Evaluating the Prevalence of HBV, HCV, and HIV in Hemodialysis Patients in North Cyprus

Meryem Güvenir L1, Emrah Guler 2, Deren Oygar 3, Ahmet Behlul 3 and Kaya Suer 4

1 Department of Microbiology, Vocational School of Health Services, Near East University, Nicosia, Cyprus
2 Department of Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
3 Department of Nephrology, Faculty of Medicine, Nicosia, Cyprus
4 Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus

*Corresponding author: Department of Microbiology, Vocational School of Health Services, Near East University, Nicosia, Cyprus. Email: meryemguvenir@hotmail.com

Received 2018 September 28; Revised 2018 December 06; Accepted 2018 December 14.

Abstract

**Background:** Patients undergoing dialysis treatment and hemodialysis are at risk of viral infections due to inadequate cellular immunity.

**Objectives:** The aim of the study was to determine the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) in hemodialysis (HD) centers in North Cyprus.

**Methods:** The present study reviewed the health records of 140 patients in two dialysis units that represented all HD units in North Cyprus. Serological markers for HBV, HCV, and HIV were determined by the immunoenzymatic assay using commercial diagnostic kits (Architect i2000 SR, Abbott, USA). HCV RNA, HBV DNA, and HIV RNA were determined quantitatively using polymerase chain reaction (PCR).

**Results:** One hundred forty HD patients were included in the study, consisting of 39.3% (n = 55) female and 60.7% (n = 85) male patients. Five (3.6%) patients were anti-HCV positive, one (0.7%) patient was HBsAg positive, and one (0.7%) was anti-HIV positive. Anti-HCV and HBsAg were negative in all of the patients according to the PCR results. There were no significant differences between males (1.2%) and females (7.3%) in terms of anti-HCV positivity (P = 0.078), HBsAg seropositivity (P = 0.607), and anti-HIV seropositivity (P = 0.607).

**Conclusions:** The prevalence of HBV, HCV, and HIV infection in hemodialysis patients in North Cyprus is moderate to low. The main reason for the significantly lower rates compared to other areas could be effective protective measures and national vaccination.

**Keywords:** HBV, HCV, HIV, Hemodialysis, Cyprus, Seroprevalence

1. Background

The main treatment for chronic renal disease failure involves an invasive hemodialysis procedure (1). Therefore, patients undergoing dialysis treatment and hemodialysis are at risk of viral infections due to inadequate cellular immunity (2). Although hemodialysis has increased the durability of patients, it also has exposed the patients to certain viral infections (3). Hemodialysis (HD) patients are at greater risk of the hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) than healthy individuals (1).

The prevalence rate of HCV infection ranges between 5% and 60%, and different prevalence rates have been reported by different countries for HD patients (4). Sero-prevalence rates of HCV infection reported among HD patients in the Middle East included 35% in Jordan, 12% in Iran, 19% in Saudi Arabia, and 23% in Turkey (5). The prevalence rate of HBV infection in Tehran is between 0% and 58% (6); while in Turkey, it is 7.21% (7) to 50% (8). The prevalence of HCV infection was 0.5% (9) while it was 1.2% for HBV infection (10) in the general population of Cyprus. Cyprus is an island located in the eastern part of the Mediterranean Sea, at the south of Turkey. There are two communities living in the island, Turkish Cypriots and Greek Cypriots. Turkish Cypriots are Muslims by religion. In addition, North Cyprus is one of the destinations for casino tourism and entertainment, alongside its sunny beaches (11). There is no publication on the prevalence rate of viral infections among HD patients in Cyprus.

2. Methods

A retrospective study was conducted in two hemodialysis centers in Nicosia, North Cyprus, in 2018. The study
included hemodialysis patients who had attended the Department of Nephrology, Burhan Nalbanto˘glu Government Hospital and Department of Nephrology, Near East University, Nicosia, North Cyprus. The present study reviewed the health records of 140 patients in two dialysis units that represent all HD units in North Cyprus. Demographic information was collected from the hospital system. The 140 patients were investigated for HBsAg using an enzyme-labelled antigen test (total Abs) (Architect i2000 SR, Abbott, USA), for anti-HCV Abs (IgG) specific immunoglobulin using an HCV enzyme-labelled antigen test (Architect i2000 SR, Abbott, USA), and for anti-HIV Abs (IgG) using an enzyme-labelled antigen test (Architect i2000 SR, Abbott, USA).

The HBV DNA was extracted from the samples using a QIAamp DNA mini kit (QIAGEN, Germany) according to the manufacturer’s procedure. Extracted HBV DNA was quantified by the real-time PCR method using a Rotor-Gene Q instrument (Artus, Germany). The assay detection limit was 3.8 IU/mL. The real-time PCR was performed with negative and positive controls using an initial denaturation at 95°C for 10 min and 45 cycles of 95°C for 15 s and 72°C for 30 s. The HCV RNA was extracted using Quiagen QIAmp Viral RNA mini extraction kit according to the manufacturer’s instructions. The master mix was prepared by adding 14 µL of supermix reagent, 5 µL of magnesium solution, and 1 µL of IC-IR3. The real-time PCR was performed with negative and positive controls using an initial denaturation at 95°C for 15 s and 55°C for 20 s and 72°C for 30 s and the cycle was repeated 45 times. HIV RNA was detected and quantified by QIAsymphony Rotorgene Q/artus HIV-1 QS-RGQ v1 (Qiagen GmBH, Hilden, Germany). Human EDTA plasma was used according to the manufacturer’s instruction. The PCR program included an initial denaturation at 95°C for 30 s and 50°C for 60 s and 72°C for 30 s and the cycle was repeated 50 times.

2.1. Statistical Analysis

Statistical analysis was performed using SPSS version 18.0 (SPSS Inc, Chicago, IL, USA). Fisher’s exact test was used to compare continuous variables and P < 0.05 was accepted as statistically significant.

3. Results

A total number of 140 patients (55 females, 85 males) with a mean age of 65.57 ± 14.03 years were recruited. According to the serological results, five (3.6%) patients were anti-HCV-positive, one (0.7%) patient was HBsAg positive, and one (0.7%) was anti-HIV-positive. Table 1 summarizes the results of 140 HD patients in terms of the HBV, HCV, and HIV results. Anti-HCV and HBsAg were negative in all of the patients according to the PCR results.

There were no significant differences between males (12%) and females (7.3%) in terms of anti-HCV positivity (P = 0.078), HBsAg seropositivity (P = 0.607), and anti-HIV seropositivity (P = 0.607) (Table 1). Longer duration on dialysis (in years) was not significantly associated with HBsAg and anti-HIV positivity (P = 0.721 and P = 0.721, respectively); however, it was associated with anti-HCV positivity (P = 0.021) (Table 2).

4. Discussion

The aim of the present study was to determine the seroprevalence of HBV, HCV, and HIV among HD patients in 2018. This is the first study to analyze the seroprevalence rate of viral hepatitis in HD patients in North Cyprus. To our knowledge, this study was also the first study of HBV, HCV, and HIV infection in hemodialysis patients in North Cyprus.

Studied reported that more than 240 million people are chronic HBV carriers and more than 780,000 deaths occur every year (12). Various HBV seroprevalence rates have been reported in different geographical areas and the rate is estimated to be between 0.8 and 17.0% in HD patients (11). HBV was positive in 7% of the population in South-East Iran (3), 3.88% in Turkey (13), 6.2% in Cameroon (14), and 4.5% in Sudan (15). According to the World Health Organization (WHO) classifications and the Iranian Blood Transfusion Organization, Iran with a prevalence rate of approximately 3.0% HBsAg seropositivity is classified as intermediate for HBV infection (16). The general prevalence of HBV infection in Cyprus is indicated to be between 0.6% (9) and 1.2% (10). Our study results support the findings indicating the different seroprevalence rates of various geographical regions. In addition, similar prevalence rates were observed in the general population and HD population (0.7%) in North Cyprus.

HCV is a global health problem affecting over 170 - 200 million people. HCV is spread parentally or through intravenous drug use, and transfusion of blood products, and contamination during medical procedures especially in developing countries (17). The main risk factors for HCV infection among HD patients are sharing dialysis machines and/or dialysis equipment, blood transfusion (4), and deficient infection control in the hemodialysis unit (3). The prevalence of anti-HCV antibodies among HD patients was 13.5% to 31% in Italy (18), 10% to 42% in France (19), and 22.9% in Spain (20). Ashkani-Esfahani et al. indicated that the overall anti-HCV seroprevalence rate among HD patients in the Middle East countries was 25.3%, with 12% in Iran, 23% in
Turkey, 20% in Iraq, and 50% in Egypt (5). The seroprevalence of HCV was 14.2% in Iran in a high-risk population that depended on some factors such as socioeconomic status, level of education, history of imprisonment, job status, marital status, and the age at the first drug use. Afshari et al. also reported these factors to have significant associations with the HCV prevalence (21). Lankarani et al. indicated that interfamilial transmission was an important way for HCV spread (22). However, Fattahi et al. reported that HCV was detected as 0.25% in a general population (23). These results show lower rates than our seroprevalence rate. Thus, we conclude that the seroprevalence of the viruses depends on the population structure. According to WHO, 36.9 million people lived with HIV in 2017. The estimated number of people living with HIV was 890 for Cyprus (24). The Health Ministry of North Cyprus reported that 68 HIV positive persons were living in North Cyprus. Our results support that HIV prevalence remains low in North Cyprus. In our study, anti-HCV Abs seropositive patients had received dialysis for more years when compared with HBsAg and Anti-HIV Abs positivity patients. Our findings are supported by other studies that reported the length of hemodialysis as a risk factor for HCV seropositivity (20, 25).

In conclusion, the prevalence of HBV, HCV, and HIV infection in HD patients in North Cyprus is low. However, the longer duration on dialysis was associated with anti-HCV Abs positivity. The main reason for the low prevalence rate among HD patients in North Cyprus might be educating people about viral infection transmission and national vaccination.

### Table 1. The Frequency of Viral Infection in Hemodialysis Patients

| Viral Markers | HD patients Positive for the Viruses Males | HD Patients Negative for the Viruses Males | HD Patients Positive for the Viruses Females | HD Patients Negative for the Viruses Females | P Value |
|--------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------|
| HBsAg        | 1 (0.7)                                  | 84 (60)                                  | 0 (0)                                     | 55 (39.3)                                 | 0.607   |
| Anti-HCV Abs | 1 (0.7)                                  | 84 (60)                                  | 4 (2.9)                                   | 51 (36.4)                                 | 0.078   |
| Anti-HIV Abs | 1 (0.7)                                  | 84 (60)                                  | 0 (0)                                     | 55 (39.3)                                 | 0.607   |

* Values are expressed as No. (%).

### Table 2. Duration of Dialysis in Hemodialysis Patients

| Viral Markers | HD Period 1 - 5 Years | HD Period > 5 Years | P Value |
|--------------|-----------------------|---------------------|---------|
| HBsAg        | 1 (1)                 | 0 (0)               | 0.721   |
| Anti-HCV Abs | 1 (1)                 | 4 (10.3)            | 0.021*  |
| Anti-HIV Abs | 1 (1)                 | 0 (0)               | 0.721   |

* Values are expressed as No. (%).

### Footnotes

**Conflict of Interests:** None declared.

**Ethical Considerations:** The Ethics Committee of Near East University approved the study.

**Funding/Support:** None declared.

### References

1. Kamal IMA, Mahdi BM. Seroprevalence occurrence of viral hepatitis and HIV among hemodialysis patients. Ann Med Surg (Lond). 2018;29:3-4. doi: 10.1016/j.amsu.2018.03.018. [PubMed: 29692888]. [PubMed Central: PMC5911664].

2. Yadegarynia D, Hatamai H, Roosdari SR, Arab-Mazar Z. Seroprevalence of hepatitis B, C and D viral among hemodialysis patients in Tehran. Iran J Med Sci. 2017;42(3):195–9. [PubMed: 29227579]. [PubMed Central: PMC5795154].

3. Zahedi MJ, Darvish Moghadam S, Alavian SM, Dalili M. Seroprevalence of hepatitis viruses B, C, D and HIV infection among hemodialysis patients in Kerman province, south-east Iran. Hepat Mon. 2012;12(5):339–43. doi: 10.5812/hepatmon.5969. [PubMed: 22783346]. [PubMed Central: PMC3839360].

4. Sensory SA, El Shabrawy EM. Hepatitis C virus in patients on regular hemodialysis in Beni-Suef Governorate, Egypt. J Egypt Public Health Assoc. 2016;91(2):86–9. doi: 10.1097/EJPX.0000484091.57255.c0. [PubMed: 27455086].

5. Ashkan-Esfahani S, Alavian SM, Salehi-Marzijarani M. Prevalence of hepatitis C virus infection among hemodialysis patients in the Middle-East: A systematic review and meta-analysis. World J Gastroenterol. 2017;23(1):351–66. doi: 10.3748/wjg.v23.i1.351. [PubMed: 28104991]. [PubMed Central: PMC5221279].

6. Abdalhafeez AM, Khalid AE, Osama MK, Abdel Rahim MEH, Isam ME. Prevalence of occult hepatitis B virus (HBV) infections in haemodialysis patients in Khartoum State, Sudan from 2012 to 2014. J Med Lab Diagn. 2015;66(4):22-6. doi: 10.5897/jmld2015.0099.

7. Daglar D, Ergani A, Demirbakhan H, Ozak Baysan B, Ongh G, Kocak H, et al. [Investigation of hepatitis B and hepatitis C virus infections by serological and molecular methods in hemodialysis patients]. Mikrobiyol Bul. 2014;48(1):143–50. Turkish. [PubMed Central: PMC5719514].

8. Arabaci F, Oldacay M. [Hepatitis B,C seroprevalence and chronicity rates for hepatitis in patients treated by different dialysis centers in Çanakkale province, Turkey]. Turk J Wien ve Deneysel Biyoloji Dergisi. 2009;66(4):461-7. Turkish.

9. Suer HK, Guvenir M, Guler E. Evaluation of HBsAg, anti-HCV, anti-HIV and syphilis test results among the blood donors admitted to the Near East University Hospital in Turkish Republic of Northern Cyprus. Klinik Dergisi/Klinik J. 2014;23(4):399-102. doi: 10.352/kd.2012.228.

10. Arikam A, Sanlidag T, Suer K, Sayan M, Akcali S, Guler E. [Molecular epidemiology of hepatitis C virus in North Cyprus]. Mikrobiyol Bul. 2016;50(1):96–93. Turkish. [PubMed: 27058312].

Hepat Mon. 2019; 19(1):e84699.
11. Kaptanoğlu AF, Süer K, Diktaş H, Hınçal E. Knowledge, attitudes and behaviour towards sexually transmitted diseases in Turkish Cypriot adolescents. Cent Eur J Public Health. 2013;21(1):54-8.
12. Djalalinia S, Ramezan Ghorbani N, Tajbaksh R, Modirian M, Esmaeili Abdar Z, Mahdavi Gorabi A, et al. Hepatitis B virus infection in Iranian hemodialysis patients: A systematic review and meta-analysis. Iran J Kidney Dis. 2018;12(1):31-9. [PubMed: 29421769].
13. Suleymanlar G, Ateş K, Seyahi N. Registry of the nephrology, dialysis and transplantation in Turkey. 2017. 16 p.
14. Halle MP, Choukem SP, Kaze FF, Ashuntantang G, Tchamago V, Mboue-Djieka Y, et al. Hepatitis B, hepatitis C, and human immune deficiency virus seroconversion positivity rates and their potential risk factors among patients on maintenance hemodialysis in Cameroon. Iran J Kidney Dis. 2016;10(5):304-9. [PubMed: 27722299].
15. Gasim GI, Hamdan HZ, Hamdan SZ, Adam I. Epidemiology of hepatitis B and hepatitis C virus infections among hemodialysis patients in Khartoum, Sudan. J Med Virol. 2012;84(3):52-5. doi: 10.1002/jmv.22256. [PubMed: 22052648].
16. Shamsdin SA, Sepehrimanesh M, Pezeshki B, Nejabat M. Seroprevalence of hepatitis B and C in patients with hemophilia: A single-centre descriptive study. Shiraz E-Med J. 2015;16(7). doi: 10.17795/emj24573.
17. Zare F, Fattahi MR, Sepehrimanesh M, Safarpour AR. Economic burden of hepatitis C virus infection in different stages of disease: A report from southern Iran. Hepat Mon. 2016;16(4):e2654. doi: 10.5812/hepatmon.2654. [PubMed: 27257424]. [PubMed Central: PMC4887962].
18. Di Napoli A, Pezzotti P, Di Lallo D, Petrosillo N, Trivelloni C, Di Giuilo S, et al. Epidemiology of hepatitis C virus among long-term dialysis patients: A 9-year study in an Italian region. Am J Kidney Dis. 2006;48(4):629-37. doi: 10.1053/j.ajkd.2006.07.004. [PubMed: 16997059].
19. Crounce AM, Bouchardeau F, Chauveau P, Le Marrec N, Girault A, Zins B, et al. Hepatitis C virus (HCV) infection in haemodialysed patients: HCV-RNA and anti-HCV antibodies (third-generation assays). Nephrol Dial Transpl. 1995. doi: 10.1093/ndt/10.2.234.
20. Fissell RB, Bragg-Gresham JL, Woods JD, Jadoul M, Gillespie B, Hedderwick SA, et al. Patterns of hepatitis C prevalence and seroconversion in hemodialysis units from three continents: The DOPPS. Kidney Int. 2004;66(6):2335-42. doi: 10.1111/j.1523-1755.2004.00649.x. [PubMed: 15149347].
21. Afshari R, Fattahi MR, Sepehrimanesh M, Safarpour AR, Nejabat M, Dehghani SM, et al. The seroepidemiology of hepatitis C infection in drug abusers referring to Shiraz drug rehabilitation centers. Go- varesh. 2016;21(3):88-92.
22. Lankarani KB, Ardebili M, Sepehrimanesh M, Nejabat M, Hemmati Rad MA, Hosseini SY. Evaluation of hepatitis C virus intrafamilial transmission among families with one index case, a pilot study from Fars province, Iran. Gastroenterol Hepatol Bed Bench. 2016;9(4):250-8. [PubMed: 27895850]. [PubMed Central: PMC518849].
23. Fattahi MR, Safarpour A, Sepehrimanesh M, Hosseini ASL, Mohammaddoust F. The prevalence of hepatitis C virus infection and its related risk factors among the rural population of Fars province, southern Iran. Hepat Mon. 2015;15(2):e24734. doi: 10.5812/hepatmon.24734. [PubMed: 25788957]. [PubMed Central: PMC4350250].
24. World Health Organization. HIV/AIDS. 2019. Available from: www.who.int/hiv/data/en.
25. Alavian SM. A shield against a monster: Hepatitis C in hemodialysis patients. World J Gastroenterol. 2009;15(6):641-6. [PubMed: 19222088]. [PubMed Central: PMC2653413].