Affine invariant points and new constructions

Ivan Iurchenko

Abstract

In [2] Grünbaum asked if the set of all affine invariant points of a given convex body is equal to the set of all points invariant under every affine automorphism of the body. In [3] we have proven the case of a body with no nontrivial affine automorphisms. After some partial results ([7],[6]) the problem was solved in positive by Mordhorst [8]. In this note we provide an alternative proof of the affirmative answer, developing the ideas of [3]. Moreover, our approach allows us to construct a new large class of affine invariant points.

Keywords: affine invariant points, symmetry, convex geometry.

1 Introduction

Let \mathbb{K}^n be the set of all convex bodies in \mathbb{R}^n and let $P : \mathbb{K}^n \rightarrow \mathbb{R}^n$ be a function satisfying the following two conditions:

1. For every nonsingular affine map $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and every convex body $K \in \mathbb{K}^n$ one has $P(\varphi(K)) = \varphi(P(K))$.
2. $P(K)$ is continuous in the Hausdorff metric.

Such a function P is called an affine-invariant point. The centroid and the center of the John ellipsoid (the ellipsoid of maximal volume contained in a given convex body) are examples of affine-invariant points.

Let \mathcal{P} be the set of all affine-invariant points in \mathbb{R}^n. It was shown in [7] that \mathcal{P} is an affine subspace of the space of continuous functions on \mathbb{K}^n with values in \mathbb{R}^n. Grünbaum [2] asked a natural question: how big is the set \mathcal{P}? In particular, how to describe the set $\mathcal{P}(K) = \{P(K) \mid P \in \mathcal{P}\}$ for a given $K \in \mathbb{K}^n$? Denote the set of points fixed under affine maps of K onto itself by $\mathcal{F}(K)$. Grünbaum observed that $\mathcal{P}(K) \subset \mathcal{F}(K)$ and asked the following question:
Question 1.1. Is the set \mathcal{P} big enough to ensure that $\mathcal{P}(K) = \mathcal{F}(K)$ for every $K \in \mathbb{K}^n$?

In [7], Meyer, Schütz and Werner proved that the set of convex bodies K for which $\mathcal{P}(K) = \mathbb{R}^n$ is dense in \mathbb{K}^n. Then the author showed that if $\mathcal{F}(K) = \mathbb{R}^n$ then $\mathcal{P}(K) = \mathbb{R}^n$ [3]. Very recently, using a completely different approach, Mordhorst [8] has shown the affirmative answer to the Question [1,1] This proof used a previous development by P. Kuchment [4, 5]. The purpose of this note is to show that the method of [3] can be also used to answer Question [1,1] providing a new proof. Moreover, we construct a new large class of affine invariant points.

2 Definitions and Notation

Recall some basic notations from group theory.

The group of all invertible linear transformations of \mathbb{R}^n is denoted by $GL(n, \mathbb{R})$. The group of all invertible linear transformations with the determinant equal to 1, i.e. the transformations which preserve volume and orientation is denoted by $SL(n, \mathbb{R})$.

For the purposes of the current paper we will use the group of all linear transformations preserving volume but not necessarily preserving orientation, i.e. the transformations with the determinant equal ± 1 denoted by SL_n.

The group of all affine transformations of \mathbb{R}^n is denoted by $Aff(n)$. It may be represented as $GL(n) \ltimes \mathbb{R}^n$ with the rule $(r, x)(a) = r(a) + x$ where $r \in GL(n)$, $x, a \in \mathbb{R}^n$.

The unit Euclidian ball in \mathbb{R}^n is denoted by B^2. The Euclidian norm of a vector is denoted by $|x|$. The Lebesgue measure on \mathbb{R}^n is denoted by μ.

A right (left) Haar measure is a measure on a locally compact topological group that is preserved under multiplication by the elements of the group from the right (left). The Lebesgue measure is an example of a Haar measure on \mathbb{R}^n. Right and left Haar measures are unique up to multiplication however, not necessarily equal to each other. In this paper we always use a left Haar measure and denote the Haar measure of a set X by $\text{meas}(X)$.

$SAff(n)$ is the group of all affine transformations of \mathbb{R}^n preserving volume. This group may be represented as a semidirect product of the group of all matrices with determinants equal to ± 1 and \mathbb{R}^n with the rule $(r, x)(a) = r(a) + x$ for every $r \in GL(n)$ with $\det(r) = \pm 1$, $x \in \mathbb{R}^n$. $SAff(n)$ is equipped
with the Haar measure, which is the product of Haar measures on the group of all matrices with the determinant equal to ±1 and the group \mathbb{R}^n.

The Hausdorff metric is a metric on \mathcal{K}_n, defined as

$$d_H(K_1, K_2) = \min\{\lambda \geq 0 : K_1 \subset K_2 + \lambda B^n_2; K_2 \subset K_1 + \lambda B^n_2\}.$$

By \mathcal{K}_1^n we denote the set of all convex compact sets in \mathbb{R}^n with volume 1.

3 Affine Invariant Points

For a given convex body $K \in \mathcal{K}^n$ a family of affine invariant points is constructed by taking an arbitrary point v and averaging all possible affine transformations of this point with the weight

$$F = F_K : \mathcal{K}^n \to C(SAff(n))$$

defined by

$$F_K(L)(\varphi) = \mu(\varphi^{-1}(L) \cap K), L \in \mathcal{K}^n, \varphi \in SAff(x).$$

Let $k \geq 1$ be an integer. For $L \in \mathcal{K}_1^n$ define the affine invariant point $T_{k,K,v}$ by

$$T_{k,K,v}(L) = \left(\int_{SAff(n)} F^k(L)(\varphi)d\varphi \right)^{-1} \int_{SAff(n)} F^k(L)(\varphi)v(\varphi)d\varphi. \quad (1)$$

In general, for $L \in \mathcal{K}^n$ we set

$$T_{k,K,v}(L) = |L|^{1/n}T_{k,K,v}(L/|L|^{1/n}). \quad (2)$$

Theorem 3.1. For a given convex body K and a vector $v \in \mathcal{F}(K)$, the function $T_{k,K,v} : \mathcal{K}^n \to \mathbb{R}^n$, defined in (1) has the following properties:

1. There exists $k_0 \in \mathbb{Z}_+$ such that for every $k \geq k_0$, $T_{k,K,v}(L)$ is defined for all $L \in \mathcal{K}^n$.
2. $T_{k,K,v}$ is an affine invariant point if defined.
3. $T_{k,K,v}(K) \to v, k \to \infty$.

Theorem 3.1 implies that for every $K \in \mathcal{K}^n$ and every $v \in \mathcal{F}(K)$ we can find an affine invariant point F such that $F(K)$ is arbitrarily close to v. However, this implies that every point in $\mathcal{F}(K)$ can be obtained as an affine point of K because the set of all affine points is an affine space [7].
4 Technical Part

To prove Theorem 3.1 we will require some tools for integration over the group $SAff(n)$.

For a matrix $A \in GL(n, \mathbb{R})$ the ordered sequence $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ of the singular values of the matrix A, is the sequence of all eigenvalues of $\sqrt{AA^*}$ counting multiplicities; see e.g. [1]. In the case $A \in SL_n^-$ we have $1 = |\det(A)| = \prod_{i=1}^n \lambda_i$. For a matrix $A \in GL(n, \mathbb{R})$ we denote by $\|A\|$ its operator norm $\ell_2 \to \ell_2$, that is $\|A\| = \sup_{|x|=1} |Ax|.$

Note that singular values of A give a convenient description of the norm $\|A\| = \lambda_1$.

For $R \geq 1$ the “ball” S_R is the set of all matrices $A \in SL_n^-$ such that $\|A\| \leq R$.

Note that for $R_1, R_2 \geq 1$ the following equality holds: $S_{R_1}S_{R_2} = S_{R_1R_2}$. Indeed, by the property of the operator norm, $S_{R_1}S_{R_2} \subset S_{R_1R_2}$. On the other hand, according to the polar decomposition, every $A \in S_{R_1R_2}$ may be represented in the form $A = UP$, where U is a unitary matrix and P is positive Hermitian, see e.g. [9]. Then

\[A = UP^{\ln R_1/\ln (R_1R_2)} P^{\ln R_2/\ln (R_1R_2)}, \]

with $U^{\ln R_1/\ln (R_1R_2)} \in S_{R_1}$, $P^{\ln R_2/\ln (R_1R_2)} \in S_{R_2}$.

Lemma 4.1. For every $\varepsilon > 0$ there exists a finite set $N \subset S_{2(1+\varepsilon)}$ such that for every integer $l \geq 0$ one has

\[S_{2^l(1+\varepsilon)} \subset N^l S_{(1+\varepsilon)}. \]

Proof. Since the set $S_{2(1+\varepsilon)}$ is compact, it can be covered by some finite collection of balls:

\[S_{2(1+\varepsilon)} \subset \bigcup_{N \in N_{1+\varepsilon}} N \cdot S = NS_{1+\varepsilon}. \]

We will show by induction that the set N satisfies the condition of the proposition. The base case for $l = 0$ is trivial. Now we show the inductive step:

\[S_{2^l(1+\varepsilon)} = S_{2^l(1+\varepsilon)} S_2 \subset N^l S_{1+\varepsilon} S_2 = N^l S_{2(1+\varepsilon)} \subset N^l N S_{1+\varepsilon}. \]

\[\square \]
Proposition 4.2. For every \(n \geq 2, \alpha \geq 0 \) there exists \(p \geq 1 \) such that for any convex bodies \(K, L \) the integral

\[
\int \int_{SL_n^+ \mathbb{R}^n} \mu^p (L \cap (M(K) + x)) \|M\|^\alpha dx dM
\]

converges. Here \(dM \) is a Haar measure on \(SL_n^- \).

Proof. There exists a radius \(R > 0 \) such that the bodies \(K, L \) are simultaneously contained within the ball \(RB^n_2 \). Therefore,

\[
\int \int_{SL_n^+ \mathbb{R}^n} \mu^p (L \cap (M(K) + x)) \|M\|^\alpha dx dM \\
\leq \int \int_{SL_n^+ \mathbb{R}^n} \mu^p (RB^n_2 \cap (M(RB^n_2) + x)) \|M\|^\alpha dx dM \\
= R^{pn} \int \int_{SL_n^+ \mathbb{R}^n} \mu^p (B^n_2 \cap (M(B^n_2) + \frac{x}{R})) \|M\|^\alpha dx dM \\
= R^{pn+n} \int \int_{SL_n^+ \mathbb{R}^n} \mu^p (B^n_2 \cap (M(B^n_2) + x)) \|M\|^\alpha dx dM.
\]

It is enough to consider the convergence of the integral

\[
\int \int_{SL_n^+ \mathbb{R}^n} \mu^p (B^n_2 \cap (M(B^n_2) + x)) \|M\|^\alpha dx dM. \tag{3}
\]

Note that the lengths of semiaxes of the ellipsoid \(M(B^n_2) \) are defined by the singular values \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) of \(M \) in particular, the diameter of \(M(B^n_2) \) equals \(2\lambda_1 \) and its minimal width equals \(2\lambda_n \). This means that for \(|x| > \lambda_1 + 1 \) the volume \(\mu (B^n_2 \cap (M(B^n_2) + x)) = 0 \). For all other \(x \) the ellipsoid \(MB^n_2 \) is contained within the slab \(L = \{ y \in \mathbb{R}^n : |\langle y, u \rangle| \leq \lambda_n \} \) for some vector \(u \). Therefore,

\[
\mu (B^n_2 \cap (M(B^n_2) + x)) \leq \mu (B^n_2 \cap (L + x)) \leq 2\lambda_n |B^n_2 - 1|.
\]
Summing up, the integral (3) is bounded by

\[
\int_{SL_n} \int_{\mathbb{R}^n} \mu^p (B_2^n \cap (M(B_2^n) + x)) \|M\|^\alpha \, dx \, dM
\]

\[
= \int_{SL_n} \int_{|x| \leq \lambda_1 + 1} \mu^p (B_2^n \cap (M(B_2^n) + x)) \|M\|^\alpha \, dx \, dM
\]

\[
\leq \int_{SL_n} \int_{|x| \leq \lambda_1 + 1} (2\lambda_n |B_2^{n-1}|)^p \|M\|^\alpha \, dx \, dM
\]

\[
\leq \int_{SL_n} (2\lambda_1)^n |B_2^n| (2\lambda_n |B_2^{n-1}|)^p \|M\|^\alpha \, dM
\]

\[
= 2^{n+p} |B_2^{n-1}|^p |B_2^n| \int_{SL_n} \lambda_1^{n+\alpha} \lambda_n^p \, dM.
\]

Keeping in mind that \(\prod_{i=1}^n \lambda_i = 1 \) one has

\[
\lambda_1^{n+\alpha} \lambda_n^p \leq \lambda_1^{n+\alpha} (\lambda_2 \lambda_3 \ldots \lambda_n)^p/(n-1) = \lambda_1^{n+\alpha} \left(\frac{1}{\lambda_1} \right)^{(n-1)} = \lambda_1^{n+\alpha - \frac{p}{n-1}}.
\]

Finally, putting \(q = -n - \alpha + \frac{p}{n-1} \) it is enough to show that there exists sufficiently big \(q > 0 \) such that the integral

\[
\int_{SL_n} \|M\|^{-q} \, dM
\]

is convergent. To prove this we split the group \(SL_n^- \) into smaller sets

\[
S_{2l} \setminus S_{2l-1}, l \geq 1.
\]

Then

\[
\int_{SL_n} \|M\|^{-q} \, dM = \sum_{l=1}^\infty \int_{S_{2l} \setminus S_{2l-1}} \|M\|^{-q} \, dM \leq \sum_{l=1}^\infty 2^{-lq} \text{meas}(S_{2l}).
\]
According to Lemma [111] there exists a set N such that
\[\text{meas}(S_2) \leq |N| \text{meas}(S_{2(1+\varepsilon)}) \].
Therefore, the series (5) is bounded by a geometric series with the ratio $2^{-q} |N|$ which is convergent for $q > \log_2 |N|$.

Proposition 4.3. Let G be a locally compact topological group and dx be a Haar measure on G. Let continuous functions f, g satisfy the following conditions:

1. For every $x \in G$: $0 \leq f(x) \leq 1$.
2. There exists $x_0 \in G$ such that $f(x_0) = 1$. Moreover, if $x_1 \in G$ is such that $f(x_1) = f(x_0) = 1$ then $g(x_1) = g(x_0)$.
3. There exists a constant $c < 1$ and a compact K such that for every $x \in G \setminus K$, $f(x) < c$.
4. There exists $k_0 \geq 1$ such that for every $k \geq k_0$ the integrals
\[
\int_G f^k(x) dx, \int_G f^k(x) |g(x)| dx
\]
are convergent.

Then
\[
\lim_{k \to \infty} \frac{\int_G f^k(x)g(x) dx}{\int_G f^k(x) dx} = g(x_0).
\]

Proof. Note that the integral
\[
\int_G f^k(x)|g(x) - g(x_0)| dx \leq \int_G f^k(x) |g(x)| dx + g(x_0) \int_G f^k(x) dx
\]
is convergent for for $k \geq k_0$. Passing to the new function $g - g(x_0)$ if needed, we may assume that $g(x_0) = 0$.

The set $N = f^{-1}(1) \subset K$ is closed and therefore compact. By the assumption of the proposition $g(N) = \{0\}$. Fix $\varepsilon > 0$ and consider a neighbourhood U of N such that $|g| < \varepsilon$ on U. There exists a positive constant $C < 1$ such that $f < C$ outside of U. Indeed, outside of K the function f is bounded from above by c, on the compact set $K \setminus U$ the function f is separated from 1 by the compactness argument. By continuity of f, there exists a constant $D \in (C, 1)$ and a neighborhood $V \subset U$ of N such that $D < f \leq 1$ on V. Then
\[\frac{\int_G f^k(x) |g(x)| \, dx}{\int_G f^k(x) \, dx} \leq \frac{\int_U f^k(x) |g(x)| \, dx + \int_{G \setminus U} f^k(x) |g(x)| \, dx}{\int_U f^k(x) \, dx} \]
\[\leq \varepsilon + \frac{\int_{G \setminus U} f^k(x) |g(x)| \, dx}{\int_V f^k(x) \, dx} \]
\[\leq \varepsilon + \frac{C^{k-k_0} \int_{G \setminus U} f^{k_0}(x) |g(x)| \, dx}{D^{k-k_0} \int_V f^{k_0}(x) \, dx} \to \varepsilon, \ k \to \infty. \]

Sending \(\varepsilon \) to 0 we obtain the required statement.

\[\square \]

Proof of Theorem 3.1. For fixed \(K \) and \(v \) we will shorten the notation by writing \(T_k \) instead of \(T_{k,K,v} \).

1. Proposition 4.2 applied with \(\alpha = 1 \) (respectively, \(\alpha = 0 \)) implies that the integral in the numerator (respectively, denominator) is convergent.

2. \(T_k(cK) = cT_k(K) \) by the definition of \(T_k \).

For every \(\tau \in SAff(n) \) and \(L \in \mathbb{K}_1^n : T_k(\tau(L)) = \tau(T_k(L)) \).

Denote
\[c = \left(\int_{SAff(n)} F^k(L)(\varphi) \, d\varphi \right)^{-1}. \]

For arbitrary \(\tau \in SAff(n) \) we have
\[T(\tau L) = c \int_{SAff(n)} F^k(\tau L)(\varphi) \varphi(v) \, d\varphi = c \int_{SAff(n)} F^k(L)(\tau^{-1} \varphi) \varphi(v) \, d\varphi. \]

Replacing \(\varphi \) by \(\tau \varphi \) we get
\[T(\tau L) = c \int_{SAff(n)} F^k(L)(\varphi) \tau(\varphi(v)) \, d\varphi = \tau \left(c \int_{SAff(n)} F^k(L)(\varphi) \varphi(v) \, d\varphi \right). \]

The last equality holds because \(cF^k(L)(\varphi) \, d\varphi \) is a probabilistic measure. Therefore, for every affine \(\tau \) and every integrable function \(f \) one has
\[\int_{SAff(n)} \tau(f(\varphi))cF^k(L)(\varphi) \, d\varphi = \tau \left(\int_{SAff(n)} f(\varphi)cF^k(L)(\varphi) \, d\varphi \right). \]
Note that the function
\[
\frac{1}{\int_{S_R \times \mathbb{R}^n} F^k(L)(\varphi)d\varphi} \int_{S_R \times \mathbb{R}^n} F^k(L)(\varphi(v))d\varphi
\]
is continuous as a function of \(L \) by the Lebesgue’s dominated convergence theorem because both integrals are uniformly bounded by a convergent integral by Proposition 4.2. Then
\[
T_k = \lim_{R \to \infty} \frac{1}{\int_{S_R \times \mathbb{R}^n} F^k(L)(\varphi)d\varphi} \int_{S_R \times \mathbb{R}^n} F^k(L)(\varphi(v))d\varphi
\]
is continuous.

3. Convergence is the direct application of the Proposition 4.3 where \(f(\varphi) = F(K)(\varphi) \) and \(g(\varphi) = \varphi(v) \) taken coordinatewise. Similarly to the proof of the Proposition 4.2 the function \(F(K)((A, x)) \) is separated from 1 when either \(\|A\| \) or \(|x| \) is big. Note that \(F(K)(id) = 1 \) and if \(F(K)(\varphi) = 1 \) then \(\varphi(K) = K \) which means \(\varphi(v) = v \) because \(v \in F(K) \). Therefore,
\[
\frac{1}{\int_{S_{Aff(n)}} F(K)^k(\varphi)d\varphi} \int_{S_{Aff(n)}} F(K)^k(\varphi(v))d\varphi \to id(v) = v, \ k \to \infty.
\]

References

[1] J. B. Conway, *A course in functional analysis*, 2nd ed., New York: Springer, 2007.

[2] B. Grünbaum, *Measures of symmetry for convex sets*, Proc. Sympos. Pure Math., Vol. VII, 1963, 233–270.

[3] I. Iurchenko, *Affine-Invariant Points*, Presented at poster session at Informal Analysis and Probability Seminar, October 17-19, 2014, Department of Mathematics at University of Michigan, Ann Arbor, MI, USA.
[4] P. Kuchment, On a problem concerning affine-invariant points of convex sets, Optimizaciya 8, (1972), 48-51 (in Russian).

[5] P. Kuchment, On a problem concerning affine-invariant points of convex sets, arXiv:1602.04377, Feb. 2016 (English translation of [4]).

[6] M. Meyer, C. Schütt, E. M. Werner, New affine measures of symmetry for convex bodies, Adv. Math. 228, (2011), 2920-2942.

[7] M. Meyer, C. Schütt, E. M. Werner, Affine invariant points, Israel J. Math. 208 (2015), no. 1, 163–192.

[8] O. Mordhorst, New results on affine invariant points, arXiv:1509.06023, to appear in Israel J. Math.

[9] G. W. Stewart, Introduction to matrix computations, New York: Academic Press, 1973.

Ivan Iurchenko,
Dept. of Math. and Stat. Sciences,
University of Alberta,
Edmonton, Alberta, Canada, T6G 2G1.
e-mail: iurchenk@ualberta.ca