Distinct histone H3–H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones

Chao-Pei Liu,1,4 Wenxing Jin,1,4 Jie Hu,1,2 Mingzhu Wang,3 Jingjing Chen,1 Guohong Li,1,2 and Rui-Ming Xu1,2

1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3–H4 chaperones found in distinct and common complexes, yet how sNASP binds H3–H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nα region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3–H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3–H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.

[Keywords: histone; histone chaperone; NASP; ASF1; structure]

Supplemental material is available for this article.

Received October 10, 2021; revised version accepted November 2, 2021.
characterized by the presence of tandem tetratricopeptide repeat (TPR) motifs interrupted with an insertion (Dunleavy et al. 2007). NASP proteins have four TPR motifs, and the structure of yeast Hif1 displays that the four tandem TPR motifs form an arch, and two Hif1 molecules bind to one H2A–H2B dimer (Liu et al. 2014; Zhang et al. 2016).

Human sNASP is a 449-residue protein essential for cellular DNA replication, cell cycle progression, and embryonic development (Richardson et al. 2006; Alekseev et al. 2009, 2011; Cook et al. 2011). During normal cell cycle progression, the expressed level of NASP is under tight control, as overexpression of NASP leads to a delay in the progression through the G1/S border (Cook et al. 2011). sNASP was initially implicated as a chaperone of linker histone H1 involved in the assembly and disassembly of higher-order chromatin structure (Richardson et al. 2000; Finn et al. 2008, 2012). Through mass spectrometry analysis and biochemical fractionations, it was later found to be in both cytosolic and nuclear complexes together with ASF1 (Campos et al. 2010; Jasencakova et al. 2010; Apta-Smith et al. 2018). Previous studies revealed that sNASP serves to maintain a soluble reservoir of mature H3–H4 histone proteins (Cook et al. 2011), facilitates rapid and efficient transport of histones into the nucleus, and promotes nucleosome assembly with histone H3–H4 (Tyler et al. 1999; Wang et al. 2008, 2012, Osakabe et al. 2010). At present, limited information about how sNASP interacts with H3–H4 and how sNASP passes histone H3–H4 to ASF1 is known. It is reported that sNASP can form a quaternary complex with ASF1A and H3–H4. A recent study revealed that the TPR4 motif of sNASP binds a seven-amino-acid peptide motif at the globular H3 C-terminal region with high affinity (Bowman et al. 2016), and that the C-terminal region of histone H3 interacts with ASF1 (Bowman et al. 2017). Nonetheless, an overall picture of how sNASP binds H3–H4 and cooperates with ASF1 for transfer of H3–H4 remains enigmatic.

Here we present a combined structural and biochemical analysis, revealing that sNASP specifically recognizes histone H3–H4 principally through the N-terminal tail of histone H3 in the presence of ASF1, whereas a different binding mode emerges in the absence of ASF1. These findings provide mechanistic insights into key steps of cytoplasmic histone processing and transfer pathways.

Results

sNASP exists in monomeric and dimeric forms

The conserved core of human sNASP consists of a TPR domain with four tandem TPR motifs, among which the second TPR is interrupted by a large acidic [DE-rich] region, and a coiled-coil (CC) domain follows the C-terminal end of TPR4 (Fig. 1A). We expressed the sNASP TPR domain [amino acids 40–320] in bacteria as a poly[histidine]-sumo-tagged fusion protein, and purified the protein through successive Ni2+-chelating, sumo tag cleavage and size exclusion column chromatography steps. We noticed that sNASP eluted from the sizing column in two separate peaks (Fig. 1B). The two populations of sNASP are relatively stable, as pooling three peak fractions from each peak and running them through the sizing column again separately shows that the peak 1 sample remain eluted at the same volume, whereas a small but noticeable amount of the peak 2 sample dispersed over to the peak 1 position (Fig. 1B). The two-peak elution profile is preserved at 100 mM salt concentration, although with different relative abundances (Supplemental Fig. S1A). Analytical ultracentrifugation (AUC) studies revealed that peak 1 is predominantly made up of sNASP dimers, whereas peak 2 is a mixture of sNASP monomers and a small fraction of dimers, judged by their theoretical molecular masses of 30 kDa and 60 kDa, respectively (Fig. 1C).

To know whether full-length sNASP also exists in two oligomeric forms, we expressed full-length sNASP with a C-terminal strep tag in HEK293F cells. Following affinity and ion exchange purification steps, size exclusion chromatography analysis revealed that full-length sNASP also eluted in two peaks, although the later peak is considerably more abundant (Fig. 1D). An AUC analysis shows that the major peak contains mostly sNASP monomers, which has a molecular mass of ~53 kDa, and a very small amount of sNASP dimers, which has a molecular mass of 105 kDa (Fig. 1E). Altogether, we found that purified sNASP exists in both monomeric and homodimeric forms.

Homodimeric structure of sNASP

We first wished to determine the structures of sNASP in monomeric and dimeric forms in order to gain insights into how they bind histones. Crystallization of both forms of sNASP TPR domain was attempted; however, only the dimeric protein crystallized, and a 2.9 Å structure was solved (Fig. 2A; Table 1). There is one sNASP molecule per asymmetric unit, and an apparent homodimer results from the packing of a twofold crystallographic symmetry-related molecule via an ~60-residue C-terminal helix. Surprisingly, this long helix is formed by the predicted second helix of the TPR4 motif and the entire coiled-coil domain. Apart from this long C-terminal helix, each of the TPR units from 1 to 3 consists of two antiparallel α helices, while TPR4 has a separate N-terminal helix (Fig. 2A). For ease of description, we denote these helices α1 to α7 sequentially from the N terminus, and the long C-terminal helix as αC, which is further separated into an N-terminal α8 segment belonging to the TPR4 motif, and a C-terminal α9 segment, which corresponds to the predicted coiled-coil domain (Fig. 2A). Homodimerization of sNASP entails the formation of an extended antiparallel coiled-coil between the two αC helices, and the intermolecular interaction buries a surface area of 1877 Å2. The coiled-coil interaction involves six pairs of charged residues and a number of hydrophobic ones (Supplemental Fig. S1B). Not surprisingly, removal of αC impairs the dimerization ability of sNASP in solution (Supplemental Fig. S1C).

The TPR motifs pack via stacking of the N-terminal helix of the next TPR motif onto the groove between the helix pair of the preceding TPR motif, principally via...
hydrophobic interactions, and the packing results in a right-handed superhelical twist (Fig. 2A). While charge distribution on the inner (concave) surface of the TPR domain is mainly neutral, the exposed surface of α1, which forms one rim of the concave surface, is positively charged (Fig. 2B). In contrast, the loop connecting α3 and α4 in TPR2 and that connecting α5 and α6 in TPR3, both of which are part of the convex side of the sNASP surface, are negatively charged. Additionally, a 63-residue segment of the DE-rich region, which is inserted between α3 and α4, is disordered in the structure. It is interesting that the approximately seven C-terminal turns of the long αC are highly charged, but oppositely charged residues are segregated on the opposing surface sides along the C-terminal segment of αC, and the negatively charged surface region from the symmetry-related sNASP molecule forms the other rim of the concave surface sNASP (Fig. 2B). Previous studies showed that the TPR domain of sNASP is capable of binding histone H3–H4 and possesses the nucleosome assembly activity in vitro (Osakabe et al. 2010; Bowman et al. 2016, 2017), while the coiled-coil domain may provide a structural scaffold mediating protein–protein

Figure 1. Oligomeric state of sNASP. [A] A schematic diagram depicting TPR1-4 motifs and acidic (DE-rich), coiled-coil (CC), and nuclear localization signal (NLS) regions of sNASP. A 339-residue insertion in the acidic region constituting tNASP is also indicated. [B] Two-hundred-eighty-nanometer absorbance elution profiles of sNASP TPR from a Superdex 200 increase 10/300 GL size exclusion column. The gray line indicates the profile from the sample after nickel-chelating purification and sumo tag cleavage. Blue and magenta lines represent profiles from a second run using the fractions pooled from peak 1 (11.5–13.0 mL) and peak 2 (14.0–15.5 mL), respectively. Each 0.5-mL elution fraction, spanning 8.0–19.5 mL, for all three runs was analyzed by SDS-PAGE and is shown below. Gel panels, each of which was assembled from two gels with their boundary indicated by a thin vertical gray line, from the first run, rerun of peak 1, and peak 2 are arranged from top to bottom, and aligned according to elute fractions [numbered above the top panel]. A magenta inverted triangle indicates the presence of a small peak at the peak 1 position in the rerun of peak 2 sample. [C] AUC analysis of peak 1 (blue) and peak 2 (pink) samples. Sedimentation velocity measurement of molecular mass distribution, c(M) in 10^{-2}/kDa, is plotted. [D] Gel filtration analysis of full-length sNASP expressed in HEK293F cells. The gel panel was assembled from two gels separated by a thin vertical gray line. [E] AUC analysis of the peak 2 fractions [11.0–13.0 mL] of full-length sNASP.
interactions [Rose and Meier 2004]. Our GST pull-down assay indicates that both the intact sNASP TPR domain (Fig. 2C, lane 3), which is mixture of monomeric and dimeric forms, and its homodimerization-defective truncation variant encompassing α1–α7 [Fig. 2C, lane 4] can interact with histone H3.1–H4, whereas the C-terminal long helix αC [amino acids 259–320], which contains TPR4 α8 and the CC domain, cannot [Fig. 2C, lane 5]. Interestingly, we found that, although not needed for H3–H4 binding, the coiled-coil domain of sNASP is important for its nucleosome assembly activity, as judged by an in vitro supercoiling assay [Fig. 2D]. In this assay, both monomeric and dimeric forms of the sNASP TPR domain appear to have levels of nucleosome assembly activity comparable with that of the full-length protein.

**Structure of monomeric sNASP in complex with H3–H4 and ASF1**

sNASP has been shown to form a quaternary complex with histones H3 and H4 and their chaperone ASF1 [Bowman et al. 2017]. To investigate how sNASP binds histone H3–H4 together with ASF1, we assembled the quaternary complex using the sNASP TPR domain, the globular domain of ASF1A [amino acids 1–172], and full-length histones H3.1 and H4 under a medium salt concentration (0.5 M NaCl). Gel filtration results showed that both dimeric and monomeric forms of the sNASP TPR domain can form stable complexes with the preassembled ASF1A–H3.1–H4 complex. They eluted from a Superdex 200 10/300GL sizing column at ∼11- and 13-mL elution volume, respectively, while the ASF1A–H3.1–H4 complex eluted at ∼14.7 mL [Fig. 3A]. However, crystallization trials of the two sNASP-containing complexes with a large number of conditions were unsuccessful.

We reasoned that one possible reason for unsuccessful crystallization might be due to ASF1A–H3–H4’s propensity to precipitate under low salt concentrations (<0.5 M NaCl). Gel filtration results showed that both dimeric and monomeric forms of the sNASP TPR domain can form stable complexes with the preassembled ASF1A–H3.1–H4 complex. They eluted from a Superdex 200 10/300GL sizing column at ∼11- and 13-mL elution volume, respectively, while the ASF1A–H3.1–H4 complex eluted at ∼14.7 mL [Fig. 3A]. However, crystallization trials of the two sNASP-containing complexes with a large number of conditions were unsuccessful.
crystallization of the sNASP–ASF1A–H3–H4 complex using the monomeric fusion protein, and succeeded in solving a 3.0-Å resolution structure by molecular replacement (Fig. 3B; Table 1). There are two sNASP–ASF1A–H3–H4 complexes, both with a 1:1:1:1 subunit stoichiometry, in the crystallographic asymmetric unit (ASU). The two complexes within the ASU share a highly similar structure, manifested by an overall root-mean-square deviation (RMSD) of 0.16 Å. The contacts between the two complexes within the ASU are mediated through ASF1–ASF1 interactions and do not appear to have physiological implications. Thus, we will choose the complex (chains A–D) having a better quality electron density map for further analysis from now on.

In the structure, the electron density for the GS linker is completely absent, and the C-terminal end of sNASP and the N-terminal end of ASF1A to which the GS linker connects are spatially close (Fig. 3B). This observation indicates that the linker has a flexible conformation, and artificial tethering of sNASP and ASF1A via this linker did not constrain their positioning for histone binding. The structure shows that sNASP makes direct contacts with both histones H3 and H4, which bind ASF1A as a heterodimer in the same manner as seen in the structures of ASF1–H3–H4 complexes (English et al. 2006; Natsume et al. 2007; Zhang et al. 2018). sNASP interacts with histones H3 and H4 through the convex surface of the TPR domain: TPR1 through TPR3 with H3, and TPR3–TPR4 with H4 (Fig. 3B). Intriguingly, histone H3 interacts with sNASP principally via its N-terminal flexible region encompassing residues 40–57, which normally adopts a helical structure (αN) in NCP. The conformation of this H3 region is highly variable outside the nucleosomal context, and αN is mostly unwound in the present structure (Fig. 3D). Previous structural studies found that αN could adopt different orientations when binding histone chaperones, but the helical structure remains mostly intact. The drastic structural change of αN in histone H3 was first observed in the structure of Rtt109, a yeast H3K56 acetyltransferase, bound to the Asf1–H3–H4 complex (Zhang et al. 2018). Our observation here reinforces the notion that conformational dynamics of this H3 region are important for recognition by histone chaperones. The very N-terminal 39 residues of H3 are disordered, but based on the location of the ordered portion of the H3 N-terminal tail from residue 40 onward, the disordered portion of the H3 N-terminal tail is expected to be in the vicinity of the also disordered DE-rich acidic region between α3 and α4 of sNASP (Fig. 3B). The oppositely charged H3 tail and

### Table 1. Data collection and refinement statistics

| sNASP<sup>TPR</sup> SeMet | sNASP<sup>TPR</sup> native | sNASP<sup>TPR</sup>–[G<sub>6</sub>S]<sub>4</sub>–ASF1A<sub>1–156</sub>–H3.1–H4 complex |
|---------------------------|---------------------------|--------------------------------------------------|
| **Data collection**        |                           |                                                  |
| Wavelength [Å]             | 0.97915                   | 0.97915                                          | 0.97913                                      |
| Space group                | P6<sub>2</sub>2<sub>2</sub> | P6<sub>2</sub>2<sub>2</sub>                       | P1                                           |
| Cell dimensions            | a, b, c [Å]               | 96.14, 96.14, 208.87                            | 96.83, 96.83, 209.33                         | 71.13, 71.00, 104.39 |
| a, β, γ (°)                | 90, 90, 120               | 90, 90, 120                                      | 105.32, 101.99, 95.75                        |
| Resolution [Å]             | 50.00–3.60 [3.73–3.60]<sup>a</sup> | 50.00–2.90 [3.00–2.90]<sup>a</sup>             | 50.00–3.00 [3.11–3.00]<sup>a</sup>            |
| R<sub>merge</sub>          | 0.134 [0.687]             | 0.061 [0.876]                                   | 0.096 [0.569]                                |
| I/oσ                       | 19.4 [5.4]                | 31.1 [2.6]                                      | 13.9 [2.3]                                   |
| Completeness (%)           | 99.7 [100]                | 98.5 [99.1]                                    | 90.7 [92.3]                                  |
| Redundancy                 | 17.4 [18.1]               | 8.0 [8.3]                                       | 3.8 [3.9]                                    |
| Total/unique reflections   | 124,473/7154              | 105,828/13,286                                  | 134,115/33,846                               |
| **Refinement**             |                           |                                                  |
| Resolution [Å]             | 15.00–2.90                | 15.00–3.00                                      |
| Number of reflections      | 13,042 (2280)             | 33,326 (1865)                                   |
| R<sub>work</sub>/R<sub>free</sub> | 0.187/0.223              | 0.165/0.203                                     |
| Number of atoms            | 1848                      | 8594                                            |
| Protein residues           | 220                       | 1071                                            |
| Ligand/Ion                 | 9                         | 8                                               |
| Water                      | 30                        | 44                                              |
| B factors [Å<sup>2</sup>]  |                           |                                                  |
| Protein                    | 63.5                      | 73.5                                            |
| Ligand/Ion                 | 94.1                      | 83.8                                            |
| Water                      | 54.2                      | 44.1                                            |
| RMS deviations             |                           |                                                  |
| Bond lengths [Å]           | 0.009                     | 0.003                                           |
| Bond angles (°)            | 0.925                     | 0.54                                            |
| Ramachandran plot          |                           |                                                  |
| Favored                    | 97.2%                     | 97.4%                                           |
| Allowed                    | 2.8%                      | 2.6%                                            |
| Outliers                   | 0                         | 0                                               |

<sup>a</sup>Values in parentheses are for highest-resolution shell.
Figure 3. Structure of the monomeric sNASP bound to H3–H4 and ASF1A. (A, left panels) Sizing column elution profiles of dimeric (top panel) and monomeric (middle panel) sNASP TPR domain with the ASF1–H3–H4 complex, and the ASF1A–H3–H4 complex alone (bottom panel). The profiles of sNASP dimers and monomers, shown in blue and magenta dashed lines, are superimposed for reference in respective panels. (Right panels) SDS-PAGE analysis of 0.5-mL fractions spanning the 8.0- to 18.5-mL elution volume corresponding to the three sizing column runs displayed in the left panels, respectively. Each gel panel was assembled from two gels with a thin vertical gray line separating them. (B) Overall structure of the sNASP–ASF1A–H3–H4 quaternary complex. sNASP is colored yellow, ASF1A is colored green, H3 is colored cyan, and H4 is colored magenta. Orange dashed line denotes the disordered DE-rich region within TPR2, and the gray dashed line indicates the disordered GS linker joining sNASP and ASF1A. (C) A top view of the structure in cartoon drawing overlaid with a semitransparent surface representation of sNASP (gray) and ASF1A (light green). sNASP regions involved in binding the N-terminal segment of H3 and the C-terminal tail of H4 are indicated with a dashed rectangle and circle, respectively. (D) Conformational differences of the N-terminal region of H3 in the structures with the sNASP–ASF1 complex (cyan), nucleosome core particle (NCP, orange) (PDB: 5AV9), the Rtt109-Asf1 complex (green) (PDB: 5ZBA), the MCM2-ASF1 complex (yellow) (PDB: 5C3I), ASF1 (light blue) (PDB: 2IO5), and DAXX (magenta) (PDB: 4HGA). (E) Superposition of the sNASP TPR monomer structure, colored the same as above, with that of the sNASP dimer, colored green and magenta, and yeast Hif1 [PDB: 4NQ0] colored in gray.
the acidic region of sNASP may interact via Coulomb’s force. Additionally, histone H4 interacts with sNASP via its C-terminal β strand, which is stabilized by interaction with ASF1A, and the very C-terminal tail (Fig. 3B,C, Supplemental Fig. S2B).

The sNASP TPR domain in the complex structure is apparently in a monomeric form, and its structure is very similar to that of the yeast Hif1 monomer; the two can be superimposed with an RMSD of 2.18 Å. The structures of monomeric and dimeric forms of sNASP are nearly identical throughout the four TPR motifs, except that the very C-terminal helix α9, which joins with α8 to form the long, continuous αC in the dimeric structure of sNASP, folds back to form an antiparallel coiled coil with α8 in the present structure (Fig. 3E). Apart from this difference, the two TPR domain structures can be superimposed with an RMSD of 0.57 Å.

Interaction between sNASP and H3–H4
The structure shows that the N-terminal segment of histone H3 [amino acids 40–57] snakes through the convex surface of sNASP formed by TPR1, TPR2, and TPR3 [Fig. 4A], as evidenced by a clear, continuous electron density map (Supplemental Fig. S3A). This region of histone H3 interacts with sNASP extensively through a mixture of hydrophobic interactions, salt bridges, and hydrogen bonds (Fig. 4A). Outside the N-terminal region of H3, only Glu105 in the central α2 helix of H3 is found to interact with sNASP via hydrogen bonding to Gln221 and Glu224 located in α6 of TPR3. We deleted the entire N-terminal tail [amino acids 1–60] of histone H3.1 [H3.1Δ60] and tested the interaction between the sNASP TPR domain and H3.1Δ60–H4 in the presence and absence of ASF1A. GST pull-down results (Fig. 4B) show that the sNASP TPR domain dramatically reduced binding with ASF1A–H3.1Δ60–H4 (Fig. 4B, lane 13), whereas no obvious impact is observed with full-length H3.1–H4, alone (Fig. 4B, lane 10) or in complex with ASF1A (Fig. 4B, lane 12), and H3.1Δ60–H4 (Fig. 4B, lane 11). This observation validates the structural finding that the N-terminal tail of histone H3 is essential for sNASP binding when ASF1 is present, and also reveals that sNASP binds H3–H4 differently when ASF1 is absent.

Figure 4. Histone H3 N-terminal tail binding sites in sNASP. (A) Detailed view of interactions between residues 40–57 of histone H3 (cyan) and sNASP TPR (yellow). The involved residues are shown in a stick representation, with sNASP and H3 residues labeled in black and blue, respectively, and black dashed lines indicate hydrogen bonds. [B, top panel] Pull-down of protein samples indicated with a plus sign by the GST-tagged sNASP TPR domain or GST. [Bottom panel] Input samples for GST pull-down experiments. Corresponding lane numbers are labeled at the bottom. (C) GST pull-down of the ASF1A–H3.1–H4 complex by sNASP or its indicated mutants. [D] Cellular colocalization test of WT or mutant sNASP with H3.1. Scale bar, 10 μm. (E) GST pull-down of H3.1 and its mutants by sNASP. [F] Colocalization test of sNASP with H3.1 and its indicated mutants.
To further delineate sNASP–H3 interactions, we carried out structure-guided mutagenesis of sNASP and tested the binding of these mutants to the ASF1A–H3.1–H4 complex. Prominently among sNASP–H3 interactions, Ile51 of H3 contacts Leu185 and Ile188 located in a4 of sNASP via hydrophobic interactions, and the guanidino group of Arg52 of H3 interacts with Asp184 in a4 and Glu225 in a6 of sNASP via hydrogen bonds and charge interactions, while the carbonyl of Arg52 makes a hydrogen bond with the nitrogen atom of the indole ring of Trp180 of sNASP. GST pull-downs with the D184R, E225R, D184R E225R, or L185A I188A mutants of sNASP show that these mutants effectively lost binding to the ASF1A–H3–H4 complex [Fig. 4C, lanes 4–7]. These in vitro pull-down results are supported by LacO–LacI targeting experiments in mammalian A03_1 cells, where sNASP or its derivatives were fused with mCherry and LacI, while H3.1 was fused to EGFP [Fig. 4D, Supplemental Fig. S3B, C]. Reciprocally, we made I51A, R52A, and I51A R52A mutants of H3, and GST pull-down experiments showed that the individual I51A or R52A mutations have minimal impact on sNASP–H3 binding, while the I51A R52A combination mutant of H3 greatly impaired the interaction with sNASP [Fig. 4E, lanes 9–11]. The in vitro GST pull-down results are corroborated by cellular targeting experiments [Fig. 4F, Supplemental Fig. S3D]. It is worth pointing out that Ile51 and Arg52 are strictly conserved among histone variants across species [Supplemental Fig. S3E], suggesting a common sNASP binding mode of H3 variants in the presence of ASF1.

In addition to the above-mentioned sNASP–H3 interactions, the hydroxyl and the carbonyl groups of Ser16 of sNASP make hydrogen bonds with Tyr54 and Ser57 of H3, respectively. Ser57 of H3 also contacts Asn218 of sNASP via a hydrogen bond. Tyr41 of H3 interacts with Glu79 and Tyr91 of sNASP, and Asn175 of sNASP forms a hydrogen bond with Arg40 of H3 [Fig. 4A]. Interestingly, a S216Y change is among somatic mutations of sNASP in cancer tabulated in the COSMIC database [Bamford et al. 2004]. A GST pull-down of the ASF1A–H3–H4 complex by the S216Y mutant of sNASP showed no obvious effect, while cellular targeting experiments showed noticeable reduction of colocalization of the sNASP mutant with histone H3 [Fig. 4D, Supplemental Figs. S3C, S4A]. This result indicates a possible link between histone binding and human pathogenesis by sNASP alterations. As a contrast, certain sNASP or H3.1 mutations at the interface between the two showed minimal or no impact on sNASP–histone interaction (Supplemental Fig. S4), thus rendering support of the significance of our earlier analyses.

The sNASP interaction region of histone H4 is located in the C-terminal tail of histone H4 [amino acids 95–102], which is visible in its entirety in the structure. Residues 95–97 form an antiparallel β sheet with ASF1A, and the side chain of Phe100 inserts into a hydrophobic pocket between two β sheets of ASF1A [Fig. 5A, Supplemental Fig. S5A]. In this area, we noted the only direct interaction between ASF1A and sNASP involved a hydrogen bond between Asn231 of sNASP and ASF1A Ser142’s main chain carbonyl group. The sole function of ASF1A appears to be to stabilize the C-terminal residues of H4, thus enabling them to participate in intermolecular interactions. A similar mechanism of Asf1 was noted in the previous study of its function in regulating H3K56 acetylation of Rtt109 [Zhang et al. 2018].

sNASP–H4 interactions involve hydrogen bonds between Tyr255 of sNASP and Arg95 and the C-terminal carboxylate of Gly102 of H4, Glu263 of sNASP and Arg95 of H4, and Glu267 of sNASP and the carbonyl group of Gly101 of H4. To test their significances, we created a sNASP Y255R Q267R double mutant and an H4 deletion mutant, H4Δ95-C, removing all residues from Arg95 to the C terminus. However, both cellular targeting and in vitro GST pull-down assays show that these mutations of sNASP and H4 do not compromise the binding between sNASP and histones H3–H4 [Fig. 5B, Supplemental Fig. S5B, C]. Curiously, we noticed that in the GST pull-down experiments with the ASF1A–H3–H4Δ95-C complex, ASF1A is evicted from the sNASP–histone complex [Fig. 5B, lane 6]. Gel filtration experiments also show that both monomeric and dimeric forms of the sNASP TPR domain can evict ASF1A from the ASF1A–H3–H4Δ95-C complex (Fig. 5C). These results indicate that while the interaction between sNASP and the C-terminal tail of H4 is of marginal effect, it is important for ASF1A to maintain a firm grip on H3–H4 in the presence of sNASP, which appears to be able to compete ASF1A off H3–H4 through binding to a yet unidentified site in H3–H4 either overlapping with the ASF1A binding sites or through an allosteric effect.

**Histone binding mode of sNASP in the absence of ASF1**

Our earlier GST pull-down experiments showed that while deletion of the N-terminal 60 residues of histone H3 impaired the binding with sNASP in the context of the ASF1A–H3Δ60–H4 complex, the binding of H3Δ60–H4 to sNASP is unaffected [Fig. 4B]. Since the GST pull-down result cannot distinguish whether the dimeric, monomeric, or both forms of sNASP was responsible for binding H3Δ60–H4 in the absence of ASF1A, we used sizing column to resolve this puzzle. Figure 6A shows that both dimeric and monomeric forms of sNASP bind H3Δ60–H4 in the absence of ASF1A. These observations implicate the presence of additional sNASP binding sites in the H3.1–H4 complex that were not accessible when ASF1A was bound. A reciprocal question is which part of sNASP is involved in H3–H4 binding in this case, and by structure-guided systematic deletions we tried to map the extra H3–H4 binding region of sNASP. To avoid complications in interpreting binding data, the N-terminal tail-deleted H3Δ60 complex with H4 is used in our GST pull-down analyses. Six sNASP fragments, as schematically shown in the left panel of Figure 6B, were fused to GST and used to pull down H3.1Δ60–H4. As shown in lanes 3, 7, and 9 in the right panel of Figure 6B, significant histone binding was detected with the three sNASP fragments, all containing TPR4 and the CC domain, while the TPR1 (lane 5) and TPR3 (lane 8) fragments showed no binding. It is worth pointing out that the CC domain and a8 of TPR4 were
shown not to interact with H3.1–H4 earlier (Fig. 2C, lane 5), leaving α7 of TPR4 as the principal element for histone binding in the absence of ASF1. The TPR2 (Fig. 6B, lane 6) and TPR2-containing TPR1-2 (Fig. 6B, lane 4) fragments displayed significantly weakened but detectable bindings. In the structure of sNASP with ASF1A–H3–H4, TPR2 is involved in interaction with the N-terminal tail of H3, while TPR4 interacts with the C-terminal of H4, although the latter interaction was not essential for complex formation. It is also worth pointing out that TPR2 contains the DE-rich acidic region, and residual interaction with tailless H3 seen in lanes 4 and 6 of Figure 6B is also unexpected from the complex structure of sNASP–ASF1–H3–H4 (Fig. 3B). Altogether, the detection of TPR2 and α7 of TPR4 in binding the H3–tailless H3.1Δ60–H4 complex indicates the existence of a different histone binding mode of sNASP in the absence of ASF1A.

Discussion

The central functions of histones in the organization, dynamics, and biogenesis of eukaryotic genomes require special biochemical and biophysical properties of these proteins. Some prominent features of these proteins include having large number of charged residues, flexible terminal tails, and modular core domains capable of ordered assembly into defined oligomers. However, these functionally important properties also introduce potential harmful effects, such as tendency to aggregate,
promiscuous interaction with cellular proteins, and erroneous and premature binding to nucleic acids. Histone chaperones are a mechanism to safeguard histones from these adverse effects and facilitate their correct functions. A diverse set of histone chaperones is involved in distinct functions of histones, including protein folding, histone storage, post-transcriptional modifications, nuclear import, and nucleosome assembly. Increasing evidences suggest that histone chaperones play more active roles than merely serving as histone escorts, and the manners by which histone chaperones bind histones often determine the outcome of histone functions. NASP is a major histone H3–H4 chaperone with diverse functions both in the cytoplasm and in the nucleus. However, how it binds histones H3 and H4 has been enigmatic, and lack of this knowledge prevented mechanistic understandings of its roles in the histone H3–H4 complex.

In this study, we first showed that the bacterially expressed sNASP TPR domain exists in both monomeric and dimeric forms, and full-length sNASP expressed in HEK293 cells also appears to have two forms, although the monomeric form appears to be more abundant. The structure shows that the dimeric sNASP TPR domain is formed through a drastic conformational switch of the very C-terminal helix, α9, which instead of folding back to pack with its own α8, straightened up to become part of a long, continuous helix that interacts with the corresponding region of another sNASP molecule. Nevertheless, both forms of sNASP bind histones H3–H4, whether in the presence or absence of ASF1. Apparently,
each TPR domain can independently bind histone H3–H4, our gel filtration analysis showed that the dimeric sNASP forms a defined complex with H3–H4 when ASF1 is present, consistent with a 2:2 stoichiometry [Fig. 3A]. When ASF1 is absent, the dimeric sNASP forms a larger complex with H3Δ60–H4 [Fig. 6A], a 2:4 complex is possible, although we cannot rule out the possibility of a 2:2 complex, especially when H3 and H4 tails are intact, as the association of sNASP with H3–H4 in the absence of ASF1 is heterogeneous [Supplemental Fig. S6].

Both dimeric and monomeric forms of sNASP can facilitate nucleosome assembly in vitro. However, deletion of the long C-terminal helix, including the coiled-coil domain or removal of the coiled-coil domain only [Osakabe et al. 2010], both of which incapacitate dimer formation of sNASP, impairs the nucleosome assembly ability of sNASP. It is possible that dimerization of sNASP is needed for the nucleosome assembly; however, an alternative possibility is that amino acids located on the coiled-coil domain, whether in an extended conformation in a dimer or when it folds back in a monomer, play important roles in the process of depositing histones onto DNA during nucleosome assembly. Further in-depth studies are needed to unveil the functional consequences of sNASP dimerization.

Our study revealed that sNASP binds histone H3–H4 principally via the N-terminal tail of histone H3 in the presence of ASF1. A previous study found that an isolated histone H3 fragment encompassing the N-terminal tail and α1 of the histone fold domain can interact with sNASP [Cook et al. 2011]. Our sNASP–ASF1A–H3–H4 structure shows that the H3 region spanning residues 40–57 interacts extensively with the convex surface region formed by TPR1–TPR3. The sNASP-interacting region in H3 includes the αN helix that is involved in interaction with DNA in the nucleosome. It is interesting that αN is partially unwound in the sNASP complex with ASF1A–H3–H4. The only other occasion αN is seen unwound is when yeast Asf1–H3–H4 is bound to Rtt109 for H3K56 acetylation [Zhang et al. 2018]. These observations indicate that conformational flexibility of the H3 αN region is important for its functions in pre depositional processes. Other than histone H3, a C-terminal region of H4 [including a short β strand that interacts with ASF1A via antiparallel β-pairing and the following C-terminal tail] also contacts the TPR3 and TPR4 region of sNASP. Curiously, deletion of this region of histone H4 does not disrupt the interaction between H3–H4 and sNASP, but ASF1A is evicted upon sNASP binding. Our interpretation is that, with the removal of the C-terminal region of H4, sNASP competes favorably with the remaining ASF1A binding site located on the loop connecting α2–α3 and an α3 portion of histone H3. This region of histone H3 is critical for homodimerization of H3, namely, tetramerization of H3–H4.

It is interesting that there is a separate sNASP binding site located on the C-terminal region of H3, in addition to the one located at the N-terminal region of H3. This finding is consistent with the results of two earlier studies, wherein an isolated α3 of histone H3 was shown to interact with sNASP [Bowman et al. 2016, 2017]. The presence of two H3–H4 binding sites in sNASP is intriguing for understanding the mechanism of histone transfer between different chaperones. We may picture that the simultaneous presence of two different histone binding modes leads to multivalent, heterogeneous sNASP–H3–H4 complexes, enabling sNASP to maintain soluble histone pools in cytosol. On the arrival of ASF1, it blocks the second binding site of sNASP in H3–H4 and results in a homogenous sNASP–ASF1–H3–H4 complex, leaving only the N-terminal tail of H3 to interact with sNASP. This quaternary complex can then bind HAT1-RbAp46 to form the major soluble complex that is ready to be translocated into the nucleus, where ASF1 will eventually leave the major soluble complex with histones H3–H4 [Liu and Churchill 2012]. The binding of HAT1-RbAp46 may sequester the N-terminal tail of histone H3 from sNASP, and triggers the transfer of H3–H4 to ASF1 upon completion of histone H4 acetylation by HAT1 [Li et al. 2014].

Materials and methods

Plasmid construction

The cDNA encoding full-length human sNASP was amplified by PCR and cloned into a modified pcDNA-3.1 vector [Invitrogen], and the resulting plasmid, termed pCDNA3-sNASP-strep, expresses sNASP carrying a C-terminal strep tag. The TPR domain of sNASP [amino acids 40–320] was subcloned into a pGEX-6P-1 vector [GE Healthcare] or a pRSFDuet-His6-SUMOtag vector, a modified pRSFDuet-1 vector [Novagen] with an N-terminal His6-SUMO tag. Bacterial expression plasmid for covalently linking the human sNASP TPR domain [amino acids 40–320] and the ASF1A histone binding domain [HBD; amino acids 1–156] through a glycine-serine linker (GGGGS) was constructed by inserting the in-frame sequence coding for the sNASP TPR–[GGG]6–ASF1A HBD cassette into a pRSFDuet-His6-SUMOtag vector.

cDNA fragments encoding the histone binding domain [HBD] of human ASF1A [amino acids 1–172 or 1–156] were amplified by PCR and cloned into the pRSFDuet-1 or the pRSFDuet-His6-SUMOtag vector, respectively. Full-length human histones H3.1 and H4 were coexpressed using a bicistronic plasmid, pCDFDuet–H3.1–H4. Deletion mutants or point mutants of sNASP, H3.1, or H4 were generated with the KOD-Plus mutagenesis kit (Toyobo SMK-101) following the manufacturer’s protocols and confirmed by DNA sequencing [Supplemental Table S1].

Protein expression and purification

sNASP fragments were expressed in E. coli BL21 CodonPlus (DE3) RIL cells cultured in LB medium at 37°C, followed by induction of protein production with the addition of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 4 h. Selenomethionine (SeMet)-substituted sNASP TPR protein was prepared by inhibition of the E. coli methionine biosynthesis pathway. Briefly, the pRSFDuet-His6-SUMOtag-sNASP TPR plasmid was transformed into E. coli BL21 CodonPlus (DE3) cells, and the bacteria were cultured in the LB medium at 37°C. The cells were collected and cultured in the M9 minimal medium at 37°C, followed by addition of 25 mg/L SeMet [Acros Organics], Lys, Thr, and Phe at 100 mg/L, and Leu, Ile, and Val at 50 mg/L to inhibit the endogenous synthesis of methionine when the OD600 value of the culture reached 0.6. After incubation for 1 h, the temperature was reduced to 16°C and
protein expression was induced by the addition of IPTG to a final concentration of 0.3 mM, followed by further shaking for 36 h.

All purification steps were carried out at 4°C. The following procedures were used for purification of sNASP TPR domain or its mutants. Cell pellets were resuspended in 5 vol of the binding buffer A with 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, 20 mM imidazole, and 1 mM phenylmethylsulphonyl fluoride (PMSF), before lysing by sonication. Cell debris were removed by centrifugation, and the supernatant was incubated for 1 h at 4°C with Ni²⁺-NTA agarose resin pre-equilibrated with buffer A, followed by washing the resin three times with buffer A. The bound proteins were eluted with buffer B (20 mM Tris-HCl at pH 7.5, 500 mM NaCl, 500 mM imidazole) and immediately supplemented with 1 mM each ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT). After removing the His₆-SUMO tag by using Ulp1 (SUMO protease), the protein was further purified on a HiLoad 16/60 Superdex 200 column (GE Healthcare) in buffer C (20 mM Tris-HCl at pH 7.5, 100 mM NaCl, 1 mM DTT). Elution fractions were analyzed by SDS-PAGE, and the fractions enriched with the desired proteins were pooled and concentrated to ~30 mg/mL by ultrafiltration and stored at ~80°C before use.

Full-length sNASP was expressed in suspension culture of HEK293F cells in the SMM 293T-II medium (Sino Biological, Inc.). A total of 300 mL of HEK293F cells was transfected with HEK293F cells in the SMM 293T-II medium (Sino Biological, Inc.). Production of the protein complex was first purified on a heparin column (GE Healthcare), and the bound proteins were eluted with buffer B (20 mM Tris-HCl at pH 7.5, 500 mM NaCl, 500 mM imidazole) and immediately supplemented with 1 mM each ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT). Fractions enriched with the ternary complex were pooled and concentrated to ~10 mg/mL.
containing 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, and 5% glycerol. Peak 1 contained fraction eluted between 11.5 and 13.0 mL, and peak 2 contained fractions eluted between 14.0 and 15.5 mL. Samples of both peak 1 and peak 2 were reloaded onto the sizing column for further analysis. Analyses of various protein complexes and individual components were carried out using the samples prepared as described before, and in the cases of testing binding with sNASP TPR domain, other components were added in roughly twofold excess. The loading samples were generally diluted to ∼1–3 mg/mL, and a total volume of 0.5 mL in 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, and 5% glycerol. The samples were then injected at 0.4 mL/min onto a Superdex 200 Increase 10/300 GL column (GE Healthcare). Elution fractions between 8.0 and 19.5 mL were pooled and analyzed by SDS-PAGE and stained with Coomassie blue. The gel filtration chromatograms were plotted by OriginPro 8.0 (OriginLab Corporation).

**Analytical ultracentrifugation (AUC)**

Sedimentation velocity experiments were carried out in a Beckman Coulter ProteomeLab XL-I analytical ultracentrifuge with absorbance detection. Samples were prepared in a buffer containing 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, and 1 mM EDTA. Samples of the sNASP TPR domain from peak 1 and peak 2, and peak 2 of full-length sNASP, all at ∼1 mg/mL in a total volume of 400 μL, were loaded into the cell chamber against buffer blank and spun at 55,000 rpm for 7 h at 20°C. Data were analyzed using the c(M) model of molecular mass distribution in Sedfit (Schuck 2000).

**Topological assay for nucleosome assembly**

DNA supercoiling assays were performed as described previously (Osakabe et al. 2010) with the following modifications. Relaxed DNA template was prepared by combing pX174 RF I DNA (NEB N3021S) with excess DNA topoisomerase I (TaKaRa) and 100 μL of sNASP TPR domain at 37°C. The standard 25-μL supercoiling reaction was performed as described previously (Liu et al. 2012). The standard 25-μL supercoiling reaction was performed as described previously (Liu et al. 2012). The standard 25-μL supercoiling reaction was performed as described previously (Liu et al. 2012).

**GST pull-downs**

For pull-down experiments between the GST-sNASP TPR domain and ASFA-H3.1–H4 proteins, 3 μg of GST, GST-sNASP TPR, or its mutants were immobilized on 5 μL of glutathione Sepharose 4B resin, which was then mixed with 5 μg of ASFA-H3.1–H4 or its mutants in 500 μL of the binding buffer (20 mM Tris-HCl at pH 7.5, 300 mM NaCl, 5 mM 2-mercaptoethanol, 0.02% NP-40, 1 mM EDTA), and the mixture was rotated overnight at 4°C. The resins were then washed five times with 1 mL of binding buffer with 500 mM NaCl. Bound proteins were eluted in SDS sample buffer, separated on a 15% SDS-PAGE gel, and stained with Coomassie blue. GST pull-down experiments between GST-sNASP fragments and WT or mutant H3.1–H4 complexes were performed following the same procedure.

**Cellular targeting assay**

The A03_1 cell line was generated by insertion of 256 repeats of LacO operators into the genome of CHO cells (Robinett et al. 1996). The cells were cultured in F-12 Ham’s medium (Gibco) supplemented with 10% FBS (AusGenX) and 1% penicillin/streptomycin (Thermo Fisher). For cellular localization detection, cDNAs expressing full-length sNASP and its mutants were subcloned into a pmCherry-LacI vector, while the cDNAs of H3.1 or H4, as well as their mutants, were inserted into the pEGFP-N1 vector.

For Lac–LacO targeting experiments, A03_1 cell transfection and confocal fluorescence imaging procedures were performed as previously described (Liu et al. 2012). In brief, cells seeded on glass coverslips in a 24-well plate were cotransfected with plasmids pmCherry-LacI-sNASP and pEGFP-N1-H3.1 or pEGFP-N1-H4 (WT or mutants) using the Lipofectamine 3000 transfection kit (Thermo Fisher) according to the manufacturer’s instructions. At 48 h after transfection, cells were washed with PBS and fixed with 4% formaldehyde (Sigma) for 15 min on ice. Then cells were washed again and stained with DAPI (Sigma) for 15 min at room temperature. A Nikon Al confocal microscope was used to analyze the fluorescence signals under a 60× oil immersion lens. Statistical error bars for colocalizing mCherry and EGFP foci in A03_1 cells were derived from three sets of 50 randomly selected cells, and represent the standard error of the mean (±SEM).

**Competing interest statement**

The authors declare no competing interests.

**Acknowledgments**

We thank staff scientists at the Shanghai Synchrotron Radiation Facility beamlines BL17U and BL19U for assistance for X-ray data collection, and Dr. Xiaoxia Yu for technical support in handling AUC. This work was supported in part by grants from the Natural Science Foundation of China [91853204, 31991162, and 31521002], the Ministry of Science and Technology of China [2017YFA0504202, 2018YFE0203300, 2017YFA0506600, and 2019YFA0508900], and the Strategic Priority Research Program of Chinese Academy of Sciences [XDB37010101]. C.-P.L. is supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences [2018125].

**Author contributions:** R.-M.X. conceived the project. C.-P.L. performed protein expression, purification, crystallization, and structure determination. C.-P.L. and M.W. collected X-ray data and refined models. C.-P.L. performed AUC experiments, GST pull-downs, and gel filtration experiments. W.J. performed fluorescence colocalization experiments and protein expression in 293F cells. J.C. assisted and provided support of all experiments. J.H. performed the supercoiling assays under the supervision of G.L. C.-P.L. and R.-M.X. wrote the manuscript, and all authors discussed the results and contributed to the final manuscript.
transport pathway. *BMC Evol Biol* **14**: 139. doi:10.1186/1471-2148-14-139

Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T. 2007. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. *Nature* **446**: 338–341. doi:10.1038/nature05613

O’Rand MG, Richardson RT, Zimmerman LJ, Widgren EE. 1992. Sequence and localization of human NASP: conservation of a Xenopus histone-binding protein. *Dev Biol* **154**: 37–44. doi:10.1016/0012-1606(92)90045-I

Osakabe A, Tachiwana H, Matsunaga T, Shiga T, Nozawa RS, Obuse C, Kurumizaka H. 2010. Nucleosome formation activity of human somatic nuclear autoantigenic sperm protein (sNASP). *J Biol Chem* **285**: 11913–11921. doi:10.1074/jbc.M109.083238

Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol* **276**: 307–326. doi:10.1016/S0076-6879(97)76066-X

Pardal AJ, Fernandes-Duarte F, Bowman AJ. 2019. The histone chaperoning pathway: from ribosome to nucleosome. *Essays Biochem* **63**: 29–43. doi:10.1042/EBC20180055

Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, O’Rand MG. 2000. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. *J Biol Chem* **275**: 30378–30386. doi:10.1074/jbc.M003781200

Richardson RT, Alekseev OM, Grossman G, Widgren EE, Thresher R, Wagner EJ, Sullivan KD, Marzluff WF, O’Rand MG. 2006. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. *J Biol Chem* **281**: 21526–21534. doi:10.1074/jbc.M603816200

Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. *Cell Biol Cells* **135**: 1685–1700. doi:10.1083/jcb.135.6.1685

Rose A, Meier I. 2004. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. *Cell Mol Life Sci* **61**: 1996–2009. doi:10.1007/s00018-004-4039-6

Ruiz-Carrillo A, Wangh LJ, Allfrey VG. 1975. Processing of newly synthesized histone molecules. *Science* **190**: 117–128. doi:10.1126/science.1166303

Schuck P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. *Biophys J* **78**: 1606–1619. doi:10.1016/S0006-3495(00)76713-0

Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. 1995. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. *Proc Natl Acad Sci* **92**: 1237–1241. doi:10.1073/pnas.92.4.1237

Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. 1999. The RCAP complex mediates chromatin assembly during DNA replication and repair. *Nature* **402**: 555–560. doi:10.1038/990147

Verreault A, Kaufman PD, Kobayashi R, Stillman B. 1998. Nucleosomal DNA regulates the core-histone-binding subunit of the human H4t1 acetyltransferase. *Curr Biol* **8**: 96–108. doi:10.1016/S0960-9822(98)70040-5

Wang H, Walsh ST, Parthun MR. 2008. Expanded binding specificity of the human histone chaperone NASA. *Nucleic Acids Res* **36**: 5763–5772. doi:10.1093/nar/gkn574

Wang H, Ge Z, Walsh ST, Parthun MR. 2012. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. *Nucleic Acids Res* **40**: 660–669. doi:10.1093/nar/gkr781

Xu F, Zhang K, Grunstein M. 2005. Acetylation in histone H3 globular domain regulates gene expression in yeast. *Cell* **121**: 375–385. doi:10.1016/j.cell.2005.03.011

Zhang M, Liu H, Gao Y, Zhu Z, Chen Z, Zheng P, Xue L, Li J, Teng M, Niu L. 2016. Structural insights into the association of Hif1 with histones H2A–H2B dimer and H3–H4 tetramer. *Structure* **24**: 1810–1820. doi:10.1016/j.str.2016.08.001

Zhang L, Serra-Cardona A, Zhou H, Wang M, Yang N, Zhang Z, Xu RM. 2018. Multisite substrate recognition in Asf1-dependent acetylation of histone H3 K56 by Rtt109. *Cell* **174**: 818–830.e11. doi:10.1016/j.cell.2018.07.005