INTRODUCTION

Dengue virus (DENV), classified into 4 serotypes (DENV-1 to DENV-4), belongs to the family Flaviviridae, which includes other clinically important human pathogenic flaviviruses such as Japanese encephalitis, yellow fever, tick-borne encephalitis, and West Nile virus. DENV is the etiologic agent of dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). The virus is transmitted to humans by infected Aedes mosquitoes (1). DHF and DSS occur more frequently in patients with secondary DENV infections than in patients with primary infections. Therefore, the presence of heterotypic DENV antibodies is a risk factor for developing DHF and DSS in secondary DENV infections that differ in serotype from the primary infection (2,3). In addition, genotypic differences also appear to be associated with virulence (4). No effective antiviral drugs to treat DENV infections are currently available (5). DENV infections are a major cause of morbidity and mortality in most tropical and subtropical areas of the world; however, they have also emerged in other regions where they continue to spread rapidly (6). A recent report indicates that DENV infects an estimated 390 million individuals annually, of whom 96 million exhibit apparent disease symptoms (7).

In recent years, Japan has seen a gradual increase in the number of imported cases of dengue when more than 200 cases per year were reported in 2010, 2012, and 2013 (8). A majority of the cases (>95%) were imported from South and South-East Asia. Although outbreaks of dengue infection have occurred in several cities from 1942 to 1945 during World War II, an autochthonous DF case had not been detected in Japan since then (9). In September 2013, a traveler who had returned to Germany after a 2-week trip to Japan developed DF caused by DENV-2, suggesting that an autochthonous dengue infection had occurred in Japan in 2013 (10).

In August 2014, an autochthonous case of DF in a patient who had not traveled overseas was reported in Tokyo. In total, 160 autochthonous cases were identified during this outbreak, which persisted until October (11). Foreign travelers from New Caledonia, England, and Australia, who had visited Japan during the outbreak were diagnosed with dengue viral infections after returning to their countries (12,13). Genetic analysis of the autochthonous virus genomes showed that the strain responsible for the outbreak belonged to DENV-1 (13,14). We determined the sequences of E genes of autochthonous dengue strains from 12 infected patients. Eleven strains, designated as the “Yoyogi group”, including 3 strains isolated from the first patient exposed at Yoyogi Park in Tokyo, 1 from a patient in Chiba prefecture (Chiba strain), and 1 from a patient in Hyogo prefecture (Hyogo strain), had identical sequences. The remaining strain, isolated from a patient in Shizuoka prefecture, was named the “Shizuoka strain” and had a different sequence (13). These findings suggest that there were at least 2 independent autochthonous epidemics in Japan in 2014 caused by DENV-1 strains with at least 2 different types of E sequences. However, the analyzed length of the E
region represented only 14% of the whole genome, therefore, this analysis overlooked possible differences in sequences outside the E region. In this study, we determined the whole nucleotide sequences of the isolated DENV-1 strains in order to more comprehensively evaluate their genetic diversity and elucidate the molecular epidemiology of DENV-1 during the autochthonous DF outbreak in Japan in 2014.

MATERIALS AND METHODS

Serum samples: Autochthonous DENV-1 strains were isolated from the sera of 6 DF patients with distinct sites of exposure and dates of onset (Table 1). The individual information regarding the patients was as follows: Patient 14–100J (D1/Hu/Saitama/NIID100/2014) was the first patient identified during the autochthonous DF outbreak in Japan in 2014. Patients 14–111J and 14–111J (D1/Hu/Tokyo/NIID111/2014) were possibly exposed in or near Yoyogi Park in Tokyo, the epicenter of the DF outbreak. Patient 14–149J (D1/Hu/Tokyo/NIID149/2014) was probably bitten by a mosquito between Yotsuya and Shinjuku stations on the Chuo Line train, which runs in the vicinity of Yoyogi Park. Patient 14–153J (Chiba strain: D1/Hu/Chiba/NIID153/2014) did not visit Yoyogi Park for at least 2 weeks before the onset of DF and was possibly infected in Chiba prefecture. Patient 14–188J (Hyogo strain: D1/Hu/Hyogo/NIID188/2014) lived in Nishinomiya city, Hyogo prefecture, over 500 km west of Tokyo and never visited the Tokyo area before the onset of DF. This patient had visited Malaysia for 7 days and exhibited DF onset 12 days after returning to Japan.

Genome sequencing and phylogenetic analysis: Viral RNA isolated from patient sera using High Pure Viral RNA Kit (Roche, Basel, Switzerland) was used for synthesis of viral cDNA by reverse transcription using Super Script III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Sequences of the viral cDNA were amplified by PCR using 7 primer sets: D1.T3-S5 (5'-CCCTCAG TAAGGGTTTGTAAGCTCAG-3') and D1.2647r (5'-GTG TTTCAAGTTTGA TATTGC-3'), D1.2339f (5'-AAC AAGGAGCAC GTCCCTTTCG-3') and D1.4825r (5'-TGTTTCAAC AGAATACCC TGCAC-3'), D1.4752f (5'-CATATG GAGAGGTTGGAGCGCTTC-3') and D1.8476r (5'-TATGCATCCA GTAGGCCCAT-3'), D1.8342f (5'-TTAGGGCCTGAA CAGACAT-3') and D1.9894f (5'-CGAACAGATAGGATTA GCG-3'), D1.8342f (5'-AATGC CGCCT GAATGTGATC-3') and D1.10240r (5'-CTCTCGAGTGACAT CTGC-3'), and D1.9751f (5'-ATGCAGGACCC ACAAGATG AACT-3') and D1.SII-3N (5'-CGCGAGAACACT GTG-3'). PCR products were sequenced by the dideoxy method (BigDye Terminator Kit; Applied Biosystems, Foster City, CA, USA) using the Genetic Analyzer 3500 (Applied Biosystems) with primers specific for DENV-1. The raw sequencing data were assembled to reconstruct the complete DENV-1 genome which was then translated into amino acid sequences using GENETYX gene analysis software (Genetyx, Tokyo, Japan). A phylogenetic tree was constructed after alignment of whole nucleotide sequences of the autochthonous and foreign strains of DENV-1 (listed in Table 2) and analyzing them by the maximum likelihood method, using 500 bootstrap replicates in the MEGA6 program (16).

Ethical statement: This study was approved by the Ethics Committee of the National Institute of Infectious Diseases, Japan (No. 210).

RESULTS

We initially compared the whole nucleotide sequences, and the corresponding deduced amino acid sequences, of the Yoyogi group of DENV-1 strains (Table 3). We have previously shown that E sequences of DENV-1 strains from patients 14–100J, 14–111J, 14–149J, 14–153J, and 14–188J were identical and were

Strain	Accession no.	Patient ID	Date of onset	Infected area
D1/Hu/Saitama/NIID100/2014	LC011945	14-100J	Aug. 20, 2014	Yoyogi Park, Tokyo
D1/Hu/Tokyo/NIID111/2014	LC011946	14-111J	Aug. 24, 2014	near Yoyogi Park, Tokyo
D1/Hu/Tokyo/NIID149/2014	LC011947	14-149J	Sep. 4, 2014	Yotsuya-Shinjuku on the train, Tokyo
D1/Hu/Chiba/NIID153/2014	LC011948	14-153J	Aug. 31, 2014	Chiba
D1/Hu/Shizuoka/NIID181/2014	LC011949	14-181J	Sep. 10, 2014	Shizuoka?
D1/Hu/Hyogo/NIID188/2014	LC016760	14-188J	Sep. 28, 2014	Hyogo? Malaysia?
Whole Genome Sequences of DENV-1 in Japan, 2014

Table 2. List of DENV-1 strains used for the phylogenetic analysis

Strain name	Accession no.	Year identified	Genotype	Country (region)
DENV1/CN/GZ35/2014	KP72476	2014	I	China, Guangdong
D1/SG/05K2402DK1/2005	EU081230	2005	I	Singapore
D1/SG/05K3301DK1/2005	EU081238	2005	I	Singapore
D1/SG/05K4154DK1/2005	EU081260	2005	I	Singapore
D1/SG/05K2928DK1/2005	EU081235	2005	I	Singapore
D1/SG/05K4480DK1/2005	EU081270	2005	I	Singapore
D1/SG/05K4441DK1/2005	EU81266	2005	I	Singapore
D1/SG/05K4820DK1/2005	EU081279	2005	I	Singapore
D1/SG/05K4604DK1/2005	EU081271	2005	I	Singapore
DH/S1/05/154	JN697057	2005	I	Malaysia
SG(EHI)D1227Y03	FJ469909	2003	I	Singapore
ZH1067	EU359008	2007?	I	China
NIIID02-20	AB178040	2002	I	Thailand
KDH0030/A	HG316482	2010	I	Thailand
GZ27	KJ438296	2013	I	China
SV2951/07	HM469968	2007	I	Thailand
DENV-1/KH/BID-V1978/2000	FJ639669	2000	I	Cambodia
DENV-1/KH/BID-V1989/2003	FJ639677	2003	I	Cambodia
DENV-1/N/BID-V996/2006	EU482540	2006	I	VietNam
D1/Myanmar.31987/98	AY726554	2001	I	Myanmar
Thai.0102_01	AJ732479	2001	I	Thailand
16007	AF180817	1964	II	Thailand
WestPac	U88535	1974	IV	Nauru Is., West Pacific
CH3336-02	EU863650	2002	IV	Easter Is., Chile
NC10/080810-1138	JQ915080	2010	IV	New Caledonia
PF07/051107-164	JQ915072	2007	IV	Tubuai, French Polynesia
Den1BR/90	AF226685	1990	V	Brazil
DENV-1/US/BID-V1741/1998	FJ390379	1998	V	Puerto Rico
RR107	KR289072	2011	V	India
Comoros04.329/93	DQ285562	1993	V	Comoros
Mochizuki	AB074760	1942	I	Japan
Hawaii	KM204119	1944	I	Hawaii

Table 3. Differences in the whole nucleotide sequences and deduced amino acid sequences among the Yoyogi group viruses

Nucleotide position	Nucleotide	Amino acid position	Amino acid	Nucleotide	Amino acid position	Amino acid
2668	C	T	C	858	D	D
5834	C	C	T	1914	S	S
6703	C	C	T	2203	I	I
7303	G	T	G	2403	V	V

1): Nucleotide and deduced amino acid sequences of the other 2 strains, D1/Hu/Tokyo/NIID111/2014 and D1/Hu/Tokyo/NIID149/2014 were identical to D1/Hu/Saitama/NIID100/2014.

therefore designated “Yoyogi group” strains (13). However, the E sequence derived from Shizuoka patient 14–181J was clearly different from those of the other 5 patients (13). The genomic sequences of the D1/Hu/Tokyo/NIID111/2014 and D1/Hu/Tokyo/NIID149/2014 strains were identical to those of the first autochthonous strain, D1/Hu/Saitama/NIID100/2014. The sequence of D1/Hu/Chiba/NIID153/2014 differed from D1/Hu/Saitama/NIID100/2014 at 2 nucleotide positions in NS1 (position 2668) and NS4B (position 7303), both of which were silent mutations. Compared to all other Yoyogi group strains, the D1/Hu/Hyogo/NIID188/2014 genome had 2 changes in the nucleotide sequence in the NS4A (position 6703) and the NS3 (position 5834) regions with the variation in the latter (amino acid position 1914) causing a non-conservative change (Ser to Pro).

We then compared the whole genomic and deduced amino acid sequences of the D1/Hu/Shizuoka/NIID181/2014 strain with those of the Yoyogi group strains (Table 4). Nucleotide and amino acid sequence identities of D1/Hu/Shizuoka/NIID181/2014 and D1/Hu/Saitama/NIID100/2014 were 98.10% and 99.46%, respectively. There were 18 amino acid differences between D1/Hu/Shizuoka/NIID181/2014 and D1/Hu/Saitama/NIID100/2014 of which 8 were located in the NS5 region. The amino acid at position 1914 in NS3 of D1/Hu/Shizuoka/NIID181/2014 and D1/Hu/Hyogo/
Table 4. Differences in the deduced amino acid sequence of the polyprotein of D1/Hu/Saitama/NIID100/2014, D1/Hu/Hyogo/NIID188/2014, and D1/Hu/Shizuoka/NIID181/2014

C	E	NS1	NS2A	NS3	NS4A	NS5
109	577	777	886	1295	1914	2096

| D1/Hu/Saitama/NIID100/2014 | M | M | S | H | Y | I | R | S | V | K | V | I | C | S | E | Q | S | K |
|---------------------------|
| D1/Hu/Hyogo/NIID188/2014 | M | M | S | H | Y | I | R | P | V | K | V | I | C | S | E | Q | S | K |
| D1/Hu/Shizuoka/NIID181/2014| V | T | T | Y | F | M | K | P | I | R | I | V | H | P | D | L | L | E |

1: Deduced amino acid sequences of the other 3 strains, D1/Hu/Tokyo/NIID111/2014, D1/Hu/Tokyo/NIID149/2014, and D1/Hu/Chiba/NIID153/2014 were identical to D1/Hu/Saitama/NIID100/2014.

DISCUSSION

Our previous study demonstrated that the E gene sequence of 11 DENV-1 strains of the Yoyogi group, including the Chiba strain D1/Hu/Chiba/NIID153/2014 as well as the Hyogo strain D1/Hu/Hyogo/NIID188/2014, were identical. This suggested that these Yoyogi group strains emerged from a single DENV-1 strain, which was imported from a country with endemic DENV-1. Chiba and Hyogo prefectures are 30 km and 500 km away from Yoyogi Park, respectively. The Chiba patient (14-153J) and the Hyogo patient (14-188J) visited neither Yoyogi Park nor the affected areas near Yoyogi Park before DF onset. Therefore, we initially hypothesized that DENV-1 was amplified in Yoyogi Park, transferred to regions distant from Yoyogi Park through the movement of infected persons or mosquitoes, and subsequently caused the next autochthonous infection of DENV-1 in Chiba and Hyogo prefectures.

However, in the present study, we showed that 2 of the 5 Yoyogi group strains, D1/Hu/Chiba/NIID153/2014 and D1/Hu/Hyogo/NIID188/2014, had nucleotide sequences highly similar but not identical to the D1/Hu/Saitama/NIID100/2014 strain identified during the DENV-1 outbreak. D1/Hu/Hyogo/NIID188/2014 also had an amino acid substitution in the NS3 region. The enlarged Yoyogi subcluster shown in Fig. 2B suggests that D1/Hu/Hyogo/NIID188/2014 diverged from the other autochthonous DENV-1 strains. Moreover, the amino acid sequence alignment of autochthonous and foreign DENV-1 strains listed in Table 2 showed that a serine residue at amino acid position 1914 was found in the Yoyogi group strains barring D1/Hu/Hyogo/NIID188/2014, whereas a proline residue was present at this position in D1/Hu/Hyogo/NIID188/2014 or in foreign strains (data not shown).

The patient infected with the Hyogo strain visited Malaysia for 7 days and exhibited the onset of DF 12 days after returning to Japan. Because this nucleotide...
sequence of the E gene region of the Yoyogi group strains, including the Hyogo strain, showed the highest similarity to those of strains isolated in Malaysia and Singapore between 2013 and 2014 (13), it is possible that this patient represents an imported case of DF from Malaysia. However, this was not related to the autochthonous DF outbreak in the Tokyo area in 2014. In light of these results, molecular epidemiological analyses based only on the E gene sequence may not suffice to adequately differentiate between DENV-1 strains transmitted during a DENV-1 outbreak, necessitating whole genome sequencing of the isolated strains.

Whole genome sequencing followed by phylogenetic analysis revealed that the D1/Hu/Shizuoka/NIID181/2014 strain was distinct from the Yoyogi group strains, suggesting that 2 independent autochthonous DENV-1 strains caused the outbreak in Japan in 2014. However, the contribution of the Shizuoka strain to the epidemic was much smaller than that of the Yoyogi strains. Phylogenetic analysis clearly showed that the parental DENV-1 strains of the Yoyogi group and the Shizuoka strain were imported independently to Japan.

Adult *Aedes* mosquitoes, the main DENV vector, are distributed worldwide, including Japan, where they are unable to persist throughout winter. Therefore, a DF outbreak in Japan is expected to be sporadic and end before winter (17,18). Thus, our findings support the hypothesis that DENV is imported to Japan every year, where it could potentially cause several dengue epidemics. The import of DENV into Japan cannot be prevented because of the high volume of travelers: every year, more than 10 million Japanese visit dengue-endemic countries, and over 8 million foreign travelers from dengue endemic areas travel to Japan (19). Our findings suggest that there is a risk of autochthonous DF outbreaks in the summer not only in Japan but also in DF-free countries in which *Aedes* mosquitoes are endemic.

Acknowledgments This work was partially supported by grants for Research on Emerging and Re-emerging Infectious Diseases from the Ministry of Health, Labour and Welfare (H24-shinko-ippan-007), a Grant-in-Aid for Scientific Research (C) (25460577) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Japan Science and Technology Agency (JST), e-ASIA Joint Research Program (e-ASIA JRP). We would like to thank the staff at prefectural and municipal public health institutes and other public health and medical staff for the specimen collection.

Conflict of interest None to declare.

REFERENCES

1. Lindenbach BD, Murray CI, Thiel H-J, et al. *Flaviviridae*. In: Knipe DM, Howley PM, editors. *Fields Virology*. 6th ed. vol. 1. Philadelphia, PA: Lippincott Williams and Wilkins; 2013: p.712-746.

2. Halstead SB. Epidemiology of dengue and dengue hemorrhagic fever. In: Gubler DJ, Kuno G, editors. *Dengue and Dengue Hemorrhagic Fever*. Wallingford, UK: CAB International; 1997: p.23-44.

3. Kurane I, Ennis FA. Immunopathogenesis of dengue virus infections. In: Gubler DJ, Kuno G, editors. *Dengue and Dengue Hemorrhagic Fever*. Wallingford, UK: CAB International; 1997: p.273-284.

4. Rosen L. The emperor's new clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. *Am J Trop Med Hyg*. 1997;26:337-43.

5. Linn SP, Wang QY, Noble CG, et al. Ten years of dengue drug discovery: progress and prospects. *Antiviral Res*. 2013;100: 500-19.

6. Gubler DJ. Dengu and dengue hemorrhagic fever. *Clin Microbiol Rev*. 1998;11:480-96.

7. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. *Nature*. 2013;496:504-7.

8. Takasaki T. Imported dengue fever/dengue hemorrhagic fever cases in Japan. *Trop Med Health*. 2011;39:13-5.

9. Hotta S. Dengue epidemics in Japan, 1942-1945. *J Trop Med Hyg*. 1953;56:83.

10. Schmidt-Chanasit J, Emmerich P, Tappe D, et al. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. *Euro Surveill*. 2014;19:pii:1920681.

11. Ministry of Health, Labour and Welfare of Japan Web site. Available at <http://www.mhlw.go.jp/bunya/kenkou/kekakusenshou19/dl/20141031-01.pdf>. Accessed October 27, 2016.

12. Kojima G. Autochthonous dengue fever imported to England from Japan, 2014. *Emerg Infect Dis*. 2015;21:182-4.

13. Nakayama E, Kotaki A, Tajima S, et al. Two different dengue virus strains in the Japanese epidemics of 2014. *Viruses*. 2016;52:722-6.

14. Kutsuna S, Kato Y, Moi ML, et al. Autochthonous dengue fever, Tokyo, Japan, 2014. *Emerg Infect Dis*. 2015;21:517-20.

15. Tajima S, Nukui Y, Ito M, et al. Nineteen nucleotides in the variable region of 3′ non-translated region are dispensable for the replication of dengue type 1 virus in vitro. *Virus Res*. 2006;116:38-44.

16. Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol*. 2013;30:2725-9.

17. Kobayashi M, Nihii N, Kurihara T. Analysis of northern distribution of *Aedes albopictus* (Diptera: Culicidae) in Japan by geographical information system. *J Med Entomol*. 2002;39:4-11.

18. Mori A. Studies on the egg diapause and overwintering of *Aedes albopictus* in Nagasaki. *Trop Med*. 1981;23:79-90.

19. Japan National Tourism Organization. Annual International Traveler Data for Japanese Tourists. Available at <http://www.jnpo.go.jp/jpn/reference/tourism_data/visitor_trends/index.html>. Accessed October 27, 2016. Japanese.