Properties of spontaneous mitotic recombination occurring in the presence of the rad52-1 mutation of Saccharomyces cerevisiae

MERL F. HOEKSTRA*, TOM NAUGHTON AND ROBERT E. MALONE†
Department of Microbiology, Loyola University, Stritch School of Medicine, Maywood, IL, USA 60153
(Received 13 January 1986 and in revised form 17 April 1986)

Summary
All major recombination pathways in the yeast Saccharomyces cerevisiae require the RAD52 gene product. We have examined the effect of the rad52-1 mutation on spontaneous mitotic recombination between heteroalleles, and found that prototrophs are produced at frequencies significantly above reversion. This residual recombination occurs at a relatively uniform level at all of the loci examined. To help understand the role that RAD52 plays in mitotic recombination, we examined recombination between all pairwise combinations of six mutant alleles of the LYS2 gene. The rad52-1 mutation decreased the variation in amount of recombination between the various pairwise combinations as well as lowering the overall frequency of recombination. The reduced variation results in a different pattern of recombination in rad52-1 cells than in wild type. One interpretation of these results is that the RAD52 gene product, directly or indirectly, plays a role in the formation or the resolution of mismatches in heteroduplex DNA.

1. Introduction
The RAD52 gene is apparently required for almost all types of genetic recombination in Saccharomyces cerevisiae. The rad52-1 allele, isolated as an X-ray-sensitive mutation, is pleiotrophic and confers a variety of mutant phenotypes (reviewed in Game, 1983 and Haynes & Kunz, 1981). It is deficient in meiotic recombination at all loci on all chromosomes examined (Game et al. 1980; Prakash et al. 1980; Malone, 1983). As expected for a meiotic Rec− mutation, all spores formed following meiosis are inviable and do not germinate. The rad52-1 allele also confers a Rec− phenotype for spontaneous mitotic recombination (Game et al. 1980; Prakash et al. 1980; Malone & Esposito, 1980). All current data support the contention that mitotic gene conversion is greatly reduced in rad52-1-containing strains. Consistent with this is the deficiency conferred by rad52-1 for the switching of mating types in homothallic strains (Malone & Esposito, 1980). The effect of rad52-1 on spontaneous mitotic crossing-over is less defined. Malone (1983) and Malone & Esposito (1980) found that recombinants formed by crossovers between homologous chromosomes were reduced 5- to 10-fold. Jackson & Fink (1981), however, found that intrachromosomal reciprocal events at a his4 duplication were not reduced. Likewise, Prakash & Taillon-Miller (1981), as well as Zamb & Petes (1981), found that rad52-1 did not inhibit sister-strand crossing-over. Orr-Weaver, Szostak & Rothstein (1981) examined the integration of non-replicating plasmids and argued that the relative frequency of integration was not reduced in rad52-1 strains. Since a reciprocal crossover is required to insert a circular plasmid into a chromosome, their suggestion was that rad52-1 did not affect mitotic crossing-over.

More recently, Haber & Hearn (1985) examined spontaneous mitotic recombination between the his4 heteroalleles used by Jackson & Fink. However, Haber & Hearn examined MATa/MATa diploid recombination occurring between homologues with easily detectable outside markers, rather than at a duplication in haploids. They found that 84% of the events generating His+ prototrophs in rad52-1 strains were associated with exchange of outside markers. This is in contrast to 23% in rad+ cells. The events producing His+ prototrophs were conversions; Haber & Hearn did not detect the reciprocal double his4 mutant. They concluded that gene conversion did occur in the absence of RAD52 and observed that its properties were markedly different from conversions occurring in wild-type cells. Not only was conversion often associated with exchange, but the pattern was different. On the basis of their observations, Haber & Hearn argued that the majority of the gene conversion events in rad52-1 cells occurred by the formation of DNA heteroduplexes and mismatch repair.

* Current address: Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA, U.S.A.
† Current address: Department of Biology, University of Iowa, Iowa City, IA, U.S.A.
We have been interested in the role that RAD52 plays in spontaneous mitotic recombination. We observed that the frequencies of prototroph formation at the different loci examined by Malone & Esposito for gene conversion were remarkably similar. If the prototrophs were due to recombination, and not reversion, the similar frequencies suggest that the residual recombination occurring in the absence of RAD52 has very different properties from recombination occurring in its presence. One way to generate a uniform frequency of recombination between different pairs of mutant alleles is for recombination to no longer be dependent upon the distance between mutations, and for all heteroduplex DNA formed to be treated identically. To examine this question we looked at recombination between several different alleles at a single locus, LYS2. The data in this paper suggest that the RAD52 gene product may play a role during spontaneous mitotic recombination in the formation and/or correction of mismatches.

2. Materials and Methods

(i) Strains

The relevant genotypes of S. cerevisiae strains are shown in Table 1. Strains were constructed by several backcrosses (at least three times) with wild-type laboratory strains in order to develop relatively isogenic backgrounds. Some of the strains used in backcrosses were K210-4A, K210-6D, K264-5B and K264-10D (kindly supplied by Dr S. Klapholz, University of Chicago). Standard techniques were used for sporulation, dissection, testing of auxotrophic requirements and prototrophic selection of diploids (Malone & Hoekstra, 1984). All strains contained the ochre-suppressible mutation ade2-1 and at least one other suppressible auxotrophy such as trp5-2, tyr1-1 or met13-3 (Hawthorne & Leupold, 1974). These mutations were included to assay prototrophs arising from heteroalleles for the presence of suppressor mutations. The lys2-1 and lys2-2 alleles are ochre-suppressible mutations. If Lys+ prototrophs occur by suppression rather than recombination, other ochre-suppressible mutations can be co-suppressed and detected in a replica plate assay (Malone, Golin & Esposito, 1981).

(ii) Media

Media recipes (lysine omission medium, etc.) have been described previously (Golin & Esposito, 1977). Liquid medium (YPD) is 1% yeast extract, 2% Bactopeptone and 2% dextrose. Solidified medium contains 1.8% Bactoagar (Difco). MMS plates, used to follow the segregation of rad52-1, are YPD medium containing 0.01% methyl methane sulphonate (Eastman Kodak). Strains containing rad52-1 are sensitive to MMS.

(iii) Isolation of lys2 mutations

Mutations in the LYS2 gene were selected using a modification of the procedure of Chattoo et al. (1979). Wild-type strains RM11-10D and RM13-128D were each inoculated into 40 ml of YPD and grown overnight to a concentration of 2 x 10^7 cells/ml (mid-exponential phase). Cells were pelleted and washed twice in sterile 0.2 M NaH_2PO_4 buffer (pH 7.5). Cells were resuspended in 5 ml of phosphate buffer and 50 μl ethyl methane sulphonate (EMS, Eastman Kodak) added. The suspension was held at 24 °C for 45 min (corresponding to 81% survival). Preliminary EMS mutagenesis experiments indicated that this regimen generated a two log increase in forward mutation at CAN1. For the isolation of lys2 mutations, aliquots of mutagenized cells were spread on supplemented minimal media containing 4 mg/ml α-aminoacidipate (α-AA). Prior to EMS treatment, the starting cultures demonstrated a spontaneous α-AA resistance frequency of 4.3 x 10^-4. After EMS treatment, the frequency of resistance rose to 6.2 x 10^-4.

Approximately 600 α-AA-resistant colonies were picked to master plates and tested for their ability to grow on lysine omission medium. Concomitantly, these isolates were subjected to lys2 complementation tests and allelism tests against known lys2-1 and lys2-2 mutations. Isolates that were unable to grow without added lysine, that did not complement the known lys2 mutations, but that were able to undergo meiotic allelic recombination with both lys2-1 and lys2-2 were repicked to new master plates (44 isolates). Twenty-seven of these were in RM11-10D background and 17 were in RM13-128D.

All possible pairwise crosses were done, with diploids being selected on medium without homoserine or histidine. Diploids were subsequently replicated to lysine omission medium and the number of Lys+ papillae counted. A wide range of responses varying from a few to several hundred papillae per 1 cm^2 diploid patch was observed. Eleven RM11-10D and 8 RM13-128D isolates from the pairwise crosses were chosen to pursue further. The 19 isolates were backcrossed with unmutagenized wild-type strains to remove the new lys2 mutations from the mutagenized background. The diploids were sporulated, dissected and lys2 mutations of both mating types isolated. Four lys2 alleles which, when intercrossed, gave a wide range of mitotic papillation frequencies and demonstrated no papilla when homozygous were chosen, along with lys2-1 and lys2-2, for subsequent use. These strains were subjected to two further clean-up backcrosses before being outcrossed to rad52-1 strains. Following the recommendation of Dr J. K. Bhattacharjee (Miami University of Ohio), we have named the isolates lys2-500, lys2-501, lys2-502 and lys2-503 (using an allele-numbering scheme of Chattoo et al. 1979).
Mitotic recombination in rad52-l mutants

Table 1a. Diploid strains: LYS2 and RAD52 genotypes

lys2-1	lys2-2	lys2-500	lys2-501	lys2-502	lys2-503	
MH53	MH38	MH39	MH40	MH41	MH42	
MH32		MH54	MH43	MH44	MH45	MH46
MH17			MH55	MH47	MH48	MH49
MH18	MH22		MH56	MH50	MH51	
MH19	MH23	MH26	MH35	MH57	MH52	
MH20	MH24	MH27	MH29	MH36	MH58	
MH21	MH25	MH28	MH30			

The strains listed in the upper right-hand portion of the table are RAD52 diploids containing the lys2 alleles designated by following a path along a row and down a column. The left-hand lower portion below the diagonal lists rad52-l diploid strains.

Table 1b. Details of strain genotypes

Strain	Genotype
RM11-10D	a tyrl-1 ura3-13 hom3 ade2-1 met13-c cyh2R trp5-c leu1-c ade6
RM13-128D	a tyrl-1 can1R ura3-13 his1 adel-1 ade5 met13-c cyh2R trp5-c leu1-12
RM13, RM15, RM27	a leul-c trp5-c cyh2R met13-c ura3-1 lys2-1 tyrl-2 his7-2 RAD52 ade2-1
RM41, RM42	a leul-12 trp5-2 CYH2R met13-d ura3-13 lys2-2 tyrl-1 his7-2 rad52-l ade2-1
MH32	a rad52-1 lys2-1 tyrl-1 his7-2 ura3-13 trp5-2 leu1-12
MH33	a rad52-1 lys2-2 tyrl-2 his7-1 ura3-1 trp5-c leu1-c

(iv) Determination of mitotic recombination levels

The procedure for determining mitotic recombination values was essentially as described in Malone & Hoekstra (1984). Single colonies from freshly constructed diploids were picked into 1 ml of YPD and cell concentration was determined by haemocytometer count. Ten ml of YPD was inoculated with 10^4 cells and the culture grown at 30°C with vigorous shaking to approximately 2 x 10^6 cells/ml. Each culture was initiated from an independent colony and for all diploids at least three (most often 6–10) cultures were measured. After harvesting by centrifugation, cells were washed twice in sterile phosphate buffer, sonicated briefly to disrupt clumps and plated on lysine omission and complete synthetic media. Plates were scored after three days of growth at 30°C.

(v) DNA blot analysis

The procedure for small-scale isolation of total yeast genomic DNA has been described (Hoekstra & Malone, submitted) DNA blotting, nick-translation and hybridization conditions are as described in Hoekstra & Malone (1985).

3. Results

(i) Prototrophs produced at heteroallelic loci in rad52-l are not due to reversion

Malone & Esposito (1980) demonstrated that mitotic inter- and intragenic recombination between homologues in rad52-l strains were reduced compared to Rad+ (i.e. RAD52) strains at all loci examined. Close examination of the data published by Malone & Espo-
recombination (gene conversion) in \textit{rad52-l} mean recombination and reversion frequencies for strains Hoekstra (1984), are presented. The Rad + values are from Malone &

In other words, heteroallelic intragenic mitotic recombination that occurs has a pattern different from

Fig. 1. Recombination and mutation frequencies at various loci in \textit{RAD52} and \textit{rad52-l} strains. Geometric mean recombination and reversion frequencies for strains RM13, RM15, RM27, RM41, RM42, MH32, and MH33 are presented. The Rad + values are from Malone & Hoekstra (1984), \textit{rad52-l} frequencies are from Malone & Esposito (1980), and \textit{rad52-l} reversion frequencies are from this work.

(sito reveals recombination frequencies for various heteroallelic loci ranging from 1.0 x 10^{-7} to 6.9 x 10^{-7} (Fig. 1). The greatest variation between any of the heteroalleles in \textit{rad52-l} strains is only a 6.9-fold difference in recombination frequency (\textit{LEU1} versus \textit{TYR1}). Compared to this relatively low range of fluctuation between loci, Rad + strains had recombination frequencies ranging from 2.9 x 10^{-6} to 7.5 x 10^{-5} (\textit{HIST} versus \textit{LEU1}). This is approximately a 26-fold difference. The Rad + recombination frequencies (Fig. 1) are taken from the larger data set described by Malone & Hoekstra (1984). The data used include those described by Malone & Esposito (1980). In addition to the general suppression of intragenic recombination and the relatively uniform amount of heteroallelic recombination in \textit{rad52-l} cells, the recombination that occurs has a pattern different from Rad + strains. It was necessary to demonstrate that prototrophic colonies arising in \textit{rad52-l} homozygous diploids from heteroallelic loci were recombinants rather than revertants. Reversion frequencies for the auxotrophic alleles present in the Malone & Esposito \textit{rad52-l} strains were measured in homoallelic diploids. As shown in Fig. 1, the frequency of recombination in the \textit{rad52-l} background averages almost 10-fold greater than the combined reversion frequency for both input alleles comprising a given heteroallelic pair. In other words, heteroallelic intragenic mitotic recombination (gene conversion) in \textit{rad52-l} strains does occur, and the level of recombination is almost 10 times greater than mutation. On the basis of these observations, we feel there is low-level recombination occurring in \textit{rad52-l} strains of \textit{Saccharomyces cerevisiae}. The recombination events display a more uniform distribution than those occurring in wild-type strains.

(ii) Isolation and characterization of \textit{lys2} mutations

Because the heteroalleles examined in Fig. 1 are in different genes on different chromosomes, at varying distances from chromosomal landmarks (centromeres and telomeres, for example), we felt it necessary to examine a set of mutations carefully along a defined genetic interval. The fluctuation from locus to locus in Rad + strains could reflect different probabilities of recombination occurring at different loci, rather than a variation in the recombination mechanism itself. If so, the reduction of conversion at different loci in \textit{rad52-l} strains to a more uniform level might only represent a uniform probability of initiation at all loci. This hypothesis is opposed to one proposing a mechanism in \textit{rad52-l} strains which was distance- and heteroduplex-independent. To determine whether the observed uniformity reflects events occurring within a locus, rather than being dependent on recognition of loci per se, we examined recombination between several alleles within the \textit{LYS2} gene.

\textit{LYS2} mutations, defective in \(\alpha\)-aminoadipate reductase, were selected on the basis of resistance to \(\alpha\)-AA in the absence of lysine (Chattoo et al. 1979). From initial characterization a set of six alleles (\textit{lys2-1}, \textit{lys2-2}, \textit{lys2-500}, \textit{lys2-501}, \textit{lys2-502} and \textit{lys2-503}) were chosen for use in precise measurements of recombination levels. The criteria used for choosing these alleles were: (i) intercrosses of the isolates creating heteroallelic diploids gave a wide range of Lys + papillae in Rad + cells; and (ii) sibling crosses, creating homozygous \textit{lys2} diploids, gave no revertant colonies in a simple replica-plate assay. For the four alleles isolated, formation of Lys + revertants by this replica-plate assay was extremely low, indicating that the levels of reversion and suppression for these alleles would not significantly affect our analysis in wild-type strains. UV-induced mitotic recombination and meiotic recombination experiments using all pairwise combinations of the 6 \textit{lys2} alleles were consistent with their being located at different positions along the \textit{LYS2} gene (data not shown).

Although the four mutations generated for this study are EMS-induced and likely to be single base-pair changes, we examined the \textit{LYS2} genomic region for gross structural changes (such as deletions or insertions). (The \textit{LYS2}-containing plasmid, p1-L13, was kindly supplied by S. Carl Falco, E. I. DuPont deNemours and Co., Wilmington, Delaware. Our reasoning for examining the mutations by Southern blot analysis is based on the observation that a TV element insertion, such as the insert contained in \textit{ura3-52}, can stimulate recombination several-fold (M. F. H. and R. E. M., unpublished observation). A Southern blot and restriction map of p1-L13 is given in Fig. 2. Based on this analysis we detect no gross DNA alteration in any of the 6 \textit{lys2} alleles.

\begin{itemize}
\item[(i)]...
\end{itemize}
Mitotic recombination in rad52-l mutants

Fig. 2. Southern analysis of new lys2 mutations. Approximately 3 μg of total yeast DNA were digested with Bgl II, run in 0.8% agarose overnight, and blotted to nitrocellulose, and probed with an EcoRI-HindIII fragment containing LYS2 from p1-L13. The numbers above the lanes refer to the lys2 allele number.

(iii) Spontaneous mitotic recombination at LYS2 in RAD52 and rad52-l backgrounds

Figure 3A shows a histogram representation of recombination levels for all 15 pairwise combinations of lys2 alleles in wild-type strains. (Recombination frequencies, rather than rates, are presented in order to facilitate direct comparison with the work of Malone & Esposito (1980).) As in Fig. 1, relative recombination levels between heteroallelic pairs fluctuated greatly. However, in this case heteroalleles are confined to a small genetic interval, and the variation in levels is more likely to reflect the mechanism of the exchange event occurring at LYS2 rather than the probability of the event occurring at the locus. The largest difference in recombination frequencies is 69-fold (lys2-503/lys2-2 versus lys2-500/lys2-2) with a range of 3.7×10⁻⁶ to 2.5×10⁻⁴. It should be noted that at least 50 to 100 Lys+ colonies per culture were picked and retested in all experiments. This was done in part because lys2-1 and lys2-2 are ochre alleles, capable of being suppressed by tRNA mutations. Where necessary, corrections were made for suppression, but in most cases suppressors occurred in less than 5-10% of the putative recombinants in wild-type strains. (All strains contained multiple diagnostic suppressible auxotrophic mutations (see Materials and Methods).)

Figure 3B represents the recombination frequencies for the same heteroalleles as in Fig. 3A, in a rad52-l background. (Note the scale differences between Fig. 3A and 3B.) For all heteroallelic pairs, the reduction in recombination frequencies in rad52-l cells is of similar magnitude to that observed in Fig. 1. The decrease is comparable to the average reduction of approximately 10- to 50-fold reported by Prakash et al. (1980) and Malone & Esposito (1980). While there is variation between the geometric mean recombination frequencies given in Fig. 3B.
Fig. 3. Spontaneous mitotic recombination at LYS2 in RAD52 and rad52-l strains. The data represent geometric mean recombination frequencies for RAD52 (A) and rad52-l (B) strains for all pairwise combinations of the 6 lys2 alleles. The data in Fig. 3C are the RAD52/rad52-l ratios, for each heteroallelic pair, normalized to the lowest ratio. If the rad52-l mutation caused only a reduction of recombination, the values would all be 1.0. The allelic (2.7 x 10^-7 versus 2.49 x 10^-7), almost all the recombination values are within one standard deviation of each other. The differences between each of the 15 lys2 pairwise combinations in the rad52-l background are not apparently significant (1-way ANOVA, \(F = 1.002, \text{D.F.} = 14, P = 0.462\)). A similar statement cannot be made for the RAD52 data in Fig. 3A. Therefore, the recombination that occurs along the length of LYS2 in rad52-l is apparently homogeneous, uniform, and relatively independent of the mutant alleles present. It should be noted that 3 of the 15 heteroallelic pairs in wild type versus rad52-l.

Pairs as follows: (1) lys2-l/lys2-2, (2) lys2-1/lys2-500, (3) lys2-1/lys2-501, (4) lys2-1/lys2-502, (5) lys2-1/lys2-503, (6) lys2-2/lys2-500, (7) lys2-2/lys2-501, (8) lys2-2/lys2-502, (9) lys2-2/lys2-503, (10) lys2-500/lys2-501, (11) lys2-500/lys2-502, (12) lys2-500/lys2-503, (13) lys2-501/lys2-502, (14) lys2-501/lys2-503, and (15) lys2-502/lys2-503. Strains used are listed in Table 1 (MH17-MH30 and MH38-MH52).

Evidence that the selected Lys^+ colonies for each heteroallelic pair in rad52 mutants can be attributed to recombination is taken from the data in Table 2 and Fig. 3. In 12 of 15 cases the level of prototrophs arising from a heteroallelic pair (Fig. 3) is higher than the level of homoallelic reversion (Table 2) in the rad52-l background. It is interesting to note that the occurrence of mutation in rad52-l is elevated relative to wild type for 4 of the 6 alleles. There is approximately a 5- to 10-fold average increase in reversion rates in rad52-l strains. This agrees favourably with previous

https://doi.org/10.1017/S0016672300024599 Published online by Cambridge University Press
observations by Prakash et al. (1980) that rad52-1 strains are slightly hyper-mutable. One interpretation of the increase in spontaneous mutation is that lesions which are normally processed by recombination—repair are channelled to another (error-prone) repair pathway.

From the wild-type mitotic recombination frequencies (Fig. 3A) it is possible to calculate a map of the LYS2 gene indicating the relative positions of the 6 lys2 mutations examined (Fig. 4). The best map order for the lys2 alleles appears to be: lys2-503, lys2-2, lys2-1, lys2-501, lys2-502, lys2-500. Precise alignment of these mutations on the LYS2 gene will require gap rescue analysis (Orr-Weaver et al. 1983) and/or nucleotide sequencing.

4. Discussion

In this report we have examined spontaneous, intragenic mitotic recombination in rad52-1 strains. The RAD52 gene product is one of the more interesting gene products involved in mitotic recombination in strains. The data presented here indicate that a low level of spontaneous reversion in rad52-1 mutants. Two hypotheses to explain this observation are: (i) there is another recombination pathway in Rad52+ cells, or (ii) the rad52-1 mutant is leaky, and a small amount of functional RAD52 product is present. We favour the former hypothesis for two reasons. First, whenever tested, the properties of the rad52-1 mutation in rad52+ background are essentially identical to a gene disruption created by Schild et al. (1983b). Secondly, published data suggest that, in some instances, recombination in the form of crossing-over can occur in rad52-1 strains (Jackson & Fink, 1981; Klein & Petes, 1981; Orr-Weaver et al. 1981; Prakash & Taillon-Miller, 1981; Zamb & Petes, 1981). Third, if the rad52-1 mutation were leaky, the simplest expectation would be that the rank order of recombination at heteroallelic pairs would remain the same, although the amount of recombination would be reduced. In other words, frequencies would be reduced but the distribution would be the same. We note, however, that even if the second hypothesis were true, it would imply that low levels of RAD52 gene product alter the mechanism of recombination events, not simply their frequency.

Examination of recombination in rad52-1 strains

Table 2. Frequency of reversion to prototrophy

Diploid genotype	lys2-1	lys2-2	lys2-500	lys2-501	lys2-502	lys2-503
rad52-1	1.8	3.8	1.8	1.0	2.4	1.5
rad52-1	±2.6	±4.6	±2.1	±1.3	±0.8	±3.4
RAD52	0.1	1.3	0.3	2.4	0.1	3.4
RAD52	±0.02	±3.6	±0.9	±0.7	±0.8	±4.7

The data represent geometric mean reversion frequencies of 7 and 4 cultures per diploid for rad52-1 and RAD52 strains, respectively. The diploids used are MH32–MH37 and MH53–MH58.
along a defined genetic interval, *LYS2*, has provided an interpretation of the original observations of Malone & Esposito (1980). Recombination levels are greater than mutation levels for 12 of 15 heteroallelic pairs examined in this study and for all heteroalleles examined by Malone & Esposito (1980). The levels of recombination in *rad52-l* strains are relatively uniform compared to wild type. Comparison between heteroallelic recombination at loci on different chromosomes indicates that there is only about a 7-fold variation in frequencies. Recombination between different heteroalleles along a small genetic interval demonstrates at most a 9-fold range in frequencies. Using the same pairs of heteroalleles, wild-type strains show a 70-fold range in recombination frequencies. One interpretation of this observation is that all heteroduplexes containing heteroallelic mismatches are formed with equal probability. Furthermore, each mismatch is repaired equivalently. This interpretation is based on a single-strand exchange mechanism like that proposed by Meselson & Radding (1975) rather than a double-strand break model (Resnick, 1976; that proposed by Meselson & Radding (1975). If, on the other hand, the altered recombination is due to a low level of the *RAD52* product present in *rad52-l* cells, the amount of gene product is affecting the mechanism of the event. Either way, the data suggest that *RAD52* plays a role, directly or indirectly, in the formation and/or correction of mismatches.

How can a single mutation in a recombination–repair function lead to a change both in the level and the distribution of spontaneous mitotic gene conversion? If *rad52-l* blocks the major mitotic recombination pathway, any recombinants formed are likely to do so by a secondary route. Owing to its X-ray sensitivity (Game et al. 1980; Prakash et al. 1980), inability to survive mating-type interconversion (Malone & Esposito, 1980), and lack of gapped plasmid integration (Orr-Weaver et al. 1981), the *rad52-l* mutation is believed to inactivate a function involved in double-strand break repair (recombination–repair). A cell attempting recombination by a double-strand break mechanism would likely become inviable in the absence of *RAD52*. Consistent with the proposal of Haber & Hearn (1985), it seems that a *RAD52*-independent pathway might proceed by a mechanism like that proposed by Meselson & Radding (1975).

The work described in this paper was supported by NIH grant R01-GM 29172 and a Scheppe Foundation Career Development award to R. E. M. This work is submitted by M. F. H. in partial fulfilment of the Ph.D. requirements for Loyola University of Chicago. The authors thank Denise Hoekstra for help with the production of the figures and manuscript.

References

Adzuma, K., Ogawa, T. & Ogawa, H. (1984). Primary structure of the *RAD52* gene in *Saccharomyces cerevisiae*. Molecular and Cellular Biology 4, 2735–2744.

Borts, R. H., Lichten, M., Hearn, M., Davidov, L. S. & Haber, J. E. (1984). Physical monitoring of meiotic recombination in *Saccharomyces cerevisiae*. Cold Spring Harbor Symposium 49, 67–76.

Chattoo, B. B., Sherman, F., Azubalis, D. A., Fjellstedt, T. A., Mehnert, D. & Ogur, M. (1979). Selection of lys2 mutants of the yeast *Saccharomyces cerevisiae* by the use of x-aminoadipate. Genetics 93, 51–66.

Chow, T. Y. K. & Resnick, M. A. (1983). The identification of a deoxyribonuclease controlled by the *RAD52* gene of *Saccharomyces cerevisiae*. In Cellular Responses to DNA Damage (ed. E. C. Friedberg and B. A. Bridges), p. 447. New York: Liss.

Game, J. C. (1983). Radiation-sensitive mutants and repair in yeast. In Yeast Genetics. Fundamental and Applied Aspects (ed. J. F. T. Spencer, D. M. Spencer and A. R. W. Smith), pp. 109–137. New York: Springer.

Game, J. C., Zamb, T. J., Braun, R. J., Resnick, M. A. & Roth, R. M. (1980). The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94, 51–68.

Golin, J. E. & Esposito, M. S. (1977). Evidence for joint genic control of spontaneous mutation and mitotic recombination during mitosis in *Saccharomyces*. Molecular and General Genetics 156, 127–135.

Haber, J. E. & Hearn, M. (1985). *rad52*-independent mitotic gene conversion in *Saccharomyces cerevisiae* frequently results in chromosome loss. Genetics 111, 7–22.

Hawthorne, D. C. & Leupold, U. (1974). Suppressor mutations in yeast. Current Topics in Microbiology and Immunology 64, 1.

Haynes, R. H. & Kunz, B. A. (1981). DNA repair and mutagenesis in yeast. In The Molecular Biology of the Yeast *Saccharomyces*: Life Cycle and Inheritance (ed. J. N. Strathern, E. W. Jones & J. R. Broach), pp. 371–414. New York: Cold Spring Harbor Laboratory Press.

Hoekstra, M. F. & Malone, R. E. (1983). Expression of the *Escherichia coli dam* gene in *Saccharomyces cerevisiae*: effect of *in vivo* adenine methylation on genetic recombination and mutation. Molecular and Cellular Biology 3, 617–618.

Jackson, J. A. & Fink, G. R. (1981). Gene conversion between duplicated genetic elements in yeast. *Nature* 292, 306.

Klein, H. L. & Peters, T. D. (1981). Intrachromosomal gene conversion in yeast. *Nature* 289, 144.

Malone, R. E. (1983). Multiple mutant analysis of recombination in yeast. *Molecular and General Genetics* 189, 405–412.

Malone, R. E. & Esposito, R. E. (1980). The *RAD52* gene is required for homothallic interconversion of mating type and spontaneous mitotic recombination in yeast. *Proceedings of The National Academy of Sciences, USA* 77, 503–507.

Malone, R. E., Golin, J. E. & Esposito, M. S. (1980). Mitotic recombination versus meiotic recombination in *Saccharomyces cerevisiae*. *Current Genetics* 1, 241–248.

Malone, R. E. & Hoekstra, M. F. (1984). Relationships between a hyper-rec mutation (rem1) and other recombination and repair genes in yeast. *Genetics* 107, 33–48.

Meselson, M. & Radding, C. (1975). A general model for genetic recombination. *Proceedings of The National Academy of Sciences, USA* 72, 358–361.

Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. (1981). Yeast transformation: a model system for the
Mitotic recombination in rad52-1 mutants

study of recombination. Proceedings of The National Academy of Sciences, USA 78, 6354–6358.
Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. (1983). Genetic applications of yeast transformation with linear and gapped plasmids. In Methods in Enzymology, 101 (ed. R. Wu, L. Grossman and K. Moldive) pp. 228–245. New York: Academic Press.
Prakash, L. & Taillon-Miller, P. (1981). Effects of the RAD52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Current Genetics 3, 247–250.
Prakash, S., Prakash, L., Burke, W. & Montelone, B. A. (1980). Effect of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94, 31–50.
Resnick, M. A. (1976). The repair of double-strand breaks in DNA: a model involving recombination. Journal of Theoretical Biology 59, 97.
Resnick, M. A., Sugino, A., Nitiss, J. & Chow, T. (1984). DNA polymerases, deoxyribonucleases, and recombination during meiosis in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 2811–2817.
Schild, D., Konforti, B., Perez, C., Gish, W. & Mortimer, R. K. (1983a). Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Current Genetics 7, 85–92.
Schild, D., Calderon, I. L., Contopoulos, R. & Mortimer, R. K. (1983b). Cloning of yeast recombination repair genes and evidence that several are non-essential genes. In Cellular Responses to DNA Damage (ed. E. C. Friedberg and B. A. Bridges) pp. 417–427. New York: Liss.
Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. (1983). The double strand break repair model for recombination. Cell 33, 25–35.
Zamb, T. J. & Petes, T. D. (1981). Unequal sister-strand recombination within yeast ribosomal DNA does not require the RAD52 gene product. Current Genetics 3, 125–132.