Data Article

Data on Gabonese rodents and their Plasmodium

Larson Boundenga*, Diamella-Nancy Moukodoum, Barthélemy Ngoubangoye

Centre International de Recherches Médicales de Franceville (CIRMF), BP: 769 Franceville, Gabon

A R T I C L E I N F O

Article history:
Received 29 July 2019
Received in revised form 20 September 2019
Accepted 3 October 2019
Available online 15 October 2019

Keywords:
Molecular tools
Plasmodium
Rodents
Gabon
Cytochrome-b and tissues

A B S T R A C T

In this paper present data on the description of rodent species living around human dwelling in some villages of Gabon and their malaria parasites. Rodents are known to colonize various environments, such as forest; domestic or peridomestic environment. They are known to be the hosts of many parasites. Data presented here the circulation of malaria parasites in Gabonese rodents was shown; the estimation of pairwise genetic distances (p-distance) between rodents malaria parasites. We also provide data on rodent species diversity in Gabon. Three hundred and forty-five samples from rodents conserved in biobank of International Center of Medical Researches of Franceville (CIRMF) were used for the study. These samples were collected in six villages of southeastern of Gabon between 2009 and 2016 for routine monitoring of infectious disease. Such data can be used to describe and understanding the evolution and systematics of malaria parasite. This data set support the main findings presented in the research article [1].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset presented here describes methods of identification of the rodent diversity and Plasmodium species infecting the rodents dwelling peri-domestic environment. Fig. 1 describes different steps of characterization of malaria parasites using whole blood or organs (liver/spleen). Fig. 2 described phylogenetic relationships between the rodents captured in Gabon and other from other countries from Genbank using a portion of mitochondrial gene (Cyt-b). Table 1 describes the diversity and percentage each parasite obtained according to the material used and the infected host species. Table 2 presents results of molecular characterization of the species of the rodents. Table 3 presents results of estimation of the pairwise genetic distance (p-distances) between cytochrome b of Plasmodium lineages obtained and others lineages indexed in Genbank and Table 4 S1 presents complete data base of captured rodents.

2. Experimental design, materials, and methods

All rodents were captured using Tomahawk and Shermann traps in peri-domestic habitats (up to 250 m from the houses). The traps being set inside and around human dwellings, in each city. For each individual, species or genus identification of the rodent was based on morphological characters and the parameters like sex, age, weight or morphometric limbs (foot and arm) were taken (Table S1). After the euthanasia, samples of different organs were collected (liver, spleen, kidney, lung, heart, intestine and brain), frozen and transported to the Centre International de Recherches Médicales de Franceville. Finally, the collected samples were stored at –80 °C until needed for molecular analyses.

Total DNA, for each selected animal was extracted from approximately 100 mg of organ tissue (spleen or liver) mixed with 500 µl of PBS solution or 200µl of blood according to the procedures
described by Boundenga et al. [2,3]. We ground the samples on an automaton set at 2000 rpm for 5 minutes, then we used 200 µl from each sample for DNA extraction (Fig. 1). Total DNA was extracted from with the DNeasy Blood and Tissue Kit (Qiagen, Courtaboeuf, France) and used as template for the detection of Plasmodium parasites of rodents according to a previously described protocol [3]. For amplification of malaria parasites, a nested PCR was performed on each sample targeting a ~930bp fragment of the Plasmodium cytochrome b (cyt-b) gene is based on a nested PCR with 2 sets of primers such as described in Ref. [4].

The first was developed by Perkins and Schall (2002) (DW2 5’-TAATGCCTAGACGGTTTCTGATTATCCAG-3’ and DW4 5’-GTGTTGGAGCTGTATAAATGTC-3’). For this first round, we used 2 µl of DNA template in a 20 µl reaction volume, containing: 4 µl of 5 x Reaction Buffer, 1.5 mM MgCl2, 200 µM of each dNTP, 20 pmol of each primer (DW2 and DW4), and 2.5 U Taq DNA Polymerase (Promega). Cycling conditions for the first round were as follows: 3 min at 94 ºC; 20 sec at 94 ºC; 20 sec at 60 ºC; 1 min 30 sec at 72 ºC (repeated for 35 cycles); 10 min at 72 ºC. For the second round of Cyt b gene amplification, we used the primers from Schwöbel et al. (2003) (Cytb1 5’-CTCTATATTGAATAGCACA-3’ and Cytb2 5’-ACAGAATAATCTCTAGCACC-3’) and we used 1 µl of 1st PCR template in a 25 µl reaction volume, containing: 5 µl of 5 x buffer, 1.25 mM MgCl2, 250 µM of each dNTP, 37.5 pmol of each primer (Cytb1 and Cytb2), and 0.5 U Taq DNA Polymerase (Invitrogen). Cycling conditions for the second round were as follows: 5 min at 95 ºC; 30 sec at 94 ºC; 30 sec at 45 ºC; 1 min 30 sec at 72 ºC (repeated for 35 cycles); 10 min at 72 ºC. This combination of primers can amplify the cyt-b from other haemosporidian parasites infecting a diverse range of hosts (see Prugnolle et al., 2010, 2011; Boundenga et al., 2016; Makanga et al., 2016). All amplified products (10µl) were run on 1.5% agarose gels in Tris-acetate-EDTA (TAE) buffer. After analyze, the PCR-amplified products were used as templates for sequencing. DNA sequencing was performed Sanger method. All Plasmodium species identified in our study were mentioned in Table 1. Table 2 show the summary of the pairwise genetic distance estimate. This analyze was done to compare the divergence between sequence de cytochrome-b obtained in our study and sequences listed in Genbank.

To confirm host species, we performed molecular analyses to amplify cyt-b gene of rodents such as described in Refs. [5,6]. Thus, for amplification of cyt-b gene we used S330 (5′-CCAATGACATGAAATCATTG) and S331 (5′-GGGATAGTCTTCTTCATTG). PCR conditions for an initial denature period of 94 ºC for 2 min, followed by 35–40 cycles of 94 ºC for 30–45 seconds, 55 ºC for 45 seconds, and 72 ºC for 1.5 minutes, and the reaction was terminated with a single cycle of 72 ºC for 7 minutes. The phylogenetic tree was built with cyt-b sequences of rodent obtained and others rodent sequence known so far indexed in Genbank. All results are contained in Table 3, Table 4 S1 and Fig. 2.

Fig. 1. Illustration of the different steps of Plasmodium diagnostic in mammals used whole blood or organs (liver/spleen) for DNA extraction. This methods was more explained in our previous studies [2,3] where we used firstly this protocol to identification of malaria parasites in wildlife.
Fig. 2. Phylogenetic relationships between the Cyt-b sequences of rodents obtained in our study (bold) and the others sequences from existing databases. The tree was built based on partial sequences of Cyt-b (750 bp-long) using PhyML (freely available at the ATGC bioinformatics platform http://www.atgc-montpellier.fr/) using NNI (Nearest Neighbor Interchange) + SPR (Subtree Pruning Regrafting) branch swapping and 100 bootstrap replicates. The names of our isolates (for instance, n14GB-Ron48_Mus musculus-DJM) include: 1) the year and country of collection (n14GB: n14: 2014 and GB: Gabon); 2) the sample number (Ron48: Rodent number 48); 3) the rodent species and 4) the abbreviation of the sample site (FCV: Franceville; MIM: Mimongo, LEK: Lekoni, DJM: Djoumou; MKK: Makokou; KLM: Koulamoutou).
Table 1
Describes of the diversity and percentage of *Plasmodium* species identified.

Plasmodium species	Biological materials	Rodent species infected	Percentage (%)	Accession number of the *Plasmodium* detected
	Whole blood (N = 60)	Liver and spleen (N = 285)		
Plasmodium vinckei	3/60	5/285	- *Mastomy natalensis*	2.31 (8/345) MK519275; MK519276; MK519274; MK519273
			- *Mus musculus*	
			- *Praomys* sp.	
			- *Lemniscomys striatus*	
			- *Grammomys poensis*	
			- *Praomys* sp.	
			- *Lemniscomys striatus*	
Plasmodium yoelii	1/6	2/285	- *Praomys* sp.	0.86 (3/345) MK519270; MK519272
			- *Lemniscomys striatus*	
P. sp. GAB	1/285	1/285	- *Mus musculus*	0.57 (2/345) MK519279; MK519278
Table 2
Results of molecular characterization of the species of the rodents. This table consider inly the positive individual of our study. The species were identified using the methods described in [5,6]. Thus our data show the presence of these species in the peri-domestic environment of Gabon.

Identifier	Year of collection	Localization	Species identification	Genbank number	Gene analyzed
14GB-Ron7	2014	Franceville	Lemniscomys striatus	MK519268	Cytochrome b
14GB-Ron23	2014	Franceville	Lemniscomys striatus	MK519269	Cytochrome b
13GB-Ron301	2013	Franceville	Proamys sp.	MK519270	Cytochrome b
13GB-Ron259	2013	Lekoni	Proamys sp.	MK519271	Cytochrome b
14GB-Ron152	2011	Lekoni	Proamys sp.	MK519272	Cytochrome b
14GB-Ron10	2014	Koulamoutou	Mastomys natalensis	MK519273	Cytochrome b
14GB-Ron35	2013	Lekoni	Mastomys natalensis	MK519274	Cytochrome b
15GB-Ron180	2015	Makokou	Mastomys natalensis	MK519275	Cytochrome b
14GB-Ron205	2014	Makokou	Mastomys natalensis	MK519276	Cytochrome b
14GB-Ron215	2014	Makokou	Grammomys poensis	MK519277	Cytochrome b
14GB-Ron11	2014	Djoumou	Mus musculus	MK519278	Cytochrome b
14GB-Ron63	2014	Mimongo	Mus musculus	MK519279	Cytochrome b
14GB-Ron48	2014	Djoumou	Mus musculus	MK519280	Cytochrome b
Table 3
The pairwise genetic distance (p-distances) between cytochrome b of *Plasmodium* lineages obtained in rodents samples shown in Table 1. This estimation was made using Kimura two-parameter model of substitutions.

Parasite species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
(1) 14GB-Ron152_M.muscullus	0.06																								
(2) 14GB-Ron7_L.striatus	0.06																								
(3) 14GB-Ron63_M.muscullus	0.03	0.08																							
(4) 14GB-Ron11_M.muscullus	0.03	0.08	0.00																						
(5) 14GB-Ron23_L.striatus	0.00	0.06	0.03	0.03																					
(6) 14GB-Ron48_M.muscullus	0.06	0.01	0.08	0.08	0.07																				
(7) 14GB-Ron10_M.natalensis	0.06	0.00	0.08	0.08	0.06	0.01																			
(8) 14GB-Ron35_M.natalensis	0.06	0.00	0.08	0.08	0.06	0.01	0.00																		
(9) 15GB-Ron180_M.natalensis	0.06	0.00	0.07	0.07	0.06	0.01	0.00	0.00																	
(10) 14GB-Ron205_M.natalensis	0.06	0.00	0.08	0.08	0.06	0.01	0.00	0.00	0.00	0.01															
(11) DQ414654-P.v._lentum	0.06	0.01	0.08	0.08	0.07	0.02	0.01	0.01	0.01	0.01	0.01	0.01													
(12) DQ414653-P.v._lentum	0.06	0.01	0.08	0.08	0.07	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.00												
(13) DQ414655-P.v._petteri	0.06	0.03	0.08	0.08	0.06	0.04	0.03	0.03	0.03	0.03	0.04	0.04	0.04												
(14) DQ414656-P.v._petteri	0.06	0.03	0.08	0.08	0.06	0.04	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.00											
(15) DQ414650-P.v._vinckei	0.06	0.03	0.08	0.08	0.06	0.04	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.00	0.00										
(16) DQ414652-P.v._vinckei	0.06	0.05	0.08	0.08	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			
(17) DQ414651-P.v._vinckei	0.06	0.05	0.07	0.07	0.07	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			
(18) DQ414659-P.y._nigeriensis	0.00	0.06	0.03	0.03	0.00	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06				
(19) DQ414660-P.y._yoelii	0.00	0.06	0.03	0.03	0.00	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06				
(20) AY099051-P.yoelii	0.00	0.06	0.03	0.03	0.00	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06				
(21) DQ414658-P.y._killicki	0.01	0.06	0.03	0.03	0.01	0.07	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06			
(22) DQ414657-P.yoelii-EL	0.00	0.06	0.03	0.03	0.00	0.07	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.07	0.00	0.00	0.00	0.01			
(23) AY099054-P.atheruri	0.06	0.03	0.08	0.08	0.06	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.06			
Acknowledgments

The study was funded by Centre International de Recherches Médicales de Franceville (CIRMF), Gabon. We thank all people who were involved in collect of sampling.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104646.

Conflict of Interest

The authors declare that they have no competing interests.

References

[1] L. Boundenga, B. Ngoubangoye, S. Ntie, N. Moukodoum, F. Renaud, V. Rougeron, F. Prugnolle, Rodent malaria in Gabon: diversity and host range, Int. J. Parasitol. Parasites. Wildl. 10 (2019) 117–124, https://doi.org/10.1016/j.ijppaw.2019.07.010.

[2] L. Boundenga, B. Makanga, B. Ollomo, A. Gilabert, V. Rougeron, B. Mve-Ondo, C. Arnathau, P. Durand, N.D. Moukodoum, A.P. Okouga, L. Delicat-Loembet, L. Yacka-Mouele, N. Rahola, E. Leroy, C.T. Ba, F. Renaud, F. Prugnolle, C. Paupy, Haemosporidian parasites of antelopes and other vertebrates from Gabon, central Africa, PLoS One 11 (2) (2016) e0148958, https://doi.org/10.1371/journal.pone.0148958. eCollection 2016.

[3] L. Boundenga, S.L. Perkins, B. Ollomo, V. Rougeron, E.M. Leroy, F. Renaud, F. Prugnolle, Haemosporidian parasites of reptiles and birds from Gabon, central Africa, J. Parasitol. 103 (4) (2017) 330–337, https://doi.org/10.1645/16-118.

[4] F. Prugnolle, P. Durand, C. Neel, B. Ollomo, F.J. Ayala, C. Arnathau, L. Etienne, E. Mpoudi-Ngole, D. Nkoghe, E. Leroy, E. Delaporte, M. Peeters, F. Renaud, African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A. 107 (4) (2010 Jan 26) 1458–1463, https://doi.org/10.1073/pnas.0914440107.

[5] Scott J. Steppan, John J. Schenk, Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates Plos One 12 (8) (2017) e0183070, https://doi.org/10.1371/journal.pone.0183070. eCollection 2017.

[6] S.J. Steppan, M.R. Akhverdyan, E.A. Lyapunova, D.G. Fraser, N.N. Vorontsov, R.S. Hoffmann, M.J. Braun, Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses, Syst. Biol. 48 (4) (1999) 715–734.