Estimation of Compaction Parameters Based on Soil Classification

A S Lubis*, Z A Muis, I P Hastuty and I M Siregar

Civil Engineering Department, Faculty of Engineering. Universitas Sumatera Utara, Medan, Indonesia

*adinasarilubis@usu.ac.id

Abstract. Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight ($\gamma_{d,max}$) and optimum water content (w_{opt}) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data's from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight ($\gamma_{d,max}$)=$1,862-0,005*FINES-0,003*LL$ and estimation of the optimum water content (w_{opt})=$-0,607+0,362*FINES+0,161*LL$. By Goswami Model (with equation $Y=m\log G+k$), for estimation of the maximum dry unit weight ($\gamma_{d,max}$) with $m=-0,376$ and $k=2,482$, for estimation of the optimum water content (w_{opt}) with $m=21,265$ and $k=-32,421$. For both of these equations a 95% confidence interval was obtained.

1. Introduction

Subgrade strength on the pavement construction is highly dependent on the value of the density of the subgrade. Field density is obtained by either Sand Cone Test or Dynamic Cone Penetrometer Test which yielded the Maximum Dry Maximum Content ($\gamma_{d,max}$) value in the field [1]. Whereas laboratory density is determined by performing Proctor Compaction Test on several soil samples with varying water content. Determining process for the Maximum Dry Unit Weight ($\gamma_{d,max}$) and Optimum Water Content (w_{opt}) in the laboratory required a quite considerable material, expert laboratory operators as well as time consuming. If the results of this classification can be used to estimate Maximum Dry Unit Weight ($\gamma_{d,max}$) and Optimum Water Content (w_{opt}) subgrade material then it would save time, effort and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory [2].

Several studies in predicting the value of compaction parameters (maximum dry unit weight and optimum moisture content) have been widely developed. The first study to find out the relationship between compaction parameters was performed by Johnson and Sallberg, where the compaction values were related by means of linear regression based on the value of the index properties [3]. Then a study by Metacalf and Romanoschi [4], predicting the value of maximum dry unit weight and optimum water content also by using the linear regression equation method based on plastic limit, modulus plasticity, gradient coefficient and gradient ratio. A research by Blotz, et.al and then by Al-Khafaji were done and
formulated the relationship between the value of compaction with the Atterberg limit into an equation for several types of soils [5]. Another research by Ugbe proposed equations in predicting the maximum dry unit weight and optimum water content by using the value of index properties: fine grain percent, liquid limit, and specific gravity [6,7]. Isik F and Ozden G used artificial neural network (ANN) prediction models for estimating the compaction parameters of both coarse- and fine-grained soils [8]. Z A Muis determined the maximum dry unit weight of base material on a road project based on soil classification data [2] and estimated the compaction parameter values of pavement subgrade based on soil properties [3]. A S Lubis et al. estimated the compaction parameter values based on soil properties for pavement subgrade stabilized with portland cement [9] and for pavement subgrade stabilized with lime [10]. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight ($\gamma_{d_{\text{max}}}$) and the optimum water content (W_{opt}) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data's from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model.

2. Literature Review

Soil compaction is a process where air in the pores of the soil is removed by mechanical means. The mechanical way used to solidify the soil can be done in various ways. In field, grinding is widely used, whereas in the laboratory hitting with proctor is more common. There are two methods for Compaction testing in the laboratory, known as: Standardized Testing Test (Standard Proctor Test) and Modified Proctor Test (Modified Proctor Test) [1].

The index properties show soil properties that indicate the type (classification) and soil conditions which relate to the mechanical properties such as strength and compression or tendency to expand and permeability. The physical properties of the soil (index properties) are water content (w), specific gravity (SG), grain gradation (Fine=F), Atterberg consistency (LL, PL, PI), and many others.

The prediction for the value of maximum dry unit weight ($\gamma_{d_{\text{max}}}$) and optimum water content (W_{opt}) can also be calculated from the model suggested by Goswami with the following equation [2]:

$$Y = m \log G + k$$ \hspace{1cm} (1)

Y = maximum dry unit weight ($\gamma_{d_{\text{max}}}$) and optimum water content (W_{opt})

m = the slope of the curve

k = constant

G = constant gradation $\left(1 + F\right) \left(A X_1 + B X_2 + C X_3\right)$

X_1 = % weight retained shieve 4.75 mm

X_2 = % weight retained between shieve 4.75 mm and 0.075 mm

X_3 = % weight through shieve 0.075 mm

$A, B, C =$ constants for shieve number

F = % fine grain

The m and k constants are obtained from the graph between $\log G$ with the value of the maximum dry unit weight and the optimum water content from the experimental results in the laboratory. Whereas, F is fine grain percent that is determined based on percent through shieve 0.075 mm and Plasticity Index (IP) value (Table 1).

% weight through shieve 0.075 mm	F value	
	IP < 10%	IP > 10%
0 – 25	0,0	0,0
26 – 40	0,2	0,2
41 – 60	1,0	1,0
61 – 85	1,0	0,0
86 – 100	1,0	1,0
3. Research Methods
Before testing, the 30 samples as subgrade material were dried to get dry air condition. Laboratory testing [1] consists of the index properties testing that were Water Content Test, Specific Gravity Test, Atterberg Limit Test, Shieve Analysis Test and Soil Classification Test (USCS and AASHTO). After that, the samples got The Compaction Test i.e. Standard Proctor Test.

All of the data’s from the laboratory test results, were used to estimate the compaction parameter values. The estimation of the relationship between parameter compaction values and index properties was done in two ways: firstly, by linear regression and secondly, by using Goswami model. In the estimation by using linear regression, the required data were value of index properties, while in the estimation by using Goswami model, the required data was only fine grain percentage.

From the estimation result by using linear regression and Goswami model, the relationship between compaction parameter values and index properties was analyzed. The compaction parameter values estimated by using the Goswami model then were compared with the compaction parameter values from the laboratory. The compaction parameter values estimated were also analyzed based on the soil classification. Afterward, the level of accountability was observed by the validation method, to get a positive correlation level of accountability.

4. Results and discussion
Tests results in the laboratory can be seen in Table 2.

No.	Sample	w	SG	LL	PL	PI	FINES	γ_{max}	w_{opt}
1.	PTB-1	30.71	2.606	0.2967	17.21	12.46	45.28	1.519	20.79
2.	PTB-2	36.95	2.604	0.3956	23.73	15.82	50.98	1.488	24.21
3.	PTB-3	32.09	2.617	0.2983	17.37	12.46	50.11	1.533	21.67
4.	PTB-4	30.40	2.632	0.2908	17.21	11.87	50.03	1.538	21.45
5.	PTB-5	35.43	2.598	0.3264	21.10	11.54	50.15	1.506	22.15
6.	PTB-6	32.25	2.603	0.3309	21.63	11.46	50.07	1.519	22.17
7.	PTB-7	33.15	2.637	0.3278	20.97	11.82	43.37	1.521	20.66
8.	PTB-8	33.24	2.603	0.2971	17.22	12.49	50.63	1.527	21.18
9.	PTB-9	34.46	2.603	0.3911	24.65	14.46	50.59	1.466	24.01
10.	PTB-10	33.27	2.605	0.2908	17.33	11.75	50.67	1.522	21.58
11.	PTB-11	29.60	2.603	0.3805	25.00	13.05	51.87	1.481	24.08
12.	PTB-12	33.00	2.625	0.3317	20.81	12.36	48.84	1.522	22.16
13.	PTB-13	33.06	2.637	0.2977	17.39	12.38	44.43	1.556	20.34
14.	PTB-14	30.74	2.604	0.2975	17.52	12.23	42.03	1.566	19.81
15.	PTB-15	33.95	2.633	0.2978	16.56	13.22	50.93	1.530	21.75
16.	PTB-16	34.00	2.600	0.3229	20.48	11.81	56.94	1.454	25.51
17.	PTB-17	32.92	2.670	0.3826	20.11	18.15	57.03	1.457	26.62
18.	PTB-18	32.94	2.615	0.2395	15.96	7.99	53.76	1.490	25.14
19.	PTB-19	34.67	2.640	0.4190	22.06	19.84	57.86	1.427	26.66
20.	PTB-20	31.95	2.699	0.3900	18.87	20.13	57.22	1.456	25.08
21.	PTB-21	30.80	2.613	0.4028	24.44	15.84	55.91	1.442	26.22
22.	PTB-22	31.55	2.682	0.3698	19.30	17.68	56.34	1.489	25.55
23.	PTB-23	30.32	2.657	0.3106	19.20	15.51	55.91	1.471	25.94
24.	PTB-24	32.92	2.692	0.2039	15.97	4.42	52.95	1.502	21.58
25.	PTB-25	33.15	2.644	0.3096	16.35	14.61	53.09	1.498	23.34
26.	PTB-26	32.90	2.650	0.3984	22.23	17.61	49.17	1.447	25.78
27.	PTB-27	30.99	2.646	0.3667	21.18	15.49	55.03	1.453	25.86
28.	PTB-28	32.06	2.670	0.3400	20.81	13.19	56.37	1.464	25.46
29.	PTB-29	32.46	2.671	0.3023	12.37	17.26	48.19	1.512	20.18
30.	PTB-30	30.86	2.640	0.3126	15.89	15.37	50.19	1.472	25.20

Where: w = water content, SG = specific gravity, LL = liquid limit, PL = plastic limit, PI = plasticity index, FINES = grain gradation, γ_{max} = maximum dry unit weight and w_{opt} = optimum water content.
The compaction parameter values estimated by using the linear regression are the following equation:

\[\gamma_{d_{\text{max}}} = 1.862 - 0.005 \times \text{FINES} - 0.003 \times \text{LL} \]
(2)

\[w_{\text{opt}} = -0.607 + 0.362 \times \text{FINES} + 0.161 \times \text{LL} \]
(3)

From the equation (2) and (3), the maximum dry unit weight estimated (\(\gamma_{d_{\text{max}}}\)) and the optimum water content estimated (\(w_{\text{opt}}\)) were obtained as shown as Tabel 3. Equation (2) has \(R^2\) values = 0.75 and equation (3) has \(R^2\) values = 0.80; both have very good accuracy.

Table 3. Compaction Parameter Values Estimated by Using the Linear Regression Model

No.	Sample	AASHTO	USCS	LL	FINES	\(\gamma_{d_{\text{max}}}\)	\(\gamma_{d_{\text{max}}}^*\)	\(w_{\text{opt}}\)	\(w_{\text{opt}}^*\)
1	PTB-1	A-6 (2)	SC	29.67	45.28	1.519	1.537	20.79	20.57
2	PTB-2	A-6 (4)	CL	39.56	50.98	1.488	1.477	24.21	24.23
3	PTB-3	A-6 (3)	CL	29.83	50.11	1.533	1.512	21.67	22.34
4	PTB-4	A-6 (2)	CL	29.08	50.03	1.538	1.515	21.45	22.19
5	PTB-5	A-6 (3)	CL	32.64	50.15	1.506	1.503	22.15	22.81
6	PTB-6	A-6(2)	CL	33.09	50.07	1.519	1.502	22.17	22.85
7	PTB-7	A-6(3)	CL	32.78	43.37	1.521	1.538	20.66	20.38
8	PTB-8	A-4(1)	CL	29.71	50.63	1.527	1.510	21.18	22.51
9	PTB-9	A-6(4)	CL	39.11	50.59	1.466	1.481	24.01	24.01
10	PTB-10	A-6(2)	CL	29.08	50.67	1.522	1.511	21.58	22.42
11	PTB-11	A-6(3)	ML	38.05	51.87	1.481	1.478	24.08	24.31
12	PTB-12	A-6(3)	SC	33.17	48.84	1.522	1.508	22.16	22.42
13	PTB-13	A-6(5)	SC	29.77	44.43	1.556	1.541	20.34	20.28
14	PTB-14	A-6(1)	SC	29.75	42.03	1.566	1.554	19.81	19.41
15	PTB-15	A-6(3)	CL	29.78	50.93	1.530	1.508	21.75	22.63
16	PTB-16	A-6(4)	CL	32.29	42.67	1.454	1.469	25.51	25.21
17	PTB-17	A-6(7)	CL	38.26	41.79	1.457	1.450	26.62	26.21
18	PTB-18	A-4(1)	CL	23.95	39.66	1.490	1.511	25.14	22.71
19	PTB-19	A-7(7)	CL	41.90	39.70	1.427	1.435	26.66	27.10
20	PTB-20	A-6(12)	CL	39.00	39.75	1.456	1.447	25.08	26.40
21	PTB-21	A-6(6)	CL	40.28	40.62	1.442	1.450	26.22	26.13
22	PTB-22	A-6(7)	CL	36.98	41.25	1.489	1.458	25.55	25.75
23	PTB-23	A-6(4)	CL	31.06	40.80	1.471	1.468	25.94	25.39
24	PTB-24	A-4(2)	CL	20.39	40.65	1.502	1.526	21.58	21.84
25	PTB-25	A-6(1)	CL	30.96	43.12	1.498	1.493	23.34	23.60
26	PTB-26	A-6(5)	SC	39.84	42.45	1.447	1.486	25.78	23.62
27	PTB-27	A-5(5)	CL	36.67	41.63	1.453	1.466	25.86	25.23
28	PTB-28	A-6(4)	CL	34.00	42.17	1.464	1.467	25.46	25.28
29	PTB-29	A-6(4)	SC	30.23	41.55	1.512	1.521	20.18	21.71
30	PTB-30	A-6(4)	CL	31.26	39.71	1.472	1.507	25.20	22.60

Where: LL = liquid limit, FINES = grain gradation, \(\gamma_{d_{\text{max}}}\) = maximum dry unit weight, \(\gamma_{d_{\text{max}}}^*\) = estimated maximum dry unit weight with linear regression, \(w_{\text{opt}}\) = optimum water content, and \(w_{\text{opt}}^*\) = estimated optimum water content with linear regression.

According to Goswami model (eq. 1), the correlation between maximum dry unit weight (\(\gamma_{d_{\text{max}}}^*\)) and Log G was shown as figure 1, with \(m=0.376\) dan \(k=2.482\). While the correlation between optimum water content (\(w_{\text{opt}}^*\)) and Log G was shown as figure 2, with \(m=21.265\) dan \(k=-32.421\). Using the \(m\) and \(k\) constants, maximum dry unit weight estimated (\(\gamma_{d_{\text{max}}}^*\)) and optimum water content estimated (\(w_{\text{opt}}^*\)) were obtained as shown as Tabel 4.
Figure 1. Correlation maximum dry unit weight ($\gamma_{d_{\max}}$) with Log G

Figure 2. Correlation optimum water content (w_{opt}) with Log G

Table 4. Compaction Parameter Values Estimated by Using the Goswami Model

No	Sample	AASHTO	USCS	FINES	$\gamma_{d_{\max}}$	$\gamma_{d_{\max}^g}$	w_{opt}	w_{opt^g}
1	PTB-1	A-6 (2)	SC	45.28	1.519	1.494	20.79	23.452
2	PTB-2	A-6 (4)	CL	50.98	1.488	1.518	24.21	22.085
3	PTB-3	A-6 (3)	CL	50.11	1.533	1.524	21.67	21.743
4	PTB-4	A-6 (2)	CL	50.03	1.538	1.514	21.45	22.286
5	PTB-5	A-6 (3)	CL	50.15	1.506	1.514	22.15	22.283
6	PTB-6	A-6(2)	CL	50.07	1.519	1.509	22.17	22.589
7	PTB-7	A-6(3)	CL	43.37	1.521	1.479	20.66	24.252
8	PTB-8	A-4(1)	CL	50.63	1.527	1.516	21.18	22.155
9	PTB-9	A6-(4)	CL	50.59	1.466	1.518	24.01	22.092
Table 4. Cont.

10	PTB-10	A6-(2)	CL	50.67	1.522	1.521	21.58	21.905
11	PTB-11	A6-(3)	ML	51.87	1.481	1.529	24.08	21.453
12	PTB-12	A6-(3)	SC	48.84	1.522	1.505	22.16	22.821
13	PTB-13	A6-(5)	SC	44.43	1.556	1.518	20.34	22.087
14	PTB-14	A6-(1)	SC	42.03	1.566	1.499	19.81	23.160
15	PTB-15	A6-(3)	CL	50.93	1.530	1.515	21.75	22.221
16	PTB-16	A6-(4)	CL	42.67	1.454	1.487	25.51	23.807
17	PTB-17	A6-(7)	CL	41.79	1.457	1.484	26.62	23.989
18	PTB-18	A4-(1)	CL	39.66	1.490	1.475	25.14	24.506
19	PTB-19	A7-(7)	CL	39.70	1.427	1.474	26.66	24.578
20	PTB-20	A6-(12)	CL	39.75	1.456	1.474	25.08	24.556
21	PTB-21	A6-(6)	CL	40.62	1.442	1.476	26.22	24.459
22	PTB-22	A6-(7)	CL	41.25	1.489	1.479	25.55	24.298
23	PTB-23	A6-(4)	CL	40.80	1.471	1.476	25.94	24.415
24	PTB-24	A4-(2)	CL	40.65	1.502	1.475	21.58	24.492
25	PTB-25	A6-(1)	CL	43.12	1.498	1.469	23.34	24.836
26	PTB-26	A6-(5)	SC	42.45	1.447	1.480	25.78	24.224
27	PTB-27	A6-(5)	CL	41.63	1.453	1.478	25.86	24.315
28	PTB-28	A6-(4)	CL	42.17	1.464	1.480	25.46	24.192
29	PTB-29	A6-(4)	SC	41.55	1.512	1.480	20.18	24.211
30	PTB-30	A6-(4)	CL	39.71	1.472	1.473	25.20	24.640

Where: FINES = grain gradation, γ_{max} = maximum dry unit weight, $\gamma_{\text{dmax}*}$ = estimated maximum dry unit weight with Goswami Model, w_{opt} = optimum water content, and $w_{\text{opt}}^\#$ = estimated optimum water content with Goswami Model.

By Using linear regression and Goswami model, the relationship between compaction parameter values Estimated and index properties were obtained, included the soil classification. So, the purpose of this research has been achieved.

For both estimation models, correlation between the compaction parameter values estimated with the compaction parameter values laboratory, then were calculated for their level of confidence intervals, as in Table 5.

Table 5. Level of Confidence Intervals

	Linear Regression Model	Goswami Model		
	Maximum dry unit weight ($\gamma_{\text{dmax}*}$)	Optimum water content ($w_{\text{opt}*}$)	Maximum dry unit weight ($\gamma_{\text{dmax}*}$)	Optimum water content ($w_{\text{opt}*}$)
Correlation Coefficient	1,000	1,000	0.988	1,000
T value	3,268	3,674	3,453	3,068
T table (95% of Confidence Intervals)	2.055	2.055	2.052	2.052

5. Conclusion

By linear regression, the equation for estimation of the maximum dry unit weight ($\gamma_{\text{dmax}*}$) = 1,862-0,005*FINES-0,003*LL and estimation of the optimum water content ($w_{\text{opt}*}$) = -0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation $Y=m\log G+k$), for estimation of the maximum dry unit weight ($\gamma_{\text{dmax}*}$) with m=-0,376 and k=2,482, for estimation of the optimum water
content (w_{opt}^*) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained. Estimation by using Goswami Model is easier and more effective than Linier Regression Model because it only require fine grains (Fines) value. Based on the classification value, the types of soil were A4, A6 and A7 (AASHTO) or SC and CL (USCS).

Acknowledgements
The authors also would like to thank to Sustainable Energy and Biomaterial Center of Excellence (SEBCOE), Universitas Sumatera Utara for the financial aids.

References
[1] J E Bowles 1993 Sifat-sifat Fisis dan Geoteknis Edisi Kedua Erlangga Jakarta
[2] Z A Muis 1998 Penentuan Berat Isi Kering Maksimum Bahan Agregat Base Berdasarkan Data Klasifikasi Tanah Pada Proyek Jalan Raya Seminar Highway Engineering Medan Academic Committee (MAC) Teknik Sipil USU
[3] Z A Muis and D Siagian 2013 Estimasi Nilai Parameter Kompaksi Bahan Subgrade Berdasarkan Nilai Index Properties Pada Proyek Jalan Raya Skripsi Sarjana Departemen Teknik Sipil USU
[4] J B Metacalf and S A Romanoschi 2008 Prediction Od Maximum Dry Density And Optimum Moisture Content From Simple Material Properties
[5] A M Nendi 2010 Korelasi Antara Hasil Ujian Mampatan Dengan Had Atterberg, Skripsi Sarjana, Fakultas Teknik Sipil, Universitas Teknologi Malaysia
[6] F C Ugbe 2011 Estimating Compaction Characteristics From Fines in A-2 Type Lateritic Soils Research Journal Of Environmental And Earth Sciences 3 (4): 433-7, 2011
[7] F C Ugbe 2012 Predicting Compaction Characteristics Of Lateritic Soil Of Western Niger Delta Nigeria, Research Journal Of Environmental And Earth Sciences 4 (5): 553-9
[8] Isik F, dan Ozden G 2013 Estimating Compaction Parameters Of Fine- And Coarse- Grained Soils By Means Of Artificial Neural Networks Environ Earth Sci 69:2287-2297
[9] A S Lubis et.all 2017 The Estimation Of Compaction Parameter Values Based On Soil Properties Values Stabilized With Portland Cement, IOP Conf. Ser.: Mater. Sci. Eng.180012139
[10] A S Lubis et.all 2017 The Estimation of Parameter Compaction Values For Pavement Subgrade Stabilized With Lime (still waiting for publishing on IOP)