Abstract

In this paper, we propose a fine grained classification of English adjectives geared at modeling the distinct inference patterns licensed by each adjective class. We show how it can be implemented in description logic and illustrate the predictions made by a series of examples. The proposal has been implemented using Description logic as a semantic representation language and the prediction verified using the DL theorem prover RACER.

Topics: Textual Entailment, Adjectival Semantics

1 Introduction

Understanding a text is one of the ultimate goals of computational linguistics. To achieve this goal, systems need to be developed which can construct a meaning representation for any given text and which furthermore, can reason about the meaning of a text. As is convincingly argued in (Ido Dagan and Magnini, 2005), one of the major inference task involved in that reasoning is the entailment recognition task:

Does text T_1 entail text T_2?

Indeed entailment recognition can be used to determine whether a text fragment answers a question (e.g., in question answering application), whether a query is entailed by a relevant document (in information retrieval), whether a text fragment entails a specific information nugget (in information extraction), etc.

Because the Pascal RTE challenge focuses on real text, the participating systems must be robust that is, they must be able to handle unconstrained input. Most systems therefore are based on statistical methods (e.g., stochastic parsing and lexical distance or word overlap for semantic similarity) and few provide for a principled integration of lexical and compositional semantics. On the other hand, one of the participant teams has shown that roughly 50% of the RTE cases could be handled correctly by a system that would adequately cover semantic entailments that are either syntax based (e.g., active/passive) or lexical semantics based (e.g., bicycle/bike). Given that the overall system accuracies hovered between 50 and 60 percent with a baseline of 50% \(^1\), this suggests that a better integration of syntax, compositional and lexical semantics might improve entailment recognition accuracy.

In this paper, we consider the case of adjectives and, building on approaches like those described in (Raskin and Nirenburg, 1995; Peters and Peters, 2000), we propose a classification of adjectives which can account for the entailment patterns that are supported by the interaction of their lexical and of their compositional semantics. We start by defining a classification schema for adjectives based on their syntactic and semantic properties. We then associate with each class a set of axioms schemas which translate the knowledge about lexical relations (i.e. antonymy) the adjectives of the class are involved in by extracting this information from WordNet (Miller, 1998) and a set of semantic construction rules and we show that these correctly predicts the observed entailment patterns. For instance, the approach will account for the following (non)-entailment cases:

(1) a. John frightened the child
\models The child is afraid

\(^1\)50% of the cases were true entailment and 50% were false ones, hence tossing a coin would get half of the cases right.

b. Peter claims that John is a murderer
 \[\models \text{John is an alleged murderer} \]
 \[\not\models \text{John is a murderer} \]
c. This is a fake bicycle
 \[\models \text{This is a false bike} \]
 \[\not\models \text{This is not a real bike} \]
 \[\not\models \text{This is a bike} \]
d. John is not awake
 \[\models \text{John sleeps} \]
 \[\not\models \text{John does not sleep} \]

The approach is implemented using Description Logic as a semantic representation language and tested on a hand-built semantic test suite of approximately 1,000 items. In the latter part of the paper we discuss this testsuite and the philosophy behind it.

2 A fine grained classification for adjectives

As mentioned above, we propose a classification of adjectives based on their lexical, their model theoretic and their morpho-derivational properties. To facilitate the link with compositional semantics (the construction of a meaning representation for sentences containing adjectives), we also take into account syntactic properties such as the predicative/attributive or the static/dynamic distinction. We now detail each of these properties. The overall categorisation system is given in Figure 1.

2.1 Model theoretic properties

The main criteria for classification are given by (Kamp, 1975; Kamp and Partee, 1995) semantic classification of adjectives which is based on whether it is possible to infer from the Adj+N combination the Adj or the N denotation.

Intersective adjectives (e.g., red) licence the following inference inference patterns:

\[A + N \models A \]
\[A + N \models N \]

For instance, if \(X \) is a red car then \(X \) is a car and \(X \) is red

Subsective adjectives (e.g., big) licence the following inference pattern:

\[A + N \models N \]

For instance, if \(X \) is a big mouse, then \(X \) is a mouse but it is not necessarily true \(X \) is big

Privative adjectives licence the inference pattern:

\[A + N \models \neg N \]

For instance, if \(X \) is a fake gun then \(X \) is not a gun

Plain non-subsective adjectives (e.g., alleged) do not licence any inference

For instance, if \(X \) is an alleged murderer then it is unknown whether \(X \) is a murderer or not

2.2 Lexical semantics

From the lexical semantics literature, we take one additional classification criterion namely antonymy. As described in (Cruse, 1986), this term covers different kinds of opposite polarity relations between adjectives namely, binary opposition, contraries and multiple oppositions.

Binary oppositions covers pairs such as wet/dry

which license the following inference pattern:

\[A1 \equiv \neg A2 \land \neg A1 \equiv A2 \]

So that in particular:

\[wet \equiv \neg dry \land \neg wet \equiv dry \]

Contraries are pairs such as long/short where the implication is unidirectional:

\[A1 \models \neg A2 \land \neg A1 \not\models A2 \]
\[A2 \models \neg A1 \land \neg A2 \not\models A1 \]

and in particular:

\[long \models \neg short \land \neg long \not\models short \]
\[short \models \neg long \land \neg short \not\models long \]

Multiple oppositions involve a finite set of adjectives (e.g., linguistic/economic/mathematical/...) which are pairwise mutually exclusive. For a set of opposed adjectives \(A_1 \ldots A_n \), the following axioms schemas will be licensed:

\[\forall i, j \ s.t. \ 1 \leq i, j \leq and \ i \neq j \]
\[A_i \models \neg A_j \land \neg A_i \not\models A_j \]

2.2.1 Derivational morphology

We also take into account related forms that is, whether there exists a verb (\(V_a \)) or a noun that is semantically related to the adjectives being considered. Moreover, for nominalizations we distinguish whether the morphologically related noun is an event noun (\(N_e \)), a noun denoting a theta role of the related verb (\(N_v \)) or a non-event noun (\(N_n \)).

As we shall see, this permits capturing entailment relations between sentences containing morpho-derivational variants such as for instance:
To account for these differences, we define for each class a set of axiom schemas capturing the model theoretic, lexical semantics and morpho-derivational properties of that class. Lexical semantics and morpho-derivational information are derived from WordNet. For example, the axioms describing antonymy are obtained by extracting from WordNet the antonyms of a particular adjective and then by considering the direction of the entailment relevant for the class the adjective belongs to:

\[\text{asleep} \equiv \text{wake} \quad \text{vs.} \quad \text{polite} \sqsubset \text{rude} \]

Morpho-derivational information are derived from WordNet by extracting the derivationally related forms for the given adjective and then iterating the extraction on nouns and verbs in order to obtain information about their antonyms and hyponyms. For scalar adjective like tall, WordNet contains also a relation `is a value of` which offers a pointer to the noun concept the adjective is a value of. Moreover, WordNet links the noun concept to a list of attributes which describe the scalar property it represents. For example, the adjective tall is a value of \{stature, height\} and attributes of \{stature, height\} are tall and short.

Based on some basic syntactic patterns, we then show that these axioms predict the observed textual entailment patterns for that class.

Before we illustrate this approach by means of some example, we first show how we capture logical entailment between NL semantic representations in a description logic setting.

3.1 Using description logic to check entailment between NL sentences

As argued in (Gardent and Jacquey, 2003), description logic (DL) is an intuitive framework within which to perform lexical reasoning: it is efficient (basic versions of description logics are decidable), it is tailored to reason about complex taxonomies (taxonomies of descriptions) and it is equipped with powerful, freely available automated provers (such as RACER, (Volker Haarslev, 2001)). For these reasons, we are here exploring a DL encoding of the entailment recognition task for the set of examples we are considering. The particular language we assume has the following syntax.

\[C, D \rightarrow A | \top | \bot | \neg A | C \cap D | C \cup D | \forall R.C | \exists R.C \]

The semantics of this language is given below with \(\Delta \) the domain of interpretation and \(I \) the interpretation function which assigns to every atomic con-
cept A, a set $A^I \subseteq \Delta$ and to every atomic role R a binary relation $R^I \subseteq \Delta \times \Delta$.

$$
\begin{align*}
\tau^I &= \Delta \\
\perp^I &= \emptyset \\
(\neg A)^I &= \Delta \setminus A^I \\
(C \sqcap D)^I &= C^I \cap D^I \\
(C \sqcup D)^I &= C^I \cup D^I \\
(\forall R.C)^I &= \{a \in \Delta \mid \forall b \in R^I \rightarrow b \in C^I\} \\
(\exists R.C)^I &= \{a \in \Delta \mid \exists b \in C^I \land (a, b) \in R^I\}
\end{align*}
$$

Now one basic problem with using DL to check entailment between NL expressions, is that DL formulae are “directional” in that they refer to a given set of individuals. For instance the sentence *The boat is floating* might be represented by either of the two formulae given in 3 but these two formulae do not stand in an entailment relation (since they refer to different kind of objects namely floating event of a boat in 3a and boats that float in 3b).

(3) a. float $\sqsubseteq \exists$theme.boat

b. boat $\sqsubseteq \exists$theme$^{-1}$.float

To remedy this shortcoming, we introduce the notion of a *rotation*. Given a DL formula which only contains conjunction (disjunction is translated in DL as different formulas)

$$
\Phi = \sqcap_{i=1}^{m} \text{Event}_i \sqcap \exists R_j.\text{Type}_j
$$

a rotation of this formula is defined as:

1. Φ
2. $\forall j \in \{1, \ldots, m\} :$
 $$
 \text{Type}_j \sqcap \exists R_j^{-1}, \exists \text{Event}_i \sqcap \forall 1 < k < j, j < k < m \\
 \exists R_k.\text{Type}_k
 $$

so that the formula:

$$
\text{Event}_1 \sqcap \text{Event}_2 \sqcap \ldots \sqcap \text{Event}_n \sqcap \exists R_1.\text{Type}_1 \sqcap \exists R_2.\text{Type}_2 \ldots \\
\sqcap \exists R_n.\text{Type}_n
$$

corresponds to the following n Rotations each of which describe the same situation from the point of view of a particular type

0. Event $\sqcap \exists R_1.\text{Type}_1 \sqcap \exists R_2.\text{Type}_2 \ldots \sqcap \exists R_n.\text{Type}_n$
 $$
\subseteq \text{Event}
$$

1. $\text{Type}_1 \sqcap \exists R_1^{-1}, (\text{Event} \sqcap \exists R_2.\text{Type}_2 \ldots \sqcap \exists R_n.\text{Type}_n)$
 $$
\subseteq \text{Type}_1
$$

2. $\text{Type}_2 \sqcap \exists R_2^{-1}, (\text{Event} \sqcap \exists R_1.\text{Type}_1 \ldots \sqcap \exists R_n.\text{Type}_n)$
 $$
\subseteq \text{Type}_2
$$

... n. $\text{Type}_n \sqcap \exists R_n^{-1}, (\text{Event} \sqcap \exists R_1.\text{Type}_1 \ldots \exists R_{n-1}.\text{Type}_{n-1})$
 $$
\subseteq \text{Type}_n
$$

So for example, the sentence *Mary knows that John is the inventor of the radio* will be represented as a predicate logic formula

$$
\exists x_1.\text{mary}(x_1) \land \exists x_2.\text{john}(x_2) \land \exists x_3.\text{radio}(x_3) \land \exists e_1.\text{know}(e_1) \land \\
\exists \text{agent}(e_1, x_1) \land \exists \text{topic}(e_1, e_2) \land \exists \text{invent}(e_2) \land \exists \text{agent}(e_2, x_2) \land \\
\exists \text{patient}(e_2, x_3)
$$

the denotation of this PL formula corresponds to the set of individuals $\{x_1, x_2, x_3\} \cup \{e_1, e_2\}$. The corresponding DL representation will be the underspecified representation

$$
\text{know} \sqcap \exists \text{agent}.\text{mary} \sqcap \exists \text{topic}.(\text{invent} \sqcap \exists \text{agent}.\text{john} \sqcap \exists \text{patient}.\text{radio})
$$

the denotation of which corresponds to the set $\{e_1\}$ and all its rotations which permit to access the other sets of individuals asserted in the sentence. Thus for example, the set $\{x_1\}$ which describes the individual Mary can be accessed through the following rotation:

$$
\text{Rotation}_1 : \text{mary} \sqcap \exists \text{agent}^{-1}.(\text{know} \sqcap \exists \text{topic}.(\text{invent} \sqcap \exists \text{agent}.\text{john} \sqcap \exists \text{patient}.\text{radio}))
$$

Finally, we say that an arbitrary formula/representation Φ_1 implies the formula Φ_2 if and only if is possible to find a rotation Rotation_i of Φ_1 the denotation of which describes a subset of the denotation of Φ_2:

Definition

$$
\Phi_1 \models \Phi_2 \iff \exists \text{Rotation}_i(\Phi_1) \subseteq \Phi_2
$$
3.2 Example class axioms and derivations

We now illustrate our approach by looking at two classes in more detail namely, class 1 and class 8.

3.2.1 Class 1

Syntactically, Class 1 contains adjectives like adrift, afloat, aground which can only be used predicatively, are non gradable and cannot be modified by very. Semantically, they behave like intersective adjectives which enter in multiple opposition relations with other adjectives. They are furthermore morphologically derived from verbs and can be nominalized. To reflect these semantic properties we use the following axioms.

Model theoretic semantics. Adjectives of class 1 are intersective adjective. They will thus licen the corresponding inference patterns namely:

\[A + N \models A \quad (2) \]
\[A + N \models N \quad (3) \]

Lexical semantics. Adjectives of class 1 enter in multiple opposition relations. Hence For instance:

\[\text{afloat \models \lnot \text{aground} \land \lnot \text{afloat} \models \lnot \text{aground}} \]
\[\text{aground \models \lnot \text{afloat} \land \lnot \text{aground} \models \lnot \text{afloat}} \]
\[\text{sunken \models \lnot \text{afloat} \land \lnot \text{afloat} \models \lnot \text{sunken}} \]
\[\text{afloat \models \lnot \text{sunken} \land \lnot \text{sunken} \models \lnot \text{afloat}} \]

Morpho-derivational semantics. Adjectives in Class 1 can be related to both nouns and verbs. Thus, for example the adjective afloat in WordNet is related to the noun floating which is related to the verb float, by assuming that the semantics assigned to the verb float is \(f\text{loat}(e), \text{theme}(e,a) \), the adjective afloat is assigned the following semantics:

\[\text{afloat} \equiv \exists \text{Theme}^{-1}, \text{float} \]

This is encoded in the following axiom schemas:

MDR 1. Adj1 \(\not\models \text{Adj2} \)
If Adj1 = Anto(Adj2)
e.g., afloat \(\not\models \text{sunken} \)

MDR 2. Adj1 \(\equiv \exists \text{Theme}^{-1}, \text{V1} \)
If Adj1 is related to \text{V1}
e.g., afloat \(\equiv \exists \text{Theme}^{-1}, \text{float} \)

MDR 3. V1 \(\not\models \text{V2} \)
If V1 = Anto(V2)
e.g., float \(\not\models \text{sink} \)

MDR 4. N1 \(\equiv \text{V1} \)
If Adj1 is related to an evt denoting N1
e.g., floating \(\equiv \text{float} \)

MDR 5. N1 \(\not\models \text{N2} \)
If N1 is an antonym of N2
e.g., floating \(\not\models \text{sinking} \)

MDR 6. N11 \(\equiv \exists \text{Theme}^{-1}, \text{V1} \)
If Adj1 is related to a noun N11 denoting the theme role of the verb V1
e.g., floater \(\equiv \exists \text{Theme}^{-1}, \text{float} \)

We make the following assumptions about the syntax/semantic interface that is, about the semantic representations associated with given sentence patterns.

SCR 1. NP toBe Adj
\(ADJ \sqcup NP \)

SCR 2. NP toBe clearly Adj
\(ADJ \sqcup NP \)

SCR 3. \(N1[-\text{event}] \) of NP is clear
\(V_i \sqcup \exists \text{theme}.NP \)

SCR 4. \(N2[+\text{event}] \) is clear
\(\exists \text{theme}^{-1}.V_i \)

SCR 5. NP toBe V[+ing].
\(V \sqcup \exists \text{theme}.NP \)

Given the above axiom schemas and semantic constructions rules, the following inference patterns can be handled:

1. ADJ1 + N \models N
Ex. This boat is afloat. \models This is a boat.

2. ADJ1 + N \models ADJ1
Ex. This boat is afloat. \models This is afloat.

3. ADJ1 + N \models \lnot N
Ex. The boat is afloat. \models \lnot This is a boat.

4. ADJ1 + N \models \lnot ADJ2 \sqcup N
Ex. The boat is afloat. \models \lnot The boat is not sunken.

5. \lnot ADJ1 + N \models \lnot ADJ2 \sqcup N
Ex. The boat is not afloat. \models \lnot The boat is sunken.

6. ADJ1 + N \models N \sqcup \exists \text{theme}^{-1}, \text{V1}
Ex. The boat is afloat. \models \exists The boat is the floater.

7. ADJ1 + N \models \text{V1} \sqcup \exists \text{theme}.N
Ex. The boat is afloat. \models \exists The boat is the floater.

8. ADJ1 + N \models N1 \sqcup \exists \text{theme}.N
Ex. This boat is clearly afloat. \models \exists The floating of the boat is clear.

9. ADJ1 + N \models N \sqcup \exists \text{theme}^{-1}, \text{N1}
Ex. This boat is clearly afloat. \models \exists The floating of the boat is clear (or the boat is the floating object).

10. \lnot (ADJ1 + N) \models \lnot (V1 \sqcup \exists \text{theme}.N) \models \lnot N
Ex. This is not a floating boat. \models \lnot This is not a boat.

11. \lnot (ADJ1 + N) \models \lnot ADJ1
Ex. This is not a floating boat. \models \lnot This is not afloat.

12. \lnot (ADJ1 + N) \models \lnot V1
Ex. This is not a floating boat. \models \lnot This is not floating.

13. \lnot (ADJ1 + N) \models \lnot N1
Ex. This is not a floating boat. \models \lnot This is not a floating.

14. \lnot (ADJ1 + N) \models \lnot \exists \text{theme}^{-1}, \text{V1}
Ex. This is not a floating boat. \models \lnot This is not the floater.

15. \lnot (ADJ1 + N) \models \lnot \exists \text{theme}.N
Ex. This is not a floating boat. \models \lnot This is not a floating.
In the inference patterns 10 to 15, the negation of the adjective-noun compound \(\neg (\text{ADJ1} + \text{N}) \) is syntactically blocked, as the adjectives in this class are used predicative only, however the equivalent representation \(V_1 \sqsubset \exists \text{theme}.N \) can be used to motivate the inferences.

The following show in more detail how the first three of the above (non) entailments are recognised.

(4) a. The boat is afloat.

b. \(\models \) The boat is floating.

\[
\begin{align*}
4a & \equiv \text{Boat} \sqsubset \exists \text{Afloat} & (\text{by SCR 1}) & A \\
4b & \equiv \exists \text{Theme}.\text{Boat} & (\text{by SCR 5}) & B \\
\text{Afloat} & \equiv \exists \text{Theme}^{-1}.\text{Float} & (\text{by MDR 2}) & C \\
\end{align*}
\]

(5) a. The boat is afloat.

b. \(\models \) The boat is the floater.

\[
\begin{align*}
5a & \equiv \text{Boat} \sqsubset \exists \text{Afloat} & (\text{by SCR 1}) & A \\
5b & \equiv \exists \text{Theme}^{-1}.\text{float} & (\text{by SCR 4}) & B \\
\text{Afloat} & \equiv \exists \text{Theme}^{-1}.\text{Float} & (\text{by MDR 2}) & C \\
\end{align*}
\]

(6) a. The boat is afloat.

b. \(\models \) The boat is not sinking.

\[
\begin{align*}
6a & \equiv \text{Boat} \sqsubset \exists \text{Afloat} & (\text{by SCR 1}) & A \\
6b & \equiv \exists \text{sink} \sqsubset \exists \text{Theme}.\text{boat} & (\text{by SCR 5}) & B \\
\text{Afloat} & \equiv \exists \text{Theme}^{-1}.\text{Float} & (\text{by MDR 2}) & C \\
\end{align*}
\]

3.2.2 Class 8.

Class 8 contains adjectives like big, fast, tall, deep which can be used attributively and predicatively, are gradable, can be modified by very. Semantically, they are classified as subsective adjectives and their antonyms are contraries. They are morphologically related to nouns which describe the particular property denoted by the adjectives and to nouns of which they are attributes.

Model theoretic semantics. Adjectives of class 8 are subsective adjective. They will thus licence the corresponding inference patterns namely:

\[
\begin{align*}
A + N & \not\models A & (4) \\
A + N & \models N & (5)
\end{align*}
\]

Lexical semantics. The Adjectives of class 8 enter in contrary opposition relations. Hence, the following axioms schemas will be licensed:

\[
A_i \models \neg \text{Anto}(A_i) \text{ and } \neg A_i \not\models \text{Anto}(A_i)
\]

For instance:

\[
\text{long} \models \neg \text{small} \land \neg \text{long} \not\models \text{small}
\]

\[
\text{deep} \models \neg \text{shallow} \land \neg \text{deep} \not\models \text{shallow}
\]

Morpho-derivational semantics. Adjectives in Class 8 can be related to nouns but not to verbs. Moreover, such adjectives are mapped in WordNet to noun concepts through two different links: derivationally related to and is a value of. For example, the adjective tall in WordNet is derivationally related to the noun tallness and is a value of the concept noun height. The adjectives in this class describe gradable properties so that their semantics corresponds to:

\[
\exists \text{has-property(Related Noun \sqsubset \exists \text{has-measure.Top})}
\]

in which the role has-measure account for the value of the scalar property described by the adjective, which remain underspecified (Top) if the adjective is used without a reference to the value of measure. When the value of the measure is specified, for example by combining the adjective with a noun, as for example in This is a tall man, then the noun is assigned as a value of the measure role:

\[
\exists \text{has-property.(tallness \sqsubset \exists \text{has-measure.man})}
\]

which translate This is tall as a man.

This is encoded in the following axiom schemas:

MDR 1. \(\text{Adj1} \sqsymbol \neg \text{Adj2} \) If Adj1 = Anto(Adj2)

Ex. tall \sqsymbol \not\models \text{short}

MDR 2. \(\text{Adj1} \sqsymbol \exists \text{has-property.(N1 \sqsubset \exists \text{has-measure.Top})} \)

If Adj1 is related to a noun N1 denoting the property described by Adj1

Ex. tall \sqsymbol \exists \text{has-property.(tallness \sqsubset \exists \text{has-measure.Top})}

MDR 3. \(N1 \sqsymbol \neg N2 \) If N1=Anto(N2)

Ex. tallness \sqsymbol \not\models \text{shortness}

MDR 4. \(N1 \equiv N' \sqsubset \exists \text{has-value.ADJ1} \)

If Adj1 is an attribute of the noun N'

Ex. tallness \equiv \text{height \sqsymbol \exists \text{has-value.tall}}

MDR 5. \(N2 \equiv N' \sqsubset \exists \text{has-value.ADJ2} \)

If Adj2 is an attribute of the noun N'

Ex. shortness \equiv \text{height \sqsymbol \exists \text{has-value.short}}

MDR 6. \(N1 \sqsubset N' \) If N1 is an hyponym of N'

Ex. tallness \sqsubset \text{height}
If N2 is an hyponym of N'
Ex. shortness ⊆ height

If Adj1 is a scalar attribute with value less then Adj1 (hyponymy is not defined for adjectives)
Ex. giant ⊆ tall

For the moment, we don’t account for the semantics of comparatives forms of adjectives but we will do that in the feature, by also introducing a representation for scales as described in (Kennedy, 2005).

We make the following assumptions about the semantic representations associated with basic sentence patterns.

For each of the 15 classes, we have specified a set of axioms schemas, some basic semantic construction rules and a set of inference patterns which could be deduced to follow from both of these. The axioms schemas were implemented in Description Logic using RACER and for each inference pattern identified, the corresponding Description Logic query was checked to verify that the proposed axioms and semantic construction rules did indeed correctly predict the deduced inference patterns.

5 Further work and evaluation

The main contribution of this work is a detailed analysis of the interactions between derivational morphology, lexical and compositional semantics and of their impact on the entailment patterns licensed by sentences containing adjective or their related nouns/verbs.

To turn this analysis into a computational system, its components need to be integrated into a semantic analyser and the behaviour of that analyser tested against a collection of data. We are currently working on developing such an analyser within a symbolic grammar framework. We have also started to develop an evaluation test suite geared towards entailment recognition between sentence pairs containing adjectives. At the moment, the test suite contains about 1 000 inference pairs. Each item in the TestSuite (see fig. 2) is annotated with a judgement about the truth of the entailment between the pair of sentences, with the type of inference involved and with the specification of adjective involved. Moreover, each adjective is annotated with the WordNet sense corresponding to the given class.

The idea behind this test suite is similar to that underlying the creation of the TSNLP (Test suite for natural language processing) (see (Oepen and Netter, 1995)) or the Eurotra test suites (see (Arnold and des Tombe, 1987)) namely, to provide a benchmark against which to evaluate and compare existing semantic analyzers. Thus this
test suite illustrates the semantic and syntactic behaviour of adjectives and their related verbs/nouns with respect to textual entailment. One could imagine other test suites illustrating the semantic behaviour of verbs, of quantifiers, of discourse connectives, etc. Just as the TSNLP still proves useful in supporting the development of new symbolic parsers/grammars, hand built test suites of artificial examples might prove useful in improving the accuracy of semantic analyser wrt textual entailment. Indeed the Pascal RTE challenge has shown that existing systems fares rather poorly at the textual entailment task. Providing a set of hand crafted semantic test suites might help in remedying this shortcoming.

Beside implementing and evaluating the analysis of adjectives presented in this paper, we are also working on refining this analysis by combining it with a detailed analysis of noun semantics so as to handle (non) entailments such as:

\[(9)\]

\[\text{Lyon is the gastronomical capital of France } \not\Rightarrow \text{ Lyon is the capital of France}\]

References

D.J. Arnold and Luis des Tombe. 1987. *Basic Theory and methodology in Eurotra*. Cambridge University Press.

DA. Cruse. 1986. *Lexical Semantics*. Cambridge University Press.

Claire Gardent and Evelyne Jacquey. 2003. Lexical reasoning. In *Proceedings of the ICON'03 (International Conference on Natural Language Processing)*, Mysore, India.

Oren Glickman Ido Dagan and Bernardo Magnini. 2005. *The PASCAL Recognising Textual Entailment Challenge*.

Hans Kamp and Barbara Partee. 1995. Prototype theory and compositionality. *Cognition*, (57):129–191.

Hans Kamp. 1975. Two theories about adjectives. In Edward L. Keenan (ed.), *Formal Semantics of Natural Language*, pages 123–155. Cambridge University Press.

Christofer Kennedy. 2005. Vagueness and grammar: The semantics of relative and absolute gradable adjectives. *Ms.*, pages 129–191, June.

K. J. Miller. 1998. Modifiers in wordnet. In C. Fellbaum (ed.), *WordNet An Electronic Lexical Database*. Cambridge, MA, The MIT Press.

Stephan Oepen and Klaus Netter. 1995. TSNLP - test suites for natural language processing. Groningen, The Netherlands. Conference on Linguistic Databases.

I. Peters and W. Peters. 2000. *The Treatment of Adjectives in SIMPLE: Theoretical Observations*. Athens.

R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik. 1985. *A Comprehensive Grammar of the English Language*. Longman.

V. Raskin and S. Nirenburg. 1995. *Lexical Semantics of Adjectives, a micro-theory of adjectival meaning*. MCCS Report.

Ralf Möller Volker Haarslev. 2001. Description of the racer system and its applications. In *Proceedings International Workshop on Description Logics (DL-2001)*, Stanford, USA.