Interim 2018/19 influenza vaccine effectiveness: six European studies, October 2018 to January 2019

Esther Kissling¹, Angela Rose¹, Hanne-Dorthe Emborg³, Alin Gherasim⁴, Richard Pebody⁵, Francisco Pozo⁶, Ramona Trebbien⁷, Clara Mazagatos⁴, Heather Whitaker⁵, Marta Valenciano¹, European IVE group⁸

1. EpiConcept, Paris, France
2. These authors contributed equally to the study and manuscript writing
3. Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
4. National Epidemiology Centre, Institute of Health Carlos III, Madrid, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
5. Public Health England, London, United Kingdom
6. National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III, Madrid, Spain
7. Department of Virus and Microbiological Special diagnostics, National Influenza Center, Statens Serum Institut, Copenhagen, Denmark
8. European Influenza Vaccine Effectiveness (IVE) group members are listed at the end of the article

Correspondence: Esther Kissling (e.kissling@epiconcept.fr)

Citation style for this article:
Kissling Esther, Rose Angela, Emborg Hanne-Dorthe, Gherasim Alin, Pebody Richard, Pozo Francisco, Trebbien Ramona, Mazagatos Clara, Whitaker Heather, Valenciano Marta, European IVE group. Interim 2018/19 influenza vaccine effectiveness: six European studies, October 2018 to January 2019. Euro Surveill. 2019;24(8):pii=1900121. https://doi.org/10.2807/1560-7917.ES.2019.24.1900121

Influenza A(H1N1)pdm09 and A(H3N2) viruses both circulated in Europe in October 2018–January 2019. Interim results from six studies indicate that 2018/19 influenza vaccine effectiveness (VE) estimates among all ages in primary care was 32–43% against influenza A; higher against A(H1N1)pdm09 and lower against A(H3N2). Among hospitalised older adults, VE estimates were 34–38% against influenza A and slightly lower against A(H3N1)pdm09. Influenza vaccination is of continued benefit during the ongoing 2018/19 influenza season.

Seasonal influenza vaccine is recommended in all European Union (EU) countries for older people and others at increased risk of severe influenza and its complications, including those with chronic diseases [1]. In the United Kingdom (UK), incremental introduction of a universal childhood influenza vaccination programme began in 2013/14 [2]. The World Health Organization (WHO) recommendations for trivalent influenza vaccine strains for the 2018/19 northern hemisphere influenza season included an A/Michigan/45/2015 (H1N1)pdm09-like virus, an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus and a B/Colorado/06/2017-like virus from the B/Victoria lineage [3]. The early 2018/19 influenza season in Europe was characterised by both influenza A virus subtypes circulating widely. There was co-circulation in some countries, with others reporting dominance of either A(H1N1)pdm09 or A(H3N2) viruses. The season started late in most countries compared with previous seasons, with few influenza B viruses detected in the WHO European Region [4]. Since the 2008/09 season, the UK, Denmark, Spain, and several other EU countries conducting multicentre studies, have participated in I-MOVE (Influenza – Monitoring Vaccine Effectiveness in Europe), a network measuring influenza vaccine effectiveness each season.

We summarise interim 2018/19 season influenza vaccine effectiveness (VE) estimates from four single-country and two multi-country studies, including both outpatient and hospital settings, in order to help guide influenza prevention and control measures for the rest of the 2018/19 season.

Study setting

The primary care (PC) setting studies were conducted in Denmark (DK-PC), Spain (ES-PC), the UK (UK-PC) and via the European Union (EU) I-MOVE multi-country network (EU-PC). The hospital setting (H) studies were undertaken in Denmark (DK-H) and via the EU I-MOVE multi-country network (EU-H) (Figure 1).

Study design and estimation of vaccine effectiveness

The methods of these six studies are described in detail elsewhere [5-9]. All six studies used a test-negative case control design, with differences between studies in how data were collected and how patients were selected (Table 1) [10]. Briefly, individuals presenting to participating healthcare settings with symptoms of influenza-like illness (ILI) (primary care settings)
or severe acute respiratory infection (hospital settings) were swabbed. These samples were then tested by reverse transcription (RT)-PCR for influenza virus. Patients with positive results were classified as cases (by influenza virus (sub)type), and those with negative results as controls.

Patients were defined as vaccinated with the 2018/19 influenza vaccine if they were vaccinated at least 14 or 15 days (depending on the study) before symptom onset. Patients were excluded if they were vaccinated fewer than 14 or 15 days before symptom onset, or if the date of vaccination was unknown.

In eight EU-PC countries, DK-PC and DK-H, all or a random sample of influenza virus-positive specimens were selected for sequencing (haemagglutinin genome segment and/or whole genome). In ES-PC, in regions not included in EU-PC, an ad hoc sample of influenza viruses was sequenced. In UK-PC, all influenza viruses with sufficient genetic material (Ct value < 31) were sequenced, as well as all viruses derived from vaccinated cases. Sequencing results in Denmark were combined for both studies (DK-PC and DK-H).

We computed VE by comparing the odds of vaccination between cases and controls ($\text{VE} = (1 - \text{odds ratio (OR)}) \times 100\%$). All studies used logistic regression to adjust their VE for measured confounding variables (Table 1). Study-specific VE was estimated overall and where possible, by age group and target population (as defined locally in the various studies and study sites) against influenza A overall, A(H1N1)pdm09 and A(H3N2). If the number of cases (or controls if lower) per parameter was less than 10, a sensitivity analysis was performed using Firth’s method of penalised logistic regression to assess small sample bias [11,12]. Where exposed case numbers were zero, exact logistic regression was used.

Results

From 1 October 2018 to 31 January 2019, the total number of patients included in each study for the influenza A analysis in primary care settings was: DK-PC (11,910; 2,807 cases), ES-PC (1,204; 476 cases), UK-PC (936;
Table 1: Summary characteristics of the included influenza vaccine effectiveness studies, Europe, interim influenza season 2018/19 (n = 23,007)

Study period	Setting	Location	Study design	Data source	Age groups of study population	Case definition	Selection of patients	Vaccine types used nationally or in the study	Variables of adjustment
1 November 2018–31 January 2019	Primary care	Denmark	TND	Data linkage of Danish Microbiology Database, the Danish Vaccination Register and the Danish National Discharge Register	All ages	Sudden onset of symptoms with fever, myalgia and respiratory symptoms	At practitioner’s judgement	In the study among controls: 21% QIV, 79% TIV	Age group, sex, presence of chronic conditions, number of hospitalisations in previous year, calendar time as month (Nov-Jan)
5 November 2018–18 January 2019	Primary care	Spain: Sentinel networks in 16 of 19 regions	TND	Sentinel physicians and laboratory	≥ 6 months	EU ILI	Systematic	The following vaccine types are available in Spain: TIV, adjuvanted TIV, QIV	For all ages: Age (RCS), onset date (RCS), sex, chronic conditions, region; For target groups: Age (RCS), onset date (RCS), sex, region
21 October 2018–23 January 2019	Primary care	Croatia, France, Germany, Ireland, the Netherlands, Portugal, Romania, Spain (five regions) and Sweden	TND	Sentinel physicians and laboratory	All ages	EU ILI	Systematic	In the study among controls: 44% QIV, 29% TIV, 23% adjuvanted TIV, 1% LAIV4	Age (modelled as RCS or age group depending on analysis), sex, presence of any chronic condition associated with influenza vaccination recommendation, onset date (RCS) and study site
1 October 2018–18 January 2019	Primary care	England, Scotland, Northern Ireland and Wales	TND	Data linkage of Danish Microbiology Database, the Danish Vaccination Register and the Danish National Discharge Register	All ages	ILL: Patient presenting in primary care with an acute respiratory illness, with physician diagnosed fever with onset in previous 7 days	At practitioner’s judgement	In the study among controls: 53% TIV, 35% adjuvanted TIV, 6% QIV and 6% unknown	Age group, sex, onset month, pilot area for child vaccination programme, surveillance scheme, risk group
1 November 2018–31 January 2019	Hospital	Denmark	TND	Hospital charts, vaccine registers, interviews with GPs, laboratory	≥ 65 years	SARI: Sudden onset of symptoms with fever, myalgia and respiratory symptoms among hospitalised patients	Exhaustive	In the study among controls: 18% QIV, 82% TIV	Age group, sex, presence of chronic conditions, number of hospitalisations in previous year, calendar time as month (November-January)
5 December 2018–18 January 2019	Hospital	11 hospitals in: Croatia, France, Spain and Romania	TND	TND				In the study among controls: 53% TIV, 35% adjuvanted TIV, 6% QIV and 6% unknown	Age, sex, presence/number of chronic conditions, onset date (modelled as RCS or categorical depending on analysis) and study site

DK-H: Denmark hospital study; DK-PC: Denmark primary care study; ES-PC: Spain primary care study; EU: European Union; EU-H: European hospital multicentre I-MOVE study; EU-PC: European primary care multicentre I-MOVE study; GP: general practitioner; ILI: influenza-like illness; I-MOVE: Influenza - monitoring of vaccine effectiveness in Europe; LAIV4: quadrivalent live attenuated influenza vaccine; LRI: lower respiratory infection; QIV: quadrivalent inactivated influenza vaccines; RCS: restricted cubic spline; SARI: severe acute respiratory infection; TND: test-negative design; UK: United Kingdom; UK-PC: UK primary care study.

*122 of 805 physicians included in ES-PC were also included in EU-PC.

*Vaccines were egg-propagated, non-adjuvanted and administered intramuscularly unless otherwise specified.
In all studies combined, 99.5% (2,252/2,263) of cases were influenza A virus-positive. The proportion of influenza A viruses subtyped in the DK-H/DK-PC, ES-PC, EU-PC and UK-PC was ≥ 95% and in the EU-H it was 75%. Of influenza viruses subtyped, 58–60% were influenza A(H1N1)pdm09 viruses in ES-PC, EU-PC and EU-H; while this proportion was > 80% in DK-PC/DK-H and UK-PC (Figure 2).

Influenza A overall

Primary care settings

In primary care settings among all ages, VE against laboratory-confirmed influenza A ranged between 32% (95% confidence interval (CI): -25 to 63) in ES-PC and 43% in UK-PC and in EU-PC (95% CI: 3 to 67 and 6 to 65, respectively). The VE against influenza A among patients aged 18–64 years ranged from 32% (95% CI: -31 to 65) in the EU-PC to 55% (95% CI: 44 to 64) in the DK-PC study. In children aged 2–17 years in UK-PC, the VE of quadrivalent live attenuated influenza vaccines (LAIV4) was 80% (95% CI: 54 to 97) (Table 2). Among target groups for influenza vaccination, VE was 59% in both ES-PC and EU-PC (95% CI: 1 to 83 and 32 to 78, respectively).

Hospital settings

VE against laboratory-confirmed hospitalised influenza A among all ages in DK-H was 38% (95% CI: 24 to 49) and in patients aged 65 years and older, VE was 34% (95% CI: 16 to 48) in DK-H and 38% (95% CI: 12 to 66) in EU-H.

Influenza A(H1N1)pdm09

Primary care settings

In the primary care studies, VE against laboratory-confirmed influenza A(H1N1)pdm09 among all ages ranged from 45% (95% CI: 20 to 75) in ES-PC to 71% (95% CI: 38 to 86) in EU-PC.
Table 2

Adjusted seasonal vaccine effectiveness against laboratory-confirmed influenza A, A(H1N1)pdm09 and A(H3N2), by age group, target group for vaccination and study, 11 European countries, interim influenza season 2018/19

Influenza type/subtype and study site	Setting	Study population	Cases	Controls	Adjusted VE 95% CI				
Influenza A									
			All	Vacc	%	All	Vacc	%	
Influenza type/subtype and study site									
Influenza A									
Influenza A(H3N2)pdm09									
Influenza A(H3N2)									
CI: confidence interval; DK-PC: Denmark primary care study; DK-H: Denmark hospital study; ES-PC: Spain primary care study; EU-H: European hospital multicentre I-MOVE study; EU-PC: European primary care multicentre I-MOVE study; I-MOVE: Influenza - monitoring of vaccine effectiveness in Europe; LAIV4: quadrivalent live attenuated influenza vaccine; NC: Not calculated (percentages not shown where denominators < 60); TIV: trivalent live attenuated vaccines; UK: United Kingdom; UK-PC: UK primary care study; Vacc: vaccinated; VE: vaccine effectiveness.									

aGroups targeted by seasonal influenza vaccination as defined locally in the studies and study sites.

bWhile the modal estimate of VE is 100% due to no exposed cases, the point estimates given are from exact logistic regression in Stata with adjustment for month and age where the median estimate is used from the conditional likelihood distribution.

Study sites included in EU-H analysis for influenza A: Croatia, France, Romania and Spain. For analysis against influenza A(H3N2): Romania and Spain only. For analysis against influenza A(H1N1)pdm09: Romania and Spain only.

Study sites included in EU-PC analysis for influenza A: Croatia, France, Germany, Ireland, the Netherlands, Portugal, Romania, Spain and Sweden. For analysis against influenza A(H1N1)pdm09: France, Germany, Ireland, the Netherlands, Portugal, Romania, Spain and Sweden are included. For analysis against influenza A(H3N2): France, Germany, the Netherlands, Portugal, Romania, Spain and Sweden are included.
In UK-PC, the VE of LAIV4 among children aged 2–17 years was 87% (95% CI: 4 to 100). Among patients aged 18–64 years, VE was between 39% (95% CI: -23 to 69) and 75% (95% CI: 27 to 91) in UK-PC and EU-PC, respectively. VE among those aged 65 years and older was 0% (95% CI: -61 to 38) in the DK-PC study.

Hospital settings
In hospital-based studies among patients aged 65 years and older, VE was 29% (95% CI: -75 to 71) in EU-H and 37% (95% CI: 3 to 60) in the DK-H study (Table 2). VE among those aged 18–64 years was 49% (95% CI: 13 to 70; DK-H).

Virological results
All 265 A(H1N1)pdm09 viruses sequenced belonged to clade 6B.1 (A/Michigan/45/2015) (Table 3). Among 240 viruses (91%) with information on substitutions in the haemagglutinin gene, all harboured additional substitutions of S74R (except one of the 83 sequenced in DK-H/DK-PC), S164T and I295V, and most of them also included the substitution S183P. The proportion of other substitutions identified (T120A, N129D, E235D and K302T) differed by study (Table 3). None of these substitutions involve a change in potential glycosylation sites.

Influenza A(H3N2)

Primary care and hospital settings
In primary care studies, among all ages, VE against influenza A(H3N2) ranged from -39% (95% CI: -305 to 52) in UK-PC to 24% (95% CI: -22 to 55) in DK-PC. VE among patients aged 65 years and older hospitalised for influenza A(H3N2) was 47% (95% CI: -48 to 81) in EU-H (Table 2).

Virological results
Of 163 influenza A(H3N2) viruses sequenced, 59% (n = 96) belonged to genetic clade 3C.2a1b, 33% (n = 54) to 3C.3a, 7% (n = 11) to 3C.2a3 and 1% (n = 2) to 3C.2a2 (Table 3). Both A(H3N2) viruses sequenced in UK-PC, 29/30 A(H3N2) viruses sequenced in DK-H/DK-PC, 34/52 in EU-PC and 31/79 in ES-PC belonged to clade 3C.2a1b. Of 79 A(H3N2) viruses sequenced in ES-PC, 44 (56%) belonged to clade 3C.3a.

Sensitivity analyses
Sensitivity analyses for small sample size gave similar results (absolute difference range 1–9%).

Table 3

| Influenza viruses characterised by clade, amino acid substitutions and study site, 11 European countries, interim influenza season 2018/19 (n = 428) |
|---|---|---|---|---|
| **Clade** | **Total influenza A(H1N1)** | | | |
| | n | % | n | % | n | % | n | % |
| | 820 | - | 272 | - | 272 | - | 152 | - |
| Sequenced | 83 | 100 | 78 | 100 | 79 | 100 | 25 | NC |
| A/Michigan/45/2015 | 6B.1 / Substitutions not available | 0 | 0 | 0 | 0 | 0 | 25 | NC |
| A/Michigan/45/2015 | 6B.1 / None of the below | 2 | 2 | 3 | 4 | 4 | 5 | NA | NA |
| A/Michigan/45/2015 | 6B.1 / T120A | 29 | 35 | 8 | 10 | 2 | 3 | NA | NA |
| A/Michigan/45/2015 | 6B.1 / N129D | 25 | 30 | 31 | 40 | 50 | 63 | NA | NA |
| A/Michigan/45/2015 | 6B.1 / E235D | 0 | 0 | 19 | 24 | 3 | 4 | NA | NA |
| A/Michigan/45/2015 | 6B.1 / K302T | 27 | 33 | 17 | 22 | 15 | 19 | NA | NA |
| A/Michigan/45/2015 | 6B.1 / T120A+K302T | 0 | 0 | 0 | 0 | 1 | 1 | NA | NA |
| **Total influenza A(H3N2)** | n = 187 | n = 186 | n = 179 | n = 34 |
| Sequenced | 30 | NC | 79 | 100 | 52 | NC | 2 | NC |
| A/Alsace/1746/2018 | 3C.2a1b | 29 | NC | 31 | 39 | 34 | NC | 2 | NC |
| A/Switzerland/8060/2017 | 3C.2a2 | 1 | NC | 0 | 0 | 1 | NC | 0 | NC |
| A/Cote d’Ivoire/544/2016 | 3C.2a3 | 0 | NC | 4 | 5 | 7 | NC | 0 | NC |
| A/England/538/2018 | 3C.3a | 0 | NC | 44 | 56 | 10 | NC | 0 | NC |

DK-PC: Denmark primary care study; DK-H: Denmark hospital study; ES-PC: Spain primary care study; EU-PC: European primary care multicentre I-MOVE study; I-MOVE: Influenza - monitoring of vaccine effectiveness in Europe; NA: not available; NC: not calculated (percentages not shown where denominators < 60); UK: United Kingdom; UK-PC: UK primary care study.

*DK-H and DK-PC are combined; sequence information is based on influenza-positive samples received for surveillance at the National Influenza Center Denmark from week 41/2018 and 03/2019.

†Specimens sequenced from Spain originate from the entire National Influenza Surveillance System in weeks 45/2018–03/2019.

‡18 specimens from ES were also included in EU-PC data (12 A/Alsace/1746/2018, 4 A/Cote d’Ivoire/544/2016, two A/Michigan/45/2015).

§At time of publishing, not all specimens from the study period were processed.

¶All include additional substitutions S74R, S164T and I295V, and most also include S183P substitutions.

‖Representative strains for the clades.
Discussion

Interim results from six established influenza VE studies across Europe for the 2018/19 season indicate that VE against laboratory-confirmed influenza A ranged between 32% and 43% among all ages in primary care and hospital settings and was 59% in the target groups for vaccination.

Against influenza A(H1N1)pdm09, VE point estimates among all ages ranged from 40% to 71%, and were lower among older adults in DK-PC, DK-H and EU-H, ranging from 0% to 37%. Against influenza A(H3N2), the results of three of four primary care studies suggest that the vaccine was not effective among all ages combined. The VE point estimate against A(H3N2) was higher among older adults in EU-H and among 18–64-year-olds in DK-PC (47% and 48%, respectively). The low number of A(H3N2) cases in all studies resulted in less precise VE estimates against A(H3N2) than against A(H1N1)pdm09.

The influenza A(H3N2)pdm09 VE point estimates among all ages in EU-PC, among adults in DK-PC and EU-PC and among children in the UK-PC were similar to 2018/19 interim VE estimates in Canada [13]. For all ages combined, point estimates for this subtype for ES-PC and DK-H were similar to those recently reported from the United States (US) [14]. In UK-PC, the LAIV4 VE point estimate was high against influenza A(H3N2)pdm09, although sample size was very small. This suggests that the A(H3N2)pdm09 LAIV4 vaccine virus strain change from A/Bolivia/559/2013 to A/Slovenia/2903/2015 that took place after the 2016/17 season may have improved vaccine performance against circulating strains in 2018/19. Compared with 2017/18 interim season estimates in studies where influenza A(H1N1)pdm09 VE results were available, the 2018/19 adjusted VE against influenza A(H1N1)pdm09 was similar in the 18–64 years age group in DK-PC (66% vs 60%, respectively, noting that in 2017/18 the setting in Denmark was primary care and hospital combined) and among all ages in EU-PC (71% vs 68%, respectively). VE was lower among those aged 65 years and older in DK-PC, but similar in the DK-H study.

The genetic diversity observed in the ongoing 2018/19 season did not seem to affect the VE against influenza A(H1N1)pdm09 in most groups and studies. To date, all A(H1N1)pdm09 viruses characterised in Europe were antigenically similar to the vaccine virus [15]. The lower VE among those aged 65 and older in DK-PC may be explained by small sample size, but needs further investigation.

As observed in the 2017/18 season, the 2018/19 interim primary care results suggest that VE against medically attended laboratory-confirmed influenza A(H3N2) was low or non-existent although, due to small sample size, these interim 2018/19 results need to be confirmed by the end-of-season results. End-of-season clade-specific VE results may help us understand whether regional differences in circulating clades of A(H3N2) viruses explain the difference in VE in DK-PC compared with all other primary care studies. Adaptation/alteration of the vaccine seed virus during propagation in eggs, impacting antigenicity, may have been an important explanation for low VE against influenza A(H3N2) in recent and current seasons [16].

The late start of the season resulted in small sample sizes and low precision of many VE estimates, which presents a limitation in this interim analysis. We thus conducted a sensitivity analysis to address potential small sample bias arising from this. Further limitations potentially present in all observational studies include residual confounding and bias.

Vaccination continues to be the most effective preventive measure against influenza and uptake of the 2018/19 influenza vaccines should still be promoted in countries with ongoing influenza virus circulation in line with national guidelines and recommendations. Our results further support the need for effective interventions against influenza A(H3N2) across all age groups. In the UK, the Joint Committee on Vaccination and Immunisation has recently advised the use of cell-grown influenza vaccine that will be licensed for the 2019/20 season for older children and adults in the UK [17]. In addition, given the observed non-effectiveness of the A(H3N2) component of the current vaccine in previous seasons, in settings with influenza A(H3N2) virus circulation, prophylactic and prompt therapeutic use of neuraminidase inhibitors is important to help prevent severe outcomes, irrespective of vaccination status [18].

The Global Influenza VE (GIVE) Collaboration reports on the effectiveness of influenza vaccine in previous and current influenza seasons. Interim VE results presented here were included in the February 2019 GIVE report to help inform the WHO vaccine strain selection committee meeting on 18–21 February 2019 in Beijing. For the 2019/20 northern hemisphere trivalent vaccine, this selection committee recommended to include an A/Brisbane/02/2018 (H1N1)pdm09-like virus and a B/Colorado/06/2017-like virus (B/Victoria/2/87 lineage) [19]. For the quadrivalent vaccine WHO recommended an additional B/Phuket/3073/2013-like virus (B/Yamagata/16/88 lineage). The recommendation for the A(H3N2) component will be postponed until 21 March 2019, due to changes in the proportions of genetically and antigenically diverse A(H3N2), notably an increase in clade 3C.3a in several geographic regions.

End-of-season VE and antigenic studies will provide insight into age- and study-specific variation in VE estimates. In addition, monitoring effectiveness of the 2019 southern hemisphere influenza vaccine against influenza viruses and their genetic diversity will be important to prepare for the next influenza season in the northern hemisphere.
European IVE group

Croatia

EU-PC + EU-H studies:
Sanja Kurecic Filipovic, Croatian Institute of Public Health, Zagreb
Vesna Visekruna-Vucina, Croatian Institute of Public Health, Zagreb
Iva Pem Novosel, Croatian Institute of Public Health, Zagreb
Zvjezdana Lovric, Croatian Institute of Public Health, Zagreb
Goranka Petrović, Croatian Institute of Public Health, Zagreb
Vladimir Draženović, Croatian Institute of Public Health, Virology Department, Zagreb

EU-H study:
Adriana Vince, University Hospital for Infectious Diseases, Zagreb
Antea Topić, University Hospital for Infectious Diseases, Zagreb
Jelena Budimir Mihalić, University Hospital for Infectious Diseases, Zagreb
Eva Huljev, University Hospital for Infectious Diseases, Zagreb
Boris Lukšić, Clinical Hospital Centre Split
Svjetlana Karabuva, Clinical Hospital Centre Split
Mihaela Čikeš, Clinical Hospital Centre Split

Denmark

DK study:
Hanne-Dorthe Emborg, Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen
Ramona Trebbien, Department of Virus and Microbiological Special diagnostics, National Influenza Center, Statens Serum Institut, Copenhagen
Ida Glode Helmuth, Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen
Tyra Grove Krause, Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen

France

EU-PC and EU-H studies:
Bruno Lina, Laboratoire de Virologie, CNR des virus des infections respiratoires, Institut des Agents Infectieux, Groupement Hospitalier Nord des HCL, Lyon, France; Laboratoire Virpath, CIRI Inserm U1111, CNRS 5308, ENS, UCBL, Faculté de Médecine LYON Est, Université de Lyon, Lyon.

EU-PC study:
Alessandra Falchi, Laboratoire de Virologie, Université de Corse-Inserm, Corte.
Ana-Maria Vlciu, Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP UMRS 1136), F75012 Paris
Cécile Souty, Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris
Thierry Blanchon, Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris
Titouan Launay, Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris
Sylvie van der Werf, Unité de Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université Paris Diderot SPC, Institut Pasteur, Paris; CNR des virus des infections respiratoires, Institut Pasteur, Paris
Vincent Enouf, Unité de Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université Paris Diderot SPC, Institut Pasteur, Paris; CNR des virus des infections respiratoires, Institut Pasteur, Paris.
Sylvie Behili, Unité de Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université Paris Diderot SPC, Institut Pasteur, Paris; CNR des virus des infections respiratoires, Institut Pasteur, Paris.
Martine Valette, Laboratoire de Virologie, CNR des virus des infections respiratoires, Institut des Agents Infectieux, Groupement Hospitalier Nord des HCL, Lyon.

EU-H study:
Odile Launay, Innovative clinical research network in vaccinology, I-REIVAC, CIC de Vaccinologie, Cochin-Pasteur, Paris
Marie Lachatre, I-REIVAC, CIC de Vaccinologie, Cochin-Pasteur, Paris
Nezha Lenzi, I-REIVAC
Anne-Sophie L’Honneur, Service de Virologie, Hôpital Cochin, Paris
Florence Gallier, I-REIVAC, Inserm CIC 1411 and Hôpital St Eloi, CHU de Montpellier
Olivier Gaget Olivier, Inserm CIC 1411 and Hôpital St Eloi, CHU de Montpellier
Vincent Foulon, CHU de Montpellier
Corinne Merle, CHU de Montpellier
Philippe Vanhems, I-REIVAC, Paris, Hôpital Edouard Herriot, Lyon
Fabrice Lainé, I-REIVAC, Paris; CIC 1414, Hôpital Pontchaillou, Rennes
Gisèle Lagathu, laboratoire de virologie, CHU de Rennes
Fabrice Carrat, UPMC Univ Paris 06, IPLESP UMRS 1136, Public health department, Hôpital Saint-Antoine, Paris
EpiConcept
EU-PC and EU-H studies:
Marta Valenciano, Alain Moren, EpiConcept, Paris, France
EU-PC study:
Esther Kissling, EpiConcept, Paris, France
EU-H study:
Angela Rose, EpiConcept, Paris, France
European Centre for Disease Prevention and Control
Pasi Penttinen, ECDC, Stockholm, Sweden
France
EU-PC study:
Silke Buda, Department for Infectious Disease Epidemiology, Respiratory Infections Unit, Robert Koch Institute, Berlin
Ute Preuss, Department for Infectious Disease Epidemiology, Respiratory Infections Unit, Robert Koch Institute, Berlin
Kristin Tolksdorf, Department for Infectious Disease Epidemiology, Respiratory Infections Unit, Robert Koch Institute, Berlin
Barbara Biere, National Reference Center for Influenza, Robert Koch Institute, Berlin
Ralf Duerrwald, National Reference Center for Influenza, Robert Koch Institute, Berlin
Maria Smallfield, National Reference Center for Influenza, Robert Koch Institute, Berlin
Marianne Wedde, National Reference Center for Influenza, Robert Koch Institute, Berlin
Ireland
EU-PC study:
Lisa Domegan, HSE-Health Protection Surveillance Centre, Dublin; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
Meadhbh Hunt, HSE-Health Protection Surveillance Centre, Dublin
Joan O’Donnell, HSE-Health Protection Surveillance Centre, Dublin
Michael Joyce, Irish College of General Practitioners, Dublin
Olga Levis, Irish College of General Practitioners, Dublin
Claire Collins, Irish College of General Practitioners, Dublin
Linda Dunford, National Virus Reference Laboratory, University College Dublin
Joanne Moran, National Virus Reference Laboratory, University College Dublin
Grainne Tuite, National Virus Reference Laboratory, University College Dublin
Jeff Connell, National Virus Reference Laboratory, University College Dublin
Cillian de Gascun, National Virus Reference Laboratory, University College Dublin
Navarra
EU-H study:
Itziar Casado, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Leticia Fernandino, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Iván Martínez-Baz, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Regna Juanbeltz, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Carlos Gómez Ibañez, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Jesús Castilla, Instituto de Salud Pública de Navarra, IdiSNA, CIBERESP, Pamplona
Ana Navascués, Complejo Hospitalario de Navarra, IdiSNA, Pamplona
Aitziber Aguinaga, Complejo Hospitalario de Navarra, IdiSNA, Pamplona
Carmen Ezpeleta, Complejo Hospitalario de Navarra, IdiSNA, Pamplona
The Netherlands
EU-PC study:
Adam Meijer, National Institute for Public Health and the Environment (RIVM), Bilthoven
Wim van der Hoek, National Institute for Public Health and the Environment (RIVM), Bilthoven
Mariam Bagheri, National Institute for Public Health and the Environment (RIVM), Bilthoven
Sharon van den Brink, National Institute for Public Health and the Environment (RIVM), Bilthoven
Frederika Dijkstra, National Institute for Public Health and the Environment (RIVM), Bilthoven
Gabriel Goderski, National Institute for Public Health and the Environment (RIVM), Bilthoven
Marit de Lange, National Institute for Public Health and the Environment (RIVM), Bilthoven
Ton Marzec, National Institute for Public Health and the Environment (RIVM), Bilthoven
Pieter Overduin, National Institute for Public Health and the Environment (RIVM), Bilthoven
Elsa Poorter, National Institute for Public Health and the Environment (RIVM), Bilthoven
Daphne Reukers, National Institute for Public Health and the Environment (RIVM), Bilthoven
Anne Carola Teirlinck, National Institute for Public Health and the Environment (RIVM), Bilthoven
Lisa Wijsman, National Institute for Public Health and the Environment (RIVM), Bilthoven
Gé Donker, Nivel (the Netherlands Institute for Health Services Research), Utrecht
Mariette Hooiveld, Nivel (the Netherlands Institute for Health Services Research), Utrecht

Portugal
EU-PC study:
Verónica Gomez, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Irina Kislaya, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Ausenda Machado, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Baltazar Nunes, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Ana Paula Rodrigues, Departamento de Epidemiologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Patrícia Conde, Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Patrícia Costa, Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Paula Cristovão, Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Raquel Guiomar, Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon
Pedro Pechirra, Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon

Romania
EU-PC + EU-H:
Mihaela Lazar,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest
Carmen Maria Chericiu,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest
Maria Elena Mihai,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest
Elena Stoian,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest
Cerasella Dragomirescu,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest
Mircea Ioan Popa,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest

EU-H:
Gabriela Juganariu, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Maria Gradinaru, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi

Izabela Loghin, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Liliana Vlad, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Elena Duca, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Miheea Hurmuzache, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Carmen Dorobăți, Clinical Hospital of Infectious Diseases “Sf Parascheva”, Iasi
Grățielă Tardei, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Violeta Melinte, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Mihaela Zaharia, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Maria Nica Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Corneliu Petru Popescu, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Emanoil Ceasu, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest
Simin-Aysel Florescu, Clinical Hospital of Infectious Diseases “Dr Victor Babes”, Bucharest

Spain
The cycEVA work group:
Amparo Larrauri, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Alin Gherasim, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Clara Mazagatos, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Francisco Pozo, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Inmaculada Casas, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Luis García Comas, Dirección General de Salud Pública, Comunidad de Madrid
María Esther Insua Marisquerena, Dirección General de Salud Pública, Comunidad de Madrid
Juan Carlos Galán, Laboratorio Hospital Ramón y Cajal, CIBERESP
Mª Dolores Folgueira, Laboratorio Hospital Doce de Octubre
Jesús Castilla, Navarra Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, CIBERESP
Manuel García Cenoz, Navarra Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, CIBERESP
Ana Navascués, Complejo Hospitalario de Navarra
Carmen Quiñones Rubio, Dirección General de Salud Pública y Consumo de La Rioja
Eva Martínez Ochoa, Dirección General de Salud Pública y Consumo de La Rioja
Miriam Blasco, Laboratorio Hospital San Pedro de Logroño
Jauna María Vanrell, Servicio de Epidemiología, Dirección General de Salud Pública, Mallorca
Jordi Reina, Laboratorio del Hospital Son Espases, Mallorca
Daniel Castrillejo, Servicio de Epidemiología. DGSC, Consejería de Bienestar Social y Sanidad, Ciudad Autónoma de Melilla

The Spanish Influenza Sentinel Surveillance System:
Amparo Larrauri, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Alin Manuel Gherasim, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Clara Mazagatos, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Concha Delgado, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Jesus Oliva, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Francisco Pozo, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Inmaculada Casas, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III

All the participants in the Spanish Influenza Surveillance System

The Spanish IMOVE hospital study:
Amparo Larrauri, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Alin Manuel Gherasim, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Clara Mazagatos, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Francisco Pozo, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Inmaculada Casas, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Miriam Latorre, Hospital Universitario Miguel Servet, Zaragoza
María Isabel Millán Lou, Hospital Universitario Miguel Servet, Zaragoza

Amparo Larrauri, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Alin Manuel Gherasim, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Clara Mazagatos, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Concha Delgado, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Jesus Oliva, National Centre of Epidemiology, Institute of Health Carlos III, CIBERESP
Francisco Pozo, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III
Inmaculada Casas, National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III

Sweden
EU-PC study:
Mia Brytting, The Public Health Agency of Sweden, Stockholm
Theresa Enkirch, The Public Health Agency of Sweden, Stockholm
Annasara Carnahan, The Public Health Agency of Sweden, Stockholm
Åsa Wiman, The Public Health Agency of Sweden, Stockholm

United Kingdom (UK)
UK study:
Richard Pebody, Public Health England, London
Heather Whitaker, Public Health England, London
Nick Andrews, Public Health England, London
Joanna Ellis, Public Health England, London
Diogo FP Marques, Health Protection Scotland, Glasgow
Simon Cottrell, Public Health Wales, Cardiff
Arlene Reynolds, Health Protection Scotland, Glasgow
Rory Gunson, West of Scotland Specialist Virology Centre, Glasgow
Samantha J Shepherd, West of Scotland Specialist Virology Centre, Glasgow
Catherine Thompson, Public Health England, London
Monica Galiano, Public Health England, London
Chris Robertson, University of Strathclyde, Glasgow
Mark O’Doherty, Public Health Agency Northern Ireland, Belfast
Jim McMenamin, Health Protection Scotland, Glasgow
Maria Zambon, Public Health England, London
Acknowledgements

All study teams are very grateful to all patients, general practitioners, paediatricians, hospital teams, laboratory teams, and regional epidemiologists who have contributed to the studies.

Special thanks from the UK team to Nick Andrews and Chris Robertson for statistical advice and Maria Zambon for advice on laboratory aspects.

We acknowledge the authors, originating and submitting laboratories of the sequences from GISAID’s EpiFlu Database used for this study. All submitters of data may be contacted directly via the GISAID website www.gisaid.org.

Conflict of interest

None declared.

Authors’ contributions

Esther Kissling: coordination I-MOVE network, study design, analysis of primary care data, interpretation of results, manuscript writing. Angela Rose: coordination I-MOVE hospital network, study design, analysis of hospital data, interpretation of results, manuscript writing. Both authors contributed equally to the study and manuscript. Hanne-Dorthe Emborg, Alin Gherasim, Richard Pebody, Ramona Trebbien, Clara Mazagatos and Heather Whitaker: coordination of their respective studies, data analysis and interpretation of results, read, contributed to and approved the final version of the manuscript. Francisco Pozo: coordinated the I-MOVE virological analysis of the primary care study, read, contributed to and approved the final version of the manuscript. European IVE group: Primary care and hospital sites at national/regional level: data collection, data validation, results interpretation, review of manuscript.

Laboratories: virological analysis, genetic characterisation, interpretation of results, review of manuscript.

Marta Valenciano, Alain Moren: study design, coordination of i-MOVE network, interpretation of results, contribution to manuscript writing.

Pasi Penttinen: study design, interpretation of results, review of manuscript.

Funding

ECDC has contributed to fund some of the study sites and the coordination of the EU-PC study. WHO-EURO has contributed to fund the EU-H study.

References

1. European Centre for Disease Prevention and Control (ECDC). Seasonal influenza vaccination and antiviral use in EU/EEA Member States. Stockholm: ECDC. [Accessed 8 Feb 2019]. Available from: https://ecdc.europa.eu/sites/portal/files/documents/Seasonal-influenza-antiviral-use-EU-EEA-Member-States-December-2018_0.pdf

2. Department of Health/National Health Service (DoH/NHS). The flu immunisation programme 2013/14 – extension to children. London: DoH/NHS; 2013. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/225360/Children_s_flu_letter_20

3. World Health Organization (WHO). Recommended composition of influenza virus vaccines for use in the 2018-2019 northern hemisphere influenza season. Geneva: WHO; 2018. Available from: https://www.who.int/influenza/vaccines/recommendations/201802_recommendation.pdf

4. European Centre for Disease Prevention and Control (ECDC). Seasonal influenza vaccination and antiviral use in EU/EEA Member States. Stockholm: ECDC. [Accessed 8 Feb 2019]. Available from: https://flu news europe.org/Archives

5. European Union (EU). EpiConcept. I-MOVE+ - Protocol for hospital-based test negative case control studies to measure seasonal influenza vaccine effectiveness. Brussels: EU; 2015. Available from: https://drive.google.com/file/d/0BypypYPypYPpMPn25qSxc2q3gaTe/view

6. European Union (EU). Generic protocol for the test negative case control studies to measure pandemic and seasonal influenza vaccine effectiveness in the European Union and European Economic Area Member States. Brussels: EU; [Accessed]

7. European Union (EU). Overview of vaccination recommendations and coverage rates in European Union and European Economic Area Member States. Brussels: EU; [Accessed]

8. European Centre for Disease Prevention and Control (ECDC). Seasonal influenza vaccination and antiviral use in EU/EEA Member States. Stockholm: ECDC; 2019. Available from: https://flu news europe.org/Archives

9. Jiménez-Jorge S, de Matao S, Delgado-Sanz C, Pozo F, Casas I, Garcia-Conen M, et al. Spanish Influenza Sentinel Surveillance System. Estimating influenza vaccine effectiveness in Spain using sentinel surveillance data. Euro Surveill. 2015;20(28):21187. doi:10.2807/1560-7917.ES2015.20.28.21187 PMID: 26211441

10. Fukushima W, Hirota Y. Basic principles of test-negative design in evaluating influenza vaccine effectiveness. Vaccine. 2017;35(36):4796-800.

11. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503-10. doi:10.1016/0895-4356(95)00048-8 PMID: 8543964

12. Coyne JJ. FIRTHLOGIT: State module to calculate bias reduction in logistic regression. Boston College Department of Economics; 2015.

13. Skowronska DM, Leir S, Sabaiduc S, Murti M, Dickinson JA, Olsila R, et al. Interim estimates of 2018/19 vaccine effectiveness against influenza A(H3N2) in laboratory-confirmed cases, Canada, January 2019. Euro Surveill. 2019;24(4):1900055. https://doi.org/10.2807/1560-7917.ES.2019.24.4.1900055 PMID: 30696523

14. Doyle JD, Chung JR, Kim SS, Gaglani M, Raiyani C, Zimmerman RK, et al. Interim Estimates of 2018-19 Seasonal Influenza Vaccine Effectiveness - United States, February 2019. MMWR Morb Mortal Wkly Rep. 2019;68(6):135-9. https://doi.org/10.15585/mmwr.mm6806a2 PMID: 30763298

15. European Centre for Disease Prevention and Control (ECDC). Seasonal influenza vaccination and antiviral use in Europe. (WHO/ Europe). Flu News Europe. Virus characteristics week 6/2019 (4-10 February 2019). Stockholm: ECDC; 2019. Available from: https://flu news europe.org/VirusCharacteristics

16. Zost SJ, Parkhouse K, Gumina ME, Kim K, Diaz Perez S, Wilson FC, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. PNAS. 2017;114(47):12578-12583. doi:10.1073/pnas.1706196114

17. World Health Organization (WHO). Recommended composition of influenza virus vaccines for use in the 2019-2020 northern hemisphere influenza season. Geneva: WHO; 2019. Available from: https://www.who.int/influenza/vaccines/recommendations/201902_recommendation.pdf?ua=1
License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2019.