Cornelia de Lange Syndrome as Paradigm of Chromatinopathies

Ilaria Parenti and Frank J. Kaiser

Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany; Essener Zentrum für Selten Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany

Chromatinopathies can be defined as a class of neurodevelopmental disorders caused by mutations affecting proteins responsible for chromatin remodeling and transcriptional regulation. The resulting dysregulation of gene expression favors the onset of a series of clinical features such as developmental delay, intellectual disability, facial dysmorphism, and behavioral disturbances. Cornelia de Lange syndrome (CdLS) is a prime example of a chromatinopathy. It is caused by mutations affecting subunits or regulators of the cohesin complex, a multisubunit protein complex involved in various molecular mechanisms such as sister chromatid cohesion, transcriptional regulation and formation of topologically associated domains. However, disease-causing variants in non-cohesin genes with overlapping functions have also been described in association with CdLS. Notably, the majority of these genes had been previously found responsible for distinct neurodevelopmental disorders that also fall within the category of chromatinopathies and are frequently considered as differential diagnosis for CdLS. In this review, we provide a systematic overview of the current literature to summarize all mutations in non-cohesin genes identified in association with CdLS phenotypes and discuss about the interconnection of proteins belonging to the chromatinopathies network.

Keywords: Cornelia de Lange syndrome (CdLS), chromatinopathies, transcriptional regulators, chromatin remodelers, cohesin

INTRODUCTION

Cornelia de Lange syndrome (CdLS, OMIM # 122470, #300590, #610759, #614701, and #300882) is a multisystem developmental disorder named after the Dutch pediatrician Cornelia de Lange, who reported in 1933 two unrelated patients with comparable features. Nowadays, its prevalence is estimated between 1/10,000 and 1/30,000 live births (Kline et al., 2007). A distinct craniofacial appearance, pre- and post-natal growth retardation, intellectual disability, developmental delay, behavioral issues, and limb anomalies are the main clinical features of CdLS, albeit observed with variable expressivity (Kline et al., 2018). The first international consensus statement for CdLS has recently introduced a scoring system to classify the severity of the syndrome and help select the most appropriate pipeline for genetic testing. A score ≥11 confirms the clinical diagnosis of CdLS also in the absence of a molecular diagnosis (Kline et al., 2018).

The genetic etiology of CdLS is mainly attributable to variants affecting the function of the deeply conserved protein complex known as cohesin (Kline et al., 2018). Variants in the cohesin regulator NIPBL are the most frequent cause of CdLS and account for approximately 70% of cases. Other subunits or regulators of the complex (SMC1A, SMC3, RAD21, and HDAC8) are
responsible altogether for 10–15% of cases (Kline et al., 2018). Variants in additional cohesin-associated proteins like MAU2, STAG1, and STAG2 have been associated with CdLS or phenotypes reminiscent of CdLS in few individuals (Lehalle et al., 2017; Mullegama et al., 2017; Soardi et al., 2017; Yuen et al., 2019; Parenti et al., 2020).

The cohesin complex performs numerous functions that are essential for cell survival, including sister chromatid cohesion, DNA repair, maintenance of genomic stability, transcriptional regulation, and chromatin regulation by mediating long-range interactions between distant genomic regions and contributing to the formation of topologically associating domains (Zhu and Wang, 2019). Sister chromatid cohesion is the best-characterized role of the complex. However, cell lines of individuals with CdLS do not display cohesion defects (Castronovo et al., 2009). A global dysregulation of gene expression is instead observed in these cells (Liu et al., 2009; Izumi et al., 2015; Yuen et al., 2015).

Hence, an altered functionality of the cohesin complex in the context of transcriptional regulation and chromatin remodeling rather than sister chromatid cohesion can be held accountable for the onset of the disease phenotype (Yuan et al., 2013). In line with these findings, several patients with CdLS were found to carry variants in regulators of gene expression and chromatin architecture other than cohesin. Notably, the majority of these genes have been previously associated with neurodevelopmental disorders sharing a partial phenotypical overlap with CdLS, such as Rubinstein-Taybi syndrome (RSTS, OMIM #180849), KBG syndrome (KBGS, OMIM #148050), Coffin-Siris syndrome (CSS, OMIM #135900), or Wiedemann-Steiner syndrome (WDSTS, OMIM #605130) (Petrif et al., 1995; Roelfsema et al., 2005; Sirmaci et al., 2011; Jones et al., 2012; Tsurusaki et al., 2012; Asadollahi et al., 2013; Grozeva et al., 2014; Hamdan et al., 2014; Hao et al., 2015; O’Rawe et al., 2015; Olley et al., 2018). Not surprisingly, the aforementioned disorders are often considered as a differential diagnosis for CdLS. On the other hand, variants in cohesin genes have been identified in individuals with neurodevelopmental disorders other than CdLS, such as CSS, WDSTS, Rett-like syndrome, or syndromic intellectual disability (Harakalova et al., 2012; Tzschach et al., 2015; Yuan et al., 2015; Yuen et al., 2015; Retterer et al., 2016; Huisman et al., 2017; Parenti et al., 2017; Saikusa et al., 2018; Xiao et al., 2018; Iwama et al., 2019; Kruszka et al., 2019; Downie et al., 2020; Goel and Parasivam, 2020).

Supported by these findings, a new class of disorders, named chromatinopathies, has started to emerge. Chromatinopathies are caused by variants in proteins responsible for chromatin remodeling and transcriptional regulation. The resulting global gene expression dysregulation favors the onset of a series of clinical features such as developmental delay, intellectual disability, and behavioral disturbances. CdLS, CSS, RSTS, WDSTS, and KBGS all fall within this growing family of disorders.

In this review, we aim to provide a systematic overview of the current literature to summarize all mutations in non-cohesin genes identified in association with CdLS phenotypes. For this purpose, we will discuss the functions of the affected genes, the type of variants, and the clinical features observed. By this, we will acknowledge the role of CdLS as paradigm of chromatinopathies.

Non-canonical Cornelia de Lange Syndrome-Causing Variants

Numerous CdLS patients have been reported to carry mutations in chromatin remodelers and transcriptional regulators other than cohesin. Table 1 summarizes the described variants and provides information on the coordinates, origin and zygosity of the variants as well as gender and phenotypic CdLS scores of the individuals. Scores in parenthesis were calculated based on the published clinical features. A detailed list of the clinical features of each individual is available in Supplementary Table 1. For the purpose of this review, only individuals with a monogenic molecular diagnosis were considered. Individuals with multiplemolecular diagnoses or gross deletions/insertions encompassing multiple genes were not included.

Many variants identified in CdLS individuals affect *bona fide* transcriptional regulators such as ANKRD11, AFF4, BRD4, SETD5, TAF1, TAF6, ZMYND11, PHIP, and MED13L.

ANKRD11 regulates gene expression through the interaction with histone-modifying proteins (Zhang et al., 2007; Li et al., 2008). Variants affecting the *ANKRD11* gene were formerly associated with KBGS (Sirmaci et al., 2011). To date, 16 individuals who received a clinical diagnosis of CdLS during infancy were found to harbor loss-of-function variants in *ANKRD11* (Ansari et al., 2014; Parenti et al., 2016, 2021; Aoi et al., 2019; Cucco et al., 2020). Clinical scores could be assessed for 13 of these 16 individuals. With an average score of 10, variants in *ANKRD11* appear to be associated with non-classic CdLS phenotypes. The relatively high frequency of *ANKRD11* variants in CdLS cohorts has motivated the inclusion of *ANKRD11* among the CdLS-genes (Kline et al., 2018).

BRD4 binds to super-enhancers and promotes the release of the paused RNA polymerase II (Olley et al., 2018). Three CdLS individuals with two missense substitutions and a frameshift deletion-insertion affecting *BRD4* were so far described (Olley et al., 2018). Clinical scores of 8 and 10 could be calculated for two of the three patients, thus indicating a partial overlap with CdLS.

Loss-of-function variants in *SETD5* had been initially reported in patients with moderate-to-severe intellectual disability (OMIM, #615761) (Grozeva et al., 2014). Recently, *SETD5* has been recognized as one of the most frequently mutated genes in the context of neurodevelopmental disorders (Deciphering Developmental Disorders Study, 2017; Kaplanis et al., 2020). The resulting protein carries out its function as transcriptional regulator upon interaction with two protein complexes, namely an HDAC3-containing chromatin remodeler known as Nuclear Receptor Co-Repressor (NCoR) and the RNA polymerase II-interacting complex known as Polymerase-Associated Factor 1 Complex (PAF1C) (Osipovich et al., 2016; Deliu et al., 2018). A total of three individuals carrying *SETD5* variants were identified in two independent CdLS cohorts (Parenti et al., 2017; Aoi et al., 2019). The resulting clinical scores (9 and 10) suggest a non-classic form of CdLS.
Gene	Citation	Number of patients	Patient ID	Variant type	Variant coordinates	Zygosity	Variant classification	Gender	Score	Origin	Analysis performed
ANKRD11 (NM_013275.6)	Ansari et al., 2014	3	NA	Frameshift deletion	c.6210_6211del; p.(Lys2070Asnfs*31)	Heterozygous	Pathogenic	f	NA	De novo	Exome sequencing
	NA		Patient A	Non-sense	c.5483C > A; p.(Ser1828*)	Mosaic (30% on blood DNA and 50% on fibroblast DNA)	Pathogenic	f	(12)	De novo	Exome sequencing
	Decipher DDD-EDB257747		Patient B	Frameshift deletion	c.2297_2300delAGAA; p.(Lys766Argfs*10)	Heterozygous	Pathogenic	m	(10)	De novo	Exome sequencing
	Aoi et al., 2019	2	Patient 21	Frameshift deletion	c.3255_3256del; p.(Lys1086Glufs*15)	Heterozygous	Pathogenic	f	8	De novo	Exome sequencing
	Patient 43			Non-sense	c.5434C > T; p.(Gln1812*)	Heterozygous	Pathogenic	m	9	De novo	Exome sequencing
	Cucco et al., 2020	1	Patient B	Frameshift deletion	c.3224_3227del; p.(Glu1075Glyfs*242)	Heterozygous	Pathogenic	m	10	De novo	Exome sequencing
	Parrenti et al., 2021	8	Patient 2	Frameshift deletion	c.1711_1723del; p.(Thr571Alafs*15)	Heterozygous	Pathogenic	m	(9)	NA	Gene panel
			Patient 3	Non-sense	c.1977C > A; p.(Tyr659*)	Heterozygous	Pathogenic	f	(13)	NA	Gene panel
			Patient 4	Frameshift deletion	c.2398_2401delGAAA; p.(Glu800Argfs*62)	Heterozygous	Likely pathogenic	f	(10)	Inherited (mother)	Gene panel
			Patient 5	Frameshift deletion	c.2408_2412del; p.(Lys803Argfs*5)	Heterozygous	Pathogenic	f	(13)	De novo	Gene panel
			Patient 6	Non-sense	c.2692C > T; p.(Arg988*)	Heterozygous	Pathogenic	f	(11)	De novo	Gene panel

(Continued)
Gene	Citation	Number of patients	Patient ID	Variant type	Variant coordinates	Zygosity	Variant classification	Gender	Score	Origin	Analysis performed
Patient 7	Frameshift duplication	c.7356dupC; p.(lys2425Glnfs*79)	Heterozygous	Pathogenic	f	(10)	De novo	Gene panel			
Patient 9	Frameshift deletion	c.1903_1907del; p.(lys635Glnfs*26)	Heterozygous	Pathogenic	m	(8)	NA	Gene panel			
Patient 12	Splicing	c.7470 + 2T > C; p.?	Heterozygous	Likely pathogenic	m	(6)	Inherited (mother)	Gene panel			
Patient 3049	Missense	c.1289A > G; p.(ryn430Cys)	Heterozygous	Pathogenic	f	(10)	De novo	Gene panel			
Patient CDL038	Frameshift deletion	c.1224delinsCA; p.(Glu408Aspfs*4)	Heterozygous	Pathogenic	f	(8)	De novo	Gene panel			
Patient CDL-022	Missense	c.1038G > C; p.(lys346Aen)	Heterozygous	Uncertain significance	m	NA	Father not available. Not maternal RNA sequencing				
Patient CDL-038	Frameshift deletion	c.3647_3650delAGGA; p.(lys1216Argfs*18)	Heterozygous	Pathogenic	f	(12)	De novo	Gene panel			
Patient CDL-022	Frameshift deletion	c.104_107del; p.(Ser35Thrfs*12)	Heterozygous	Pathogenic	m	(14)	De novo	Exome sequencing			
Patient 12	Non-sense	c.2233G > T; p.(Arg745*)	Heterozygous	Pathogenic	f	(13)	De novo	Exome sequencing			
Patient 12	Non-sense	c.8590C > T; p.(Gln2864*)	Heterozygous	Pathogenic	m	(11)	De novo	Gene panel			
Patient 27	Non-sense	c.3592G > T; p.(Gln1198*)	Heterozygous	Pathogenic	m	7	De novo	Exome sequencing			
Patient A	Frameshift duplication	c.4408dupA; p.(Met1470Aspfs*3)	Heterozygous	Pathogenic	f	9	De novo	Exome sequencing			

(Continued)
Gene	Citation	Number of patients	Patient ID	Variant type	Variant coordinates	Zygosity	Variant classification	Gender	Score	Origin	Analysis performed
SETD5 (NM_001080517.3)	Parenti et al., 2017	2	Patient 2	Frameshift deletion	c.2212_2213delAT; p.(Met738Valfs*27)	Heterozygous	Pathogenic	m	(9)	De novo	Exome sequencing
	Patient 3			Inframe deletion	54 kb intragenic deletion spanning exons 3–19	Heterozygous	Pathogenic	f	NA	Father not available, Not maternal	Array-CGH
	Aoi et al., 2019	1	Patient 12	Non-sense	c.1852C > T; p.(Arg618*)	Heterozygous	Pathogenic	f	10	De novo	Exome sequencing
ARID1B (NM_001374828.1)	Yavarna et al., 2015	1	NA	Inframe deletion	c.372_395del; p.(Ala125_Ser132del)	Heterozygous	Uncertain significance	NA	NA	NA	Exome sequencing
	Parenti et al., 2017	2	Patient 5	Non-sense	c.2902C > T; p.(Arg968*)	Heterozygous	Pathogenic	f	(12)	De novo	Exome sequencing
	Patient 6			Splicing	c.3505-2A > G; p.(Lys1169Leufs*18)	Heterozygous	Pathogenic	m	(11)	De novo	Gene panel
SMARCB1 (NM_003073.5)	Parenti et al., 2017	1	Patient 4	Missense	c.971A > G; p.(Lys324Arg)	Heterozygous	Uncertain significance	f	(13)	Father not available, Not maternal	Gene panel
TAF1 (NM_004606.5)	O’Rawe et al., 2015	1	Individual 4A	Missense	c.1454T > A; p.(Ile485Asn)	Hemizygous	Likely pathogenic	m	(12)	De novo	Exome sequencing
	Cheng et al., 2020	1	Individual 13	Missense	c.3508C > T; p.(Arg1170Cys)	Hemizygous	Likely pathogenic	m	10	De novo	Exome sequencing
USP7 (NM_003470.3)	Fountain et al., 2019	1	Patient 8	Intragenic deletion	31 kb intragenic deletion including a portion of 5’ UTR and	Heterozygous	Likely pathogenic	f	(9)	De novo	Genome sequencing
	DDX23 (NM_0034818.3)	2	Patient 5	Missense	c.1625G > A; p.(Arg542His)	Heterozygous	Likely pathogenic	f	(9)	De novo	Genome sequencing
	Burns et al., 2021			Missense	c.1583G > A; p.(Arg528His)	Heterozygous	Likely pathogenic	f	(11)	De novo	Genome sequencing

(Continued)
TABLE 1 (Continued)

Gene	Citation	Number of patients	Protein ID	Variant type	Number of patients	Variant coordinates	Variant classification	Zygosity	Variant coordinates	Variant classification	Zygosity	Variant type	Number of patients	Variant coordinates	Variant classification	Zygosity	
CSNK1G1	(NM_001200326.4)	1 Individual 4	Missense	Frame shift	deletion	c.193G > A	Pathogenic	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZMYND11	(NM_001200326.4)	1 Individual 5	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
MED13L	(NM_001200326.4)	1 Individual 6	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHIP	(NM_001200326.4)	1 Individual 7	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
TAF6	(NM_001200326.4)	1 Individual 8	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAA50	(NM_001200326.4)	1 Individual 9	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
CREBBP	(NM_001200326.4)	1 Individual 10	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA
PDGFRB	(NM_001200326.4)	1 Individual 11	Missense	Missense	c.193G > A	Pathogenic	Heterozygous	Heterozygous	NA	NA	NA	NA	NA	NA	NA	NA	NA

TAF1 and TAF6 are both subunits of Transcription Factor II D (TFIID), a megadalton-sized protein complex that promotes transcriptional initiation (Bieniossek et al., 2013). Variants affecting TAF1 and TAF6 are, respectively, associated with X-linked recessive intellectual disability (OMIM #300966) and autosomal recessive Alazami-Yuan syndrome (OMIM #617126) (Alazami et al., 2015; O’Rawe et al., 2015). Hemizygous missense substitutions in TAF1 were identified in two individuals with CdLS (clinical scores 12 and 10), whereas two individuals were found to carry homozygous missense variants in TAF6 (clinical scores 11 and 4) (O’Rawe et al., 2015; Yuan et al., 2015; Cheng et al., 2020; Tuc et al., 2020).

ZMYND11, PHIP, and MED13L were each found mutated in a single CdLS individual (Aoi et al., 2019). ZMYND11 was the only non-cohesin-related gene altered in an individual with a clinical score of 15 and presenting with oligodactyly (Aoi et al., 2019). Prior to this discovery, ZMYND11 had been associated with intellectual disability and behavioral disturbances (OMIM #616083); furthermore, it appears to be a critical gene in the context of the 10p15.3 microdeletion syndrome (Coe et al., 2014). The resulting protein specifically binds to trimethylated lysine 36 of histone H3 to modulate elongation of RNA polymerase II (Wen et al., 2014). PHIP encodes for a DNA-binding protein that localizes at promoters and transcriptional cis-regulatory elements (Aoi et al., 2019). Variants in PHIP are responsible for the obesity-associated neurodevelopmental syndrome known as Chung-Jansen syndrome (OMIM #617991) (de Ligt et al., 2012; Jansen et al., 2018). Variants in MED13L, a subunit of the transcriptional regulator known as Mediator complex, are instead responsible for a form of intellectual disability with dysmorphic features (OMIM #616798). Missense substitutions in MED13L and PHIP were described in two patients with CdLS-like phenotypes (clinical scores 8 and 6, respectively) (Aoi et al., 2019).

In addition, missense substitutions in AFF4, a subunit of the super elongation complex which coordinates pausing of RNA polymerase II, were identified in individuals with CHOPS (cognitive impairment, coarse facies, heart defects, obesity, pulmonary involvement, short stature, and skeletal dysplasia; OMIM #616368), who were initially suspected of having CdLS (Izumi et al., 2015). The low clinical scores of these individuals (3, 7, and 6) suggest a limited phenotypic overlap with CdLS.

Proteins that have an impact on chromatin conformation are also occasionally altered in CdLS individuals. The list of chromatin remodelers associated with CdLS comprises KMT2A, ARID1B, SMARCB1, CREBBP, and EP300.

KMT2A is a histone methyltransferase whose mutations are responsible for the onset of WDSTS (Jones et al., 2012). Five loss-of-function variants affecting KMT2A were reported in CdLS individuals (Yuan et al., 2015; Parenti et al., 2017; Aoi et al., 2019; Krawczynska et al., 2019; Demir et al., 2020). Clinical scores could be assessed for four of the five individuals. A score equal to or higher than 11 was calculated for three of these individuals, suggesting that KMT2A might be contemplated in the future as additional CdLS-gene.

ARID1B and SMARCB1 are structural components of the multisubunit protein complex named SWItch/Sucrose Non-Fermentable complex (SWI/SNF), which is known for its role
as ATP-dependent chromatin remodeler (Kassabov et al., 2003). Mutations in ARID1B, SMARC1, and other subunits of the SWI/SNF remodeler cause CSS (Santen et al., 2012; Tsurusaki et al., 2012). To date, three CdLS individuals were found to carry loss-of-function variants in ARID1B and one individual carried a missense substitution in SMARC1 (Yavarna et al., 2015; Parenti et al., 2017). Similar to KMT2A, the clinical scores of these patients fell within the range of classic manifestation of CdLS.

CREBBP and EP300 are part of a coactivator family characterized by intrinsic ability to acetylate histone as well as non-histone proteins and to interact with core transcription factors (Vo and Goodman, 2001; Jin et al., 2011). Mutations in CREBBP and EP300 result in distinct subtypes of RSTS (Petrić et al., 1995; Roelfsema et al., 2005). In CdLS cohorts, exome sequencing led to the identification of three loss-of-function mutations in EP300 and one out-of-frame deletion in CREBBP (Woods et al., 2014; Aoi et al., 2019; Tang et al., 2019; Cucco et al., 2020). With the exception of a single patient presenting with classic CdLS (Woods et al., 2014), the other individuals with variants in CREBBP and EP300 appear to be associated with a rather non-classic form of CdLS (average clinical score of 9) (Aoi et al., 2019; Tang et al., 2019; Cucco et al., 2020).

The remaining CdLS-associated proteins USP7, DDX23, CSNK1G1, NAA50, and PDGFRB act indirectly on nuclear processes through their interaction with several proteins involved in genomic stability, transcriptional regulation, and chromatin remodeling.

DDX23 is a RNA helicase with a role in RNA splicing and maintenance of genomic stability through suppression of incorrect R-loops formed during transcription (Mathew et al., 2008; Sridhara et al., 2017). Two out of the nine recently published individuals with DDX23-related neurodevelopmental disorders presented with clinical features suggestive of CdLS and clinical scores of 9 and 11 (Burns et al., 2021).

USP7 is a deubiquitinating proteolytic enzyme with a variety of targets, including DNMT1 and members of the Polycomb multiprotein complex. By preventing their ubiquitin-dependent degradation, it promotes DNA methylation and chromatin remodeling (Maertens et al., 2010; Felle et al., 2011). Variants in USP7 are responsible for a neurodevelopmental disorder with speech delay, altered behavior, and neurologic anomalies (Hao-Fountain syndrome, OMIM #616863) (Hao et al., 2015; Fountain et al., 2019). An individual with a CdLS score of 9 was found to carry an intragenic deletion affecting the 5′UTR and exon 1 of USP7 (Fountain et al., 2021).

A missense substitution in NAA50 was identified in an individual with classic CdLS (clinical score 12). NAA50 interacts with the highly conserved NatA complex composed of NAA10 and NAA15 to form the NatE complex (Deng et al., 2019; Armbuster et al., 2020). The main function of these proteins is to carry out N-terminal acetylation, a major post-translational modification to which 70–90% of proteins are subject in humans (Reddi et al., 2016; Gottlieb and Marmorstein, 2018; Deng et al., 2019). Strikingly, individuals with NAA10 variants often show phenotypes reminiscent of CdLS (Saunier et al., 2015).

CSNK1G1 and PDGFRB possess intrinsic kinase activity through which they regulate several cellular processes including signal transduction, cell migration, and proliferation (Mori et al., 1993; Li et al., 2015). The corresponding genes have been associated with two distinct forms of syndromic neurodevelopmental disorder (Foster et al., 2020; Gold et al., 2020). Missense substitutions of each gene were identified in single individuals with CdLS-overlapping phenotypes (Yavarna et al., 2015; Gold et al., 2020).

In view of the high CdLS scores reported, KMT2A and the subunits of the SWI/SNF complex can be included within the extended list of CdLS genes. Variants in ANKRDL11, SETD5, EP300, CREBBP, BRD4, and TAF1 can similarly result in non-classic forms of CdLS. For this reason, these genes should be taken into account for the molecular diagnostic pipeline of CdLS. Individuals with AFF4 variants instead present with a distinct phenotype that is only minimally overlapping with CdLS. The contribution of the other genes presented in this review in the context of CdLS still remains to be assessed (USP7, TAF6, DDX23, CSNK1G1, ZMYND11, MED13L, PHP1, NAA50, and PDGFRB).
that overlaps with chromatinopathies (OMIM, #618603) (Haijes et al., 2019), variants in HDAC3 have never been reported. Taking into account the central role of HDAC3 in the transcription process, a possible identification of disease-causing HDAC3 variants can be envisaged.

Following its recruitment to the DNA, the dynamics and activity of RNA polymerase II are further subject to regulation through proteins like SETD5 and BRD4 (Osipovich et al., 2016; Lee et al., 2017; Deliu et al., 2018). Specifically, BRD4 can control transcription by promoting the enrichment of RNA polymerase II, mediator and TFIID at target genes (Lee et al., 2017) and through its interaction with NIPBL and different cohesin subunits (Olley et al., 2018). In turn, the acetyltransferase EP300 and CREBBP seem to be responsible for BRD4 recruitment to enhancers (Lee et al., 2017). Additional data suggest that EP300 and CREBBP contribute to chromatin architecture along with the mediator complex (Zhang et al., 2020), the methyltransferase KMT2A (Goto et al., 2002), and the SWI/SNF complex (Alver et al., 2017). The latter is itself responsible for the recruitment of the cohesin loader to nucleosome-free regions (Lopez-Serra et al., 2014) and is as well able to interact with RNA polymerase II and the TFIID complex (Sharma et al., 2003).

This is certainly a simplistic view of the incredibly complex and perfectly orchestrated process that is transcription, but conveys the idea of how much interconnected the chromatinopathies protein network is. The level of synergy of the network is so high that variants of a single factor will inevitably result in an altered function of the other players.

CONCLUSION

Several proteins with interdependent roles belong to the chromatinopathies protein network. Disease-causing variants in the corresponding genes are accountable for the onset of distinct but overlapping neurodevelopmental disorders, of which CdLS is a paradigm. Whether or not the resulting transcriptional dysregulation converge on a common pathway or set of genes is an intriguing possibility that is worth exploring for therapeutic purposes.
AUTHOR CONTRIBUTIONS
Both authors contributed to the manuscript drafting, reading and approved the submitted version.

ACKNOWLEDGMENTS
This work has been generated within the European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA) (EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01-2016/739516).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2021.774950/full#supplementary-material

REFERENCES
Alazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., et al. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 10, 148–161. doi: 10.1016/j.celrep.2014.12.015
Alver, B. H., Kim, K. H., Lu, P., Wang, X., Manchester, H. E., Wang, W., et al. (2017). The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8:14648. doi: 10.1038/ncomms14648
Ansari, M., Poke, G., Ferry, Q., Williamson, K., Aldridge, R., Meynert, A. M., et al. (2014). Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J. Med. Genet. 51, 659–668. doi: 10.1136/jmedgenet-2014-102573
Aoi, H., Mizuguchi, T., Ceroni, J. R., Kim, V. E. H., Furquim, I., Honjo, R. S., et al. (2019). Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. J. Hum. Genet. 64, 967–978. doi: 10.1038/s10038-019-0643-z
Armbruster, L., Linster, E., Boyer, J.-B., Brunie, A., Eirich, J., Stephan, I., et al. (2020). NAA50 is an enzymatically active N°-Acetyltransferase that is crucial for development and regulation of stress responses. Plant Physiol. 183, 1502–1516. doi: 10.1104/pp.20.00222
Asadollahi, R., Oneda, B., Sheth, F., Azzarello-Burri, S., Baldinger, R., Joset, P., et al. (2013). Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur. J. Hum. Genet. 21, 1100–1104. doi: 10.1038/ejhg.2013.17
Bieniossek, C., Papas, G., Schaffitzel, C., Garzoni, F., Chaillot, M., Scheer, E., et al. (2013). The architecture of human general transcription factor TFIIID core complex. Nature 493, 699–702. doi: 10.1038/nature11791
Burns, W., Bird, L. M., Heron, D., Keren, B., Ramachandra, D., Thilfaul, I., et al. (2021). Syndromic neurodevelopmental disorder associated with de novo variants in DDX23. Am. J. Med. Genet. 185, 2863–2872. doi: 10.1002/ajmg.a.62359
Castronovo, P., Gervasini, C., Cereda, A., Masciadri, M., Milani, D., Russo, S., et al. (2009). Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Res. 17, 763–771. doi: 10.1007/s10577-009-9066-6
Cheng, H., Capponi, S., Wakeling, E., Marchi, E., Li, Q., Zhao, M., et al. (2020). Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Hum. Mutat. 41, 449–464. doi: 10.1002/humu.23936
Coe, B. P., Witherspoon, K., Rosenfeld, J. A., van Bon, B. W. M., Vulto-van Silfhout, A., Cheng, H., Mizuguchi, T., Ceroni, J. R., Kim, V. E. H., Furquim, I., Honjo, R. S., et al. (2019). Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. J. Hum. Genet. 64, 967–978. doi: 10.1038/s10038-019-0643-z
Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438. doi: 10.1038/nature21062
Delu, E., Arecco, N., Morandell, J., Dotter, C. P., Contreras, X., Girardot, C., et al. (2018). Haploinsufficiency of the intellectual disability gene SETD5 disturbs genetic developmental gene expression and cognition. Nat. Neurosci. 21, 1717–1727. doi: 10.1038/s41593-018-0266-2
Demir, S., Gürkan, H., Öz, V., Yalçıntepe, S., Atlı, E. Y., and Atlı, E. (2020). Wiedemann-steiner syndrome as a differential diagnosis of Cornelia de Lange syndrome using targeted next-generation sequencing: a case report. Mol. Syndromol. 12, 1–6. doi: 10.1159/000511971
Deng, S., Magin, R. S., Wei, X., Pan, B., Petersson, E. J., and Marmorstein, R. (2019). Structure and mechanism of acetylation by the N-Terminal dual enzyme NatA/Naa50 complex. Structure 27, 1057.e4–1070.e4. doi: 10.1016/j.str.2019.04.014
Downie, L., Halliday, J., Burt, R., Lunke, S., Lynch, E., Martyn, M., et al. (2020). Exome sequencing in infants with congenital hearing impairment: a population-based cohort study. Eur. J. Hum. Genet. 28, 587–596. doi: 10.1038/s41436-019-0433-1
Felle, M., Joppien, S., Németh, A., Diermeier, S., Thalhammer, V., Dobner, T., et al. (2011). The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39, 8355–8365. doi: 10.1093/nar/gkr528
Foster, A., Chalot, B., Antoniadis, T., Schaefer, E., Keelagher, R., Ryan, G., et al. (2020). Kosaki overgrowth syndrome: a novel pathogenic variant in PDGFRB and expansion of the phenotype including cerebrovascular complications. Clin. Genet. 98, 19–31. doi: 10.1111/cge.13752
Fountaine, M. D., Oleson, D. S., Rech, M. E., Segebrecht, L., Hunter, J. V., McCarthy, J. M., et al. (2019). Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies. Genet. Med. 21, 1797–1807. doi: 10.1038/s41436-019-0433-1
Goel, H., and Parasivam, G. (2020). Another case of holoprosencephaly associated with RAD21 loss-of-function variant. Brain 143:e64. doi: 10.1093/brain/awaa173
Gold, N. B., Li, D., Chassevent, A., Kaiser, F. J., Parenti, I., Strom, T. M., et al. (2020). Heterozygous de novo variants in CNKKG1 are associated with syndromic developmental delay and autism spectrum disorder. Clin. Genet. 98, 571–576. doi: 10.1111/cge.13851
Goto, N. K., Zos, T., Martinez-Yamout, M., Dyson, H. J., and Wright, P. E. (2002). Cooperativity in transcription factor binding to the coactivator CREB-binding Protein (CRP). J. Biol. Chem. 277, 43168–43174. doi: 10.1074/jbc.M207660200
Gottlieb, L., and Marmorstein, R. (2018). Structure of Human NatA and its regulation by the huntingtin interacting protein HYPK. Structure 26, 925.e8–935.e8. doi: 10.1016/j.str.2018.04.003
Grozeva, D., Carss, K., Spasic-Boskovic, O., Parker, M. J., Archer, H., Firth, H. V., et al. (2014). De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am. J. Hum. Genet. 94, 618–624. doi: 10.1016/j.ajhg.2014.03.006
Hajies, H. A., Koster, M. J. E., Rehmann, H., Li, D., Hakonarson, H., Cappuccio, G., et al. (2019). De novo heterozygous POLR2A variants cause a neurodevelopmental syndrome with profound infantile-onset hypotonia. Am. J. Hum. Genet. 105, 283–301. doi: 10.1016/j.ajhg.2019.06.016
Hamdan, F. F., Srou, M., Cape-Chichi, J.-M., Daoud, H., Nassif, C., Patry, L., et al. (2014). De novo mutations in moderate or severe intellectual disability. *PloS Genet.* 10.e1004772. doi: 10.1371/journal.pgen.1004772

Hao, Y.-Y., Fountain, M. D., Fon Tacer, K., Xia, F., Bi, W., Kang, S.-H. L., et al. (2015). USF2 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. *Mol. Cell.* 59, 956–969. doi: 10.1016/j.molcel.2015.07.033

Harakalova, M., van den Boogaard, M.-J., Sinke, R., van Lieshout, S., van Tuil, M. C., Duran, K., et al. (2012). X-eome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability, truncal obesity, gynaecomastia, hypogonadism and unusual face. *J. Med. Genet.* 49, 539–543. doi: 10.1136/jmedgenet-2012-100921

Huisman, S., Mulder, P. A., Redeker, E., Bader, I., Bisgaard, A.-M., Brooks, A., et al. (2017). Phenotypes and genotypes in individuals with SMCA1 variants. *J. Med. Genet.* 173, 2108–2125. doi: 10.1016/j.jmgene.2018.03.027

Iwama, K., Mizuguchi, T., Takeshita, E., Nakagawa, E., Okazaki, T., Nomura, Y., et al. (2019). Genetic landscape of Rett syndrome-like phenotypes revealed by whole exome sequencing. *J. Med. Genet.* 56, 396–407. doi: 10.1136/jmedgenet-2018-105775

Izumi, N., Nakato, R., Zhang, Z., Edmondson, A. C., Noon, S., Dukli, M. C., et al. (2015). Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. *Nat. Genet.* 47, 338–344. doi: 10.1038/ng.3229

Jahnke, P., Xu, W., Wuillling, M., Albrecht, M., Gabriel, H., Gillessen-Kaesbach, G., et al. (2008). The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications. *Nucleic Acids Res.* 36, 6450–6458. doi: 10.1093/nar/gkn688

Jansen, S., Hoischen, A., Coe, B. P., Carvill, G. L., Van Esch, H., Bosch, D. G. M., et al. (2019). Identification of two justamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. *EMBO J.* 12, 2257–2264. doi: 10.1002/emboj.2010.12.12

Jones, W. D., Dafou, D., McEntagart, M., Woollard, W. J., Elmslie, F. V., Holder-Lee, J.-E., Park, Y.-K., Park, S., Jang, Y., Waring, N., Dey, A., et al. (2017). Brd4 mutations cause a novel cohesinopathy characterised by unsppecific syndromic intellectual disability. *J. Med. Genet.* 54, 479–488. doi: 10.1136/jmedgenet-2016-104468

Li, C.-W., Ding, G. K., Zhang, A., and Chen, J. D. (2008). Ankyrin repeats-containing cofactors interact with ADA3 and modulate its co-activator function. *Biochem.* 413, 349–357. doi: 10.1024/bj20071484

Li, D.-P., Zhou, J.-I., and Pan, H.-L. (2015). Endogenous casin kinase-1 regulates NMDA receptor activity of hypothalamic presynaptic neurons and sympathetic outflow in hypertension: casin kinase-1 and synaptic plasticity in hypertension. *J. Physiol.* 593, 4439–4452. doi: 10.1113/jp207031

Liu, J., Zhang, Z., Band, M., Itoh, T., Deardorff, M. A., Clark, D., et al. (2009). Transcriptional dysregulation in NIPBL and cohesin mutant human cells. *PloS Biol.* 7.e1000119. doi: 10.1371/journal.pbio.1000119

Lopez-Serra, L., Kelly, G., Patel, H., Stewart, A., and Uhlmann, F. (2014). The Scc2–Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. *Nat. Genet.* 46, 1147–1151. doi: 10.1038/ng.3080

Maertens, G. N., El Messaoudi-Aubert, S., Elderkin, S., Hoon, K., and Peters, G. (2010). Ubiquitin-specific proteases 7 and 11 modulate Polycrom regulation of the INK4a tumour suppressor. *EMBO J.* 29, 2553–2565. doi: 10.1038/EMBOJ.2010.129

Mathew, R., Hartmuth, K., Möhlmann, S., Urlaub, H., Ficner, R., and Lührmann, R. (2008). Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-US tri-snRNP into the spliceosome. *Nat. Struct. Mol. Biol.* 15, 435–443. doi: 10.1038/nsmb.1415

Mori, S., Rönnstrand, L., Yokote, K., Engström, A., Courtneidge, S. A., Claesson-Welsh, L., et al. (2019). Identification of two justamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. *EMBO J.* 12, 11:2257–11:2264. doi: 10.1002/emboj.2019035879

Mullegama, S. V., Klein, S. D., Mulatinho, M. V., Senatrine, T. N., Singh, K., Ucla Clinical Genomics Center, et al. (2017). De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. *Am. J. Med. Genet.* 173, 1319–1327. doi: 10.1002/ajmg.a.38207

Olley, G., Ansari, M., Bengani, H., Grimes, G. R., Rhodes, J., von Kriegsheim, A., et al. (2018). BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange–like syndrome. *Nat. Genet.* 50, 329–332. doi: 10.1038/s41438-018-0424-y

O’Rawe, J. A., Wu, Y., Dörfl, M. J., Rope, A. F., Au, P. Y. B., Parboosingh, J. S., et al. (2015). TAF1 variants are associated with dysmorphic features, intellectual disability, and neurological manifestations. *Am. J. Hum. Genet.* 97, 922–932. doi: 10.1016/j.ajhg.2015.11.005

Ospovich, A. B., Gangula, R., Vianna, P. G., and Magnuson, M. A. (2016). Ser125 is essential for mammalian development and co-transcriptional regulation of histone acetylation. *Development.* 143, 4595–4607. doi: 10.1242/dev.141165

Parenti, I., Dufy, F., Gil, S. R., Muela, E., Casanova, A., Berutti, R., et al. (2020). MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange syndrome. *Cell Rep.* 31:107647. doi: 10.1016/j.celrep.2020.107647

Parenti, I., Gervasini, C., Pozzojevic, J., Graul-Neumann, L., Azzollini, J., Braunholz, D., et al. (2016). Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients with Cornelia de Lange-overlapping phenotype: broadening of cohesinopathies. *Clin. Genet.* 89, 74–81. doi: 10.1111/cge.12564

Parenti, I., Mallozi, M. B., Hüning, L., Gervasini, C., Kuechler, A., Agolini, E., et al. (2021). ANKRD11 variants: KBG syndrome and beyond. *Clin. Genet.* 100, 187–200. doi: 10.1111/cge.13977

Parenti, I., Teresa-Rodrigo, M. E., Pozzojevic, J., Ruiz Gil, S., Bader, I., Braunholz, D., et al. (2017). Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes. *Hum. Genet.* 136, 307–320. doi: 10.1007/s00439-017-1758-y

Petrit, F., Giles, R. H., Dauser, H. G., Saris, J. J., Hennekam, R. C. M., Masuno, M., et al. (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. *Nature* 376, 348–351. doi: 10.1038/376348a0

Redd, R., Saddawi, V., Chinthapalli, D. K., Sanjoku, S., Sripatha, P., and Addolfatta, A. (2016). Human Npas0 protein displays broad substrate specificity for amino-terminal acetylation. *J. Biol. Chem.* 291, 20530–20538. doi: 10.1074/jbc.M116.730432
Rontas, S., Rathi, K. S., Kaur, M., Raman, P., Krantz, I. D., Sarmady, M., et al. (2020). Diagnosing Cornelia de Lange syndrome and related neurodevelopmental disorders using RNA sequencing. Genet. Med. 22, 927–936. doi: 10.1038/s41436-019-0741-5
Reuther, K., Juusola, J., Cho, M. T., Vitazka, P., Millán, F., Gabellini, F., et al. (2016). Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704. doi: 10.1038/gim.2015.148
Roelfsema, J. H., White, S. J., Ariyürek, Y., Bartholdi, D., Niedrist, D., Papadia, F., et al. (2015). Genetic heterogeneity in rubinstein-taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76, 572–580. doi: 10.1038/amjhg.2015.7
Sakusa, T., Hara, M., Iwama, K., Yuge, K., Ohba, C., Okada, J., et al. (2018). De novo HDAC8 mutation causes Rett-related disorder with distinctive facial features and multiple congenital anomalies. Brain Dev. 40, 406–409. doi: 10.1016/j.braindev.2017.12.013
Sankar, N., Baluchamy, S., Kadeppagari, R.-K., Singhal, G., Weitzman, S., and Thimmapaya, B. (2008). p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-Myc. Oncogene 27, 5717–5728. doi: 10.1038/onc.2008.181
Santen, G. W. E., Kriek, M., and van Attikum, H. (2012). SWI/SNF complex in disorder: SWITCHing from malignancies to intellectual disability. Epigenetics 7, 1219–1224. doi: 10.4161/epi.22299
Saunier, C., Støve, S. I., Popp, B., Gérard, B., Blenski, M., AhMew, N., et al. (2016). Expanding the phenotype associated with NAA10-Related N-Terminal Disorder: SWItching from malignancies to intellectual disability. Semin. Cell Dev. Biol. 35, 1034–1040. doi: 10.1016/j.semcdb.2015.11.007
Soarda, F. C., Machado-Silva, A., Linhares, N. D., Zheng, G., Qu, Q., Pena, H. B., et al. (2017). Familial STAG2 germline mutation defines a new human cohesinopathy. npj Genomic Med. 2:7. doi: 10.1038/s41525-017-0009-4
Sridhara, S. C., Carvalho, S., Grosso, A. R., Gallego-Paez, L. M., Carmo-Fonseca, M., and de Almeida, S. F. (2017). Transcript dynamics prevent RNA-mediated genomic instability through SRPK2-Dependent DDX23 phosphorylation. Cell Rep. 18, 334–343. doi: 10.1016/j.celrep.2016.12.050
Saklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131
Tang, H., Guo, J., Linpeng, S., and Wu, L. (2019). Next generation sequencing identified two novel mutations in NIPBL and a frame shift mutation in CREBBP in three Chinese children. Orphanet J. Rare Dis. 14:45. doi: 10.1186/s13023-019-1022-8
Tsurusaki, Y., Okamoto, N., Koashi, H., Kosho, T., Imai, Y., Hibi-Ko, Y., et al. (2012). Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44, 376–378. doi: 10.1038/ng.2219
Tuc, E., Bengur, F. B., Aykut, A., Sahin, O., and Alany, A. (2020). The third family with TAF6-related phenotype: alazami-Yuan syndrome. Clin. Genet. 97, 795–796. doi: 10.1111/cge.13711
Tschach, A., Grasshoff, U., Beck-Wood, S., Dufke, C., Bauer, C., Kehrer, M., et al. (2015). Next-generation sequencing in X-linked intellectual disability. Eur. J. Hum. Genet. 23, 1513–1518. doi: 10.1038/ejhg.2015.5