Introduction

The thioester unit is a very useful and powerful building block in organic chemistry and is also an important component of many natural products and agrochemicals. Specifically, thioesters have often been employed as intermediates for the synthesis of amides, esters, and ketones. In addition, thioesters also serve as important intermediates in the biosynthesis of polyketides and nonribosomal polypeptides. Due to their many applications, numerous synthetic methods have been developed for the preparation of thioesters, for example, palladium-catalyzed carbonylation of aryl halides and alcohols, palladium-catalyzed carbonation of thioacetates and aryl iodides, palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers, condensation of carboxylic acids and alcohols, copper-catalyzed esterification of disulfides and acyl chlorides, and decarboxylative coupling of α-oxocarboxylic acids and disulfides. These methods suffer from certain disadvantages such as harsh conditions, high costs, formation of by-products, and the use of excess reagents. More recently, new progress was reported in this field, in which some novel protocols were developed for the synthesis of thioesters. Herein, we report a novel process for the synthesis of aryl thioesters via nickel-catalyzed carbonylation of thioacetates or dialkyl disulfides with aryl iodides under mild conditions.

Results and discussion

In previous work, Kim et al. reported aryl thioacetates as the source of sulfur in the palladium-catalyzed carbonation of aryl iodides for the formation of thioesters under CO (8 atm). Inspired by this result, we tried to use nickel as the catalyst for this transformation under 1 atm of CO; however, the reaction did not occur at all. To our surprise, alkyl thioacetates were compatible with the Ni catalyst, unlike aryl thioacetates under the same conditions. Thus, we chose iodobenzene (1a) and S-ethyl ethanethioate (2a) as model substrates in order to find optimized conditions for the carbonylation (Table 1). Using NiCl2 (10 mol%) as the catalyst, DTBPy (4,4’-di-tert-butyl-2,2’-bipyridine) as the ligand, and DMF as the solvent, thioether 4aa was detected as the main product (Table 1, entry 1). Interestingly, the amount of product 3aa increased as the ratio of 1a:2a decreased (Table 1, entries 1–3). The GC yield of product 3aa was improved to 45% when NiBr2 was used as the catalyst instead of NiCl2 under the same conditions (Table 1, entry 4). Other solvents such as DMAc, toluene, and dioxane were also screened using NiBr2 as the catalyst; carbonation of aryl iodides with aryl iodides via CO insertion and C–S bond cleavage

Wen-Peng Mai, Hong-Da Sui, Ming-Xiu Lv and Kui Lu

Abstract

Aryl thioesters are synthesized via nickel-catalyzed carbonylation of thioacetates with aryl iodides. Alkyl thioacetates undergo coupling with carbon monoxide and aryl iodides to produce the desired aryl thioesters in moderate yields. This catalytic carbonylative coupling process provides a cost-effective and direct approach for the preparation of useful thioesters.

Keywords
carbonylation, C–S bond cleavage, disulfides, nickel, thioacetates

Date received: 10 February 2021; accepted: 9 June 2021

Nickel-catalyzed carbonylation of thioacetates with aryl iodides via CO insertion and C–S bond cleavage

Wen-Peng Mai, Hong-Da Sui, Ming-Xiu Lv and Kui Lu

Abstract

Aryl thioesters are synthesized via nickel-catalyzed carbonylation of thioacetates with aryl iodides. Alkyl thioacetates undergo coupling with carbon monoxide and aryl iodides to produce the desired aryl thioesters in moderate yields. This catalytic carbonylative coupling process provides a cost-effective and direct approach for the preparation of useful thioesters.

Keywords
carbonylation, C–S bond cleavage, disulfides, nickel, thioacetates

Date received: 10 February 2021; accepted: 9 June 2021

Introduction

The thioester unit is a very useful and powerful building block in organic chemistry and is also an important component of many natural products and agrochemicals. Specifically, thioesters have often been employed as intermediates for the synthesis of amides, esters, and ketones. In addition, thioesters also serve as important intermediates in the biosynthesis of polyketides and nonribosomal polypeptides. Due to their many applications, numerous synthetic methods have been developed for the preparation of thioesters, for example, palladium-catalyzed carbonylation of aryl halides and alcohols, palladium-catalyzed carbonation of thioacetates and aryl iodides, palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers, condensation of carboxylic acids and alcohols, copper-catalyzed esterification of disulfides and acyl chlorides, and decarboxylative coupling of α-oxocarboxylic acids and disulfides. These methods suffer from certain disadvantages such as harsh conditions, high costs, formation of by-products, and the use of excess reagents. More recently, new progress was reported in this field, in which some novel protocols were developed for the synthesis of thioesters. Herein, we report a novel process for the synthesis of aryl thioesters via nickel-catalyzed carbonylation of thioacetates or dialkyl disulfides with aryl iodides under mild conditions.

Results and discussion

In previous work, Kim et al. reported aryl thioacetates as the source of sulfur in the palladium-catalyzed carbonation of aryl iodides for the formation of thioesters under CO (8 atm). Inspired by this result, we tried to use nickel as the catalyst for this transformation under 1 atm of CO; however, the reaction did not occur at all. To our surprise, alkyl thioacetates were compatible with the Ni catalyst, unlike aryl thioacetates under the same conditions. Thus, we chose iodobenzene (1a) and S-ethyl ethanethioate (2a) as model substrates in order to find optimized conditions for the carbonylation (Table 1). Using NiCl2 (10 mol%) as the catalyst, DTBPy (4,4’-di-tert-butyl-2,2’-bipyridine) as the ligand, and DMF as the solvent, thioether 4aa was detected as the main product (Table 1, entry 1). Interestingly, the amount of product 3aa increased as the ratio of 1a:2a decreased (Table 1, entries 1–3). The GC yield of product 3aa was improved to 45% when NiBr2 was used as the catalyst instead of NiCl2 under the same conditions (Table 1, entry 4). Other solvents such as DMAc, toluene, and dioxane were also screened using NiBr2 as the catalyst;
however, no improvement in the yield of 3aa was observed (Table 1, entries 5–7). On changing the NiBr2 to NiI2, about a 40% GC yield of product 3aa was observed when using Bpy (2,2'-bipyridine) or DTBPy as the ligand (Table 1, entries 8 and 9). When Phen (1,10-phenanthroline) was used as the ligand, the ratio of product 3aa to 4aa was almost 1:1 (Table 1, entry 10). To our delight, the product yield of 3aa was improved to 58% when DMF and H2O were used as co-solvents (Table 1, entry 11). The yield of 3aa was not improved when the amount of H2O was increased in the co-solvent (Table 1, entry 12). When CO (1 atm) was introduced into the system, the GC ratio of 3aa to 4aa was improved to 6:1 (Table 1, entries 13–15). The Zn powder plays an important role in this transformation, and no product was observed at all (Table 1, entry 16).

To investigate the scope of this transformation, many aryl iodides were examined for the formation of the corresponding aryl thioester under the optimized reaction conditions and the results are shown in Table 2. Both aryl iodides which have electron-donating and electron-withdrawing groups were found to react with thioacetates and gave the products in moderate yields. Generally, those with electron-donating groups on the aryl ring favored the transformation. For example, 1-iodo-4-methoxybenzene (1e) and 1-fluoro-4-iodo-2-methylbenzene (1d) provided the expected products in about 55% yields when using S-ethyl ethanethioate (2a). When S-propyl ethanethioate (2b) was selected as the substrate, different aryl iodides could also participate in this reaction with 2b. 1-Iodo-4-methoxybenzene (1e) and 1-iodo-4-(trifluoromethyl)benzene (1g) produced the products 3eb and 3gb in 70% and 42% yields, respectively. However, only a 33% isolated yield of 3ib was obtained when using 1-iodo-2-methoxybenzene (1i) as the substrate. Moreover, 1-chloro-3-iodo-2-methylbenzene (1h), 1-fluoro-4-iodo-2-methylbenzene (1d), and 4-iodo-1,1'-biphenyl (1j) gave the corresponding products 3hb, 3db, and 3jb in yields of about 50%. To our delight, the heteroaromatic iodide 3-iodothiophene (1k) reacted with 2b to produce the desired product 3kb in 42% yield. For other S-alkyl ethanethioates (2c–d), containing functional groups such as fluorine and furan, the reactions gave the desired products 3ec and 3ed in moderate yields. To our surprise, S-aryl ethanethioate 2e was compatible with the present reaction conditions and the corresponding product 3ee was obtained in 45% yield; however, other S-aryl ethanethioates were not compatible with this reaction.

To study further the mechanism of this transformation, alkyl sulfides were selected as one of the substrates to carry out the reaction under the optimized conditions. To our delight, the results showed that the yields of the desired

Table 1. Optimization of the reaction conditions.

Entry	1a:2a	Ni source	Ligand	Solvent	Yield 3aa/4aa(%)	Remarks
1	1:1	NiCl2:DME	DTBPy	DMF	5/25	
2	1:2	NiCl2:DME	DTBPy	DMF	15/11	
3	1:3	NiCl2:DME	DTBPy	DMF	23/6	
4	1:3	NiBr2	Bpy	DMF	45/10	
5	1:3	NiBr2	Bpy	DMAc	33/16	
6	1:3	NiBr2	Bpy	Toluene	0/20	
7	1:3	NiBr2	Bpy	Dioxane	0/13	
8	1:3	NiI2	Bpy	DMF	43/11	
9	1:3	NiI2	DTBPy	DMF	40/7	
10	1:3	NiI2	Phen	DMF	23/20	
11	1:3	NiBr2	Bpy	DMF/H2O (10:1)	58/8	
12	1:3	NiBr2	Bpy	DMF/H2O (5:1)	46/12	
13d	1:3	NiBr2	Bpy	DMF/H2O (10:1)	69/8	
14d	1:2	NiBr2	Bpy	DMF/H2O (10:1)	60/10	
15d	1:1.5	NiBr2	Bpy	DMF/H2O (10:1)	65/5	
16	1:3	NiI2	DMF/H2O (10:1)	0		

*Reaction conditions: 1a (0.5 mmol), 2a (as needed), Ni (0.05 mmol), Zn (2.0 equiv.) in solvent (3 mL), 110 °C, and 15 h.

*DTBPy: 4,4'-di-tert-butyl-2,2'-bipyridine, Bpy: 2,2'-bipyridine, Phen: 1,10-phenanthroline.

*GC yield.

*d1 atm CO balloon.
products were higher in comparison with those obtained when alkyl ethanethioates were employed as substrates (Scheme 1). For example, dibutylsulfane and S-buty1 ethanethioate reacted with 1-iodo-3,5-dimethylbenzene under the same conditions, leading to the same product in 71% and 63%, respectively. These results indicated that insertion of Ni(I) into the S–S bond is easier and that the insertion of CO occurred after C–S or S–S bond cleavage.

Based on the above the experimental data and previous work, a plausible reaction mechanism is proposed in Scheme 2. First, an Ni(0) species is formed by reduction with Zn powder, then, the species inserts into the Ph–I bond of the iodobenzene to form the intermediate A. Next, species B is produced rapidly in the presence of excess Zn. Intermediate B reacts with S-propyl ethanethioate and the Ni(I) inserts into the C–S bond of S-propyl ethanethioate, leading to the intermediate C. In the next step, the CO inserts into the species C, meanwhile, acetyl group was removed leading to the intermediate D. In the end, the species D gives the desired product 3aa and Ni(I) via the

3aa 69%	3ba 47%	3ca 53%
3da 55%	3ea 73%	3fa 62%
3eb 70%	3gb 42%	3hb 45%
3db 50%	3ib 33%	3jb 46%
3kb 42%	3ec 39%	3ed 56%
3ee 45%	3if 63%	

Table 2. The scope of the aryl iodides and thioacetates.

- Reactions were carried out using 1 (1.0 mmol), 2 (1.5 mmol), NiBr₂ (0.05 mmol), bpy (0.1 mmol), Zn (2.0 mmol), 1 atm CO balloon, DMF/H₂O (2 mL:0.2 mL), 110 °C, and 15 h.
- Isolated yield.
reductive elimination. Finally, the catalytic cycle is continued through Ni(0)–Ni(I)–Ni(II) form by the assistance of Zn.

Conclusion

In conclusion, we have established a novel nickel-catalyzed carbonylation of aryl iodides and thioacetates for the synthesis of thioesters. Numerous aryl iodides reacted to give the desired S-alkyl thioesters in moderate yields under 1 atm of CO. This methodology is also useful with dialkyl sulfides and afforded the corresponding products in moderate yields under the same conditions. Advantageously, the reaction occurs in one pot, using a cheap catalyst, mild conditions, and a simple procedure. Unfortunately, this one-pot protocol for the formation of S-thioesters was unsuccessful with S-aryl ethanethioates as substrates as used in our previous work.20

Experimental

All experiments were carried out using a Schlenk flask open to air. Aryl iodides and thioacetates were purchased from commercial suppliers and were used as received, unless otherwise noted. All solvents and other commercially available reagents were purchased from TCI company and used directly. Reactions were monitored by TLC (Qingdao Haiyang Chemical Co., Ltd., Silica gel 60 F254). Products were detected using a UV-Vis lamp (254 nm). Column chromatography was performed on Qingdao Haiyang Chemical Co., Ltd., Silica Gel 60 (200–300 mesh). The 1H and 13C NMR spectra were obtained on a Bruker 400 MHz NMR Fourier transform spectrometer. 1H NMR data are reported as: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. 13C NMR data are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz) where applicable. The spectra are referenced against the internal non-deuterated solvent (CDCl3, δ 1H = 7.26 ppm, 13C = 77.0 ppm). Data are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. ESI-MS spectra were recorded on a Bruker Esquire 3000 instrument.

General procedures for the one-pot synthesis of thioesters 3

A Schlenk flask equipped with a magnetic stir bar was charged with S-alkyl thioacetate 2 (1.5 mmol), aryl iodides 1 (1.0 mmol), NiBr2 (21.8 mg, 0.1 mmol), bipyridine (31.2 mg, 0.2 mmol), and Zn powder (130 mg, 2.0 mmol). Next, the reaction flask was degassed and backfilled with CO three times, and then DMF/H2O (2:0.2 mL) were injected sequentially. The mixture was stirred at 110 °C for 15 h. When the reaction was complete, brine (30 mL) was added and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layer was dried and evaporated and the residue was purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 100:1 to 50:1, v/v) to furnish the desired product 3.

S-ethyl benzothoniate (3aa): Yield: 114 mg (69%); yellowish liquid (lit. 13). 1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 8.0 Hz, 2H), 7.58-7.57 (m, 1H), 7.49-7.45 (m, 2H), 3.13-3.08 (m, 3H), 1.38 (t, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 14.75, 23.44, 127.16, 128.56, 133.20, 137.30, 192.08. HRMS (EI): m/z [M + H]+ calcd for C9H11OS: 167.0531; found: 167.0533.

S-ethyl 4-fluorobenzothoniate (3ba): Yield: 86 mg (47%); yellowish liquid (lit. 21). 1H NMR (400 MHz, CDCl3): δ 8.03-7.99 (m, 2H), 7.14 (t, J = 8.0 Hz, 2H), 3.13-3.07 (m, 2H), 1.38 (t, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3): δ 14.73, 23.57, 115.56 (d, J C-F = 22 Hz), 129.63 (d, J C-F = 9 Hz), 133.64, 167.12 (d, J C-F = 252 Hz), 190.57. HRMS (EI): m/z [M + H]+ calcd for C9H10FOS: 185.0436; found: 185.0432.

S-ethyl 3-chlorobenzothoniate (3ca): Yield: 106 mg (53%); colorless liquid. 1H NMR (400 MHz, CDCl3): δ 7.95 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 3.14-3.08 (m, 2H), 1.38 (t, J = 8.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 14.66, 23.68, 125.29, 127.22, 129.88, 133.11, 134.52, 138.76, 190.90. HRMS (EI): m/z [M + H]+ calcd for C9H9ClOS: 200.0063; found: 200.0058.

S-ethyl 4-fluoro-3-methylbenzothoniate (3da): Yield: 109 mg (55%); colorless liquid. 1H NMR (400 MHz, CDCl3): δ 7.95 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 3.11-3.05 (m, 2H), 2.33 (s, 3H), 1.38-1.34 (m, 3H). 13C NMR (101 MHz, CDCl3): δ 14.47, 14.50, 14.75, 23.51,
S-propyl 2-methoxybenzothioate (3ib): Yield: 69 mg (33%); yellowish liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.78 (m, 1H), 7.49-7.46 (m, 1H), 7.04-6.99 (m, 2H), 3.94 (s, 3H), 3.04 (t, J = 8.0 Hz, 2H), 1.75-1.70 (m, 2H), 1.06 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 13.56, 22.82, 31.41, 55.84, 112.00, 120.35, 127.41, 129.65, 133.37, 157.59, 191.42. HRMS (EI): m/z [M + H]^+ calec for C₁₁H₁₄O₃S: 211.0793; found: 211.0790.

S-propyl (1,1'-biphenyl)-4-carbothioate (3jb): Yield: 118 mg (46%); yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.0 Hz, 2H), 7.70-7.64 (m, 4H), 7.51-7.42 (m, 3H), 3.11 (t, J = 8.0 Hz, 2H), 1.78-1.73 (m, 2H), 1.08 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 13.47, 23.03, 30.97, 127.21, 127.27, 127.75, 128.23, 128.96, 136.02, 139.89, 145.98, 191.67. HRMS (EI): m/z [M + H]^+ calec for C₁₄H₁₂O₃S: 257.1000; found: 257.0997.

S-propyl thiophene-3-carbothioate (3kb): Yield: 78 mg (46%); yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.12 (m, 1H), 7.57-7.55 (m, 1H), 7.36-7.28 (m, 1H), 3.06 (t, J = 8.0 Hz, 2H), 1.75-1.69 (m, 2H), 1.05 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 13.42, 23.08, 30.76, 126.04, 126.32, 130.26, 141.18, 185.77. HRMS (EI): m/z [M + H]^+ calec for C₁₁H₁₅O₂S: 187.0251; found: 187.0250.

S-(2-fluoroethyl) 4-methoxybenzothioate (3ec): Yield: 84 mg (39%); yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 4.67 (t, J = 8.0 Hz, 1H), 4.55 (t, J = 8.0 Hz, 1H), 3.90 (s, 3H), 3.44-3.36 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 28.71, 28.93, 55.55, 82.87 (d, J_C-F = 170 Hz), 113.88, 129.46, 129.55, 164.04, 189.32. HRMS (EI): m/z [M + H]^+ calec for C₁₁H₁₅O₃S: 249.0542; found: 249.0537.

S-(furan-2-ylmethyl) 4-methoxybenzothioate (3ed): Yield: 139 mg (56%); yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 1H), 6.96-6.93 (m, 2H), 6.34-6.31 (m, 2H), 4.36 (s, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 25.63, 55.54, 108.01, 110.65, 113.83, 129.54, 142.23, 150.73, 163.92, 189.20. HRMS (EI): m/z [M + H]^+ calec for C₁₃H₁₅O₃S: 249.0585; found: 249.0583.

S-(2-methylfuran-3-yl) 4-methoxybenzothioate (3ee): Yield: 112 mg (45%); yellowish liquid. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 4.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.43 (d, J = 4.0 Hz, 1H), 3.91 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 12.02, 55.56, 103.66, 113.93, 115.28, 129.29, 129.76, 141.09, 156.68, 164.00, 188.01. HRMS (EI): m/z [M + H]^+ calec for C₁₃H₁₅O₃S: 249.0585; found: 249.0580.

S-buty1 3,5-dimethylbenzothioate (3f): Yield: 140 mg (63%); colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 2H), 7.21 (s, 1H), 3.08 (t, J = 8.0 Hz, 2H), 2.39 (s, 6H), 1.67-1.64 (m, 2H), 1.51-1.45 (m, 2H), 0.97 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 13.63,
21.19, 22.05, 28.70, 31.64, 124.92, 134.85, 137.37, 138.27, 192.45. HRMS (EI): m/z [M + H]+ calcd for C_{13}H_{19}O_{5}: 223.1157; found: 223.1155.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors greatly acknowledge financial support from the Henan University of Engineering for the Youth Doctoral Funding (no. 2015017) and the Henan Province Key Research and Development and Promotion Special (212102310258).

ORCID iD
Wen-Peng Mai https://orcid.org/0000-0003-0097-6727

Supplemental material
Supplemental material for this article is available online.

References
1. Horst BT, Feringa BL and Minnaard AJ. Chem Commun 2007; 43: 489.
2. Kumar KSA, Bavikar SN, Spasser L, et al. Angew Chem Int Ed 2011; 50: 6137.
3. Liu XL, Shi Y, Kang JS, et al. ACS Med Chem Lett 2015; 6: 660.
4. Ueda M, Seki K and Imai YS. Synthesis 1981; 1981: 991.
5. Burhardt MN, Taaning RH and Skrydstrup T. Org Lett 2013; 15: 948.
6. Tokuyama H, Yokoshima S, Yamashita T, et al. Tetrahedron Lett 1998; 39: 3189.
7. Liebeskind LS and Srogl J. J Am Chem Soc 2000; 122: 11260.
8. Modha SG, Mehta VP and Van der Eycken EV. Chem Soc Rev 2013; 42: 5042.
9. Keating TA and Walsh CT. Curr Opin Chem Biol 1999; 3: 598.
10. Yan K, Yang D, Wei W, et al. Org Biomol Chem 2015; 13: 7323.
11. Kim M, Yu S, Kim JG, et al. Org Chem Front 2018; 5: 2447.
12. Li Y, Bao G and Wu XF. Chem Sci 2020; 11: 2187.
13. Gopinath P, Vidyarini RS and Chandrasekaran S. Eur J Org Chem 2009; 2009: 6043.
14. Azeredo JB, Godoi M, Schwab RS, et al. Eur J Org Chem 2013; 2013: 5188.
15. Rong G, Mao J, Liu D, et al. RSC Adv 2015; 5: 26461.
16. Qi X, Bao ZP, Yao XT, et al. Org Lett 2020; 22: 6671.
17. Feng Y, Yang S, Zhao S, et al. Org Lett 2020; 22: 6734.
18. Qiao Z and Jiang X. Org Lett 2016; 18: 1550.
19. Chung J, Seo UR, Chun S, et al. Chem Cat Chem 2016; 8: 318.
20. Mao P, Sui HD, Yuan JW, et al. Chemistry Select 2020; 5: 9908.
21. Ochiai H, Uetake Y, Niwa T, et al. Angew Chem Int Ed 2017; 56: 2482.