AN OPTIMAL LOWER CURVATURE BOUND FOR CONVEX HYPERSURFACES IN RIEMANNIAN MANIFOLDS

STEPHANIE ALEXANDER, VITALI KAPOVITCH, AND ANTON PETRUNIN

Abstract. It is proved that a convex hypersurface in a Riemannian manifold of sectional curvature $\geq \kappa$ is an Alexandrov’s space of curvature $\geq \kappa$. This theorem provides an optimal lower curvature bound for an older theorem of Buyalo.

The purpose of this paper is to provide a reference for the following theorem:

Theorem 1. Let M be a Riemannian manifold with sectional curvature $\geq \kappa$. Then any convex hypersurface $F \subset M$ equipped with the induced intrinsic metric is an Alexandrov’s space with curvature $\geq \kappa$.

Here is a slightly weaker statement:

Theorem 2. [Buyalo] If M is a Riemannian manifold, then any convex hypersurface $F \subset M$ equipped with the induced intrinsic metric is locally an Alexandrov’s space.

In the proof of Theorem 2 in [Buyalo], the (local) lower curvature bound depends on (local) upper as well as lower curvature bounds of M. We show that the approach in [Buyalo] can be modified to give Theorem 1.

Definition 3. A locally Lipschitz function f on an open subset of a Riemannian manifold is called λ-concave ($\lambda \in \mathbb{R}$) if for any unit-speed geodesic γ, the function $f \circ \gamma(t) - \lambda t^2/2$ is concave.

Lemma 4. Let $f : \Omega \to \mathbb{R}$ be a λ-concave function on an open subset Ω of a Riemannian manifold. Then there is a sequence of nested open domains Ω_i, with $\Omega_i \subset \Omega_j$ for $i < j$ and $\bigcup_i \Omega_i = \Omega$, and a sequence of smooth λ_i-concave functions $f_i : \Omega_i \to \mathbb{R}$ such that

(i) on any compact subset $K \subset \Omega$, f_i converges uniformly to f;
(ii) $\lambda_i \to \lambda$ as $i \to \infty$.

This lemma is a slight generalization of [Greene–Wu, Theorem 2] and can be proved exactly the same way.

Proof of Theorem 1. Without loss of generality one can assume that

(a) $\kappa \geq -1$,
(b) \(F \) bounds a compact convex set \(C \) in \(M \),
(c) there is a \((-2)\)-concave function \(\mu \) defined in a neighborhood of \(C \) and \(|\mu(x)| < 1/10\) for any \(x \in C \),
(d) there is unique minimal geodesic between any two points in \(C \).

(If not, rescale and pass to the boundary of the convex piece cut by \(F \) from a small convex ball centered at \(x \in F \), taking \(\mu = -10 \text{dist}^2 \)).

Consider the function \(f = \text{dist}_F \). By Rauch comparison (as in [Petersen, 11.4.8]), for any unit-speed geodesic \(\gamma \) in the interior of \(C \), \((f \circ \gamma)''\) is bounded in the support sense by the corresponding value in the model case (where \(M = \mathbb{H}^2 \) and \(F \) is a geodesic). In particular,

\[(f \circ \gamma)'' \leq f \circ \gamma.\]

Therefore \(f + \varepsilon \mu \) is \((-\varepsilon)\)-concave in \(\Omega_{\varepsilon} = C \cap f^{-1}(0, \varepsilon) \). Take \(K_{\varepsilon} = f^{-1}([\frac{1}{3} \varepsilon, \frac{2}{3} \varepsilon]) \cap C \). Applying lemma 4, we can find a smooth \((-\frac{\varepsilon}{2})\)-concave function \(f_{\varepsilon} \) which is arbitrarily close to \(f + \varepsilon \mu \) on \(K_{\varepsilon} \) and which is defined on a neighborhood of \(K_{\varepsilon} \). Take a regular value \(\vartheta_{\varepsilon} \approx \frac{3}{5} \varepsilon \) of \(f_{\varepsilon} \). (In fact one can take \(\vartheta_{\varepsilon} = \frac{2}{3} \varepsilon \), but it requires a little work.) Since \(|\mu(C)| < 1/10\), the level set \(F_{\varepsilon} = f_{\varepsilon}^{-1}(\vartheta_{\varepsilon}) \) will lie entirely in \(K_{\varepsilon} \). Therefore \(F_{\varepsilon} \) forms a smooth closed convex hypersurface. By the Gauss formula, the sectional curvature of the induced intrinsic metric of \(F_{\varepsilon} \) is \(\geq \kappa \). \(F_{\varepsilon} \) bounds a compact convex set \(C_{\varepsilon} \), where \(F_{\varepsilon} \to F \), \(C_{\varepsilon} \to C \) in Hausdorff sense as \(\varepsilon \to 0 \). By property (4), the restricted metrics from \(M \) to \(C, C_{\varepsilon} \) are intrinsic, and so \(C_{\varepsilon} \) is an Alexandrov space with \(F_{\varepsilon} \) as boundary, that converges in Gromov–Hausdorff sense to \(C \). It follows from [Petrunin, Theorem 1.2] (compare [Buyalo, Theorem 1]) that \(F_{\varepsilon} \) equipped with its intrinsic metric converges in Gromov–Hausdorff sense to \(F \) equipped with its intrinsic metric. Therefore \(F \) is an Alexandrov space with curvature \(\geq \kappa \).

\[\square\]

Remark 5. We are not aware of any proof of theorem 1 which is not based on the Gauss formula. (Although if \(M \) is Euclidean space, there is a beautiful purely synthetic proof in [Milka].) Finding such a proof would be interesting on its own, and also could lead to the generalization of theorem 1 to the case when \(M \) is an Alexandrov space.

References

[Buyalo] Buyalo, S., Shortest paths on convex hypersurfaces of a Riemannian manifold (Russian), Studies in Topology, Zap. Nauchn. Sem. LOMI 66 (1976) 114–132; translated in J. of Soviet Math. 12 (1979), 73–85.

[Greene–Wu] Greene, R. E.; Wu, H.-H., On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22 (1972/73), 641–653.

[Milka] Milka, A. D. Shortest arcs on convex surfaces (Russian), Dokl. Akad. Nauk SSSR 248 1979, no. 1, 34–36; translated in Soviet Math. Dokl. 20 (1979), 949-952.

[Petersen] Petersen, P., Riemannian Geometry, Springer-Verlag, New York Berlin Heidelberg, 1998.

[Petrunin] Petrunin, A., Applications of quasigeodesics and gradient curves. Comparison geometry (Berkeley, CA, 1993–94), 203–219, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997.
OPTIMAL LOWER CURVATURE BOUND

Department of Mathematics, University of Illinois at Urbana-Champaign, IL 61801
E-mail address: sba@math.uiuc.edu
URL: www.math.uiuc.edu/~sba

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4
E-mail address: vtk@math.toronto.edu
URL: www.math.toronto.edu/~vtk/

Department of Mathematics, Penn State University, State College, PA 16802
E-mail address: petrunin@math.psu.edu
URL: www.math.psu.edu/petrunin/