Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of CCL20 and antimicrobial peptides

Hsin-Ju Li¹, Nan-Lin Wu²,³,⁴, Chi-Ming Pu⁵, Chien-Yu Hsiao⁶,⁷, Der-Chen Chang⁸ & Chi-Feng Hung¹,⁹,¹⁰,¹¹*

Psoriasis is a common non-contagious chronic inflammatory skin lesion, with frequent recurrence. It mainly occurs due to aberrant regulation of the immune system leading to abnormal proliferation of skin cells. However, the pathogenic mechanisms of psoriasis are not fully understood. Although most of the current therapies are mostly efficient, the side effects can result in therapy stop, which makes the effectiveness of treatment strategies limited. Therefore, it is urgent and necessary to develop novel therapeutics. Here, we investigated the efficacy of chrysin, a plant flavonoid, which we previously reported to possess strong antioxidant and anti-inflammatory effects, against psoriasis-like inflammation. Our results revealed that chrysin significantly attenuated imiquimod-induced psoriasis-like skin lesions in mice, and improved imiquimod-induced disruption of skin barrier. Moreover, the TNF-α, IL-17A, and IL-22-induced phosphorylation of MAPK and JAK-STAT pathways, and activation of the NF-κB pathway were also attenuated by chrysin pretreatment of epidermal keratinocytes. Most importantly, chrysin reduced TNF-α-, IL-17A-, and IL-22-induced CCL20 and antimicrobial peptide release from epidermal keratinocytes. Thus, our findings indicate that chrysin may have therapeutic potential against inflammatory skin diseases. Our study provides a basis for further investigating chrysin as a novel pharmacologic agent and contributes to the academic advancement in the field of Chinese herbal medicine.

Psoriasis is a frequently recurring non-contagious chronic skin disease, with obvious manifestations and easy clinical diagnosis. The characteristics of this inflammatory disease involve aberrant keratinocyte proliferation, dermal angiogenesis, dendritic cell activation, release of pro-inflammatory cytokines, and recruitment of T lymphocytes, neutrophils, monocytes, and macrophages to skin. Typical cutaneous manifestations of erythema and scaling represent vascular and epidermal violation, respectively, and some patients even exhibit psoriasis arthropitis, resulting in swelling and inflammation of the joints, and nail lesions, caused by nail deformation. The pathogenesis of psoriasis is not yet clear; however, increasing evidence shows that psoriasis is an immune-mediated disease.
absorption and no skin irritation33. The advantage of chrysin is not only its antioxidant and anti-inflammatory
cells. Furthermore, chrysin has photoprotective effects against both UV A- and UVB-induced damage and oxidative stress in HaCaT
activities. In addition to the effects of immunoregulation, our previous studies have also demonstrated that chry-
by IMQ treatment was improved by chrysin pretreatment. The histology of chrysin-pretreated skin exhibited significant improvement with respect to inflammatory symptoms. The total scoring of Psoriasis Area and Severity Index (PASI) showed that chrysin-pretreated groups showed significantly reduced PASI score compared with that of the IMQ group (Fig. 2D).

After IMQ stimulation, trans-epidermal water loss and values of physiological parameters, such as erythema, blood flow, and ear thickness, increased significantly. In addition, the surface skin hydration (corneometer) was greatly reduced. These results showed that IMQ induced an inflammatory state in the skin. The pretreatment by topical application of chrysin significantly reduced the trans-epidermal water loss, erythema, blood flow, and
ear thickness, and increased the content of surface skin hydration. These findings indicated that chrysin plays an inhibitory role in IMQ-induced inflammation (Fig. 3).

Chrysin inhibits signalling induced by TNF-α, IL-17A, or IL-22 in normal human epidermal keratinocytes (NHEKs). We first pretreated human primary keratinocytes with different concentrations of chrysin (0, 1, 3, 10, 30, and 50 μM), followed by MTT assay, crystal violet assay, and trypan blue assay. MTT assay revealed that pretreatment with different concentrations of chrysin did not cause cytotoxicity at concentrations between 0–30 μM; however, at 50 μM, chrysin began to cause toxicity in cells and affected cell viability (Fig. 4A). The results of crystal violet assay and trypan blue assay were consistent with that of MTT assay (Fig. 4B,C). As

Figure 3. Chrysin improves physiology of mouse skin surface treated with IMQ. The effects of pre-treatment of chrysin on (A) ear thickness, and the physiological parameters such as (B) trans-epidermal water loss (TEWL), (C) erythema, (D) blood flow, and (E) skin hydration values of the skin surface of IMQ-treated mice were evaluated. The value of ear thickness and physiological parameters, including TEWL, erythema, and blood flow, were significantly lower compared to the IMQ only group (A–D). Skin hydration level was determined by Corneometer probe, and it increased after chrysin treatment following IMQ stimulation (E). Data represent the mean ± SEM from at least six independent experiments.

Figure 4. Chrysin exhibits no cytotoxicity in normal human epidermal keratinocytes (NHEKs). The (A) MTT assay, (B) crystal violet assay, and (C) trypan-blue exclusion method are the most common methods used to determine cell viability. We treated NHEKs with different concentrations of chrysin (1–50 μM), and the results showed that chrysin exhibited no cytotoxicity in the concentration range of 1–30 μM. However, at a concentration of 50 μM, the cell viability was decreased, it was shown that chrysin has cytotoxicity at this concentration. Therefore, in subsequent experiments, the concentrations of chrysin 3, 10, and 30 μM were selected. Results are expressed as a percentage of control value and are represented by mean ± SEM from at least three independent experiments. *p < 0.05 was considered to be statistically significant.
Chrysin was not cytotoxic to NHEK at concentrations between 0–30μM, we chose three concentrations of 3, 10, and 30μM for further experiments.

TNF-α-stimulated NHEK cells showed a significant increase in levels of the mitogen-activated protein kinase (MAPK) pathway components, including p38 kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), when compared with those in the controls. Pretreatment with chrysin at various concentrations (3, 10, and 30μM) significantly attenuated the TNF-α-stimulated increase in phosphorylation of p38 kinase, ERK, and JNK proteins (Fig. 5A,B). We also investigated the effect of chrysin on IL-17A-induced MAPK pathway activation using western blot analysis. The results showed that the phosphorylation of p38 kinase, ERK, and JNK activated only after IL-17A treatment. Pretreatment with chrysin at the working concentrations (3, 10, and 30μM) inhibited the IL-17A-induced MAPK phosphorylation in a dose-dependent manner in NHEK.

Figure 5. Chrysin inhibits phosphorylation of MAPK and JAK/STAT pathway components induced by TNF-α, IL-17A, and IL-22 in normal human epidermal keratinocytes (NHEK). NHEK were pretreated with different doses of chrysin, and stimulated with either (A) TNF-α, (C) IL-17A, or (E) IL-22, and the quantification data are shown in the right panel (B,D,F). The total protein was extracted from the cells and associated protein expression was determined via western blotting. The results are presented as a percentage of the control. *p < 0.05 was considered to be statistically significant.
(Fig. 5C,D). In addition, we examined the effects of chrysin on IL-22-induced phosphorylation of MAPK protein in NHEK using western blot analysis. The results showed that IL-22 treatment upregulated the phosphorylation of p38 kinase, ERK, and JNK, and chrysin pretreatment downregulated the activation of MAPK proteins following IL-22 stimulation (Fig. 5E,F).

Previous studies showed that the JAK-STAT pathway is a classical signal transduction pathway and is triggered by IL-22 stimulation. Therefore, we investigated the effects of chrysin on the activation of these related signalling molecules. After chrysin treatment, western blot was performed to identify the protein expression of phospho-JAK2 and STAT3. As shown in Fig. 5E,F, p-JAK2 and p-STAT3 levels were decreased by chrysin pretreatment compared with the IL-22 only group. These results suggested that TNF-α, IL-17A, and IL-22 indeed elicit psoriatic inflammation, and chrysin can significantly inhibit the production of these proinflammatory mediators.

Chrysin suppressed TNF-α- or IL-17A-induced NF-κB pathway activation in NHEKs. NF-κB pathway is the key regulatory pathway during inflammation, and is considered to be a crucial mediator in the pathogenesis of psoriasis42. Therefore, we investigated the effects of chrysin on TNF-α- or IL-17A-mediated induction of α isoform of IκB (IκBα) in the NF-κB signalling pathway using western blot analysis. TNF-α- or IL-17A-stimulated NHEK cells showed a significant increase in IκBα protein levels when compared to the controls. In addition, pretreatment with chrysin downregulated the phosphorylation of IκBα protein. These results indicated that TNF-α and IL-17A treatments promote the NF-κB pathway, and this effect was reduced by chrysin pretreatment (Fig. 6A–D).

Chrysin downregulated the mRNA expression of CCL20 and AMPs in NHEKs induced by TNF-α, IL-17A, or IL-22 recombination proteins. In addition to providing a basic physical barrier, the skin is also an outpost of the immune response. These immune reactions are crucial responses to injury or infection, and can also regulate the skin symbiotic microbiota43. While the skin is infected with harmful pathogens (mostly microorganisms), keratinocytes are activated to secrete antimicrobial peptides and proteins (AMPs), cytokines, and chemokines to trigger an immune response. Chemokines, like CCL20, and AMPs, including cathelicidin, β-defensins, and S100 proteins, are speculated to intensify psoriasis lesions44, and excessive production of AMPs is an important characteristic of psoriasis lesions45,46. Previous studies have reported that TNFα, IL-17A, and IL-22 upregulate the expression of CCL20 and AMPs45,46. Therefore, in this study, we investigated whether chrysin can downregulate the expression of CCL20 and AMPs via TNFα, IL-17A, and IL-22 stimulation. Our results showed that the expression of CCL20, S100A7, S100A8, S100A9, hBD2, and LL-37 were significantly increased by TNFα, IL-17A, and IL-22 stimulation. In the group pretreated with chrysin, the expression of CCL20 and AMPs were significantly suppressed (Fig. 7A–C).

Discussion

This study showed that chrysin can ameliorate the inflammation in psoriasis, and the underlying mechanism involves the regulation of three signalling pathways, namely MAPK, JAK-STAT, and IKK/NF-κB pathways. This is consistent with the results of our previous study, wherein chrysin was found to protect skin cells against the photodamage caused by UVA and UVB via the regulation of MAPK pathway and inhibition of ROS production33. In this study, we explored several factors that contributed to psoriasis, such as TNF-α, IL-17A, and IL-22 and found that chrysin could ameliorate the inflammatory reactions induced by these factors.
The most important pathological characteristics of psoriasis include hyperinflammation, epidermal keratinocyte proliferation and abnormal differentiation, and angiogenesis. The pathogenesis of psoriasis is a highly complex molecular mechanism, involving a variety of immune and inflammatory mediators. Several innate immune...
cells, adaptive immune cells, and epidermal keratinocytes are stimulated by various cytokines, which is the main
cause for the sustained development of psoriatic lesions. However, based on previous research and clinical expe-
tiences, the immune and inflammatory cells release a variety of cytokines, especially TNF-α, IL-17A, and IL-22,
which are believed to affect epidermal keratinocytes directly, and are the most important cytokines responsible
for a variety of pathophysiological processes.

Conventional treatments of psoriasis include topical and systemic medication. Systemic steroids are widely
used as anti-inflammatory drugs in the treatment of several skin diseases; however, they exhibit potential
side effects, such as skin atrophy, striae, and telangiectasia, or systemic response, including inhibition of the
hypothalamic-pituitary-adrenal axis and other endocrinological complications, such as diabetes and osteoporosis.
In addition, the side effects of steroids in the cardiovascular, gastrointestinal, and neurological systems are
well known. Besides these common side effects, some reports have indicated that psoriasis leads to a deteriora-
tion of the rebound phenomenon after systemic steroid withdrawal. Moreover, morphological changes from
non-pustular to pustular psoriasis can become difficult to control after discontinuation of steroid therapy, making
it difficult to perform a risk-benefit analysis. The use of steroids may also cause erythroderma in patients
with psoriasis. Although steroids are very effective as first-line treatments in many cases, the efficacy of the
drug weakens over time in most cases, and higher doses are then required to maintain the treatment response.
Therefore, steroids are not conducive to long-term use. In contrast, biological agents, which are proteins pro-
duced by organisms, have advantages, such as lower side effects, less hepatotoxicity and nephrotoxicity, and
selective towards immune system. However, their disadvantages are that they are expensive and less popular.
At present, the main biological agents are antibodies and agents against TNF, IL-12/23, IL-17, JAK, and IL-B kinase.
TNF therapy has long been used to treat various inflammatory diseases, including psoriasis, and mainly neu-
tralizes TNF secreted by inflammatory cells. IL-12/23 inhibitors neutralize the effects of IL-17A and the downstream signalling
pathways. In psoriasis, JAK inhibitors show good therapeutic effects. In a mouse model of contact dermatitis,
topical application of JAK inhibitors could effectively inhibit the infiltration of lymphocytes, the phosphorylation
of STAT3, and the proliferation of keratinocyte. Recently, many studies have speculated that NF-κB pathway
may be a new target for the treatment of psoriasis, and IL-B kinase inhibitor can improve the severity of psoriasis.
However, compared with steroids and biological agents, Chinese herbal medicine ingredients are more advanta-
geous, as they can be isolated from natural plants, can be conveniently obtained, have no usage restrictions, and
show only few or no side effects. In modern medicine, there are more and more Chinese medicine treatments for
psoriasis are extensively investigated. Indigo naturalis has been used as a traditional Chinese medicine for the
treatment of skin diseases. In recent years, many reports indicated that topical application of indigo naturalis
and indirubin were effective and safe for the treatment of psoriasis, especially plaque psoriasis and nail psoriasis,
and it also has the inhibitory effect on the inflammatory response of human neutrophils. It has also been found
that indigo naturalis up-regulated the expression of claudin-1 and the function of tight junction in human epidermal
cells. However, although Chinese herbal medicine can be an alternative, safety, adverse effects and efficacy of
long-term medication are still important issues that need to be addressed in the future. It is important to identify
novel herbal ingredients that can be efficiently and safely used in abovementioned therapeutic approaches/strategies
against psoriasis and other skin inflammatory diseases.

In this study, the topical application of chrysin suppressed the IMQ-induced psoriasis-like skin inflammation
in the murine model, ameliorated the skin-related physiology, including trans-epidermal water loss (TEWL), ery-
thaema, blood flow speed, and ear thickness, and increased surface skin hydration (corneometer). Furthermore,
pretreatment with chrysin reduced the IMQ-induced inflammation and infiltration of inflammatory cells, as
observed in the histopathological analysis. We also found that chrysin effectively suppressed the downstream
responses of these cytokines in epidermal keratinocytes, including phosphorylation of the MAPK pathway, activ-
ation of IκBα in the NF-κB pathway, and triggering of the JAK-STAT pathway at protein levels. Furthermore,
chrysin treatment downregulated the expression of CCL20 and antimicrobial peptides (AMPs), consisting of
S100A7, S100A8, S100A9, hBD2, and IL-37, at mRNA levels.

Many skin diseases, such as atopic dermatitis, contact dermatitis, psoriasis, and even ultraviolet radiation are
related to skin inflammation. Inflammation of the skin is often accompanied by an increase in vascular permea-
bility, together with the release of NO and prostanadins, which trigger accumulation of tissue fluid in the lesion
and occurrence of oedema. At the same time, leukocytes (especially neutrophils) also migrate to the skin lesions.
The production of matrix metalloproteinase, in particular MMP-9, degrades the main structural component of
and occurrence of oedema. At the same time, leukocytes (especially neutrophils) also migrate to the skin lesions.

**Cytokines involved in both Th1 and Th17 pathways are found in the skin of psoriasis patients, including
IL-17A, IL-17F, IL-19, IL-20, IL-22, IL-23, IL-24, IL-26, and TNF-α, which can be detected in serum and lesions.
**The synergistic effect of IL-17 and IL-22 promotes the expression of antimicrobial peptides in keratinocytes, such
as β-defensin-2 (BD-2), S100A7 (psoriasin), cathelicidin (LL37), and S100A3/9 (calprotectin), all of which may
lead to the development of psoriasis in individuals with a higher resistance to skin infections. In this study,
the results showed that three cytokines, TNF-α, IL-17A, and IL-22, induced mRNA expression of CCL20 and
am antimicrobial peptides, and chrysin pretreatment downregulated their mRNA levels significantly. In recent years,
an increasing number of studies have reported that interleukin-36 (IL-36), which belongs to the IL-1 superfamily,
affects the balance between pro-inflammatory and anti-inflammatory branches, and easily leads to tissue inflammation. IL-36 cytokines are mainly expressed at the barrier sites in the body, such as the skin epithelium, and the spectrum of psoriasis is one of the famous examples. Therefore, IL-36 is likely to be an important diagnostic tool for dermatitis, and additional keratinocyte-linked cytokines like the inflammasome-related IL-1β, IL-36α, and IL-36γ should be investigated in the future. Previous studies have indicated that IL-17 exhibits the ability to activate transcription factors, such as NF-κB, in many cell types, including fibroblasts, macrophages, chondrocytes, intestinal epithelial cells, and myofibroblasts of the colon and pancreas. When cells are stimulated by IL-17, the IL-17 receptor (IL-17R) is triggered to activate ERK1 and ERK2 and the stress-induced JNK-1 and JNK-2, as well as the p38 MAPK pathway; these signal transduction pathways contribute to the upregulation of IL-6, IL-1, and NF-κB. Our results showed that the addition of TNF-α, IL-17A, and IL-22 induced the phosphorylation of p38, ERK, and JNK, and TNF-α and IL-17A activated the expression of IκBα in the NF-κB pathway. Previous studies have reported that IL-22 induces the phosphorylation of IKK and IκBα in HaCaT cells. However, we have not explored the effects of IL-22 on the NF-κB pathway in this study. If we can further explore the effects of this pathway, we can better understand the mechanism of chrysin on the pathogenesis of psoriasis. The phosphorylation of these related proteins was suppressed by the pretreatment of chrysin in a dose-dependent manner. These results demonstrated that chrysin effectively improved psoriasis-associated inflammation and exhibited anti-psoriatic potential.

With the advent of cellular molecular biotechnology, it has become increasingly clear that many molecules related to the skin barrier, as well as molecules that maintain skin hydration, such as filaggrin and junction protein, play a decisive role in maintaining normal physiological functions of the skin. Therefore, exploring and reducing the external factors that affect the above skin properties is an important research area in pathology and future drug development. Cornification (or keratinization) is the process of terminal differentiation of epidermal keratinocytes and plays an important role in the formation of the skin barrier. In psoriatic lesions, abnormal differentiation of keratinocytes is observed. In particular, the expression of some crucial differentiation markers, such as keratin 10, loricrin, and filaggrin, is suppressed, leading to hypogranulosis in the psoriatic lesion epithelium. The three cytokines, TNF-α, IL-17A, and IL-22, affect the differentiation of keratinocytes and result in downregulation of the abovementioned differentiated proteins. In addition, proliferation and thickening of the skin in psoriatic lesions can also be observed, which is related to the hyperplasia of keratinocytes. Previous evidence showed that among the several cytokines that are pathogenic to psoriasis, IL-22 most likely promotes the proliferation of keratinocytes. In the inflammatory pathway, we found that chrysin can effectively inhibit the expression of inflammation-related proteins and mRNAs induced by TNF-α, IL-17A, and IL-22. In future, we hope to address whether chrysin can reverse the inhibition of TNF-α, IL-17A, or IL-22-induced differentiation in keratinocytes in psoriasis.

In conclusion, the current study demonstrates the potential of chrysin in the treatment of inflammatory skin diseases, such as psoriasis, via its ability to relieve their symptoms. The findings also suggest that it may be useful as a daily health care supplement for prevention of inflammation.

Materials and Methods

Ethics statement. All animal experiments in this study were approved by the Institutional Animal Care and Use Committee of Fu Jen Catholic University (approval #A10367). The principles of the 3Rs (Replacement, Reduction, and Refinement) were followed to optimize the experimental design. The human primary epidermal keratinocytes were cells from human foreskins. The foreskins were provided by the Mackay Memorial Hospital, after obtaining the consent for use (#133MHH11222) from the Institutional Review Board. There was no interaction between the researcher and the foreskin donors, and the foreskins do not have any relevant information after obtaining the consent for use (#13MMH1022) from the Institutional Review Board.

Materials. The chrysin used in this study was purchased from Sigma-Aldrich (St Louis, MO; CAS: 480–40–0) with a purity of 97% and was dissolved in dimethyl sulfoxide (DMSO). Antibodies (Ab) against p-ERK and ERK were purchased from Santa Cruz Biotechnology, Inc. (Beverly, MA, USA). Abs against p-IκBα, p-STAT3, P38, STAT3, p-JAK2, JAK2, and β-actin were purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). Abs against p-P38, p-JNK and JNK were purchased from R&D Systems (Minneapolis, MN). TNF-α, IL-17A, and IL-22 were purchased from PeproTech (Rockey Hill, NJ).

Animals. Male mice BALB/c (8–11 weeks) were used for all experiments. Mice were purchased from the National Laboratory Animal Center, Taipei, Taiwan. Animals were individually housed in polypropylene cages with controlled temperature (21–25°C), light (12/12 h light/dark cycle), and humidity (60±5%). All animals had ad libitum access to standard food and water.

IMQ-induced psoriasis-like skin inflammation in mice. Chrysin (30 mM) or vehicle was applied to the dorsal shaved back and the right ears of mice. After 1 h, mice received a 62.5 mg topical dose of commercially available imiquimod cream (Aldara 5%; Meda AB, Solna, Sweden) or vehicle cream (Vaselin, Laboratorios Rida, Valencia, Spain) on the same positions for six consecutive days. Skin physiology-related values, including blood flow were measured with FLO-N1 (Omegawave, Tokyo, Japan) daily before chrysin treatment. The Mexaneter® MX 18 is available as a probe that connects to the MPA systems, which is a tool to measure the two components, mainly responsible for the colour of the skin: melanin and haemoglobin (erythema) by reflectance. For use, the probe was pressed on the measurement site for ~1 s to measure the melanin and erythema indices. FLO-N1, a non-contact type of instrument, was used to measure tissue blood flow, blood volume, and flow velocity. In addition, the thickness of both ears in mice were measured and photographed for indicating the
changes in the appearance of the skin and ears. At the end of the experiment, mice were sacrificed and tissues were collected and stored at −80 °C for subsequent homogenization or fixation in formalin.

Histopathological analysis. Mouse tissues were fixed with 4% paraformaldehyde at 4 °C overnight. Routine methods were used to prepare formalin-fixed paraffin-embedded blocks of the mice’s skin tissues. These tissues were then cut into 5-μm sections, and stained with haematoxylin and eosin (H&E). ZEISS Axioskop 40 Inverted System microscope (NY, United States) and SPOT Cam software (Sterling Heights, MI) were used to visualize the images from H&E staining. Psoriasis Area and Severity Index (PASI) is an objective scoring system. The erythema, scaling, and thickness were scored independently from 0 to 4 (0 no infection, 1 mild, 2 intermediate, 3 severe, 4 very severe), and the total score was used as an index of psoriasis severity (scores 0–12).

Cell culture. The primary keratinocytes were isolated from human foreskin tissue, and were grown in Keratinocyte-SFM (Gibco BRL/Invitrogen, Carlsbad, CA). The primary keratinocytes were used between passages 2 to 4 in this study. Normal human keratinocytes were plated in 35-mm culture dishes, and 24 h prior the stimulus, keratinocyte medium was switched and chrysin (3, 10, or 30 μM) was added. The control medium contained an equal volume of DMSO. Finally, cells were stimulated with either TNF-α (50 ng ml−1), IL-17A (50 ng ml−1), or IL-22 (50 ng ml−1) from PeproTech (Rocky Hill, NJ).

Cell viability assays (MTT, trypan blue assay, and crystal violet assay). Cell viability was determined as previously described2,32 by MTT, trypan blue, and crystal violet assays. In MTT assay, cells were pre-treated with DMSO or chrysin for 24 h. After a brief wash, MTT (0.5 mg/mL in Keratinocyte-SFM) was used for the quantification of metabolically-active live cells and were analysed photometrically at 550 nm. In crystal violet assay, cells were treated as described, fixed with methanol, and then stained with 0.1% crystal violet solution for 1 h staining. Then, the cells were washed thrice with double-distilled water, followed by acetic acid to dissolve the cells. The optical density (OD) was then read using a Tecan Sunrise spectrophotometer (Tecan, Crailsheim, Germany) at 550 nm. The Trypan Blue exclusion method was performed according to the manufacturer’s protocols. The normal human keratinocytes were pretreated with chrysin, and then suspended and stained with equal volume of trypan blue dye. The cells were counted using a dual-chamber haemocytometer and a light microscope.

Western blot analysis. After 5 and 15 min of stimulation using TNF-α, IL-17A, or IL-22, the total proteins were extracted by applying RIPA lysis buffer. Protein concentration was measured with the Pierce protein assay kit (Pierce, Rockford, IL). The proteins were separated by electrophoresis on 10% SDS–polyacrylamide gels, and then transferred onto a PVDF membrane (Millipore, Darmstadt, Hesse, Germany) at 550 nm. The Trypan Blue exclusion method was performed according to the manufacturer’s protocols. The normal human keratinocytes were pretreated with chrysin, and then suspended and stained with equal volume of trypan blue dye. The cells were counted using a dual-channel haemocytometer and a light microscope.

Real-time quantitative RT-PCR. After 6 and 8 h of stimulation with TNF-α, IL-17A, or IL-22, total RNA was isolated using the total RNA isolation kit (GeneDireX®, Vegas, NV) according to manufacturer’s instructions and reverse-transcribed into cDNA using SuperScript™ III First-Strand Synthesis System kit (Invitrogen, Carlsbad, CA). The qPCR was performed using the CFX96™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA), following the previously described conditions34 with SYBR green (Kapa Biosystems, Wilmington, MA). Primer sequences used in the PCR reactions are listed in Table 1. Data were normalized relative to β-actin expression and evaluated using the equation: fold change $= 2^{-\Delta\Delta CT}$.

Statistical analysis. Data were expressed as the mean ± SEM of in vivo experiments at least six mice per treat group, and three cell culture replicates in the in vitro experiments by using GraphPad Prism Program 6 software (GraphPad Software San Diego, CA). Comparison of the mean difference with and without chrysin

Gene	Primer sequence (5′-3′)
Human CCL20	F: TACTCCACCTCTTGCGGCGAATCAGAA
	R: GTGAAACCTCAACCCCAGCAGAAGTT
Human S100A7	F: GCATGATGCAATTTCTCAAAAATCAC
	R: TGGTACGTCTGCGGTATGCTTCCC
Human S100A8	F: TGAAAGAATGGTAGAGAC
	R: CTTTAGACAGAAGTGGGA
Human S100A9	F: GCCTCTCGGTTGACAGATGCAAG
	R: GCATTGTGTGCAGGTCTTCATGATGTG
Human BD2	F: CGACGCCATACGGCTAGAGGT
	R: GGACGCTTTCCTGAAATCCGCA
Human LL-37	F: GCAGTGACAGAGATGTGAC
	R: CACGGCTTCCAGGCCCC
Human β-Actin	F: CGGGGACCTGACTGACTACC
	R: AGGAAGCTTGGAAGAGTGC

Table 1. Primer sequences for RT-qPCR.
treatment was made using one-way ANOVA followed by Dunnett’s t-test for multiple comparisons. We considered $p < 0.05$ to be statistically significant.

Received: 27 October 2019; Accepted: 5 February 2020; Published online: 19 February 2020

References

1. Kim, W. B., Jerome, D. & Yeung, J. Diagnosis and management of psoriasis. *Can. Fam. Physician* **63**, 278–285 (2017).
2. Raychaudhuri, S. K., Maverakis, E. & Raychaudhuri, S. P. Diagnosis and classification of psoriasis. *Autoimmun. Rev.* **13**, 490–495 (2014).
3. Peters, B. P., Weissman, F. G. & Gill, M. A. Pathophysiology and treatment of psoriasis. *Am. J. Health Syst. Pharm.* **57**, 645–659 (2000).
4. Nestle, F. O., Kaplan, D. H. & Barker, J. E. Psoriasis: diagnostic criteria. *Dermatol. Sci.* **26**, 337–345 (2011).
5. Prochazkova, D., Bousova, I. & Wilhelmova, N. Antioxidant and prooxidant properties of flavonoids. *Fitoterapia*, 67–76 (2012).
6. Rahman, I., Biswas, S. K. & Kirkham, P. A. Regulation of inflammation and redox signaling by dietary polyphenols. *J. Agric. Food Chem.* **63**, 119–122 (2014).
7. Sobolewski, P., Walecka, I. & Dopytałska, K. Nail involvement in psoriatic arthritis. *Reumatologia* **55**, 131–135 (2017).
8. Raposo, I. & Torres, T. Nails psoriasis as a predictor of the development of psoriatic arthritis. *Actas Dermosifiliogr.* **106**, 452–457 (2015).
9. Cooper, G. S. & Stroebel, B. C. The epidemiology of autoimmune diseases. *Autoimmun. Rev.* **2**, 119–125 (2003).
10. David, T., Ling, S. F. & Barton, A. Genetics of immune-mediated inflammatory diseases. *Clin. Exp. Immunol.* **193**, 3–12 (2018).
11. Prey, S. et al. Cardiovascular risk factors in patients with plaque psoriasis: a systematic review of epidemiological studies. *J. Eur. Acad. Dermatol. Venereol.* **24**(Suppl 2), 23–30 (2010).
12. Gkampakioti, S. Psoriasis comorbidities. *Cali. Lek. Czech* **156**, 119–122 (2017).
13. Puig, L. Cardiometabolic Comorbidities in Psoriasis and Psoriatic Arthritis. *Int. J. Mol. Sci.* **19** (2017).
14. Nickoloff, B. J. Cracking the cytokine code in psoriasis. *Nat. Med.* **13**, 242–244 (2007).
15. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. *J. Exp. Med.* **204**, 3183–3194 (2007).
16. Gottlieb, A. B. et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. *J. Immunol.* **175**, 2721–2729 (2005).
17. Cheuk, S. et al. Epidermal Th22 and Th17 cell forms a localized disease memory in clinically healed psoriasis. *J. Immunol.* **192**, 3111–3120 (2014).
18. Sun, Q., Heilman, J. & Konig, B. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view. *Beilstein J. Org. Chem.* **11**, 249–264 (2015).
19. Sagar, S. M., Yance, D. & Wong, R. K. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. *Curr. Oncol.* **13**, 14–26 (2006).
20. Sagar, S. M., Yance, D. & Wong, R. K. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2. *Curr. Oncol.* **13**, 99–107 (2006).
21. Prasad, S., Phrommok, K., Yadv, V. R., Chatuvredi, M. M. & Aggarwal, B. B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. *Planta Med.* **76**, 1044–1063 (2010).
22. Rahaman, I., Biswas, S. K. & Kirkham, P. A. Regulation of inflammation and redox signaling by dietary polyphenols. *Biochem. Pharmacol.* **72**, 1439–1452 (2006).
23. Pietta, P. G. Flavonoids as antioxidants. *J. Nat. Prod.* **63**, 1035–1042 (2000).
24. Agati, G., Azzarello, E., Pollastri, S. & Tattini, M. Flavonoids as antioxidants in plants: location and functional significance. *Plant. Sci.* **196**, 67–76 (2012).
25. Prochazkova, D., Bousova, I. & Wilhelmova, N. Antioxidant and prooxidant properties of flavonoids. *Fitoterapia* **82**, 513–523 (2011).
26. Raj, P. et al. Potential of resveratrol in the treatment of heart failure. *Life Sci.* **95**, 63–71 (2014).
27. Niu, L. et al. Polyphenols in Regulation of Redox Signaling and Inflammation During Cardiovascular Diseases. *Cell Biochem. Physiol.* **72**, 485–494 (2015).
28. Ayoub, M., de Camargo, A. C. & Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. *Food Chem.* **197**, 221–232 (2016).
29. Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: an overview. *J. Nutr. Sci.* **5**, e47 (2016).
30. Amawi, H., Ashby, C. R. Jr. & Tiwari, A. K. Cancer chemoprevention through dietary flavonoids: what’s limiting? *Chin. J. Cancer* **36**, 50 (2017).
31. Arct, J. & Pytkowska, K. Flavonoids as components of biologically active cosmeceuticals. *Clin. Dermatol.* **26**, 347–357 (2008).
32. Huang, C. H. et al. Photoprotective Effects of Cyclohexetophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts. *PLoS One* **11**, e0161767 (2016).
33. Wu, N. L. et al. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. *J. Agric. Food Chem.* **59**, 8391–8400 (2011).
34. Li, H. J., Wu, N. L., Lee, G. A. & Hung, C. F. The Therapeutic Potential and Molecular Mechanism of Isoflavone Extract against Psoriasis. *Sci. Rep.* **8**, 6335 (2018).
35. Rashid, S. et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. *Toxicol. Mech. Methods* **23**, 337–345 (2013).
36. Lee, J. H., Park, J. H., Cho, M. H. & Lee, J. Flavone reduces the production of virulence factors, staphyloxanthin and alpha-hemolysin, in *Staphylococcus aureus*. *Curr. Microbiol.* **65**, 726–732 (2012).
37. Kasala, E. R. et al. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. *Toxicol. Lett.* **233**, 214–225 (2015).
38. Jiang, Y., Gong, F. L., Zhao, G. B. & Li, J. Chrysins suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. *Int. J. Mol. Sci.* **15**, 12270–12279 (2014).
39. Pale, P. L. et al. Acetylsalicylic acid inhibition, antioxidant activity and toxicity of Perumus boldus water extracts on HeLa and Caco-2 cell lines. *Food Chem. Toxicol.* **50**, 2656–2662 (2012).
40. Spencer, J. P., Vafeiadou, K., Williams, R. J. & Vauzour, D. Neuroinflammation: modulation by flavonoids and mechanisms of action. *Mol. Asp. Med.* **33**, 83–97 (2012).
41. Pick, A. et al. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). *Bioorg. Med. Chem.* **19**, 2090–2102 (2011).
42. Godin, A. M., Au, S. C., Kim, N., Gottlieb, A. B. & Lizzul, P. F. NF-kappaB: an essential transcription factor in psoriasis. *J. Dermatol. Sci.* **69**, 89–94 (2013).
43. Bangert, C., Brunner, P. M. & Stingl, G. Immune functions of the skin. *Clin. Dermatol.* **29**, 360–376 (2011).
44. Morizane, S. & Gallo, R. L. Antimicrobial peptides in the pathogenesis of psoriasis. *J. Dermatol.* **39**, 225–230 (2012)
45. Lai, Y. & Gallo, R. L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131–141 (2009).
46. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).
47. Eckert, R. L. et al. S100 proteins in the epidermis. J. Invest. Dermatol. 123, 23–33 (2004).
48. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).
49. Lebwohl, M., Ting, P. T. & Koo, J. Y. Psoriasis treatment: traditional therapy. Ann. Rheum. Dis. 64(Suppl 2), ii83–86 (2005).
50. Rebora, A. Conventional therapies for psoriasis. Reumatismo 59(Suppl 1), 77–80 (2007).
51. Abraham, A. & Roga, G. Topical steroid-damaged skin. Indian. J. Dermatol. 59, 456–459 (2014).
52. Mrowietz, U. & Domm, S. Systemic steroids in the treatment of psoriasis: what is fact, what is fiction? J. Eur. Acad. Dermatol. Venereol. 27, 1022–1025 (2013).
53. Brodell, R. T. & Williams, L. A corticosteroid-induced flare of psoriasis. How to control or, better yet, avoid. Postgrad. Med. 106, 31–32 (1999).
54. Brenner, M. et al. Generalized pustular psoriasis induced by systemic glucocorticosteroids: four cases and recommendations for treatment. Br. J. Dermatol. 161, 964–969 (2009).
55. Chowaniec, O. & Blichowska, T. [Case of generalized pustular psoriasis caused by corticosteroid treatment of simple psoriasis and pemphigus]. Przegl Dermatol. 66, 541–544 (1979).
56. Boyd, A. S. & Menter, A. Erythrodermic psoriasis. Precipitating factors, course, and prognosis in 50 patients. J. Am. Acad. Dermatol. 21, 985–991 (1989).
57. Adcock, I. M. & Barnes, P. J. Molecular mechanisms of corticosteroid resistance. Chest 134, 394–401 (2008).
58. Woo, Y. R., Cho, D. H. & Park, H. J. Molecular Mechanisms and Management of a Cutaneous Inflammatory Disorder: Psoriasis. Int J Mol Sci 18 (2017).
59. Taylor, P. C. Anti-tumor necrosis factor therapies. Scientific Reports | www.nature.com/scientificreports/
Author contributions
Funding acquisition, Chi-Ming Pu; Investigation, Chi-Feng Hung and Hsin-Ju Li; Methodology, Nan-Lin Wu and Chien-Yu Hsiao; Resources, Chi-Feng Hung, Nan-Lin Wu, Chi-Ming Pu, and Chien-Yu Hsiao; Writing – original draft, Chi-Feng Hung and Hsin-Ju Li; Writing – review & editing, Chi-Feng Hung, Hsin-Ju Li, Nan-Lin Wu, and Der-Chen Chang.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.-F.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020