Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs

Chutchai PIEWBANG1,2, Anudep RUNGSIPIPAT1, Yong POOVORAWAN3 and Somporn TECHANGAMSUWAN1,2)*

1)Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
2)Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
3)Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

(Received 30 June 2016/Accepted 2 September 2016/Published online in J-STAGE 15 September 2016)

ABSTRACT. Canine infectious respiratory disease complex (CIRDC) viruses have been detected in dogs with respiratory illness. Canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAdV-2) and canine herpesvirus 1 (CaHV-1), are all associated with the CIRDC. To allow diagnosis, two conventional multiplex polymerase chain reactions (PCR) were developed to simultaneously identify four RNA and two DNA viruses associated with CIRDC. The two multiplex PCR assays were then validated on 102 respiratory samples collected from 51 dogs with respiratory illness by sensitivity and specificity determination in comparison to conventional simplex PCR and a rapid three-antigen test kit. All six viruses were detected in either individual or multiple infections. The developed multiplex PCR assays had a >87% sensitivity and 100% specificity compared to their simplex counterpart. Compared to the three-antigen test kit, the multiplex PCR assays yielded 100% sensitivity and more than 83% specificity for detection of CAdV-2 and CDV, but not for CIV. Therefore, the developed multiplex PCR modalities were able to simultaneously diagnose a panel of CIRDC viruses and facilitated specimen collection through being suitable for use of nasal or oral samples.

KEY WORDS: canine infectious respiratory disease complex (CIRDC), diagnosis, multiplex PCRs, Thailand

doi: 10.1292/jvms.16-0342; J. Vet. Med. Sci. 78(12): 1847–1854, 2016

Canine infectious respiratory disease complex (CIRDC), also known as kennel cough or infectious tracheobronchitis, is a highly acute respiratory disease in dogs that affects the larynx, trachea, bronchi and, occasionally, the nasal mucosa [3, 21]. The CIRDC is not only associated with infectious pathogens, but environmental factors and host immune responses also play an equally important role [7]. The pathogens causing CIRDC consist of viruses, bacteria or both, and are airborne-transmitted from infected dogs, particularly those living in poorly ventilated kennels, animal shelters and veterinary hospitals [3]. A CIRDC infection usually results in delaying of rehoming, interruption of training courses and requires high cost treatments [7]. Mildly productive cough and nasal discharge initially present as the most common clinical signs, which is self-limited within a short period in most infected dogs. It is not fatal unless other complicating factors are involved, such as secondary bacterial infection or an immunosuppressed condition [7]. Several episodes of CIRDC infection have been shown for a variety of viral agents. Canine parainfluenza virus (CPIV) is the most frequently detected agent in CIRDC dogs [16]. Canine adenovirus type 2 (CAdV-2) and canine distemper virus (CDV) have also frequently been reported in dogs with severe respiratory distress [7,16,17]. Canine herpesvirus 1 (CaHV-1) has been isolated from both puppies and adult dogs with fatal dyspnea [3, 7]. Canine influenza virus (CIV) [14, 16] and canine respiratory coronavirus (CRCoV) have recently been discovered from the respiratory tract of dogs with flu-like symptoms during a massive human flu outbreak [5, 6, 8].

Diagnosis of CIRDC-associated virus(es) is important for giving the appropriate treatment plan, prognosis and preventive strategies. Various diagnostic tests are available for these infections. However, many are not practical due to their time-consuming process, poor specificity or sensitivity, and costly diagnostic tools [10]. Thus, a rapid molecular technique is an appropriate method of choice for CIRDC virus detection. Because multiple viruses cause CIRDC, including co-infections, a multiplex polymerase chain reaction (PCR) was developed and has become commercially available as a test for respiratory tract infections [1, 10, 13, 18]. Recently, multiplex real-time PCR (qPCR) has largely replaced the conventional counterpart in order to increase the sensitivity. However, it is challenging, in terms of financial support, in developing countries and so is limited in clinical and practical uses. Thus, using a multiplex PCR would be simple, sensitive and cost-effective to screen for CIRDC viruses. Accordingly, two multiplex PCR assays were developed in this study for the simultaneous detection of CIV, CPIV, CDV, CRCoV, CAdV-2 and CaHV-1.
MATERIALS AND METHODS

Positive control preparations: The positive for CDV, CPIV and CAdV-2 was obtained from the modified-live vaccine Vanguard® plus 5/CV-L (Zoetis, Kalamazoo, MI, U.S.A.), containing CPIV (10^5.0 TCID50/ml), CDV (10^2.5 TCID50/ml) and CAdV-2 (10^2.9 TCID50/ml). Meanwhile, the positive for CRCoV, CaHV-1 and CIV was derived from naturally infected dogs that were confirmed by nucleic acid sequencing. The H3N2 CIV positive was kindly provided by Prof. Alongkorn Amornsin, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, during February-August 2014.

Specimens: Nasal (NS) and oropharyngeal swabs (OS) were collected from 51 suspected CIRDC suffering dogs; they were brought to veterinary hospitals residing in metropolitan Bangkok, during February-August 2014. Those dogs that showed respiratory problems, such as nasal discharge, cough and evidence of bronchopneumonia, were included, whereas those that revealed secondary respiratory disease caused by cardiovascular and/or functional tracheal disease were excluded from the study. Vaccination status of those dogs was also recorded.

After taking the NS and OS using sterile rayon tipped applicators, the swabs were immersed in 1% phosphate buffer saline (PBS) and kept at −80°C until assayed. The study protocol was approved by the Chulalongkorn University Animal Care and Use Committee (No. 1431005).

Viral nucleic acid extraction, quantification and reverse transcription: Viral nucleic acid from the positive controls and specimens was extracted using the Viral Nucleic Acid Extraction Kit II (GeneAid, Taipei, Taiwan) according to manufacturer’s recommendation. Nucleic acid was quantified and qualified using Nanodrop® Lite (Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.) at an absorbance of 260 and 280 nm to derive the A260/A280 ratio. The extracted nucleic acid was divided into two aliquots, one for reverse transcription (RT) for detection of the RNA viruses (CIV, CPIV, CDV and CRCoV) and the other for a direct PCR as-say for detection of the DNA viruses (CAdV-2 and CaHV-1). The RT was performed using 100 ng RNA as the template for complementary DNA (cDNA) synthesis using the Omniscript® Reverse Transcription Kit (Qiagen GmbH, Hilden, Germany). The cDNA and DNA were stored at −20°C until used for further PCR amplification.

Specific primers for viruses causing CIRDC: The sequences of the primers used for CAdV-2 (E3 gene), CDV (NP gene), CIV (M gene), CPIV (NP gene), CRCoV (S gene) and CaHV-1 (GB gene) amplification were retrieved from previous studies [4, 6, 14, 16] and are shown in Table 1. In order to ascertain the sensitivity, specificity and interaction of those primers, more than 45 sequences of each target gene were compared by multiple alignments using BioEdit Sequence Alignment Editor Version 7.1.3.0 (Ibis Biosciences, Carlsbad, CA, U.S.A.). The in silico specificity test was performed to select the conserved regions using BLASTn analysis in order to ensure the primer specificity without cross amplification of canine genes. Degenerate primers for CIV, CDV, CAdV-2 and CRCoV were applied (Table 1). Moreover, the canine glycerinaldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an internal control as reported previously [20].

Optimization of the simplex PCR: Prior to performing the PCR for detection of RNA viruses, a first round PCR for CRCoV was performed in order to increase the detection sensitivity. Reactions were comprised of a mixture of 2x GoTaq® Hot Start Green Master Mix (Promega, Madison, WI, U.S.A.), 0.4 µM final concentration of each outer primer (CoV_16053_F and CoV_16594_R) and 2 µl of cDNA, and made up to 25 µl with nuclease-free water. Reactions were performed using 3Prime G Gradient Thermal Cycle (Techne, Bristol, U.K.). Cycling conditions were comprised of an initial denaturation at 94°C for 5 min, followed by 40 cycles of 95°C for 30 sec, 55°C for 30 sec and 72°C for 30 sec. The final extension was performed at 72°C for 7 min. Subsequently, the amplified CRCoV product of the first round PCR, and cDNA of the other RNA viruses (CIV, CPIV and CDV) and extracted DNA viruses (CAdV-2 and CaHV-1) were used as a template for further simplex PCR studies.

Table 1. Primers used for the PCR amplification of CIRDC viruses

Virus	Primer name	Primer sequence (5′ to 3′)	Target genea	Product size (bp)
CIV	CIV_M_F151	CATGGGARTGCTAAAGACAAGACC	M	126
	CIV_M_R276	AGGGCATTITGGGCAAAAKCGCTTA		
CDV	CDV_N_F768	AACAGGRATTTGCTGAGGACGAT	NP	290
	CDV_N_R1057	TCCARRAATACCACGTGTTAGG	E3	551
CAdV-2	CAdV_E3_F25073	TATTCCGACTCTTACCAAGAGG		
	CAdV_E3_R25623	ATAGACGGGATGGTARTGTYCAG		
CPIV	CPIV_N_F428	GCCGTTGGAGAGCATATGCTTCT	NP	187
	CPIV_R614	GGTCTTGGGCTCTGCTGCTGCT		
CRCoV	CoV_16053_F	GGTGTTGGAYTAYCCTAARTTGA	S	542 (First round PCR)
	CoV_16594_R	TAYTATCARAAAYAATGCTTATATGC		
	CoV_Pan_16510	TGAATGGGCGTTGTTGTTATTTAA		458 (Second round PCR)
CaHV-1	CaHV_GBF439	ACAGAGTGTGATGTAGAAGGATAG	GB	136
	CaHV_GBR574	CTGGTGATTTAAAATCTTGGAAGCTTTTA		

a) M=Matrix, NP=Nucleoprotein, E3=Early transcribed region, S=Spike protein, GB=Glycoprotein B.
Gradient simplex PCR was performed for each virus. All reaction compositions were as mentioned above, but the gradient annealing temperature (Ta) was programmed ranging from 50°C to 59°C in order to optimize the reaction. Thermal cycling was performed with 95°C for 5 min, then 40 cycles of 95°C for 1 min, varied Ta for 1 min and 72°C for 1 min, and then finally 72°C for 10 min. The amplicons were resolved by 2% (w/v) agarose gel electrophoresis with 10% ethidium bromide in-gel staining and visualized by UV transillumination and compared to expected size of the PCR product (Table 1).

Optimizations of multiplex PCR: The multiplex PCR was optimized separately for RNA- and DNA-associated CIRDC viruses. The starting genetic material for RNA virus detection was derived from two compartments: (1) product from the first nested PCR of CRCoV and (2) cDNA of the other RNA viruses. Reaction composition and condition were optimized as mentioned above for the simplex PCR. The suitable Ta for all RNA and DNA viruses was selected for further comparative analysis with simplex PCR.

Sequencing of PCR amplicons was performed to confirm their correct identity and thus the specificity of the PCR reaction. Amplicons were purified with a NucleoSpin Extract II (Macherey-Nagel, Düren, Germany) kit and submitted to The 1st BASE, Pte. Ltd. (Singapore) for direct sequencing. The derived nucleotide sequences were aligned using the BioEdit Sequence Alignment Editor version 7.0.9.0 software, and the respective consensus sequences were compared to those in the GenBank database using BLASTn analysis.

Analysis of Specificity, Sensitivity and Reproducibility

Specificity test: The analytical specificity of each simplex PCR assay was evaluated by cross-reaction tests with various CIRDC-associated viruses, as well as canine parvovirus (CPV), canine enteric coronavirus (CCoV) and Bordetella bronchiseptica.

Sensitivity test: To access the analytical sensitivity of each simplex PCR assay, two-fold serial dilutions of nucleic extracted positive controls were amplified. The ten dilutions of tested controls were 2^1–2^10 ng/PCR reaction.

Reproducibility: Both intra- and inter-assay variations were measured using the positive controls and sequenced clinical samples. To assess the intra-assay variation, triplicate amplifications of the 2^10 and 2^9 ng/reaction templates for the positive controls and the samples were performed in a single multiplex PCR assay. To evaluate the inter-assay variation, the above single multiplex PCR was performed as three independent multiplex PCR assays.

Diagnostic performance of the multiplex PCR: To evaluate the reliability of the developed multiplex PCR for clinical testing, the performance of the assay was compared to those of the simplex PCR and a commercial test kit (Antigen Rapid CIRD-3 Ag test kit, Bionote, Hwaseong, South Korea). The sensitivity, specificity, positive predictive value and negative predictive value were determined. Independent t-test was used to evaluate the difference between route of sample collection and number of viral detection using SPSS.
and CDV. However, for CIV, there were high numbers of PCR-positive samples detected by multiplex PCR (83/102), whereas the test kits showed negative results.

Detection of CIRDC viruses in clinical samples by multiplex PCR: In single infection CIV was the predominant virus detected and accounted for 23.5% (12/51) and 19.6% (10/51) positive NS and OS samples, respectively. The next most common virus was CPIV, detected at 3.9% (2/51) and 5.8% (3/51) of NS and OS samples, respectively, with 2% (1/51) being positive for CRCoV infection in both NS and OS samples. Even though the CDV, CAdV-2 and CaHV-1 were not detected as a single infection, they were detected in multiple infections in these tested samples (Table 4).

For dual infections, the most frequently detected viruses were CIV co-infected with CRCoV at 13.7% and 21.6% in NS and OS, respectively, followed by CIV with CPIV at 9.8% and 7.8% in NS and OS samples, respectively. For triple infections, CIV and CRCoV were frequently found together co-infected with other viruses, and especially with CDV and CPIV. However, one dog was negative for all tested viruses in both the NS and OS samples.

Generally, dual infections were predominant in CIRDC suffering dogs (42.2%), followed by single (28.4%) and triple (22.6%) infections. With regards to the sampling site, the frequency of positive results was not statistically different between the OS and NS sampling sites ($P>0.05$).

DISCUSSION

The CIRDC is an important disease that impacts on dogs, especially puppies or immunosuppressed dogs, and is frequently associated with viral infections. It has gained attention recently, because many viruses have been discovered and co-infections with multiple pathogens are often fatal. Thus, the development of diagnostic tools for CIRDC-associated virus detection is necessary to enhance the diagnosis coverage. In this study, multiplex RT-PCR and multiplex PCR for the detection of CIRDC-associated RNA and DNA viruses, respectively, were developed and compared with conventional methods. Both developed multiplex PCRs could detect several viruses associated with CIRDC efficiently. The two multiplex PCRs gave similar results...
equivalent to that obtained from the conventional simplex PCRs that could only detect one pathogen per reaction and so required six separate reactions per sample. Nested amplification was performed for CRCoV detection in order to increase the sensitivity of detection (Poovorawan, personal communication). Although multiplex PCR has been developed previously to detect several pathogens of CIRDC, such as CIV, CDV and CRCoV [10], its application remained limited because of the narrow range of viruses covered, with other CIRDC-associated viruses being neither detected nor ruled out. Thus, our study might provide a novel platform for whole CIRDC-virus detection.

The overall sensitivity of the multiplex RT-PCR and multiplex PCR was more than 90% and 87%, respectively, compared to their simplex counterparts. However, the detection of CRCoV was modified as a hemi-nested RT-PCR to increase its sensitivity. The false negative reactions when performing multiplex PCRs in this study might be resulted from the selection of the single optimized Ta for several primer pairs and the low amount of particular target genes [1]. These suggested for the decreased sensitivity of the developed multiplex PCRs. Moreover, there was 100% specificity in both modalities for clinical sample detection. Thus, these platforms could likely be used effectively in practice.

Recently, some multiplex PCR assays were developed in order to detect the CIRDC pathogens [10]; however, the test might be immature, because only CIV, CDV and CRCoV could be detected but not for others. Thus, our study expanded the coverage of CIRDC virus detection. In an evaluation of the commercially available three-antigen rapid test kit (CAdV-2, CIV and CDV), we found only CIV detection showed an unexpected sensitivity and specificity. A previous study reported that the developed multiplex RT-PCR for H3N2 CIV, CDV and CRCoV detection had an almost 100% sensitivity and specificity compared with the conventional RT-PCR and rapid antigen test kit [10]. In contrast, our study showed that the CIV-positive samples by multiplex RT-PCR were negative when tested with the rapid antigen test kit.

Table 2. Comparison of the results from the simplex PCR and multiplex PCR for detection of CIRDC associated viruses in clinical samples

	Simplex PCR	Total	Sensitivity	Specificity	PPV(\(c)\)	NPV(\(c)\)
	CAdV-2 pos	CAdV-2 neg				
	NS(\(b\))	OS(\(b\))	NS	OS	NS	OS
Multiplex PCR	CAdV-2 pos	4	6	0	0	10
	CAdV-2 neg	0	0	47	45	92
	Total	10	92	100	100	100
	CaHV-1 pos	CaHV-1 neg				
	NS	OS	NS	OS	NS	OS
Multiplex PCR	CaHV-1 pos	3	4	0	0	7
	CaHV-1 neg	1	0	47	47	95
	Total	8	94	102	87.5	100
	CIV pos	CIV neg				
	NS	OS	NS	OS	NS	OS
Multiplex RT-PCR	CIV pos	41	42	0	0	83
	CIV neg	1	1	9	8	19
	Total	85	47	102	97.7	100
	CPIV pos	CPIV neg				
	NS	OS	NS	OS	NS	OS
Multiplex RT-PCR	CPIV pos	18	15	0	0	33
	CPIV neg	1	2	32	34	69
	Total	36	36	102	91.7	100
	CDV pos	CDV neg				
	NS	OS	NS	OS	NS	OS
Multiplex RT-PCR	CDV pos	14	13	0	0	27
	CDV neg	2	1	35	37	75
	Total	30	34	102	91	100
	CRCoV pos	CRCoV neg				
	NS	OS	NS	OS	NS	OS
Multiplex RT-PCR	CRCoV pos	23	23	0	0	46
	CRCoV neg	0	0	28	28	56
	Total	46	56	102	100	100

a) pos=positive, neg=negative. b) NS=nasal swab, OS=oropharyngeal swab. c) PPV=positive predictive value, NPV=negative predictive value.
This is consistent with reports that many rapid test kits might have a low sensitivity to detect the influenza virus, but could still be suitable for rapid in-house clinical applications [11, 15]. This reflects that the type of kit, viral copy number, duration of storage, route of sample collection, and type or virus strain may all influence the test results [19]. Interestingly, in this study, about 70% (71/102) of samples from the clinical respiratory illness dogs were found to have multiple infections. This finding supports that symptomatically, the CIRDC is a complex disease, which is mostly caused by co-infection with more than one pathogen. Recently, Jeoung et al. (2013) used both NS and whole blood samples for CIRDC virus detection, but found that only CDV (and not CIV and CRCoV) could be detected from the whole blood samples [10]. Correspondingly, respiratory swabs have been reported to be appropriate samples for the detection of respiratory pathogens [9, 16]. Thus, NS and OS served as appropriate sample sources in our study due to their ease of and non-invasive sampling nature and that they lie on the viral shedding routes. This study also suggested that the virus should be screened for in NS and OS, with detection levels at each site depending on the type of virus. The CAdV-2 and CaHV-1 mostly replicate in the lower respiratory tracts and shed via respiratory discharge, consisting with our finding that they were mostly detected in the OS, even though NS could often detect these viruses as well. However, the CAdV-2 primer pair used in this study was able to amplify CAdV-1 DNA virus which also shows airborne transmission and replicates in tonsil [3]. Therefore, the positive PCR reaction for canine adenovirus could not discriminate between CAdV-1 and CAdV-2 in this study. Additionally, CaHV-1 can be latent in various nerve ganglions, resulting in negative results from nucleic acid-based CaHV-1 detection in respiratory discharges in non-symptomatic dogs [12].

In this study, 3 out of 15 vaccinated dogs receiving, at least once, combined vaccine against CPIV, CDV and CAdV-2 showed PCR positive results for CIRDC virus detection (2 CDV positive dogs and 1 CPIV positive dog). Even though live attenuated vaccines can give false positive results with molecular testing, it is essential to discriminate between wild-type infection and recent vaccination for the prevention of false positivity in the future.

This study documented CaHV-1 and CRCoV circulation in Thailand for the first time. In 2012, CIV H3N2 was discovered in Thailand from dogs with flu-like symptoms [2]. Here, CIV and CRCoV were the most frequently detected viruses in CIRDC-infected dogs, suggesting that the viruses might spread rapidly. These viruses were not only found in single infections, but they were also found as co-infections together or with other viruses.

This study also exhibited a higher level of infections compared with a previous report [15], although this might be caused by the different timing of sample collection, population size and locations. However, it has previously been reported that infection with CRCoV and CPIV might facilitate or initiate the disease and, subsequently, enhance the entry of other pathogens [7], so the prevalence of infected dogs is then increased. Moreover, we found that the dogs that were infected with CIV, CPIV, CDV and CRCoV showed a greater severity of clinical symptoms, such as marked bronchopneumonia and sudden death (data not shown). This finding is consistent with other investigations suggesting that co-infections might augment the severity of clinical symptoms [7, 16]. Thus, advanced genetic-based detection methods, such as multiplex PCR assays, are considered as an alternative diagnostic platform for a panel of suspected CIRDC causing viruses with a high sensitivity and specificity. Because of the cost benefit and practical usage, the developed multiplex PCR assays are suitable for a screening test for disease diagnosis, quarantine and prevention measures, especially in

Table 3. Comparison of the results from the multiplex PCR and the rapid antigen test kit for the detection of CAdV-2, CIV and CDV in clinical samples

	Rapid antigen test kit	Total	Sensitivity	Specificity	PPV\(^{(3)}\)	NPV\(^{(3)}\)	
CAdV-2							
	CAdV-2 pos\(^{(4)}\)						
	NS\(^{(5)}\)	0	1	4	5	10	
	OS\(^{(5)}\)	0	0	47	45	92	
	Total	1	101	102	100	91.09	10 100
	CAdV-2 neg\(^{(4)}\)						
	NS\(^{(5)}\)	0	0	47	45	92	
	OS\(^{(5)}\)	0	0	47	45	92	
CIV							
	CIV pos						
	NS	0	0	41	42	83	
	OS	0	0	10	9	19	
	Total	0	102	102	100	18.63	0 100
	CIV neg						
	NS	0	0	37	38	75	
	OS	0	0	37	38	75	
CDV							
	CDV pos						
	NS	6	6	8	7	27	
	OS	0	0	37	38	75	
	Total	12	90	102	100	83.33	44.44 100

a) pos=positive, neg=negative. b) NS=nasal swab, OS=oropharyngeal swab. c) PPV=positive predictive value, NPV=negative predictive value. d)UC=unable to calculate.
Table 4. CIRDC viruses detected by multiplex PCR in the 102 clinical samples from 51 dogs

| CIRDC viruses detected by multiplex PCR in the 102 clinical samples from 51 dogs |
|---------------------------------|------------------|-----------------|
| Single infection (n=29) | NS (n=15) | OS (n=14) |
| CIV | 12 | 10 |
| CPIV | 2 | 3 |
| CRCoV | 1 | 1 |
| Dual infection (n=43) | NS (n=20) | OS (n=23) |
| CIV + CPIV | 5 | 4 |
| CIV + CDV | 1 | 1 |
| CIV + CRCoV | 7 | 11 |
| CIV + CAdV-2 | 2 | 1 |
| CIV + CaHV-1 | 1 | 3 |
| CPIV + CRCoV | 1 | 0 |
| CDV + CRCoV | 3 | 2 |
| CDV + CAdV-2 | 0 | 1 |
| Triple infection (n=23) | NS (n=13) | OS (n=10) |
| CIV + CPIV + CDV | 2 | 2 |
| CIV + CPIV + CRCoV | 4 | 1 |
| CIV + CPIV + CAdV-2 | 0 | 1 |
| CIV + CDV + CRCoV | 3 | 3 |
| CIV + CRCoV + CAdV-2 | 0 | 1 |
| CIV + CRCoV + CaHV-1 | 1 | 1 |
| CPIV + CDV + CRCoV | 1 | 0 |
| CPIV + CDV + CAdV-2 | 2 | 1 |
| 4 co-infection (n=3) | NS (n=1) | OS (n=2) |
| CIV + CPIV + CDV + CRCoV | 1 | 2 |
| 5 co-infection (n=2) | NS (n=1) | OS (n=1) |
| CIV + CPIV + CDV + CRCoV + CAdV-2| 0 | 1 |
| CIV + CPIV + CDV + CRCoV + CaHV-1| 1 | 0 |
| Negative (n=2) | NS (n=1) | OS (n=1) |
| | 1 | 1 |
| Total | 51 | 51 |

a) NS=nasal swab, OS=oropharyngeal swab.

developing countries.

ACKNOWLEDGMENTS. We thank Professor Dr. Alongkorn Amonsin, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Thailand for providing the H3N2 CIV positive specimen. C. Piewbang is granted by The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship. Y. Poovorawan is granted by The Research Chair Grant from The National Science and Technology Development Agency (P-15-50004). This study was co-funded by the Thailand National Science and Technology Development Agency Poovorawan is granted by The Research Chair Grant from Chulalongkorn University Fund for Doctoral Scholarship. Y. C. Piewbang is granted by The 100th Anniversary Chulalongkorn University.

REFERENCES

1. Bellau-Pujol, S., Vabret, A., Legrand, L., Dina, J., Gouarin, S., Petitjean-Lecherbonnier, J., Pozzetto, B., Ginevra, C. and Freymuth, F. 2005. Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses. J. Virol.

Methods 126: 53–63. [Medline] [CrossRef]

2. Bunyapong, N., Nonthabenjawan, N., Chaiwong, S., Tangwongsit, R., Boonyapisitsopa, S., Jairak, W., Tuanudom, R., Prakurgnamthum, D., Suradhat, S., Thanawongnuwech, R. and Amonsin, A. 2014. Genetic characterization of canine influenza A virus (H3N2) in Thailand. Virus Genes 48: 56–63. [Medline] [CrossRef]

3. Buonavoglia, C. and Martella, V. 2007. Canine respiratory viruses. Vet. Res. 38: 355–373. [Medline] [CrossRef]

4. Decaro, N., Amorisco, F., Desario, C., Lorusso, E., Camero, M., Bellaccio, A. L., Sciarretta, R., Lucente, M. S., Martella, V. and Buonavoglia, C. 2010. Development and validation of a real-time PCR assay for specific and sensitive detection of canine herpesvirus 1. J. Virol. Methods 169: 176–180. [Medline] [CrossRef]

5. Decaro, N., Desario, C., Elia, G., Mari, V., Lucente, M. S., Cordioli, P., Colaianni, M. L., Martella, V. and Buonavoglia, C. 2007. Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy. Vet. Microbiol. 121: 225–230. [Medline] [CrossRef]

6. Eyles, K. and Brownlie, J. 2005. Investigation into the causes of canine infectious respiratory disease: antibody responses to canine respiratory coronavirus and canine herpesvirus in two kennelled dog populations. Arch. Virol. 150: 1493–1504. [Medline] [CrossRef]

7. Eyles, K., Dubovi, E. J., Brooks, H. W. and Brownlie, J. 2004. Longitudinal study of viruses associated with canine infectious respiratory disease. J. Clin. Microbiol. 42: 4524–4529. [Medline] [CrossRef]

8. Eyles, K., Toomey, C., Brooks, H. W. and Brownlie, J. 2003. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology 310: 216–223. [Medline] [CrossRef]

9. Grätzfeld, J. F., Roberts, P., Roche, L., El Batrawy, S. and Gordon, S. B. 2011. Comparison between nasopharyngeal swab and nasal wash, using culture and PCR, in the detection of potential respiratory pathogens. BMC Res. Notes 4: 122. [Medline] [CrossRef]

10. Jeoung, H. Y., Song, D. S., Jeong, W. S., Lee, W. H., Song, J. Y. and An, D. J. 2013. Simultaneous detection of canine respiratory disease associated viruses by a multiplex reverse transcription-polymerase chain reaction assay. J. Vet. Med. Sci. 75: 103–106. [Medline] [CrossRef]

11. Liao, R. S., Landt, O. and Hill, J. T. 2011. Comparison of a laboratory-developed RT-PCR and the CDC RT-PCR protocol with rapid immunodiagnostic testing during the 2009 H1N1 influenza pandemic. Diagn. Microbiol. Infect. Dis. 70: 236–239. [Medline] [CrossRef]

12. Miyoshi, M., Ishii, Y., Takiguchi, M., Takada, A., Yasuda, J., Hashimoto, A., Okazaki, K. and Kida, H. 1999. Detection of canine herpesvirus DNA in the ganglionic neurons and the lymph node lymphocytes of latently infected dogs. J. Vet. Med. Sci. 61: 375–379. [Medline] [CrossRef]

13. Payungporn, S., Chutinimitkul, S., Chaisingh, A., Damrong-wanapanopikin, S., Buranathai, C., Amonsin, A., Theamboonlers, A. and Poovorawan, Y. 2006. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J. Virol. Methods 131: 143–147. [Medline] [CrossRef]

14. Payungporn, S., Crawford, P. C., Kouo, T. S., Chen, L. M., Pompey, J., Castleman, W. L., Dubovi, E. J., Katz, J. M. and Donis, R. O. 2008. Influenza A virus (H3N8) in dogs with respiratory disease. Florida. Emerg. Infect. Dis. 14: 902–908. [Medline] [CrossRef]
15. Pecoraro, H. L., Spindel, M. E., Bennett, S., Lunn, K. F. and Landolt, G. A. 2013. Evaluation of virus isolation, one-step real-time reverse transcription polymerase chain reaction assay, and two rapid influenza diagnostic tests for detecting canine Influenza A virus H3N8 shedding in dogs. *J. Vet. Diagn. Invest.* **25**: 402–406. [Medline] [CrossRef]

16. Posuwan, N., Payungporn, S., Thontiravong, A., Kitikoon, P., Amonsin, A. and Poovorawan, Y. 2010. Prevalence of respiratory viruses isolated from dogs in Thailand during 2008–2009. *Asian Biomed.* **4**: 563–569.

17. Radtanakatikanon, A., Keawcharoen, J., Charoenvisal, N. T., Poovorawan, Y., Promptetchara, E., Yamaguchi, R. and Techangamsuwan, S. 2013. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand. *Vet. Microbiol.* **166**: 76–83. [Medline] [CrossRef]

18. Suwannakarn, K., Payungporn, S., Chieochansin, T., Samransamruak, R., Amonsin, A., Songserm, T., Chaisingh, A., Chamnanpood, P., Chatinimkitkul, S., Theamboonlers, A. and Poovorawan, Y. 2008. Typing (A/B) and subtyping (H1/H3/H5) of influenza A viruses by multiplex real-time RT-PCR assays. *J. Virol. Methods* **152**: 25–31. [Medline] [CrossRef]

19. TDR diagnostics evaluation expert panel, Banoo, S., Bell, D., Bossuyt, P., Herring, A., Mabey, D., Poole, F., Smith, P. G., Sri-ram, N., Wongtsrchanalai, C., Linke, R., O’Brien, R., Perkins, M., Cunningham, J., Matsoso, P., Nathanson, C. M., Olliaro, P., Peeling, R. W. and Ramsay, A. 2010. Evaluation of diagnostic tests for infectious diseases: general principles. *Nat. Rev. Microbiol.* **84** (12, suppl): S17-29.

20. Techangamsuwan, S., Kreutzer, R., Kreutzer, M., Imbschweiler, I., Rohn, K., Wewetzer, K. and Baumgartner, W. 2009. Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth. *J. Neurosci. Methods* **176**: 112–120. [Medline] [CrossRef]

21. Weese, J. S. and Stull, J. 2013. Respiratory disease outbreak in a veterinary hospital associated with canine parainfluenza virus infection. *Can. Vet. J.* **54**: 79–82. [Medline]