Academy of Medicine, Singapore clinical guideline on the use of sedation by non-anaesthesiologists during gastrointestinal endoscopy in the hospital setting

Tiing Leong Ang, Edwin Seet, Yaw Chong Goh, Wee Khoon Ng, Calvin Jianyi Koh, Hock Foong Lui, James Weiquan Li, Aung Myint Oo, Kieron Boon Leng Lim, Kok Sun Ho, Min Hoe Chew, Wai Leong Quan, Damien Meng Yew Tan, Kheng Hong Ng, Hak Su Goh, Wai Kit Cheong, Philip Tseng, Khoon Lin Ling

ABSTRACT

Introduction: In Singapore, non-anaesthesiologists generally administer sedation during gastrointestinal endoscopy. The drugs used for sedation in hospital endoscopy centres now include propofol in addition to benzodiazepines and opiates. The requirements for peri-procedural monitoring and discharge protocols have also evolved. There is a need to develop an evidence-based clinical guideline on the safe and effective use of sedation by non-anaesthesiologists during gastrointestinal endoscopy in the hospital setting.

Methods: The Academy of Medicine, Singapore appointed an expert workgroup comprising 18 gastroenterologists, general surgeons and anaesthesiologists to develop guidelines on the use of sedation during gastrointestinal endoscopy. The workgroup formulated clinical questions related to different aspects of endoscopic sedation, conducted a relevant literature search, adopted Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology and developed recommendations by consensus using a modified Delphi process.

Results: The workgroup made 16 recommendations encompassing 7 areas: (1) purpose of sedation, benefits and disadvantages of sedation during gastrointestinal endoscopy; (2) pre-procedural assessment, preparation and consent taking for sedation; (3) Efficacy and safety of drugs used in sedation; (4) the role of anaesthesiologist-administered sedation during gastrointestinal endoscopy; (5) performance of sedation; (6) post-sedation care and discharge after sedation; and (7) training in sedation for gastrointestinal endoscopy by non-anaesthesiologists.

Conclusion: These recommendations serve to guide clinical practice during sedation for gastrointestinal endoscopy by non-anaesthesiologists in the hospital setting.

Keywords: Benzodiazepines, gastrointestinal endoscopy opiates, propofol, sedation

1 Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
2 Department of Anaesthesia, Khoo Teck Puat Hospital, Singapore; Department of Anaesthesia, National University of Singapore
3 Mount Elizabeth Medical Centre, Singapore
4 Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore
5 Department of Gastroenterology and Hepatology, National University Hospital, Singapore
6 Gleneagles Medical Centre, Singapore
7 Department of General Surgery, Tan Tock Seng Hospital, Singapore
8 Department of General Surgery, Sengkang General Hospital, Singapore
9 Royal Square Medical Centre, Singapore
10 Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
11 Department of Surgery, National University Hospital, Singapore

Correspondence:
Dr Khoon Lin Ling, Mount Elizabeth Medical Centre, 3 Mount Elizabeth, Singapore 228510.
Email: drlingkl@gmail.com
Prof Tiing Leong Ang, Department of Gastroenterology and Hepatology, Changi General Hospital, 2 Simei Street 3, Singapore 529889.
Email: ang.tiing.leong@singhealth.com.sg
Sedation by non-anaesthesiologists in gastrointestinal endoscopy—Tiing Leong Ang et al.

INTRODUCTION

The practice of gastrointestinal (GI) endoscopy over the last 3 decades has seen both a rise in volume of routine procedures, and an increase in the breadth and complexity of procedures. Routine endoscopies have increased due to a growth in population size, and also due to the introduction of guidelines for the routine surveillance of malignant and pre-malignant lesions of the colon and the upper GI tract. There has also been a surge in the number of new complex endoscopic procedures. These more complex procedures last longer and may require patients to be well sedated. The expectations of patient populations have also changed. While gastroscopy and colonoscopy began as unsedated procedures, some patients now expect to be well sedated for routine diagnostic gastroscopy and colonoscopy.

The practice of GI endoscopy and sedation varies between different countries. In Singapore, both gastroenterologists and surgeons perform GI endoscopy. Endoscopic procedures are performed in either standalone ambulatory centres or endoscopy suites located within hospital premises. Internationally, the proportion of patients undergoing endoscopy who are sedated by endoscopists and by anaesthesiologists have increased. In the US, about 50% of patients are now sedated by anaesthesiologists. Currently in Singapore, endoscopic sedation is often administered by the endoscopist because of considerations such as the established track record of safety and convenience, anaesthesiology manpower constraints and additional costs associated with anaesthesiologist-administered sedation. Patients are assessed before endoscopy and those needing anaesthesiologist-administered sedation will receive that level of care. For the others, the endoscopist has been safely delivering sedation. The drugs used for sedation during GI endoscopy in hospital endoscopy centres now include propofol—in addition to benzodiazepines and opiates—unlike standalone ambulatory centres, which do not use propofol without anaesthesiologist support. The requirements for peri-procedural monitoring and discharge protocols have evolved. There is a need to develop an evidence-based clinical guideline on the safe and effective use of sedation by non-anaesthesiologists during GI endoscopy in Singapore in the hospital setting. While a guideline on the use of sedation by non-anaesthesiologists for medical and dental clinics, standalone ambulatory surgical centres and standalone endoscopy suites in Singapore has been published by the Ministry of Health (last updated in July 2021), it does not address the issues pertinent to the hospital setting. This guideline bears no reference to the guideline for standalone endoscopy suites. It focuses specifically on the use of sedation by non-anaesthesiologists for all GI endoscopy procedures performed within the hospital setting in adult patients. There is an extensive body of evidence for the safety and efficacy of various drugs in GI endoscopy sedation. There is also a difference between hospital-based practice and non-hospital-based practice.

METHODS

The Academy of Medicine, Singapore (AMS) appointed an expert workgroup led by 2 co-chairs to develop a guideline on the use of sedation during GI endoscopy. (See Supplementary Materials for Appendix 1 in online version of this article.) The group comprising 9 gastroenterologists, 7 general surgeons and 2 anaesthesiologists who were fellows of AMS, involved both public and private sector stakeholders. The workgroup was divided into sections to examine clinical questions (CQ) for different aspects of endoscopic sedation (Table 1). Literature search specific to each CQ was performed by the individual sections. Table S1 (Appendix 2 in online Supplementary Materials) provides literature search terms. PubMed database was searched for original articles, meta-analyses and guidelines related to the practice of GI endoscopy and sedation use, focusing on the efficacy and safety of different types of sedation (benzodiazepines, opiates and propofol), personnel administering the sedation, as well as sedation monitoring. Meta-analyses

CLINICAL IMPACT

What is New

• This is the first Academy of Medicine, Singapore evidence-based guideline on the use of sedation during gastrointestinal endoscopy by non-anaesthesiologists, developed using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology.
• The guideline addresses the use of propofol for sedation by non-anaesthesiologists in the hospital setting.
• It highlights the importance of structured training for the safe and effective use of sedation.

Clinical Implications

• This guideline will enhance the safety and quality of sedation during gastrointestinal endoscopy by non-anaesthesiologists in the hospital setting.
Table 1. Clinical questions

Statement	Quality of evidence	Strength of recommendation
1. Purpose of sedation, benefits and disadvantages of sedation during GI endoscopy	Low	Strong
2. Pre-procedural assessment, preparation and consent-taking for sedation	Low	Strong
3. Efficacy and safety of drugs used in GI endoscopy sedation	Low	Strong
4. The role of anaesthesiologist-administered sedation during GI endoscopy	Low	Strong
5. Intraprocedure monitoring of sedated patient	Low	Strong
6. Post-sedation care and discharge after sedation	Low	Strong
7. Training in sedation for GI endoscopy for non-anaesthesiologist	Low	Strong

Table 2. Grading of Recommendations Assessment, Development and Evaluation (GRADE)

Quality of evidence
• Strong: Consistent evidence from well-performed randomised, controlled trials or overwhelming evidence of some other form. Further research is unlikely to change our confidence in the estimate of benefit and risk.
• Moderate: Evidence from randomised, controlled trials with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence of some other research design. Further research (if performed) is likely to have an impact on our confidence in the estimate of benefit and risk and may change the estimate.
• Weak: Evidence from observational studies, unsystematic clinical experience, or from randomised, controlled trials with serious flaws. Any estimate of effect is uncertain.

RESULTS

CQ1: Purpose of sedation, benefits and disadvantages of sedation during GI endoscopy

Statement 1: Sedation should be offered to every patient undergoing endoscopy. Specific informed consent should be taken for procedural sedation after the risks and benefits have been discussed with the patient.

Quality of evidence: Moderate
Strength of recommendation: Strong
Agreement: 94.4%

Procedural sedation, besides the direct benefit of reducing procedural discomfort, has also been shown to reduce patient anxiety and results in greater willingness to repeat the procedure. From the perspective of the endoscopist, there is also evidence of sedation improving endoscopy quality. For example, a recent single-centre review of outpatient colonoscopies demonstrated sedation to be associated with improved caecal intubation rates and adenoma detection rates.

An important part of patient autonomy involves ensuring that patients give consent to procedural sedation. This allows the patient to make voluntary decision on their medical care after having understood the attendant benefits and risks of sedation. Consent for procedural moderate sedation should be taken by an individual familiar with the sedation process. Procedural sedation may be administered by a non-anaesthesiologist or an anaesthesiologist. When medically relevant or when practicable, this option will be discussed with the patient.
Table 3. Summary of statements

Statements	Quality of evidence	Strength of recommendation	Final vote
Purpose of sedation, benefits and disadvantages of sedation during gastrointestinal (GI) endoscopy Pre-procedural assessment, preparation and consent-taking for sedation			
1 Sedation should be offered to every patient undergoing endoscopy. Specific informed consent should be taken for procedural sedation after the risks and benefits have been discussed with the patient.	Moderate	Strong	94.4%
2 Unsedated endoscopy is possible in selected patients. We recommend that where unsedated endoscopy is planned, options should be discussed ahead should the patient not be able to tolerate an unsedated procedure.	Moderate	Strong	100%
3 Patients undergoing sedation should be assessed medically for risks of sedation.	Low	Strong	100%
Efficacy and safety of drugs used in GI endoscopy sedation			
4 A benzodiazepine alone or in combination with an opioid is an option for sedation for patients undergoing diagnostic and therapeutic gastrointestinal endoscopy.	High	Strong	100%
5 Propofol alone or in combination with a benzodiazepine or opioid is an option for sedation for patients undergoing diagnostic and therapeutic gastrointestinal endoscopy.	High	Strong	100%
The role of anaesthesiologist-administered sedation during GI endoscopy			
6 Propofol sedation for gastrointestinal endoscopy can be safely and effectively administered by trained non-anaesthesiologists.	High	Weak	94.4%
7 We recommend anaesthesiologist-administered sedation in patients with a high-risk profile.	Low	Strong	100%
Intraprocedure monitoring of sedated patient			
8 A dedicated and trained assistant for sedation monitoring should be available during the procedure.	Low	Strong	94.4%
9 An individual trained in airway management and resuscitation should be on-site or immediately available.	Low	Strong	100%
10 Continuous oximetry monitoring is recommended for gastrointestinal endoscopy monitoring.	Low	Strong	100%
Post-sedation care and discharge after sedation			
11 We recommend that the patient’s clinical parameters should be monitored after endoscopy by trained staff until fit for discharge.	Low	Strong	100%
12 We recommend the usage of a discharge scoring system, e.g. Post-Anaesthetic Discharge Scoring System (PADSS) or Modified Aldrete Score, to assess if patient has recovered sufficiently post-sedation to allow discharge.	Low	Strong	100%
13 We recommend that patients who have received sedation should be told what is safe for them to do.	Low	Strong	100%
Training in sedation for GI endoscopy for non-anaesthesiologist			
14 The person providing sedation should attend a sedation course.	Low	Strong	100%
15 Training in sedation should be structured. There should be assessment of competencies prior to the independent administration of sedation.	Low	Strong	100%
16 Non-anaesthesiologists using propofol for sedation should have additional training with respect to propofol. They should have training for resuscitation with emphasis on airway management.	Low	Strong	88.9%
The components of appropriate informed consent for procedural sedation include the following:

1. Specific informed consent must be obtained prior to procedural sedation. Ideally, this should be in documented consent, and not just oral or implied consent.

2. The sedation consent is either taken personally by the sedationist, or another healthcare provider in the context of team-based practice. There should be appropriate training and education of all healthcare providers taking sedation consent.

3. Informed consent should be carried out by trained and competent staff in a manner and language the patient can understand. If there are language difficulties, interpreters must be used.

4. The identity of the individual providing the information to the patient and family is to be documented in the medical records.

5. The purpose, risks, benefits and alternatives relating to procedural sedation are to be discussed with the patient, or with those who make decisions for the patient such as his or her family.

6. The patient may withdraw or modify his or her consent at any time.

7. The clinician must ensure that the patient understands the information given regarding sedation consent.

8. Major complications and risks of procedural sedation should be communicated to the patient.

Statement 2: Unsedated endoscopy is possible in selected patients. We recommend that where unsedated endoscopy is planned, options should be discussed ahead should the patient not be able to tolerate an unsedated procedure.

Quality of evidence: Moderate
Strength of recommendation: Strong
Agreement: 100%

Sedation during endoscopy may improve rate of complete endoscopies, the quality of endoscopic examination and outcomes of therapeutic endoscopy. However, there are instances where sedation is not required or is not desired by the patient. These include procedures that are relatively short and less stimulating, e.g. flexible sigmoidoscopy or water-insufflation colonoscopy. Patients in whom sedation poses an increased risk, such as patients with severe obstructive sleep apnoea, may also choose to undergo endoscopy unsedated. In patients where unsedated endoscopy has been planned, it is reasonable to discuss options should the patient not be able to tolerate the procedure unsedated. These options include the administration of sedation by the endoscopist (for which pre-procedure assessment should be performed and consent taken), or cancellation and rescheduling of the procedure with anaesthesiologist support where appropriate.

CQ2: Pre-procedural assessment, preparation and consent taking for sedation

Statement 3: Patients undergoing sedation should be assessed medically for risks of sedation.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

Pre-procedure assessment should be done to determine whether an anaesthesiologist should be involved during the sedation for the endoscopy. This includes taking history and reviewing the medical records, performing a focused physical examination, and reviewing available investigations (Table 4 provides an example of such a schema).

CQ3: Efficacy and safety of drugs used in GI endoscopy sedation

Statement 4: A benzodiazepine alone or in combination with an opioid is an option for sedation for patients undergoing diagnostic and therapeutic gastrointestinal endoscopy.

Quality of evidence: High
Strength of recommendation: Strong
Agreement: 100%

A benzodiazepine is typically used to minimise anxiety and to provide sedation during digestive endoscopy. Nearly all gastroscopies in the US and Australia are done with sedation and greater than 98% of the colonoscopies done in the US, Australia and Canada involve the use of sedation. Although sedation practices vary from country to country, among the drugs used most commonly for GI endoscopy are opioids and benzodiazepines.

A benzodiazepine is typically used to minimise anxiety and to provide sedation during digestive endoscopy. Its amnesic property helps in persuading patients for repeat procedures when indicated. An opioid, on the other hand, provides both sedative and analgesic effects and improves the quality of endoscopy. The combination of a benzodiazepine and opioid has been accepted and adopted by endoscopists worldwide as a regimen for
providing moderate sedation for routine GI endoscopy.16,17 Although this approach carries a small risk of adverse events including hypotension, hypoxia, cardiac arrhythmia and apnoea, these risks have largely been mitigated with active pre-procedure case selection, intraprocedure and post-procedure monitoring.18 The overall cost-benefit effect after risk balancing is in favour of such sedation regime in both inpatient and outpatient settings provided there are no added risk factors for sedation related adverse events.

Statement 5: Propofol alone or in combination with a benzodiazepine or opioid is an option for sedation for patients undergoing diagnostic and therapeutic gastrointestinal endoscopy.

Quality of evidence: High
Strength of recommendation: Strong
Agreement: 100%

Efficacy and safety of propofol

Propofol sedation is efficacious and has advantages over benzodiazepines and other sedatives for GI endoscopy, in terms of peri-procedural amnesia effect, faster recovery profile, patient satisfaction and endoscopist satisfaction. Propofol is more effective and safer than benzodiazepine in diagnostic and therapeutic endoscopy in patients with certain comorbidities such as liver cirrhosis.19 Propofol sedation is efficacious and is equivalent to benzodiazepines for GI endoscopy in terms of peri-procedural haemodynamic changes and oxygenation. There is abundant medical literature in the form of randomised control trials19-63 as well as meta-analyses/systematic reviews5,64-72 comparing the use of propofol with benzodiazepines during GI endoscopy. Most studies were published from the year 2000 onwards with the majority concentrated in the last 10 years. The studies originated from centres with different healthcare systems from across the world, involving both adult and paediatric endoscopic procedures. The studies included diagnostic gastroscopy and colonoscopy, balloon-assisted enteroscopy, endoscopic ultrasound (EUS), and therapeutic procedures such as oesophageal band ligation, endoscopic mucosal resection and endoscopic retrograde cholangiopancreatography (ERCP). The studies assessed metrics related to patient cardiorespiratory parameters (oxygen saturation, heart rate and blood pressure) and related adverse events (hypoxaemia, bradycardia, hypotension and necessity of airway intervention), technical performance of endoscopy (e.g. caecal intubation and time to completion), recovery time, patient’s satisfaction and endoscopist’s satisfaction. A significant finding was that propofol was associated with faster recovery time after endoscopy. There was also improved patient satisfaction and endoscopist satisfaction with the use propofol. Meta-analyses noted that propofol sedation produced deeper sedation than traditional agents.5,64-72 However, there

Table 4. Pre-procedure assessment for sedation
1. History
a. Significant past medical history such as cardiopulmonary disorders
b. Stridor, snoring or obstructive sleep apnoea
c. Adverse reaction to sedation or anaesthesia
d. Current medications and allergies
e. Alcohol use
f. American Society of Anesthesiologists (ASA) physical status classification
i. ASA I, ASA II patients and some ASA III patients are appropriate candidates for administration of sedation by an endoscopist.
ii. The assistance of an anaesthesiologist should be considered for some ASA III and all ASA IV, V patients.
2. Physical examination
a. Vital signs and weight
b. Auscultation of heart and lungs
c. Baseline level of consciousness
d. Assessment of airway
• The airway evaluation is designed to identify patients with anatomy that may make emergency tracheal intubation during resuscitation more difficult. This includes patients with obesity, short thick neck, cervical spine disease, decreased hyoid-mental distance, decreased thyromental distance, short inter-incisor distance and structural abnormalities of the mouth, jaw and oral cavity, and higher Mallampati score. Anaesthesiologist referral and support may need to be considered in patients with such airway abnormalities undergoing sedation.
3. Investigation
a. Blood test: not routinely indicated
b. Electrocardiogram: not routinely indicated
c. Chest X-ray: not routinely indicated
was no difference in complications in respect to cardiorespiratory parameters, with the exception of 1 meta-analysis noting a higher incidence of hypotension in propofol sedation.64 One meta-analysis noted lower cardiorespiratory complications (blood pressure, oxygen saturation and heart rate) in the group sedated with propofol for colonoscopy but there were no differences in complications for other endoscopic procedures.69 Propofol was also associated with a significantly faster recovery time. Both patients’ and endoscopists’ satisfaction was better with propofol than traditional agents. The confidence intervals in the meta-analyses were not wide.

In the 45 randomised control trials, propofol was compared with other sedation agents such as midazolam, fentanyl and etomidate.19,63 Propofol was either given as monotherapy or in combination with one of these agents. Salient findings are as listed: propofol results in faster recovery time; propofol gives better quality upper GI endoscopy; propofol used in cirrhotic patients results in much less issues with hepatic encephalopathy post-sedation;19,23 the adverse events were similar whether propofol was used or added to traditional agents; and etomidate is a promising alternative to propofol.

\textit{Propofol monotherapy versus combination therapy}

Monotherapy propofol sedation has a low sedation-related complication rate. A recent large (\textit{n}=368,206) multicentre German study recorded a 0.01\% rate for major complication, where propofol monosedation had the lowest rate (odds ratio 0.75) compared with midazolam (reference) and combinations (odds ratio 1.0–1.5).71 In a randomised controlled trial of 150 elderly patients 80 years or older presenting for routine ERCP, propofol as a single sedation agent was superior to midazolam and pethidine in terms of patient cooperation, recovery times and recovery score; with comparable intraprocedural desaturation.24 In contrast, a randomised controlled trial (\textit{n}=135) comparing propofol versus propofol and midazolam for colonoscopy sedation by non-anaesthesiologists showed that drug synergy in the combination group improved patient satisfaction rates but prolonged recovery time.39 A dose-ranging study with propofol and increasing doses of fentanyl (up to 1µg/kg) in elderly colonoscopy patients (\textit{n}=90) demonstrated that propofol dose can be reduced with combination therapy without significant difference in anaesthesia associated adverse events.71 Similarly, safe and effective sedation for colonoscopy (\textit{n}=121) with low-dose propofol together with dexmedetomidine or intranasal sufentanil or pethidine, can be achieved in different regimens.76 Combination sedation regimens with preprocedural oral midazolam 7.5mg and propofol showed a propofol-sparing effect with less procedural anxiety and intraprocedural desaturation versus propofol monotherapy.72 Large observational studies have demonstrated that propofol monotherapy has lower complication rates. However, several randomised controlled trials have shown that combination sedation can also be safely and effectively administered. Therefore, the evidence to support propofol monotherapy over propofol combination therapy is conflicting and the recommendation is weak. The experience of the endoscopist/sedationist utilising different regimens would be an important consideration for the use of combination therapy, vis-à-vis propofol with midazolam, dexmedetomine, fentanyl, pethidine or other anxiolytic or analgesic agents.

\textbf{Statement 6: Propofol sedation for gastrointestinal endoscopy can be safely and effectively administered by trained non-anaesthesiologists.}

Quality of evidence: High
Strength of recommendation: Weak
Agreement: 94.4\%

On the question of the safety of non-anaesthesiologist-administered propofol for sedation during endoscopy, 2 areas were investigated, namely comparison of non-anaesthesiologist-administered versus anaesthesiologist-administered propofol for sedation in endoscopy and comparison of non-anaesthesiologist-administered propofol versus benzodiazepine. Three meta-analyses showed that the incidence of complications such as hypoxia and requirements for airway intervention during endoscopy were similar in both the non-anaesthesiologist-administered and anaesthesiologist-administered propofol groups.78–80 Bradycardia was more common in the non-anaesthesiologist group. The non-anaesthesiologist group administered lower doses of propofol.

In the 2 randomised control trials directly comparing non-anaesthesiologist-administered versus anaesthesiologist-administered propofol, restricted to low-risk patients (American Society of Anesthesiologists [ASA] I–II), there were no differences between the 2 groups in complication rates (hypoxaemia, airway intervention, hypotension and bradycardia), technical success of endoscopy, as well as patient and endoscopist satisfaction.81,82 In 3 large case series, 2 studies showed anaesthesiologist-administered sedation resulted in higher rates of serious adverse effects events and did not provide a safety benefit over non-anaesthesiologist-directed sedation, as well as higher rate of colonoscopy complications.83,84 The third and smallest case series
concluded equal effectiveness of both non-anaesthesiologist-administered propofol and anaesthesiologist-administered propofol. A small single-centre study by Goudra et al. showed that “the frequencies of most adverse events were significantly higher in patients anaesthetised with propofol”. This study compared adverse events when patients were sedated with propofol by anaesthesiologists or anaesthesiology nurses compared with non-propofol-based sedation by endoscopists. These conclusions have to be taken in the context of the limitations of case series studies where inherent bias may be present. In the randomised control trials comparing non-anaesthesiologist-administered sedation using propofol compared with benzodiazepine-based regimes, there was uniformity and concordance; there was no difference in safety and complication rates between the 2 groups.

These studies comprising meta-analyses, randomised control trials and non-randomised studies point to safety of non-anaesthesiologist-administered propofol for sedation in endoscopy, in particular when compared to anaesthesiologist-administered propofol sedation, and compared to non-propofol, benzodiazepine-based regimens. We note that propofol was associated with a shorter recovery time, although it has a narrow therapeutic range and no reversal agent, with a tendency for progression from moderate to deep sedation.

The current product insert by the manufacturer states that propofol should be administered by “persons trained in the administration of general anaesthesia”. Published evidence shows the efficacy and safety of non-anaesthesiologist-administered propofol for endoscopy compared with anaesthesiologist-administered propofol sedation. The product insert does not take into account post-marketing extensive evidence on the safety of propofol in the real-world setting, and propofol sedation is already currently been administered by non-anaesthesiologists. It is because of this evidence that it was felt necessary to have separate guidelines for sedation in GI endoscopy to create a framework for safe practice. The resources required to enable this parity in safety and efficacy should be noted. Specifically, the availability of clinical protocols, training requirements of non-anaesthesiologists, availability of personnel trained in airway management, and the manpower onsite. In the absence of a funnel plot, we also cannot rule out publication bias from the meta-analyses. Dossa et al. performed a systemic review of the recommendations from published North American and European guidelines on sedation practices for routine GI endoscopy, and found that recommendations relating to the drugs to be used for sedation, the healthcare personnel capable of administering propofol and monitoring patients sedated with propofol, and the need for capnography when monitoring sedated patients varied. There are controversies and limitations of available data and recommendations. We find that the level of evidence for this proposed recommendation statement moderate to high, with a weak recommendation due to possible publication bias, indirectness and the imprecision of the studies. The critical issue for endoscopic procedures is not the administration of propofol by an anaesthesiologist versus an endoscopist, but rather the monitoring of the patient to detect complications, the ability of the physician to recognise and manage the complications, and the availability of resources to manage these complications.

CQ4: The role of anaesthesiologist-administered sedation during gastrointestinal endoscopy

Statement 7: We recommend anaesthesiologist-administered sedation in patients with a high-risk profile.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

A high-risk profile includes critically ill and/or decompensated patients (ASA IV–V); some ASA III patients; the presence of pathological anatomical features associated with a higher risk of airway obstruction during the intervention; history of obstructive sleep apnoea; obese patients with BMI>35kg/m²; anticipated difficult airway; anticipated or history of intolerance to moderate sedation; patients with high risk of aspiration, prolonged or complex therapeutic endoscopic procedures requiring deep sedation; and anticipated difficulty in sedating patient.

The need for anaesthesiologist-administered sedation can be divided into patient and procedural factors. Patient factors include patients with a high-risk profile; patients with anatomic or post-therapy airway variants predisposing to airway obstruction; patients with anticipated intolerance to standard sedatives, e.g. a history of alcohol or substance abuse; pregnancy; morbid obesity; neurologic or neuromuscular disorders; severe obstructive sleep apnoea; and patients who are uncooperative or delirious. The endoscopist may want to consider anaesthesiologist-administered sedation in geriatric patients and patients with BMI>30kg/m².

Procedural factors include prolonged or therapeutic procedures requiring deep sedation.
In keeping with patient autonomy, the endoscopist may also consider anaesthesiologist-administered sedation in patients who have requested for an anaesthesiologist.

CQ5: Intraprocedure monitoring of the sedated patient

Statement 8: A dedicated and trained assistant for sedation monitoring should be available during the procedure.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 94.4%

Monitoring of a patient under sedation serves the following purposes:
1. Gauge the level of sedation reached. This allows titration of the drugs used.
2. Observe and evaluate physiologic functions and extent of changes.
3. Early detection of unintended depth of sedation.
4. Evaluate patient’s responses to intervention.

It is recommended that a dedicated and trained assistant, who could be a nurse or physician, be assigned to monitor the sedated patient and should have no other major duty. Such individuals would have been trained to recognise and react to abnormalities in the parameters being monitored. While the assistant may provide momentary non-technical assistance to the other staff engaged in the technical part of the endoscopy, attention on the patient must not be diverted by these tasks.

Statement 9: An individual trained in airway management and resuscitation should be on-site or immediately available.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

A sedated patient is at risk of hypoventilation, obstruction, apnoea or losing the airway, which leads to hypercapnia and hypoxaemia. Often ventilatory support would stabilise the patient. In the hospital setting, an emergency response team (e.g. code blue team) with personnel proficient in airway management and cardiac resuscitation should be available at all time of the day. In the absence of this team, the endoscopist and/or endoscopy nurse should be trained and competent in airway management and resuscitation. Airway management equipment must be readily available.

Statement 10: Continuous oximetry monitoring is recommended for gastrointestinal endoscopy monitoring.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

The use of oximetry is currently ubiquitous in clinical practice, because of its easy non-invasive application, low cost and negligible risk. Observational studies have shown the utility of oximetry when procedural sedation is administered for endoscopy. Timely intervention is enhanced with the use of oximetry monitoring in endoscopy units, which in turn improves patient safety. In contrast, Bilotta et al. monitored oximetry in 103 patients undergoing office colonoscopy. As there were no adverse outcomes noted in this small patient group, the authors suggested that oximetry monitoring may not be clinically useful in low-risk endoscopies.

Other monitoring devices

The group considered the evidence for the routine use of capnography and continuous electrocardiogram for intraprocedural monitoring but decided against making statements on their use as there was variation in actual clinical practice, differences in opinion about the necessity, and we did not consider these to be crucial in all cases.

CQ6: Post-sedation care and discharge after sedation

Statement 11: We recommend that the patient’s clinical parameters should be monitored after endoscopy by trained staff until fit for discharge.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

In general, evidence on post-sedation care and discharge after endoscopic procedures is limited. Post-sedation complications (commonly hypoxia, hypotension or stridor) may happen after completion of the procedure. This usually happens within 30 minutes from the final sedative administration or in patients who have received reversal agents during or after the procedure. Therefore, clear documentation of the sedative administration timing and usage of reversal agents is essential. Patients who have received sedation need to be closely monitored post-procedure by trained staff who can recognise and manage any common complications early. These complications are observed to be less
frequent when patients received propofol monotherapy, compared to the combination of benzodiazepines and opioids.

Statement 12: We recommend the usage of a discharge scoring system, e.g. Post-Anaesthetic Discharge Scoring System (PADSS) or Modified Aldrete Score, to assess if patient has recovered sufficiently post-sedation to allow discharge.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

There are several discharge scoring systems available. The commonly used scoring systems are Post-Anaesthetic Discharge Scoring System (PADSS) and Modified Aldrete Score, which use the combination of vital signs, functional status and symptoms to allow trained staff to objectively assess if patients can be safely discharged after receiving sedation. Usage of these scoring systems may also allow earlier discharge, with no additional adverse outcome, compared to conventional clinical assessment. These scoring systems, however, do not measure a patient’s psychomotor or cognitive function and do not assess one’s ability to drive or to make legally binding decisions. If reversal agents such as flumazenil or naloxone are used, one would need to ensure that sufficient time be allowed for the effects of these reversal agents to wear off, to avoid the situation of apparent fulfilment of discharge criteria, only for the patient to return to a sedated state which may endanger the patient or others after the reversal agents wear off.

Statement 13: We recommend that patients who have received sedation should be told what is safe for them to do.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

Discharge scoring systems often focus on only the cardio-respiratory function. Despite patients appearing clinically alert post-reversal agents, they may have prolonged impairment in their cognition and psychomotor skills. The duration of this impairment depends on the sedative agent used. These simple discharge scoring systems often do not assess patients’ psychomotor function fully, which is important to determine if the patients are able to make use of road transport, operate heavy machinery or make legally binding decisions.

They should refrain from driving, drinking alcohol, operating heavy machinery, or engaging in legally binding decisions for a period of time, taking into account the half-life of the drug used and the patient’s health profile. Advice should be provided verbally and in written form to the patient. Older studies on the recovery of psychomotor function after sedation with diazepam and midazolam showed recovery of psychomotor function to pre-sedation levels after 10 hours even when benzodiazepines were used at higher doses (midazolam 0.15mg/kg body weight [bw] or diazepam 0.45mg/kg bw). \(^{112,113}\) Diazepam is seldom used in endoscopy now. The dose of midazolam administered also rarely exceeds 0.1mg/kg bw in current practice. Only when pethidine 75mg was used were psychomotor functions impaired for up to 12 hours. \(^{114}\) This dose of pethidine is now seldom used during endoscopy. More recent studies have shown that patients sedated with propofol monotherapy recover psychomotor skills 2 hours post-sedation. \(^{115,116}\) Patients in both studies had similar results on the driving simulator 2 hours after sedation. Japanese patients had similar number connection test (NCT) results before and 2 hours after propofol sedation while German patients took 1 second longer to complete the NCT. German patients who were sedated with midazolam and an opioid however scored worse on both the NCT and the driving simulator 2 hours post-sedation. American and Japanese experience suggests patients sedated with drugs with a short half-life may be safely discharged without an accompanying person, and that they may drive home safely within a few hours of sedation. \(^{117}\) Patients who have received sedation should be discharged with a responsible person and avoid operating heavy machinery, driving or signing any legally binding documents for a period. Based on current evidence on the duration of psychomotor function impairment by the drugs currently in use, patients given midazolam and fentanyl should be discharged with a responsible person and avoid these activities for up to 12 hours. Patients given propofol monotherapy could potentially avoid these activities for a shorter period. Published data would suggest it is safe for such activity to resume 2 hours after sedation. \(^{115-117}\) However, given medico-legal considerations, it will be prudent for individual endoscopy units and endoscopists to discuss the implications of this with individual patients before sedation is given.
CQ7: Training in sedation for GI endoscopy for non-anaesthesiologists

Statement 14: The person providing sedation should attend a sedation course.
Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

Training and achieving competency in the use of medications, as well as in airway assessment and management is important. Drugs widely used in endoscopy sedation include benzodiazepines and opioids, such as midazolam and fentanyl, respectively. Optimal sedation in endoscopy requires the proceduralist or sedationist administering sedation to be aware of the drugs’ different pharmacokinetics, pharmacodynamics, route of elimination, common adverse effects and potential drug–drug interactions. This enables the proceduralist or sedationist to choose the appropriate type, combination, and dose of sedation to administer depending on the patient profile, dosing aliquot interval, monitoring, and available and clinical setting. Adequate training in the properties of reversal agents such as flumazenil and naloxone are necessary in case these agents are required. The continuum from complete consciousness to general anaesthesia does not progress in discrete and well-defined stages. As such, it is crucial that the proceduralist or sedationist who intends to administer sedation be trained in the assessment of the patient’s level of sedation.

Statement 15: Training in sedation should be structured. There should be assessment of competencies prior to the independent administration of sedation.
Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 100%

Training in sedation pharmacology and recognition of the different levels of sedation can be taught in theory, often taking the form of instructional videos with quizzes at the end of these videos in the local setting. These are required for proceduralists starting training in GI endoscopy and are valid for a defined duration, often 2 to 3 years, before a refresher course is required. Sedation training curriculums have been published by professional societies in the US (American Gastroenterological Association [AGA], American College of Gastroenterology [ACG], American Society for Gastrointestinal Endoscopy [ASGE], American Association for the Study of Liver Diseases [AASLD] and Society of Gastroenterology Nurses and Associates. [SGNA]) and in Europe (European Society of Gastrointestinal Endoscopy [ESGE] and European Society of Gastroenterology and Endoscopy Nurses and Associates [ESGENA]). In Singapore, trainees are under direct supervision while undergoing training in GI endoscopy. There is also hands-on supervision in the actual administration of sedation. This is consistent with the training recommendations from the US and Europe. The ability to manage adverse events from sedation is also an important part of training. The ESGE/ESGENA curriculum recommends that all endoscopists and sedationists be trained in basic cardiac life support. In addition, those practising in facilities where an advanced cardiac life support (ACLS) provider is not immediately available should also be trained in ACLS.

The workgroup agrees with the recommendation from ESGE/ESGENA that ACLS training of the endoscopist or sedationist is required only in the context of facilities without a code blue team. European endoscopic sedation data after the introduction of these European training guidelines have demonstrated the safety and effectiveness. Despite more widespread adoption of sedation during endoscopy including the use of propofol by non-anaesthesiologists, sedation-related complications have remained low. American data from the same period showed increased adoption of anaesthesiologist-administered sedation (in up to 53% of commercially insured patients) with increased cost and utilisation of limited anaesthesiology resources even for ASA 1 and 2 patients.
Statement 16: Non-anaesthetists using propofol for sedation should have additional training with respect to propofol. They should have training for resuscitation with emphasis on airway management.

Quality of evidence: Low
Strength of recommendation: Strong
Agreement: 88.9%

Data demonstrated the safety and efficacy of non-anaesthesiologist-administered propofol sedation (NAAP). NAAP requires specialised training, patient selection, and personnel dedicated to continuous physiologic monitoring. The current sedation training for endoscopy trainees in Singapore focuses only on the safe and effective use of benzodiazepines and opiates. Hence, there should be additional structured training on the safe use of propofol. Unlike benzodiazepines and opiates, there are no reversal agents for propofol. Hence the ability to manage adverse events such as airway compromise from propofol is even more crucial. Training curricula have been published in the US by AGA/ACG/ASGE/AASLD/SGNA and in Europe by ESGE/ESGENA. The Korean NAAP training guideline developed by anaesthesiologists is similar to the ESGE guideline. Propofol can be safely used by non-anaesthesiologists for endoscopic sedation after rigorous training. As training in the use of propofol is currently not incorporated during training for GI endoscopy, a dedicated formal structured course on the use of propofol would be needed for endoscopists intending to provide NAAP if they do not have prior experience in its usage. ACLS training will also be required if propofol sedation is administered in a centre without a code blue team. The training course should involve all relevant stakeholders, and could potentially be organised under the auspices of AMS, or specific institutions or professional bodies. In current clinical practice, propofol sedation is already being administered safely by non-anaesthesiologists in the private practice setting. These doctors would have either undergone formal or informal training on the use of propofol in the past and should be allowed to continue this practice based on past track records. Individual institutions may consider the need for specific credentialling. For non-anaesthesiologists who now intend to begin providing propofol sedation, formal training would be recommended.

CONCLUSION
This is the first AMS guideline for sedation during GI endoscopy by non-anaesthesiologists in the hospital setting, summarising the available evidence according to GRADE, and making recommendations by the modified Delphi process. The guideline addresses pre-, peri- and post-procedural issues related to the administration of sedation during GI endoscopy, provides evidence-based appraisal of the efficacy and safety of benzodiazepines, opiates and propofol. The guideline also addresses the roles of anaesthesiologists and non-anaesthesiologists in the administration of sedation. In particular, it addresses the use of propofol by non-anaesthesiologists. It is hoped that this guideline would enhance the safety and quality of sedation during GI endoscopy by non-anaesthesiologists. At the same time, it is also important that individual hospitals track and audit adverse outcomes arising from the provision of sedation during GI endoscopy. This guideline will be revised as necessary to cover progress and changes in technology, and evidence from clinical practice.

Disclosure
The guideline was commissioned by the Academy of Medicine, Singapore.

REFERENCES
1. Predmore Z, Nie X, Main R, et al. Anesthesia Service Use During Outpatient Gastroenterology Procedures Continued to Increase From 2010 to 2013 and Potentially Discretionary Spending Remained High. Am J Gastroenterol 2017;112:297-302.
2. Guidelines on Safe Sedation Practice for Non-Anaesthesiologists in Medical & Dental Clinics, Stand-Alone Ambulatory Surgical Centres, and Stand-Alone Endoscopy Suites in Singapore, July 2021. Available at: https://www.ams.edu.sg/view-pdf.aspx?file=media%5c6241_fi_759.pdf&file=09July21+Updated+Guidance+on+Safe+Sedation+Practice.pdf. Accessed on 10 August 2021.
3. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383-94.
4. Obara K, Haruma K, Irisawa A, et al. Guidelines for sedation in gastroenterological endoscopy. Dig Endosc 2015;27:435-49.
5. McQuaid KR, Laine L. A systematic review and meta-analysis of randomized, controlled trials of moderate sedation for routine endoscopic procedures. Gastrointest Endosc 2008;67:910-23.
6. Khan F, Hur C, Lebwohl B, et al. Unsedated Colonoscopy: Impact on Quality Indicators. Dig Dis Sci 2020;65:3116-22.
7. Rutter MD, Evans R, Hoare Z, et al. WASH multicentre randomised controlled trial: water-assisted sigmoidoscopy in English NHS bowel scope screening. Gut 2021;70:845-52.
8. Garborg K, Kaminski MF, Lindenburger W, et al. Water exchange versus carbon dioxide insufflation in unsedated colonoscopy: a multicenter randomized controlled trial. Endoscopy 2015;47:192-9.
9. Cadoni S, Falt P, Gallitut P, et al. Water Exchange Is the Least Painful Colonoscope Insertion Technique and Increases Completion of Unsedated Colonoscopy. Clin Gastroenterol Hepatol 2015;13:1972-80.e1-3
10. Cohen LB, DeLegge MH, Aisenberg J, et al. AGA Institute Review of Endoscopic SEDATION. Gastroenterology 2007;133:675-701.
11. Practice guidelines for moderate procedural sedation and analgesia 2018: A report by the American Society of Anesthesiologists task force on moderate procedural sedation and analgesia, the American Association of Oral and Maxillofacial Surgeons,
American College of Radiology, American Dental Association, American Society of Dentist Anesthesiologists, and Society of Interventional Radiology. Anesthesiology 2018;128:437-79.

12. ASGE Standards of Practice Committee, Early DS, Lightdale JR, et al. Guidelines for sedation and anesthesia in GI endoscopy. Gastrointest Endosc 2018;87:327-37.

13. Abraham NS, Fallone CA, Mayrand S, et al. Sedation versus no sedation in the performance of diagnostic upper gastrointestinal endoscopy: a Canadian randomized controlled cost-outcome study. Am J Gastroenterol 2004;99:1692-9.

14. Crispin A, Birkner B, Munte A, et al. Process quality and incidence of acute complications in a series of more than 230,000 outpatient colonoscopies. Endoscopy 2009;41:1018-25.

15. Benson AA, Cohen LB, Wave JD, et al. Endoscopic sedation in developing and developed countries. Gut Liver 2008;2:105-12.

16. Finn RT 3rd, Boyd A, Lin L, et al. Bolus Administration of Fentanyl and Midazolam for Colonoscopy Increases Endoscopy Unit Efficiency and Safety Compared With Titrated Sedation. Clin Gastroenterol Hepatol 2017;15:1419-26.e2.

17. Khan KJ, Fergani H, Ganguli SC, et al. The Benefit of Fentanyl in Effective Sedation and Quality of Upper Endoscopy: A Double-Blinded Randomized Trial of Fentanyl Added to Midazolam Versus Midazolam Alone for Sedation. J Can Assoc Gastroenterol 2019;2:86-90.

18. Sharma VK, Nguyen CC, Crowell MD, et al. A national study of cardiopulmonary unplanned events after GI endoscopy. Gastrointest Endosc 2007;66:27-34.

19. Watanabe K, Hikichi T, Takagi T, et al. Propofol is a more effective and safer sedative agent than midazolam in endoscopic injection sclerotherapy for esophageal varices in patients with liver cirrhosis: a randomized controlled trial. Fujishima J Med Sci 2018;64:133-41.

20. Lera dos Santos ME, Maluf-Filho F, Chaves DM, et al. Deep sedation during gastrointestinal endoscopy: propofol-fentanyl and midazolam-fentanyl regimens. World J Gastroenterol 2013;19:3439-46.

21. Padmanabhan A, Frangopoulos C, Shaffer LET. Patient Satisfaction With Propofol for Outpatient Colonoscopy: A Prospective, Randomized, Double-Blind Study. Dis Colon Rectum 2017;60:1102-8.

22. das Neves JF, das Neves Araújo MM, de Paiva Araújo F, et al. Colonoscopy sedation: clinical trial comparing propofol and fentanyl with or without midazolam. Braz J Anesthesiol 2016;66:231-6.

23. Correia LM, Bonilha DQ, Gomes GF, et al. Sedation during upper GI endoscopy in cirrhotic outpatients: a randomized, controlled trial comparing propofol and fentanyl with midazolam and fentanyl. Gastrointest Endosc 2011;73:45-51, 51e1.

24. Hsu CD, Huang JM, Chuang YP, et al. Propofol target-controlled infusion for sedated gastrointestinal endoscopy: A comparison of propofol alone versus propofol-fentanyl-midazolam. Kaohsiung J Med Sci 2015;31:580-4.

25. Julián Gómez L, Fuentes Coronel A, López Ramos C, et al. A clinical trial comparing propofol versus propofol plus midazolam in diagnostic endoscopy of patients with a low anesthetic risk. Rev Esp Enferm Dig 2018;110:691-8.

26. Sienkiewicz E, Albrecht P, Ziolkowski J, et al. Propofol-alfentanil versus midazolam-alfentanil in inducing procedural amnesia of upper gastrointestinal endoscopy in children—blind randomised trial. Eur J Pediatr 2015;174:1475-80.

27. Agostoni M, Fanti L, Arcidiacono PG, et al. Midazolam and pethidine versus propofol and fentanyl patient controlled sedation/analgesia for upper gastrointestinal tract ultrasound endoscopy: a prospective randomized controlled trial. Dig Liver Dis 2007;39:1024-9.

28. Wang F, Shen SR, Xiao DH, et al. Sedation, analgesia, and cardiorespiratory function in colonoscopy using midazolam combined with fentanyl or propofol. Int J Colorectal Dis 2011;26:703-8.

29. Carlsson U, Grattridge P. Sedation for upper gastrointestinal endoscopy: a comparative study of propofol and midazolam. Endoscopy 1995;27:240-3.

30. Riphaus A, Lechowicz I, Frenz MB, et al. Propofol sedation for upper gastrointestinal endoscopy in patients with liver cirrhosis as an alternative to midazolam to avoid acute deterioration of minimal encephalopathy: a randomized, controlled study. Scand J Gastroenterol 2009;44:1244-51.

31. Vargo JJ, Zuccaro G Jr, Dumot JA, et al. Gastroenterologist-administered propofol versus meperidine and midazolam for advanced upper endoscopy: a prospective, randomized trial. Gastroenterology 2002;123:8-16.

32. Agrawal A, Sharma BC, Sharma P, et al. Randomized controlled trial for endoscopy with propofol versus midazolam on psychometric tests and critical flicker frequency in people with cirrhosis. J Gastroenterol Hepatol 2012;27:1726-32.

33. Disma N, Astuto M, Rizzo G, et al. Propofol sedation with fentanyl or midazolam during oesophagogastroduodenoscopy in children. Eur J Anaesthesiol 2005;22:848-52.

34. Padmanabhan U, Leslie K, Eor AS, et al. Early cognitive impairment after sedation for colonoscopy: the effect of adding midazolam and/or fentanyl to propofol. Anaesth Analg 2009;109:1448-55.

35. Meining A, Semmler V, Kassem AM, et al. The effect of sedation on the quality of upper gastrointestinal endoscopy: an investigator-blinded, randomized study comparing propofol with midazolam. Endoscopy 2007;39:345-9.

36. Treeprasertsuk S, Rerknimitr R, Anguswatharakon P, et al. The safety of propofol infusion compared to midazolam and meperidine intravenous bolus for patients undergoing double balloon enteroscopy. J Med Assoc Thai 2014;97:483-9.

37. Fanti L, Gemma M, Agostoni M, et al. Target Controlled Infusion for non-anaesthesiologist propofol sedation during gastrointestinal endoscopy: The first double blind randomized controlled trial. Dig Liver Dis 2015;47:566-71.

38. Paspatis GA, Manolarkaki M, Xiouchakis G, et al. Synergistic sedation with midazolam and propofol versus midazolam and pethidine in colonoscopics: a prospective, randomized study. Am J Gastroenterol 2002;97:1963-7.

39. Molina-Infante J, Dueñas-Sadornil C, Mateos-Rodriguez JM, et al. Nonanesthesiologist-administered propofol versus midazolam and propofol, titrated to moderate sedation, for colonoscopy: a randomized controlled trial. Dig Dis Sci 2012;57:2385-93.

40. Pascaul MG, Zayas Berbes M, Sáez Baños M, et al. Utilidad de propofol versus midazolam más petidina en la realización de la colonoscopia [Propofol versus midazolam and pethidine in colonoscopies realization]. Acta Gastroenterol Latinoam 2011;41:214-20.

41. Zuo XL, Li Z, Liu XP, et al. Propofol versus midazolam plus fentanyl for upper gastrointestinal endoscopic biopsy: a randomized trial. World J Gastroenterol 2010;16:3097-102.

42. Heuss LT, Sugandha SP, Beglinger C. Carbon dioxide accumulation during endoscopy with propofol versus midazolam. World J Gastroenterol 2012;18:5389-96.

43. Dewitt J, McGreevy K, Sherman S, et al. Nurse-administered propofol sedation compared with midazolam and meperidine for EUS: a prospective, randomized trial. Gastrointest Endosc 2008;68:499-509.
44. Ho WM, Yen CM, Lan CH, et al. Comparison between the recovery time of alfentanil and fentanyl in balanced propofol sedation for gastrointestinal and colonoscopy: a prospective, randomized study. BMC Gastroenterol 2012;12:164.

45. Van Natta ME, Rex DK. Propofol alone titrated to deep sedation versus propofol in combination with opioids and/or benzodiazepines and titrated to moderate sedation for colonoscopy. Am J Gastroenterol 2006;101:2209-17.

46. Patterson KW, Casey PB, Murray JP, et al. Propofol sedation for outpatient upper gastrointestinal endoscopy: comparison with midazolam. Br J Anaesth 1991;67:108-11.

47. Ominami M, Nagami Y, Shibai M, et al. Comparison of propofol with midazolam in endoscopic submucosal dissection for esophageal squamous cell carcinoma: a randomized controlled trial. J Gastroenterol 2018;53:397-406.

48. Oei-Lim VL, Kalkman CJ, Bartelsman JF, et al. Cardiovascular responses, arterial oxygen saturation and plasma catecholamine concentration during upper gastrointestinal endoscopy using conscious sedation with midazolam or propofol. Eur J Anaesthesiol 1998;15:535-43.

49. Riphaus A, Gsettenbauer T, Frenz MB, et al. Quality of psychomotor recovery after propofol sedation for routine endoscopy: a randomized and controlled study. Endoscopy 2006;38:677-83.

50. Friedrich-Rust M, Welte M, Welte C, et al. Capnographic monitoring of propofol-based sedation during colonoscopy. Endoscopy 2014;46:236-44.

51. D’Honneur G, Rimpanio JM, el Sayed A, et al. Midazolam/propofol but not propofol alone reversibly depress the swallowing reflex. Acta Anaesthesiol Scand 1994;38:244-7.

52. Ulmer BJ, Hansen JJ, Overley CA, et al. Propofol versus midazolam/fentanyl for outpatient colonoscopy: administration by nurses supervised by endoscopists. Clin Gastroenterol Hepatol 2003;1:425-32.

53. Sasaki T, Tanabe S, Azuma M, et al. Propofol sedation with bispectral index monitoring is useful for endoscopic submucosal dissection: a randomized prospective phase II clinical trial. Endoscopy 2012;44:584-9.

54. Sipe BW, Rex DK, Latinovich D, et al. Propofol versus midazolam/meperidine for outpatient colonoscopy: administration by nurses supervised by endoscopists. Gastrointest Endosc 2002;55:815-25.

55. Chin NM, Tai HY, Chin MK. Intravenous sedation for upper gastrointestinal endoscopy: Midazolam versus propofol. Singapore Med J 1992;33:478-80.

56. Fanti L, Agostoni M, Arcidiacono PG, et al. Target-controlled infusion during monitored anesthesia care in patients undergoing EUS: propofol alone versus midazolam plus propofol. A prospective double-blind randomised controlled trial. Dig Liver Dis 2007;39:81-6.

57. Khamaysi I, William N, Olga A, et al. Sub-clinical hepatic encephalopathy in cirrhotic patients is not aggravated by sedation with propofol compared to midazolam: a randomized controlled study. J Hepatol 2011;54:72-7.

58. Seifert H, Schmitt TH, Gültekin T, et al. Sedation with propofol plus midazolam versus propofol alone for interventional endoscopic procedures: a prospective, randomized study. Aliment Pharmacol Ther 2000;14:1207-14.

59. Hansen JJ, Ulmer BJ, Rex DK. Technical performance of colonoscopy in patients sedated with nurse-administered propofol. Am J Gastroenterol 2004;99:52-6.

60. Lee CK, Lee SH, Chung IK, et al. Balanced propofol sedation for therapeutic GI endoscopic procedures: a prospective, randomized study. Gastrointest Endosc 2011;73:206-14.

61. Wehrmann T, Kobakpick S, Lembreke B, et al. Efficacy and safety of intravenous propofol sedation during routine ERCP: a prospective, controlled study. Gastrointest Endosc 1999;49:677-83.

62. Mandel JE, Tanner JW, Lichtenstein GR, et al. A randomized, controlled, double-blind trial of patient-controlled sedation with propofol/remifentanil versus midazolam/fentanyl for colonoscopy. Anesth Analg 2008;106:434-9.

63. Ng JM, Kong CF, Nyan D. Patient-controlled sedation with propofol for colonoscopy. Gastrintest Endosc 2001;54:8-13.

64. Zhang R, Lu Q, Wu Y. The Comparison of Midazolam and Propofol in Gastrointestinal Endoscopy: A Systematic Review and Meta-analysis. Surg Laparosc Endosc Percutan Tech 2018;28:153-8.

65. Wadhwa V, Issa D, Garg S, et al. Similar Risk of Cardiopulmonary Adverse Events Between Propofol and Traditional Anesthesia for Gastrointestinal Endoscopy: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2017;15:194-206.

66. Tsai HC, Lin YC, Ko CL, et al. Propofol versus midazolam for upper gastrointestinal endoscopy in cirrhotic patients: a meta-analysis of randomized controlled trials. PLoS One 2015;10:e0117585.

67. Delgado AAA, de Moura DTH, Ribeiro IB, et al. Propofol vs traditional sedatives for sedation in endoscopy: A systematic review and meta-analysis. World J Gastroentest Endosc 2019;11:573-88.

68. Dossa F, Meideros B, Keng C, et al. Propofol versus midazolam with or without short-acting opioids for sedation in colonoscopy: a systematic review and meta-analysis of safety, satisfaction, and efficiency outcomes. Gastroenterol Endosc 2020;91:1015-26.

69. Qadeer MA, Vargo JJ, Khandwala F, et al. Propofol versus traditional sedative agents for gastrointestinal endoscopy: a meta-analysis. Clin Gastroenterol Hepatol 2005;3:1049-56.

70. Guacho JAL, de Moura DTH, Ribeiro IB, et al. Propofol versus midazolam sedation for elective endoscopy in patients with cirrhosis: A systematic review and meta-analysis of randomized controlled trials. World J Gastroenterol 2020;12:241-55.

71. Singh H, Poluwa H, Cheung M, et al. Propofol for sedation during colonoscopy. Cochrane Database Syst Rev 2008;4:CD006268.

72. Nishizawa T, Suzuki H, Matsuzaki I, et al. Propofol versus traditional sedative agents for endoscopic submucosal dissection. Dig Endosc 2014;26:701-6.

73. Behrens A, Kreuzmayr A, Mannner H, et al. Acute sedation-associated complications in GI endoscopy (ProSed 2 Study): results from the prospective multicentre electronic registry of sedation-associated complications. Gut 2019;68:445-52.

74. Riphaus A, Stergiou N, Wehrmann T. Sedation with propofol for routine ERCP in high-risk octogenarians: a randomized, controlled study. Am J Gastroenterol 2005;100:1957-63.

75. Li S, Yu F, Zhu H, et al. The median effective concentration (EC50) of propofol with different doses of fentanyl during colonoscopy in elderly patients. BMC Anesthesiol 2015;16:24.

76. Akarsu Ayazoğlu T, Polat E, Bolat C, et al. Comparison of propofol-based sedation regimens administered during colonoscopy. Rev Med Chil 2013;141:477-85.

77. Paspatis GA, Manolaraki MM, Vardas E, et al. Deep sedation for endoscopic retrograde cholangiopancreatography: intravenous propofol alone versus intravenous propofol with oral midazolam premedication. Endoscopy 2008;40:308-13.

78. Gouda B, Gouda G, Borle A, et al. Safety of non-anesthesia provider administered propofol sedation in non-advanced gastrointestinal endoscopic procedures: A meta-analysis. Saudi J Gastroenterol 2017;23:133-43.
79. Goudra BG, Singh PM, Gouda G, et al. Safety of Non-anaesthesia Provider-Administered Propofol (NAAP) Sedation in Advanced Gastrointestinal Endoscopic Procedures: Comparative Meta-Analysis of Pooled Results. Dig Dis Sci 2015;60:2612-27.

80. Daza IF, Tan CM, Fielding RJ, et al. Propofol administration by endoscopists versus anaesthesiologists in gastrointestinal endoscopy: a systematic review and meta-analysis of patient safety outcomes. Can J Surg 2018;61:226-36.

81. Ferreira AO, Torres J, Barjas E, et al. Non-anaesthesiologist administration of propofol sedation for colonoscopy is safe in low risk patients: results of a noninferiority randomized controlled trial. Endoscopy 2016;48:747-53.

82. Kashiwagi K, Hosoue N, Takahashi K, et al. Prospective, randomized, placebo-controlled trial evaluating the efficacy and safety of propofol sedation by anaesthesiologists and gastroenterologist-led teams using computer-assisted personalized sedation during upper and lower gastrointestinal endoscopy. Dig Endosc 2015;27:657-64.

83. Vargo JJ, Niklewski PJ, Williams JL, et al. Patient safety during sedation by anesthesia professionals during routine upper endoscopy and colonoscopy: an analysis of 1.38 million procedures. Gastrointest Endosc 2017;85:101-8.

84. Wernli KJ, Brenner AT, Rutter CM, et al. Risks Associated With Anesthesia Services During Colonoscopy. Gastroenterology 2016;150:888-94.

85. de Paulo GA, Martins FP, Macedo EP, et al. Sedation in gastrointestinal endoscopy: a prospective study comparing nonanesthesiologist-administered propofol and monitored anesthesia care. Endosc Int Open 2015;3:E7-13.

86. Goudra B, Nuzat A, Singh PM, et al. Association between Type of Sedation and the Adverse Events Associated with Gastrointestinal Endoscopy: An Analysis of 5 Years’ Data from a Tertiary Center in the USA. Clin Endosc 2017;50:161-9.

87. González-Santiago JM, Martín-Noguerol E, Vinagre-Rodríguez G, et al. Intermittent boluses versus pump continuous infusion for endoscopist-directed propofol administration in colonoscopy. Rev Esp Enferm Dig 2013;105:378-84.

88. Yamamoto H, Gotoa T, Nakamura T, et al. Clinical impact of gastroenterologist-administered propofol during esophageogastroduodenoscopy: a randomized comparison at a single medical clinic. Gastric Cancer 2015;18:326-31.

89. Han SI, Lee TH, Park SH, et al. Efficacy of midazolam- versus propofol-based sedations by non-anaesthesiologists during therapeutic endoscopic retrograde cholangiopancreatography in patients aged over 80 years. Dig Endosc 2017;29:369-76.

90. Dossi F, Megetto O, Yakubu M, et al. Sedation practices for routine gastrointestinal endoscopy: a systematic review of recommendations. BMC Gastroenterol 2021;21:22.

91. Ennestvedt BK, Eisen GM, Holub J, et al. Is the American Society of Anesthesiologists classification useful in risk stratification for endoscopic procedures? Gastrointest Endosc 2013;77:464-71.

92. American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology 2002;96:1004-17.

93. Hession PM, Joshi GP. Sedation: not quite that simple. Anesthesiol Clin 2010;28:281-94.

94. Jamil LH, Naveed M, Agrawal D, et al. ASGE guideline on minimum staffing requirements for the performance of GI endoscopy. Gastrointest Endosc 2020;91:723-9.

95. Dossi F, Dubé C, Timmouch J, et al. Practice recommendations for the use of sedation in routine hospital-based colonoscopy. BMJ Open Gastroenterol 2020;7:e000348.

96. ASGE Ensuring Safety in the Gastrointestinal Endoscopy Unit Task Force, Calderwood AH, Chapman FJ, et al. Guidelines for safety in the gastrointestinal endoscopy unit. Gastrointest Endosc 2014;79:363-72.

97. Külling D, Orlandi M, Inauen W. Propofol sedation during endoscopic procedures: how much staff and monitoring are necessary? Gastrointest Endosc 2007;66:443-9.

98. Sheahan CG, Mathews DM. Monitoring and delivery of sedation. Br J Anaesth 2014;113 Suppl 2:i37-47.

99. AORN Position Statement on perioperative registered nurse circulator dedicated to every patient undergoing an operative or other invasive procedure. AORN J 2019;110:82-5.

100. Iber FL, Subbry M, Gupta R, et al. Evaluation of complications during and after conscious sedation for endoscopy using pulse oximetry. Gastrointest Endosc 1993;39:620-5.

101. Woods SD, Chung SC, Leung JW, et al. Hypoxia and tachycardia during endoscopic retrograde cholangiopancreatography: Detection by pulse oximetry. Gastrointest Endosc 1989;35:523-5.

102. Visco DM, Tolpin E, Straughn JC et al. Arterial oxygen saturation in sedated patients undergoing gastrointestinal endoscopy and a review of pulse oximetry. Del Med J 1989;61:533-42.

103. Hinzmann CA, Budden PM, Olson J. Intravenous conscious sedation use in endoscopy: Does monitoring of oxygen saturation influence timing of nursing interventions? Gastroenterol Nurs 1992;15:6-13.

104. Bilotta JJ, Floyd JL, Waye JD. Arterial oxygen desaturation during ambulatory colonoscopy: Predictability, incidence, and clinical insignificance. Gastrointest Endosc 1990;36(3 Suppl):S8-5.

105. Newman DH, Azer MM, Pitetti RD, et al. When is a patient safe for discharge after procedural sedation? The timing of adverse effect events in 1357 pediatric procedural sedations. Ann Emerg Med 2003;42:627-35.

106. Chung F, Chan VW, Ong D. A post-anesthetic discharge scoring system for home readiness after ambulatory surgery. J Clin Anesth 1995;7:500-6.

107. Aldrete JA. Modifications to the postanaesthesia score for use in ambulatory surgery. J Perianesth Nurs 1998;13:148-55.

108. Trevisani L, Cifala V, Gilli G, et al. Post-Anaesthetic Discharge Scoring System to assess patient recovery and discharge after colonoscopy. World J Gastrointest Endosc 2013;5:502-7.

109. Amorynotin S, Chalayomnavin W, Kongphlay S. Recovery pattern and home-readiness after ambulatory gastrointestinal endoscopy. J Med Assoc Thai 2007;90:2352-8.

110. Dumonceau JM, Riphaus A, Schreiber F, et al. Non-anaesthesiologist administration of propofol for gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy, European Society of Gastroenterology and Endoscopy Nurses and Associates Guideline—Updated June 2015. Endoscopy 2015;47:1175-89.

111. Girdler NM, Fairbrother KJ, Lyne JP, et al. A randomised crossover trial of post-operative cognitive and psychomotor recovery from benzodiazepine sedation: effects of reversal with flumazenil over a prolonged recovery period. Br Dent J 2002;192:335-9.

112. Korttila K, Linnoila M. Psychomotor skills related to driving performance after propofol or midazolam sedation. Br J Anaesth 1975;47:265-71.

113. Nuotto EJ, Korttila KT, Lichtor JL, et al. Sedation and Recovery of Psychomotor Function After Intravenous Administration of Various Doses of Midazolam and Dizepam. Anesth Analg 1992;74:265-71.

114. Korttila K, Linnoila M. Psychomotor skills related to driving after intramuscular administration of diazepam and meperidine. Anesthesiology 1975;42:685-91.
115. Riphaus A, Gostettenbauer T, Frenz MB, et al. Quality of psychomotor recovery after propofol sedation for routine endoscopy: a randomized and controlled study. Endoscopy 2006;38:677-83.

116. Horisuchi A, Nakayama Y, Fuji H, et al. Psychomotor recovery and blood propofol level in colonoscopy when using propofol sedation. Gastrointest Endosc 2012;75:506-12.

117. Sato M, Horisuchi A, Tamaki M, et al. Safety and Effectiveness of Nurse-Administered Propofol Sedation in Outpatients Undergoing Gastrointestinal Endoscopy. Clin Gastroenterol Hepatol 2019;17:1098-104.

118. Martin DP, Warner ME, Johnson RL, et al. Outpatient Dismissal With a Responsible Adult Compared With Structured Solo Dismissal: A Retrospective Case-Control Comparison of Safety Outcomes. Mayo Clin Proc Innov Qual Outcomes 2018;2:234-40.

119. Cole SG, Brozinsky S, Isenberg JI. Midazolam, a new more potent benzodiazepine, compared with diazepam: a randomized, double-blind study of preendoscopic sedatives. Gastrointest Endosc 1983;29:219-22.

120. Lee MG, Hanna W, Harding H. Sedation for upper gastrointestinal endoscopy: a comparative study of midazolam and diazepam. Gastrointest Endosc 1989;35:82-4.

121. Bartelsman JF, Sars PR, Tytgat GN. Flumazenil used for reversal of midazolam-induced sedation in endoscopy outpatients. Gastrointest Endosc 1990;36(3 Suppl):S9-12.

122. Maslekar SK, Hughes M, Skinn E, et al. Randomised controlled trial of sedation for colonoscopy: entonox versus intravenous sedation. Gastrointest Endosc 2006;63:PA897.

123. Kanto JH. Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy 1985;5:138-55.

124. Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology 1985;62:310-24.

125. Buck ML, Blumer JL. Opioids and other analgesics. Adverse effects in the intensive care unit. Crit Care Clin 1991;7:615-37.

126. Chang AC, Solinger MA, Yang DT, et al. Impact of flumazenil on recovery after outpatient endoscopy: a placebo-controlled trial. Gastrointest Endosc 1999;49:573-9.

127. Kankanria A, Lewis JH, Ginsberg G, et al. Flumazenil reversal of psychomotor impairment due to midazolam or diazepam for conscious sedation for upper endoscopy. Gastrointest Endosc 1996;44:416-21.

128. Australian and New Zealand College of Anaesthetists (ANZCA). Guideline on sedation and/or analgesia for diagnostic and interventional medical, dental or surgical procedures (PS09), 2014. Available at: https://www.anzca.edu.au/resources/professional-documents/guidelines/ps09-guidelines-sedation-analgesia-for-diagnostic. Accessed on 28 June 2021.

129. American Society of Anesthesiologists Committee on Quality Management and Departmental Administration. Statement on Granting Privileges to Non-Anesthesiologist Physicians* for Personally Administering or Supervising Deep Sedation, 2017. Available at: https://www.asahq.org/standards-and-guidelines/statement-on-granting-privileges-to-nonanesthesiologist-physicians-for-personally-administering-or-supervising-deep-sedation. Accessed on 28 June 2021.

130. American Association for Study of Liver Diseases, American College of Gastroenterology, American Gastroenterological Association Institute, et al. Multisociety sedation curriculum for gastrointestinal endoscopy. Gastrointest Endosc 2012;76:e1-25.

131. Dumonceau JM, Riphaus A, Beilenhoff U, et al. European curriculum for sedation training in gastrointestinal endoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA). Endoscopy 2013;45:496-504.

132. Standards of Practice Committee of the American Society for Gastrointestinal Endoscopy, Lichtenstein DR, Jagannath S, et al. Sedation and anesthesia in GI endoscopy. Gastrointest Endosc 2008;68:815-26.

133. Lee TH, Lee CK. Endoscopic sedation: from training to performance. Clin Endosc 2014;47:141-50.

134. Riphaus A, Geist F, Wehrmann T. Endoscopic sedation and monitoring practice in Germany: re-evaluation from the first nationwide survey 3 years after the implementation of an evidence and consent based national guideline. Z Gastroenterol 2013;51:1082-8.

135. Inadomi JM, Gunnarsson CL, Rizzo JA, et al. Projected increased growth rate of anesthesia professional-delivered sedation for colonoscopy and EGD in the United States: 2009 to 2015. Gastrointest Endosc 2010;72:580-6.

136. Kang H, Kim DK, Choi YS, et al. Practice guidelines for propofol sedation by non-anesthesiologists: the Korean Society of Anesthesiologists Task Force recommendations on propofol sedation. Korean J Anesthesiol 2016;69:545-54.

137. Gururatsakul M, Lee R, Ponnuwamy SK, et al. Prospective audit of the safety of endoscopist-directed nurse-administered propofol sedation in an Australian referral hospital. J Gastroenterol Hepatol 2021;36:490-7.