A new bound for the capacity of the deletion channel with high deletion probabilities

Marco Dalai, Member, IEEE

Abstract

Let $C(d)$ be the capacity of the deletion channel with deletion probability d. It was recently proved by Fertonani and Duman that $\limsup_{d \to 1} C(d)/(1-d) \leq 0.49$. In this paper, it is proved that $\lim_{d \to 1} C(d)/(1-d) = \inf_{d} C(d)/(1-d)$. This result suggests that $C(d)$ may be a convex function of d and it allows to improve the constant 0.49 above to 0.413 using an already available upper bound for $C(0.61)$.

I. INTRODUCTION

A deletion channel W^d is defined to be a channel that drops bits of the input sequence independently with probability d. Those bits that are not dropped simply pass through the channel unaltered. While simple to describe, the deletion channel proves to be very difficult to analyze. Dobrushin ([1]) showed that for such a channel it is possible to define a capacity $C(d)$ and that a Shannon like theorem applies to this channel. However, no closed formula expression is known up to now for the capacity $C(d)$, and only upper and lower bounds are currently available (see [2], [3], [4], [5], [6]).

For small values of d, it was recently independently proved in [4] and [5] that $C(d) \approx 1 - H(d)$. For values of d close to 1, it is known (see [7], [6]) that $C(d)$ verifies $0.1185(1 - d) \leq C(d) \leq 0.49(1 - d)$.

In this paper, it is proved that

$$\lim_{d \to 1} C(d)/(1-d) = \inf_{d} C(d)/(1-d).$$

This allows to deduce, using currently known bounds, that $C(d) \leq 0.413(1 - d)$ when d approaches 1. Even if equation (I.1) does not formally imply any convexity result1 for $C(d)$ not even in a neighborhood of $d = 1$, the result can be considered at least as an interesting indication of the fact that $C(d)$ may actually be a convex function of d.

The main idea used in this paper is that, for a large enough number of input bits n, the d-deletion channel is fairly well approximated by a channel which drops exactly dn bits selected uniformly at random. In particular, we show that a channel $W_{n,k}$ with n-bits input and k-bits output, selected uniformly within the k-bits subsequences of the input, has a capacity that is close to $C(1 - k/n)$ for large enough n. Using this result, we build upon the work in [6] to prove (I.1) and to obtain the improved bound $\lim_{d \to 1} C(d)/(1-d) \leq 0.413$.

The author is with the Department of Information Engineering, University of Brescia, via Branze 38 - 25123, Brescia, Italy. Email: marco.dalai@ing.unibs.it

1It is not difficult to construct functions that satisfy (I.1) but are not convex in any interval $(1 - \epsilon, 1)$.
II. DEFINITION AND REGULARITY OF $C(d)$

Let W_n^d be a channel with an n-bit string input whose output is obtained by dropping the bits of the input independently with probability d. Let

$$C_n(d) = \frac{1}{n} \max_{p \in \mathcal{P}_n} I(X_n^1; W_n^d(X_n^1)).$$

(II.1)

It was proved by Dobrushin ([1]) that the capacity $C(d)$ of the d-deletion channel exists and it holds

$$C(d) = \lim_{n \to \infty} C_n(d).$$

(II.2)

The following lemma gives a quantitative bound on the rate of convergence in (II.2).

Lemma 1: (see also [1], [4], [6]) For every $d \in [0, 1]$ and $n \geq 1$

$$C_n(d) - \frac{\log n}{n} \leq C(d) \leq C_n(d).$$

(II.3)

Proof: As observed in [4], $nC_n(d)$ is subadditive function of n. In fact, for an input X_1^{n+m}, let $\tilde{Y}(0) = W_n^d(X_n^1)$ and $\tilde{Y}(1) = W_m^d(X_{n+1}^{n+m})$. Note that $Y = W_{n+m}^d(X_1^{n+m})$ can be obtained as a concatenation of the strings $\tilde{Y}(0)$ and $\tilde{Y}(1)$. Thus, $X_1^n \to (\tilde{Y}(0), \tilde{Y}(1)) \to Y$ is a Markov chain. Hence, $(n + m)C_{n+m}(d) = \max_{p \in \mathcal{P}_{X_1^n}} I(X_1^n; Y) \leq \max_{p \in \mathcal{P}_{X_1^n}} I(X_1^n; (\tilde{Y}(0), \tilde{Y}(1))) \leq nC_n(d) + mC_m(d).$ This implies by Fekete’s lemma that the limit $C(d) = \lim_{n \to \infty} C_n(d)$ exists and it verifies $C(d) = \inf_{n \geq 1} C_n(d)$. This proves the right hand side inequality.

Take now an integer $h > 1$ and consider, for an input X_1^{hn}, the output $Y = W_{hn}^d(X_1^{hn})$ as the concatenation of the h outputs $\tilde{Y}(i) = W_{n+1}^d(X_{ni+1}^{ni+1})$, $i = 1, \ldots, h-1$. It is clear that $X_1^{hn} \to (\tilde{Y}(0), \tilde{Y}(1), \ldots, \tilde{Y}(h-1)) \to Y$ is a Markov Chain. Let L_i be the length of $\tilde{Y}(i)$. We thus have

$$hnC_{hn}(d) = \max_{p \in \mathcal{P}_{X_1^{hn}}} I(X_1^{hn}, Y)$$

$$= \max_{p \in \mathcal{P}_{X_1^{hn}}} [I(X_1^n; \tilde{Y}(h-1)) - I(X_1^n; \tilde{Y}(h-1)|Y)]$$

$$\geq \max_{p \in \mathcal{P}_{X_1^{hn}}} [I(X_1^n; \tilde{Y}(h-1)) - H(\tilde{Y}(h-1)|Y)]$$

$$= \max_{p \in \mathcal{P}_{X_1^{hn}}} I(X_1^n; \tilde{Y}(h-1)) - H(L_0^{h-1}|Y)]$$

$$\geq \max_{p \in \mathcal{P}_{X_1^{hn}}} I(X_1^n; \tilde{Y}(h-1)) - (h-1) \log n$$

$$= hnC_n(d) - (h - 1) \log n.$$

Hence

$$C(d) = \lim_{h \to \infty} C_{hn}(d)$$

$$\geq \lim_{h \to \infty} \left[C_n(d) - \frac{h - 1 \log n}{n} \right]$$

$$= C_n(d) - \frac{\log n}{n}.$$ See [6] for a less simple but tighter bound. As a consequence of Lemma 1 we have the following regularity result for $C(d)$.
Lemma 2: The function $C(d)$ is uniformly continuous in $[0, 1]$. Thus, for every $\beta > 0$ there is a $\alpha = \alpha(\beta)$ such that $|d_1 - d_2| < \alpha \Rightarrow |C(d_1) - C(d_2)| < \beta$.

Proof: It is obvious that, for every n, $C_n(d)$ is continuous in d since for every X^n_i the mutual information $I(X^n_i; W^n_n(X^n_i))$ is a continuous function of d. As shown in Lemma 1, the functions $C_n(d)$ tend to $C(d)$ uniformly in d and thus $C(d)$ is continuous. Since the domain of $C(d)$ is compact, by the Heine-Cantor theorem $C(d)$ is also uniformly continuous.

III. Exact deletion channel

Let now $W_{n,k}$, $k \leq n$, be a channel with n-bits input whose output is uniformly chosen within the $\binom{n}{k}$ k-bits subsequences of the input. This channel was efficiently used as an auxiliary channel in [5], [6]. Let then

$$C_{n,k} = \frac{1}{n} \max_{f_{X^n_i}} I(X^n_i; W_{n,k}(X^n_i)).$$

(III.1)

Lemma 3: For every random X^n_i, if $k_1 \geq k_2$ then

$$I(X^n_i; W_{n,k_1}(X^n_i)) \geq I(X^n_i; W_{n,k_2}(X^n_i)).$$

(III.2)

Proof: Simply note that the W_{n,k_2} channel can be obtained as a cascade of W_{n,k_1} and W_{k_1,k_2}. Thus, $X^n_i \rightarrow W_{n,k_1}(X^n_i) \rightarrow W_{n,k_2}(X^n_i)$ is a Markov chain and the lemma follows from the data processing inequality.

The following lemma bounds the capacity of the W_n^d channel in terms of the capacity of opportune exact deletion channels.

Lemma 4: For every $\varepsilon > 0$, $d \in [\varepsilon, 1 - \varepsilon]$, and $n \geq 1$

$$C_{n,[(1-d-\varepsilon)n]} - 2e^{-\frac{\varepsilon^2}{2}n} \leq C_n(d) \leq C_{n,[(1-d+\varepsilon)n]} + 2e^{-\frac{\varepsilon^2}{2}n}.$$

(III.3)

Proof: We first prove the right hand side inequality. For an input X^n_i, let $Y = W^d_n(X^n_i)$ and let $L = |Y|$ be the length of Y. First note that $X^n_i \rightarrow Y \rightarrow L$ is a Markov chain. So, by applying the chain rule to $I(X^n_i; Y, L)$, considered that $I(X^n_i; L) = 0$ since L is independent from X^n_i, it is easily seen that $I(X^n_i; Y) = I(X^n_i; Y | L)$. Define $T = \{j : \frac{1}{n} - (1-d) \leq \varepsilon\}$, that is $j \in T$ if and only if $\frac{1 - d - \varepsilon}{n} \leq j \leq \frac{1 - d + \varepsilon}{n}$. Let now X^n_i be distributed according to the optimal distribution for the W_n^d channel. Then we have

$$nC_n(d) = I(X^n_i; Y | L)$$

$$= \sum_{j=0}^{n} p_L(j) I(X^n_i; Y | L = j)$$

$$= \sum_{j \in T} p_L(j) I(X^n_i; Y | L = j) + \sum_{j \notin T} p_L(j) I(X^n_i; Y | L = j)$$

$$\leq \sum_{j \in T} p_L(j) I(X^n_i; Y | L = \left\lfloor (1-d+\varepsilon)n \right\rfloor) + \sum_{j \notin T} p_L(j)n$$

$$\leq nC_{n,\left\lfloor (1-d+\varepsilon)n \right\rfloor} \sum_{j \in T} p_L(j) + n \sum_{j \notin T} p_L(j)n$$

$$\leq nC_{n,\left\lfloor (1-d+\varepsilon)n \right\rfloor} + n \cdot 2e^{-\frac{\varepsilon^2}{2(1-d+\varepsilon)n}}$$

$$\leq nC_{n,\left\lfloor (1-d+\varepsilon)n \right\rfloor} + 2ne^{-\frac{\varepsilon^2}{2(1-d+\varepsilon)n}}.$$
where (a) follows from Lemma 3 and the definition of T and (b) follows from the Chernoff bound. Dividing by n we get the desired inequality.

As for the left hand side inequality, let now X^n_1 be distributed according to the optimal distribution for the $W_{n,[(1-d-\varepsilon)n]}$ channel. Then we have

$$nC_n d \geq I(X^n_1;Y|L)$$

$$= \sum_{j=0}^{n} p_L(j) I(X^n_1;Y|L = j)$$

$$= \sum_{j \in T} p_L(j) I(X^n_1;Y|L = j) + \sum_{j \notin T} p_L(j) I(X^n_1;Y|L = j)$$

$$(a) \geq \sum_{j \in T} p_L(j) I(X^n_1;Y|L = [(1-d-\varepsilon)n])$$

$$= nC_n,[(1-d-\varepsilon)n] \sum_{j \in T} p_L(j)$$

$$(b) \geq nC_n,[(1-d+\varepsilon)n](1-2e^{-\frac{\varepsilon^2}{2}n})$$

$$(c) \geq nC_n,[(1-d+\varepsilon)n] - 2ne^{-\frac{\varepsilon^2}{2}n},$$

where (a) follows again from Lemma 3, (b) follows from the Chernoff bound, and (c) follows from the obvious fact that $C_n,[(1-d+\varepsilon)n] \leq 1$. Dividing by n the desired result is obtained. \hfill \blacksquare

The following lemma bounds the capacity of the exact deletion channel $W_{n,k}$ in terms of $C(d)$ for opportune values of d.

Lemma 5: For every $\varepsilon > 0$ and integers n and k

$$C(1-k/n + \varepsilon) - 2e^{-\frac{\varepsilon^2}{2}n} \leq C_{n,k} \leq C(1-k/n - \varepsilon) + 2e^{-\frac{\varepsilon^2}{2}n} + \log n/n. \quad (III.4)$$

Proof: Take $d = 1 - k/n - \varepsilon$ in Lemma 4 to obtain $C_{n,k} \leq C_n(1-k/n - \varepsilon) + 2e^{-\frac{\varepsilon^2}{2}n} \leq C(1-k/n - \varepsilon) + 2e^{-\frac{\varepsilon^2}{2}n} + \log n/n$, by virtue of Lemma 1. Then take $d = 1 - k/n + \varepsilon$ in Lemma 4 to obtain $C_{n,k} \geq C_n(1-k/n + \varepsilon) - 2e^{-\frac{\varepsilon^2}{2}n} \geq C(1-k/n + \varepsilon) - 2e^{-\frac{\varepsilon^2}{2}n}$. \hfill \blacksquare

Lemma 6: For every $\beta > 0$, there is an $\bar{n} = \bar{n}(\beta)$ such that

$$|C_{n,k} - C(1-k/n)| < \beta \quad \forall n \geq \bar{n}, k = 1, \ldots, n. \quad (III.5)$$

Proof: First note that, for $\varepsilon > 0$, $C(1-k/n + \varepsilon) \leq C(1-k/n) \leq C(1-k/n - \varepsilon)$. Hence, $C(1-k/n)$ satisfies the two inequalities satisfied by $C_{n,k}$ in equation (III.4). So, $|C_{n,k} - C(1-k/n)|$ is bounded by the difference between the right hand side and the left hand side of equation (III.4), that is

$$|C_{n,k} - C(1-k/n)| \leq C(1-k/n - \varepsilon) - C(1-k/n + \varepsilon) + 4e^{-\frac{\varepsilon^2}{2}n} + \frac{\log n}{n}. \quad (III.6)$$

With the notation of Lemma 2, take $\varepsilon < \alpha(\beta/2)/2$ so that $C(1-k/n - \varepsilon) - C(1-k/n + \varepsilon) < \beta/2$. Once ε is fixed, choose \bar{n} such that $4e^{-\frac{\varepsilon^2}{2}n} + \frac{\log n}{n} < \beta/2$ to complete the proof. Note that \bar{n} is a function of β only and that the result holds for every $k \leq n$. \hfill \blacksquare

We can now state the first result of this paper.

Theorem 1: Let k_n be an integer valued sequence such that k_n/n tends to $1-d$ as n goes to infinity. Then

$$\lim_{n \to \infty} C_{n,k_n} = C(d). \quad (III.7)$$
Proof: It follows easily from Lemma 6 by continuity of $C(d)$. □

The following result from [6] is fundamental.

Lemma 7 (Fertonani and Duman, [6]): For every n, k

$$\limsup_{d \to 1} \frac{C(d)}{1 - d} \leq \frac{n C_n + 1}{k + 1}. \quad \text{(III.8)}$$

Remark 1: In [6] the authors state that, for every n and k, $\lim_{d \to 1} C(d)/(1 - d) \leq n C_n + 1/k + 1$. However, we are not aware of a previous formal proof that $\lim_{d \to 1} C(d)/(1 - d)$ exists. This fact is proved in the following theorem.

We are finally ready to state the main result of the paper.

Theorem 2: It holds that

$$\lim_{d \to 1} \frac{C(d)}{1 - d} = \inf_{d \in (0, 1)} \frac{C(d)}{1 - d}. \quad \text{(III.9)}$$

Proof: For every $d' \in (0, 1)$, let k_n be a sequence such that k_n/n tends to $1 - d'$. Then the right hand side of (III.8) tends to $C(d')/(1 - d')$. Since d' is arbitrary, Lemma 7 implies that $\limsup_{d \to 1} C(d)/(1 - d) \leq \inf_{d' \in (0, 1)} \frac{C(d')}{1 - d'}$. However, it is obvious that $\inf_{d \in (0, 1)} C(d)/(1 - d) \geq \inf_{d' \in (0, 1)} \frac{C(d')}{1 - d'}$. Thus $\lim_{d \to 1} C(d)/(1 - d)$ exists and it equals $\inf_{d' \in (0, 1)} \frac{C(d')}{1 - d'}$. □

A direct consequence of Theorem 2 is the following improved bound on $C(d)$.

Corollary 1:

$$\lim_{d \to 1} \frac{C(d)}{1 - d} \leq 0.413. \quad \text{(III.10)}$$

Proof: As far as the author knows, the best known numerical bound obtained for $\inf_{d} C(d)/(1 - d)$ is 0.4128 obtained using the bound $C(0.61) \leq C_{17}(0.61) = 0.161$, evaluated in [6]. □

IV. ACKNOWLEGDMENTS

The author would like to thank Dario Fertonani for providing numerical data used in Corollary 1.

REFERENCES

[1] R. L. Dobrushin, “Shannon’s theorems for channels with synchronization errors,” *Problems of Information Transmission*, vol. 3, no. 4, pp. 11–26, 1967.
[2] S. Diggavi and M. Grossglauser, “On information transmission over a finite buffer channel,” *IEEE Trans. Inform. Theory*, vol. 52, no. 3, pp. 1226–1237, 2006.
[3] M. Drinea and M. Mitzenmacher, “Improved lower bounds for the capacity of i.i.d. deletion and duplication channels,” *IEEE Trans. on Inform. Theory*, vol. 53, no. 8, pp. 2693–2714, 2007.
[4] Y. Kanoria and A. Montanari, “On the deletion channel with small deletion probability,” submitted.
[5] A. Kalai, M. Mitzenmacher, and M. Suda, “Tight asymptotic bounds for the deletion channel with small deletion probabilities,” in *Proc. IEEE Intern. Symp. on Inform. Theory*, 2010.
[6] D. Fertonani and T. M. Duman, “Novel bounds on the capacity of the binary deletion channel,” accepted *IEEE Trans. Inform. Theory*, 2010.
[7] M. Drinea and M. Mitzenmacher, “A simple lower bound for the capacity of the deletion channel,” *IEEE Trans. on Inform. Theory*, vol. 52, no. 10, pp. 4657–4660, 2006.