Review

Ionising radiation as a risk factor for lymphoma: a review

Richard W Harbron1,2,3,4,5 and Elisa Pasqual3,4,5

1 Population Health Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
2 NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, United Kingdom
3 Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
4 Universitat Pompeu Fabra (UPF), Barcelona, Spain
5 CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain

E-mail: Richard.harbron@ncl.ac.uk

Received 15 June 2020; revised 28 September 2020
Accepted for publication 5 October 2020
Published 20 November 2020

Abstract

The ability of ionising radiation to induce lymphoma is unclear. Here, we present a narrative review of epidemiological evidence of the risk of lymphoma, including chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM), among various exposed populations including atomic bombing survivors, industrial and medical radiation workers, and individuals exposed for medical purposes. Overall, there is a suggestion of a positive dose-dependent association between radiation exposure and lymphoma. The magnitude of this association is highly imprecise, however, with wide confidence intervals frequently including zero risk. External comparisons tend to show similar incidence and mortality rates to the general population. Currently, there is insufficient information on the impact of age at exposure, high versus low linear energy transfer radiation, external versus internal or acute versus chronic exposures. Associations are stronger for males than females, and stronger for non-Hodgkin lymphoma and MM than for Hodgkin lymphoma, while the risk of radiation-induced CLL may be non-existent. This broad grouping of diverse diseases could potentially obscure stronger associations for certain subtypes, each with a different cell of origin. Additionally, the classification of

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

© 2020 Society for Radiological Protection. Published on behalf of SRP by IOP Publishing Limited. All rights reserved

1361-6498/20/+35$33.00 Printed in the UK R151
malignancies as leukaemia or lymphoma may result in similar diseases being analy"ed separately, while distinct diseases are analy"ed in the same category. Uncertainty in cell of origin means the appropriate organ for dose response analy"sis is unclear. Further uncertainties arise from potential confounding or bias due to infectious causes and immunosuppression. The potential interaction between radiation and other risk factors is unknown. Combined, these uncertainties make lymphoma perhaps the most challenging malignancy to study in radiation epidemiology.

Keywords: lymphoma, multiple myeloma, chronic lymphocytic leukaemia, ionising radiation

(Some figures may appear in colour only in the online journal)

1. Introduction

Lymphomas comprise a diverse group of malignancies involving cells of the immune system. These diseases include (1) precursor cell lymphoid malignancies involving proliferation of immature lymphoblasts, and (2) mature lymphoid malignancies involving differentiated B- and T-cells (figure 1, table 1) [1, 2]. Lymphomas are classed as Hodgkin lymphoma (HL) or non-Hodgkin lymphoma (NHL) according to the presence or absence of Reed-Sternberg cells, respectively [3, 4]. Lymphoma belongs to the wider disease category of lymphoid malignancies. These diseases may present as leukaemia, with proliferation predominantly occurring in the bone marrow and blood, or as lymphoma, in which proliferating cells form extra-marrow mass lesions. Solid tumours are typically found in lymph nodes, though can occur anywhere in the body where lymphoid tissue is found (e.g. [5, 6]). The distinction between leukaemia and lymphoma is now regarded as artificial [7, 8], as these malignancies have considerable histological overlap, with many diseases involving both solid and circulating phases [9]. For example, chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma (SLL) are considered to be histologically the same disease [10], with the former involving proliferation in the blood and marrow, and the latter forming solid tumours. These two disease manifestations are given separate International Classification of Diseases (ICD) and ICD Oncology (ICD-O) [11, 12] codes, however. Likewise, acute lymphoblastic leukaemia (ALL) and lymphoblastic lymphoma (LBL) are regarded as a single disease entity [1], though are coded differently. Multiple myeloma (MM) and hairy cell leukaemia (HCL) are malignancies of mature B-lymphocytes, and thus are considered sub-types of NHL [1], though again they have distinct ICD and ICD-O codes and are almost invariably analysed separately in epidemiological studies and recorded as separate disease entities in cancer statistics (e.g. [13]).

1.1. Epidemiology

Around 120 000 cases of HL and NHL, including MM and CLL, are diagnosed each year in the USA [14], while around 25 000 cases are diagnosed in the UK, representing around 7% of total cancer cases [15–18]. Overall, incidence of NHL exceeds HL by a factor of around ten [3, 4], though between the ages of 10 and 30 years, HL tends to be the more common form, especially in Europe and North America [13]. In teenagers, lymphomas represent around a quarter of all cancers. All major mature lymphoid malignancy subtypes are more common in males [15–18]. Both CLL and MM are extremely rare before age 50 years and almost unknown in childhood [19, 20].
1.2. Non-radiogenic risk factors

Most forms of both HL and NHL are strongly associated with congenital, acquired or drug-induced immunosuppression [21, 22]. Greatly elevated rates have been observed among individuals with HIV/AIDS and those receiving immunsuppressant drugs following organ transplantation [21]. Certain infections are also associated with lymphoma, including Epstein–Barr virus [23], hepatitis C virus [24] and Helicobacter pylori [4]. Positive associations have been found between autoimmune conditions and several lymphoma subtypes [24]. Smoking has also been identified as a risk factor, especially for T-cell NHL and HL [25, 26]. Obesity may be associated with increased risk of large B-cell NHL [27], though not CLL/SLL [28]. Alcohol consumption is associated with reduced rates of both NHL [22, 29] and HL [30], while there is a possible negative association between HL and ultraviolet radiation exposure [31]. Elevated lymphoma rates have been observed in certain occupational groups, including crop farmers, painters, textile workers and women’s hairdressers [32], suggesting that certain chemicals may be a risk factor [33]. There is no evidence of any impact of socio-economic status on risk of MM or CLL [34]. There is a suggestion of increased HL incidence for most deprived areas, but for males only [34].

1.3. Cellular origins of lymphoma

While most lymphomas are formed of mature lymphocytes, these cells do not necessarily represent the origin of the disease. Alternatives include lymphoblasts, multi-lymphoid progenitor...
Table 1. Interlymph classification [1] of lymphoid malignancies. The ‘grouping’ column represents the disease each malignancy is usually categorised as in epidemiological studies, e.g. follicular lymphoma is included within the category ‘NHL’ or the broader category of all lymphomas. Diseases in bold are the subject of this review.

Disease category	Study grouping
Lymphoid malignancies	
Hodgkin lymphoma	Classic Hodgkin lymphoma, nodular sclerosing (HL, lymphoma)
Precursor cell	Acute lymphoblastic leukaemia/lymphoblastic lymphoma (ALL/NHL, lymphoma)
Non-Hodgkin lymphomas	
Mature lymphocytes	Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/NHL, lymphoma)
B-cell	Multiple myeloma (MM)
	Haemat cell leukaemia (HCL, leukaemia)
	Mantle cell lymphoma (NHL, lymphoma)
	Diffuse Large B-cell lymphoma (NHL, lymphoma)
	Follicular lymphoma (NHL, lymphoma)
T- and NK-cell	NK/T-cell lymphoma (NHL, lymphoma)
cells and haematopoietic stem cells (figure 1) [35, 36]. Each cell type may be found in different locations, including the bone marrow, blood, spleen, thymus or germinal centres in lymph nodes, according to stage of lymphopoiesis. T-lymphocytes, for example, initially develop in the marrow before being released into the blood, maturing in the thymus, then migrating to a lymph node or other lymph tissue. One or more radiation-induced genetic mutations may occur at any of these stages and locations, while the tumour itself may develop somewhere else. Evidence is emerging that at least some lymphomas develop from ‘lymphoma stem cells’ residing in the marrow [35]. Cases have been reported of allogenic bone marrow transplant donors and recipients both developing identical mature lymphoid malignancies, often at the same time, post-transplant [35]. Further evidence comes from cases of ‘composite lymphomas’, in which the patient develops multiple, histologically distinct lymphomas, derived from a common precursor cell [37].

This uncertainty in the cell of origin for lymphoma is almost unique in radiation epidemiology, where the site of a tumour is generally assumed to be the site of cell proliferation and the site of initial and subsequent genetic mutations, thus defining the tissue/organ for which dose must be estimated in dose response analysis. Consequently, there is no consensus on the appropriate target organ for lymphoma. Most epidemiological dose response analyses for lymphoma are based on bone marrow dose, although colon dose [38], personal dosimeter reading (in occupational studies) and mean lymphocyte dose [39] have also been used. An additional exposure pathway for circulating lymphocytes, relevant to inhaled alpha-emitting radionuclides such as radon, is via the transbronchial epithelium in the lungs [40]. While often similar, mean lymphocyte and bone marrow doses may differ by a factor of up to 2.6, depending on exposed region [41]. Along with potential misclassification and the profound impact of immunosuppression, the uncertainty in cellular origin complicates assessment of the relationship between radiation and lymphoma. The findings of the epidemiological studies discussed in the remainder of this review should be placed in the context of this uncertainty.

2. Epidemiological evidence of ionising radiation as a risk factor for lymphoma

We searched PubMed for English language epidemiological studies (cohort and case control) analysing lymphoma risks following radiation exposure. We searched using the MeSH terms ‘Lymphoma’ and the respective MeSH terms for each sub-type of lymphoma including broad categories ‘Non-Hodgkin lymphoma’ and ‘Hodgkin lymphoma’, and the MeSH terms for ionising radiation, background radiation, x-rays, gamma rays and alpha and beta radiation. This search yielded 3156 items, of which 106 were selected. The reference lists of included papers and previous reviews of lymphoma risks [42, 43] were also searched. No restriction was applied for publication period. As external analyses may be potentially biased, e.g. due to healthy worker effect, a greater weight was given to those publications reporting a dose response based on internal analysis.

As mentioned in the introduction, CLL and MM are regarded as subtypes of NHL [1], but are almost always analysed separately and will be reported as described in the cited papers. We assumed that papers reporting figures for ‘lymphoma’ without giving further details were restricted to the current (3rd edition, 1st revision) ICD-O-3 codes [12] 9590 to 9729. ‘Hodgkin lymphoma’ was restricted to codes 9650 to 9667 and ‘non-Hodgkin lymphoma’ implied codes 9670–9729 (thus not including CLL, MM or HCL). Dose units are written as reported in the cited papers. An equivalent dose of 1 sievert (Sv) corresponds to a dose of 1 gray (Gy), averaged over the whole organ, for photons and electrons. Where there is a neutron or alpha component, this equivalency no longer applies.
2.1. Atomic bombing survivors

The Life Span Study (LSS) of atomic bombing survivors includes around 94,000 residents of Hiroshima and Nagasaki [44–46] who received reasonably uniform external whole-body exposures of low linear energy transfer (LET) gamma and high LET neutron radiation, at an extremely high dose rate. A summary of findings is presented in table 2. As of 2003, there were 284 deaths from lymphoma in the LSS. In the latest mortality analysis [45], based on bone marrow dose, the excess relative risk (ERR) was 0.16 Gy\(^{-1}\) (95% CI: −0.13, 0.59), compared to 0.47 Gy\(^{-1}\) (95% CI: 0.38, 0.56) for all solid cancers and 3.1 Gy\(^{-1}\) (95% CI: 1.8, 4.3) for leukaemia. No separate analysis was performed by lymphoma subtype. A raised lymphoma ERR was found for males (0.70 Gy\(^{-1}\), 95% CI: 0.08–1.70), but not for females (−0.18, 95% CI: −0.21–0.24). Likewise for the incidence analysis [46], a suggestion of a raised ERR was observed for males for NHL (0.46 Gy\(^{-1}\), 95% CI: −0.08, 1.29) but not females (0.02 Gy\(^{-1}\), 95% CI: −0.44, 0.64). There is some overlap in the confidence intervals for the male and female ERR figures, suggesting the apparent sex differences may be a chance finding. The ERR for HL was 0.20 Gy\(^{-1}\) (95% CI: −1.03, 2.63), based on 35 incident cases. A significant linear dose response was reported for CLL, based on 10 cases, plus two cases of HCL. No quantification other than a p-value (<0.05) was reported, however. For MM, there is a somewhat stronger dose response for the mortality data (0.54 Gy\(^{-1}\), 95% CI: −0.04, 1.58) than for incidence (0.38 Gy\(^{-1}\), 95% CI: −0.23, 1.36).

In a detailed analysis of lymphoma mortality among male atomic bombing survivors aged 15–64 years at the time of exposure, Richardson et al [38] reported positive associations for the periods 35–45 years (ERR = 2.23 Sv\(^{-1}\), 90% CI: 0.09, 6.91) and 46–55 years (1.70, 95% CI: 0.16, 5.36) since exposure, but not for 5–25 years (0.08) and 26–35 years (−0.10). Confidence intervals were undefined in both cases. A similar, but stronger, pattern was observed for NHL alone. The authors also reported a higher ERR when analysis was restricted to survivors receiving doses below 0.5 Sv, compared to the whole dose range. Although this suggests non-linearity of dose response, the introduction of a quadratic term did little to improve goodness of fit, compared to a purely linear model [38].

2.2. Occupational exposures

Most studies of occupational exposures have focussed on individuals working in the nuclear industry (including uranium workers [47–62] and Chernobyl clean-up workers [7, 63, 64]), nuclear weapons testing programs [65–71], medical imaging [56, 72–78] or those working as airline crew [79–84]. Radiation exposures are typically fairly uniform, though highly protracted. The potential impact of ‘healthy worker’ effects should be considered when interpreting external comparisons of cancer incidence or mortality. In many occupational studies (e.g. [84, 85]), rates for all cancer types are decreased, compared to the general population, even those normally strongly associated with radiation. A greater weight should therefore be placed on the results of studies including internal analysis with a dose response. A summary of standardised incidence ratios (SIR), standardised mortality ratios (SMR) and relative risks (RRs) for studies with >20 cases is presented in table 3, while table 4 shows a summary of ERR figures.

The most informative studies are those of large pooled cohorts of nuclear workers [87–99], which include dose response analyses based on estimated bone marrow dose from external sources, derived from personal dosimeters. The recent study by Leuraud et al [94] involved a France-UK-USA cohort called INWORKS. Although the sample size was smaller than the previous 15-country nuclear workers study [98] (302 297 versus 407 391), the increased follow-up of the INWORKS cohort yielded a much larger number of deaths, including 710 from NHL,
Table 2. Excess relative risk (ERR) from the life span study (LSS) of Japanese atomic bombing survivors.

Study (year)	Disease	Grouping	Sample size	Observed Incidence or Mortality	Incidence or Mortality ERR (per Gy) [95% CI]	Dose site	Lag
Richardson [38] (2009)	All lymphoma	Males aged 15–64 years at exposure	20,940	90	0.79 [0.10, 1.88]\(^a\)	Colon (DS02)	5 years\(^b\)
	NHL				0.86 [0.13, 2.03]\(^a\)		10 years
					1.12 [0.26, 2.51]\(^a\)		5 years\(^b\)
							10 years
Ozasa [45] (2012)	All lymphoma	All	86,611	284	0.16 [−0.13, 0.59]	Bone marrow (DS02)	5 years\(^b\)
		Male	125	0.70 [0.08, 1.70]			
		Female	159	−0.18 [−0.21, 0.24]			
		MM	93	0.54 [−0.04, 1.58]			
		Male	34	0.11 [NA, 1.6]			
		Female	59	0.86 [0.02, 2.50]			
	MM All	35	0.20 [−1.03, 2.63]				
Hsu [46] (2013)	NHL	Male	113,011\(^c\)	402	0.46 [−0.08, 1.29]	Bone marrow (DS02)	5 years\(^b\)
		Female			0.02 [−0.44, 0.64]		
	HL	All	35	0.20 [−1.03, 2.63]			
	MM	All	136	0.38 [−0.23, 1.36]			

\(^a\) 90% confidence interval.
\(^b\) The 5-year lag period is implicit as the study only began accruing cases in 1950.
\(^c\) Includes 'not in city' group. DS02 = 2002 version of dosimetry system.
Table 3. Summary of standardised incidence ratio (SIR), standardised mortality ratio (SMR) and relative risk (RR) for occupational exposures.

Study (year)	Disease	Grouping	Sample size (exposed/unexposed)	Observed cases/ deaths	SIR/SMR [95% CI]
Darby [86] (1995) Underground miners	NHL	<10 YSE	64,209	6	0.81 [0.30–1.77]
	All	>10 YSE	30	0.79 [0.54–1.13]	
	All		36	0.80 [0.56–1.10]	
	HL	<10 YSE	5	0.77 [0.25–1.80]	
	All	>10 YSE	12	1.01 [0.52–1.77]	
	All		17	0.93 [0.54–1.48]	
Mohan [74] (2003) Medical radiographers	MM	Female	146,022	80	1.01 [0.7, 1.6]
	All	Male	133	0.98 [0.7, 1.1]	
	HL	Male	9	0.61 [0.3, 1.2]	
	Female	25	1.06 [0.7, 1.6]		
	MM	Female	33	0.91 [0.6, 1.3]	
Sigurdson [75] (2003) US Radiographers	NHL	Female	69,524	88	1.21 [0.95, 1.48]
	All	Male	20,781	47	1.03 [0.74, 1.40]
	All	90,305	135	1.14 [0.95, 1.34]	
	HL	Female	69,524	21	1.28 [0.79, 1.96]
	All	Male	20,781	11	1.69 [0.83, 3.06]
	All	90,305	32	1.40 [0.96, 1.98]	
	MM	Female	69,524	16	0.90 [0.49, 1.52]
	All	Male	20,781	10	0.89 [0.39, 1.73]
	All	90,305	26	0.90 [0.57, 1.36]	
	CLL	Female	69,524	14	1.25 [0.58, 2.35]
	All	Male	20,781	10	1.10 [0.50, 2.09]
	All	90,305	24	1.18 [0.72, 1.83]	
Table 3. (continued)

Study (year)	Disease	Grouping	Sample size (exposed/un-exposed)	Observed cases/deaths	SIR/SMR [95% CI]
Gun [69] (2008) Nuclear weapons test participants	MM	Whole cohort (79% received doses of <1 mSv)	10983	29, 21	1.22 [0.82, 1.75], 1.19 [0.74, 1.82]
Muirhead [87] (2009) UK Radiation workers	NHL	Whole cohort	174 541	206	0.93 [0.80, 1.06]
	HL	(90% male)		28	0.81 [0.54, 1.17]
	MM			97	0.83 [0.67, 1.01]
Boice [88] (2011) Rocketdyne nuclear workers	HL	Any ext. radiation	5743	5	1.64 [0.53, 3.83]
		Any int. radiation	2232	2	1.60 [0.19, 5.76]
		Total	5801	5	1.63 [0.53, 3.79]
	NHL	Any ext. radiation	5743	31	1.01 [0.69, 1.44]
		Any int. radiation	2232	11	0.92 [0.46, 1.64]
		Total	5801	31	1.00 [0.68, 1.43]
	MM	Any ext. radiation	5743	10	0.71 [0.34, 1.30]
		Any int. radiation	2232	5	0.92 [0.30, 2.14]
		Total	5801	10	0.71 [0.34, 1.30]
	CLL	Any ext. radiation	5743	8	1.36 [0.59, 2.68]
		Any int. radiation	2232	4	1.76 [0.48, 4.51]
		Total	5801	8	1.35 [0.58, 2.66]
Silver [58] (2013) Male uranium workers	NHL	Salaried	3633	18	0.97 [0.58, 1.54]
		Paid hourly	1818	12	1.33 [0.69, 2.32]
	HL	Salaried	3633	5	1.81 [0.59, 4.22]
		Paid hourly	1818	1	0.76 [0.02, 4.23]
	MM	Salaried	3633	12	1.44 [0.75, 2.52]
		Paid hourly	1818	7	1.82 [0.73, 3.75]
Yong [82] (2014) US airline crew	HL	Whole cohort	5964	2	0.56 [0.07–2.03]
	NHL	(99.9% male)	964	27	0.75 [0.49–1.09]
	CLL			9	1.14 [0.52, 2.15]
Study (year)	Disease	Grouping	Sample size (exposed/un-exposed)	Observed cases/deaths	SIR/SMR [95% CI]
-------------	---------	----------	----------------------------------	-----------------------	------------------
Hammer [83] (2014) Airline crew	All lymphoma	Male cockpit	34.73b	0.66 [0.43–0.98]	
		Male cabin	28.8b	2.04 [1.14–3.17]	
		Female cabin	20.28b	0.74 [0.41–1.25]	
	NHL	Male cockpit	29.47b	0.66 [0.41–1.01]	
		Male cabin	26.67b	2.37 [1.41–3.73]	
		Female cabin	13.87b	0.64 [0.30–1.18]	
	HL	Male cockpit	5.26b	0.67 [0.18–1.72]	
		Male cabin	2.13b	—	
		Female cabin	6.40b	1.17 [0.36–2.91]	
	CLL	Male cockpit	6.32b	0.71 [0.22, 1.71]	
		Male cabin	1.07b	—	
		Female cabin	1.07b	—	
Zablotska [60] (2014) Eldorado uranium miners	HL	Male only	14, 7	0.93 [0.51, 1.57], 0.76 [0.30, 1.56]	
	NHL	Male only	16,236 (mortality cohort), 15,366 (incidence cohort)	80, 42	0.89 [0.70, 1.11], 0.91 [0.65, 1.23]
	MM	Male only	20, 18	0.65 [0.40, 1.01], 0.81 [0.48, 1.29]	
Zablotska [89] (2014) Canadian nuclear workers	NHL	Revised cohort (83.2% male)	45,316	17	0.66 [0.38, 1.06]
Boice [90] (2014) Mound nuclear workers	HL	Workers exposed to radiation	4977	3	0.84 [0.17, 2.45]
	NHL	Workers exposed to radiation	34	1.14 [0.78, 1.62]	
	MM	Workers exposed to radiation	15	1.20 [0.67, 1.97]	
Rage [51] (2018) French uranium miners	LH	Male only	5400	23	1.02 [0.64, 1.53]
	MM	Male only	5	0.76 [0.25, 1.78]	
Study (year)	Disease	Grouping	Sample size (exposed/un-exposed)	Observed cases/deaths	SIR/SMR [95% CI]
-------------	---------	----------	----------------------------------	-----------------------	------------------
Yin [91] (2017) uranium enrichment workers	NHL	Oak Ridge, Portsmouth and Paducah sites.	29303	163	1.06 [0.90, 1.23]
	MM			69	0.98 [0.77, 1.24]
Golden (2019) [173] Mallinckrodt workers	NHL			25	1.34 [0.87, 1.98]
	HL			2	0.78 [0.09, 2.81]
	MM			6	0.71 [0.26, 1.54]
	CLL			5	1.07 [0.35, 2.50]
Boice [71] (2020) Nuclear weapons test participants	NHL	Whole cohort (90.2% male)	114270	727	0.91 [0.84, 0.98]
	HM			84	0.77 [0.61, 0.95]
	MM			350	0.98 [0.88, 1.09]
	CLL			159	0.87 [0.74, 1.01]

* Adjusted for missing cause of death.
† Exclusion of workers monitored <1956 and addition of zero dose records.
‡ LH: Lymphatic and haematopoietic malignancies (ICD codes C81-85, C90 and C96), excluding leukaemia and other T/NK lymphoma (C86). FU: follow-up. YSE: years since beginning of employment.
Table 4. Summary of excess relative risk (ERR) for occupational studies.

Study (year)	Disease	Grouping	Sample size (exposed/unexposed)	Observed Incidence or Mortality	ERR per Gy or Sv for Incidence or Mortality [95% CI]	Dose site	Lag period
Kesminiene [7] (2008) Chernobyl cleanup workers	NHL	Whole cohort	1883	20	2.81 at 0.1 Gy [0.09, 24.3]	ABM	Variable^b
					0.47 at 0.1 Gy [ND, 7.61]^a		
Richardson [38] (2009) Male Savannah River nuclear workers	All NHL lymphoma NHL	5-year lag 10-year lag 5-year lag 10-year lag	1883	56	6.99 [0.96, 18.39]^a	Whole body	5 years
					8.18 [1.44, 21.16]^a		
					6.45 [0.48, 17.95]^a		
					7.62 [0.93, 20.77]^a		
Akiba [93] (2012) Japanese nuclear workers	NHL MM	Whole cohort (male only)	200583	51	2.72 [−5.58, 23.13]	Unclear	10 years
					13.96 [−1.59, 57.8]		
Zablotska [63] (2013) Chernobyl cleanup workers	CLL	Whole cohort (male only)	110645	65	2.58 (0.02; 8.43)	ABM	2 years
Zablotska [60] (2014) Eldorado uranium miners	HL NHL MM	Whole cohort (male only)	201485	10/7	13.0 [<0, 139], −0.29 [ND]	Whole body	5 years
					−0.34 [ND], 3.54 [−0.29, 29.5]		
					−0.34 [ND], −0.29 [ND]		
Leuraud [94] (2015) INWORKS nuclear workers	NHL HL MM CLL	Whole cohort (87% male)	308297	710	0.47–0.76, 2.03	ABM	10 years
					2.94 [ND, 11.49]^a		
					0.84 [−0.96, 3.33]^a		
					−1.06 [ND, 1.81]^a		
Study (year)	Disease Grouping	Sample size (exposed/unexposed)	Observed Incidence or Mortality	ERR per Gy or Sv for Incidence or Mortality [95% CI]	Dose site	Lag period	
-----------------------------------	---	---------------------------------	---------------------------------	--	-----------	------------	
Kreuzer [50] (2016) German uranium miners	Low LET			-0.95 [-0.2, 2.06]			
	Low LET, adjusted for high LET			-0.60 [-0.2, 2.82]			
	High LET	58 972	70	-5.90 [-0.2, 13.02]	ABM	2 years	
	High LET, adjusted for low LET			-3.64 [-0.2, 80]			
Kuznetsova [95] (2016) Mayak nuclear workers	All lymphoma	Internal dose (plutonium)	23 373	13	3.60 [-0.2, 15.17]†	ABM	2 years
	MM			3	0.03 [ND, ND]†		
	CLL			11	-0.12 [ND, ND]†		
	NHL			31	0.09 [-1.1, 1.45]†		
	HL			24	-0.02 [ND, ND]†		
	MM			11	2.39 [-1.1, 5.45]		
	CLL			21	-0.02 [ND, ND]†		
Yiin [91] 2007 uranium workers	NHL	Whole cohort	29 303	163	-0.14 [0.2, 0.85]	ABM	10 years
	MM			69	2.92 [0.5, 7.86]		
Study (year)	Disease	Grouping	Sample size (exposed/un-exposed)	Observed Incidence or Mortality	ERR per Gy or Sv for Incidence or Mortality [95% CI]	Dose site	Lag period
------------------------	---------	---------------------------	----------------------------------	---------------------------------	--	-----------	------------
Haylock [96] (2018) UK NRRW radiation workers^c	NHL		707, 353	1.261 [0.08, 2.94], 1.307 [−0.25, 3.77]			
	HL	Whole cohort (90% male)	110, 34	−0.588 [-1.94, 8.92]	1.307 [−0.25, 3.77]	Badge dose	10 years
	MM		167,003				
			277, 175				
Golden (2019) [173]	NHL	Male only	2514	0.20 [–0.23, 0.64]		Thoracic lymph nodes	10 years
Gillies [92] (2019) UK NRRW radiation workers^c	CLL	Male only	173,081	−0.60 [−1.69, 0.65]^a		Badge dose	2 years
Boice [71] (2020) Nuclear weapons test participants	CLL	Cohort members with dose records	190	−0.66 per 100 mGy [−0.98, 0.85]		ABM	10 years
	MM		113,806	350	−0.16 per 100 mGy [−1.03, 0.72]		

^a 90% confidence interval.

^b Case ascertainment began in 1993 in Russia and Belarus, 6–7 years after exposures.

^c There is substantial overlap between the NRRW cohort and the UK component of the INWORKS study. ND: not defined or estimated, ABM: active bone marrow.
from MM and 104 from HL, making INWORKS the largest source of information on these diseases. The ERR per Gy for mortality was raised for MM, NHL and HL, though confidence intervals included zero in each case (table 4). In contrast, there was no evidence of increased mortality from CLL (ERR = −1.06, 90% CI: undefined, 1.81), while non-CLL leukaemia mortality was strongly increased (ERR = 2.96, 90% CI: 1.17, 5.21). These and other negative findings for CLL mortality should be interpreted with caution given the indolent and generally non-lethal nature of this disease [100]. The INWORKS results were almost unchanged when including workers with suspected internal exposures (excluded from the 15-country study) or adjusting for socioeconomic status. Excluding UK cohort members reduced the ERR for NHL from 0.47 (90% CI: −0.96, 3.33) to −0.10 (<0, 1.99), while for MM, the ERR was increased from 0.84 (−0.96, 3.33) to 3.32 (0.27, 7.64).

Other large occupational cohorts include Mayak workers [95] and nuclear workers in Japan [93] and Canada [85, 89]. In each case, large central values of ERR are associated with extremely wide confidence intervals, preventing meaningful interpretation. The most recent analysis of the cohort of Rocketdyne workers [88] found no evidence of increased risk of lymphoma, leukaemia or all cancers combined (table 3). Raised risks for NHL [7], MM [64] and, interestingly, CLL [63], have been reported among Chernobyl clean-up workers. The ERR for CLL was 2.58 Gy$^{-1}$ (95% CI: 0.02, 8.43) [63], which although unusual is statistically compatible with the INWORKS study due to overlapping confidence intervals.

Underground miners are exposed to increased levels of alpha-emitting radon progeny, which are known to be associated with lung cancer. Darby et al [86] found no evidence of increased mortality among miners, for either NHL (SMR = 0.80, 95% CI: 0.56, 1.10) or HL (SMR = 0.93, 95% CI: 0.54, 1.48). The SMR for all cancers other than lung was close to background (1.01, 95% CI: 0.95, 1.07). Leukaemia SMR was raised for miners with <10 years employment (1.93) but not ≥10 years (0.99). The leukaemia SMR was reduced from 1.93 to 1.28 after excluding CLL. Studies of uranium miners and mill workers [47–62], exposed to both low LET gamma and high LET alpha radiation, are similarly inconclusive. As with other industry nuclear workers, overall cancer rates tend not to be raised relative to the general population, although there are exceptions [52]. An internal analysis of Eldorado uranium miners by Zablotska et al [60] was also inconclusive. Central ERR values, based on external gamma dose (mean whole body dose = 52.2 mSv), were raised for incidence but not mortality, or vice versa depending on disease subtype (table 4). Confidence intervals were either extremely wide or undefined.

Studies of nuclear weapons test participants [65–71] typically show similar rates of lymphoma, and all cancers combined, to the general population. The most informative study is a recent analysis of a pooled cohort of eight US testing programs [71]. The mean gamma dose was 6 mSv, with 55.3% receiving <5 mSv. The SMR was reduced for NHL and HL (table 3), though this appeared to be driven by a ‘healthy soldier’ effect in the early years of follow-up [71]. Mortality rates for MM were raised among UK test participants in an early study [65] (SMR = 1.17), based on six cases. In a more recent analysis [68], SMR was reduced to 0.96, based on 22 cases. There was little suggestion of raised MM rates in the 8-series US study [71]. The SMR was 0.98 (95% CI: 0.88, 1.09), while an internal analysis yielded an ERR of −0.16 per 100 mGy (95% CI: −1.03, 0.72).

Airline crew are exposed to elevated levels of cosmic radiation, including neutrons and muons, with annual effective doses ranging from 2 to 6 mSv [84]. There is limited evidence of increased incidence or mortality from lymphoma or overall cancer [79–84]. There are some suggestions of raised SMR for lymphoma among male cabin crew, although this appears to be associated with the extremely high rates of AIDS prior to 2000 in this group (mortality for
AIDS was raised 16-fold compared to the general population [83]). A decrease in AIDS prevalence in more recent years may explain the lower SMR for NHL in the most recent analysis of German airline crew [84], compared to previous [81].

The study by Eheman et al [101] is notable for the analysis of lymphoma risk for different subtypes and grades (disease aggressiveness) as part of the Selected Cancers Study. Odds ratios were higher for low-grade lymphoma (1.07, 95% CI: 0.76, 1.50) than for intermediate (0.81, 95% CI: 0.58, 1.13) or high-grade (0.62, 95% CI: 0.3, 1.17) lymphomas. There was some suggestion of higher odds ratios for small cell diffuse lymphomas (1.18, 95% CI: 0.75, 1.90) and follicular lymphomas (1.19, 95% CI: 0.52, 2.75), compared to diffuse large cell lymphomas (0.72, 95% CI: 0.51, 1.00). The large degree of overlap in confidence intervals, however, renders this analysis inconclusive.

A number of studies have focussed on radiologists and radiographers (radiologic technologists), many of whom were exposed to particularly high doses of external low LET radiation in the early decades of medical x-ray imaging. In a recent analysis, Berrington de González et al [77] compared cancer mortality among 34,912 male radiologists to 47,497 male psychiatrists. RRs for all lymphoma (2.83, 95% CI: 1.41, 5.70) and specifically NHL (2.69, 95% CI: 1.33, 5.45) were increased for radiologists graduating before 1940, when doses are thought to have been higher (and follow-up times longer). There was a suggestion, albeit imprecise, of increased RR for all forms of leukaemia (1.91, 95% CI: 0.83, 4.41) for the same time period. There was little suggestion of raised risks for radiologists graduating after 1940, neither for lymphoma, nor for other cancer types. The authors noted lower rates of HIV among radiologists, compared with psychiatrists, potentially resulting in downward bias of risk estimates. A later analysis of physicians likely to perform x-ray guided interventional procedures [78] found no evidence of increased lymphoma risk (RR: 0.77, 95% CI: 0.58, 1.04). In contrast to the LSS, studies of radiographers provide no evidence of any sex difference in mortality or incidence of lymphoma [74, 75].

2.3. Environmental exposures

Studies of natural background radiation [8, 102–108] include populations exposed to both low LET gamma radiation and high LET alpha radiation originating from inhaled radon. Again, with the exception of that due to radon, exposures are reasonably uniform over the whole body. A summary of study findings is presented in table 5.

Tao et al [102] found no evidence of raised rates of lymphoma among residents of the Yangjiang region of China, exposed to elevated background radiation levels, estimated at 6.4 mSv (effective dose) per year. The RR for lymphoma, compared to a neighbouring region with normal background radiation levels, was 0.98 (95% CI: 0.26–3.71). A dose response analysis was attempted by categorising cohort members into low-, medium- and high-exposure groups; however, the results are too imprecise to be informative. Hwang et al [104] reported a raised risk of NHL among residents of buildings in Taiwan made using steel contaminated with cobalt-60 (SIR = 5.4, 95% CI: 1.8, 12.6), though based on just five cases.

No significant associations were detected by Kendall et al [105] between either childhood NHL or HL and gamma or radon background radiation. Positive associations were seen for leukaemia, particularly lymphoid leukaemia, but not for all cancers except leukaemia. Spycher et al [107] also found no evidence of an association between childhood lymphoma and background radiation in Switzerland. Hazard ratios were 1.08, 0.96 and 0.91 for estimated dose rates of 100–150, 150–200 and >200 nSv h\(^{-1}\) versus <100 nSv h\(^{-1}\), respectively, while positive dose responses were observed for leukaemia, CNS tumours and all cancers combined.
Table 5. Summary of studies reporting lymphoma risks from environmental and background exposures.

Study (year), exposure type, age group	Disease	Grouping	Sample size	Observed Incidence or Mortality	Relative risk (vs. control or unexposed), or Odds ratio [95% CI]	Dose site	Lag
Tao [102] (2000) Yangjiang, China HBRA, All ages	All lymphoma	Low dose	27 676	1	0.36 [0.04–3.46]	None stated	
		Medium dose	27 837	4	1.37 [0.30–6.15]		
		High dose	23 101	3	1.21 [0.24–6.04]		
		All	78 614	8	0.98 [0.26–3.71]	Effective (6.4 mSv)	
Tao [102] (2000) Yangjiang, China HBRA, All ages	NHL	0–24 Bq m⁻³	2226 cases, 3773 controls	166	0.68 [0.43–1.10]	None stated	
UKCCS [103] (2002) UK Radon exposure, children	NHL	25–49 Bq m⁻³	2226 cases, 3773 controls	166	0.68 [0.43–1.10]	Radon concentration at residence (Becquerel per cubic metre)	
		50–99 Bq m⁻³	3773 controls	0.92 [0.48–1.73]			
		100–199 Bq m⁻³	3773 controls	0.74 [0.23–2.39]			
		>200 Bq m⁻³	3773 controls	1.57 [0.36–6.92]			
		0–24 Bq m⁻³	72	1.00			
		25–49 Bq m⁻³	72	0.59 [0.46–1.73]			
		50–99 Bq m⁻³	72	1.00 [0.39–2.57]			
	HL	0–24 Bq m⁻³	72	1.00			
		25–49 Bq m⁻³	72	1.00			
		50–99 Bq m⁻³	72	1.00			
Kendall [105] (2013) UK natural background exposure, children	HL	Gamma⁻	27 447	939 cases, 1388 controls	1.04 [0.93–1.16]	Bone marrow 9 months	
		Radon⁻	36 793	983 cases, 1302 controls	1.07 [0.67–1.70]		
	NHL	Gamma⁻	36 793	983 cases, 1302 controls	1.04 [0.89–1.21]		
		Radon⁻	36 793	983 cases, 1302 controls	1.29 [0.69–2.39]		
	Total	Gamma⁻	23 199 cases, 32 742 controls	1.01 [0.93–1.09]			
		Radon⁻	23 199 cases, 32 742 controls	1.14 [0.80–1.62]			

* RR per mGy cumulative exposure.
* RR per 10³ Bq m⁻³ cumulative exposure. HBRA: high background radiation area, UKCCS: United Kingdom Childhood Cancer Study.
Other studies, including those of children living near nuclear facilities [8, 108] are limited by low case numbers and limited dosimetry (e.g. based on residential distance from the facility).

2.4. Medical radiation—therapeutic

Therapeutic radiation is usually delivered to a localised region, with the remainder of the body exposed to a relatively low dose of scattered radiation. Careful selection of the suitable organ/tissue for dose response analysis is therefore required. Patients with malignant disease may also be treated with chemotherapy, which is known to increase subsequent cancer risk [109]. Some individuals have genetic disorders predisposing them to cancer development and/or increased radiosensitivity (e.g. [110, 111]). Comparison of subsequent cancer rates for patients treated with or without radiotherapy is problematic as treatment choice reflects disease type. Furthermore, apparent associations may also be complicated by therapy-induced immunosuppression [112], especially when radiotherapy is combined with chemotherapy.

Table 6 shows a summary of study findings. Increased rates of lymphoma have been observed among individuals treated with radiotherapy for a previous malignancy [112–115], ankylosing spondylitis [116–118] and peptic ulcer [119] and patients injected with radium-224 (MM) [120]. Studies of patients treated for non-malignant gynaecological conditions [121, 122], otitis serosa (treated with nasopharyngeal radium irradiation) [123] or benign locomotor conditions [124] have found little or no evidence of raised lymphoma risk, though case numbers are small. No association between radioactive iodine-131 (RAI) treatment for hyperthyroidism and lymphoma was found by Holm et al [125] or Franklyn et al [126]. A very small increase in overall cancer incidence was reported in the former study (SIR = 1.06, 95% CI: 1.01, 1.11) but not the latter (SIR = 0.83, 95% CI: 0.77, 0.90). A recent update of a 1998 study [127] of cancer risks among patients treated with RAI for hyperthyroidism by Kitahara et al [128] found RRs, per 100 mGy, of 1.07 and 1.69 for NHL and MM respectively. In both cases, confidence intervals included unity.

A number of studies have made use of Surveillance, Epidemiology and End Results (SEER) data to study risk of lymphoma risk following radiotherapy. Kim et al [112] identified 5590 NHL second malignancies reported by nine SEER registries. RR of NHL was increased for primary malignancies of any type treated with radiotherapy compared to those treated without radiotherapy (RR = 1.13, 95% CI: 1.08, 2.17). When results were analysed by primary disease, positive associations were seen only for non-small cell lung cancer and prostate cancer. No significant difference in NHL risks was seen between males and females. Likewise, there was little evidence of variation in risk between NHL subtypes for all primary cancers combined. Significant differences in RR (versus treatment without radiotherapy) between subtypes were observed, however, for primary cancers of the rectosigmoid, in which diffuse large B-cell lymphoma risks were higher, and thyroid, in which follicular lymphoma risks were higher. Chaturvedi et al [115] identified 52 613 patients among SEER and Scandinavian cancer registries treated with pelvic radiotherapy for cervical cancer. The SIR was raised for NHL (1.20, 95% CI: 1.02, 1.40), based on 157 cases, but not for HL, MM or CLL. In comparison, the SIR for all cancers was 1.34 (95% CI: 1.31, 1.38). Radivoyevitch et al [129] compared CLL/SLL risk among patients treated for non-haematological malignancies using SEER data. RRs were raised among 4483 857 patients not treated using radiotherapy (1.2, 95% CI: 1.17, 1.23) but not raised among 1808 105 patients who were treated with radiotherapy (1.00, 95% CI: 0.96, 1.05). Again, these findings should be interpreted with caution as the types of primary cancer typically treated or not treated with radiotherapy are different and may have inherent different subsequent cancer risks or exposure to other carcinogenic agents (e.g. chemotherapy). Wright
Table 6. Summary of studies reporting risk of lymphoma following radiotherapy for benign or malignant conditions.

Study (year)	Disease	Grouping	Sample size (cases/controls)	Observed/Mortality	SIR/SMR [95% CI]
Darby [116] (1987)	HL	<5 y since Tx	14 106	3	2.42
Ankylosing spondylitis		5–24.9 y since Tx	5		1.66
		>25 y since Tx	0		0
		>5 y since Tx	5		1.32
	NHL	<5 y since Tx	2		2.03
		5–24.9 y since Tx	13		2.89
		>25 y since Tx	3		1.13
		>5 y since Tx	16		2.24
	MM	<5 y since Tx	0		0
		5–24.9 y since Tx	4		1.52
		>25 y since Tx	4		1.97
		>5 y since Tx	8		1.72
Holm [125] (1991)	All lymphoma	Whole cohort	10 552	28	0.72 [0.48–1.03]
Hyperthyroidism (I-131)	HL			6	0.83 [0.31–1.81]
	NHL			22	0.68 [0.43–1.04]
	MM			21	1.05 [0.65, 1.60]
Weiss [117] (1994) RT for ankylosing spondylitis	NHL	Whole cohort	14 109	37	1.74 [1.23, 2.36]
	HL			13	1.65 [0.88, 2.81]
	MM			22	1.62 [1.07, 2.46]
Damber [124] (1995) RT for benign locomotor lesions	NHL	<0.20 Gy	20 024	25, 22	0.69b, 0.87b
		0.20–0.50 Gy		25, 13	1.15b, 0.84b
		>0.50 Gy		31, 15	1.40b, 0.97b
		Total		81, 50	1.01 [0.80, 1.25], 0.88 [0.65, 1.16]
Study (year)	Disease Grouping	Sample size (cases/controls)	Observed/Mortality	SIR/SMR [95% CI]	
-------------	-----------------	-----------------------------	--------------------	-----------------	
HL	<0.20 Gy	8, 9	0.80^b; 1.34^b		
	0.20–0.50 Gy	3, 2	0.49^b; 0.48^b		
	>0.50 Gy	6, 10	0.96^b; 2.27^b		
	Total	17, 21	0.76 [0.44, 1.22], 1.37 [0.85–2.09]		
MM	<0.20 Gy	35, 36	1.17^b		
	0.20–0.50 Gy	4, 20	0.75^b		
	>0.50 Gy	16, 24	0.86^b		
	Total	65, 80	0.96 [0.74, 1.23], 1.25 [0.99–1.56]		
CLL	<0.20 Gy	19	0.94^b		
	0.20–0.50 Gy	15	1.17^b		
	>0.50 Gy	16	1.18^b		
	Total	50	1.07 [0.80, 1.41]		

Carr [119] (2002) RT for peptic ulcer

Disease	Grouping	Sample size (cases/controls)	Observed/Mortality	SIR/SMR [95% CI]
NHL	Whole cohort	1859	14	1.98
HL		0	0	1.15
MM		4	1	

Chaturvedi [115] (2007) RT for cervical cancer

Disease	Grouping	Sample size (cases/controls)	Observed/Mortality	SIR/SMR [95% CI]
NHL	Whole cohort	52 613/27382	157	1.20 [1.02–1.40]
HL	(Female only)	17	1.04 [0.61–1.67]	
MM		71	0.95 [0.75–1.21]	
CLL		44	0.87 [0.63–1.17]	

Kim [112] (2013) RT for all cancers

Disease	Grouping	Sample size (cases/controls)	Observed/Mortality	SIR/SMR [95% CI]
NHL	Whole cohort	1450962	1742	1.08

^b SIR/SMR figures not reported in original paper and were calculated based on reported observed/expected numbers. RT: radiotherapy, Tx: treatment, FU: follow-up, mCi: millicurie.
et al [130] found no evidence of increased MM risk among 66,896 patients with pelvic malignancies treated with radiotherapy, compared to 132,372 patients treated without radiotherapy (hazard ratio: 1.08, 95% CI: 0.81, 1.44).

Lymphoma is a relatively uncommon second malignancy among survivors of cancer in childhood or early adulthood (e.g. [131–133]). NHL second malignancies tend to follow a primary diagnosis of HL [134]. Underlying genetic factors and immunosuppression may therefore be the primary risk factor.

2.5. Medical radiation—diagnostic

Diagnostic x-ray exposures include general radiography [135, 136], fluoroscopy [137, 138], computed tomography (CT) [39, 139–142], a combination of these [143], or pre-natal x-rays [144, 145]. As with radiotherapy, exposures are usually localised, rather than whole-body. Studies of individuals exposed for diagnostic purposes need to be interpreted with caution due to the potential for reverse causality, where patients are exposed to investigate early symptoms of a later diagnosed cancer [146–148]. Alternatively, some patients may have diseases predisposing them to cancer development. If these individuals undergo more medical imaging tests, the association between radiation and lymphoma may be confounded by indication. A summary of study findings for diagnostic exposures is presented in table 7.

Elevated rates of several forms of cancer have been observed among individuals injected with the alpha-emitting contrast agent Thorotrast [153–155]. Throughout their lifetime, these patients received cumulative absorbed doses of several gray to the bone marrow and several tens of gray to the spleen [154]. A suggestion of an increased risk of NHL was found for a German cohort [153], based on 15 cases (RR versus controls: 2.5), but not for HL or CLL (RR was 0.8 in both cases). The number of cases of lymphoma diagnosed within Swedish [155], Danish [153, 155] and American [155] cohorts are too low to be informative.

Several recent studies have examined lymphoma incidence following diagnostic x-ray exposures before birth or in early childhood. One of the major findings of the Oxford Survey of Childhood Cancers was a raised risk of cancer among children exposed in utero during pelvic radiography [144]. RR (versus unexposed) was raised for lymphoma (1.35, 95% CI: 1.07, 1.65) and for all malignancies combined (1.47, 95% CI: 1.34, 1.62). Foetal doses from obstetric radiography were approximately 10–20 mGy per film [156], though subject to large uncertainties. A large odds ratio was reported by Rajaraman et al [149] for all lymphoma (5.14, 95% CI: 1.27, 20.80) and specifically NHL (6.85, 95% CI: 1.31, 35.70) following diagnostic x-ray exposure in infancy. These findings contrast with those of studies led by Hammer [135] and Baaken [136] in which no evidence of an association was found between lymphoma and post-natal exposure to diagnostic x-rays in a cohort of over 90,000 German children. It should be noted that the average dose received by members of the German cohort was exceptionally low (median estimated effective dose = 0.007 mSv, mean = 0.135 mSv).

A raised incidence rate ratio (IRR) for HL was reported by Mathews et al [139] for 680,000 Australians receiving CT scans before 19 years of age (IRR = 1.15, 95% CI: 1.01, 1.32), based on an exclusion period of 1 year. No association was seen for other lymphoma (IRR = 1.01, 95% CI: 0.82, 1.23), or for lymphoid leukaemia (IRR = 0.96, 95% CI: 0.77, 1.20). The IRR for all lympho-haematological cancer types combined was 1.19 (95% CI: 1.10, 1.29). Hong et al [143] performed a similar study of 1,275,829 Koreans exposed to diagnostic x-rays, including CT, while aged 0–19 years. A raised IRR was reported for NHL (1.66, 90% CI: 1.20, 2.27) based on 41 cases. The IRR for HL was 1.42 (95% CI: 0.90, 2.23), based on 20 cases. Although large, both studies are limited by the potential for reverse causality [146, 157] and lack of dose response analysis. The Australian CT study HL figures contrast with those of Berrington de
Table 7. Studies reporting lymphoma risks following diagnostic medical radiation exposures.

Study (year), Exposure type, age range	Disease	Grouping	Sample size	Observed incidence/mortality	Measure	Outcome [95% CI]	Lag
Bithell, Stewart (1975) [144] Pre-natal x-rays	Lymphoma	Exposed in utero	719 case control pairs	Relative risk	1.35 [1.07, 1.69]		
Rajaraman [149] (2011) Diagnostic x-rays, children	All lymphoma	Exposed to radiation in utero	16 cases, 30 controls	Odds ratio	1.48 [0.66, 3.32]	1 year	
	NHL	Exposed to radiation in utero	13 cases, 18 controls	Odds ratio	5.14 [1.27, 20.80]	2 years	
	All lymphoma	Early infancy radiation exposure	7 cases, 3 controls	Odds ratio	1.48 [0.66, 3.32]	1 year	
	NHL	Early infancy radiation exposure	13 cases, 18 controls	Odds ratio	5.14 [1.27, 20.80]	2 years	
Rajaraman [149] (2011) Diagnostic x-rays, children	NHL	Exposed to radiation in utero	13 cases, 18 controls	Odds ratio	5.14 [1.27, 20.80]	2 years	
	Other NHL	Exposed to radiation in utero	7 cases, 3 controls	Odds ratio	1.48 [0.66, 3.32]	1 year	
	Whole cohort	Exposed to radiation in utero	540 cases, 1998 controls	Odds ratio	0.7 [0.4, 1.3]	6–12 months	
Hatcher [150] (2001) Diagnostic x-rays, 30–79 years	MM	≥20 x-rays compared to <5	540 cases, 1998 controls	Odds ratio	0.7 [0.4, 1.3]	6–12 months	
Mathews [139] (2013) CT scans, children	HL	Whole cohort	680,211	Incidence rate ratio	1.70 [1.31, 2.20]	1 year	
	NHL (C82–83)	Whole cohort	680,211	Incidence rate ratio	1.70 [1.31, 2.20]	1 year	
	NHL (C82–83)	Whole cohort	680,211	Incidence rate ratio	1.70 [1.31, 2.20]	1 year	
Journy [140] (2014) CT scans, children	Lymphoma	Unadjusted for PF	67,274	Excess relative risk per mGy	0.008 [−0.057, 0.073]	2 years	
	Lymphoma	Adjusted for all PF	67,274	Excess relative risk per mGy	0.008 [−0.057, 0.073]	2 years	
	Lymphoma	Adjusted for transplant	67,274	Excess relative risk per mGy	0.008 [−0.057, 0.073]	2 years	
	Lymphoma	Adjusted for AT	67,274	Excess relative risk per mGy	0.008 [−0.057, 0.073]	2 years	
	Lymphoma	Adjusted for AT	67,274	Excess relative risk per mGy	0.008 [−0.057, 0.073]	2 years	
Study (year), Exposure type, age range	Disease Grouping	Sample size	Observed incidence/mortality Measure	Outcome [95% CI]	Lag		
--------------------------------------	------------------	-------------	-------------------------------------	------------------	-----		
Krille [141, 151] (2014) CT scans, children	Total	39 184	Standardised incidence ratio	2.96 [1.42–5.45]	2 years		
All lymphoma	Excluding PF	5		1.54 [0.50–3.59]			
	One CT scan	9		3.67 [1.68–6.97]			
	>One CT scan	1		1.08 [0.03–6.02]			
Berrington [39] (2017) CT scans, 0–21 y	ABM dose 2 y lag	178 601	Excess relative risk	0.028 [0.024, 0.080]	2 years		
HL	Lymphocyte dose 2 y lag	65		−0.001 [−0.016, 0.013]			
	ABM dose 5 y lag			−0.003 [−0.027, 0.022]			
	Lymphocyte dose 5 y lag						
Harbron [138] (2018) Cardiac catheterisations, 0–22 y	All lymphoma	22	Standardised incidence ratio	9.15 [5.66–13.97]			
NHL	Whole cohort	11 270		19.49 [11.39–31.10]	2 years		
HL		4		2.70 [0.68–7.07]			
All lymphoma	Transplant recipients censored, post-transplant	0		0			
NHL		0		0			
HL		0		0			
Baaken [136] (2019) Diagnostic x-rays, children	All lymphoma	Whole cohort	Incidence ratio	0.61 [0.25, 1.26]	2 years		
HL		92 998		0.21 [0.01, 1.16]			
NHL				1.35 [0.44, 3.16]			
All lymphoma	0 to <10 μSv	3	Incidence rate ratio	1.18 [0.18, 7.53]			
NHL				1.17 [0.18, 7.55]			
Table 7. (continued)

Study (year), Exposure type, age range	Disease	Grouping	Sample size	Observed incidence/ mortality Measure	Outcome [95% CI]	Lag
Hong [143] (2019) Diagnostic x-rays, children	HL				1.32 [0.85, 2.05]	
					1.73 [1.28, 2.32]	2 years
					1.27 [0.97, 1.66]	
	Other lymphoma	Whole cohort	1 275 829 (e), 10792 992 (u)	47	Incidence rate ratio	
	Other lymphoid				0.83 [0.71, 0.97]	
	<1 mGy vs >1–5 mGy ABM dose	679 cases, 710 controls			0.61 [0.50, 0.74]	2 years
Pasqual [152] (2020) All lymphoma<1 mGy vs 5–15 mGy					0.60 [0.42, 0.85]	
	<1 mGy vs >15 mGy	61 cases, 88 controls				

*ICD-10 Codes 82–83 represent follicular and non-follicular B-cell NHL, codes 84–90 represent T/NK NHL, other B-cell lymphomas and MM.

*Excluding Burkitt’s lymphoma.

*Exposures up to 12 months from interview date, which was within 6 months of diagnosis, AT: ataxia telangiectasia, PF: predisposing factors, ABM: active bone marrow.
González et al [39], who found no association between HL and estimated bone marrow or lymphocyte dose from CT scans in childhood. This analysis was based on the same UK cohort in which positive association were found for leukaemia/myelodysplasia and brain tumours [158, 159]. Studies based in France [140, 160] and Germany [141, 151] found little evidence of raised risk of lymphoma following CT scans in childhood after excluding individuals with predisposing syndromes. A recent case control study [152] found no evidence of an association between lymphoma risk and self-reported lifetime medical x-ray exposure, for 2362 cases compared to 2465 controls. Cumulative estimated bone marrow doses were very low, however (median: 2.25 mGy).

Raised lymphoma rates have been reported among individuals who underwent fluoroscopically guided cardiac catheterisation procedures in childhood or early adulthood [137, 138]. A recent analysis [138] found elevated rates of both NHL (SIR = 19.49 95% CI: 11.39, 31.10) and HL (SIR = 2.70 95% CI: 0.68, 7.07). Following transplant registry linkage, it was found that all malignant lymphoma cases and nine cases of lymphoproliferative disease developed post-transplant. The proportion of transplant recipients in this cohort (around 5%) is likely to be much higher than in other medical radiation exposure studies, given the high proportion of patients with serious cardiac abnormalities.

3. Discussion

Lymphoma is frequently included in site-specific analyses of cancer risks following radiation exposure. Yet this disease is, perhaps, the most challenging form of cancer to analyse in radiation epidemiology studies. This is due to (1) the high degree of heterogeneity among lymphoid malignancies, with potential for irregularities in grouping between epidemiological studies, (2) uncertainty in the site of initiation, and (3) the profound impact of infection and immune system compromise on lymphoma risk. Partly for these reasons, evidence of an association between lymphoma and ionising radiation exposure has been inconclusive [42, 43]. Issues (2) and (3) suggest a greater weight should be placed on studies of healthy populations receiving approximately whole-body exposures, including atomic bomb survivors, radiation workers and those exposed to elevated background radiation levels. While external comparisons typically show lymphoma rates similar to the general population, internal analyses tend to suggest a dose-dependent excess lymphoma risk. Confidence intervals are wide, however, indicating highly imprecise risk estimates. There is no evidence that RRs for lymphoma are any higher than for other types of cancer and appear to be lower than for leukaemia.

Studies also suggest a small excess risk of lymphoma following radiotherapy for malignant or non-malignant conditions. This is hardly surprising as almost all cancer types appear to be inducible by radiation if the dose is sufficiently high. Lymphoma risk is increased by a factor of around 5–10 among adult transplant recipients and up to 100 in people with HIV/AIDS [21], i.e. much higher risks than observed among individuals treated with radiotherapy (<2-fold). This suggests the impact of radiation and radiation-induced immunosuppression is relatively minor compared to the long-term immunosuppression associated with transplantation (drug-induced) or AIDS. Effect modification, or an interaction between immunosuppression and radiation remains a possibility, however.

There is little evidence of any difference in lymphoma risk for acute versus chronic radiation exposures, or for high versus low LET, or internal versus external exposures, for a given absorbed dose. Risks are similar for male atomic bombing survivors exposed at a very high rate, and nuclear workers receiving protracted exposures. There are insufficient data to determine the impact of age at exposure on lymphoma risks.
The higher lymphoma ERR among male atomic bombing survivors is puzzling and lacks a biological explanation. No such pattern was observed for MM in the same study [45], or in studies of medical radiographers [74, 75]. In each case, confidence intervals for male and female ERR figures overlap, suggesting any apparent sex differences in the LSS could be a chance finding. Lymphoma mortality was reported to be higher among male airline cabin crew than female [80], although this may be largely explained by much higher rates of AIDS in the former group.

The classification of lymphoma and other lymphoid malignancies has evolved considerably over the last 50 years, in parallel with advancements in understanding of the differentiation of immune cells and cell of origin [2, 161–164]. Overviews of current and historical classifications, including compatibility between systems, are presented elsewhere, e.g. [12, 165]. For the purposes of this review however, the important consideration is whether the distinction between lymphoma subtypes, or between lymphoma and lymphoid leukaemia, could influence apparent radiation-associated risks. For example, in the analysis of childhood cancer in the vicinity of nuclear facilities, some cases were initially classified as NHL before being reclassified as leukaemia [8]. Misclassification, or inconsistencies in classification, could potentially explain unusually high risks for lymphoma but not leukaemia (e.g. [149]), or vice versa. In this regard, there may be some justification for grouping all lymphoid malignancies together [8, 166].

However, there is known heterogeneity in non-radiogenic risk factors within the broad subgroups of lymphoid malignancies (e.g. [22]). NHL, for example, is almost invariably analysed as a whole, despite potential differences in cell of origin, proliferating cell type and disease aggressiveness. Given that ALL is strongly associated with radiation (e.g. [46]) it may be assumed that LBL, which is histologically the same disease in mass lesion form, is similarly sensitive to induction by radiation. Yet ALL and LBL have different ICD [11] and ICD-O [12] codes and are likely to be assigned as leukaemia or lymphoma, respectively, in epidemiological analyses. Likewise, SLL and CLL are regarded as the same disease in solid and circulating form, respectively. Again, partly due to the different ICD coding, it is possible these diseases have been analysed separately in epidemiology studies, with SLL likely assigned as NHL.

Many forms of lymphoma are associated with good prognosis, with 5-year survival rates exceeding 80% for HL and 70% for CLL [167]. Richardson et al [100] note that CLL is often not listed as the primary cause of death, or even mentioned on death certificates. The use of mortality data may, therefore, be less reliable than incidence data. This could potentially explain the apparent lack of association between radiation exposure and CLL [100].

There is some suggestion that lymphoma may have a long latency period, potentially further explaining negative CLL findings [100, 168] and the relatively late appearance of raised risks in the LSS and Savannah River cohorts [38]. In contrast to other mature lymphoid malignancies, both CLL and myeloma are almost exclusively diseases of middle and old age, with around 99% of cases being diagnosed after age 50 years [16, 18]. Many of the cohorts, especially those of medically exposed individuals, lack sufficiently long follow-up periods to provide meaningful information on these diseases. The reverse may also be true, however. Lymphomas are occasionally classed as ‘solid tumours’ in epidemiological studies, meaning exclusion periods and dose lagging for lymphoma analyses are the same as for other solid tumours such as lung cancer (typically 5 or 10 years). However, histologically, lymphoma has more in common with leukaemia, a disease known to occur relatively early following radiation exposure (CLL possibly being the exception). One may assume acute leukaemia-like forms of lymphoma such as LBL may also develop similarly early. Again, the standard grouping of diseases may obscure meaningful patterns.
Ongoing studies involving large pooled cohorts hold promise for improved information on lymphoma risks following radiation exposure. The Million Worker Study (MWS), coordinated by the National Council on Radiation Protection and Measurements, includes atomic weapons test veterans, US Department of Energy workers, nuclear power plant workers, industrial radiographers and medical radiation workers [169, 170]. The MWS will provide unprecedented information on risks from protracted exposures, based on analysis of over 300,000 deaths.

In addition, a number of large cohorts will provide improved information on lymphoma risks from exposures in childhood. The MEDIRAD study (https://www.medirad-project.eu/) involves a pooled cohort of children and young adults who received CT scans in Europe, continuing from the EPI-CT study [171]. The newly launched HARMONIC study [172] (https://harmonicproject.eu/) will examine the long-term effects of cardiac catheterisations and proton beam therapy in children. Given the high rates of heart transplantation in the former group, obtaining information on transplants (ideally through registry linkage) will be essential for this study.

4. Conclusion

The association between ionising radiation exposure and lymphoma, including MM and CLL, is complex and subject to large uncertainties. Increased risks for certain lymphoma subtypes may be obscured by broad classification schemes or confounded by the impact of immunosuppression or infection. The available evidence suggests a positive dose-dependent association between radiation exposure and lymphoma risk. This association appears to be stronger for males and stronger for NHL, as opposed to Hodgkin’s lymphoma, MM or CLL. The risk of radiation-induced lymphoma is unlikely to be especially large, certainly no higher than for other cancer types. For populations in which lymphoma rates are unusually high, other aetiologies should be considered first, especially if rates for more radiogenic cancers are not raised.

Acknowledgments

We would like to thank Elisabeth Cardis at ISGlobal and Simon Bomken at Newcastle University.. R W H is affiliated with the National Institute for Health Research Health Protection Research Unit (NIHR HPRU)) in Chemical and Radiation Threats and Hazards at Newcastle University in partnership with Public Health England (PHE). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. We acknowledge support from the Spanish Ministry of Science, Innovation and Universities through the ‘Centro de Excelencia Severo Ochoa 2019–2023’ Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.

Conflict of interest

We have no conflicts of interest to declare.

ORCID iDs

Richard W Harbron https://orcid.org/0000-0001-6073-2850
Elisa Pasqual https://orcid.org/0000-0001-7181-6160
References

[1] Turner J J et al 2010 InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions Blood. 116 90–98

[2] Swerdlow S H et al 2016 The 2016 revision of the World Health Organization classification of lymphoid neoplasms Blood. 127 2375–90

[3] Shanbhag S and Ambinder R F 2018 Hodgkin lymphoma: a review and update on recent progress CA Cancer J. Clin. 68 116–32

[4] Shankland K R, Armitage J O and Hancock B W 2012 Non-Hodgkin lymphoma Lancet 380 548–57

[5] Grommes C and DeAngelis L M 2017 Primary CNS lymphoma J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 35 2410–8

[6] Juárez-Salcedo L M, Sokol L, Chavez J C and Dalia S 2018 Primary gastric lymphoma, epidemiology, clinical diagnosis, and treatment Cancer Control 25

[7] Kesminiene A et al 2008 Risk of hematological malignancies among Chernobyl liquidators Radiat. Res. 170 721–35

[8] Committee on Medical Aspects of Radiation in the Environment 2016 17th report: further consideration of the incidence of cancers around the nuclear installations at Sellafield and Dounreay

[9] National Cancer Institute Adult non-Hodgkin lymphoma treatment (PDQ®)-health professional version (available at: https://www.cancer.gov/types/lymphoma/hp/adult-nhl-treatment-pdq#_608 Accessed 7 May 2020)

[10] Tees M T and Flinn I W 2017 Chronic lymphocytic leukemia and small lymphocytic lymphoma: two faces of the same disease Expert Rev. Hematol. 10 137–46

[11] World Health Organisation International statistical classification of diseases and related health problems 10th revision (available at: https://icd.who.int/browse10/2019/en Accessed 13 April 2020)

[12] Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin L, Parkin D and Whelan S 2000 International Classification of Diseases for Oncology 3rd edn (Geneva: World Health Organization)

[13] Forman D, Bray F, Brewster D H, Gombe Mbalawa C, Kohler B, Piferos M, Stelianova-Foucher E, Smwatinathan R and Ferlay J (eds) 2016 Cancer Incidence in Five Continents Vol. X (Lyon: International Agency for Research on Cancer)

[14] Howlader N et al SEER cancer statistics review, 1975–2017 (available at: https://seer.cancer.gov/csr/1975_2017/ Accessed 16 April 2020)

[15] Cancer Research UK Non-Hodgkin lymphoma incidence statistics (available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/non-hodgkin-lymphoma/incidence#heading-One Accessed 10 March 2020)

[16] Cancer Research UK Chronic lymphocytic leukaemia (CLL) incidence statistics (available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-cll/incidence#heading-One Accessed 5 March 2020)

[17] Cancer Research UK Hodgkin lymphoma incidence statistics (available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/hodgkin-lymphoma/incidence Accessed 5 March 2020)

[18] Cancer Research UK Myeloma incidence statistics (available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/myeloma/incidence#heading-One Accessed 5 March 2020)

[19] Radhakrishnan V, Reddy P, Totadri S, Sundersingh S and Sagar T G 2017 Multiple myeloma in an 8-year-old child with HIV infection J. Pediatr. Hematol. Oncol. 39 77

[20] Demir H A, Bayhan T, Üner A, Kurtulan O, Karakuş E, Emir S, Özyürik D and Ceylaner S 2014 Chronic lymphocytic leukemia in a child: a challenging diagnosis in pediatric oncology practice Pediatr. Blood Cancer 61 933–5

[21] Grulich A E, van Leeuwen M T, Falster M O and Vajdic C M 2007 Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis Lancet 370 59–67

[22] Morton L M et al 2014 Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the interLymph non-Hodgkin lymphoma subtypes project J. Natl. Cancer Inst. Monogr. 2014 130–44
[23] Shannon-Lowe C, Rickinson A B and Bell A I 2017 Epstein-Barr virus-associated lymphomas Phil. Trans. R. Soc. B 372 20160271
[24] Engels E A, Parsons R, Besson C, Morton L M, Ennewold L, Ricker W, Yanik E L., Arem H, Austin A A and Pfeiffer R M 2016 Comprehensive evaluation of medical conditions associated with risk of non-Hodgkin lymphoma using Medicare claims (‘MedWAS’) Cancer Epidemiol. Biomark. Prev. 25 1105–13
[25] Sergentanis T N, Kanavidis P, Michelakos T and Petridou E T 2013 Cigarette smoking and risk of lymphoma in adults: a comprehensive meta-analysis on Hodgkin and non-Hodgkin disease Eur. J. Cancer Prev. 22 131–50
[26] Nieters A et al 2008 Smoking and lymphoma risk in the European prospective investigation into cancer and nutrition Am. J. Epidemiol. 167 1081–9
[27] Willett E V et al 2008 Non-Hodgkin lymphoma and obesity: a pooled analysis from the interlymph consortium Int. J. Cancer 122 2062–70
[28] Larsson S C and Wolk A 2007 Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis Int. J. Cancer. 121 1564–70
[29] Tramacere I et al 2012 Alcohol drinking and non-Hodgkin lymphoma risk: a systematic review and a meta-analysis Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 23 2791–8
[30] Bron T and Rushton L 2012 Occupational cancer in Britain. Haematopoietic malignancies: leukaemia, multiple myeloma, non-Hodgkin lymphoma Br. J. Cancer. 107 S41–8
[31] Public Health England, Cancer Research UK 2014 National cancer intelligence network cancer by deprivation in England incidence, 1996–2010 mortality, 1997–2011
[32] Husby S and Grønbæk K 2017 Mature lymphoid malignancies: origin, stem cells, and chronicity Blood Adv. 1 2444–55
[33] Kikushige Y and Miyamoto T 2014 Hematopoietic stem cell aging and chronic lymphocytic leukemia pathogenesis Int. J. Hematol. 100 335–40
[34] Martinez-Climent J A, Fontan L, Gascoyne R D, Siebert R and Prosper F 2010 Lymphoma stem cells: enough evidence to support their existence? Haematologica 95 293–302
[35] Richardson D B et al 2009 Positive associations between ionizing radiation and lymphoma mortality among men Am. J. Epidemiol. 169 969–76
[36] Berrington De González A et al 2017 No association between radiation dose from pediatric CT scans and risk of subsequent Hodgkin lymphoma Cancer Epidemiol. Biomark. Prev. 26 804–6
[37] Hsu W-L et al 2013 The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001 Radiat. Res. 179 361
[38] McGeoghegan D and Binks K 2000 The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95 J. Radiol. Prot. 20 381–401
[48] McGeoghegan D and Binks K 2000 The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946–95 J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 20 111–37

[49] Navaranjan G, Berriault C, Do M, Villeneuve P J and Demers P A 2016 Cancer incidence and mortality from exposure to radon progeny among Ontario uranium miners Occup. Environ. Med. 73 838–45

[50] Kreuzer M, Sobotzki C, Fenske N, Marsh J W and Schnelzer M 2017 Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946–2013) Occup. Environ. Med. 74 252–8

[51] Rage E, Caër-Lorho S and Laurier D 2018 Low radon exposure and mortality among Jouv uranium miners: an update of the French cohort (1946–2007) J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 38 92–108

[52] Kelly-Reif K, Sandler D P, Shore D, Schubauer-Berigan M, Troester M A, Nylander-French L and Richardson D B 2019 Mortality and cancer incidence among underground uranium miners in the Czech Republic 1977–1992 Occup. Environ. Med. 76 511–8

[53] Bouet S, Davesne E, Samson E, Jovanovic I, Blanchard E, Challeton-de Vathaire C, Richardon D B, Leuraud K, Laurier D and Laurent O 2019 Analysis of the association between ionizing radiation and mortality in uranium workers from five plants involved in the nuclear fuel production cycle in France Int. Arch. Occup. Environ. Health 92 249–62

[54] Kelly-Reif K, Sandler D P, Shore D, Schubauer-Berigan M K, Troester M A, Nylander-French L and Richardson D B 2020 Radon and cancer mortality among underground uranium miners in the Prìbram region of the Czech Republic Am. J. Ind. Med. 63 859–67

[55] Pinkerton L., Bloom T, Heim M and Ward E 2004 Mortality among a cohort of uranium mill workers: an update Occup. Environ. Med. 61 57–64

[56] Yiin J H, Anderson J L, Daniels R D, Bertke S J, Fleming D A, Tollerud D J, Tseng C-Y, Chen P-H and Waters K M 2017 Mortality in a combined cohort of uranium enrichment workers Am. J. Ind. Med. 60 96–108

[57] Schubauer-Berigan M K, Daniels R D and Pinkerton L E 2009 Radon exposure and mortality among white and American Indian uranium miners: an update of the Colorado Plateau cohort Am. J. Epidemiol. 169 718–30

[58] Silver S R, Bertke S J, Hein M J, Daniels R D, Fleming D A, Anderson J L, Pinney S M, Hornung R W and Tseng C-Y 2013 Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Center (1951–1985) Occup. Environ. Med. 70 453–63

[59] Zablotska L B, Lane R S D and Frost S E 2013 Mortality (1950–1999) and cancer incidence (1969–1999) of workers in the Port Hope cohort study exposed to a unique combination of radium, uranium and γ-ray doses BMJ Open 3 1–10

[60] Zablotska L B, Lane R S D, Frost S E and Thompson P A 2014 Leukemia, lymphoma and multiple myeloma mortality (1950–1999) and incidence (1969–1999) in the Eldorado uranium workers cohort Environ. Res. 130 43–50

[61] Rage E, Caër-Lorho S, Drubay D, Ancelet S, Larroche P and Laurier D 2015 Mortality analyses in the updated French cohort of uranium miners (1946–2007) Int. Arch. Occup. Environ. Health 88 717–30

[62] Walsh L, Grosche B, Schnelzer M, Tschense A, Sogl M and Kreuzer M 2015 A review of the results from the German Wismut uranium miners cohort Radiat. Prot. Dosim. 164 147–53

[63] Zablotska L B et al 2013 Radiation and the risk of chronic lymphocytic and other leukemias among Chornobyl cleanup workers Environ. Health Perspect. 121 59–65

[64] Bazyka D, Gudzenko N, Dyagil I, Trotsiuk N, Gorokh E, Fedorenko Z, Chumak V, Bakhanova E, Ilenko I and Romanenko A 2016 Incidence of multiple myeloma among cleanup workers of the Chornobyl accident and their survival Exp. Oncol. 38 267–71

[65] Darby S C, Kendall G M, Fell T P, O’Hagan J A, Muirhead C R, Ennis J R, Ball A M, Dennis J A and Doll R 1988 A summary of mortality and incidence of cancer in men from the United Kingdom who participated in the United Kingdom’s atmospheric nuclear weapon tests and experimental programmes Br. Med. J. (Clin. Res. Ed.) 296 332–8

[66] Pearce N, Prior I, Methven D, Culling C, Marshall S, Auld J, de Boer G and Bethwaite P 1990 Follow up of New Zealand participants in British atmospheric nuclear weapons tests in the Pacific BMJ 300 1161–6
[67] Darby S C, Kendall G M, Fell T P, Doll R, Goodill A A, Conquest A J, Jackson D A and Haylock R G 1993 Further follow up of mortality and incidence of cancer in men from the United Kingdom who participated in the United Kingdom’s atmospheric nuclear weapon tests and experimental programmes BMJ 307 1530–5

[68] Muirhead C R, Bingham D, Haylock R G E, O’Hagan J A, Goodill A A, Berridge G L C, English M A, Hunter N and Kendall G M 2003 Follow up of mortality and incidence of cancer 1952–98 in men from the UK who participated in the UK’s atmospheric nuclear weapon tests and experimental programmes Occup. Environ. Med. 60 165–72

[69] Gun R T, Parsons J, Crouch P, Ryan P and Hiller J E 2008 Mortality and cancer incidence among Australian participants in the British nuclear tests in Australia Occup. Environ. Med. 65 843–8

[70] Caldwell G G, Zack M M, Mumma M T, Falk H, Heath C W, Till J E, Chen H and Boice J D 2016 Mortality among military participants at the 1957 PLUMBBOB nuclear weapons test series and from leukemia among participants at the SMOKY test J. Radiol. Prot. 36 474–89

[71] Boice J D, Cohen S S, Mumma M T, Chen H, Golden A P, Beck H L and Till J E 2020 Mortality among U.S. military participants at eight aboveground nuclear weapons test series Int. J. Radiat. Biol. pp 1–22

[72] Andersson M, Engholm G, Ennow K, Jessen K A and Storm H H 1991 Cancer risk among staff at two radiotherapy departments in Denmark Br. J. Radiol. 64 455–60

[73] Berrington A, Darby S C, Weiss H A and Doll R 2001 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997 Br. J. Radiol. 74 507–19

[74] Mohan A K, Hauptmann M, Freedman D M, Ron E, Matanoski G M, Lubin J H, Alexander B H, Boice J D, Doody M M and Linet M S 2003 Cancer and other causes of mortality among radiologic technologists in the United States Int. J. Cancer 103 259–67

[75] Sigurdson A J et al. 2003 Cancer incidence in the U.S. radiologic technologists health study, 1983–1998 Cancer 97 3080–9

[76] Linet M S, Freedman D M, Mohan A K, Doody M M, Ron E, Mabuchi K, Alexander B H, Sigurdson A and Hauptmann M 2005 Incidence of haematopoietic malignancies in US radiologic technologists Occup. Environ. Med. 62 861–7

[77] Berrington De González A, Ntowe E, Kitahara C M, Gilbert E, Miller D L, Kleinerman R A and Linet M S 2016 Long-term mortality in 43 763 U.S. radiologists compared with 64 990 U.S. Psychiatrists Radiology 281 847–57

[78] Linet M S, Kitahara C M, Ntowe E, Kleinerman R A, Gilbert E S, Naito N, Lipner R S, Miller D L and De Gonzalez A B 2017 Mortality in U.S. physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists, 1979 to 2008 Radiology 284 482–94

[79] Blettner M et al. 2003 Mortality from cancer and other causes among male airline cockpit crew in Europe Int. J. Cancer 106 946–52

[80] Zeeb H et al. 2003 Mortality from cancer and other causes among airline cabin attendants in Europe: a collaborative cohort study in eight countries Am. J. Epidemiol. 158 35–46

[81] Zeeb H, Hammer G P, Langner I, Schaft T, Bennack S and Blettner M 2010 Cancer mortality among German aircrew: second follow-up Radiat. Environ. Biophys. 49 187–94

[82] Yong L C, Pinkerton L E, Yin J H, Anderson J L and Deddens J A 2014 Mortality among a cohort of U.S. commercial airline cockpit crew Am. J. Ind. Med. 57 906–14

[83] Hammer G P et al. 2014 Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries Occup. Environ. Med. 71 313–22

[84] Dreger S, Wollschlager D, Schaft T, Hammer G P, Blettner M and Zeeb H 2020 Cohort study of occupational cosmic radiation dose and cancer mortality in German aircrew, 1960–2014 Occup. Environ. Med. 77 285–91

[85] Sont W N, Zielinski J M, Ashmore J P, Jiang H, Krewski D, Fair M E, Band P R and Létourneau E G 2001 First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada Am. J. Epidemiol. 153 309–18

[86] Darby S C et al. 1995 Radon and cancers other than lung cancer in underground miners: a collaborative analysis of 11 studies J. Natl. Cancer Inst. 87 378–84

[87] Muirhead C R, O’Hagan J A, Haylock R G E, Phillipson M A, Willcock T, Berridge G L C and Zhang W 2009 Mortality and cancer incidence following occupational radiation exposure: third analysis of the national registry for radiation workers Br. J. Cancer 100 206–12

[88] Boice J D J, Cohen S S, Mumma M T, Ellis E D, Eckerman K F, Leggett R W, Boecker B B, Brill A B and Henderson B E 2011 Updated mortality analysis of radiation workers at Rocketdyne (Atoms International), 1948–2008 Radiat. Res. 176 244–58
[89] Zablotska L B, Lane R S D and Thompson P A 2014 A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data Br. J. Cancer **110** 214–23

[90] Boice J D J et al 2014 Mortality among mound workers exposed to polonium-210 and other sources of radiation, 1944–1979 Radiat. Res. **181** 208–28

[91] Ahn Y-S, Park R M and Koh D-H 2008 Cancer admission and mortality in workers exposed to ionizing radiation in Korea J. Occup. Environ. Med. **50** 791–803

[92] Gillies M, Haylock R, Hunter N and Zhang W 2019 Risk of leukemia associated with protracted low-dose radiation exposure: updated results from the national registry for radiation workers study Radiat. Res. **192** 527

[93] Akiba S and Mizuno S 2012 The third analysis of cancer mortality among Japanese nuclear workers, 1991–2002: estimation of excess relative risk per radiation dose J. Radiol. Prot. **32** 73–83

[94] Leuraud K et al 2015 Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study Lancet Haematol. **2** e276–81

[95] Kuznetsova I S, Labutina E V and Hunter N 2016 Radiation risks of leukemia, lymphoma and multiple myeloma incidence in the Mayak cohort: 1948–2004 PLoS One **11** 1–14

[96] Haylock R G E, Gillies M, Hunter N, Zhang W and Phillipson M 2018 Cancer mortality and incidence following external occupational radiation exposure: an update of the 3rd analysis of the UK national registry for radiation workers Br. J. Cancer **119** 631–7

[97] Cardis E et al 1995 Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries Radiat. Res. **142** 117

[98] Cardis E et al 2007 The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks Radiat. Res. **167** 396–416

[99] Cardis E et al 2005 Risk of cancer after low doses of ionising radiation—retrospective cohort study in 15 countries Br. Med. J. **331** 77–80

[100] Richardson D B, Wing S, Schroeder J, Schmitz-Feuerhake I and Hoffmann W 2005 Ionizing radiation and chronic lymphocytic leukemia Environ. Health Perspect. **113** 1–5

[101] Eheman C R, Tolbert P E, Coates R J, Devine O and Eley J W 2000 Case-control assessment of the association between non-Hodgkin’s lymphoma and occupational radiation with doses assessed using a job exposure matrix Am. J. Ind. Med. **38** 19–27

[102] Tao Z, Zha Y, Akiba S, Sun Q, Zou J, Li J, Liu Y, Kato H, Sugahara T and Wei L 2000 Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995 J. Radiat. Res. **41** 31–41

[103] UK Childhood Cancer Study Investigators 2002 The United Kingdom childhood cancer study of exposure to domestic sources of ionising radiation: I: radon gas Br. J. Cancer **86** 1721–6

[104] Hwang S L, Guo H R, Hsieh W A, Hwang J S, Lee S D, Tang J L, Chen C C, Chang T C, Wang J D and Chang W P 2006 Cancer risks in a population with prolonged low dose-rate γ-radiation exposure in radiocontaminated buildings, 1983–2002 Int. J. Radiat. Biol. **82** 49–58

[105] Kendall G M, Little M P, Wakeford R, Bunch K J, Miles J C H, Vincent T J, Meara J R and Murphy M F G 2013 A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006 Leukemia **27** 3–9

[106] Krestinina L Y, Davis F G, Schonfeld S, Preston D L, Degteva M, Epifanova S and Akleyev A V 2013 Leukaemia incidence in the Techa River Cohort: 1953–2007 Br. J. Cancer **109** 2886–93

[107] Spycher B D et al 2015 Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study Environ. Health Perspect. **123** 622–8

[108] Bunch K J, Vincent T J, Black R J, Pearce M S, McNally R J Q, Mckinney P A, Parker L, Craft A W and Murphy M F G 2014 Updated investigations of cancer excesses in individuals born or resident in the vicinity of Sellafield and Dounreay Br. J. Cancer **111** 1814–23

[109] Swerdlow A J et al 2011 Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. **29** 4096–104

[110] Rothblum-Oviatt C, Wright J, Lefton-Greif M A, McGrath-Morrow S A, Crawford T O and Lederman H M 2016 Ataxia telangiectasia: a review Orphanet J. Rare Dis. **11** 159

[111] Valdez J M, Nichols K E and Kessneran C 2017 Li-Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition Br. J. Haematol. **176** 539–52

[112] Kim C J, Freedman D M, Curtis R E, De Gonzalez A B and Morton L M 2013 Risk of non-Hodgkin lymphoma after radiotherapy for solid cancers. Leuk Lymphoma **54** 1691–7
[113] Boice J D et al 1988 Radiation dose and second cancer risk in patients treated for cancer of the cervix Radiat. Res. 116 3–55
[114] Kleinerman R A, Boice J D, Storm H H, Sparen P, Andersen A, Pukkala E, Lynch C F, Hankey B F and Flannery J T 1995 Second primary cancer after treatment for cervical cancer. An international cancer registries study Cancer 76 442–52
[115] Chaturvedi A K et al 2007 Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk J. Natl. Cancer Inst. 99 1634–43
[116] Darby S C, Doll R, Gill S K and Smith P G 1987 Long term mortality after a single treatment course with X-rays in patients treated for ankylosing spondylitis Br. J. Cancer 55 179–90
[117] Weiss H A, Darby S C and Doll R 1994 Cancer mortality following X-ray treatment for ankylosing spondylitis Int. J. Cancer 59 327–38
[118] Weiss H A, Darby S C, Fearn T and Doll R 1995 Leukemia mortality after X-ray treatment for ankylosing spondylitis Radiat. Res. 142 1
[119] Carr Z A et al 2002 Malignant neoplasms after radiation therapy for peptic ulcer Radiat. Res. 157 668–77
[120] Nekolla E A, Walsh L and Spiess H 2010 Incidence of malignant diseases in humans injected with radium-224 Radiat. Res. 174 377–86
[121] Inskip P D et al 1993 Leukemia, lymphoma, and multiple myeloma after pelvic radiotherapy for benign disease Radiat. Res. 135 108–24
[122] Sakata R, Kleinerman R A, Mabuchi K, Stovall M, Smith S A, Weathers R, Wactawski-Wende J, Cookfair D L, Boice J D and Inskip P D 2012 Cancer mortality following radiotherapy for benign gynecological disorders Radiat. Res. 178 266–79
[123] Ronckers C M, Land C E, Verduijn P G, Hayes R B, Stovall M and van Leeuwen F E 2001 Cancer mortality after nasopharyngeal radium irradiation in the Netherlands: a cohort study J. Natl. Cancer Inst. 93 1021–7
[124] Damber L, Larsson L-G, Johansson L and Norin T 1995 A cohort study with regard to the risk of haematological malignancies in patients treated with x-rays for benign lesions in the locomotor system: I. Epidemiological analyses Acta Oncol. 34 713–9
[125] Holm L-E et al 1991 Cancer risk after iodine-131 therapy for hyperthyroidism J. Natl. Cancer Inst. 83 1072–7
[126] Franklyn J A, Maisonneuve P, Sheppard M, Betteridge J and Boyle P 1999 Cancer incidence and mortality after radiiodine treatment for hyperthyroidism: a population-based cohort study Lancet 353 2111–5
[127] Ron E et al 1998 Cancer mortality following treatment for adult hyperthyroidism J. Am. Med. Assoc. 280 347–55
[128] Kitahara C M et al 2019 Association of radioactive iodine treatment with cancer mortality in patients with hyperthyroidism JAMA Intern. Med. 179 1034–42
[129] Radiyevitch T, Sachs R K, Gale R P, Smith M R and Hill B T 2016 Ionizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia Leuk. Res. 43 9–12
[130] Wright J D, St. Clair C M, Deutsch I, Burke W M, Gorrochurn P, Sun X and Herzog T J 2010 Pelvic radiotherapy and the risk of secondary leukemia and multiple myeloma Cancer 116 2486–92
[131] Diallo I et al 2009 Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer Int. J. Radiat. Oncol. Biol. Phys. 74 876–83
[132] Ragusa R, Russo S, Villari L and Schiuro G 2001 Hodgkin’s disease as a second malignant neoplasm in childhood: report of a case and review of the literature Pediatr. Hematol. Oncol. 18 407–14
[133] Scholz-Kreisel P, Kaufsch P, Spix C, Schmidberger H, Marron M, Grabow D, Becker C and Blettner M 2018 Second malignancies following childhood cancer treatment in Germany from 1980 to 2014 Dtsch. Arztebl. Int. 115 385–92
[134] Friedman D L, Whitton J, Leisenring W, Mertens A C, Hammond S, Stovall M, Donaldson S S, Meadows A T, Robison L L and Neglia J P 2010 Subsequent neoplasms in 5-year survivors of childhood cancer: the childhood cancer survivor study J. Natl. Cancer Inst. 102 1083–95
[135] Hammer G P, Seidenbusch M C, Schneider K, Regulla D F, Zeeb H, Spix C and Blettner M 2009 A cohort study of childhood cancer incidence after postnatal diagnostic x-ray exposure Radiat. Res. 171 504–12
[136] Baaken D, Hammer G P, Seidenbusch M C, Schneider K, Spix C, Blettner M, Pokora R and Lorenz E 2019 Second follow-up of a German cohort on childhood cancer incidence after exposure to postnatal diagnostic x-ray J. Radiol. Prot. 39 1074–91

[137] Modan B, Keinan L, Blumstein T and Sadetzki S 2000 Cancer following cardiac catheterization in childhood Int. J. Epidemiol. 29 424–8

[138] Harbron R W, Chapple C-L, O’Sullivan J J, Lee C, McHugh K, Higuera M and Pearce M S 2018 Cancer incidence among children and young adults who have undergone x-ray guided cardiac catheterization procedures Eur. J. Epidemiol. 33 393–401

[139] Mathews J D et al 2013 Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians BMJ 346 1–18

[140] Journy N, Rehel J-L, Ducou Le Pointe H, Lee C, Brisse H, Chateil J-F, Caer-Lorho S, Laurier D and Bernier M-O 2015 Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France Br. J. Cancer 112 185–93

[141] Krille L et al 2015 Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study Radiat. Environ. Biophys. 54 1–12

[142] Li I, Yang Y, Li Y and Tsai Y 2020 Paediatric computed tomography and subsequent risk of leukaemia, intracranial malignancy and lymphoma: a nationwide population-based cohort study Sci. Rep. 10 7759

[143] Hong J-Y, Han K, Jung J-H and Kim J S 2019 Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea JAMA Netw. Open 2 e1910584

[144] Bithell J F and Stewart A M 1975 Pre-natal irradiation and childhood malignancy: a review of British data from the Oxford survey Br. J. Cancer 31 271–87

[145] Shu X-O, Jin F, Linet M S, Zheng W, Clemens J, Mills J and Gao Y-T 1994 Diagnostic X-ray and ultrasound exposure and risk of childhood cancer Br. J. Cancer 70 531–6

[146] Walsh L, Shore R, Auvinen A, Jung T and Wakeford R 2014 Risks from CT scans—what do recent studies tell us? J. Radiol. Prot. 34 E1–E5

[147] Boice J D 2015 Radiation epidemiology and recent paediatric computed tomography studies Ann. ICRP 236–48

[148] Walsh L and Nekolla E A 2015 EPI-CT: design, challenges, and epidemiological methods of an international study on cancer risk after paediatric CT J. Radiol. Prot. 35 E9–11

[149] Rajaraman P, Simpson J, Neta G, De Gonzalez A B, Ansell P, Linet M S, Ron E and Roman E 2011 Early life exposure to diagnostic radiation and ultrasound scans and risk of childhood cancer: case-control study BMJ 342 424

[150] Hatcher J L et al 2001 Diagnostic radiation and the risk of multiple myeloma (United States) Cancer Causes Control 12 755–61

[151] Krille L et al 2017 Erratum to: risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study Radiat. Environ. Biophys. 56 293–7

[152] Pasqual E et al 2020 Association of ionizing radiation dose from common medical diagnostic procedures and lymphoma risk in the Epilymph case-control study PloS One 1–19

[153] Andersson M, Carstensen B, Storm H H, Andersson M, Carstensen B and Storm H H 1995 Mortality and cancer incidence after cerebral arteriography with or without thorotrast Radiat Res. 142 305–20

[154] Van Kaick G, Dalheimer A, Hornik S, Kaul A, Liebermann D, Lihrs H, Spiethoff A, Wegener K and Wesch H 1999 The German thorotrast study: recent results and assessment of risks Radiat Res. 152 S64–S71

[155] Travis L B et al 2003 Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast Radiat Res. 160 691–706

[156] Wakeford R and Little M P 2003 Risk coefficients for childhood cancer after intrauterine irradiation: a review Int. J. Radiat. Biol. 79 293–309

[157] Dahal S and Budoff M J 2019 Low-dose ionizing radiation and cancer risk: not so easy to tell Quant. Imaging Med. Surg. 9 2023–6

[158] Pearce M S et al 2012 Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study Lancet 380 499–505

[159] Berrington De González A et al 2016 Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions Br. J. Cancer 114 388–94
[160] Joury N, Roué T, Cardis E, Le Pointe H D, Brisse H, Chateil J-F, Laurier D and Bernier M-O 2016 Childhood CT scans and cancer risk: impact of predisposing factors for cancer on the risk estimates J. Radiol. Prot. 36 N1–N7

[161] Byrne G E J 1977 Rappaport classification of non-Hodgkin’s lymphoma: histologic features and clinical significance Cancer Treat. Rep. 61 935–44

[162] Blanco G, Alavaikko M, Apaja-Sarkkinen M and Taskinen P J 1986 The Lukes-Collins and Kiel classifications for non-Hodgkin lymphomas. A retrospective study considering both classifications and their relationships to stage, sex, age, and survival Anticancer Res. 6 267–79

[163] Stansfeld A G, Diebold J, Kapanci Y, Kelényi G, Lennert K, Mioduszewska O, Noel H, Rilke F, Sundstrom C and Van Unnik J A M 1988 Updated Kiel classification for lymphomas Lancet 1 292–3

[164] Swerdlow S et al 2008 WHO classification of tumours of haematopoietic and lymphoid tissues, IARC, Lyon

[165] Jaffe E S, Raffeld M, Medeiros L J and Stetler-Stevenson M 1992 An overview of the classification of non-Hodgkin’s lymphomas: an integration of morphological and phenotypical concepts Cancer Res. 52 5447–53

[166] Meulepas J M et al 2019 Radiation exposure from pediatric CT scans and subsequent cancer risk in the Netherlands J. Natl. Cancer Inst. 111 256–63

[167] De Angelis R et al 2014 Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE–5-a population-based study Lancet Oncol. 15 23–34

[168] Silver S R, Hiratzka S L, Schubauer-Berigan M K and Daniels R D 2007 Chronic lymphocytic leukemia radiogenicity: a systematic review Cancer Causes Control 18 1077–93

[169] Bouville A et al 2015 Dose reconstruction for the million worker study: status and guidelines Health Phys. 108 206–20

[170] Dauer L T, Woods M, Miodownik D, Serences B, Quinn B, Bellamy M, Yoder C, Liang X, Boice J D J and Bernstein J 2019 Cohort profile - MSK radiation workers: a feasibility study to establish a deceased worker sub-cohort as part of a multicenter medical radiation worker component in the million person study of Low-Dose radiation health effects Int. J. Radiat. Biol. 1–7

[171] Bosch De Basea M et al 2015 EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT J. Radiol. Prot. 35 611–28

[172] Harbron R W et al 2020 The HARMONIC project: study design for assessment of cancer risks following cardiac fluoroscopy in childhood J. Radiol. Prot. 40 1074

[173] Golden A P, Ellis E D, Cohen S S, Mumma M T, Leggett R W, Wallace P W, Girardi D, Watkins J P, Shore R E, Boice J D 2019 Updated mortality analysis of the Mallinckrodt uranium processing workers, 1942–2012 Int. J. Radiat. Biol. pp 1–21