Early versus delayed interventions for necrotizing pancreatitis: A systematic review and meta-analysis

Yousuke Nakai1,2 | Hideyuki Shiomi3 | Tsuyoshi Hamada1,4 | Shogo Ota3 | Mamoru Takenaka5 | Takuji Iwashita6 | Tatsuya Sato1 | Tomotaka Saito1 | Atsuhiro Masuda7 | Saburo Matsubara8 | Keisuke Iwata9 | Tsuyoshi Mukai10 | Hiroyuki Isayama11 | Ichiro Yasuda12 | WONDERFUL study group in Japan

1Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
3Division of Gastroenterology and Hepatobiliary and Pancreatic Diseases, Department of Internal Medicine, Hyogo Medical University, Hyogo, Japan
4Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
5Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
6First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
7Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
8Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
9Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
10Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, Japan
11Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
12Third Department of Internal Medicine, University of Toyama, Toyama, Japan

Correspondence
Yousuke Nakai, Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo Bunkyo-ku, Tokyo, Japan 113–8655.
Email: ynakai-tky@umin.ac.jp

Abstract
Objectives: Interventions for necrotizing pancreatitis are generally postponed until 4 weeks after the onset of acute pancreatitis, but there remains controversy about whether we should always wait >4 weeks or can intervene early when necessary. This meta-analysis was conducted to evaluate treatment outcomes of necrotizing pancreatitis according to the cut-off defined in the revised Atlanta classification (<4 vs. >4 weeks).

Methods: Using PubMed, Web of Science, and the Cochrane database, we identified clinical studies published until March 2022 with data comparing outcomes of early and delayed interventions of necrotizing pancreatitis. We pooled data on adverse events, mortality, technical and clinical success rates, and needs for necrosectomy and open surgery, using the random-effects model.

Results: We identified 11 retrospective studies, including 775 patients with early interventions and 725 patients with delayed interventions. Patients with early interventions tended to be complicated by organ failure. The rate of adverse events was comparable (OR 1.41, 95% CI 0.66–3.01; \(p = 0.38 \)) but
the rate of mortality was significantly higher (OR 1.70, 95% CI 1.21–2.40; p < 0.01) in early interventions. Technical success rates were similarly high but clinical success rates tended to be low (OR 0.39, 95% CI 0.15–1.00; p = 0.05) in early interventions, though not statistically significant. Pooled ORs for necrosectomy and open surgery were 2.14 and 1.23, respectively.

Conclusions: Early interventions for necrotizing pancreatitis were associated with higher mortality rates and did not reduce adverse events or improve clinical success. However, our results should be confirmed in prospective studies.

KEYWORDS
acute necrotizing pancreatitis, drainage, endoscopic ultrasound, necrosectomy, walled-off necrosis

INTRODUCTION

Acute pancreatitis (AP) is one of the most common gastrointestinal diseases, and about 20% of patients develop necrotizing pancreatitis. Pancreatic fluid collections (PFCs) are common local complications of AP, and the revised Atlanta classification categorized PFCs into the acute peripancreatic fluid collection, acute necrotic collection (ANC), pancreatic pseudocyst, and walled-off necrosis (WON) depending on the time after the onset of AP (≤4 vs. >4 weeks) and the presence of necrosis. Since the presence of necrosis poses the patients with the risk of infection and sepsis-related mortality, surgical debridement of necrotic tissue, even in the early phase of the disease, was historically considered beneficial in patients with necrotizing pancreatitis around the late 18th and the early 19th centuries. In those days, recovery from necrotizing pancreatitis was rare by non-surgical management, but mortality after the surgical intervention was also reportedly as high as 50%. Since then, the paradigm shift has occurred from surgical interventions to the less invasive, step-up endoscopic, or percutaneous approach. However, there remains controversy about whether we should always wait for >4 weeks from the onset of AP or intervene early when necessary. In previous studies, the timing of infection in ANC was sometimes earlier than 4 weeks from the onset of AP, and early interventions can potentially enhance the resolution of infected ANC if achieved safely. The debate on this timing of interventions has resurfaced since mortality and morbidity have decreased because of recent multidisciplinary non-surgical management of necrotizing pancreatitis. The development of lumen-apposing metal stents (LAMSs) or large bore metal stents for endoscopic ultrasound-guided drainage made procedure time shorter with fewer adverse events.

We, therefore, conducted this meta-analysis to evaluate treatment outcomes of early and delayed interventions for necrotizing pancreatitis, according to the revised Atlanta classification.

MATERIALS AND METHODS

Study overview

This systematic review and meta-analysis aimed to evaluate treatment outcomes of early vs. delayed drainage of necrotizing pancreatitis and was conducted in accordance with the PRISMA (the Preferred Reporting Items for Systematic reviews and Meta-Analyses) guideline. The protocol was registered in the database of UMIN (University Hospital Medical Information Network; registration number, UMIN000047225). This study was conducted by the WONDERFUL (WON anD pERipancreatic FlUid coLlection) study group, which consisted of expertized endoscopists, gastroenterologists, interventional radiologists, and epidemiologists at high-volume centers in Japan (UMIN-CTR registration number, UMIN000044130).

Literature search

Based on a systematic electronic search using PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL) database, we identified clinical studies published from January 1990 through March 2022, in which treatment outcomes were reported in relation to the timing of interventions for PFCs. The timing of interventions was classified as early (≤4 weeks of the onset of AP) or delayed (>4 weeks) based on the revised Atlanta classification. Since there were variations between the studies in the thresholds used for the timing of interventions, studies using the threshold of 4 ± 1 weeks were included in the analysis. Two authors (Yousuke Nakai and Hideyuki Shiomi) independently participated in the literature search, study selection, assessment of study quality, and data extraction. Disagreements were resolved through discussion with another author (Tsuyoshi Hamada). The search terms included “pancreatitis”, “pancreatic pseudocyst”, “WON”, “necrotizing pancreatitis”, “drainage”, “treatment”, and
TABLE 1 Definition of adverse events, technical success, and clinical success

Study	Adverse events	Technical success	Clinical success
Guo, 2014	Intra-abdominal bleeding, and enterocutaneous fistula	NA	NA
Woo, 2017	Defined according to the ASGE lexicon	NA	A reduction in the volume of the necrotic collection to the point where the patient was asymptomatic and was able to be discharged safely
Mallick, 2018	Complications related to drainage like external pancreatic fistula, slippage, blockade of the catheter, and bleeding through the drainage	NA	NA
Trikudanathan, 2018	Defined according to the ASGE lexicon	NA	NA
Oblizajek, 2020	Adverse events likely related to endoscopic intervention	NA	Resolution of the necrotic collection on cross-sectional imaging after intervention and without surgery
Ganaie, 2021	NA	NA	Recovery with pancreatic cyst drainage alone
Gupta, 2021	NA	NA	NA
Khan, 2021	NA	Successful deployment of the LAMS resulting in drainage of PFC contents into the stomach/duodenal lumen	Resolution of PFC at the time of endoscopic LAMS removal without the requirement for ongoing transmural PFC drainage with DPS or another LAMS
Rana, 2021	Defined according to the ASGE lexicon	Successful placement of EUS-guided stent (plastic or LAMS) in an initial attempt	Symptomatic improvement accompanied by radiological resolution of PNC and avoidance of surgery
Jagielski, 2022	Gastrointestinal bleeding, stent migration into the lumen of the collection, and gastrointestinal perforation	NA	The lack of collection-related symptoms and total regression of the collection or collection diameter <40 mm on imaging
Zhang, 2022	Abdominal bleeding, gastrointestinal fistula, symptomatic vein thrombosis	NA	NA

Abbreviations: ASGE, American Society of Gastrointestinal Endoscopy; DPS, double pigtail stent; EUS, endoscopic ultrasonography; LAMS, lumen-apposing metal stent; NA, not available; PFC, pancreatic fluid collection; PNC, pancreatic necrotic collection.

"stents", with their word variations (the search strategy in each database is detailed in Table S1). The search was limited to fully published articles in English and human studies. The search was not limited in terms of patients’ age and length of patient follow-up. The bibliographies of the identified articles were further screened for additional eligible articles. We included studies involving ≥10 patients per study and excluded studies examining PFCs after pancreatic surgery or trauma, and those reporting treatment outcomes only for surgical management of necrotizing pancreatitis. We also excluded studies when study results of ANC/WON were not separately analyzed from those of acute pancreatic fluid collection and pancreatic pseudocyst.

The quality of reporting data stratified by the timing of interventions for PFCs was assessed using the Newcastle-Ottawa Scale, which ranges from 0 (poor quality) to 9 (good quality) summing up the scores for the following three categories: selection of exposed and non-exposed cohorts (4 points), comparability of cohorts (2 points), and assessment of outcome (3 points). The scores of the included studies are presented in Table S2.

Data collection

Using a pre-defined standardized data extraction form, the following data were collected from each study: study design, patient demographics, treatment protocols, treatment outcomes, and outcome definitions. The primary endpoint was adverse events, and secondary endpoints were technical success, clinical success, need for necrosectomy and open surgery, and mortality. The definitions of technical and clinical success were heterogeneous across the studies (Table 1).
Using the data reported in the pooled studies, we calculated pooled odds ratios (ORs) and 95% confidence intervals (CIs) for binary outcome variables comparing early to delayed interventions. Given the heterogeneity in study populations and procedures between the studies, we used the DerSimonian-Laird random-effects model.19 Statistical heterogeneity in outcome variables between the studies was assessed by the Q and I^2 statistics.20 For the Q statistic, we used a p-value of 0.10 for statistical significance in view of the low power of tests for heterogeneity.21 The I^2 statistics of around 25%, 50%, and 75% were considered as low-, moderate-, and high-level heterogeneity, respectively.22 We assessed potential publication bias by means of the funnel plot with Begg’s rank correlation test23 and Egger’s linear regression test24 for assessment of the asymmetry of the funnel plot. A meta-regression analysis was conducted to assess an association of the proportion of cases receiving a LAMS with pooled OR for an outcome of interest (adverse events [AE] and clinical success). A two-sided p-value < 0.05 was considered statistically significant. Given multiple comparisons, the results were interpreted cautiously. All analyses were performed using R software version 4.1.3 and the meta and metatest packages (R Development Core Team, http://www.r-project.org).

RESULTS

Through the systematic search (Figure 1), we identified 11 eligible studies,25–35 involving a total of 1500 patients (775 patients with early interventions and 725 patients with delayed interventions). The characteristics and clinical outcomes of the included studies are summarized in Tables 2 and 3. All studies were conducted based on the retrospective design, and the approach for the initial interventions was endoscopic in four, percutaneous in three, and a combination of endoscopic, percutaneous, or surgical approaches in four. Three studies included an initial surgical approach.25,26,28 Patients in the early intervention group were likely to have more organ failure25,27,35 as well as less encapsulation28,29 and larger collections.28,29,32–34

The summary of pooled ORs according to the treatment approach is shown in Table 4. Based on eight studies,25,27,29,32–35 the rate of adverse events was comparable, with a pooled OR of 1.41 (95% CI 0.66–3.01; $p = 0.38$; Figure 2) for early interventions compared to delayed interventions, though the data were heterogeneous between the studies ($\rho_{\text{heterogeneity}} < 0.01$ and $I^2 = 82\%$). Based on quantitative measurement using Egger’s test as well as visual inspection of the funnel plot, there was no significant evidence of publication bias in reporting adverse events (Figure 3). The rates of bleeding25,27,29,32–35 showed
TABLE 2 Summary of studies included in the meta-analysis

Study	Group	N	Alcohol	Biliary	Organ failure	Size of PFC (cm)	Complete encapsulation	Initial approach	Follow-up period
Guo, 2014	Total	223	24 (11)	108 (48)	82 (37)	NA	NA	0	37 (17)
	Early	136	13 (10)	67 (49)	61 (45)	NA	NA	0	22 (16)
	Delayed	87	11 (13)	41 (47)	21 (24)	NA	NA	0	15 (17)
									NA
Woo, 2017	Total	30	3 (10)	13 (43)	NA	NA	NA	12 (40)	8 (27)
	Early	7	NA	NA	NA	NA	NA	NA	NA
	Delayed	23	NA	NA	NA	NA	NA	NA	NA
Mallick, 2018	Total	375	193 (51)	133 (35)	117 (31)	NA	NA	25 (66)	0
	Early	258	134 (52)	88 (34)	98 (38)	NA	NA	0	258 (100)
	Delayed	117	59 (50)	45 (39)	19 (16)	NA	NA	0	117 (100)
Trikudanathan, 2018	Total	193	49 (25)	89 (46)	NA	NA	53 (27)	144 (75)*	45 (23)*
	Early	76	19 (25)	34 (45)	17.5 (13.4–23.4)	5 (7)	49 (64)	24 (32)	5 (7)
	Delayed	117	30 (26)	53 (45)	14.0 (9.2–18.6)	48 (43)	95 (81)	21 (18)	6 (5)
Oblizajek, 2020	Total	38	1 (3)	18 (47)	NA	NA	25 (66)	38 (100)	0
	Early	19	0	8 (42)	16 (7–24)	8 (42)	19 (100)	0	0
	Delayed	19	1 (5)	10 (53)	15 (5–22)	17 (89)	19 (100)	0	0
Ganaie, 2021	Total	60	10 (17)	30 (50)	8 (13)	NA	NA	0	60 (100)
	Early	24	NA	NA	NA	NA	0	24 (100)	0
	Delayed	16	NA	NA	NA	NA	0	16 (100)	0
Gupta, 2021	Total	146	72 (49)	48 (33)	96 (66)	NA	NA	0	144 (100)
	Early	90	NA	NA	NA	NA	0	90 (100)	0
	Delayed	54	NA	NA	NA	NA	0	54 (100)	0
Khan, 2021	Total	85	16 (19)	45 (53)	NA	NA	NA	85 (100)	0
	Early	6	0	3 (50)	13.0 ± 6.0	NA	NA	6 (100)	0
	Delayed	79	16 (21)	42 (56)	11.0 ± 4.4	NA	NA	79 (100)	0
Rana, 2021	Total	170	116 (68)	36 (21)	15 (9)	NA	NA	162 (95)	170 (100)
	Early	34	22 (69)	8 (24)	15 (44)	NA	NA	26 (74)	34 (100)
	Delayed	136	94 (65)	28 (21)	0	10.5 ± 2.7	NA	136 (100)	0
Jagielski, 2022	Total	71	47 (66)	NA	NA	NA	14.5 ± 6.3	71 (100)	0
	Early	25	20 (80)	NA	NA	NA	18.5 ± 6.8	25 (100)	0
	Delayed	46	27 (59)	NA	NA	NA	12.3 ± 4.8	46 (100)	0
Zhang, 2022	Total	131	NA	66 (50)	104 (79)§	NA	NA	0	131 (100)
	Early	100	NA	51 (51)	83 (83)§	NA	NA	0	100 (100)
	Delayed	31	NA	15 (48)	21 (67)§	NA	NA	0	31 (100)

Note: Numbers are shown in n (%), mean ± SD, or median (range).
*A combined endoscopic and percutaneous approach in two in early interventions and five in delayed intervention.
†40 patients included in the analysis.
‡144 patients included in the analysis.
§Number of patients with multiple organ failure.
Abbreviations: NA, not available; PFC, pancreatic fluid collection.
TABLE 3 Clinical outcomes of early and delayed interventions for pancreatic fluid collections

Study	Group	N	New organ failure	ICU stay	Length of hospital stay (days)	Time to resolution (days)
Guo, 2014	Early	136	20 (15)	NA	NA	NA
	Delayed	87	7 (8)	NA	NA	NA
Woo, 2017	Early	7	NA	NA	137 (NA)	NA
	Delayed	23	NA	NA	NA	NA
Mallick, 2018	Early	258	NA	NA	22.0 ± 13.6	28.4 ± 20.7
	Delayed	117	NA	NA	22.9 ± 12.6	30.2 ± 26.2
Trikudanathan,	Early	76	2.5 (0–22)*	37 (IQR 27–61)*	NA	NA
2018	Delayed	117	0 (0–3)*†	26 (IQR 0–207)*	NA	NA
Obizajek, 2020	Early	19	1 (0–22)†	26 (6–44)†	103 (IQR 27–330)†	
	Delayed	19	0 (0–2)†	6 (0–40)†	69 (27–330)†	
Ganaie, 2021	Early	24	NA	NA	NA	NA
	Delayed	16	NA	NA	NA	NA
Gupta, 2021	Early	90	NA	NA	NA	NA
	Delayed	54	NA	NA	NA	NA
Khan, 2021	Early	6	NA	NA	56.5 ± 28.5	
	Delayed	79	NA	NA	46.3 ± 35.6	
Rana, 2021	Early	34	NA	NA	31.6 ± 6.0	
	Delayed	136	NA	NA	29.5 ± 8.5	
Jagielski, 2022	Early	25	NA	NA	NA	NA
	Delayed	46	NA	NA	NA	NA
Zhang, 2022	Early	100	8 (8)‡	30.0 (17.0–48.0)	42.5 (24.3–68.5)	NA
	Delayed	31	2 (6)‡	22.0 (9.0–55.0)	40.0 (24.0–71.0)	NA

Numbers are shown in n (%), mean ± SD, or median (range), unless otherwise indicated.
*median (interquartile range).
†p < 0.05 for a comparison between early and delayed interventions.
‡Number of patients with new multiple organ failure (this means Guo’s study reports the rate of cases with organ failure including those presenting with organ failure). Abbreviations: ICU, intensive care unit; IQR, interquartile range; NA, not available; PFC, pancreatic fluid collection.

a similar tendency, with a pooled OR of 1.35 (95% CI 0.72–2.53; p = 0.36) and potential heterogeneity between the studies (ρheterogeneity = 0.05 and I² = 49%). The results were consistent when three studies including the initial surgical approach were excluded from the analysis (Table 4). When adverse events of studies either by endoscopic or percutaneous approach alone were analyzed, pooled ORs were 1.47 (95% CI 0.28–7.79; p = 0.65) in four studies including only endoscopic approach,8,29,32–34 and 1.01 (95% CI 0.20–5.16; p = 0.99) in 2 studies including only percutaneous approach.27,35

The rate of mortality was significantly higher in early interventions, with a pooled OR of 1.70 (95% CI 1.21–2.40; p < 0.01; Figure 4), without significant heterogeneity between studies (ρheterogeneity = 0.05 and I² = 13%).25–35 Pooled ORs were 1.49 (95% CI 0.99–2.24; p = 0.06; Figure S1a) in 8 studies without surgical approach, 3.04 (95% CI 0.57–16.05, p = 0.19; Figure S1b) in four studies with endoscopic approach,29,32–34 and 1.36 (95% CI 0.83–2.22, p = 0.23, Figure S1c) in three studies with percutaneous approach.27,30,35

Technical success rates were reported in two studies; 100% in both groups in one study,32,33 and 100% and 95% in early and delayed interventions in the other study.32 Based on five studies,29,30,32–34 which did not include initial surgical interventions, clinical success rates tended to be low in early interventions with a pooled OR of 0.39 (95% CI 0.15–1.00; p = 0.05; Figure 5), without significant heterogeneity between the studies (ρheterogeneity = 0.47 and I² = 0%).

The rates of necrosectomy tended to be high in early interventions, with a pooled OR of 2.14 (95% CI 0.83–5.54; p = 0.11; Figure S2), but the data were heterogeneous between the studies (ρheterogeneity < 0.01 and I² = 81%).8,27–29,32–35 Meanwhile, a pooled OR of open surgery was 1.23 (95% CI 0.64–2.37; p = 0.54; Figure S3), but again with significant heterogeneity (ρheterogeneity < 0.01 and I² = 60%).8,25,27–33,35

Other clinical outcomes are shown in Table 3. Two studies28,29 revealed intensive care unit and hospital
TABLE 4
Pooled odds ratio according to treatment approaches

Outcome	No. of studies	Pooled OR (95% CI)	p
Adverse events	8	1.41 (0.43–4.37)	0.38
Bleeding	8	1.27 (0.43–3.73)	0.66
Mortality	11	1.70 (0.12–2.41)	0.01
Clinical success	5	0.39 (0.15–1.00)	0.05
Requirement of necrosectomy	7	2.23 (0.71–6.89)	0.17
Requirement of surgery	9	1.28 (0.63–2.21)	0.54

All studies (n = 11)	Pooled OR (95% CI)	p
Pooled OR	1.23 (0.64–2.37)	0.54

Studies on non-surgical treatment (n = 8)	Pooled OR (95% CI)	p
Pooled OR	1.27 (0.43–4.37)	0.38
p	0.66	

Studies on endoscopic treatment (n = 4)	Pooled OR (95% CI)	p
Pooled OR	1.41 (0.43–4.37)	0.38
p	0.66	

Studies on percutaneous treatment (n = 3)	Pooled OR (95% CI)	p
Pooled OR	1.49 (0.49–4.50)	0.39
p	0.49	

Studies on percutaneous treatment (n = 3)	Pooled OR (95% CI)	p
Pooled OR	1.47 (0.47–4.50)	0.39
p	0.49	

Adverse events	No. of studies	Pooled OR (95% CI)	p
	8	1.41 (0.66–3.01)	0.38
	6	1.35 (0.72–2.43)	0.36
	6	1.46 (0.49–4.50)	0.39
	8	1.49 (0.49–4.50)	0.39
	5	0.39 (0.15–1.00)	0.05
	6	2.43 (0.71–6.89)	0.17

DISCUSSION

In this meta-analysis, we investigated the impact of timing of intervention from the onset of AP on clinical outcomes of necrotizing pancreatitis and showed that the adverse event rate was comparable but the mortality rate was significantly higher in early interventions. In addition, the clinical success rate did not improve in early interventions. Our findings suggest that delayed interventions, followed by the step-up approach, which is usually selected in the current clinical practice, are reasonable in terms of safety and effectiveness.

There are two major advantages to the delayed approach. First, some necrotizing pancreatitis can resolve without intervention and the delayed approach can avoid unnecessary interventions, which are potentially associated with adverse events. About 60% of necrotizing pancreatitis and 40% of infected necrotizing pancreatitis resolve by conservative treatment alone. The second advantage of the delayed approach is the complete encapsulation of ANCs, which can reduce the risk of spilling infected necrotic tissue and thereby, allow safe interventions, including necrosectomy, and ANCs are often walled-off after 3–4 weeks, as described in the revised Atlanta classification. Some ANCs were encapsulated within 4 weeks of the onset of AP, but the reported rates of complete encapsulation were equal to or higher in delayed interventions (Table 2). These data may implicate that the differences in the degree of encapsulation per se cannot explain our findings of a higher mortality rate in the early drainage group. In some cases with early interventions, clinical symptoms might be caused by the ongoing process of AP, not infections of ANCs, and interventions such as drainage and necrosectomy would not improve clinical outcomes in this situation. However, differentiation between those two conditions can be difficult in clinical practice and there is often a dilemma whether we should intervene early in cases with the deteriorated condition, or rather wait for complete encapsulation.

Meanwhile, proactive drainage for necrotizing pancreatitis even without clinical signs of infection is increasingly reported because infection does occur early in...
FIGURE 2 Comparison of adverse events between early and delayed interventions. The odds ratio (OR) for early intervention compared with delayed intervention is presented for each study (center of the gray square) with a 95% confidence interval (CI; horizontal line). Summary OR based on a meta-analysis via the random-effect model is presented at the bottom (center of the black diamond) with 95% CI (the width of the black diamond). The \(p \)-value for the Q-statistic for between-study heterogeneity is shown.

FIGURE 3 Funnel plots of adverse events to examine potential publication bias in odds ratio. Each dot indicates a respective study. Diagonal dotted lines indicate 95% confidence limits. \(p = 0.80 \) for Begg’s rank correlation test and \(p = 0.32 \) for Egger’s linear regression test.
FIGURE 4 Comparison of mortality between early and delayed interventions. The odds ratio (OR) for early intervention compared with delayed intervention is presented for each study (center of the gray square) with a 95% confidence interval (CI; horizontal line). Summary OR based on a meta-analysis via the random-effect model is presented at the bottom (center of the black diamond) with 95% CI (the width of the black diamond). The p-value for the Q-statistic for between-study heterogeneity is shown.

FIGURE 5 Comparison of clinical success between early and delayed interventions. The odds ratio (OR) for early intervention compared with delayed intervention is presented for each study (center of the gray square) with a 95% confidence interval (CI; horizontal line). Summary OR based on a meta-analysis via the random-effect model is presented at the bottom (center of the black diamond) with 95% CI (the width of the black diamond). The p-value for the Q-statistic for between-study heterogeneity is shown.

Development of new organ failure following intervention for necrotizing pancreatitis, as well as organ failure at presentation, may worsen clinical outcomes of necrotizing pancreatitis. Early interventions during the acute inflammatory phase may increase the risk of systemic inflammatory response syndrome and new-onset organ failure, whereas deteriorated infections by delayed interventions may also increase the risk of systemic inflammatory response syndrome. In our meta-analysis, the rates of new-onset organ failure did not differ by the timing of interventions (Table 3), despite the limited number of studies reporting the corresponding data. Early interventions may potentially enhance the resolution of infection and shorten hospital stay, but

The established strategy of less invasive non-surgical management of PFCs including the wide spread of LAMS has dramatically accelerated this concept of early proactive interventions. However, our meta-analysis did not provide evidence supporting routine interventions at an early stage of PFCs in terms of safety and effectiveness. Nonetheless, it should be noted that including only retrospective studies in the current study and resultant between-group imbalance in patient profiles might result in apparently high rates of morbidity and mortality in the early intervention group, that is, more common organ failure in early interventions was likely to affect clinical outcomes negatively.
our data suggest that the clinical success rate was non-significantly lower and the length of hospital or intensive care unit stay was not shortened in early interventions. Historically, early surgical interventions for necrotizing pancreatitis did not necessarily lead to better clinical outcomes, and this might be also true for the less invasive endoscopic and percutaneous approaches. Thus, as discussed above, to maximize the potential benefits of early interventions, we should select cases with symptomatic ANCs due to infection, not ongoing AP, and further exploration of biomarkers for infected ANCs is warranted.43

A recent randomized controlled trial of immediate or postponed drainage for infected necrotizing pancreatitis37 needs comments. Randomization was performed at the time of diagnosis of infected necrosis, not at 4 weeks from the onset of AP; but this randomized controlled trial failed to demonstrate the superiority of immediate drainage at the diagnosis of infected necrosis in terms of complications and mortality as compared to postponed interventions, in line with our meta-analysis. In a retrospective study by the same Dutch Pancreatitis Study group,44 the researchers demonstrated less need for necrosectomy and reduced in-hospital mortality by the early proactive approach. The percutaneous approach utilized in these two studies44,45 is theoretically more sterile than the endoscopic approach and can be safe even in early interventions for ANCs without encapsulation.46 However, morbidity and mortality of early interventions were not low in the percutaneous approach in our meta-analysis. While LAMS allows better drainage through its large bore, its deployment needs some techniques in less liquified ANCs.47,48 Thus, it is still unclear whether the use of LAMS as early drainage is safe and effective in necrotizing pancreatitis. In our meta-regression analysis, the proportion of LAMS use did not correlate with the rate of AE or clinical success but it should be further evaluated whether endoscopic drainage by large bore LAMS rather than percutaneous drainage would increase treatment safety and efficacy in this setting. Of note, a similar meta-analysis including one randomized controlled trial by Boxhoorn et al.37 was recently reported by Gao et al.,49 but the definition of early interventions was various including the timing from hospitalization, not the onset of AP. Furthermore, we were able to include some additional studies by meticulous evaluation of studies eligible for the meta-analysis.

There are some limitations to the current meta-analysis. First, the risk of bias is high since the number of cases was limited and only retrospective studies were included in the analysis. Due to the retrospective designs of the included studies, the risk of bias was present in our meta-analysis. In clinical practice, for example, we tend to intervene early in cases with deteriorating conditions, which can lead to higher mortality in the early intervention group. In addition, our meta-analysis was also limited by heterogeneity among studies. For example, \(\rho_{\text{heterogeneity}} \) was < 0.01 in our primary endpoint of adverse events. The follow-up period was available only in four studies and varied widely, too. The differences in the follow-up period might affect some clinical outcomes in our meta-analysis. Secondly, although we only included the studies using the threshold of 4 ± 1 weeks from the onset of AP the onset of AP is not always clear. Given the concept of waiting until the “walled-off” approach, the data on the status of encapsulation might be rather important than the timing of intervention. Chantarojanasiri et al.9 did include encapsulation of PFC on computed tomography as the indication of endoscopic ultrasound-guided drainage.

In conclusion, our meta-analysis did not support routine utilization of early interventions in necrotizing pancreatitis since the mortality rate is higher without improvement in clinical success. However, further studies are warranted on whether early interventions may have a role in some subgroups, such as encapsulated ANCs and ANCs without ongoing AP.

ACKNOWLEDGMENTS

We would like to appreciate the following members of the WONDERFUL study group for their valuable comments on the manuscript: Ryota Nakano, Division of Gastroenterology and Hepatobiliary and Pancreatic Diseases, Department of Internal Medicine, Hyogo Medical University, Hyogo, Japan; Shunsuke Omoto, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; Shinya Uemura, First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan; Masahiro Tsujimae, Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan; Keito Nakagawa, Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan; Mitsuru Okuno and Yuhei Iwasa, Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan; Toshio Fujisawa and Sho Takahashi, Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan; and Nobuhiko Hayashi, Third Department of Internal Medicine, University of Toyama, Toyama, Japan; and Kensaku Yoshida and Akinori Maruta, Department of Gastroenterology, Gifu Prefectural General Medical Center, Gifu, Japan.

CONFLICT OF INTEREST

Yosuke Nakai received research grants from Boston Scientific Japan, HOYA Corporation, and honoraria from Boston Scientific Japan, Fujifilm Corporation, and Olympus Corporation. Hiroyuki Isayama received research grants from Boston Scientific Japan, Fujifilm Corporation, Fujifilm Health Care Corporation, Gaderius Medical KK, Zeon Medical Inc., and honoraria from Boston Scientific Japan, Fujifilm Corporation, Taewoong Medical
Devices, Olympus Corporation, Century Medical, Inc. and Cook Medical Japan G.K.

Ichiro Yasuda is an associate editor of DEN Open, and Yousuke Nakai, Mamoru Takenaka, and Takuji Iwashita are associate editors of Digestive Endoscopy.

FUNDING INFORMATION
None.

ORCID
Yousuke Nakai https://orcid.org/0000-0001-7411-1385
Hideyuki Shiomi https://orcid.org/0000-0002-7461-8538
Mamoru Takenaka https://orcid.org/0000-0001-7308-4311
Tatsuya Sato https://orcid.org/0000-0002-5142-4706
Saburo Matsubara https://orcid.org/0000-0001-8182-3524
Hiroyuki Isayama https://orcid.org/0000-0002-6206-9236
Ichiro Yasuda https://orcid.org/0000-0002-6888-0310

REFERENCES
1. Peery AF, Crockett SD, Murphy CC et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2018. Gastroenterology 2019; 156: 254–72.e11.
2. Beger HG, Rau B, Mayer J, Pralle U. Natural course of acute pancreatitis. World J Surg 1997; 21: 130–5.
3. Banks PA, Bollen TL, Dervenis C et al. Classification of acute pancreatitis–2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62: 102–11.
4. Chang Y-C. Is necrosectomy obsolete for infected necrotizing pancreatitis? Is a paradigm shift needed? World J Gastroenterol 2014; 20: 16925–34.
5. Moynihan B. Acute pancreatitis. Ann Surg 1925; 81: 132–42.
6. Yasuda I, Takahashi K. Endoscopic management of walled-off pancreatic necrosis. Dig Endosc 2021; 33: 335–41.
7. Isayama H, Nakai Y, Rerknimitr R et al. Asian consensus statements on endoscopic management of walled-off necrosis. Part 2: Endoscopic management. J Gastroenterol Hepatol 2016; 31: 1555–65.
8. Chantarjanasiri T, Yamamoto N, Nakai Y et al. Comparison of early and delayed EUS-guided drainage of pancreatic fluid collection. Endosc Int Open 2018; 6: E1398–405.
9. Chantarjanasiri T, Ratanachu-Ek T, Isayama H. When should we perform endoscopic drainage and necrosectomy for walled-off necrosis? J Clin Med 2020; 9: 4072.
10. Beger HG, Biltner R, Block S, Büchler M. Bacterial contamination of pancreatic necrosis. A prospective clinical study. Gastroenterology 1986; 91: 433–8.
11. Besselink MG, van Santvoort HC, Boermester MA et al. Timing and impact of infections in acute pancreatitis. Br J Surg 2009; 96: 267–73.
12. Lu JD, Cao F, Ding YX, Wu YD, Guo YL, Li F. Timing, distribution, and microbiology of infectious complications after necrotizing pancreatitis. World J Gastroenterol 2019; 25: 5162–73.
13. Bang JY, Navaneethan U, Hasan MK, Sutton B, Hawes R, Varadarajulu S. Non-superiority of lumen-apposing metal stents over plastic stents for drainage of walled-off necrosis in a randomised trial. Gut 2019; 68: 1200–9.
14. Yamamoto N, Isayama H, Kawakami H et al. Preliminary report on a new, fully covered, metal stent designed for the treatment of pancreatic fluid collections. Gastrointest Endosc 2013; 77: 809–14.
15. Kayal A, Taghizadeh N, Ishikawa T et al. Endosonography-guided transmural drainage of pancreatic fluid collections: Comparative outcomes by stent type. Surg Endosc 2021; 35: 2698–708.
16. Guzmán-Calderón E, Chacaltana A, Díaz R, Li B, Martinez-Moreno B, Aparicio JR. Head-to-head comparison between endoscopic ultrasound-guided lumen apposing metal stent and plastic stents for the treatment of pancreatic fluid collections: A systematic review and meta-analysis. J Hepatobiliary Pancreat Sci 2022; 29: 198–211.
17. Page MJ, McKenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
18. Wells G, Shea B, O’Connell D et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. [Cited in 30 March 2022]. http://ohri.ca/programs/clinical_epidemiology/oxford.asp
19. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–88.
20. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–58.
21. Paul SR, Donner A. Small sample performance of tests of homogeneity of odds ratios in K × 2 tables. Stat Med 1992; 11: 159–65.
22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.
23. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088–101.
24. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–34.
25. Guo Q, Li A, Xia Q et al. Timing of intervention in necrotizing pancreatitis. J Gastrointest Surg 2014; 18: 1770–6.
26. Woo S, Walklin R, Wewelwala C, Berry R, Devonshire D, Croagh D. Interventional management of necrotizing pancreatitis: An Australian experience. ANZ J Surg 2017; 87: E85–e9.
27. Mallick B, Dhaka N, Gupta P et al. An audit of percutaneous drainage for acute necrotic collections and walled-off necrosis in patients with acute pancreatitis. Pancreatology. 2018; 18: 727–33.
28. Trikudanathan G, Tawfik P, Amateau SK et al. Early (<4 Weeks) versus standard (≥4 weeks) endoscopically centered step-up interventions for necrotizing pancreatitis. Am J Gastroenterol 2018; 113: 1550–8.
29. Oblizajek N, Takahashi N, Agayeva S et al. Outcomes of early endoscopic intervention for pancreatic necrotic collections: A matched case-control study. Gastrointest Endosc. 2020; 91: 1303–9.
30. Ganaie KH, Choh NA, Parry AH et al. The effectiveness of image-guided percutaneous catheter drainage in the management of acute pancreatitis-associated pancreatic collections. Polish J Radiol 2021; 86: E359–65.
31. Gupta P, Bansal A, Samanta J et al. Larger bore percutaneous catheter in necrotic pancreatic fluid collection is associated with better outcomes. Eur Radiol 2021; 31: 3439–46.
32. Khan S, Chandran S, Chin J et al. Drainage of pancreatic fluid collections using a lumen-apposing metal stent with an electrocautery-enhanced delivery system. J Gastroenterol Hepatol 2021; 36: 3395–401.
33. Rana SS, Sharma R, Kishore K, Dhalaria L, Gupta R. Safety and efficacy of early (<4 weeks of illness) endoscopic transmural drainage of post-acute pancreatic necrosis predominantly located in the body of the pancreas. J Gastrointest Surg 2021; 25: 2328–35.
34. Jagielski M, Piątkowski J, Jackowski M. Early endoscopic treatment of symptomatic pancreatic necrotic collections. Sci Rep 2022; 12: 308.
35. Zhang H, Gao L, Mao WJ et al. Early versus delayed intervention in necrotizing acute pancreatitis complicated by persistent organ failure. Hepatobiliary Pancreat Dis Int 2022; 21: 63–8.
36. van Santvoort HC, Bakker OJ, Bollen TL et al. A conservative and minimally invasive approach to necrotizing pancreatitis improves outcome. Gastroenterology 2011; 141: 1254–63.
37. Boxhoorn L, van Dijk SM, van Grinsven J et al. Immediate versus postponed intervention for infected necrotizing pancreatitis. N Engl J Med 2021; 385: 1372–81.
38. van Brunschot S, van Grinsven J, van Santvoort HC et al. Endoscopic or surgical step-up approach for infected necrotizing pancreatitis: A multicentre randomised trial. Lancet 2018; 391: 51–8.
39. Bang JY, Arnoletti JP, Holt BA et al. An endoscopic transluminal approach, compared with minimally invasive surgery, reduces complications and costs for patients with necrotizing pancreatitis. Gastroenterology 2019; 156: 1027–40.e3.
40. Bang JY, Wilcox CM, Arnoletti JP et al. Validation of the Orlando protocol for endoscopic management of pancreatic fluid collections in the era of lumen-apposing metal stents. Dig Endosc 2022; 34: 612–21.
41. Schepers NJ, Bakker OJ, Besselink MG et al. Impact of characteristics of organ failure and infected necrosis on mortality in necrotizing pancreatitis. Gut 2019; 68: 1044–51.
42. Garg PK, Singh VP. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology 2019; 156: 2008–23.
43. Langmead C, Lee PJ, Paragomi P et al. A novel 5-cytokine panel outperforms conventional predictive markers of persistent organ failure in acute necrotizing pancreatitis. Clin Transl Gastroenterol 2021; 12: e00351.
44. van Grinsven J, Timmerman P, van Lienden KP et al. Proactive versus standard percutaneous catheter drainage for infected necrotizing pancreatitis. Pancreas 2017; 46: 518–23.
45. Boxhoorn L, van Dijk SM, van Grinsven J et al. Immediate versus postponed intervention for infected necrotizing pancreatitis. New Engl J Med 2021; 385: 1372–81.
46. Baron TH, DiMaio CJ, Wang AY, Morgan KA. American Gastroenterological Association clinical practice update: Management of pancreatic necrosis. Gastroenterology 2020; 158: 67–75.e1.
47. Mukai S, Itoi T, Tsuchiya T, Tonozuka R, Yamamoto K, Sofuni A. New deployment techniques of the lumen-apposing metal stent in walled-off necrosis filled with necrotic tissue: Chick opening its mouth (with video). Dig Endosc 2021; 33: 985–9.
48. Sato T, Saito T, Nakai Y, Fujishiro M. To-and-fro balloon technique for deployment of a lumen-apposing metal stent in highly solid walled-off necrosis of the pancreas. Endoscopy. Published online: 31 Mar 2022; DOI: 10.1055/a-1795-6925.
49. Gao L, Zhang H, Li G et al. The clinical outcome from early versus delayed minimally invasive intervention for infected pancreatic necrosis: A systematic review and meta-analysis. J Gastroenterol 2022; 57: 397–406.
50. Cotton PB, Eisen GM, Aabakken L et al. A lexicon for endoscopic adverse events: Report of an ASGE workshop. GastrointestEndosc 2010; 71: 446–54.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

Figure S1a: Comparison of mortality between early and delayed interventions by non-surgical approach.
Figure S1b: Comparison of mortality between early and delayed interventions by endoscopic approach.
Figure S1c: Comparison of mortality between early and delayed interventions by percutaneous approach.
Figure S2: Comparison of necrosectomy rate between early and delayed interventions.
Figure S3: Comparison of open surgery rate between early and delayed interventions.

Table S1: Strategies of database search for studies reporting clinical outcomes of endoscopic ultrasound-guided treatment of pancreatic fluid collections.
Table S2: The Newcastle-Ottawa Scale for assessment of data reporting quality of each study included in the meta-analysis.