Jyh-Hsiung Huang,
Cheng-Fen Yang, Chien-Ling Su,
Shu-Fen Chang, Chia-Hsin Cheng,
Sheng-Kai Yu, Chien-Chou Lin,
and Pei-Yun Shu

Author affiliation: Centers for Disease Control,
Taipei, Taiwan, Republic of China

DOI: 10.3201/eid1511.090398

References

1. Powers AM, Braut AC, Tesh RB, Weaver SC. Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81:471–9.
2. Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88:2363–77. DOI: 10.1099/vir.0.82588-0.
3. Shu PY, Yang CF, Su CL, Chen CY, Chang SF, Tsai KH, et al. Two imported chikungunya cases, Taiwan. Emerg Infect Dis. 2008;14:1326–7.
4. Yergolkar PN, Tandale BV, Arankalle VA, Jadhav SC, Murri S, Frangeul L, Vaney MC, et al. Comparative full genome analysis revealed E1:A226V shift in 2007 Indian chikungunya virus isolates. Virus Res. 2008;135:36–41. DOI: 10.1016/j.virusres.2008.02.004.
5. Pouillot R, Bessaud M, Tock F, et al. Chikungunya virus, Cameroon, 2006. Emerg Infect Dis. 2007;13:768–71.
6. Bonilauri P, Bellini R, Calzolari M, Angelini L, Venturi L, Fallacara F, et al. Chikungunya virus in Aedes albopictus, Italy. Emerg Infect Dis. 2008;14:852–4. DOI: 10.3201/eid1405.071144.
7. Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteyan I, et al. Aedes albopictus mosquito: the main vector of the 2007 chikungunya outbreak in Gabon. PLoS One. 2009;4:e4691. DOI: 10.1371/journal.pone.0004691.
8. Sathe PS, Sudeep AB, Gandhe SS, et al. Animal reservoirs for chikungunya virus isolates from India. Virus Res. 2008;135:36–41. DOI: 10.1016/j.virusres.2008.02.004.
9. de Lamballerie X, Leroy E, Charrel RN, Murri S, Frangeul L, Vaney MC, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3:e263. DOI: 10.1371/journal.pmed.0030263.

Cutaneous Larva Migrans Acquired in Brittany, France

To the Editor: Hookworm-related cutaneous larva migrans is a parasitic dermatosis caused by the penetration of larvae, mostly of a dog or cat hookworm, into the epidermis of humans (1,2). This eruption is most commonly found in tropical and subtropical areas but was recently reported from western Europe, including Germany (3,4), England (5,6), Scotland (7), and southern France (8). We report a patient from the Netherlands who acquired hookworm-related cutaneous larva migrans while on a holiday in Brittany, France.

A previously healthy 40-year-old man from the Netherlands traveled to Brittany, France, to visit from September 1 to September 15, 2008. He and his partner slept in tents, sometimes camping rough (not on private property), and they stayed in low-budget hotels. They spent a lot of time on several beaches along the Atlantic Ocean on the southern shore of Brittany (±48°N). The weather during their stay was variable. The patient was frequently bitten by mosquitoes, especially on his feet. He had not traveled to the tropics before and did not own any pets.

After his return to the Netherlands, the area around 2 presumed mosquito bites at the lateral side of his right foot became red, swollen, and itchy. This area evolved into a 1-cm pustule that later turned into a bulla. On November 10, he visited his general practitioner, who made a diagnosis of cellulitis and started the patient on amoxicillin/clavulanic acid 625 mg, 3×/day for 10 days. During antimicrobial drug treatment, skin inflammation improved, but after 2 days the patient noticed that an itching red streak had developed, extending from the lesions on the lateral side of the right foot to the whole width of the sole of the foot. The tip of the streak proceeded along the sole of the foot at the rate of 2 cm/day. On the fifth day, he was referred to our Tropical Diseases outpatient clinic.

Physical examination showed 2 elevated, ulcerative lesions on the lateral side of the right foot, and from each originated an elevated serpiginous lesion (Figure, panels B and C). These were typical tortuous lesions 2 cm in width. One of the lesions ran across the whole sole of the right foot and was 14 cm in length (Figure, panels A and C). The medial end of the lesion was fervently erythematous. Based on clinical signs, we diagnosed the skin lesion as hookworm-related cutaneous larva migrans with secondary impetiginization. The patient was subsequently treated with a single oral dose of 12 mg ivermectin. The itch and the progression of the lesion halted instantly and the lesion disappeared during the following weeks. The larva was not extirpated and thus not further identified.

Hookworm-related cutaneous larva migrans is usually caused by Ankylostoma brasiliense, A. caninum or, rarely, Uncinaria stenocephala. These zoonotic hookworms need a high temperature and a moist environment to develop from an embryo to filariforme larva (1,2). Hookworm-related cutaneous larva migrans is typically a disorder of tropical and subtropical zones and it is rather common among tourists who visit tropical beaches. This was the first patient we had seen with this disease who became infected in west-
ern Europe. Apart from an exception-
ally hot day on August 30 (maximum
26°C), the weather was not particu-
larly warm during the summer of 2008
in Brittany; during the first 2 weeks of
September the average minimum and
maximum temperatures were 11°C
and 17°C, respectively. Rainfall was
moderate and humidity was ≈86% (9).
However, the overall warmer climate,
including warmer winters, might have
created the conditions for zoonotic
hookworm infections in humans in
western Europe (10).

Our patient may have been in-
fected by U. stenocephala, a nematode
of dogs that is common in temperate
zones but rarely causes hookworm-
related cutaneous larva migrans. An
increase in ambient temperature might
increase the incidence of these zoonot-
ic infections in northern regions. Only
4 cases of hookworm-related cutane-
ous larva migrans were previously
reported in France, all from south-
ern regions (8). A northern spread of
hookworm-related cutaneous larva
migrants could thus point to expansion
of the global distribution of the more
tropical hookworms or altered condi-
tions that favor the emergence of in-
festation by a zoonotic hookworm such
as U. stenocephala. Either explana-
tion calls for screening of infection in
cats and dogs and preventing pet animals
and possibly stray animals from ac-
tessing beaches. Clinicians should be
aware of the possibility of hookworm-
related cutaneous larva migrans in
patients who have traveled to western
Europe and, in particular, those who
have stayed on the beaches.

Acknowledgments

We thank the Department of Medi-
cal Photography and Illustration of the
Academic Medical Center, Amsterdam for
providing the photographs.

Nienke Tamminga,
Wouter F.W. Bierman,
and Peter J. de Vries

Author affiliations: Academic Medical Cen-
ter, Amsterdam, the Netherlands (N. Tam-
minga, W.F.W. Bierman, P.J. de Vries);
University Medical Center Groningen, Gron-
ingen, the Netherlands (N. Tamminga); and
VU University Medical Center, Amsterdam
(W.F.W. Bierman)

DOI: 10.3201/eid1511.090261

References

1. Heukelbach J, Feldmeier H. Epidemiolog-
ical and clinical characteristics of hook-
worm-related cutaneous larva migrans.
Lancet Infect Dis. 2008;8:302–9. DOI:
10.1016/S1473-3099(08)70098-7
2. Hochdez P, Caumes E. Hookworm-relat-
ed cutaneous larva migrans. J Travel Med.
2007;14:326–33. DOI: 10.1111/j.1708-
8305.2007.00148.x
3. Kienast A, Bialik R, Hoeger PH. Cutane-
ous larva migrans in northern Germany.
Eur J Pediatr. 2007;166:1183–5. DOI:
10.1007/s00431-006-0364-0
4. Klose C, Mravak S, Geb M, Bienzle U,
Meyer CG. Autochthonous cutaneous
larva migrans in Germany. Trop Med Int
Health. 1996;1:503–4. DOI: 10.1046/
j.1365-3156.1996.d01-86.x
5. Diba VC, Whitty CJ, Green T. Cutane-
ous larva migrans acquired in Britain.
Clin Exp Dermatol. 2004;29:555–6. DOI:
10.1111/j.1365-2230.2004.01592.x
6. Roest MA, Ratnavel R. Cutaneous larva
migrans contracted in England: a remind-
er. Clin Exp Dermatol. 2001;26:389–90.
DOI: 10.1046/j.1365-2230.2001.00841.x
7. Beattie PE, Fleming CJ. Cutaneous larva
migrans in the west coast of Scotland.
Clin Exp Dermatol. 2002;27:248–9. DOI:
10.1046/j.1365-2230.2002.00982.x
8. Zimmermann R, Combemale P, Piens
MA, Dupin M, Le Coz C. Cutaneous larva
migrans, autochthonous in France. Apro-
pos of a case [in French]. Ann Dermatol
Venereol. 1995;122:711–4.
9. Weather in Brest, France, from Septem-
ber 1st to 15th, 2008 [cited 2009 Jan 25].
Available from http://weeronline.nl/euro-
stdf.htm.
European Perspective of 2-Person Rule for Biosafety Level 4 Laboratories

To the Editor: Recently, the directors of Biosafety Level 4 (BSL-4) laboratories in the United States published their views of the requirement of having ≥2 persons present at all times while biological work is undertaken in a BSL-4 laboratory (1). They concluded that safety and security would be better assured in some situations by video monitoring systems rather than by the presence of a fellow scientist. As members of the European Network of Biosafety Level-4 laboratories (Euronet-P4) who have developed guidelines in this area (2–4), we discussed the article during a recent network meeting. Biosafety and biosecurity are the major concerns for all involved in BSL-4 activities, and we support the authors’ initiative and broadly agree with their position. The consensus among European BSL-4 experts is that, in the interest of safety, standard practice should be for all laboratories to perform a risk assessment before any activity is undertaken. This preliminary assessment is the best way to determine procedures to be used, including whether 2 persons should work together as part of the laboratory procedure. A 2-person rule is inappropriate simply because the best approach is not to have inflexible rules that are not objectively assessed according to laboratory-specific circumstances.

Surveillance video monitoring and data storing have their place in protecting laboratory facilities from unauthorized access and theft of materials, but their effectiveness for ensuring proper handling of pathogens is quite limited. Finally, we agree with the authors that both biosafety and biosecurity must be founded on careful selection and monitoring of staff, without which even the most sophisticated of control systems would fail.

Giuseppe Ippolito, Carla Nisii, Antonino Di Caro, David Brown, Robin Gopal, Roger Hewson, Graham Lloyd, Stephan Gunther, Markus Eickmann, Ali Mirazimi, Tuja Koivula, Marie-Claude Georges Courbot, Hervé Raoul, and Maria R. Capobianchi

Author affiliations: National Institute for Infectious Diseases, Rome, Italy (G. Ippolito, C. Nisii, A. Di Caro, M.R. Capobianchi); Health Protection Agency, London, UK (D. Brown, R. Gopal); Health Protection Agency, Salisbury, UK (R. Hewson, G. Lloyd); Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany (S. Gunther); Institute of Virology, Marburg, Germany (M. Eickmann); Swedish Institute for Infectious Disease Control, Solna, Sweden (A. Mirazimi, T. Koivula); and French National Institute for Health and Medical Research, Lyon, France (M.-C. Georges Courbot, H. Raoul)

DOI: 10.3201/aid1511.091134

References

1. Le Duc JW, Anderson K, Bloom ME, Carrion R Jr, Feldmann H, Fitch JP, et al. Potential impact of a 2-person security rule on Biosafety Level 4 laboratory workers. Emerg Infect Dis [cited 2009 Jul 28]. Available from http://www.cdc.gov/EID/content/15/7/e1.htm DOI: 10.3201/eid1507.081523

2. The European Network of P4 Laboratories 2005–2007 [Euronet-P4]. Brussels: European Commission; 2008 [cited 2009 Jul 28]. Available from http://ec.europa.eu/health/ph_projects/2003/action2/action2_2003_19_en.htm and www.euronetp4.eu

3. Ippolito G, Nisii C, Capobianchi MR. Networking for infectious-disease emergencies in Europe. Nat Rev Microbiol. 2008;6:564. DOI: 10.1038/nrmicro1896-1c

4. Nisii C, Castilletti C, Di Caro A, Capobianchi MR, Brown D, Lloyd G, et al. The European Network of P4 Laboratories: enhancing European preparedness for new health threats. Clin Microbiol Infect. 2009 May 28 [Epub head of print].

Multidrug-Resistant Mycobacterium tuberculosis Strain from Equatorial Guinea Detected in Spain

To the Editor: Eleven years of molecular epidemiologic data allowed the Spanish Multidrug-resistant Tuberculosis (MDR TB) Surveillance Network to identify a specific MDR Mycobacterium tuberculosis strain that had been imported into Spain from Equatorial Guinea (1). Our study brings to light the potential dissemination of this strain (named MDR-TBEG) in Equatorial Guinea, a country where little is known about the extent and features of TB or MDR TB. It also highlights that MDR strains can spread across continents, and thus MDR TB’s emergence in any country becomes a global problem.

Ten MDR M. tuberculosis isolates obtained from 10 patients from Equa-