Effectiveness of plant-based repellents against different *Anopheles* species: a systematic review

Amin Asadollahi¹, Mehdi Khoobdel²*, Alireza Zahraei-Ramazani¹*, Sahar Azarmi¹ and Sayed Hussain Mosawi³

Abstract

Plant-based repellents have been applied for generations in traditional practice as a personal protection approach against different species of *Anopheles*. Knowledge of traditional repellent plants is a significant resource for the development of new natural products as an alternative to chemical repellents. Many studies have reported evidence of repellent activities of plant extracts or essential oils against malaria vectors worldwide. This systematic review aimed to assess the effectiveness of plant-based repellents against *Anopheles* mosquitoes. All eligible studies on the repellency effects of plants against *Anopheles* mosquitoes published up to July 2018 were systematically searched through PubMed/Medline, Scopus and Google scholar databases. Outcomes measures were percentage repellency and protection time. A total of 62 trials met the inclusion criteria. The highest repellency effect was identified from *Ligusticum sinense* extract, followed by citronella, pine, *Dalbergia sissoo*, peppermint and *Rhizophora mucronata* oils with complete protection time ranging from 9.1 to 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and *Curcuma longa* also showed good repellency with 8 h complete repellency against different species of *Anopheles*. Essential oils and extracts of some plants could be formulated for the development of eco-friendly repellents against *Anopheles* species. Plant oils may serve as suitable alternatives to synthetic repellents in the future as they are relatively safe, inexpensive, and are readily available in many parts of the world.

Keywords: Plant, Herb, Repellent, Repellency, Systematic review, *Anopheles*

Background

Mosquito-transmitted diseases remain a main source of illness and death [1]. Despite decades of malaria control efforts, malaria continues to be a major worldwide public health issue with 3.3 billion persons at risk in 106 countries and territories in the tropical and subtropical areas [2]. It is one of the significant reasons for maternal and childhood morbidity and mortality, including low birth weight, stillbirths, and early infant death in sub-Saharan Africa [3]. Among 500 species of *Anopheles* mosquitoes known globally, more than 50 species can transmit malaria from the bite of the infected female *Anopheles* spp. [4]. Presently, there is no effective prophylactic anti-malarial vaccine and no suitable preventive measure other than vector control is available [5]. Thus, protection from mosquito bites is one of the best approaches to reduce the disease incidence.

The use of repellents to protect people from bites of mosquitoes previously has been acknowledged as part
of an overall integrated insect-borne disease control programme [6]. Most commercial repellents are produced by using chemical components such as N, N-diethyl-meta-toluamide (DEET), Allethrin, N, N-diethyl mendelic acid amide, and Dimethyl phthalate [1]. It has been identified that chemical repellents are not safe for public health and should be used with caution because of their detrimental impacts on synthetic fabric and plastic as well as toxic reactions, such as allergy, dermatitis, and cardiovascular and neurological side effects, which have been reported generally after misapplication [4]. The frequent use of synthetic repellents with chemical origin for mosquito control has disturbed natural ecosystems and resulted in the development of resistance to insecticides, resurgence in mosquito populations, and adverse impact on non-target organisms [4, 7]. Accordingly, the idea of using natural mosquito repellent products as an alternative to develop new eco-friendly repellents could be an amicable solution to scale back the undesirable effects on environment and human health.

In recent years, interest in plant-based repellents has been revived, as they contain a rich source of bioactive phytochemicals that are safe and biodegradable into non-toxic by-products, which could be screened for insecticidal activities and mosquito repellent. Many studies have reported evidence of repellent activities of plant extracts or essential oils against malaria vectors around the world. The present systematic review was performed to reveal which plant-based repellent can be relied on to provide a prolonged and predictable protection from species of Anopheles mosquitoes without causing side effects on human health.

For this systematic review, all eligible studies on the repellency effects of plant-based repellents against Anopheles spp. published up to July 2018 were systematically searched through electronic databases PubMed, MEDLINE, Web of Science, Literature retrieval System of the Armed Forces Pest Management Board, Scopus and Google Scholar using the following Medical Subject Headings (Mesh) and keywords: (((Plant [Title/Abstract]) OR Plants [Title/Abstract]) OR herbal [Title/Abstract]) AND (botanical [Title/Abstract]) AND ((extract [Title/Abstract]) OR extracts [Title/Abstract]) AND (“essential oil” [Title/Abstract]) OR “essential oils” [Title/Abstract]) AND (((“Insect repellent” [Mesh]) OR repellents) OR repellent) OR repellence) OR repellency) AND (“Anopheles” [Mesh]) OR “Anopheles” [Title/Abstract]). The search was limited to English publications. In addition, a manual search was conducted to identify further pertinent articles using references from retrieved studies.

Eligibility criteria
Studies were included in the present systematic review if they met these criteria: (i) full-text publication was written in English, (ii) inspected the repellency effects of plant extracts and essential oils against malaria vectors, Anopheles spp. mosquitoes, and, (iii) reported the percentage of repellency or complete protection time. Following studies were excluded: studies exploring the repellency effect of chemical-based products, studies examining the repellency effect of animal extracts, animal studies (studies not on human subjects), articles without full texts, reviews, duplicate articles, abstracts, republished data, comments, conference papers, editorials, and studies with insufficient data. In addition, studies were excluded if the information could not be extracted. A screening of titles and abstracts followed by a full-text review was performed by two investigators. All titles and abstracts were screened by two independent investigators for eligibility. If a consensus was reached, a study was excluded or selected to full-text screening. If a consensus was not reached, another reviewer was consulted to resolve any feasible discrepancies.

Data extraction
After identifying the eligible studies, the following data were collected from each study by application of standardized data collection form to improve accuracy and critical appraisal: the first author name, country of origin, journal details, publication year, condition of study (field or laboratory), plant name, Anopheles species, concentration or dose of repellents, repellency percentage and complete protection time. All data were independently extracted by two reviewers and disagreements were solved by discussion, and if necessary, a third author was involved.

A total of 383 studies were found by the initial literature search of the databases. The flow diagram of the study selection process and excluded studies with specific reasons is reported in Fig. 1. Of the 324 excluded citations, 102 were duplicated studies; 149 were not relevant to the repellency effect of plants on Anopheles spp. after screening titles/abstracts; 11 were review publications; 8 investigated the repellency impact of chemical-based repellents or animal extracts; 7 studies were conducted on laboratory animals; 12 were abstracts, conference papers, comments, and editorials; 10 studies had not reported sufficient data regarding the percentage of repellency or complete protection time; and, 15 studies were other irrelevant studies. The primary eligibility process yielded 59 documents and crosscheck of the references of reviews and other databases search provided 3 further articles [8–10]. A total of 62 studies conducted in different countries, including India [7–40], Thailand [4,
5, 41–48], Ethiopia [49–52], Kenya [53–57], Germany [6], Nigeria [1], USA [58], Tanzania [59], Brazil [60], Sudan [61], Iran [62], Cameroon [63] and Ivory Coast [64] were eventually included in the systematic review based on the inclusion criteria for the effect of plant-based repellents on species of *Anopheles* mosquitoes. The included studies were published between 1999 and 2018. Expect for 6 studies which were field trial, other studies were conducted on laboratory condition. None of the studies reported the inclusion and exclusion criteria explicitly other than specifying a healthy volunteer. Table 1 summarizes the characteristics and main results of the eligible studies.

Effectiveness of plant-based products against *Anopheles* spp.

Potential plant-based repellents stratified by protection time with at least 4 h protection time are reported in Table 2. The highest repellency effect was identified from *Ligusticum sinense* extract, followed by citronella, pine, *Dalbergia sissoo*, peppermint and *Rhizophora mucronata* oils with complete protection time ranging from 9.1 to 11.5 h. Ethanolic 25% extract of *L. sinense* was able to completely repel *Anopheles minimus* for 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved
Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
Ansari et al.	2005	India	Field	Pine oil (Pinus)	1 ml without dilution	An. culicifacies	100	11
				Citronella (lemon-grass oil)	1 ml without dilution	An. culicifacies	100	11
Ansari et al.	2000	India	Field	D. sissoo oil	1 ml without dilution	An. annularis	96.1	10.3
				D. sissoo oil	1 ml without dilution	An. annularis	100	11
Ansari et al.	2000	India	Field	Peppermint oil	1 ml without dilution	An. culicifacies	92.3	9.6
				Peppermint oil	1 ml without dilution	An. annularis	100	11
				Peppermint oil	1 ml without dilution	An. subpictus	83.1	7.3
Amer et al.	2006	Germany	Laboratory	Citronella (Cymbopogon winterianus) essential oils	20% oil solutions	An. stephensi	52.4	8
				Rosewood (Aniba rosaedora) essential oils	20% oil solutions	An. stephensi	4.8	6.5
				Lavender (Lavandula angustifolia) essential oils	20% oil solutions	An. stephensi	80.9	8
				Camphor (C. camphora) essential oils	20% oil solutions	An. stephensi	42.8	8
				Catnip (N. cataria) essential oils	20% oil solutions	An. stephensi	100	8
				Geranium (Pelargonium graveolens) essential oils	20% oil solutions	An. stephensi	61.9	8
				Thyme (T. serpyllum) essential oils	20% oil solutions	An. stephensi	33.3	7.5
				Eucalyptus (E. globulus) essential oils	20% oil solutions	An. stephensi	28.6	5.5
				Jasmine (Jasminum grandiflorum) essential oils	20% oil solutions	An. stephensi	100	8
				Broad-leaved eucalyptus (Eucalyptus dives) essential oils	20% oil solutions	An. stephensi	38.1	8
				Lemongrass (Cymbopogon citratus) essential oil	20% oil solutions	An. stephensi	100	8
				Lemon-scented eucalyptus (E. citriodora) essential oil	20% oil solutions	An. stephensi	52.4	8
				Fichtennadel (Picea excelsa) essential oil	20% oil solutions	An. stephensi	19	3
				Amyris (Amyris balsamifera) essential oil	20% oil solutions	An. stephensi	100	8
Table 1 (continued)

Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
Lemon (Citrus limon) essential oil				20% oil solutions	An. stephensi	9.5	7	
Narrow-leaved eucalyptus (Eucalyptus radiata) essential oil				20% oil solutions	An. stephensi	42.8	8	
Carotin oil (Glycina soja) essential oil				20% oil solutions	An. stephensi	9.5	8	
Cedarwood (Juniperus virginiana) essential oil				20% oil solutions	An. stephensi	38.1	8	
frankincense (Boswellia carteri) essential oil				20% oil solutions	An. stephensi	19	5	
Dill (Anethum graveolens) essential oil				20% oil solutions	An. stephensi	71.4	3.5	
Myrtle (M. communis) essential oil				20% oil solutions	An. stephensi	42.8	6.5	
Chamomile (Anthemis nobilis) essential oil				20% oil solutions	An. stephensi	76.2	8	
Cinnamon (C. zeylanicum) essential oil				20% oil solutions	An. stephensi	100	8	
Juniper (Juniperus communis) essential oil				20% oil solutions	An. stephensi	76.2	8	
Sage (Salvia sclarea) essential oil				20% oil solutions	An. stephensi	19	5	
Peppermint (Mentha piperita) essential oil				20% oil solutions	An. stephensi	57.1	6.5	
Basil (Ocimum basilicum) essential oil				20% oil solutions	An. stephensi	66.7	3.5	
Cajeput (Melaleuca leucadendron) essential oil				20% oil solutions	An. stephensi	100	8	
Soya bean (Glycina max) essential oil				20% oil solutions	An. stephensi	76.2	8	
Rosemary (R. officinalis) essential oil				20% oil solutions	An. stephensi	100	8	
Niaouli (Melaleuca quinquenervia) essential oil				20% oil solutions	An. stephensi	100	8	
Olive (O. europaea) essential oil				20% oil solutions	An. stephensi	71.4	8	
Black pepper (Piper nigrum) essential oil				20% oil solutions	An. stephensi	61.9	3	
Verbena (Lippia citriodora) essential oil				20% oil solutions	An. stephensi	38.1	5.5	
tagetes (T. minuta) essential oil				20% oil solutions	An. stephensi	100	8	
Violet (Viola odorata) essential oil				20% oil solutions	An. stephensi	100	8	
Study	Year	Country	Study type	Plant extract/essential oil	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
------------------------	-------	---------	------------	-----------------------------	--------------------	-----------------------	-----------------	------------------------
Sandalwood (Santalum album) essential oil	20% oil solutions	An. stephensi	100	8				
Litsea (Litsea cubeba) Essential oil	20% oil solutions	An. stephensi	100	8				
Helichrysum (Helichrysum italicum) essential oil	20% oil solutions	An. stephensi	47.6	6				
Galbanum (Ferula galbaniflua) essential oil	20% oil solutions	An. stephensi	100	8				
Chamomile (Chamaemelum nobile) essential oil	20% oil solutions	An. stephensi	47.6	5.5				
Amerasan et al. 2012 India Laboratory	Cassia tora Linn methanol extract	1 mg/cm²	An. stephensi	100	2			
		2.5 mg/cm²	An. stephensi	100	2			
		5.0 mg/cm²	An. stephensi	100	2.5			
Abiy et al. 2015 Ethiopia Field	20% neem oil	Neem and chinaberry oils were diluted to 20% using Niger seed (noog abyssinia) oil	An. arabiensis	71	3			
		20% chinaberry oil	Neem and chinaberry oils were diluted to 20% using Niger seed (noog abyssinia) oil	An. arabiensis	70	1		
Alayo et al. 2015 Nigeria Laboratory	Cassia mimosoides petroleum ether extract	Cream 0.5% w/w	An. gambiae	48	–			
		Cream 1% w/w		88	–			
		Cream 2% w/w		100	0.08			
		Cream 4% w/w		100	0.08			
		Cream 6% w/w		100	0.08			
Alwala et al. 2010 Kenya Laboratory	Mangifera indica Caesalpinia pulcherrima extract	10% solution	An. gambiae	100	–			
Baskar et al. 2018 India Laboratory	Atalantia monophylla essential oil	50 ppm	An. stephensi	–	6.85			
Govindarajan et al. 2010 India Laboratory	Sida acuta Burm. F. extract	2.5 mg/cm²	An. stephensi	100	2.5			
		5 mg/cm²	An. stephensi	100	3			
Govindarajan et al. 2011 India Laboratory	Ervatamia coronaria extract	1 mg/cm²	An. stephensi	100	2.5			
		2.5 mg/cm²	An. stephensi	100	3			
		5 mg/cm²	An. stephensi	100	3.5			
	Caesalpinia pulcherrima extract	1 mg/cm²	An. stephensi	100	2			
Govindarajan et al. 2011 India Laboratory	R. officinalis L. essential oil	2.5 mg/cm²	An. stephensi	100	2.5			
		5 mg/cm²	An. stephensi	100	3			
		2.5 mg/cm²	An. subpictus	100	2			
		5 mg/cm²	An. subpictus	100	2.5			
		1 mg/cm²	An. subpictus	100	1			
		2.5 mg/cm²	An. subpictus	100	1			
		5 mg/cm²	An. subpictus	100	1.5			
Table 1 (continued)

Study Authors and Year	Country	Study Type	Plant Extract/ (essential oil)	Concentration dose	Anopheles Species	Repellency %	Protection Time (hours)	
Asadollahi et al. (2019)			C. citrates Stapf. essential oil	1 mg/cm²	An. subpictus	100	1	
				2.5 mg/cm²	An. subpictus	100	1.5	
				5 mg/cm²	An. subpictus	100	2	
Govindarajan et al. (2016)	India	Laboratory	C. zeylanicum L. essential oil	1 mg/cm²	An. subpictus	100	1	
				2.5 mg/cm²	An. subpictus	100	1	
				5 mg/cm²	An. subpictus	100	1.5	
Jeyabalain et al. (2003)	India	Laboratory	Zingiber nimmonii essential oil	1 mg/cm²	An. stephensi	100	2	
				2 mg/cm²	An. stephensi	100	2.5	
				5 mg/cm²	An. stephensi	100	3	
Karunamoorthi et al. (2008)	Ethiopia	Laboratory	P. citrosa leaf extract	0.5%	An. stephensi	36	–	
				1%	An. stephensi	51	–	
				2%	An. stephensi	78	–	
				4%	An. stephensi	100	–	
Karunamoorthi et al. (2010)	Ethiopia	Laboratory	Woira (O. europaea) smoke	Burning of 25 g of dried plant materials	An. arabiensis	79.7	–	
			Tinjut (Ostostegia integrifolia) smoke	Burning of 25 g of dried plant materials	An. arabiensis	90.1	–	
			Wogert (Silene macroserene) smoke	Burning of 25 g of dried plant materials	An. arabiensis	93.6	–	
			Kebercho (Echinops sp.) extract	Burning of 25 g of dried plant materials	An. arabiensis	92.4	–	
Karunamoorthi et al. (2010)	Ethiopia	Laboratory	C. citratus extract	1 mg/cm²	An. arabiensis	100	3.2	
				1.5 mg/cm²	An. arabiensis	100	4.4	
				2 mg/cm²	An. arabiensis	100	5.3	
				2.5 mg/cm²	An. arabiensis	100	6.3	
Govindarajan et al. (2016)	India	Laboratory	Origanum scabrum essential oil	1 mg/cm²	An. stephensi	100	2.5	
				2 mg/cm²	An. stephensi	100	3	
				5 mg/cm²	An. stephensi	100	3.5	
Haldar et al. (2014)	India	Laboratory	Ficus krishnae smoke	30 mg/l smoked	An. stephensi	18	0.16	
				60 mg/l smoked	An. stephensi	100	0.5	
				90 mg/l smoked	An. stephensi	100	1	
Auysawasdi et al. (2015)	Thailand	Laboratory	Curcuma longa essential oil	5%	An. dirus	100	4	
				10%	An. dirus	100	5	
				15%	An. dirus	100	5.5	
				20%	An. dirus	100	5.5	
				25%	An. dirus	100	8	
E. globulus essential oil				5%	An. dirus	100	1.7	
				10%	An. dirus	100	2.3	
				15%	An. dirus	100	3	
				20%	An. dirus	100	3	
				25%	An. dirus	100	3.4	
Citrus aurantium essential oil				5%	An. dirus	100	1.8	
				10%	An. dirus	100	2.9	
				15%	An. dirus	100	2.9	
				20%	An. dirus	100	3	
				25%	An. dirus	100	3.5	
Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration	Anopheles species	Repellency %	Protection time (hours)
---------------	------	---------	------------	--------------------------------	---------------	-------------------	-------------	------------------------
Barnard et al.	1999	USA	Laboratory	Clove essential oil	25%	An. albimanus	100	1.25
					50%	An. albimanus	100	1.5
					75%	An. albimanus	100	2.26
					100%	An. albimanus	100	3.55
				Thyme essential oil	25%	An. albimanus	100	0.75
					50%	An. albimanus	100	0.5
					75%	An. albimanus	100	1
					100%	An. albimanus	100	1.75
Kweka et al.	2008	Tanzania	Laboratory	Citronella extract	500 mg/m²	An. gambiae	81	–
				Ocimum suave extract	500 mg/m²	An. gambiae	81	–
				Ocimum kilimandscharicum extract	500 mg/m²	An. gambiae	73	–
				Citronella	500 mg/m²	An. arabiensis	85	–
				O. suave extract	500 mg/m²	An. arabiensis	89	–
				O. kilimandscharicum extract	500 mg/m²	An. arabiensis	75	–
Kovendan et al.	2012	India	Laboratory	A. alnifolia extract	1 mg/cm²	An. stephensi	100	2
					3 mg/cm²	An. stephensi	100	2
					5 mg/cm²	An. stephensi	100	2.5
Krishnappa et al.	2012	India	Laboratory	A. digitata crude extract	2 mg/cm²	An. stephensi	100	3
					4 mg/cm²	An. stephensi	100	3.5
					6 mg/cm²	An. stephensi	100	3.5
Naine et al.	2014	India	Laboratory	Streptomyces sp. VITJS4 extract	1 mg/cm²	An. stephensi	100	2
					3 mg/cm²	An. stephensi	100	2
					6 mg/cm²	An. stephensi	100	2
Murugan et al.	2012	India	Laboratory	Orange peel extract	50 ppm	An. stephensi	99	–
					150 ppm	An. stephensi	100	0.5
					250 ppm	An. stephensi	100	0.05
					350 ppm	An. stephensi	100	1.5
					450 ppm	An. stephensi	100	2
Padilha et al.	2003	Brazil	Field	Ocimum selloi oil v/v	10%	An. braziliensis	89	0.5
Konan et al.	2003	Ivory Coast	Laboratory	Karite nut butter oil	75%	An. gambiae	100	2
				Palm oil	75%	An. gambiae	100	1.38
Maheswaran et al.	2013	India	Laboratory	Confertifolin essential oil	0.62 ppm	An. stephensi	100	1
					1.25 ppm	An. stephensi	100	2.5
					2.5 ppm	An. stephensi	100	3
Panneerselvam et al.	2013	India	Laboratory	Andrographis paniculata methanol leaf extract	1 mg/cm²	An. stephensi	100	2
					3 mg/cm²	An. stephensi	100	2.5
					6 mg/cm²	An. stephensi	100	3
				Cassia occidentalis methanol leaf extract	1 mg/cm²	An. stephensi	100	2
					3 mg/cm²	An. stephensi	100	2.5
					6 mg/cm²	An. stephensi	100	5.2
Table 1 (continued)

Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
Euphorbia hirta methanol leaf extract					1 mg/cm²	An. stephensi	100	2
					3 mg/cm²	An. stephensi	100	2
					6 mg/cm²	An. stephensi	100	2.5
Panneerselvam et al. 2012	India	Laboratory		Artemisia nilagirica extract	50 ppm	An. stephensi	95	0.5
					150 ppm	An. stephensi	98	0.5
					250 ppm	An. stephensi	100	0.5
					350 ppm	An. stephensi	100	1
					450 ppm	An. stephensi	100	2
Phasomkusolsil et al. 2011	Thailand	Laboratory		Cananga odorata oil	0.02 mg/cm²	An. dirus	94	–
					0.10 mg/cm²	An. dirus	92	–
					0.21 mg/cm²	An. dirus	92	–
				C. sinensis oil	0.02 mg/cm²	An. dirus	40	–
					0.10 mg/cm²	An. dirus	54	–
					0.21 mg/cm²	An. dirus	84	–
				C. citratus oil	0.02 mg/cm²	An. dirus	76	–
					0.10 mg/cm²	An. dirus	82	–
					0.21 mg/cm²	An. dirus	98	–
				Cymbopogon nardus oil	0.02 mg/cm²	An. dirus	92	–
					0.10 mg/cm²	An. dirus	92	–
					0.21 mg/cm²	An. dirus	98	–
				E. citriodora oil	0.02 mg/cm²	An. dirus	52	–
					0.10 mg/cm²	An. dirus	74	–
					0.21 mg/cm²	An. dirus	86	–
				O. basilicum oil	0.02 mg/cm²	An. dirus	66	–
					0.10 mg/cm²	An. dirus	74	–
					0.21 mg/cm²	An. dirus	96	–
				S. aromaticum oil	0.02 mg/cm²	An. dirus	82	–
					0.10 mg/cm²	An. dirus	92	–
					0.21 mg/cm²	An. dirus	98	–
Prabhu et al. 2011	India	Laboratory		Moringa oleifera extract	20%	An. stephensi	23	–
					40%	An. stephensi	43	–
					60%	An. stephensi	58	–
					80%	An. stephensi	76	–
Rajkumar et al. 2007	India	Laboratory		Centella asiatica essential oil	2%	An. stephensi	–	1
					4%	An. stephensi	–	1.78
					6%	An. stephensi	–	2.33
				Ipomoea cairica essential oil	2%	An. stephensi	–	2.63
					4%	An. stephensi	–	4.13
					6%	An. stephensi	–	5.53
				Mammordica charan-nia essential oil	2%	An. stephensi	–	2.38
					4%	An. stephensi	–	3.93
					6%	An. stephensi	–	5.38
				Psidium guajava essential oil	2%	An. stephensi	–	0.93
					4%	An. stephensi	–	1.48
					6%	An. stephensi	–	1.98
Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
------------------------------	------	------------	-------------	-------------------------------	-------------------	-------------------	--------------	------------------------
Rajkumar et al.	2005	India	Laboratory	Tridax procumbens essential oil	2%	An. stephensi	–	2.33
					4%			
					6%			
Rajkumar et al.	2005	India	Laboratory	Tridax procumbens essential oil	0.001%	An. stephensi	100	1.15
					0.005%			
					0.01%			
					0.015%			
Rawani et al.	2012	India	Laboratory	Solanum trilobatum extract	1%	An. stephensi	65	2.3
Rawani et al.	2012	India	Laboratory	Solanum trilobatum extract	1.50%	An. stephensi	80	4
Rawani et al.	2012	India	Laboratory	Solanum trilobatum extract	2%	An. stephensi	90	5
Reegan et al.	2015	India	Laboratory	Cliona celata extract	1 mg/cm²	An. stephensi	100	1.08
					2.5 mg/cm²			
					5 mg/cm²			
Swathi et al.	2012	India	Laboratory	Datura stramonium extract	0.1%	An. stephensi	–	0.35
					0.5%			
					1%			
Seyoum et al.	2002	Kenya	Semi-field	Neem (A. indica)	Periodic thermal expulsion	An. gambiae	24.5	–
Sanghong et al.	2015	Thailand	Laboratory	L. sinense ethanolic preparations	25%	An. minimus	–	11.5
Das et al.	2003	India	Laboratory	Cymbopogon martini extract	1 ml without dilution	An. sundaicus	98	6
Nour et al.	2009	Sudan	Laboratory	Basil (O. basilicum L.) essential oil	0.1 ml	An. dirus	–	0.66
Trongtokit et al.	2005	Thailand	Laboratory	C. nardus essential oil	10%	An. dirus	–	0.5
					50%			
					100%			
Table 1 (continued)

Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
Mullilam (Zanthoxylum limonella)	10%	An. dirus	–	1		–	1	
Clove (Syzygium aromaticum)	10%	An. dirus	–	2		–	2.16	
	50%	An. dirus	–	2		–	3.16	
	100%	An. dirus	–	2		–	1.33	
	50%	An. dirus	–	2		–	2.66	
	100%	An. dirus	–	2		–	3.5	
Yogananth et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Singh et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Trongtokit et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Kamaraj et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Solomon et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Soonwera et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Sritabutra et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Sritabutra et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Birkett et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Kamaraj et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Soonwera et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
Sritabutra et al.	10%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	
	100%	An. dirus	–	2		–	1	

Note: Concentration levels are given in mg/cm² or μl for the respective plant extracts/essential oils.
Table 1 (continued)

Study	Year	Country	Study type	Plant extract/ (essential oil)	Concentration dose	Anopheles species	Repellency %	Protection time (hours)
Orange (C. sinensis)				0.1 ml An. dirus	–	0.83		
Citronella grass (C. nardus)				0.1 ml An. dirus	–	0.8		
Lemongrass (C. citratus)				0.1 ml An. dirus	–	1.63		
Clove (S. aromaticum)				0.1 ml An. dirus	–	1		
Sweet basil (O. basilicum)				0.1 ml An. dirus	–	0.75		
Tavassoli et al. 2001 iran	2001	Iran	Laboratory	Marigold (Calendula officinalis)	50%	An. stephensi	–	2.15
Myrtle essential oil				50% An. stephensi	–	4.36		
Annona senegalensis leaf extract	2016	Cameroon	Laboratory	4.0 mg/cm² An. gambiæ	–	0.5	0.5	
Boswellia dalzielii leaf extract	2011	India	Laboratory	4.0 mg/cm² An. gambiæ	–	1	1.5	
Govindarajan et al. 2011	2011	India	Laboratory	Coccinia indica extract 1 mg/cm²	An. stephensi	100	3	
Govindarajan et al. 2012	2012	India	Laboratory	Cardiospermum halicacabum oil 1 mg/cm²	An. stephensi	100	2	
Govindarajan et al. 2014	2014	India	Laboratory	Asparagus racemosus crude extract 1 mg/cm²	An. stephensi	100	2.5	
Govindarajan et al. 2015	2015	India	Laboratory	Delonix elata crude extract 1 mg/cm²	An. stephensi	100	2.5	
Innocent et al. 2014 Kenya	2014	Kenya	Laboratory	Uvariodendron gorgonis essential oil 0.01 w/v An. gambiæ	29	–	–	
Clausena anisata essential oil	2015	India	Laboratory	0.01 w/v An. gambiæ	13	–	–	
Lantana vibunoides essential oil	2015	India	Laboratory	0.01 w/v An. gambiæ	21	–	–	
				0.1 w/v An. gambiæ	1	–	–	
				10 w/v An. gambiæ	64	–	–	
				1 w/v An. gambiæ	42	–	–	
				10 w/v An. gambiæ	56	–	–	
				0.1 w/v An. gambiæ	54	–	–	
				10 w/v An. gambiæ	62	–	–	
eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and *Curcuma longa* also showed good repellency with 8 h complete repellency against different species of *Anopheles* genus. Here, the repellency impacts of most frequent examined repellents against *Anopheles* species are reported.

Citronella
The repellency effect of citronella was investigated in several studies. Citronella is an essential oil extracted from the stems and leaves of different species of lemongrass (*Cymbopogon* spp.) [65]. Ansari et al. [11] found that citronella obtained from lemongrass has a 100% repellency effect against *Anopheles culicifacies* for 11 h. Amer et al. [6] and Tawatsin et al. [44] also reported that citronella could repel *Anopheles stephensi* and *Anopheles dirus* for 8 and 6 h, respectively. Moreover, 100 μl and 0.1 ml of citronella grass essential oil showed 2.16 and 0.8 h complete protection time against *An. minimus* [45] and *An. dirus* [47], respectively. The percentage repellency of citronella in other studies. [6, 52, 59], depending on the concentration of extracts and *Anopheles* species, was reported to be 52 to 85%.

Peppermint
Peppermint is a hybrid mint from cross-breeding spearmint (*Mentha spicata*) and water mint (*Mentha aquatica*), which contains biologically active constituents and has high menthone, menthol and methyl esters. The plant, indigenous to Europe, is now widespread in cultivation worldwide [66]. The effect of peppermint on *Anopheles* was explored in 3 studies. Ansari et al. [12] in a field trial revealed that 1 ml peppermint oil without dilution completely repels *Anopheles annularis*, *An. culicifacies* and *Anopheles subpictus* for 11, 9.6 and 7.3 h, respectively and the corresponding percentage repellency were 100%, 92.3% and 83.1%. In another study [6], 20% oil solutions of peppermint had 57% repellency and complete protection time for 6.5 h against *An. stephensi*. The study by Sritabutra et al. [47] also found that 0.1 ml of peppermint essential oil protect against *An. dirus* for 1.08 h.

Cinnamomum
Cinnamomum is a genus in the Laurel family, Lauraceae, several of which are investigated for their antibacterial activity by means of essential oils from bark and leaves [67]. Amer et al. [6] reported that 20% oil solutions of both camphor (*Cinnamomum camphora*) and cinnamon (*Cinnamomum zeylanicum*) had 100% repellency affect against *An. stephensi*. While, in the study conducted by Govindarajan et al. [22], *C. zeylanicum* at 1 mg/cm² showed 1 h protection against *An. subpictus*.

Catnip (*Nepeta cataria*)
Catnip is a perennial plant that belongs to the mint family, Lamiaceae. This herb is spread from central Europe to central Asia and the Iranian plateaus [68]. The 20% oil solution of catnip in the study carried out by Amer et al. [6], with 100% protection against *An. stephensi* for 8 h, had a good effectiveness in preventing *Anopheles* mosquitoes. Nevertheless, Birkett et al. [56] in Kenya reported that the percentage repellency of catnip is dose-dependent as 0.01 mg, 0.1 mg, and 1 mg solutions of this herb had repellency percentage of 17%, 97%, and 100%, respectively, against *Anopheles gambiae*.

Thyme (*Thymus serpyllum*)
Thyme is one of nine species belonging to *T. serpyllum*, a perennial aromatic plant of the Mediterranean flora [69]. *Thymus* species have been reported to possess
Table 2 Stratification of potential of plant based repellents

Protection time (hours)	Plant name	Concentration/dose	Anopheles species
11.5	L. sinense ethanolic extract	25%	An. minimus
11	Pine oil (Pinus)	1 ml without dilution	An. culicifacies
	Citronella (lemongrass oil)	1 ml without dilution	An. culicifacies
	D. sissoo oil	1 ml without dilution	An. annularis
	Peppermint oil	1 ml without dilution	An. annularis
8 to < 10	D. sissoo oil	1 ml without dilution	An. culicifacies
	Peppermint oil	1 ml without dilution	An. culicifacies
	R. mucronata oil	4 mg/cm²	An. stephensi
	R. mucronata oil	3 mg/cm²	An. stephensi
8	D. sissoo oil	1 ml without dilution	An. subpictus
	Citronella (C. winterianus) essential oils	20% oil solution	An. stephensi
	Lavender (L. angustifolia) essential oils	20% oil solution	An. stephensi
	Camphor (C. camphora) essential oils	20% oil solution	An. stephensi
	Catnip (N. cataria) essential oils	20% oil solution	An. stephensi
	Geranium (P. graveolens) essential oils	20% oil solution	An. stephensi
	Jasmine (J. grandiflorum) essential oils	20% oil solution	An. stephensi
	Broad-leaved eucalyptus (E. dives) essential oils	20% oil solution	An. stephensi
	Lemongrass (C. citratus) essential oil	20% oil solution	An. stephensi
	Lemon-scented eucalyptus (E. citriodora)	20% oil solution	An. stephensi
	Amyris (A. balsamifera) essential oil	20% oil solution	An. stephensi
	Narrow-leaved eucalyptus (E. radiata) essential oil	20% oil solution	An. stephensi
	Carotin oil (G. soja) essential oil	20% oil solution	An. stephensi
	Cedarwood (J. virginiana) essential oil	20% oil solution	An. stephensi
	Chamomile (A. nobilis) essential oil	20% oil solution	An. stephensi
	Cinnamom (C. zeylanicum) essential oil	20% oil solution	An. stephensi
	Juniper (J. communis) essential oil	20% oil solution	An. stephensi
	Cajeput (M. leucadendron) essential oil	20% oil solution	An. stephensi
	Soya bean (G. max) essential oil	20% oil solution	An. stephensi
	Rosemary (R. officinalis) essential oil	20% oil solution	An. stephensi
	Niaouli (M. quinquenervia) essential oil	20% oil solution	An. stephensi
	Olive (O. europaea) essential oil	20% oil solution	An. stephensi
	Tagetes (T. minuta) essential oil	20% oil solution	An. stephensi
	Violet (V. odorata) essential oil	20% oil solution	An. stephensi
	Sandalwood (S. album) essential oil	20% oil solution	An. stephensi
	Litsea (L. cubeba) essential oil	20% oil solution	An. stephensi
	Galbanum (F. galbaniflua) essential oil	20% oil solution	An. stephensi
	C. longa essential oil	25%	An. dirus
7 to < 8	R. mucronata oil	2 mg/cm²	An. stephensi
	Thyme (T. serpyllum) essential oils	20% oil solution	An. stephensi
	Peppermint oil	1 ml without dilution	An. subpictus
	R. mucronata oil	1 mg/cm²	An. stephensi
7	Lemon (C. limon) essential oil	20% oil solution	An. stephensi
6 to < 7	A. monophylla essential oil	50 ppm	An. stephensi
	rosewood (A. rosea) essential oils	20% oil solution	An. stephensi
	myrtle (M. communis) essential oil	20% oil solution	An. stephensi
	peppermint (M. piperita) essential oil	20% oil solution	An. stephensi
various beneficial effects, such as antiseptic, carminative, antimicrobial, and antioxidant properties [70]. The 20% oil solution of thyme in the study conducted by Amer et al. [6], with 100% protection against *Anopheles stephensi* for 7.5 h, had a good effectiveness in preventing *Anopheles* mosquitoes. Nevertheless, another study [58] reported that the complete protection time of thyme at its maximum concentration (100%) is 1.7 h against *Anopheles albimanus*.

Olive (Olea europaea)

Olive (*O. europaea*) is one of the most ancient cultivated fruit tree species in the Mediterranean basin which is a source of several phenolic compounds with important properties [71]. The 20% oil solution of olive in the study conducted by Amer et al. [6], with a mean percentage of repellency (71.4%) and complete protection time against *Anopheles stephensi* for 8 h, had a good effectiveness in preventing *Anopheles stephensi* mosquitoes. Karunamoorthi et al. [50] also supported that burning of 25 g of dried *O. europaea*, comparable to Amer et al. [6], has a percentage repellency of 79.7 against *Anopheles arabiensis*.

Eucalyptus

Eucalyptus is a significant short rotation pulpy woody plant, grown generally in tropical regions [72]. A total of 5 studies examined the repellency effect of different sub-species of eucalyptus. In the laboratory trial by Amer et al. [6], narrow-leaved eucalyptus, lemon-scented eucalyptus, and broad-leaved eucalyptus protected against *An. stephensi* for 8 h, while *Eucalyptus globulus* complete protection time was reported to be 5.5 h. Auysawasdi et al. [41] used *E. globulus* essential oil at 5%, 10%, 15%, 20% and 25% concentrations against *An. dirus*. All concentrations of *E. globulus* provided complete repellency ranging from 1.7 to 3.4 h, depending on the concentration applied. *Eucalyptus globulus* at 0.1 ml dose in a study [47] repelled *An. dirus* for 1.58 h. Besides,

Protection time (hours)	Plant name	Concentration/dose	Anopheles species
6	*Helichrysum* (*H. italicum*) essential oil	20% oil solution	*An. stephensi*
	C. martini var sofia oil	1 ml without dilution	*An. sundaicus*
	Turmeric (*C. longa*) volatile oil	3 ml	*An. dirus*
	Citronella	3 ml	*An. dirus*
	Hairy basil oil	3 ml	*An. dirus*
	C. rotundus Linn hexane extract	10%	*An. stephensi*
5 < to < 6	*I. carica* essential oil	6%	*An. stephensi*
	Eucalyptus (*E. globulus*) essential oils	20% oil solution	*An. stephensi*
	Verbena (*L. citriodora*) essential oil	20% oil solution	*An. stephensi*
	Chamomile (*C. nobilis*) essential oil	20% oil solution	*An. stephensi*
	C. longa essential oil	15%	*An. dirus*
	C. longa essential oil	20%	*An. dirus*
	M. charantia essential oil	6%	*An. stephensi*
	C. citratus extract	2 mg/cm²	*An. arabiensis*
	Confertifolin essential oil	10 ppm	*An. stephensi*
5	*Frankincense* (*B. carteri*) essential oil	20% oil solution	*An. stephensi*
	Sage (*S. sclarea*) essential oil	20% oil solution	*An. stephensi*
	C. longa essential oil	10%	*An. dirus*
	Confertifolin essential oil	5 ppm	*An. stephensi*
	P. tuberosa extract	2%	*An. stephensi*
4 < to < 5	Clove oil	Cream 20%	*An. dirus*
	Clove oil	20% gel	*An. dirus*
	C. citratus extract	1/5 mg/cm²	*An. arabiensis*
	Myrtle essential oil	50%	*An. stephensi*
	I. carica essential oil	4%	*An. stephensi*
4	*C. longa essential oil*	5%	*An. dirus*
	P. tuberosa extract	1.5%	*An. stephensi*

Stratification of potential of plant based repellents by complete protection times, up to July 2018.
Eucalyptus extract is not affective against An. gambiae [54]. In contrast, Seyoum et al. found that lemon eucalyptus extract is not affective against An. gambiae [54].

Myrtle (Myrtus communis)
Myrtle is a member of the Myrtaceae family which is botanically linked to eucalyptus [73]. In 2 studies, repellency effectiveness of myrtle was investigated. The 20% oil solution of myrtle in the study conducted by Amer et al. [6], with mean percentage repellency of 42.8% and complete protection time against An. stephensi for 6.5 h, had a good effectiveness in preventing Anopheles mosquitoes. Tavassoli et al. [62] also supported that myrtle at 50% concentration repels An. stephensi for 4.36 h.

Basil
Basil is an annual plant of the Ocimum genus, which belongs to the Lamiaceae family and is used in traditional medicine in many parts of the world [74]. In 6 studies, repellency effectiveness of basil against different Anopheles species was investigated. In the laboratory trial by Amer et al. [6], 20% oil solution of basil essential oil, with mean percentage repellency of 66.7%, had 100% protective impact against An. stephensi for 3.5 h. Phasomkusolsil et al. [42] used basil essential oil at 0.02, 0.10, and 0.21 mg/cm² concentrations against An. dirus. The percentage repellency was dose–response and was reported to be 66%, 74% and 96%, respectively. Basil at 0.1 ml dose in other studies [47, 61] repelled Anopheles for 1.5 h and 0.75 h, whereas, Tawatsin et al. [44] found that hairy basil oil provides 100% protection against An. dirus for 6 h. In contrast, in the study by Seyoum et al. [54], no remarkable repellency effect against An. gambiae was identified.

Tagetes (Tagetes minuta)
Tagetes minuta is a very important member of Tagetes genus belonging to Asteraceae family [75]. In 2 studies, repellency effectiveness of tagetes was explored. The 20% oil solution of T. minuta in the study conducted by Amer et al. [6], with complete protection time for 8 h, had a good effectiveness in preventing against An. stephensi. In contrast, Seyoum et al. found that tagetes extract is not affective against An. gambiae [54].

Neem (Azadirachta indica)
Neem is a versatile tree broadly grown in tropical areas of India [76]. The repellency effect of Neem against different species of Anopheles was investigated in 2 studies. The 20% Neem oil in a field trial conducted by Amer et al. [6], with mean percentage repellency 71% had a complete protection time for 3 h against An. arabiensis. Nevertheless, Seyoum et al. found that Neem extract is not affective against An. gambiae [54].

Rosemary (Rosmarinus officinalis)
Rosemary is an evergreen aromatic shrub with a Mediterranean origin, which belongs to Lamiaceae (Labiate) family [77]. In 2 studies, repellency effectiveness of rosemary was reported. The 20% oil solution of rosemary in the study conducted by Amer et al. [6], with 100% protection against An. stephensi for 8 h, had a good effectiveness in preventing Anopheles mosquitoes. Govindarajan et al. [22] also supported that rosemary at 1, 2.5 and 5 mg/cm² concentrations completely repels An. subpictus for 1, 1, and 1.5 h, respectively.

Clove (Syzygium aromaticum)
Clove is a naturally occurring spice which has been shown to possess anti-bacterial, anti-oxidant, anti-pyretic, anti-candidal, and aphrodisiac activities [78]. The repellency effect of clove against different species of Anopheles was investigated in 6 studies. In the study by Phasomkusolsil et al. [42], clove at 0.02, 0.10 and 0.21 mg/cm² with a dose-dependent trend, showed 82%, 92%, and 98% repellency against An. dirus. Barnard et al. [58] used clove essential oil at 25%, 50%, 75%, and 100% concentrations against An. albimanus and found that all concentrations of clove provided complete repellency ranging from 1.25 to 3.55 h, depending on the concentration applied. Consistently, clove at 10%, 50%, and 100% concentrations, with a dose-dependent trend, showed 1.33, 2.66, and 3.5 h complete repellency against An. dirus [43]. Anopheles dirus was repelled by clove for 1 h in laboratory conditions in Thailand [47]. Another study [45] reported that clove repels An. minimus for 2 h. Moreover, 20% gel of clove protected against An. dirus for 4.5 h [46]. All these findings support that clove can be a considered as moderate repellent.

Orange oil (Citrus sinensis)
Orange is a plant member of the Citrus genus and mostly cultivated in subtropical areas [79]. The repellency effect of orange against different species of Anopheles was investigated in 4 studies. In the study by Murugan et al. [27], orange extract at 50, 150 and 250, 350, and 450 ppm showed 0, 0.5, 0.5, 1.5 and 2 h complete protection time repellency (100%) against An. stephensi, respectively. While, in another study [45], it repelled An. minimus for 0.83 h. Similarly, Sritabutra et al. [47] showed that orange repels An. dirus for 0.83 h. Phasomkusolsil et al. [42] also found that orange at 0.02, 0.10, and 0.21 mg/cm², with a dose-dependent trend, has 44%, 54%, and 84% repellency against An. dirus, respectively.
Turmeric (*C. longa*)
The medicinal plant turmeric, which is a perennial herb, and a member of Zingiberaceae family, is commonly used as a spice in human food [80]. In 3 studies, repellency effectiveness of turmeric was examined. Auysawasdi et al. [41] used turmeric essential oil at 5%, 10%, 15%, 20%, and 25% concentrations against *An. dirus*. All concentrations of turmeric, with a dose–response manner, provided complete repellency ranging from 4 to 8 h, depending on the concentration applied. Other studies also found that turmeric oil repels *An. dirus* for 6 h [44] and *An. minimus* [45] for 1 h.

Discussion
A high level of insecticide resistance has made because of the chemical control of the pests and vectors. To overcome this problem, it is essential to research for alternative approaches to vector control. The field of herbal repellents is extremely fertile as people demand mosquitoes’ repellents that are safe, pleasant to usage and ecologically maintainable. As cost is a significant factor, examination of the use of local flora as repellents is highly suggested. Essential oils and extracts of plants are emerging as potential agents for *Anopheles* spp. control, with easy-to-administer, low-cost, and risk-free properties. In the present systematic review the highest repellency effect against *Anopheles* mosquitoes was found from *L. sinense* extract, followed by citronella, pine, *D. sisssoo*, peppermint and *R. mucronata* oils with complete protection time ranging from 9.1 to 11.5 h. Essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and *C. longa* also showed good repellency with 8 h complete repellency against different species of *Anopheles* genus.

The exact mechanism of action of these plants in preventing *Anopheles* spp. bites has not yet been completely clarified. For citronella, as one of the most explored plant for repellency effect against various mosquitoes, it is reported that active compounds in citronella extract for repelling mosquitoes are eugenol, eucalyptol, camphor, linalool, citral, and citronellol [81]. Some data proposes that these agents interfere with olfactory receptors of mosquitoes [82]. A recent study revealed that *A. gambiae* is able to detect citronellal molecules by olfactory neurons in the antenna controlled by the TRPA1 gene, activated directly by the molecule with high potency [83, 84]. Another study found that citronellal directly activates channels of cation [83], which is similar to the excite-repellent impact of pyrethrins another plant based terpene [85], but contrasts with the inhibitory influence of DEET [86]. Although the protection time of citronella oil is shorter than that of DEET. Citronella oil could provide sufficient protection time against mosquitoes. For other plants, the underlying mechanism remains to be elucidated. Possibly, the most important aspect in increasing the permanence of such repellents that are effective but volatile is improving formulations of plant extracts to elevate their longevity through the development of nanoemulsions, improved formulations, and fixatives. While alternative uses such as excite-repellency and spatial activity have also been examined [87].

Some caution is important when interpreting the findings. First, a poorly inspected confounding aspect is the effect of sweating on the effectiveness and protection time of repellents, which are approximately all water-soluble, and this might limits the comparability of repellents. Second, in field trial studies, the number of human volunteers as well as the season during which the trial had been performed differed among the included studies. Climate could also affect mosquito behaviour and the variance is controlled by standardizing humidity temperature in ‘arm-in-cage’ trials; however, these parameters are not always similar in different trials or conform to the mosquito environment standards. Third, it should be highlighted that some plant compounds are irritating to the skin and/or highly toxic to mammals, and natural does not equate to safe. Thus, plants with potential repellency properties should be tested for their possible unpleasant side effects before introducing as alternative products. Fourth, some studies have shown that formulation play a significant role in the effectiveness of a repellents [88]. However, studies have focused more on the search for active compounds than on optimal formulations [8, 29]. Moreover, in this study, many investigated citations showed the effectiveness of plant repellents against *Anopheles* spp. mosquitoes. However, when focusing on *Anopheles* subspecies, there were only a few publications indicating the efficacy of each plant, which resulted in a difficulty to reach a robust conclusion regarding the best herbal candidates to develop new commercial repellents.

This is another area for additional research. Finally, current studies are difficult to be compared and the repellency effectiveness may also differ among subspecies. Unfortunately, a few studies aimed to compare repellency efficacy of a special plant on subspecies of *Anopheles*. The heterogeneity in the results of the previous studies might be stem from differences in compound concentrations, application dosages, mosquito species, formulations and the assessment method of repellency, as in some trials the protection time until mosquitoes landed was recorded, whereas in the majority of studies the time until mosquitoes bite was
considered. Given to the sources of heterogeneity in the current systematic review, future research assessing the repellent impacts should provide clear definitions of repellents, characteristics of volunteers in field trials, mosquito species, and outcome measures.

Conclusion
The results of this study showed that some plants essential oils and extracts have significant repellent activity against Anopheles spp. mosquitoes. The studies in the last two decades have focused on the search for new natural repellents and some plants displayed good repellent activities, but few natural products have been developed so far \[88, 89\]. This review calls for the attention of entomologists and people in the field of mosquito-transmitted diseases for understanding the value and potential position of the plant-derived repellents and their role in disease control.

Abbreviation
DEET: N,N-diethyl-meta-toluamide.

Acknowledgements
Not applicable.

Authors’ contributions
MK collaborated in the study conception and the collection and translation of articles. AA performed collecting of articles and writing the manuscript. All authors read and approved the final manuscript.

Funding
None.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. 2 Health Research Centre, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. 3 Medical Sciences Research Centre, Ghalib University, Kabul, Afghanistan.

Received: 24 July 2019 Accepted: 8 December 2019

References
1. Alayo M, Femi-Oyewo M, Bake L, Fashina A. Larvicidal potential and mosquito repellent activity of Cassia mimosaefolium extracts. Southeast Asian J Trop Med Public Health. 2015;46:596–601.
2. Karunamoorthy K, Girmsay A, Hayleavesus FS. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. J King Saud Univ Sci. 2014;26:305–10.
3. Karunamoorthy K. The counterfeet anti-malarial is a crime against humanity: a systematic review of the scientific evidence. Malar J. 2014;13:209.
4. Sangthong R, Junkum A, Chanthong U, Jitpakdi A, Riyong D, Tuens B et al. Remarkable repellency of Liguisticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae). Mar J. 2015;14:307.
5. Soonwera M. Efficacy of essential oil from Cananga odorata (Lamk) Hook. f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res. 2015;114:4531–43.
6. Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478.
7. Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dazell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 2016;115:1807–16.
8. Panneerselvam C, Murugan K, Adulcidical, repellent, and oviposition properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res. 2013;112:679–92.
9. Govindarajan M, Sivakumar R. Repellent properties of Cardiospermum halicacabum Linn (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac J Trop Biomed. 2012;2:602–7.
10. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:43–8.
11. Ansari M, Mittal P, Razdan R, Sreehari U. Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vector Bome Dis. 2005;42:95.
12. Ansari M, Vasudevan P, Tandon M, Razdan R. Larvicidal and mosquito repellent action of peppermint (Mentha piperita L). J Entomol Res. 2003;7:207–11.
13. Amerianan D, Murugan K, Kovendan K, Kumar PM, Panneerselvam C, Subramaniam J, et al. Adultcidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res. 2012;111:1953–64.
14. Baskar K, Sudha V, Nattudurai G, Ignacimuthu S, Duraipandiyan V, Jayakumar M, et al. Larvicidal and repellent activity of the essential oil from Astrantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Phys Mol Plant Pathol. 2018;101:197–201.
15. Govindarajan M. Larvicidal and repellent activities of Sida acuta Burm. F. (Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med. 2010;3:691–5.
16. Govindarajan M. Ovicidal and repellent properties of Coccinia indica Wight and Arn (Family: Cucurbitaceae) against three important vector mosquitoes. Eur Rev Med Pharmacol Sci. 2011;15:1010–9.
17. Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss & Heldr (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res. 2016;23:23228–38.
18. Jeyabal D, Arul N, Thangamathy P. Studies on effects of Pelargonium citrosa leaf extracts on malarial vector. Anopheles stephensi Liston. Bioresource Technol. 2000;71:267–71.
19. Ansari M, Mittal P, Razdan R, Sreehari U. Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vector Bome Dis. 2005;42:95.
21. Govindarajan M, Sivakumar R. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitol Res. 2015;114:601–12.

22. Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med. 2011;4:106–11.

23. Haldar KM, Ghosh P, Chandra G. Larvicidal, adulticidal, repellency and smoke toxic efficacy of Ficus krishnae against Anopheles stephensi Liston and Culex vishnui group mosquitoes. Asian Pac J Trop Dis. 2014;4:5214–20.

24. Kovendan K, Murugan K, Kumar PM, Thyagarajan P, William SJ. Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res. 2013;112:1205–19.

25. Krishnapa K, Elumalai K, Dhanasekaran S, Gokulakrishnan J. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis. 2012;49:96.

26. Naine SJ, Devi S. Larvicidal and repellent properties of Streptomyces sp. VIT154 crude extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Pol J Microbiol. 2014;63:341–8.

27. Murugan K, Kumar PM, Kovendan K, Amerasan D, Subramaniam J, Hwang J-S. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2012;111:1757–69.

28. Maheshwaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 2013;97:26–31.

29. Panneerselvam C, Murugan K, Kovendan K, Kumar PM. Mosquito larvicidal activity of Neem (Azadirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia. Malar J. 2015;14:187.

30. Prabhu K, Murugan K, Nareshkumar A, Ramasubramanian N, Brahgeeswaran S. Larvicidal and repellent potential of Monera oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:124–9.

31. Almeimahl RM. Oviposition deterrent and skin repellent activities of Artemisia herba alba, Matricaria chamomella and Melia azedarach against Culex quinquefasciatus. Saudi J Biol Sci. 2008;15:1012.

32. Rajkumar S, Jebanesan A. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop J Parasitol. 2007;24:71–5.

33. Rawani A, Banerjee A, Chandra G. Mosquito larvicidal and biting deterrent activity of bud of Polanthis tuberosus plants extract against Anopheles stephensi and Culex quinquefasciatus. J Commun Dis. 2012;44:79–89.

34. Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Med. 2015;8:29–34.

35. Swathi S, Muruganathan G, Ghosh S, Pradeep A. Larvicidal and repellent activities of ethanolic extract of root of Cyperus rotundus L. from Kenya. J Essent Oil Bearing Plants. 2010;13:766–73.

36. Alwala O, Wanzala W, Inyambukho R, Osundwa E, Ndiege I. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J Essent Oil Bearing Plants. 2013;106:1217–23.

37. Solomon B, Gebre-Mariam T, Ares K. Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citrodora: evaluation and formulation studies. J Essent Oil Bearing Plants. 2012;15:62–68.

38. Alvlawa O, Wanzala W, Inyambukho R, Osundwa E, Ndiege I. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J Essent Oil Bearing Plants. 2013;106:1217–23.

39. Seyoum A, Pålsson K, Kung’A S, Kabiru E, Lwande V, Killeen G, et al. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental assays against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.

40. Mayeku W, Omollo N, Odalo O, Hassanali A. Chemical composition and mosquito repellency of essential oil of Corypha nova propagated in different geographical locations of Kenya. Med Vet Entomol. 2014;28:253–6.

41. Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett J. Repellent activity of catmint, Nepeta cataria; and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. 2011;72:109–14.

42. Innocent E, Hassanali A. Constituents of essential oils from three plant species used in traditional medicine and insect control in Tanzania. J Herb Spice Med Plants. 2014;21:219–29.

43. Barnard DR. Repellency of essential oils to mosquitoes (Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:215–8.

44. Trongtokit Y, Rongsriyam Y, Komaladisna N, Apiwathanasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res. 2005;19:935–9.

45. Tawatins A, Watten SD, Scott RR, Thavara U, Thachdamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol. 2001;26:76–82.

46. Phasomkusolsil S, Soonthwara M. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.) and Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health. 2010;41:831.

47. Trongtokit Y, Curtis CE, Rongsriyam Y. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes. Southeast Asian J Trop Med Public Health. 2005;36:1423.

48. Sritabutra D, Soonthwara M, Watanachanobon S, Pourjai S. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus (Peyton & Harrison). Asian Pac J Trop Biomed. 2011;1:215–8.

49. Tuettun B, Chochoote W, Kanjanapothi D, Rattananchpinsachi E, Chaithong U, Chaiwong P, et al. Repellent properties of celery, Apium graveolens L., compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health. 2005;10:1190–8.

50. Aby E, Gebre-Michael T, Baklew M, Medhin G. Repellent efficacy of DEET, MyggA, neem (Azadirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia. Malar J. 2015;14:187.

51. Karunamoorthi K, Ilangko K, Murugan K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). Parasitol Res. 2010;106:1217–23.

52. Solomon B, Gebre-Mariam T, Ares K. Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citrodora: evaluation and formulation studies. J Essent Oil Bearing Plants. 2012;15:766–73.

53. Alvlawa O, Wanzala W, Inyambukho R, Osundwa E, Ndiege I. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J Essent Oil Bearing Plants. 2010;13:85–96.

54. Seyoum A, Pålsson K, Kung’A S, Kabiru E, Lwande V, Killeen G, et al. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental assays against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.

55. Mayeku W, Omollo N, Odalo O, Hassanali A. Chemical composition and mosquito repellency of essential oil of Corypha nova propagated in different geographical locations of Kenya. Med Vet Entomol. 2014;28:253–6.

56. Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett J. Repellent activity of catmint, Nepeta cataria; and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. 2011;72:109–14.

57. Innocent E, Hassanali A. Constituents of essential oils from three plant species used in traditional medicine and insect control in Tanzania. J Herb Spice Med Plants. 2014;21:219–29.

58. Barnard DR. Repellency of essential oils to mosquitoes (Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:215–8.
61. Nour AH, Elhussein SA, Osman NA, Nour AH. Repellent activities of the essential oils of four Sudanese accessions of basil (Ocimum basilicum L.) against Anopheles mosquito. J Appl Sci. 2009;9(9):2645–8.

62. Tavasoli M, Shayeegh M, Abai MR, Vatandoost H, Khoobdel M, Salari M, et al. Repellency effects of essential oils of Myrtle (Myrtus communis), Marigold (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iranian J Anthropod Borne Dis. 2011;5:10–22.

63. Younoussa L, Nukenie EN, Dangia SPY, Esimone CO. Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzeillii leaf fractions and essential oils against mosquitoes biting in Ivory Coast. Parasite. 2003;10:181–4.

64. Freeman BC, Beattie GA. An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. 2008;149:1–12.

65. Morehead JA. Efficacy of organic insecticides and repellents against brown marmorated stink bug in vegetables. https://vetechworks.lib.vt.edu/handle/10919/71810. Accessed 28 Mar 2016.

66. Kroon Y, Sylla M, Daarni A, Taconé S. Comparison of the effect of two excipients (karite nut butter and vaseline) on the efficacy of Cocos nucifera, Elaeis guineensis and Carapa procer oil-based repellent formulations against mosquitoes biting in Ivory Coast. Parasite. 2003;10:181–4.

67. Grognet J. Catnip: its uses and effects, past and present. Canadian Vet J. 1990;31:453.

68. Yaoananth N, Anuradha V, Ali MYS, Muthezhilan R, Chanthuru A, Prabu MM. Chemical properties of essential oil from Rhizophora mucronata leaf fractions and essential oils against Anopheles stephensi on human volunteers. Iranian J Anthropod Borne Dis. 2011;5:10–22.