Majorana fermions in topological superconductors with spin-orbit interaction

Masatoshi Sato
Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8581, Japan
E-mail: msato@issp.u-tokyo.ac.jp

Abstract. When a topological order is realized in a certain class of superconductors, it supports Majorana fermions on the edge or in the vortex core. Vortices with Majorana fermion modes are neither fermions nor bosons but non-Abelian anyons, obeying the non-Abelian statistics for which the exchange operations of particles are not commutative. Because of this remarkable feature, Majorana fermions play an important role for the realization of fault-tolerant topological quantum computation.

Here I would like to report our recent work on Majorana fermions and non-Abelian anyons in topological superconductors with spin-orbit interaction [1, 2, 3, 4, 5, 6]. Until recently, only spin-triplet superconducting states, such as such \(\nu = 5/2 \) fractional quantum Hall states or \(\text{Sr}_2\text{RuO}_4 \), had been known to exhibit Majorana fermions [7, 8, 9, 10, 11]. However, now it is revealed that spin-singlet superconductors also support Majorana fermions if we take into account the spin-orbit interaction. While a possible realization of non-Abelian anyon in an s-wave superconducting state was first discussed in the context of cosmology [1], by using a zero mode solution in a vortex by Jackiw and Rossi [12] (or its non-gauged version [13]), now there are many examples of such systems in condensed matter physics. In particular, a scheme using the spin-orbit interaction and Zeeman one, which was proposed in [2, 3, 4], is powerful to realize Majorana fermions in various systems. It is shown that Majorana fermions are realized in full-gapped s-wave superfluids/superconductors [3, 4, 14, 15]. Also, Majorana fermions is shown to possible even in nodal superconductors such as high-\(T_c \) cuprates [5].

We also show that a peculiar Majorana fermion is obtained in a certain non-centrosymmetric superconductor [6, 16, 17]. In sharp contrast to ordinary Majorana fermions, the novel Majorana fermion has a flat dispersion and preserves the time-reversal invariance.

1. What is Majorana fermion
First, I would like to explain briefly what a Majorana fermion is. The definition of a Majorana fermion is very simple. A Majorana fermion is a Dirac fermion which satisfies the Majorana condition. Its Hamiltonian is given by the Dirac Hamiltonian,

\[
\mathcal{H}(k) = \sigma \cdot k \quad (2D) \quad \text{or} \quad \mathcal{H}(k_x) = c k_x \quad (1D),
\]

and its wavefunction \(\Psi \) satisfies the Majorana condition

\[
\Psi = C \Psi^*,
\]

with a constant matrix \(C \). The latter equation implies that the particle \(\Psi \) is identified with its anti-particle \(\Psi^* \). In other words, the Majorana fermion is its own anti-particle. Originally, the
Majorana fermion was conceived as an elementary particle like a neutrino, but now it has been known that the Majorana fermion can be realized in topological superconductors [18].

A representative example of superconductors with Majorana fermion is a two-dimensional chiral p-wave superconductor [7]. The chiral superconductor is analogous to the quantum Hall state. Like a quantum Hall state, its bulk wave function has a non-zero Chern number and a one-dimensional Dirac fermion is realized as a topologically protected edge state. Furthermore, the Dirac fermion naturally satisfies the Majorana condition due to the superconductivity: In a superconductor, an electron is scattered into its anti-particle, or vice versa, by forming or destroying a Cooper pair. Thus, in the background of many Cooper pairs, a particle excitation cannot be distinguished from its anti-particle, thus it satisfies the Majorana condition naturally.

In a two-dimensional chiral p-wave superconductor, there also exist a Majorana fermion in a vortex. In two dimensions, a vortex can be considered as a small hole in the superconductor [7]. Thus as an edge state of the small hole, one obtains a topologically stable zero mode in a vortex. The zero mode γ_0 also satisfies the Majorana condition, which is given by

$$\gamma_0^\dagger = \gamma_0.$$
(3)

At first sight, the Majorana condition (3) looks problematic. For an ordinary zero mode, γ_0^\dagger is considered as the creation operator for the zero mode, but with the condition (3), this gives rise to contradiction, i.e., the creation operator γ_0^\dagger becomes the annihilation operator γ_0 at the same time. Fortunately, the apparent contradiction can be avoided if we consider a pair of vortices [7, 8]. From the zero modes $\gamma_0^{(i)}$ ($i = 1, 2$) for a pair of vortices 1 and 2, one can construct a well-defined creation operator γ^\dagger,

$$\gamma^\dagger = \frac{\gamma_0^{(1)} + i\gamma_0^{(2)}}{\sqrt{2}}.$$
(4)

The creation operator γ^\dagger is not the same as its conjugate annihilation operator γ and it satisfies the standard anti-commutation relation,

$$\{\gamma^\dagger, \gamma\} = 1.$$
(5)

Here one should note that spatially separate vortices are needed to define the creation operator. The nonlocal definition gives rise to a nonlocal quantum correlation between vortices, which changes the statistical properties of the vortices drastically. Actually the vortices obey a new kind of statistics called the non-Abelian anyon statistics [8]. Unlike ordinary fermions/bosons or Abelian anyons, one can create many degenerate states and manipulate them by exchanging non-Abelian anyons. The non-Abelian anyons are of particular interest since they can be considered as qubits for fault-tolerant quantum computers [19].

From the reason above, the two-dimensional chiral p-wave superconductor is very interesting. However, at the same time, the chiral p-wave superconductor is very special. 1) The chiral p-wave superconductor supports spin-triplet Cooper pairs. At present, however, only a few such as 3He superfluids or Sr$_2$RuO$_4$ have been widely accepted as spin-singlet superconductors. 2) The chiral p-wave superconductor is a full gapped but unconventional superconductor, while most unconventional superconductors including the high T_c cuprate have nodes in their gap functions. 3) Finally, the chiral p-wave superconductor breaks the time-reversal symmetry. Thus a natural question arises: Which property is essential to realize the Majorana fermion? In the following, I will show that the answer is none of them: Majorana fermions are possible in spin-singlet superconductors. Furthermore, nodal superconductors also can support Majorana fermions. And even for time-reversal invariant system, we may have a peculiar time-reversal invariant Majorana fermion. Thus, Majorana fermions can be obtained without any special property of the chiral p-wave superconductivity. However, as I will show below, we find that the spin-orbit interaction is indispensable to realize Majorana fermions instead.
2. Majorana fermion in spin-singlet superconductors

Here I will show that Majorana fermion and non-Abelian anyon are possible even for spin-singlet s-wave superconducting states [1, 20, 3, 4, 14, 15]. This possibility was first considered in Ref.[1].

The basic idea of Ref.[1] is to consider a two dimensional Dirac fermion coupled with an s-wave condensate \(\Phi \),

\[
\mathcal{H} = \begin{pmatrix}
-i\sigma_i \partial_i & \Phi^* \\
\Phi & -i\sigma_i \partial_i
\end{pmatrix}
\]

where \(\sigma_i \) is the Pauli matrices. From the analysis of Jackiw and Rossi [12] (and its non-gauged version [13]), it has been known that there exist a zero mode in the vortex configuration given by \(\Phi = \Phi_0 f(r)e^{i\theta} \). Therefore, imposing the Majorana condition on the system, one has a Majorana zero mode in a vortex, which implies that the vortices are non-Abelian anyons [1].

When this idea was considered in 2003, no condensed matter system supporting a single Dirac fermion was known. Thus the above idea was applied to a cosmic string called axion string [1]. After the publication of Ref.[1], however, it was found that a single Dirac fermion is naturally realized on a surface of a topological insulator. Actually, Fu and Kane showed, independently of Ref.[1], that a similar Hamiltonian is realized in the interface between a topological insulator and an s-wave superconductor [20]. They also showed that the vortex obeys non-Abelian anyon statistics in the same reason mentioned above. Furthermore, the idea was generalized to unconventional superconductors [21]. Here one should note that the spin-orbit interaction is very important since the spin-orbit interaction is a key gradient to realize topological insulators.

In the above scheme of non-Abelian anyons, we need a special system which supports a two dimensional Dirac fermion. However, if one consider an two dimensional s-wave superconductor with Rashba spin-orbit interaction, one can realize a Majorana fermion from electrons with a usual parabolic dispersion [3, 4]. The model Hamiltonian considered in Refs.[3, 4] is

\[
\mathcal{H}(k) = \begin{pmatrix}
\varepsilon_k - h\sigma_z + g_k \cdot \sigma & i\Delta \sigma_y \\
-i\Delta \sigma_y & -\varepsilon_k + h\sigma_z + g_k \cdot \sigma^*\end{pmatrix}
\]

where \(k = (k_x, k_y) \) is the momentum in the xy plane, \(\varepsilon_k \) the electron energy measured from the Fermi energy, \(\Delta \) the s-wave gap function, and \(g_k \sim \lambda(k_y, -k_x) \) the Rashba spin-orbit interaction. We also consider the Zeeman magnetic field \(h = \mu B H_z \) in the z-direction. Contrary to the Hamiltonian (6), we consider here that \(\varepsilon_k \) is parabolic around \(k = 0 \) as a usual electron. To see the basic idea of Ref.[3], perform the following unitary transformation

\[
\mathcal{H}^D(k) = D\mathcal{H}(k)D^\dagger,
\]

where \(D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i\sigma_y \\ i\sigma_y & 1 \end{pmatrix} \),

which leads to the dual Hamiltonian \(\mathcal{H}^D \),

\[
\mathcal{H}^D(k) = \begin{pmatrix}
\Delta - h\sigma_z & -i\varepsilon_k \sigma_y - i\lambda g_k \cdot \sigma \sigma_y \\
i\varepsilon_k \sigma_y + ig_k \sigma_y \cdot \sigma & -\Delta + h\sigma_z
\end{pmatrix}
\]

Interestingly, the spin-triplet gap function \(-i\lambda g_k \cdot \sigma \sigma_y\) is induced in the dual Hamiltonian, by the spin-orbit interaction of the original Hamiltonian. This implies that the original Hamiltonian \(\mathcal{H}(k) \) also has a property similar to the spin-triplet superconductor in the presence of the spin-orbit interaction. Actually, we can show that gapless Majorana edge state appears like a two dimensional chiral p-wave superconductor if the Zeeman magnetic field exceeds the critical value [3, 4],

\[
h > \sqrt{\Delta^2 + \mu^2}.
\]
One can also show that a vortex in the system supports a Majorana zero mode, so it becomes a non-Abelian anyon in this parameter region [3, 4, 14]. The bulk wave function has a non-zero Chern number in this parameter region [3, 4], thus the state is topologically equivalent to a chiral p-wave superconductor.

Here one might notice that a rather strong magnetic field, which is larger than the gap function Δ, is needed to satisfy the condition (10). Under such a strong magnetic field, the orbital depairing effect may break the superconductivity, although the Pauli depairing effect is strongly suppressed due to the Rashba spin-orbit interaction [22, 23]. This difficulty, however, has been resolved by various systems, (i) s-wave superfluids in neutral ultracold fermionic atoms with larger generated Rashba spin-orbit interaction [3, 4], (ii) heterostructure semiconductor devices [14, 15], and (iii) heavy fermion systems [4].

Recently, a similar idea was applied to nanowire systems [9, 24], and it was found that the same condition (10) is required to obtain Majorana fermions at the boundary of the semiconductor nanowire on an s-wave superconductor [25, 26, 27].

3. Majorana fermion in nodal superconductors

Now we show that Majorana fermions are possible even in nodal superconductors [5]. The model we consider is a two-dimensional d-wave superconductor with the Rashba spin-orbit interaction and Zeeman term,

$$
\mathcal{H}(k) = \left(\begin{array}{cc}
\varepsilon_k - h \sigma_z + g_k \cdot \sigma & i \Delta(k) \sigma_y \\
- i \Delta(k) \sigma_y & -\varepsilon_k + h \sigma_z + g_k \cdot \sigma^*
\end{array} \right).
$$

The Hamiltonian is almost the same as Eq.(7), but instead of an s-wave gap function Δ, we consider the d-wave gap functions,

$$
\Delta(k) \sim \Delta_0 k_x k_y, \quad \text{or} \quad \Delta(k) \sim \Delta_0 (k_x^2 - k_y^2).
$$

Gap-nodes exist in both d-wave pairings.

To understand what happens, we can use the dual transformation again. In a manner similar to (9), the spin-triplet gap function $-i g_k \cdot \sigma \sigma_z$ is induced in the dual Hamiltonian by the Rashba spin-orbit interaction. Therefore, one can expect that the original Hamiltonian is topologically similar to the spin-triplet superconductor. Indeed, although there are bulk nodes in the system, a gapless Majorana edge state appears like a chiral p-wave superconductor if the Zeeman magnetic field satisfies

$$
h > \mu.
$$

We can also show that there exist a single Majorana zero mode in a vortex in this parameter region, thus the vortex obeys non-Abelian anyon statistics [5]. On contrary to the s-wave case (see (10)), the condition (13) does not depend on the magnitude of the gap function Δ_0. Therefore, by choosing a system with small μ, the Majorana fermion can be realized in a weak magnetic field. The topological phase in nodal superconductors can be characterized by the parity of the Chern number [5].

4. Time-reversal invariant Majorana fermions

Finally, I would like to show the existence of Majorana fermion in two dimensional time-reversal invariant superconductors [6, 16, 17]. Usually, the time-reversal breaking is necessary to realize Majorana fermion in two dimensional superconductors. This is because the Majorana fermion on the edge has a linear dispersion

$$
E = c k_y,
$$
and it already breaks the time-reversal invariance. However, if the coefficient \(c \) vanishes, and the dispersion becomes flat,

\[
E = 0 \quad (15)
\]

then the Majorana fermion can be obtained even in time-reversal invariant systems. In Ref.[6], we have shown that such a Majorana fermion with flat dispersion is realized in a special kind of two dimensional nonecentrosymmetric superconductors.

We found that the spin-orbit interaction is indispensable to realize the dispersionless Majorana fermion in our model. Without the spin-orbit interaction, the single branch of the edge state with flat dispersion disappears, and no Majorana fermion is obtained [6, 16].

5. Summary
We show that Majorana fermions can be realized in various two dimensional superconductors other than chiral \(p \)-wave ones, if we take into account the spin-orbit interaction. In particular, \(s \)-wave superconductors or \(d \)-wave superconductors in high \(T_c \) cuprate can support Majorana fermions and non-Abelian anyons. From the stableness of \(s \)-wave pairing against disorder or a large superconducting gap of high \(T_c \) cuprate, the experimental detection of non-Abelian anyons in these schemes is expected to be feasible in comparison with that in chiral \(p \)-wave superconductors.

Acknowledgments
The author thanks S. Fujimoto, Y. Takahashi, Y. Tanaka, K. Yada, T. Yokoyama, and Y. Mizuno for collaboration on which this work is based. This work was supported by the Grant-in Aid for Scientific Research from MEXT of Japan “Topological Quantum Phenomena” No. 22103005 and No.22540383.

[1] M. Sato, Phys. Lett. B 575, 126 (2003).
[2] M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
[3] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009).
[4] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. B 82, 134521 (2010) (Editor’s suggestion).
[5] M. Sato and S. Fujimoto, Phys. Rev. Lett. 105, 217001 (2010).
[6] Y. Tanaka, Y. Mizuno, T. Yokoyama, K. Yada, and M. Sato, Phys. Rev. Lett. 105, 097002 (2010).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[8] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[9] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
[10] M. Sato, Phys. Rev. B 79, 214526 (2009).
[11] M. Sato, Phys. Rev. B 81, 220504(R) (2010).
[12] R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).
[13] C. G. Callan, Jr. and J. A. Harvey, Nucl. Phys. B 250, 427 (1985).
[14] J. D. Sau et. al., Phys. Rev. Lett. 104, 040501 (2010).
[15] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[16] K. Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys. Rev. B 83, 064505 (2011).
[17] M. Sato, K. Yada, Y. Tanaka, and T. Yokoyama, Phys. Rev. B 83, 224511 (2011).
[18] For recent reviews, X.-L. Qi and S. C. Zhang, arXiv:1008.2026; Y. Tanaka, M. Sato, and N. Nagaosa, arXiv:1105.4700.
[19] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Bull. Am. Math. Soc. 40, 31 (2003).
[20] L. Fu and C. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[21] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010).
[22] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004).
[23] S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 (2007).
[24] A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003 (2010).
[25] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
[26] R. M. Lutchyn, T. Stanescu, and S. Das Sarma, Phys. Rev. Lett. 106, 127001 (2011).
[27] J. Alicea, Y. Oreg, G. Rafael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7, 412 (2011).