On the translation invariant operators in $\ell^p(\mathbb{Z}^d)$

Béchir Amri* and Khawla Kerfaf **

*Taibah University, College of Sciences, Department of Mathematics, P. O. BOX 30002, Al Madinah AL Munawarah, Saudi Arabia.

**Université Tunis El Manar, Faculté des sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications, LR11ES11, 2092 El Manar I, Tunisie.

Abstract

In this paper we study boundedness of translation invariant operators in the discrete space $\ell^p(\mathbb{Z}^d)$. In this context a Mikhlin type multiplier theorem is given, yielding boundedness for certain known operators. We also give $\ell^p - \ell^q$ boundedness of a discrete wave equation.

Keywords. Discrete Fourier transforms, Discrete Laplacian, Calderón-Zygmund operators.

2010 Mathematics Subject Classification. Primary 39A12; Secondary 47B38, 35L05.

1 Introduction

It is well known that translation invariant operator from L^p into L^q may be represented by convolution with a tempered distribution, or equivalently by Fourier multiplier transformation. This was originally proved in the classical article of Hörmander [4]. Through many aspects of harmonic analysis, many studies have been devoted to the topic of the L^p-bounded of translation invariant operator. The most famous are the works of Calderón and Zygmund on the singular integral operators, with a large number of generalizations.

In this paper we consider translation invariant operator T on \mathbb{Z}^d. The problem is essentially the multiplier problem,

$$F_{\mathbb{Z}^d}(T(f)) = mF_{\mathbb{Z}^d}(f)$$

where the function m is defined on the Torus $\mathbb{R}^d/\mathbb{Z}^d$. In this setting a Hörmander’s type theorem for $\ell^p - \ell^q$ boundedness of T and an ℓ^p-theorem of Mikhlin- type are given. We apply our results to get L^p-estimate for the discrete wave equation.

We begin by introducing the following notations. Let $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$ be the d-dimensional torus. Functions on \mathbb{T}^d are functions f on \mathbb{R}^d that satisfy $f(x+n) = f(x)$ for all $x \in \mathbb{R}^d$ and $n \in \mathbb{Z}^d$. Such functions are called 1-periodic in every coordinate.
Haar measure on \mathbb{T}^d is the restriction of d-dimensional Lebesgue measure to the set $[0,1)^d$. This measure is still denoted by dx and given by

$$
\int_{\mathbb{T}^d} f(x)dx = \int_{[0,1)^d} f(x)dx.
$$

We denote by $L^p(\mathbb{T}^d)$, $1 \leq p \leq \infty$ the Lebesgue space $L^p([0,1)^d, dx)$. The inner product of the Hilbert space $L^2(\mathbb{T}^d)$ is given by

$$
\langle f, g \rangle = \int_{\mathbb{T}^d} f(\xi)\overline{g(\xi)}d\xi.
$$

The functions $\psi_n : \xi \rightarrow e^{2\pi i n \cdot \xi}$, indexed by $n \in \mathbb{Z}^d$, form a complete orthonormal system of $L^2(\mathbb{T}^d)$ where for $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d)$ in \mathbb{R}^d

$$
x.y = x_1y_1 + \ldots + x_dy_d \quad \text{and} \quad |x| = (x.x)^{1/2}.
$$

By $\ell^p = \ell^p(\mathbb{Z}^d)$, $1 \leq p < \infty$, we denote the usual Banach space of p-summable complex-valued function $f = (f(n))_{n \in \mathbb{Z}^d}$ equipped with the norm

$$
\|f\|_{\ell^p} = \left(\sum_{n \in \mathbb{Z}^d} |f(n)|^p \right)^{\frac{1}{p}}
$$

and ℓ^∞ the space of bounded function on \mathbb{Z}^d with $\|f\|_\infty = \sup_{n \in \mathbb{Z}^d} |f(n)|$. We note the following elementary embedding relations

$$
\ell^q \subset \ell^p; \quad \text{and} \quad \|f\|_{\ell^p} \leq \|f\|_{\ell^q}, \quad 1 \leq p \leq q \leq \infty. \quad (1.1)
$$

For $f \in \ell^2(\mathbb{Z}^d)$ its Fourier transform is given by

$$
\mathcal{F}_{\mathbb{Z}^d}(f)(\xi) = \sum_{n \in \mathbb{Z}^d} f(n)e^{2\pi i n \cdot \xi}, \quad \xi \in \mathbb{R}^d.
$$

The Fourier transform $\mathcal{F}_{\mathbb{Z}^d}$ is an isometry from $\ell^2(\mathbb{Z}^d)$ into $L^2(\mathbb{T}^d)$ and its inverse $\mathcal{F}_{\mathbb{Z}^d}^{-1}$ is given by

$$
\mathcal{F}_{\mathbb{Z}^d}^{-1}(u)(n) = \int_{\mathbb{T}^d} u(\xi)e^{-2\pi i n \cdot \xi}dx, \quad u \in L^2(\mathbb{T}^d).
$$

By Riesz-Thorin convexity theorem, the Fourier transform $\mathcal{F}_{\mathbb{Z}^d}$ and its inverse $\mathcal{F}_{\mathbb{Z}^d}^{-1}$ satisfy the Hausdorff-Young inequalities

$$
\|\mathcal{F}_{\mathbb{Z}^d}(f)\|_{L^{p'}} \leq \|f\|_{\ell^p}, \quad (1.2)
$$

and

$$
\|\mathcal{F}_{\mathbb{Z}^d}^{-1}(u)\|_{\ell^{p'}} \leq \|u\|_{L^{p}}, \quad (1.3)
$$

for $1 < p \leq 2$ and $1/p + 1/p' = 1$.

Convolution product of two functions f and g of $\ell^2(\mathbb{Z}^d)$ is defined by

$$
f \ast_{\mathbb{Z}^d} g(n) = g \ast_{\mathbb{Z}^d} f(n) = \sum_{k \in \mathbb{Z}^d} f(k)g(n-k); \quad n \in \mathbb{Z}^d.
$$

If $f, g \in \ell^1(\mathbb{Z}^d)$ then $f \ast_{\mathbb{Z}^d} g \in \ell^1(\mathbb{Z}^d)$ and

$$
\mathcal{F}_{\mathbb{Z}^d}(f \ast_{\mathbb{Z}^d} g) = \mathcal{F}_{\mathbb{Z}^d}(f)\mathcal{F}_{\mathbb{Z}^d}(g).
$$

Suppose $f \in \ell^p(\mathbb{Z}^d)$ and $g \in \ell^q(\mathbb{Z}^d)$ with $1 \leq p, q, r \leq \infty, \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$. Then

$$
\|f \ast_{\mathbb{Z}^d} g\|_{\ell^r} \leq \|f\|_{\ell^p}\|g\|_{\ell^q} \quad \text{(Young’s Inequality)}. \quad (1.4)
$$
2 Translation invariant operators

In this section we shall be concerned with the space of bounded operators T from ℓ^p to ℓ^q for $p \leq q$, which commute with translations; that is, $\tau_n T = T \tau_n$ for all $n \in \mathbb{Z}^d$, where $\tau_n(f)(k) = f(n + k)$. It is not difficult to see that T is a convolution operator. Indeed, let $K = T(1_{\{0\}})$, where 1_A is the characteristic function of a set A. Consider first, functions f with compact support and write

$$f = 1_{\{0\}} \ast_{\mathbb{Z}^d} f = \sum_{n \in \mathbb{Z}^d} f(n) \tau_n(1_{\{0\}}).$$

Since T is translation invariant operator then

$$T(f) = T(1_{\{0\}} \ast_{\mathbb{Z}^d} f) = \sum_{n \in \mathbb{Z}^d} f(n)(\tau_n(1_{\{0\}})) = \sum_{n \in \mathbb{Z}^d} f(n)\tau_n T(1_{\{0\}}) = K \ast_{\mathbb{Z}^d} f.$$

Now for function $f \in \ell^1(\mathbb{Z}^d)$ we let

$$f_j = \sum_{|n| \leq j} f(n)1_{\{n\}}, \quad j \geq 0$$

Clearly the sequence $(f_j)_j$ converges to f in $\ell^r(\mathbb{Z}^d)$ for all $1 \leq r < \infty$ and

$$\|T(f_j) - K \ast_{\mathbb{Z}^d} f\|_r = \|K \ast_{\mathbb{Z}^d} (f_j - f)\|_r \leq \|K\|_r \|f_j - f\|_1$$

which implies that $(T(f_j))_j$ converges to $K \ast_{\mathbb{Z}^d} f$ in $\ell^q(\mathbb{Z}^d)$. But $T: \ell^p(\mathbb{Z}^d) \rightarrow \ell^q(\mathbb{Z}^d)$ is bounded and $(f_j)_j$ converges to f in $\ell^p(\mathbb{Z}^d)$, thus by uniqueness of the limit we may have $T(f) = K \ast_{\mathbb{Z}^d} f$. Notice that the $\ell^p - \ell^q$ boundedness of T implies that $K \in \ell^q(\mathbb{Z}^d)$. We state the following

Theorem 2.1. If T is a bounded translation invariant operator from $\ell^p(\mathbb{Z}^d)$ to $\ell^q(\mathbb{Z}^d)$, $p \leq q$, then there exists a function $K \in \ell^q(\mathbb{Z}^d)$ such that

$$T(f) = K \ast_{\mathbb{Z}^d} f, \quad f \in \ell^1(\mathbb{Z}^d).$$

Translation invariant operator can also be described as Fourier multiplier transformation T_m defined by

$$F_{\mathbb{Z}^d}(T_m(f)) = mF_{\mathbb{Z}^d}(f)$$

where m is a bounded measurable function m on \mathbb{T}^d. An important class of T_m is given by $L^{r,\infty}(\mathbb{T}^d)$ for $r > 1$, that is the space of measurable functions m such that for some constant $c > 0$,

$$\int_{\{\xi \in (0,1)^d, \ |m(\xi)| \geq s\}} dx \leq \frac{c}{s^r}, \quad s > 0. \quad (2.1)$$

In particular if m satisfies the estimate

$$|m(\xi)| \leq c|\xi|^{-r}; \quad \xi \in (0,1)^d, \ \xi \neq 0, \quad (2.2)$$

for $0 < \alpha < d$ then $m \in L^{d/r,\infty}(\mathbb{T}^d)$.

Theorem 2.2. If \(m \in L^{\alpha, \infty}(\mathbb{T}^d) \) with \(\alpha > 1 \) then \(T_m \) is a bounded operator from \(\ell^p(\mathbb{Z}^d) \) into \(\ell^q(\mathbb{Z}^d) \), provided that

\[
1 < p \leq 2 \leq q < \infty , \quad \frac{1}{p} - \frac{1}{q} = \frac{1}{\alpha}.
\]

This result is originally proved in [1] for translation invariant operator on \(\mathbb{R}^d \) and in [?] for translation invariant operator on \(\mathbb{Z} \), for completeness we extended this result to \(\mathbb{Z}^d \). The proof of Theorem 2.2 follows closely the argument of [4].

Lemma 2.3. Let \(\varphi \geq 0 \) be a measurable function such that for some constant \(c > 0 \)

\[
\int_{\{\xi \in (0,1)^d, \varphi(\xi) \geq s\}} dx \leq \frac{c}{s}, \quad s > 0. \tag{2.3}
\]

Then for all \(1 < p \leq 2 \) there exists a constant \(c_p > 0 \) such that

\[
\left(\int_{(0,1)^d} |\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)|^p |\varphi(\xi)|^{2-p} d\xi \right)^\frac{1}{p} \leq c_p \|f\|_{\ell^p}; \quad f \in \ell^p(\mathbb{Z}^d). \tag{2.4}
\]

Proof. Put \(d\mu(\xi) = \varphi^2(\xi) \, d\xi \) and let \(T \) be the operator defined on \(\ell^1(\mathbb{Z}^d) \) by

\[
T(f) = \frac{\mathcal{F}_{\mathbb{Z}^d}(f)}{\varphi}.
\]

Noting that \(T(f) \) is well defined \(\mu \)-almost everywhere on \((0,1)^d\), since we have that \(\mu(\{\xi \in (0,1)^d, \varphi(\xi) = 0\}) = 0 \). In fact, for \(s > 0 \) we have

\[
\mu(\{\xi \in (0,1)^d, \varphi(\xi) \leq s\}) \begin{aligned}
= \int_{\{\xi \in (0,1)^d, \varphi(\xi) \leq s\}} \varphi(\xi)^2 \, d\xi \\
= 2 \int_{\{\xi \in (0,1)^d, \varphi(\xi) \leq s\}} \int_{0 \leq t \leq \varphi(\xi)} t \, dt \, d\xi \\
\leq 2 \int_0^s \int_{\{\xi \in (0,1)^d, \ t \leq \varphi(\xi)\}} t \, dt \, d\xi \\
\leq 2c \int_0^s dt = 2cs
\end{aligned}
\]

which implies that \(\mu(\{\xi \in (0,1)^d, \varphi(\xi) = 0\}) \leq 2cs \), for all \(s > 0 \).

Now for \(s > 0 \) and \(f \in \ell^1(\mathbb{Z}^d) \) we have

\[
\mu(\{\xi \in (0,1)^d, \ |T(f)(\xi)| \geq s\}) \leq \mu \left(\left\{ \xi \in (0,1)^d, \varphi(\xi) \leq \frac{\|f\|_{\ell^1}}{s} \right\} \right) \leq \frac{2c\|f\|_{\ell^1}}{s}.
\]

Hence \(T \) is of weak type \((1,1)\). In addition, from Plancherel Theorem

\[
\mu(\{\xi \in (0,1)^d, \ |T(f)(\xi)| \geq s\}) \leq \frac{\|f\|_{L^2}^2}{s^2},
\]

which mean that \(T \) is of weak type \((2,2)\). We thus obtain Lemma 2.3 by using Marcinkiewicz interpolation Theorem.
Lemma 2.4. If \(\varphi \) satisfies (2.3) and \(1 < p < r < p' < \infty \), then we have
\[
\left(\int_{(0,1)^d} |\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)(\varphi(\xi))^{(1/r-1/p')}|^r \, d\xi \right)^{1/r} \leq C_p \|f\|_{\ell^p} ; \quad f \in \ell^p(\mathbb{Z}^d).
\]

Proof. Put \(a = (p - p)/(p' - r) \) and \(a' \) its conjugate. We note the following
\[
\frac{p}{a} + \frac{p'}{a'} = r, \quad \left(1 - \frac{r}{p'} \right) a = 2 - p, \quad \left(r - \frac{p}{a} \right) a' = p'.
\]

Then using Holder’s inequality (2.5) and the Hausdorff-Young inequality (1.2)
\[
\left(\int_{(0,1)^d} |\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)|^r |\varphi(\xi)|^{(1-r/p')} \, d\xi \right)^{1/r} \leq \left(\int_{(0,1)^d} |\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)|^p |\varphi(\xi)|^{(2-p)} \, d\xi \right)^{1/ra} \left(\int_{(0,1)^d} |\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)|^{p'} \, d\xi \right)^{1/ra'} \leq c_p \|f\|_{\ell^p}
\]
which is the desired statement.

Proof of Theorem 2.2. Assume first that \(p \leq q' \) and let \(\varphi = |m|^\alpha \). Clearly from (2.1) the function \(\varphi \) satisfies the condition (2.3). Hence using Lemma 2.4 with \(r = q' \) and the fact that \(1/p - 1/q = 1/q' - 1/p' = 1/\alpha \), we obtain that
\[
\left(\int_{(0,1)^d} |m(\xi)\mathcal{F}_{\mathbb{Z}^d}(f)(\xi)|^{q'} \, d\xi \right)^{1/q'} \leq c \|f\|_{\ell^p}.
\]

Now the Hausdorff-Young inequality (1.3) implies
\[
\|T_m(f)\|_{\ell^q} \leq \|m\mathcal{F}(f)\|_{\ell^{q'}} \leq c_p \|f\|_{\ell^p}.
\]
When \(q' < p = (p')' \), we can apply the similar argument to the adjoint operator \(T_m^* = T_m^\ast \), since \(1 < q' \leq 2 \leq p' < \infty \) and \(1/q' - 1/p' = 1/\alpha \). Hence by duality it follows that
\[
\|T_m(f)\|_{\ell^q} \leq c_p \|f\|_{\ell^p}.
\]
This finishes the proof of Theorem 2.2

Corollary 2.5. If \(m \) satisfies (2.3) with \(0 < r < d \) then \(T_m \) is bounded from \(\ell^p(\mathbb{Z}^d) \) into \(\ell^q(\mathbb{Z}^d) \), provided that
\[
1 < p \leq 2 \leq q < \infty, \quad \frac{1}{p} - \frac{1}{q} = \frac{r}{d}.
\]

Now observe that the inequality (2.1) can be restricted only to \(s \geq 1 \) which implies that \(L^{\alpha,\infty}(\mathbb{T}^d) \subset L^{\beta,\infty}(\mathbb{T}^d) \) for all \(1 < \beta \leq \alpha \). Thus one can state

Corollary 2.6. If \(m \in L^{\alpha,\infty}(\mathbb{T}^d) \) with \(\alpha > 1 \) then the operator \(T_m \) is bounded from \(\ell^p(\mathbb{Z}^d) \) into \(\ell^q(\mathbb{Z}^d) \), provided that
\[
1 < p \leq 2 \leq q < \infty, \quad \frac{1}{p} - \frac{1}{q} \geq \frac{1}{\alpha}.
\]
We now study L^p-boundedness of the multiplier operator T_m. We begin by the following:

Theorem 2.7. If m is a C^{d+1}-function on \mathbb{T}^d then T_m is a bounded operator from $\ell^p(\mathbb{Z}^d)$ into itself for all $1 \leq p \leq \infty$.

Proof. We note first that the kernel of T_m is given by

$$K(n) = \int_{(0,1)^d} m(\xi)e^{-2\pi i \xi \cdot n} d\xi, \quad n \in \mathbb{Z}^d.$$

Using integrations by parts we have

$$|n_1^{\gamma_1}...n_d^{\gamma_d}K(n)| = \left| \int_{(0,1)^d} \partial_{\xi_1}^{\gamma_1}...\partial_{\xi_d}^{\gamma_d} m(\xi) e^{-2\pi i \xi \cdot n} d\xi \right| \leq c$$

for all $\gamma_1, ..., \gamma_d \in \mathbb{N}$ with $\gamma_1 + \ldots + \gamma_d \leq d + 1$. It follows that

$$|K(n)| \leq \frac{c}{(1 + |n_1|)\ldots(1 + |n_j|)^2\ldots(1 + |n_d|)}$$

for all $j = 1, \ldots, d$. By varying j from 1 to d we deduce the following estimate

$$|K(n)| \leq \frac{c}{\left((1 + |n_1|)\ldots(1 + |n_j|)\ldots(1 + |n_d|)\right)^{1+1/d}}$$

which implies that the kernel K is in $\ell^1(\mathbb{Z}^d)$. This yields the result. \hfill \Box

Our main result is the following Hörmander-Mihlin type multiplier theorem where we may consider T_m as a Calderón-Zygmund operator.

Theorem 2.8. Let m be a bounded function on the torus \mathbb{T}^d. We assume that m is C^{d+1}-function on $\mathbb{R}^d \setminus \mathbb{Z}^d$ and satisfies the Mikhlin condition,

$$|\partial_\xi^\alpha m(\xi)| \leq c|\xi|^{-|\alpha|}, \quad \xi \in (-1/2, 1/2)^d \quad (2.6)$$

for all $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$ with $|\alpha| = \alpha_1 + \ldots + \alpha_d \leq d + 1$. Then T_m extended to a bounded operator from ℓ^p into itself for all $1 < p < \infty$.

Proof. Taking ψ a C^∞-function on \mathbb{R}^d such that $\psi(\xi) = 1$ for $|\xi| \leq 1/16$ and $\psi(\xi) = 0$ for $|\xi| \geq 1/8$. In $(-1/2, 1/2)^d$ we split m into

$$m = (1 - \psi)m + m\psi = m_1 + m_2.$$

Since $m_1 = m$ near the sides $|\xi_j| = 1/2$, then m_1 can be extended to C^{d+1}-function on \mathbb{T}^d and by Theorem 2.7 the operator T_{m_1} is bounded on ℓ^p for all $1 \leq p \leq \infty$. It is therefore enough to prove boundedness of T_{m_2}. Introduce the function K by

$$K(x) = \int_{(-1/2,1/2)^d} m_2(\xi)e^{-2\pi i \xi \cdot x} d\xi, \quad x \in \mathbb{R}^d$$
and K its restriction to \mathbb{Z}^d. One can write

$$T_{m_2}(f) = K *_{\mathbb{Z}^d} f, \quad f \in \ell^1.$$

Our aim is to prove that T_{m_2} is a Calderon-Zygmund operator. We consider here \mathbb{Z}^d as a space of homogeneous type in the sense of Coifman and Weiss [?], equipped with the Euclidean metric $(r,s) \rightarrow |r - s|$ and the counting measure. Precisely, we will prove that the kernel K satisfies the integral Hörmander condition: there exists constant $c > 0$ such that for all $s \in \mathbb{Z}^d$,

$$\sum_{r \in \mathbb{Z}^d, |r| \geq 2|s|} |K(r - s) - K(r)| \leq c. \quad (2.7)$$

To begin, let ϕ be a C^∞- function on \mathbb{R}, such that $\mathrm{supp}(\phi) \subset \{ t \in \mathbb{R}; 1/2 \leq |t| \leq 2 \}$ and

$$\sum_{j \in \mathbb{Z}} \phi(2^{-j}t) = 1, \quad t \neq 0.$$

So we have

$$\sum_{j=3}^{\infty} \phi(2^{-j}|\xi|) = 1, \quad |\xi| \leq \frac{1}{8},$$

and we may write

$$m_2(\xi) = \sum_{j=3}^{\infty} m_2(\xi) \phi(2^{-j}|\xi|) = \sum_{j=3}^{\infty} m_j(\xi), \quad \xi \in (-1/2, 1/2)^d.$$

Notice that

$$\sum_{j=3}^{\infty} |m_j(\xi)| \leq c \quad (2.8)$$

for some constant $c > 0$, since this sum contains at most three non-null terms. We now set

$$K_j(x) = \int_{(-1/2,1/2)^d} m_j(\xi)e^{-i2\pi\xi \cdot x}d\xi, \quad x \in \mathbb{R}^d.$$

By Fubini’s Theorem and (2.8) the sum $\sum_j K_j$ converges and

$$\sum_{j=3}^{\infty} K_j(x) = \int_{(-1/2,1/2)^d} \sum_{j=3}^{\infty} m_j(\xi)e^{-i2\pi\xi \cdot x}d\xi = \int_{(-1/2,1/2)^d} m_2(\xi)e^{-i2\pi\xi \cdot x}d\xi = K(x),$$

Next we shall give estimates of the kernels K. Observe first that m_2 satisfies the condition (2.6) and from this estimate and the compactness of $\mathrm{supp}(\varphi)$ one can obtain the following

$$|\partial^\alpha m_j(\xi)| \leq c \, 2^{-j|\alpha|}, \quad \text{and} \quad |\partial^\alpha (\xi m_j(\xi))| \leq c \, 2^{-j(|\alpha|-1)};$$

for $i = 1, \ldots, d$ and for $|\alpha| \leq d + 1$. It follows that

$$|x|^s |K_j(x)| \leq c \sum_{|\alpha| = s} \|\partial^\alpha m_j\|_{L^1} \leq c \, 2^{j(d-s)} \quad (2.9)$$
and

\[|x|^s \left| \frac{\partial K_j}{\partial x_i}(x) \right| \leq c \sum_{|\alpha|=s} \|\partial^\alpha (\xi_i m_j(\xi))\|_{L^1} \leq c 2^j(d+1-s). \] \hspace{1cm} (2.10)

Using (2.9) with \(s = 0 \) and \(s = d + 1 \) we get

\[\sum_{j=3}^{\infty} |K_j(x)| = \sum_{2^j \leq |x|^{-1}} |K_j(x)| + \sum_{2^j > |x|^{-1}} |K_j(x)| \leq c |x|^{-d}. \]

Similarly by (2.10) with \(s = 0 \) and \(s = d + 2 \)

\[\sum_{j=3}^{\infty} \left| \frac{\partial K_j}{\partial x_i}(x) \right| = \sum_{2^j \leq |x|^{-1}} \left| \frac{\partial K_j}{\partial x_i}(x) \right| + \sum_{2^j > |x|^{-1}} \left| \frac{\partial K_j}{\partial x_i}(x) \right| \leq c |x|^{-d-1}. \]

Therefore we obtain the following estimates

\[|K(x)| \leq c(1 + |x|)^{-d}, \quad \left| \frac{\partial K}{\partial x_i}(x) \right| \leq c(1 + |x|)^{-d-1}, \quad i = 1, \ldots, d. \] \hspace{1cm} (2.11)

Note that \(K \) is a \(C^\infty \)-function and all of its derivatives are bounded.

Now we come to the proof of (2.7). Let \(r, s \in \mathbb{Z}^d \) with \(|r| \geq 2|s| \). By mean value Theorem we have

\[|K(r - s) - K(r)| = |K(r - s) - K(r)| \leq |s| \int_0^1 \sum_{i=1}^d \left| \frac{\partial K}{\partial x_i}(r - ts) \right| dt. \]

Using (2.11) and the fact that

\[|r - ts| \geq |r| - |s| \geq \frac{|r|}{2}, \]

we obtain the following

\[|K(r - s) - K(r)| \leq \frac{c |s|}{(1 + |r|)^{d+1}}. \] \hspace{1cm} (2.12)

Now use that

\[\max_{1 \leq i \leq d} (|r_i|) \leq |r| \leq d^{1/2} \max_{1 \leq i \leq d} (|r_i|), \]

we have

\[\sum_{|r| \geq 2|s|} \frac{1}{(1 + |r|)^{d+1}} \leq c \sum_{\max_{1 \leq i \leq d} \max_{1 \leq i \leq d} (|r_i|) \geq 2^{d-1/2}|s|} \frac{1}{(1 + \max_{1 \leq i \leq d} (|r_i|))^{d+1}}. \]

It is not hard to see that

\[\sum_{r \in \mathbb{Z}^d, \max_{1 \leq i \leq d} (|r_i|) = k} \leq ck^{d-1}. \]
and from which
\[\sum_{|r| \geq 2d^{-1/2}|s|} \frac{1}{(1 + |r|)^{d+1}} \leq c \sum_{k \geq 2d^{-1/2}|s|} \frac{1}{k^2} \leq \frac{c}{|s|}. \tag{2.13} \]

Combine (2.13) with (2.12), yield that
\[\sum_{|r| \geq 2d^{-1/2}|s|} \left| K(r - s) - K(r) \right| \leq c \]
which proves (2.7). The proof of Theorem 2.8 follows.

In the next we shall be concerned with Mikhlin type multiplier on \(\mathbb{Z} \). Thus one can read Theorem 2.8 as follows

Theorem 2.9. If \(m \) is a bounded \(C^2 \)-function on \((0, 1) \) such that
\[(\xi(1 - \xi))^k |m^{(k)}(\xi)| \leq c; \quad 0 \leq k \leq 2 \tag{2.14} \]
then \(T_m \) is a bounded operator from \(\ell^p(\mathbb{Z}) \) into \(\ell^p(\mathbb{Z}) \) for \(1 < p < \infty \).

Clearly condition (2.14) is exactly (2.6) when extending \(m \) to a periodic function.

Now we replace the interval \((0, 1) \) by a bounded interval \((a, b) \). For \(f \in \ell^2(\mathbb{Z}) \) we define its Fourier transform by
\[\mathcal{F}_{\mathbb{Z}}^{a,b}(f)(\xi) = \sum_{n \in \mathbb{Z}} f(n) e^{i2\pi n \left(\frac{\xi - a}{b - a} \right)} = \mathcal{F}_{\mathbb{Z}}(f) \left(\frac{\xi - a}{b - a} \right) \]
and its inverse
\[(\mathcal{F}_{\mathbb{Z}}^{a,b})^{-1}(f)(n) = \frac{1}{b - a} \int_a^b f(\xi) e^{i2\pi n \left(\frac{\xi - a}{b - a} \right)} d\xi, \quad n \in \mathbb{Z}. \]
For a bounded function \(m \) on \((a, b) \) we define on \(\ell^2(\mathbb{Z}) \) the operator \(T_m^{a,b} \) by
\[T_m^{a,b}(f)(n) = \frac{1}{b - a} \int_a^b m(\xi) \mathcal{F}_{\mathbb{Z}}^{a,b}(f)(\xi) e^{i2\pi n \left(\frac{\xi - a}{b - a} \right)} d\xi \]
\[= \int_0^1 m(a + (b - a)\xi) \mathcal{F}_{\mathbb{Z}}^{a,b}(f)(a + (b - a)\xi) e^{i2\pi n d\xi} d\xi \]
\[= \int_0^1 m(a + (b - a)\xi) \mathcal{F}_{\mathbb{Z}}(f)(\xi) e^{i2\pi n d\xi}, \]
for \(n \in \mathbb{Z} \). According to Theorem 2.9 we have the following

Corollary 2.10. If \(m \) is a bounded \(C^2 \)-function on a bounded interval \((a, b) \), such that for some constant \(c > 0 \)
\[(\xi - a)^k (b - \xi)^k |m^{(k)}(\xi)| \leq c, \quad 0 \leq k \leq 2 \]
then \(T_m^{a,b} \) is a bounded operator from \(\ell^p(\mathbb{Z}) \) into \(\ell^p(\mathbb{Z}) \) for \(1 < p < \infty \).
As a typical example we have \(m = \chi_{(a,b)} \) the characteristic function of \((a,b)\). Theorem 2.9 can be generalized as follows.

Theorem 2.11. Let \((a_j)_{0 \leq j \leq s}\) be a subdivision of \([0, 1]\). If \(m\) is a bounded \(C^2\)-function on \((0, 1)\) such that, for some constant \(c > 0\),

\[
\left(\prod_{0 \leq j \leq s} |\xi - a_j|^k \right) |m^{(k)}(\xi)| \leq c; \quad 0 \leq k \leq 2.
\]

then \(T_m\) is a bounded operator from \(\ell^p(\mathbb{Z})\) into \(\ell^p(\mathbb{Z})\) for \(1 < p < \infty\).

Proof. Assume first that \(s = 2\) and let \(0 = a_0 < a_1 < a_2 = 1\). Let \(\varepsilon > 0\) and \(\varphi\) a be \(C^\infty\) function on \(\mathbb{R}\) such that \([a_1 - 2\varepsilon, a_1 + 2\varepsilon] \subseteq [0, 1]\) and \(\varphi(\xi) = 0\) for \(\xi \in [a_1 - \varepsilon, a_1 + \varepsilon]\) and \(\varphi(\xi) = 1\) for all \(\xi \notin [a_1 - 2\varepsilon, a_1 + 2\varepsilon]\). Put

\[
m(\xi) = m(\xi)\varphi(\xi) + m(\xi)(1 - \varphi(\xi)) = m_1(\xi) + m_2(\xi), \quad \xi \in (0, 1).
\]

and

\[
T_m = T_{m_1} + T_{m_2}
\]

Clearly the boundedness of \(T_{m_1}\) is a consequence of Theorem 2.9. However, if we consider \(\tilde{m}_2\) the 1- periodic function such that \(\tilde{m}_2(\xi) = m_2(\xi)\) for \(\xi \in [0, 1]\), then one can write

\[
T_{m_2}(f)(n) = \int_0^1 \tilde{m}_2(\xi)\mathcal{F}_Z(f)(\xi)e^{i2\pi n \xi}d\xi
\]

\[
= \int_0^{a_1 + 1} \tilde{m}_2(\xi)\mathcal{F}_Z(f)(\xi)e^{i2\pi n \xi}d\xi
\]

\[
= \int_0^1 \tilde{m}_2(\xi - a_1)\mathcal{F}_Z(f)(\xi + a_1)e^{i2\pi n(\xi - a_1)}d\xi
\]

\[
= e^{i2\pi a_1} \int_0^1 \tilde{m}_2(\xi + a_1)\mathcal{F}_Z(f)(\xi)e^{i2\pi n \xi}d\xi
\]

\[
= e^{i2\pi a_1} T_{m_2}^{a_1, a_1 + 1}(\tilde{f})(n)
\]

where \(\tilde{f}\) is the function given by \(\tilde{f}(n) = e^{i2\pi n a_1}f(n), n \in \mathbb{Z}\). Now observe that \(\tilde{m}_2\) satisfies the hypothesis of Corollary 2.10 on \((a_1, a_1 + 1)\), then the boundedness of \(T_{m_2}\) follows.

Now for \(s \geq 3\) we proceed as follows: choose \(\varepsilon > 0\) such that the intervals \([a_j - 2\varepsilon, a_j + 2\varepsilon]\) are disjoint for all \(1 \leq j \leq s - 1\) and \(C^\infty\) functions \(\varphi_j\) with \(\varphi_j(\xi) = 0\) for \(\xi \in [a_j - \varepsilon, a_j + \varepsilon]\) and \(\varphi_j(\xi) = 1\) for \(\xi \notin [a_j - 2\varepsilon, a_j + 2\varepsilon]\). Put

\[
\varphi = \frac{1}{s - 1} \sum_{j=1}^{s-1} \varphi_j
\]

and write

\[
m = m\varphi + m(1 - \varphi) = m\varphi + \sum_{j=1}^{s-1} \left(\frac{1 - \varphi_j}{s - 1} \right) m = m_0 + \sum_{j=1}^{s-1} m_j
\]
\[T_m = T_{m_0} + \sum_{j=1}^{s-1} T_{m_j}. \]

Therefore from the above argument all the operators \(T_{m_j} \) are bounded on \(\ell^p(\mathbb{Z}) \), \(1 < p < \infty \). \(\square \)

3 Applications

3.1 Discrete Riesz Transforms

For a complex-valued function \(f \) on \(\mathbb{Z}^d \) its discrete Laplacian is given by

\[
\Delta_d(f)(n) = \sum_{j=1}^{d} \partial_j \partial_j^* f(n) = \sum_{j=1}^{d} \partial_j^* \partial_j f(n), \quad n \in \mathbb{Z}^d
\]

where \(\partial_j f(n) = f(n + e_j) - f(n) \) and \(\partial_j^* f(n) = f(n) - f(n - e_j) \). We have

\[
\Delta_d(f)(n) = \sum_{j=1}^{d} \left(f(n + e_j) - 2df(n) + f(n - e_j) \right).
\]

The discrete Laplacian \(\Delta_d \) is a bounded self-adjoint operator on \(\ell^2(\mathbb{Z}^d) \) and one has

\[
\mathcal{F}_{\mathbb{Z}^d}(\Delta_d(f))(\xi) = -\sum_{j=1}^{d} |e^{i2\pi \xi_j} - 1|^2 \mathcal{F}_{\mathbb{Z}^d}(f)(\xi) = -4 \left(\sum_{j=1}^{d} \sin^2(\pi \xi_j) \right) \mathcal{F}_{\mathbb{Z}^d}(f)(\xi).
\]

The discrete Riesz transforms \(R_j \), \(j = 1, \ldots, d \), associated with \(\Delta_d \) are defined on \(\ell^2(\mathbb{Z}^d) \) as the multiplier operators

\[
\mathcal{F}_{\mathbb{Z}^d}(R_j(f))(\xi) = \frac{e^{-i\pi \xi_j} \sin(\pi \xi_j)}{2 \left(\sum_{k=1}^{d} \sin^2(\pi \xi_k) \right)^{1/2}} \mathcal{F}_{\mathbb{Z}^d}(f)(\xi),
\]

its can be interpret as \(R_j(f) = \partial_j \Delta_d^{-1/2} \). Let us set

\[
\psi_j(\xi) = \frac{e^{-i\pi \xi_j} \sin(\pi \xi_j)}{2 \left(\sum_{k=1}^{d} \sin^2(\pi \xi_k) \right)^{1/2}}
\]

and prove that \(\psi_j \) satisfies the Mikhlin condition (2.6). This can be seen by using the fact that \(\gamma \in \mathbb{N}^d \), \(\partial^\gamma \psi_j \) is a linear combination of the following functions

\[
e^{-i\pi \xi_j} \prod_{k=1}^{d} \sin^{\alpha_k}(\pi \xi_k) \prod_{k=1}^{d} \cos^{\beta_k}(\pi \xi_k) \left(\sum_{i=1}^{d} \sin^2(\pi \xi_k) \right)^{\frac{d}{2}} - \sum_{i=1}^{d} (\alpha_k + \beta_k)/2
\]
where $\sum_{k=1}^{d} \alpha_k \leq |\gamma| + 1$ and $\sum_{k=1}^{d} \beta_k \leq |\gamma|$. Hence using the fact that for $k = 1, \ldots, d$, $\xi_k \in (-1/2, 1/2)$ and $2|\xi_k| \leq |\sin \pi \xi| \leq \pi |\xi|$ we obtain

\[
\left| \prod_{k=1}^{d} \sin^{\alpha_k}(\pi \xi_k) \prod_{k=1}^{d} \cos^{\beta_k}(\pi \xi_k) \left(\sum_{k=1}^{d} \sin^2(\pi \xi_k) \right)^{-\frac{1}{2}} \right| \leq |\xi| \sum_{k=1}^{d} \beta_k \leq |\xi|^{-|\gamma|}.
\]

Therefore we can apply Theorem 2.8 to assert that R_j is bounded on $\ell^p(\mathbb{Z}^d)$ for $1 < p < \infty$.

3.2 Imaginary powers of the discrete Laplace operator Δ_d

Theorem 2.8 also applies to imaginary powers of the discrete Laplacian: $(-\Delta_d)^it$ for $t \in \mathbb{R}$, it is the multiplier operator with multiplier \(4 \sum_{j=1}^{d} \sin^2(\pi \xi_j)\)\(^it\).

3.3 Strichartz type estimates for discrete wave equation

We define the d-dimensional discrete wave equation by

\[
\Delta_d u(n, t) = \partial_t^2 u(n, t),
\]

\[
u(n, 0) = f(n), \quad \partial_t u(n, t) = g(n), \quad (n, t) \in \mathbb{Z}^d \times \mathbb{R}
\]

where f and g are a given suitable functions on \mathbb{Z}^d. Considered as a discrete counterpart of the continuous wave equation, many authors have been interested in studying this equation see, for example, [6, 5, 7] and the references therein. Putting

\[
\phi(\xi) = 2 \sqrt{\sum_{j=1}^{d} \sin^2(\pi \xi_j)}
\]

and applying the discrete Fourier transform, considering t as a parameter, we deduce that the solution of (3.1) can be written (formally) in the form

\[
u(n, t) = \mathcal{F}_{\mathbb{Z}^d}^{-1} \left(\cos(t\phi(\cdot)) \mathcal{F}_{\mathbb{Z}^d}(f)(n) + \mathcal{F}_{\mathbb{Z}^d}^{-1} \left(\frac{\sin(t\phi(\cdot))}{\phi(\cdot)} \mathcal{F}_{\mathbb{Z}^d}(g)(n) \right) \right). \tag{3.2}
\]

We will prove the following version of the Strichartz estimates.

\[
\|u(\cdot, t)\|_{\ell^q} \leq c(t) \left(\|g\|_{\ell^p} + \sum_{j=1}^{d} \|\partial_j f\|_{\ell^p} \right), \tag{3.2}
\]

for all $1 < p \leq 2 \leq q < \infty$.

Let us observe first that $\xi \rightarrow \sin(t\phi(\xi))/\phi(\xi)$ is a C^∞- function on \mathbb{T}^d and then in view of Theorem 2.7 we have

\[
\left\| \mathcal{F}_{\mathbb{Z}^d}^{-1} \left(\frac{\sin(t\phi(\cdot))}{\phi(\cdot)} \mathcal{F}_{\mathbb{Z}^d}(g) \right) \right\|_{\ell^q} \leq c(t) \|g\|_{\ell^p}
\]
whenever $1 < p \leq q < \infty$. To prove (3.2) it suffices to show that

$$\left\| F_{Zd}^{-1} \left(\cos(t\phi(.))F_{Zd}(f) \right) \right\|_{\ell^q} \leq c(t) \sum_{j=1}^{d} \| \partial_j f \|_{\ell^p}.$$

We write

$$\cos(t\phi(\xi))F_{Zd}(f)(\xi) = \frac{\cos t\phi(\xi)}{\phi(\xi)} \sum_{j=1}^{d} F_{Zd}(R_j(\partial_j f))(\xi).$$

As

$$\left| \frac{\cos(\phi(\xi))}{\phi(\xi)} \right| \leq \frac{c}{|\xi|},$$

it follows from Theorem 2.2 that

$$\left\| F_{Zd}^{-1} \left(\cos(t\phi(.))F_{Zd}(f) \right) \right\|_{\ell^q} \leq c(t) \sum_{j=1}^{d} \| R_j(\partial_j f) \|_{\ell^p}$$

and by using ℓ^p-boundedness of R_j,

$$\left\| F_{Zd}^{-1} \left(\cos(t\phi(.))F_{Zd}(f) \right) \right\|_{\ell^q} \leq c(t) \sum_{j=1}^{d} \| \partial_j f \|_{\ell^p}$$

which conclude the proof of (3.2).

References

[1] O. Ciaurri, T. Gillespie, L. Roncal, J.L. Torrea, J. L. Varona, Harmonic analysis associated with a discrete Laplacian, Journal d’Analyse Mathématique, 132 (2017), 109-131.

[2] R. R. Coifman and G. Weiss, Analyse harmonique non-commutatives sur certains espaces homogènes, Lecture Notes in Math., vol.242, Springer-Verlag, Berlin and New York, 1971.

[3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 56-645.

[4] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104(1960), 93-139.

[5] I. Egorova, E. Kopylova, and G. Teschl, Dispersion estimates for one-dimensional discrete Schrödinger and wave equations, J. Spectr. Theory .

[6] E. Kopylova On dispersion decay for discrete wave equations, Communications in Mathematical Analysis 17(2),209-216.

[7] A. Slavik, Discrete-Space Systems of Partial Dynamic Equations and Discrete-Space Wave Equation, Qualitative Theory of Dynamical Systems 16(2), 299-315.