ALGEBRAIC HULLS OF SOLVABLE GROUPS AND EXPONENTIAL ITERATED INTEGRALS ON SOLVMANIFOLDS

HISASHI KASUYA

Abstract. We represent the coordinate ring of algebraic hulls (which are generalizations of the Malcev completions of nilpotent groups for solvable groups) of solvmanifolds G/Γ by using Miller’s exponential iterated integrals (which are extensions of Chen’s iterated integrals) of invariant differential forms.

1. Introduction

Let G be a simply connected Lie group and \mathfrak{g} the Lie algebra of G. We consider the space $\bigwedge \mathfrak{g}^*_C$ of C-valued left G-invariant differential forms on G. We assume that G has a lattice (i.e., cocompact discrete subgroup) Γ. We consider the compact homogeneous space G/Γ and $\bigwedge \mathfrak{g}^*_C$ as a subcomplex of the de Rham complex $A^*_C(G/\Gamma)$ of G/Γ. Suppose G is nilpotent. Then we have the unique unipotent algebraic group U_Γ called the Malcev completion of Γ such that there is a injection $\Gamma \rightarrow U_\Gamma$ with the Zariski-dense image. We can represent the coordinate ring of U_Γ by using Chen’s iterated integrals on G/Γ (see [2]). Since the inclusion $\bigwedge \mathfrak{g}^*_C \subset A^*_C(G/\Gamma)$ induces a cohomology isomorphism by Nomizu’s theorem [11], $\bigwedge \mathfrak{g}^*_C$ is the Sullivan minimal model of $A^*_C(G/\Gamma)$ (see [4]). This implies $H^0(B(\bigwedge \mathfrak{g}^*_C)) \cong H^0(B(A^*_C(G/\Gamma)))$ where $B(\bigwedge \mathfrak{g}^*_C)$ and $B(A^*_C(G/\Gamma))$ are the reduced bar constructions of $\bigwedge \mathfrak{g}^*_C$ and $A^*_C(G/\Gamma)$ respectively (see [3]). Hence we can represent the coordinate ring of U_Γ by using Chen’s iterated integrals of left-invariant forms.

Suppose G is solvable. Then Chen’s iterated integrals on G/Γ does not give sufficient information on the fundamental group of G/Γ. For example, let $G = \mathbb{R} \ltimes \phi \mathbb{R}^2$ such that $\phi(t) = \left(e^t \quad 0 \quad 0 \right)$. Then G has a lattice Γ and the inclusion $\bigwedge \mathfrak{g}^*_C \subset A^*_C(G/\Gamma)$ induces a cohomology isomorphism (see [5]). Since we have $H^1(G/\Gamma, \mathbb{C}) = H^1(\bigwedge \mathfrak{g}^*_C) = \mathbb{C}$, by Chen’s results, iterated integrals represent the coordinate ring of an additive algebraic group $G_{rad} = \mathbb{C}$ (see [7]). But since Γ is solvable and not abelian, we can’t embed Γ in G_{rad}.

In [10], as an extension of the Malcev completion, Mostow constructed a Zariski-dense embedding of Γ in an algebraic group H_Γ called algebraic hull of Γ. In [7], Miller gave extensions of Chen’s iterated integrals called exponential iterated integrals. In this paper we represent the coordinate ring of H_Γ by using Miller’s exponential iterated integrals of left-invariant differential forms on G/Γ.

2. Relative completions and algebraic hulls

Let G be a discrete group (resp. a Lie group). We call a map $\rho : G \rightarrow GL_n(\mathbb{C})$ a representation, if ρ is a homomorphism of groups (resp. Lie groups). In this paper

Key words and phrases. exponential iterated integral, algebraic hull, solvmanifold.
we denote by $T_n(C)$ the group of $n \times n$ upper triangular matrix and denote by $U_n(C)$ the group of $n \times n$ upper triangular unipotent matrix.

2.1. **algebraic groups and pro-algebraic groups.** In this paper an algebraic group means an affine algebraic variety G over C with a group structure such that the multiplication and inverse are morphisms of varieties. All algebraic groups arise as Zariski-closed subgroups of $GL_n(C)$. A pro-algebraic group is an inverse limit of algebraic groups. If a pro-algebraic group is an inverse limit of unipotent algebraic groups, it is called pro-unipotent. Let G be a pro-algebraic group. We denote by $U(G)$ the maximal pro-unipotent normal subgroup called the pro-unipotent radical.

If $U(G) = e$, G is called reductive. We denote by $C[G]$ the coordinate ring of G. The group structure on G induces a Hopf algebra structure on $C[G]$. It is known that we have the anti-equivalence between algebras and affine varieties induces an anti-equivalence between pro-algebraic groups and reduced Hopf algebras.

Theorem 2.1. ([9], [6]) Let G be a pro-algebraic group. Then the exact sequence

$$
1 \longrightarrow U(G) \longrightarrow G \longrightarrow G/U(G) \longrightarrow 1
$$

splits.

Let G be a discrete group or Lie group. We denote by $A(G)$ the inverse limit of all representations $\phi : G \rightarrow G$ with Zariski-dense images. We call the pro-unipotent radical $U(A(G))$ of $A(G)$ the unipotent hull of G and denote it U_G.

2.2. **Relative completion.** Let $\rho : G \rightarrow S$ be a representation of G to a diagonal algebraic group S with the Zariski-dense image. Let $\phi : G \rightarrow G$ be a representation of G to an algebraic group G with the Zariski-dense image. We call ϕ a ρ-relative representation if we have the commutative diagram

$$
1 \longrightarrow U(G) \longrightarrow G \longrightarrow S \longrightarrow 1.
$$

If S is contained in an algebraic torus, for any ρ-relative representation $\phi : G \rightarrow G$ there exists a faithful representation $G \rightarrow T_n(C)$ such that $G \cap U_n(C) = U(G)$ (see [7]).

We denote by $\mathcal{G}_\rho(G)$ the inverse limit of ρ-relative representations $\phi_i : G \rightarrow G_i$. We call $\mathcal{G}_\rho(G)$ the ρ-relative completion of G. If S is trivial, $\mathcal{G}_\rho(G)$ is the classical Malcev (or unipotent) completion.

2.3. **Algebraic hulls.** We define the algebraic hulls of polycyclic groups (resp. Lie groups) which constructed in [10].

A group Γ is polycyclic if it admits a sequence

$$
\Gamma = \Gamma_0 \supset \Gamma_1 \supset \cdots \supset \Gamma_k = \{e\}
$$

of subgroups such that each Γ_i is normal in Γ_{i-1} and Γ_{i-1}/Γ_i is cyclic. For a polycyclic group Γ, we denote $\text{rank} \Gamma = \sum_{i=1}^k \text{rank} \Gamma_{i-1}/\Gamma_i$. Let G be a simply connected solvable Lie group and Γ be a lattice of G. Then Γ is torsion-free polycyclic and $\dim G = \text{rank} \Gamma$.

Let G be a simply connected solvable Lie group or torsion-free polycyclic group. Consider the algebraic completion $A(G)$. Then it is known that the unipotent hull
\(U_G = U(A(G)) \) is finite dimensional (see [10]). By Theorem 2.1, we have a splitting \(A(G) = (A(G)/U_G) \ltimes \phi U_G. \) Let \(K \) be the kernel of the action \(\phi : (A(G)/U_G) \to \text{Aut}(U_G). \) Then \(K \) is the maximal reductive normal subgroup of \(A(G) \) (see [10]). Denote \(H_G = A(G)/K \) and call it the algebraic hull of \(G. \)

Theorem 2.2. ([10], [13]) Let \(G \) be a simply connected solvable Lie group (resp. torsion-free polycyclic group). Then \(G \to H_G \) is injective and \(H_G \) is finite dimensional algebraic group such that:

1. \(\dim U(H_G) = \dim G \) (resp. = rank \(G \)).
2. The centralizer of \(U(H_G) \) in \(H_G \) is contained in \(U(H_G) \).

Conversely if an algebraic group \(H \) with an injective homomorphism \(\psi : G \to H \) with the Zariski-dense image satisfies the properties (1) and (2), then \(H \) is isomorphic to \(H_G \).

2.4. Direct constructions of algebraic hulls.

The idea of this subsection is based on classical works of semi-simple splitting (see [11], [12] and the references given there). Let \(g \) be a solvable Lie algebra, and \(n = \{ X \in g | \text{ad}_X \text{ is nilpotent} \} \). \(n \) is the maximal nilpotent ideal of \(g \) and called the nilradical of \(g \). Then we have \([g, g] \subset n \). Let \(D(g) \) be the Lie algebra of derivations of \(g \). By the Jordan decomposition, we have \(\text{ad}_X = \text{ad}_{sX} + \text{ad}_{nX} \) such that \(\text{ad}_{sX} \) is a semi-simple operator and \(\text{ad}_{nX} \) is a nilpotent operator. Since we have \(d_X, n_X \in D(g) \), we have the map \(\text{ad}_s : g \to D(g) \). Since \(\text{ad} \) is trigonalizable (Lie’s theorem), this map is homomorphism with the kernel \(n \). Let \(\bar{\text{g}} = \text{Im} \text{ad}_s \ltimes g \). and \(\bar{n} = \{ X - \text{ad}_{sX} \in \bar{\text{g}} | X \in g \} \).

Proposition 2.3. \(\bar{n} \) is a nilpotent ideal of \(\bar{\text{g}} \) and we have a decomposition \(\bar{\text{g}} = \text{Im} \text{ad}_s \ltimes \bar{n}. \)

Proof. By \(\text{ad}_X - \text{ad}_{sX} = \text{ad}_X - \text{ad}_{sX} \) on \(g \), \(\text{ad}_X - \text{ad}_{sX} \) is a nilpotent operator and hence \(\bar{n} \) consists of nilpotent elements. By Lie’s theorem, we have a basis

\[
X_1, \ldots, X_l, X_{l+1}, \ldots, X_n
\]

d of \(g \otimes \mathbb{C} \) such that \(\text{ad} \) is represented by upper triangular matrices. Since the nilradical \(n \) is an ideal, \(n \otimes \mathbb{C} \) is ad-invariant subspace of \(g \otimes \mathbb{C} \). We choose \(X_1, \ldots, X_l \) a basis of \(n \otimes \mathbb{C} \). By \([g, g] \subset n \), we have \(\text{ad}_X(g \otimes \mathbb{C}) \subset n \otimes \mathbb{C} = \langle X_1, \ldots, X_l \rangle \), and hence \(\text{ad} \) represented as

\[
\text{ad}_X = \begin{pmatrix}
 a_{11}(X) & \cdots & \cdots & a_{1l}(X) \\
 \vdots & \ddots & & \vdots \\
 a_{l1}(X) & \cdots & a_{ll}(X) & 0 \\
 0 & \cdots & 0 & \ddots \\
 \vdots & & \vdots & \ddots \\
 0 & \cdots & 0 & 0
\end{pmatrix}.
\]

Thus we have \(\text{ad}_{sX}(X_i) = a_{11}(X)X_i \) for \(1 \leq i \leq l \) and \(\text{ad}_{sX}(X_i) = 0 \) for \(l + 1 \leq i \leq n \). By this we have

\[
[X_i + \text{ad}_{sY}, X_j + \text{ad}_{sZ}] \in \langle X_1, \ldots, X_l \rangle = n \otimes \mathbb{C}
\]

for any \(1 \leq i, j \leq n, Y, Z \in g \). This implies \([\bar{\text{g}}, \bar{\text{g}}] \subset n \). By \(n \subset \bar{n} \), \(\bar{n} \) is an ideal of \(\bar{\text{g}} \) and we have \(\bar{\text{g}} = \{ \text{ad}_{sX} + Y - \text{ad}_{sY} | X, Y \in g \} = \text{Im} \text{ad}_s \ltimes \bar{n}. \) \(\square \)
By this proposition, we have the inclusion \(i : \mathfrak{g} \to D(\bar{n}) \times \bar{n} \) given by \(i(X) = \text{ad}_{\mathfrak{X}}X + X - \text{ad}_{\mathfrak{X}}X \) for \(X \in \mathfrak{g} \).

Let \(G \) be a simply connected solvable Lie group and \(\mathfrak{g} \) be the Lie algebra of \(G \). For the adjoint representation \(\text{Ad} : G \to \text{Aut}(\mathfrak{g}) \), we consider the semi-simple part \(\text{Ad}_s : G \to \text{Aut}(\mathfrak{g}) \) as similar to the Lie algebra case. Denote by \(T \) the universal covering of \(\text{Ad}_s(G) \). Let \(\bar{N} \) be the simply connected Lie group which corresponds to \(\bar{n} \). Then by Proposition 2.4 we have \(T \times G = T \times \bar{N} \). By the proof of this proposition, the action \(T \to \text{Aut}(\bar{n}) \) is the extension of the action of \(\text{Im}(\text{ad}_s) \). Hence we have \(\text{Ad}_s(G) \times G = \text{Ad}_s(G) \times \bar{N} \).

A simply connected nilpotent Lie group is considered as the real points of a unipotent \(\mathbb{R} \)-algebraic group (see [12, p. 43]) by the exponential map. We have the universal \(\mathbb{R} \)-algebraic group \(\bar{N} \) with \(\bar{N}(\mathbb{R}) = \bar{N} \). We identify \(\text{Aut}_a(\bar{N}) \) with \(\text{Aut}(\mathfrak{n}_G) \) and \(\text{Aut}_a(\bar{N}) \) has the \(\mathbb{R} \)-algebraic group structure with \(\text{Aut}_a(\bar{N})(\mathbb{R}) = \text{Aut}(N) \). So we have the \(\mathbb{R} \)-algebraic group \(\text{Aut}_a(\bar{N}) \times \bar{N} \). Then by \(\text{Ad}_s(G) \times G = \text{Ad}_s(G) \times \bar{N} \subset \text{Aut}_a(\bar{N}) \times \bar{N} \), we consider the Zariski-closure \(\mathbb{G} \) of \(G \) in \(\text{Aut}_a(\bar{N}) \times \bar{N} \). Since \(\text{Ad}_s(G) \) is a group of diagonal automorphisms, we have \(U(\mathbb{G}) = \bar{N} \). By \(\dim \mathbb{G} = \dim \bar{N} \), we can easily check that \(\mathbb{G} \) satisfies the properties (1), (2) in Theorem 2.2 and hence it is the algebraic hull \(\mathbb{H}_G \) of \(G \). Hence the inclusion \(i : \mathfrak{g} \to D(\bar{n}) \times \bar{n} \) induces the algebraic hull \(I : G \to \mathbb{H}_G \) of \(G \). Since \(i : \mathfrak{g} \to D(\bar{n}) \times \bar{n} \) is induced by the Lie algebra homomorphism \(\text{ad} : \mathfrak{g} \to D(\bar{n}) \times \bar{n} \), the composition \(G \to \mathbb{H}_G \to \mathbb{H}_G/U(\mathbb{H}_G) \) is induced by the Lie algebra homomorphism \(\text{ad}_s : \mathfrak{g} \to D(\mathfrak{g}) \) by \(U(\mathbb{G}) = \bar{N} \). Thus we have the following lemma.

Lemma 2.4. The algebraic hull \(G \to \mathbb{H}_G \) is an \(\text{Ad}_s \)-relative representation.

2.5. Algebraic hulls and relative completions of solvable groups.

Theorem 2.5. Let \(G \) be a simply connected Lie group. Then the algebraic hull \(\mathbb{H}_G \) is isomorphic to the \(\text{Ad}_s \)-relative completion \(S_{\text{Ad}_s}(G) \) of \(G \).

Proof. Consider a commutative diagram

\[
\begin{array}{ccc}
\mathbb{H}' & \xrightarrow{\Phi} & \mathbb{H}_G \\
\downarrow & & \downarrow \\
G & \to & \mathbb{H}_G
\end{array}
\]

for some \(\text{Ad}_s \)-relative representation \(G \to \mathbb{H}' \). Since \(G \to \mathbb{H}' \) and \(G \to \mathbb{H}_G \) have Zariski-dense images, \(\Phi : \mathbb{H}' \to \mathbb{H}_G \) is surjective and the restriction \(\Phi : U(\mathbb{H}') \to U(\mathbb{H}_G) \) is also surjective. By \(U(\mathbb{H}_G) = U_G \), \(\Phi : U(\mathbb{H}') \to U(\mathbb{H}_G) \) is an isomorphism. Since \(G \to \mathbb{H}' \) and \(G \to \mathbb{H}_G \) are \(\text{Ad}_s \)-relative representations, \(\Phi \) induces the isomorphism \(\mathbb{H}'/U(\mathbb{H}') \to \mathbb{H}_G/U(\mathbb{H}_G) \). Hence \(\Phi : \mathbb{H}' \to \mathbb{H}_G \) is an isomorphism. By the definition of \(\text{Ad}_s \)-relative completion of \(G \), we have the theorem.

Theorem 2.6. Let \(G \) be a simply connected solvable Lie group and \(\Gamma \) a lattice of \(G \). Then the algebraic hull \(\mathbb{H}_\Gamma \) of \(\Gamma \) is isomorphic to \(\text{Ad}_s(\Gamma) \)-relative completion \(S_{\text{Ad}_s(\Gamma)}(\Gamma) \) of \(\Gamma \).

Proof. For the algebraic hull \(\psi : G \to \mathbb{H}_G \) of \(G \), we consider the Zariski-closure of \(\psi(\Gamma) \) in \(\mathbb{H}_G \). Then by \(\dim G = \text{rank} \Gamma \) we can easily check that this algebraic group satisfies (1) and (2) in Theorem 2.2 and hence it is the algebraic hull \(\mathbb{H}_\Gamma \) of \(\Gamma \). By
the above theorem, $\Gamma \to \mathbf{H}_\Gamma$ is a $\text{Ad}_{\mathbf{ad}}$-relative representation. As similar to the above proof, we have the theorem.

\section{Exponential iterated integral on solvmanifolds}

In this section we consider Miller’s exponential iterated integrals. Let M be a C^∞-manifold and $\Omega_x M$ be a space of piecewise smooth loops $\lambda : [0, 1] \to M$ with $\lambda(0) = x$. For 1-forms $\omega_1, \ldots, \omega_n \in A^1_\mathbb{C}(M)$, the iterated integral $\int \omega_1 \omega_2 \cdots \omega_n : \Omega_x M \to \mathbb{C}$ is defined by

$$
\int_\lambda \omega_1 \omega_2 \cdots \omega_n = \int_{0 \leq t_1 \leq t_2 \leq \cdots \leq t_n \leq 1} F(t_1) F(t_2) \cdots F(t_n) dt_1 dt_2 \cdots dt_n \lambda \in \Omega_x M
$$

where $F(t) dt = \lambda^* \omega_1 \in A^1([0, 1])$. In [7], for $\delta_1, \delta_2, \ldots, \delta_n, \omega_1, \omega_2, \omega_3, \ldots, \omega_{n-1} \in A^1_\mathbb{C}(M)$ Miller defined the exponential iterated integral $e^{\delta_1 \omega_1 e^{\delta_2 \omega_2} e^{\delta_3 \omega_3} \cdots e^{\delta_{n-1} \omega_{n-1} e^{\delta_n} \omega_n}} : \Omega_x M \to \mathbb{C}$ as

$$
\int_\lambda e^{\delta_1 \omega_1 e^{\delta_2 \omega_2} e^{\delta_3 \omega_3} \cdots e^{\delta_{n-1} \omega_{n-1} e^{\delta_n} \omega_n}} = \sum_{m_1, m_2, \ldots, m_n \geq 0} \int_\lambda \delta_1 \omega_1 e^{\delta_2 \omega_2} \cdots e^{\delta_{n-1} \omega_{n-1} e^{\delta_n} \omega_n} \delta_{n} \ldots \delta_n.
$$

Then this infinite sum converges (see [7]). Let $L \subset A^1_\mathbb{C}(M)$ be a finitely generated \mathbb{Z}-module of 1-forms such that $dL = 0$. We denote $E^L(M, x)$ the \mathbb{C}-vector space of functions on $\Omega_x M$ generated by

$$
\{ \int e^{\delta_1 \omega_1 e^{\delta_2 \omega_2} e^{\delta_3 \omega_3} \cdots e^{\delta_{n-1} \omega_{n-1} e^{\delta_n} \omega_n}} | \delta_1, \ldots, \delta_n \in L, \omega_1, \omega_2, \omega_3, \ldots, \omega_{n-1} \in A^1_\mathbb{C}(M) \}.
$$

If $I \in E^L(M, x)$ is constant on homotopy classes of loops $\lambda : [0, 1] \to M$ relative to $\{0, 1\}$, we call I a closed exponential iterated integral. Let $H^0(E^L(M, x))$ denote the subspace of closed exponential iterated integrals. Take a \mathbb{Z}-basis $\{ \delta_1, \delta_2, \ldots, \delta_n \}$ of L. Then we have the diagonal representation $\rho : \pi_1(M, x) \to D_n(\mathbb{C})$ such that $\rho(\lambda) = \text{diag}(\int_\lambda e^{\delta_1}, \ldots, \int_\lambda e^{\delta_n})$ for $\lambda \in \pi_1(M, x)$. Consider the ρ-relative completion $\mathcal{S}_\rho(\pi_1(M, x))$ of the fundamental group of M. Miller showed the following theorem.

Theorem 3.1. ([7 Theorem 6.1]) The space $H^0(E^L(M, x))$ is a Hopf algebra and we have a Hopf algebra isomorphism

$$
H^0(E^L(M, x)) \cong \mathbb{C}[\mathcal{S}_\rho(\pi_1(M, x))].
$$

Remark 3.1. For any ρ-relative representation $\phi : \pi_1(M, x) \to G$, Miller showed that ϕ is the monodromy of a flat connection ω on $M \times \mathbb{C}^n$ whose connection form is an upper triangular matrix. Then the monodromy of ω is given by $I + \sum_{i=1}^\infty \int \omega_i \cdots \omega$ and its matrix entries are exponential iterated integrals. In the proof of Theorem 6.1 of [7], Miller showed that these matrix entries generate the coordinate ring $\mathbb{C}[\mathbf{G}]$.

Consider a simply connected solvable Lie group G with a lattice Γ. Take a diagonalization of the semi-simple part ad_s of the adjoint representation ad on \mathfrak{g}. Write $\text{ad}_s = \text{diag}(\delta_1, \ldots, \delta_n)$ where $\delta_1, \ldots, \delta_n$ are characters of \mathfrak{g}. By $\delta_1, \ldots, \delta_n \in \text{Hom}(\mathfrak{g}, \mathbb{C})$, we regard $\delta_1, \ldots, \delta_n$ as left-invariant closed 1-forms. Let L be the \mathbb{Z}-module generated by $\delta_1, \ldots, \delta_n$. Consider the algebraic hull \mathbf{H}_Γ of Γ. Since we have $\pi_1(G/\Gamma, x) \cong \Gamma$, by Theorem 2.7, we have:
Corollary 3.2. We have a Hopf algebra isomorphism
\[H^0(E^L(G/\Gamma, x)) \cong \mathbb{C}[H_\Gamma]. \]

Let \(E^L(g^c) \) denote the subvector space of \(E^L(G/\Gamma, x) \) generated by
\[\{ \int e^{\delta_i} \omega_{12} \cdots \omega_{n-1n} e^{\delta_n} | \delta_1, \ldots, \delta_n \in L \ \omega_{12}, \omega_{23}, \ldots, \omega_{n-1n} \in g^c \}. \]

Studying the proof of [7, Lemma 5.1], we can see that \(E^L(g^c) \) is closed under the multiplication. We define the subring
\[H^0(E^L(g^c)) = E^L(g^c) \cap H^0(E^L(G/\Gamma, x)) \]
of \(H^0(E^L(G/\Gamma, x)) \).

Theorem 3.3. We have \(H^0(E^L(g^c)) = H^0(E^L(G/\Gamma, x)) \).

Proof. Consider the algebraic hull \(\psi : G \to H_G \) of \(G \). Since \(\psi : G \to H_G \) is \(\text{Ad}_s \)-relative, we can assume \(H_G \subset T_r(\mathbb{C}) \) and \(U_r(\mathbb{C}) \cap H_G = U(H_G) \) as in Section 2.2. Let \(\psi_s : g \to t_r(\mathbb{C}) \) be the derivative of \(\psi \) where \(t_r(\mathbb{C}) \) is the Lie algebra of \(T_r(\mathbb{C}) \). We write
\[\psi_s = \begin{pmatrix} \omega_{11} & \omega_{12} & \cdots & \omega_{1r} \\ \vdots & \ddots & \ddots & \vdots \\ \omega_{r-1r} & \cdots & \omega_{rr} \\ \omega_{rr} \end{pmatrix} \]
as we consider \(\psi_s \in \text{Hom}(g, \mathbb{C}) \otimes T_r(\mathbb{C}) \). Then we have
\[(d\psi_s - \psi_s \wedge \psi_s)(X, Y) = \psi_s([X, Y]) - [\psi_s(X), \psi_s(Y)] = 0 \]
for \(X, Y \in g \). Hence we have the flat connection \(d - \psi_s \) on the vector bundle \(G \times \mathbb{C}^r \). Consider the parallel transport \(T = I + \sum_{i=1}^{\infty} \int \psi_s \cdots \psi_s \) of this connection. Let \(P_rG \) be the space of the paths \(\gamma : [0, 1] \to G \) with \(\gamma(0) = e \) where \(e \) is the identity element of \(G \). We consider the spaces \(P_rG/\sim \) of homotopy classes of \(\gamma \in P_rG \) relative to \(\{0, 1\} \). Since \(G \) is simply connected, we have \(P_rG/\sim = G \). It is easily seen that the parallel transport \(T \) on \(P_rG/\sim = G \) is a homomorphism whose derivative is equal to \(\psi_s \). Hence we can identify the parallel transport \(T \) on \(P_rG/\sim \) with the representation \(\psi_s \). Since \(\psi_s \) is \(\text{Ad}_s \)-relative and the diagonal entries of \(T \) are \(\int e^{\omega_{11}}, \ldots, \int e^{\omega_{rr}} \), we have \(\omega_{11}, \ldots, \omega_{rr} \in L \). By the proof of Theorem 2.6, the injection \(\phi : \Gamma \to H_\Gamma \) is the restriction of \(\psi \) on \(\Gamma \). Thus the representation \(\phi \) is the monodromy \(I + \sum_{i=1}^{\infty} \int \psi_s \cdots \psi_s \) of the left-invariant flat connection \(d - \psi_s \) on the vector bundle \(G/\Gamma \times \mathbb{C}^r \). By Remark 3.1, the ring \(\mathbb{C}[H_\Gamma] \) is generated by matrix entries of \(I + \sum_{i=1}^{\infty} \int \psi_s \cdots \psi_s \). Hence the theorem follows from Corollary 3.2. \(\square \)

4. An Example and a remark

Let \(N \) be a simply connected nilpotent Lie group and \(n \) the Lie algebra of \(N \). We suppose that \(G \) has a lattice \(\Gamma \). Then we can represent the coordinate ring of the Malcev completion of \(\Gamma \) by using Chen’s iterated integral of left-invariant forms on \(N \). In this paper we give another representation of the Malcev completion of the fundamental group of some nilmanifold.
Consider the solvable Lie group $G = \mathbb{R} \ltimes \mu \mathbb{C}^2$ such that $\mu(t) = \begin{pmatrix} e^{i\pi t} & te^{i\pi t} \\ 0 & e^{i\pi t} \end{pmatrix}$.

We have the lattice $\Gamma = 2\mathbb{Z} \ltimes (\mathbb{Z} + i\mathbb{Z})$. We consider the inclusion $\bigwedge g^* \subset A^*(G/\Gamma)$. The map $H^*(\bigwedge g^*) \to H^*(G/\Gamma, \mathbb{C})$ induced by this inclusion is injective (see [13]).

By $(\bigwedge g^*)^0 = \mathbb{C}$ and $(\bigwedge g^*)^1 \cap dA^0(G/\Gamma) = 0$, we have an isomorphism $H^0(B(\bigwedge g^*, x)) \cong H^0(\overline{B}(\bigwedge g^*))$ where $H^0(B(\bigwedge g^*, x))$ is the space of closed Chen's iterated integrals of the left-invariant forms on the based loop space $\Omega_x G/\Gamma$ and $H^0(\overline{B}(\bigwedge g^*))$ is the reduced bar construction (see [2]). Since we have $H^1(\bigwedge g^*) \cong \mathbb{C}$, we have an isomorphism $H^0(B(\bigwedge g^*, x)) \cong \mathbb{C}[G_{ad}]$.

On the other hand, let L be the sub \mathbb{Z}-module of g^* generated by $\{i\pi dt\}$. Then by Corollary 3.2 and Theorem 3.3 we have an isomorphism $H^0(E_L(g^*)) \cong \mathbb{C}[H_{\Gamma}]$.

Since we have $\mu(2t) = \begin{pmatrix} 1 & 2t \\ 0 & 1 \end{pmatrix}$ for $t \in \mathbb{Z}$, Γ is nilpotent. Hence H_{Γ} is the Malcev completion of Γ. Since two compact solvmanifolds having the same fundamental group are diffeomorphic (see [8] or [13]), G/Γ is diffeomorphic to a nilmanifold. By these arguments we notice:

Remark 4.1. By closed Chen's iterated integrals of the 1-forms g^*_c on G/Γ, we can not represent the coordinate ring of Malcev completion of the fundamental group of the nilmanifold G/Γ. But the closed L-exponential iterated integrals of g^*_c enable us to represent it.

Acknowledgements.

The author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating discussions. This research is supported by JSPS Research Fellowships for Young Scientists.

References

[1] A. Borel, Linear algebraic groups 2nd enl. ed Springer-verlag (1991).
[2] K. T. Chen, Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879.
[3] K. T. Chen, Reduced Bar constructions on de Rham complexes, in: A. Heller, A. Tierney (eds), Algebra, Topology, and Category Theory, Academic Press, 1977, 19–32.
[4] K. Hasegawa, Minimal models of nilmanifolds. Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71.
[5] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. 1 A 1960 289–331 (1960).
[6] G. Hochschild, G. D. Mostow, Pro-affine algebraic groups. Amer. J. Math. 91 1969 1127–1140.
[7] C. Miller, Exponential iterated integrals and the relative solvable completion of the fundamental group of a manifold, Topology 44(2005)351–373.
[8] G. D. Mostow, Factor spaces of soluble groups. Ann. of Math. (2) 60, (1954). 1–27.
[9] G. D. Mostow, Fully reducible subgroups of algebraic groups. Amer. J. Math. 78 (1956), 200–221.
[10] G. D. Mostow, Representative functions on discrete groups and soluble arithmetic subgroups. Amer. J. Math. 92 1970 1–32.
[11] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2) 59, (1954). 531–538.
[12] A. L. Onishchik, and E. B. Vinberg, Discrete subgroups of Lie groups and cohomologies of Lie groups and Lie algebras, Springer (2000).
[13] M.S. Raghunathan, Discrete subgroups of Lie Groups, Springer-verlag, New York, 1972.
[14] B. E. Reed, Representations of solvable Lie algebras, Michigan Math. J. **16** 1969 227–233.

(H.kasuya) Graduate School of Mathematical Science University of Tokyo Japan

E-mail address: khsc@ms.u-tokyo.ac.jp