HOLOMORPHIC FAMILIES OF LONG C^2'S

FRANC FORSTNERIČ

(Communicated by Mei-Chi Shaw)

Abstract. We construct a holomorphically varying family of complex surfaces X_s, parametrized by the points s in any Stein manifold, such that every X_s is a long C^2 which is biholomorphic to C^2 for some but not all values of s.

1. The main result

A complex manifold X of dimension n is a long C^n if $X = \bigcup_{j=1}^{\infty} X^j$, where $X^1 \subset X^2 \subset X^3 \subset \ldots$ is an increasing sequence of open domains exhausting X such that each X^j is biholomorphic to C^n. Clearly every long C is biholomorphic to C. On the other hand, for every $n > 1$ there exists a long C^n which is not a Stein manifold, and in particular is not biholomorphic to C^n. Such manifolds have been constructed recently by E. F. Wold [12] using his example of a non-Runge Fatou-Bieberbach domain in C^2 [11], thereby solving a problem posed by J. E. Fornæss [3].

Previously Fornæss [2] used Wermer’s example of a non-Runge embedded polydisc in C^3 [10] to construct for every $n \geq 3$ an n-dimensional non-Stein complex manifold that is exhausted by biholomorphic images of the polydisc.

Recently L. Meersseman asked in a private communication whether it is possible to holomorphically deform the standard C^n to a long C^n that is not biholomorphic to C^n. This question arose naturally in certain problems concerning deformations of foliations that he had been considering. Here we give a positive answer and show that the behavior of long C^n’s in a holomorphic family can be rather chaotic.

Theorem 1.1. Fix an integer $n > 1$. Assume that S is a Stein manifold, $A = \bigcup_j A_j$ is a finite or countable union of closed complex subvarieties of S, and $B = \{b_j\}$ is a countable set in $S \setminus A$. Then there exists a complex manifold X and a holomorphic submersion $\pi: X \to S$ onto S such that

(i) the fiber $X_s = \pi^{-1}(s)$ is a long C^n for every $s \in S$,
(ii) X_s is biholomorphic to C^n for every $s \in A$, and
(iii) X_s is non-Stein for every $s \in B$.

In particular, for any two disjoint countable sets $A, B \subset C$ there is a holomorphic family $\{X_s\}_{s \in C}$ of long C^2’s such that X_s is biholomorphic to C^2 for all $s \in A$ and is non-Stein for all $s \in B$. This is particularly striking if the sets A and B are chosen to be everywhere dense in C.

Received by the editors January 18, 2011 and, in revised form, February 17, 2011.
2010 Mathematics Subject Classification. Primary 32E10, 32E30, 32H02.
Key words and phrases. Stein manifold, Fatou-Bieberbach domain, long C^2.

The author was supported by grants P1-0291 and J1-2152 from ARRS, Republic of Slovenia.

©2011 American Mathematical Society

2383
The conclusion of Theorem 1.1 can be strengthened by adding to the set B a closed complex subvariety of X contained in $X \setminus A$. We do not know whether the same holds if B is a countable union of subvarieties of X.

Several natural questions appear:

Problem 1.2. Given a holomorphic family $\{X_s\}_{s \in S}$ of long \mathbb{C}^n's for some $n > 1$, what can be said about the set of points $s \in S$ for which the fiber X_s is (or is not) biholomorphic to \mathbb{C}^n? Are these sets necessarily a G_δ, an F_σ, of the first, resp. of the second category, etc.?

A more ambitious project would be to answer the following question:

Problem 1.3. Is there a holomorphic family X_s of long \mathbb{C}^2's, parametrized by the disc $D = \{s \in \mathbb{C} : |s| < 1\}$ or the plane \mathbb{C}, such that X_s is not biholomorphic to $X_{s'}$ whenever $s \neq s'$?

We do not know of any criteria to distinguish two long \mathbb{C}^n's from each other, except if one of them is the standard \mathbb{C}^n and the other one is non-Stein. Apparently there is no known example of a Stein long \mathbb{C}^n other than \mathbb{C}^n. It is easily seen that any two long \mathbb{C}^n's are smoothly diffeomorphic to each other, so the gauge-theoretic methods do not apply.

To prove Theorem 1.1 we follow Wold’s construction of a non-Stein long \mathbb{C}^2 [12], but doing all the key steps with families of Fatou-Bieberbach maps depending holomorphically on the parameter in a given Stein manifold S. (The same proof applies for any $n \geq 2$.) By using the Andersén-Lempert theory [1, 4, 8, 9] we insure that in a holomorphically varying family of injective holomorphic maps $\phi_s : \mathbb{C}^2 \hookrightarrow \mathbb{C}^2$ ($s \in S$) the image domain $\phi_s(\mathbb{C}^2)$ is Runge for some but not all values of the parameter. In the limit manifold X we thus get fibers X_s that are biholomorphic to \mathbb{C}^2, as well as fibers that are not holomorphically convex, and hence non-Stein.

2. Constructing holomorphic families of long \mathbb{C}^n’s

Let S be a complex manifold that will be used as the parameter space. We recall how one constructs a complex manifold X and a holomorphic submersion $\pi : X \to S$ such that the fiber $X_s = \pi^{-1}(s)$ is a long \mathbb{C}^n for each $s \in S$. (This is a parametric version of the construction in [2] or [12, §2].)

Assume that we have a sequence of injective holomorphic maps

$$\Phi^k : X^k = S \times \mathbb{C}^n \hookrightarrow X^{k+1} = (S \times \mathbb{C}^n, \Phi^k(s, z) = (s, \phi^k_s(z)), $$

where $s \in S$, $z \in \mathbb{C}^n$, and $k = 1, 2, \ldots$. Set $\Omega^k = \Phi^k(X^k) \subset X^{k+1}$. Thus for every fixed $k \in \mathbb{N}$ and $s \in S$ the map $\phi^k_s : \mathbb{C}^n \hookrightarrow \mathbb{C}^n$ is biholomorphic onto its image $\phi^k_s(\mathbb{C}^n) = \Omega^k_s \subset \mathbb{C}^n$ and it depends holomorphically on the parameter $s \in S$. In particular, if Ω^k_s is a proper subdomain of \mathbb{C}^n, then ϕ^k_s is a Fatou-Bieberbach map. Let X be the disjoint union of all X^k for $k \in \mathbb{N}$ modulo the following equivalence relation. A point $x \in X'$ is equivalent to a point $x' \in X^k$ if and only if one of the following hold:

- (a) $i = k$ and $x = x'$,
- (b) $k > i$ and $\Phi^{k-1} \circ \cdots \circ \Phi^i(x) = x'$, or
- (c) $i > k$ and $\Phi'^{i-1} \circ \cdots \circ \Phi^k(x') = x$.

For each $k \in \mathbb{N}$ we have an injective map $\Psi^k: X^k \hookrightarrow X$ onto the subset $\tilde{X}^k = \Psi^k(X^k) \subset X$ which sends any point $x \in X^k$ to its equivalence class $[x] \in X$. Denoting by $i^k: \tilde{X}^k \hookrightarrow \tilde{X}^{k+1}$ the inclusion map, we have

\begin{equation}
\label{2.2}
i^k \circ \Psi^k = \Psi^{k+1} \circ \Phi^k, \quad k = 1, 2, \ldots .
\end{equation}

The inverse maps $(\Psi^k)^{-1}: \tilde{X}^k \xrightarrow{\sim} X^k = S \times \mathbb{C}^n$ provide local charts on X. It is easily verified that this endows X with the structure of a Hausdorff, second countable complex manifold. Since each of the maps Φ^k respects the fibers over S, we also get a natural projection $\pi: X \to S$ which is clearly a submersion. For every $s \in S$ the fiber X_s is the increasing union of open subsets \tilde{X}^k_s biholomorphic to \mathbb{C}^n. Observe that we get the same limit manifold X by starting with any term of the sequence $\{X_s\}$.

The next lemma follows from the Andersén-Lempert theory [1]; cf. [12, Theorem 1.2].

Lemma 2.1. Let $\pi: X \to S$ be as above. Assume that for some $s \in S$ there exists an integer $k_s \in \mathbb{N}$ such that for every $k \geq k_s$, the domain $\Omega^k_s = \phi^k_s(\mathbb{C}^n) \subset \mathbb{C}^n$ is Runge in \mathbb{C}^n. Then X_s is biholomorphic to \mathbb{C}^n.

Proof. The main point is that any biholomorphic map $\mathbb{C}^n \xrightarrow{\sim} \Omega$ onto a Runge domain $\Omega \subset \mathbb{C}^n$ can be approximated, uniformly on compact sets, by holomorphic automorphisms of \mathbb{C}^n. This observation allows one to renormalize the sequence of biholomorphisms $(\Psi^k_s)^{-1}: \tilde{X}^k_s \xrightarrow{\sim} \mathbb{C}^n$ for $k \geq k_s$ so that the new sequence converges uniformly on compact sets in X_s to a biholomorphic map $X_s \xrightarrow{\sim} \mathbb{C}^n$; we leave out the straightforward details. \hfill \Box

3. Entire families of holomorphic automorphisms

Let $\mathfrak{K}_O(X)$ denote the complex Lie algebra of all holomorphic vector fields on a complex manifold X.

A vector field $V \in \mathfrak{K}_O(X)$ is said to be \mathbb{C}-complete, or completely integrable, if its flow $\{\phi_t\}_{t \in \mathbb{C}}$ exists for all complex values $t \in \mathbb{C}$, starting at an arbitrary point $x \in X$. Thus $\{\phi_t\}_{t \in \mathbb{C}}$ is a complex one-parameter subgroup of the holomorphic automorphism group $\text{Aut} X$. The manifold X is said to enjoy the (holomorphic) density property if the Lie subalgebra $\mathfrak{L}(X)$ of $\mathfrak{K}_O(X)$, generated by the \mathbb{C}-complete holomorphic vector fields, is dense in $\mathfrak{K}_O(X)$ in the topology of uniform convergence on compact sets in X (see Varolin [8, 9]). More generally, a complex Lie subalgebra \mathfrak{g} of $\mathfrak{K}_O(X)$ enjoys the density property if \mathfrak{g} is densely generated by the \mathbb{C}-complete vector fields that it contains. This property is very restrictive on open manifolds. The main result of the Andersén-Lempert theory [1] is that \mathbb{C}^n for $n > 1$ enjoys the density property; in fact, every polynomial vector field on \mathbb{C}^n is a finite sum of complete polynomial vector fields (the shear fields).

Varolin proved [8] that any domain of the form $(\mathbb{C}^*)^k \times \mathbb{C}^l$ with $k + l \geq 2$ and $l \geq 1$ enjoys the density property; we shall need this for the manifold $\mathbb{C}^* \times \mathbb{C}$. (Here $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.)

Lemma 3.1. Assume that X is a Stein manifold with the density property. Choose a distance function dist_X on X. Let $\psi_1, \ldots, \psi_k \in \text{Aut} X$ be such that for each $j = 1, \ldots, k$ there exists a C^2 path $\theta_{j,t} \in \text{Aut} X$ ($t \in [0, 1]$) with $\theta_{j,0} = \text{Id}_X$ and $\theta_{j,1} = \psi_j$. Given distinct points $a_1, \ldots, a_k \in \mathbb{C}^*$, a compact set $K \subset X$ and a
number $\epsilon > 0$, there exists a holomorphic map $\Psi: \mathbb{C} \times X \to X$ satisfying the following properties:

(i) $\Psi_\zeta = \Psi(\zeta, \cdot) \in \text{Aut } X$ for all $\zeta \in \mathbb{C}$,
(ii) $\Psi_0 = \text{Id}_X$,
(iii) $\sup_{x \in K} \text{dist}_X(\Psi(a_j, x), \psi_j(x)) < \epsilon$ for $j = 1, \ldots, k$.

A holomorphic map Ψ satisfying property (i) will be called an entire curve of holomorphic automorphisms of X. Here Id_X denotes the identity on X.

Proof. Consider a C^2 path $[0, 1] \ni t \mapsto \gamma_t \in \text{Aut } X$. Pick a Stein Runge domain $U \subset X$ containing the set K. Then $U_t = \gamma_t(U) \subset X$ is Runge in X for all $t \in [0, 1]$. By [1] or, more explicitly, by (the proof of) [4] Theorem 1.1 there exist finitely many complete holomorphic vector fields V_1, \ldots, V_m on X, with flows $\theta_j(t)$, and numbers $c_1 > 0, \ldots, c_m > 0$ such that the composition $\theta_{m,c} \circ \cdots \circ \theta_1,c_1 \in \text{Aut } X$ approximates the automorphism $\psi = \gamma_1$ within ϵ on the set K. (The proof in [4] is written for $X = \mathbb{C}^n$, but it applies in the general case stated here. We first approximate $\gamma_t: U \to U_t$ by compositions of short time flows of globally defined holomorphic vector fields on X; here we need the Runge property of the sets U_t. Since X enjoys the density property, these vector fields can be approximated by Lie combinations (using sums and commutators) of complete holomorphic vector fields. This approximates γ_t for each $t \in [0, 1]$, uniformly on K, by compositions of flows of complete holomorphic vector fields on X.)

Consider $t^j = (t_1, \ldots, t_m)$ as complex coordinates on \mathbb{C}^m. The map

$C^m \ni (t_1, \ldots, t_m) \mapsto \Theta_1(t_1, \ldots, t_m) = \theta_{m,t_m} \circ \cdots \circ \theta_{1,t_1} \in \text{Aut } X$

is entire, its value at the origin $0 \in \mathbb{C}^m$ is Id_X, and its value at the point (c_1, \ldots, c_m) is an automorphism that is ϵ-close to $\psi = \gamma_1$ on K.

Using this argument we find for every $j = 1, \ldots, k$ an integer $m_j \in \mathbb{N}$ and an entire map $\Theta_j: C^{m_j} \to \text{Aut } X$ such that $\Theta_j(0) = \text{Id}_X$ and $\Theta_j(c_1^{(j)}, \ldots, c_{m_j}^{(j)})$ is ϵ-close to ψ_j on K at some point $c_j = (c_1^{(j)}, \ldots, c_{m_j}^{(j)}) \in C^{m_j}$. Let $t = (t^1, \ldots, t^k)$ be the complex coordinates on $C^M = C^{m_1} \oplus \cdots \oplus C^{m_k}$, where $t^j = (t_1^j, \ldots, t_{m_j}^j) \in C^{m_j}$. The composition

$C^M \ni t \mapsto \Theta(t^1, \ldots, t^k) = \Theta^k(t^k) \circ \cdots \circ \Theta^1(t^1) \in \text{Aut } X$

is an entire map satisfying $\Theta(0) = \text{Id}_X$ such that $\Theta(0, \ldots, 0, c_j, 0, \ldots, 0)$ is ϵ-close to ψ_j on K for each $j = 1, \ldots, k$.

Choose an entire map $g: \mathbb{C} \to C^M$ with $g(a_j) = (0, \ldots, c_j, \ldots, 0)$ for $j = 1, \ldots, k$ and $g(0) = 0$. Then the map $\mathbb{C} \ni \zeta \mapsto \Psi(\zeta) = \Theta(g(\zeta)) \in \text{Aut } X$ satisfies the conclusion of the lemma.

4. Proof of Theorem 1.1

We shall need the following result from [11] §2. This construction is due to Stolzenberg [6]; see also [7, pp. 392–396].

Lemma 4.1. There exists a compact set $Y \subset \mathbb{C}^* \times \mathbb{C}$ (a union $Y = D_1 \cup D_2$ of two embedded, disjoint, polynomially convex discs) such that

(i) Y is $O(\mathbb{C}^* \times \mathbb{C})$-convex,
(ii) the polynomial hull \tilde{Y} contains the origin $(0, 0) \in \mathbb{C}^2$, and
(iii) for any nonempty open set \(U \subset C^* \times C \) there exists a holomorphic automorphism \(\psi \in \text{Aut}(C^* \times C) \) such that \(Y \subset \psi(U) \).

Property (iii) is [11, Lemma 3.1]: Since \(C^* \times C \) enjoys the density property according to Varolin [8], the isotopy that shrinks each of the two discs \(D_1, D_2 \subset Y \) to a point in \(U \) can be approximated by an isotopy of automorphisms of \(C^* \times C \) by using the methods in [4].

Proof of Theorem 1.1. We give the proof for \(n = 2 \). Let \(B = \{ b_1, b_2, \ldots \} \) be as in the theorem. Choose a set \(Y \subset C^* \times C \) satisfying Lemma 1.1. Pick a closed ball \(K \subset C^2 \) (or any compact set with nonempty interior).

We shall inductively construct a sequence of injective holomorphic maps \(\Phi^k: S \times C^2 \mapsto S \times C^2 \) (\(k = 1, 2, \ldots \)) of the form

\[
\Phi^k(s, z) = (s, \phi^k_s(z)), \quad s \in S, \ z \in C^2,
\]

such that, setting

\[
(4.1) \quad \phi^k_s = \phi_s^k \circ \phi_{s}^{k-1} \circ \cdots \circ \phi_s^1, \quad K^k_s = \overline{\phi_s^k(K)} \subset C^2,
\]

the following properties hold for all \(k \in \mathbb{N} \):

(i) \(\Omega^k := \Phi^k(S \times C^2) \subset S \times (C^* \times C) \),

(ii) the fiber \(\Omega_s^k = \phi^k_s(C)^2 \) is Runge in \(C^2 \) for all \(s \in A_1 \cup \cdots \cup A_k \), and

(iii) \(Y \subset \text{Int} K^k_s \) for each \(s \in \{ b_1, \ldots, b_k \} \). In particular, the polynomial hull of the set \(K^k_s \) contains the origin for every such \(s \).

Suppose for the moment that we have such a sequence. Let \(X \) denote the limit manifold and let \(\Psi^k: X^k = S \times C^2 \mapsto \mathbb{X}^k \subset X \) be the induced inclusions (see 2). If \(s \in \bigcup A_k = A \), then property (ii) insures, in view of Lemma 2.1, that the fiber \(X_s \) is biholomorphic to \(C^2 \).

Suppose now that \(s = b_j \) for some \(j \in \mathbb{N} \). Property (iii) shows that for every integer \(k \geq j \) the polynomial hull of the set \(K^k_s \) contains the origin of \(C^2 \); in particular, \(K^k_s \) is not contained in \(\Omega_s^k \subset C^* \times C \). For the corresponding subsets of the limit manifold \(X_s \) we get in view of (2.2) that

\[
\Psi^{k+1}_s(K^k_s) \not\subset \mathbb{X}^k_s, \quad k = j, j + 1, \ldots,
\]

where the hull is with respect to the algebra of holomorphic functions on the domain \(\mathbb{X}^k_s \) in the fiber \(X_s \).

Let \(K_s = \Psi^1_s(K) \) denote the compact set in \(X_s \) determined by \(K \); note that \(K_s \subset \mathbb{X}^1_s \) and \(K_s = \Psi^{k+1}_s(K^k_s) \) for any \(k \in \mathbb{N} \) according to (2.2) and (4.1). The above display then gives

\[
(K_s)_{\mathcal{O}(\mathbb{X}^{k+1})} \not\subset \mathbb{X}^k_s, \quad k = 1, 2, \ldots.
\]

Since \(\mathbb{X}^k_s \) is a domain in \(X_s \), we trivially have \((K_s)_{\mathcal{O}(\mathbb{X}^{k+1})} \subset (K_s)_{\mathcal{O}(X_s)} \); hence the hull \((K_s)_{\mathcal{O}(X_s)} \) is not contained in \(\mathbb{X}^k_s \) for any \(k \in \mathbb{N} \). As the domains \(\mathbb{X}^k_s \) exhaust \(X_s \), this hull is noncompact. Hence \(X_s \) is not holomorphically convex (and therefore not Stein) for any \(s \in B \).

This proves Theorem 1.1 provided that we can find a sequence with the stated properties.

We begin with some initial choices of domains and maps. Pick a Fatou-Bieberbach map \(\theta: C^2 \xrightarrow{\cong} D \subset C^* \times C \) whose image \(D = \theta(C^2) \) is Runge in
For each $k = 1, 2, \ldots$, we choose a holomorphic function $f_k : S \to \mathbb{C}$ such that $f_k = 0$ on the subvariety $A_1 \cup \cdots \cup A_k$ of S and $f_k(b_j) = j$ for $j = 1, \ldots, k$. If the set $B \subset X \setminus A$ also contains a closed complex subvariety B' of X of positive dimension, we let $f_k = 1$ on B'.

We now construct the first map $\Phi^1(s, z) = (s, \phi^1_s(z))$. Lemma 4.1 furnishes an automorphism $\psi \in \text{Aut}(\mathbb{C}^* \times \mathbb{C})$ such that $Y \subset \psi(\theta(U))$. By Lemma 3.3 there exists an entire curve of automorphisms $\Psi_\zeta \in \text{Aut}(\mathbb{C}^* \times \mathbb{C})$ ($\zeta \in \mathbb{C}$) such that $\Psi_0 = \text{Id}_{\mathbb{C}^* \times \mathbb{C}}$ and Ψ_1 approximates ψ close enough on the compact set $\theta(K)$ so that $Y \subset \Psi_1(\theta(U))$. Hence $(0, 0) \in Y \subset \Psi_1(\theta(K))$. Set

$$ \phi^1_s(z) = \Psi_{f_1(s)}(\theta(z)), \quad s \in S, \quad z \in \mathbb{C}^2. $$

If $s \in A_1$, then $f_1(s) = 0$ and hence $\phi^1_s(z) = \Psi_0(\theta(z)) = \theta(z)$, so $\phi^1_s = \theta$. If $s = b_1$, then $f_1(s) = 1$ and hence $\phi^1_s = \Psi_1 \circ \theta$. Thus $Y \subset \phi^1_{b_1}(U)$ and the polynomial hull $\hat{\phi}^1_{b_1}(K)$ contains the origin of \mathbb{C}^2. This gives the initial step.

Suppose that we have found maps Φ^1, \ldots, Φ^k satisfying conditions (i)–(iii) above; we now construct the next map Φ^{k+1} in the sequence. Recall that $\hat{\phi}^k : \mathbb{C}^2 \to \mathbb{C}^2$ is the map defined by (4.11). Let

$$ U^k_s = (\theta \circ \hat{\phi}^k_s)(U), \quad s \in S; $$

this is a nonempty open set contained in the compact set $\theta(K^k_s) \subset \mathbb{C}^* \times \mathbb{C}$. Lemma 4.1 gives for each $j = 1, \ldots, k+1$ an automorphism $\psi_j \in \text{Aut}(\mathbb{C}^* \times \mathbb{C})$ such that $Y \subset \psi_j(U^k_{b_j})$. By Lemma 3.3 there exists an entire curve of automorphisms $\Psi_\zeta \in \text{Aut}(\mathbb{C}^* \times \mathbb{C})$ ($\zeta \in \mathbb{C}$) such that $\Psi_0 = \text{Id}_{\mathbb{C}^* \times \mathbb{C}}$ and Ψ_j approximates ψ_j for every $j = 1, \ldots, k+1$. If the approximation is close enough on the compact set $\theta(K^k_{b_j})$, then $Y \subset (\Psi_j \circ \theta)(K^k_{b_j})$ and hence the origin $(0, 0) \in \mathbb{C}^2$ is contained in the polynomial hull of $(\Psi_j \circ \theta)(K^k_{b_j})$. Set

$$ \phi^{k+1}_s(z) = \Psi_{f_{k+1}(s)} \circ \theta(z), \quad s \in S, \quad z \in \mathbb{C}^2. $$

If $s \in A_1 \cup \cdots \cup A_{k+1}$, then $f_{k+1}(s) = 0$ and hence $\phi^{k+1}_s = \theta$. If $s = b_j$ for some $j = 1, \ldots, k+1$, then $f_{k+1}(b_j) = j$ and hence $\phi^{k+1}_{b_j} = \Psi_j \circ \theta$; therefore the polynomial hull of the set $\hat{\phi}^{k+1}_{b_j}(K^k_{b_j})$ contains the origin. Taking $\hat{\phi}^{k+1}_s$ as the next map in the sequence and setting

$$ \hat{\phi}^{k+1}_s = \phi^{k+1}_s \circ \hat{\phi}^k_s, \quad K^{k+1}_s = \phi^{k+1}_s(K^k_s) $$

we see that properties (i)–(iii) hold also for $k+1$. The induction may continue.

This completes the proof of Theorem I.1. \hfill \Box

References

1. Andersén, E., Lempert, L., On the group of automorphisms of \mathbb{C}^n. Invent. Math., 110 (1992), 371–388. MR1185588 (93i:32038)
2. Fornæss, J. E., An increasing sequence of Stein manifolds whose limit is not Stein. Math. Ann., 223 (1976), 275–277. MR0417448 (54:5498)
3. Fornæss, J. E., Short \mathbb{C}^k. In: Complex Analysis in Several Variables – Memorial Conference of Kiyoshi Oka’s Centennial Birthday, pp. 95–108, Adv. Stud. Pure Math., 42, Math. Soc. Japan, Tokyo, 2004. MR2087041 (2005h:32027)
4. Forstnerič, F., Rosay, J.-P., Approximation of biholomorphic mappings by automorphisms of \mathbb{C}^n. Invent. Math., 112 (1993), 323–349. MR1213106 (94f:32032)
5. Rosay, J.-P., Rudin, W., Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n. Trans. Amer. Math. Soc., 310 (1988), 47–86. MR929658 (89d:32058)
6. Stolzenberg, G., On the analytic part of a Runge hull. Math. Ann., 164 (1966), 286–290. MR0203080 (34:2938)
7. Stout, E. L.: The Theory of Uniform Algebras. Bogden & Quigley, Inc., Tarrytown-on-Hudson, New York, 1971. MR0423083 (54:11066)
8. Varolin, D., The density property for complex manifolds and geometric structures. J. Geom. Anal., 11 (2001), 135–160. MR1853531 (2002g:32026)
9. Varolin, D., The density property for complex manifolds and geometric structures II. Internat. J. Math., 11 (2000), 837–847. MR1785520 (2002g:32027)
10. Wermer, J., An example concerning polynomial convexity. Math. Ann., 139 (1959), 147–149. MR0121500 (22:12238)
11. Wold, E. F., A Fatou-Bieberbach domain in \mathbb{C}^2 which is not Runge. Math. Ann., 340 (2008), 775–780. MR2372737 (2009c:32019)
12. Wold, E. F., A long \mathbb{C}^2 which is not Stein. Ark. Mat., 48 (2010), 207–210. MR2594593 (2011c:32011)

Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

E-mail address: franc.forstneric@fmf.uni-lj.si