Research Article

Comparison between Subjective Sensations during First and Second Phacoemulsification Eye Surgeries in Patients with Bilateral Cataract

Ji-guo Yu,1 Ting Ye,2 Qing Huang,1 Yi-fan Feng,3 Jue Wang,1 Xun-an Fu,1 and Yi Xiang1

1Department of Ophthalmology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, China
2Department of Ophthalmology, The Puai Hospital of Wuhan, Wuhan, Hubei 430033, China
3Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Correspondence should be addressed to Yi Xiang; xyyanke@163.com

Received 13 February 2016; Revised 8 April 2016; Accepted 17 April 2016

1. Introduction

Phacoemulsification cataract surgery is the most commonly used and effective surgical method for the treatment of cataract to improve a patient’s visual function and quality of life [1–3]. Shorter operative times, smaller incisions, and immediate visual recovery are all benefits of this treatment. Although it can reduce the economic burden, simultaneous surgery for patients with bilateral cataracts may cause serious bilateral complications, such as endophthalmitis [4]. Therefore, for these patients, consecutive surgery is the preferred approach for treating both eyes.

Subjective sensations, such as ocular pain and light sensitivity, are known to occur during phacoemulsification surgical procedures [5, 6]. It has been reported that there is a difference in bilateral cataract patients’ assessment of subjective sensations between the first and second cataract surgeries [7, 8]. Intraoperative ocular pain has been investigated rather extensively; however, there are fewer studies regarding the differences in pain perception between the first and the second cataract surgery. Some studies have found that patients report more pain during the second cataract surgery than during the first [9, 10], whereas others found no correlation between the level of pain perception and the sequence of operations [11–13]. However, pain is only one of several sensations that have been reported by patients who have undergone this surgery, and other sensations such as eye bulges, anxiety, and microscope light sensitivity have been noted. Eye bulges reflect the sensitivity to intraocular perfusion pressure, which have not reached the degree of
patients were asked to complete the same questionnaire, with

was performed on the remaining affected eye, after which

period of 1 month following the procedure, cataract surgery
each subjective sensation that they were experiencing. Over a

to selecting lenumbert hat bes treprente d the le v e lo f

= moderate, and 4 = severe) [17]. Patients were instructed

was measured and scored (0 = no, 1 = minimal, 2 = mild, 3 =

perfusion pressure (0 = no, 1 = minimal, 2 = mild, 3 =

the Amsterdam preoperative anxiety and information scale

measuring and scoring (0 = no, 1 = minimal, 2 = mild, 3 =

t o us e l de c t i n ga s i n g l en u m b e rt h a t b e s t r epre n te dt h e

da foldable intraocular lenses were implanted using the ded-

incision located between sectors 10 and 12. In all cases,

was clear corneal phacoemulsification through a 3.2mm

Lomb) between 9:00 and 12:00 am. The surgical technique

using the same phaco machine (Stellaris PC, Bausch &

subjective sensation and age was assessed using Spearman's

Table 1. Patient demographic characteristics and concomitant
diseases.

| Characteristic          | Number of patients (percent) |
|------------------------|-----------------------------|
| Gender                 |                             |
| Male                   | 60 (47.2%)                  |
| Female                 | 67 (52.8%)                  |
| Mean age ± SD (years)  | 69.8 ± 9.4                  |
| Concomitant diseases   |                             |
| High myopia            | 38 (29.9%)                  |
| Hypertension           | 63 (49.6%)                  |
| Diabetes mellitus      | 30 (23.6%)                  |
| Heart disease          | 36 (28.3%)                  |

additional questions comparing the pain experienced during
each surgery.

The data was collected using a structured study form and a
questionnaire. The following patient data was collected and
analyzed: patient age and sex, concomitant diseases, operative
time, anxiety score, eye bulges score, pain score, and light
sensitivity score. For each score, subgroups were also assigned
and compared based on patient age (<50, 50–59, 60–69, 70–
79, and >79 years).

All data were recorded in Microsoft Excel spreadsheets
and analyzed using the Kolmogorov-Smirnov test for normal
distribution. Continuous variables were expressed as the
mean ± standard deviation for those displaying normal dis-
tribution or otherwise using the median. A Mann-Whitney
U test was used to estimate the differences in each score
between the first and second surgery. For the comparison
of parameters in different age subgroups, a chi square test
with a 5 × 4 contingency table was used. Correlation between
subjective sensation and age was assessed using Spearman's
correlation test. Statistical analysis was performed using SPSS
PASW Statistics version 18.0 software (IBM Corporation,
Armonk, NY, USA). P values less than 0.05 were considered
statistically significant.

3. Results

A total of 132 consecutive patients were enrolled in this study.
However, 5 patients gave up treatment before undergoing
the second surgery. Hence, 127 patients (60 men and 67
women) aged between 43 and 93 years (median 70 years)
were included in the final evaluation. Patient demographic
characteristics and concomitant diseases are recorded in
Table 1.

The average operation time was 11.5 ± 1.9 min for the
first surgery and 11.7 ± 1.8 min for the second surgery.
The difference between operation times was not statistically
significant (P = 0.317). All the scores that were obtained did
not follow a normal distribution (P < 0.05, Kolmogorov-
Smirnov test); therefore a Mann-Whitney U test was used
to estimate differences of these parameters between the first
and second surgery. The comparative analysis of anxiety, eye
bulges, pain, and light sensitivity scores between the first and
second phacoemulsification cataract surgeries is shown in
The results from statistical analyses show that there was a significant difference in the anxiety, eye bulges, and pain scores between the first and second surgeries \((P = 0.001, P = 0.049, \text{and } P = 0.011, \text{resp.})\). Patients experienced less anxiety, a greater number of eye bulges, and pain during the second cataract surgery compared to the first surgery. However, differences in the scores for light sensitivity between surgeries were not statistically significant \((P = 0.555)\).

The comparative data for the different age subgroups \((<50, 50–59, 60–69, 70–79, \text{and } >79 \text{ years})\) for anxiety, eye bulges, pain, and light sensitivity score are shown in Figure 2. Statistical analysis demonstrated no significant differences in anxiety, eye bulges, pain, and light sensitivity scores between the first and second surgery among the different age groups \((P = 0.062, P = 0.379, P = 0.962, \text{and } P = 0.122, \text{resp.})\).

Additionally, the differences in anxiety, eye bulges, pain, and light sensitivity scores between the first and second surgery had no correlation with age \(r_{\text{anxiety}} = -0.052, P = 0.564; r_{\text{bulges}} = 0.029, P = 0.748; r_{\text{pain}} = -0.088, P = 0.328; \text{and } r_{\text{light}} = -0.137, P = 0.123, \text{resp.}\).

Our analysis shows that 33 (26.0%) patients reported more pain during the first cataract surgery compared to the second surgery. Fifty-three (41.7%) patients reported more pain during the second cataract surgery than during the first surgery, while 35 (27.6%) patients reported the same pain score during both surgeries. Six (4.7%) patients reported no
4. Discussion

In clinical practice, it is a common observation among ophthalmic surgeons that patients with bilateral cataract often report more pain and discomfort during the second consecutive eye surgery. Previous studies have investigated this observation and have also reported an increase in pain in the second surgery relative to the first [4, 9, 10]. In agreement with their data, our results confirm that the majority of patients do in fact experience more pain during the second cataract surgery compared to the first. However, in our study, 33 patients reported more pain during the first surgery, 35 patients reported the same pain score for both operations, and 6 patients reported no pain for either. Therefore, an increase in pain experienced from the first to the second surgery is not consistent for all individuals.

Eye bulges, which reflect sensitivity to intraocular perfusion pressure, were also found to increase in severity following the second cataract extraction. There are most likely multiple factors that contribute to the sensitivity of the eye to perfusion pressure. We propose that this observation
might be related to factors such as the lens nuclear hardness, concomitant diseases, type of lens opacity, inflammatory cytokines, and psychological factors. These may be the same factors that contribute to ocular pain. Our study found no correlation between patient age and differences in eye bulges and pain score between the first and second surgery, which implies that intraoperative perception of discomfort is unaffected by age.

It is well known that psychological factors, such as mental stress, are present beforehand and influence patient responses to cataract surgery. The degree of mental stress most likely contributes to the degree of pain reported by patients. It is also likely that patients often have more mental stress before their first cataract surgery [8]. Additionally, the eye with a higher cataract grade is normally operated on first, so patients can have higher expectations of success from the first procedure. A resulting increase in positive thinking, as well as therefore increased cooperation with doctors, might positively influence patient pain thresholds. We suggest that these factors could diminish the pain patients experience during the first surgery [8]. However, previous studies have found that patients were more relaxed for their second-eye surgery, which is consistent with our findings and explains why patients experienced increased pain during the second procedure [19,20]. Additionally, patients know what to expect from the second operation, therefore preoperative anxiety is decreased, and decreased anxiety may lead to increased awareness during the procedure, making the sensitivity to pain increased, and result in a negative experience during the second surgery [8]. Alternatively, a pharmacological explanation for this observation is that previous exposure to anesthesia medication during the first procedure leads to drug tolerance, so that the response to the same medication is diminished during the second procedure [9].

We have discussed the role of subjective psychological factors in patients' perception of pain during second cataract surgeries. However, objective molecular mechanisms, for example, sympathetic irritation in the second eye resulting from surgery in the first, might also contribute to this phenomenon. Zhu et al. reported that expression of MCP-1, a pain-related inflammatory chemokine, is significantly increased in the aqueous humor of the contralateral eye following first cataract surgeries. This suggests that there may be a sympathetic ophthalmic type uveitis in the contralateral eye after surgery, which may explain why phacoemulsification of the second eye is more painful [21]. Not all patients reported more pain for the second surgery: some reported more pain during the first surgery, whereas others reported either the same or no pain for both procedures. This implies that the sensitivity of patients to inflammatory factors may vary.

Patients undergoing cataract surgery can experience a wide range of subjective sensations. Light sensitivity is one example. Some studies have also reported that patients can see instruments and movement within their visual field during surgery, and in some cases, where vision is lost completely during surgery, light sensitivity was still present for each patient [22–24]. High light sensitivity accompanying photophobia symptoms following cataract surgery can result in increased psychological distress for some patients [17]. This could in turn influence their intraoperative pain perception. However, our analysis found that the differences in light sensitivity score between the two surgeries were not statistically significant. Different methods of anesthesia can affect the severity of light sensitivity [17], and the conditions for use of topical anesthesia for the patients included in our study were identical. We suggest that this is why the light sensitivity scores for the two operations were not significantly different. We therefore postulate that light sensitivity does not play an important role in either eye bulges scoring or pain perception between the two cataract surgeries.

In conclusion, our research confirms the common observation that patients with bilateral cataract often experience more pain or ocular discomfort during the second consecutive cataract surgery, compared to the first procedure. The differences in subjective sensations, such as anxiety, eye bulges, ocular pain, and light sensitivity, between the first and second surgeries were not significantly related to patient age. During cataract surgery, the management of patient discomfort is important, not only for the patient's psychological well-being but also for influencing the surgical outcome. Therefore, the role of several factors that can influence patient comfort is a necessary additional consideration for surgeons treating patients who are undergoing consecutive surgeries for bilateral cataracts.

Competing Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contributions
Ji-guo Yu and Ting Ye contributed equally to this work.

References
[1] J. Colin, S. El Kebir, E. Eydoux, T. Hoang-Xuan, P. Rozot, and M. Weiser, “Assessment of patient satisfaction with outcomes of and ophthalmic care for cataract surgery,” Journal of Cataract and Refractive Surgery, vol. 36, no. 8, pp. 1373–1379, 2010.
[2] V. K. Gothwal, T. A. Wright, E. L. Lamoureux, J. Khadka, C. McAlinden, and K. Pesudovs, “Improvements in visual ability with first-eye, second-eye, and bilateral cataract surgery
measured with the visual symptoms and quality of life questionnaire,” *Journal of Cataract and Refractive Surgery*, vol. 37, no. 7, pp. 1208–1216, 2011.

[3] P. N. Rosen, R. M. Kaplan, and K. David, “Measuring outcomes of cataract surgery using the quality of well-being scale and VF-14 visual function index,” *Journal of Cataract and Refractive Surgery*, vol. 31, no. 2, pp. 369–378, 2005.

[4] L. Aslan, M. Aslankurt, O. Çekic, A. Aksoy, and H. Yildiz, “The pain experience and cooperation of patients in consecutive cataract surgery,” *European Journal of Ophthalmology*, vol. 23, no. 3, pp. 339–343, 2013.

[5] P.-R. Rothschüld, S. Grabar, B. Le Dû, C. Temstet, O. Rostaqui, and A. P. Brézin, “Patients’ subjective assessment of the duration of cataract surgery: a case series,” *BMJ Open*, vol. 3, no. 5, Article ID e002497, 2013.

[6] Z. Biró and M. Schvöller, “Subjective visual sensations during cataract surgery performed under topical anaesthesia,” *Acta Ophthalmologica*, vol. 86, no. 8, pp. 894–896, 2008.

[7] A. Hari-Kovacs, P. Lovas, A. Facskó, and I. D. Crate, “Is second eye phacoemulsification really more painful?” *Wiener Klinische Wochenschrift*, vol. 124, no. 15–16, pp. 516–519, 2012.

[8] F. A. Adatia, M. Munro, I. Jvraj, A. Ajani, and R. Braga-Mele, “Documenting the subjective patient experience of first versus second cataract surgery,” *Journal of Cataract and Refractive Surgery*, vol. 41, no. 1, pp. 116–121, 2015.

[9] R. Ursea, M. T. Feng, M. Zhou, V. Lien, and R. Loeb, “Pain perception in sequential cataract surgery: comparison of first and second procedures,” *Journal of Cataract & Refractive Surgery*, vol. 37, no. 6, pp. 1009–1014, 2011.

[10] L. Mowatt, E. Youseff, and M. Langford, “Anaesthesia for phacoemulsification surgery: is it as comfortable as we think?” *Journal of Perioperative Practice*, vol. 20, no. 1, pp. 30–33, 2010.

[11] A. Bardocci, F. Ciucci, G. Lofoco, S. Perdicaro, and A. Lischetti, “Pain during second eye cataract surgery under topical anaesthesia: an intraindividual study,” *Graefes Archive for Clinical and Experimental Ophthalmology*, vol. 249, no. 10, pp. 1511–1514, 2011.

[12] W. Omulecki, I. Lauđańska-Olszewska, and A. Synder, “Factors affecting patient cooperation and level of pain perception during phacoemulsification in topical and intracameral anaesthesia,” *European Journal of Ophthalmology*, vol. 19, no. 6, pp. 977–983, 2009.

[13] N. S. Sharma, J.-L. Ooi, E. C. Figueira et al., “Patient perceptions of second eye clear corneal cataract surgery using assisted topical anaesthesia,” *Eye*, vol. 22, no. 4, pp. 547–550, 2008.

[14] D. Ruskin, C. Laloo, K. Amaria et al., “Assessing pain intensity in children with chronic pain: convergent and discriminant validity of the 0 to 10 numerical rating scale in clinical practice,” *Pain Research and Management*, vol. 19, no. 3, pp. 141–148, 2014.

[15] M. A. Ferreira-Valente, J. L. Pais-Ribeiro, and M. P. Jensen, “Validity of four pain intensity rating scales,” *Pain*, vol. 152, no. 10, pp. 2399–2404, 2011.

[16] A. Boker, L. Brownell, and N. Donen, “The Amsterdam preoperative anxiety and information scale provides a simple and reliable measure of preoperative anxiety,” *Canadian Journal of Anesthesia*, vol. 49, no. 8, pp. 792–798, 2002.

[17] A. S. Ioannidis, K. Papageorgiou, K. I. Alexandraki, P. Masouitis, A. J. Sinha, and P. S. Andreou, “Light sensitivity and pain sensation during cataract surgery. A comparative study of two modes of anaesthesia,” *International Ophthalmology*, vol. 30, no. 6, pp. 703–707, 2010.