Macroparasites of epipelagic and eurybathic fishes in the north-western Pacific

I.I. Gordeev¹², S.G. Sokolov³

¹ Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow 119234 Russia. E-mail: gordeev_ilya@bk.ru
² Russian Federal Research Institute of Fisheries and Oceanography, Verkhn. Krasnoselskaya Str. 17, Moscow 107140 Russia.
³ A.N. Severtsov Institute of Ecology and Evolution of the RAS, Leninskiy pr. 33, Moscow 119071 Russia. E-mail: sokolovsg@mail.ru

ABSTRACT: A total of 25 parasitic species were found to infect 23 species of teleost and two species of cartilaginous fish in the north-western Pacific. Known generalists, anisakid and raphidascaridid juveniles (Nematoda), plerocercoids of Nybelinia surmenicola (Cestoda), and acanthocephalan Echinorhynchus gadi (Acanthocephala) were prevalent; however, plerocercoids of Pelichnibothrium speciosum were the most common parasites of epipelagic and eurybathic fish, infecting 16 out of 23 examined teleost species. Digenean infection of eurybathic species Aptocyclus ventricosus (Cyclopteridae), Zaprora silenus (Zaproridae), Leuroglossus schmidti (Bathylagidae), and Icichthys lockingtoni (Centrolophidae) differ from other teleost fish in their parasite fauna. The present study is the first report of macroparasites from Magnisudis atlantica (Paralepididae) and I. lockingtoni. In addition, this is the first data on the infection of Gasterosteus aculeatus (Gasterosteidae) far into the open ocean. Macroparasite infection of fish in the epipelagic layer of the north-western Pacific Ocean is characterised by high infection rates and low species diversity of parasites.

How to cite this article: Gordeev I.I., Sokolov S.G. 2020. Macroparasites of epipelagic and eurybathic fishes in the north-western Pacific // Invert. Zool. Vol.17. No.2. P.118–132. doi: 10.15298/invertzool.17.2.02

KEY WORDS: helminths, Pacific Ocean, fish parasites, marine biology, parasitology.

Макропаразиты эпипелагических и эврибатных рыб северо-западной части Тихого океана

И.И. Гордеев¹², С.Г. Соколов³

¹ Московский государственный университет им. М.В. Ломоносова, Ленинские горы, д. 1/12, Москва 119234 Россия. E-mail: gordeev_ilya@bk.ru
² Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии, ул. Верхняя Красносельская 17, Москва 107140 Россия.
³ Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Ленинский пр. 33, Москва 119071 Россия. E-mail: sokolovsg@mail.ru

РЕЗЮМЕ: В ходе паразитологического исследования рыб в северо-западной части Тихого океана было обследовано 23 вида костистых и 2 вида хрящевых рыб, в которых обнаружено 25 видов паразитов. Известные генералисты, такие как личинки
Introduction

The study of the open ocean is a hard task, due to its depth, size, and distance from the centres of civilisation. The Pacific Ocean, occupying half the globe, can compete with the Southern Ocean in its degree of unexploredness (Rhode, 2005). In the polar and circumpolar, the most productive regions of the Pacific Ocean, there is a large number of concentrated fisheries, aimed at such valuable fish species as salmon, Oncorhynchus spp. (Salmonidae) (Gordeev, Klovach, 2019), walleye pollock, Gadus chalcogrammus Pallas, 1814 (Gadidae), Pacific herring, Clupea pallasii Valenciennes, 1847 (Clupeidae), Pacific saury, Cololabis saira (Brevoort, 1856) (Scomberesocidae), chub mackerel, Scomber japonicus (Houttuyn, 1782) (Scombridae), and halibuts, Hippoglossus spp. and Atheresthes spp. (Pleuronectidae).

The main reason to study the biodiversity and biology of parasites is their role in ecosystem functioning. There is increasing evidence that parasite-mediated effects could be significant. They shape host population dynamics, alter interspecific competition, influence energy flow, and appear to be important drivers of biodiversity (Hudson et al., 2006). Also, parasites appear to have an important role in influencing organisation within communities via reducing host fitness, modifying competitive and trophic interactions among species, altering the behaviour of the host and in other ways (Hudson et al., 2006). The role of parasites and their hosts in marine invasions, when invaders directly or indirectly affect parasite and host populations and communities, is an actively studied area of fish parasitology (Goedknegt et al., 2016). Undoubtedly, data on the infection of wild fish populations are the primary data to elucidate the fundamental role of parasites in marine ecosystem functioning. Moreover, parasites are of undoubted importance for the economy, since they not only cause significant damage to a fishery product’s marketable condition, but also sometimes make it unsafe to use it for food (e.g. Quiazon, 2015). While the knowledge of parasites is sufficient for commercially important fish species, the great majority of other fish have never been investigated in this respect (Klimpel et al., 2009). There are many species that inhabit the same water horizon (0–50 m) as salmon during their period in the marine environment (Gordeev et al., 2018), and parasitological examination of these species is interesting in terms of broadening our understanding of helminth infection in the open ocean.
In the present paper, we summarise the results of the parasitological examination of 25 species of teleost and cartilaginous, epipelagic and eurybathic fishes in the north-western Pacific Ocean performed aboard the RV Professor Kaganovsky in June–July 2018 (Gordeev et al., 2018).

Material and Methods

All specimens were caught between 31 May and 9 July 2018 by the research vessel Professor Kaganovsky during a survey of Pacific salmon (stock assessment), using midwater net trawl RT/TM 80/396, with a 10 mm mesh insert in the

Species / total length range, weight range	Total no. examined	Localities (no. examined)
1 Salmoniformes		
Oncorhynchus gorbuscha (Walbaum, 1792) / 42.0–46.2 cm, 717–959 g	15	45°06′N&149°39′E (1); 49°59′N&156°16′E (2); 50°45′N&159°57′E (1); 46°09′N&155°49′E (1); 43°58′N&152°16′E (1); 43°14′N&148°28′E (2); 46°00′N&157°46′E (1); 46°55′N&158°22′E (2); 49°06′N&161°58′E (4)
Oncorhynchus keta (Walbaum, 1792) / 42.9–56.0 cm, 902–1966 g	15	49°59′2&156°16′E (3); 49°24′N&159°56′E (2); 46°27′N&161°53′E (5); 43°57′N&149°31′E (5)
Oncorhynchus kisutch (Walbaum, 1792) / 44.6–53.6 cm, 1072–1908 g	3	46°27′N&166°21′E (3)
2 Perciformes		
Brama japonica Hilgendorf, 1878 / 40.8–45.2 cm, 1217–1833 g	13	42°41′N&154°38′E (13)
Hyperoglyphe japonica (Döderlein, 1884) / 21.0–38.7 cm, 267–469 g	2	42°18′N&146°31′E (1); 41°48′N&150°41′E (1)
Ictichthys lockingtoni Jordan et Gilbert, 1880 / 37.0 cm, 398 g	2	41°50′N&148°45′E (1); 43°26′N&155°56′E (1)
Zaprora silemus Jordan, 1896 / 23.0–31.0 cm, 90–471 g	6	47°31′N&155°31′E (1); 44°41′N&153°48′E (1); 46°00′N&157°46′E (1); 49°02′N&163°27′E (1); 49°58′N&167°45′E (2)
3 Aulopiformes		
Lestidiops ringens (Jordan et Gilbert, 1880) / 17.0–21.0 cm, 8–12 g	30	48°11′N&166°10′E (30)
Magnisudis atlantica (Kroyer, 1868) / 38.0 cm, 185 g	1	45°09′N&152°18′E (1)
Aleiptsaurus ferox Lowe, 1833 / 40.2–133.0 cm, 1057–4016 g	4	50°06′N&158°50′E (1); 46°58′N&156°56′E (1); 46°37′N&159°56′E (1); 50°33′N&165°30′E (1)
Table 1 (continued).

Macroparasites of epipelagic and eurybathic fishes in the NW Pacific

1	2	3
Aulopiformes		
Scopelosaurus harryi (Mead, 1953) / 11.5–22.0 cm, 5–49 g	2	42°55'N&153°03'E (1); 42°41'N&154°38'E (1)
Anotopectus nikparini Kukuev, 1998 / 43.0–114.0 cm, 62–1778 g	9	50°06'N&158°50'E (1); 47°48'N&157°56'E (1); 46°58'N&156°56'E (1); 50°45'N&159°57'E (1); 46°55'N&158°22'E (1); 49°02'N&163°27'E (1); 45°02'N&161°53'E (1); 45°09'N&152°18'E (2)
Myctophiformes		
Diaphus thea Eigenmann et Eigenmann, 1890 / 4.1–7.5 cm, 2.6–3.2 g	25	45°39'N&160°57'E (25)
Notoscopephus japonicus (Tanaka, 1908) / 11.5–14.0 cm, 11.9–12.8 g	35	43°14'N&148°28'E (10); 42°55'N&153°03'E (1); 42°55'N&153°03'E (24);
Stenobrachius leucopsarrius (Eigenmann et Eigenmann, 1890) / 6.4–8.5 cm, 4.3–6.5 g	14	44°41'N&153°48'E (12); 42°55'N&153°03'E (2)
Tarletonbeania crenularis (Jordan et Gilbert, 1880) / 6.5 cm, 4 g	1	42°41'N&154°38'E (1)
Scorpaeniformes		
Aptocyclus ventricosus (Pallas, 1769) / 3.0–29.0 cm, 1.12–1385 g	15	50°06'N&158°50'E (2); 47°31'N&155°31'E (3); 45°56'N&153°20'E (1); 45°20'N&154°51'E (2); 45°09'N&152°18'E (2); 44°58'N&158°12'E (2); 48°13'N&162°26'E (2); 47°20'N&167°07'E (1)
Scombriformes		
Scomber japonicus Houville, 1782 / 19.9–40.2 cm, 77–529 g	25	43°25'N&152°16'E (5); 42°35'N&148°35'E (5); 40°26'N&147°51'E (5); 43°26'N&155°56'E (10)
Beloniformes		
Cololabis saira (Brevoort, 1856) / 26.8–39.5 cm, 11–154 g	52	43°26'N&155°56'E (1); 45°39'N&160°57'E (27); 45°02'N&161°53'E (24)
Argentiniformes		
Leuroglossus schmidtii Rass, 1955 / 11.1–17.2 cm, 38.2–43.1 g	16	50°06'N&158°50'E (16)
Clupeiformes		
Sardina sagax melanosticta (Temminck et Schlegel, 1846) / 16.2–22.6 cm, 39–114 g	10	40°26'N&147°51'E (10)
net bag. Locations of the trawls are given in Table 1.

All specimens were examined macroscopically for the presence of ectoparasites immediately after capture and then dissected and studied for endoparasitic helminths and other metazoan parasites using a standard method of parasitological examination (Bykhovskaya-Pavlovskaya, 1985). All sharks caught alive were released after measuring. Only two specimens were hauled, already dead, and subsequently included in the parasitological survey. Prefixation treatment of trematodes and cestodes included cleaning and straightening for better identification. Acanthocephala were transferred to fresh water until the proboscis everted prior to fixation. All parasites except nematodes were preserved in 70% and 96% ethanol. Nematodes were preserved in 4% formaldehyde, and three days later, transferred to 70% ethanol for long-term storage. Subsequently, temporary glycerol preparations of acanthocephalans and nematodes were made. Digenea were stained with acetic carmine, dehydrated, contrasted (cleared) with dimethyl phthalate, and finally mounted in Canada balsam. Cestoda were hydrated, stained with Harris’s hematoxylin, differentiated in tap water, de-stained in ethanol, dehydrated, cleaned in methyl salicylate, and finally mounted in Canada balsam (Jensen et al., 2011).

In consideration of how to present our findings, we faced difficulties due to the fact that specimens of some species were caught with a significant difference in time and location. However, taking into account that almost all captures occurred within one month and the fact that in the open ocean environment, millions of square kilometres can be regarded as homogeneous from a biological point of view, in Table 2 we have provided the infection indices all together (all specimens of one species were pooled together to count parasitological indices), calculated in accordance with Bush et al. (1999). However, in Table 1, we have provided a list of the examined species and the exact catch locations, with the number of specimens caught.

Results

Helminths were found in all studied fish species except slender barracudina, *Lestidiops ringens* (Jordan, Gilbert, 1880), and scaly paperbone, *Scopelosaurus harryi* (Mead, 1953). Most species were infected by the larvae of *P. speciosum* and *Anisakis* sp. juveniles (Tables 2–8). Unlike all other bony fishes studied by us, *M. atlantica* and long snouted lancetfish, *Alciphus ferox* Lowe, 1833, had in their intestines both undeveloped (normal) plerocercoids *P. speciosum*, up to 3 cm long, and large plero-
123

Table 2. Infection of Pacific salmon.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Oncorhynchus gorbuscha (n=15)				
Cestoda	Pelichnibothrium speciosum larva	100.00	1–36 (10.07)	guts
Copepoda	Lepeophtheirus salmonis salmonis ad.	26.67	1–5 (2.25)	body surface
Chromadorea	Anisakis sp. juv. III	33.33	1–13 (4.40)	guts
	Hysterothylacium sp. juv. III	6.66	1 (1.00)	guts
	Ascarophis sp. subad.	6.66	1 (1.00)	guts
Palaeacanthocephala	Echinorhynchus salmonis ad.	6.66	1 (1.00)	intestine
Oncorhynchus keta (n=15)				
Copepoda	Lepeophtheirus salmonis salmonis ad.	20.00	1–3 (2.00)	body surface
Cestoda	Eubothrium salvelini ad.	26.67	1 (1.00)	guts
	Pelichnibothrium speciosum larva	100.00	4–56 (26.47)	guts
	Nybelinia surmenicola larva	6.67	2 (2.00)	stomach wall
Chromadorea	Anisakis sp. juv. III	20.00	2–10 (5.67)	guts
Oncorhynchus kisutch (n=3)				
Cestoda	Pelichnibothrium speciosum ad.	100.00	4–56 (26.47)	guts

cercoids, up to 15cm long with undeveloped sexual complexes (Fig. 1).

Discussion

As can be seen in Tables 2–8, species richness of macroparasites in pelagic fish in the north-western Pacific is quite poor, but studied specimens are highly infected. Well-known generalists in the area (Volkov et al., 1999), anisakid and raphidascaridid juveniles, plerocercoids of N. surmenicola, and E. gadi made up 13% of the total number of parasites found in bony fishes and 22.2% of all species. Another common tapeworm, P. speciosum, could be labelled as a generalist because plerocercoids of this species made up 64% of the total number of parasites and were found infecting 16 out of 23 examined teleost fish. Klimpel et al. (2006) studied the infection of bony fishes and revealed that in the Greenland Sea and in the Irminger Sea, the diversity of parasites in pelagic fish species was poor, while the parasite load in demersal fishes was heavy. Species diversity of marine fish parasites depends on the specific feeding behaviour of the hosts, the availability of intermediate and final hosts, depth distribution and host migration. Similarities in diet and habitat of potential host species often result in a similar or even identical parasite fauna (Dogiel,
Table 3. Infection of Perciformes fish examined.
Таблица 3. Зараженность представителей отряда Perciformes.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Hyperoglyphe japonica (n=2)				
Cestoda	*Glossobothrium nipponicum* adult	100.00	10.07 (1–36)	intestine
Brama japonica (n=13)				
Cestoda	*Nybelinia surmenicola* larva	7.69	1 (1.00)	stomach wall
	Pelichnibothrium speciosum larva	69.32	3–14 (6.67)	intestine
Chromadorea	*Hysterothylacium sp.* juv. III	7.69	1 (1.00)	guts
Icichthys lockingtoni (n=2)				
Trematoda	*Licithophyllum botryoporon* ad.	50.00	1 (1.00)	guts
	Paraccacladium cf. jamiesoni ad.	50.00	1 (1.00)	guts
Cestoda	*Pelichnibothrium speciosum* larva	50.00	1 (1.00)	guts
Zaprora silenus (n=6)				
Trematoda	*Prodistomum alaskense* ad.	66.67	5–94 (42.50)	intestine
Cestoda	*Pelichnibothrium speciosum* larva	66.67	2–9 (5.50)	intestine
Chromadorea	*Hysterothylacium sp.* juv. III	16.67	1 (1.00)	guts

1962). In contrast, hosts with different food preferences may have large differences in their parasite fauna (Klimpel et al., 2006). Within the north-western Pacific, a combination of different factors, especially the availability of intermediate hosts and the habitat preferences of the fish, can be seen as the main reason for the observed infection.

All studied species of bony fish could be divided into two unequal groups: eurybathic species that perform significant vertical migrations (lumpfish *Aptocyclus ventricosus*, prow-fish *Zaprora silenus*, northern smoothtongue *Leuroglossus schmidtii*, and medusafish *Icichthys lockingtoni*) and epipelagic anadromous and non-anadromous species that inhabit cold and moderate waters of the north-western Pacific Ocean (all other species). Infection of eurybathic species differs from that of other fish due to the presence of trematodes.

Our data on the infection of the poorly studied lumpfish, *Aptocyclus ventricosus*, is similar to the data of Machida (1985) who performed a targeted study on this species off northern Japan. However, our specimens were collected to the north closer to the Bering Sea, so in our study infection by digenean species is presented by more polar species, like *Prodistomum alaskense* (Ward et Fillingham, 1934). *Prosorhynchus mizellei* Kruse, 1977 was described from *A. ventricosus* caught in the Bering Sea (Kruse, 1977), but that seems to be the only record of *P.
Table 4. Infection of Aulopiformes.
Таблица 4. Зараженность представителей отряда Aulopiformes.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Alepisaurus ferox (n=4)				
Cestoda				
Pelichnibothrium speciosum larva	100.00	60–211 (122.75)	guts	
Nybelinia surmenicola larva	50.00	16–28 (22.00)	stomach wall	
Chromadorea				
Anisakis sp. juv. III	50.00	4–7 (5.50)	guts	
Hysterothylacium speciosum juv. III	25.00	2 (2.00)	guts	
Anotopterus nikparini (n=9)				
Cestoda				
Pelichnibothrium speciosum larva	11.00	4 (4.00)	guts	
Magnisudis atlantica (n=1)				
Cestoda				
Pelichnibothrium speciosum larva	in 1 of 1	26 (26.00)	guts	

Table 5. Infection of Myctophiformes.
Таблица 5. Зараженность представителей отряда Myctophiformes.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Diaphus theta (n=25)				
Cestoda				
Hysterothylacium sp. larva	4.00	1 (1.00)	guts	
Chromadorea				
Anisakis sp. juv. III	4.00	1 (1.00)	guts	
Notoscopelus japonicus (n=34)				
Chromadorea				
Anisakis sp. larva	14.71	1–2 (1.20)	guts	
Ascarophis sp. subad.	2.94	1 (1.00)	guts	
Stenobrachius leucopsarus (n=14)				
Chromadorea				
Anisakis sp. juv. III	14.29	1 (1.00)	guts	
Tarletonbeania crenularis (n=1)				
Cestoda				
Pelichnibothrium sp. larva	in 1 of 1	1 (1.00)	guts	

mizellei. Prowfish *Z. silenus* has never been studied, but quite fragmentarily. It was recorded as a host of *Anisakis* sp. (Solovyova, 1999), *Steringophorus congleri* Shen, 1987, and *Aponurus argentinii* Polyanski, 1952 (see
Table 6. Infection of Scorpaeniformes, Scombriformes, and Beloniformes.
Таблица 6. Зараженность представителей отрядов Scorpaeniformes, Scombriformes и Beloniformes.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Parasite Dev. stage	**2**	**3**	**4**	**5**
1	**2**	**3**	**4**	**5**
Scomber japonicus (n=25)				
Chromadorea				
Anisakis sp.	juv. III	64.00	1–21 (7.25)	guts
Hysterothylacium sp.	juv. III	20.00	1–35 (8.20)	guts
Trematoda				
Prodistomum orientale	ad.	12.00	5-67 (32.00)	intestine
Opechona olssoni	ad.	4.00	1 (1.00)	intestine
Lecithocladium excisum	ad.	44.00	1–5 (1.82)	intestine
Palaeacanthocephala				
Rhadinorhynchus trachuri	ad.	12.00	1 (1.00)	intestine
Rh. cololabis	ad.	32.00	1–2 (1.14)	intestine
Rh. selkirki	ad.	4.00	1 (1.00)	intestine
Cestoda				
Pelichnibothrium speciosum	larva	16.00	1–2 (1.50)	guts
Aptocyclus ventricosus (n=15)				
Trematoda				
Prodistomum alaskense	ad.	26.67	3–11 (6.00)	intestine
Paraccacladium cf. jamiesoni	ad.	73.33	1–15 (5.54)	intestine
Chromadorea				
Ascarophis sp.	subad.	26.67	1–2 (1.50)	guts
Anisakis sp.	juv. III	6.67	1 (1.00)	guts
Hysterothylacium sp.	juv. III	6.67	1 (1.00)	guts
Acanth.				
Echinorhynchus gadi	ad.	6.67	1 (1.00)	intestine
Cestoda				
Nybelinita surmenicola	ad.	6.67	1 (1.00)	stomach wall
Pelichnibothrium speciosum	larva	6.67	1 (1.00)	guts
Cololabis saira (n=52)				
Chromadorea				
Anisakis sp.	juv. III	7.69	1–7 (2.50)	guts
Copepoda				
Penella sp.	ad.	23.08	1–4 (1.75)	body surface, musculature
Table 6 (continued).

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Cestoda				
Rhadinorhynchus	ad.	98.08	1–8 (3.07)	intestine
cololabis				
Rh. selkirki	ad.	3.85	1 (1.00)	intestine
Rh. trachuri	ad.	5.77	1 (1.00)	intestine
Pelichnibothrium	larva	26.92	1–3 (1.71)	guts
speciosum				

Table 7. Infection of other species of bony fishes.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection
Sardinops sagax melanostictus (n=10)				
Chromadorea				
Anisakis sp.	juv. III	10.00	1 (1.00)	guts
Leuroglossus schmidti (n=16)				
Cestoda				
Pelichnibothrium speciosum	larva	6.25	1 (1.00)	guts
Trematoda				
Licithophyllum botryoporon	ad.	6.25	1 (1.00)	intestine
Paraccecladium jamiesoni	ad.	12.50	1–2 (1.50)	intestine
Desmodema lorum (n=1)				
Chromadorea				
Hysterothylacium sp.	juv. III	in 1 of 1	1 (1.00)	guts
Anisakis sp.	juv. III	in 1 of 1	6 (6.00)	guts
Cestoda				
Pelichnibothrium speciosum	larva	in 1 of 1	10 (10.00)	guts
Gasterosteus aculeatus (n=214)				
Chromadorea				
Anisakis sp.	juv. III	2.34	1–2 (1.40)	guts
Cestoda				
Pelichnibothrium speciosum	larva	7.01	1 (1.00)	guts
Bothriocephalus scorpium	larva	7.01	1–3 (1.25)	guts
Trematoda				
Bunodera mediovitellata	ad.	12.62	1–3 (1.13)	intestine

Kuramochi, 2009). All three species mentioned in Table 7 are noted for *L. schmidti* for the first time. The same is true for the three parasitic species that we found in medusafish *I. lockingtoni*, which seems to have never been checked for infection before.
Table 8. Infection of cartilaginous fish.
Таблица 8. Зараженность хрящевых рыб.

Parasite	Dev. stage	Prevalence (%)	Intensity (mean)	Site of infection	
Lamna ditrops (n=1)					
Chromadorea	*Anisakis* sp.	juv. III	in 1 of 1	7 (7.00)	stomach
Trematoda	*Lecithocladium excisum*	ad.	in 1 of 1	1 (1.00)	stomach
Cestoda	*Nybelinia surmenicola*	ad.	in 1 of 1	27 (27.00)	spiral valve
Cestoda	*Dinobothrium* sp.	ad.	in 1 of 1	2 (2.00)	spiral valve
Prionace glauca (n=1)					
Chromadorea	*Anisakis* sp.	juv. III	in 1 of 1	6 (6.00)	stomach
Cestoda	*Platybothrium auriculatum*	ad.	in 1 of 1	323 (323.00)	spiral valve
	Anthobothrium caseyi	ad.	in 1 of 1	120 (120.00)	spiral valve
	Scyphophyllidi-dium exiguum	ad.	in 1 of 1	155 (155.00)	spiral valve

Fig. 1. Dissected intestine of *Alepisaurus ferox*, infected by plerocercoids of *Pelichnibothrium speciosum*. Рис. 1. Вскрытый кишечник *Alepisaurus ferox*, зараженного плеероцеркоидами *Pelichnibothrium speciosum*.

The infection of Pacific salmon is a well-studied issue. Many publications dedicated to the parasites of salmon at different developing stages are available (e.g. Konovalov, 1971; Karmanova, 1998; Vyalova, 2002; Pospehov et al., 2014). *Pelichnibothrium speciosum* (Monticelli, 1889) was the most abundant species in our samples. For the first time, phyllobothriidean plerocercoids were found in Pacific salmon by F. Zschokke and described as *Pelichnibothri-
Macroparasites of epipelagic and eurybathic fishes in the NW Pacific

that this fish feeds on Japanese anchovy, *Engraulis japonicas* Temminck et Schlegel, 1846, euphasiids, hyperiids, and squid, as do many other teleost fish (Chuchukalo, 2006), host specificity of this tapeworm seems to be limited to a small number of fish hosts, including *Seriollella brama* (Günther, 1860) (see Gulyaev, Korotaeva, 1989) and *Schedophilus velaini* (Sauvage, 1879) (see Brabec et al., 2015). Another representative of the order Perciformes — Pacific pomfret, *Brama japonica* Hilgendorf, 1878, is well studied in terms of parasitic infection by: copepods (McDonald, Margolis, 1995), digeneans (Love, Moser, 1983; Moles, 2007), cestodes (Iannacone, Alvariño, 2013), and acanthocephalans (Didenko, Shevshenko, 1999) throughout its wide habitat range. However, *P. speciosum* and *Hysterothylacium* sp. are recorded as infecting for the first time.

Two species of Aulopiformes — North Pacific daggertooth, *Anotopterus nikparini* Kukuev, 1998, and *A. ferox* — are similar both in appearance and in the structure of the jaw apparatus. However, *A. nikparini* bites pieces of flesh from its victims, while *A. ferox* swallows its prey whole. This dissimilarity in the feeding method is reflected in the dramatic difference in the helminth infection: only one out of the nine examined specimens of *A. nikparini* was infected by four plerocercoids of *P. speciosum*, while *A. ferox* was heavily infected by generalist nematodes and especially cestodes (Table 4, Fig. 1). The reason why *P. speciosum* develops into a large plerocercoid only in *A. ferox* and *M. atlantica* among fish species remains unclear. *M. atlantica* was studied for infection for the first time.

Mictophids California headlightfish, *Diasphus theta* Eigenmann et Eigenmann, 1890, Japanese lanternfish *Notoscopeculus japonicus* (Tanaka, 1908), northern lampfish, *Stenobrachius leucopsarus* (Eigenmann et Eigenmann, 1890), and blue lanternfish, *Tarletonbeania crenularis* (Jordan et Gilbert, 1880), showed weak involvement in the parasitic life cycles. Only 10 out of 74 fishes were infected by generalists — *Anisakis* sp., *Ascarophis* sp., and by *P. speciosum* (Table 5).
Chub mackerel, Scomber japonicus Houttuyn, 1782, is well studied for parasitic infection in the north-western Pacific Ocean (Ishihara, 1968; Kovalenko, 1986) and the biological diversity of its infection is the greatest among epipelagic species covered in this research, due to its significant migrations from the areas of spawning (Japanese archipelago) to the feeding area in the more productive north areas. All parasitic species found by us were previously recorded repeatedly in chub mackerel (Volkov et al., 1999).

Infection of the Pacific saury, Cololabis saira (Brevoort, 1856), is well studied in the area under consideration (Kurochkin et al., 1987; Gordeev et al., 2017; Suyama et al., 2019). Our findings are broadly consistent with the available information on infection of C. saira, in the northern part of the Pacific Ocean (Table 6). Total infection by acanthocephalans of the genus Rhadinorhynchus Lühe, 1911 was characterised by higher prevalence of Rhadinorhynchus cololabis Laurs et McCauley, 1964, while in more southerly waters, Rhadinorhynchus trachuri Harada, 1935 prevailed in the Pacific saury’s intestine.

Japanese pilchard, Sardinops sagax melanosticta (Temminck et Schlegel, 1846), and whiptail ribbonfish, Desmodema lorum Rosenblatt et Butler, 1977, were poorly observed in this work. However, in the latter fish species, we have found Hysteroclitacium sp., Anisakis sp., and P. speciosum (Table 7). This is the first study of whiptail ribbonfish infection.

Threespine stickleback, G. aculeatus, an anadromous species in the Pacific Ocean, performs significant migrations from its spawning grounds to the open waters. Our specimens were caught at a distance of 500–600 km from the shore and were infected only by Anisakis sp., P. speciosum, Bothriocephalus scorpii (Müller, 1776) and Bunodera mediovitellata Zymbaluk et Roitman, 1966. Among the listed parasites, only B. mediovitellata remained in the examined sticklebacks from the fresh waters since its first intermediate hosts are insects (Trichoptera) (Caira, 1981). Our study showed that G. aculeatus’s infection significantly differs from all other studied species of bony fish. The stickleback feeds in the sea; however, the parasitological examination of more than 200 specimens revealed the prevalence of coastal (B. scorpii) and freshwater (B. mediovitellata) parasites. This is the first data on G. aculeatus infection so far in the open ocean.

The salmon shark, Lamna ditropis Hubbs et Follett, 1947, was studied in a single specimen and comparatively little infection was found in the form of the adult stages of N. surmenicola and Dinobothrium sp. (Table 8). Anisakis sp. and Lecithocladium excisum (Rudolphi, 1819) were found in the stomach. Lamna ditropis is a paratenic host of Anisakis sp., while for L. excisum it is a postcyclic host. Both cestodes were previously recorded in the salmon shark by Palm (2004). Two specimens of Dinobothrium found by us do not fit the morphological description of any of the six known species and probably belong to a new species. The blue shark, Prionace glauca (Linnaeus, 1758), was studied in a single specimen too and was not much older than the salmon shark specimen, but was much more heavily infected. All three species of cestodes recorded from the spiral valve were already recorded in P. glauca (Merlo-Serna, García-Prieto, 2016; Alves et al., 2017).

Both species of sharks studied feed on fish. However, the blue sharks mostly feed on Leuroglossus schmidtii, Cololabis saira, and myctophids with sea elephants, planktonic crustaceans, thaliaceans, chum salmon, and coho salmon on being found occasionally. In the feeding of the salmon shark, pink salmon, and other salmon, Engraulis japonicus, Sardinops sagax melanostictus, Clupea pallasii, and squid prevail (Chuchukalo, 2006). Despite their generally different feeding habits, both species of shark share the same feeding base, so in our opinion, the clear distinction between infections by cestodes arose due to the significant difference in the morphology of the spiral valve (Leigh et al., 2019). The blue shark is a representative of the order Carcharhiniformes and has a cylindrical spiral in the valve, while the salmon shark belongs to the order Lamniformes and has a vertical spiral in the valve.
Acknowledgements
The authors with to thank the crew of the RV Professor Kaganovsky and all members of the ichthyology team — Drs. Valery Shevlyakov and Starovoytov Alexander, and also Pavel Milovankin, Elena Dehtyareva, Sergey Ponomarev (Pacific Branch of the Russian Federal Research Institute of Fisheries and Oceanography, Vladivostok) for the help with sampling, Dr. Tat'yana Polyakova (A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS) for the help with cestodes identification, and Dr. Alexey Orlov (Russian Federal Research Institute of Fisheries and Oceanography, Moscow) for essential advices.

Funding
The work was supported by the Russian Science Foundation, grant No.17-74-10203.

Compliance with ethical standards
Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with animals performed by any of the authors.

Sampling and field studies: All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

References
Alves P.V., de Chambrier A., Scholz T. Luque J.L. 2017. Annotated checklist of fish cestodes from South America // Zootkeys. Vol.650. P.1–205. doi: 10.3897/zootkeys.650.10982
Brabec J., Waeschenbach A., Scholz T., Littlewood D.T.J., Kuchta R. 2015. Molecular phylogeny of the Bothrioccephalidea (Cestoda): molecular data challenge morphological classification // International Journal for Parasitology. Vol.45. No.12. P.761–771. doi: 10.1016/j.ijpara.2015.05.006
Rohde K. (ed.) 2005. Marine parasitology. Collingwood. CSIRO Publishing (Commonwealth Scientific and Industrial Research Organization). 565 p.
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parazitology meets ecology on its own terms: Margolis et al. revisited // The Journal of Parasitology. Vol.83. No.3. P.575–583. doi: 10.2307/3284227
Bykhovskaya-Pavlovskaya I.E. 1985. [Parasites of fishes. The Manual]. Leningrad. Nauka. 124 p. [In Russian]
Caira J.N. 1981. Parasitism of Trichoptera by Bunodera mediovittellata (Digenea: Allocreadiidae) and the encapsulation responses. PhD Thesis. 143 p.
Chuchukalo V.I. 2006. [Nutrition and Feeding Relationships between Nektobenthos in Far Eastern Seas]. Vladivostok. TINRO-Tsentr. 484 p. [In Russian]
Didenko E.M., Shevshenko G.G. 1999 [Class Acanthocephala] // A.F. Volkov, G.M. Gavrilov, S.E. Pozdnyakov, V.E. Rodin, N.S. Fadeev, V.P. Shuntov, N.S. Samoylova (eds.) [Parazititcheskiye chervy rby da`nevostochnykh morey i sopredel`nykh akvatorii Tikhogo okeana]. Vladivostok: TINRO. P.51–59 [in Russian].
Dubinina M.N. 1971. [Cestodes from fishes of the River Amur basin] // Parazitologicheskii sbornik. Vol.25. P.77–119 [in Russian].
Dogiel V.A. 1962. General parasitology. Edinburgh and London: Oliver and Boyd. 516 p.
Goedknegt M.A., Feis M.E., Wegner K.D., Lafferty K.D., Luttikhuizen, P.C., Buschbaum C., Camhusien K., van der Meer J., Thieltges D.W. 2016. Parasites and marine invasions: Ecological and evolutionary perspectives // Journal of Sea Research. Vol.113. P.11–27. doi: 10.1016/j.seares.2015.12.003
Gordeev I.I., Grigorov I.V., Afnasyev P.K. 2017. Infection of the pacific saury Cololabis sarda by acanthocephalans in the Kuril Islands area // Parazitologiya. Vol.51. No.1. P.51–56.
Gordeev I.I., Starovoytov A.N., Ponomarev S.S., Shevlyakov A.V., Milovankin P.A. 2018. [Trawl survey of Pacific salmon on the R/V “Professor Kaganovsky” in the northwestern part of the Pacific Ocean (May–July 2018)] // Trudy VNIRO. Vol.171. P.208–213 [in Russian].
Gordeev I.I., Klovach N.V. 2019. [Free Salmon: the Difficulty of Forecasting the Catch of Pacific Salmons] // Priroda. Vol.3. P.22–27 [in Russian]. doi: 10.7868/S0032874X19030049
Gulyaev V.D., Korotaeva V.D. 1989. [Redescription of the type species of the genus Glossobothrium Yamaguti, 1952 (Cestoda, Pseudophyllidea)] // Voprosy zoologii. Vol.6. P.8–11 [in Russian].
Hudson P.J., Dobson A.P., Lafferty K.D. 2006. Is a healthy ecosystem one that is rich in parasites? // Trends in Ecology & Evolution. Vol.21. No.7. P.381–385. doi: 10.1016/j.tree.2006.04.007
Iannacone J., Flores L.A. 2013. Parasitological indices of Pacific pomfret Brama japonica Hilgendorf, 1878 (Osteichthyes, Bramidae) acquired at the fishing terminal of Chorrillos Lima, Peru // Neotropical Helminthology. Vol.7. No.1. P.117–132.
Ichihara I., Kato K., Kamegai S., Machida M. 1968. On the parasites of fishes and shell-fishes in Sagami Bay (No. 4) parasitic helminths of Mackerel, Pneumatophorus japonicus (Houttuuy) // Research Bulletin of the Meguro Parasitological Museum. Vol.2. P.45–60.
Jensen K., Nikolov P., Caira J.N. 2011: A new genus and two new species of Anteroporidae (Cestoda: Lecanthoccephalidae) from the darkspotted numbfish, Narcine
maculata (Torpediniformes: Narcinidae), off Malaysian Borneo // Folia Parasitologica. Vol.58. P.95–107. doi: 10.14411/fp.2011.010
Karmanova I.V. 1998. [Parasites of Pacific salmons in the epizoic situation of parasitoses in the Paratunka river basin (Kamchatka)]. PhD Thesis. 24 p. [In Russian]
Klimpel S., Busch M.W., Kellermanns E., Kleinertz S., Palm H.W. 2009. Metazoan deep sea fish parasites. Solingen. Natur & Wissenschaft. 384 p.
Klimpel S., Palm H.W., Busch M.W., Kellermanns E., Rücker S. 2006. Fish parasites in the Arctic deep-sea: Poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish // Deep Sea Research Part I: Oceanographic Research Papers. Vol.53. No.7. P.1167–1181. doi: 10.1016/j.dsr.2006.05.009
Konovalov S.M. 1971. [Differentiation of local stocks of the red salmon Oncorhynchus nerka (Walbaum.)]. Leningrad. Nauka. 229 p. [In Russian]
Kovalenko L.M. 1986. [Pacific mackerel acanthocephalan,] Sovremennoye sostoyanie promysla 23–25 sentyabrya 1986 g. Kaliningrad. P.154–155. [in Russian]
Kurochkin Y.V., Pozdnyakov S.E., Kovalenko L.M. 1987. [On the infection of Pacific saury with acanthocephalans,] Parazitologicheskii Sbornik. Vol.6. P.305–311 [in Russian]
Krus G.W. 1977. Some digenetic trematodes from fishes of the Bering Sea with the descriptions of Prosorhynchus nitzschi sp. n. (Bucephalidae) and Pseudopecoelus nossamani sp. n. (Opecoelidae) // Proceedings of the Helminthological Society of Washington. Vol.44. No.1. P.73–76.
Kuramochi T. 2009. Digenean trematodes from fishes of deep-sea areas off the Pacific Coast of Northern Honshu, Japan // Deep-Sea Fauna and Pollutants off Pacific Coast of Northern Japan. Vol.39. No.39. P.25–37.
Kurochkin Y.V., Pozdnyakov S.E., Kovalenko L.M. 1987. [On the infection of Pacific saury with acanthocephalans and methods of reducing the economic damage caused by them] // Parazity i Bolezni Morskikh Biontov. VNIRO-PINRO. P.63–75 [in Russian].
Kuznetsova N.A., Shebanova M.A. 2017. [Feeding and trophic relations of mass fish species in the Kuril trophic relations of mass fish species in the Kurilic Coast of Northern Japan. Vol.39. No.39. P.25–37.
Vuyluka G.P. 2002. [A variety of parasites chum and pink salmon Sakhalin] // Izvestiya TINRO. Vol.131. P.439–459 [in Russian].
Pospehov V.V., Atrashkevich G.I., Orlovskaya O. 2014. [Parasitic worms of migratory salmon of the northern Okhotsk Sea area.] Kordis. Magadan. 129 p. [In Russian]
Quiazon K.M.A. 2015. Updates on aquatic parasites in fisheries: implications to food safety, food security and environmental protection // Journal of Coastal Zone Management. Vol.18. P.396. doi: 10.4172/2473-3350.1000396
Scholz T., Euzet L., Moravec F. 1998. Taxonomic status of Pelichnibothrium species Monticelli, 1889 (Cestoda: Tetraphyllidea), a mysterious parasite of Alepisaurus ferox Lowe (Teleostei: Alepisauridae) and Prionace glauca (L.) (Euselachii: Carcharhinidae) // Systematic Parasitology. Vol.41. P.1–8. doi: 10.1023/A:100691021274
Solovyova G.F. 1999. [Class Nematoda.] // A.F. Volkov, G.M. Gavrilov, S.E. Pozdnyakov, E.V. Rodin, N.S. Fadeev, V.P. Shuntov, N.S. Samoylova (eds.) Paraziticheskiye chervi ryb dal’nereplyakh 3350.1000396. doi: 10.4172/2473-3350.1000396
Suyama S., Masuda Y., Yanagimoto T., Chow S. 2019. Genetic and morphological variation in Pennella sp. (Copepoda: Siphonostomatoida) collected from Pacific saury, Cololabis saira // Mar. Biodivers. Vol.49. No.3. P.1233–1245. doi: 10.1007/s12526-018-0901-x
Zmeev G.Y. 1936. [Trematodes and cestodes of the Amur River] // Parazitologicheskii Sbornik. Vol.6. P.63–75 [in Russian].
Zmeev G.Y. 1936. [Trematodes and cestodes of the Amur River] // Parazitologicheskii Sbornik. Vol.6. P.63–75 [in Russian].
Zschokke F., Heitz F.A. 1914. Endoparasiten aus Salmo niden von Kamtschatka // Revue suisse Zool. Vol.22. No.8. S.195–256.

Responsible editor N.M. Biserova