Physical activity of physiotherapists in Germany: a cross-sectional study

Bernhard Elsner1,2 · Daniel Völker1 · Mario Heinzzmann1 · Vera Rähmer1 · Joachim Kugler2 · Jan Mehrholz2

Received: 16 January 2020 / Accepted: 8 March 2020 / Published online: 18 March 2020 © The Author(s) 2020

Abstract
Aim We aimed to quantify the work-related physical activity of physiotherapists in Germany.
Subjects and methods We included working physiotherapists aged between 18 and 65 years in Germany. We excluded physiotherapists working less than 20 h a week. We measured our primary outcome, work-related physical activity, by the average number of steps taken daily during work, standardized on an 8-h working day. We controlled the main outcome for potential confounders, such as working hours per week, age, weekday, and clinical setting (outpatient vs. inpatient), by multivariate linear regression analysis. We used R statistics for all statistical analyses.
Results We included 35 participants (7 outpatient and 28 inpatient), with a median age category of 20–29 years. Our participants had a mean work-related physical activity of 6614 steps (95% confidence interval, CI [6118; 7111]) per workday. Higher age, outpatient clinical setting, and working full time were associated with lower step count, but these associations were not statistically significant.
Conclusions The work-related physical activity of physiotherapists in Germany is comparable with results from other countries and can be regarded as ‘low’. Our result, however, might be affected by volunteer bias and gender effects. Further research should identify high-risk groups in the profession for cost-effective prevention.

Keywords Physiotherapy · Physical activity · Occupational health · Cross-sectional study

Introduction
Physical inactivity is one of the major risk factors for developing chronic, non-communicable diseases (Guthold et al. 2018; Martin et al. 2006). This risk factor can easily be avoided by physical activity (Ekelund et al. 2016; Rütten and Pfeifer 2016). In Germany, every second employee states to work in the majority of the time in a sitting or standing position (Finger et al. 2017). In the literature, work-related physical activity is regarded as health promoting (Abu-Omar and Rutten 2008; Samitz et al. 2011; Sofi et al. 2007), although not to the same extent as leisure-time-related physical activity (Sofi et al. 2007). Despite this, an overall increase of work-related physical activity seems to be a suitable approach in order to prevent non-communicable chronic diseases (Goldgruber and Ahrens 2010; Wilke et al. 2012).
An essential approach for achieving higher amounts of work-related physical activity is a workplace-related approach, which should consist of: (1) a concrete supply of preventive measures, (2) the redesign of work-related processes, and (3) the creation of activity-promoting infrastructure at work (Rütten and Pfeifer 2016).

The creation of activity-promoting infrastructure at work can also be beneficial for medical personnel; for example, it was shown that cardiologists only walked between 5000 and 6000 steps per working day (Abd et al. 2012), instead of the recommended amount of 10,000 to 12,000 steps per day (Rütten and Pfeifer 2016). In the German healthcare system, there are approximately 197,000 physiotherapists (Statistisches Bundesamt 2019). According to the World Confederation of Physical Therapy (WCPT), physiotherapists...
explicitly cover the areas prevention and health promotion and, amongst others, it is their core responsibility to motivate people to participate in physical activity (WCPT 2017). However, until now, it is unclear how active physiotherapists in Germany are and if there is actually a need for primary prevention in the physiotherapy profession.

The primary aim of our study was to quantify the work-related physical activity in physiotherapists in Germany.

Materials and methods

This explorative study was a cross-sectional study and was conducted in January 2018. It involved a convenience sample among physiotherapists in Berlin and Gera. Inclusion criteria were: (1) working clinically in an outpatient or inpatient setting and (2) working more than 20 h per week. Exclusion criteria was working less than 20 h per week.

Our primary outcome was the mean number of steps walked per workday (continuous). We recorded the data on five consecutive days with a pedometer (Omron Walking Style IV, Omron, Kyoto, Japan), standardized on an 8-h working day. We choose pedometers because these are valid assessments to estimate physical activity and the measurement on five consecutive days is reliable (Kang et al. 2009a; Tudor-Locke et al. 2002).

Our primary outcome, work-related physical activity, was analyzed by a multivariate linear regression model, controlled for working hours per week, age, weekday, and setting (outpatient vs. inpatient) (Bolker et al. 2009). The predictive performance of the model was estimated by cross validation (k = 2) and R². In case of multicollinearity, the corresponding variable was excluded from analysis (James et al. 2013). All statistical analyses have been conducted with the software R statistics (R Core Team 2012). The level of significance α was set to 0.05.

Results

Overall, 35 physiotherapists participated in the study. Their characteristics can be found in Table 1.

Primary outcome

The mean number of steps walked during an 8-h working day was 6614 (95% confidence interval, CI [6118; 7111]). A boxplot of the distribution of the number of steps walked over the age of the participants can be found in Fig. 1.

The number of steps walked during an 8-h working day (mean (SD)) varied slightly between weekdays: Monday 6157 (1697), Tuesday 5827 (1768), Wednesday 6570 (1971), Thursday 6364 (1665), and for Friday 5801 (1771). A boxplot over the distributions can be found in Fig. 3.

The analysis of the dependent variable (number of steps walked during an 8-h working day) by multivariate linear regression (n = 34) with the prediction variables age, working time (hours per week), and professional setting (outpatient vs. inpatient) yielded no statistically significant difference (adjusted R² in the test data = 0.09; Table 2). The independent variable weekday was removed from the model due to multicollinearity.

Table 1 Characteristics of the participants

Age (years)	No. (%)
17–19	1 (3)
20–29	20 (57)
30–39	9 (26)
40–49	4 (11)
50–59	1 (3)
60–67	0
Setting	
Outpatient	7 (20)
Inpatient	28 (80)
Working time	
Full-time (40 h/week)	29 (83)
Part-time (<40 h/week)	6 (17)

Figure 1, Figure 2, Table 1, Figure 3.
Discussion

Our results suggest that physiotherapists in Germany walk about (mean (SD)) 6500 (1600) steps on a representative 8-h working day. Although the differences were not statistically significant, the number of steps walked seems to be decreased with higher age and increased in physiotherapists working in an inpatient clinic compared to an outpatient setting.

The results of this study are in line with Abd et al. (2012), who showed that cardiologists and cardiac surgeons achieved a similar level of physical activity of 5000 to 6000 steps per day (Abd et al. 2012). According to the pedometer index of Tudor-Locke and Bassett (2004), the work-related physical activity of physiotherapists in Germany should be classified as ‘low active’ (Tudor-Locke and Bassett 2004). In a multicenter cross-sectional survey, which measured work-related physical activity among American physiotherapists by accelerometers, there were similar results in this regard (Brewer et al. 2016). However, the recommended optimum of physical activity by guidelines was not achieved: the mean (SD) number of steps walked during work in an outpatient setting was 3195 (1333) steps and in inpatient setting, it was 4475 (1465) (Brewer et al. 2016). Our results showed that physiotherapists in Germany walk more steps during work than their colleagues in the United States and that working in an inpatient setting was associated with a higher level of physical activity. The latter could be explained by different work organization procedures in inpatient settings (e.g., working on a single hospital ward vs. working among different wards), which could have resulted in longer distances to be walked in order to see a patient. There are also indications that longer working time was associated with a lower step count. This could be explained by a possibly higher compression of work in the schedule of part-time workers, thus resulting in a higher relative physical activity.

The results show that physiotherapists in Germany are suitable candidates for individualized health promotion programs by promoting physical activity (Ziesche and Köppel 2017), which should: (1) be implemented after assessing the employees’ demands, (2) be close to the workplace, (3) have a responsible key person, and (4) have a marketing platform (Wollesen et al. 2017).

A limitation of this cross-sectional study is that volunteer bias may have occurred and rather physically active therapists voluntarily participated in the study, which may overestimate the real amount of work-related physical activity in physiotherapists in Germany. Essential covariates like the age of the participants, clinical setting, and weekday have been controlled and taken into account in the analysis. It should also be taken into account that only the surveillance of physical activity with pedometers can raise the physical activity by up to 2000 steps per day, which may also result in an overestimation of physical activity (Kang et al. 2009b).

One could also argue that the analysis did not control for gender effects. In the published literature, it was shown that women in general have a lower mean work-related physical activity than men (Finger et al. 2017). Since this might rather be a self-selection effect between different professions, we discarded this analysis.

Another limitation is the small sample size of this study, so future studies should recruit more participants, control for gender-specific effects, and include other professional settings.

Table 2 Analysis of the predictors age, clinical setting, and working time on the primary outcome, work-related physical activity (numbers of steps walked during an 8-h working day). Multivariate linear model with cross-validation applied on the test data ($n=34$). Adjusted $R^2 = 0.09$

	β coefficient	Standard error	t-Value	p-Value
(Intercept)	9926.6	1775	5.592	<0.0001
Age	−120.06	521.23	−0.230	0.82
Setting	107.28	783.89	0.137	0.89
Working time	−81.82	40.11	−2.040	0.06

Fig. 2 Number of steps walked during a standardized 8-h working day by clinical setting ($n=35$)

Fig. 3 Number of steps walked during a standardized 8-h working day by weekday ($n=35$)
of physiotherapists (like working in schools/universities), as well as physiotherapists working over weekends.

Conclusion

The work-related physical activity of physiotherapists in Germany can be regarded as ‘low active’ and is comparable to those of physiotherapists and other medical professions in other industrialized countries.

Contributions of authors

Conceptualization: Author 2, Author 3, Author 4, Author 1; Methodology: Author 1; Formal analysis and investigation: Author 1; Writing - original draft preparation: Author 1; Writing - review and editing: Author 6, Author 5; Funding acquisition: Author 1, Author 2, Author 3, Author 4; Supervision: Author 5, Author 6.

Funding Information

Open Access funding provided by Projekt DEAL. We would like to thank the Anschubfinanzierung of the SRH University of Applied Health Sciences for supporting the acquisition of the pedometers.

Compliance with ethical standards

Informed consent was obtained from all individual participants included in the study. The approval of the local ethics committee was given (1422-0515).

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abd TT, Kobylivker A, Perry A, Miller Iii J, Sperling L (2012) Work-related physical activity among cardiovascular specialists. Clin Cardiol 35:78–82. https://doi.org/10.1002/clc.21954
Abu-Omar K, Rutten A (2008) Relation of leisure time, occupational, domestic, and commuting physical activity to health indicators in Europe. Prev Med 47:319–323. https://doi.org/10.1016/j.ypmed.2008.03.012
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008
Breuer W, Ogbazi R, Ohl D, Daniels J, Ortiz A (2016) A comparison of work-related physical activity levels between inpatient and outpatient physical therapists: an observational cohort trial. BMC Res Notes 9:313. https://doi.org/10.1186/s13104-016-2119-y
Ekelund U, Steene-Johannessen J, Brown WJ et al (2016) Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 388:1302–1310. https://doi.org/10.1016/s0140-6736(16)30370-1
Finger JD, Mensink GBM, Lange C, Manz K (2017) Arbeitsbezogene körperliche Aktivität bei Erwachsenen in Deutschland. J Health Monit 2:29-36. https://doi.org/10.17886/JH-K-GBE-2017-026
Goldgruber J, Ahrens D (2010) Effectiveness of workplace health promotion and primary prevention interventions: a review. J Public Health 18:75–88. https://doi.org/10.1007/s10389-009-0282-5
Guthold R, Stevens GA, Riley LM, Bull FC (2018) Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health 6:e1077–e1086. https://doi.org/10.1016/s2214-109x(18)30357-7
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer, New York
Kang M, Bassett DR, Barreira TV et al (2009a) How many days are enough? A study of 365 days of pedometer monitoring. Res Q Exerc Sport 80:445–453. https://doi.org/10.1080/02701367.2009.10599882
Kang M, Marshall SJ, Barreira TV, Lee JO (2009b) Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport 80:648–655. https://doi.org/10.1080/02701367.2009.10599604
Martin BW, Kuhlmeier S, Racioppi F et al (2006) Evidence-based physical activity promotion - HEPa Europe, the European Network for the Promotion of Health-Enhancing Physical Activity. J Public Health 14:53–57. https://doi.org/10.1007/s10389-006-0029-5
R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rütten A, Pfeifer K (eds) (2016) Nationale Empfehlungen für Bewegung und Bewegungsförderung. FAU Erlangen-Nürnberg, Nürnberg
Samitz G, Egger M, Zwahlen M (2011) Domains of physical activity and all-cause mortality: systematic review and dose–response meta-analysis of cohort studies. Int J Epidemiol 40:1382–1400. https://doi.org/10.1093/ije/dyr112
Sofi F, Capalbo A, Marcucci R (2007) Leisure time but not occupational physical activity significantly affects cardiovascular risk factors in an adult population. Eur J Clin Invest 37:947–953. https://doi.org/10.1111/j.1365-2362.2007.01884.x
Statistisches Bundesamt (2019) Statistisches Bundesamt Deutschland - GENESIS Online-Ergebnis - 2362-0002. https://www-genesis.destatis.de. Accessed 12 Nov 2019
Tudor-Locke C, Bassett DR Jr (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 34:1–8. https://doi.org/10.2165/00007256-200432120-00004
Tudor-Locke C, Williams JE, Reis JP, Plato D (2002) Utility of pedometers for assessing physical activity: convergent validity. Sports Med 32:795–808. https://doi.org/10.2165/00007256-200232120-00004
Wilke C, Krämer K, Biallas B, Fröbose I (2012) Lebensqualität und körperliche Aktivität im betrieblichen Kontext. Präv Gesundheitsf 7:56–61. https://doi.org/10.11553-011-0320-3
Wollesen B, Menzel J, Drögemüller R, Hartwig C, Mattes K (2017) The effects of a workplace health promotion program in small and middle-sized companies: a pre–post analysis. J Public Health 25:37–47. https://doi.org/10.1007/s10389-016-0763-2
World Confederation of Physical Therapy (WCPT) (2017) Policy statement: description of physical therapy. https://www.wcpt.org/policy/ps-descriptionPT. Accessed 12 Nov 2019
Ziesche S, Köppel M (2017) Wirkung der Aktivität am Arbeitsplatz auf die Freizeitaktivität. Präv Gesundheitsf 12:22–26. https://doi.org/10.1007/s11553-016-0552-3

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.