Steiner Triple Systems of Order 21 with a Transversal Subdesign TD(3, 6)

Y. Guana, M. J. Shia,*, and D. S. Krotovb

aKey Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui Province, P. R. China
bSobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

*smjwcl.good@163.com

Received May 20, 2019; revised August 23, 2019; accepted August 29, 2019

Abstract—A Steiner triple system (STS) contains a transversal subdesign TD(3, w) if its point set has three pairwise disjoint subsets A, B, C of size w and w2 blocks of the STS intersect with each of A, B, C (those w2 blocks form a TD(3, w)). We prove several structural properties of Steiner triple systems of order 3w + 3 that contain one or more transversal subdesigns TD(3, w). Using exhaustive search, we find that there are 2,004,720 isomorphism classes of STS(21) containing a subdesign TD(3, 6) (or, equivalently, a 6 \times 6 Latin square).

Key words: Steiner triple system, subdesign, transversal design, Latin square.

DOI: 10.1134/S0032946020010032

1. INTRODUCTION

A Steiner triple system of order v, or STS(v), is a pair (S, B) consisting of a finite set S (called the support, or the point set, of the STS) of cardinality v and a collection B of 3-subsets of S, called blocks, such that every two distinct elements of S meet in exactly one block. A transversal design TD(k, w) (in this paper we only consider the case k = 3) is a triple (S, \mathcal{G}, B) that consists of a point set S of cardinality kw, a partition \mathcal{G} of S into k subsets, groups, of cardinality w, and a collection B of k-subsets of S, blocks, such that every block intersects every group in exactly one point and every two points in different groups meet in exactly one block. Since the support and (in the case of a TD) the groups are uniquely determined by the block set, it is convenient to identify the system, STS or TD, with its block set. With this agreement, it is correct to say that an STS B can contain as a subset some STS or TD C, in which case C is called a sub-STS or sub-TD of B, respectively. Two systems, STS or TD, are called isomorphic if there is a bijection between their supports, an isomorphism, that sends blocks of one system to blocks of the other. An isomorphism of a system B to itself is called an automorphism; the set of all automorphisms of B is denoted by Aut(B).

Transversal designs TD(3, w) are equivalent to w \times w Latin squares and are known to exist for every natural w. The isomorphism classes of TD(3, w) correspond to the so-called main classes of Latin squares; their number is known for w up to 11; see [1]. Steiner triple systems STS(v) exist if and only if v \equiv 1, 3 \mod 6 (see, e.g., [2]), the necessary condition being given by simple counting arguments.

The number of isomorphism classes of Steiner triple system is known for orders up to 19 [3]. The classification of STSs of higher orders is possible only with additional restrictions on the structure of STSs. Among such restrictions, the most popular are restrictions on the automorphisms (see, e.g., [4–10]), restrictions on the maximal rank of the system [11,12], or requirements for the system to contain a subsystem with certain fixed parameters.
Stinson and Seah [13] found that there are 284457 STS(19) with sub-STS(9). Kaski, Östergård, Topalova, and Zlatarski [14] classified STS(19) with sub-STS(7) and STS(21) that contain three sub-STS(7) with disjoint supports (the last class coincides with the class of STS(21) of 3-rank at most 19). Recently, Kaski, Östergård, and Popa [15] counted all STS(21) with sub-STS(9) (and also, the STS(27) with sub-STS(13)). The number $12\,661\,527\,336$ (respectively, $1\,356\,574\,942\,538\,935\,493\,268\,(083\,236)$) of isomorphism classes of such systems is too large to admit any constructive enumeration; in particular, one cannot computationally check any required property for all these classes.

In the current paper, we classify the STS(21) with subdesigns TD(3,6), or saying in a different way, the STS(21) that contain a 6×6 Latin square. We establish that there are $20047\,20$ isomorphism classes of Steiner triple systems of order 21 with transversal subdesigns on 3 groups of size 6, including 599 systems with exactly three sub-TD(3,6) and 12 systems with exactly seven sub-TD(3,6). The considered class contains 393 nonisomorphic resolvable STSs; none of them is doubly-resolvable.

In the next section, we prove some facts about the Steiner triple systems of order $3w+3$ that have a transversal subdesign on three groups of size w, mainly focusing on the case $w = 6$. In Section 3, we present results of computer-aided classification of STS(21) with a subdesign TD(3,6), including the table which contains the number of found isomorphism classes classified by the number of subdesigns TD(3,6), STS(9), and the number of automorphisms. Section 4 contains a double-counting argument that validates the results of computing. In Section 5, we discuss the resolvability of the found STSs and show that STS(21) with sub-TD(3,6) and with only one sub-STS(9) cannot be resolvable.

2. STEINER TRIPLE SYSTEMS WITH TRANSVERSAL SUBDESIGNS

We start with some theoretical considerations. If an STS(v) has a sub-TD(3, w), then $v = 3w+u$, where $u \equiv 1,3 \bmod 6$ if w is even and $u \equiv 0,4 \bmod 6$ if w is odd. The case $u = 0$ corresponds to the Wilson-type STS(3w) [16]; readily, such a system is the union of three STS(w) with mutually disjoint supports and a transversal design TD(3, w). The case $u = 1$ corresponds to the Wilson-type STS(3w+1) [16]; again, it is easy to see that such a system is a union of three STS(w+1) whose supports have one point in common and a transversal design TD(3, w).

The next case is $u = 3$. We introduce a related concept. A subset C of an STS B is called an almost-sub-STS if $C = C' \setminus \{T\}$ for some STS C' and a triple T of C' (note that T is not required to be a block of B); this triple is called missing for the almost-sub-STS C.

Lemma 1. Let $(A \cup B \cup C \cup D, B)$ be an STS(3w+3) with a sub-TD $(A \cup B \cup C, \{A, B, C\}, T)$, where $|A| = |B| = |C| = w$ and $|D| = 3$. Then $B = T \cup B_A \cup B_B \cup B_C$, where the supports of B_A, B_B, and B_C are $A \cup D$, $B \cup D$, and $C \cup D$, respectively, and two of them are almost-sub-STSs with the missing triple D, the remaining one being a sub-STS (in particular, $w + 3 \equiv 1,3 \mod 6$).

Proof. Assume first that D is one of the blocks of B. In this case, it is easy to see that B has a sub-STS(w+3) with support $A \cup D$. Take it as B_A. Similarly, B has a sub-STS(w+3) with support $B \cup D$. By removing the block D, we obtain an almost-sub-STS B_B. Similarly, we find an almost-sub-STS B_C.

It remains to consider the case $D \notin B$. In this case, we divide $B \setminus T$ into three subsets: B_A consists of the blocks that are subsets of $A \cup D$, B_B of the blocks that are subsets of $B \cup D$, and B_C of subsets of $C \cup D$ (note that any other block has points in at least two of A, B, C, and hence necessarily belongs to T). The blocks from B_A, B_B, and B_C cover

$$\frac{1}{2}|A| \cdot (|A| - 1) + \frac{1}{2}|B| \cdot (|B| - 1) + \frac{1}{2}|C| \cdot (|C| - 1) + 3|A| + 3|B| + 3|C| + 3 = \frac{3}{2}w^2 + \frac{15}{2}w + 3$$
pairs of points, while the blocks from \(B_A \) (similarly, from \(B_B \) or from \(B_C \)) cover at least

\[
\frac{1}{2} |A| \cdot (|A| - 1) + 3|A| = \frac{1}{2} w^2 + \frac{5}{2} w
\]

and at most

\[
\frac{1}{2} |A| \cdot (|A| - 1) + 3|A| + 3 = \frac{1}{2} w^2 + \frac{5}{2} w + 3
\]

of them. Since the number of the pairs covered by \(B_A \) must be divisible by 3, we see that it is

\[
\frac{1}{2} w^2 + \frac{5}{2} w \text{ or } \frac{1}{2} w^2 + \frac{5}{2} w + 3 \text{ if } w \equiv 0, 1 \text{ mod } 3,
\]

and it is

\[
\frac{1}{2} w^2 + \frac{5}{2} w + 2 \text{ if } w \equiv 2 \text{ mod } 3.
\]

The last case is impossible because

\[
3\left(\frac{1}{2} w^2 + \frac{5}{2} w + 2\right) > \frac{3}{2} w^2 + \frac{15}{2} w + 3.
\]

We conclude that one of \(B_A, B_B, B_C \), say \(B_A \), has

\[
\frac{1}{3} \cdot \left(\frac{1}{2} w^2 + \frac{5}{2} w + 3\right) = \frac{(w + 3)(w + 2)}{6}
\]

blocks, while each of the other has one less. This means that \((A \cup D, B_A)\) is an STS\((w + 3)\) and \((A \cup D, B_B \cup \{D\})\), \((A \cup D, B_B \cup \{D\})\) are also STS\((w + 3)\), which proves the statement. \(\triangle \)

Thus, we see that if an STS\((3w + 3)\) has a sub-TD\((3, w)\), then it is split into this sub-TD\((3, w)\), one sub-STS\((w + 3)\), and two almost-sub-STS\((w + 3)\). In general, there can be more than one sub-TD\((3, w)\) and hence more than one such splitting. Therefore, it is important to understand how these subsystems can intersect. The following lemma on the intersection of two almost-sub-STSs generalizes the well-known and obvious fact that the intersection of two sub-STSs is always a sub-STS.

Lemma 2. Assume that an STS \(B \) has two almost-sub-STSs \(B' \) and \(B'' \) with supports \(S' \) and \(S'' \), respectively. Then

- either \(|S' \cap S''| = 2 \) and \(B' \cap B'' \) is empty;
- or \(|S' \cap S''| \equiv 1, 3 \text{ mod } 6 \) and \(B' \cap B'' \) can be completed to STS\((|S' \cap S''|)\) by adding 0, 1, or 2 blocks.

Proof. Denote \(D := S' \cap S'' \) and \(D := B' \cap B'' \). Assume that \(B' \cup \{a', b', c'\} \) is an STS and \(B'' \cup \{a'', b'', c''\} \) is an STS. Thus, any pair of points from \(S' \) except for \(\{a', b'\}, \{a', c'\}, \text{ and } \{b', c'\} \) is contained in one block of \(B' \). Similarly with \(S'' \) and \(B'' \).

Therefore,

\[(*) \quad \text{Any pair of points from } D \text{ different from } \{a', b'\}, \{a', c'\}, \{b', c'\}, \{a'', b''\}, \{a'', c''\}, \text{ and } \{b'', c''\} \text{ is contained in one block of } D. \]

Further,

\[(**) \quad \text{For every point } t \text{ from } D, \text{ the number } \ell(t) \text{ of pairs of points from } D \text{ containing } t \text{ and different from } \{a', b'\}, \{a', c'\}, \{b', c'\}, \{a'', b''\}, \{a'', c''\}, \text{ and } \{b'', c''\} \text{ is even.} \]

Indeed, this number is twice the number of blocks of \(D \) containing \(t \).

By easy check of all cases for intersections of the sets \(D, \{a', b', c'\}, \text{ and } \{a'', b'', c''\}, \text{ one can find that if both } \((*) \text{ and } (**) \text{ are satisfied, then one of the following assertions holds.} \]

- (i) \(D \) contains at most one point from \(a', b', c' \) and at most one point from \(a'', b'', c'' \). In this case, \(D \) is an STS.
- (ii) \(D \) consists of two points from \(a', b', c' \) or from \(a'', b'', c'' \). Hence, \(|D| = 2 \).
- (iii) \(D \) contains \(a', b', c' \) and at most one of \(a'', b'', c'' \); or \(D \) contains \(a', b', c' \) and two or three of \(a'', b'', c'' \) that coincide with some of \(a', b', c' \). Or, analogously, \(D \) contains \(a'', b'', c'' \) and at most one of \(a', b', c' \); or \(D \) contains \(a', b'', c'' \) and two or three of \(a', b', c' \) that coincide
with some of a'', b'', c''. In this case, D can be completed to an STS by adding the triple \(\{a', b', c'\} \) or \(\{a'', b'', c''\} \), respectively.

(iv) D contains both \(\{a', b', c'\} \) and \(\{a'', b'', c''\} \), and these two sets intersect in at most one point. In this case, D can be completed to an STS by adding the two triples \(\{a', b', c'\} \) and \(\{a'', b'', c''\} \).

(v) \(|D| = 4 \), and two points e', f' from D are in \(\{a', b', c'\} \), while the other two e'', f'' are in \(\{a'', b'', c''\} \). It is easy to see that the four pairs \(\{e', e''\}, \{e', f''\}, \{f', e''\}, \{f', f''\} \) cannot be covered by blocks of D in a proper way.

We have been convinced that the statement of the lemma holds in any non-contradictory case. \(\triangle \)

Remark. In contrast to the case of sub-STSs, the supports of two almost-sub-STSs can intersect in exactly two points. One can easily construct such an example using known embedding theorems: any set of 3-sets such that no pair of points meets in more than one set can always be embedded as a subset in a Steiner triple system, whose support can in general be larger that the support of the original triple set \([17, 18]\).

Corollary. (i) Different supports of two almost-sub-STS(9) of the same STS intersect in at most 3 points;

(ii) Different supports of two almost-sub-STS(9) of the same STS(21) intersect in 3 points. These 3 points form either a block of each of the two almost-sub-STS(9) or the missing triple of one or both of the almost-sub-STS(9).

Proof. To prove (i), by Lemma 2 it remains to verify that the supports cannot intersect in 7 points. Indeed, if such situation happens, then by Lemma 2 there are STS(7) and STS(9) that have at least 5 blocks in common. It is straightforward to check that this is not possible.

(ii) It remains to prove that the supports, say S' and S'', of the subsystems, say B' and B'', cannot intersect in 2, 1, or 0 points. Assume first that $|S' \cap S''| = 2$. The block containing $S' \cap S''$ does not belong to at least one of B' and B''. Without loss of generality, assume that it is not in B''; so the pair $S' \cap S''$ lies in the missing triple of the almost-sub-STS B''. Hence, 6 points a_1, \ldots, a_6 from $S'' \setminus S'$ do not belong to the missing triple. Take also one point b from $S' \setminus S''$ that do not belong to the missing triple of B' and consider the block containing b and a_i, $i \in \{1, 2, 3, 4, 5, 6\}$. This block is not from B' or B''; hence, it intersects with each of S' and S'' in only one point. Thus, the third point c_i of this block does not belong to $S' \cup S''$. But there are only 5 points not in $S' \cup S''$, which immediately leads to a contradiction with the definition of an STS. Similar contradictions can be found in the cases $|S' \cap S''| = 1$ and $|S' \cap S''| = 0$. \(\triangle \)

Next, we focus on the order 21. Assume that we are given an STS(21) (S, B). A partition of S into four sets A, B, C, D of sizes 6, 6, 6, and 3, respectively, is called a flower with stem D and petals A, B, and C if B has a sub-STS(9) and two almost-sub-STS(9) with supports $A \cup D$, $B \cup D$, $C \cup D$, where the missing triple of each of these almost-sub-STS is D (irrespective of whether it belongs to B or not). From Lemma 1, we can easily deduce the following.

Lemma 3. An STS(21) has a flower $\{A, B, C, D\}$ with stem D if and only if it has a sub-TD$(3, 6)$ with groups A, B, and C.

If there is only one flower $\{A, B, C, D\}$ (and only one sub-TD$(3, 6)$), then we have two subcases, depending on whether the stem D is a block or not. In the first subcase, the STS(21) has three sub-STS(9) with supports $A \cup D$, $B \cup D$, $C \cup D$. In the second subcase, the STS(21) has only one sub-STS(9). Our next goal is to characterize the situation when STS(21) has more than one sub-TD$(3, 6)$.

Lemma 4. Assume that an STS(21) has two different flowers $\{A, B, C, D\}$ and $\{A', B', C', D'\}$ with stems D and D'. Then

(i) D and D' are disjoint;
An STS(7), Fano plane, on the point set \{A_{001}, A_{010}, A_{011}, A_{100}, A_{101}, A_{110}, A_{111}\}. One can observe that each of the seven supports of the (almost)-sub-STS(9) considered in Lemma 5 is the union of three of \(A_{001}, \ldots, A_{111}\) corresponding to a line of the Fano plane.

(ii) \(D \cup E = D' \cup E', \text{ for some } E \in \{A, B, C\} \text{ and } E' \in \{A', B', C'\};

(iii) The STS(21) has a sub-STS(9) with support \(D \cup E\), where \(E\) is from (ii).

Proof. Consider a point \(d\) from \(D\) and assume without loss of generality that it lies in \(D' \cup A'\). Every point of \(D' \cup A'\) lies in one of \(D \cup A\), \(D \cup B\), \(D \cup C\), and at least one point lies in all of them. Hence, \(D' \cup A'\) intersects in more than 3 points with these three sets in average. By the corollary, it coincides with one of them, say \(D \cup A\); so (ii) is proved. If \(D\) and \(D'\) intersect, then the same can be said about \(D' \cup B'\) and \(D' \cup C'\), and the flowers coincide. Thus, (i) holds. The last claim is also easy, since the union of two different almost-sub-STS with the same support \(D \cup A\) is necessarily a sub-STS. \(\triangle\)

Lemma 5. Let an STS(21) \(B\) have two different flowers \(\{A, B, C, D\}\) and \(\{A', B', C', D'\}\) with stems \(D\) and \(D'\). Assume without loss of generality that \(D \cup A = D' \cup A'\). Denote

\[
\begin{align*}
A_{100} &:= B \cap B', \\
A_{101} &:= B \cap C', \\
A_{111} &:= C \cap C', \\
A_{001} &:= D, \\
A_{011} &:= A \setminus D', \\
A_{010} &:= D'
\end{align*}
\]

(see the figure for the motivation of the alignment here). The following assertions hold.

(i) If both \(D\) and \(D'\) are blocks of \(B\), then \(B\) contains exactly 7 sub-TD(3,6) with flowers

\[
\begin{align*}
\{A_{001}, A_{010} \cup A_{011}, A_{100} \cup A_{101}, A_{110} \cup A_{111}\}, \\
\{A_{010}, A_{001} \cup A_{011}, A_{100} \cup A_{110}, A_{101} \cup A_{111}\}, \\
\{A_{011}, A_{001} \cup A_{010}, A_{100} \cup A_{111}, A_{101} \cup A_{110}\}, \\
\{A_{100}, A_{001} \cup A_{101}, A_{010} \cup A_{110}, A_{011} \cup A_{111}\}, \\
\{A_{101}, A_{001} \cup A_{100}, A_{010} \cup A_{111}, A_{011} \cup A_{110}\}, \\
\{A_{110}, A_{001} \cup A_{111}, A_{010} \cup A_{100}, A_{011} \cup A_{101}\}, \\
\{A_{111}, A_{001} \cup A_{110}, A_{010} \cup A_{101}, A_{011} \cup A_{100}\},
\end{align*}
\]

and exactly 7 sub-STS(9);

(ii) If at most one of \(D\) and \(D'\) is a block of \(B\), then \(B\) contains exactly 3 sub-TD(3,6) with flowers (1)–(3). In this case, if \(D\) or \(D'\) is a block, then \(B\) has exactly 3 sub-STS(9); otherwise, exactly 1.

Proof. We first note that by part (ii) of the corollary, \(A_{101}, A_{111}, A_{110}, \text{ and } A_{100}\) are blocks of \(B\). Next, we state that

(*) There is an almost-sub-STS with support \(A_{011} \cup A_{100} \cup A_{111}\) and missing triple \(A_{011}\).

Indeed, consider a block containing a point \(a\) from \(A_{100}\) and a point \(b\) from \(A_{111}\). The third point \(c\) of this block can only belong to \(A_{011}\) (for example, if \(c \in A_{001}\), then the pair \(\{a, c\}\) is already
covered by a block from the almost-STS on \(A_{001} \cup A_{101} \cup A_{110} \); the other cases lead to similar contradictions). Hence, the 9 such blocks form a TD(3, 3); completing by the blocks \(A_{100} \) and \(A_{111} \), we get an almost-sub-STS(9). Similarly,

(**) There is an almost-sub-STS with support \(A_{011} \cup A_{101} \cup A_{110} \) and missing triple \(A_{011} \).

Thus, we have a collection from a sub-STS(9) and six almost-sub-STS(9) with different supports, corresponding to flowers (1)–(3). It is easy to find that

(***) There is no sub-STS(9) or almost-sub-STS(9) with any other support.

Indeed, if \(B \) is the support of a sub-STS(9), then it intersects in at least four points in total with some two sets from \(A_{001}, \ldots, A_{110} \); the union of these two sets is contained in the support of one of the seven sub-STS(9), and by the corollary \(B \) coincides with this support. Now consider subcases.

If both \(D \) and \(D' \) are in \(B \), then we also have \(A_{011} \in B \), and all those six almost-sub-STS are completed to a sub-STS(9), forming seven different flowers in total. From Lemma 5 and the corollary, we conclude that there are no more flowers. By (**), there are only seven sub-STS(9).

If \(D \notin B \) or \(D' \notin B \), then (4)–(7) are not flowers. Arguments similar to the above show that there are only three flowers (1)–(3).

If \(D \in B \) and \(D' \notin B \), then we also have \(A_{011} \notin B \) (in any STS(9), the complement of two disjoint blocks is necessarily a block too). In this case, we have only three sub-STS(9) with supports \(A_{001} \cup A_{011} \cup A_{010}, A_{001} \cup A_{101} \cup A_{100}, A_{001} \cup A_{111} \cup A_{110} \). The subcase \(D \notin B \) and \(D' \in B \) is similar.

If \(D \notin B \) and \(D' \notin B \), then the missing triple of any of the six almost-sub-STSs is not in \(B \), and \(B \) has only one sub-STS(9), with support \(A_{001} \cup A_{011} \cup A_{010} \). △

The following two well-known and straightforward facts will be used in our further discussion.

Proposition 1. If a TD(3, 6) \((S, \{A, B, C\}, T) \) has a sub-TD(3, 3) with groups \(A_0 \subset A, B_0 \subset B, C_0 \subset C \), then \(T \) has exactly three other sub-TD(3, 3), with groups \(A_0, B_1, C_1 \), groups \(A_1, B_0, C_1 \), and groups \(A_1, B_1, C_0 \), where \(A_1 := A \setminus A_0, B_1 := B \setminus B_0, C_1 := C \setminus C_0 \).

Proposition 2. If \(D \) is a block of an STS(9) \((S, B) \), then \(B \) has exactly two blocks disjoint with \(D \). Moreover, these two blocks are disjoint with each other, and the remaining 9 blocks form a sub-TD(3, 3).

Lemma 6. Assume that an STS(21) \((S, B) \) has a flower \(\{A, B, C, D\} \), and \(T \) is a transversal subdesign of \(B \) on the petals \(A, B, C \) as groups. Let \(D' \) be a 3-subset of \(A \). The system \(B \) has a second sub-TD(3, 6) \(T' \) with support \(S \setminus D' \) if and only if it has disjoint blocks \(B_0, B_1 \subset B \) and disjoint blocks \(C_0, C_1 \subset C \) such that \(T \) is partitioned into four sub-TD(3, 3) with groups from \(D', A \setminus D', B_0, B_1, C_0, C_1 \).

Proof. Assume that there is such a subdesign \(T' \). In this case, there is a flower \(\{D', A', B', C'\} \) with \(D' \cup A' = D \cup A \). Denote \(B_0 := B \cap B', B_1 := B \cap C', C_0 := C \cap B', C_1 := C \cap C' \). By the corollary, \(B_0, B_1, C_0, C_1 \) are blocks of \(B \). Since \(B \) has a sub-STS with support \(D' \cup A' \), by the definition of a flower it has two almost-sub-STSs with supports \(D' \cup B' \) and \(D' \cup C' \). Be removing the blocks \(B_0, B_1, C_0, C_1 \) from these almost-sub-STSs, we obtain two TD(3, 3). The other two sub-TD(3, 3) of \(T \) are guaranteed by Proposition 1.

The “if” part of the statement is also straightforward, taking into account Lemma 3. If \(B \) is partitioned into two blocks \(B_0 \) and \(B_1 \), then, by the definition of a flower and Proposition 2, we see that there is an almost-sub-STS with support \(B \cup D \) and missing triple \(D \) (which can be a block or not a block of \(B \)). The same can be said about the support \(C \cup D \). Then the definition of a flower implies that \(B \) has a complete sub-STS with support \(A \cup D \). It remains to find two more petals to form a flower with stem \(D' \). By the hypothesis, we have a sub-TD with groups \(D' \),
\[B_0, \text{ and } C_0, \text{ for some block } C_0 \subset C. \] Completing it by the blocks \(B_0 \) and \(C_0 \), we get an almost-sub-STS. Similarly, we find an almost-sub-STS with support \(D' \cup B_1 \cup C_1 \), \(C_1 := C \setminus C_0 \). Thus, \(\{D', D \cup A \setminus D', B_0 \cup C_0, B_1 \cup C_1\} \) is a flower, and by Lemma 3 there is a required sub-TD. \(\Delta \)

3. CLASSIFICATION OF STS(21) WITH SUB-TD(3, 6)

Now, based on the lemmas above, we are ready to present the method of computer-aided classification and its results. We start with describing how to count the number of isomorphism classes of STS(21) with a unique sub-TD(3, 6).

We first fix a flower \(\{A_{001}, A_{010} \cup A_{011}, A_{100} \cup A_{101}, A_{110} \cup A_{111}\} \), where all the sets \(A_{001}, \ldots, A_{111} \) are of size 3. Let \(A \) be the set of all 840 STS(9) on \(A_{001} \cup A_{010} \cup A_{011} \). Denote by \(A' \) the subset of \(A \) that consists of 120 STS(9) with block \(A_{001} \); by deleting this block in all these STSs, we obtain the set \(A' \) of 120 almost-STS(9) with missing \(A_{001} \). Denote by \(A'' \) the subset of \(A' \) that consists of 12 STS(9) with blocks \(A_{001}, A_{010}, A_{011} \). Similarly, we define the collections \(B, B', B'', B^* \) of triple systems on \(A_{001} \cup A_{100} \cup A_{101} \) and the collections \(C, C', C'', C^* \) of triple systems on \(A_{001} \cup A_{110} \cup A_{111} \).

Next, we choose a representative \(T \) of one of 12 (see [19]) isomorphism classes of TD(3, 6) with groups \(A_{010} \cup A_{011}, A_{100} \cup A_{101} \), and \(A_{110} \cup A_{111} \). Moreover, we require that if the representative is divided into sub-TD(3, 3), then these sub-TDs have group sets \(\{A_{010}, A_{100}, A_{110}\}, \{A_{010}, A_{101}, A_{111}\}, \{A_{011}, A_{100}, A_{111}\}, \{A_{011}, A_{101}, A_{110}\} \) (see Proposition 1).

Now, by Lemma 3, every STS(21) with sub-TD \(T \) is divided into \(T, A, B, \) and \(C \), where

- either \(A \in A', B \in B', C \in C' \);
- or \(A \in A \setminus A', B \in B', C \in C'' \);
- or \(A \in A', B \in B \setminus B', C \in C^* \);
- or \(A \in A', B \in B^*, C \in C \setminus C' \).

Moreover, by Lemmas 5 and 6, such an STS(21) has exactly 7 sub-TD(3, 6) if and only if \(T \) is divided into sub-TD(3, 3) and

\[A \cup A_{001} \in A'', B \cup A_{001} \in B'', C \cup A_{001} \in C''; \] (8)

and it has exactly 3 sub-TD(3, 6) if and only if \(T \) is divided into sub-TD(3, 3) and exactly two of conditions (8) are satisfied. We exclude these cases and finally have at most \(120^3 + 3 \cdot 720 \cdot 120^2 \) STS(21) with only one sub-TD(3, 6) equal to \(T \). Using the graph-isomorphism software [20], we can check all of them for isomorphism and keep the representatives. Trivially, any STS(21) that has a sub-TD isomorphic to \(T \) is isomorphic to some STS(21) that contains \(T \). Repeating the above steps for each of 12 nonisomorphic choices of \(T \), we find all equivalence classes of STS(21) with only one sub-STS(9).

Similarly, we can classify the STS(21) with 3 or 7 sub-STS(9). The only difference is that we also need to check for isomorphism between the representatives obtained from different \(T \).

The results of the computation are reflected in the table. The last column of the table was computed by comparing the data in the other columns with the results of [15]. All computations took few core-hours on a modern PC. We summarize the results in the following theorem.

Theorem. There are 2004720 Steiner triple systems of order 21 with transversal subdesigns on 3 groups of size 6. 2004109 of them have exactly one such sub-TD(3, 6), 599 have exactly three sub-TD(3, 6), and 12 have seven sub-TD(3, 6) (by Lemma 5, the last group coincides with the 12 STS(21) having 7 sub-STS(7), found in [15]).

4. VALIDITY OF THE RESULTS

In this section, we consider a double-counting argument that validates the results of computing.
The number of isomorphism classes of STS(21) with sub-TD(3, 6), sorted by the number τ_6 of sub-TD(3, 6), the number σ_9 of sub-STS(9), and the number of automorphisms (the number or nonisomorphic resolvable systems, if known, is given in parentheses).

$	\text{Aut}	$	$\tau_6 = 7$	$\tau_6 = 3$	$\tau_6 = 3$	$\tau_6 = 1$	$\tau_6 = 1$	$\tau_6 = 0$	
1	$\sigma_9 = 7$	98 (0)	36 (0)	101621 (355)	1865036 (0)	12656035473 (355)			
2	$\sigma_9 = 3$	171 (0)	5271 (14)	30771 (0)	3461498 (0)				
3	$\sigma_9 = 1$	103 (8)	52 (0)	14932 (0)	157 (0)				
4	$\sigma_9 = 3$	66 (0)	8 (0)	130 (0)					
5	$\sigma_9 = 1$	14 (0)	12 (0)						
6	$\sigma_9 = 1$	45 (0)	36 (0)	171 (0)					
7	$\sigma_9 = 1$	31 (0)	24 (1)	101621 (355)					
8	$\sigma_9 = 1$	7 (0)	60 (5)						
9	$\sigma_9 = 1$	7 (0)							
10	$\sigma_9 = 1$	6 (0)							
11	$\sigma_9 = 1$	9 (0)							
12	$\sigma_9 = 1$	11 (0)							
13	$	\text{Aut}	$	9 (1)					
14	$	\text{Aut}	$	2 (0)					
15	$	\text{Aut}	$	1 (0)					
16	$	\text{Aut}	$	3 (0)					
17	$	\text{Aut}	$	7 (3)					
18	$	\text{Aut}	$	1 (0)					
19	$	\text{Aut}	$	1 (0)					
20	$	\text{Aut}	$	2 (0)					
21	$	\text{Aut}	$	1 (0)					
22	$	\text{Aut}	$	1 (0)					
23	$	\text{Aut}	$	1 (0)					
24	$	\text{Aut}	$	1 (0)					
25	$	\text{Aut}	$	1 (0)					
26	$	\text{Aut}	$	1 (0)					
27	$	\text{Aut}	$	1 (0)					
28	$	\text{Aut}	$	1 (0)					
29	$	\text{Aut}	$	1 (0)					
30	$	\text{Aut}	$	1 (0)					
Any	$	\text{Aut}	$	12 (5)	244 (0)	355 (0)	107427 (355)	1896682 (0)	12659522616

Proposition 3. Given a point set S of size 21, there are exactly

$$\frac{21!}{3!^2 \cdot 6!^3} \cdot (120^3 + 3 \cdot 720 \cdot 120^2) \cdot 812851200 = 101473423278637842432000000$$

pairs (B, T) where (S, B) is an STS(21) and T is a sub-TD(3, 6) of B.

Proof. We first recall that there are 840 different STS(9) with a given support (see, e.g., [21]); a given triple of points belongs to exactly 120 of them.

A set of cardinality 21 can be partitioned into a flower $\{A, B, C, D\}$ in $21! \cdot 3!^2 \cdot 6!^3$ ways. Assuming that D is a block, we can choose an almost-sub-STS with each of the supports $A \cup D$, $B \cup D$, and $C \cup D$ in 120 ways. Assuming that the D is not a block, we can choose which of $A \cup D$, $B \cup D$, and $C \cup D$ is the support of a sub-STS in 3 ways, then choose that sub-STS in 840 − 120 = 720 ways, then choose each of the remaining two almost-sub-STSs in 120 ways. Finally, we choose a transversal design with the groups A, B, C in 812851200 ways (the total number of different 6×6 Latin squares [22]). △

On the other hand, we can calculate the same number based on given representatives of the isomorphism classes.

Proposition 4. Let S be a set of 21 points, and let S be a set of representatives of all isomorphism classes of STS(21) on S. The number of pairs (B, T) where (S, B) is an STS(21) and T is a sub-TD(3, 6) of B is given by the expression

$$\sum_{B \in S} N(B) \cdot \frac{21!}{|\text{Aut}(B)|}.$$
where \(N(\mathcal{B}) \) is the number of sub-TD(3, 6) in \(\mathcal{B} \).

Using the data in the table, we can compute the nonzero (with \(N(\mathcal{B}) > 0 \)) terms in the sum (9), which happens to coincide with the value in Proposition 3. This approves the results of our computation.

5. RESOLVABILITY

A Steiner triple system \((S, \mathcal{B})\) is called resolvable if \(\mathcal{B} \) can be partitioned into parallel classes, where a parallel class is a partition of \(S \) into blocks. We check all found systems for resolvability and found 393 isomorphism classes of resolvable STS of the considered type. As we see from the table, there is no resolvable STS(21) with sub-TD(3, 6) and only one sub-STS(9). We can prove this fact theoretically.

Proposition 5. If an STS(21) has a sub-TD(3, 6) and only one sub-STS(9), then this STS \(\mathcal{D} \) is not resolvable.

Proof. Let \((S, \mathcal{D})\) be an STS(21), let \((A \cup B \cup C, \{A, B, C\}, \mathcal{T})\) be a sub-TD(3, 6) corresponding to the flower \(\{A, B, C, D\} \), and let \(\mathcal{A} \) be a unique sub-STS. Without loss of generality we assume that the support of \(\mathcal{A} \) is \(A \cup D \). Thus, there are two almost-sub-STSs with supports \(B \cup D \) and \(C \cup D \), respectively, and missing triple \(D \) by the hypothesis, \(D \not\in \mathcal{D} \).

Let \(D = \{a, b, c\} \). Seeking for a contradiction, assume that there is a resolution. Consider the block \(U \) containing \(a \) and \(b \), and consider the parallel class \(\mathcal{P} \) containing this block. Denote \(t := |\mathcal{P} \cap \mathcal{T}| \). We claim that

\((*)\) The block \(V \) from \(\mathcal{P} \) containing \(c \) belongs to \(\mathcal{A} \).

Indeed, if it is in \(\mathcal{B} \), then \(|B \setminus V| = 4 \), and \(t \) of these 4 points are covered by blocks from \(\mathcal{T} \cap \mathcal{P} \), the other 4 – \(t \) being covered by blocks from \(B \cap \mathcal{P} \). Hence, \(4 - t \equiv 0 \mod 3 \). On the other hand, \(t \) of the 6 points of \(C \) are covered by blocks from \(\mathcal{T} \cap \mathcal{P} \), the other 6 – \(t \) being covered by blocks from \(C \cap \mathcal{P} \). Hence, \(6 - t \equiv 0 \mod 3 \), a contradiction. Similarly, \(V \not\in \mathcal{C} \), and \((*)\) holds.

Since \(|A \setminus U \setminus V| = 3 \), we have \(t \leq 3 \). Therefore, \(\mathcal{P} \) contains at least one block from \(\mathcal{B} \) and at least one block from \(\mathcal{C} \), and these blocks have no points in \(D \). The same can be said about the parallel class that contains the block with \(a \) and \(c \). And similarly for the parallel class that contains the block with \(b \) and \(c \). We conclude that \(\mathcal{B} \) has at least three blocks disjoint with \(D \). This contradicts Proposition 2. \(\Box \)

ACKNOWLEDGMENTS

The authors are grateful to Svetlana Topalova for useful discussions.

FUNDING

The research of M.J. Shi (corresponding author) was supported by the National Natural Science Foundation of China (no. 61672036), Excellent Youth Foundation of Natural Science Foundation of Anhui Province (no. 1808085J20), and Academic Fund for Outstanding Talents in Universities (gxbjZD03); the research of D.S. Krotov was supported within the framework of the state contract of the Sobolev Institute of Mathematics, project no. 0314-2019-0016.

REFERENCES

1. Hulpke, A., Kaski, P., and Östergård, P.R.J., The Number of Latin Squares of Order 11, *Math. Comp.*, 2011, vol. 80, no. 274, pp. 1197–1219.
2. Colbourn, C. and Mathon, R., Steiner Systems, *Handbook of Combinatorial Designs*, Colbourn, C. and Dinitz, J., Eds., Boca Raton: Chapman & Hall/CRC, 2007, 2nd ed., pp. 102–110.

3. Kaski, P. and Östergård, P.R.J., The Steiner Triple Systems of Order 19, *Math. Comp.*, 2004, vol. 73, no. 248, pp. 2075–2092.

4. Bays, S., Recherche des systèmes cycliques de triples de Steiner différents pour N premier (ou puissance de nombre premier) de la forme $6n + 1$, *J. Math. Pures Appl. (9)*, 1923, vol. 2, pp. 73–98.

5. Colbourn, M.J., An Analysis Technique for Steiner Triple Systems, *Proc. 10th Southeastern Conf. on Combinatorics, Graph Theory and Computing* (Florida Atlantic Univ., Boca Raton, Fla., 1979), Hoffman, F., McCarthy, D., Mullin, R.C., and Stanton, R.G., Eds., Congress. Numer, vol. 23–24, Winnipeg, Man.: Utilitas Math., 1979, pp. 289–303.

6. Denniston, R.H.F., Nonisomorphic Reverse Steiner Triple Systems of Order 19, *Ann. Discrete Math.*, 1980, vol. 7, pp. 255–264.

7. Mathon, R.A., Phelps, K.T., and Rosa, A., A Class of Steiner Triple Systems of Order 21 and Associated Kirkman Systems, *Math. Comp.*, 1981, vol. 37, no. 155, pp. 209–222; 1995, vol. 64, no. 211, pp. 1355–1356.

8. Phelps, K.T. and Rosa, A., Steiner Triple Systems with Rotational Automorphisms, *Discrete Math.*, 1981, vol. 33, no. 1, pp. 57–66.

9. Tonchev, V.D., Steiner Triple Systems of Order 21 with Automorphisms of Order 7, *Ars Combin.*, 1987, vol. 23, pp. 93–96; 1995, vol. 39, p. 3.

10. Kapralov, S.N. and Topalova, S., On the Steiner Triple Systems of Order 21 with Automorphisms of Order 3, in *Proc. 3rd Int. Workshop on Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria, June 22–28*, 1992, pp. 105–108.

11. Osuna, O.P., There Are 1239 Steiner Triple Systems STS(31) of 2-Rank 27, *Des. Codes Cryptogr.*, 2006, vol. 40, no. 2, pp. 187–190.

12. Jungnickel, D., Magliveras, S.S., Tonchev, V.D., and Wassermann, A., The Classification of Steiner Triple Systems on 27 Points with 3-Rank 24, *Des. Codes Cryptogr.*, 2019, vol. 87, no. 4, pp. 831–839.

13. Stinson, D.R. and Seah, E., 284457 Steiner Triple Systems of Order 19 Contain a Subsystem of Order 9, *Math. Comp.*, 1968, vol. 46, no. 174, pp. 717–729.

14. Kaski, P., Östergård, P.R.J., Topalova, S., and Zlatarski, R., Steiner Triple Systems of Order 19 and 21 with Subsystems of Order 7, *Discrete Math.*, 2008, vol. 308, no. 13, pp. 2732–2741.

15. Kaski, P., Östergård, P.R.J., and Popa, A., Enumeration of Steiner Triple Systems with Subsystems, *Math. Comp.*, 2015, vol. 84, no. 296, pp. 3051–3067.

16. Wilson, R.M., Nonisomorphic Steiner Triple Systems, *Math. Z.*, 1974, vol. 135, no. 4, pp. 303–313.

17. Lindner, C.C., A Survey of Embedding Theorems for Steiner Systems, *Topics on Steiner Systems*, Lindner, C.C. and Rosa, A., Eds., Amsterdam: North-Holland, 1980, pp. 175–202.

18. Bryant, D. and Horsley, D., A Proof of Lindner’s Conjecture on Embeddings of Partial Steiner Triple Systems, *J. Combin. Des.*, 2009, vol. 17, no. 1, pp. 63–89.

19. Number of Species (or “Main Classes” or “Paratopy Classes”) of Latin Squares of Order n, Sequence A003090 in The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2004.

20. McKay, B.D. and Piperno, A., Practical Graph Isomorphism, II, *J. Symbolic Comput.*, 2014, vol. 60, pp. 94–112.

21. Steiner Triple Systems (STS’s) on n Elements, Sequence A030128 in The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2004.

22. Number of Latin Squares of Order n: or Labeled Quasigroups, Sequence A002860 in The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2004.