Application of Scalar Type Operators to Decomposability

Adicka Daniel Onyango

Department of Mathematics, Actuarial and Physical Sciences, University of Kabianga, P.O.Box 2030-20200, Kericho, Kenya.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i730382

Editor(s):
(1) Dr. Leo Willyanto Santoso, Petra Christian University, Indonesia.
(1) Jorge A. Esquivel-Avila, Universidad Autónoma Metropolitana, Mexico.
(2) Rong Cheng, Nanjing University of Information Science and Technology, China.

Complete Peer review History: http://www.sdiarticle4.com/review-history/67374

Received: 18 February 2021
Accepted: 22 April 2021
Published: 27 August 2021

Original Research Article

Abstract

In this paper, we give some application of scalar type operators to Decomposability. In particular, we show that if \(H \) is of \((\alpha, \alpha + 1)\) type \(R \) and that it generates a strongly continuous group on a Banach space, then its resolvent is Decomposable hence scalar type.

Keywords: Decomposable operators; Bishop’s property.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

Definition: Decomposable Operator A bounded operator \(H \) on a complex Banach space \(X \) is decomposable provided that whenever \(\{U_1, U_2, \ldots, U_n\} \) is an open cover of \(C \), there exists closed, \(H \)-invariant subspaces \(Y_k \) such that \(X = Y_1 + Y_2 + \ldots + Y_n \) and \(\sigma(H \mid Y_k) \subseteq U_k, k = 1, 2, \ldots, n \).

This class of operators contains all normal operators on a Hilbert space and compact Banach space operators hence they are of \((\alpha, \alpha + 1)\) type \(R \) operators [1]. The following Theorem due to Albrecht
and Eschmier [2] gives the necessary and sufficient condition for a bounded operator $H \in B(X)$ to be decomposable.

Theorem 1 [2]: A bounded operator $H \in B(X)$ is decomposable if and only if H has Bishop’s property (β) and the decomposition property (δ).

Definition: Let X be a Banach space and Ω an open subset of the plane. Let $Hol(\Omega, X)$ denote the space of analytic functions from Ω to X. Then $Hol(\Omega, X)$ is a Fretchet space with respect to uniform convergence on the compact subsets of Ω. The operator $H \in B(X)$ is said to possess Bishop’s property (β), provided that for every open subset $\Omega \subset \mathbb{C}$, $H_\Omega : Hol(\Omega, X) \to Hol(\Omega, X)$, $H_\Omega f(z) = (z - H)f(z)$ is injective with closed range.

Decomposition Property (δ)

If F is a closed subspace of \mathbb{C}, then the glocal analytic spectral subspace $X_H(F)$ is $X_H(F) = X \cap \text{ran}H_C \setminus F$, that is $x \in X_H(F)$ if there exist an analytic function $f : \mathbb{C} \setminus F \to X$ so that $(H - \lambda)f(\lambda) = x$ for all $\lambda \in \mathbb{C} \setminus F$. A bounded linear operator $H \in B(X)$ has the decomposition property (δ) if $X = X_H(U) + X_H(V)$ for every open cover $\{U, V\}$ of \mathbb{C}.

Albrecht and Escheneier [2] established the remarkable fact that the properties (β) and (δ) are dual to each other. Indeed, $H \in B(X)$ has property (β) (resp (δ)) if and only if H^* has (δ) (resp.(β)).

We shall greatly use the following formulation by Laursen and Neumann [3]

Theorem 2 [3]: Let $H \in B(X)$ and D be a closed disk that contains $\sigma(H)$, and let V be an open neighborhood of D. Suppose that there exist a totally disconnected compact subset E of the boundary of D, a locally bounded function $\omega : V \setminus E \to (0, \infty)$ and an increasing function $\gamma : (0, \infty) \to (0, \infty)$ such that log of γ has an integrable singularity at zero and $\gamma(\text{dist}(\lambda, \partial D)) \parallel x \parallel \leq \omega(\lambda) \parallel (H - \lambda)x \parallel$ for all $x \in X$ and $\lambda \in V \setminus \partial D$, then H has property (β).

In particular, the above Theorem provide sufficient conditions in terms of the norms of resolvents sufficient for bishop’s property (β).

Lemma 3: Let H be generator of arbitrarily continuous semigroup on a Banach space X and let $\lambda, \mu \in \rho(H)$, then $R(\lambda, H)R(\mu, H) = R(\mu, H)R(\lambda, H)$

Proof: The proof follows immediately from the well known resolvent identity;

$$R(\lambda, H) - R(\mu, H) = -(\mu - \lambda)R(\lambda, H)R(\mu, H)$$

for all $\lambda, \mu \in \rho(H)$.

Lemma 4: Let H be as in Lemma [3] and let $T = R(\lambda, H)$. Then $\mu \in \rho(T)$ if and only if $\lambda - \frac{1}{\mu} \in \rho(T)$. In this case, we have

$$(\mu - T)^{-1} = \frac{1}{\mu} I + \frac{1}{\mu^2} R(\lambda - \frac{1}{\mu}, H)$$

(1.1)

From equation (1), $R(\lambda - \frac{1}{\mu}, H) - T = (\lambda - \frac{1}{\mu})T R(\lambda - \frac{1}{\mu}, H)$ which implies $\mu T = (\mu - T)R(\lambda - \frac{1}{\mu}, H)$. Multiplying by $(\lambda - H)$ and dividing through by μ yields

$$I = \frac{1}{\mu} (\lambda - \frac{1}{\mu} - H + \frac{1}{\mu}) R(\lambda - \frac{1}{\mu}, H)(\mu - T)$$

$$= \frac{1}{\mu}(I + \frac{1}{\mu} R(\lambda - \frac{1}{\mu}, H))(\mu - T)$$

39
Thus
\[(\mu - T)^{-1} = -\frac{1}{\mu} I + \frac{1}{\mu^2} R(\lambda - \frac{1}{\mu}, H).\]

The next theorem which is a major result in this section indicates that the kind of resolvent we are dealing with here are decomposable.

Theorem 5: If \(H \) is a generator of arbitrarily strongly continuous semigroup on Banach Space \(X \) with \(\sigma(H, X) \subset \{ z : \text{Re}(z) \leq c \} \) on a Banach space \(X \), then the resolvent operator \(R(\lambda, H) \) is decomposable for all \(\lambda \in \rho(H, X) \).

Proof: Let \(H \) be the generator of strongly continuous semigroup with \(\sigma(H, X) \subset \{ z : \text{Re}(z) \leq c \} \) on a Banach space \(X \). Let \(\lambda, \mu \in \rho(H) \) and \(T = R(\lambda, H) \). By the Hille Yosida theorem we have
\[\| R(\lambda - \frac{1}{\mu}, H) \| \leq \frac{M}{\text{Re}(\lambda - \frac{1}{\mu}) - c}\]
where \(M > 0 \) is a constant.

Now, by the spectral mapping theorem, we get
\[\sigma(T) = \{ \frac{1}{\lambda - it} : t \in \mathbb{R} \} \cup \{0\}\]
letting \(\omega = \frac{1}{\lambda - it} \) where \(\lambda = \text{Re}(\lambda) + i\text{Im}(\lambda) \)
\[\sigma(T) = \{ \omega : |\omega - \frac{1}{2\text{Re}(\lambda)}| = \frac{1}{2\text{Re}(\lambda)}, \text{Re}(\lambda) > 0 \}\]
For any \(\mu \in \rho(T) \), we have \(|\mu - \frac{1}{2\lambda}| > \frac{1}{2\lambda} \) which implies \(\text{Re}(\lambda - \frac{1}{\mu}) > 0 \) and thus \(\text{dist}(\mu, \sigma(T)) = \text{Re}(\lambda - \frac{1}{\mu}) \). Consequently,
\[\| R(\lambda - \frac{1}{\mu}, H) \| \leq \frac{M}{\text{dist}(\mu, \sigma(T))}\]

And from Lemma 4, we obtain
\[\| R(\mu, T) \| \leq \frac{1}{|\mu|} + \frac{1}{|\mu|^2}\text{dist}(\mu, \sigma(T))\]
It follows from Theorem 2 that \(T \) has Bishop property (\(\beta \)). Moreover, the adjoint operator \(T^* \) satisfies \(\sigma(T^*) = \sigma(T) \) and thus
\[\| R(\mu, T^*) \| \leq \frac{1}{|\mu|} + \frac{1}{|\mu|^2}\text{dist}(\mu, \sigma(T))\]
which indicates that \(T^* \) has Bishop’s property (\(\beta \)). This implies that \(T \) has property (\(\delta \)). Thus by Theorem 1 it follows that \(H \) is decomposable.

2 Hardy Spaces

Let \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) denote the unit disk of the complex plane and \(H(D) \) denote the Frechet space of functions analytic on \(D \). For \(0 < p < \infty \), the hardy spaces on the unit disk, \(H^p(D) \) are defined as \(H^p(D) = \{ f \in H(D) : \| f \|_{H^p(D)} = \sup_{0<r<1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \ d\theta < \infty \right) \}. \) We refer to [4] for the basic and comprehensive theory of Hardy spaces. In particular, it is important to note that every \(f \in H^p(D), 0 < p < \infty \), has non tangential boundary values almost everywhere on \(\partial D \) and
\[\| f \|_{H^p(D)} = \left(\int_0^{2\pi} |f(re^{i\theta})|^p \ d\theta \right)^{\frac{1}{p}}\]
Where we regard the boundary function as an extension of f. Moreover the growth condition for the functions in $H^p(D)$ is given by

$$ |f(z)|^p \leq \frac{1}{1-|z|^2} \|f\|^{p}_{H^p(D)}$$

$1 \leq p < \infty$, $f \in H^p(D)$.

We consider the following self analytic map $\varphi_t : D \to D$ given by

$$\varphi_t(z) = e^{-ct}z$$

for all $z \in D$, $t > 0$. We define the corresponding weighted composition operators on $H^p(D)$ by

$$T_tf(z) = (\varphi_t'(z))^{\gamma}f(\varphi_t(z))$$

$$= e^{-ct}\gamma f(e^{-ct}z)$$

for all $f \in H^p(D)$, $\gamma = \frac{1}{p}$.

3 Main Results

The following theorem gives both the semigroup and spectral properties of this group $\{T_t\}$ of composition operators.

Theorem 6: Let $H^p(D), 1 \leq p \leq \infty$ be hardy space of the unit disk D. Define a self analytic map $\varphi_t : D \to D$ by $\varphi_t(z) = e^{-ct}z$ and the corresponding weighted composition operator $T_t : H^p(D) \to H^p(D)$ by $T_tf(z) = e^{-ct}\gamma f(e^{-ct}z)$ where $c \in \mathbb{C}$, $t \geq 0$ and $\gamma = \frac{1}{p}$. Then the following hold:

(a) $\{T_t\}_{t \in \mathbb{R}}$ is a group of isometries on $H^p(D)$

(b) $\{T_t\}_{t \in \mathbb{R}}$ is strongly continuous.

(c) The infinitesimal generator H of T_t is given by $Hf(z) = -cHf(z) - czf'(z)$ with the domain $dom(H) = \{f \in H^p(D) : zf'(z) \in H^p(D)\}$

(d) $\sigma(H) = \sigma_p(H) = \{-c(n + \frac{1}{p}) : n = 0, 1, 2, ...\}$

(e) If $Re(c) = 0$, then $R(c, H)$ is compact, decomposable and a scalar type operator.

Proof: By definition and change of variables argument, we have

$$\|T_tf\|_{H^p(D)}^p = \int_0^{2\pi} |(T_tf)(e^{i\theta})|^p \, d\theta$$

$$= \int_0^{2\pi} |f(\varphi_t(e^{i\theta}))| \varphi_t'(e^{i\theta})ie^{i\theta}|^p \, d\theta.$$

Let $\omega = \varphi_t(e^{i\theta})$, then $d\omega = \varphi_t'(e^{i\theta})ie^{i\theta}d\theta$ and

$$\|T_tf\|_{H^p(D)}^p = \int_0^{2\pi} |f(\omega)|^p \, d\omega = \int_0^{2\pi} |f|^{p} \, d\omega = \|f\|_{H^p(D)}^p.$$
This means that T_t is an isometry. Moreover, $T_0T_s = T_{s+t}$ for all $s, t \in \mathbb{R}$ and $T_s = I$ where I is the identity operator. So $\{(T_t)\}_{t \in \mathbb{R}}$ is a group of isometries as desired.

To show that $\{(T_t)\}_{t \geq 0}$ is strongly continuous, it suffices to show that $\lim_{t \to 0} \| T_tf - f \|_p = 0$ for every $f \in H^p(D)$. Let $X(D)$ be the set containing all functions in $H^p(D)$ that are continuous on D. Then $X(D)$ is dense in $H^p(D)$. Thus for $f \in H^p$ and arbitrary $\epsilon > 0$, there exists $g \in X(D)$ such that $\| f - g \|_p < \epsilon$, then

$$
\| T_tf - f \|_p \leq \| T_tf - T_tg \|_p + \| T_tg - g \|_p + \| g - f \|_p
$$

$$
= 2 \| f - g \|_p + \| T_tg - g \|_p
$$

Now for all $g \in X(D)$, $T_t g(z) \to g(z)$ for all $g \in \partial D$ and by isometry of (T_t), we have $\| T_t g \|_p \to \| g \|_p$. Fatou's lemma then gives $\| T_t g - g \|_p \to 0$. Thus $\| T_tf - f \|_p \leq 2\epsilon$, and hence (T_t) is strongly continuous.

By definition, the infinitesimal generator H of T_t is given by

$$
H(f) = \lim_{t \to 0} \frac{T_tf - f}{t}, \quad f \in D(H)
$$

$$
= \lim_{n \to \infty} \frac{e^{-ct}f(e^{-ct}z) - f(z)}{t}
$$

$$
= \frac{\partial}{\partial t} (e^{-ct}f(e^{-ct}z)) \bigg|_{t=0}
$$

$$
= -c\gamma e^{-ct}f(e^{-ct}z) + e^{-ct}f'(e^{-ct}z)
$$

$$
= -c\gamma f(z) - czf'(z),
$$

which implies that $D(H) \subseteq \{f \in H^p(D) : zf'(z) \in H^p(D)\}$. Conversely, let $f \in H^p(D)$ such that $zf'(z) \in H^p(D)$. Then for $z \in D$, we have

$$
T_tf(z) - f(z) = \int_0^t \frac{\partial}{\partial s} (e^{-cs}f(\phi_s(z))) \, ds
$$

$$
= \int_0^t \left(-c\gamma e^{-cs}f(\phi_s(z)) - czf'(e^{-cs}z) \right) \, ds
$$

$$
= \int_0^t T_s(F) \, ds
$$

where $F(z) = -c\gamma f(z) - czf'(z)$. Thus $\lim_{t \to 0} \frac{T_tf - f}{t} = \lim_{t \to 0} \frac{1}{t} \int_0^t T_s(F) \, ds$ Now for $F \in H^p(D)$ the limit exists and equal to F. Thus $D(H) \supseteq \{f \in H^p(D) : zf'(z) \in H^p(D)\}$, as claimed.

To obtain the point spectrum of H, let λ be an eigenvalue and f be the corresponding eigenvector. Then the eigenvalue equation $Hf = \lambda f$ reduces to the differential equation

$$
-cHf(z) - czf'(z) = \lambda f(z)
$$

which is equivalent to

$$
-czf'(z) = (\lambda + cH)f(z)
$$

To solve the above ODE, we continue as follows;

$$
\frac{f'(z)}{f(z)} = -\frac{1}{c}(\lambda + cH) \frac{dz}{z}
$$

$$
\Leftrightarrow
$$

$$
\frac{df(z)}{f(z)} = -\frac{1}{c}(\lambda + cH) \frac{dz}{z}.
$$
Therefore
\[\ln f(z) = -\frac{1}{c} (\lambda + cH) \ln z + C \]
and thus
\[f(z) = z^{-\frac{1}{c}(\lambda + cH)} \]
for \(c \neq 0 \). Since \(z^{-\frac{1}{c}(\lambda + c\gamma)} \in H(D) \) if and only if \(-\frac{1}{c}(\lambda + c\gamma) \in \mathbb{Z}_+\). That is \(-\gamma + \frac{1}{c} = n, n = 0,1,2,...\) Hence \(\sigma_p(H) = \{ -c(n + \gamma) : n = 0,1,2,... \} \)

Clearly, if \(\text{Re}(c) = 0 \), then \(c \in \rho(H) \) and therefore, the resolvent operator \((c - H)^{-1}\) reduces to
\[R(c,H)f(z) = \frac{1}{cz} \int_0^z f(\xi)d\xi. \]

As remarked by Cowen and Macluer [5], such resolvents are compact and therefore
\[\sigma(H) = \sigma_p(H) \]

Now by Theorem 5, \(R(c,H) \) is decomposable and hence of scalar type

4 Conclusion

In this study we gave application of scalar type operators to Decomposibility. In particular, we showed that if \(H \) is of \((\alpha,\alpha + 1)\) type \(R \) and that it generates a strongly continuous group on a Banach space, then its resolvent is Decomposable and therefore it is scalar type.

Acknowledgement

I thank University of Kabianga for giving me an enabling environment to write this paper.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Oleche PO, Ongati NO, Agure JO. Operators with slowly growing resolvents towards the spectrum. International Journal of Pure and Applied Mathematics. 2009;51(3):245-357.

[2] Albrecht E, Eschmeier J. Analytic functional models and local spectral theory. Proceedings of London Math. Soc. 1997;75:323-348.

[3] Laursen K, Neumann M. An introduction to local spectral theory. Clarendon Press, Oxford; 2000.

[4] Duren P. Hp Spaces, Academic Press, New York; 1970.
[5] Cowen CC, MacCluer BD. Composition operators on spaces of analytic functions. CRC Press, Boca Raton; 1995.

©2021 Onyango; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/67374