H₃P⁺⁻⁻⁻AgI: generation by laser-ablation and characterization by rotational spectroscopy and ab initio calculations†

Susanna L. Stephens, David P. Tew, Nicholas R. Walker and Anthony C. Legon

The new compound H₃P⁺⁻⁻⁻AgI has been synthesized in the gas phase by means of the reaction of laser-ablated silver metal with a pulse of gas consisting of a dilute mixture of ICF₃ and PH₃ in argon. Ground-state rotational spectra were detected and assigned for the two isotopologues H₃P⁺⁻⁻⁻¹⁰⁷AgI and H₃P⁺⁻⁻⁻¹²⁹AgI in their natural abundance by means of a chirped-pulse, Fourier-transform, microwave spectrometer. Both isotopologues exhibit rotational spectra of the symmetric-top type, analysis of which led to accurate values of the rotational constant B₀, the quartic centrifugal distortion constants D₂ and D₀, and the iodine nuclear quadrupole coupling constant eQq. Ab initio calculations at the explicitly-correlated level of theory CCSD(T)(F12*)/aug-cc-pVDZ confirmed that the atoms P⁻⁻⁻Ag–I lie on the C₃ axis in that order. The experimental rotational constants were interpreted to give the bond lengths r₀(P⁻⁻⁻Ag) = 2.3488(20) Å and r₀(Ag–I) = 2.5483(1) Å, in good agreement with the equilibrium lengths of 2.3387 Å and 2.5537 Å, respectively, obtained in the ab initio calculations. Measures of the strength of the interaction of PH₃ and AgI (the dissociation energy D₀ for the process H₃P⁺⁻⁻⁻AgI = H₃P⁺⁻⁻⁻AgI and the intermolecular stretching force constant F₀(P⁻⁻⁻AgI) are presented and are interpreted to show that the order of binding strength is H₃P⁺⁻⁻⁻HI < H₃P⁺⁻⁻⁻ICl < H₃P⁺⁻⁻⁻AgI for these metal-bonded molecules and their halogen-bonded and hydrogen-bonded analogues.

1 Introduction

A programme of systematic investigations of small molecules of the type B⁻⁻⁻MX is being conducted, where B is a small Lewis base (e.g. N₂, O₂, H₂O, H₂S, HC≡CH, H₂C=CH₂, cyclopropane or NH₃), M = Cu, Ag or Au, and X = F, Cl or I. The programme has both experimental and theoretical components. The experimental approach is to produce B⁻⁻⁻MX by laser ablation of the metal M in the presence of a gas pulse composed of small amounts of B and a molecular source of halogen atoms X in a large excess of argon. Following supersonic expansion of the product B⁻⁻⁻MX entrained in the carrier gas, its rotational spectrum is observed in isolation at a low effective temperature. Various properties of B⁻⁻⁻MX are available through analysis of the rotational spectrum, namely the angular geometry, the distances r(B⁻⁻⁻M) and r(M-X), the strength of the intermolecular bond B⁻⁻⁻M, and the electric charge redistribution that accompanies formation of B⁻⁻⁻MX. The theoretical component of the investigations involves ab initio calculations at the CCSD(T)(F12*) explicitly correlated level of theory, usually with the largest basis set affordable. These calculations have the advantage of providing accurate properties of the isolated molecule, which can be compared with the experimental results.

Several molecules H₃N⁻⁻⁻MX, where M = Cu or Ag and X = F, Cl or I, have been detected and characterised recently in the gas phase for the first time through their rotational spectra, although H₃N⁻⁻⁻CuCl was identified in the solid state earlier. Each was established to be a symmetric-top molecule, with the N⁻⁻⁻MX nuclei lying on the top (C₃) axis, in the order indicated. To date, analogues of H₃N⁻⁻⁻MX having phosphine instead of ammonia as the Lewis base B have not been identified experimentally, to the best of our knowledge, but several have been the subject of density functional calculations. We report here the rotational spectrum of H₃P⁺⁻⁻⁻AgI and some of its properties derived therefrom.

There is some evidence that molecules B⁻⁻⁻MX (M = Cu, Ag, or Au; X = F, Cl, or I) have geometries that are isomorphic...
with those of their hydrogen-bonded (B···HX, X is a halogen atom)23 and halogen-bonded (B···XY, XY is a dihalogen molecule)24 counterparts, but are more strongly bound and exhibit a greater electric charge rearrangement within the diatomic subunit. Our interest here is to examine the geometry and binding strength of H₃P···AgI and the electric charge redistribution within Ag-I that accompanies its formation. These properties will then be compared with those of the closely related molecule H₃N···CuI,19 with those of their hydrogen-bonded analogues H₃P···HI15 and H₃N···HI16 and with those of their halogen-bonded relatives, H₃P···ICl27 and H₃N···ICl,28.

2 Experimental and theoretical methods

2.1 Detection of the rotational spectrum

A chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer fitted with a laser ablation source was used to observe rotational spectra in the frequency range 6.5 to 18.5 GHz. Detailed descriptions of the spectrometer and laser ablation source are available elsewhere.29,30 A gas sample containing ~4.0% PH₃ and ~1.5% CF₃I in argon was prepared at a total pressure of 6 bar. The sample was pulsed over the surface of a silver rod that was ablated by a suitably timed Nd:YAG laser pulse (wavelength 532 nm, pulse duration 10 ns, pulse energy 20 mJ). Subsequently, the gas pulse expanded supersonically into the vacuum chamber of the spectrometer. The rod was translated and rotated regularly at small intervals to allow each laser pulse (repetition rate of ~1.05 Hz) to impinge on a fresh metal surface and thereby ensure shot-to-shot reproducibility.

The sequence employed to record broadband microwave spectra involves repetition of two steps. The first is polarization of the sample by a microwave chirp that sweeps from 6.5 to 18.5 GHz within 1 µs and the second is recording of the subsequent free induction decay of the molecular emission over a 20 µs time period. This sequence is repeated eight times during the expansion of each gas sample pulse into the spectrometer chamber. The free induction decay (FID) of the polarization is mixed down with the signal from a 19 GHz local oscillator and then digitized by means of a 25 Gs s⁻¹ digital oscilloscope. Each transition is observed as a single peak with full-width at half-maximum (fwhm) ≈ 150 kHz after application of a Kaiser-Bessel digital filter.

2.2 Ab initio calculations

Structure optimizations and counter-poise corrected dissociation energies were calculated using the Turbomole package31 at the CCSD(T)[F12∗] level of theory,32 a coupled-cluster method with single and double excitations, explicit correlation,33 and a perturbative treatment of triple excitations.34 Only valence electrons were included in the correlation treatment. A basis set combination consisting of aug-cc-pVQZ on H and P atoms and aug-cc-pVQZ-PP on Ag and I atoms was used and will be referred to by AVDZ. ECP-10-MDF35,36 and ECP-28-MDF37 were used on Ag and I, respectively, to account for scalar relativistic effects.

For the density fitting approximation used to accelerate the CCSD(T)[F12∗] calculation, the respective de2-QZVPP basis sets were employed for the MP238,39 and Fock40 terms. For the complementary auxiliary basis required for the F12 treatment,31 the aug-cc-pCVQZ MP2 density fitting basis sets were used.39 Quadratic force constants were also calculated at this level of theory. For comparison, the same force constants were calculated with the GAUSSIAN 09 package42 at the MP2 level of theory. A basis set combination consisting of aug-cc-pVTZ on the H and P atoms, and aug-cc-pVTZ-PP on the Ag and I atoms was used in this case.

3 Results

3.1 Determination of spectroscopic constants

The observed spectrum of H₃P···AgI showed evidence of the presence of the two isotopologues H₃P···¹⁰⁷AgI and H₃P···¹⁰⁹AgI, each exhibiting iodine nuclear quadrupole hyperfine structure, as may be seen from consideration of Fig. 1. An iterative least-squares fit of the observed hyperfine frequencies of each isotopologue was conducted using the program PGOPHER, written and maintained by Western.43 The Hamiltonian employed was of the form

$$H = H_R - \frac{1}{6} Q \cdot \mathbf{V} \cdot \mathbf{E}.$$ \hspace{1cm} (1)

where H_R is the usual energy operator appropriate to a semi-rigid symmetric rotator molecule and $-Q \cdot \mathbf{V} \cdot \mathbf{E}$ is the iodine nuclear quadrupole energy operator, in which Q is the iodine nuclear electric quadrupole moment tensor and $\mathbf{V} \cdot \mathbf{E}$ is the electric field gradient tensor at I. The matrix of H was constructed in the coupled symmetric-rotor basis $I + J = F$. The only determinable

![Image](https://example.com/image.png)

Fig. 1 Top panel: (a) broadband spectrum recorded while probing a sample containing CF₃I, Ag and PH₃ (530k FIDs). Some transitions of H₃P···AgI showed evidence of the presence of the two isotopologues H₃P···¹⁰⁷AgI and H₃P···¹⁰⁹AgI, each exhibiting iodine nuclear quadrupole hyperfine structure, as may be seen from consideration of Fig. 1. An iterative least-squares fit of the observed hyperfine frequencies of each isotopologue was conducted using the program PGOPHER, written and maintained by Western.43 The Hamiltonian employed was of the form

$$H = H_R - \frac{1}{6} Q \cdot \mathbf{V} \cdot \mathbf{E}.$$ \hspace{1cm} (1)

where H_R is the usual energy operator appropriate to a semi-rigid symmetric rotator molecule and $-Q \cdot \mathbf{V} \cdot \mathbf{E}$ is the iodine nuclear quadrupole energy operator, in which Q is the iodine nuclear electric quadrupole moment tensor and $\mathbf{V} \cdot \mathbf{E}$ is the electric field gradient tensor at I. The matrix of H was constructed in the coupled symmetric-rotor basis $I + J = F$. The only determinable
spectroscopic constants were the rotational constant B_0, the quartic centrifugal distortion constants D_{ji} and $D_{ji'}$, and the electric field gradient $\chi_{zz}(l) = -eQ_l^2V/\partial a^2 = eQ_{zz}$ (where $Q_{zz} = -e^2V/\partial a^2$ is the electric field gradient along the c'_3 axis direction). The magnetic coupling of the iodine nuclear spin to the molecular rotation can in principle be described by the spin-rotation constant C_{ab} but this constant was too small to be determined from the observed frequencies. Values of the spectroscopic constants from the final cycle of the least-squares fit with PGOPHER are given in Table 1 for the two isotopologues $\text{H}_3\text{P} \cdots ^{107}\text{AgI}$ and $\text{H}_3\text{P} \cdots ^{109}\text{AgI}$ investigated, together with σ_{RMS}, the RMS deviation of the fit, and N', the number of hyperfine components fitted. Spectra simulated using PGOPHER and the final set of spectroscopic constants are shown in Fig. 1. The detailed PGOPHER fits are available as Supplementary Material. The values of σ_{RMS} are satisfactory, given the estimated accuracy of frequency measurement (12 kHz) associated with the chirped-pulse F-T microwave spectrometer.

3.2 Molecular geometry

The facts that the ground-state rotational spectrum of the detected complex of phosphine and argentous iodide is of the symmetric-top type and that the Ag atom is close to the complex centre of mass (see later) mean that the arrangement of the atoms is either $\text{H}_3\text{P} \cdots \text{AgI}$ or $\text{PH}_3 \cdots \text{Ag}$. The second of these is unlikely because $^{109}\text{Ag}^{-1}$ is dipolar in the indicated sense and it is expected that the positive end of the electric dipole would interact with the P non-bonding electron pair, which lies on the c_3 axis of phosphine. This expectation is confirmed by ab initio calculations at the CCSD(T)(F12*)/AVDZ level of theory, which predict that the optimised geometry of $\text{PH}_3 \cdots \text{Ag}$ lies higher in energy by 116 kJ mol$^{-1}$ than that of the $\text{H}_3\text{P} \cdots \text{Ag}$ conformer. The higher energy conformer would not be populated at the low effective temperature (~ 2 K) of the supersonic expansion. The observed conformer is therefore of the general form shown in Fig. 2. The rotational constants $B_0 = C_0$ for the two isotopologues $\text{H}_3\text{P} \cdots ^{107}\text{AgI}$ and $\text{H}_3\text{P} \cdots ^{109}\text{AgI}$ allow only a partial determination of the lengths of the $\text{H} \cdots \text{P}$, $\text{P} \cdots \text{Ag}$ and $\text{Ag} \cdots \text{I}$ bonds and of the angle $\alpha = \angle \text{HPAg}$ (between the $\text{P} \cdots \text{H}$ bond and the c_3 axis) necessary to define the r_0 geometry. The quantities of most interest are $r_0(\text{P} \cdots \text{Ag})$ and $r_0(\text{Ag} \cdots \text{I})$. The ab initio calculations indicate that $r_0(\text{P} \cdots \text{H})$ decreases by 0.0114 Å when phosphine enters the complex and the angle α decreases by 3.94°. We shall assume that the r_0 geometry of phosphine [$r_0(\text{P} \cdots \text{H}) = 1.420003$ Å and angle $\alpha_0 = 122.86°$ obtained by fitting the accurately known B_0 and C_0 using the STRFIT program of Kisiel] changes in the same way as does the r_0 geometry on formation of $\text{H}_3\text{P} \cdots \text{AgI}$. If so, $r_0(\text{P} \cdots \text{H}) = 1.4086$ Å and $\alpha_0 = 118.92°$ are appropriate to PH_3 in the complex. When these values were assumed in a fit of the ground-state principal moments of inertia of $\text{H}_3\text{P} \cdots ^{107}\text{AgI}$ and $\text{H}_3\text{P} \cdots ^{109}\text{AgI}$, the values $r_0(\text{P} \cdots \text{Ag}) = 2.3488$ Å and $r_0(\text{Ag} \cdots \text{I}) = 2.5483$ Å resulted. No errors in these quantities are generated in the fit because two constants are fitted by two parameters. However, calculations reveal the following variations: $\partial r(\text{P} \cdots \text{Ag})/\partial r(\text{P} \cdots \text{H}) = 0.065$, $\partial r(\text{Ag} \cdots \text{I})/\partial r(\text{P} \cdots \text{H}) = 0.005$, $\partial r(\text{P} \cdots \text{Ag})/\partial \alpha = 0.002$ Å deg$^{-1}$, and $\partial r(\text{Ag} \cdots \text{I})/\partial \alpha = 0.0001$ Å deg$^{-1}$. Thus, the length $r_0(\text{Ag} \cdots \text{I})$ is very insensitive to changes to the geometry of PH_3 that might occur when $\text{H}_3\text{P} \cdots \text{Ag}$ is formed. These partial derivatives lead, when the reasonable errors of σ_{RMS} are 0.005 Å and $\sigma_{\text{RMS}} = 1°$ are assumed, to $r_0(\text{P} \cdots \text{Ag}) = 2.3488(20)$ Å and $r_0(\text{Ag} \cdots \text{I}) = 2.5483(1)$ Å. The results from the CCSD(T)(F12*)/AVDZ optimisation of $\text{H}_3\text{P} \cdots \text{Ag}$ are 2.3387 Å and 2.5537 Å, respectively.

The fact that spectroscopic constants have been determined for the isotopologues $\text{H}_3\text{P} \cdots ^{107}\text{AgI}$ and $\text{H}_3\text{P} \cdots ^{109}\text{AgI}$ allows the coordinate Δ_{Ag} to be obtained by the substitution method from the expression

$$\Delta_{\text{Ag}} = \Delta_{\text{P}}/M(\Delta m + M)$$

in which Δ_{P} is the difference in the zero-point moments of inertia of the two isotopologues and $\mu = M\Delta m$, where M is the mass of the parent and Δm is the mass change accompanying the isotopic substitution at Ag. The result is $|\Delta_{\text{Ag}}| = 0.9017(17)$ Å, where the error is estimated from $\delta \alpha = 0.0015/|\alpha|$ as recommended by Costain. The corresponding values for this coordinate implied by the determined r_0 geometry and the ab initio r_0 geometry are 0.9017 Å and 0.9056 Å, respectively.

3.3 Strength of the interaction of H_3P and AgI

There are two common measures of the strength of the interaction of phosphine and silver iodide in $\text{H}_3\text{P} \cdots \text{AgI}$. Both are properties of the one-dimensional potential-energy function associated with variation of the distance $r(\text{P} \cdots \text{Ag})$ when C_{Nm} symmetry is maintained but with structural relaxation at each point (referred to as the dissociation coordinate). The first is the intermolecular stretching quadratic force constant $F_{\text{P} \cdots \text{Ag}}$. The experimental zero-point values of r_1 and r_2 used in the discussion of how to obtain force constant F_{22} from the centrifugal distortion constants $D_{ji'}$ are indicated. The experimental zero-point values of r_1 and r_2 are $r_0(\text{P} \cdots \text{Ag}) = 2.5483(1)$ Å and $r_0(\text{Ag} \cdots \text{I}) = 2.3488(20)$ Å, respectively.

Table 1 Observed spectroscopic constantsa of $\text{H}_3\text{P} \cdots ^{107}\text{AgI}$ and $\text{H}_3\text{P} \cdots ^{109}\text{AgI}$

Spectroscopic constant	$\text{H}_3\text{P} \cdots ^{107}\text{AgI}$	$\text{H}_3\text{P} \cdots ^{109}\text{AgI}$
B_0/MHz	626.01307(23)	624.76423(17)
D_{ij}/kHz	0.03182(89)	0.03238(64)
$D_{ij'}$/kHz	4.46(14)	4.04(10)
$\omega(1)$/MHz	$-733.83(34)$	$-734.54(27)$
σ_{RMS}/kHz	12.0	9.0
N'	88	93

a Numbers in parentheses are one standard deviation in units of the last significant digits. b Standard deviation of the fit. c Number of hyperfine components included in the fit.
The second is the energy, D_e, required to dissociate $\text{H}_3\text{P} \cdots \text{AgI}$ to give PH_3 and AgI at infinite separation, with reactants and products at their equilibrium geometries. The first can be obtained from the experimental centrifugal distortion constants D_j but the second is not available from the present experiments. Both are available from the ab initio calculations.

For weakly bound complexes (such as most hydrogen-bonded complexes $\text{B} \cdots \text{HX}$, where B is a simple Lewis base and X is a halogen atom) it is a good approximation to assume that B and HX are rigid and unchanged in geometry on complex formation. Then $F_{B \rightarrow H}$ can be related to the equilibrium centrifugal distortion constant D_j or D_j' (depending on molecular symmetry) of the complex and the various rotational constants of B, HX and $\text{B} \cdots \text{HX}$, as demonstrated by Novick for the case where B is an atom and by Millen for a wider range of molecules B. For complexes $\text{B} \cdots \text{MX}$, where M is a coinage metal atom, the intermolecular bond can be strong and the approximation that the force constant $F_{\text{B} \rightarrow \text{M}}$ is much smaller than all other stretching force constants is no longer appropriate. To deal with such cases, we have recently described a two-force constant model which relates the quadratic force constants $F_{\text{M} \rightarrow \text{X}}$ and $F_{\text{B} \rightarrow \text{M}}$ (hereafter referred to as F_{11} and F_{22}, respectively) to either D_j or D_j' under the assumption that the contribution of the cross term F_{12} is negligible. The model applies to all complexes of a Lewis base B with any diatomic molecule (e.g. a hydrogen halide HX, a dihalogen XY, or a coinage metal halide MX) as long as the diatomic molecule lies along a symmetry axis of B in the equilibrium geometry. Note that B is assumed rigid, but can be changed in geometry when subsumed into the complex. During the vibrational motion no further change is assumed, however.

The two-force constant model for a symmetric-top molecule such as $\text{H}_3\text{P} \cdots \text{AgI}$ leads (with numbering of the Ag and I atoms and internal coordinates r_1 and r_2 shown in Fig. 2) to the expression

$$hD_j' = \frac{1}{2} \left(\frac{\hbar^2}{(m_{12})^{\frac{2}{9}}} \right) \left\{ (m_1 a_1)^2 (F^{-1})_{11} + (m_1 a_1 + m_2 a_2)^2 (F^{-1})_{22} \right\} \frac{1}{F_{12}} \quad (3)$$

In eqn (3), a_n is an equilibrium principal moment of inertia and the a_n are equilibrium principal axis coordinates of atoms $n = 1$ and 2. The compliance matrix elements $(F^{-1})_{mn}$ are simply $1/F_{mn}$ under the approximations described above. It was shown in ref. 50 that zero-point constants and coordinates can be used in place of equilibrium values to a reasonable approximation. Least-squares fitting of $(F^{-1})_{11}$ and $(F^{-1})_{22}$ simultaneously to the D_j' values of the two isotopologues $\text{H}_3\text{P} \cdots \text{AgI}$ and $\text{H}_3\text{P} \cdots \text{HAgI}$ led to ill-conditioning, however, so instead a fixed value of F_{11} was assumed and F_{22} was fitted. Fig. 3 shows F_{22} plotted as a function of F_{11} for a wide range of values of the latter, with the equilibrium value of the force constant 145.8 N m^{-1} of the free diatomic molecule Ag–I indicated, as calculated from its equilibrium vibrational wavenumber. If it is assumed that F_{11} is unchanged from the equilibrium value in free AgI of 145.8 N m^{-1}, the result is $F_{22} = 122(5) \text{ N m}^{-1}$, where the error is that transmitted from the fit of the D_j' values.

It is also possible to calculate F_{11} and F_{22} ab initio. At the CCSD(T)(F12*)/AVDZ level of theory the results are $F_{11} = 151.1 \text{ N m}^{-1}$ and $F_{22} = 106.8 \text{ N m}^{-1}$. When the D_j' values are fitted by using eqn (3) with F_{11} fixed at 151.1 N m$^{-1}$, the result is $F_{22} = 110(5) \text{ N m}^{-1}$, where the error is that implied by the error in the D_j' values, and is the best present experimental estimate for this quantity. For free AgI at the same level of theory, $F_{11} = 145.9 \text{ N m}^{-1}$ is obtained, in excellent agreement with the experimental equilibrium value of 145.8 N m^{-1}. Thus, F_{11} increases by 3.5% when AgI is incorporated into $\text{H}_3\text{P} \cdots \text{AgI}$. For comparison, the lower level of theory MP2/aug-cc-pVTZ-PP gives $F_{11} = 168.8 \text{ N m}^{-1}$ and $F_{22} = 130.1 \text{ N m}^{-1}$ when using the GAUSSIAN package. The result for free AgI at the same level is $F_{11} = 160.1 \text{ N m}^{-1}$, corresponding to 9.8% overestimation of the experimental equilibrium value. If F_{11} for $\text{H}_3\text{P} \cdots \text{AgI}$ were also overestimated by a similar percentage, the corrected value would be $F_{11} = 153 \text{ N m}^{-1}$, which likewise represents a small increase relative to that of the free molecule.

It has been shown that in the limit of rigid, unchanged B and MX geometries, when F_{11} becomes infinite, eqn (3) reduces to the corresponding Millen expression

$$D_j = 16\pi^2 \mu(m_{12}) \left(\frac{m_B m_X}{m_B m_X} \right) (F^{-1})_{22} \quad (4)$$

in which m_{12} and m_{12} are equilibrium rotational constants of the complex and its components, but zero-point values are used of necessity. In eqn (4), $\mu = m_B m_X/(m_B + m_X)$.

When $B = \text{H}_3\text{P}$ and $MX = \text{AgI}$, a fit of the centrifugal distortion constants D_j of $\text{H}_3\text{P} \cdots \text{AgI}$ and $\text{H}_3\text{P} \cdots \text{HAgI}$ using zero-point rotational constants given in Tables 1 and 2 leads to $F_{22} = 31.3(5) \text{ N m}^{-1}$, which is a very serious underestimate. The reason why becomes clear when the plot of F_{22} as a function of F_{11} is extended to cover a wider range of F_{11} values and unphysical solutions for which F_{22} is negative are included. The result is the rectangular hyperbola shown in Fig. 4. The
horizonal asymptote \((F_{11} = \infty) \) gives \(F_{22} = 31.26 \text{ N m}^{-1} \) and corresponds to the solution when \(\text{AgI} \) is rigid and unperturbed when within \(\text{H}_3\text{P} \cdots \text{AgI} \). The vertical asymptote (108.39 N m \(^{-1} \)) corresponds to the lowest possible value of \(F_{11} \) consistent with the observed \(D_{ij} \). Clearly, any reasonable \(F_{11} \) must lead to a \(F_{22} \) value that is considerably greater than that given by eqn (4).

The other measure of the strength of binding is the dissociation energy defined earlier; it takes the value \(D_e = 116 \text{ kJ mol}^{-1} \) when calculated at the

\[
D_{ij} = \frac{1}{2} \left(r_0(\text{P} \cdots \text{AgI}) - r_0(\text{OH}) \right) \text{Å}^2
\]

value that is considerably greater than that given by eqn (4).

for interpreting such coupling constants, the ionicity \(\kappa \) (or fractional ionic character) of the free AgI molecule is given by

\[
\kappa = 1 - \frac{Z_{\text{Ag}}(\text{I})}{eQ_{\text{I}}^a(3,1,0)}
\]

in which \(Q_{\text{I}}^a(3,1,0) \) is the contribution to the electric field gradient at \(I \) along the \(a \)-axis direction that arises from an electron in \(5p^2 \) orbital.

The product was detected and characterised by means of its

3.4 Electric charge redistribution on formation of \(\text{H}_3\text{P} \cdots \text{AgI} \)

The iodine nuclear quadrupole coupling constant \(Z_{\text{Ag}}(\text{I}) = eq^a_{\text{I}}Q_{\text{I}}^a \) carries information about the electric charge distribution at \(I \) through the electric field gradient \(q_{\text{I}}^a \) along the \(a \)-axis direction at the iodine nucleus. According to the Townes–Dailey model,\(^{13}\)

\[
F_{22} = \frac{2}{\kappa} \left(\frac{1}{\kappa} + \frac{1}{107\text{Ag}} \right) D_e
\]

Fig. 3 The rectangular hyperbola obtained by following the procedure described in the caption to Fig. 3, but with the range of assumed \(F_{11} \) values extended from \(-100 \) to \(+300 \text{ N m}^{-1} \). The negative values of \(F_{11} \) and \(F_{22} \) are unphysical. The asymptote at \(F_{11} = 108.39 \text{ N m}^{-1} \) represents the value of that force constant below which a negative, unphysical value of \(F_{22} \) is required to fit the centrifugal distortion constants \(D_{ij} \). The asymptote at \(F_{22} = 31.26 \text{ N m}^{-1} \) is the value of this force constant in the limit \(F_{11} = \infty \) N m \(^{-1} \), that is when the MX molecule is rigid. It can be shown\(^{50} \) that if both \(\text{PH}_3 \) and \(\text{AgI} \) were rigid and unperturbed on formation of \(\text{H}_3\text{P} \cdots \text{AgI} \) eqn (3) leads to the Millen eqn (4), when equilibrium spectroscopic constants are used in the latter.

4 Conclusions

The new molecule \(\text{H}_3\text{P} \cdots \text{AgI} \) has been synthesized in the gas phase by a laser ablation method in which a pulse of gas mixture consisting of a few per cent each of \(\text{PH}_3 \) and ICF\(_3\), with the remainder Ar, interacts with the plasma produced when silver is ablated by a Nd-YAG laser operating at 532 nm. The product was detected and characterised by means of its

Table 2 Some properties of \(\text{H}_3\text{P} \) and \(\text{AgI} \)

Property	\(\text{H}_3\text{P} \)\(^a\)	\(\text{AgI} \)\(^b\)	\(\text{AgI} \)\(^c\)
\(B_0 \) MHz	133480.1165(17)	1342.99237(7)	1329.61831(7)
\(C_0 \) MHz	117489.4537(77)	-1062.5299(13)	-1062.5230(14)
\(r_0(\text{P} \cdots \text{H})/\text{Å} \)	1.42000\(^d\)	2.546627	2.546617
\(\lambda(\text{HPH})^\text{c} \)	93.345\(^5\)	145.78(3)\(^d\)	145.76(3)\(^d\)

\(^a\) Ref. 44.\(^b\) Ref. 55.\(^c\) Calculated by fitting the zero-point rotational constants using the program STRFIT (ref. 45).\(^d\) Calculated from the equilibrium vibrational wavenumber \(\nu_e \) given in ref. 51 by using the expression \(F_{\text{AgI}} = 4\pi^2\nu_e^2\langle K_{\text{AgI}}^2 \rangle \), where \(\mu_{\text{AgI}} = m_{\text{Ag}}m_{\text{I}}/(m_{\text{Ag}} + m_{\text{I}}) \).
length of the bond and its force constant F_{11} are effectively unchanged.

$H_3N\cdot\text{Cu}$, synthesized and characterised recently by a similar method, is isomeric with $H_3P\cdot\text{AgI}$ and has $r(H\cdot\text{Cu}) = 1.9357(13) \text{ Å}$ and $r(H\cdot\text{I}) = 2.3553(5) \text{ Å}$, the latter representing an increase of only 0.0147 Å relative to the free Cu–I value of 2.34059 Å. The $\text{N}\cdot\text{Cu}$ interaction strength, as measured by $F_{22} = 110(30) \text{ N m}^{-1}$, is similar to that of 110(5) N m^{-1} of $P\cdot\text{AgI}$ in $H_3P\cdot\text{AgI}$, but the $ab\ initio$ value for the other measure of binding strength for $H_3N\cdot\text{Cu}$ ($D_f = 168 \text{ kJ mol}^{-1}$) is significantly larger than that (116 kJ mol^{-1}) of $H_3P\cdot\text{AgI}$. The increase, $\delta_l = 0.14$, in the ionicity of the Cu–I bond when $H_3N\cdot\text{Cu}$ is formed is identical to that observed for $H_3P\cdot\text{AgI}$. We conclude that $H_3P\cdot\text{AgI}$ and $H_3N\cdot\text{Cu}$ are very similar in their properties: both are strongly bound, both have similar changes in the ionicity of the M–I bond when the free MI molecule is subsumed into the complex, but the bond length $r_0(M\cdot I)$ is effectively unchanged in both by this process.

Several complexes involving hydrogen bonds and halogen bonds to ammonia and phosphine have been described elsewhere, namely $H_3P\cdot HI$, $H_3N\cdot HI$, $H_3P\cdot ICl$ and $H_3N\cdot ICl$. All have C_{3v} symmetry, with all atoms but the three H atoms of PH$_3$ or NH$_3$ lying on the C_3^e axis and therefore all are isomeric with $H_3P\cdot \text{AgI}$. The hydrogen-bonded analogues $H_3P\cdot \text{HI}$ and $H_3N\cdot \text{HI}$ have also been discussed in a detailed review, where it is concluded, based on several indirect observations, that there is little evidence of significant charge rearrangement or HI bond lengthening in these two complexes. Both are weakly bound, having quadratic force constants $F_{22} = F_{P\cdot H} \text{ or } F_{N\cdot H}$ of 3.4 N m^{-1} and 7.2 N m^{-1}, respectively. These values are more than an order of magnitude smaller than those of $H_3P\cdot \text{AgI}$ and $H_3N\cdot \text{Cu}$ when $F_{P\cdot Ag}$ or $F_{N\cdot Cu}$ are calculated from the centrifugal distortion constant D_f^e by means of eqn (3), the more accurate method for strongly bound complexes. The related halogen-bonded $H_3P\cdot ICl$ and $H_3N\cdot ICl$ have $F_{22} = F_{P\cdot I} = 20.8 \text{ N m}^{-1}$ and $F_{22} = F_{P\cdot I} = 30.4 \text{ N m}^{-1}$, respectively, when obtained by means of eqn (4).

As indicated earlier, the larger is F_{22} relative to F_{11}, the more serious will be its underestimation when eqn (4) is used. This underestimation is likely to be negligible for $H_3P\cdot \text{HI}$ and $H_3N\cdot \text{HI}$, but it is possible that the values of F_{22} for $H_3P\cdot ICl$ and $H_3N\cdot ICl$ will both be somewhat larger (but only by a few %) than those reported previously. Clearly, the halogen-bonded complexes $H_3P\cdot ICl$ and $H_3N\cdot ICl$ are significantly more strongly bound than the hydrogen-bonded species $H_3P\cdot \text{HI}$ and $H_3N\cdot \text{HI}$ (when using the F$_{22}$ criterion) but less so than $H_3P\cdot \text{AgI}$ and $H_3N\cdot \text{Cu}$. According to a method of estimating electric charge redistribution from the changes in the I and Cl nuclear quadrupole coupling constants, there is a net movement of 0.15e (where e is electronic charge) from Cl to I in ICl when each of $H_3P\cdot \text{ICl}$ and $H_3N\cdot \text{ICl}$ is formed, thereby suggesting similar charge movement to that observed in each of $H_3P\cdot \text{AgI}$ and $H_3N\cdot \text{Cu}$.

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (UK) for a postgraduate studentship awarded to S. L. S. and project funding (EP/G026424/1). N. R. W. and D. P. T. thank the Royal Society for University Research Fellowships. A. C. L. is pleased to acknowledge the University of Bristol for the award of a Senior Research Fellowship.

References

1. S. G. Francis, S. L. Matthews, O. K. Poleschuk, N. R. Walker and A. C. Legon, Angew. Chem., Int. Ed., 2006, 45, 6341–6343.
2. N. R. Walker and M. C. L. Gerry, Inorg. Chem., 2002, 41, 1236–1244.
3. N. R. Walker and M. C. L. Gerry, Inorg. Chem., 2001, 40, 6158–6166.
4. S. G. Batten and A. C. Legon, Chem. Phys. Lett., 2006, 422, 192–197.
5. N. R. Walker, S. G. Francis, S. L. Matthews, J. J. Rowlands and A. C. Legon, Mol. Phys., 2006, 104, 3329–3337.
6. S. L. Stephens, W. Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, J. Chem. Phys., 2012, 136, 064306.
7. S. J. Harris, A. C. Legon, N. R. Walker and D. E. Wheatley, Angew. Chem., Int. Ed., 2010, 49, 181–183.
8. V. A. Mikhailov, F. J. Roberts, S. L. Stephens, S. J. Harris, D. P. Tew, J. N. Harvey, N. R. Walker and A. C. Legon, J. Chem. Phys., 2011, 134, 134305.
9. N. R. Walker, D. P. Tew, S. J. Harris, D. E. Wheatley and A. C. Legon, J. Chem. Phys., 2011, 134, 014307.
10. S. L. Stephens, D. P. Tew, N. R. Walker and A. C. Legon, J. Mol. Spectrosc., 2011, 267, 163–168.
11. S. L. Stephens, W. Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, J. Chem. Phys., 2012, 137, 174302.
12. S. L. Stephens, D. M. Bittner, V. A. Mikhailov, W. Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, Inorg. Chem., 2014, 53, 10722–10730.
13. D. P. Zaleski, S. L. Stephens, D. P. Tew, D. M. Bittner, N. R. Walker and A. C. Legon, Phys. Chem. Chem. Phys., 2015, 17, 19230–19237.
14. J. C. Mullaney, S. L. Stephens, D. P. Zaleski, M. P. Sprawling, D. P. Tew, N. R. Walker and A. C. Legon, J. Phys. Chem. A, 2015, 119, 9636–9643.
15. S. L. Stephens, D. P. Tew, V. A. Mikhailov, N. R. Walker and A. C. Legon, J. Chem. Phys., 2011, 135, 024315.
16. D. P. Zaleski, J. C. Mullaney, D. M. Bittner, D. P. Tew, N. R. Walker and A. C. Legon, J. Chem. Phys., 2015, 143, 164314.
17. V. A. Mikhailov, D. P. Tew, N. R. Walker and A. C. Legon, Chem. Phys. Lett., 2010, 499, 16–20.
18. D. M. Bittner, D. P. Zaleski, S. L. Stephens, D. P. Tew, N. R. Walker and A. C. Legon, J. Chem. Phys., 2015, 142, 144302.
19. D. M. Bittner, S. L. Stephens, D. P. Zaleski, D. P. Tew, N. R. Walker and A. C. Legon, Phys. Chem. Chem. Phys., 2016, 18, 13638–13645.
20. G. Margraf, J. W. Bats, M. Bolte, H.-W. Lerner and M. Wagner, Chem. Commun., 2003, 956.
21. M. A. Carvajal, J. J. Novoa and S. Alvarez, J. Am. Chem. Soc., 2004, 126, 1465–1477.
22. B. Assadollahzadeh and P. Schwerdtfeger, Chem. Phys. Lett., 2008, 462, 222–228.
23 A. C. Legon and D. J. Millen, Chem. Soc. Rev., 1987, 16, 467–498.
24 A. C. Legon, Angew. Chem., Int. Ed. Engl., 1999, 38, 2686–2714.
25 A. C. Legon and G. J. Luscombe, J. Chem. Soc., Faraday Trans., 1991, 87, 507–512.
26 A. C. Legon and D. Stephenson, J. Chem. Soc., Faraday Trans., 1992, 88, 761–762.
27 J. B. Davey, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 2000, 2, 2265–2269.
28 E. R. Waclawik and A. C. Legon, Phys. Chem. Chem. Phys., 1999, 1, 4695–4700.
29 S. L. Stephens and N. R. Walker, J. Mol. Spectrosc., 2010, 263, 27–33.
30 D. P. Zaleski, S. L. Stephens and N. R. Walker, Phys. Chem. Chem. Phys., 2014, 16, 25221–25228.
31 Turbomole V7.0 (a development of Universität Karlsruhe (TH) and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com, 2015).
32 C. Hättig, D. P. Tew and A. Köhn, J. Chem. Phys., 2010, 132, 231102.
33 C. Hättig, W. Klopper, A. Köhn and D. P. Tew, Chem. Rev., 2012, 112, 4–74.
34 K. Raghavachari, G. W. Trucks, J. A. Pople and M. A. Head-Gordon, Chem. Phys. Lett., 1989, 157, 479–483.
35 K. Peterson and C. Puzzarini, Theor. Chem. Acc., 2005, 114, 283–296.
36 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866–872.
37 K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys., 2003, 119, 11113–11123.
38 A. Hellweg, C. Hättig, S. Höfener and W. Klopper, Theor. Chem. Acc., 2007, 117, 587–597.
39 C. Hättig, Phys. Chem. Chem. Phys., 2005, 7, 59–66.
40 F. Weigend, J. Comput. Chem., 2008, 29, 167–175.
41 E. F. Valeev, Chem. Phys. Lett., 2004, 395, 190–195.
42 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
43 PGOPHER, a program for simulating rotational structure, designed by C. M. Western, University of Bristol, version 6.0.202, 2010. Available at http://pgopher.chm.bris.ac.uk.
44 A. V. Burenin, Mol. Phys., 1992, 75, 305–309.
45 Z. Kisiel, J. Mol. Spectrosc., 2003, 218, 58–67.
46 C. C. Costain, J. Chem. Phys., 1958, 29, 864.
47 C. C. Costain, Trans. Am. Crystallogr. Assoc., 1966, 2, 157–164.
48 S. E. Novick, J. Mol. Spectrosc., 1977, 68, 77–80.
49 D. J. Millen, Can. J. Chem., 1985, 63, 1477–1479.
50 D. M. Bittner, N. R. Walker and A. C. Legon, J. Chem. Phys., 2016, 144, 074308.
51 F. J. Lovas, E. Tiemann, J. S. Coursey, S. A. Kotochigova, J. Chang, K. Olsen and R. A. Dragoset, NIST Diatomic Spectral Database (created 12 September 2009; updated 12 December 2014), http://www.nist.gov/pml/data/msd-di/.
52 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
53 C. H. Townes and B. P. Dailey, J. Chem. Phys., 1955, 23, 118.
54 W. Gordy and R. L. Cook, in Microwave Molecular Spectra, ed. A. Weissberger, Techniques of Chemistry, Wiley, New York, 1984, ch. XIV, Table 14.5, p. 752.
55 S. G. Batten, A. G. Ward and A. C. Legon, J. Mol. Struct., 2006, 780–781, 300–305.
56 A. C. Legon, Chem. Soc. Rev., 1993, 22, 153–163.
57 A. C. Legon, Chem. Phys. Lett., 1999, 314, 472–480.