EXTERNAL SCIENTIFIC REPORT

Food of plant origin: production methods and microbiological hazards linked to food-borne disease. Reference: CFT/EFSA/BIOHAZ/2012/01 Lot 1 (Food of plant origin with high water content such as fruits, vegetables, juices and herbs)\(^1\)

Evelyn Hackl, Christine Hölzl, Cornelia Konlechner, Angela Sessitsch

AIT Austrian Institute of Technology GmbH, Bioresources Unit

ABSTRACT

Food-borne diseases caused by food of non-animal origin (FoNAO) contaminated with pathogenic bacteria, viruses and parasites are a major health concern worldwide. The present study was set up as an extensive literature review aimed at evaluating biological hazards associated with FoNAO with high water content. Data were extracted from 432 publications to identify the most critical FoNAO/pathogen combinations. The number and severity of outbreaks of disease provided the basis for a primary evaluation, and qualitative criteria relating to pathogen prevalence, food/pathogen interaction, and the production of FoNAO items were used for defining three priority groups. Highest priority levels worldwide were defined for leafy green vegetables contaminated with pathogenic *E. coli*, *Salmonella* on/in leafy greens and tomatoes were also most highly graded. While strawberries and raspberries infected with Norovirus were graded priority one within the EU, cantaloupe melon and tropical fruit contaminated with *Salmonella* were included in the priority one combinations for non-EU countries. Level two and level three priority groups differed for EU and non-EU countries, including lettuce/Norovirus, basil/*Salmonella* spp., semidried tomatoes/Hepatitis A virus, grated carrots/*Yersinia pseudotuberculosis* for EU and lettuce/Norovirus, spinach/pathogenic *E. coli*, cantaloupe melon/*Listeria monocytogenes*, and Hepatitis A virus combined with unpasteurized orange juice and green onion for non-EU countries, respectively. The study provides an extensive scientific database that will be instrumental in the conceptualization of specific measures for preventing and efficiently controlling outbreaks of disease linked to FoNAO.

© AIT Austrian Institute of Technology GmbH

KEY WORDS

Food borne outbreak, food of non animal origin (FoNAO), food/pathogen combination, biological hazard, pathogen, extensive review

DISCLAIMER

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

\(^1\) Question No EFSA-Q-2012-00229

Any enquiries related to this output should be addressed to biohaz@efsaeuropa.eu

Suggested citation: AIT Austrian Institute of Technology GmbH; Food of plant origin: production methods and microbiological hazards linked to food-borne disease. Reference: CFT/EFSA/BIOHAZ/2012/01 Lot 1 (Food of plant origin with high water content such as fruits, vegetables, juices and herbs). Supporting Publications 2013:EN-402. [253 pp.]. Available online: www.efsa.europa.eu/publications
SUMMARY

Food-borne diseases caused by pathogenic bacteria, viruses and parasites are a major health concern worldwide. Although traditionally food of animal origin has been primarily implicated in outbreaks, incidences caused by contaminated food of non-animal origin (FoNAO) have been increasing, reflecting rising consumers’ demands for fresh and minimally processed fruit and vegetables. This highlights the need for an in-depth evaluation and characterization of the hazards posed by contaminated FoNAO.

The present study was set up as an extensive literature review addressing biological hazards associated with FoNAO with high water content. Search strategies were defined a priori and involved systematic searches in bibliographic databases and grey literature sources. Thereby, pathogenic bacteria, viruses and parasites that have been found associated with FoNAO were identified on a worldwide level and further characterised regarding their prevalence and colonisation behaviour. Reports on food-borne outbreaks caused by biological hazards encompassing the last ten years were compiled. Critical steps in the production and processing of particular FoNAO items were determined, and consumption patterns as well as trade volumes from third countries into the European Union were assessed.

In total, 7710 entries (Lot 1 and Lot 2) from scientific databases were retrieved and 51 grey literature sources were taken into account. Following screening according to a set of relevance and quality criteria, this resulted in 432 publications used for collecting data and extracting them into an Excel-based compendium of tables. A synopsis of the collective data set was formed for prioritising FoNAO/pathogen combinations. While the number and severity of outbreaks of disease provided the basis for a primary evaluation, qualitative criteria relating to pathogen prevalence and their colonisation behaviour as well as to the production of FoNAO items were used for defining three priority groups. Level 1 priority worldwide was assigned to leafy green vegetables (in particular lettuce and spinach) in combination with pathogenic *E. coli*, *Salmonella* spp. on/in leafy greens and on/in tomatoes, respectively, were also given priority one for EU and non-EU countries, respectively. In the EU, berries (in particular frozen strawberries) linked to Norovirus were also attributed level 1 priority. In non-EU countries, the level 1 priority group included also melon (cantaloupe) with *Salmonella* and tropical fruit (mango and papaya) with *Salmonella*. Priority group two for EU countries comprised the combinations lettuce/Norovirus and fresh herbs (basil)/Salmonella spp., while semidried tomatoes combined with Hepatitis A virus, grated carrots combined with *Yersinia pseudotuberculosis*, and cucumber in combination with parasites were rated priority 3. For non-EU countries, priority group 2 included lettuce/Norovirus, spinach/pathogenic *E.coli* and cantaloupe melon/*Listeria monocytogenes*, while level 3 priority was assigned to Hepatitis A virus both in unpasteurized orange juice and on/in green onion.

The study provides a broad scientific database that will be instrumental in the conceptualisation of specific measures for improving the safety of FoNAO. Ultimately, it may contribute to the prevention and a better control of food borne diseases.
TABLE OF CONTENTS

Abstract .. 1
Summary ... 2
Table of contents ... 3
Background as provided by EFSA .. 4
Terms of reference as provided by EFSA .. 5
1. Introduction .. 7
2. Objectives and Research Questions .. 10
3. Materials and Methods ... 12
 3.1. Overall research strategy .. 12
 3.2. Extensive literature review ... 12
 3.2.1. Searches in bibliographic databases and other literature sources 13
 3.2.2. Screening abstracts for relevance ... 14
 3.2.3. Quality assessment ... 14
 3.2.4. Data extraction ... 15
 3.3. Search strategy used within thematic area (A) Microbiological hazards 16
 3.3.1. Development of a keyword-list of food items (FoNAO with high water content) 16
 3.3.2. Search regarding “hazard identification” (A1) .. 18
 3.3.3. Search regarding “pathogen prevalence” (A2) .. 21
 3.3.4. Search regarding food/pathogen interaction (A3) 25
 3.3.5. Search regarding “hazard characterization” (A4) 28
 3.4. Search strategy used within thematic area (B) Production 30
 3.5. Search strategy used within thematic area (C) Consumption 31
 3.6. Methodology for ranking FoNAO/pathogen combinations (thematic area D) 33
 3.6.1. Method development .. 33
 3.6.2. Evaluation based on outbreak data ... 33
 3.6.3. Evaluation based on multiple qualitative criteria .. 34
4. Results .. 36
 4.1. (A) Microbiological hazards that may contaminate FoNAO with high water content 36
 4.1.1. Hazard identification (A1) .. 36
 4.1.2. Hazard prevalence and enumeration data (A2) ... 38
 4.1.3. Food/pathogen interaction (A3) .. 40
 4.1.4. Hazard characterization (A4) .. 42
 4.2. (B) Production methods and trade volumes of FoNAO with high water content from third countries to the European Union ... 44
 4.3. (C) Consumption of FoNAO with high water content .. 45
 4.4. (D) Ranking of FoNAO with high water content ... 47
5. Conclusions .. 54
6. References .. 56
7. List of Tables ... 90
8. List of Figures ... 92
Appendices ... 93
A. Appendix Specific to Thematic Area A .. 93
B. Appendix Specific to Thematic Area B ... 205
C. Appendix Specific to Thematic Area C .. 240
D. Appendix Specific to Thematic Area D .. 243

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
BACKGROUND AS PROVIDED BY EFSA

In May 2011 a major outbreak of STEC O104 infections occurred in Germany. More than 4,000 people were reported ill with symptoms and the outbreak resulted in the death of more than 46 people. Other countries reported a small number of people becoming ill by the same strain, most of whom had recently visited the region of northern Germany where the outbreak occurred. At the end of June, there was a second outbreak in Bordeaux, France, which was caused by the same \textit{E. coli} strain. In both cases, investigations implicated sprouted seeds.

According to the 2009 European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food borne outbreaks, the majority of verified outbreaks in the EU were associated with foodstuffs of animal origin. Fruit and vegetables were implicated in 43 (4.4 \%) verified outbreaks. These outbreaks were primarily caused by frozen raspberries contaminated with norovirus. In addition, 8.1 \% outbreaks were associated with mixed or buffet meals where foods of plant origin could not be excluded.

According to the US Centre for Disease Control and Prevention (CDC) 2008 report on surveillance for food borne disease outbreaks, the two main commodities associated with most of the outbreak-related illnesses originating from food of plant origin were fruits-nuts and vine-stalk vegetables. One of the main pathogen-commodity pair responsible for most of the outbreaks was norovirus in leafy vegetables. The pathogen-commodity pairs responsible for most of the outbreak-related illnesses were \textit{Salmonella} in vine-stalk vegetables and \textit{Salmonella} in fruits-nuts. In addition, in September 2011, a multistate outbreak of listeriosis linked to cantaloupe melon caused 29 deaths in the US.

These outbreaks indicate the need to consider more specific measures for food of plant origin. Thus, EFSA wants to outsource preparative work of an extensive search of scientific and technical literature for future activities related to risk posed by pathogens in food of plant origin.

Regulation (EC) No 852/2004 on the hygiene of foodstuffs lays down general hygiene requirements to be respected by food businesses at all stages of the food chain. All food business operators have to comply with requirements for good hygiene practice in accordance with this Regulation, thus preventing the contamination of food of animal and of plant origin. Establishments other than primary producers and associated activities must implement procedures based on the HACCP principles to monitor effectively the risks. In addition to the general hygiene rules, several microbiological criteria have been laid down in Regulation (EC) No 2073/2005 for food of plant origin.

The overall objectives of the present contract work are as follows: to provide an extensive literature search of available data for microbiological hazards, that may contaminate food of plant origin in the food chain (from primary production to retail), which can be used for risk assessment activities such as hazard identification, hazard characterization and exposure assessment.

An extensive literature search must be structured in a way to identify as many relevant studies as possible. The fundamental aspects of an extensive literature search are the tailored search strategy/ies (i.e. combination of search terms and Boolean operators) and the extensive list of information sources used (i.e. bibliographic databases and other sources such as e.g. journal tables of content etc.). The process of extensive literature search is clearly reported to allow transparency and reproducibility. The output of extensive literature search is an extensive collection of evidence (to be screened for relevance). An extensive literature search followed by a study selection process should be performed by the tenderer(s), to produce a set of relevant evidence, in particular to identify specific food/pathogen combinations most often linked to food borne disease originating from food of plant origin.
TERMS OF REFERENCE AS PROVIDED BY EFSA

For Lot 1, the scope of the work is:

- To carry out an extensive literature search for available data on:
 (i) production methods (farming and processing including post-harvest practices such as cutting, washing and packaging) and trade volumes from third countries to the European Union of food of plant origin with high water content such as fruits, vegetables, juices and herbs;
 (ii) consumption of all food items considered for each subcategory of food of plant origin. Literature search on consumption data shall cover, for each food subcategory, where possible, age of consumers, amounts consumed (e.g. grams/day; grams/kg body weight/day) and how the food is consumed (e.g. raw, cooked). The approach used shall be consistent, as far as possible, with the Food Classification and Description System for exposure assessment used by EFSA.
 (iii) microbiological hazards (bacteria, parasites and viruses) in the food chain (from primary production to retail) that may contaminate food of plant origin with high water content such as fruits, vegetables, juices and herbs in particular:
 - hazard identification,
 - hazard characterisation,
 - prevalence and enumeration data of foodborne pathogens as part of exposure assessment;
 (iv) specific food/pathogen combinations most often linked to foodborne disease originating from food of plant origin with high water content.
- Literature searches for data regarding point (ii) shall cover all European Union Member States (including EU candidate and pre-accession countries). For points (i), (iii) and (iv) literature shall be searched at worldwide level.
- Furthermore, the literature search should include published scientific articles and academic dissertations, proceedings of conferences as well as the grey literature (national and international reports, public health institute publications, project or research reports, unpublished reports e.g. from ongoing research projects, other documents, data published on web sites and any other source relevant to the subject under assessment).
- The literature search should be conducted including multiple bibliographic databases (e.g. PubMed, CAB abstracts, Web of Science, Medline, Scopus).
- The searches should cover at least the last 10 years and should be updated, as far as possible, throughout the entire duration of the resulting contract from this tender.
- The process used for the extensive literature searches should be clearly reported to allow transparency and reproducibility. EFSA should be provided with methodologies proposed for the:
 - extensive literature search (i.e. screening criteria used in the search proposal, how many experts will screen titles, abstracts and full text; expertise of the reviewers; whether the examination of the studies will be done independently by the reviewers; how potential disagreements on study eligibility will be solved);
 - criteria used to generate the structured tables summarising the data from the selected literature and
 - identification of specific food/pathogen combinations most often linked to foodborne disease originating from food of plant origin with high water content.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
- References not considered pertinent after the screening process should be listed and reasoning should be provided why these references were not considered pertinent. References for which full text could not be retrieved on time will also be listed.

This contract was awarded by EFSA to:

Contractor: AIT Austrian Institute of Technology GmbH

Contract: CFT/EFSA/BIOHAZ/2012/01

Contract: CT 1 LOT 1
1. Introduction

Outbreaks of gastrointestinal disease caused by the consumption of raw or minimally processed vegetables contaminated with biological hazards have increasingly been reported worldwide and within the EU. This is partly due to consumers’ increased demands for fresh produce, and especially for ready-to-eat pre-cut vegetables and fruits. For implementing future activities for mitigating risks posed by pathogens in food of non-animal origin (FoNAO), we need to pin-point the microbiological hazards linked to food-borne disease implicating FoNAO. Thus, there is a need for identifying and characterizing the bacteria, viruses and parasites that may contaminate food of plant origin together with the identification of the food items concerned. In addition, data are required that allow thorough exposure assessment, considering for instance various subcategories of food and different groups of consumers.

The present study was carried out in the frame of an assignment for a tender responding to the invitation to open tender (Ref. CH/MH/cm (2012)-out-6206701) by the EFSA Biological Hazards Unit (BIOHAZ). This study relates to Lot 1 of the tender, and thus addresses risks regarding food of non-animal origin (FoNAO) with high water content (such as fruits, vegetables, juices and herbs), while FoNAO with low water content are dealt with in a separate study relating to Lot 2 of the same tender.

Classification of the food items considered in the present study follows the categorization of FoNAO commodities set up by EFSA/BIOHAZ. FoNAO items that were allocated to Lot 1 of the tender (addressing FoNAO with high water content) and thus were included in the present study are presented in Table 1. Basically, the individual commodities categorized by EFSA were assigned to either Lot 1 or Lot 2 according to the water content of the respective food item as it is most frequently consumed. Thus, dehydrated fruits and vegetables were allocated to Lot 1 because fruits are mostly consumed fresh and vegetables are more often reported as not dehydrated. “Other processed products” were addressed as a category either in Lot 1 or Lot 2, depending on the water content of the primary food item they were made of. In addition to the categories defined by EFSA, where “fruits non specified” are given as category 1, it was necessary in the process of data extraction to set up the categories “other” and “1/other”, which include vegetable items that are not specified and (collective) fruit and/or vegetable items that are not specified, respectively (see Table 1).

By performing the present study we aimed to assist in the conceptualization of future activities that are needed for securing the microbiological safety of food of plant origin. We carried out extensive literature searches to provide a comprehensive dataset of the currently available information relating to biological hazards associated with FoNAO with high water content. We employed methods of the systematic literature review, involving that a structured literature search strategy was applied that was developed a priori. Data extraction into a database was accomplished following multi-phase reviewing of the retrieved scientific and grey literature, involving relevance screening of abstracts and quality assessment of full text literature.

The objectives and specific tasks of the present study are described in chapter 2, and the methods employed for completing the project tasks are presented in chapter 3. The study results are given in chapter 4, referring to the associated structured tables shown in the appendices A to D. Conclusions resulting from the study are summarized in chapter 5.
Table 1: Classification of commodities of FoNAO with high water content as included in the present study, based on BIOHAZ classification.

General commodity category	Specific categories	Examples of commodities
1. Fruit (non specified)	2. Strawberries	Açaí berries, barberry, bearberries, bilberry, blackberries, blackcurrant blueberries, boysenberry, chokeberries, chokecherry, cloudberry, cranberries, crowberry, elderberries, goji berries, gooseberries, huckleberries, juneberry, juniper berries, lingonberries, loganberries, marionberries, mulberries, nannyberry, ollaliberries, oregon grape, red currants, red and green grapes, salmonberry, sea-buckthorn berries, serviceberries, tayberries
	3. Raspberries	Açai berries, barberry, bearberries, bilberry, blackberries, blackcurrant blueberries, boysenberry, chokeberries, chokecherry, cloudberry, cranberries, crowberry, elderberries, goji berries, gooseberries, huckleberries, juneberry, juniper berries, lingonberries, loganberries, marionberries, mulberries, nannyberry, ollaliberries, oregon grape, red currants, red and green grapes, salmonberry, sea-buckthorn berries, serviceberries, tayberries
	4. Other berries	Açaí berries, barberry, bearberries, bilberry, blackberries, blackcurrant blueberries, boysenberry, chokeberries, chokecherry, cloudberry, cranberries, crowberry, elderberries, goji berries, gooseberries, huckleberries, juneberry, juniper berries, lingonberries, loganberries, marionberries, mulberries, nannyberry, ollaliberries, oregon grape, red currants, red and green grapes, salmonberry, sea-buckthorn berries, serviceberries, tayberries
5. Citrus fruit	Citrus fruit	Citron, grapefruit, lemon, lime, mandarin, orange
6. Apples and related fruit	Apples, hawthorn, loquat, medlar, pears, quince	
7. Stone fruit	Apricots, asian plums, cherries, elderberry, European plums, nectarines, peaches, plums	
8. Tropical fruit	Asian palmaya palm, avocado, bael, breadfruit, cashel, coconut, date, dragon fruit, durian, guava, figs, jackfruit, jujube, kiwifruit, langsat, longan, longkong, lychee, mafai, mango, mango, mangosteen, maprang, passion fruit, papaya, pineapple, pitaya, pomegranate, rambutan, rosele, santol, sapodilla, soursop, star apple, starfruit, sugar apple, tamarind, tangerine, velvet apple	
9. Melons	Bitter melon, horned melon, muskmelon (cantaloupe, wintermelon, galia), watermelon	
10. Fruit mixes	Cut fruit, fruit salad	
Vegetable fruits	11. Tomatoes	Aubergines, bell pepper, peppers (fresh), sweet pepper
	12. Peppers, and aubergines	Buttercup squash, button squash, cucumber, green spaghetti squash, hubbard squash, ivy gourd, kabocha, marrow, muscat, pepita squash, pumpkin, red hokkaido, tinda, zucchini
	13. Gourds and squashes	Azuki bean, black-eyed pea, chickpea, common bean, dolichos bean, drumstick, fava bean, green bean, horse gram, indian pea, lentil, lima bean, moth bean, mung bean, okra, pea, pigeon pea, ricebean, snap pea, snow pea, soybean, sweet corn, tepary bean, urad bean, velvet bean, winged bean, yardlong bean
Leaves	15. Leafy greens eaten raw as salads	Arugula, beet greens, bitterleaf, bok choy, cabbage, celery, celtuce, ceylon spinach, chard, chicory, Chinese cabbage, collard greens, coleslaw, cress, endive, epazote, garden cress, garden rocket, komatsuna, lamb’s lettuce, land cress, lettuce, mizuna greens, mustard, New Zealand spinach, pak choy, radicchio, rapini, spinach, tatsoi, watercress, water spinach, wrapped heart mustard cabbage

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
General commodity category	Specific categories	Examples of commodities
16. Fresh herbs	Basil, cilantro, celery, coriander, dill, fresh tea, marjoram, mint, parsley, peppermint, rosemary, sage, thyme	
17. Mixed fresh-cut salad leaves		Brussel sprouts, kale, other cabbage not eaten raw
18. Other leaves		
19. Carrots		
20. Potatoes		
21. Other root and tuberous vegetables	Ahipa, arracacha, bamboo shoot, beetroot, burdock, cassava, Chinese artichoke, chufa, daikon, elephant foot yam, ginger, gobo, hamburg parsley, horseradish, Jerusalem artichoke, jicama, komatsuna, manioc, mooli, parsnip, radish, rutabaga, salsify, scorzonera, skirret, swede, sweet potato, taro, tigernut, turnip, ulluco, water chestnut, wasabi, yacón, yam	
22. Bulb and stem vegetables	Asparagus, cardoon, celeriac, celery, elephant garlic, Florence fennel, garlic, kohlrabi, kurrat, leek, lotus root, nopal, onion, Prussian asparagus, shallot, spring onion, welsh onion	
23. Flowers and flower buds	Artichoke, broccoflower, broccoli, broccoli romanesco, cauliflower, Chinese broccoli, courgette flowers, squash blossoms, wild broccoli	
29. Mushrooms, fungi and yeasts	Blewit, boletus, chanterelle, Gypsy mushroom, hedgehog mushroom, lion's mane mushroom, matsutake, morels, saffron milk cap, trompette du mort, truffles	
30. Sea vegetables	Aonori, carola, dabberlocks, dulce, hijiki, kombu, laver, mozuku, nori, ogonori, sea grape, sea kale, sea lettuce, wakame	
34. Vegetable oils	Sesame oil, soya oil, sunflower oil	
35. Fermented, salted, or acidified vegetables or fruit	Olives, pickles, sauerkraut, soy sauce, tempeh	
36. Mixed salads	Potato salad	
37. Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	Canned bottled products, falafel, pesto, tahini, tapenade, tomato sauce, tomato soup, vegetables in oil, vegetable soups	
38. Dehydrated vegetables and fruit	Dehydrated vegetable soups, dried fruits, porcini mushrooms, (sun)-dried tomatoes	

Additional categories added by the contractor

other	Vegetables non specified
1/other	Fruits and/or vegetables non specified
2. **Objectives and Research Questions**

Following the objectives expressed in the tender specifications, the present study aimed (i) to carry out extensive literature searches, (ii) to provide summary reports on the currently available information, and (iii) to provide EFSA with a set of relevant evidence addressing points as detailed in the tender specifications.

Specific project tasks were formulated for research areas A, B, C, and D that were indicated in the tender specifications. Tasks within research areas A, B, and C were addressed by carrying out structured literature searches that were based on specific research questions (RQs). The collective dataset obtained via the searches was then used for addressing the tasks within research area D.

Area A. Identification and characterization of biological hazards associated with food of non-animal origin (FoNAO) with high water content.

Project tasks within research area A were to identify and characterize pathogenic bacteria, viruses, and parasites associated with FoNAO with high water content. This involved exploring the prevalence of the biological hazards found in association with FoNAO with high water content and collecting data on relevant food-borne outbreaks.

Associated RQs:
- Which bacteria, viruses, and parasites, have been found associated with the food items addressed (FoNAO with high water content)?
- What is the prevalence of the hazards identified in the food commodities?
- What are the growth characteristics/requirements of the hazards identified and what is their persistence under various conditions prevailing in the food commodities?
- What is the colonisation/adhesion/internalization behaviour of the hazards identified in food of non-animal origin?
- Which outbreaks have been reported or otherwise addressed concerning the individual pathogens in association with the individual food commodities (FoNAO with high water content)?

Area B. Production methods (farming and processing including post-harvest practices such as cutting, washing and packaging) of FoNAO with high water content and information on trade volumes from third countries to the European Union.

The primary task within research area B was to identify FoNAO with high water content that were associated with biological pathogen contamination. Then, critical steps in the production line of these FoNAO regarding contamination with biological hazards had to be investigated. In addition, data on trade volumes of the food items from third countries to the European Union had to be provided.

Associated RQs:
- Which food items (FoNAO with high water content) have been found associated with microbiological hazards regarding contamination by pathogenic bacteria, viruses or parasites?
- Which procedures are used for the production and processing of the food items identified, including agricultural practices and post-harvest procedures?
- What are the critical steps in the production and processing procedures that are linked to risks of biological contamination?
- What are the trade volumes of the food items identified from third countries to the European Union?
Area C. Consumption of FoNAO with high water content associated with biological pathogen contamination.

The principal project task within research area C was to collect consumption data of FoNAO with high water content, including, where possible, data on the age of consumers, amounts consumed (grams/day), and how the food is consumed (e.g. raw, cooked, meals).

Associated RQs:

- What amounts of the food items identified are consumed in countries of the European Union?
- When are the food items consumed (time of day, meal)?
- Where are the food items consumed (at home or in the public)?
- Which population groups (especially age groups) consume the food items identified and in what amounts?

Area D. Food/pathogen combinations that are most often linked to food borne disease originating from FoNAO with high water content.

The major project task within area D was to form a synopsis of the data retrieved in tasks 1 to 3, involving that relevant information was extracted that allowed evaluating the most important food/pathogen combinations regarding criteria such as pathogen prevalence, outbreak data, risks introduced in food production, and consumption modes.

Evaluation of food/pathogen combinations should consider the following aspects:

- What are the criteria that define the relevance of the food/pathogen combinations identified as being most critical regarding human health issues?
- Which food/pathogen combinations can be identified as most critical in EU versus non-EU countries?
- How do the hazards identified affect human health?
- What are the outbreak incidences specifically for the set of hazards identified in combination with the set of food items identified?
3. Materials and Methods

3.1. Overall research strategy

The overall research strategy followed within the present study involved that a series of literature searches were performed, addressing the research questions that were defined in correspondence with the thematic areas given in the tender specifications (see chapter 2). Thus, the literature searches were aimed at identifying and characterizing biological hazards, exploring production methods, and collecting consumption data.

The individual searches performed were inter-related and built upon each other. Within each thematic area, a set of research questions formed the basis of the specific search strategy applied. The research questions determined the key words in the bibliographic searches, and they were also used to retrieve information by scanning the grey literature sources and by using various ad-hoc strategies. Finally, the research questions set the frame for the organization of the structured tables in the appendix section (Tables 12 to 35) presenting the results of the searches.

Specific search strategies were developed for the thematic areas A, B, and C (see below). Each search strategy was set up as a comprehensive overall plan for the entire search process, as defined in Zins (2000). The various searches consisted each of a sequence of interrelated actions, which determined the course of the searches and thus affected the final search results. Essential steps in the search process were to ask the right questions, then to proceed with the search while inferring optional outcomes of alternative actions, to evaluate the search results, and to eventually repeat and modify the process (Zins, 2000). This means, for instance, that the lists of key words related to the food commodities and microbiological hazards addressed were defined during the course of the searches and were continuously extended to address the research questions as specifically as possible.

Searches within the research areas A, B, and C were carried out in bibliographic databases by using the systematic review methodology as well as via directed searches performed in various grey literature sources. Research area D was addressed by evaluating the collective search results as described in section 3.6. Thus, a synopsis of the data retrieved via multiple searches was formed as the final outcome of the study.

3.2. Extensive literature review

The principles of the “systematic literature review” (EFSA, 2010) were applied to fulfil the project tasks formulated for research areas A, B, and C. This involved that a protocol was developed a priori that defined in advance the research question and scope and the search methods, including the eligibility criteria for the inclusion of studies into the review. Thereby, biases in the selection of research studies were reduced and reproducibility of the search strategy was granted. Figure 1 illustrates the various steps of the reviewing process, comprising literature searches and screening procedures as well as data extraction and documentation.
3.2.1. Searches in bibliographic databases and other literature sources

Depending on the research question, one or several bibliographic databases were used for searching scientific literature, as indicated specifically for the individual research areas (Chapter 3.3 to 3.5).

In addition, hand searching of relevant sources was performed for the various research areas concerned, including the following strategies:

- screening of websites of relevant organizations (e.g. ECDC, CDC, WHO, ProChildren Project – see individual search descriptions for details)
- checking the tables of content of relevant journals or special issues of specific journals
- obtaining “related articles” suggested during searches in PubMed/Web of Knowledge
- searching relevant literature cited in comprehensive review articles in the respective fields
- including relevant articles found during other bibliographic searches in the collection of citations used in the abstract screening (e.g., articles about outbreaks found during the search for pathogen enumeration)

Searches were performed on a worldwide level, except for consumption data, which were retrieved only from EU countries. In all searches, publications from the last ten years were considered as
Food of plant origin with high water content

relevant for the present study. The cut-off date for the searches, when no more literature entries were added to the database, was set with 31 October 2012.

3.2.2. Screening abstracts for relevance

A relevance screening tool consisting of short series of questions was applied to quickly determine if an article or other literature source was relevant to answer the research question. Hence, decisions about inclusion or exclusion of articles were made according to a pre-determined method. In the first reviewing process, only the titles and abstracts of the papers or other literature entries retrieved were screened. Separate relevance screening tools were designed for the various search strategies relating to research questions in topic (A) to (D).

The relevance screening was applied to data entries collected in a Zotero 3.0.8. database (http://www.zotero.org/; Roy Rosenzweig Center for History and New Media of the George Mason University, Virginia). Corresponding to the series of questions defined in the screening tool, number codes (“tags”) were assigned to the literature entries. Subsequently, the entries were sorted according to the codes applied, allowing distinguishing relevant from non-relevant entries and collecting entries for hand-searching or further screening of the full texts.

In the screenings performed for the searches A to C, specific codes were given according to the various exclusion criteria, and a specific code was applied for inclusion regarding the research question considered. In addition, a specific code was given if inclusion or exclusion could not be decided based on the abstract, so that full text screening or discussion in the panel were necessary.

As in some cases the articles retrieved were appropriate (also) for another research question than the one actually considered, additional codes were given for collecting these references in a hand-searching pool. This was done to ensure that the information obtained was not lost, even if eventually the same reference was also retrieved via specific bibliographic searches regarding the respective research question. In particular, review articles, which often referred to more than one research question, were collected in the hand searching pools. While review articles obtained via the various searches were not used for direct data extraction, they were used to retrieve the original articles containing relevant data.

Prior to running the reviewing process, the screening tool was validated for reliability and reproducibility by having two reviewers independently apply the same selection criteria to a randomly selected set of at least twenty studies. Eventually, the selection tool was further modified in order to yield reproducible and reliable results, and was then tested again as described above.

3.2.3. Quality assessment

Full text versions of all citations identified as relevant in the first reviewing process were obtained (as far as available to the contractor) and subjected to a quality assessment step, aimed at excluding studies whose quality was too low to provide meaningful data to address the research question. A pre-determined method was established for assessing the eligibility and quality of the studies collected, and only studies that were of appropriate quality were used for data extraction.

The quality assessment tools were used to explore the study quality. It was checked whether the study addressed the research question (e.g., microbiological hazard), if the study outcome (e.g., hazard identification or hazard characterization) was meaningful and whether the data presentation was conclusive. Moreover, the suitability of the study design was addressed. Hence, it was checked
whether the type of study was appropriate to yield meaningful information for the present extensive literature review.

As in the first reviewing process, two reviewers performed a validation step by testing the quality assessment tool on a set of randomly selected studies prior to the assessment process.

Two reviewers assessed the quality of each study in both reviewing processes, with one reviewer being primarily responsible for the screening and the other reviewer holding controlling function. Any disagreements that arose (in spite of the prior validation step) were resolved in consensus among all reviewers or (if this was not possible) were finally resolved by the project lead.

3.2.4. Data extraction

Data from all articles considered relevant in the full text quality check were extracted into multiple tables set up in Excel data sheets addressing the thematic areas A to C. The format of the Excel database was defined *a priori*. Basically, it was designed for assembling the research findings (results), which were then transferred to the results section in the present report document. Thus, following the eligibility screenings executed on full texts, data from a final set of literature that fulfilled all selection criteria were extracted into structured tables.

Descriptive data on the studies and on the search process were collected from the Zotero database by sorting the literature entries according to the codes (corresponding to the various inclusion and exclusion criteria) applied in the screenings. These data were filled into flow diagrams for documentation of the various searches performed.

Zotero is fully compatible with the EndNote bibliographic software system, and thus allowed that the comprehensive reference lists were finally exported into the EndNote format as requested in the tender specifications.
3.3. **Search strategy used within thematic area (A) Microbiological hazards**

The search strategy employed within thematic area (A) was built on the four components “hazard identification” (A1), “prevalence” (A2), “food/pathogen interaction” (A3), and “hazard characterization” (A4), corresponding to four individual searches (see below). In the process of the searches, a keyword-list of food items (FoNAO with high water content) was set up, which was used for designing the search strategies applied within the various research areas.

The searches were performed independently in three databases, i.e.

- PubMed/Medline
- Web of Knowledge (WoK)
- CAB Abstracts

WoK was used because it contains information that is carefully evaluated and selected, and thus was expected to deliver access to the most relevant resources. In most cases, WoK was used in combination with the PubMed database, which allowed accessing citations and abstracts for biomedical literature from MEDLINE, besides containing additional life science journals. In search A3, however, CAB was selected as a complementary database to WoK because it covers the applied life sciences including agriculture, environment, veterinary sciences, food science and nutrition, and was thus expected to provide information on pathogen behaviour in a varied context. Searches were performed within the last 10 years.

The initial search for identifying biological hazards (A1) was performed independently for FoNAO with high and low water content (addressed in Lot 1 and Lot 2 of the assignment, respectively). However, since many of the publications retrieved contained information on multiple food items corresponding to both lots, and hence were included in the relevance and full text screening for both lots, this strategy was changed in the following searches. Thus, for convenience all subsequent searches were carried out for the collective food commodities listed for Lot 1 and Lot 2, so that publications relating to both lots could be evaluated during the same screening procedure. This enabled us to efficiently review publications dealing with multiple food items with both high and low water content. The information extracted in the various searches (for areas A2 to A3) was assigned to either Lot 1 or Lot 2 during the relevance check. Hence, the data were used for constructing separate tables for Lot 1 and Lot 2, dealing exclusively with FoNAO of high and low water content, respectively.

3.3.1. **Development of a keyword-list of food items (FoNAO with high water content)**

Based on the FoNAO list provided by EFSA (see chapter 1), a list of keywords of food items identified as relevant regarding issues of biological contamination was developed. Results from the various searches within area A (see below) were used for generating the keyword list, which was continuously extended during the following searches. The keywords compiled comprised general categories, sub-categories and a detailed list of food items, and were subsequently used in the various bibliographic and other searches throughout the project.
Table 2: List of food commodities (FoNAO with high water content) for the use as key words in bibliographic searches, where either categories, sub-categories or individual commodities (detailed list of commodities) were applied.

Categories
- fruits OR vegetables OR produce OR juices OR herbs

Sub-categories
- fruits OR vegetables OR produce OR soft fruits OR strawberries OR raspberries OR berries OR citrus fruits OR apples OR stone fruit OR tropical fruit OR melons OR fruit mixes OR tomatoes OR peppers OR aubergines OR gourds OR squashes OR pods OR legumes OR leaves OR leafy greens OR salads OR herbs OR mixed fresh-cut salad OR roots OR tuberous vegetables OR carrots OR potatoes OR bulb vegetables OR stem vegetables OR cruciferous vegetables OR mushrooms OR sea vegetables OR beverages OR fermented vegetables OR fermented fruits OR salted vegetables OR acidified fruits OR acidified vegetables OR mixed salads OR products OR dressings OR purees OR soups OR pastes OR dried fruits OR dried vegetables OR food supplements OR plant extracts

Detailed list of commodities
- fruits OR vegetables OR produce
 - OR soft fruits OR berries OR raspberries OR strawberries OR Acai berries OR barberry OR bearberries OR bilberry OR blackberries OR blackcurrant blueberries OR boysenberry OR chokeberries OR chokecherry OR cloudberry OR cranberries OR crowberry OR elderberries OR goji berries OR gooseberries OR huckleberries OR juneberry OR juniper berries OR lingonberries OR loganberries OR marionberries OR mulberries OR nannyberry OR ollaliberries OR oregon grape OR oregano OR red currants OR grapes OR salmonberry OR sea-buckthorn berries OR serviceberries OR tayberries
 - OR citrus fruit OR citrus OR grapefruit OR lemon OR lime OR mandarin OR tangerine OR orange
 - OR apples OR hawthorn OR loquat OR medlar OR pears OR quince
 - OR stone fruit OR apricots OR asian plums OR cherries OR elderberry OR European plums OR nectarines OR peaches OR plums
 - OR tropical fruit OR asian palmya OR palm OR avocado OR baobab OR breadfruit OR canistel OR coconut OR date OR dragon fruit OR durian OR guava OR figs OR jackfruit OR jujube OR kiwifruit OR langsat OR longan OR longkong OR lychee OR mafai OR mango OR mangosteen OR maprang OR passion fruit OR papaya OR pineapple OR pitaya OR pomegranate OR rambutan OR roselle OR santol OR sapodilla OR sourpome OR star apple OR starfruit OR sugar apple OR tamarind OR tangerine OR velvet apple
 - OR melon OR bitter melon OR horned melon OR muskmelon OR cantaloupe OR wintermelon OR galia OR watermelon
 - OR fruit mixes OR cut fruit OR fruit salad
 - OR tomatoes
 - OR aubergines OR bell pepper OR peppers OR sweet pepper
 - OR squash OR gourds OR pepper OR buttercup squash OR button squash OR cucumber OR green spaghetti squash OR hubbard squash OR ivy gourd OR kabocha OR marrow OR muscat OR pepita squash OR pumpkin OR red hokkaido OR tinda OR zucchini
 - OR fresh pods OR legumes OR grains OR azuki bean OR black-eyed pea OR chickpea OR common bean OR dolichos bean OR drumstick OR fava bean OR green bean OR horse gram OR indian pea OR lentil OR lima bean OR moth bean OR mung bean OR okra OR pea OR pigeon pea OR ricebean OR snap pea OR snow pea OR soybean OR sweet corn OR tepary bean OR urad bean OR velvet bean OR winged bean OR yardlong bean
 - OR leafy greens OR salad OR arugula OR beet greens OR bitterleaf OR bok choy OR cabbage OR celery OR celtuce OR ceylon spinach OR chard OR chicory OR Chinese cabbage OR collard greens OR coleslaw OR cress OR endive OR epazote OR garden cress OR garden rocket OR komatsuna OR lamb's lettuce OR land cress OR lettuce OR Mizuna greens OR mustard OR New Zealand spinach OR pak choy OR radicchio OR rapini OR spinach OR taisoi OR watercress OR water spinach OR wrapped heart mustard cabbage
 - OR fresh herbs OR herbs OR basil OR cilantro OR celery OR coriander OR dill OR fresh tea OR marjoram OR mint OR parsley OR peppermint OR rosemary OR sage OR thyme
 - OR mixed fresh-cut salad OR mixed salad OR fresh-cut salad OR brussel sprouts OR brussels sprouts OR kale OR cabbage

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
3.3.2. Search regarding “hazard identification” (A1)

The aim of search A1 was to establish a comprehensive list of pathogens (bacteria, viruses, and parasites) that have been found associated with FoNAO with high water content. Bibliographic searches were performed in the PubMed and WoK bibliographic databases by using eight different search strings (Table 3). Since search A1 was performed separately for FoNAO of high water content (addressed in the present report), Table 3 gives the search results (hits) in PubMed and WoK, respectively, referring only to these commodities. In addition, the numbers of merged hits from both databases (without duplicates) are shown.

By introducing exclusion criteria via the Boolean operator “not”, search results in both WoK and PubMed were narrowed down to those food items that were of non-animal origin (see Table 3). It was verified that no hits were missed that related to food items of both animal and non-animal origin.

In addition to the use of search engines as shown below, hand searching was performed on “related articles” listed with publications retrieved via PubMed. All articles within the Internet Journal of Food Safety (http://internetjfs.org/currentissues.html) available online were screened by title.

All hits retrieved via bibliographic searches and hand searching were subjected to relevance and (if selected) to subsequent full text screening by using the respective tools presented in Figures 2 and 3.

In the relevance screening, it was checked if the publications retrieved referred to either Lot 1 or Lot 2 (or to both lots), even though the searches were performed separately for both lots. Thus, the publications could be assigned codes for either of the lots or for both lots.
Table 3: Search A1 (hazard identification) for FoNAO with high water content in two bibliographic databases.

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	WoK Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WoK)
#1	microbiological quality OR microbial quality [Title] AND (food Items) ** [Topic] NOT (a) [all fields]; from 2002-2012	microbiological quality OR microbial quality [Title] AND (food Items) ** [Topic] NOT (a) [Topic]; from 2002-2012	31	261
#2	*** examination [Title] AND (food items) **[all fields] NOT (a) [all fields]; from 2002-2012	*** examination [Title] AND (food items) **[Topic] NOT (a) [Topic]; from 2002-2012	2	8
#3	***survey [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***survey [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	3	19
#4	***contamination [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***contamination [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	8	101
#5	***risk [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***risk [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	8	48
#6	***hazard [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***hazard [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	1	13
#7	***assessment [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***assessment [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	0	84
#8	***safety [Title] AND (food items) ** [all fields] NOT (a) [all fields]; from 2002-2012	***safety [Title] AND (food items) ** [Topic] NOT (a) [Topic]; from 2002-2012	7	50

** categories in the list of FoNAO with high water content
*** microbial OR microbiological OR bacterial OR bacteriological
(a) animal OR chicken OR egg OR poultry OR pork OR beef OR cattle OR milk OR pork OR cheese OR seafood OR mussels
Table

Question	Code	Answer
Do we understand the article language?	10	We do not comprehend the article language.
Is the article about a food item of plant origin?	20	The article is not about a food item of plant origin.
Is the article about biological hazards?	30	The article is not about biological hazards.
To which research field in Lot 1 does the article fit?	40	The article can be used for Lot1, research area A.
	41	The article can be used for Lot1, research area B.
	42	The article can be used for Lot1, research area C.
	43	The article can be used for Lot1, research area D.
To which research field in Lot 2 does the article fit?	50	The article can be used for Lot2 research area A.
	51	The article can be used for Lot2 research area B.
	52	The article can be used for Lot2 research area C.
	53	The article can be used for Lot2 research area D.
Should the inclusion of the article be discussed in the panel?	60	The inclusion will be further discussed in the panel.
Should the full text be checked for details?	70	The full text has to be checked for clarification.

Figure 2: Relevance screening tool for search A1 Hazard identification.

- Data appropriate for insertion in results table.
- No pathogen incidence.
- No (relevant) pathogens analysed according to list of pathogens\(^1\).
- Study type not appropriate
 - (e.g., laboratory inoculation study, review\(^2\), statistical modelling study)
- Weak methodology or data presentation insufficient
 - (e.g., inconsistent data, analysis of single samples)

Figure 3: Full text screening tool for search A1 Hazard identification.

\(^1\) This list was based on the searches “pathogen identification” and “pathogen prevalence” and includes the pathogens shown in Tables 12 to 14 in Appendix A.

\(^2\) Review articles were used to collect additional relevant articles that were not found via the bibliographic search, but they were not used for direct data extraction.
3.3.3. Search regarding “pathogen prevalence” (A2)

Search A2 was aimed at obtaining prevalence data of the pathogens identified in search A1, considering the complete list of food commodities given in Table 2. Other than in search A1, key words of FoNAO of both high and low water content were included in search A2 and all following searches. This was done to avoid redundancy in the search results, which often referred to FoNAO of both high and low water content (corresponding to Lot 1 and Lot 2 of the assignment). Search results were allocated to either Lot 1 or Lot 2 during the subsequent relevance check. Hence, Tables 4 and 5 show the numbers of hits referring to FoNAO of high and low water content, respectively. As for area A1, bibliographic searches within area A2 were carried out in the PubMed and Web of Knowledge databases. Search results from both databases were combined for each pathogen and duplicates were removed.

Depending on the pathogen concerned, some search strings contained exclusion criteria via the Boolean operator “not”. Search results were narrowed down to those relating to food items that were of non-animal origin in searches relating to Campylobacter sp., Listeria sp., Shigella spp. and Salmonella spp., which are commonly associated with animal-derived food commodities. In searches relating to Staphylococcus aureus, because this pathogen is often reported in a clinical context, results were excluded that referred to the respective pathogens in a clinical environment. Regarding searches involving E. coli, both exclusion criteria were used because of strong associations of pathogenic E. coli with food of animal origin and because of its high clinical relevance. It was verified that no relevant hits were missed by introducing the exclusion criteria (see Table 4, Table 5).

Table 4: Search A2, prevalence and enumeration data of pathogenic bacteria associated with FoNAO with high and low water content in two bibliographic databases.

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	WoK Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WoK)
#1	Food items A, B [all fields]	Food items A, B [topic]	53 (A)	104 (A)
	AND Bacillus cereus [all fields]	AND Bacillus cereus [topic]	40 (B)	89 (B)
	AND prevalence [all fields]; from 2002-2012	AND prevalence [topic]; from 2002-2012		
#2	Food items A, B [all fields]	Food items A, B [topic]	49 (A)	40 (A)
	AND Clostridium botulinum [all fields] AND prevalence [all fields]; from 2002-2012	AND Clostridium botulinum [topic] AND prevalence [topic]; from 2002-2012	23 (B)	29 (B)
#3	Food items A, B [all fields]	Food items A,B [topic]	53 (A)	75 (A)
	AND Clostridium perfringens [all fields] AND prevalence [all fields]; from 2002-2012	AND Clostridium perfringens [topic] AND prevalence [topic]; from 2002-2012	23 (B)	39 (B)
#4	Food items A, B [all fields]	Food items A, B [topic]	52 (A)	63 (A)
	AND Aeromonas [all fields]	AND Aeromonas [topic]	23 (B)	29 (B)
	AND prevalence [all fields]; from 2002-2012	AND prevalence [topic]; from 2002-2012		
#5	Food items A, B [all fields]	Food items A, B [topic]	94 (A)	82 (A)
	AND Campylobacter [all fields]	AND Campylobacter [topic]	18 (B)	36 (B)
	AND prevalence [all fields]	AND prevalence [topic]		
	NOT (a) [all fields]; from 2002-2012	NOT (a) [topic]; from 2002-2012		
Search strings

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	WoK Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WoK)
#6	Food items A, B [all fields] AND Escherichia [all fields] AND prevalence [all fields] NOT (a),(b) [all fields]; from 2002-2012	Food items A, B [topic] AND Escherichia [topic] AND prevalence [topic] NOT (a),(b) [topic]; from 2002-2012	205 (A)	192 (A)
			52 (B)	99 (B)
#7	AND (Enterobacter sakazakii OR Cronobacter) [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND (Enterobacter sakazakii OR Cronobacter) [topic] AND prevalence [topic]; from 2002-2012	26 (A)	33 (A)
			79 (B)	30 (B)
#8	Food item A, B [all fields] AND Listeria [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 1992-2012	Food items A, B [topic] AND Listeria [topic] AND prevalence [topic] NOT (a) [topic]; from 1992-2012	71 (A)	147 (A)
			34 (B)	120 (B)
#9	Food item A, B [all fields] AND Salmonella [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 2002-2012	Food items A, B [topic] AND Salmonella [topic] AND prevalence [topic] NOT (a) [topic]; from 2002-2012	315 (A)	231 (A)
			347 (B)	104 (B)
#10	Food item A, B [all fields] AND Shigella [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 2002-2012	Food items A, B [topic] AND Shigella [topic] AND prevalence [topic] NOT (a) [topic]; from 2002-2012	57 (A)	62 (A)
			38 (B)	24 (B)
#11	Food item A, B AND Staphylococcus [all fields] AND prevalence [all fields] NOT (b) [all fields]; from 2002-2012	Food items A, B [topic] AND Staphylococcus [topic] AND prevalence [topic] NOT (b) [topic]; from 2002-2012	206 (A)	152 (A)
			102 (B)	114 (B)
#12	Food item A, B AND vibrio [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND Vibrio [topic] AND prevalence [topic]; from 2002-2012	140 (A)	90 (A)
			34 (B)	56 (B)
#13	Food item A, B [all fields] AND Yersinia [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND Yersinia [topic] AND prevalence [topic]; from 2002-2012	171 (A)	100 (A)
			35 (B)	64 (B)

A Key words (detailed list) of FoNAO with high water content (Lot 1)
B Key words (detailed list) of FoNAO with low water content (Lot 2). For details see Lot 2 report.
(a) “(animal OR chicken OR egg OR poultry OR pork OR beef OR cattle OR milk OR pork OR cheese OR seafood OR mussels)”
(b) “(patient OR hospital OR resistance OR infection)”

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 5: Search A2/prevalence and enumeration data of viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	WoK Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WoK)
# 1	Food item A [title], B [all fields] AND (aichi virus OR astrovirus OR coronavirus OR enteric adenovirus OR rotavirus) [all fields] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND (aichi virus OR astrovirus OR coronavirus OR enteric adenovirus OR rotavirus) [topic] AND prevalence [topic]; from 2002-2012;	216 (A)	83 (B)
# 2	Food item A [title], B [all fields] AND (norovirus OR norwalk OR norwalk-like virus OR calicivirus OR sapovirus) [all fields] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND (norovirus OR norwalk OR norwalk-like virus OR calicivirus OR sapovirus) [topic] AND prevalence [topic]; from 2002-2012;	250 (A)	74 (B)
# 3	Food item A, B [all fields] AND (hepatitis A OR hepatitis E) [all fields] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND hepatitis A OR hepatitis E [topic] AND prevalence [topic]; from 2002-2012;	206 (A)	90 (B)
# 4	Food item A,B [all fields] AND cyclospora [all fields]; from 2002-2012;	Food item A,B [topic] AND cyclospora [topic]; from 2002-2012;	62 (A)	21 (B)
# 5	Food item A,B [title] AND cryptosporidium [all fields] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND cryptosporidium [topic] AND prevalence [topic]; from 2002-2012;	190 (A)	50 (B)
# 6	Food item A,B [title] AND giardia [all fields] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND giardia [topic] AND prevalence [topic]; from 2002-2012;	141 (A)	31 (B)
# 7	Food item A,B [all fields] AND helminth [title] AND prevalence [all fields]; from 2002-2012;	Food item A,B [topic] AND helminth [topic] AND prevalence [topic]; from 2002-2012;	24 (A)	8 (B)

A Key words of FoNAO (detailed list) with high water content (Lot 1)
B Key words of FoNAO (detailed list) with low water content (Lot 2). For details see Lot 2 report.

Additional hand searching performed within search A2 included the 2009 special issue on food poisoning from raw fruit and vegetables in Epidemiology and Infection (Vol. 137, Issue 3), which was screened for relevant papers. Review articles that had been collected in the hand-searching pool were also screened for relevant articles (Duffy and Moriarty, 2003; Shields and Olson, 2003; Dawson, 2005; Crépet et al., 2007; Moore et al., 2007; Doyle and Erickson, 2008; Erickson, 2010; Olaimat and Holley, 2012; Zweifel and Stephan, 2012; Baert et al., 2011; Bari et al., 2011).

All hits were subjected to relevance screening by using the tool given below (Figure 4). Articles retrieved for full-text screening were subsequently checked by using the respective tool (Figure 5).
Question 1 Do we understand the article language? 10 We do not comprehend the article language.

Question 2 Is the article about a FoNAO? 20 The article is not about a FoNAO.

Question 3 Is the article about the prevalence of the searched biological hazard on a FoNAO with high water content (LOT1)? 30 The article is about the prevalence of the searched pathogen on a FoNAO with high water content (Lot1).

Question 4 Is the article about the prevalence of the searched biological hazard on a FoNAO with low water content (LOT2)? 40 The article is about the prevalence of the searched pathogen on a FoNAO with low water content (Lot2).

Question 5 Should the inclusion of the article be discussed in the panel? 50 The inclusion will be further discussed.

Question 6 Should the full text be checked for details? 60 The full text has to be checked for clarification.

Figure 4: Relevance screening tool for search A2 Prevalence and enumeration data.

- Data appropriate for insertion in results table.
- No pathogen incidence.
- No (relevant) pathogens analysed according to list of pathogens\(^1\).
- Study type not appropriate (e.g. laboratory inoculation study, review\(^2\), statistical modelling study)
- Weak methodology or data presentation insufficient (e.g., inconsistent data, analysis of single samples)

\(^1\) This list was based on the searches “pathogen identification” and “pathogen prevalence” and includes the pathogens shown in Tables 12 to 14 in Appendix A.

\(^2\) Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.

Figure 5: Full text screening tool for search A2 Prevalence and enumeration data.
3.3.4. Search regarding food/pathogen interaction (A3)

Search A3 was aimed at collecting data on the persistence and colonisation behaviour of the pathogens in the food commodities given above. Thus, besides exploring the growth characteristics/requirements of the hazards identified, the colonisation/adhesion/internalization behaviour in FoNAO with high water content and relevant mitigation options were addressed. Bibliographic searches were carried out in the WoK and CAB Abstracts databases.

Table 6 presents the strategy used in search A3/interaction of bacteria, viruses and parasites with FoNAO. The searches were performed for both FoNAO of high and low water content. In the subsequent relevance screening, articles were assigned to either Lot 1 or Lot 2 according to the water content of the food items addressed. Results from both bibliographic databases were combined and duplicates removed.

Table 6: Search A3/interaction of pathogenic bacteria, viruses and parasites with FoNAO with high and low water content in two bibliographic databases.

Pathogen	Search strategy	Hits (WoK)	Hits (CAB Abstracts)
Bacteria	A) and B) [title] AND Bacillus cereus or Clostridium botulinum or Clostridium perfringens or Aeromonas or Campylobacter or Escherichia coli O157:H7 or Shiga-toxin producing E. coli or STEC or Enteroaggregative E. coli or EAEC or enterotoxigenic E. coli or ETEC or Enterobacter sakazakii or Cronobacter or Listeria or Salmonella [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonisation or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonisation or plant colonization [title] Years 2002-2012 (current)	864	441
Viruses	A) and B) [title] AND Calicivirus or Norovirus or Norwalk or Norwalk-like Virus or Sapovirus or Aichi virus or Astrovirus or Coronavirus or Enteric adenovirus or Rotavirus or Hepatitis A or Hepatitis E [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonisation or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonisation or plant colonization [title] Years 2002-2012 (current)	44	11
Pathogen | Search strategy | Hits (WoK) | Hits (CAB Abstracts)
--- | --- | --- | ---
Parasites |) and B) [title] AND Protozoan parasite OR Cyclospora OR Cryptosporidium OR Giardia OR Isospora OR Helminth parasite OR parasitic worm OR Ancylostoma or Necator americanus OR hookworm OR Ascaris OR Hymenolepis OR Strongyloides stercoralis OR Taenia OR Trichinella OR Trichuris [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonisation or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonization or plant colonization [title] Years 2002-2012 (current) | 23 | 12

A Key words of FoNAO (detailed list) with high water content (Lot 1)
B Key words of FoNAO (detailed list) with low water content (Lot 2). For details see Lot 2 report.

All hits were subjected to relevance screening by using the tool given below (Figure 6). Articles retrieved for full-text screening were subsequently checked by using the respective tool (Figure 7).

Question	Code	Answer
Question 1 Do we comprehend the article language?	10	We do not comprehend the article language.
Question 2 Is the article about a FoNAO?	20	The main subject of the article is not about a FoNAO from Lot1 or Lot2.
Question 3 Is the article about a pathogen?	30	The article is not about a pathogen.
Question 4 Aspect of pathogen enumeration on a FoNAO of Lot1?	40	The article is about survival, growth or persistence on a FoNAO of Lot1.
	41	The article is about attachment, adhesion or internalization to a FoNAO of Lot1.
	42	The article is about mitigation of a pathogen on a FoNAO of Lot1.
	43	The article is about another aspect on a pathogen on a FoNAO of Lot1.
	44	The article is about prevalence of a pathogen on a FoNAO of Lot1.
	45	The article fits into another research area (Lot1).
Question 5 Aspect of pathogen enumeration on a FoNAO of Lot2?	50	The article is about survival, growth or persistence on a FoNAO of Lot2.
	51	The article is about attachment, adhesion or internalization to a FoNAO of Lot2.
	52	The article is about mitigation of a pathogen on a FoNAO of Lot2.
	53	The article is about another aspect on a pathogen on a FoNAO of Lot2.
The article is about prevalence of a pathogen on a FoNAO of Lot2.
The article fits into another research area (Lot2).
Inclusion of the article will be discussed in the panel.
The full text is required to find out about the contents.

Figure 6: Relevance screening tool for search A3 Food/pathogen interaction.

- Data inserted in table
- Study type not appropriate (e.g. laboratory inoculation study, review*, statistical modelling study)
- Weak methodology or data presentation

* Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.

Figure 7: Full text screening tool for search A3 Food/pathogen interaction.
3.3.5. Search regarding “hazard characterization” (A4)

The aim of search A4 was to collect data on food-borne outbreaks that could be traced back to the consumption of FoNAO with high water content.

Besides performing bibliographic searches (Table 7) using two different search engines (WoK, PubMed), information was collected from grey literature, including data from US multistate outbreaks of the Center of Disease Control (CDC) USA (2006-2012) and from the European Centre for Disease Prevention and Control (ECDC) reports (2009, 2010). Searches were performed simultaneously for FoNAO with low and high water content. During the relevance screening, articles were allocated to Lot1 or Lot2 depending on the water content of the food items addressed.

Table 7: Search A4/Outbreaks caused by food borne pathogens related to FoNAO with high and low water content in two bibliographic databases.

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	WoK Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WOK)
# 1 Outbreak [Title] OR food-borne outbreak [Title/Abstract] OR foodborne outbreak [Title/Abstract] OR food borne outbreak [Title/Abstract] AND A) B) [title]; from 2002-2012	Outbreak [title] OR food-borne outbreak [topic] OR foodborne outbreak [topic] OR food borne outbreak [topic] AND A) B) [title]; from 2002-2012	778 (A)	308 (A)	
			283 (B)	63 (B)
			(total 823)	(total 336)

A Key words of FoNAO (detailed list) with high water content (Lot 1)
B Key words of FoNAO (detailed list) with low water content (Lot 2). For details see Lot 2 report.

Furthermore, review articles were screened for additional references describing food-borne outbreaks related to FoNAO (Tribst et al., 2009; Olaimat and Holley, 2012; Pexara et al., 2012; Zweifel and Stephan, 2012).

The relevance and full text screening tools applied within search A4 are presented in Figures 8 and 9.

Question	Code	Answer
Question 1 Do we understand the article language?	10	We do not comprehend the article language.
Question 2 Is the article about a FoNAO?	20	The article is not about a FoNAO and/or source of outbreak has not been identified.
Question 3 Does the article describe a food-borne outbreak between 2002 and 2012?	30	The article does not describe a food-borne outbreak between 2002 and 2012.
Question 4 Is the food-borne outbreak already listed?	31	The outbreak has been already listed due to information extracted from grey literature.
Question 5 To which research field in LOT1 does the article fit?	40	The article can be used for Lot1, research area A4 (outbreaks).
Question 6	41	The article can be used for Lot1, research area A2 (prevalence).
Question 7	42	The article can be used for Lot1, other research areas.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food of plant origin with high water content

Question 6	To which research field in LOT2 does the article fit?	50	The article can be used for Lot2 research area A4 (outbreaks).
		51	The article can be used for Lot2 research area A2 (prevalence).
		52	The article can be used for Lot2, other research areas.
Question 7	Should the inclusion of the article be discussed in the panel?	60	The inclusion will be further discussed in the panel.
Question 8	Should the full text be checked for details?	70	The full text has to be checked for clarification.
Question 9	Is the article a review article in which outbreak data might be found?	80	The article is a review and outbreak data might be extracted in a hand searching approach.

Figure 8: Relevance screening tool for search A4 Hazard characterization (outbreaks).

- Data appropriate for insertion in table
- Outbreak before 2002
- Not about a FoNAO
- Study type not appropriate (e.g. review*, statistical modelling, laboratory study, results revised**)
- Weak methodology or data presentation insufficient (e.g., inconsistent or missing data)
- Outbreak already documented (article added as further reference)
- Food source or pathogen not unambiguously identified

*Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.
** Outbreak initially traced back to a wrong source - later articles revise these findings.

Figure 9: Full text screening tool for search A4 Hazard characterization (outbreaks).
3.4. **Search strategy used within thematic area (B) Production**

The aim of the search performed within thematic area (B) was to identify critical points in the primary production and processing of the food items that have been found associated with pathogens. Production processes for the same food item can vary considerably between, and sometimes even within countries (FAO, WHO, 2008, online). Therefore, the search was focused on the identification of critical points and contamination sources during primary production and processing rather than on a description of complete production processes.

“Critical points” have to be distinguished from “Critical Control Points (CCPs)” as determined by the “Hazard Analysis Critical Control Point (HACCP)” system. The term “critical point” as used in the present report describes a production step which was identified as possible entry point for biological contamination. The critical points in the production processes for food items belonging to the same FoNAO category were assumed to be comparable.

A systematic search was carried out in the WoK, CAB Abstracts and PubMed databases by using the following search string:

Food item (A) AND (production or plantation or cultivation or harvest or manure or “sewage sludge” or irrigation or processing or cooling or washing or transport or storage or "quality control" or hygiene or pasteurization or pasteurisation) AND (haccp or "good agricultural practice" or "good manufacturing practice" or “critical control point” or guidelines).

(A) Key words of FoNAO (detailed list) with high water content (Lot 1)

WoK was used because it was expected to deliver access to the most relevant resources, while the PubMed database allowed accessing citations and abstracts for biomedical literature. CAB was selected as a complementary database because it covers the applied life sciences, and was thus expected to provide information that is of practical relevance concerning the production of FoNAO commodities.

The relevance of the documents (hits) was assessed by screening titles and abstracts of the search results. Due to the extremely low number of relevant hits in the scientific databases (only 2% relevant according to article title), a systematic relevance and full text check was not feasible and therefore not performed. The few relevant articles were obtained as full text and used for data extraction.

The same key words were combined to obtain information from grey literature on the internet (www.google.com). The main focus of the search was set on obtaining GAP/GMP/HACCP documents and guidelines that addressed the mitigation of risks within the production process. By using this search strategy, mainly documents were collected that are meant for the use by producers and thus are of practical relevance.
3.5. Search strategy used within thematic area (C) Consumption

The aim of the search was to collect data related to the consumption of FoNAO associated with microbiological pathogens as identified in research area A. The most detailed compilation of consumption data of FoNAO is given in the Comprehensive European Food Consumption Database by EFSA (http://www.efsa.europa.eu/en/date-foodcdb/date-fooddb.htm), which at the request of the EFSA was not considered in the present study (since this database can be consulted internally). Instead, specific information on consumption habits and the dietary intake of FoNAO by specific population groups (e.g., elderly, children, toddlers, pregnant women) was retrieved from scientific publications.

Thus, bibliographic searches were performed in WoK, SciVerse Scopus and CAB abstracts, aimed at retrieving information from multiple and varied sources involving various different search algorithms. In addition to the comprehensive WoK and CAB Abstract databases, Scopus was selected as the largest abstract and citation database of peer-reviewed literature.

Corresponding search strings were used for the three databases (Tables 8 and 9). In all cases, the exclusion criterion “cancer” was introduced to exclude studies focusing on anti-cancerogenic effects of vegetable-derived compounds such as polyphenols, which did not deliver any quantitative consumption data of FoNAO.

Table 8: Search C1/Consumption habits (frequency, place) regarding FoNAO.

Database	Search Strategy	Results
Scopus*	Categories A, B [title, abstract and keywords] AND consumption OR frequency OR	121
	time OR routine OR daily OR monthly OR meal OR breakfast OR lunch OR tea OR	
	dinner OR supper OR snack OR home-made OR restaurant OR canteen OR coffee shop	
	OR cafeteria OR school OR kindergarten OR nursery [title, abstract and keywords]	
	AND Europe [title, abstract and keywords] NOT cancer [title, abstract and keywords];	
	time-frame 2002-2012	
WoK	Subcategories A, B [title] AND consumption OR frequency OR time OR routine OR	34
	daily OR monthly OR meal OR breakfast OR lunch OR tea OR dinner OR supper OR	
	snack OR home-made OR restaurant OR canteen OR coffee shop OR cafeteria OR	
	school OR kindergarten OR nursery [title] AND Europe or European [title] NOT	
	cancer [topic]; time-frame 2002-2012	
CAB Abstracts	Subcategories A, B [title] AND consumption OR frequency OR time OR routine OR	10
	daily OR monthly OR meal OR breakfast OR lunch OR tea OR dinner OR supper OR	
	snack OR home-made OR restaurant OR canteen OR coffee shop OR cafeteria OR	
	school OR kindergarten OR nursery [title] AND Europe or European [title] NOT	
	cancer [all fields]; time-frame 2002-2012	

A Key words of FoNAO with high water content (Lot 1)
B Key words of FoNAO with low water content (Lot 2). For details see Lot 2 report.
*Note that only the food categories list, (i.e. fruits, vegetables, produce, juices, herbs) could be used in this search due to the limited amount of search words that can be entered in Scopus.
Table 9: Search C2/Consumption of FoNAO by various population groups

Database	Search Strategy	Results
Scopus*	Categories A, B [title] age OR baby OR toddler OR children OR infant OR adolescent OR teenager OR junior OR juvenile OR adult OR grown-up OR very elderly OR senior OR young OR old OR man OR woman OR health* OR pregnant OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title, abstract and keywords] AND NOT cancer [title, abstract and keywords]; time-frame 2002-2012	12
WoK (keywords, Boolean operators, settings)	Subcategories A, B [title] AND age OR baby OR toddler OR child OR children OR infant OR adolescent OR teenager OR juvenile OR junior OR adult OR grown-up OR elderly OR very elderly OR senior OR aged OR young OR old OR man OR man OR woman OR women OR patient OR patients OR health* OR pregnant OR “breast feeding” OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title] NOT cancer [topic]; time-frame 2002-2012	67
CAB Abstracts	Subcategories A, B [title] AND age OR baby OR toddler OR children OR infant OR adolescent OR teenager OR junior OR juvenile OR adult OR grown-up OR very elderly OR senior OR young OR old OR man OR woman OR health* OR pregnant OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title] NOT cancer [all fields]; time-frame 2002-2012	12

A Key words of FoNAO with high water content (Lot 1)
B Key words of FoNAO with low water content (Lot 2). For details see Lot 2 report.
*Note that only the food categories list, (i.e. fruits, vegetables, produce, juices, herbs) could be used in this search due to the limited amount of search words that can be entered in Scopus.

Search results from both searches (C1 and C2) using the three databases were combined to avoid redundancy, and were subjected to relevance and full text screening by using the tools presented below (Figures 10 and 11).

Questions	Code	Answer
Question 1: Do we comprehend the article language?	10	We do not comprehend the article language.
Question 2: Is the article about food consumption patterns in a European Country?	20	The article is not about food consumption patterns in a European Country.
Question 3: Does the article contain quantitative data (food frequency, amounts) about food consumption?	30	The article describes quantitative data about food consumption.
Question 4: Is the article about toddlers, children, and adolescents?	40*	The article is about toddlers, children or adolescents.
Question 5: Is the article about adults?	60*	The article is about adults.
Question 6: Is the article about elderly people?	70*	The article is about elderly persons.
Question 7: Is the article about food consumption patterns, but does not describe quantitative data?	80	The article might contain relevant data, but not quantitative ones.
Question 8: Should the inclusion of the article be discussed in the panel?	100	The inclusion will be further discussed in the panel.

* Codes were given in addition to code “30” if applicable.

Figure 10: Relevance screening tool for search C1 Consumption.
3.6. Methodology for ranking FoNAO/pathogen combinations (thematic area D)

3.6.1. Method development

The methodology applied for identifying FoNAO/pathogen combinations that were considered as most important regarding risks to human health involved that a synopsis of the results from the individual searches in research areas A to C was formed. Thus, the collective data retrieved in searches A to C were used to evaluate the FoNAO/pathogen combinations regarding multiple qualitative and quantitative criteria as described in sections 3.6.2 and 3.6.3.

Following data extraction into structured tables, it became evident that outbreak incidences reported for the various FoNAO/pathogen combinations presented the primary basis for evaluation. Reports on outbreaks yielded the most comprehensive data set assembled within the present study, and allowed a clear and unambiguous association of biological hazards with FoNAO commodities. Furthermore, numbers of cases reported together with information regarding the severity of outbreaks (i.e. number of hospitalisations and number of deaths) allowed that a quantitative analysis of the outbreak data was performed.

By contrast, the data on pathogen prevalence obtained via search A2 depended very much on parameters such as type of study performed, type and extent of survey, number of samples analyzed, methodology used, etc. Similarly, information on food/pathogen interaction and on mitigation strategies (search A3) was fragmented and biased for methodology and study design. This was because studies on food/pathogen interaction and hazard mitigation as reported in the retrieved publications had not been performed in the same way (using the same methodology) for the various pathogens considered in the present report, and data were partly not available or not comparable. While numbers of publications on pathogen prevalence and outbreaks also gave a comprehensive data set, they were not considered as equally appropriate criteria because they also contained study-related biases. Data relating to production and consumption issues (searches B and C) were not equally comprehensive for the various food items considered. Hence, outbreak incidences represented the basis for a primary evaluation step, and the collective data on pathogen prevalence, food/pathogen interaction, and production were used in a qualitative way for evaluating the FoNAO/pathogen combinations.

3.6.2. Evaluation based on outbreak data

Outbreak information was used in a quantitative manner for the primary evaluation of FoNAO/pathogen combinations.

Specifically, FoNAO/pathogen combinations were identified that were associated with outbreaks involving the ten highest numbers of cases, the ten highest numbers of hospitalisations, and involving cases of death. This selection process was performed separately for bacteria-, virus- and parasite-related outbreaks, and distinct rankings were carried out for outbreak cases reported for EU and non-EU countries.
In this primary evaluation procedure, those FoNAO/pathogen combinations that were involved in outbreaks that could not be allocated to a single specific FoNAO commodity and that included composite FoNAO commodities (that were composed of multiple food items) were excluded. This was done because we aimed to identify FoNAO/pathogen combinations implicating specific, individual food items that are considered most critical regarding contamination with pathogenic bacteria, viruses or parasites.

The primary evaluation procedure resulted in two comprehensive sets of FoNAO/pathogen combinations for EU and non EU countries, respectively, which formed the basis for the second evaluation step. Results of the ranking of FoNAO/pathogen combinations involved in outbreaks according to the number of cases, the number of hospitalisations, and the number of deaths are presented in the results section (with the associated tables 30 to 35 being presented in appendix D).

3.6.3. Evaluation based on multiple qualitative criteria

In the scope of the second evaluation step, the complex information collected via searches A to C was used in a qualitative way to evaluate the FoNAO/pathogen combinations selected in the primary ranking procedure.

Specifically, information obtained via the searches in areas A to C was used to define criteria that allowed a grading of the FoNAO/pathogen combinations within the four aspects “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction”. Additionally, the relative infectivity of the relevant pathogens was evaluated based on information provided in Kothary and Babu (2001) and Koopmans and Duizer (2004) and by screening relevant fact sheets by the CDC. This information was used for characterising food/pathogen interaction (see below).

The following procedure was applied for the prioritisation of FoNAO/pathogen combinations, considering the four criteria “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction” (see also Fig. 12):

Outbreaks. As the most important criterion for prioritisation, FoNAO/pathogen combinations were graded in relation to outbreaks with “A” (“highly critical”) if (i) cases were high (among the top 10 rankings), (ii) hospitalisations were high (among the top 10 rankings) and/or cases of death were involved, and if (iii) multiple outbreaks involving the given combination had been reported. “B” grading (“critical”) was applied if two of the three above criteria (i) to (iii) were fulfilled, and “C” grading (“moderate critical”) was applied if one of the three criteria (i) to (iii) was fulfilled.

Production. A given FoNAO/pathogen combination was graded “A” if multiple critical factors in the production and/or processing were identified as important regarding biological contamination. “B” grading was applied if a single factor was identified as critical for the given FoNAO/pathogen combination. This was done because control measures supposedly are more easily introduced and followed when focusing on a single factor as compared to multiple factors.

Prevalence. If prevalence data for the given FoNAO/pathogen combination had been retrieved via search A2, an additional grade “A” was applied regarding the prevalence criterion.

Food/pathogen interaction. If a critical interaction (namely attachment, biofilm formation, or internalisation) had been evidenced for the pathogen in a given FoNAO/pathogen combination, an additional grade “A” was applied regarding this criterion. Similarly, high infectivity of the pathogen (meaning a low infectious dose) resulted in “A” grading, based on the evaluation by Kothary and Babu (2001) and according to Koopmans and Duizer (2004) as well as specific CDC fact sheets.
The following **classification scheme** was applied for the prioritisation of FoNAO/pathogen combinations (see also Fig. 12):

Level 1 Priority was given to combinations yielding at least triple A grading, with A grading in outbreaks being a precondition.

Level 2 Priority was given to combinations yielding double A grading, with A or B grading in outbreaks being a precondition.

Level 3 Priority was given to combinations that had at least one A grade in either of the four criteria together with some other distinctive feature (i.e. any other grading in another aspect). Hence, FoNAO/pathogen combinations that were not assigned any A grade or were assigned only one A grade without any other grade regarding some other aspect were excluded from the priority list.

The prioritisation method applied combined a quantitative ranking procedure (i.e. ranking of FoNAO/pathogen combinations according to quantitative outbreak data) with a qualitative approach (i.e. the evaluation of FoNAO/pathogen combinations regarding the criteria “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction”). This strategy allowed evaluating FoNAO/pathogen combinations regarding multiple aspects that were explored in the study areas A to C. Since the specific data used for the prioritisation were heterogeneous and inconsistent for the various combinations, criteria were defined that were applicable to all combinations. By using the classification scheme described above, FoNAO/pathogen combinations were allocated to priority groups.

The specific criteria used to assign the various FoNAO/pathogen combinations to priority groups are shown below. This methodology was applied separately for EU and non-EU countries, respectively.

Figure 12: Scheme applied for the prioritisation of FoNAO/pathogen combinations. A, B and C grading corresponds to factors that are “highly critical”, “critical” and “moderately critical” regarding food safety, respectively, within each of the four criteria “outbreaks”, “production”, “prevalence” and “food/pathogen interaction”. For further details see text.
4. Results

4.1. Microbiological hazards that may contaminate FoNAO with high water content

Data concerning research area A were retrieved via four individual searches, and consequently were extracted into tables presenting data on hazard identification (A1), hazard prevalence (A2), food/pathogen interaction (A3), and hazard characterisation (A4).

In the following sections, the study selection procedures underlying the various searches are described and the information contained in the tables is summarized. The associated tables are shown in the appendix A.

4.1.1. Hazard identification (A1)

In search A1, separate bibliographic searches using scientific databases were carried out especially for FoNAO with high and low water content, respectively, relating to Lot 1 and Lot 2 of the assignment. However, literature entries obtained for Lot 1 and Lot 2 were combined for performing the relevance check, because many publications dealt with a combination of food items of both high and low water content.

As depicted in Figure 13, in total 702 abstracts collected via bibliographic searches were subjected to the relevance screening, 171 of which were screened in full text in the following quality check. 23 publications retrieved via hand-searching were added to the quality screening. Finally, 52 publications relating to Lot 1 and 27 publications relating to Lot 2 met the quality criteria and were selected for data extraction. Thus, for the present study only data relating to FoNAO with high water content were extracted into the tables shown in Appendix A.

Tables 12 to 14 in appendix A show the various bacterial pathogens, viruses, and parasites that have been identified as being associated with items of FoNAO with high water content, listed in alphabetical order. The food/pathogen combinations presented were initially derived from the results of search A1, but were then extended with data from the following, more specific searches (mainly A2). Search A1 was carried out on a worldwide scale, and data are given collectively for EU and non-EU countries. Besides FoNAO categories, the food item(s) concerned and the sources of the food, also the countries are given where the food commodities were found in association with a biological contaminant (e.g. site of survey or location of the outbreak, not necessarily the place of origin/production of the food commodity analysed). Thus, the tables give an overview of the biological hazards as they have been described in association with multiple FoNAO items with high water content that are included in the various FoNAO categories (see Table 1) considered in the present study.

Bacterial pathogens found associated with FoNAO with high water content comprise representatives of the genera Aeromonas, Bacillus, Campylobacter, Clostridium, Cronobacter, Enterobacter, Klebsiella, Salmonella, Shigella, Vibrio as well as various pathogenic Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia enterocolitica. However, of in total 394 bacterial pathogen/ FoNAO associations indicated in the literature, 109 have been found with Salmonella spp., including multiple serovars (i.e. Agona, Durban, Enteritidis, Gustavia, Montevideo, Newport, Typhi, Typhimurium, Umbilo, and unspecified serovars) (Table 12).

Regarding viruses, only Norovirus (in association with soft red fruits, leafy greens, and produce non specified) and Rotavirus have been described on/in FoNAO with high water content (Table 13). By contrast, multiple parasites have been described in association with FoNAO with high water content, including among others Ascaris, Blastocystis, Cryptosporidium, Entamoeba, Giardia, Taenia, and Toxocara species. 94% (177 out of 189) of the reports on parasites on/in FoNAO refer to non-EU
Food of plant origin with high water content

countries. However, Encephalitozoon intestinalis on berries, Enterocytozoon bieneusi on raspberries and lettuce, Microsporidia spores on berries and non specified vegetables and Toxoplasma gondii on lettuce, carrots and radish were found in Poland. Intestinal helminths on cabbage, black nightshade, kale, and spider flower, were reported also for Italy (Table 14).

The list of pathogens established via search A1 was used in subsequent keyword searches concerning specific research questions in areas B and C.

Figure 13: Flow chart of the study selection process underlying search A1. *The respective articles were then assigned to categories for inclusion or exclusion.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
4.1.2. Hazard prevalence and enumeration data (A2)

Bibliographic searches regarding the prevalence of bacterial pathogens, viruses and parasites on/in items of FoNAO were performed in the WoK and PubMed databases by using 20 search strings each for the set of bacteria, viruses, and parasites that have been identified via search A1. Searches were done for the collective food items relating to Lot 1 and Lot 2 of the assignment, resulting in 4751 potentially relevant abstracts that were subjected to the relevance check. The vast majority of 4283 abstracts were excluded because they did not deal with FoNAO or because of language restrictions, and only 280 articles were identified as relevant for Lot 1 (since they related to FoNAO with high water content). However, in total 670 articles were found to potentially contain information that may be of relevance not only for research area A2 but also for other areas, and were hence added to the respective hand searching pools for further evaluation. Together with 12 articles retrieved via hand searching, in total 438 full text articles were accessed and checked in the quality check. Of those, 81 articles were finally selected for extracting prevalence data in Lot 1 (Figure 14).

Tables 15 and 16 in appendix A present the data extracted from scientific articles retrieved via search A2. Additionally, data collected via search A1 were included, which had been deposited in the hand searching pool (because they reported on detection rates, see Figure 14). The tables show prevalence data (detection rates) for pathogenic bacteria, viruses, and parasites that were reported in association with FoNAO with high water content. While table 15 gives the information for EU countries, data from non EU countries are shown in Table 16.

The scope of tables 15 and 16 is to demonstrate the association of various pathogenic bacteria, viruses and parasites with specific food items found in scientific publications. Furthermore, the tables illustrate what are the specific prevalences (detection rates) of the biological hazards, considering sources and processing states of the food items. The pathogens are listed in alphabetical order, and additional information is given on the various FoNAO categories concerned and on the country where the studies or surveys were performed. Like the data on hazard identification shown in Tables 14, prevalences of parasites were mainly reported in non-EU countries. By contrast, detection rates of viruses on/in FoNAO were available only for EU countries.

Detection rates of biological hazards varied considerably, ranging from 0.02 to 100%. This reflects the various methodologies applied in the studies and surveys, and that the sample numbers investigated were in a broad range. Thus, while the information on detection rates of biological hazards on/in FoNAO provides a detailed database on surveys and studies performed in EU and non-EU countries, the detection rates are not suited for comparison regarding the relative importance of the FoNAO item/pathogen combinations. Still, studies reporting on detection rates give an indication that the FoNAO/pathogen combination concerned may potentially represent a food safety problem.
Figure 14: Flow chart of the study selection process underlying search A2. *The respective articles were then assigned to categories for inclusion or exclusion.
4.1.3. Food/pathogen interaction (A3)

Bibliographic searches regarding the interaction of bacterial pathogens, viruses and parasites with FoNAO were done in the WoK and PubMed databases, yielding 953 potentially relevant abstracts. The searches were done for the collective food items relating to Lot 1 and Lot 2 of the assignment, however, search results were assigned to either Lot 1 (217 relevant publications) or Lot 2 (55 relevant publications) during the relevance check. Following quality checking of the full text publications, 150 articles were used for data extraction in Lot 1. Of those, 75 articles gave data on the growth characteristics of biological pathogens, 39 gave data on the colonisation behaviour of pathogenic bacteria on/in FoNAO items, and 36 contained information on the mitigation of pathogen contamination (Figure 15).

Table 17 in appendix A presents the results of search A3, comprising data relating to the growth characteristics of pathogenic bacteria and persistence of viruses on/in items of FoNAO under various experimental conditions (e.g. temperature, pH, various amendments) and exposure times. In cases where multiple treatments were addressed, only the most effective conditions within a specific study were extracted. Since data were mostly derived from inoculation studies, in most cases the initial inoculation dose is given together with the increase or decrease in colony forming units (cfu) numbers.

Table 18 in appendix A contains data on the colonisation behaviour of pathogenic bacteria associated with FoNAO with high water content. Information was collected from studies that related to the attachment, biofilm formation and/or the internalisation of the bacteria. Specific information on colonisation is shown in the “details” column. For instance, biofilm formation has been described for pathogenic E.coli, Bacillus cereus, Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus on various items of FoNAO with high water content. In addition, internalisation into FoNAO with high water content has been reported in multiple studies for several Salmonella serovars and pathogenic E.coli. This implicates a critical behaviour of the pathogens regarding food safety, which has to be considered when evaluating their importance regarding food safety issues.

Treatments applied for the mitigation of biological contamination are shown in Table 19 in appendix A. For the various pathogenic bacteria, viruses, and parasites the associated food commodities are given where treatments have been applied for reducing pathogen loads. In most studies either chemical or physical treatments were applied, and hence, the specific conditions are detailed (including concentrations of additives, treatment time, inoculation details) together with the reduction effects of the treatment on the pathogens.
Figure 15: Flow chart of the study selection process underlying search A3. *The respective articles were then assigned to categories for inclusion or exclusion.
4.1.4. Hazard characterization (A4)

The WoK and CAB bibliographic databases were searched for data on outbreaks of disease that could be traced back to bacterial pathogens, viruses, and parasites linked to FoNAO with high water content. Of 1091 potentially relevant abstracts identified via the searches, 141 and 46 were considered as relevant for providing information on outbreak data relating to Lot 1 and Lot 2 of the assignment, respectively. In addition to scientific literature entries identified via the bibliographic searches, hand searching of various scientific and grey literature sources (e.g. CDC and ECDC reports) yielded 42 documents that were screened for relevance. Following quality checking of the full text publications, 115 articles were used for data extraction in Lot 1 (Figure 16).

Tables 20 and 21 in appendix A present the outbreak data obtained via search A4 for EU and non EU countries, respectively. In both tables data are given for pathogenic bacteria, viruses, and parasites as reported in the publications as being associated with FoNAO with high water contents, including both scientific and grey literature. However, the individual outbreaks are listed only once with references of all documents relating to it. For both EU and non EU countries, various serovars of *Salmonella* were the bacteria most often implicated in outbreaks. Of in total 51 records from the EU, 16 were on *Salmonella*-related outbreaks, and 23 out of 47 reports on outbreaks outside of the EU were associated with *Salmonella* spp. Other bacteria involved in outbreaks comprise *Bacillus cereus*, *Campylobacter jejuni*, *Clostridium botulinum*, *Clostridium perfringens*, *Listeria monocytogenes*, pathogenic *E.coli*, *Shigella dysenteriae*, *Shigella flexneri*, *Shigella sonnei*, *Staphylococcus aureus*, *Staphylococcus aureus*, *Vibrio cholerae*, *Yersinia enterocolitica*, and *Yersinia pseudotuberculosis*. Among the viruses, Norovirus and Hepatitis A virus were reportedly associated with outbreaks in both EU and non EU countries, while outside of the EU outbreaks were also related to Nipah virus. Parasites that have been found involved in FoNAO-related outbreaks in the EU include *Cryptosporidium hominis*, *Cryptosporidium parvum*, *Cyclospora cayetanensis*, *Enterocytozoon bieneusi*, and *Fasciola hepatica*. In non-EU countries, parasites associated with FoNAO-related outbreaks are *Cryptosporidium parvum*, *Cyclospora cayetanensis*, *Trichostrongylus spp.*, and *Trypanosoma cruzi*.

Besides FoNAO categories and food items linked to the outbreaks, in Tables 20 and 21 comments are given on food sources and processing states of the implicated FoNAO items if available, together with the countries where the outbreaks occurred. The tables contain information on the year of the outbreak, on the number of cases reported, the number of hospitalisations, and the number of deaths, if indicated in the publications. Here, all FoNAO food items with high water content that were reported as associated with outbreaks were considered, even if the individual food items were not further specified or if composite food items were concerned that did not allow exact source tracking. This was done to provide an extensive database of all outbreak incidences where FoNAO commodities with high water content were implicated.
Figure 16: Flow chart of the study selection process underlying search A4. * The respective articles were then assigned to categories for inclusion or exclusion.
4.2. **(B) Production methods and trade volumes of FoNAO with high water content from third countries to the European Union**

Production methods for FoNAO with high water content vary enormously in different countries and regions, depending among other factors on climate, cultivars, regional prerequisites, traditions and production facilities (FAO, WHO, 2008, online). Therefore, search B was focused on the critical steps within the primary and post-harvesting production processes regarding contamination with pathogens based on GMP/GAP/HACCP documents and producer guidelines (for details see Chapter 3.4). The systematic searches carried out in WoK, CAB Abstracts and the PubMed database by using defined search strings, yielded only low numbers of relevant hits, which were identified by broad title and abstract screenings rather than applying elaborate screening tools. Thus, data were extracted from few scientific publications. However, the same key words as used in the bibliographic search were used for internet searches (www.google.com), enabling that GAP, GMP and HACCP documents and other producer guidelines were obtained, which were used for data extraction.

Tables 22, 23 and 24 in appendix B show all the food items which are of concern regarding contamination with pathogenic bacteria, viruses, and parasites, as identified during the previous searches (research areas A1 and A2). Food items that were found strongly involved in outbreaks due to biological contamination (top 10 ranking regarding number of cases, number of hospitalisations, and cases of death, see 4.4) are highlighted in the table, because they subsequently were analyzed in detail regarding critical steps in the production chain both in primary production as well as post-harvest processing. It can be assumed that the critical production steps are comparable for food items within the same FoNAO category, due to similar texture, growth, ripening times, and harvesting and production requirements. Therefore, in some cases one representative FoNAO item was selected per category for further investigation.

Table 25 in appendix B shows the critical points and/or contamination sources in the primary production of the food items highlighted in the previous tables, which have been identified in scientific and grey literature sources. Critical points during post-harvest processing of FoNAO with high water content are presented in Table 26 in appendix B. Again, data are based on various scientific and grey literature sources. If available, corrective actions during primary production and processing of the food items are given. In primary production, critical steps for all FoNAO items listed include irrigation/watering, fertilisation practices, contaminated soil or equipment, harvesting/sorting and sanitation. Additional points listed include contact with animals (e.g. birds, insects, rodents) for berries, tropical fruits, tomatoes, cucumber, and leafy greens as well as contact with humans for berries, tomatoes and leafy greens. Critical points in post-harvest procedures comprise among others for most FoNAO items the equipment used, packing, washing, storage, sorting and cooling. In most cases, multiple points in primary production and/or processing were identified which were considered as equally critical regarding food safety issues. However, in some cases one dominant point was highlighted, for instance hand hygiene was evidenced as most critical for preventing viral contamination in the processing of semidried tomatoes.

The influencing factors identified via search B are in many cases important for multiple FoNAO items with high water content (e.g., workers hygiene, manure application). Hence, the critical points listed in Tables 25 and 26 were extracted from various general survey documents on fruit and vegetable production (EC, 2002, online, CAC, 2003, online, FDA, online (a)) as well as from specific documents dealing with individual food items. Table 27 shows some exemplary guidelines and standards documents dealing with improving the quality of the FoNAO items listed in Tables 22 to 24.

Table 28 in appendix B shows trade volumes of FoNAO with high water content from third countries into the EU during the last ten years (2002-2011). This information may implicate on the exposure of EU citizens to potentially contaminated imported commodities. Tropical fruit is the commodity imported in the highest quantity, with an increasing trend between 2002 and 2008, followed by citrus

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
fruit with a similar trend. Also fresh pods, legumes and grains are imported in high quantities, but with a decreasing trend since 2005. Strawberries, raspberries and other berries are imported in lower total amounts, but with an increasing trend over the past ten years.

4.3. (C) Consumption of FoNAO with high water content

The search strategy applied for search C1 (consumption habits) and search C2 (population group) is illustrated in Figure 6. This strategy was used for retrieving data relating to food items of both high and low water content to avoid redundancy. However, of the 213 abstracts considered as potentially relevant, only 31 were selected for full text checking. Finally, only eight articles were maintained after the full text quality check and were used for data extraction into tables of both Lot 1 and 2.

Data from relevant articles were extracted into Table 29 in appendix C. However, scientific publications contained mainly information on fruit and vegetable consumption in general but generally did not report on consumption patterns regarding individual items of FoNAO. Screening the websites of major pan-European nutrition studies (HELENA Health Lifestyle in Europe by Nutrition in Adolescence, http://www.helenastudy.com/; HBSC Health behaviour in school aged children, http://www.hbsc.org/publications/journal/; ProChildren project http://www.prochildren.org/; ISAFRUIT, http://www.isafruit.org) yielded information on consumer groups and regional aspects of fruit and vegetable consumption, but gave only few data relating to individual food items. Due to time and resource limitation it was not possible to access the raw data of the nutrition studies by contacting individual researchers. The most detailed compilation of consumption data of FoNAO is given in the Comprehensive European Food Consumption Database by EFSA (http://www.efsa.europa.eu/en/date-foodcdb/date-fooddb.htm), which in accordance with EFSA was not considered in the present study since it is internally available by EFSA.
Figure 17: Flow chart of the study selection process underlying search C1 (consumption habits) and search C2 (consumption by population groups).
4.4. (D) Ranking of food/pathogen combinations

The present study explored multiple aspects of biological contamination of FoNAO with high water content, aimed at identifying the most critical FoNAO/pathogen combinations regarding food safety. Thus, research area D was dedicated to evaluating the data collected in the previous research areas and forming a conclusive synopsis of all search results.

However, while the various data retrieved via searches A, B and C were all considered for the final evaluation of food/pathogen combinations, data on outbreak incidences formed the primary basis for an evaluation regarding their overall importance. The occurrence and severity of outbreaks are solid indications of a health concern, which is of utmost importance for human societies. Similarly, estimated health risks of the hazards for the consumer were considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

Tables 30 to 32 in appendix D present the food item/pathogen combinations identified that were associated with outbreaks involving the ten highest numbers of cases, the ten highest numbers of hospitalisations, and the most (up to ten) cases of deaths reported for EU countries. Correspondingly, Tables 33 to 35 in appendix D show food/pathogen combinations with the ten highest numbers of cases, hospitalisation, and death for non-EU countries. Outbreaks caused by pathogenic bacteria, viruses and parasites were treated individually. Outbreak data were collected globally, from reports originating from both EU and non-EU regions. For the scope of the evaluation, outbreaks were listed separately for EU and non EU countries according to the outbreak location. Regarding EU data, EFSA/BIOMO data from EUSR were generally not considered, since it is internally available by EFSA; and only literature data was used for this purpose. It is notable that most publications on outbreaks in non EU regions are dealing with outbreaks in the United States, which may also be due to language restrictions.

In the EU (Tables 30-32), bacterial pathogen-related outbreaks involving the highest numbers of outbreak cases were caused by *Salmonella* spp. and pathogenic *E. coli* on lettuce and fresh basil, and by *Yersinia pseudotuberculosis* O:1 on grated carrots. Multiple outbreaks have been reported with these FoNAO (high water content)/pathogen combinations, which involved also high numbers of hospitalisations. In addition, high numbers of cases were reported in single outbreaks associated with the combination mung beans/*Salmonella Bareilly*/S. Virchow. Virus-related outbreaks caused by far the highest numbers of cases, involving norovirus on berries (strawberries, raspberries, blackberries) and lettuce. These outbreaks had also high numbers of hospitalisations. Fewer cases but even higher numbers of hospitalisations were reported for outbreaks involving semidried tomatoes and Hepatitis A virus. Other norovirus-related outbreaks concerned raw onion, fruits (unspecified) and carrots. Regarding parasite-borne outbreaks, *Enterocytozoon bieneusi* on cucumber and *Cryptosporidium hominis* on carrot and red peppers caused considerable outbreak cases, which were however restricted to single outbreaks with the given combinations. In the EU, cases of death have been reported in an outbreak involving *Salmonella* spp. on iceberg lettuce (Table 32).

In non-EU countries (Tables 33-35), highest outbreak cases were caused by *Vibrio cholerae* on vegetables which were not further specified, and thus did not implicate a specific FoNAO/pathogen combination. Furthermore, *Salmonella* spp. on peppers, tomatoes, salad, and cantaloupe melon as well as pathogenic *E. coli* on lettuce, celery/cabbage, and spinach and *Shigella sonnei* on carrots caused multiple outbreaks, partly with high numbers of cases and hospitalisations. Individual outbreaks were caused by Hepatitis A virus on green onion, semidried tomatoes and orange juice as well by norovirus on lettuce and radish, involving considerable numbers of cases and eventually hospitalisations. Single outbreaks with high numbers of cases were also reported for FoNAO combinations involving parasites, including Apple cider/*Cryptosporidium parvum*, fresh basil and snow peas/*Cyclospora cayetanensis*, and Guava and sugar cane juice/*Trypanosoma cruzi*. In non-EU countries, five bacteria-
related outbreaks (involving \textit{Vibrio cholera}, \textit{Listeria monocytogenes}, \textit{E.coli}, and \textit{Salmonella} spp.), four virus-related outbreaks (involving Nipah virus and Hepatitis A virus) and two parasite-related outbreaks (both involving \textit{Trypanosoma cruzi}) included cases of death (Table 35).

The FoNAO/pathogen combinations listed in Tables 30 to 35 formed the primary basis for the subsequent prioritisation regarding multiple qualitative factors. The focus of this prioritisation analysis was on ready-to-eat, unprocessed FoNAO, excluding composite products. Hence, FoNAO items belonging to category 1 (fruits non-specified), 36 (mixed salads), 37 (other processed products), other (vegetables non-specified), and 1/other (fruits or vegetables non-specified) were excluded from the evaluation process because no unambiguous food item/pathogen association could be formed.

Tables 10 and 11 presented below show the food/pathogen combinations that have been attributed level 1 to 3 priorities. Again, separate evaluations were done for EU and non EU countries. Priority groups were defined based on multiple factors specified within the criteria “outbreak”, “pathogen prevalence”, “production”, and “food/pathogen interaction” (see Tables 10 and 11 and Chapter 3.6). The approach followed for evaluating the importance of FoNAO/pathogen combinations regarding food safety used a qualitative prioritisation scheme. Specifically, FoNAO/pathogen combinations were rated as highly critical (A), critical (B) or moderately critical (C) with respect to food safety regarding multiple aspects, including outbreaks of disease, production and processing procedures, hazard prevalence in the food commodity concerned, and food/pathogen interaction (see also Chapter 3.6). FoNAO/pathogen combinations that were rated as highly critical regarding at least three criteria (including outbreaks), were assigned highest priority. Combinations that showed two highly critical characteristics (with outbreaks being rated either highly critical or critical) were allocated to priority group 2. If a combination had one highly critical characteristic together with some other critical factor, priority level 3 was applied. Defining priority groups was preferred over a ranking of all food/pathogen combinations in a numeric order, because the information corresponding to the classification criteria was heterogeneous and varied for the various combinations.

Priority group one was assigned to food/pathogen combinations involving leafy greens (FoNAO category 15/17) and pathogenic \textit{E.coli} for both EU and non-EU countries. For EU countries, also \textit{Salmonella} spp. on/in leafy greens were assigned level one priority due to multiple outbreaks with high numbers of cases and hospitalisations, while for non-EU countries \textit{Salmonella} spp. on/in tomatoes were highly graded. Combinations of berries (especially raspberries and strawberries, but with less outbreak cases also blackberries) with norovirus contamination were graded priority one within the EU based on criteria related to outbreaks, production methods and food/pathogen interaction. Notably, while outbreaks involving berries have been highly reported in the literature, there were no publications found addressing the prevalence of viruses on/in this commodity. This is most probably due to methodological issues related to virus detection. Similarly, prevalence data of viruses on/in leafy greens have rarely been reported, in spite of multiple outbreak cases.

Combinations of melons (cantaloupe) with \textit{Salmonella} spp. were often reported in the U.S. and caused multiple outbreaks, and thus were included in the non-EU listing with the highest priority. Similarly, tropical fruit (mango and papaya) in combination with \textit{Salmonella} was assigned level 1 priority for non-EU countries. Notably, tropical fruits were not included in the prioritisation of food/pathogen combinations for the EU, since no outbreaks involving tropical fruit consumption were reported in the EU. However, import data of tropical fruits from third countries into the EU indicate a continuous increase.

Priority group two for EU countries comprises the combinations lettuce/Norovirus and fresh herbs (basil)/\textit{Salmonella} spp. For non-EU countries this priority group includes lettuce/Norovirus based on a major outbreak in Norway, in addition to spinach/pathogenic \textit{E.coli}.
FoNAO/pathogen combinations with level three priority differ for EU and non-EU countries. In the former, semidried tomatoes combined with Hepatitis A virus and grated carrots combined with *Yersinia pseudotuberculosis* were involved in multiple outbreaks. In both cases, level 3 grading was given based on the allocation of grade A regarding only one criterion (i.e. outbreaks). The FoNAO/pathogen combinations were rated B regarding the criterion “production” because only one major critical factor was identified. In addition, cucumber in combination with parasites in general was rated priority 3 for EU countries, since a severe parasite-related outbreak was caused by *Enterocytozoon bieneusi* on cucumber, various studies have reported on helminth prevalence on/in cucumber, and multiple factors are critical regarding contamination of cucumber by biological hazards.

For non-EU countries, level 3 priority was assigned to Hepatitis A virus in unpasteurized orange juice and on/in green onion, respectively. In both cases single but severe outbreaks were reported involving these combinations, and multiple factors in the production processes have been described as critical. In addition, the combination cantaloupe melon/*Listeria monocytogenes* was assigned priority 3 for non-EU countries. Regarding combinations with melons, both outbreaks and prevalences have been documented for *Salmonella*, while no prevalence data have been given for *Listeria monocytogenes*.
Table 10: Priority groups of food/pathogen combinations in EU countries based on criteria related to outbreaks\(^3\), pathogen prevalence, food/pathogen interaction, and to the production of the food item(s) concerned. “High number” means position in top ten list (Tables 30-32). For details on the classification scheme applied ((A) “highly critical”, (B) “critical”, (C) “moderately critical”) see methods section. NR= not reported.

FoNAO Category	Food item (raw, mixed fresh cut salad leaves)	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
2/3/4 Berries	Raspberries/ Strawberries/ Blackberries	Norovirus	(A) Highest number of cases in the EU in multiple outbreaks. Outbreak with the highest number of cases reported worldwide caused by Norovirus on strawberries (Germany). High number of hospitalisations.	(A) Multiple critical factors (related to irrigation, fertilization, contact with animals/humans); special recommendations for berry harvesting (Bower et al., 2003 online).	NR	(A) Norovirus is highly infectious and shows resistance to heat and disinfection agents (Koopmann and Duizer, 2004)	1
15/17 Leafy greens (raw, mixed fresh cut salad leaves)	Lettuce	E.coli (EHEC)	(A) Multiple outbreaks in various EU countries involving high numbers of cases and hospitalisations.	(A) Multiple factors related to production are critical for microbial contamination of leafy greens.	(A) Several studies reporting on pathogenic E.coli on/in leafy greens, prevalence ranging from 0.2 to 8%.	(A) E.coli O157:H7 attaches to lettuce leaves, evidence for internalization into edible plant parts; proliferation on lettuce leaves at 12 °C.	1
15/17 Leafy greens (raw, mixed fresh cut salad leaves)	Lettuce	Salmonella spp.	(A) The highest numbers of cases and hospitalisations in multiple outbreaks in several EU countries, two deadly cases in Finland.	NR	(A) Twelve studies with Salmonella spp. on/in leafy greens, nine studies on Salmonella spp. presence in lettuce samples (detection rate 0.1-8%)	(A) Attachment, biofilm formation and internalisation into lettuce leaves have been reported. Salmonella growth was inhibited at refrigerator temperatures.	1
15/17 Leafy greens (raw, mixed fresh cut salad leaves)	Lettuce	Norovirus	(A) High numbers of cases and hospitalisations in the North of Europe (Denmark, Finland).	NR	NR	(A) Norovirus is highly infectious and shows resistance to heat and disinfection agents (Koopmann and Duizer, 2004).	2

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group	
16 Fresh herbs	Basil (fresh)	*Salmonella* spp.	(A) High number of cases and hospitalisations in multiple outbreaks	NR	(A) Two studies report *Salmonella* spp. detection in basil samples (1-3% detection rate).	NR	2	
38 Dehydrated vegetables and fruit	Tomatoes (semidried)	Hepatitis A virus	(A) High numbers of cases and highest number of hospitalisations in the EU (France, UK, Netherlands)			(B) Manual sorting of semi-dried tomatoes is a critical factor regarding viral contamination.	NR	3
13 Gourds and squashes	Cucumber	Parasites	(C) Parasite-related outbreak with the highest number of cases was caused by *Enterocytozoon bieneusi* on cucumber			(A) Multiple factors including water sanitation, worker hygiene, equipment and container sanitation, and maintenance of the cold chain are critical regarding contamination of cucumber by biological hazards.		3
19 Carrots	Carrots (grated)	*Yersinia pseudotuberculosis*	(A) High number of cases and hospitalisations in multiple outbreaks.			(B) Sanitation (worker hygiene and container/equipment sanitation) is a critical factor regarding microbial contamination	NR	3

Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.
Table 11: Priority groups of food/pathogen combinations in non-EU countries based on criteria related to outbreaks\(^1\), pathogen prevalence, food/pathogen interaction, and to the production of the food item(s) concerned. “High number” means position in top ten list (Tables 30-32). For details on the classification scheme applied ((A) “highly critical”, (B) “critical”, (C) “moderately critical”) see methods section. NR= not reported.

FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
8 Tropical fruit	Mango/Papaya	*Salmonella*	(A) High number of cases in multiple outbreaks, partly involving hospitalisations.	(B) Imported mangoes in the US undergo postharvest disinfection to prevent introduction of tephritid fruit fly. *Salmonella* can be internalized in mango during this heating and rapid cooling process (Penteado et al., 2004).	(A) Nine studies on *Salmonella* detection in various tropical fruits (e.g. mango, papaya, jackfruit, pineapple) in non-EU countries.	(A) *Salmonella* can attach to mango surfaces; biofilm is formed after longer contact; active internalisation into intact fruit was observed.	1
9 Melons	Cantaloupe	*Salmonella*	(A) High number of cases in multiple outbreaks, partly involving hospitalisations.	(B) Surface contamination is critical regarding microbial contamination	(A) Four studies report on *Salmonella* prevalence in melons, with a detection rate of up to 22%.	(A) Cantaloupe melon rind is an ideal place for pathogen attachment; pathogens can internalise into the flesh through mechanically damaged rind (CAC, 2011).	1
11 Tomatoes	Tomatoes (raw)	*Salmonella*	(A) High number of cases and hospitalisations, including the highest number of hospitalisations and two cases of death, in multiple outbreaks caused by *Salmonella* on tomatoes and on peppers and/or tomatoes.	(B) Irrigation water has been evidenced as source of *Salmonella* contamination.	(A) Two studies reporting *Salmonella* prevalence on/in tomatoes with detection rates of 1 and 8%, respectively.	(A) *Salmonella* attaches to tomato surfaces and occasionally forms biofilms. Active internalisation into phyllosphere and fruits, preferentially via trichomes, was detected.	1
15/17 Leafy greens eaten raw as salads/Mixed fresh-cut salad leaves	Lettuce	*Escherichia coli* (EHEC)	(A) Several multi-state outbreaks in the U.S. involving high numbers of cases and hospitalisations.	(A) Multiple factors related to production are critical for microbial contamination of leafy greens.	(A) Several studies on the prevalence of pathogenic *E.coli* on/in leafy greens, detection rates 0.2-8%.	(A) *E.coli* O157:H7 attaches to lettuce leaves, evidence for internalization into edible plant parts; proliferation on lettuce leaves at >12 °C.	1
FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
----------------	-----------	----------	-----------	------------	------------	---------------------------	----------------
15/17 Leafy greens eaten raw as salads/Mixed fresh-cut salad leaves	Spinach	*Escherichia coli* (EHEC)	(B) One multi-state outbreak in the U.S. caused high numbers of cases and hospitalisations.	(A) Multiple factors related to production are critical for microbial contamination of leafy greens.	(A) Several studies on the prevalence of pathogenic *E. coli* on/in leafy greens, detection rates 0.2-8%.	(A) *E. coli* O157:H7 attaches to lettuce leaves, no evidence for internalization; proliferation on lettuce leaves at >12 °C.	2
15/17 Leafy greens eaten raw as salads/Mixed fresh-cut salad leaves	Lettuce	Norovirus	(B) Outbreak in Norway with high numbers of cases and hospitalisations.	(A) Multiple factors related to production are critical for microbial contamination of leafy greens.		(A) Norovirus is highly infectious and shows resistance to heat and disinfection agents (Koopmann and Duizer, 2004)	2
5 Citrus fruit	Orange juice (unpasteurized)	Hepatitis A virus	(B) High numbers of cases and highest number of hospitalisations due to viral contamination.	(A) Multiple factors related to production (harvesting) and processing (transport, storage, sorting) of orange juice are critical for microbial contamination of non-heat-treated orange juice.			3
9 Melons	Cantaloupe	*Listeria monocytogenes*	(B) One multi-state outbreak in the U.S. caused high numbers of cases and hospitalisations and involved the highest number of deaths caused by a single food commodity.	(B) Surface contamination is critical regarding microbial contamination.	(A) Cantaloupe melon rind is an ideal place for pathogen attachment; pathogens can internalise into the flesh through mechanically damaged rind (CAC, 2011).	3	
22 Bulb and stem vegetables	Green onion	Hepatitis A virus	(B) A virus-related outbreak in the U.S. with the highest number of cases caused by Hepatitis A virus on green onion involved a high number of hospitalisations and three cases of death.	(A) Multiple factors related to production and processing of green onion are critical for microbial contamination of green onions.			3

1) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.
5. Conclusions

Biological hazards linked to FoNAO are of considerable public concern, which is reflected in the abundant scientific and grey literature retrieved in the present study. Our extensive review addressing pathogenic bacteria, viruses, and parasites associated with FoNAO with high water content yielded 7710 scientific literature entries in the study database (relating to FoNAO with both high and low water content), together with 51 grey literature documents (relating specifically to FoNAO with high water content). 432 documents were finally selected for data extraction from full texts into structured tables of Lot 1, relating to FoNAO with high water content. Information referring to pathogen identification and characterisation and to the consumption of FoNAO was derived mainly from scientific publications, while data relating to the production and processing of FoNAO were predominantly contained in grey literature sources.

Bacterial pathogens that were reported in association with FoNAO with high water content were similar for EU and non-EU countries, comprising representatives of the genera *Aeromonas*, *Bacillus*, *Campylobacter*, *Clostridium*, *Cronobacter*, *Enterobacter*, *Klebsiella*, *Salmonella*, *Shigella*, and *Vibrio* as well as various pathogenic *Escherichia coli*, *Listeria monocytogenes*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Yersinia enterocolitica*. However, by far the most (109 out of 394) associations of FoNAO with high water content were found with various serovars of *Salmonella* spp. Prevalence data for viruses on/in FoNAO with high water content were available only for EU countries, while detection of parasites on/in FoNAO with high water content was mainly reported for non-EU countries.

Studies on food/pathogen interaction have evidenced biofilm formation by pathogenic *E. coli*, *Bacillus cereus*, *Listeria monocytogenes*, *Salmonella* spp., and *Staphylococcus aureus* on FoNAO with high water content. Multiple studies reported on the internalisation of pathogenic *E. coli* and *Salmonella* into FoNAO with high water content, implicating a critical behaviour of the pathogens regarding food safety. For both EU and non EU countries, *Salmonella* were the bacteria most often implicated in outbreaks associated with FoNAO with high water content.

Critical steps in the production and processing of FoNAO items were identified primarily based on GAP, GMP and HACCP documents and other producer guidelines, and included irrigation/watering, fertilisation practices, harvesting/sorting, the equipment used, packing, washing, storage, and cooling. In most cases, multiple points in primary production and/or processing were considered as equally critical regarding food safety issues. However, in some cases a single dominant point was highlighted.

The number and severity of outbreaks of disease caused by the consumption of contaminated FoNAO provided the basis for a primary evaluation of the multiple food/pathogen combinations identified within the study where biological hazards were implicated. Additional qualitative criteria relating to pathogen prevalence, their interaction with the FoNAO items, and to the production of FoNAO items were included to define three priority groups of critical food/pathogen combinations for EU and non-EU countries, respectively.

Highest priority was given to leafy green vegetables (in particular lettuce and spinach) in combination with pathogenic *E. coli* for their strong involvement in outbreaks on a worldwide level. For EU and non-EU countries, also the combinations of *Salmonella* spp. on/in leafy greens and on/in tomatoes, respectively, were assigned level one priority. A WHO-based evaluation by experts from multiple countries supports the prioritisation of leafy greens (FAO/WHO 2008, online).

Several food/pathogen combinations were not considered equally critical regarding food safety in EU versus non-EU countries based on our evaluation. In the EU, berries (in particular frozen raspberries and strawberries) linked to Norovirus outbreaks were assigned level 1 priority, while in the U.S. melon...
Food of plant origin with high water content

(cantaloupe) infected with *Salmonella* were evidenced as a major health hazard, causing several severe outbreaks in the past ten years. Although both commodities were classified as second priority by FAO/WHO (2008, online), recent outbreak incidences and the evaluation done within the present study justify highest priority grading. In addition, tropical fruit (mango and papaya) in combination with *Salmonella* was assigned level I priority for non-EU countries.

Priority group two for EU countries was assigned to the combinations lettuce/Norovirus and fresh herbs (basil)/*Salmonella* spp. For non-EU countries this priority group includes lettuce/Norovirus, based on a major outbreak in Norway, in addition to spinach/pathogenic *E.coli*.

For EU countries, semidried tomatoes combined with Hepatitis A virus and grated carrots combined with *Yersinia pseudotuberculosis* as well as cucumber in combination with parasites were rated priority 3. For non-EU countries, level 3 priority was assigned both to Hepatitis A virus in unpasteurized orange juice and on/in green onion as well as to cantaloupe melon/*Listeria monocytogenes*.

This report provides a broad scientific database that will be instrumental in the conceptualization of specific measures for improving the safety of FoNAO with high water content. Ultimately, it may contribute to the prevention and a better control of food borne diseases.
6. References

Abadias M, Alegre I, Oliveira M, Altisent R and Vinas I, 2012. Growth potential of *Escherichia coli* O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control, 27, 37-44.

Abadias M, Usall J, Anguera M, Solson C and Vinas I, 2008. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123, 121-129.

Abdela W, Graham M, Habtemariam T, Samuel T and Yehualaeshet T, 2011. Effects of orange juice pH on survival, urease activity and DNA profiles of *Yersinia enterocolitica* and *Yersinia pseudotuberculosis* stored at 4 °C. Journal of Food Safety, 31, 487-496.

Abougrain AK, Nahaisi MH, Madi NS, Saied MM and Ghenghesh KS, 2010. Parasitological contamination in salad vegetables in Tripoli-Libya. Food Control, 21, 760-762.

Adamu NB, Adamu JY and Mohammed D, 2012. Prevalence of helminth parasites found on vegetables sold in Maiduguri, Northeastern Nigeria. Food Control, 25, 23-26.

Agle ME, Martin SE and Blaschek HP, 2005. Survival of *Shigella boydii* 18 in bean salad. Journal of Food Protection, 68, 838-840.

Aguado V, Vitas AI and Garcia-Jalon I, 2004. Characterization of *Listeria monocytogenes* and *Listeria innocua* from a vegetable processing plant by RAPD and REA. International Journal of Food Microbiology, 90, 341-347.

Alarcón de Noya B, Díaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Zavala-Jaspe R, Suarez JA, Abate T, Naranjo L, Paiva M, Rivas L, Castro J, Márques J, Mendoza I, Acquatella H, Torres J and Noya O, 2010. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. The Journal of infectious diseases, 201, 1308-1315.

Allen RL, Warren BR, Archer DL, Sargent SA and Schneider KR, 2005. Survival of *Salmonella* spp. on the surfaces of fresh tomatoes and selected packing line materials. Horttechnology, 15, 831-836.

Allende A, Jacxsens L, Devlieghere F, Debevere J and Artes F, 2002. Effect of superatmospheric oxygen packaging on sensorial quality, spoilage, and *Listeria monocytogenes* and *Aeromonas caviae* growth in fresh processed mixed salads. Journal of Food Protection, 65, 1565-1573.

Allende A, Martinez B, Selma V, Gil MI, Suarez JE and Rodriguez A, 2007. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing *Listeria monocytogenes* in vitro and in fresh-cut lettuce. Food Microbiology, 24, 759-766.

Althaus D, Hofer E, Corti S, Julmi A and Stephan R, 2012. Bacteriological Survey of Ready-to-Eat Lettuce, Fresh-Cut Fruit, and Sprouts Collected from the Swiss Market. Journal of Food Protection, 75, 1338-1341.

Annamalai T, Vasudevan P, Marek P, Hoagland T and Venkitanarayanan K, 2003. Heat inactivation of *Escherichia coli* O157 : H7 in apple cider in the presence of glycerol monolaurate and a synthetic antimicrobial peptide, PR-26. Journal of Food Processing and Preservation, 27, 37-49.

Arthur L, Jones S, Fabri M and Odumeru J, 2007. Microbial survey of selected Ontario-Grown fresh fruits and vegetables. Journal of Food Protection, 70, 2864-2867.

Badosa E, Trias R, Pares D, Pla M and Montesinos E, 2008. Microbiological quality of fresh fruit and vegetable products in Catalonia (Spain) using normalised plate-counting methods and real time polymerase chain reaction (QPCR). Journal of the Science of Food and Agriculture, 88, 605-611.
Food of plant origin with high water content

Bae Y-M, Kim B-R, Lee S-Y, Cha M, Park K-H, Chung M-S and Ryu K, 2012. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Science and Biotechnology, 21, 503-508.

Baert L, Mattison K, Loisy-Hamon F, Harlow J, Martyres A, Lebeau B, Stals A, Van Coillie E, Herman L and Uyttendaele M, 2011. Review: Norovirus prevalence in Belgian, Canadian and French fresh produce: A threat to human health? International Journal of Food Microbiology, 151, 261-269.

Baert L, Uyttendaele M, Vermeersch M, Van Coillie E and Debevere J, 2008. Survival and transfer of murine norovirus 1, a surrogate for human noroviruses, during the production process of deep-frozen onions and spinach. Journal of Food Protection, 71, 1590-1597.

Bagamboula CF, Uyttendaele M and Debevere J, 2002. Growth and survival of Shigella sonnei and S.flexneri in minimal processed vegetables packed under equilibrium modified atmosphere and stored at 7 degrees C and 12 degrees C. Food Microbiology, 19, 529-536.

Barak JD, Kramer LC and Hao L-y, 2011. Colonization of Tomato Plants by Salmonella enterica Is Cultivar Dependent, and Type 1 Trichomes Are Preferred Colonization Sites. Applied and environmental microbiology, 77, 498-504.

Bari ML, Hossain MA, Isshiki K and Ukuku D, 2011. Behavior of Yersinia enterocolitica in Foods. Journal of pathogens, 2011, 13p

Bari ML, Ukuku DO, Mori M, Kawamoto S and Yamamoto K, 2007. Effect of high-pressure treatment on survival of Escherichia coli O157:H7 population in tomato juice. Journal of Food Agriculture & Environment, 5, 111-115.

Behravesh CB, Blaney D, Medus C, Bidol SA, Phan Q, Soliva S, Daly ER, Smith K, Miller B, Taylor T, Nguyen T, Perry C, Hill TA, Fogg N, Kleiza A, Moorhead D, Al-Khali S, Braden C and Lynch MF, 2012. Multistate outbreak of Salmonella serotype Typhimurium infections associated with consumption of restaurant tomatoes, USA, 2006: hypothesis generation through case exposures in multiple restaurant clusters. Epidemiology and Infection, 1-9.

Behravesh CB, Mody RK, Jungk J, Gaul L, Redd JT, Chen S, Cosgrove S, Hedican E, Sweat D, Chavez-Hauser L, Snow SL, Hanson H, Nguyen T-A, Sotha SV, Boore AL, Russo E, Mikoleit M, Theobald L, Gerner-Smidt P, Hoekstra RM, Angulo FJ, Swerdlow DL, Tauxe RV, Griffin PM and Williams IT, 2011. 2008 Outbreak of Salmonella Saintpaul Infections Associated with Raw Produce. New England Journal of Medicine, 364, 918-927.

Behrsing J, Jaeger J, Horlock F, Kita N, Franz P and Premier R, 2003. Survival of Listeria innocua, Salmonella salford and Escherichia coli on the surface of fruit with inedible skins. Postharvest Biology and Technology, 29, 249-256.

Beuchat LR and Mann DA, 2008. Survival and growth of acid-adapted and unadapted Salmonella in and on raw tomatoes as affected by variety, stage of ripeness, and storage temperature. Journal of Food Protection, 71, 1572-1579.

Beuchat LR and Scoult AJ, 2004. Factors affecting survival, growth, and retrieval of Salmonella Poona on intact and wounded cantaloupe rind and in stem scar tissue. Food Microbiology, 21, 683-694.

Bohaychuk VM, Bradbury RW, Dimock R, Fehr M, Gensler GE, King RK, Rieve R and Romero Barrios P, 2009. A microbiological survey of selected Alberta-grown fresh produce from farmers' markets in Alberta, Canada. Journal of Food Protection, 72, 415-420.

Bonerba E, Di Pinto A, Novello L, Montemurro F, Terio V, Colao V, Ciccarese G and Tantillo G, 2010. Detection of potentially enterotoxigenic food-related Bacillus cereus by PCR analysis. International Journal of Food Science and Technology, 45, 1310-1315.
Bourke P and O’Beirne D, 2004. Effects of packaging type, gas atmosphere and storage temperature on survival and growth of *Listeria* spp. in shredded dry coleslaw and its components. International Journal of Food Science and Technology, 39, 509-523.

Bower et al., 2003, online. Promoting the safety of northwest fresh and processed berries. Available: from: http://extension.oregonstate.edu/catalog/pdf/em/em8838.pdf

Braconnier A, Broussole V, Dargaignaratz C, Nguyen-The C and Carlin F, 2003. Growth and germination of proteolytic *Clostridium botulinum* in vegetable-based media. Journal of Food Protection, 66, 833-839.

Branquinho Bordini ME, Ristori CA, Jakabi M and Gelli DS, 2007. Incidence, internalization and behavior of *Salmonella* in mangoes, var. Tommy Atkins. Food Control, 18, 1002-1007.

Brug J, Tak NI, Te Velde SJ, Bere E and De Bourdeaudhuij I, 2008. Taste preferences, liking and other factors related to fruit and vegetable intakes among schoolchildren: Results from observational studies. British Journal of Nutrition, 29, S7-S14.

Burnett SL and Beuchat LR, 2002. Differentiation of viable and dead *Escherichia coli* O157 : H7 cells on and in apple structures and tissues following chlorine treatment. Journal of Food Protection, 65, 251-259.

Burnett SL, Mertz EL, Bennie B, Ford T and Starobin A, 2005. Growth or survival of *Listeria monocytogenes* in ready-to-eat meat products and combination deli salads during refrigerated storage. Journal of Food Science, 70, M301-M304.

CAC (Codex Alimentarius Commission), 2003, online. Code of hygienic practice for fresh fruits and vegetables. CAC/RCP 53-2003. Adopted 2003. Revision 2010 (new Annex III for Fresh Leafy Vegetables).

CAC (Codex Alimentarius Commission), 2011, online. Proposed draft annex on melons to the code of hygienic practice for fresh fruits and vegetables (CAC/RCP 53-2003) - (at step 3).

Caggia C, Randazzo CL, Di Salvo M, Romeo F and Giudici P, 2004. Occurrence of *Listeria monocytogenes* in green table olives. Journal of Food Protection, 67, 2189-2194.

Caggia C, Scifo GO, Restuccia C and Randazzo CL, 2009. Growth of acid-adapted *Listeria monocytogenes* in orange juice and in minimally processed orange slices. Food Control, 20, 59-66.

Calder L, Simmons G, Thornley C, Taylor P, Pritchard K, Greening G and Bishop J, 2003. An outbreak of hepatitis A associated with consumption of raw blueberries. Epidemiology and Infection, 131, 745-751.

Calvo M, Carazo M, Arias ML, Chaves C, Monge R and Chinchilla M, 2004. Prevalence of *Cyclospora* sp., *Cryptosporidium* sp, microsporidia and fecal coliform determination in fresh fruit and vegetables consumed in Costa Rica. Archivos Latinoamericanos De Nutricion, 54, 428-432.

Carrasco E, Perez-Rodriguez F, Valero A, Garcia-Gimeno RM and Zurer G, 2008. Growth of *Listeria monocytogenes* on shredded, ready-to-eat iceberg lettuce. Food Control, 19, 487-494.

Carvalho C, Thomas H, Balogun K, Tedder R, Pebody R, Ramsay M and Ngui S, 2012. A possible outbreak of hepatitis A associated with semi-dried tomatoes, England, July-November 2011. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 17.

Castell Monsalve J, Gutiérrez Avila G, Rodolfo Saavedra R and Santos Azorín A, 2008. [Shigellosis outbreak with 146 cases related to a fair]. Gaceta sanitaria / S.E.S.P.A.S, 22, 35-39.

Castillo MCB, Castro TLA, Araújo VS, Trajano RS, Santos PA, Pimenta PMC, Lucheze K, Melo JTB, Gonçalves AM, Nogueira RT, de Luna MG and Freitas-Almeida AC, 2009. High frequency
Food of plant origin with high water content

of hemolytic and cytotoxic activity in *Aeromonas* spp. isolated from clinical, food and environmental in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek, 96, 53-61.

Castro-Rosas J, Cerna-Cortes JF, Mendez-Reyes E, Lopez-Hernandez D, Gomez-Aldapa CA and Estrada-Garcia T, 2012. Presence of faecal coliforms, *Escherichia coli* and diarrheagenic *E. coli* pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. International Journal of Food Microbiology, 156, 176-180.

Castro-Rosas J, Santos López EM, Gómez-Aldapa CA, González Ramírez CA, Villagomez-Ibarra JR, Gordillo-Martínez AJ, López AV and del Refugio Torres-Vitela M, 2010. Incidence and behavior of *Salmonella* and *Escherichia coli* on whole and sliced zucchini squash (Cucurbitapepo) fruit. Journal of Food Protection, 73, 1423-1429.

Catellani P, Alberghini L, Feletti S and Boldrin V, 2010. Survey on the microbiological quality of Chinese food preparations. Veterinary Research Communications, 34, S183-S187.

Cazorla D, Morales P, Chirinos M and Eugenia Acosta M, 2009. Parasitological evaluation of vegetables commercially traded in Coro, Falcon state, Venezuela. Boletin De Malariologia Y Salud Ambiental, 49, 117-125.

CDC (Centers for Disease Control and Prevention), 2006, online(a). Available from: http://www.cdc.gov/foodborne/ecolisspinach/100606.htm

CDC (Centers for Disease Control and Prevention), 2006, online(b). Available from: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/salmonellosis_2006/110306_outbreak_notice.htm

CDC (Centers for Disease Control and Prevention), 2006, online(c). Available from: http://www.cdc.gov/eco1/2006/december/121406.htm

CDC (Centers for Disease Control and Prevention), 2007, online(a). Available from: http://www.cdc.gov/eco1/2007/october/103107.html

CDC (Centers for Disease Control and Prevention), 2008, online(a). Available from: http://www.cdc.gov/salmonella/saintpaul/jalapeno/index.html

CDC (Centers for Disease Control and Prevention), 2008, online(b). Available from: http://www.cdc.gov/salmonella/litchfield/

CDC (Centers for Disease Control and Prevention), 2010, online(a). Available from: http://www.cdc.gov/eco1/2010/eco1_o145/index.html

CDC (Centers for Disease Control and Prevention), 2010, online(b). Available from: http://www.cdc.gov/salmonella/typhoidfever/index.html

CDC (Centers for Disease Control and Prevention), 2011, online(a). Available from: http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html

CDC (Centers for Disease Control and Prevention), 2011, online(b). Available from: http://www.cdc.gov/salmonella/agona-papayas/index.html

CDC (Centers for Disease Control and Prevention), 2011, online(c). Available from: http://www.cdc.gov/eco1/2011/eco1O157/romainelettuce/120711/index.html

CDC (Centers for Disease Control and Prevention), 2011, online(d). Available from: http://www.cdc.gov/salmonella/panama0311/index.html

CDC (Centers for Disease Control and Prevention), 2012, online(a). Available from: http://www.cdc.gov/salmonella/typhimurium-cantaloupe-08-12/index.html

CDC (Centers for Disease Control and Prevention), 2012, online(b). Available from: http://www.cdc.gov/salmonella/braenderup-08-12/index.html

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Cetin O, Bingol EB and Akkaya H, 2008. The Microbiological, Serological and Parasitological Quality of Cig Kofte (Raw Meatball) and Its Lettuce Marketed in Istanbul. Polish Journal of Environmental Studies, 17, 701-706.

Chai LC, Ghazali FM, Bakar FA, Lee HY, Suhaimi LRA, Talib SA, Nakaguchi Y, Nishibuchi M and Radu S, 2009. Occurrence of thermophilic Campylobacter spp. contamination on vegetable farms in Malaysia. Journal of microbiology and biotechnology, 19, 1415-1420.

Chai LC, Robin T, Ragavan UM, Gunsalam JW, Bakar FA, Ghazali FM, Radu S and Kumar MP, 2007. Thermophilic Campylobacter spp. in salad vegetables in Malaysia. International Journal of Food Microbiology, 117, 106-111.

Chang J-M and Fang TJ, 2007. Survival of Escherichia coli O157 : H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E.coli O157 : H7. Food Microbiology, 24, 745-751.

Char C, Guerrero S and Alzamora SM, 2009. Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20, 67-74.

Charatan F, 2006. FDA warns US consumers not to eat spinach after E coli outbreak. BMJ (Clinical research ed.), 333,

Cho J-I, Cheung C-Y, Lee S-M, Ko S-I, Kim K-H, Hwang I-S, Kim S-H, Cho S-Y, Lim C-J, Lee K-H, Kim K-S and Ha S-D, 2011. Assessment of microbial contamination levels of street-vended foods in Korea. Journal of Food Safety, 31, 41-47.

Cho SY, Park BK, Moon KD and Oh DH, 2004. Prevalence of Listeria monocytogenes and related species in minimally processed vegetables. Journal of Microbiology and Biotechnology, 14, 515-519.

Choi S, Bang J, Kim H, Beuchat LR and Ryu JH, 2011. Survival and colonization of Escherichia coli O157:H7 on spinach leaves as affected by inoculum level and carrier, temperature and relative humidity. Journal of Applied Microbiology, 111, 1465-1472.

Chon J-W, Song K-Y, Kim S-Y, Hyeon J-Y and Seo K-H, 2012. Isolation and Characterization of Cronobacter from Desiccated Foods in Korea. Journal of Food Science, 77, M354-M358.

Chukwu COC, Chukwu ID, Onyimba IA, Umoh EG, Olarubofin F and Olabode AO, 2010. Microbiological quality of pre-cut fruits on sale in retail outlets in Nigeria. African Journal of Agricultural Research, 5, 2272-2275.

Chung M-S, Kim C-M and Ha S-D, 2010. Detection and enumeration of microorganisms in ready-to-eat foods, ready-to-cook foods and fresh-cut produce in Korea. Journal of Food Safety, 30, 480-489.

Collignon S and Korsten L, 2010. Attachment and Colonization by Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp enterica serovar Typhimurium, and Staphylococcus aureus on Stone Fruit Surfaces and Survival through a Simulated Commercial Export Chain. Journal of Food Protection, 73, 1247-1256.

Cooley MB, Chao D and Mandrell RE, 2006. Escherichia coli O157 : H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. Journal of Food Protection, 69, 2329-2335.

Cordano AM and Jacquet C, 2009. Listeria monocytogenes isolated from vegetable salads sold at supermarkets in Santiago, Chile: prevalence and strain characterization. International Journal of Food Microbiology, 132, 176-179.

Corte FV, De Fabrizio SV, Salvatori DM and Alzamora SM, 2004. Survival of Listeria innocua in apple juice as affected by vanillin or potassium sorbate. Journal of Food Safety, 24, 1-15.
Food of plant origin with high water content

Cotterelle B, Drougard C, Rolland J, Becamel M, Boudon M, Pinede S, Traoré O, Balay K, Pothier P and Espié E, 2005. Outbreak of norovirus infection associated with the consumption of frozen raspberries, France, March 2005. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 10.

Couturier E, 2011. Hepatitis A outbreaks of foodborne. About an epidemic linked to the consumption of dried tomatoes, France, 2009-2010. Virologie, 15, 88-90.

Crépet A, Albert I, Dervin C and Carlin F, 2007. Estimation of microbial contamination of food from prevalence and concentration data: application to Listeria monocytogenes in fresh vegetables. Applied and environmental microbiology, 73, 250-258.

Crépet A, Stahl V and Carlin F, 2009. Development of a hierarchical Bayesian model to estimate the growth parameters of Listeria monocytogenes in minimally processed fresh leafy salads. International Journal of Food Microbiology, 131, 112-119.

Croci L, De Medici D, Scalfaro C, Fiore A and Toti L, 2002. The survival of hepatitis A virus in fresh produce. International Journal of Food Microbiology, 73, 29-34.

Das E, Gurakan GC and Bayindirli A, 2006. Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes. Food Microbiology, 23, 430-438.

Date K, Fagan R, Crossland S, MacEachern D, Pyper B, Bokanyi R, Houze Y, Andress E and Tauxe R. 2011. Three Outbreaks of Foodborne Botulism Caused by Unsafe Home Canning of Vegetables-Ohio and Washington, 2008 and 2009. Journal of Food Protection, 74, 2090-2096.

Dawson D, 2005. Foodborne protozoan parasites. International Journal of Food Microbiology, 103, 207-227.

Dawson DJ, Paish A, Staffell LM, Seymour IJ and Appleton H, 2005. Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. Journal of Applied Microbiology, 98, 203-209.

de Carvalho AAT, Costa ED, Mantovani HC and Vanetti MCD, 2007. Effect of bovicin HC5 on growth and spore germination of Bacillus cereus and Bacillus thuringiensis isolated from spoiled mango pulp. Journal of Applied Microbiology, 102, 1000-1009.

de Curtis ML, Franceschi O and De Castro N, 2002. [Listeria monocytogenes in vegetables minimally processed]. Archivos Latinoamericanos De Nutricion, 52, 282-288.

De Giusti M, Aurigemma C, Marinelli L, Tufi D, De Medici D, Di Pasquale S, De Vito C and Boccia A, 2010. The evaluation of the microbial safety of fresh ready-to-eat vegetables produced by different technologies in Italy. Journal of Applied Microbiology, 109, 996-1006.

de Jong B, Oberg J and Svennungsson B, 2007. Outbreak of salmonellosis in a restaurant in Stockholm, Sweden, September - October 2006. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12, E13-14.

Decraene V, Lebbad M, Botero-Kleiven S, Gustavsson AM and Löfdahl M, 2012. First reported foodborne outbreak associated with microsporidia, Sweden, October 2009. Epidemiology and Infection, 140, 519-527.

Delaquis P, Stewart S, Cazaux S and Toivonen P, 2002. Survival and growth of Listeria monocytogenes and Escherichia coli O157 : H7 in ready-to-eat iceberg lettuce washed in warm chlorinated water. Journal of Food Protection, 65, 459-464.

Devasia RA, Jones TF, Ward J, Stafford L, Hardin H, Bopp C, Beatty M, Mintz E and Schaffner W, 2006. Endemically acquired foodborne outbreak of enterotoxin-producing Escherichia coli serotype O169:H41. The American journal of medicine, 119, 168.e167-110.
Ding T, Wang J, Forghani F, Ha S-D, Chung M-S, Bahk G-J, Hwang I-G, Abdallah E and Oh D-H, 2012. Development of Predictive Models for the Growth of Escherichia coli O157: H7 on Cabbage in Korea. Journal of Food Science, 77, M257-M263.

Dinu L-D and Bach S, 2011. Induction of Viable but Nonculturable Escherichia coli O157:H7 in the Phyllosphere of Lettuce: a Food Safety Risk Factor. Applied and environmental microbiology, 77, 8295-8302.

Donnan EJ, Fielding JE, Gregory JE, Lalor K, Rowe S, Goldsmith P, Antoniou M, Fullerton KE, Knope K, Copland JG, Bowden DS, Tracy SL, Hogg GG, Tan A, Adamopoulos J, Gaston J and Vally H, 2012. A Multistate Outbreak of Hepatitis A Associated With Semidried Tomatoes in Australia, 2009. Clinical Infectious Diseases, 54, 775-781.

Doyle MP and Erickson MC, 2008. Summer meeting 2007 - the problems with fresh produce: an overview. Journal of Applied Microbiology, 105, 317-330.

Dreux N, Albagnac C, Federighi M, Carlin F, Morris CE and Nguyen-the C, 2007. Viable but non-culturatable Listeria monocytogenes on parsley leaves and absence of recovery to a culturable state. Journal of Applied Microbiology, 103, 1272-1281.

Duffy G and M oriarty EM, 2003. Cryptosporidium and its potential as a food-borne pathogen. Animal health research reviews / Conference of Research Workers in Animal Diseases, 4, 95-107.

EC (European Commission), 2002, online. Report of the Scientific Committee on Food on risk profile of the microbiological contamination of fruits and vegetables eaten raw. 45 pp. Available from: http://ec.europa.eu/food/fs/sc/scf/out125_en.pdf

EC (European Commission), 2004, online. Commission Regulation (EC) No 852/2004 of 29th April 2004 on the hygiene of foodstuff. Official Journal L 139, 30.4.2004, p.1-54. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0001:0054:en:PDF

EC (European Commission), 2005, online. Commission Regulation (EC) No 2073/2005 of 15th November 2005 on microbiological criteria for foodstuff. Official Journal L338, 22.12.2005, p.1-26. Available from: http://eur-lex.europa.eu/LexUriServ/-LexUriServ.do?uri=CELEX:32005R2073:EN:HTML

ECDC (European Center of Disease Control), 2008, online. Scientific Report of EFSA: The Community Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/1496.htm

ECDC (European Center of Disease Control), 2009, online. Scientific Report of EFSA: EU summary report on trends and sources of zoonoses and zoonotic agents and food-borne outbreaks 2009. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/2090.htm

ECDC (European Center of Disease Control), 2010, online. Scientific Report of EFSA: EU summary report on zoonoses, zoonotic agents and food-borne outbreaks 2010. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/2597.htm

Eblen BS, Walderhaug MO, Edelson-Mammel S, Chirtel SJ, De Jesus A, Merker RI, Buchanan RL and Miller AJ, 2004. Potential for internalization, growth, and survival of Salmonella And Escherichia coli O157 : H7 in oranges. Journal of Food Protection, 67, 1578-1584.

EFSA (European Food Safety Authority), 2010. Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal 8(6):1637, 90 pp.

Elhariry HM, 2011. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: Cabbage and lettuce. Food Microbiology, 28, 1266-1274.
Ells TC and Hansen LT, 2006. Strain and growth temperature influence *Listeria* spp. attachment to intact and cut cabbage. International Journal of Food Microbiology, 111, 34-42.

Ells TC and Hansen LT, 2010. Growth of *Listeria* spp. in Shredded Cabbage Is Enhanced by a Mild Heat Treatment. Journal of Food Protection, 73, 425-433.

Elviss NC, Little CL, Hucklesby L, Sagoo S, Surman-Lee S, de Pinna E and Threlfall EJ, 2009. Microbiological study of fresh herbs from retail premises uncovers an international outbreak of salmonellosis. International Journal of Food Microbiology, 134, 83-88.

Elward A, Grim A, Schroeder P, Kieffer P, Sellenriek P, Ferrett R, Adams HC, Phillips V, Bartow R, Mays D, Lawrence S, Seed P, Holzmann-Pazgal G, Polish L, Leet T and Fraser V, 2006. Outbreak of *Salmonella javiana* infection at a children's hospital. Infection control and hospital epidemiology: the official journal of the Society of Hospital Epidemiologists of America, 27, 586-592.

Enache E and Chen Y, 2007. Survival of *Escherichia coli* 0157: H7, *Salmonella*, and *Listeria monocytogenes* in cranberry juice concentrates at different degrees Brix levels. Journal of Food Protection, 70, 2072-2077.

Endley S, Lu LG, Vega E, Hume ME and Pillai SD, 2003. Male-specific coliphages as an additional fecal contamination indicator for screening fresh carrots. Journal of Food Protection, 66, 88-93.

Engels C, Weiss A, Carle R, Schmidt H, Schieber A and Gaenzle MG, 2012. Effects of gallotannin treatment on attachment, growth, and survival of *Escherichia coli* O157:H7 and *Listeria monocytogenes* on spinach and lettuce. European Food Research and Technology, 234, 1081-1090.

Ergonul B, 2011. Survival characteristics of *Salmonella Typhimurium* and *Escherichia coli* O157:H7 in minimally processed lettuce during storage at different temperatures. Journal für Verbraucherschutz und Lebensmittelsicherheit - Journal of Consumer Protection and Food Safety, 6, 339-342.

Erickson MC, 2010. Microbial Risks Associated with Cabbage, Carrots, Celery, Onions, and Deli Salads Made with These Produce Items. Comprehensive Reviews in Food Science and Food Safety, 9, 602-619.

Erickson MC, Liao J, Payton AS, Riley DG, Webb CC, Davey LE, Kimbrel S, Ma L, Zhang G, Flitcroft I, Doyle MP and Beuchat LR, 2010a. Preharvest Internalization of *Escherichia coli* O157:H7 into Lettuce Leaves, as Affected by Insect and Physical Damage. Journal of Food Protection, 73, 1809-1816.

Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoy JJ, Davey L, Payton AS, Liao J, Ma L and Doyle MP, 2010b. Infrequent Internalization of *Escherichia coli* O157:H7 into Field-Grown Leafy Greens. Journal of Food Protection, 73, 500-506.

Erkan ME, Vural A and Ozekinci T, 2008. Investigating the presence of *Staphylococcus aureus* and Coagulase Negative Staphylococci (CNS) in some leafy green vegetables. Research Journal of Biological Sciences, 3, 930-933.

Estrada-Garcia T, Lopez-Saucedo C, Zamarripa-Ayala B, Thompson MR, Gutierrez-Cogco L, Mancera-Martinez A and Escobar-Gutierrez A, 2004. Prevalence of *Escherichia coli* and *Salmonella* spp. in street-vended food of open markets (tianguis) and general hygienic and trading practices in Mexico City. Epidemiology and Infection, 132, 1181-1184.

Ethelberg S, Lisby M, Bottiger B, Schultz AC, Villif A, Jensen T, Olsen KE, Scheutz F, Kjelso C and Muller L, 2010. Outbreaks of gastroenteritis linked to lettuce, Denmark, January 2010. Eurosurveillance, 15, 2-4.
Food of plant origin with high water content

Ethelberg S, Lisby M, Vestergaard LS, Enemark HL, Olsen KEP, Stensvold CR, Nielsen HV, Porsbo LJ, Plesner AM and Mølbak K, 2009. A foodborne outbreak of Cryptosporidium hominis infection. Epidemiology and Infection, 137, 348-356.

Fallah AA, Pirali-Kheirabadi K, Shirvani F and Saei-Dehkordi SS, 2012. Prevalence of parasitic contamination in vegetables used for raw consumption in Shahrekord, Iran: Influence of season and washing procedures. Food Control, 25, 617-620.

Fan XT, Sokrai KJB, Sommers CH, Niemira BA and Mattheis JP, 2005. Effects of calcium ascorbate and ionizing radiation on the survival of Listeria monocytogenes and product quality of fresh-cut 'Gala' apples. Journal of Food Science, 70, M352-M358.

Fang TJ, Wei Q-K, Liao C-W, Hung M-J and Wang T-H, 2003. Microbiological quality of 18 degrees C ready-to-eat food products sold in Taiwan. International Journal of Food Microbiology, 80, 241-250.

Fangio MF, Roura SI and Fritz R, 2010. Isolation and identification of Bacillus spp. and related genera from different starchy foods. Journal of Food Science, 75, M218-221.

FAO (Food and Agriculture Organization), 2004, online. Improving the quality and safety of fresh fruits and vegetables: a practical approach. Available from: http://www.fao.org/docrep/007/y5488e/y5488e00.htm#Contents

FAO (Food and Agriculture Organization), online. Good Agriculture Practices: FAO GAP Principles. Available from: http://www.fao.org/prods/GAP/home/principles_en.htm

FAO (U.S. Food and Agriculture Organisation of the United States), 2011, online. EMPRES Food Safety Lessons learned series. Prevention and control of Hepatitis A Virus (HAV) and Norovirus (NoV) in ready-to-eat semi-dried products. Available from: http://www.fao.org/fileadmin/user_upload/agns/pdf/HAV_Tomatoes.pdf

FAO (U.S. Food and Agriculture Organisation of the United States), WHO (World Health Organisation), 2008, online. Microbiological Risk Assessment Series 14. Microbiological hazards in fresh leafy vegetables and herbs. Available from: ftp://ftp.fao.org/docrep/fao/011/i0452e/i0452e00.pdf

Faulkner et al., 2001, online. Generic HACCP Models for Food Assurance Programmes - Final Report. Available from: http://www.foodsafety.govt.nz/elibrary/industry/generic-haccp-models-produce-safety/FMA_169_Fresh_Produce_HACCP_Obj_1_and_2_Report_Aug_2001.pdf

Fatemi P, LaBorde LF, Patton J, Sapers GA, Annous B and Knabel SJ, 2006. Influence of punctures, cuts, and surface morphologies of golden delicious apples on penetration and growth of Escherichia coli O157 : H7. Journal of Food Protection, 69, 267-275.

FDA (U.S. Food and Drug Administration), online(a). Safe Practices for Food Processes > Chapter II. Production Practices as Risk Factors in Microbial Food Safety of Fresh and Fresh-Cut Produce Part III. Available from: http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm091106.htm

FDA (U.S. Food and Drug Administration), online(b). Produce and Plant Products > Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables. Available from: http://www.fda.gov/Food/guidanceComplianceregulatoryInformation/-GuidanceDocuments/ProduceandPlantProducts/ucm0604574.htm

FDA (U.S. Food and Drug Administration), online(c). Produce and Plant Products > Guidance for Industry: Guide to Minimize Microbial Food Safety of Leafy Greens; Draft Guidance. Available from: http://www.fda.gov/Food/GuidanceComplianceregulatoryInformation/-GuidanceDocuments/ProduceandPlantProducts/ucm173902.htm
Food of plant origin with high water content

FDA (U.S. Food and Drug Administration), online(d). Produce and Plant Products > Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Tomatoes; Draft Guidance. Available from: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation-/GuidanceDocuments/ProduceandPlanProducts/ucm173902.htm

Fell G, Boyens M and Baumgarte S, 2007. [Frozen berries as a risk factor for outbreaks of norovirus gastroenteritis. Results of an outbreak investigation in the summer of 2005 in Hamburg]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 50, 230-236.

Flessa S, Lusk DM and Harris LJ, 2005. Survival of *Listeria monocytogenes* on fresh and frozen strawberries. International Journal of Food Microbiology, 101, 255-262.

Franchini B, Poínhos R, Klepp KI and De Almeida MDV, 2011. Association between parenting styles and own fruit and vegetable consumption among Portuguese mothers of school children. British Journal of Nutrition, 106, 931-935.

Francis GA and O'Beirne D, 2005. Variation among strains of *Listeria monocytogenes*: differences in survival on packaged vegetables and in response to heat and acid conditions. Food Control, 16, 687-694.

Frank C, Walter J, Muehlen M, Jansen A, van Trefck U, Hauri AM, Zoellner I, Rakha M, Hoehne M, Hamouda O, Schreier E and Stark K, 2007. Major outbreak of hepatitis A associated with orange juice among tourists, Egypt, 2004. Emerging Infectious Diseases, 13, 156-158.

Frean J, Arntzen L, van den Heever J and Perovic O, 2004. Fatal type A botulism in South Africa, 2002. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 290-295.

Friesema I, Sigmundsdottr G, van der Zwaluw K, Huvelink A, Schimmer B, de Jager C, Rump B, Briem H, Hardardottir H, Atladottir A, Gudmundsdottir E and van Pelt W, 2008. An international outbreak of Shiga toxin-producing *Escherichia coli* O157 infection due to lettuce, September-October 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 13.

Froder H, Martins CG, Oliveira de Souza KL, Landgraf M, Franco BDGM and Destro MT, 2007. Minimally processed vegetable salads: Microbial quality evaluation. Journal of Food Protection, 70, 1277-1280.

Gajraj R, Pooransingh S, Hawker JI and Olowokure B, 2012. Multiple outbreaks of *Salmonella braenderup* associated with consumption of iceberg lettuce. International Journal of Environmental Health Research, 22, 150-155.

Gallegos-Robles MA, Mora Les-Loredo A, Aivarez-Ojeda G, Vega-P A, Chew-M Y, Velarde S and Fratamico P, 2008. Identification of *Salmonella* Serotypes Isolated from Cantaloupe and Chile Pepper Production Systems in Mexico by PCR-Restriction Fragment Length Polymorphism. Journal of Food Protection, 71, 2217-2222.

Gallot C, Grout L, Roque-Afonso A-M, Couturier E, Carrillo-Santistev P, Pouey J, Letort M-J, Hoppe S, Capdepon P, Saint-Martin S, De Valk H and Valliant V, 2011. Hepatitis A Associated with Semidried Tomatoes, France, 2010. Emerging Infectious Diseases, 17, 566-567.

Gardner TJ, Fitzgerald C and Xavier C, 2012. Outbreak of Campylobacteriosis Associated With Consumption of Raw Peas (vol 53, pg 26, 2011). Clinical Infectious Diseases, 53, 26-32.

Garrood MJ, Wilson PDG and Brocklehurst TF, 2004. Modeling the rate of attachment of *Listeria monocytogenes*, *Pantoea agglomerans*, and *Pseudomonas fluorescens* to, and the probability of...
their detachment from, potato tissue at 10 degrees C. Applied and environmental microbiology, 70, 3558-3565.

Gaynor K, Park SY, Kanenaka R, Colindres R, Mintz E, Ram PK, Kitsutani P, Nakata M, Wedel S, Boxrud D, Jennings D, Yoshida H, Tosaka N, He H, Ching-Lee M and Effler PV, 2009. International foodborne outbreak of Shigella sonnei infection in airline passengers. Epidemiology and Infection, 137, 335-341.

Ge C, Lee C and Lee J, 2012a. The impact of extreme weather events on Salmonella internalization in lettuce and green onion. Food Research International, 45, 1118-1122.

Ghenghesh KS, Belhaj K, El-Amin WB, El-Nefathi SE and Zalmum A, 2005. Microbiological quality of fruit juices sold in Tripoli-Libya. Food Control, 16, 855-858.

Ghosh M, Wahi S, Kumar M and Ganguli A, 2007. Prevalence of enterotoxigenic Staphylococcus aureus and Shigella spp. in some raw street vended Indian foods. International Journal of Environmental Health Research, 17, 151-156.

Gibbs R, Pingault N, Mazzucchelli T, O'Reilly L, MacKenzie B, Green J, Mogyorosy R, Stafford R, Bell R, Hiley L, Fullerton K and Van Buynender P, 2009. An outbreak of Salmonella enterica serotype Litchfield infection in Australia linked to consumption of contaminated papaya. Journal of Food Protection, 72, 1094-1098.

Giraudon I, Cathcart S, Blomqvist S, Littleton A, Surman-Lee S, Mifsud A, Anaraki S and Fraser G, 2009. Large outbreak of Salmonella phage type 1 infection with high infection rate and severe illness associated with fast food premises. Public health, 123, 444-447.

GlobalG.A.P., 2007, online. Control points and compliance criteria integrated Farm Assurance. Available from: http://www.globalgap.org/cms/upload/The_Standard/IFA/English-/CPCC/GG_EG_IFA_CPCC_Intro-AF_ENG_V3_0_3_Apr09.pdf

Golberg D, Kroupitski Y, Belausov E, Pinto R and Sela S, 2011. Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs. International Journal of Food Microbiology, 145, 250-257.

Gombas DE, Chen Y, Clavero RS and Scott VN, 2003. Survey of Listeria monocytogenes in ready-to-eat foods. Journal of Food Protection, 66, 559-569.

Gomez-Govea M, Solis-Soto L, Heredia N, Garcia S, Moreno G, Tovar O and Isunza G, 2012. Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. Journal of Food Agriculture & Environment, 10, 152-156.

Gorski L, Palumbo JD and Mandrell RE, 2003. Attachment of Listeria monocytogenes to radish tissue is dependent upon temperature and flagellar motility. Applied and environmental microbiology, 69, 258-266.

Grande MJ, Lopez RL, Abriouel H, Valdivia E, Ben Omar N, Maqueda M, Martinez-Canamero M and Galvez A, 2007. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Journal of Food Protection, 70, 405-411.

Grant J, Wendelboe AM, Wendel A, Jepson B, Torres P, Smelser C and Rolfs RT, 2008. Spinach-associated Escherichia coli O157:H7 outbreak, Utah and New Mexico, 2006. Emerging Infectious Diseases, 14, 1633-1636.

Greene SK, Daly ER, Talbot EA, Demma LJ, Holzbauer S, Patel NJ, Hill TA, Walderhaug MO, Hockstra RM, Lynch MF and Painter JA, 2008. Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiology and Infection, 136, 157-165.
Food of plant origin with high water content

Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA and van Bruggen AHC, 2011. Internal Colonization of Salmonella enterica Serovar Typhimurium in Tomato Plants. Plos One, 6.

Guinebretiere MH, Girardin H, Dargaignaratz C, Carlin F and Nguyen-The C, 2003. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line. International Journal of Food Microbiology, 82, 223-232.

Gunes GG and Hotchkiss JH, 2002. Growth and survival of Escherichia coli O157 : H7 on fresh-cut apples in modified atmospheres at abusive temperatures. Journal of Food Protection, 65, 1641-1645.

Guo X, Chen JR, Brackett RE and Beuchat LR, 2002. Survival of Salmonella on tomatoes stored at high relative humidity, in soil, and on tomatoes in contact with soil. Journal of Food Protection, 65, 274-279.

Gupta N, Khan DK and Santra SC, 2009. Prevalence of intestinal helminth eggs on vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Food Control, 20, 942-945.

Gupta SK, Nalluswami K, Snider C, Perch M, Balasesaram M, Burmeister D, Lockett J, Sandt C, Hoekstra RM and Montgomery S, 2007. Outbreak of Salmonella Braenderup infections associated with Roma tomatoes, northeastern United States, 2004: a useful method for subtyping exposures in field investigations. Epidemiology and Infection, 135, 1165-1173.

Guzman-Herrador B, Vold L, Comelli H, MacDonald E, Heier BT, Wester AL, Stavnes TL, Jensvoll L, Aanstad AL, Severinsen G, Grini JA, Johansen OW, Cudjoe K and Nygard K, 2011. Outbreak of Shigella sonnei infection in Norway linked to consumption of fresh basil, October 2011. Eurosurveillance, 16, 2-3.

HACCPEuropa, online. Quality Manuals - HACCP Plan Orange Juice. Available from: http://haccpeuropa.com/HACCPPlans/HACCP_Plan_Orange_Juice.pdf

Hamad SH, Saleh FA and Al-Otaibi MM, 2012. Microbial Contamination of Date Rutab Collected from the Markets of Al-Hofuf City in Saudi Arabia. Scientific World Journal,

Hassan A, Farouk H and Abdul-Ghani R, 2012. Parasitological contamination of freshly eaten vegetables collected from local markets in Alexandria, Egypt: A preliminary study. Food Control, 26, 500-503.

Hassan AN and Frank JF, 2004. Attachment of Escherichia coli O157 : H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production. International Journal of Food Microbiology, 96, 103-109.

Hassan SA, Altalhi AD, Gherbawy YA and El-Deeb BA, 2011. Bacterial Load of Fresh Vegetables and Their Resistance to the Currently Used Antibiotics in Saudi Arabia. Foodborne Pathogens and Disease, 8, 1011-1018.

Heilpern KL and Wald M, 2005. Update on emerging infections: news from the Centers for Disease Control and Prevention. Outbreak of cyclosporiasis associated with snow peas—Pennsylvania, 2004. Annals of emergency medicine, 45, 529-531.

Hochel I, Ruzickova H, Krasny L and Demnerova K, 2012. Occurrence of Cronobacter spp. in retail foods. Journal of Applied Microbiology, 112, 1257-1265.

Hora R, Warriner K, Shelp BJ and Griffiths MW, 2005. Internalization of Escherichia coli O157 : H7 following biological and mechanical disruption of growing spinach plants. Journal of Food Protection, 68, 2506-2509.

Horev B, Sela S, Vinokur Y, Gorbatevich E, Pinto R and Rodov V, 2012. The effects of active and passive modified atmosphere packaging on the survival of Salmonella enterica serotype Typhimurium on washed romaine lettuce leaves. Food Research International, 45, 1129-1132.
Food of plant origin with high water content

Horn KM and D'Souza DH, 2011. Survival of human norovirus surrogates in milk, orange, and pomegranate juice, and juice blends at refrigeration (4 degrees C). Food Microbiology, 28, 1054-1061.

Houska M, Strohalm J, Totusek J, Triska J, Vrchatova N, Gabrovská D, Otova B and Gresova P, 2007. Food safety issues of high pressure processed fruit/vegetable juices. High Pressure Research, 27, 157-162.

Hurst WC, Tybor PT, Reynolds AE and Schuler GA, 2010. Quality control: a model program for the food industry.

Ibekwe AM, Grieve CM, Papiernik SK and Yang CH, 2009. Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce. Letters in Applied Microbiology, 49, 784-790.

Ibrahim SA, Bor T, Song DF and Tajkarimi M 2011. Survival and growth characteristics of Escherichia coli O157:H7 in pomegranate-carrot and pomegranate-apple blend juices. Available from: http://www.scirp.org/journal/PaperInformation.aspx?paperID=7887#abstract

Ibrahim SA, Yang H and Seo CW, 2008. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157 : H7 in laboratory medium and carrot juice. Food Chemistry, 109, 137-143.

Ijabadeniyi OA, Minnaar A and Buys EM, 2011. Effect of attachment time followed by chlorine washing on the survival. Journal of Food Quality, 34, 133-141.

Ilic S, Odomeru J and LeJeune JT, 2008. Coliforms and Prevalence of Escherichia coli and Foodborne Pathogens on Minimally Processed Spinach in Two Packing Plants. Journal of Food Protection, 71, 2398-2403.

Insulander M, de Jong B and Svenungsson B, 2008. A food-borne outbreak of cryptosporidiosis among guests and staff at a hotel restaurant in Stockholm county, Sweden, September 2008. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 13.

Insulander M, Svenungsson B, Lebbad M, Karlsson L and de Jong B, 2010. A foodborne outbreak of Cyclospora infection in Stockholm, Sweden. Foodborne Pathogens and Disease, 7, 1585-1587.

Irvine WN, Gillespie IA, Smyth FB, Rooney PJ, McClennaghan A, Devine MJ and Tohani VK, 2009. Investigation of an outbreak of Salmonella enterica serovar Newport infection. Epidemiology and Infection, 137, 1449-1456.

Isara AR, Isah EC, Lofor PVO and Ojide CK, 2010. Food contamination in fast food restaurants in Benin City, Edo State, Nigeria: Implications for food hygiene and safety. Public health, 124, 467-471.

Islam M, Doyle MP, Phatak SC, Millner P and Jiang XP, 2004a. Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. Journal of Food Protection, 67, 1365-1370.

Islam M, Morgan J, Doyle MP and Jiang XP, 2004b. Fate of Escherichia coli O157 : H7 in manure compost-amended soil and on carrots and onions grown in an environmentally controlled growth chamber. Journal of Food Protection, 67, 574-578.

Iturriaga MH and Escartin EF, 2010. Changes in the effectiveness of chlorine treatments during colonization of Salmonella Montevideo on tomatoes. Journal of Food Protection, 30, 300-306.

Iturriaga MH, Escartin EF, Beuchat LR and Martinez-Peniche R, 2003. Effect of inoculum size, relative humidity, storage temperature, and ripening stage on the attachment of Salmonella Montevideo to tomatoes and tomatillos. Journal of Food Protection, 66, 1756-1761.
Food of plant origin with high water content

Iturriaga MH, Tamplin ML and Escartin EF, 2007. Colonization of tomatoes by Salmonella Montevideo is affected by relative and storage temperature. Journal of Food Protection, 70, 30-34.

Jain S, Bidol SA, Austin JL, Berl E, Elson F, Lemaile-Williams M, Desay M, 3rd, Moll ME, Rea V, Vojdani JD, Yu PA, Hockstra RM, Braden CR and Lynch MF, 2009. Multistate outbreak of Salmonella Typhimurium and Saintpaul infections associated with unpasteurized orange juice--United States, 2005. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 48, 1065-1071.

Jalali M and Abedi D, 2008. Prevalence of Listeria species in food products in Isfahan, Iran. International Journal of Food Microbiology, 122, 336-340.

Jalava K, Hakkinen M, Valkonen M, Nakari U-M, Palo T, Hallanvuos U, Ollgren J, Siitonen A and Nuorti JP, 2006. An outbreak of gastrointestinal illness and erythema nodosum from grated carrots contaminated with Yersinia pseudotuberculosis. The Journal of infectious diseases, 194, 1209-1216.

Janes ME, Cobbs T, Kooshesh S and Johnson MG, 2002. Survival differences of Escherichia coli O157 : H7 strains in apples of three varieties stored at various temperatures. Journal of Food Protection, 65, 1075-1080.

Jedrzejewski S, Graczyk TK, Slodkowicz-Kowalska A, Tamang L and Majewska AC, 2007. Quantitative assessment of contamination of fresh food produce of various retail types by human-virulent microsporidial spores. Applied and environmental microbiology, 73, 4071-4073.

JIFSAN (Joint Institute of Food Safety and Nutrition), 2010, online. Improving the Safety and Quality of Fresh Fruits and Vegetables: A Training Manual for Trainers. Available from: http://jifsan.umd.edu/docs/gaps/en/GAPs_Manual_%28Compiled%29.pdf

Johannessen GS, Loncarevic S and Kruse H, 2002. Bacteriological analysis of fresh produce in Norway. International Journal of Food Microbiology, 77, 199-204.

Johnston LM, Jaykus L-A, Moll D, Anciso J, Mora B and Moe CL, 2006. A field study of the microbiological quality of fresh produce of domestic and Mexican origin. International Journal of Food Microbiology, 112, 83-95.

Johnston LM, Jaykus LA, Moll D, Martinez MC, Anciso J, Mora B and Moe CL, 2005. A field study of the microbiological quality of fresh produce. Journal of Food Protection, 68, 1840-1847.

Kamat AS, Ghadge N, Ramamurthy MS and Alur MD, 2005. Effect of low-dose irradiation on shelf life and microbiological safety of sliced carrot. Journal of the Science of Food and Agriculture, 85, 2213-2219.

Kandhai MC, Heuvelink AE, Reij MW, Beumer RR, Dijk R, van Tilburg JJHC, van Schothorst M and Gorris LGM, 2010. A study into the occurrence of Cronobacter spp. in The Netherlands between 2001 and 2005. Food Control, 21, 1127-1136.

Karenlampi R and Hanninen ML, 2004. Survival of Campylobacter jejuni on various fresh produce. International Journal of Food Microbiology, 97, 187-195.

Kenney SJ and Beuchat LR, 2002. Survival of Escherichia coli O157 : H7 and Salmonella Muenchen on apples as affected by application of commercial fruit waxes. International Journal of Food Microbiology, 77, 223-231.

Khandaghi J, Razavilar V and Barzgari A, 2010. Isolation of Escherichia coli O157:H7 from manure fertilized farms and raw vegetables grown on it, in Tabriz city in Iran. African Journal of Microbiology Research, 4, 891-895.
Food of plant origin with high water content

Kim H and Beuchat LR, 2005. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. Journal of Food Protection, 68, 2541-2552.

Kim H, Ryu J-H and Beuchat LR, 2006. Survival of Enterobacter sakazakii on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination. International Journal of Food Microbiology, 111, 134-143.

Kim J-B, Park Y-B, Kang S-H, Lee M-J, Kim K-C, Jeong H-R, Kim D-H, Yoon M-H, Lee J-B and Oh D-H, 2011. Prevalence, Genetic Diversity, and Antibiotic Susceptibility of Cronobacter spp. (Enterobacter sakazakii) Isolated from Sunshik, Its Ingredients and Soils. Food Science and Biotechnology, 20, 941-948.

Kim JK, D’Sa EM, Harrison MA, Harrison JA and Andress EL, 2005. Listeria monocytogenes survival in refrigerator dill pickles. Journal of Food Protection, 68, 2356-2361.

Kim JK and Harrison MA, 2009. Surrogate Selection for Escherichia coli O157:H7 Based on Cryotolerance and Attachment to Romaine Lettuce. Journal of Food Protection, 72, 1385-1391.

Kim K, Jang SS, Kim SK, Park J-H, Heu S and Ryu S, 2008. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. International Journal of Food Microbiology, 122, 196-203.

Kimura T, Akiba Y, Tsuruta M, Akimoto T, Mitsui Y, Ogasawara Y and Ikegami H, 2006. Enterotoxigenic Escherichia coli O6:H16 food poisoning outbreak in prisons. Japanese journal of infectious diseases, 59, 410-411.

Kisko G, Sharp R and Roller S, 2005. Chitosan inactivates spoilage yeasts but enhances survival of Escherichia coli O157:H7 in apple juice. Journal of Applied Microbiology, 98, 872-880.

Kisluk G and Yaron S, 2012. Presence and Persistence of Salmonella enterica Serotype Typhimurium in the Phyllosphere and Rhizosphere of Spray-Irrigated Parsley. Applied and environmental microbiology, 78, 4030-4036.

Kniel KE, Sumner SS, Lindsay DS, Hackney CR, Pierson MD, Zajac AM, Golden DA and Fayer R, 2003. Effect of organic acids and hydrogen peroxide on Cryptosporidium parvum viability in fruit juices. Journal of Food Protection, 66, 1650-1657.

Kokkinakis E, Boskou G, Fragkiadakis GA, Kokkinaki A and Lapidakis N, 2007. Microbiological quality of tomatoes and peppers produced under the good agricultural practices protocol AGRO 2-1 & 2-2 in Crete, Greece. Food Control, 18, 1538-1546.

Kokkinakis EN and Fragkiadakis GA, 2007. HACCP effect on microbiological quality of minimally processed vegetables: a survey in six mass-catering establishments. International Journal of Food Science and Technology, 42, 18-23.

Konopacka D, Jesionkowska K, Kruczynska D, Stehr R, Schoorl F, Buehler A, Egger S, Codarin S, Hilaire C, Hoeller I, Guerra W, Liverani A, Donati F, Sansavini S, Martinelli A, Petiot C, Carbo J, Echeverria G, Iglesias I and Bonany J, 2010. Apple and peach consumption habits across European countries. Appetite, 55, 478-483.

Koopmans M and Duizer E, 2004. Foodborne viruses: an emerging problem. Int J Food Microbiol, 90, 23-41.

Korsager B, Hede S, Bøggild H, Böttiger BE and Mølbak K, 2005. Two outbreaks of norovirus infections associated with the consumption of imported frozen raspberries, Denmark, May-June 2005. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 10,
Food of plant origin with high water content

Koseki S and Isobe S, 2005. Growth of *Listeria monocytogenes* on iceberg lettuce and solid media. International Journal of Food Microbiology, 101, 217-225.

Kothary MH and Babu US, 2001. Infective dose of foodborne pathogens in volunteers: a review. Journal of Food Safety, 21, 49-68.

Kourtis LK and Arvanitoyannis IS, 2001. Implementation of hazard analysis critical control point (HACCP) system to the non-alcoholic beverage industry. Food Reviews International, 17, 451-486.

Kozan E, Gonenc B, Sarimehmetoglu O and Aycicek H, 2005. Prevalence of helminth eggs on raw vegetables used for salads. Food Control, 16, 239-242.

Krølner R, Due P, Rasmussen M, Damsgaard MT, Holstein BE, Klepp KI and Lynch J, 2009. Does school environment affect 11-year-olds' fruit and vegetable intake in Denmark? Social Science and Medicine, 68, 1416-1424.

Kuo H-W, Kasper S, Jelovcan S, Höger G, Lederer I, König C, Pridig N, Luckner-Hornischer A, Allerberger F and Schmid D, 2009. A food-borne outbreak of *Shigella sonnei* gastroenteritis, Austria, 2008. Wiener klinische Wochenschrift, 121, 157-163.

Landa Salgado P, Hernandez Anguiano AM, Corrales Garcia J, Mora Aguilerla G and Chaidez Quiroz C, 2009. SURVIVAL OF *Salmonella typhimurium* on cantaloupe melon during cold storage under controlled atmospheres. Revista Fitotecnia Mexicana, 32, 209-215.

Lapidot A, Romling U and Yaron S, 2006. Biofilm formation and the survival of *Salmonella Typhimurium* on parsley. International Journal of Food Microbiology, 109, 229-233.

Lass A, Pietkiewicz H, Szostakowska B and Myjak P, 2012. The first detection of *Toxoplasma gondii* DNA in environmental fruits and vegetables samples. European Journal of Clinical Microbiology & Infectious Diseases, 31, 1101-1108.

Latorre L, Parisi A, Fraccalvieri R, Normanno G, La Porta MCN, Goffredo E, Palazzo L, Ciccarese G, Addante N and Santagada G, 2007. Low prevalence of *Listeria monocytogenes* in foods from Italy. Journal of Food Protection, 70, 1507-1512.

Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006, online. Commodity specific food safety guidelines for the lettuce and leafy greens supply chain. 1st edition. Available from: http://www.fda.gov/downloads/Food/FoodSafety/Product-SpecificInformation/Fruits-VegetablesJuices/GuidanceComplianceRegulatoryInformation/UCM169008.pdf

Lee T-S, Lee S-W, Seok W-S, Yoo M-Y, Yoon J-W, Park B-K, Moon K-D and Oh D-H, 2004. Prevalence, antibiotic susceptibility, and virulence factors of *Yersinia enterocolitica* and related species from ready-to-eat vegetables available in Korea. Journal of Food Protection, 67, 1123-1127.

Lee VJ, Ong AES and Auw M, 2009. An outbreak of *Salmonella* gastrointestinal illness in a military camp. Annals of the Academy of Medicine, Singapore, 38, 207-211.

Lee N, Sun JM, Kwon KY, Kim HJ, Koo M and Chun HS, 2012. Genetic diversity, antimicrobial resistance, and toxigenic profiles of *Bacillus cereus* strains isolated from Sunsik. J Food Prot, 75, 225-230.

Lee Y-D, Park J-H and Chang H, 2012. Detection, antibiotic susceptibility and biofilm formation of *Cronobacter* spp. from various foods in Korea. Food Control, 24, 225-230.

Lehto M, Kuisma R, Määttä J, Kymäläinen H-R and Mäki M, 2011. Hygienic level and surface contamination in fresh-cut vegetable production plants. Food Control, 22, 469-475.

Leong YK, Xui OC and Chia OK, 2008. Survival of SA11 rotavirus in fresh fruit juices of pineapple, papaya, and honeydew melon. Journal of Food Protection, 71, 1035-1037.

Supporting publications 2013:EN-402
Lewis JE, Thompson P, Rao B, Kalavati C and Rajanna B, 2006. Human Bacteria in Street Vended Fruit Juices: A Case Study of Visakhapatnam City, India. Internet Journal of Food Safety, 8, 35-38.

Li Y, Brackett RE, Chen J and Beuchat LR, 2002. Mild heat treatment of lettuce enhances growth of *Listeria monocytogenes* during subsequent storage at 5 degrees C or 15 degrees C. Journal of Applied Microbiology, 92, 269-275.

Liao CH, Cooke PH and Niemira BA, 2010. Localization, Growth, and Inactivation of *Salmonella* Saintpaul on Jalapeno Peppers. Journal of Food Science, 75, M377-M382.

Lienemann T, Niskanen T, Guedes S, Siitonen A, Kuusi M and Rimhanen-Finne R, 2011. Iceberg Lettuce as Suggested Source of a Nationwide Outbreak Caused by Two *Salmonella* Serotypes, Newport and Reading, in Finland in 2008. Journal of Food Protection, 74, 1035-1040.

Liu J-G and Lin T-S, 2008. Survival of *Listeria monocytogenes* inoculated in retail soymilk products. Food Control, 19, 862-867.

Liu L, Tan S, Jun W, Smith A, Meng J and Bhagwat AA, 2009. Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by *Salmonella enterica* serovar Typhimurium in leafy-green vegetable wash waters and colonization in mice. Fems Microbiology Letters, 292, 13-20.

Löfdahl M, Ivarssson S, Andersson S, Långmark J and Plym-Forsell L, 2009. An outbreak of *Shigella dysenteriae* in Sweden, May-June 2009, with sugar snaps as the suspected source. Euro surveillance: bulletin europén sur les maladies transmissibles = European communicable disease bulletin, 14,

Loncarevic S, Johannessen GS and Rorvik LM, 2005. Bacteriological quality of organically grown leaf lettuce in Norway. Letters in Applied Microbiology, 41, 186-189.

Lucero Estrada CSM, Del Carmen Velazquez L and De Guzman AMS, 2010. Effects of organic acids, nisin, lysozyme and EDTA on the survival of *Yersinia enterocolitica* population in inoculated orange beverages. Journal of Food Safety, 30, 24-39.

Luo Y, He Q, McEvoy JL and Conway WS, 2009. Fate of *Escherichia coli* O157:H7 in the Presence of Indigenous Microorganisms on Commercially Packaged Baby Spinach, as Impacted by Storage Temperature and Time. Journal of Food Protection, 72, 2038-2045.

Macdonald E, Heier BT, Nygård K, Stalheim T, Cudjoe KS, Skjerdel T, Wester AL, Lindstedt B-A, Stavnes T-L and Vold L, 2012. *Yersinia enterocolitica* Outbreak Associated with Ready-to-Eat Salad Mix, Norway, 2011. Emerging Infectious Diseases, 18, 1496-1499.

Mahovic M, Brecht J, Sargent S, Ritenour M, Simone KSA and Bartz J, 2002. Good agricultural practices for the production and handling of cucumbers, eggplants, squash, peppers, and sweet corn. In: Osborne, DJ, DC, Sanders, and DR Ward (Eds.) Fresh Produce Food Safety: Southeastern Regional Program. North Carolina Cooperative Extension Service. NC.

Mailles A, Capek I, Ajana F, Schepens C, Ilef D and Vaillant V, 2006. Commercial watercress as an emerging source of fascioliasis in Northern France in 2002: results from an outbreak investigation. Epidemiology and Infection, 134, 924-945.

Makary P, Maunula L, Niskanen T, Kuusi M, Virtanen M, Pajunen S, Ollgren J and Tran Minh NN, 2009. Multiple norovirus outbreaks among workplace canteen users in Finland, July 2006. Epidemiology and Infection, 137, 402-407.

Maklon K, Minami A, Kusumoto A, Takeshi K, Thuy NTB, Makino S-i and Kawamoto K, 2010. Isolation and characterization of *Listeria monocytogenes* from commercial asazuke (Japanese light pickles). International Journal of Food Microbiology, 139, 134-139.
Martino TK, Lemus D, Leyva V, Tejedor R, Reyes Mdl and Soto P 2008. Incidence of Listeria spp. in fresh vegetables. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662008000400009&lng=en&nrm=iso&tlng=es

Materon LA, 2003. Survival of Escherichia coli O157 : H7 applied to cantaloupes and the effectiveness of chlorinated water and lactic acid as disinfectants. World Journal of Microbiology & Biotechnology, 19, 867-873.

McCallum L, Torok M, Dufour MT, Hall A and Cramp G, 2010. An outbreak of Salmonella typhimurium phage type 1 associated with watermelon in Gisborne, January 2009. The New Zealand medical journal, 123, 39-45.

Meldrum RJ, Little CL, Sagoo S, Mithani V, McLauchlin J and de Pinna E, 2009. Assessment of the microbiological safety of salad vegetables and sauces from kebab take-away restaurants in the United Kingdom. Food Microbiology, 26, 573-577.

Mena C, Almeida G, Carneiro L, Teixeira P, Hogg T and Gibbs PA, 2004. Incidence of Listeria monocytogenes in different food products commercialized in Portugal. Food Microbiology, 21, 213-216.

Mertens E, Kreher H, Rabsch W, Bornhofen B, Alpers K and Burckhardt F, 2012. Severe infections caused by Salmonella Enteritidis PT8/7 linked to a private barbecue. Epidemiology and Infection, 1-7.

Miles JM, Sumner SS, Boyer RR, Williams RC, Latimer JG and McKinney JM, 2009. Internalization of Salmonella enterica Serovar Montevideo into Greenhouse Tomato Plants through Contaminated Irrigation Water or Seed Stock. Journal of Food Protection, 72, 849-852.

Milord F, Lampron-Goulet E, St-Amour M, Levac E and Ramsay D, 2012. Cyclospora cayetanensis: a description of clinical aspects of an outbreak in Quebec, Canada. Epidemiology and Infection, 140, 626-632.

Miranda JM, Mondragón AC, Martinez B, Guarddon M and Rodriguez JA, 2009. Prevalence and antimicrobial resistance patterns of Salmonella from different raw foods in Mexico. Journal of Food Protection, 72, 966-971.

Mittra R, Cuesta-Alonso E, Wayadande A, Talley J, Gilliland S and Fletcher J, 2009. Effect of Route of Introduction and Host Cultivar on the Colonization, Internalization, and Movement of the Human Pathogen Escherichia coli O157:H7 in Spinach. Journal of Food Protection, 72, 1521-1530.

MMWR (Morbidity and mortality weekly report), 2002. Outbreak of Salmonella serotype Javiana infections--Orlando, Florida. 51, 683-684.

MMWR (Morbidity and mortality weekly report), 2003. Hepatitis A outbreak associated with green onions at a restaurant--Monaca, Pennsylvania, 2003. MMWR. 52, 1155-1157.

MMWR (Morbidity and mortality weekly report), 2004a. Cholera epidemic associated with raw vegetables--Lusaka, Zambia, 2003-2004. MMWR. 53, 783-786.

MMWR (Morbidity and mortality weekly report), 2004b. Outbreak of cyclosporiasis associated with snow peas—Pennsylvania. 53, 876-878.

MMWR (Morbidity and mortality weekly report), 2006. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach--United States, September 2006. 55, 38, 1045-1046.

MMWR (Morbidity and mortality weekly report), 2007. Salmonella Oranienburg infections associated with fruit salad served in health-care facilities--northeastern United States and Canada, 2006, 56, 1025-1028.
Food of plant origin with high water content

MMWR (Morbidity and mortality weekly report), 2008a. *Salmonella* Litchfield outbreak associated with a hotel restaurant--Atlantic City, New Jersey, 2007, 57, 775-779.

MMWR (Morbidity and mortality weekly report), 2008b. Outbreak of *Salmonella* serotype Saintpaul infections associated with multiple raw produce items--United States, 2008, 57, 929-934.

MMWR (Morbidity and mortality weekly report), 2010. Multiple-serotype *Salmonella* gastroenteritis outbreak after a reception --- Connecticut, 2009, 59, 1093-1097.

MMWR (Morbidity and mortality weekly report), 2011. Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe--United States, August-September 2011, 60, 1357-1358.

Mody RK, Greene SA, Gaul L, Sever A, Pichette S, Zambrana I, Dang T, Gass A, Wood R, Herman K, Cantwell LB, Falkenhorst G, Wannemuehler K, Hoekstra RM, McCullum I, Cone A, Franklin L, Austin J, Delea K, Behravesh CB, Sodha SV, Yee JC, Emanuel B, Al-Khaldi SF, Jefferson V, Williams IT, Griffin PM and Swerdlow DL, 2011. National Outbreak of *Salmonella* Serotype Saintpaul Infections: Importance of Texas Restaurant Investigations in Implicating Jalapeno Peppers. Plos One, 6.

Molloy C, Cagney C, O'Brien S, Iversen C, Fanning S and Duffy G, 2009. Surveillance and characterisation by Pulsed-Field Gel Electrophoresis of *Cronobacter* spp. in farming and domestic environments, food production animals and retail foods. International Journal of Food Microbiology, 136, 198-203.

Monge C, Chaves C and Laura Arias M, 2011. Bacteriological quality of traditional, organic and hydroponic cultured lettuce in Costa Rica. Archivos Latinoamericanos De Nutricion, 61, 69-73.

Moore JE, Cherrie Millar B, Kenny F, Lowery CJ, Xiao L, Rao JR, Nicholson V, Watabe M, Heaney N, Sunnol O, McCorry K, Rooney PJ, Snelling WJ and Dooley JSG, 2007. Detection of *Cryptosporidium parvum* in lettuce. International Journal of Food Science & Technology, 42, 385-393.

Moore L and Tapper K, 2008. The impact of school fruit tuck shops and school food policies on children's fruit consumption: A cluster randomised trial of schools in deprived areas. Journal of Epidemiology and Community Health, 62, 926-931.

Moreira PL, Lourencao TB, Pinto JPAN and Rall VLM, 2009. Microbiological Quality of Spices Marketed in the City of Botucatu, Sao Paulo, Brazil. Journal of Food Protection, 72, 421-424.

Moreno Y, Sanchez-Contreras J, Montes RM, Garcia-Hernandez J, Ballesteros L and Antonia Ferrus M, 2012. Detection and enumeration of viable *Listeria monocyogenes* cells from ready-to-eat and processed vegetable foods by culture and DVC-FISH. Food Control, 27, 374-379.

Mostafa UE, Filipiak M and Stryjakowska-Sekulska M, 2002. Evaluation of bacteriological quality in selected commercial infant formulas available in Poland and Egypt. Journal of Food Safety, 22, 197-208.

Mugdil S, Aggarwal D and Ganguli A, 2004. Microbiological Analysis Of Street vended Fresh Squeezed Carrot And Kinnow- Mandarin Juices In Patiala City, India. Internet Journal of Food Safety, 3, 1-3.

Mukherjee A, Speh D, Dyck E and Diez-Gonzalez F, 2004. Preharvest Evaluation of Coliforms, *Escherichia coli*, *Salmonella*, and *Escherichia coli* O157:H7 in Organic and Conventional Produce Grown by Minnesota Farmers. Journal of Food Protection, 67, 894-900.

Mukhopadhyay R, Mitra A, Roy R and Guha AK, 2002. An evaluation of street-vended sliced papaya (*Carica papaya*) for bacteria and indicator micro-organisms of public health significance. Food Microbiology, 19, 663-667.
Muller L, Jensen T, Petersen RF, Mølbak K and Ethelberg S, 2009. Imported fresh sugar peas as suspected source of an outbreak of Shigella sonnei in Denmark, April-May 2009. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 14.

Munncho SA, Ashbolt RH, Coleman DJ, Walton N, Beers-Deeble MY and Taylor R, 2004. A multi-jurisdictional outbreak of hepatitis A related to a youth camp--implications for catering operations and mass gatherings. Communicable diseases intelligence, 28, 521-527.

Munncho SA, Ward K, Sheridan S, Fitzsimmons GJ, Shadbolt CT, Piispanen JP, Wang Q, Ward TJ, Worgan TLM, Oxenford C, Musto JA, McAnulty J and Durrheim DN, 2009. A multi-state outbreak of Salmonella Saintpaul in Australia associated with cantaloupe consumption. Epidemiology and Infection, 137, 367-374.

Murugesan L, Williams-Hill D and Prakash A, 2011. Effect of Irradiation on Salmonella Survival and Quality of 2 Varieties of Whole Green Onions. Journal of Food Science, 76, M439-M444.

Niemira BA, Fan XT and Sokorai KJB, 2005. Irradiation and modified atmosphere packaging of endive influences survival and regrowth of Listeria monocytogenes and product sensory qualities. Radiation Physics and Chemistry, 72, 41-48.

Niemira BA, Sommers CH and Boyd G, 2003. Effect of freezing, irradiation, and frozen storage on survival of Salmonella in concentrated orange juice. Journal of Food Protection, 66, 1916-1919.

NM PED (New Mexico Public Education Department), online. Food safety program for New Schools Applicants. Available from: http://www.ped.state.nm.us/nutrition/na_nb11-HACCP_Infomation_all_1102.pdf

Noel H, Hofhuis A, De Jonge R, Heuvelink AE, De Jong A, Heck MEOC, De Jager C and van Pelt W, 2010. Consumption of Fresh Fruit Juice: How a Healthy Food Practice Caused a National Outbreak of Salmonella Panama Gastroenteritis. Foodborne Pathogens and Disease, 7, 375-381.

Nutt JD, Li X, Woodward CL, Zabala-Diaz JB and Ricke SC, 2003. Growth kinetics response of a Salmonella typhimurium poultry marker strain to fresh produce extracts. Bioresource Technology, 89, 313-316.

Nyarango RM, Aloo PA, Kabiru EW and Nyanchongi BO, 2008. The risk of pathogenic intestinal parasite infections in Kisii Municipality, Kenya. Bmc Public Health, 8,

Nygård K, Lassen J, Vold L, Andersson Y, Fisher I, Löfdahl S, Threlfall J, Luazzi I, Peters T, Hampton M, Torpdahl M, Kapperud G and Aavitsland P, 2008. Outbreak of Salmonella Thompson infections linked to imported rucola lettuce. Foodborne Pathogens and Disease, 5, 165-173.

Olaimat AN and Holley RA, 2012. Factors influencing the microbial safety of fresh produce: a review. Food Microbiology, 32, 1-19.

Olmez H and Temur SD, 2010. Effects of different sanitizing treatments on biofilms and attachment of Escherichia coli and Listeria monocytogenes on green leaf lettuce. Lwt-Food Science and Technology, 43, 964-970.

Ongeng D, Vasquez GA, Muyanja C, Ryckeboer J, Geeraerd AH and Springael D, 2011. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa. International Journal of Food Microbiology, 145, 301-310.

Oyarzabal OA, Nogueira MCL and Gombas DE, 2003. Survival of Escherichia coli O157 : H7, Listeria monocytogenes, and Salmonella in juice concentrates. Journal of Food Protection, 66, 1595-1598.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pakalniskiene J, Falkenhorst G, Lisby M, Madsen SB, Olsen KEK, Nielsen EM, Mygh A, Boel J and Mølbak K, 2009. A foodborne outbreak of enterotoxigenic E. coli and Salmonella Anatum infection after a high-school dinner in Denmark, November 2006. Epidemiology and Infection, 137, 396-401.

Panagou EZ, Tassou CC, Vamvakoula P, Saravanos EKA and Nychas G-JE, 2008. Survival of Bacillus cereus vegetative cells during Spanish-Style fermentation of Conservolea green olives. Journal of Food Protection, 71, 1393-1400.

Pappelbaum K, Grif K, Heller I, Wuerzner R, Hein I, Ellerbroek L and Wagner M, 2008. Monitoring hygiene on- and at-line is critical for controlling Listeria monocytogenes during produce processing. Journal of Food Protection, 71, 735-741.

Patel J and Sharma M, 2010. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. International Journal of Food Microbiology, 139, 41-47.

Patel J, Sharma M and Ravishakar S, 2011. Effect of curli expression and hydrophobicity of Escherichia coli O157:H7 on attachment to fresh produce surfaces. Journal of Applied Microbiology, 110, 737-745.

Pavan da Silva SR, Frizzo Verdin SE, Pereira DC, Schatkoski AM, Rott MB and Corcao G, 2007. Microbiological quality of minimally processed vegetables sold in Porto Alegre, Brazil. Brazilian Journal of Microbiology, 38, 594-598.

Penteado AL, Eblen BS and Miller AJ, 2004. Evidence of Salmonella internalization into fresh mangos during simulated postharvest insect disinfestation procedures. Journal of Food Protection, 67, 181-184.

Penteado AL and Leitao MFF, 2004a. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. International Journal of Food Microbiology, 92, 89-94.

Penteado AL and Leitao MFF, 2004b. Growth of Salmonella Enteritidis in melon, watermelon and papaya pulp stored at different times and temperatures. Food Control, 15, 369-373.

Pereira AP, Pereira JA, Bento A and Estevinho ML, 2008. Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food and Chemical Toxicology, 46, 2895-2902.

Petrignani M, Harms M, Verhoef L, van Hunen R, Swaan C, van Steenbergen J, Boxman I, Peran I Sala R, Ober H, Vennema H, Koopmans M and van Pelt W, 2010. Update: a food-borne outbreak of hepatitis A in the Netherlands related to semi-dried tomatoes in oil, January-February 2010. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 15,

Pexara A, Angelidis D and Govaris A, 2012. Shiga toxin-producing Escherichia coli (STEC) foodborne outbreaks. Journal of the Hellenic Veterinary Medical Society, 63, 45-53.

Pezzoli L, Elson R, Little C, Fisher I, Yip H, Peters T, Hampton M, De Pinna E, Coia JE, Mather HA, Brown DJ, Nielsen EM, Ethelberg S, Heck M, de Jager C and Threlfall J, 2007. International outbreak of Salmonella Senftenberg in 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12,

Pezzoli L, Elson R, Little CL, Yip H, Fisher I, Yishai R, Anis E, Valinsky L, Biggerstaff M, Patel N, Mather H, Brown DJ, Coia JE, van Pelt W, Nielsen EM, Ethelberg S, de Pinna E, Hampton MD, Peters T and Threlfall J, 2008. Packed with Salmonella--investigation of an international outbreak of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007. Foodborne Pathogens and Disease, 5, 661-668.
Pingeon JM, Vanbockstael C, Popoff MR, King LA, Deschamps B, Pradel G, Dupont H, Spanjaard A, Houdard A, Mazuet C, Belaizi B, Bourgeois S, Lemgueres S, Debat K, Courant P, Quirin R and Malfait P, 2011. Two outbreaks of botulism associated with consumption of green olive paste, France, September 2011. Eurosurveillance, 16, 5-7.

PMA (Produce Marketing Association), 2005, online. Commodity specific food safety guidelines for the melon supply chain, 1st edition. Available from: http://www.cantaloupe-guidance.org/sites/default/files/docs/MelonGuidanceDocument%5B2005%5D.pdf

Ponniyah J, Robin T, Paie MS, Radu S, Ghazali FM, Kqueen CY, Nishibuchi M, Nakaguchi Y and Malakar PK, 2010. *Listeria monocytogenes* in raw salad vegetables sold at retail level in Malaysia. Food Control, 21, 774-778.

Prazak AM, Murano EA, Mercado I and Acuff GR, 2002. Prevalence of *Listeria monocytogenes* during production and postharvest processing of cabbage. Journal of Food Protection, 65, 1728-1734.

Pu S, Beaulieu JC, Prinyawiwatkul W and Ge B, 2009. Effects of Plant Maturity and Growth Media Bacterial Inoculum Level on the Surface Contamination and Internalization of *Escherichia coli* O157:H7 in Growing Spinach Leaves. Journal of Food Protection, 72, 2313-2320.

Puente S, Morente A, García-Benayas T, Subirats M, Gascón J and González-Lahoz JM, 2006. Cyclosporiasis: a point source outbreak acquired in Guatemala. Journal of travel medicine, 13, 334-337.

Pu CF, Wong WC, Chai LC, Nillian E, Ghazali FM, Cheah YK, Nakaguchi Y, Nishibuchi M and Radu S, 2011. Simultaneous detection of *Salmonella* spp, *Salmonella* Typhi and *Salmonella* Typhimurium in sliced fruits using multiplex PCR. Food Control, 22, 337-342.

Quiroz-Santiago C, Rodas-Suarez OR, Vazquez Q CR, Fernandez FJ, Irma Quinones-Ramirez E and Vazquez-Salinas C, 2009. Prevalence of *Salmonella* in Vegetables from Mexico. Journal of Food Protection, 72, 1279-1282.

Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, Gurley ES, Rollin PE, Lo MK, Comer JA, Lowe L, Rota PA, Ksiazek TG, Kenah E, Sharker Y and Luby SP, 2012. Date Palm Sap Linked to Nipah Virus Outbreak in Bangladesh, 2008. Vector-Borne and Zoonotic Diseases, 12, 65-72.

Rai AK, Chakravorty R and Paul J, 2008. Detection of *Giardia, Entamoeba*, and *Cryptosporidium* in unprocessed food items from northern India. World Journal of Microbiology & Biotechnology, 24, 2879-2887.

Ramirez Merida LG, Moron de Salim A, Alfieri Graterol AY and Gamboa O, 2009. Prevalence of *Listeria monocytogenes* in fresh tomatoes (*Lycopersicum esculentum*) and coriander (*Coriandrum sativum*) in three markets of Valencia. Venezuela. Archivos Latinoamericanos De Nutricion, 59, 318-324.

Rathinasabapathi B, 2004. Survival of *Salmonella* Montevideo on tomato leaves and mature green tomatoes. Journal of Food Protection, 67, 2277-2279.

Relevé épidémiologique hebdomadaire / Section d'hygiène du Secrétariat de la Société des Nations, 2006. Outbreak news. Botulism, Canada and United States. Weekly epidemiological record / Health Section of the Secretariat of the League of Nations, 81, 55, 1045-1046.

Rezende ACB, de Castro MFPM, Porto E, Uchima CA, Benato E and Penteado AL, 2009. Occurrence of *Salmonella* spp. in persimmon fruit (*Diospyrus kaki*) and growth of *Salmonella* enteritidis on the peel and in the pulp of this fruit. Food Control, 20, 1025-1029.
Richards GM, Gurtler JB and Beuchat LR, 2005. Survival and growth of Enterobacter sakazakii in infant rice cereal reconstituted with water, milk, liquid infant formula, or apple juice. Journal of Applied Microbiology, 99, 844-850.

Rimhanen-Finne R, Niskanen T, Hallanvuo S, Makary P, Haukka K, Pajunen S, Siitonen A, Ristolainen R, Pöyry H, Ollgren J and Kuusi M, 2009. Yersinia pseudotuberculosis causing a large outbreak associated with carrots in Finland, 2006. Epidemiology and Infection, 137, 342-347.

RKI (Robert Koch Institute), online. Outbreak of acute vomiting with diarrhoea in children and youths over, cause identified. Available from: http://www.rki.de/EN/Home/Outbreak_AV.html

Rosenquist H, Smidt L, Andersen SR, Jensen GB and Wilcks A, 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. Fems Microbiology Letters, 250, 129-136.

Rügeles LC, Bai J, Martínez AJ, Vanegas MC and Gómez-Duarte OG, 2010. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia. International Journal of Food Microbiology, 138, 282-286.

Rushing JW, Angulo JJ and Beuchat LR, 1996. Implementation of a HACCP program in a commercial fresh-market tomato packinghouse: a model for the industry. Dairy Food Environment and Sanitation, 549-553.

Ryu J-H, Ko J, Park H, Yang S and Kim H, 2011. Microbial Examination of Nonheated Foods Served in Feeding Programs of Elementary Schools, Iksan City, Jeonbuk Province, Korea. Journal of Food Protection, 74, 1564-1568.

Saggers EJ, Waspe CR, Parker ML, Waldron KW and Brocklehurst TF, 2008. Salmonella must be viable in order to attach to the surface of prepared vegetable tissues. Journal of Applied Microbiology, 105, 1239-1245.

Sagoo SK, Little CL and Mitchell RT, 2003a. Microbiological quality of open ready-to-eat salad vegetables: Effectiveness of food hygiene training of management. Journal of Food Protection, 66, 1581-1586.

Sagoo SK, Little CL, Ward L, Gillespie IA and Mitchell RT, 2003b. Microbiological study of ready-to-eat salad vegetables from retail establishments uncovers a national outbreak of salmonellosis. Journal of Food Protection, 66, 403-409.

Salleh NA, Rusul G, Hassan Z, Reezal A, Isa SH, Nishibuchi M and Radu S, 2003. Incidence of Salmonella spp. in raw vegetables in Selangor, Malaysia. Food Control, 14, 475-479.

Samapundo S, Heyndrickx M, Xhaferi R and Devlieghere F, 2011. Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. International Journal of Food Microbiology, 150, 34-41.

Sant'Ana AS, Franco BDGM and Schaffner DW, 2012a. Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiology, 30, 267-273.

Sant'Ana AS, Igarashi MC, Landgraf M, Destro MT and Franco BDGM, 2012b. Prevalence, populations and pheno- and genotypic characteristics of Listeria monocytogenes isolated from ready-to-eat vegetables marketed in São Paulo, Brazil. International Journal of Food Microbiology, 155, 1-9.

Sant'Ana AS, Landgraf M, Destro MT and Franco BDGM, 2011. Prevalence and counts of Salmonella spp. in minimally processed vegetables in São Paulo, Brazil. Food Microbiology, 28, 1235-1237.

Santos MI, Cavaco A, Gouveia J, Novais MR, Nogueira PJ, Pedroso L and Ferreira MASS, 2012. Evaluation of minimally processed salads commercialized in Portugal. Food Control, 23, 275-281.
Sanz S, Gimenez M and Olarte C, 2003. Survival and growth of *Listeria monocytogenes* and enterohemorrhagic *Escherichia coli* O157 : H7 in minimally processed artichokes. Journal of Food Protection, 66, 2203-2209.

Sauders BD, Sanchez MD, Rice DH, Corby J, Stich S, Fortes ED, Roof SE and Wiedmann M, 2009. Prevalence and molecular diversity of *Listeria monocytogenes* in retail establishments. Journal of Food Protection, 72, 2337-2349.

Schaffzin JK, Coronado F, Dumas NB, Root TP, Halse TA, Schoomaker-Bopp DJ, Lurie MM, Nicholas D, Gerzonich B, Johnson GS, Wallace BJ and Musser KA, 2012. Public health approach to detection of non-O157 Shiga toxin-producing *Escherichia coli*: summary of two outbreaks and laboratory procedures. Epidemiology and Infection, 140, 283-289.

Schmid D, Stüger HP, Lederer I, Pichler AM, Kainz-Arnfelser G, Schreier E and Allerberger F, 2007. A foodborne norovirus outbreak due to manually prepared salad, Austria 2006. Infection, 35, 232-239.

Schwaiger K, Helmke K, Holzel CS and Bauer J, 2011. Comparative analysis of the bacterial flora of vegetables collected directly from farms and from supermarkets in Germany. International Journal of Environmental Health Research, 21, 161-172.

Scolari G, Vescovo M, Zacconi C and Bonade A, 2004. Influence of *Lactobacillus plantarum* on *Staphylococcus aureus* growth in a fresh vegetable model system. European Food Research and Technology, 218, 274-277.

Seo Y-H, Jang J-H and Moon K-D, 2010. Occurrence and characterization of enterotoxigenic *Staphylococcus aureus* isolated from minimally processed vegetables and sprouts in Korea. Food Science and Biotechnology, 19, 313-319.

Sevenier V, Delannoy S, André S, Fach P and Remize F, 2012. Prevalence of *Clostridium botulinum* and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry. International Journal of Food Microbiology, 155, 263-268.

Severi E, Booth L, Johnson S, Cleary P, Rimington M, Saunders D, Cockcroft P and Ilhekwazu C, 2012. Large outbreak of *Salmonella Enteritidis* PT8 in Portsmouth, UK, associated with a restaurant. Epidemiology and Infection, 140, 1748-1756.

Sharma M, Ingram DT, Patel JR, Millner PD, Wang X, Hull AE and Donnenberg MS, 2009. A Novel Approach To Investigate the Uptake and Internalization of *Escherichia coli* O157:H7 in Spinach Cultivated in Soil and Hydroponic Medium. Journal of Food Protection, 72, 1513-1520.

Sharma M, Lakshman S, Ferguson S, Ingram DT, Luo Y and Patel J, 2011. Effect of Modified Atmosphere Packaging on the Persistence and Expression of Virulence Factors of *Escherichia coli* O157:H7 on Shredded Iceberg Lettuce. Journal of Food Protection, 74, 718-726.

Sharma S, Chandra P, Mishra C and Kakkar P, 2008. Microbiological quality and organochlorine pesticide residue in commercially available ready-to-eat raisins. Bulletin of Environmental Contamination and Toxicology, 81, 387-392.

Shaw RK, Lasa I, Garcia BM, Pallen MJ, Hinton JCD, Berger CN and Frankel G, 2011. Cellulose mediates attachment of *Salmonella enterica* Serovar Typhimurium to tomatoes. Environmental Microbiology Reports, 3, 569-573.

Sherchand JB and Cross JH, 2002. Studies on *Cyclospora cayetanensis* infection in Nepal. Editor.
Food of plant origin with high water content

Shi X, Namvar A, Kostrzynska M, Hora R and Warriner K, 2007. Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes. Journal of Food Protection, 70, 2725-2731.

Shieh YC, Stewart DS and Laird DT, 2009. Survival of Hepatitis A Virus in Spinach during Low Temperature Storage. Journal of Food Protection, 72, 2390-2393.

Shields JM and Olson BH, 2003. Cyclospora cayetanensis: a review of an emerging parasitic coccidian. International journal for parasitology, 33, 371-391.

Showell D, Sundkvist T, Reacher M and Gray J, 2007. Norovirus outbreak associated with canteen salad in Suffolk, United Kingdom. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12,

Singh BR, Singh P, Agrawal S, Teotia U, Verma A, Sharma S, Chandra M, Babu N and Kant Agarwal R. 2007. Prevalence of multidrug resistant Salmonella in Coriander, mint, carrot, and radish in Bareilly and Kanpur, northern India. Foodborne Pathogens and Disease, 4, 233-240.

Sinigaglia M, Bevilacqua A, Campaniello D, D’Amato D and Corbo MR, 2006. Growth of Listeria monocytogenes in fresh-cut coconut as affected by storage conditions and inoculum size. Journal of Food Protection, 69, 820-825.

Söderström A, Lindberg A and Andersson Y, 2005. EHEC O157 outbreak in Sweden from locally produced lettuce, August-September 2005. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 10,

Söderström A, Osterberg P, Lindqvist A, Jönsson B, Lindberg A, Blide Ulander S, Welinder-Olsson C, Löfdahl S, Kajser B, De Jong B, Kühllman-Berenzon S, Boqvist S, Eriksson E, Szanto E, Andersson S, Allestam G, Hedenström I, Ledet Muller L and Andersson Y, 2008. A large Escherichia coli O157 outbreak in Sweden associated with locally produced lettuce. Foodborne Pathogens and Disease, 5, 339-349.

Sodha SV, Lynch M, Wannemuehler K, Leeper M, Malavet M, Schaffzin J, Chen T, Langer A, Glenshaw M, Hoefer D, Dumas N, Lind L, Iwamoto M, Ayers T, Nguyen T, Biggerstaff M, Olson C, Sheth A and Braden C, 2011. Multistate outbreak of Escherichia coli O157:H7 infections associated with a national fast-food chain, 2006: a study incorporating epidemiological and food source traceback results. Epidemiology and Infection, 139, 309-316.

Solomon EB, Pang HJ and Matthews KR, 2003. Persistence of Escherichia coli O157 : H7 on lettuce plants following spray irrigation with contaminated water. Journal of Food Protection, 66, 2198-2202.

Solomon EB, Yaron S and Matthews KR, 2002. Transmission of Escherichia coli O157 : H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Applied and environmental microbiology, 68, 397-400.

Soto M, Chavez G, Baez M, Martinez C and Chaidez C, 2007. Internalization of Salmonella typhimurium into mango pulp and prevention of fruit pulp contamination by chlorine and copper ions. International Journal of Environmental Health Research, 17, 453-459.

Srikanthiah P, Bodager D, Toth B, Kass-Hout T, Hammond R, Stenzel S, Hoekstra RM, Adams J, Van Duyne S and Mead PS, 2005. Web-based investigation of multistate salmonellosis outbreak. Emerging Infectious Diseases, 11, 610-612.

Steindel M, Kramer Pacheco L, Scholl D, Soares M, de Moraes MH, Eger I, Kosmann C, Sincero TCM, Stoco PH, Murta SMF, de Carvalho-Pinto CJ and Grisard EC, 2008. Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of
acute human Chagas disease in Santa Catarina State, Brazil. Diagnostic microbiology and infectious disease, 60, 25-32.

Stopforth JD, Ikeda JS, Kendall PA and Sofos JN, 2004. Survival of acid-adapted or nonadapted Escherichia coli O157:H7 in apple wounds and surrounding tissue following chemical treatments and storage. International Journal of Food Microbiology, 90, 51-61.

Strawn LK, Schneider KR and Danyluk MD, 2011. Microbial Safety of Tropical Fruits. Critical Reviews in Food Science and Nutrition, 51, 132-145.

Sun Y, Laird DT and Shieh YC, 2012. Temperature-Dependent Survival of Hepatitis A Virus during Storage of Contaminated Onions. Applied and environmental microbiology, 78, 4976-4983.

Tahiri I, Makhlov J, Paquin P and Fliss I, 2006. Inactivation of food spoilage bacteria and Escherichia coli O157 : H7 in phosphate buffer and orange juice using dynamic high pressure. Food Research International, 39, 98-105.

Tambekar DH, Jaiswal VJ, Dhanorkar DV, Gulbane PB and Dudhane MN, 2009. Microbial Quality and safety of street vended fruit juices: A case study of Amravati city. Internet Journal of Food Safety, 10, 72-76.

Tang PL, Pui CF, Wong WC, Noorlis A and Son R 2012. Biofilm forming ability and time course study of growth of Salmonella Typhi on fresh produce surfaces. Available from: http://www.ifrj.upm.edu.my/19%20(01)%202011/(10)IFRJ-2011-276%20Son.pdf

Tassou CC and Boziaris JS, 2002. Survival of Salmonella enteritidis and changes in pH and organic acids in grated carrots inoculated or not with Lactobacillus sp and stored under different atmospheres at 4 ºC. Journal of the Science of Food and Agriculture, 82, 1122-1127.

Taulo S, Wetenen A, Abrahamsen R, Kululanga G, Mkakosya R and Grimason A, 2008. Microbiological hazard identification and exposure assessment of food prepared and served in rural households of Lungwena, Malawi. International Journal of Food Microbiology, 125, 111-116.

Taylor E, Kastner J and Renter D, 2010. Challenges involved in the Salmonella Saintpaul outbreak and lessons learned. Journal of public health management and practice: JPHMP, 16, 221-231.

t de Velde SJ, Brug J, Wind M, Hildonen C, Bjelland M, Perez-Rodrigo C and Klepp KL, 2008. Effects of a comprehensive fruit- and vegetable-promoting school-based intervention in three European countries: the Pro Children Study. British Journal of Nutrition, 99, 893-903.

Thapa SP, Kim S-S, Hong S-S, Park D-S, Lim C-K and Hur J-H, 2008. Monitoring of bacterial pathogens in agricultural products and environments at farms in Korea. Journal of Applied Biological Chemistry, 51, 128-135.

Tipparaju S, Ravishankar S and Slade PJ, 2004. Survival of Listeria monocytogenes in vanilla-flavored soy and dairy products stored at 8 degrees C. Journal of Food Protection, 67, 378-382.

Titarmare A, Dabholkar P and Godbole S, 2009. Bacteriological Analysis of Street Vended Fresh Fruit and Vegetable Juices in Nagpur City, India. Internet Journal of Food Safety, 11, 1-3.

Todoriki S, Bari L, Kitta K, Obba M, Ito Y, Tsujimoto Y, Kanamori N, Yano E, Moriyama T, Kawamura Y and Kawamoto S, 2009. Effect of gamma-irradiation on the survival of Listeria monocytogenes and allergenicity of cherry tomatoes. Radiation Physics and Chemistry, 78, 619-621.
Tram NT, Hoang LMN, Cam PD, Chung PT, Fyfe MW, Isaac-Renton JL and Ong CSL, 2008. *Cyclospora* spp. in herbs and water samples collected from markets and farms in Hanoi, Vietnam. Tropical medicine & international health: TM & IH, 13, 1415-1420.

Tribst AAL, Sant'Ana ADs and de Massaguer PR, 2009. Review: Microbiological quality and safety of fruit juices—past, present and future perspectives. Critical reviews in microbiology, 35, 310-339.

Tunung R, Margaret S, Jeyaletchumi P, Chai LC, Tuan Zainazor TC, Ghazali FM, Nakaguchi Y, Nishibuchi M and Son R, 2010. Prevalence and quantification of *Vibrio parahaemolyticus* in raw salad vegetables at retail level. Journal of microbiology and biotechnology, 20, 391-396.

Turcovský I, Kuniková K, Drahovská H and Kaclíková E, 2011. Biochemical and molecular characterization of *Cronobacter* spp. (formerly *Enterobacter sakazakii*) isolated from foods. Antonie van Leeuwenhoek, 99, 257-269.

Turner NJ, Whyte R, Hudson JA and Kaltovci SL, 2006. Presence and growth of *Bacillus cereus* in dehydrated potato flakes and hot-held, ready-to-eat potato products purchased in New Zealand. Journal of Food Protection, 69, 1173-1177.

Uchima CA, de Castro MFPM, Gallo CR, Rezende ACB, Benato ER and Penteado AL, 2008. Incidence and growth of *Listeria monocytogenes* in persimmon (Diospyros kaki) fruit. International Journal of Food Microbiology, 126, 235-239.

Ukuku DO and Fett WF, 2006. Effects of cell surface charge and hydrophobicity on attachment of 16 *Salmonella* serovars to cantaloupe rind and decontamination with sanitizers. Journal of Food Protection, 69, 1835-1843.

Ukuku DO, Pilizota V and Sapers GM, 2004. Effect of hot water and hydrogen peroxide treatments on survival of *Salmonella* and microbial quality of whole and fresh-cut cantaloupe. Journal of Food Protection, 67, 432-437.

Ukuku DO and Sapers GM, 2007. Effect of time before storage and storage temperature on survival of *Salmonella* inoculated on fresh-cut melons. Food Microbiology, 24, 288-295.

Ukwo SP, Ndaeyo NU and Udoh EJ, 2011. Microbiological Quality and Safety Evaluation of Fresh Juices and Edible Ice Sold in Uyo Metropolis, South-South, Nigeria. Internet Journal of Food Safety, 13, 374-378.

University of Georgia; Center for Food Safety, online. A systems approach for produce safety. A research project addressing leafy greens. Available from: http://www.ugacfs.org/produce/safety/Pages/Basics/Sources.html

Valero A, Carrasco E, Perez-Rodriguez F, Garcia-Gimeno RM, Blanco C and Zurera G, 2006. Monitoring the sensorial and microbiological quality of pasteurized white asparagus at different storage temperatures. Journal of the Science of Food and Agriculture, 86, 1281-1288.

Valero M, Fernandez PS and Salmeron MC, 2003. Influence of pH and temperature on growth of *Bacillus cereus* in vegetable substrates. International Journal of Food Microbiology, 82, 71-79.

Van Boxstael S, Habib I, Jacxsens L, De Vocht M, Baert L, Van De Perre E, Rajkovic A, Lopez-Galvez F, Sampers I, Spanoghe P, De Meulenaer B and Uyttendaele M, 2013. Food safety issues in fresh produce: Bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control, 32, 190-197.

van Zyl WB, Page NA, Grabow WOK, Steele AD and Taylor MB, 2006. Molecular epidemiology of group A rotaviruses in water sources and selected raw vegetables in southern Africa. Applied and environmental microbiology, 72, 4554-4560.
Venturini ME, Reyes JE, Rivera CS, Oria R and Blanco D, 2011. Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiology, 28, 1492-1498.

Verdin SEF, Silva SRPd, Pereira DC, Schatkoski AM and Corcao G, 2007. Occurrence and genetic characterization of Listeria spp. in minimally processed vegetables commercialized in Porto Alegre, Brazil. Acta Scientiae Veterinariae, 35, 167-172.

Vereecken CA, De Henauw S and Maes L, 2005a. Adolescents' food habits: Results of the Health Behaviour in School-aged Children survey. British Journal of Nutrition, 94, 423-431.

Vereecken CA, Inchley J, Subramanian SV, Hublet A and Maes L, 2005b. The relative influence of individual and contextual socio-economic status on consumption of fruit and soft drinks among adolescents in Europe. European Journal of Public Health, 15, 224-232.

Viazis S, Akhtar M, Feirtag J and Diez-Gonzalez F, 2011. Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28, 149-157.

Visser H, Verhoeof L, Schop W and Götz HM, 2010. Outbreak investigation in two groups of coach passengers with gastroenteritis returning from Germany to the Netherlands in February 2009. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 15.

Vitas AI and Garcia-Jalon VAeI, 2004. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). International Journal of Food Microbiology, 90, 349-356.

Vivancos R, Shroufi A, Sillis M, Aird H, Gallimore CI, Myers L, Mahgoub H and Nair P, 2009. Food-related norovirus outbreak among people attending two barbeques: epidemiological, virological, and environmental investigation. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 13, 629-635.

Vojdani JD, Beuchat LR and Tauxe RV, 2008. Juice-associated outbreaks of human illness in the United States, 1995 through 2005. Journal of Food Protection, 71, 356-364.

Vuong TA, Nguyen TT, Klank LT, Phung DC and Dalsgaard A, 2007. Faecal and protozoan parasite contamination of water spinach (Ipomoea aquatica) cultivated in urban wastewater in Phnom Penh, Cambodia. Tropical medicine & international health: TM & IH, 12 Suppl 2, 73-81.

Wadl M, Scherer K, Nielsen S, Diedrich S, Ellerbroek L, Frank C, Gatzer R, Hoehne M, Johné R, Klein G, Koch J, Schulenburg J, Thielbein U, Stark K and Bernard H, 2010. Food-borne norovirus-outbreak at a military base, Germany, 2009. BMC infectious diseases, 10.

Wall EC, Bhatnagar N, Watson J and Doherty T, 2011. An unusual case of hypereosinophilia and abdominal pain: an outbreak of Trichostrongylus imported from New Zealand. Journal of travel medicine, 18, 59-60.

Wang MJ and Moran GJ, 2004. Update on emerging infections: News from the Centers for Disease Control and Prevention. Hepatitis a outbreak associated with green onions at a restaurant--Monaca, Pennsylvania, 2003. Annals of emergency medicine, 43, 660-662; discussion 662-663.

Warren BR, Yuk H-G and Schneider KR, 2007. Survival of Shigella sonnei on smooth tomato surfaces, in potato salad and in raw ground beef. International Journal of Food Microbiology, 116, 400-404.

Wei QK, Hwang SL and Chen TR, 2006. Microbiological quality of ready-to-eat food products in southern Taiwan. Journal of Food and Drug Analysis, 14, 68-73.
Weiss C, Becker B and Holzapfel W, 2005. Application and acceptability of three commercial systems for detection of Enterobacter sakazakii in ready-to-eat vegetable salads. Archiv für Lebensmittelhygiene, 56, 34-38.

Wendel AM, Johnson DH, Sharapov U, Grant J, Archer JR, Monson T, Koschmann C and Davis JP, 2009. Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August-September 2006: the Wisconsin investigation. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 48, 1079-1086.

Wetzel K, Lee J, Lee CS and Binkley M, 2010. Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Canadian Journal of Microbiology, 56, 943-951.

Wheeler C, Vogt TM, Armstrong GL, Vaughan G, Weltman A, Nainan OV, Dato V, Xia G, Waller K, Amon J, Lee TM, Highbough-Battle A, Hembree C, Evenson S, Ruta MA, Williams IT, Fiore AE and Bell BP, 2005. An outbreak of hepatitis A associated with green onions. The New England journal of medicine, 353, 890-897.

Williams RC, Sumner SS and Golden DA, 2004. Survival of Escherichia coli O157 : H7 and Salmonella in apple cider and orange juice as affected by ozone and treatment temperature. Journal of Food Protection, 67, 2381-2386.

Wong E, Vaillant-Barka F and Chaves-Olarte E, 2012. Synergistic effect of sonication and high osmotic pressure enhances membrane damage and viability loss of Salmonella in orange juice. Food Research International, 45, 1072-1079.

Xanthopoulos V, Tzanetakis N and Litopoulou-Tzanetaki E, 2010. Occurrence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control, 21, 393-398.

Ye J, Kostrzynska M, Dunfield K and Warriner K, 2009. Evaluation of a Biocontrol Preparation Consisting of Enterobacter asburiae JX1 and a Lytic Bacteriophage Cocktail To Suppress the Growth of Salmonella Javanica Associated with Tomatoes. Journal of Food Protection, 72, 2284-2292.

Yu J-H, Kim N-Y, Koh Y-J and Lee H-J, 2010. Epidemiology of foodborne Norovirus outbreak in Incheon, Korea. Journal of Korean medical science, 25, 1128-1133.

Yuk H-G, Jo S-C, Seo H-K, Park S-M and Lee S-C, 2008. Effect of storage in juice with or without pulp and/or calcium lactate on the subsequent survival of Escherichia coli O157 : H7 in simulated gastric fluid. International Journal of Food Microbiology, 123, 198-203.

Yuk H-G, Warren BR and Schneider KR, 2007. Infiltration and survival of Salmonella spp. on tomato surfaces labeled using a low-energy carbon dioxide laser device. Horticotechnology, 17, 67-71.

Zhang Y, Yeh E, Hall G, Cripe J, Bhagwat AA and Meng J, 2007. Characterization of Listeria monocytogenes isolated from retail foods. International Journal of Food Microbiology, 113, 47-53.

Zhou X and Jiao X, 2006. Prevalence and lineages of Listeria monocytogenes in Chinese food products. Letters in Applied Microbiology, 43, 554-559.

Zins C. 2000. Success, a structured search strategy: Rationale, principles, and implications. Journal of the American Society for Information Science 51(13):1232–1247

Zweifel C and Stephan R, 2012. Spices and herbs as source of Salmonella-related foodborne diseases. Food Research International, 45, 765-769.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food of plant origin with high water content

References not included in the study, for which full text could not be retrieved

Akpan I, Atanda OO and Ogunfowokan OA, 2004. Microbiological quality and nutrient composition of dry tomato. Journal of Food Science and Technology-Mysore, 41, 420-422.

Al-Binali AM, Bello CS, El-Shewy K and Abdulla SE, 2006. The prevalence of parasites in commonly used leafy vegetables in South Western Saudi Arabia. Saudi Medical Journal, 27, 613-616.

Alali WQ, Mann DA and Beuchat LR, 2012. Viability of Salmonella and Listeria monocytogenes in Delicatessen Salads and Hummus as Affected by Sodium Content and Storage Temperature. Journal of Food Protection, 75, 1043-1056.

Aruscavage D, Miller SA, Ivey MLL, Lee K and LeJeune JT, 2008. Survival and Dissemination of Escherichia coli O157:H7 on Physically and Biologically Damaged Lettuce Plants. Journal of Food Protection, 71, 2384-2388.

Bandekar JR, Dhokane VS, Shashidhar R, Hajare S, Ghadge N, Kamat A and Sharma A, 2005. Microbiological quality of carrot, tomato and cucumber from Mumbai market. Journal of Food Science and Technology-Mysore, 42, 99-101.

Bezanson G, Delaquis P, Bach S, McKellar R, Topp E, Gill A, Blais B and Gilmour M, 2012. Comparative Examination of Escherichia coli O157:H7 Survival on Romaine Lettuce and in Soil at Two Independent Experimental Sites. Journal of Food Protection, 75, 480-487.

Botero-Garcés J, Montoya-Palacio MN, Barguil JI and Castaño-González A, 2006. [An outbreak of Cyclospora cayetanensis in Medellín, Colombia]. Revista de salud pública (Bogotá, Colombia), 8, 258-268.

Brizzio AA, Tedeschi FA and Zalazar FE, 2011. [Description of a staphylococcal alimentary poisoning outbreak in Las Rosas, Santa Fe Province, Argentina]. Revista Argentina de microbiología, 43, 28-32.

Brug J, Yngve A and Klepp KI, 2005. The Pro Children study: Conceptualization, baseline results and intervention development of a European effort to promote fruit and vegetable consumption in schoolchildren. Annals of Nutrition and Metabolism, 49, 209-211.

Calbo E, Freixas N, Xercavins M, Riera M, Nicolas C, Monistrol O, del mar Sole M, Rosa Sala M, Vila J and Garau J, 2011. Foodborne Nosocomial Outbreak of SHV1 and CTX-M-15-producing Klebsiella pneumoniae: Epidemiology and Control. Clinical Infectious Diseases, 52, 743-749.

Castro-Rosas J, Santos Lopez EM, Alberto Gomez-Aldapa C, Gonzalez Ramirez CA, Roberto Villagomez-Ibarra J, Jose Gordillo-Martinez A, Villarruel Lopez A and del Refugio Torres-Vitela M, 2010. Incidence and Behavior of Salmonella and Escherichia coli on Whole and Sliced Zucchini Squash (Cucurbita pepo) Fruit. Journal of Food Protection, 73, 1423-1429.

Cook N, Nichols RAB, Wilkinson N, Paton CA, Barker K and Smith HV, 2007. Development of a method for detection of Giardia duodenalis cysts on lettuce and for simultaneous analysis of salad products for the presence of Giardia cysts and Cryptosporidium oocysts. Applied and Environmental Microbiology, 73, 7388-7391.

De Bourdeaudhuij I, Velde ST, Brug J, Due P, Wind M, Sandvik C, Maes L, Wolf A, Perez Rodrigo C, Yngve A, Thorsdottir I, Rasmussen M, Elmadfa I, Franchini B and Klepp KI, 2008. Personal, social and environmental predictors of daily fruit and vegetable intake in 11-year-old children in nine European countries. European Journal of Clinical Nutrition, 62, 834-841.

de Morais C, Afonso C, Raats MM, Lumbers M, Grunert KG and de Almeida MDV, 2007. Fruit and vegetable variety of consumption by European seniors. Annals of Nutrition and Metabolism, 51, 73-74.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Dhirapatra C, Tiensasitorn C, Techachaiwiwat W, Jirapanakorn N, Kachintorn K and Danchaivijitr S, 2005. Bacterial contamination of vegetables served in hospitals. Journal of the Medical Association of Thailand = Chotmaihet thангphaet, 88 Suppl 10, S42-48.

Duffey KJ, Huybrechts I, Mouratidou T, Libuda L, Kersting M, De Vriendt F, Gottrand F, Widhalm K, Dallongeville J, Hallstrom L, Gonzalez-Gross M, De Henauw S, Moreno LA and Popkin BM, 2012. Beverage consumption among European adolescents in the HELENA study. European Journal of Clinical Nutrition, 66, 244-252.

Duffy EA, Cisneros-Zevallos L, Castillo A, Pillai SD, Ricke SC and Acuff GR, 2005. Survival of Salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage. Journal of Food Protection, 68, 687-695.

Duhan GLMC, Minnaar A and Buys EM, 2012. Effect of Chlorine, Blanching, Freezing, and Microwave Heating on Cryptosporidium parvum Viability Inoculated on Green Peppers. Journal of Food Protection, 75, 936-941.

Frazar CD, Carter L, Nguyen TT, Chu DMT and Orlandi PA, 2003. Real time detection of Cyclospora cayetanensis in environmental, food and clinical samples. Abstracts of the General Meeting of the American Society for Microbiology, 2003.

Frohberger C, Jepson M and Maxwell S, 2006. The nutritional knowledge and attitudes of 11-12 year olds from four different European countries: A pilot project. International Journal of Health Promotion and Education, 44, 65-70.

Gabriel AA, 2005. Microbial quality of chlorine soaked Mung bean seeds and sprouts. Food Science and Technology Research, 11, 95-100.

Garg N, Sonkar P and Bhriuguvansi SR, 2008. Nutritional and microbial quality evaluation of commercial samples of amla chavyanpras, amla preserve and amla juice. Journal of Food Science and Technology-Mysore, 45, 193-195.

Gerski L and Mandrell RE, 2002. Identification of Listeria monocytogenes genes necessary for attachment to fresh cut radish tissue. Abstracts of the General Meeting of the American Society for Microbiology, 102, 376-376.

Gudonis V, Lukiene Z and Buchovec I 2007. Novel advanced pulsed light equipment for decontamination of fruits from pathogens: inactivation of Salmonella typhimurium viability. Available from:

Hara H, Ohashi Y, Sakurai T, Yagi K, Fujisawa T and Igimi S, 2009. Effect of Nisin (Nisaplin) on the Growth of Listeria monocytogenes in Karashi-mentaiko (Red-pepper Seasoned Cod Roe). Journal of the Food Hygienic Society of Japan, 50, 173-177.

Hazeleger WC, Kafka A and Beumer RR, 2007. Survival of Campylobacter jejuni and Arcobacter butzleri on vegetables. Zoonoses and Public Health, 54, 75-76.

Ibekwe AM, Grieve CM and Yang C-H, 2007. Survival of Escherichia coli O157 : H7 in soil and on lettuce after soil fumigation. Canadian Journal of Microbiology, 53, 623-635.

Ibenyassine K, Mhand RA, Karamoko Y, Anajjar B, Chouibani MM and Ennaji M, 2007. Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco. Journal of environmental health, 69, 47-51.

Ibrahim SA, Phetsomphou S, Isikhuemhen O and Seo C, 2003. Synergistic effect of bifidobacteria and sodium acetate in controlling growth of acid adapted Escherichia coli O157:H7 on white button mushrooms. Abstracts of the General Meeting of the American Society for Microbiology, 103, P-100.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Ito Y, Hosoi T and Miyao S, 2008. Changes in growth of artificially inoculated rifampicin-resistant *Listeria monocytogenes* in refrigerated lightly pickled cucumber induced by addition of antimicrobial food additives. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi, 55, 151-157.

Izumi H, 2005. Microbiological quality and control of microbes on fresh-cut vegetables. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi, 52, 197-206.

Izumi H, Ueno Y, Matsuda A and Murakami Y, 2010. Microbiological and Organoleptic Quality of Fresh-cut Vegetables Treated with Disinfectants and Stored in High CO2 Atmospheres. Hortscience, 45, S68-S68.

Jaiali M, Sarhagpor R and Ghoukasian K, 2007. Study of industrial potato salad microbial quality improvement in Isfahan, Iran. Abstracts of the General Meeting of the American Society for Microbiology, 107,

Jung MK and Park JH, 2006. Prevalence and thermal stability of *Enterobacter sakazakii* from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Science and Biotechnology, 15, 152-157.

Kim H-J, Lee N-K, Lee D-S, Hong W, Lee S-R, Kim C-J and Paik H-D, 2008a. Improvement of microbiological safety of sous vide processed soybean sprouts: Nisin and *Bacillus cereus* challenge. Food Science and Biotechnology, 17, 166-171.

Kim JH, Jang HC, Choi YH, Park MS and Lee BK, 2007. First report of emetic toxin producing *Bacillus cereus* strains isolated from clinical and raw vegetable diet in Korea. Abstracts of the General Meeting of the American Society for Microbiology, 107, 527-527.

Kim M-G, Oh M-H, Lee G-Y, Hwang I-G, Kwak H-S, Kang Y-S, Koh Y-H, Jun H-K and Kwon K-S, 2008b. Analysis of major foodborne pathogens in various foods in Korea. Food Science and Biotechnology, 17, 483-488.

Kleppl KI, Perez-Rodrigo C, De Bourdeaudhuij I, Due P, Elmadafa I, Haraldsdottir J, Konig J, Sjostrom M, Thorisdottir I, de Almeida MDV, Yngve A and Brug J, 2005. Promoting fruit and vegetable consumption among European schoolchildren: Rationale, conceptualization and design of the Pro Children Project. Annals of Nutrition and Metabolism, 49, 212-220.

Lee DS, Hwang K-J, Seo I, Park JP and Paik H-D, 2006. Estimation of shelf life distribution of seasoned soybean sprouts using the probability of *Bacillus cereus* contamination and growth. Food Science and Biotechnology, 15, 773-777.

Little CL and Mitchell RT, 2004. Microbiological quality of pre-cut fruit, sprouted seeds, and unpasteurised fruit and vegetable juices from retail and production premises in the UK, and the application of HACCP. Communicable disease and public health / PHLS, 7, 184-190.

Lopez L, Romero J and Duarte F, 2003. Microbiological quality and effect of washing and disinfection of pre-cut Chilean vegetables. Archivos Latinoamericanos De Nutricion, 53, 383-388.

Lopez VL, Avendano VS, Romero RJ, Garrido S, Espinoza J and Vargas M, 2005. Effect of gamma irradiation on the microbiological quality of minimally processed vegetables. Archivos Latinoamericanos De Nutricion, 55, 287-292.

Manati M, 2008. The Microbiological Quality of Ready to Use Fresh Salad in Vienna area. Abstracts of the General Meeting of the American Society for Microbiology, 108,

Manuwong S, Uthairatanakij A and Jitareerat P, 2007. Effects of hot water and sodium hypochlorite treatments on survival of *Salmonella* spp. and qualities of fresh-cut pineapple. In: Proceedings of
the International Conference on Quality Management of Fresh Cut Produce. S Kanlayanarat, PMA Toivonen, KC Gross. 401-408.

Menal-Puey S, Fajó-Pascual M and Marques-Lopes I, 2011. Descriptive study of breakfast in a population of immigrant school children,2007-2010. Revista Espanola de Nutricion Humana y Dietetica, 15, 177-183.

Mossallam SF, 2010. Detection of some intestinal protozoa in commercial fresh juices. Journal of the Egyptian Society of Parasitology, 40, 135-149.

Mutaku I, Erku W and Ashenafi M, 2005. Growth and survival of Escherichia coli O157 : H7 in fresh tropical fruit juices at ambient and cold temperatures. International Journal of Food Sciences and Nutrition, 56, 133-139.

Niskanen T, Fredriksson-Ahomaa M and Korkeala H, 2003. Occurrence of Yersinia pseudotuberculosis in iceberg lettuce and environment. Advances in experimental medicine and biology, 529, 383-385.

Perez M and Mazas N, 2003. [Study of microbial contamination of tempeh.] Alimentaria, 40, 129-132.

Razavilar V and Fazlara A 2002. The factorial study of growth rate of Staphylococcus aureus in commercial soups affected by selected growth factors. Available from:

Richards GM and Beuchat LR 2004. Attachment of Salmonella Poona to cantaloupe rind and stem scar tissues as affected by temperature of fruit and inoculum. Available from:

Rincon V G, Ginestre P M, Romero A S, Castellano G M and Avila R Y, 2010. Microbiological Quality and Enteropathogenic Bacteria in Leaf Vegetables. Kasmera, 38, 97-105.

Ripabelli G, Sammarco ML, Fanelli I and Grasso GM 2002. Occurrence of Campylobacter, Salmonella, Vibrio, Yersinia enterocolitica, Listeria, and Escherichia coli in fresh vegetables. Available from:

Saba A, Messina F, Turrini A, Lumbers M and Raats MM, 2008. Older people and convenience in meal preparation: a European study on understanding their perception towards vegetable soup preparation. International Journal of Consumer Studies, 32, 147-156.

Sanz S, Gimenez M, Olarte C, Cordon M and Lomas C, 2004. Survival and growth of Escherichia coli O157 : H7 in minimally processed artichoke. In: Proceedings of the Vth International Congress on Artichoke. FJS Villar. 581-586.

Sathisbabu HN and Rati ER, 2003. Prevalence of Yersinia enterocolitica in Panipuri - A popular street food of India. Journal of Food Science and Technology-Mysore, 40, 303-305.

Strbac M and Beatovic D 2007. Consumption of spices in European countries. Available from: http://www.agric.bl.ac.yu

Sudarshana MR, Bandyopadhyay S, Rosa C, Suslow TV and Harris LJ, 2008. Effects of static and variable storage temperatures on the survival and growth of Escherichia coli O157 : H7 on prewashed bagged lettuce. Phytopathology, 98, S152-S152.

Szczecinska A, Kozłowska K, Roszkowski W, Brzozowska A, Raats M and Lumbers M, 2007. Differences in frequency of fruit and vegetables intake among older europeans food in later life project. Polish Journal of Natural Sciences, 243-251.

Teplitski M, Noel J, McClelland M, Creary E and Alagely A, 2011. High throughput screens reveal Salmonella behaviors required for persistence in tomatoes. Phytopathology, 101, S176-S176.
Food of plant origin with high water content

Thorsdottir I and Ramel A, 2003. Dietary Intake of 10- to 16-Year-Old Children and Adolescents in Central and Northern Europe and Association with the Incidence of Type 1 Diabetes. Annals of Nutrition and Metabolism, 47, 267-275.

Tran TT and Matthews RN, 2002. Survival of Listeria monocytogenes inoculated onto fresh-cut vegetables followed by storage at 5degreeC and disinfection with cetylpyridinium chloride and ethanol. Abstracts of the General Meeting of the American Society for Microbiology, 102, 414-414.

Ukuku DO, Zhang H and Huang L, 2009. Growth Parameters of Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Aerobic Mesophilic Bacteria of Apple Cider Amended with Nisin-EDTA. Foodborne Pathogens and Disease, 6, 487-494.

Warminska-Radyko I, Laniewska-Trokenheim L and Miks M, 2007. Microbiological contamination of vegetable salads. Polish Journal of Natural Sciences, 22, 733-741.

Whong CMZ, Kwaga JKP and Amber EI, 2009. Enteropathogenicity of Bacillus cereus isolated from some Nigerian foods. West African journal of medicine, 28, 130-133.

Wolf A, Yngve A, Elmadfa I, Poortvliet E, Ehrenblad B, Pérez-Rodrigo C, Thórsdóttir I, Haraldsdóttir J, Brug J, Maes L, De Almeida MDV, Krølner R and Klepp KI, 2005. Fruit and vegetable intake of mothers of 11-year-old children in nine European countries: The pro children cross-sectional survey. Annals of Nutrition and Metabolism, 49, 246-254.

Xia X, Luo Y, Yang Y, Vinyard B, Schneider K and Meng J, 2012. Effects of Tomato Variety, Temperature Differential, and Post-Stem Removal Time on Internalization of Salmonella enterica Serovar Thompson in Tomatoes. Journal of Food Protection, 75, 297-303.

Yasmin M, Bari ML, Inatsu Y and Kawamoto S, 2008. Effect of Transient Temperature Shift-up on the Growth of Aerobic Bacteria, Coliform and Listeria monocytogenes on Cut-cabbage during Storage. Food Science and Technology Research, 14, 493-498.

Yngve A, Wolf A, Poortvliet E, Elmadfa I, Brug J, Ehrenblad B, Franchini B, Haraldsdóttir J, Krølner R, Maes L, Pérez-Rodrigo C, Sjöström M, Thórsdóttir I and Klepp KI, 2005. Fruit and vegetable intake in a sample of 11-year-old children in 9 European countries: The pro children cross-sectional survey. Annals of Nutrition and Metabolism, 49, 236-245.

Yoon SK, Kang YS, Sohn MG, Kim CM and Park J, 2007. Prevalence of enterotoxigenic Staphylococcus aureus in retail ready-to-eat Korean kimbab rolls. Food Science and Biotechnology, 16, 621-625.

Zaborskis A, Milciuviene S, Narbutaite J, Bendoraitiene E and Kavaliauskiene A, 2010. Caries experience and oral health behaviour among 11 - 13-year-olds: An ecological study of data from 27 European countries, Israel, Canada and USA. Community Dental Health, 27, 102-108.
7. List of Tables

Main report document

Table 1: Classification of commodities of FoNAO with high water content as included in the present study, based on BIOHAZ classification.

Table 2: List of food commodities (FoNAO with high water content) for the use as key words in bibliographic searches, where either categories, sub-categories or individual commodities (detailed list of commodities) were applied.

Table 3: Search A1 (hazard identification) for FoNAO with high water content in two bibliographic databases.

Table 4: Search A2, prevalence and enumeration data of pathogenic bacteria associated with FoNAO with high and low water content in two bibliographic databases.

Table 5: Search A2/prevalence and enumeration data of viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Table 6: Search A3/pathogen behaviour of pathogenic bacteria, viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Table 7: Search A4/Outbreaks caused by food borne pathogens related to FoNAO with high and low water content in two bibliographic databases.

Table 8: Search C1/Consumption habits (frequency, place) regarding FoNAO.

Table 9: Search C2/Consumption of FoNAO by various population groups.

Table 10: Prioritisation of food/pathogen combinations in EU countries based on criteria related to outbreaks, pathogen prevalence and food/pathogen interaction, and to the production of the food item(s) concerned.

Table 11: Prioritisation of food/pathogen combinations in non EU countries based on criteria related to outbreaks, pathogen prevalence, food/pathogen interaction, and to the production of the food item(s) concerned.

Appendix A

Table 12: Bacterial pathogens identified in association with FoNAO with high water content, listed in alphabetical order.

Table 13: Viruses identified in association with FoNAO with high water content, listed in alphabetical order.

Table 14: Parasites identified in association with FoNAO with high water content, listed in alphabetical order.

Table 15: Prevalence of pathogenic bacteria, viruses, and parasites in association with FoNAO of high water content, EU countries.

Table 16: Prevalence of pathogenic bacteria and parasites in association with FoNAO of high water content, non-EU countries.

Table 17: Growth, survival or reduction of pathogenic bacteria, viruses and parasites linked to FoNAO with high water content.

Table 18: Colonisation behaviour of pathogenic bacteria, linked to FoNAO with high water content.

Table 19: Treatments for mitigating contamination of pathogenic bacteria, viruses and parasites linked to FoNAO with high water content.

Table 20: Outbreaks of disease caused by pathogenic bacteria, viruses, and parasites linked to FoNAO with high water content, EU countries.

Table 21: Outbreaks of disease caused by pathogenic bacteria, viruses, and parasites linked to FoNAO with high water content, non-EU countries.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Appendix B

Table 22: Categories and items of FoNAO with high water content as reported in association with bacteria. 205
Table 23: Categories and items of FoNAO with high water content as reported in association with viruses 219
Table 24: Categories and items of FoNAO with high water content as reported in association with parasites. 220
Table 25: Critical points in specific primary production procedures reported for the food items highlighted in tables 22-24, which have been most often documented in association with biological hazards 225
Table 26: Critical points in specific processing procedures (post-harvest) reported for the food items highlighted in Tables 22-24, which have been most often documented in association with biological hazards 231
Table 27: Examples of Guidelines and Standards to improve food quality reported for selected food items listed in tables 27-32. 237
Table 28: Trade volumes of FoNAO with high water content imported from third countries into EU-27 from 2002 to 2011. 238

Appendix C

Table 29: Major outcomes of European consumption studies relating to FoNAO regarding consumption rates, consumer groups, and regional effects. 240

Appendix D

Table 30: FoNAO (high water content) item/ pathogen combinations with highest numbers of outbreak cases, EU countries. 243
Table 31: FoNAO (high water content) item/ pathogen combinations causing outbreaks with highest numbers of hospitalisations, EU countries. 246
Table 32: FoNAO (high water content) item/ pathogen combinations causing outbreaks where cases of death have been reported, EU countries. 247
Table 33: FoNAO (high water content) item/ pathogen combinations with highest numbers of outbreak cases, non EU countries. 248
Table 34: FoNAO (high water content) item/ pathogen combinations causing outbreaks with highest numbers of hospitalisations, non EU countries. 251
Table 35: FoNAO (high water content) item/ pathogen combinations causing outbreaks where cases of death have been reported, non EU countries. 253
8. List of Figures

Figure 1: Scheme of the systematic reviewing process, including the search strategy and underlying logistical operations. 13
Figure 2: Relevance screening tool for search A1 Hazard identification. 20
Figure 3: Full text screening tool for search A1 Hazard identification. 20
Figure 4: Relevance screening tool for search A2 Prevalence and enumeration data. 24
Figure 5: Full text screening tool for search A2 Prevalence and enumeration data. 24
Figure 6: Relevance screening tool for search A3 Pathogen behaviour. 27
Figure 7: Full text screening tool for search A3 Pathogen behaviour. 27
Figure 8: Relevance screening tool for search A4 Hazard characterization (outbreaks). 29
Figure 9: Full text screening tool for search A4 Hazard characterization (outbreaks). 29
Figure 10: Relevance screening tool for search C1 Consumption. 32
Figure 11: Full text screening tool for search C1 Consumption. 33
Figure 12: Scheme applied for the prioritisation of FoNAO/pathogen combinations. 35
Figure 13: Flow chart of the study selection process underlying search A1. 37
Figure 14: Flow chart of the study selection process underlying search A2. 39
Figure 15: Flow chart of the study selection process underlying search A3. 41
Figure 16: Flow chart of the study selection process underlying search A4. 43
Figure 17: Flow chart of the study selection process underlying search C1 and search C2. 46

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
APPENDICES

A. APPENDIX SPECIFIC TO THEMATIC AREA A

Table 12: Bacterial pathogens identified in association with FoNAO with high water content, listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Aeromonas caviae	15	Lettuce	n.s.	Brazil	Castilho et al., 2009
Aeromonas hydrophila	15	Lettuce	n.s.	Brazil	Castilho et al., 2009
	36	Mixed salads	Manufacturer	Greece	Xanthopoulou et al., 2010
Aeromonas sobria	15	Lettuce	n.s.	Brazil	Castilho et al., 2009
Bacillus cereus	13	Zucchini	Manufacturer	France	Guinebretiere et al., 2003
	16	Parsley	Local retail/super-market	Brazil	Moreira et al., 2009
	20	Potato	n.s.	Argentina	Fangio et al., 2010
	22	Onion	Local retail/supermarket	Brazil	Moreira et al., 2009
	36	Salad	Restaurant/take-away	Nigeria	Isara et al., 2010
	36	Salad mix	Supermarket	Portugal	Santos et al., 2012
	37	Potato meal	Catering	Italy	Bonerba et al., 2010
	37	Sunsi	Local retail	Korea	Lee et al., 2012
	38	Dehydrated potato flakes	Supermarket	New Zealand	Turner et al., 2006
	1/-other	Fruits and vegetables	Supermarket	Korea	Chung et al., 2010
	13/20	butter nut squash, potato	n.s.	Argentina	Fangio et al., 2010
	other	Vegetables	Manufacturer, supermarket	Korea, Taiwan	Thapa et al., 2008; Fang et al., 2003
	10	Fruit juice	Pharmacy	Poland	Mostafa et al., 2002
Bacillus cereus group	12	Paprika	Local retail	Belgium	Samapundo et al., 2011
spp.	15	Chinese cabbage	Local retail	Belgium	Samapundo et al., 2011

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Bacillus cereus like organism					
19		Carrots	Local retail	Belgium	Samapundo et al., 2011
22		Celery	Local retail	Belgium	Samapundo et al., 2011
1		Fruits	Local retail	Denmark	Rosenquist et al., 2005
17		Lettuce	Local retail	Denmark	Rosenquist et al., 2005
11/13		Cucumbers, Tomatoes	Local retail	Denmark	Rosenquist et al., 2005
Campylobacter coli					
14		Winged bean (Psophocarpus tetragonolobus)	Local retail/supermarket	Malaysia	Chai et al., 2007
14		Yardlong bean (Vigna unguiculata)	Local retail/supermarket	Malaysia	Chai et al., 2007
15		Water spinach	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Coriander, Vietnamese (Polygonum minus)	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Indian pennywort (Centella asiatica)	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Parsley, Japanese (Oenanthe stolonifera)	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Wild cosmos (Cosmos caudatus)	Local retail/supermarket	Malaysia	Chai et al., 2007
Campylobacter fetus					
16		Indian pennywort (Centella asiatica)	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Wild cosmos (Cosmos caudatus)	Local retail/supermarket	Malaysia	Chai et al., 2007
Campylobacter jejuni					
14		Winged bean (Psophocarpus tetragonolobus)	Local retail/supermarket	Malaysia	Chai et al., 2007
14		Yardlong bean (Vigna unguiculata)	Local retail/supermarket	Malaysia	Chai et al., 2007
15		Cabbage	Manufacturer	Malaysia	Chai et al., 2009
15		Water spinach	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Coriander, Vietnamese (Polygonum minus)	Local retail/supermarket	Malaysia	Chai et al., 2007
16		Coriander, Vietnamese (Polygonum minus)	Manufacturer	Malaysia	Chai et al., 2009
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
-----------------------	----------------	--	-------------------	---------------	--
	16	Indian pennywort (*Centella asiatica*)	Local retail/supermarket	Malaysia	Chai et al., 2007
	16	Parsley, Japanese (*Oenanthe stolonifera*)	Local retail/supermarket	Malaysia	Chai et al., 2007
	16	Wild cosmos (*Cosmos caudatus*)	Local retail/supermarket	Malaysia	Chai et al., 2007
	21	Radish	Manufacturer	Malaysia	Chai et al., 2009
Clostridium botulinum	14	Green beans	Manufacturer	France	Sevenier et al., 2012
	19	Carrots	Manufacturer	France	Sevenier et al., 2012
	16	Parsley	Local retail/supermarket	Mexico	Gomez-Govea et al., 2012
	22	White asparagus	n.s.	Spain	Valero et al., 2006
Clostridium perfringens	22	White asparagus	n.s.	Spain	Valero et al., 2006
Clostridium septicum	36	Mixed salad	Local retail	Germany	Weiss et al., 2005
Cronobacter sakazakii	37	Other food (various ingredients)	Canteen	Korea	Ryu et al., 2011
	38	Coconut	Supermarket	Czech Republic	Hochel et al., 2012
Cronobacter spp.	1	Fruits	Local retail/supermarket; manufacturer	Korea, Switzerland	Lee et al., 2012; Althaus et al., 2012
	15	Leafy greens	Supermarket	Ireland	Molloy et al., 2009
	17	Lettuce	Manufacturer	Switzerland	Althaus et al., 2012
	17	Salad	Local retail/supermarket	Korea	Lee et al., 2012
	21	Root vegetables (Sunshik ingredients)	Local retail	Korea	Kim et al., 2011b
	30	Seaweed	Local retail/supermarket	Korea	Lee et al., 2012
	38	Vegetables	Manufacturer/local retail	Netherlands	Kandhai et al., 2010
	1/-other	Fruits and vegetables	Local retail	Korea	Kim et al., 2011b
	other	Vegetables	Local retail/supermarket; manufacturer;	Korea, Switzerland, Slovakia	Lee et al., 2012; Althaus et al., 2012; Kim et al., 2008; Chon et al., 2012; Turcovský et al., 2011
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Enterobacter aerogenes	8	Paw-Paw (Asimina)	Local retail	Nigeria	Chukwu et al., 2010
	9	Watermelon	Local retail	Nigeria	Chukwu et al., 2010
	36	Mixed salad	Local retail	Germany	Weiss et al., 2005
Enterobacter cloacae	16	Basil	Local retail	USA	Wetzel et al., 2010
Escherichia coli	15	Lettuce, spinach	Local retail	Colombia	Rugeles et al., 2010
(Enteroaaggregative - EAEC)	36	Mixed salad	Restaurant	Mexico	Castro-Rosas et al., 2012
Escherichia coli (Entero-invasive and Shiga-toxin producing)	36	Mixed salads	Restaurant	Mexico	Castro-Rosas et al., 2012
Escherichia coli (Entero-invasive)	17	Lettuce	Manufacturer	Switzerland	Althaus et al., 2012
Escherichia coli (EPEC)	other	Vegetables	Manufacturer	Switzerland	Althaus et al., 2012
Escherichia coli (ETEC)	36	Salad mix (raw spinach, tomato, mushrooms)	Restaurant	Mexico	Castro-Rosas et al., 2012
Escherichia coli (Shiga-toxin producing - STEC)	15	Vegetable (lettuce, spinach)	Local retail	Colombia	Rugeles et al., 2010
	17	Lettuce	Manufacturer	Switzerland	Althaus et al., 2012
	36	Mixed salads (lettuce, avocado, water cress, wheat sprouts, tomato, cucumber, radish, carrot)	Restaurant	Mexico	Castro-Rosas et al., 2012
	36	Salad mix (raw spinach, tomato, mushrooms)	Restaurant	Mexico	Castro-Rosas et al., 2012
Escherichia coli (VTEC)	15	Endive	n.s.	Netherlands	ECDC, 2008
	15	Mixed lettuce	n.s.	Netherlands	ECDC, 2008
	36	Salad mix (romaine lettuce, various spinach and mixed salads)	Supermarket	Portugal	Santos et al., 2012
Escherichia coli (VTEC)	other	Vegetables	n.s.	Belgium, Spain	ECDC, 2010; ECDC, 2008

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Escherichia coli O157:H7 (Enterohaemorrhagic - EHEC)	1	various	Take-away	India	Lewis et al., 2006
	4	Grape	Take-away	India	Lewis et al., 2006
	5	Orange	Take-away	India	Lewis et al., 2006
	8	Mango	Take-away	India	Lewis et al., 2006
	8	Pineapple	Take-away	India	Lewis et al., 2006
	12	Green peppers	Manufacturer	USA	Mukherjee et al., 2004
	15	Lettuce	Manufacturer	USA	Mukherjee et al., 2004
	37	Other food (various ingredients)	Canteen; homemade dish	Korea; Malawi	Ryu et al., 2011; Taulo et al., 2008T
	other	Vegetables (lettuce, cabbage, carrot and radish sprout)	Manufacturer	Iran	Khandaghi et al., 2010
Klebsiella oxytoca	4	Grape	Local retail	Libya	Ghenghesh et al., 2005
	5	Orange	Local retail	Libya	Ghenghesh et al., 2005
	7	Peach	Local retail	Libya	Ghenghesh et al., 2005
	8	Mango	Local retail	Libya	Ghenghesh et al., 2005
	8	Pineapple	Local retail	Libya	Ghenghesh et al., 2005
	16	Basil	Local retail	USA	Wetzel et al., 2010
	36	Mixed salad	Local retail	Germany	Weiss et al., 2005
Klebsiella pneumoniae	7	Peach	Local retail	Libya	Ghenghesh et al., 2005
	8	Mango	Local retail	Libya	Ghenghesh et al., 2005
	8	Pineapple	Local retail	Libya	Ghenghesh et al., 2005
	9	Watermelon	Local retail	Nigeria	Chukwu et al., 2010
	36	Mixed salad	Local retail	Germany	Weiss et al., 2005
Listeria monocytogenes	1	Fruits	n.s.	Italy	ECDC, 2008
	2	Strawberries	Local retail/retail distribution	Norway	Johanessen et al., 2002
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
------------------------	----------------	---------------------------	---------------------	------------------	--
Listeria monocytogenes	11	Tomatoes	Local retail, manufacturer supermarket,	Chile, Greece,马来西亚, Spain	Cordano and Jacquet, 2009; Kokkinakis et al., 2007; Ponniah et al., 2007; Ponniah et al., 2010; Ramirez Merida, 2009;
	12	Green peppers	Local retail/manufacturer	Portugal	Mena et al., 2004
	12	Pepper	Manufacturer	Greece	Kokkinakis et al., 2007
	13	Cucumber	Local retail, supermarket	Malaysia	Ponniah et al., 2010
	13	Zucchini	Manufacturer	Germany	Pappelbaum et al., 2008
	14	Broad beans	Supermarket	Chile	Cordano and Jacquet, 2009
	14	Corn	Manufacturer	Germany	Pappelbaum et al., 2008
	14	Green beans	Supermarket	Chile	Cordano and Jacquet, 2009
	14	Green pea	Manufacturer	Germany	Pappelbaum et al., 2008
	14	Kidney beans	Supermarket	Chile	Cordano and Jacquet, 2009
	14	Peas	Local retail, manufacturer supermarket	Chile Portugal,	Cordano and Jacquet, 2009; Mena et al., 2004;
	14	String bean	Manufacturer	Germany	Pappelbaum et al., 2008
	14	Sweet corn	Supermarket	Chile	Cordano and Jacquet, 2009
	14	Winged bean (Psophocarpus tetragonolobus)	Local retail, supermarket	Malaysia	Ponniah et al., 2010
	14	Yardlong bean (Vigna unguiculata)	Local retail, supermarket	Malaysia	Ponniah et al., 2010
	15	Baby spinach	Manufacturer	Canada	Ilic et al., 2008
	15	Cabbage	Local retail, manufacturer supermarket	Malaysia,USA	Johnston et al., 2006, Ponniah et al., 2010, Frazak et al., 2002
	15	Lettuce	Local retail, manufacturer, retail distribution	Norway	Johanessen et al., 2002, Loncarevic et al., 2005
	15	Salad	Local retail, manufacturer, n.s.	Czech Republic, Estonia, Hungary, Slovenia,Spain	ECDC, 2009
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
---------------------	----------------	-----------------------	--------------------------	--------------------------	---
Listeria monocytogenes	15	Spinach	Manufacturer, supermarket	Brazil, Chile, Germany, Spain	Cordano and Jacquet, 2009; Froder et al., 2007; Moreno et al., 2012; Pappelbaum et al., 2008;
15	Vegetable (rucola, lettuce)	Manufacturer	Italy	De Giusti et al., 2010	
16	Coriander	Supermarket	Spain	Ramírez Merida 2009	
16	Indian pennywort (*Centella asiatica*)	Local retail, supermarket	Malaysia	Ponniyah et al., 2010	
16	Parsley	Local retail/supermarket	Mexico	Gomez-Govea et al., 2012	
16	Parsley (*Oenanther stolonifera*)	Local retail, supermarket	Malaysia	Ponniyah et al., 2010	
16	Wild parsley (*Cosmos caudatus*)	Local retail	Malaysia	Ponniyah et al., 2010	
17	Cabbage	Supermarket	Brazil	Sant’Ana et al., 2012	
17	Collard greens	Supermarket	Brazil	Sant’Ana et al., 2012	
17	Edible leaves	Local retail	Spain	Badosa et al., 2008	
17	Escarole	Supermarket	Brazil	Sant’Ana et al., 2012	
17	Lettuce	Manufacturer, supermarket	Costa Rica, Brazil, Spain	Abadias et al., 2008; Althaus et al., 2012; Monge et al., 2011; Sant’Ana et al., 2012	
17	Mixed lettuce	Manufacturer	Italy	De Giusti et al., 2010	
17	Mixed salads	Local retail, supermarket	Spain	Abadias et al., 2008; Badosa et al., 2008	
17	Salad	Local retail	USA	Gombas et al., 2003	
17	Spinach	Supermarket	Brazil, Spain	Moreno et al., 2012; Sant’Ana et al., 2012	
17	Watercress	Supermarket	Brazil	Sant’Ana et al., 2012	
19	Carrots	Local retail, manufacturer, supermarket	Germany, India, Malaysia	Kamat et al., 2005; Pappelbaum et al., 2008; Ponniah et al., 2010	
21	Beetroot	Supermarket	Chile	Cordano and Jacquet, 2009	
21	Sweet potato	Local retail, supermarket	Malaysia	Ponniyah et al., 2010	
22	Asparagus	Supermarket	Chile	Cordano and Jacquet, 2009	
Pathogen	FoNAO Category	Food item(s)	Source(s) *	Country	Reference(s)
-------------------------------	----------------	----------------------	-------------	---------------------------	--
Listeria monocytogenes	22	Celery	Supermarket	Chile, Korea	Cordano and Jacquet, 2009; Cho et al., 2004
	23	Broccoli	Local retail, supermarket manufacturer	Chile, Germany, Portugal, Spain	Cordano and Jacquet, 2009; Mena et al., 2004; Moreno et al., 2012; Pappelbaum et al., 2008
	23	Cauliflower	Manufacturer, supermarket	Chile, Germany	Cordano and Jacquet, 2009; Pappelbaum et al., 2008
	23	Courgette	Local retail/manufacturer	Portugal	Mena et al., 2004
	29	Boletus edulis	Local retail/supermarket	Spain	Venturini et al., 2011
	29	Calocybe gambosa	Local retail/supermarket	Spain	Venturini et al., 2011
	29	Hygrophorus limacinus	Local retail/supermarket	Spain	Venturini et al., 2011
	29	Lactarius deliciousus	Local retail/supermarket	Spain	Venturini et al., 2011
	29	Mushrooms	Local retail, manufacturer supermarket, retail distribution	Chile, Germany, Korea, Norway, Spain	Cho et al., 2004; Cordano and Jacquet, 2009; Johanessen et al., 2002; Pappelbaum et al., 2008; Venturini et al., 2011
	29	Tuber indicum	Local retail/supermarket	Spain	Venturini et al., 2011
	30	Seaweed	Supermarket	Chile	Cordano and Jacquet, 2009
	35	Asazuke (Japanese light pickles)	Supermarket	Japan	Maklon et al., 2010
	35	Green table olives	n.s.	Italy	Caggia et al., 2004
	36	Mixed salads	Supermarket	Chile	Cordano and Jacquet, 2009
	36	Salad	Local retail, manufacturer, n.s., supermarket	Brazil, Estonia, Hungary, Ireland, Lithuania, United Kingdom, USA, Slovakia	ECDC, 2008; Sauders et al., 2009; Verdin et al., 2007
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
-------------------	----------------	--------------	------------	-------------------	--
Listeria monocytogenes	36	Salad mix	Supermarket	Brazil, Portugal	Sant'Ana et al., 2012; Santos et al., 2012
	36	Salad vegetables	Catering, local retail	United Kingdom	Sagoo et al., 2003a
	37	Bean curd	Local retail	China	Zhou et al., 2006
	37	Deli salads	Local retail	USA	Gombas et al., 2003
		Other food	Take-away	Italy	Latorre et al., 2007
1/other		Fruits and vegetables	Catering, local retail	Ireland, Portugal, Slovenia, Spain	Badosa et al., 2008; ECDC, 2008; ECDC, 2009
1/other		Produce	Local retail	USA	Zhang et al., 2007
1/other		Vegetable or fruit salad	Local retail	Netherlands	ECDC, 2009
other		Vegetable (products)	Manufacturer	Estonia	ECDC, 2009
other		Vegetables	Local retail, manufacturer, restaurant, supermarket, n.s.	Brazil China, Czech Republic, Germany Hungary Korea Slovakia Spain Switzerland-land Iran Vene-zuela	Aguado et al., 2004; Althaus et al., 2012; de Curtis et al., 2002; ECDC, 2008; ECDC, 2009; Jalali and Abedi 2008; Moreno et al., 2012; Pappelbaum et al., 2008 Sant’Ana et al., 2012; Thapa et al., 2008; Vitas et al., 2004; Zhou et al., 2006;
4		Grape	Local retail	Libya	Ghenghesh et al., 2005
Pseudomonas aeruginosa	5	Orange	Local retail, take-away	India; Libya	Ghenghesh et al., 2005; Tambekar et al., 2009
5		Sweet lemon (Citrus limetta)	Take-away	India	Tambekar et al., 2009
6		Apples	Local retail, take-away	India, Libya	Ghenghesh et al., 2005; Tambekar et al., 2009
8		Pineapple	Local retail, take-away	India; Nigeria	Chukwu et al., 2010; Tambekar et al., 2009
8		Pomegranate	Take-away	India	Tambekar et al., 2009
Pathogen: Pseudomonas aeruginosa

Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
11	Tomatoes	Local retail		Saudi Arabia	Hassan et al., 2011
13	Cucumber	Local retail		Saudi Arabia	Hassan et al., 2011
15	Cabbage	Local retail		Saudi Arabia	Hassan et al., 2011
15	Lettuce	Local retail		Saudi Arabia	Hassan et al., 2011
15	Spinach	Local retail		Saudi Arabia	Hassan et al., 2011
16	Basil	Local retail		USA	Wetzel et al., 2010
16	Coriander	Local retail		Saudi Arabia	Hassan et al., 2011
16	Parsley	Local retail		Saudi Arabia	Hassan et al., 2011
22	Celery	Local retail		Saudi Arabia	Hassan et al., 2011
22	Green onion	Local retail		Saudi Arabia	Hassan et al., 2011
23	Cauliflower	Local retail		Saudi Arabia	Hassan et al., 2011
30	Algae	Take-away		Italy	Catellani et al., 2010
36	Mixed salad	Local retail		Germany	Weiss et al., 2005
36	Salad	Restaurant/take-away		Nigeria	Isara et al., 2010
37	Taco-dressing (raw coriander onion mix)	Local retail		Mexico	Estrada-Garcia et al., 2004

Pathogens: Salmonella

Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Salmonella Agona	36	Salad vegetables	Local retail	United Kingdom	Sagoo et al., 2003
Salmonella Durban	15	Lettuce and arugula	Supermarket	Brazil	Sant’Ana et al., 2011
Salmonella enterica	37	Taco-dressing (boiled green chilli sauce)	Local retail	Mexico	Estrada-Garcia et al., 2004
37	Taco-dressing (raw coriander onion mix)	Local retail		Mexico	Estrada-Garcia et al., 2004
37	Taco-dressing (boiled green chilli sauce)	Local retail		Mexico	Estrada-Garcia et al., 2004
Salmonella Enteritidis	37	Taco-dressing (raw red chilli sauce)	Local retail	Mexico	Estrada-Garcia et al., 2004
other	Vegetables	Local retail		Austria	ECDC, 2008
Salmonella Gustavia	9	Cantaloupe	Manufacturer	USA	Johnston et al., 2005
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
---------------	----------------	------------------------	------------	-------------	-----------------------
Salmonella	1/-other	Produce	Manufacturer	USA	Johnston et al., 2005
Montevideo	36	Salad vegetables	Local retail	United Kingdom	Sagoo et al., 2003
Salmonella	1	Various	Take-away	India	Lewis et al., 2006
Newport	4	Grape	Take-away	India	Lewis et al., 2006
	5	Fruit juice	Take-away	Nigeria	Ukwo et al., 2011
	5	Orange	Take-away	India	Lewis et al., 2006
	5	Sweet lemon *(Citrus limetta)*	Take-away	India	Titarmare et al., 2009
	7	Drupes	Local retail	Spain	Badosa et al., 2008
	8	Coconut products	Local retail	Hungary	ECDC, 2009
	8	Dragon fruit	Local retail	Malaysia	Pui et al., 2011
	8	Fruit juice	Take-away	Nigeria	Ukwo et al., 2011
	8	Jackfruit	Local retail	Malaysia	Pui et al., 2011
	8	Mango	Take-away	India	Lewis et al., 2006
Salmonella	8	Papaya	Local retail, take-away	India, Malaysia	Mukhopadhyay et al., 2002; Pui et al., 2011
spp.	8	Paw-Paw (Asimina)	Local retail	Nigeria	Chukwu et al., 2010
	8	Persimmon fruit *(Diospyrus kaki)*	Local retail/retail distribution	Brazil	Rezende et al., 2009
	8	Pineapple	Local retail, take-away	India, Nigeria	Chukwu et al., 2010; Lewis et al., 2006; Titarmare et al., 2009
	8	Sapodilla	Local retail	Malaysia	Pui et al., 2011
	9	Bitter melon	Take-away	India	Titarmare et al., 2009
	9	Cantaloupe	Manufacturer	Mexico	Gallegos-Robles et al., 2008
	9	Honeydew	Local retail	Malaysia	Pui et al., 2011
	9	Watermelon	Local retail	Malaysia, Nigeria	Chukwu et al., 2010; Pui et al., 2011
	11	Tomatoes	Local retail/retail distribution	Canada	Arthur et al., 2007
## Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Salmonella spp.	12	Chile pepper	Manufacturer	Mexico	Gallegos-Robles et al., 2008
12	Green peppers	Manufacturer	USA	Mukherjee et al., 2004	
13	Bottle gourd (Lagenaria siceraria)	Take-away	India	Tintarmare et al., 2009	
13	Cucumber	Take-away	India	Tintarmare et al., 2009	
13	Zucchini	Local retail	Mexico	Castro-Rosas et al., 2010	
15	Cabbage	Manufacturer	Mexico	Quiroz-Santiago et al., 2009	
15	Chicories	Supermarket	Brazil	Fröder et al., 2007	
15	Endive	n.s.	Netherlands	ECDC, 2008	
15	Lettuce	Local retail, manufacturer, retail distribution, supermarket	Brazil, Canada, Mexico; USA, Turkey	Arthur et al., 2007; Cetin et al., 2008, Fröder et al., 2007, Mukherjee et al., 2004, Quiroz-Santiago et al., 2009	
15	Mixed salads	Supermarket	Brazil	Fröder et al., 2007	
15	Purslane (Portulaca oleracea)	Manufacturer	Mexico	Quiroz-Santiago et al., 2009	
15	Romaine lettuce	Manufacturer	Mexico	Quiroz-Santiago et al., 2009	
15	Salad	Catering	Spain	ECDC, 2009	
15	Savoy spinach	Manufacturer	Canada	Ilic et al., 2008	
15	Spinach	Manufacturer	Canada, Mexico	Ilic et al., 2008, Quiroz-Santiago et al., 2009	
15	Vegetable (rucola, lettuce)	Manufacturer	Italy	De Giusti et al., 2010	
15	Watercress	Manufacturer, supermarket	Brazil, Mexico	Fröder et al., 2007; Quiroz-Santiago et al., 2009	
16	Basil	Local retail	United Kingdom	Elviss et al., 2009	
16	Chinese parsley	Manufacturer	Mexico	Quiroz-Santiago et al., 2009	
16	Cilantro	Manufacturer	Mexico	Quiroz-Santiago et al., 2009	
16	Coriander	Local retail	India, United Kingdom	Elviss et al., 2009; Singh et al., 2007	
16	Herbs	n.s.	Netherlands	ECDC, 2009	

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Salmonella spp.	16	Kangkong (*Ipomoea aquatica*)	Local retail	Malaysia	Salleh et al., 2003
	16	Kesum (*Polygonum minus*)	Local retail	Malaysia	Salleh et al., 2003
	16	Korean Herbs	Local retail	Malaysia	Salleh et al., 2003
	16	Mint	Local retail	India	Singh et al., 2007
	16	Mint	Local retail	United Kingdom	Elviss et al., 2009
	16	Other (rosemary, thyme, methi,	Local retail	United Kingdom	Elviss et al., 2009
		curry leaves, walleria)			
	16	Papaloquelite or Mexican cilantro	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	16	Parsley	Local retail, manufacturer	Mexico; United Kingdom	Elviss et al., 2009; Quiroz- Santiago et al., 2009
	16	Pegaga (*Centella asiatica*)	Local retail	Malaysia	Salleh et al., 2003
	16	Selom (*Oenanthe stolonifera*)	Local retail	Malaysia	Salleh et al., 2003
	17	Corn salad (*Valerianella locusta*)	Supermarket	Spain	Abadias et al., 2008
	17	Lettuce	Supermarket, Take-away	Costa Rica, Spain, United Kingdom	Abadias et al., 2008; Meldrum et al., 2009; Monge et al., 2011
	17	Mixed salads	Local retail, supermarket	Spain	Abadias et al., 2008; Badosa et al., 2008
	17	Spinach	Supermarket	Spain	Abadias et al., 2008
	19	Carrots	Local retail, take-away, manufacturer	India, USA	Endley et al., 2003; Mudgil et al., 2004; Singh et al., 2007; Titarmare et al., 2009
	19	Fruit juice	Take-away	Nigeria	Ukwo et al., 2011
	20	Potato	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	21	Beetroot	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	21	Ginger	Take-away	India	Titarmare et al., 2009
	21	Radish	Local retail	India	Singh et al., 2007
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
-------------------------------	----------------	---	------------	------------	--------------
Salmonella spp.	22	Bulbous vegetables (leek plants)	Supermarket	Germany	Schwaiger et al., 2011
	22	Celery	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	23	Broccoli	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	23	Cauliflower	Manufacturer	Mexico	Quiroz-Santiago et al., 2009
	37	Confectionary products and pastes	Manufacturer	Romania	ECDC, 2009
	37	Importet confectionary products and pastes	Local retail	Slovakia	ECDC, 2009
	37	Other food (various ingredients)	Homemade dish	Malawi	Taulo et al., 2008
	37	Sauce and Dressings	Local retail	Lithuania	ECDC, 2009
	37	Vegetables	Homemade dish	Malawi	Taulo et al., 2008
Other	38	Raisins	Local retail	India	Sharma et al., 2008
other	1/-other	Fruits and vegetables	Local retail	Spain	Badosa et al., 2008
other	1/-other	Fruits and vegetables	Local retail/retail distribution, manufacturer; n.s.	Belgium Canada Germany Luxembourg Sweden, USA	Arthur et al., 2007; ECDC, 2008; ECDC, 2009; Mukherjee et al., 2004
other	other	Vegetable (products)	n.s.	Italy	ECDC, 2009
	other	Vegetables	Local retail, manufacturer, n.s. supermarket,	Mexico, Spain, Italy	Badosa et al., 2008; ECDC, 2008; ECDC, 2009; Miranda et al., 2009 Quiroz-Santiago et al., 2009
	36	Salad vegetables	Local retail	United Kingdom	Sagoo et al., 2003

| Salmonella spp.; Listeria monocytogenes | 5 | Orange | Take-away | India | Tambekar et al., 2009 |

| Salmonella Typhi | 5 | Sweet lemon (Citrus limetta) | Take-away | India | Tambekar et al., 2009 |
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
8		Dragon fruit, Jackfruit, Mango, Papaya	Local retail	Malaysia	Pui et al., 2011
8		Pineapple, Pomegranate	Take-away	India	Tambekar et al., 2009
9		Honeydew	Local retail	Malaysia	Pui et al., 2011
9		Watermelon	Local retail	Malaysia	Pui et al., 2011
15		Lettuce and arugula	Supermarket	Brazil	Sant’Ana et al., 2011
16		Parsley	Local retail/supermarket	Mexico	Gomez-Govea et al., 2012
36		Salad	Restaurant/take-away	Nigeria	Isara et al., 2010
8		Dragon fruit	Local retail	Malaysia	Pui et al., 2011
Salmonella Typhimurium	9	Honeydew	Local retail	Malaysia	Pui et al., 2011
	15	Lettuce	Manufacturer	Netherlands	ECDC, 2008
	16	Basil	Local retail	USA	Wetzel et al., 2010
	36	Salad	Restaurant/take-away	Nigeria	Isara et al., 2010
other		Vegetables	n.s.	Spain	ECDC, 2008
	36	Salad vegetables	Local retail	United Kingdom	Sagoo et al., 2003
Salmonella Umbilo	36	Salad	Restaurant/take-away	Nigeria	Isara et al., 2010
Shigella sonnet	1	various	Take-away	India	Lewis et al., 2006
Shigella spp.	4	Grape	Take-away	India	Lewis et al., 2006
	5	Orange	Take-away	India	Lewis et al., 2006
	8	Coconut slices	Local retail	India	Ghosh et al., 2007
	8	Mango	Take-away	India	Lewis et al., 2006
	8	Pineapple	Take-away	India	Lewis et al., 2006
	15	Lettuce	Local retail	Saudi Arabia	Hassan et al., 2011
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
-------------------------------	----------------	--------------------	------------	-----------	----------------------------
	15	Spinach	Local retail	Saudi Arabia	Hassan et al., 2011
	36	Salad	Local retail	India	Ghosh et al., 2007
	37	Coriander sauce	Take-away	India	Ghosh et al., 2007
	1	Fruits	Supermarket	Korea	Seo et al., 2010
	2	Strawberries	Local retail/retail distribution	Norway	Johanessen et al., 2002
	4	Grape	Local retail	Libya	Ghenghesh et al., 2005
	5	Kinnow mandarin	Take-away	India	Muddil et al., 2004
	5	Orange	Local retail	Libya	Ghenghesh et al., 2005
	5	Sweet lemon (Citrus limetta)	Take-away	India	Tambekar et al., 2009
	6	Apples	Local retail, take-away	Libya; India	Ghenghesh et al., 2005; Tambekar et al., 2009
	8	Coconut slices	Local retail	India	Ghosh et al., 2007
	8	Date	Local retail	Saudi Arabia	Hamad et al., 2012
	8	Mango	Local retail	Libya	Ghenghesh et al., 2005
	8	Papaya	Take-away	India	Mukhopadhyay et al., 2002
	8	Paw-Paw (Asimina)	Local retail	Nigeria	Chukwu et al., 2010
	8	Pineapple	Local retail	Libya, Nigeria	Chukwu et al., 2010; Ghenghesh et al., 2005
	8	Pineapple	Take-away	India	Tambekar et al., 2009
	9	Watermelon	Local retail	Nigeria	Chukwu et al., 2010
	10	Fruit juice	Take-away	Korea	Cho et al., 2011
	13	Cucumber	Take-away	United Kingdom	Meldrum et al., 2009
	15	Lettuce	Local retail, manufacturer supermarket	Korea, Turkey	Erkan et al., 2008; Seo et al., 2010
	15	Watercress	Local retail/manufacturer	Turkey	Erkan et al., 2008
	16	Parsley	Local retail/manufacturer	Turkey	Erkan et al., 2008
	17	Cabbage	Take-away	United Kingdom	Meldrum et al., 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
Staphylococcus aureus					
17		Lettuce	Take-away	United Kingdom	Meldrum et al., 2009
19		Carrots	Take-away	India	Mudgil et al., 2004
22		Green onion	Supermarket	Korea	Seo et al., 2010
29		Mushrooms	Local retail/retail distribution	Norway	Johannesssen et al., 2002
35		Olives	Local retail/supermarket	Portugal	Pereira et al., 2008
36		Mixed salads	Supermarket	Korea	Seo et al., 2010
36		Mixed salads (cabbage, lettuce, tomato)	Take-away	United Kingdom	Meldrum et al., 2009
36		Salad	Local retail, restaurant, take-away	India, Nigeria	Ghosh et al., 2007 Isara et al., 2010
37		Coriander sauce	Take-away	India	Ghosh et al., 2007
37		Other food (various ingredients)	Homemade dish, take-away	Korea, Malawi	Cho et al., 2011, Taulo et al., 2008
37		Staple food	Local retail/supermarket	Taiwan	Wei et al., 2006
37		Vegetables	Homemade dish	Malawi	Taulo et al., 2008
37		Vegetarian food	Local retail/supermarket	Taiwan	Wei et al., 2006
1/-other		Fruits and vegetables	Supermarket	Korea	Chung et al., 2010
other		Vegetables	Manufacturer, supermarket	Korea, Taiwan	Fang et al., 2003; Thapa et al., 2008
5		Orange	Take-away	Nigeria	Ukwo et al., 2011
Vibrio cholerae		Papaya	Take-away	India	Mukhopadhyay et al., 2002
8		Pineapple	Take-away	India	Ukwo et al., 2011
19		Carrots	Take-away	Nigeria	Ukwo et al., 2011
22		Garlic	Take-away	Nigeria	Ukwo et al., 2011
11		Tomatoes	Local retail/supermarket	Malaysia	Tunung et al., 2010
Pathogen	FoNAO Category	Food item(s)	Source(s)*	Country	Reference(s)
--------------------------	----------------	-------------------------------	-----------------------------	-------------	-------------------------------
Vibrio parahaemolyticus	13	Cucumber	Local retail/supermarket	Malaysia	Tunung et al., 2010
	14	Winged bean (*Psophocarpus tetragonolobus*)	Local retail/supermarket	Malaysia	Tunung et al., 2010
	14	Yardlong bean (*Vigna unguiculata*)	Local retail/supermarket	Malaysia	Tunung et al., 2010
	15	Cabbage	Local retail/supermarket	Malaysia	Tunung et al., 2010
	15	Lettuce	Local retail/supermarket	Malaysia	Tunung et al., 2010
	16	Indian pennywort (*Centella asiatica*)	Local retail/supermarket	Malaysia	Tunung et al., 2010
	16	Parsley, Japanese (*Oenanthe stolonifera*)	Local retail/supermarket	Malaysia	Tunung et al., 2010
	16	Wild cosmos (*Cosmos caudatus*)	Local retail/supermarket	Malaysia	Tunung et al., 2010
	19	Carrots	Local retail/supermarket	Malaysia	Tunung et al., 2010
	21	Sweet potato	Local retail/supermarket	Malaysia	Tunung et al., 2010
	17	Cabbage	Supermarket	Korea	Lee et al., 2004
Yersinia enterocolitica	17	Chinese cabbage	Supermarket	Korea	Lee et al., 2004
	17	Lettuce	Supermarket	Korea	Lee et al., 2004
	17	Spinach	Supermarket	Korea	Lee et al., 2004
	17	Water dropwort (*Oenanthe lachenalii*)	Supermarket	Korea	Lee et al., 2004
	21	Radish root	Supermarket	Korea	Lee et al., 2004
	22	Green onion	Supermarket	Korea	Lee et al., 2004
	29	Mushrooms	Supermarket	Korea	Lee et al., 2004
	36	Mixed salad	Local retail	Germany	Weiss et al., 2005
	15	Lettuce	Local retail/retail distribution	Norway	Johanessen et al., 2002
	29	*Calocybe gambosa*	Local retail/supermarket	Spain	Venturini et al., 2011
	29	*Cantharellus cibarius*	Local retail/supermarket	Spain	Venturini et al., 2011
	29	*Craterellus cornucopioides*	Local retail/supermarket	Spain	Venturini et al., 2011
Table 13: Viruses identified in association with FoNAO with high water content, listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO Category	Food item(s)	Source(s)a	Country	Reference(s)
Norovirus	1	Soft red fruits	n.s.	Belgium, France	Baert et al., 2011
	15	Leafy greens	n.s.	Belgium; Canada France	Baert et al., 2011
	1/other	Produce	n.s.	Belgium	Baert et al., 2011
Rotavirus	11	Tomatoes	Manufacturer	South Africa	van Zyl et al., 2006

a n.s.= non specified
Table 14: Parasites identified in association with FoNAO with high water content, listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO Category	Food item(s)	Source^a	Country	Reference(s)
Anquilostomidae	16	Chives	Manufacturer	Venezuela	Cazorla et al., 2009
	other	Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Ascaris lumbricoides	15	Cress	Local retail	Iran	Fallah et al., 2012
	15	Lettuce	Local retail, retail distribution	India, Turkey	Gupta et al., 2009; Kozan et al., 2004
	15	Purslane	Local retail	Iran	Fallah et al., 2012
	15	Radish	Local retail	Iran	Fallah et al., 2012
	15	Spinach	Retail distribution/local retail	India	Gupta et al., 2009
	16	Basil	Local retail	Iran	Fallah et al., 2012
	16	Coriander	Retail distribution/local retail	India	Gupta et al., 2009
	16	Parsley	Retail distribution/local retail	India	Gupta et al., 2009
	16	Pudina (mentha)	Retail distribution/local retail	India	Gupta et al., 2009
	16	Spearmint	Local retail	Iran	Fallah et al., 2012
	22	Celery	Retail distribution/local retail	India	Gupta et al., 2009
	22	Leek	Local retail	Iran	Fallah et al., 2012
	22	Scallion	Local retail	Iran	Fallah et al., 2012
Ascaris spp.	11	Tomatoes	Manufacturer	Venezuela	Cazorla et al., 2009
	12	Pepper	Manufacturer	Venezuela	Cazorla et al., 2009
	15	Cabbage	Manufacturer	Venezuela	Cazorla et al., 2009

^a Source: Manufacturer, Local retail, Retail distribution/local retail.
Pathogen	FoNAO Category	Food item(s)	Source*	Country	Reference(s)
	15	Lettuce	Manufacturer	Venezuela	Cazorla et al., 2009
	16	Chives	Manufacturer	Venezuela	Cazorla et al., 2009
	16	Coriander	Manufacturer	Venezuela	Cazorla et al., 2009
	22	Celery	Manufacturer	Venezuela	Cazorla et al., 2009
	22	Garlic	Manufacturer	Venezuela	Cazorla et al., 2009
	22	Onion	Manufacturer	Venezuela	Cazorla et al., 2009
	other	Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Ascaris spp. (oocysts)	11	Tomatoes	Local retail, retail distribution	Libya	Abougrain et al., 2010
	12	Garden egg (Solanum aethiopicum)	Local retail	Nigeria	Abougrain et al., 2012
	13	Cucumber	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Cress	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	Libya, Nigeria	Abougrain et al., 2010, Adamu et al., 2012
	15	Lettuce	Retail distribution	Libya	Abougrain et al., 2010
Ancylostoma duodenale	15	Lettuce	Local retail, retail distribution	India, Nigeria	Adamu et al., 2012; Gupta et al., 2009
	15	Spinach	Local retail, retail distribution	India	Gupta et al., 2009
	16	Coriander	Local retail, retail distribution	India	Gupta et al., 2009
	16	Parsley	Local retail, retail distribution	India	Gupta et al., 2009
	16	Pudina (mentha)	Local retail, retail distribution	India	Gupta et al., 2009
	22	Celery	Local retail, retail distribution	India	Gupta et al., 2009
Blastocystis spp.	15	Lettuce	Manufacturer	Venezuela	Cazorla et al., 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source*	Country	Reference(s)
	16	Chives	Manufacturer	Venezuela	Cazorla et al., 2009
	4	Blackberry	Local retail	Costa Rica	Calvo et al., 2004
Cryptosporidium spp.	15	Cabbage	Manufacturer	Venezuela	Cazorla et al., 2009
	15	Lettuce	Local retail, manufacturer	Costa Rica, Venezuela	Calvo et al., 2004; Cazorla et al., 2009
	15	Spinach	Local retail	Canada	Bohaychuk et al., 2009
	15	Water spinach (Ipomoea aquatica)	Lake	Vietnam, Denmark	Vuong et al., 2007
	16	Amaranth leaves	Local retail	India	Rai et al., 2008
	22	Celery	Local retail, Manufacturer	Costa Rica, Venezuela	Calvo et al., 2004; Cazorla et al., 2009
	1/other	Produce	Local retail	Canada	Bohaychuk et al., 2009
	other	Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Cyclospora cayetanensis	15	Lettuce	Local retail	Costa Rica	Calvo et al., 2004
Cyclospora spp.	15	Cabbage	Manufacturer, valley	Nepal, USA, Venezuela	Cazorla et al., 2009; Sherchand and Cross 2002
	15	Lettuce	Local retail; manufacturer; valley	Canada, Nepal, USA, Venezuela	Cazorla et al., 2009; Sherchand and Cross 2002; Tram et al., 2008
	15	Mustard leaves	Valley	Nepal, USA	Sherchand and Cross 2002
	15	Water spinach (Ipomoea aquatica)	Lake	Vietnam, Denmark	Vuong et al., 2007
	15	Water spinach (Ipomoea aquatica)	Lake	Vietnam, Denmark	Vuong et al., 2007
	16	Basil	Local retail/manufacturer	Vietnam, Canada	Tram et al., 2008

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source¹	Country	Reference(s)
Dipylidium caninum	16	Chives	Manufacturer	Venezuela	Cazorla et al., 2009
	16	Coriander	Local retail/manufacturer	Vietnam, Canada	Tram et al., 2008
	16	Marjoram	Local retail/manufacturer	Vietnam, Canada	Tram et al., 2008
	16	Persicaria	Local retail/manufacturer	Vietnam, Canada	Tram et al., 2008
	16	Vietnamese mint	Local retail/manufacturer	Vietnam, Canada	Tram et al., 2008
	22	Celery	Manufacturer	Venezuela	Cazorla et al., 2009
		Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Eimeria spp. (oocysts)	16	Coriander	Manufacturer	Venezuela	Cazorla et al., 2009
		Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
		Local retail	Vietnam, Canada	Tram et al., 2008	
Entamoeba coli	11	Tomatoes	Local retail	Egypt, Yemen	Hassan et al., 2012
	13	Cucumber	Local retail	Egypt, Yemen	Hassan et al., 2012
	15	Cress	Local retail	Iran	Fallah et al., 2012
	15	Tarragon	Local retail	Iran	Fallah et al., 2012
	15	Watercress	Local retail	Iran	Fallah et al., 2012
	16	Basil	Local retail	Egypt, Yemen	Hassan et al., 2012
	16	Coriander	Local retail	Egypt, Iran, Yemen	Fallah et al., 2012; Hassan et al., 2012
	16	Dill	Local retail	Iran	Fallah et al., 2012
	16	Parsley	Local retail	Egypt, Iran, Yemen	Fallah et al., 2012; Hassan et al., 2012

¹ Source: Manufacturer, Local retail/manufacturer

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source	Country	Reference(s)
	16	Spearmint	Local retail	Iran	Fallah et al., 2012
	19	Carrots	Local retail	Egypt, Yemen	Hassan et al., 2012
	21	Radish	Local retail	Egypt, Iran, Yemen	Fallah et al., 2012; Hassan et al., 2012
	22	Celery	Manufacturer	Venezuela	Cazorla et al., 2009
	22	Leek	Local retail	Iran	Fallah et al., 2012
		Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Entamoeba histolytica	12	Chili fruits	Local retail	India	Rai et al., 2008
	12	Pepper	Local retail	Egypt, Yemen	Hassan et al., 2012
	13	Cucumber	Local retail	Egypt, Yemen	Hassan et al., 2012
	15	Cabbage	Local retail	India	Rai et al., 2008
	16	Coriander	Local retail	Egypt, Yemen	Hassan et al., 2012
	21	Amaranth roots	Local retail	India	Rai et al., 2008
	21	Radish	Local retail	Egypt, Yemen	Hassan et al., 2012
Entamoeba histolytica/dispar	15	Cabbage	Manufacturer	Venezuela	Cazorla et al., 2009
		Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Entamoeba spp.	12	Chili fruits	Local retail	India	Rai et al., 2008
	15	Cabbage	Local retail	India	Rai et al., 2008
	15	Lettuce	Local retail	India	Rai et al., 2008
	15	Spinach leaves	Local retail	India	Rai et al., 2008
	16	Mint leaves	Local retail	India	Rai et al., 2008
Pathogen	FoNAO Category	Food item(s)	Source⁷	Country	Reference(s)
--------------------------	---------------	-----------------	-----------------	-----------------	------------------------------
Enterocytozoon bieneusi	19	Carrots	Local retail	India	Rai et al., 2008
	21	Amaranth roots	Local retail	India	Rai et al., 2008
	21	Radish	Local retail	India	Rai et al., 2008
Giardia lamblia	3	Raspberries	n.s.	Poland, USA	Jedrzejewski et al., 2007
	15	Curly lettuce	n.s.	Poland, USA	Jedrzejewski et al., 2007
Giardia spp.	11	Tomatoes	Local retail	Egypt, Yemen	Hassan et al., 2012
	12	Pepper	Local retail	Egypt, Yemen	Hassan et al., 2012
	13	Cucumber	Local retail	Egypt, Yemen	Hassan et al., 2012
	16	Coriander	Local retail	Egypt, Yemen	Hassan et al., 2012
	16	Parsley	Local retail	Egypt, Yemen	Hassan et al., 2012
	19	Carrots	Local retail	Egypt, Yemen	Hassan et al., 2012
	21	Radish	Local retail	Egypt, Yemen	Hassan et al., 2012
Giardia spp.	12	Chili fruits	Local retail	India	Rai et al., 2008
	15	Cabbage	Local retail	India	Rai et al., 2008
	15	Cress	Local retail	Iran	Fallah et al., 2012
	15	Lettuce	Local retail	India	Rai et al., 2008
	15	Purslane	Local retail	India	Fallah et al., 2012
	15	Spinach leaves	Local retail	India	Rai et al., 2008
	15	Water spinach (Ipomoea aquatica)	Lake	Vietnam, Denmark	Vuong et al., 2007
	15	Water spinach (Ipomoea aquatica)	Lake	Vietnam, Denmark	Vuong et al., 2007
Pathogen	FoNAO Category	Food item(s)	Source	Country	Reference(s)
--------------------------------	----------------	--------------------	--------------	-------------	-------------------------------
		Basil	Local retail	Iran	Fallah et al., 2012
		Mint leaves	Local retail	India	Rai et al., 2008
		Spearmint	Local retail	Iran	Fallah et al., 2012
		Carrots	Local retail	India	Rai et al., 2008
		Amaranth roots	Local retail	India	Rai et al., 2008
		Radish	Local retail	India, Iran	Fallah et al., 2012; Rai et al., 2008
		Leek	Local retail	Iran	Fallah et al., 2012
		Scallion	Local retail	Iran	Fallah et al., 2012
Giardia spp. (oocysts)	11	Tomatoes	Local retail	Libya	Abougrain et al., 2010
	13	Cucumber	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Cress	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	Libya	Abougrain et al., 2010
Intestinal helminthes (Cestodes, Trematodes, Nematodes)	15	Cabbage	Local retail	Kenia, Italy	Nyarango et al., 2008
	18	Black night shade	Local retail	Kenia, Italy	Nyarango et al., 2008
	18	Kale	Local retail	Kenia, Italy	Nyarango et al., 2008
	18	Spider flower	Local retail	Kenia, Italy	Nyarango et al., 2008
Microsporidia	15	Lettuce	Local retail	Costa Rica	Calvo et al., 2004
	16	Coriander	Local retail	Costa Rica	Calvo et al., 2004
Microsporidia (spores)	1	Berries	n.s.	Poland, USA	Jedrzejewski et al., 2007
		Vegetables	n.s.	Poland, USA	Jedrzejewski et al., 2007

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source*	Country	Reference(s)
Strongyloides stercoralis	15	Cabbage	Local retail	Nigeria	Adamu et al., 2012
	19	Carrots	Local retail	Nigeria	Adamu et al., 2012
Taenia spp.	13	Cucumber	Retail distribution	Turkey	Kozan et al., 2004
	16	Parsley	Retail distribution	Turkey	Kozan et al., 2004
	19	Carrots	Retail distribution	Turkey	Kozan et al., 2004
	22	Green onion	Retail distribution	Turkey	Kozan et al., 2004
Taenia/Echinococcus spp.	11	Tomatoes	Local retail	Libya	Abougrain et al., 2010
	13	Cucumber	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Cress	Local retail, retail distribution	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail, retail distribution	Libya	Abougrain et al., 2010
Taenia/Echinococcus spp. (oocysts)	15	Lettuce	Local retail	Nigeria	Adamu et al., 2012
Taeniid spp.	15	Cress	Local retail	Iran	Fallah et al., 2012
	16	Basil	Local retail	Iran	Fallah et al., 2012
	16	Coriander	Local retail	Iran	Fallah et al., 2012
	16	Dill	Local retail	Iran	Fallah et al., 2012
	16	Parsley	Local retail	Iran	Fallah et al., 2012
	16	Spearmint	Local retail	Iran	Fallah et al., 2012
	16	Tarragon	Local retail	Iran	Fallah et al., 2012
	21	Radish	Local retail	Iran	Fallah et al., 2012
	22	Leek	Local retail	Iran	Fallah et al., 2012

*The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source¹	Country	Reference(s)
Toxocara canis	11	Tomatoes	Local retail	Libya	Abougain et al., 2010
	13	Cucumber	Local retail, retail distribution	Libya	Abougain et al., 2010
	15	Cress	Local retail, retail distribution	Libya	Abougain et al., 2010
	15	Lettuce	Local retail, retail distribution	Libya	Abougain et al., 2010
Toxocara cati	11	Tomatoes	Local retail, retail distribution	Libya	Abougain et al., 2010
	13	Cucumber	Local retail, retail distribution	Libya	Abougain et al., 2010
	15	Cress	Local retail, retail distribution	Libya	Abougain et al., 2010
	15	Lettuce	Local retail, retail distribution	Libya	Abougain et al., 2010
Toxocara spp.	11	Tomatoes	Manufacturer	Venezuela	Cazorla et al., 2009
	15	Cabbage	Manufacturer	Venezuela	Cazorla et al., 2009
	15	Cress	Local retail	Iran	Fallah et al., 2012
	15	Lettuce	Retail distribution	Turkey	Kozan et al., 2004
	16	Coriander	Local retail	Iran	Fallah et al., 2012
	16	Parsley	Retail distribution	Turkey	Kozan et al., 2004
	21	Radish	Local retail	Iran	Fallah et al., 2012
	22	Leek	Local retail	Iran	Fallah et al., 2012
	22	Scallion	Local retail	Iran	Fallah et al., 2012
	other	Vegetables	Manufacturer	Venezuela	Cazorla et al., 2009
Toxoplasma gondii	15	Lettuce	Local retail, Garden	Poland	Lass et al., 2012
	19	Carrots	Local retail, Garden	Poland	Lass et al., 2012

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source	Country	Reference(s)
Trichostrongylus spp.					
21	Radish	Local retail	Poland		Lass et al., 2012
15	Purslane	Local retail	Iran		Fallah et al., 2012
15	Tarragon	Local retail	Iran		Fallah et al., 2012
16	Basil	Local retail	Iran		Fallah et al., 2012
16	Parsley	Local retail	Iran		Fallah et al., 2012
16	Spearmint	Local retail	Iran		Fallah et al., 2012
22	Scallion	Local retail	Iran		Fallah et al., 2012
Trichuris spp.					
12	Garden egg (*Solanum aethiopicum*)	Local retail	Nigeria		Adamu et al., 2012
13	Cucumber	Local retail	Nigeria		Adamu et al., 2012
15	Lettuce	Local retail	Nigeria		Adamu et al., 2012
Trichuris trichiura					
15	Spinach	Retail distribution/local retail	India		Gupta et al., 2009
16	Coriander	Retail distribution/local retail	India		Gupta et al., 2009
16	Pudina (mentha)	Retail distribution/local retail	India		Gupta et al., 2009

* n.s. = non specified
Table 15: Prevalence of pathogenic bacteria, viruses, and parasites in association with FoNAO of high water content, EU countries. Pathogens are listed in alphabetical order.

Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
Pathogenic bacteria							
Aeromonas hydrophila	36	Mixed salads (spinach, sprouts, cabbage, mushrooms, rocket, valerian or multi-salad packs)	Manufacturer	minimally processed	21/26 (80%)	Greece	Xanthopoulos et al., 2010
Bacillus cereus	13	Zucchini	Manufacturer	fresh	10/10 (100%)	France	Guinebretiere et al., 2003
	13	Zucchini	Manufacturer	heat-treated; cooked	2/10 (20%)	France	Guinebretiere et al., 2003
	13	Zucchini	Manufacturer	washed	10/10 (100%)	France	Guinebretiere et al., 2003
	36	Salad mix (romaine lettuce, various spinach and mixed salads)	Supermarket	minimally processed	34/151 (23%)	Portugal	Santos et al., 2012
	37	Potato meal	Catering	processed	6/54 (11%)	Italy	Bonerba et al., 2010
	10	Fruit juice	Pharmacy	fresh	3/30 (10%)	Poland	Mostafa et al., 2002
Bacillus cereus group spp.	12	Paprika	Local retail	n.s.¹	1/20 (5%)	Belgium	Samapundo et al., 2011
	15	Chinese cabbage	Local retail	n.s.	6/20 (30%)	Belgium	Samapundo et al., 2011
	19	Carrots	Local retail	n.s.	8/20 (40%)	Belgium	Samapundo et al., 2011
	22	Celery	Local retail	n.s.	7/20 (35%)	Belgium	Samapundo et al., 2011
Bacillus cereus like organism	1	Fruits	Local retail	fresh; ready to eat	9/317 (3%)	Denmark	Rosenquist et al., 2005
	17	Lettuce	Local retail	fresh; ready to eat	3/131 (2%)	Denmark	Rosenquist et al., 2005
	11/13	Cucumbers, Tomatoes	Local retail	fresh; ready to eat	1/38 (3%)	Denmark	Rosenquist et al., 2005
	other	Other Vegetables	Local retail	fresh; ready to eat	15/367 (4%)	Denmark	Rosenquist et al., 2005
	other	Vegetables	Local retail	heat-treated; ready to eat	8/428 (2%)	Denmark	Rosenquist et al., 2005
Clostridium botulinum	14	Green beans	Manufacturer	fresh	1/188 (0.5%)	France	Sevenier et al., 2012
	19	Carrots	Manufacturer	fresh	1/128 (1%)	France	Sevenier et al., 2012
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
--------------------	----------------	--------------	--------	-------------------------	------------	-------------	-------------------
Cronobacter sakazakii	36	Mixed salad	Local retail	ready-to-eat	19/72 (26%)	Germany	Weiss et al., 2005
	38	Coconut	Supermarket	heat-treated; dehydrated	1/10 (10%)	Czech Republic	Hochele et al., 2012
Cronobacter spp.	15	Leafy greens	Supermarket	fresh	2/6 (33%)	Ireland	Molloy et al., 2009
	38	Vegetables	Manufacturer/local retail	heat-treated; dried	2/47 (4%)	Netherlands	Kandhai et al., 2010
other Vegetables	n.s.	n.s.			5/12 (42%)	Slovakia	Turcovský et al., 2011
Enterobacter aerogenes	36	Mixed salad	Local retail	ready-to-eat	2/72 (3%)	Germany	Weiss et al., 2005
Enterobacter cloacae	36	Mixed salad	Local retail	ready-to-eat	16/72 (22%)	Germany	Weiss et al., 2005
Escherichia coli (VTEC)	15	Endive	n.s.	n.s.	4/298 (1%)	Netherlands	ECDC, 2008
	15	Mixed lettuce	n.s.	n.s.	1/172 (1%)	Netherlands	ECDC, 2008
36	Salad mix (romaine lettuce, various spinach and mixed salads)	Supermarket	minimally processed	3/151 (2%)	Portugal	Santos et al., 2012	
other Vegetables	n.s.	n.s.			4/62 (6%)	Spain	ECDC, 2010
other Vegetables	n.s.	n.s.			1/18 (6%)	n.s.	ECDC, 2010
other Vegetables	n.s.	n.s.			2/23 (9%)	Spain	ECDC, 2008
other Vegetables	n.s.	n.s.			288/2 (1%)	Belgium	ECDC, 2010
Klebsiella oxytoca	36	Mixed salad	Local retail	ready-to-eat	3/72 (4%)	Germany	Weiss et al., 2005
Klebsiella pneumoniae	36	Mixed salad	Local retail	ready-to-eat	1/72 (1%)	Germany	Weiss et al., 2005
Listeria monocytogenes	1	Fruits	n.s.	n.s.	1/387 (0.3%)	Italy	ECDC, 2008
	2	Strawberries	Local retail/retail distribution	fresh	1/173 (0.6%)	Norway	Johanessen et al., 2002
11	Tomatoes	Manufacturer	fresh		215/ (13%)	Greece	Kokkinakis et al., 2007
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
------------	----------------	----------------------	----------------------------	---------------------	------------	----------	-----------------------------
Listeria monocytogenes	11	Tomatoes	Manufacturer	fresh	10/15 (67%)	Greece	Kokkinakis et al., 2007
	11	Tomatoes	Supermarket	fresh	24/96 (25%)	Spain	Ramirez Merida 2009
	12	Green peppers	Local retail/manufacturer	frozen; pre-cut	7/31 (23%)	Portugal	Mena et al., 2004
	12	Pepper	Manufacturer	fresh	3/15 (20%)	Greece	Kokkinakis et al., 2007
	12	Pepper	Manufacturer	fresh	5/15 (33%)	Greece	Kokkinakis et al., 2007
	13	Zucchini	Manufacturer	frozen	12/23 (52%)	Germany	Pappelbaum et al., 2008
	14	Corn	Manufacturer	frozen	1/12 (8%)	Germany	Pappelbaum et al., 2008
	14	Green pea	Manufacturer	frozen	22/110 (20%)	Germany	Pappelbaum et al., 2008
	14	Peas	Local retail/manufacturer	frozen	4/27 (15%)	Portugal	Mena et al., 2004
	14	String bean	Manufacturer	frozen	65/121 (54%)	Germany	Pappelbaum et al., 2008
	15	Lettuce	Local retail/retail	fresh	1/200 (1%)	Norway	Johanessen et al., 2002
	15	Lettuce	Manufacturer	fresh	2/179 (1%)	Norway	Loncarevic et al., 2005
	15	Salad	Local retail	ready to eat	24/503 (5%)	Hungary	ECDC, 2009
	15	Salad	Manufacturer	ready to eat	6/198 (3%)	Czech Republic	ECDC, 2009
	15	Salad	Manufacturer	ready to eat	4/256 (2%)	Slovenia	ECDC, 2009
	15	Salad	n.s.	ready to eat	41/251 (16%)	Spain	ECDC, 2009
	15	Salad	n.s.	ready to eat	2/43 (5%)	Estonia	ECDC, 2009
	15	Salad	n.s.	ready to eat	1/106 (1%)	Estonia	ECDC, 2009
	15	Spinach	Manufacturer	frozen	10/15 (67%)	Germany	Pappelbaum et al., 2008
	15	Spinach	Supermarket	frozen; ready to eat	2/16 (13%)	Spain	Moreno et al., 2012
	15	Vegetable (rucola, lettuce)	Manufacturer	fresh	1/265 (0.4%)	Italy	De Giusti et al., 2010
	16	Coriander	Supermarket	fresh	35/96 (37%)	Spain	Ramirez Merida 2009
Pathogen	FoNAO Category	Food item(s)	Source\(^c\)	Processing /Comment	Prevalence	Country	Reference(s)
----------	----------------	--------------	--------------	---------------------	------------	---------	--------------
Listeria monocytogenes	17	Edible leaves	Local retail	fresh; packed, ready to eat	2/42 (5%)	Spain	Badosa et al., 2008
	17	Lettuce	Supermarket	pre-cut	1/29 (3%)	Spain	Abadias et al., 2008
	17	Mixed lettuce	Manufacturer	ready to eat	2/699 (0.3%)	Italy	De Giusti et al., 2010
	17	Mixed salads	Local retail	fresh; packed, ready to eat	2/42 (5%)	Spain	Badosa et al., 2008
	17	Mixed salads	Supermarket	pre-cut	22/132 (17%)	Spain	Abadias et al., 2008
	17	Spinach	Supermarket	fresh; ready to eat	1/18 (6%)	Spain	Moreno et al., 2012
	19	Carrots	Manufacturer	frozen	19/43 (44%)	Germany	Pappelbaum et al., 2008
	23	Broccoli	Local retail/manufacturer	frozen	6/37 (16%)	Portugal	Mena et al., 2004
	23	Broccoli	Manufacturer	frozen	192/242 (79%)	Germany	Pappelbaum et al., 2008
	23	Broccoli	Supermarket	fresh; ready to eat; pre-cut; packed	2/16 (13%)	Spain	Moreno et al., 2012
	23	Broccoli	Supermarket	frozen; ready to eat	1/6 (17%)	Spain	Moreno et al., 2012
	23	Cauliflower	Manufacturer	frozen	259/419 (62%)	Germany	Pappelbaum et al., 2008
	23	Courgette	Local retail/manufacturer	frozen; pre-cut	18/106 (17%)	Portugal	Mena et al., 2004
	29	Boletus edulis	Local retail/supermarket	fresh	4/22 (18%)	Spain	Venturini et al., 2011
	29	Calocybe gambosa	Local retail/supermarket	fresh	8/20 (40%)	Spain	Venturini et al., 2011
	29	Hygrophorus limacinus	Local retail/supermarket	fresh	4/10 (40%)	Spain	Venturini et al., 2011
	29	Lactarius deliciosus	Local retail/supermarket	fresh	4/16 (25%)	Spain	Venturini et al., 2011
	29	Mushrooms	Local retail/retail distribution	fresh	1/156 (0.6%)	Norway	Johanessen et al., 2002
Pathogen	FoNAO Category	Food item(s)	Source\(^1\)	Processing /Comment	Prevalence	Country	Reference(s)
-------------------	----------------	---------------------------------------	---------------------------	---------------------	--------------	---------	----------------
Listeria	29	Mushrooms	Local retail/supermarket	fresh	26/402 (6%)	Spain	Venturini et al., 2011
monocytophages	29	Mushrooms	Manufacturer	frozen	81/340 (24%)	Germany	Pappelbaum et al., 2008
	29	Tuber indicum	Local retail/supermarket	fresh	6/6 (100%)	Spain	Venturini et al., 2011
	35	Green table olives	n.s.	processed; biological samples	12/34 (35%)	Italy	Caggia et al., 2004
	35	Green table olives	n.s.	processed; commercial samples	4/10 (40%)	Italy	Caggia et al., 2004
	35	Green table olives	n.s.	processed; Spanish process	10/25 (40%)	Italy	Caggia et al., 2004
	36	Salad	Local retail	ready to eat	3/661 (0.5%)	Ireland	ECDC, 2008
	36	Salad	Local retail	ready to eat	5/64 (8%)	Estonia	ECDC, 2008
	36	Salad	Local retail	ready to eat	4/55 (7%)	Lithuania	ECDC, 2008
	36	Salad	Local retail	ready to eat	3/335 (1%)	United Kingdom	ECDC, 2008
	36	Salad	Manufacturer	ready to eat	3/38 (8%)	Estonia	ECDC, 2008
	36	Salad	n.s.	ready to eat	23/714 (3%)	Slovakia	ECDC, 2008
	36	Salad	n.s.	ready to eat	15/497 (3%)	Hungary	ECDC, 2008
	36	Salad mix (romaine lettuce, various spinach and mixed salads)	Supermarket	minimally processed	1/151 (0.7%)	Portugal	Santos et al., 2012
	36	Salad vegetables	Catering/local retail	ready to eat	88/2950 (3%)	United Kingdom	Sagoo et al., 2003
	36	Salad vegetables	Local retail	fresh; packed; ready to eat	1/3852 (0.02%)	United Kingdom	Sagoo et al., 2003
	37	Other food (various ingredients)	Take-away	heat-treated and non heat-treated	7/433 (2%)	Italy	Latorre et al., 2007
	1/other	Fruits and vegetables	Catering	pre-cut; ready to eat	6/324 (2%)	Portugal	ECDC, 2009

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogens

Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
Listeria monocytogenes	1/other	Fruits and vegetables	Catering	pre-cut; ready to eat	5/345 (1%)	Portugal	ECDC, 2008
	1/other	Fruits and vegetables	Local retail	fresh	4/445 (1%)	Spain	Badosa et al., 2008
	1/other	Fruits and vegetables	Local retail	n.s.	5/89 (6%)	Ireland	ECDC, 2008
	1/other	Fruits and vegetables	Local retail	pre-cut	1/47 (2%)	Slovenia	ECDC, 2008
	1/other	Fruits and vegetables	Local retail	pre-cut	1/58 (2%)	Ireland	ECDC, 2008
	1/other	Produce	Local retail/retail distribution	fresh	3/890 (0.3%)	Norway	Johansson et al., 2002
	1/other	Vegetable or fruit salat	Local retail	n.s.	1/385 (0.3%)	Netherlands	ECDC, 2009
other	Vegetable (products)	Manufacturer	n.s.	1/36 (3%)	Estonia	ECDC, 2009	
other	Vegetables	Local retail	fresh; not pre-cut	1/84 (1%)	Czech Republic	ECDC, 2008	
other	Vegetables	Local retail	frozen; pre-cut	3/36 (8%)	Czech Republic	ECDC, 2008	
other	Vegetables	Local retail	pre-cut	2/54 (4%)	Hungary	ECDC, 2008	
other	Vegetables	Local retail/manufacturer	frozen	31/1750 (2%)	Spain	Vitas et al., 2004	
other	Vegetables	Manufacturer	frozen	113/248 (46%)	Germany	Pappelbaum et al., 2008	
other	Vegetables	Manufacturer	frozen	11/906 (1%)	Spain	Aguado et al., 2004	
other	Vegetables	Manufacturer	n.s.	4/224 (2%)	Czech Republic	ECDC, 2008	
other	Vegetables	n.s.	fresh; not pre-cut	21/1 (5%)	Czech Republic	ECDC, 2009	
other	Vegetables	n.s.	frozen; pre-cut	7/38 (18%)	Slovakia	ECDC, 2008	
other	Vegetables	n.s.	frozen; pre-cut	2/170 (1%)	Hungary	ECDC, 2009	
other	Vegetables	n.s.	n.s.	45/141 (32%)	Spain	ECDC, 2008	
other	Vegetables	n.s.	pre-cut; ready to eat	1/21 (5%)	Hungary	ECDC, 2009	
other	Vegetables	n.s.	ready to eat	8/61 (13%)	Spain	ECDC, 2009	
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
--------------------------------	----------------	---	----------	-----------------------	------------	---------	---------------------
	other	Vegetables (tomatoes, celery, parsley, paprika, brussels sprouts)	Manufacturer	frozen	17/73 (23%)	Germany	Pappelbaum et al., 2008
	other	Vegetables	Supermarket	frozen; stir fry; ready to eat	1/5 (20%)	Spain	Moreno et al., 2012
Pseudomonas aeruginosa	30	Algae	Take-away	heat-treated; fried	1/16 (6%)	Italy	Catellani et al., 2010
	36	Mixed salad	Local retail	ready-to-eat	10/72 (14%)	Germany	Weiss et al., 2005
Salmonella Durban	36	Salad vegetables	Local retail	fresh; packed; ready to eat	1/3852 (0.02%)	United Kingdom	Sagoo et al., 2003
Salmonella Gustavia	other	Vegetables	Local retail	n.s.	1/29 (3%)	Austria	ECDC, 2008
Salmonella Newport	36	Salad vegetables	Local retail	fresh; packed; ready to eat	1/3852 (0.02%)	United Kingdom	Sagoo et al., 2003
Salmonella spp.	7	Drupes	Local retail	fresh	1/57 (2%)	Spain	Badosa et al., 2008
	8	Coconut products	Local retail	n.s.	1/71 (1%)	Hungary	ECDC, 2009
	15	Endive	Local retail	n.s.	1/298 (0.3%)	United Kingdom	ECDC, 2008
	15	Salad	Catering	ready to eat	1/248 (0.8%)	Spain	ECDC, 2009
	15	Vegetable (rucola, lettuce)	Manufacturer	fresh	2/265 (0.8%)	Italy	De Giusti et al., 2010
	16	Basil	Local retail	fresh; ready to eat	9/674 (1%)	United Kingdom	Elviss et al., 2009
	16	Coriander	Local retail	fresh; ready to eat	3/733 (0.4%)	United Kingdom	Elviss et al., 2009
	16	Herbs	Local retail	n.s.	32/410 (8%)	Netherlands	ECDC, 2009
	16	Herbs	Local retail	fresh	14/766 (2%)	Netherlands	ECDC, 2009
	16	Mint	Local retail	fresh; ready to eat	1/397 (0.3%)	United Kingdom	Elviss et al., 2009
	16	Other (rosemary, thyme, methi, curry leaves, walleria)	Local retail	fresh; ready to eat	3/487 (0.6%)	United Kingdom	Elviss et al., 2009
Pathogen	FoNAO Category	Food item(s)	Source\(^a\)	Processing /Comment	Prevalence	Country	Reference(s)
----------------	----------------	--	--------------	---------------------	------------	------------------	-----------------------
16		Parsley	Local retail	fresh; ready to eat	2/774 (0.3%)	United Kingdom	Elviss et al., 2009
17		Corn salad (Valerianella locusta)	Supermarket	pre-cut	1/21 (5%)	Spain	Abadias et al., 2008
17		Lettuce	Supermarket	pre-cut	1/29 (3%)	Spain	Abadias et al., 2008
		Lettuce	Take-away	ready to eat	1/454 (0.2%)	United Kingdom	Meldrum et al., 2009
17		Mixed salads	Local retail	fresh; packed, ready to eat	1/42 (2%)	Spain	Badosa et al., 2008
17		Mixed salads	Supermarket	pre-cut	1/132 (0.8%)	Spain	Abadias et al., 2008
17		Spinach	Supermarket	pre-cut	1/10 (10%)	Spain	Abadias et al., 2008
22		Bulbous vegetables (leek plants)	Supermarket	fresh	1/1000 (0.1%)	Germany	Schwaiger et al., 2011
37		Confectionary products and pastes	Manufacturer	n.s.	1/23 (4%)	Romania	ECDC, 2009
37		Importet confectionary products and pastes	Local retail	n.s.	6/25 (24%)	Slovakia	ECDC, 2009
37		Sauce and Dressings	Local retail	n.s.	1/5 (20%)	Lithuania	ECDC, 2009
1/other		Fruits and vegetables	Local retail	fresh	3/445 (1%)	Spain	Badosa et al., 2008
1/other		Fruits and vegetables	Local retail	pre-cut; ready to eat	1/403 (0.2%)	Sweden	ECDC, 2008
1/other		Fruits and vegetables	Manufacturer	pre-cut; ready to eat	1/12 (8%)	Belgium	ECDC, 2008
1/other		Fruits and vegetables	n.s.	n.s.	1/643 (0.2%)	Germany	ECDC, 2009
1/other		Fruits and vegetables	n.s.	pre-cut	1/60 (2%)	Belgium	ECDC, 2009
1/other		Fruits and vegetables	n.s.	pre-cut	1/711 (0.1%)	Germany	ECDC, 2008
1/other		Fruits and vegetables	n.s.	pre-cut; ready to eat	1/840 (0.1%)	Luxembourg	ECDC, 2009
other		Vegetable (products)	n.s.	n.s.	1/46 (2%)	Italy	ECDC, 2009
other		Vegetables	n.s.	n.s.	7/1876 (0.4%)	Spain	ECDC, 2008
other		Vegetables	Local retail	fresh	1/72 (1%)	Spain	Badosa et al., 2008

\(^a\) Source:
- Local retail
- Supermarket
- Take-away
- Manufacturer
- Manufacturer pre-cut; ready to eat
- Local retail pre-cut; ready to eat
- Local retail
- Local retail n.s.
- Manufacturer n.s.
- Manufacturer
- Manufacturer n.s.
- Local retail
- Manufacturer n.s.
- Local retail n.s.
- Local retail

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
Salmonella spp.; Listeria monocytogenes	36	Salad vegetables	Local retail	fresh; packed; ready to eat	6/3852 (0.2%)	United Kingdom	Sagoo et al., 2003
Salmonella Typhimurium	15	Lettuce	Manufacturer	n.s.	1/655 (0.2%)	Netherlands	ECDC, 2008
Salmonella Umbilo	36	Salad vegetables	Local retail	fresh; packed; ready to eat	3/3852 (0.1%)	United Kingdom	Sagoo et al., 2003
Staphylococcus aureus	2	Strawberries	Local retail/retail distribution	fresh	2/173 (1.2%)	Norway	Johanessen et al., 2002
	13	Cucumber	Take-away	ready to eat	3/67 (5%)	United Kingdom	Meldrum et al., 2009
	17	Cabbage	Take-away	ready to eat	2/123 (2%)	United Kingdom	Meldrum et al., 2009
	17	Lettuce	Take-away	ready to eat	5/454 (1%)	United Kingdom	Meldrum et al., 2009
	29	Mushrooms	Local retail/retail distribution	fresh	2/156 (1%)	Norway	Johanessen et al., 2002
	35	Olives	Local retail/supermarket	not direct; packing brine	4/35 (11%)	Portugal	Pereira et al., 2008
	36	Mixed salads (cabbage, lettuce, tomato)	Take-away	ready to eat	4/356 (1%)	United Kingdom	Meldrum et al., 2009
Yersinia enterocolitica	36	Mixed salad	Local retail	ready-to-eat	1/72 (1%)	Germany	Weiss et al., 2005
	15	Lettuce	Local retail/retail distribution	fresh	6/200 (3.0%)	Norway	Johanessen et al., 2002
	29	Calocybe gambosa	Local retail/supermarket	fresh	1/20 (5%)	Spain	Venturini et al., 2011
	29	Craterellus cornucopioides	Local retail/supermarket	fresh	1/24 (4%)	Spain	Venturini et al., 2011
	29	Craterellus cornucopioides	Local retail/supermarket	fresh	2/20 (10%)	Spain	Venturini et al., 2011
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
------------	----------------	--	--------------	---------------------	------------	---------	-------------------------
	29	Mushrooms	Local retail/supermarket	fresh	4/402 (1%)	Spain	Venturini et al., 2011
	36	Mixed salads (spinach, sprouts, cabbage, mushrooms, rocket, valerian or multi-salad packs)	Manufacturer	minimally processed	2/26 (8%)	Greece	Xanthopoulos et al., 2010
Viruses							
Norovirus	1	Soft red fruits	n.s.	n.s.	10/29 (35%)	Belgium	Baert et al., 2011
	1	Soft red fruits	n.s.	n.s.	10/150 (7%)	France	Baert et al., 2011
	15	Leafy greens	n.s.	n.s.	6/6 (33%)	Belgium	Baert et al., 2011
	15	Leafy greens	n.s.	n.s.	3/6 (50%)	France	Baert et al., 2011
	1/-other	Produce	n.s.	n.s.	10/18 (56%)	Belgium	Baert et al., 2011
Parasites							
Toxoplasma gondii		Lettuce	Local retail	n.s.	7/35 (20%)	Poland	Lass et al., 2012
	15	Lettuce	Garden	n.s.	2/15 (13%)	Poland	Lass et al., 2012
	19	Carrots	Local retail	n.s.	4/27 (15%)	Poland	Lass et al., 2012
	19	Carrots	Garden	n.s.	5/19 (26%)	Poland	Lass et al., 2012
	21	Radish	Local retail	n.s.	3/54 (6%)	Poland	Lass et al., 2012

a n.s. = non specified
Table 16: Prevalence of pathogenic bacteria and parasites in association with FoNAO of high water content, non-EU countries.

No detection rates were reported for viruses on/in FoNAO with high water content for non-EU countries.

Pathogen	FoNAO Category	Food item(s)	Source*	Processing /Comment	Prevalence	Country	Reference(s)
Pathogenic bacteria							
Bacillus cereus	16	Parsley	Local/retail/supermarket	heat-treated; dehydrated	1/15 (7%)	Brazil	Moreira et al., 2009
	20	Potato	n.s.	fresh	7/9 (78%)	Argentina	Fangio et al., 2010
	22	Onion	Local/retail/supermarket	heat-treated; dehydrated	1/15 (8%)	Brazil	Moreira et al., 2009
	36	Salad	Restaurant/take-away	processed	2/10 (20%)	Nigeria	Isara et al., 2010
	37	Sunsik (grain, fruit and vegetables)	Local retail	ready-to-eat	39/93 (42%)	Korea	Lee et al., 2011
	38	Dehydrated potato flakes	Supermarket	ready to eat	8/50 (16%)	New Zealand	Turner et al., 2006
	1/other	Fruits and vegetables	Supermarket	pre-cut	2/60 (3%)	Korea	Chung et al., 2010
	13/20	Vegetables (butter nut squash, potato)	n.s.	fresh	11/23 (48%)	Argentina	Fangio et al., 2010
other Vegetables		Manufacturer	fresh		3/58 (5%)	Korea	Thapa et al., 2008
other Vegetables		Manufacturer	fresh		3/58 (5%)	Korea	Thapa et al., 2008
other Vegetables		Supermarket	ready to eat		19/45 (42%)	Taiwan	Fang et al., 2003
Campylobacter coli	14	Winged bean (Psophocarpus tetragonolobus)	Local/retail/supermarket	fresh	18/39 (46%)	Malaysia	Chai et al., 2007
	14	Yardlong bean (Vigna unguiculata)	Local/retail/supermarket	fresh	1/40 (3%)	Malaysia	Chai et al., 2007
	15	Water spinach	Local/retail/supermarket	fresh	17/39 (44%)	Malaysia	Chai et al., 2007
	16	Coriander, Vietnamese (Polygonum minus)	Local/retail/supermarket	fresh	16/36 (44%)	Malaysia	Chai et al., 2007
	16	Indian pennywort (Centella asiatica)	Local/retail/supermarket	fresh	19/37 (51%)	Malaysia	Chai et al., 2007
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
Campylobacter fetus	16	Parsley, Japanese (Oenanthe stolonifera)	Local retail/supermarket	fresh	19/39 (49%)	Malaysia	Chai et al., 2007
	16	Wild cosmos (Cosmos caudatus)	Local retail/supermarket	fresh	18/38 (47%)	Malaysia	Chai et al., 2007
	16	Indian pennywort (Centella asiatica)	Local retail/supermarket	fresh	1/37 (3%)	Malaysia	Chai et al., 2007
	16	Wild cosmos (Cosmos caudatus)	Local retail/supermarket	fresh	1/38 (3%)	Malaysia	Chai et al., 2007
Campylobacter jejuni	14	Winged bean (Psophocarpus tetragonolobus)	Local retail/supermarket	fresh	18/39 (46%)	Malaysia	Chai et al., 2007
	14	Yardlong bean (Vigna unguiculata)	Local retail/supermarket	fresh	1/40 (3%)	Malaysia	Chai et al., 2007
	15	Cabbage	Manufacturer	fresh	2/4 (50%)	Malaysia	Chai et al., 2009
	15	Water spinach	Local retail/supermarket	fresh	22/39 (56%)	Malaysia	Chai et al., 2007
	16	Coriander, Vietnamese (Polygonum minus)	Local retail/supermarket	fresh	17/36 (47%)	Malaysia	Chai et al., 2007
	16	Coriander, Vietnamese (Polygonum minus)	Manufacturer	fresh	1/8 (13%)	Malaysia	Chai et al., 2009
	16	Indian pennywort (Centella asiatica)	Local retail/supermarket	fresh	19/37 (51%)	Malaysia	Chai et al., 2007
	16	Parsley, Japanese (Oenanthe stolonifera)	Local retail/supermarket	fresh	20/39 (51%)	Malaysia	Chai et al., 2007
	16	Wild cosmos (Cosmos caudatus)	Local retail/supermarket	fresh	21/38 (55%)	Malaysia	Chai et al., 2007
	21	Radish	Manufacturer	fresh	1/6 (17%)	Malaysia	Chai et al., 2009
Clostridium perfringens	16	Parsley	Local retail/supermarket	fresh	6/50 (12%)	Mexico	Gomez-Govea et al., 2012
Cronobacter sakazakii	37	Other food (various ingredients)	Canteen	processed	2/77 (3%)	Korea	Ryu et al., 2011
Cronobacter spp.	1	Fruits	Local retail/supermarket	n.s.	3/41 (7%)	Korea	Lee et al., 2012
Pathogen	FoNAO Category	Food item(s)	Source*	Processing /Comment	Prevalence	Country	Reference(s)
----------	----------------	--------------	---------	---------------------	------------	---------	--------------
Enterobacter aerogenes	8	Paw-Paw (Asimina)	Local retail	minimally processed	1/50 (2%)	Nigeria	Chukwu et al., 2010
Enterobacter cloacae	9	Watermelon	Local retail	minimally processed	2/50 (4%)	Nigeria	Chukwu et al., 2010
Escherichia coli (Enteroinvasive and Shiga-toxin producing)	15	Vegetable (lettuce, spinach)	Local retail	fresh	1/12 (8%)	Colombia	Rugeles et al., 2010
	36	Mixed salads (lettuce, avocado, water cress, wheat sprouts, tomato, cucumber, radish, carrot)	Restaurant	ready to eat	2/15 (13%)	Mexico	Castro-Rosas et al., 2012
Escherichia coli (Enteroinvasive)	36	Mixed salads (lettuce, avocado, water cress, wheat sprouts, tomato, cucumber, radish, carrot)	Restaurant	ready to eat	2/15 (13%)	Mexico	Castro-Rosas et al., 2012
	17	Lettuce	Manufacturer	ready to eat	11/142 (8%)	Switzerland	Althaus et al., 2012
Pathogen	FoNAO Category	Food item(s)	Source¹	Processing /Comment	Prevalence	Country	Reference(s)
----------------------------------	----------------	---	-----------	---------------------	------------	------------	-------------------------------
Food of plant origin with high water content							
(EPEC)	other	Vegetables	Manufacturer	ready to eat	11/233 (5%)	Switzerland	Althaus et al., 2012
Escherichia coli (ETEC)		Salad mix (raw spinach, tomato, mushrooms)	Restaurant	fresh	1/25 (4%)	Mexico	Castro-Rosas et al., 2012
Escherichia coli (STEC)		Vegetable (lettuce, spinach)	Local retail	fresh	1/12 (8%)	Colombia	Rugeles et al., 2010
		Lettuce	Manufacturer	ready to eat	1/142 (1%)	Switzerland	Althaus et al., 2012
		Mixed salads (lettuce, avocado, water cress, wheat sprouts, tomato, cucumber, radish, carrot)	Restaurant	ready to eat	2/15 (13%)	Mexico	Castro-Rosas et al., 2012
		Salad mix (raw spinach, tomato, mushrooms)	Restaurant	ready to eat	1/25 (4%)	Mexico	Castro-Rosas et al., 2012
Escherichia coli O157:H7 (EHEC)		various	Take-away	fruit juice	30/108 (28%)	India	Lewis et al., 2006
		Green peppers	Manufacturer	organic production	1/605 (0.2%)	USA	Mukherjee et al., 2004
		Lettuce	Manufacturer	fresh	1/605 (0.2%)	USA	Mukherjee et al., 2004
		Other food (various ingredients)	Canteen	processed	2/77 (3%)	Korea	Ryu et al., 2011
		Other food (various ingredients)	Homemade dish	heat-treated	2/13 (15%)	Malawi	Taulo et al., 2008
		Vegetables	Homemade dish	heat-treated; cooked	4/28 (14%)	Malawi	Taulo et al., 2008
Klebsiella oxytoca		Vegetables (lettuce, cabbage, carrot and radish sprout)	Manufacturer	fresh	2/282 (0.4%)	Iran	Khandaghi et al., 2010
		Grape	Local retail	fruit juice	2/30 (7%)	Libya	Genghes et al., 2005
		Orange	Local retail	fruit juice	2/19 (11%)	Libya	Genghes et al., 2005
		Peach	Local retail	fruit juice	3/8 (38%)	Libya	Genghes et al., 2005
		Mango	Local retail	fruit juice	3/29 (10%)	Libya	Genghes et al., 2005
		Pineapple	Local retail	fruit juice	5/24 (21%)	Libya	Genghes et al., 2005
		Basil	Local retail	n.s.	1/29 (3%)	USA	Wetzel et al., 2010

¹ The term “Source” includes the manufacturer, restaurant, local retail, and homemade dish, among others.

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source	Processing /Comment	Prevalence	Country	Reference(s)
Klebsiella pneumoniae	7	Peach	Local retail	fruit juice	2/8 (25%)	Libya	Ghenghesh et al., 2005
	8	Mango	Local retail	fruit juice	5/29 (17%)	Libya	Ghenghesh et al., 2005
	8	Pineapple	Local retail	fruit juice	6/24 (25%)	Libya	Ghenghesh et al., 2005
	9	Watermelon	Local retail	minimally processed	2/50 (4%)	Nigeria	Chukwu et al., 2010
Listeria monocytogenes	11	Tomatoes	Local retail	fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010
	11	Tomatoes	Supermarket	fresh	5/16 (31%)	Malaysia	Ponniah et al., 2010
	11	Tomatoes	Supermarket	minimally processed	2/10 (20%)	Chile	Cordano and Jacquet, 2009
	13	Cucumber	Local retail	fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010
	13	Cucumber	Supermarket	fresh	5/16 (31%)	Malaysia	Ponniah et al., 2010
	14	Broad beans	Supermarket	frozen	7/33 (21%)	Chile	Cordano and Jacquet, 2009
	14	Broad beans	Supermarket	minimally processed	1/20 (5%)	Chile	Cordano and Jacquet, 2009
	14	Green beans	Supermarket	frozen	18/37 (49%)	Chile	Cordano and Jacquet, 2009
	14	Green beans	Supermarket	minimally processed	1/3 (33%)	Chile	Cordano and Jacquet, 2009
	14	Kidney beans	Supermarket	frozen	6/20 (30%)	Chile	Cordano and Jacquet, 2009
	14	Kidney beans	Supermarket	minimally processed	1/6 (17%)	Chile	Cordano and Jacquet, 2009
	14	Peas	Supermarket	frozen	12/33 (36%)	Chile	Cordano and Jacquet, 2009
	14	Sweet corn	Supermarket	frozen	10/39 (26%)	Chile	Cordano and Jacquet, 2009
	14	Sweet corn	Supermarket	minimally processed	1/15 (7%)	Chile	Cordano and Jacquet, 2009
	14	Winged bean (Psophocarpus tetragonolobus)	Local retail	fresh	1/16 (6%)	Malaysia	Ponniah et al., 2010
Pathogen	FoNAO Category	Food item(s)	Source¹	Processing /Comment	Prevalence	Country	Reference(s)
----------	----------------	--------------	---------	---------------------	------------	---------	--------------
	14	Winged bean (Psophocarpus tetragonolobus)	Supermarket	fresh	4/16 (25%)	Malaysia	Ponniah et al., 2010
	14	Yardlong bean (Vigna unguiculata)	Local retail	fresh	5/16 (31%)	Malaysia	Ponniah et al., 2010
	14	Yardlong bean (Vigna unguiculata)	Supermarket	fresh	5/16 (31%)	Malaysia	Ponniah et al., 2010
	15	Baby spinach	Manufacturer	minimally processed	3/409 (0.7%)	Canada	Illic et al., 2008
	15	Cabbage	Local retail	fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010
	15	Cabbage	Manufacturer	fresh	3/43 (7%)	USA	Johnston et al., 2006
	15	Cabbage	Manufacturer	fresh	26/855 (3%)	USA	Prazak et al., 2002
	15	Cabbage	Supermarket	fresh	5/16 (31%)	Malaysia	Ponniah et al., 2010
	15	Spinach	Supermarket	frozen	1/13 (8%)	Chile	Cordano and Jacquet, 2009
	15	Spinach	Supermarket	minimally processed	1/12 (8%)	Brazil	Froder et al., 2007
	16	Indian pennywort (Centella asiatica)	Local retail	fresh	2/16 (13%)	Malaysia	Ponniah et al., 2010
	16	Indian pennywort (Centella asiatica)	Supermarket	fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010
	16	Parsley	Local retail/supermarket	fresh	1/50 (2%)	Mexico	Gomez-Govea et al., 2012
	16	Parsley (Oenanther stolonifera)	Supermarket	fresh	1/16 (6%)	Malaysia	Ponniah et al., 2010
	16	Parsley, Japanese (Oenanther stolonifera)	Local retail	fresh	8/17 (47%)	Malaysia	Ponniah et al., 2010
	16	Wild parsley (Cosmos caudatus)	Local retail	fresh	4/16 (25%)	Malaysia	Ponniah et al., 2010
	17	Cabbage	Supermarket	ready to eat	2/11 (18%)	Brazil	Sant'Ana et al., 2012
	17	Collard greens	Supermarket	ready to eat	1/24 (4%)	Brazil	Sant'Ana et al., 2012
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
---------------	----------------	--------------	------------------	------------	-----------	---------------------------	
Listeria monocytogenes		Escarole	Supermarket, ready to eat	3/13 (23%)	Brazil	Sant'Ana et al., 2012	
17		Lettuce	Supermarket, ready to eat	3/152 (2%)	Brazil	Sant'Ana et al., 2012	
17		Lettuce	Supermarket, ready to eat	1/30 (3%)	Costa Rica	Monge et al., 2011	
17		Lettuce	Manufacturer, ready to eat	5/142 (4%)	Switzerland	Althaus et al., 2012	
17		Salad	Local retail, ready to eat; packed	22/2966 (0.7%)	USA	Gombas et al., 2003	
17		Spinach	Supermarket, ready to eat	1/11 (9%)	Brazil	Sant'Ana et al., 2012	
17		Watercress	Supermarket, ready to eat	1/18 (6%)	Brazil	Sant'Ana et al., 2012	
17		Carrots	Local retail, fresh	3/16 (19%)	Costa Rica	Monge et al., 2011	
17		Carrots	Local retail, minimally processed	3/11 (27%)	Costa Rica	Monge et al., 2011	
19		Carrots	Supermarket, fresh	5/17 (30%)	Malaysia	Ponniah et al., 2010	
19		Carrots	Supermarket, fresh	5/17 (30%)	Malaysia	Ponniah et al., 2010	
19		Carrots	Supermarket, minimally processed	5/17 (30%)	Malaysia	Ponniah et al., 2010	
21		Carrots	Local retail, fresh	4/16 (25%)	Malaysia	Ponniah et al., 2010	
21		Carrots	Supermarket, fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010	
21		Carrots	Supermarket, fresh	3/16 (19%)	Malaysia	Ponniah et al., 2010	
21		Carrots	Supermarket, minimally processed	3/16 (19%)	Malaysia	Ponniah et al., 2010	
22		Carrots	Supermarket, frozen	1/12 (8%)	Chile	Cordano and Jacquet, 2009	
22		Carrots	Supermarket, minimally processed	2/13 (15%)	Chile	Cordano and Jacquet, 2009	
22		Carrots	Supermarket, minimally processed	1/37 (3%)	Korea	Cho et al., 2004	
23		Carrots	Supermarket, frozen	2/21 (10%)	Chile	Cordano and Jacquet, 2009	
23		Carrots	Supermarket, minimally processed	1/5 (20%)	Chile	Cordano and Jacquet, 2009	
23		Carrots	Supermarket, frozen	4/17 (24%)	Chile	Cordano and Jacquet, 2009	
29		Mushrooms	Supermarket, frozen	1/14 (7%)	Chile	Cordano and Jacquet, 2009	
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
------------------	----------------	--	------------------	------------	---------	-----------------------	
Listeria monocytogenes		Mushrooms	Supermarket	1/46 (2%)	Korea	Cho et al., 2004	
		Seaweed	Supermarket	3/6 (50%)	Chile	Cordano and Jacquet, 2009	
		Asazuke (Japanese light pickles)	Supermarket	12/108 (11%)	Japan	Maklon et al., 2010	
		Mixed salads	Supermarket	27/36 (43%)	Chile	Cordano and Jacquet, 2009	
		Mixed salads	Supermarket	9/87 (10%)	Chile	Cordano and Jacquet, 2009	
		Salad	Local retail	1/13 (8%)	USA	Sauders et al., 2009	
		Salad	Supermarket	7/52 (13%)	Brazil	Verdin et al., 2007	
		Salad mix (mixes of different varieties of	Supermarket	2/214 (0.9%)	Brazil	Sant’Ana et al., 2012	
		lettuce, watercress, chard, spinach, carrot,					
		arugula, chicory, escarole and tomato)					
		Bean curd	Local retail	2/90 (1%)	China	Zhou et al., 2006	
		Deli salads	Local retail	202/8549 (2%)	USA	Gombas et al., 2003	
other		Mix for sukiyaki (soup/stew type, a Japanese	Supermarket	2/6 (33%)	Brazil	Sant’Ana et al., 2012	
other		Vegetables	Local retail	2/167 (2%)	China	Zhou et al., 2006	
other		Vegetables	Manufacturer	1/58 (2%)	Korea	Thapa et al., 2008	
other		Vegetables	Manufacturer/supermarket/restaurant	7/617 (1%)	Iran	Jalali and Abedi 2008	
other		Vegetables	n.s.	9/120 (8%)	Venezuela	de Curtis et al., 2002	
other		Vegetables	Supermarket	1/18 (6%)	Brazil	Sant’Ana et al., 2012	
Pathogen	FoNAO Category	Food item(s)	Source/Comment	Prevalence	Country	Reference(s)	
----------------	----------------	--------------	----------------	------------	---------	--------------	
Pseudomonas aeruginosa	other	Vegetables	Manufacturer, ready to eat	5/233 (2%)	Switzerland	Althaus et al., 2012	
4	Grape	Local retail	fruit juice	2/30 (7%)	Libya	Ghenghesh et al., 2005	
5	Orange	Local retail	fruit juice	1/19 (5%)	Libya	Ghenghesh et al., 2005	
5	Orange	Take-away	fruit juice	2/6 (33%)	India	Tambekar et al., 2009	
5	Sweet lemon (Citrus limetta)	Take-away	fruit juice	6/17 (35%)	India	Tambekar et al., 2009	
6	Apples	Local retail	fruit juice	1/9 (11%)	Libya	Ghenghesh et al., 2005	
6	Apples	Take-away	fruit juice	4/6 (67%)	India	Tambekar et al., 2009	
8	Pineapple	Local retail	minimally processed	2/50 (4%)	Nigeria	Chukwu et al., 2010	
8	Pineapple	Take-away	fruit juice	5/16 (31%)	India	Tambekar et al., 2009	
8	Pomegranate	Take-away	fruit juice	2/6 (33%)	India	Tambekar et al., 2009	
11	Tomatoes	Local retail	fresh	1/68 (1%)	Saudi Arabia	Hassan et al., 2011	
13	Cucumber	Local retail	fresh	1/68 (1%)	Saudi Arabia	Hassan et al., 2011	
15	Cabbage	Local retail	fresh	3/68 (4%)	Saudi Arabia	Hassan et al., 2011	
15	Lettuce	Local retail	fresh	2/68 (3%)	Saudi Arabia	Hassan et al., 2011	
15	Spinach	Local retail	fresh	6/68 (9%)	Saudi Arabia	Hassan et al., 2011	
16	Basil	Local retail	n.s.	1/29 (3%)	USA	Wetzel et al., 2010	
16	Coriander	Local retail	fresh	3/68 (4%)	Saudi Arabia	Hassan et al., 2011	
16	Parsley	Local retail	fresh	1/68 (1%)	Saudi Arabia	Hassan et al., 2011	
22	Celery	Local retail	fresh	3/68 (4%)	Saudi Arabia	Hassan et al., 2011	
22	Green onion	Local retail	fresh	2/68 (3%)	Saudi Arabia	Hassan et al., 2011	
Pathogen	FoNAO Category	Food item(s)	Source*	Processing /Comment	Prevalence	Country	Reference(s)
-------------------------	----------------	--	--------------------------	---------------------	------------	-----------	--------------------------------
Salmonella Agona	36	Salad	Restaurant/take-away	processed	1/3 (33%)	Nigeria	Isara et al., 2010
Salmonella enterica	15	Lettuce and arugula	Supermarket	minimally processed	1/512 (0.2%)	Brazil	Sant’ Ana et al., 2011
Salmonella Enteritidis	37	Taco-dressing (boiled green chilli sauce)	Local retail	processed	1/26 (4%)	Mexico	Estrada-Garcia et al., 2004
Salmonella Enteritidis	37	Taco-dressing (raw coriander onion mix)	Local retail	processed	1/5 (20%)	Mexico	Estrada-Garcia et al., 2004
Salmonella Montevideo	9	Cantaloupe	Manufacturer	not direct; packing sheds of produce	3/91 (3%)	USA	Johnston et al., 2005
Salmonella spp.	1	various	Take-away	fruit juice	42/108 (39%)	India	Lewis et al., 2006
	5	Fruit juice	Take-away	fruit juice	2/5 (40%)	Nigeria	Ukwo et al., 2011
	5	Sweet lemon (Citrus limetta)	Take-away	fruit juice	5/10 (50%)	India	Titarmare et al., 2009
	8	Dragon fruit	Local retail	pre-cut	15/20 (75%)	Malaysia	Pui et al., 2011
	8	Fruit juice	Take-away	fruit juice	3/5 (60%)	Nigeria	Ukwo et al., 2011
	8	Jackfruit	Local retail	pre-cut	2/20 (10%)	Malaysia	Pui et al., 2011
	8	Papaya	Local retail	pre-cut	6/20 (30%)	Malaysia	Pui et al., 2011
	8	Papaya	Take-away	pre-cut	1/30 (3%)	India	Mukhopadhyay et al., 2002
	8	Paw-Paw (Asimina)	Local retail	minimally processed	3/50 (6%)	Nigeria	Chukwu et al., 2010
Pathogen	FoNAO Category	Food item(s)	Source /Comment	Prevalence	Country	Reference(s)	
--------------	----------------	---------------------------------------	----------------------	------------	-----------	-------------------	
Salmonella	8	Persimmon fruit (Diospyrus kaki)	Local retail/retail distribution fresh	5/582 (1%)	Brazil	Rezende et al., 2009	
	8	Pineapple	Local retail minimally processed fruit juice	7/50 (14%)	Nigeria	Chukwu et al., 2010	
	8	Pineapple	Take-away pre-cut	5/10 (50%)	India	Titarmare et al., 2009	
	8	Sapodilla	Local retail	6/20 (30%)	Malaysia	Pui et al., 2011	
	9	Bitter melon	Take-away fruit juice	1/3 (33%)	India	Titarmare et al., 2009	
	9	Cantaloupe	Manufacturer fresh	12/55 (22%)	Mexico	Gallegos-Robles et al., 2008	
	9	Honeydew	Local retail pre-cut	5/20 (25%)	Malaysia	Pui et al., 2011	
	9	Watermelon	Local retail pre-cut	6/20 (30%)	Malaysia	Pui et al., 2011	
	9	Watermelon	Local retail minimally processed	3/50 (6%)	Nigeria	Chukwu et al., 2010	
	11	Tomatoes	Local retail/retail distribution fresh	1/1183 (0.1%)	Canada	Arthur et al., 2007	
	12	Chile pepper	Manufacturer fresh	10/55 (18%)	Mexico	Gallegos-Robles et al., 2008	
	12	Green peppers	Manufacturer fresh	1/49 (2%)	USA	Mukherjee et al., 2004	
	13	Bottle gourd (Lagenaria siceraria)	Take-away fruit juice	2/3 (67%)	India	Titarmare et al., 2009	
	13	Cucumber	Take-away fruit juice	2/3 (67%)	India	Titarmare et al., 2009	
	13	Zucchini	Local retail whole and sliced	10/100 (10%)	Mexico	Castro-Rosas et al., 2010	
	15	Cabbage	Manufacturer fresh	1/100 (1%)	Mexico	Quiroz-Santiago et al., 2009	
	15	Chicories	Supermarket minimally processed	1/12 (8%)	Brazil	Froder et al., 2007	
	15	Lettuce	Local retail/retail distribution fresh	1/1183 (0.1%)	Canada	Arthur et al., 2007	
	15	Lettuce	Manufacturer fresh	1/49 (2%)	USA	Mukherjee et al., 2004	
Pathogen	Food of plant origin with high water content						
----------	---						
Salmonella spp.							

FoNAO Category	Food item(s)	Source/Comment	Prevalence	Country	Reference(s)		
15	Lettuce	Supermarket	minimally processed	1/41 (2%)	Brazil	Froder et al., 2007	
15	Lettuce	Supermarket/take-away	fresh	5/60 (8%)	Turkey	Cetin et al., 2008	
15	Lettuce	Manufacturer	fresh	7/100 (7%)	Mexico	Quiroz-Santiago et al., 2009	
15	Mixed salads	Supermarket	minimally processed	1/21 (5%)	Brazil	Froder et al., 2007	
15	Purslane (Portulaca oleracea)	Manufacturer	fresh	9/100 (9%)	Mexico	Quiroz-Santiago et al., 2009	
15	Romaine lettuce	Manufacturer	fresh	3/100 (3%)	Mexico	Quiroz-Santiago et al., 2009	
15	Savoy spinach	Manufacturer	fresh	1/1311 (0.1%)	Canada	Ilic et al., 2008	
15	Savoy spinach	Manufacturer	minimally processed	4/1311 (0.3%)	Canada	Ilic et al., 2008	
15	Spinach	Manufacturer	fresh	7/100 (7%)	Mexico	Quiroz-Santiago et al., 2009	
15	Spinach	Manufacturer	minimally processed	5/1311 (0.4%)	Canada	Ilic et al., 2008	
15	Watercress	Manufacturer	fresh	7/100 (7%)	Mexico	Quiroz-Santiago et al., 2009	
15	Watercress	Supermarket	minimally processed	1/13 (8%)	Brazil	Froder et al., 2007	
16	Chinese parsley	Manufacturer	fresh	6/100 (6%)	Mexico	Quiroz-Santiago et al., 2009	
16	Cilantro	Manufacturer	fresh	11/100 (11%)	Mexico	Quiroz-Santiago et al., 2009	
16	Coriander	Local retail	fresh	9/304 (3%)	India	Singh et al., 2007	
16	Kangkong (Ipomoea aquatica)	Local retail	not direct; rinses of vegetables	8/25 (32%)	Malaysia	Salleh et al., 2003	
16	Kesum (Polygonum minus)	Local retail	not direct; rinses of vegetables	8/18 (44%)	Malaysia	Salleh et al., 2003	
Pathogen	FoNAO Category	Food item(s)	Source²	Processing /Comment	Prevalence	Country	Reference(s)
-------------------------------	----------------	---------------------------	-------------	---------------------	------------	---------	-------------------------
16	16	Korean Herbs	Local retail	not direct; rinses of vegetables	40/112 (36%)	Malaysia	Salleh et al., 2003
16	16	Mint	Local retail	fresh	5/212 (2%)	India	Singh et al., 2007
16	16	Papaloquelite or Mexican cilantro	Manufacturer	fresh	9/100 (9%)	Mexico	Quiroz-Santiago et al., 2009
16	16	Parsley	Manufacturer	fresh	12/100 (12%)	Mexico	Quiroz-Santiago et al., 2009
16	16	Pegaga (Centella asiatica)	Local retail	not direct; rinses of vegetables	8/26 (31%)	Malaysia	Salleh et al., 2003
16	16	Selom (Oenanthe stolonifera)	Local retail	not direct; rinses of vegetables	16/43 (37%)	Malaysia	Salleh et al., 2003
17	17	Lettuce	Supermarket	ready to eat	4/30 (13%)	Costa Rica	Monge et al., 2011
19	19	Carrots	Local retail	fresh	11/258 (4%)	India	Singh et al., 2007
19	19	Carrots	Manufacturer	fresh	3/75 (4%)	USA	Endley et al., 2003
19	19	Carrots	Take-away	fruit juice	3/3 (100%)	India	Titarmare et al., 2009
19	19	Carrots	Take-away	fruit juice	3/150 (2%)	India	Mudgil et al., 2004
19	19	Fruit juice	Take-away	fruit juice	3/5 (60%)	Nigeria	Ukwo et al., 2011
20	20	Potato	Manufacturer	fresh	1/100 (1%)	Mexico	Quiroz-Santiago et al., 2009
21	21	Beetroot	Manufacturer	fresh	4/100 (4%)	Mexico	Quiroz-Santiago et al., 2009
21	21	Ginger	Take-away	fruit juice	1/3 (33%)	India	Titarmare et al., 2009
21	21	Radish	Local retail	fresh	10/200 (5%)	India	Singh et al., 2007
22	22	Celery	Manufacturer	fresh	3/100 (3%)	Mexico	Quiroz-Santiago et al., 2009
23	23	Broccoli	Manufacturer	fresh	9/100 (9%)	Mexico	Quiroz-Santiago et al., 2009
23	23	Cauliflower	Manufacturer	fresh	9/100 (9%)	Mexico	Quiroz-Santiago et al., 2009

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
Salmonella Typhi							
	37	Other food (various ingredients)	Homemade dish	heat-treated	4/13 (31%)	Malawi	Taulo et al., 2008
	37	Vegetables	Homemade dish	heat-treated; cooked	5/28 (18%)	Malawi	Taulo et al., 2008
	1/other	Fruits and vegetables	Local retail/retail distribution	fresh	2/1183 (0.2%)	Canada	Arthur et al., 2007
	1/other	Produce	Manufacturer	fresh	2/605 (0.3%)	USA	Mukherjee et al., 2004
	other	Vegetables	Local retail	fresh	13/35 (37%)	Mexico	Miranda et al., 2009
	other	Vegetables	Local retail/supermarket	fresh	17/78 (22%)	Mexico	Miranda et al., 2009
	other	Vegetables	Manufacturer	fresh	98/1700 (6%)	Mexico	Quiroz-Santiago et al., 2009
	other	Vegetables	Supermarket	fresh	4/43 (9%)	Mexico	Miranda et al., 2009
5	Orange	Take-away	fruit juice	1/6 (17%)	India	Tambekar et al., 2009	
5	Sweet lemon (Citrus limetta)	Take-away	fruit juice	2/17 (12%)	India	Tambekar et al., 2009	
8	Dragon fruit	Local retail	pre-cut	8/20 (40%)	Malaysia	Pui et al., 2011	
8	Jackfruit	Local retail	pre-cut	1/20 (5%)	Malaysia	Pui et al., 2011	
8	Mango	Local retail	pre-cut	1/20 (5%)	Malaysia	Pui et al., 2011	
8	Papaya	Local retail	pre-cut	3/20 (15%)	Malaysia	Pui et al., 2011	
8	Pineapple	Take-away	fruit juice	5/16 (31%)	India	Tambekar et al., 2009	
8	Pomegranate	Take-away	fruit juice	4/6 (67%)	India	Tambekar et al., 2009	
9	Honeydew	Local retail	pre-cut	3/20 (15%)	Malaysia	Pui et al., 2011	
9	Watermelon	Local retail	pre-cut	1/20 (5%)	Malaysia	Pui et al., 2011	
15	Lettuce and arugula	Supermarket	minimally processed	3/512 (0.6%)	Brazil	Sant’Ana et al., 2011	
16	Parsley	Local retail/supermarket	fresh	1/50 (2%)	Mexico	Gomez-Govea et al., 2012	
36	Salad	Restaurant/take-away	processed	2/3 (67%)	Nigeria	Isara et al., 2010	
Salmonella	8	Dragon fruit	Local retail	pre-cut	5/20 (25%)	Malaysia	Pui et al., 2011

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	Food item(s)	Source /Comment	Prevalence	Country	Reference(s)	
Typhimurium	9	Honeydew	Local retail, pre-cut	2/20 (10%)	Malaysia	Pui et al., 2011	
	16	Basil	Local retail, n.s.	1/29 (3%)	USA	Wetzel et al., 2010	
	36	Salad	Restaurant/take-away, processed	6/7 (85%)	Nigeria	Isara et al., 2010	
Shigella sonnei	36	Salad	Restaurant/take-away, processed	1/3 (33%)	Nigeria	Isara et al., 2010	
Shigella spp.	1	various	Take-away, fruit juice	18/108 (17%)	India	Lewis et al., 2006	
	8	Coconut slices	Local retail, fresh; street-vended	23/150 (15%)	India	Ghosh et al., 2007	
	15	Lettuce	Local retail, fresh	1/68 (1%)	Saudi Arabia	Hassan et al., 2011	
	15	Spinach	Local retail, fresh	2/68 (3%)	Saudi Arabia	Hassan et al., 2011	
	36	Salad	Local retail, fresh; street-vended; ready to eat	13/150 (9%)	India	Ghosh et al., 2007	
	37	Coriander sauce	Take-away, processed	10/150 (7%)	India	Ghosh et al., 2007	
Staphylococcus aureus	1	Fruits	Supermarket, minimally processed	1/47 (2%)	Korea	Seo et al., 2010	
	4	Grape	Local retail, fruit juice	2/30 (7%)	Libya	Ghenghesh et al., 2005	
	5	Kinnow mandarin	Take-away, fruit juice	18/150 (12%)	India	Mudgil et al., 2004	
	5	Orange	Local retail, fruit juice	1/19 (5%)	Libya	Ghenghesh et al., 2005	
	5	Sweet lemon (Citrus limetta)	Take-away, fruit juice	3/17 (18%)	India	Tambekar et al., 2009	
	6	Apples	Local retail, fruit juice	1/9 (11%)	Libya	Ghenghesh et al., 2005	
	6	Apples	Take-away, fruit juice	1/6 (17%)	India	Tambekar et al., 2009	
	8	Coconut slices	Local retail, fresh; street-vended	57/150 (38%)	India	Ghosh et al., 2007	
	8	Date	Local retail, fresh	57/60 (95%)	Saudi Arabia	Hamad et al., 2012	
	8	Mango	Local retail, fruit juice	1/29 (3%)	Libya	Ghenghesh et al., 2005	
	8	Papaya	Take-away, pre-cut	5/30 (17%)	India	Mukhopadhyay et al., 2002	
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
-----------------------	----------------	-------------------	------------------	------------	---------	--------------	
Staphylococcus aureus	8	Paw-Paw (Asimina)	Local retail	10/50 (20%)	Nigeria	Chukwu et al., 2010	
	8	Pineapple	Local retail	2/24 (8%)	Libya	Ghenghesh et al., 2005	
	8	Pineapple	Local retail	6/50 (12%)	Nigeria	Chukwu et al., 2010	
	8	Pineapple	Take-away	1/16 (6%)	India	Tambekar et al., 2009	
	9	Watermelon	Local retail	13/50 (26%)	Nigeria	Chukwu et al., 2010	
	10	Fruit juice	Take-away	n.s.	Korea	Cho et al., 2011	
	15	Lettuce	Local retail/manufacturer	2/20 (13%)	Turkey	Erkan et al., 2008	
	15	Lettuce	Supermarket	3/30 (10%)	Korea	Seo et al., 2010	
	15	Watercress	Local retail/manufacturer	4/18 (22%)	Turkey	Erkan et al., 2008	
	16	Parsley	Local retail/manufacturer	2/22 (9%)	Turkey	Erkan et al., 2008	
	19	Carrots	Take-away	45/150 (30%)	India	Mudgil et al., 2004	
	22	Green onion	Supermarket	4/27 (15%)	Korea	Seo et al., 2010	
	36	Mixed salads	Supermarket	13/129 (10%)	Korea	Seo et al., 2010	
	36	Salad	Local retail	99/150 (66%)	India	Ghosh et al., 2007	
	36	Salad	Restaurant/take-away	12/21 (57%)	Nigeria	Isara et al., 2010	
	37	Coriander sauce	Take-away	71/150 (47%)	India	Ghosh et al., 2007	
	37	Other food (various ingredients)	Homemade dish	5/13 (38%)	Malawi	Taulo et al., 2008	
	37	Other food (various ingredients)	Take-away	29/288 (10%)	Korea	Cho et al., 2011	
Pathogen	FoNAO Category	Food item(s)	Source/Comment	Prevalence	Country	Reference(s)	
-------------------------------	----------------	-------------------------	----------------------	-----------------	----------	--------------	
	37	Staple food	Local retail/supermarket ready to eat	12/33 (36%)	Taiwan	Wei et al., 2006	
	37	Vegetables	Homemade dish heat-treated; cooked	21/28 (75%)	Malawi	Taulo et al., 2008	
	37	Vegetarian food	Local retail/supermarket ready to eat	8/30 (27%)	Taiwan	Wei et al., 2006	
	1/other	Fruits and vegetables	Supermarket pre-cut	1/60 (2%)	Korea	Chung et al., 2010	
	other	Vegetables	Manufacturer fresh	2/58 (3%)	Korea	Thapa et al., 2008	
	other	Vegetables	Supermarket ready to eat	6/45 (13%)	Taiwan	Fang et al., 2003	
Vibrio cholerae	5	Orange	Take-away fruit juice	3/5 (60%)	Nigeria	Ukwo et al., 2011	
	8	Papaya	Take-away pre-cut	1/30 (3%)	India	Mukhopadhyay et al., 2002	
	8	Pineapple	Take-away fruit juice	3/5 (60%)	Nigeria	Ukwo et al., 2011	
	19	Carrots	Take-away fruit juice	3/5 (60%)	Nigeria	Ukwo et al., 2011	
	22	Garlic	Take-away fruit juice	2/5 (40%)	Nigeria	Ukwo et al., 2011	
Vibrio parahaemolyticus	11	Tomatoes	Local retail/supermarket fresh	7/38 (18%)	Malaysia	Tunung et al., 2010	
	13	Cucumber	Local retail/supermarket fresh	5/28 (18%)	Malaysia	Tunung et al., 2010	
	14	Winged bean (Psophocarpus tetragonolobus)	Local retail/supermarket fresh	5/26 (19%)	Malaysia	Tunung et al., 2010	
	14	Yardlong bean (Vigna unguiculata)	Local retail/supermarket fresh	5/32 (16%)	Malaysia	Tunung et al., 2010	
	15	Cabbage	Local retail/supermarket fresh	8/30 (27%)	Malaysia	Tunung et al., 2010	
	15	Lettuce	Local retail/supermarket fresh	2/16 (13%)	Malaysia	Tunung et al., 2010	
	16	Indian pennywort (Centella asiatica)	Local retail/supermarket fresh	7/17 (41%)	Malaysia	Tunung et al., 2010	
	16	Parsley, Japanese (Oenanthe stolonifera)	Local retail/supermarket fresh	6/21 (29%)	Malaysia	Tunung et al., 2010	
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
----------	----------------	--------------	------------------	------------	---------	--------------	
	16	Wild cosmos (Cosmos caudatus)	Local retail/supermarket	fresh	3/8 (38%)	Malaysia	Tunung et al., 2010
	19	Carrots	Local retail/supermarket	fresh	5/31 (16%)	Malaysia	Tunung et al., 2010
	21	Sweet potato	Local retail/supermarket	fresh	4/29 (14%)	Malaysia	Tunung et al., 2010
Yersinia enterocolitica	17	Cabbage	Supermarket	ready to eat	2/65 (3%)	Korea	Lee et al., 2004
	17	Chinese cabbage	Supermarket	ready to eat	2/55 (4%)	Korea	Lee et al., 2004
	17	Lettuce	Supermarket	ready to eat	2/58 (3%)	Korea	Lee et al., 2004
	17	Spinach	Supermarket	ready to eat	1/26 (4%)	Korea	Lee et al., 2004
	17	Water dropwort (Oenanthe lachenalii)	Supermarket	ready to eat	4/40 (10%)	Korea	Lee et al., 2004
	21	Radish root	Supermarket	ready to eat	1/32 (3%)	Korea	Lee et al., 2004
	22	Green onion	Supermarket	ready to eat	1/51 (2%)	Korea	Lee et al., 2004
	29	Mushrooms	Supermarket	ready to eat	2/105 (2%)	Korea	Lee et al., 2004
Parasites							
Ancylostoma duodenale	15	Lettuce	Local retail	fresh	11/300 (4%)	Nigeria	Adamu et al., 2012
	15	Lettuce	Retail distribution/local retail	fresh	3/32 (9%)	India	Gupta et al., 2009
	15	Spinach	Retail distribution/local retail	fresh	2/30 (7%)	India	Gupta et al., 2009
	16	Coriander	Retail distribution/local retail	fresh	1/20 (5%)	India	Gupta et al., 2009
	16	Parsley	Retail distribution/local retail	fresh	1/30 (3%)	India	Gupta et al., 2009
	16	Pudina (mentha)	Retail distribution/local retail	fresh	3/32 (9%)	India	Gupta et al., 2009
	22	Celery	Retail distribution/local retail	fresh	1/28 (4%)	India	Gupta et al., 2009
Anquilostómidos	16	Chives	Manufacturer	n.s.	1/21 (5%)	Venezuela	Cazorla et al., 2009
Food of plant origin with high water content

Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
Ascaris lumbricoides	15	Cress	Local retail	9/30 (30%)	Iran	Fallah et al., 2012	
	15	Lettuce	Retail distribution	2/35 (6%)	Turkey	Kozan et al., 2004	
	15	Lettuce	Retail distribution/local retail	14/32 (44%)	India	Gupta et al., 2009	
	15	Purslane	Local retail	1/22 (5%)	Iran	Fallah et al., 2012	
	15	Radish	Local retail	9/29 (31%)	Iran	Fallah et al., 2012	
	15	Spinach	Retail distribution/local retail	11/30 (37%)	India	Gupta et al., 2009	
	16	Basil	Local retail	14/31 (45%)	Iran	Fallah et al., 2012	
	16	Coriander	Retail distribution/local retail	7/20 (35%)	India	Gupta et al., 2009	
	16	Parsley	Retail distribution/local retail	7/30 (23%)	India	Gupta et al., 2009	
	16	Pudina (mentha)	Retail distribution/local retail	16/32 (50%)	India	Gupta et al., 2009	
	16	Spearmint	Local retail	1/27 (4%)	Iran	Fallah et al., 2012	
	22	Celery	Retail distribution/local retail	7/28 (25%)	India	Gupta et al., 2009	
	22	Leek	Local retail	7/27 (26%)	Iran	Fallah et al., 2012	
	22	Scallion	Local retail	2/29 (7%)	Iran	Fallah et al., 2012	
Ascaris spp.	11	Tomatoes	Manufacturer	2/19 (11%)	Venezuela	Cazorla et al., 2009	
	12	Pepper	Manufacturer	1/4 (25%)	Venezuela	Cazorla et al., 2009	
	15	Cabbage	Manufacturer	1/14 (7%)	Venezuela	Cazorla et al., 2009	
	15	Lettuce	Manufacturer	2/18 (11%)	Venezuela	Cazorla et al., 2009	
	16	Chives	Manufacturer	2/21 (10%)	Venezuela	Cazorla et al., 2009	
	16	Coriander	Manufacturer	3/20 (15%)	Venezuela	Cazorla et al., 2009	
	22	Celery	Manufacturer	1/5 (20%)	Venezuela	Cazorla et al., 2009	
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
--------------------------	----------------	---------------------	------------------	------------	-------------	-------------------	
Ascaris spp. (oocysts)	11	Tomatoes	Retail distribution	4/28 (14%)	Libya	Abougrain et al., 2010	
	12	Garden egg (Solanum aethiopicum)	Local retail	fresh	2/200 (1%)	Nigeria	Adamu et al., 2012
	13	Cucumber	Local retail	fresh	20/28 (71%)	Libya	Abougrain et al., 2010
	15	Cress	Retail distribution	fresh	7/8 (88%)	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	fresh	20/21 (95%)	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	fresh	6/6 (100%)	Libya	Abougrain et al., 2010
	15	Lettuce	Retail distribution	fresh	21/21 (100%)	Libya	Abougrain et al., 2010
	15	Cabbage	Manufacturer	n.s.	1/14 (7%)	Venezuela	Cazorla et al., 2009
Blastocystis spp.	15	Lettuce	Manufacturer	n.s.	2/14 (14%)	Venezuela	Cazorla et al., 2009
	16	Chives	Manufacturer	n.s.	3/18 (17%)	Venezuela	Cazorla et al., 2009
		Vegetables	Manufacturer	n.s.	1/127 (2%)	Venezuela	Cazorla et al., 2009
Cryptosporidium spp.	4	Blackberry	Local retail	n.s.	3/50 (6%)	Costa Rica	Calvo et al., 2004
	15	Cabbage	Manufacturer	n.s.	2/14 (14%)	Venezuela	Cazorla et al., 2009
	15	Lettuce	Manufacturer	n.s.	3/18 (17%)	Venezuela	Cazorla et al., 2009
	15	Lettuce	Local retail	n.s.	7/50 (14%)	Costa Rica	Calvo et al., 2004
	15	Spinach	Local retail	fresh	1/59 (2%)	Canada	Bohaychuk et al., 2009
	15	Water spinach (Ipomoea aquatica)	Lake	cultivation; with and without wastewater contact	6/36 (17%)	Vietnam, Denmark	Vuong et al., 2007
	15	Water spinach (Ipomoea aquatica)	Lake	cultivation; with wastewater contact	4/18 (22%)	Vietnam, Denmark	Vuong et al., 2007
The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.							
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
---	---	---	---	---	---	---	---
		Vietnamese mint	Local retail/manufacturer	6/61 (10%)	Vietnam, Canada	Tram et al., 2008	
	22	Celery	Manufacturer	1/5 (20%)	Venezuela	Cazorla et al., 2009	
	other	Vegetables	Manufacturer	n.s.	Venezuela	Cazorla et al., 2009	
Dipyldium caninum	16	Coriander	Manufacturer	1/20 (5%)	Venezuela	Cazorla et al., 2009	
Eimeria spp. (oocysts)	other	Vegetables	Local retail	ready to eat	8/52 (15%)	Brazil	Pavon da Silvia et al., 2007
	1	Berries	n.s.	n.s.	Poland, USA	Jedrzejewski et al., 2007	
Entamoeba coli	11	Tomatoes	Local retail	fresh	1/9 (11%)	Egypt, Yemen	Hassan et al., 2012
	13	Cucumber	Local retail	fresh	4/13 (31%)	Egypt, Yemen	Hassan et al., 2012
	15	Cress	Local retail	fresh	4/30 (13%)	Iran	Fallah et al., 2012
	15	Tarragon	Local retail	fresh	1/24 (4%)	Iran	Fallah et al., 2012
	15	Watercress	Local retail	fresh	1/11 (9%)	Egypt, Yemen	Hassan et al., 2012
	16	Basil	Local retail	fresh	3/31 (10%)	Iran	Fallah et al., 2012
	16	Coriander	Local retail	fresh	1/12 (8%)	Egypt, Yemen	Hassan et al., 2012
	16	Coriander	Local retail	fresh	4/30 (13%)	Iran	Fallah et al., 2012
	16	Dill	Local retail	fresh	5/27 (19%)	Iran	Fallah et al., 2012
	16	Parsley	Local retail	fresh	1/10 (10%)	Egypt, Yemen	Hassan et al., 2012
	16	Parsley	Local retail	fresh	2/28 (7%)	Iran	Fallah et al., 2012
	16	Spearmint	Local retail	fresh	5/27 (19%)	Iran	Fallah et al., 2012
	19	Carrots	Local retail	fresh	2/10 (20%)	Egypt, Yemen	Hassan et al., 2012
Food of plant origin with high water content

Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)
Entamoeba histolytica	21	Radish	Local retail	1/4 (25%)	Egypt, Yemen	Hassan et al., 2012
		Radish	Local retail	2/29 (7%)	Iran	Fallah et al., 2012
	22	Celery	Manufacturer	1/5 (20%)	Venezuela	Cazorla et al., 2009
		Leek	Local retail	4/27 (15%)	Iran	Fallah et al., 2012
		other	Vegetables	1/127 (1%)	Venezuela	Cazorla et al., 2009
Entamoeba histolytica/dispar	12	Pepper	Local retail	3/13 (23%)	Egypt, Yemen	Hassan et al., 2012
		Cucumber	Local retail	2/13 (15%)	Egypt, Yemen	Hassan et al., 2012
		Coriander	Local retail	1/12 (8%)	Egypt, Yemen	Hassan et al., 2012
Entamoeba spp.	15	Cabbage	Manufacturer	1/14 (7%)	Venezuela	Cazorla et al., 2009
		other	Vegetables	1/127 (1%)	Venezuela	Cazorla et al., 2009
Entamoeba histolytica/dispar	19	Carrots	Local retail	n.d.	India	Rai et al., 2008
Enterocytozoon bieneusi	3	Raspberries	n.s.	2/10 (20%)	Poland, USA	Jedrzejewski et al., 2007
		Curly lettuce	n.s.	1/5 (20%)	Poland, USA	Jedrzejewski et al., 2007
Giardia lamblia	11	Tomatoes	Local retail	1/9 (11%)	Egypt, Yemen	Hassan et al., 2012
		Pepper	Local retail	1/13 (8%)	Egypt, Yemen	Hassan et al., 2012
		Cucumber	Local retail	1/13 (8%)	Egypt, Yemen	Hassan et al., 2012
		Coriander	Local retail	1/12 (8%)	Egypt, Yemen	Hassan et al., 2012

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen

Pathogen	FoNAO Category	Food item(s)	Source¹	Processing /Comment	Prevalence	Country	Reference(s)
Giardia spp.	15	Cress	Local retail	fresh	2/30 (7%)	Iran	Fallah et al., 2012
	15	Purslane	Local retail	fresh	3/22 (14%)	Iran	Fallah et al., 2012
	15	Water spinach (Ipomoea aquatica)	Lake	cultivation; with and without wastewater contact	20/36 (56%)	Vietnam, Denmark	Vuong et al., 2007
	15	Water spinach (Ipomoea aquatica)	Lake	cultivation; with wastewater contact	12/18 (67%)	Vietnam, Denmark	Vuong et al., 2007
	15	Water spinach (Ipomoea aquatica)	Lake	cultivation; without wastewater contact	8/18 (44%)	Vietnam, Denmark	Vuong et al., 2007
	16	Basil	Local retail	fresh	4/31 (13%)	Iran	Fallah et al., 2012
	16	Spearmint	Local retail	fresh	6/27 (22%)	India	Rai et al., 2008
	19	Carrots	Local retail	fresh	n.d.	India	Rai et al., 2008
	19	Carrots	Local retail	fresh	n.d.	India	Rai et al., 2008
	21	Radish	Local retail	fresh	2/29 (10%)	Iran	Fallah et al., 2012
	22	Leek	Local retail	fresh	6/27 (22%)	Iran	Fallah et al., 2012
	22	Scallion	Local retail	fresh	1/29 (3%)	Iran	Fallah et al., 2012
Giardia spp. (oocysts)	11	Tomatoes	Local retail	fresh	1/28 (4%)	Libya	Abougrain et al., 2010
	13	Cucumber	Local retail	fresh	5/28 (18%)	Libya	Abougrain et al., 2010
	13	Cucumber	Retail distribution	fresh	2/8 (25%)	Libya	Abougrain et al., 2010
	15	Cress	Local retail	fresh	2/21 (10%)	Libya	Abougrain et al., 2010
	15	Cress	Retail distribution	fresh	1/6 (17%)	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	fresh	1/21 (5%)	Libya	Abougrain et al., 2010

¹ Source details are not provided in the text. The table is a structured representation of the supporting data points.
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
Intestinal helminths (Cestodes, Trematodes, Nematodes)	15	Cabbage	Local retail	n.s.	12/21 (57%)	Kenia, Italy	Nyarango et al., 2008
	18	Black night shade	Local retail	n.s.	15/21 (71%)	Kenia, Italy	Nyarango et al., 2008
	18	Kales	Local retail	n.s.	11/21 (52%)	Kenia, Italy	Nyarango et al., 2008
	18	Spider flower	Local retail	n.s.	17/21 (81%)	Kenia, Italy	Nyarango et al., 2008
Microsporidia	15	Lettuce	Local retail	n.s.	16/50 (32%)	Costa Rica	Calvo et al., 2004
	16	Coriander	Local retail	n.s.	2/50 (4%)	Costa Rica	Calvo et al., 2004
Microsporidia (spores)	1	Berries	n.s.	n.s.	6/25 (24%)	Poland, USA	Jedrzejewski et al., 2007
		Vegetables	n.s.	n.s.	2/35 (6%)	Poland, USA	Jedrzejewski et al., 2007
Strongyloides stercoralis	15	Cabbage	Local retail	fresh	5/250 (2%)	Nigeria	Adamu et al., 2012
	19	Carrots	Local retail	fresh	2/150 (1%)	Nigeria	Adamu et al., 2012
Taenia spp.	13	Cucumber	Retail distribution	fresh	1/16 (6%)	Turkey	Kozan et al., 2004
	16	Parsley	Retail distribution	fresh	4/44 (9%)	Turkey	Kozan et al., 2004
	19	Carrots	Retail distribution	fresh	1/40 (3%)	Turkey	Kozan et al., 2004
	22	Green onion	Retail distribution	fresh	1/15 (7%)	Turkey	Kozan et al., 2004
Taenia/Echinococcus	11	Tomatoes	Local retail	fresh	2/28 (7%)	Libya	Abougrain et al., 2010
	13	Cucumber	Local retail	fresh	7/28 (25%)	Libya	Abougrain et al., 2010
	13	Cucumber	Retail distribution	fresh	2/8 (25%)	Libya	Abougrain et al., 2010
	15	Cress	Local retail	fresh	6/21 (29%)	Libya	Abougrain et al., 2010
	15	Cress	Retail distribution	fresh	2/6 (33%)	Libya	Abougrain et al., 2010
	15	Lettuce	Local retail	fresh	7/21 (33%)	Libya	Abougrain et al., 2010
	15	Lettuce	Retail distribution	fresh	2/6 (33%)	Libya	Abougrain et al., 2010
Taenia/Echinococcus spp. (oocysts)	15	Lettuce	Local retail	fresh	6/300 (2%)	Nigeria	Adamu et al., 2012
Taeniid spp.	15	Cress	Local retail	fresh	5/30 (17%)	Iran	Fallah et al., 2012
Pathogen	FoNAO Category	Food item(s)	Source /Comment	Prevalence	Country	Reference(s)	
----------------	----------------	--------------	-----------------	------------	---------	--------------	
Toxocara canis	11	Tomatoes	Local retail	1/28 (4%)	Libya	Abougrain et al., 2010	
12	Cucumber	Local retail	fresh	2/28 (7%)	Libya	Abougrain et al., 2010	
13	Cucumber	Retail distribution	fresh	1/8 (13%)	Libya	Abougrain et al., 2010	
15	Cress	Local retail	fresh	6/21 (29%)	Libya	Abougrain et al., 2010	
15	Cress	Retail distribution	fresh	3/6 (50%)	Libya	Abougrain et al., 2010	
15	Lettuce	Local retail	fresh	7/21 (33%)	Libya	Abougrain et al., 2010	
15	Lettuce	Retail distribution	fresh	3/6 (50%)	Libya	Abougrain et al., 2010	
Toxocara cati	11	Tomatoes	Local retail	3/28 (11%)	Libya	Abougrain et al., 2010	
11	Tomatoes	Retail distribution	fresh	1/8 (13%)	Libya	Abougrain et al., 2010	
13	Cucumber	Local retail	fresh	4/28 (14%)	Libya	Abougrain et al., 2010	
13	Cucumber	Retail distribution	fresh	1/8 (13%)	Libya	Abougrain et al., 2010	
15	Cress	Local retail	fresh	10/21 (48%)	Libya	Abougrain et al., 2010	
15	Cress	Retail distribution	fresh	1/6 (17%)	Libya	Abougrain et al., 2010	
15	Lettuce	Local retail	fresh	9/21 (43%)	Libya	Abougrain et al., 2010	
15	Lettuce	Retail distribution	fresh	4/6 (67%)	Libya	Abougrain et al., 2010	
Toxocara spp.	11	Tomatoes	Manufacturer	n.s.	Venezuela	Cazorla et al., 2009	
15	Cabbage	Manufacturer	n.s.	1/14 (7%)	Venezuela	Cazorla et al., 2009	
Pathogen	FoNAO Category	Food item(s)	Source / Comment	Prevalence	Country	Reference(s)	
------------------	----------------	-----------------------	------------------	------------	---------	--------------	
	15	Cress	Local retail	3/30 (10%)	Iran	Fallah et al., 2012	
	15	Lettuce	Retail distribution	2/35 (6%)	Turkey	Kozan et al., 2004	
	16	Coriander	Local retail	1/30 (3%)	Iran	Fallah et al., 2012	
	16	Parsley	Retail distribution	1/44 (2%)	Turkey	Kozan et al., 2004	
	21	Radish	Local retail	2/29 (7%)	Iran	Fallah et al., 2012	
	22	Leek	Local retail	2/27 (7%)	Iran	Fallah et al., 2012	
	22	Scallion	Local retail	2/29 (7%)	Iran	Fallah et al., 2012	
		other Vegetables	Manufacturer	2/127 (2%)	Venezuela	Cazorla et al., 2009	
Trichostrongylus spp.	15	Purslane	Local retail	4/22 (18%)	Iran	Fallah et al., 2012	
	15	Tarragon	Local retail	1/24 (4%)	Iran	Fallah et al., 2012	
	16	Basil	Local retail	1/31 (3%)	Iran	Fallah et al., 2012	
	16	Parsley	Local retail	3/28 (11%)	Iran	Fallah et al., 2012	
	16	Spearmint	Local retail	3/27 (11%)	Iran	Fallah et al., 2012	
	22	Scallion	Local retail	1/29 (3%)	Iran	Fallah et al., 2012	
Trichuris spp.	12	Garden egg (Solanum aethiopicum)	Local retail	2/200 (1%)	Nigeria	Adamu et al., 2012	
	13	Cucumber	Local retail	3/130 (2%)	Nigeria	Adamu et al., 2012	
	15	Lettuce	Local retail	4/300 (1%)	Nigeria	Adamu et al., 2012	
Trichuris trichiura	15	Spinach	Retail distribution/local retail	1/30 (3%)	India	Gupta et al., 2009	
	16	Coriander	Retail distribution/local retail	1/20 (5%)	India	Gupta et al., 2009	
	16	Pudina (mentha)	Retail distribution/local retail	1/32 (3%)	India	Gupta et al., 2009	

n.s. = non specified
Table 17: Growth, survival or reduction of pathogenic bacteria, viruses and parasites linked to FoNAO with high water content. AMA; active modified atmosphere, PMA; passive modified atmosphere, MAP; modified atmosphere packaging, EMA; equilibrium modified atmosphere, CA; controlled atmosphere, RH; relative humidity, OPP; oriented polypropylene, TCID50; tissue culture infectious dose.

Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Pathogenic bacteria							
Bacillus cereus	Spinach/blanched	15	35°C		10 hrs	+7.8 log cfu/g	Bae et al., 2012
	Carrot purée	37	16°C; pH (5.1)	app. 4.2 log cfu/g	40 days	app. +1.8 log cfu/g	Valero et al., 2003
	Carrot purée	37	5°C; pH (5.1)	app. 4.2 log cfu/g	70 days	app. +0.3 log cfu/g	Valero et al., 2003
Campylobacter jejuni	Iceberg salad/	15	7°C	app. 5.5 log cfu/g	70 hrs	app. -1.5 log cfu/g	Kärenlampi and Hänninen, 2004
	fresh cut						
	Iceberg salad/fresh cut	15	21°C	app. 5.5 log cfu/g	70 hrs	app. -3.5 log cfu/g	Kärenlampi and Hänninen, 2004
	Strawberry	2	7°C	app.6.8 log cfu/g	70 hrs	app. -2.8 log cfu/g	Kärenlampi and Hänninen, 2004
	Strawberry	2	21°C	app. 6.8 log cfu/g	5 hrs	app. -2.8 log cfu/g	Kärenlampi and Hänninen, 2004
	Cantaloupe	9	7°C	app. 6.2 log cfu/g	70 hrs	app. -1 log cfu/g	Kärenlampi and Hänninen, 2004
	Cantaloupe	9	21°C	app. 6.2 log cfu/g	70 hrs	app. -4.2 log cfu/g	Kärenlampi and Hänninen, 2004
	Cucumber	137°C		app. 6 log cfu/g	70 hrs	app. -1 log cfu/g	Kärenlampi and Hänninen, 2004
	Cucumber	1321°C		app. 6 log cfu/g	70 hrs	app. -4 log cfu/g	Kärenlampi and Hänninen, 2004
	Carrot/grated	19	7°C	app. 6.8 log cfu/g	70 hrs	app. -0.8 log cfu/g	Kärenlampi and Hänninen, 2004
	Carrot/grated	19	21°C	app. 6.8 log cfu/g	70 hrs	app. -4.8 log cfu/g	Kärenlampi and Hänninen, 2004
Clostridium botulinum	Mushroom/purée	29	15°C	4 log cfu/ml	app. 400 hrs	app. +4.5 log cfu/ml	Braconnier et al., 2003
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
-----------------------	-----------------------	----------------	-----------------------------------	-------------	----------------	--------------------	---------------------------
Enterobacter sakazakii	Fruits and vegetables/fresh cut	other 4°C	2 to 3 log cfu/g	6 days	no growth or gradual decrease*		Kim and Beuchat, 2005
Fruits and vegetables/fresh cut	other 4°C	2 to 3 log cfu/g	6 days	no growth or gradual decrease*		Kim and Beuchat, 2005	
Watermelon	9	25°C	2 to 3 log cfu/g	48 hrs	app. +5.8 log cfu/g		Kim and Beuchat, 2005
Watermelon juice	9	25°C	1 to 2 log cfu/ml	36 hrs	app. +6.2 log cfu/ml		Kim and Beuchat, 2005
Apples	6	4°C	8.78 log cfu/produce	28 days	-1.46 log cfu/produce		Kim et al., 2006
Apples	6	25°C	8.78 log cfu/produce	28 days	-4.03 log cfu/produce		Kim et al., 2006
Cantaloupe	9	4°C	8.45 log cfu/produce	14 days	-1.44 log cfu/produce		Kim et al., 2006
Cantaloupe	9	25°C	8.45 log cfu/produce	8 days	-3.9 log cfu/produce		Kim et al., 2006
Strawberries	2	4°C	8.78 log cfu/produce	14 days	-1.43 log cfu/produce		Kim et al., 2006
Strawberries	2	25°C	8.78 log cfu/produce	8 days	-3.9 log cfu/produce		Kim et al., 2006
Lettuce	15	4°C	8.85 log cfu/produce	14 days	-0.82 log cfu/produce		Kim et al., 2006
Lettuce	15	25°C	8.85 log cfu/produce	8 days	-0.45 log cfu/produce		Kim et al., 2006
Tomato	11	4°C	8.60 log cfu/produce	28 days	-1.07 log cfu/produce		Kim et al., 2006
Tomato	11	25°C	8.60 log cfu/produce	28 days	-1.45 log cfu/produce		Kim et al., 2006
Apples	6	10 μg/ml chlorine dioxide	1 min	-3.38 log cfu/apple		Kim et al., 2006	
Apples	6	10 μg/ml chlorine dioxide	5 min	-3.77 log cfu/apple		Kim et al., 2006	
Apples	6	40 μg/ml peroxyacetic acid-based sanitizer	1 min	-4 log cfu/apple		Kim et al., 2006	
Tomato	11	10 μg/ml chlorine	5 min	-3.7 log cfu/tomato		Kim et al., 2006	
Tomato	11	10 μg/ml chlorine dioxide	5 min	-3.7 log cfu/tomato		Kim et al., 2006	
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
--------------------------	-----------------------	----------------	-----------------------------------	-------------	----------------	---------------------	-----------------------
Tomato		11	40 μg/ml peroxyacetic acid-based sanitizer	5 min	-3.7 log cfu/tomato	Kim et al., 2006	
Lettuce		15	40 μg/ml peroxyacetic acid-based sanitizer	5 min	-5.31 log cfu/tomato	Kim et al., 2006	
Infant rice cereal		14	4, 12, 21 or 30°C; pH 4.29	72 hrs	not detected (<1 CFU 10^6/ml)	Richards et al., 2005	
reconstituted with							
apple juice							
Infant rice cereal		14	4°C	72 hrs	not detected (<1 CFU 10^6/ml)	Richards et al., 2005	
reconstituted with							
water							
Artichokes/minimally		23	4°C; MAP	16 days	+1.5 log cfu/g	Sanz et al., 2003	
processed							
Endivie/fresh cut		15	25°C; PMA	3 days	app. +1.8 log cfu/ml	Abadias et al., 2012	
Endivie/fresh cut		15	Air; 25°C	3 days	app. +0.7 log cfu/ml	Abadias et al., 2012	
Carrots/grated		19	25°C; Air	3 days	app. +3.8 log cfu/ml	Abadias et al., 2012	
Pineapple		8	Air; 25°C	3 days	app. -1 log cfu/g	Abadias et al., 2012	
Melon		9	Air; 25°C	3 days	app. +4 log cfu/g	Abadias et al., 2012	
Iceberg lettuce/shredded		15	4°C	14 days	-1.39 log cfu/g	Chang and Fang, 2007	
Iceberg lettuce/shredded		15	22°C	3 days	+2.71 log cfu/g	Chang and Fang, 2007	
Iceberg lettuce/shredded		15	treated with rice vinegar	-	-10^9 cfu/g	Chang and Fang, 2007	
			(5% (v/v) acetic acid) for 5 min at 25°C	-			
Iceberg lettuce/shredded		15	treated with rice vinegar	-	-10^{27} cfu/g	Chang and Fang, 2007	
			(5% (v/v) acetic acid) for 5 min at 25°C	-			

Escherichia coli O157:H7 (EHEC)
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Escherichia coli O157:H7 (EHEC)	Spinach leaves	15	25°C; 100% RH; distilled water as carrier medium for inoculum	7 log cfu/leaf; decreased to 5.6 log cfu/leaf after air-drying leaves for 1 h	120 hrs	+1.7 log cfu/leaf	Choi et al., 2011
	Spinach leaves	15	12°C; 100% RH; 0.1% peptone water as carrier medium for inoculum	7 log cfu/leaf; decreased to 5.4 log cfu/leaf after air-drying leaves for 1 h	72 hrs	+0.7 log cfu/leaf	Choi et al., 2011
	Spinach leaves	15	25°C; 100% RH; 0.1% peptone water as carrier medium for inoculum	7 log cfu/leaf; decreased to 5.4 log cfu/leaf after air-drying leaves for 1 h	24 hrs	+1.3 log cfu/leaf	Choi et al., 2011
	Gabbage	15	35°C; 80% RH	3 log cfu/g	24 hrs	+5 log cfu/g	Ding et al., 2012
	Gabbage	15	15°C; 60% RH	3 log cfu/g	96 hrs	+0.3 log cfu/g	Ding et al., 2012
	Cranberry juice concentrate	4	0°C; 18 to 46 °Brix (pH 2.2 to 2.5)	-	after a 24 hrs 5-log cfu reduction incubation	Enache and Chen, 2007	
	Cranberry juice concentrate	4	0°C; 14 °Brix (pH 2.5)	-	after a 96 hrs 5-log cfu reduction incubation	Enache and Chen, 2007	
	Lettuce/minimally processed	15	4°C; refrigerator	6.54 log cfu/g	7 days	-0.64 log cfu/g	Ergönül, 2011
	Lettuce/minimally processed	15	20°C; room temperature	6.54 log cfu/g	2 days	-0.17 log cfu/g	Ergönül, 2011
	Lettuce/minimally processed	15	20°C; room temperature	6.54 log cfu/g	7 days	+1.57 log cfu/g	Ergönül, 2011
	Apples/fresh cut	6	15°C; MAP; high CO₂ ≥ 15%, low O₂ < 1%	app. 3.8 log cfu/g	15 days	app. -0.2 log cfu/g	Gunes and Hotchkiss, 2002
	Apples/fresh cut	6	15°C; air	app. 3.8 log cfu/g	15 days	app. +1.1 log cfu/g	Gunes and Hotchkiss, 2002
	Lettuce/phyllosphere/surface	15	20°C; 70% RH; lettuce grown on sandy soil	10⁷ cfu/g; Soil inoculation	21 days	app. -4 log cfu/g	Ibekwe et al., 2009
	Lettuce/phyllosphere/surface	15	20°C; 70% RH; lettuce grown on clay soil	10⁷ cfu/g; Soil inoculation	21 days	app. -2.8 log cfu/g	Ibekwe et al., 2009
The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Escherichia coli O157:H7	Leaf lettuce	15	Fields treated with contaminated manure composts or irrigation water	water: 10^5 cfu/ml	77 days after seedling planted	app. -10^4 cfu/ml	Islam et al., 2004a
	Leaf lettuce	15	Fields treated with contaminated manure composts or irrigation water	compost: 10^7 cfu/g	77 days after seedling planted	app. -10^6 cfu/g	Islam et al., 2004a
	Parsley	16	Fields treated with contaminated manure composts or irrigation water	water: 10^5 cfu/ml	177 days after seedling planted	app. -10^4 cfu/ml	Islam et al., 2004a
	Parsley	16	Fields treated with contaminated manure composts or irrigation water	compost: 10^7 cfu/g	177 days after seedling planted	app. -10^4 cfu/ml	Islam et al., 2004a
	Carrots	19	Fields treated with contaminated manure compost	compost: 10^7 cfu/g	84 days after seedling planted	app. -10^3 cfu/g	Islam et al., 2004b
	Onion	22	Fields treated with contaminated manure compost	compost: 10^7 cfu/g	64 days after seedling planted	app. -10^3 cfu/g	Islam et al., 2004b
Apples (Golden Delicious)	6	4°C	6 to 7 log cfu/g	28 days	app. -1 log cfu/g	Janes et al., 2002	
Apples (Golden Delicious)	6	25°C	6 to 7 log cfu/g	28 days	app. +0.2 log cfu/g	Janes et al., 2002	
Apples	6	21°C; spray coated with waxes	12 weeks	- 1.48 log cfu/apple	Kenney and Beuchat, 2002		
Apples	6	21°C; spray coated with waxes	12 weeks	- 1.48 log cfu/apple	Kenney and Beuchat, 2002		
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
----------	--------------	----------------	-----------------------------------	-------------	----------------	-------------------	--------------
Escherichia coli O157:H7 (EHEC)	Apples	6	4°C; pH 3.1; 0.05% chitosan	20 days	enhanced survival of E. coli O157:H7 (2/5 days versus 1/3 days untreated)	Kisko et al., 2005	
	Lettuce	15	50°C	10 days	+1.7–2.3 log cfu/g	Li et al., 2002	
	Baby spinach/packaged	15	12°C	app. 3.7 log cfu/g	9 days	app. +2.5 log cfu/g	Luo et al., 2009
	Baby spinach/packaged	15	1°C	app. 3.7 log cfu/g	10 days	app. -1.4 log cfu/g	Luo et al., 2009
	Juice concentrates (apple)	6	-23°C	10⁷ to 10⁸ cfu/g	12 weeks	recoverable; app. overall survival 10⁷ cfu/g	Oyarzabal et al., 2003
	Iceberg lettuce/shredded	15	AMA; 4°C	5.59 log cfu/g	10 days	-1.7 log cfu/g	Sharma et al., 2011
	Iceberg lettuce/shredded	15	AMA; 15°C	3.98 log cfu/g	10 days	+3.98 log cfu/g	Sharma et al., 2011
	Lettuce plants	15	single spray irrigation with farm water	10⁷ cfu/ml	30 days	0 cfu/g	Solomon et al., 2003
	Lettuce plants	15	intermittent spray irrigation with farm water	10⁷ cfu/ml	30 days	5 log cfu/g	Solomon et al., 2003
	Apples	6	25°C; acid adapted inoculum; untreated	4.1 log cfu/g	5 days	+2.6 log cfu/g	Stopforth et al., 2004
	Apples	6	25°C; acid adapted inoculum; acetic acid	3.8 log cfu/g	5 days	+3.4 log cfu/g	Stopforth et al., 2004
	Apples	6	25°C; Nonadapted inoculum; untreated	4.4 log cfu/g	5 days	+2.5 log cfu/g	Stopforth et al., 2004
	Apples	6	25°C; Nonadapted inoculum; acetic acid	4 log cfu/g	5 days	+3.1 log cfu/g	Stopforth et al., 2004
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
------------------------------	--------------	----------------	-----------------------------------	-------------	----------------	-------------------	---------------
	Tomato	11	25°C; 60% RH; inoculated on wounds; laboratory-etched tomatoes	app. 5 log cfu/g	14 days	app. +1.8 log cfu/g	Yuk et al., 2007
	Orange juice	5	7°C; with pulp	app. 5.5 log cfu/g	4 days	app. -3.8 log cfu/g	Yuk et al., 2008
	Orange juice	5	7°C; without pulp	app. 5.5 log cfu/g	240 min	app. -3.8 log cfu/g	Yuk et al., 2008
	Orange juice	5	7°C; without pulp; with calcium lactate	app. 3 log cfu/g	160 min	-3 log cfu/g	Yuk et al., 2008
	Mixed salad	36	4°C; conventional MAP (3 to 5 kPa of O₂ and 6 to 8 kPa of CO₂)	2.64 log cfu/g	10 days	+0.3 log cfu/g	Allende et al., 2002
	Mixed salad	36	4°C; MAP; superatmospheric O₂; O₂ concentration of 95 kPa and a high-barrier film (plastic film) permeability for O₂	2.64 log cfu/g	11 days	-0.4 log cfu/g	Allende et al., 2002
Listeria monocytogenes	Coleslaw/shredded/dry	36	8°C; CA	app. 4.1 log cfu/g	12 days	0 cfu/g	Bourke and O’Beirne, 2004
	Coleslaw/shredded/dry	36	8°C; Air	app. 4.1 log cfu/g	12 days	app. -0.1 log cfu/g	Bourke and O’Beirne, 2004
	Coleslaw/shredded/dry	36	3°C; OPP	app. 4.5 log cfu/g	13 days	app. -0.3 log cfu/g	Bourke and O’Beirne, 2004
	Coleslaw/shredded/dry	36	3°C; Air (unsealed OPP packages)	app. 4.5 log cfu/g	14 days	app. -2.5 log cfu/g	Bourke and O’Beirne, 2004
	Coleslaw/shredded/dry	36	8°C; PA (microperforated OPP films (PA-120, PA-160, PA-190 and PA-210))	app. 4.5 log cfu/g	15 days	app. -0.3 log cfu/g	Bourke and O’Beirne, 2004
	Coleslaw/shredded/dry	36	8°C; Air (unsealed OPP packages)	app. 4.5 log cfu/g	16 days	app. -0.6 log cfu/g	Bourke and O’Beirne, 2004
Food of plant origin with high water content

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Listeria monocytogenes	Coleslaw	36	5°C	app. 3 log cfu/g	14 days	app. -0.8 log cfu/g	Burnett et al., 2005
	Coleslaw	36	10°C	app. 3 log cfu/g	14 days	app. -2.4 log cfu/g	Burnett et al., 2005
	Orange slices/minimally processed	5	25°C; app. pH 3.5; acid adapted 5.7; 3hrs	10⁷ CFU/g	6 days	+2.42 log cfu/g	Caggia et al., 2009
	Orange juice	5	30°C; pH 2.6; acid adapted 5.7; 3hrs	5 log cfu/g	6 hrs	app. +4 log cfu/ml	Caggia et al., 2009
	Iceberg lettuce/shredded/ready-to-eat	15	13°C; packaged; 4.65–6.2% CO2 and 2.1–4.3% O2 and a balance of N2	app. 2.5 log cfu/g	14 days	app. +4.9 log cfu/g	Carrasco et al., 2008
	Iceberg lettuce/shredded/ready-to-eat	15	5°C; packaged; 4.65–6.2% CO2 and 2.1–4.3% O2 and a balance of N2	app. 3.4 log cfu/g	14 days	app. +2.6 log cfu/g	Carrasco et al., 2008
	Green leafy salads	15	3°C	168 hrs	+0.43 log cfu/g	Crépet et al., 2009	
	Green leafy salads	15	5°C	96 hrs	+0.03 log cfu/g	Crépet et al., 2009	
	Green leafy salads	15	8°C	120 hrs	+0.73 log cfu/g	Crépet et al., 2009	
	Green leafy salads	15	10°C	96 hrs	+1.25 log cfu/g	Crépet et al., 2009	
	Green leafy salads	15	15°C	96 hrs	+1.77 log cfu/g	Crépet et al., 2009	
	Parsley	16	Low relative humidity (47–69%); culturable	10⁹ culturable Listeria monocytogenes/leaf	15 days	app. -10⁻⁷ culturable cells/leaf	Dreux et al., 2007
	Parsley	16	Low relative humidity (47–69%); viable	10⁹ viable cells of Listeria monocytogenes/leaf	15 days	app. -10⁻⁸ viable cells/leaf	Dreux et al., 2007
	Parsley	16	100% RH (changing from low (32–64%) to 100% RH)	10⁹ culturable Listeria monocytogenes/leaf	7 days	not detected*	Dreux et al., 2007
	Parsley	16	100% RH (changing from low (32–64%) to 100% RH)	10⁹ culturable Listeria monocytogenes/leaf	7 days	app. -10⁻⁷ culturable cells/leaf	Dreux et al., 2007
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
----------------------------	-------------------------------	----------------	--	---	----------------	--------------------	---------------------
Listeria monocytogenes	Parsley	16	100% RH (changing from low (32–64%) to 100% RH)	10⁵ viable cells of Listeria monocytogenes/leaf	7 days	app. -1⁰ viable cells/leaf	Dreux et al., 2007
	Cabagge/not shredded	15	5°C		28 days	app. -1 Log cfu/cm²	Ells and Hansen, 2010
	Cabagge/shredded	15	5°C		14 days	app. +1.2 Log cfu/cm²	Ells and Hansen, 2010
	Cranberry juice concentrate	4	0°C; 18 to 46 °Brix (pH 2.2 to 2.5)	after a 6 hrs incubation	5-log cfu reduction	Enache and Chen, 2007	
	Cranberry juice concentrate	4	0°C; 14 °Brix (pH 2.5)	after a 24 hrs incubation	5-log cfu reduction	Enache and Chen, 2007	
	Strawberries/whole	2	24°C	7.5 log cfu/berry	1 hr drying period	-0.4 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	24°C	7.5 log cfu/berry	48 hrs	-1 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	24°C	5.6 log cfu/berry	1 hr drying period	-1 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	24°C	5.6 log cfu/berry	48 hrs	-3.3 log cfu/berry	Flessa et al., 2005
	Strawberries/cut	2	24°C	7.5 log cfu/berry	48 hrs	-0.5 log cfu/berry	Flessa et al., 2005
	Strawberries/cut	2	24°C	5.6 log cfu/berry	48 hrs	0 cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	24°C	5.6 log cfu/berry	1 hr drying period	-0.7 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	4°C	7.7 log cfu/berry	1 hr drying period	-1.5 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	4°C	5.9 log cfu/berry	7 days	-3 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	4°C	5.9 log cfu/berry	7 days	-2.7 log cfu/berry	Flessa et al., 2005
	Strawberries/whole	2	4°C	5.2 log cfu/berry	7 days	-1 log cfu/berry	Flessa et al., 2005
	Strawberries/cut	2	-20°C; without added sucrose	6.7 log cfu/25-g sample	24 hrs	-1 log cfu/25-g sample	Flessa et al., 2005
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
-------------------	----------------------------	----------------	----------------------------------	-------------	----------------	-------------------	----------------------
Listeria monocytogenes	Strawberries/cut	2	-20°C; without added sucrose	6.7 log cfu/25-g sample	28 days	-1.2 log cfu/25-g sample	Flessa et al., 2005
	Strawberries/cut	2	-20°C; without added sucrose	6.4 log cfu/25-g sample	29 days	0 cfu/g	Flessa et al., 2005
	Lettuce/shredded	15	8°C; MAP	10^5 cfu/g	10 days	app +1 log cfu/g	Francis and O’Beirne, 2005
	Coleslaw mix	36	8°C; MAP	10^5 cfu/g	10 days	app. -2 log cfu/g	Francis and O’Beirne, 2005
	Dill pickles	35	NaCl concentration 1.3% 3.8% or 7.6%	5.4 to 5.6 log cfu/cm² on cucumber	91 days	app. -3.11 log cfu/cm²	Kim et al., 2005
	Iceberg salad/fresh cut	15	5°C	app. 3.5 log cfu/g	170 hrs	app. +1 log cfu/g	Koseki and Isobe, 2005
	Iceberg salad/fresh cut	15	25°C	app. 3.5 log cfu/g	170 hrs	app. +1.6 log cfu/g	Koseki and Isobe, 2005
	Iceberg salad/fresh cut	15	5°C; no sanitizer	5.61 log cfu/g		-0.66 log cfu/g	Koseki and Isobe, 2005
	Iceberg salad/fresh cut	15	5°C; treated with acidic electrolyzed water (AcEW)	3.89 log cfu/g	5 min	+1.69 log cfu/g	Koseki and Isobe, 2005
	Iceberg salad/fresh cut	15	25°C; no sanitizer	5.61 log cfu/g		-0.43 log cfu/g	Koseki and Isobe, 2005
	Iceberg salad/fresh cut	15	25°C; treated with acidic electrolyzed water (AcEW)	3.89 log cfu/g	5 min	+2.44 log cfu/g	Koseki and Isobe, 2005
	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 50°C without 20 mg/l chlorine; storage: 5°C	3.5 log cfu/g	18 days	app. +2.4 log cfu/g	Li et al., 2002

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Listeria monocytogenes	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 50°C with 20 mg/l chlorine; storage: 5°C	app. 3.3 log cfu/g	18 days	app. +1.9 log cfu/g	Li et al., 2002
	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 20°C without 20 mg/l chlorine; storage: 5°C	app. 3.5 log cfu/g	18 days	app. +0.3 log cfu/g	Li et al., 2002
	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 50°C without 20 mg/l chlorine; storage: 15°C	app. 3.5 log cfu/g	7 days	app. +3.5 log cfu/g	Li et al., 2002
	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 20°C with 20 mg/l chlorine; storage: 20°C	app. 4.5 log cfu/g	18 days	app. +1.8 log cfu/g	Li et al., 2002
	Lettuce leaves/cut iceberg	15	Inoculation; water treatment at 50°C without 20 mg/l chlorine; storage: 5°C	app. 4.5 log cfu/g	7 days	app. +2.4 log cfu/g	Li et al., 2002
	Soymilk products	14	22°C	high (3x10⁸ CFU/ml); low (3x10⁴ CFU/ml)	4 days	Survival and growth at both inoculation levels (tested via plate counts)	Liu and Lin 2008
	Juice concentrates (pineapple)	8	-23°C	10⁷ to 10⁸ cfu/g	12 weeks	recoverable; overall survival 10⁶ cfu/g	Oyarzabal et al., 2003
	Melon pulp	9	10°C	2.5 log cfu/g	168 hrs	app. +6.0 log cfu/g	Penteado and Leitao, 2004b
	Melon pulp	9	20°C	2.5 log cfu/g	48 hrs	app. +6.5 log cfu/g	Penteado and Leitao, 2004b
	Melon pulp	9	30°C	2.5 log cfu/g	24 hrs	app. +6.5 log cfu/g	Penteado and Leitao, 2004b
Food of plant origin with high water content

Pathogen
Listeria monocytogenes

Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
	Watermelon pulp	9	10°C	2.5 log cfu/g	168 hrs	app. +3.5 log cfu/g	Penteado and Leitao, 2004b
	Watermelon pulp	9	20°C	2.5 log cfu/g	48 hrs	app. +4.5 log cfu/g	Penteado and Leitao, 2004b
	Watermelon pulp	9	30°C	2.5 log cfu/g	24 hrs	app. +6.5 log cfu/g	Penteado and Leitao, 2004b
	Papaya pulp	8	10°C	2.5 log cfu/g	168 hrs	app. +2.0 log cfu/g	Penteado and Leitao, 2004b
	Papaya pulp	8	20°C	2.5 log cfu/g	48 hrs	app. +1.5 log cfu/g	Penteado and Leitao, 2004b
	Papaya pulp	8	30°C	2.5 log cfu/g	24 hrs	app. +5.0 log cfu/g	Penteado and Leitao, 2004b
	Lettuce/ready to eat	15	5°C; MAP	10^1-10^2 CFU/g	final populations: 10^5-10^7	Sant’Ana et al., 2012	
	Artichokes/minimally processed	23	4°C; MAP	5.5 log cfu/g	16 days	app. -0.5 log cfu/g	Sanz et al., 2003
	Coconut/fresh cut	8	Air; pH 6.0; 12°C; low inoculum (102 cfu/g)	low inoculum	6 days	+2.63 log cfu/g	Sinigaglia et al., 2006
	Coconut/fresh cut	8	12°C; MAP; pH 6.0; low inoculum (10^2 cfu/g)	low inoculum	10 days	+4.35 log cfu/g	Sinigaglia et al., 2006
	Soy milk	27	8°C	10^7 cfu/ml	31 days	app. +10^2 cfu/ml	Tipparaju et al., 2004
	Persimmon fruit (Diospyros kaki)	8	10°C	app. 3 log cfu/g	120 hrs	app. +2 log cfu/g	Uchima, 2008
	Persimmon fruit (Diospyros kaki)	8	30°C	app. 3 log cfu/g	16 days	app. +2.8 log cfu/g	Uchima, 2008
	Persimmon fruit (Diospyros kaki)	8	10°C	app. 2.8 log cfu/g	220 hrs	app. +3.7 log cfu/g	Uchima, 2008
	Persimmon fruit (Diospyros kaki)	8	30°C	app. 2.8 log cfu/g	27 hrs	app. +5.4 log cfu/g	Uchima, 2008
Salmonella Enterica	Lettuce/ready to eat	15	5°C; MAP	10^7-10^9 CFU/g	final populations: 10^7-10^9	Sant’Ana et al., 2012	
Salmonella Enteritidis	Melon	9	10, 20 and 30 °C; pH 5.87	7.31, 1.69 and 0.69 hrs	maximum populations: 10^7-10^9	Penteado and Leitao, 2004a	
	Watermelon	9	10, 20 and 30 °C; pH 5.88	7.31, 1.69 and 0.69 hrs	maximum populations: 10^7-10^9	Penteado and Leitao, 2004a	
Pathogen: Salmonella Enteritidis

Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Cherry tomatoes	11	7°C; Air	7 log cfu/tomato	20 days	app. -4.5 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	7°C; Air	3 log cfu/tomato	20 days	not detected^a	Das et al., 2006
Cherry tomatoes	11	22°C; Air	7 log cfu/tomato	10 days	app. -4 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	22°C; Air	3 log cfu/tomato	10 days	not detected^a	Das et al., 2006
Cherry tomatoes	11	7°C; PMA 6% O₂ and 4% CO₂	7 log cfu/tomato	20 days	app. -4.8 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	7°C; PMA 6% O₂ and 4% CO₂	3 log cfu/tomato	20 days	not detected^a	Das et al., 2006
Cherry tomatoes	11	22°C; PMA 6% O₂ and 4% CO₂	7 log cfu/tomato	10 days	app. -4 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	22°C; PMA 6% O₂ and 4% CO₂	3 log cfu/tomato	10 days	not detected^a	Das et al., 2006
Cherry tomatoes	11	7°C; CA; CO₂ level was maintained at 5%	7 log cfu/tomato	20 days	app. -4.8 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	7°C; CA; CO₂ level was maintained at 5%	3 log cfu/tomato	20 days	not detected^a	Das et al., 2006
Cherry tomatoes	11	22°C; CA; CO₂ level was 7 log cfu/tomato maintained at 5%	3 log cfu/tomato	10 days	app. -4 log cfu/tomato	Das et al., 2006
Cherry tomatoes	11	22°C; CA; CO₂ level was 3 log cfu/tomato maintained at 5%	3 log cfu/tomato	10 days	not detected^a	Das et al., 2006
Persimmon (Diospyrus kaki)/peel	8	10°C	app. 2 log cfu/g	72 hrs	app. +2 log cfu/g	Rezende et al., 2009
Persimmon (Diospyrus kaki)/peel	8	30°C	app. 2 log cfu/g	16 hrs	app. +4 log cfu/g	Rezende et al., 2009
Persimmon (Diospyrus kaki)/pulp	8	10°C	app. 2.3 log cfu/g	168 hrs	app. +1.7 log cfu/g	Rezende et al., 2009

^a Not detected in all tests.

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Persimmon	(Diospyrus kaki)/pulp	8	20°C	app. 2.3 log cfu/g	app. +5.2 log cfu/g	Rezende et al., 2009	
Persimmon	(Diospyrus kaki)/pulp	8	30°C	app. 2.3 log cfu/g	app. +6.7 log cfu/g	Rezende et al., 2009	
Carrots/grated		19	4°C; Air	app. 3.9 log cfu/g	10 days	app. -0.3 log cfu/g	Tassou and Boziaris 2002
Carrots/grated		19	4°C; MA	app. 3.9 log cfu/g	11 days	app. -0.2 log cfu/g	Tassou and Boziaris 2002
Carrots/grated		19	4°C; Air; inoculated with	app. 3.9 log cfu/g	11 days	app. -0.4 log cfu/g	Tassou and Boziaris 2002
Carrots/grated		19	4°C; MA; inoculated with	app. 3.9 log cfu/g	9 days	app. -0.5 log cfu/g	Tassou and Boziaris 2002
Carrots/grated		19	4°C; MA; inoculated with	app. 6 log cfu/g	7 days	app. +0.2 log cfu/g	Tassou and Boziaris 2002
Carrots/grated		19	4°C; MA; inoculated with	app. 6 log cfu/g	7 days	app. +0.5 log cfu/g	Tassou and Boziaris 2002
Salmonella Poona	Cantaloupe	9	4°C; 0.05% Tween 80 in	8.58 log cfu	14 days	-1.11 log cfu	Beuchat and Scouten, 2004
Salmonella Poona	Cantaloupe	9	21°C; 0.05% Tween 80 in	8.27 log cfu	14 days	-1.14 log cfu	Beuchat and Scouten, 2004
Cantaloupe		9	21°C; 0.05% Tween 80 in	8.55 log cfu	15 days	-0.33 log cfu	Beuchat and Scouten, 2004
Pathogen

- **Salmonella Salford**
 - Food item(s): Passionfruit/fruit with inedible skins
 - FoNAO Category: 8
 - Experimental conditions/treatment: 10°C
 - Inoculation: 0.6 log cfu/cm²
 - Treatment time: 6 days
 - Increase/ decrease: +3.4 log cfu/cm² (survival: 4 cfu/cm²; 4 xE; E = detected by enrichment)
 - Reference(s): Behrsing et al., 2003

- **Salmonella Salford**
 - Food item(s): Banana/fruit with inedible skins
 - FoNAO Category: 8
 - Experimental conditions/treatment: 18°C
 - Inoculation: 1.78 log cfu/cm²
 - Treatment time: 13 days
 - Increase/ decrease: -0.15 log cfu/cm²
 - Reference(s): Behrsing et al., 2003

- **Salmonella Salford**
 - Food item(s): Cantaloupe(rock melon)/fruit with inedible skins
 - FoNAO Category: 9
 - Experimental conditions/treatment: 8°C for 1 day and then 5 days at 8°C
 - Inoculation: 2.08 log cfu/cm²
 - Treatment time: 7 days
 - Increase/ decrease: -0.3 log cfu/cm²
 - Reference(s): Behrsing et al., 2003

- **Salmonella Salford**
 - Food item(s): Honeydew melon/fruit with inedible skins
 - FoNAO Category: 9
 - Experimental conditions/treatment: 12°C for 1 day and then 5 days at 8°C
 - Inoculation: 1.92 log cfu/cm²
 - Treatment time: 6 days
 - Increase/ decrease: +2.08 log cfu/cm² (survival: 4 cfu/cm²; 4 xE; E = detected by enrichment)
 - Reference(s): Behrsing et al., 2003

- **Salmonella spp.**
 - Food item(s): Tomatoes/fresh
 - FoNAO Category: 11
 - Experimental conditions/treatment: 30°C; 80% RH
 - Inoculation: 5.1 log cfu/g
 - Treatment time: 28 days
 - Increase/ decrease: -3 log cfu/g
 - Reference(s): Allen et al., 2005

- **Salmonella spp.**
 - Food item(s): Tomatoes/fresh
 - FoNAO Category: 11
 - Experimental conditions/treatment: 20°C; 60% RH
 - Inoculation: 4.6 log cfu/g
 - Treatment time: 28 days
 - Increase/ decrease: -3.1 log cfu/g
 - Reference(s): Allen et al., 2005

- **Salmonella spp.**
 - Food item(s): Tomatoes/fresh
 - FoNAO Category: 11
 - Experimental conditions/treatment: 20°C; 90% RH
 - Inoculation: 4.6 log cfu/g
 - Treatment time: 28 days
 - Increase/ decrease: -3.2 log cfu/g
 - Reference(s): Allen et al., 2005

- **Salmonella spp.**
 - Food item(s): Tomatoes/raw/round/pulp
 - FoNAO Category: 11
 - Experimental conditions/treatment: 21°C
 - Inoculation: 0.08 log cfu/g
 - Treatment time: 14 days
 - Increase/ decrease: app. +8.12 log cfu/g
 - Reference(s): Beuchat and Mann, 2008

- **Salmonella spp.**
 - Food item(s): Tomatoes/raw/round/pulp
 - FoNAO Category: 11
 - Experimental conditions/treatment: 4°C
 - Inoculation: 0 cfu/g
 - Treatment time: 10 days
 - Increase/ decrease: 0 cfu/g
 - Reference(s): Beuchat and Mann, 2008

- **Salmonella spp.**
 - Food item(s): Cranberry juice concentrate
 - FoNAO Category: 4
 - Experimental conditions/treatment: 0°C; 18 to 46 °Brix (pH 2.2 to 2.5)
 - Inoculation: after a 6 hrs incubation
 - Increase/ decrease: 5-log cfu reduction
 - Reference(s): Enache and Chen, 2007

- **Salmonella spp.**
 - Food item(s): Cranberry juice concentrate
 - FoNAO Category: 4
 - Experimental conditions/treatment: 0°C; 14 °Brix (pH 2.5)
 - Inoculation: after a 24 hrs incubation
 - Increase/ decrease: 5-log cfu reduction
 - Reference(s): Enache and Chen, 2007

- **Salmonella spp.**
 - Food item(s): Tomatoes
 - FoNAO Category: 11
 - Experimental conditions/treatment: 20°C; 70% RH
 - Inoculation: 7.72 log cfu/g
 - Treatment time: 14 days
 - Increase/ decrease: app. -4.92 log cfu/g
 - Reference(s): Guo et al., 2002

- **Salmonella spp.**
 - Food item(s): Tomatoes
 - FoNAO Category: 11
 - Experimental conditions/treatment: tomatoes placed on inoculated soil
 - Inoculation: app. 5 log cfu/g
 - Treatment time: 10 days
 - Increase/ decrease: app. +2 log cfu/g
 - Reference(s): Guo et al., 2002

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Salmonella spp.	Juice concentrates (apple)	6	-23°C	10⁴ to 10⁶ cfu/g	12 weeks	recoverable; app. overall survival 10² cfu/g	Oyarzabal et al., 2003
	Green tomatoes/mature	11	20°C; Air; 100% RH	7.6 x 10⁶ cfu	6 days	app. -3.56 x 10⁶ cfu	Rathinasabapathi, 2004
	Green tomatoes/mature	11	20°C; Ethylene (100 ppm); 100% RH	7.6 x 10⁶ cfu	6 days	app. -3.56 x 10⁶ cfu	Rathinasabapathi, 2004
	Green tomatoes	11	15°C; 75% RH; Serovar on tomatoes	app. 3.09 log cfu/g	7 days	app. -0.75 log cfu/g	Shi et al., 2007
	Green tomatoes	11	15°C; 95% RH; Serovar on tomatoes	app. 3.09 log cfu/g	7 days	app. +1.97 log cfu/g	Shi et al., 2007
	Green tomatoes	11	25°C; 95% RH; Serovar within tomatoes	app. 3.09 log cfu/g	7 days	app. +3.5 log cfu/g	Shi et al., 2007
	Mixed melon/fresh cut	9	22°C; fresh cut; before refrigeration	app. 2.2 log cfu/g	5 hrs	app. +1.3 log cfu/g	Ukuku and Sapers, 2007
	Mixed melon/fresh cut	9	10°C	app. 2 log cfu/g	9 days	app. +2 log cfu/g	Ukuku and Sapers, 2007
	Mixed melon/fresh cut	9	10°C	app. 2 log cfu/g	15 days	0 cfu/g	Ukuku and Sapers, 2007
	Mixed melon/fresh cut	9	22°C	app. 2 log cfu/g	3 days	app. +2.3 log cfu/g	Ukuku and Sapers, 2007
	Tomato	11	25°C; 60% RH; inoculated on smooth surface; laboratory-etched tomatoes	app. 5 log cfu/g	14 days	not detected	Yuk et al., 2007
	Tomato	11	25°C; 60% RH; inoculated on smooth surface; pilot plant-etched tomatoes	app. 6 log cfu/g	14 days	not detected	Yuk et al., 2007
Pathogen

- **Tomato**
 - **Food item(s):** Tomato
 - **FoNAO Category:** 11
 - **Experimental conditions/treatment:** 25°C; 60%; inoculated on app. 6 log cfu/g etched marks of tomatoes; pilot plant-etched tomatoes
 - **Inoculation:** 7 days
 - **Treatment time:** 7 days
 - **Increase/ decrease:** app. -3 log cfu/g
 - **Reference(s):** Yuk et al., 2007

- **Salmonella Typhimurium**
 - **Iceberg lettuce/shredded**
 - **Food item(s):** Iceberg lettuce/shredded
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 4°C
 - **Inoculation:** 6.4 log cfu/g
 - **Treatment time:** 14 days
 - **Increase/ decrease:** -1.1 log cfu/g
 - **Reference(s):** Chang and Fang, 2007
 - **Iceberg lettuce/shredded**
 - **Food item(s):** Iceberg lettuce/shredded
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 22°C
 - **Inoculation:** 6.4 log cfu/g
 - **Treatment time:** 3 days
 - **Increase/ decrease:** +2.86 log cfu/g
 - **Reference(s):** Chang and Fang, 2007
 - **Lettuce/minimally processed**
 - **Food item(s):** Lettuce/minimally processed
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 4°C
 - **Inoculation:** 6.3 log cfu/g
 - **Treatment time:** 5 days
 - **Increase/ decrease:** -1.23 log cfu/g
 - **Reference(s):** Ergönül, 2011
 - **Lettuce/minimally processed**
 - **Food item(s):** Lettuce/minimally processed
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 4°C
 - **Inoculation:** 6.3 log cfu/g
 - **Treatment time:** 7 days
 - **Increase/ decrease:** -1.07 log cfu/g
 - **Reference(s):** Ergönül, 2011
 - **Lettuce/minimally processed**
 - **Food item(s):** Lettuce/minimally processed
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 20°C
 - **Inoculation:** 6.3 log cfu/g
 - **Treatment time:** 5 days
 - **Increase/ decrease:** +0.88 log cfu/g
 - **Reference(s):** Ergönül, 2011
 - **Lettuce/minimally processed**
 - **Food item(s):** Lettuce/minimally processed
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 20°C
 - **Inoculation:** 6.3 log cfu/g
 - **Treatment time:** 7 days
 - **Increase/ decrease:** +0.04 log cfu/g
 - **Reference(s):** Ergönül, 2011
 - **Romaine lettuce leaves**
 - **Food item(s):** Romaine lettuce leaves
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** Air; 8°C
 - **Inoculation:** 5.4 log cfu/g
 - **Treatment time:** 7 days
 - **Increase/ decrease:** app. -2 log cfu/g
 - **Reference(s):** Horev et al., 2012
 - **Romaine lettuce leaves**
 - **Food item(s):** Romaine lettuce leaves
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** 8°C; PMA
 - **Inoculation:** 5.4 log cfu/g
 - **Treatment time:** 7 days
 - **Increase/ decrease:** app. -1.8 log cfu/g
 - **Reference(s):** Horev et al., 2012
 - **Romaine lettuce leaves**
 - **Food item(s):** Romaine lettuce leaves
 - **FoNAO Category:** 15
 - **Experimental conditions/treatment:** AMA; 8°C
 - **Inoculation:** 5.4 log cfu/g
 - **Treatment time:** 7 days
 - **Increase/ decrease:** app. -0.3 log cfu/g
 - **Reference(s):** Horev et al., 2012
 - **Parsley leaves**
 - **Food item(s):** Parsley leaves
 - **FoNAO Category:** 17
 - **Experimental conditions/treatment:** Spray irrigation during morning hours
 - **Inoculation:** 8.5 log cfu/ml
 - **Treatment time:** 48 hrs
 - **Increase/ decrease:** -3 log cfu/ml
 - **Reference(s):** Kisluk and Yaron, 2012
 - **Parsley leaves**
 - **Food item(s):** Parsley leaves
 - **FoNAO Category:** 17
 - **Experimental conditions/treatment:** Spray irrigation during morning hours
 - **Inoculation:** 8.5 log cfu/ml
 - **Treatment time:** 48 hrs
 - **Increase/ decrease:** -3 log cfu/ml
 - **Reference(s):** Kisluk and Yaron, 2012
 - **Parsley**
 - **Food item(s):** Parsley
 - **FoNAO Category:** 16
 - **Experimental conditions/treatment:** 1600 ppm chlorine
 - **Inoculation:** -3 log cfu/g
 - **Reference(s):** Lapidot et al., 2006
 - **Parsley**
 - **Food item(s):** Parsley
 - **FoNAO Category:** 16
 - **Experimental conditions/treatment:** 4°C; rinsing with water
 - **Inoculation:** -1 log cfu/g
 - **Reference(s):** Lapidot et al., 2006
 - **Parsley**
 - **Food item(s):** Parsley
 - **FoNAO Category:** 16
 - **Experimental conditions/treatment:** 4°C; rinsing with chlorine (100 mg/L)
 - **Inoculation:** -1.7 log cfu/g
 - **Reference(s):** Lapidot et al., 2006
 - **Parsley**
 - **Food item(s):** Parsley
 - **FoNAO Category:** 16
 - **Experimental conditions/treatment:** 4°C; rinsing with water
 - **Inoculation:** -0.3 log cfu/g
 - **Reference(s):** Lapidot et al., 2006

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
	Parsley	16	4°C; rinsing with chlorine (100 mg/L)	7 days	-1.4 log cfu/g		Lapidot et al., 2006
	Jalapeno extracts	1	37°C; OD measurements following inoculation	4 hrs	growth rates significantly higher than in other produce extracts	Nutt et al., 2003	
	Broccoli and lettuce extracts	1	37°C; OD measurements following inoculation	5 hrs	significantly higher OD600 values	Nutt et al., 2003	
	Cantaloupe	9	Air; 3.7°C	8.2 log cfu/melon	200 hrs	-4.7 log cfu/fruit	Salgado et al., 2009
	Cantaloupe	9	AMA; 3.7°C	8.2 log cfu/melon	200 hrs	-4.3 log cfu/fruit	Salgado et al., 2009
Salmonella Saintpaul	Jalapeno peppers/flesh	12	4°C	app. 3.3 log cfu/g	6 weeks	app. -2.5 log cfu/g	Liao et al., 2010
	Jalapeno peppers/flesh	12	4°C	app. 3.3 log cfu/g	8 weeks	app. -2 log cfu/g	Liao et al., 2010
Shigella boydii	Bean salad	36	4°C	10^7 cfu/g	5 days	app. -10^7 cfu/g	Agle et al., 2005
	Bean salad	36	23°C	10^7 cfu/g	1 day	app. +10^3 cfu/g	Agle et al., 2005
	Bean salad	36	23°C	10^7 cfu/g	1 day	app. -10^3 cfu/g	Agle et al., 2005
Shigella flexneri	Mixed lettuce/minimally processed	17	12°C; EMA	app. 6 log cfu/g	7 days	app. +0.3 log cfu/g	Bagamboula et al., 2002
	Mixed lettuce/minimally processed	17	6°C; EMA	app. 6 log cfu/g	7 days	app. +0.2 log cfu/g	Bagamboula et al., 2002
	Carrots/grated/minimally processed	19	12°C; EMA	app. 5.5 log cfu/g	7 days	app. -1 log cfu/g	Bagamboula et al., 2002
	Carrots/grated/minimally processed	19	6°C; EMA	app. 5.5 log cfu/g	7 days	app. -3.5 log cfu/g	Bagamboula et al., 2002
	Bell peppers/chopped/minimally processed	12	12°C; EMA	app. 4.5 log cfu/g	7 days	app. -0.5 log cfu/g	Bagamboula et al., 2002
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
------------------------	---------------------------------------	----------------	-----------------------------------	-------------	----------------	---------------------	------------------------
	Bell peppers/chopped/minimally processed	12	6°C; EMA	app. 4.5 log cfu/g	7 days	app. -1.2 log cfu/g	Bagamboula et al., 2002
Shigella sonnei	Mixed lettuce/minimally processed	17	12°C; EMA	app. 5.8 log cfu/g	7 days	app. +0.2 log cfu/g	Bagamboula et al., 2002
	Mixed lettuce/minimally processed	17	6°C; EMA	app. 5.8 log cfu/g	7 days	app. -0.9 log cfu/g	Bagamboula et al., 2002
	Carrots/grated/minimally processed	19	12°C; EMA	app. 5.5 log cfu/g	7 days	app. -1.5 log cfu/g	Bagamboula et al., 2002
	Carrots/grated/minimally processed	19	6°C; EMA	app. 5.5 log cfu/g	7 days	app. -3.5 log cfu/g	Bagamboula et al., 2002
	Bell peppers/chopped/minimally processed	12	12°C; EMA	app. 4.5 log cfu/g	7 days	app. -2.5 log cfu/g	Bagamboula et al., 2002
	Bell peppers/chopped/minimally processed	12	6°C; EMA	app. 4.5 log cfu/g	7 days	app. -1.6 log cfu/g	Bagamboula et al., 2002
	Tomato/smooth/surfaces	11	8°C	app. 6 log cfu/g	28 days	not detected^a	Warren et al., 2007
	Potato salad	11	13°C; 85% RH	app. 6 log cfu/g	2 days	not detected^a	Warren et al., 2007
Yersinia enterocolitica	Orange juice	5	4°C; pH 3.9	6.8 log cfu/ml	72 hrs	-1.7 log cfu/ml	Abdela et al., 2011
	Orange juice	5	4°C; pH 7; NaOH	6.8 log cfu/ml	3 hrs	-0.3 log cfu/ml	Abdela et al., 2011
	Orange juice	5	4°C; pH 7; NaOH	6.8 log cfu/ml	168 hrs	0 log cfu/ml	Abdela et al., 2011
Yersinia pseudotuberculosis	Orange juice	5	4°C; pH 3.9	7 log cfu/ml	168 hrs	-3.3 log cfu/ml	Abdela et al., 2011
	Orange juice	5	4°C; pH 7; NaOH	7 log cfu/ml	24 hrs	-0.8 log cfu/ml	Abdela et al., 2011
	Orange juice	5	4°C; pH 7; NaOH	7 log cfu/ml	168 hrs	-0.1 log cfu/ml	Abdela et al., 2011
Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
--	-----------------------	----------------	-----------------------------------	------------------------------	----------------	--------------------	--------------------------
Viruses							
Hepatitis A	Lettuce/fresh	15	4°C; not washed	4.48 log tissue culture	9 days	-2.02 TCID50/ml	Croci et al., 2002
	vegetable/eaten raw			infectious dose (TCID50)/ml			
	Lettuce/fresh	15	4°C; washed	4.38 log tissue culture	9 days	-1.97 TCID50/ml	Croci et al., 2002
	vegetable/eaten raw			infectious dose (TCID50)/ml			
	Fennel/fresh	22	4°C; not washed	4.32 log tissue culture	7 days	-3.32 TCID50/ml	Croci et al., 2002
	vegetable/eaten raw			infectious dose (TCID50)/ml			
	Fennel/fresh	22	4°C; washed	4.37 log tissue culture	4 days	-1.81 TCID50/ml	Croci et al., 2002
	vegetable/eaten raw			infectious dose (TCID50)/ml			
Norovirus (MS2 Bacteriophage as surrogate)	Carrots/fresh	19	4°C	app. 7 log pfu/g	87 days	app. -1.7 log pfu/g	Dawson et al., 2005
	produce						
	Cabbage/fresh	15	8°C	app. 7 log pfu/g	95 days	app. -1.3 log pfu/g	Dawson et al., 2005
	produce						
	Carrots/fresh	19	2°C	app. 7 log pfu/g	43 days	app. -3 log pfu/g	Dawson et al., 2005
	produce						
	Orange	5	4°C; refrigeration	6 log PFU/ml	21 days	0 cfu	Horm and D’Souza, 2011
	Pomegranate juice	8	4°C; refrigeration	6 log PFU/ml	21 days	-1.4 log cfu	Horm and D’Souza, 2011
Human norovirus (feline calicivirus FCV-F9 as surrogate)	Orange	5	4°C; refrigeration	app. 6 log pfu/g	14 days	-6 log pfu/g	Horm and D’Souza, 2011
	Pomegranate juice	8	4°C; refrigeration	app. 6 log pfu/g	14 days	-6 log pfu/g	Horm and D’Souza, 2011
	Orange juice	5	4°C	app. 6 log pfu/g	14 days	not detected"	Horm and D’Souza, 2011
Pathogen

Pathogen	Food item(s)	FoNAO Category	Experimental conditions/treatment	Inoculation	Treatment time	Increase/ decrease	Reference(s)
Norovirus (murine norovirus MNV-1 as surrogate)	Orange juice and pomegranate juice/blends	8; 5	4°C	app. 5.5 log pfu/g	1 day	not detected*	Horm and D’Souza, 2011
	Pomegranate juice	8	4°C	app. 5.5 log pfu/g	21 days	not detected*	Horm and D’Souza, 2011
Norovirus (feline calicivirus as surrogate)	Orange	5	4°C; refrigeration	5 log pfu/ml	7 days	complete reduction*	Horm and D’Souza, 2011
	Pomegranate juice	8	4°C; refrigeration	5 log pfu/ml	7 days	complete reduction*	Horm and D’Souza, 2011
Rotavirus (SA11)	Pineapple juice/fresh	8	28°C; pH 3.60 ± 0.06	3 hrs		98% decline	Leong et al., 2008
	Papaya juice/fresh	8	28°C; pH 5.13 ± 0.06	3 hrs		no increase/decrease*	Leong et al., 2008
	Honeydew melon juice/fresh	9	28°C; pH 6.30 ± 0.21	3 hrs		no increase/decrease*	Leong et al., 2008
Hepatitis A	Spinach	15	5.4 ± 1.2 °C; moisture and gas-permeable packages	4 weeks	app. 1 log pfu/leaf (survival 5%)	Shieh et al., 2009	
	Onion	22	3°C; cold storage	3.26 log pfu/onion	29 days	-1.17 log pfu/onion	Sun et al., 2012
	Onion	22	10.3°C - 23.4°C	4.57 log pfu/onion	16 days	-1.15 log pfu/onion	Sun et al., 2012
	Lettuce/fresh vegetable/eaten raw	15	4°C; not washed	4.48 log tissue culture infectious dose (TCID50)/ml	9 days	-2.02 TCID50/ml	Croci et al., 2002

* no quantitative data reported

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 18: Colonisation behaviour of pathogenic bacteria, linked to FoNAO with high water content.

Pathogen	FoNAO Category	Food item(s)	Attachment*	Biofilm Formation*	Internalisation*	Details\(^b\)	Reference(s)
Bacillus cereus (six different strains)	15	Cabbage	yes	yes	n.d.	increasing attachment strength between 1 and 24 h, biofilm formed at 10°C after 24 h	Elhariry, 2011
15	Lettuce	yes	yes	n.d.	increasing attachment strength between 1 and 24 h, biofilm formed at 10°C after 24 h	Elhariry, 2011	
Escherichia coli O157:H7	5	Oranges	n.d.	n.d.	yes	NR	Eblen et al., 2004
6	Apple	n.d.	n.d.	yes	NR	Fatemi et al., 2006	
6	Apple	yes	n.d.	n.d.	NR	Hassan and Frank, 2004	
7	Peaches and plums	yes	yes, exopolysaccharide	n.d.	visibly attached after 30 s and 1 h	Collignon and Korsten, 2010	
15	Lettuce	n.d.	n.d.	yes	NR	Dinu and Bach, 2011	
15	Lettuce leaves (lettuce/spinach)	n.d.	n.d.	yes	internalisation in leaves	Erickson et al., 2010a	
15	Leafy green vegetables	n.d.	n.d.	yes	internalisation via plant roots in the field is rare and when it occurs, O157:H7 does not persist 7 days later	Erickson et al., 2010b	
15	Lettuce	yes	n.d.	n.d.	NR	Hassan and Frank, 2004	
15	Growing spinach leaves	n.d.	n.d.	no	NR	Hora et al., 2005	
15	Lettuce (Romaine)	yes	yes	n.d.	curli expressed at 20 and 37°C	Kim and Harrison, 2009	
15	Spinach	yes	n.d.	no	no conclusive evidence for natural entry into the plant interior	Mitra et al., 2009	
15	Cabbage	n.d	n.d.	yes	dependent on time of manure application (tropical field conditions)	Ongeng et al., 2011	
15	Cabbage	yes	yes	n.d.	produce surface did not affect bacterial attachment	Patel and Ravishakar, 2011	
Food of plant origin with high water content

Pathogen

Pathogen	FoNAO Category	Food item(s)	Attachment	Biofilm Formation	Internalisation	Details	Reference(s)
Listeria monocytogenes	7	Peaches and plums	yes	yes, exopolysaccharide	n.d.	Immediate attachment	Collignon and Korsten, 2010
	20	Potato	yes	n.d.	n.d.	NR	Garrood et al., 2004
	21	Radish	yes	n.d.	n.d.	Attachment at temperature-dependent rate	Gorski et al., 2003
Listeria spp. including Listeria monocytogenes	15	Cabbage	yes	yes	n.d.	attachment strength dependent on temperature	Ells and Hansen, 2006
Salmonella enterica	11	Tomatoes	yes	n.d.	yes	active colonisation of phyllosphere and fruit, preferentially via trichomes; colonisation dependent on tomato cultivar	Barak et al., 2011
	11	Tomatoes	yes	n.d.	n.d.	attachment via cellulose	Shaw et al., 2011
Salmonella enterica serovars	15	Cabbage	yes	yes, varied with strain	n.d.	attachment strength: cabbage < iceberg lettuce < romaine lettuce	Patel and Sharma, 2010
	15	Lettuce	yes	yes, varied with strain	n.d.	attachment strength: cabbage < iceberg lettuce < romaine lettuce	Patel and Sharma, 2010
Salmonella Enteritidis	5	Oranges	n.d.	n.d.	yes	internalisation frequency into the stem end segment (83%) was higher than into the middle side (19%) or blossom end (9%)	Eblen et al., 2004
	8	Mango	n.d.	n.d.	yes		Penteado et al., 2004
Pathogen	FoNAO Category	Food item(s)	Attachment\(^a\)	Biofilm Formation\(^a\)	Internalisation\(^a\)	Details\(^b\)	Reference(s)
-----------------------	----------------	-------------------------------	------------------	-------------------------	-----------------------	---	--
Salmonella Montevideo	11	Tomatoes, Tomatillo	yes	n.d.	n.d.	attached within 90 min	Iturriaga et al., 2003
	11	Tomatoes	yes	yes	n.d.	growth enforced by high temperature and humidity	Iturriaga et al., 2007
	11	Tomatoes	n.d.	n.d.	no	NR	Miles et al., 2009
Salmonella spp.	8	Mango	yes	n.d.	yes	microorganism source: Water for hydrothermal treatment; active internalisation in intact fruit	Branquinho Bordini et al., 2007
	9	Cantaloupe	yes	n.d.	n.d.	no reduction by different washing methods	Ukuku and Fett, 2006
Salmonella Typhi	8	Guava	yes	yes	n.d.	attachment potential increased with contact time	Tang et al., 2012
	8	Mango	yes	yes	n.d.	attachment potential increased with contact time	Tang et al., 2012
	13	Cucumber	yes	yes	n.d.	attachment potential increased with contact time	Tang et al., 2012
Salmonella Typhimurium	n.s.	Vegetables	yes	n.d.	n.d.	must be metabolically active to ensure attachment	Saggers et al., 2008
	15/16	Leafy green vegetables and fresh herbs	n.d.	n.d.	yes	level of internalisation largely varies among plants and within the same crop	Golberg et al., 2011
	7	Peaches and plums	yes	yes, exopolysaccharide	n.d.	Immediate attachment	Collignon and Korsten, 2010
	8	Mango	n.d.	n.d.	yes	pulp entered by vascular elements and lenticels	Soto et al., 2007
	11	Tomatoes	yes	n.d.	yes	active internalisation via tomato leaves	Gu et al., 2011
	15	Lettuce	n.d.	n.d.	yes	internalisation in leaves, not roots; increased internalisation due to extreme weather events (drought, storm) at high inocula	Ge et al., 2012 (incl. Corrigendum)
Pathogen	FoNAO Category	Food item(s)	Attachment	Biofilm Formation	Internalisation	Details	Reference(s)
--------------	----------------	--------------------	------------	-------------------	----------------	---	--------------
Staphylococcus aureus	7	Peaches and plums	yes	yes, exopolysaccharide	n.d.	visibly attached after 30 s and 1 h	Collignon and Korsten, 2010
	15	Leafy green vegetables	n.d.	yes	n.d.	osmoregulated periplasmic glucans play crucial role in growth and biofilm formation	Liu et al., 2009
		Cabbage	n.d.	n.d.	yes	dependent on time of manure application (tropical field conditions)	Ongeng et al., 2011
		Green onion	n.d.	n.d.	yes	internalisation in leaves and roots; increased internalisation due to extreme weather events (drought, storm) at high inocula	Ge et al., 2012 (incl. Corrigendum)

*n.d. = not determined; NR= not reported
Table 19: Treatments for mitigating contamination of pathogenic bacteria, viruses and parasites linked to FoNAO with high water content. AA; Ascorbic Acid, CA; Citric Acid, LA; Lactic Acid.

Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)\(^a\)	Treatment time\(^a\)	Reduction Effect	Reference(s)
Bacteria								
Bacillus cereus	Mango pulp	8	Bovicin HC5	Chemical	Bacteriocin concentration 100 AU ml\(^{-1}\); pH 4.0; 30°C	24 h	7 log units	de Carvalho et al., 2007
	Mango pulp	8	Nisin	Chemical	Bacteriocin concentration 100 AU ml\(^{-1}\); pH 4.0; 30°C	24 h	7 log units	de Carvalho et al., 2007
	Green olive	35	Fermentation	Physical	heat shock (85°C for 10 min) and inoculation with Lactobacillus plantarum	n.s.	Rate of inactivation: - 2.21 log CFU/day	Panagou et al., 2008
Escherichia coli	Green leaf lettuce	15	Ozone	Chemical	2 mg/l, 10°C, different incubation time for bacteria (6 h, 12 h, 48 h)	2 min	99.9% (6 h incubation)	Olmez and Temur, 2010
	Green leaf lettuce	15	Chlorine	Chemical	100 mg/l, 10°C, different incubation time for bacteria (6 h, 12 h, 48 h)	2 min	99.9% (6 h incubation)	Olmez and Temur, 2010
	Green leaf lettuce	15	Organic acid mixture	Chemical	0.25 g/100g CA + 0.50 g/100g AA, 10°C (6 h, 12 h, 48 h)	2 min	99.9% (6 h incubation)	Olmez and Temur, 2010
Escherichia coli O157:H7 (EHEC)	Lettuce	15	Epiphytic bacteria	Biological	Co-inoculation of Enterobacteria 3 days asburiae and Escherichia coli O157:H7 (1:1)	26-fold reduction	Cooley et al., 2006	
Carrot/pomegranate juice blend juices	19/8	Pomegranate juice	Biological	40% pomegranate juice blend with carrot juices	n.s.	2 log reduction	Ibrahim et al., 2011	
Apple/pomegranate juice blend juices	6/9	Pomegranate juice	Biological	40% pomegranate juice blend with apple juices	n.s.	2 log reduction	Ibrahim et al., 2011	
Baby romaine lettuce	15	Bacteriophage cocktail (BEC8) + transcinnamaldehyde	Biological + Chemical	10\(^8\) PFU/leaf; 0.5%	10 min	no survivors\(^a\)	Viazis et al., 2011	
Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)\(^a\)	Treatment time\(^a\)	Reduction Effect	Reference(s)
----------	--------------	----------------	-----------	--------------------------	---------------------------------	----------------	----------------	--------------
Escherichia coli O157:H7 (EHEC)	Baby spinach	15	Bacteriophage cocktail (BEC8) + transcinnamaldehyde	Biological + Chemical	10⁶ PFU/leaf; 0.5%	10 min	no survivors\(^a\)	Viazis et al., 2011
	Shredded carrots	19	Sodium Hypochlorite (SH) and Acidified Sodium Chlorite (ASC)	Chemical	SH 200 mg/L; ASC 100 mg/L	n.s.	2 log reduction	Allende et al., 2007
	Shredded carrots	19	Acidified Sodium Chlorite (ASC)	Chemical	ASC 1000 mg/L; 5°C	14 days	no growth\(^a\)	Allende et al., 2007
	Apple	6	Chlorine	Chemical	2000 ppm active chlorine solution; 21°C (nonpunctured apple)	2 min	0.98 log CFU/cm² of surface	Burnett and Beuchat, 2002
	Cantaloupe	9	Lactic acid combined with a surfactant	Chemical	35°C, LA (1.5%) + Tergitol (0.3%)	10 min	reduction up to 7.0 log CFU/cm²	Materon, 2003
	Minimally processed artichokes	23	Chlorine	Chemical	50 ppm	5 min	0.4 log CFU/g	Sanz et al., 2003
	Minimally processed artichokes	23	Ascorbic acid + citric acid	Chemical	0.02% CA and 0.2% AA	n.s.	0.8 log CFU/g	Sanz et al., 2003
	Apple cider	6	Glycerol monolaurate + eating	Chemical + Physical	0.02% Glycerol monolaurate; 50°C (5 min)	15 min	5.0 log CFU/ml	Annamalai et al., 2003
	Ready to eat iceberg lettuce	15	Chlorinated water + temperature	Chemical + Physical	100 mg/l total chlorine; 47°C	3 min	2 log CFU/g	Delaquis et al., 2002
	Orange juice	5	Ozone + mild heating	Chemical + Physical	Ozone: 0.9 g/h; 50°C	75 min	undetectable (reduction ~5 log CFU/ml)	Williams et al., 2004
Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)¹	Treatment time²	Reduction Effect	Reference(s)
--------------------------	--	----------------	-----------	---------------------------	------------------------------	-----------------	------------------	-------------------
Apple cider	6 Ozone + mild heating	Chemical + Physical	Ozone: 0.9 g/h; 50°C	45 min	undetectable (reduction ~ 5 log CPU/ml)	Williams et al., 2004		
Tomato juice	11 High pressure	Physical	4 times at 300 Mpa for in total 40 min; room temperature	total of 40 min	max. inactivation²	Bari et al., 2007		
Orange juice	5 Dynamic high pressure	Physical	200 MPa after 5 and 3 passes at 25°C	n.s.	5 log CFU/ml	Tahiri et al., 2006		
Listeria innocua	Unpasteurized and pasteurized apple juice	Chemical	500 ppm potassium sorbate; pH 3.3; 30°C	4-8 h	app. 5 log CFU/ml	Corte et al., 2004		
	Unpasteurized and pasteurized apple juice	Chemical	3000 ppm vanillin; pH 3.3 or 3.8; 30°C	4-8 h	app. 5 log CFU/ml	Corte et al., 2004		
Listeria innocua	Processed orange juice	Chemical	1100 ppm vanillin; 57°C	2.2 min	6.5 log reduction	Char et al., 2009		
(surrogate for *Listeria*	Processed orange juice	Chemical	0 ppm vanillin; 57°C	8 min	6.3 log reduction	Char et al., 2009		
	Processed orange juice	Chemical	700 ppm vanillin; 61°C	2.3 min	7 log reduction	Char et al., 2009		
	Processed orange juice	Chemical	0 ppm vanillin; 61°C	1.8 min	7 log reduction	Char et al., 2009		
Listeria monocytogenes	Lettuce	Chemical	nisin–coagulin cocktail (1:1); 4°C	48 h	1.5 log units	Allende et al., 2007		
	Tomatoes	Chemical	chlorine 200 ppm; 72 h attachment time	1 min	2.26 log CFU	Ijabadeniyi et al., 2011		
	Spinach	Chemical	chlorine 200 ppm; 30 min attachment time	1 min	3.01 log CFU	Ijabadeniyi et al., 2011		
	Ready to eat iceberg lettuce	Chemical + Physical	100 mg/l total chlorine; 4 or 47°C	3 min	1 log CFU/g	Delaquis et al., 2002		
	Apple slices	Physical	Cesium-137 gamma radiation source: 1.6 kGy	n.s.	99.9%	Fan et al., 2005		
	Spinach	Chemical	1 g/l; 7 days storage 4°C	10 min	3.5 log CFU/cm²	Engels et al., 2012		

¹ Conditions (concentrations) may include concentrations, temperatures, and other relevant factors.
² Treatment time refers to the duration of the treatment.
³ Reduction Effect: The reduction in bacterial counts typically expressed in log units.

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen: Listeria monocytogenes

Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)a	Treatment timea	Reduction Effect	Reference(s)
Lettuce	15 Gallotannin	Chemical	1 g/l; 7 days storage 4°C	10 min	app. 2 log CFU/cm²	Engels et al., 2012		
Green leaf lettuce	15 Ozone	Chemical	2 mg/l, 10°C, different incubation time for bacteria (6 h, 12 h, 48 h)	2 min	99.9% (6h incubation)	Olmez and Temur, 2010		
Green leaf lettuce	15 Chlorine	Chemical	100 mg/l, 10°C, different incubation time for bacteria (6 h, 12 h, 48 h)	2 min	99.9% (6h incubation)	Olmez and Temur, 2010		
Green leaf lettuce	15 Organic acid mixture	Chemical	0.25 g/100 g CA + 0.50 g/100 g AA, 10°C (6 h, 12 h, 48 h)	2 min	99.9% (6h incubation)	Olmez and Temur, 2010		
Minimally processed artichokes	23 Chlorine	Chemical	50 ppm	5 min	0.9 log CFU/g	Sanz et al., 2003		
Minimally processed artichokes	23 Ascorbic acid + citric acid	Chemical	0.02% CA and 0.2% AA	n.s.	1.6 log CFU/g	Sanz et al., 2003		
Carrots/Lettuce	19 or 15 Washing	Physical	n.s.	n.s.	slight reductionb	Martino et al., 2008		
Endive	15 Irradiation	Physical	gamma radiation: 0.6 kGy; flushed bags with air (5% CO₂, 5% O₂, 90% N₂ and 10% CO₂, 10% O₂, 80% N₂; 4°C)	n.s.	3.09 log CFU/g	Niemira et al., 2005		
Cherry tomatoes	11 Irradiation, gamma	Physical	1.25 kGy, 21+/− 2°C	n.s.	complete eliminationb	Todoriki et al., 2009		

Salmonella (Typhimurium, Montevideo, Javiana)

Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)a	Treatment timea	Reduction Effect	Reference(s)
Whole Green Onions	22 Irradiation, gamma	Physical	Various	n.s.	D-value of 0.32 kGy	Murugesan et al., 2011		
Concentrated orange juice	5 Freezing + irradiation	Physical	-20°C; Cesium-137 gamma radiation source: 2.0 kGy	n.s.	1.95 log CFU/ml	Niemira et al., 2003		
Concentrated orange juice	5 Freezing + irradiation	Physical	-20°C; Cesium-137 gamma radiation source: 2.0 kGy	n.s.	1.98 log CFU/ml	Niemira et al., 2003		
Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)	Treatment time	Reduction Effect	Reference(s)
---------------	--------------------	----------------	-----------	----------------------------	-----------------------------	----------------	-----------------	------------------------
Salmonella								
Enteritidis	Cherry tomatoes	11	Ozone	Chemical	20 mg/L	20 min	not detectable	Das et al., 2006
	Cherry tomatoes	11	Ozone	Chemical	10 mg/L	20 min	not detectable	Das et al., 2006
	Cherry tomatoes	11	Ozone	Chemical	5 mg/L (1 h after inoculation)	20 min	app. -4 log	Das et al., 2006
	Cherry tomatoes	11	Ozone	Chemical	5 mg/L (4 h after inoculation)	20 min	app. -2.5 log	Das et al., 2006
Enteritidis	Concentrated orange juice	5	Freezing + irradiation	Physical	-20°C; Cesium-137 gamma radiation source: 2.0 kGy	n.s.	2.12 log CFU/ml	Niemira et al., 2003
Enteritidis	Concentrated orange juice	5	Freezing + irradiation	Physical	-20°C; Cesium-137 gamma radiation source: 2.0 kGy	n.s.	1.81 log CFU/ml	Niemira et al., 2003
Javiana	Tomatoes	11	Biocontrol with Enterobacter asбурiae JX1	Biological	6 log CFU/ml	n.s.	suppressing effect	Ye et al., 2009
Montevideo	Tomatoes	11	Chlorine	Chemical	200 and 1000 mg/L, pH 6.5	5 min	4.5 - 5.0 log	Iturriaga and Escartín et al., 2010
Salmonella	Carrot juice	19	Lactic acid + copper	Chemical	2% LA; 50 ppm copper	12 h	reduction from 2.5x10^7 to 2.8x10^2	Ibrahim et al., 2008
Enteritidis	Cantaloupe	9	Hydrogen peroxide	Chemical	5%; 70°C	60 sec	3.8 log CFU/cm²	Ukuku et al., 2004
	Orange juice	5	Ozone + mild heating	Chemical + Physical	Ozone: 0.9 g/h; 50°C	15 min	undetectable	Williams et al., 2004
	Apple cider	6	Ozone + mild heating	Chemical + Physical	Ozone: 0.9 g/h; 50°C	15 min	complete elimination	Williams et al., 2004
	Cantaloupe	9	Hot water	Physical	97°C	60 sec	3.3 log CFU/cm²	Ukuku et al., 2004
	Orange juice	5	Sonication + high osmotic pressure storage	Physical	50 ± 0.2 W, 20 kHz (range: 5.9-34.1 min); 650 g TSS/kg (24-82 h)	n.s.	approx. 5 log CFU/ml	Wong et al., 2012
Stanley	Concentrated orange juice	5	Freezing + irradiation	Physical	freezing + gamma radiation 2.0 freezing for 1 h		2.17 log CFU/ml	Niemira et al., 2003
	Concentrated orange juice	5	Freezing + irradiation	Physical	freezing + nonirradiated	14 days	1.2 log CFU/ml	Niemira et al., 2003
Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)	Treatment time	Reduction Effect	Reference(s)
----------------------------------	-------------------------	----------------	------------------------------------	----------------------------	----------------------------	----------------	-----------------	-------------------
Salmonella Stanley H0588	Concentrated orange juice	5	Freezing + irradiation	Physical	freezing + gamma radiation 2.0 kGy	14 days	3.3 log CFU/ml	Niemira et al., 2003
Salmonella Typhimurium 14028	Concentrated orange juice	5	Freezing + irradiation	Physical	-20°C; Cesium-137 gamma radiation source: 2.0 kGy	n.s.	2.17 log CFU/ml	Niemira et al., 2003
Salmonella Typhimurium	Concentrated orange juice	5	Freezing + irradiation	Physical	freezing + gamma radiation 2.0 kGy	1 h	1.29 log CFU/ml	Niemira et al., 2003
Staphylococcus aureus	Vegetables	Other	Lactobacillus plantarum	Biological	different inoculum sizes; storage at 4°C, 8°C and 12°C	7 days	inhibition at all tested temperatures	Scolari et al., 2004
Pesto				Chemical	AS-48 (15 µg/ml) + hydrocinnamic acid (5mM)	24 h	to 0 log CFU/g	Grande et al., 2007
Napoletana sauce				Chemical	AS-48 (15 µg/ml) + hydrocinnamic acid (5mM)	24 h	complete elimination	Grande et al., 2007
Green sauce				Chemical	AS-48 (15 µg/ml) + Carvacrol (31.5mM)	8 h	complete elimination	Grande et al., 2007
Yersinia enterocolitica	Laboratory prepared orange juice	5	Organic acid mixture	Chemical	AA, LA, CA (Combination of two acids); 25°C	20 min	3.06-4.07 log units/ml	Lucero-Estrada et al., 2010
Yersinia enterocolitica	Commercial prepared orange juice	5	Organic acid mixture	Chemical	AA, LA, CA (Combination of two acids); 25°C	10 min	complete elimination	Lucero-Estrada et al., 2010
Parasites & Viruses								
Cryptosporidium parvum	Purple grape juice 4		Hydrogen peroxide	Chemical	0.03%	≥ 2 h	> 99.9 %	Kniel et al., 2003
White grape juice			Hydrogen peroxide	Chemical	0.03%	≥ 2 h	> 99.9 %	Kniel et al., 2003
Orange juice			Hydrogen peroxide	Chemical	0.03%	≥ 2 h	> 99.9 %	Kniel et al., 2003
Apple cider			Hydrogen peroxide	Chemical	0.03%	≥ 2 h	> 99.0 %	Kniel et al., 2003

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item(s)	FoNAO Category	Treatment	Treatment characterisation	Conditions (concentrations)	Treatment time	Reduction Effect	Reference(s)
Murine norovirus 1 (surrogate for human noroviruses)	Spinach	15	Blanching	Physical	80°C	1 min	2.44 log PFU reduction	Baert et al., 2008
	Deep frozen onions and spinach	22/15	Peracetic acid (PAA)	Chemical	20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70)	5 min	2.88 log PFU reduction	Baert et al., 2008
	Deep frozen onions and spinach	22/15	Washing	Physical	n.s.		1 log PFU reduction	Baert et al., 2008

a n.s.= not specified, b no quantitative data reported
Table 20: Outbreaks of disease caused by pathogenic bacteria, viruses, and parasites linked to FoNAO with high water content, EU countries.

Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
Pathogenic bacteria									
Bacillus cereus	Vegetables and juices and other products thereof	other	NR	France	2009	2	n.s.	0	ECDC, 2009
Chinese cabbage	15	farm (primary production)	Finland	2010	2	0	0	ECDC, 2010	
Salad	36	buffet	Germany	2009	102	0	0	ECDC, 2009	
Salad	36	NR	Finland	2010	2	0	0	ECDC, 2010	
Tomatoes	37	soup	Netherlands	2009	12	n.s.	n.s.	ECDC, 2009	
Canned food products	37	NR	France	2010	62	0	0	ECDC, 2010	
Clostridium botulinum	Vegetables and juices and other products thereof	other	NR	France	2010	5	4	1	ECDC, 2010
Green olives	35	paste	France	2011	9	9	n.s.	Pingeon et al., 2011	
Clostridium perfringens	Vegetables and juices and other products thereof	other	NR	France	2009	100	0	0	ECDC, 2009
Peas	37	soup	Netherlands	2009	4	n.s.	n.s.	ECDC, 2009	
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
----------	-----------	----------------	--------------------------	---------	------	----------------	--------------------------	----------------	-------------
Tomatoes	37	sauce, Pizza sauce	Netherlands	2009	3	n.s.	n.s.	ECDC, 2009	
Vegetables and juices and other products thereof	37	soup with crème	Belgium	2009	19	0	0	ECDC, 2009	
Clostridium spp.	Vegetables and juices and other products thereof	37							
Escherichia coli O157	Lettuce	15	NR	Netherlands, Iceland	2007	50	20	n.s.	Friesema et al., 2008
Lettuce (Iceberg)	15	locally produced	Sweden	2005	120	n.s.	n.s.	Söderström et al., 2005	
Escherichia coli O157:VT2	Lettuce	15	NR	Sweden	2005	135	11	0	Söderström et al., 2008
Lettuce (Iceberg)	15	locally produced	Switzerland	2005	120	n.s.	n.s.	Pakalniskiene et al., 2009	
Basil	15	fresh, pasta salad	Denmark	2006	217	n.s.	n.s.	Gajraj et al., 2012	
Lettuce (Iceberg)	15	NR	United Kingdom	2003	145	0	n.s.	Mertens et al., 2012	
Vegetable pasta salad	2	with curd cheese	Germany	2009	26	2	0	ECDC, 2009	
Salad	36	NR	United Kingdom	2009	81	5	n.s.	Severi et al., 2012	
Potatoes	37	with boiled codfish	Portugal	2009	30	30	0	ECDC, 2009	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
Salmonella Enteritidis	Chips and Salad	37	NR	United Kingdom	2005	85	17	n.s.	Giraudon et al., 2009
Salmonella Napoli	Rucola	15	NR	Sweden	2009	5	0	0	ECDC, 2009
Salmonella Newport	Lettuce	15	NR	Northern Ireland	2004	130	25	0	Irvine et al., 2009
Salmonella Newport, Salmonella Reading	Lettuce (Iceberg)	15	NR	Finland	2008	108	15	2	Lienemann et al., 2011
Salmonella Panama	Fruit Juice	1	fresh	Netherlands	2008	33	10	0	Noel et al., 2010
Salmonella Paratyphi B var. Java	Mixed lettuce leaves	17	NR	United Kingdom	2010	130	16	0	ECDC, 2010
Salmonella Senftenberg	Basil	16	fresh	United Kingdom	2007	30	3	n.s.	Pezzoli et al., 2007
Salmonella spp.	Vegetables and juices and other products thereof	other	NR	France	2010	2	2	0	ECDC, 2010
Salmonella Typhimurium	Vegetables and juices and other products thereof	other	NR	France	2010	5	1	0	ECDC, 2010
Salmonella Typhimurium DT104B	Lettuce (Iceberg)	15	from Spain	Finland	2005	60	n.s.	n.s.	Takkinen et al., 2005
Shigella dysenteriae	Sugarsnaps	14	NR	Sweden	2009	35	0	0	ECDC, 2009; Löfdahl et al., 2009
Shigella flexneri	Fruit, berries and juices and other products thereof	l/other	NR	Poland	2010	2	1	0	ECDC, 2010
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
-------------------------------	-------------------	----------------	---------------------------	----------	------	-----------------	---------------------------	----------------	---
Shigella sonnei	Sugar peas	14 NR		Denmark	2009	10	0	0	ECDC, 2009; Müller et al., 2009
	Salad	36 NR		Austria	2008	53	1 n.s.		Kuo et al., 2009
	Potatoes	37 with sauce		Spain	2005	196	9	0	Castell Monsalve et al., 2008
Staphylococcus aureus	Beans	14 frozen		Belgium	2009	14	0	0	ECDC, 2009
	Vegetables and	36 potato salad with onion		Slovakia	2009	17	0	0	ECDC, 2009
	juices and other								
	products thereof								
Staphylococcus enterotoxins	Vegetables	other with chicken		Portugal	2009	40	n.s.	0	ECDC, 2009
unknown bacterial agents	Beans	14 dried		Denmark	2010	105	0	0	ECDC, 2010
	White beans	14 dried		Denmark	2010	16	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	43	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	36	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	18	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	14	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	13	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	10	0	0	ECDC, 2010
	Beetroot	21 raw		Finland	2010	8	0	0	ECDC, 2010
Yersinia pseudotuberculosis	Carrots	19 grated		Finland	2003	111	9 n.s.		Jalava et al., 2006
O:1	Carrots	19 grated		Finland	2006	104	2 n.s.		Rimhanen-Finne et al., 2009
Viruses									
Hepatitis A virus	Tomatoes	38 semidried		France	2010	59	28	0	Gallot et al., 2011; Couturier, 2011
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
-------------------	--------------------	----------------	---------------------------	---------------	------	-----------------	----------------------------	-----------------	---------------------------------------
	Tomatoes	38	semidried	Netherlands	2010	13	0	0	ECDC, 2010; Pettrignani et al., 2010
	Tomatoes	38	semidried	United Kingdom	2011	7	4	0	Carvalho et al., 2012
	Vegetables and	other	NR	Finland	2006	400	0	n.s.	Makary et al., 2009
Norovirus	salads								
	Vegetables and	other	NR	Poland	2009	13	0	0	ECDC, 2009
	juices and other								
	juices and other								
	products thereof								
	Juice	1/other	NR	Germany,	2009	38	6	0	Visser et al., 2010
				Netherlands					
	Vegetables and	other	mixed cooked legumes	Germany	2010	40	0	0	ECDC, 2010
	juices and other								
	juices and other								
	products thereof								
Fruits	1	NR	Denmark	2009	8	0	0	ECDC, 2009	
	Strawberries	2	farm (primary production)	Sweden	2010	7	0	0	ECDC, 2010
	Strawberries	2	frozen	Germany	2012	11000	n.s.	n.s.	RKI, online
	Raspberries or	2/3	frozen	Finland	2009	11	0	0	ECDC, 2009
	strawberries								
	Raspberries	3	frozen	Denmark	2005	1043	23	n.s.	Korsager et al., 2005
	Raspberries	3	frozen	France	2005	75	0	0	Cotterelle et al., 2005
	Raspberries	3	frozen	Finland	2009	210	0	0	ECDC, 2009
	Raspberries	3	frozen, in dessert sauce	Finland	2009	32	0	0	ECDC, 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
Norovirus	Raspberries	3	frozen, in layer cake	Finland	2009	205	3	0	ECDC, 2009
	Raspberries	3	frozen, mixed with curd cheese	Finland	2009	622	0	0	ECDC, 2009
	Raspberries	3	mixed in curd cheese	Finland	2009	13	0	0	ECDC, 2009
	Raspberries	3	NR	Sweden	2009	130	0	0	ECDC, 2009
	Raspberries	3	farm (primary production)	Sweden	2010	21	0	0	ECDC, 2010
	Raspberries	3	farm (primary production)	Sweden	2010	8	0	0	ECDC, 2010
	Raspberries	3	frozen	Denmark	2010	60	0	0	ECDC, 2010
	Raspberries	3	frozen, from a farm	Finland	2010	90	0	0	ECDC, 2010
	Raspberries	3	frozen, from a farm	Finland	2010	43	0	0	ECDC, 2010
	Raspberries	3	frozen, imported from Serbia	Denmark	2010	30	0	0	ECDC, 2010
	Raspberries	3	NR	Denmark	2010	5	1	0	ECDC, 2010
	Blackberries	4	frozen	Germany	2005	241	0	n.s.	Fell et al., 2007
	Coleslaw, green Salad	15	NR	United Kingdom	2007	60	0	n.s.	Vivancos et al., 2009
Pathogen	Food item	FoNAO category	Details (vehicle, source)⁴	Country	Year	Number of cases	Number of hospitalisations⁴	Number of deaths⁵	Reference(s)
-----------------	-------------	----------------	----------------------------	------------	------	----------------	----------------------------	-----------------	--------------------------------------
Norovirus	Lettuce	15	NR	Finland	2009	77	0	0	ECDC, 2009
	Lettuce (Lollo Bionda)	15	from France	Denmark	2010	409	1	0	ECDC, 2010; Ethelberg et al., 2010
	Lettuce (Romaine)	15	from Germany	Denmark	2010	14	0	0	ECDC, 2010
	Salad	17	NR	Austria	2006	172	10	0	Schmid et al., 2007
	Mixed salad	17	NR	United Kingdom	2007	36	n.s.	n.s.	Showell et al., 2007
	Salad	17	NR	Germany	2009	101	4	n.s.	Wadl et al., 2010
	Carrots	19	NR	Belgium	2009	2	0	0	ECDC, 2009
	Onion	22	raw, chopped in a salad	Finland	2009	52	0	0	ECDC, 2009
	Mixed vegetable salad	36	NR	United Kingdom	2010	20	0	0	ECDC, 2010
	Potatoes	37	cooked, peeled	Germany	2010	41	0	0	ECDC, 2010
Parasites	Cryptosporidium hominis	12 or 19	grated carrots, whole carrots in water, pepper in water	Denmark	2005	99	n.s.	n.s.	Ethelberg et al., 2009
	Cryptosporidium parvum	16	fresh	Sweden	2008	21	3	n.s.	Insulander et al., 2008
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospitalisations	Number of deaths	Reference(s)
--------------------------------	------------------	----------------	---------------------------	---------	------	-----------------	---------------------------	-----------------	--------------
Cyclospora cayetanensis	Sugar snap peas	14	from Guatemala	Sweden	2009	14	1	n.s.	Insulander et al., 2010
Enterocytozoon bieneusi	Cucumber	13	in sandwiches and as salad	Sweden	2009	135	n.s.	n.s.	Decraene et al., 2012
Fasciola hepatica	Watercress	15	raw	France	2002	18	n.s.	n.s.	Mailles et al., 2006

NR = not reported
N.s. = not specified
Table 21: Outbreaks of disease caused by pathogenic bacteria, viruses, and parasites linked to FoNAO with high water content, non-EU countries.

Pathogen	Food item 1	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
Campylobacter jejuni	Peas	14	raw	USA	2008	98	5	0	Gardner et al., 2011 (with erratum: Gardner et al., 2012)
Clostridium botulinum	Green beans	37	home-canned	USA	2009	3	3	n.s.	Date et al., 2011
	Carrots	37	Juice, pasteurised	USA, Canada	2006	6	6	n.s.	Sheth et al., 2008; Relevé épidémiologique hebdomadaire, 2006
	Asparagus	37	home-canned	USA	2009	3	3	n.s.	Date et al., 2011
	Tomatoes	37	tinned fish in tomato sauce	USA	2002	2	2	2	Frean et al., 2004
	Carrots and green beans	37	home-canned	USA	2008	6	6	n.s.	Date et al., 2011
Escherichia coli O145	Lettuce (Romaine)	15	shredded	Multi-state outbreak USA (5 states)	2010	33	12	0	CDC, 2010
Escherichia coli O157	Lettuce	15	most likely shredded lettuce (restaurant)	Multi-state outbreak USA (5 states)	2006	71	53	n.s.	CDC, 2006
Escherichia coli O157:H7	Peperoni	37	pizza	Multi-state outbreak USA (10 states)	2007	20	8	0	CDC, 2007
	Lettuce (Iceberg)	15	NR	USA	2006	77	51	0	Sodha et al., 2011
	Lettuce (Romaine)	15	NR	Multi-state outbreak USA (10 states)	2011	60	30	0	CDC, 2011
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
--	-------------	----------------	--------------------------	-------------------------------	------	-----------------	--------------------	------------------	---
Spinach	Fresh	15	Multi state outbreak USA (26 states)	2006	199	102	3		CDC, 2006; Charatan 2006, Grant 2008, Wendel et al., 2009, MMWR, 2006
Escherichia coli O169:H41	Cabbage	15	USA	2003	35	n.s.	n.s.		Devasia et al., 2003
Escherichia coli O6:H16	Celery, cabbage	35	"Kimuchi"	Japan	2005	401	n.s.	n.s.	Kimura et al., 2006
non-O157 Shiga toxin producing Escherichia coli (O111) / Cryptosporidium parvum	Apple	6	cider, unpasteurized	USA	2004	213	6	0	Schaffzin et al., 2012; Vojdani et al., 2008
Listeria monocytogenes	Cantaloupe melon	9	whole, grown at Jensen Farms' production fields in Granada, Colorado	Multi-state outbreak USA (28 states)	2011	147	143	33	CDC, 2011; MMWR, 2011
Salmonella Agona	Papaya	8	whole, fresh, imported from Mexico	Multi-state outbreak USA (25 states)	2011	106	10	0	CDC, 2011
Salmonella Braenderup	Mangoes	8	NR	Multi-state outbreak USA (15 states)	2012	121	25	0	CDC, 2012
Tomatoes	NR	11	Multi-state outbreak USA (16 states)	2004	125	n.s.	0		Gupta et al., 2007
Salmonella group E	Potatoes	37	mashed	Singapore	2007	55	n.s.	n.s.	Lee et al., 2009
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
-----------------------	--------------------	----------------	---------------------------	---------	------	-----------------	-------------------	-----------------	-----------------------------------
Salmonella Javiana	Tomatoes	11	sliced	USA	2002	82	3	0	Srikantiah et al., 2005; MMWR, 2002
	Salad	17	NR	USA	2003	641	n.s.	n.s.	Elward et al., 2006
Salmonella Litchfield	Papaya	8	NR	Australia	2006-2007	26	n.s.	n.s.	Gibbs et al., 2009
	Cantaloupe melon	9	from Honduras	Multi-state outbreak USA (16 states)	2008	51	16	0	CDC, 2008
	Fruit salad	10	NR	USA	2007	30	n.s.	n.s.	MMWR, 2008a
Salmonella Newport	Tomatoes	11	NR	Multi-state outbreak USA (16 states)	2005	72	8	0	Greene et al., 2008
Salmonella Oranienburg	Fruit salad	10	NR	USA, Canada	2006	41	7	0	MMWR, 2007
Salmonella Panama	Cantaloupe melon	9	single farm in Guatemala	Multi-state outbreak USA (10 states)	2011	20	3	0	CDC, 2011
Salmonella Saintpaul	Orange	5	Fresh orange juice (unpasteurised)	USA	2005	5	0	0	Jain et al., 2009
	Cantaloupe melon	9	NR	Australia	2006	232	9	n.s.	Munnoch et al., 2009
	Jalapeño peppers, serrano peppers, tomatoes	11 or 12	from Mexico	Multi-state outbreak USA (43 states), Canada	2008	1442	286	2	Behravesh et al., 2011, CDC, 2008; Mody et al., 2011; Taylor et al., 2010
Salmonella Thompson	Rucola lettuce or mixed salad	15	NR	Norway	2004	21	n.s.	n.s.	Nygård et al., 2008
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
--------------------------------------	--------------------	----------------	---------------------------	--------------------------	-------	-----------------	--------------------	------------------	----------------------
Salmonella Typhi	Mamey Fruit Pulp	37	frozen milkshake or smoothie	Multi-state outbreak USA (2 states)	2010	9	7	0	CDC, 2010
Salmonella Typhimurium	Orange	5	juice, unpasteurized	USA	2005	152	89	0	Jain et al., 2009
Salmonella Typhimurium	Cantaloupe melon	9	from Indiana	Multi-state outbreak USA (24 states)	2012	261	94	3	CDC, 2012 (last updated 10-10-2012)
Salmonella Typhimurium and Salmonella St. Paul	Watermelon	9	NR	New Zealand	2009	19	5	0	McCallum et al., 2010
Salmonella Typhimurium, Salmonella Schwarzgrund	Tomatoes	11	Multi state outbreak USA (21 states), Canada	2006	185	22	0		CDC, 2006; Behravesh et al., 2012
Salmonella Typhimurium and Salmonella St. Paul	Orange	5	juice, unpasteurized	USA	2005	152	n.s.	n.s.	Vojdani et al., 2008
Salmonella Typhimurium	Potatoes	36	salad	USA	2009	9	n.s.	n.s.	MMWR, 2010
Shigella sonnei	Sugar peas	14	NR	Norway	2009	23	3	0	ECDC, 2009
Shigella sonnei	Basil	16	fresh	Norway	2011	46	n.s.	n.s.	Guzman-Herrador et al., 2011
Shigella sonnei	Carrots	19	raw	USA (flights from Hawaii)	2004	163	9	n.s.	Gaynor et al., 2009
Staphylococcus aureus	Potatoes	36	salad	Switzerland	2010	27	27	0	ECDC, 2010
Staphylococcus aureus	Potatoes	36	salad	Switzerland	2009	30	0	0	ECDC, 2009
Staphylococcus aureus	Potatoes	37	soup, with raw milk	Switzerland	2009	39	0	0	ECDC, 2009
Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
--------------------------------	---------------	----------------	---------------------------	----------	------------	-----------------	-------------------	-----------------	---
Vibrio cholerae O1 Ogawa	Vegetables	other	raw	Zambia	2003-2004	2529	n.s.	128	MMWR, 2004a
Yersinia enterocolitica	Salad	17	NR	Norway	2011	21	n.s.	n.s.	MacDonald et al., 2012
Viruses									
Hepatitis A virus	Blueberries	4	raw	New Zealand	2002	81	18	1	Calder et al., 2003
	Orange	5	Juice, unpasteurized	Egypt	2004	351	127	0	Frank et al., 2007
	Coleslaw	15	NR	Australia	2003	21	n.s.	n.s.	Munnoch et al., 2004
	Green onion	22	NR	USA	2003	601	124	3	Wheeler et al., 2005;
	Tomatoes	38	semidried	Australia	2009	562	0	1	Wand and Moran 2004, MMWR, 2003
Nipah virus	Date palm sap	8	raw	Bangladesh	2008	10	n.s.	9	Rahman et al., 2012
Norovirus	Lettuce (Lotto)	15	farm (primary production)	Norway	2010	157	0	0	ECDC, 2010
	Mixed salad	15	NR	Norway	2010	38	0	0	ECDC, 2010
Radish	NR			Korea	2008	117	n.s.	n.s.	Yu et al., 2010
Parasites	Apple	6	cider, unpasteurized	USA	2003	144	n.s.	n.s.	Vojdani et al., 2008
Cryptosporidium parvum	Raspberries	3	juice	Guatemala	2003	7	n.s.	n.s.	Puente et al., 2006
Cyclospora cayetanensis	Snow Peas	14	raw, from Guatemala	USA	2004	96	n.s.	n.s.	Heilpern et al., 2005; MMWR, 2004b
	Basil	16	fresh	Canada	2005	142	7	0	Milord et al., 2012
Food of plant origin with high water content

Pathogen	Food item	FoNAO category	Details (vehicle, source)	Country	Year	Number of cases	Number of hospital	Number of deaths	Reference(s)
Trichostrongylus spp.	Vegetables	other	sheep manure used as organic fertilizer	New Zealand	2008	3	n.s.	n.s.	Wall et al., 2011
Trypanosoma cruzi	Guava juice	NR		Venezuela	2007	103	0	1	Alarcón de Noya et al., 2010
	Sugar cane juice	NR		Brazil	2005	24	n.s.	3	Steindel et al., 2008

*NR = not reported
^n.s. = not specified
B. Appendix Specific to Thematic Area B

Table 22: Categories and items of FoNAO with high water content as reported in association with bacteria. Food items that have been implicated in outbreaks with the ten highest numbers of outbreak cases, hospitalisations, and/or deaths (see Table 30) are highlighted. “Country/ies” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
1 Fruits (not specified)	Fruits	*Listeria monocytogenes, Salmonella spp.*, *Escherichia coli O157:H7 (EHEC)*, *Shigella spp.*, *Cronobacter spp.*, *Bacillus cereus* like organism*, *Staphylococcus aureus*	Italy, India, Korea, Switzerland, Denmark	ECDC, 2008; Lewis et al., 2006; Lee et al., 2012; Althaus et al., 2012; Rosenquist et al., 2005; Seo et al., 2010
2 Strawberries	Strawberries	*Listeria monocytogenes, Staphylococcus aureus*	Norway	Johanessen et al., 2002
4 Other berries	Grape	*Escherichia coli O157:H7 (EHEC)*, *Klebsiella oxytoca*, *Pseudomonas aeruginosa*, *Salmonella spp.*, *Shigella spp.*, *Staphylococcus aureus*	India, Libya	Lewis et al., 2006; Ghenghesh et al., 2005
5 Citrus fruit	Citrus fruit juice	*Salmonella spp.*	Nigeria	Ukwo et al., 2011
	Kinnon mandarin	*Staphylococcus aureus*	India	Mudgil et al., 2004
	Orange	*Escherichia coli O157:H7 (EHEC)*, *Klebsiella oxytoca*, *Pseudomonas aeruginosa*, *Salmonella spp.*, *Salmonella Typhi*, *Shigella spp.*, *Staphylococcus aureus*, *Vibrio cholerae*	India, Libya, Nigeria	Lewis et al., 2006; Ghenghesh et al., 2005; Tambekar et al., 2009; Ukwo et al., 2011
	Sweet lemon (*Citrus limetta*)	*Pseudomonas aeruginosa*, *Salmonella spp.*, *Salmonella Typhi*, *Staphylococcus aureus*	India	Tambekar et al., 2009; Titarmare et al., 2009
6 Apples and related fruit	Apples	*Pseudomonas aeruginosa*, *Staphylococcus aureus*	Libya, India	Ghenghesh et al., 2005; Tambekar et al., 2009
7 Stone fruit	Drupes	*Salmonella spp.*	Spain	Badosa et al., 2008
	Peach	*Klebsiella oxytoca*, *Klebsiella pneumoniae*	Libya	Ghenghesh et al., 2005
FoNAO Category	Food item	Pathogen(s)	Country(ies)	Reference(s)
---------------	-----------	-------------	--------------	--------------
8 Tropical fruit	Coconut products	*Salmonella* spp., *Shigella* spp., *Staphylococcus aureus*	Hungary, India	ECDC, 2009; Ghosh et al., 2007
	Date	*Staphylococcus aureus*	Saudi Arabia	Hamad et al., 2012
	Dragon fruit	*Salmonella* spp., *Salmonella Typhi*, *Salmonella Typhimurium*	Malaysia	Pui et al., 2011
	Fruit juice	*Salmonella* spp.	Nigeria	Ukwo et al., 2011
	Jackfruit	*Salmonella* spp., *Salmonella Typhi*	Malaysia	Pui et al., 2011
	Mango	*Escherichia coli* O157:H7 (EHEC), *Salmonella* spp., *Salmonella Typhi*, *Shigella* spp., *Klebsiella oxytoca*, *Klebsiella pneumoniae*, *Staphylococcus aureus*	India, Malaysia, Libya	Lewis et al., 2006; Pui et al., 2011; Ghenghesh et al., 2005
9 Melons	Bitter melon	*Salmonella* spp.	India	Titarmare et al., 2009
	Cantaloupe	*Salmonella* Montevideo, *Salmonella* spp.	USA, Mexico	Johnston et al., 2005; Gallegos-Robles et al., 2008
	Honeydew	*Salmonella* spp., *Salmonella Typhi*, *Salmonella Typhimurium*	Malaysia	Pui et al., 2011
	Watermelon	*Enterobacter aerogenes*, *Klebsiella pneumoniae*, *Salmonella* spp., *Salmonella Typhi*, *Staphylococcus aureus*	Malaysia	Chukwu et al., 2010; Pui et al., 2011
10 Fruit mixes	Fruit juice	*Staphylococcus aureus*	Korea	Cho et al., 2011
	Fruit juice	*Bacillus cereus*	Poland	Mostafa et al., 2002
11 Tomatoes	Tomatoes	*Listeria monocytogenes*, *Pseudomonas aeruginosa*, *Salmonella* spp., *Staphylococcus aureus*, *Vibrio parahaemolyticus*	Greece, Malaysia, Chile, Spain, Saudi Arabia, Canada	Kokkinakis et al., 2007; Ponniah et al., 2010; Cordano and Jacquet, 2009; Ramirez Merida 2009; Hassan et al., 2011; Arthur et al., 2007; Tunung et al., 2010
12 Peppers, and aubergines	Chile pepper	*Salmonella* spp.	Mexico	Gallegos-Robles et al., 2008
	Green peppers	*Escherichia coli* O157:H7 (EHEC), *Listeria monocytogenes*, *Salmonella* spp.	USA, Portugal	Mukherjee et al., 2004; Mena et al., 2004
	Paprika	*Bacillus cereus* group spp.	Belgium	Samapundo et al., 2011
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
--------------------------------	----------------------------------	--	---------------------------------	--
	Pepper	*Listeria monocytogenes*	Greece	Kokkinakis et al., 2007
13 Gourds and squashes	Bottle gourd (Lagenaria siceraria)	*Salmonella* spp.	India	Titarmare et al., 2009
	Cucumber	*Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella* spp., *Staphylococcus aureus, Vibrio parahaemolyticus*	Malaysia, Saudi Arabia, India	Ponniah et al., 2010; Hassan et al., 2011; Titarmare et al., 2009; Tunung et al., 2010
	Zucchini	*Bacillus cereus, Listeria monocytogenes, Salmonella* spp.	France, Germany, Mexico	Guinebretiere et al., 2003; Pappelbaum et al., 2008; Castro-Rosas et al., 2010
14 Fresh pods, legumes and grains	Broad beans	*Listeria monocytogenes*	Chile	Cordano and Jacquet, 2009
15 Leafy greens eaten raw as salads	Baby spinach	*Listeria monocytogenes*	Canada	Ilic et al., 2008
	Cabbage	*Campylobacter jejuni, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella* spp., *Vibrio parahaemolyticus*	Malaysia, USA, Saudi Arabia, Mexico	Chai et al., 2009; Ponniah et al., 2010; Johnston et al., 2006; Prazak et al., 2002; Hassan et al., 2011; Quiroz-Santiago et al., 2009; Tunung et al., 2010
	Chicories	*Salmonella* spp.	Brazil	Froder et al., 2007
	Chinese cabbage	*Bacillus cereus* group spp.	Belgium	Samapundo et al., 2011
	Endive	*Escherichia coli* (VTEC), *Salmonella* spp.	Netherlands	ECDC, 2008
	Leafy greens	*Cronobacter* spp.	Ireland	Molloy et al., 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
Lettuce	*Aeromonas caviae, Aeromonas hydrophila, Aeromonas sobria, Escherichia coli O157:H7 (EHEC), Pseudomonas aeruginosa, Salmonella spp., Salmonella Typhimurium, Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Listeria monocytogenes, Yersinia enterocolitica*	Brazil, USA, Saudi Arabia, Canada, Turkey, Brazil, Netherlands, Korea, Malaysia, Norway, Mexico	Castilho et al., 2009; Mukherjee et al., 2004; Hassan et al., 2011; Arthur et al., 2007; Cetin et al., 2008; Froder et al., 2007; Mukherjee et al., 2004; ECDC, 2008; Erkan et al., 2008; Seo et al., 2010; Tunung et al., 2010; Loncarevic et al., 2005; Johanessen et al., 2002; Quiroz-Santiago et al., 2009	
Lettuce and arugula	*Salmonella Enterica, Salmonella Typhi*	Brazil	Sant’Ana et al., 2011	
Mixed lettuce	*Escherichia coli (VTEC)*	Netherlands	ECDC, 2008	
Mixed salads	*Salmonella spp.*	Brazil	Froder et al., 2007	
Purslane (Portulaca oleracea)	*Salmonella spp.*	Mexico	Quiroz-Santiago et al., 2009	
Romaine lettuce	*Salmonella spp.*	Mexico	Quiroz-Santiago et al., 2009	
Salad	*Listeria monocytogenes, Salmonella spp.*	Spain, Hungary, Estonia, Czech Republic, Slovenia	ECDC, 2009	
Savoy spinach	*Salmonella spp.*	Canada	Ilic et al., 2008	
Spinach	*Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella spp., Shigella spp.*	Chile, Brazil, Spain, Germany, Saudi Arabia, Canada, Mexico	Cordano and Jacquet, 2009; Froder et al., 2007; Moreno et al., 2012; Pappelbaum et al., 2008; Hassan et al., 2011; Ilic et al., 2008; Quiroz-Santiago et al., 2009	
Vegetable (lettuce, spinach)	*Escherichia coli (Enteroaggregative), Escherichia coli (STEC)*	Colombia	Rugeles et al., 2010	
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
------------------------------	---	---	----------------------------------	---
	Vegetable (rucola, lettuce)	*Listeria monocytogenes, Salmonella spp.*	Italy	De Giusti et al., 2010
	Water spinach	*Campylobacter coli, Campylobacter jejuni*	Malaysia	Chai et al., 2007
	Watercress	*Salmonella spp., Staphylococcus aureus*	Brazil, Mexico, Turkey	Froder et al., 2007; Quiroz-Santiago et al., 2009; Erkan et al., 2008
16 Fresh herbs	Basil	*Enterobacter cloacae, Klebsiella oxytoca, Pseudomonas aeruginosa, Salmonella spp., Salmonella Typhimurium*	USA, United Kingdom	Wetzel et al., 2010; Elviss et al., 2009
	Chinese parsley	*Salmonella spp.*	Mexico	Quiroz-Santiago et al., 2009
	Cilantro	*Salmonella spp.*	Mexico	Quiroz-Santiago et al., 2009
	Coriander	*Pseudomonas aeruginosa, Salmonella spp., Listeria monocytogenes*	Saudi Arabia, United Kingdom, India, Spain	Hassan et al., 2011; Elviss et al., 2009; Singh et al., 2007; Ramirez Merida 2009
	Coriander, Vietnamese (Polygonum minus)	*Campylobacter coli, Campylobacter jejuni*	Malaysia	Chai et al., 2007; Chai et al., 2009
	Herbs	*Salmonella spp.*	Netherlands	ECDC, 2009
	Indian pennywort (Centella asiatica)	*Campylobacter coli, Campylobacter fetus, Campylobacter jejuni, Listeria monocytogenes, Vibrio parahaemolyticus*	Malaysia	Chai et al., 2007; Ponniyah et al., 2010; Tunung et al., 2010
	Japanese parsley (Oenanther stolonifera)	*Listeria monocytogenes*	Malaysia	Ponniyah et al., 2010
	Kangkong (Ipomoea aquatica)	*Salmonella spp.*	Malaysia	Salleh et al., 2003
	Kesum (Polygonum minus)	*Salmonella spp.*	Malaysia	Salleh et al., 2003
	Korean Herbs	*Salmonella spp.*	Malaysia	Salleh et al., 2003
	Mint	*Salmonella spp.*	United Kingdom, India	Elviss et al., 2009; Singh et al., 2007

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
Other (rosemary, thyme, methi, curry leaves, walleria)	Salmonella spp.	United Kingdom	Elviss et al., 2009	
Papaloquelite or Mexican cilantro	Salmonella spp.	Mexico	Quiroz-Santiago et al., 2009	
Parsley	Bacillus cereus, Clostridium perfringens, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella spp., Salmonella Typhi, Staphylococcus aureus	Brazil, Mexico, Saudi Arabia, United Kingdom, Turkey	Moreira et al., 2009; Gomez-Govea et al., 2012; Hassan et al., 2011; Elviss et al., 2009; Quiroz-Santiago et al., 2009; Erkan et al., 2008	
Parsley, Japanese (Oenanthe stolonifera)	Campylobacter coli, Campylobacter jejuni, Vibrio parahaemolyticus	Malaysia	Chai et al., 2007; Tunung et al., 2010	
Pegaga (Centella asiatica)	Salmonella spp.	Malaysia	Salleh et al., 2003	
Selom (Oenanthe stolonifera)	Salmonella spp.	Malaysia	Salleh et al., 2003	
Wild cosmos (Cosmos caudatus)	Campylobacter coli, Campylobacter fetus, Campylobacter jejuni, Vibrio parahaemolyticus	Malaysia	Chai et al., 2007; Tunung et al., 2010	
Wild parsley (Cosmos caudatus)	Listeria monocytogenes	Malaysia	Ponniah et al., 2010	
17 Mixed fresh-cut salad leaves	Cabbage	Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, Yersinia enterocolitica	Brazil, United Kingdom, Korea	Sant’Ana et al., 2012; Meldrum et al., 2009; Lee et al., 2004
	Chinese cabbage	Yersinia enterocolitica	Korea	Lee et al., 2004
	Collard greens	Listeria monocytogenes	Brazil	Sant’Ana et al., 2012
	Corn salad (Valerianella locusta)	Salmonella spp.	Spain	Abadias et al., 2008
	Edible leaves	Listeria monocytogenes	Spain	Badosa et al., 2008
	Escarole	Listeria monocytogenes	Brazil	Sant’Ana et al., 2012
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
---------------------	--------------------	---	------------------------------	---
	Lettuce	*Bacillus cereus* like organism, *Listeria monocytogenes*, *Salmonella* spp., *Staphylococcus aureus*, *Yersinia enterocolitica*, *Cronobacter* spp., *Escherichia coli* (EPEC), *Escherichia coli* (STEC)	Denmark, Spain, Costa Rica, Brazil, United Kingdom, Korea, Switzerland	Rosenquist et al., 2005; Abadias et al., 2008; Monge et al., 2011; Sant'Ana et al., 2012; Meldrum et al., 2009; Lee et al., 2004; Althaus et al., 2012
	Mixed lettuce	*Listeria monocytogenes*	Italy	De Giusti et al., 2010
	Mixed salads	*Listeria monocytogenes, Salmonella* spp.	Spain	Abadias et al., 2008; Badosa et al., 2008
	Salad	*Cronobacter* spp., *Listeria monocytogenes*	Korea, USA	Lee et al., 2012; Gombas et al., 2003
	Spinach	*Listeria monocytogenes, Salmonella* spp., *Yersinia enterocolitica*	Spain, Brazil, Korea	Moreno et al., 2012; Sant'Ana et al., 2012; Abadias et al., 2008; Lee et al., 2004
	Water dropwort	*Yersinia enterocolitica*	Korea	Lee et al., 2004
	Watercress	*Listeria monocytogenes*	Brazil	Sant'Ana et al., 2012
19 Carrots	Carrots	*Bacillus cereus* group spp., *Clostridium botulinum*, *Listeria monocytogenes, Salmonella* spp., *Staphylococcus aureus*, *Vibrio cholerae*, *Vibrio parahaemolyticus*	Belgium, France, Germany, Malaysia, India, USA, Nigeria	Samapundo et al., 2011; Sevenier et al., 2012; Pappelbaum et al., 2008; Ponniiah et al., 2010; Kamat et al., 2005; Titarmare et al., 2009; Endley et al., 2003; Singh et al., 2007; Mudgil et al., 2004; Ukwo et al., 2011; Tunung et al., 2010
	Fruit juice	*Salmonella* spp.	Nigeria	Ukwo et al., 2011
20 Potatoes	Potato	*Salmonella* spp., *Bacillus cereus*	Mexico, Argentina	Quiroz-Santiago et al., 2009; Fangio et al., 2010
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
---	-------------------------	--	--------------------	---
21 Other root and tuberous vegetables	Beetroot	*Listeria monocytogenes, Salmonella spp.*	Chile, Mexico	Cordano and Jacquet, 2009; Quiroz-Santiago et al., 2009
	Ginger	*Salmonella spp.*	India	Titarmare et al., 2009
	Radish	*Campylobacter jejuni, Salmonella spp.*	Malaysia, India	Chai et al., 2009; Singh et al., 2007
	Radish root	*Yersinia enterocolitica*	Korea	Lee et al., 2004
	Root vegetables	*Cronobacter spp.*	Korea	Kim et al., 2011b
	Sweet potato	*Listeria monocytogenes, Vibrio parahaemolyticus*	Malaysia	Ponniash et al., 2010; Tunung et al., 2010
22 Bulb and stem vegetables	Asparagus	*Listeria monocytogenes*	Chile	Cordano and Jacquet, 2009
	Bulbous vegetables	*Salmonella spp.*	Germany	Schwaiger et al., 2011
	Celery	*Bacillus cereus group spp., Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella spp.*	Belgium, Chile, Korea, Saudi Arabia, Mexico	Samapundo et al., 2011; Cordano and Jacquet, 2009; Cho et al., 2004; Hassan et al., 2011; Quiroz-Santiago et al., 2009
	Garlic	*Vibrio cholerae*	Nigeria	Ukwo et al., 2011
	Green onion	*Pseudomonas aeruginosa, Staphylococcus aureus, Yersinia enterocolitica*	Saudi Arabia, Korea	Hassan et al., 2011; Seo et al., 2010; Lee et al., 2004
	Onion	*Bacillus cereus, Salmonella spp., Staphylococcus aureus*	Brazil, United Kingdom	Moreira et al., 2009
	White asparagus	*Clostridium perfringens, Clostridium septicum*	Spain	Valero et al., 2006
23 Flowers and flower buds	Broccoli	*Listeria monocytogenes, Salmonella spp.*	Germany, Portugal, Chile, Spain, Mexico	Pappelbaum et al., 2008; Mena et al., 2004; Cordano and Jacquet, 2009; Moreno et al., 2012; Quiroz-Santiago et al., 2009
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
---------------	-----------	-------------	-------------	--------------
29 Mushrooms, fungi and yeasts	Cauliflower	Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella spp.	Germany, Chile, Saudi Arabia, Mexico	Pappelbaum et al., 2008; Cordano and Jacquet, 2009; Hassan et al., 2011; Quiroz-Santiago et al., 2009
	Courgette	Listeria monocytogenes	Portugal	Mena et al., 2004
	Boletus edulis	Listeria monocytogenes	Spain	Venturini et al., 2011
	Calocybe gambosa	Listeria monocytogenes, Yersinia enterocolitica	Spain	Venturini et al., 2011
	Cantharellus cibarius	Yersinia enterocolitica	Spain	Venturini et al., 2011
	Craterellus cornucopioides	Yersinia enterocolitica	Spain	Venturini et al., 2011
	Hygrophorus limacinus	Listeria monocytogenes	Spain	Venturini et al., 2011
	Lactarius deliciosus	Listeria monocytogenes	Spain	Venturini et al., 2011
	Mushrooms	Listeria monocytogenes, Staphylococcus aureus, Yersinia enterocolitica	Norway, Germany, Spain, Chile, Korea	Johanessen et al., 2002; Pappelbaum et al., 2008; Venturini et al., 2011; Cordano and Jacquet, 2009; Cho et al., 2004; Lee et al., 2004
	Tuber indicum	Listeria monocytogenes	Spain	Venturini et al., 2011
30 Sea vegetables	Algae	Pseudomonas aeruginosa	Italy	Catellani et al., 2010
	Seaweed	Cronobacter spp., Listeria monocytogenes	Korea, Chile	Lee et al., 2012; Cordano and Jacquet, 2009
35 Fermented, salted, or acidified vegetables or fruit	Asazuke (Japanese light pickles)	Listeria monocytogenes	Japan	Maklon et al., 2010
	Green table olives	Listeria monocytogenes	Italy	Caggia et al., 2004
	Olives	Staphylococcus aureus	Portugal	Pereira et al., 2008
36 Mixed salads	Mixed salads (cabbage, lettuce, tomato)	Staphylococcus aureus	United Kingdom	Meldrum et al., 2009
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
----------------	-----------	-------------	-------------	--------------
Mixed salads	*Cronobacter sakazakii*, *Enterobacter aerogenes*, *Enterobacter cloacae*, *Klebsiella oxytoca*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Yersinia enterocolitica*, *Listeria monocytogenes*, *Staphylococcus aureus*	Germany, Chile, Korea	Weiss et al., 2005; Cordano and Jacquet, 2009; Seo et al., 2010	
Mixed salads (lettuce, avocado, water cress, wheat sprouts, tomato, cucumber, radish, carrot)	*Escherichia coli* (Enteroinvasive and Shiga-toxin producing), *Escherichia coli* (Enteroinvasive), *Escherichia coli* (STEC)	Mexico	Castro-Rosas et al., 2012	
Mixed salads (spinach, sprouts, cabbage, mushrooms, rocket, valerian or multi-salad packs)	*Yersinia enterocolitica*, *Aeromonas hydrophila*	Greece	Xanthopoulos et al., 2010	
Salad	*Bacillus cereus*	Nigeria	Isara et al., 2010	
Salad	*Listeria monocytogenes*, *Pseudomonas aeruginosa*, *Salmonella Typhi*, *Salmonella Typhimurium*, *Shigella sonnei*, *Shigella spp.*, *Staphylococcus aureus*	Ireland, Brazil, Estonia, Lithuania, Slovakia, Hungary, USA, United Kingdom, Nigeria, India	ECDC, 2008; Verdin et al., 2007; Sauders et al., 2009; Isara et al., 2010; Ghosh et al., 2007	
Salad mix (mixes of different varieties of lettuce, watercress, chard, spinach, carrot, arugula, chicory, escarole and tomato)	*Listeria monocytogenes*	Brazil	Sant’Ana et al., 2012	
Salad mix (raw spinach, tomato, mushrooms)	*Escherichia coli* (ETEC), *Escherichia coli* (STEC)	Mexico	Castro-Rosas et al., 2012	
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
----------------	-----------	-------------	-------------	--------------
Salad mix (romaine lettuce, various spinach and mixed salads)	*Bacillus cereus, Escherichia coli (VTEC), Listeria monocytogenes*	Portugal	Santos et al., 2012	
Salad vegetables	*Listeria monocytogenes, Salmonella Durban, Salmonella Newport, Salmonella spp., Salmonella Umbilo*	United Kingdom	Sagoo et al., 2003	
37 Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	Bean curd	*Listeria monocytogenes*	China	Zhou et al., 2006
	Confectionery products and pastes	*Salmonella spp.*	Romania	ECDC, 2009
	Coriander sauce	*Shigella spp., Staphylococcus aureus*	India	Ghosh et al., 2007
	Deli salads	*Listeria monocytogenes*	USA	Gombas et al., 2003
	Imported confectionery products and pastes	*Salmonella spp.*	Slovakia	ECDC, 2009
	Other food (various ingredients)	*Cronobacter sakazakii, Escherichia coli O157:H7 (EHEC), Listeria monocytogenes, Salmonella spp., Staphylococcus aureus*	Korea, Malawi, Italy	Ryu et al., 2011; Taulo et al., 2008; Latorre et al., 2007; Cho et al., 2011
	Potato meal	*Bacillus cereus*	Italy	Bonerba et al., 2010
	Sauce and Dressings	*Salmonella spp.*	Lithuania	ECDC, 2009
	Staple food	*Staphylococcus aureus*	Taiwan	Wei et al., 2006
	Sunsik (grain, fruit and vegetables)	*Bacillus cereus*	Korea	Lee et al., 2011
	Taco-dressing (boiled green chilli sauce)	*Salmonella Enterica, Salmonella Enteritidis*	Mexico	Estrada- Garcia et al., 2004
	Taco-dressing (raw coriander onion mix)	*Salmonella Agona, Salmonella Enterica*	Mexico	Estrada- Garcia et al., 2004
	Taco-dressing (raw red chilli sauce)	*Salmonella Enteritidis*	Mexico	Estrada- Garcia et al., 2004
	Vegetables	*Escherichia coli O157:H7 (EHEC), Salmonella spp., Staphylococcus aureus*	Malawi	Taulo et al., 2008
	Vegetarian food	*Staphylococcus aureus*	Taiwan	Wei et al., 2006
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
----------------	-----------	-------------	-------------	--------------
38 Dehydrated vegetables and fruit	Coconut	Cronobacter sakazakii	Czech Republic	Hochel et al., 2012
	Dehydrated potato flakes	Bacillus cereus	New Zealand	Turner et al., 2006
	Raisins	Salmonella spp.	India	Sharma et al., 2008
	Vegetables	Cronobacter spp.	Netherlands	Kandhai et al., 2010
1/other Fruits (not specified)/n.s.	Fruits and vegetables	Bacillus cereus, Cronobacter spp., Listeria monocytogenes, Salmonella spp., Staphylococcus aureus	Korea, Ireland, Slovenia, Portugal, Spain, Sweden, Germany, Canada, Luxembourg, Belgium	Chung et al., 2010; Kim et al., 2011b; ECDC, 2008; ECDC, 2009; Badosa et al., 2008; Arthur et al., 2007; Badosa et al., 2008; Chung et al., 2010
	Produce	Listeria monocytogenes, Salmonella Montevideo, Salmonella spp.	USA, Norway	Zhang et al., 2007; Johnston et al., 2005; Johanessen et al., 2002; Mukherjee et al., 2004
	Vegetable or fruit salat	Listeria monocytogenes	Netherlands	ECDC, 2009
11/13 Tomatoes/Gourds and squashes	Cucumbers, Tomatoes	Bacillus cereus like organism	Denmark	Rosenquist et al., 2005
13/20 Potatoes/Gourds and squashes	Vegetables (butter nut squash, potato)	Bacillus cereus	Argentina	Fangio et al., 2010
n.s.	Other Vegetables	Bacillus cereus like organism	Denmark	Rosenquist et al., 2005
	Vegetable (products)	Listeria monocytogenes, Salmonella spp.	Estonia, Italy	ECDC, 2009
	Vegetables	Bacillus cereus	Taiwan, Korea	Fang et al., 2003; Thapa et al., 2008
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
--------------------	---	--	-----------------------------	----------------------------------
Vegetables	**Cronobacter spp., Escherichia coli (VTEC), Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus**, Bacillus cereus like organism², *Escherichia coli (EPEC)*, *Escherichia coli (STEC)*	Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Lee et al., 2012; Chon et al., 2012; Turcovský et al., 2011; ECDC, 2010; ECDC, 2008; Pappelbaum et al., 2008; ECDC, 2009; de Curtis et al., 2002; Thapa et al., 2008; Vitas et al., 2004; Zhou et al., 2006; Jalali and Abedi 2008; Aguado et al., 2004; Sant'Ana et al., 2012; Moreno et al., 2012; Miranda et al., 2009; Quiroz-Santiago et al., 2009; Fang et al., 2003; Rosenquist et al., 2005; Althaus et al., 2012; Badosa et al., 2008	
Vegetables (lettuce, cabbage, carrot and radish sprout)	*Escherichia coli O157:H7 (EHEC)*	Iran	Khandaghi et al., 2010	
Vegetables (soy bean, yam, potato)	**Cronobacter spp.**	Korea	Kim et al., 2008	
Vegetables (tomatoes, celery, parsley, paprika, brussels sprouts)	**Listeria monocytogenes**	Germany	Pappelbaum et al., 2008	
Mix for sukiyaki (soup/stew type, a Japanese dish)	**Listeria monocytogenes**	Brazil	Sant'Ana et al., 2012	
Vegetable (products)	**Listeria monocytogenes, Salmonella spp.**	Estonia, Italy	ECDC, 2009	
Vegetables	**Bacillus cereus**	Taiwan, Korea	Fang et al., 2003; Thapa et al., 2008	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
Vegetables	*Cronobacter* spp., *Escherichia coli* (VTEC), *Listeria monocytogenes*, *Salmonella* Gustavia, *Salmonella* spp., *Salmonella* Typhimurium, *Staphylococcus* aureus, *Bacillus cereus* like organism, *Escherichia coli* (EPEC), *Escherichia coli* (STEC)	Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Lee et al., 2012; Chon et al., 2012; Turcovský et al., 2011; ECDC, 2010; ECDC, 2008; Pappelbaum et al., 2008; ECDC, 2009; de Curtis et al., 2002; Thapa et al., 2008; Vitas et al., 2004; Zhou et al., 2006; Jalali and Abedi 2008; A guado et al., 2004; Sant’Ana et al., 2012; Moreno et al., 2012; Miranda et al., 2009; Quiroz-Santiago et al., 2009; Fang et al., 2003; Rosenquist et al., 2005; Althaus et al., 2012; Bad osa et al., 2008	
Vegetables (lettuce, cabbage, carrot and radish sprout)	*Escherichia coli* O157:H7 (EHEC)	Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Khandaghi et al., 2010	
Vegetables (soy bean, yam, potato)	*Cronobacter* spp.	Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Kim et al., 2008	
Vegetables (tomatoes, celery, parsley, paprika, brussels sprouts)	*Listeria monocytogenes*	Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Pappelbaum et al., 2008	
Mix for sukiyaki (soup/stew type, a Japanese dish)	*Listeria monocytogenes*	Brazil, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Sant’Ana et al., 2012	
Vegetable (products)	*Listeria monocytogenes*, *Salmonella* spp.	Estonia, Italy, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	ECDC, 2009	
Vegetables	*Bacillus cereus*	Taiwan, Korea, Slovakia, Spain, n.s., Belgium, Germany, Czech Republic, Venezuela, Hungary, China, Iran, Brazil, Austria, Mexico, Taiwan, Korea, Denmark, Switzerland, Italy	Fang et al., 2003; Thapa et al., 2008	
Table 23: Categories and items of FoNAO with high water content as reported in association with viruses. Food items that have been implicated in outbreaks with the ten highest numbers of outbreak cases, hospitalisations, and/or deaths (see Table 30) are highlighted below. “Country/ies” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)	
1	Fruits (not specified)	Soft red fruits	Norovirus	Belgium, France	Baert et al., 2011
11	Tomatoes	Tomatoes	Rotavirus	South Africa	van Zyl et al., 2006
15	Leafy greens eaten raw as salads	Leafy greens	Norovirus	Canada, Belgium, France	Baert et al., 2011
1/other	Fruit (non specified)/n.s.	Produce	Norovirus	Belgium	Baert et al., 2011
Table 24: Categories and items of FoNAO with high water content as reported in association with parasites. Food items that have been implicated in outbreaks with the ten highest numbers of outbreak cases, hospitalisations, and/or deaths (see Table 30) are highlighted below. “Country/ies” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
1 Fruit (non specified)	Berries	*Encephalitozoon intestinalis*, *Microsporidia* (spores)	Poland, USA	Jedrzejewski et al., 2007
3 Raspberries	Raspberries	*Enterocytozoon bieneusi*	Poland, USA	Jedrzejewski et al., 2007
4 Other berries	Blackberry	*Cryptosporidium* spp.	Costa Rica	Calvo et al., 2004
11 Tomatoes	Tomatoes	*Giardia* spp. (*oocysts*), *Toxocara canis*, *Taenia/Echinococcus*, *Ascaris* spp., *Toxocara cati*, *Giardia lamblia*, *Entamoeba coli*, *Ascaris* spp. (*oocysts*), *Toxocara* spp.	Libya, Venezuela, Egypt, Yemen	Abougrain et al., 2010; Cazorla et al., 2009; Hassan et al., 2012
12 Peppers, and aubergines	Chili fruits	*Giardia* spp., *Entamoeba* spp., *Entamoeba histolytica*	India	Rai et al., 2008
	Garden egg (Solanum aethiopicum)	*Ascaris* spp. (*oocysts*), *Trichuris* spp.	Nigeria	Adamu et al., 2012
	Pepper	*Giardia* lamblia, *Entamoeba histolytica*, *Ascaris* spp.	Egypt, Yemen, Venezuela	Hassan et al., 2012; Cazorla et al., 2009
13 Gourds and squashes	Cucumber	*Trichuris* spp., *Taenia* spp., *Toxocara canis*, *Giardia lamblia*, *Toxocara cati*, *Entamoeba histolytica*, *Giardia* spp. (*oocysts*), *Taenia/Echinococcus*, *Entamoeba coli*, *Ascaris* spp. (*oocysts*)	Nigeria, Turkey, Libya, Egypt, Yemen	Adamu et al., 2012; Kozan et al., 2004; Abougrain et al., 2010; Hassan et al., 2012
15 Leafy greens eaten raw as salads	Cabbage	*Strongyloides stercoralis*, *Toxocara* spp., *Entamoeba histolytica/dispar*, *Cryptosporidium* spp., *Cyclospora* spp., *Intestinal helminthes*, *Giardia* spp., *Entamoeba* spp., *Ascaris* spp.	Nigeria, Venezuela, Kenya, Italy, Nepal, USA, India	Adamu et al., 2012; Cazorla et al., 2009; Nyarango et al., 2008; Shericand and Cross 2002; Rai et al., 2008
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
----------------	-----------	-------------	-------------	---------------
Cress	Giardia spp., Toxocara spp., Entamoeba coli, Taeniid spp., Ascaris lumbricoide, Giardia spp. (oocysts), Taenia/Echinococcus, Toxocara canis, Toxocara cati, Ascaris spp. (oocysts)	Iran, Libya	Fallah et al., 2012; Abougrain et al., 2010	
Curly lettuce	Entercytozoon bieneusi	Poland, Libya	Jedrzejewski et al., 2007	
Lettuce	Ascaris spp. (oocysts), Trichuris spp., Taenia/Echinococcus spp. (oocysts), Ancylostomatidae, Microsporidia, Cyclospora cayetanensis, Ascaris lumbricoides, Toxocara spp., Cyclospora spp., Giardia spp. (oocysts), Toxoplasma gondii, Blastocystis spp., Crypto sporidium spp., Taenia/Echinococcus, Toxocara canis, Toxocara cati, Giardia spp., Entamoeba spp., Ascaris spp.	Nigeria, Costa Rica, Turkey, India, Vietnam, Canada, Libya, Poland, Venezuela, Nepal, USA	Adamu et al., 2012; Calvo et al., 2004; Kozan et al., 2004; Gupta et al., 2009; Tram et al., 2008; Abougrain et al., 2010; Lass et al., 2012; Cazorla et al., 2009; Sherchand and Cross 2002; Rai et al., 2008	
Mustard leaves	Cyclospora spp.	Nepal, USA	Sherchand and Cross 2002	
Purslane	Ascaris lumbricoide, Giardia spp., Trichostrongylus spp.	Iran	Fallah et al., 2012	
Radish	Ascaris lumbricoide, Toxocara spp., Entamoeba coli, Giardia spp., Taeniid spp., Toxoplasma gondii, Giardia lamblia, Entamoeba histolytica, Entamoeba spp.	Iran, Poland, Egypt, Yemen, India	Fallah et al., 2012; Lass et al., 2012; Hassan et al., 2012; Rai et al., 2008	
Spinach	Crypto sporidium spp., Trichuris trichiura, Ancylostomatidae, Ascaris lumbricoides	Canada, India	Bohaychuk et al., 2009; Gupta et al., 2009	
Spinach leaves	Giardia spp., Entamoeba spp.	India	Rai et al., 2008	
Tarragon	Entamoeba spp., Trichostrongylus spp., Taeniid spp.	Iran	Fallah et al., 2012	
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
----------------	-----------	-------------	-------------	---------------
Water spinach (Ipomoea aquatica)	Cyclospora spp., Cryptosporidium spp., Giardia spp.	Vietnam, Denmark	Vuong et al., 2007	
Watercress	Entamoeba coli	Egypt, Yemen	Hassan et al., 2012	
16 Fresh herbs	Amaranth leaves	Cryptosporidium spp.	India	Rai et al., 2008
	Basil	Trichostrongylus spp., Entamoeba coli, Cyclospora spp., Giardia spp., Taeniid spp., Ascaris lumbricoides	Iran, Vietnam, Canada	Fallah et al., 2012; Tram et al., 2008
	Chives	Anquilostomídeos, Blastocystis spp., Ascaris spp., Cyclospora spp.	Venezuela	Cazorla et al., 2009
	Coriander	Ancylostomatidae, Trichuris trichiura, Giardia lambia, Entamoeba coli, Entamoeba histolytica, Toxocara spp., Cyclospora spp., Taeniid spp., Ascaris lumbricoides, Dipylidium caninum, Microsporidia, Ascaris spp.	India, Egypt, Yemen, Iran, Vietnam, Canada, Venezuela, Costa Rica	Gupta et al., 2009; Hassan et al., 2012; Fallah et al., 2012; Tram et al., 2008; Cazorla et al., 2009; Calvo et al., 2004
	Dill	Taeniid spp., Entamoeba coli	Iran	Fallah et al., 2012
	Marjoram	Cyclospora spp.	Vietnam, Canada	Tram et al., 2008
	Mint leaves	Giardia spp., Entamoeba spp.	India	Rai et al., 2008
	Parsley	Toxocara spp., Entamoeba coli, Ancylostomatidae, Taenia spp., Giardia lambia, Trichostrongylus spp., Ascaris lumbricoides, Taeniid spp.	Turkey, Iran, India, Egypt, Yemen	Kozan et al., 2004; Fallah et al., 2012; Gupta et al., 2009; Hassan et al., 2012
	Persicaria	Cyclospora spp.	Vietnam, Canada	Tram et al., 2008
	Pudina (mentha)	Trichuris trichiura, Ancylostomatidae, Ascaris lumbricoides	India	Gupta et al., 2009
	Spearmint	Ascaris lumbricoides, Taeniid spp., Trichostrongylus spp., Entamoeba coli, Giardia spp.	Iran	Fallah et al., 2012
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
------------------------	------------------------	--	----------------------	--------------------------------
Vietnamese mint	Cyclospora spp.	Vietnam, Canada	Tram et al., 2008	
18 Other leaves	Black night shade	Intestinal helminthes	Kenia, Italy	Nyarango et al., 2008
	Kales	Intestinal helminthes	Kenia, Italy	Nyarango et al., 2008
	Spider flower	Intestinal helminthes	Kenia, Italy	Nyarango et al., 2008
19 Carrots	Carrots	*Toxoplasma gondii*, *Strongyloides stercoralis*,*Giardia lambia*,*Entamoeba coli*, *Giardia spp.*, *Entamoeba spp.*	Poland, Nigeria, Turkey, Egypt, Yemen, India	Lass et al., 2012; Adamu et al., 2012; Kozan et al., 2004; Hassan et al., 2012; Rai et al., 2008
21 Other root and tuberous vegetables	Amaranth roots	*Giardia spp.*, *Entamoeba spp.*, *Entamoeba histolytica*	India	Rai et al., 2008
22 Bulb and stem vegetables	Celery	*Ancylostomatidae*, *Ascaris lumbricoides*, *Cryptosporidium spp.*, *Cyclospora spp.*, *Ascaris spp.*, *Entamoeba coli*	India, Costa Rica, Venezuela	Gupta et al., 2009; Calvo et al., 2004; Cazorla et al., 2009
	Garlic	*Ascaris spp.*	Venezuela	Cazorla et al., 2009
	Green onion	*Taenia spp.*	Turkey	Kozan et al., 2004
	Leek	*Toxocara spp.*, *Taeniid spp.*, *Entamoeba coli*,*Giardia spp.*, *Ascaris lumbricoides*	Iran	Fallah et al., 2012
	Onion	*Ascaris spp.*	Venezuela	Cazorla et al., 2009
	Scallion	*Giardia spp.*, *Trichostrongylus spp.*, *Ascaris lumbricoides*,*Toxocara spp.*	Iran	Fallah et al., 2012
I/other	Produce	*Cryptosporidium*	Canada	Bohaychuk et al., 2009

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Pathogen(s)	Country/ies	Reference(s)
other/n.s.	Vegetables	*Anquilostomídeos, Dipylidium caninum, Toxocara spp.*, *Cryptosporidium spp., Cyclospora spp., Entamoeba coli, Entamoeba histolytica/dispar, Blastocystis spp., Microsporidia (spores), Eimeria spp. (oocysts), Ascaris spp.*	Venezuela, Poland, USA, Brazil	Cazorla et al., 2009; Jedrzejewski et al., 2007; Pavan da Silvia et al., 2007
Table 25: Critical points in specific primary production procedures reported for the food items highlighted in tables 22-24, which have been most often documented in association with biological hazards

FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)	Reference
Strawberries/Raspberries /Other berries	Berries	Irrigation	NA	Bower et al., 2003
		Soil/Plant	NA	Bower et al., 2003
		Compost/Manure/Sewage sludge application	NA	Bower et al., 2003
		Animals (e.g., birds, insects, rodents)	NA	Bower et al., 2003
		Contact with humans	NA	Bower et al., 2003
		Equipment	NA	Bower et al., 2003
Fruit and berry fruit crops		Ground preparation/Fertiliser and compost application	certified manures, biosolids and fertilizers	Faulkner et al., 2001
		Planting/Worker hygiene	ensuring proper worker hygiene	Faulkner et al., 2001
		Planting/incorrect fertiliser application	certification, instructions	Faulkner et al., 2001
		Planting/irrigation	water sanitation	Faulkner et al., 2001
		Planting/contaminated soils	time between manure, biosolids, natural fertiliser	Faulkner et al., 2001
		Growing/Irrigation	water sanitation	Faulkner et al., 2001
Fruit and berry fruit crops/Strawberries		Harvesting/ Sorting (field)	ensuring proper worker hygiene; equipment and container sanitation; field management	Faulkner et al., 2001; FDA, 2011
Strawberries		Grading/Packing (field)	ensuring proper worker hygiene; water sanitation	FDA, 2011
Citrus fruit	Orange	Harvesting	ensuring proper worker hygiene	FDA, 2008
Tropical fruit	Mango	Environment	NA	Strawn et al., 2011
		Irrigation	water sanitation	Strawn et al., 2011
		Animals (e.g., birds, insects, rodents)	NA	Strawn et al., 2011
		Compost/Manure/Sewage sludge application	NA	Strawn et al., 2011
FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)	
----------------	-------------------------	---	---	
	Papaya	Environment	NA	Strawn et al., 2011
		Irrigation	water sanitation	Strawn et al., 2011
		Animals (e.g., birds, insects, rodents)	NA	Strawn et al., 2011
		Compost/Manure/Sewage sludge application	NA	Strawn et al., 2011
Melons	9	Cantaloupe	Irrigation	water sanitation
			Harvesting	NA
			Sorting (field)	NA
			Packing (field)	ensuring proper worker hygiene
			Transport to retail (cooled)	NA
Tomatoes	11	Tomatoes (open field)	Field management	selection of field location; environmental assessment; assessment of adjacent land use
			Animals (e.g., birds, insects, rodents)	animal exclusion (domestic) and measures to minimize wildlife presence
			Irrigation	water sanitation
			Contact with humans	written policies, employee training, sanitary facilities, health, designated drinking/eating/smoking areas
			Crop production practices (e.g., fertilizer, manure, pesticides)	assessment of risk of all production inputs
			Equipment and containers	sanitation and cleaning
			Sanitation and cleaning	
			Debris removal	removal of e.g. dirt
			Exclusion from harvest	intrusion
			Sorting (field)	removal of damaged, soft or decayed fruits

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)*	Reference
	Tomatoes (greenhouse)	Planting preparation/ incorrect fertiliser application	certification, instructions	Faulkner et al., 2001
		Planting/Worker hygiene	ensuring proper worker hygiene	Faulkner et al., 2001
		Planting/Soil/growing medium	NA	Faulkner et al., 2001
		Growing/Irrigation	water sanitation	Faulkner et al., 2001
		Growing/incorrect fertiliser application	NA	Faulkner et al., 2001
		Harvesting	ensuring proper worker hygiene	Faulkner et al., 2001
	Tomatoes (mature green)	Harvesting	Field, equipment and container sanitation	FDA, 2011
		Waxing	Equipment sanitation	FDA, 2011
Peppers and aubergines	Peppers	Harvesting	NA	FDA, 2008
		Placing in field bins/boxes	equipment sanitation	FDA, 2008
		Transport to packinghouse	NA	FDA, 2008
Gourds and squashes	Cucumber	Harvesting	ensuring proper worker hygiene	FDA, 2011
		Hand harvest	elimination defective fruit; fruit into clean plastic trays or buckets	FDA, 2011
		Field management	NA	FDA, 2011
		Irrigation	water sanitation	FDA, 2011
		Equipment and containers	sanitation and cleaning	FDA, 2011
		Debris removal	removal of e.g. dirt	FDA, 2011
		Sorting (field)	NA	FDA, 2011
		Placing in field bins/boxes	equipment sanitation	FDA, 2011
		Transport to packinghouse	NA	FDA, 2011
		Harvesting	ensuring proper worker hygiene	Mahovic et al. 2002
		Irrigation	water sanitation	Mahovic et al. 2002
		Pesticide mixing	water sanitation	Mahovic et al. 2002
FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)*	Reference
------------------------------------	----------------------------	---	--	--
Animals (e.g., birds, insects, rodents)	Any animal materials (waste, excrement etc.) should be removed from the field if possible (and practical); worker hygiene; Animal exclusion	Mahovic et al. 2002		
Compost/Manure/Sewage sludge application	Mahovic et al. 2002	Sorting (field) removal of damaged, soft or decayed fruits	Hurst et al., 2010	
Leafy greens eaten raw as salad 15	Lettuce, Spinach	Ground preparation/Fertiliser and compost application certified manures, biosolids and fertilizers	Faulkner et al., 2001	
	Planting/Worker hygiene	ensuring proper worker hygiene	Faulkner et al., 2001	
	Planting/incorrect fertiliser application	certification, instructions	Faulkner et al., 2001	
	Planting/irrigation	water sanitation	Faulkner et al., 2001	
	Planting/contaminated soils	time between manure, biosolids, natural fertiliser	Faulkner et al., 2001	
	Harvesting	ensuring proper worker hygiene	Faulkner et al., 2001; FDA, 2011	
	Irrigation	water sanitation	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006; FDA, 2011	
	Harvesting (machine harvest/hand harvest)	avoiding cross contamination	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
	Equipment	sanitation and cleaning	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006; FDA, 2011	
	Environment	control measures	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)*	Reference	
		Soil amendment	NA	University of Georgia, Center for Food Safety	
		Irrigation	NA	University of Georgia, Center for Food Safety	
		Contact with humans	NA	University of Georgia, Center for Food Safety	
		Animals (e.g., birds, insects, rodents)	NA	University of Georgia, Center for Food Safety	
		Equipment and containers	NA	University of Georgia, Center for Food Safety	
		Adjacent Land Use	NA	University of Georgia, Center for Food Safety	
		Cut, trim, sort, size, wrap, palletize (field)	ensuring proper worker hygiene; equipment and container sanitation	FDA, 2011	
		Transport to packinghouse	equipment sanitation	FDA, 2011	
Carrots	19	Carrots	NA	FDA, 2008	
		Harvesting	NA	FDA, 2008	
		Shoot removal	NA	FDA, 2008	
		Transport to packinghouse	NA	FDA, 2008	
Potatoes	20	Potato	Ground preparation/Fertiliser and compost application	NA	Faulkner et al., 2001
		Cultivation	NA	Faulkner et al., 2001	
		Planting/fertiliser/compost/biosolids application	NA	Faulkner et al., 2001	
		Planting/irrigation	water sanitation	Faulkner et al., 2001	
		Growing/Irrigation	water sanitation	Faulkner et al., 2001	
		Harvesting	ensuring proper worker hygiene	Faulkner et al., 2001	
		Transport to packinghouse	protection against dust, dirt, bird droppings, rodents	Faulkner et al., 2001	
Bulb and stem vegetables	22	Green onion	Ground preparation/Fertiliser and compost application	certified manures, biosolids and fertilizers	Faulkner et al., 2001

Supporting publications 2013:EN-402

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Critical point/Hazard source(s)	Corrective action(s)a	Reference
	Planting/incorrect fertiliser application	certification, instructions	Faulkner et al., 2001; FDA, 2011	
	Planting/irrigation	water sanitation	Faulkner et al., 2001; FDA, 2011	
	Planting/contaminated soils	time between manure, biosolids, natural fertiliser	Faulkner et al., 2001	
	Growing/Irrigation	water sanitation	Faulkner et al., 2001; FDA, 2011	
	Harvesting	ensuring proper worker hygiene	Faulkner et al., 2001; FDA, 2011	
	Transport to packinghouse	vehicle cleaning and inspection	Faulkner et al., 2001; FDA, 2011	
	Sorting (field)	NA	FDA, 2011	
	Packing (field)	ensuring proper worker hygiene	FDA, 2011	

a NA not applicable
Table 26: Critical points in specific processing procedures (post-harvest) reported for the food items highlighted in Tables 22-24, which have been most often documented in association with biological hazards

FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)	Reference(s)
Strawberries/Raspberries/Other berries	Berries	Process water/ice	NR	Bower et al., 2003
		Dust	NR	Bower et al., 2003
		Crates soiled with dirt and manure	NR	Bower et al., 2003
		Animals (rodents, insects, birds)	NR	Bower et al., 2003
		Contact with humans	NR	Bower et al., 2003
		Equipment	NR	Bower et al., 2003
		Packing	NR	Bower et al., 2003
		Transport to retail	temperature control; truck sanitation	Bower et al., 2003; FDA, 2011
		Storage	NR	Bower et al., 2003
		Distribution	NR	Bower et al., 2003
Fruit and berry fruit crops	Storage	facility inspection before use	Faulkner et al., 2001	
		Post-harvest-treatment/incorrect agrichemical application	certification, instructions	Faulkner et al., 2001
		Post-harvest-treatment/contaminated water	water sanitation	Faulkner et al., 2001
		Storage	facility inspection before use	Faulkner et al., 2001
		Grading/Packing/Workers hygiene	sanitation and cleaning	Faulkner et al., 2001; FDA, 2011
Strawberries	Cooling	temperature control	FDA, 2011	
	Loading	truck sanitation; equipment sanitation	FDA, 2011	
Citrus fruit	Orange juice	Fresh-cut operations/new technologies	determination the impact on food safety when evaluating new technologies	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006
		Transport to retail	truck sanitation	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006
		Storage	establishment of GMPs	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006
FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)*	Reference(s)
----------------	-----------	---	-----------------------	--------------
Receipt of raw materials	visual inspection or automatic separator equipment; rejection of faulty fruits	Kourtis and Arvanitoyannis, 2001; HACCP Europa, online		
Cold storage (fruit)	equipment/container sanitation	FDA, 2008; Houska et al., 2007		
Sorting/selecting/sizing (fruit)	ensuring proper worker hygiene	FDA, 2008		
Washing	re-washing of fruit batch	HACCP Europa, online; FDA, 2008; Houska et al., 2007		
Pasteurisation/Sterilization	re-pasteurisation of batch	Kourtis and Arvanitoyannis, 2001; HACCP Europa, online		
High pressure processing	500 MPa for 10 min	Houska et al., 2007		
Tropical fruit	Mango	Filling/packaging	NR	FDA, 2008
Cooling	equipment sanitation; temperature control	Kourtis and Arvanitoyannis, 2001; HACCP Europa, online		
Aseptic filling/bulk storage	rejection of faulty material	Kourtis and Arvanitoyannis, 2001; HACCP Europa, online		
Storage (whole fruit)	> 12°C to prevent chilling injury	Strawn et al., 2011		
Washing	potable (warm/hot) water	Strawn et al., 2011		
Peeling/grating/cutting/slicing	cutting in pathogen-free environment	Strawn et al., 2011		
Contact with humans	ensuring proper worker hygiene	Strawn et al., 2011		
Cold storage (cut fruit)	NR	Strawn et al., 2011		
Storage (whole fruit)	> 12°C to prevent chilling injury	Strawn et al., 2011		
Washing	potable (warm/hot) water	Strawn et al., 2011		
Papaya	Cantaloupe	Peeling/grating/cutting/slicing	cutting in pathogen-free environment	Strawn et al., 2011
Contact with humans	ensuring proper worker hygiene	Strawn et al., 2011		
Cold storage (cut fruit)	NR	Strawn et al., 2011		
Dry or wet dump	ensuring proper worker hygiene, equipment sanitation	FDA, 2008; PMA, 2005		
Melons	Cantaloupe	Peeling/grating/cutting/slicing	cutting in pathogen-free environment	Strawn et al., 2011
Contact with humans	ensuring proper worker hygiene	Strawn et al., 2011		
Cold storage (cut fruit)	NR	Strawn et al., 2011		
Dry or wet dump	ensuring proper worker hygiene, equipment sanitation	FDA, 2008; PMA, 2005		
FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)*	Reference(s)
----------------	-----------	---	-----------------------	--------------
		Brushing	equipment sanitation; avoiding cross contamination	FDA, 2008; FAO, 2008; PMA, 2005
		Washing	water sanitation	FAO, 2008
		Sorting/selecting/sizing	ensuring proper worker hygiene, equipment sanitation	FDA, 2008
		Hydrocooling	water sanitation	FDA, 2012; FAO, 2008
		Waxing	ensuring proper worker hygiene, equipment sanitation	FDA, 2008
Tomatoes	11 Tomatoes	Packing/palletizing	NR	FDA, 2008
	11 Tomatoes	Transport to retail	NR	FDA, 2008
38 Semidried tomatoes		Hand hygiene (most critical point in preventing viral contamination	NR	FAO, 2011
11 Tomatoes (greenhouse)		Transport to retail	truck sanitation	Faulkner et al., 2001
		Washing	water sanitation	Faulkner et al., 2001; FDA, 2011
		Storage	facility inspection before use	Faulkner et al., 2001
		Grading/Packing/Workers hygiene	sanitation and cleaning	Faulkner et al., 2001
11 Tomatoes (catering)		Washing	Implementation of HACCP; GAP, GMP positive effect on product quality.	Kokkinakis and Fragkiadakis, 2007
11 Tomatoes (packaging house)		Dry or wet dump	water quality mainteNRance in the packing house dump tank, including control of chlorine, pH and temperature;	Rushing et al., 1996 (only abstract)
		Equipment and containers	NR	Rushing et al., 1996 (only abstract)
		Monitoring of hand-sorting procedures on the packing line	NR	Rushing et al., 1996 (only abstract)
11 Tomatoes (mature green)		Sorting/selecting/sizing	equipment sanitation; ensuring proper worker hygiene	FDA, 2011
		Waxing	equipment sanitation; water sanitation	FDA, 2011

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)*	Reference(s)	
Peppers and aubergines	12 Peppers	Hydrocooling: water sanitation	FDA, 2008		
		Peeling/grating/cutting/slicing: ensuring proper worker hygiene, equipment and container sanitation	FDA, 2011		
		Bagging: ensuring proper worker hygiene, equipment sanitation	FDA, 2008		
		Dry or wet dump: equipment sanitation	FDA, 2008		
		Brushing/washing/waxing: equipment and water sanitation	FDA, 2008		
Gourds and squashes	13 Cucumber	Cooking: cooking until required interNRI temperature is reached	NMPED (New Mexico Public Education Department), online		
		Cooling (after cooking): cooling below 21°C in 2 h and below 5°C in 4 h	NMPED (New Mexico Public Education Department), online		
		Washing: water sanitation	FDA, 2011		
		Waxing: ensuring proper worker hygiene; equipment sanitation	FDA, 2011		
		Sorting/selecting/sizing: ensuring proper worker hygiene; equipment sanitation	FDA, 2011		
		Packing/palletizing: ensuring proper worker hygiene; equipment and container sanitation	FDA, 2011		
		Cooling: temperature control	FDA, 2011		
		Transport to retail: truck sanitation	FDA, 2011		
		Cooling: temperature control	Mahovic et al., 2002		
		Storage room/truck trailers: Sanitation	Mahovic et al., 2002		
		Reefer (a refrigerated vehicle): truck sanitation	Mahovic et al., 2002		
FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)*	Reference(s)	
---------------	-------------------	---	-----------------------	-------------------------------	
Leafy greens eaten raw as salad	15 Lettuce, Spinach	Transport to retail	truck sanitation	Faulkner et al., 2001; FDA, 2011	
		Washing	water sanitation	Faulkner et al., 2001	
		Storage	facility inspection before use	Faulkner et al., 2001	
		Grading/Packing/Workers hygiene	sanitation and cleaning	Faulkner et al., 2001; FDA, 2011	
		Cooling	temperature control	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Laundry	water sanitation	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Re-use of field containers	appropriate equipment	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Bulk Bin Modified Atmosphere Process	follow SOPs	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Condition and sanitation of transportation vehicles	appropriate equipment	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Contact with humans	ensuring proper worker hygiene	Leafy green industry members (IFPA, PMA, UFFVA, WGA), 2006	
		Top ice	water sanitation	FDA, 2011	
Carrots	19 Carrots	Packing/palletizing	ensuring proper worker hygiene, equipment and container sanitation	FDA, 2008	
		Storage (whole fruit)/cooling/transport	truck sanitation	FDA, 2008	
		Cooling (pre-cut fruit)	NR	FAO, 2008	
FoNAO Category	Food item	Critical points/Contamination Sources /Vectors for contamination	Corrective action(s)\(^a\)	Reference(s)	
----------------	-----------	---	-----------------------------	--------------	
Sorting	Potatoes	Sorting ensuring proper worker hygiene, equipment sanitation	FDA, 2008		
	20 Potato salad	Sorting ensuring proper worker hygiene	FDA, 2008		
		Packing/palletizing ensuring proper worker hygiene, equipment and container sanitation	FDA, 2008		
		Transport to retail truck sanitation	FDA, 2008		
		Washing water sanitation	Faulkner et al., 2001		
		Storage (raw vegetable) protection against dust, dirt, bird droppings, rodents	Faulkner et al., 2001		
		Packing/grading ensuring proper worker hygiene	Faulkner et al., 2001		
	Bulb and stem vegetables	22 Onions	Post-harvest-treatment/incorrect agrichemical application certification, instructions	Faulkner et al., 2001	
		Post-harvest-treatment/contaminated water water sanitation	Faulkner et al., 2001		
		Storage facility inspection before use; shaded	Faulkner et al., 2001; FDA, 2011		
		Grading/Packing/Workers hygiene sanitation and cleaning	Faulkner et al., 2001		
		Transport to retail truck sanitation	Faulkner et al., 2001; FDA, 2011		
		Cooling temperature control	FDA, 2011		

\(^a\)NR not reported
Table 27: Examples of Guidelines and Standards to improve food quality reported for selected food items listed in tables 27-32.

Food Item	FoNAO Category	Guideline documents/Regulations/Reports	Organisation	Country/region\(^a\)	Reference
Fruits and Vegetables	1/other	Code of hygienic practice for fresh fruits and vegetables. CAC/RCP 53-2003. Adopted 2003. Revision 2010 (new Annex III for Fresh Leafy Vegetables).	CAC (Codex Alimentarius Commission), 2003, online.	NA	CAC, 2003, online
		Improving the quality and safety of fresh fruits and vegetables: a practical approach; Manual for Trainers	FAO (Food and Agriculture Organisation)	USA	FAO, 2004, online
		Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables	FDA (U.S. Food and Drug Administration)	USA	FDA, online(b)
		Improving the Safety and Quality of Fresh Fruits and Vegetables: A Training Manual for Trainers	JIFSAN (Joint Institute of Food Safety and Nutrition)	USA	JIFSAN, 2010, online
Tomatoes	11	Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Tomatoes; Draft Guidance	FDA (Food and Drug Administration)	USA	FDA, online(d)
Leafy greens	15	Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Leafy greens; Draft Guidance	FDA (U.S. Food and Drug Administration)	USA	FDA, online(c)
n.s.	n.s.	Good Agriculture Practices	FAO (Food and Agriculture Organisation)	USA	FAO, online
n.s.	n.s.	Control points and compliance criteria integrated farm assurance	GlobalGAP	NA	GlobalGAP, 2007

\(^a\) NA not applicable
Table 28: Trade volumes of FoNAO with high water content imported from third countries into EU-27 from 2002 to 2011.

Product description (EUROSTAT)	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
fresh strawberries, strawberries (uncooked, cooked, frozen)	847,333	1,295,087	1,272,200	1,275,238	1,151,447	1,647,123	1,767,241	1,424,799	1,501,306	1,768,662
fresh raspberries, raspberries (uncooked, cooked, frozen)	943,681	804,274	795,464	859,653	934,500	750,383	803,907	898,558	1,059,579	
fresh table grapes, black currants, red currants, white currants, gooseberries, cowberries, foxberries, mulberries, loganberries	4,268,040	4,593,901	5,071,469	5,985,786	6,529,666	6,647,212	7,046,470	6,650,838	6,227,526	5,781,452
sanguines, navels, sweet oranges, clementines, mandarins, monreales, tangerines, mandarins, satsuma, tangelos, ortanigués, lemons, limes, grapefruit	17,615,377	18,875,265	18,090,615	21,811,192	20,448,752	22,007,124	20,459,556	21,976,227	19,249,881	
apples, pears, quinces	8,962,603	9,855,000	11,313,226	13,310,789	14,112,713	12,566,702	11,666,805	10,717,310	8,720,383	8,592,182
apricots, sour cherries, peaches, nectarines, plums	1,200,384	1,681,014	1,828,563	1,793,643	1,703,981	1,977,368	1,801,943	1,735,337	1,426,206	1,536,177
coconut, plantains, bananas, figs, pineapples, avocados, guavas, mangoes, papayas, kiwifruit, persimmons, durians, tamarind, cashew, apples, lychees, jackfruit, passionsfruit, guavas, mangosteen	50,633,478	53,572,989	54,239,759	55,220,437	55,220,437	56,110,728	56,014,392	69,174,868	64,705,086	64,883,036
watermelon, melon	3,028,521	3,696,701	3,787,130	4,373,245	5,027,829	5,494,613	5,760,489	5,068,083	5,313,136	5,317,189
tomatoes	2,808,858	2,919,236	2,892,845	3,550,782	3,551,303	4,709,234	4,730,473	5,429,303	4,977,549	4,605,226
aubergines, sweet pepper	893,320	875,777	1,165,594	1,594,241	1,636,084	2,099,808	2,266,125	2,333,322	2,217,952	2,290,234
cucumbers, gherkins, courgettes, pumpkins	467,402	559,169	593,526	613,484	812,648	906,511	889,765	1,005,943	844,773	780,954
peas, beans, leguminous vegetables, chickpeas, azuki beans, kidney beans, bambara beans, cow peas, horse beans, lentils, pigeon peas	14,980,734	12,336,102	19,088,822	22,452,111	20,224,789	13,100,427	12,227,566	12,361,204	12,878,178	12,873,685
cabbage lettuce, lettuce, chicory, spinach, salad vegetables	70,505	116,469	69,976	213,509	188,936	221,745	238,282	200,811	237,174	216,667
carrots	215,266	415,657	278,123	404,569	473,754	619,030	660,537	1,170,341	935,750	840,228
Product description (EUROSTAT)	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
---------------------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
potatoes	3,829,773	4,031,415	5,882,893	6,033,633	5,490,073	6,231,863	5,225,552	4,564,727	4,218,668	3,958,928
horse-radish, salad beetroot, salsify, celeriac, celery, yam, manioc, arrowroot, salep	101,734	89,343	84,662	88,102	123,563	96,506	101,789	100,417	88,694	111,682
onion, shallots, garlic, asparagus, celery, fennel	4,326,138	4,595,547	4,398,042	3,558,577	4,335,631	5,934,061	5,281,043	4,104,101	4,439,968	4,785,591
cauliflower, broccoli, artichokes	45,817	73,514	91,814	158,048	218,663	201,700	180,521	272,020	240,114	240,596
edible mushrooms, agaricus, truffles, chanterelles	90,307	125,388	161,782	153,542	151,868	125,773	153,495	149,952	122,591	132,445

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
C. APPENDIX SPECIFIC TO THEMATIC AREA C

Table 29: Major outcomes of European consumption studies relating to FoNAO regarding consumption rates, consumer groups, and regional effects.

Food Item(s)	Age-Class	Method	No. of surveyed participants	Scope of the study	Outcome 1 (consumption rate)	Outcome 2* (observed differences between groups)	Outcome 3* (observed differences between countries/environments)	Research project	Country/countries	Reference
Apple	Adults (50-70 yrs)	Fruit-frequency	4271	Apple and peach consumption frequency	Highest consumption Poland (55 % > 5 times/wk) and Italy (39.3 % 3-5 times/wk); lowest consumption Netherland and Spain	Differences between gender (females higher consumption) and age groups	Differences between countries	ISAFRUIT	Germany, Poland, Switzerland, France, Netherland, Italy, Spain	Konopacka et al. 2010
Peach	Adults (50-70 yrs)	Fruit-frequency	499	Apple and peach consumption frequency	Highest consumption France (48 % > 3.5 times/wk, 40 % > 5 times/wk); lowest consumption Germany	Differences between gender (females higher consumption) and age groups	Differences between countries	ISAFRUIT	Germany, Poland, Spain, France, Italy	Konopacka et al. 2010
Fruit and soft drinks	Adolescents (11, 13, 15 yrs)	standardised question.	114 558	Health behaviour in school aged children	33 % consume fruit daily; 26 % consume soft drinks daily	Girls and younger pupils consume fruit more often and soft drinks less often	Differences between schools, countries, regions, and family material wealth	HBSSC	28 European countries or regions	Vereecken et al. 2005a
Fruit, vegetables and soft drinks	Adolescents (11, 13, 15 yrs)	standardised question.	162 305	Health behaviour in school aged children	Fruit consumption 2.8-5 /wk; vegetables 2.4-5.5/wk, soft drinks 2.5-5/ wk	NR	Differences between countries	HBSSC	35 Countries (Europe, Israel, N-America)	Vereecken et al. 2005b
Fruit and vegetables	-	standardised question.	13 305	Factors related to fruit and vegetable intake	43.5 % consume fruit daily; 46.1 % consume vegetables daily	Gender differences	Differences between countries	ProChildren Project	Austria, Belgium, Denmark, Iceland, Netherland, Nor-way, Portugal, Spain, Sweden	Brug et al. 2008
Food Item(s)	Age-Class	Method	No. of surveyed participants	Scope of the study	Outcome 1 (consumption rate)	Outcome 2* (observed differences between groups)	Outcome 3* (observed differences between countries/environments)	Research project	Country/ countries	Reference
---------------------	---------------	--------------------------	-----------------------------	--	-------------------------------	---	---	---------------------------	-------------------	--------------------
Fruit and vegetables	Adolescents	24 hours recall	1489	Effect of fruit and vegetable promotion	Total fruit and vegetable intake 221-256 g/d	NR	NR	ProChildren Project	Norway, Nether-land, Spain	Velde et al. 2008
Fruit and vegetables	Adolescents (11 yrs)	Food frequency question.; 24 hrs recall	1919	Influence of school environment on fruit and vegetable intake	40 % consume > 200 g fruit/d; 25% consume > 130 g vegetables/d; 64 % consume fruit almost daily; 46.9 % consume vegetables almost daily	NR	NR	ProChildren Project	Denmark	Krolner et al. 2009
Fruit and vegetables	Adolescents (11-13 yrs)	Food frequency question.; 24 hrs recall	1601	Influence of parenting styles on fruit and vegetable consumption	155 g/d fruits and 88 g/d vegetable consumption	NR	NR	ProChildren Project	Portugal	Franchini et al. 2011
Fruit and vegetables	Adolescents (9-11 yrs)	24 hours recall	1612	Impact of school fruit tuck shops and school food policies on fruit and vegetable consumption	0.69-0.74 portions/d	NR	NR	-	U.K.	Moore and Tapper 2008

*NR=not reported
D. APPENDIX SPECIFIC TO THEMATIC AREA D

Table 30: FoNAO (high water content) item/pathogen combinations with highest numbers of outbreak cases, EU countries. Collective cases from multiple outbreaks are indicated in **bold.**

Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths^b	Reference(s)
1	Lettuce (unspec., mixed and Iceberg)	15, 17	*Salmonella* spp.	Finland, Northern Ireland, United Kingdom, Sweden	2003-2010	578	56	2	Takkinen et al., 2005; Irvine et al., 2009; ECDC, 2010; Lienemann et al., 2011; Gajraj et al., 2012
2	Lettuce (unspec., Romaine and Iceberg; whole and shredded)	15	*E. coli* O157, O157:H7 and O157:VT2	Iceland, Netherlands, Sweden	2005-2007	305	31	0 and n.s.	Friesema et al., 2008; Söderström et al., 2005; Söderström et al., 2008
3	Basil (fresh)	16	*Salmonella* spp. (plus *E. coli* O92:H- and O153:H2 in one case)	Denmark, United Kingdom	2006-2007	247	3	n.s.	Pezzoli et al., 2007; Pakalniskiene et al., 2009; Pezzoli et al., 2008
4	Carrots (grated)	19	*Yersinia pseudotuberculosis* O:1	Finland	2003, 2006	215	11	n.s.	Jalava et al., 2006; Rimhanen-Finne et al., 2009
6	Mung beans	14	*Salmonella* Bareilly, *Salmonella* Virchow	Sweden	2006	115	n.s.	n.s.	de Jong et al., 2007
7	Sugarsnaps	14	*Shigella dysenteria*	Sweden	2009	35	0	0	ECDC, 2009
8	Fresh fruit juice	1	*Salmonella* Panama	Netherlands	2008	33	10	0	Noel et al., 2010
9	Beans	14	*Staphylococcus aureus*	Belgium	2009	14	0	0	ECDC, 2009
10	Sugar peas	14	*Shigella sonnei*	Denmark	2009	10	0	0	Pingeon et al., 2009
The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

Viruses

Rank	Food item	FooNAO Category	Pathogen	Country	Year	Cases	Hospitalisations^b	Deaths^b	Reference(s)
1	Strawberries	2	Norovirus	Germany, Sweden	2010, 2012	11007	0/n.s.	0/n.s.	ECDC, 2010; RKI, online
2	Raspberries	3	Norovirus	Denmark, Finland, Sweden	2005-2010	2587	23	0/n.s.	ECDC, 2009; ECDC 2010; Korsager et al., 2005; Cottereau et al., 2005
3	Lettuce, green salad	15	Norovirus	Denmark, Finland, U.K.	2007, 2009, 2010	560	1/n.s.	0/n.s.	ECDC, 2009; ECDC, 2010; Ethelberg et al., 2010; Vivancos et al., 2009
4	Salad (mixed fresh-cut leaves)	17	Norovirus	Germany, Austria	2006-2009	273	14	0/n.s.	Schmid et al., 2007; Wadl et al., 2010
5	Blackberries	4	Norovirus	Germany	2005	241	0	n.s.	Fell et al., 2007
6	Tomatoes (semidried)	38	Hepatitis A virus	France, United Kingdom, Netherlands	2009-2011	79	32	0	Carvalho et al., 2012; Couturier, 2011; ECDC, 2010; Gallot et al., 2011; Petignani et al., 2010
7	Onion (raw)	22	Norovirus	Finland	2009	52	0	0	ECDC, 2009
8	Strawberries or raspberries	2/3	Norovirus	Finland	2009	11	0	0	ECDC, 2009
9	Fruits	1	Norovirus	Denmark	2009	8	0	0	ECDC, 2009
10	Carrots	19	Norovirus	Belgium	2009	2	0	0	ECDC, 2009

Parasites

Rank	Food item	FooNAO Category	Pathogen	Country	Year	Cases	Hospitalisations^b	Deaths^b	Reference(s)
1	Cucumber (in sandwiches, salads)	13	*Enterocytozoon bieneusi*	Sweden	2009	135	n.s.	n.s.	Decraene et al., 2012
Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisations\(^b\)	Deaths\(^b\)	Reference(s)
------	-----------	----------------	----------	---------	------	-------	-------------------------	-------------	--------------
2	Carrot or red peppers (grated carrots, whole carrots in water, pepper in water)	12 or 19	*Cryptosporidium hominis*	Denmark	2005	99	n.s.	n.s.	Ethelberg et al., 2009
3	Parsley (fresh)	16	*Cryptosporidium parvum*	Sweden	2008	21	3	n.s.	Insulander et al., 2008
4	Watercress (fresh)	15	*Fasciola hepatica*	France	2002	18	n.s.	n.s.	Mailles et al., 2006
5	Sugar snap peas (from Guatemala)	14	*Cyclospora cayetanensis*	Sweden	2009	14	1	n.s.	Insulander et al., 2010

* Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

\(^b\) n.s.= non specified.
Table 31: FoNAO (high water content) item/pathogen combinations causing outbreaks with highest numbers of hospitalisation, EU countries. Collective cases from multiple outbreaks are indicated in bold.

Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisation	Deaths	Reference(s)
	Bacterial pathogens								
1	Lettuce (unspecified, mixed and Iceberg)	15, 17	*Salmonella* spp.	Finland, Northern Ireland, United Kingdom, Sweden	2003-2010	578	56	2	Takkenen et al., 2005; Irvine et al., 2009; ECDC, 2010; Lienemann et al., 2011; Gajraj et al., 2012
2	Lettuce (unspecified, Romaine and Iceberg; whole and shredded)	15	*E. coli* O157, O157:H7 and O157:VT2	Iceland, Netherlands, Sweden	2005-2007	305	31	0 and n.s.	Friesema et al., 2008; Söderström et al., 2005; Söderström et al., 2008
3	Carrots (grated)	19	*Yersinia pseudotuberculosis* O:1	Finland	2003, 2006	215	11	n.s.	Jalava et al., 2006; Rimhanen-Finne et al., 2009
4	Fresh fruit juice	1	*Salmonella* Panama	Netherlands	2008	33	10	0	Noel et al., 2010
5	Green olives	35	*Clostridium botulinum*	France	2011	9	9	n.s.	Pingeon et al., 2006
6	Basil (fresh)	16	*Salmonella* spp. (plus *E. coli* O92:H- and O153:H2 in one case)	Denmark, United Kingdom	2006-2007	247	3	n.s.	Pakalniskiene et al., 2009; Pezzoli et al., 2007; Pezzoli et al., 2008
	Viruses								
1	Tomatoes (semidried)	38	*Hepatitis A* virus	France, United Kingdom, Netherlands	2009-2011	79	32	0	ECDC, 2010; Carvalho et al., 2012; Couturier, 2011; Gallot et al., 2011; Petigniani et al., 2010
2	Raspberries	3	*Norovirus*	Denmark, Finland, Sweden	2005-2010	2587	23	0/n.s.	ECDC, 2009; ECDC 2010; Korsager et al., 2005; Cotterelle et al., 2005
3	Salad (mixed fresh-cut leaves)	17	*Norovirus*	Germany, Austria	2006-2009	273	14	0/n.s.	Schmid et al., 2007; Wadl et al., 2010
Table 32: FoNAO (high water content) item/pathogen combinations causing outbreaks\(^a\) where cases of death have been reported, EU countries. Collective cases from multiple outbreaks are indicated in **bold**.

Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisation	Deaths\(^b\)	Reference(s)
1	Iceberg lettuce	15	*Salmonella* Newport, *Salmonella* Reading	Finland	2008	108	15	2	Lienemann et al., 2011
2	Sugar snap peas	14	*Cyclospora* cayetanensis	Sweden	2009	14	1	n.s.	Insulander et al., 2010
3	Parsley	16	*Cryptosporidium* parvum	Sweden	2008	21	3	n.s.	Insulander et al., 2008

\(^a\) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

\(^b\) n.s. = non specified
Table 33: FoNAO (high water content) item/pathogen combinations with highest numbers of outbreak cases, non EU countries. Collective cases from multiple outbreaks are indicated in bold.

Rank	Food item	FoNAO Categoryb	Pathogen	Country	Year	Cases	Hospitalisationsc	Deathsd	Reference(s)
1	Vegetables (raw)	other	Vibrio cholerae O1 Ogawa	Zambia	2003-2004	2529	n.s.	128	MMWR, 2004a
2	Jalapeño peppers, serrano peppers, tomatoes (from Mexico)	12	Salmonella Saintpaul	Multi-state outbreak USA (43 states), Canada	2008	1442	286	2	
3	Salad (mixed, rucola and unspecified)	15, 17	Salmonella spp.	Norway, USA	2003-2004	662	n.s.	n.s.	Elward et al., 2006; Nygard et al., 2008
4	Cantaloupe melon	9	Salmonella spp.	Australia; Multi-state outbreaks USA (24, 16 and 10 states)	2006-2012	564	122	2 and n.s.	CDC, 2008; CDC, 2011; CDC, 2012 (last update 10-10-2012); Munnoch et al., 2009
5	Tomatoes	11	Salmonella spp.	Canada, Multi-state outbreak USA (21 states), USA	2002-2006	464	33	0	Behravesh et al., 2012; CDC, 2006; Greene et al., 2008; Gupta et al., 2007; Srikantiah et al., 2005
6	Celery, cabbage (“Kimuchi”)	35	E. coli O6:H16	Japan	2005	401	n.s.	n.s.	Kimura et al., 2006
7	Lettuce (unspecified, Romaine and Iceberg; whole and shredded)	15	E. coli O157, O157:H7 and O145	Iceland, Netherlands, Multi-state outbreaks USA (10, 5 and 5 states), USA	2005-2011	291	166	0 and n.s.	CDC, 2006; CDC, 2010; CDC, 2011; 2008; Friesema et al., 2008; Sodha et al., 2011
Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths	Reference(s)
------	-----------	----------------	----------	---------------	------	-------	------------------	--------	---------------------------------------
8	Apple (cider, unpasteurised)	6	non-O157 Shiga toxin producing E. coli (O111)	USA	2004	213	6	0	Schaffzin et al. 2012; Vojdani et al. 2008
9	Spinach (fresh)	15	E. coli O157:H7	Multi state outbreak USA (26 states)	2006	199	102	3	CDC, 2006; Charatan 2006, Grant 2008, Wendel et al., 2009, MMWR, 2006
10	Carrots (raw)	19	Shigella sonnei	USA (flights from Hawaii)	2004	163	9	n.s.	Gaynor et al. 2009
	Viruses								
1	Green onion	22	Hepatitis A virus	USA	2003	601	124	3	Wheeler et al. 2005; Wand and Moran 2004; MMWR 2003, 52 (47), 1155-1157
2	Tomatoes (semidried)	38	Hepatitis A virus	Australia	2009	562	0	1	Donnan et al. 2012
3	Orange juice	5	Hepatitis A virus	Egypt	2004	351	127	0	Frank et al., 2007
4	Lettuce (Lotto; primary production)	15	Calicivirus norovirus (Norwalk-like virus)	Norway	2010	157	0	0	ECDC, 2010
5	Radish (dried salad)	38	Norovirus	Korea	2008	117	n.s.	n.s.	Yu et al. 2010
6	Blueberries (raw)	4	Hepatitis A virus	New Zealand	2002	81	18	1	Calder et al. 2003
7	Mixed salad*	15	Calicivirus norovirus (Norwalk-like virus)	Norway	2010	38	0	0	ECDC, 2010
8	Coleslaw	15	Hepatitis A virus	Australia	2003	21	n.s.	n.s.	Munnoch et al. 2004
9	Date palm sap (raw)	n.a.	Nipah virus	Bangladesh	2008	10	n.s.	9	Rahman et al. 2012

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Rank	Food item	FoNAO Category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths	Reference(s)
1	Apple (cider, unpasteurised)	6	Cryptosporidium parvum	USA	2003	144	n.s.	n.s.	Vojdani et al. 2008
2	Basil (fresh)	16	Cyclospora cayetanensis	Canada	2005	142	7	0	Milord et al. 2012
3	Guava juice	8	Trypanosoma cruzi	Venezuela	2007	103	0	1	Alarcón de Noya et al. 2010
4	Snow Peas (raw, from Guatemala)	14	Cyclospora cayetanensis	USA	2004	96	n.s.	n.s.	Heilpern et al. 2005; MMWR 2004, 53 (37), 876-878
5	Sugar cane juice	n.a.	Trypanosoma cruzi	Brazil	2005	24	n.s.	3	Steindel et al. 2008
6	Raspberries (juice)	3	Cyclospora cayetanensis	Guatemala	2003	7	n.s.	n.s.	Puente et al. 2006

* Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

b n.a.= not applicable
c n.s.= not specified
d Not further specified, supposedly fresh cut salad leaves
e reported as international outbreak in EU and non-EU states; data cannot be separated.
Table 34: FoNAO (high water content) item/pathogen combinations causing outbreaks with highest numbers of hospitalisation, non EU countries. Collective cases from multiple outbreaks are indicated in **bold**.

Rank	Food item	FoNAO Category	pathogen	Country	Year	Cases	Hospital.	Deaths^b	Reference(s)
Bacterial pathogens									
1	Jalapeño peppers, serrano peppers, tomatoes (from Mexico)	12	*Salmonella* Saintpaul	Multi-state outbreak USA (43 states), Canada	2008	1442	286	2	CDC, 2008; MMWR 2008, 57 (34) 929-934, Behravesh et al., 2011, Mody et al., 2011
2	Lettuce (unspecified, Romaine and Iceberg; whole and shredded)	15	*E. coli* O157, O157:H7 and O145	Iceland, Netherlands, Multi-state outbreaks USA (10, 5 and 5 states), USA *	2005-2011	291	166	0 and n.s.	CDC, 2006; CDC, 2010; CDC, 2011; 2008; Friesema et al., 22008; Sodha et al., 2011
3	Cantaloupe melon (whole)	9	*Listeria monocytogenes*	Multi-state outbreak USA (28 states)	2011	147	143	33	CDC, 2011; MMWR 2011, 60 (39) 1357-1358
4	Cantaloupe melon	9	*Salmonella* spp.	Australia; Multi-state outbreaks USA (24, 16 and 10 states)	2006-2012	564	122	0 and n.s.	CDC, 2008; CDC, 2011; CDC, 2012 (last update 10-10-2012); Munnoch et al., 2009
5	Spinach (fresh)	15	*E. coli* O157:H7	Multi state outbreak USA (26 states)	2006	199	102	3	CDC, 2006; Charatan 2006, Grant 2008, Wendel et al., 2009, MMWR 2006, 55 (38), 1045-1046
6	Orange juice	5	*Salmonella* spp.	USA	2005	157	89	0	Jain et al., 2009; Vojdani et al., 2008
7	Tomatoes	11	*Salmonella* spp.	Canada, Multi state outbreak USA (21 states), USA	2002-2006	464	33	0	Behravesh et al., 2012; CDC, 2006; Greene et al., 2008; Gupta et al., 2007; Srikantiah et al., 2005
8	Mangoes	8	*Salmonella* Braenderup	Multi-state outbreak USA (15 states)	2012	121	25	0	CDC, 2012 (last updated 10-10-2012)
9	Carrots (raw)	19	*Shigella sonnei*	USA (flights from Hawaii)	2004	163	9	n.s.	Gaynor et al. 2009
Rank	Food item	FoNAO Category	pathogen	Country	Year	Cases	Hospital.	Deaths^b	Reference(s)
------	-----------------	----------------	---------------------------	------------------------	------	-------	-----------	-------------------	--------------
10	Papaya	8	*Salmonella Agona*	USA (25 states)	2011	106	10	0	CDC, 2011
Viruses									
1	Orange juice	5	Hepatitis A virus	Egypt	2004	351	127	0	Frank et al., 2007
2	Green onion	22	Hepatitis A virus	USA	2003	601	124	3	Wheeler et al. 2005; Wand and Moran 2004; MMWR 2003, 52 (47), 1155-1157
3	Blueberries (raw)	4	Hepatitis A virus	New Zealand	2002	81	18	1	Calder et al. 2003
Parasites									
1	Basil (fresh)	16	*Cyclospora cayetanensis*	Canada	2005	142	7	0	Milord et al., 2012

^a Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

^b n.s. = not specified
Table 35: FoNAO (high water content) item/pathogen combinations causing outbreaks\(^a\) where cases of death have been reported, non EU countries. Collective cases from multiple outbreaks are indicated in **bold**.

Rank	Food item	FoNAO Category\(^b\)	pathogen	Country	Year	Cases	Hospital.\(^c\)	Deaths	Reference(s)
Bacterial pathogens									
1	Vegetables (raw)	other	*Vibrio cholerae* O1 Ogawa	Zambia	2003-2004	2529	n.s.	128	MMWR, 2004a
2	Cantaloupe melon (whole)	9	*Listeria monocytogenes*	Multi-state outbreak USA (28 states)	2011	147	143	33	CDC, 2011; MMWR, 2011
3	Spinach (fresh)	15	*E. coli* O157:H7	Multi-state outbreak USA (26 states)	2006	199	102	3	CDC, 2006; Charatan 2006; Grant 2008; Wendel et al. 2009; MMWR, 2006
4	Cantaloupe melon (whole; from Indiana)	9	*Salmonella Typhimurium*	Multi-state outbreak USA (24 states)	2012	261	94	3	CDC, 2012 (last updated 10-10-2012)
5	Jalapeño peppers, serrano peppers, tomatoes	11 or 12	*Salmonella Saintpaul*	Multi-state outbreak USA (43 states), Canada	2008	1442	286	2	CDC, 2008; MMWR, 2008; Behravesh et al. 2011; Mody et al. 2011
Viruses									
1	Date palm sap (raw)	n.a.	*Nipah virus*	Bangladesh	2008	10	n.s.	9	Rahman et al. 2012
2	Green onion	22	*Hepatitis A virus*	USA	2003	601	124	3	Wheeler et al. 2005; Wand and Moran 2004; MMWR, 2003
3	Blueberries (raw)	4	*Hepatitis A virus*	New Zealand	2002	81	18	1	Calder et al. 2003
4	Tomatoes (semidried)	38	*Hepatitis A virus*	Australia	2009	562	0	1	Donnan et al. 2012
Parasites									
1	Sugar cane juice	n.a.	*Trypanosoma cruzi*	Brazil	20005	24	n.s.	3	Steindel et al. 2008
2	Guava juice	8	*Trypanosoma cruzi*	Venezuela	2007	103	0	1	Alarcón de Noya et al. 2010

\(^a\) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

\(^b\) n.a. = not applicable

\(^c\) n.s. = not specified