AN INTERSECTION FUNCTIONAL ON THE SPACE OF SUBSET CURRENTS ON A FREE GROUP

DOUNNU SASAKI

Abstract. Kapovich and Nagnibeda introduced the space $\mathcal{SCurr}(F_N)$ of subset currents on a free group F_N of rank $N \geq 2$, which can be thought of as a measure-theoretic completion of the set of all conjugacy classes of finitely generated subgroups of F_N. We define a product $\mathcal{N}(H, K)$ of two finitely generated subgroups H and K of F_N by the sum of the reduced rank $\text{rk}(H \cap gKg^{-1})$ over all double cosets HgK ($g \in F_N$), and extend the product \mathcal{N} to a continuous symmetric $\mathbb{R}_{\geq 0}$-bilinear functional $\mathcal{N} : \mathcal{SCurr}(F_N) \times \mathcal{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$. We also give an answer to a question presented by Kapovich and Nagnibeda. The definition of \mathcal{N} originates in the Strengthened Hanna Neumann Conjecture, which has been proven by Mineyev and can be stated as follows: $\mathcal{N}(H, K) \leq \text{rk}(H)\text{rk}(K)$ holds for any finitely generated subgroups H and K of F_N. As a corollary to our theorem, this inequality is generalized to the inequality for subset currents.

Contents

1. Introduction 1
2. Preliminaries 4
 2.1. Conventions regarding graphs and free groups 4
 2.2. The space of subset currents on F_N 5
 2.3. R_N-graphs and occurrences 7
 2.4. The reduced rank functional $\overline{\text{rk}}$ 9
3. The intersection functional \mathcal{N} 10
4. The intersection map and the intersection functional 18
Appendix A. 23
References 25

1. INTRODUCTION

In \cite{KN13} Kapovich and Nagnibeda introduced the space $\mathcal{SCurr}(F_N)$ of subset currents on a free group F_N of rank $N \geq 2$ as an analogy of the space of geodesic currents on F_N (see \cite{Kap06}). A subset current on F_N is a positive F_N-invariant locally finite Borel measure on the space \mathcal{C}_N of all closed subsets of the hyperbolic boundary ∂F_N consisting of at least two points, where we endow \mathcal{C}_N with the subspace topology of the Vietoris topology on the hyperspace of ∂F_N. The space $\mathcal{SCurr}(F_N)$ is equipped with the weak-* topology and with the $\mathbb{R}_{\geq 0}$-linear structure.

2010 Mathematics Subject Classification. Primary 20F99, Secondary 20E05.
Key words and phrases. free group; subset current; geodesic current; Strengthened Hanna Neumann Conjecture; reduced rank.
Kapovich and Nagnibeda defined the counting subset current \(\eta_H \in \mathcal{SCurr}(F_N) \) for a nontrivial finitely generated subgroup \(H \leq F_N \) and proved that
\[
\{ c\eta_H \mid c \geq 0, H \text{ is a nontrivial finitely generated subgroup of } F_N \}
\]
is a dense subset of \(\mathcal{SCurr}(F_N) \). Counting subset currents have the following properties. For a nontrivial finitely generated subgroup \(H \leq F_N \) and a finite index subgroup \(H' \) of \(H \), we have \(\eta_{H'} = [H : H']\eta_H \). If two nontrivial finitely generated subgroups \(H, H' \leq F_N \) are conjugate, then \(\eta_H = \eta_{H'} \). For the trivial subgroup \(H = \{ \text{id} \} \) of \(F_N \) we set \(\eta_H = 0 \in \mathcal{SCurr}(F_N) \).

For a finitely generated free group \(F \) the reduced rank \(\overline{rk}(F) \) is defined as
\[
\overline{rk}(F) := \max\{ \text{rank}(F) - 1, 0 \},
\]
where rank\((F)\) is the cardinality of a free basis of \(F \). Let \(\Delta \) be a finite connected graph whose fundamental group is isomorphic to \(F \). Then we have
\[
\overline{rk}(F) = \max\{-\chi(\Delta), 0\},
\]
where \(\chi(\Delta) \) is the Euler characteristic of \(\Delta \). Note that for a finite index subgroup \(H \leq F \) we can obtain an equation
\[
\overline{rk}(H) = [F : H] \overline{rk}(F),
\]
which follows from a covering space argument. Kapovich and Nagnibeda [KN13] proved that there exists a unique continuous \(\mathbb{R}_{\geq 0} \)-linear functional
\[
\overline{rk}: \mathcal{SCurr}(F_N) \to \mathbb{R}_{\geq 0}
\]
such that for every finitely generated subgroup \(H \leq F_N \) we have
\[
\overline{rk}(\eta_H) = \overline{rk}(H).
\]
The map \(\overline{rk} \) is called the reduced rank functional.

The action of the automorphism group \(\text{Aut}(F_N) \) of \(F_N \) on \(\partial F_N \) induces a continuous and \(\mathbb{R}_{\geq 0} \)-linear action on \(\mathcal{SCurr}(F_N) \), and for \(\varphi \in \text{Aut}(F_N) \) and a finitely generated subgroup \(H \leq F_N \) we have \(\varphi\eta_H = \eta_{\varphi(H)} \). Since subset currents are \(F_N \)-invariant, the action of \(\text{Aut}(F_N) \) factors through the action of the outer automorphism group \(\text{Out}(F_N) \) on \(\mathcal{SCurr}(F_N) \). We see that \(\overline{rk} \) is \(\text{Out}(F_N) \)-invariant.

Define a product \(\mathcal{N}(H, K) \) of two finitely generated subgroups \(H, K \leq F_N \) as
\[
\mathcal{N}(H, K) := \sum_{HgK \in H \setminus F_N/K} \overline{rk}(H \cap gKg^{-1}),
\]
where \(H \setminus F_N/K \) is the set of all double cosets \(HgK \) (\(g \in F_N \)). Note that \(H \cap gKg^{-1} \neq \{ \text{id} \} \) for only finitely many double cosets \(HgK \). This definition originates in the Strengthened Hanna Neumann Conjecture, which has been proven by Mineyev [Min12]. By using the product \(\mathcal{N} \) it can be stated as follows:
\[
\mathcal{N}(H, K) \leq \overline{rk}(H)\overline{rk}(K)
\]
is satisfied for any finitely generated subgroups \(H, K \leq F_N \). The product \(\mathcal{N}(H, K) \) is closely related to a fiber product graph corresponding to \(H, K \), that is, each non-zero term of the sum in \(\mathcal{N}(H, K) \) is corresponding to a non-contractible connected component of the fiber product graph (see Section 3). Using the description by the fiber product graph, we can easily see that \(\mathcal{N} \) has the following property: if \(H' \) and \(K' \) are finite index subgroups of \(H \) and \(K \) respectively, then we have
\[
\mathcal{N}(H', K') = [H : H'][K : K']\mathcal{N}(H, K).
\]
Therefore it is natural to ask whether N extends to a continuous $\mathbb{R}_{\geq 0}$-bilinear functional on $S\text{Curr}(F_N)$.

From the $\mathbb{R}_{\geq 0}$-linearity of the reduced rank functional, we have

$$N(H, K) = \sum_{HgK\in H\setminus F_N/K} \text{rk}(H \cap gKg^{-1})$$

$$= \text{rk} \left(\sum_{HgK\in H\setminus F_N/K} \eta_{H\cap gKg^{-1}} \right).$$

Kapovich and Nagnibeda [KN13] asked whether there exists a continuous $\mathbb{R}_{\geq 0}$-bilinear map

$$\cdot: \mathbb{S} \text{Curr}(F_N) \times \mathbb{S} \text{Curr}(F_N) \to \mathbb{S} \text{Curr}(F_N)$$

such that for any finitely generated subgroups $H, K \leq F_N$ we have

$$\cdot(\eta_H, \eta_K) = \sum_{HgK\in H\setminus F_N/K} \eta_{H\cap gKg^{-1}}.$$

If such a map \cdot exists, then we immediately see that the product N is extended to a continuous $\mathbb{R}_{\geq 0}$-bilinear functional $N: \mathbb{S} \text{Curr}(F_N) \times \mathbb{S} \text{Curr}(F_N) \to \mathbb{R}_{\geq 0}$. Moreover, the map \cdot can be considered as a measure theoretical generalization of the fiber product graph. However, we prove that the map \cdot cannot be continuous due to the requirements on \cdot (see Proposition 3.3). Nevertheless, we can establish the following theorem by a different approach.

Theorem 3.2. There exists a unique continuous symmetric $\mathbb{R}_{\geq 0}$-bilinear functional $N: \mathbb{S} \text{Curr}(F_N) \times \mathbb{S} \text{Curr}(F_N) \to \mathbb{R}_{\geq 0}$ such that for any finitely generated subgroups $H, K \leq F_N$ we have

$$N(\eta_H, \eta_K) = N(H, K).$$

Moreover, N is $\text{Out}(F_N)$-invariant.

We call N the **intersection functional**. Our strategy of proving Theorem 3.2 is based on the proof of the existence of the reduced rank functional rk. We construct N by a careful usage of occurrences, which were introduced in [KN13].

As a corollary to our theorem, the inequality in the Strengthened Hanna Neumann Conjecture is generalized to the inequality for subset currents:

Corollary 3.12. Let $\mu, \nu \in \mathbb{S} \text{Curr}(F_N)$. The following inequality holds:

$$N(\mu, \nu) \leq \text{rk}(\mu) \text{rk}(\nu).$$

Since $N(F_N, H) = \text{rk}(H)$ for every finitely generated subgroup $H \leq F_N$, the intersection functional N is an extension of the reduced rank functional rk.

Inspired by the question presented by Kapovich and Nagnibeda, we also prove the following theorems.

Theorems 4.1 and 4.2. Let I be the intersection map:

$$C_N \times C_N \to \{\text{closed subsets of } \partial F_N\}; \ (S_1, S_2) \mapsto S_1 \cap S_2.$$

For $\mu, \nu \in \mathbb{S} \text{Curr}(F_N)$ we can obtain a subset current $\widehat{I}(\mu, \nu)$ by defining

$$\widehat{I}(\mu, \nu)(U) := \mu \times \nu(I^{-1}(U)).$$
for any Borel subset $U \subset \mathcal{C}_N$. Then the map \hat{I} is a non-continuous $\mathbb{R}_{\geq 0}$-bilinear map

$$\hat{I} : \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \text{SCurr}(F_N)$$

and \hat{I} satisfies the conditions that

$$\hat{I}(\eta_H, \eta_K) = \sum_{HgK \in H \setminus F_N / K} \eta_{H \cap gKg^{-1}}$$

for any finitely generated subgroups $H, K \leq F_N$, and that

$$\text{rk} \circ \hat{I} = \mathcal{N}.$$

Organization of this paper. In Section 2 we set up notation and summarize without proofs some important properties on subset currents in [13]. We also recall some tools and methods used in the proof of the existence of the reduced rank functional rk. In Section 3, first, we give an answer to the question posed in [13], and construct the intersection functional \mathcal{N}. In Section 4 we represent \mathcal{N} by using the intersection map I and the reduced rank functional rk.

Acknowledgements. I am deeply grateful to Prof. Masahiko Kanai who offered continuing support and constant encouragement. I also owe a very important debt to Prof. Katsuhiko Matsuzaki who provided sincere encouragement throughout the production of this study.

2. Preliminaries

2.1. Conventions regarding graphs and free groups. (cf. [13], Subsection 2.1 and 2.2) A graph is a 0 or 1-dimensional CW complex. The set of 0-cells of a graph Δ is denoted by $V(\Delta)$ and its elements are called vertices of Δ. The set of (closed) 1-cells of a graph Δ is denoted by $E_{\text{top}}(\Delta)$ and its elements are called topological edges. The interior of every topological edge is homeomorphic to the interval $(0, 1) \subset \mathbb{R}$ and thus admits exactly two orientations. A topological edge endowed with an orientation on its interior is called an oriented edge of Δ. The set of all oriented edges of Δ is denoted by $E(\Delta)$. For every oriented edge e of Δ there are naturally defined (and not necessarily distinct) vertices $o(e) \in V(\Delta)$, called the origin of e, and $t(e) \in V(\Delta)$, called the terminal of e. Then the boundary of e is $\{o(e), t(e)\}$. For an oriented edge $e \in E(\Delta)$ changing its orientation to the opposite one produces another oriented edge of Δ denoted by e^{-1} and called the inverse of e. For a graph Δ giving an orientation to Δ is fixing an orientation of every topological edge of Δ.

Let Δ be a graph and $v \in V(\Delta)$. The degree of v in Δ is the number of oriented edges whose origin is v.

For a graph Δ, we always give the path metric d_Δ to Δ, where the length of each topological edge of Δ is 1.

A graph morphism $f : \Delta \to \Delta'$ is a continuous map from a graph Δ to a graph Δ' that maps the vertices of Δ to vertices of Δ' and such that each interior of an edge of Δ is mapped isometrically to an interior of an edge of Δ'. A graph isomorphism is a bijective graph morphism.

Let $N \geq 2$ be an integer. We fix a free basis $A = \{a_1, \ldots, a_N\}$ of the free group F_N. We denote by id the identity element of F_N. We denote by $\text{Sub}(F_N)$ the set of all non-trivial finitely generated subgroups of F_N.

Let X be the Cayley graph of (F_N, A), where $V(X) := F_N$, $E_{\text{top}}(X) := F_N \times A$, and for every topological edge $(g, a) \in E_{\text{top}}(X)$ the boundary is $\{g, ga\}$. The Cayley graph X is a tree. The free group F_N naturally acts on X from the left by graph isomorphisms. Let R_N be the quotient graph $F_N \backslash X$ and denote by $q : X \to R_N$ the canonical projection, which is a universal covering map. The quotient graph R_N is isomorphic. Let A statement depends on the basis $A \N$ and denote by $\partial X \N$ corresponding to an element of $A \N$. The space of subset currents on $F \N$.

2.2. The space of subset currents on F_N. In this subsection, we summarize necessary definitions and properties of subset currents on F_N (see [KMR] for details).

We denote by \mathcal{E}_N the set of all closed subsets $S \subset \partial X$ such that the cardinality $\#S \geq 2$. We endow \mathcal{E}_N with the subspace topology from the Vietoris topology on the hyperspace of ∂X, which consists of all closed subsets of ∂X. Then, \mathcal{E}_N is a locally compact totally disconnected metrizable space. If we give a distance on ∂X which is compatible with the topology on ∂X, then the topology on \mathcal{E}_N induced by the Hausdorff distance coincides with the topology which we defined above.

For an oriented edge $e \in E(X)$, we define the cylinder $\text{Cyl}(e)$ to be the subset of ∂X consisting of equivalence classes of all geodesic rays in X emanating from the oriented edge e. A cylinder $\text{Cyl}(e)$ is an open and compact subset of ∂X for any $e \in E(X)$, and the collection of all $\text{Cyl}(e) \ (e \in E(X))$ is a basis of ∂X.

We denote by $\text{Sub}(X)$ the set of all non-degenerate finite subtrees of X, which are finite subtrees with at least two distinct vertices.

Let $T \in \text{Sub}(X)$ and let e_1, \ldots, e_m be all the terminal edges of T, which are oriented edges whose terminal vertices are precisely the vertices of T of degree 1. Define the sub-
set cylinder $S \text{Cyl}(T)$ to be the subset of \mathcal{E}_N consisting of $S \in \mathcal{E}_N$ satisfying the condition that

$$S \subset \bigcup_{i=1}^{m} \text{Cyl}(e_i) \text{ and } S \cap \text{Cyl}(e_i) \neq \emptyset \ (\forall i = 1, 2, \ldots m).$$

For $T \in \text{Sub}(X)$ the subset $S \text{Cyl}(T) \subset \mathcal{E}_N$ is compact and open, and the collection of all $S \text{Cyl}(T) \ (T \in \text{Sub}(X))$ forms a basis for the topology on \mathcal{E}_N.

Note that the left continuous action of F_N on ∂X naturally extends to a left continuous action on \mathcal{E}_N.

A subset current on F_N is a Borel measure on \mathcal{E}_N that is F_N-invariant and locally finite (i.e., finite on all compact subsets of \mathcal{E}_N).

The set of all subset currents on F_N is denoted by $S \text{Curr}(F_N)$. The space $S \text{Curr}(F_N)$ has the $\mathbb{R}_{\geq 0}$-linear structure, and the space $S \text{Curr}(F_N)$ is endowed with the natural weak-* topology.

Proposition 2.1 (See [KMR], Proposition 3.7).

1. Let $\mu, \mu_n \in S \text{Curr}(F_N)$, where $n = 1, 2, \ldots$. Then $\lim_{n \to \infty} \mu_n = \mu$ in $S \text{Curr}(F_N)$ if and only if for every $T \in \text{Sub}(X)$ we have

$$\lim_{n \to \infty} \mu_n(\text{Cyl}(T)) = \mu(\text{Cyl}(T)).$$
Therefore Φ is bijective, and this implies

\[\text{SCur}(F_N) \to \mathbb{R}_{\geq 0}; \ \mu \mapsto \mu(\text{Syl}(T)) \]

is continuous and \(\mathbb{R}_{\geq 0} \)-linear.

Recall that for a subgroup \(H \) of a group \(G \) the commensurator or virtual normalizer \(\text{Comm}_G(H) \) of \(H \) in \(G \) is defined as

\[\text{Comm}_G(H) := \{ g \in G \mid [H : H \cap gHg^{-1}] < \infty \text{ and } [gHg^{-1} : H \cap gHg^{-1}] < \infty \}. \]

Let \(H \in \text{Sub}(F_N) \). The limit set \(\Lambda(H) \) of \(H \) in \(\partial X(= \partial F_N) \) is the set of all \(\xi \in \partial X \) such that there exists a sequence of \(h_n \in H \) (\(n = 1, 2, \ldots \)) satisfying \(\lim_{n \to \infty} h_n = \xi \) in \(X \cup \partial X \). See [KN13, Proposition 4.1 and Proposition 4.2] for elementary properties of limit sets.

Note that for every \(H \in \text{Sub}(F_N) \) we have \(\Lambda(H) \in \mathcal{C}_N \), and

\[\text{Comm}_{F_N}(H) = \text{Stab}_{F_N}(\Lambda(H)), \]

where \(\text{Stab}_{F_N}(\Lambda(H)) := \{ g \in F_N \mid g\Lambda(H) = \Lambda(H) \} \) is the stabilizer of \(\Lambda(H) \).

For \(H \in \text{Sub}(F_N) \) a subset current \(\eta_H \), which is called a counting subset current, is defined as follows. Set \(\hat{H} = \text{Comm}_{F_N}(H) \).

Suppose first that \(H = \hat{H} \). Define a Borel measure \(\eta_H \) on \(\mathcal{C}_N \) as

\[\eta_H := \sum_{H' \in [H]} \delta_{\Lambda(H')}, \]

where \([H]\) is the conjugacy class of \(H \) in \(F_N \) and \(\delta_{\Lambda(H')} \) is the Dirac measure on \(\mathcal{C}_N \) which means that for a Borel subset \(U \subset \mathcal{C}_N \), if \(\Lambda(H') \in U \), then \(\delta_{\Lambda(H')}(U) = 1 \); if \(\Lambda(H') \not\in U \), then \(\delta_{\Lambda(H')}(U) = 0 \).

Now let \(H \) be an arbitrary nontrivial finitely generated subgroup of \(F_N \). Define \(\eta_H \) as \(\eta_H := [\hat{H} : H]|\eta_{\hat{H}} \). Note that \(\text{Comm}_{F_N}(\hat{H}) = \hat{H} \) and \([\hat{H} : H]\) is finite.

We can see that \(\eta_H \) is a subset current, especially, locally finite (see [KN13, Lemma 4.4]). For the trivial subgroup \(H = \{ \text{id} \} \) we set \(\eta_H = 0 \in \text{SCurr}(F_N) \). A subset current \(\mu \in \text{SCurr}(F_N) \) is said to be rational if \(\mu = r\eta_H \) for some \(r \geq 0 \) and \(H \in \text{Sub}(F_N) \). The set of all rational subset currents is a dense subset of \(\text{SCurr}(F_N) \) (see [KN13, Theorem 5.8], and Kap13).

We observe the following proposition.

Proposition 2.2. Let \(H \in \text{Sub}(F_N) \). Then we have

\[\eta_H = \sum_{gH \in F_N/H} \delta_{g\Lambda(H)}. \]

Proof. First, we assume \(H = \text{Comm}_{F_N}(H)(= \text{Stab}_{F_N}(\Lambda(H))) \). Then we can define the following map:

\[\Phi : F_N/H \to [H]; \ gH \mapsto \text{Stab}_{F_N}(g\Lambda(H)) = gHg^{-1}. \]

The map \(\Phi \) is clearly surjective and we can prove that \(\Phi \) is injective as follows. Let \(g_1, g_2 \in F_N/H \), and suppose \(g_1Hg_1^{-1} = g_2Hg_2^{-1} \). Then we have \(g_2^{-1}g_1Hg_1^{-1}g_2 = H \), and so \(g_2^{-1}g_1 \in H \) by the definition of the commensurator. Hence \(g_1H = g_2H \). Therefore \(\Phi \) is bijective, and this implies

\[\eta_H = \sum_{H' \in [H]} \delta_{\Lambda(H')} = \sum_{gH \in F_N/H} \delta_{\Lambda(\Phi(gH))} = \sum_{gH \in F_N/H} \delta_{g\Lambda(H)}. \]
In general, put \(\hat{H} := \text{Comm}_{F_N} H \) and \(m := [\hat{H} : H] \). Then we can choose \(h_1, \ldots, h_m \in \hat{H} \) such that \(\{h_i H\}_{i=1}^m \) is a complete system of representatives of \(\hat{H}/H \). If \(\{g_j \hat{H}\}_{j \in J} \) is a complete system of representatives of \(F_N/\hat{H} \), then \(\{g_j h_i H\}_{i=1}^m, j \in J \) is a complete system of representatives of \(F_N/\hat{H} \). Since \(h_i \in \hat{H} = \text{Stab}_{F_N}(\Delta(H)) \) and \(\Delta(H) = \Delta(\hat{H}) \), we have
\[
\sum_{gH \in F_N/H} \delta_{g\Delta(H)} = \sum_{i,j} \delta_{g_j h_i \Delta(H)} = m \sum_{j \in J} \delta_{g_j \hat{H}} = m \eta_{\hat{H}} = \eta_H,
\]
as required. \(\square \)

If \(\varphi \in \text{Aut}(F_N) \) is an automorphism of \(F_N \), then \(\varphi \) induces a quasi-isometry of \(X \), and moreover, the quasi-isometry extends to a homeomorphism \(\varphi: \partial X \to \partial X \), where we still denote it by \(\varphi \). Thus \(\text{Aut}(F_N) \) has a natural action on \(\mathcal{E}_N \). Moreover, \(\text{Aut}(F_N) \) acts on \(\text{SCurr}(F_N) \) \(\mathbb{R}_{\geq 0} \)-linearly and continuously by pushing forward. Explicitly,
\[
(\varphi \mu)(U) := \mu(\varphi^{-1}(U))
\]
for \(\varphi \in \text{Aut}(F_N), \mu \in \text{SCurr}(F_N) \) and every Borel subset \(U \subset \mathcal{E}_N \). Then for \(\varphi \in \text{Aut}(F_N) \) and \(H \in \text{Sub}(F_N) \) we have \(\varphi \eta_H = \eta_{\varphi(H)} \). Since subset currents are \(F_N \)-invariant, the action of \(\text{Aut}(F_N) \) on \(\text{SCurr}(F_N) \) factors through the action of the outer automorphism group \(\text{Out}(F_N) \) on \(\text{SCurr}(F_N) \). The action of \(\text{Out}(F_N) \) on \(\text{SCurr}(F_N) \) is effective.

2.3. \(R_N \)-graphs and occurrences. In this subsection, first, following [KN13 Subsection 4.2] we define \(R_N \)-graphs and also occurrences for an \(R_N \)-graph and for \(T \in \text{Sub}(X) \), the set of all non-degenerate finite subtrees of \(X \). Occurrences play an essential role in studying rational subset currents on \(F_N \) (Lemma 2.4).

Recall that \(R_N \) is the quotient graph \(F_N/\Delta \), which is an \(N \)-rose. An \(R_N \)-graph is a graph \(\Delta \) with a graph morphism \(\tau: \Delta \to R_N \). We call \(\tau \) an \(R_N \)-graph structure. Let \((\Delta_1, \tau_1) \) and \((\Delta_2, \tau_2) \) be \(R_N \)-graphs. A graph morphism \(f: \Delta_1 \to \Delta_2 \) is called an \(R_N \)-graph morphism if \(\tau_1 = \tau_2 \circ f \). For an \(R_N \)-graph \((\Delta, \tau) \) and \(v \in V(\Delta) \) we call a pair \(((\Delta, \tau), v) \) (or simply \((\Delta, v) \)) a based \(R_N \)-graph with a base point \(v \).

An \(R_N \)-graph \((\Delta, \tau) \) is said to be folded if \(\tau \) is locally injective (immersion). We say that a finite \(R_N \)-graph \((\Delta, \tau) \) is an \(R_N \)-core graph if \((\Delta, \tau) \) is folded and has no degree-one and degree-zero vertices. We do not assume that \(R_N \)-core graphs are connected.

For a graph \(\Delta \) giving an \(R_N \)-structure \(\tau: \Delta \to R_N \) to \(\Delta \) can be regarded as giving a label structure \(E_{\text{top}}(\Delta) \to A \) and giving an orientation to \(\Delta \). We say a topological or oriented edge \(e \) of \(\Delta \) has a label \(a \in A \) when the graph morphism \(\tau \) maps the edge \(e \) to the loop of \(R_N \) corresponding to \(a \in A \).

Definition 2.3. Let \(\Delta \) be a graph. Let \(T \in \text{Sub}(X) \). The **interior** of \(T \) is \(T \setminus \{ \text{degree-one vertices of } T \} \). A graph morphism \(f: T \to \Delta \) is said to be **locally homeomorphic in the interior** if the restriction of \(f \) to the interior of \(T \) is locally homeomorphic, in other words, the degree of \(v \) in \(T \) equals to the degree of \(f(v) \) in \(\Delta \) for every \(v \in V(T) \) with degree more than one.
Let \(T \in \text{Sub}(X) \), and \(Y \) be a (not necessarily finite) subtree of \(X \). We say that \(Y \) is an extension of \(T \) and denote by \(T \subset Y \), if \(T \subset Y \) and if the inclusion map is locally homeomorphic in the interior.

Proposition 2.4. Let \(S \in \mathcal{N} \) and \(T \subset \text{Sub}(X) \). Then \(S \in \text{SCyl}(T) \) if and only if \(T \subset \text{Conv}(S) \), where \(\text{Conv}(S) \) is the convex hull of \(S \) in \(X \).

Proof. Let \(e_1, \ldots, e_m \) be all the terminal edges of \(T \) and \(v_i \) be the terminal of \(e_i \). Then we have
\[
T = \bigcup_{i,j=1,\ldots,m} [v_i, v_j],
\]
where \([v_i, v_j]\) is the geodesic from \(v_i \) to \(v_j \) in \(X \). Similarly,
\[
\text{Conv}(S) = \bigcup_{\xi, \zeta \in S} ([\xi, \zeta])
\]
where \((\xi, \zeta)\) is the bi-infinite geodesic from \(\xi \) to \(\zeta \) in \(X \).

Suppose \(S \in \text{SCyl}(T) \). By the definition \(S \subset \bigcup_i \text{Cyl}(e_i) \) and \(S \cap \text{Cyl}(e_i) \neq \emptyset \) for some \(i \). If \(\xi, \zeta \in S \cap \text{Cyl}(e_i) \), then \((\xi, \zeta)\) does not contain any edges of \(T \). Thus \(S \subset \bigcup_i \text{Cyl}(e_i) \) implies that there exists \(v_j \) such that \((\xi, \zeta)\) is an extension of \([v_i, v_j]\). Therefore we have \(T \subset \text{Conv}(S) \).

Next, we assume \(T \subset \text{Conv}(S) \). For every \(v_i, v_j (i \neq j) \) there exist \(\xi, \zeta \in S \) such that \((\xi, \zeta)\) is an extension of \([v_i, v_j]\) and then we have \(\xi \in \text{Cyl}(e_i) \) and \(\zeta \in \text{Cyl}(e_j) \). Hence \(S \cap \text{Cyl}(e_i) \neq \emptyset \) for some \(i \). If \(\xi, \zeta \) contains some edges of \(T \), then \(T \subset \text{Conv}(S) \) implies that \(v_j \) such that \((\xi, \zeta)\) is an extension of \([v_i, v_j]\). Thus \(S \subset \bigcup_i \text{Cyl}(e_i) \). If \((\xi, \zeta)\) does not contain any edges of \(T \), we choose \(\zeta' \in S \cap \text{Cyl}(e_j) \) if \(j \neq i \). Then \((\zeta, \zeta')\) is an extension of \([v_i, v_j]\). Since \((\xi, \zeta) \cup (\zeta, \zeta') \supset (\zeta, \zeta')\), the geodesic \((\zeta, \zeta')\) contains some edges of \(T \). Now, we can apply the above argument to \((\xi, \zeta')\).

Definition 2.5. Let \(T \subset \text{Sub}(X) \). We can regard \(T \) as an \(R_N \)-graph with the \(R_N \)-graph structure inherited from the canonical projection \(q \): \(X \rightarrow R_N \). Let \(\Delta \) be an \(R_N \)-core graph. An occurrence of \(T \) in \(\Delta \) is an \(R_N \)-graph morphism \(f: T \rightarrow \Delta \) which is locally homeomorphic in the interior. Let \(\text{Occ}(T, \Delta) \) be the set of all occurrences of \(T \) in \(\Delta \).

Consider a based \(R_N \)-graph \((T, x)\) such that \(T \subset \text{Sub}(X) \). For a based and folded \(R_N \)-graph \((\Delta, v)\) there exists at most one based occurrence \(f: (T, x) \rightarrow (\Delta, v) \), where \(f(x) = v \). In order to compute \(\#\text{Occ}(T, \Delta) \), it is sufficient to see whether there exists a based \(R_N \)-graph morphism \(f: (T, x) \rightarrow (\Delta, v) \) for each \(v \in V(\Delta) \). Hence
\[
\#\text{Occ}(T, \Delta) = \# \{ v \in V(\Delta) \mid \exists f: (T, x) \rightarrow (\Delta, v) \text{ a based occurrence} \}.
\]

Notation 2.6. Let \(H \subset \text{Sub}(F_N) \). Set \(X_H := \text{Conv}(\Lambda(H)) \), which is the unique minimal \(H \)-invariant subtree of \(X \). We define \(\Delta_H \) to be the quotient graph \(H \backslash X_H \) and denote by \(q_H: X_H \rightarrow \Delta_H \) the canonical projection. Then \(\Delta_H \) becomes an \(R_N \)-core graph by the induced graph morphism \(\tau_H: \Delta_H \rightarrow R_N \) from \(q: X \rightarrow R_N \).

We denote by \(\text{Sub}(X, \text{id}) \) the set of all nontrivial finite based subtrees of \(X \) with the base point id. For \((T, \text{id}) \in \text{Sub}(X, \text{id}) \) we denote it briefly by \(T \).
The following lemma is a direct corollary from Section 4.2 and Section 4.3 in [KN13], and plays an essential role in studying rational subset currents on F_N.

Lemma 2.7. Let $H \in \text{Sub}(F)$ and $T \in \text{Sub}(X, \text{id})$. Then we have

$$\eta_H(\text{SCyl}(T)) = \#\text{Occ}(T, \Delta_H) \quad (= \#\{v \in V(\Delta_H) \mid \exists f: (T, \text{id}) \to (\Delta_H, v) \text{ a based occurrence}\}).$$

2.4. The reduced rank functional $\overline{\text{rk}}$.

Recall that the rank $\text{rank}(F)$ of a finitely generated free group F is the cardinality of a free basis of F, and the reduced rank $\overline{\text{rk}}(F)$ is defined as

$$\overline{\text{rk}}(F) := \max\{\text{rank}(F) - 1, 0\}.$$
If $\text{rank}(F) \geq 1$, then $\overline{\text{rk}}(F) = \text{rk}(F) - 1$, and for a finite connected graph Δ whose fundamental group is isomorphic to F we have $\overline{\text{rk}}(F) = -\chi(\Delta)$, where $\chi(\Delta) := \#V(\Delta) - \#E_{\text{top}}(\Delta)$ is the Euler characteristic of Δ.

Theorem 2.8 (cf. [KN13], Theorem 8.1). There exists a unique continuous $\mathbb{R}_{\geq 0}$-linear functional

$$\overline{\text{rk}}: \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$

such that for every $H \in \text{Sub}(F_N)$ we have

$$\overline{\text{rk}}(\eta_H) = \overline{\text{rk}}(H).$$

Moreover, $\overline{\text{rk}}$ is $\text{Out}(F_N)$-invariant.

The functional $\overline{\text{rk}}$ is called the reduced rank functional. In order to prove Theorem 2.8 we will use a method used in the proof of [KN13] Theorem 8.1. We give a proof of Theorem 2.8 following the argument in [KN13] almost step by step in the remaining part of this subsection.

Note that for $H \in \text{Sub}(F_N)$ we have $\text{rank}(H) \geq 1$, and so

$$\text{rank}(H) = \#E(\Delta_H) - \#V(\Delta_H).$$

We extend each term of the right hand side of this equation to a continuous $\mathbb{R}_{\geq 0}$-linear functional on $\text{SCurr}(F_N)$, namely construct continuous $\mathbb{R}_{\geq 0}$-linear functionals

$$E, V: \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$

such that $E(\eta_H) = \#E(\Delta_H)$ and $V(\eta_H) = \#V(\Delta_H)$ for $H \in \text{Sub}(F_N)$.

Let e_a be the topological edge in X with the boundary $\{\text{id}, a\} \ (a \in A)$. Let $H \in \text{Sub}(F_N)$. By considering e_a as a subtree of X we have $(e_a, \text{id}) \in \text{Sub}(X, \text{id})$. Then $\eta_H(\text{SCyl}(e_a)) = \#\text{Occ}(e_a, \Delta_H)$ coincides with the number of topological edges of Δ_H with the label a. From this we define the map

$$E: \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}; \ \mu \mapsto \sum_{a \in A} \mu(\text{SCyl}(e_a)).$$

Then we have $E(\eta_H) = \#E_{\text{top}}(\Delta_H)$ for $H \in \text{Sub}(F_N)$, and E is continuous and $\mathbb{R}_{\geq 0}$-linear from Proposition 2.1.

In the case of V, we need the following definition.

Definition 2.9 (Round graphs. cf. [Kap13] Definition 3.6). For an integer $r \geq 1$, we say that $T \in \text{Sub}(X)$ is a round graph of grade r in X if there exists a (necessarily unique) vertex v of T such that for every degree-one vertex u of T we have $d(v, u) = r$. We call a pair (T, v) a based round graph of grade r if v satisfies
the above condition, where the degree of v have to be more than one. Let R_r denote the set of all based round graphs of grade r with the base point id. Thus R_r is a subset of $\text{Sub}(X, \text{id})$.

Remark 2.10. Fix a positive integer r. For any R_N-graph Δ and $v \in V(\Delta)$ there exists a unique $T_r(v) \in R_r$ such that there exists a based occurrence $(T_r(v), \text{id}) \rightarrow (\Delta, v)$. We can think of $T_r(v)$ as an r-neighborhood of v in Δ.

Let $v \in V(X)$ and $\rho \in \mathbb{R}_{\geq 0}$. Set $B(v, \rho) := \{ x \in X \mid d_X(v, x) \leq \rho \}$ the closed ball with radius ρ and center v in X. For $T \in R_r$ and every $S \in \text{SCyl}(T)$ we have $\text{Conv}(S) \cap B(\text{id}, r) = T$ from Proposition 2.4. Therefore, if $T_1 \neq T_2$ for $T_1, T_2 \in R_r$, then $\text{SCyl}(T_1) \cap \text{SCyl}(T_2) = \emptyset$.

We define the map

$$V : \text{SCurr}(F_N) \rightarrow \mathbb{R}_{\geq 0}; \mu \mapsto \sum_{T \in R_1} \mu(\text{SCyl}(T)) = \mu \left(\bigcup_{T \in R_1} \text{SCyl}(T) \right).$$

Then

$$V(\eta_H) = \sum_{T \in R_1} \eta_H(\text{SCyl}(T))$$

$$= \sum_{T \in R_1} \# \{ v \in V(\Delta_H) \mid T_1(v) = T \} = \# V(\Delta_H)$$

for $H \in \text{Sub}(F_N)$, and V is continuous and $\mathbb{R}_{\geq 0}$-linear. Note that for any positive integer r, we have

$$\bigcup_{T \in R_r} \text{SCyl}(T) = \{ S \in \mathbb{C}_N \mid \text{Conv}(S) \ni \text{id} \}.$$

Proof of Theorem 2.8. Set $r_k = E - V$. Then for $H \in \text{Sub}(F_N)$,

$$\overline{r_k}(\eta_H) = E(\eta_H) - V(\eta_H) = \# E(\Delta_H) - \# V(\Delta_H) = r_k(H).$$

Since $\overline{r_k}(r\eta_H) = r\overline{r_k}(H) \geq 0$ for any rational subset current $r\eta_H (r \geq 0, H \in \text{Sub}(F_N))$, we have $r_k(\mu) \geq 0$ for any $\mu \in \text{SCurr}(F_N)$. The uniqueness and Out(F_N)-invariance of r_k is obvious from the denseness of the rational subset currents in $\text{SCurr}(F_N)$.

3. The intersection functional \mathcal{N}

Define a product $\mathcal{N}(H, K)$ of two finitely generated subgroups H and K of F_N as

$$\mathcal{N}(H, K) := \sum_{HgK \in H\backslash F_N/K} \overline{r_k}(H \cap gKg^{-1}),$$

where $H\backslash F_N/K$ is the set of all double cosets HgK ($g \in F_N$). By this definition the Strengthened Hanna Neumann Conjecture (SHNC), which has been proven by Mineyev, can be stated as follows:

Theorem 3.1 (SHNC, see [Min12]). For any finitely generated subgroups $H, K \leq F_N$, the following inequality follows:

$$\mathcal{N}(H, K) \leq \overline{r_k}(H) \overline{r_k}(K).$$

In this section we give a proof of the following theorem, which is our main result.
Theorem 3.2. There exists a unique continuous symmetric $\mathbb{R}_{\geq 0}$-bilinear functional

$$\mathcal{N}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$

such that for $H, K \in \text{Sub}(F_N)$ we have

$$\mathcal{N}(\eta_H, \eta_K) = \mathcal{N}(H, K).$$

Moreover, \mathcal{N} is $\text{Out}(F_N)$-invariant, that is, for any $\varphi \in \text{Out}(F_N)$ and $\mu, \nu \in \text{SCurr}(F_N)$ we have $\mathcal{N}(\varphi \mu, \varphi \nu) = \mathcal{N}(\mu, \nu)$.

We call \mathcal{N} the intersection functional. By the definition of the product \mathcal{N} and the $\mathbb{R}_{\geq 0}$-linearity of the reduced rank functional $\underline{\text{rk}}$, we have

$$\mathcal{N}(H, K) = \sum_{HgK \in H \setminus F_N / K} \underline{\text{rk}}(H \cap gKg^{-1}).$$

Kapovich and Nagnibeda asked whether there exists a continuous $\mathbb{R}_{\geq 0}$-bilinear map

$$\hat{\mathcal{H}}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \text{SCurr}(F_N)$$

such that

$$\hat{\mathcal{H}}(\eta_H, \eta_K) = \sum_{HgK \in H \setminus F_N / K} \eta_{H \cap gKg^{-1}}$$

for any finitely generated subgroups $H, K \leq F_N$ (see [KN13, Subsection 10.4]). If such a map $\hat{\mathcal{H}}$ exists, then Theorem 3.2 follows immediately, and moreover, $\hat{\mathcal{H}}$ can be considered as a measure theoretical generalization of the construction of the fiber product graph $\Delta_H \times_{R_N} \Delta_K$ (see Definition 3.4 and the following argument). However, by the following proposition we answer that there does not exist such a map $\hat{\mathcal{H}}$. Nevertheless we construct a non-continuous $\mathbb{R}_{\geq 0}$-bilinear map $\hat{\mathcal{I}}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \text{SCurr}(F_N)$ with reasonable properties (see Section 4).

Proposition 3.3. If there exists an $\mathbb{R}_{\geq 0}$-bilinear map

$$\hat{\mathcal{H}}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \text{SCurr}(F_N)$$

such that

$$\hat{\mathcal{H}}(\eta_H, \eta_K) = \sum_{HgK \in H \setminus F_N / K} \eta_{H \cap gKg^{-1}}$$

for any finitely generated subgroups $H, K \leq F_N$, then $\hat{\mathcal{H}}$ is not continuous.

Proof. Recall that $A = \{a_1, \ldots, a_N\}$ is a free basis of F_N. Set subgroups $H_n := \langle a_1^n a_2 \rangle$ ($n = 1, 2, \ldots$) and $H := \langle a_1 \rangle$. Then from Proposition 2.1 and Lemma 2.7 we can see

$$\frac{1}{n} \eta_{H_n} \to \eta_H \ (n \to \infty).$$

We also have

$$\hat{\mathcal{H}}(\eta_{H_n}, \eta_H) = 0 \ (n = 1, 2, \ldots), \ \hat{\mathcal{H}}(\eta_H, \eta_H) = \eta_H,$$

which implies that $\frac{1}{n} \hat{\mathcal{H}}(\eta_{H_n}, \eta_H)$ does not converges to $\hat{\mathcal{H}}(\eta_H, \eta_H)$. Therefore, $\hat{\mathcal{H}}$ is not continuous. \qed
To prove Theorem 3.2 we use the following graph theoretical description of \mathcal{N}. First, we recall the definition of the fiber product graph in [Sta83]. Since by a graph we mean a 0 or 1-dimensional CW complex, we rearrange the definition.

Definition 3.4 (cf. [Sta83]). Let $(\Delta_1, \tau_1), (\Delta_2, \tau_2)$ be R_N-graphs. The fiber product graph $\Delta_1 \times_{R_N} \Delta_2$ corresponding to (Δ_1, τ_1) and (Δ_2, τ_2) is the fiber product of (Δ_1, τ_1) and (Δ_2, τ_2) in the category of topological spaces with a graph structure induced by (Δ_1, τ_1) and (Δ_2, τ_2). Explicitly,

\[
\Delta_1 \times_{R_N} \Delta_2 = \{(x_1, x_2) \in \Delta_1 \times \Delta_2 \mid \tau_1(x_1) = \tau_2(x_2)\};
\]

\[
V(\Delta_1 \times_{R_N} \Delta_2) = \{(v_1, v_2) \in V(\Delta_1) \times V(\Delta_2)\};
\]

\[
E_{\text{top}}(\Delta_1 \times_{R_N} \Delta_2) = \{(e_1, e_2) \in E_{\text{top}}(\Delta_1) \times E_{\text{top}}(\Delta_2) \mid \tau_1(e_1) = \tau_2(e_2)\}.
\]

Here, $V(\Delta_1 \times_{R_N} \Delta_2)$ is given as above because R_N has only one vertex. For $(e_1, e_2) \in E_{\text{top}}(\Delta_1 \times_{R_N} \Delta_2)$, fix orientations of e_1, e_2 such that $\tau_1(e_1) = \tau_2(e_2)$ in $E(R_N)$. Then the boundary of (e_1, e_2) is $\{(o(e_1), o(e_2)), (t(e_1), t(e_2))\}$, which does not depend on the choice of the orientations of e_1 and e_2.

There are natural graph morphisms $\phi_i : \Delta_1 \times_{R_N} \Delta_2 \rightarrow \Delta_i, (x_1, x_2) \mapsto x_i$ ($i = 1, 2$), and the graph morphism ϕ_i induces

\[
\phi_i : V(\Delta_1 \times_{R_N} \Delta_2) \rightarrow V(\Delta_i); \ (v_1, v_2) \mapsto v_i,
\]

\[
\phi_i : E_{\text{top}}(\Delta_1 \times_{R_N} \Delta_2) \rightarrow E_{\text{top}}(\Delta_i); \ (e_1, e_2) \mapsto e_i.
\]

The fiber product graph $\Delta_1 \times_{R_N} \Delta_2$ becomes an R_N-graph by the map $\tau_1 \circ \phi_1 (= \tau_2 \circ \phi_2)$. If (Δ_1, τ_1) and (Δ_2, τ_2) are folded R_N-graphs, then so is $(\Delta_1 \times_{R_N} \Delta_2, \tau_1 \circ \phi_1)$. However, $\Delta_1 \times_{R_N} \Delta_2$ may not be connected and may have degree-zero and degree-one vertices even if Δ_1 and Δ_2 are connected R_N-core graphs.

Let $H, K \in \text{Sub}(F_N)$. In the context of the SHNC it has been proven that every non-zero term in the sum of $\mathcal{N}(H, K)$ corresponds to a non-contractible component of $\Delta_H \times_{R_N} \Delta_K$, and the following equality holds (see [Neu90]):

\[
\mathcal{N}(H, K) = - \sum_{i=1}^{k} \chi(\Gamma_i),
\]

where $\Gamma_1, \ldots, \Gamma_k$ are all the non-contractible components of $\Delta_H \times_{R_N} \Delta_K$. Using this description of \mathcal{N} our strategy of proving Theorem 3.2 is the same as that of Theorem 2.8. We denote by $c(\Delta_H \times_{R_N} \Delta_K)$ the number of contractible components of $\Delta_H \times_{R_N} \Delta_K$. Since the Euler characteristic of a contractible component is 1, we have

\[
\mathcal{N}(H, K) = \#E_{\text{top}}(\Delta_H \times_{R_N} \Delta_K) - \#V(\Delta_H \times_{R_N} \Delta_K) + c(\Delta_H \times_{R_N} \Delta_K).
\]

We extend each term of the right hand side of this equation to a continuous symmetric $\mathbb{R}_{\geq 0}$-bilinear functional on $SCur(F_N)$.

Note that for $T_1, T_2 \in \text{Sub}(X)$ we have a continuous $\mathbb{R}_{\geq 0}$-bilinear functional

\[
SCur(F_N) \times SCur(F_N) \rightarrow \mathbb{R}_{\geq 0}; \ (\mu, \nu) \mapsto \mu(S\text{Cyl}(T_1))\nu(S\text{Cyl}(T_2)),
\]

which plays a fundamental role in constructing the intersection functional \mathcal{N}.

Since $\#V(\Delta_H \times_{R_N} \Delta_K) = \#V(\Delta_H)\#V(\Delta_K)$, we define the continuous $\mathbb{R}_{\geq 0}$-bilinear map

\[
\tilde{V} : SCur(F_N) \times SCur(F_N) \rightarrow \mathbb{R}_{\geq 0}
\]
We prove the map f given by Lemma 3.5. Since 1, we denote by R then there exists an of Δ f vertex of ΔT \top topological edges of ΔH edges of Δ we have ΔH with the label a equals to the product of the number of topological edges of ΔH with the label a and that of ΔK with the label a. Therefore, we have $\#E_{\text{top}}(\Delta H \times R_N \Delta K) = \sum_{a \in A} \eta_{H}(SCyl(e_a)) \eta_{H}(SCyl(e_a))$.

Now, we define the continuous $\mathbb{R}_{\geq 0}$-bilinear map

$$\tilde{E}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$

by

$$\tilde{E}(\mu, \nu) := \sum_{a \in A} \mu(\text{Cyl}(e_a)) \nu(\text{Cyl}(e_a)).$$

Then we have $\tilde{E}(\eta_H, \eta_K) = \#E_{\text{top}}(\Delta H \times R_N \Delta K)$.

In the remaining part of this section we construct a continuous $\mathbb{R}_{\geq 0}$-bilinear functional

$$\tilde{c}: \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$

such that $\tilde{c}(\eta_H, \eta_K) = c(\Delta H \times R_N \Delta K)$.

Set $\text{Sub}(X, id) := \text{Sub}(X, id) \cup \{\{id\}\}$, where $\{id\}$ is regarded as a subtree of X consisting of one vertex id.

To construct \tilde{c} we use the following lemmas. First one is obvious from the definition of the fiber product graph.

Lemma 3.5. Let $(\Delta_1, \tau_1), (\Delta_2, \tau_2)$ be R_N-core graphs and $v_i \in V(\Delta_i) \ (i = 1, 2)$. Let Γ be the connected component of $\Delta_1 \times_{R_N} \Delta_2$ containing the vertex (v_1, v_2). Let $f_i: (T_i, id) \to (\Delta_i, v_i) \ (T_i \in \text{Sub}(X, id))$ be a based occurrence $(i = 1, 2)$, and set $T = T_1 \cap T_2$. Then we have an R_N-graph morphism

$$f: T \to \Delta_1 \times_{R_N} \Delta_2; \ x \mapsto (f_1(x), f_2(x)),$$

and f is locally homeomorphic in the interior.

Lemma 3.6. Let $T \in \widehat{\text{Sub}}(X, id)$ such that $T \subset B(id, r)$ for an integer $r \geq 0$. Let $T_1, T_2 \in \mathcal{R}_{r+1}$ with $T_1 \cap T_2 = T$. Let $(\Delta_1, \tau_1), (\Delta_2, \tau_2)$ be R_N-core graphs and v_i a vertex of $\Delta_i \ (i = 1, 2)$. If there are based occurrences $f_i: (T_i, id) \to (\Delta_i, v_i) \ (i = 1, 2)$, then there exists an R_N-graph isomorphism from T to the connected component Γ of $\Delta_1 \times_{R_N} \Delta_2$ containing the vertex (v_1, v_2). In particular, Γ is contractible.

Proof. We denote by ϕ_i the natural R_N-graph morphism from $\Delta_1 \times_{R_N} \Delta_2$ to $\Delta_i \ (i = 1, 2)$, and consider the R_N-graph morphism $f: T \to \Delta_1 \times_{R_N} \Delta_2; \ x \mapsto (f_1(x), f_2(x))$ given by Lemma 3.5. Since $f(id) = (f_1(id), f_2(id)) = (v_1, v_2)$, we have $f(T) \subset \Gamma$. We prove the map $f: T \to \Gamma$ is an R_N-graph isomorphism.
First, we prove the surjectivity of \(f \). Take any \(x \in \Gamma \) and a locally isometric path \(p : [0, l] \to \Gamma \) such that \(p(0) = (v_1, v_2) \) and \(p(l) = x \). Assume that \(l \leq r + 1 \). Since \(f_i \) is locally homeomorphic in the interior, for the path \(\phi_i \circ p \) in \(\Delta_i \) we can take the lift \(\tilde{p}_i : [0, l] \to T_i \) such that \(f_i \circ \tilde{p}_i = \phi_i \circ p \) and \(\tilde{p}_i(0) = id \) (\(i = 1, 2 \)). Then \(\tilde{p}_i \) can be regarded as the lift of \(\tau_1 \circ \phi_i \circ p : ([0, l], 0) \to (R_N, x_0) \) with respect to the universal covering \(q : (X, id) \to (R_N, x_0) \).

Since \(\tau_1 \circ \phi_1 \circ p = \tau_2 \circ \phi_2 \circ p \), we have \(\tilde{p}_1 = \tilde{p}_2 \) from the uniqueness of the lift. Therefore \(\tilde{p}_1(l) = \tilde{p}_2(l) \in T_1 \cap T_2 = T \), and \(f(\tilde{p}_1(l)) = (\phi_1 \circ p(l), \phi_2 \circ p(l)) = x \). Hence \(f \) is surjective, and moreover, it follows that \(l \leq r \). If the length \(l \) of \(p \) is greater than \(r + 1 \), we can do the same argument for \(p_{[0,r+1]} \) and this leads to a contradiction, which concludes that there is no locally isometric path starting from \((v_1, v_2)\) in \(\Gamma \) with length greater than \(r \).

In particular, we can see that \(\Gamma \) is a tree.

Since \(f \) is an \(R_N \)-graph morphism from the tree \(T \) to the tree \(\Gamma \), the injectivity of \(f \) follows. Therefore, \(f \) is an \(R_N \)-graph isomorphism from \(T \) to \(\Gamma \).

\section*{Lemma 3.7.}
Let \(T \in \overline{\text{Sub}}(X, \text{id}) \) with \(T \subset B(\text{id}, r) \). Let \((\Delta_1, \tau_1)\) and \((\Delta_2, \tau_2)\) be \(R_N \)-core graphs and \(\Gamma \) the connected component of \(\Delta_1 \times_{R_N} \Delta_2 \) containing a vertex \((v_1, v_2) \in V(\Delta_1) \times V(\Delta_2) \). Then there exists a based \(R_N \)-graph isomorphism from \((T, \text{id})\) to \((\Gamma, (v_1, v_2))\) if and only if \(T_{r+1}(v_1) \cap T_{r+1}(v_2) = T \), where \(T_{r+1}(v_i) \) is \((r + 1)\)-neighborhood of \(v_i \) (\(i = 1, 2 \)).

\begin{proof}
The "if" part follows from Lemma 3.6. To prove the "only if" part, we suppose there exists an \(R_N \)-graph isomorphism \(\varphi : (T, \text{id}) \to (\Gamma, (v_1, v_2)) \). Let \(f_i : (T_{r+1}(v_i), \text{id}) \to (\Delta_i, v_i) \) be the occurrence (\(i = 1, 2 \)). From Lemma 3.5 we have the \(R_N \)-graph morphism

\[f : T_{r+1}(v_1) \cap T_{r+1}(v_2) \to \Gamma \subset \Delta_1 \times_{R_N} \Delta_2 ; \quad x \to (f_1(x), f_2(x)) \]

which is locally homeomorphic in the interior. Then the \(R_N \)-graph morphism \(\varphi^{-1} \circ f : T_{r+1}(v_1) \cap T_{r+1}(v_2) \to T \) is locally homeomorphic in the interior and \(\varphi^{-1} \circ f(\text{id}) = id \), which implies that \(T_{r+1}(v_1) \cap T_{r+1}(v_2) \subset T \). Since \(T \subset B(\text{id}, r) \), for the natural \(R_N \)-graph morphism \(\phi_i : \Delta_1 \times_{R_N} \Delta_2 \to \Delta_i \), we have the lift \(\tilde{\phi}_i : T \to T_{r+1}(v_i) \) such that \(f_i \circ \phi_i = \phi_i \circ \varphi \) and \(\tilde{\phi}_i(\text{id}) = id \) (\(i = 1, 2 \)). Therefore, \(T \subset T_{r+1}(v_1) \cap T_{r+1}(v_2) \), which concludes that \(T_{r+1}(v_1) \cap T_{r+1}(v_2) = T \).

\end{proof}

\section*{Notation 3.8.}
Let \(T \in \overline{\text{Sub}}(X, \text{id}) \) and let \((\Delta_1, \tau_1), (\Delta_2, \tau_2)\) be \(R_N \)-core graphs. We denote by \(c(\Delta_1 \times_{R_N} \Delta_2, T) \) the number of contractible components of \(\Delta_1 \times_{R_N} \Delta_2 \) that are \(R_N \)-graph isomorphic to \(T \).

We define \(\overline{\text{Sub}}(X, \text{id})/F_N \) to be the set of all the equivalence classes of the following equivalence relation: \(T_1 \in \overline{\text{Sub}}(X, \text{id}) \) is equivalent to \(T_2 \in \overline{\text{Sub}}(X, \text{id}) \) if there exists \(g \in F_N \) such that \(gT_1 = T_2 \). We denote by \([T]\) the equivalence class containing \(T \in \overline{\text{Sub}}(X, \text{id}) \).

For any contractible component \(\Gamma \) of \(\Delta_1 \times_{R_N} \Delta_2 \) we have a lift \(\Gamma \to X \) of \(\tau_1 \circ \phi_i : \Gamma \to R_N \) with respect to the universal covering \(q : X \to R_N \), which implies that there exists a unique equivalence class \([T]\) in \(\overline{\text{Sub}}(X, \text{id})/F_N \) such that \(\Gamma \) is \(R_N \)-graph isomorphic to \(T \). Therefore we have

\[c(\Delta_1 \times_{R_N} \Delta_2) = \sum_{[T] \in \overline{\text{Sub}}(X, \text{id})/F_N} c(\Delta_1 \times_{R_N} \Delta_2, T). \]
Let $H, K \in \text{Sub}(F_N)$ and $T \in \widehat{\text{Sub}}(X, \text{id})$ with $T \subset B(\text{id}, r)$ for an integer $r \geq 0$. From Lemma 3.7 and Lemma 2.7 we obtain

\[
c(\Delta_H \times_{R_N} \Delta_K, T) = \sum_{T_1, T_2 \in R_{r+1}} \#\{v \in V(\Delta_H) : T_{r+1}(v) = T_1\} \cdot \#\{v \in V(\Delta_K) : T_{r+1}(v) = T_2\}
\]

\[
= \sum_{T_1, T_2 \in R_{r+1}} \eta_H(\text{SCyl}(T_1)) \eta_K(\text{SCyl}(T_2)).
\]

Notation 3.9. Let $T \in \widehat{\text{Sub}}(X, \text{id})$. Set

\[R(T) := \{(S_1, S_2) \in \mathcal{C}_N \times \mathcal{C}_N \mid \text{Conv}(S_1) \cap \text{Conv}(S_2) = T\}.\]

Let r be a positive integer which satisfies $T \subset B(\text{id}, r)$. Then we have the following equality:

\[
(*) \quad R(T) = \bigsqcup_{T_1, T_2 \in R_{r+1}} \text{SCyl}(T_1) \times \text{SCyl}(T_2),
\]

and so

\[
c(\Delta_H \times_{R_N} \Delta_K, T) = \eta_H \times \eta_K(R(T)),
\]

where $\eta_H \times \eta_K$ is the product measure of η_H and η_K.

From the definition of $R(T)$ and $(*)$, we immediately have the following proposition.

Proposition 3.10. Let $T, T' \in \widehat{\text{Sub}}(X, \text{id})$.

1. If $T \neq T'$, then we have $R(T) \cap R(T') = \emptyset$.

2. If there exists $g \in F_N$ such that $gT = T'$, then for any $\mu, \nu \in S\text{Curr}(F_N)$

\[
\mu \times \nu(R(T)) = \mu \times \nu(R(T')).
\]

3. The map

\[
S\text{Curr}(F_N) \times S\text{Curr}(F_N) \to \mathbb{R}_{\geq 0}; \ (\mu, \nu) \mapsto \mu \times \nu(R(T))
\]

is a continuous $\mathbb{R}_{\geq 0}$-bilinear map.

Moreover, $R(T)$ $(T \in \widehat{\text{Sub}}(X, \text{id}))$ has the following properties:

\[
\bigsqcup_{T \in \text{Sub}(X, \text{id})} R(T) = \{(S_1, S_2) \in \mathcal{C}_N \times \mathcal{C}_N \mid \exists T \in \widehat{\text{Sub}}(X, \text{id}), \text{Conv}(S_1) \cap \text{Conv}(S_2) = T\}
\]

\[
\subset \{(S_1, S_2) \in \mathcal{C}_N \times \mathcal{C}_N \mid \text{Conv}(S_1), \text{Conv}(S_2) \ni \text{id}\}
\]

\[
= \bigsqcup_{T_1, T_2 \in R_{r+1}} \text{SCyl}(T_1) \times \text{SCyl}(T_2).
\]
Therefore, for $\mu, \nu \in \mathcal{SCurr}(F_N)$

$$
\sum_{T \in \text{Sub}(X, \text{id})} \mu \times \nu(\mathcal{R}(T)) = \mu \times \nu \left(\bigcup_{T \in \text{Sub}(X, \text{id})} \mathcal{R}(T) \right)
\leq \mu \times \nu \left(\bigcup_{T_1, T_2 \in \mathcal{R}_1} \mathcal{SCyl}(T_1) \times \mathcal{SCyl}(T_2) \right)
= \mu \left(\bigcup_{T_1 \in \mathcal{R}_1} \mathcal{SCyl}(T_1) \right) \nu \left(\bigcup_{T_2 \in \mathcal{R}_1} \mathcal{SCyl}(T_2) \right)
= V(\mu)V(\nu).
$$

Hence the infinite sum

$$
\sum_{T \in \text{Sub}(X, \text{id})} \mu \times \nu(\mathcal{R}(T))
$$
always converges. Since $\#[T] = \#V(T)$ for $T \in \text{Sub}(X, \text{id})$, we have

$$
\sum_{T \in \text{Sub}(X, \text{id})} \mu \times \nu(\mathcal{R}(T)) = \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \#V(T)\mu \times \nu(\mathcal{R}(T)).
$$

Let $H, K \in \text{Sub}(F_N)$. Then

$$
c(\Delta_H \times_{R_N} \Delta_K) = \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} c(\Delta_H \times_{R_N} \Delta_K, T)
= \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \eta_H \times \eta_K(\mathcal{R}(T)).
$$

We define the $\mathbb{R}_{\geq 0}$-bilinear map

$$
\hat{c}: \mathcal{SCurr}(F_N) \times \mathcal{SCurr}(F_N) \to \mathbb{R}_{\geq 0}
$$
as

$$
\hat{c}(\mu, \nu) := \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \mu \times \nu(\mathcal{R}(T)).
$$

Then we have $\hat{c}(\eta_H, \eta_K) = c(\Delta_H \times_{R_N} \Delta_K)$ for $H, K \in \text{Sub}(F_N)$.

Note that $\hat{c}(\mu, \nu)$ can be represented by

$$
\hat{c}(\mu, \nu) = \sum_{m=1}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \mu \times \nu(\mathcal{R}(T))_{\#V(T)=m}.
$$

Theorem 3.11. The $\mathbb{R}_{\geq 0}$-bilinear map \hat{c} is continuous.

Proof. Let $\mu_1, \mu_2 \in \mathcal{SCurr}(F_N)$ and $\mu_1^n, \mu_2^n \in \mathcal{SCurr}(F_N)$ $(n = 1, 2, \ldots)$ such that $\mu_1^n \to \mu_1$ $(n \to \infty)$ $(i = 1, 2)$. We prove that $\hat{c}(\mu_1^n, \mu_2^n) \to \hat{c}(\mu_1, \mu_2)$ $(n \to \infty)$.

Fix $\varepsilon > 0$. Since $\mathcal{V}: \mathcal{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$ is continuous, $\mathcal{V}(\mu_1^n) \to \mathcal{V}(\mu_1)$ $(n \to \infty)$, and so we set

$$
M = \frac{3}{\varepsilon} \sup\{\mathcal{V}(\mu_1^n)\mathcal{V}(\mu_2^n) \mid n = 1, 2, \ldots\}(< \infty).
$$
Take a positive integer $L \geq M$. Then,

$$L \sum_{m=L}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1^n \times \mu_2^n(\Re(T))$$

$$\leq \sum_{m=L}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} m \mu_1^n \times \mu_2^n(\Re(T))$$

$$\leq \sum_{m=1}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1^n \times \mu_2^n(\Re(T))$$

$$= \sum_{T \in \text{Sub}(X, \text{id})} \#V(T) \mu_1^n \times \mu_2^n(\Re(T))$$

$$\leq \sum_{T \in \text{Sub}(X, \text{id})} \#V(T) \mu_1^n \times \mu_2^n(\Re(T))$$

$$\leq V(\mu_1^n) V(\mu_2^n).$$

Consequently, we have

$$\sum_{m=L}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1^n \times \mu_2^n(\Re(T))$$

$$\leq \frac{1}{L} V(\mu_1^n) V(\mu_2^n) \leq \frac{1}{M} V(\mu_1^n) V(\mu_2^n) \leq \frac{\varepsilon}{3} \quad (n = 1, 2, \ldots).$$

In the same way, we have

$$\sum_{m=L}^{\infty} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1 \times \mu_2(\Re(T)) \leq \frac{\varepsilon}{3},$$

Since

$$\sum_{m=1}^{L-1} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1^n \times \mu_2^n(\Re(T))$$

is a finite sum, this converges to

$$\sum_{m=1}^{L-1} \sum_{[T] \in \text{Sub}(X, \text{id}) / F_N \#V(T) = m} \mu_1 \times \mu_2(\Re(T))$$

when $n \to \infty$. If n is large enough, then the absolute value of the difference of the above two sums is smaller than $\varepsilon / 3$. Hence,

$$|\tilde{\mathcal{c}}(\mu_1^n, \mu_2^n) - \tilde{\mathcal{c}}(\mu_1, \mu_2)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This completes the proof. \hfill \Box

Proof of Theorem 3.2 We define the $\mathbb{R}_{\geq 0}$-bilinear functional

$$\mathcal{N} : \text{SCurr}(F_N) \times \text{SCurr}(F_N) \to \mathbb{R}_{\geq 0}$$
as
\[N(\mu, \nu) := \tilde{E}(\mu, \nu) - \tilde{V}(\mu, \nu) + \tilde{c}(\mu, \nu) \]
for \(\mu, \nu \in SCurr(F_N) \). Then \(N \) is a continuous symmetric \(\mathbb{R}_{\geq 0} \)-bilinear functional, and we have \(N(\eta_H, \eta_K) = N(H, K) \) for \(H, K \in \text{Sub}(F_N) \). The uniqueness and \(\text{Out}(F_N) \)-invariance of \(N \) follows immediately from the denseness of the rational subset currents in \(SCurr(F_N) \). \(\square \)

Now we recall the inequality in the SHNC (Theorem \ref{thm:shnc}). Since the rational subset currents are dense in \(SCurr(F_N) \), and
\[\text{rk} : SCurr(F_N) \times SCurr(F_N) \rightarrow \mathbb{R}_{\geq 0}; (\mu, \nu) \mapsto \text{rk}(\mu) \text{rk}(\nu) \]
is a continuous \(\mathbb{R}_{\geq 0} \)-bilinear map, we have the following corollary.

Corollary 3.12. Let \(\mu, \nu \in SCurr(F_N) \). The following inequality holds:
\[N(\mu, \nu) \leq \text{rk}(\mu) \text{rk}(\nu). \]

4. THE INTERSECTION MAP AND THE INTERSECTION FUNCTIONAL

Let \(I \) be the intersection map:
\[I : \mathfrak{C}_N \times \mathfrak{C}_N \rightarrow \{ \text{closed subsets of } \partial X \}; (S_1, S_2) \mapsto S_1 \cap S_2. \]
For \(\mu, \nu \in SCurr(F_N) \), the intersection map \(I \) induces a Borel measure \(I_*(\mu \times \nu) \) on \(\mathfrak{C}_N \) by pushing forward: for a Borel subset \(U \subset \mathfrak{C}_N \), we define
\[I_*(\mu \times \nu)(U) := \mu \times \nu(I^{-1}(U)). \]
Note that it is not trivial that \(I^{-1}(U) \) is a measurable set of \(\mu \times \nu \) (see Appendix \ref{app:measure}). The Borel measure \(I_*(\mu \times \nu) \) is a subset current on \(F_N \), that is, an \(F_N \)-invariant locally finite Borel measure on \(\mathfrak{C}_N \). When we consider the diagonal action of \(F_N \) on \(\mathfrak{C}_N \times \mathfrak{C}_N \), the product measure \(\mu \times \nu \) is \(F_N \)-invariant. Therefore, \(I_*(\mu \times \nu) \) is also an \(F_N \)-invariant positive Borel measure.

Next, we check the local finiteness of \(I_*(\mu \times \nu) \). For every \(T \in \text{Sub}(X, \text{id}) \)
\[I^{-1}(SCyl(T)) \subset \{(S_1, S_2) \in \mathfrak{C} \times \mathfrak{C} \mid \text{Conv}(S_1), \text{Conv}(S_2) \supset \text{id}\} = \bigsqcup_{T_1, T_2 \in \mathfrak{R}_1} SCyl(T_1) \times SCyl(T_2). \]
Thus we have
\[I_*(\mu \times \nu)(SCyl(T)) = \mu \times \nu(I^{-1}(SCyl(T))) \leq \mu \times \nu \left(\bigsqcup_{T_1, T_2 \in \mathfrak{R}_1} SCyl(T_1) \times SCyl(T_2) \right) \]
\[= V(\mu)V(\nu) < \infty. \]
This implies that \(I_*(\mu \times \nu) \) is locally finite.

We define the \(\mathbb{R}_{\geq 0} \)-bilinear map
\[\widehat{I} : SCurr(F_N) \times SCurr(F_N) \rightarrow SCurr(F_N), \]
as
\[\widehat{I}(\mu, \nu) := I_*(\mu \times \eta). \]
For $H, K \subseteq \text{Sub}(F_N)$ and any Borel subset $U \subseteq \mathcal{C}_N$, we have

\[
\widehat{I}(\eta_H, \eta_K)(U) = \eta_H \times \eta_K(I^{-1}(U))
\]

\[
= \sum_{(g_1 H, g_2 K) \in F_N / H \times F_N / K} \delta_{g_1 \Lambda(H)} \times \delta_{g_2 \Lambda(K)}(I^{-1}(U))
\]

\[
= \sum_{(g_1 H, g_2 K) \in F_N / H \times F_N / K} \delta_{g_1 \Lambda(H) \cap g_2 \Lambda(K)}(U).
\]

Therefore, we have the following explicit description of $\widehat{I}(\eta_H, \eta_K)$:

\[
\widehat{I}(\eta_H, \eta_K) = \sum_{(g_1 H, g_2 K) \in F_N / H \times F_N / K} \delta_{g_1 \Lambda(H) \cap g_2 \Lambda(K)}.
\]

Since $\Lambda(H' \cap K') = \Lambda(H') \cap \Lambda(K')$ for any $H', K' \subseteq \text{Sub}(F_N)$, we have

\[
\widehat{I}(\eta_H, \eta_K) = \sum_{(g_1 H, g_2 K) \in F_N / H \times F_N / K} \delta_{\Lambda(g_1 H g_1^{-1} \cap g_2 K g_2^{-1})}.
\]

Theorem 4.1. For $H, K \subseteq \text{Sub}(F_N)$ we have

\[
\widehat{I}(\eta_H, \eta_K) = \sum_{H g K \subseteq H \setminus F_N / K} \eta_{H \cap g K g^{-1}}.
\]

Hence,

\[
\overline{\text{rk}} \circ \widehat{I}(\eta_H, \eta_K) = \overline{\mathcal{N}}(\eta_H, \eta_K) (H, K, K \subseteq \text{Sub}(F_N)).
\]

Proof. Let $H, K \subseteq \text{Sub}(F_N)$. We denote by $F_N \setminus (F_N / H \times F_N / K)$ the quotient set of $F_N / H \times F_N / K$ by the natural diagonal action of F_N. Then, we have the bijective map:

\[
F_N \setminus (F_N / H \times F_N / K) \to H \setminus F_N / K: [g_1 H, g_2 K] \mapsto H g_1^{-1} g_2 K.
\]

Denote H^g to be $g H g^{-1}$ for $g \in F_N$. Then for each $[g_1 H, g_2 K] \in F_N \setminus (F_N / H \times F_N / K)$ with fixed g_1 and g_2 we have a bijective map:

\[
[g_1 H, g_2 K] \to F_N / (H^{g_1} \cap K^{g_2}); (g_1 H, g_2 K) \mapsto g (H^{g_1} \cap K^{g_2}).
\]

For $(g_1^1 H, g_2^1 K) \in [g_1 H, g_2 K]$ we can see that $H^{g_1^1} \cap K^{g_2^1}$ is conjugate to $H^{g_1} \cap K^{g_2}$. Therefore $\eta_{H^{g_1} \cap K^{g_2}}$ does not depend on the choice of g_1 and g_2. Consequently,

\[
\widehat{I}(\eta_H, \eta_K)
\]

\[
= \sum_{(g_1 H, g_2 K) \in F_N / H \times F_N / K} \eta_{H \cap g K g^{-1}}
\]

\[
= \sum_{[g_1 H, g_2 K] \in F_N \setminus (F_N / H \times F_N / K)} \sum_{(g_1 H, g_2 K) \in [g_1 H, g_2 K]} \sum_{(g_1 H, g_2 K) \in F_N \setminus (F_N / H \times F_N / K)} \eta_{H^{g_1} \cap K^{g_2}}
\]

\[
= \sum_{H g K \subseteq H \setminus F_N / K} \eta_{H \cap g K g^{-1}},
\]

as required. \qed
Note that from Proposition 3.3 the map \(\hat{I} \) is not continuous. However, we can establish the following theorem. From Theorem 4.1 and Theorem 4.2 we can think of \(\hat{I} \) as a generalization of the construction of the fiber product graph, which we considered in the beginning of Section 3. One of the points of \(\hat{I} \) is that we do not use the Cayley graph \(X \) in the definition of \(\hat{I} \).

Theorem 4.2. The following equality holds:

\[
\overline{rk} \circ \hat{I} = \mathcal{N}.
\]

Proof. Let \(\mu, \nu \in \mathcal{S} \text{Curr}(F_N) \). We prove the above equality by representing \(\overline{rk} \circ \hat{I}(\mu, \nu) \) and \(\mathcal{N} \) explicitly. Most parts of this proof consist of technical calculations.

First, by the definition of \(\overline{rk} \) and \(\hat{I} \),

\[
\overline{rk} \circ \hat{I}(\mu, \nu) = \sum_{a \in A} \mu \times \nu \left(I^{-1}(\text{SCyl}(e_a)) - \mu \times \nu \left(I^{-1} \left(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T) \right) \right) \right).
\]

For any \((S_1, S_2) \in I^{-1}(\text{SCyl}(e_a)) \), we have

\[
e_a \subset \text{Conv}(S_1 \cap S_2) \subset \text{Conv}(S_1) \cap \text{Conv}(S_2),
\]

that is, \(e_a \subset \text{Conv}(S_1) \) and \(e_a \subset \text{Conv}(S_2) \). Consequently,

\[
I^{-1}(\text{SCyl}(e_a)) \subset \text{SCyl}(e_a) \times \text{SCyl}(e_a).
\]

Similarly, for any \((S_1, S_2) \in I^{-1}(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T)) \) we have \(\text{id} \in \text{Conv}(S_i) \) \((i = 1, 2) \), which implies that

\[
I^{-1} \left(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T) \right) \subset \bigcup_{T_1, T_2 \in \mathcal{R}_1} \text{SCyl}(T_1) \times \text{SCyl}(T_2).
\]

Therefore, we have

\[
\overline{rk} \circ \hat{I}(\mu, \nu)
\]

\[
= \sum_{a \in A} \mu \times \nu (\text{SCyl}(e_a) \times \text{SCyl}(e_a))
\]

\[
- \sum_{T_1, T_2 \in \mathcal{R}_1} \mu \times \nu (\text{SCyl}(T_1) \times \text{SCyl}(T_2))
\]

\[
- \sum_{a \in A} \mu \times \nu \left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \setminus I^{-1}(\text{SCyl}(e_a)) \right)
\]

\[
+ \mu \times \nu \left(\bigcup_{T_1, T_2 \in \mathcal{R}_1} \text{SCyl}(T_1) \times \text{SCyl}(T_2) \setminus I^{-1} \left(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T) \right) \right).
\]

Here each number from (1) to (4) represents a term of the equation, and we have (1) = \(\hat{E}(\mu, \nu) \) and (2) = \(-\hat{V}(\mu, \nu) \). Hence it suffices to show that (3) + (4) = \(\hat{c}(\mu, \nu) \).

Step 1: First, we consider (4). Let \((S_1, S_2) \in \text{SCyl}(e_a) \times \text{SCyl}(e_a) \). By the definition of subset cylinders, \((S_1, S_2) \) does not belong to \(I^{-1}(\text{SCyl}(e_a)) \) if and only if either \(S_1 \cap S_2 = \emptyset \), or \(S_1 \cap S_2 \neq \emptyset \) and \(S_1 \cap S_2 \subset \text{Cyl}(e_a) \) or \(S_1 \cap S_2 \subset \text{Cyl}(e_a)^{-1} \), where we endow \(e_a \) with the orientation such that \(o(e_a) = \text{id}, t(e_a) = a \), and \((e_a)^{-1} \) is the inverse of \(e_a \). Then, we have
\[
\left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \setminus I^{-1}(\text{SCyl}(e_a)) \right) \cap I^{-1}(\emptyset)
\]

\[
= \left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \right) \cap I^{-1}(\emptyset)
\]

\[
= \bigcup_{T \in \text{Sub}(X, \text{id})} R(T).
\]

For \(a \in A \cup A^{-1} \) put

\[
U(a) := \left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \setminus I^{-1}(\text{SCyl}(e_a)) \right) \setminus I^{-1}(\emptyset),
\]

where \(e_a \ (a \in A \cup A^{-1}) \) is the oriented edge with origin \(\text{id} \) and terminal \(a \) in \(X \).

We will use \(U(a) \) (\(a \in A^{-1} \)) later. It follows that

\[
-3 = \sum_{a \in A} \mu \times \nu \left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \setminus I^{-1}(\text{SCyl}(e_a)) \right)
\]

\[
= \sum_{a \in A} \mu \times \nu \left(\left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \setminus I^{-1}(\text{SCyl}(e_a)) \right) \cap I^{-1}(\emptyset) \right)
\]

\[
+ \sum_{a \in A} \mu \times \nu(U(a))
\]

\[
= \sum_{a \in A} \sum_{T \in \text{Sub}(X, \text{id})} \mu \times \nu(R(T)) + \sum_{a \in A} \mu \times \nu(U(a))
\]

\[
= \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \#E_{\text{top}}(T) \mu \times \nu(R(T)) + \sum_{a \in A} \mu \times \nu(U(a)).
\]

\[
(5)
\]

\[
\text{Step 2:} \quad \text{Next, we consider } 3 \text{ in a similar way. First, we have}
\]

\[
\left(\bigcup_{T_1, T_2 \in \mathcal{R}_1} \text{SCyl}(T_1) \times \text{SCyl}(T_2) \setminus I^{-1} \left(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T) \right) \right) \cap I^{-1}(\emptyset)
\]

\[
= \left(\bigcup_{T_1, T_2 \in \mathcal{R}_1} \text{SCyl}(T_1) \times \text{SCyl}(T_2) \right) \cap I^{-1}(\emptyset)
\]

\[
= \bigcup_{T \in \text{Sub}(X, \text{id})} R(T).
\]

Put

\[
U := \left(\bigcup_{T_1, T_2 \in \mathcal{R}_1} \text{SCyl}(T_1) \times \text{SCyl}(T_2) \setminus I^{-1} \left(\bigcup_{T \in \mathcal{R}_1} \text{SCyl}(T) \right) \right) \setminus I^{-1}(\emptyset).
\]
Then,

\[\mathcal{H} = \mu \times \nu \left(\bigcup_{T \in \text{Sub}(X, \text{id})} \mathcal{R}(T) \right) + \mu \times \nu(U) \]

(6) \[
\sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \#V(T) \mu \times \nu(\mathcal{R}(T)) + \mu \times \nu(U).
\]

Step 3: From the equation (5) and (6), we obtain

\[\overline{\text{rk}} \circ \hat{I}(\mu, \nu) = \hat{E}(\mu, \nu) - \hat{V}(\mu, \nu) \]

\[- \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \#E_{\text{top}}(T) \mu \times \nu(\mathcal{R}(T)) - \sum_{a \in A} \mu \times \nu(U(a)) \]

\[+ \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \#V(T) \mu \times \nu(\mathcal{R}(T)) + \mu \times \nu(U). \]

Since for any \(T \in \widehat{\text{Sub}}(X, \text{id}) \) we have \#\(V(T) - \#E(T) = \chi(T) = 1 \),

\[\overline{\text{rk}} \circ \hat{I}(\mu, \nu) = \hat{E}(\mu, \nu) - \hat{V}(\mu, \nu) \]

\[+ \sum_{[T] \in \text{Sub}(X, \text{id})/F_N} \mu \times \nu(\mathcal{R}(T)) + \mu \times \nu(U) - \sum_{a \in A} \mu \times \nu(U(a)) \]

\[= E(\mu, \nu) - V(\mu, \nu) \]

\[+ \hat{c}(\mu, \nu) + \mu \times \nu(U) - \sum_{a \in A} \mu \times \nu(U(a)). \]

Now, we show that \(\mu \times \nu(U) = \sum_{a \in A} \mu \times \nu(U(a)) \). By the definition of \(U(a) \) \((a \in A) \), for any \((S_1, S_2) \in U(a) \) we have \(S_1 \cap S_2 \neq \emptyset \) and either \(S_1 \cap S_2 \subset \text{Cyl}(e_a) \) or \(S_1 \cap S_2 \subset \text{Cyl}((e_a)^{-1}) \). For \(e \in E(X) \) we set

\[\mathcal{H}(e) := \{ S \subset \partial X \mid S \text{ is closed and } S \subset \text{Cyl}(e) \}. \]

Then

\[U(a) = \left(U(a) \cap I^{-1}(\mathcal{H}(e_a)) \right) \cup \left(U(a) \cap I^{-1}(\mathcal{H}((e_a)^{-1})) \right) \]

and

\[a^{-1}U(a) = a^{-1}\left(\text{SCyl}(e_a) \times \text{SCyl}(e_a) \right) \setminus I^{-1}(\{\emptyset\}) \]

\[= \left(\text{SCyl}(e_a^{-1}) \times \text{SCyl}(e_a^{-1}) \right) \setminus I^{-1}(\{\emptyset\}) \]

\[= U(a^{-1}). \]

In addition, for \(a \in A \) we have

\[a^{-1}I^{-1}(\mathcal{H}((e_a)^{-1})) = I^{-1}(\mathcal{H}(e_a^{-1})), \]

and so

\[a^{-1}\left(U(a) \cap I^{-1}(\mathcal{H}((e_a)^{-1})) \right) = U(a^{-1}) \cap I^{-1}(\mathcal{H}(e_a^{-1})). \]
Since $\mu \times \nu$ is F_N-invariant with respect to the diagonal action of F_N on $\mathcal{C}_N \times \mathcal{C}_N$, we obtain

$$\sum_{a \in A} \mu \times \nu(U(a))$$

$$= \sum_{a \in A} \left\{ \mu \times \nu(U(a) \cap I^{-1}(\mathcal{H}(e_a))) + \mu \times \nu(U(a) \cap I^{-1}(\mathcal{H}((e_a)^{-1}))) \right\}$$

$$= \sum_{a \in A} \left\{ \mu \times \nu(U(a) \cap I^{-1}(\mathcal{H}(e_a))) + \mu \times \nu(U(a^{-1}) \cap I^{-1}(\mathcal{H}(e_{a^{-1}}))) \right\}$$

$$= \sum_{a \in A \cup A^{-1}} \mu \times \nu(U(a) \cap I^{-1}(\mathcal{H}(e_a)))$$

$$= \mu \times \nu \left(\bigsqcup_{a \in A \cup A^{-1}} U(a) \cap I^{-1}(\mathcal{H}(e_a)) \right),$$

where we note that if $a, a' \in A \cup A^{-1}$ and $a \neq a'$, then $\mathcal{H}(e_a) \cap \mathcal{H}(e_{a'}) = \emptyset$. Now it suffices to show that the following equality holds:

$$\bigsqcup_{a \in A \cup A^{-1}} U(a) \cap I^{-1}(\mathcal{H}(e_a)) = U.$$

The key claim for this equality is that for a given $S \in \mathcal{C}_N$, $\text{Conv}(S) \neq \emptyset$ if and only if there exists $a \in A \cup A^{-1}$ such that $S \subset \text{Cyl}(e_a)$.

Take $(S_1, S_2) \in U(a) \cap I^{-1}(\mathcal{H}(e_a))$ $(a \in A \cup A^{-1})$. Since $\text{Conv}(S_i) \supset e_a$, there exists $T_i \in \mathcal{R}_1$ such that $S_i \in \text{SCyl}(T_i)$ $(i = 1, 2)$. In addition, $S_1 \cap S_2 \neq \emptyset$. Also, $S_1 \cap S_2 \subset \text{Cyl}(e_a)$ implies that $\text{Conv}(S_1 \cap S_2) \neq \emptyset$, namely $S_1 \cap S_2 \not\subset \bigsqcup_{T \in \mathcal{R}_1} \text{SCyl}(T)$. Therefore $S_1 \cap S_2 \in U$.

Take $(S_1, S_2) \in U$. Then $S_1 \cap S_2 \neq \emptyset$ and $S_1 \cap S_2 \not\subset \bigsqcup_{T \in \mathcal{R}_1} \text{SCyl}(T)$, and so there exists $a \in A \cup A^{-1}$ such that $S_1 \cap S_2 \subset \text{Cyl}(e_a)$. Since $\text{Conv}(S_i) \supset e_a$, we have $\text{Conv}(S_i) \supset e_a$. Therefore we obtain $(S_1, S_2) \in U(a) \cap I^{-1}(\mathcal{H}(e_a))$. \qed

Appendix A.

The purpose of this appendix is to show that for any Borel subset $U \subset \mathcal{C}_N$, the preimage $I^{-1}(U)$ of the intersection map I is a measurable set of a product measure of two Borel measures on \mathcal{C}_N. We prove this in a general setting.

The notation in this appendix is different from that in the main text of this paper.

Let X be a compact metrizable space. Then we see that X is second countable. Fix a countable basis $\{U_n\}_{n=1}^\infty$ of X. Let \mathcal{C} be the set of all closed (compact) subsets of X. We provide \mathcal{C} with the Vietoris topology, which has the sub-basis consisting of all sets of the forms

$$[U]_\subset := \{K \in \mathcal{C} \mid K \subset U\}$$

and

$$[U]_{\neq \emptyset} := \{K \in \mathcal{C} \mid K \cap U \neq \emptyset\},$$

where U is an open subset of X. See [Kec95] for details of the Vietoris topology. Since $\emptyset \subset \emptyset$, \emptyset is an isolated point of \mathcal{C}. The topology of the subspace $\mathcal{C} \setminus \{\emptyset\}$ coincides with the topology induced by the Hausdorff metric when we give a distance on X which is compatible with the topology of X. Moreover, we can see
that \(\mathcal{C} \) is compact. Therefore \(\mathcal{C} \setminus \{\emptyset\} \) is a compact metrizable space, which implies that \(\mathcal{C} \setminus \{\emptyset\} \) is second countable, and so is \(\mathcal{C} \).

Let \(O_X \) be the set of all open subsets of \(X \) and \(\mathcal{O} \) the set of all open subsets of \(\mathcal{C} \). Then the \(\sigma \)-algebra \(\sigma(\mathcal{O}) \) generated by \(\mathcal{O} \) is the set of all Borel subsets of \(\mathcal{C} \).

Now, we consider the intersection map

\[
I : \mathcal{C} \times \mathcal{C} \to \mathcal{C}; \ (K_1, K_2) \mapsto K_1 \cap K_2.
\]

The goal of this appendix is to prove the following proposition.

Proposition A.1. The intersection map \(I \) is a Borel map, which means that for any Borel subset \(S \subset \mathcal{C} \) the preimage \(I^{-1}(S) \) is a Borel subset of \(\mathcal{C} \times \mathcal{C} \).

Note that a measurable set of a product measure of two Borel measures on \(\mathcal{C} \) is an element of the \(\sigma \)-algebra generated by the set

\[
\sigma(\mathcal{O}) \times \sigma(\mathcal{O}) := \{U_1 \times U_2 \mid U_1, U_2 \in \sigma(\mathcal{O})\}.
\]

Since \(\mathcal{C} \) is a second countable space, the \(\sigma \)-algebra generated by \(\sigma(\mathcal{O}) \times \sigma(\mathcal{O}) \) coincides with the \(\sigma \)-algebra generated by the set of all open subsets of \(\mathcal{C} \times \mathcal{C} \).

To prove the above proposition we prepare a “good” generating set of \(\sigma(\mathcal{O}) \) as a \(\sigma \)-algebra, and it suffices to show that \(I^{-1}(U) \) is a Borel subset of \(\mathcal{C} \times \mathcal{C} \) for \(U \) belonging to the “good” generating set of \(\sigma(\mathcal{O}) \). First, since \(\mathcal{C} \) is a second countable space, the sub-basis

\[
\{[U]_C \mid U \in O_X\} \cup \{[U]_{\neq \emptyset} \mid U \in O_X\}
\]

is a generating set of \(\sigma(\mathcal{O}) \).

From now on, we assume that the countable basis \(\{U_n\}_{n=1}^\infty \) of \(X \) is closed under finite union, that is, \(\bigcup_{i=1}^n V_i \in \{U_n \mid n = 1, 2, \ldots\} \) for any \(V_1, \ldots, V_k \in \{U_n \mid n = 1, 2, \ldots\} \).

Lemma A.2. The set \(\{[U]_{\neq \emptyset} \mid U \in O_X\} \) is a generating set of \(\sigma(\mathcal{O}) \).

Proof. Take any \(U \in O_X \). It suffices to show that \([U]_C \) belongs to the \(\sigma \)-algebra generated by the above set. For \(U \in O_X \) and \(K \in \mathcal{C} \) we can see that \(K \) belongs to \([U]_C \) if and only if there exists \(U_n \) such that \(U^c \subset U_n \) and \(K \cap U_n = \emptyset \). The “if” part is obvious. We prove the “only if” part. For any \(p \in U^c \) there exists \(U_{n_p} \) such that \(p \in U_{n_p} \) and \(U_{n_p} \cap K = \emptyset \). Since \(U^c \) is compact, there exist \(p_1, \ldots, p_m \in U^c \) such that \(U \subset \bigcup_{i=1}^m U_{n_{p_i}} \) and \((\bigcup_{i=1}^m U_{n_{p_i}}) \cap K = \emptyset \). Hence there exists \(U_n \) such that \(U^c \subset U_n \) and \(U_n \cap K = \emptyset \). From the above equivalence, we obtain

\[
[U]_C = \bigcup_{U^c \subset U_n} \{K \in \mathcal{C} \mid K \cap U_n = \emptyset\} = \bigcup_{U^c \subset U_n} ([U_n]_{\neq \emptyset})^c,
\]

as required. \(\square \)

For a compact subset \(A \subset X \), set \([A]_{\neq \emptyset} := \{K \in \mathcal{C} \mid K \cap A \neq \emptyset\} \).

Lemma A.3. The set \(\{[A]_{\neq \emptyset} \mid A \subset X : \text{compact}\} \) is a generating set of \(\sigma(\mathcal{O}) \).

Proof. First, note that for any compact subset \(A \subset X \), we have

\[
[A]_{\neq \emptyset} = \bigcap_{A \subset U_n} [U_n]_{\neq \emptyset}.
\]
Here there is U_n containing A since $\{U_n\}$ is closed under a finite union. Hence $[A]_\neq \emptyset$ belongs to $\sigma(O)$. For any $U \in O_X$ by taking a sequence of compact subsets $\{K_n\}$ of X such that $U = \bigcup_{n=1}^{\infty} K_n$, we have
\[
[U]_{\neq \emptyset} = \bigcup_{n=1}^{\infty} [K]_{\neq \emptyset},
\]
as required.

Proof of Proposition A.7. Take any compact subset A of X. We show that the preimage $I^{-1}([A]_{\neq \emptyset})$ belongs to the σ-algebra generated by $\sigma(O) \times \sigma(O)$.

For each positive integer n, take $p_n \in U_n$. Since X is a metrizable space, we can define a distance function d on X which is compatible with the topology of X. For $x \in X$ and $r \geq 0$ we set
\[
B(x, r) := \{y \in X \mid d(y, x) \leq r\}.
\]
Take $(K_1, K_2) \in \mathcal{C} \times \mathcal{C}$. We show that (K_1, K_2) belongs to $I^{-1}([A]_{\neq \emptyset})$ if and only if for any positive integer k there exists p_n such that
\[
K_1 \cap A \cap B(p_n, \frac{1}{k}) \neq \emptyset \quad (i = 1, 2).
\]

First, we prove the “only if” part. Since $K_1 \cap K_2 \cap A \neq \emptyset$, take $p \in K_1 \cap K_2 \cap A$ and take a subsequence $\{p_{j_n}\}$ of $\{p_n\}$ such that $\{p_{j_n}\}$ converges to p. Then for any positive integer k there exists p_{j_n} satisfying the above condition.

Next, we prove the “if” part by contradiction. Assume that $K_1 \cap K_2 \cap A = \emptyset$. Then there exists a positive integer k such that
\[
\frac{1}{k} < \frac{1}{2}d(K_1 \cap A, K_2 \cap A).
\]
From the assumption there exists p_n such that
\[
K_1 \cap A \cap B(p_n, \frac{1}{k}) \neq \emptyset \quad (i = 1, 2).
\]
Hence, we can take $a_i \in K_i \cap A$ such that $d(a_i, p_n) \leq 1/k \ (i = 1, 2)$. Therefore,
\[
dl(a_1, a_2) \leq \frac{2}{k} < d(K_1 \cap A, K_2 \cap A),
\]
which leads to a contradiction.

From the above, we have
\[
I^{-1}([A]_{\neq \emptyset}) = \bigcap_{k=1}^{\infty} \left(\bigcup_{n=1}^{\infty} [A \cap B(p_n, \frac{1}{k})]_{\neq \emptyset} \times [A \cap B(p_n, \frac{1}{k})]_{\neq \emptyset} \right),
\]
as required.

\section*{References}

[Kap06] I. Kapovich: \textit{Currents on free groups}, Topological and Asymptotic Aspects of Group Theory, (R. Grigorchuk, M. Mihalik, M. Sapir and Z. Sunik, Eds.), AMS Contemporary Mathematics Series, vol. 394 (2006), pp. 149–176.

[Kap13] I. Kapovich: \textit{An integral weight realization theorem for subset currents on free groups}, preprint, 2013, \texttt{arXiv:1211.5836}.

[KN13] I. Kapovich and T. Nagnibeda: \textit{Subset currents on free groups}, Geom Dedicata \textbf{166} (2013), 307–348.

[Kec95] A.S. Kechris: \textit{Classical descriptive set theory}, Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.
[Min12] I. Mineyev: *Submultiplicativity and the Hanna Neumann Conjecture*, Ann. of Math. (2) **175** (2012), 393–414.

[Neu90] W. D. Neumann: *On intersections of finitely generated subgroups of free groups*, in Groups—Canberra 1989, vol. **1456** of Lecture Notes in Math., Springer, Berlin, 1990, 161–170.

[Sta83] J. Stallings: *Topology of finite graphs*, Invent. Math. **71** (1983), 551–565.

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8914, Japan

E-mail address: dsasaki@ms.u-tokyo.ac.jp

Current address from April in 2014: Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan

E-mail address: dounnu-daigaku@moegi.waseda.jp