Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States

N M Velpuri1 and G B Senay 2

1 ASRC Research and Technology Solutions (ARTS), Contractor to US Geological Survey (USGS)
Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, USA
2 USGS EROS Center, Sioux Falls, SD, USA

E-mail: nvelpuri@usgs.gov

Received 15 January 2013
Accepted for publication 12 April 2013
Published 9 May 2013
Online at stacks.iop.org/ERL/8/024020

Abstract
This study investigates the long-term trends in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. The seasonal Mann–Kendall trend test was performed on monthly precipitation, runoff and runoff coefficient data from 1950 to 2009 obtained from 62 urban watersheds covering 21 major urban centers in the United States. The results indicate that only five out of 21 urban centers in the United States showed an uptrend in precipitation. Twelve urban centers showed an uptrend in runoff coefficient. However, six urban centers did not show any trend in runoff coefficient, and three urban centers showed a significant downtrend. The highest rate of change in precipitation, runoff and runoff coefficient was observed in the Houston urban watershed. Based on the results obtained, we also attributed plausible causes for the trends. Our analysis indicated that while a human only influence is observed in most of the urban watersheds, a combined climate and human influence is observed in the central United States.

Keywords: precipitation, urban runoff, climate, human impact, Mann–Kendall

1. Introduction

Over the last century, humans and climate have significantly affected the hydrologic cycle and water availability [1]. Recently, several researchers have observed intensification of the hydrologic cycle at regional and continental scales [2, 3]. Urban areas around the world are rapidly growing and it is expected that more than 60% of the global population will live in urban watersheds by 2030 [4]. In the United States alone, around 80% of the population lives in urban areas (www.census.gov). Up to 20% of the land area in the United States contributes to the public water supply and 8% of this land is urban or semi-urban watersheds [5]. Furthermore, a large proportion of surface water flows through urban watersheds. Urban land cover disrupts the surface water balance and influences the partitioning of rainfall into surface runoff, evapotranspiration, soil moisture, and groundwater flow. Urbanization results in an increase in surface runoff and a decrease in evapotranspiration and groundwater flow [6, 7]. Moreover, water demand in urban areas for human consumption, industries, and irrigation directly affect water supply through water withdrawals and diversions. Because of these complex interactions, it becomes important to understand the changes in trends in rainfall and runoff in
the urban watersheds, especially for water availability and security.

Long-term trends in precipitation (P), runoff (Q) and temperature have been studied using station data [8–11]. However, information on nationwide trends in monthly P and Q especially in the major urban watersheds is limited. This study analyzed long-term trends in urban P, Q, and runoff coefficient (Q/P) over the period 1950–2009. This study is part of the US Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) project, whose mandate is to ‘help water managers to plan for climate change and the other threats to our water supplies, and take action to secure our water resources for the communities, economies, and the ecosystems they support’. The objectives of this research are to (a) investigate the trends in P, Q, and Q/P in urban watersheds, and (b) attribute plausible causes (climate or human) for the trends. The results from this study will help urban watershed managers understand the potential impacts of trends on water availability.

2. Data and methods

Mean precipitation for the major urban watersheds over the period 1950–2009 was extracted from 4 km monthly PRISM precipitation datasets [12, 13]. PRISM is the US Department of Agriculture’s official climatological data and is considered the highest quality spatial climate data over the United States [14]. Mean monthly 4 km gridded runoff data for each urban watershed was processed from hydrologic unit code (HUC) 8 runoff data by combining historical flow data from stream gauges, their drainage basins, and the boundaries of the HUCs. This data is obtained from US Geological Survey’s (USGS) Water Watch website [15]. Sixty-two HUC8 urban watersheds (each with an average area of 4000 km2) covering 21 major urban centers in the United States were chosen for the analysis. Urban areas (figure 1) were derived by combining the National Land Cover Dataset (NLCD 2006) Developed classes 21 through 24 [16]. Two or more HUC8 watersheds were merged where the urban center was found to be larger than the HUC8 watershed. Monthly total precipitation (P_μ) and runoff (Q_μ) data for each combined urban center were derived. To understand if the trend in runoff (Q_μ) is due to the change in precipitation (P_μ) or due to other factors (land cover change), we derived runoff coefficient (Q_μ/P_μ). Finally, trends in P_μ, Q_μ, and Q_μ/P_μ were estimated using the Seasonal Mann–Kendall (SMK) trend test [17]. SMK statistic, variance, and 5% significance level (p-value ≤ 0.05) were estimated. Variance was corrected for ties and serial dependency [17].

The analysis of precipitation trends is important for monitoring the hydrologic response of urban watersheds to climate change. Similarly, the analysis of runoff trends is
important for understanding human influence on hydrology. While observed trends in \(P_\mu \) can be associated to the change in climate, the trends in \(Q_\mu/P_\mu \) cannot entirely be due to the change in the climatic variables but may be due to a combination of climatic and water management effects (human influence) [8, 18]. Hence, we attributed the causes for the trends in \(P_\mu \) and \(Q_\mu/P_\mu \) as climate and human influence on urban watersheds. Such attribution is important as changes in climate and land use have larger and more direct impacts on hydrology than the impact of rising CO\(_2\) levels [19]. Assuming no significant change in evaporative demand over the urban watersheds, (a) ± trend in \(P_\mu \) alone can be attributed to climate, (b) ± trend in \(Q_\mu/P_\mu \) alone indicates human influence, and (c) ± trend in both \(P_\mu \) and \(Q_\mu/P_\mu \) would indicate a combination of climate and human influence on the urban watershed. A list of plausible causes for the trends is given in table 1.

3. Results and discussion

3.1. Mean and rate of change in \(P_\mu \), \(Q_\mu \), and \(Q_\mu/P_\mu \)

Long-term (1950–2009) mean \(P_\mu \), \(Q_\mu \), and \(Q_\mu/P_\mu \) are presented in table 2. Out of 21 major urban watersheds, the Las Vegas had the lowest mean annual \(P_\mu \) (184 mm yr\(^{-1}\)) and the Seattle had the highest annual \(P_\mu \) (1532 mm yr\(^{-1}\)). Urban watersheds for Phoenix and Portland generated the lowest and highest amount of runoff with 9 and 1237 mm yr\(^{-1}\) and runoff coefficients of 2% and 88%, respectively. The slope of regression fit obtained from the annual estimates of \(P_\mu \), \(Q_\mu \),
and Q_μ/P_μ for each urban watershed was used to estimate rate of change (ROC) for each of the three parameters. The ROC for P_μ showed a decreasing rate in the Seattle, Portland, Atlanta, and Tampa urban watersheds; no-change in San Diego and Phoenix; and a positive change in the rest of the 15 urban centers. The ROC for Q_μ ranged from a decreasing rate of 8.1 mm yr$^{-1}$ for Portland to an increasing rate in runoff up to 5.6 mm yr$^{-1}$ for Houston. Water managers can convert these numbers to actual volume of runoff for example, Houston ROC in runoff (5.6 mm yr$^{-1}$) accounts for nearly 10 billion gallons yr$^{-1}$, which is equivalent to nearly 25 days of water supply for the City of Houston, estimated at the current average rate of 390 million gallons per day consumption (www.houstontx.gov). The ROC for Q_μ/P_μ ranged from a -4% for the Portland watersheds to a 5% for the Chicago urban watersheds.

3.2. Trends in monthly precipitation (P_μ)

Seasonal Mann–Kendall trend test results for urban centers from the western and eastern United States (table 2) indicated that all the major watersheds showed no trends in P_μ. The absence of trends in California and Nevada urban centers is consistent with the observations made by [20] over the period 1984–2006. A downturn was found in P over the Pacific Northwest region during the 1948–1988 and 1916–2003 periods by [8, 21] respectively. Though we found similar downturns in the Seattle and Portland urban watersheds, these trends were not found to be statistically significant over 1950–2009. A lack of trends in P_μ in the eastern United States is in line with the findings from [22, 23]. A no-change in trend in the Precipitation data for the northeastern United States was found by [24]. In the central United States, our results indicate that all the major urban watersheds except for the Chicago urban center indicated an uptrend in P_μ. These results further reinforce the findings of a general uptrend in precipitation in the Minnesota region [25]; an uptrend in precipitation during 1931–1996 over the central Great Plains and southern Great Lakes basins [22, 23]; and an uptrend in precipitation over the southern United States [26]. No-change in P_μ trend in the western and eastern United States and an uptrend in the central United States indicates that precipitation in the 20th century in general has increased in the United States. This result is consistent with the earlier findings [8, 27, 28]. It is to be noted that the P_μ trends in urban centers within a geographic region could be different from others in the same region due to differences in the weather systems that influence the precipitation. For example, the P trends (negative) for Seattle and Portland are different from other urban centers in the western United States as they are influenced by Pacific Northwest weather systems and show more coherence with rainfall pattern of British Columbia region [29].

3.3. Trends in monthly runoff (Q_μ) and runoff coefficient (Q_μ/P_μ)

Seasonal Mann–Kendall trend test results indicated that trends in Q_μ and Q_μ/P_μ over most of the major urban centers were different from the observed P_μ trends (table 2). Twelve out of 21 urban centers showed a significant uptrend in Q_μ and Q_μ/P_μ. In the west, 3 out of 8 urban centers (Los Angeles, San Diego, and Las Vegas) showed a significant uptrend in both Q_μ and Q_μ/P_μ. This could be due to increase in urban land cover or due to water imported from other watersheds which is very common in the southwestern United States. Three urban watersheds (Seattle, San Francisco, and Phoenix) showed no-trend in Q_μ or Q_μ/P_μ and two urban watersheds (Portland and Salt Lake City) showed significant downturn. Stream flow data for the period 1914−1993 was analyzed by [9] and observed downturns in runoff in the Pacific Northwest and northern California regions. Our results for 1950–2009 indicate significant downtrends in Q_μ for Seattle and Portland. However, for Seattle, although Q_μ was found to be significant, Q_μ/P_μ was not statistically significant. While urban watersheds covering Seattle did not show any trend in Q_μ/P_μ, its sub-watershed, the Puget Sound watershed showed significant downturn in both Q_μ and Q_μ/P_μ. On the other hand, urban watersheds covering Portland and Salt Lake City urban centers showed significant downturn in Q_μ/P_μ. This result is in line with results obtained by [30] for urban basins in the Portland metro area. Our result of a downturn in Q_μ/P_μ for Salt Lake City urban watershed can be explained by the findings of [31] who observed that much of the water in these watersheds is diverted for irrigation.

Three out of 7 urban centers in the eastern United States (Philadelphia, New York, and Boston) showed a significant uptrend in both Q_μ and Q_μ/P_μ. However, for Washington, DC, only Q_μ/P_μ was found to be significant. These results are consistent with [9], who found a general uptrend in runoff in the New England and Mid-Atlantic regions. Urban centers in the southeastern United States showed varied trends. While Atlanta and Miami showed no-trend in Q_μ and Q_μ/P_μ, Tampa and St. Petersburg showed a decrease in both Q_μ and Q_μ/P_μ trend. Urban centers in the central United States (Denver, Dallas, Houston, Detroit, and Chicago) except Minneapolis showed a significant uptrend in both Q_μ and Q_μ/P_μ. This result corroborates with the fact that stream flow has increased in the central United States [8, 9, 28].

Interestingly, while Chicago urban watersheds do not show any trend in P_μ, these watersheds demonstrate a significant uptrend in both Q_μ and Q_μ/P_μ. In the Minneapolis urban watershed, Q_μ/P_μ does not show any trend. This means that the trend in Q_μ is mainly due to increase in P_μ. It was indicated by [32] that Minneapolis is one of the most successful cities to maintain a balance between urban development and natural ecosystems.

3.4. Climate and human influence on the urban watersheds

Results indicate that urban watersheds such as Seattle, San Francisco, Phoenix, Atlanta, and Miami showed no climate or human influence. However, a significant human influence was observed in majority of the other urban watersheds over western and eastern United States. Combined climate and human influence was seen on the urban watersheds in the central United States. However, Minneapolis showed P_μ only,
indicating climate influence. On the other hand, Chicago showed an uptrend in Q_μ/P_μ and no P_μ trend indicating only human influence [33].

3.5. Limitations and further research

This study only analyzes the trends in monthly total precipitation and does not consider the changes in trends over shorter duration. While some of the increase in P_μ trends could be attributed to urban heat island [34], distinguishing climate impact and urban heat island on increasing rainfall is beyond the scope of this study. More detailed and focused studies across urban centers are needed to investigate these associations. The urban-to-watershed area fraction (UW AF) would also influence the overall trends in runoff in the urban watershed. The lack of a significant trend in Q_μ, Q_μ/P_μ in San Francisco, Phoenix, Atlanta, and Miami could be due to the small UW AF fraction. Caution must be taken while interpreting the importance of trends that are not significant.

A trend in P_μ, Q_μ, and Q_μ/P_μ may not be significant but could have important effects on water resources [18]. In spite of these limitations, the information generated in this study provides useful insights on (a) the changing trends in P_μ, Q_μ, and Q_μ/P_μ and (b) the plausible climate and human factors influencing P_μ, Q_μ, and Q_μ/P_μ trends in the major urban watersheds.

4. Conclusions

The results indicated that urban watersheds in the eastern and the western United States did not show any change in P_μ trend. However, 5 urban centers in the central United States indicated an uptrend in precipitation. Trends in Q_μ and Q_μ/P_μ over the urban centers were found to be different from P_μ trends. Twelve out of 21 major centers showed an uptrend in Q_μ and Q_μ/P_μ. To understand climate and human influence on urban watersheds, we attributed plausible causes for the trends in P_μ, Q_μ, and Q_μ/P_μ. Our analysis indicated that while a human only influence is noted in most of the urban watersheds, a combined climate (increase in P_μ) and human influence (increase in Q_μ/P_μ) is observed in the most urban watersheds in the central United States. However, quantifying relative climate and human influence on each urban center requires further investigation. Given urban watersheds are changing at a rapid pace, the hydrologic characteristics of these watersheds will continue to change and influence water availability. This study contributes towards meeting WaterSMART project goals by understanding the impact of varying trends in P_μ, Q_μ, and Q_μ/P_μ on water availability and management of urban water resources.

Acknowledgments

This work was performed under US Geological Survey (USGS) contract G08PC91508 and G10PC00044 in support of the WaterSMART project. The authors are grateful to the journal editor and two anonymous reviewers for their constructive and helpful comments to improve the manuscript. The use of trade, firm, or corporation names in this paper is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Geological Survey.

References

[1] IPCC 2007 Climate Change 2007: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press)
[2] Huntington T G 2006 Evidence for intensification of the global water cycle: review and synthesis J. Hydrol. 319 83–95
[3] Wild M, Grieser J and Schar C 2008 Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle Geophys. Res. Lett. 35 L17706
[4] United Nations Population Division 1997 Urban and Rural Areas 1950–2030 (The 1996 Revision) (New York: United Nations)
[5] Fitzgerald K, Klausmeyer K and Herrin M 2012 Where Does Your Water Come From? (Arlington, VA: The Nature Conservancy) (www.nature.org/all-hands-on-earth/where-does-your-water-come-from-report.pdf, accessed 30 April 2013)
[6] Foley J A et al 2005 Global consequences of land use Science 309 570–4
[7] Gleick P H 1998 Water in crisis: paths to sustainable water use Exol. Appl. 8 571–9
[8] Lettenmaier D P, Wood E F and Wallis J R 1994 Hydro-climatological trends in the continental United States 1948–88 J. Clim. 7 586–607
[9] Lins H F and Slack J R 1999 Streamflow trends in the United States Geophys. Res. Lett. 26 227–30
[10] Douglas E M, Vogel R M and Kroll C N 2000 Trends in floods and low flows in the United States: impact of spatial correlation J. Hydrol. 240 90–105
[11] Mishra V and Lettenmaier D P 2011 Climatic trends in major US urban areas, 1950–2009 Geophys. Res. Lett. 38 L16401
[12] Daly C, Taylor G H, Gibson W P, Parzybok T W, Johnson G L and Pasteris P A 2000 High-quality spatial climate data sets for the United States and beyond Trans. Am. Soc. Agric. Eng. 43 1957–62
[13] Daly C, Smith J W, Smith J I and McKane R B 2007 Evidence for intensification of the global land-based hydrological cycle Geophy. Res. Lett. 38 L16401
[14] Di Luzzio M, Johnson G L, Daly C, Eischedl J K and Arnold J G 2008 Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States J. Appl. Meteorol. Climatol. 47 475–97
[15] Jian X, Wolock D and Lins H 2008 WaterWatch—Maps, Graphs, and Tables of Current, Recent, and Past Streamflow Conditions (Reston, VA: United States Geological Survey) (http://pubs.usgs.gov/fs/2008/3031/WaterWatch2008v3.pdf, accessed 30 April 2013)
[16] Xian G, Homer C and Fry J 2009 Updating the 2001 National land cover database land cover classification to 2006 by using Landsat imagery change detection methods Remote Sens. Environ. 113 113–47
[17] Hirsch R M and Slack J R 1984 A nonparametric trend test for seasonal data with serial dependence Water Resources Res. 20 727–32
[18] McCabe G J Jr and Wolock D M 1997 Climate change and the detection of trends in annual runoff Clim. Res. 8 129–34
[19] Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudre N, Labat D and Zaehle S 2007 Changes in climate and land use have larger direct impact than rising CO$_2$ on global river runoff trends Proc. Natl Acad. Sci. USA 104 15242–7
[20] Miller J D, Safford H D, Crimmins M and Thode A E 2009 Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA Ecosystems 12 16–32
[21] Hamlet A F, Mote P W, Clark M P and Lettenmaier D P 2007 Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States J. Clim. 20 1468–86
[22] Kunkel K E, Andsager K and Easterling D R 1999 Long-term trends in extreme precipitation events over the conterminous United States and Canada J. Clim. 12 2515–27
[23] Small D, Islam S and Vogel R M 2006 Trends in precipitation and streamflow in the eastern US: paradox or perception? Geophys. Res. Lett. 33 L03403
[24] Gan T Y 1995 Trends in air temperature and precipitation for Canada and north-eastern USA Int. J. Climatol. 15 1115–34
[25] Novotny E V and Stefan H G 2007 Stream flow in Minnesota: indicator of climate change J. Hydrol. 334 319–33
[26] Kiem B D, Faiers G E, Muller R A, Grymes J M Ill and Rohli R V 1995 Long-term trends of precipitation and runoff in Louisiana, USA Int. J. Climatol. 15 531–41
[27] Karl T R and Knight R W 1997 Secular trends of precipitation amount, frequency and intensity in the United States Bull. Am. Meteorol. Soc. 79 231–41
[28] Lins H F and Slack J R 2005 Seasonal and regional characteristics of US stream flow trends in the United States from 1940–99 Phys. Geogr. 26 489–501
[29] Vines R G 1982 Rainfall patterns in the western United States J. Geophys. Res. 87 7303–11
[30] Chang H 2007 Comparative stream flow characteristics in urbanizing basins in the Portland metro area, Oregon USA Hydro. Process. 21 211–22
[31] Jordan J L and Sabbah W 2007 Groundwater Flow, Water Level Trends and the Connection between Fairfield Spring and the Basin Fill Aquifer in Cedar Valley, Utah County, North-Central Utah (Utah Geological Association Publication vol 36) ed G C Willis, M D Hylland, D L Clark and T C Chidsey Jr (Salt Lake City, UT: Utah Geological Association) pp 345–59
[32] Bengston D N, Fletcher J O and Nelson K C 2004 Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States Landsc. Urban Plann. 69 271–86
[33] Wang D and Cai X 2010 Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds Geophys. Res. Lett. 37 L06406
[34] Russell A and Hughes M 2012 Is the changing precipitation regime of Manchester, UK driven by the development of urban areas? Int. J. Climatol. 32 967–74