SHORT COMMUNICATION

Richard J. Hobbs: how one ecologist has influenced the way we think about restoration ecology

Leonie E. Valentine1, Nancy Shackelford2, Bridget A. Johnson1, Michael D. Craig1,3, Michael P. Perring1,5, Kristin B. Hulvey6, Lauren M. Hallett7, Rebecca Campbell1, Joan Dudney8, Todd E. Erickson1,9, Alison Ritchie1, Hilary Harrop-Archibald10, Cristina E. Ramalho1, Rachel J. Standish3,4

Professor Richard Hobbs has had a profound influence on the development of the discipline of restoration ecology. With more than 300 publications spanning a broad scope of applied ecological sciences, he has collaborated with hundreds of researchers. His sometimes-provocative insights, balanced by extensive empirical research, will have a lasting impact by encouraging people to think more broadly about the science and practice of ecological restoration. Here, on the eve of his retirement, some of his staff and students, past and present, take a retrospective look at his contributions to restoration ecology both as a scientist and as a mentor.

Key words: disturbance, ecologist, fragmentation, intervention ecology, landscape ecology, research significance, science policy gap

Implications for Practice

- Richard J. Hobbs has coauthored 333 publications since embarking on a career in restoration ecology. Most publications and citations are for his contributions to restoration ecology, conservation biology, disturbance, invasion biology, biodiversity, fragmentation and landscape ecology. In total, his publications have been cited over 21,000 times (Scopus, 27 April, 2020).
- Richard’s greatest hits—publications with more than 500 citations—are predominantly reviews and syntheses, yet his body of empirical research has informed these publications.
- While the perils of survivorship bias in science and academia make it difficult to draw lessons from Richard’s career, it seems apparent that capacity for life-long learning, collaboration, observation and conceptual thinking have been key to Richard’s influence on restoration ecology.

Introduction

Richard J. Hobbs, the most highly cited author in the field of restoration ecology, past president of the Ecological Society of Australia, lifetime member of the Ecological Society of America and past Chief Editor of Restoration Ecology, will retire this year. While he will likely keep writing and mentoring through his retirement, we, his past and present students and postdocs would like to honor his career achievements. Engaging in a retrospective, meaning to look back, is something restoration ecologists do to understand the history of a landscape and how to restore degraded ecosystems (Higgs et al. 2014). Yet rarely do we look back on the careers of living ecologists to assess their scientific, cultural and creative contributions to our young discipline. This article is intended to capture Richard’s “greatest hits” in the same way a retrospective album is a compilation of a musician’s greatest hits. We also reflect on Richard’s approach to research and some of the leadership attributes that have made him so influential.
Richard has published 333 journal articles, book chapters and books between 1981 and 2019 (Fig. 1). Reflecting the broad scope and quality of his contributions, his published articles have appeared in over 90 journals, including several of the discipline’s most respected journals, such as *Trends in Ecology and Evolution* (n = 13 articles), *Frontiers in Ecology and Environment* (n = 10), and *Nature* journals (n = 7). With a massive 21,856 citations, he has a particularly loyal following in the United States and Australia (7,372 and 4,099 citations respectively), and his h-index is 73 (Scopus, 27 April, 2020). The origins and development of the discipline of restoration ecology can be traced and understood through his publication history (Fig. 1).

Contributions to Restoration Ecology

Solving problems and understanding complex socioecological systems is fundamental to ecological restoration. Restoration ecologists tend to rise to this challenge by working across disciplines. Richard has set a very high benchmark in this regard, drawing on social science, philosophy and economics, as well as exploring the full gamut of complexities within his own discipline of ecology. His ability to integrate across disciplines has led to landmark contributions in the field of restoration ecology, including the incorporation of threshold dynamics, landscape processes and resilience theory into restoration models and the recognition of paleoecological and social perspectives for restoration goal-setting (Fig. 1). He has explored these topics through field-based research in heathlands of his native Scotland, Californian grasslands and the woodlands of south-western Australia (Fig. 2). Additionally, Richard’s contributions have been inspired by his observations of landscapes elsewhere and by conversations with people working in these landscapes. He clearly had lots of conversations about restoration ecology, with no less than 221 coauthors over 36 years!
Data From Down Under

In addition to restoration ecology, Richard has made significant contributions to the allied topics of conservation biology, disturbance, invasion biology, landscape ecology and fragmentation (Fig. 1). These contributions were heavily informed by his response to the hyper-diverse yet highly modified native ecosystems he encountered on arrival in south-western Australia in 1984. Here, he started research on familiar topics—fire and weeds (Hobbs & Atkins 1988, 1990, 1991) and, as his ecological knowledge expanded, he tackled the pressing environmental issues devastating the landscape and its people—fragmentation (Saunders et al. 1991; Hobbs 1993), secondary salinity (Cramer & Hobbs 2002, 2005), lock-in traps (Allison & Hobbs 2004) and land use legacies (Standish et al. 2006, 2008). In the beautiful yet imperiled wheatbelt landscape of south-western Australia he had found his muse. He shared some of these findings with the lucky undergraduate students who took his classes in restoration ecology at Murdoch University between 2000 and 2005. More broadly, his collaborative datasets from Down Under provided some unique tests of ecological theory (e.g. Hobbs & Mooney 1998; Hobbs 2001; Craig et al. 2012) and provided new insights to the rapidly developing field of restoration ecology (e.g. McIntyre & Hobbs 1999; Suding & Hobbs 2009).

From Data to Conceptual Frameworks

Indeed, over time, Richard began to increase his contributions to the conceptual development of restoration ecology. The depth and breadth of his empirical research provided a solid foundation from which to make conceptual advances including synthetic articles on restoration and conservation (e.g. Hobbs & Harris 2001; Hobbs et al. 2018), wilderness stewardship (Hobbs et al. 2010) and novel ecosystems (Hobbs et al. 2006, 2009). Whom among restoration ecologists has not read his first paper to be published in Restoration Ecology (Hobbs & Norton 1996) on a conceptual framework for the discipline? Richard has an ability to distill key findings and perspectives from seemingly
complicated datasets or disparate viewpoints. This ability sets him apart from most as an effective science communicator. He writes well (particularly when unconstrained by the traditional bounds of scientific writing, for example, his contributions to the Bulletins of the British Ecological Society as their Southern Correspondent and more recently, his blogs at https://www.thenatureofmusic.com/). He uses the same storytelling style for oral presentations, using clever word play and strong take home messages to communicate ecology in a manner that invites rich discussions and inspires the audience to do great science.

Environmental Policy

Effective science communication has paved the way for his more recent influence on environmental policy (Fig. 1). While Richard recognized early on in his career the need to bridge the gap between science and policy to make gains in biodiversity conservation, he believed politicians would be more likely to listen to a scientist with a body of evidence and lifetime experience than to one without (R.J. Hobbs 2005, personal communication). So, he focused on data first and policy later in his career. Over time, the data he collected made him acutely aware of the rapidly changing nature of the world (Hobbs & Hopkins 1991; Hobbs 1994; Harris et al. 2006; Hobbs et al. 2011; Weins & Hobbs 2015). For Richard, “doing something about it” involved applying science to inform management interventions and policy (e.g. biodiversity offsets; Thorn et al. 2018). No doubt the birth of his children and his involvement in local environmental issues provided impetus too (Fig. 3). A decidedly pragmatic response to an escalating crisis.

Last Words

As a highly cited researcher, Richard has had a disproportionately large effect on the field of restoration ecology, helping to shape and advance the concepts of this discipline. Indeed, if restoration ecology were an environment, Richard may well be one of its keystone species. On the eve of his retirement, he leaves a lasting legacy of pertinent ecological ideas for future restoration ecologists to build upon. Moreover, Richard, you have inspired all who have worked with you to adopt your considered, encouraging and collaborative approach to science. For this we thank you.

LITERATURE CITED

Allison HE, Hobbs RJ (2004) Resilience, adaptive capacity, and the “lock-in trap” of the Western Australian agricultural region. Ecology and Society 9:3
Higgs E, Hardy GESiJ, Fontaine JB, Garkakalis MJ, Grigg AH, Grant CD, Fleming PA, Hobbs RJ (2012) Identifying unidirectional and dynamic habitat filters to faunal recolonisation in restored mine-pits. Journal of Applied Ecology 49:919–928

Cramer VA, Hobbs RJ (2002) Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecology 27:546–564

Cramer VA, Hobbs RJ (2005) Assessing the ecological risk from secondary salinity: a framework addressing questions of scale and threshold responses. Austral Ecology 30:537–545

Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and management responses. Restoration Ecology 14:170–176

Higgs E, Falk DA, Guerrini A, Hall M, Harris J, Hobbs RJ, Jackson ST, Rhemtulla JM, Throop W (2014) The changing role of history in restoration ecology. Frontiers in Ecology and the Environment 12:499–506

Hobbs RJ (1993) Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biological Conservation 64:193–201

Hobbs RJ (1994) Dynamics of vegetation mosaics: can we predict responses to global change? Ecoscience 1:346–356

Hobbs RJ (2001) Synergisms among habitat fragmentation, livestock grazing, and biotic invasions in southwestern Australia. Conservation Biology 15:1522–1528

Hobbs RJ, Atkins L. (1988) Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. Australian Journal of Ecology 13:171–179

Hobbs RJ, Atkins L. (1990) Fire-related dynamics of a banksia woodland in southwestern Western Australia. Australian Journal of Botany 38:97–110

Hobbs RJ, Atkins L. (1991) Interactions between annuals and woody perennials in a Western Australian nature reserve. Journal of Vegetation Science 2:643–654

Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, et al. (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15:1–7

Hobbs RJ, Cole DN, Yung L, Zavaleta ES, Aplet GH, Chapin FS, Landres PB, et al. (2010) Guiding concepts for park and wilderness stewardship in an era of global environmental change. Frontiers in Ecology and the Environment 8:483–490

Hobbs RJ, Hallett LM, Ehrlich PR, Mooney HA (2011) Intervention ecology: applying ecological science in the twenty-first century. Bioscience 61:442–450

Hobbs RJ, Harris JA (2001) Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restoration Ecology 9:239–246

Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution 24:599–605

Hobbs RJ, Hopkins AJM (1991) The role of conservation corridors in a changing climate. Pages 281–290. In: Saunders DA, Hobbs RJ (eds) Nature conservation 2: the role of corridors. Surrey Beatty & Sons, Chipping Norton, New South Wales

Hobbs RJ, Mooney HA (1998) Broadening the extinction debate: population deletions and additions in California and Western Australia. Conservation Biology 12:271–283

Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restoration Ecology 4:93–110

Hobbs RJ, Valentine L, Standish RJ, Jackson S (2018) Movers and stayers: novel assemblages in changing environments. Trends in Ecology and Evolution 33:116–128

McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conservation Biology 13:1282–1292

Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5:18–32

Standish RJ, Cramer VA, Hobbs RJ (2008) Land-use legacy and the persistence of invasive Avena barbata on abandoned farmland. Journal of Applied Ecology 45:1576–1583

Standish RJ, Cramer VA, Hobbs RJ, Kobryn HT (2006) Legacy of land-use evident in soils of Western Australia’s wheatbelt. Plant and Soil 280:189–207

Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution 24:271–279

Thorn S, Hobbs RJ, Valentine LE (2018) Effectiveness of biodiversity offsets: an assessment of a controversial offset in Perth, Western Australia. Biological Conservation 228:291–300

Weins JA, Hobbs RJ (2015) Integrating conservation and restoration in a changing world. Bioscience 65:302–312

Supporting Information
The following information may be found in the online version of this article:

Table S1. Key words that define key topics in Figure 1.