Comparing Abs-Normal NLPs to MPECs

Lisa C. Hegerhorst-Schultchen1,*, Christian Kirches2,**, and Marc C. Steinbach1,***

1 Leibniz Universität Hannover, Institute of Applied Mathematics, Welfengarten 1, 30167 Hannover
2 Technische Universität Carolo-Wilhelmina zu Braunschweig, Institute for Mathematical Optimization, Universitätsplatz 2, 38106 Braunschweig

We show that the class of unconstrained NLPs in abs-normal form is a subclass of the class of MPECs and that the class of NLPs with general constraints in abs-normal form is equivalent to the class of MPECs. Moreover, we compare constraint qualifications and stationarity concepts of these problem classes and observe close relations between them.

© 2019 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

1 Introduction

Nonsmoothness arises in many practical optimization problems, for example in engineering and economics. Typical problem classes are MPECs and abs-normal NLPs. In this paper we consider very briefly the relations between these two classes. An overview about MPECs can be found in [1], for prerequisites of the abs-normal form see [2, 3].

2 Unconstrained Abs-Normal NLP

We take interest in problems of the form

$$\min_{x \in \mathbb{R}^n} \varphi(x)$$

with φ in abs-normal form [2, 3]. Then, these problems can be formulated as unconstrained abs-normal NLPs.

Definition 2.1 (Unconstrained Abs-Normal NLP) Let D^x be an open subset of \mathbb{R}^n. A nonsmooth unconstrained optimization problem is called an **unconstrained abs-normal NLP** if functions $f \in \mathcal{C}^2(D^x, |z|, \mathbb{R})$ and $c_Z \in \mathcal{C}^2(D^x, |z|, \mathbb{R}^s)$ for $D^x, |z| = D^x \times D^{1|z|}$ and $d \geq 1$ exist such that the NLP can equivalently be stated as

$$\min_{x,z} f(x, |z|) \quad \text{s.t.} \quad c_Z(x, |z|) - z = 0,$$

where $0 \in D^{1|z|}$ and $\partial_Z c_Z(x, |z|)$ is strictly lower triangular. The variables $z_i, i = 1, \ldots, s$ are called switching variables.

We can write $|z| = \Sigma z$ with $\Sigma = \text{diag}(\text{sign}(z))$. By the implicit function theorem the system $z = c_Z(x, \Sigma z)$ has a locally unique solution $z(x)$ for fixed Σ, with Jacobian $\partial_Z z(x) = [I - \partial c_Z(x, |z|)\Sigma^{-1}\partial_1 c_Z(x, |z|)]$. With this prerequisite we can define kink qualifications for (2).

Definition 2.2 (LIKQ and MFKQ) We say that a point $x \in D^x$ satisfies LIKQ if the matrix $[\partial_1 z(x)]_{i=1}^s$ has full row rank. Herein, we use the active switching set $\alpha = \{i \in \{1, \ldots, s\} : z_i(x) = 0\}$.

Set $\tilde{\alpha} = \text{sign}(z_i(x))$ for $i \notin \alpha$ and choose $\tilde{\alpha} \in \{+1, -1\}$ for $i \in \alpha$. We say that a point $x \in D^x$ satisfies MFKQ if for all $\Sigma = \text{diag}(\tilde{\alpha})$ the system $[\Sigma \partial_1 z(x)]_{i=1}^s w > 0$ admits a solution $w \in \mathbb{R}^n$, unless $[\Sigma \partial_1 z(x)]_{i=1}^s w \geq 0$ admits only the solution $w = 0$.

Further, we can rewrite problem (2) as an MPEC. To this end we define variable vectors $u = [z]^+ = \max(0, z)$ and $v = [z]^- = \max(-z, 0)$ and replace $|z|$ by $u + v$ and z by $u - v$. Moreover, we need to enforce complementarity of u and v so that the representations of $|z|$ and z hold.

Definition 2.3 (Counterpart MPEC) **The counterpart MPEC** of (2) reads

$$\min_{y, u, v} f(y, u + v) \quad \text{s.t.} \quad u - v - c_z(y, u + v) = 0, \quad 0 \leq u \perp v \geq 0.$$

Thus, unconstrained abs-normal NLPs are a subclass of MPECs. In the following we compare regularity conditions and transfer stationarity concepts from MPECs. It turns out that LIKQ and MPEC-LICQ are equivalent.

Proposition 2.4 (Equivalence of LIKQ and MPEC-LICQ) A feasible point (\hat{x}, \hat{z}) of (2) satisfies LIKQ if and only if the point $(\hat{y}, \hat{u}, \hat{v}) = (\hat{x}, [\hat{z}]^+, [\hat{z}]^-)$ of (3) satisfies MPEC-LICQ.

* Corresponding author, e-mail: hegerhorst@ifam.uni-hannover.de
** e-mail: c.kirches@tu-bs.de
*** e-mail: mcs@ifam.uni-hannover.de

© 2019 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

This is an open access article under the terms of the Creative Commons Attribution License 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Proposition 2.5 (Strongly Stationary Points and Minimizers of the Abs-Normal Form) Let (2) satisfy LIKQ. If \((\hat{x}, \hat{z})\) is a local minimizer of (2), then \((\hat{y}, \hat{u}, \hat{v}) = (\hat{x}, [\hat{z}]^+, [\hat{z}]^-)\) is a strongly stationary point of (3).

In contrast, MFKQ is weaker then MPEC-MFCQ because MPEC-MFCQ is equal to MPEC-LICQ in the specialized MPEC (3). It is part of ongoing research to find an equivalent concept to MPEC-MFCQ in a general setting.

Proposition 2.6 (MPEC-MFCQ implies MFKQ) A feasible point \((\hat{x}, \hat{z})\) of (2) satisfies MFKQ if the point \((\hat{y}, \hat{u}, \hat{v}) = (\hat{x}, [\hat{z}]^+, [\hat{z}]^-)\) of (3) satisfies MFCQ for all MPEC branch problems.

Note that Abadie’s constraint qualification (MPEC-ACQ) holds in this setting without any prerequisites. Key is the strictly lower triangular structure of \(\partial_{Z\subseteq R} (x, |z|)\) and the absence of additional constraints from (3).

Proposition 2.7 (MPEC-ACQ holds) Any feasible point \((\hat{y}, \hat{u}, \hat{v})\) of (3) satisfies MPEC-ACQ.

Proposition 2.8 (M-Stationary Points and Minimizers of the Abs-Normal Form) If a feasible point \((\hat{x}, \hat{z})\) of (2) is a local minimizer, then the point \((\hat{y}, \hat{u}, \hat{v}) = (\hat{y}, [\hat{z}]^+, [\hat{z}]^-)\) of (3) is an M-stationary point.

3 Abs-Normal NLP

Now, we consider generally constrained abs-normal NLPs and their counterpart MPECs.

Definition 3.1 (Abs-Normal NLP) Let \(D^Z\) be an open subset of \(\mathbb{R}^n\). We say that a non-smooth NLP is in abs-normal form if functions \(f \in C^1(D^x\times|z|, \mathbb{R}), g \in C^1(D^x\times|z|, \mathbb{R}^m), h \in C^1(D^x\times|z|, \mathbb{R}^n), \) and \(c_Z \in C^1(D^Z \times \mathbb{R}_{Z < 0}, \mathbb{R}^p)\) with \(\partial_Z c_Z (x, |z|)\) strictly lower triangular exist such that the problem reads

\[
\min_{x,z} f(x, |z|) \quad \text{s.t.} \quad g(x, |z|) = 0, \quad h(x, |z|) \geq 0, \quad c_Z(x, |z|) - z = 0. \tag{4}
\]

Definition 3.2 (Counterpart MPEC of Abs-Normal NLP) The counterpart MPEC of (4) reads

\[
\min_{y,u,v} f(y, u, v) \quad \text{s.t.} \quad g(y, u, v) = 0, \quad h(y, u + v) \geq 0, \quad u - v - c_Z(y, u, v) = 0, \quad 0 \leq u \perp v \geq 0.
\]

These problem classes are equivalent: with \(0 = \min(u, v) = \frac{1}{2} (u + v - (u - v))\) the complementarity condition is posed in abs-normal form.

4 Conclusion and Outlook

We have considered unconstrained abs-normal NLPs and we have studied their relations with MPECs; more details can be found in [5]. In [6], the LIKQ and optimality conditions for the general abs-normal NLP (4) are studied. The comparison of these concepts to the theory of MPECs is a subject of ongoing research.

Acknowledgements C. Kirches was supported by the German Federal Ministry of Education and Research through grants no 05M17MBA-MoPhaPro, 05M18MBA-MOReNet, and 01/S17089C-ODINE, and by Deutsche Forschungsgemeinschaft (DFG) through Priority Programme 1962, grant KI1839/1-1.

References

[1] A. Schwartz, Course Notes, Graduate School CE, Technische Universität Darmstadt (2018), (available from https://github.com/alexandrabswartz/Winterschool2018/blob/master/LectureNotes.pdf).
[2] A. Griewank, Optimization Methods and Software 28(6), 1139–1178 (2013).
[3] A. Griewank and A. Walther, Optimization Methods and Software 31(5), 904–930 (2016).
[4] A. Griewank and A. Walther, SIAM Journal on Optimization 29(1), 262–289 (2019).
[5] L. C. Hegerhorst-Schultchen, C. Kirches, and M. C. Steinbach, Optimization Methods and Software (2019), published online https://doi.org/10.1080/10556788.2019.1585268.
[6] L. C. Hegerhorst-Schultchen and M. C. Steinbach(2019), http://www.optimization-online.org/DB_HTML/2019/03/7104.html.