Two-dimensional (2D) materials, such as graphene, demonstrate a great potential for device fabrication due to their high mobility, extremely low thickness, high strength and flexibility [1]. The ability to stack different 2D materials into van der Waals heterostructures with novel properties creates further opportunities for engineering devices with custom-tailored properties [2]. Graphene sheets encapsulated in hexagonal boron nitride (hBN) have been shown to have a strongly enhanced carrier mobility compared to bare graphene and are also protected from atmospheric adsorbants [2].

Precise knowledge of strain and doping in graphene and its heterostructures is crucial for tailored device performance. This is often complicated at the nanoscale, where graphene strain and doping variations alter carrier mobility [3], Fermi level [4] and optoelectronic properties [5].

It has also been shown that non-uniform strain can induce strong pseudomagnetic fields greater than 300 T [6], which may in turn provide a platform to manipulate the sublattice [7–9] and valley [10, 11] degrees of freedom.

The sensitivity of graphene’s physical properties to strain opens up the possibility of using deliberately induced strain as a method of controlling various parameters in graphene devices, this has been referred to as ‘straintronics’ [12]. However, strain can also occur as an uncontrolled artefact of many of the processes involved in fabricating graphene devices, including deposition on a substrate [3, 13], assembly into van der Waals heterostructures [14].
Moreover, we extend the strain-doping analysis to produce spatial maps of the strain and doping variation. Using this method, we unambiguously link nanoscale variations in strain and doping to local features and defects in the heterostructures, such as fractures, folds, bubbles and edges.

Theory

Quantifying strain and doping from graphene’s Raman spectra is complicated. The Raman shifts of the G and 2D peaks, ω_G and ω_{2D}, depend on both ε and n [16]. If only one peak is considered, it is therefore not possible to determine ε or n, unless the other quantity is known beforehand [16–18]. Using a number of prior assumptions and experimental data sets, Lee et al proposed a method [16] that uses correlation analysis of both ω_G and ω_{2D} to separately determine ε and n, without prior knowledge of either, which we discuss below.

It has been shown both experimentally [19–25], and theoretically [26–29], that for SLG with a constant ε and varying n, or vice versa, the mutual position of the G and 2D peaks for a given Raman spectrum in $\omega_G - \omega_{2D}$ space will approximate a straight line. Figure 1(a) shows a schematic illustration of this. In these coordinates, the relative distance between an experimental point and the point corresponding to pristine graphene (i.e. unsupported graphene) can be decomposed into two vector components, v_G and v_{2D}, each parallel to one of the two straight lines. Here, v_G is the shift due solely to strain and v_{2D} is the shift due solely to hole doping. The blue circle in figure 1(a) shows an example of a pair of ω_G and ω_{2D} values, representing a typical Raman spectrum. The distance from the point corresponding to pristine graphene (charge-neutral and unstrained), shown as a red circle, is decomposed into vectors v_G and v_{2D}, shown as black arrows. Once these vectors have been obtained, the values of ε and n can be found by comparing the shifts with known reference values [16, 18].

In general, the method is only valid for the case of undoped or p-type graphene. Although both n- and p-type doping cause an increase in the value of ω_G, for n-doped graphene the point (ω_{2D}, ω_{GD}) does not move in a straight line [16], making the vector analyses over-complicated and unreliable. The curved line means that it is not possible to use vector decomposition to unambiguously determine strain and electron doping. The straight and curved trajectories shown by p- and n-doped graphene, respectively, are also shown in figure 1(a).

Other prerequisites for a successful analysis include graphene with a low defect density [16], because high defect densities can also cause peak shifts in graphene which would interfere with the separation of strain and doping contributions [30].

For nominally undoped graphene, it is usual to observe a scatter in the G peak frequency of ± 1 cm$^{-1}$.
This means that the model may return negative values of \(n \) for particular Raman measurements, while the mean doping level of many individual spectra remains at zero. However, by using confocal Raman and keeping track of the location where each spectrum was taken to produce spatial maps of \(\varepsilon \) and \(n \), we show that this scatter is not random, but instead correlated to nanoscale features of the heterostructures under investigation.

Lee’s analysis is further complicated by the fact that different types of strain produce different slopes for \(\nu_s \) [16, 18, 21–23, 26, 27], originating from biaxial and uniaxial strain as well as the coexistence of both strain components. Additionally in the case of uniaxial strain, the slope also varies with the strain orientation [16, 18]. Therefore, the right gradient must be selected for the particular strain configuration under consideration.

In many graphene-based structures and devices the strain configuration may be unknown, or there may be a mixture of different types of strain across the structure. This makes analysing these structures using the Lee method problematic, as there may often be an unquantified error in the local slope of \(\nu_s \), which will lead to unquantified errors in the resulting values of both \(\varepsilon \) and \(n \). Mueller et al recently proposed a modification to Lee’s method that allows for arbitrary strain configurations to be determined along with doping [18]. The Mueller method makes it possible to separate strain and doping in heterostructures, such as the ones studied in this work, which have complicated and varying strain configurations.

Arbitrary strains can be written in terms of the components of a biaxial strain tensor:

\[
\varepsilon (r) = \begin{pmatrix} \varepsilon_{xx}(r) & \varepsilon_{xy}(r) \\ \varepsilon_{yx}(r) & \varepsilon_{yy}(r) \end{pmatrix},
\]

then further decomposed into a hydrostatic component, defined as:

\[
\varepsilon_h = \varepsilon_{xx} + \varepsilon_{yy}
\]

and a shear component, defined as:

\[
\varepsilon_s = \sqrt{(\varepsilon_{xx} - \varepsilon_{yy})^2 + 4\varepsilon_{xy}^2}, \text{ (assuming } \varepsilon_{xy} = \varepsilon_{yx})
\]

Using Mueller’s terminology, hydrostatic strain refers to an isotropic expansion of the lattice, which causes a shift in \(\omega_{2D} \) and \(\omega_{2D} \), and shear strain refers to a change in the shape of the lattice, which leaves the area of a unit cell unchanged and results in a splitting of the G and 2D peaks [18]. It is worth noting that this definition of hydrostatic strain yields values twice as high as the corresponding biaxial strain (\(\varepsilon_{\text{biaxial}} = \varepsilon_{xx} + \varepsilon_{yy} \)).

By choosing the slope of \(\nu_s \) corresponding to changing \(\varepsilon_h \) with a constant \(n \), the hydrostatic strain component can be found from the Raman shift of the G and 2D peaks. To obtain a single value of Raman shift from peaks that may be split into two by shear strain, the mean centre points of the split peaks are used, \(\omega_{2D} \) and \(\omega_{2D} \). The peak shift contributions due to \(n \) and \(\varepsilon_h \) can then be separated using vector decomposi-

\[
\Delta \omega_{G}^n = -\omega_{0G}^n \gamma_{G} \varepsilon_h,
\]

where \(\Delta \omega_{G}^n \) is the G shift due solely to \(\varepsilon_h \), \(\omega_{0G}^n \) is the unstrained G frequency and \(\gamma_{G} \) is the Gruneisen parameter for the G peak, which quantifies how much the peak shifts with strain [18, 26].

If the splitting due to \(\varepsilon_s \) is large enough to be measured, \(\varepsilon_s \) can be determined according to:

\[
\Delta \omega_{G}^s = \frac{\omega_{0G}^s \beta_{G} \varepsilon_s}{\omega_{0G}^n \gamma_{G}}
\]

\[
(5)
\]

where \(\Delta \omega_{G}^s \) is the splitting of the G peak and \(\beta_{G} \) is the shear deformation potential for the G mode [18, 31]. In practice, if \(\Delta \omega_{G}^s \) may be too small compared to the peak width to allow the split peaks to be resolved. To calculate \(\varepsilon_s \) and \(n \), we follow the approach used by Mueller [18] and assume \(\omega_{0G}^n = 1583 \text{ cm}^{-1} \) and \(\omega_{2D} = 2678 \text{ cm}^{-1} \) for the point corresponding to pristine graphene (for a laser excitation wavelength of 532 nm), 2.21 and 0.55, for the gradients of \(\nu_s \) and \(\nu_n \) respectively, and a Gruneisen parameter for the G mode of \(\gamma_{G} = 1.8 \). The specific reference values used to calculate \(n \) were taken from Froehlicher and Berclau’s work, backgating a monolayer graphene device to control its carrier density [25]. Heat-maps showing how the resulting values of \(\varepsilon \) and \(n \) vary across \(\omega_{2D}-\omega_{2D} \) space are given in figures 1(b) and (c).

Results

Heterostructure A consists of a sheet of SLG, ~70 \(\mu \text{m} \) in size, partially covered by exfoliated hBN of around 20 nm in thickness and with lateral dimensions of ~50 \(\times 30 \) \(\mu \text{m} \). Atomic force microscopy (AFM) scans (figures 2(a) and (b)) reveal one-dimensional (1D) features on both the graphene and hBN covered graphene. These appear to be a mixture of small fractures and folds, which most likely occurred during the exfoliation or stacking of the heterostructure materials. Figure 2(b) shows a close-up of a fracture and a fold. Whereas the fracture has homogeneous width along the whole length, the fold starts tightly compacted where it contacts the fracture but spreads out as it gets further away. Detailed line profiles taken from the features in figure 2(b) are plotted in figures 2(c) and (d). The bottom of the fracture in figure 2(c) is ~0.6 nm lower than the average level of the graphene. This suggests a monolayer nature of the graphene.

A Raman map of the heterostructure was taken, and Lorentzians were fitted to the graphene 2D, G and D peaks, as well as the characteristic hBN peak at around 1367 cm\(^{-1}\) for every spectrum. The fitted intensities of the 2D and hBN peaks were then used to determine points corresponding to graphene and hBN areas.
Figure 2(e) shows a map of the D to G peak intensity ratio, I_D/I_G, which is used as an indicator of lattice defect density in graphene. The nearly-zero values on most of the flake indicate a very low defect density [30]. The areas previously identified as fractures show a high defect density, which is to be expected if the lattice is broken at these points. Some features, which are seen on top of the hBN in the AFM, correlate to fractures in the graphene, which propagate from the hBN covered area to the area of bare graphene.

To better verify the thickness and quality of the graphene, we plotted histograms of the 2D to G peak intensity ratio, I_{2D}/I_G, and the width of the 2D peak, Γ_{2D}, in figures 2(f) and (g). Both parameters are altered by the presence of hBN on top of graphene, so bare graphene on SiO$_2$ and hBN-covered graphene were plotted separately, in blue and red, respectively. For the bare graphene, the values of I_{2D}/I_G cluster around 2.2, and the values of Γ_{2D} around 27 cm$^{-1}$, which are typical values for SLG on SiO$_2$ [16]. We can assume that the part of the same graphene flake that is covered by hBN is of the same intrinsic quality.

A scatter plot demonstrating the distribution of ω_G and ω_{2D} across heterostructure A is shown in figure 3(a). The axes corresponding to $n = 0$ and $\varepsilon_h = 0$ are added for clarity (see also figure 1(a)). By colouring the points corresponding to bare graphene and hBN-graphene differently, it is clear that the presence of the hBN divides the scatter plot into two main populations: the hBN covered points are shifted in the direction corresponding to more compressive strain and decreased doping. Within both separate populations, there are well-defined clusters spread out parallel to the hydrostatic strain direction and less well-defined clusters aligned with the doping direction. This indicates that there is a spread of values of both strain and doping in the heterostructure, but that most of the variation in Raman shift is caused by the strain.

A map of the hydrostatic strain calculated for each pixel in the Raman map is shown in figure 3(b). The graphene beneath the hBN is significantly more com-
pressively strained, at $\sim -0.1\%$ strain, than the uncovered graphene, which shows tensile strain, at $\sim 0.5\%$. This is to be expected, given that the heterostructure was stacked at a high temperature and then allowed to cool to ambient temperature. The different thermal expansion coefficients of hBN and graphene cause them to contract differently, effectively putting a strain on both materials \[15\]. At the most prominent fractures, the strain is relaxed to nearly zero, which, again, is to be expected, as fracturing by its nature is a mechanism that takes a system from a state of high strain to a relaxed state. At the upper right edge of the graphene, there is a region with less tensile strain than the rest of the bare graphene. The close proximity to the large fracture is likely to cause relaxation of a significant area of the graphene flake nearby. On the other hand, at the graphene fold (shown in figure 2(b)) and the area of graphene spreading out from the fold, there is a higher degree of tensile strain than in the surrounding area of graphene. It should be noted that while the area of high tensile strain is directly localised at the fold, its shape does not coincide with the fold, i.e. it protrudes significantly wider than the topological dimensions of the fold. It is noteworthy that these important variations in the physical properties (i.e. strain) of the material are clearly observed using the Raman vector decomposition method whilst they are only partly visible in the AFM topography.

Figure 3(c) shows the corresponding map for the hole concentration of heterostructure A. The average doping of graphene protected by the hBN layer is $\sim 1 \times 10^{12} \text{ cm}^{-2}$, which is significantly lower than the value of $\sim 3 \times 10^{12}$ for the exposed graphene. This clearly demonstrates the protective properties of the hBN layer, which shields the underlying graphene from environmental adsorbates, the primary source of charge carriers (primarily p-type) in exfoliated graphene. Interestingly, the same decrease in the carrier concentration is observed both at folds (and the associated spread areas) and fractures in graphene. The same reduction of doping along 1D features is seen both in hBN covered graphene and bare graphene, indicating that in this case the effect is not due to the environmental doping but has an intrinsic nature (e.g. graphene substrate interaction). Doping is also reduced at those areas where a fold spreads out into the surrounding graphene, this is most likely due to limited adhesion to the substrate, preventing charge transfer from SiO$_2$ to graphene.

We further discuss the results obtained using heterostructure B, which consists of a single layer of graphene encapsulated between two flakes of hBN, both of $\sim 20 \text{ nm}$ in thickness. Figure 4(a) shows an optical image of the heterostructure with annotations explaining its structure. During the transfer process, bubbles were introduced between the layers, most likely due to stacking at an insufficiently high temperature \[32\]. Many of these bubbles are large enough to be clearly observed both optically and using AFM techniques, as shown in figure 4(e), even through the 20 nm-thick hBN on the top of the heterostructure.

Again, a Raman map of the heterostructure was taken, and Lorentzians were fitted to the graphene 2D, G and D peaks, and the characteristic hBN peak. The fitted intensities of the 2D and hBN peaks were used to determine the points corresponding to graphene and hBN. In the measured part of this heterostructure, the whole graphene flake is covered or encapsulated by hBN.

The map of the I_D/I_G ratio in figure 4(d) shows a low average defect density. There are high I_D/I_G values at the edge of the graphene sheet inside the hBN, which is to be expected. There are also 1D features, which spread from the upper right of the flake (invisible in optical and AFM images), where graphene is exposed to the air (figure 4(a)). These can be attributed to fractures introduced during the stacking of the heterostructure. Overall, the bubbles are not visible in the defect map, which indicates that the graphene structure remains intact within the bubbles. It is noteworthy, however, that the defective area in the lower right part of the heterostructure corresponding to several bubbles was introduced by excessive laser heating in previous extensive experiments.

The histograms in figures 4(b) and (c) show values of I_{2D}/I_G and Γ_{2D} clustered at ~ 3.2 and $\sim 22.5 \text{ cm}^{-1}$,
that the prerequisites for the model to be valid are met. which confirms that the graphene is single layer, and clustered around the line of to zero, as can be seen from the fact that the points are inspection. The average carrier concentration is close insulated, as well as the smaller size of the area under that the majority of the graphene flake is fully encaps-berostructure are much more densely packed than they were for het-

to doping and strain. This is a reflection of the fact that are added again to help visualise changes due to doping and strain. The points on the scatter plot are much more densely packed than they were for heterostructure A, implying a smaller overall variation in both doping and strain. This is a reflection of the fact that the majority of the graphene flake is fully encaps-
sized as the smaller area of the region under inspection. The average carrier concentration is close to zero, as can be seen from the fact that the points are clustered around the line of \(n = 0 \), indicating that graphene is close to charge neutrality, as would be theoretically expected for fully encapsulated graphene, i.e. in the absence of charge transfer both from the environment and substrate. As such, we observe the expected scatter of \(\pm 1 \text{ cm}^{-1} \).

The maps of the separated doping and hydrostatic strain across the heterostructure are presented in figures 5(a) and (b). The native strain in the encapsulated graphene is slightly more compressive compared to freestanding graphene, with the strain varying from \(-0.06\% \) to \(-0.03\% \). Within the bubbles, the graphene becomes nearly strain-free or slightly tensile strained. The damaged bubbles in the lower right part of the heterostructure show a tensile strain of \(-0.06\% \). In all cases, the strain value peaks at the bubbles’ centres, i.e. the strain distribution has a simple dome shape. This is to be expected for bubbles in 2D materials [23, 33]. At the 1D features shown in the defect density map in figure 4(d), there may be a small relaxation of the compressive strain, however the strain variations that correlate to bubbles make this difficult to judge. At the edges of the graphene flake, there is a higher tensile strain of \(\approx 0.06\% \), except for the small area of graphene in the top right corner, which is exposed to the air and only in contact with the lower of the two hBN flakes. It is interesting to note that there are a relatively large number of small bubbles clear from the strain map that are not visible in the optical image or AFM (figures 5(a), 4(a) and (e), respectively).

The encapsulated graphene is nearly charge-neutral, which is to be expected as hBN shields graphene not just from environmental adsorbates, but also from doping from the substrate. Due to the aforementioned scatter about the point of zero doping, some points are returned by the model with negative values of \(n \). These negative values are difficult to interpret. They might be an indication that the point corresponding to pristine graphene (i.e. the point of \(n = 0 \)), may need to be defined more precisely in order to quantify such small variations in doping. The origin point was taken from literature, and was calculated from an experiment in which graphene was back-gated to control its carrier density while Raman measurements were performed [18, 25]. It is also possible that a small native strain in the graphene in [25] may have caused a slight offset to the position of the origin point, which becomes significant at such low doping levels. However, figure 5(b) shows that rather than being random, the observed scatter is correlated to nanoscale features of the heterostructure. The ability to resolve such features in the scatter clearly demonstrates the capability of the confocal Raman method to probe carrier concentration variation over nanoscale domains.
The bubbles are a feature that have a clear effect on the carrier concentration, however the profile of the charge distribution across a bubble looks very different to that for strain. The charge distribution shows a crater-like shape with rings of positive charge forming along the bubble edge. Line profiles, taken across a bubble in the strain and doping maps together with an AFM height profile, are shown in figure 5(d). Unlike the strain, which peaks at the centre of the bubble, where the AFM also shows the greatest height, the charge concentration is greatest on the sides of the bubble, where the steepest slope in the bubble wall is observed. It is worth noting that bubbles in graphene are buried under the ~20 nm-thick top layer of hBN, which masks the exact topography of the bubbles as measured by AFM.

It is worth considering the possible mechanisms that can lead to such charge density fluctuations in the bubble structures. It has been predicted that nanobubbles can induce pseudomagnetic fields in graphene [6], which can lead to the emergence of pseudo-Landau levels and cause charge density variations within the bubbles [34–37]. However, fitting the height and strain profiles of the bubbles in this work to simple membrane models [34, 38] suggests that the resulting pseudomagnetic fields are too weak (~10 mT) to induce the strong spatial fluctuations seen in the experiment. In the absence of pseudomagnetic effects, a sharp interface at the edge of the bubble can induce electronic standing waves within the bubble [34, 35], similar to a quantum corral [39]. Certain modes in such systems exhibit ring-like features [40], but we note that a wider range of modes with different features, including central peaks, should occur for bubbles of different sizes, whereas the experimental system studied here only shows ring-type features. Furthermore, the Fermi wavelengths required for such long-range oscillations are inconsistent with density fluctuations on the order ~1 × 10^{12} cm^{-2} in the experimental system. Sharp interfaces can also give rise to significant localized states in their own right [34–37] due to discontinuities in the strain profile, but the bubbles in our system do not present sharp enough interfaces when approximated using the membrane model. Furthermore, no discontinuities are noticed in the strain profiles near the bubble edges in figure 5(a). A recent work by Huang et al reported qualitatively similar features in Raman on graphene bubbles [41], which they attribute to optical standing waves forming inside the bubbles at certain heights. However, the bubbles studied by Huang et al are on the order of hundreds of nanometres high and several microns in radius, much larger than those studied in this work, which we measure from AFM to be 18 ± 3 nm in height and 600 ± 100 nm in radius. It is therefore unlikely that the doping variations we see are due to the same mechanism. Increased reactivity is predicted when graphene is strained [42], and a consequent charge transfer between graphene and various adsorbants could lead to charge density fluctuations. However, the increase in charge density in our case does not coincide with the maximum strain, and there are no defect signatures in the Raman data. Ruling out these possibilities, the charge density features could be caused by modulation of the graphene-hBN interaction near the cavity edge, possibly due to varying interlayer separation [43] or edge potentials at hBN edges [44].

Conclusions

By combining the strain-doping decomposition method with confocal Raman mapping, we were able to produce separated spatial maps of both strain and carrier concentration in two graphene-hBN
heterostructures. Through comparison with AFM measurements taken from the same locations, we showed that nanoscale variations in strain and charge are not random, but instead arise from local features in the heterostructures. We identified fractures, folds, edges and bubbles as examples of nanostructures that affect these variations. If strain engineering of 2D materials is to become viable, we will need a thorough understanding of the role played by features like these in determining the strain and doping of graphene-based devices and heterostructures. The method demonstrated in this work provides a purely optical, non-invasive tool for probing arbitrary strains and doping in graphene at the nanoscale, and can reveal variations in physical parameters that are not accessible by methods like AFM or optical microscopy alone.

Methods

Raman measurements
The Raman measurements were performed using a Renishaw inVia confocal Raman microscope. We used a 532 nm excitation laser focused through a 100× objective, with a numerical aperture of 0.85; the laser power incident on the sample was ~10 mW, ×100, used a 1800 line mm⁻¹ diffraction grating and the measurements were taken in high confocality mode. To determine whether the peak splitting is negligible, the polarisation configuration of the laser and detector also needs to be taken into account. With linear polarisation, the relative intensity of the two components of the split peaks varies with the angle of polarisation. If one component is very low in intensity, it might be difficult to observe splitting even if it is non-negligible [18]. To reduce this dependency, we use a quarter-wave plate to produce a circular polarisation in the incident laser beam and we leave the scattered beam free of polarisation optics. This results in a measurement setup that has only a small polarisation angle preference introduced by the spectrometer grating, typically on the order of 10%. In the samples studied here we did not observe any peak splitting, so to find the mean Raman shifts a single Lorentzian was fitted to each peak.

Atomic force microscopy measurements
AFM measurements were performed with a Bruker Dimension Icon scanning probe microscope, using Peak Force tapping mode with Bruker PFQNE-AL probes.

Heterostructure fabrication
The van der Waals heterostructures studied in this work were assembled using a method described by Pizzocchero et al [32]. According to the method, the hBN and graphene are stacked on SiO₂ at a temperature of 110 °C, so it is to be expected that some strain will be introduced as the structure cools to ambient temperature, due to the different thermal expansion coefficients of the materials [15]. The bubbles seen in heterostructure B are consistent with bubbles described by Pizzocchero et al and are most likely the result of stacking the hBN and graphene at a temperature lower than is recommended [32].

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement GrapheneCore2 785219 number. The work has been also financially supported by the Department for Business, Energy and Industrial Strategy though NMS funding (2D Materials Cross-team project). The work has been partly realized within the Joint Research Project 16NRM01 GRACE: Developing electrical characterisation methods for future graphene electronics. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme. SRP acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 665919 and from the Irish Research Council under the laureate awards programme. ICN2 is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa programme (MINECO, Grant. No. SEV-2013-0295). The Center for Nanostructured Graphene (CNG) is sponsored by the Danish Research Foundation, Project DNRF103. The authors are grateful to Eli Castañon for fabrication of a heterostructure and Irina Grigorieva for useful discussions.

ORCID iDs

Tom Vincent ⋄ https://orcid.org/0000-0001-5974-9137
Vishal Panchal ⋄ https://orcid.org/0000-0003-3954-8535
Tim Booth ⋄ https://orcid.org/0000-0002-9784-989X
Stephen R Power ⋄ https://orcid.org/0000-0003-4566-628X
Vladimir Antonov ⋄ https://orcid.org/0000-0002-0415-5267
Olga Kazakova ⋄ https://orcid.org/0000-0002-8473-2414

References

[1] Butler S Z et al 2013 Progress, challenges, and opportunities in two-dimensional materials beyond graphene ACS Nano 7 2898–926
[2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 2D materials and van der Waals heterostructures Science 353 aac9439
[3] Couto N J G, Costanzo D, Engels S, Ki D K, Watanabe K, Taniguchi T, Stampfer C, Guinea F and Morpurgo A F 2014
Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices Phys. Rev. X 4 041019

Huang M, Yan H, Heinz T F and Hone J 2010 Probing strain-induced electronic structure change in graphene by Raman spectroscopy Nano Lett. 10 4074–9

Fei Z et al. 2016 Ultraconfined plasmonic hotspots inside graphene nanobubbles Nano Lett. 16 7842–8

Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles Science 344–7

Schneider M, Faria D, Viola Kusminskiy S and Sandler N 2015 Local sublattice symmetry breaking for graphene with a centrosymmetric deformation Phys. Rev. B 91 161407

Settnes M, Power S R and Jauho A P 2016 Pseudomagnetic fields and triaxial strain in graphene Phys. Rev. B 93 1–8

Georgi A et al. 2017 Tuning the pseudospin polarization of graphene by a pseudomorphic field Nano Lett. 17 2240–5

Qi Z, Bahadur D A, Pereira V M, Park H S, Campbell D K and Neto A H C 2013 Resonant tunneling in graphene pseudomagnetic quantum dots Nano Lett. 13 2692–7

Settnes M, Power S R, Brandbyge M and Jauho A-P 2016 Graphene nanobubbles as valley filters and beam splitters Phys. Rev. Lett. 117 276801

Si C, Sun Z and Liu F 2016 Strain engineering of graphene: a review Nanoscale 8 3207–17

Neumann C et al. 2015 Raman spectroscopy as probe of nanometer-scale strain variations in graphene Nat. Commun. 6 8234

Ahn G, Kim H R, Ko T Y, Choi K, Watanabe K, Taniguchi T, Hong B H and Ryu S 2013 Optical probing of the electronic interaction between graphene and hexagonal boron nitride ACS Nano 7 1533–41

Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Controlled ripple texturing of suspended graphene and ultrathin graphite membranes Nat. Nanotechnol. 4 562–6

Lee J E, Ahn G, Shim J, Lee Y S and Ryu S 2012 Optical separation of mechanical strain from charge doping in graphene Nat. Commun. 3 1024

Banszerus L, Janssen H, Otto M, Epping A, Taniguchi T, Watanabe K, Beschoten B, Neumaier D and Stampfer C 2017 Identifying suitable substrates for high-quality graphene-based heterostructures Europhys. Lett. 118 47001

Mueller N S et al. 2017 Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy 2D Mater. 5 015016

Das A et al. 2008 Monitoring dopants by Raman scattering in an electrochemically top– gated graphene transistor Nat. Nanotechnol. 3 210–5

Das A, Chakraborty B, Piscanec S, Pisana S, Sood A K and Ferrari A C 2009 Phonon renormalization in doped bilayer graphene Phys. Rev. B 79 155417

Ding F, Ji H, Chen Y, Herklots A, Dörk K, Mei Y, Rastelli A and Schmidt O G 2010 Stretchable graphene: a close look at fundamental parameters through biaxial straining Nano Lett. 10 3453–8

Metzger C, Rémi S, Liu M, Kusminskiy SV, Castro Neto A H, Swain A K and Goldberg B B 2010 Biaxial strain in graphene adhered to shallow depressions Nano Lett. 10 6–10

Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S and Casiraghi C 2012 Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons Nano Lett. 12 617–21

Bruna M, Ott A K, Ijás M, Yoon D, Sassi U and Ferrari A C 2014 Doping dependence of the Raman spectrum of deformed graphene ACS Nano 8 7432–41

Frohlichler G and Berzins A 2015 Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron–phonon, electron–electron, and electron–defect scattering Phys. Rev. B 91 205413

Mohiuddin T M G et al. 2009 Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüniesen parameters, and sample orientation Phys. Rev. B 79 205433

Mohr M, Maulitzsch J and Thomsen C 2010 Splitting of the Raman 2D band of graphene subjected to strain Phys. Rev. B 82 201409

Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Breakdown of the adiabatic Born–Oppenheimer approximation in graphene Nat. Mater. 6 198–201

Lazzeri M and Mauri F 2006 Nonadiabatic Kohn anomaly in a doped graphene monolayer Phys. Rev. Lett. 97 29–32

Ferrari A C and Basko D M 2013 Raman spectroscopy as a versatile tool for studying the properties of graphene Nanotechnol. 23 835–46

Thomsen C, Reich S and Ordejón P 2002 Ab initio determination of the phonon deformation potentials of graphene Phys. Rev. B 65 1–3

Pizzocchero E, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Home J, Beggild P and Booth T J 2016 The hot pick-up technique for batch assembly of van der Waals heterostructures Nat. Commun. 7 11894

Khestanova E, Guinea F, Fumagalli L, Geim A K and Grigorieva IV 2016 Universal shape and pressure inside bubbles appearing in van der Waals heterostructures Nat. Commun. 7 12587

Settnes M, Power S R, Lin J, Petersen D H and Jauho A-P 2015 Bubbles in graphene: a computational study J. Phys. Cond. Mat. 270122

Settnes M, Power S R, Lin J, Petersen D H and Jauho A-P 2015 Patched Green’s function techniques for two-dimensional systems: electronic behavior of bubbles and perforations in graphene Phys. Rev. B 91 125408

Carrillo-Bastos R, Faria D, Latgé A, Miresles F and Sandler N 2014 Gaussian deformations in graphene ribbons: flowers and confinement Phys. Rev. B 90 041411

Moldovan D, Ramezani Masir M and Peeters F M 2013 Electronic states in a graphene flake strained by a Gaussian bump Phys. Rev. B 88 205446

Kim E A and Castro Neto A H 2008 Graphene as an electronic membrane Europhys. Lett. 84 57007

Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science 262 218–20

Jolis W, Craes F, Petrović M, Atodiresei N, Caciuc V, Blügel S, Král J, Michely T and Busse C 2014 Confinement of Dirac electrons in graphene quantum dots Phys. Rev. B 89 155435

Huang Y et al. 2018 Raman spectral band oscillations in large graphene bubbles Phys. Rev. Lett. 120 186104

Wu Q et al. 2013 Selective surface functionalization at regions of high local curvature in graphene Chem. Commun. 49 677–9

Yankowitz M, Watanabe K, Taniguchi T, San-Jose P and LeRoy B J 2016 Pressure-induced commensurate stacking of graphene on boron nitride Nat. Commun. 7 13168

Zheng F, Sasaki K, Saito R, Duan W and Gu B-L 2009 Edge states of zigzag boron nitride nanoribbons J. Phys. Soc. Japan 78 074713