Simple and Highly Discriminatory VNTR-Based Multiplex PCR for Tracing Sources of Aspergillus flavus Isolates

Dong Ying Wang1,2, Leila Hadji-Henni2, Simon Thierry2, Pascal Arné3, René Chermette3, Françoise Botterel4, Inès Hadrich5, Fattouma Makni5, Ali Ayadi5, Stéphane Ranque6,7, Wei Yi Huang1, Jacques Guillot3

1 Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China, 2 ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France, 3 ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France, 4 UPE, Laboratoire de Santé Animale, UMR BIPAR, Créteil, France, 5 Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia, 6 Aix-Marseille Université, UMR MD3, Marseille, France, 7 APHM, Timone, Laboratoire de Parasitologie-Mycologie, Marseille, France

Abstract

Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat) markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8) of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis) technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.

Introduction

Members of the genus Aspergillus are ubiquitous filamentous fungi widely distributed in the environment. About 250 species have been described but only a few (about 20) have been reported to cause opportunistic infections in humans and animals. The most important pathogens in this genus are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Emericella nidulans (anamorph: Aspergillus nidulans) [1]. Aspergillus fungi release large amounts of airborne asexual spores (conidia). As a result of its ubiquitous presence, people and animals are constantly exposed to Aspergillus conidia, which can lead to colonisation, allergic manifestations or invasive infection depending on host immunity. Birds are considered to be much more susceptible than mammals [2]. Respiratory aspergillosis remains a major cause of morbidity and mortality in turkey poults in large confinement houses, quails, marine birds that are brought into rehabilitation, captive raptors, and mortality in turkey poults in large confinement houses, quails, and penguins being maintained in zoological parks [3,4]. In Europe and North America, the majority of human and animal aspergillosis are caused by Aspergillus fumigatus [1,5,6]. The second most frequent pathogenic species is A. flavus [7,8]. In many countries from the Middle East, Africa and Southeast Asia however, A. flavus is the principal Aspergillus species causing human invasive forms of aspergillosis but also sinusitis, keratitis, endophthalmitis and cutaneous infections [9–12]. In a recent epidemiological survey in avian farms in the South of China (Guangxi Province), we demonstrated that A. flavus was the major airborne filamentous fungus isolated from air, eggshells and the respiratory tract of birds. The species A. flavus is also known to cause environmental aflatoxin contamination, particularly in maize and peanuts, which leads to substantial economic loss worldwide [13].

Tracking the sources of contamination is essential to prevent A. flavus infection in humans or animals. For that purpose, molecular tools have been proposed [14] but the number of techniques validated for A. flavus is much lower than that currently used for A. fumigatus in hospitals or animal facilities.

The Multiple Locus Variable-number tandem-repeat Analysis (MLVA) is based on polymorphism of tandemly repeated genomic sequences called VNTR (Variable-Number Tandem-Repeat). VNTRs are classically separated into microsatellites (up to 8 bp) and minisatellites (9 bp and more) [15]. The MLVA technique has been used for the genotyping of many bacterial pathogens. It allows resolving closely related isolates for the investigation of disease outbreaks and provides information on the phylogenetic patterns among isolates [16–18]. The usefulness of MLVA was recently demonstrated for A. fumigatus [19]. The MLVA technique
can be performed with simple electrophoretic equipment and the judicious association of several VNTR primers in a single reaction tube may considerably reduce the number of PCRs required for a single isolate.

The objective of the present study was to develop a new typing method based on the detection of VNTRs in the filamentous fungus, *A. flavus*.

Materials and Methods

Origin of Fungal Isolates

In order to develop a scheme for MLVA and select discriminant VNTR markers, a total number of 36 *A. flavus* geographically or temporally unrelated isolates were selected. Thirty isolates were collected from the environment, from the pharynx or the respiratory tract of birds or from human cases of aspergillosis. Six reference strains (UMIP20.65, UMIP954.67, UMIP597.69, UMIP855.64, UMIP1145.76 and NRRL3357) were also included. To test the MLVA technique, a second group of 55 isolates was examined. These isolates represented distinct epidemiological situations: (i) 41 isolates from avian farms in Southern China and (ii) 14 isolates from human cases of invasive aspergillosis in Tunisia.

Aspergillus isolates were microscopically identified after cultivation on Malt Agar plates at 37°C until conidia formation. For all isolates, the species identification was confirmed by amplification and sequencing of partial *β*-tubulin gene using primer set βtub1 and βtub2 [20,21].

DNA Isolation

For each isolate, conidia were collected from the pure culture and transferred into a microtube for extraction. DNA extraction was performed with QIAamp DNA miniKit (Qiagen) according to the manufacturor’s instructions.

Selection of VNTR Markers

The availability of sequences of *A. flavus* (strain NRRL3357) (http://www.aspergillusflavus.org/) allowed us to identify exhaustively tandem-repeat sequences using the Tandem Repeat Finder on-line software (http://tandem.bu.edu/trl/trl.html) [22]. Loci with tandem repeats consisting of more than 20 nucleotides and more than 3 repeats were selected. Primers were designed using Primer Express® 2.0 software (Applied Biosystems). PCR were performed in a total volume of 15 μl containing 1–5 ng of DNA, 1x mixed buffer and 0.5 μM of each primer. The initial denaturation step at 95°C for 10 min was followed by 35 cycles consisting of denaturation at 95°C for 40 s, primer annealing at 61°C for 40 s, and elongation at 72°C for 40 s. The final extension step was at 72°C for 10 min. Six microliters of amplification product were loaded onto a 2% standard agarose gel. Gels stained with ethidium bromide were visualized under UV light, and the number of repeats in each allele was derived from the amplicon size. The size of flanking sequences was subtracted from the band size and the number was divided by the repeats size. The result of this calculation corresponded to the number of repeats. Data were analyzed with BioNumerics software package version 6.5 (Applied-Maths, Saint-Martens-Latem, Belgium) as a character dataset. Two different techniques were used to represent the relationships between isolates [18]: a phenogram using phenetic UPGMA method and a graphing algorithm termed Minimum Spanning Tree (MST). The priority rule for constructing MST was set in order that the type that had the highest number of single-locus variants (SLVs) would be linked first. A cutoff value of maximum differences of one VNTR out of 8 was applied to define cluster in the MST method.

Results and Discussion

The use of the Tandem Repeat Finder software allowed the detection of 24 tandem-repeat loci (with a repeat unit larger than 20 bp) within the genome of *A. flavus*. Out of 24 tandem-repeat loci, 14 had a homology of more than 90% between the different repeats and a number of repeats higher than 3. Only 8 loci were finally deemed suitable for genotyping because they displayed variation (more than 3 alleles among the 36 tested isolates) and were present in all the isolates. Final markers were located on 6 different chromosomes (1, 2, 3, 5, 7 and 8). Characteristics of final VNTRs and respective primer sets are listed in table 1. For multiple MLVA analysis, 4 pairs of markers were finally chosen: the combinations of AFL2-66 and AFL3-236, AFL1-75 and AFL5-66, AFL5-81 and AFL8-135, AFL7-57 and AFL7-78. These combinations allowed a clear and unambiguous separation of amplicons on agarose gels. Multiple (more than 2)-bands patterns were never detected.

When VNTR primer sets were tested with DNA from *A. fumagatus*, *A. niger* and *A. nidulans* no amplification was observed. On the contrary with DNA from *Aspergillus* species from the Flavi section, amplification was obtained with 4 to 5 out of 8 markers (AFL1-75, AFL2-66, AFL5-66 and AFL8-135 for *A. parasiticus* and *A. oryzae*, AFL1-75, AFL2-66, AFL3-236, AFL7-78 and AFL8-135 for *A. tamarii*). As a consequence, the observation of 8 amplicons following the combination of 8 VNTRs should be considered as specific of *A. flavus* and 3 markers (AFL1-75, AFL2-66 and AFL8-135) may be specific of the section Flavi.
The 35 samples (5 isolates subcultured 7 times in 2 months) used for the evaluation of stability were typed by MLVA and yielded exactly the same MLVA pattern for each isolate. The 50 samples used for the evaluation of reproducibility (25 isolates tested by 2 different technicians in 2 different laboratories) yielded exactly the same MLVA pattern.

Simpson diversity index was first calculated for each VNTR and for the panel of 8 markers tested on the 30 unrelated isolates and 6 reference strains. The index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all of 8 markers yielded an index of 0.998.

A total number of 91 A. flavus isolates, including 6 reference strains were typed with the panel of 8 VNTRs. This analysis yielded 78 different genotypes, which corresponds to a combined loci index of 0.993. Among all genotypes, 71 were only found once. Five genotypes were shared by two isolates, one genotype was shared by three isolates and one genotype was shared by 7 isolates. Analysis of the details of those isolates in a single genotype revealed that 7 of them were isolated from eggshells in May and June 2010 in the same avian farm in China (farm A). Three isolates collected from eggshells and pharyngeal swabs (in laying hens) from the same farm shared a single but distinct genotype. Two isolates from another avian farm in China (farm B) shared a single genotype. The same situation was detected for two pairs of isolates collected in a hospital in Tunisia: one genotype corresponded to two isolates collected in bronchoalveolar lavages (from two different patients) and another one corresponded to two isolates collected from nasal swabs (from two distinct patients). More surprisingly, two unrelated isolates (one isolate from an avian farm in Nanning, China and the reference strain UMIP597.69) shared the same genotype. Although an identical genotype can occur by chance in unrelated isolates, a probable explanation for this result is that a contamination occurred during subculture.

UPGMA analysis did not allow a clear clustering of the isolates (data not shown) whereas the graphing algorithm termed Minimum Spanning Tree (MST) demonstrated one major cluster of isolates (figure 1). This cluster comprised 19 out of 32 isolates collected in the avian farm A in Guilin, China. Additional but smaller clusters could be defined for isolates collected in the hospital in Sfax or from avian farm B in China.

In a recent review, Hadrich et al. [14] listed the different molecular techniques, which have been tested so far for the typing of A. flavus or for the distinction between the clades or species within the Flavi section. Various DNA fingerprinting systems have been described such as restriction fragment length polymorphism (RFLP) [24–26], random amplified polymorphic DNA (RAPD) [27,28], amplified fragment length polymorphism (AFLP) [29] and, very recently, microsatellite length polymorphism (MLP) [30–
of these typing techniques were developed in order to resolve closely related isolates for the purposes of outbreak investigation in hospitals and disease surveillance in humans. In only one study [31], the genetic markers (24 microsatellite loci and the mating type locus) were used to assess population structure and potential gene flow among A. flavus vegetative sympatrically from the same patients generally yielded to the isolation of different A. flavus genotypes. In further investigations a larger number of A. flavus isolates should be examined to obtain a precise comparison between MLVA and microsatellite typing techniques.

In conclusion, we developed a new molecular typing method for A. flavus based on the study of 8 VNTR markers. Size differences between alleles of the selected VNTRs were large enough to allow a multiplex amplification and further efficient differentiating on agarose gel. This makes the present MLVA scheme easy to implement in laboratories with basic molecular biology equipment. The method showed a good reproducibility, which could be increased by the production of an internal ladder (including an example of each allele amplicon size). The MLVA was shown to be rapid and very discriminant. The VNTR patterns were incorporated in a specific database [http://minisatellites.u-psud.fr/MLVAnet/]. On this website, it is now possible to compare A. flavus VNTR patterns using complete panel of 8 markers or just a selection of them. This database also allows to build dendrograms with the query [33].

Author Contributions
Conceived and designed the experiments: JG PA RC FB WYH. Performed the experiments: DYW LHH ST. Analyzed the data: DYW LHH ST JG PA RC FB WYH. Contributed reagents/materials/analysis tools: IH FM AA SR. Wrote the paper: JG DYW PA RC SR ST.

References
1. Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26: 781–803.
2. Tell LA (2005) Aspergillus in mammals and birds: impact on veterinary medicine. Med Mycol Suppl 1, S71–73.
3. Beerman LA, Psamm F, Van Waverenberghe L, Hairebeuf F, Martel A (2010) Aspergillus infections in birds: a review. Avian Pathol 39: 325–331.
4. Arné P, Thierry S, Wang D, Deville M, Le Loch G, et al. (2011) Aspergillus flavus in poultry. Intern J Microbiol 746536. Epub 2011 Jun 14.
5. Balajee SA, Kano R, Baddeley JW, Moser SA, Marr KA, et al. (2009) Molecular identification of A. flavus: species collected for the transplant-associated infection surveillance network. J Clin Microbiol 47: 3130–3141.
6. Lorholasty O, Gangneux JP, Sibston K, Lebrua B, de Monbrison F, et al. (2011) Epidemiological trends in invasive aspergillosis in France: the SINEF network (2002–2007). J Clin Microbiol Infect 17: 1892–1899.
7. Krishan S, Manavathu EK, Chandrasekar PH (2009) Allergic Aspergillus flavus rhinosinusitis: a case report from Qatar. Eur Arch Otorhinolaryngol 266: 331–335.
8. Helyayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiol 153: 1677–1692.
9. Roehrs J, Cardwell F (2003) The cost of mycotoxin management to the USA: management of aflatoxin in the United States. J Toxicol 22: 139–152.
10. Hadrich I, Makni F, Neji S, Cheikhrouhou F, Sellami H, et al. (2011) A review of molecular typing methods for Aspergillus flavus isolates. Mycopathol 172: 83–93.
11. Veenovand G, Dancesl F (2003) Minisatellites: mutability and genome architecture. Genome Res 10: 899–907.
12. Schools LM, de la Heide HG, Vauterin L, Vauterin P, Moos FR (2004) Multiple locus variable-number tandem repeat analysis of Dutch Botulinum serovars strains reveals rapid genetic changes with clonal expansion during the 1995 outbreak. Appl Environ Microbiol 70: 5496–5503.
13. Top J, Schools LM, Bonten MJM, Willems RJL (2004) Multiple-Locus Variable-Number Tandem Repeat Analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 42: 4503–4511.
14. Wang YW, Watanabe H, Phung DC, Tung SK, Lee YS, et al. (2009) Multilocus variable-number tandem repeat analysis for molecular typing and phylogenetic analysis of Shigella flexneri. BMC Microbiol 9: 270.
15. Thirby S, Wang D, Arné P, Deville M, de Bruijn B, et al. (2010) Multiple-locus variable-number tandem repeat analysis for molecular typing of Aspergillus fumigatus. BMC Microbiol 10: 315.
16. Balajee SA, Gribshoj JL, Hanley E, Nickle D, Marr KA (2005) Aspergillus fumigatus ap. nov., a new sibling species of A. fumigatus. Eukaryot Cell 3: 625–632.
17. Balajee SA, Nickle D, Varga J, Marr KA (2006) Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell 5: 1703–1712.
18. Benson G (1998) Tandem repeats finder: a program to analyze DNA sequences. Nuc Acids Res 27: 573–580.
19. Hunter PR, Gaston MA (1980) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 20: 2493–2495.
20. Moody SF, Tyler BM (1996) Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group. A. flavus, A. paracoccidioides, and A. niger. Appl Environ Microbiol 56: 2441–2452.
21. James MJ, Lasker BA, McNeil MM, Shielon M, Warnock DW, et al. (2000) Use of a repetitive DNA probe to type clinical and environmental isolates of Aspergillus flavus from a cluster of cutaneous infections in a neonatal intensive care unit. J Clin Microbiol 38: 3612–3618.
22. Bagyalakshmi R, Therese KL, Madhavan RN (2007) Nucleotide polymorphisms associated with Intra Transcribed Spacer (ITS) regions of ocular isolates of Aspergillus flavus. J Microbiol Methods 68: 1–10.
23. Heinemann S, Symoens F, Gortts B, James H, Nolan N (2004) Environmental investigations and molecular typing of Aspergillus flavus during an outbreak of postoperative infections. J Hosp Infect 57: 149–155.
24. Midorikawa GE, Pinheiro MR, Vidigal BS, Arruda MC, Costa FF, et al. (2008) Aspergillus flavus infections in a hematology unit. J Clin Microbiol 46: 2396–2401.
25. Grothens LC, Costy PJ (2010) Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Mol Ecol 19: 269–280.
26. Sudramurthy SM, de Valk HA, Chakrabarti A, Meis JGFM, Klauwse CHW (2011) High Resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites. PLoS One 6: e16086. doi:10.1371/journal.pone.0016086.
27. Gruss I, Bouchon P, Pourcel G, Vergnaud G (2008) On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochim 90: 660–668.

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e44204