Inferring entropy production from short experiments

Sreekanth K Manikandan1, Deepak Gupta2, and Supriya Krishnamurthy1

1Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden and
2Dipartimento di Fisica ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy

(Dated: October 10, 2019)

We provide a strategy for the exact inference of the average as well as the fluctuations of the entropy production in non-equilibrium systems in the steady state, from the measurements of arbitrary current fluctuations. Our results are built upon the finite-time generalization of the thermodynamic uncertainty relation, and require only very short time series data from experiments. We illustrate our results with exact and numerical solutions for two colloidal heat engines.

A fundamental property of non-equilibrium systems is the existence of currents which are fueled by a non-vanishing average rate of total entropy production \(\sigma := \langle \Delta S_{\text{tot}} \rangle / \tau \), where \(\tau \) is the time interval over which we observe the system. An estimate of \(\sigma \) quantifies how much heat is dissipated to the environment on average. More information is available from fluctuations of \(\Delta S_{\text{tot}} \). These are governed by the fluctuation theorems \[1,2\] and can be used for the estimation of free energy differences \[13,14\] or studying the binding energies in single-molecule \[15,16\] or multi-molecular experiments \[17\]. An accurate quantification of the statistics of \(\Delta S_{\text{tot}} \) could also help improve our understanding of the non-equilibrium physics of active matter systems \[18\], biological systems \[19,20\] and nanoscale devices \[21–24\] such as colloidal heat engines \[25,26\].

The main challenge in the thermodynamic characterization of microscopic systems continues to be however, the lack of a general scheme for the measurement and characterization of \(\Delta S_{\text{tot}} \). For systems such as colloidal particles, for which the full dynamical equations are known, \textit{stochastic thermodynamics} provides a framework to quantify \(\Delta S_{\text{tot}} \) from individual trajectories \[11,27,28\]. For more complex systems where not all relevant mesostates are accessible, these direct strategies fail \[29,30\]. The only options are either to perform local calorimetric measurements to directly measure the heat emitted to the bath \[31\] or to come up with a new scheme for inferring \(\sigma \) indirectly.

Recently, for non-equilibrium systems in a steady state, such a scheme for identifying \(\sigma \) has been proposed \[29,32\] using the thermodynamic uncertainty relation \[33,34\]. Using this scheme, a lower bound \(\sigma_L \) for \(\sigma \) can be obtained from the measurement of \(\text{any} \) fluctuating current \(J \), in terms of its mean \(\langle J \rangle \) and variance \(\text{Var}(J) \) as:

\[
\sigma \geq \sigma_L = \frac{2k_B \langle J \rangle^2}{\tau \text{Var}(J)}.
\]

Here, \(k_B \) is the Boltzmann constant. Eq. (1) holds for arbitrary \(\tau \) for non-equilibrium systems in a steady state, and the proof follows from a \(\sigma \)-dependent parabolic bound on the large deviation function \[35\] of \(J \) \[36,37\].

This inference scheme for \(\sigma \) has been shown \[32\] to perform better than more direct methods that use spatial or temporal averages. However, since the uncertainty relation is an inequality, Eq. (1) still only gives a bound for \(\sigma \) even when \(J = \Delta S_{\text{tot}} \). How tight this bound is depends in general on model details and the \(J \) chosen.

As a result, there has been much interest recently on how to choose \(J \) such that the bound value is the tightest \[32,35\]. For \(\tau \to \infty \), it is known that the current \(J \) that gives the best bound is \(J = \Delta S_{\text{tot}} \).

Eq. (1) could be used to predict \(\sigma \) exactly if the equality was to hold. One case when this is known to happen is the equilibrium limit \[33,36,39\] with \(J \) chosen so that \(J = \Delta S_{\text{tot}} \). This means, that for systems working in the close-to-equilibrium/linear response regimes, there is a possibility to estimate \(\sigma \) arbitrarily close to the exact value by using Eq. (1). The equality in Eq. (1) is also met for arbitrary non-equilibrium conditions if along with \(J = \Delta S_{\text{tot}} \), certain conditions are met by the steady state current and probability distributions \[40\]. However it is difficult to tailor models so as to satisfy such conditions. Hence, there is no general scheme available so far for inferring sigma exactly under arbitrary non-equilibrium conditions. In addition no scheme exists, to our knowledge, for inferring fluctuations in \(\Delta S_{\text{tot}} \).

We address precisely these issues in this Letter. Our first central contribution is to provide a new strategy which, in principle, can estimate \(\sigma \) exactly at arbitrary non-equilibrium conditions, by using Eq. (1) in the \(\tau \to 0 \) limit. In this limit, for the current \(J = \Delta S_{\text{tot}} \), it can be shown that the equality condition holds, just as for the equilibrium limit. Using this feature, we show that we can infer \(\sigma \) arbitrarily close to the exact value, by evaluating \(\sigma_L \) for a variety of \(J \) calculated over very short time durations, and then choosing the largest value of \(\sigma_L \) that results. A very important point for this inference scheme to work, is how to define \(J \). To get a value of \(\sigma \) as close as possible to the exact steady-state value, we demonstrate that the time-intensive, boundary contributions to \(J \) play a crucial role. Another point, appealing for experimental studies, is that, because we need to only evaluate the RHS of Eq. (1) over very short trajectories, a single long time-series should give a very good estimate for both \(J \) and \(\text{Var}(J) \). In addition, for very short trajectories, we expect that \(\sigma_L \) will depend quite sensitively on the choice of \(J \). This is advantageous when searching through the space of currents \(J \) to find the highest value for the RHS of Eq. (1). Note, that the value of \(\sigma \) so inferred is then
valid for any time since the system is in a steady state.

Our second contribution is to demonstrate that, by combining the value of σ inferred from the previous step and the structure of the large deviation function of arbitrary currents \[\{36, 37, 41\}, we can also infer the distribution of ΔS_{tot}, and as a result all the cumulants, arbitrarily close to their exact values. There by, we also extend the thermodynamic inference problem to inferring the fluctuations of ΔS_{tot}. We illustrate all our findings using exact and numerical solutions for two models of colloidal engines, namely the Brownian gyrator \[22, 42\] as well as the isothermal work-to-work converter engine \[44\].

We begin by considering the uncertainty relation for $J = \Delta S_{tot}$, which reads (setting $k_B = 1$),

$$\frac{\text{Var}(\Delta S_{tot})}{\langle \Delta S_{tot} \rangle} \geq 2. \tag{2}$$

To motivate that this inequality saturates at $\tau \to 0$, we consider the arbitrary time, scaled cumulant generating function (SCGF) $\phi_{\Delta S_{tot}}(\lambda, \tau) \equiv \frac{1}{\tau} \log \langle e^{-\lambda \Delta S_{tot}} \rangle_\tau$. ϕ is a convex function by definition \[43\]. For short time durations, when $|\Delta S_{tot}| \ll 1$, we can express $\phi_{\Delta S_{tot}}(\lambda, \tau)$ as a series expansion in terms of the cumulants of ΔS_{tot}.

Then, to the leading order that respects convexity, we get (see the supplemental material \[44\] for more details),

$$\phi_{\Delta S_{tot}}(1, \tau) = 0,$$

and

$$\phi_{\Delta S_{tot}}(1, \tau) \sim -\frac{\lambda}{\tau} \frac{\Delta S_{tot}}{\tau} + \frac{\lambda^2 \text{Var}(\Delta S_{tot})}{2 \tau}.$$ \[3\]

Now applying the integral fluctuation theorem \[12\]:

$$\frac{\text{Var}(\Delta S_{tot})}{\langle \Delta S_{tot} \rangle} \to 2 \quad \text{as} \quad \tau \to 0. \tag{4}$$

A more rigorous proof is provided in \[45\] to the effect that the bound in Eq. \[2\] is always satisfied when $\Delta S_{tot} \to 0$. This happens for the equilibrium limit but $\Delta S_{tot} \to 0$ also when $\tau \to 0$ and hence the same result \[45\] applies. A model which can be solved exactly for the LHS of Eq. \[2\] has also been shown \[39\] to display this behaviour as $\tau \to 0$.

We now demonstrate the usefulness of Eq. \[1\] for inferring σ for two non-trivial models of colloidal engines, the Brownian gyrorator model \[22, 42\] and the work-to-work converter engine \[22, 43\], in both of which the working substance is a single colloidal particle. In the first case, the particle is in contact with external reservoirs at hot (T_1) and cold (T_2) temperatures and in the second case, the particle is subjected to two white-noise forces, interpreted as a load and drive force. The individual time-extensive and -intensive contributions to ΔS_{tot} can then be written as,

$$\Delta S_{tot} = -\frac{Q_1}{T_1} - \frac{Q_2}{T_2} + \Delta S_{sys},$$

$$= \eta_C \frac{T_2}{T_1} Q_1 + \frac{1}{T_2} W + \Delta S_{int}. \tag{5}$$

FIG. 1. An illustration of the exact estimation of the entropy production rate σ, using the $\tau \to 0$ limit of Eq. \[1\] for two colloidal engine models in non-equilibrium steady states. \textit{Left}: σ inferred as a function of time, for the Brownian gyrorator model, with analytic solutions for σ_L in Eq. \[1\]. The black horizontal line corresponds to the actual entropy production rate. The red solid and blue dotted lines correspond to arbitrary currents with and without boundary contributions (see the main text). The results show that the best inference of σ is given by ΔS_{tot} (green dashed line) itself, and that several of the currents having boundary contributions (red solid lines) infer σ arbitrarily close to the actual value, in the $\tau \to 0$ limit. \textit{Right}: Inferring σ, as the maximum of the measured σ_L's of N arbitrary currents (Eq. \[3\]), for the isothermal work-to-work converter engine, from numerical simulations. Here the black dashed line corresponds to the actual σ, obtainable from a large-time computation \[43\]. σ_N corresponds to the maximum σ_L inferred by the N currents, at $\tau \to 0$. We see that as N increases, σ_N saturates to the known value of σ. The inset shows that the inference procedure makes a large error if the boundary terms are not included.

Here $\eta_C = 1 - \frac{T_2}{T_1}$, is the Carnot efficiency. The second equation in Eq. \[5\] is valid also for the work-to-work converter if Q_1 and W are interpreted as work done arising from the driving and loading terms respectively and $\eta_C = 1$ \[44\].

The term $\Delta S_{int} = -\frac{T_2}{T_1} \Delta E + \Delta S_{sys}$ collects the time-intensive contributions to the total entropy production that depend only on the initial and final states of the system. ΔE denotes the change in internal energy, which is, according to the First Law, $\Delta E = W + Q_1 + Q_2$. Although ΔS_{int} is a time intensive contribution to ΔS_{tot}, it can significantly fluctuate for infinite state space systems as discussed recently in \[22\], and cannot be neglected. We define an arbitrary current J in the system as the linear combination $J = c_1 \frac{T_2}{T_1} Q_1 + c_2 \frac{1}{T_2} W + c_3 \Delta S_{int}$, where c_1, c_2 and c_3 are random real numbers, taken uniformly from the interval $[-1, 1]$. In particular, when $c_1 = c_2 = c_3 = 1$, we get $J = \Delta S_{tot}$ \[46\]. It is important to note that, for a generic non-equilibrium system, the decomposition of ΔS_{tot} as given in Eq. \[6\] is usually not straightforward. In such cases, one can generate random currents J from the phase space trajectories of the system \[32, 47\], as discussed later. The results we present here could then be applied to such currents.
temperature, we relegate their detailed description to the supplementary material [44]. The Brownian gyrator can be solved exactly [22] for the full SCGF $\Phi(\lambda, \lambda_w, \lambda_S, \tau) \equiv \frac{1}{2} \log \langle e^{-\frac{\lambda w Q_1 - \lambda W + \lambda S \Delta S_{\text{tot}}}{\tau}} \rangle$, at arbitrary times and hence provides us with the means to check the inference procedure analytically. The second model of the work-to-work converter can only be solved for large times [43]. We hence use it to test our inference scheme in a situation where we can only rely on numerics.

In the left panel of Fig. 1 we compute σ_L for the Brownian gyrator, using our analytical solutions (see [44] for more details) for arbitrary currents $J = c_1 \frac{1}{\tau_2} Q_1 + c_2 \frac{1}{\tau_2} W + c_3 \Delta S_{\text{tot}}$ at any time τ. The exact value of σ is marked by the black horizontal line. At any time τ, the current which infers σ the best is $J = \Delta S_{\text{tot}}$, which is the green dashed curve in the figure. In particular, in the $\tau \to 0$ limit, ΔS_{tot} infers σ exactly. More interestingly, notice that there are currents which are not necessarily ΔS_{tot} which perform almost as good as ΔS_{tot}, and infer σ arbitrarily close to the actual value, in the $\tau \to 0$ limit. The red solid lines correspond to a value of σ_L computed from currents for which $c_3 \neq 0$. The blue dotted lines correspond to σ_L calculated from currents for which $c_3 = 0$ and hence which are only linear combinations of Q_1 and W, the time-extensive contributions to ΔS_{tot}. We find that inference with currents for which $c_3 \neq 0$ gives better results in many cases, particularly at short times. The best inference strategy is therefore to measure the mean and variance of an ensemble of randomly generated currents with boundary contributions at arbitrary short times. Since, the bound in Eq. (1) saturates for $\tau \to 0$, we are guaranteed to obtain a value for σ_L arbitrarily close to the actual σ as,

$$\sigma = \max_j \left\{ \lim_{\tau \to 0} \sigma_L \right\}. \tag{6}$$

Note that for large τ all currents, including $J = \Delta S_{\text{tot}}$ give a similar estimate, which is considerably less than the actual value. Hence, the small-time saturation of Eq. (1) as well as its sensitivity to the J chosen, both work in favour of getting a better estimate for σ than at large τ. In practice, the $\tau \to 0$ limit may be achieved in experiments by choosing trajectory lengths corresponding to the minimal temporal resolution accessible to the experiment [48, 49].

In the right panel of Fig. 1 we numerically compute σ_L for the second model of the work-to-work converter, by computing the mean and variance of different randomly chosen J for very short trajectories and using Eq. (6) to estimate σ as the maximum value obtained over all the chosen currents. Since this model can be solved in the steady state [43], we know the exact value of σ. As can be seen, the inferred value is in very good agreement with the exact value after the inference procedure has been applied to the order of about 20 currents. As in the inset shows, if $c_3 = 0$, no current is able to obtain the exact value of σ.

To further analyze the inference of σ by the finite time inference scheme, Eq. (6), we have identified the optimal currents that infer σ the best. These currents have been referred to as hyper-accurate currents recently [35]. In Fig. 2, we illustrate this in the $\tau \to 0$ limit for the Brownian gyrator. When $c_3 \neq 0$ the best inference is given by the ΔS_{tot} current itself, as expected. However, for $c_3 = 0$, the best inference is given by some other direction in the (c_1, c_2) plane. When $\tau \neq 0$ also, we can show (see supplemental material), that the optimal current is in general different from ΔS_{tot} as recently suggested in [38], and becomes equal to ΔS_{tot} only for large τ [39].

So far, we have shown that the finite time thermodynamic uncertainty relation can be used at very short observational times to infer σ arbitrarily close to the actual value, arbitrarily far from equilibrium. It is then natural to ask, if there can be similar inference strategies for the fluctuations of ΔS_{tot} as well. Our second result is to show that the steady state distribution of ΔS_{tot} can also be obtained to great accuracy, if we have access to an exact estimate of σ.

We begin by considering the structure of the cumulant generating function of an arbitrary current in the steady state, $\phi_J(\lambda, \tau) \equiv \frac{1}{2} \log \langle e^{-\lambda \frac{Q_1 + W + \lambda S \Delta S_{\text{tot}}}{\tau}} \rangle$ at large τ. Using large deviation techniques, it has been shown recently that ϕ_J obeys the bound [36, 37, 41],

$$-\sigma \lambda (1 - \lambda) \leq \phi_{\Delta S_{\text{tot}}}(\lambda, \tau) \leq \phi_J(\lambda, \tau). \tag{7}$$

The uncertainty relation in Eq. (1) can be directly proved from this result [46, 47]. Interestingly, Eq. (7) constrains the fluctuations of ΔS_{tot} strongly, by providing both a lower bound and an upper bound for $\phi_{\Delta S_{\text{tot}}}$. In particular, one can saturate the bound $\phi_{\Delta S_{\text{tot}}}(\lambda, \tau) \leq \phi_J(\lambda, \tau)$ if $J = \Delta S_{\text{tot}}$. We therefore get a natural scheme for
We illustrate Eq. (8) and Eq. (9) in Fig. 3 for the isothermal work-to-work converter engine. We have first obtained an analytic expression for the joint SCGF
\[\Phi(\lambda_Q, \lambda_W, \lambda_S, \tau) = \frac{1}{\tau} \log \left(e^{\lambda_Q n_Q Q_\tau \tau^2} - \lambda_W W \lambda_S S \Delta S_{\text{tot}} \right), \]
which is exact at large but finite times (see the supplemental material [44]). The geometry of \(\Phi \) was recently conjectured and discussed in some detail in [22]. Due to the fluctuation theorem, \(\Phi \) is a reflection symmetric object around the point \(\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \), and typically has a limited domain of convergence (cut-offs) that depend on \(\lambda_S \). We illustrate this for a fixed, large value of \(\tau \) in Fig. 3. The SCGF of an arbitrary current \(J \) can be obtained from \(\Phi \) by evaluating it along a straight line passing through the origin and the point \((c_1, c_2, c_3) \), where \(c_1, c_2, c_3 \) are random numbers. In particular, \(\phi_{\Delta S_{\text{tot}}} \) is \(\Phi \) evaluated along the \((1,1,1)\) direction marked by the red solid line in Fig. 3.

In Fig. 3a and Fig. 3b, we illustrate the inference of \(\phi_{\Delta S_{\text{tot}}} \) using Eq. (8). The blue solid and red dashed curves in Fig. 3a correspond to \(\phi_{\tau J} \) with and without contributions from \(\Delta S_{\text{int}} \). Since \(\phi_{\tau J} \) of currents with \(c_3 = 0 \), can have restricted domains of convergences (see \(\lambda_S = 0 \) plane of Fig. 3a), they will end up inferring a limited domain of \(\phi_{\Delta S_{\text{tot}}} \), as shown in Fig. 3a, with the blue circles. On the other hand, if we apply Eq. (8) to the same currents, with arbitrary boundary contributions \((c_3 \neq 0) \), we see significant improvement in the estimate of \(\phi_{\Delta S_{\text{tot}}} \), as shown in Fig. 3b, with the red squares. In Fig. 3d, we illustrate the inference of \(\text{Var}(\Delta S_{\text{tot}}) \) using Eq. (9), numerically.

Finally, we would like to discuss how the results presented here can be generalized to non-equilibrium systems, where the decomposition of \(\Delta S_{\text{tot}} \) as given by Eq. (1) is not straightforward [29, 32]. The first step is to identify the relevant dynamical degrees of freedom \(x(t) \) of the system. Arbitrary currents \(J_d \) can be constructed using random vectors \(d(x) \) using the formalism recently elaborated in [32] as,
\[J_d = \int_{x(0)}^{x(T)} d(x) \ d(x) \ j(x), \]
where, \(j(x) = \frac{1}{T} \int_0^T \delta(x - x(t)) \ dx(t) \), an estimate for the steady state current. The inference scheme we have presented here can then be straightforwardly implemented by using Eq. (6), Eqs. (8) and (9) with \(J = J_d \).

In summary, we have presented here an indirect scheme to exactly infer the average entropy production rate \(\sigma \) as well as the distribution of entropy production \(P(\Delta S_{\text{tot}}) \) in non-equilibrium steady state systems. The scheme for identifying \(\sigma \) is built upon the finite time thermodynamic uncertainty relation [37, 50] and it’s saturation in the very short time limit. The inference of \(P(\Delta S_{\text{tot}}) \) is then built upon an exactly estimated value of \(\sigma \) and the dissipation bounded structure of steady state current fluctuations [36, 41]. We have found that, for this inference scheme to return an accurate estimate, the time intensive contributions to \(\Delta S_{\text{tot}} \), play a crucial role.
It will be very interesting to test this inference scheme in biological systems or active matter systems in the steady state, to infer ΔS_{tot}, or to indirectly test fluctuation theorems. Generalizations to time symmetrically driven systems could also be interesting.

ACKNOWLEDGMENTS

Deepak Gupta acknowledges the support from University of Padova through project “Excellence Project 2018” of the Cariparo foundation. Supriya and Sreekanth thank Lennart Dabelow, Ralf Eichhorn, Shun Utsubo, Stefano Bo and Takahiro Sagawa for helpful discussions. We also thank Shun Utsubo for comments on an earlier version of the manuscript.

[1] Denis J. Evans, E. G. D. Cohen, and G. P. Morriss. Probability of second law violations in shearing steady states. Phys. Rev. Lett., 71:2401–2404, Oct 1993.
[2] Denis J. Evans and Debra J. Searles. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E, 50:1645–1648, Aug 1994.
[3] Debra J. Searles and Denis J. Evans. Ensemble dependence of the transient fluctuation theorem. The Journal of Chemical Physics, 113(9):3503–3509, 2000.
[4] D. J. Searles and D. J. Evans. Fluctuation theorem for heat flow. International Journal of Thermophysics, 22(1):123–134, 2001.
[5] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74:2694–2697, Apr 1995.
[6] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in stationary states. Journal of Statistical Physics, 80(5):931–970, 1995.
[7] Jorge Kurchan. Fluctuation theorem for stochastic dynamics. Journal of Physics A: Mathematical and General, 31(16):3719, 1998.
[8] Joel L. Lebowitz and Herbert Spohn. A gallavotti–cohen-type symmetry in the large deviation functional for stochastic dynamics. Journal of Statistical Physics, 95(1):333–365, 1999.
[9] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78:2690–2693, Apr 1997.
[10] Gavin E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60:2721–2726, Sep 1999.
[11] Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75(12):126001, 2012.
[12] U. Seifert. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett., 95:040602, 2005.
[13] Gerhard Hummer and Attila Szabo. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proceedings of the National Academy of Sciences, 98(7):3658–3661, 2001.
[14] Jan Lipphardt, Sophie Dumont, Steven B Smith, Ignacio Tinoco, and Carlos Bustamante. Equilibrium information from nonequilibrium measurements in an experimental test of jarzynski’s equality. Science, 296(5574):1832–1835, 2002.
[15] A Mossa, M Manosas, N Forns, J M Huguet, and F Ritort. Dynamic force spectroscopy of DNA hairpins: I. force kinetics and free energy landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2009(02):P02060, Feb 2009.
[16] Felix Ritort. Single-molecule experiments in biological physics: methods and applications. Journal of Physics: Condensed Matter, 18(32):R531, 2006.
[17] Joan Camunas-Soler, Anna Alemany, and Felix Ritort. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science, 355(6323):412–415, 2017.
[18] Sriram Ramaswamy. The mechanics and statistics of active matter. Annual Review of Condensed Matter Physics, 1(1):323–345, 2010.
[19] M E Cates. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Reports on Progress in Physics, 75(4):042601, Mar 2012.
[20] Daniel S Seara, Vikrant Yadav, Ian Linsmeier, A Pasha Tabatabai, Patrick W Oakes, SM Ali Tabei, Shiladitya Banerjee, and Michael P Murrell. Entropy production rate is maximized in non-contractile actomyosin. Nature communications, 9(1):4948, 2018.
[21] Patrick Pietzonka and Udo Seifert. Universal trade-off between power, efficiency, and constancy in steady-state heat engines. Phys. Rev. Lett., 120:190602, May 2018.
[22] Sreekanth K. Manikandan, Lennart Dabelow, Ralf Eichhorn, and Supriya Krishnamurthy. Efficiency fluctuations in microscopic machines. Phys. Rev. Lett., 122:140601, Apr 2019.
[23] Gatien Verley, Massimiliano Esposito, Tim Willaert, and Christian Van den Broeck. The unlikely carnot engine.
[24] Gatien Verley, Tim Willaert, Christian Van den Broeck, and Massimiliano Esposito. Universal theory of efficiency fluctuations. Physical Review E, 90(5):052145, 2014.
[25] Ignacio A Martínez, Óscar Tabares, Luis Dinis, Dmitri Petrov, Juan MR Parrondo, and Raúl A Rica. Colloidal heat engines: a review. Soft Matter, 13(1):22–36, 2017.
[26] Ignacio A Martínez, Édgar Roldán, Luis Dinis, and Raúl A Rica. Colloidal heat engines: I. force kinetics and free energy landscapes. Journal of the Physical Society of Japan, 66(5):1234–1237, 1997.
[27] Ken Sekimoto. Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement, 130:17–27, 1998.
[29] Udo Seifert. From stochastic thermodynamics to thermo-
dynamic inference. *Annual Review of Condensed Matter
Physics*, 10(1):171–192, 2019.

[30] Ignacio A Martínez, Gili Bisker, Jordan M Horowitz, and
Juan MR Parrondo. Inferring broken detailed balance in
the absence of observable currents. *Nature communications*,
10(1):1–10, 2019.

[31] Luca Basta, Stefano Veronesi, Yuya Murata, Zoé Dubois,
Neeraj Mishra, Filippo Fabbri, Camilla Coletti, and Ste-
fan Heun. A sensitive calorimetric technique to study energy
(heat) exchange at the nano-scale. *Nanoscale*,
10(21):10079–10086, 2018.

[32] Junang Li, Jordan M Horowitz, Todd R Gingrich, and
Nikta Fakhri. Quantifying dissipation using fluctuating
currents. *Nature communications*, 10(1):1666, 2019.

[33] Andre C. Barato and Udo Seifert. Thermodynamic un-
certainty relation for biomolecular processes. *Phys. Rev.
Lett.*, 114:158101, Apr 2015.

[34] Andre C Barato and Udo Seifert. Universal bound on the
fano factor in enzyme kinetics. *The Journal of Physical
Chemistry B*, 119(22):6555–6561, 2015.

[35] Hugo Touchette. The large deviation approach to statisti-
cal mechanics. *Phys. Rep.*, 478(13):1 – 69, 2009.

[36] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov,
and Jeremy L. England. Dissipation bounds all steady-
state current fluctuations. *Phys. Rev. Lett.*, 116:120601,
Mar 2016.

[37] Jordan M. Horowitz and Todd R. Gingrich. Proof of
the finite-time thermodynamic uncertainty relation for steady-state currents. *Phys. Rev. E*, 96:020103, Aug 2017.

[38] Daniel Maria Busiello and Simone Pigolotti. Hyperac-
curate currents in stochastic thermodynamics. *arXiv preprint arXiv:1908.00735*, 2019.

[39] Sreekanth K Manikandan and Supriya Krishnamurthy. Exact results for the finite time thermodynamic uncertainty relation. *J. Phys. A: Math. Theor.*, 51(11):11LT01, 2018.

[40] Yoshihiko Hasegawa and Tan Van Vu. Uncertainty rela-
tions in stochastic processes: An information inequality
approach. *Phys. Rev. E*, 99:062126, Jun 2019.

[41] Patrick Pietzonka, Andre C. Barato, and Udo Seifert. Universal bounds on current fluctuations. *Phys. Rev. E*,
93:052145, May 2016.

[42] Roger Filliger and Peter Reimann. Brownian gyrator: A
minimal heat engine on the nanoscale. *Phys. Rev. Lett.*,
99(23):230602, 2007.

[43] Deepak Gupta and Sanjib Sabhapandit. Stochastic ef-
ficiency of an isothermal work-to-work converter engine. *Phys. Rev. E*, 96:042130, Oct 2017.

[45] Yoshihiko Hasegawa and Tan Van Vu. Fluctuation the-
orem uncertainty relation. *Phys. Rev. Lett.*, 123:110602,
Sep 2019.

[46] In principle, one can also consider any arbitrary decom-
position of ΔS_{tot} with more components. We will stick
to a three dimensional basis for simplicity.

[47] Todd R Gingrich, Grant M Rotskoff, and Jordan M
Horowitz. Inferring dissipation from current fluctua-
tions. *Journal of Physics A: Mathematical and Theo-
retical*, 50(18):184004, apr 2017.

[48] Simon Kheifets, Akarsh Simha, Kevin Melin, Tongcang
Li, and Mark G Raizen. Observation of brownian motion in
liquids at short times: instantaneous velocity and memory loss. *science*, 343(6178):1493–1496, 2014.

[49] Carmine Di Rienzo, Vincenzo Piazza, Enrico Gratton,
Fabio Beltram, and Francesco Cardarelli. Probing short-
range protein brownian motion in the cytoplasm of living cells. *Nature communications*, 5:5891, 2014.

[51] Patrick Pietzonka, Felix Ritort, and Udo Seifert. Finite-
time generalization of the thermodynamic uncertainty rela-
tion. *Phys. Rev. E*, 96:012101, Jul 2017.

[52] Simon Kheifets, Akarsh Simha, Kevin Melin, Tongcang
Li, and Mark G Raizen. Observation of brownian motion in
liquids at short times: instantaneous velocity and memory loss. *science*, 343(6178):1493–1496, 2014.

[53] Carmine Di Rienzo, Vincenzo Piazza, Enrico Gratton,
Fabio Beltram, and Francesco Cardarelli. Probing short-
range protein brownian motion in the cytoplasm of living cells. *Nature communications*, 5:5891, 2014.

[54] Patrick Pietzonka, Felix Ritort, and Udo Seifert. Finite-
time generalization of the thermodynamic uncertainty rela-
tion. *Phys. Rev. E*, 96:012101, Jul 2017.

[55] Aykut Argun, Jalpa Soni, Lennart Dabelow, Stefano Bo,
Giuseppe Pesce, Ralf Eichhorn, and Giovanni Volpe. Ex-
pertmental realization of a minimal microscopic heat en-
gine. *Physical Review E*, 96(5):052106, 2017.

[56] Patrick Pietzonka, Felix Ritort, and Udo Seifert. Finite-
time generalization of the thermodynamic uncertainty rela-
tion. *Phys. Rev. E*, 96:012101, Jul 2017.

[57] Aykut Argun, Jalpa Soni, Lennart Dabelow, Stefano Bo,
Giuseppe Pesce, Ralf Eichhorn, and Giovanni Volpe. Ex-
pertmental realization of a minimal microscopic heat en-
gine. *Physical Review E*, 96(5):052106, 2017.

[58] Sreekanth K. Manikandan and Supriya Krishnamurthy. Asymptotics of work distributions in a stochastically
 driven system. *The European Physical Journal B*,
90(12):258, Dec 2017.

[59] L. Onsager and S. Machlup. Fluctuations and Irreversible Processes. *Phys. Rev.*, 91:1505–1512, Sep 1953.

[60] S. Machlup and L. Onsager. Fluctuations and Irreversible Process. II. Systems with Kinetic Energy. *Phys. Rev.*, 91:1512–1515, Sep 1953.

[61] V. Y. Chernyak, M. Chertkov, and C. Jarzynski. Path-
integral analysis of fluctuation theorems for general Langevin processes. *J. Stat. Mech.*, 2006(08):P08001,
2006.

[62] Klaus Kirsten and Alan J. McKane. Functional deter-
minants by contour integration methods. *Ann. Phys.*, 308(2):502–527, 2003.
Supplemental Material for “Inferring entropy production from short experiments”

SATURATION OF THE THERMODYNAMIC UNCERTAINTY RELATION FOR ΔS_{tot} IN THE LIMIT $\tau \to 0$

In this section, we discuss the saturation of the thermodynamic uncertainty relation for ΔS_{tot} in the $\tau \to 0$ limit. We begin with considering a generic non-equilibrium system in contact with thermal reservoirs at temperature T_i. The total entropy production ΔS_{tot} is given by,

$$\Delta S_{\text{tot}} = \sum_i \frac{Q_i}{T_i} + \Delta S_{\text{sys}},$$

where Q_i is the heat dissipated in the i-th bath at temperature T_i, and $\Delta S_{\text{sys}} = -\log P_{ss}(x) + \log P_{ss}(x_0)$ is the system entropy production [12]. The first term in the above equation is a time-extensive quantity and vanishes in the $\tau \to 0$ limit whereas the last term ΔS_{sys}, the change in system entropy, is a time-intensive quantity which however also vanishes in the $\tau \to 0$ limit. Thus, the total entropy production $\Delta S_{\text{tot}} \to 0$ for each realization in the limit $\tau \to 0$.

Consider the scaled cumulant generating function $\phi_{\Delta S_{\text{tot}}}(\lambda, \tau) \equiv \frac{1}{\lambda} \log \braket{e^{-\lambda \Delta S_{\text{tot}}}}_{\tau}$. In the limit $\tau \to 0$, we write the series expansion in ΔS_{tot} as

$$\phi_{\Delta S_{\text{tot}}}(\lambda, \tau) = -\lambda \frac{\braket{\Delta S_{\text{tot}}}}{\tau} + \lambda^2 \frac{\braket{\Delta S_{\text{tot}}^2}}{2 \tau} - \lambda^3 \frac{\braket{\Delta S_{\text{tot}}^3}}{3! \tau} + \lambda^4 \frac{\braket{\Delta S_{\text{tot}}^4}}{4! \tau} + \ldots,$$

where $\braket{\Delta S_{\text{tot}}^n}$ is n-th cumulant of ΔS_{tot}.

To the leading order,

$$\phi_{\Delta S_{\text{tot}}}(\lambda, \tau) \to -\lambda \frac{\braket{\Delta S_{\text{tot}}}}{\tau} + \lambda^2 \frac{\braket{\Delta S_{\text{tot}}^2}}{2 \tau} \quad \text{as} \quad \tau \to 0.$$ \hspace{1cm} (S2)

Notice that the above approximation preserves the convex nature of $\phi_{\Delta S_{\text{tot}}}(\lambda, \tau)$ [23]. Substituting $\lambda = 1$ in the above equation and invoking the integral fluctuation theorem $\phi_{\Delta S_{\text{tot}}}(1, \tau) = 0$ yields

$$\frac{\text{Var}(\Delta S_{\text{tot}})}{\braket{\Delta S_{\text{tot}}}} \to 2 \quad \text{as} \quad \tau \to 0.$$ \hspace{1cm} (S4)

The above equation gives the saturation of the thermodynamic uncertainty relation Eq. (1) in the $\tau \to 0$ limit for $J = \Delta S_{\text{tot}}$. Similarly, when one considers the next higher order terms in the series [S2], the saturation involving the higher order cumulants translates to the following condition for the moments:

$$\frac{\braket{\Delta S_{\text{tot}}^4}}{4 \braket{\Delta S_{\text{tot}}^3} - 12 \braket{\Delta S_{\text{tot}}^2} + 24 \braket{\Delta S_{\text{tot}}}} \to 1 \quad \text{as} \quad \tau \to 0.$$ \hspace{1cm} (S5)

PROOF OF THE INEQUALITY $M_{\Delta S_{\text{tot}}}^{(n)} \leq M_{J}^{(n)}$

From Eq.(7), we see that the scaled cumulant generating function for the entropy production is bounded by the scaled cumulant generating function of the normalized currents (defined in main text) as

$$\phi_{\Delta S_{\text{tot}}}(\lambda, \tau) \leq \phi_{J}^{\gamma}(\lambda, \tau).$$ \hspace{1cm} (S6)

We expand both sides, and obtain

$$(-\lambda)M_{\Delta S_{\text{tot}}}^{(1)} + (-\lambda)^2 \frac{M_{\Delta S_{\text{tot}}}^{(2)}}{2!} + (-\lambda)^3 \frac{M_{\Delta S_{\text{tot}}}^{(3)}}{3!} + \ldots \leq (-\lambda)M_{J}^{(1)} + (-\lambda)^2 \frac{M_{J}^{(2)}}{2!} + (-\lambda)^3 \frac{M_{J}^{(3)}}{3!} + \ldots$$ \hspace{1cm} (S7)

Notice that the above equation [S7] holds for an arbitrary λ. Hence, comparing the coefficients of $(-\lambda)^n$, we obtain the bounds on the cumulants of the total entropy production as given by

$$M_{\Delta S_{\text{tot}}}^{(n)} \leq M_{J}^{(n)}$$ \hspace{1cm} (S8)
BROWNIAN GYRATOR MODEL

In this model, we consider a Brownian particle in two dimensions. The particle is coupled to two thermal reservoirs at different temperatures $T_1 > T_2$ acting in the x_1 and x_2 directions, respectively. Moreover, the particle is confined in a parabolic potential $U(x)$ with stiffnesses u_1 and u_2 along its principal axes tilted by an angle α with respect to the coordinate axes [22, 42, 51].

$$U(x) = \frac{1}{2} x^T R_\alpha^T u R_\alpha x,$$ \hspace{1cm} (S9)

$$R_\alpha = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$ \hspace{1cm} (S10)

$$u = \begin{pmatrix} u_1 \\ 0 \\ 0 \\ u_2 \end{pmatrix}.$$ \hspace{1cm} (S11)

In the above equation, $x = (x_1, x_2)^T$ is the position of the particle at time t, and R_α is the rotation matrix. Due to an asymmetry in the thermal and restoring forces (for e.g., $T_1 \neq T_2$, $u_1 \neq u_2$, and $\alpha \neq \pi n/4$, $n \in \mathbb{Z}$), the particle reaches a non-equilibrium stationary state and gyrates about the origin on average [42]. This systematic motion and torque exerted on the medium can be used to extract thermodynamic work from this system by introducing an additional external force [21, 22],

$$f_{ext}(x) = -f_{ext} \epsilon x,$$ \hspace{1cm} (S12)

where $\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

In the overdamped limit, the dynamics of the Brownian Gyrator is described by the following equations of motion:

$$\dot{x}(t) = -A x(t) + B \eta(t),$$ \hspace{1cm} (S13)

where

$$A = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix},$$ \hspace{1cm} (S14)

$$B = \begin{pmatrix} \sqrt{2k_B T_1} / \gamma_1 \\ 0 & \sqrt{2k_B T_2} / \gamma_2 \end{pmatrix}.$$ \hspace{1cm} (S15)

where $K = R_\alpha^T u R_\alpha + f_{ext} \epsilon$. Here $\eta_t(t)$ is an independent Gaussian white-noise with $\langle \eta_t(t) \rangle = 0$ and $\langle \eta_t(t) \eta_{t'}(t') \rangle = \delta_{jj} \delta(t - t')$. For a particular range of parameters where the matrix A is positive definite, the system reaches a non-equilibrium steady state with the following probability distribution [51]

$$P_{ss}(x) = \frac{1}{\sqrt{(2\pi)^2 \det \Sigma(\infty)}} \exp \left(-\frac{1}{2} x^T \Sigma^{-1}(\infty) x \right),$$ \hspace{1cm} (S16)

where $\Sigma(\infty)$ is obtained from the solution of

$$A \Sigma(\infty) + \Sigma(\infty) A^T = 2D,$$ \hspace{1cm} (S17)

and the matrix $D = \frac{1}{2} BB^T$.

The work done by the external load force f_{ext} and the heat taken from the hot reservoir in time duration τ are given by [22]

$$W = \sum_{i,j} \int_0^\tau Y_{ij}^W x_j dx_i,$$ \hspace{1cm} (S18)

$$Q_1 = \sum_{i,j} \int_0^\tau Y_{ij}^Q x_j dx_i$$

where

$$Y^W = -f_{ext} \epsilon,$$ \hspace{1cm} and \hspace{1cm} $$Y^Q = \begin{pmatrix} K_{11} & K_{12} \\ 0 & 0 \end{pmatrix}.$$ \hspace{1cm} (S19)
In the following, we are interested in the total entropy production \(\Delta S_{\text{tot}} \) in the steady state given as
\[
\Delta S_{\text{tot}} = \frac{\eta_C}{T_2} Q_1 + \frac{W}{T_2} + \Delta S_{\text{int}},
\]
(S20)
where the time-intensive contribution to the total entropy production \(\Delta S_{\text{int}} \) is given by,
\[
\Delta S_{\text{int}} = -x_0^T Y^0 x_0 + x_0^T Y^0 x_\tau,
\]
\[
Y^0 = Y^\tau = \frac{R_a^T u R_a}{2TC} - \frac{\Sigma^{-1}(\infty)}{2}.
\]
(S21)
Using the path integral formalism [52], the moment generating function (MGF) for \(Q_1, W \) and \(\Delta S_{\text{int}} \) at any arbitrary time can be obtained as
\[
\Psi(\lambda_Q, \lambda_W, \lambda_S, \tau) = \left\langle e^{-\lambda_Q Q_1 - \lambda_W W - \lambda_S \Delta S_{\text{int}}} \right\rangle_{\tau}
= \int dx_0 P_{\text{ex}}(x_0) \int dx_\tau \int_{x_0}^{x_\tau} Dx[\cdot] P[x[\cdot]] e^{-\lambda_Q Q_1 - \lambda_W W - \lambda_S \Delta S_{\text{int}}},
\]
(S22)
where
\[
P[x[\cdot]] \propto \exp \left(-\int_0^\tau dt \left[\dot{x}(t) + A x(t) \right] \right) \frac{1}{2D} \left[\dot{x}(t) + A x(t) \right]
\]
(S23)
is the Onsager-Machlup weight of the path [53, 54]. Since all terms in the exponent of the RHS of Eq. (S22) are quadratic in \(x_1, x_2 \) and in their derivatives, we rewrite Eq. (S22) as
\[
\left\langle e^{-\lambda_Q Q_1 - \lambda_W W - \lambda_S \Delta S_{\text{int}}} \right\rangle_{\tau} = \int dx_0 \int dx_\tau \int_{x_0}^{x_\tau} Dx[\cdot] \exp \left(-\int_0^\tau x(t) \hat{O}_{\lambda_Q, \lambda_W, \lambda_S} x(t) + \text{Boundary terms} \right)
\]
(S24)

\[
= \sqrt{\frac{\det \hat{O}_{0,0,0}}{\det \hat{O}_{\lambda_Q, \lambda_W, \lambda_S}}},
\]
(S25)
Here the operator \(\hat{O} \) is a matrix whose elements are differential operators [56] and functional determinants. In our case, it can be shown that the matrix \(\hat{O} \) has the following form
\[
\hat{O} = \begin{bmatrix}
a & b e^{\frac{d}{dt}} + d e^{\frac{d^2}{dt^2}} + f e^{\frac{d^3}{dt^3}} \\
b e^{\frac{d}{dt}} + d e^{\frac{d^2}{dt^2}} + f e^{\frac{d^3}{dt^3}} & c e^{\frac{d}{dt}} + d e^{\frac{d^2}{dt^2}} + f e^{\frac{d^3}{dt^3}}
\end{bmatrix},
\]
(S26)
where
\[
a = \frac{1}{4D_{11}},
\]
b = \[
\frac{1}{2} \left(\frac{A_{11}^2}{2D_{11}} + \frac{A_{12}^2}{2D_{22}} \right),
\]
c = \[
\frac{1}{2} \left(-\frac{A_{12}}{2D_{11}} + \frac{A_{21}}{2D_{22}} \right) - \lambda_Q \frac{A_{12}}{2} + \lambda_W f_{\text{ext}},
\]
d = \[
\frac{1}{2} \left(\frac{A_{11}A_{12}}{2D_{11}} + \frac{A_{21}A_{22}}{2D_{22}} \right),
\]
e = \[
\frac{1}{4D_{22}},
\]
f = \[
\frac{1}{2} \left(\frac{A_{12}^2}{2D_{11}} + \frac{A_{22}^2}{2D_{22}} \right).
\]
(S27)
The ratio of determinants in Eq. (S25) can be computed using a technique based on spectral-\(\xi \) functions of Sturm-Liouville type operators as described in [56] and can be obtained in terms of a characteristic polynomial function \(F \) as
\[
\left\langle e^{-\lambda_Q Q_1 - \lambda_W W - \lambda_S \Delta S_{\text{int}}} \right\rangle_{\tau} = \sqrt{\frac{F_{0,0,0}(0)}{F_{\lambda_Q, \lambda_W, \lambda_S}(0)}},
\]
(S28)
where \(F_{\lambda_1, \lambda_2, \lambda_3} = \text{det} \{ M + NH(\tau) \} \) in which \(H \) is a matrix of independent and suitably normalized fundamental solutions \(x^1(t), \ldots, x^4(t) \) of the homogeneous equation \(\hat{\Omega} x = 0 \):

\[
H(t) = \begin{bmatrix}
 x^1_1(t) & x^1_2(t) & x^1_3(t) & x^1_4(t) \\
 \dot{x}^1_1(t) & \dot{x}^1_2(t) & \dot{x}^1_3(t) & \dot{x}^1_4(t) \\
 x^2_1(t) & x^2_2(t) & x^2_3(t) & x^2_4(t) \\
 \dot{x}^2_1(t) & \dot{x}^2_2(t) & \dot{x}^2_3(t) & \dot{x}^2_4(t)
\end{bmatrix}, \quad \text{and} \quad H(0) = I_4,
\]

(S29)

and \(M \) and \(N \) contain the information about the boundary conditions from Eq. \((S24) \), and they satisfy

\[
M \begin{bmatrix} x(0) \\ \dot{x}(0) \end{bmatrix} = 0 \quad \text{and} \quad N \begin{bmatrix} x(\tau) \\ \dot{x}(\tau) \end{bmatrix} = 0.
\]

(S30)

We stress that the expression given in Eq. \((S28) \) is valid within the domain \(C_{\lambda_1, \lambda_2, \lambda_3} \) for which the operator \(\hat{\Omega} \) doesn’t have negative eigenvalues. The MGF is not convergent outside this domain.

In our problem, we obtain the four independent solutions of \(\hat{\Omega} x = 0 \) as

\[
x^1_1(t) = \exp \left(\pm \frac{\sqrt{t}}{\sqrt{2}} \right) \sqrt{\frac{\pm \sqrt{\alpha^2 f^2 - 2abc f + 2ad^2 e + b^2 e^2 - 2bc^2 e + c^4}}{ae + b^2 - \frac{c^2}{ae} + \frac{f}{e}}} \right)
\]

(S31)

\[
x^2_1(t) = \frac{x^1_1(t) \left((c^2 d - a d f) + c(a f - c^2) x^1_1'(t) - a c e x^1_1''(t) - a d e x^1_1'''(t)(t) \right)}{bc^2 - ad^2 - 2}
\]

(S32)

The matrices \(M \) and \(N \) are given by

\[
M = \begin{pmatrix}
 -2D_1\lambda_1A_1 + A_{11} - 2D_1\lambda_2A_2 - 2D_1\lambda_3A_3 + \lambda_1 - 2\Sigma_{3j}^1 T_2 u_4 \cos(2\Omega_2) u_4 + u_4 \cos(2\Omega_2) - u_4 \cos(2\Omega_2) + u_4 \\
 -2D_1\lambda_1A_1 + A_{11} - 2D_1\lambda_2A_2 - 2D_1\lambda_3A_3 + \lambda_1 - 2\Sigma_{3j}^1 T_2 u_4 \cos(2\Omega_2) u_4 + u_4 \cos(2\Omega_2) - u_4 \cos(2\Omega_2) + u_4 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

(S33)

\[
N = \begin{pmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

(S34)

Now the scaled cumulant generating function \(\phi(\lambda_1, \lambda_2, \lambda_3, \tau) \equiv \frac{1}{\tau} \left(e^{-\lambda_1 Q_1 - \lambda_2 W - \lambda_3 S_{\text{tot}}} \right) \) can be computed for arbitrary values of \(\tau \), using Eq. \((S28) \). For explicit parameter choices, the first few cumulants of arbitrary currents can be straightforwardly computed. For the parameter choice: \(f_{\text{ext}} = -1, u_1 = 4, u_2 = 2, \gamma_1 = 1, \gamma_2 = 1, T_1 = 2, T_2 = 6, \alpha = \frac{\pi}{4}, k_B = 1 \), we get,

\[
\sigma = 2,
\]

\[
\sigma^2 \tau(\Delta S_{\text{tot}}) = \frac{2\pi e^\tau \sinh(2\pi e^\tau)}{2\pi e^\tau + 1}
\]

(S35)

It is this expression that is plotted as red solid lines (\((c_1, c_2, c_3) \in [-1,1] \)), blue dotted lines (\(c_1 = c_2 = c_3 = 1 \)) and green dashed line (\(c_1 = c_2 = c_3 = 0 \)) in Fig. 1a. It is also this expression, in the \(\tau \to 0 \) limit, that is plotted in Fig. 2, as contour plots for fixed values of \(c_3 \). Similarly, we show the contour plots for \(\lim_{\tau \to 0} \sigma^2 \tau \) in the absence of boundary contribution (i.e., \(c_3 \to 0 \)) in Fig. 3. We see that the currents along the diagonal direction are not the best current to infer \(\sigma \).

Optimal currents

Using \(\sigma^2 \tau(\Delta S_{\text{tot}}) \) given in \((S35) \), it is possible to identify the coefficients \(\{ c_1^*, c_2^*, c_3^* \} = \{ 1, 0, 0 \} \) (see left panel in Fig. \((S2) \) that maximize it for a given time \(\tau \). For \(\tau \gg 1 \) as well as \(\tau \to 0 \), \(\Delta S_{\text{tot}} \) becomes the optimal current since \(c_1^* = c_2^* = c_3^* = 1 \). In the right panel of Fig. \((S2) \), we plot \(\sigma^2 \tau(\Delta S_{\text{tot}}) \) as a function of \(\tau \) and compare the inference of \(\sigma \) using \(\sigma^2 \tau(\Delta S_{\text{tot}}) \) with \(c_1^*, c_2^*, c_3^* \) (blue dashed line) with that of \(c_1 = c_2 = c_3 = 1 \) (\(\Delta S_{\text{tot}} \)). It is clear that there exist certain values of \(\Delta S_{\text{tot}} \) for which one can infer \(\sigma \) more accurately using currents other than \(\Delta S_{\text{tot}} \).
FIG. S1. Contour plot for σ_L in the limit $\tau \to 0$ at $c_3 = 0$ (absence of time-intensive contributions). The black dashed line is the diagonal direction. It is clear that the optimal currents with coefficients c_1 and c_2 along the diagonal direction are not the best currents to infer the actual entropy production σ.

FIG. S2. Left: c_1^*, c_2^* and c_3^* which maximize $\sigma_L(\tau)$ as a function of τ. We see that $c_1 = c_2 = c_3 = 1$ at $\tau \to 0$ as well as $\tau \gg 1$ implying that the optimal current is equal to ΔS_{tot} (see main text). Right: σ_L with coefficients c_1^*, c_2^* and c_3^* (blue dashed line) is more accurate to infer the σ than when $c_1 = c_2 = c_3 = 1$ (red solid line) at intermediate times $0 < \tau \sim 1$.

ISOTHERMAL WORK-TO-WORK CONVERTER ENGINE

We consider a stochastic engine composed of a single Brownian particle coupled to a heat bath at temperature T. The particle is driven out of equilibrium using two stochastic external Gaussian noises f_1 (load force) and f_2 (drive force). The system evolves according to the following underdamped dynamics

$$m\dot{v} = \gamma v + \eta(t) + f_1(t) + f_2(t),$$

(S37)

where m is the mass of the particle and γ the dissipation constant. The thermal $\eta(t)$ and external noises $f_i(t)$ have mean zero and variances $\langle \eta(t)\eta(t') \rangle = 2\gamma k_B T \delta(t-t')$, $\langle f_i(t)f_j(t') \rangle = 2A_i \delta(t-t')$, where $A_1 = \theta \gamma k_B T$, and $A_2 = \alpha^2 A_1$. Moreover, these noises are independent of each other. For convenience, we set the Boltzmann’s constant $k_B = 1$.

The observable we are interested in is the total entropy production in the non-equilibrium steady state:

$$\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{med}},$$

(S38)

where ΔS_{sys} and ΔS_{med}, respectively, are the system and medium entropy productions observed over a time τ.

Identifying ΔS_{sys} and ΔS_{med}, we write the total entropy production as

$$\Delta S_{\text{tot}} = W_1 + W_2 + \Delta S_{\text{int}},$$

(S39)

where $W_i = 1/T \int_0^T dt f_i(t) v(t)$ is the (dimensionless) work done, and $\Delta S_{\text{int}} = - \log P_{ss}(v) + \log P_{ss}(v_0) - \Delta E/T$ is the time-intensive contribution to the total entropy production.
One can write the joint characteristic function for W_1, W_2, and ΔS_{int}

$$Z(\lambda_1, \lambda_2, \lambda_3) = \langle e^{-\lambda_1 W_1 - \lambda_2 W_2 - \lambda_3 \Delta S_{int}} \rangle_\tau.$$ \hfill (S40)

Computation of the above characteristic function in the large time limit ($\tau \gg \tau_\gamma$) yields

$$Z(\lambda_1, \lambda_2, \lambda_3) \approx g(\lambda_1, \lambda_2, \lambda_3) e^{(\tau/\tau_\gamma) \mu(\lambda_1, \lambda_2)},$$ \hfill (S41)

where

$$\mu(\lambda_1, \lambda_2) = \frac{1}{2} [1 - \nu(\lambda_1, \lambda_2)],$$ \hfill (S42)

$$g(\lambda_1, \lambda_2, \lambda_3) = \frac{2 \sqrt{\nu(\lambda_1, \lambda_2)}}{\sqrt{\nu(\lambda_1, \lambda_2) + 2\theta (\alpha^2 \lambda_2 - (\alpha^2 + 1) \lambda_3 + \lambda_1) + 1 \sqrt{\nu(\lambda_1, \lambda_2) + 2\theta (\alpha^2 (\lambda_3 - \lambda_2) - \lambda_1 + \lambda_3) + 1}}}. \hfill (S43)$$

In the above equations, $\nu(\lambda_1, \lambda_2)$ is given by

$$\nu(\lambda_1, \lambda_2) = \sqrt{1 + 4\theta [\lambda_1 (1 - \lambda_1)] + \alpha^2 \lambda_2 (1 - \lambda_2) - \alpha^2 \theta (\lambda_1 - \lambda_2)^2}$$ \hfill (S44)\hfill (S44)

Therefore, the scaled cumulant generating function is

$$\Phi(\lambda_1, \lambda_2, \lambda_3, \tau) \equiv \frac{1}{\tau} \log Z(\lambda_1, \lambda_2, \lambda_3).$$ \hfill (S45)

MODEL PARAMETERS

Brownian Gyrator

Fig. 1a, Fig. 2: $f_{ext} = -1$, $u_1 = 4$, $u_2 = 2$, $\gamma_1 = 1$, $\gamma_2 = 1$, $T_1 = 2$, $T_2 = 6$, $\alpha = \frac{\pi}{4}$, $k_B = 1$.

Isothermal work-to-work converter

Fig 1b: $\theta = 0.5$, $\alpha = 1$, $\tau = 0.01$, $\tau_\gamma = 1$.
Fig 3a,b,c: $\theta = 10$, $\alpha = \frac{1}{4}$, $\tau = 1000$, $\tau_\gamma = 1$.
Fig 3d: $\theta = 0.5$, $\alpha = 1$, $\tau = 1$, $\tau_\gamma = 1$.