Plant responses to decadal scale increments in atmospheric CO₂ concentration: comparing two stomatal conductance sampling methods

Sven Peter Batke1 · Charilaos Yiotis2 · Caroline Elliott-Kingston3 · Aidan Holohan4 · Jennifer McElwain2

Received: 8 November 2019 / Accepted: 8 January 2020 / Published online: 16 January 2020
© The Author(s) 2020

Abstract

Main conclusion Our study demonstrated that the species respond non-linearly to increases in CO₂ concentration when exposed to decadal changes in CO₂, representing the year 1987, 2025, 2051, and 2070, respectively.

Abstract There are several lines of evidence suggesting that the vast majority of C3 plants respond to elevated atmospheric CO₂ by decreasing their stomatal conductance (gs). However, in the majority of CO₂ enrichment studies, the response to elevated CO₂ are tested between plants grown under ambient (380–420 ppm) and high (538–680 ppm) CO₂ concentrations and measured usually at single time points in a diurnal cycle. We investigated gs responses to simulated decadal increments in CO₂ predicted over the next 4 decades and tested how measurements of gs may differ when two alternative sampling methods are employed (infrared gas analyzer [IRGA] vs. leaf porometer). We exposed Populus tremula, Popolus tremuloides and Sambucus racemosa to four different CO₂ concentrations over 126 days in experimental growth chambers at 350, 420, 490 and 560 ppm CO₂; representing the years 1987, 2025, 2051, and 2070, respectively (RCP4.5 scenario). Our study demonstrated that the species respond non-linearly to increases in CO₂ concentration when exposed to decadal changes in CO₂. Under natural conditions, maximum operational gs is often reached in the late morning to early afternoon, with a mid-day depression around noon. However, we showed that the daily maximum gs can, in some species, shift later into the day when plants are exposed to only small increases (70 ppm) in CO₂. A non-linear decreases in gs and a shifting diurnal stomatal behavior under elevated CO₂, could affect the long-term daily water and carbon budget of many plants in the future, and therefore alter soil–plant–atmospheric processes.

Keywords Climate change · Water loss · Growth chambers · IRGA · Porometer

Introduction

The global land vegetation is a key driver in the hydrological and energy processes on our planet. The transfer of water from the soil, through the plants and into the atmosphere is regulated by stomatal pores on the leaf surface (Brodribb and McAdam 2017) and accounts for up to 80–90% of terrestrial evapotranspiration in some biomes (Jasechko et al. 2013). There are several lines of evidence suggesting that the vast majority of C3 plants respond to elevated CO₂ by decreasing their stomatal conductance (gs) and rates of transpiration and by increasing their assimilation rates (A) and overall water use efficiency (WUE) (Ainsworth and Rogers 2007). Under extreme heat and aridity, gs can increase in response to elevated CO₂ but a greater magnitude of A increase still results in improved WUE (Purcell et al. 2018).
Anatomically, elevated CO₂ has been shown to reduce stomatal density (Woodward 1987; Woodward and Kelly 1995; McElwain and Steinhorsdottir 2017) and in some cases alter stomatal pore size (decrease or increase), thereby reducing maximum gₛ to water vapor (Franks and Beerling 2009; Xu et al. 2016; Lammertsma et al. 2011). Stomatal physiological and anatomical responses to elevated CO₂ have been shown to be coordinated (Haworth et al. 2013) and are dependent on the growth environment of the plant (Curtis and Wang 1998) and the plant’s underlying degree of plasticity and/or capacity to physiologically acclimate (Stitt and Krapp 1998; Ainsworth and Long 2005). The synergistic/antagonistic effects of other abiotic (e.g., light, vapor pressure deficit [VPD], soil moisture, nutrients etc.) and biotic (e.g., competition, predation etc.) factors can thus substantially alter any predicted direct plant responses to elevated CO₂ (Medlyn et al. 2001; Saxe et al. 1998).

Experiments that try to address the effect of elevated CO₂ on soil–plant–atmosphere water-relations are therefore notoriously difficult to conduct and each study system (e.g., free-air-carbon-enrichment (FACE), greenhouse, laboratory and plant growth chamber) has advantages and disadvantages (Ainsworth et al. 2008; Ainsworth and Long 2005; Porter et al. 2015; Poorter et al. 2016). For example, CO₂ concentrations in FACE systems have been shown to fluctuate substantially (Pepin and Körner 2002) and are usually shut down at night when the air is too still to ensure constant elevated CO₂ treatment, whereas growth chamber environments allow much tighter CO₂ control (Poorter et al. 2016) but poorly represent real field conditions. In most FACE studies, elevated CO₂ conditions are controlled between 538–680 ppm (Purcell et al. 2018), whereas it is only in growth chamber studies where much tighter CO₂ control can be achieved. It has been theoretically demonstrated by Konrad et al. (2008) that small incremental changes in atmospheric CO₂ could result in a non-linear gₛ response to CO₂, as opposed to a linear response that is currently assumed in Earth System Models. It is therefore important to not just compare plant responses to large, century changes in CO₂ in situ and ex situ experiments, as currently done in many FACE (Purcell et al. 2018) and chamber experiments, but also to consider investigating gₛ responses to smaller, decadal changes in CO₂ concentration predicted for the next 5–30 years (IPCC 2014).

Measuring the effect of elevated CO₂ on plant physiological traits such as gₛ is of global significance in understanding current, past and future plant responses to a changing climate (Betts et al. 2007; Huntington 2008; McElwain and Steinhorsdottir 2017; Chung et al. 2007; Gornish and Tylianakis 2013). However, collecting data on gₛ across a wide variety of taxonomic groups, biomes and treatments is often hampered by costs and time constraints. Commercially available systems such as hand-held porometers and portable infrared gas analyzers (IRGA) are amongst the most commonly used devices to measure gₛ. However, the different approaches to gas exchange measurement make them suitable for different purposes. Leaf porometers measure gₛ by placing the conductance of a leaf in series with two known conductance elements, and comparing the humidity measurements between them to estimate water vapor flux. Usually a leaf measurement takes 30 s during which an algorithm can predict the final gₛ reading that would be achieved if unlimited time were allowed for true steady state conditions to occur (Decagon-Devices 2005). In the case of gas analyzers, a reference air mixture is continuously passed through the leaf chamber. Measurements of gₛ are based on differences in H₂O in the air streams that flow into and out of the leaf cuvette. In other words, the rate of water loss is used to calculate the rate of gₛ (PP-Systems 2007). Since both systems are frequently used in physiological sample protocols in natural, semi-controlled and controlled environments (Long et al. 1996; Lüttge et al. 1986; Yiotis et al. 2017; Bakker 1991; Murray et al. 2019), it is imperative that any deviations in the results between these methods are considered; particularly when interpreted in the light of global change biology (Midgley et al. 1997). Surprisingly, little published data are available comparing porometer and gas analyzer systems (Murray et al. 2019) and, to our knowledge, no published comparison exists that has investigated the difference in derived results under controlled growth chamber environments.

Another fundamental issue that plant biologists face when taking measurements of gₛ is that gₛ fluctuates diurnally. Under natural conditions, maximum operational gₛ is often reached in the late morning to early afternoon, with a mid-day depression around noon (Roessler and Monson 1985; Pathre et al. 1998). Konrad et al. (2008) theoretically demonstrated that maximum daily gₛ can shift by approximately 1 h for every 180 ppm increase in CO₂. The practical implications of this can be quite significant, particularly in studies that aim to identify maximum operational gₛ responses to different experimental treatments such as elevated CO₂. Although diurnal measurements have the disadvantage of being more time consuming and are restricted in the sense that they require the use of a gas analyzer, they do provide a better account of whole-physiological diurnal plant responses than porometers.

The aims of this study were to investigate gₛ responses to simulated decadal increments in CO₂ predicted over the next 4 decades (IPCC 2014) and to test how measurements of gₛ may differ when two alternative sampling methods are employed (infrared gas analyzer [IRGA] vs. leaf porometer). We focused on both the differences between the recorded values using the two methods and the time-shifts of the maximum daily gₛ value under fluctuating CO₂. In addition, to compare and build the relationship between gas
analyzer-collected and porometer-collected data, a data set of g_s from 47 species measured under natural field conditions was used from Murray et al. (2019) and compared to our chamber measured plants. In all cases stomatal conductance was measured with both sampling devices.

Materials and methods

Controlled-environment experiment

A total of 54 individuals of bare-rooted *Sambucus racemosa* L. (red elderberry), 54 saplings of *Populus tremula* L. (common aspen) and 18 saplings of *Populus tremuloides* Michx. (quaking aspen) were purchased and grown in controlled experiments. It was not possible to source more individuals of *P. tremuloides* due to very strict importation regulations. These species were chosen as they are each known to occur in more than one global biomes (boreal forest, temperate deciduous forest, temperate grassland/chaparral and temperate rainforest) (Murray et al. 2019) and have also been used in previous CO$_2$ enrichment studies (Bernacchi et al. 2003). All plants were re-potted into 5 L pots using a growing medium comprising 90% Shamrock® Multi-Purpose Compost (Scotts Horticulture Ltd., Co. Kildare, Ireland) and a 10% combination of Perlite Standard 2–5 mm (Sinclair Pro, Cheshire, UK) and 3 g/l Osmocote® Exact Standard 12–14 M slow release fertilizer (15-9-11 + 2MgO + TE; Scotts International BV, Netherlands). The plants were kept for 2 weeks in the open air at Rosemount Environmental Research Station, University College Dublin (UCD), Ireland, before being treated for pests with an emulsifiable concentrate containing 5% pyrethrin (Pyrethrum 5EC at 20 ml/5 L—Agropharm Ltd., UK). The plants were then moved into CONVIRON (Winnipeg, Manitoba, Canada) BDR-16 and BDW-40 plant growth chambers within the Programme for Experimental Atmospheres and Climate (PÉAC) facility at UCD. The chambers allow monitoring and control of atmospheric conditions including air temperature (T) ($°C$), relative humidity (RH) (%), light (PAR) (μmol m$^{-2}$ s$^{-1}$) and atmospheric [O$_2$] (%) and [CO$_2$] (ppm). For the experiment, chambers were programmed to run a 16.5 h/7.5 h day/night cycle. Maximum day time T and RH were set to 22 $°C$ and 70%, respectively. Maximum night time T and RH were set to 15 $°C$ and 60%, respectively. Light intensity was set to reach a maximum of 600 μmol m$^{-2}$ s$^{-1}$ at noon (Table 1) and O$_2$ concentration was set to ambient concentration of 20.9% in all chambers. A ramping program was used to ensure a uniform diurnal increase in T, RH and light conditions. CO$_2$ concentrations were set to 350, 420, 490 and 560 ppm in two chambers per CO$_2$ treatment (8 chambers in total) and were monitored in each chamber with a PP-Systems WMA-4 CO$_2$ gas analyzer. The CO$_2$ concentrations represented the year 1987, 2025, 2051 and 2070, respectively, according to the low-medium stabilization RCP4.5 scenario (IPCC 2014). Supplementary CO$_2$ for all the chambers was provided by a compressed gas tank containing liquid CO$_2$. Since two different chamber types were used in the experiment, an additional control chamber (BDW-40) was added to the 420 ppm treatment to identify any potential confounding effects that might have occurred due to differences in chamber type (Porter et al. 2015). To attain sub-ambient (350 ppm) CO$_2$ in the chambers, an inline fan with a variable damper regulated the amount of air that was passed from the chambers through an external soda lime unit (2–5 mm Sofnolime™—Molecular Products Group Ltd., Essex, UK). The CO$_2$ free air was then passed back into the chambers and CO$_2$ was injected to reach the target sub-ambient set point conditions. All measured chamber conditions are reported in Table 1.

To acclimatize plants to chamber conditions, six plants of *P. tremula* and *S. racemosa* and two plants of *P. tremuloides* were transferred into each chamber (Table 2) and grown under ambient local conditions (420 ppm CO$_2$ and 21% O$_2$) for 14 days before treatment conditions were initiated. The plants were then grown for 126 days under treatment. Plants were watered and fertilized (N:P:K; 22:4:22) every 2 days and 2 weeks, respectively. Soil moisture content was monitored using a

Table 1 Plant growth chamber parameter settings

Type	CO$_2$ set point	CO$_2$ measured	Light 600 µmol	Temp. day 22 °C	RH day 70%	Temp. night 15 °C	RH night 60%
Chamber 1–2	BDW 40	Mean 350	345.59	600.08	20.46	68.12	16.28
	(n = 2)	SD	34.27	30.72	0.27	3.36	0.27
Chamber 3–5	BDW 40/BDR 16	Mean 420	434.06	551.60	20.41	67.44	16.24
	(n = 1/n = 2)	SD	19.09	16.83	0.54	5.56	0.73
Chamber 6–7	BDR 16	Mean 490	481.76	568.87	20.58	68.75	16.66
	(n = 2)	SD	23.26	19.70	1.04	6.86	2.43
Chamber 8–9	BDR 16	Mean 560	544.34	560.09	20.45	69.95	16.27
	(n = 2)	SD	30.96	25.74	0.38	6.74	0.53

^{Springer}
to measure repeatedly throughout the experiment. The IRGA was used for a minimum of 20 min. until
leaves belonging to ten different species grown at each site. They calculated the average site-specific leaf temperature at 9:00 am by recording the leaf temperature of at least ten leaves belonging to ten different species grown at each site. For the final gs measurements each leaf was left to equilibrate for at least 15 min before values were recorded.

In addition to the IRGA gs measurements, a Decagon Devices SC-1 steady state Leaf Porometer was used to measure gs on the same species and site, on fully exposed leaves (Murray et al. 2019). One leaf on three individuals per species was measured consecutively over 4 days. As with the IRGA, measurements were not taken on wet days or on wet leaves. Where moisture was a factor, excess moisture was blotted off and the leaf was left to dry before it was measured (Murray et al. 2019).

Field data

See Murray et al. (2019) for a detailed account of the field data collection protocol. Briefly, gs measurements were carried out in North and Central America in the summer of 2014. A total of 47 C3 woody angiosperm tree and shrub species were sampled in two boreal forest sites (Bird Creek [60°58’ N, 149°28’ W] and Kenai [60°33.3’ N, 151°12.8’ W], Alaska, USA), one temperate deciduous forest site (Smithsonian Environmental Research Centre [38°53’ N, 76°32’ W], Maryland, USA), two tropical seasonal forest (wet) sites (Cambalache [18°27’ N, 66°35’ W] and Guanica [18°24’ N, 66°58’ W], Puerto Rico) and one tropical seasonal forest (dry) site (Guanica [17°93’ N, 66°92’ W], Puerto Rico). Stomatal conductance was measured with a CIRAS-2 gas analyzer (PP-Systems, Amesbury, MA, USA) attached to a PLC6(U) cuvette fitted with a 1.7 cm² measurement window and a red/white light LED unit. Stomatal conductance was measured at ambient atmospheric CO₂ of 400 ppm on an average of four individuals per species between 9:00 am and 13:00 pm on a sun exposed leaf following standard sample protocols (Berveiller et al. 2007; Domingues et al. 2010; Koch et al. 2004; Rowland et al. 2015; Dang et al. 1997). Cuvette conditions were set at 200 cm³ min⁻¹ air flow, 1000 μmol m⁻² s⁻¹ light intensity and 80–90% incoming mole fraction of water vapor. To standardize our measurement protocol for each site, regardless of the temperature changes during the daily measurement time window, they calculated the average site-specific leaf temperature at 9:00 am by recording the leaf temperature of at least ten leaves belonging to ten different species grown at each site.

Analysis

Data were tested for normality and equal variance. Difference in gs between treatments was tested separately for each species using ANOVA comparison. The ANOVA was weighted by the soil moisture content of each plant to account for variability in soil moisture between gs measurements. ANOVA comparisons that were significant

Chamber 1–2	CO₂ (ppm)	Type	S. racemosa	P. tremula	P. tremuloides
Chamber 3	420	BDW 40	6	6	4
Chamber 4–5	420	BDR 16	12	12	2
Chamber 6–7	490	BDR 16	12	12	4
Chamber 8–9	560	BDR 16	12	12	4
Total			54	54	18

Table 2: Number of individuals grown under different CO₂ conditions and chamber types
were further analyzed using pairwise tests with Bonferroni corrections. To identify how maximum diurnal \(g_s \) shifted between treatments, a polynomial surface was fitted using non-parametric locally weighted regression. Maximum \(g_s \) was then calculated for each fit (species and treatment) separately. To test for chamber effects as a result of using different chamber types, mixed effect models were used. All analysis was performed using the statistical package ‘R’ version 3.4 (R Developing Core Team 2017).

Results

In the chambers, diurnal physiological responses of photosynthetic assimilation (\(A \)) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \)), \(g_s \) (mmol m\(^{-2}\) s\(^{-1}\)), transpiration (mmol m\(^{-2}\) s\(^{-1}\)) and iWUE (\(= A/g_s \)) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \)/(mmol m\(^{-2}\) s\(^{-1}\))) contrasted between and within species grown at different CO\(_2\) concentrations (Fig. 1). Assimilation was lowest at the 350 ppm treatment for \(P. \) tremula and higher at the 420 and 560 ppm treatments (Fig. 1a); iWUE was therefore greatest for individuals grown under 560 ppm conditions (Fig. 1d). Assimilation and iWUE for \(P. \) tremuloides showed the opposite response with higher \(A \) and iWUE under 350 ppm CO\(_2\) conditions. Although \(A \)
and iWUE were also higher for *S. racemosa* in the 350 ppm CO\textsubscript{2} treatment, the differences between treatments were much smaller (Fig. 1a, d).

Generally, \(g_s \) and transpiration decreased under elevated CO\textsubscript{2} (Fig. 1b, c) for all three species, with the greatest difference observed between the 350 ppm and 560 ppm CO\textsubscript{2} treatments. The decrease in \(g_s \) under elevated CO\textsubscript{2} was best explained by a log regression (overall \(F = 6.825, r^2 = 0.689, p = 0.03 \)), showing that the mean \(g_s \) response to CO\textsubscript{2} when measured at 11 am was non-linear for all three species in the IRGA measurements (Fig. 2). This non-linear decrease was also reflected for two species (*P. tremula* and *P. tremuloides*) in the porometer measurements (Fig. 3).

The time of the maximum operational \(g_s \) also differed between treatments and was species-specific (Fig. 4b). For *S. racemosa*, the maximum operational \(g_s \) shifted across the day by 1–2 h for each 70 ppm increase in CO\textsubscript{2}. For *P. tremuloides*, maximum operational \(g_s \) shifted across the day by 1–2 h from 350 to 420 ppm CO\textsubscript{2} but no shift was observed between 420 and 560 ppm CO\textsubscript{2}. There was a shift in maximum \(g_s \) to earlier hours for *P. tremula* in response to changes in CO\textsubscript{2} concentrations (Fig. 4b).

Fig. 2 Fitted species and mean (black solid line) log regression (\(F = 6.825, r^2 = 0.69, p = 0.03 \)) of \(g_s \) across CO\textsubscript{2} treatments. Grey-shaded area represents the standard error for the mean fit of all three species. Individual measurements represent the mean and 95% confidence intervals of daytime \(g_s \) measured using a PP Systems CIRAS-2 (\(n = 10 \)).

Fig. 3 Stomatal conductance measured with a porometer (dashed lines) and an IRGA (solid lines) for each species (different colors) and within each CO\textsubscript{2} (ppm) treatment. The means and 95% confidence intervals are shown. Different letters indicate significant differences between treatments (Bonferroni post-hoc test at \(p < 0.05 \)). The spot measurements were taken between 11 am and noon every second day. Each value is the mean of approximately 160 (porometer) and 10 (IRGA) repeated measurements per treatment.
The comparison of measured g_s between the porometer and IRGA in the growth chambers showed that, in general, the measured g_s responses under elevated CO$_2$ were proportionally very similar. Both methods detected a decrease in g_s with elevated CO$_2$. However, the magnitude of measured g_s responses varied between the porometer and CIRAS, with an average of ~25% higher values in g_s observed when the porometer was used (Fig. 3). Although no statistically significant difference ($p > 0.05$) was observed between the three treatments, the relative difference in measured g_s between the porometer and the IRGA increased with elevated CO$_2$ (~20–30%).

Following the work of Murray et al. (2019), there was a strong positive correlation between the IRGA and the porometer measured g_s of our 47 measured species in the field (Fig. 5; $F = 64.05$, $r^2 = 0.58$, $p < 0.01$). Figure 5 also suggests that low conducting species display greater proportional difference between IRGA and porometer observations due to the fact that the relationship crosses the y axis at a value of 30 mmol m$^{-2}$ s$^{-1}$ ($F = 7.29$, $r^2 = 0.12$, $p < 0.01$). The mean differences in measured g_s between the IRGA and the porometer for *P. tremuloides* and *S. racemosa* measured in the field in woody C3 angiosperm taxa was 24.3% and 40.6%, respectively. This was of a similar magnitude...
compared to the difference of \(g_s \) between the IRGA and the porometer for \(P. \) tremuloides (17%) and \(S. \) racemosa (31%) measured in the growth chambers at 420 ppm (Fig. 5).

Discussion

The non-linearity of \(g_s \) response to increasing CO\(_2\) has been predicted in empirical explorations and modelling studies (Konrad et al. 2008; Maherali et al. 2002; Gill et al. 2002; Medlyn et al. 2011; de Boer et al. 2011). However, in many published studies plants are often exposed to large step increases in CO\(_2\), mostly comparing ambient to high (~600 ppm) CO\(_2\) manipulations; representing centurial increase in CO\(_2\) (Ainsworth et al. 2008; Ainsworth and Long 2005). Since atmospheric CO\(_2\) is expected to increase gradually in the future, large step increases from CO\(_2\) studies are not easily extrapolated to intermediate CO\(_2\) concentration increases; hence why in some studies a non-linear response has often gone undetected (Long et al. 2004). The non-linear decrease in \(g_s \) can only be detected when plants are exposed to decadal rather than centurial magnitude CO\(_2\) change. Growth chamber experiments compared to other experimental systems (e.g., FACE) have a technical advantage when it comes to subtle (e.g., decadal) manipulations of the CO\(_2\) environment, as they can control CO\(_2\) more tightly (increments of +50 to +70 ppm are possible, see Table 1). We found clear evidence that at least two of the species measured in this experiment are responding to elevated CO\(_2\) with a non-linear decrease in \(g_s \). Understanding and demonstrating this non-linear decrease through experimental manipulation can help to refine predictions to ecosystem responses (Bonan et al. 2014).

The decrease in \(g_s \) under elevated CO\(_2\) was in some cases accompanied by an increase in \(A \) and iWUE (Fig. 1). The adjustment of \(g_s \) to CO\(_2\), via feedback regulation of stomatal aperture and or stomatal density and pore size, is part of the mechanism for optimizing CO\(_2\) uptake with respect to water loss (Haworth et al. 2013). The decrease of \(A \) in \(P. \) tremuloides under elevated CO\(_2\) can possibly be attributed to a strong down-regulation of photosynthesis (Ainsworth and Long 2005) or increased stomatal limitation (e.g., speed or stomatal anatomy) compared to the two other species. The latter is less likely to be the case, as \(g_s \) in \(P. \) tremuloides at 420 and 560 ppm are equal or higher compared to the \(g_s \) values of the other two species. In \(S. \) racemose, where \(A \)
did not change and \(g_s\) was generally lower compared to the other species, the possible increased stomatal limitation at elevated CO\(_2\) had potentially a greater impact on \(A\) values. When plotting \(A\) against \(g_s\) for each species, the species that had the strongest control/limitation of \(g_s\) on \(A\) was \(P.\) tremuloides, followed by \(P.\) tremula and \(S.\) racemosa (not shown). Furthermore, it has been demonstrated that long-term exposure to CO\(_2\) in C3 plants can, in some instances, result in a reduction or even complete suppressing of \(A\) (Makino and Mae 1999; Faria et al. 1996). Such responses have been attributed to secondary responses related to decreased nitrogen content or excess carbohydrate accumulation in the leaves, and has often been documented in drought conditions (Cregger et al. 2014; Griffin et al. 2004). Drought is less likely to be the cause of the responses observed here, as the soil moisture was monitored when \(g_s\) measurements were taken throughout the experiment and did not change between treatments \((p > 0.05)\) or throughout the duration of the experiment. Also, sink limitations as a result of pot experiments are a likely cause of the observed down regulation of \(A\) in \(S.\) racemosa under elevated CO\(_2\) (Ruiz-Vera et al. 2017; Schatz et al. 2014). All plants were provided with liquid fertilizer and were potted in soil that contained slow release fertilizer. However, no soil characteristics \((e.g.,\) nitrogen, pH\) were measured to exclude this possibility. \(S.\) racemosa grew much faster compared to the two other species \((\text{pers. obs.})\), which could have resulted in less optimal growing conditions, as the fertilizer input was not changed throughout the duration of the experiment.

Our data demonstrated that the porometer generally overestimates \(g_s\) in growth chamber conditions \((\text{Fig. 3})\), and this is independently confirmed in field measurements of the same taxa and other woody angiosperms \((\text{Fig. 5})\). Similar to our findings, Ramirez et al. \(2006\) demonstrated that porometer measurements over-estimated \(g_s\) by approximately 32% compared to IRGA measurements in \(S.\) tenacissima L. The over-estimation of \(g_s\) values using the porometer is \(~25\%\) on average and is more pronounced in species with low \(g_s\) and under conditions that lead to decreased \(g_s\) \((e.g.,\) elevated CO\(_2\)—\text{Fig. 5})\). Yet, this difference was not statistically significant. The CO\(_2\) effect on the relative \(g_s\) difference is likely the result of a stomatal closing response when CO\(_2\) is increased, thus decreasing \(g_s\) and increasing the difference in measured \(g_s\) between the IRGA and the porometer. In addition, the relative differences in \(g_s\) are the result of the differences in how \(g_s\) is measured between the devices. The IRGA system allows more time for the leaf-chamber conditions to equilibrate before the measurement is taken \((\text{usually within 15 min.})\), whereas it only takes a few seconds for equilibrium to occur in the porometer chamber. Steady-state porometers are used frequently in plant studies \((\text{Jones 1999; Grant et al. 2007; Maes et al. 2016; Keel et al. 2006; Nijs et al. 1997})\), making the findings presented here relevant to many eco-physiologists, who rely on the accuracy of these devices. Using the proposed relationship adjustment by Murray et al. \(2019\) to account for this observed difference would help future comparative studies that would like to make use of measurements from both porometer and IRGA studies.

The porometer can be temporally limiting as it only provides an instantaneous measurement of \(g_s\) at a given time, whereas the IRGA can provide multiple \(g_s\) measurements over a longer time scale \((\text{up to 28 h depending on settings})\). When the measured species display large fluctuations in \(g_s\) across the diurnal cycle, this becomes important, as porometer protocols, which usually involve a single spot measurement per day, are less likely to capture this variability. For example, the diurnal shift in maximum \(g_s\) with elevated CO\(_2\) was previously suggested by Konrad et al. \(2008\) using an optimization model. He showed that under given environmental conditions, maximum \(g_s\) happens between 7.00 and 10.00 am for CO\(_2\) values < 700 ppm, but that \(g_s\) shifted to 10.00–13.00 for atmospheric CO\(_2\) values > 700 ppm. Similarly, we demonstrated that for \(P.\) tremuloides and \(S.\) racemosa, maximum \(g_s\) shifted into the afternoon as a result of elevated CO\(_2\) \((\text{Fig. 4})\). Short-term changes in stomatal aperture are often caused by diurnal variations of temperature, insolation, atmospheric humidity, light and wind speed \((\text{Konrad et al. 2008})\). ‘Long-term’ exposure in atmospheric CO\(_2\) on the other hand, has shown to affect stomatal anatomy and thus maximum theoretical conductance \((g_{\text{max}})\) \((\text{Franks and Beerling 2009})\). The species-specific difference in maximum \(g_s\) to an increase in CO\(_2\) observed here, is likely to be a response of anatomical stomatal changes \((e.g.,\) density and size\) For example, an increase in CO\(_2\) is often associated with a decrease in stomatal density and an increase in stomatal size \((\text{Franks and Beerling 2009})\). Although we did not measure anatomical traits here, Konrad et al. \(2008\) showed that the timing of maximum \(g_s\) is strongly dependent on the environmental conditions, stomatal traits and the rate of assimilation. It is likely that our species did adjust their \(g_{\text{max}}\), and thus optimized their timings of physiological responses to elevated CO\(_2\).

Changes of the time of the day when water is lost by plants could potentially influence the timing of precipitation in some biomes by altering plant-atmospheric dynamics, particularly in biomes where evaporation makes up a large proportion of the evapotranspiration flux \((\text{Schlesinger and Jasechko 2014})\). In addition, the shift in \(g_s\) with elevated CO\(_2\) has important consequences for the way \(g_s\) is measured in studies that are interested in the effect of elevated CO\(_2\) on \(g_s\). In particular it is critical to know the diurnal \(g_s\) pattern of the species to be studied, if the aim of the research is to measure maximum \(g_s\). For example, our species do not show a very strong mid-day depression, which has been observed in other taxa \((\text{Pathre et al. 2006;} 1977)\)}
manuscript. All authors edited and approved the manuscript.

experiment. SB and CY analyzed the data. SB wrote the designed the research. SB, CY and CE-K conducted the maximum

specifically under future changes in atmospheric CO2. Due to these across the soil–plant–atmospheric continuum; spe-

importance of stomata regulating global water fluxes, predictions of plant responses to CO2 across ecosystems. As shown here and elsewhere, when attempting to refine and (b) possibly shifting diurnally, need to be considered, studies. In addition, we showed that the daily maximum gs can, in some species, shift later into the day when plants are exposed to only 70 ppm increases in CO2. Our findings have potential important implications to the diurnal water and carbon budget of plants, and the feedback of these across the soil–plant–atmospheric continuum; specifically under future changes in atmospheric CO2. Due to the importance of stomata regulating global water fluxes, CO2 effects that result in gs (a) decreasing non-linearly and (b) possibly shifting diurnally, need to be considered, as shown here and elsewhere, when attempting to refine predictions of plant responses to CO2 across ecosystems.

Conclusion

Our study demonstrated that the species in this study respond non-linearly to increases in CO2 concentration when exposed to decadal changes in CO2; small CO2 concentrations increases (70 ppm) often not tested by other studies. In addition, we showed that the daily maximum gs, in some species, shift later into the day when plants are exposed to only 70 ppm increases in CO2. Our findings have potential important implications to the diurnal water and carbon budget of plants, and the feedback of these across the soil–plant–atmospheric continuum; specifically under future changes in atmospheric CO2. Due to the importance of stomata regulating global water fluxes, CO2 effects that result in gs (a) decreasing non-linearly and (b) possibly shifting diurnally, need to be considered, as shown here and elsewhere, when attempting to refine predictions of plant responses to CO2 across ecosystems.

Author contribution statement SB and JM conceived and designed the research. SB, CY and CE-K conducted the experiment. SB and CY analyzed the data. SB wrote the manuscript. All authors edited and approved the manuscript.

Acknowledgement We thank Dr. Aidan Holohan, Dr. Amanda Porter and Dr. Christiana Evans-Fitzgerald for their useful discussions. We also thank technical staff and students at University College Dublin including Ms. Bredagh Moran, Mr. Gordon Kavanagh and Mr. Conor Copeland. This study was supported by a Science Foundation Ireland PI Grant 11/PI/1103 and two Irish Research Council Fellowship grants (GOIPD/2016/261 and GOIPD/2016/320).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AinSWORTH EA, LeaKEY ADB, ORT DR, LONG SP (2008) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179(1):5–9. https://doi.org/10.1111/j.1469-8137.2008.02500.x

AinSWORTH EA, LONG SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE) A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

AinSWORTH EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2; mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270

Bakker JC (1991) Leaf conductance of four glasshouse vegetable crops as affected by air humidity. Agric For Meteorol 55(1):23–36. https://doi.org/10.1016/0168-1923(91)90020-Q

Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol 159(3):609–621. https://doi.org/10.1046/j.1469-8137.2003.00850.x

Berveiller D, Kierzkowski D, Damesin C (2007) Interspecific variability of stem photosynthesis among tree species. Tree Physiol 27(1):53. https://doi.org/10.1093/treephys/27.1.53

Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemling DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041. https://doi.org/10.1038/nature06045

Bonan GB, Williams M, Fisher RA, Oleson KW (2014) Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci Model Dev 7(5):2193–2222. https://doi.org/10.5194/gmd-7-2193-2014

Brodribb TJ, McAdam SAM (2017) Evolution of the stomatal regulation of plant water content. Plant Physiol 174(2):639–649. https://doi.org/10.1104/pp.17.00078

Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biol 13(5):980–989. https://doi.org/10.1111/j.1365-2486.2007.01313.x

Cregger MA, McDowell NG, Pangle RE, Pockman WT, Classen AT (2014) The impact of precipitation change on nitrogen cycling in
a semi-arid ecosystem. Funct Ecol 28(6):1534–1544. https://doi.org/10.1111/1365-2435.12282

Curtis PS, Wang X (1998) A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. Oecologia 113(3):299–313. https://doi.org/10.1007/s004420050381

Dang Q-L, Margolis HA, Coyea MR, Sy M, Collatz GJ (1997) Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference. Tree Physiol 17(8–9):521–535. https://doi.org/10.1093/treephys/17.8-9.521

de Boer HJ, Lammertsma EL, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO₂. Proc Natl Acad Sci 108(10):4041–4046. https://doi.org/10.1073/pnas.1100555108

Devices D (2005) Leaf porometer—operator’s manual, 9th edn. Pull-Gornish ES, Tylianakis JM (2013) Community shifts under climate change: ecological and evolutionary consequences. Nature 496(7445):347–350. https://doi.org/10.1038/nature12198

Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22(9):1043–1055. https://doi.org/10.1046/j.1365-3040.1999.00468.x

Keel SG, Pepin S, Leuzinger S, Körner C (2006) Stomatal conductance in mature deciduous forest trees exposed to elevated CO₂. Trees 21(2):151–159. https://doi.org/10.1007/s00468-006-0106-y

Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. https://doi.org/10.1038/nature02417

Konrad W, Roth-Nebelsick A, Grein M (2008) Modelling of stomatal density response to atmospheric CO₂. J Theor Biol 253(4):638–658. https://doi.org/10.1016/j.jtbi.2008.03.032

Kosugi Y, Matsuoi N (2006) Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol 26(9):1173–1184

Lammertsma EL, Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F (2011) Global CO₂ rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci 108(10):4035–4040. https://doi.org/10.1073/pnas.1010371108

Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628. https://doi.org/10.1146/annurev.arplant.55.031903.141610

Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO₂ exchange in the field. J Exp Bot 47(11):1629–1642. https://doi.org/10.1093/jxb/47.11.1629

Lüttge U, Stimmel KH, Smith JAC, Griffiths H (1986) Comparative ecophysiology of CAM and C₃ bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant Cell Environ 9 (5):377–383. 10.1111/j.1365-3040.1986.tb01751.x

Maes WH, Baert A, Huetz AR, Minchin PEH, Snelgar WP, Steppe K (2016) A new wet reference target method for continuous infrared thermography of vegetation. Agric For Meteorol 226:119–131. https://doi.org/10.1016/j.agrformet.2016.05.021

Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a subambient to elevated CO₂ gradient in a C₃/C₄ grassland. Plant Cell Environ 25(4):557–566. https://doi.org/10.1046/j.1365-3040.2002.00832.x

Makino A, Mac T (1999) Photosynthesis and plant growth at elevated levels of CO₂. Plant Cell Physiol 40(10):999–1006. https://doi.org/10.1093/oxfordjournals.pcpp.a029493

McElwain J, Steinthorsdottir M (2017) Palaeoecology, ploidy, palaeo-ecosystems and palaeo-environments: a review of fossil stomata. Plant Physiol. https://doi.org/10.1104/pp.17.00204

Medlyon BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitalet E, Rey A, Roberntz P, Sigurdsson BD, Strassmeeyer J, Wang K, Curtis PS, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO₂ concentration: a synthesis. New Phytol 149(2):247–264. https://doi.org/10.1046/j.1469-8137.2001.00028.x

Medlyon BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol 17(6):2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x
