THE ABUNDANCE OF LOW-LUMINOSITY Lyα EMITTERS AT HIGH REDSHIFT1

MICHAEL R. SANTOS, RICHARD S. ELLIS, AND JEAN-PAUL KNEIB2
California Institute of Technology, MS 105-24, Pasadena, CA 91125; mrs@tapir.caltech.edu

JOHAN RICHARD
Observatoire Midi-Pyrénées, UMR5572, 14 Avenue Edouard Belin, F-31400 Toulouse, France

AND

KONRAD KUIKEN
Sterrewacht Leiden, P.O. Box 9513, NL-2300 RA Leiden, Netherlands

Received 2003 October 16; accepted 2004 January 21

ABSTRACT

We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5 < z < 6.7. Eleven emission-line candidates were located in the range 2.2 < z < 5.6 whose identification we justify as Lyα, in most cases via further spectroscopic observations. The selection function we constructed for our survey takes into account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 10^{40} ergs s^{-1}, corresponding to a star formation rate of 0.01 M_\odot yr^{-1}. Our cumulative z \approx 5 Lyα luminosity function is consistent with a power-law form n(L) \propto L^{-1} over 10^{41−10^{42.5}} ergs s^{-1}. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation.

Subject headings: cosmology: observations — galaxies: evolution — galaxies: formation — galaxies: high-redshift — galaxies: luminosity function, mass function — gravitational lensing

On-line material: color figures

1. INTRODUCTION

The epoch of cosmic reionization, when the intergalactic hydrogen in the universe transitioned from neutral to ionized, is the current frontier of observational cosmology. QSOs discovered by the Sloan Digital Sky Survey (SDSS) indicate that reionization was just finishing at z \approx 6 (Becker et al. 2001; Djorgovski et al. 2001; Fan et al. 2002). Recent results from the WMAP satellite suggest that significant reionization of the universe took place by z \approx 12 (Spergel et al. 2003). The sources that reionized the universe, however, are still unknown: at z \approx 6 neither bright QSOs discovered by SDSS (Fan et al. 2001) nor faint active galactic nuclei from deep X-ray observations (Barger et al. 2003) produced enough photons to reionize the universe. Other evidence from the temperature and ionization state of the intergalactic medium (IGM) suggests that, although QSOs dominated the metagalactic ionizing background at z \approx 3, the spectrum was softer at reionization (e.g., Sokasian, Abel, & Hernquist 2003). Accordingly, hot stars in early star-forming systems may have been the dominant source of reionizing photons. One goal of the forthcoming NASA/ESA James Webb Space Telescope (JWST), a 6 m IR telescope scheduled for launch in 2010, is to study the formation of the first generations of galaxies and their contribution to reionization (Mather & Stockman 2000).

Early galaxies played many important roles beyond their involvement with reionization. The IGM was enriched well above the primordial metal abundance by z = 5 (Songaila 2001; Pettini et al. 2003); additional evidence for early metal production comes from metal-poor globular clusters in the Milky Way. Age estimates imply a formation epoch of z \approx 4 for current cosmological parameters (Krauss & Chaboyer 2003), but the typical metallicity of these objects is 10^{-2} of the solar value (Harris 1996). The stars responsible for reionization and early metal production may still be present in some form today. It is an important challenge to identify the transition between the very first, metal-free, stars and Population II stars, because of the strong constraints on the metallicity of low-mass stars provided by studies of halo stars in the Milky Way. A complete understanding of the metallicity distribution of old Galactic stars will benefit from direct observation of very high redshift star formation in protogalactic systems that will evolve into galaxies like the Milky Way.

In advance of JWST, which will use IR capabilities to observe galaxies before the end of reionization in rest-frame UV and optical light, current ground-based facilities have the opportunity to discover and characterize star-forming galaxies near the epoch of reionization with rest-frame UV observations. In particular, the identification of Lyα emission from star-forming regions of early galaxies has proved to be a powerful tool for discovering z > 4 galaxies and measuring their redshifts (see § 2). The redshift range 5 < z < 7 is of particular interest for two reasons. One is that the very

1 Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

2 Also Observatoire Midi-Pyrénées, UMR5572, 14 Avenue Edouard Belin, F-31400 Toulouse, France.
detection of Ly\(\alpha\) emission may place a constraint on the progress of reionization (Rhoads & Malhotra 2001; Haiman 2002; Hu et al. 2002a; Rhoads et al. 2003): it is difficult to observe Ly\(\alpha\) emission from galaxies embedded in a neutral IGM, but the strength of the constraint derived from the successful detection of Ly\(\alpha\) depends on the assumed properties of the sources (Santos 2004). The second important reason to study galaxy formation during and after reionization is that an intense UV background and \(10^4\) K IGM is predicted to suppress star formation in galaxies that form after reionization (Barkana & Loeb 1999; Barkana & Loeb 2000; Gnedin 2000; Benson et al. 2002b). There is a discrepancy between some theoretical predictions of the abundance of dark matter halos on dwarf-galaxy mass scales and the number of observed dwarf satellites in the Local Group (Moore et al. 1999). Reionization may stabilize many dwarf galaxy–scale halos to star formation, so that the luminous satellites of the Milky Way are dwarf galaxies formed before reionization, and the remaining satellite halos are empty of stars and thus dark (Benson et al. 2002a; Somerville 2002).

This paper presents the results of a spectroscopic Ly\(\alpha\) emission-line survey for galaxies at \(2.2 < z < 6.7\) that utilizes the strong-lensing properties of intermediate-redshift clusters to magnify the surveyed regions. In § 2 we review the use of Ly\(\alpha\) surveys as probes of early star formation. Section 3 motivates the importance of surveys for low-luminosity galaxies. Section 4 describes the advantages of a survey utilizing strong lensing and details our survey strategy, targets, observations, and data reduction. In § 5 our Ly\(\alpha\) emission-line detections are presented. We compute our survey volume and source number density in § 6. Section 7 compares the results of our survey to those of other surveys and theoretical models. In § 8 we summarize.

Throughout this paper we use a ΛCDM cosmological model with \((\Omega_m, \Omega_\Lambda, \Omega_b, \sigma_8) = (0.3, 0.7, 0.043, 0.9)\) and \(h \equiv H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.7\); these values are consistent with the values derived in Spergel et al. (2003).

2. Ly\(\alpha\) SURVEYS

The primary appeal of Ly\(\alpha\) emission as a signpost to high-redshift galaxy formation is that it traces star formation at a wavelength that conveniently redshifts into the visible and near-IR, where sensitive, high angular resolution observations are currently most practical. The Ly\(\alpha\) emission line may be quite strong, but its luminosity is quite sensitive to physical details of the nature and geometry of the star-forming regions. Because Ly\(\alpha\) emission traces hydrogen recombinations, it is intimately related to the production of ionizing photons by the stars present. Both the initial mass function (IMF) and the metallicity of the stars affect their rate of producing ionizing photons. However, if the IMF and metallicity are constrained to reasonable ranges, the ionizing photon production rate can be reliably connected to the star formation rate (SFR).

The major complication for the interpretation of Ly\(\alpha\) line strengths is the effect of the nebula around the star-forming region. Hydrogen at low density does not recombine quickly, so, e.g., ionizing photons that escape into the IGM are “lost” for the purposes of producing a Ly\(\alpha\) emission line. Even after a hydrogen recombination produces a Ly\(\alpha\) photon, which happens for about two thirds of the recombinations (Osterbrock 1989), there are many ways in which the photon may be destroyed prior to escape. The resonant nature of the Ly\(\alpha\) transition results in a very short mean free path, even in a mostly ionized nebula. Consequently, if dust is mixed in with the gas, then the chance of absorption by a dust grain may be higher for a Ly\(\alpha\) photon than a nonresonantly scattered photon at the same wavelength (but see Neufeld 1991, for an alternative). The dust content of very high redshift galaxies is still relatively unconstrained and will likely remain so at least until JWST.

On the positive side, Ly\(\alpha\) is the intrinsically strongest recombination line from an H II region. Another meritorious aspect of Ly\(\alpha\) is that its emission strength does not strongly depend on the metallicity of the ionized gas (the only effect is from the temperature of the photoionized gas, which depends on metallicity); consequently, it can be used as a tracer for truly primordial star formation, where dust extinction is also believed to not be a problem.

Partridge & Peebles (1967) introduced a model of galaxy formation “to assess the general possibility of observing distant, newly formed galaxies.” In their model they estimated that 6%–7% of the luminosity of early galaxies would be emitted in the Ly\(\alpha\) emission line: they predicted line luminosities of \(2 \times 10^{45}\) erg s\(^{-1}\) over galaxy formation timescales of \(3 \times 10^7\) yr. The predictions of Partridge & Peebles (1967) and others led to many observational surveys for Ly\(\alpha\) emission from high-redshift galaxies, reviewed by Pritchet (1994), § 4.5. Pritchet summarized the status of searches at that time with “no emission-line primeval galaxies have been found,” despite 16 cited surveys covering various redshifts ranges from \(z = 2\) to \(5\). In striking contrast to these pioneering explorations, many high-redshift Ly\(\alpha\) emission line galaxies have been discovered and confirmed in the past eight years. Section 4 of Stern & Spinrad (1999) and Taniguchi et al. (2003) have reviewed recent progress, and we provide a brief summary here.

The search technique that has dominated recent success in the discovery of large numbers of Ly\(\alpha\) emission line galaxies at \(z > 4\) is narrowband photometry. This approach uses a narrow (\(~100\) Å) filter chosen to lie in a spectral region of low sky background; such surveys cover relatively large areas of sky with sensitivity to Ly\(\alpha\) emission over a small window in redshift, \(\Delta z \sim 0.1\). Many groups have now performed successful blind narrowband surveys for \(z > 4\) galaxies: Hu, Cowie, & McMahon (1998) and Rhoads et al. (2000) at \(z = 4.5\); Ouchi et al. (2003) at \(z = 4.9\); Hu, McMahon, & Cowie (1999), Rhoads & Malhotra (2001), Rhoads et al. (2003), and Hu et al. (2004) at \(z = 5.7\); and Hu et al. (2002a) and Kodaira et al. (2003) at \(z = 6.5\).

Spectroscopic surveys provide a complementary technique to the narrowband method. For equal observing time at one position, spectroscopic searches at optical wavelengths can cover a large range in redshift, \(\Delta z \sim 3\), to better line flux sensitivity than a corresponding narrowband survey. However, the area surveyed by a long slit is typically \(~5 \times 10^{-2}\) arcmin\(^2\), in contrast to 20–2000 arcmin\(^2\) for an imaging camera. Deep long-slit observations of other targets have been searched for serendipitous detection of high-redshift galaxies. These techniques discovered the first confirmed \(z > 5\) galaxy (Dey et al. 1998) and subsequently turned up a few more \(z > 4\) sources (Hu et al. 1998; Weymann et al. 1998). Serendipitous surveys will likely continue to play a role in discovering high-redshift galaxies, since the deepest spectra on the largest telescopes are likely to be pointed observations rather than devoted emission-line surveys.

Under sky-limited conditions, it is simple to show that the signal-to-noise ratio \(R\) that is reached on pure emission line sources of flux \(F\) in a survey over sky area \(A\) and wavelength
range \(\Delta \lambda \), with area and wavelength coverage \(\Delta A \) and \(\Delta \lambda \), seeing disk \(\delta A \) and spectral resolution \(\delta \lambda \), is given by

\[
R = \frac{F_t}{\sqrt{S \delta A \delta \lambda t}} = \frac{F}{\sqrt{T/(4A)}} \frac{\sqrt{T/(4A)}}{\sqrt{S(\delta A/\Delta A)(\delta \lambda/\Delta \lambda)}},
\]

(1)

where \(t \) and \(T \) are the lengths of individual exposures and of the whole survey, respectively, and \(S \) is the sky surface brightness per unit wavelength. The trade-off is thus between the number of seeing elements that can be observed simultaneously \([O(N)]\) in case of an imaging survey, \(O(N)\) for a long-slit spectral survey \(1\) for \(1\) for a narrowband survey, \(O(N)\) for a spectral survey]. Since each is limited by detector sizes, both modes can in principle offer comparable survey speed to a given flux limit (the argument applies also to surveys with integral field unit spectrographs). Spectral surveys are advantageous for targeting small regions of the sky and covering a large wavelength range, or for simply going as deep as possible in a given amount of time; narrowband surveys are optimal in the opposite regime of wide area, small wavelength range. A further advantage of high spectral resolution surveys is that the night-sky emission lines can be maximally avoided, which is not possible with the typical bandwidths employed in narrowband surveys.

A few other hybrid techniques combine aspects of the narrowband imaging and long-slit spectroscopy approaches. Maier et al. (2003) used an imaging Fabry-Perot interferometer to take sequences of narrowband images within the night-sky windows corresponding to \(z = 4.8, 5.7\), and \(6.5\) and have confirmed discoveries at \(z = 5.8, 5.7\). Recently Lilly et al. (2003) and Martin & Sawicki (2004) used a “slitlet” slit mask with a narrowband filter to do spectroscopic surveys over a relatively large areas and narrow redshift windows. There is also an ongoing Hubble Space Telescope (HST) program to use slitless spectroscopy with the ACS camera grism to discover high-redshift Ly\(\alpha\) emission (J. E. Rhoads 2003, private communication).

3. SEARCHES FOR DISTANT LOW-LUMINOSITY GALAXIES

In this section we present the motivation for conducting a survey devoted specifically to low-luminosity \(z \sim 5\) Ly\(\alpha\)-emitting galaxies \((\lesssim 10^{42}\) erg s\(^{-1}\) in the Ly\(\alpha\) line), an unexplored region of survey parameter space.

At \(z \sim 5\), the luminous Ly\(\alpha\) galaxies (§ 2) and QSOs (e.g., Fan et al. 1999, 2000, 2001) discovered so far represent the rarest and most spectacular tail of the range of structure formation scales (e.g., Barkana & Loeb 2003 suggested that the high-z SDSS QSOs reside in \(10^{12}\) \(M_\odot\) virialized halos). They almost certainly evolve into the rarest and most massive environments in the local universe: rich clusters of galaxies. In striking contrast, the characteristic mass of virialized halos at \(z \sim 5\) is only \(10^9\) \(M_\odot\); if such an object steadily converts its \(~10^8\) \(M_\odot\) of baryons into stars, it will have an SFR of only \(~0.1\) \(M_\odot\) yr\(^{-1}\).

These objects, which we refer to as low-mass halos, would not be detectable in any of the surveys cited above, but our understanding of galaxy formation depends crucially on constraining their properties for three important reasons. First, they represent the most common environment by mass of virialized halos (the peak of the mass-weighted mass function is always near the characteristic mass); consequently, if low-mass halos form stars efficiently, they could dominate the SFR at high redshift. Second, they are the progenitors of common galaxies in poor environments, such as the Milky Way, under the current paradigm of structure formation. The detection of low-mass sources is a direct test of the “bottom-up” description of galaxy assembly. Third, low-mass objects have a unique link to the IGM: kinetic energy injected into the IGM by photoionization at \(z \sim 6\) is expected to raise the cosmic Jeans mass and inhibit gas cooling; this effect has no consequence for the brightest sources residing in deep potential wells, but may heavily suppress star formation in \(10^9\) \(M_\odot\) objects (e.g., Barkana & Loeb 2000; Gnedin 2000). This Jeans mass effect has been cited as the solution for the cold dark matter “crisis” of overpredicting the number of Milky Way satellite galaxies compared to observation (Benson et al. 2002a; Somerville 2002). Low-mass halos also place relevant constraints on the energy scale of dark matter in warm dark matter models (Z. Haiman 2003, private communication).

A practical and strategic advantage in characterizing the luminosity function at low luminosities is to determine the optimum survey depth for future surveys that aim to discover large numbers of \(4 \leq z \leq 7\) galaxies. If the luminosity function were very steep, then deep surveys such as ours would be much more efficient than shallower, wider field surveys. Theoretical prejudice suggests that the luminosity function should have a steep effective slope in the region associated with the exponential cutoff of the number density of underlying halos, assuming some sort of mass-to-luminosity correspondence. Previous nondetections combined with recent successes seem to bear this out (Pritchett 1994, and see below). That is, current surveys may be approaching the characteristic luminosity; however, the characteristic luminosity and luminosity function shape have yet to be well constrained. In the local universe, luminosity functions based on SFR estimators, such as H\(\alpha\) luminosity, roughly follow the Schechter function (Schechter 1976) form of power-law behavior at low luminosity, reflecting the underlying power law of the mass function, albeit with possibly a different slope (e.g., Gallego et al. 1995).

The predicted suppression of star formation in halos with small potential wells suggests that the Ly\(\alpha\) luminosity function at \(z \sim 5\) may have a modified shape. The reason is that the characteristic mass scale where the exponential tail and power-law regions of the mass scale meet, \(~10^9\) \(M_\odot\), corresponds quite closely to the mass scale where a number of physical mechanisms may suppress star formation. We described the effect of a hot IGM above. In addition, energy injected into the interstellar medium of star-forming galaxies by stellar winds and supernovae (called negative feedback, or just feedback) is predicted to heavily suppress star formation in halos with circular velocities below about 100 km s\(^{-1}\) (Dekel & Silk 1986), corresponding to a mass scale at \(z \sim 5\) of \(~10^{11}\) \(M_\odot\). A current implementation of feedback by Benson et al. (2002b) shows the importance of feedback on the high-redshift SFR. This effect complements the inhibiting effects of a hot IGM on star formation in low-mass halos. A third mechanism that may reduce star formation preferentially in low-mass halos is the effect of large-scale winds blown by star-forming galaxies. Scannapieco, Ferrara, & Broadhurst (2000) and Scannapieco & Broadhurst (2001) computed the influence of winds blown out through the IGM by the first galaxies to form. They concluded that these winds effectively sweep gas out of nearby halos in the process of collapsing,
4. OBSERVATIONS

4.1. Survey Strategy

The goal of our survey is to extend the census of Lyα sources at \(z \sim 5 \) to the faintest luminosities possible with existing observational facilities. We achieved this through deep spectroscopic exposures on areas of sky strongly magnified by gravitational lensing.

Strong gravitational lensing by rich clusters of galaxies at \(z \sim 0.2 \) is an invaluable resource to a survey covering a very small area of sky to great depth, as such clusters magnify background high-redshift sources by greater than a factor of 10 over regions of roughly 0.1 arcmin\(^2\) in the image plane. This advantage comes at a price: lensing increases the apparent area of a background source at fixed surface brightness, so that the pointing is deeper by a factor of the magnification, \(M \), but covers only \(1/M \) of the area of an equivalent unlensed pointing (assuming unresolved sources). This is a superior strategy for a deep, narrow survey. Achieving the same depth and area in an unlensed survey would require a factor of \(M \) more observing time, a huge difference for \(M \sim 10 \).

Only a small area of the whole sky, ~100 arcmin\(^2\), is magnified by a factor of 10 or more by clusters; this sets a fundamental limit to the areal coverage of any survey utilizing strong lensing by clusters. For a large survey that detected many sources, statistical information about the distribution of magnification over the survey area might be sufficient to construct a Lyα emitter luminosity function. However, since we planned to survey a small area and detect only a few sources, we chose to observe clusters with HST imaging and spectroscopic redshifts for many of the identified arcs and multiple images (e.g., Kneib et al. 1996). These are currently available for only a small fraction of strong-lensing clusters. The positions and spectroscopic redshifts of the arcs constrain the distribution of mass in the cluster, which can, in turn, be used to predict a magnification map of the cluster for high-redshift sources. Since lensing depends on the angular diameter distance between the source and the lens, and that distance changes slowly with redshift at \(z \sim 5 \), the sky area with large magnification is fairly independent of the source redshift for \(z > 3 \).

Given that high-quality lens models are only available for about a dozen clusters observable from Hawaii, the total area available to us for a survey is currently quite small. To make the most of this limited resource, we conducted a spectroscopic survey. The advantage of a spectroscopic survey is that Lyα emission can be simultaneously surveyed for over a redshift range \(2.2 < z < 6.7 \). The primary drawback of a spectroscopic survey was that, with the instrumentation available, the most efficient technique was slit spectroscopy. The geometry of a long slit is not well matched to the lensed region of sky (see Fig. 2); thus, some of the slit area covers area outside the cluster that is not strongly magnified.

A long-slit survey does have other advantages. We can expect many emission-line sources in our survey other than Lyα; in particular, optical lines associated with strong star formation, such as [O iii] 3726, 3729 Å; Hβ 4861 Å; [O iii] 4959, 5007 Å; and Hα 6563 Å. Low-resolution spectroscopy with large wavelength coverage allows the rejection of many potential low-redshift contaminants through the identification of other emission lines. However, the [O iii] doublet can be difficult to resolve at low dispersion and, if redshifted to \(z \sim 1 \), there are often no other strong emission lines present in the...

Figure 1.— SFR function based on a dark matter halo model. The solid curve shows the abundance (on the right axis) of halos at \(z = 5 \) as a function of the mass on the top axis. The bottom axis is a simple conversion of the halo mass into the expected star formation in that halo, so that the solid curve may also be read as a theoretical SFR function using the bottom and left axes. The dashed and dotted curves represent cases in which star formation in low-mass halos has been suppressed; each is labeled with the logarithm of the mass scale below which suppression occurs. See §§3 and 7.2 for details. [See the electronic edition of the Journal for a color version of this figure.]

Meaning that even though the dark matter continues its collapse to virialization, there is little corresponding star formation because of the lack of baryons. In their model winds influence the entire star formation history of the universe, but at \(z \sim 5 \) they particularly suppress star formation in halos smaller than \(\sim 10^{10} M_\odot \).

Figure 1 is a schematic illustration of the possible effect of the suppression of star formation in low-mass halos. The solid curve is the mass function of halos at \(z = 5 \) (Sheth & Tormen 2002), and we have converted the mass scale on the top axis into an SFR on the bottom axis using a simple prescription (see §7.2). In this simple model, the Lyα line luminosity function, if interpreted as directly proportional to that of the SFR, would have the shape of the solid curve. We have introduced the suppression of star formation in low-mass halos by using the prescription of Gnedin (2000) to efficiently filter out gas from halos below a critical mass scale \(M_F \), the filtering mass (Gnedin 2000). Each of the broken curves has the shape of the Lyα line luminosity function we expect (again assuming it scales with SFR) after applying filtering on a different mass scale. Ultimately the filtering mass, and thus the physics described in the previous paragraph, may be constrained directly by a measurement of the shape of the SFR function, along with estimates of the corresponding halo masses (see §7.2).

Only recently have deep observations with large telescopes even detected \(z \sim 5 \) Lyα-emitting galaxies; the detailed form of the luminosity function will not be well constrained in the immediate future. However, our low-luminosity Lyα survey, and others like it, in concert with surveys at higher luminosities, may constrain or detect the break in the luminosity function associated with the characteristic halo mass and where star formation is suppressed.
optical spectrum. Thus, final identification of an emission line as Lyα may require follow-up spectroscopy at intermediate resolution.

Redshift identification is aided by two additional factors. Deep optical broadband imaging, available in at least one band for well-studied clusters, can be used, as in narrowband searches, as a rejection filter: if a putative Lyα system shows much observable flux shortward of Lyα, then it is not likely a correct line identification, because the intrinsic UV spectrum, combined with IGM absorption, creates a strong decrement.

Fig. 2.—Survey geometry for a selected sample of our clusters. For each cluster, superposed on the HST WFPC2 image are the critical lines for a source at $z = 5$ (dotted lines). The solid curves bound areas where the magnification for such a source exceeds a factor of 10. The regions bounded by parallel straight lines are the long-slit survey areas. Numeric labels correspond to the key in Table 2. The axes are labeled in arcseconds.
across the Ly\(\alpha\) emission line (e.g., Songaila & Cowie 2002). The second tool is available when two or more images (due to strong lensing) of the same high-redshift source are discovered. In this case the lensing model itself may place a reasonably strong constraint on the redshift of the system based on the observed image positions and flux ratios (Kneib et al. 1996).

The deepest survey for a given observing time would result from devoting all of the time to a single slit position. However, we expect Ly\(\alpha\) sources to be clustered, resulting in a non-Poisson distribution. To estimate an accurate luminosity function, we surveyed several independent volumes (via surveying behind several lensing clusters) to ameliorate cosmic variance and recover the Poisson noise limit (see § 7.2).

4.2. Survey Parameters

Table 1 summarizes the nine lensing clusters of our survey. We have constructed a detailed mass model for each, based on HST imaging and lensed arc redshifts.

Details of our spectroscopic observations are listed in Table 2. Clusters that were observed at multiple position angles are designated further by an identification number. We used the double-beam Low Resolution Imaging Spectrograph (LRIS; Oke et al. 1995) in long-slit mode on the Keck I 10 m telescope at Mauna Kea to perform our survey. For the 2000 March observations we used a slit 0.7 wide and a spectroscopic range of 6800–9500 \(\AA\) (corresponding to Ly\(\alpha\) with \(4.6 < z < 6.8\)), using a 600 line grating blazed at 7500 \(\AA\), which gave a resolution of \(\approx 3.0\) \(\AA\). In 2001 April we switched to a 1.0 wide slit and used a 600 line grating blazed at 1 \(\mu m\) over the same wavelength range as above, at a resolution of \(\approx 4.0\) \(\AA\). Starting in 2001 April we also began using a 300 line grism blazed at 5000 \(\AA\) and a dichroic at 6800 \(\AA\) to simultaneously take spectra on the blue arm of the spectrograph, over 4000–6700 \(\AA\) (corresponding to Ly\(\alpha\) from \(2.2 < z < 4.5\)) at 3.5–4 \(\AA\) resolution.

The length of the spectrographic slit was 175". We mapped an area on the sky via offsetting the telescope perpendicular to the long axis of the slit by a distance equal to the slit width. At each slit position we made two exposures of 1000 s to facilitate cosmic-ray rejection. Each map comprised 5–10 adjacent slit positions at the same position angle, giving contiguous survey areas on the sky of 875–1750 arcsec\(^2\).

The pointing of the slit on the sky was verified by registration of images from the LRIS slit-viewing guide camera to the HST images of the cluster (because the clusters are rich in bright galaxies, there were always many sources in the slit-viewing guide camera images). Our sequence of slit offsets typically agreed with a regular spacing of the slit width to a precision of 0.1 (10% of the 1" slit). More importantly,
registration of the slit position on the *HST* image enabled us to look for a broadband counterpart at the location of emission lines detected in our spectra.

The areas mapped by the procedure above were chosen to take advantage of the strong magnification of background sources provided by the foreground cluster. The magnification map of the sky around the cluster is constrained by the distribution of visible light in the cluster and the measured velocity dispersion of some cluster members, but it is crucially verified and refined by including information from the locations and redshifts of strongly lensed sources. These background galaxies, generally brighter and at lower redshift than the $z > 4.5$ sources we searched for, have been the target of previous observations (e.g., Kneib et al. 1996).

We used up-to-date cluster mass models to generate redshift-dependent maps of the magnification toward $4 < z < 7$ sources using the LENSTOOL software developed by Kneib (1993). The angular diameter distance between the cluster and those redshifts depends only weakly on redshift, so we were able to choose areas on the sky with high magnification over our entire redshift range of interest.

The geometry of the magnification map is generally characterized by two concentric ringlike curves of formally infinite magnification, called the inner and outer critical lines. These areas of highest magnification are found next to the critical curves, so our survey maps generally follow the outer critical line. The outer critical line is more amenable to long-slit mapping because of its greater length on the sky and its less curved form. However, in one case (A1689) we mapped sky near the inner critical line as well. Lensed sources close to the critical line are often multiply imaged, forming a merging pair on either side of the critical line. We considered this when we chose our map locations, but the irregular shape of the critical line, compared to the straight shape of our slit, limited the extent to which we could map exclusively one side of the critical line.

Figure 2 summarizes the adopted strategy for each cluster in the context of the location of the critical line for a lensed source at $z = 5$ (dotted lines). In the most massive clusters with the best mass models, such as A1689 and A2218, we made multiple maps (see also Table 2). In these cases each survey region is labeled by a number corresponding to the observations listed in Table 2.

The total area on the sky covered by our survey was 4.2 arcmin2. The effective areal coverage of the survey is

Table 1

Clusters Surveyed

Cluster	Redshift	R.A. (J2000.0)	Decl. (J2000.0)	Lens Model Reference
A68..........................	0.255	00 36 59	+09 09	1
A370..........................	0.375	02 37 18	−01 48	2
A773..........................	0.217	09 14 30	+51 55	1
A963..........................	0.206	10 17 09	+39 01	1
A1689..........................	0.183	13 09 00	−01 06	3
Cl 1358.1+62.45.............	0.328	13 59 54	+62 31	4
A2218..........................	0.176	16 35 42	+66 19	5, 6
A2219..........................	0.226	16 38 54	+66 47	1
A2390..........................	0.228	21 53 35	+17 40	7

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees and arcminutes.

References.—(1) Smith et al. 2003; (2) Bézecourt et al. 1999; (3) J.-P. Kneib, unpublished; (4) Franx et al. 1997; (5) Kneib et al. 1996; (6) Ellis et al. 2001; (7) Pelló et al. 1999.

Table 2

LRIS Survey Observations

Date	Cluster	Position Angle (deg)	Integration time (ks)	Photometric?
Mar 2000....	A773	−46.8	20	Yes
A1689 1	A1689 1	84.1	23	Yes
Apr 2001.....	A1689 2	43	10	Yes
A2218 1	A2218 1	−44	10	Yes
Cl 1358	Cl 1358	−15	12	Yes
Oct 2001....	A370 1	−8	14	Yes
Apr 2002.....	A963	3.6	14	No
A2218 2	A2218 2	−49.2	14	No
May 2002.....	A1689 3	12.3	20	No
A2219	A2219	−69	14	No
Sep 2002.....	A370 2	1.7	14	No
A2390	A2390	−63	12	No
A68	A68	−40	12	No

Notes.—Position angle given in degrees north through east. Number after catalog number refers to label in Fig. 2.
smaller because of lensing by a spatially variable magnification factor (see § 6.1.1).

4.3. Candidate Selection and Catalog

The two-dimensional spectroscopic data were reduced using standard techniques in the NOAO IRAF software environment. Cosmic rays were rejected from each pair of images at a given location with the L.A.Cosmic routine (van Dokkum 2001), and sky emission was removed by subtracting block-filtered data. Sky subtraction was not photon-limited on the given location with the Echellette Spectrograph and Imager (ESI; Sheinis et al. 2002). We took spectra using the echelle mode and a 0.60 slit, which delivered a spectral resolution of R = 6000. The exposure times varied depending on candidate strength. ESI spectroscopy confirmed three candidates as Lyα emission lines (see Table 3), one at z = 3.27, one at z = 3.62, and the z = 5.57 galaxy presented in Ellis et al. (2001). In addition, three of the original candidates were [O ii] 3727 Å at z ≈ 1, two were [O iii] 5007 Å, and two more were Hα 6563 Å. One more source had a redshift measured with other lines, and spectroscopy of the remaining three candidates failed to convincingly detect any emission lines.

5. DETECTIONS

5.1. z > 4.5

We detected five convincing Lyα sources with z > 4.5 (see Table 3), of which three were confirmed directly via further spectroscopy and two we consider highly likely. Each of the three confirmed sources was detected in photometric conditions. Figure 3 shows their two-dimensional spectra, and Figures 4 and 5 show magnified views of the Lyα emission lines, as well as HST images, of all five source locations.

We discovered a source toward A2218 at z = 5.6 that we discussed in detail in Ellis et al. (2001). That source is strongly magnified (by a factor of 33) and multiply imaged: we used the HST data to locate a second image outside of our survey region. The redshift identification was confirmed by an intermediate-resolution spectrum of both images, showing them to be identical, with P-Cygni line profiles characteristic of Lyα, and certainly not the [O ii] 3727 Å doublet. Our lensing model additionally constrained the redshift of the source to be consistent only with the identification of the line as Lyα. The unlensed luminosity in the Lyα line is (7.8 ± 0.8) × 10^{41} ergs s^{-1}.

We blindly recovered a z = 4.89 galaxy in A1689 that was discovered originally by Frye, Broadhurst, & Benítez (2002). This object is multiply imaged, and the Frye et al. (2002) spectrum shows a strong break across the line and metal absorption lines in the continuum redward of Lyα, confirming the redshift. We estimate the magnification of this source at a factor of 7.2, within the range of 3–14 suggested by the coarser modeling of Frye et al. (2002). The unlensed luminosity in the Lyα line is (7.4 ± 0.7) × 10^{42} ergs s^{-1}.

Table 3

Cluster	R.A. (J2000.0)	Decl. (J2000.0)	λ (Å)	z	Flux	Comments
A370.1.f	02 39 50.00	−01 33 45.0	4628	2.80	...	Confirmed (LRIS)
A370.1.g	02 39 51.80	−01 35 57.6	4630	2.80	...	Confirmed (Ivison et al. 1998)
A963.1.cd	10 17 05.10	+39 03 30.5	5191	3.27	...	Confirmed (ESI)
A963.1.ef	10 17 04.77	+39 03 11.0	5617	3.62	...	Confirmed (ESI)
A1689.2.f	13 11 25.38	−01 20 52.4	7141	4.82	3.0	Confirmed (Frye et al. 2002)
A2218.1.a2	16 35 51.75	+66 12 45.6	8001	5.58	4.4	Confirmed (ESI; Ellis et al. 2001)
A2218.1.e2	16 35 51.89	+66 12 51.5	2nd image	
Cl 1358.1 ef	03 59 49.19	+62 30 44.8	7205	4.92	5.0	Confirmed (Franx et al. 1997)
A773.1.e	09 17 55.31	+51 44 26.6	6978	4.74	1.1	Likely
A963.1.d	10 17 04.47	+39 01 47.1	7025	4.77	0.69	Likely
A2218.1.al	16 35 45.25	+66 13 26.4	4216	2.47	...	Likely
A2218.2.b	16 35 48.78	+66 12 24.9	3928	2.23	...	Likely

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

- Source redshift, assuming emission line is Lyα.
- Observed line flux (uncorrected for lensing, corrected for transparency) in units of 10^{-17} ergs s^{-1} cm^{-2}.
In the field of Cl 1358, we discovered a source at $z = 4.92$, the same redshift as that of the strongly lensed arc discovered by Franx et al. (1997). We believe our source is likely associated, as an additional component, with that responsible for the giant arc. The magnification is tenfold, giving an unlensed luminosity in the Lyα line of $\left(2.5 \pm 0.3\right) \times 10^{42}$ ergs s$^{-1}$.

In addition to these confirmed sources, we discovered two more sources that we consider likely to be Lyα emission lines at $z > 4.5$ (see Table 3). We discovered a source in the field of A773 that we consider to be a good candidate for Lyα emission at $z = 4.74$. If this is the correct identification, the unlensed luminosity in the Lyα line is $\left(2.8 \pm 0.6\right) \times 10^{44}$ ergs s$^{-1}$, using a magnification factor of 9.5. The other likely source was discovered in nonphotometric observations; though we lack absolute flux calibration for this source, we applied a systematic photometric correction that we consider uncertain up to a factor of approximately 2. The likely $z = 4.77$ source is in the field of A963, magnified 2.2 times. The source would then have an unlensed Lyα line luminosity of $\left(1.4 \pm 0.2\right) \times 10^{42}$ ergs s$^{-1}$ (statistical error only). Two-dimensional spectra of the emission lines and images of the likely candidates are provided in Figure 5.

5.2. $z < 4.5$

We detected with certainty four Lyα emission-line sources at $z < 4.5$. One was a blind recovery of a $z = 2.80$ source behind A370 discovered by Ivison et al. (1998), and a second is another galaxy also at $z = 2.80$ in the same field. Two are new detections, at $z = 3.27$ and 3.62, both behind A963. Two more good candidate Lyα emission-line source identifications are pending. In addition two galaxies behind A2218, both at $z \approx 2.5$, were detected in Lyα absorption. We measured secure redshifts for 51 other sources using other emission lines, primarily [O ii], [O iii], and Hα. These data are useful for further constraining the cluster mass models and will be presented in a separate paper (J. Richard et al. 2004, in preparation).

6. SURVEY ANALYSIS

In this section we compute the number density of Lyα emission line galaxies in our survey as a function of Lyα line luminosity, L. Our survey volume calculation is quite complicated compared to more conventional surveys, because our survey sensitivity varies strongly with both position on the sky and redshift. As described in this section, we have made a detailed accounting of this complexity when we calculated our survey volume, so that our final number density estimates are not biased.

First we determine the effective volume of the survey as a function of the luminosity and redshift of a source, then we compute the cumulative number density of Lyα emitter sources brighter than L using the detections from the previous section.

6.1. Survey Volume

A location in our survey volume is characterized both by a location on the sky, Ω, and a redshift, z. The differential volume element located at position (Ω, z) is

$$dV_c(\Omega, z) = \frac{1}{M(\Omega, z)} \left[\frac{dL(z)}{dz} dz \right] D_c^2(z) d\Omega. \quad (2)$$
Fig. 4.—Two-dimensional spectra (left) and HST images (right) for our three confirmed LyC sources. In the spectra, the horizontal axes are labeled in Å and the vertical axes in arcseconds; the image axes are labeled in arcseconds. Top: A1689.2.f. Middle: A2218.1.a2. Bottom: Cl 1358.1.cf.
The first factor corrects for the lensing effect, which decreases the area surveyed. The second factor is the comoving length of the volume element along the line of sight, with

$$d_{lc}(z) \frac{dz}{dz} = \frac{c}{H_0\left[\Omega_m(1+z)^3 + \Omega_L\right]^{3/2}}$$

(we have assumed a flat universe). The third factor is the comoving transverse area of the volume element, with

$$D_c(z) = \int_0^z d_{lc}(z') dz'$$

(subscript c denotes that the quantity is measured in comoving coordinates, which we use throughout).

Every volume element of our survey is characterized by a limiting Lyα line luminosity, $L_{lim}(\Omega, z)$; a source with Lyα line luminosity L will be detected in our survey provided it resides in a volume element with $L_{lim}(\Omega, z) \leq L$. The limiting luminosity of a volume element depends on the magnification (because of lensing by the foreground cluster), $M(\Omega, z)$, the limiting observed Lyα line flux $f_{lim}(z)$, and a slit transmission function, $T(\Omega)$,

$$L_{lim}(\Omega, z) = \frac{4\pi(1+z)^2D_c^2(z)}{T(\Omega)} \frac{f_{lim}(z)}{M(\Omega, z)}.$$ (5)

6.1.1. Magnification, $M(\Omega, z)$

The magnification due to lensing by a given cluster is a function of both position and redshift. The references for the cluster mass models are given in Table 1. These models were run through the LENSTOOL software (Kneib 1993) to generate the magnification as a function of redshift at every position in the survey. In practice the area of the survey was divided into parcels of sky of length 0.8 and width equal to the slit width, and the magnification was calculated at the center of each parcel. The magnification at each position was sampled at nine redshifts ($z = 2.7, 3.3, 3.8, \ldots, 6.8$), and the magnification at a particular redshift found by interpolation.

Figure 6 shows the magnification as a function of position along a slit observed in A2218, for two different redshifts. The magnification at a given position is a weak function of redshift for magnification values less than ~ 100 (94% of the survey

Fig. 5.—Two-dimensional spectra (left) and HST images (right) for our two likely Lyα sources. In the spectra the horizontal axes are labeled in Å and the vertical axes in arcseconds; the image axes are labeled in arcseconds. Top: A773.1.e. Bottom: A963.1.d.
area), because the angular diameter distance between the cluster and the source changes by less than 25% over the source redshift range $4.5 < z < 6.7$. Very near the critical lines magnification is a stronger function of redshift. Our survey maps sky by observing adjacent slit positions, so errors associated with interpolating the highest magnification $M(\Omega, z) > 100$ points should not be important in our estimate of the survey volume.

Figure 7 is a cumulative histogram of the magnification factor over the survey; the area surveyed as a function of magnification is very weak function of redshift, even at the highest magnifications. About half of the area we surveyed is magnified by at least a factor of 10, with the lower magnification values coming from area at the ends of the slits, because most strong-lensing clusters subtend a size less than the slit length (175$''$) on the sky (see Fig. 2).

We estimate the errors on our estimate of $M(\Omega, z)$ by varying the parameters that describe the lensing models within their allowed uncertainties. Specifically, typical parameters are the velocity dispersion of the cluster and velocity dispersions of bright cluster galaxies, which often have been measured. These parameters cannot in general be freely varied within their formal uncertainties, because the resulting mass models would fail to reproduce the measured positions and relative magnifications of multiply imaged systems, within their measured uncertainties. The result of the allowed variation of the mass model parameters is uncertainty in $M(\Omega, z)$ up to 20%. The magnification of a multiply imaged source can normally be estimated to much greater accuracy, because of the constraints placed by the multiple images.

6.1.2. Limiting Lyα Line Flux, $f_{\text{lim}}(z)$

We define our limiting Lyα line flux as the signal in an aperture of 1.3 by 7.7 A that exceeds 5 times the root-mean-square fluctuations (noise) in apertures of that size, i.e., a 5 σ limit. The spatial dimension of the aperture was chosen to be roughly matched to the seeing, and the spectral dimension was chosen match the expected line width of high-redshift Lyα emission from galaxies, ~ 300 km s$^{-1}$. If a source is larger than our aperture, which is especially possible along the spatial direction if the source is strongly lensed, then we will not be as sensitive to that source as we estimate.

We assumed that the sky noise was constant over the length of the slit at fixed wavelength. This allowed us to include the non-Poisson contribution to the noise level from fringing features, which dominated the noise on strong sky lines. All three of our confirmed $z > 4.5$ detections were more than 5 σ detections, but we found that visual inspection generated candidates (some of which were subsequently confirmed as bona fide emission lines) with fluxes below the 5 σ limit; in particular, one of the likely candidates at $z > 4.5$ is just at the 5 σ limit. Thus, a 5 σ limit should be appropriate for the calculation of our survey volume.

The limiting line flux varies as a function of wavelength because of the wavelength dependence of the atmospheric absorption and the sensitivities of the telescope and instrument, but the largest dependence is due to the strong variation in atmospheric emission from OH airglow lines (except at $\lambda \gtrsim 9300$ A, where the sharp drop in instrumental sensitivity dominates). Figure 8 shows $f_{\text{lim}}(z)$ for the slit pointing illustrated in Figure 6, a 2000 s observation under photometric conditions. We compute $f_{\text{lim}}(z)$ by simple conversion of the observed wavelength into the corresponding redshift for Lyα to be observed at that wavelength.

Approximately half of our survey data were taken in non-photometric conditions. We account for this by dividing the limiting line flux measured from the observations by our best estimate of the sky transparency during the exposure. During some exposures we have sequences of guide camera observations that were used to measure relative transparency.

![Figure 6](image6.png)

Fig. 6.—Magnification due to the cluster A2218 of background sources, as a function of position and redshift. This figure shows the magnification factor at positions along a 175$''$ long slit at one of our survey positions in A2218 (within pointing 1 in Fig. 2). The solid curve is for sources at $z = 4.3$, and the dotted curve is for sources at $z = 6.8$. [See the electronic edition of the Journal for a color version of this figure.]

![Figure 7](image7.png)

Fig. 7.—Cumulative histogram of the magnification factor over the entire survey area. The solid and dotted curves show the magnification histograms for sources at $z = 4.3$ and 6.8, respectively. [See the electronic edition of the Journal for a color version of this figure.]
between observations and, in some cases, absolute transparency when photometric guide camera images were available. In other cases we rely on observation log notes based on the count rate of the guide star as reported by the telescope operator.

6.1.3. Slit Transmission, \(T(\Omega) \)

The slit widths used in our survey, originally 0\(^{\prime}\)7 and later 1\(^{\prime}\), are comparable in size to the seeing disk. Consequently, the transverse distance of a source from the center line of the slit has a small impact on the source’s observability: objects in the center of the slit are easier to detect than objects at the slit edge. Since the absolute calibration was performed with respect to standard stars in the center of the slit, we compute the fraction of light transmitted through the slit as a function of transverse position on the slit (ignoring objects outside of the slit, as they will in general fall on another slit), with respect to an object at the center of the slit,

\[
T(\Omega) = \frac{\text{erf}[\beta(w + 2x)/s] + \text{erf}[\beta(w - 2x)/s]}{2\text{erf}[\beta w/s_0]}.
\]

Here \(w \) is the slit width, \(s \) is the seeing full-width at half maximum (FWHM) during survey observations, \(s_0 \) is the seeing FWHM during standard-star observations, \(x(\Omega) \) is the transverse distance of the source from the center of the slit, and \(\beta \equiv [\ln(2)]^{1/2} \). Because the seeing disk was comparable to the slit width, the minimum value of \(T(\Omega) \) in our survey is about 0.8, so it has a minor effect on the computation of \(L_{\text{lim}}(\Omega, z) \).

6.2. Volume as a Function of Source Redshift and Luminosity

The total volume of our survey sensitive to a source of Ly\(\alpha \) line luminosity \(L \) is the integral over all volume elements in the survey with \(L_{\text{lim}}(\Omega, z) \leq L \),

\[
V_v(L) = \int_0^z dV_c(\Omega, z) H[L - L_{\text{lim}}(\Omega, z)],
\]

where \(H(y) \) is the step function defined with \(H(y \geq 0) = 1 \).

Figure 9 shows the redshift distribution of our survey volume as a function of \(L_{\text{lim}}(\Omega, z) \). The general slight decrease toward high redshift is due to the evolution of the line element with redshift, and the modulation is due to the wavelength-dependent limiting line flux (see Fig. 8).

We divide our survey arbitrarily into two redshift bins, \(4.6 < z < 5.6 \) and \(5.6 < z < 6.7 \). There is no natural binning choice, but by breaking our survey at \(z = 5.6 \) we retain almost equal survey volume (at the brightest luminosities) in each bin. However this places all three of our confirmed high-redshift detections into the \(4.6 < z < 5.6 \) bin and none in the \(5.6 < z < 6.7 \) bin. If we had broken the bins at \(z = 5.5 \), the number density in the lower redshift bin would decrease, and the number density in the higher redshift would increase; that is, the removal or inclusion of a source substantially outweighs the change in volume associated with changing the redshift binning.

In Figure 10 we plot the survey volume sensitive to a source of luminosity \(L \) for each of our two redshift bins (represented by the two different symbols). At high luminosities there is no dependence of the survey volume on luminosity, because sources at such high luminosities are so bright that we would detect them at any magnification factor or redshift in our survey. At \(L = 10^{42} \text{ ergs s}^{-1} \) the high-redshift bin has less volume because of the stronger sky lines at longer wavelengths (see Figs. 8 and 9) and larger luminosity distance compared to the low-redshift bin. At lower luminosities the survey volume for both bins falls off steadily and similarly. This is because only strongly magnified volume elements contribute to the survey volume, and the number of volume elements at a given magnification is not sensitive to redshift (Fig. 7).
6.3. Number Density

Our survey detected three confirmed and two likely $z > 4.5$ sources, so to estimate a relatively robust number density parameter and for comparison with other surveys, we compute a cumulative number density of sources. We construct the cumulative number density at each value of the Lyα line luminosity L (in each redshift bin) by evaluating the survey volume at that luminosity (see above) and then counting the number of detected sources brighter than L in the survey volume.

Figure 11 shows $n(L)$, the number density of sources with Lyα line luminosities greater than L, for our two redshift bins, considering only the three confirmed sources. There are only upper limits at $L \geq 10^{43}$ ergs s$^{-1}$, because although all three detected sources are in the survey volume, none was that luminous. Our most luminous source is 7.4×10^{42} ergs s$^{-1}$, so the first data point appears at $L = 10^{42.5}$ ergs s$^{-1}$ (in the low-redshift bin). All three of our confirmed detections contribute to the $L = 10^{41.5}$ ergs s$^{-1}$ point because all are brighter than that limit, and each would have been detected even if its luminosity were only $10^{41.5}$ ergs s$^{-1}$. In contrast, at $L = 10^{41}$ ergs s$^{-1}$, all three confirmed detections are still brighter than this luminosity, but only one is located inside the $L = 10^{41}$ ergs s$^{-1}$ survey volume. At yet fainter luminosities we are back to upper limits, because none of the three confirmed detections would have been discovered if it were fainter than 10^{41} ergs s$^{-1}$.

In our high-redshift bin we have no detections and thus can provide only upper limits at all luminosities. It is clear that although we can rule out a strong increase in the number counts of Lyα emitters at $5.6 < z < 6.7$ compared to $4.6 < z < 5.6$, we cannot further constrain the number count evolution. In particular, our results are consistent with no evolution or a decrease with increasing redshift in the Lyα source counts as a function of redshift over $4.6 < z < 6.7$.

All upper limits and error bars in Figure 11 are 95% confidence limits calculated using Poisson statistics. We have conceptually divided our survey into subsurveys sensitive down to different Lyα line luminosities, but these subsurveys are not independent (and in fact are highly correlated). If, for example, a theoretical curve passed just through the upper error bars of two points, our data would indicate roughly a 95% inconsistency, not a 99.8% inconsistency.

Furthermore, it should be noted that error distribution around any point (or upper limit) is very asymmetric. The combination of the correlated data points and asymmetric error distributions makes it nontrivial to estimate the most likely slope of the underlying $n(L)$, assumed to have a power-law form. We performed Monte Carlo simulations of our survey, which suggested that our data are consistent at the 97% level with underlying distributions that pass within our 95% limits at all L. Because of the small number of sources in our survey, our data alone do not give a precise estimate of the slope, except that $\alpha \leq 2$, for a power-law distribution $n(L) \propto L^{-\alpha}$.

The right and top axes of Figure 11 are labeled with unit conversions of the left and bottom axes, assuming that the data fall at $z = 5$. These serve to allow a rough reference of our results to be easily read off in the other units commonly used to describe the abundance of Lyα emission line galaxies. The right and top axes are inapplicable to our high-redshift bin upper limits.

Figure 12 shows $n(L)$, the number density of sources with Lyα line luminosities greater than L, for our two redshift bins, considering all five confirmed and likely sources. Since we added detections while keeping the survey volume fixed, the number densities increased. The number densities of this sample are still marginally consistent with the 95% confidence limits from Figure 11.
7. COMPARISON WITH OTHER OBSERVATIONS AND WITH THEORY

7.1. Comparison with Other Observations

In Table 4 we present parameters inferred from our survey and existing \(z > 5\) galaxy surveys. The first five entries in the table describe our survey, divided by redshift bin and subsurvey-limiting Ly\(\alpha\) line luminosity. The remaining surveys above the blank row are other Ly\(\alpha\) emission-line surveys. Surveys below the blank row are Lyman break galaxy (LBG) surveys, described later in this section.

There are two entries in the number-of-sources column for each row corresponding to our data. The first number is the total number of confirmed and likely Ly\(\alpha\) sources in that subsurvey, and the second number, in parentheses, is the number of those that are confirmed. We report the corresponding number densities analogously in the density column.

The limiting luminosity, volume, and number density of each of the previously published Ly\(\alpha\) emission-line surveys appearing in Table 4 do not always appear in the corresponding reference. As necessary, we have used the published information to calculate those values ourselves (e.g., converting a limiting line flux and redshift into a limiting line luminosity). We expect that the final results published by the groups may differ somewhat. In particular, there may be a publication bias toward surveys with discoveries, so it is possible there is some bias in the data presented toward higher number density. We have included only systematic Ly\(\alpha\) emission surveys, because reconstructing the survey volumes of published serendipitous discoveries was not possible.

![Figure 12](image)

Fig. 12.—Number density of sources brighter than luminosity \(L\), for the three confirmed plus two likely \(z > 5\) sources. Symbols have same meaning as in Fig. 11. [See the electronic edition of the Journal for a color version of this figure.]

Redshift	\(\log_{10} L^a\)	Number\(^b\)	Volume\(^c\)	Density\(^d\)	Reference
4.6–5.6	40.5	1(0)	0.0053	\(1.8 \times 10^{-2}(0)\)	1
	41	4(1)	0.037	\(1.1 \times 10^{-2}(2.7 \times 10^{-3})\)	1
	41.5	3(3)	0.20	\(1.5 \times 10^{-2}(1.5 \times 10^{-3})\)	1
	42	3(2)	0.92	\(3.3 \times 10^{-2}(2.2 \times 10^{-4})\)	1
	42.5	1(1)	2.0	\(5.1 \times 10^{-4}(5.1 \times 10^{-6})\)	1
5–6	42.28	1	0.018	\(5.6 \times 10^{-3}\)	2
5.7	42.61	1	0.55	\(1.8 \times 10^{-4}\)	3
6.5	42.95	0	6.1	0	4
	42.35	1	0.012	\(8.5 \times 10^{-3}\)	4
	42.46	87	9.2	\(9.5 \times 10^{-4}\)	5
	42.81	13	28	\(4.6 \times 10^{-5}\)	6
	42.89	16	20	\(8.0 \times 10^{-6}\)	7
	42.95	6	13	\(4.6 \times 10^{-5}\)	8
	42.72	0	0.11	0	9
	42.40	0	0.073	0	9
	43.08	19	22	\(8.5 \times 10^{-5}\)	10
~5.8	43.35	6	18	\(3.3 \times 10^{-5}\)	11
~6.3	43.32	26	1.7	\(1.5 \times 10^{-3}\)	12
~5	42.96	10	1.4	\(7.1 \times 10^{-4}\)	13
~5.5	43.40	2	2.4	\(8.3 \times 10^{-5}\)	14
~5.3	43.28	16	7.0	\(2.3 \times 10^{-3}\)	14
~5.3	43.18	6	12	\(5.0 \times 10^{-5}\)	15

\(^a\) Survey-limiting \(L\) in units of ergs s\(^{-1}\).

\(^b\) Number of sources detected in survey.

\(^c\) Volume of survey in units of 10\(^4\) Mpc\(^3\).

\(^d\) Number density of sources in units of Mpc\(^{-3}\).

REFERENCES.—(1) This paper; (2) Hu et al. 1998; (3) Hu et al. 1999; (4) Hu et al. 2002a; (5) Ouchi et al. 2003; (6) Rhoads & Malhotra 2001; Rhoads et al. 2003; (7) Kodaira et al. 2003; (8) Maiuer et al. 2003; (9) Martin & Sawicki 2004; (10) Hu et al. 2004; (11) Stanway, Bunker, & McMahon 2003; (12) Yan, Windhorst, & Cohen 2003; (13) Iwata et al. 2003; (14) Fontana et al. 2003; (15) Lehnert & Bremer 2003.
For comparison, we have plotted results from five \(z \sim 5 \) LBG surveys (Stanway, Bunker, & McMahon 2003; Yan, Windhorst, & Cohen 2003; Iwata et al. 2003; Fontana et al. 2003; Lehner & Bremer 2003). The parameters for these surveys are listed in Table 4, below the blank row. Again we have converted published data into number density as necessary and have taken a further step to plot those points on a Ly\(\alpha \) line luminosity scale: the LBG survey limit was converted into a rest-frame UV continuum limit, then into an SFR using the relation of Kennicutt (1998), then into a Ly\(\alpha \) line luminosity, assuming that \(1 \, M_\odot \, \text{yr}^{-1} \) of star formation produces \(10^{42} \, \text{ergs s}^{-1} \) in the Ly\(\alpha \) line (Kennicutt 1998, after converting H\(\alpha \) luminosity into Ly\(\alpha \) luminosity). No unmitigated conclusions can be drawn from this comparison, although it is intriguing that the \(z \sim 5 \) LBG surveys could be discovering a population similar to the Ly\(\alpha \) emission line galaxies, if the Ly\(\alpha \) line is typically \(\frac{1}{2} \) the value expected based on the UV continuum SFR. This is similar to the ratio observed in the \(z = 5.7 \) sample of Ly\(\alpha \) emitters of Ajiki et al. (2003) and in two galaxies at \(z = 6.5 \) by Hu et al. (2002b) and Kodaira et al. (2003). However, four of six confirmed \(4.8 < z < 5.8 \) galaxies selected with the Lyman break technique by Lehner & Bremer (2003) have Ly\(\alpha \) line fluxes less than 10% of the values naively predicted from their UV continuum SFRs. This latter observation suggests that the populations are distinct, or at least that \(z \sim 5 \) LBGs are a superset of Ly\(\alpha \) emitters at that redshift (see also Hu et al. 2004). Further observations at \(z \sim 5 \) are necessary to clarify the relationship of the populations discovered by these two methods.

7.2. Comparison with Theoretical Models

First we compare our results with those of the Ly\(\alpha \) emitter model of Haiman & Spaans (1999), who predicted the abundance of Ly\(\alpha \) emitters over a range of redshifts and luminosities. In Figures 13 and 14 we plot the predictions of their model of Haiman & Spaans (1999), who predicted the abundance of Ly\(\alpha \) emitters over a range of redshifts and luminosities. In Figures 13 and 14 we plot the predictions of their...
low-luminosity Lyα sources at high redshift

fiducial model at $z = 5$ as a dashed curve from $\log_{10} L = 40.5$ to 42.5. The shape of the luminosity function predicted by Haiman & Spaans (1999) is similar to our observed points, but their fiducial model predicts approximately an order of magnitude more sources than we find. Their models could be reconciled with our data by adopting mass-dependent values of the star formation efficiency or covering fraction of dusty clouds inside the galaxies.

As a basis for comparing our results with those of a simple theoretical model, in Figures 13 and 14 we replot the luminosity function from Figure 1 (converted into cumulative form), assuming no suppression of the SFR in low-mass halos. This simple interpretation of the Lyα luminosity function relates the number density of galaxies to dark matter halos. We then converted baryons within those dark matter halos into stars and stellar ionizing light into Lyα photons. Unlike Haiman & Spaans (1999), we made no attempt to model the radiative transfer of the Lyα photons.

Specifically, our model assumed that the ratio of baryons to total mass in each halo followed the universal ratio Ω_b/Ω_m. A fraction of 10% of the baryons in each halo was converted into stars every halo dynamical time (defined as the ratio of the halo virial radius to the halo circular velocity at the virial radius). The Hubble time at $z = 5$ is roughly 10 times longer than the halo dynamical time; thus, it is possible for such halos to maintain steady star formation at this rate. The SFR was converted into an ionizing-photon rate using a Salpeter IMF with 1/20 solar metallicity (Leitherer et al. 1999). We assumed that the escape fraction of ionizing photons, f_{esc}, was 10%, and that f of the remaining photons were converted into Lyα emission (Osterbrock 1989). The Lyα emission line flux is proportional to $1 - f_{\text{esc}}$, so is not sensitive to the escape fraction of ionizing photons unless $f_{\text{esc}} \approx 1$.

The luminosity function predicted by this simple model provides a poor fit to our data. In the context of the model, it is instructive to think of two modifications that would make the predicted luminosity function more closely match our data. The first is to decrease the efficiency factors used to convert halo mass to Lyα luminosity in a given halo. Alternately, the model curve could be brought into agreement with our data if the efficiency factor for the production of Lyα was correct for a fraction of halos, but the rest had no observable Lyα emission at the time of observation.

There are three efficiencies that contribute to the overall conversion of halo mass into Lyα luminosity, namely, the fraction of baryons converted into stars per halo dynamical time, the stellar emissivity of ionizing photons, and the fraction of ionizing photons observed as Lyα emission. Lowering the combined efficiency by 1.5–2 orders of magnitude would bring the model luminosity function into close agreement with our data. There is some difference in the shape of the curve compared to our data, but this difference is not significant.

In the case in which only a fraction of halos contain Lyα emitters, we would require about 1% of halos to contain emitters at any given time. This could be because, in contrast to the simple model we described, star formation is episodic in nature. In addition, there could be a timescale associated with the escape of Lyα photons, such that, for example, dust extinguishes Lyα emission at the beginning of a starburst, but eventually the dust is expelled and the Lyα emission line becomes visible (e.g., Shapley et al. 2003). If only some halos contain galaxies, for whatever reason, then this formalism of assuming that only a fraction of halos contain Lyα emitters can also be used, where the fraction now represents a filling factor, rather than a duty cycle.

The resolution of the discrepancy between our data and the model curve has important implications for the mass of the halos that contain the Lyα emitters. If we overestimated the Lyα photon production efficiency in our model, then the association between halo mass and Lyα emitter expressed in Figures 13 and 14 is not correct: the halo mass of our population of emitters at $L \approx 10^{41.5}$ ergs s$^{-1}$ should be $\sim 10^{11} M_\odot$. This is the largest mass that could be inferred for this population, assuming a maximum of one Lyα emitter per halo. From the arguments of § 3, we may expect that halos with masses $\geq 10^{10} M_\odot$ form stars roughly similarly to one another; i.e., although negative feedback may be important in regulating star formation, it is ineffective in halos this massive. Consequently, for this low-efficiency, high halo mass solution to the discrepancy, we expect that our data should follow the shape of the dark matter halo mass function, which they do.

In contrast, if we resolve the discrepancy between the model and our data by assuming that the efficiency we calculated is correct for a fraction of halos and that the rest are empty of Lyα emission, then the mass association in Figures 13 and 14 is correct. This implies a halo mass of only $\sim 10^{9.5} M_\odot$ for our Lyα emitters at $L \approx 10^{41.5}$ ergs s$^{-1}$. Depending on the characteristic mass scale at which negative feedback becomes a dominant process, the Lyα luminosity function may already deviate from the shape of the mass function at $\sim 10^{9.5} M_\odot$ (see Fig. 1). Our data are slightly flatter than the mass function and consistent with any of the luminosity functions plotted in Figure 1.

Our theoretical interpretation so far has relied exclusively on our data, which are consistent with the shape of the relevant halo mass function. However, if we consider all of the available Lyα data, there is some evidence for a flatter Lyα luminosity function. The heterogeneous nature of the Lyα survey data plotted in Figures 13 and 14 makes it difficult to draw firm conclusions, but a combination of data at $L \geq 10^{42.5}$ ergs s$^{-1}$ suggests that our data point at $L = 10^{41.5}$ ergs s$^{-1}$ may be 0.5–1 dex lower than an extrapolation of the Lyα luminosity function from higher luminosity, assuming that the luminosity function shape matches the mass function shape. Thus, we conclude that our data, in combination with other Lyα surveys, suggest that strong negative feedback is suppressing the SFR, and thus Lyα luminosity, in our sources.

Hamana et al. (2003) used clustering data to estimate the mass of the halos containing Lyα emitters at $z = 4.9$. They concluded that the characteristic halo mass of those sources is $5 \times 10^{12} M_\odot$ (Shimasaku et al. 2003 find a halo mass of $\sim 10^{12} M_\odot$ for similar $z = 4.9$ emitters on the basis of a large-scale structure feature in their survey). This conclusion would support the low-efficiency, high halo mass solution to the difference between our model luminosity function and our data. However, the number density of $z = 4.9$ emitters is larger, by about a factor of 5–10, than the number density of $10^{12} M_\odot$ halos (Hamana et al. 2003). This implies, contrary to our assumption above, that there is more than one Lyα source per halo. The virial radius of a halo is $5 \times 10^{12} M_\odot$ halo is 85 kpc, so multiple sources inside a single halo may be observed as separate sources, although this should create a very distinct signature in the spatial distribution of sources (or extended nature, if the sources are unresolved) that has not been reported by other Lyα emitter surveys.

While current information on the masses of Lyα emitter halos is still limited, progress will continue to be made at $L \geq 10^{42.5}$ ergs s$^{-1}$ by large Lyα surveys. Unfortunately, surveys for low-luminosity Lyα emitters will not provide sufficient survey area for clustering studies in the near future.
Lensed surveys such as ours, in particular, do not lend themselves to easy clustering analysis, because the contiguous survey volume is very complex and limited in size by the mass of the lensing foreground cluster. As an aside, we comment that Poisson errors dominate the uncertainty in the number densities plotted in Figures 11 and 12 (and Figs. 13 and 14 for our survey), assuming the maximum mass for the halos containing our emitters (i.e., every halo contains a source; see above for a caveat), and using the clustering formalism of Mo & White (2002).

Until the advent of large-area, low-luminosity Lyα surveys, the only constraint on the mass of the halos containing the emitters, and thus the only path toward understanding the suppression of star formation in low-mass halos, lies in detecting source populations with high number densities, such that the halo mass function, and the assumption that there is at most one source per halo, can be used to infer a maximum halo mass for the population of Lyα emitters. This is strong motivation for future surveys to continue to use strong lensing to survey small volumes to considerable depths for faint, Lyα-emitting sources.

8. SUMMARY

We performed a systematic survey for Lyα emission at 2.2 < z < 6.7 using strong lensing from intermediate-redshift clusters of galaxies to boost our survey sensitivity to unprecedented depths. We detected three confirmed and two likely Lyα-emitting galaxies at 4.7 < z < 5.6, with (unlensed) Lyα line luminosities of 2.8 × 10^{41} ergs s^{-1} < L < 7.4 × 10^{42} ergs s^{-1}. Our survey covered 4.2 arcmin^2 on the sky, with a maximum volume of 4 × 10^{4} M_{\odot} km^3 over 4.6 < z < 6.7. We find no evidence for redshift evolution of the number density of Lyα-emitting galaxies between z ~ 5 and z ~ 6, although our data are also consistent with a decrease in number density with increasing redshift.

We present the first meaningful constraints on the luminosity function of Lyα emitters at 4.6 < z < 5.6 over the (unlensed) Lyα luminosity range 10^{40} ergs s^{-1} < L < 10^{42} ergs s^{-1}, corresponding to inferred star formation rates of 0.01–1 M_{\odot} yr^{-1}. From a consideration of the number density of dark matter halos, we conclude that our population of sources at L ~ 10^{41.5} ergs s^{-1} resides in halos of mass $\lesssim 10^{11} M_{\odot}$.

Our number density data are consistent with a Lyα luminosity function with the same shape as the halo mass function, but a consideration of all available Lyα survey data implies that we have observed a flattening of the Lyα luminosity function with respect to the halo mass function. We may have detected evidence of the suppression of star formation in low-mass halos at high redshift, as predicted by theoretical models of galaxy formation.

We thank Alice Shapley for many enlightening conversations. We thank Graham Smith for help with mass modeling of some clusters. We also thank Pieter van Dokkum, Andrew Firth, and Tommaso Treu for help obtaining and reducing the observations. We thank our anonymous referee and Cristiano Porciani for helpful comments.

We gratefully acknowledge the helpful staff at Keck Observatory and the teams responsible for the creation and maintenance of the telescopes and instruments there.

The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

M. R. S. acknowledges the support of NASA GNRS grant NGT5-50339. J. P. K. acknowledges support from CNRS and Caltech.

REFERENCES

Ajiki, M., et al. 2003, AJ, 126, 2091
Barger, A. J., Cowie, L. L., Capak, P., Alexander, D. M., Bauer, F. E., Brandt, W. N., Garmire, G. P., & Hornschemeier, A. E. 2003, ApJ, 584, L61
Barkana, R., & Loeb, A. 1999, ApJ, 523, 54
———. 2000, ApJ, 539, 20
———. 2003, Nature, 421, 341
Becker, R. H., et al. 2001, AJ, 122, 2850
Benson, A. J., Frenk, C. S., Lacey, C. G., Baugh, C. M., & Cole, S. 2002a, MNRAS, 333, 177
Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., & Frenk, C. S. 2002b, MNRAS, 333, 156
Bézecourt, J., Kneib, J.-P., Soucail, G., & Ebbels, T. M. D. 1999, A&A, 347, 21
Blandford, R. D., & Narayan, R. 1992, ARA&A, 30, 311
Dekel, A., & Silk, J. 1986, ApJ, 303, 39
Dey, A., Spinrad, H., Stern, D., Graham, J. R., & Chaffee, F. H. 1998, ApJ, 498, L93
Djorgovski, S. G., Castro, S., Stern, D., & Mahabal, A. A. 2001, ApJ, 560, L5
Ellis, R. S., Santos, M. R., Kneib, J.-P., & Kuijken, K. 2001, ApJ, 560, L119
Fan, X., Narayanan, V. K., Strauss, M. A., White, R. L., Becker, R. H., Pentericci, L., & Rix, H. 2002, AJ, 123, 1247
Fan, X., et al. 1999, AJ, 118, 1
———. 2000, AJ, 119, 1
———. 2001, AJ, 121, 21
Fontana, A., Poli, F., Medic et al., N., Nonino, M., Giallongo, E., Cristiani, S., & D'Odorico, S. 2003, ApJ, 587, 544
Franch, M., Illingworth, G. D., Kelson, D. D., van Dokkum, P. G., & Tran, K. 1997, ApJ, 486, L75
Frye, B., Broadhurst, T., & Benítez, N. 2002, ApJ, 568, 558
Gallego, J., Zamorano, J., Aragón-Salamanca, A., & Rego, M. 1995, ApJ, 455, L1
Gnedin, N. Y. 2000, ApJ, 542, 353
Haiman, Z. 2002, ApJ, 576, L1
Haiman, Z., & Spaans, M. 1999, ApJ, 518, 138
Hannula, T., Ouchi, M., Shimakaki, K., Kayo, I., & Suto, Y. 2003, MNRAS, 347, 813
Harris, W. E. 1996, AJ, 112, 1487
Hu, E. M., Cowie, L. L., Capak, P., McMahon, R. G., Hayashino, T., & Komiyama, Y. 2004, AJ, 127, 563
Hu, E. M., Cowie, L. L., & McMahon, R. G. 1998, ApJ, 502, L99
Hu, E. M., Cowie, L. L., McMahon, R. G., Capak, P., Iwamuro, F., Kneib, J.-P., Maitara, T., & Motohara, K. 2002a, ApJ, 568, L75
———. 2002b, ApJ, 576, L99
Hu, E. M., McMahon, R. G., & Cowie, L. L. 1999, ApJ, 522, L9
Ivison, R. J., Smail, I., Le Borgne, J.-F., Blain, A. W., Kneib, J.-P., Bezecourt, J., Kerr, T. H., & Davies, J. K. 1998, MNRAS, 298, 583
Iwata, I., Ohta, K., Tamura, N., Ando, M., Wada, S., Watanabe, C., Akiyama, M., & Aoki, K. 2003, PASJ, 55, 415
Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189
Kneib, J.-P. 1993, Ph.D. thesis, Univ. Paul Sabatier
Kneib, J.-P., Ellis, R. S., Smail, I., Couch, W. J., & Sharples, R. M. 1996, ApJ, 471, 643
Kodaira, K., et al. 2003, PASJ, 55, L17
Krauss, L. M., & Chaboyer, B. 2003, Science, 299, 65
Lehnert, M. D., & Bremer, M. 2003, ApJ, 593, 630
Leitherer, C., et al. 1999, ApJS, 123, 3
Lilly, S., Tran, K., Fosbury, R., Crampton, D., Juneau, S., & McCracken, H. 2003, ApJ, submitted (astro-ph/0304376)
Maier, C., et al. 2003, A&A, 402, 79
Martin, C. L., & Sawicki, M. 2004, ApJ, 603, 414
Massey, P., & Gronwall, C. 1990, ApJ, 358, 344
Mather, J. C., & Stokey, H. 2000, Proc. SPIE, 4013, 2
Mo, H. J., & White, S. D. M. 2002, MNRAS, 336, 112
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, L19
Neufeld, D. A. 1991, ApJ, 370, L85
Oke, J. B., et al. 1995, PASP, 107, 375
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)
Ouchi, M., et al. 2003, ApJ, 582, 60
Partridge, R. B., & Peebles, P. J. E. 1967, ApJ, 147, 868
Pelló, R., et al. 1999, A&A, 346, 359
Pettini, M., Madau, P., Bolte, M., Prochaska, J. X., Ellison, S. L., & Fan, X. 2003, ApJ, 594, 695
Pritchet, C. J. 1994, PASP, 106, 1052
Rhoads, J. E., & Malhotra, S. 2001, ApJ, 563, L5
Rhoads, J. E., Malhotra, S., Dey, A., Stern, D., Spinrad, H., & Jannuzi, B. T. 2000, ApJ, 545, L85
Rhoads, J. E., et al. 2003, AJ, 125, 1006
Santos, M. R. 2004, MNRAS, 349, 1137
Scannapieco, E., & Broadhurst, T. 2001, ApJ, 549, 28
Scannapieco, E., Ferrara, A., & Broadhurst, T. 2000, ApJ, 536, L11
Schechter, P. 1976, ApJ, 203, 297
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65
Sheinis, A. I., Bolte, M., Epps, H. W., Kibrick, R. I., Miller, J. S., Radovan, M. V., Bigelow, B. C., & Sutin, B. M. 2002, PASP, 114, 851
Sheth, R. K., & Tormen, G. 2002, MNRAS, 329, 61
Shimasaku, K., et al. 2003, ApJ, 586, L111
Smith, G. P., Edge, A. C., Eke, V. R., Nichol, R. C., Smail, I., & Kneib, J.-P. 2003, ApJ, 590, L79
Sokasian, A., Abel, T., & Hernquist, L. 2003, MNRAS, 340, 473
Somerville, R. S. 2002, ApJ, 572, L23
Songaila, A. 2001, ApJ, 561, L153
Songaila, A., & Cowie, L. L. 2002, AJ, 123, 2183
Spergel, D. N., et al. 2003, ApJS, 148, 175
Stanway, E. R., Bunker, A. J., & McMahon, R. G. 2003, MNRAS, 342, 439
Stern, D., & Spinrad, H. 1999, PASP, 111, 1475
Taniguchi, Y., Shioya, Y., Ajiki, M., Fujita, S. S., Nagao, T., & Murayama, T. 2003, J. Korean Astron. Soc., 36, 123
van Dokkum, P. G. 2001, PASP, 113, 1420
Weymann, R. J., Stern, D., Bunker, A., Spinrad, H., Chaffee, F. H., Thompson, R. L., & Storrie-Lombardi, L. J. 1998, ApJ, 505, L95
Yan, H., Windhorst, R. A., & Cohen, S. H. 2003, ApJ, 585, L93