Genetic aspects of milk electrical conductivity in Italian Brown cattle

Mauro Povinelli, Luigi Gallo, Paolo Carnier, Daniele Marcomin, Riccardo Dal Zotto & Martino Cassandro

To cite this article: Mauro Povinelli, Luigi Gallo, Paolo Carnier, Daniele Marcomin, Riccardo Dal Zotto & Martino Cassandro (2005) Genetic aspects of milk electrical conductivity in Italian Brown cattle, Italian Journal of Animal Science, 4:sup3, 169-171, DOI: 10.4081/ijas.2005.3s.169

To link to this article: http://dx.doi.org/10.4081/ijas.2005.3s.169

© 2005 Taylor & Francis

Published online: 02 Mar 2016.

Submit your article to this journal

Article views: 14

View related articles
ABSTRACT

Electrical conductivity (EC) of milk is defined as an indicator of the udder health. The EC is a low cost and easy recordable information in dairy herds with automatic milking systems. The heritability of EC showed to be higher than somatic cell count and for this reason might be an useful trait for indirect selection for mastitis resistance. The heritability for EC in Italian Brown cattle was equal to 0.23. Therefore, EC could be useful not only for dairy cows management but also for selection of dairy cows. The high correlation between breeding values for SCC and EC is promising in order for improving mastitis resistance and functional ability of dairy cows.

Key words: Dairy cattle, Electrical conductivity, Mastitis, Genetic parameters

Introduction

Electrical conductivity (EC) of milk could be considered a mastitis indicator (Norberg et al., 2004). The EC value depends on the concentration of anions and cations in milk. The concentration of Na+ and Cl - increases in milk produced under mastitis disease; therefore, milk from mastitis cows typically shows higher EC when compared to milk from health cows (Kitchen, 1981) and the control of milk EC has been proposed as a tool for monitoring udder health in dairy cows (Norberg et al., 2004). In modern dairy herds automatic systems are spreading for monitoring several traits related to yield, fertility and health status of dairy cows (De Mol et al., 1997). Namely, there are currently some milking automatic systems that allow to collect individual total milking time, milk yield and milk EC, at every milking. Therefore, EC could became a low cost and easy recordable information for several dairy herds; as EC showed in Holstein cows a moderate to high heritability and positive correlation with mastitis (Norberg et al., 2004), it could be useful not only for dairy cows management, but also for selection of dairy cows.

Given these premises, this study aimed to analyse the sources of variation and to investigate genetic parameters of EC collected through automatic milking systems on Italian Brown cows reared in four herds of Trento Province.

Material and methods

This study involved four Italian Brown Swiss dairy herds of Trento Province with a size ranging between 25 and 123 milking cows. Individual total milking time (TMT), milk yield (MY) and the highest EC value per cow were collected at each milking between May 2002 and July 2004 on all milk-
Results and conclusions

Descriptive statistics for traits considered are shown in Table 1. The mean value for EC are in agreement with results of Nielen et al. (1992) and Mucchetti et al. (1994). All the effects considered in the analysis of variance resulted statistically significant. Coefficients of determination \(R^2 \) were 0.45, 0.17 and 0.57 for Ln(TMT), Ln(EC) and MY, respectively.

In Table 2 genetic parameters of traits of concern are given. The \(h^2 \) of milkability trait was equal to 0.31 and higher than value (0.13) estimated by Santus and Bagnato (1998) on Italian Brown cows. Heritability estimate for Ln(EC) appeared close to 0.23 and lower than value estimated by Goodling et al. (2000), on first lactation Holstein cows. Heritability of MY approached to 0.30. The repeatability values for Ln(TMT), Ln(EC) and MY were 0.69, 0.35 and 0.56, respectively. Linear regression analyses between EC and SCC genetic indexes showed a positive association (0.70), showing the potential role of EC to predict sub-clinical mastitis.

In conclusion, given the moderate heritability value and the high correlation with SCC, electrical conductivity might be considered an useful trait in selection schemes for Brown Swiss cows with the aim, according to results of Norberg et al. (2004), of improving mastitis resistance and functional ability of dairy cows. Further studies based with more dairy herds should be needed to confirm these preliminary results, moreover, the estimation of economic value for EC and genetic correlations between EC with other production, type and

Informatics data	Average	S.D.	Min	Max
TMT	6.6	2.0	2.0	15.0
Ln(TMT)	1.84	0.30	0.69	2.71
EC	494	63	200	800
Ln(EC)	6.20	0.12	5.30	6.69
MY	12.8	3.6	3.0	25.0
functional traits should be done before to introduce EC trait in an official selection index for Italian Brown cattle.

REFERENCES

DE MOL, R.M., KEEN, A., KROEZE, G.H., ACTHEN, J.M., 1999. Comput. Electron. Agric. 22:171-185.

GOODLING, R.C., ROGERS, G.W., COOPER, J.B., RUANE, B., 2000. J. Dairy Sci. 83 (Suppl.1): 71. Groenveld, E., 1998. Pest User’s Manual. Kitchen, B.J., 1981. J. Dairy Res. 48:167-188.

MUCCHETTI, G., GATTI, M., NEVIANI, E., 1994. J. Dairy Sci. 77:940-944.

NIELEN, M., DELUYKER, H., SCHUKKEN, Y.H., BRAND, A., 1992. J. Dairy Sci. 75:606-614.

NORBERG, E., ROGERS, G.W., GOODLING, R.C., COOPER, J.B., MAISEN, P., 2004. J. Dairy Sci. 87:1917-1924.

SANTUS, E., BAGNATO, A., 1998. http://elib.tiho-hannover.de/publications/6wgalp.

SAS/STAT., 1990. User’s Guide. 4th ed. SAS Institute Inc., USA.

Table 2. Variance components estimates, heritabilities, repeatabilities and genetic correlations (rG) for total milking time (TMT), logarithm of TMT, electrical conductivity (EC), logarithm of EC and milk yield (MY).

	Ln(TMT)	Ln(EC)	MY
Genetic variance	0.019	0.003	2.072
Residual variance	0.019	0.010	2.771
Heritability (h²)	0.312	0.226	0.331
Standard error of h²	0.092	0.092	0.001
Repeatability	0.690	0.351	0.557
rG(S.E.) with Ln(TMT)	0.463(0.226)	0.749(0.210)	
rG(S.E.) with Ln(EC)	0.552(0.113)		