Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore

Feigin, Charles Y.; Newton, Axel H.; Doronina, Liliya; Schmitz, Jürgen; Hipsley, Christy A.; Mitchell, Kieren J.; Gower, Graham; Llamas, Bastien; Soubrier, Julien; Heider, Thomas N.; Menzies, Brandon R.; Cooper, Alan; O'Neill, Rachel J.; Pask, Andrew J.

Published in:
Nature Ecology & Evolution

DOI:
10.1038/s41559-017-0417-y

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Feigin, C. Y., Newton, A. H., Doronina, L., Schmitz, J., Hipsley, C. A., Mitchell, K. J., Gower, G., Llamas, B., Soubrier, J., Heider, T. N., Menzies, B. R., Cooper, A., O'Neill, R. J., & Pask, A. J. (2018). Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nature Ecology & Evolution, 2, 182-192. https://doi.org/10.1038/s41559-017-0417-y
Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore

Charles Y. Feigin1, Axel H. Newton1,2, Liliya Doronina3, Jürgen Schmitz2, Christy A. Hipsley1,2, Kieren J. Mitchell4, Graham Gower4, Bastien Llamas4, Julien Soubrier4, Thomas N. Heider5, Brandon R. Menzies1, Alan Cooper4, Rachel J. O’Neill5 and Andrew J. Pask4, Bastien Llamas1,2*

The Tasmanian tiger or thylacine (*Thylacinus cynocephalus*) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.

Results and discussion

Thylacine genome sequencing. We extracted DNA from the soft tissue of a 108-year-old, alcohol-preserved thylacine pouch young specimen (Fig. 1c) from Museums Victoria, Australia. DNA fragments between 300–600 bp were isolated and sequenced on Illumina platforms (Supplementary Fig. 1 and Supplementary Table 1), generating ~188 gigabases (Gb) of sequence data that were subsequently filtered for quality and length. Contaminating sequences were depleted by mapping to a database containing microbial and fungal genomes, leaving ~151 Gb (Supplementary Table 1). We assessed the quality of the data by mapping reads to the genome of the Tasmanian devil (*Sarcophilus harrisii*)6, the most closely related species available. Approximately 89.3% of the retained reads mapped to the complete unmasked Tasmanian devil assembly. Additionally, ~61.6% of reads mapped to the repeat-masked reference assembly, covering ~84.4% of unmasked bases to an average depth of ~42.8X (Supplementary Table 2). For comparison, we mapped the thylacine data to two other marsupial genomes, the tammar wallaby (*Macropus eugenii*)11 and the gray short-tailed

References

1School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. 2Museums Victoria, Melbourne, Victoria, Australia. 3Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany. 4Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia. 5Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA. 6e-mail: ajpask@unimelb.edu.au

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
opossum (Monodelphis domestica)12. As expected, the percentage of reads that mapped decreased with increased phylogenetic distance between the reference genome and thylacine (Supplementary Fig. 2). The thylacine sequence data was then used to assemble contigs de novo. The resulting assembly was comparable to other draft marsupial genomes10–12, with an N50 contig length of \(-3.2\) kilobases (Kb) and a total assembly size of \(-3.16\) Gb, suggesting the thylacine genome size was similar to previously sequenced marsupials. The G+C content of the de novo contigs (\(-36\%)\), was similar to the thylacine's close relative the Tasmanian devil (36.4\%), and considerably lower than human (46.1\%) and mouse (51.2\%) (Supplementary Table 3). MapDamage8 analysis of reads mapped to the thylacine de novo contigs failed to detect cytosine deamination, a standard characteristic of historical and ancient DNA (Supplementary Fig. 3). This is likely to be due to the relatively young age of the sample and its method of preservation.

Phylogenetic placement of the thylacine. The placement of the thylacine within the order of carnivorous marsupials, Dasyuromorphia, has been a subject of much contention for over a century8,14. Previous analyses based on mitochondrial sequences supported the thylacine as the basal lineage in Dasyuromorphia, followed by the numbat as the sister lineage to Dasyuridae (the family comprising the Tasmanian devil and its close relatives)8. Unlike nucleotide substitutions, retroposon insertions are nearly always permanent and independent, and parallel insertions are exceptionally rare. This makes retroposon insertion patterns virtually homoplasy free, and therefore reliable indicators of phylogenetic history. Here, we screened the genome sequences of the Tasmanian devil and thylacine for 25 diagnostic phylogenetic retroposon markers (SINEs; short interspersed elements) previously identified in dasyuromorph species15. In addition, we PCR amplified and sequenced an additional 225 potentially informative loci in the numbat, resulting in a total of 250 loci. Of these, 11 supported a tree in which the thylacine represents the basal lineage in Dasyuromorpha followed by the numbat as the direct sister group to Dasyuridae (Fig. 2a). However, our multidirectional screening (see Methods) also revealed four markers supporting a potential sister group relationship of Dasyuridae and thylacine, and one marker uniting numbat and thylacine. Multidirectional KKSC16 analysis revealed significant support for the basal position of thylacine in Dasyuromorphia (11:4:1 markers; \(P < 0.005\)). This represents the first time that the genome-wide presence/absence patterns of retroposons have been used to clarify phylogenetic relationships of an extinct species. The presence of five conflicting signals in a multidirectional bioinformatics and experimental screening suggests that ancestral incomplete lineage sorting of retroposed elements, frequently detected in many other vertebrate groups17,18 including ancestral marsupial lineages19, also occurred in Dasyuromorphia.

Demographic history of the thylacine. We assessed the recent demographic history of the thylacine and compared it to the
Tasmanian devil, another marsupial carnivore that underwent isolation on Tasmania. The Tasmanian devil has experienced a recent catastrophic population decline due to an extreme lack of genetic diversity, causing widespread susceptibility to devil facial tumour disease. Previous studies of mitochondrial DNA suggested that thylacine populations in Tasmania were even less genetically diverse at the time of their extinction than modern Tasmanian devils. We performed pairwise sequentially Markovian coalescent (PSMC) analyses, which revealed that the effective size of the thylacine population largely mirrored that of the Tasmanian devil, with both species undergoing an apparent steep decline in diversity beginning around ~70–120 ka (thousand years ago) (Fig. 2b). The population decline appears to have begun before the human colonization of Australia (~50 ka) and overlaps with climate changes associated with the beginning of the penultimate glacial cycle. Mutation rates for the thylacine and Tasmanian devil were conservatively estimated (see Methods), and we expect that the true thylacine and Tasmanian devil mutation rates may be slower. Therefore, reconstructions for each species (Fig. 2b) are likely to represent lower bounds for both timing and population sizes. However, PSMC analyses can also be impacted by marked population structure, and simulations of a constant sized metapopulation with a large number of demes and low migration generated similar trends to those in Fig. 2b. Such population structuring is plausible for a large, geographically dispersed Australian carnivore.

Fig. 3 | Convergent evolution of the thylacine cranium. a, Cranial phylomorphospace of 113 metatherian and eutherian taxa as estimated by principal component (PC) analysis, with the phylogeny in Supplementary Fig. 10 projected into shape space using squared-change parsimony. More than half of the total variance was contained in the first two components: PC1 describes shortening or lengthening of the face and jaws and relative height of the sagittal crest, while PC2 describes variation in skull width and snout shape (tubular versus blunt). The thylacine (blue star) displays striking cranial convergence with eutherian canids, falling closer in shape space to the red fox (Vulpes vulpes; shown) and grey wolf (Canis lupus) than to its own closest relatives. Using the pairwise distance measure C_1 on the full phenotypic dataset (PC1-31; 99% of the total shape variance), we estimate that approximately 34% of the ancestral phenotypic space between the thylacine and red fox has been closed by convergent evolution and 40% has been closed between the thylacine and grey wolf. These values are significantly greater than would be expected by chance ($\text{convratsig } C_1, P < 0.05, n = 113$). In contrast, the thylacine did not exhibit cranial convergence with other carnivorous marsupials or eutherian felids (Supplementary Table 7). b, Locations of 30 homologous landmarks used to compare cranial shapes shown in black (dorsal and lateral) and grey (ventral; expanded in Supplementary Fig. 5).

Quantifying phenotypic convergence. We quantified the degree of cranial shape convergence between the thylacine and canids using 3D landmark-based geometric morphometrics on a broad range of modern and extinct mammalian taxa within a phylogenetic framework (Supplementary Fig. 5 and Supplementary Tables 4 and 5). Despite a substantial clustering of metatherians and eutherians in cranial morphospace (Fig. 3 and Supplementary Figs. 6 and 7), diet was a significant predictor of cranial shape (Procrustes ANOVA, $F=8.899, P < 0.0001$), even after accounting for phylogeny (phylogenetic ANOVA, $F=2.199, P=0.008$; Supplementary Table 6).
convergence among marine and among echolocating mammals is extensive. Therefore, it is unclear whether the scarcity of adaptive homoplasy is due to evolutionary constraints on adaptation via protein-coding changes, or simply limited phenotypic convergence in the species being examined. Furthermore, a recent study showed that the frequency of convergent and parallel substitutions in protein-coding genes declines with increasing phylogenetic distance. It was suggested that accumulation of changes in the genomic background can modify epistatic interactions, limiting the opportunities for adaptive homoplasy. While that study examined a broad sampling of mammalian diversity, the species included also showed little phenotypic convergence. In contrast, the thylacine and canids possess highly convergent phenotypes while also sharing one of the deepest evolutionary splits in mammals. Therefore, we interrogated the genomes of the thylacine and canids to determine if their extensive phenotypic similarities were reflected by adaptive amino acid homoplasy.

We reconstructed thylacine genes by mapping the thylacine sequence data to the Tasmanian devil genome and generating a reference-based assembly. The Tasmanian devil genome annotations were then used to extract thylacine genes. We used a similar approach to assemble genes from publicly available sequence data for five wild canid species: wolf, golden jackal, coyote, red fox and arctic fox. The resulting thylacine and wild canid genes were grouped with high-confidence one-to-one orthologues from 21 other vertebrates including 14 eutherian mammals and 3 marsupials, with platypus and birds as outgroups (Supplementary Table 8). We assumed a species tree topology based on published phylogenies of the species represented in our orthologue dataset (Supplementary Fig. 8). After filtering for high-quality sequences, we retained 11,254 groups of orthologous genes (Supplementary Table 9). Additionally, we performed ancestral state reconstructions using CodeML that were used for subsequent analyses.

Genome-wide prevalence of amino acid homoplasy. We investigated the genome-wide prevalence of amino acid homoplasy in the thylacine and ancestors of canids, comparing the observed number of homoplasious amino acids with the number expected under the neutral JTT-Fsite model. This relative frequency was further compared to that calculated for 691 additional pairwise comparisons of nodes in our phylogeny (Fig. 4 and Supplementary Table 10). Our analysis recovered the reported negative relationship between phylogenetic distance and the frequency of homoplasious substitutions. Notably, the prevalence of homoplasy between the thylacine and canids did not defy expectations based on neutral evolution and was comparable to pairwise comparisons between non-convergent species with similar phylogenetic distances (Fig. 4 and Supplementary Table 10).

Amino acid homoplasy and positive selection. If the complement of genes in the genetic toolkit is indeed limited, then phenotypic convergence may not be reflected by an enrichment of homoplasy. Rather, molecular changes in a small number of key developmental genes may be targeted by selection to drive convergent adaptations. To test this, we first compared individual amino acid positions between the thylacine and the ancestor of extant canids. We then identified positively selected protein-coding genes using the branch-site model implemented in CodeML (PAMLv4.7). We performed likelihood ratio tests for genes on the branches leading to the thylacine and the subfamily Caninae respectively, and applied a false discovery rate (FDR) of 0.05 (Benjamini–Hochberg). The families Thylacinidae and Dasyuridae diverged around 26 Ma and early thylacine fossils in the Riversleigh deposits indicate the thylacine morphology was fully established by 20 Ma. Thus, selection driving the thylacine's phenotypic convergence with canids was likely to have been confined to a 6 million year period, and these distant signatures of positive selection might be masked by subsequent sequence evolution. By allowing variable selective pressures among sites, the branch-site model has a greater power to detect historical episodes of selection over other codon-based methods. We defined adaptively convergent genes as those that showed signatures of positive selection in both the thylacine and canids, and contained homoplasious amino acid substitutions.

Genomic convergence. Selection is often suggested to repeatedly target a limited set of conserved developmental genes, constituting a genetic toolkit. Under this assumption, molecular convergence in orthologous loci is suggested to be an important driver of phenotypic convergence. Recent genome-wide studies have attempted to identify homoplasious amino acids in protein-coding genes, notably among several marine mammal lineages and among echolocating mammals. Both studies found instances of homoplasy in genes with plausible links to their convergent phenotypes. However, similar amounts of homoplasy were also detected between non-convergent species. Further analyses showed that homoplasious substitutions between marine mammals were largely consistent with relaxed purifying selection. However, it could be argued that overall phenotypic convergence among marine and among echolocating mammals is not extensive. Therefore, it is unclear whether the scarcity of adaptive homoplasy is due to evolutionary constraints on adaptation via protein-coding changes, or simply limited phenotypic convergence in the species being examined. Furthermore, a recent study showed that

![Fig. 4](https://example.com/figure4.png)

Fig. 4 | The number of observed homoplasious amino acids relative to the number expected between pairs of vertebrates, plotted against their genetic distances. Homoplasious amino acids between all pairs of vertebrates that do not share a most recent ancestral node in the fixed tree topology were identified. The number of homoplasious amino acids was divided by the number expected under the neutral JTT-Fsite model to yield a ratio (R; y-axis). The x axis shows genetic distance calculated as the number of amino acid substitutions per site between the younger ends of the two branches considered. The black dashed line indicates the linear regression with $R^2 = 0.2351$. Yellow diamonds show comparisons between thylacine and other vertebrates. Red circles indicate comparisons between the thylacine and key eutherian nodes (Canis, Vulpes, Caninae, Carniformia and Carnivora).

Using distance-based phenotypic measures on 99% of the total shape variation (PC1-31), we estimated that over one-third of the ancestral phylomorphospace between the thylacine and canids (such as Canis lupus and Vulpes vulpes) has been closed by convergent evolution (Fig. 3 and Supplementary Table 7). This level of convergence is similar to that calculated using the same metric for Caribbean Anolis lizards, a classic example of convergent evolution. However, in contrast to the closely related anoles, metatherians and eutherians have been separated for over 160 million years of independent evolution. Thus, the thylacine–canid comparison represents an exceptional model of convergent evolution in distantly related species.

- **Articles**
- **NATURE ECOLOGY & EVOLUTION**
- **VOL 2 | JANUARY 2018 | 182–192 | www.nature.com/natecolevol**
- © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
In total, we identified 16 convergent and 67 parallel changes between the thylacine and canid ancestor, contained within 81 orthologous genes (Supplementary Table 11). Among these genes were BRPF1, which maintains the anterior–posterior axis of craniofacial bones in fish;51 DEGS1, a predicted target of RUNX2;27, and LTBP1 and LRIG1, both of which are associated with snout length in mice.28,29 After FDR correction, we identified 259 genes under positive selection in the thylacine and 185 in the branch leading to Caninae (Supplementary Tables 12 and 13), which were then intersected with the list of genes containing homoplasic amino acid substitutions. Interestingly, none of the 81 homoplasic genes were found to be adaptively convergent in the thylacine and canids. Five homoplasic genes were under positive selection in only the thylacine, including BRPF1 and DEGS1. However, we did not find evidence of adaptation in their canid orthologues (Supplementary Table 14). Thus, the observed homoplasies do not appear to be driven by convergent selective pressures. We identified a further six non-homoplasic genes that showed signatures of positive selection in both the thylacine and Caninae (Supplementary Table 15). For comparison, we performed additional branch-site likelihood ratio tests on two non-convergent lineages with comparable divergence times: the Tasmanian devil (a dasyurid marsupial) and the eutharian Bovidae (a family consisting exclusively of ruminant herbivores). Despite the slightly smaller number of positively selected genes identified in the Tasmanian devil and Bovidae (209 and 40 genes, respectively; Supplementary Tables 16 and 17), this comparison returned five overlapping genes, nearly the same number observed between thylacine and canids (Supplementary Table 18). From this we concluded that positive selection has not targeted orthologous genes more frequently in the thylacine and canids than in non-convergent species with similar divergence times. This finding may suggest that protein-coding genes are not a major driver of convergent evolution in therian mammals. Alternatively, selection in these lineages may have targeted different genes involved in similar biological processes. Therefore, we performed a KEGG pathway analysis of thylacine and canid positively selected genes using Enrichr.22 We identified one pathway, inflammatory media tors of regulation of TRP channels (hsa04750), among the top terms in both canids and the thylacine (Supplementary Tables 19 and 20). Among the genes identified in this pathway were phospholipase A2 orthologues (PLA2G6 and PLA2G4E in the thylacine and PLA2G4F in canids; Supplementary Fig. 9). This pathway is associated with thermal hypersensitivity and may be involved in persistent pain responses, and does not appear to be associated with convergent adaptations between the thylacine and canids. Thus, it appears that selection on genes in conserved pathways is very limited and unlikely to be relevant to convergence.

In summary, our data demonstrate that observed amino acid homoplases between thylacine and canid orthologous protein-coding genes are largely consistent with neutral evolutionary processes. Therefore, such molecular changes are unlikely to explain the convergent phenotypes between these species. Furthermore, our data demonstrate that there is surprisingly little concordance between positive selection on thylacine and canid protein-coding orthologues regardless of the presence of homoplasies. Given the extraordinary adaptive similarities between these distantly related taxa, we suggest that positive selection has targeted other genomic regions such as cis-regulatory elements (CREs) to drive their phenotypic convergence. CREs such as promoters and enhancers regulate spatial and temporal gene expression and have a modular structure. Consequently, many CREs may have greater evolutionary flexibility than their target genes and these elements have been suggested as preferred targets of natural selection.52–54 cis-regulatory evolution may be particularly important for driving morphological adaptations,55, which involve changes in body patterning. We suggest that future genome-wide studies on the molecular basis of convergent phenotypic evolution should explore the contribution of cis-regulatory changes to this phenomenon.

Methods

Geometric morphometric analyses. Taxon sampling. Taxon sampling was largely based on a previous study,5 which itself was an expansion of the 3D cranial dataset assembled by Wroe & Barlow.56 To examine morphological convergence in carnivorous eutherians (order Carnivora) and marsupials, including the thylacine (Thylacinus cynocephalus). The Carnivora is divided into two suborders, the Feliformia and Caniformia, which together comprise over 280 living species.57 Among these are the well-known large-bodied carnivores such as lions, wolves and hyenas, but also omnivores (some bears), insectivores (aardwolf and bat-eared fox) and a diversity of small-sized mammals and cerdocyonids, mousmooes and others with varying ecologies. Members of the other major clade of carnivorous eutherians, the extinct Creodonta, ranged from cat- to hyena-sized and were the most successful and abundant predators of the early Tertiary period, an ecological niche later dominated by carnivores.58 Among metatherians, carnivory (here defined as the killing and commuting of vertebrate prey, sensu59) has evolved independently in the extinct stem order Sparassodonta (for example, Thylacoleo cingulatus) from South America, the extinct Australopitheciform family Thylacoleoidea, and in members of the Australian order Dasyuromorphia. A previous study sampled crania of 28 extant and 2 fossil species from 7 families ranging in body size from Carnivora to tetramera of Dasyuromorphia, including the highly specialized predator and largest carnivorous Australian mammal Thylacoleo cingulatus (comparable to a large felid) and its smaller more primitive relative Wukaloo vanderleuri, both thylacoleoceans; and the most morphologically conservative dasyurid known, Barinya wanglei.60 A subsequent study extended this dataset by an additional 35 species, sampling from members of the stem clades Creodonta and Sparassodonta, as well as a broad diversity of extinct carnivores lacking modern counterparts (such as the ‘false’ sabre-toothed cats Nimravidae and bear-dogs of Amphicyonidae), covering nearly the full morphological and ecological range of carnivorous terrestrial mammals. Here we further expand that 3D cranial dataset by an additional 35 species, including members of Canis and Vulpus (the eutharian genera to which the thylacine is most commonly compared);61 dasyuromorphs and New World didelphids, 8 families of Diprotodontia (the clade containing carnivorous thylacoleoceans but also kangaroos, wallabies, koalas, possums, gliders, and wombats), and other insectivorous australidelphids from the orders Microbiotheria, Notoryctemorphia and Peramelemorphia. The majority of newly added species included Carnivora, to which the thylacine is most closely related (such as the southern marsupial mole Notoryctes typhlops and the eastern barred bandicoot Perameles gunnii). Herbivorous diprotodontids were included to increase metatherian morphospace to a level comparable to that of the sampled eutherians, since marsupial crania have been shown to be significantly less disparate in shape than for eutherians.60–62 We also sampled previously published and new state reconstructions of cranial shape for Diprotodontia, which were used in convergence tests between the thylacine and other carnivorous marsupials (such as T. cingulata; see below).

Cranial data acquisition. 3D cranial landmark data for 80 extinct and extant mammals were acquired from that previously published dataset.63 Additional landmarks were generated from 28 newly sampled museum specimens and 13 cranial surface models made available through DigiMorph.org (Supplementary Table 4). Surface scanning was performed at the School of Engineering, University of Melbourne, using a NextEngine 3D laser scanner (NextEngine, Santa Monica, California). X-ray computed tomography (CT) scans were made at the School of Earth Sciences, University of Melbourne, on a GE Phoenix Nanotom M and reconstructed in datos|x-reconstruction software (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany). All scanned specimens were adult males; otherwise noted (Supplementary Table 4). 3D models of the surface scans were produced in Meshlab (Visual Computing Lab, ISTI, CNR) and in VGStudio Max 2.1 (Volume Graphics, Heidelberg, Germany) for CT data. Landmarks were placed on the newly generated models in Landmark Editor (Institute of Data Analysis and Visualization, UC Davis, USA), with landmark labels otherwise noted (Supplementary Table 4). 3D models of the surface datasets could be combined. In total, thirty homologous landmarks were digitized on the dorsal and lateral surfaces of the cranium (Supplementary Fig. 5 and Supplementary Table 5). Because the goal of the original study was to examine cranial convergence related to diet and feeding ecology, landmarks were focused on facial, dental and zygomatic regions, including muscle attachment sites such as the sagittal crest. However, we note that landmarks on the palatal surface are lacking, which may miss other aspects of cranial morphology related to diet. Preliminary analyses of a subset of our landmarked crania revealed that variation

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
due to measurement error was negligible (<2%; results not shown), indicating that landmarks could be placed confidently on all specimens under study. The final combined data set consisted of 171 individuals from 113 species, including two representative species from each of the three eutherian lineages (Supplementary Fig. 4).

Geometric information was extracted from the landmark coordinates by a generalized Procrustes fit81. The resulting Procrustes coordinates represent the symmetric component of shape variation after translating, scaling and rotating all individuals to a common average and were used as shape variables in all analyses. The asymmetric component, which is typically the focus of studies on developmental integration and modularity, was disregarded. Individual size information, preserved in the centroid size, was calculated as the square root of the sum of squared distances of landmarks to the centre of their configuration. Species with multiple specimens in the dataset were represented by their mean Procrustes shape and centroid size (CS) values.

To examine evolutionary trends in cranial morphology, we generated a simplified phylogenetic tree of mammals using a direct supertree approach82. Published phylogenies of eutherian and metatherian species were pruned to match our taxon sampling and combined at the root using the bind.tree function in the R package Ape v3.5.3. Extinct taxa were placed according to published morphological analyses and, in some cases, phylogenetic analyses including ancient taxa (Supplementary Fig. 10). Due to the non-independence of related species83, tests were also run in a phylogenetic context using our mammalian supertree (Supplementary Fig. 10). A distance-based phylogenetic generalized least squares model (D-PGLS), equivalent to phylogenetically independent contrasts84, was constructed separately for each of the above effects. Shape data were perturbed at the tips of the phylogenetic tree and the non-independence of related species83, tests were also run in a phylogenetic context using our mammalian supertree (Supplementary Fig. 10).

Dominant patterns of cranial shape variation were identified by principal component analysis (PCA). To determine evolutionary patterns of cranial shape change, PC scores from each PC axis were mapped onto landmark-based shape-change parsimony was used to reconstruct the morphological state of ancestral nodes85. The mapped tree was then projected back into morphospace to visualize patterns of phenotypic evolution. Inspection of the PCA plots, together with examination of relative changes in landmark positions along each axis aided in interpretations of evolutionary changes in cranial shape.

For statistical analyses of phenotypic variation, we constructed an analysis of variance (ANOVA) table for each individual species. The general diet category of each species was known as Procrustes ANOVA86. Each species was assigned to a general diet category using the bind.tree function in the R package APE v3.5.3. Unlike other convergence methods like SURFACE87, which may assume an adaptive change, species PC scores were mapped onto the phylogeny and weighted-square change parsimony was used to reconstruct the morphological state of ancestral nodes88. The mapped tree was then projected back into morphospace to visualize patterns of phenotypic evolution. Inspection of the PCA plots, together with examination of relative changes in landmark positions along each axis aided in interpretations of evolutionary changes in cranial shape.

To assess the magnitude of change expressed as D-PGLS, equivalent to phylogenetically independent contrasts89, was determined by a random permutation procedure of 10,000 iterations, except in coneval, which was run for 1,000 iterations.

Sequencing and assembly of the thylacine genome. Sample collection and DNA extraction and sequencing. DNA was obtained from >108-year-old ethanol-preserved pouched young specimen obtained from the Museums Victoria collection (specimen C5754, male; Melbourne, Victoria, Australia; Fig. 1c). The sampled individual was a male, approximately 1 month old at the time of death. Samples were prepared for sequencing using the Illumina TruSeq Nano kit (Illumina). The resulting sequencing reads were mapped to the Tasmanian devil (Sarcophilus harrisii)12 as well as the complete, unmasked genome of the Tasmanian devil (Sarcophilus harrisii)12 as well as the complete, unmasked genome of the Tasmanian devil and 10, the tammar wallaby (Macropus eugeni)91 and the gray short-tailed opossum (Monodelphis domestica)92 as well as the complete, unmasked genome of the Tasmanian devil (assembly versions given in Supplementary Table 8). The percentage of reads mapping uniquely to each reference genome was graphed (Supplementary Fig. 2). The majority of reads mapped against the three eutherian mammal assemblies: the Tasmanian devil, the closest relative to the thylacine available, indicating very low levels of microbial contamination. The percentage of mapped reads was observed to...
decline with increasing phylogenetic distance between the reference genome and the thylacine, indicating that the majority of reads were thylacine in origin (Supplementary Fig. 2).

To assess DNA damage in the thylacine sample, illumina reads were processed and mapped to the thylacine reference-based contigs (see next section) using the PALOEOMUX pipeline 1. Briefly, residual adapter sequences were trimmed and reads shorter than 25 nucleotides were removed, and overlapping paired reads were collapsed using AdapterRemoval v2.0. Mapping of collapsed and paired reads was performed using the mem algorithm with default parameters in bwa v0.7.13. Reads with mapping quality below 25 were removed. Finally, mapDamage2.0 was used to assess levels of cytosine deamination and depurination on a random subset of 100,000 reads (default parameter) for each of the sequencing datasets. The only damage pattern characteristic of ancient DNA sequence data was a slight increase of depurination (G only) immediately before the reads start (Supplementary Fig. 3). Since we did not observe an increased PCR amplification of genomic DNA from the numbats and other dasyuromorphs for all loci.

We randomly selected 75 of the most conserved (to enable reliable PCR) loci from each of the three datasets. These loci were manually aligned, and sequences from the short-tailed opossum (taxid:9265), the Tammar wallaby (taxid:9315), and the koala (taxid:38626) were aligned along with these where possible (Supplementary Table 23). Conserved, SINE-flanking PCR primers were designed and used for the third hypothesis-testing screens.

Retrophylogenetic tree topology and statistics. All markers and their presence/absence patterns are compiled in Supplementary Fig. 4. Supplementary Table 24a,b presents the data in a format accessible for a Dollo parsimony tree reconstruction (PAUP 4.0b10; irrev:character transformation; heuristic search with 1,000 random sequence additions; tree bisection and reconnection branch swapping). For hypothesis 3, loci with an absence of informative markers present in the numbat and outgroup marsupials were mapped to the Tasmanian devil reference (Ensembl Devil ref_v7.0) with bwa mem using default parameters. Following mapping, we excluded scaffolds shorter than 1 Mb in length, and scaffolds that were putatively X-linked.

Reconstruction of demography with PSMC. Retrophylogenomics. We inferred past effective population sizes separately for the thylacine and Tasmanian devil using the PSMC method as implemented in the program PSMC15.

Read mapping and filtering. We downloaded Tasmanian devil reads from NCBI's short-read archive, with accessions ERR789026, ERR789027, ERR789028, ERR789029, ERR789030, ERR789031 and ERR789032. The Tasmanian devil reads were mapped to the repeat-masked Tasmanian devil genome fasta, with a coverage threshold of ×10 and ×25. Contig names were truncated to obtain the originating scaffold names and collapsed for each scaffold. These scaffold names were then used to identify the species of origin.

To remove X-linked scaffolds, we started with a list of 2,507 putatively X-linked scaffolds in the tammar wallaby reference (MEUG3.0, unpublished data), identified with homology to the human X (GRCh38) or containing tammar wallaby X-linked loci. By mapping Tasmanian devil scaffolds to the tammar wallaby reference we could therefore identify X-linked scaffolds for the Tasmanian devil and thylacine. However, we first split the DEVIL7.0 scaffolds into contigs to allow more sensitive mapping, as attempts to map DEVIL7.0 scaffolds directly to the MEUG3.0 reference resulted in numerous false positive/absence markers. Resulting contigs were named for their scaffold of origin with an additional numerical suffix (for example, the 12th contig in scaffold GL834412.1 was named GL834412.1.12). The resulting whole-genome alignment was filtered to retain contigs that mapped to one of the MEUG3.0 X-linked scaffolds (no 0 × 4 flag), were primary mappings (no 0 × 100 or 0 × 800 flag), and had MAPQ ≥ 25. Ninety of the 120 markers that were refined by filtering were represented by these scaffold names and collapsed for uniqueness with ‘sort’–‘u’. This process identified 640 putatively X-linked devil contigs.

Determination of X-linked scaffolds. To remove X-linked scaffolds, we started with a list of 2,507 putatively X-linked scaffolds in the tammar wallaby reference (MEUG3.0, unpublished data), identified with homology to the human X (GRCh38) or containing tammar wallaby X-linked loci. By mapping Tasmanian devil scaffolds to the tammar wallaby reference we could therefore identify X-linked scaffolds for the Tasmanian devil and thylacine. However, we first split the DEVIL7.0 scaffolds into contigs to allow more sensitive mapping, as attempts to map DEVIL7.0 scaffolds directly to the MEUG3.0 reference resulted in numerous false positive/absence markers. Resulting contigs were named for their scaffold of origin with an additional numerical suffix (for example, the 12th contig in scaffold GL834412.1 was named GL834412.1.12). The resulting whole-genome alignment was filtered to retain contigs that mapped to one of the MEUG3.0 X-linked scaffolds (no 0 × 4 flag), were primary mappings (no 0 × 100 or 0 × 800 flag), and had MAPQ ≥ 25. Ninety of the 120 markers that were refined by filtering were represented by these scaffold names and collapsed for uniqueness with ‘sort’–‘u’. This process identified 640 putatively X-linked devil contigs.

The putatively X-linked devil scaffolds comprised 404 Mb of sequence data with an average coverage depth of ×10. To remove these scaffolds, we started with a list of 2,507 putatively X-linked scaffolds in the tammar wallaby reference (MEUG3.0, unpublished data), identified with homology to the human X (GRCh38) or containing tammar wallaby X-linked loci. By mapping Tasmanian devil scaffolds to the tammar wallaby reference we could therefore identify X-linked scaffolds for the Tasmanian devil and thylacine. However, we first split the DEVIL7.0 scaffolds into contigs to allow more sensitive mapping, as attempts to map DEVIL7.0 scaffolds directly to the MEUG3.0 reference resulted in numerous false positive/absence markers. Resulting contigs were named for their scaffold of origin with an additional numerical suffix (for example, the 12th contig in scaffold GL834412.1 was named GL834412.1.12). The resulting whole-genome alignment was filtered to retain contigs that mapped to one of the MEUG3.0 X-linked scaffolds (no 0 × 4 flag), were primary mappings (no 0 × 100 or 0 × 800 flag), and had MAPQ ≥ 25. Ninety of the 120 markers that were refined by filtering were represented by these scaffold names and collapsed for uniqueness with ‘sort’–‘u’. This process identified 640 putatively X-linked devil contigs.

The putatively X-linked devil scaffolds comprised 404 Mb of sequence data with an average coverage depth of ×10. To remove these scaffolds, we started with a list of 2,507 putatively X-linked scaffolds in the tammar wallaby reference (MEUG3.0, unpublished data), identified with homology to the human X (GRCh38) or containing tammar wallaby X-linked loci. By mapping Tasmanian devil scaffolds to the tammar wallaby reference we could therefore identify X-linked scaffolds for the Tasmanian devil and thylacine. However, we first split the DEVIL7.0 scaffolds into contigs to allow more sensitive mapping, as attempts to map DEVIL7.0 scaffolds directly to the MEUG3.0 reference resulted in numerous false positive/absence markers. Resulting contigs were named for their scaffold of origin with an additional numerical suffix (for example, the 12th contig in scaffold GL834412.1 was named GL834412.1.12). The resulting whole-genome alignment was filtered to retain contigs that mapped to one of the MEUG3.0 X-linked scaffolds (no 0 × 4 flag), were primary mappings (no 0 × 100 or 0 × 800 flag), and had MAPQ ≥ 25. Ninety of the 120 markers that were refined by filtering were represented by these scaffold names and collapsed for uniqueness with ‘sort’–‘u’. This process identified 640 putatively X-linked devil contigs.

The putatively X-linked devil scaffolds comprised 404 Mb of sequence data with an average coverage depth of ×10. To remove these scaffolds, we started with a list of 2,507 putatively X-linked scaffolds in the tammar wallaby reference (MEUG3.0, unpublished data), identified with homology to the human X (GRCh38) or containing tammar wallaby X-linked loci. By mapping Tasmanian devil scaffolds to the tammar wallaby reference we could therefore identify X-linked scaffolds for the Tasmanian devil and thylacine. However, we first split the DEVIL7.0 scaffolds into contigs to allow more sensitive mapping, as attempts to map DEVIL7.0 scaffolds directly to the MEUG3.0 reference resulted in numerous false positive/absence markers. Resulting contigs were named for their scaffold of origin with an additional numerical suffix (for example, the 12th contig in scaffold GL834412.1 was named GL834412.1.12). The resulting whole-genome alignment was filtered to retain contigs that mapped to one of the MEUG3.0 X-linked scaffolds (no 0 × 4 flag), were primary mappings (no 0 × 100 or 0 × 800 flag), and had MAPQ ≥ 25. Ninety of the 120 markers that were refined by filtering were represented by these scaffold names and collapsed for uniqueness with ‘sort’–‘u’. This process identified 640 putatively X-linked devil contigs.
Parameter estimation. MSMC produces an output that is scaled by the per-generation mutation rate, requiring estimates of the generation time and the per-generation mutation rate in order to rescale plots into real time. We assume a generation time of three years for both the Tasmanian devil and the thylacine. The Tasmanian devil reaches sexual maturity by two years, suggesting a mode of two years for parental age, with right skew. Thus an estimated generation time of three years is not unreasonable for these species. We first attempted to estimate the per-year mutation rate by dividing the number of observed substitutions between Tasmanian devil and thylacine by twice the time to their most recent common ancestor. Because of the large divergence time and low contiguity of the Tasmanian devil reference, only conserved regions of the genomes map to each other and as a consequence this strategy produced an unreasonably low estimate (1.74 × 10⁻¹⁰ mutations per base per year, or for a three-year generation time, 5.22 × 10⁻¹⁰ mutations per base per generation).

As an alternative, we took advantage of the highly conserved 2n = 14 karyotype of dasyurids to estimate a recombination rate, ρ, that may equally apply to the Tasmanian devil and the thylacine. In mammals, the number of recombinations per-generation is strongly predicted by the number of chromosome arms. The Tasmanian devil has six metacentric autosomes, leading to the expectation that we should observe 12 recombinations per-generation. To obtain the recombination rate per base, per generation, we divide by the size of the autosome, where the autosome is assumed to be 97% of the genome. This gives \(\rho = 9.147596 \times 10^{-11} \) recombinations per base per generation.

MSMC provides estimates for the scaled recombination rate \(\rho = 4\theta N \), and scaled mutation rate \(\theta = \frac{2\mu}{\kappa} \times 10^{-10} \) mutations per base per generation.

As an alternative, we took advantage of the highly conserved 2n = 14 karyotype of dasyurids to estimate a recombination rate, \(\rho \), that may equally apply to the Tasmanian devil and the thylacine. In mammals, the number of recombinations per-generation is strongly predicted by the number of chromosome arms. The Tasmanian devil has six metacentric autosomes, leading to the expectation that we should observe 12 recombinations per-generation. To obtain the recombination rate per base, per generation, we divide by the size of the autosome, where the autosome is assumed to be 97% of the genome. This gives \(\rho = 9.147596 \times 10^{-11} \) recombinations per base per generation.

MSMC gave the scaled mutation rate \(\theta = 6.960187 \times 10^{-10} \) for the Tasmanian devil and the thylacine, respectively. Provided the “fixedRecCombination” parameter is not used, MSMC estimates \(\rho \) during each Baum-Welch iteration, which is very accurate after 50 iterations. MSMC gave the scaled recombination rate at the 50th iteration as \(\rho = 2.34114 \times 10^{-10} \) and \(\rho = 5.78165 \times 10^{-10} \) for the Tasmanian devil and the thylacine, respectively. For consistency with the scaled recombination rate estimate, we also infer the demography from the 50th iteration.

By multiplying the ratio of the scaled mutation rate to scaled recombination rate by the per-generation recombination rate implied by the karyotype we were able to estimate a per-generation mutation rate for scaling the MSMC output. The final mutation rate estimates are:

- Tasmanian devil: \(\mu = 2.8 \times 10^{-10} \cdot \text{per generation} \)
- Thylacine: \(\mu = 2.1 \times 10^{-10} \cdot \text{per generation} \)

Using the same strategy to estimate the human mutation rate from 100,000 genomes sample HG00096, we obtained \(\mu = 0.975339 \times 10^{-10} \cdot \text{mutations per base per generation} \). This value is faster than published rates, which range between \(1 \times 10^{-10} \) (pedigree estimates) and \(2.5 \times 10^{-10} \) (long-term divergence estimates) mutations per base per generation. Therefore, we expect that the true thylacine and Tasmanian devil mutation rates may be slower than those we have estimated above. Mutation rate scaling is linear, and the effect of scaling with a slower mutation rate is to shift the demographic curve farther back in time and higher up on the population size axis. Consequently, the reconstructions for each species in Fig. 2b represent lower bounds for both timing and population size (that is, events may have occurred earlier and population sizes may have been larger).

Bootstrapping. A typical MSMC bootstrap is performed by first concatenating MSMC input files for all chromosomes, then sampling chunks with replacement until the sum of the sampled chunks is an equivalent genome size. A script for this can be found in the msms-tools git repository. By default, this script samples 20 5 Mb chunks, placing them sequentially to make a 100 Mb pseudo-chromosome. 30 such pseudo-chromosomes are constructed with default settings. This bootstrap strategy accounts for: (1) variability in demographic inference along the chromosomes; and (2) variability due to a small rate of false recombinations, induced at chromosome boundaries and at chunk boundaries. For a chromosome level reference assembly, the impact of (2) should be minor. The scaffolds we have used are roughly exponentially distributed, ranging between 1–5 Mb (remembering that 1 Mb was our lower cutoff for a scaffold’s inclusion). Thus, the impact of (2) for our assembly is likely to be minor, and not representative of falsely detecting recombinations from our data. We instead choose to sample scaffolds, with replacement, until the total original data size is reached. Because (1) should also include variability in erroneously detected recombinations, we believe this resampling strategy is more appropriate for data mapped to a scaffold level assembly. We did this by first replicating each thylacine and the thylacine. As new estimates for \(\theta \) and \(\rho \) were obtained in each replicate, rescaling into real time was done separately for each replicate according to the procedure above.

Comparative genomic analyses. Orthologue identification and alignment. Thylacine and wild canid protein-coding DNA sequences (CDS) were extracted from the reference assembly using Ensembl and the Ensembl annotations of the Tasmanian devil and dog genomes respectively. All CDS sequences for high-confidence one-to-one orthologs to Tasmanian devil genes from 21 vertebrates (inclusive of the devil) were downloaded from Ensembl 84 BioMart (Supplementary Table 8) and filtered for the best available CDS sequence per gene using custom scripts. For each Ensembl gene ID, the longest complete CDS was selected. If no complete CDS was available, the longest sequence beginning with a start codon was accepted. Otherwise the longest available partial sequence was selected. Filtered sequences were grouped by orthology using ParaATI⁴⁴, then aligned and translated using MACASE version 1.01b with default parameters. In total, 11,254 groups of orthologous genes were retained for comparative genomic analyses (Supplementary Table 1). We published phylogeny of all included species to construct a fixed tree topology⁴⁵,⁶ used in all comparative genomic analyses (Supplementary Fig. 8).

Testing the frequency of homoplasious substitutions. To test the frequency of homoplasious substitutions across mammals, we collected all genes from our published analyses which contained representative sequences for all therian mammals and the platypus as an outgroup. These genes were filtered to alignments with at least 50% pairwise identity. Gene trees for the genes retained after filtering were used to construct a consensus tree with Mesquite v3.10 (build 765)⁴⁶ using default parameters. We then counted the observed number of homoplasious substitutions for all pairwise comparisons between all nodes that do not share a most recent ancestral node in the fixed tree topology. We then compared it to the number of expected homoplasious substitutions under the JTT-F, \(\mu \), model⁴⁷, using a python script generously provided by Z. Zou and J. Zhang (University of Michigan). Raw values (observed/expected) were calculated for all pairs of species along the central node and plotted against phylogenetic distance (Fig. 1 and Supplementary Table 10). Pairwise comparisons showed expected values much lower than 1 resulted in artificially inflated \(R \) values, thus only comparisons with at least one expected homoplasious substitution were included in the plot.

Testing for individual homoplasious substitutions. To identify genes containing convergent and parallel substitutions between the thylacine and the canids, ancestral protein sequences were reconstructed using CodeML⁴⁸ (Supplementary Table 25) using the fixed tree topology described above (Supplementary Fig. 8). Alignments with less than 50% pairwise identity were excluded from analysis. The thylacine was compared to the ancestral sequence for all canids, as this represents the node in which adaptive substitutions are likely to have resulted in features shared by all canids. We used previously described definitions for parallel and convergent changes⁴⁹. Briefly, for each amino acid position, the thylacine and the reconstructed ancestral sequence for the extant canids were compared to each other and to their most recent ancestors respectively. Positions that were identical between the thylacine and canid sequence, but different from both of their respective ancestors, were deemed to be homoplasious. Homoplasious substitutions in which the ancestors shared an identical residue were considered to be parallel, while residues that differed between the ancestors were considered to be convergent.

Testing for positive selection. The branch-site model implemented in CodeML (PAMLv4.7)⁵⁰ was used to test for genes containing positively selected sites. The modified model A (Supplementary Table 26) was compared to the null (Supplementary Table 27) assuming the fixed tree topology described above (Supplementary Fig. 8). Four likelihood ratio tests were performed on nucleotide alignments of orthologous genes using different foreground branches: the thylacine, the branch leading to the subfamily Caninae, the Tasmanian devil and the branch leading to the family Bovidae (the latter two acting as controls). The total number of genes analysed for each foreground branch varies slightly (thylacine: 10,770; Caninae: 10,766; Tasmanian devil: 10,770; Bovidae: 9,544) due to the lack of representative sequences available for a given foreground branch in some alignments, and because PAML discards all alignment columns containing gaps. Additionally, alignments with average pairwise identity less than 50% were excluded from analyses. \(P \) values were obtained using a 50:50 mixture of a point mass 0 and a \(\chi^2 \) distribution with 1 degree of freedom and were corrected for false discovery rate (FDR) using the Benjamini–Hochberg⁵¹ method with a cutoff of 0.05. Genes under positive selection in multiple lineages were found by comparing parallel (co-affected genes from different species) and convergent (towards the species) lineages (Supplementary Tables 12–13). The resulting lists of HGNC symbols for the thylacine and canids were each analysed using the Enrichr web server (http://amp.pharm.mssm.edu/Enrichr). HGNC gene symbols for reference Tasmanian devil genes were downloaded from Ensembl 85 BioMart. Genes without HGNC gene symbols, and the affected (highlighted in red, Supplementary Tables 12 and 13) resulting lists of HGNC symbols for the thylacine and canids were then separately analysed for enrichment of KEGG 2016 pathways, the results of which are contained in Supplementary Fig. 9 and Supplementary Tables 19 and 20.

Life Sciences Reporting Summary. Further information on experimental design is available in the Life Sciences Reporting Summary.

Code availability. Custom PERL scripts were used for data parsing and to identify convergent and parallel amino acid substitutions. Code is available at https://github.com.
References

1. Paddle, R. The Last Tasmanian Tiger: The History and Extinction of the Thylacine (Cambridge Univ. Press, Cambridge, 2000).
2. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–886 (2001).
3. Buhlizards Emondon et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).
4. Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).
5. Wroe, S. & Milne, C. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61, 1251–1260 (2007).
6. Goswami, A., Milne, N. & Wroe, S. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proc. Roy. Soc. B 278, 1831–1839 (2011).
7. Menzies, B. R. et al. Limited genetic diversity preceded extinction of the Tasmanian tiger. PLoS ONE 7, e53432 (2012).
8. Miller, W. V. et al. The mitochondrial genome sequence of the Tasmanian tiger (Thylacine cynocephalus). Genome Res. 19, 213–220 (2009).
9. Krajewski, C., Driskell, A. C., Baverstock, P. R. & Braun, M. J. Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyurid marsupials: evidence from cytochrome b DNA sequences. Proc. Roy. Soc. Lond. B 256, 19–27 (1992).
10. Murchison, E. P. et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791 (2012).
11. Renfree, M. B. et al. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 12, R81 (2011).
12. Mikkelsen, T. S. et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177 (2007).
13. Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. Phylogenetic sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13, e1002224 (2015).
14. Wesley-Hunt, G. D. & Flynn, J. J. Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of Miocrodes relative to Marainvora. J. System. Palaeontol. 3, 1–28 (2005).
15. Wroe, S., Clausen, P., McHenry, C., Moreno, K. & Cunningham, E. Computer simulation of feeding behaviour in the thylacine and dingo as a novel test for convergence and niche overlap. Proc. Roy. Soc. B 274, 2819–2828 (2007).
16. Wroe, S., McHenry, C. D. & Thomason, J. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossorial taxa. Proc. Roy. Soc. B 272, 619–625 (2005).
17. Wroe, S. & Milne, C. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61, 1251–1260 (2007).
18. Jones, M. E. in Predators with Pouches: The Biology of Carnivorous Marsupials (eds Jones, M. E. et al.) 285–296 (CSIRO, Collingwood, 2003).
19. Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. Biology 11, 1–14 (2013).
20. Klingenberg, C. P. Morpho: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
21. Klingenberg, C. P. Barlaz, M. & Meyer, A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920 (2002).
57. Bininda-Emonds, O. R. P., Gittleman, J. L. & Steel, M. A. The (super)tree of life: procedures, problems, and prospects. *Annu. Rev. Ecol. Syst.* 33, 265–289 (2002).

58. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics* 20, 289–290 (2004).

59. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. *Evolution* 57, 717–745 (2003).

60. Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. *Syst. Biol.* 63, 685–697 (2014).

61. Maddison, W. P. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. *Syst. Zool.* 40, 304–314 (1991).

62. Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. *Heredity* 115, 357–365 (2015).

63. Klingenberg, C. P. Size, shape, and form: concepts of allometry in geometric morphometrics. *Dev. Genes Evol.* 226, 133–157 (2016).

64. Felsenstein, J. Phylogenies and the comparative method. *Am. Nat.* 125, 1–15 (1985).

65. Adams, D. C. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. *Evolution* 68, 2675–2688 (2014).

66. Felsenstein, J. Phylogenies and quantitative characters. *Annu. Rev. Ecol. Syst.* 19, 445–471 (1988).

67. Butler, M. A. & King, A. A Phylogenetic comparative analysis: a modeling approach for adaptive evolution. *Am. Nat.* 164, 683–695 (2004).

68. Ingram, T. & Mahler, D. L. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. *Methods Ecol. Evol.* 4, 416–425 (2013).

69. Hammer, O., Harper, D. & Ryan, P. Paleontological statistics software package for education and data analysis. *Palaeontol. Electron.* 4, 1–9 (2001).

70. Adams, D. C. & Otatola-Castillo, E. geometric: an R package for the collection and analysis of geometric morphometric shape data. *Methods Ecol. Evol.* 4, 393–399 (2013).

71. Sleighsthome, S. R., Robovský, J. & Vohralík, V. Description of four newly discovered thylacine DNA samples and a comparison with Boardman (1945). *Austral. Zool.* 36, 232–238 (2012).

72. Paabo, S., Gifford, J. A. & Wilson, A. C. Mitochondrial DNA sequences from a 7000-year old brain. *Nucleic Acids Res.* 16, 9775–9787 (1988).

73. Pask, A. J., Behringer, R. R. & Renfree, M. B. Resurrection of DNA function inferred from an extinct genome. *PLoS ONE* 3, e2240 (2008).

74. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *BMC Bioinformatics* 265–289 (2002).

75. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemovalv2: rapid adapter trimming, identification, and read merging. *BMC Res. Notes* 9, 88 (2016).

76. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754–1760 (2009).

77. Ginolhac, A., Rasmussen, M., Gilbert, M. T., Willerslev, E. & Orlando, L. mapDamage for damage patterns in ancient DNA sequences. *Bioinformatics* 27, 2114–2120 (2014).

78. Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenic and metagenomic analysis using PALEOMIX. *Nat. Protoc.* 9, 1056–1082 (2014).

79. Schubert, M., O’Rourke, S. & Orlando, L. AdapterRemovalv2: rapid adapter trimming, identification, and read merging. *BMC Res. Notes* 9, 88 (2016).

80. Wang, C. et al. A first-generation integrated thylacine Wallacea genome and the use in creating a thylacine Wallacea first-generation virtual genome map. *BM Genom. 12*, 422 (2011).

81. Pemberton, D. Social Organisation and Behaviour of the Tasmanian Devil, *Sarcophilus harrisii*. PhD thesis, Univ. Tasmania (1990).

82. Pardo-Manuel de Villena, F. & Sapienza, C. Reconstruction is proportional to the number of chromosome arms in mammals. *Mamm. Genome* 12, 318–322 (2001).

83. Deakin, J. E. et al. From FastQ data to high confidence variant calling: the Genome Assembly Toolkit best practices pipeline. *Curr. Protoc.* *Bioinform.* 43, 10.11.1–10.11.33 (2013).

84. Guo, H. et al. mScrambler: an updated SNV loss method for estimating single-copy orthologs. *Bioinformatics* 31, 3210–3212 (2015).

85. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).

86. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* 43, 491–498 (2011).

87. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Assembly Toolkit best practices pipeline. *Curr. Protoc.* *Bioinform.* 43, 10.11.1–10.11.33 (2013).

88. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. *Nat. Genet.* 46, 919–925 (2014).

89. Camacho, C. et al. BLAST+: architecture and applications. *BMC Bioinform.* 10, 421 (2009).

90. Swofford, D. L. & Sullivan, J. in *Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing* 2nd edn (eds Lemey, P., Salen, M. & Vandamme, A.) 267–312 (Cambridge Univ. Press, New York, 2009).

91. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542 (2012).

92. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. *Nat. Genet.* 46, 919–925 (2014).

93. Deakin, J. E. et al. Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. *Chromosome Res.* 16, 1159–1173 (2008).

94. Wang, C. et al. A first-generation integrated thylacine Wallacea genome map and its use in creating a thylacine Wallacea first-generation virtual genome map. *BM Genom. 12*, 422 (2011).

95. T. N. H. performed identification of X scaffolds. B. R. M. performed sample processing. A. P. and A. C. were supported by Australian Research Council Fellowships.
Experimental design

1. Sample size

Describe how sample size was determined.

- Taxon sampling for morphometric analyses is described in detail in the methods. Species were selected for CodeML analysis to sample broadly from available mammalian taxa.

2. Data exclusions

Describe any data exclusions.

- Sequences were filtered at various stages based on completeness, the presence of open reading frames and homology.

3. Replication

Describe whether the experimental findings were reliably reproduced.

- Boostrapping procedure of PSMC' analysis of the genome is detailed in the methods.

4. Randomization

Describe how samples/organisms/participants were allocated into experimental groups.

- Not applicable.

5. Blinding

Describe whether the investigators were blinded to group allocation during data collection and/or analysis.

- Not applicable.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

- **n/a** Confirmed
 - □ □ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
 - □ □ A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
 - □ □ A statement indicating how many times each experiment was replicated
 - □ □ The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)
 - □ □ A description of any assumptions or corrections, such as an adjustment for multiple comparisons
 - □ □ The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted
 - □ □ A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
 - □ □ Clearly defined error bars

See the web collection on [statistics for biologists](#) for further resources and guidance.
Software

Describe the software used to analyze the data in this study.

Software used: Trimmomatic 0.32, Samtools 1.3, BWA 0.7.12, Picard tools 1.99, GATK 3.4, BioMart Ensembl 84, ParaAT 1.0, MACSE 1.01b, PAML 4.7, datos|x-reconstruction, Meshlab, VGStudio Max 2.1, Landmark Editor 3.6, Ape V3.5, Geomorph V2.0, MorphoJ 1.06d, PALEOMIX, AdapterRemoval V2.0, BWA 0.7.13, mapDamage 2, PAST 3.16, SOAPdenovo2, BUSCO V1.22, bcftools V0.1.19, ncbi blast, MrBayes V3.2.5, PAUP 4.0b10, MSMC, msmc-tools. Custom perl scripts were used to parse text files and fasta alignments. Bio::SimpleAlign was used to calculate average pairwise identity of fasta alignments. A python script provided by Zhengting Zou (convCal version 1) was used to calculate observed vs expected frequencies of homoplasy.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

Materials and reagents

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

Requests for tissue samples from thylacine C5757 should be made to Museum Victoria.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

Not applicable

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

Not applicable

b. Describe the method of cell line authentication used.

Not applicable
c. Report whether the cell lines were tested for mycoplasma contamination.

Not applicable
d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

Not applicable

Animals and human research participants

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

No live animals were used. Thylacine was a preserved museum specimen. Numbat tissue was derived from archival samples at Perth Zoo.

12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

Not applicable