Unsuspected Heart Failure: Usefulness of a Minimally Invasive Hemodynamic Monitoring System

Vittorio Pavoni¹, Stefano Romagnoli³, Giacomo Batignani³, Lara Gianesello²*, Andrew Horton⁴ and Salvatore Mario Romano²

1Department of Critical Care Medicine, University-Hospital Careggi, Firenze, Italy
2Department of Heart and Vessels, University-Hospital Careggi, Firenze, Italy
3Department of Abdominal Surgery, University-Hospital Careggi, Firenze, Italy
4Administration, Mayo Clinic, Phoenix, AZ, USA

Abstract
A case of young male, with negative history for heart disease, who was scheduled for abdominal surgery due to an adrenal tumor, is presented. During the surgery, the patient unexpectedly developed bi-ventricular dysfunc -

Introduction
Hemodynamic monitoring, by means of a pulmonary artery catheter (PAC), transesophageal echocardiography (TEE), Doppler techniques or pulse contour methods (PCMs) is usually employed in selected high risk patients, who are at risk of developing hemodynamic instability and are undergoing major surgery [1]. These patients may benefit from the monitoring of cardiac output (CO) and other hemodynamic variables, such as stroke volume or pulse pressure variations (SVV, PPV), since an early goal-directed therapy may improve outcome [2]. Patients without co-morbidities or in advanced age are usually excluded from this kind of monitoring due to the invasiveness of some of these techniques. A healthy young man undergoing general abdominal surgery is usually not considered to be high-risk. However even the type of surgery should be taken into account. In the present case report we suggest the importance of using MostCare® hemodynamic monitoring to detect severe intraoperative hemodynamic impairment.

Case Report
A 17-year-old patient was scheduled for abdominal surgery because of an adrenal mass. A preoperative cortisol test showed a level of 470 mEq/L, the value of dehydroepiandrosterone-sulfate (DHEA-S) was 27.1 mcrM/L. The medical history and preoperative cardio-respiratory exams were normal and the patient was a professional soccer player. The day before the surgery, an angiographic source are credited.

Received July 27, 2012; Accepted August 04, 2012; Published August 11, 2012

Citation: Pavoni V, Romagnoli S, Batignani G, Gianesello L, Horton A, et al. (2012) Unsuspected Heart Failure: Usefulness of a Minimally Invasive Hemodynamic Monitoring System. J Anesth Clin Res 3:228. doi:10.4172/2155-6148.1000228

Copyright: © 2012 Pavoni V, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
mainly characterized by compensatory tachycardia and redistribution of blood flow to organs, were capable of compensating for the temporary heart dysfunction. Lactate concentration with blood pressure and diuresis were used as markers of tissue perfusion and oxygenation. At this point the tumor was detached from the diaphragm, the upper pole of the kidney and from the renal vessels tying and cutting the superior and the inferior adrenal arteries and veins, respectively. The medial part of the tumor was dissected from the suprarenal and retro-hepatic vena cava sectioning the middle adrenal artery and the vein. After the isolation from systemic circulation of the tumor and the adrenal remove (T2), CI showed an abrupt increase (Figure 2) and CCE values progressively increased reaching the value of zero in the proximity of the tumor extraction. It is noteworthy that throughout the entire operation SBP remained stable, while DBP and HR showed a slightly decrease (8%). A further TEE, performed at the end of the intervention, showed a global improvement in both left and right ventricular systolic functions (left ventricular ejection fraction= 45%; right ventricular fractional area change= 25% and tricuspid annular plane systolic excursion= 16 mm). After the surgery, the patient was transferred to the general Intensive Care Unit (ICU) for close hemodynamic monitoring until complete recovery of cardiac function was observed during the following 24 hours. The histological examination identified the tumor as an adenocarcinoma and before the discharge of the patient from the hospital the cardiologic examination confirmed a complete recovery of heart function.

Five years after surgery the patient was alive and the follow-up showed that the patient was free of disease.

Discussion

In the present case, a widely used hemodynamic monitoring system such as PAC or TEE would have been considered unnecessary and inappropriate since the patient was not considered high risk. Nonetheless, an unexpected bi-ventricular dysfunction complicated the course of the intervention. A pressure-based hemodynamic monitoring system, MostCare®, not requiring any adjunctive invasive devices, gave an early warning that allowed focusing on the acute cardiac failure without time delay. Standard monitoring based on invasive blood pressure and HR proved to be incapable of detecting the problem. TEE was performed as a second level monitoring-diagnostic tool with the aim of confirming the hemodynamic imbalances displayed by MostCare®. In spite of low CO, no inotrop support was used because although inotropic agents can be useful in restoring hemodynamic parameters and improving peripheral organ perfusion, they can also increase short-term and long-term mortality. The patient seemed to compensate for heart dysfunction since lactate concentration progressively decreased.

improvement in CI, SVR or HR (Figure 1 and Figure 2). Therefore we decided to perform a transesophageal echocardiogram (TEE), in order to exclude other causes of hemodynamic impairment (i.e. cardiac tamponade).

The examination showed systolic dysfunction of both ventricles: left ventricular ejection fraction was 35%; right ventricular fractional area change was an estimated 18% and tricuspid annular plane systolic excursion was at 10 mm. Color-Doppler analyses did not show any valvular regurgitation. The trans-mitral pulsed-wave Doppler pattern was compatible with a left ventricle impaired relaxation (E-wave/A-wave 0.7; deceleration time 250 msec).

No further hemodynamic adjustments were made other than avoiding hypovolemia taking into account that lactate concentration progressively decreased. No other intervention was performed (e.g. inotropic drugs) because it was known that physiologic adaptations,
Interestingly, a low CCE value, abnormal for a healthy cardiovascular system, suggested that compensatory mechanisms affecting the dynamic arterial impedance were activated.

PRAM estimates the cardio-vascular impedance by analyzing point-by-point the arterial waveform sampled with high details (1000 Hz = 1000 values/sec). Cardio-vascular impedance is a complex quantity affected by a number of co-interacting physiologic elements (relationship between pulsatile pressure and flow, arterial tone and stiffness, reflected waves, heart rate and contractility, blood viscosity, etc) and CCE has a strong dependency from the heart-vascular system interaction in terms of cardio-vascular impedance. Therefore, CCE represents the hemodynamic work performed/energetic expenditure ratio giving an estimation of the energetic expenditure performed by the cardiovascular system to keep some kind of hemodynamic balance. It is possible to assess the correlation between different energetic expenditures and CCE as the expression of the ability of the cardiovascular system to keep homeostasis at different energetic levels. As a consequence, trends of CCE can be interpreted as modifications in cardio-vascular impedance and therefore, one of the determinants of ventricular afterload. Although studies focused on CCE are still lacking, a potential role of this parameter in the management of cardio-vascular afterload. We then decided to transfer the patient to the ICU for continuous monitoring of heart function.

In conclusion, MostCare®, the only PCM which does not need any starting calibration or preloaded data [3,4], showed a severe hemodynamic impairment not detectable by standard monitoring based on blood pressure and HR. PCMs that use preloaded data (patient's demographic and anthropometric characteristics) for vascular impedance evaluation, in presence of normal values of blood pressure and HR, showed that the stroke volume estimation can be deeply affected [4]. The PRAM does not depend on preloaded data and estimates the vascular impedance in vivo during each cardiac beat by analyzing the wave morphology with high detail (1000 Hz). Without hemodynamic monitoring, an acute cardiac insufficiency, like that described in the present case, could have been suspected only after the failure of compensatory mechanisms. Moreover, potential adverse consequences including the risk of fluid overload or incorrect use of vasoactive amines could have worsened the patient condition.

Acknowledgements

Published with the written consent of the patient.

References

1. Lees N, Hamilton M, Rhodes A (2009) Clinical review: Goal-directed therapy in high risk surgical patients. Crit Care 13: 231.
2. Pearse RM, Rhodes A, Grounds RM (2004) Clinical review: How to optimize management of high-risk surgical patients. Crit Care 8: 503-507.
3. Romano SM, Pistolesi M (2002) Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 30: 1834-1841.
4. Romagnoli S, Romano SM (2010) Estimation of hemodynamic parameters by arterial waveform: available technologies. Anesth Analg 110: 257-258.
5. Modesti PA, Gambieri T, Bazzini C, Borro M, Romano SM, et al. (2009) Response of serum proteome in patients undergoing infrarenal aortic aneurysm repair. Anesthesiology 111: 844-854.
6. Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9: 566-572.
7. Valenza F, Aletti G, Fossati T, Chevallier G, Sacconi F, et al. (2005) Lactate as a marker of energy failure in critically ill patients: hypothesis Crit Care 9: 588-593.
8. De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, et al. (2006) Evaluation of left ventricular function in anesthetized patients using femoral artery dpdtMAX. J Cardiothorac Vasc Anesth 3: 325-330.
9. Sharman JE, Qasem AM, Hanekom L, Gill DS, Lim R, et al. (2007) Radial pressure waveform dp/dt max is a poor indicator of left ventricular systolic function. Eur J Clin Invest 37: 278-281.
10. Nichols VW, O’Rourke MF (2005) McDonald’s blood flow in arteries. Theoretical, Experimental and Clinical Principles. 5th edn. London.