Pea2 Protein of Yeast Is Localized to Sites of Polarized Growth and Is Required for Efficient Mating and Bipolar Budding

Nicole Valtz and Ira Herskowitz
Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448

Abstract. Saccharomyces cerevisiae exhibits polarized growth during two phases of its life cycle, budding and mating. The site for polarization during vegetative growth is determined genetically: a and α haploid cells exhibit an axial budding pattern, and a/α diploid cells exhibit a bipolar pattern. During mating, each cell polarizes towards its partner to ensure efficient mating. SPA2 is required for the bipolar budding pattern (Snyder, M. 1989. J. Cell Biol. 108:1419-1429; Zahner, J.A., H.A. Harkins, and J.R. Pringle. 1996. Mol. Cell. Biol. 16:1857-1870) and polarization during mating (Snyder, M., S. Gehrung, and B.D. Page. 1991. J. Cell Biol. 114:515-532). We previously identified mutants defective in PEA2 and SPA2 which alter cell polarization in the presence of mating pheromone in a similar manner (Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Genetics. 136:1287-1297). Here we report the further characterization of these mutants. We have found that PEA2 is also required for the bipolar budding pattern and that it encodes a novel protein with a predicted coiled-coil domain. Pea2p is expressed in all cell types and is localized to sites of polarized growth in budding and mating cells in a pattern similar to Spa2p. Pea2p and Spa2p exhibit interdependent localization: Spa2p is produced in pea2 mutants but fails to localize properly; Pea2p is not stably produced in spa2 mutants. These results suggest that Pea2p and Spa2p function together as a complex to generate the bipolar budding pattern and to guarantee proper polarization during mating.

Cell polarity is an essential feature of many eukaryotic cell types. Neurons and epithelial cells are two examples of cells whose polarity is essential for their function. The ability to polarize is also critical for the budding yeast Saccharomyces cerevisiae to grow and to mate (for reviews see Drubin, 1991; Madden and Snyder, 1992; Chenevert, 1994). During vegetative growth, localization of all new material at a defined site on the cell surface leads to formation of the growing bud. During mating, the ability to recognize the position of the mating partner and polarize towards it results in the local deposition of mating-specific proteins and facilitates efficient cell and nuclear fusion (for a review see Cross et al., 1988).

Polarized growth in yeast depends on actin: disruption of the actin cytoskeleton by either depolymerizing drugs or by mutations leads to unlocalized growth (for a review see Welch et al., 1994). Two kinds of filamentous actin structures are found in yeast: patches, which cluster at sites of growth, and cables, which are found throughout the cell body directed towards the growth site (Adams and Pringle, 1984; Kilmartin and Adams, 1984). It is believed that secretory vesicles are targeted to growth sites by the actin cytoskeleton (Johnston et al., 1991).

During vegetative growth, the position of the bud (and thus the direction of polarized growth) is determined genetically: a and α haploid cells bud adjacent to the position of the previous bud (Chant and Pringle, 1995), in the axial budding pattern, and a/α diploid cells bud from either pole, in the bipolar budding pattern (Freifelder, 1960; Hicks et al., 1977; Sloat et al., 1981). A genetic hierarchy has been proposed to organize the actin cytoskeleton (Chant and Herskowitz, 1991). The bud site selection genes (including RSRI/BUD1, BUD2-10, AXLI, the neck filament genes, and many others) are required to position a bud at the specified site on the cell surface. The polarity establishment genes (such as CDC42, CDC24, and BEM1) are required to organize actin towards that site. Finally, the genes encoding actin and various actin-binding proteins are required to build the actin cytoskeleton. These gene products are proposed to cooperate to polarize growth towards the presumptive bud site: the BUD gene products organize the polarity establishment proteins towards the chosen site, and the polarity establishment proteins in turn organize the actin cytoskeleton.

In addition to growing vegetatively, yeast cells can mate to form a diploid when two haploid cells of opposite mat-
ing type (a and α) come in contact (reviewed in Cross et al., 1988; Chenevert, 1994). During mating, cells ignore the polarity information at the presumptive bud site and polarize instead towards their mating partner (Madden and Snyder, 1992; Valtz et al., 1995): the actin and microtubule cytoskeletons as well as secretion and new cell surface growth are oriented towards the partner (Byers, 1981; Ford and Pringle, 1986; Hasek et al., 1987; Tkacz and MacKay, 1979). In this instance, the site for polarization is determined by an external signal, a gradient of pheromone secreted by the mating partner (Jackson and Hartwell 1990a,b, Segall, 1993; Dorer et al., 1995; Valtz et al., 1995).

In the absence of a mating partner, mating pheromones induce polarization towards the presumptive bud site (Madden and Snyder, 1992; Valtz et al., 1995). The polarity establishment proteins, actin, and actin-binding proteins are also required during mating to generate an organized actin cytoskeleton (for review see Chenevert, 1994). Thus, the machinery for polarizing the actin cytoskeleton is common during budding and mating, but the sites for polarization are chosen by different mechanisms.

To identify genes involved in polarization during mating, we previously screened for mutants which mate poorly but which exhibit normal pheromone production and response (Chenevert et al., 1994). These mutants were characterized for their ability to polarize during mating by exposing a cells to mating pheromone from α cells. After several hours in pheromone, wild-type a cells form pear-shaped cells known as shmoo; after several more hours, wild-type cells extend a second shmoo tip. Several classes of mutants obtained in this screen were distinguished by their shmoo morphology. One class formed essentially wild-type shmoo after short exposure to pheromone, but over time the shmoo tip continued to grow, generating a peanut-shaped shmoo. The four mutants with this peanut morphology fell into two complementation groups; one of these complementation groups appeared novel and was named PEA2; the other was identified as the known gene SPA2.

SPA2 plays important roles in morphogenesis, but its exact functions remain obscure. spa2 deletion mutants mate poorly (Gehrung and Snyder, 1990; Chenevert et al., 1994; Dorer et al., 1995) and form large unpolarized cells in the presence of pheromone (Gehrung and Snyder, 1990). spa2 mutants also exhibit a bipolar budding pattern defect (Snyder, 1989; Zahner et al., 1996). Finally, spa2 mutants display a cytokinesis defect, most evident in diploid cells (Snyder et al., 1991). SPA2 encodes a 180-kD, nonessential protein with predicted coiled-coil domains that localizes to sites of polarized growth during budding and mating, where it might function in morphogenesis (Snyder, 1989; Gehrung and Snyder, 1990; Snyder et al., 1991).

Here we report the characterization of the PEA2 gene and protein. We analyze the budding and mating phenotypes of pea2Δ strains and the expression and subcellular localization of Pea2p using an anti-Pea2p antibody. The behavior of Spa2p is also examined using an anti-Spa2p antibody. Our results suggest that Pea2p and Spa2p may function as a complex during two phases of polarized growth: establishment of the bipolar budding pattern and polarization during mating.

Materials and Methods

Materials

Spa2p antibodies were a generous gift from Mike Snyder (Yale University, New Haven, CT). α-Factor, Calcofluor, polylysine, and fluorescent secondary antibodies were from Sigma Chemical Co. (St. Louis, MO). Horseradish peroxidase–coupled antibodies and Affigel were from Bio-Rad Labs (Hercules, CA). Cyanogen bromide–activated Sepharose was from Pharmacia (Uppsala, Sweden).

Yeast Strains and Growth Conditions

Yeast strains and plasmids are described in Table I. Standard yeast growth conditions and genetic manipulations were used as described (Rose et al., 1990). Cells were grown at 30°C in rich YEPD medium unless otherwise noted.

Quantitative Mating and Shmoo Formation

Quantitative mating was essentially as described (Chenevert et al., 1994). In short, equal numbers of a and α cells (3 × 10⁶) were mixed, filtered onto 0.45-μm filters, and incubated on permissive YEPD plates for 4 h at 30°C, allowing all cells to grow. Cells were resuspended in 5 ml minimal medium (SD) by vortexing followed by sonication and plated on permissive YEPD plates to determine total colony-forming units and on selective SD plates to determine the total number of diploids. Each experiment was carried out in triplicate at least twice.

Shmoo morphology was determined by the addition of 10⁻¹M α-factor to 3 ml log phase cultures. Aliquots were removed at 0, 2, and 6 h. Cells were sonicated, fixed to a final concentration of 5% formaldehyde, and viewed by differential interference contrast microscopy.

Budding Pattern Assays

Calcofluor staining of bud scars was performed as described (Pringle et al., 1989). a or α cells with a total of three or more bud scars were scored as axial if all bud scars were adjacent; other patterns were scored as nonaxial. a/α cells with a total of three or more bud scars at the two poles were scored as bipolar; all other patterns were scored as nonbipolar. For each sample, 400 cells were counted for at least two independent experiments.

Cloning and Sequencing of SPA2

We previously reported the identification of the mutants J9 and D6 as defective in SPA2 (Chenevert et al., 1994) but did not describe the cloning which led to this conclusion. In brief, a centromere-based library (Rose et al., 1987) was transformed into the mutant J9 (NVY8), and transformants were screened for mating to an enfeebled mating partner carrying the mutation far l-c (JCS1-7D). Of approximately 11,000 transformants screened, one plasmid (pNV8) rescued the mating and peanut shmoo morphology defects of both mutants D6 and J9 in a plasmid-dependent manner. To locate the complementing region within the 10-kilobase (kb) insert of pNV8, mini-Tn10-LUK transposons were introduced (Haisman et al., 1987). Insertions into the complementing open reading frame (ORF) disrupted complementing activity. This new library of plasmids was transformed into the mutant J9, and transformants were again screened for the ability to mate with an enfeebled mating partner. Six plasmids which no longer complemented the J9 mating defect contained transposon insertions within a 2.8-kb Spf I fragment. Sequencing the end of this fragment revealed SPA2. Deletion of the SPA2 gene in the parent background generated a phenotype like that of the original mutant strains, further indicating that these mutants carry mutations in SPA2.

To determine whether the cloned DNA fragment corresponded to the mutated locus in the peel-1 mutant, an integrating vector (pNV10) was used to introduce a URA3-marked copy of the wild-type fragment into the peel-1 mutant; this strain was then crossed to the original peel-1 mutant. For 27 tetrad, the peel1 mutant phenotype was found in two Ura- segregants, indicating that the fragment carried the PEA1 open reading frame (ORF).

1. *Abbreviation used in this paper: ORF, open reading frame.*
Table 1. Yeast Strains and Plasmids Used in This Study

Strain	Relevant genotype	Source
JC2-1B	MATa HMLa HMRa bar1-1 met1-1 ade2-101 ura3-52	Chenevert et al. (1994)
NVY6	MATa pea2-1 bar1-1	Chenevert et al. (1994)
NVY7	MATa spa2-1 bar1-1	Chenevert et al. (1994)
NVY139	MATa spa2::URA3 bar1-1	Chenevert et al. (1994)
NVY201	MATa pea2::URA3 bar1-1	This study
NVY243	MATa pea2a::URA3 spa2::TRP1 trp1-Δ99 leu2-Δ1 bar1-1	This study
NVY192	MATa trp1-Δ99 leu2-Δ1	This study
NVY193	MATa trp1-Δ99 leu2-Δ1	This study
NVY199	MATa pea2::URA3 trp1-Δ99 leu2-Δ1	This study
NVY200	MATa pea2::URA3 trp1-Δ99 leu2-Δ1	This study
NVY204	MATa spa2::TRP1 trp1-Δ99 leu2-Δ1	This study
NVY207	MATa spa2::TRP1 trp1-Δ99 leu2-Δ1	This study
NVY222	MATa pea2-2 trp1-Δ99 leu2-Δ1	This study
NVY226	MATa pea2-1 trp1-Δ99 leu2-Δ1	This study
NVY230	MATa spa2-1 trp1-Δ99 leu2-Δ1	This study
NVY233	MATa spa2-2 trp1-Δ99 leu2-Δ1	This study
NVY238	MATa bni1::URA3 trp1-Δ99 leu2-Δ1	This study
NVY239	MATa bni1::URA3 trp1-Δ99 leu2-Δ1	This study
NVY244	MATa pea2::URA3 spa2::TRP1 trp1-Δ99 leu2-Δ1	This study
JPY142	MATa/Mata trp1-Δ99 leu2-Δ1	This study
NVY208	MATa/Mata trp1-Δ99 leu2-Δ1	This study
NVY210	MATa/Mata trp1-Δ99 leu2-Δ1	This study
NVY242	MATa/Mata bni1::URA3 trp1-Δ99 leu2-Δ1	This study

Other strains

IH1793 MATa lys1 IH collection
JC31-7D MATa far1-c lys1 Chenevert et al. (1994)

Plasmid name Description Source

pNV8 Original 39 (SPA2) complementing clone This study
pNV10 A1II fragment of pNV8 in Yip5 This study
pNV21 Original H4 (PEA2) complementing clone This study
pNV22 SauIIIA fragment of pNV21 in pRS316 This study
pNV23 BamHI-XbaI fragment of pNV22 in pBluescript This study
pNV34 HindIII fragment of pNV22 in YCP50 with Xhol site digested and religated to generate a frameshift mutation This study
pNV35 ApaI-HindIII fragment of pNV22 in pBluescript This study
pNV36 pNV35 with a replacement of the PEA2 ORF with a Sall site introduced by PCR This study
pNV44 pea2::URA3 created by introducing the HindIII fragment of Yip31 into the Sall site of pNV36 This study
YIp31 URA3 in pBR322 IH collection
p210 spa2::URA3 Mike Snyder
p211 spa2::TRP1 Mike Snyder
p321 bni1::URA3 Charlie Boone

Cloning and Sequencing of PEA2

PEA2 was cloned by complementation of its mating defect to a far1-c partner. A plasmid (pNV21) which rescued the mating and shmoo morphology defects of pea2-1 (NVY6) was isolated from a centromeric library (Roso et al., 1987) and also rescued both phenotypes of a pea2-2 mutant. The complementing plasmid, pNV21, contained an insert of ~13 kb. To further define the region carrying the potential ORF, one 1.3 kb and the other 0.6 kb (Fig. 1 B) were recovered (Fig. 1 C); these plasmids contained the same DNA fragment in opposite orientations. Sequencing the end of a subclone of pNV22 (pNV23) revealed a 200-base pair fragment identical to a sequence in the Saccharomyces Genome Database.

To determine whether the cloned DNA fragment corresponded to the mutated locus in the pea2-1 and pea2-2 mutants, an integrating vector (pNV44) was used to introduce a URA3-marked copy of the wild-type fragment into both pea2 mutants; these strains were then crossed to the original pea2 mutants. For 18 tetrads, the pea2 mutant phenotype was found in the two Ura+ segregants, indicating that the fragment carried the PEA2 ORF.

Two possible ORFs were found in the minimal complementing fragment, one 1.3 kb and the other 0.6 kb (Fig. 1 B). Because the smaller potential ORF was contained almost entirely within the larger ORF, it was important to determine which ORF encoded PEA2. To eliminate the smaller ORF, a mutation was introduced which interrupted the larger ORF at position 1779 but left the smaller ORF intact (pNV34). This plasmid failed to complement the mating and shmoo morphology defects of pea2-1 and pea2-2, indicating that the larger ORF encodes PEA2. These sequence data are available from EMBL/GenBank/DDBJ under the accession number Y07594; PEA2 is entered in the Saccharomyces Genome Database as YER149c.

Deletion of PEA2

The PEA2 ORF was replaced precisely with URA3 in vitro. First, a 2-kb ApaI-HindIII fragment of pNV22 was cloned into pBluescript SK (Strat-
agene, La Jolla, CA) digested with Apal and HindIII to create plasmid pNV35. PCR amplification with two primers was used to generate a derivative of this plasmid which replaced the exact PEA2 ORF with a SalI restriction site (pNV36). Each primer began with a 5' SalI site and continued with PEA2 flanking sequence, one of which began just 5' to the ATG and was oriented towards the promoter, and the other of which began just 3' to the stop codon and continued towards the 3' untranslated region. PCR amplification with these primers yielded the entire plasmid sequence of pNV35 lacking the ORF; this fragment was digested with SalI and ligated to create pNV36. Finally, a 1.1-kb HindIII fragment of URA3 (from Yep31) was introduced into the SalI site of pNV36 to create the PEA2 disrupting plasmid pNV44 (Fig. 1 D).

Preparation of Pea2p-specific Antibodies

A peptide corresponding to the final carboxy 20 amino acids of Pea2p, preceded by a cysteine, was synthesized by the Biomolecular Resource Center (UCSF, San Francisco, CA) and had the following sequence: CK-NAEANTSLALNRDPPDML. This peptide was coupled to keyhole limpet hemocyanin and antibodies were raised in two rabbits according to standard procedures (Caltag Laboratory, Healdsburg, CA).

The Pea2p peptide described above was coupled to BSA with glutaraldehyde for construction of a Pea2 peptide affinity column (Harlow and Lane, 1988). Whole serum was first adsorbed against a cyanogen bromide–activated Sepharose column coupled to whole cell extract of the pea2Δ strain (NVY201). Flowthrough from this column was then applied to a column of Affi-Gel 10/15 coupled to the peptide-BSA conjugate. Antibodies were eluted with 0.2 M glycine, pH 2.5, and collected in 2 M Tris, pH 9. The affinity-purified antibody was stored at −80°C.

Cell Extracts and Western Blots

Cells were grown to early log phase, centrifuged, washed with water, and resuspended in lysis buffer of 50 mM Tris, pH 7.5, 1% SDS, 5 mM DTT, 1 mM EDTA, and 1 mM PMSF. Samples were heated to 95°C for 5 min, mixed with glass beads, vortexed three times for 30 s each, and heated again to 95°C for 5 min. Protein concentrations were determined (Markwell et al., 1978) and equal amounts (typically 100 μg protein) loaded onto SDS polyacrylamide gels. Proteins were transferred to nitrocellulose, blocked for 2 h in 6% nonfat dry milk in TBST, and incubated overnight with a 1:2,000 dilution of the anti-Pea2p affinity-purified antibody or a 1:20,000 dilution of the anti-Spa2p antiserum (M. Snyder, Yale University, New Haven, CT). Immunoreactivity was visualized using the ECL protein detection kit (Amersham Corp., Arlington Heights, IL). Immunoblotting of Pea2p (Fig. 3 A) included two background bands caused by the secondary antibody: these bands were seen in all protein extracts blotted with three different primary antibodies.

Immunofluorescence

Immunofluorescence techniques were essentially described (Pringle et al., 1989). Cells were grown to early log phase and fixed with formaldehyde for 1 h. Spheroplasted cells were attached to polystyrene-coated slides and further permeabilized by incubation with 0.2% SDS in five min. Cells were blocked in 1% BSA for 1 h, incubated with anti-Pea2p antibodies (1:80 dilution) or anti-Spa2p antibodies (1:400 dilution) for 2 h, and finally incubated with CY3-conjugated secondary anti–rabbit antibodies (1:100) for 1 h. Cells were photographed on a Zeiss axioskop using TMAX 400 film.

Results

PEA2 Encodes a Novel Protein

PEA2 was cloned by complementation of the mating defect of the pea2-1 mutant (as described in Materials and Methods). The minimal complementing fragment was flanked by two SaulIIA restriction sites (Fig. 1, A and C) and carried two possible ORFs, which partially overlapped in opposite orientations (Fig. 1 B). To determine whether the larger ORF was PEA2, a frameshift mutation which affected only the larger ORF was introduced (Fig. 1 B; see Materials and Methods). When this plasmid was integrated into a pea2-1 or pea2-2 mutant, it no longer complemented the shmoo morphology or mating defect (data not shown). These results confirm that the larger ORF is PEA2.

The PEA2 gene encodes a protein of 420 amino acids, with a predicted molecular mass of 48.2 kD and a predicted coiled-coil domain. Part of the PEA2 sequence is homologous to parts of many myosin molecules. A program which predicts the ability of a given sequence to form coiled coils (COILS version 2.1; Lupas et al., 1995) was used to analyze the PEA2 sequence (Brown, J., personal communication). This sequence clearly indicates an ability to form a coiled coil between residue 236 and residue 327, with a stutter in the heptad repeat at residue 262; this analysis was confirmed by visual inspection of the sequence (Brown, J., personal communication). The 5' upstream region does not appear to contain any pheromone response elements (PREs).

Figure 1. PEA2 encodes a novel protein. (A) Restriction map of the PEA2 locus (S, SaulIIA; A, Apal; H, HindIII). (B) Position of two ORFs contained on the complementing plasmid pNV22. A frameshift mutation was inserted at the XhoI site as indicated (pNV34) to ascertain which ORF contained the complementing activity. (C) PEA2 ORF and flanking sequences carried on the minimal complementing plasmid pNV22. (D) PEA2 deletion construct, which precisely replaces the PEA2 ORF with a 1.1-kb fragment carrying URA3.

PEA2 Is Required for Shmoo Formation and Efficient Mating

To determine the null phenotype of pea2 mutants, we constructed a complete deletion of the PEA2 ORF (Fig. 1 D). a, α, and α/α pea2Δ mutants were viable and exhibited no growth or morphological defects under the conditions studied (YEPD and minimal SD media, 16°C, 30°C, and 37°C; Fig. 2). The pea2Δ strain was compared to the wild-type parent and to the original mutants, pea2-1 and pea2-2, for its shmoo morphology and mating. After 2 h in the presence of pheromone, wild-type a cells formed pear-shaped cells, while both a and α cells of the pea2Δ strain remained round and failed to undergo shmoo formation.
Figure 2. Shmoo morphologies of peanut mutants. Cells were treated with α factor for 0, 2, or 6 h. Cells of isogenic strains were as follows: (a–c) wild type (JC2-1B); (d–f) pea2-1 (NVY6); (g–i) pea2Δ (NVY201); (j–l) spa2-1 (NVY7); (m–o) spa2Δ (NVY139); (p–r) pea2Δ spa2Δ (NVY243).

spa2Δ mutants have been previously described as unable to shmoo, instead forming mostly enlarged, ovoid, unpolarized cells in the presence of pheromone (Gehrung and Snyder, 1990). In contrast, the spa2Δ mutants that we isolated (which carry mutations spa2-1 and spa2-2) formed peanut-shaped shmoos (Fig. 2, j–o). This difference in phenotype might be due to the nature of the spa2 mutations that we isolated or to differences in strain background or experimental conditions. To determine the phenotype of a spa2Δ mutant in our strain background, we constructed a complete deletion of SPA2 using a knockout plasmid (p210, Valtz and Herskowitz Pea2 Protein of Yeast: Localization and Functions 729).
Table II. Quantitative Mating of Peanut Mutants

MATa strain	Relevant genotype	Mating to a wild type	Mating to a farl-c
NBY208	WT	52	6.5
NBY226	pea2-1	45	1.2
NBY222	pea2-2	26	0.29
NBY200	pea2Δ	32	0.27
NBY230	spa2-1	34	0.82
NBY233	spa2-2	45	0.46
NBY320	spa2Δ	51	0.80
NBY244	pea2Δ spa2Δ	42	1.1

Table III. Budding Patterns of Peanut Mutants

Strain	Relevant genotype	Axial	Nonaxial
NBY192	α WT	98	2
NBY193	a WT	99	1
NBY199	α pea2Δ	99	1
NBY200	a pea2Δ	98	2
NBY204	α spa2Δ	99	1
NBY207	a spa2Δ	99	1
NBY238	α bni1Δ	99	1
NBY239	a bni1Δ	96	4

Table IV. Quantitative Mating of Peanut Mutants

Strain	Relevant genotype	Bipolar	Nonbipolar
NBY192	α WT	85	15
NBY210	a/α pea2Δ/pea2Δ	35	65
NBY208	a/α spa2Δ/spa2Δ	27	73
NBY242	a/α bni1Δ/bni1Δ	13	87
Table IV.

strain	relevant genotype	% distal	% equatorial	% proximal
JPY142	wtc WT	96%	3%	1%
NVY208	a/te spa2Δ	89%	10%	1%
NVY210	a/te pea2Δ	94%	5%	1%
NVY242	a/te bsa1Δ	36%	50%	14%

Pea2p Antibody Specificity

To further characterize PEA2 and its relationship to SPA2, we generated polyclonal antibodies against the carboxy terminal 20 amino acids of Pea2p. Affinity-purified antibodies were tested for specificity on blots of total yeast protein (Fig. 3A). A band of ~50 kD seen in extracts from wild-type cells was missing in pea2A strains. This molecular mass corresponded to the predicted size of Pea2p (48 kD). A band of the same size was recognized by serum from a second rabbit immunized with the same peptide; again, this band was recognized in extracts from wild-type cells but not pea2Δ strains (data not shown). Two cross-reacting bands were seen in all cell extracts blotted with three different primary antibodies, which indicates they are due to binding of the secondary antibody. These data suggest that both antibodies specifically recognize Pea2p. Finally, the band recognized by these antisera was missing in extracts from pea2-1 strains and was only faintly visible in extracts from pea2-2 strains, indicating that these mutations destabilize Pea2p or lead to production of an unstable fragment.

Expression of Pea2p and Spa2p in Peanut Mutants

PEA2 and SPA2 share several striking features: mutants defective in either gene generate similar mating and budding pattern defects. To explore their relationship further, we examined the behavior of Pea2p in spa2 mutants and the behavior of Spa2p in pea2 mutants. As a first step in this analysis, we determined the expression levels of each protein in several mutant strains. Surprisingly, the spa2Δ mutants did not contain Pea2p (Fig. 3A). Similar results were seen for both spa2 alleles (spa2-1 and spa2-2; Fig. 3A). These results indicate that Spa2p is required to produce wild-type levels of Pea2p.

Expression of Spa2p was determined using a polyclonal antiserum. A band of ~180 kD (and a collection of degradation products) detected in wild-type cells was missing in a spa2Δ strain (Fig. 3B). pea2A strains produced full-length, wild-type levels of Spa2p (and the same spectrum of breakdown products, Fig. 3B); the same result was seen with extracts from pea2-1 and pea2-2 mutants (data not shown). The Spa2p recovered in these extracts was largely degraded: several lower molecular weight bands seen in wild-type extracts were missing in the spa2Δ mutant (Fig. 3B). Most importantly, the pattern of degradation products was the same in wild-type and pea2Δ strains. Thus, unlike the production of Pea2p in spa2 mutants, Spa2p is produced at wild-type levels in the absence of Pea2p.

Immunolocalization of Pea2p in Budding Cells

The affinity-purified anti-Pea2p antiserum was used to localize Pea2p within budding a and α haploid and a/α diploid cells. The same general pattern of staining was revealed in all cell types (Figs. 4 and 5) and was the same using antibodies from two rabbits (data not shown). No immunofluorescent staining was seen in the pea2A strain (Fig. 4B). Taken together, these data indicate that the pattern of staining shown here reflects the distribution of Pea2p.

In vegetative haploid and a/α diploid cells, Pea2p local-
Figure 4. Localization of Pea2p in budding haploid cells. Cells of isogenic strains JC2-1B (a wild type) and NVY201 (a pea2Δ) were grown to early log phase and fixed. Localization of Pea2p was determined using indirect immunofluorescence with affinity-purified anti-Pea2p antibodies.

Figure 4. Localization of Pea2p in budding haploid cells. Cells of isogenic strains JC2-1B (a wild type) and NVY201 (a pea2Δ) were grown to early log phase and fixed. Localization of Pea2p was determined using indirect immunofluorescence with affinity-purified anti-Pea2p antibodies.

Pea2p remained concentrated at the tip of the bud (Figs. 4 a and 5 c). Later in mitosis after nuclear division (as judged by DAPI staining) but before cytokinesis, Pea2p localized to the neck between the mother and the daughter cell, apparently as two rings or patches (Figs. 4 a and 5 d). During cytokinesis, the mother and the daughter both inherited a patch of Pea2p (Fig. 5, d and e). This general pattern of lo-
Localization of Pea2p in budding α/α diploid cells. Wild-type α/α diploid cells (JPY142) were grown to early log phase and processed for indirect immunofluorescence with affinity-purified anti-Pea2p antibodies. Shown here are examples of Pea2p staining in unbudded cells (a), small budded cells (b), medium budded cells (c), mitotic cells (d), two cells undergoing cytokinesis (e), and an unbudded cell with two patches of Pea2p (f).

Localization is identical to that of Spa2p (Snyder, 1989; Snyder et al., 1991).

The only detectable difference in Pea2p localization between budding haploid and α/α diploid cells is shown in Fig. 5 f. Unbudded diploid cells were occasionally seen with two patches of Pea2p staining, one at either pole. Our interpretation of this pattern is that one patch was inherited from the mother at the neck region (see Fig. 5 e) and the other reflects the presumptive bud site (Fig. 5 a). This pattern was not seen in unbudded haploid cells, which form a bud adjacent to the previous site of division. If Pea2p were to localize to both old and new budding sites at the same time, it seems unlikely that we would be able to resolve two patches of staining because the previous and future bud sites are so close. Cells with two patches of staining have been seen for other proteins which localize to sites of polarized growth, including Spa2p (Snyder et al., 1991) and Myo2p (Lillie and Brown, 1994). Similarly, two rings of actin patches can occasionally be found in diploid cells at either end of the cell, again reflecting the previous

Figure 5. Localization of Pea2p in budding α/α diploid cells. Wild-type α/α diploid cells (JPY142) were grown to early log phase and processed for indirect immunofluorescence with affinity-purified anti-Pea2p antibodies. Shown here are examples of Pea2p staining in unbudded cells (a), small budded cells (b), medium budded cells (c), mitotic cells (d), two cells undergoing cytokinesis (e), and an unbudded cell with two patches of Pea2p (f).
Figure 6. Localization of Pea2p and Spa2p in a/a diploid mutants defective in the bipolar budding pattern. Cells were grown to early log phase and processed for indirect immunofluorescence using anti-Pea2p antibodies (left column) or anti-Spa2p antibodies (right column) for the following isogenic strains: (a-b) JPY142 (a/a wild type); (c-d) NVY210 (a/a pea2A/pea2A); (e-f) NVY208 (a/a spa2A/spa2A); and (g-h) NVY242 (a/a bni1Δ/bni1Δ).
Immunolocalization of Pea2p and Spa2p in Mutants Defective in PEA2, SPA2, or BNI1

PEA2, SPA2, and BNI1 are required for the bipolar budding pattern exhibited by a/α diploid cells. We next asked whether mutations in these genes affected the localization of Pea2p and Spa2p in diploid cells. Wild-type a/α cells localized Pea2p and Spa2p to sites of polarized growth (Fig. 6, a and b). As expected, the pea2Δ mutant showed no Pea2p staining (Fig. 6 c), and a spa2Δ mutant showed no Spa2p staining (Fig. 6 f). Surprisingly, very little Spa2p localized in the pea2Δ mutant (Fig. 6 d); this result is especially striking as this mutant produces wild-type levels of Spa2p (Fig. 3 b). No Pea2p staining was seen in the spa2Δ mutant (Fig. 6 e); however, this mutant does not produce stable Pea2p (Fig. 3 a). Both Pea2p and Spa2p were properly localized in the bipolar budding mutant bni1Δ (Fig. 6, g and h), although fewer cells were stained with either antibody, and the intensity of the Pea2p staining was modestly reduced. These results demonstrate that proper localization of Pea2p and Spa2p depends on the presence of both wild-type proteins. Their nonlocalization cannot be ascribed to a defective bipolar budding pattern, because the bipolar budding mutant bni1Δ correctly localizes both proteins.

Immunolocalization of Pea2p and Spa2p in Shmoos

We were interested in determining the localization of Pea2p and Spa2p in shmoos because both PEA2 and SPA2 are required for proper shmoo morphogenesis and efficient mating. We first determined the localization of Pea2p in shmoos. A single patch of Pea2p staining was seen at the tip of the growing shmoo (Fig. 7 a). No Pea2p staining was seen in a pea2Δ strain (Fig. 7 c). The localization of Spa2p in a wild-type strain was identical to that previously reported (Snyder, 1989): Spa2p, like Pea2p, was found at the tip of the shmoo (Fig. 7 b). Spa2p was not localized in cells deleted for pea2 (Fig. 7 d), although the pea2Δ mutant expressed wild-type levels of Spa2p (Fig. 3 b). This result is consistent with the nonlocalization of Spa2p in a/α pea2Δ/pea2Δ mutants (Fig. 6 d). Occasionally, a small amount of Spa2p was found at the shmoo tip; positively staining cells, however, were rare (<4%) and showed greatly reduced intensity, suggesting that the majority of Spa2p did not localize in pea2 mutants. Similar observations were made for pea2-1 and pea2-2 mutants (data not shown). Because Pea2p is not present in spa2 mutant shmoos (data not shown), we did not expect to find any Pea2p immunofluorescence in these cells, and indeed no staining was detected (Fig. 7 e). These results strongly suggest that the localization of Pea2p and Spa2p in shmoos is interdependent, and mirror the results for the localization of these two proteins in vegetative a/α pea2/pea2 and spa2/spa2 mutants (Fig. 6).

Discussion

Budding yeast relies on polarized growth during two phases of its life cycle, vegetative growth and mating. We have shown here that Pea2p is a novel protein that appears to function in close conjunction with Spa2p to contribute to cellular polarization during both budding and mating. During mating, Pea2p and Spa2p are required for proper polarization and efficient mating. During budding, Pea2p and Spa2p are required for the bipolar budding pattern of a/α diploid cells and appear to define a distinctive class of proteins involved in bud-site selection that includes Bud6p. Mutations in any of these genes lead to a novel mutant budding pattern: a/α diploid cells place the first bud in the correct, distal position but place subsequent buds at random positions. Pea2p and Spa2p are localized to sites of polarized growth in budding and shmooring cells. Each protein relies upon the presence of the other for its localization. These results suggest that Pea2p and Spa2p function together as a complex to generate cell polarity during two phases of the yeast life cycle.

The Role of Pea2p and Spa2p in Generating Polarized Morphogenesis during Mating

Mutants defective in PEA2 and SPA2 show identical defects in shmoo formation. Wild-type a cells exposed to pheromone initially form pear-shaped shmoos with a pointed tip. After several hours, they abandon growth at the original shmoo tip and initiate a second tip at another site on the cell surface. pea2Δ and spa2Δ mutants initially form a pear-shaped shmoo, although the tip is less pointed than that of wild-type cells. After several more hours in the presence of pheromone, the defect of these mutants becomes increasingly pronounced, leading to a broadened and enlarged shmoo which is shaped like a peanut. Mutants defective in both pea2Δ and spa2Δ can initiate a second shmoo tip after prolonged incubation (Valtz, N., unpublished data).

To understand the possible roles of PEA2 and SPA2, we first considered how wild-type cells are thought to organize actin at a specific site. During mating, each haploid cell polarizes towards its mating partner: the actin cytoskeleton, secretion, and insertion of new cell wall material are all organized towards a single site on the cell surface (Byers, 1981; Ford and Pringle, 1986; Hasek et al., 1987; Tkacz and MacKay, 1979). Polarized morphogenesis is also seen in a cells in a uniform field of pheromone (Lipke et al., 1976; Tkacz and MacKay, 1979; Field and Schekman, 1980), but instead of polarizing towards a mating partner, the cell polarizes adjacent to the previous bud site (Madden and Snyder, 1992; Valtz et al., 1995). Generating polarity during mating and budding is thought to involve a hierarchy of three classes of gene products (Chant and Herskowitz, 1991; Cheneverrt, 1994). The site selection proteins mark the site for polarity on the cell surface and in turn organize the polarity establishment proteins (such as Bem1p, Cdc42p, and Cdc24p) towards that site. The polarity establishment proteins then organize actin and its associated proteins. The polarity establishment proteins and actin are involved in both budding and mating, whereas the site selection proteins are unique to each process (Chenevert, 1994). The end result of this morphogenetic pathway is polarization of actin at the chosen site, either the incipient bud site or the position of the mating partner.
There are several possible models for the role of *PEA2* and *SPA2* in polarized morphogenesis during mating. First, they may function to restrict the area initially selected for polarization. Thus, although they may function in conjunction with the site selection proteins, they would not themselves be required for correct site selection. This is consistent with the finding that mutants defective in *SPA2* are not defective in locating the mating partner (Dorer et al., 1995). Second, Pea2p and Spa2p may function in the organization of actin towards the chosen site; mutants lacking either protein may be unable to restrict actin structures to the site marked for polarization. A third possibility is that these proteins may function to maintain a tightly organized polarization site as new proteins and cell wall material are inserted; this model predicts that Pea2p and Spa2p play no role in choosing a correct site or establishing polarized actin in that direction. Finally, the enlargedshmoo tip seen in pea2 and spa2 mutants may reflect the mislocalization of a third protein whose localization depends on the presence of Pea2p and Spa2p; this unidentified protein could perform any of the functions described above.

The peanut-shaped shmoo morphology of *spa2Δ* mutants reported here differs from the ovoid shmooless phenotype previously described (Gehrung and Snyder, 1990). To determine the basis for this difference in phenotype, we have examined the *spa2Δ* strains described by Snyder which exhibit the unpolarized shmooless phenotype (Gehrung and Snyder, 1990). We observed that the degree of polarization exhibited by these mutants depended on the concentration of pheromone used as well as on how long the cells were exposed to pheromone. During shorter exposures and at lower concentrations, cells exhibited the ovoid morphology previously reported. However, extending the time in pheromone or increasing its concentration resulted in peanut-shaped shmoos. Polarized actin was observed in the ovoid cells (Gehrung and Snyder, 1990) as well as in the peanut-shaped shmoos (Valtz, N., unpublished data). Taken together, these results indicate that *SPA2* is not required to polarize actin in the presence of
Precisely Organized Morphogenesis Appears to be Essential for Efficient Mating

Is the morphogenesis defect of pea2 and spa2 mutants responsible for their mating defect? Two observations suggest that these mutants mate poorly due to their defect in polarized growth. First, these mutants appear normal for other major events that occur during mating, including signal transduction, cell cycle arrest, and gene induction (Chenevert et al., 1994). Second, similar morphological defects are seen in mating mixtures of pea2 and spa2 mutants, indicating that these defects are not simply an artifact of exposing cells to pheromone in the absence of a mating partner.

How might a defect in polarized morphogenesis lead to a mating defect? Polarized growth may function to guarantee localized deposition of mating-specific proteins involved in cell fusion, although the precise role of this polarization remains undefined. It is clear that correctly oriented polarization is required for efficient mating, as mutants which cannot locate the partner mate inefficiently (Jackson and Hartwell, 1990b; Dorer et al., 1995; Valtz et al., 1995). It may be important not only to choose the correct direction, but in addition, to have a precisely organized, small area of polarization in order to spatially define a restricted area for fusion. According to this view, the pea2 and spa2 mutants may be defective in mating because fusogenic proteins are distributed over too broad a region and therefore lack a single area with a high enough concentration of the relevant proteins. Such an explanation is supported by the observation that mating of a spa2 mutant to another spa2 mutant is blocked before cell fusion and accumulates prefusion zygotites (Gammie, A., and M. Rose, M., personal communication). Similarly, a mating reaction of a pea2 mutant to a wild-type partner accumulates 25-fold more prefusion zygotites than a wild-type mating reaction (Dorer, R., and L. Hartwell personal communication).

PEA2, SPA2, and BUD6 May Cooperate during the Establishment of the Bipolar Budding Pattern

The budding pattern of pea2 and spa2 mutants is curious. Wild-type a/et diploid cells bud in the bipolar pattern, in which newly born daughters always bud at the pole distal to the division site (the site of attachment to the mother; Chant and Pringle, 1995). Subsequent buds are positioned at either pole. Among the many genes required for this pattern, PEA2, SPA2, and BUD6 form a distinct subset characterized by the mutant bipolar budding pattern displayed by mutants defective in these genes. This mutant pattern is typified by a/et pea2/pea2 mutants, which correctly position the daughter’s first bud in the wild-type position, distal to the division site, but then bud randomly.

To understand possible roles of PEA2, SPA2, and BUD6, we first consider what is known about establishment of the bipolar budding pattern. Although a direct search for genes required for bipolar budding was not carried out until recently (see below; Zahner et al., 1996), roles for many genes in bipolar budding have been discovered fortuitously, including RV161, RV167 (Bauer et al., 1993; Sivadon et al., 1995), SUR4, FEN1 (Durrens et al., 1993), SPA2 (Snyder, 1989), and actin (Drubin et al., 1993; Yang, S., and D. Drubin, personal communication). A recent screen for mutations which disrupt the bipolar budding pattern identified several known genes (including SPA2 and BNI1) and four new genes (BUD6-9; Zahner et al., 1996). Mutations in these genes disrupt the bipolar budding pattern in five distinguishable ways. (I) a/et bud8/bud8 mutants bud only from the division site pole. (2) a/et bud9/bud9 mutants bud only from the distal pole, opposite the birth scar. (3) a/et bud7β/bud7β mutants bud randomly but form short chains of bud scars reminiscent of the axial pattern. (4) a/a bni1/bni1 mutants bud randomly. (5) a/a pea2Δ/pea2Δ, spa2Δ/spa2Δ, and bud6/bud6 mutants all position the first daughter bud correctly at the distal pole and then bud at random.

These mutant phenotypes can be explained according to a model in which there are two landmarks for bipolar budding, one at the distal pole and one at the division site (Fig. 8; this model is a variant of model B in Chant and Pringle, 1995). Bud8p is a good candidate for the distal pole landmark and Bud9p is a good candidate for the division site landmark (Zahner et al., 1996). Bni1p and Bud7p may mediate recognition of the pole landmarks by Bud1p/Bud2p/Bud5p, which are required for both the bipolar and the axial patterns (Chant and Herskowitz, 1991; Chant et al., 1991).

Our challenge is to explain why Pea2p, Spa2p, and Bud6p are not required for positioning a daughter’s first bud but are required thereafter (see also Zahner et al., 1996). We next consider in detail how the two pole landmarks might be deposited and possible roles for Pea2p, Spa2p, and Bud6p in this process. The landmark found at the distal tip of the daughter cell could be initially deposited at the presumptive bud site (Fig. 8 a) and remain at the bud tip as the cell grows (Fig. 8 b). A second landmark could be deposited at the mother/bud neck at mitosis (Fig. 8 c) and be partitioned to both the mother cell and the daughter cell (D1) during cytokinesis, marking the site of division (Fig. 8 d). The first bud produced by this daughter cell (D1) emerges at its distal tip (Fig. 8, e and f). When this cell divides, some division site landmark would be deposited at its distal pole (Fig. 8 g). Thus, after one division, both poles of the cell (D1) would be marked with the division site landmark (Fig. 8 h); this morphogenetic signal would be reinforced at the active pole each time it divides. No more distal pole landmark is deposited in a cell (D1) after its initial emergence, and the initially deposited distal pole landmark may itself decay over subsequent cell cycles. Thus, the distal pole landmark is essential for initially marking the distal pole, but its marking function is replaced by the division site landmark, which marks both poles after the initial bud emerges.

In this model, Pea2p, Spa2p, and Bud6p might function in the deposition of the division site landmark (Zahner et al., 1996). In the absence of these proteins, the distal pole landmark is correctly deposited as a daughter cell emerges (Fig. 8, i-l). However, as the newborn daughter cell goes on to divide, no division site landmark is deposited. In the absence of the division site landmark, a random budding pattern is observed in subsequent cell cycles after the initial distal pole landmark decays (Fig. 8, m-p). If the distal pole landmark decays over time, a preference for distal budding in the first few cell cycles would be expected; this
Figure 8. Model for establishment of the bipolar budding pattern: two different landmarks mark the two poles. A newly born daughter cell (D1) inherits bipolar budding landmarks at two positions during bud emergence. One landmark (indicated as the larger green dot; perhaps Bud8p) is deposited at the presumptive bud site (a) and carried to the tip of the growing bud (b) where it remains, resulting in a landmark distal to the division site (d). A second landmark (indicated in pink; perhaps Bud9p) is deposited at the mother/daughter neck during cytokinesis (c), resulting in a landmark at the division site (d). When the daughter cell (D1) buds for the first time, the bud emerges distal to the division site (e and f). At mitosis (g), the original daughter cell (D1) acquires some division site landmark at its new division site. The D1 cell now has division site landmark at both poles (h). Additional buds will lead to the continued deposition of the division site landmark in the D1 cell. In a pea2 or spa2 mutant, it is hypothesized that a division site landmark is not deposited (i-p). The distal pole landmark is deposited in D1 when it first emerges (i and j), but no division site landmark is deposited at mitosis (k). Thus, the newly born daughter cell D1 has correctly positioned distal pole landmark (l) and therefore correctly positions its first bud at the distal pole (m and n). Again, no division site landmark is deposited at mitosis (o). If the distal pole landmark is itself unstable (indicated as the smaller green dot), after one cell cycle D1 would have only its distal pole marked (p). This landmark may be present for only a few more cell cycles, leading to a cell with neither pole marked and consequently random budding.

has been observed for spa2 and bud6 mutants (Zahner et al., 1996). Another possibility is that these proteins may perform a more general role in maintaining or stabilizing the landmarks at either pole. The landmarks which mark the poles of a bipolarly budding cell persist over several cell cycles (Chant and Pringle, 1995). These landmarks may be deposited as a daughter cell emerges but require further modification for stability. Pea2p, Spa2p, and Bud6p may function in stabilizing the two pole landmarks. In this model, mutants defective in one of these genes would position the first bud correctly simply because the landmarks have not yet been destabilized. Finally, it is possible that Pea2p, Spa2p, and Bud6p are themselves components of the division site landmark.

Is there any evidence to suggest that Spa2p, Pea2p, and Bud6p function in deposition of the proximal landmark? The strongest argument is that mutants defective in these genes share a highly specific budding pattern phenotype. In addition, Pea2p and Spa2p are located at the mother/bud neck during mitosis, when the theoretical division site landmark is deposited. It will be interesting to determine if Bud6p is also localized to the mother/bud neck during mitosis as well as to determine if bud6 mutants exhibit the shmooshing and mating defects of pea2 and spa2 mutants.

Pea2p and Spa2p May Function as a Complex

The phenotypes displayed by mutants defective in PEA2 and SPA2 suggest that they are functionally related genes. First, both are required for wild-type shmoos formation as well as for efficient mating. Mutants defective in one or both genes have identical shmoos and mating defects, which suggests that these genes may function in the same aspect of polarized morphogenesis during mating. Second, both genes were identified in an independent screen (Yorihuzi et al., 1994) for mutants defective in shmoos formation (PEA2...
is identical to PPF2; Dorer, R., and L. Hartwell, personal communication). Third, both genes are required for default mating in the absence of a pheromone gradient (Dorer et al., 1995; Dorer, R., and L. Hartwell, personal communication). Fourth, both genes are similarly required to establish the bipolar budding pattern in a/a diploid cells after the first daughter bud is positioned (Snyder, 1989; Zahner et al., 1996; this study). Fifth, both PEA2 and SPA2 are required for filamentous growth during pseudohyphal development (Mosch, M., and G. Fink, personal communication). Thus, for all known roles of one gene, a corresponding role has been found for the other.

The behavior of Pea2p and Spa2p further suggests that they interact directly. First, both proteins localize to sites of polarized growth. Although direct colocalization of Pea2p and Spa2p has not yet been carried out, the localization of both proteins to sites of growth as determined by actin staining suggests that they do colocalize. Second, the presence of Spa2p is necessary for Pea2p production. Third, Spa2p does not properly localize in the absence of Pea2p. Finally, both Pea2p and Spa2p are predicted to contain coiled-coil domains, which are potential sites of interaction. These genetic and biochemical observations suggest that Pea2p and Spa2p may form a complex which performs different roles in polarization during many phases of the yeast life cycle.

We thank J. Pringle and J. Cheneyert for discussion; M. Snyder for antibodies, yeast strains, plasmids, and discussions; J. Brown and G. Petsko for sequence analysis of PEA2; C. Boone for a plasmid; D. Drubin, C. Boone, J. Pringle, H. Mosch, M. Rose, and R. Dorer for communication of unpublished results; and members of the Herskowitz Lab, Matting Club, UCSF Friends of Microtubules, and R. Dorer for their interest, helpful advice, and comments on the manuscript.

N. Valtz was supported by a graduate fellowship from the National Science Foundation and in part by National Institutes of Health (NIH) Genetics Training Grant. This work was supported by NIH research grant GM48052. We also gratefully acknowledge support from the Markey Foundation and from the Herbert W. Boyer Fund.

Received for publication 12 July 1996 and in revised form 20 August 1996.

References

Adams, A.E.M., and J.R. Pringle. 1984. Relationship of actin and tubulin distribution to bud elongation and morphogenetic mutant Saccharomyces cerevisiae. J. Cell Biol. 98:934-945.

Bauer, F., M. Urdacli, M. Aigle, and M. Crouzet. 1995. Evidence for a branched pathway in the polarized cell division of Saccharomyces cerevisiae. Curr. Genet. 27:213-216.

Field, C., and R. Schekman. 1980. Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J. Cell Biol. 86:123-128.

Ford, S., and J.R. Pringle. 1986. Development of spatial organization during the formation of tygotes and shmoo in Saccharomyces cerevisiae. Yeast. 2:511-522.

Freidler, D. 1960. Bud position in Saccharomyces cerevisiae. J. Bacteriol. 80: 556-568.

Geurhing, S., and M. Snyder. 1990. The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J. Cell Biol. 111:1451-1464.

Harlow, E., and D. Lane. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY. 726 pp.

Hasek, J., I. Rupes, J. Svobodova, and E. Streiblova. 1987. Tubulin and actin topology during yeast formation of Saccharomyces cerevisiae. J. Gen. Microbiol. 133:3335-3363.

Hicks, J.B., J.N. Strathern, and I. Herskowitz. 1977. Intercotransfer of yeast mating types. III. Action of the homothallism (H0) gene in cells homoygous for the mating type locus. Genetics. 85:395-405.

Huson, O., W. Raymond, K. Froelich, P. Errada, N. Kleeheer, D. Botstein, and M.A. Hoyt. 1987. A Tn5-lac-Z-ampr-URA3 gene fusion transposition for insertion mutagenesis and fusion analysis of yeast and bacterial genes. Genetics. 116:191-199.

Jackson, C.L., and L.H. Hartwell. 1990a. Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell. 63:1039-1051.

Jackson, C.L., and L.H. Hartwell. 1990b. Courtship in Saccharomyces cerevisiae: an early cell-cell interaction during mating. Mol. Cell. Biol. 10:2201-2213.

Johnston, G.C., J.A. Prendergast, and R.A. Singer. 1991. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113:539-551.

Kilmartin, J.V., and A.E.M. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922-933.

Lillie, S.H., and S.S. Brown. 1994. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Spa2p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125:825-842.

Lipke, P.N., A. Taylor, and C.E. Ballou. 1976. Morphogenic effects of a-factor on Saccharomyces cerevisiae cells. J. Bacteriol. 127:610-618.

Lupas, A., S. Muller, K. Goldie, A.M. Engel, and W. Baumeister. 1995. Model structure of the OMP2 a-subunit, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima. J. Mol. Biol. 248:180-189.

Madden, K., and S. Snyder. 1992. Specification of sites for polarized growth in Saccharomyces cerevisiae and the influence of external factors on site selection. Mol. Biol. Cell. 3:1025-1035.

Markwell, M.A.K., S.M. Haas, L.L. Bieber, and N.N. Tolbert. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:206-210.

Pringle, J.R., R.A. Preston, A.E.M. Adams, T. Stearns, D.G. Drubin, B.K. Haeer, and E.W. Jones. 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31:357-435.

Rose, M.D., P. Novick, J.H. Thorner, D. Botstein, and G.R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene (Amst.). 60:237-243.

Rose, M.D., F. Winston, and P. Hieter. 1990. Methods in Yeast Genetics: A Laboratory Course. Cold Spring Harbor Press, Cold Spring Harbor, NY. 123 pp.

Segall, J.E. 1993. Polarization of yeast cells in spatial gradients of o-factor mating signal. Proc. Natl. Acad. Sci. USA. 90:8332-8336.

Sivadon, P., F. Bauer, M. Aigle, and M. Crouzet. 1995. Actin cytoskeleton and budding pattern are altered in the yeast mutant rho1Δ: the Rho1p protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet. 246:485-495.

Sloat, B.F., A.E.M. Adams, and J.R. Pringle. 1981. Roles of the CDC42 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 89:395-405.

Snyder, M. 1989. The SPA2 protein of yeast localizes to sites of cell growth. J. Cell Biol. 108:1419-1429.

Snyder, M., S. Geurhing, and B.D. Page. 1991. Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae. J. Cell Biol. 114:515-532.

Tkac, J.S., and V.L. MacKay. 1979. Sexual conjugation in yeast. J. Cell Biol. 80: 326-333.

Valtz, N., M. Peter, and I. Herskowitz. 1995. FARI is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 113:863-873.

Welch, M.D., D.A. Holtzman, and D.G. Drubin. 1994. The yeast actin cytoskeleton. Curr. Opin. Cell Biol. 6:110-119.

Yoshizumi, T., and Y. Osbami. 1994. Saccharomyces cerevisiae MATa mutant cells defective in pointe projection formation in response to o-factor at high concentrations. Yeast 10:579-594.

Zahniser, J.A., H.A. Harkins, and J.R. Pringle. 1996. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 16:1857-1870.