Advanced rapidity gap trigger

V.A. Abramovsky, A.V. Dmitriev
Novgorod State University, B. S.-Peterburgskaya Street 41,
Novgorod the Great, Russia,
173003

Number of phisically interesting processes is characterized by the rapidity gaps. In reality, this gaps is filled by underlying events with high (more than 0.75 for higgs) probability. In this paper we purpose a way to detect this shadowed events with aim to raise the number of rare events.

Keywords: higgs, rapidity gaps, SGP

Introduction
Searching of the higgs boson in one of the main purpose of LHC program. At SM and MSSM higgs will be observable, but at the limits of detectors capacities. If the theory at TeV scale is differ than SM or MSSM, we risk to fail to observe higgs. From the other side, we want to observe most, and rare too, decaying channels of higgs. Common methods detect only leading channels (at given M_H) of higgs decay. So, it is very important to enhance higgs detection methods.

In this paper we investigate the vector boson fusion channel of the higgs production mainly. At present time, ATLAS higgs detector (see Ref.6) have good signal-to-background ratio, but most ($\sim 90\%$) of the higgs events is rejected. We purpose two way to improve this situation. At first, we re-analize applicability of the likelyhood analisys to the higgs searching. At second, we suggest additional quantity to select signal events. Both improvements are complementary and nicely connected.

Likelyhood method
Traditionally higgs events is selected by applying of the on-by-one cuts. Without cuts, we have vanishing signal to background ratio (see Table 1, taken from [4]). Each next cut refuse some part of events, and cuts is selected to remove most of the backround and save most of the signal events. At the end of the process, we have very good signal to background ratio, but signal is reduced by some order of magnitude.

Common cuts is requirement of two jets with high rapidity, veto on the jet activity in the central region and existence of the higgs decaying products. Also there is many other observables with distributions differs from signal to background events. Any
cut stand some pair of observable and region, and event is passed throw cut only if observable is in this region.

Following cuts method, we risk (and actually do) to reject many of the signal events. This happens, than one cut reject event, but other signs clearly show, that this event is signal.

So, we suggest to reconstruct the trigger mechanism. At first, let’s simplify problem by assumption, that there is no interference between signal and background processes. Than our problem can be easily formulated as the task to calculate probability for any event to be produced by signal or by background process. Let’s define $P(\text{Signal}|X)$ and $P(\text{Background}|X)$ as the probability at given X, that this X is produced by signal and background process, respectively, and normalization states

$$P(\text{Signal}|X) + P(\text{Background}|X) = 1 \quad (1)$$

As input, we have probabilities $P(X|\text{Signal})$ and $P(X|\text{Background})$ to produce event X by signal and background processes, respectively, and absolute probabilities $P(\text{Signal})$ and $P(\text{Background})$ with normalization conditions

$$\sum_X P(X|\text{Signal}) = 1$$
$$\sum_X P(X|\text{Background}) = 1$$
$$P(\text{Signal}) + P(\text{Background}) = 1 \quad (2)$$

Then $P(\text{Signal}|X)$ can be easily calculated

$$P(\text{Signal}|X) = \frac{P(X|\text{Signal})P(\text{Signal})}{P(X|\text{Signal})P(\text{Signal}) + P(X|\text{Background})P(\text{Background})} \quad (3)$$

If we assume, that distributions $P(X_i|\text{Signal})$ of observables X_i is independent from each other, then we can use this distributions directly to calculate $P(\text{Signal}|X)$ using (3) and relation

$$P(X|\text{Signal}) = \prod_i P(X_i|\text{Signal}) \quad (4)$$

To use derived equation (3) as a trigger, we must choose lower limit of probability P_0. If $P(\text{Signal}|X) < P_0$, then event rejected, otherwise event accepted. This level P_0 must be chosen to maximize confidence level S/\sqrt{B}, there S is number of the signal events, and B is the number of background events. From definitions,

$$S = N \sum_{X:P(\text{Signal}|X)>P_0} P(X|\text{Signal})$$
$$B = N \sum_{X:P(\text{Signal}|X)>P_0} P(X|\text{Background}) \quad (5)$$

there N is integrated luminosity.

Central veto improvements

Let us consider the abstract model for processes which is going throw the fusion of colorless objects, which results to gaps if there is no re-scattering, and some sign object, independent of gap. The last one can be high momentum p_t jet or system of rare particles or something else, which can be detected independently of gap.
Diagram of such process in the case of the absence of re-scattering is marked as A_1 on Fig.1. Corresponding pseudo-rapidity distribution of particles is marked as A. Bold arrow marks signal object.

Fig. 1. Pseudo-rapidity distributions and corresponding generic processes.

In the case of soft re-scattering (diagram B_1 on Fig.1) produced pseudo-rapidity distribution of particles has no rapidity gap which is usually distinguishing interesting process from the processes of the type B_2. The process B_2 have no physical interest by our assumption. So, soft re-scattering fill the signal gap, and probability of the such suppression is high, from optimistic estimation 0.85 to pessimistic 0.99 (see Ref.5 for details). Another source of suppression is pile-up events with more than one inelastic interaction occurs in one bunch-on-bunch collision.

This suppression leads us to 'central jet veto' and 'forward tagging' methods, there the absence of hard jets in the central region and two hard jets on the both side of the higgs are needed to confirm colourless exchange (see Ref.6). This traditional cuts greatly suppress background events, background becomes ~ 600 time smaller, but we loose most, about 2/3, of the signal higgs events (see Ref.6). So, we will try to improve this situation.

We can reformulate peculiarity of the first (signal) process to the form, that there is two 'humps' on the plateau. This peculiarity is not suppressed by soft re-scattering, because pomeron cuts produce plateau-like distributions on the pseudo-rapidity diagrams (this fact is not trivial, but it is well experimentally tested). So, after re-scattering we see two 'humps' on plateau again, but plateau is up by pomeron differential multiplicity $\frac{dN}{d\eta}$ depending on \sqrt{s}, but not on η.
We purpose to examine processes producing the pseudo-rapidity distribution C on Fig.1, where there are two 'humps' on the both sides and plateau containing signal object. This situation is differ from the situation B, because we know, that some gap is produced. Generic processes is divided to two classes. At first, we have process C_1, containing colorless produced signal object, and C_2 where signal object is produced by color states (usually gluons). Inclusive production in C_1 of the signal object is more probable, than exclusive one in B_1, but process C_2 is less probable, than B_1. So, if situation B is usually produced by color production of signal object, situation C is more probably produced by the colorless production of the signal object, and we can derive interesting results from this difference.

The same arguments is applicable in the case of pile-up events, we have only to cut re-scattering diagrams B_1, C_1, C_2 to get two independent events in each case.

Before we go to the realistic constructions, let’s consider the simple model with assumption, that all processes are factorizable.

Let’s calculate the probabilities of producing pseudo-rapidity distributions shown at Fig.1, at given impact parameter of interaction:

$$P_A = P_{SO}^{\text{white}}(1 - P_{\text{inelastic}})$$

$$P_B = P_{SO}^{\text{color}} + P_{SO}^{\text{white}}P_{\text{inelastic}}$$

$$P_C = P_{SO}^{\text{color}}P_{DD} + KP_{SO}^{\text{white}}P_{\text{inelastic}}$$

Here P_{SO}^{color} is probability of making signal object by fusion of two color objects, P_{SO}^{white} is the exclusive one by fusion of two colorless objects, $P_{\text{inelastic}}$ is the probability of inelastic re-scattering (survival gap probability is $P_{SGP} = 1 - P_{\text{inelastic}}$ at given b), P_{DD} is the probability of double diffractive scattering at given b.

Coefficient K is gotten to take into account that probability of producing signal object with 'humps' at resolved η range is not equal to the one without 'humps'. K usually can be calculated because of the hardness of the signal object, for the higgs at LHC case, K is about 5×10.

Strictly speaking, we can calculate P_{SO}^{white} from any of the equations (6), (7), if we know all other quantities, but at reality we don’t know P_{SO}^{color}. So, we must exclude P_{SO}^{color} from equations (7), (8) to calculate P_{SO}^{white}:

$$P_{SO}^{\text{white}} = \frac{P_C - P_{DD}P_B}{P_{\text{inelastic}}(K - P_{DD})}$$

In general case, equations (7), (8) is non-linear and more complex, but they can be solved to get P_{SO}^{white} without knowing P_{SO}^{color}.

We have to mention, that equation (9) (or its generalization in real case) gives us possibility to determine P_{SO}^{white} even if survival gap probability is zero, in the absence of the straightforward process, shown as A on Fig.1.

It was shown that survival probability for central rapidity gap in the higgs production is low, about $0.01 \div 0.15$, and, so, our method can be applied.

Let’s make brute estimation of applicability of our method to higgs production. The most natural way to detect higgs and to determine higgs mass is to observe
Possible enhancements of higgs trigger

Differential cross-section $\frac{d\sigma}{dM}$, where M is the mass of the system high-energetic products of higgs decaying, such as leptons for leptonic decaying modes or b-jets for $H \to b\bar{b}$ decaying mode. To estimate these cross-sections we can assume, that form of profiles of all probabilities at (7), (8) is the same, and we can integrate that equations in b.

$$\frac{d\sigma_A}{dM} = \frac{d\sigma_{WW}^H}{dM} S^2$$

$$\frac{d\sigma_B}{dM} = \frac{d\sigma_{\text{color}}^H}{dM} + \frac{d\sigma_{WW}^H}{dM} (1 - S^2)$$

$$\frac{d\sigma_C}{dM} = \frac{d\sigma_{\text{color}}^H}{dM} \frac{\sigma_{\text{DD}}}{\sigma_{\text{tot}}} + K \frac{d\sigma_{WW}^H}{dM} (1 - S^2)$$

Value of $\frac{d\sigma_{\text{color}}}{dM}$ is process-specific, it is defined by higgs decaying channel and by final-state selection procedure. This background cross-section can be estimated as the sum of the background and signal cross sections for the $gg \to H$ channel. First one is much larger than second one, so, we can assume that background have the same value as the background for $gg \to H$ channel.

First addendum in (11) is much larger, than one in (12), but second addendum in (11) is much smaller, than one in (12).

Expected behavior for $\frac{d\sigma}{dM}$ for examined types of events is schematically drawn on Fig. 2.

Direct way to detect higgs from this cross-sections is to multiply $\frac{d\sigma_B}{dM}$ (upper curve on Fig. 2) by the factor $\frac{\sigma_{\text{DD}}}{\sigma_{\text{tot}}}$ and to substitute it from $\frac{d\sigma_C}{dM}$ (middle curve on Fig. 2). If there is no weak boson fusion mechanism of higgs production, result will be zero. In other case, we will get lower curve on Fig. 2 multiplied by the factor $\frac{1}{S^2} \sim 10$.

Practically, this method can be applied as a part of higgs trigger. We can extract from the experiment average number of particles inside of rapidity region of the two tag jets and outside of them:

$$n_{\text{inside}} = \frac{N_{\text{inside}}}{\Delta\eta}$$
$$n_{\text{outside}} = \frac{N_{\text{outside}}}{\eta_{\text{max}} - \eta_{\text{min}} - \Delta\eta}$$

there $\Delta\eta$ is the rapidity distance between tag jets.

As we’ve shown above, this quantities must be approximatly equal in the case of the trivial colour channel and must be different in the case of the signal colour-less channel. So, the best quantity to observe is

$$\Delta n = n_{\text{outside}} - n_{\text{inside}}$$

This quantity can be used in the modern-state cut-to-cut anlisys by choosing some critical value Δn_{cut}. If Δn is greater than Δn_{cut}, event is accepted to be signal and rejected otherwise. In the liklyhood analysys this value can be used too (and it is more preferable).
Let's discuss advantages and lacks of this advanced gap method.

Proposed type of events is a half-way between $gg \to H$ channel and $WW \to H$ with rapidity gap channel. As compared with gluon fusion channel, we have suppressed by the factor $\frac{\sigma_{DD}}{\sigma_{tot}}$ background and suppressed by the factor $\frac{\sigma(WW \to H)}{\sigma(gg \to H)}$ signal. As compared with weak boson fusion with rapidity gap method, we have increased the signal by the factor $\frac{1}{S^2}$ and have add some substantial background.

Another advantage of our method is possibility of cross-checking, because we investigate all three type of events with only two unknown cross-sections, signal $\frac{d\sigma_{WW}}{dM}$ and background $\frac{d\sigma_{SO}}{dM}$.

Lacks of our method can be divided to two classes.

At first, we add statistical uncertainty, because of 'humps' on plateau can be generated by statistical fluctuations of $\frac{dn}{d\eta}$. This factor can be easily calculated, but we can not remove this uncertainty.

At second, we have theoretical uncertainty in the soft interactions. We don't know any reliable way to calculate $P_{inelastic}$ and P_{DD} in equations (7), (8) and we don’t know, is the probabilities in these equations factorizable or not. This uncertainty can be removed, if we will construct reliable theory of the soft (Pomeron) interactions. We can generalize this problem as the problem of construction of the 'soft' generator.
Acknowledgments

We thank N.Prikhod’ko for useful discussions. This work was supported by RFBR Grant RFBR-03-02-16157a, grant of Ministry for Education E02-3.1-282 and St.Petersburg grant 04-2.4-364.

References

1. J. D. Bjorken, Phys. Rev. D 47, 101 (1993).
2. D.L. Rainwater and D. Zeppenfeld, J. High Energy Phys.12 (1997) 5, hep-ph/9712271
 D.L. Rainwater and D. Zeppenfeld, Phys. Rev. D60 (1999) 113004, hep-ph/9906218
3. V. Cavasinni, D. Costanzo, E.Mazzoni, I. Vivarelli ATL-PHYS-2002-010
4. ATLAS TDR 15, CERN/LHCC 99-15
5. V.A. Khoze, A.D. Martin and M.G. Ryskin, hep-ph/0002072
6. S.Asai et al Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion