Adaptive Fuzzy Vertical Vibration Suppression Control of the Mechanical-Hydraulic Coupling Rolling Mill System With Input Dead-Zone and Output Constraints

CHENG QIAN1,2, LIULIU ZHANG1, CHANGCHUN HUA1, AND ZHENHUA BAI2

1Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China

Corresponding author: Liuliu Zhang (liuliuysu@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1308300, in part by the National Natural Science Foundation of China under Grant 61803326, Grant 618255304, and Grant 61751309, and in part by the 2018 China Post-Doctoral Innovative Talent Support Program under Grant BX20180267.

\begin{abstract}
This paper investigates the adaptive fuzzy vertical vibration suppression control problem for the six-high rolling mill system. Firstly, a new vibration model is established with the consideration of the coupling of mechanical and hydraulic systems and the unknown uncertainty on nonlinear rolling force. Then, the adaptive active control strategy is proposed to suppress chatter of the rolling mill under the input dead-zone and output constraints. The adaptive fuzzy logic systems are used to deal with the unknown nonlinear functions and the unknown system parameters. Based on the designed controller, the mechanical-hydraulic coupling rolling system is proven to be stable and the performance of the displacement of work roll is preserved. Finally, the simulation comparison shows the validity and the advantages of the proposed algorithm.
\end{abstract}

\begin{IEEEkeywords}
Vertical vibration suppression, rolling mill system, mechanical-hydraulic coupling, input dead-zone, output constraints.
\end{IEEEkeywords}

\section{INTRODUCTION}
Vibration often occurs in the high speed rolling process of strip steel \cite{1}–\cite{3}. The categories of vibration mainly include torsional vibration \cite{4}, \cite{5} and vertical vibration \cite{6}, \cite{7}. Especially for vertical vibration, a large amount of energy will be accumulated in a short time, which can lead to thickness fluctuations of the strip as well as the stripes on the surface of the rolled steel products, and even cause the damage of the equipment. To avoid the adverse effects caused by the vibration, the emergency method for the rolling mill vibration control is to slow the rolling speed down \cite{8}, \cite{9}. However, the reduction of rolling speed affects the production efficiency and can not fundamentally solve the problem of rolling mill vibration. Thus, the effective suppression vibration of rolling mill are always in demand.

Due to the complexity and concealment of the causes of rolling mill vibration, it is not easy to identify the source of the vibration. With the detection and analysis of vibration signals, some causes of rolling vibration can be confirmed and the reasonable governance strategies can be managed \cite{10}–\cite{12}. Vibrations caused by equipment damages or assembly problems can be controlled by replacing equipment and installing anti-vibration gaskets \cite{13}. For the vibration caused by non-mechanical reasons, vibration suppression can be achieved by adjusting lubrication parameters \cite{14} or optimizing rolling schedule parameters \cite{15}, \cite{16}. The above methods are mainly used to suppress rolling mill vibration from the aspects of machinery and technology.

Control algorithms are widely applied in different engineering fields \cite{17}–\cite{21}. For torsional vibration control, many significant achievements have been developed in \cite{22}–\cite{24}, which have an effective effect on the suppression of torsional vibration. Nevertheless, there are few researches on the control algorithm of rolling mill vertical vibration.
Based on the analysis of the mechanical structure of rolling mill, [25]–[27] established the vibration models under the unsteady lubrication condition and [28], [29] established nonlinear vibration models with nonlinear friction or nonlinear stiffness, however, no further studies have been conducted on vibration suppression control. From the perspective of the moving strip, the strip vibration dynamics equation was established, and the boundary control was designed to deal with the problems of vibration suppression in [30]. For the vibration of rolling mill mechanical systems, [31] studied the linear and nonlinear feedback controllers to suppress the vibration of rolling mill system caused by Hopf bifurcation. Combining mechanical and hydraulic systems, [32] and [33] established linear 2-DOF (degree of freedom) coupling chatter models for 4-high rolling mill system and designed the corresponding robust vibration suppression controllers.

On the other hand, the displacement of roll needs to be limited for the sake of product quality and equipment safety during the rolling process. In addition, dead-zone input nonlinearity is a nonsmooth function that characterizes the certain nonsensitivity for small control inputs which is often encountered in electro-hydraulic servo valve. The output constraints and dead-zone input control methods of nonlinear systems have been investigated in many researches. For example, [34], [35] investigated the output constraints for strict feedback nonlinear systems by choosing the proper nonlinear state transformation, and by introducing the logarithm and tangent barrier Lyapunov function, the output constraints-based adaptive control algorithms were proposed for uncertain nonlinear systems in [36], [37]. By modeling the dead-zone input as a combination of a linear term and a disturbance-like term, [38]–[40] studied the memoryless controllers for the strict feedback nonlinear system with unknown asymmetric dead-zone input. However, these factors have not been considered in the rolling vertical vibration system.

Inspired by the above motivations, the adaptive fuzzy chatter suppression strategy for the mechanical-hydraulic coupling rolling mill system with input dead-zone and output constraints is investigated in this paper. The contributions of this article are as follows:

i). Compared with [32], [33], by considering the displacement of the hydraulic cylinder and the force between the backup roll and the hydraulic cylinder, the mechanical-hydraulic coupling vibration model for 6-high rolling mill is established in this paper, moreover, the system parameters are uncertain, making the rolling chatter model more realistic.

ii). The performance constraints of the displacement of work roll are considered for 6-high rolling mill vertical vibration suppression control to improve the attenuation performance of the rolling chatter. The attenuation rate of the chatter, the allowable displacement of work roll and the steady state error are limited to a certain range.

iii). Based on the design frame of backstepping, an adaptive fuzzy chatter suppression controller is proposed for the non-lower triangular rolling vertical vibration system subject to input dead-zone and output constraints, which can suppress the vibration effectively and ensure the stability of the system.

The rest of the paper is organized as follows. In Section II, the mechanical-hydraulic coupling vibration modeling of the rolling mill is given. The problem description of this paper is given in Section III. Then, the adaptive fuzzy chatter suppression control is designed for rolling mill vertical vibration system in Section IV. In Section V, the simulation shows the effectiveness of the proposed method. Finally, the paper is concluded in Section VI.

II. MATHEMATICAL MODELING

In the rolling process, the pressure of the hydraulic cylinder is controlled by the displacement of the servo valve spool of the hydraulic system, and then the roll gap is adjusted to achieve stable strip rolling. However, the thickness of the strip will fluctuate when the rolling mill is unstable, and its essence reason is the work roll jump up and down during the rolling process. The key to suppress the vertical vibration of the rolling mill is to guarantee the stability of the work roll displacement. In order to facilitate the modeling of the rolling mill vibration, it is assumed that the upper roll system and the lower roll system of the rolling mill are symmetrical along the strip [32], [33]. Therefore, only the upper roll system and the hydraulic system are studied. Thus, the mechanical-hydraulic coupling system of the rolling mill can be simplified as shown in Fig.1, where \(m_1, m_2, m_3 \) are the equivalent mass of work roll and bearings, intermediate roll and bearings, backup roll and bearings, respectively. \(A_1 \) is the area of the piston, \(A_2 \) is the effective working area of the rod chamber. \(P_1 \) is the working pressure of rodless chamber, \(P_2 \) is the working pressure of the rod chamber, \(P_s \) is the supply pressure, \(P_3 \) is the return pressure. With the method of lumped mass, the mechanical-hydraulic coupling vibration system can be simplified as a mass-spring-damping system in Fig.2, where \(k_1, k_2, k_3 \) are the equivalent stiffness between work roll and intermediate roll, intermediate roll and

![Figure 1. Schematic diagram of mechanical-hydraulic coupling system of rolling mill.](image_url)
From the flow characteristics of the servo valve, k_q is satisfied with $0 < k_q \leq \dot{k}_q \leq \ddot{k}_q$ and $k_q, \dot{k}_q, \ddot{k}_q$ are unknown positive constants.

Finally, the mechanical-hydraulic coupling model can be described by the following set of equations:

$$
\begin{align*}
 m_1 \ddot{x}_1 &= F_z (x_1, \dot{x}_1) - k_1 (x_2 - x_1) - c_1 (\dot{x}_2 - \dot{x}_1) \\
 m_2 \ddot{x}_2 &= k_1 (x_2 - x_1) + c_1 (\dot{x}_2 - \dot{x}_1) - k_2 (x_3 - x_2) \\
 &\quad - c_2 (\dot{x}_3 - \dot{x}_2) \\
 m_3 \ddot{x}_3 &= k_2 (x_3 - x_2) + c_2 (\dot{x}_3 - \dot{x}_2) - k_3 (x_4 - x_3) \\
 &\quad - c_3 (\dot{x}_4 - \dot{x}_3) \\
 m_4 \ddot{x}_4 &= P_2 A_2 - P_1 A_1 + k_3 (x_4 - x_3) + c_3 (\dot{x}_4 - \dot{x}_3) \\
 k_q u &= A_1 \dot{x}_4 + C_1 (P_1 - P_2) + \frac{V}{\beta_e} \dot{P}_1
\end{align*}
$$

where m_4 is equivalent mass of hydraulic cylinder and piston, $F_z (x_1, \dot{x}_1)$ is the unknown nonlinear rolling force. During the vertical vibration, the nonlinear rolling force can be described as $F_z (x_1, \dot{x}_1) = F_{1z} + F_{2z} (x_1, \dot{x}_1)$, where F_{1z} is the steady rolling force, F_{2z} is the dynamic rolling force.

Remark 1: The works [25]–[29] established the vibration model just for the mechanical system. The mechanical-hydraulic coupling vibration models for 4-high rolling mill are established in [32], [33], which considered hydraulic cylinder and backup roll as a whole, the characteristics of their contact interface are ignored. Inspired by the above works, a new mechanical-hydraulic coupling model for 6-high rolling mill is proposed in this paper, which considers the interaction relationship between the hydraulic cylinder and the backup roll, moreover, the unknown nonlinear rolling force and system parameters are also considered, making it more general with physical situation.

III. PRELIMINARIES

A. PROBLEM FORMULATION

To facilitate the control design, by defining $[z_1, z_2, \cdots, z_9] = [x_1, \dot{x}_1, x_2, \dot{x}_2, x_3, \dot{x}_3, x_4, \dot{x}_4, P_1]$. The new dynamic systems can be obtained as:

$$
\begin{align*}
 \dot{z}_1 &= z_2 \\
 \dot{z}_2 &= \frac{1}{m_1} (F_z (z_1, z_2) - k_1 (z_3 - z_1) - c_1 (z_4 - z_2)) \\
 \dot{z}_3 &= z_4 \\
 \dot{z}_4 &= \frac{1}{m_2} (k_1 (z_3 - z_1) + c_1 (z_4 - z_2) - k_2 (z_5 - z_3)) \\
 \dot{z}_5 &= z_6 \\
 \dot{z}_6 &= \frac{1}{m_3} (k_2 (z_5 - z_3) + c_2 (z_6 - z_4) - k_3 (z_7 - z_5)) \\
 &\quad - c_3 (z_8 - z_6) \\
 \dot{z}_7 &= z_8 \\
 \dot{z}_8 &= \frac{1}{m_4} \frac{V}{\beta_e} (k_q u - A_1 z_8 - c_1 (z_9 - P_2)) \\
 \dot{z}_9 &= \frac{1}{m_5} \frac{V}{\beta_e} (k_q u - A_1 z_8 - c_1 (z_9 - P_2))
\end{align*}
$$
where u is the control voltage input with the dead-zone constraint, which can be described by

$$u = \begin{cases}
\eta(v - b_r), & v \geq b_r \\
0, & -b_l < v < b_r \\
\eta(v + b_l), & v \leq -b_l
\end{cases},$$

(8)

where the unknown parameters η_l, η_r stand for the right and the left slope of the dead-zone characteristic, b_r, b_l represent the breakpoints of the input nonlinearity. Similarly to [38] and [40], the dead-zone input (8) can be rewritten as follows:

$$u = \eta(t)v + \delta(t)$$

(9)

with

$$\eta(t) = \begin{cases}
\eta_l, & v < 0 \\
\eta_r, & v \geq 0
\end{cases}, \quad \delta(t) = \begin{cases}
-\eta_l b_r, & v \geq b_r \\
-\eta_l v, & -b_l < v < b_r \\
\eta_l b_r, & v \leq -b_l
\end{cases}.$$

Then, one knows that there always exist unknown positive scalars $\bar{\eta}$ and $\bar{\delta}$ such that $\bar{\eta} \leq \min\{\eta_l, \eta_r\}$ and $|\delta(t)| \leq \bar{\delta}$. It should be noted that η and δ are not required in implementation proposed control design. They are used only for analytical purposes.

B. FUZZY LOGIC SYSTEMS

Fuzzy logic systems (FLSs) are found to have a wide range of applications for controllers design of nonlinear systems with precise model unknown in the past years due to the universal approximation capability [41,42]. A fuzzy system is composed of a collection of fuzzy if-then rules:

$$R(i) : \text{If } Z_i \text{ is } A_i^j, \ldots, Z_n \text{ is } A_n^j$$

then y is C^j.

With the fuzzy process, the output of the FLSs can be written as

$$y(z) = \frac{\sum_{i=1}^{l} y^j \left(\prod_{i=1}^{n} \mu_{A_i^j}(Z_i) \right)}{\sum_{j=1}^{l} \prod_{i=1}^{n} \mu_{A_i^j}(Z_i)},$$

where $\mu_{A_i^j}(Z_i)$ is the membership function and y^j is the point where μ_{C^j} obtains the max value.

Introducing the concept of the fuzzy basic function vector $\varphi(Z)$ gives

$$y(Z) = \hat{\theta}^T \varphi(Z),$$

where

$$\varphi(Z) = (\varphi_1(Z), \varphi_2(Z), \ldots, \varphi_l(Z))^T,$$

$$\hat{\theta} = \left(y^1, y^2, \ldots, y^l \right)^T,$$

$$\varphi_j(Z) = \frac{\prod_{i=1}^{n} \mu_{A_i^j}(Z_i)}{\sum_{j=1}^{l} \prod_{i=1}^{n} \mu_{A_i^j}(Z_i)}.$$

According to the universal approximation theorem, there exists $\theta = \arg \min_{\theta \in \Omega_{\theta}} \left(\sup_{Z_i \in \Omega_{Z_i}} \left| \hat{\theta}^T \varphi(Z) - G(Z) \right| \right)$ such that $\theta^T \varphi(Z)$ can approximate function $G(Z)$ over a compact set Ω_Z, where Ω_Z and Ω_{θ} represent the sets of the bounds of Z and θ. The minimum approximation error is defined as

$$e_1(Z) = G(Z(\theta)) - G(Z)$$

where $\|e_1(Z)\| \leq e_1^* + e_1^*$ is a positive constant.

IV. CHATTER SUPPRESSION CONTROLLER DESIGN

In this section, the adaptive fuzzy vertical vibration suppression control design will be proposed for system (6) with input dead-zone and output constraints. For the development of control laws, the following lemmas are proposed at first.

Lemma 1 [37]: For any constant $\varepsilon_2 > 0$ and any variable z, the following relationship holds:

$$0 \leq |z| - \frac{2}{\sqrt{z^2 + \varepsilon_2^2}} \leq \varepsilon_2$$

Lemma 2 [38]: For any constant $\varepsilon_3 > 0$ and any variable v, the following inequality holds:

$$0 \leq |v| - v \tanh \left(\frac{v}{\varepsilon_3} \right) \leq 0.2785\varepsilon_3$$

By using the backstepping algorithm, the design procedure for the rolling chatter system consists of 9 steps according to (7), where the input voltage of servo valve being deduced at the last step. First, the following coordinate transformation is introduced

$$\xi_1 = z_1, \xi_i = z_i - \alpha_{i-1}$$

where $\alpha_i (i = 1, \ldots, 8)$ are the virtual controllers designed later. Then, the whole system can be rewritten as

$$\begin{align*}
\dot{\xi}_1 &= \xi_2 + \alpha_1 \\
\dot{\xi}_2 &= -\frac{k_1}{m_1} (\xi_3 + \alpha_2) + \frac{1}{m_1} (F_{i_1} + F_{i_2}; (z_1, z_2)) + k_1 z_1 - c_1 (z_4 - z_2) - \hat{\alpha}_1 \\
\dot{\xi}_3 &= \xi_4 + \alpha_3 - \hat{\alpha}_2 \\
\dot{\xi}_4 &= -\frac{k_2}{m_2} (\xi_5 + \alpha_4) + \frac{1}{m_2} (k_1 (z_3 - z_1) + c_1 (z_4 - z_2) + k_2 z_3 - c_2 (z_6 - z_4)) - \hat{\alpha}_3 \\
\dot{\xi}_5 &= \xi_6 + \alpha_5 - \hat{\alpha}_4 \\
\dot{\xi}_6 &= -\frac{k_3}{m_3} (\xi_7 + \alpha_6) + \frac{1}{m_3} (k_2 (z_5 - z_3) + c_2 (z_6 - z_4) + k_3 z_5 - c_3 (z_8 - z_6)) - \hat{\alpha}_5 \\
\dot{\xi}_7 &= \xi_8 + \alpha_7 - \hat{\alpha}_6 \\
\dot{\xi}_8 &= \frac{1}{m_4} (P_{i_2} A_2 + k_3 (z_7 - z_5) + c_3 (z_8 - z_6)) - \frac{A_1}{m_4} (\xi_9 + \alpha_8) - \hat{\alpha}_7 \\
\dot{\xi}_9 &= \frac{\beta_{i_2}}{V} (k_4 \eta (t) v + k_9 \delta (t) - A_1 z_8 - c_1 (z_9 - P_2)) - \hat{\alpha}_8
\end{align*}$$

(10)
Step 1: To stabilize the displacement of work roll ξ_1, considering the first Lyapunov function as

\[
V_1 = \frac{\mu^2}{\pi h(\xi_1)} \tan \left(\frac{\pi \xi_1^2 h(\xi_1)}{2 \mu^2} \right)
\]
(11)

where $h(\xi_1) = \frac{b(\xi_1)}{\xi_1^2} + \frac{1-b(\xi_1)}{\xi_1^2}$, $b(\xi_1) = \begin{cases} 0, & \xi_1 < 0, \delta \text{ and } \hat{\delta} \text{ are positive constants}, \\ 1, & \xi_1 \geq 0 \end{cases}$ and δ and $\hat{\delta}$ are prescribed positive constants. The virtual control α_1 is specified as

\[
\alpha_1 = -\gamma_0 \xi_1 - (2\gamma_0 + a_1) \frac{\mu^2}{2\pi \xi_1 h(\xi_1)} \sin \left(\frac{\pi \xi_1^2 h(\xi_1)}{2 \mu^2} \right) - \frac{1}{2} v_1
\]
(12)

where $v_1 = \frac{\dot{\xi}_1}{\cos^2 \left(\frac{\pi \xi_1^2 h(\xi_1)}{2 \mu^2} \right)}$, $\gamma_0 = \sqrt{\left(\frac{\hat{\mu}}{\mu} \right)^2 + \epsilon_1}$, ϵ_1 and a_1 are designed positive parameters.

Remark 2: By choosing the asymmetric tangent barrier Lyapunov function (11), one can find that the displacement of work roll ξ_1 can be strictly constrained within asymmetric upper and lower bounds as follows: $-\delta \mu (t) < \xi_1 < \delta \mu (t)$. Thus, the performance constraints, such as the attenuation rate of chatter, the maximum allowable displacement of work roll, steady state error are all limited to a predetermined range. Moreover, by taking $\hat{\delta} = \delta$ and $\mu (t) \to \infty$, (11) can be simply replaced by the Lyapunov function in quadratic form $V_1 = \frac{1}{2} \dot{\xi}_1^2$ and thus the analysis approach presented in this paper remains the same as the general case without output constraints.

Remark 3: It should be noted that $\lim_{\xi_1 \to 0} \frac{1}{\xi_1^2} \tan \left(\frac{\pi \xi_1^2 h(\xi_1)}{2 \mu^2} \right) \to 0$, thus the term $2(2\gamma_0 + a_1) \frac{\mu^2}{2\pi \xi_1 h(\xi_1)} \sin \left(\frac{\pi \xi_1^2 h(\xi_1)}{2 \mu^2} \right)$ in the controller does not cause the singularity problem. However, in the digital computer, since $(0/0)$ cannot be edited, one can take this term to be 0 when $|\xi_1| < \varrho$ for the small constant ϱ.

Step 2(i = 2, 4, 6): The coordinate transformation ξ_2, ξ_3, ξ_6 will be considered. Choosing the Lyapunov function candidates for step i as

\[
V_i = \frac{1}{2} \xi_i^2 + \frac{1}{2\sigma_i \rho_i} \dot{\rho}_i^2 + \frac{1}{2\sigma_i} \ddot{\rho}_i^2
\]
(13)

and then the virtual controllers α_i are proposed as

\[
\alpha_i = \frac{\xi_i \dot{\xi}_i, \rho_i \ddot{\rho}_i, \ddot{\rho}_i^2}{\xi_i^2 \dot{\rho}_i^2, \alpha_i, \rho_i \ddot{\rho}_i, \ddot{\rho}_i^2}
\]
(14)

and the adaptive laws are selected as

\[
\dot{\rho}_i = \sigma_1 \xi_i, \dot{\alpha}_i - l_1 \dot{\rho}_i,
\]
(15)

\[
\dot{\xi}_i = \frac{\sigma_2 \xi_i^2}{4\tau \psi_i^2 (\bar{\xi}_i) \phi_i (\bar{\xi}_i)} - l_2 \dot{\xi}_i
\]
(16)

where $\alpha_i = \xi_i + a_i \xi_i + \frac{\dot{\theta}_i, \dot{\xi}_i}{4\tau \psi_i^2 (\bar{\xi}_i) \phi_i (\bar{\xi}_i)}$, α_i, τ_i, l_i, s_j ($j = 1, 2$) are designed positive parameters, $\gamma = (\cdot, - (\cdot))$, $\Theta_i = ||\theta_i||^2$, $\rho_2 = \frac{m_2}{\alpha_1}$, $\rho_4 = \frac{m_2}{\alpha_1}$, $\rho_5 = \frac{m_2}{\alpha_1}$, θ_i and ϕ_i are defined in (35-37).

Step 2(2, 3, 5, 7): The dynamics of ξ_1, ξ_5, ξ_7 will be considered in the corresponding steps. Choosing the Lyapunov function candidates as

\[
V_j = \frac{1}{2} \xi_j^2 + \frac{1}{2\sigma_j} \ddot{\theta}_j^2
\]
(17)

and the virtual controllers α_j are designed as

\[
\alpha_j = -\frac{3}{2} \xi_j - a_j \xi_j - \dot{\theta}_j \psi_j (\bar{\xi}_j),
\]
(18)

with the adaptive laws are selected as

\[
\dot{\theta}_j = \sigma_j \xi_j \psi_j (\bar{\xi}_j) - l_j \dot{\theta}_j
\]
(19)

where α_j, l_j, σ_j are designed positive parameters, θ_j and ψ_j are defined in (40).

Step 2(k = 8, 9): For the coordinate transformation ξ_k and ξ_9, the Lyapunov function candidates can be selected as

\[
V_k = \frac{1}{2} \xi_k^2 + \frac{1}{2\sigma_k \rho_k} \dot{\rho}_k^2 + \frac{1}{2\sigma_2} \ddot{\rho}_k
\]
(20)

then, the virtual control α_k and the voltage input v can be proposed as

\[
\alpha_k = \frac{\xi_k \rho_k \ddot{\rho}_k^2}{\sqrt{\xi_k \rho_k^2 \ddot{\rho}_k^2 + \epsilon_2}}
\]
(21)

\[
v = \frac{\xi_k \rho_k^2 \ddot{\rho}_k^2}{\sqrt{\xi_k \rho_k^2 \ddot{\rho}_k^2 + \epsilon_2}}
\]
(22)

with the adaptive laws are designed as

\[
\dot{\rho}_k = \sigma_k \xi_k \rho_k - l_k \dot{\rho}_k
\]
(23)

\[
\dot{\theta}_k = \sigma_k \xi_k \phi_k (\bar{\xi}_k) - l_k \dot{\theta}_k
\]
(24)

where $\bar{\alpha}_k = \xi_k + a_k \xi_k + \ddot{\theta}_k \psi_k (\bar{\xi}_k)$, α_k, s_j, l_j ($j = 1, 2$) are designed positive parameters, $\rho_8 = \frac{m_8}{\alpha_1}$, $\rho_9 = \frac{m_9}{\alpha_1}$, θ_k and ϕ_k are defined in (38-39).

Then, the main result of this paper is as follows.

Theorem 1: Considering the vertical vibration system expressed by (6) subject to the input dead-zone and the output constraints, the dynamic controllers (12), (14), (18) and (21-22) with adaptive laws (15-16), (19), (23-24) render all signals in the vertical vibration system are uniformly ultimately bounded and the displacement of work roll is strictly constrained with asymmetric upper and lower boundaries, thus, the vertical vibration can be suppressed.

Proof: Consider the overall Lyapunov function for system (10) as

\[
V = \sum_{i=1}^{9} V_i
\]
(25)
From (11), (13), (17) and (20), the derivative of V yields

\[
\dot{V} = 2\dot{\mu} V_1 - \mu \xi_1 v_1 + v_1 \dot{\xi}_1 + \sum_{i=2}^{9} \xi_i \dot{\xi}_i \\
- \sum_{i=2,4,6,8,9}^{9} \frac{1}{\sigma_1 \rho_1} \dot{\rho}_1 \dot{\rho}_1 - \sum_{i=2,4,6}^{9} \frac{1}{\sigma_2} \dot{\sigma}_2 \\
- \sum_{i=3,5,7,8,9} \frac{1}{\sigma_{12}} \dot{\sigma}_{12} - \sum_{i=2,4,6} \frac{1}{\sigma_1} \dot{\rho}_1 \dot{\rho}_1 \\
\leq 2\gamma_0 V_1 + \rho_0 \dot{\xi}_1 v_1 + v_1 (\dot{\xi}_2 + \alpha_1) \\
+ \sum_{i=3.5,7} \xi_i (\dot{\xi}_{i+1} + \alpha_i - \dot{\alpha}_{i-1}) \\
+ \dot{\xi}_2 \left(-\frac{k_1}{m_1} (\xi_3 + \alpha_2) + \frac{1}{m_1} (F_{1z} + F_{2z}, z_1, z_2) \right) \\
+ k_1 \dot{z}_1 - c_1 (z_4 - z_2) - \dot{\alpha}_1 \\
+ \dot{\xi}_4 \left(-\frac{k_2}{m_2} (\xi_5 + \alpha_4) + \frac{1}{m_2} (k_1 (z_3 - z_1) + c_1 (z_4 - z_2) - \dot{\alpha}_3) \\
+ \dot{\xi}_6 \left(-\frac{k_3}{m_3} (\xi_7 + \alpha_6) + \frac{1}{m_3} (k_2 (z_5 - z_3) + c_2 (z_6 - z_4) - \dot{\alpha}_3) \\
+ \dot{\xi}_8 \left(-\frac{A_i}{m_4} (\xi_9 + \alpha_8) + \frac{1}{m_4} (P_{2A} k_3 (z_7 - z_5) + c_3 (z_8 - z_6) - \dot{\alpha}_3) \\
+ \dot{\xi}_9 \left(\frac{\beta}{V} (k_q \delta v + k_q \delta (v) - A_1 z_8 \right) \\
- c_1 (z_9 - P_2) - \dot{\alpha}_8) \\
- \sum_{i=2,4,6,8,9} \frac{1}{\sigma_1 \rho_1} \dot{\rho}_1 \dot{\rho}_1 - \sum_{i=2,4,6} \frac{1}{\sigma_2} \dot{\sigma}_2 \\
- \sum_{i=3,5,7,8,9} \frac{1}{\sigma_{12}} \dot{\sigma}_{12} - \sum_{i=2,4,6} \frac{1}{\sigma_1} \dot{\rho}_1 \dot{\rho}_1 \right) \tag{26}
\]

Based on Lemma 1, Lemma 2 and Young’s inequality, the following inequalities are all satisfied

\[
v_1 \dot{\xi}_2 \leq \frac{1}{2} v_1^2 + \frac{1}{2} \dot{\xi}_2^2 \\
- \frac{k_1}{m_1} \dot{\xi}_2 \dot{\xi}_{2i+1} \leq \frac{1}{2} \frac{k_1^2}{m_1^2} \dot{\xi}_2^2 + \frac{1}{2} \dot{\xi}_{2i+1}^2, \quad i = 1, 2, 3 \tag{27}
\]

\[
\dot{\xi}_2 F_{1z} \leq |\dot{\xi}_2| F_{1z} \\
\leq |\dot{\xi}_2| F_{1z} \tanh \left(\frac{\dot{\xi}_2}{\dot{\xi}_{23}} \right) + 0.2785 \xi_{12} F_{1z} \tag{29}
\]

\[
-\frac{A_1}{m_4} \dot{\xi}_8 \dot{\xi}_9 \leq \frac{1}{2} \frac{A_1^2}{m_4^2} \dot{\xi}_8^2 + \frac{1}{2} \dot{\xi}_9^2 \tag{30}
\]

\[
\dot{\xi}_i \dot{\xi}_{i+1} \leq \frac{1}{2} \dot{\xi}_i^2 + \frac{1}{2} \dot{\xi}_{i+1}^2, \quad i = 3, 5, 7 \tag{31}
\]

\[
P_{2A} \frac{\dot{\xi}_2}{m_4} \leq |\dot{\xi}_8| \rho_8 \\
\leq |\dot{\xi}_8| \rho_8 \tanh \left(\frac{\dot{\xi}_8}{\dot{\xi}_{83}} \right) + 0.2785 \xi_{83} \rho_8 \tag{32}
\]

\[
\frac{\beta}{V} (k_q \delta (v) + c_1 P_2) \leq |\dot{\xi}_9| \rho_9 \\
\leq |\dot{\xi}_9| \rho_9 \tanh \left(\frac{\dot{\xi}_9}{\dot{\xi}_{93}} \right) + 0.2785 \xi_{93} \rho_9 \tag{33}
\]

where $\rho_9 = \frac{m_2}{P_2 A_2 \rho_3} = \frac{\beta}{V} k_q \delta^2 + \frac{\beta}{V} c_1 P_2$.

For $i = 2, 4, 6, 8$, the following inequalities can be obtained based on Lemma 1

\[
-\frac{1}{\rho_i} |\dot{\xi}_i | \rho_i \leq -\frac{1}{2} \frac{1}{\rho_i} \frac{\xi^2}{\dot{\rho}_i} \tag{34}
\]

then, the similar result can be obtained for terms $\frac{\beta}{V} \xi_9 V$ when $i = 9$.

The following unknown smooth functions can be approximated by the FLSs in each step

\[
-\frac{1}{2} \frac{k_1^2}{m_1^2} \xi_2 + \frac{1}{m_1} \left(F_{1z} \tanh \left(\frac{\dot{\xi}_2}{\dot{\xi}_{23}} \right) + F_{2z}, z_1, z_2 \right) \\
- c_1 (z_4 - z_2) - \dot{\alpha}_1 = \theta \psi_2 (Z_2) + \epsilon_{21} \tag{35}
\]

\[
-\frac{1}{2} \frac{k_2^2}{m_2^2} \xi_4 + \frac{1}{m_2} \left(k_1 (z_3 - z_1) + c_1 (z_4 - z_2) + k_2 z_3 \right) \\
- c_2 (z_6 - z_4) - \dot{\alpha}_3 = \theta \psi_4 (Z_4) + \epsilon_{41} \tag{36}
\]

\[
-\frac{1}{2} \frac{k_3^2}{m_3^2} \xi_6 + \frac{1}{m_3} \left(k_2 (z_5 - z_3) + c_2 (z_6 - z_4) + k_3 z_5 \right) \\
- c_3 (z_8 - z_6) - \dot{\alpha}_5 = \theta \psi_6 (Z_6) + \epsilon_{61} \tag{37}
\]

\[
\frac{1}{2} \frac{A_1^2}{m_4^2} \xi_8 + \frac{1}{m_4} \left(k_3 (z_7 - z_5) + c_3 (z_8 - z_6) \right) \\
+ \rho_8 \tanh \left(\frac{\dot{\xi}_8}{\dot{\xi}_{83}} \right) - \dot{\alpha}_7 = \theta \psi_8 (Z_8) + \epsilon_{81} \tag{38}
\]

\[
\frac{\beta}{V} (\dot{A}_1 z_8 - c_1 z_9) + \rho_9 \tanh \left(\frac{\dot{\xi}_9}{\dot{\xi}_{93}} \right) - \dot{\alpha}_8 \\
= \theta \psi_9 (Z_9) + \epsilon_{91} \tag{39}
\]

\[
-\dot{\alpha}_{i-1} = \theta \psi_i (Z_i) + \epsilon_{i1}, \quad i = 3, 5, 7 \tag{40}
\]

Since $0 < \psi_i^2 (Z_i) \psi_i (Z_i) \leq 1$, by using Young’s inequality, one can obtain the following inequalities for $i = 2, 4, 6, 8$

\[
\xi_i (\theta \psi_i (Z_i) + \epsilon_{i1}) \leq \frac{\theta_i e_{i1}^2}{4 \epsilon_i \psi_i (Z_i) \psi_i (Z_i)} + \frac{1}{2} \dot{\xi}_i^2 + \frac{1}{2} \dot{e}_{i1}^2 + \epsilon_i \tag{41}
\]

Finally, substituting (12), (14-16), (18-19), (21-24), (27-42) into (26) and with $l (\gamma) \leq -\frac{l}{2} \gamma^2 + \frac{1}{2} \sqrt{\gamma}$, the time derivative of V is

\[
\dot{V} \leq -aV + O \tag{43}
\]
TABLE 1. Simulation parameters of mechanical-hydraulic coupling system.

Parameter	Value	Parameter	Value
m_1	4.549×10^5 kg	A_2	3.015×10^{-2} m2
m_2	6.898×10^5 kg	C_0	0.62
m_3	7.791×10^5 kg	C_i	5×10^{-16}
m_4	1.21×10^5 kg	ρ	872 kg/m3
k_1	7.2×10^8 N/m	w	0.119 m
k_2	6.16×10^8 N/m	β_1	7.8×10^4 Pa
k_3	3.03×10^5 N/m	V	0.0732 m3
c_1	1.2×10^6 N·s/m	P_0	1×10^6 Pa
c_2	3.6×10^6 N·s/m	P_0	2×10^5 Pa
c_3	1.4×10^6 N·s/m	K_v	1.25×10^{-4} m/v
A_1	19.635×10^{-2} m2		

where $a = \min(2\sigma_1, \ldots, 2\sigma_8, \frac{l_1}{\sigma_1}, \frac{l_2}{\sigma_2}, \frac{l_1}{\sigma_1}, \frac{l_2}{\sigma_2}, i = 2, 4, 6, j = 3, 5, 7, k = 8, 9)$. $O = \sum_{i=2,4,6,8,9} \frac{i^2}{m_i} + \sum_{i=2,4,6} \tau_i + \frac{l_1}{\sigma_1} \rho_i^2 + \frac{l_2}{\sigma_2} \theta_i^2 + \sum_{j=3,5,7} \frac{l_2}{\sigma_2} \theta_j^2 \theta_i + \sum_{k=8,9} \left(0.2785 \varepsilon_{k3} \rho_k^2 + \frac{l_2}{\sigma_2} \theta_k^2 \theta_i + \sum_{j=2} \frac{i^2}{\sigma_1} \rho_k^2 + 0.2785 \varepsilon_{k3} F_{11} \right)$. Then, according to Lyapunov stability criterion, the results of this paper can be obtained and the proof is completed.

V. SIMULATION RESULTS

The vibration suppression algorithm proposed in this paper is applied in the 650mm cold rolling mill to verify the effectiveness. The simulation parameters are shown in Table 1. The input dead-zone of the servo valve voltage can be described by

$$u = \begin{cases}
(v - 0.2), & v \geq 0.2 \\
0, & -0.5 < v < 0.2 \\
2(v + 0.5), & v \leq -0.5
\end{cases}$$

The performance constraints functions are selected as $-2(5e^{-2} + 0.1) < z_1 < 2(5e^{-2} + 0.1)$ according to the actual working condition. Based on the control design procedure in section IV, the control laws and the corresponding adaptive laws can be derived as (12), (14-16), (18-19) and (21-25) with $e_1 = 0.1, a_i = 10, e_2 = 0.1, i = 1, \ldots, 9, j = 1, 2$, $\tau_i = 0.5 (i = 2, 4, 6), e_{k3} = 0.05 (k = 2, 8, 9)$. The initial values are selected as $[z_1, \ldots, z_9] = [1, 2, 0, 0, 0, 0, 0, 0, -2]$, $[\hat{\theta}_i (i = 2, 4, 6, 8, 9), \hat{\theta}_j (j = 2, 4, 6), \hat{\theta}_{k3} (k = 3, 5, 7, 8, 9), l = 1, \ldots, 9] = [0, \ldots, 0]$. The fuzzy membership functions are chosen as follows:

$$
\mu_{A_i^1} (z_i) = e^{-\frac{(z_i - 0)^2}{2}}, \quad \mu_{A_i^2} (z_i) = e^{-\frac{(z_i - 0)^2}{2}}, \\
\mu_{A_i^3} (z_i) = e^{-\frac{(z_i - 0)^2}{2}}, \quad \mu_{A_i^4} (z_i) = e^{-\frac{(z_i - 0)^2}{2}}, \\
\mu_{A_i^5} (z_i) = e^{-\frac{(z_i + 0)^2}{2}}, \quad \mu_{A_i^6} (z_i) = e^{-\frac{(z_i + 0)^2}{2}}, \\
\mu_{A_i^7} (z_i) = e^{-\frac{(z_i + 0)^2}{2}}, \quad \mu_{A_i^8} (z_i) = e^{-\frac{(z_i + 0)^2}{2}}, \\
\mu_{A_i^9} (z_i) = e^{-\frac{(z_i + 0)^2}{2}}, \quad \mu_{A_i^9} (z_i) = e^{-\frac{(z_i + 0)^2}{2}},
$$

The simulation results are shown in Figs.3-6. From Fig.3, the displacement of the work roll with performance constraints can be satisfied under the designed controller, and the vertical vibration of the rolling mill can be suppressed effectively. To illustrate the improved performance with the
proposed schemes, the displacement of the work roll under the control of general backstepping method without performance constraints is also plotted in Fig.3. It can be observed from the comparison that the system performance including convergence speed, steady state error, and overshoot are all improved. Figs.4-5 show the responses of the displacements and the vibration speeds of rolls and the hydraulic cylinder, from which one can see that they are all stable. According to Fig.6, it can be found that the oil pressure approaches to a stable value.

VI. CONCLUSION

This paper proposed a 4-DOF mechanical-hydraulic coupling vibration mathematical model and studied the vertical vibration suppression control problem for the six-high rolling mill with input dead-zone and output constraints. With the help of the asymmetric tangent barrier Lyapunov function, the adaptive fuzzy vertical vibration controller was designed via backstepping method. It was proved that the mechanical-hydraulic coupling rolling system was stable and the vertical vibration can be suppressed under the developed control law. At the same time, the performance of chatter attenuation can be guaranteed with the designed controller, including the vibration attenuation rate and the maximum allowable work roll displacement and steady-state error are limited to a given range. The simulation results illustrated the effectiveness of the proposed method to reduce the chatter of the rolling mill.

REFERENCES

[1] I. S. Yun, W. R. D. Wilson, and K. F. Ehmann, “Review of chatter studies in cold rolling,” J. Int. Mach. Tools Manuf., vol. 38, no. 12, pp. 1499–1530, Dec. 1998.

[2] V. Panjković, R. Gloss, J. Steward, S. Dilks, R. Steward, and G. Fraser, “Causes of chatter in a hot strip mill: Observations, qualitative analyses and mathematical modelling,” J. Mater. Process. Technol., vol. 212, no. 4, pp. 954–961, Apr. 2012.

[3] M. R. Niroomand, M. R. Forouzan, and A. Heidari, “Experimental analysis of vibration and sound in order to investigate chatter phenomenon in cold strip rolling,” Int. J. Adv. Manuf. Technol., vol. 100, nos. 1–4, pp. 673–682, Jan. 2019.

[4] S. Liu, H. Ai, Z. Lin, and Z. Meng, “Analysis of vibration characteristics and adaptive continuous perturbation control of some torsional vibration system with backlash,” Chaos, Solitons Fractals, vol. 103, pp. 151–158, Oct. 2017.

[5] P. Belli, S. Bittanti, and A. De Marco, “On the origin of torsional vibrations in hot rolling mills and a possible remedy,” J. Dyn. Syst., Meas., Control, vol. 126, no. 4, pp. 811–823, Dec. 2004.

[6] Y. Zang, X. Liu, Z. Gao, and L. Zeng, “Rolling mill chatter mechanism based on the unsteady lubrication performance,” J. Vibroeng., vol. 19, no. 3, pp. 1569–1584, May 2017.

[7] Z. J. Xie, C. G. Xie, and P. Chen, “Analysis and control of chatter marks of strip steel on HC cold rolling mill,” Adv. Mater. Res., vol. 562–564, pp. 895–898, Aug. 2012.

[8] A. Ašvatičioniovičius and O. Bar, “Mathematical modelling of the high frequency vibrations during cold rolling process,” Arch. Metall. Mater., vol. 58, no. 4, pp. 1085–1091, Dec. 2013.

[9] Y. Zang, J. Huang, Z. Gao, and L. Zeng, “Influence of asymmetric structure parameters on rolling mill stability,” J. Vibroeng., vol. 19, no. 7, pp. 4840–4853, Nov. 2017.

[10] Y. M. Shao, X. Deng, Y. L. Yuan, “Characteristic recognition of chatter mark vibration in a rolling mill based on the non-dimensional parameters of the vibration signal,” J. Mech. Sci. Technol., vol. 28, no. 6, pp. 2075–2080, Jun. 2014.
\[34\] C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems,” *Automatica*, vol. 45, no. 2, pp. 532–538, Feb. 2009.

\[35\] L. Zhang, C. Hua, and X. Guan, “Distributed output feedback consensus prescribed performance control for a class of non-linear multi-agent systems with unknown disturbances,” *IET Control Theory Appl.*, vol. 10, no. 8, pp. 877–883, May 2016.

\[36\] Z. R. Chen and Q. Li, “Barrier Lyapunov function-based sliding mode control for BWB aircraft with mismatched disturbances and output constraints,” *IEEE Access*, vol. 7, pp. 175341–175352, 2019.

\[37\] C. Hua, K. Li, Y. Li, and X. Guan, “Decentralized adaptive tracking quantized control for interconnected pure feedback time delay nonlinear systems,” *J. Franklin Inst.*, vol. 355, no. 5, pp. 2313–2328, Mar. 2018.

\[38\] C.-C. Hua and S. X. Ding, “Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs,” *IEEE Trans. Autom. Control*, vol. 56, no. 4, pp. 962–968, Apr. 2011.

\[39\] L. Tang, A. Chen, and D. Li, “Time-varying tan-type barrier Lyapunov function-based adaptive fuzzy control for switched systems with unknown dead zone,” *IEEE Access*, vol. 7, pp. 110928–110935, 2019.

\[40\] Q. Zhou, S. Zhao, H. Li, R. Lu, and C. Wu, “Adaptive neural network tracking control for robotic manipulators with dead zone,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 12, pp. 3611–3620, Dec. 2019.

\[41\] L. Zhang, C. C. Hua, and H. N. Yu, “Adaptive fuzzy distributed containment tracking of multiple nonlinear stochastic pure-feedback systems with local quantized controller and tracking constraint,” *IEEE Trans. Syst. Man Cybern. Syst.*, vol. 49, no. 4, pp. 787–796, Apr. 2019.

\[42\] C. Ge, Y. Shi, J. H. Park, and C. Hua, “State estimate for fuzzy neural networks with random uncertainties based on sampled-data control,” *J. Franklin Inst.*, vol. 357, no. 1, pp. 635–650, Jan. 2020.

CHENG QIAN received the B.S. degree in mechanical engineering from Yanshan University, Qinhuangdao, China, in 2014, where he is currently pursuing the Ph.D. degree in electrical engineering. His research interests are in dynamic modeling, and analysis and control of rolling process.

LIULIU ZHANG received the B.S. and Ph.D. degrees in electrical engineering from Yanshan University, Qinhuangdao, China, in 2012 and 2018, respectively.

She is currently a Lecturer of electrical engineering with Yanshan University. Her research interests include nonlinear control, constraint control, and adaptive control.

CHANGCHUN HUA received the Ph.D. degree in electrical engineering from Yanshan University, Qinhuangdao, China, in 2005.

From 2006 to 2007, he was a Research Fellow with the National University of Singapore. From 2007 to 2009, he worked with Carleton University, Canada, funded by Province of Ontario Ministry of Research and Innovation Program. From 2009 to 2011, he worked with the University of Duisburg-Essen, Germany, funded by the Alexander von Humboldt Foundation. He is currently a Full Professor with Yanshan University. He has been involved in more than 10 projects supported by the National Natural Science Foundation of China, the National Education Committee Foundation of China, and other important foundations. He is the author or coauthor of more than 110 articles in mathematical, technical journals, and conferences. His research interests are in nonlinear control systems, control systems design over networks, teleoperation systems, and intelligent control.

ZHENHUA BAI received the B.S. and Ph.D. degrees in mechanical engineering from Yanshan University, Qinhuangdao, China, in 1997 and 2002, respectively.

He is currently a Professor of mechanical engineering with Yanshan University. He is the (co)author of more than 100 articles. He has been granted more than 70 patents. His research interests are in strip rolling process and equipment design, strip quality control, and modeling of variable thickness rolling.

CHENG QIAN received the B.S. degree in mechanical engineering from Yanshan University, Qinhuangdao, China, in 2014, where he is currently pursuing the Ph.D. degree in electrical engineering.

His research interests are in dynamic modeling, and analysis and control of rolling process.

LIULIU ZHANG received the B.S. and Ph.D. degrees in electrical engineering from Yanshan University, Qinhuangdao, China, in 2012 and 2018, respectively.

She is currently a Lecturer of electrical engineering with Yanshan University. Her research interests include nonlinear control, constraint control, and adaptive control.

CHANGCHUN HUA received the Ph.D. degree in electrical engineering from Yanshan University, Qinhuangdao, China, in 2005.

From 2006 to 2007, he was a Research Fellow with the National University of Singapore. From 2007 to 2009, he worked with Carleton University, Canada, funded by Province of Ontario Ministry of Research and Innovation Program. From 2009 to 2011, he worked with the University of Duisburg-Essen, Germany, funded by the Alexander von Humboldt Foundation. He is currently a Full Professor with Yanshan University. He has been involved in more than 10 projects supported by the National Natural Science Foundation of China, the National Education Committee Foundation of China, and other important foundations. He is the author or coauthor of more than 110 articles in mathematical, technical journals, and conferences. His research interests are in nonlinear control systems, control systems design over networks, teleoperation systems, and intelligent control.

ZHENHUA BAI received the B.S. and Ph.D. degrees in mechanical engineering from Yanshan University, Qinhuangdao, China, in 1997 and 2002, respectively.

He is currently a Professor of mechanical engineering with Yanshan University. He is the (co)author of more than 100 articles. He has been granted more than 70 patents. His research interests are in strip rolling process and equipment design, strip quality control, and modeling of variable thickness rolling.