.8	0.71 ± 0.06 ± 0.14			

p_T	$90 < \theta < 105$		$105 < \theta < 125$			
	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle\theta\rangle$	$d^2\sigma/dp\Omega$
0.36–0.42	0.389	114.0	8.63 ± 0.40 ± 0.61	0.459	113.8	5.58 ± 0.29 ± 0.45
0.42–0.50	0.459	97.0	12.05 ± 0.50 ± 0.88	0.544	113.0	2.68 ± 0.19 ± 0.31
0.50–0.60	0.546	96.7	6.52 ± 0.32 ± 0.56	0.649	113.3	0.52 ± 0.08 ± 0.11
0.60–0.72	0.658	96.4	2.78 ± 0.20 ± 0.34	0.794	111.5	0.09 ± 0.03 ± 0.04
0.72–0.90	0.798	95.9	0.68 ± 0.09 ± 0.13	0.918	95.4	0.05 ± 0.02 ± 0.04
Table A.5 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^+ + Be \rightarrow \pi^+ + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	20 $< \theta < 30$	30 $< \theta < 40$				
	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	24.8	43.47 ± 2.34 ± 4.31	0.115	34.9	33.36 ± 2.01 ± 3.40
0.13–0.16	0.145	24.8	50.46 ± 2.29 ± 3.82	0.146	34.5	36.70 ± 1.89 ± 2.97
0.16–0.20	0.181	24.7	64.45 ± 2.17 ± 3.95	0.181	34.9	47.62 ± 1.84 ± 3.14
0.20–0.24	0.220	24.8	67.24 ± 2.18 ± 3.57	0.220	34.7	55.06 ± 1.92 ± 3.08
0.24–0.30	0.270	24.9	66.04 ± 1.76 ± 2.86	0.270	34.8	53.58 ± 1.55 ± 2.50
0.30–0.36	0.329	24.9	59.60 ± 1.66 ± 2.52	0.329	34.8	47.63 ± 1.46 ± 2.11
0.36–0.42	0.389	24.9	47.34 ± 1.46 ± 1.99	0.389	34.7	36.43 ± 1.26 ± 1.64
0.42–0.50	0.460	25.0	35.97 ± 1.08 ± 1.66	0.458	34.9	32.72 ± 1.05 ± 1.51
0.50–0.60	0.548	24.9	24.39 ± 0.76 ± 1.47	0.547	35.0	20.98 ± 0.72 ± 1.21
0.60–0.72	0.657	25.0	17.10 ± 0.60 ± 1.49	0.654	34.9	13.91 ± 0.53 ± 1.12
0.72–0.90	0.798	34.7	9.18 ± 0.37 ± 1.12			

p_T	40 $< \theta < 50$	50 $< \theta < 60$				
	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	45.0	32.76 ± 2.06 ± 3.31	0.145	54.9	32.66 ± 1.91 ± 2.70
0.13–0.16	0.146	44.7	38.57 ± 2.00 ± 3.15	0.180	54.8	35.10 ± 1.63 ± 2.29
0.16–0.20	0.181	44.7	38.32 ± 1.65 ± 2.58	0.220	54.5	33.05 ± 1.51 ± 2.00
0.20–0.24	0.220	44.8	40.72 ± 1.67 ± 2.39	0.270	54.7	32.36 ± 1.22 ± 1.57
0.24–0.30	0.271	44.8	42.43 ± 1.38 ± 2.01	0.331	54.7	27.80 ± 1.12 ± 1.28
0.30–0.36	0.331	44.6	33.97 ± 1.21 ± 1.55	0.390	54.9	24.49 ± 1.06 ± 1.18
0.36–0.42	0.391	44.7	29.63 ± 1.14 ± 1.41	0.461	54.9	18.68 ± 0.80 ± 1.00
0.42–0.50	0.460	44.7	24.72 ± 0.93 ± 1.18	0.550	54.7	13.98 ± 0.61 ± 0.90
0.50–0.60	0.551	44.7	17.94 ± 0.69 ± 1.06	0.660	54.6	8.57 ± 0.44 ± 0.72
0.60–0.72	0.662	44.6	12.72 ± 0.53 ± 0.97	0.800	54.7	4.44 ± 0.27 ± 0.50
0.72–0.90	0.802	44.5	6.08 ± 0.30 ± 0.67	1.026	54.3	0.69 ± 0.06 ± 0.14

p_T	60 $< \theta < 75$	75 $< \theta < 90$				
	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146	67.2	27.36 ± 1.41 ± 2.13	0.145	82.3	23.85 ± 1.33 ± 1.95
0.16–0.20	0.180	67.4	32.26 ± 1.27 ± 1.96	0.181	82.2	27.84 ± 1.17 ± 1.73
0.20–0.24	0.220	67.5	28.37 ± 1.15 ± 1.62	0.219	82.1	22.35 ± 1.04 ± 1.36
0.24–0.30	0.270	67.3	23.71 ± 0.86 ± 1.13	0.269	82.1	17.37 ± 0.74 ± 0.91
0.30–0.36	0.331	67.2	20.19 ± 0.79 ± 0.93	0.331	81.5	12.76 ± 0.63 ± 0.71
0.36–0.42	0.392	67.1	16.77 ± 0.73 ± 0.82	0.389	81.1	10.39 ± 0.57 ± 0.68
0.42–0.50	0.461	66.9	12.41 ± 0.53 ± 0.71	0.460	82.3	6.55 ± 0.39 ± 0.51
0.50–0.60	0.550	66.4	8.58 ± 0.39 ± 0.63	0.552	82.0	4.47 ± 0.29 ± 0.44
0.60–0.72	0.659	66.6	4.59 ± 0.27 ± 0.47	0.658	81.5	2.01 ± 0.17 ± 0.27
0.72–0.90	0.793	66.1	1.75 ± 0.13 ± 0.24	0.809	81.6	0.56 ± 0.06 ± 0.12
0.90–1.25	1.029	66.0	0.20 ± 0.02 ± 0.05	1.035	82.4	0.05 ± 0.01 ± 0.03
Table A.5 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$
0.13–0.16	0.146	97.0	19.93 ± 1.20 ± 1.62	0.145	114.6	20.18 ± 1.07 ± 1.46
0.16–0.20	0.179	97.4	24.56 ± 1.12 ± 1.53	0.180	114.2	17.84 ± 0.83 ± 1.01
0.20–0.24	0.220	96.8	19.59 ± 0.98 ± 1.16	0.219	114.1	11.22 ± 0.64 ± 0.69
0.24–0.30	0.269	96.8	12.11 ± 0.62 ± 0.66	0.267	113.7	6.86 ± 0.41 ± 0.48
0.30–0.36	0.329	96.3	9.74 ± 0.55 ± 0.67	0.329	114.2	4.83 ± 0.34 ± 0.45
0.36–0.42	0.390	97.1	6.52 ± 0.46 ± 0.57	0.390	113.4	2.61 ± 0.24 ± 0.33
0.42–0.50	0.460	96.3	3.56 ± 0.29 ± 0.38	0.458	112.8	1.44 ± 0.15 ± 0.23
0.50–0.60	0.549	95.9	1.84 ± 0.18 ± 0.26	0.545	111.8	0.39 ± 0.06 ± 0.10
0.60–0.72	0.657	96.6	0.69 ± 0.09 ± 0.19	0.640	111.3	0.23 ± 0.05 ± 0.09
0.72–0.90	0.786	95.8	0.16 ± 0.03 ± 0.05	0.762	109.6	0.18 ± 0.04 ± 0.04

Table A.6 Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $p^+ + Be \rightarrow \pi^- + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$
0.10–0.13	0.116	24.7	30.88 ± 1.92 ± 3.72	0.116	34.5	22.19 ± 1.56 ± 2.72
0.13–0.16	0.145	24.6	37.24 ± 1.96 ± 3.16	0.146	35.0	31.28 ± 1.75 ± 3.34
0.16–0.20	0.180	24.9	40.74 ± 1.69 ± 2.75	0.181	34.8	29.45 ± 1.39 ± 2.40
0.20–0.24	0.220	24.9	44.76 ± 1.77 ± 2.68	0.220	34.8	32.04 ± 1.46 ± 2.08
0.24–0.30	0.269	25.0	37.20 ± 1.30 ± 1.80	0.269	34.8	31.91 ± 1.17 ± 1.72
0.30–0.36	0.328	24.9	33.42 ± 1.24 ± 1.54	0.329	34.8	27.38 ± 1.09 ± 1.41
0.36–0.42	0.389	25.1	26.86 ± 1.12 ± 1.35	0.388	34.8	21.11 ± 0.96 ± 1.16
0.42–0.50	0.456	25.0	18.55 ± 0.80 ± 1.06	0.457	34.6	15.18 ± 0.71 ± 0.89
0.50–0.60	0.543	25.0	9.36 ± 0.50 ± 0.68	0.543	34.8	9.29 ± 0.50 ± 0.70
0.60–0.72	0.651	25.0	5.11 ± 0.35 ± 0.52	0.652	34.5	4.87 ± 0.34 ± 0.52
0.72–0.90	0.784	35.0	1.98 ± 0.19 ± 0.26	0.762	39.6	1.98 ± 0.19 ± 0.26

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$
0.10–0.13	0.115	44.6	21.93 ± 1.62 ± 2.45	0.116	54.6	23.61 ± 1.58 ± 2.20
0.13–0.16	0.144	44.7	26.26 ± 1.62 ± 2.46	0.146	54.6	23.61 ± 1.58 ± 2.20
0.16–0.20	0.180	44.6	26.11 ± 1.34 ± 1.95	0.180	54.7	21.65 ± 1.22 ± 1.59
0.20–0.24	0.219	44.8	25.18 ± 1.30 ± 1.69	0.219	54.6	22.61 ± 1.26 ± 1.74
0.24–0.30	0.267	44.8	25.29 ± 1.05 ± 1.36	0.269	54.9	18.22 ± 0.90 ± 1.12
0.30–0.36	0.327	44.3	22.08 ± 1.00 ± 1.25	0.328	54.8	15.85 ± 0.84 ± 0.92
0.36–0.42	0.387	44.6	16.81 ± 0.85 ± 1.06	0.388	54.5	11.86 ± 0.73 ± 0.76
0.42–0.50	0.456	44.9	12.20 ± 0.65 ± 0.81	0.455	54.9	9.31 ± 0.57 ± 0.64
0.50–0.60	0.540	44.8	6.91 ± 0.43 ± 0.56	0.541	55.0	5.19 ± 0.38 ± 0.46
0.60–0.72	0.653	44.5	3.73 ± 0.29 ± 0.41	0.647	54.6	2.77 ± 0.25 ± 0.31
0.72–0.90	0.788	44.7	1.56 ± 0.16 ± 0.23	0.789	54.8	1.06 ± 0.13 ± 0.17
0.90–1.25	0.992	54.7	0.13 ± 0.02 ± 0.04	0.964	54.7	0.13 ± 0.02 ± 0.04
Table A.6 (Continued)

p_T	$60 < \theta < 75$		$75 < \theta < 90$											
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.144	67.3	18.75	±	1.16	±	1.57	0.145	82.8	18.01	±	1.14	±	1.67
0.16–0.20	0.179	67.3	17.85	±	0.93	±	1.20	0.179	82.3	16.80	±	0.91	±	1.21
0.20–0.24	0.219	66.8	18.04	±	0.91	±	1.20	0.218	81.9	12.18	±	0.75	±	0.88
0.24–0.30	0.269	67.1	13.77	±	0.64	±	0.77	0.268	82.5	9.99	±	0.56	±	0.65
0.30–0.36	0.329	67.0	12.02	±	0.61	±	0.71	0.327	82.0	8.09	±	0.50	±	0.59
0.36–0.42	0.386	66.3	9.40	±	0.53	±	0.59	0.388	82.0	5.41	±	0.41	±	0.45
0.42–0.50	0.452	66.5	6.20	±	0.37	±	0.46	0.455	82.3	3.34	±	0.28	±	0.33
0.50–0.60	0.541	66.4	4.18	±	0.28	±	0.39	0.542	81.5	1.93	±	0.19	±	0.24
0.60–0.72	0.645	66.7	2.26	±	0.18	±	0.29	0.642	82.1	1.01	±	0.12	±	0.18
0.72–0.90	0.784	66.4	0.52	±	0.07	±	0.09	0.785	82.7	0.18	±	0.04	±	0.05
0.90–1.25	1.021	65.6	0.07	±	0.02	±	0.03							

p_T	$90 < \theta < 105$		$105 < \theta < 125$											
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.144	97.0	14.92	±	1.04	±	1.51	0.145	114.3	11.86	±	0.81	±	0.96
0.16–0.20	0.180	97.2	13.45	±	0.81	±	1.08	0.178	114.7	10.27	±	0.63	±	0.72
0.20–0.24	0.218	97.2	10.54	±	0.72	±	0.87	0.218	113.8	6.81	±	0.50	±	0.60
0.24–0.30	0.266	97.0	7.52	±	0.49	±	0.58	0.268	113.6	3.57	±	0.29	±	0.34
0.30–0.36	0.327	97.2	4.88	±	0.39	±	0.46	0.325	113.2	2.68	±	0.25	±	0.34
0.36–0.42	0.385	97.3	3.56	±	0.33	±	0.40	0.389	113.6	1.45	±	0.18	±	0.22
0.42–0.50	0.456	97.0	2.01	±	0.22	±	0.27	0.447	113.2	0.78	±	0.11	±	0.16
0.50–0.60	0.530	97.9	0.74	±	0.11	±	0.14	0.539	112.2	0.26	±	0.05	±	0.09
0.60–0.72	0.637	96.3	0.31	±	0.06	±	0.09	0.658	110.4	0.11	±	0.03	±	0.05
0.72–0.90	0.801	97.3	0.08	±	0.02	±	0.04							
Table A.7 Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- + {\text{Be}} \rightarrow p + X$ interactions with -3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$		$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	
0.20–0.24	0.219	25.0	33.91	±	1.47	±	2.56
0.24–0.30	0.267	25.0	33.11	±	1.17	±	2.03
0.30–0.36	0.327	25.1	31.93	±	1.16	±	1.79
0.36–0.42	0.386	25.1	28.54	±	1.07	±	1.56
0.42–0.50	0.452	25.0	24.84	±	0.87	±	1.28
0.50–0.60	0.538	25.1	20.22	±	0.71	±	0.99
0.60–0.72	0.642	25.1	13.32	±	0.51	±	0.73
0.72–0.90	0.781	35.1	8.20	±	0.35	±	0.62

p_T	$40 < \theta < 50$		$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	
0.30–0.36	0.330	45.0	25.49	±	0.95	±	1.51
0.36–0.42	0.389	45.1	22.78	±	0.92	±	1.17
0.42–0.50	0.458	45.0	19.31	±	0.77	±	1.01
0.50–0.60	0.547	45.1	15.77	±	0.64	±	0.86
0.60–0.72	0.656	45.0	11.75	±	0.53	±	0.81
0.72–0.90	0.801	44.9	6.18	±	0.31	±	0.50
0.90–1.25	1.034	44.7	1.94	±	0.12	±	0.25

p_T	$60 < \theta < 75$		$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	
0.36–0.42	0.385	67.6	23.08	±	0.74	±	1.00
0.42–0.50	0.452	67.5	19.40	±	0.60	±	0.82
0.50–0.60	0.538	67.4	13.83	±	0.47	±	0.69
0.60–0.72	0.642	67.1	7.44	±	0.33	±	0.56
0.72–0.90	0.777	66.5	2.74	±	0.17	±	0.33
0.90–1.25	0.988	66.9	0.44	±	0.05	±	0.13

p_T	$90 < \theta < 105$		$105 < \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	(p_T)	(θ)	$d^2\sigma/dp d\Omega$	
0.36–0.42	0.383	114.3	5.20	±	0.29	±	0.42
0.42–0.50	0.452	96.7	7.99	±	0.37	±	0.66
0.50–0.60	0.538	96.7	4.57	±	0.26	±	0.49
0.60–0.72	0.640	97.0	1.57	±	0.16	±	0.26
0.72–0.90	0.776	96.8	0.37	±	0.07	±	0.11
Table A.8 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- + \text{Be} \rightarrow \pi^+ + X$ interactions with -3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$												
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$								
0.10–0.13	0.116	25.0	29.21	±	1.74	±	3.26	0.115	34.9	23.15	±	1.54	±	2.62
0.13–0.16	0.144	24.9	35.55	±	1.85	±	3.30	0.144	34.9	28.39	±	1.54	±	2.67
0.16–0.20	0.180	24.8	40.36	±	1.62	±	2.65	0.180	34.8	33.48	±	1.44	±	2.45
0.20–0.24	0.219	24.9	41.34	±	1.60	±	2.37	0.219	34.7	33.44	±	1.43	±	2.27
0.24–0.30	0.267	24.9	39.24	±	1.28	±	1.87	0.268	34.7	35.03	±	1.20	±	2.00
0.30–0.36	0.326	25.1	33.02	±	1.16	±	1.51	0.326	34.8	26.02	±	1.01	±	1.34
0.36–0.42	0.385	24.8	30.08	±	1.14	±	1.52	0.384	34.6	22.82	±	0.95	±	1.24
0.42–0.50	0.450	25.0	19.96	±	0.77	±	1.08	0.451	34.7	17.07	±	0.73	±	0.97
0.50–0.60	0.537	24.9	9.92	±	0.44	±	0.71	0.538	34.8	10.06	±	0.48	±	0.70
0.60–0.72	0.643	25.1	4.64	±	0.26	±	0.46	0.642	34.9	4.85	±	0.29	±	0.46
0.72–0.90	0.770	34.9	2.09	±	0.14	±	0.29							

p_T	$40 < \theta < 50$	$50 < \theta < 60$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.10–0.13	0.117	44.9	21.69	±	1.51	±	2.58
0.13–0.16	0.145	44.8	25.29	±	1.56	±	2.28
0.16–0.20	0.180	45.0	25.92	±	1.27	±	1.97
0.20–0.24	0.219	44.4	29.52	±	1.38	±	2.04
0.24–0.30	0.269	44.7	24.30	±	0.97	±	1.35
0.30–0.36	0.330	44.8	19.35	±	0.88	±	1.01
0.36–0.42	0.389	45.0	15.92	±	0.80	±	0.92
0.42–0.50	0.457	44.7	12.48	±	0.63	±	0.77
0.50–0.60	0.547	44.8	7.93	±	0.44	±	0.58
0.60–0.72	0.654	44.7	4.22	±	0.28	±	0.43
0.72–0.90	0.793	45.2	1.63	±	0.13	±	0.22
0.90–1.25	1.014	54.2	0.16	±	0.02	±	0.05

p_T	$60 < \theta < 75$	$75 < \theta < 90$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.13–0.16	0.146	67.2	15.97	±	1.01	±	1.35
0.16–0.20	0.178	67.4	17.11	±	0.86	±	1.14
0.20–0.24	0.218	67.2	15.09	±	0.79	±	0.95
0.24–0.30	0.266	66.9	13.94	±	0.62	±	0.78
0.30–0.36	0.325	67.2	10.63	±	0.55	±	0.62
0.36–0.42	0.383	66.4	7.96	±	0.47	±	0.50
0.42–0.50	0.451	67.3	5.92	±	0.35	±	0.41
0.50–0.60	0.539	67.2	3.52	±	0.23	±	0.31
0.60–0.72	0.638	66.6	1.70	±	0.14	±	0.20
0.72–0.90	0.766	66.2	0.54	±	0.06	±	0.11
0.90–1.25	0.980	65.8	0.07	±	0.02	±	0.02
Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^- in $\pi^- +$ Be $\to \pi^- + X$ interactions with -3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$								
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$				
$0.10-0.13$	0.117	24.8	52.04	2.38	4.76	0.116	34.9	41.17	2.09	3.81
$0.13-0.16$	0.146	24.8	63.35	2.45	4.58	0.146	35.0	49.12	2.09	3.69
$0.16-0.20$	0.181	24.7	71.79	2.15	4.11	0.181	34.8	55.30	1.86	3.42
$0.20-0.24$	0.221	24.8	69.90	2.12	3.49	0.221	34.8	62.10	1.95	3.29
$0.24-0.30$	0.271	24.7	68.25	1.67	2.72	0.272	34.9	57.09	1.50	2.48
$0.30-0.36$	0.333	25.0	59.39	1.55	2.20	0.332	34.8	50.60	1.41	2.03
$0.36-0.42$	0.393	25.1	48.64	1.42	2.03	0.394	34.9	41.06	1.28	1.75
$0.42-0.50$	0.464	24.9	37.94	1.09	1.71	0.464	35.1	32.43	1.00	1.51
$0.50-0.60$	0.555	25.1	24.23	0.77	1.42	0.554	34.9	20.71	0.69	1.21
$0.60-0.72$	0.669	25.1	14.21	0.56	1.12	0.669	34.8	13.86	0.55	1.09
$0.72-0.90$	0.817	34.8	6.91	0.33	0.75	0.817	34.8	6.91	0.33	0.75
Table A.9 (Continued)

\(\rho_T \)	\(60 < \theta < 75 \)	\(75 < \theta < 90 \)				
	\(\langle \rho_T \rangle \)	\(\langle \theta \rangle \)	\(d^2\sigma/d\rho d\Omega \)	\(\langle \rho_T \rangle \)	\(\langle \theta \rangle \)	\(d^2\sigma/d\rho d\Omega \)
0.13–0.16	0.146	67.2	33.59 ± 1.47 ± 2.45	0.147	82.6	26.96 ± 1.30 ± 2.10
0.16–0.20	0.181	67.1	36.93 ± 1.28 ± 2.13	0.181	82.3	30.47 ± 1.17 ± 1.80
0.20–0.24	0.221	67.1	31.13 ± 1.13 ± 1.64	0.220	82.0	26.87 ± 1.07 ± 1.47
0.24–0.30	0.271	67.0	25.95 ± 0.84 ± 1.13	0.271	82.3	19.09 ± 0.73 ± 0.99
0.30–0.36	0.333	67.2	22.56 ± 0.78 ± 1.00	0.330	81.9	13.08 ± 0.60 ± 0.72
0.36–0.42	0.393	66.8	17.17 ± 0.69 ± 0.86	0.393	81.9	10.09 ± 0.52 ± 0.67
0.42–0.50	0.465	66.5	13.19 ± 0.51 ± 0.76	0.462	81.7	8.45 ± 0.41 ± 0.65
0.50–0.60	0.557	66.9	8.15 ± 0.36 ± 0.61	0.553	81.9	4.59 ± 0.28 ± 0.45
0.60–0.72	0.667	66.9	4.73 ± 0.26 ± 0.47	0.664	81.5	2.18 ± 0.17 ± 0.28
0.72–0.90	0.805	66.8	1.97 ± 0.13 ± 0.26	0.811	81.0	0.63 ± 0.06 ± 0.12
0.90–1.25	1.047	66.1	0.17 ± 0.02 ± 0.04	1.049	80.5	0.05 ± 0.01 ± 0.02
0.13–0.16	0.146	97.1	27.64 ± 1.33 ± 2.12	0.146	114.8	25.29 ± 1.11 ± 1.59
0.16–0.20	0.181	97.6	24.44 ± 1.03 ± 1.44	0.180	113.9	20.30 ± 0.83 ± 1.03
0.20–0.24	0.221	97.0	19.49 ± 0.91 ± 1.11	0.219	114.2	13.21 ± 0.67 ± 0.73
0.24–0.30	0.270	97.1	15.05 ± 0.66 ± 0.87	0.270	114.1	8.17 ± 0.41 ± 0.54
0.30–0.36	0.331	97.0	9.62 ± 0.51 ± 0.68	0.329	113.3	5.01 ± 0.32 ± 0.46
0.36–0.42	0.391	97.5	6.99 ± 0.43 ± 0.63	0.393	112.4	2.66 ± 0.24 ± 0.32
0.42–0.50	0.466	96.4	3.84 ± 0.28 ± 0.42	0.459	111.8	1.28 ± 0.14 ± 0.21
0.50–0.60	0.549	95.9	1.71 ± 0.16 ± 0.26	0.551	110.0	0.40 ± 0.06 ± 0.10
0.60–0.72	0.672	95.8	0.60 ± 0.08 ± 0.13	0.665	109.4	0.10 ± 0.03 ± 0.04
0.72–0.90	0.799	95.5	0.09 ± 0.02 ± 0.04			
Table A.10
Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $p + \text{Be} \rightarrow p + \text{X}$ interactions with $+5.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.20–0.24	0.221 24.9 45.44 ± 1.74 ± 3.07	0.271 24.8 43.38 ± 1.46 ± 2.86				
0.24–0.30	0.300 24.9 40.05 ± 1.45 ± 2.96	0.300 24.7 39.38 ± 1.34 ± 2.20				
0.30–0.36	0.390 24.9 36.14 ± 1.33 ± 2.44	0.389 24.9 31.72 ± 1.28 ± 2.49				
0.36–0.42	0.459 24.9 35.43 ± 1.13 ± 2.21	0.459 24.9 30.16 ± 1.13 ± 2.28				
0.42–0.50	0.549 24.8 31.41 ± 0.97 ± 1.94	0.549 25.1 22.92 ± 0.85 ± 1.82				
0.50–0.60	0.657 24.9 23.45 ± 0.73 ± 1.54	0.654 24.9 18.06 ± 0.72 ± 1.68				
0.60–0.72	0.72–0.90	0.801 34.7 9.06 ± 0.40 ± 1.11				
0.72–0.90	0.801 34.7 9.06 ± 0.40 ± 1.11					
0.30–0.36	0.329 45.0 38.76 ± 1.27 ± 1.79	0.390 55.0 35.42 ± 1.19 ± 1.50				
0.36–0.42	0.389 45.0 32.78 ± 1.18 ± 1.60	0.459 55.1 30.70 ± 1.02 ± 1.41				
0.42–0.50	0.459 45.0 24.72 ± 0.98 ± 1.84	0.548 55.0 21.29 ± 0.86 ± 1.87				
0.50–0.60	0.549 45.1 21.46 ± 0.85 ± 1.73	0.656 54.8 9.95 ± 0.54 ± 1.29				
0.60–0.72	0.657 44.9 14.46 ± 0.66 ± 1.53	0.799 54.8 4.24 ± 0.32 ± 0.91				
0.72–0.90	0.799 45.0 7.29 ± 0.41 ± 1.16	1.024 54.5 0.97 ± 0.09 ± 0.58				
0.90–1.25	1.025 44.5 1.49 ± 0.12 ± 0.55					
0.36–0.42	0.391 67.6 33.05 ± 0.92 ± 1.28	0.460 81.8 20.96 ± 0.64 ± 0.99				
0.42–0.50	0.461 67.3 29.97 ± 0.78 ± 1.11	0.549 81.5 10.97 ± 0.44 ± 0.77				
0.50–0.60	0.549 66.9 19.40 ± 0.62 ± 1.29	0.657 81.3 2.90 ± 0.26 ± 0.79				
0.60–0.72	0.658 67.2 6.76 ± 0.37 ± 1.12	0.800 81.8 1.42 ± 0.15 ± 0.73				
0.72–0.90	0.798 66.7 2.75 ± 0.20 ± 0.90					
0.90–1.25	1.036 66.6 0.75 ± 0.08 ± 0.58					
0.36–0.42	0.461 96.7 10.91 ± 0.45 ± 0.79	0.458 113.1 3.59 ± 0.25 ± 0.31				
0.42–0.50	0.549 96.7 4.83 ± 0.32 ± 0.52	0.544 112.8 0.86 ± 0.13 ± 0.40				
0.50–0.60	0.661 96.3 1.07 ± 0.14 ± 0.66					
Table A.11 Double-differential inclusive cross-section \(d^2\sigma/dp d\Omega\) [mb/(GeV/c sr)] of the production of \(\pi^+\)'s in \(p + \text{Be} \to \pi^+ + X\) interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees

\(p_T\)	\(20 < \theta < 30\)	\(30 < \theta < 40\)
\(0.10 - 0.13\)	0.115 25.1 51.01 ± 2.51 ± 4.66	0.115 34.8 36.25 ± 2.02 ± 3.39
\(0.13 - 0.16\)	0.146 25.0 58.36 ± 2.44 ± 4.22	0.146 34.7 40.18 ± 1.97 ± 3.02
\(0.16 - 0.20\)	0.180 24.7 67.65 ± 2.16 ± 3.93	0.180 34.6 49.15 ± 1.87 ± 3.07
\(0.20 - 0.24\)	0.220 24.6 70.51 ± 2.21 ± 3.90	0.220 34.5 44.32 ± 1.66 ± 2.50
\(0.24 - 0.30\)	0.269 24.7 59.93 ± 1.63 ± 2.68	0.269 34.6 42.81 ± 1.36 ± 2.00
\(0.30 - 0.36\)	0.328 24.9 44.50 ± 1.38 ± 1.93	0.328 34.6 32.99 ± 1.18 ± 1.51
\(0.36 - 0.42\)	0.389 24.8 33.20 ± 1.18 ± 1.56	0.389 34.6 28.65 ± 1.12 ± 1.47
\(0.42 - 0.50\)	0.459 24.8 22.23 ± 0.81 ± 1.14	0.456 34.8 21.63 ± 0.82 ± 1.13
\(0.50 - 0.60\)	0.546 24.6 15.78 ± 0.60 ± 1.02	0.545 34.6 12.17 ± 0.53 ± 0.77
\(0.60 - 0.72\)	0.657 24.9 8.99 ± 0.37 ± 0.81	0.655 34.6 6.93 ± 0.34 ± 0.61
\(0.72 - 0.90\)	0.799 34.7 3.92 ± 0.21 ± 0.51	
Table A.11 (Continued)

p_T (GeV/c)	90 < θ < 105	105 < θ < 125				
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	
0.13–0.16	0.146	97.5	14.62 ± 0.95 ± 1.43	0.145	114.7	14.61 ± 0.82 ± 1.21
0.16–0.20	0.181	97.0	16.88 ± 0.91 ± 1.19	0.178	114.6	11.77 ± 0.65 ± 0.76
0.20–0.24	0.218	97.3	13.26 ± 0.77 ± 0.94	0.220	113.9	7.47 ± 0.50 ± 0.59
0.24–0.30	0.269	97.3	8.23 ± 0.50 ± 0.58	0.268	113.3	4.04 ± 0.31 ± 0.37
0.30–0.36	0.327	97.1	4.11 ± 0.33 ± 0.39	0.331	112.9	1.85 ± 0.19 ± 0.24
0.36–0.42	0.387	96.9	2.70 ± 0.27 ± 0.31	0.391	113.7	1.22 ± 0.17 ± 0.21
0.42–0.50	0.454	96.8	1.63 ± 0.17 ± 0.23	0.458	112.6	0.37 ± 0.07 ± 0.08
0.50–0.60	0.539	97.1	0.72 ± 0.12 ± 0.13	0.539	113.2	0.12 ± 0.03 ± 0.05
0.60–0.72	0.659	96.6	0.17 ± 0.04 ± 0.06	 	 	

Table A.12

Double-differential inclusive cross-section $d^2\sigma / dp d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in p + Be → π^- + X interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T (GeV/c)	20 < θ < 30	30 < θ < 40				
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	
0.10–0.13	0.116	24.7	36.19 ± 2.03 ± 3.60	0.115	34.9	29.24 ± 1.80 ± 2.99
0.13–0.16	0.145	24.8	48.74 ± 2.25 ± 4.00	0.145	34.9	32.40 ± 1.69 ± 2.71
0.16–0.20	0.180	24.9	44.98 ± 1.71 ± 2.89	0.180	34.7	37.10 ± 1.63 ± 2.56
0.20–0.24	0.219	24.8	41.84 ± 1.69 ± 2.42	0.220	34.9	35.98 ± 1.54 ± 2.21
0.24–0.30	0.269	25.0	36.76 ± 1.27 ± 1.78	0.268	34.9	28.04 ± 1.08 ± 1.45
0.30–0.36	0.329	25.1	27.54 ± 1.11 ± 1.38	0.329	34.7	23.88 ± 1.01 ± 1.24
0.36–0.42	0.388	24.9	19.44 ± 0.91 ± 1.10	0.388	34.8	15.08 ± 0.75 ± 0.91
0.42–0.50	0.458	25.1	11.60 ± 0.62 ± 0.74	0.457	34.9	14.42 ± 0.72 ± 0.99
0.50–0.60	0.542	25.0	6.97 ± 0.43 ± 0.56	0.549	35.0	7.28 ± 0.43 ± 0.58
0.60–0.72	0.656	25.4	3.14 ± 0.25 ± 0.35	0.657	34.9	3.57 ± 0.28 ± 0.38
0.72–0.90	0.782	34.6	1.13 ± 0.12 ± 0.16	 	 	

p_T (GeV/c)	40 < θ < 50	50 < θ < 60				
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma / dp d\Omega$	
0.10–0.13	0.115	44.8	23.15 ± 1.60 ± 2.53	0.146	54.8	21.23 ± 1.40 ± 1.93
0.13–0.16	0.146	44.9	31.22 ± 1.78 ± 2.67	0.179	54.9	23.44 ± 1.26 ± 1.68
0.16–0.20	0.180	45.1	28.87 ± 1.43 ± 2.02	0.220	54.7	23.77 ± 1.30 ± 1.67
0.20–0.24	0.219	44.9	27.86 ± 1.36 ± 1.88	0.270	54.9	17.08 ± 0.85 ± 1.08
0.24–0.30	0.269	44.8	25.22 ± 1.07 ± 1.40	0.330	54.7	12.20 ± 0.71 ± 0.79
0.30–0.36	0.330	44.9	16.84 ± 0.83 ± 0.94	0.388	54.8	12.25 ± 0.72 ± 0.88
0.36–0.42	0.388	44.7	16.05 ± 0.86 ± 1.05	0.456	54.7	7.76 ± 0.50 ± 0.57
0.42–0.50	0.459	44.8	8.95 ± 0.50 ± 0.63	0.546	54.7	4.02 ± 0.31 ± 0.36
0.50–0.60	0.544	44.9	6.37 ± 0.42 ± 0.54	0.649	54.8	2.20 ± 0.22 ± 0.27
0.60–0.72	0.653	44.6	2.79 ± 0.23 ± 0.31	0.797	54.9	0.63 ± 0.08 ± 0.13
0.72–0.90	0.790	44.1	1.05 ± 0.12 ± 0.16	1.015	54.9	0.15 ± 0.03 ± 0.05
Table A.12 (Continued)

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.145	67.4	18.89 ± 1.11 ± 1.65	0.146	82.6	16.53 ± 1.03 ± 1.51
0.16–0.20	0.180	67.4	20.36 ± 0.97 ± 1.35	0.180	82.2	16.12 ± 0.84 ± 1.12
0.20–0.24	0.220	67.0	17.89 ± 0.91 ± 1.07	0.220	81.8	15.50 ± 0.84 ± 1.01
0.24–0.30	0.267	66.7	13.63 ± 0.64 ± 0.77	0.267	82.1	10.46 ± 0.55 ± 0.67
0.30–0.36	0.329	66.8	9.42 ± 0.51 ± 0.61	0.328	82.4	5.98 ± 0.41 ± 0.47
0.36–0.42	0.386	66.7	7.66 ± 0.48 ± 0.55	0.386	82.0	4.54 ± 0.37 ± 0.43
0.42–0.50	0.454	67.1	5.19 ± 0.33 ± 0.41	0.453	81.5	3.26 ± 0.26 ± 0.35
0.50–0.60	0.540	66.6	2.69 ± 0.22 ± 0.25	0.542	81.2	1.53 ± 0.16 ± 0.21
0.60–0.72	0.646	66.1	1.24 ± 0.13 ± 0.16	0.657	80.6	0.44 ± 0.07 ± 0.10
0.72–0.90	0.782	66.8	0.28 ± 0.05 ± 0.06	0.786	82.9	0.04 ± 0.02 ± 0.02
0.90–1.25	1.076	66.4	0.04 ± 0.01 ± 0.02			

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.145	97.5	15.36 ± 0.99 ± 1.44	0.144	114.8	15.54 ± 0.88 ± 1.21
0.16–0.20	0.179	97.6	14.54 ± 0.80 ± 1.03	0.179	114.0	12.75 ± 0.69 ± 0.86
0.20–0.24	0.219	97.2	12.63 ± 0.77 ± 0.89	0.218	114.1	6.18 ± 0.46 ± 0.49
0.24–0.30	0.268	96.7	7.83 ± 0.48 ± 0.58	0.266	113.6	3.39 ± 0.28 ± 0.33
0.30–0.36	0.326	96.7	4.32 ± 0.36 ± 0.46	0.323	112.7	2.20 ± 0.22 ± 0.30
0.36–0.42	0.386	96.8	2.26 ± 0.25 ± 0.29	0.385	113.2	1.22 ± 0.16 ± 0.22
0.42–0.50	0.448	96.1	1.37 ± 0.17 ± 0.20	0.444	111.8	0.53 ± 0.10 ± 0.12
0.50–0.60	0.538	96.8	0.49 ± 0.10 ± 0.10	0.538	111.8	0.13 ± 0.04 ± 0.05
0.60–0.72	0.635	96.9	0.13 ± 0.04 ± 0.05			
Table A.13 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Be} \rightarrow p + \text{X}$ interactions with $+5.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.20–0.24	0.221	24.9	41.92 ± 1.44 ± 3.27	0.271	34.8	36.94 ± 1.07 ± 2.36
0.24–0.30	0.269	25.1	39.00 ± 1.13 ± 2.33	0.330	34.9	33.98 ± 1.03 ± 1.76
0.30–0.36	0.330	25.1	37.51 ± 1.10 ± 2.14	0.389	34.9	33.01 ± 1.02 ± 1.68
0.36–0.42	0.389	25.3	33.64 ± 1.04 ± 1.74	0.458	35.0	28.64 ± 0.83 ± 1.30
0.42–0.50	0.459	25.0	32.55 ± 0.87 ± 1.53	0.548	34.9	23.33 ± 0.66 ± 1.06
0.50–0.60	0.548	24.7	25.81 ± 0.67 ± 1.19	0.656	34.8	18.88 ± 0.54 ± 0.99
0.60–0.72	0.656	25.2	20.73 ± 0.54 ± 1.07	0.802	34.9	12.09 ± 0.36 ± 0.80
0.72–0.90						

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.30–0.36	0.329	45.0	32.30 ± 0.99 ± 1.69	0.389	55.0	29.76 ± 0.95 ± 1.61
0.36–0.42	0.389	45.1	31.21 ± 0.97 ± 1.65	0.459	54.9	24.78 ± 0.76 ± 1.30
0.42–0.50	0.458	44.9	26.21 ± 0.79 ± 1.22	0.545	55.0	18.18 ± 0.59 ± 0.94
0.50–0.60	0.547	44.9	19.55 ± 0.61 ± 0.98	0.654	55.0	13.12 ± 0.48 ± 0.83
0.60–0.72	0.656	44.8	14.89 ± 0.49 ± 0.87	0.796	54.7	6.78 ± 0.28 ± 0.55
0.72–0.90	0.799	44.8	9.60 ± 0.33 ± 0.68	1.025	54.6	1.72 ± 0.10 ± 0.22
0.90–1.25	1.028	44.7	3.10 ± 0.14 ± 0.33			

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.36–0.42	0.391	67.2	28.20 ± 0.74 ± 1.21	0.459	81.9	16.51 ± 0.50 ± 0.85
0.42–0.50	0.461	67.3	24.13 ± 0.62 ± 1.06	0.548	81.9	10.75 ± 0.37 ± 0.72
0.50–0.60	0.549	67.2	17.32 ± 0.47 ± 0.83	0.659	81.9	4.87 ± 0.24 ± 0.48
0.60–0.72	0.657	67.2	10.56 ± 0.35 ± 0.70	0.803	81.3	1.78 ± 0.12 ± 0.24
0.72–0.90	0.801	66.8	3.97 ± 0.17 ± 0.40	1.031	81.4	0.33 ± 0.04 ± 0.07
0.90–1.25	1.039	66.9	0.80 ± 0.06 ± 0.14			

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.36–0.42				0.388	113.8	7.25 ± 0.32 ± 0.54
0.42–0.50	0.459	96.9	9.72 ± 0.37 ± 0.80	0.458	113.3	4.57 ± 0.22 ± 0.42
0.50–0.60	0.546	97.0	5.52 ± 0.26 ± 0.56	0.546	113.0	2.00 ± 0.14 ± 0.27
0.60–0.72	0.659	96.6	2.20 ± 0.16 ± 0.29	0.657	112.9	0.55 ± 0.07 ± 0.14
0.72–0.90	0.803	96.6	0.63 ± 0.08 ± 0.13	0.794	111.9	0.12 ± 0.03 ± 0.05
0.90–1.25	1.032	96.2	0.08 ± 0.02 ± 0.03			
Table A.14 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+’s in $\pi^+ + \text{Be} \to \pi^+ + \text{X}$ interactions with $+5.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	20 $< \theta < 30$		$30 < \theta < 40$			
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	25.0	42.31 ± 1.93 ± 4.05	0.115	34.8	36.97 ± 1.85 ± 3.45
0.13–0.16	0.146	24.9	58.31 ± 2.13 ± 4.42	0.145	35.0	48.46 ± 1.93 ± 3.70
0.16–0.20	0.181	24.8	68.61 ± 1.91 ± 4.17	0.180	34.7	52.84 ± 1.67 ± 3.25
0.20–0.24	0.220	24.7	73.75 ± 1.89 ± 3.96	0.221	34.8	55.36 ± 1.67 ± 3.06
0.24–0.30	0.269	24.7	77.78 ± 1.61 ± 3.42	0.270	34.7	56.69 ± 1.37 ± 2.60
0.30–0.36	0.329	24.9	66.69 ± 1.48 ± 2.70	0.329	34.8	49.78 ± 1.27 ± 2.19
0.36–0.42	0.389	24.7	59.86 ± 1.42 ± 2.49	0.389	34.8	46.53 ± 1.24 ± 2.06
0.42–0.50	0.458	24.8	48.91 ± 1.11 ± 2.14	0.459	34.8	35.48 ± 0.96 ± 1.59
0.50–0.60	0.547	24.8	31.94 ± 0.76 ± 1.90	0.546	34.6	23.41 ± 0.66 ± 1.40
0.60–0.72	0.655	24.9	17.89 ± 0.49 ± 1.53	0.655	34.4	12.85 ± 0.41 ± 1.09
0.72–0.90			0.798	34.7	6.48 ± 0.24 ± 0.79	

p_T	40 $< \theta < 50$		50 $< \theta < 60$			
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	45.1	32.76 ± 1.81 ± 3.26	0.146	54.7	27.92 ± 1.52 ± 2.32
0.13–0.16	0.145	44.8	36.22 ± 1.69 ± 2.79	0.180	54.9	34.30 ± 1.37 ± 2.34
0.16–0.20	0.180	44.8	40.05 ± 1.49 ± 2.59	0.220	54.9	34.14 ± 1.35 ± 2.23
0.20–0.24	0.220	44.9	45.24 ± 1.54 ± 2.63	0.269	54.8	30.07 ± 1.02 ± 1.57
0.24–0.30	0.271	44.7	41.47 ± 1.19 ± 1.95	0.328	54.6	26.84 ± 0.96 ± 1.28
0.30–0.36	0.330	44.7	36.64 ± 1.12 ± 1.60	0.388	54.8	23.40 ± 0.92 ± 1.24
0.36–0.42	0.388	44.6	33.64 ± 1.08 ± 1.50	0.458	54.7	15.27 ± 0.61 ± 0.90
0.42–0.50	0.458	44.7	24.32 ± 0.79 ± 1.14	0.547	54.7	11.27 ± 0.46 ± 0.83
0.50–0.60	0.546	44.5	14.69 ± 0.52 ± 0.91	0.656	54.6	5.92 ± 0.30 ± 0.56
0.60–0.72	0.655	44.5	8.97 ± 0.37 ± 0.74	0.803	54.3	3.18 ± 0.19 ± 0.39
0.72–0.90	0.792	44.3	3.99 ± 0.19 ± 0.46	1.026	54.2	0.69 ± 0.06 ± 0.13

p_T	60 $< \theta < 75$		75 $< \theta < 90$			
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146	67.1	23.55 ± 1.12 ± 1.93	0.146	82.6	20.77 ± 1.07 ± 1.80
0.16–0.20	0.181	67.2	28.89 ± 1.02 ± 1.94	0.181	82.4	20.75 ± 0.87 ± 1.35
0.20–0.24	0.221	67.1	29.33 ± 1.03 ± 1.87	0.220	82.4	18.97 ± 0.83 ± 1.17
0.24–0.30	0.269	67.0	21.83 ± 0.72 ± 1.11	0.269	82.5	14.12 ± 0.59 ± 0.78
0.30–0.36	0.330	66.9	17.07 ± 0.63 ± 0.83	0.330	82.1	11.05 ± 0.50 ± 0.71
0.36–0.42	0.391	66.6	14.13 ± 0.56 ± 0.81	0.391	82.1	7.59 ± 0.41 ± 0.58
0.42–0.50	0.458	66.8	10.28 ± 0.41 ± 0.69	0.460	81.9	5.40 ± 0.30 ± 0.46
0.50–0.60	0.549	66.4	6.46 ± 0.29 ± 0.53	0.549	81.7	3.37 ± 0.21 ± 0.35
0.60–0.72	0.658	66.5	3.71 ± 0.20 ± 0.40	0.657	81.2	1.88 ± 0.15 ± 0.25
0.72–0.90	0.799	66.1	1.54 ± 0.11 ± 0.21	0.791	81.8	0.50 ± 0.06 ± 0.10
0.90–1.25	1.040	66.3	0.23 ± 0.02 ± 0.05	1.008	80.8	0.06 ± 0.01 ± 0.02
Table A.14 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$								
	(p_T)	$d^2 \sigma/dp d\Omega$	(p_T)	$d^2 \sigma/dp d\Omega$						
0.13–0.16	0.146	97.3	19.16	± 1.04	± 1.63	0.145	114.8	16.24	± 0.82	± 1.32
0.16–0.20	0.180	96.9	19.87	± 0.87	± 1.24	0.180	113.9	13.80	± 0.62	± 0.93
0.20–0.24	0.219	97.0	15.37	± 0.75	± 0.98	0.218	114.4	9.21	± 0.50	± 0.76
0.24–0.30	0.269	97.1	10.66	± 0.50	± 0.69	0.269	113.9	5.49	± 0.31	± 0.47
0.30–0.36	0.329	96.8	6.28	± 0.38	± 0.50	0.327	113.7	3.74	± 0.26	± 0.38
0.36–0.42	0.390	97.0	4.88	± 0.33	± 0.48	0.386	113.5	1.95	± 0.18	± 0.27
0.42–0.50	0.460	96.7	3.43	± 0.24	± 0.39	0.460	112.7	1.19	± 0.12	± 0.20
0.50–0.60	0.544	96.4	1.59	± 0.15	± 0.23	0.542	112.1	0.28	± 0.05	± 0.09
0.60–0.72	0.657	95.9	0.46	± 0.07	± 0.10	0.656	110.7	0.14	± 0.03	± 0.07
0.72–0.90	0.792	95.9	0.10	± 0.02	± 0.03					

Table A.15 Double-differential inclusive cross-section $d^2\sigma/dp d\omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + \text{Be} \rightarrow \pi^- + \text{X}$ interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$								
	(p_T)	$d^2 \sigma/dp d\Omega$	(p_T)	$d^2 \sigma/dp d\Omega$						
0.10–0.13	0.115	24.8	39.31	± 1.81	± 4.02	0.115	34.5	33.52	± 1.71	± 3.42
0.13–0.16	0.145	24.8	47.64	± 1.88	± 4.01	0.145	34.8	36.33	± 1.66	± 3.22
0.16–0.20	0.180	24.6	53.08	± 1.62	± 3.40	0.180	34.7	36.96	± 1.38	± 2.60
0.20–0.24	0.221	24.6	55.02	± 1.64	± 3.20	0.220	34.7	40.08	± 1.40	± 2.55
0.24–0.30	0.270	24.4	47.90	± 1.23	± 2.37	0.270	34.5	35.56	± 1.06	± 1.92
0.30–0.36	0.329	24.8	40.67	± 1.15	± 1.91	0.329	34.7	29.35	± 0.96	± 1.62
0.36–0.42	0.389	24.9	35.08	± 1.08	± 1.77	0.389	34.6	22.84	± 0.85	± 1.23
0.42–0.50	0.457	24.7	26.10	± 0.83	± 1.44	0.456	34.8	17.25	± 0.66	± 1.03
0.50–0.60	0.547	25.0	12.95	± 0.50	± 0.89	0.545	34.6	10.78	± 0.45	± 0.79
0.60–0.72	0.652	24.8	7.87	± 0.35	± 0.73	0.651	34.7	5.75	± 0.30	± 0.57
0.72–0.90			0.796	34.9	2.74	± 0.18	± 0.34			

p_T	$40 < \theta < 50$	$50 < \theta < 60$								
	(p_T)	$d^2 \sigma/dp d\Omega$	(p_T)	$d^2 \sigma/dp d\Omega$						
0.10–0.13	0.116	44.7	24.87	± 1.51	± 2.68	0.145	54.7	22.78	± 1.31	± 2.11
0.13–0.16	0.145	44.8	27.53	± 1.46	± 2.34	0.180	54.5	23.64	± 1.13	± 1.87
0.16–0.20	0.180	44.6	27.67	± 1.21	± 2.02	0.180	54.5	23.64	± 1.13	± 1.87
0.20–0.24	0.220	44.7	26.37	± 1.14	± 1.82	0.220	54.9	22.43	± 1.06	± 1.75
0.24–0.30	0.269	44.8	25.96	± 0.94	± 1.43	0.271	54.7	20.51	± 0.83	± 1.24
0.30–0.36	0.329	44.7	21.55	± 0.83	± 1.17	0.330	54.7	16.40	± 0.74	± 1.03
0.36–0.42	0.389	44.8	17.95	± 0.78	± 1.01	0.389	54.6	14.18	± 0.70	± 0.93
0.42–0.50	0.456	44.6	13.69	± 0.59	± 0.83	0.456	54.9	9.04	± 0.47	± 0.66
0.50–0.60	0.546	44.6	8.04	± 0.39	± 0.62	0.544	54.7	6.05	± 0.34	± 0.60
0.60–0.72	0.653	44.7	4.49	± 0.27	± 0.47	0.654	54.5	3.34	± 0.24	± 0.40
0.72–0.90	0.792	44.7	2.05	± 0.16	± 0.27	0.799	54.6	1.48	± 0.13	± 0.22
0.90–1.25			1.015	54.6	0.36	± 0.04	± 0.08			
Table A.15 (Continued)

p_T	60 $< \theta < 75$	75 $< \theta < 90$								
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$				
0.13–0.16	0.145	67.0	20.23	± 1.03	± 1.78	0.146	82.5	15.76	± 0.91	± 1.44
0.16–0.20	0.179	67.0	19.37	± 0.83	± 1.39	0.179	82.4	16.64	± 0.77	± 1.18
0.20–0.24	0.219	67.3	16.20	± 0.74	± 1.17	0.218	82.2	13.44	± 0.69	± 0.98
0.24–0.30	0.267	66.9	14.82	± 0.57	± 0.86	0.269	82.1	9.55	± 0.47	± 0.61
0.30–0.36	0.329	67.0	11.16	± 0.50	± 0.67	0.329	82.4	7.24	± 0.40	± 0.56
0.36–0.42	0.388	67.1	8.44	± 0.44	± 0.61	0.387	82.1	4.66	± 0.32	± 0.46
0.42–0.50	0.454	66.8	6.11	± 0.32	± 0.50	0.456	81.9	3.37	± 0.23	± 0.36
0.50–0.60	0.539	67.1	3.67	± 0.22	± 0.36	0.540	81.6	2.13	± 0.17	± 0.27
0.60–0.72	0.646	66.6	2.23	± 0.16	± 0.27	0.653	80.8	1.05	± 0.12	± 0.17
0.72–0.90	0.784	66.3	0.94	± 0.09	± 0.15	0.784	81.9	0.37	± 0.05	± 0.09
0.90–1.25	1.011	65.9	0.15	± 0.02	± 0.05	1.015	82.7	0.03	± 0.01	± 0.02

p_T	90 $< \theta < 105$	105 $< \theta < 125$								
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$				
0.13–0.16	0.145	96.7	15.55	± 0.92	± 1.48	0.145	114.5	12.24	± 0.70	± 1.11
0.16–0.20	0.179	97.3	13.18	± 0.70	± 0.96	0.178	114.0	9.88	± 0.52	± 0.77
0.20–0.24	0.217	97.2	9.96	± 0.60	± 0.80	0.218	114.1	7.30	± 0.44	± 0.70
0.24–0.30	0.268	96.6	7.43	± 0.41	± 0.57	0.267	114.2	4.38	± 0.28	± 0.44
0.30–0.36	0.328	96.2	4.13	± 0.30	± 0.42	0.326	113.5	2.46	± 0.21	± 0.30
0.36–0.42	0.387	97.2	2.84	± 0.25	± 0.35	0.381	112.6	1.57	± 0.17	± 0.24
0.42–0.50	0.456	96.9	2.18	± 0.19	± 0.30	0.453	113.1	0.87	± 0.10	± 0.18
0.50–0.60	0.539	97.4	1.08	± 0.12	± 0.18	0.538	112.2	0.40	± 0.06	± 0.14
0.60–0.72	0.653	94.8	0.37	± 0.06	± 0.10	0.658	111.9	0.06	± 0.02	± 0.04
0.72–0.90	0.791	95.7	0.04	± 0.02	± 0.03					
Table A.16 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr)) of the production of protons in $\pi^- + \text{Be} \to p + X$ interactions with -5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	$\langle p_T \rangle$	σ	$\langle \theta \rangle$	σ	$\langle p_T \rangle$	σ
0.20–0.24	0.217	25.0	33.01	\pm 1.18	\pm 2.52	
0.24–0.30	0.265	24.9	30.80	\pm 0.92	\pm 1.93	
0.30–0.36	0.323	25.1	28.41	\pm 0.89	\pm 1.65	
0.36–0.42	0.381	25.1	25.33	\pm 0.83	\pm 1.39	
0.42–0.50	0.445	24.9	24.57	\pm 0.70	\pm 1.20	
0.50–0.60	0.530	24.9	18.14	\pm 0.53	\pm 0.90	
0.60–0.72	0.630	25.0	14.01	\pm 0.42	\pm 0.80	
0.72–0.90	0.764	35.0	7.80	\pm 0.27	\pm 0.61	

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	$\langle p_T \rangle$	σ	$\langle \theta \rangle$	σ	$\langle p_T \rangle$	σ
0.30–0.36	0.330	45.1	22.87	\pm 0.75	\pm 1.28	
0.36–0.42	0.388	45.2	22.59	\pm 0.76	\pm 1.28	
0.42–0.50	0.458	45.2	18.42	\pm 0.61	\pm 0.97	
0.50–0.60	0.548	44.9	14.52	\pm 0.50	\pm 0.79	
0.60–0.72	0.655	45.0	10.32	\pm 0.39	\pm 0.66	
0.72–0.90	0.800	45.0	5.60	\pm 0.24	\pm 0.47	
0.90–1.25	1.029	44.9	1.92	\pm 0.10	\pm 0.23	

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	$\langle p_T \rangle$	σ	$\langle \theta \rangle$	σ	$\langle p_T \rangle$	σ
0.36–0.42	0.389	67.7	20.57	\pm 0.85	\pm 1.12	
0.42–0.50	0.458	67.5	17.79	\pm 0.48	\pm 0.74	
0.50–0.60	0.546	67.2	12.81	\pm 0.38	\pm 0.65	
0.60–0.72	0.654	67.0	7.26	\pm 0.26	\pm 0.55	
0.72–0.90	0.794	67.0	2.99	\pm 0.15	\pm 0.34	
0.90–1.25	1.035	66.7	0.71	\pm 0.06	\pm 0.14	

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	$\langle p_T \rangle$	σ	$\langle \theta \rangle$	σ	$\langle p_T \rangle$	σ
0.36–0.42	0.388	96.9	7.12	\pm 0.29	\pm 0.55	
0.42–0.50	0.456	96.1	3.69	\pm 0.19	\pm 0.38	
0.50–0.60	0.547	95.8	1.24	\pm 0.12	\pm 0.21	
0.60–0.72	0.652	95.5	0.39	\pm 0.06	\pm 0.12	
0.72–0.90	0.790	94.2	0.07	\pm 0.02	\pm 0.06	
Table A.17 Double-differential inclusive cross-section $d^2\sigma/d\rho d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- + \text{Be} \rightarrow \pi^+ + X$ interactions with -5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	20 $< \theta < 30$	30 $< \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$
0.10–0.13	0.115	24.9	33.00 ± 1.51 ± 3.18	0.115	34.7	27.01 ± 1.43 ± 2.80
0.13–0.16	0.145	24.8	43.98 ± 1.64 ± 3.42	0.143	34.9	32.52 ± 1.40 ± 2.65
0.16–0.20	0.179	24.5	50.11 ± 1.43 ± 3.04	0.178	34.6	36.54 ± 1.26 ± 2.44
0.20–0.24	0.217	24.7	54.94 ± 1.48 ± 3.04	0.217	34.6	36.76 ± 1.19 ± 2.15
0.24–0.30	0.265	24.7	52.93 ± 1.20 ± 2.40	0.265	34.6	36.68 ± 0.93 ± 1.79
0.30–0.36	0.323	24.6	44.13 ± 1.07 ± 1.87	0.323	34.6	30.76 ± 0.83 ± 1.42
0.36–0.42	0.380	24.7	37.58 ± 0.99 ± 1.57	0.380	34.6	24.16 ± 0.78 ± 1.20
0.42–0.50	0.445	24.7	28.54 ± 0.76 ± 1.39	0.446	34.8	23.02 ± 0.71 ± 1.24
0.50–0.60	0.530	24.7	16.58 ± 0.49 ± 1.09	0.529	34.8	13.34 ± 0.45 ± 0.93
0.60–0.72	0.632	24.9	9.14 ± 0.31 ± 0.85	0.629	34.8	7.58 ± 0.29 ± 0.74
0.72–0.90				0.763	34.8	3.37 ± 0.16 ± 0.46

p_T	40 $< \theta < 50$	50 $< \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$
0.10–0.13	0.117	45.1	23.14 ± 1.34 ± 2.64	0.146	54.3	20.21 ± 1.12 ± 1.88
0.13–0.16	0.145	44.8	25.22 ± 1.27 ± 2.17	0.179	54.8	23.74 ± 1.04 ± 1.85
0.16–0.20	0.180	44.7	27.78 ± 1.09 ± 1.98	0.219	54.6	22.27 ± 0.97 ± 1.63
0.20–0.24	0.219	44.8	27.37 ± 1.05 ± 1.97	0.270	54.7	19.38 ± 0.72 ± 1.14
0.24–0.30	0.270	44.7	25.38 ± 0.83 ± 1.40	0.329	54.7	17.75 ± 0.70 ± 0.94
0.30–0.36	0.329	44.7	22.78 ± 0.77 ± 1.16	0.390	54.7	13.10 ± 0.61 ± 0.74
0.36–0.42	0.388	44.9	19.22 ± 0.73 ± 0.98	0.458	54.9	10.81 ± 0.47 ± 0.68
0.42–0.50	0.457	44.8	14.34 ± 0.55 ± 0.75	0.546	54.6	6.19 ± 0.31 ± 0.49
0.50–0.60	0.544	44.9	8.70 ± 0.37 ± 0.59	0.655	55.0	3.56 ± 0.22 ± 0.38
0.60–0.72	0.652	44.6	4.70 ± 0.24 ± 0.44	0.797	54.4	1.34 ± 0.10 ± 0.18
0.72–0.90	0.799	44.3	2.36 ± 0.13 ± 0.31	1.022	54.5	0.39 ± 0.03 ± 0.09

p_T	60 $< \theta < 75$	75 $< \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$	(p_T)	(θ)	$d^2\sigma/d\rho d\Omega$
0.13–0.16	0.145	67.4	16.41 ± 0.84 ± 1.43	0.145	82.6	14.39 ± 0.78 ± 1.41
0.16–0.20	0.180	67.4	18.12 ± 0.72 ± 1.30	0.181	82.1	14.48 ± 0.65 ± 1.09
0.20–0.24	0.220	67.0	15.53 ± 0.65 ± 1.08	0.220	82.6	12.97 ± 0.61 ± 0.92
0.24–0.30	0.269	67.0	14.54 ± 0.53 ± 0.80	0.269	82.2	10.19 ± 0.45 ± 0.66
0.30–0.36	0.329	66.9	10.50 ± 0.45 ± 0.58	0.329	82.0	6.22 ± 0.34 ± 0.45
0.36–0.42	0.388	66.8	8.80 ± 0.40 ± 0.55	0.388	82.2	4.95 ± 0.30 ± 0.42
0.42–0.50	0.458	67.0	6.64 ± 0.30 ± 0.46	0.457	82.1	3.35 ± 0.21 ± 0.31
0.50–0.60	0.544	66.6	4.12 ± 0.21 ± 0.36	0.545	81.5	2.13 ± 0.15 ± 0.25
0.60–0.72	0.652	66.8	1.94 ± 0.13 ± 0.23	0.652	81.6	1.12 ± 0.10 ± 0.17
0.72–0.90	0.786	66.5	0.71 ± 0.06 ± 0.11	0.792	80.7	0.20 ± 0.03 ± 0.05
0.90–1.25	1.026	65.7	0.12 ± 0.02 ± 0.04	1.000	79.8	0.04 ± 0.01 ± 0.03
Table A.17 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.145	97.9	11.04 ± 0.69 ± 1.04	0.145	114.8	11.76 ± 0.62 ± 1.01
0.16–0.20	0.179	97.6	12.33 ± 0.62 ± 0.92	0.179	114.7	8.52 ± 0.43 ± 0.61
0.20–0.24	0.218	97.3	11.46 ± 0.58 ± 0.88	0.218	114.5	6.71 ± 0.38 ± 0.58
0.24–0.30	0.269	97.0	5.59 ± 0.32 ± 0.45	0.269	113.9	4.11 ± 0.25 ± 0.34
0.30–0.36	0.329	97.1	3.98 ± 0.28 ± 0.37	0.328	113.6	2.55 ± 0.19 ± 0.30
0.36–0.42	0.387	96.4	2.91 ± 0.22 ± 0.32	0.387	113.2	1.51 ± 0.15 ± 0.23
0.42–0.50	0.456	96.5	2.12 ± 0.18 ± 0.28	0.453	113.7	0.50 ± 0.07 ± 0.09
0.50–0.60	0.547	96.5	0.95 ± 0.10 ± 0.17	0.528	112.1	0.18 ± 0.04 ± 0.07
0.60–0.72	0.650	96.6	0.33 ± 0.05 ± 0.11	0.646	109.7	0.04 ± 0.02 ± 0.02
0.72–0.90	0.775	95.5	0.07 ± 0.02 ± 0.03			

Table A.18

Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-’s in $\pi^- + \text{Be} \rightarrow \pi^- + \text{X}$ interactions with -5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.117	24.8	62.37 ± 2.16 ± 5.74	0.117	34.8	48.21 ± 1.91 ± 4.36
0.13–0.16	0.147	24.8	76.32 ± 2.20 ± 5.52	0.146	34.9	61.93 ± 1.99 ± 4.39
0.16–0.20	0.182	24.7	83.55 ± 1.87 ± 4.73	0.182	34.9	62.67 ± 1.65 ± 3.65
0.20–0.24	0.223	24.8	85.60 ± 1.86 ± 4.23	0.223	34.8	65.86 ± 1.66 ± 3.39
0.24–0.30	0.274	24.8	84.03 ± 1.51 ± 3.48	0.274	34.8	61.12 ± 1.25 ± 2.60
0.30–0.36	0.335	24.7	76.28 ± 1.44 ± 2.75	0.336	34.7	56.80 ± 1.22 ± 2.27
0.36–0.42	0.398	24.8	62.57 ± 1.32 ± 2.34	0.400	34.8	46.82 ± 1.12 ± 1.91
0.42–0.50	0.471	24.8	50.57 ± 1.04 ± 2.31	0.472	34.8	37.67 ± 0.88 ± 1.73
0.50–0.60	0.563	24.7	32.88 ± 0.72 ± 1.87	0.564	34.7	23.45 ± 0.61 ± 1.39
0.60–0.72	0.682	24.8	20.81 ± 0.52 ± 1.62	0.681	34.6	13.46 ± 0.41 ± 1.09
0.72–0.90	0.833	24.4	6.88 ± 0.25 ± 0.73			

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	44.9	40.66 ± 1.85 ± 3.91			
0.13–0.16	0.145	45.0	46.69 ± 1.72 ± 3.41	0.146	55.0	39.53 ± 1.61 ± 3.02
0.16–0.20	0.180	44.9	48.40 ± 1.47 ± 2.96	0.180	54.7	39.50 ± 1.32 ± 2.52
0.20–0.24	0.220	44.8	51.14 ± 1.49 ± 2.77	0.220	54.8	39.04 ± 1.29 ± 2.29
0.24–0.30	0.270	44.7	46.15 ± 1.14 ± 2.03	0.269	54.7	36.30 ± 1.01 ± 1.76
0.30–0.36	0.329	44.8	41.24 ± 1.06 ± 1.68	0.330	54.7	28.89 ± 0.89 ± 1.25
0.36–0.42	0.388	44.7	31.58 ± 0.92 ± 1.32	0.389	54.8	24.62 ± 0.84 ± 1.18
0.42–0.50	0.457	44.7	26.31 ± 0.74 ± 1.28	0.458	54.7	16.87 ± 0.58 ± 0.98
0.50–0.60	0.546	44.7	17.44 ± 0.53 ± 1.12	0.546	54.6	10.96 ± 0.41 ± 0.81
0.60–0.72	0.652	44.7	9.12 ± 0.34 ± 0.80	0.652	54.7	6.94 ± 0.31 ± 0.66
0.72–0.90	0.798	44.5	4.34 ± 0.20 ± 0.50	0.790	54.6	2.73 ± 0.16 ± 0.33
0.90–1.25	1.015	54.7	0.67 ± 0.06 ± 0.12			
Table A.18 (Continued)

p_T	$60 < \theta < 75$	$75 < \theta < 90$												
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.146	67.2	30.13	±	1.14	±	2.19	0.145	82.5	26.15	±	1.05	±	2.03
0.16–0.20	0.180	67.4	32.26	±	0.98	±	1.86	0.179	82.4	28.40	±	0.91	±	1.66
0.20–0.24	0.220	67.1	30.28	±	0.95	±	1.67	0.220	82.2	24.92	±	0.86	±	1.34
0.24–0.30	0.268	67.0	23.68	±	0.67	±	1.02	0.269	82.1	16.88	±	0.57	±	0.81
0.30–0.36	0.329	66.8	19.13	±	0.60	±	0.84	0.328	81.8	12.14	±	0.48	±	0.70
0.36–0.42	0.389	67.1	15.73	±	0.54	±	0.84	0.389	81.7	8.58	±	0.39	±	0.64
0.42–0.50	0.459	66.9	10.41	±	0.37	±	0.67	0.458	81.6	6.55	±	0.30	±	0.56
0.50–0.60	0.544	66.5	7.04	±	0.27	±	0.58	0.547	81.5	3.33	±	0.19	±	0.35
0.60–0.72	0.652	66.8	3.77	±	0.19	±	0.40	0.650	80.8	1.82	±	0.13	±	0.25
0.72–0.90	0.790	66.4	1.60	±	0.10	±	0.22	0.787	81.2	0.39	±	0.05	±	0.08
0.90–1.25	1.032	67.0	0.18	±	0.02	±	0.04	0.992	79.4	0.03	±	0.01	±	0.02

p_T	$90 < \theta < 105$	$105 < \theta < 125$												
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.146	97.0	24.14	±	1.05	±	1.88	0.145	114.3	20.22	±	0.81	±	1.33
0.16–0.20	0.179	97.3	24.91	±	0.89	±	1.44	0.179	114.3	17.32	±	0.63	±	0.95
0.20–0.24	0.219	97.3	17.32	±	0.71	±	1.00	0.218	114.3	11.14	±	0.49	±	0.75
0.24–0.30	0.267	97.2	12.43	±	0.48	±	0.77	0.267	114.0	6.86	±	0.31	±	0.51
0.30–0.36	0.328	96.9	7.52	±	0.37	±	0.58	0.329	113.6	3.70	±	0.23	±	0.36
0.36–0.42	0.388	96.3	4.89	±	0.30	±	0.46	0.385	114.0	2.56	±	0.19	±	0.31
0.42–0.50	0.459	96.8	3.47	±	0.22	±	0.40	0.458	113.0	1.39	±	0.12	±	0.22
0.50–0.60	0.545	96.6	1.74	±	0.14	±	0.25	0.535	111.3	0.56	±	0.06	±	0.14
0.60–0.72	0.640	96.4	0.56	±	0.07	±	0.12	0.653	110.5	0.18	±	0.03	±	0.08
0.72–0.90	0.789	97.1	0.15	±	0.03	±	0.06							
Table A.19 Double-differential inclusive cross-section $d^2\sigma/dp\Omega [\text{mb}/(\text{GeV}/c \, \text{sr})]$ of the production of protons in $p + \text{Be} \rightarrow p + X$ interactions with +12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$	
	(p_T)	(θ)	$d^2\sigma/dp\Omega$	(p_T)	(θ)	$d^2\sigma/dp\Omega$	(p_T)	(θ)	$d^2\sigma/dp\Omega$
0.20–0.24	0.220	24.8	42.26 ± 1.72 ± 2.32	0.270	34.9	40.58 ± 1.33 ± 1.92	0.796	34.8	14.17 ± 0.47 ± 0.82
0.24–0.30	0.269	25.0	47.06 ± 1.45 ± 2.34	0.328	35.1	39.35 ± 1.31 ± 1.55	0.387	35.0	37.43 ± 1.31 ± 1.27
0.30–0.36	0.329	25.2	44.12 ± 1.43 ± 1.87	0.387	35.0	37.43 ± 1.31 ± 1.27	0.544	34.8	28.13 ± 0.89 ± 0.90
0.36–0.42	0.388	25.2	40.91 ± 1.35 ± 1.53	0.457	34.9	30.10 ± 1.00 ± 1.02	0.652	34.8	20.54 ± 0.68 ± 0.85
0.42–0.50	0.456	24.8	37.62 ± 1.11 ± 1.23	0.548	55.0	18.48 ± 0.71 ± 0.70	0.796	54.9	8.30 ± 0.38 ± 0.56
0.50–0.60	0.545	24.9	32.32 ± 0.91 ± 1.06	0.658	55.0	14.18 ± 0.59 ± 0.70	1.031	54.9	2.21 ± 0.14 ± 0.24
0.60–0.72	0.651	24.9	27.50 ± 0.78 ± 1.08	0.798	54.8	8.30 ± 0.38 ± 0.56	1.052	81.0	0.62 ± 0.06 ± 0.10
0.72–0.90	1.040	44.7	4.00 ± 0.19 ± 0.38	1.031	54.9	2.21 ± 0.14 ± 0.24	1.052	81.0	0.62 ± 0.06 ± 0.10

Note: The table entries represent the double-differential inclusive cross-section for proton production in the specified kinematic ranges. The errors indicate the statistical and systematic uncertainties, respectively.
Table A20 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr)) of the production of $\pi^+\pi^-$ in $p + \text{Be} \rightarrow \pi^+ + X$ interactions with $+12.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	24.5	56.17 ± 2.74 ± 4.10	0.116	34.9	37.64 ± 2.12 ± 2.76
0.13–0.16	0.145	24.6	68.54 ± 2.74 ± 3.99	0.146	34.7	49.10 ± 2.30 ± 2.82
0.16–0.20	0.180	24.4	81.06 ± 2.45 ± 3.93	0.180	34.7	59.23 ± 2.18 ± 2.84
0.20–0.24	0.220	24.6	89.45 ± 2.60 ± 3.70	0.219	34.7	57.42 ± 2.05 ± 2.36
0.24–0.30	0.269	24.6	87.39 ± 2.08 ± 3.02	0.269	34.8	58.85 ± 1.70 ± 1.99
0.30–0.36	0.328	24.7	72.09 ± 1.84 ± 2.14	0.329	34.6	44.45 ± 1.44 ± 1.29
0.36–0.42	0.387	24.6	57.37 ± 1.63 ± 1.67	0.388	34.7	40.10 ± 1.39 ± 1.13
0.42–0.50	0.455	24.7	44.57 ± 1.24 ± 1.58	0.456	34.7	29.50 ± 0.99 ± 0.97
0.50–0.60	0.541	24.8	29.37 ± 0.88 ± 1.50	0.544	34.7	20.26 ± 0.74 ± 0.95
0.60–0.72	0.653	24.5	18.38 ± 0.62 ± 1.42	0.650	34.7	11.91 ± 0.48 ± 0.84
0.72–0.90	0.793	34.4	5.37 ± 0.24 ± 0.60			

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	44.9	29.54 ± 1.89 ± 2.23			
0.13–0.16	0.145	45.1	31.65 ± 1.79 ± 1.86			
0.16–0.20	0.180	44.7	39.88 ± 1.74 ± 1.95			
0.20–0.24	0.220	45.1	36.17 ± 1.59 ± 1.51			
0.24–0.30	0.269	44.9	37.30 ± 1.34 ± 1.27			
0.30–0.36	0.329	44.6	27.91 ± 1.13 ± 0.83			
0.36–0.42	0.387	44.6	27.97 ± 1.17 ± 0.84			
0.42–0.50	0.458	44.6	19.97 ± 0.85 ± 0.69			
0.50–0.60	0.545	44.6	12.52 ± 0.56 ± 0.58			
0.60–0.72	0.653	44.3	8.16 ± 0.42 ± 0.54			
0.72–0.90	0.792	44.4	3.41 ± 0.21 ± 0.35			
0.90–1.25	1.012	54.0	0.43 ± 0.04 ± 0.08			

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146	67.2	18.07 ± 1.05 ± 1.18			
0.16–0.20	0.181	67.2	23.29 ± 1.06 ± 1.14			
0.20–0.24	0.221	67.2	22.23 ± 1.04 ± 0.89			
0.24–0.30	0.272	67.3	20.62 ± 0.80 ± 0.67			
0.30–0.36	0.333	66.7	15.24 ± 0.71 ± 0.47			
0.36–0.42	0.396	66.5	10.73 ± 0.56 ± 0.37			
0.42–0.50	0.464	67.0	7.43 ± 0.40 ± 0.33			
0.50–0.60	0.555	66.3	4.91 ± 0.29 ± 0.30			
0.60–0.72	0.666	66.4	3.29 ± 0.23 ± 0.28			
0.72–0.90	0.806	66.1	0.96 ± 0.09 ± 0.12			
0.90–1.25	1.043	65.3	0.17 ± 0.02 ± 0.04			
Table A.20 (Continued)

p_T	$0^\circ < \theta < 105^\circ$	$105^\circ < \theta < 125^\circ$				
	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$
0.13–0.16	0.147	97.4	12.17 ± 0.87 ± 0.80	0.146	115.1	11.86 ± 0.72 ± 0.76
0.16–0.20	0.181	97.4	13.20 ± 0.74 ± 0.71	0.181	113.9	10.37 ± 0.58 ± 0.55
0.20–0.24	0.220	97.3	11.44 ± 0.71 ± 0.45	0.219	114.0	8.53 ± 0.56 ± 0.36
0.24–0.30	0.270	97.6	9.23 ± 0.55 ± 0.34	0.269	113.7	3.86 ± 0.29 ± 0.17
0.30–0.36	0.331	97.2	4.67 ± 0.38 ± 0.21	0.330	113.6	2.57 ± 0.24 ± 0.13
0.36–0.42	0.393	97.5	5.31 ± 0.33 ± 0.22	0.393	113.6	1.53 ± 0.17 ± 0.08
0.42–0.50	0.466	96.3	2.68 ± 0.25 ± 0.22	0.459	113.7	1.67 ± 0.10 ± 0.08
0.50–0.60	0.550	96.1	0.95 ± 0.12 ± 0.11	0.563	112.5	0.26 ± 0.06 ± 0.04
0.60–0.72	0.662	96.1	0.30 ± 0.06 ± 0.05	0.669	108.6	0.08 ± 0.03 ± 0.02
0.72–0.90	0.812	97.0	0.11 ± 0.03 ± 0.02			

Table A.21 Double-differential inclusive cross-section $d^2\sigma/dp_d\Omega$ [nb/(GeV/c sr)] of the production of π^-'s in p + Be $\rightarrow \pi^- + X$ interactions with +12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20^\circ < \theta < 30^\circ$	$30^\circ < \theta < 40^\circ$				
	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$
0.10–0.13	0.116	24.7	63.15 ± 2.80 ± 4.48	0.115	34.6	36.61 ± 1.99 ± 2.85
0.13–0.16	0.146	24.8	73.93 ± 2.87 ± 4.28	0.146	34.8	50.78 ± 2.28 ± 3.02
0.16–0.20	0.180	24.6	75.32 ± 2.35 ± 3.65	0.181	34.5	54.11 ± 1.94 ± 2.67
0.20–0.24	0.220	24.6	86.26 ± 2.56 ± 3.50	0.220	34.8	57.19 ± 2.04 ± 2.36
0.24–0.30	0.270	24.6	71.03 ± 1.84 ± 2.33	0.270	34.8	50.41 ± 1.55 ± 1.67
0.30–0.36	0.330	24.8	60.88 ± 1.71 ± 1.70	0.331	34.8	42.13 ± 1.42 ± 1.19
0.36–0.42	0.391	24.9	46.35 ± 1.50 ± 1.33	0.390	34.8	35.09 ± 1.30 ± 1.01
0.42–0.50	0.460	24.6	34.68 ± 1.11 ± 1.25	0.458	34.7	22.92 ± 0.86 ± 0.81
0.50–0.60	0.550	24.8	24.77 ± 0.85 ± 1.25	0.548	35.0	16.44 ± 0.70 ± 0.81
0.60–0.72	0.657	24.7	12.69 ± 0.54 ± 0.91	0.658	34.9	7.61 ± 0.39 ± 0.53
0.72–0.90	0.805	35.1	3.67 ± 0.23 ± 0.37			

p_T	$40^\circ < \theta < 50^\circ$	$50^\circ < \theta < 60^\circ$				
	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$
0.10–0.13	0.116	44.8	26.29 ± 1.63 ± 2.21			
0.13–0.16	0.145	44.8	31.91 ± 1.69 ± 2.00	0.144	54.9	29.42 ± 1.74 ± 2.00
0.16–0.20	0.180	44.9	42.89 ± 1.85 ± 2.15	0.179	55.0	28.79 ± 1.41 ± 1.44
0.20–0.24	0.220	45.1	36.82 ± 1.59 ± 1.55	0.219	54.7	30.71 ± 1.48 ± 1.27
0.24–0.30	0.269	44.7	35.90 ± 1.32 ± 1.21	0.269	54.8	25.32 ± 1.10 ± 0.84
0.30–0.36	0.329	44.5	28.51 ± 1.12 ± 0.82	0.329	54.7	17.52 ± 0.84 ± 0.52
0.36–0.42	0.390	44.7	23.91 ± 1.06 ± 0.73	0.388	54.6	16.15 ± 0.86 ± 0.53
0.42–0.50	0.458	44.6	15.10 ± 0.67 ± 0.57	0.455	54.8	9.68 ± 0.55 ± 0.41
0.50–0.60	0.545	44.7	9.36 ± 0.47 ± 0.50	0.547	54.8	7.63 ± 0.46 ± 0.44
0.60–0.72	0.653	45.0	5.50 ± 0.36 ± 0.41	0.653	54.5	3.63 ± 0.27 ± 0.29
0.72–0.90	0.793	44.8	2.16 ± 0.17 ± 0.23	0.785	54.5	1.51 ± 0.14 ± 0.16
0.90–1.25			1.021	54.3	0.21 ± 0.03 ± 0.04	
Table A.21 (Continued)

p_T	$60 < \theta < 75$	$75 < \theta < 90$												
	$\langle p_T \rangle$	$\langle p_T \rangle$	$d^2\sigma/dp d\Omega$	$d^2\sigma/dp d\Omega$										
	(\theta)	(\theta)												
0.13–0.16	0.145	67.4	19.97	±	1.09	±	1.39	0.145	82.4	16.93	±	0.99	±	1.21
0.16–0.20	0.180	67.5	22.77	±	0.99	±	1.15	0.178	82.3	18.92	±	0.90	±	1.00
0.20–0.24	0.218	67.2	21.03	±	0.97	±	0.81	0.217	82.3	16.53	±	0.83	±	0.63
0.24–0.30	0.267	66.9	16.28	±	0.68	±	0.51	0.265	81.9	13.64	±	0.65	±	0.43
0.30–0.36	0.327	66.8	13.78	±	0.64	±	0.42	0.324	81.8	7.88	±	0.47	±	0.30
0.36–0.42	0.384	66.7	9.72	±	0.52	±	0.35	0.383	82.0	5.92	±	0.42	±	0.30
0.42–0.50	0.452	66.2	5.78	±	0.33	±	0.29	0.451	81.4	3.52	±	0.27	±	0.22
0.50–0.60	0.535	66.4	4.40	±	0.28	±	0.29	0.534	82.4	2.34	±	0.20	±	0.20
0.60–0.72	0.638	66.3	1.97	±	0.16	±	0.17	0.636	81.4	0.74	±	0.11	±	0.09
0.72–0.90	0.773	66.4	0.76	±	0.08	±	0.10	0.752	83.0	0.18	±	0.04	±	0.03
0.90–1.25	0.988	66.5	0.11	±	0.02	±	0.02	1.041	78.8	0.02	±	0.01	±	0.01

p_T	$90 < \theta < 105$	$105 < \theta < 125$												
	$\langle p_T \rangle$	$\langle p_T \rangle$	$d^2\sigma/dp d\Omega$	$d^2\sigma/dp d\Omega$										
	(\theta)	(\theta)												
0.13–0.16	0.144	97.3	15.64	±	0.95	±	1.21	0.145	114.2	13.59	±	0.73	±	1.01
0.16–0.20	0.179	96.9	13.02	±	0.69	±	0.78	0.178	114.4	8.83	±	0.47	±	0.53
0.20–0.24	0.218	96.6	10.87	±	0.66	±	0.47	0.218	113.7	6.54	±	0.43	±	0.35
0.24–0.30	0.265	97.7	6.63	±	0.40	±	0.27	0.265	113.4	5.25	±	0.34	±	0.28
0.30–0.36	0.324	97.2	5.36	±	0.38	±	0.27	0.325	113.5	2.20	±	0.21	±	0.16
0.36–0.42	0.387	96.6	2.69	±	0.27	±	0.18	0.380	112.3	1.38	±	0.18	±	0.14
0.42–0.50	0.453	96.4	1.47	±	0.15	±	0.13	0.444	111.2	0.91	±	0.14	±	0.12
0.50–0.60	0.529	96.6	0.95	±	0.13	±	0.12	0.526	111.0	0.25	±	0.05	±	0.04
0.60–0.72	0.643	97.4	0.20	±	0.05	±	0.03	0.623	115.0	0.04	±	0.03	±	0.02
0.72–0.90	0.762	94.4	0.11	±	0.03	±	0.02							
Table A.22 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr)) of the production of protons in $\pi^+ + \text{Be} \to p + X$ interactions with +12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	20 $< \theta < 30$	30 $< \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.20–0.24	0.222	24.8	33.15 ± 5.14 ± 2.10	0.271	34.9	33.55 ± 4.04 ± 1.83
0.24–0.30	0.269	24.9	26.85 ± 3.64 ± 1.49	0.330	34.9	34.02 ± 4.00 ± 1.65
0.30–0.36	0.329	24.6	35.59 ± 4.18 ± 1.77	0.390	35.3	34.04 ± 4.12 ± 1.44
0.36–0.42	0.386	25.0	29.52 ± 3.74 ± 1.33	0.459	35.4	23.40 ± 2.93 ± 0.96
0.42–0.50	0.459	25.0	24.09 ± 2.90 ± 0.96	0.541	35.0	23.64 ± 2.72 ± 0.93
0.50–0.60	0.544	25.5	25.01 ± 2.66 ± 0.99	0.658	34.8	14.30 ± 1.84 ± 0.68
0.60–0.72	0.649	24.4	16.32 ± 1.87 ± 0.74	0.794	34.6	9.70 ± 1.25 ± 0.61
0.72–0.90	1.024	43.7	2.02 ± 0.41 ± 0.21	1.010	54.7	2.14 ± 0.45 ± 0.25

p_T	40 $< \theta < 50$	50 $< \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.30–0.36	0.327	45.1	24.69 ± 3.52 ± 1.03	0.387	55.8	20.10 ± 3.07 ± 0.88
0.36–0.42	0.393	45.2	27.74 ± 3.71 ± 1.10	0.458	55.1	18.02 ± 2.54 ± 0.74
0.42–0.50	0.456	45.1	23.65 ± 2.96 ± 0.93	0.550	55.2	13.05 ± 1.96 ± 0.63
0.50–0.60	0.545	45.0	17.32 ± 2.30 ± 0.72	0.663	54.5	9.40 ± 1.58 ± 0.54
0.60–0.72	0.657	44.7	10.89 ± 1.66 ± 0.56	0.786	54.3	5.25 ± 0.98 ± 0.39
0.72–0.90	0.805	44.8	9.28 ± 1.26 ± 0.62	1.010	54.7	2.14 ± 0.45 ± 0.25
0.90–1.25	1.024	43.7	2.02 ± 0.41 ± 0.21	1.010	54.7	2.14 ± 0.45 ± 0.25

p_T	60 $< \theta < 75$	75 $< \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.36–0.42	0.396	68.4	23.44 ± 2.62 ± 1.17	0.464	81.7	12.36 ± 1.67 ± 0.64
0.42–0.50	0.462	66.9	21.70 ± 2.25 ± 0.86	0.561	81.1	8.45 ± 1.30 ± 0.50
0.50–0.60	0.554	66.9	12.09 ± 1.55 ± 0.56	0.652	81.7	3.95 ± 0.83 ± 0.33
0.60–0.72	0.665	67.3	8.91 ± 1.28 ± 0.58	0.825	81.7	2.91 ± 0.62 ± 0.32
0.72–0.90	0.830	66.7	3.92 ± 0.70 ± 0.37	1.031	80.7	0.58 ± 0.20 ± 0.10
0.90–1.25	1.063	67.2	0.90 ± 0.24 ± 0.13	1.031	80.7	0.58 ± 0.20 ± 0.10

p_T	90 $< \theta < 105$	105 $< \theta < 125$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.36–0.42	0.393	112.5	7.10 ± 1.30 ± 0.38	0.462	114.0	3.66 ± 0.81 ± 0.26
0.42–0.50	0.468	96.4	6.41 ± 1.26 ± 0.43	0.562	112.9	2.41 ± 0.64 ± 0.26
0.50–0.60	0.552	96.5	4.78 ± 0.97 ± 0.39	0.689	109.0	0.88 ± 0.36 ± 0.14
0.60–0.72	0.679	96.1	2.80 ± 0.74 ± 0.29	0.803	109.4	0.29 ± 0.17 ± 0.07
0.72–0.90	0.846	97.0	0.59 ± 0.27 ± 0.08	0.803	109.4	0.29 ± 0.17 ± 0.07
0.90–1.25	1.063	98.3	0.20 ± 0.13 ± 0.04	0.803	109.4	0.29 ± 0.17 ± 0.07
Table A.23
Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+’s in $\pi^+ + \text{Be} \to \pi^+ + \text{X}$ interactions with $+12.0 \text{ GeV/c}$ beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$			
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.117 & 24.8 & 35.14 \pm 7.12 \pm 2.68	0.115 & 36.3 & 40.25 \pm 7.54 \pm 3.21			
0.13–0.16	0.149 & 24.2 & 49.55 \pm 7.52 \pm 3.10	0.146 & 33.9 & 43.15 \pm 7.16 \pm 2.78			
0.16–0.20	0.180 & 24.6 & 88.52 \pm 8.54 \pm 4.63	0.182 & 34.7 & 61.79 \pm 7.47 \pm 3.49			
0.20–0.24	0.221 & 24.9 & 76.40 \pm 8.04 \pm 3.55	0.220 & 35.4 & 66.66 \pm 7.43 \pm 3.15			
0.24–0.30	0.268 & 24.2 & 93.08 \pm 7.11 \pm 3.59	0.268 & 34.8 & 60.65 \pm 5.76 \pm 2.36			
0.30–0.36	0.328 & 24.9 & 65.62 \pm 5.87 \pm 2.21	0.327 & 34.4 & 51.40 \pm 5.12 \pm 1.83			
0.36–0.42	0.387 & 24.2 & 62.31 \pm 5.97 \pm 2.10	0.383 & 34.5 & 38.13 \pm 4.49 \pm 1.37			
0.42–0.50	0.456 & 24.5 & 45.10 \pm 4.14 \pm 1.78	0.455 & 34.2 & 21.54 \pm 2.80 \pm 0.85			
0.50–0.60	0.541 & 24.8 & 31.91 \pm 3.08 \pm 1.72	0.540 & 34.6 & 19.08 \pm 2.42 \pm 1.00			
0.60–0.72	0.651 & 24.5 & 21.60 \pm 2.28 \pm 1.79	0.645 & 34.9 & 14.67 \pm 1.84 \pm 1.10			
0.72–0.90	0.793 & 34.4 & 5.69 \pm 0.84 \pm 0.66				

p_T (GeV/c)	$40 < \theta < 50$	$50 < \theta < 60$			
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.114 & 44.7 & 21.46 \pm 5.40 \pm 1.80				
0.13–0.16	0.144 & 44.7 & 40.74 \pm 6.75 \pm 2.81				
0.16–0.20	0.181 & 45.8 & 35.78 \pm 5.57 \pm 2.06				
0.20–0.24	0.218 & 45.0 & 37.42 \pm 5.36 \pm 1.91				
0.24–0.30	0.268 & 44.5 & 29.80 \pm 3.99 \pm 1.24				
0.30–0.36	0.326 & 44.8 & 28.71 \pm 3.82 \pm 1.11				
0.36–0.42	0.394 & 44.7 & 30.87 \pm 4.08 \pm 1.24				
0.42–0.50	0.455 & 44.1 & 22.43 \pm 2.98 \pm 0.99				
0.50–0.60	0.551 & 44.8 & 9.91 \pm 1.69 \pm 0.56				
0.60–0.72	0.657 & 44.9 & 10.69 \pm 1.64 \pm 0.78				
0.72–0.90	0.791 & 44.1 & 5.08 \pm 0.87 \pm 0.56				
0.90–1.25	1.080 & 54.3 & 0.35 \pm 0.14 \pm 0.07				

p_T (GeV/c)	$60 < \theta < 75$	$75 < \theta < 90$			
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.144 & 67.9 & 15.72 \pm 3.32 \pm 1.26				
0.16–0.20	0.181 & 66.7 & 21.22 \pm 3.35 \pm 1.26				
0.20–0.24	0.218 & 67.5 & 19.17 \pm 3.19 \pm 0.99				
0.24–0.30	0.273 & 67.5 & 16.16 \pm 2.36 \pm 0.70				
0.30–0.36	0.329 & 67.9 & 10.81 \pm 1.99 \pm 0.46				
0.36–0.42	0.394 & 66.0 & 11.42 \pm 1.95 \pm 0.55				
0.42–0.50	0.467 & 66.4 & 5.86 \pm 1.17 \pm 0.33				
0.50–0.60	0.548 & 67.5 & 5.42 \pm 1.02 \pm 0.39				
0.60–0.72	0.672 & 67.1 & 2.62 \pm 0.68 \pm 0.25				
0.72–0.90	0.820 & 65.6 & 1.13 \pm 0.32 \pm 0.16				
0.90–1.25	1.069 & 65.8 & 0.09 \pm 0.06 \pm 0.02				
Table A.23 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$			
(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$
0.13–0.16	0.146 96.5	12.51 ± 2.88 ± 1.07	0.143 114.9	9.25 ± 2.12 ± 0.76	
0.16–0.20	0.179 96.9	10.03 ± 2.17 ± 0.74	0.177 116.0	9.61 ± 1.84 ± 0.62	
0.20–0.24	0.218 96.1	10.93 ± 2.32 ± 0.70	0.221 112.4	4.74 ± 1.43 ± 0.31	
0.24–0.30	0.268 96.6	9.37 ± 1.88 ± 0.53	0.265 113.9	3.88 ± 1.00 ± 0.27	
0.30–0.36	0.329 97.1	3.40 ± 1.08 ± 0.23	0.319 113.5	2.03 ± 0.72 ± 0.18	
0.36–0.42	0.398 98.5	2.04 ± 0.83 ± 0.18	0.391 113.8	1.59 ± 0.58 ± 0.20	
0.42–0.50	0.475 96.8	1.64 ± 0.67 ± 0.18	0.472 110.7	0.37 ± 0.26 ± 0.05	
0.50–0.60	0.542 95.5	1.48 ± 0.52 ± 0.21	0.675 112.8	0.52 ± 0.26 ± 0.12	
0.60–0.72	0.766 93.0	0.22 ± 0.16 ± 0.06	0.76 ± 0.06		

Table A.24 Double-differential inclusive cross-section $d^2\sigma/dp_d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + \text{Be} \rightarrow \pi^- + X$ interactions with +12.0 GeV/c beam momentum; the first error is statistical, the second systematic: p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$			
(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$
0.10–0.13	0.116 24.6	57.74 ± 8.98 ± 4.49	0.114 34.7	30.36 ± 5.92 ± 2.47	
0.13–0.16	0.145 24.9	65.62 ± 9.02 ± 4.41	0.147 35.3	48.43 ± 7.48 ± 3.26	
0.16–0.20	0.183 24.6	64.93 ± 7.34 ± 3.50	0.184 34.6	38.24 ± 5.44 ± 2.19	
0.20–0.24	0.221 24.7	63.89 ± 7.29 ± 3.00	0.220 34.9	60.38 ± 6.97 ± 2.98	
0.24–0.30	0.271 25.1	67.36 ± 5.97 ± 2.52	0.271 34.8	44.52 ± 4.82 ± 1.78	
0.30–0.36	0.330 24.3	54.35 ± 5.29 ± 1.85	0.331 35.2	34.54 ± 4.30 ± 1.27	
0.36–0.42	0.389 24.2	40.93 ± 4.61 ± 1.47	0.391 34.8	27.82 ± 3.80 ± 1.09	
0.42–0.50	0.456 24.8	31.08 ± 3.50 ± 1.31	0.462 35.4	15.87 ± 2.38 ± 0.74	
0.50–0.60	0.547 24.6	21.39 ± 2.62 ± 1.20	0.554 35.2	13.59 ± 2.12 ± 0.79	
0.60–0.72	0.653 24.4	10.69 ± 1.65 ± 0.83	0.660 35.0	6.45 ± 1.20 ± 0.54	
0.72–0.90	0.800 36.2	2.58 ± 0.65 ± 0.29	0.80 ± 0.29		

p_T	$40 < \theta < 50$	$50 < \theta < 60$												
(p_T)	(θ)	$d^2\sigma/dp_d\Omega$	(p_T)	(θ)	$d^2\sigma/dp_d\Omega$									
0.10–0.13	0.117 45.5	18.69 ± 4.70 ± 1.78	0.146 55.4	33.93 ± 6.29 ± 2.58										
0.13–0.16	0.144 44.1	32.03 ± 5.60 ± 2.46	0.180 54.9	20.99 ± 4.06 ± 1.33										
0.16–0.20	0.178 44.3	40.68 ± 5.98 ± 2.54	0.218 54.8	24.86 ± 4.42 ± 1.41										
0.20–0.24	0.220 44.5	29.01 ± 4.59 ± 1.58	0.267 54.1	15.61 ± 2.86 ± 0.73										
0.24–0.30	0.271 44.9	34.47 ± 4.28 ± 1.49	0.333 53.9	12.89 ± 2.40 ± 0.69										
0.30–0.36	0.332 45.5	20.65 ± 3.19 ± 0.85	0.387 55.2	12.65 ± 2.53 ± 0.66										
0.36–0.42	0.386 44.9	20.49 ± 3.25 ± 0.90	0.454 53.9	7.58 ± 1.62 ± 0.47										
0.42–0.50	0.455 44.0	9.87 ± 1.79 ± 0.56	0.540 55.1	4.94 ± 1.24 ± 0.35										
0.50–0.60	0.548 44.8	7.65 ± 1.42 ± 0.55	0.642 53.2	2.85 ± 0.79 ± 0.28										
0.60–0.72	0.649 44.0	5.49 ± 1.17 ± 0.49	0.775 55.4	1.85 ± 0.53 ± 0.24										
0.72–0.90	0.811 43.7	1.48 ± 0.47 ± 0.18	0.775 55.4	1.85 ± 0.53 ± 0.24										
p_T	$60 < \theta < 75$	$75 < \theta < 90$												
------	----------------	-----------------												
	$\langle p_T \rangle$	$\langle p_T \rangle$	$d^2\sigma / dp d\Omega$	$d^2\sigma / dp d\Omega$										
0.13–0.16	0.146	66.3	11.91	±	2.79	±	1.00	0.144	83.5	12.66	±	2.89	±	1.02
0.16–0.20	0.175	66.3	16.88	±	2.84	±	1.09	0.177	83.2	14.35	±	2.63	±	1.01
0.20–0.24	0.216	68.0	13.44	±	2.60	±	0.75	0.214	83.0	11.01	±	2.30	±	0.72
0.24–0.30	0.266	66.8	8.88	±	1.68	±	0.43	0.261	81.9	10.46	±	1.88	±	0.55
0.30–0.36	0.323	67.3	11.35	±	1.95	±	0.55	0.328	82.3	4.73	±	1.22	±	0.31
0.36–0.42	0.377	64.5	7.16	±	1.47	±	0.44	0.385	81.0	4.66	±	1.25	±	0.35
0.42–0.50	0.456	65.8	5.81	±	1.10	±	0.44	0.448	81.3	4.22	±	1.00	±	0.38
0.50–0.60	0.535	66.1	3.97	±	0.89	±	0.32	0.534	81.3	2.47	±	0.68	±	0.30
0.60–0.72	0.629	67.1	1.17	±	0.41	±	0.13	0.647	81.0	1.00	±	0.41	±	0.15
0.72–0.90	0.811	65.2	0.85	±	0.30	±	0.12	0.773	88.4	0.21	±	0.15	±	0.05

p_T	$90 < \theta < 105$	$105 < \theta < 125$												
	$\langle p_T \rangle$	$\langle p_T \rangle$	$d^2\sigma / dp d\Omega$	$d^2\sigma / dp d\Omega$										
0.13–0.16	0.145	94.3	9.09	±	2.43	±	0.84	0.144	116.4	9.99	±	2.08	±	0.95
0.16–0.20	0.180	97.5	8.41	±	1.84	±	0.75	0.178	113.4	8.07	±	1.51	±	0.78
0.20–0.24	0.221	96.1	7.81	±	1.85	±	0.61	0.216	111.1	3.20	±	1.01	±	0.29
0.24–0.30	0.261	96.8	4.65	±	1.13	±	0.39	0.261	114.1	2.86	±	0.83	±	0.24
0.30–0.36	0.325	96.2	5.81	±	1.33	±	0.52	0.340	113.0	1.37	±	0.56	±	0.14
0.36–0.42	0.377	97.0	3.11	±	0.94	±	0.37	0.380	113.3	1.27	±	0.57	±	0.16
0.42–0.50	0.453	94.7	1.49	±	0.53	±	0.23	0.444	118.4	1.36	±	0.56	±	0.21
0.50–0.60	0.524	96.4	0.60	±	0.35	±	0.11	0.509	112.6	0.24	±	0.17	±	0.05
0.60–0.72	0.634	101.7	0.55	±	0.27	±	0.15							
Table A.25 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- + \text{Be} \rightarrow p + X$ interactions with -12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.20–0.24	0.219	24.7	24.37	±	1.24	±	1.58
0.24–0.30	0.270	25.2	27.58	±	1.06	±	1.57
0.30–0.36	0.330	24.9	25.60	±	1.02	±	1.26
0.36–0.42	0.390	25.1	23.23	±	0.95	±	1.07
0.42–0.50	0.460	24.9	20.04	±	0.76	±	0.81
0.50–0.60	0.548	24.9	17.86	±	0.64	±	0.71
0.60–0.72	0.656	25.0	14.16	±	0.51	±	0.66
0.72–0.90	0.802	34.8	7.41	±	0.32	±	0.47

p_T	$40 < \theta < 50$	$50 < \theta < 60$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.30–0.36	0.329	44.9	25.24	±	0.99	±	1.27
0.36–0.42	0.389	44.9	20.63	±	0.89	±	0.97
0.42–0.50	0.460	44.9	17.35	±	0.72	±	0.67
0.50–0.60	0.548	44.9	14.17	±	0.60	±	0.60
0.60–0.72	0.657	44.8	9.43	±	0.44	±	0.48
0.72–0.90	0.798	44.9	6.12	±	0.31	±	0.41
0.90–1.25	1.035	44.9	1.84	±	0.12	±	0.19

p_T	$60 < \theta < 75$	$75 < \theta < 90$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.36–0.42	0.390	67.3	17.90	±	0.65	±	0.85
0.42–0.50	0.459	67.4	14.10	±	0.51	±	0.56
0.50–0.60	0.549	67.3	10.83	±	0.42	±	0.50
0.60–0.72	0.658	67.3	6.07	±	0.30	±	0.40
0.72–0.90	0.795	66.7	3.21	±	0.18	±	0.30
0.90–1.25	1.033	66.7	0.76	±	0.07	±	0.12

p_T	$90 < \theta < 105$	$105 < \theta < 125$					
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.36–0.42	0.389	114.0	5.02	±	0.31	±	0.28
0.42–0.50	0.457	96.5	6.38	±	0.35	±	0.43
0.50–0.60	0.547	97.0	3.60	±	0.24	±	0.29
0.60–0.72	0.655	96.8	1.95	±	0.18	±	0.21
0.72–0.90	0.788	96.4	0.65	±	0.08	±	0.09
0.90–1.25	1.040	95.5	0.17	±	0.03	±	0.03
Table A.26 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- + \text{Be} \rightarrow \pi^+ + X$ interactions with -12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	24.7	37.81 ± 2.11 ± 3.18	0.116	34.8	27.36 ± 1.72 ± 2.38
0.13–0.16	0.147	24.5	56.39 ± 2.36 ± 3.53	0.145	34.8	36.32 ± 1.89 ± 2.46
0.16–0.20	0.181	24.3	60.11 ± 2.04 ± 3.17	0.180	34.7	37.98 ± 1.59 ± 2.07
0.20–0.24	0.220	24.6	66.01 ± 2.09 ± 3.01	0.220	34.7	45.76 ± 1.75 ± 2.22
0.24–0.30	0.270	24.6	60.22 ± 1.60 ± 2.30	0.270	34.8	38.20 ± 1.27 ± 1.50
0.30–0.36	0.329	24.4	55.53 ± 1.53 ± 1.89	0.329	34.6	37.06 ± 1.26 ± 1.32
0.36–0.42	0.389	24.5	42.58 ± 1.34 ± 1.48	0.388	34.7	29.05 ± 1.12 ± 1.05
0.42–0.50	0.458	24.7	33.59 ± 1.01 ± 1.34	0.457	34.5	20.29 ± 0.78 ± 0.82
0.50–0.60	0.547	24.5	19.53 ± 0.67 ± 1.08	0.546	34.5	13.46 ± 0.55 ± 0.72
0.60–0.72	0.655	24.6	12.66 ± 0.48 ± 1.03	0.655	34.6	7.63 ± 0.37 ± 0.59
0.72–0.90	0.799	34.5	3.21 ± 0.17 ± 0.40			

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	44.8	20.24 ± 1.52 ± 1.83	0.146	55.2	18.96 ± 1.36 ± 1.44
0.13–0.16	0.145	44.8	22.63 ± 1.47 ± 1.59	0.180	54.8	20.77 ± 1.17 ± 1.23
0.16–0.20	0.180	44.9	27.72 ± 1.37 ± 1.61	0.219	54.8	17.76 ± 1.08 ± 0.94
0.20–0.24	0.220	44.9	27.68 ± 1.34 ± 1.41	0.270	54.4	18.53 ± 0.88 ± 0.81
0.24–0.30	0.270	44.8	28.76 ± 1.13 ± 1.19	0.330	54.7	14.68 ± 0.78 ± 0.60
0.30–0.36	0.330	44.6	22.58 ± 0.96 ± 0.87	0.391	54.5	10.85 ± 0.65 ± 0.53
0.36–0.42	0.388	44.6	18.41 ± 0.86 ± 0.80	0.458	54.4	8.72 ± 0.49 ± 0.44
0.42–0.50	0.458	44.5	13.56 ± 0.65 ± 0.60	0.547	54.5	6.43 ± 0.39 ± 0.40
0.50–0.60	0.545	44.8	7.94 ± 0.41 ± 0.54	0.650	54.4	3.19 ± 0.25 ± 0.28
0.60–0.72	0.650	44.1	4.72 ± 0.29 ± 0.39	0.792	54.7	1.55 ± 0.13 ± 0.18
0.72–0.90	0.790	43.9	2.51 ± 0.18 ± 0.28	1.020	55.1	0.29 ± 0.03 ± 0.06

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146	66.6	15.03 ± 0.96 ± 1.15	0.146	81.6	10.31 ± 0.78 ± 0.83
0.16–0.20	0.180	67.0	15.09 ± 0.79 ± 0.90	0.180	82.5	11.99 ± 0.70 ± 0.79
0.20–0.24	0.220	67.3	14.63 ± 0.78 ± 0.75	0.218	81.8	9.59 ± 0.63 ± 0.56
0.24–0.30	0.269	66.7	12.15 ± 0.57 ± 0.56	0.271	81.3	7.54 ± 0.45 ± 0.38
0.30–0.36	0.329	66.9	9.86 ± 0.52 ± 0.42	0.327	81.7	5.51 ± 0.38 ± 0.29
0.36–0.42	0.389	67.3	7.28 ± 0.43 ± 0.39	0.387	82.1	4.04 ± 0.31 ± 0.30
0.42–0.50	0.456	66.9	5.77 ± 0.33 ± 0.36	0.456	81.1	3.10 ± 0.26 ± 0.22
0.50–0.60	0.548	67.1	3.53 ± 0.23 ± 0.27	0.544	81.6	1.74 ± 0.16 ± 0.17
0.60–0.72	0.656	66.2	1.91 ± 0.15 ± 0.20	0.647	81.5	0.89 ± 0.10 ± 0.12
0.72–0.90	0.787	66.3	0.59 ± 0.06 ± 0.09	0.776	80.3	0.22 ± 0.04 ± 0.04
0.90–1.25	1.016	66.1	0.09 ± 0.02 ± 0.02	1.021	80.9	0.06 ± 0.02 ± 0.02
Table A.26 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$		
	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.147 97.3 8.37 ± 0.68 ± 0.74	0.145 114.2 6.89 ± 0.51 ± 0.63		
0.16–0.20	0.179 96.9 9.48 ± 0.59 ± 0.76	0.179 114.2 6.06 ± 0.39 ± 0.49		
0.20–0.24	0.221 97.2 6.57 ± 0.48 ± 0.55	0.218 113.7 4.46 ± 0.35 ± 0.32		
0.24–0.30	0.267 97.0 5.42 ± 0.38 ± 0.31	0.268 113.0 3.28 ± 0.25 ± 0.22		
0.30–0.36	0.329 97.6 3.18 ± 0.28 ± 0.21	0.329 112.8 1.69 ± 0.18 ± 0.17		
0.36–0.42	0.386 96.8 2.11 ± 0.22 ± 0.20	0.387 113.5 1.20 ± 0.16 ± 0.15		
0.42–0.50	0.458 96.8 1.48 ± 0.17 ± 0.18	0.458 111.9 0.45 ± 0.08 ± 0.07		
0.50–0.60	0.544 95.6 0.92 ± 0.12 ± 0.14	0.541 111.5 0.27 ± 0.06 ± 0.06		
0.60–0.72	0.645 95.3 0.38 ± 0.07 ± 0.08	0.660 110.2 0.10 ± 0.03 ± 0.04		
0.72–0.90	0.784 97.0 0.11 ± 0.03 ± 0.03			

Table A.27

Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-’s in $\pi^- + \text{Be} \rightarrow \pi^- + \text{X}$ interactions with -12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$		
	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115 24.7 61.40 ± 2.64 ± 4.67	0.116 34.9 37.58 ± 2.00 ± 3.13		
0.13–0.16	0.146 24.6 74.65 ± 2.71 ± 4.59	0.145 34.8 51.55 ± 2.24 ± 3.35		
0.16–0.20	0.181 24.6 89.44 ± 2.50 ± 4.58	0.179 34.6 56.00 ± 1.94 ± 2.98		
0.20–0.24	0.220 24.7 93.92 ± 2.50 ± 4.10	0.220 34.8 55.62 ± 1.92 ± 2.54		
0.24–0.30	0.269 24.7 89.26 ± 1.99 ± 3.18	0.270 34.5 56.17 ± 1.57 ± 2.08		
0.30–0.36	0.329 24.6 80.56 ± 1.90 ± 2.52	0.329 34.4 48.82 ± 1.45 ± 1.61		
0.36–0.42	0.389 24.8 61.66 ± 1.66 ± 1.99	0.388 34.7 40.31 ± 1.31 ± 1.37		
0.42–0.50	0.457 24.6 49.30 ± 1.28 ± 1.96	0.457 34.6 31.63 ± 1.01 ± 1.25		
0.50–0.60	0.546 24.6 35.99 ± 0.98 ± 1.90	0.545 34.7 19.87 ± 0.71 ± 1.05		
0.60–0.72	0.654 24.7 20.76 ± 0.67 ± 1.53	0.655 34.9 12.42 ± 0.52 ± 0.90		
0.72–0.90	0.798 34.5 6.06 ± 0.29 ± 0.62			

p_T	$40 < \theta < 50$	$50 < \theta < 60$		
	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$	(p_T) (\theta)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115 44.6 26.91 ± 1.66 ± 2.31	0.146 54.9 26.40 ± 1.53 ± 1.92		
0.13–0.16	0.146 44.9 32.36 ± 1.73 ± 2.29	0.180 54.8 28.89 ± 1.38 ± 1.71		
0.16–0.20	0.181 45.0 39.25 ± 1.64 ± 2.18	0.180 54.8 28.89 ± 1.38 ± 1.71		
0.20–0.24	0.220 44.9 40.39 ± 1.62 ± 1.94	0.220 54.9 34.31 ± 1.52 ± 1.68		
0.24–0.30	0.269 44.6 35.17 ± 1.22 ± 1.36	0.269 54.9 25.48 ± 1.05 ± 1.01		
0.30–0.36	0.329 44.7 30.35 ± 1.14 ± 1.07	0.330 54.6 22.27 ± 0.95 ± 0.88		
0.36–0.42	0.389 44.9 25.10 ± 1.01 ± 1.00	0.389 54.4 18.13 ± 0.85 ± 0.84		
0.42–0.50	0.458 44.7 19.57 ± 0.79 ± 0.86	0.458 54.8 12.33 ± 0.62 ± 0.60		
0.50–0.60	0.548 44.6 12.89 ± 0.57 ± 0.77	0.545 54.7 8.63 ± 0.46 ± 0.56		
0.60–0.72	0.655 44.7 7.61 ± 0.40 ± 0.60	0.650 55.0 5.04 ± 0.32 ± 0.42		
0.72–0.90	0.796 44.8 4.16 ± 0.25 ± 0.46	0.796 54.7 2.06 ± 0.17 ± 0.24		
0.90–1.25		1.035 54.9 0.27 ± 0.03 ± 0.06		
Table A.27 (Continued)

p_T	$60 < \theta < 75$	$75 < \theta < 90$												
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$								
0.13–0.16	0.145	67.0	20.47	±	1.10	±	1.50	0.145	82.7	14.90	±	0.88	±	1.39
0.16–0.20	0.180	66.9	22.46	±	0.96	±	1.30	0.180	82.0	17.77	±	0.85	±	1.09
0.20–0.24	0.219	67.2	22.17	±	0.98	±	1.01	0.219	82.4	16.30	±	0.82	±	0.83
0.24–0.30	0.269	67.2	18.12	±	0.70	±	0.70	0.269	81.8	11.77	±	0.57	±	0.49
0.30–0.36	0.329	66.8	15.01	±	0.66	±	0.57	0.330	82.0	8.08	±	0.47	±	0.38
0.36–0.42	0.388	66.8	10.98	±	0.54	±	0.51	0.390	82.0	6.17	±	0.41	±	0.37
0.42–0.50	0.458	66.5	8.19	±	0.40	±	0.43	0.458	82.0	5.03	±	0.33	±	0.35
0.50–0.60	0.544	66.5	5.11	±	0.29	±	0.36	0.544	81.2	2.28	±	0.19	±	0.22
0.60–0.72	0.656	66.5	2.65	±	0.19	±	0.25	0.654	81.9	1.13	±	0.12	±	0.14
0.72–0.90	0.794	66.4	1.09	±	0.10	±	0.16	0.792	80.8	0.37	±	0.05	±	0.07
0.90–1.25	1.008	66.1	0.14	±	0.02	±	0.03	0.994	82.7	0.03	±	0.02	±	0.01
p_T	$90 < \theta < 105$	$105 < \theta < 125$												
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$								
0.13–0.16	0.144	97.5	14.53	±	0.88	±	1.45	0.145	114.6	11.01	±	0.64	±	0.85
0.16–0.20	0.180	97.0	13.24	±	0.70	±	0.89	0.178	114.6	10.36	±	0.54	±	0.71
0.20–0.24	0.219	96.3	12.73	±	0.70	±	0.72	0.219	114.3	7.09	±	0.46	±	0.43
0.24–0.30	0.268	96.9	7.41	±	0.46	±	0.36	0.266	113.9	5.35	±	0.33	±	0.32
0.30–0.36	0.329	96.7	6.16	±	0.41	±	0.38	0.329	113.2	2.96	±	0.24	±	0.26
0.36–0.42	0.387	97.3	4.18	±	0.33	±	0.35	0.385	112.0	1.76	±	0.19	±	0.21
0.42–0.50	0.457	97.0	2.70	±	0.23	±	0.26	0.458	112.4	0.92	±	0.12	±	0.14
0.50–0.60	0.545	96.1	1.22	±	0.14	±	0.17	0.554	111.6	0.23	±	0.05	±	0.04
0.60–0.72	0.662	97.0	0.44	±	0.08	±	0.08	0.633	109.6	0.09	±	0.03	±	0.02
0.72–0.90	0.769	96.3	0.08	±	0.02	±	0.02							
Table A.28 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $p + \text{Be} \to p + \text{X}$ interactions with $+15.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$							
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$			
0.20–0.24	0.220	25.0	38.48	±	1.80	±	2.13		
0.24–0.30	0.269	24.8	45.17	±	1.57	±	2.24		
0.30–0.36	0.329	24.9	42.76	±	1.52	±	1.89		
0.36–0.42	0.388	24.9	38.44	±	1.41	±	1.45		
0.42–0.50	0.458	24.8	35.42	±	1.17	±	1.17		
0.50–0.60	0.545	24.8	30.77	±	0.97	±	1.01		
0.60–0.72	0.651	24.9	23.67	±	0.77	±	0.94		
0.72–0.90			0.796	34.6	13.08	±	0.49	±	0.77
p_T	$40 < \theta < 50$	$50 < \theta < 60$							
-------	---------------------	---------------------							
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$			
0.30–0.36	0.329	44.9	35.19	±	1.34	±	1.31		
0.36–0.42	0.389	44.8	35.39	±	1.38	±	1.18		
0.42–0.50	0.459	45.1	27.81	±	1.06	±	0.84		
0.50–0.60	0.549	45.0	24.39	±	0.93	±	0.80		
0.60–0.72	0.656	44.9	15.07	±	0.65	±	0.67		
0.72–0.90	0.801	44.7	9.83	±	0.44	±	0.59		
0.90–1.25	1.042	44.7	3.58	±	0.19	±	0.35		
p_T	$60 < \theta < 75$	$75 < \theta < 90$							
-------	---------------------	---------------------							
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$			
0.36–0.42	0.391	67.4	30.19	±	1.01	±	1.17		
0.42–0.50	0.459	67.5	22.43	±	0.74	±	0.70		
0.50–0.60	0.547	67.2	17.44	±	0.64	±	0.72		
0.60–0.72	0.656	67.2	9.77	±	0.44	±	0.59		
0.72–0.90	0.796	66.4	5.08	±	0.27	±	0.45		
0.90–1.25	1.027	66.5	1.30	±	0.10	±	0.19		
p_T	$90 < \theta < 105$	$105 < \theta < 125$							
-------	---------------------	---------------------							
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$			
0.36–0.42			0.389	113.1	6.78	±	0.41	±	0.27
0.42–0.50	0.457	96.6	11.28	±	0.55	±	0.66		
0.50–0.60	0.545	96.7	6.14	±	0.38	±	0.44		
0.60–0.72	0.650	96.3	2.59	±	0.25	±	0.26		
0.72–0.90	0.786	96.2	1.08	±	0.12	±	0.13		
0.90–1.25	1.028	97.3	0.23	±	0.05	±	0.04		
Table A.29 Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of π^+s in $p + B e \rightarrow \pi^+ + X$ interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T (GeV/c)	$20 < \theta < 30$ (\theta)	$30 < \theta < 40$ (\theta)
	$d^2\sigma/dp\Omega$	$d^2\sigma/dp\Omega$
0.10–0.13	0.116 24.5 62.64 ± 3.15 ± 4.54	0.116 35.0 39.74 ± 2.47 ± 2.93
0.13–0.16	0.146 24.6 73.73 ± 3.14 ± 4.29	0.145 34.7 49.47 ± 2.56 ± 2.86
0.16–0.20	0.181 24.4 92.11 ± 2.93 ± 4.44	0.179 34.6 56.14 ± 2.30 ± 2.71
0.20–0.24	0.220 24.6 98.89 ± 2.98 ± 4.10	0.220 34.6 62.38 ± 2.36 ± 2.57
0.24–0.30	0.268 24.7 93.70 ± 2.34 ± 3.24	0.268 34.7 61.70 ± 1.93 ± 2.10
0.30–0.36	0.329 24.5 77.37 ± 2.10 ± 2.29	0.327 34.6 50.29 ± 1.70 ± 1.47
0.36–0.42	0.387 24.7 66.57 ± 1.99 ± 1.94	0.387 34.6 37.79 ± 1.44 ± 1.08
0.42–0.50	0.456 24.7 49.98 ± 1.45 ± 1.75	0.456 34.6 32.25 ± 1.16 ± 1.06
0.50–0.60	0.544 24.4 33.06 ± 1.01 ± 1.70	0.545 34.7 21.86 ± 0.84 ± 1.02
0.60–0.72	0.652 24.5 20.05 ± 0.70 ± 1.55	0.651 34.6 12.97 ± 0.58 ± 0.91
0.72–0.90	0.790 34.9 6.23 ± 0.30 ± 0.70	

p_T (GeV/c)	$40 < \theta < 50$ (\theta)	$50 < \theta < 60$ (\theta)
	$d^2\sigma/dp\Omega$	$d^2\sigma/dp\Omega$
0.10–0.13	0.117 45.0 28.29 ± 2.11 ± 2.15	0.146 54.9 28.62 ± 1.83 ± 1.77
0.13–0.16	0.146 44.9 37.70 ± 2.25 ± 2.23	0.179 54.7 32.54 ± 1.70 ± 1.60
0.16–0.20	0.180 44.6 45.28 ± 2.08 ± 2.22	0.220 54.6 34.14 ± 1.78 ± 1.41
0.20–0.24	0.220 44.9 38.78 ± 1.80 ± 1.66	0.270 54.7 29.37 ± 1.31 ± 0.99
0.24–0.30	0.270 44.8 38.39 ± 1.49 ± 1.32	0.329 54.6 24.12 ± 1.18 ± 0.72
0.30–0.36	0.328 44.8 35.72 ± 1.43 ± 1.06	0.389 54.9 18.85 ± 1.03 ± 0.59
0.36–0.42	0.389 44.7 28.77 ± 1.27 ± 0.85	0.460 54.6 13.10 ± 0.73 ± 0.50
0.42–0.50	0.458 44.8 20.46 ± 0.93 ± 0.70	0.544 54.5 8.56 ± 0.52 ± 0.43
0.50–0.60	0.548 44.2 13.22 ± 0.65 ± 0.61	0.652 54.8 5.37 ± 0.39 ± 0.39
0.60–0.72	0.651 44.5 8.38 ± 0.46 ± 0.55	0.791 54.6 2.28 ± 0.18 ± 0.24
0.72–0.90	0.799 44.6 3.70 ± 0.24 ± 0.38	1.031 54.2 0.46 ± 0.05 ± 0.08
0.90–1.25	1.031 54.2 0.46 ± 0.05 ± 0.08	

p_T (GeV/c)	$60 < \theta < 75$ (\theta)	$75 < \theta < 90$ (\theta)
	$d^2\sigma/dp\Omega$	$d^2\sigma/dp\Omega$
0.13–0.16	0.145 67.4 19.67 ± 1.23 ± 1.28	0.147 82.2 17.61 ± 1.17 ± 1.23
0.16–0.20	0.181 67.4 22.41 ± 1.15 ± 1.12	0.179 82.1 17.64 ± 0.98 ± 0.92
0.20–0.24	0.220 67.2 25.84 ± 1.21 ± 1.04	0.221 82.2 15.72 ± 0.92 ± 0.61
0.24–0.30	0.269 66.8 18.14 ± 0.83 ± 0.59	0.266 82.4 12.29 ± 0.69 ± 0.39
0.30–0.36	0.329 66.8 13.63 ± 0.70 ± 0.41	0.327 82.3 9.85 ± 0.63 ± 0.34
0.36–0.42	0.389 67.1 11.48 ± 0.65 ± 0.45	0.389 82.1 5.41 ± 0.44 ± 0.24
0.42–0.50	0.456 66.9 7.64 ± 0.44 ± 0.34	0.460 82.0 3.58 ± 0.30 ± 0.22
0.50–0.60	0.544 66.4 6.23 ± 0.38 ± 0.38	0.548 81.5 2.26 ± 0.21 ± 0.18
0.60–0.72	0.654 66.4 2.57 ± 0.20 ± 0.22	0.657 81.3 1.06 ± 0.13 ± 0.11
0.72–0.90	0.789 66.8 1.05 ± 0.11 ± 0.14	0.787 81.0 0.32 ± 0.06 ± 0.05
0.90–1.25	1.008 64.8 0.16 ± 0.02 ± 0.03	1.052 78.8 0.05 ± 0.02 ± 0.02
Table A.29 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146	96.9	14.04 ± 0.99 ± 0.96	0.144	114.7	12.91 ± 0.87 ± 0.85
0.16–0.20	0.179	97.0	15.15 ± 0.88 ± 0.80	0.180	113.8	10.22 ± 0.62 ± 0.56
0.20–0.24	0.219	97.2	10.26 ± 0.69 ± 0.41	0.221	112.7	7.81 ± 0.58 ± 0.36
0.24–0.30	0.269	96.7	8.02 ± 0.55 ± 0.28	0.270	113.8	5.14 ± 0.38 ± 0.25
0.30–0.36	0.327	97.4	4.92 ± 0.39 ± 0.24	0.329	113.7	2.55 ± 0.26 ± 0.17
0.36–0.42	0.387	96.8	3.39 ± 0.34 ± 0.22	0.385	111.7	1.55 ± 0.20 ± 0.15
0.42–0.50	0.458	96.4	2.08 ± 0.24 ± 0.18	0.455	113.3	0.72 ± 0.11 ± 0.08
0.50–0.60	0.545	97.0	1.09 ± 0.15 ± 0.13	0.539	111.1	0.26 ± 0.06 ± 0.04
0.60–0.70	0.646	96.2	0.25 ± 0.06 ± 0.04	0.657	111.5	0.08 ± 0.03 ± 0.02
0.72–0.90	0.808	94.3	0.10 ± 0.03 ± 0.02			

Table A.30 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $p + \text{Be} \rightarrow \pi^- + X$ interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	24.7	58.26 ± 3.00 ± 4.14	0.116	34.8	41.24 ± 2.36 ± 3.18
0.13–0.16	0.146	24.6	73.61 ± 3.09 ± 4.36	0.146	34.8	48.14 ± 2.37 ± 2.87
0.16–0.20	0.180	24.8	84.86 ± 2.76 ± 4.12	0.181	34.7	58.68 ± 2.32 ± 2.89
0.20–0.24	0.221	24.8	81.72 ± 2.66 ± 3.33	0.220	34.8	59.64 ± 2.32 ± 2.46
0.24–0.30	0.270	24.8	80.92 ± 2.18 ± 2.65	0.270	34.8	54.98 ± 1.79 ± 1.83
0.30–0.36	0.330	24.7	72.41 ± 2.10 ± 2.01	0.330	34.8	46.11 ± 1.61 ± 1.30
0.36–0.42	0.389	24.7	53.33 ± 1.74 ± 1.52	0.391	34.9	39.69 ± 1.56 ± 1.14
0.42–0.50	0.458	24.6	38.90 ± 1.28 ± 1.39	0.460	34.8	25.49 ± 1.00 ± 0.90
0.50–0.60	0.550	24.6	27.89 ± 1.00 ± 1.41	0.550	34.7	17.13 ± 0.75 ± 0.84
0.60–0.70	0.656	24.7	14.96 ± 0.64 ± 1.07	0.661	34.6	9.58 ± 0.50 ± 0.66
0.72–0.90	0.808	35.1	4.44 ± 0.28 ± 0.44			

p_T	$40 < \theta < 50$	$50 < \theta < 60$					
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	
0.10–0.13	0.117	44.8	29.37 ± 2.10 ± 2.53		0.146	54.8	27.80 ± 1.76 ± 1.97
0.13–0.16	0.145	44.9	34.86 ± 2.07 ± 2.21	0.146	54.8	27.80 ± 1.76 ± 1.97	
0.16–0.20	0.180	44.8	38.95 ± 1.87 ± 1.95	0.181	54.6	29.48 ± 1.56 ± 1.54	
0.20–0.24	0.220	44.7	38.21 ± 1.77 ± 1.61	0.221	54.7	31.13 ± 1.65 ± 1.30	
0.24–0.30	0.270	44.6	35.67 ± 1.42 ± 1.20	0.269	54.7	28.04 ± 1.30 ± 0.93	
0.30–0.36	0.329	44.6	29.03 ± 1.26 ± 0.84	0.330	54.5	22.78 ± 1.09 ± 0.73	
0.36–0.42	0.389	44.8	24.70 ± 1.19 ± 0.77	0.388	54.9	17.83 ± 0.93 ± 0.60	
0.42–0.50	0.458	44.8	18.20 ± 0.85 ± 0.69	0.459	54.8	10.94 ± 0.64 ± 0.44	
0.50–0.60	0.547	44.6	12.03 ± 0.61 ± 0.64	0.544	54.8	8.73 ± 0.54 ± 0.52	
0.60–0.72	0.655	44.7	6.42 ± 0.39 ± 0.48	0.652	54.6	4.39 ± 0.35 ± 0.35	
0.72–0.90	0.791	44.6	3.22 ± 0.26 ± 0.34	0.791	54.7	1.51 ± 0.14 ± 0.17	
0.90–1.25			1.028	54.9	0.44 ± 0.06 ± 0.08		
Table A.30 (Continued)

p_T	$60 < \theta < 75$		$75 < \theta < 90$											
	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.145	67.2	22.57	±	1.34	±	1.67	0.146	81.7	16.54	±	1.11	±	1.23
0.16–0.20	0.180	67.0	21.41	±	1.03	±	1.11	0.180	82.5	16.80	±	0.89	±	0.95
0.20–0.24	0.220	67.3	21.47	±	1.05	±	0.83	0.220	82.0	17.27	±	0.98	±	0.80
0.24–0.30	0.269	66.9	19.54	±	0.87	±	0.61	0.268	82.1	12.08	±	0.65	±	0.38
0.30–0.36	0.329	66.9	12.82	±	0.66	±	0.39	0.329	82.0	7.94	±	0.50	±	0.29
0.36–0.42	0.387	66.9	10.25	±	0.56	±	0.39	0.389	81.6	6.04	±	0.46	±	0.30
0.42–0.50	0.457	66.9	7.75	±	0.45	±	0.39	0.457	81.6	4.24	±	0.34	±	0.29
0.50–0.60	0.546	66.8	5.93	±	0.37	±	0.39	0.543	82.0	2.64	±	0.23	±	0.22
0.60–0.72	0.651	67.0	2.23	±	0.17	±	0.20	0.651	82.8	0.76	±	0.11	±	0.09
0.72–0.90	0.798	66.6	0.84	±	0.09	±	0.11	0.788	82.4	0.32	±	0.06	±	0.05
0.90–1.25	1.025	66.3	0.18	±	0.03	±	0.04	1.018	80.3	0.05	±	0.02	±	0.02

p_T	$90 < \theta < 105$		$105 < \theta < 125$											
	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	(p_T)	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$								
0.13–0.16	0.146	97.6	12.82	±	0.90	±	1.01	0.146	114.7	11.03	±	0.68	±	0.85
0.16–0.20	0.180	96.8	13.07	±	0.75	±	0.78	0.180	114.2	8.30	±	0.49	±	0.46
0.20–0.24	0.219	97.1	11.84	±	0.76	±	0.52	0.219	113.7	6.30	±	0.45	±	0.34
0.24–0.30	0.268	97.0	6.88	±	0.45	±	0.31	0.267	113.6	4.91	±	0.36	±	0.28
0.30–0.36	0.330	97.1	4.71	±	0.40	±	0.23	0.327	113.8	2.65	±	0.24	±	0.20
0.36–0.42	0.386	96.6	3.28	±	0.33	±	0.23	0.391	112.7	1.72	±	0.22	±	0.17
0.42–0.50	0.457	96.9	2.06	±	0.22	±	0.19	0.452	113.2	0.95	±	0.15	±	0.12
0.50–0.60	0.548	96.3	0.96	±	0.14	±	0.12	0.537	113.0	0.19	±	0.05	±	0.03
0.60–0.72	0.645	96.4	0.26	±	0.06	±	0.04	0.629	114.1	0.08	±	0.04	±	0.02
0.72–0.90	0.786	96.0	0.11	±	0.03	±	0.02							
Table A.31 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Be} \rightarrow p + X$ interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$		$30 < \theta < 40$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	
0.20–0.24	0.218	24.2	16.22	\pm	9.16	\pm	1.13
0.24–0.30	0.273	25.0	49.57	\pm	14.27	\pm	3.06
0.30–0.36	0.336	26.1	20.22	\pm	9.42	\pm	1.16
0.36–0.42	0.379	24.9	13.87	\pm	7.05	\pm	0.77
0.42–0.50	0.461	22.3	13.35	\pm	5.87	\pm	0.66
0.50–0.60	0.539	25.8	11.22	\pm	5.00	\pm	0.55
0.60–0.72	0.648	24.9	19.92	\pm	5.83	\pm	1.08
0.72–0.90							
0.30–0.36	0.335	43.6	22.96	\pm	9.40	\pm	1.24
0.36–0.42	0.385	44.4	31.96	\pm	11.47	\pm	1.60
0.42–0.50	0.452	45.4	19.59	\pm	7.77	\pm	1.01
0.50–0.60	0.554	44.5	17.12	\pm	6.80	\pm	0.85
0.60–0.72	0.634	42.2	8.95	\pm	4.29	\pm	0.52
0.72–0.90	0.825	42.8	7.54	\pm	3.24	\pm	0.53
0.90–1.25	1.063	44.2	2.79	\pm	1.41	\pm	0.29
0.36–0.42	0.396	70.2	21.16	\pm	7.49	\pm	1.08
0.42–0.50	0.456	65.3	15.77	\pm	5.34	\pm	0.84
0.50–0.60	0.540	66.1	15.79	\pm	5.21	\pm	0.85
0.60–0.72	0.659	70.0	9.15	\pm	3.68	\pm	0.63
0.72–0.90	0.798	69.4	4.09	\pm	2.09	\pm	0.39
0.90–1.25	1.076	65.8	1.63	\pm	1.00	\pm	0.24
0.36–0.42	0.388	114.7	5.72	\pm	3.31	\pm	0.34
0.42–0.50	0.458	100.2	8.10	\pm	4.07	\pm	0.57
0.50–0.60	0.518	98.8	8.15	\pm	3.74	\pm	0.67
0.60–0.72	0.649	99.3	2.61	\pm	2.07	\pm	0.27
Table A.32 Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^+ + \text{Be} \to \pi^+ + \text{X}$ interactions with $+15.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$					
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	
0.13–0.16	0.141	33.9	42.30	±	19.30	±	3.17
0.16–0.20	0.180	35.1	33.27	±	15.08	±	2.11
0.24–0.30	0.264	24.6	44.67	±	13.69	±	2.14
0.30–0.36	0.326	33.71	±	8.82	±	2.12	
0.36–0.42	0.378	24.5	69.69	±	17.99	±	3.31
0.42–0.50	0.461	24.6	48.52	±	12.79	±	2.45
0.50–0.60	0.555	23.4	33.71	±	8.82	±	2.12
0.60–0.72	0.656	25.5	24.11	±	6.89	±	2.08
0.72–0.90	0.809	32.7	4.61	±	2.24	±	0.57
0.10–0.13	0.120	47.2	25.06	±	17.75	±	2.46
0.13–0.16	0.150	54.4	24.24	±	14.06	±	2.18
0.16–0.20	0.185	44.4	26.34	±	13.40	±	1.79
0.20–0.24	0.223	45.8	38.82	±	15.92	±	2.42
0.24–0.30	0.275	44.3	36.38	±	12.86	±	1.95
0.30–0.36	0.332	45.0	37.02	±	12.44	±	1.93
0.36–0.42	0.397	45.5	21.52	±	9.61	±	1.17
0.42–0.50	0.458	43.4	15.84	±	7.07	±	0.91
0.50–0.60	0.545	43.7	7.56	±	4.36	±	0.50
0.60–0.72	0.628	45.0	6.45	±	3.68	±	0.55
0.72–0.90	0.777	43.9	6.20	±	2.86	±	0.73
0.13–0.16	0.148	66.1	28.94	±	13.00	±	2.70
0.16–0.20	0.182	66.1	16.43	±	8.31	±	1.18
0.20–0.24	0.236	63.6	8.08	±	5.72	±	0.52
0.24–0.30	0.263	67.1	13.13	±	6.03	±	0.73
0.30–0.36	0.332	67.4	17.84	±	6.92	±	1.01
0.42–0.50	0.449	71.0	5.54	±	3.20	±	0.40
0.50–0.60	0.807	63.9	0.15	±	0.11	±	0.02
0.13–0.16	0.141	98.0	28.25	±	12.65	±	3.10
0.16–0.20	0.184	113.0	19.87	±	7.51	±	1.78
0.20–0.24	0.215	95.3	7.34	±	5.19	±	0.70
0.24–0.30	0.274	100.2	5.74	±	4.06	±	0.41
0.30–0.36	0.321	91.0	7.52	±	4.34	±	0.69
0.36–0.42	0.405	94.9	5.56	±	3.93	±	0.57
0.42–0.50	0.469	94.2	4.32	±	3.06	±	0.53
0.50–0.60	0.539	112.7	2.46	±	1.74	±	0.52
Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-’s in $\pi^+ + \text{Be} \to \pi^- + \text{X}$ interactions with $+15.0 \text{ GeV/c}$ beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$		
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$		
0.10–0.13	0.156	24.6	21.23	± 14.83	± 1.52	0.122	31.7	16.01	± 11.79	± 1.53
0.13–0.16	0.156	24.6	21.23	± 14.83	± 1.52	0.122	31.7	16.01	± 11.79	± 1.53
0.16–0.20	0.184	33.9	42.39	± 17.35	± 2.84	0.184	33.9	42.39	± 17.35	± 2.84
0.20–0.24	0.221	24.2	43.46	± 16.56	± 2.41	0.217	35.7	13.82	± 9.80	± 0.84
0.24–0.30	0.270	24.9	62.09	± 16.68	± 3.00	0.263	35.9	27.09	± 11.10	± 1.40
0.30–0.36	0.329	23.9	58.34	± 16.19	± 2.72	0.335	33.4	24.25	± 9.91	± 1.22
0.36–0.42	0.388	23.3	32.11	± 11.40	± 1.55	0.391	33.3	39.28	± 13.14	± 2.15
0.42–0.50	0.463	24.5	28.44	± 9.49	± 1.52	0.457	34.6	23.96	± 8.47	± 1.45
0.50–0.60	0.533	24.9	13.74	± 6.15	± 0.90	0.542	35.4	25.50	± 8.07	± 1.84
0.60–0.72	0.673	23.9	6.00	± 3.47	± 0.52	0.656	33.4	5.93	± 3.43	± 0.55
Table A.34 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- +$ Be $\rightarrow p + X$ interactions with -15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$		
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	
0.20–0.24	0.219	24.9	25.27 ± 1.11 ± 1.86	0.267	34.8	24.14 ± 0.87 ± 1.47	0.778	35.0	6.81 ± 0.26 ± 0.47	
0.24–0.30	0.268	24.7	27.07 ± 0.93 ± 1.66	0.327	25.8	29.05 ± 0.90 ± 1.51	0.385	25.3	16.63 ± 0.56 ± 0.76	
0.30–0.36	0.327	24.8	25.87 ± 0.90 ± 1.51	0.451	24.7	21.24 ± 0.69 ± 1.03	0.538	25.0	17.99 ± 0.56 ± 0.86	
0.36–0.42	0.385	25.0	23.79 ± 0.85 ± 1.25	0.42–0.50	0.545	24.9	19.11 ± 0.49 ± 0.60	0.622	24.9	9.01 ± 0.38 ± 0.52
0.42–0.50	0.451	24.7	21.24 ± 0.69 ± 1.03	0.50–0.60	0.538	25.0	17.99 ± 0.56 ± 0.86	0.622	24.9	9.01 ± 0.38 ± 0.52
0.50–0.60	0.538	25.0	17.99 ± 0.56 ± 0.86	0.60–0.72	0.642	24.9	12.92 ± 0.43 ± 0.70	0.642	24.9	12.92 ± 0.43 ± 0.70
0.60–0.72	0.642	24.9	12.92 ± 0.43 ± 0.70	0.72–0.90	0.799	45.0	5.25 ± 0.25 ± 0.37	0.797	55.0	4.33 ± 0.23 ± 0.34
0.72–0.90	0.799	45.0	5.25 ± 0.25 ± 0.37	0.90–1.25	1.029	45.3	1.61 ± 0.10 ± 0.17	1.029	54.8	1.17 ± 0.08 ± 0.14
0.90–1.25	1.029	45.3	1.61 ± 0.10 ± 0.17	0.30–0.36	0.331	45.1	23.42 ± 0.85 ± 1.19	0.389	54.9	19.23 ± 0.76 ± 1.04
0.36–0.42	0.389	45.0	20.03 ± 0.79 ± 1.06	0.42–0.50	0.458	44.9	17.40 ± 0.64 ± 0.85	0.458	54.9	15.32 ± 0.59 ± 0.81
0.42–0.50	0.458	44.9	17.40 ± 0.64 ± 0.85	0.50–0.60	0.545	44.9	11.91 ± 0.49 ± 0.60	0.548	54.9	12.11 ± 0.49 ± 0.65
0.50–0.60	0.545	44.9	11.91 ± 0.49 ± 0.60	0.60–0.72	0.653	44.8	9.01 ± 0.38 ± 0.52	0.654	55.0	7.68 ± 0.37 ± 0.48
0.60–0.72	0.653	44.8	9.01 ± 0.38 ± 0.52	0.72–0.90	0.799	45.0	5.25 ± 0.25 ± 0.37	0.797	55.0	4.33 ± 0.23 ± 0.34
0.72–0.90	0.799	45.0	5.25 ± 0.25 ± 0.37	0.90–1.25	1.029	45.3	1.61 ± 0.10 ± 0.17	1.029	54.8	1.17 ± 0.08 ± 0.14
0.90–1.25	1.029	45.3	1.61 ± 0.10 ± 0.17	0.30–0.36	0.331	45.1	23.42 ± 0.85 ± 1.19	0.389	54.9	19.23 ± 0.76 ± 1.04
0.36–0.42	0.389	45.0	20.03 ± 0.79 ± 1.06	0.42–0.50	0.458	44.9	17.40 ± 0.64 ± 0.85	0.458	54.9	15.32 ± 0.59 ± 0.81
0.42–0.50	0.458	44.9	17.40 ± 0.64 ± 0.85	0.50–0.60	0.545	44.9	11.91 ± 0.49 ± 0.60	0.548	54.9	12.11 ± 0.49 ± 0.65
0.50–0.60	0.545	44.9	11.91 ± 0.49 ± 0.60	0.60–0.72	0.653	44.8	9.01 ± 0.38 ± 0.52	0.654	55.0	7.68 ± 0.37 ± 0.48
0.60–0.72	0.653	44.8	9.01 ± 0.38 ± 0.52	0.72–0.90	0.797	46.7	2.96 ± 0.15 ± 0.29	0.790	81.9	1.48 ± 0.11 ± 0.18
0.72–0.90	0.797	46.7	2.96 ± 0.15 ± 0.29	0.90–1.25	1.029	66.6	0.86 ± 0.06 ± 0.13	1.029	81.0	0.38 ± 0.04 ± 0.07
0.90–1.25	1.029	66.6	0.86 ± 0.06 ± 0.13							
Table A.35 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- + \text{Be} \rightarrow \pi^+ + \text{X}$ interactions with -15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115 24.6	45.98 ± 2.08 ± 3.81	0.115 35.0	30.15 ± 1.63 ± 2.64		
0.13–0.16	0.145 24.7	55.61 ± 2.07 ± 3.90	0.145 35.0	39.64 ± 1.77 ± 2.80		
0.16–0.20	0.180 24.7	63.93 ± 1.87 ± 3.75	0.179 34.8	42.87 ± 1.54 ± 2.59		
0.20–0.24	0.219 24.6	75.96 ± 2.01 ± 4.00	0.219 34.6	43.58 ± 1.50 ± 2.36		
0.24–0.30	0.268 24.5	64.35 ± 1.48 ± 3.00	0.266 34.5	42.01 ± 1.19 ± 2.00		
0.30–0.36	0.326 24.6	56.74 ± 1.38 ± 2.47	0.325 34.7	36.88 ± 1.13 ± 1.64		
0.36–0.42	0.384 24.6	46.39 ± 1.24 ± 2.01	0.385 34.4	27.42 ± 0.94 ± 1.23		
0.42–0.50	0.451 24.6	34.24 ± 0.91 ± 1.67	0.452 34.7	20.07 ± 0.69 ± 0.97		
0.50–0.60	0.539 24.6	24.03 ± 0.66 ± 1.47	0.538 34.7	15.30 ± 0.54 ± 0.91		
0.60–0.72	0.643 24.5	12.77 ± 0.42 ± 1.09	0.642 34.5	7.79 ± 0.32 ± 0.64		
0.72–0.90			0.781 34.6	3.80 ± 0.17 ± 0.45		

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116 44.7	21.46 ± 1.42 ± 2.01	0.145 55.1	18.40 ± 1.14 ± 1.59		
0.13–0.16	0.146 44.8	27.03 ± 1.44 ± 2.01	0.179 54.8	21.02 ± 1.04 ± 1.36		
0.16–0.20	0.181 45.0	26.95 ± 1.21 ± 1.69	0.220 54.9	19.66 ± 0.99 ± 1.17		
0.20–0.24	0.219 44.6	28.62 ± 1.23 ± 1.61	0.271 54.6	18.09 ± 0.78 ± 0.93		
0.24–0.30	0.269 44.7	26.03 ± 0.93 ± 1.30	0.328 54.6	15.71 ± 0.71 ± 0.77		
0.30–0.36	0.330 44.8	22.51 ± 0.87 ± 1.05	0.390 54.6	12.43 ± 0.63 ± 0.68		
0.36–0.42	0.389 44.7	18.31 ± 0.77 ± 0.88	0.457 54.8	8.54 ± 0.44 ± 0.52		
0.42–0.50	0.459 44.7	14.34 ± 0.59 ± 0.73	0.546 54.5	5.77 ± 0.32 ± 0.43		
0.50–0.60	0.547 44.7	8.60 ± 0.39 ± 0.55	0.546 54.4	5.49 ± 0.37 ± 0.22		
0.60–0.72	0.654 44.7	5.52 ± 0.29 ± 0.44	0.654 54.4	3.37 ± 0.22 ± 0.30		
0.72–0.90	0.792 44.6	2.17 ± 0.14 ± 0.25	0.797 54.7	1.37 ± 0.11 ± 0.17		
0.90–1.25			1.020 55.0	0.24 ± 0.03 ± 0.05		

p_T	$60 < \theta < 75$	$75 < \theta < 90$				
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.146 67.0	13.85 ± 0.81 ± 1.11	0.146 82.4	10.71 ± 0.70 ± 0.95		
0.16–0.20	0.180 67.1	14.41 ± 0.67 ± 0.98	0.180 82.3	11.12 ± 0.59 ± 0.88		
0.20–0.24	0.220 67.2	15.85 ± 0.73 ± 0.90	0.219 82.1	11.09 ± 0.60 ± 0.67		
0.24–0.30	0.268 67.0	12.71 ± 0.53 ± 0.63	0.268 82.2	7.35 ± 0.39 ± 0.42		
0.30–0.36	0.328 66.9	9.96 ± 0.46 ± 0.51	0.330 81.4	5.88 ± 0.34 ± 0.39		
0.36–0.42	0.389 67.0	7.93 ± 0.41 ± 0.45	0.389 82.0	3.82 ± 0.27 ± 0.30		
0.42–0.50	0.460 67.2	5.04 ± 0.28 ± 0.36	0.457 82.0	2.84 ± 0.20 ± 0.29		
0.50–0.60	0.544 66.3	3.80 ± 0.22 ± 0.31	0.546 81.6	1.67 ± 0.14 ± 0.17		
0.60–0.72	0.654 66.4	1.72 ± 0.12 ± 0.21	0.652 81.9	0.81 ± 0.08 ± 0.12		
0.72–0.90	0.791 65.9	0.66 ± 0.06 ± 0.10	0.813 81.1	0.17 ± 0.03 ± 0.04		
0.90–1.25	1.030 67.1	0.11 ± 0.02 ± 0.03	1.016 81.0	0.04 ± 0.01 ± 0.02		
Table A.35 (Continued)

p_T	$90 < \theta < 105$	$105 < \theta < 125$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.13–0.16	0.145	97.7	7.88 ± 0.59 ± 0.79	0.145	114.0	7.20 ± 0.46 ± 0.75
0.16–0.20	0.181	96.9	8.14 ± 0.49 ± 0.61	0.179	114.3	6.60 ± 0.36 ± 0.58
0.20–0.24	0.219	97.3	7.33 ± 0.46 ± 0.57	0.217	114.6	3.84 ± 0.29 ± 0.33
0.24–0.30	0.268	97.4	5.37 ± 0.33 ± 0.33	0.268	113.2	3.15 ± 0.22 ± 0.25
0.30–0.36	0.328	97.2	3.68 ± 0.28 ± 0.26	0.327	112.5	1.85 ± 0.16 ± 0.19
0.36–0.42	0.387	96.5	2.27 ± 0.20 ± 0.24	0.386	111.8	1.03 ± 0.12 ± 0.14
0.42–0.50	0.458	95.7	1.66 ± 0.16 ± 0.19	0.460	112.3	0.46 ± 0.07 ± 0.09
0.50–0.60	0.549	95.4	0.61 ± 0.08 ± 0.10	0.545	113.3	0.21 ± 0.04 ± 0.05
0.60–0.72	0.647	96.9	0.26 ± 0.05 ± 0.05	0.646	110.9	0.07 ± 0.02 ± 0.02
0.72–0.90	0.763	95.3	0.08 ± 0.02 ± 0.04			

Table A.36 Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-’s in $\pi^- + \text{Be} \rightarrow \pi^- + \text{X}$ interactions with -15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees

p_T	$20 < \theta < 30$	$30 < \theta < 40$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.115	24.6	57.96 ± 2.29 ± 4.67	0.116	34.8	36.13 ± 1.78 ± 3.15
0.13–0.16	0.146	24.7	74.78 ± 2.42 ± 5.04	0.146	34.6	44.08 ± 1.83 ± 3.12
0.16–0.20	0.182	24.5	83.43 ± 2.14 ± 4.84	0.181	34.6	49.76 ± 1.63 ± 2.99
0.20–0.24	0.221	24.6	90.28 ± 2.19 ± 4.63	0.222	34.7	55.36 ± 1.69 ± 2.95
0.24–0.30	0.272	24.5	84.12 ± 1.71 ± 3.75	0.271	34.6	52.07 ± 1.34 ± 2.40
0.30–0.36	0.332	24.6	74.96 ± 1.62 ± 3.10	0.333	34.7	42.92 ± 1.21 ± 1.85
0.36–0.42	0.394	24.6	62.60 ± 1.48 ± 2.64	0.394	34.6	37.25 ± 1.13 ± 1.63
0.42–0.50	0.464	24.6	46.78 ± 1.10 ± 2.21	0.464	34.6	28.82 ± 0.86 ± 1.39
0.50–0.60	0.555	24.6	30.44 ± 0.80 ± 1.80	0.555	34.8	21.50 ± 0.67 ± 1.30
0.60–0.72	0.667	24.6	19.92 ± 0.59 ± 1.62	0.667	34.6	11.61 ± 0.44 ± 0.92
0.72–0.90	0.763	24.6	1.02 ± 0.02 ± 0.04			

p_T	$40 < \theta < 50$	$50 < \theta < 60$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.10–0.13	0.116	44.8	28.52 ± 1.55 ± 2.71	0.145	54.8	24.85 ± 1.34 ± 1.93
0.13–0.16	0.146	44.8	31.34 ± 1.50 ± 2.34	0.145	54.8	24.85 ± 1.34 ± 1.93
0.16–0.20	0.179	44.7	35.76 ± 1.39 ± 2.21	0.181	54.8	27.65 ± 1.19 ± 1.77
0.20–0.24	0.220	44.8	39.50 ± 1.44 ± 2.20	0.220	54.7	29.04 ± 1.23 ± 1.63
0.24–0.30	0.270	44.7	32.91 ± 1.04 ± 1.57	0.271	54.7	22.29 ± 0.86 ± 1.14
0.30–0.36	0.328	44.6	30.34 ± 1.02 ± 1.36	0.330	54.8	20.09 ± 0.82 ± 0.95
0.36–0.42	0.388	44.8	22.96 ± 0.87 ± 1.07	0.389	54.6	15.70 ± 0.71 ± 0.78
0.42–0.50	0.460	44.5	17.64 ± 0.66 ± 0.99	0.458	54.6	13.51 ± 0.58 ± 0.75
0.50–0.60	0.546	44.7	13.49 ± 0.53 ± 0.88	0.544	54.7	8.32 ± 0.41 ± 0.57
0.60–0.72	0.654	44.5	7.21 ± 0.35 ± 0.60	0.649	54.6	4.74 ± 0.28 ± 0.42
0.72–0.90	0.795	44.7	3.79 ± 0.21 ± 0.43	0.789	54.7	1.90 ± 0.14 ± 0.23
0.90–1.25			1.015	54.3	0.39 ± 0.04 ± 0.08	
Table A.36 (Continued)

p_T	$60 < \theta < 75$	$75 < \theta < 90$		
	\(<p_T\rangle\) (<θ>)	$d^2\sigma/dp_d\Omega$	\(<p_T\rangle\) (<θ>)	$d^2\sigma/dp_d\Omega$
0.13–0.16	0.145 67.6 20.41 ± 0.97 ± 1.67	0.146 82.5 15.64 ± 0.82 ± 1.46		
0.16–0.20	0.181 67.2 21.23 ± 0.82 ± 1.37	0.181 82.3 16.90 ± 0.72 ± 1.22		
0.20–0.24	0.220 67.1 21.39 ± 0.85 ± 1.25	0.219 82.5 14.29 ± 0.67 ± 0.82		
0.24–0.30	0.268 66.8 16.96 ± 0.61 ± 0.80	0.267 82.0 11.35 ± 0.49 ± 0.57		
0.30–0.36	0.328 66.6 14.09 ± 0.56 ± 0.66	0.329 82.1 7.47 ± 0.40 ± 0.41		
0.36–0.42	0.389 66.8 10.59 ± 0.47 ± 0.63	0.390 81.7 6.32 ± 0.37 ± 0.41		
0.42–0.50	0.456 66.9 7.76 ± 0.35 ± 0.48	0.459 81.5 3.68 ± 0.24 ± 0.30		
0.50–0.60	0.549 66.9 5.45 ± 0.27 ± 0.41	0.540 82.2 2.53 ± 0.18 ± 0.24		
0.60–0.72	0.653 66.3 2.13 ± 0.14 ± 0.24	0.648 81.4 1.08 ± 0.10 ± 0.14		
0.72–0.90	0.795 67.0 0.87 ± 0.08 ± 0.12	0.787 80.0 0.40 ± 0.05 ± 0.07		
0.90–1.25	1.038 65.4 0.15 ± 0.02 ± 0.03	0.994 80.2 0.05 ± 0.02 ± 0.02		

p_T	90 < θ < 105	105 < θ < 125		
	\(<p_T\rangle\) (<θ>)	$d^2\sigma/dp_d\Omega$	\(<p_T\rangle\) (<θ>)	$d^2\sigma/dp_d\Omega$
0.13–0.16	0.146 97.0 13.15 ± 0.74 ± 1.20	0.144 114.4 10.34 ± 0.55 ± 0.95		
0.16–0.20	0.179 97.3 14.11 ± 0.63 ± 1.19	0.179 114.5 9.61 ± 0.45 ± 0.70		
0.20–0.24	0.219 96.5 10.65 ± 0.58 ± 0.70	0.217 113.6 7.21 ± 0.40 ± 0.52		
0.24–0.30	0.268 97.2 8.52 ± 0.43 ± 0.47	0.269 113.8 4.65 ± 0.27 ± 0.34		
0.30–0.36	0.330 96.4 5.10 ± 0.33 ± 0.34	0.329 113.6 2.88 ± 0.21 ± 0.25		
0.36–0.42	0.389 97.0 3.90 ± 0.28 ± 0.36	0.390 114.2 1.58 ± 0.15 ± 0.20		
0.42–0.50	0.460 96.5 2.41 ± 0.19 ± 0.28	0.454 112.7 1.00 ± 0.10 ± 0.15		
0.50–0.60	0.547 96.7 0.95 ± 0.11 ± 0.15	0.542 112.1 0.42 ± 0.06 ± 0.08		
0.60–0.72	0.657 96.8 0.46 ± 0.07 ± 0.09	0.631 115.2 0.15 ± 0.04 ± 0.04		
0.72–0.90	0.796 95.1 0.14 ± 0.03 ± 0.04			

References

1. A. Bolshakova et al., Eur. Phys. J. C 62, 293 (2009)
2. V. Ammosov et al., Nucl. Instrum. Methods Phys. Res. A 588, 294 (2008)
3. V. Ammosov et al., Nucl. Instrum. Methods Phys. Res. A 578, 119 (2007)
4. V. Ammosov et al., J. Instrum. 3, P01002 (2008)
5. V. Ammosov et al., Eur. Phys. J. C 54, 169 (2008)
6. M.G. Catanesi et al., Nucl. Instrum. Methods Phys. Res. A 571, 527 (2007)
7. M. Bogomilov et al., IEEE Trans. Nucl. Sci. 54, 342 (2007)
8. A. Artamonov et al., J. Instrum. 2, P10004 (2007)
9. M.G. Catanesi et al., J. Instrum. 3, P04007 (2008)
10. CERN-SPSC-2009-004 (SPSC-M-768)
11. http://cern.ch/Committees/SPSC/datesSPSCminutes.html (see, in particular, SPSC-89 on 5–6 November 2008, SPSC-84 on 4–5 December 2007, and SPSC-83 on 4–5 October 2007)
12. V. Ammosov et al., CERN-HARP-CDP-2008-001 (HARP Memo 08-101)
13. V. Ammosov et al., CERN-HARP-CDP-2008-002 (HARP Memo 08-102)
14. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)
15. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)
16. A. Bolshakova et al., Eur. Phys. J. C 56, 323 (2008)
17. A. Bolshakova et al., CERN-HARP-CDP-2009-002
18. T. Abbott et al., Phys. Rev. D 45, 3906 (1992)
19. I. Chemakin et al., Phys. Rev. C 65, 024904 (2002)
20. M.G. Catanesi et al., Phys. Rev. C 77, 055207 (2008)
21. V. Ammosov et al., CERN-HARP-CDP-2006-003 (HARP Memo 06-101)
22. V. Ammosov et al., CERN-HARP-CDP-2006-007 (HARP Memo 06-105)
23. V. Ammosov et al., CERN-HARP-CDP-2007-001 (HARP Memo 07-101)