PROJECTIVE NORMALITY OF ARTIN-SCHREIER CURVES

EDOARDO BALLICO

Department of Mathematics, University of Trento
Via Sommarive 14, 38123 Povo (Trento), Italy

ALBERTO RAVAGNANI

Institut de Mathématiques, Université de Neuchâtel
Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland

ABSTRACT. In this paper we study the projective normality of certain Artin-Schreier curves Y_f defined over a field \mathbb{F} of characteristic p by the equations $y^q + y = f(x)$, q being a power of p and $f \in \mathbb{F}[x]$ being a polynomial in x of degree m, with $(m,p) = 1$. Many Y_f curves are singular and so, to be precise, here we study the projective normality of appropriate projective models of their normalizations.

1. INTRODUCTION

Let \mathbb{P}^2 denote the projective plane over an arbitrary field \mathbb{F} of characteristic p, and let $q := p^k$ be a power of p ($k > 0$). Denote by $Y_f \subseteq \mathbb{P}^2$ the curve defined over \mathbb{F} by the equation $y^q + y = f(x)$, where $f(x) \in \mathbb{F}[x]$ is a polynomial of degree $m > 0$. Assume $(m,p) = 1$. The function field $\mathbb{F}(x,y)$ is deeply studied in [6], Proposition 6.4.1. In particular, the function x is known to have only one pole P_∞. Denote by $\pi : C_f \to Y_f$ the normalization of Y_f (which is known to be a bijection) and set $Q_\infty := \pi^{-1}(P_\infty)$. For each $s \geq 0$ the (pull-backs of the) monomials x^iy^j such that

$$i \geq 0, \quad 0 \leq j \leq q - 1, \quad qi + mj \leq s$$

form a basis of the vector space $L(sQ_\infty)$ (see [6], Proposition 6.4.1 again). The genus, g, of the curve Y_f (which is by definition the genus of the normalization C_f) is known to be $g = (m-1)(q-1)/2$. In this paper we study the projective normality of certain embeddings (X_f) of C_f curves into suitable projective spaces. Let us briefly discuss the outline of the paper.

- Section 2 recalls a basic definition and contains a preliminary lemma.
- In Section 3 we take an arbitrary integer $m \geq 2$ which divides $q - 1$ and consider the curve C_f embedded by $L(qQ_\infty)$ into the projective space \mathbb{P}^r, $r := (q - 1)/m + 1$. We show that this curve is in any case projectively normal and we compute the dimension of the space of quadric hypersurfaces containing it.

1991 Mathematics Subject Classification. 14H50; 11T99.

Key words and phrases. Artin-Schreier curve; projective normality.

E-mail addresses: 1edoardo.ballico@unitn.it, 2alberto.ravagnani@unine.ch
In Section \[\square \] we pick out an arbitrary integer \(m \geq 2 \) which divides \(tq + 1 \) (\(t \) being any positive integer) and consider the curve \(C_f \) embedded by \(L((tq + 1)Q_\infty) \). We show that if \((tq - 1)/m \leq q - 1 \) and \(f(x) = x^m \) then the cited curve is in any case projectively normal.

Notice that the curve \(C_f \) and the line bundles \(\mathcal{L}(qQ_\infty) \), \(\mathcal{L}((tq + 1)Q_\infty) \) are defined over any field \(\mathbb{F} \supseteq \mathbb{F}_p \) containing the coefficients of the polynomial \(f(x) \). Hence when \(f(x) = x^m \) any field of characteristic \(p \) may be used.

2. Preliminaries

In this section we recall a basic definition and prove a general lemma. The result provides in fact sufficient conditions for the projective normality of a \(C_f \) curve as defined in the Introduction.

Definition 1. A smooth curve \(X \subseteq \mathbb{P}^r \) defined over a field \(\mathbb{F} \) is said to be projectively normal if for any integer \(d \geq 2 \) the restriction map

\[
\rho_{d,X} : S^d(H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(1))) \rightarrow H^0(X, \mathcal{O}_X(d))
\]

is surjective, \(S^d \) denoting the symmetric \(d \)-power of the tensor product.

Lemma 2. Consider a \(C_f \) curve as in Section \[\square \] (\(q, m \) and \(f \) being as in the definitions). Set \(C := C_f \). Fix integers \(a, b, e \) such that \(a \geq 0, b \geq 0, a + b > 0 \) and \(e \geq aq + bm + (m - 1)(q - 1) - 1 \). The multiplication map

\[
\mu : L((aq + bm)Q_\infty) \otimes L(eQ_\infty) \rightarrow L((e + aq + bm)Q_\infty)
\]

is surjective.

Proof. As we will explain below, this is just a particular case of the base-point free pencil trick (\[\square \], p. 126). Since the Weierstrass semigroup of non-gaps of \(Q_\infty \) contains \(m \) and \(q \), the line bundle \(\mathcal{O}_C((aq + bm)Q_\infty) \) is spanned by its global sections. Since \((aq + bm) > 0 \), we have \(h^0(C, \mathcal{O}_C((aq + bm)Q_\infty)) \geq 2 \). Hence there is a two-dimensional linear subspace \(V \subseteq H^0(C, \mathcal{O}_C((aq + bm)Q_\infty)) \) (defined over \(\overline{\mathbb{F}} \) spanning \(\mathcal{O}_C((aq + bm)Q_\infty) \). Taking a basis, say \(\{w_1, w_2\} \), of \(V \), we get an exact sequence of line bundles on \(C \) (over \(\overline{\mathbb{F}} \)):

\[
0 \rightarrow \mathcal{O}_C((e - aq - bm)Q_\infty) \rightarrow \mathcal{O}_C(eQ_\infty) \rightarrow \mathcal{O}_C((e + aq + bm)Q_\infty) \rightarrow 0
\]

in which \(\phi \) is induced by the multiplication by the column vector \((w_1, w_2) \). By assumption \(e - aq - bm > 2g - 2 \). Hence \(h^1(C, \mathcal{O}_C((e - aq - bm)Q_\infty)) = 0 \). It follows that the map

\[
\psi : H^0(C, \mathcal{O}_C(eQ_\infty)) \otimes \mathcal{O}_C((e + aq + bm)Q_\infty) \rightarrow H^0(C, \mathcal{O}_C((e + aq + bm)Q_\infty))
\]

induced in cohomology by the map \(\phi \) of the previous exact sequence is surjective. Since \(V \subseteq H^0(C, \mathcal{O}_C((aq + bm)Q_\infty)) \), \(\mu \) is surjective.

In the following sections the previous result will be applied to appropriate embeddings of \(C_f \) curves.

3. The case \(m|q - 1 \)

Assume that \(m \geq 2 \) is an integer which divides \(q - 1 \) and set \(c := (q - 1)/m \). If \(c = 1 \) then \(Y_f \) is a smooth plane curve and it is of course projectively normal. Hence we can focus on the case \(c \geq 2 \). Notice that the point \(P_\infty \in Y_f(\overline{\mathbb{F}}) \) defined in the Introduction is the only singular point of \(Y_f \), for any choice of \(f(x) \) as in the definitions. We have also an identity of vector spaces \(H^0(C_f, \pi^*(\mathcal{O}_{Y_f}(1))) = L(qQ_\infty) \) and by the results stated in the Introduction it can be easily seen
Lemma 4. This proves the theorem. □

Remark 3. Since π is injective and has invertible differential at any point of $C_f \setminus \{Q_\infty\}$, then also φ is injective with non-zero differential at any point of $C_f \setminus \{Q_\infty\}$. Moreover, the differential of φ is non-zero even in Q_∞. Indeed, since $L(qQ_\infty)$ has no base-points, in order to prove that φ has non-zero differential at Q_∞ it is sufficient to prove that

$$h^0(C_f, (q-2)Q_\infty) = h^0(C_f, qQ_\infty) - 2$$

([4], Chapter IV, proof of Proposition 3.1). To do this, we may notice that a basis of $L(qQ_\infty)$ is given by a basis of $L((q-2)Q_\infty)$ and the monomials x and y^c (see the Introduction). The result follows.

By the previous remark, φ is in fact an embedding of C_f into \mathbb{P}^r. Set $X_f := \varphi(C_f)$ and, for any integer $s \geq 1$, denote by

$$\mu_s : L(qQ_\infty) \otimes L(sqQ_\infty) \to L(q(s+1)Q_\infty)$$

the multiplication map.

Lemma 4. If μ_s is surjective for all $s \geq 1$ then X_f is projectively normal.

Proof. Fix an integer $t \geq 2$ and assume that μ_s is surjective for all $s \in \{1, \ldots, t-1\}$. We need to prove the surjectivity of the linear map $\rho_t : S^t(L(qQ_\infty)) \to L(tqQ_\infty)$. Notice that in arbitrary characteristic $S^t(L(qQ_\infty))$ is defined as a suitable quotient of $L(qQ_\infty)^{\otimes t}$ ([2], §A2.3), i.e. $\tau_t = \rho_t \circ \eta_t$, where $\eta_t : L(qQ_\infty)^{\otimes t} \to L(tqQ_\infty)$ is the tensor power map and $\tau_t : L(qQ_\infty)^{\otimes t} \to S^t(L(qQ_\infty))$ is a surjection. Hence ρ_t is surjective if and only if τ_t is surjective. Since $\tau_2 = \mu_1$, τ_2 is surjective. So assume $t > 2$ and that τ_{t-1} is surjective. Since τ_{t-1} and μ_{t-2} are surjective, τ_t is surjective. □

Proposition 5. If $s \geq m$ then μ_s is surjective.

Proof. If $s \geq m$ then $sq \geq q + (m-1)(q-1) - 1$. Apply Lemma 2 by setting $e := sq$, $a := 1$ and $b := 0$. □

Theorem 6. The curve X_f is projectively normal.

Proof. By Lemma 8 it is enough to prove that μ_s is surjective for all $s \geq 1$. The case $s \geq m$ is covered by Proposition 5. So let us assume $1 \leq s < m$. Let i, j be integers such that $i \geq 0$, $0 \leq j \leq q - 1$ and $qi + mj \leq (s+1)q$.

- If $qi + mj \leq sq$ then $x^i y^j$ is in the image of μ_s because $1 \in L(qQ_\infty)$.
- If $sq < qi + mj \leq (s+1)q$ and $i > 0$ then $x^{i-1} y^j \in L(sqQ_\infty)$. Since $x \in L(qQ_\infty)$ then $x^i y^j$ is in the image of μ_s.
- If $i = 0$ and $sq < mj < (s+1)q$ then $j > sq/m = s(c+1/m) > c$ and $mj \leq (s+1)q-1$. By the latter inequality we get $m(j-c) \leq (s+1)q-1-mc$. Observe that $(s+1)q-1-mc = sq$ and so $m(j-c) \leq sq$. This proves that $y^{j-c} \in L(sqQ_\infty)$. Finally, $\mu_s(y^c \otimes y^{j-c}) = y^j$.
- If $i = 0$ and $mj = (s+1)q$ then $j = (s+1)q/m = (s+1)(c+1/m) = (s+1)c + (s+1)/m$. Since $0 \leq j \leq q-1$ is a nonnegative integer, we must have $(s+1)/m \in \mathbb{N}$. Since $1 \leq s < m$ we get $s = m - 1$. It follows $mj = mq$ and $j = q$, a contradiction.

This proves the theorem. □
Corollary 7. Assume $m \geq 3$. The curve $X_f \subseteq \mathbb{P}^r$ is contained into $(c+3)/2 - 3c - 3$ linearly independent quadric hypersurfaces.

Proof. In the notations of Definition 1 set $X := X_f$ and $d := 2$. Define $r := c + 1$. By Theorem 6 the restriction map

$$
\rho_{2,X_f} : S^2(H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(1))) \to H^0(X_f, \mathcal{O}_{X_f}(2))
$$

is surjective. Hence, in particular, the restriction map

$$
\rho : H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(2)) \to H^0(X_f, \mathcal{O}_{X_f}(2))
$$

is surjective. Since $m \geq 3$ (by assumption) we can easily check that a basis of the vector space $L(2qQ_\infty)$ consists of the following monomials:

$$
\{1, y, \ldots, y^{2c}, x, xy, \ldots, xy^c, x^2\}.
$$

Hence $h^0(X_f, \mathcal{O}_{X_f}(2)) = \dim_{\mathbb{F}} L(2(q-1)Q_\infty) = 3c + 3$. The kernel of ρ is exactly the space of the quadrics in \mathbb{P}^r vanishing on X_f. By the surjectivity of ρ we easily deduce its dimension:

$$
\dim_{\mathbb{F}} H^0(\mathbb{P}^r, \mathcal{I}_{X_f}(d)) = \left(\frac{r+2}{2}\right) - (3c+3) = \left(\frac{c+3}{2}\right) - 3c - 3.
$$

The result follows. □

4. The case $m|tq + 1$

Pick out any integer $t \geq 1$ and assume that $m \geq 2$ is an integer dividing $tq + 1$. Set $c := (tq + 1)/m$. As in Remark 3 it can be checked that $L((tq + 1)Q_\infty)$ defines an embedding, say φ, of C_f into \mathbb{P}^r, $r := \dim L((tq + 1)Q_\infty) - 1$. Define $X_f := \varphi(C_f)$. For any integer $s \geq 1$ denote by

$$
\mu_s : L((tq + 1)Q_\infty) \otimes L(s(tq + 1)Q_\infty) \to L((s+1)(tq + 1)Q_\infty)
$$

the multiplication map. As in Section 3 the projective normality of X_f is controlled by the μ_s maps.

Lemma 8. If μ_s is surjective for all $s \geq 1$ then X_f is projectively normal.

Proof. Take the proof of Lemma 4 □

Proposition 9. If $s \geq m$ then μ_s is surjective.

Proof. Apply Lemma 2 by setting $a := 0$, $b := c$ and $e := s(tq + 1)$. □

In the following part of the section we focus on the case $f(x) = x^m$. In particular we are going to show that X_f curves obtained with this choice of f are projectively normal for any choice of $t \geq 1$, provided that $c \leq q - 1$.

Remark 10. The assumption $c \leq q - 1$ is not so restrictive from a geometric point of view. In fact, for any fixed q, the genus of X_f is $g = (q-1)(m-1)/2$. Even if c is small, here we study many curves of interesting genus.

Lemma 11. Set $f(x) := x^m$ and assume $c \leq q - 1$. Pick out an integer $b \geq 0$ such that $b \leq (s+1)c$. Then y^b is in the image of μ_s. □
Proof. Since \(c \leq q - 1 \) we get \(y^c \in L((tq + 1)Q_\infty) \). In particular, if \(b \leq c \) then we are done. Assume \(b > c \). Let us prove the lemma by induction on \(s \). If \(s = 1 \), then \(b \leq 2c \) and \(b - c \leq c \leq q - 1 \). Hence \(y^{b-c} \in L((tq + 1)Q_\infty) \) and so \(y^b = \mu(y^c \otimes y^{b-c}) \) is of course in the image of \(\mu_1 \). If \(s > 1 \), then write \(b = hc + \rho \) with \(h \leq s \) and \(0 \leq \rho \leq c \). Since \(b - \rho = hc \leq sc \) we have that \(y^{b-\rho} \) is in the image of \(\mu_{s-1} \). In particular, it is in \(L(s(tq + 1)Q_\infty) \). Since \(y^\rho \in L((tq + 1)Q_\infty) \), we get \(y^b = \mu_s(y^\rho \otimes y^{b-\rho}) \). It follows that \(y^b \) is in the image of \(\mu_s \).

Theorem 12. Set \(f(x) = x^m \) and assume \(c \leq q - 1 \). Then \(X_f \) is projectively normal.

Proof. By Lemma \([8]\) it is enough to show that \(\mu_s \) is surjective for any \(s \geq 1 \). By Proposition \([9]\) we need only to prove that \(\mu_s \) is surjective for any \(1 \leq s < m \). Let \(i, j \) be integers such that \(i \geq 0 \), \(0 \leq j < q - 1 \) and \(qi + mj \leq (s+1)(tq + 1) \). We will examine separately the case \(2 \leq s < m \) and the case \(s = 1 \).

To begin with, assume \(2 \leq s < m \).

- If \(j \geq c \), then \(x^iy^{j-c} \in L(s(tq + 1)Q_\infty) \). Since \(y^c \in L((tq + 1)Q_\infty) \), we have \(x^iy^j = \mu_s(x^i \otimes x^j) \).
- If \(0 \leq j < c \) and \(qi + mj \leq s(tq + 1) \), then \(x^iy^j \) is in the image of \(\mu_s \), because \(1 \in L((tq + 1)Q_\infty) \).
- Assume \(0 \leq j < c \) and \(s(tq + 1) \leq qi + mj \leq (s+1)(tq + 1) \). We have \(i \geq t \). Indeed, assume by contradiction that \(i < t \). Then

\[
qi + mj < tq + mj
\]

\[
< tq + mc
\]

\[
= tq + tq + 1
\]

\[
\leq stq + 1
\]

\[
< s(tq + 1),
\]

a contradiction (here we used \(s \geq 2 \)).

\(\text{(A) If } qi + mj < (s+1)(tq + 1) \text{ then } x^iy^{j} \in L(s(tq + 1)Q_\infty) \text{ and } x^iy^j = \mu_s(x^i \otimes x^j) \).

- Assume \(qi + mj = (s+1)(tq + 1) \). Since \((m, p) = 1 \) we have \(i = am \) for an integer \(a > 0 \) and \(j = (s+1)c - aq \). Observe that \(x^iy^j = x^amy^{(s+1)c-aq} = (y^d + y)^n y^{(s+1)c-aq} \), which is a sum of monomials of the form \(y^b \) with \(b \leq (s+1)c \). Apply Lemma \([11]\) and the fact that \(\mu_s \) is linear to get that \(x^iy^j \) is in its image.

Now assume \(s = 1 \).

- Assume \(j \geq c \). Since \(qi + mj \leq 2(tq + 1) \) we get \(qi + m(j - c) \leq 2(tq + 1) - (tq + 1) = tq + 1 \). Hence \(x^iy^{j-c} \in L((tq + 1)Q_\infty) \). Finally, \(\mu_1(y^c \otimes x^iy^{j-c}) = x^iy^j \).
- Assume \(j < c \) and \(i \geq t \). Since \(qi + mj \leq 2(tq + 1) \) we get \(qi + mj = 2(tq + 1) - tq = tq + 2 \).

\(\text{(C) If } q(i - t) + mj \leq tq + 1 \text{ then } x^iy^j = \mu_1(x^i \otimes x^iy^j) \).

- Assume \(q(i - t) + mj = tq + 2 \), i.e. \(qi + mj = 2tq + 2 \). Repeat the proof of case (B) with \(s := 1 \).
- Assume \(j < c \) and \(i < t \). Then \(x^iy^j \in L((tq + 1)Q_\infty) \) and we easily get \(x^iy^j = \mu_1(x^i \otimes y^j) \).

The proof is concluded.

Remark 13. If \(t = 1 \) then the assumption \(c \leq q - 1 \) is trivially satisfied (we assumed \(m \neq q + 1 \)). In this case the curve \(y^d + y = x^m \) is covered by the Hermitian curve.
ACKNOWLEDGMENT

The authors would like to thank the Referee for suggestions and remarks which improved the presentation of the present work.

REFERENCES

[1] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, *Geometry of algebraic curves, I*. Springer, Berlin, 1985.
[2] D. Eisenbud, *Commutative algebra with a view toward algebraic geometry*. Springer-Verlag, Berlin, 1995.
[3] A. Garcia, P. Viana, *Weierstrass points on certain non-classical curves*. Arch. Math., 46, pp. 315 – 322 (1986)
[4] R. Hartshorne, *Algebraic Geometry*. Springer, 1977.
[5] J. W. P. Hirschfeld, G. Korchmáros, F. Torres, *Algebraic Curves over a Finite Field*. Princeton University Press, 2008.
[6] H. Stichtenoth, *Algebraic function fields and codes*, Second Edition. Springer-Verlag, 2009.