Influence of In-Gap States on the Formation of Two-Dimensional Electron Gas at ABO₃/SrTiO₃ Interfaces

Cheng-Jian Li¹, Hong-Xia Xue¹, Guo-Liang Qu², Sheng-Chun Shen¹, Yan-Peng Hong¹, Xin-Xin Wang¹, Ming-rui Liu¹, Wei-min Jiang¹, Petre Badica², Lin He¹, Rui-Fen Dou¹, Chang-Min Xiong³, Wei-ming Lü³ & Jia-Cai Nie¹

We explored in-gap states (IGSs) in perovskite oxide heterojunction films. We report that IGSs in these films play a crucial role in determining the formation and properties of interfacial two-dimensional electron gas (2DEG). We report that electron trapping by IGSs opposes charge transfer from the film to the interface. The IGS in films yielded insulating interfaces with polar discontinuity and explained low interface carrier density of conducting interfaces. An ion trapping model was proposed to explain the physics of the IGSs and some experimental findings, such as the unexpected formation of 2DEG at the initially insulating LaCrO₃/SrTiO₃ interface and the influence of substitution layers on 2DEG.

The discovery of two-dimensional electron gas (2DEG) at perovskite oxide interfaces paved the way to observations of new phenomena. For example, the LaAlO₃/SrTiO₃ (LAO/STO) interface¹ has been shown to exhibit two-dimensional (2D) superconductivity²–⁵, ferromagnetism⁶–¹⁰, as well as coexistence of these two phases¹¹–¹³. Despite more than a decade of extensive research, the mechanism of 2DEG formation is still debated¹⁴. The polar catastrophe model¹,¹⁵ is the most widely accepted model (Fig. S1). This model postulates that LAO is polar, with alternating sheets of positive and negative charge in the (001) direction, while STO is not polar. To accommodate the diverging potential caused by the polar discontinuity at the LAO/STO interface, about one half of the electrons and holes accumulate at the interface, forming the 2DEG. This model successfully explains the origin of 2DEG and why the 2DEG at the n-type LAO/STO interface requires a critical thickness of 4 unit cells (u.c.) of LAO while STO has to be TiO₂-terminated. However, p-type interfaces¹ and some n-type interfaces are not conductive, (e.g., LaCrO₃/STO¹⁶ and LaMnO₃/STO¹⁷). Furthermore, the predicted electrical field within the critical thickness is absent¹⁸,¹⁹, and the observed interface carrier density (n) at the LAO/STO interface is much lower (<10%) than the theoretical value²⁰.

Although significant progress has been made in explaining the formation of 2DEG at some interfaces, little attention has been devoted to insulating interfaces with polar discontinuity. The formation mechanism of insulating interfaces must play a vital role in the 2DEG formation and is as important as the polar catastrophe model. Characterization of this mechanism is important for successful formulation of the 2DEG formation theory.

The in-gap state (IGS) is a promising candidate mechanism to fill this gap in the physical understanding. IGSs can absorb the electrons that transfer to the STO conduction band and form 2DEG in the polar catastrophe model. Thus, IGSs can yield a weak electric field in films, a low n, and even an insulating interface. Current research on IGSs focuses on IGSs in substrates, which are generated by Ti ions in the near-interfacial STO. These states can be found at both insulating and conducting LAO/STO interfaces. However, these substrate IGSs cannot explain the insulation properties of interfaces with polar discontinuity, because the difference between these STO-based interfaces is in their films, rather than substrates. Therefore, it is conceivable that IGSs in films play a role in the formation of interfacial 2DEG. In this study, we thoroughly explored film IGSs both

¹Department of Physics, Beijing Normal University, Beijing, 100875, China. ²National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania. ³Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150001, China. Correspondence and requests for materials should be addressed to J.-C.N. (email: jcnie@bnu.edu.cn)
experimentally and theoretically, and argued that, combining our results with the polar catastrophe model, a relatively complete theory can be achieved.

Results and Discussions

The 2DEG at LaCrO$_3$/SrTiO$_3$ interfaces. To explore the physical processes yielding insulating interfaces, we grew LaCrO$_3$ (LCO) films on TiO$_2$-terminated (001) STO substrates, at different oxygen partial pressures (P_{ox}), ranging from 6×10^{-8} to 1×10^{-6} Torr, using pulsed laser deposition (seen in sample growth). Previously, no 2DEG was observed at the LCO/STO interface 16,24. To our surprise, 2DEG formed at the LCO/STO interface when the samples were grown at a very low P_{ox}, under 9.0×10^{-7} Torr (Fig. 1(a)), and the STO substrates were insulating in all cases. The critical thickness for the 2DEG formation was also 4 u.c. (the illustration in Fig. 1(d)) and the n_s of LCO/STO is similar with the previous reports on LAO/STO 20 (Fig. 1(b)). At the same time, the films themselves exhibited different behaviors, i.e., in some samples they were semiconducting, owing to the high densities of oxygen vacancies (n_{ox}) in these films (Fig. S2(b)). X-ray photoelectron spectroscopy (XPS) measurements show a high percentage (~12%) of Cr$^{2+}$ (Fig. 2(f)) and indicate a high n_{ox} in LCO film. The Cr$^{5+}$ cations resulted from the oxidation of Cr$^{3+}$ in the near-surface region of LCO when the sample was exposed to air before the XPS measurement 25,26. X-ray diffractometry (XRD) measurements indicated that the lattice constant of LCO obviously increased when the films were grown at a lower P_{ox} (Fig. 1(d)). That is owing to the high n_{ox} in LCO films 27,28 and the formation of Cr$^{2+}$ cations (Fig. 2(f)) which has a bigger radius 29 than Cr$^{3+}$.

The oxygen vacancies in STO substrate may dominate the conduction of the interface due to the low P_{ox} 30,31. To explore the influence of the oxygen vacancies, we annealed some samples with 2DEG in pure oxygen of one atmospheric pressure for 4 hours (400 °C); after annealing, 2DEG still existed. We also measured the valence of Ti cations of LCO(1 u.c.)/STO grown in 7×10^{-7} Torr (Fig. 2(c)) using XPS. To avoid the influence of the polar catastrophe model (the critical thickness of charge transfer is 4 u.c. 1,15), the LCO thickness is only 1 u.c. We found there are almost no Ti$^{3+}$ signals. That means n_{ox} in STO substrate should be very low. In addition, we found that the temperature dependence of n_s of the LCO/STO interface is different from oxygen-defects induced conduction of STO 32 (Fig. 1(b)) and the critical thickness of 2DEG formation (4 u.c.) cannot be explained by oxygen defects. These findings suggest that oxygen defects may be not the main mechanism of 2DEG formation at the LCO/STO interface. For a more in-depth investigation, we grew LaMnO$_3$ LaCoO$_3$ and STO films on STO, under the same growth conditions as those of LCO (P_{ox} was 6×10^{-8} Torr), and observed no conducting interface. As we know, oxygen outwards diffusion is film dependent, and the film will influence the n_{ox} formed in STO side.

Figure 1. Properties of LCO/STO heterojunctions. (a) Interfacial resistance-temperature curves for LCO/STO heterojunctions grown at different P_{ox} (Torr). (b) Interfacial carrier density-temperature curves for LCO/STO heterojunctions grown at different P_{ox} (Torr). (c) Absorption coefficients (α) of different LCO films, after subtracting the influence of STO. The red and yellow curves are the data for 2 u.c. (sample 1) and 17 u.c. (sample 2) LCO films grown at low P_{ox} (7×10^{-7} Torr), and the green curve is the data for 30 u.c. LCO films (sample 3) grown at high P_{ox} (4×10^{-6} Torr). (d) The lattice constant of the LCO film grown at different oxygen partial pressures, calculated from XRD data (see methods). The illustration in (d) is the interface resistance of LCO/STO with different LCO thicknesses when grown in 2×10^{-7} Torr. The critical thickness of 2DEG formation is 4 u.c.
Previous reports have revealed that the oxygen migration barriers energy (E_m) of LCO is larger than E_m of LaMnO$_3$, LaCoO$_3$ and STO33,34. So that, the n_ox in STO side of LCO/STO may be slightly lower than that of LaMnO$_3$/STO LaCoO$_3$/STO. We also annealed the STO substrate under the growth condition of LCO films, at a P_ox of 6×10^{-8} Torr, for 2 hours, following which the STO substrate was still found to be insulating. In fact, we found that the STO substrate becomes conductive only when the P_ox is less than 2×10^{-8} Torr (annealed at 830 °C for 2 hours). If the LCO/STO interface becomes conducting owing to oxygen defects, the LaMnO$_3$/STO LaCoO$_3$/STO and STO/STO interfaces, as well as the annealed STO substrate, should all have been conducting; however, this was not the case. Based on these results, we concluded that oxygen defects are necessary but not sufficient to explain the formation of 2DEG at the LCO/STO interface.

The IGS and band alignment of LCO/STO. We measured the optical transmission spectra of bare STO and of the LCO/STO heterojunctions by a UV-VIS-IR recording spectrophotometer and calculated the absorption coefficients (α) of them (Fig. 1(c)). After subtracting the contribution of STO, we observed several absorption peaks within the band gaps of LCO (1.6 eV33) and STO (3.2 eV34). These peaks were observed in thick films (regardless the interfacial 2DEG formation), while they were negligible in thin films, suggesting that the peaks are caused by the IGSs in the LCO films, rather than by the substrates or interfaces. We can find sample 3 (30 u.c.) has a lower α than sample 2 (17 u.c.) which is thinner and grown at a lower P_ox than sample 3. If the density of IGSs is...
Figure 3. Band alignments of LCO/STO. Band alignment of the LCO/STO interface for a film grown at a high P_{ox} (a) and low P_{ox} (b). Here we only show the IGSs located in the range of 0.55–0.86 eV (Fig. 1(c)). The illustration in (b) is the schematic diagram of the electrons distribution (upper row) and the corresponding potential (second row) near the LCO/STO interface. The green balls in the illustration are electrons.

The ion trapping model. From the absorption coefficient results, it was very confusing to find that the IGSs in different films are very similar to thick films. Thus, we expect the charge transfer to be affected by the detailed characteristics of IGSs. These characteristics should be material-related and should compete with the charge transfer owing to the polar discontinuity in the polar catastrophe model. To determine these key characteristics of IGSs, we analyzed the $A^3\alpha^4O/STO$ interface that has been studied previously.16,17,44–51. We summarized these reports in Fig. 4(a) and found a strong relationship between the 2DEG formation and the third ionization energy (I_3) of the film B site cations. 2DEG can form only if I_3 is less than or equal to 2963 KJ/mol (I_3 of Ga$^{3+}$). As is known, the ionization energy is the energy required to remove one electron, and it can also be regarded as a propensity to trap an electron by atoms/cations. We suppose that such an electron trapping propensity of cations...
is the key determinant of IGSs, and cations yield IGSs in films just like substrate Ti cations are at the origin of substrate IGSs. Here, we propose an ion trapping model and try to explain how the IGSs in films work.

Our model utilizes the concept of the ion potential well (IPW), which is the IGS in a film. IPWs are generated by film cations/anions and can trap electrons/holes, preventing them from reaching the interface and thus weakening/destroying 2DEG. The competition between the transfer of charges (polar catastrophe model) and their trapping by ions (ion trapping model) determines the formation of interfacial 2DEG. Different ions have different IPWs, which explains why some interfaces are conductive while others are insulating. We emphasize that a polar system is actually not needed for IPWs, but it is necessary for the formation of 2DEG as described in the polar catastrophe model. Our model is simple and does not take into account complex quantum mechanisms. This is somewhat similar to the polar catastrophe model. Our model is a simple try, with it we provide a new and effective way to understand the formation of 2DEG.

Because the trapped charges will move around the ion core and cannot enter into the Coulomb repulsion, we suppose that an IPW is a spherical-shell well with a depth of eU (Fig. 4(b)) and a thickness of d. We also assume that if the distance between one charge and one IPW is less than the trapping radius R, this charge will be trapped by the IPW: this charge will be located within the IPW’s thickness d. The trapped charge cannot escape from the IPW unless it is sufficiently energetic. We emphasize that charge transfer is driven by the electric field caused by the polar discontinuity at the interface (E_p), as described by the polar catastrophe model. Here, we shall use the cation IPW to explain how our model works (Fig. 4(c–e)). If an electron that is trapped by the cation IPW moves a distance $2R$ in the direction opposite to that of the electric field (E), its energy will increase by $2eER$. Here, c is the electron charge, and average E is the primary part of E. For $2eER \leq eU$, the electron cannot escape from the IPW, and 2DEG does not form at the interface (Fig. 4(e)). For $2eER > eU$, the electron can escape from the IPW, moving to the interface (Fig. 4(d)); thus, $2eER > eU$ is the condition for 2DEG formation. The escaped charge generates an additional electric field (E_i) and weakens E, so that when $2eER = eU$ no more electrons can escape (Fig. 4(e)). $2eER = eU$ is the equilibrium condition between charge transfer and charge trapping.

Model details. As discussed above, the electric field in polar-non-polar heterojunctions has two main components (Eq. (1)), one owing to polar discontinuity and the other owing to the charges that move to the interface.

$$E = E_p + E_i = \frac{n_pe}{\varepsilon \varepsilon_0} - \frac{n_e}{\varepsilon \varepsilon_0} = \frac{(n_p - n_i)e}{\varepsilon \varepsilon_0}$$

The quantity ε_i is the relative dielectric constant of the film. n_i is the real interface charge density. n_p is the theoretical interfacial charge density in the polar catastrophe model, which is $3.28 \times 10^{17}/cm^2$ for $A_{2-x}B_xO_3$ interface. e is the third ionization energy (I_3) of $A_{2-x}B_xO_3$ interface. It is necessary to distinguish between n_i and the real interface carrier density (n_p), because not all charges at the interface contribute to conductivity, owing to the IGS in STO.

The IPW depth eU and the trapping radius R are the key factors of the ion trapping model. In our calculations, we assumed that eU results from the Coulomb interaction. By a logical extension of the relationship between 2DEG and ionization energy (Fig. 4(a)), the ionization energy of cations or the electronic affinity of anions (T/ε_r) can be used as a measure of the trapping ability of cations or anions, the main part of eU. Considering the valence of A or B site cations and O^{2-} anions, T is the third ionization energy (I_3) for cations, the second electronic affinity (A_2) for O^{2-} anions at the $A_{2-x}B_xO_3$ interface (Table S1). On the other hand, the Coulomb potential energy created by all ions in the film also affects eU. This potential energy exists everywhere in the film and is the background potential energy ($eU_0(r)/\varepsilon_r$), where r is the charge-IPW distance. It is necessary to subtract $eU_0(r)/\varepsilon_r$ from T/ε_r to obtain the effective eU (Eq. (2)).
εε = − ≤ eU T eU r r R () () (2)

To calculate \(eU_0 \), we coded a simple program (see Program details). We found that \(eU_0()/εr \) is anisotropic and attains a minimum at \(r\rightarrow R \) (Fig. S4(f)). Here, we only focus on the [001] orientation and take the maximum value of \(εε − eUT eU R (/ () /) r0 \) as the effective depth. Thus, \(eU \) can be regarded as a function of \(R \). With the value of \(eU \), \(2EeR = eU \) and Eq. (1), we can calculate \(n_i \) (Eq. (3)) and the percentage trapping of electrons \((k) \) (Eq. (4)) of one type of IPW (see details in Supplementary Information).

\[n_i = (1 - k)n_p \]

(3)

\[k = \frac{T - eU_0(R)}{2e^2Rn_p} \times 100\% \]

(4)

The parameters \(k \) and \(n_i \) are independent of the film thickness or the number of IPWs, resulting in a constant \(n_p \), which is in agreement with the experimental values.

2DEG can form only when \(k < 100\% \), so the condition for 2DEG formation can be written as Eq. (5).

\[\frac{2n_i e^2R}{ε_0} > T - eU_0(R) \]

(5)

Figure 5. Simulation results for the two sides of Eq. (5) ([001] direction) as a function of \(R \). (a–c) The situation for \(A^{3+} \), \(O^{2−} \), and \(B^{3+} \) IPWs. (d) The two sides of Eq. (5) for \(Cr^{3+} \), \(Co^{3+} \), \(Mn^{3+} \) (solid lines) and \(Cr^{3+} \), \(Co^{3+} \), \(Mn^{3+} \) (dashed lines). \(Cr^{3+} \), \(Co^{3+} \), and \(Mn^{3+} \) are the IPW depth when considering the influence of lattice expansion. The IPW depths for different ions are color-coded curves, and the energy increase (2EEeR) is the black curve with circles. The dashed curves in (a,c), and (d) are the value of \(R \). In (b), the dashed curves indicate the ion radius of \(O^{2−} \) (1.4 Å) and \(R \) (1.032 Å) at the crossing point between the IPW depth and energy change curves.

Equation (5) is independent of \(εr \) and \(T \) is the only variable factor for different ions, so \(T = I_5 \) for \(A^{3+} \) or \(B^{3+} \) cations \((T = I_5 \) for \(A^{3+} \) or \(B^{3+} \) cations) is the most important factor that determines the formation of 2DEG as shown in Fig. 4(a). \(R \) is the only unknown factor, which can be indirectly determined experimentally. To simplify our model, we assume that ions at the same sites \((A, B, \text{ or } O^{2−}) \) have the same \(R \). For \(εr = 1 \), the left side of Eq. (5) is the energy increment (equivalent to 2EEeR), which is ion-independent for the same-site-ions, while the right side of Eq. (5) is the IPW depth of different ions. To obtain \(R \), we plot the two sides of Eq. (5) as a function of \(R \), for A site ions, B site ions, and \(O^{2−} \) ions in the [001] direction (Fig. 5). 2DEG was discovered in \(LaGaO_3/STO \), \(NdGaO_3/STO \), \(PrAlO_3/STO \), \(LaVO_3/STO \), \(LaTiO_3/STO \), \(DyScO_3/STO \), \(SmTiO_3/STO \), and \(GdTiO_3/STO \), but it was not observed in \(LaMnO_3/STO \) and \(LaCoO_3/STO \). For all types of ions in these films, if the IPW depth (the colored curves in Fig. 5) is larger than the energy increment (the black curve in Fig. 5) for a certain value of \(R \), no charge can escape from the IPW, and 2DEG will not form at the interface. Otherwise, 2DEG will form. It should be noted that, because here our model only
LaCoO$_3$/STO, the change in the IPW depth caused by the lattice expansion was relatively small compared with the is below 1.032 Å. But, the heterojunctions can reach the interface only if the edge (Fig. 3(a)).

The origin of 2DEG at LCO/STO interfaces. Inspired by the lattice enhancement of the LCO film (Fig. 1(d)), we studied the influence of the lattice constant on $eU(R)/\varepsilon_c$. We found that $eU(R)/\varepsilon_c$ increases with increasing the lattice constant (Fig. 5(c)), whereas the IPW depth eU. Nevertheless, using our method to calculate $eU(R)/\varepsilon_c$, we found that oxygen vacancies cannot directly influence $eU(R)/\varepsilon_c$ because the electrons generated by oxygen vacancies have the same influence on $eU(R)/\varepsilon_c$ as O^2- ions. For example, the decrease in eU of LCO was 0.6 eV/Å when the lattice parameter was 3.957 Å (at 8 × 10$^{-7}$ Torr) (Fig. 1(d)). This is sufficiently large for 2DEG formation at the LaCrO$_3$/STO interface (Cr$^{3+}$ in Fig. 5(d)), as the IPW depth of Cr$^{3+}$ is near the critical value of \sim7.5 eV/Å. Apparently, oxygen vacancies and the induced lattice expansion are the keys to the formation of 2DEG in LCO/STO. But, for the other initially insulating interfaces, such as LaMnO$_3$/STO and LaCoO$_3$/STO, the change in the IPW depth caused by the lattice expansion was relatively small compared with the required change of \sim2.7 eV/Å, when considering a lattice parameter of 4 Å (Co$^{3+}$ and Mn$^{3+}$ in Fig. 5(d)). Thus, we determined that an insulator-metal transition caused by the introduction of oxygen vacancies cannot occur for these heterojunctions.

The trapping ratios. Using Eq. (4) and the as-determined R, the trapping ratios k were calculated for different ions (Table 1). The value of n_i is determined by the cation’s IPW (A or B) with the strongest trapping ability (highest k) in the ABO$_3$ film. It is worthy to notice that the calculated n_i somewhat deviates from experimental values, because our calculations use the same R. For LaCrO$_3$/STO, LaMnO$_3$/STO, and LaCoO$_3$/STO, Cr$^{3+}$ IPW, Mn$^{4+}$ IPW, and Co$^{3+}$ IPW exhibit 100% trapping efficiency (Table 1); thus, 2DEG does not form. For LaAlO$_3$ films, Al$^{3+}$ IPW ($k = 67.9\%$) is more efficient than La$^{3+}$ IPW ($k = 61.1\%$). The theoretical value of the interface charge density n_i is 1.05 × 1014/cm2 and it corresponds to 0.16 Ti$^{3+}$/u.c.2. This is in agreement with experimental findings.

The influence of substitution layers on LAO/STO interfaces. The above discussion suggests that the IGs in these films are a key factor deciding the formation and properties of 2DEG. Thus, by substituting some unit layers of a film with a heterojunction with 2DEG by other perovskite oxides, it could be possible to modulate the properties of 2DEG. Here, we replaced one unit layer of LAO(4 u.c.)/STO films with NdGaO$_3$, LaGaO$_3$, and NdAlO$_3$. As expected, such substitutions affected n_i. A strong relationship between n_i and substitution layers was found (Fig. 6).

When the first unit layer (closest to the interface) was replaced, n_i depended on the lattice mismatch between the substitution oxide and the substrate (Fig. 6(b)), in agreement with previous results. The influence of the substitution layer on n_i when the third and fourth layers were replaced can be explained in terms of the average k values of A site and B site cation IPWs (Fig. 6(c,d)). We found that n_i is inversely proportional to the average k, as our model predicted (Eq. (3)). The effects of IPWs on the fourth and third layers were more pronounced than for other layers, because the former are the first and second layers, correspondingly, which the transferred electrons pass through owing to the 4 u.c. critical thickness of charge transfer. Interestingly, this result shows that A site and B site cation IPWs play the same role when only one unit layer is considered; yet, this is different from thick films. The influence of the substitution layer on n_i when the second layer is replaced is the mixture of the effects of lattice mismatch and IPWs (Fig. 6(a)). Generally, some oxygen vacancies will form in films during film growth due to

A$^{3+}$	La$^{3+}$	Ga$^{3+}$	Pr$^{3+}$	Nd$^{3+}$	Dy$^{3+}$	Sm$^{3+}$	Eu$^{3+}$	Bi$^{3+}$
ϵ_R (%)	60.9	68.7	74.0	76.5	80.4	83.7	91.7	95.2
ϵ_R (%)	19.0	55.3	67.9	79.4	97.9	100	100	100

Table 1. The trapping ratio (k), for different ions.
the low P_o and the high temperature. They can induce IPWs in films and influence the formation of 2DEG. Also, oxygen vacancies can form in STO substrates during films growth due to the oxygen diffusion, the bombardment by the plasma plume and so on. By applying the ion trapping model to substrates (Fig. S6), we suggest that the IPWs induced by oxygen vacancies can give rise to IGSs and electron localization in substrates as have been found. These results suggest that the IGS is a widespread and important factor in the formation of 2DEG, and we suggest that if the film has a perfect crystalline quality, a theoretical n_s may be achieved.

Conclusions

We studied IGSs in films and found that these states are necessary for obtaining insulating interfaces with polar discontinuity. Oxygen vacancies should be necessary for the formation of IGSs in films. We propose the ion trapping model to explain how the IGS works. Our model is simple and phenomenological, defects, lattice distortion and some other factors are neglected. We think our research is a simple try, a deep theoretical research should be performed in future. Although our model is simple, it matched the experiments very well. Combining the polar catastrophe model and our model, the origin of interfacial 2DEG can be clearly understood. The 2DEG formed at the initially insulating LCO/STO interface and the influence of the substitution layer on n_s can also be explained.

Methods

Sample growth. Films of LaCrO$_3$, LaCoO$_3$, LaMnO$_3$, and SrTiO$_3$ were grown at 830°C, at different oxygen partial pressures, using pulsed laser deposition with laser energy of 0.9 J/cm2 and frequency of 1 Hz. The film growth was monitored using reflection high energy electron diffraction (RHEED). The substrate was TiO$_2$-terminated (001) SrTiO$_3$. AFM images of the substrate before deposition and of the LaCrO$_3$ film are shown in Fig. 7(a,c). The XRD patterns of the films (Fig. 7(b)) indicating that the films were well epitaxial with (001) single phase character. We also found the lattice constant of the LaCrO$_3$ film increases with decreasing oxygen partial pressure during growth (Fig. 7(b)).

Program details. We coded a computer program to calculate the potential energy generated by different ions in a finite volume, given the distance (r) between the charge (one electron or hole) and IPW with $\varepsilon = 1$. The absolute value of the summation for all ions was $eU(r)$. In the calculation, we considered a volume of 1×10^6 u.c.3 with the lattice constant of SrTiO$_3$ (3.905 Å). Our calculations show a convergence trend with the increase in volume (Fig. S3), indicating that our simulation is coarse but functional. The arrangement of ions was different for different crystallographic directions; hence, $eU(r)$ was anisotropic (Fig. S4). The calculation method of our simulation was as follows:
Here, \(r_{[h,k,l]} \) is the position of the charge to the IPW, in the \([h, k, l]\) direction. The distances \(r_{A}^{+} - r_{[h,k,l]} \), \(r_{B}^{+} - r_{[h,k,l]} \), and \(r_{O}^{-} - r_{[h,k,l]} \) are the distances between the positions of \(A^{+}, B^{+} \), and \(O^{-} \)ions \((r_{A}^{+}, r_{B}^{+}, r_{O}^{-})\) and the position of charge to the IPW \((r_{[h,k,l]})\). Our simulation considers ions from the film’s bulk. Surface states of the film and ions of the substrate (SrTiO\(_3\)) are neglected because they are expected to have a weak and indirect influence on \(eU_0 \) and IPWs. Film thickness was not taken into consideration.

References
1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Nature 427, 423–426 (2004).
2. Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).
3. Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196–1199 (2007).
4. Han, Y.-L. et al. Two-dimensional superconductivity at (110) LaAlO\(_3\)/SrTiO\(_3\) interfaces. Appl. Phys. Lett. 105, 192603 (2014).
5. Biscaras, J. et al. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 12, 542–548 (2013).
6. Kalisky, B. et al. Critical thickness for ferromagnetism in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Nat. Commun. 3 (2012).
7. Banerjee, S. Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Phys. 9, 626–630 (2013).
8. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).
9. Gabay, M. & Triscone, J.-M. Oxide heterostructures: Hund rules with a twist. Nat. Phys. 9, 610–611 (2013).
10. Millis, A. J. Oxide interfaces: Moment of magnetism. Nat. Phys. 7, 749–750 (2011).
11. Dikin, D. A. et al. Coexistence of Superconductivity and Ferromagnetism in Two Dimensions. Phys. Rev. Lett. 107, 056802 (2011).
12. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Phys. 7, 767–771 (2011).
13. Li, L. et al. Fully controlled formation of two-dimensional superconductivity at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Nat. Phys. 7, 762–766 (2011).
14. Han, Y.-L. et al. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110) LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phys. Rev. B 92, 115304 (2015).
15. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006).
16. Chambers, S. A. et al. Band Alignment, Built-In Potential, and the Absence of Conductivity at the LaCrO$_3$/SrTiO$_3$ (001) Heterojunction. Phys. Rev. Lett. 107, 206802 (2011).
17. Perna, P. et al. Conducting interfaces between band insulating oxides: The LaGaO$_3$/SrTiO$_3$ heterostructure. Appl. Phys. Lett. 97, 152111 (2010).
18. Segal, Y., Ngai, J. H., Reimer, J. W., Walker, F. J. & Ahn, C. H. X-ray photoemission studies of the metal-insulator transition in LaAlO$_3$/SrTiO$_3$. Structures grown by molecular beam epitaxy. Phys. Rev. B 80, 241107 (2009).
19. Takiwaka, M., Tsuda, S., Susaki, T., Hvang, H. Y. & Fujimori, A. Electronic charges and electric potential at LaAlO$_3$/SrTiO$_3$ interfaces studied by core-level photoemission spectroscopy. Phys. Rev. B 84, 245124 (2011).
20. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures. Science 313, 1942–1945 (2006).
21. Derra, G. et al. Spectroscopic evidence of in-gap states at the SrTiO$_3$/LaAlO$_3$ ultrathin interfaces. Appl. Phys. Lett. 98, 052907 (2011).
22. Koitzsch, A. et al. In-gap electronic structure of LaAlO$_3$/SrTiO$_3$ heterointerfaces investigated by soft x-ray spectroscopy. Phys. Rev. B 84, 245121 (2011).
23. Ricci, D. et al. Effect of oxygen vacancies on nonlinear dielectric properties of SrTiO$_3$ thin films. Appl. Phys. Lett. 110, 112108 (2017).
24. Pramod Kumar, P. P. Metal-to-insulator transition in LaAl1−xCr$_x$O$_3$/SrTiO$_3$ oxide heterostructures guided by electronic reconstruction. Phys. Rev. B 91, 115127 (2015).
25. Qiao, L. et al. The Impacts of Cation Stoichiometry and Substrate Surface Quality on Nucleation, Structure, Defect Formation, and Intermixing in Complex Oxide Heteroepitaxy—LaCrO$_3$ on SrTiO$_3$(001). Adv. Funct. Mater. 23, 2953–2963 (2013).
26. Qiao, L. & Dai, J. Y. Tunable electronic transport properties of DyScO$_3$/SrTiO$_3$ polar heterointerface. Phys. Rev. B 80, 241107 (2009).
27. Kim, H. S. & Christen, H. M. Controlling the magnetic properties of LaMnO$_3$ thin films on SrTiO$_3$(100) by deposition in a O$_2$/Ar gas mixture. J. Phys. Condens. Matter 22, 146007 (2010).
28. Armstrong, T. R., Stevenson, J. W., McCready, D. E., Paulik, S. W. & Raney, P. E. The effect of reducing environments on the stability of acceptor substituted yttrium chromite. Solid State Ion. 92, 213–223 (1996).
29. Catherine H. Housecroft, A G. Sharpe. Inorganic Chemistry. (2012).
30. Chen, Y. et al. Metallic and Insulating Interfaces of Amorphous SrTiO$_3$-Based Oxide Heterostructures. Nano Lett. 11, 3774–3778 (2011).
31. Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO$_3$ substrate on the electrical properties of the LaAlO$_3$/SrTiO$_3$ interface. Phys. Rev. B 75, 121104 (2007).
32. Liu, Z. Q. et al. Metal-Insulator Transition in SrTiO$_3$-x Thin Films Induced by Frozen-Out Carriers. Phys. Rev. Lett. 107, 146802 (2011).
33. Miyashita, T. & Morgan, D. Strain effects on oxygen migration in perovskites. Phys. Chem. Chem. Phys. 17, 2715–2721 (2014).
34. Carrasco, J. et al. First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO$_3$. Phys. Rev. B 73, 064106 (2006).
35. Altmeyer, M. et al. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO$_3$. Phys. Rev. Lett. 116, 157203 (2016).
36. Mitra, C., Lin, C., Robertson, J. & Demkov, A. A. Electronic structure of oxygen vacancies in SrTiO$_3$ and LaAlO$_3$. Phys. Rev. B 86, 155105 (2012).
37. Ricci, D., Bano, G., Pacchioni, G. & Illas, F. Electronic structure of a neutral oxygen vacancy in SrTiO$_3$, Phys. Rev. B 68, 224105 (2003).
38. Yoshimatsu, K., Yasuhara, R., Komigashira, H. & Oshima, M. Origin of Metallic States at the Heterointerface between the Band Insulators LaAlO$_3$ and SrTiO$_3$. Phys. Rev. Lett. 101, 026802 (2008).
39. Berner, G. et al. Band alignment in LaAlO$_3$/SrTiO$_3$ oxide heterostructures inferred from hard x-ray photoelectron spectroscopy. Phys. Rev. B 88, 115111 (2013).
40. Luca, G. D. et al. Potential-well depth at amorphous-LaAlO$_3$/crystalline-SrTiO$_3$ interfaces measured by optical second harmonic generation. Appl. Phys. Lett. 104, 261603 (2014).
41. Liu, X. Z., Tao, B. W. & Li, Y. R. Effect of oxygen vacancies on nonlinear dielectric properties of SrTiO$_3$ thin films. J. Mater. Sci. 42, 389–392 (2007).
42. Siemons, W. et al. Origin of Charge Density at LaAlO$_3$ on SrTiO$_3$ Heterointerfaces: Possibility of Intrinsic Doping. Phys. Rev. Lett. 98, 196802 (2007).
43. Sakudo, T. & Umeki, H. Dielectric Properties of SrTiO$_3$ at Low Temperatures. Phys. Rev. Lett. 26, 851–853 (1971).
44. Li, C. et al. Tailoring the Two Dimensional Electron Gas at Polar ABO$_3$/SrTiO$_3$ Interfaces for Oxide Electronics. Sci. Rep. 5, 13314 (2015).
45. Hotta, Y., Susaki, T. & Hvang, H. Y. Polar Discontinuity Doping of the LaVO$_3$/SrTiO$_3$ Interface. Phys. Rev. Lett. 99, 236805 (2007).
46. Biscaras, J. et al. Two-Dimensional Superconducting Phase in LaTiO$_3$/SrTiO$_3$ Heterostructures Induced by High-Mobility Carrier Doping. Phys. Rev. Lett. 108, 247004 (2012).
47. Biscaras, J. et al. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaAlO$_3$/SrTiO$_3$. Nat. Commun. 1, 89 (2010).
48. Li, D. F., Wang, Y. & Dai, J. Y. Tunable electronic transport properties of DyScO$_3$/SrTiO$_3$ polar heterointerface. Appl. Phys. Lett. 98, 122108 (2011).
49. Moetafel, P. et al. Transport in ferromagnetic GdTiO$_3$/SrTiO$_3$ heterostructures. Appl. Phys. Lett. 98, 112110 (2011).
50. Colby, R. et al. Cation intermixing and electronic deviations at the insulating LaCrO$_3$/SrTiO$_3$ (001) interface. Phys. Rev. B 88, 155325 (2013).
51. Salluzzo, M. et al. Origin of Interface Magnetism in BiMnO$_3$/SrTiO$_3$, and LaAlO$_3$/SrTiO$_3$ Heterostructures. Phys. Rev. Lett. 111, 087204 (2013).
52. Zheng, J. et al. Correlation between metal-insulator transitions and structural distortions in high-electron-density SrTiO$_3$ quantum wells. Phys. Rev. B 89, 075140 (2014).
53. Chen, Y. Z. et al. A high-mobility two-dimensional electron gas at the spine/iperovskite interface of γ-Al$_2$O$_3$/SrTiO$_3$, Nat. Commun. 4, 1371 (2013).
54. Chen, Y. et al. Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface. Nano Lett. 15, 1849–1854 (2015).
55. Gunek, F. et al. Thermodynamic Ground States of Complex Oxide Heterointerfaces. ACS Appl. Mater. Interfaces 9, 1086–1092 (2017).
56. Popović, Z. S., Satpathy, S. & Martin, R. M. Origin of the Two-Dimensional Electron Gas Carrier Density at the LaAlO$_3$, on SrTiO$_3$ Interface. Phys. Rev. Lett. 101, 256801 (2008).
57. Annad, A. et al. Electronic correlation and strain effects at the interfaces between polar and nonpolar complex oxides. Phys. Rev. B 86, 085450 (2012).
58. Bark, C. W. et al. Tailoring a two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ (001) interface by epitaxial strain. Proc. Natl. Acad. Sci. 108, 4720–4724 (2011).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos 11674031, 11474022, 11474024, 11422430, and 11374035) and the National Basic Research Program of China (Grant Nos 2014CB920903, 2013CB921701 and 2013CBA01603). PB acknowledges UEFISCDI PNIIPCCE contract No. 3/2012, Romania and MEC-UEFISCDI, project POC 37_697 no. 28/01.09.2016 REBMAT, Romania.

Author Contributions
Jia-Cai Nie and Cheng-Jian Li proposed and designed experiments. Cheng-Jian Li, Hong-Xia Xue, Guo-Liang Qu, Ming-rui Liu, Wei-min Jiang and Wei-ming Lü prepared the samples with the assistance from and Sheng-Chun Shen, Yan-Peng Hong and Xin-Xin Wang. Cheng-Jian Li, Hong-Xia Xue and Wei-ming Lü performed the measurements with the assistance from and Sheng-Chun Shen, Yan-Peng Hong and Xin-Xin Wang. Results were analyzed by Cheng-Jian Li and Jia-Cai Nie. The manuscript was written by Cheng-Jian Li and Petre Badica and discussed with Wei-ming Lü. All authors discussed and contributed with comments regarding results and the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18583-5.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017