Recent progress in ICRF physics

M Porkolab†, A Bécoulet‡, P T Bonoli†, C Gormezano§, R Koch∥, R J Majeski¶, A Messiahn∥, J M Noterdaeme*, C Petty*, R Pinsker*, D Start§ and R Wilson¶

† Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA 02139, USA
‡ Association EURATOM–CEA sur la Fusion, CEA Cadarache, 13108 St-Paul-lez-Durance Cédex, France
§ JET Joint Undertaking, Abingdon, Oxfordshire, OX14 3EA, UK
∥ Laboratoire de Physique des Plasmas–Laboratorium voor Plasmafysica, Association ‘Euratom–Belgium State’, Ecole Royale Militaire–Koninklijke Militaire School, B-1000 Brussels, Belgium
¶ Princeton Plasma Physics Laboratory, PO Box 451,Princeton, NJ 08543, USA
* Max-Planck-Institut für Plasmaphysik, Euratom Association, D-85748 Garching, Germany

Received 12 May 1998

Abstract. Recent progress in the area of ICRF physics is examined and summarized. A very brief summary of simplified theoretical predictions is given. Illustrative examples of experimental results in the area of ICRF heating and fast-wave current drive are given. ICRF heating is found to be highly effective in heating plasmas to high temperatures in modern tokamaks. Fast-wave current drive has been demonstrated in several experiments and the results are in good agreement with theory. Mode-conversion heating and current drive should be effective for profile control, but experimental results are still preliminary.

1. Introduction

In this paper we shall review recent progress in RF physics in the ion cyclotron range of frequencies (ICRF) regime. We shall concentrate on the experimental developments in the past few years, and theoretical progress will be summarized only very briefly, and only to the extent that is necessary to understand the experimental results. Furthermore, we shall not summarize here the results obtained in DT plasmas in JET and TFTR, neither shall we say much about the use of ICRF power to attain improved confinement regimes through profile control. These latter topics are discussed by other authors in this volume. The main topics discussed in this paper are the following:

(i) ICRF fundamental resonance minority heating regimes and second-harmonic majority (and minority) heating;
(ii) direct electron heating by the fast magnetosonic wave (or simply fast wave (FW)) by Landau/TTMP absorption;
(iii) absorption by mode conversion of the FW into ion Bernstein waves (IBWs);
(iv) current drive by the FW (FWCD) or by the mode-converted IBW (MCCD);
(v) absorption of the FW at the higher cyclotron harmonics in the presence of energetic ions, mostly due to neutral beam injection (this may have implications for alpha-particle absorption in burning plasmas);
(vi) on- and off-axis heating and current drive for profile control;
(vii) plasma control by ICRF power, in particular, pressure profile control, plasma rotation, MHD control;
(viii) improved confinement modes by ICRF (pellet-enhanced performance (PEP), radiative improved (RI) mode, and internal transport barrier (ITB) formation with flow shear).

Although it would be desirable to give a complete review of all the experimental observations worldwide, it will be necessary to limit the discussion here by giving only examples of different physics topics from particular tokamaks.

2. Summary of theoretical predictions

The propagation of the fast magnetosonic wave (or simply FW) is described by the dispersion relationship

\[n_{\perp}^2 = \frac{(n_{\parallel}^2 - R)(n_{\parallel}^2 - L)}{S - n_{\parallel}^2} \]

where \(n_{\parallel} = c k_{\parallel}/\omega \), \(n_{\perp} = c k_{\perp}/\omega \), and \(R, L \) and \(S \) are the usual Stix parameters [1].

\[\frac{\omega^2}{c^2} \approx k_{\perp}^2 \frac{v_A^2}{v_{pi}^2} \left(1 + c^2 k_{\parallel}^2 / \omega_{pi}^2 \right) \]

where \(v_A \approx c \Omega_i / \omega_{pi} \) is the Alfvén speed. The wave arriving at the minority cyclotron resonance is absorbed by a single-pass absorption factor,

\[A = 1 - e^{-2\eta} \]
while a fraction $T = \exp(-2\eta)$ is transmitted.

(i) H^+ minority absorption. For the H^+ minority resonance case we obtain [2]

$$2\eta = \frac{\pi}{2} \frac{\omega_{PD} n_H}{c n_{D}} R.$$ \hspace{1cm} (4)

Here n_{H}/n_{D} is the hydrogen to deuterium concentration ratio (typically a few percent). If the minority concentration is not too high ($n_{H}/n_{D} < 0.1$) the wave is strongly attenuated as it propagates through the cyclotron resonance (and the $n^2_\parallel = L$ cut-off layer) and is reflected from the $n^2_\parallel = R$ cut-off layer on the high-field side, resulting in multiple-pass absorption. If the minority concentration is large (> 10%) the $n^2_\parallel = S$ mode-conversion layer, the $n^2_\parallel = L$ left-hand cut-off layer, and the cyclotron-resonance layer are well separated, and significant mode-conversion into IBWs may occur just on the high-field side of the $n^2_\parallel = S$ mode-conversion layer. Such mode-converted IBWs are rapidly absorbed by electron Landau damping, offering the possibility of pressure (and possibly current) profile control [3].

(ii) 3He minority absorption. The case of 3He minority in a D majority plasma is of special interest (see figure 2). In this case, first, significant mode conversion may occur at the $n^2_\parallel = S$ layer since the single-pass absorption on the minority ions is reduced by a factor of 1/9 in comparison with the hydrogen case (owing to unfavourable polarization of the wave) and, second, a second resonance ($n^2_\parallel = S$) may occur near the plasma edge on the high-field side ($\omega < \Omega_D$), offering the possibility of mode conversion into the shear-Alfvén wave (SAW). Such unwanted resonance in relatively low-aspect-ratio devices ($R/a < 3.3$) may result in edge heating and impurity generation, as well as reduced central heating.

Other absorption processes of interest include the following [2].

(iii) Majority fundamental resonance absorption ($\omega = \Omega_D$).

$$2\eta = \frac{\omega_{PD}}{c} k_\parallel^{2} r_{CD}^{2} R$$ \hspace{1cm} (5)

where ω_{PD} is the deuterium angular plasma frequency, and r_{CD} is the deuterium Larmor radius. The single-pass absorption efficiency predicted by equation (5) is usually very small (<1%).

![Figure 2](image.png)
(iv) **Cyclotron harmonic absorption by majority ions.** This process is typically significant only for the second-, or possibly third-harmonic resonance ($\omega = \ell \Omega$). The optical depth is [2]

$$2\eta = \frac{\pi \omega_{PD}}{2} R \left(\frac{\ell^2 \beta_i}{4} \right)^{\ell-1} \frac{(\ell - 1)}{(\ell - 2)!}$$

which, for $\ell = 2$ reduces to

$$2\eta = \frac{\pi \omega_{PD}}{2} \beta_i R$$

where β_i is the ion beta.

(v) **Cyclotron harmonic absorption by hot ions.** In the presence of high-energy beam ions we obtain [2]

$$2\eta = \frac{\pi \omega_{PD}}{2} \left(\frac{\ell^2 \beta_{h\perp}}{4} \right)^{\ell-1} \left(\frac{n_D}{n_h} \right)^{\ell-2} \frac{(\ell - 1)}{(\ell - 2)!}$$

where the subscript 'h' refers to the hot (beam) component with perpendicular beta of $\beta_{h\perp}$, and density n_h. This absorption can be significant even at higher harmonics ($\ell = 6–8$) in the presence of high-energy ions originating from neutral beams (and ultimately alpha particles).

(vi) **Direct electron absorption.** Direct absorption of FWs by bulk electrons can be significant in modern tokamaks with electron beta of 1% or more [2]:

$$2\eta \simeq L \frac{\pi^{1/2}}{2} \frac{\omega \omega_{PD}}{\Omega_D} \frac{\beta_e \xi_e \exp(-\xi_e^2)}{c}$$

where $\xi_e = \omega/k_\parallel v_{te}$, $v_{te} = (2T_e/m_e)^{1/2}$, β_e is the bulk electron beta, and $L \simeq 2a/3$ is an ‘effective’ radial absorption length where by assumption $\xi_e \simeq 1$ (typically $\Delta L \simeq a/3$, so a total absorption length may be twice this). Typically, direct electron heating by the FW is maximum on axis, at the highest T_e region.

(vii) **Mode conversion.** Mode conversion (MC) absorption is more difficult to specify, but it may be given by a typical Budden tunnelling factor 2η, such that the absorption, A is

$$A = T_B (1 - T_B)$$

where $T_B = \exp(-2\eta)$, and the maximum value of A is 0.25 for $T_B = 0.5$. However, under certain optimal conditions a ‘resonator’ system may be set up with significantly higher absorption efficiency [3].

(viii) **Current drive by FWs.** The FWCD efficiency has been calculated in the past by several authors [4, 5]. The results may be summarized by the simple formula

$$\eta_{CD} = \frac{n_{20} R}{P} \simeq QT_{e10}$$

where the density is in units of 10^{20} m$^{-3}$, the current in MA, the radius R in m, the power in MW, and the electron temperature in 10 keV units. The coefficient Q is in the range 0.07–0.1 and depends on the antenna launching efficiency and off-axis electron trapping. Typically, FWCD is maximized on axis for a plasma column, where T_e is maximum.
3. Experimental results

3.1. Minority heating

The most successful minority-absorption scenarios to date involve hydrogen or helium-3 minority species in the deuterium majority plasma. Among these, H\(^+\) minority heating is very efficient, and for a typical 2–5% hydrogen concentration ratio, a single-pass absorption factor of $A \gtrsim 0.8$ can be easily obtained in modern medium-to-large-size tokamaks. There are many examples of efficient heating with such a scenario, and here we shall simply reproduce two examples of D(H) heating. The first example is from Alcator C-Mod [6], where H-mode is efficiently obtained by this heating method (see figure 3). In particular, H-factors of 2.0–2.4 (as compared with ITER-89 scaling) are ‘routinely’ obtained.

![Figure 3](image.png)

Figure 3. Typical Alcator C-Mod RF shot, resulting in enhanced D_α confinement with $H = 2\times$ ITER 89P. $B = 5.3$ T, $I_p = 1.0$ MA, D(H) case.

Another example of excellent minority heating, using the D(H) scenarios from JET [7] is shown in figure 4. Here, 42 MHz RF frequency was used at $B = 2.6$ T, $I_p = 2.6$ MA. We see that relatively low amplitude ELMs are observed in the presence of RF heating, as opposed to the neutral-beam injection (NBI) case (see D_α signals). We see that ICRF heats as well as, or better than NBI in the present case, with an H-factor of 2.0–2.3 (as compared to ITER-89 scaling). The D\(^3\)He minority case is much more problematic, and the heating
results are generally less efficient than in the D(H) case. Typical H factors are at most 1.6 (and often less). The reason for this is not well understood. One issue is the difficulty of controlling, or measuring the 3He concentration in the typical D plasma. Recent results from Alcator C-Mod indicate that the heating efficiency may be optimized by maintaining a 2–3% minority concentration ratio. At higher concentrations off-axis mode-conversion processes may begin to play a significant role, and at lower concentrations the single-pass absorption becomes too low. As pointed out in the theory section (section 2), in moderate-aspect-ratio tokamaks such as JET or C-Mod, the shear Alfvén wave mode-conversion layer may provide an undesirable parasitic edge absorption mechanism. At the present time in the D(3He) case a quantitative demonstration of the various absorption processes (i.e. power balance) is not yet available. Furthermore, not even a qualitative demonstration of the SAW MC process is available. Since ‘seeding’ a DT plasma with a few percent 3He for minority absorption is thought to be important for initial heating in a DT plasma [8] (and ultimately Ω_1 would take over at sufficiently high beta), a thorough experimental documentation of power balance with D(3He), including both central (IBW) and edge (SAW) mode-conversion processes, is of great importance.

3.2. Plasma rotation during ICRF heating

Impurity toroidal rotation has been measured in JET, TFTR and Alcator C-Mod during ICRF heating [9–11]. The rotation has been deduced from the Doppler shifts of argon x-ray lines in C-Mod. As an example, a typical shot from Alcator C-Mod is shown in figure 5. Rotation velocities greater than 1.2×10^7 cm s$^{-1}$ ($\omega = 200$ krad s$^{-1}$) in the co-current direction have been observed in H-mode discharges that had no direct momentum input. The increase in the central impurity rotation velocity was approximately proportional to the increase in the plasma stored energy (confinement enhancement). The toroidal rotation
velocity is highest near the magnetic axis, and decreases with increasing minor radius. A radial electric field of 300 V cm\(^{-1}\) at \(r/a = 0.3\) has been inferred from the force balance equation. The direction of the rotation changed when the plasma current direction was reversed, remaining co-current. Impurity toroidal rotation in ICRF heated plasmas is in the direction opposite to the rotation in ohmic L-mode plasmas; co-current rotation has also been observed during purely ohmic H-modes. When the ICRF heating was turned off, the toroidal rotation decayed with a characteristic time of the order of 50 ms, similar to the energy confinement time, and much shorter than the calculated neoclassical momentum damping time. This phenomenon is presently not well understood.

3.3. Harmonic heating at 2\(\Omega_D\)

Harmonic heating at \(\omega = 2\Omega_H\) was carried out earlier on the JT-60U tokamak, and more recently on JET [12] at 2\(\Omega_H\) and (2–3)\(\Omega_D\). Since the absorption efficiency is proportional to the ion beta, this is not an efficient scenario for initial plasma heating (for 2\(\Omega_D\), there is always the \(\Omega_H\) fundamental minority resonance backup). Recent results may be found in DT plasmas in JET [13]. We note that in moderate-to-high-field devices (\(B \geq 4\) T) the 2\(\Omega_H\) scenario requires a rather high transmitter frequency (\(f \gtrsim 120\) MHz) where power generation becomes less efficient (tube powers decrease to below 1.5 MW). As we shall see below, 2\(\Omega_D\) absorption in the presence of NBI becomes important via the energetic beam deuterons.
3.4. Mode-conversion heating experiments

Direct electron heating and current drive via mode-converted IBWs using a low-field-side antenna in a tokamak were first demonstrated in the TFTR device [14]. Mode-conversion electron heating (MCEH) experiments were performed in gas-puffed plasmas consisting of 3He, 4He, and D, at $B_0 = 4.5$ T, $n_e(0) = 4.0 \times 10^{19}$ m$^{-3}$, and $I_p = 1.7$ MA. The ICRF transmitters were operated at 43 MHz with a symmetric FW power spectrum characterized by $k_1 \simeq 10$ m$^{-1}$. Peak electron temperatures of up to 10 keV were achieved using 3.3 MW of ICRF power with 3 keV target plasma. The position of the peak in electron heating could be changed by varying the concentration of 3He, in agreement with theory. The full width at half maximum (FWHM) of the power deposition profile was typically 0.15–0.20 m, as deduced from break-in-slope measurements of the electron temperature versus time.

More recently, highly localized (FWHM $\simeq 0.2a$) on-axis and off-axis electron heating via mode-converted IBWs has been observed in Alcator C-Mod. Direct electron heating from the IBW was measured using a break-in-slope analysis of the electron temperature versus time, as measured by the grating polychromator (GPC). A state-of-the-art toroidal full-wave ICRF code (TORIC) [15] developed by Brambilla has been implemented at MIT and has been used to analyse these MCEH experiments. This full-wave model solves explicitly for the mode converted IBW electric field, as well as for the electric field of the launched FW. An artificial broadening of the ion–ion hybrid resonance layer has been implemented which ensures a well behaved solution for the electric field near mode conversion. Important effects on wave propagation and absorption such as focussing and diffraction, as well as volumetric effects, are naturally included in this model.

![Figure 6. On-axis MCEH in an H(3He) C-Mod plasma. RF electron heating from break-in-slope analysis compared with predictions of TORIC code.](image)

The experimental and predicted RF power deposition into electrons for on-axis MCEH in an H(3He) C-Mod plasma are shown in figure 6. The plasma parameters are $B_0 = 6.2$ T, $n_e(0) = 1.8 \times 10^{20}$ m$^{-3}$, $I_p = 0.8$ MA, $P_{RF} = 1.2$ MW, $n_{\text{He}}/n_e = 0.25$, $n_H/n_e = 0.45$ and $n_D/n_e = 0.05$. The measured and predicted RF deposition profiles agree quite well in shape and magnitude. The integrated RF power fraction to electrons for the predicted profile is $\eta_{RF} = 0.91$, while the measured RF power fraction to electrons is $\eta_{RF} = 0.79$. The remaining RF power in the simulation is absorbed at the 3He cyclotron resonance.
Recent progress in ICRF physics

Calculations carried out with a 1D full-wave ICRF code (FELICE) [16] for this same case indicate similar absorbed RF power fractions but much lower central RF power densities (by a factor of 10). The lower peak power densities arise from the absence of wave focusing and volumetric effects in the 1D analysis. The peakedness of the RF power deposition profile was found to be a strong function of the level of background deuterium in the experiment. Theoretical and numerical analysis of this effect indicated that as the level of D increased to $n_D/n_e \gtrsim 0.1$, the wave dispersion changes and the perpendicular damping lengths of the IBW increase because of an increase in the perpendicular group velocity [17, 18].

![Figure 7. Off-axis MCEH in a D(3He) C-Mod plasma. RF electron heating from break-in-slope analysis compared with predictions of TORIC code.](image)

The experimental and predicted RF electron heating profiles for off-axis MCEH in a D(3He) C-Mod plasma are shown in figure 7. The plasma parameters were $B_0 = 7.9$ T, $I_p = 1.2$ MA, $n_e(0) = 2.5 \times 10^{20}$ m$^{-3}$, $n_{3He}/n_e = 0.30$ and $n_D/n_e = 0.40$. The location of the peak in the predicted power deposition ($r/a \simeq 0.55$) is in reasonably good agreement with experiment. The absorbed RF power fraction to electrons predicted by TORIC is $\eta_{e}^{RF} = 0.56$, with $\eta_{3He}^{RF} = 0.44$. This electron absorption is close to the experimentally deduced value of $\eta_{e}^{RF} \simeq 0.50$.

Electron heating by mode conversion has also been observed on ASDEX-U, and the power deposition profile was measured by modulation techniques using a 45-channel ECE system, as well as with break-of-slope techniques [19].

3.5. Mode conversion current drive

MCCD experiments were performed in TFTR [14] by operating the FW antenna with co- and counter-phasing ($k_{\parallel} \simeq 6$ m$^{-1}$). Up to 130 kA of RF current was driven with 2.2 MW of ICRF power at $T_e(0) \sim 7$ keV. The corresponding current-drive figure of merit for this case was $\eta_{cd} \simeq 0.07$ [1020A W$^{-1}$ m$^{-2}$], in good agreement with the theoretical values, is based on a combined 1D calculation of the IBW power deposition to electrons (FELICE code) and the Ehst–Karney formulation of the current-drive efficiency [5]. In these experiments $Q \simeq 0.1$ in (11), which is a rather high value.

To calculate current-drive efficiency, the full-wave TORIC code has been combined
with an adjoint calculation [5] of the current-drive efficiency. The combined model is valid for driven current via fast magnetosonic waves or mode-converted IBWs. This model was used to assess possible current profile control experiments in D(³He) plasmas in Alcator C-Mod. One possible on-axis MCCD scenario is shown in figure 8. The parameters used in this case were $f_0 = 43$ MHz, $B_0 = 5.0$ T, $n_e(0) = 1.5 \times 10^{20}$ m$^{-3}$, $T_e(0) = 3.0$ keV, $n_\phi = 5(k_{\lambda_{\text{NT}}} \approx 5.4$ m$^{-1}$), $n_{3\text{He}}/n_e = 0.25$ and $n_D/n_e = 0.50$. The normalized phase speed of the injected waves near the mode conversion layer is $v_\|/v_{te} \approx 1.0$ and the driven current is $I_{\text{MCCD}} \approx 100$ kA, assuming 3 MW of incident ICRF power. The resulting current-drive figure of merit is $\eta_{\text{cd}} \approx 0.027 [10^{20}$ A W$^{-1}$ m$^{-2}]$, where $\eta_{\text{cd}} = \langle n_e \rangle [10^{20}$ m$^{-3}] I_{\text{RF}}[\text{kA}] R_0[\text{m}]/P_{\text{RF}}[\text{W}]$. The on-axis RF current density in figure 8 is comparable to the ohmic current density at about 1 MA of total current. Thus, significant local modification of the ohmic current density profile would be expected in this case.

An example of off-axis MCCD is shown in figure 9. The parameters used in this

![Figure 9. Off-axis MCCD in a D(³He) C-Mod plasma ($f_0 = 43$ MHz, $B_0 = 4.19$ T).](image-url)
Recent progress in ICRF physics

Recent experiments on DIII-D have studied the physics of FWCD in an NBI environment. All the advanced tokamak scenarios proposed for DIII-D utilize NBI heating as well as RF heating, and many of the critical diagnostics on DIII–D, such as the motional Stark effect (MSE) and charge-exchange recombination (CER) emission, require the NBI system. During these current-drive experiments, the partial absorption of the FWs by energetic beam ions at high harmonics of the ion cyclotron frequency was also studied; this interaction is a major issue for low-aspect-ratio tokamaks such as NSTX, where a combination of NBI and FWCD may be used simultaneously.

3.6. FW electron heating and current drive

Initial experiments on DIII-D showed effective central electron heating [20] and current drive [21, 22] with FWs, and achieved full non-inductive current drive, in combination with ECH, using a single FW antenna [23]. The good heating results were obtained in spite of the relatively low single-pass efficiency ($A \sim 5–20\%$), implying efficient multiple-pass absorption. For single-pass absorption of less than 4% the central heating and current-drive efficiency deteriorated rapidly in DIII-D. More recently, the FWCD system has been extended by adding two 2 MW transmitters that have a frequency range of 30–120 MHz and two four-strap antennae to the existing four-strap antenna and 2 MW, 30–60 MHz transmitter. For the experiments reported in this paper, one antenna was tuned to 60 MHz while the other two antennae were operated at 83 MHz; these frequencies correspond to four to seven times the deuterium cyclotron frequency.

Recent experiments on DIII-D have studied the physics of FWCD in an NBI environment. All the advanced tokamak scenarios proposed for DIII-D utilize NBI heating as well as RF heating, and many of the critical diagnostics on DIII–D, such as the motional Stark effect (MSE) and charge-exchange recombination (CER) emission, require the NBI system. During these current-drive experiments, the partial absorption of the FWs by energetic beam ions at high harmonics of the ion cyclotron frequency was also studied; this interaction is a major issue for low-aspect-ratio tokamaks such as NSTX, where a combination of NBI and FWCD may be used simultaneously.

Figure 10. Radial profile of the non-inductive current density driven by FWs in DIII-D together with theoretical profiles ($B_r = 2.1$ T, $\bar{n} = 2.1 \times 10^{19}$ m$^{-3}$, $P_{fw} = 2.1$ MW).
Measurements of the radial profile of the FW-driven current in non-sawtoothing discharges on DIII-D, formed by early NBI during the plasma current ramp-up, allow a stringent comparison between theory and experiment. From a time sequence of magnetic equilibrium reconstructions using the MSE data, the profiles of toroidal electric field and total current density were determined; the non-inductive current density was then found by subtracting the inductive current density from the total current density assuming neoclassical resistivity [24]. The FWCD radial profile was found from the change in the non-inductive current profile as the antenna phasing was changed from co- to counter-current drive under otherwise similar conditions. The FWCD radial profile determined with this method is shown in figure 10 for an L-mode plasma with 280 kA of integrated FWCD. This figure also shows the theoretical predictions from three models: the FASTCD model based on the ergodic, weak damping limit [25], the CURRAY ray-tracing model that includes multiple reflections [26], and the PICES reduced full-wave model [27]. The measured FW-driven current is highly localized on axis and is in good agreement with theoretical models, as found previously on DIII-D. The integrated non-inductive currents from the three models all come within 10% of the measured value.

Figure 11. Experimental FWCD efficiency as a function of central electron temperature in DIII-D. The shaded band indicates the predictions from the CURRAY ray tracing code. The solid square represents data from Tore Supra [28].

The important experimental verification of theory is that the measured FWCD efficiency was observed to increase linearly with the electron temperature. This is shown in figure 11, where the $B_T = 1$ T data were derived from a surface loop voltage analysis [21, 22] and the $B_T = 2$ T data were derived from co/counter comparisons of the non-inductive current profiles as in figure 10. The calculated first-pass absorption for the points in figure 11 ranges typically from 9% to 13%. The predicted scaling of the FWCD efficiency from the CURRAY code, indicated in figure 11 by the shaded band, is found to agree with the experiments. This linear electron temperature dependence projects to attractive values for the FWCD efficiency under reactor conditions (i.e. $n_{20}I_{MA}R_{M}/P_{MW} \sim 0.08T_e10$, where the density is measured in units of 10^{20} m$^{-3}$, I in MA, R in m, P in MW, and $T_e(0)$ in units of 10 keV). Results from Tore Supra [28] are also indicated on this figure, and are in good agreement with theoretical predictions.
3.7. High cyclotron harmonic absorption on beam ions

The interaction of FWs with energetic beam ions at high harmonics of the ion cyclotron frequency was studied in parallel with the current-drive experiments in DIII-D. The partial absorption of FWs by beam ions was evident from a build up of fast-particle pressure near the magnetic axis (resulting in an increased Shafranov shift) and a correlated increase in the neutron rate. The anomalous fast-ion stored energy could be as much as a quarter of the stored energy in the plasma, and the anomalous neutron rate could be half of the total neutron rate. The anomalous neutron rate, \(\Delta S_n = S_n - S_{\text{calc}} \), and anomalous fast-ion stored energy, \(\Delta W = W_{\text{tot}} - W_{\text{th}} - W_{\text{beam}} \), peaked when a harmonic of the deuterium cyclotron frequency passed through the centre of the plasma, as shown in figure 12 for an L-mode magnetic field scan at constant auxiliary power and safety factor. The anomalous neutron rate and stored energy built up during the FW pulse over several tenths of a second; this is the source of the spread in \(\Delta S_n \) and \(\Delta W \) in figure 12. The largest values of \(\Delta S_n \) were obtained when the sixth and seventh harmonics of the deuterium cyclotron frequency for the main FWCD frequency of 83 MHz passed through the axis of the plasma. The value of \(\Delta W \) also peaked at the 6\(\Omega_D \) resonance and also showed a small increase at the 7\(\Omega_D \) resonance. A simple estimate of the FW power absorbed by the beam ions can be made from \(P_{\text{abs}} \approx \Delta W/\tau_s \), where \(\tau_s \) is the slowing-down time of the ion tail. For the case in

![Figure 12. Toroidal magnetic field dependence of the (a) anomalous neutron rate and (b) anomalous fast-ion stored energy (\(P_{\text{NQ}} \approx 3.7 \text{ MW}, P_{\text{FW}} \approx 2.3 \text{ MW} \)).](image-url)
The partial absorption of FWs by beam ions appears to decrease the experimental FWCD efficiency. The measured FWCD efficiency, normalized to the central electron temperature, is shown in figure 13 as a function of the magnetic field strength; the theoretical efficiency assuming no ion absorption is also plotted for comparison. For $B_T \gtrsim 2$ T, where the interaction between the FWs and the beam ions was weakest, the measured FWCD efficiency was in good agreement with the maximum efficiency that could be theoretically expected. However, as B_T was lowered, the experimental FWCD decreased to approximately half of the maximum theoretical value. This reduction in the FWCD efficiency is probably due to beam ion absorption of the FWs, which would reduce the amount of power available for current drive. Equation (8) has been used to estimate the ICRF power absorption by a diffused beam ion model. Initial estimates are in reasonable agreement with experimental observations.

3.8. Advanced modes of operation with ICRF

There are several advanced modes of operation with ICRF heating, usually in combination with some other technique to control the central particle source (PEP mode), edge radiating mantle (RI mode), or current profile (optimized shear (OS) mode). We shall discuss some of these experimental results briefly here.

(i) Pellet enhanced mode (PEP). This mode was originally discovered in JET [9], and further studied in Alcator C-Mod [6]. The good confinement regime is obtained when a pellet is injected into the plasma, followed by intense central ICRF heating (either the H or He-3 minority technique). After an initial cooling of the plasma, rapid reheating occurs, with excellent confinement in the core of the plasma column, typically at radii $r/a \lesssim 0.3$, where the density and plasma pressure peak strongly. By injecting a second Li pellet and observing the angle of the ablation cloud relative to the magnetic field, the q-profile could be determined. It was found that a reversed shear equilibrium was present, with q_{min} at
$r/a = 0.3$. Within the reversed shear region the pressure peaked strongly, and the transport was reduced to neoclassical values. This mode of operation is then similar to the negative central shear (NCS), reversed shear (RS) or OS mode of operation regimes with NBI central heating and fuelling. Unfortunately, the PEP mode is transient, and collapses after a short time, apparently due to either beta-limit or a diffusion of the bootstrap current generated by the peaked pressure profile (not yet understood). Future experiments might include driving off-axis currents to replace the bootstrap current near q_{min}, hence extending the PEP mode toward quasi-steady state.

(ii) Radiative improved mode. This mode of operation was observed in the TEXTOR experiment [29]. By seeding the plasma with neon (or other inert gas) a radiating edge mantle was created (as much as 80–90% of the power was radiated from the edge) but with acceptable core radiation. Good confinement scaling was obtained and the confinement follows the neo-Alcator type of scaling even at densities close to the Greenwald limit (see figure 14). In particular, an H-factor equal to ITER 93H scaling was obtained. This mode of operation does not require a divertor, and the local heat load on the first wall of a reactor would be minimized. This is a quasi-steady-state mode of operation, hence reactor relevant. Issues include extrapolation to large machines, and keeping Z_{eff} at or below 1.6, as required in a working fusion reactor. The good confinement is obtained only if 25% or more of the heating power is in the form of co-NBI (the remaining can be ICRF or counter-NBI or co-

![Figure 14. RI mode in Textor with neon seeding. $I_p = 0.4$ MA, $B = 2.25$ T, shot = 68825.](image)
plus counter-NBI). It is possible that central fuelling may again be important, just as for the PEP mode.

(iii) **Hot ion H-Mode with optimized shear.** The highest performance (neutron rate) in JET in a DD plasma has been obtained with ICRF central heating with current ramp (reversed shear, or optimized shear) and neutral beam heating [12, 13]. An example of this technique is shown in figure 15. This case corresponds to D(H) minority heating (electrons) and $2\omega_D$ harmonic cyclotron absorption by the beam ions (ion heating). Record neutron rates have been obtained by this technique in DD plasmas (a neutron rate of 6×10^{16} neutrons s$^{-1}$). This regime shows the combined effectiveness of electron and ion heating with ICRF techniques.

![Figure 15. Optimized shear mode in JET with NBI and ICRF.](image)

4. Summary

Heating and current drive with RF waves in the ICRF has been found to be a highly effective means of controlling plasma parameters in present-day tokamaks. In this paper, we have summarized the basic theoretical predictions and presented some of the most recent experimental results in their support. We have found that heating in deuterium plasmas with hydrogen minority, or the D(H) scenario, is very effective in tokamaks of all sizes, and that high quality H-modes are readily obtained. Owing to the lower single-pass absorption, heating with the D(He-3) scenario is not quite as efficient, and lower H-factors are obtained. The underlying physics is not well understood at the present time. Possible competing edge absorption mechanisms have been identified in the paper. This is an area where more work needs to be done, especially since this may be a start-up scenario in DT plasmas before second-harmonic tritium absorption takes over at sufficiently high ion betas.

We have also discussed cyclotron harmonic absorption results, and indicated that
second-harmonic absorption on the majority deuterium component may also be important. Furthermore, higher cyclotron harmonic absorption of the FW on fast beam ions has been observed. This needs to be better understood since FWCD at higher cyclotron harmonics has been shown to be an effective means of central RF current drive, at least in the absence of a fast-ion population. These results are of particular importance when we consider applications in a burning plasma with a significant alpha-particle population. In the absence of beam ions, direct FW electron heating and current drive has been thoroughly demonstrated, and the linear dependence of current-drive efficiency on electron temperature, as well as the radial variation of current profile have been documented.

Another important area of progress is electron heating and current drive associated with the mode-converted IBWs. On-axis heating and current drive for favourable conditions has been found to be efficient in a few experimental attempts. However, off-axis heating and current drive is still not well documented. This technique needs more attention since profile control is of major importance in improving tokamak performance, and MCCD with IBW is one of the more promising techniques. Similarly, the formation of ion and electron thermal barriers (ITB and ETB) using the concept of RF shear flow will have to be developed further, both theoretically and experimentally. Plasma rotation in the presence of minority heating may be a manifestation of such physical phenomena, although this idea has not yet been explored in any depth. Another promising technique in this direction is direct IBW launch. We have not had space to discuss this promising technique in this paper, neither have we had space to discuss the control of MHD phenomena using ICRF waves. Along these lines, it is important to note the formation of improved tokamak performance by ICRF techniques in combination with particle fuelling. Noteworthy regimes are the OS scenario, the PEP mode (where central fuelling with pellet injection is combined with ICRF heating) and the RI mode, where edge fuelling with neon gas, combined with NBI and ICRF heating (50:50%) leads to edge thermal barrier formation and effective power dissipation by edge radiation, while retaining excellent core confinement. Clearly, in the future, further work is needed in this area.

Acknowledgment

This work was supported by DOE Contract No. DE-AC02-78ET51013.

References

[1] Stix T M 1992 Waves in Plasmas (New York: AIP)
[2] Porkolab M 1994 Advances in Plasma Physics AIP Conf. Proc. vol 314, ed N J Fisch (New York: AIP) p 99
[3] Ram A, Bers A, Schultz S D and Fuchs V 1996 Phys. Plasmas 3 1796
[4] Fisch N J 1987 Rev. Mod. Phys. 59 175
[5] Ehst D A and Karney C F F 1991 Nucl. Fusion 31 1933
[6] Takase Y et al 1997 Phys. Plasmas 4 1647
[7] Start D et al 1998 JET ICRF results at this conference
[8] Bhatnagar V P et al 1998 Proceedings of this Conference, p 29
[9] Eriksson L-G et al 1992 Plasma Phys. Control. Fusion 34 863
[10] Eriksson L-G, Righi E and Zastrow K D 1997 Plasma Phys. Control. Fusion 39 27
[11] Phillips C K et al 1992 Ion cyclotron range of frequencies stabilization of sawteeth on tokamak fusion test reactor Phys. Fluids B 4 2155
[12] H. Hsuan et al 1996 ICH-induced plasma rotation on TFTR Proc. Topical Conf. on Radio Frequency Power in Plasmas (Palm Springs, CA, May 1995) AIP Conf. Proc. vol 355, ed R Prater and V S Chan (New York: AIP) p 39
M Porkolab et al

[11] Rice J E, Greenwald M, Hutchinson I H, Marmar E S, Takase Y, Wolfe S M and Bombarda F 1998 Nucl. Fusion 38 75
[12] Mantsinen M et al 1997 Proc. 24th EPS Conf. on Controlled Fusion and Plasma Physics (Berchtesgaden) vol 21A, part I, p 137
[13] Start D F H, Bergeaud V, Eriksson L G, Gayral B, Gormezano C and Mantsinen M 1997 Proc. 24th EPS Conf. on Controlled Fusion and Plasma Physics (Berchtesgaden, 1997) vol 21A (Geneva: EPS) part I, p 141
[14] Majeski R et al 1996 Phys. Rev. Lett. 76 764
[15] Brambilla M 1996 A full-wave code for ion cyclotron waves in toroidal plasmas IPP Report 5/66 Garching (February 1996)
[16] Brambilla M 1988 Nucl. Fusion 28 549
[17] Bonoli P T et al 1997 Phys. Plasmas 4 1774
[18] O’Shea P J, Bonoli P, Hubbard A, Porkolab M and Takase Y 1997 Proc. 12th Topical Conf. on Radio Frequency Power in Plasmas AIP Conf. Proc. vol 403, ed P M Ryanand and T Intrator (New York: AIP) p 89
[19] Noterdaeme J M et al 1996 Proc. 16th IAEA Fusion Energy Conference (Montreal) IAEA-CN-64/F1-EP-4
[20] Petty C C et al 1992 Phys. Rev. Lett. 69 289
[21] Prater R et al 1993 Plasma Phys. Control. Fusion 35 A53
[22] Pinsker R I et al 1992 Proc. 14th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research (Würzburg) vol 1, p 683
[23] Petty C C et al 1995 Nucl. Fusion 35 773
[24] Forest C B et al 1994 Phys. Rev. Lett. 73 2444
[25] Kupfer K, Forest C B, Petty C C and Pinsker R I 1994 Phys. Plasmas 1 3915
[26] Mau T K et al 1992 Proc. 19th Eur. Conf. on RF Heating and Current Drive of Fusion Devices (Brussels) vol 16E, p 181
[27] Jaeger E F 1993 et al Nucl. Fusion 33 179
[28] Bécoulet A 1996 Plasma Phys. Control. Fusion 38 A1
[29] Unterberg B et al 1997 Plasma Phys. Control. Fusion 39 B189