SYSTEMATIC REVIEW

The function of lncRNAs in the pathogenesis of osteoarthritis

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.

Keywords: Long non-coding RNA, Osteoarthritis, Chondrocyte apoptosis, Extracellular matrix

Article focus

- A large number of differentially expressed long non-coding RNAs (lncRNAs) are involved in various pathological changes of osteoarthritis (OA), including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis.
- The detailed mechanism of how lncRNA acts in the development of OA remains to be elucidated.

Key messages

- High-throughput sequencing technology has been used to screen and identify key lncRNAs associated with OA.
- LncRNA can regulate the key factors and signalling pathways in the pathogenesis of OA in various ways. Competitive endogenous RNA (ceRNA) is particularly prominent in recent research.

Strengths and limitations

- This systematic review summarizes the role and molecular mechanisms of lncRNAs related to OA in recent years, with a view to providing new directions for the study of the pathogenesis of OA.
- Interference or overexpression of specific lncRNAs can slow the occurrence and development of OA, but may cause adverse effects in other aspects of the body.

Introduction

Osteoarthritis (OA) is a degenerative joint disease caused by the degradation of cartilage matrix, the death of chondrocytes, and the formation of osteophytes.\(^1\) The main manifestation is progressive joint destruction, leading to joint pain, deformity, dysfunction, joint apraxia, and sometimes even disability. In 1999, the World Health Organization listed OA, cardiovascular disease, and cancer as the three major killers threatening human health.\(^2\) At present, OA is the fourth-largest cause of disability in the world. A variety of treatments are available to alleviate the symptoms of patients with OA. These include corticosteroids and non-steroidal anti-inflammatory drugs.\(^3\)–\(^5\) Experimental stem cell therapy has...
been applied to treat specific forms of OA and biological agents are used to block inflammatory mediators such as cytokines, but there is still no specific cure for OA.

It is estimated that only 2% of the RNA in the human genome encodes proteins, while the vast majority (approximately 98%) is non-coding RNA. According to its size, non-coding RNA can be divided into two categories: non-coding small RNA molecules, such as microRNA (miRNA), small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA); and long non-coding RNA (lncRNA). LncRNA is a type of non-coding RNA with a length greater than 200 nt, which lacks an obvious open reading frame and does not have the function of translating into protein. According to the relative position of the lncRNA and the coding gene on the chromosome, lncRNAs can be divided into five types: sense; antisense; bidirectional; intronic; and intergenic. They regulate gene expression by folding into a unique conformation and interacting with DNA, RNA, or protein (Figure 1). Gene regulation mainly occurs at three levels: pre-transcriptional; transcriptional; and post-transcriptional. Pre-transcriptional regulation includes lncRNA-mediated histone modification, DNA methylation, and chromosome remodelling, while transcriptional regulation includes lncRNA regulation of insulator function, interference with gene transcription, and control of transcription factors. Meanwhile, post-transcriptional regulation involves variable splicing of genes and subcellular localization of RNA, as well as binding to specific proteins to regulate protein activity as a structural component or by changing protein localization. As a precursor of small RNA, lncRNA can be processed into miRNA and piRNA by ribonucleases (RNases). Salmena et al found that lncRNA has a miRNA action site and can also compete with miRNA; that is, it acts as a competitive endogenous RNA (ceRNA).

A large number of studies have shown that lncRNA plays important roles in growth and development and in the occurrence of many diseases, and is related to embryonic development, apoptosis, cell differentiation and maturation, immune system diseases, tumorigenesis, invasion, and distant metastasis. Some lncRNAs are defined as key regulatory factors in the pathogenesis and development of OA. In this article we review the role of lncRNA in the occurrence and development of OA, hoping to provide a new target and direction for the treatment of OA.

Non-coding RNAs and osteoarthritis. In the past, there have been many in-depth studies on the mechanism of miRNA in OA. miRNA is widely involved in the regulation of chondrogenesis, cartilage differentiation, chondrocyte proliferation, chondrocyte hypertrophy, endochondral...
Table 1. Abnormally expressed long non-coding RNAs described in the text and their functions.

IncRNA gene name	Expression	Related factor	Function†	Tissue/cell
TM1P3	up	miR-22/TGF-β/MMP13	ECM degradation (+)	Human primary chondrocytes
		miR-27b/MMP13	ECM degradation (+)	Human primary chondrocytes
		miR-130a/BIM56	Chondrocyte apoptosis (+)	Human primary chondrocytes
HOTAIR	up	miR-17-5p/FUT2/Wnt/β-catenin50	ECM degradation (+); Chondrocyte apoptosis (+)	Human primary chondrocytes
		miR-130a-3p83	Chondrocyte apoptosis (+)	Human primary chondrocytes
		Wnt/β-catenin82	Synovial cells proliferation (+); Synovial cells apoptosis (-)	Rat synoviocytes
MEG3	down	miR-361-5p/FOXO141	ECM degradation (-)	Human primary chondrocytes
		miR-93/TGFBR244	ECM degradation (-)	Human primary chondrocytes
			Chondrocyte apoptosis (-)	Rat chondrocytes
		VEGF23	Vascular invasion (-)	Human primary chondrocytes
HOTTIP	up	miR-455-3p/CCL355	ECM degradation (+)	Human primary chondrocytes
XIST	up	miR-1277-5p46	ECM degradation (+)	Human primary chondrocytes
		TIMP-3354	ECM degradation (+)	Human primary chondrocytes
		miR-211/CXCR449	Chondrocyte apoptosis (+)	Primary chondrocytes
		miR-142-5p/SCGTB40	Chondrocyte apoptosis (+)	SW1353 (human osteosarcoma cells)
PART1	up	miR-373-3p/5OX411	ECM degradation (+)	Human primary chondrocytes
	down	miR-590-3p/TGFBR2/Smad352	ECM degradation (-); Chondrocyte apoptosis (-)	Human primary chondrocytes
SNHG15	down	miR-7/KLF4	ECM degradation (-)	Human primary chondrocytes
LINC01534	up	miR140-5p13	ECM degradation (+)	Human primary chondrocytes
GASS	up	miR-34a/Bcl-2134	Chondrocyte apoptosis (+)	Human primary chondrocytes
H19	down	miR-61515	ECM degradation (-)	Human primary chondrocytes
	up	miR-130a2720	Chondrocyte apoptosis (+)	Human primary chondrocytes
	up	miR-106a-5p24	Chondrocyte apoptosis (+)	Human primary chondrocytes
	up	miR-140-5p27	Chondrocyte apoptosis (+)	Human primary chondrocytes
PVT1	up	miR-27b-3p/TRAF358	Chondrocyte apoptosis (+)	Human primary chondrocytes
		miR-14959	Inflammatory response (+)	Human primary chondrocytes
DANCR	up	miR-216a-5p/JAK1/STAT350	Cartilage regeneration (+); Chondrocyte apoptosis (-)	Human primary chondrocytes
		miR-577/SphK2261	Chondrocyte apoptosis (-)	Human primary chondrocytes
NEAT1	up	miR-193a-3p/SOX552	Inflammatory response (+); Chondrocyte apoptosis (+)	Human primary chondrocytes
CHRF	up	miR-181c/OPN363	Synovial cells proliferation (+)	Human synoviocytes
ATB	down	miR-223/MyD88/NF-κB46	Inflammatory response (-); Chondrocyte apoptosis (-)	ATDCS cells (mouse embryonic tumour cells)
NKILA	down	miR-145/SP1/NFκB46	Cartilage regeneration (+); Chondrocyte apoptosis (-)	Human primary chondrocytes

Continued
osteogenesis, and proteolytic enzyme hydrolyze protein, chondrocyte apoptosis, and other biological processes. Compared with miRNA, IncRNA has longer transcripts and lower homology among species, but has higher tissue specificity and more conserved promoter sequences, which may indicate that the function of IncRNA is more conservative. With the development of bioinformatics and high-throughput sequencing, more and more studies have reported that IncRNA can affect biological processes such as cell proliferation, apoptosis, and differentiation, and affect the occurrence and prognosis of diseases. Fu et al identified 4,714 differentially expressed IncRNAs in knee cartilage of OA and non-OA patients using gene chip and bioinformatics techniques. Liu et al identified 153 IncRNAs differentially expressed in OA patients using gene technology, and considered that IncRNA-cartilage injury-related (CIR) is the key to matrix degradation of chondrocytes.

IncRNA gene name	Expression†	Related factor	Function‡	Tissue/cell
CAIF down	miR-1246	Chondrocyte apoptosis (-)	CHON-001 cells (fibroblast immortalized with hTERT)	
DNM3OS down	miR-126/GF1	Chondrocyte apoptosis (-)	CHON-001 cells (fibroblast immortalized with hTERT)	
HOTAIRM1-1 down	miR-125b/BMPR2	Chondrocyte apoptosis (-)	Human primary chondrocytes	
GACAT3 up	IL-6/STAT3	Synovial cells proliferation (+)	Human synoviocytes	
ANRIL up	miR-122-5p/DUSP4	Synovial cells proliferation (+)	Human synoviocytes	
LOC101928134 up	IFNA1/JAK/STAT	Synovial cells proliferation (+)	Rat synoviocytes	
LINC00917 up	SPHK1	Vascular invasion (-)	Human chondrocytes	
CTD-2246P4.1 up	SPHK1	Vascular invasion (-)	Human chondrocytes	

*Long non-coding RNA expression during osteoarthritis.
†(+) means promotion, (-) means inhibition.
promotes the expression of activin receptor-like kinase 1 (ALK1) by acting as a miR-22 ceRNA, further causing increased phosphorylation of SMAD, thereby upregulating the expression of MMP-13 and causing ECM degradation. ALK1 is a binding receptor for the transforming growth factor beta (TGF-β) signalling pathway. Activated ALK1 promotes the upregulation of phosphorylated SMAD and MMP13, suggesting that lncRNA-Tm1P3 promotes ECM degradation through the miR-22/ALK1/MMP13 axis in OA cartilage.24 In another study by Li et al.,37 lncRNA-miR-22/ALK1/MMP13 degradation through the miR-22/ALK1/MMP13 axis in OA. In addition, inhibition of lncRNA-CIR expression in OA cartilage by small interference RNA (siRNA) can inhibit the expression of MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), thus promoting inhibition of lncRNA-CIR axis. In addition, inhibition of lncRNA-CIR expression in OA cartilage by small interference RNA (siRNA) can inhibit the expression of MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), thus promoting the anabolism of Col II, type I collagen, and aggrecan in OA cartilage.78

Abnormally expressed long non-coding RNAs (lncRNAs) described in the text. It is known that extracellular matrix (ECM) degradation, chondrocyte apoptosis, synovitis, and angiogenesis play important roles in the occurrence and development of osteoarthritis (OA). The red arrow indicates upward adjustment, and the blue arrow indicates downward adjustment.

OA cartilage tissue, and FUT plays an important role in the activation of the wnt/β-catenin signalling pathway in various diseases.79 Yang et al.80 found that FUT8 promotes epithelial-mesenchymal transformation of breast cancer stem cells by activating the wnt/β-catenin signalling pathway. Zhang et al.81 proved that FUT4 promotes embryo adhesion and implantation through the wnt/β-catenin signalling pathway. These results indicate that HOTAIR promotes degradation of the ECM through the miR-17-5p/FUT2/wnt/β-catenin axis.

LncRNA-maternally-expressed gene 3 (MEG3) has proven to be an important factor in tumour development.82 In addition to its role in the development of a variety of cancers,83 including lung cancer, breast cancer, and oesophageal cancer, studies have also found that MEG3 is a potential therapeutic target for OA. Chen et al.84 found that MEG3, as a ceRNA of miR-93, can promote the expression of transforming growth factor β receptor 2 (TGFBR2), and then activate the TGF-β signalling pathway to reduce ECM degradation. In another study also aimed at MEG3, Wang et al.85 found that MEG3 inhibits ECM degradation through the miR-361-5p/FOXO1 axis. The expression of MEG3 in human OA chondrocytes was downregulated, while overexpression of MEG3 significantly downregulated the expression of miR-93 and miR-361-5p, inhibiting the expression of MMP-13 and ADAMTS-5 which thus reduced degradation of the ECM.43

The lncRNA HOTTIP may promote ECM degradation from the 5’ end of the HOXA gene.85 With downregulation of the HOXA13 gene, its expression increases significantly, and the level of integrin-α-1(ITGa1) decreases significantly after HOXA-13 siRNA is introduced into human OA chondrocytes.85 Overexpression of ITGa1 promotes cartilage formation, while mice lacking ITGa1 develop degenerated cartilage at a younger age and show an increase in (ITGa2) synthesis. HOTTIP may promote ECM degradation.
in chondrocytes by inhibiting the HOXA-13/ITGa1/MMP2 signalling pathway.\(^9\) Mao et al\(^{45}\) found that HOTTIP can also act as a molecular sponge of miR-455-3p to indirectly regulate the expression of the chemokine CCL3, leading to cartilage degradation.

The lncRNA X inactive specific transcript (XIST) has been extensively studied in many types of cancer, including colorectal cancer, pancreatic cancer, osteosarcoma, non-small cell lung cancer, and bladder cancer.\(^{66,67}\) Wang et al\(^{46}\) recently found that XIST promotes the degradation of ECM by acting as the ceRNA of miR-1277-5p in OA. XIST is upregulated in OA, while miR-1277-5p is downregulated. The detection of MMP-13 and ADAMTSS showed that overexpression of miR-1277-5p could effectively reverse the degradation of ECM, and XIST could act as a molecular sponge of miR-1277-5p to competitively inhibit its function, resulting in increased expression of MMP-13 and ADAMTSS. In addition to the above-mentioned lncRNA, Zhu and Jiang\(^{51}\) found increased expression of lncRNA PART1 in cartilage of patients with OA and verified the interaction between the PART1, miR-373-3p, and SRY-associated high mobility protein 4 (SOX4) by double luciferase reporter assay and RNA immunoprecipitation (RIP). Sun et al\(^{88}\) found that SOX4 led to the degradation of ECM. Takahata et al\(^{46}\) believe that SOX4 induces chondrocyte apoptosis at epigenetic, transcriptional, and post-transcriptional levels. LncRNA-growth arrest-special transcript 5 (GASS) was originally identified from the subtracted complementary DNA (cDNA) library and its expression level was found to be increased with growth arrest in mammalian cells.\(^9\) It is located at 1q25 and contains 11 introns and 12 exons. The exons are alternately spliced to produce two mature lncRNAs (GASSa and GASSb). The intron encodes a snoRNA of 10boxC/D. Because of the role of GASS in cell growth inhibition and apoptosis, its abnormal expression has been found in many diseases.\(^{96}\) Ji et al\(^{54}\) found that the expression of GASS was increased in OA chondrocytes, while silencing GASS led to a decrease in the expression of tumour necrosis factor-α (TNF-α) and IL-6. Overexpression of GASS inhibited the expression of miR-34a and promoted chondrocyte apoptosis.

H19 was the first lncRNA to be discovered.\(^{97}\) It is located on chromosome 11p15.5 in the human genome, which is very close to the insulin-like growth factor 2 (IGF2) gene.\(^{98}\) It is transcribed by RNA polymerase II into a non-coding RNA transcript of 2.3 kb and spliced to five exons. The H19 sequence may contain a miRNA (miR-675), and can be used as the precursor of miR-675 transfection to produce miR-675. Steck et al\(^{55}\) found that miR-675 regulates the expression of Col II, while proinflammatory cytokines IL-1β and TNF-α significantly downregulate the expression of H19 and miR-675. Steck et al\(^{55}\) believe that increasing the expression of H19 can increase cartilage synthesis, reduce ECM degradation, and improve cartilage tissue regeneration. However, in several recent studies on H19, it was found that the expression of H19 increased in chondrocytes treated with IL-1β and lipopolysaccharide (LPS). Zhang et al\(^{99}\) found that H19, as the ceRNA of miR-106a-5p, could promote chondrocyte apoptosis, while Hu et al\(^{100}\) found that H19 could also promote chondrocyte apoptosis by acting as the ceRNA of miR-130a. Yang et al\(^{101}\) found that H19 can also be used as the ceRNA of miR-140-5p to promote chondrocyte apoptosis. LncRNAs can regulate the expression of multiple miRNAs through the ceRNA network, and these miRNAs can work together to promote or inhibit the progression of a disease. Two distinct results have been reported so far concerning the function and mechanism of H19. Further research is needed to explore the role of H19 in the occurrence and development of OA.

Some studies have found that the lncRNA-plasmacytoma variant translocation 1 (PVT1) plays a key role in the occurrence and development of malignant tumours.\(^{100}\) PVT1 can act as a ceRNA, a variety of miRNA.\(^{101,102}\) Lu et al\(^{58}\) found that after stimulation of human chondrocytes with IL-1β, the expression of PVT1 increased. Silencing PVT1 enhanced the survival rate...
and autophagy of cells treated with IL-1β, but inhibited apoptosis and inflammation. Silencing PVT1 also antagonized the production of inflammatory factors including nitric oxide (NO) and cytokines such as prostaglandin E2 (PGE2), IL-6, IL-8, and TNF-α.69 Overexpression of miR-27b-3p can reverse apoptosis and inflammation induced by PVT1, while TNF receptor-associated factor 3 (TRAF3) can weaken the inhibitory effect of miR-27b-3p on PVT1. Previous studies have suggested that miR-27b-3p and TRAF3 can regulate the adenosine-monophosphate-activated protein kinase (AMPK) signalling pathway.103 PVT1 regulates chondrocyte apoptosis and inflammation through the miR-27b-3p/TRAF3/AMPK axis and participates in the occurrence of OA.

LncRNA differentiation-antagonizing non-protein-coding RNA (DANCR), formerly known as anti-differentiation non-coding RNA (ANCR), is located on human chromosome 4q12. It is reported to play an important role in a variety of cellular biological processes. Yuan et al104 found that DANCR enhances the stemness features of hepaticcellular carcinoma by reducing the expression of β-catenin (CTNNB1), promoting tumour formation and extrahepatic tumour colonization. In the cartilage of patients with OA, Zhang et al60 found that the expression of DANCR was significantly increased, while silencing DANCR could significantly inhibit the expression of IL-6 and IL-8 in OA chondrocytes. DANCR also plays a role in promoting inflammation, cell proliferation, and anti-apoptosis as a ceRNA regulatory JAK2/signal transducer and transcriptional activator-3 (STAT3) signalling pathway of miR-216a-5p. Fan et al61 also confirmed that DANCR can promote the proliferation of OA chondrocytes and reduce apoptosis through the miR-577/SphK2 axis. In mouse ATDC5 cells, Yu et al64 found that lncRNA cardiac hypertrophy related factor (CHRF) can also promote the apoptosis of OA chondrocytes through the JAK2/STAT3 signalling pathway.

LncRNA activated by TGF-β (ATB) is the first lncRNA that can be activated by TGF and has been found to be abnormal in breast cancer,105 colon cancer,106 and pancreatic cancer.107 The imbalance of ATB can promote the growth, migration, and invasion of cancer cells in differentiated cancer.108 Ying et al65 found that the expression of ATB was downregulated in LPS-treated ATDC5 cells, while overexpression of ATB significantly reduced LPS-induced inflammatory damage in ATDC5 cells. Studies have further shown that IncRNA ATB inhibits the myeloid differentiation factor 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p38 MAPK signalling pathways by downregulating miR-223 in cells, thereby reducing cell inflammation and apoptosis.109 Other IncRNAs that can inhibit apoptosis in OA are NF-KappaB Interacting LncRNA (NKILA).66 cardiac autophagy inhibitory factor (CAIF).67 Dynamic 3 opposite strand (DNM3OS),68 and HOXA transcript antisense RNA myeloid-specific 1-1 (HOTAIRM1-1).69 NKILA regulates cell proliferation and apoptosis through the miR-145/SP1/NF-κB axis. CAIF can downregulate miR-1246 to inhibit the occurrence and development of OA. Overexpression of DNM3OS can upregulate the expression of insulin-like growth factor-1 (IGF1) to promote the proliferation of chondrocytes and inhibit apoptosis. HOTAIRM1-1 can activate the janus kinase/mitogen-activated protein kinase/extracellular regulated protein kinase (JNK/ERK) signalling pathway to inhibit apoptosis, and promote mesenchymal stem cells (MSC) activity and chondrogenic differentiation.

CIR is a lncRNA highly expressed in OA, discovered by Liu et al104 using gene chip analysis. In addition, CIR can promote ECM degradation, promote chondrocyte apoptosis, and reduce chondrocyte autophagy. Lu et al106 found that overexpression of CIR can inhibit the expression of miR-130a and promote the expression of B-cell lymphoma 2 (Bcl-2) interacting mediators of cell death (BIM) in chondrocytes stimulated by IL-1β or TNF-α, accompanied by increased levels of reactive oxygen species, release of inflammatory mediators, and apoptosis. Wang et al110 found that silencing CIR increases expression of the autophagy-related proteins LC3B/II and BECLIN-1 in cartilage of patients with OA. The above studies show that CIR is closely related to the occurrence and development of OA and can be used as a potential target for the treatment of OA. HOTAIR,109 nuclear paraspeckle assembly transcript 1 (NEAT1),62 XIST,64 and MEG343,44 also regulate not only the metabolism of ECM but also the apoptosis of chondrocytes. Several studies have shown that XIST can promote apoptosis in OA chondrocytes. Li et al50 found that XIST inhibits the proliferation of OA chondrocytes and promotes their apoptosis. In IL-1β-induced chondrocytes, XIST, as the ceRNA of miR-211, regulates the downstream MAPK signalling pathway by promoting the expression of CXCR4, which leads to reduced proliferation and increased apoptosis of chondrocytes. MAPK/ERK play an important role in inflammation and immune response.67 Activation of the CXCR4/CXCL12 axis increases the expression of MAPK/ERK.111 In addition, inhibition of the p38-MARK signalling pathway inhibits apoptosis of OA chondrocytes.112 Also in IL-1β-induced primary chondrocytes, Sun et al10 found that the increase of XIST was related to the decrease of Col2A1 and Bcl-2 and the increase of MMP13 and Bax. It is speculated that XIST may regulate the proliferation and apoptosis of chondrocytes through the mir-142-5p/small glutamine rich tetratricopeptide repeat containing beta (SGTB) axis.

LncRNAs regulate synoviocyte function. Synovitis is one of the most important pathological features of OA. Its histological features include synovial cell hypertrophy, proliferation, lining cell proliferation, and inflammatory cell infiltration. The stimulated synovial cells also secrete a large number of cytokines, chemokines, reactive oxygen species, lipids, lipid mediators, complement pathway components, and MMPs, which are all significantly increased in the synovial fluid of patients;113 thus stimulating synovial tissue proliferation, causing cartilage tissue erosion,
and leading to cartilage matrix destruction, dissolution, and fibrosis. In contrast to chondrocytes, the increase in the number of synovial cells promotes the development of OA. Gastric cancer-associated transcript 3 (GACAT3) is a newly discovered IncRNA. Li et al.\(^{10}\) found that the expression of GACAT3 was increased in osteoarthritis synovial cells (OAS), and the proliferation of OAS cells transfected with siRNA was significantly inhibited. In their experiment, the OAS cell cycle was blocked in G0/G1 phase, and the apoptosis rate increased. GACAT3 affects the proliferation of OAS through the IL-6/STAT3 signalling pathway. In the synovium of the knee joint of OA rats, Yang et al.\(^{12}\) found that high expression of IncRNA LOC101928134 regulates expression of the IFNA1 gene and inhibits the JAK/STAT signalling pathway. Silencing LOC101928134 inhibits the expression of IL-1β and TNF-α, which leads to the relief of knee synovitis, inflammatory injury, and knee cartilage injury in OA rats. In addition, silencing LOC101928134 promotes the apoptosis of synovial cells and inhibits the apoptosis of chondrocytes in OA rats.

The antisense noncoding RNA in the INK4 locus (IncRNA ANRIL) is located in a full-length 3.8 kb sequence in the 9p21.3 region of the chromosome.\(^{11}\) ANRIL is expressed in a variety of normal human tissues, with the highest expression in ovary and the lowest in muscle.\(^{12}\) Genome-wide association studies (GWAS) have identified ANRIL as a risk site for a variety of cancers, including breast cancer, nasopharyngeal carcinoma, glioma, and others.\(^{13}\) Li et al.\(^{14}\) found that the expression of ANRIL is increased in OAS cells, and ANRIL can act as a ceRNA of miR-122-5p to regulate the expression of dual specificity phosphatase 4 (DUSP4). Silencing ANRIL can block synovial cell proliferation and reduce apoptosis, while overexpression of miR-122-5p can have the same effect.

The IncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is transcribed from the transcriptional site of multiple endocrine neoplasia (MEN) type I located on human chromosome 11, and is involved in the occurrence and development of a variety of tumours including tumour cell proliferation, invasion, and metastasis.\(^{15}\) NEAT1 promotes the inflammation and apoptosis of chondrocytes in OA.\(^{16}\) Wang et al.\(^{17}\) found that the expression of NEAT1 and osteopontin (OPN) increased in OAS cells. OPN is reported to regulate the expression of a variety of inflammatory factors related to the pathogenesis of OA, including MMP13, IL-6, and IL-8. After NEAT1 gene knockout, the expression of MMP13, IL-6, and IL-8 in synovial cells decreased, cell proliferation was inhibited, and the level of OPN protein decreased. NEAT1, which can inhibit synovial cell proliferation and promote synovial cell apoptosis, has a negative correlation with miR-181c. Other IncRNAs such as HOTAIR, MEG3, and prostate cancer gene expression marker 1 (PCGEM1) have also been reported to be involved in regulating the proliferation, apoptosis, and differentiation of synovial cells.\(^{18}\) These IncRNAs are potential biomarkers and targets for the treatment of OA and synovitis.

LncRNAs regulate angiogenesis. Angiogenesis is very important for physiological processes such as tissue growth, development, regenerative circulation, and repair, but it also plays an important role in the pathological changes of some diseases. One study has suggested that OA is actually the activation of secondary ossification centres, resulting in repeated enchondral ossification.\(^{119}\) Angiogenesis is an important link in the process of enchondral osteogenesis, which can lead to subchondral bone reconstruction, synovial hyperplasia, and osteophyte formation. There are no blood vessels in normal articular cartilage, but a large number of blood vessels can be found in OA cartilage. Other studies have pointed out that the invasion of blood vessels into cartilage destroys the barrier between articular bone and cartilage and aggravates the inflammatory reaction, which is an important factor leading to clinical symptoms and disease progression.\(^{120}\) When normal articular cartilage was implanted into the chorioallantoic villi of chicken embryos, it retained its blood vessel-free character,\(^{121}\) while cartilage derived from OA patients showed obvious vascular growth.\(^{122}\) This indicates that normal cartilage has the ability to suppress angiogenesis, while this ability is significantly weakened in OA cartilage. Vascular endothelial growth factor (VEGF) is considered to be the key factor in angiogenesis. Inflammatory factors (IL-1β, TNF-α), hypoxia, and mechanical stress upregulate the expression of VEGF in OA joints through multiple signalling pathways.\(^{123}\) The expression of VEGF in the surface, middle, and deep layers of OA cartilage has been shown to be upregulated, while angiogenesis mainly occurs in the deep cartilage.\(^{124}\) The IncRNA-MEG3 is a type of imprint-ed gene, which is located on chromosome 14q32.3. It is a human homologue of mouse maternally imprinted gene trap locus 2 (Glt2), which was first discovered by Miyoshi et al.\(^{125}\) in 2000. MEG3 has been reported in previous studies to reduce ECM degradation in OA chondrocytes,\(^{41,44}\) and the interaction between MEG3 and SRY-associated high mobility protein-2 (SOX2) induces the expression of BMP4 to promote osteogenic differentiation of bone marrow mesenchymal stem cells.\(^{126}\) In addition, other studies have pointed out that overexpression of MEG3 leads to downregulation of the serine/threonine-specific protein kinase (known as protein kinase B (AKT)) signalling pathway in breast cancer, and the AKT signalling pathway plays a key role in the growth, invasion, and angiogenesis of breast cancer cells.\(^{127}\) By comparing chondrocytes between patients with OA and normal controls, Su et al.\(^{128}\) found that the expression of MEG3 in articular cartilage of OA was significantly downregulated and the expression of VEGF was significantly upregulated. Other studies have found that MEG3 can stimulate the transcription of p53,\(^{129}\) and p53 negatively regulates the transcription of VEGF by binding to the transcription factor Sp1 site on the VEGF promoter.\(^{127}\) Therefore, downregulation of MEG3 in OA cartilage may promote the transcription of VEGF by reducing the activity of p53, which leads to angiogenesis.
in OA cartilage. Sphingosine kinase 1 (SPHK1), a member of the sphingosine kinase (SPHK) family, has been shown to play a vital role in cell migration.128 Some studies have shown that SPHK1 is involved in angiogenesis. In the absence of ECM, the overexpression of SPHK1 promotes the survival of endothelial cells and plays an important role in angiogenesis.129 Minashima et al130 found that the interaction between ankylosis protein/MB binding protein 1a (ANK/MBBP1a) and SPHK1 can affect catabolism in the process of cartilage degradation mediated by IL-1β. Studies have shown that SPHK1 can promote the development of OA. Chen et al131 found that the IncRNAs LINC00917 and CTD-2246P4.1 regulate angiogenesis by affecting SPHK1 and play an important role in the progression of OA.

In conclusion, the pathogenesis of OA is complex and has not been elucidated so far. Although many studies have partially revealed the regulatory mechanism of OA and explored the treatment of OA-related diseases, the results are still not satisfactory. As a new hot topic in the regulation of gene expression, IncRNA may play a key role in the pathogenesis of OA by regulating extrachondal matrix metabolism, chondrocyte apoptosis, synovial hyperplasia, and peripheral neovascularization. Through continuous research, it has been found that thousands of IncRNAs are differentially expressed in OA, and some of the maladjusted IncRNAs have potential as valuable diagnostic biomarkers and therapeutic targets. Once a new IncRNA is found, its function should be clarified in vivo and in vitro. However, in the process of verifying the function of a IncRNA, because IncRNAs are not conserved among species there are often no homologous genes in animals. It is therefore not easy to find an in vivo model to test the function and mechanism of IncRNA in detail. Consequently, many animal models of IncRNA knockouts are constructed on the basis of gene disruption, targeted promoter deletions, and premature termination strategies.131,132 The use of IncRNAs as an approach to treat cartilage-related disease is in its infancy. In the near future, IncRNA targeted therapy may become a new hope for the cure of OA. Through advanced technology, knockout or overexpression of key IncRNAs may become a feasible method for the treatment of cartilage-related diseases in future.133 For example, since 2010 several new delivery strategies have been developed to reduce off-target effects, especially using nanoparticles which have the characteristics of improved stability, minimal size, biocompatibility, and self-assembly.134 This also allows nanoparticles to improve the stability and targeting of IncRNA. However, silencing of MEG3 aggravates LPS-stimulated human lung cell injury,135 while silencing NEAT1 can inhibit immunity136 and silencing dgeorge syndrome critical region gene 5 (DGC5R5) can enhance the growth, migration, and invasion of cervical cancer.136 If targeted knockout or overexpression of OA-related IncRNA is planned as a treatment for OA, it will first be necessary to pay attention to the side effects of the knockout or overexpression of the IncRNA. The specific mechanisms and functions of these OA-related IncRNAs need to be further studied and investigated, taking in vitro chondrocyte, OA animal models, and OA patients as the research objects. This is in order to further discover and verify the influence of IncRNA on the pathogenesis and pathological changes of OA, and lay the foundation for its diagnosis, prognosis, prevention, and treatment.

References
1. Nho SJ, Kymes SM, Callaghan JJ, Felson DT. The burden of hip osteoarthritis in the United States: epidemiologic and economic considerations. J Am Acad Orthop Surg. 2013;21 Suppl 1:51–56.
2. March L, Smith EU, Hoy DG, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 2014;28(3):353–366.
3. Bohensky J, Terkhorn SP, Freeman TA, et al. Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum. 2009;60(5):1406–1415.
4. Busse P, Vater C, Stehier M, et al. Cytotoxicity of drugs injected into joints in orthopaedics. Bone Joint Res. 2019;8(2):41–48.
5. Nishida K, Matsushita T, Takayama K, et al. Intrapitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res. 2018;7(3):252–262.
6. Li H, Yang HH, Sun ZG, Tang HB, Min JK. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 2019;8(7):290–303.
7. Song J, Ahn C, Chun C-H, Jin E-J. A long non-coding RNA, GASS, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res. 2014;32(12):1628–1635.
8. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–159.
9. Almeida M, Pintacuda G, Massi O, et al. PCGF3/S-PRC1 initiates polycomb recruitment in X chromosome inactivation. Science. 2011;335(6064):683–687.
10. Xu Y, Zhang X, Hu X, et al. The effects of IncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SDX9. Mol Med. 2018;24(1):152.
11. Malakar P, Shilo A, Mogilevsky A, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 2017;77(5):1155–1167.
12. Feng J, Bi C, Clark BS, et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/Six ultraregulated region and functions as a Dlx2 transcriptional coactivator. Genes Dev. 2008;21(11):1470–1484.
13. Yao Y, Li J, Wang L. Large intervening non-coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers. Int J Mol Sci. 2014;15(10):18895–18909.
14. Prasanth KV, Prasanth SG, Xuan Z, et al. Regulating gene expression through RNA nuclear retention. Cell. 2005;129(2):249–263.
15. Rashid F, Shah A, Shan G. Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics. 2016;14(2):73–80.
16. Selvam P, Polisoen L, Tay Y, Kats L, Pandolfo PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? J Proteome. 2016;130:1628–1635.
17. Chen H, Chen L. An integrated analysis of the competing endogenous RNA network and co-expression network revealed seven hub long non-coding RNAs in osteoarthritis. Bone Joint Res. 2020;9(3):96–98.
18. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):924–933.
19. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81(1):145–166.
20. Cesana M, Caciarielli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):353–369.
21. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–166.
22. Xie X, Liu M, Meng Q. Angelica polyaccharide promotes proliferation and osteoblast differentiation of meniscal stem cells by regulation of long non-coding RNA H19: an animal study. Bone Joint Res. 2018;9(7):323–332.
23. Zhang J, Hao X, Yin M, Xu T, Guo F. Long non-coding RNA in osteogenesis: a new world to be explored. Bone Joint Res. 2019;8(2):73–80.
A long non-coding RNA, HOTAIR, promotes osteoarthritis development, homeostasis, and disease. Biochem Res Commun. 2014;334(1):13–23.

Lu Q, Luo M, Huang Y. lncRNA-CIR regulates cell apoptosis of chondrocytes in osteoarthritis by acting as a sponge for miR-216a-5p/JAK2-STAT3 axis. Biochem Biophys Res Commun. 2018;500(3):658–664.

Fan X, Yuan J, Xie J, et al. Long non-protein coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-140-5p. Cell Biol Int. 2020;44(4):947–957.

Wang Q, Wang W, Zhang F, Deng Y, Long Z. NEAT1/miR-181c regulates osteoarthritis. J Med Genet. 2012;49(8):537–545.

Yu C, Shi D, Li Z, Wan G, Shi X. Long non-coding RNA CHRF exacerbates IL-6-induced inflammatory damage by downregulating microRNA-146A in ATDC5 cells. J Cell Physiol. 2019;234(12):21851–21859.

Ying H, Wang Y, Gao Z, Zhang Q. Long non-coding RNA activated by inflammation and synoviocyte proliferation and promotes synoviocyte apoptosis in osteoarthritis rats by inhibiting Wnt/β-catenin signaling pathway. Cell Biol Int. 2020;44(4):524–535.

Mao H, He C, Wu H, Yang B, Li X. Silencing IncRNA HOTAIR decreases synovial inflammation and synoviocyte proliferation and promotes synoviocyte apoptosis in osteoarthritis rats by inhibiting Wnt/β-catenin signaling pathway. Cell Cycle. 2019;18(23):3189–3205.

Wang A, Hu N, Zhang Y, et al. Meg3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genomics. 2019;12(1):201.

Chen K, Zhu H, Zheng M-Q, Dong G-R. lncRNA Meg3 Inhibits the Degradation of the Extracellular Matrix of Chondrocytes in Osteoarthritis via Targeting miR-63/TGFBR2 Axis. Cartilage. 2015;14(4):1596235189.675.

Mao G, Kang Y, Lin R, et al. Long non-coding RNA HOTTIP promotes CCL3 expression and induces cartilage degradation by sponging miR-455-3p. Front Cell Dev Biol. 2019;7:161.

Wang T, Liu Y, Wang Y, et al. Long non-coding RNA Xist promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. J Int Med Res. 2019;47(4):530–542.

Yu H, Liu J-P, Zhu Y, Lu N-H. The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter. 2016;21(5):428–440.

Chen H, Yang S, Shao R. Long non-coding Xist raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritis chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21(1):271.
ostearthritis rats through the activation of the Janus kinase/signal transducers and activators of transcription signaling pathway by upregulating IFN-α. J Cell Physiol. 2019;234(7):10523–10534.

73. Chen Y, Ni H, Zhao Y, et al. Potential role of IncRNAs in contributing to pathogenesis of intervertebral disc degeneration based on microarray data. Med Sci Monit. 2015;21(16):2449–2459.

74. Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transaction and meniscectomized models of osteoarthritis. Bone. 2006;38(2):234–243.

75. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human Hox loci by noncoding RNAs. Cell. 2007;129(1):131–143.

76. Li L, Dang Q, Xie H, et al. Correction: Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR/-MMP3 signals and increased stem/progenitor cell population. Oncotarget. 2016;7(50):83828.

77. Wang G, Li Z, Tian N, et al. miR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol Lett. 2016;12(2):879–886.

78. Liu X-H, Sun M, Nie F-Q, et al. Lnc RNA-HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13(1):92.

79. Hu J, Wang Z, Pan Y, et al. Mir-26A and miR-26B mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. Int J Biochem Cell Biol. 2018;94:79–88.

80. Yang H-F, Yu R-M, H-D, et al. Fentanyl Promotes Breast Cancer Cell Stemness and Epithelial-Mesenchymal Transition by Upregulating p1b, β-Fucosylation via Wnt/β-Catenin Signaling Pathway. Front Physiol. 2017;8:510.

81. Zhang Y-M, Zhang Y-V, Bulbul A, et al. Baicalin promotes embryo adhesion and implantation by upregulating fusocyltransferase IV (FUT4) via Wnt/beta-catenin signaling pathway. FEBS Lett. 2015;589(11):1225–1233.

82. Yan-Hua L, Zhang Y, Zhao Y, et al. miR-149a-5p inhibits apoptosis of human lymphoblastic leukemia. Oncotarget. 2019;10:359–368.

83. Chen Y, Yu Y, Li H, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/152 axis in gallbladder cancer. Mol Cancer. 2019;18(1):33.

84. Mao Z, Xu B, He L, Zhang G. PVT1 Promotes Angiogenesis by Regulating miR-29c/Vascular Endothelial Growth Factor (VEGF) Signaling Pathway in Non-Small-Cell Lung Cancer (NSCLC). Mol Sci. 2019;25:5418–5425.

85. Lee K-A, Cho C-K, Kim B, et al. Inflammation-Mediated Metallic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell Host Microbe. 2018;23(3):358–365.e5.

86. Yuan SX, Wang J, Yang F, et al. Long non-coding RNA DANC1 increases stemness features of hepatocellular carcinoma by derepression of CNOT8B1. Hepatology. 2016;63(2):493–511.

87. Shi S-J, Wang L-J, Yu B, et al. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6(13):11662–11663.

88. Yue B, Guo S, Zhao S, et al. LncRNA-ATB mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis. J Gastroenterol Hepatol. 2016;31(3):595–603.

89. Gu S, Yang X, Song W, et al. Downregulation of lncRNA-ATB correlates with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 2016;37(6):9353–9358.

90. Xiong J, Liu Y, Jiang L, Zeng Y, Tang W. High expression of long non-coding RNA IncRNA-ATB is correlated with metastases and promotes cell migration and invasion in renal cell carcinoma. Jpn J Clin Oncol. 2018;48(4):378–384.

91. Dang X, Lian L, Wu D. The diagnostic value and pathogenetic role of IncRNA-ATB in patients with osteoarthritis. Cell Mol Biol Lett. 2018;23(1):55.

92. Wang C-L, Peng J-P, Chen X-D. LncRNA-CIR promotes articular cartilage degeneration in osteoarthritis by regulating autophagy. Biochem Biophys Res Commun. 2018;505(3):692–698.

93. Song Z-Y, Wang F, Cui S-X, Qu X-J. Knockdown of CXC4R inhibits CXCL12-induced angiogenesis in HUVECs through downregulation of the MAPK/ERK and PI3K/Akt and the Wnt/β-catenin pathways. J Cell Physiol. 2018;3(1):10–18.

94. Sun H-Y, Hu K-Z, Yin Z-S. Inhibition of the p38-MAPK signaling pathway suppresses the apoptosis and expression of proinflammatory cytokines in human osteoarthritis chondrocytes. Cycline. 2017;90:135–143.

95. Sowers M, Karvonnen-Gutierrez CA, Jacobson JA, Ying Y, Seifel M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am. 2017;99(3):241–251.

96. Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–1962.

97. Pasman T, Laurendeau I, Héron D, et al. Characterization of a germ-line deletion, including the entire INK4A/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression is coupled with ARF. Cancer Res. 2007;67(10):3983–3989.

98. Akimitsu N, Hamada M, Nishida K, et al. Host Microbe Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell. 2019;178(1):5418–5425.

99. Dingt N, Wu H, Tao T, Peng E. Neat1 regulates cell proliferation and apoptosis of ovarian cancer by miR-33a-5p/β-Catenin. Onco Targets Ther. 2017;10:4905–4915.

100. You D, Yang C, Huang J, et al. Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via histone methyltransferase EZH2. Cell Signal. 2019;63:10933–10944.

101. Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subcutaneous bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–712.

102. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8(7):390–398.

103. Blanche M, Carlu HD, Klinger P, et al. Transplanted chondrocytes inhibit endochondral ossification within cartilage repair tissue. Calcif Tissue Int. 2009;85(5):421–433.
122. Ashraf S, Walsh DA. Angiogenesis in osteoarthritis. Curr Opin Rheumatol. 2008;20(5):573–580.

123. Miyoshi N, Wagaotsuma H, Wakanza S, et al. Identification of an imprinted gene, Meg3/6H2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells. 2000;5(3):211–220.

124. Zhuang W, Ge X, Yang S, et al. Upregulation of IncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells. 2015;33(6):1985–1997.

125. Zhang C-Y, Yu M-S, Li X, et al. Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through Akt pathway. Tumour Biol. 2017;39(6):1010428317701311.

126. Zhou Y, Zhang Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–24742.

127. Pal S, Datta K, Mukhopadhyay D. Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res. 2001;61(18):6952–6957.

128. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4(5):397–407.

129. Limaye V, Li X, Hahn C, et al. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood. 2005;105(8):3169–3177.

130. Minashima T, Campbell KA, Hadley SR, Zhang Y, Kirsch T. The role of ANK interactions with Mybbp1a and SphK1 in catabolic events of articular chondrocytes. Osteoarthritis Cartilage. 2014;22(6):852–861.

131. Li L, Chang HY. Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol. 2014;24(10):594–602.

132. Mancini-Dinardo D, Steele SJS, Leverse JM, Ingram RS, Tlghman SM. Elongation of the KCNQ1OT1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 2006;20(10):1268–1282.

133. Ichim TE, Li M, Ghan H, et al. RNA interference: a potent tool for gene-specific therapeuticas. Am J Transplant. 2004;4(8):1227–1236.

134. Fekrazad R, Naghdi N, Nokhbatolofghaih H, Bagheri H. The combination of laser therapy and metal nanoparticles in cancer treatment originated from epithelial tissues: a literature review. J Lasers Med Sci. 2016;7(2):62–67.

135. Li X, Zhang Q, Yang Z. Silence of MEG3 intensifies lipopolysaccharide-stimulated damage of human lung cells through modulating miR-4262. Artif Cells Nanomed Biotechnol. 2019;47(1):2369–2378.

136. Chen J-X, Xu X, Zhang S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life. 2019;71(7):956–968.

Author information:

- C. P. He, MM, Surgeon
- X. C. Jiang, MM, Surgeon
- C. Chen, MD, Chief Surgeon, Associate Dean
- W. D. Cao, MM, Surgeon
- Q. Wu, MM, Surgeon
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China.
- H. B. Zhang, MM, Surgeon, Department of Orthopedics, The Xiangya Hospital of Central South University Changsha, Hunan, China.
- C. Ma, MM, Attending Surgeon, Department of Orthopedics, The First Affiliated Hospital (People’s Hospital of Xiangxi Autonomous Prefecture), Jishou University, Jishou, China.

Author contributions:

- C. P. He: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- X. C. Jiang: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- C. Chen: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- H. B. Zhang: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- W. D. Cao: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- Q. Wu: Collected, assembled, analyzed, and interpreted the data, Critically revised the article for important intellectual content.
- C. Ma: Created the illustrations, Checked and modified the references.

Funding statement:

- This research was supported by grants from the Chinese People’s Liberation Army (PLA) youth training program (NO.19QN014), Natural Science Foundation of Hunan Province (NO.201806033), Hunan Provincial Innovation Foundation for Postgraduate (NO.CX202005448), Scientific Research Project of Hunan Health Commission (NO. B2019149, C2019141 and B2016210), Hunan Provincial Department of Education Project (NO.15A115), and the Natural Science Foundation of jishou University (NO. Jdx:1904).

ICMJE COI statement:

- The authors declare that they have no conflict of interest.

© 2021 Author(s) et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND 4.0) licence, which permits the copying and redistribution of the work only, and provided the original author and source are credited. See https://creativecommons.org/licenses/ by-nc-nd/4.0/.