BNN+: Improved Binary Network Training

Anonymous authors
Paper under double-blind review

Abstract

Deep neural networks (DNN) are widely used in many applications. However, their deployment on edge devices has been difficult because they are resource hungry. Binary networks (BNN) help to alleviate the prohibitive resource requirements of DNN; where both activations and weights are limited to one bit. We propose an improved binary training method (BNN+), an improvement to the popular BNN training scheme, which helps to reduce accuracy degradation compared to the full-precision counterpart. Our method is based on linear operations that are easily implementable into the binary training framework and we show experimental results on CIFAR-10 obtaining an accuracy of 86.5%, on AlexNet and 91.6% with VGG network. On ImageNet, our method also outperforms the traditional BNN and XNOR-net, by a margin of 4% and 2% respectively.

1 Introduction

Deep neural networks (DNNs) have demonstrated success for many supervised learning tasks ranging from voice recognition to object detection (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Iandola et al., 2016). The focus has been on increasing accuracy, in particular for image tasks, where deep convolutional neural networks (CNNs) are widely used. However, their increasing complexity poses a new challenge, and has become an impediment to widespread deployment in many applications; specifically when trying to deploy such models to resource constrained and lower-power devices. A typical DNN architecture contains tens to thousands of layers, resulting in millions of parameters. As an example, AlexNet (Krizhevsky et al., 2012) requires 200MB of memory, VGGNet (Simonyan & Zisserman, 2014) requires 500MB memory. Large model sizes are further exacerbated by their computational cost, requiring GPU implementation to allow real-time inference. Such requirements evidently cannot be accustomed by edge devices as they have limited memory, computation power, and battery. This motivated the community to investigate methods for compressing and reducing computation cost of DNNs.

To make DNNs compatible with the resource constraints of low power devices, there have been several approaches developed, such as network pruning (LeCun et al., 1990), architecture design (Sandler et al., 2018) and quantization (Courbariaux et al., 2015; Han et al., 2015). In particular, weight compression using quantization can achieve very large savings in memory, where binary (1-bit), and ternary (2-bit) approaches have been shown to obtain competitive accuracy (Hubara et al., 2016; Zhu et al., 2016; Tang et al., 2017). Using such schemes reduces model sizes by 8x to 32x depending on the bit resolution used for computations. In addition to this, the speed by quantizing the activation layers. In this way, both the weights and activations are quantized so that one can replace the expensive dot products and activation function evaluations with bitwise operations. This reduction in bit-width benefits hardware accelerators such as FPGAs and neural network chips.

An issue with using low-bit DNNs is the drastic drop in accuracy compared to its full precision counterpart, and this is made even more severe upon quantizing the activations. This problem is largely due to noise and lack of precision in the training objective of the networks during backpropagation. Although, quantizing the weights and activations have been attracting large interests thanks to their computational benefits, closing the gap in accuracy between the full precision and the quantized version remains a challenge. Indeed, quantizing weights cause drastic information loss and make neural networks harder to train due to a large number of sign fluctuations in the weights. Therefore, how to control the stability of this training procedure is of high importance.

In theory, it is infeasible to back-propagate in a quantized setting as the weights and activations employed are discontinuous and discrete. Instead, heuristics and approximations are proposed to
match the forward and backward passes. Often weights at different layers of DNNs follow a certain structure. Training these weights locally, and maintaining a global structure to minimize a common cost function is important.

Our contribution consists of three ideas that can be easily implemented in the binary training framework presented by [Hubara et al. 2016] to improve convergence and generalization accuracy of binary networks. First, the activation function is modified to better approximate the \(\text{sign} \) function in the backward pass, second we propose two regularization functions that encourage training weights around binary values, and lastly a scaling factor is introduced in both the regularization term as well as network building blocks to mitigate accuracy drop due to hard binarization. Our method is evaluated on CIFAR-10 and ImageNet datasets and compared to other binary methods. We show accuracy gains to traditional binary training.

2 RELATED WORK

We mainly focus on challenges present in training binary networks. The training procedure emulates binary operations by restricting the weights and activations to single-bit so that computations of neural networks can be implemented using arithmetic logic units (ALU) using XNOR and popcount operations. More specifically, XNOR and popcount instructions are readily available on most CPU and GPU processing units. Custom hardware would have to be implemented to take advantage of operations with higher bits such as 2 to 4 bits. The goal of this binary training is to reduce the model size and gain inference speedups without performance degradation.

Primary work done by [Courbariaux et al. 2015] (BinaryConnect) trains deep neural networks with binary weights \(\{-1, +1\} \). They propose to quantize real values using the \(\text{sign} \) function. The propagated gradient applies update to weights \(|w| \leq 1 \). Once the weights are outside of this region they are no longer updated, this is done by clipping weights between \(\{-1, +1\} \). In that work, they did not consider binarizing the activation functions. BNN (Hubara et al., 2016) is the first purely binary network quantizing both the weights and activations. They achieve comparable accuracy to their prior work on BinaryConnect, and achieve significantly close performance to full-precision, by using large and deep networks. Although, they performed poorly on large datasets like ImageNet (Russakovsky et al., 2015). The resulting network presented in their work obtains 32\times compression rate and approximately 7\times increase in inference speed.

To alleviate the accuracy drop of BNN on larger datasets, [Rastegari et al. 2016] proposed XNOR-Net, where they strike a trade-off between compression and accuracy through the use of scaling factors for both weights and activation functions. In their work, they show performance gains compared to BNN on ImageNet classification. The scaling factors for both the weights and activations are computed dynamically, which slows down training performance. Further, they introduced an additional complexity in implementing the convolution operations on the hardware, slightly reducing compression rate and speed up gain. DoReFa-Net [Zhou et al. 2016] further improves XNOR-Net by approximating the activations with more bits. The proposed rounding mechanism allows for low bit back-propagation as well. Although they perform multi-bit quantization, their model still suffers from large accuracy drop upon quantizing the last layer.

Later in ABC-Net, [Tang et al. 2017] propose several strategies, adjusting the learning rate for larger datasets. They show BNN achieve similar accuracy as XNOR-Net without the scaling overhead by adding a regularizer term which allows binary networks to generalize better. They also suggest a modified BNN, where they adopted the strategy of increasing the number of filters, to compensate for accuracy loss similar to wide reduced-precision networks (Mishra et al., 2017). More recently, [Liu et al. 2018] developed a second-order approximation to the \(\text{sign} \) activation function for a more accurate backward update. In addition to this, they pre-train the network in which they want to binarize in full precision using the hard tangent hyperbolic (\(\text{htanh} \)) activation, see Figure 2. They use the pre-trained network weights as an initialization for the binary network to obtain state of the art performance.
3 Improved Binary Training

Training a binary neural network faces two major challenges on weights, and on activation functions. As both weights and activations are binary, the traditional continuous optimization methods such as SGD cannot be directly applied. Instead, a continuous approximation is used for the sign activation during the backward pass. Further, the gradient of the loss with respect to the weights is small. So a weight sign remains unchanged. These are both addressed in our proposed method. In this section, we present our approach to 1-bit CNNs training in detail.

3.1 Binary Training

We quickly revisit quantization through binary training as first presented by (Courbariaux et al., 2015). In (Hubara et al., 2016), the weights are quantized by using the sign function which is $+1$ if $w > 0$ and -1 otherwise. In the forward pass, the real-valued weights are binarized to w^b, and the resulting loss is computed using binary weights throughout the network. For hidden units, the sign function non-linearity is used to obtain binary activations. Prior to binarizing, the real weights are stored in a temporary variable w. The variables w are stored because one cannot back-propagate through the sign operation as its gradient is zero everywhere, and hence disturbs learning. To alleviate this problem the authors suggest using a straight through estimator (Hinton, 2012) for the gradient of the sign function. This method is a heuristic way of approximating the gradient of a neuron,

$$\frac{dL(w)}{dw} \approx \frac{dL}{dw} \bigg|_{w=w^b} 1_{|w|\leq 1}$$

where L is the loss function and $1(\cdot)$ is the indicator function. The gradients in the backward pass are then applied to weights that are within $[-1, +1]$. The training process is summarized in Figure 1. As weights undergo gradient updates, they are eventually pushed out of the center region and instead make two modes, one at -1 and another at $+1$. This progression is also shown in Figure 1.

![Figure 1: Binary training, where arrows indicate operands flowing into operation or block. Reproduced from Guo (2018) (left). A convolutional layer depicting weight histogram progression during the popular binary training. The initial weight distribution is a standard Gaussian (right).](image)

3.2 Improved Training Method

Our first modification is about closing the discrepancy between the forward pass and backward pass. Originally, the sign derivative is approximated using the $\tanh(x)$ activation, as in Figure 2. Instead, we modify the Swish-like activation (Ramachandran et al., 2018; Elfwing et al., 2018; Hendrycks & Gimpel, 2016), where it has shown to outperform other activations on various tasks. The modifications are performed by taking its derivative and centering it around 0

$$SS_\beta(x) = 2\sigma(\beta x) \left[1 + \beta x \{ 1 - \sigma(\beta x) \} \right] - 1,$$

where $\sigma(z)$ is the sigmoid function and the scale $\beta > 0$ controls how fast the activation function asymptotes to -1 and $+1$. The β parameter can be learned by the network or be hand-tuned as a hyperparameter. We call this activation SignSwish, and its gradient is
Under review as a conference paper at ICLR 2019

\[
dSS_\beta(x) = \frac{\beta \{ 2 - \beta x \tanh(\frac{\beta x}{2}) \}}{1 + \cosh(\beta x)}
\]

which is a closer approximation function compared to the \text{htanh} activation. Comparisons are made in Figure 2.

Hubara et al. (2016) noted that the STE fails to learn weights near the borders of \(-1\) and \(+1\). As depicted in Figure 2, our proposed SignSwish activation alleviates this, as it remains differentiable near \(-1\) and \(+1\) allowing weights to change signs during training if necessary.

3.2.1 Regularization Function

In general, a regularization term is added to a model to prevent over-fitting and obtaining robust generalization. The two most commonly regularization terms used are \(L_1\) and \(L_2\) norms. If one were to embed these regularization functions in binary training, it would encourage the weights to be near zero; though this does not align with the objective of a binary network. Instead, it is important to define a function that encourages the weights around \(-1\) and \(+1\). Rastegari et al. (2016) present a scale to enhance binary networks. To make this more general we introduce scaling factors \(\alpha\), resulting in asymmetric regularization with two minimums, one at \(-\alpha\) and another at \(+\alpha\).

The Manhattan regularization function is defined as

\[
R_1(w) = \alpha - |w|,
\]

whereas the Euclidean version is defined as

\[
R_2(w) = (\alpha - |w|)^2,
\]

where \(\alpha > 0\) is the scaling factor. As depicted in Figure 3, in the case of \(\alpha = 1\) the weights are penalized at varying degrees upon moving away from the objective quantization values, in this case, \([-1, +1]\).

The proposed regularizing terms are inline with the wisdom of the regularization function \(R(w) = (1 - w^2)1_{(|w| \leq 1)}\) as introduced in Tang et al. (2017). The primary difference is that this regularization term does not penalize weights that are outside of \([-1, +1]\), and if it were to introduce a scaling factor it could be re-defined as \(R(w) = (\alpha - w^2)1_{(|w| \leq \alpha)}\).
3.3 BNN+: Training Method

Combining both the regularization and activation ideas, we modify the training procedure by replacing the sign binarization with the SS activation \((2)\). During training, the real weights are no longer clipped as in BNN training, as the network can back-propagate through the SS activation and update the weights correspondingly. Referring to Figure 1, this modification corresponds to the binarization block.

The regularization term is added to the loss function,

\[
J(W, b) = L(W, b) + \lambda \sum_l R(W_l, \alpha_l)
\]

where \(L(W, b)\) is the cost function, \(W\) and \(b\) are the sets of all weights and biases in the network, \(W_l\) is the set weights at layer \(l\) and \(\alpha_l\) is the corresponding scaling factor. Here, \(R(.)\) is the regularization function \((4)\) or \((5)\). Further, \(\lambda\) controls the effect of the regularization term. To introduce meaningful scales, they are added to the basic blocks composing a typical convolutional neural network. For example, for convolutions, the scale is multiplied into the quantized weights prior to the convolution operation. Similarly, in a linear layer, the scales are multiplied into the quantized weights prior to dot product. Figure 4 depicts the order of operation.

The scale \(\alpha\) is a single scalar per layer, or as proposed in [Rastegari et al. (2016)] is a scalar for each filter. For example, given a CNN block with weight dimensionality \((C_{\text{in}}, C_{\text{out}}, H, W)\), where \(C_{\text{in}}\) is the number of input channels, \(C_{\text{out}}\) is the number of output channels, and \(H, W\) the height and width of the filter respectively, then the scale parameter would be a vector of dimension \(C_{\text{out}}\), that factors into each filter.

![Figure 4: Adding scales is as simple as adding a new parameter \(\alpha\) which multiplies the quantized weights prior to convolution operation.](image)

As the scales are learned jointly with the network through backpropagation, it is important to initialize them properly. In the case of the Manhattan penalizing term \((4)\), given a scale factor \(\alpha\) and a weight filter then the objective is to minimize

\[
\min_{\alpha} \sum_{h,w} |\alpha - |W_{h,w}||
\]

The minimum of the above is obtained when

\[
\alpha^* = \text{median}(|W|)
\]
Similarly, in the case of the Euclidean penalty (5) the minimum is obtained when
\[
\alpha^* = \text{mean}(|W|)
\]
(9)

The scales are initialized with the corresponding optimal values after weights have been initialized first. One may notice the similarity of these optimal values with that defined by \cite{Rastegari2016}, whereas in their case the optimal value for the weight filters and activations better matches the \(R_2(w)\) goal. Note that to avoid using floating point operations due to the introduction of scale factors, the nearest binary approximation is used. This yields in scaling factors that can be implemented using the ALU add and shift instructions.

The resulting BNN+ training is defined in Algorithm 1. In the following section, we present our experimental results and important training details.

\textbf{Algorithm 1} BNN+ training. \(L\) is the unregularized loss function, \(\lambda\) and \(R_1\) are the regularization terms we introduced. \(SS_{\beta}\) is the SignSwish function we introduced and \((SS_{\beta})'\) is its derivative. \(N\) is the number of layers, \(\circ\) indicates element-wise multiplication. \(\text{BatchNorm()}\) specifies how to batch-normalize the activation and \(\text{BackBatchNorm()}\) how to back-propagate through the normalization. ADAM() specifies how to update the parameters when their gradients are known.

\textbf{Require:} a minibatch of inputs and targets \((x_0, x^*)\), previous weights \(W\), previous weights’ scaling factors \(\alpha\), and previous BatchNorm parameters \(\theta\).

\textbf{Ensure:} updated weights \(W^{t+1}\), updated weights’ scaling factors \(\alpha^{t+1}\) and updated BatchNorm parameters \(\theta^{t+1}\).

\begin{enumerate}
\item \{Forward propagation:\}
\begin{align*}
 s_0 &\leftarrow x_0W_0 \quad \{\text{We do not quantize the first layer.}\} \\
 x_1 &\leftarrow \text{BatchNorm}(s_0, \theta_0) \\
 \text{for } k &= 1 \text{ to } N - 1 \text{ do} \\
 x_k &\leftarrow \text{sign}(x_k) \\
 W_k &\leftarrow \text{sign}(W_k) \\
 s_k &\leftarrow \alpha_k x_k^b W_k^b \quad \{\text{This step can be done using mostly bitwise operations.}\} \\
 x_{k+1} &\leftarrow \text{BatchNorm}(s_k, \theta_k) \\
\end{align*}
\text{end for}
\item \{Backward propagation:\}
\begin{align*}
 g_{x_N} &= \frac{\partial L}{\partial x_N} \quad \text{knowing } x_N \text{ and } x^* \\
 \text{for } k &= N - 1 \text{ to } 1 \text{ do} \\
 (g_{x_k}, g_{\theta_k}) &\leftarrow \text{BackBatchNorm}(g_{x_{k+1}}, s_k, \theta_k) \\
 g_{\alpha_k} &\leftarrow g_{x_k} x_k^b W_k^b + \lambda \frac{\partial R_1}{\partial \alpha_k} \\
 g_{W_k} &\leftarrow g_{x_k} \alpha_k x_k^b \\
 g_{s_k} &\leftarrow g_{x_k} \alpha_k W_k^b \\
 \{\text{We use our modified straight-through estimator to back-propagate through sign:\}\} \\
 g_{W_k} &\leftarrow g_{x_k} \circ (SS_{\beta})'(W_k) + \lambda \frac{\partial R_1}{\partial W_k} \\
 g_{x_k} &\leftarrow g_{x_k} \circ (SS_{\beta})'(x_k) \\
\end{align*}
\text{end for}
\begin{align*}
 (g_{s_0}, g_{\theta_0}) &\leftarrow \text{BackBatchNorm}(g_{x_1}, s_0, \theta_0) \\
 g_{W_0} &\leftarrow g_{s_0} x_0 \quad \{\text{We did not quantize the first layer.}\}
\end{align*}
\item \{The update:\}
\begin{align*}
 \text{for } k &= 0 \text{ to } N - 1 \text{ do} \\
 \theta^{t+1}_k, W^{t+1}_k, \alpha^{t+1}_k &\leftarrow \text{ADAM}(\eta, \theta_k, W_k, \alpha_k, g_{\theta_k}, g_{W_k}, g_{\alpha_k}) \\
 \text{end for}
\end{align*}
\end{enumerate}

4 Experimental Results

We evaluate our proposed method with the accuracy performance of training using BNN+ scheme versus other proposed binary networks. \cite{Hubara2016}; \cite{Rastegari2016}; \cite{Tang2016}.
4.1 CIFAR-10

The CIFAR-10 data (Krizhevsky & Hinton, 2009) consists of 50,000 train images and a test set of 10,000. For pre-processing the images are padded by 4 pixels on each side and a random crop is taken. We train both, AlexNet (Krizhevsky et al., 2012), and VGG (Simonyan & Zisserman, 2014) using the ADAM (Kingma & Ba) optimizer. A batch size of 256 is used for training. We tried many learning rates such as 0.1, 0.03, 0.001, etc, and the initial learning rate for AlexNet was set to 10^{-3}, and 3×10^{-3} for VGG. The learning rates are correspondingly reduced by a factor 10 every 10 epoch for 50 epochs. We set the regularization parameter λ to 10^{-6}, and use the regularization term as defined in (4). In these experiments weights are initialized using Glorot & Bengio (2010) initialization and the scales with 75^{th} percentile of the absolute value of filters or column vectors in the case of fully connected layers. The results are summarized in Table 1.

Table 1: Results on CIFAR10, using Manhattan regularization function (4) with AlexNet and VGG.

	BNN+ Full-Precision
AlexNet	Top-1: 86.49% 88.58%
	Top-5: 98.92% 99.73%
VGG	Top-1: 91.31% 90.89%
	Top-5: 99.09% 99.76%

4.2 ImageNet

We use the ILSVRC 2012 dataset which consists of $\sim 1.2M$ training images, and 1000 classes. For pre-processing the dataset we follow the typical augmentation: the images are resized to 256×256, then are randomly cropped to 224×224 and the data is normalized using the mean and standard deviation statistics of the train inputs; no additional augmentation is done. At inference time, the images are first scaled to 256×256, center cropped to 224×224 and then normalized.

We evaluate the performance of our training method on two architectures AlexNet and Resnet-18 (He et al., 2016). Following previous work, we used batch-normalization before each activation function. Additionally, we keep the first layer to be in full precision, as we lose 2-3% accuracy otherwise. This approach is followed by other binary methods we compare to. The results are summarized in Table 2. In all the experiments involving R_1 regularization we set the λ to 10^{-7} and R_2 regularization to 10^{-6}. Also, in every network, the scales are introduced per filter in convolutional layers, and per column in fully connected layers.

4.3 Discussion

We proposed two regularization terms (4) and (5) and an activation term (2) with a learn-able parameter β. We run several experiments to better understand the effect of the different modifications to the training method, especially using different regularization and asymptote parameter β. The parameter β is learn-able through back-propagation, but fixed β produced better results. The results are summarized in Table 2.

Through our experiments, we found that adding regularizing term with heavy penalization degrades the networks ability to converge, and destabilizes training. As a result, we set λ with a reasonably small value $10^{-5} - 10^{-7}$, so that the scales move slowly as the weights gradually converge to stable values. Some preliminary experimentation was to gradually increase the regularization with respect to batch iterations updates rendered in training, though this approach requires careful tuning.

From Table 2 and referring to networks without regularization, we see the benefit of using Swish-Sign approximation versus the STE. This was also noted in Liu et al. (2018), where their second
Table 2: Top-1 and top-5 accuracies (in percentage) of different combinations of the proposed technical novelties on different architectures. Some architectures were harder to train and did not converge within the time frame of the others, and so is not reported.

Regularization	Activation	AlexNet	Resnet-18		
	SS5	46.11	75.70	-	
R1	SS10	46.08	75.75	51.13	74.94
	htanh	41.58	69.90	50.72	73.48
R2	SS5	45.62	70.13	53.01	72.55
	SS10	45.79	75.06	49.06	70.25
	htanh	-	-	48.13	72.72
None	SS5	45.25	75.30	43.23	68.51
	SS10	45.60	75.30	44.50	64.54
	SS20	44.03	68.30	44.74	69.62
	htanh	39.18	69.88	42.46	67.56

approximation provided better results. There is not much difference between using R_1 versus R_2 towards model generalization although since the loss metric used was the cross-entropy loss, the order of R_1. Lastly, it seems smaller values of β is better than larger values. This happens because as β increases the gradients become too large, hence small noise could cause large fluctuations in the sign of the weights.

We did not compare our network with that of Liu et al. [2018] as they introduce a shortcut connection that proves to help even the full precision network. As a final remark, we note that the learning rate is of great importance and properly tuning this is required to achieve convergence. Table 3 summarizes the best results of the ablation study and compares with BinaryNet, XNOR-Net, and ABC-Net.

Table 3: Comparison of top-1 and top-5 accuracies of our method BNN+ with BinaryNet, XNOR-Net and ABC-Net summarized from Table 2. The results of ABC-Net were not available on AlexNet from Tang et al. [2017], so is not reported.

	BNN+	BinaryNet	XNOR-Net	ABC-Net	Full-Precision
AlexNet	Top-1: 46.1%	41.8%	44.2%	-	56.6%
	Top-5: 75.7%	67.8%	69.2%	-	80.2%
Resnet-18	Top-1: 53.0%	42.2%	51.2%	42.7%	69.3%
	Top-5: 72.6%	67.1%	73.2%	67.6%	89.2%

5 Conclusion

To summarize we propose three simple ideas that help binary training: i) adding a regularizer to the objective function of the network, ii) learnable scale factors that are embedded in the regularizing term and iii) a better approximation to the sign activation function. We obtain competitive results by training AlexNet and Resnet-18 on the ImageNet dataset. For future work, we plan on extending these to efficient models such as CondenseNet (Huang et al. [2018]), MobileNets (Howard et al. [2017]), MnasNet (Tan et al. [2018]) and on object detection tasks.

References

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks with binary weights during propagations. In Advances in neural information processing systems, pp. 3123–3131, 2015.
Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. *Neural Networks*, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. *In Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pp. 249–256, 2010.

Yunhui Guo. A survey on methods and theories of quantized neural networks. *arXiv preprint arXiv:1808.04752*, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. *arXiv preprint arXiv:1510.00149*, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. *In Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. *arXiv preprint arXiv:1606.08415*, 2016.

Geoffrey Hinton. Neural networks for machine learning, coursera. URL: http://coursera.org/course/neuralnets, 2012.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An efficient denseNet using learned group convolutions. *group*, 3(12):11, 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks. *In Advances in neural information processing systems*, pp. 4107–4115, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. *arXiv preprint arXiv:1602.07360*, 2016.

Diederik Kingma and J Adam Ba. A method for stochastic optimization. *arxiv* 2014. *arXiv preprint arXiv:1412.6980*.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *In Advances in neural information processing systems*, pp. 1097–1105, 2012.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. *In Advances in neural information processing systems*, pp. 598–605, 1990.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. *arXiv preprint arXiv:1808.00278*, 2018.

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: wide reduced-precision networks. *arXiv preprint arXiv:1709.01134*, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv preprint arXiv:1710.05941v2*, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. *In European Conference on Computer Vision*, pp. 525–542. Springer, 2016.
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. *arXiv preprint arXiv:1801.04381*, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. *arXiv preprint arXiv:1807.11626*, 2018.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high accuracy? In *AAAI*, pp. 2625–2631, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. *arXiv preprint arXiv:1606.06160*, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. *arXiv preprint arXiv:1612.01064*, 2016.