GROUND STATE ENERGY
OF CURRENT CARRIERS IN GRAPHENE

P. V. Ratnikov and A. P. Silin

Lebedev Physics Institute, Russian Academy of Sciences,
Leninskii pr. 53, Moscow, 119991 Russia

Received October 30, 2007

Abstract. The ground state energy of current carriers in graphene considered as a zero-gap semiconductor was calculated in the two-band approximation. The condition of the electronic (hole) system stability in graphene was obtained. The possibility of the zero-gap semiconductor–semimetal transition was discussed.

It is known that thin graphite films exhibit semimetallic properties [1]; however, a single-atomic layer of carbon atoms forming a regular hexagonal lattice (graphene) has such a band structure that the energy gap is zero at six K points of the Brillouin zone. Therefore, graphene can be considered as a two-dimensional zero-gap semiconductor or a semimetal with zero conduction and valence band overlap [2]. The former approach makes it possible to describe current carriers in graphene within the two-band Dirac model [7, 8]

\[u\alpha \cdot \hat{p}\Psi = \varepsilon_p \Psi, \]

where \(\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix} \) are Dirac \(\alpha \)-matrices, \(\hat{p} = -i\hbar \nabla \) is the two-dimensional momentum operator (hereafter \(\hbar = 1 \)), \(u = \frac{3}{2}\gamma a_0 = 9.84 \times 10^7 \text{ cm/s} \) is the quantity similar to the Kane matrix element of the interband transition rate, \(\gamma \simeq 3 \text{ eV} \) is the band parameter, and \(a_0 = 1.44 \text{ Å} \) is the interatomic distance in the graphene lattice [9]. In the vicinity of K points of the Brillouin zone, the dispersion relation of current carriers is linear, \(\varepsilon_p = \pm up \) (± signs correspond to electrons and holes, respectively).

\[\text{ratnikov@lpi.ru} \]

\[\text{Dirac equation (1) is equivalent with accuracy of the unitary transformation of the Hamiltonian and the wave function of a pair of Weyl equations (see book [3], p. 79). As is known, the Weyl equation describes the two-component neutrino in quantum electrodynamics (QED) (see, e.g., book [4]). The use of the Dirac equation as a } 4 \times 4 \text{ matrix equation in the two-dimensional system is possible since the } 4 \times 4 \text{ matrix representation in case of two spatial dimensions can be used equivalently with } 2 \times 2 \text{ matrix representation (see book [5], chap. XIV). This fact allows us to extend the formalism of the QED diagram technique to the case of the two-dimensional system of Dirac fermions (graphene). The Weyl equation was first applied to the problem of describing current carriers in a zero-gap semiconductor in [6].} \]
For a two-dimensional electron (hole) gas arising during electron doping of a zero-gap semiconductor [2], the ground state energy per one particle is the sum of three terms

\[E_{gs} = E_{\text{kin}} + E_{\text{exch}} + E_{\text{corr}}, \tag{2} \]

where \(E_{\text{kin}} = \frac{3}{2} u p_F \) is the average kinetic energy, \(p_F = \sqrt{\frac{2e n_{2D}}{\nu}} \) is the Fermi momentum, \(n_{2D} \) is the two dimensional particle concentration, \(\nu \) is the degeneration multiplicity. If the Fermi level \(E_F \) lies above \(E = 0 \), the system contains only electrons as current carriers in the conduction band with the number of valleys \(\nu_e = 2 \); if \(E_F < 0 \), the system contains only holes as current carriers with \(\nu_h = 2 \). The Fermi level position can be varied by applying an electric field [2]. We can see that both cases in the Dirac model are equivalent. In follows, for definiteness, we shall consider the case of electrons.

The exchange energy is given by the first-order exchange diagram (Fig. 1)

\[E_{\text{exch}} = -\frac{\nu}{2n_{2D}} \int \frac{d^2 p d\varepsilon}{(2\pi)^3} \frac{d^2 k d\omega}{(2\pi)^3} Sp \left\{ \gamma^\mu G(p, \varepsilon) \gamma^\nu G(k, \omega) \right\} D_{\mu\nu}(p - k, \varepsilon - \omega), \tag{3} \]

where the photon propagator \(D_{\mu\nu}(p - k, \varepsilon - \omega) \approx V(p - k) \delta_{\mu4} \delta_{\nu4} \) (we neglect the photon pole at \(\omega = \pm c |p - k| \), whose contribution to the integral in frequencies \(\varepsilon \) and \(\omega \) is of the order of \((u/c)^2 \sim 10^{-5} \) in comparison with the contribution of Green’s function poles), \(V(q) = \frac{2\pi e^2}{\kappa_{eff}|q|} \) is the Coulomb law in the two-dimensional case, and \(\kappa_{eff} \) is the effective permittivity of graphene.

The free-electron Green’s function at \(\Delta = 0 \) is [10]

\[G(p, \varepsilon) = -\frac{u \hat{p}}{u^2 p^2 - \varepsilon^2 - i0} + 2\pi i \delta(u^2 p^2 - \varepsilon^2) N_p u \hat{p}, \tag{4} \]

where \(\hat{p} = p_\beta \gamma^\beta (\beta = 0, 1, 2) \) is the convolution with Dirac matrices \(\gamma^k = -i \gamma^0 \alpha^k \) for \(k = 1, 2 \) and \(\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \), \(I \) is the \(2 \times 2 \) unit matrix, \(N_p = \theta(|p| - p_F)\theta(\varepsilon); \theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases} \)

Expression (3) is transformed to the form (see the Appendix)

\[E_{\text{exch}} = -\frac{\alpha^* I_1}{\sqrt{2\pi}} \left(\frac{n_{2D}}{\nu} \right)^{1/2}, \tag{5} \]

Fig. 1. First-order exchange diagram.

\(^3\)In the general case for two spin components, the degeneration multiplicity is \(\nu = \nu_{e,h} \). It will be shown below that the spin-unpolarized state is more energetically favorable than spin-polarized one, for which \(\nu \rightarrow \nu_{e,h}/2 \).
where \(I_1 = \int_0^1 dx \int_0^1 dy \int_0^{2\pi} d\chi \frac{(1+\cos \chi)xy}{\sqrt{x^2+y^2-2xy\cos \chi}} = \frac{8}{3} \left(G + \frac{1}{2} \right) \), \(G = 0.915965 \ldots \) is the Catalan constant [11], \(\alpha^* = \frac{e^2}{\hbar c m^*} \) is the analogue of the fine structure constant.

The correlation energy is given by the formula [12]

\[
E_{\text{corr}} = \frac{1}{2n_{2D}} \int \frac{d^2k}{(2\pi)^3} \int \frac{d\lambda}{\lambda} \left[\frac{-\lambda \nu V(k) \Pi_{44}(k, i\omega)}{1 - \lambda \nu V(k) \Pi_{44}(k, i\omega)} + \lambda \nu V(k) \Pi_{44}^{(0)}(k, i\omega) \right].
\]

(6)

The total polarization operator is written as

\[
\Pi_{44}(k, i\omega) = \Pi_{44}^{(0)}(k, i\omega) + \Pi_{44}^{(1)}(k, i\omega) + \ldots,
\]

(7)

which corresponds to the sum of the diagrams

\[\gamma^\nu \gamma^\mu = \gamma^\nu + \gamma^\nu + \ldots\]

The polarization operator \(\Pi_{44}^{(0)}(k, i\omega) \) in the lowest order in the interaction for the two-dimensional case is given by [10]

\[
\Pi_{44}^{(0)}(k, i\omega) = 16 \int \frac{d^2p}{(2\pi)^2} \frac{\theta (|p| - p_F)}{2\epsilon_p} \frac{(k \cdot p)^2 - \frac{|k|^2 \epsilon_p}{u^2}}{(|k|^2 + \frac{\omega^2}{u^2})^2 - 4 \left(k \cdot p - \frac{i\epsilon_p \omega}{u^2} \right)^2}.
\]

(8)

We calculate the correlation energy using a method similar in many respects to the known Nozieres–Pines method [13, 14] which is applied to calculate the electron gas and electron-hole liquid using asymptotics of the dimensionless polarization operator [15]

\[
\tilde{\Pi}_{44}^{(0)}(r, \theta) = \begin{cases} \\
-\frac{\sin \theta}{24\pi r^2}, & r \gg 1, \\
-\frac{1-|\cos \theta|}{16\pi}, & r \ll 1,
\end{cases}
\]

(9)

where dimensionless variables \(r = \sqrt{\omega^2 + u^2k^2}/u_F \) and \(\sin \theta = u k/\sqrt{\omega^2 + u^2k^2} \) are introduced.

To determine the smallness parameter of expansion (7), we estimate the first-order correction \(\Pi_{44}^{(1)} \) in the interaction to the polarization operator (8)

\[
\Pi_{44}^{(1)}(k, i\omega) = -\int \frac{d^2p \, d\Omega}{(2\pi)^3} \frac{d^2q}{(2\pi)^3} \frac{S(p + q + \Omega) G(p, \epsilon + \Omega) G(q, \epsilon)}{G(p, \epsilon)}.
\]

\[
\gamma^\nu G(p - k, \epsilon - \omega) \gamma^\beta G(p + q - k, \epsilon + \Omega - \omega) \times V(q) \delta_{\alpha \beta} \approx -\frac{\alpha^*}{16\pi u_F} \frac{p_F}{(2\pi)^2} \frac{2\pi \alpha^*}{|q|} \theta(p_F - |p|) \theta(p_F - |q|) = -\frac{\alpha^*}{8\pi^2} \frac{p_F}{u^2}.
\]

(10)
Taking into account that the main contribution to $\Pi_{44}^{(1)}(k, i\omega)$ is made by small transferred momenta due to $V(q)$ [15], (10) should be compared with the asymptotics $\Pi_{44}^{(0)}(k, i\omega)$ at small $|k|$, from which we obtain that (10) is small in the parameter $\frac{\omega_{\pi}}{4\pi} \ll 1$, which is simultaneously the condition of the applicability of the random-phase approximation.

Substitution of the polarization operator asymptotics at $r \gg 1$ into (6) yields the contribution of large momenta

$$E^\infty_{\text{corr}} = -\frac{u_0^2 \nu}{3(2\pi)^2 n_{2D}} [(1 + g_1) \cdot \ln(1 + g_1) - g_1],$$

where $g_1 = \frac{\alpha^* \nu}{12} \ll 1$ at $\nu = 2$ and $\alpha^* \ll 1$; expanding (11), we obtain

$$E^\infty_{\text{corr}} = -\frac{\alpha^* \nu^{1/2}}{864\sqrt{2\pi}} u n_{2D}^{1/2},$$

which coincides with the contribution of the second-order ring diagram (Fig. 2)

$$E^{(2)}_{\text{corr}} = -\frac{i \nu}{4n_{2D}} \int \frac{d^2p d^2q d^2k \epsilon d\Omega d\omega}{(2\pi)^9} \text{Sp} \left\{ \gamma^\alpha G(p, \epsilon) \gamma^\beta G(p - k, \epsilon - \omega) \right\} \times$$

$$\text{Sp} \left\{ \gamma^\mu G(q, \Omega) \gamma^\nu G(q + k, \Omega + \omega) \right\} D_{\alpha\mu}(k, \omega) D_{\beta\nu}(k, \omega) \approx (13)$$

Thus, according to the Nozieres–Pines method [13, 14], when calculating the correlation energy at large transferred momenta by formula (6), with an accuracy of the terms of the order of g^2_1, the analysis can be restricted to the second-order of the perturbation theory. Apart from the second-order ring diagram (Fig. 2), let us also consider the second-order exchange diagram (Fig. 3)

$$\tilde{E}^{(2)}_{\text{corr}} = -\frac{i \nu}{4n_{2D}} \int \frac{d^2p d^2q d^2k d\epsilon d\Omega d\omega}{(2\pi)^9} \text{Sp} \left\{ \gamma^\alpha G(p, \epsilon) \gamma^\beta G(p - k, \epsilon - \omega) \right\} \times$$

$$\gamma^\mu \cdot G(p - q - k, \epsilon - \Omega - \omega) \gamma^\nu G(p - q, \epsilon - \Omega) D_{\alpha\mu}(q, \Omega) D_{\beta\nu}(k, \omega).$$

Evaluation of integral (14) is very laborious; however, estimations show that, as in the nonrelativistic case, its contribution is positive and is smaller in magnitude by a factor of $\frac{1}{2\nu}$ than (13) [16]. Finally, for the contribution of large transferred momenta to the correlation energy, we obtain

$$E^\infty_{\text{corr}} = -\frac{\alpha^* \nu^{1/2}}{864\sqrt{2\pi}} u n_{2D}^{1/2},$$

Substitution of the polarization operator asymptotics at $r \ll 1$ from (9) into (6) yields the contribution of small transferred momenta
The following notations are introduced:
\[p_1 = p - k, \quad \varepsilon_1 = \varepsilon - \omega; \]
\[p_2 = p - q, \quad \varepsilon_2 = \varepsilon - \Omega. \]

\[
E_{corr}^0 = -\frac{u p_l^3 g_2^2}{3(2\pi)^2 n_{2D}} \int_0^{\pi/2} d\theta (1 - \cos \theta)^2 \left[1 - g_2 \frac{1 - \cos \theta}{\sin \theta} \cdot \ln \left(1 + \frac{\sin \theta}{g_2(1 - \cos \theta)} \right) \right. + \\
\left. \sin \theta \frac{1 - \cos \theta}{g_2(1 - \cos \theta)^2} \cdot \ln \left(1 + g_2 \frac{1 - \cos \theta}{\sin \theta} \right) \right], \tag{16}
\]

where \(g_2 = \frac{\alpha^* \nu}{8} \ll 1 \), and expression (16) can be simplified,
\[
E_{corr}^0 = -\frac{\alpha^* \nu^{1/2}}{128 \sqrt{2\pi} u n_{2D}^{1/2}}. \tag{17}
\]

We can see from (15) and (17) that the order of smallness of the correlation energy and exchange energy (5) is \(\alpha^* \) and \(\alpha^* \), respectively; thus, we obtain the ground state energy of the electron gas as a power series of \(\alpha^* \), which we cut off after the terms of the order \(\alpha^* \),
\[
E_{gs} = \frac{2\sqrt{2\pi}}{3} u \left(\frac{n_{2D}}{\nu} \right)^{1/2} - \alpha^* \frac{I_1}{\sqrt{2\pi}} u \left(\frac{n_{2D}}{\nu} \right)^{1/2} - \frac{\alpha^* \nu}{64 \sqrt{2\pi}} \left(\frac{3\pi}{8} - \frac{25}{27} \right) u \left(\nu n_{2D} \right)^{1/2}. \tag{18}
\]

It can be seen from (18) that the spin-unpolarized state with the degeneracy multiplicity \(\nu = \nu_{e,h} \) is more energetically favorable than the spin-polarized state with the degeneracy multiplicity \(\nu = \nu_{e,h}/2 \). The main contribution is given by the kinetic energy; therefore, \(E_{gs} > 0 \). The condition \(E_{gs} > 0 \) in the case of \(\Delta = 0 \) means that graphene as a zero-gap semiconductor is stable (at \(E_{gs} < 0 \), it would be favorable to generate electron–hole pairs). The transition to the semimetallic state, i.e., spontaneous electron–hole pair generation, occurs at certain \(\alpha_0^* \) such that \(E_{gs} < 0 \) at \(\alpha^* > \alpha_0^* \). Equation \(E_{gs} = 0 \) upon the substitution of \(\nu = 2 \) yields
\[
\alpha_0^* = \sqrt{A^2 + B - A} = 1.1044, \tag{19}
\]

where \(A = \frac{64I_1}{3\pi - 202/27} \) and \(B = \frac{512\pi}{9\pi - 202/9} \).
Let us now consider the effect of some parameters on the band structure of graphene in more detail.

Effective multivalley structure. A structure (superlattice) containing N graphene layers, in the absence of transitions between layers, effectively contains $\tilde{\nu} = \nu \cdot N$ electron (hole) valleys with the number of electrons (holes) $N_{e(h)} = N_{e(h)} \cdot N$, where $N_{e(h)}$ is the number of electrons (holes) in each graphene layer. Let graphene layers be interfaced by a wide-gap semiconductor (insulator).

In the general case the Coulomb law for periodic structures is given by the expression \[V(q, w) = \frac{2\pi e^2}{\kappa |q|} \sinh \left(\frac{|q| d}{\cosh \left(\frac{|q| d}{\cos w} \right) - \cos w} \right), \] where $0 \leq w \leq 2\pi$; however, in the case of large transferred momenta such that $|q| d \gg 1$, the second fraction in (20) tends to unity. Formula (11) for E_{∞}^{corr} remains valid with an accuracy of the substitution $g_1 \rightarrow \tilde{g}_1 = \alpha^* \nu^{12} \gg 1$ and $n_{2D} \rightarrow \tilde{n}_{2D} = \frac{N_{e(h)}}{S} = N \cdot n_{2D}$ (S is the area of layers), \[E_{\infty}^{corr} = -\frac{\alpha^*}{36\sqrt{2\pi}} u \left(\frac{n_{2D}}{\nu} \right)^{1/2} \cdot \ln \left(\frac{\alpha^* \nu^{12}}{12 N} \right). \] At small transferred momenta, $|q| d \ll 1$, the Coulomb law (20) is not singular at $|q| = 0$. In this limit, E_{0}^{corr} is small in comparison with E_{∞}^{corr} due to appearance of $\ln N$; therefore, it can be omitted. The ground state energy is given by \[E_{gs} = \left[\frac{2\sqrt{2\pi}}{3} - \frac{\alpha^*}{\sqrt{2\pi}} \left(I_1 + \frac{1}{36} \ln \left(\frac{\alpha^* \nu^{12}}{12 N} \right) \right) \right] \cdot u \left(\frac{n_{2D}}{\nu} \right)^{1/2}. \] **Electric field effect.** As shown above, application of an electric field can produce a nonzero electron (or holes when the electric field direction is changed) density in graphene on substrate [2]. In this case, the two-dimensional current-currier concentration is proportional to the gate voltage V_g [2] \[n_{2D} = \frac{\epsilon}{4\pi e l} V_g, \] where ϵ is the substrate permittivity.

According to the calculation [17], in graphene containing several layers, the energy gap opens at K points of the Brillouin zone under a sufficiently strong electric field. This means that the system transits from a semimetallic state (studied in [1]) to the semiconductor state. Let us find out whether or not a similar phenomenon exists in single-layer graphene. Assume that application of a rather weak electric field results in opening the gap, $\Delta = 0$, small in comparison with the Fermi energy $E_F = u_F$: $\Delta \ll E_F = \frac{\nu}{2\sqrt{\pi} V_g}$; in this case, the correction to the kinetic energy is $\delta E_{kin} = \Delta^2 / E_F$. According to (A1), the correction to the exchange energy is given by \[\delta E_{exch} = -\frac{\alpha^* I_2}{2\pi} \frac{\Delta^2}{E_F}, \] (24)
The correction to the ground state energy contains the additional small factor r, θ
Changing to dimensionless variables E_{up} the transition). We can estimate p is

$$
\kappa = \frac{l}{\cos \chi}
$$
due to image forces, i.e., the variation in the effective permittivity κ relative to the transition to nonzero-gap semiconductor phase in an external electric field. moreover, this correction is positive, which suggests that the zero-gap semiconductor phase is therefore, even in the presence of a gap (small in comparison with E_F), expression (18) is correct; moreover, this correction is positive, which suggests that the zero-gap semiconductor phase is stable relative to the transition to nonzero-gap semiconductor phase in an external electric field.

Transition to the semimetallic phase. For graphene, the parameter α^* can efficiently vary due to image forces, i.e., the variation in the effective permittivity κ_{eff} of graphene depending on its environment (insulator or vacuum); at the substrate thickness $l \gg n_{2D}^{-1/2}$; it is given by $\kappa_{eff} = \epsilon + \epsilon'$, where ϵ' is the permittivity of a medium above graphene [18]. For a SiO$_2$ substrate, $\kappa_{eff} = 5$ and $\alpha^* \approx 0.44$; for a SiC substrate, $\kappa_{eff} = 3$ and $\alpha^* \approx 0.73$ [19]. Let us estimate the valence and conduction band overlap δE in the semimetallic state (Fig. 4). Let initially $E_F > 0$ and $\Delta = 0$; and after the transition, the conduction band was lowered with respect to the level $E = 0$ by $\delta E/2$ and the valence band rose by $\delta E/2$; then the number ΔN_e of electrons transferred to the valence band is $\frac{\nu}{4\pi} p^2 F S$; the new Fermi momentum is $p_2 : N'_e = \frac{\nu}{4\pi} p^2 F S = N_e + \Delta N_e$, where $N_e = \frac{\nu}{4\pi} p^2 F S$ ($p F$ is the Fermi momentum before the transition). We can estimate $ap_2 \approx \delta E/2$. The average kinetic energy of electrons is $E'_{kin} = \frac{\nu}{3} up_2$; for holes, $E''_{kin} = \frac{\nu}{3} up_1$ (the number of holes is equal to the number of transferred electrons, $N_h = \Delta N_e$; therefore, their Fermi momentum is equal to p_1). The ground state energy in the semimetallic phase is given by

$$
E'_{gs} = E'_{kin} + E''_{kin} + E_{exch} + E_{corr},
$$

$$
\delta \Pi^{(0)}_{44} (k, i \omega) = \frac{3}{4 \pi \omega^3} \frac{u^2 |k|^4 \Delta^2}{(u^2 |k|^2 + \omega^2)^2} \arctan \left(\frac{2up_F \omega}{u^2 |k|^2 + \omega^2} \right), \quad (25)
$$

$$
\delta E_{corr} = -\frac{\nu^2}{2n_{2D}} \int \frac{d^2k d\omega}{(2\pi)^3} \frac{V^2 (k) \Pi^{(0)}_{44} (k, i \omega)}{1 - \nu V (k) \Pi^{(0)}_{44} (k, i \omega)} \delta \Pi^{(0)}_{44} (k, i \omega). \quad (26)
$$

Changing to dimensionless variables r, θ and substituting the asymptotics $\tilde{\Pi}^{(0)}_{44}(r, \theta)$ at $r \gg 1$ and $r \ll 1$, noticing that the main contribution to δE_{corr} given by small transferred momenta due to $V^2(k)$ in (26), we obtain

$$
\delta E_{corr} = \frac{9\pi \alpha^2 \nu}{256} \ln \left(1 + \frac{8}{\alpha^* \nu} \right) \frac{\Delta^2}{E_F}. \quad (27)
$$

The correction to the ground state energy contains the additional small factor

$$
\delta E_{gs} = \delta E_{kin} + \delta E_{exch} + \delta E_{corr} = \left[1 - \frac{8G\alpha^*}{\pi} + \frac{9\pi \alpha^2 \nu}{256} \ln \left(1 + \frac{8}{\alpha^* \nu} \right) \right] \frac{\Delta^2}{E_F} \approx 0.1202 \frac{\Delta^2}{E_F}; \quad (28)
$$

therefore, even in the presence of a gap (small in comparison with E_F), expression (18) is correct; moreover, this correction is positive, which suggests that the zero-gap semiconductor phase is stable relative to the transition to nonzero-gap semiconductor phase in an external electric field.
Fig. 4. Transition to the semimetallic state of graphene depending on a substrate material: the conduction band is overlapped with the valence band at all three pairs of neighboring points K and K' of the Brillouin zone.

where E_{corr} is calculated by the polarization operator $\Pi_{44}^{(0)} = \Pi_{44}^{(0)e} + \Pi_{44}^{(0)h}$; E_{exch} is set equal to (5) if $N_h \simeq N_e$ so that $E_{\text{exch}}^h \simeq E_{\text{exch}}^e = E_{\text{exch}}$. Neglecting E_{corr}, on the assumption that $E_{gs}' = 0$, we obtain

$$
\delta E \simeq \left(b - \frac{1}{b} \right) u p_F,
$$

where $b = \left| \frac{E_{\text{exch}}}{E_{\text{kin}}} \right| = \frac{2a^*}{\pi} \left(G + \frac{1}{2} \right)$. The condition $b > 1$ means that the zero-gap semiconductor phase is unstable ($E_{gs} < 0$); in this case, $\delta E > 0$, i.e., the transition to the semimetallic state, the transition from the spin-unpolarized to the spin-polarized occurs.

This study was supported by the “Dynasty” foundation for noncommercial programs.

Appendix

Using the Green’s function from [10], we obtain the expression for the exchange energy at arbitrary energy gap Δ

$$
E_{\text{exch}} = -\frac{\nu}{2n_{2D}} \int \frac{d^2p d^2k}{(2\pi)^4} \frac{\Delta^2 + u^2 p \cdot k + \varepsilon_p \varepsilon_k}{\varepsilon_p \varepsilon_k} \frac{2\pi e^2}{\kappa_{\text{eff}}} |p - k| \theta (p_F - |p|) \theta (p_F - |k|). \quad (A1)
$$

From (A1), in the nonrelativistic limit, $\Delta \gg u p_F, \varepsilon_p \varepsilon_k \approx \Delta^2 \gg u^2 |p \cdot k|$, we obtain

$$
E_{\text{exch}}^{\text{nonrel}} = -\frac{\nu}{n_{2D}} \int \frac{d^2p d^2k}{(2\pi)^4} \frac{2\pi e^2}{\kappa_{\text{eff}}} |p - k| \theta (p_F - |p|) \theta (p_F - |k|), \quad (A2)
$$

which coincides with the known expression (see, e.g., [16]). In the ultrarelativistic limit, $\Delta \ll u p_F, \varepsilon_p \varepsilon_k \approx u^2 |p \cdot k| \gg \Delta^2$, we obtain

$$
E_{\text{exch}}^{\text{ultrarel}} = -\frac{\nu}{2n_{2D}} \int \frac{d^2p d^2k}{(2\pi)^4} \left(1 + \frac{p \cdot k}{|p| |k|} \right) \frac{2\pi e^2}{\kappa_{\text{eff}}} |p - k| \theta (p_F - |p|) \theta (p_F - |k|). \quad (A3)
$$

Dedimensionalizing the integrand in (A3) and integrating over momenta, we obtain the answer in the form of (5). Expression (A3) is equivalent to formula (7) in [20].
References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Science, 306, 666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Nature, 438, 197 (2005).

[3] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969) [in Russian].

[4] S. S. Schweber, Introduction to Relativistic Quantum Field Theory (Halper and Row, New York, 1961).

[5] A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, 2003).

[6] H. Nielsen and M. Ninomiya, Phys. Lett. 130B, 389 (1983).

[7] B. A. Volkov, B. G. Idlis, and M. Sh. Usmanov, Usp. Fiz. Nauk 65, 799 (1995) [Phys. Usp.].

[8] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).

[9] L. A. Falkovsky and A. A. Varlamov, Cond-mat/0606800.

[10] L. E. Pechenik and A. P. Silin, Kratk. Soobshch. Fiz. No. 5-6, 72 (1996) [Bull. Lebedev Phys. Inst.].

[11] I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatlit, Moscow, 1963) [in Russian].

[12] L. V. Keldysh, Contemp. Phys. 27 (5), 395 (1986).

[13] P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958).

[14] M. Combescot and P. Nozieres, J. Phys. C 5, 2369 (1972).

[15] E. A. Andryushin, L. E. Pechenik, and A. P. Silin, Kratk. Soobshch. Fiz. No. 7-8, 68 (1996) [Bull. Lebedev Phys. Inst.].

[16] D. Pines, Elementary Excitations in Solids (W. A. Benjamin, Inc., New York, 1963).

[17] M. Aoki and H. Amawashi, Cond-mat/0702257.

[18] L. V. Keldysh, Pisma v ZhETF 29, 716 (1979) [JETP Lett.]

[19] A. Iyengar, J. Wang, H. A. Fertig, and L. Brey, Phys. Rev. B 75, 125430 (2007).

[20] M. W. C. Dharma-wardana, Phys. Rev. B 75, 075427 (2007).