Quantum Monte Carlo study of the pairing correlation in the
Hubbard ladder

Kazuhiko Kuroki, Takashi Kimura, and Hideo Aoki

Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan

(August 19, 2018)

Abstract

An extensive Quantum Monte Carlo calculation is performed for the two-leg
Hubbard ladder model to clarify whether the singlet pairing correlation decays
slowly, which is predicted from the weak-coupling theory but controversial
from numerical studies. Our result suggests that the discreteness of energy
levels in finite systems affects the correlation enormously, where the enhanced
pairing correlation is indeed detected if we make the energy levels of the
bonding and anti-bonding bands lie close to each other at the Fermi level to
mimic the thermodynamic limit.

PACS numbers: 74.20.Mn, 71.10.Fd
Over the past several years, strongly correlated electrons on ladders have received much attention both theoretically and experimentally. This has been kicked off by the theoretical studies suggesting a formation of the spin gap and possible occurrence of superconductivity in such systems.

The weak-coupling theory with the bosonization and renormalization-group techniques has indeed shown that the Hubbard model on a two-leg ladder has a spin gap, and if the system is free from umklapp processes, singlet pairing correlation function decays as $\sim 1/r^\alpha$ with $\alpha = 1/2 (r$: real space distance) in the weak-coupling limit.

Since SDW and $2k_F$ CDW correlations have to decay exponentially in the presence of a spin gap in a two-leg ladder, the only phase competing with superconductivity will be $4k_F$ CDW, whose correlation should decay as $1/r^{1/\alpha}$. Hence the pairing correlation dominates over all the others if $\alpha < 1$.

As for the opening of the spin gap, the density-matrix renormalization group (DMRG) studies in the strong-coupling regime also indicate its presence in both t-J and Hubbard ladder models. If we further focus on the t-J ladder, DMRG detects a pairing correlation decaying slightly slower than $\sim 1/r$ and a CDW correlation decaying faster than $\sim 1/r$ for an electron density of $n = 0.8$ with $J/t = 1.1$.

However, the dominance of the pairing correlation in the Hubbard ladder model seems to be a subtle problem in numerical calculations. Namely, a DMRG study by Noack et al. for the doped Hubbard ladder with $n = 0.875$, $U/t = 8$, and $t_\perp = t$ (where t and t_\perp are intra- and interchain hoppings, respectively) shows no enhancement of the pairing correlation over the $U = 0$ result, while they do find an enhancement at $t_\perp = 1.5t$. Asai performed a Quantum Monte Carlo (QMC) calculation for a 36-rung ladder with $n = 0.833$, $U/t = 2$ and $t_\perp = 1.5t$, in which no enhancement of the pairing correlation was found. On the other hand, Yamaji et al. have found an enhancement for the values of the parameters where the lowest anti-bonding band levels for $U = 0$ approaches the highest occupied bonding band levels, although their results have not been conclusive due to small system sizes (≤ 6...
Thus, existing analytical and numerical results appear to be controversial. This is disturbing since the superconductivity in the Hubbard ladder, especially with $t_\perp \sim t$, is of great interest as a model for cuprate ladder-like materials, for which an occurrence of superconductivity has indeed been reported very recently\cite{footnote16}. In the present work, we have performed an extensive QMC calculation for the Hubbard ladder with $t_\perp \sim t$ in order to clarify the origin of the discrepancies among existing results. We conclude that the discreteness of energy levels in finite systems affects the pairing correlation enormously, where the enhanced pairing correlation is indeed detected if we tune the parameters so as to align the discrete energy levels of bonding and anti-bonding bands at the Fermi level in order to mimic the thermodynamic limit.

The Hamiltonian of the two-leg Hubbard ladder is given in standard notations as

$$
\mathcal{H} = -t \sum_{\alpha i \sigma} (c_{\alpha i \sigma}^\dagger c_{\alpha i+1 \sigma} + \text{h.c.}) \\
- t_\perp \sum_{i \sigma} (c_{1,i \sigma}^\dagger c_{2,i \sigma} + \text{h.c.}) + U \sum_{\alpha i} n_{\alpha i \uparrow} n_{\alpha i \downarrow},
$$

where $\alpha (=1, 2)$ specifies the chains.

In the weak-coupling theory, the amplitude of the pair hopping process between the bonding and anti-bonding bands in momentum space flows into the strong-coupling regime upon renormalization, resulting in a formation of gaps in both of the two spin modes and a gap in one of the charge modes when the umklapp processes are irrelevant. This leaves one charge mode massless, where the mode is characterized by a critical exponent K_ρ, which should be close to unity in the weak-coupling regime. Then the correlation function of an interchain singlet pairing, $O_i = (c_{1i \uparrow} c_{2i \downarrow} - c_{1i \downarrow} c_{2i \uparrow})/\sqrt{2}$, decays like $1/r^{1/(2K_\rho)}$.

Here, we have applied the projector Monte Carlo method\cite{footnote17} to look into the ground state correlation function $P(r) \equiv \langle O_i^\dagger O_i \rangle$ of this pairing. We assume periodic boundary conditions along the chain direction, $c_{N+1} \equiv c_1$, where N is the number of rungs.

The details of the QMC calculation are the following. We took the non-interacting Fermi sea as the trial state. The projection imaginary time τ was taken to be $\sim 60/t$. We need
such a large τ to ensure the convergence of especially the long-range part of the pairing correlation. This sharply contrasts with the situation for single chains, where $\tau \sim 20/t$ suffices for the same sample length considered here. The large value of τ, along with a large on-site repulsion U, makes the negative-sign problem serious, so that the calculation is feasible for $U/t \leq 2$. In the Trotter decomposition, the imaginary time increment $[\tau/(\text{number of Trotter slices})]$ is taken to be ≤ 0.1. We have concentrated on band fillings for which the closed-shell condition (no degeneracy in the non-interacting Fermi sea) is met. We set $t = 1$ hereafter.

We first show in Fig. 1 the result for $P(r)$ for $t_\perp = 0.98$ and $t_\perp = 1.03$ with $U = 1$ and the band filling $n = 0.867 = 52$ electrons/ (30 rungs \times 2 sites). The $U = 0$ result (dashed line) for these two values of t_\perp are identical because the Fermi sea remains unchanged. However, if we turn on U, the 5% change in $t_\perp = 0.98 \rightarrow 1.03$ is enough to cause a dramatic change in the pairing correlation: the $t_\perp = 0.98$ result has a large enhancement over the $U = 0$ result at large distances, while the enhancement is not seen for $t_\perp = 1.03$.

In fact we have deliberately chosen these values to control the alignment of the discrete energy levels at $U = 0$ in finite, two-band systems. Namely, when $t_\perp = 0.98$, the one-electron energy levels of the bonding and anti-bonding bands for $U = 0$ lie close to each other around the Fermi level with the level offset ($\Delta \varepsilon$ in the inset of Fig. 1) being as small as 0.004, while they are staggered for $t_\perp = 1.03$ with the level offset of 0.1. On the other hand, the size of the spin gap is known to be around 0.05t for $U = 8^{11}$, and is expected to be of the same order of magnitude or smaller for smaller values of U. The present result then suggests that if the level offset $\Delta \varepsilon$ is too large compared to the spin gap, the enhancement of the pairing correlation cannot be seen. By contrast, for a small enough $\Delta \varepsilon$, by which an infinite system is mimicked, the enhancement is indeed detected as expected from the weak coupling theory, in which the spin gap is assumed to be infinitely large at the fixed point of the renormalization flow.

Our result is reminiscent of those obtained by Yamaji et al.15, who found an enhancement of the pairing correlation in a restricted parameter regime where the lowest anti-bonding
levels approaches the highest occupied bonding levels. They conclude that superconductivity occurs when the anti-bonding band ‘slightly touches’ the Fermi level. However, our result in Fig. 4 is obtained for the band filling for which no less than seven out of 30 anti-bonding levels are occupied at $U = 0$. Hence the enhancement of the pairing correlation is not restricted to the situation where the anti-bonding band edge touches the Fermi level.

Now, let us more closely look into the form of $P(r)$ for $t_\perp = 0.98$. It is difficult to determine the decay exponent of $P(r)$, but here we attempt to fit the data by assuming a trial function expected from the weak-coupling theory. Namely, we have fitted the data with the form $P(r) = \frac{1}{4\pi^2} \sum_{d=\pm} \{cr_d^{1/2} + (2-c)r_d^{-2} - [\cos(2k_F^0 r_d) + \cos(2k_F^\pi r_d)]r_d^{-2}\}$ with the least-square fit (by taking logarithm of the data) $c = 0.11$. Because of the periodic boundary condition, we have to consider contributions from both ways around, so there are two distances between the 0-th and the r-th rung, i.e., $r_+ = r$ and $r_- = N-r$. The period of the cosine terms is assumed to be the non-interacting Fermi wave numbers of the bonding and the anti-bonding bands in analogy with the single-chain case. The overall decay should be $1/r^2$ as in the pure 1D case. We have assumed the form $c/r^{1/2}$ as the dominant part of the correlation at large distances because this is what is expected in the weak-coupling theory. A finite $U \sim 1$ may give some correction, but the result (solid line in Fig. 4) fits to the numerical result surprisingly accurately. If we least-square fit the exponent itself as $1/r^\alpha$, we have $0.2 < \alpha < 0.7$ with a similar accuracy. Thus a finite U may change α, but $\alpha > 1$ may be excluded. To fit the short-range part of the data, we require non-oscillating $(2-c)/r^2$ term, which is not present in the weak-coupling theory. We believe that this is because the weak-coupling theory only concerns with the asymptotic form of the correlation functions.

In Fig. 2, we show a result for a larger system size (42 rungs) for a slightly different electron density, $n = 0.905$ with 76 electrons and $t_\perp = 0.99$. We have again an excellent fit with $c = 0.07$ this time.

In Fig. 3, we display the result for a larger $U = 2$. We again have a long-ranged $P(r)$ at large distances, although $P(r)$ is slightly reduced from the result for $U = 1$. This is
consistent with the weak-coupling theory, in which K_ρ is a *decreasing* function of U so that once the spin gap opens for $U > 0$, the paring correlation decays faster for larger values of U.

To explore the effect of umklapp processes, we now turn to the filling dependence for a fixed interaction $U = 2$. We have tuned the value of t_\perp to ensure that the level offset ($\Delta \varepsilon$) at the Fermi level is as small as $O(0.01t)$ for $U = 0$. In this way, we can single out the effect of umklapp processes from those due to large values of $\Delta \varepsilon$. If we first look at the half-filling (Fig. 4(a)), the decaying form is essentially similar to the $U = 0$ result. At the half-filling interband umklapp processes emerge and, according to the weak-coupling theory, open a charge gap, which results in an exponential decay of the pairing correlation. It is difficult to tell from our data whether $P(r)$ decays exponentially. This is probably due to the smallness of the charge gap. In fact, Noack *et al.* [10] have obtained with DMRG an exponential decay for larger values of U, for which a larger charge gap is expected.

When n is decreased down to 0.667 (Fig. 4(b)), we again observe an absence of enhancement in $P(r)$. This is again consistent with the weak-coupling theory [8]: for this band filling, the number of electrons in the bonding band coincides with $N(=30)$ at $U = 0$, i.e., the bonding band is half-filled. This will then give rise to intraband umklapp processes within the bonding band resulting in the ‘C1S2’ phase discussed in ref. [8], in which the spin gap is destroyed so that the pairing correlation will no longer decay slowly [8].

In summary, we have seen that there are three possible causes that reduce the pairing correlation function in the Hubbard ladder: (i) the discreteness of the energy levels, (ii) reduction of K_ρ for large values of U/t, and (iii) effect of intra- and interband umklapp processes around specific band fillings. The first one is a finite-size effect, while the latter two are present in infinite systems as well. We can make a possible interpretation to the existing results in terms of these effects. For 60 electrons on 36 rungs with $t_\perp = 1.5t$ in ref. [14], for instance, the non-interacting energy levels have a significant offset $\sim 0.15t$ between bonding and anti-bonding levels at the Fermi level, which may be the reason why the pairing correlation is not enhanced for $U/t = 2$. For a large $U/t(=8)$ in refs. [10,11], (ii) and/or (iii)
in the above may possibly be important in making the pairing correlation for $t_{\perp} = t$ not enhanced. The effect (iii) should be more serious for $t_{\perp} = t$ than for $t_{\perp} = 1.5t$ because the bonding band is closer to the half-filling in the former. On the other hand, the discreteness of the energy levels might exert some effect as well, since the non-interacting energy levels for a 32-rung ladder with 56 electrons ($n = 0.875$) in an open boundary condition have an offset of $0.15t$ at the Fermi level for $t_{\perp} = t$ while the offset is $0.03t$ for $t_{\perp} = 1.5t$.

Finally, let us comment on a possible relevance of the present result to the superconductivity reported recently for a cuprate ladder\cite{16}, especially for the pressure dependence. The material is Sr$_{0.4}$Ca$_{13.6}$Cu$_{24}$O$_{41.84}$, which contains layers consisting of two-leg ladders and those consisting of 1D chains. Superconductivity is not observed in the ambient pressure, while it appears with $T_C \sim 10K$ under the pressure of 3 GPa or 4.5 GPa, and finally disappears at a higher pressure of 6 GPa. This material is doped with holes with the total doping level of $\delta = 0.25$, where δ is defined as the deviation of the density of electrons from the half-filling. It has been proposed that at ambient pressure the holes are mostly in the chains, while high pressures cause the carrier to transfer into the ladders\cite{19}. If this is the case, and if most of the holes are transferred to the ladders at 6 GPa, the experimental result is consistent with the present picture, since there is no enhancement of the pairing correlation for $\delta = 0$ and $\delta \sim 0.3$ due to the umklapp processes as we have seen. Evidently, further investigation especially in the large-\textit{U} regime is needed to justify this speculation.

Numerical calculations were done on HITAC S3800/280 at the Computer Center of the University of Tokyo, and FACOM VPP 500/40 at the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. For the former facility we thank Prof. Y. Kanada for a support in ‘Project for Vectorized Supercomputing’. This work was also supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan. One of the authors (T.K.) acknowledges the Japan Society for the Promotion of Science for a fellowship.
REFERENCES

1 See, e.g., E. Dagotto and T.M. Rice, Science 271 618 (1996) and references therein.

2 E. Dagotto, J. Riera, and D.J. Scalapino, Phys. Rev. B 45 5744 (1992).

3 T.M. Rice, S. Gopalan and M. Sigrist, Europhys. Lett. 23 445 (1993); Physica B 199 & 200 378 (1994).

4 A.M. Finkel'stein and A.I. Larkin, Phys. Rev. B 47, 10461 (1993).

5 M. Fabrizio, A. Parola, and E. Tossati, Phys. Rev. B 46, 3159 (1992); M. Fabrizio, Phys. Rev. B 48, 15838 (1993).

6 D.V. Khveshchenko and T.M. Rice, Phys. Rev. B 50, 252 (1994); D.V. Khveshchenko, Phys. Rev. B bf 50, 380 (1994).

7 H.J. Schulz, Phys. Rev. B 53, R2959 (1996); unpublished (cond-mat/9605073).

8 L. Balents and M.P.A. Fisher, Phys. Rev. B 53, 12133 (1996).

9 N. Nagaosa and M. Oshikawa, J.Phys.Soc.Jpn. 65, 2241 (1996).

10 R.M. Noack, S.R. White and D.J. Scalapino, Phys. Rev. Lett. 73, 882 (1994).

11 R.M. Noack, S.R. White and D.J. Scalapino, Europhys. Lett. 30, 163 (1995).

12 C.A. Hayward et al., Phys. Rev. Lett. 75, 926 (1995).

13 Exact diagonalization evaluation of the critical exponent is in overall agreement with the DMRG result, see H. Tsunetsugu, M. Troyer and T.M. Rice, Phys. Rev. B 49, 16078 (1994); ibid. 51, 16456 (1995); C.A. Hayward and D. Poilblanc, Phys. Rev. B 53, 11721 (1996); K. Sano, J. Phys. Soc. Jpn. 65, 1146 (1996).

14 Y. Asai, Phys. Rev. B 52, 10390 (1995).

15 K. Yamaji and Y. Shimo, Physica C 222 349 (1994); K. Yamaji, Y. Shimo, and T. Yanagisawa, ibid 235-240, 2221 (1994).
16 M. Uehara et al., J. Phys. Soc. Jpn 65, 2764 (1996).

17 S. Sorella et al., Int. J. Mod. Phys. B 1, 993 (1988); S.R. White et al., Phys. Rev. B 40, 506 (1989); M. Imada and Y. Hatsugai, J. Phys. Soc. Jpn., 58, 3752 (1989).

18 Noack et al (cond-mat 9601047) have suggested that the suppression of the spin gap and the pairing correlation function around $t_\perp = 0.4t$ in ref. [1] may be due to the intraband umklapp process.

19 M. Kato, K. Shiota, and Y. Koike, Physica C 258 284 (1996).
FIGURES

FIG. 1. The pairing correlation function, $P(r)$, plotted against the real space distance r in a 30-rung Hubbard ladder having 52 electrons for $U = 1$ with $t_\perp = 0.98$ (□) and $t_\perp = 1.03$ (◇). The dashed line is the non-interacting result for the same system size, while the straight dashed line represents $\propto 1/r^2$. The solid line is a fit to the $U = 1$ result with $t_\perp = 0.98$ (see text). The inset shows a schematic image of the discrete energy levels of bonding (0) and anti-bonding (π) bands for $U = 0$.

FIG. 2. A similar plot as in Fig.1 for a 42-rung system having 76 electrons with $t_\perp = 0.99$.

FIG. 3. A similar plot as □ in Fig.1 except $U = 2$ here.

FIG. 4. The pairing correlation $P(r)$ (□) against r for a 30-rung system for $U = 2$ with (a) $t_\perp = 0.99$ and 60 electrons (half-filled), and (b) $t_\perp = 1.01$ and 40 electrons (half-filled bonding band). The dashed line represents the non-interacting result.
Fig. 1
Fig. 2
Fig. 3
Fig. 4(a)
Fig. 4(b)