Research on Systematic Risk of Chinese Listed Banks Based on Correlation Analysis Between Beta Coefficient and Accounting Variables

Xu Shen 1,*, Xuewen Wang 2 and Jing Liu 3
1,3School of Business Administration, Shandong Women’s University, No.2399 Daxue Rd, Changqing District, Jinan City, Shandong Province, China
2General Affairs Department, Shandong Women’s University, No.2399 Daxue Rd, Changqing District, Jinan City, Shandong Province, China

Abstract. Through empirical analysis and focused on listed banks in Chinese stock market, this paper is to explore the correlation between Beta (β) coefficient and accounting variables. The authors adopted Single Index Model and estimated statistical characteristics of β coefficient of listed banks. After running correlation analysis and regression analysis, the specific correlation and multivariate linear regression equations are obtained. From the results of regression analysis, as a whole, listed banks in China share a lower value of β coefficient and a weak correlation between their β coefficient and accounting variables. The multivariate linear regression equation indicates that there is obvious correlation between β coefficient and net asset return rate, circulation market value, non-performing loan rate and core tier one capital adequacy ratio.

1. Introduction
Systematic risk coefficients could reflect the sensitivity degree of one bond or portfolio to market portfolio. β coefficient measures systematic risk of portfolios and bears concise meaning. It has been widely used in investment portfolio, risk management and corporate finance.

β coefficient, as the key parameter of evaluating equity’s systematic risk, is not needed to be estimated its specific value. Rather, its influential factors or influential degree are more important to be analyzed. Study results of 40 years indicate that listed companies share bad stability. It means that their future value cannot be simply estimated from existed data. Therefore, except searching alteration reasons from estimating models and selecting samples, we could also explore accountant factors that influencing this coefficient from the aspect of systematic risk.

This coefficient is of high applicable value. In the long run, it is released regularly in Standard & Poor’s and Moody within western countries such as United Kingdom, U.S.A and Germany. It could help investors make rational investment decisions.

2. Literature Review
In nearly 50 years, many scholars do a great deal of research on the correlation between β coefficient and accounting variables, as well as its influence on banks’ systematic risk.

Beaver, Kettler and Scholes (1970) systematically study the relationship between systematic risk and accounting variables for the first time. The authors analyze β coefficients of individual stock and stock portfolios of 307 listed companies within New York Stock Exchange. They find that there is significant correlativity between β coefficient and dividend payout ratio, financial leverage, accounting β coefficient and profit liquidity relatively. And β coefficient is significant independent with growth property, scale and liquidity ratio [1]. Hamada (1972) explores the influence of financial
structure to systematic risk of 304 stocks in New York Stock Exchange. The results indicate that positive correlation is showed between the two [2]. Mandelker and Rhee (1984) select 255 companies within the period of 1957-1976 and study the relativity between β coefficient and operation leverage coefficient. Empirical results show that there is positive correlation between the above two coefficients [3]. Griffin and Dugan (2003) testify that there is significant correlation between fluctuations of corporation income and systematic risk [4].

Since the late 20th century, domestic scholars explore the relationship between β coefficient and accounting variables. Wu (1999)’s study is one of the most representative works that focus on influencing factors of β coefficient. The author selects 200 listed companies in the period of 1997-1998 from Shanghai Stock Exchange. Results show that there is significant influence on individual stock β coefficient from total asset growth rate, financial leverage and dividend payout ratio. And the circulation scale has same influence on portfolio β coefficient, but operation leverage has no significant influence neither individual stock nor portfolio β coefficient [5].

Zhong (2006) selects 293 stocks from Shanghai Stock Exchange and Shenzhen Stock Exchange and concludes that there is negative correlation between net asset yield rate, main business profit margin, capital accumulation rate, operation leverage, profit variability, dividend payout ratio and β coefficient relatively. And negative correlation is fond between financial leverage, company scale and β coefficient. The relationship between main business income growth rate and β coefficient is not stable. That is to say, positive correlation can be found in some years and negative correlation in another ones [6].

Zhang (2008) does regression analysis between 32 accounting variables and β coefficient and finds that significant correlation only exists between β coefficient and 9 of them. Among which, positive correlation is discovered between earning ration, profit variability, sales growth rate, main business cost rate, activity rate and β coefficient; negative correlation between turnover of current asset, circulation ratio, total share capital coefficient, cash sales ratio and β coefficient [7].

Via reviewing the literature, two key points about influencing factors of β coefficient are worth noticing: firstly, studies aiming at financial listed companies are few. These companies share the accounting principles and capital structure that are different from normal listed ones. Furthermore, they use specific accounting variables. Therefore, financial corporations are eliminated when researching accounting factors that influencing β coefficient. Secondly, final conclusions have not been arrived at. Many aspects such as selected research models and data period may affect the potential accounting variables.

Based on above researches, this study innovates in two ways: one is that it selects banking industry as the study object. Fewer works before explore influencing factors of β coefficient from financial listed companies. The other innovation is specific accounting variables are included. Financial corporations share accounting principles that are different from ordinary listed companies, and capital structure and operating modes of the former are also different from the latter. Here, non-performing loan ratio and core capital adequacy rate is adopted to reflect industry features of banking.

3. Empirical Analysis and Test

3.1. Sample Selection

This study selects 14 commercial banks that listed on Shanghai Stock Exchange. They include Shanghai Pudong Development Bank, Huaxia Bank, China Minsheng Bank, China Merchants Bank, Bank of Nanjing, Industrial Bank Co., Ltd., Bank of Beijing, Agricultural Bank of China, Bank of Communication, Industrial and Commercial Bank of China, China Everbright Bank, China Construction Bank, Bank of China and China Citic Bank. From January 2017 to January 2018, Simple Index Model is adopted to estimate β coefficient of listed commercial banks in China. This study employs logarithmic rate of return to estimate individual stock β coefficient and Shanghai securities composite index as market portfolio rate of return. On a weekly basis, estimating return rate of listed bank stock and return rate of market portfolio.
From the aspect of selecting accounting variables, this study adopts net asset rate of return (X_1) to measure their profitability, net profit growth rate (X_2) to measure their growth ability, shareholder’s equity turnover rate (X_3) to measure their operating ability, adopts dividend cover (X_4) to measure their dividend ability, adopts circulation market value (X_5) to measure their company scale, adopts net asset per share (X_6) to measure their intrinsic value, and two particular indicators in banking industry: non-performing loan rate ratio (X_7) and core tier one capital adequacy ratio (X_8).

3.2. Accounting Variables Selection

Multicollinearity may exist between the accounting variables. Here, Pearson Correlation Coefficient is employed to test and screen them. Correlation coefficient matrix can be got through software SPSS (Table 1):

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
X_1	1.00							
X_2	-0.16	1.00						
X_3	0.45	0.23	1.00					
X_4	0.21	0.33	0.42	1.00				
X_5	-0.04	-0.28	-0.14	-0.49	1.00			
X_6	0.542*	0.06	0.669**	0.23	-0.42	1.00		
X_7	-0.29	0.53	0.19	-0.11	-0.19	-0.31	1.00	
X_8	-0.08	-0.22	-0.39	-0.618*	0.26	-0.37	-0.21	1.00

Correlation is significant when confidence level is 0.05.

Correlation is significant when confidence level is 0.01.

From Table 1, correlation coefficient $|r|$ of 8 accounting variables is less than 0.8 and correlation degree between variables is small. There is no multicollinearity from preliminary judgement. Therefore, 8 accounting variables all can be retained.

3.3. Correlation Hypotheses of Accounting Variables and β Coefficient

According to the analytic results of above related financial theories, correlation direction hypotheses of accounting variables and β coefficient are as followed:

- **Hypothesis 1**: There is negative correlation between X_1 and β coefficient.
- **Hypothesis 2**: There is positive correlation between X_2 and β coefficient.
- **Hypothesis 3**: There is negative correlation between X_3 and β coefficient.
- **Hypothesis 4**: There is negative correlation between X_4 and β coefficient.
- **Hypothesis 5**: There is negative correlation between X_5 and β coefficient.
- **Hypothesis 6**: There is negative correlation between X_6 and β coefficient.
- **Hypothesis 7**: There is positive correlation between X_7 and β coefficient.
- **Hypothesis 8**: There is negative correlation between X_8 and β coefficient.

4. Correlation Analysis of β Coefficient and Accounting Variables

β coefficients of 14 listed commercial banks are shown in Table 2:
Table 2. β coefficient Estimation of Individual Stock.

Name of Bank	β Coefficient	Name of Bank	β Coefficient
Bank of Beijing	0.603	Bank of Nanjing	0.971
Industrial and Commercial Bank of China	0.403	Agricultural Bank of China	0.535
China Everbright Bank	0.901	Shanghai Pudong Development Bank Co., Ltd.	0.557
Huaxia Bank	0.730	Industrial Bank Co., Ltd.	0.731
China Construction Bank	0.604	China Merchants Bank	0.559
China Minsheng Bank	0.687	Bank of China	0.711
China Minsheng Bank	0.546	China Citic Bank	0.865

Based on β coefficients, computing the correlation coefficient & significance of β coefficients and accounting variables. Results are shown on Table 3:

Table 3. Correlation Coefficients of β coefficient and Accounting Variables.

Accounting Variables	β Coefficient
X_1	-.532
Pearson Correlation	
Significance(Two tails)	.050
X_2	.491
Pearson Correlation	
Significance(Two tails)	.075
X_3	.108
Pearson Correlation	
Significance(Two tails)	.714
X_4	.136
Pearson Correlation	
Significance(Two tails)	.644
X_5	-.537
Pearson Correlation	
Significance(Two tails)	.047
X_6	-.036
Pearson Correlation	
Significance(Two tails)	.903
X_7	.632*
Pearson Correlation	
Significance(Two tails)	.015
X_8	-.480
Pearson Correlation	
Significance(Two tails)	.082

*Correlation is significant when confidence level is 0.05.

The following statements could be concluded from correlation coefficient analysis between β coefficient and accounting variables:

Two conclusions can be arrived at after analyzing the correlation coefficients between β coefficient and accounting variables:
Firstly, correlation directions of most accounting variables and β coefficient are accordant with previous hypotheses. Among which, only X_3 and X_4 are not accordant with hypotheses. Secondly, as a whole, the correlation between β coefficient and accounting variables is weak. And it is same as the conclusions from literature. The following 5 variables share high significance level with β coefficient: X_7 (0.632), X_5 (-0.537), X_1 (-0.532), X_2 (0.491) and X_8 (-0.480). Only 2 of the 5 variables pass significance test.

5. **Regression Analysis of β Coefficient and Accounting Variables**

5.1. **Primary Regression**

We run multiple linear regression of β coefficient and accounting variables. The regression results are on following tables (Table 4, Table 5 and Table 6):

Model	R	R Square	Adjusted R Square	Error of Std. Estimation
1	.960a	.921	.794	.072326296

Model	Quadratic Sum	Degrees of Freedom	Mean Square	F	Sig.
1	.304	8	.038	7.262	.021b
Residual	.026	5	.005		
Sum	.330	13			

Model	Non-std. Coefficient	Std. Coefficient	β	t	Sig.
B	Std. Error				
1	(Constant)	5.090	1.093	4.657	.006
X_1	-.054	.020	-.474	-2.742	.041
X_2	.007	.004	.375	1.603	.170
X_3	.959	.850	.407	1.128	.310
X_4	-.121	.057	-.665	-2.124	.087
X_5	-.096	.027	-.604	-3.562	.016
X_6	-.015	.016	-.372	-.945	.388
X_7	-.082	.125	-.270	-.655	.541
X_8	-.079	.029	-.757	-2.720	.042

After analyzing regression results, we can get following conclusions:

Firstly, degree of fit of regression equation is good. R square and the adjusted R square are both high, and it shows better explanation of the selected accounting variables to β coefficient. Hence, this model brings good accuracy and low deviation.

Secondly, significance of regression equation is good. Its significance level passes F test. This indicates significant regression effect of the equation. Furthermore, there is significant linear correlation between β coefficient and the selected accounting variables.

Thirdly, the significance of regression coefficients is weak. Under confidence level of 90%, 4 coefficients pass significance test; under confidence level of 95%, 3 of them do. Comparatively, there are significant effects of X_1, X_2, X_7 and X_8 to β coefficient.

Fourthly, there is multilinearity in regression equation.
Generally, it can be concluded that there is multicollinearity between variables when VIF>10. From test results of this study, VIF of X_7 is 10.720 (VIF>10) and VIF of X_6 is 9.767 (VIF≈10). Therefore, multlinearity does exit in this regression equation.

Fifthly, primary regression equation is

$$\beta = -0.054X_1 + 0.07X_2 + 0.959X_3 - 0.121X_4 - 0.096X_5 - 0.015X_6$$

$$- 0.082X_7 - 0.079X_8$$

5.2. **Optimization of Regression Equation**

This research adopts the most useful method stepwise regression analysis to solve multicollinearity. Meanwhile, White Test of regression result of Model 4 is done to test whether there is heteroskedasticity in regression equation. DW Test is done to test if there is autocorrelation in this equation.

Based on regression results, final regression equation is:

$$\beta = -0.052X_1 - 0.066X_5 + 0.099X_7 - 0.036X_8 + 3.362$$

This equation shows good statistics meaning in fit goodness, equation significance, coefficient significance and so on. And no defects such as heteroscedasticity, autocorrelation and multicollinearity. Therefore, it is reliable to use this equation to fitting the correlation between β coefficient and part of accounting variables.

6. **Conclusions**

This study focuses on listed banks in China and analyzes their β coefficient, its estimation and the correlation analysis with accounting variables. Following conclusions are concluded:

Firstly, from β coefficient estimation of individual stock, mean value of β coefficient is less than 1. It means that listed banks in China share lower systematic risk. When stock market rises, profit in banking plate is limited. But when stock market goes down, resilience of banking is strong. This indicates that under the background of high systematic risk in stock market in China, banking plate could stabilize market index.

Secondly, from correlation analysis of β coefficient and accounting variables, correlations between β coefficient and majority of variables are accord with hypotheses, but several variables are not. Meanwhile, the correlations between majority of variables and β coefficient are not significant. This indicates that there is a disjoint between systematic risk of Chinese listed banks and accounting information.

Thirdly, from the results of multiple linear regression analysis, four accounting variables entering equation (net asset rate of return, liquidity scale, non-performing loan rate and core tier one capital adequacy ate) have significant with β coefficient of listed banks. And this influence is in accordance with financial theories. It means that the above four accounting variables will influence significantly systematic risk of these banks. They could take targeted countermeasures such as financial management to lower the risks.

7. **Acknowledgments**

This work was supported by Social Science Research Foundation of Ministry of Education of China (15YJA790051), National Social Science Fund Project of China (17BGL058), Shandong Province Natural Science Foundation (ZR2016GM20) and School Level Youth Project of Shandong Women’s University (2016ZD06).

8. **References**

[1] Beaver H W, Kettes P and Scholes M 1970 The Association Between Market-Determined and Accounting-Determined Risk Measures. *The Accounting Review, 10*: 654-682.

[2] Hamada R S 1972 The Effect of the Firm's Capital Structures on the Systematic Risk of Common Stocks. *Journal of Finance, 5*: 435-452.

[3] Mandelker G N and Rhee S G 1984 The Impact of Degrees of Operating and Financial
Leverage on Systematic Risk of Common Stock. *Journal of Financial and Quantitative Analysis*, 3: 45-57.

[4] Griffin H F and Dugan M T 2003 Systematic Risk and Revenue Volatility. *Journal of Financial Research*, 26:179-189.

[5] Wu S, Ran, Xiao M and Li Y 1999 Empirical Analysis of the Relationship Between Chinese Listed Corporations and Accounting Variables. *Accounting Research*, 12:29-33.

[6] Zhong L 2005 Empirical Study on the relationship between Beta Coefficient and Accounting Variables in Chinese Stock Market. *Dalian University of Technology*, 11.

[7] Zhang J 2008 Empirical Analysis on the Relation Between Financial Variables and Expected Beta Coefficient. *Finance and Accounting Monthly*, 32:13-14.