The Recent Advances of Mobile Healthcare in Cardiology Practice

Shynar Kulbayeva¹, Karlygash Tazhibayeva², Laura Seiduanova², Indira Smagulova³, Aiman Mussina¹, Shynar Tanabayeva³, Ildar Fakhradiyev³, Timur Saliev³
¹NJSC “Astana Medical University”, Nur-Sultan, Kazakhstan
²Al Farabi Kazakh National University, Almaty, Kazakhstan
³S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
⁴“National Research Cardiac Surgery Center”, Nur-Sultan, Kazakhstan

Corresponding author: Laura Seiduanova. Address: S.D. Asfendiyarov Kazakh National Medical University, Tele-bi str. 94, Almaty, 050020, Republic of Kazakhstan. Phone: + 7 707 949 20 70; E-mail: ildariko@mail.ru. ORCID ID: http://www.orcid.org/0000-0003-0205-2421.
doi: 10.5455/aim.2022.30.236-250

ABSTRACT

Background: Digitalization of healthcare led to the optimization of monitoring, diagnostics, and treatment of the range of disorders. Taking into account recent situation with COVID-19 pandemics, digital technologies allowed to improve management of viral infections via remote monitoring and diagnostics of infected patients. Up to date, various mobile health applications (apps) have been proposed, including apps for the patients diagnosed with cardiovascular pathologies. Objective: The presented review aimed at the analyses of a range of mHealth solutions used to improve primary cardiac care. In addition, we studied the factors driving and hindering the wide introduction of mHealth services in the clinics. Methods: The work was based on the guidelines of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The publication search was carried out using PubMed, Web of Science, Cochrane Library, Scopus, and Google Scholar databases. Studies published during the period from 2014 until January 2022 were selected for the analysis. The evaluation of risk of bias for the included studies was conducted using the Cochrane Collaboration Risk of Bias tool. Results and Discussion: An overall 5513 studies were assessed for eligibility after which 39 studies were included. The main trend in the mobile health for cardiological applications is the use of different types of wearable devices and Artificial Intelligence-platforms. In fact, mobile technology allows remotely to monitor, interpret, and analyze biomedical data collected from the patient. Conclusion: The results of this literature search demonstrated that patients diagnosed with cardiovascular disorders can potentially benefit from the application of mHealth in cardiology. However, despite the proven advantages of mHealth for cardiology, there are many challenges and concerns regarding effectiveness, safety, reliability and the lack of official regulation and guidelines from official organizations. Such issues require solutions and further work towards a wide implementation of mHealth technologies in cardiac practice.

Keywords: mobile applications, telemedicine, cardiology, mobile app.

1. BACKGROUND

The term ‘Mobile Healthcare’ (mHealth) refers to the use of mobile computers and wireless technologies in healthcare to expand and improve the delivery of healthcare services outside hospitals (1, 2). The introduction of m-health dates back to 1924, when the article “The Radio Doctor–Maybe!” was published in Radio News Magazine, where a doctor assists a patient through a video call.

The recent rapid spread of coronavirus infection (COVID-19) sparked the interest in the use of m-Health platforms in healthcare (3-5). In fact, telemedicine has been proven as an optimal way to provide medical services due to the possibility to avoid a close contact with infected patients and reduce overall mortality (6-11). In addition, mobile health has been shown to lower the cost of health care and improve an access to healthcare in undeveloped nations (12, 13).

In turn, technological progress and the use of mobile phones (e.g. smartphones, tablet computers, etc.) have led to the widespread applications of so-called ‘mobile applications’ (‘apps’). Mobile devices have become commonplace in healthcare settings, leading to a
rapid increase in the development of medical software applications for these platforms (14-19).

Despite the rapid development of the digital healthcare systems and technological progress, this concept of medical care is facing various challenges. The main problems for the widespread implementation of digital health are limited digitalization and financial issues (2). Apart from that, there are concerns regarding the reliability and safety of smart devices, availability and free access to the equipment and health data (2). Another issue is a low digital literacy of some groups of patients and physicians. In addition, many other factors play a pivotal role in the effective implementation of digital platforms in healthcare and cardiology, including ethical, social, mental, political and financial factors (2). Mobile health has also been criticized for the lack of clinical quality and safety of this type of healthcare (20).

Thus, mobile applications are becoming an increasingly important platform for the provision of medical services, and their capabilities can reduce overall mortality. To date, according to the WHO, cardiovascular diseases still occupy the first position in the list of causes of death (21). The use of mobile health in these patients can improve cardiac rehabilitation (22), increase adherence to treatment, exercise tolerance (23), reduce cardiovascular symptoms (24), improve the psychosocial status, and thereby, reduce overall mortality.

The growing interest of professional organizations such as the European Society of Cardiology and the American Heart Association in using mHealth technologies indicates a need in a new systematic analysis with focus on non-invasive mHealth interventions for patients with heart failure is warranted.

2. OBJECTIVE

In this review, we intended to highlight and analyze the available mobile applications used in the primary cardiac care service. In addition, we studied the factors driving and hindering the wide introduction of mHealth services.

3. MATERIAL AND METHODS

The study was performed in compliance with the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0 (25, 26). The work was based on the guidelines of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement (26).

3.1. Data Sources and Search Strategy

The following databases were searched: PubMed, Web of Science, Cochrane Library, Scopus and Google Scholar (period covering from 2014 up to January 15, 2022). Search strategies were performed by using a combination of free text and MeSH terms, as well as Boolean operators. Search strategy was presented in Appendix 1. The articles were selected using a two-step approach. First, the titles and abstracts identified by the above searches were screened for relevant studies. Second, the full texts of these shortlisted articles were downloaded and assessed for eligibility based on the inclusion criteria.

All citations were downloaded and adjusted into EndNote version X6 (Clarivate Analytics, New York, USA). The duplicates were removed using EndNote software, and manually too. We also employed the Rayan online screening tool for searching the articles (27).

3.2. Procedure of the Data Extraction

Two reviewers (co-authors) independently extracted the data on participant characteristics, intervention details and outcomes measures. Disagreements were resolved either by oral discussion or resolved by a third author. Data were collected using a data extraction spreadsheet developed specifically for this study.

3.3. Criteria for considering studies for this review

The inclusion criteria were as the follows: all clinical trials or randomized controlled trails of mobile applications (aimed at improving the primary cardiac care or rehabilitation), reported original data, and research conducted on human participants. The publications written only in English were considered for the analysis.

The interventions were considered only for the cases of the use of medical mobile applications. Such applications (apps) were based on a well-defined function to measure risk factor for cardiovascular diseases (CVD), changes and the intention to change health behavior in outpatients diagnosed with CVD or treated.

3.4. Exclusion criteria

The studies conducted before 2008 were excluded from the analysis (the first Apple smartphones with the iOS operating system was released on June 29, 2007 (28)). From the analysis were excluded the following publications: review articles, systematic reviews, editorials, books and book chapters, conference materials, study design description (or study protocols), pilot studies without indication preliminary data, articles directly related to telemedicine without use of mobile applications (videoconferencing, sending a message, usage only web platforms, computers, phone calls). Apart from that, the usage of additional smart or medical devices in combination with telemedicine tools without smartphone apps was also excluded from the study.

The articles discussing the mobile applications in a different context were also excluded from the analysis: for example, research on the biological effects of radiation from mobile phones.

3.5. Quality assessment

The quality assessment tool is based on the Cochrane Risk Of Bias tool (29). Specifically, this assessed the risk of bias in random sequence generation; allocation concealment; blinding of participants, personnel, and outcome assessors; incomplete outcome data; selective outcome reporting, and overall; Each question is answered as “yes” (low risk of bias), “no” (high risk of bias), or “unknown” (unknown/unclear risk of bias).

The risk of bias assessment was conducted by one reviewer and validated by the second reviewer, and disagreements were resolved by discussion.

4. RESULTS

4.1. Study selection and study characteristics

The characteristics and main features of the analyzed studies are provided in Table 1. Figure 1 illustrates a systematic procedure for searching and selecting articles. The initial query yielded 25258 potentially relevant records. 19745 articles were excluded for duplicate records. An overall 5513
The Recent Advances of Mobile Healthcare in Cardiology Practice

Author Year	Name of app	Method	Participants	Interventions	Outcomes	
1 Bergland et al. (37), 2018	Smartphone application system for alerting out-of-hospital cardiac arrest (OHCA).	For reducing SBP levels among adults with stage 1 systolic hypertension	Two-arm, small-scale efficacy RCT (NCT01961909); Follow-up: 12 months; N=166 out of 174 patients were included.	TT group: 46.5% ± 10.2%; SPCTL group: 43.4 ± 9.4; N=66 out of 70; TT group: 49.3% ± 8.7%	TT group showed continuous real-time heart rate (HR) from a user’s finger tip placed over a video camera lens during resuscitation. Users receive immediate feedback graphs after each session, showing their HR changes. SPCTL group: twice-daily dosage schedule for engagement in a waiting or running program using the WearableTM app for 1 month. 2 min sessions: months 4–12; 6 min sessions.	
2 Chandler et al. (38), 2020	Tensio Tower (TT) (Android or iOS)	For checking an accuracy of heart rate monitoring	N=100 randomly selected patients	Information not provided	Information not provided	
3 Carugati et al. (44,2017)	For non-contact PPG: “What’s My HeartBeat?” (WMH); “Cardiio” (CAR). (iPhone 5).	To report adherence to treatment and long-term (1 year) clinical outcomes of the mAFA-II trial	N=120 subjects; Follow-up: 12 months; Mean age: 67 years.	Information not provided	Information not provided	
4 Guo et al. (37), 2019	King OPTO-Electronic (version 2.0)	To evaluate the efficacy of mobile app for the management of coronary artery disease	A cluster randomized trial; N=120 subjects; Follow-up: 6 months; 69.35±11.15 Information not provided	Information not provided	Information not provided	
5 Guo et al. (42), 2020	mobile Atrial Fibrillation App (mAFA)	To evaluate the efficacy of mobile app for the management of coronary artery disease	N=36 out of 50; Information not provided	Intervention group: usual care; Control group: usage of mAFA.	N=35 out of 127; Information not provided	Information not provided
6 Johnson et al. (36), 2018	Web-based smartphone application	To evaluate the efficacy of mobile app for the management of coronary artery disease	N=35 out of 50; Information not provided	Control group: 56.4±6; Active group: 56.8±6; Control group: 63/17; Active group: 71/17; Control group: 81; Active group: 88;	Information not provided	Information not provided
7 Nt et al. (43), 2018	Two mobile applications were used: WellChat and BB Reminder	To develop a mobile technology (WellChat) to improve medication adherence among patients with coronary artery disease (CAD).	N=35 out of 50; Two phases: Phase 1 lasted for three months; Phase 2 lasted for two months; Follow-up: 1 month;	Control group: 55/12; Control group: 14/4; Control group: 16; Control group: 18;	At 30 days follow-up, the mean of the difference in medication-taking adherence score in the experimental group compared to the control group was 3.35. SD 0.7, n=36. At 30 days follow-up, the mean of the difference in medication-taking adherence score in the experimental group compared to the control group was 2.85. SD 0.73, n=36. Participants’ use of the mobile app was voluntarily and by whom they wanted or if they felt a need to connect with others. In the nine consecutive participants were assigned to the same “Circle of Friends”.	
8 Sakoibara et al. (35), 2021	Healing Circles (HOC) (iPad with at least iOS 7.3)	To explore the use of technology to facilitate peer support in women with CVD.	N=38 out of 12; Follow-up: 18 weeks; Information not provided	Participants’ use of the program was completely voluntary and by whom they wanted or if they felt a need to connect with others. In the nine consecutive participants were assigned to the same “Circle of Friends”.	Information not provided	Information not provided
The Recent Advances of Mobile Healthcare in Cardiology Practice

9. Liz et al (40, 2020)

“WeChat”

To reduce the time taken for diagnosis and treatment of ST-elevation myocardial infarction (STEMI)

- N=510 patients;
- Control group: 56.3±15.6; Intervention group: 60.5±18.8;
- Control group: 56/14; Intervention group: 56/12;
- Control group: 70; Intervention group: 70;
- Control group did not transfer pre-hospital ECG; Intervention group had per-hospital ECG transmission through WeChat;
- In the WeChat group versus the control group, the median first medical contact to wire was shorter (25 vs 30 minutes), and the median first medical contact to balloon was shorter (75 vs 90 minutes), p=0.04. No significant differences were observed in elderly patients.

10. Manders et al (48, 2014)

Smartphone-based application

To evaluate the effects of a combination of continuous positive airway pressure (CPAP) and telemedicine support on blood pressure (BP) in patients with obstructive sleep apnea (OSA)

A multi-center RCT (NCT18252641);
- N=12 out of 16 patients with high cardiovascular risk;
- Standard care group: 62 ± 8; Telemedicine group: 62 ± 8;
- Standard care group: 75.7±24.5; Telemedicine group: 75.7±24.5;
- Standard care group: 42; Telemedicine group: 42;
- Standard core group: CPAP; Telemedicine group: CPAP and teleconsultation. These BP measurements, CPAP adherence, sleepiness, and quality of life data, in return, received precautions containing health-related messages.

11. Motora et al (56, 2016)

Medication Pana (AppIoP)

To assess the mobile app on a tablet aimed at supporting drug intake and vital sign parameter documentation of elderly patients

N=24 patients; Follow-up: 28 days;
- Patients before pandemic:
 - App user group: 48 (43–53);
 - Non-App user group: 65 (53–76);
- Patients after pandemic:
 - App user group: 87 (75–98);
 - Non-App user group: 71.5 (64–75–73);
- Information not provided

12. Nae et al (58, 2020)

The Tsien-tronio app

To compare outcomes in patients with STEMI who had percutaneous coronary intervention (PCI) and the use of a telemedicine app

Randomised, controlled cross-over trial;
- Participants who completed baseline and at least one intervention: 43.6±15.28;
- Participants who completed baseline and all 4 interventions: 50.3±4.45;
- Patients before pandemic:
 - App user group: 1272 (1158–1386);
 - Non-App user group: 1050 (950–1150);
- Patients after pandemic:
 - App user group: 53 (71–83);
 - Non-App user group: 32 (20–48);
- Information not provided

13. Shcherbina et al (59, 2019)

MyHealth Count (iPhone 5)

To assess the effect of four different physical activity coaching interventions on daily step count via mobile app

Participants who completed baseline and at least one intervention: 4.6±4.6;
- Participants who completed baseline and all 4 interventions: 50.3±4.45;
- Patients who were randomly assigned to receive four combination areas of heart: 2 demonstrated interventions via app, interventions continued: daily 10,000 steps, hourly prompts to stand following 15 s of sitting.

14. Tian et al (59, 2015)

Android-powered app

To compare outcomes in patients with STEMI who had percutaneous coronary intervention (PCI) and the use of a telemedicine app

Randomised, controlled cross-over trial;
- Participants who completed baseline and at least one intervention: 43.6±15.28;
- Participants who completed baseline and all 4 interventions: 50.3±4.45;
- Information not provided

15. Västman et al (60, 2016)

Mobile app

To measure heart rate via the neural network in arrhythmic patients

Two apps, Heart Rate Monitor (California) and Heart Beat Rate (France) (iPhone 5);
- Control group: 5.7±0.18; Intervention group: 5.8±0.18;
- Control group: 39/8; Intervention group: 38/8;
- Control group: 18; Intervention group: 18;
- Information not provided

16. Weibel et al (60, 2014)

Heart Rate Monitor

To measure heart rate via the neural network in arrhythmic patients

Two apps, Heart Rate Monitor (California) and Heart Beat Rate (France) (iPhone 5);
- Control group: 5.7±0.18; Intervention group: 5.8±0.18;
- Control group: 39/8; Intervention group: 38/8;
- Control group: 18; Intervention group: 18;
- Information not provided

17. Elsby et al (61, 2017)

SaltSwitch smart phone app

To determine the effectiveness of an app to support people with cardiovascular disease to make lower salt load choices

Two apps, parallel, randomised controlled trial (NCT1949393206);
- N=510 patients; Follow-up: 6 weeks (2 weeks baseline and 4 weeks intervention);
- Control group: 64/5; Intervention group: 64/5;
- Control group: 33/5; Intervention group: 33/5;
- Information not provided

18. Hamwan et al (62, 2021)

Hemaw (iOS and Android)

To assess the effects on heart rate variability (HRV) and cardiovascular risk factors

Heart rate variability:
- Intervention group: 54/2; Information not provided
- Information not provided

Daily step count, area under the step activity curve, and insurance claims data of the Kencom users were analyzed.
- The use of the app was significantly associated with enhanced physical activity, which might reduce weight loss and improve health-related quality of life profiles.
The Recent Advances of Mobile Healthcare in Cardiology Practice

19 Nabil et al. (2020) Mobile app “My Smart Heart” (Android) To determine the effect of using smartphone applications on self-care behaviors in patients with heart failure Randomized controlled clinical trial; N=120 patients; Follow-up: Each week, the patients were reminded of using the application for 6 months and then every month for about two more months; Control group: 60±7±2.6; Intervention group: 59±7±1.4; Adherence group: 62±8±0.8; Non-adherence group: 53±3±3.2; The main features of the application are: profile, reminder, educational content, educational messages, medication guide, FAQ, registration of physical and mental symptoms and vital signs with the ability to record symptoms and alerts in abnormal cases daily; App improves the condition in patients with heart failure

20 Mung屁股 et al. (2020) Pharmacology-designed app (Android) To determine the effectiveness of using a smartphone in improving BP and promoting adherence to anti-hypertensive medication regimen in patients with hypertension Pre-service, multicenter, randomized controlled trial (NCT04994010); N=87 patients; Follow-up: during 3 months before, during study, and 3 months after study completion; Information not provided; Control group: 48±5%; Intervention group: 47±3.1%; The control group: usual care; Intervention group: received features of full version of app such as calendar reminder; “Call your pharmacy” button; By log-in to enter BP value, educate patient; App did not result in improved medication adherence on BP control, but may be beneficial in patients with hypertension who want to improve medication adherence.

21 Marquez et al. (2019) “APENMAT” app To evaluate the effectiveness of app in pharmacological therapy reduction of the mild-moderate arterial hypertension Pre-service, randomized controlled trial; N=158 patients; Follow-up: 12 months; Control group: 51±6%; Intervention group: 51±7%; Follow-up: 12 months; Information not provided; Control group: 100%; Intervention group: 94%; The control group: usual care; Intervention group: received an eHealth diary and symptom tracking tool in combination with PCC compared with traditional care.

22 Wolf et al. (2018) Mobile-based health tool To investigate the effect of an mHealth app and symptom tracking tool in combination with person-centered care (PCC) for patients with acute coronary syndrome (ACS) Randomized intervention study; Swedish registry; Recruitment n=109 patients; Follow-up: 6 months; 66±1; Information not provided; Control group: 105; Intervention group: 94; During the study period, patients received weekly, individualized monitoring through the app; All patients used the app for preventive activities and found the app both useful and motivating.

23 Lunde et al. (2020) Mobile app (Android or iOS) To assess feasibility of usage of app for promoting and monitoring patients’ adherence to a heart healthy lifestyle after CR Experimental, pre-post single-arm trial; N=64 participants; Follow-up: 12 weeks; 60±1±5; 10/4; During the study period, patients received weekly, individualized monitoring through the app; All patients used the app for preventive activities and found the app both useful and motivating.

24 Lunde et al. (2020) Mobile app (Android or iOS) To assess the effect of individualized follow-up with an app for one year plus peak oxygen uptake (VO2peak) in patients completing cardiac rehabilitation (CR) Randomized controlled trial; N=170 patients; Follow-up: 3 months; Control group: 51±7±1; Intervention group: 55±5±1; Control group: 40±6%; Intervention group: 44±6%; Control group: 94; Intervention group: 97; During the study period, patients received weekly, individualized monitoring through the app; All patients used the app for preventive activities and found the app both useful and motivating.

25 Alko-El-Nour et al. (2020) Mobile app To examine the impact of using a mobile app on the level of adherence to treatment regimen among hypertensive patients Randomized controlled trial; N=172 patients; Follow-up: 3 months; Control group: 52±6%; Intervention group: 55±4±8; Control group: 43±1%; Intervention group: 56±8%; Control group: 49; Intervention group: 56; Control group: received usual care; Intervention group: received medication reminders and cardiac health education; A smartphone-based application supporting secondary prevention among patients with CABG did not lead to a greater adherence to secondary preventive medications.

26 Yu et al. (2020) Heart Health Application To evaluate the effectiveness and feasibility of using a smartphone-based application to improve medication adherence in patients after coronary artery bypass grafting (CABG) A large scale, multicenter, open-label, randomized controlled trial (NCT02342309); N=1000 patients; Follow-up: 6 months; Control group: 56±6±4; Intervention group: 58±6±6; Control group: 63±7%; Intervention group: 71±5%; Control group: received usual care; Intervention group: received medication reminders and cardiac health education; A smartphone-based application supporting secondary prevention among patients with CABG did not lead to a greater adherence to secondary preventive medications.

27 Basangi et al. (2021) Mobile app To assess the effect of a self-management application on patient adherence to hypertension treatment Randomized, controlled clinical trial (RCT) (NCT2015111722119); N=118 out of 128 patients; Follow-up: intervention for 8 weeks and follow-up until the 24th week; Control group: 51±6; 5±9; Control group: 36; 24; Control group: 58; Intervention group: 50; Control group: received usual care; Intervention group: received educational-suporative interventions along with the routine treatment; The treatment adherence score increased by an average of 5.9 (95% CI 5.9-6.9) in the intervention group compared to the control group. App can be effective in self-management and better patient adherence.

28 Chen et al. (2016) Cardio-Rhythm app To assess the diaphragmatic performance of a smartphone’s smartphone photoplethysmographic (PPG) application Prospective screening study; N=193 out of 198 patients; Follow-up: 6 months; 6±6; 4±6; 3; 0±4; FP measurements were performed by using the Cardio-Rhythm smartphone application; App provides a convenient and reliable means to detect AF in patients at low risk of developing AF.

29 Canova-López et al. (2019) Mobile app To assess the effect of an application that records physical activity on the Mediterranean diet Multicenter, randomized and controlled clinical trial (NCT03801914); N=823 patients; Follow-up: 12 months; Control group: 53±3; a 11; Intervention group: 51±4; a 12; Control group: 160±98; Intervention group: 166±94; Control group: received counseling; Intervention group: received counseling + app; Control group: 41; Control group: received counseling; Intervention group: received counseling + app; The app provided a daily 15-minute program that included video-guided exercises, video sessions to improve information about CAD, and a daily personalized program and heart rate once a day.

30 Eckhardt et al. (2019) Smartphone-guided secondary prevention (S2PP) app To assess lifestyle changes for patients with CAD after usage of app N=77 out of 93 patients met the criteria for 28-day adherence; Follow-up: 24 weeks; Adherence group: 67±8±4; 8±3; Non-adherence group: 59±7±3; The app provided a daily 15-minute program that included video-guided exercises, video sessions to improve information about CAD, and a daily personalized program and heart rate once a day.

The regular use of a S2PP app supports lifestyle changes in patients with CAD.
By category, the research was focused on the following areas: mobile applications for diagnostic purposes (for example, ECG recording (30), assessment of heart rate (31, 33, 44, 65)). Some studies were carried out to validate the system for urgent care alarm (37), lifestyle changes (43, 45, 53, 62, 65), adherence to treatment (35, 38, 41, 47, 48, 51, 53, 55, 59, 60, 63, 64, 67, 68), and physical activity of the patients (22, 32, 34, 41, 45, 46, 52, 63, 64, 66). Two studies were conducted simultaneously in India (n=2) (67, 68).
Recent Advances of Mobile Healthcare in Cardiology Practice

There were prospective (22, 24, 46, 55, 60, 66), retrospective (40, 49, 50, 61), RCTs (22, 24, 32, 35, 39, 40, 42, 51, 53, 56-63, 67, 68). Some mobile applications have been designed for use in pediatric cardiac patients (30, 33).

Apart from that, it should be noted that many mobile applications were employed as an additional tool for medical personnel to monitor the condition of patients (22, 24, 31, 35, 36, 46, 52).

In addition to the analysis of mobile application, we also studies text messages (31, 36, 38, 46, 56, 58), educational materials (38, 51, 55, 58, 59, 64), video instructions for using the application and monitoring the health status (31, 46, 65, 70), reminder functions (35, 36, 41, 46, 48, 51, 55, 63, 68) and as a symptom-tracking tool (39, 41).

Despite the progress in the use of mobile applications, there is a range of challenges caused by various factors, including the lack of RCTs and a small sample size (31, 33, 36, 46, 49, 67, 70). A relatively heterogeneous ratio of different age categories of patients (47) and a short follow-up period (22, 64) dictate the research in this direction and optimization of the study design. Moreover, statistically significant effectiveness of mobile applications was not found out and requires further intensive studies (50, 56).

4.2. Risk of Bias Assessment

The evaluation of risk of bias for all 39 studies was conducted using the Cochrane Collaboration Risk of Bias tool (Figure 2)

As for random sequence generation, only 2 studies identified the unclear risk of bias (53, 64), and 15 studies identified the low risk of bias (24, 32, 35, 42, 44, 48, 49, 51, 56, 58, 59, 61, 62, 67, 68). Results of allocation concealment bias (selection bias) showed that only 9 studies revealed low risk of bias (24, 32, 44, 47, 49, 58, 62, 67, 68) and 4 studies was assessed as having a unclear risk of bias (46, 48, 60, 64). According to the binding of participants and personnel, in general, high risk of bias was detected in many studies, and only 4 studies revealed low risk of bias (31, 49, 67, 58) and 4 studies demonstrated unclear risk of bias (44, 47, 50, 60). In terms of blinding of outcome assessment, in total, in the 19 papers included in this review was identified with low risk of bias (31, 32, 34, 36, 37, 44, 47, 49, 50, 58, 70) and in 10 studies was determined unclear risk of bias (24, 33, 36, 37, 46, 47, 48, 50, 58, 70).

According to the indicator of selective reporting, 10 studies...
were with the characteristics of the unclear risk of bias (24, 37, 38, 39, 46, 57, 58, 66, 67, 70) and only 9 works had low risk of bias (32, 34, 35, 40, 45, 47, 52, 58, 63).

In general, it should be noted that most of the studies included in the analysis (37 out of 39 studies) on many points of assessment were found to be of poor quality, and only 2 studies (58, 67) were assessed as satisfactory.

5. DISCUSSION

It has been shown that health digital platforms can help to improve physical activity, healthy eating, and socialization (71-74). Moreover, mHealth applications demonstrated an effectiveness to treat various behavioral outcomes such as an adherence to the treatment (75-79). However, health apps were not able to effectively reduce harmful behavioral factors, including smoking, alcohol consumption, unhealthy diet, and improve clinical indicators (BMI, level of triglycerides, diastolic and systolic blood pressure, and HbA1c).

The main trend in the mobile health for cardiological applications is the use of different types of wearable devices and Artificial Intelligence-platforms (AI) (80-86). In fact, mobile technology allows remotely to monitor, interpret, and analyze biomedical data collected from the patient (87). Up to date, the classical approach for the diagnostics and prevention of heart pathology is based on the thorough analysis of patient’s medical history, physical examination, laboratory and imaging data (87). The recent advances in digital health provides an opportunity to fasten and optimize heart diagnostics via effective analysis of massive data obtained from electrocardiography, echocardiography, patients‘ electronic health record data, and laboratory tests. It encompasses the use of AI-platforms to monitor and analyze cardiac activity in real-time manner (88).

Apart from AI technologies, there is a number of studies on the application of different wearable devices and smart clothes in cardiology. Such technologies allow to monitor the vital parameters of cardiovascular system such as blood pressure, heart rate and ECG (89-91). In this regard, mobile applications can be classified into several categories, such as daily applications for improving public health, applications for improving patient care, and applications for communication and counseling (Figure 3).

Daily apps for improving public health can be divided into health and fitness apps, apps for chronic patients, apps for monitoring medication intake, and apps for women’s health. Applications for improving patient care include: applications for storing and recording personal medical data and documents, applications for health insurance, and reference applications. Communicating and consulting apps consist on apps for online consultation, apps for appointment booking, apps for ab tests and apps for drugs delivery.

Over the past decade, several studies have been published on mHealth treatment for heart failure (83, 92-97). Most of published systematic reviews have mainly been focused on the effects of telephone support and traditional telehealth interventions using fixed-line technologies such as home tele-monitoring and video conferencing. Other systematic reviews highlighted findings of studies on the mHealth based on other types of remote patient monitoring interventions or invasive technologies to distort the true impact of digital platforms.

One of main public concerns and barriers for a wide implementation of mHealth in monitoring patients is the safety and data protection (87). In fact, many medical apps possess some security vulnerabilities or a weak encryption (98-101). In this regard, the employing of block-chain technology can help to protect the sensitive information via decentralized storage of patients’ data (102-104). This problem has been aggravated by the absence of universal and standard ethical regulations of health data protection (2).

The combining of all information about the patient’s health condition from smart and wearable devices, hospital equipment (radiography, ECG, etc.) and laboratory data can help to optimize the analysis of health status and treatment strategies (Figure 4). For example, collecting information via smart and wearable devices is a way for daily monitoring of life style, diet, physical activity and cardio parameters which can facili-
tate control of patient’s health condition. In terms of hospital equipment, as it known that, there is a possibility to gather a data such as ECG, blood pressure measurement, MRI, ultrasound, CT, laboratory data, and physical examination. As for precision medicine, it is a way to obtain the information about genetics, gut microbiota, psychological monitoring and treatment. Finally, the application of artificial intelligence, machine learning and neuro net for the analysis of health data will provide an opportunity for improving the life quality, diagnostics and treatment of various disorders.

Despite the recent progress, there are still many unresolved issues for the wide implementation of health mobile applications. One of the main problems is the age of the patients. It includes the difficulty of using a smartphone by elderly people (105). It should be noted that the age-related disparities are a temporary barrier. In fact, young cohort of patients will also become elderly after a certain period of time. So, some of youngsters will join the group of patients with chronic diseases. Aside from that, there is a problem related to the privacy and security of mHealth data (106). The situation can be improved by employing a protection system used for Internet banking, such as two-factor authentication or biometric platforms (107). Other problems related to digital health technologies include, but are not limited to, reliability, safety, productivity, and ethical issues.

At present, there is a range of mobile health applications recommended by WHO (108). For example, there are applications for detecting hearing loss “hearWHO” (109), quit the smoking app (111), and fitness/yoga instructions (112). However, the absence of official guidelines for mobile apps given by official state institutions and WHO (for therapy adherence improvement and cardiac rehabilitation) hinders their wide implementation in the clinical environment.

6. CONCLUSION

The application of mobile technologies for health practice led to the significant improvement of early diagnostic and timely treatment of life-threatening conditions such as cardiac arrest (113-118). In fact, early cardiopulmonary resuscitation and defibrillation using digital technologies could help save many lives. Mobile health apps can fasten and optimize the medical assistance for the patients with cardiac arrest in pre-hospitalization stages (114, 119-122).

In addition, it has been shown that digital health platforms can be effectively employed to assist the patients with other cardiologic pathologies such as arrhythmias and atrial fibrillation (123-126). The results of a number of the studies demonstrated that patients diagnosed with cardiovascular disorders can potentially benefit from the application of mHealth in cardiology. It encompasses the improvement of clinical outcomes such as decreased infarct size, smaller reductions in ejection fractions, lower peak troponin and creatine-phosphokinase, and reduced mortality (127).

However, despite the proven advantages of mHealth for cardiology, there are many challenges and concerns regarding effectiveness, safety, reliability and ethical issues. Another big issue is the lack of official regulation and guidelines from official organizations. It concerns data privacy, standardization and unification of digital protocols. Such issues require solutions and further work towards a wide implementation of mHealth technologies in cardiology practice.

- **Author’s contribution:** S.K. and K.T. conceived the original draft preparation. L.S., I.S., and A.M. were responsible for conception and design of the review. S.R., S.T., and I.F. were responsible for the data acquisition. S.K., K.T., L.S. and I.F. were responsible for the collection and assembly of the articles/published data, and their inclusion and interpretation in this review. All authors contributed to the critical revision of the manuscript for valuable intellectual content. All authors have read and agreed with the final version of the manuscript.

- **Conflict of interest:** No potential conflict of interest was reported by the authors.

- **Financial support and sponsorship:** The study was supported by the grant of the Ministry of Healthcare of the Republic of Kazakhstan “National Programme for the Introduction of Personalized and Preventive Medicine in The Republic of Kazakhstan (2021–2023)” (Grant number OR12165486).

REFERENCES

1. Gu D, Li T, Wang X, Yang X, Yu Z. Visualizing the intellectual structure and evolution of electronic health and telemedicine research. Int J Med Inform. 2019; 130: 103947.
2. Senbekov M, Saliev T, Bukeyeva Z, Almabayeva A, Zhanaliseva M, Aitenova N, et al. The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. Int J Telemed Appl. 2020; 2020: 8830200.
3. Cui W, Finkelstein J. Impact of COVID-19 Pandemic on Use of Telemedicine Services in an Academic Medical Center. Stud Health Technol Inform. 2021; 281: 407-411.
4. Shkolyski-Kordi N, Evelson L, Kargalskaya I, Shinkariov S, Kremenetskaya O, Zingerman B. Remote Health Monitoring During and After the COVID-19 Pandemic. Stud Health Technol Inform. 2021; 281: 719-723.
5. Gil Membrado C, Barrios V, Cosin-Sales J, Gamez JM. Telemedicine, ethics, and law in times of COVID-19. A look towards the future. Rev Clin Esp. 2021.
6. Ohannessian R, Duong TA, Odone A. Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveil. 2020; 6(2): e18810.
7. Williams S, Xie L, Hill K, Mathew MS, Perry T, Wesley D, et al. Potential Utility of School-Based Telehealth in the Era of COVID-19. J Sch Health. 2021.
8. Umano GR, Di Sessa A, Guarino S, Gaudino G, Marzuillo P, Migliella Del Giudice E. Telemedicine in the COVID-19 era: Taking care of children with obesity and diabetes mellitus. World J Diabet. 2021; 12(5): 651-657.
9. Summer G, Adelman DS, Fant C. COVID-19 and telehealth: How to complete a successful telehealth visit. The Nurse practitioner. 2021; 46(6): 43-47.
10. Shah NN, Nabi SU, Bashir SM, Rather MA, Kalwar Q, Ali SI, et al. An update on emerging therapeutics to combat COVID-19. Basic Clin Pharmacol. 2021.
11. Rodler S, Schutz JM, Styn A, Weinhold P, Casucelli J, Eismann L, et al. Mapping Telemedicine in German Private Practice Urological Care: Implications for Transitioning beyond the COVID-19 Pandemic. Urol Int. 2021: 1-7.
12. Nouhjah S, Jahanfar S. Challenges of diabetes care management in developing countries with a high incidence of COVID-19: A brief...
report. Diabetes & metabolic syndrome. 2020; 14(5): 731-732.

13. Ngea W, Oliver I, Schmeler KM. The Use of Health-Related Technology to Reduce the Gap Between Developed and Underdeveloped Regions Around the Globe. Am Soc Clin Oncol Educ Book. 2020; 40: 1-10.

14. Wallace S, Clark M, White J. ‘It’s on my iPhone’: attitudes to the use of mobile computing devices in medical education, a mixed-methods study. BMJ Open. 2012; 2(4).

15. Ozdalga E, Ozdalga A, Ahuja N. The smartphone in medicine: a review of current and potential use among physicians and students. J Med Internet Res. 2012; 14(5): e128.

16. Salehinejad S, Naikan Kalkori SR, Hajesmaeel Gohari S, Bahadineig K, Fatehi F. A review and content analysis of national apps for COVID-19 management using Mobile Application Rating Scale (MARS). Inform Health Soc Ca. 2021; 46(1): 42-55.

17. Puig J, Echeverria P, Lluch T, Hermos J, Estany C, Bonjoch A, et al. A Specific Mobile Health Application for Older HIV-Infected Patients: Usability and Patient’s Satisfaction. Telemed J E Health. 2021; 27(4): 432-440.

18. Bokolo AJ. Application of telemedicine and eHealth technology for clinical services in response to COVID19 pandemic. Health Technol-Ger. 2021: 1-8.

19. Pulsipher KJ, Presley CL, Rundle CW, Rietcheck HR, Millitello M, Dellavalle RP. Teledermatology application use in the COVID-19 era. Dermatol Online J. 2020; 26(12).

20. Shaw SE, Seuren LM, Wherton J, Cameron D, A’Court C, Vija- yaraghavan S, et al. Video Consultations Between Patients and Clinicians in Diabetes, Cancer, and Heart Failure Services: Linguistic Ethnographic Study of Video-Mediated Interaction. Journal of medical Internet research. 2020; 22(5): e18378-e.

21. Colantonio LD, Muntner P. It Is Time for Reducing Global Cardiovascular Mortality. Circulation. 2019; 140(9): 726-728.

22. Song Y, Ren C, Liu P, Tao L, Zhao W, Gao W. Effect of Smartphone-Based Telemonitored Exercise Rehabilitation among Patients with Coronary Heart Disease.

23. Salvi D, Polfey E, Orchard E, Tarassenko L. Using Mobile-Health to Connect Women with Cardiovascular Disease and Improve Self-Management.

24. Vuorinen AL, Leppänen J, Kajijaranta H, Kulju M, Helio T, van Gils M, et al. Use of home telemonitoring to support multidisciplinary care of heart failure patients in Finland: randomized controlled trial.

25. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. [updated March 2011]: The Cochrane Collaboration; 2011.

26. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151(4): 264-269, w64.

27. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016; 5(1): 210.

28. Bells M. “Who Invented the iPhone?” ThoughtCo. https://www.thoughtco.com/who-invented-the-iphone-1992004 - Accessed May 22.

29. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343(7829): d5928.

30. Ferdman D, Liberman L, Silver E. A Smartphone Application to Diagnose the Mechanism of Pediatric Supraventricular Tachycardia. Pediatric cardiology. 2015; 36.
The Recent Advances of Mobile Healthcare in Cardiology Practice

1. Salvi D, Potflely E, Orchard E, Tarassenko L. The Mobile-Based 6-Minute Walk Test: Usability Study and Algorithm Development and Validation. JMIR Mhealth Uhealth. 2020; 8(1): e13756.

2. Sensoo K, Miki T, Ohkura T, Iwakoshi H, Nishimura T, Shiraishi H, et al. A Smartphone App to Improve Oral Anticoagulation Adherence in Patients With Atrial Fibrillation: A Randomized Controlled Study. JMIR Mhealth Uhealth. 2022; 10(1): e30807.

3. Mendelson M, Vivotdez I, Tamisier R, Laplaud D, Dias-Domingos S, Baguet JP, et al. CPAP treatment supported by telemedicine does not improve blood pressure in high cardiovascular risk OSA patients: a randomized, controlled trial.

4. Eyles H, McLean R, Neal B, Jiang Y, Doughty RN, Ni Mhurchu C. A salt-reduction smartphone app supports lower-salt food purchases for people with cardiovascular disease: Findings from the SaltSwitch randomised controlled trial. Eur J Prev Cardiol. 2017; 24(13): 1435-44.

5. Nahid T, Tahereh G, Farah N, Mahshid F, Shima H. The effect of using smartphone applications on self-care in patients with heart failure. Nursing Practice Today. 2020; 7(4).

6. Bozorgi A, Hosseini H, Eftekhar H, Majzdarah R, Yoonessi A, Rezazankhani A, et al. The effect of the mobile “blood pressure management application” on hypertension self-management enhancement: a randomized controlled trial. Trials. 2021; 22(1): 413.

7. Manigault K, McKinley D, Patel S, Truong C, Nguyen S, Akil A, et al. The Impact of a Pharmacist-Designed Mobile Application on Blood Pressure Control and Medication Adherence in Patients with Hypertension. Journal of the American College of Pharmacy. 2020; 3.

8. Márquez Contreras E, Márquez Rivero S, Rodríguez García E, López-García-Ramos L, Carlos Pastoriza Vilas J, Baldonedo Suárez A, et al. Specific hypertension smartphone application to improve medication adherence in hypertension: a cluster-randomized trial. Curr Med Res Opin. 2019; 35(1): 167-173.

9. Gonzalez-Sanchez J, Recio-Rodriguez JI, Fernandez-delRio A, Sanchez-Perez A, Magdalena-Belio JP, Gomez-Marcos MA, et al. Using a smartphone app in changing cardiovascular risk factors: A randomized controlled trial (EVIDENT II study). Int J Med Inform. 2019; 125: 13-21.

10. Abu-El-Noor N, Aljeesh Y, Bottcher B, Abu El noor M. Impact of a mobile phone app on adherence to treatment regimens among hypertensive patients: A randomised clinical trial study. European Journal of Cardiovascular Nursing. 2020; 20: 147451512093823.

11. Mertens A, Brandl C, Miron-Shatz T, Schlick C, Neumann T, Kribben A, et al. A mobile application improves therapy-adherence rates in elderly patients undergoing rehabilitation: A crossover design study comparing documentation via iPad with paper-based control.

12. Eckardt I, Buschhaus C, Nickenig G, Jansen F. Smartphone-guided secondary prevention for patients with coronary artery disease. J Rehabil Assist Technol Eng. 2021; 8:2055668321996572.

13. Schmidt T, Mewes P, Hoffmann JD, Müller-von Aschwege F, Glitza JJ, Schmitto JD, et al. Improved aftercare in LVAD patients: Development and feasibility of a smartphone application as a first step for telemonitoring. Artif Organs. 2020; 44(3): 248-256.

14. Tian M, Ajan VS, Dzunzh D, Hameed SS, Li X, Liu Z, et al. A Cluster-Randomized, Controlled Trial of a Simplified Multifaceted Management Program for Individuals at High Cardiovascular Risk (SimCard Trial) in Rural Tibet, China, and Haryana, India.

15. Yadav S, Sethi R, Pradhan A, Vishwakarma P, Bhandari M, Gattani R, et al. ‘Routine’ versus ‘Smart Phone Application Based - Intense’ follow up of patients with acute coronary syndrome undergoing percutaneous coronary intervention: Impact on clinical outcomes and patient satisfaction. International journal of cardiology Heart & vasculature. 2021; 35: 100832.

16. Gallagher R, Chow C, Parker H, Neubeck L, Cemlermajer D, Redfern J, et al. Design and rationale of the MyHeartMate study: a randomised controlled trial of a game-based app to promote behaviour change in patients with cardiovascular disease.

17. Sakakibara BM, Ross E, Arthur G, Brown-Ganzert L, Petrin S, Sedlak T, et al. Using Mobile-Health to Connect Women with Cardiovascular Disease and Improve Self-Management. Telemed J E Health. 2017; 23(3): 233-239.

18. Langlet BS, Odeg i D, Zandian M, Nolstam J, Sodersten P, Bergh C. Virtual Reality App for Treating Eating Behavior in Eating Disorders: Development and Usability Study. Jmir Serious Games. 2021; 9(2): e24998.

19. Reddy P, Dukhi N, Sewpaul R, Ellahbekus MAA, Kambaran NS, Jobe W. Mobile Health Interventions Addressing Childhood and Adolescent Obesity in Sub-Saharan Africa and Europe: Current Landscape and Potential for Future Research. Front Public Health. 2021; 9: 604439.

20. Sandborg J, Soderstrom E, Henriksson P, Bendtsen M, Henstrom M, Leppanen MH, et al. Effectiveness of a Smartphone App to Promote Healthy Weight Gain, Diet, and Physical Activity During Pregnancy (HealthyMoms): Randomized Controlled Trial. Jmir Mhealth Uhealth. 2021; 9(3): e26091.

21. Kato-Lin YC, Kumar UB, Sri Prakash B, Prakash B, Varadan V, Agnihotri S, et al. Impact of Pediatric Mobile Game Play on Healthy Eating Behavior: Randomized Controlled Trial. Jmir Mhealth Uhealth. 2020; 8(11): e15717.

22. Zabarioglu T, Hopurcuoglu D, Uygur E, Ahmadzada S, Oge-En-
The Recent Advances of Mobile Healthcare in Cardiology Practice

ver E, Isat E, et al. The Impact of Telemedicine for Monitoring and Treatment of Phenylketonuria Patients on Metabolic Outcome During Coronavirus Disease-19 Outbreak. Telemed J E Health. 2021.

van Zelst CM, Kasteleyn MJ, van Noort EMJ, Rutten-van Molken M, Braunsstahl GJ, Chavannes NH, et al. The impact of the involvement of a healthcare professional on the usage of an eHealth platform: a retrospective observational COPD study. Resp Res. 2021; 22(1): 88.

den Bergh R, Bloem BR, Meinders MJ, Evers LJW. The state of telemedicine for persons with Parkinson's disease. Curr Opin Neurol. 2021.

Seron P, Oliveros MJ, Gutierrez-Arias R, Fuentes-Aspe R, Torres-Castro R, Merino-Osorio C, et al. Effectiveness of telehabilitation in physical therapy: A rapid overview. Phys Ther. 2021.

Santra S, Garg S, Basu S, Sharma N, Singh MM, Khanna A. The effect of a mHealth intervention on anti-tuberculosis medication adherence in Delhi, India: A quasi-experimental study. Indian J Public Health. 2021; 65(1): 34-38.

Mazzu-Nascimento T, Evangelista DN, Abubakar O, Souto BGA, Domingues LV, Silva DF, et al. Remote and non-invasive monitoring of patients with COVID-19 by smartphone. Sci Med. 2021; 31(1).

Quill L. The software will see you now: The promise and peril of digital therapy. Couns Psychother Res. 2021.

Baladron C, de Diego JJG, Amat-Santos IJ. Big data and new information technology: what cardiologists need to know. Rev Esp Cardiol. 2021; 74(1): 81-89.

Chen YW, Wei J, Chen HL, Cheng CH, Hou IC. Developing a Heart Transplantation Self-Management Support Mobile Health App in Taiwan: Qualitative Study. Jmir Mhealth Uhealth. 2020; 8(8).

Al-Jebnri AH, Chwyl B, Wang XY, Wong A, Saab BJ. AI-enabled remote and objective quantification of stress at scale. Biomed Signal Process. 2020;59.

Seetharam K, Kagiymama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019; 6(2): R41-R52.

Piette JD, List J, Rana GK, Townsend W, Striplin D, Heisler M. The state of technologies in healthcare: A Review. Int J Telemed Appl. 2020; 2020.

Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019; 25(1): 70.

Young ML, Flores L. Asymptomatic Idiopathic Bellhassen Ventricular Tachycardia in a Neonate Detected Using 'Smart Sock' Wearable Smartphone-Enabled Cardiac Monitoring. Am J Case Rep. 2020; 21.

Marsili IA, Biasiolli L, Mase M, Adami A, Andrighetti AO, Ravelli F, et al. Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device. Comput Biol Med. 2020; 116.

Fouassier D, Roy X, Blanchard A, Hulot JS. Assessment of signal quality measured with a smart 12-lead ECG acquisition T-shirt. Ann Noninvas Electro. 2020; 25(1).

Shah LCM, Ding J, Spaulding EM, Yang WE, Lee MA, Demo R, et al. Sociodemographic Characteristics Predicting Digital Health Intervention Use After Acute Myocardial Infarction. J Cardiovasc Transl. 2021.

Pastora-Bernal JM, Hernandez-Fernandez JJ, Esteban-Perez MJ, Molina-Torres G, Garcia-Lopez FJ, Martin-Valero R. Efficacy, Feasibility, Adherence, and Cost Effectiveness of a mHealth Telehabilitation Program in Low Risk Cardiac Patients: A Study Protocol. Int J Environ Res Public Health. 2021; 18(8).

Yanicelli LM, Vegetti M, Goy CB, Martinez EC, Herrera MC. SiTe iC: A telemonitoring system for heart failure patients. Int J Med Infor. 2020; 141.

Radhakrishnan K, Kim MT, Burgermaster M, Brown RA, Xie B, Bray MS, et al. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Nurs Outlook. 2020; 68(5): 548-559.

Jiang Y, Shorey S, Nguyen HD, Wu VX, Lee CY, Yang LF, et al. The development and pilot study of a nurse-led HOME-based HEart failure self-Management Programme (the HOM-HEMP) for patients with chronic heart failure, following Medical Research Council guidelines. Eur J Cardiovasc Nurs. 2020; 19(3): 212-222.

Wali S, Hussain-Shamsy N, Ross H, Cafazzo J. Investigating the Use of Mobile Health Interventions in Vulnerable Populations for Cardiovascular Disease Management: Scoping Review. Jmir Mhealth Uhealth. 2019; 7(10).

Pool J, Aklhagpour S, Fatehi F. Health Data Privacy in the COVID-19 Pandemic Context: Discourses on HIPAA. Stud Health Technol Inform. 2021; 279: 70-77.

Kolasa K, Mazzi F, Leszczuk-Czubowska E, Zrubka Z, Pentek M. An Overview of Contact Tracing Applications Between Privacy Protection and Public Health: State-of-the-Art and Recommendations. Jmir Mhealth Uhealth. 2021.

Joo E, Kononova A, Kanthawala S, Peng W, Cotten S. Smartphone Users’ Persuasion Knowledge in the Context of Consumer mHealth Apps: Qualitative Study. Jmir Mhealth Uhealth. 2021; 9(4): e16518.

Tovino SA. Privacy and Security Issues with Mobile Health Research Applications. J Law Med Ethics. 2020; 48(1_suppl): 154-158.

Lee HA, Kung HH, Udayasankaran JG, Kjiasanayotin B, A BM, Chao LR, et al. An Architecture and Management Platform for Blockchain-Based Personal Health Record Exchange: Development and Usability Study. J Med Internet Res. 2020; 22(6): e16748.

Park YR, Lee E, Na W, Park S, Lee Y, Lee JH. Is Blockchain Technology Suitable for Managing Personal Health Records? Mixed-Methods Study to Test Feasibility. J Med Internet Res. 2019; 21(2): e1533.

Ji Y, Zhang J, Ma J, Yang C, Yao X. BMPLS: Blockchain-Based Multi-level Privacy-Preserving Location Sharing Scheme for Telecare Medical Information Systems. J Med Syst. 2018; 42(8): 147.

Ernsting C, Dombrowski SU, Oedekoven M, O’Sullivan JL, Kanzler M, Kuhlmey A, et al. Using Smartphones and Health Apps to Change and Manage Health Behaviors: A Population-Based Survey. J Med Internet Res. 2017; 19(4): e101. doi.org/10.2196/jmir.6838.

Galvin HK, DeMuro PR. Developments in Privacy and Data Ownership in Mobile Health Technologies, 2016-2019. Yearb Med Infor. 2020; 29(1): 32-43. doi.org/10.1055/s-0040-1701987.
107. Arora S, Yttri J, Nilse W. Privacy and Security in Mobile Health (mHealth) Research. Alcohol research: current reviews. 2014; 36(1): 143-151.

108. Google Play. Mobile applications. World Health Organization. 2022. Available at: https://play.google.com/store/apps/developer?id=World+Health+Organization

109. Google Play. World Health Organization. Deafness and hearing loss/hearWHO. 2022. Available at: https://www.who.int/health-topics/hearing-loss/hearwho

110. Google Play. World Health Organization. Mobile applications. WHO HTS Info. 2022. Available at: https://play.google.com/store/apps/details?id=com.whohtsinfo&hl=ru&gl=US

111. Google Play. World Health Organization. Mobile applications. WHO QuitTobacco. 2022. Available at: https://play.google.com/store/apps/details?id=com.who.quit.tobacco

112. Google Play. World Health Organization. Mobile applications. WHO mYoga App. 2022. Available at: https://play.google.com/store/apps/details?id=org.who.APPMYOGA

113. Woo JH, Cho JS, Lee CA, Kim GW, Kim YJ, Moon HJ, et al. Survival and Rearrest in out-of-Hospital Cardiac Arrest Patients with Prehospital Return of Spontaneous Circulation: A Prospective Multi-Regional Observational Study. Prehospital emergency care: official journal of the National Association of EMS Physicians and the National Association of State EMS Directors. 2021; 25(1): 59-66.

114. Muller SD, Lauridsen KG, Palic AH, Frederiksen LN, Mathiasen M, Lofgren B. Mobile App Support for Cardiopulmonary Resuscitation: Development and Usability Study. Jmir Mhealth Uhealth. 2021; 9(1): e16636.

115. Alrawashdeh A, Nehme Z, Williams B, Smith K, Brennan A, Dinh DT, et al. Impact of emergency medical service delays on time to reperfusion and mortality in STEMI. Open Heart. 2021; 8(1).

116. Sassone B, Mandini S, Grazzi G, Mazzoni G, Myers J, Pasanisi G. Impact of COVID-19 Pandemic on Physical Activity in Patients With Implantable Cardioverter-Defibrillators. J Cardiopulm Rehabil Prev. 2020; 40(5): 285-286.

117. Hampton L, Brindley P, Kirkpatrick A, McKee J, Regerh J, Martin D, et al. Strategies to improve communication in telementoring in acute care coordination: a scoping review. Canadian journal of surgery Journal canadien de chirurgie. 2020; 63(6): E569-E77.

118. Sowisdraniuk J, Smerekova J, Ladny JR, Kaserer A, Palimonka K, Rutzel K, et al. ECG pre-hospital teletransmission by emergency teams staffed with an emergency physician and paramedics and its impact on transportation and hospital admission. Medicine. 2019; 98(34): e16636.

119. Metelmann C, Metelmann B, Kohnen D, Brinkrolf P, Andelius L, Bottiger BW, et al. Smartphone-based dispatch of community first responders to out-of-hospital cardiac arrest - statements from an international consensus conference. Scand J Trauma Resusc Emerg Med. 2021; 29(1): 29.

120. Reiss N, Schmidt T, Hoffmann JD, Kunzendorf S, Luegmair G, Troger T, et al. Telemedical Concepts for Heart Failure Patients Treated with a Wearable Cardioverter Defibrillator. Stud Health Technol Inform. 2020; 271: 93-100.

121. Hejaji V, Malik AO, Peri-Okonny PA, Thomas M, Tang Y, Woolridge D, et al. Mobile App to Improve House Officers’ Adherence to Advanced Cardiac Life Support Guidelines: Quality Improvement Study. Jmir Mhealth Uhealth. 2020; 8(5): e15762.

122. Barbash IJ. Connecting the Docs: Telemedicine Support during In-Hospital Cardiac Arrest Resuscitation. Ann Am Thorac Soc. 2020; 17(3): 278-279.

123. Matterucci A, Bonanni M, Centioni M, Zanin F, Geuna F, Massaro G, et al. Home Management of Heart Failure and Arrhythmias in Patients with Cardiac Devices during Pandemic. J Clin Med. 2021; 10(8).

124. Biersteker TE, Schalij MJ, Treskes RW. Impact of Mobile Health Devices for the Detection of Atrial Fibrillation: Systematic Review. Jmir Mhealth Uhealth. 2021; 9(4): e26161.

125. Guo Y, Guo J, Shi X, Yao Y, Sun Y, Xia Y, et al. Mobile health technology-supported atrial fibrillation screening and integrated care: A report from the mAFA-II trial Long-term Extension Cohort. Eur J Intern Med. 2020; 82: 105-111.

126. Lopez Perales CR, Van Spall HGC, Maeda S, Jimenez A, Latcu DG, Milman A, et al. Mobile health applications for the detection of atrial fibrillation: a systematic review. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2021; 23(1): 11-28.

127. Honeyman E, Ding H, Varnfield M, Karunanithi M. Mobile health applications in cardiac care. Interventional Cardiology. 2014; 6(2): 227-240.
Supplementary file
Appendix 1. Search strategies

For PubMed

Search Strategy	Result
#1 "mobile application" OR "mHealth" OR "m-health" OR "mobile health" OR "mobile device" OR "mobile app" OR "mobile apps" OR "smartphone" OR "mobile phone" OR "tablet"	108,714
#2 cardiovascular disease OR "heart failure" OR "ischemic heart disease" OR "acute coronary syndrome" OR "myocardial infarction" OR "cardiac rehabilitation" OR "hypertension"	1,237,030
#3 (#1) AND (#2) Filters: Clinical Study	5,030
#4 (#1) AND (#2) Filters: Clinical Study, Clinical Trial	1,442
#5 (#1) AND (#2) Filters: Clinical Study, Clinical Trial, Randomized Controlled Trial	1,442
#6 (#1) AND (#2) Filters: Clinical Study, Clinical Trial, Randomized Controlled Trial, English	1,283
#7 (#1) AND (#2) Filters: Clinical Study, Clinical Trial, Randomized Controlled Trial, English, Humans	1,274
#8 (#1) AND (#2) Filters: Clinical Study, Clinical Trial, Randomized Controlled Trial, Humans, English, from 2008 - 2022	725

For Scopus

Search Strategy	Result
TITLE-ABS-KEY ("mobile application" OR "mhealth" OR "m-health" OR "mobile health" OR "mobile device" OR "mobile app" OR "mobile apps" OR "smartphone" OR "mobile phone" OR "tablet") AND TITLE-ABS-KEY (cardiovascular disease OR "heart failure" OR "ischemic heart disease" OR "acute coronary syndrome" OR "myocardial infarction" OR "cardiac rehabilitation" OR "hypertension") AND (LIMIT-TO (SRCTYPE, "j")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (SUBJAREA, "MEDI")) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO (PUBYEAR, 2008)) AND (LIMIT-TO (LANGUAGE, "English"))	3,062
The Recent Advances of Mobile Healthcare in Cardiology Practice

For Web of Science

Expression	Count
#1 TS="("Mobile application*" OR mHealth OR m-health OR "mobile health" OR "mobile device*" OR "mobile app" OR "mobile apps" OR smartphone OR "mobile phone" OR "tablet")"	214 383
#2 TS=(Cardiology* OR "cardiovascular disease*" OR "heart failure*" OR "ischemic heart disease*" OR "acute coronary syndrome*" OR "myocardial infarction" OR "cardiac rehabilitation" OR "hypertension")	1 218 510
#3 #1 AND #2	4 808
#4 #1 AND #2 and 2022 or 2021 or 2020 or 2019 or 2018 or 2016 or 2017 or 2015 or 2014 or 2013 or 2012 or 2011 or 2010 or 2009 or 2008 (Publication Years)	3 958
#5 #1 AND #2 and 2022 or 2021 or 2020 or 2019 or 2018 or 2016 or 2017 or 2015 or 2014 or 2013 or 2012 or 2011 or 2010 or 2009 or 2008 (Publication Years) and Articles (Document Types)	2 927
#6 #1 AND #2 and 2022 or 2021 or 2020 or 2019 or 2018 or 2016 or 2017 or 2015 or 2014 or 2013 or 2012 or 2011 or 2010 or 2009 or 2008 (Publication Years) and Articles (Document Types) and English (Languages)	2 857

For Cochrane Library

Expression	Count
#1 MeSH descriptor: [Mobile Applications] this term only	977
#2 "mHealth"	1944
#3 "m-health"	6853
#4 "mobile health"	1607
#5 "mobile device"	396
#6 "mobile app"	1032
#7 "mobile apps"	211
#8 "smartphone"	5005
#9 "mobile phone"	3206
#10 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9	15631
#11 MeSH descriptor: [Cardiology] explode all trees	128
#12 "cardiovascular disease"	24833
#13 "heart failure"	33237
#14 "ischemic heart disease"	6936
#15 "acute coronary syndrome"	6954
#16 "myocardial infarction"	33549
#17 "cardiac rehabilitation"	2730
#18 "hypertension"	69145
#19 #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18	146587
#20 #10 AND #19	2726
#21 #10 AND #19 (Filter: custom data range)	1559
#22 #10 AND #19 (Filter: custom data range; only clinical trials)	1014

For Google Scholar

"mobile application*" OR "mHealth*" OR "m-health*" OR "mobile health*" OR "mobile device*" OR "mobile app*" OR "mobile apps*" OR "smartphone*" OR "mobile phone*" OR "tablet*" AND "cardiology*" OR "cardiovascular disease*" OR "heart failure*" OR "ischemic heart disease*" OR "acute coronary syndrome*" OR "myocardial infarction*" OR "cardiac rehabilitation*" OR "hypertension*"