Essential thrombocythemia during treatment of acute myeloid leukemia with JAK2 V617F mutation
A case report of a CARE-compliant article

Wenwen Ding, MSa, Danni Li, MSa, Chao Zhuang, MSa, Pingping Wei, MSa, Wenfeng Mou, MSb, Lei Zhang, MDa, Hui Liang, MDa, Yong Liu, MSC

Abstract
Rationale: The JAK2 V617F mutation is frequently found in ET, while it is rare in de novo AML. ET has a low frequency of leukemic transformation. Both secondary AML (sAML) from ET and AML with JAK2 V617F mutation have poor prognoses. Because of the low incidence of JAK2 mutation in acute myeloid leukemia (AML), the clinical features of AML with JAK2 mutation are rarely reported so far, either transformed from essential thrombocythemia (ET) or de novo AML.

Patient concerns: In this article, we present a pediatric AML patient with the JAK2 V617F mutation.

Diagnoses: A diagnosis of acute megakaryoblastic leukemia was made and sAML was ruled out.

Interventions: The patient underwent chemotherapy.

Outcomes: In the first two complete remission periods, we found significantly increased numbers of platelets and bone marrow megakaryocytes, which are characteristic of ET. After the third chemotherapy phase, the disease relapsed; the platelet count was reduced and continued to decrease. When disease relapsed, her family abandoned treatment.

Lessons: These observations of our case raise two possibilities: either transient posttreatment thrombocytemia is a feature of AML with JAK2 V617F mutation, or this was a case of secondary AML. Additional information is required to reach better conclusions on the connection between AML and JAK2 mutations.

Abbreviations: AML = acute myeloid leukemia, ET = essential thrombocythemia, MPNs = myeloproliferative neoplasms, sAML = secondary AML.

Keywords: acute myeloid leukemia, JAK2 mutation, thrombocytemia

1. Introduction
Acute myeloid leukemia (AML) is a heterogeneous disease associated with many distinct genetic alterations. These alterations affect the function of proteins involved in a variety of pathways, including signaling, transcriptional regulation, chromatin modification, and nucleocytoplasmic shuttling. Several useful molecular markers have been identified for the diagnosis, risk classification, treatment, and follow-up of AML. Among these, the JAK-STAT signaling pathway plays important roles in cell proliferation, differentiation, and apoptosis; several activating mutations in JAK proteins have recently been described as the underlying causes of blood disorders. One of these mutations is JAK2 V617F, which is the most prevalent mutation observed in myeloproliferative neoplasms (MPNs), accounting for >95% of polycythemia vera cases and about 50% to 60% of cases of essential thrombocythemia (ET) and primary myelofibrosis. Meanwhile, the JAK2 V617F mutation is one of the notable landmarks in ET progression in both adults and children. In addition, it is well known that ET can progress to AML. In adults, ET develops into AML at a low rate of 1% to 4% during a median follow-up of 7 to 10 years. Conversely, the prevalence of JAK2 mutations in AML transformed from MPN is about 50%, Pediatric ET also has a low risk of disease transformation.

However, the JAK2 V617F mutation is rare in AML. The incidence of this mutation in de novo adult AML has been reported to be 1% to 2.7% or <5%, while the childhood rate has not been reported. Here, we present a 1-year-old patient with pediatric AML bearing the JAK2 V617F mutation, which manifested as ET during remission periods with thrombocytemia and megakaryocytic hyperplasia.

2. Case presentation
A 1-year-old female patient presented with irregular fever, weakness, and purpura emergence in our medical institution on
her platelet counts were increased to 580×10^9/L and 500×10^9/L, respectively, and remained elevated until the next chemotherapy injection. Her bone marrow showed increased megakaryocyte numbers; these megakaryocytes had enlarged cell bodies (Fig. 1) and produced large platelets (Fig. 2). Because these phenotypes were coupled with the JAK2 V617F mutation, we considered diagnosing ET. The platelet count and bone marrow smear after the 3 rounds of chemotherapy are summarized in Table 1. We then considered secondary AML, and given the high level of MRD (>0.1%), we recommended allogeneic hematopoietic stem cell transplantation. However, this was not adopted by the family. The patient underwent a third period of chemotherapy consisting of mitoxantrone and HiDAC. However, after the third round of chemotherapy, the platelet count did not rise to our desired value. Disease relapse was then confirmed by a bone marrow smear. She gave up treatment and died 1 month later.

The study was approved by the Ethics Committee of Women and Children’s Hospital of Qingdao. The patient’s parents have provided informed consent for publication of the case.

3. Discussion

The JAK2 V617F mutation is located in the pseudokinase domain of the protein, which is involved in several cellular signaling pathways related to cell proliferation, differentiation, and stem cell self-renewal. These pathways include the STAT pathway, the mitogen-activated protein kinase pathway, and the phosphoinositide 3-kinase/Akt pathway. This mutation also confers on hematopoietic stem cells a hypersensitivity to cytokines such as thrombopoietin, erythropoietin, and granulocyte colony-stimulating factors, leading to expansion of blood cell lineages, which are found in ET, polycythemia vera, and primary myelofibrosis. It remains unclear how a single mutation can give rise to such a wide range of phenotypes. Recent reports suggest that the expansion of a heterozygous JAK2 V617F clone,[18] low levels of JAK2 V617F protein expression,[19,20] and STAT1/STAT3 activation, but not the activation of STAT5, probably lead to the ET development.[21–24]

Around 50% to 60% of adult ET patients present JAK2 mutations, while similar or lower frequencies have been observed in childhood, ranging from 0% to 50%.[25] The incidence of ET in children <14 years old is approximately 1/107 per year.[25] The age at diagnosis ranges from 0.8 to 19 years. So far, there are no evidence-based guidelines for the diagnosis of childhood ET. Tefferi and Vardiman[26] and Barbui[27] have suggested that the 2008 World Health Organization (WHO) diagnostic criteria for adults are also applicable to pediatric ET patients;[26] these criteria include a sustained platelet count, increased megakaryocyte numbers, the exclusion of other myeloid neoplasms, and the presence of the JAK2 V617F mutation or another clonal marker. ET has a low risk of progressing to AML, estimated at approximately 1% to 4% in several studies.[8,28–30] The pathogenesis of leukemic transformation is still unclear. Risk factors may include older age and unfavorable cytogenetics.
However, JAK2 V617F mutation is not one of these risk factors. While the AML leukemic blasts in essential thrombocythemia may develop from JAK2 V617F mutated clones, studies\(^1,^2\) have demonstrated that leukemic blasts in JAK2 V617F positive ET are always JAK2 V617F negative, and leukemic transformation frequently occurs in clones before JAK2 V617F mutation or from independent stem cell clones. Additional mutations can occur before, after, or independently from the JAK2 V617F mutation. Such mutated genes include TET2, DNMT3A, ASXL1, EZH2, and IDHI. These mutations may affect cell survival and genomic instability, in conjunction with the JAK2 V617F mutation or other mutations known to be associated with the pathogenesis of AML.\(^3\) In addition, AML transformation in ET frequently exhibits unfavorable cytogenetics, including complex karyotypes, monosomy, deletions of chromosomes 5 or 7, or trisomy 8.\(^4,^5\) After leukemic transformation, patients have poor prognoses with adverse outcomes within a few months.

The incidence of a JAK2 gene mutation in de novo AML was first reported by Lee et al\(^6\) in 2006. In this study, the authors discovered that 2.7% of de novo AML cases harbored JAK2 mutations,\(^1^,^6\) and these mutations were more commonly found in t(8;21) AML. Jelinek et al\(^7\) reported that de novo AML more commonly contains the JAK2 V617F in cases of erythroid or megakaryoblastic AML. The patient we have reported on had a case of acute megakaryoblastic leukemia. There have been few reports of JAK2 mutations in pediatric AML. One study showed that JAK2 mutations may occur in 8.4% (7/83) of pediatric non-Dow syndrome acute megakaryoblastic leukemia cases.\(^8\) Hidalgo-López et al\(^9\) described the clinical, morphological, and genetic findings of patients with AML associated with the JAK2 V617F mutation. They found that all patients showed multilineage dysplasia, monosomy or deletions of chromosomes 5 or 7 were present in 45% of patients, and approximately one-third of the patients had complex karyotypes. The median overall survival was 14 months from disease onset. Finally, another study showed that high levels of JAK2 autophosphorylation lead to low sensitivity to chemotherapy and poor outcomes.\(^10\)

Wang et al\(^11\) described an adult AML patient with transient post-treatment megakaryocytic hyperplasia who also had the JAK2 V617F mutation, similar to our 1-year-old patient. We considered the possibility that she had secondary AML (sAML) transformed from a preexisting undiagnosed MPN. We originally considered the possibility that she had secondary AML (sAML) from de novo AML, and to develop optimal treatment strategies.

The incidence of essential thrombocythemia in children is extremely low, and most children with ET are asymptomatic. These factors make it difficult to diagnose sAML in children. While the JAK2 V617F mutation occurs with very low frequency in AML, patients with AML and this mutation have poor outcomes. Therefore, we need more cases to analyze the clinical features of AML with the JAK2 V617F mutation, to distinguish sAML from de novo AML, and to develop optimal treatment strategies.

Acknowledgments

In writing this article, I have benefited from my staff. They offered painstaking and priceless criticism, brilliant ideas, and beautiful English writing. Without them, this article would not have been possible.

Author contributions

Wenwen Ding: Conceptualization, Data curation, Investigation, Writing- original draft, Writing- review and editing; Danni Li: Investigation, Writing- review and editing; Chao Zhuang: Investigation, Writing- review and editing; Wenfeng Mou: Investigation; Hui Liang: Supervision; Yong Liu: Software, Supervision, Resources, Writing- review and editing, Visualization

Conceptualization: Wenwen Ding.

Data curation: Wenwen Ding.

Investigation: Wenwen Ding, Danni Li, Chao Zhuang, Wenfeng Mou.

Resources: Yong Liu.

Software: Yong Liu.

Supervision: Hui Liang, Yong Liu.

Visualization: Yong Liu.

Writing – original draft: Wenwen Ding.

Writing – review & editing: Wenwen Ding, Danni Li, Chao Zhuang, Wenfeng Mou.

References

1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med 2015;373:1136–52.
2. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–61.
3. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–61.
4. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387–97.
5. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood 2017;129:680–92.
[5] Limsuwanachot N, Rerkamnuaychoke B, Chuncharuee S, et al. Clinical and hematological relevance of JAK2 V617F and CALR mutations in BCR-ABL-negative ET patients. Hematology 2017; 22: 599–606.

[6] Fu R, Zhang L, Yang R. Paediatric essential thrombocythaemia: clinical and molecular features, diagnosis and treatment. Br J Haematol 2013;162:293–302.

[7] Pasquier F, Cabagnols X, Secardin L, et al. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. Clin Lymphoma Myeloma Leuk 2014;14 suppl:S23–35.

[8] Bhattacharya, A concise update on risk factors, therapy, and outcome of leukemic transformation of myeloproliferative neoplasms. Future Oncol 2014;10:593–602.

[9] Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system of leukemic transformation of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008;22:14–22.

[10] Mascarenhas J. A concise update on risk factors, therapy, and outcome of leukemic transformation of myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk 2016;16 suppl:S124–9.

[11] Harzimichael E, Georgiou G, Benetatos L, et al. Gene mutations and molecularly targeted therapies in acute myeloid leukemia. Am J Blood Res 2013;3:29–51.

[12] Wang S, Yan J, Zhou G, et al. Myeloproliferative neoplasm or reactive process? A rare case of acute myeloid leukemia and transient posttreatment megakaryocytic hyperplasia with JAK-2 mutation. Case Rep Hematol 2016;2016:6054017.

[13] Giona F, Troffii L, Molefi ME, et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 2012;119:2219–27.

[14] Lee JW, Kim YG, Soung YH, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 2006;25:1434–6.

[15] Hidalgo-López JE, Kanagal-Shamanna R, Medeiros LJ, et al. Morphologic and molecular characteristics of de novo AML with JAK2 V617F mutation. J Natl Compr Canc Netw 2017;15:790–6.

[16] James C, Ugo V, Le Couté JP, et al. A unique clonal JAK2 mutation leading to constructive signalling causes polycythaemia vera. Nature 2005;434:1144–8.

[17] Levine RL, Gilliland DG. JAK-2 mutations and their relevance to myeloproliferative disease. Curr Opin Hematol 2007;14:43–7.

[18] Scott LM, Scott MA, Campbell PJ, et al. Progenitors homoygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006;108:2435–7.

[19] Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008;111:3931–40.

[20] Lacour C, Psani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006;108:1652–60.

[21] Chen E, Beer PA, Godfrey AL, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 2010;18:524–35.

[22] Yan D, Hutchison RE, Mohi G. Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 2012;119:3539–49.

[23] Helleb PG, Lev PR, Salm JI, et al. JAK2V617F mutation in platelets from essential thrombocythaemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status. Eur J Haematol 2006;77:210–6.

[24] Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT 2012;1:184–90.

[25] Hasle H. Incidence of essential thrombocythaemia in children. Br J Haematol 2000;110:751.

[26] Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008;22:14–22.

[27] Barbui T. How to manage children and young adults with myeloproliferative neoplasms. Leukemia 2012;26:1452–7.

[28] Palandri F, Catani L, Testoni N, et al. Long-term follow-up of 386 consecutive patients with essential thrombocythaemia: safety of cytoreductive therapy. Am J Hematol 2009;84:215–20.

[29] Gangat N, Wolanskyj AP, McClure RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythaemia: a single institutional study of 605 patients. Leukemia 2007;21:270–6.

[30] Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014;123:2220–8.

[31] Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2010;115:2891–900.

[32] Campbell PJ, Baxter EJ, Beer PA, et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006;108:3548–55.

[33] Jelneki J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G->T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005;106:3370–3.

[34] de Rooij JD, Branstetter C, Ma J, et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 2017;49:451–6.

[35] Ikemoto T, Kojima S, Furihata M, et al. Expression of p-JAK2 predicts clinical outcome and is a potential molecular target of acute myelogenous leukemia. Int J Cancer 2011;129:2512–21.

[36] Chan GC, Ma SK, Ha SY, et al. Childhood essential thrombocythaemia without evidence of myeloproliferation: how many investigations should be done? Br J Haematol 2000;110:1002.

[37] Dame C, Sutor AH. Primary and secondary thrombocytosis in childhood. Br J Haematol 2003;129:163–77.