Trends and variations in outpatient coprescribing of simvastatin or atorvastatin with potentially interacting drugs in Thailand

Thananan Rattanachotphanit, Chulaporn Limwattananon and Onanong Waleekhachonloet

Abstract

Background: The aim of this study was to assess trends and variations in coprescribing of simvastatin or atorvastatin with interacting drugs in Thailand.

Methods: Outpatient prescriptions between 2013 and 2015 in 26 tertiary care hospitals were analyzed for statin coprescribing. The proportion of patients exposed to coprescribing was estimated for semi-annual changes, using a time-series analysis and for hospital variations, using an interquartile range (IQR).

Results: The coprescribing of simvastatin with all contraindicated drugs in 10 university and 16 general hospitals, respectively, was 3.6 and 3.1% in 2013, then decreased to 3.2 and 2.6% in 2014 and to 2.6 and 2.0% in 2015. The drug most frequently coprescribed with simvastatin, on a decreasing trend (by 0.19 percentage points) was gemfibrozil (in 2013, 2014 and 2015, respectively; 2.9, 2.3 and 2.0% in university hospitals, and 2.5, 2.0 and 1.6% in general hospitals). A similar trend was found in atorvastatin-gemfibrozil coprescribing. Patients coprescribed simvastatin with the rest of the contraindicated drugs were relatively stable at 0.6–0.8%. No protease inhibitors were coprescribed with simvastatin and atorvastatin. The IQR of simvastatin coprescribing in the university hospitals was smaller than that in the general hospitals and decreased over time.

Conclusions: Coprescriptions potentially leading to drug interactions with simvastatin in Thailand were observed although the contraindicated drugs were acknowledged. Mutual awareness among health professionals and the implementation of electronic prescribing should be strengthened as zero drug interaction was possible as in the case of protease inhibitors in the present study.

Keywords: contraindications, drug interactions, hospitals, myopathy, outpatients, simvastatin

Introduction

Cardiovascular diseases, the leading causes of serious complications and mortality have been expected to rise due to aging population, increasing patients with diabetes, and increasing risk factors of atherosclerotic cardiovascular disease (ASCVD). Statins are strongly recommended for primary and secondary prevention of cardiovascular diseases in patients with an ASCVD risk. Evidence from clinical trials shows that statins are well tolerated, however, statin-induced myopathy has been recognized.\(^1\) It can present with a variety of findings such as myalgia, myositis, asymptomatically increased creatine kinase, and rhabdomyolysis. Rhabdomyolysis is a rare event (0.02–0.05 per 1000 person-years) compared with muscle symptoms (0.1 per 1000 person-years), but it is fatal.\(^2\)–\(^5\) Many patients have known risk factors for
statin-induced myopathy, including advanced age, renal impairment, small body frame, frailty, and
statins in high doses or prescribed with drugs that
increase the statin plasma level. Approximately
50% of spontaneous case reports of rhabdomyoly-
sis submitted to the United States Food and Drug
Administration (US FDA) adverse event reporting
system (FAERs) have resulted from concomitant
use of statins plus drugs known to increase the sta-
in plasma levels.6

Based on Thai Vigibase, a voluntary hospital-
based adverse event reporting system in Thailand,
from 1996 to 2009, there were 198 cases of mus-
cle-related events involving statins7 and more
than half (55.6%) were associated with rhabdo-
myolysis, of which mortality was 6.36%. Simvastatin was the most commonly implicated
drug (163 cases), of which 40.9% interacted with
gemfibrozil, HIV protease inhibitors,azole anti-
fungals, and macrolides.

Each statin has unique physiochemical properties
leading to different levels of sensitivity to drug–
drug interactions.8,9 Simvastatin, lovastatin and
atorvastatin are lipophilic and metabolized by
cytochrome P450 (CYP)3A4, the most important
drug-metabolizing CYP isozyme. Pitavastatin,
pravastatin and fluvastatin are hydrophilic and
metabolized by other pathways. Simvastatin and
lovastatin are most sensitive to CYP3A4-mediated
drug interactions.

In Thailand, simvastatin and atorvastatin are
most frequently prescribed because both of them
are included in the National List of Essential
Medicines (NLEM)10 which specifies the drugs
reimbursable by public health insurance schemes.
Simvastatin is recommended as the first choice,
unless clinically contraindicated. Atorvastatin,
included by the NLEM since May 2012, is
reserved for patients who are contraindicated to,
or do not respond to simvastatin. The rest of the
statins are not covered by the NLEM, hence they
have been seldom prescribed.

In recent years, regulatory agencies issued several
warnings to healthcare professionals emphasizing
the increased risk of muscle problems from the use
of simvastatin in high doses or in combination with
other drugs that increase the statin plasma level.
Major changes in simvastatin labeling took place in
June 2011 when the US FDA recommended limit-
ing the maximum dosage of simvastatin to 80 mg
in new patients and at certain doses when
concomitantly used with other drugs, and revised
the contraindication lists of drugs interacting with
simvastatin.11 In 2012, the Medicines and
Healthcare Products Regulatory Agency (MHRA)
in the United Kingdom (UK) updated a similar
warning of simvastatin interactions.12 In Thailand,
the same recommendation has been issued in the
NLEM guidance since 2013. Based on the US
FDA, UK MHRA and Thai NLEM guidance, atorvastatin is classified as less sensitive to CYP3A4
metabolizing than simvastatin and has no con-
traindicated comediations.

The aim of this study is to assess trends after the
NLEM guidance and hospital variations in the
use of simvastatin that was coprescribed with
contraindicated, interacting drugs in outpatient
hospital settings in Thailand. Even though no
interacting drugs have been listed to date as con-
traindicated to atorvastatin, it was examined
additionally in the present study due to possibili-
ties of drug interactions.

Method

Drugs interacting with simvastatin or
atorvastatin

The risk of myopathy that is dependent on statin
centration is well recognized. An area under the
curve (AUC) and maximum concentration
(Cmax) are the two pharmacokinetic measures
used by the US FDA to identify the presence of
drug interactions. If the statin AUC increases 2–5
times and more than 5 times the normal level, an
interacting drug is defined as a moderate and
strong inhibitor, respectively. Drugs interacting
with simvastatin or atorvastatin (Table 1) were
obtained from the Thai NLEM 2013, which is in
accordance with the US FDA and UK MHRA
drug safety information. Drugs contraindicated
to simvastatin include gemfibrozil, clarithromy-
cin, erythromycin, itraconazole, ketoconazole,
cyclosporine, danazol, nefazodone, and HIV pro-
tease inhibitors. All except gemfibrozil are
CYP3A4 inhibitors. Unlike others, gemfibrozil
increases the risk of myopathy due to an additive
effect and inhibits hepatic glucuronidation of
simvastatin. All drugs in Table 1 are contraindi-
cated for simvastatin based on the evidence show-
ing the increased AUC or Cmax and adverse
events due to the interactions.

For atorvastatin that has no contraindicated,
coprescribing drugs, the maximum recommended
Interacting drugs	Statin	Pharmacokinetic studies	% Increase in statin AUC	References		
Azoles						
Itraconazole	SMV	40 mg SD on day 4	200 mg QD, 4 days	-	1900%	Neuvonen and colleagues\(^1\)
			80 mg	C\(_{\text{max}}\) 1310%	C\(_{\text{max}}\) 1310%	Horn\(^1\)
Itraconazole	ATV	20 mg SD on day 4	200 mg QD, 4 days	250%	-	Mazzu and colleagues\(^1\)
			40 mg SD	330%\(^6\)	-	Lipitor\(^1\)
			40 mg SD on day 4	330%\(^6\)	83%\(^6\)	Kantola and colleagues\(^1\)
Ketoconazole	SMV	-	200 mg QD, 30 days	47%\(^6\)	-	-
Ketoconazole	ATV	-	-	-	-	-
Macrolides						
Clarithromycin	SMV	40 mg QD	500 mg BID, day 10–18	885%	1092%	Jacobson\(^7\)
Clarithromycin	ATV	10 mg QD, 8 days	500 mg BID, day 6–8	82%\(^4\)	-	Amsden and colleagues\(^7\)
			80 mg QD	343%\(^4\)	-	Jacobson\(^9\)
			80 mg QD, 8 days	440%\(^6\)	-	Lipitor\(^1\)
Erythromycin	SMV	40 mg SD on day 2	1.5 gm/day, 2 days	620%\(^,\)	390%	Kantola and colleagues\(^7\)
Erythromycin	ATV	10 mg SD on two separate occasions [by 2 weeks]	500 mg QID, 7 days before 1st dose through 4 days after 2nd dose of ATV	32.5%\(^4\)	-	Siedlik and colleagues\(^7\)

\(^1\) References:
Interacting drugs	Statin	Pharmacokinetic studies	% Increase in statin AUC[*]	Case reports on adverse events: references		
		Dose of statin	Dose of interacting drugs	Parent	Metabolites	References
Protease inhibitors						
Darunavir/ritonavir	SMV	10 mg QD, 4 days	300/100 mg BID, 9 days	33%^c	-	Lipitor¹⁶
Darunavir/ritonavir	ATV	10 mg QD, 4 days	300/100 mg BID, 9 days	240%^c	-	Lipitor¹⁶
Lopinavir/ritonavir	SMV	20 mg QD, 4 days	400/100 mg BID, 14 days	590%^c	-	Lipitor¹⁶
Lopinavir/ritonavir	ATV	20 mg QD, 4 days	400/100 mg BID, 14 days	600%	-	Zocor²⁸
Nelfinavir	SMV	20 mg QD, 28 days	1250 mg BID, 14 days	74%^c	-	Viracept²⁹
Ritonavir/saquinavir	SMV	40 mg QD day 1–4, 15–18	400/400 mg BID, day 4–18	3200%	-	Cheng and colleagues³⁰
	ATV	40 mg QD day 1–4, 15–18	400/400 mg BID, day 4–18	390%^d	-	Cheng and colleagues³⁰
Others						
Cyclosporine	SMV	20 mg SD	1.1–3.8 mg/kg/day	200–300%^c	-	Rodriguez and colleagues²¹; Weise and Possidente²³; Stirling and Isles²⁴; Gruer and colleagues³⁵
	SMV	5–10 mg QD, 6 month	Dose adjusted to maintain blood concentration of 150–200 ng/ml	697%^c	-	Ichimaru and colleagues³⁶
	ATV	10 mg QD, 28 days	5.2 mg/kg/day	870%^c	-	Lipitor¹⁶
		40 mg QD	2.5 mg/kg, 2 dose	1431%^a	1418%^a	Lemahieu and colleagues³⁸

[*] References

- Cheng and colleagues³⁰
- Rodriguez and colleagues²¹; Weise and Possidente²³; Stirling and Isles²⁴; Gruer and colleagues³⁵
- Ichimaru and colleagues³⁶
- Lipitor¹⁶
- Lemahieu and colleagues³⁸
| Interacting drugs | Statin | Pharmacokinetic studies | % Increase in statin AUC[*] | Case reports on adverse events: references | | |
|---|---|---|---|---|---|---|
| | | | Parent | Metabolites | References |
| Danazol | SMV | - | - | - | - |
| | ATV | - | - | - | - |
| Gemfibrozil | SMV | 20 mg SD on day 3 | 600 mg BID, 3 days | 35% | 185% | Backman and colleagues⁴⁰ |
| | ATV | 40 mg | 600 mg BID, 3 days | 135% | 285% | Zocor²⁸ |
| Gemfibrozil | ATV | 20 mg SD on day 3 | 600 mg BID, 5 days | 24%^a | 51%^b | Backman and colleagues⁴⁰ |
| | | 40 mg SD on day 5 | 600 mg BID, 7 days | 35%^a | 73%^b | Whitfield and colleagues⁴³ |
| Nefazodone | SMV | 40 mg SD | 600 mg BID, 7 days | 35%^c | - | Lipitor¹⁴ |
| Nefazodone | ATV | 40 mg SD | 200 mg BID, 6 days | 2000%^d | - | Serzone⁴⁶ |

ATV, atorvastatin; AUC, area under the curve; BID, twice daily; QD, once daily; QID, four times daily; SD, single dose; SMV, simvastatin.

*Increase in AUC of parent drugs or their metabolites, unless indicated.

^aatorvastatin acid.

^b2-Hydroxyatorvastatin acid.

^cData given were not specific to AUC of parent forms, metabolites or total statins.

^dData given included AUC of parent form and metabolites.

^eBased on product monograph and US FDA.
daily dose is up to 10 mg when prescribed with cyclosporine and up to 20 mg when prescribed with clarithromycin, itraconazole, and HIV protease inhibitors (product monograph of Lipitor™). Therefore, all interacting drugs were evaluated for both simvastatin and atorvastatin in the present study.

Data sources
In Thailand, outpatient departments of hospitals are the main source of drug prescriptions and a single prescription usually contains more than one drug item. Unlike in most of developed countries where separation between prescribing and dispensing is a norm, drugs prescribed in a hospital are dispensed by the hospital pharmacy department.

Our study obtained data on outpatient prescriptions during 2013–2015 from 10 university hospitals and 16 general hospitals nationwide. All studied hospitals are the tertiary care facilities with service load of more than 100 thousand prescriptions a year. The analytic dataset contained hospital codes, encrypted patient identification, and dates plus identification of the prescribed drugs, which were uniquely defined according to the anatomical, therapeutic and chemical (ATC) classification system. The study statins (ATC codes) were simvastatin (C10AA01) and atorvastatin (C10AA05). Variables on drug dosage regimens, patient demographics and clinical conditions were not available. The analysis framework focused on time trends and hospital variations in the number of patients exposed to statin coprescribing with interacting drugs listed in Table 1. Confidentiality was preserved because none of the individual patients were identifiable. This study was approved by the Ethics Committee for Human Research, Khon Kaen University (HE592234).

Data analysis
Statin coprescribing with an interacting drug was identified when statins appeared in the same prescriptions with the drugs summarized in Table 1. The number of patients exposed to the coprescribed interacting drugs was determined. For a patient exposed to more than one interacting drugs, each interacting drug was counted as a separate event unless the analysis was conducted as an overall. The magnitude of a potential problem of statin interaction was estimated semi-annually and annually in terms of the coprescribing rate, which was calculated as a percentage of all patients prescribed each statin. To examine whether the statin coprescription with interacting drugs decreased over time as a response to the NLEM guideline towards an awareness of the interaction, trends in the statin coprescribing patterns, one with gemfibrozil and the other with the rest of interacting drugs, were examined, using a time-series analysis. Changes in the magnitude of statin coprescription with interacting drugs during 2013–2015 were estimated in terms of an absolute difference in the percentages on average over a total of six half-year periods. To account for a serial correlation between observations in adjacent years, a generalized least squares model, using a Prais–Winsten transformation, was employed. Variations across hospitals in the statin coprescription with interacting drugs over a year were described, using an interquartile range (IQR). All analyses were conducted separately between the university and general hospitals.

Results
The number of patients receiving simvastatin or atorvastatin in university and general hospitals during 2013–2015 and the statin recipients who were coprescribed with gemfibrozil or other interacting drugs are presented in Table 2. The total number of recipients of simvastatin was approximately 3–4 times of that of atorvastatin. In the university hospitals, the use of atorvastatin increased noticeably over the 3-year period. The first and second most coprescribed interacting drugs in both hospital types were gemfibrozil and clarithromycin, respectively. Others among the top five interacting drugs by number of recipients in the university hospitals were cyclosporine, itraconazole and ketoconazole, and in the general hospitals were itraconazole, ketoconazole and cyclosporine. Fewer than 20 patients received simvastatin or atorvastatin concomitantly with erythromycin or danazol each year and none received the two statins with protease inhibitors or nefazodone during the study period.

In the university hospitals, patients who were prescribed simvastatin or atorvastatin concomitantly with any interacting drugs decreased from 3.6% in 2013 to 2.6% in 2015. From 2013 to 2015, the statin recipients who were exposed to potential drug interactions with gemfibrozil decreased from 2.9 to 2.0% and from 2.8 to 2.0% of patients receiving simvastatin and atorvastatin, respectively. In contrast, the statin
Table 2. Statin recipients and exposure to coprescribed interacting drugs.

	Simvastatin	Atorvastatin				
	2013	2014	2015	2013	2014	2015
Statin recipients, no. (%)	122,382 (100)	125,001 (100)	121,314 (100)	36,849 (100)	40,965 (100)	45,209 (100)
Exposed to coprescribed interacting drugs, no. (%)						
Overall	4400 (3.6)	3976 (3.2)	3149 (2.6)	1314 (3.6)	1291 (3.2)	1192 (2.6)
Gemfibrozil	3514 (2.9)	2870 (2.3)	2392 (2.0)	1021 (2.8)	980 (2.4)	888 (2.0)
All others	924 (0.8)	1135 (0.9)	780 (0.6)	300 (0.8)	319 (0.8)	315 (0.7)
Clarithromycin*	458	690	398	153	162	153
Erythromycin*	13	6	2	0	2	0
Itraconazole*	105	100	85	33	35	31
Ketoconazole*	72	60	43	12	13	19
Cyclosporine*	264	266	240	101	107	111
Danazol*	12	13	12	1	0	1

2. General hospitals (n = 16)

Statin recipients, no. (%)	63,222 (100)	63,792 (100)	62,113 (100)	14,210 (100)	15,562 (100)	13,118 (100)
Exposed to coprescribed interacting drugs, no. (%)						
Overall	1982 (3.1)	1627 (2.6)	1252 (2.0)	368 (2.6)	368 (2.4)	249 (1.9)
Gemfibrozil	1572 (2.5)	1284 (2.0)	989 (1.6)	277 (1.9)	267 (1.7)	185 (1.4)
All others	424 (0.7)	351 (0.6)	271 (0.4)	93 (0.7)	105 (0.7)	66 (0.5)
Clarithromycin*	182	147	110	45	45	26
Erythromycin*	4	3	3	3	1	1
Itraconazole*	154	129	105	32	43	19
Ketoconazole*	66	55	37	7	5	12
Cyclosporine*	13	13	11	4	8	7
Danazol*	5	4	5	2	3	1

N. number of hospitals.
*Number of patients were presented with omitted percentage.
Note: None of protease inhibitors were coprescribed with statins.
recipients coprescribed with interacting drugs other than gemfibrozil were much lower and relatively stable at 0.6–0.8% over the same period.

In the general hospitals, the exposure to the overall coprescriptions potentially leading to drug interactions was lower than in the university hospitals. From 2013 to 2015, the recipients of simvastatin and atorvastatin who were exposed to any interacting drugs decreased from 3.1 to 2.0% and 2.6 to 1.9%, respectively. Patients exposed to statin-gemfibrozil coprescribing decreased from 2.5 to 1.6%, 1.9 to 1.4% for simvastatin and atorvastatin, respectively. For drugs other than gemfibrozil, exposure to the coprescribing of statin-interacting drugs in the general hospitals was similar to that in the university hospitals, 0.4–0.7% for simvastatin and atorvastatin.

A time-series analysis over six semi-annual periods (first half of 2013 to the second half of 2015) revealed a decreasing trend in the coprescribing of simvastatin or atorvastatin with gemfibrozil in both hospital types (Table 3). In the university hospitals, the percentage of simvastatin recipients exposed to the coprescribed gemfibrozil decreased significantly by 0.19 percentage points (%pt.) per half year, which was a little faster than that of atorvastatin-gemfibrozil (by 0.17%pt.). In the general hospitals, the significantly decreasing rate of coprescribing with gemfibrozil was similar for simvastatin (by 0.19%pt.) and a little slower for atorvastatin (by 0.16%pt.).

For the interacting drugs other than gemfibrozil, a decreasing rate of coprescribing with atorvastatin in the university hospitals was statistically significant (−0.018%pt.). Even though the simvastatin coprescribing rate decreased by a greater magnitude (−0.024%pt.), it did not reach statistical significance level (p = 0.274). In the general hospitals, the rate of coprescribing with both statins decreased by −0.036%pt. for simvastatin and a little lower by −0.026%pt. for atorvastatin (p = 0.062).

Regarding distribution of the statin coprescribing rates, there were variations in patient exposure to potential drug interactions across individual hospitals. In the university hospitals, patients prescribed simvastatin concomitantly with any interacting drugs accounted for 2.4, 3.2 and 4.0% of the statin recipients in the hospitals at the 25th, 50th and 75th percentiles, respectively in 2013 [Figure 1(a)]. The 25th, 50th and 75th percentiles of the hospitals by coprescribing rates decreased monotonically to 2.0, 2.8 and 3.2% in 2014, and to 1.7, 2.4 and 2.7% in 2015, respectively. Noticeably, the IQR of simvastatin coprescribing rates narrowed down over time, largely due to a rapid decline of the coprescribing rates in hospitals at the 75th percentile (by 0.8 and 0.5%pt. in 2014 and 2015, respectively). For atorvastatin, the 25th, 50th and 75th percentiles of the hospitals had coprescribing rates decreased monotonically to 2.0, 2.8 and 3.2% in 2014, and to 1.7, 2.4 and 2.7% in 2015, respectively. At the 25th percentile, the coprescribing rate increased by 0.3%pt. in 2014, then declined by 0.8%pt. in 2015. The median coprescribing rates for atorvastatin was noticeably close to the 75th percentiles and were relatively higher than the median for simvastatin in every year.

Table 3. Absolute changes in statin recipients who were exposed to coprescribed interacting drugs.

	Changes per half year, % points (95% CI)	
	Simvastatin	Atorvastatin
Gemfibrozil		
University hospital	−0.188 [−0.23, −0.15]*	−0.173 [−0.19, −0.16]*
General hospital	−0.191 [−0.23, −0.15]*	−0.162 [−0.21, −0.11]*
Other drugs		
University hospital	−0.024 [−0.08, 0.03]	−0.018 [−0.02, −0.01]*
General hospital	−0.036 [−0.04, −0.03]*	−0.026 [−0.05, 0.00]

CI, confidence interval.
*p < 0.01.
In the general hospitals, variations in the coprescribing rates for both statins were wider than those in the university hospitals, as the 25th percentiles and the medians were lower than in the university hospitals but the 75th percentiles were higher in every year [Figure 1(b)]. For simvastatin, the IQR was 1.4–4.3% in 2013, then decreased to 0.9–3.6% in 2014 and to 0.6–3.1% in 2015. For atorvastatin, the IQR was 1.0–4.2% in 2013, then decreased to 1.0–3.4% in 2014 and to 0.5–4.3% in 2015. Another distinction is that the median coprescribing rates, especially for atorvastatin in the general hospitals were towards the 25th percentiles, while those in the university hospitals were to the 75th percentiles. This resulted in the median coprescribing rate in the general hospitals of atorvastatin being lower than that of simvastatin.

Discussion

The coprescribing rate of simvastatin with all contraindicated, interacting drugs in university and general hospitals, respectively was 3.6 and 3.1% in 2013, then decreased to 3.2 and 2.6% in 2014 and to 2.6 and 2.0% in 2015. The most common interacting drug coprescribed with simvastatin was gemfibrozil (2.9, 2.3 and 2.0% in the university hospitals, and 2.5, 2.0 and 1.6% in the general hospitals in 2013, 2014 and 2015, respectively), which had a decreasing trend (per half year by 0.19%pt. equally in both hospital types). All other interacting drugs contraindicated to simvastatin coprescribing were found in less than 1% of the simvastatin recipients. Among the common ones were clarithromycin, cyclosporine, itraconazole and ketoconazole. Variation in the coprescribing rates of simvastatin with contraindicated, interacting drugs was higher in the general hospitals than that in the university hospitals. Given that the simvastatin-interacting drugs were not contraindicated to atorvastatin, the overall coprescribing rates of atorvastatin should be higher than that of simvastatin. In the university hospitals, the coprescribing rates for the two statins were similar. In the general hospitals, the overall coprescribing rate for atorvastatin was a little lower than that for simvastatin. In addition, a decrease in the coprescribing rate for atorvastatin was a little slower than that for simvastatin.

Coprescribing between simvastatin and the contraindicated, interacting drugs in Thailand was lower than that in other countries. However, reports on this issue were mainly based on drug utilization data before the US FDA and UK MHRA warnings related to the safety of simvastatin and recent reports are lacking. The coprescribing rate of simvastatin in the present study with gemfibrozil (2.0–3.6%) was lower than that in US during 2003 and 2009 (2.9–6.8%) and with clarithromycin (0.2–0.3%) was lower than that in Korea (2.6%). In Thailand, fenofibrate, an alternative to gemfibrozil, and azithromycin, an alternative to clarithromycin, are covered by the NLEM. Risk of rhabdomyolysis from the coprescribing of simvastatin and gemfibrozil was higher than that from the use of simvastatin alone and in combination with fenofibrate 12 times and 3–4 times, respectively. A large cohort study reported an increased risk of rhabdomyolysis [relative risk, 2.17; 95% confidence interval (CI), 1.03–4.52] in elderly patients who received simvasat in concomitantly with clarithromycin or erythromycin, compared with that with azithromycin. It is recommended that simvastatin should be avoided when taking clarithromycin, or azithromycin should be used instead if the coprescribing of simvastatin and macrolides was unavoidable. Our study also found coprescribing between simvastatin and ketoconazole or itraconazole (0.04–0.09% in the university hospitals and 0.17–0.24% in the general
Atorvastatin may be considered as the sub-AUC of simvastatin 6–8-fold and fluvastatin 2–4-fold. In the real-world practice however, overriding medication-related alerts occurred. In the present study with simvastatin in the university hospitals (0.2%) was more frequent than in the general hospitals (0.02%). A study in Finland reported prevalence of concomitant use between simvastatin and cyclosporine was 1.1%. Cyclosporine increases the AUC of simvastatin 6–8-fold and fluvastatin 2–4-fold. Atorvastatin may be considered as the substitute but the daily dose should not exceed 10 mg.

Rosuvastatin which is mainly metabolized by CYP2C9, is the optimal choice for patients who have to use cyclosporine in long term, such as the transplant recipients. The relatively low coprescribing rates with the decreasing trends during 2013–2015 found in our study reflect an increasing awareness of recommendations by regulatory agencies on the coprescribing of statins that may lead to drug interactions.

It is interesting that coprescribing between statins and protease inhibitors was not found in this study. In Thailand, the delivery of antiretrovirals has been strictly controlled in hospital settings and managed through a national program that requires multidisciplinary approaches. An intensive monitoring of the antiretroviral prescribing in the hospital setting is likely the key to avoidance of coprescribing leading to potential drug interactions.

Although our study found a decreasing trend of the coprescribing of simvastatin with contraindicated, interacting drugs, there was a wide variation across hospitals. A higher overall rate of simvastatin coprescribing with potentially interacting drugs in the university hospitals was mainly driven by cyclosporine that had a limited use in the general hospitals. However, the general hospitals had a higher coprescribing variation. The variation raised concerns on patient safety management in certain hospitals. It should be noted that contraindications and dose restrictions are different across individual statins and the details of these issues are recall burdens when prescribing the drugs. Electronic prescribing along with computerized alert systems could reduce prescribing prone to drug interactions. In the real-world practice however, overriding medication-related alerts occurred. Therefore, motivating an awareness of health professionals and use of electronic prescribing systems should be implemented in tandem.

Major strengths of this study included the use of a large prescribing database from several hospitals over multiple years. The claims database is a valid source to monitor events on drug exposure. The studied hospitals are all public and their services are the tertiary care level with a large volume of outpatient visits, hence representing the mainstream health services in Thailand.

Certain limitations remained in our study. First the study included only the large hospitals. Coprescribing of simvastatin with the interacting drugs can occur in small hospitals that have no medical specialists. The coprescribing rates among the excluded small hospitals are more likely to be higher than that reported at present due to a high turnover of general practice physicians, lack of computerized, updated decision support systems, and limited availability of alternative drugs. Second, the present study focused on coprescriptions of simvastatin with drugs that were contraindicated. Other well known, interacting drugs which have been classified by the US FDA as the caution lists, such as amiodarone, amlodipine, verapamil were not studied. Third, information on diagnoses, drug dosage regimens, patient demographics and clinical conditions, laboratory results, and health outcomes were not available in the studied database. Therefore, dose-dependent drug–drug interactions were beyond the scope of this study and clinical consequences of the potential drug interactions were not investigated.

Our study reported a decreasing trend and the modest prevalence of potential drug interactions with statins in tertiary care hospitals after public warning on statins coprescribing. In 2013, the prevalence of 6.8% was reported in simvastatin users in a district hospital in Thailand. Further studies should update the situation in small hospitals.

Conclusion

The rate of coprescribing of simvastatin with the contraindicated, interacting drugs was small and decreased over time. Because of the wide use of simvastatin, patients who were exposed to the risk of drug interactions were not insignificant in number. Therefore, further efforts to increase the awareness of health professionals along with the effective use of electronic prescribing systems are warranted.
Key points

(1) During 2011–2013, regulatory agencies issued recommendations about contraindication lists of drugs interacting with simvastatin that increase risk of myopathy.

(2) In Thailand in the outpatient setting, the coprescribing rates of simvastatin with all contraindicated, interacting drugs in university and general hospitals, respectively were 3.6 and 3.1% in 2013, decreased to 3.2 and 2.6% in 2014 and to 2.6 and 2.0% in 2015.

(3) The most common interacting drug coprescribed with simvastatin was gemfibrozil.

(4) In university hospitals, the IQR of simvastatin coprescribing rates narrowed down over time, and was narrower than that in general hospitals.

(5) Further efforts to increase awareness of health professionals along with effective use of electronic prescribing systems are warranted to decrease an exposure to risk of simvastatin-contraindicated drug interactions.

Acknowledgements

The authors thank Dr Cynthia R. Gross for providing editing assistance.

Author contributions

T.R.: study concept and design, analysis and interpretation of the data, and drafting of the paper. C.L.: study concept and design, analysis and interpretation of the data, drafting of the paper, and revising it critically for intellectual content. O.W.: analysis and interpretation of the data. All authors are involved in the final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand.

Conflict of interest statement

The authors declare that there is no conflict of interest.

ORCID iD

Chulaporn Limwattananon https://orcid.org/0000-0002-6744-8198

References

1. Naci H, Brugts J and Ades T. Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcomes 2013; 6: 390–399.

2. Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004; 292: 2585–2590.

3. Enger C, Gately R, Ming EE, et al. Pharmacoepidemiology safety study of fibrate and statin concomitant therapy. Am J Cardiol 2010; 106: 1594–1601.

4. Amend KL, Landon J, Thyagarajan V, et al. Incidence of hospitalized rhabdomyolysis with statin and fibrate use in an insured US population. Ann Pharmacother 2011; 45: 1230–1239.

5. Rowan CG, Brunelli SM, Munson J, et al. Clinical importance of the drug interaction between statins and CYP3A4 inhibitors: a retrospective cohort study in the health improvement network. Pharmacoepidemiol Drug Saf 2012; 21: 494–506.

6. Rowan C, Brinker AD, Nourjah P, et al. Rhabdomyolysis reports show interaction between simvastatin and CYP3A4 inhibitors. Pharmacoepidemiol Drug Saf 2009; 18: 301–309.

7. Boonmuang P, Nathisuwan S, Chaiyakunapruk N, et al. Characterization of statin-associated myopathy case reports in Thailand using the health product vigilance center database. Drug Saf 2013; 36: 779–787.

8. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 2002; 16: 569–577.

9. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94: 1140–1146.

10. National Drug Committee. Thai national list of essential medicine (NLEM), http://drug.fda.moph.go.th:81/nlem.in.th/ (accessed 29 August 2015).

11. U.S. Food and Drug Administration. FDA drug safety communication: new restrictions, contraindications, and dose limitations, for Zocor (simvastatin) to reduce the risk of muscle injury, https://www.fda.gov/Drugs/DrugSafety/ucm256581 (2011, accessed 29 August 2015).
12. Medicines and Healthcare Products Regulatory Agency (MHRA). Simvastatin: updated advice on drug interactions, https://www.gov.uk/drug-safety-update/simvastatin-updated-advice-on-drug-interactions (2012, accessed 29 August 2015).

13. Neuvonen PJ, Kantola T and Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. *Clin Pharmacol Ther* 1998; 63: 332–341.

14. Horn M. Co-administration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals. *Arch Dermatol* 1996; 132: 1254.

15. Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. *Clin Pharmacol Ther* 2000; 68: 391–400.

16. Lipitor (atorvastatin sodium) Tablets. Product information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s056lbl.pdf (accessed 29 August 2015).

17. Kantola T, Kivistö KT and Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. *Clin Pharmacol Ther* 1998; 64: 58–65.

18. Gilad R and Lampl Y. Rhabdomyolysis induced by simvastatin and ketoconazole treatment. *Clin Neuropharmacol* 1999; 22: 295–297.

19. Itakura H, Vaughn D, Haller DG, et al. Rhabdomyolysis from cytochrome p-450 interaction of ketoconazole and simvastatin in prostate cancer. *J Urol* 2003; 169: 613.

20. Watkins JL, Atkinson BJ and Pagliaro LC. Rhabdomyolysis in a prostate cancer patient taking ketoconazole and simvastatin: case report and review of the literature. *Ann Pharmacother* 2011; 45: e9.

21. Lee AJ and Maddix DS. Rhabdomyolysis secondary to a drug interaction between simvastatin and clarithromycin. *Ann Pharmacother* 2001; 35: 26–31.

22. Kahri AK, Valkonen MM, Vuoristo MK, et al. Rhabdomyolysis associated with concomitant use of simvastatin and clarithromycin. *Ann Pharmacother* 2004; 38: 719.

23. Wagner J, Suessmair C and Pfister HW. Rhabdomyolysis caused by co-medication with simvastatin and clarithromycin. *J Neurol* 2009; 256: 1182–1183.

24. Amsden GW, Kuye O and Wei GC. A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers. *J Clin Pharmacol* 2002; 42: 444–449.

25. Sipe BE, Jones RJ and Bokhart GH. Rhabdomyolysis causing AV blockade due to possible atorvastatin, esomeprazole, and clarithromycin interaction. *Ann Pharmacother* 2003; 37: 808–811.

26. Kantola T, Kivistö KT and Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. *Clin Pharmacol Ther* 1998; 64: 177–178.

27. Siedlik PH, Olson SC, Yang BB, et al. Erythromycin co-administration increases plasma atorvastatin concentrations. *J Clin Pharmacol* 1999; 39: 501–504.

28. Zocor (simvastatin) Tablets. Product information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/019766s078lbl.pdf (accessed 29 August 2015).

29. Viracept (nelfinavir mesylate) Tablets and Oral Powder, https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021503s006lbl.pdf (accessed 29 August 2015).

30. Cheng CH, Miller C, Lowe C, et al. Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. *Am J Health Syst Pharm* 2002; 59: 728–730.

31. Arnadótíra M, Eriksson L, Hans Thyssel H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. *Nephron* 1993; 65: 410–413.

32. Rodriguez JA, Crespo-Leiro MG, Paniagua MJ, et al. Rhabdomyolysis in heart transplant patients on HMG-CoA reductase inhibitors and simvastatin. *Transplant Proc* 1999; 31: 2522–2523.

33. Weise WJ and Possidente CJ. Fatal rhabdomyolysis associated with simvastatin in a renal transplant patient. *Am J Med* 2000; 108: 351–352.

34. Stirling CM and Isles CG. Rhabdomyolysis due to simvastatin in a transplant patient: are some statins safer than others? *Nephrol Dial Transplant Syst Pharm* 2002; 16: 873–874.

35. Gruer PJ, Vega JM, Mercuri MF, et al. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. *Am J Health Syst Pharm* 2002; 59: 728–730.

36. Ichimaru N, Takahara S, Kokado Y, et al. Changes in lipid metabolism and effect of simvastatin in renal transplant recipients induced by cyclosporine or tacrolimus. *Atherosclerosis* 2001; 158: 417–423.

37. Maltz HC, Balog DL and Cheigh JS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. *Ann Pharmacother* 1999; 33: 1176–1179.
38. Lemahieu WP, Hermann M, Asberg A, et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. *Am J Transplant* 2005; 5: 2236–2243.

39. Stankovic I, Vlahovic-Stipac A, Putnikovic B, et al. Concomitant administration of simvastatin and danazol associated with fatal rhabdomyolysis. *Clin Ther* 2010; 32: 909–914.

40. Backman JT, Kyrklund C, Kivistö KT, et al. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. *Clin Pharmacol Ther* 2000; 68: 122–129.

41. van Puijenbroek EP, Du Buf-Vereijken PW, Spooren PF, et al. Possible increased risk of rhabdomyolysis during concomitant use of simvastatin and gemfibrozil. *J Intern Med* 1996; 240: 403–404.

42. Federman DG, Hussain F and Walters AB. Fatal rhabdomyolysis caused by lipid-lowering therapy. *South Med J* 2001; 94: 1023–1026.

43. Backman JT, Luurila H, Neuvonen M, et al. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. *Clin Pharmacol Ther* 2005; 78: 154–167.

44. Duell PB, Connor WE and Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. *Am J Cardiol* 1998; 81: 368–369.

45. Whitfield LR, Porcari AR, Alvey C, et al. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin. *J Clin Pharmacol* 2011; 51: 378–388.

46. Serzone (Nefazodone) Tablets. Product information, https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/020152_S031_SERZONE_PRNTLBL.pdf (accessed 29 August 2015).

47. Jacobson RH, Wang P and Glueck CJ. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone. *JAMA* 1997; 277: 296–297.

48. Thompson M and Samuels S. Rhabdomyolysis with simvastatin and nefazodone. *Am J Psychiatry* 2002; 159: 1607.

49. Skrabal MZ, Stading JA and Monaghan MS. Rhabdomyolysis associated with simvastatin-nefazodone therapy. *South Med J* 2003; 96: 1034–1035.

50. Karnik NS and Maldonado JR. Antidepressant and statin interactions: a review and case report of simvastatin and nefazodone-induced rhabdomyolysis and transaminitis. *Psychosomatics* 2005; 46: 565–568.

51. Judge GG, Griffiths WE, Hill RC, et al. (eds). *The theory and practice of econometrics*. New York: John Wiley and Sons, 1985.

52. Alford JC, Saseen JJ, Allen RR, et al. Persistent use of against-label statin-fibrate combinations from 2003–2009 despite United States Food and Drug Administration dose restrictions. *Pharmacotherapy* 2012; 32: 623–630.

53. Yang BR, Seong JM, Choi NK, et al. Co-medication of statins with contraindicated drugs. *PLoS One* 2015; 10: e0125180.

54. Patel AM, Shariff S, Bailey DG, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. *Ann Intern Med* 2013; 158: 869–876.

55. Devold HM, Molden E, Skurtveit S, et al. Co-medication of statins and CYP3A4 inhibitors before and after introduction of new reimbursement policy. *Br J Clin Pharmacol* 2009; 67: 234–241.

56. Tirkkonen T, Rynänen A, Vahlberg T, et al. Frequency and clinical relevance of drug interactions with lovastatin and simvastatin: an observation database study. *Drug Saf* 2008; 31: 231–240.

57. Wiggins BS, Saseen JJ, Page RL 2nd, et al. Recommendations for management of clinically significant drug–drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the American Heart Association. *Circulation* 2016; 134: e468–e495.

58. Nanji KC, Slight SP, Seger DL, et al. Overrides of medication-related clinical decision support alerts in outpatients. *J Am Med Inform Assoc* 2014; 21: 487–491.

59. Ahn EK, Kam HJ, Park DK, et al. Differences among admitting departments in alerts and alert overrides for drug–drug interaction. *Pharmacoepidemiol Drug Saf* 2014; 23: 390–397.

60. Phansalkar S, van der Sijs H, Tucker AD, et al. Drug–drug interactions that should be noninterruptive in order to reduce alert fatigue in electronic health records. *J Am Med Inform Assoc* 2013; 20: 489–493.

61. Siriangkhawut M, Tansakul P and Uchaipichat V. Prevalence of potential drug interactions in Thai patients receiving simvastatin: the causality assessment of musculoskeletal adverse events induced by statin interaction. *SPJ* 2017; 25: 823–829.