Evaluation of symmetric dimethylarginine and Doppler ultrasonography in the diagnosis of gentamicin-induced acute kidney injury in dogs

Youssef M. Y. Elgazzar¹ · Mohamed M. Ghanem¹ · Yassein M. Abdel-Raof¹ · Mohamed M.M. Kandiel² · Mahmoud A. Y. Helal¹

Received: 26 May 2021 / Accepted: 17 August 2021 / Published online: 7 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Acute kidney injury is a common problem in dogs and is associated with significant morbidity and mortality. So, the present study aimed to evaluate symmetric dimethylarginine (SDMA) and Doppler ultrasonography including resistive index (RI) in the diagnosis of acute kidney injury in dogs. Ten healthy mongrel dogs were injected with gentamicin sulfate 10% at the dose of 30 mg/kg body weight daily for 10 days for induction of acute kidney injury. Clinical, biochemical, ultrasonographic, and Doppler ultrasonographic examinations and urinalysis were performed for all dogs on 0 day before induction, on the 5th day, and on the 10th day of induction. The results of the current study showed significant increase in plasma level of SDMA, serum urea, creatinine, phosphorus, and potassium and a significant decrease in serum sodium, calcium, and chloride on the 5th day and 10th day of induction, and there was an increase in renal cortical echogenicity of the right and left kidney compared to adjacent liver and spleen, respectively. RI value showed a significant increase on the 5th day and 10th day of induction. The present study showed that SDMA is a sensitive and promising biomarker for diagnosis of acute kidney injury in dogs compared to routine biomarkers; also, the RI of Doppler ultrasonography is useful for early identifying acute kidney injury when the only observable change is an increase in cortical echogenicity.

Keywords Acute kidney injury · Dogs · Gentamicin · Symmetric dimethylarginine · Resistive index · Doppler ultrasonography

Introduction
Acute kidney injury is described as a sudden reduction in renal activity leading to uremic waste retention, fluid status modification, electrolyte, and acid-base imbalances (Gori et al. 2019). The kidney is sensitive to drug-induced disruption due to comparatively high blood supply (20% of stroke volume) and the capacity to extract and concentrate toxic molecules (Randjelović et al. 2017). Acute kidney injury has many causes in dogs which can be classified into several main groups, such as renal ischemia (e.g., hypotension), nephrotoxicity (e.g., ethylene glycol, gentamicin), and infectious diseases (e.g., leptospirosis, pyelonephritis) (Tufani et al. 2017). There is a bad prognosis for acute kidney injury, and the mortality rate of acute kidney injury is 50 to 60% in small animals, with high mortality rate that happened shortly after diagnosis (Thoen and Kerl 2011).

The slow diagnosis of acute kidney injury due to insensitive diagnostic testing, the subtlety of early symptoms preventing presentation to a veterinarian, and the rapid development of kidney damage associated with nephrotoxins are likely to be important factors in the high mortality rate associated with acute kidney injury (Cobrin et al. 2013). In the early detection of acute kidney injury, conventional blood (creatinine, urea) and urinary markers of kidney damage are insensitive (Han et al. 2008). Acute kidney injury diagnosis is dependent on relative or absolute alteration in serum creatinine concentration and urinary production, but serum creatinine is a late nephropathy biomarker, and mild types of kidney injury can go unnoticed (Monari et al. 2020).
Symmetric dimethylarginine (SDMA) is the catabolic product of post-translationally methylated arginine-containing proteins and is excreted mainly by the kidneys (Martens-Lobenhoffer and Bode-Böger 2015). SDMA is a new biomarker that accurately reflects the rate of glomerular filtration (GFR) relative to serum creatinine, enabling earlier diagnosis of kidney functional dysfunction in dogs, cats, and humans (Giapitzoglou et al. 2020). For the identification of renal failure, blood SDMA has greater sensitivity with just a 25 to 40% drop in GFR and SDMA increases, while creatinine increases will not be observed until GFR declines by 75% (Hall et al. 2016). SDMA has the benefit of not being affected by creatinine influencing non-renal causes such as body mass, diet, inflammation, diabetes, and hormone treatment (Hokamp and Nabity 2016).

The Doppler-based renal resistive index (RI) calculation is one of the most advanced tools for the diagnosis of acute kidney injury. This is a simple and non-invasive investigative technique used in the intensive care unit for the early diagnosis of acute kidney injury (Darmon et al. 2011). For determining conditions that modify renal parenchymal perfusion, pulsed wave Doppler ultrasound is more effective with the benefit that the modifications can be quantified by measuring the resistivity index (RI) and pulsatility index (PI). These indices are determined based on the spectral waveform obtained by pulsed Doppler, using systolic velocity peak values, diastolic velocity end, and mean velocity values (Bragato et al. 2017). The value of RI is positively correlated with age and not influenced by the sex and weight of dogs (Ostrowska et al. 2016).

The present study aimed to evaluate the SDMA and Doppler ultrasonography including renal RI compared to serum biochemical parameters for the diagnosis of acute kidney injury in dogs and determine the most accurate and sensitive method for the detection of acute kidney injury in the dog.

Material and methods

Animal

Ten healthy mongrel dogs were used in the present study, their body weight ranged from 10 to 15 kg, and their age ranged from 1 to 3 years. They were healthy based on clinical, biochemical, and ultrasonographic examinations. They were housed in separate boxes with plenty of food and water. After 2 weeks of adaptation, the dogs were injected with 30 mg/kg of gentamicin sulfate 10% (obtained from Memphis Co. for Pharmaceutical and Chemical Industries, Cairo, Egypt) intramuscular daily for 10 days for induction of acute kidney injury (Rivers et al. 1996). Clinical, biochemical, and ultrasonographic examinations; Doppler ultrasonography; and urinalysis were performed for all dogs on 0 day before induction, on the 5th day, and on the 10th day of induction.

Samples

Five mL of blood samples was collected from each dog from the cephalic vein. The first blood sample was collected in a plain test tube to obtain serum for biochemical analysis. The second blood sample was collected in a lithium heparin tube to obtain plasma for measurement of SDMA.

Biochemical analysis

Plasma concentrations of SDMA were analyzed using an automated analyzer (Catalyst One Chemistry Analyzer; IDEXX Laboratories, USA) and the catalyst SDMA test (IDEXX SDMA test; IDEXX Laboratories). All procedures were performed following IDEXX Laboratories manual guidelines. The predefined reference limit was <14 μg/dL (Rentko et al. 2013). The urea and creatinine concentration was measured spectrophotometrically according to the method described by Walker (1990) and Peake and Whiting (2006), respectively, using commercially available diagnostic kits (BIO DIAGNOSTIC Co. 29 Tahrir St., Dokki, Giza, Egypt). Serum chloride, sodium, and potassium levels were determined using a spectrophotometer according to the method described by Dacie and Lewis (1991). Serum calcium and phosphorus were determined by a spectrophotometer according to the method described by Cheesbrough (1991), using commercially available diagnostic kits (BIO DIAGNOSTIC Co. 29 Tahrir St., Dokki, Giza, Egypt).

Urine examination

Urine samples were collected by using urethral catheterization according to Kelly (1984), and analysis was made by using commercial urine strips (COMBI-9 strips Produced by Pasteur Lab, Egypt).

Ultrasonographic examination

Ultrasonographic examinations were performed without sedation or anesthesia. The dogs were controlled in lateral recumbency, i.e., left lateral recumbency for the examination of the right kidney and right lateral recumbency for the examination of the left kidney. The left kidney and right kidney were scanned below the transverse process of first to third lumbar vertebrae for the detection of any changes in the tissue architecture of kidneys using Chison E2 portable ultrasound with 5–8 micro convex transducer as described by Penninck and D’Anjou (2015). All examinations were made on 0 day before induction, on the 5th day, and on the 10th day of induction.
Doppler ultrasonographic examination

Ultrasonographic examination was done using a Doppler ultrasound (duplex) (SonoScape E2 portable color Doppler, with micro convex 5–8 MHz transducer, China). Renal RI was measured for each kidney. Firstly, the renal interlobar artery was differentiated by color Doppler and then transferred over the chosen artery to the pulsed wave Doppler using a gate of 1.5 mm width. To prevent the effect of the anesthetics on the renal blood supply, all animals were manually restrained (Novellas et al. 2007). The image obtained indicated the flow of blood without any aliasing. Multiple pulses were recorded from one artery to three poles for each right and left kidney in each dog. The renal RI from the chosen artery was measured by the ultrasound machine (Lin and Cher 1997).

Statistical analysis

The obtained results from the experiment were expressed as mean ± SD and were analyzed using one-way ANOVA with repeated measure followed by Tukey’s post hoc test (SPSS Statistics for Windows, version 25.0. Armonk, NY: IBM Corp). Differences were declared significant when \(P < 0.05 \).

Results

Clinical findings

The dogs with induced acute kidney injury showed only signs of depression, dullness appeared on the 5th day of induction, and polyuria, polydipsia, vomiting, dehydration, and tremors appeared on the 10th day of induction.

Urine examination

Physical examination of urine showed the presence of proteinuria on the 5th day of induction and became more pronounced on the 10th day of induction using strip kits (Table 1).

Biochemical findings

Plasma SDMA concentration showed a significant increase on the 5th day of induction (\(P<0.05 \)). The increase in SDMA was more than threefold on the 5th day of induction compared to its level before induction and became highly significant on the 10th day of induction, and the increase in SDMA was more than sixfold on the 10th day of induction compared to its level before induction (Table 2). There was a significant increase in serum urea and creatinine level on the 5th day and 10th day of induction. The increase in creatinine level was more than threefold on the 5th day of induction compared to its level before induction and increased more than sixfold on the 10th day of induction compared to its level before induction. The urea level was increased fivefold on the 5th day of induction compared to its level on 0 day before induction and increased more than ninefold on the 10th day of induction compared to its level on 0 day before induction. Serum level of phosphorus and potassium showed a significant increase in the current study, and the increase in serum potassium level was twofold on the 5th day of induction compared to its level on 0 day before induction and increased fivefold on the 10th day of induction compared to its level on 0 day before induction. The increase in serum phosphorus level was onefold on the 5th day of induction compared to its level on 0 day before induction and increased fivefold on the 10th day of induction compared to its level on 0 day before induction (Table 2). There was significant decrease in serum level of calcium, chloride, and sodium on the 5th day of induction and became highly significant on the 10th day of induction (Table 2).

Ultrasonographic findings

Ultrasonographic appearance of the kidney before the induction showed that the renal cortex has a homogenous echogenicity. The medulla was uniform in echogenicity and hypoecholic relative to the cortex. The demarcation between the cortex and the medulla was crisp. Ultrasonographic appearance of both kidneys of dogs on 0 day before induction revealed that the renal cortical echogenicity of the right kidney was less echogenic than that of the liver (Fig. 1). The renal

Table 1	Urinalysis of dogs with acute kidney injury on 0 day before induction, on the 5th day, and on the 10th day of induction		
	0 day before induction \((n=10)\)	5th day of induction \((n=10)\)	10th day of induction \((n=10)\)
pH	6	6	7
Protein	-	++	+++
Bilirubin	-	-	-
Ketone	-	-	-
Glucose	-	-	-
Blood	-	-	-
Nitrite	-	-	-
The cortex of the left kidney is less echogenic than the adjacent spleen (Fig. 2).

On the 5th day of induction, the ultrasonographic appearance of the left kidney showed the same echogenicity of the renal cortex when compared with the spleen (Fig. 3). The renal cortex of the right kidney showed the same echogenicity when compared with the liver (Fig. 4). Also, renal cortical echogenicity of the right and left kidney became more echogenic compared to their echogenicity on 0 day before induction. On the 10th day of induction, the ultrasonographic appearance of the left kidney showed higher echogenicity of the renal cortex when compared with the spleen (Fig. 5), and the renal cortex of the right kidney appeared more echogenic than the adjacent liver (Fig. 6). Also, renal cortical echogenicity of the right and the left kidney became more echogenic compared to their echogenicity on 0 day before induction and the 5th day of induction.

Renal resistive index measurement (Pourcelot index measurement)

The dogs with induced acute kidney injury showed a significant increase in RI of both kidneys on the 5th day of induction which increased more than onefold compared to its value before induction and became highly significant on the 10th day of induction and increased more than threefold on the 10th day of induction compared to its value before induction (Table 3) (Figs. 7, 8, and 9).

Discussion

Acute kidney injury is a term used to characterize an abrupt decline in renal activity, resulting in a loss of urea and creatinine excretion that raises the amount of serum creatinine
above the standard reference range (Mugford et al. 2013). Renal dysfunction is among the main causes of canine deaths. It is life-threatening and often requires urgent diagnosis and treatment (Athaley et al. 2018).

Acute kidney injury in the current study was induced using 30 mg/kg of gentamicin sulfate 10% daily for 10 days which is a potent broad-spectrum aminoglycoside that is commonly used especially in the treatment of life-threatening infections caused by Gram-negative and Gram-positive bacilli (Ali 2003). The renal toxicity of gentamicin was associated with its concentration in the renal proximal convoluted tubule, which induced a variety of morphological and biochemical changes in humans and laboratory animals (Sepehri et al. 2011).

The dogs showed signs of depression, dullness, polyuria, polydipsia, vomiting, dehydration, and tremors due to the harmful effect of gentamicin on renal tissue and accumulation of nitrogenous wastes, metabolic acidosis, and changes in the gastrointestinal tract (Kumar et al. 2011), and these findings were similar to Helal (2005) and Allaam et al. (2012).

Fig. 2 Ultrasonographic examination of the left kidney of dogs on 0 day before induction of acute kidney injury showed that renal cortical echogenicity (C) is less echogenic than adjacent spleen (S)

Fig. 3 Ultrasonographic examination of the left kidney of dogs on the 5th day of induction showed that renal cortical echogenicity of cortex (C) has the same echogenicity of adjacent spleen (S)
Examination of urine sample revealed the presence of proteinuria on the 5th day of induction and became more obvious on the 10th day which might be due to decrease of glomerular filtration rate which follows the proximal tubular damage caused by a high dose of gentamicin, glomerular damage increases the permeability of the filtration barrier which increased filtration of protein in urine lead to proteinuria (Cianciolo et al. 2016), and these findings were similar to Macanović et al. (2000) and Helal (2005).

The most promising novel biomarker for early diagnosis of kidney failure that appeared in the last few years is SDMA. SDMA, with asymmetric dimethylarginine and mono methylarginine, is one of the methylated forms resulting from arginine metabolism (Savarese et al. 2018). The findings of 18 human case trials observed a high correlation between SDMA and both GFR and serum creatinine and concluded that SDMA has significant potential as a biomarker of renal function (Kielstein et al. 2006). SDMA has more advantages over serum creatinine in detecting decreased GFR. SDMA detects loss of renal function earlier and is less affected by extrarenal factors such as age, sex, breed, and lean body mass (Kopke et al. 2018).

The present study revealed that there was a significant increase in SDMA on the 5th day of induction and 10th day of
induction, and this indicated that SDMA is a useful novel urinary biomarker for the detection of acute kidney injury in dogs, and these findings were similar to Hall et al. (2016), Relford et al. (2016), and Dahlem et al. (2017).

SDMA is more preferable than creatinine due to that serum SDMA concentrations are not affected by lean body mass in dogs or cats; creatinine is an unreliable indicator during acute changes in kidney function due to that creatinine concentrations can vary widely with age, gender, muscle mass, and muscle metabolism, and its concentration may not change until a significant amount of kidney function has already been lost (Devarajan 2008), and these findings were agreeable with Hall et al. (2016) and McKenna et al. (2020).

Concerning to serum level of urea and creatinine, there was a significant increase in serum urea and creatinine level in the present study due to the harmful impact of gentamicin on the kidneys, contributing to renal harm and the failure of the kidneys to eliminate waste products through reducing the rate of glomerular filtration (Sun et al. 2019), and these findings were agreeable with Helal (2005), Allaam et al. (2012), and Udupa and Prakash (2019).

There was a significant increase in serum potassium and phosphorus on the 5th day of induction and became highly significant on the 10th day of induction, and this occurs due to that acute renal insufficiency leads to reduced GFR with low urine flow leads to decrease renal excretion of potassium and subsequent hyperkalemia (Lehnhardt and Kemper 2011), and also significant hyperkalemia and hyperphosphatemia may occur due to leakage of potassium and phosphate from the intracellular fluids to the extracellular fluids (Haycock 2003; Ramesh and Reeves 2003), and these findings coincided with Vaden et al. (1997) and Helal (2005).

Regarding the serum level of calcium, chloride, and sodium, the significant decrease in serum sodium, chloride, and calcium appeared on the 5th day of induction and became highly significant on the 10th day of induction which might be attributed to the adverse effect of gentamicin on renal tubules, in particular proximal convoluted tubules and kidney failure, to maintain the balance of electrolytes (Stephen et al. 2017), and these findings were similar to Helal (2005) and Christo et al. (2011).

The kidney diseases diagnosed by ultrasonography can be classified into diffuse renal diseases, regional renal diseases, and focal or multifocal renal diseases. The diffuse renal diseases diagnosed were nephritis and end-stage kidney (Dehmiwal et al. 2016).

Table 3 Value of RI on 0 day before induction, on the 5th day, and on the 10th day of induction in dogs with acute kidney injury

	0 day before induction (n=10)	5th day of induction (n=10)	10th day of induction (n=10)
RI	0.507±0.04^c	0.647±0.02^b	0.865±0.07^a

Data are presented as mean ± SD. S.D standard deviation. Mean values with different superscript letters in the same row are significantly different at P<0.05
spleen, respectively, and became more echogenic than adjacent liver and spleen, respectively, on the 10th day of induction, and this is due to extensive accumulation of gentamicin in kidney and increase amount of gentamicin bound to the renal cortex (Wiland and Szechiński 2003), and these findings were similar to Rivers et al. (1996), Helal(2005), Allaam et al. (2012), and Sonet et al. (2018).

Alterations in the RI have been observed in many conditions affecting the kidney, such as acute variations in renal vascular resistance and renal damage in multiple organ dysfunction syndromes (Agut et al. 2020). For the evaluation of renal hemodynamics, Doppler ultrasonography can be used and becomes very helpful in the diagnosis of the renal artery and vein diseases such as thrombosis (Donia et al. 2019). The renal resistive index is probably the most commonly used parameter to evaluate blood flow in kidney vessels (Samoni et al. 2016). The resistive index (RI) measures the arterial resistance in the peripheral vessels by calculating the ratio between the peak systolic velocity (PSV) and the end diastolic velocity (EDV) (RI = (PSV – EDV) / PSV), which is
independent of the angle and the position of the transducer, allowing accurate and reproducible measurements (Tipisca et al. 2016).

The renal RI was significantly increased in the present study on the 5th day of induction and became highly significant on the 10th day of induction due to vasoconstriction resulting from renin release in response to the decreased blood flow in the renal arteries secondary to renal injury (Chang et al. 2010). These results coincided with Morrow et al. (1996), Novellas et al. (2007), and Donia et al. (2019). Therefore, the RI is useful for the diagnosis of acute kidney injury when the only observable change is an increase in renal cortical echogenicity and also when there is no alteration in B-mode ultrasound examination (Rivers et al. 1997).

Conclusion

The results of the present study indicated that the RI is useful for identifying acute kidney injury when the only observable change is an increase in cortical echogenicity. SDMA is a sensitive, specific, and promising biomarker for the diagnosis of acute kidney injury in dogs. Further studies are required for using SDMA in the early diagnosis of renal diseases in small animals.

Author contribution YMYE and MAYH: conducted experiment and manuscript writing

MMG, YMA, and MAYH: experiment conception, academic supervision, and results revision

MMMK: Doppler ultrasonography

YMYE, MMG, YMA, and MAYH: analysis procedures and results

YMYE, MMG, YMA, and MAYH: edited the manuscript

All authors read and approved the manuscript.

Data availability The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethical approval All examinations were done after approval of the Ethics Committee of Benha University with approval number BUFVTM04032020.

Consent to participate Not applicable

Consent for publication Not applicable

Conflict of interest The authors declare no competing interests.

References

Agut A, Soler M, Josefa Fernández-Del Palacio M (2020) Changes in renal resistive index values in healthy puppies during the first months of life. Animals 10:1–7. https://doi.org/10.3390/ani10081338

Ali BH (2003) Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research. Food Chem Toxicol 41: 1447–1452. https://doi.org/10.1016/S0278-6915(03)00186-8
Allaam M, Nayel M, Elsafy A, Hassan H (2012) Ultrasonographic and biochemical diagnosis of experimental nephotoxicity in Dogs 7th scientific conference, Faculty of veterinary medicine, Minufiya University, pp 24-27 April 2012, 426–440

Athaley A, Bhoyne GR, Khanolkar VM et al (2018) Urine analysis and ultrasonographic findings of dogs suffering from renal failure. Int J Curr Microbiol App Sci 7:1971–1977. https://doi.org/10.20546/ijcmas.2018.710.227

Bragato N, Borges NC, Fioravanti MCS (2017) B-mode and Doppler ultrasound of chronic kidney disease in dogs and cats. Vet Res Commun 41:307–315. https://doi.org/10.1007/s11259-017-9694-9

Chang YJ, Chan IP, Cheng FP et al (2010) Relationship between age, plasma renin activity, and renal resistive index in dogs. Vet Radiol Ultrasound 51:335–337

Cheesbrough M (1991) Medical laboratory manual for tropical countries. 2nd edition. Tropical health Technology and Butterworth Scientific limited 1:494–529

Christo JS, Rodrigues AM, Mouru MG et al (2011) Nitric oxide (NO) is associated with gentamicin (GENTA) nephrotoxicity and the renal function recovery after suspension of GENTA treatment in rats. Nitric Oxide 24:77–83

Cianciolo R, Hokamp J, Nabity M et al (2016) Biomarkers in the assessment of acute and chronic kidney diseases in the dog and cat. J Small Anim Pract 54:647–655. https://doi.org/10.1111/jasp.12160

Dacie JV, Lewis SM (1991) Practical Textbook of Haematology, vol 7, 7th edn. Church Livingstone, Edinburgh, pp 54–79

Dahlem DP, Neiger R, Schweighauser A et al (2017) Plasma symmetric dimethylarginine concentration in dogs with acute kidney injury and chronic kidney disease. J Vet Intern Med 31:799–804. https://doi.org/10.1111/jvim.14694

Darmon M, Schortgen F, Vargas F et al (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37:68–76. https://doi.org/10.1007/s00134-010-2050-y

Dehmival D, Behl SM, Singh P et al (2016) Diagnosis of pathological conditions of kidney by two-dimensional and three-dimensional ultrasonographic imaging in dogs. Vet World 9:693–698. https://doi.org/10.14202/vetworld.2016.693-698

Devarajan P (2008) Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest 68:89–94. https://doi.org/10.1111/j.1399-5603.2008.00818.x

Donia MA, Abdelmegeid M, Nassif MN (2019) Biomarkers versus duplex ultrasonography for early detection of acute kidney injury in dogs: an experimental study. Slov Vet Res 56(Suppl. 22):179–186. https://doi.org/10.26873/SVR-755-2019

Giapitzoglou S, Saridomichela kis MN, Leontides LS et al (2020) Evaluation of serum symmetric dimethylarginine as a biomarker of kidney disease in canine leishmaniasis due to Leishmania infantum. Vet Parasitol 277:109015. https://doi.org/10.1016/j.vetpar.2019.109015

Gori E, Lippi I, Guidi G et al (2019) Acute pancreatitis and acute kidney injury in dogs. Vet J 245:77–81. https://doi.org/10.1016/j.tvjl.2019.01.002

Hall JA, Yerramilli M, Obare E et al (2016) Serum concentrations of symmetric dimethylarginine and creatinine in dogs with naturally occurring chronic kidney disease. J Vet Intern Med 30:794–802. https://doi.org/10.1111/jvim.13942

Han WK, Waikar SS, Johnson A et al (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73:863–869. https://doi.org/10.1038/sj.ki.5002715

Hickey GB (2003) Management of acute and chronic renal failure in the newborn. Semin Neonatol 8:325–334. https://doi.org/10.1016/S1084-2756(03)00044-7

Helal MAY (2005) Diagnosis of experimentally-induced kidney affections in dogs using ultrasonography and other methods. M.V.Sc. Thesis, 2005. Fac. Vet. Med. Benha.Univ.

Hokamp JA, Nabity MB (2016) Renal biomarkers in domestic species. Vet Clin Pathol 45:28–56

Kelly WR (1984) Veterinary clinical diagnosis, 3rd edn. Bailliere Tindall, London

Kielstein JT, Salpeter SR, Bode-Boeger SM et al (2006) Symmetric dimethylarginine (SDMA) as endogenous marker of renal function - a meta-analysis. Nephrol Dial Transplant 21:2446–2451. https://doi.org/10.1093/ndt/gfl292

Kopke MA, Burchell RK, Ruaux CG et al (2018) Variability of symmetric dimethylarginine in apparently healthy dogs. J Vet Intern Med 32:736–742. https://doi.org/10.1111/jvim.15090

Kumar V, Kumar A, Varshney AC (2011) Ultrasonographic imaging for structural characterization of renal affections and diagnosis of associated chronic renal failure in 10 dogs. ISRN Vet Sci 2011:1–11. https://doi.org/10.5402/2011/901713

Lehnhardt A, Kemper MJ (2011) Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol 26:377–384. https://doi.org/10.1007/s00467-010-1699-3

Lin GJ, Cher TW (1997) Renal vascular resistance in normal children - a color Doppler study. Pediatr Nephrol 11:182–185. https://doi.org/10.1007/s004670050255

Macanovic M, Lazarevic M, Jankovic-Zagarocic A, Durdevec D (2000) Urine and serum laboratory analyses in dogs with gentamicin induced acute renal failure. Acta Vet 50:83–92

Martens-Lobenhoffer J, Bode-Böger SM (2015) Amino acid N-acetylation: metabolic elimination of symmetric dimethylarginine as symmetric Nα-acetyldimethylarginine, determined in human plasma and urine by LC–MS/MS. J Chromatogr B 975:59–64

McKenna M, Pelligand L, Elliott J et al (2020) Relationship between serum iohexol clearance, serum SDMA concentration, and serum creatinine concentration in non-azotemic dogs. J Vet Intern Med 34:186–194. https://doi.org/10.1111/jvim.15659

Monari E, Troia R, Magna L et al (2020) Urine neutrophil gelatinase-associated lipocalin to diagnose and characterize acute kidney injury in dogs. J Vet Intern Med 34:176–185

Morrow KL, Salman MD, Lappin MR, Wrigley R (1996) Comparison of the resistive index to clinical parameters in dogs with renal disease. Vet Radiol Ultrasound 37:193–199

Mugford A, Li R, Humm K (2013) Acute kidney injury in dogs and cats 1. Pathogenesis and diagnosis. In Pract 35:253–264. https://doi.org/10.1136/inp.f2268

Novellas R, Espada Y, De Gopegui RR (2007) Doppler ultrasonographic estimation of renal and ocular resistive and pulsatility indices in normal and dogs cats. Vet Radiol Ultrasound 48:69–73. https://doi.org/10.1111/j.1740-8261.2007.00206.x

Ostrowska J, Kielbowicz Z, Zaleska-Dorobisz U et al (2016) Resistive index (RI) obtained in renal interlobar arteries of normal dogs and cats by means of Doppler ultrasonography. Pak Vet J 36:45–48

Peake M, Whiting M (2006) Measurement of serum creatinine–current status and future goals. Clin Biochem Rev 27:173

Pennick D, d’Anjou MA (2015) Kidneys and ureters. In: Atlas Small Animal Ultrasound, Second edn. Wiley Blackwell, Ames, pp 331–361

Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Ren Physiol 285:610–618. https://doi.org/10.1152/ajprenal.00101.2003

Randjelović P, Veljković S, Stojiljković N et al (2017) Gentamicin nephrotoxicity in animals: current knowledge and future perspectives. EXCLI J 16:388–399. https://doi.org/10.17179/excli2017-165

Relford Robertson J, Clements C (2016) Symmetric dimethylarginine: improving the diagnosis and staging of chronic kidney disease in small animals. Vet Clin North Am Small Anim Pract 46:941–960. https://doi.org/10.1016/j.cvsm.2016.06.010
Rentko V, Nabity M, Yerramilli M et al (2013) P-7 Determination of serum symmetric dimethyl-larginine reference limit in clinically healthy dogs. J Vet Intern Med 27:3
Rivers BJ, Walter PA, Holm JC et al (1996) Gray-scale sonographic characterization of aminoglycoside-induced nephrotoxicosis in a canine model. Invest Radiol 31:639–651
Rivers BJ, Walter PA, Polzin DJ, King VL (1997) Duplex Doppler estimation of intrarenal Pourcelot resistive index in dogs and cats with renal disease. J Vet Intern Med 11:250–260
Samoni S, Nalesso F, Meola M et al (2016) Intra-parenchymal renal resistive index variation (IRRIV) describes renal functional reserve (RFR): pilot study in healthy volunteers. Front Physiol 7:286
Savarese A, Probo M, Locatelli C et al (2018) Reliability of symmetric dimethylarginine in dogs with myxomatous mitral valve disease as kidney biomarker. Open Vet J 8:318. https://doi.org/10.4314/ovj.v8i3.11
Sepehri G, Derakhshanfar A, Zadeh FY (2011) Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat. Comp Clin Pathol 20:89–94
Sonet J, Barthélemy A, Goy-Thollot I, Pouzot-Nevoret C (2018) Prospective evaluation of abdominal ultrasonographic findings in 35 dogs with leptospirosis. Vet Radiol Ultrasound 59:98–106. https://doi.org/10.1111/vru.12571
Stephen JE, Edward C, Feldman EC (2017) Textbook of veterinary internal medicine. diseases of the dog and the cat, 8th edn. ELSEVIER Chapter 322, 4650–4664
Sun B, Zhou X, Qu Z et al (2019) Urinary biomarker evaluation for early detection of gentamycin-induced acute kidney injury. Toxicol Lett 300:73–80. https://doi.org/10.1016/j.toxlet.2018.10.027
Thoen ME, Kerl ME (2011) Characterization of acute kidney injury in hospitalized dogs and evaluation of a veterinary acute kidney injury staging system. J Vet Emerg Crit Care 21:648–657. https://doi.org/10.1111/j.1476-4431.2011.00689.x
Tipisca V, Murino C, Cortese L et al (2016) Resistive index for kidney evaluation in normal and diseased cats. J Feline Med Surg 18(6):471–475. https://doi.org/10.1177/1098612X15587573
Tufani NA, Singh JL, Kumar M et al (2017) Differential diagnosis of acute versus chronic renal failure in canines with special reference to clinical manifestations. Med Sci 21:66–74
Udupa V, Prakash V (2019) Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep 6:91–99. https://doi.org/10.1016/j.toxrep.2018.11.015
Vaden SL, Levine J, Breitschwerdt EB (1997) A retrospective case-control of acute renal failure in 99 dogs. J Vet Intern Med 11:58–64. https://doi.org/10.1111/j.1939-1676.1997.tb00074.x
Walker HK (1990) The origins of the history and physical examination. Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd edn. Butterworths, Chapter 193: BUN and Creatinine
Wiland P, Szechiński J (2003) Proximal tubule damage in patients treated with gentamicin or amikacin. Pol J Pharmacol 55:631–637

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.