JORLDY: A FULLY CUSTOMIZABLE OPEN SOURCE FRAMEWORK FOR REINFORCEMENT LEARNING

Kyushik Min, Hyunho Lee, Kwansu Shin, Taehak Lee, Hojoon Lee, Jinwon Choi, Sungho Son
Kakao Enterprise
Seongnam, South Korea
{leonard.q, ramanuzan.lee, kan.s, erinn.lee, link.lee, royce.choi, crest.son}@kakaoenterprise.com

ABSTRACT

Recently, Reinforcement Learning (RL) has been actively researched in both academic and industrial fields. However, there exist only a few RL frameworks which are developed for researchers or students who want to study RL. In response, we propose an open-source RL framework "Join Our Reinforcement Learning framework for Developing Yours" (JOOLDY). JORLDY provides more than 20 widely used RL algorithms which are implemented with Pytorch. Also, JORLDY supports multiple RL environments which include OpenAI gym, Unity ML-Agents, Mujoco, Super Mario Bros and Procgen. Moreover, the algorithmic components such as agent, network, environment can be freely customized, so that the users can easily modify and append algorithmic components. We expect that JORLDY will support various RL research and contribute further advance the field of RL. The source code of JORLDY is provided on the following Github: https://github.com/kakaoenterprise/JORLDY

Keywords Open Source · Deep Reinforcement Learning · Reinforcement Learning Framework

1 Introduction

Reinforcement Learning (RL) has shown impressive performance in various fields including game [1, 2, 3], chip placement [4], energy [5], recommendation [6], robotics [7, 8] and many others. Therefore, RL has been actively researched on both academic and industrial fields lately. Following this trend, several RL frameworks have been released recently. For the researchers and students who study RL, the algorithms and environments of RL framework should be customizable to develop their research. For the user, who is not a RL expert and wants to use RL framework for industrial problem, the RL framework should be easy to use and be able to add new industrial environments. Accordingly, there has been a growing demand for a RL framework that can be easily used and customized.

There are some RL frameworks [9, 10, 11, 12, 13, 14] opened for the users who wants to study or use RL algorithms. However, Some frameworks have problems that hinder usability or convenience for the users. First, it is difficult to modify or add RL algorithms or environments in most of the frameworks. If there are restrictions on the modification of the environment or algorithm, it is difficult to conduct more advanced research based on the framework. Second, some of the frameworks such as [9, 10] provide less number of the algorithms than JORLDY or do not provide latest RL algorithms. Third, many existing frameworks such as [9, 10, 13, 14] don’t provide distributed training for RL. Recently, great performance improvement can be conducted for RL algorithm with applying distributed training, so most of state-of-the-art RL algorithms have distributed training structure. Therefore, it is important for RL frameworks to support distributed training.

For these reasons, we propose a new open source RL framework "Join Our Reinforcement Learning framework for Developing Yours" (JOOLDY). JORLDY is named after Jordy, one of the Niniz character of the Kakao corporation which is illustrated in Figure 1. As the full name suggests, we expect RL users to further develop their own research through the proposed framework.
JORLDY framework provides more than 20 RL algorithms from basic to advanced algorithms. The algorithms consist of various kinds of RL algorithms such as value-based, policy-based, actor-critic, distributional and distributed structure algorithms. Each RL algorithm consists of some components: agent, network, buffer and optimizer. All the components of RL algorithms are fully customizable, so users can modify the existing algorithms and develop new RL algorithms based on the provided RL algorithms of JORLDY. Also, all the components can be freely combined with each other, so various implementations are possible. Moreover, JORLDY provides various distributed architecture using Ray [15], so it can support RL algorithms that have distributed training process. The RL algorithms are implemented using Python with deep learning library Pytorch [16].

Also, JORLDY supports various existing RL environments such as OpenAI gym [17], Arcade Learning Environment (ALE) [18], Gym Super Mario Bros [19], Procgen [20] and MuJoCo [21]. For the diversity of the RL environments, some of the custom environments made with Unity ML-Agents toolkit [22] are provided. Any environments can be applied if they set to a specified format for JORLDY. Because of this characteristic, it is expected that RL can be applied to not only games but also various industrial environments through JORLDY.

Lastly, JORLDY considers usability that non RL expert can use RL without difficulties. Therefore, the provided RL algorithms and environments can be easily connected and run with single line of command.

The main features of JORLDY are as follows:

- More than 20 RL algorithms and various RL environment are provided
- The RL components (i.e. network, agent, buffer) and environments can be added and fully customized
- Various combination of the RL components can be simply conducted
- All the provided algorithms and environments can be run with a simple command
- Various distributed architecture for RL algorithms are supported using Ray
- Benchmark of the algorithms is conducted in many RL environment

The rest of this paper is constructed as follows: Section 2 describes overall structure and each component of JORLDY. Section 3 describes the features of JORLDY. About usability, customizability, distributed architecture and benchmark of JORLDY is explained in this section. In section 4, we conclude this paper.

2 Structure of JORLDY

The overall structure of JORLDY is shown in Figure 2. In this section, all the components of JORLDY are described. At first, users have to decide train or evaluate the agent with running the script. In this process, users also can select distributed setting of the training. JORLDY has a python scripts to run: main.py. It uses options (--single, --sync, --async, --eval) for selecting distributed training mode or evaluation. The first three options are used to train the agent. A single worker is trained without distributed setting with --single option. The --sync and --async options provide a different type of distributed training architecture. The --eval option is used to evaluate the agent.
JORLDY: A Fully Customizable Open Source Framework for Reinforcement Learning

Table 1: RL Algorithms of JORLDY

Category	Algorithms
Value-based	DQN [23], Double DQN [24], Dueling DQN [25], Multistep DQN [26], PER [27],
	Rainbow (-DQN, -IQN) [28], M-RL (DQN, IQN) [29]
Policy-based, Actor-Critic	REINFORCE [30], DDPG [31], TD3 [32], PPO [33], SAC [34], MPO [35], V-MPO [36]
Distributional RL	CST [37], QR-DQN [38], IQN [39]
Exploration	Noisy DQN [40], ICM [41], RND [42]
Distributed Structure	APE-X [43], R2D2 [44]

JORLDY has some components: config, core, manager, process and logs. The first component of JORLDY is config. In the config, users can manage the parameter setting files. The configuration files are saved in the path: jorldy/config/[agent name]/[env name]/py (e.g. jorldy/config/dqn/cartpole.py). The example of the configuration can be found in Appendix A.

The second component of JORLDY is core. The core manages agent and environment classes. In the core, there are 5 subcomponents: env, agent, network, optimizer and buffer. The env manages environment classes such as Gym, Atari, ML-Agents, etc. The agent manages all the agent classes such as DQN, PPO, SAC, Rainbow, etc. The network manages network classes such as noisy, policy_value, rnd, etc. The optimizer manages optimizer classes and the buffer manages buffer class such as replay buffer, rollout buffer, per buffer, etc. All the subcomponents of core are fully customizable.

The other components of JORLDY are manager, process and logs. The manager manages auxiliary classes for running. The process manages multi process functions such as interact and manage. The results of the training are saved in the jorldy/log folder. The results are saved in the path: jorldy/logs/[env name]/[agent name]/[timestamp]/ (e.g. jorldy/logs/cartpole/dqn/20211123141004). Trained model, config file, tensorboard file and gif of evaluation are saved in the path.

3 Features of JORLDY

3.1 Contents of JORLDY

JORLDY consists of various RL algorithms and environments. The implemented RL algorithms of JORLDY are shown in Table 1. According to the characteristics of algorithms, the RL algorithms are grouped as follows: value-based,
policy-based & actor-critic, distributional RL, exploration, distributed structure. The algorithms except Rainbow-IQN are implemented based on the published papers.

JORLDY supports multiple RL environments for evaluating the performance of RL algorithms. Currently, JORLDY supports following RL environments: OpenAI gym [17], Arcade Learning Environment (ALE) [18], Super Mario Bros [19], Procgen [20], Mujoco [21] and Unity ML-Agents [22]. The environments other than custom Unity ML-Agents environments are existing RL environments.

3.2 Customizability

One of the main features of JORLDY is customizability. Most of the existing RL frameworks are hard to modify the specific part of the algorithms and environments because they provide nested class structure. In the case of JORLDY, not only configuration but also all the components in the core can be modified. For example, we implemented Rainbow-IQN that uses IQN instead of C51 among the algorithms constituting Rainbow-DQN. As the case of the Rainbow-IQN, users can change few parts of existing algorithm to apply their own idea and add entire new RL algorithms.

All the RL components such as network, buffer, agent are separately implemented, so they can be simply combined. For example, Dueling DQN, Double DQN and PER are independent algorithms in JORLDY. However, the agent of Double DQN can use network of Dueling DQN with buffer of PER with little modification. In this way, if users implement new RL component in JORLDY, the component can be applied to all the other RL components.

Custom RL environments also can be added in JORLDY. For example, pong_mlagent, hopper_mlagent, drone_delivery_mlagent of JORLDY are custom RL environment made with Unity ML-Agents. These custom environments are shown in Figure 3. Not only the environment made with Unity ML-Agents, any existing RL environments can be applied to JORLDY.

JORLDY supports the inheritance structure for users to modify and add the algorithms and environments more conveniently. Each of the component has base class. In order to implement a new object, this base class must be inherited. However, in the network component, if necessary, an object can be implemented without inheritance of the base class (refer to icm, rnd network). In this case, the head network cannot be used. In addition, the functions of the object can be utilized by inheriting an existing object. As a result, users don’t have to write unnecessary redundant code.
This structure not only imposes rules on code implementation, but also makes code implementation easier. Based on the code structure, users can modify or add all the components. The example of inheritance chart is shown in Figure 4.

3.3 Distributed Architecture

JORLDY provides 3 different options for training: --single, --sync and --async. Among these options, --single uses a single actor for training, so it is not the one which has a distributed training structure. The --sync and --async options support different structures for distributed training. The difference between these two options is whether actors interact synchronously or asynchronously with learner. The flow chart and timeline of each distributed structure are shown in Figure 5 and Figure 6. At first, --single option has main process and manage process. In the main process, a single agent interacts with environments to collect transition data and trains network from it. The manage process evaluates with the latest network to get a score, and records this score and the results of training in the main process.

The --sync option also has main process and manage process. In the main process, multiple actors interact in parallel at the same time to collect transition data and the learner trains the network from it. In detail, the transition data obtained through the interaction is collected and delivered to the learner when all actors complete the interact process. Then, the learner receives these data, performs training, and delivers the updated network to all actors. The manage process evaluates agent with the latest model to get a score, and records this score and the results of training in the main process.

The --async option has interact process, main process and manage process. In the interact process, multiple actors interact in parallel to collect transition data. Unlike the --sync option, each actor interacts asynchronously. More specifically, in the --async, transition data is collected only for actors who have completed the interact process within a specific time and delivered to the learner. If any actor does not complete within a certain time, it waits until the completed actor comes out. Then, the learner receives these data, performs learning, and delivers the updated network only to actors who have completed the interact process. In the main process, the learner trains the model through the transition data. The manage process evaluates with the latest model to get a score, and records this score and the results of training in the main process.

3.4 Benchmark

Benchmark of the algorithms is conducted in RL environments. Benchmark of the Atari and MuJoCo environment can be found in Appendix B.1 and B.2, respectively. All the benchmark results of JORLDY contains not only score but also configuration, script information and specification. The results can be found in the following link: https://bit.ly/3tVYyJo

4 How to Use JORIZED

Training RL algorithms in desired environment has following two process: configuration setting, executing run command. In this section, detail of the configuration setting and run command is described.

4.1 Configuration Setting

At first, the user has to set the configuration of the agent and environment. As Appendix A shows, configuration files have 4 parts. In the env part, users can change the configuration of the environment. It contains information about rendering, input data (width, height, grayscale) and reward setting. In the agent part of the configuration file, hyperparameters settings of the network and agent can be adjusted. To identify the name of the network and head, the user has to check _network_dict.txt and _head_dict.txt in jorldy/core/network. In the optim part, user can set the optimizer and its parameters. Lastly, the configuration of training can be changed in the train part. Using the configurations, user can set whether to train or evaluate the agent. Also, various period about training, saving and printing can be changed in this part. Moreover, the distributed setting can be decided in the train part.

4.2 Run command

After the configuration setting, users should run the command for executing the algorithm. Default command consists of script part and configuration part. The example command for training DQN algorithm with CartPole environment is as follows. --single training option is a default option, so it can be deleted. However, if user wants to train with distributed setting, --sync or --async option has to be appended after main.py

```
python main.py --config config.dqn.cartpole
```

5
Figure 5: Flow chart of the distributed structures
When you type path of configuration file, you should omit `.py` in the name of the configuration file. If the command does not contain configuration path, it runs with the default configuration in the script. All parameters in the configuration file can be changed by using the parser without modifying the configuration file. To change the configuration using the command, users should type the parameter key and value. The example command for training PPO algorithm using sync distributed training with changing number of workers in distributed structure is as follows.

```
python main.py --sync --config config.ppo.cartpole --train.num_workers 8
```

With these simple commands, the algorithms and environments of JORLDY can be executed.

5 Conclusion

This paper proposes a new open source reinforcement learning framework: JORLDY. It contains various RL algorithms and environments which can be fully customized. With this flexibility, users can not only modify the existing algorithms and environments but also add their algorithms and environments for their research. Also, JORLDY provides various types of distributed structure for training the RL algorithms. The users can select one of these distributed structures to proceed with training.

We think that even non-experts on RL will be able to use RL algorithms more easily and apply them to their various environments by using JORLDY. We also believe that it will help researchers and students working on RL to advance their research. In order to contribute to the development of reinforcement learning, JORLDY will continue to develop in the future.
Acknowledgments

We thank Kakao Enterprise AI Lab & Service, Advanced tech team member for their support. Also, We appreciate Jinhyung Ahn who contributes the development of JORLDY a lot.

References

[1] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. *Nature*, 550(7676):354, 2017.

[2] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.

[3] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaoohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In *International Conference on Machine Learning*, pages 507–517. PMLR, 2020.

[4] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, and Sergey Levine. A graph placement methodology for fast chip design. *Nature*, 594(7862):207–212, 2021.

[5] AI DeepMind. Reduces google data centre cooling bill by 40%, 2016.

[6] M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender systems: A survey. *arXiv preprint arXiv:2101.06286*, 2021.

[7] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial autoencoders for visuomotor learning. In *2016 IEEE International Conference on Robotics and Automation (ICRA)*, pages 512–519. IEEE, 2016.

[8] Ashvin Nair, Vitthour Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual reinforcement learning with imagined goals. *arXiv preprint arXiv:1807.04742*, 2018.

[9] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines, https://github.com/openai/baselines, 2017.

[10] Matthias Plappert, keras-rl. https://github.com/keras-rl/keras-rl, 2016.

[11] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken Goldberg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning library. *arXiv preprint arXiv:1712.09381*, page 85, 2017.

[12] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed reinforcement learning. *arXiv preprint arXiv:2006.00979*, 2020.

[13] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Hang Su, and Jun Zhu. Tianshou: a highly modularized deep reinforcement learning library. *arXiv preprint arXiv:2107.14171*, 2021.

[14] Yasuhiro Fujita, Prabhat Nagarajan, Toshiaki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep reinforcement learning library. *Journal of Machine Learning Research*, 22(77):1–14, 2021.

[15] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging {AI} applications. In *13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18)*, pages 561–577, 2018.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32:8026–8037, 2019.

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.
[18] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.

[19] Christian Kauten. Super Mario Bros for OpenAI Gym. GitHub, 2018.

[20] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforcement learning. *arXiv preprint arXiv:1912.01588*, 2019.

[21] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pages 5026–5033. IEEE, 2012.

[22] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A general platform for intelligent agents. *arXiv preprint arXiv:1809.02627*, 2018.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

[24] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

[25] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling network architectures for deep reinforcement learning. In *International conference on machine learning*, pages 1995–2003. PMLR, 2016.

[26] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

[27] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. *arXiv preprint arXiv:1511.05952*, 2015.

[28] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning. In *Thirty-second AAAI conference on artificial intelligence*, volume 30, 2016.

[29] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. *Advances in Neural Information Processing Systems*, 33:4235–4246, 2020.

[30] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In *Advances in neural information processing systems*, pages 1057–1063, 2000.

[31] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv preprint arXiv:1509.02971*, 2015.

[32] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *International conference on machine learning*, pages 1587–1596. PMLR, 2018.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[34] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pages 1861–1870. PMLR, 2018.

[35] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin Riedmiller. Maximum a posteriori policy optimisation. *arXiv preprint arXiv:1806.06920*, 2018.

[36] H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy maximum a posteriori policy optimization for discrete and continuous control. *arXiv preprint arXiv:1909.12238*, 2019.

[37] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In *International Conference on Machine Learning*, pages 449–458. PMLR, 2017.

[38] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement learning with quantile regression. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

[39] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for distributional reinforcement learning. In *International conference on machine learning*, pages 1096–1105. PMLR, 2018.
[40] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration. *arXiv preprint arXiv:1706.10295*, 2017.

[41] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In *International conference on machine learning*, pages 2778–2787. PMLR, 2017.

[42] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. *arXiv preprint arXiv:1810.12894*, 2018.

[43] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt, and David Silver. Distributed prioritized experience replay. *arXiv preprint arXiv:1803.00933*, 2018.

[44] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent experience replay in distributed reinforcement learning. In *International conference on learning representations*, 2018.
A Example of configuration file

This is the example of configuration file. The following code is the configuration file of the DQN algorithm for CartPole environment. All the configurations of the algorithms for the environments can be found in the following link: https://bit.ly/3tia1O0

DQN CartPole Config

```python
env = {
    "name": "cartpole",
    "action_type": "discrete",
    "render": False,
}

agent = {
    "name": "dqn",
    "network": "discrete_q_network",
    "gamma": 0.99,
    "epsilon_init": 1.0,
    "epsilon_min": 0.01,
    "explore_ratio": 0.2,
    "buffer_size": 50000,
    "batch_size": 32,
    "start_train_step": 2000,
    "target_update_period": 500,
}

optim = {
    "name": "adam",
    "lr": 0.0001,
}

train = {
    "training": True,
    "load_path": None,
    "run_step": 100000,
    "print_period": 1000,
    "save_period": 100000,
    "eval_iteration": 10,
    # distributed setting
    "update_period": 32,
    "num_workers": 8,
}
```
B. Benchmark

In the benchmark results, the bold scores are best performance among the implemented algorithms of JORLDY for each environment. All the scores are average value of the scores of three runs and each score is obtained using the final evaluation score with tensorboard smooth 0.6. All the metrics, specs and configurations can be found in the following link: https://bit.ly/3tVYYJo

B.1 JORLDY Benchmark on Atari

All the agents for Atari environment are trained for 10M steps. For distributed training, 8 actors are used for PPO and 128 actors are used for Ape-X.

Game	DQN	Double	Dueling	PER	NosyNet	C51	Multistep	RainbowDQN	QR-DQN	M-DQN	PPO	Ape-X
alien	1828	626	1791	1505	2192	1445	1510	1997	1930	2026	5779	8437
assault	1841	1421	1799	6241	4399	2064	2496	4898	9088	1267	13967	35022
battle zone	10297	17983	6139	26724	25858	9540	21183	34364	34416	31044	55152	59721
breakout	295	301	322	359	364	238	38	342	339	349	388	455
enduro	1060	1007	1001	1629	1430	1054	46	3303	2713	1011	3621	13340
ms pacman	2940	2024	2129	2203	2538	2408	1964	2235	2639	2421	7022	6011
pong	21	21	21	21	21	21	21	21	21	21	21	21
qbert	13055	17220	15249	11861	16246	13006	14672	27760	17560	14867	31684	26768
robotank	7	15	22	25	32	27	26	37	32	32	33	65
seaquest	159	124	134	6000	120	3960	3622	13377	20710	1974	2667	62357
spaceinvaders	649	702	1302	995	872	1265	481	1346	1160	901	2862	102980
time pilot	2981	1729	3269	4649	3947	3904	4148	9125	4545	3621	16615	13776

B.2 JORLDY Benchmark on Mujoco

All the agents for MuJoCo environment are trained for 1M steps.

Game	DDPG	TD3	SAC
Ant	673	5945	4763
HalfCheetah	4335	9305	8385
Hopper	1938	3622	3627
Inverted Double Pendulum	9325	9359	9328
Reacher	-5.8	-6	-8.3
Walker	3957	5129	3987

Table 2: Atari Benchmark of JORLDY

Table 3: Mujoco Benchmark of JORLDY