Identification of asthma phenotypes in children

Educational aims

- Aid understanding of the complexity of linking clinical disease presentation of asthma with underlying mechanisms
- Outline possible advantages of improving this understanding

Summary

The lung is a highly complex organ that can only be understood by integrating the many aspects of its structure. There is increasing interest in defining childhood asthma phenotypes, following decades of research into understanding mechanisms of asthma development and their genetic background without significant breakthroughs. Despite the medical profession’s best efforts to define asthma, identify risk factors and natural development of asthma in birth cohorts, and find characteristics that distinguish one type of asthma from another, we still do not know the relevant characteristics of the various subgroups of childhood asthma. This review will briefly describe the importance of identifying childhood asthma phenotypes, the observable characteristics of the disease, and the previous and current approaches used to find them.

Why define asthma phenotypes?

Asthma in early childhood is difficult to diagnose [1], probably more so than in later childhood or in adults. The clinical presentation of asthma varies through childhood, and recently there has been increasing interest in trying to define different asthma phenotypes [2, 3]. One of the most problematic areas of understanding childhood asthma is probably related to “wheezy” disorders in the first few years of life. On one hand, asthma often starts as wheezing within the first few years of life; while, on the other hand, wheeze may appear early in life without a later diagnosis of asthma.

The concept of phenotypes suggests a link to specific genotypes, whereby one individual could be distinguished from another. Furthermore, gene-environmental interactions are likely to modify the associations between genes and clinical presentation. Clearly, this is not the case today for childhood asthma. The current lack of understanding of underlying mechanisms and our inability to predict prognosis or to tailor medicines individually stem from the difficulty in characterising distinct subgroups of childhood asthma [2, 4, 5].

Classical phenotypes

The classical approach has been to define asthma by various diagnostic criteria, and to add allergic or atopic features to try to separate subgroups of asthma. Thus, traits commonly appearing with (but not limited to) asthma, such as bronchial hyperresponsiveness (BHR) or atopic sensitisation, are often added to “asthma” in order to try to distinguish one group from another. This approach is flawed, however. For a start, there is no common agreement upon diagnosis of asthma that includes all asthma and excludes all without asthma [1, 6–8]. Thus, various pragmatic asthma definitions are used,
reflecting the variety of asthma outcomes in asthma research. Most problematic is probably the term “wheeze”, a concept relevant for the English-speaking parts of the world only, without relevant linguistic correlates in most countries. This sign of bronchial obstruction is a hallmark of early asthma, but it may also have other pathophysiological origins. Furthermore, a single or a few episodes only of wheeze are common in the first one to two years of life. They usually occur with lower respiratory tract infections, often respond poorly to antihistaminic treatment [9, 10] and are reported to resolve for more than half of children [11]. Although the term appears useful for objective correlates in many studies [11-13], it appears less useful in others [14-16].

Most asthma definitions combine the presence of symptoms and reversible airflow obstruction, and other features vary in studies as well as in doctors’ diagnosis of asthma.

A wide range of other features, including asthma symptoms, exacerbations, response to treatment, lung function, BHR, allergic sensitisation, allergic comorbidities and triggers as well as varying markers of inflammation have been proposed to sub-characterise childhood asthma [3, 17-19]. Adding markers of inflammation has not greatly improved matters, but rather has highlighted the need for new approaches to phenotype definitions [20]. An obvious problem with this approach is that very few subjects will eventually be classified within each phenotype, reducing statistical power to detect statistically and clinically meaningful risk factors and biological correlates (fig. 1) [3].

Development of approaches to define asthma phenotypes

Moving onward from the classical clinically based phenotypes, the Tucson study [21, 22] initiated a new approach looking into the temporal presentation of wheeze. This approach has remained popular, and combined with allergic sensitisation led to proposed phenotypes that might have different underlying mechanisms as well as prognosis [22, 23]. Developing from these first observations with biological correlates to temporal patterns of wheeze, recent approaches have used more advanced statistical approaches such as latent class analyses [12, 17]. Although less biased than a priori group comparisons performed by researchers, these statistical approaches are nevertheless based upon one criterion only: “Did the child wheeze within the past year?”. Despite remarkable similarities between the six and five classes, respectively, identified in the AVON and PIAMA studies, as well as their correlates with traits such as allergic sensitisation, lung function and asthma [12], this approach classifies based upon one criterion only. There are several disadvantages to this type of classification of asthma in childhood (fig. 1). First, the phenotypes are by nature retrospective, and are therefore not helpful for the clinician. Secondly, the time points of definition are arbitrary, depending upon the follow-up investigations. Risk factors may change with time, as was shown in the German Multicentre Allergy Study (MAS) study [24]. Third, the approach does not account for complex associations and interactions between the varying spectrums of factors likely to be involved in phenotype characteristics [2-4, 12, 25].

It has therefore been necessary to develop new ways to identify phenotypes using data driven analyses. **Smith et al.** [26] described the use of data driven principal component analyses in a population-based cohort to identify groups of children with similar characteristics. In this analysis, data from interviews, lung function (specific airway resistance), atopy and BHR at age 3 and 5 years identified five group variants...
Phenotypes and risk factors

An important feature of phenotype description is to identify relevant risk factors. Contradictory results relating to the role of pet exposure in asthma and other allergic disease [32] are likely to stem from our inability to distinguish relevant phenotypes in which such exposure may have an impact compared to the (many?) phenotypes where pets do not matter. Other risk factors, such as exposure to tobacco smoke, parental atopic disease, dampness at home or reduced ventilation, allergic sensitisation, time of food allergen introduction and breastfeeding, to mention some, appear to exert a differential impact depending on when the outcome is determined. In the German MAS study, it was found that the associations between risk factor (exposure) and wheeze or asthma were much stronger in early than in later childhood [24]. This raises again the question of whether phenotypes are stable or alter over time. If the latter is true, then when and what are the underlying mechanisms that differentiate the changes in phenotypic expression?

Phenotypes for treatment guidelines and severe asthma

The heterogeneity of asthma has been recognised for decades [33], but individualised asthma treatment is still not recommended. Most recent guidelines suggest some sort of phenotypic classification to guide initial treatment [1, 10, 34, 35], stressing the need for re-evaluation to assess treatment effect. However, trying to distinguish childhood asthma subgroups by symptoms, comorbidities, inflammatory markers, response to treatment or other features has so far not been very useful in the clinical setting [36]. Furthermore, recent studies have failed to predict treatment response to long-acting β-agonists or double dose of inhaled corticosteroids using exhaled nitric oxide fraction or forced expiratory volume in 1 s [36, 37]. As has been obvious in search of severe asthma phenotypes, it is difficult to target treatment for severe asthma in children according to their underlying disease [38, 39]. Several studies have demonstrated severe exacerbations with admissions to intensive care and even endotracheal intubation in children classified as mild-moderately severe asthmatics [40, 41]. Furthermore,
biological characteristics correlate poorly with severe asthma definitions as used today [19, 42, 43]. In the search for individualised therapy, novel treatments are likely to depend upon the identification of relevant phenotypes.

Phenotypes and prediction of prognosis

Childhood and even intrauterine life [44, 45] represents a period in which immunology and pathophysiology undergoes decisive changes with lifelong consequences [46, 47]. Thus, exposure to risk factors at certain time-points may differentially influence the developmental path [46]. This indicates that asthma-related outcomes may not only vary according to early immunological and pathophysiological patterns, but may change with time. This begs the question of whether phenotypes of asthma are predetermined or whether they change throughout life. The concept alluded to by Max Kjellman as “allergic march” suggests that one (allergic) event leads to another on a set path, with some scientific rationale [49]. If children set out on a predetermined allergic developmental path, possibly starting in utero, it seems reasonable it should be possible with some confidence to predict asthma in childhood. Doing so has, however proved to be exceedingly difficult, whether from birth to childhood [50], in early childhood for later childhood [11, 51] or in childhood for adult life [52]. It is likely that the lack of relevant phenotypes as outcomes substantiates our failure to predict the patient’s prognosis. The optimistic view is that if a particular phenotype is not already a set pattern from birth, there should be a window of opportunity in early life not only for avoiding risk exposure, but also for preventive measures.

Summary

Identification of “true” phenotypes of childhood asthma is likely to improve our understanding of the pathophysiology of the disease, our ability to find new treatment targets and to individualise therapy. Mathematical approaches to find these phenotypes have moved from classical phenotypes involving the pattern of clinical presentation or traits of asthma, through statistical data-driven clusters of temporal presentation based upon recent wheeze, to new multidimensional statistical approaches oblivious to the researchers’ preconception of traits that occur in clusters. The present approaches are probably essential for determining the role of proteomics, and to identify new therapeutic targets, but they are limited (table 1) by their lack of usefulness at present for the clinician, the lack of genotypic correlates to the identified phenotypes and uncertainty about the optimal statistical methods.

References

1. Bacharier LB, Boner A, Carlsen KH, et al. Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report. *Allergy* 2008; 63: 5–34.
2. Bousquet J, Anto J, Auffray C, et al. MedALL (Mechanisms of the Development of Allergy): an integrated approach from phenotypes to systems medicine. *Allergy* 2011; 66: 596–604.
3. Spycher BD, Silverman M, Kuehni CE. Phenotypes of childhood asthma: are they real? *Clin Exp Allergy* 2010; 40: 1130–1141.

Table 1 Summary of issues related to approaches of phenotyping childhood asthma
Recent approaches are currently more useful for researchers than clinicians
Factors included into phenotype characteristics:
• Subjective versus data-driven (partially) objective
• How can we (or should we at all?) set limits or thresholds?
Recent developments in phenotyping are probably essential for determining the role of proteomics
Are there genetic correlates (genotypes) to novel phenotypes?
Optimal statistical methods are yet to be determined
Stability of phenotype is yet to be determined
• across populations
• over time
Better phenotyping is probably the only way forward to detect novel and individualised therapies
6. Baena-Cagnani CE, Badellino HA. Diagnosis of allergy and asthma in childhood. Curr Allergy Asthma Rep 2011; 11: 71–77.

7. Pedersen SE, Hurd SS, Lemanske RF Jr, et al. Global strategy for the diagnosis and management of asthma in children 5 years and younger. Pediatr Pulmonol 2011; 46: 1–17.

8. Horner CC, Bacharier LB. Diagnosis and management of asthma in preschool and school-age children: focus on the 2007 NAEPP Guidelines. Curr Opin Pediatr 2009; 15: 52–56.

9. Boehmer AL. Paediatric asthma: everything that seemed to be certain no longer is. Pediatr Clin North Am 2006; 51: 451–460.

10. Frey U, von Mutius E. The challenge of managing wheezing in infants. N Engl J Med 2009; 360: 2130–2133.

11. Bousquet J, Burney PG, Zuberbier T, et al. GA2LEN (Global Allergy and Asthma European Network) addresses the allergy and asthma ‘epidemic’. Allergy 2009; 64: 969–977.

12. Castro-Rodriguez JA, Cifuentes L, Rodriguez-Martinez CE. The asthma predictive index remains a useful tool to predict asthma in young children with recurrent wheeze in clinical practice. J Allergy Clin Immunol 2009; 123: 1359–1363.

13. Van Sickel D. Perceptions of asthma among physicians: an exploratory study with the ISAAC video. Eur Respir J 2005; 26: 829–834.

14. Hedlin G, Bush A, Lødrup Carlsen K, et al. Wheezing in childhood: incidence, longitudinal patterns and factors predicting persistence. Eur Respir J 2008; 32: 585–592.

15. Holgate ST, Arshad HS, Roberts GC, et al. A new look at the pathogenesis of asthma. Clin Sci (Lond) 2010; 118: 439–450.

16. Smith JA, Drake R, Simpson A, et al. Dimensions of respiratory symptoms in preschool children: population-based birth cohort study. Am J Respir Crit Care Med 2008; 177: 1359–1363.

17. Castro-Rodriguez JA, Cifuentes L, Rodriguez-Martinez CE. The asthma predictive index remains a useful tool to predict asthma in young children with recurrent wheeze in clinical practice. J Allergy Clin Immunol 2011; 127: 1082–1083.

18. Simpson A, Søderstrøm L, Aalstedt S, et al. IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol 2005; 116: 744–749.

19. Lemanske RF Jr, Mauger DT, Sorkness CA, et al. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med 2010; 362: 975–985.

20. Vaessen-Verberne AA, van den Berg NJ, van Nierop JC, et al. Combination therapy salmeterol/fluticasone versus doubling dose of fluticasone in children with asthma. Am J Respir Crit Care Med 2010; 182: 1221–1227.

21. Brasier AR, Victor S, Ju H, et al. Predicting intermediate phenotypes in asthma using bronchoalveolar lavage-derived cytokines. Clin Transl Sci 2010; 3: 147–157.

22. Takkouche B, Gonzalez-Barcala FJ, Eteminan M, et al. Exposure to furry pets and the risk of asthma and allergic rhinitis: a meta-analysis. Allergy 2008; 63: 857–864.

23. Asa K. Heterogeneity of childhood asthma. Allergy 1981; 36: 3–14.

24. Levy ML, Thomas M, Small I, et al. Summary of the 2008 BTS/SIGN British Guideline on the management of asthma. Prim Care Respir J 2009; 18: Suppl. 1, S1–S16.

25. Cope SF, Ungar WJ, Glazier RH. International differences in asthma guidelines for children. Int Arch Allergy Immunol 2009; 148: 265–278.

26. Lemanske RF Jr, Mauger DT, Sorkness CA, et al. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med 2010; 362: 975–985.

27. Vaessen-Verberne AA, van den Berg NJ, van Nierop JC, et al. Combination therapy salmeterol/fluticasone versus doubling dose of fluticasone in children with asthma. Am J Respir Crit Care Med 2010; 182: 1221–1227.

28. Lødrup Carlsen KC, Hedlin G, Bush A, et al. Assessment of problematic severe asthma in children. Eur Respir J 2011; 37: 432–440.

29. Hedlin G, Bush A, Lødrup Carlsen K, et al. Problematic severe asthma in children, not one problem but many: a GA2LEN initiative. Eur Respir J 2010; 36: 196–201.

30. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010; 181: 315–323.

31. Marcus P, Arnold RJ, Ekins S, et al. A retrospective randomized study of asthma control in the US: results of the CHARIOT study. Curr Med Res Opin 2008; 24: 3443–3452.
Asthma phenotypes in children

42. Bush A, Hedlin G, Carlsen KH, et al. Severe childhood asthma: a common international approach? Lancet 2008; 372: 1019–1021.

43. Lang AM, Konradsen J, Carlsen KH, et al. Identifying problematic severe asthma in the individual child – does lung function matter? Acta Paediatr 2010; 99: 404–410.

44. Breckler LA, Hale J, Jung W, et al. Modulation of in vivo and in vitro cytokine production over the course of pregnancy in allergic and non-allergic mothers. Pediatr Allergy Immunol 2010; 21: 14–21.

45. Prescott SL, Clifton V. Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr Opin Allergy Clin Immunol 2009; 9: 417–426.

46. Holt PG, Sly PD. Non-atopic intrinsic asthma and the ‘family tree’ of chronic respiratory disease syndromes. Clin Exp Allergy 2009; 39: 807–811.

47. Landau LI. Definitions and early natural history. Med J Aust 2002; 177; 6 Suppl., S38–S39.

48. Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc 2009; 6: 272–277.

49. Ker J, Hartert TV. The atopic march: what’s the evidence? Ann Allergy Asthma Immunol 2009; 103: 282–289.

50. Ladrup Carlsen KC, Mowinckel P, Granum B, et al. Can childhood asthma be predicted at birth? Clin Exp Allergy 2010; 40: 1767–1775.

51. Devulapalli CS, Carlsen KC, Haland G, et al. Severity of obstructive airways disease by age 2 years predicts asthma at 10 years of age. Thorax 2008; 63: 8–13.

52. Balemans WA, van der Ent CK, Schilder AG, et al. Prediction of asthma in young adults using childhood characteristics: Development of a prediction rule. J Clin Epidemiol 2006; 59: 1207–1212.