Storey Response of G+40 Horizontally Connected Buildings with Dampers

Mayuri M. Baviskar¹, Prof. L.G.Kalurkar²

¹Student of P.G., M.tech-Structures, Dept. Of Civil Engineering, MGMs Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra, India.

²Professor, Dept. of Civil Engineering, MGMs Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra, India.

Abstract - Analyzing the response of structure to ground shaking caused by an earthquake is one the most important application of structural dynamics. Tall structures are more exposed to dynamic loads, earthquake and wind effects. Tall buildings are characterized by low natural frequency. Hence, they can vibrate significantly under lateral dynamic earthquake loads. This paper deals with the analysis of G+40 storey buildings connected horizontally with the truss bridge at 21st and 31st storey having fixed base and shows the storey response curves of buildings connected with dampers and without dampers. The building frame type used is ordinary moment resisting frame (OMRF). The dampers used are fluid viscous dampers (FVD) having force capacity of 500KN. The analysis is done using ETABS V16 software.

Key Words: dampers, fluid viscous damper, storey response curve, fixed base, seismic response, ordinary moment resisting frame, ETABS V16.

1. INTRODUCTION

As the business activities demands to be on the point of one another and at the town centre, tall buildings get a lot of attention in today's life. Also, because they form distinctive landmark, tall buildings are oftentimes developed in town centers as status image for company organization. Due to the speedy increase in population and reduction in accessibility of land, vertical accommodation is obtaining a lot of preference which is resulting in vertical town development. The higher land costs, reduction in urban sprawl and for agricultural production, residential buildings are growing upward. Buildings are designed primarily to serve the needs of occupancy whether residential or commercial. At the same time, clients requirement regarding aesthetic qualities plays important role.

The modeling of high rise structure for analysis is depends on the approach of research. The bottom shaking that occurs in an earthquake are often represented as a series of multidirectional random acceleration pulses. The seismic response of tall building will depend on the dynamic properties of the structure, ground motion at the foundation and mode of soil structure interaction. Response spectrometry shows that how the structure will respond if damping is elicited. Various curves are developed with different levels of damping. As damping increases, response spectra shift downward. As per typical earthquake resistant design, structure is designed for forces which are much less than the actual design earthquake forces. Therefore, throughout earthquake event, structure undergoes severe non resilient deformation with non repairable damages. RCC structure can be made ductile with the help of reinforcing steel. Thus, to grasp whether or not the structure can all collapse or part collapse or wont collapse throughout or after earthquake, time history analysis is required to perform. The results obtained from analysis are studied to know the actual behavior of structure.
2. Example Building:

Building set up chosen for this project is as shown in figure below. Two buildings are connected by a truss bridge of 50m length at twenty first floor and thirty first floor. The structure is built with ordinary moment resisting frame (OMRF). Both buildings are symmetric to each other and considered to be served as residential building. Building is having forty storeys for accommodation purpose and top story as terrace. The columns are fixed at base. Two column sizes are utilized in structure. Column of size 0.85m x 0.65m are used up to 10th storey and 0.75m x 0.55m are used for rest of the storey. Beams having cross sectional size 0.3m x 0.6m. The floor to floor height is kept constant as 3m and slab thickness as 0.18m throughout the structure. 4 lifts are provided at each floor per building. Shear wall of 0.3m thick are used for the lift sections. Concrete grades used are M35 and M40 while steel used is of grade HYSD500. Instead of traditional brick wall Autoclave Aerated Concrete (AAC) Blocks are used as wall having unit weight ranging from 4.6 kN/m³ to 7.5 kN/m³ which is almost 1/3rd of normal concrete. Building is analyzed for all zones for earthquake. Load combinations are taken as per IS 456:2000 and earthquake loading is taken as per IS 1893:2002. Load combinations used are listed below:

1.5(DL+LL)
1.5(DL±EQx)
1.5(DL±EQy)
1.5(DL±WLx)
1.5(DL±WLy)
1.2(DL+LL±EQx)
1.2(DL+LL±EQy)
1.2(DL+LL±WLx)

2.1 Fluid Viscous Dampers:

The fluid viscous dampers are hydraulic devices that dissipate the mechanical energy of seismal events and cushion the impact between structures. They're versatile and might be designed to permit free movement in addition as controlled damping of a structure to safeguard from wind load, thermal motion or seismic events. The fluid viscous damper is consisting of oil cylinder, piston, piston rod, lining, medium, pin head and other main parts. The piston may create mutual motion within the oil cylinder. The piston is provided with damping structure and therefore the oil cylinder is jam-packed with fluid damping medium. Once the external stimulation (such as earthquake, wind vibration) reaches to the engineering structure, it'll be deformed and drive the damper to move, which will occur the pressure difference on the different side of the piston. Then the medium can undergo the damping structure and make damping power, which will occur the exchange of power (the mechanical power exchange to heat power). All which will reach the aim of reducing the engineering structure's vibration.
Damper system are designed and made to safeguard structural integrities, management and stop structural damages by fascinating seismic energy and reduces deformations within the structure. Due to easy installation, adaptability, coordination with other members and variety in their sizes, viscous dampers have several applications in planning and retrofitting.

In this project, each building is connected with 6 fluid viscous dampers at alternate floors. Dampers having capacity of 500kN are used. Table showing damper capacity is shown below:

FORCE (kN)	SPHERICAL BEARING BORE DIAMETER (mm)	STROKE (mm)	CLEVIS THICKNESS (mm)	WEIGHT (kg)
250	38.10	±75	43	44
500	50.80	±100	55	98
750	57.15	±100	59	168
1000	69.85	±100	71	254
1500	76.20	±100	77	306
2000	88.90	±125	91	500
3000	101.60	±125	117	800
4000	127.00	±125	142	1088
6500	152.40	±125	154	1930

2.2 Response Spectrum Analysis:

Response spectra are curves plotted between maximum response of system subjected to specified earthquake ground motion and its time period (or frequency). Response spectrum can be interpreted as the locus of maximum response of a system for given damping ratio. Response spectra thus helps in obtaining the peak structural responses under linear range, which can be used for obtaining lateral forces developed in structure due to earthquake thus facilitates in earthquake-resistant design of structures. The three spectra i.e. displacement, pseudo velocity and pseudo acceleration provide the same information on the structural response. However, each one of them provides a physically meaningful quantity and therefore, all three spectra are useful in understanding the nature of an earthquake and its influence on the design. A combined plot showing all three of the spectral quantities is possible because of the relationship that exists between these three quantities.

2.3 Time History Analysis:

The actual method of mixing the various modal contributions is a probabilistic averaging technique and in some cases, results will not represent the actual behaviour of structure. Time history analysis overcomes this. However, it needs massive procedure efforts. The tactic consists of a step by step direct integration in which the time domain is discretized into a number of tiny increments and for every quantity the equation of motion is solved with the displacements and velocities of the previous step serving as initial functions. The tactic is applicable to both elastic and inelastic analyses. In elastic analysis, the stiffness characteristics of structure are assumed to be constant for whole duration of the earthquake. In inelastic analysis, the stiffness is assumed to be constant through the progressive time solely.

The proposed building in Zone V with site condition III is analysed for both response spectrum and time history analysis with time history data of El-Centro earthquake in 1940. The analysis is done for with damper condition and without damper condition also. 5% damping is allowed in the structure. The graphs of Spectral Displacement Vs Period, Pseudo Spectral Velocity Vs Period and Pseudo Spectral Acceleration Vs Period are obtained which are shown in result section.

3. RESULTS:

The proposed building in analyzed in different zones of earthquake and the displacement value of each storey are tabulated for with damper and without damper condition for each zone. Graph 1 shows the displacement values of building in Zone II with site type...
I. Graph 2 shows the displacement values of building in Zone III with site type III. Graph 3 shows the displacement values for Zone IV with site type II and graph 4 shows displacement values for Zone V with site type III.

Table 2: Storey displacement in Zone II (x-direction)

storey	with damper	without damper
top	66.266	79.234
40th	65.392	77.96
39th	64.115	76.563
38th	62.787	75.087
37th	61.397	73.549
36th	59.954	71.944
35th	58.478	70.269
34th	56.919	68.524
33rd	55.357	66.709
32nd	53.686	64.828
31st	52.042	62.884
30th	50.269	60.88
29th	48.551	58.82
28th	46.69	56.707
27th	44.907	54.548
26th	42.974	52.346
25th	41.141	50.107
24th	39.152	47.836
23rd	37.285	45.539
22nd	35.258	43.221
21st	33.373	40.888
20th	31.328	38.545
19th	29.446	36.199
18th	27.405	33.859
17th	25.545	31.533
16th	23.534	29.226
15th	21.718	26.941
14th	19.75	24.68
13th	17.997	22.449
12th	16.093	20.254
11th	14.426	18.102
10th	12.608	15.998
9th	11.054	13.951
8th	9.348	11.968
7th	7.94	10.059
6th	6.377	8.236

Table 3: Story displacement in Zone III (x-direction)

storey	with damper	without damper
top	144.194	172.414
40th	142.293	169.641
39th	139.513	166.601
38th	136.626	163.389
37th	133.599	160.042
36th	130.46	156.549
35th	127.249	152.905
34th	123.855	149.107
33rd	120.457	145.16

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 757
Table 4: Storey displacement in Zone IV (x-direction)

storey	with damper	without damper
top	265.593	317.571
40th	262.092	312.463
39th	256.971	306.865
38th	251.652	300.949
37th	246.078	294.783
36th	240.296	288.35
35th	234.381	281.637
34th	228.131	274.643
33rd	221.872	267.371
32nd	215.173	259.832
31st	208.584	252.038
30th	201.48	244.005
29th	194.592	235.75
28th	187.133	227.283
27th	179.989	218.696
26th	172.239	209.802
25th	164.894	200.829
24th	156.92	191.728
Chart 3(a): Comparison of storey displacement in Zone IV (x-direction)

storey	with damper	without damper
23rd floor	149.437	182.521
22nd floor	141.313	173.23
21st floor	133.761	163.877
20th floor	125.564	154.487
19th floor	118.019	145.086
18th floor	109.838	135.706
17th floor	102.386	126.384
16th floor	94.324	117.14
15th floor	87.046	107.978
14th floor	79.156	98.916
13th floor	72.133	89.976
12th floor	64.499	81.179
11th floor	57.821	72.552
10th floor	50.532	64.121
9th floor	44.306	55.915
8th floor	37.465	47.967
7th floor	31.823	40.316
6th floor	25.559	33.008
5th floor	20.721	26.096
4th floor	15.204	19.644
3rd floor	11.302	13.943
2nd floor	6.987	8.828
1st floor	4.275	4.529
PL	1.193	1.374
GL	0.422	0.176
Base	0	0

Table 5: Storey displacement in Zone V (x-direction)

storey	with damper	without damper
top	430.305	524.387
40th floor	424.678	516.047
39th floor	416.464	506.927
38th floor	407.940	497.3
37th floor	399.004	487.273
36th floor	389.745	476.814
35th floor	380.265	465.902
34th floor	370.256	454.533
33rd floor	360.223	442.712
32nd floor	349.494	430.453
31st floor	338.926	417.775
30th floor	327.539	404.701
29th floor	316.483	391.285
28th floor	304.514	377.458
27th floor	293.033	363.339
26th floor	280.580	348.931
25th floor	268.760	334.265
24th floor	255.925	319.373
23rd floor	243.863	304.289
22nd floor	230.761	289.049
21st floor	218.566	273.687
20th floor	205.320	258.241
19th floor	193.112	242.758
18th floor	179.861	227.285
17th floor	167.779	211.885
16th floor	154.689	196.588
Building in Zone V is again analysed for time history analysis with time history data of El-Centro earthquake in order to compare the difference in spectral acceleration, spectral velocity and spectral displacement of building for with damper and without damper condition. The obtained response spectrum curves having 5% damping are shown below. Table 7 summarizes maximum and minimum values of...
acceleration, velocity and displacement at 0% damping and 0.1% damping.

Characteristics	With damper	Without damper
Pseudo spectral Acceleration (mm/sec²)	4060.08	72.65
Pseudo spectral velocity (mm/sec)	2.35	1485
Spectral displacement (mm)	968.5	1492.238

4. CONCLUSION:

From Table 6 and Table 7 it is observed that by providing dampers overall displacement of building in each zone is considerably reduced. Percentage reduction in displacement for Zone II, Zone III and Zone IV is approximately 16% whereas for Zone V it is approximately 18% for x-direction. On other hand, for y-direction percentage reduction in displacement for Zone II, Zone III and Zone IV is approximately 26% and for Zone V is approximately 28%. From Table 7 it is observed that although having 5% damping in the building the response spectrum characteristics such as pseudo spectral acceleration, pseudo spectral velocity and spectral displacement are much reduced after the application of dampers in the building. For 0% damping, pseudo spectral acceleration is reduced by approximately 44% while for 0.1% damping it is reduced by approximately 11%. It may be possible to increase the percentage reduction in displacement by increasing the capacity of fluid viscous dampers and the dampers are found to be very effective in reducing earthquake responses.

REFERENCES

[1] Pramodini Naik, Satish Annigeri. “Performance Evaluation Of 9 Storey RC Building Located In North Goa.” 11th International Symposium On Plasticity And Impact Mechanics, Implast 2016.

[2] Savita C. Majage, Prof. N. P. Phadtare. “Dynamic Analysis And Design of G+8 Storey RC Structure By Providing Lead Rubber Bearing as Base Isolation System.” International Research Journal of Engineering and Technology. Volume 05 Issue: 08. Aug 2018.

[3] Sayed Mahmoud. “Horizontally Connected High Rise Building Under Earthquake Loading.” Ain Shams Engineering Journal 10 (2019) 227-241.

[4] Ji Dongyu, Li Xiaofen. “Seismic Behaviour Analysis of High Rise Connected Structure.” International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014).

[5] Surendra Chaursiya, Sagar Jamle. “Twin Tower High Rise Building Subjected To Seismic Loading: A Review.” International Journal of Advanced Engineering Research And Science. Vol-6, Issue-4, Apr-2019.

[6] A.V. Bhaskararao, R. S. Jangid. “Seismic Response Of Adjacent Buildings Connected With Dampers.” 13th World Conference on
Earthquake Engineering. Vancouver, B.C., Canada. August 1-6, 2004. Paper No. 3143.

[7] S. Shamshad Begum, Dr. G. Vani. “Analysis of a High Rise Unsymmetrical Building with Dampers Using Etabs.” 2016 Ijsrst, Volume 2, Issue 3.

[8] Wensheng LU and Xilin LU, (2000). “Seismic Modal Test And Analysis Of Multi-Tower High-Rise Buildings.” 12th World Conference on Earthquake Engineering, Pp. 0281.

[9] Bryan Stafford Smith, Alex Couli.“Tall Building Structures, Analysis and Design.”

[10] Bungale S. Taranath. “Structural Analysis and Design Of Tall Buildings.”