A preliminary study of the relationship between breast cancer metastasis and loss of heterozygosity by using exome sequencing

Hongsheng Li1, Bo Yang2, Ke Xing3, Nangui Yuan1, Bo Wang1, Zhenyu Chen3, Weixing He1 & Jie Zhou1

1Department of Breast Surgery, the Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510095, China, 2The tumor Research Institute of Guangzhou Medical University, Guangzhou 510095, China, 3School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.

We explored the feasibility of studying loss of heterozygosity (LOH) by using exome sequencing and compared the differences in genetic LOH between primary breast tumors and metastatic lesions. Exome sequencing was conducted to investigate the genetic LOH in the peripheral blood, a primary tumor, and a metastatic lesion from the same patient. LOH was observed in 30 and 48 chromosomal loci of the primary tumor and metastatic lesion, respectively. The incidence of LOH was the highest on chromosome 19, followed by chromosomes 14, 3, and 11 in the metastatic lesion. Among these 'hot' regions, LOH was observed for multiple genes of the CECAM, MMP and ZNF families. Therefore, the use of exome sequencing for studying LOH is feasible. More members of gene families appeared with LOH in 'hot' regions, suggesting that these gene families had synergistic effects in tumorigenesis.

Breast cancer metastasis is an intricate process involving the interplay of multiple gene products. Tumor progression is the major cause of breast cancer mortality. Loss of heterozygosity (LOH) was first proposed to cause cancer by Cavenee1 in a hereditary retinoblastoma study. He deemed that the fertilized egg was Rb/rb in heterozygous individuals. Genetic damage to the somatic cell would result in Rb gene mutation or deletion, and the subsequent formation of rb/rb recessive homozygotes might lead to tumor formation. This scenario raised the concept of genetic LOH. The mechanisms of LOH include mitotic nondisjunction, chromosome loss, homologous mitotic recombination, and recombination (translocation) between two non-homologous chromosomes2,3. Chromosome loss is a major mechanism of LOH that results in an abnormal number of chromosomes; thus, aneuploidy develops. Genetic instability is associated with carcinogenesis and poor prognosis. LOH in a high-frequency region usually includes one or more tumor suppressor genes.

Currently, there are several methods of searching for genes that cause disease or for susceptibility genes, including genome-wide association study (GWAS), exome sequencing, and whole-genome sequencing4. Although using Gene Chips has proven to be effective, they are insensitive to rare variants (MAF < 5%) and other structural variations. An increasing number of studies have shown that many complex diseases originate from such rare mutations5,6. In theory, whole-genome sequencing can identify all human genome sequence variations7; however, the high cost is prohibitive for this technique to be widely used. Exome sequencing is the use of sequencing technology to selectively capture the exon coding regions of the whole genome and to enrich for high-throughput genomic sequencing analysis. To a certain extent, the technique overcomes the limitations of genotyping chips and traditional sequencing technology with substantially lower costs, typically approximately 1/50 of the cost for whole genome sequencing, a shorter processing time, and more accurate data. More importantly, this technique can produce a more detailed analysis of the genetic variation in the coding region; therefore, it has become an important tool in disease-related genetic research8,9.

Despite rapid research and development of the exome sequencing technique, the use of this technology for the study of LOH has rarely been reported. To explore the feasibility of using this technology to study LOH, differences in genetic LOH between primary and metastatic lesions were compared. We conducted a genome-scale study by investigating genetic LOH in the peripheral blood, a primary tumor, and a distant metastatic lesion from the same patient. Here, we present the preliminary results.
of 60 target region of the different samples was 56–62 performed using Bowtie 2 software. The average coverage in the quality sequence reads with the human reference genome was low-quality sequence reads, the alignment of the remaining high-metastatic lesion sample – was performed. After the removal of Basic statistics

Results

Basic statistics. Exome sequencing of a total of three sets of samples – a peripheral blood sample, a primary tumor sample, and a metastatic lesion sample – was performed. After the removal of low-quality sequence reads, the alignment of the remaining high-quality sequence reads with the human reference genome was performed using Bowtie 2 software. The average coverage in the target region of the different samples was 56–62 × with an average of 60 ×. The sequencing depth is displayed in Table 1.

Single nucleotide variants identification. Our analytical pipeline identified 66,635 single nucleotide variants with a minimum coverage of 8 × in each sample (Table S1). All further LOH analyses were based on this data file. The identification of somatic mutations in the tumor sample was performed subsequently, and three non-silent variants were identified, affecting three distinct genes: CUL7 and RLF (in both the primary tumor and the metastatic lesion) and KIAA2026 (in the metastatic lesion only; Table S2).

LOH distribution. For LOH characterization, we calculated a heterozygosity score (HS) for each SNV locus in each sample using the following formula: HS = 1 − absolute(Ca/(Ca + Cb) − 0.5)/0.5, where Ca and Cb represent the number of reads of allele a and allele b, respectively. Then, a genome-wide scan of tumors based on the HS was performed. To ensure fidelity, an LOH region was identified only where the average HS of at least three consecutive loci was less than 0.1, and the probability of observing such a pattern by chance was smaller than 0.0001 (one-way-ANOVA). Based on genome-wide scanning, LOH in the primary tumor was found at 30 chromosomal loci involving 54 genes (Table S3), some of which may be associated with tumorigenesis (Table 2). In the metastatic lesion, LOH occurred at 48 chromosomal loci (Fig. 1), affecting 1157 genes distributed on 19 chromosomes (Table S4).

Metastasis. All LOH regions detected in the metastatic lesion are listed in Table 3, and a comparison shows that ~40% of these regions overlapped with those found in the primary tumor; the remaining ~60% were novel. Some regions observed in this study were consistent with previously reported regions: 3p21.3; 13q12.11; 13q13.2–13q13.3; and 16q22.2–23.10–12. Our study found that the incidence of LOH in these regions were 69%, 20–40%, and 36–67%, respectively. Additionally, certain hot regions, such as 11q22.2 and 19q13.2, were observed. The heterozygosity score (HS) profile of chromosome 16 is displayed in Fig. 2, and the genes involved in the above-mentioned regions are shown in Table 4.

Discussion

Recently, SNP chip technology has generally been used for LOH-related studies of particular regions of interest, but this technology is prone to false positives and negatives and therefore has certain limitations. Today, the cost of exome sequencing is lower than in which time period, and the processing time is shorter. Moreover, exome sequencing can identify genetic variation at the base-pair level and is regarded as an important tool for disease-related genetic research30–32. We used exome sequencing technology in a genome-scale search to examine genetic LOH in the peripheral blood, a primary tumor, and a distant metastatic lesion in the same patient. The results of the study illustrate the credibility of exome sequencing.

The current study indicated that breast cancer metastasis is a highly selective process that involves a complex interaction between the tumor and the host33. Metastasis includes cancer cell separation from the primary tumor, tumor-driven matrix invasion, microvascular invasion and metastasis, and colonization and growth at another organ site. The accumulation of genetic alterations increases genetic instability, and this process involves a variety of genes, such as oncogenes, tumor or metastasis suppressor genes, and genes involved in DNA repair functions34. In this study, a higher incidence of LOH was observed in the metastatic tumor than in the primary tumor. The LOH involved cell differentiation, proliferation, adhesion, and motility genes, among which a considerable number were tumor or metastasis suppressor genes.

In the present study, we found that LOH was observed in certain gene families, suggesting that there may be synergistic effects of the family during metastasis, e.g., the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which is located at the 19q13.1-19q13.2 region. The CEACAM family belongs to the immunoglobulin superfamily, which is important for cell adhesion and signal transduction35. It has been reported that CEACAM1 expression levels are significantly lower in breast cancer tissue than in normal breast tissue36. CEACAM1 and other tumor suppressor genes might be jointly involved in apoptosis37. Additionally, it has been reported that CEACAM6 is associated with breast cancer metastasis and recurrence38; however, the relationship to breast cancer has not been observed in other family members. In our study, LOH was observed in CEACAM1, CEACAM3, CEACAM5,

Table 1	Sequencing reads of samples		
Blood sample	Primary tumor sample	Metastatic lesion sample	
Bases	3,076,304,580	2,585,696,220	2,800,547,460
Bases aligned to hg19	3,035,541,354	2,562,943,093	2,554,099,283
Bases in target region aligned to hg19	2,502,399,805	2,200,607,212	2,354,921,851
Average depth	62.88	56.86	60.87
Target region coverage (%)	90.45	87.95	87.92
Depth ≥ 4 regions coverage (%)	78.06	76.71	76.91

Table 2	Selected LOH regions in the primary tumor and genes involved in tumorigenesis	
Gene	Full name	Position
ZNF148	zinc finger protein 148	3q21.2
EIF4G1	eukaryotic translation initiation factor 4 gamma, 1	3q27.1
RICTOR	RPTOR independent companion of MTOR, complex 2	5p13.1
ELL2	elongation factor, RNA polymerase II, 2	3q15
ARHGEF10	Rho guanine nucleotide exchange factor (GEF) 10	8p23.3
RP1L1	retinitis pigmentosa 1-like 1	8p23.1
VPS13A	vacuolar protein sorting 13 homolog A	9q21.2
GAL	galanin/GMAP prepropeptide	11q13.3
CEACAM6, CEACAM7, and CEACAM8, indicating that the structure and function of this family might be closely linked, synergistically regulating carcinogenesis and metastasis.

We also found that the LOH incidence in a zinc finger gene family located at 19q13.1-19q13.3 was the highest, with 40 members of this gene family showing LOH. The gene products of these family members bind to DNA, RNA, double-stranded DNA-RNA hybrid molecules and other zinc finger proteins, and they homodimerize to regulate gene expression at the transcriptional and translational level. Zinc finger family members play important roles in gene expression regulation, cell differentiation, and embryonic development and are associated with many diseases. For example, ZNF303 is associated with the occurrence and metastasis of hepatocellular carcinoma, and ZNF202 is associated with leukemia. Additionally, some studies have found that many zinc finger proteins inhibit the transcriptional activity of AP-1 and SRE genes and control the MAPK signaling.

![Figure 1](image-url)
Figure 1 | LOH across the genome in a metastatic lesion. An LOH region was identified when the average heterozygosity score (HS) of at least three consecutive SNVs was less than 0.1. The blue lines show the LOH regions.

Table 3	Comparison of genome-wide LOH regions in two tumor sets
Loss of heterozygosity region in the metastatic lesion	Compared with the primary tumor
1p36.31-1p36.22, 1p35.2, 1p33, 1p32.3, 1p31.3, 1p22.1, 1p13.2, 1q42.13 2q11.2, 2q14.3, 2q21.2-2q31.2, 2q33.1-2q37.3 3p24.2-3p21.1, 3q11.2-3q12.3, 5q21.1-5q35.2, 6q14.1-6q14.3, 6q16.1-6q22.31, 6q25.1, 7q36.3, 9p22.3-9p13.2, 10p11.23-10p11.21, 12q13.13, 13q12.11, 13q13.2-13q13.3, 13q14.11-13q14.3, 13q21.1-13q31.1, 17p13.1, 18q11.2, 1p36.13-1p36.11, 1q21.3, 1q32.2 3p14.3-3p14.1, 3q13.12-3q13.33, 3q21.1-3q29 5q15 6p22.1-6p12.3 8p23.3-8p12 9q21.13-9q21.2 10q24.31-10q26.2 11q12.1-11q25 14q11.2-14q12, 14q24.1-14q32.33 16q13-16q22.1, 16q22-16q23 19p13.3-19q13.32 21p11.1 22q11.1-22q13.31, 22q13.33	Novel
Selected from the primary tumor	
pathway. Several zinc finger genes, such as ZNF383, ZNF480, ZNF411, ZNF466, and ZNF649, play important roles in tumorigenesis. The LOH of zinc finger genes might cause a loss of gene function, leading to the activation of AP-1 and MMPs. Such activation would, in turn, lead to the degradation of extracellular matrix proteins and, subsequently, to breast cancer recurrence and metastasis19–21.

Three members of the matrix metalloproteinase (MMP) family, located at 11q22.3, showed LOH: MMP1; MMP8; and MMP10. These gene products of this family can degrade extracellular matrix proteins, leading to tumor angiogenesis and metastasis. According to a study of breast cancer progression, MMP over-expression degrades the basement membrane and extracellular matrix, leading to angiogenesis and ultimately breast cancer metastasis22.

Similarly to previously reported findings, we found that metastasis-related LOH regions, such as the 3p21.3 locus containing three genes, RBM5, SEMA3F, and ALS2CL, showed a corresponding tumor inhibitory effect. The RBM5 gene not only is associated with tumor formation but also is important for tumor proliferation, differentiation, and apoptosis. RBM5 is a negative regulator of tumor cell proliferation. Its overexpression can induce apoptosis and G1-phase cell cycle arrest and enhance p53-mediated tumor suppression.

Genes located at the 13q13.2-13q14.3 region include NBEA and ELF1. The downregulation of the NBEA gene has been observed in certain multiple myeloma studies; therefore, the NBEA gene may be a novel tumor suppressor gene23. It was also found that the gene may be associated with breast cancer24. ELF1 expression was found to be associated with breast cancer stage, histological grade, and lymph node metastasis and is regarded as an independent factor for invasiveness and prognosis in breast cancer. Although the gene has been considered to be involved in the mechanism of tumor metastasis, more evidence has shown that breast cancer invasion and metastasis are mediated through MMP2 gene activation.

In our study, we discovered that the CDH3 gene, located at chromosome 16q22-23, might be associated with tumor metastasis. The

Loss of heterozygosity region	Gene	Full name
3p21.3	RBM5	RNA binding motif protein 5
	SEMA3F	semaphorin 3F
	PRSS45	protease, serine, 45
	PLXNB1	plexin B1
	FBXW12	F-box and WD repeat domain containing 12
13q12.11, 13q13.2-13q13.3	ALS2CL	ALS2 C-terminal like
	NBEA	neurobeachin
	ELF1	E74-like factor 1
16q22-23	CNOT1	CCR4-NOT transcription complex, subunit 1
	CDH3	cadherin 3, type 1, P-cadherin
	PLEKHG4	pleckstrin homology domain containing, family G [with RhoGef domain] member 4
	EDC4	enhancer of mRNA decapping 4
	DPEP3	dipeptidase 3
	ACD	adrenocortical dysplasia homolog
	EXOC3L1	exocyst complex component 3-like 1
19q13.2	CEACAM family	Carcinoembryonic antigen-related cell adhesion molecule family
	ZNF family	zinc finger protein family
	MMP family	matrix metalloproteinase family
The number of reads of allele a and allele b, respectively. Then, a genome-wide scan of tumors based on the HS was performed. To ensure fidelity, a LOH region was identified only when the average HS of at least three consecutive loci was less than 0.1, and the probability (P) of observing such a pattern by chance was smaller than 0.0001 (one-way-ANOVA). Finally, all LOH regions were double-checked manually and annotated using ANNOVAR. The LOH distribution ideogram was generated by Idiogram14.

1. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. *Nature* 305, 779–84 (1983).
2. Thiagalingam, S. et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. *Proc. Natl Acad. Sci. U. S. A.* 98, 2698–702 (2001).
3. Bishop, A. J. & Schiestl, R. H. Homologous recombination as a mechanism of carcinogenesis. *Biochim. Biophys. Acta* 1471, M109–21 (2001).
4. Kahvejian, A., Quackenbush, J. & Thompson, J. F. What would you do if you could sequence everything? *Nat. Biotechnol.* 26, 1125–33 (2008).
5. McClellan, J. M., Sussel, E. & King, M. C. Schizophrenia: a common disease caused by multiple rare alleles. *Br. J. Psychiatry* 190, 194–9 (2007).
6. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. *Cell* 141, 210–70 (2010).
7. Lalonde, E. et al. Unexpected allelic heterogeneity and spectrum of mutations in *Fowler syndrome revealed by next-generation exome sequencing. Hum. Mutat.* 31, 118–23 (2010).
8. Zaghoul, N. A. & Katsanis, N. Functional modules, mutational load and human genetic disease. *Trends Genet.* 26, 168–76 (2010).
9. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. *Science* 305, 869–72 (2004).
10. Maitra, A. et al. High-resolution chromosome 3p alleotyping of breast carcinomas and precursor lesions demarcates non-allelic loss of heterozygosity and a discontinuous pattern of allele loss. *Am. J. Pathol.* 159, 119–30 (2001).
11. Collins, N. et al. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. *Oncoogene* 10, 1673–5 (1995).
12. Clonet-Jansen, A. M. et al. Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. *Cancer Res.* 61, 1171–7 (2001).
13. Fidler, I. J. Cancer metastasis. *Br. Med. Bull.* 47, 157–77 (1991).
14. Hampl, M. et al. Loss of heterozygosity accumulation in primary breast carcinomas and additionally in corresponding distant metastases is associated with poor outcome. *Clin. Cancer Res.* 5, 1417–25 (1999).
15. Czeczuga-Kreuzel, H. & Krop-Wator, A. J. Human carcinomaembryonic antigen family proteins, structure and function. *Postepy Hig Med Downe* (Online) 66, 521–33 (2012).
16. Wang, J. L. et al. Clinicopathologic significance of CEACAM1 gene expression in breast cancer. *Chin. J. Physiol.* 54, 332–8 (2011).
17. Berger, A. M. et al. Expression of the adhesion molecule CEACAM1 (CD66a, BGP, C-CAM) in breast cancer is associated with the expression of the tumor-suppressor genes Rb, Rb2, and p27. *Virochim Arch.* 440, 139–44 (2002).
18. Ihnen, M. et al. Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin. *J. Clin. Pathol.* 64, 146–52 (2011).
19. Lee, J. P. E. & Lee, B. M. & Won, P. E. Zinc finger proteins: new insights into structural and functional diversity. *Curr. Opin. Struct. Biol.* 11, 39–46 (2001).
20. Guruvayoorappan, C. & Kuttan, G. Amentoflavone inhibits experimental tumor metastasis through a regulatory mechanism involving MMP-2, MMP-9, prolyl hydroxylase, lysi oxidase, VEGF, ERK-1, ERK-2, STAT-1, NM23 and cytokines in lung tissues of C57BL/6 mice. *Immunopharmacol. Immunotoxicol.* 30, 717–21 (2008).
21. El-Dahr, S. S., Dipp, S. & Baricos, W. H. Bradykinin stimulates the ERK -- Elk-1 pathway in a mouse mammary epithelial cell line. *Immunopharmacol. Immunotoxicol.* 20, 2698–702 (2001).
22. Vizoso, F. J. et al. Study of matrix metalloproteinases and their inhibitors in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin. *J. Clin. Pathol.* 64, 146–52 (2011).
23. Ihnen, M. et al. Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin. *J. Clin. Pathol.* 64, 146–52 (2011).
24. Chen, T. C. et al. Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. *Lab. Invest.* 78, 165–74 (1998).
25. Rotta Soler, A. et al. P-cadherin expression in breast carcinoma indicates poor survival. *Cancer* 86, 1263–72 (1999).
26. Madhavan, M. et al. Cadherins as predictive markers of nodal metastasis in breast cancer. *Med. Pathol.* 14, 423–7 (2001).
27. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods.* 9, 357–359 (2012).
28. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).
29. Wang, K. et al. ANNOVAR: functional annotation of variantic variants from high-throughput sequencing data. *Nucleic Acids Res.* 38, e164 (2010).
30. Kin, T. & Ono, Y. Idiographica: a general-purpose web application to build idiograms on-demand for human, mouse and rat. *Bioinformatics* **23**, 2945–2946 (2007).

Acknowledgments
We want to thank Dr. Xionglei He of School of Life Sciences, Sun Yat-Sen University for the advices on the study design, and Dr. Tao Luo for the advices on DNA testing. This work was supported by the Science and Technology Planning Project of Guangdong Province, China (Project No.2010B031600147 and No.2012B010900044), Guangzhou Municipal University Research Project (Project no. 10A191), and the Major Special Project of Guangzhou Medical University Cancer Institute and Hospital (Project No.2011-yz-11). DNA extraction, detection, and analysis were performed in the lab of Dr. He of the School of Life Sciences, Sun Yat-sen University. Exome sequencing was performed by BGI Shenzhen.

Author contributions
H.L. conceived the idea and designed the experiment. B.W., W.H. and J.Z. collected experimental specimen, B.Y. and B.W. performed the experiments, K.X. analyzed the data and prepared figures and tables. Z.C. and N.Y. prepared the manuscript. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, H. et al. A preliminary study of the relationship between breast cancer metastasis and loss of heterozygosity by using exome sequencing. *Sci. Rep.* **4**, 5460; DOI:10.1038/srep05460 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/