Effect of soil temperature on growth and yield of sweet potato (Ipomoea batatas L.) under cool climate

Gibrilla Dumbuyaa,b, Habtamu Assega AlemaYec,d, Md Mehedi Hasanb, Maya Matsunamie and Hiroyuki Shimonof,†

a Sierra Leone Agricultural Research Institute/Njala Agricultural Research Centre, Freetown, P.O. Box 540, Sierra Leone
b United Graduate School of Agricultural Sciences, Iwate University, 3–18–8, Ueda, Morioka, Iwate 020–8550, Japan
c Ethiopian Institute of Agricultural Research/Fogera National Rice Research and Training Centre, P.O. Box 1937 Fogera, Ethiopia
d Faculty of Agriculture, Iwate University, 3–18–8, Ueda, Morioka, Iwate 020–8550, Japan
e Agri-Innovation Center, Iwate University, 3–18–8, Ueda, Morioka, Iwate 020–8550, Japan

Abstract

In cool climates, low temperature is critical for growth and yield of sweet potato (Ipomoea batatas L.). Despite its negative effects, few studies have quantified the impact. We evaluated effects of soil temperature (T_s) on growth and yield in sweet potato from 2-year field trials in northern Japan. T_s was controlled by three steps using plastic mulch at different colors (green, black and white) with different T_s ranged in 21–24°C especially at early growth before the surface of the mulch covered by plant canopy. Higher T_s significantly increased vine elongation, branching, and leaf appearance, and the magnitude of increased by higher T_s decreased with proceeding growth stages. Increasing T_s significantly increased leaf chlorophyll content and stomatal conductance. Across treatments and years, aboveground biomass was linearly and positively correlated with T_s and 58 g m2 increased in aboveground biomass was observed per 1°C increase in T_s. However, final storage root fresh yield was not significantly affected by high T_s over years. Increased individual storage root weight at high T_s was offset by decreased storage root number. The present quantitative study tested in northern Japan showed that, the enhanced aboveground growth in sweet potato at higher T_s, especially during early growth did not contribute to increase of storage root yields in cool climates.

Key words: Global warming, Plastic mulch, Sweet potato, Soil temperature, Yield

1. Introduction

Global temperature has increased by 0.85°C during 1880 to 2012, a much higher recent rate of increase in the last 15 years, although further increase is still predicted (IPCC, 2013). In the future warming world, while negative impacts of global warming have been projected for tropical areas, crop production in cool climates are predicted to benefit from temperature increase less than 3°C (Easterling et al., 2007).

Sweet potato (Ipomoea batatas L.) is an important vegetable crop that is mainly cultivated in tropical and subtropical region (Iese et al., 2018; Williams et al., 2013). Both the tubers and leaves are rich sources of vitamin, mineral and antioxidants (Teow et al., 2007). Global production of sweet potato in 2017 was over 100 million tonns which followed by potato and cassava, and Asia accounted for more than half of the sweet potato production (FAO, 2019).

Sweet potato has the ability to thrive in marginal growth conditions through its spreading growth habit, and relatively tolerant to abiotic stresses. However, as a tropical crop, sweet potato is highly sensitive to low temperatures (Osaki et al., 1996; Fujiiwara et al., 2004; Gajanayake et al., 2014; Wees et al., 2015).

Low temperature can reduce growth and yield of sweet potato throughout various processes such as seedling establishment, vine elongation, leaf appearance and expansion, canopy radiation capture, photosynthesis, tuber initiation and growth, nutrient uptake and translocations (Kim, 1961; Osaki et al., 1996; Gajanayake et al., 2014; Wees et al., 2015). Temperature is one of the most influential and uncontrollable factors affecting growth and yield of sweet potato in the natural-field environment.

Temperature response in sweet potato has been rarely evaluated compared to other major crop species such as rice (Moya et al., 1998; Shimono et al., 2002, 2004), wheat (Hein et al., 2019; Hazra et al., 2019), maize (Abebe et al., 2016; Siebers et al., 2017), soybean (Rosenthal et al., 2014; Palacios et al., 2019) and potato (Krauss and Marschner, 1984; Van Dam, 1996; Fleisher et al., 2006; Lizana et al., 2017). Most previous temperature response studies on sweet potato were conducted under pot condition and relatively focused on early growth stages. Gajanayake et al. (2014) evaluated 59 days growth response of sweet potato to temperature range of 16–32°C in Soil Plant Atmosphere Research (SPAR) chamber using 2-L pot, and found increased biomass production at temperature higher than 25°C. Hasegawa and Yahiro (1957) evaluated 58 days storage root yield response to soil temperature (T_s) above 23°C. Nighttime temperature response for 50 days was evaluated by...
Kim (1961) using 15 cm × 15 cm pot. Ten and 14 days exposure to air temperature of 23–35°C and Tₛ of 13–40°C were evaluated by Fujisawa et al. (2004) and Nakatani et al. (1986), respectively.

Field studies are the most reliable for understanding and predicting crop productivity, especially for root-crops including sweet potato under a condition without artifacts such as root-zone restrictions (Arp, 1991). Several methods have been used in previous studies to control temperature; using infrared heat array which directly heat plant surface temperatures used in previous studies to control temperature; using infrared root-zone restrictions to air temperature of 23~35°C were evaluated.

To measure soil temperatures, chambers surrounding the plants including open-top chamber (Moya et al., 1998; Hazra et al., 2019; Abebe et al., 2016; Palacios et al., 2019) and open-closed chamber (Hein et al., 2019; Lizana et al., 2017). However, these methods require high equipment costs (chamber, data logger, heater) and a stable supply of electricity which can be difficult for developing countries, as indicated by a bias-distribution of climate-change research in the world by Leakey et al. (2012).

Plastic mulch which changes both the surface and underlying soil temperatures (Lamont, 2005; Kader et al., 2017) can be a useful option to test crop temperature response with relatively low cost. Different colors of plastic mulch such as black, red, green, blue and white can serve as opportunities for a range of Tₛ to modify root-zone microclimates. Black mulch, the predominant color use, is an opaque blackbody absorber, and increases Tₛ, while white mulch, reflecting radiation, can decrease Tₛ, and other family of mulches selectively transmits radiation. Tₛ as well as atmospheric air temperature, are important environmental factors for plant growth and development (Haque et al., 2018; Shehata et al., 2019; Chakraborty et al., 2008; Gordon et al., 2010; Filipovic et al., 2016; Sarkar et al., 2019; Awal and Ikeda, 2003). Note that Tₛ, difference from air temperature, is higher than air temperature before canopy closure.

In the present study, to test the hypothesis that increasing temperature by global warming will have positive impacts on sweet potato productivity in cool climates, we evaluated the effects of Tₛ on sweet potato growth and yield from 2-years field trials using plastic mulch with three colors.

2. Materials and Methods

2.1 Planting materials and growth condition

Cuttings of sweet potato cultivar, “Beniazuma” (24 cm length) were transplanted on the field (Andosol) at Field Science Center, Iwate University in Takizawa, Japan (39°7′N, 141°13′E) on 23 May 2018 and 19 May 2019. Three different colors of plastic mulches (green, black and white) with 0.03 mm thickness and 1.35 m width (Okura Industrial Co. Ltd., Japan) were used to regulate Tₛ in the field, which were expected to give high Tₛ (HT), medium Tₛ (MT) and low Tₛ (LT), respectively. The transmittance of radiation is 50% for green mulch, and less than 1% for both black and white mulches, and the white mulch made cooler soil temperature than black mulch (referred to Okura Industrial Co. Ltd.), due to higher reflectance of radiation on the surface (Lamont, 2005; Kader et al., 2017). After basal fertilization (8.6 g N m⁻², 28.5 g P₂O₅ m⁻² and 28.5 g K m⁻²), 4 ridges (distance between tops of ridge as 1.4 m) with 0.4 m height and 0.8 m width were prepared, with lengths of 29.8 m and 21.7 m long in 2018 and 2019 respectively. The mulches were bedded on each of the 4 ridges at 3 m (2018) and 2.1 m length (2019) for each plot (north-south of the ridge orientation), and arranged in a randomized complete block design with three replications (Supplemental Fig. S1). In both years, 10 cm diameter holes were made and cuttings were planted at a spacing of 0.3 m (one cutting per spot) with a planting density of 4.17 per m² (0.3 m between spots × 0.8 m between rows). Half to two-thirds long of each cutting was inserted into the soil inclined at an angle of about 45° with nodes pointing upwards. Weeding was done by hand when necessary. Tₛ was recorded throughout the experiments at 5 and 10cm depth in 2018 and 5cm depth in 2019 at 30 minutes interval using temperature sensor (TR52, T&D Co., Japan). Precipitation data (Morioka) was obtained from Japan Meteorological Agency.

Additionally, in the present sweet-potato study, we did not set control Tₛ as bare-soil without mulch, to compare these mulches to no-mulch bare soil condition, we measured Tₛ for one month after sowing (20 May to 20 June) in soybean field, located at the adjacent to the sweet-potato field, using identical mulch materials in 2019. Also, soil moisture (volumetric water content) was measured on 10 July, with 100 mL soil core collected within 10 cm depth and oven dried at 105°C over 2 days. The soil sampling was conducted during the rainy season, but no precipitation was recorded during two days before the sampling.

2.2 Measurements

Vine length, leaf and branch numbers were determined on six plants selected at random from the two middle ridges at every 7 or 14 days. Relative chlorophyll contents (SPAD values) were recorded on the youngest fully expanded leaf from top of the longest vine on the six plants per replicate using a portable chlorophyll meter (SPAD, Model 502, Minolta Co LTD, Japan). Leaf stomatal conductance was recorded three times daily on each recording time at morning (7:30–10:00), noon (10:00–12:00) and afternoon (12:00–14:00) from three of the six plants per replicate using a leaf porometer (Model SC-1, Decagon device, Inc., USA).

Final sampling was done at 123 and 120 days after transplanting (DAT), and storage root yield was determined from nine and ten plants per replicate in 2018 and 2019, respectively. Harvested storage roots were washed and weighed individually. Plant organs (roots, stems, leaves and storage roots) were oven dried at 80°C for 72 hours and their component dry weights were determined. Leaves were separated from stem and measured with a leaf area meter (AAM-9, Hayashi denkou co., Japan).

2.3 Statistic analysis

All data collected were statistically analyzed by two ways ANOVA using Excel 2016 (Microsoft, USA). Pearson’s linear regression analysis was conducted to determine the relationship between growth parameters, daily mean and cumulative soil temperatures.

3. Results

3.1 Soil temperature with treatment effect

Daily average Tₛ (at 5 cm depth) for the white mulch treatment
was higher than air temperature by up to 3.8–4.5°C in both years, especially at early growth stages, with subsequent decreased as growth progressed (Fig. 1ab). As expected, T_s differed by mulch color; the white and green mulch treatments produced the lowest and highest T_s, denoted as “LT$_s$” and “HT$_s$”, respectively, with the black mulch treatment ranked in the middle as “MT$_s$” (Fig. 1cd). In both years, clear variations among the treatments were observed during the first 60 DAT, but gradually decreased towards the end with canopy development. Difference in mean T_s before 60 DAT was up to 2.5°C in 2018 (21.8°C for LT_s, 23.8°C for MT_s, and 24.3°C for HT_s), with only 0.4°C difference after 60 DAT (22.6°C for LT_s, 22.7°C for MT_s, and 23.0°C for HT_s). Consequently, full season difference was up to 1.4°C with mean T_s of 22.2, 23.2 and 23.6°C for LT_s, MT_s and HT_s respectively. Similar 2.5°C difference in mean T_s before 60 DAT was observed in 2019 (21.1°C for LT_s, 23.4°C for MT_s, and 23.6°C for HT_s) with 0.6°C difference after 60 DAT (23.8°C for LT_s, 24.1°C for MT_s, and 24.4°C for HT_s) and 1.6°C full season difference (22.4°C for LT_s, 23.7°C for MT_s, and 24.0°C for HT_s). Additionally, differences in maximum T_s (Supplemental Fig. S2) 2018

![Figure 1a](image1.png)

2019

![Figure 1b](image2.png)

Fig. 1. Seasonal change of daily average soil temperature at 5 cm depth (MT_s, black mulch), air temperature (°C) and solar radiation (MJ m$^{-2}$ d$^{-1}$) (a, b), differences in T_s of high (green mulch) and low (white mulch) to MT_s of black mulch (°C) (c, d), and relationship between difference in T_s from MT_s against solar radiation before 60 DAT (e, f) in 2018 and 2019. Values outside and inside parenthesis indicates mean before and after 60 DAT, respectively. LT_s (○), (●) and HT_s (△), (▲), open symbols: 2018, closed symbols: 2019.
were more apparent than minimum T_s especially before 60 DAT (Supplemental Fig. S3).

Daily variation in average T_s before 30 DAT was well explained from solar radiation (Fig. 1ef), and a 0.22–0.47°C increase per 10 MJ m$^{-2}$ solar radiation was observed at HT_s compared to MT_s, and a 0.75–1.12°C decrease per 10 MJ m$^{-2}$ was observed at LT_s compared to MT_s. However, the relationship at the period after 30 DAT was getting weaker (data not shown). T_s at 10 cm depth also showed variations with mulch color, but the magnitude was smaller than T_s at 5 cm (Supplemental Fig. S4).

To compare these mulches covered to no-mulch bare soil conditions, we measured T_s for one month (20 May to 20 June) of soybean field adjacent to the sweet-potato field using identical mulch materials in 2019, and found that T_s for no-mulch condition was 19.1°C. White mulch with T_s of 17.9°C was lower than no-mulch condition, black and green mulches which recorded T_s of 21.3°C and 22.1°C respectively, was higher than no-mulch (Table 2). Soil moisture content was not different among mulches and ranged 41–43% of wet condition, higher than non-mulch of 36%. This suggested that our conditions

Fig. 2. Growth characteristics of sweet potato in response to soil temperature in 2018 and 2019. LT_s (○), MT_s (■), HT_s (△), open symbols: 2018, closed symbols: 2019. ***$P < 0.001$, **$P < 0.01$, *$P < 0.05$, +$P < 0.1$, ns not significant, NA- not available.
in sweet potato would serve as T_s from sub-ambient to supra-ambient, and optimal wet conditions. Precipitation during the season (June to September) was 630 mm (2018) and 363 mm (2019) in which the 30-year mean was 640 mm.

3.2 Morphology, SPAD and stomatal conductance

Vine elongation was significantly different among T_s treatments especially at early growth stages, with the magnitude of the difference decrease as growth progressed in both years (Fig. 2ab). Similar trend was observed for branch and leaf number per plant (Fig. 2deg). HT_s and MT_s treatments had significantly higher SPAD values in both years (Fig. 2ij), and the difference was more apparent in 2018. Over 95% of the variations of vine length (Fig. 2c), branch and leaf numbers (Fig. 2fh) caused by different years, stages, and T_s were explained as function of cumulative T_s. In contrast, SPAD values in MT_s and HT_s treatments were higher than LT_s treatment even at identical cumulative T_s over years (Fig. 2k), although the difference decreased with increasing cumulative T_s.

Leaf stomatal conductance was highest at noon and afternoon for the all treatments (Fig. 3). Even though the aboveground temperature was not controlled in this study, HT_s significantly increased leaf stomatal conductance relative to LT_s by 10–37% and 3–54% in 2018 and 2019, respectively.

3.3 Biomass and storage root yield

Higher T_s significantly increased leaf and stem biomass in both years ($P < 0.05$) (Table 1). No significant treatment differences were observed in yields, root and storage root biomass in both years. Biomass partition to roots and storage roots were significantly decreased by higher T_s.

Relationships between aboveground biomass, root biomass and storage root production against mean T_s before 60 DAT are presented in Figure 4. Positive correlation was observed.

Fig. 3. Leaf stomatal conductance (g_s) of sweet potato in response to soil temperature at different day time (morning, 8:00 ~ 10:00, noon, 10:00 ~ 12:00 and afternoon, 12:00 ~ 14:00) in 2018 and 2019. LT_s (○), MT_s (□), and HT_s (△), open symbols: 2018, closed symbols: 2019. *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, + $P < 0.1$, ns not significant.
between T_c and aboveground biomass ($P < 0.001$) (Fig. 4a). No relationships were observed with root biomass (Fig. 4b) and storage root yield (Fig. 4c), which was the result of trade-off relationship between storage root number (Fig. 4d) and storage root size (Fig. 4e); where higher T_c increased individual storage root size, but decreased storage root number. Relationships of all parameters against mean T_c after 60 DAT were not significant, except for root biomass (Fig. 5).

4. Discussion

We tested the hypothesis that increase in soil temperature by global warming especially during early growth will have positive impacts on sweet potato productivity in cool climates, but our hypothesis was denied based on 2-year field trials (Fig. 4).

This is the first report that quantify sweet potato response to early growth T_c under multi-year field experiments in cool climates. Our T_c treatments which were in the range of 21-24°C before 60 DAT, strongly influenced aboveground growth (Fig. 4a), with no significant effects on root biomass (Fig. 4b) and storage root yields (Fig. 4c). Most previous season-long field studies on sweet potato were conducted under natural environment without controlling temperatures (Ogasawara and Nakatani, 1950; Osaki et al., 1996; Sumi and Koriyama, 2013). Osaki et al. (1996) reported lower productivity of sweet potato compared to potato and beet in a single season experiment under temperature limited conditions in Hokkaido, Japan. Ogasawara and Nakatani (1950) reported positive correlation between storage root yield and air temperature especially at early growth stage during 13-seasons field experiments under cool climate in northern Japan. These studies were conducted under natural field conditions without controlling targeted environment, so the impact of temperature on productivity was confounded with other climate variables such as solar radiation. The present quantitative field study controlling T_c would fill the knowledge gap in sweet potato response to temperature, for which information is relatively limited when compared to potato (Krauss and Marschner, 1984; Van Dam et al., 1996; Fleisher et al., 2006), cereals and legumes (Moya et al., 1998; Shimono et al., 2002, 2004; Hein et al., 2019; Hazra et al., 2019; Abebe et al., 2016; Siebers et al., 2017; Rosenthal et al., 2014; Palacios et al., 2019).

Aboveground responses to T_c

Even though aboveground temperature was not controlled in this study, higher T_c significantly improved vine length, branch and leaf number before 60 DAT (Fig. 2abd). The effects of T_c on morphology gradually decreased with days as well regressed by cumulative T_c (Fig. 2cfh), but still aboveground biomass at harvest was increased by 10-12% per 1°C increase in T_c (increase of 58 g m$^{-2}$C relative to LT_c of 473-572 g m$^{-2}$) (Fig. 4a). Our range of effect was similar with previous studies; about 10% increase of aboveground biomass per 1°C increase of air temperature (7 g/C increase from 17°C to 26°C at 59d, calculated from their Fig. 6) (Gajanayake et al., 2014), and 6-7% increase of aboveground biomass per 1°C increase of T_c (30-33g/C increase from 23°C to 32°C at 58d, calculated from their Table 1) (Hasegawa and Yahiro, 1957).

Underlying physiological mechanism of increased aboveground growth at higher T_c might be attributed to root activity and/or hydraulic conductance for water transport. As shown in Figure 3, gs of the uppermost leaves were consistently increased by higher T_c from morning to afternoon throughout the seasons. Shimono et al. (2004) reported that, root cooling of rice in a temperature range of 16-25°C decreased gs, and plant water content, despite rice is grown under flooding condition. Similar response associated with increase of water fluxes of transpiration was reported by McWilliam et al. (1982) for cotton and bean.
indicating lowered hydraulic conductance. Murai-Hatano et al. (2008) evaluated response of root hydraulic conductance to temperature in rice, and found increased root conductance with increasing temperature, and associated the increase to be regulated by gene expressions of aquaporin. Aboveground growth in our study might have been promoted partially through increase of turgor pressure affecting cell division and elongation (Cosgrove, 1993) although we did not measure the plant water status.

Additionally, SPAD values were also increased at higher T_s (Fig. 2ij), indicating the high N uptake ability of roots under higher T_s. Engles (1994) found significantly low N uptake rate of maize under low root zone temperature of 12 and 16°C compared to 20°C. Although we did not measure leaf photosynthesis, the increase of SPAD and g_s suggested increase of leaf photosynthesis (Shimono et al., 2004). Thus, in our study, aboveground growth at HT_s was suggested to be improved through the enhanced ability of the roots to uptake sufficient nutrients and water indirectly.

In terms of radiation environment, plants under white mulch of LT_s would capture more radiation by the reflectance from the mulch surface than other colors, and possibly promoting photosynthesis (Lamont, 2005; Kader et al., 2017), but the above-ground growth of LT_s was lowered than other mulch colors (Fig. 2), indicating negative effects of lower T_s overcame the positive effects of higher radiation in the white mulch.

Storage root yield to T_s

Contrast with aboveground growth response to T_s, storage root yield was not significantly affected by higher T_s in the range of our 120-d field study over years (Fig. 4c). Yield in sweet potato is determined by storage root number and individual size. In the present study, higher T_s tended to increase individual size of storage roots (Fig. 4d) while decrease storage roots number (Fig. 4e). Gajanayake et al. (2014) reported decreased

Fig. 4. Relationships of above-ground biomass, root biomass, storage root fresh yield, number of storage root and individual storage root fresh yield of sweet potato against soil temperatures at 0-60 DAT in 2018 and 2019. Regression in Fig. 4e was conducted excluding one outlier (dotted circle). LT_s, MT_s, HT_s, open symbols: 2018, closed symbols: 2019.
maximum storage roots number at air temperature above 25°C in a short-term study of 59 days. We did not monitor number of storage root after initiation, but aboveground growth response in our study was well explained by cumulative T_s (Fig. 2cfh). This indicated acceleration of the development stages including belowground growth at high temperature, resulting to a shorter duration for storage root initiation, thus, the decreased number of storage roots under higher T_s.

On the other hand, individual storage root size was increased at higher T_s (Table 1). There was a positive relationship between individual storage root size and T_s before 60 DAT (excluding one outlier point) (Figure 4e), but no relationship with T_s after 60 DAT even with the excluding of one outlier point (Fig. 5). Struik et al. (1990) reported that, storage root growth is strongly affected by the sum of daily PAR intercepted by leaves, and carbohydrate supply from above to below ground which would compensate to maintain individual storage root size. Additionally, the relationship was not significant with T_s after 60 DAT, but since the difference in T_s among treatments was in the range of 0.2~0.6°C, this might have positive impact of storage root growth (Krauss and Marschener, 1984). In our study, the enhanced carbohydrate supply from above-ground at higher T_s might support to increase the individual storage size. To adapt to the future warming world, selection of cultivars with less phenological sensitivity to temperature increase with maximizing the duration of storage root initiation might be one option.

Another possibility of different response of yield to T_s compared to above-ground response to T_s is the over-nutrition due to enhanced soil N mineralization by higher T_s, so-called as ‘Excessive vine growth’ (Sawahata, 1989). Further studies are required to examine effects of T_s on growth and yield at range of N fertilization with considering the processes of the dry matter partitioning.

![Fig. 5. Relationships of above-ground biomass, root biomass, storage root fresh yield, number of storage root and individual storage root fresh yield of sweet potato against soil temperatures at 60~120 (123) DAT in 2018 and 2019. Regression in Fig. 5e was conducted excluding one outlier (dotted circle). LT_s, (\bigcirc), (\bullet); MT_s, (\Box), (\blacksquare); HT_s, (\triangle), (\blacktriangle), open symbols: 2018, closed symbols: 2019.](image-url)
Methodologies for controlling soil temperature

The use of plastic mulch to control temperature will be one useful option to evaluate environmental responsiveness (Lamont, 2005), as applied to several plant species including rice (Haque et al., 2018), potato (Shehata et al., 2019), wheat (Chakraborty, 2008), okra (Gordon et al., 2010), bell pepper (Filipovic et al., 2016), onion (Sarkar et al., 2019) and peanut (Awal and Ikeda, 2003). In our study, we successfully controlled T_s with three plastic film colors (Fig. 1, Supplemental Fig. S1, 2, 3), agreed with previous studies (Lamont, 2005; Gordon et al., 2010). We quantified T_s change before canopy cover as function of solar radiation. The increased in T_s by 0.68–1.40°C and 1.23–1.71°C per 10 MJ m$^{-2}$ increase in solar radiation for black and green colored mulch compared to white respectively (Fig. 1ef), will serve as criteria for plastic mulch application in different locations and environments, although the magnitude can also be affected by other climate factors such as wind speed and soil characteristics.

Disadvantages of the use of plastic mulch are; firstly, since the source of temperature is solar radiation, plastic mulch was difficult to control T_s in our study after full canopy expansion during the latter growth period, especially with the creeping growth habit of sweet potato (Fig. 1). However, for erect plant species such as wheat, soybean and also with early maturing species, plastic mulch might control T_s for the longer growing season than sweet potato. Secondly, plastic mulch can affect microclimate with reflectance of radiation to aboveground (Ai et al., 2018); white mulch can reflect more microclimate of plant (Privé et al., 2008), although we did measure the reflectance and its positive effects on photosynthesis. In addition, plastic mulch can increase soil moisture (Lamont, 2005) throughout the growing season which can be different for bare-soil of the natural environment, and this might affect T_s predictions for future climate. In fact, the soil moisture content was kept as wet in our study for soybean using identical mulches (Table 2).

Despite these disadvantage, plastic mulch with different colors will be useful to evaluate plant response to T_s with very low cost relative to other methodologies such as infrared heat array (Kimball et al., 2008; Siebers et al., 2017; Rosenthal et al., 2014) and chambers surrounding the plants including open-top chamber (Moya et al., 1998; Hazra et al., 2019; Abebe et al., 2016; Palacios et al., 2019) and open-closed chamber (Hein et al., 2019; Lizana et al., 2017), and this will help to increase our knowledge about climate change effects on various plant species in the world including developing countries.

Conclusion

Our 2-year field trials showed that aboveground growth of sweet potato was significantly increased by higher T_s, and it was well expressed as a function of T_s. However, storage root yield was less affected by higher T_s especially at early growth.

Acknowledgments

We thank Iwate University staff especially Mr. Shinji Takeda and Mr. Akira Nakanishi, for their technical assistance, and Professor Susumu Yui for his valuable comments on the manuscript.

References

Abebe A, Pathak H, Singh SD et al., 2016: Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. *Agriculture, Ecosystems & Environment* **218**, 66–72.

Ai Z, Yang W, Wang Q et al., 2018: Changes of surface energy partitioning caused by plastic mulch in a cotton field. *International Agrophysics* **32**, 349–356.

Arp WJ, 1991: Effects of source-sink relations on photosynthetic acclimation to elevated CO$_2$. *Plant, Cell and Environment* **14**, 869–875.

Awal MA, Ikeda T, 2003: Effect of elevated soil temperature on radiation-use efficiency in peanut stands. *Agricultural Forest Meteorology* **118**, 63–74.

Chakraborty D, Nagarajan S, Aggarwal P et al., 2008: Effect of mulching on soil and plant water status, and the growth and yield of wheat (*Triticum aestivum* L.) in a semi-arid environment. *Agricultural Water Management* **95**, 1323–1334.

Cosgrove DJ, 1993: Wall extensibility: its nature, measurement and relationship to plant cell growth. *New Phytologist* **124**, 1–23.

Easternling WE, Aggarwal PK, Batima P et al., 2007: Food, fiber and forest products. In: Parry ML, Canziani OF, Palutikof JP, et al., (Eds.), Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 273–313.

Engles C, 1994: Effect of root and shoot meristem temperature on shoot to root dry matter partitioning and the internal concentrations of nitrogen and carbohydrates in maize and wheat. *Annals of Botany* **73**, 211–219.

FAO (2019) FAOSTat. Access 24-Dec, 2019.

Filipovic V, Romic D, Romic M et al., 2016: Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study. *Agricultural Water Management* **176**, 100–110.

Fleisher DH, Shillito RM, Timlin DJ et al., 2006: Approaches to Modeling Potato Leaf Appearance Rate. *Agronomy Journal* **98**, 522–528.

Fujimura M, Kubota C, Koizai T et al., 2004: Air temperature effect on leaf development in vegetative propagation of sweetpotato single node cutting under artificial lighting. *Scientia Horticulturae* **99**, 249–256.

Gajananake B, Reddy KR, Shankle MW et al., 2014: Quantifying Storage Root Initiation, Growth, and Developmental Responses of Sweetpotato to Early Season Temperature. *Agronomy Journal* **106**, 1795–1804.

Gordon GG, Foshee GW, Reed ST et al., 2010: The Effects of colored plastic mulches and row covers on the growth and yield of okra. *HortTechnology* **20**, 224–233.

Haque MA, Jahiruddin M, Clarke D, 2018: Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. *International Soil and Water Conservation Research* **6**, 317–324.

Hasegawa H, Yahiro K, 1957: Effects of high soil temperatures on the growth and sweetpotato plant. *Japanese Journal of Crop Science* **26**, 37–39 (Japanese with English abstract).

Hazra S, Swain DK, Bhadoria PBS, 2019: Wheat grown under elevated CO$_2$ was more responsive to nitrogen fertilizer in Eastern India. *European Journal of Agronomy* **105**, 1–12.
Hein NT, Wagner D, Bheemanahalli R et al., 2019: Integrating field-based heat tents and cyber-physical system technology to phenotype high night-time temperature impact on winter wheat. *Plant Methods* **15**, 41.

Iezza V, Holland E, Wairiu M et al., 2018: Facing food security risks: The rise and rise of the sweet potato in the Pacific Islands. *Global Food Security* **18**, 48–56.

IPCC, 2013: Summary for Policymakers. In: Stocker TF Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–29.

Kader MA, Senge M, Mojid MA et al., 2017: Recent advances in mulching materials and methods for modifying soil environment. *Soil and Tillage Research* **168**, 155–166.

Kim YC, 1961: Effects of thermonperiodism on tuber formation in *Ipomoea batatas* under controlled conditions. *Plant physiology* **36**, 680–684.

Kimball BA, Conley MM, Wang S, et al., 2008: Infrared heater arrays for warming ecosystem field plots. *Global Change Biology* **14**, 309–320.

Krauss A, Marschner H, 1984: Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. *Potato Research* **27**, 297–303.

Lamont WJ, 2005: Plastics: Modifying the microclimate for the production of vegetable crops. *HortTechnology* **15**, 477.

Leakey ADB, Bishop KA, Ainsworth EA, 2012: A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. *Current Opinion in Plant Biology* **15**, 228–236.

Lizana XC, Avila A, Tolaba A, Martinez JP, 2017: Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. *Agricultural and Forest Meteorology* **239**, 192–201.

McWilliam JR, Kramer PJ, Musser RL, 1982: Temperature-induced water stress in chilling-sensitive plants. *Functional Plant Biology* **9**, 343–352.

Moya TB, Ziska LH, Namuco OS, et al., 1998: Growth dynamics and genotypic variation in tropical, field-grown paddy rice (*Oryza sativa* L.) in response to increasing carbon dioxide and temperature. *Global Change Biology* **4**, 645–656.

Murai-Hatano M, Kuwagata T, Sakurai J, et al., 2008: Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. *Plant and Cell Physiology* **49**, 1294–1305.

Nakatani M, Oyanagi A, Watanabe Y, 1986: Effects of soil temperatures on the rooting of cut-sprouts of sweet potato (*Ipomoea batatas* Lam.) I. Optimum soil temperature for rooting and effects of high soil temperatures on the physiological and anatomical characteristics of roots. *Japanese Journal of Crop Science* **55**, 208–216 (Japanese with English abstract).

Ogasawara H, Nakatani S, 1950: Effect of climatic elements on sweet potato yield in Iwate. *Journal of the Japanese Society for Horticultural Science* **19**, 225–228 (Japanese).

Osaki M, Matsumoto M, Shinano T et al., 1996: A root-shoot interaction hypothesis for high productivity of root crops. *Soil Science and Plant Nutrition* **42**, 289–301.

Palacios CJ, Grandis A, Carvalho VJ et al., 2019: Isolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seeds. *Food Chemistry* **275**, 610–617.

Privé JP, Russell L, Leblanc A, 2008: Use of extenday reflective groundcover in production of ‘Gala’ apples (*Malus domestica*) in New Brunswick, Canada: 1. Impact on canopy microclimate and leaf gas exchange. *New Zealand Journal of Crop and Horticultural Science* **36**, 221–231.

Rosenthal DL, Ruiz-Vera UM, Siebers MH et al., 2014: Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (*Glycine max*) at elevated [CO2] and temperatures under fully open air field conditions. *Plant Science* **226**, 136–146.

Sarkar MD, Solaiman AHM, Jahan MS et al., 2019: Soil parameters, onion growth, physiology, biochemical and mineral nutrient composition in response to colored polythene film mulches. *Annals of Agricultural Sciences* **64**, 63–70.

Sawahata H, 1989: Studies on the characteristics of the thickening of storage root of sweet potato. II. Influence of the supply of mineral nutrients on the thickening of storage root. *Japanese Journal of Crop Science* **58**, 290–296 (in Japanese with English abstract).

Shehata SA, Abouziena HF, Abdelgawad KF et al., 2019: Weed Control efficacy, growth and yield of potato (*Solanum tuberosum* L.) as affected by alternative weed control methods. *Potato Research* **62**, 139–155.

Shimono H, Hasegawa T, Fujimura S et al., 2004: Responses of leaf photosynthesis and plant water status to low water temperature at different growth stages. *Field Crops Research* **89**, 71–83.

Shimono H, Hasegawa T, Iwama K, 2002: Response of growth and grain yield in paddy rice to cool water at different growth stages. *Field Crops Research* **73**, 67–79.

Siebers MH, Slattery RA, Yendrek CR et al., 2017: Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. *Agriculture, Ecosystems & Environment* **240**, 162–170.

Struik PC, Haverkort AJ, Vreugdenhil D et al., 1990: Manipulation of tuber-size distribution of a potato crop. *Potato Research* **33**, 417–432.

Sumi A, Koriyama T, 2013: Fundamental studies on a crop-weather relation model for sweet potato (*Ipomoea batatas* (L.) Lam.). *Japanese Journal of Crop Science* **82**, 369–377 (Japanese with English abstract).

Teow CC, Truong V-D, McFeters RF et al., 2007: Antioxidant activities, phenolic and β-aroetene contents of sweet potato genotypes with varying flesh colours. *Food Chemistry* **103**, 829–838.

Van Dam J, Kooman PL, Struik PC, 1996: Effects of temperature and photoperiod on early growth and final number of tubers in potato (*Solanum tuberosum* L.). *Potato Research* **39**, 51–62.

Wees D, Seguin P, Boisclair J, 2015: Sweet potato production in a short-season area utilizing black plastic mulch: effects of cultivar, in-row plant spacing, and harvest date on yield parameters. *Canadian Journal of Plant Science* **96**, 139–147.

Williams R, Soares F, Pereira L et al., 2013: Sweet potato can contribute to both nutritional and food security in Timor-Leste. *Field Crops Research* **146**, 38–43.