Data Article

Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis

Ramona Kuhn *, Jörg Böllmann, Kathrin Krahl, Isaac Mbir Bryant, Marion Martienssen

Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, 03046 Cottbus, Germany

A R T I C L E I N F O

Article history:
Received 19 October 2017
Received in revised form 7 November 2017
Accepted 28 November 2017
Available online 5 December 2017

Keywords:
Cost analysis
DNA sample load
Gel electrophoresis

A B S T R A C T

The data presented in this article provide supporting information to the related research article "Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples" (Kuhn et al., 2017) [1]. In that article, we compared the suitability of ten selected DNA extraction methods based on DNA quality, purity, quantity and applicability to universal PCR. Here we provide the data on the specific DNA gel sample load, all unreported gel images of crude DNA and PCR results, and the complete cost analysis for all tested extraction procedures and in addition two commercial DNA extraction kits for soil and water.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Molecular Biology
Type of data	Tables, figures, equations
How data was acquired	Bio View Biostep transilluminator
Data format	Raw and analyzed

DOI of original article: https://doi.org/10.1016/j.mimet.2017.10.007

* Corresponding author.

E-mail address: Kuhnr@b-tu.de (R. Kuhn).
Experimental factors: Sample were preserved at \(-20\,\degree C\) before DNA extraction.

Experimental features: DNA extraction, universal PCR, DNA visualization, cost analysis.

Data source location: Cottbus, Germany.

Data accessibility: Data is within this article.

Value of the data:

- The data on the gel sample load are valuable to serve as indirect control for DNA quantification with fluorescence stain called PicoGreen.
- This data provide additional gel images of crude DNA and PCR of the tested DNA extraction procedures.
- The cost analysis of the DNA extraction procedures provided are valuable for further economical comparison.

1. Data

Table 1 presents the DNA sample load (in \(\mu\)L) necessary to visualize the crude DNA on the agarose gels. Different DNA loads were used in order to achieve comparable DNA concentrations ranging between 250 and 300 ng on the gel. Higher DNA loads were necessary for visualization on the agarose gels, especially for the crude DNA extracts from the Havel River sediment (procedure A, D, F, G, and H).

The visual DNA quality control of crude DNA extracts and PCR of procedures B, C, D, E, H, I and J is presented in Figs. 1–4. The results for crude DNA extracts and PCR amplification of procedure B and C (method according to [2]) were almost similar. In both cases, intensive fragmentation was found for crude DNA extracts of the activated sludge and no distinct genomic DNA band was visible (Fig. 1, D1 & E1). The crude DNA of the sediment and anaerobic digestion sludge indicated a good quality with lower content of impurities, while the quality of the crude DNA for the nitrifying sludge was lower. A higher content of impurities was visible on both gel images. Positive PCR amplification was only feasible for the anaerobic digestion sludge and showed a very good quality of the amplicon (Fig. 1, D2 & E2).

The results for the crude DNA extracts of procedure D and E (method according to [3,4]) were also almost similar (Fig. 2, F1 & G1). For procedure D, no distinct genomic DNA band was visible on the agarose gel but instead, fragmentation and higher content of undefined impurities (Fig. 2, F1). The

Extraction protocol according to first author	Origin of samples			
	Activated sludge	Havel River sediment	Anaerobic digestion sludge	Nitrifying sludge
A: Bourrain	4	15	5	8
B: Gabor harsh	2	8	5	8
C: Garbor soft	2	8	5	15
D: Shan	4	12	10	20
E: Orsini/Spica	4	8	6	15
F: Singka	4	12	15	15
G: Soya method	1	20	3	15
H: Tabatabaei	2	10	12	8
I: Tresse	1	6	6	10
J: Wilson	2	4	12	8
pattern for the nitrifying sludge, especially, indicated complete failure of the extraction procedure. The gel image of the crude DNA extraction for procedure E occurred almost similar to procedure D with one exception. The crude DNA extract of the activated sludge showed a slight distinct genomic DNA band, however, the background staining indicated the presence of impurities (Fig. 2, G1). Nevertheless, positive PCR amplification was obtained for the crude DNA extract from activated sludge for procedure E (Fig. 2, G2). Surprisingly, positive amplification of the nitrifying sludge was also obtained for both procedure D and E (Fig. 2, F2).

The results of the crude DNA extracts of procedure H and I (method according to [5,6]) are presented in Fig. 3. All crude DNA extracts of procedure H indicate a slight distinct genomic DNA band and higher content of impurities through background staining (Fig. 3, H1). Positive PCR amplification was only obtained for the crude DNA extract of the anaerobic digestion sludge. PCR amplification of
the crude DNA extracts of the activated sludge, Havel River sediment and nitrifying sludge failed (Fig. 3, H2). The quality of crude DNA extracts of procedure I was different between the four environmental samples (Fig. 3, I1). A distinct genomic DNA band without higher content of visible impurities was obtained for the activated sludge. The degree of increased impurities occurred slightly for the crude DNA extracts of the Havel River sediment, but a distinct genomic DNA band was still good visible on the gel image. The crude DNA extract of the anaerobic digestion sludge showed higher content of DNA fragmentation as well as possible impurities in the background of the gel. Besides a distinct DNA band higher background smearing was also visible for the crude DNA extract of the nitrifying sludge. Positive PCR amplification was only obtained for the crude DNA extract of the activated sludge (Fig. 3, I2).

The results of the crude DNA extracts of procedure J are presented in Fig. 4 (method according to [7]). The gel image indicated distinct genomic DNA bands with lower content of background smearing

Fig. 2. Agarose gel electrophoresis of crude DNA (F1 & G1) and universal PCR (F2 & G2) using universal primer set 27f and 1525r. F1 & F2: Procedure D (Shan). G1 & G2: Procedure E (Orsini & Romano-Spica). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.
for the activated sludge, Havel River sediment and the nitrifying sludge. A higher degree of possible DNA fragmentation and/or background impurities were observed for the crude DNA extract of the anaerobic digestion sludge (Fig. 4, J1). Positive PCR amplification was obtained from the activated sludge, Havel River sediment and the nitrifying sludge, while the amplification for the anaerobic digestion sludge failed (Fig. 4, J2).

The cost analysis of the ten DNA extraction procedures and the two commercial DNA extraction kits is presented in detail in Tables 2–13. Our cost analysis is based on cost estimation. Therefore a cost range between lowest and highest prices is presented. We assumed that the real extraction price will be in this cost range. The presented results show that every extraction procedure has its specific cost range, which is mainly dependent on the extraction time and therefore also on the cost of the laboratory staff. We calculated the lowest laboratory staff cost ranging between 3.65 € and 5.10 € for procedure J (Table 11), and the highest ranging between 8.68 and 12.15 for procedure A (Table 2).
calculated the lowest cost for the chemicals needed ranging between 0.13 € to 0.31 € for procedure D (Table 5) and the highest cost ranging between 0.47 € to 0.96 € for procedure I (Table 10). The cost for the other consumables such as gloves, tubes and tips were almost similar for all analyzed extraction procedures and extraction kits.

2. Experimental design, materials and methods

The sample preservation, DNA extraction, PCR performance and gel electrophoresis were described elsewhere [1]. For the cost analysis, a cost range was estimated ranging between minimum and maximum prices for all needed consumables. The number of required tubes and tips per extraction was counted. In all equations that follow, an index was included identifying low or high cost calculations, respectively. For clarification, the letter \(x \) represents all low cost calculations and the letter \(y \) represents all high cost calculations. The individual cost per chemical needed for every DNA extraction was calculated either with Eqs. (1) or (2), where \(m_{\text{extraction}} \) is the chemical weight required for a single DNA extraction and \(m_{\text{total fix cost}} \) is the total weight corresponding to the fix cost. The individual cost for additional consumables such as gloves, tubes and/or tips was calculated either with Eqs. (3) or (4).

\[
\text{Chemical costs}_x [\text{€/prep}] = \frac{m_{\text{extraction}} \cdot \text{Fixcost}_x}{m_{\text{total fix cost}}};
\]

\[
\text{Chemical costs}_y [\text{€/prep}] = \frac{m_{\text{extraction}} \cdot \text{Fixcost}_y}{m_{\text{total fix cost}}};
\]

\[
\text{Additional consumable costs}_x [\text{€/prep}] = \frac{\text{Consumbleused}_{\text{extraction}} \cdot \text{Fixcost}_x}{\text{Total consumable fix cost}_x};
\]

\[
\text{Additional consumable costs}_y [\text{€/prep}] = \frac{\text{Consumbleused}_{\text{extraction}} \cdot \text{Fixcost}_y}{\text{Total consumable fix cost}_y};
\]

Fig. 4. Agarose gel electrophoresis of crude DNA (J1) and universal PCR (J2) using universal primer set 27f and 1525r. G1 & G2: Procedure J (Wilson). Lane declaration for all crude DNA and universal PCR gel images: lane 1 to 3 activated sludge; lane 4 to 6 Havel River sediment; lane 7 to 9 anaerobic digestion sludge; lane 10 to 12 nitrifying sludge; M in all gel images: 10 kb MassRuler DNA ladder.
The cost for the lab staff was calculated either with Eqs. (5) or (6). The calculation is based on a total of 12 extractions per staff and the individual extraction time of the tested extraction procedures.

\[
\text{Labstaff}_x [\text{€/prep}] = \left(\frac{\text{Coststaff}_x}{\text{Hour}}\right) \times \frac{12}{\text{extractions}} \times \frac{60}{\text{min}}
\]

\[
\text{Labstaff}_y [\text{€/prep}] = \left(\frac{\text{Coststaff}_y}{\text{Hour}}\right) \times \frac{12}{\text{extractions}} \times \frac{60}{\text{min}}
\]

The sum of total costs of chemicals was calculated either with Eqs. (7) or (8). The total costs of all additional consumables needed per extraction was calculated either with Eqs. (9) or (10). The final price per preparation was then calculated either with Eqs. (11) or (12) considering the cost for the lab staff, for all chemicals and additional consumables needed.

\[
\text{Total chemical costs}_x [\text{€/prep}] = \sum \text{Chemical costs}_x
\]

\[
\text{Total chemical costs}_y [\text{€/prep}] = \sum \text{Chemical costs}_y
\]

\[
\text{Total additional consumables costs}_x [\text{€/prep}] = \sum \text{Additional consumable costs}_x
\]

\[
\text{Total additional consumables costs}_y [\text{€/prep}] = \sum \text{Additional consumable costs}_y
\]

\[
\text{Final price}_x [\text{€/prep}] = \text{Lab staff}_x + \sum \text{Chemical costs}_x + \sum \text{Additional consumable costs}_x
\]

\[
\text{Final price}_y [\text{€/prep}] = \text{Lab staff}_y + \sum \text{Chemical costs}_y + \sum \text{Additional consumable costs}_y
\]

2.1. Cost analysis

See Tables 2–13.
Table 2
Cost analysis for DNA extraction procedure A (according to Bourrain et al., 1999).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High cost			
	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)	per prep	per prep			
Gloves (any size)	1 pair	–	–	–	50 pair	8.20	50	4.50	0.090	0.1640	
Tubes	1 ml	500 pieces	11.9	1000 pieces	21.90	0.1095	0.1190				
Tips	1 µL	500 pieces	5.40	1000 pieces	8.19	0.0082	0.0108				
lysozyme buffer	0.15 M NaCl	6.6 mg	15.84	1000 g	24.19	0.0002	0.0002				
SDS solution	0.1 M NaCl	4.4 mg	15.84	1000 g	24.19	0.0001	0.0001				
Tris–HCl saturated phenol	0.1 M Tris–HCl	27.9 mg	93.40	1000 g	128.00	0.0058	0.0085				
Phenol:Chloroform:Isoamyl (25:24:1)	1.0 ml	25% Phenol	18.00	1000 g	64.40	0.0644	0.1800				
RNaseA treatment	5.0 µL	0.2 µg µL-1	94.40	1000 mg	292.00	0.0003	3.8E-04				
Lab staff (per hour)	12 min	–	–	–	–	–	–	–			
Lab staff (€/extraction)	–	–	–	–	–	–	8.68	12.15			
Chemicals (€/extraction)	–	–	–	–	–	–	0.36	0.86			
Gloves, tubes, tips (€/extraction)	–	–	–	–	–	–	0.30	0.42			
Final price per extraction including extraction time, lab staff and all consumables (€)	–	–	–	9.34	13.43						
Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs		Low costs		Low cost	High cost	
-----------------------------	---------	-------	---------------	----------------	------------	------------------	-----------	------------------	---------	-----------	
					Amount	Unit	Fix cost (£)	Amount	Fix cost (£)	per Prep (£) per Prep (£)	
Gloves (any size)	1	pair	–		50	pair	8.20	50	4.50	0.0900	0.1640
Tubes	3	–	–	2.0	mL	500 pieces	11.90	1000	21.90	0.0657	0.0714
Tips	10	–	–	1000	µL	500 pieces	5.08	1000	7.70	0.0770	0.1015
Tips	4	–	–	200	µL	500 pieces	5.40	1000	8.19	0.0328	0.0432
Tips	1	–	–	10	µL	1000 pieces	27.14	2000	43.42	0.0217	0.0271
Silica beads	0.1	mm	–	700	mg	1000 g	24.30	25000	202.00	0.0057	0.0170
Lysozyme buffer	1.25	mL	100 mM Tris	15.1	mL	500 g	93.40	1000	128.00	0.0019	0.0028
			100 mM sodium EDTA	46.5	mg	100 g	23.50	1000	59.70	0.0028	0.0109
			100 M NaCl	109.6	mg	500 g	15.84	1000	24.19	0.0027	0.0035
			1% w/v CTAB	12.5	µg	100 g	22.64	1000	89.11	0.0011	0.0028
Lysozyme	0.04	mL	50 mg mL⁻¹	2.0	mg	1.0 g	23.89	10	96.04	0.0192	0.0478
Proteinase K	0.01	mL	10 mg mL⁻¹	0.1	mg	1.0 g	67.68	0.5	259.62	0.0519	0.0677
SDS	0.2	mL	w/v 20%	0.04	mg	100 g	16.56	1000	56.48	2.3E-06	6.6E-06
Chloroform (1:1 v/v)	1.0	mL	100%	1.0	mL	500 mL	50.62	2500	100.66	0.0403	0.1012
Isopropanol (0.6:1 v/v)	0.6	mL	100%	0.6	mL	1000 mL	30.30	2500	61.70	0.0148	0.0182
Ethanol	0.5	mL	70%	0.375	mL	250 mL	47.56	2500	246.58	0.0345	0.0666
TE buffer	0.1	mL	10 mM Tris–HCl	0.12	mg	500 g	93.40	1000	128.00	1.6E-05	2.3E-05
			1 mM EDTA	0.03	mg	100 g	34.08	1000	245.23	7.2E-06	1.0E-05
Extracted samples	12	–	–	–	–	–	–	–	–	–	
Extraction time	235	min	–	–	–	–	–	–	–	–	
Lab staff (per hour)	–	–	–	–	–	–	–	–	–	–	
Lab staff (£/extraction)	–	–	–	35.00	–	25.00	–	–	–	–	
Chemicals (£/extraction)	0.17	–	–	–	–	–	–	–	–	–	
Gloves, tubes, tips (£/extraction)	0.29	–	–	–	–	–	–	–	–	–	
Final price per extraction including extraction time, lab staff and all consumables (£)	8.62	–	–	–	–	–	–	–	–	–	
Table 4
Cost analysis for DNA extraction procedure C (according to Gabor et al. [2]; soft method).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs		
	Amount	Unit	Fix cost (£)	Amount	Unit	Fix cost (£)		
	per Prep (£)	per Prep (£)						
Gloves (any size)	1 pair	–	–	50 pair	8.20	4.50	0.090	0.164
Tubes	3	–	–	500 pieces	19.10	11.70	0.066	0.071
Tips	10	–	–	500 pieces	7.40	4.57	0.077	0.102
Tips	4	–	–	500 pieces	5.90	3.64	0.033	0.043
Silica beads	1	–	–	1000 pieces	27.14	16.32	0.022	0.027
Lysozyme buffer	0.1 mL	–	–	1000 g	24.30	15.26	0.0057	0.0170
	1.25 mL	–	–	500 g	93.40	59.70	0.0019	0.0028
Lysozyme	0.04 mL	–	–	100 g	23.89	14.77	0.0192	0.0478
Proteinase K	0.01 mL	–	–	100 g	67.68	43.18	0.0519	0.0677
SDS	0.2 mL	–	–	100 g	16.56	10.00	0.0259	0.0351
Chloroform (1:1 v/v)	0.6 mL	–	–	1000 mL	30.30	18.76	0.0182	0.0261
Isopropanol (0.6:1 v/v)	1 mL	–	–	1000 mL	47.56	29.21	0.0280	0.0390
Ethanol	0.5 mL	–	–	250 mL	30.00	18.00	0.0148	0.0182
TE buffer	0.1 mL	–	–	1000 g	7.99	5.44	0.0178	0.0222
Extracted samples	12	–	–	100 g	3.48	2.11	0.0106	0.0141
Extraction time	230 min	–	–	–	–	–	–	–
Lab staff (per hour)	–	–	–	–	35.00	25.00	0.79	1.19
Lab staff (£/extraction)	–	–	–	–	–	–	7.99	11.18
Chemicals	0.17	–	–	–	–	–	0.17	0.34
(£/extraction)	0.29	–	–	–	–	–	0.29	0.41
Gloves, tubes, tips (£/extraction)	–	–	–	–	–	–	0.29	0.41
Final price per extraction including extraction time, lab staff and all consumables (£)	8.45	–	–	–	–	–	8.45	11.93
Table 5
Cost analysis for DNA extraction procedure D (according to Shan et al. [3]).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High cost		
	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)	per Prep (€)	per Prep (€)		
Gloves (any size)	1 pair	–	–	–	–	8.20	45.0	0.0900	0.1640	
Tubes	3	–	–	50 pair	2.0 mL	500 pieces	11.90	21.90	0.0657	0.0714
	1000	µL	500 pieces	2.0 mL	500 pieces	5.08	7.70	0.0616	0.0812	
	2	µL	500 pieces	2.0 mL	500 pieces	5.40	8.19	0.0164	0.0216	
	1	µL	1000 pieces	2.0 mL	1000 pieces	27.14	43.42	0.0217	0.0271	
TENP Puffer	0.4 mL	–	50 mM Tris	2.42 mg	500 g	93.40	128.00	0.0003	0.0005	
	100 mM NaCl	2.34 mg	500 g	34.08	100 g	245.23	0.0006	0.0008		
	10 mM NaCl	2.34 mg	500 g	15.84	100 g	24.19	0.0001	0.0001		
	10 mg mL-1 PVP	4.00 mg	100 g	45.30	100 g	224.00	0.0009	0.0018		
SDS	50 µL	w/v 20%	10.0 µg	10	500 g	16.56	56.48	5.6E-07	1.7E-06	
CTAB Puffer	0.5 ml	0.7 M NaCl	20.5 mg	500 g	15.84	100 g	24.19	0.0005	0.0006	
	10% CTAB	1.0 %	100 g	22.64	100 g	89.11	4.5E-06	1.1E-05		
KH2PO4	0.25 ml	240 mM	8.16 mg	250 g	19.66	100 g	56.66	4.6E-07	0.0006	
Phenol:Chloroform:isoamyl (25:24:1 v/v)	1.0 ml	100 mM Tris	12.1 mg	500 g	93.40	100 g	128.00	0.0016	0.0023	
	Phenol	0.5 g	100 g	18.00	1000 g	64.40	0.0322	0.0900		
	Chloroform	0.48 ml	500 g	50.62	2500 ml	100.66	0.193	0.486		
	Isoamyl	0.02 ml	25 ml	13.92	1000 ml	108.00	0.0022	0.0111		
Chloroform:isoamyl (24:1 v/v)	1.0 ml	Chloroform	0.96 ml	500 g	50.62	2500 ml	100.66	0.0387	0.0972	
	1.0 %	1.0	1000 ml	30.30	2500 ml	61.70	0.0247	0.0303		
TE buffer	0.1 ml	10 mM Tris–HCl	0.12 mg	500 g	93.40	100 g	128.00	1.6E-05	2.3E-05	
	1.0 mM EDTA	0.03 mg	100 g	34.08	1000 g	245.23	7.2E-06	1.0E-05		
Extracted samples	12	–	–	–	–	–	–	–		
Extraction time	210 min	–	–	–	–	–	–	–		
Lab staff (per hour)	–	35.00	–	25.00	–	–	7.29	10.21		
Lab staff (€/extraction)	–	–	–	–	–	–	0.13	0.31		
Chemicals (€/extraction)	–	–	–	–	–	–	0.26	0.37		
Gloves, tubes, tips (€/extraction)	–	–	–	–	–	–	7.67	10.88		
Final price per extraction including extraction time, lab staff and all consumables (€)	–	–	–	–	–	–	7.67	10.88		
Table 6
Cost analysis for DNA extraction procedure E (according to Orsini and Romano-Spica [4]).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs Amount	Unit Fix cost (€)	Low costs Amount	Unit Fix cost (€)	Low cost per Prep (€)	High cost per Prep (€)
Gloves (any size)	1 pair	–	–	–	50 pair	8.20	50 pair	4.50	0.0900	0.1640
Tubes	2	–	2.0 mL	500 pieces	11.90	1000 pieces	21.90	0.0438	0.0476	
Tips	9	–	1000 µL	500 pieces	5.08	1000 pieces	7.70	0.0693	0.0914	
Tips	3	–	200 µL	500 pieces	5.40	1000 pieces	8.19	0.0246	0.0324	
Tips	0	–	10 µL	1000 pieces	27.14	2000 pieces	43.42	0.0000	0.0000	
Wash solution	1.0	mL	50 mM Tris–HCl	500 g	93.40	1000 g	128.00	0.0008	0.0011	
			25 mM EDTA	100 g	34.08	1000 g	245.23	0.0018	0.0025	
			0.1% w/v SDS	100 g	16.56	1000 g	56.48	5.6E-08	1.7E-07	
			0.1% w/v PVP	100 g	45.30	1000 g	224.00	2.2E-07	4.5E-07	
Lysis buffer	0.1	mL	50 mM Tris–HCl	500 g	93.40	1000 g	128.00	7.8E-05	1.1E-04	
			25 mM EDTA	100 g	34.08	1000 g	245.23	1.8E-04	2.5E-04	
			3% w/v SDS	100 g	16.56	1000 g	56.48	1.7E-06	5.0E-06	
			1.2% w/v PVP	100 g	45.30	1000 g	224.00	2.7E-06	5.4E-06	
Extraction buffer	0.8	mL	10 mM Tris–HCl	500 g	93.40	1000 g	128.00	0.0012	0.0018	
			1 mM EDTA	100 g	34.08	1000 g	245.23	0.0001	0.0001	
			0.3 M NaOAc	100 g	22.47	1000 g	56.30	0.0011	0.0018	
			1.2% PVP	100 g	45.30	1000 g	224.00	2.2E-06	4.3E-06	
Phenol:Chloroform	1.0	mL	Phenol	100 g	18.00	1000 g	64.40	0.0322	0.0900	
(1:1 v/v)			Chloroform	500 mL	50.62	2500 mL	100.66	0.0201	0.0506	
Sodiumacetate	0.08	mL	3 M	250 g	22.47	1000 g	56.30	0.0011	0.0018	
Isopropanol	0.9	mL	100%	1000 mL	30.30	2500 mL	61.70	0.0222	0.0273	
Ethanol	2.0	mL	70%	250 mL	47.56	2500 mL	246.58	0.1381	0.2663	
TE buffer	0.1	mL	10 mM Tris–HCl	500 g	93.40	1000 g	128.00	1.6E-05	2.3E-05	
			1.0 mM EDTA	100 g	34.08	1000 g	245.23	7.2E-06	1.0E-05	
Extracted samples	12	–	–	–	–	–	–	–	–	
Extraction time	150 min	–	–	–	–	–	–	–	–	
Lab staff (per hour)	–	35.00	–	25.00	–	–	–	–	–	
Lab staff (€/extraction)	-	5.21	7.29	0.22	0.44	0.23	0.34	5.65	8.07	
Chemicals (€/extraction)	-	0.22	0.44	0.23	0.34	5.65	8.07			
Gloves, tubes, tips (€/extraction)	-	0.22	0.44	0.23	0.34	5.65	8.07			
Final price per extraction including extraction time, lab staff and all consumables (€)	-	5.21	7.29	0.22	0.44	0.23	0.34	5.65	8.07	
Table 7
Cost analysis for DNA extraction procedure F (according to Singka et al., 2012).

Consumables	Volumes	Units	Concentration	Volumes /Weight	Amount	Unit	Fix cost (%€)	Amount	Unit	Fix cost (%€)	Low cost per Prep (%€)	High cost per Prep (%€)
Gloves (any size)	1 pair	–	–	–	50 pair	8.20	50 pair	4.50			0.900	0.1640
Tubes	4	–	1.5 ml	500 pieces	500 pieces	8.20	1000 pieces	14.90			0.0596	0.0656
Tips	12	–	1000 µl	500 pieces	500 pieces	5.08	1000 pieces	7.70			0.0924	0.1218
Tips	2	–	200 µL	500 pieces	500 pieces	5.40	1000 pieces	8.19			0.0164	0.0216
Glass beads 0.1 mm	0.5 g	–	–	500 pieces	500 pieces	15.84	1000 pieces	24.19			0.0002	0.0003
CTAB extraction buffer (1:1 v/v) 10% w/v (CTAB in NaCl) to KH$_2$PO$_4$	0.7 M NaCl	10.2 mg	100 g	1000 g	100 g	22.64	1000 g	89.11			2.2E-07	5.7E-07
	2.5 µg	–	–	500 pieces	500 pieces	24.30	250000 g	202.00			0.0404	0.1215
	0.1 mm	–	–	1000 g	250000 g	0.42	1000 g	56.66			0.0005	0.0006
	0.5 mL	–	–	1000 g	1000 g	64.40	1000 g	64.40			0.0322	0.0900
	8.2 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0005	0.0006
Phenol:Chloroform:Isoamyl (25:24:1 v/v)	–	–	–	–	–	–	–	–			–	–
Chloroform:Isoamyl (24:1 v/v)	0.5 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0007	0.0011
Sodium acetate (0.1:1 v/v)	0.05 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0007	0.0011
Isopropanol (0.6: 1 v/v)	0.3 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0007	0.0011
Ethanol	1.5 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0007	0.0011
TE buffer	0.1 mL	–	–	1000 g	1000 g	56.66	1000 g	56.66			0.0007	0.0011
Extracted samples	12	–	–	–	–	–	–	–			–	–
Extraction time	195 min	–	–	–	–	–	35.00	–	25.00	–	–	–
Lab staff (per hour)	–	–	–	–	–	–	35.00	–	25.00	–	–	–
Lab staff (%€/extraction)	–	–	–	–	–	–	35.00	–	25.00	–	–	–
Chemicals (%€/extraction)	–	–	–	–	–	–	35.00	–	25.00	–	–	–
Gloves, tubes, tips	–	–	–	–	–	–	35.00	–	25.00	–	–	–
Final price per extraction including extraction time, lab staff and all consumables (%€)	–	–	–	–	–	–	35.00	–	25.00	–	–	–
Table 8
Cost analysis for DNA extraction procedure G (according to Saxony State Method).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High Cost
	Amount	Unit	Fix cost (€)	Amount	Fix cost (€)	per Prep (€)	per Prep (€)	
Gloves (any size)	50 pair	pair	8.20	50 pair	4.50	0.0900	0.1640	
Tubes	1000 pieces	pieces	11.90	1000 pieces	8.80	0.1490	0.0575	
Tips	1000 pieces	µL	5.08	1000 pieces	7.39	0.1001	0.1320	
Tips	1000 pieces	µL	5.40	1000 pieces	8.19	0.0082	0.0108	
Extraction buffer	1000 pieces	µL	27.14	1000 pieces	43.42	0.0217	0.0271	
RNase A	100 mg	mg	22.64	1000 mg	89.11	1.18E-06	4.5E-06	
Chloroform	100 mL	mL	50.62	2500 mL	100.66	0.0302	0.0759	
Precipitation solution	100 mL	mL	50.62	2500 mL	100.66	0.0302	0.0759	
NaCl	100 g	g	89.11	1000 g	128.00	0.0016	0.0023	
Chloroform	100 mL	mL	15.84	1000 mL	24.19	0.0001	0.0001	
Isopropanol (0.6:1 v/v)	100 mL	mL	15.84	1000 mL	24.19	0.0001	0.0001	
Ethanol	100 mL	mL	24.19	1000 mL	45.58	0.0001	0.0001	
TE buffer	10 mL	mL	34.08	10 mL	54.08	0.0001	0.0001	
Extracted samples	10 mL	mL	34.08	10 mL	54.08	0.0001	0.0001	
Extraction time	175 min	min	35.00	25.00	\	6.08	8.51	
Lab staff (per hour)	35.00	\	35.00	25.00	\	6.66	9.43	

R. Kuhn et al. / Data in Brief 16 (2018) 72–75
Table 9
Cost analysis for DNA extraction procedure H (according to Tabatabaei et al. [5]).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High cost		
	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)	per Prep (€)	per Prep (€)		
Gloves (any size)	1 pair	–	–	–	–	–	–	–		
Tubes	3	–	–	50 pair	–	8.20	50 pair	4.50	0.0900	0.1640
Tips	12	–	–	500 pieces	11.90	1000 pieces	21.90	0.0657	0.0714	
Tips	1	–	–	500 pieces	5.08	1000 pieces	7.70	0.0924	0.1218	
Tips	0	–	–	1000 pieces	5.40	1000 pieces	8.19	0.0082	0.0108	
EDTA	0.4 ml	0.5 EDTA	58.4 mg	100 g	34.08	1000 g	245.23	0.0143	0.0199	
Lysis buffer	0.4 ml	10 mM Tris	0.48 mg	100 g	93.40	1000 g	128.00	0.0001	0.0001	
	1 mM EDTA	0.12 mg	100 g	34.08	1000 g	245.23	3.0E-05	4.0E-05		
	2 mg mL-1 Lysozyme	0.80 mg	10 g	23.89	1000 g	96.04	0.0077	0.0191		
SDS	0.05 ml	10% w/v	0.005 mg	100 g	16.56	1000 g	56.48	2.8E-07	8.3E-07	
Phenol:Chloroform (1:1 v/v)	0.8 ml	Phenol	0.4 g	100 g	18.00	1000 g	64.40	0.0258	0.0720	
Sodium acetate	0.08 ml	3 M	19.7 mg	250 g	22.47	1000 g	56.30	0.0011	0.0018	
Isopropanol	0.9 ml	100%	0.9 mg	1000 mL	30.30	2500 mL	61.70	0.0222	0.0273	
Ethanol	1.5 ml	70%	1.05 mg	250 mL	47.56	2500 mL	246.58	0.1036	0.1998	
TE buffer	0.1 ml	10 mM Tris–HCl	0.12 mg	100 g	34.08	1000 g	245.23	3.0E-05	4.1E-05	
	1.0 mM EDTA	0.03 mg	500 g	93.40	1000 g	128.00	3.7E-06	5.5E-06		
Extracted samples	12	–	–	–	–	–	–	–		
Extraction time	210 min	–	–	–	–	–	–	–		
Lab staff (per hour)	–	–	–	35.00	–	25.00	–	–		
Lab staff (€/extraction)	7.29	–	–	–	–	–	–	–		
Chemicals (€/extraction)	0.19	–	–	–	–	–	–	–		
Gloves, tubes, tips (€/extraction)	0.26	–	–	–	–	–	–	–		
Final price per extraction (€)	7.74	–	–	–	–	–	–	–		
Table 10
Cost analysis for DNA extraction procedure I (according to Tresse et al. [6]).

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High cost	
	Amount	Unit	Fix cost (€)		per Prep	per Prep			
Gloves (any size)	1 pair	–	–	50 pair	8.20	4.50	0.0900	0.1640	
Tubes	3 –	–	2.0 mL	500 pieces	11.90	21.90	0.0657	0.0714	
	4 –	–	1.5 mL	500 pieces	8.20	14.90	0.0596	0.0656	
Tips	14 –	–	1000 µL	500 pieces	5.08	7.70	0.1078	0.1421	
Tips	4 –	–	200 µL	500 pieces	5.40	8.19	0.0328	0.0432	
Tips	1 –	–	10 µL	1000 pieces	27.14	43.42	0.0217	0.0271	
TEN buffer	0.7 mL	100 mM Tris	8.48 mg	500 g	93.40	100 g	128.00	0.0011	0.0016
		100 mM EDTA	20.45 mg	100 g	34.08	100 g	245.23	0.0050	0.0070
		100 mM NaCl	4.09 mg	500 g	15.84	100 g	24.19	9.9E-05	1.3E-04
		5 mg mL-1	3.5 mg	1.0 g	23.89	10 g	96.04	0.0336	0.0836
SDS	0.035 mL	20% w/v	0.007 mg	100 g	16.56	100 g	56.48	4.0E-07	1.2E-06
Proteinase K	0.01 mL	20 mg mL-1	0.2 mg	100 mg	67.68	500 mg	259.62	0.1038	0.1354
Silica beads	–	ID 0.1 mm	250 mg	1000 g	24.30	25000 g	202.00	2.0E-03	0.0061
Silica beads	–	ID 0.5 mm	250 mg	1000 g	25.23	20000 g	227.18	0.0028	0.0063
Silica beads	2 beads	ID 6.0 mm	69 mg	500 g	34.20	1000 g	12.35	0.0009	0.0047
Ammoniumacetate	0.145 mL	10 M	111.8 mg	250 g	15.30	1000 g	45.29	0.0051	0.0068
RNase A	0.005 mL	1 mg mL-1	0.005 mg	250 mg	94.40	1000 mg	292.00	0.0015	0.0019
Phenol:Chloroform:Isoamyl (25:24:1 v/v)	1.5 mL	25' Phenol	0.75 g	100 g	18.00	1000 g	64.40	0.0483	0.1350
		24' Chloroform	0.72 ml	500 ml	50.62	2500 ml	100.66	0.0290	0.0729
		1' Isoamyl	0.03 ml	25 ml	13.92	1000 ml	108.00	0.0032	0.0167
Chloroform:Isoamyl (24:1 v/v)	0.7 mL	24' Chloroform	0.672 ml	500 ml	50.62	2500 ml	100.66	0.0271	0.0680
		1' Isoamyl	0.028 ml	25 ml	13.92	1000 ml	108.00	0.0030	0.0156
Sodiumacetate (1:10 v/v)	0.07 mL	3 M	17.2 mg	250 g	22.47	1000 g	56.30	0.0010	0.0015
Ethanol (2:1 v/v)	1.4 mL	98%	1.37 ml	250 ml	47.56	2500 ml	246.58	0.1353	0.2610
Ethanol	1.0 mL	70%	0.7 ml	250 ml	47.56	2500 ml	246.58	0.0690	0.1332
TE buffer	0.1 mL	10 mM Tris–HCl	0.12 mg	100 g	34.08	1000 g	245.23	3.0E-05	4.1E-05
	1.0 mM EDTA	0.03 mg	500 g	93.40	1000 g	128.00	3.7E-06	5.5E-06	
Extracted samples	12 –	–	–	–	–	–	–	–	
Extraction time	170 min	–	–	–	–	–	–	–	
Lab staff (per hour)	–	–	–	–	–	–	–	–	
Lab staff (€/extraction)	–	–	–	–	–	5.90	8.26		
Chemicals (€/extraction)	0.47	–	–	–	–	0.47	0.96		
Gloves, tubes, tips (€/extraction)	0.38	–	–	–	–	0.38	0.51		

Final price per extraction including extraction time, lab staff and all consumables (€): 6.75 9.73
Consumables	Volumes	Units	Concentration	Volumes	/Weight	High costs	Low costs	Low cost per Prep	High cost per Prep		
	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)		
Gloves (any size)	1 pair	–	–	50 pair	–	8.20	50 pair	–	4.50	0.0900	0.1640
Tubes	3	–	2.0 ml	500 pieces	11.90	1000 pieces	21.90	0.0657	0.0714		
Tips	9	–	1000 µl	500 pieces	5.08	1000 pieces	7.70	0.0693	0.0914		
Tips	4	–	200 µl	500 pieces	5.40	1000 pieces	8.19	0.0328	0.0432		
Tips	1 -	–	10 µl	1000 pieces	27.14	2000 pieces	43.42	0.0217	0.0271		
TE buffer	0.567 mL	10 mM Tris	0.09 mg	100 g	34.08	100 g	245.23	0.0002	0.0002		
	1.66 mg	–	10 mM EDTA	500 g	93.40	1000 g	128.00	0.0002	0.0003		
SDS	0.03 mL	10% w/v	0.003 mg	100 g	16.56	1000 g	56.48	7.1E-04	5.0E-07		
Proteinase K	0.003 mL	20 mg mL-1	0.06 mg	100 mg	67.68	500 mg	259.62	0.0312	0.0406		
NaCl	0.1 mL	5 M	29.22 mg	500 g	15.84	1000 g	24.19	7.1E-04	9.3E-04		
CTAB/NaCl	0.08 mL	0.7 M NaCl	3.3 mg	500 g	15.84	1000 g	24.19	0.0001	0.1037		
Chloroform:isoamy	1.0 mL	24° Chloroform	0.96 mL	500 mL	50.62	2500 mL	100.66	0.0387	0.0972		
(24:1 v/v)	1° Isomyl	0.04 mL	25 mL	13.92	1000 mL	108.00	0.0043	0.0223			
Phenol:Chloroform:isoamy	0.9 mL	25° Phenol	0.45 g	100 g	18.00	1000 g	64.40	0.0290	0.0810		
(25:24:1 v/v)	24° Chloroform	0.432 mg	500 mL	50.62	2500 mL	100.66	0.0174	0.0437			
Isopropanol (0.6: 1 v/v)	0.3 mL	100%	0.3 mL	1000 mL	30.30	2500 mL	61.70	0.0074	0.0091		
Ethanol	0.5 mL	70%	0.35 mg	250 mL	47.56	2500 mL	246.58	0.0345	0.0666		
TE buffer	0.1 mL	10 mM Tris-HCl	0.12 mg	100 g	34.08	1000 g	245.23	3.0E-05	4.1E-05		
Extracted samples	12	–	–	500 g	93.40	1000 g	128.00	3.7E-06	5.5E-06		
Extraction time	105 min	–	–	–	35.00	–	25.00	–	–		
Lab staff (per hour)	–	–	–	–	–	–	–	–	–		
Lab staff (€/extraction)	–	–	–	–	–	–	–	–	–		
Chemicals (€/extraction)	–	–	–	–	–	–	–	–	–		
Gloves, tubes, tips	(€/extraction)	–	–	–	–	–	–	–	–		

Final price per extraction including extraction time, lab staff and all consumables (€) 4.09 5.98
Table 12
Cost analysis for FastDNA SPIN Kit for Soil.

Consumables	Volumes	Units	Concentration	Volumes /Weight	High costs	Low costs	Low cost	High cost	
	Amount	Unit	Fix cost (€)	Amount	Unit	Fix cost (€)	per Prep	per Prep	
	per Prep			per Prep			(€)	(€)	
Gloves (any size)	1	pair	–	50	pair	8.20	4.50	0.090	0.164
Tips	12	1000	µl	500	pieces	5.08	7.70	0.092	0.122
Tips	4	200	µL	500	pieces	5.40	8.19	0.033	0.043
Tips	1	10	µl	1000	pieces	27.14	43.42	0.022	0.027
Test Kit	12	–	–	50	extractions	390.00	820.00	8.20	7.80
Extracted samples	–	–	–	–	–	–	–	–	
Extraction time	45	min	–	–	–	–	–	–	
Lab staff (per hour)	35.00	–	–	25.00	–	1.56	2.19		
Lab staff (€/extraction)	1.56	–	–	–	–	8.20	7.80		
Chemicals (€/extraction)	0.24	–	–	–	–	0.24	0.36		
Final price per extraction including extraction time, lab staff and all consumables	10.00	–	–	–	–	10.34			
Table 13
Cost analysis for DNeasy power water kit.

Consumables	Volumes	Units	Concentration	Volumes /Weight	Amount	High costs	Low costs	Low cost	High cost
						Unit Fix cost (€)	Amount (€)	per Prep (€)	per Prep (€)
Gloves (any size)	1	pair	–	–	50	pair 8.20	50 pair 4.50	0.090	0.164
Tips	12	1000	µl	500	pieces 5.08	1000 pieces 7.00	0.092	0.122	
Tips	4	200	µL	500	pieces 5.40	1000 pieces 8.19	0.033	0.043	
Tips	1	10	µl	1000	pieces 27.14	2000 pieces 43.42	0.022	0.027	
Test Kit	-	-	-	-	-	-	-	-	-
Extracted samples	12	-	-	-	-	-	-	-	-
Extraction time	40	min	-	-	-	-	-	-	-
Lab staff (per hour)	-	-	-	-	-	-	-	-	-
Lab staff (€/extraction)	-	-	-	-	-	-	-	-	-
Chemicals (€/extraction)	-	-	-	-	-	-	-	-	-
Gloves, tubes, tips (€/extraction)	-	-	-	-	-	-	-	-	-
Final price per extraction including extraction time, lab staff and all consumables (€)	-	-	-	-	-	-	12.25	13.47	-

R. Kuhn et al. / Data in Brief 16 (2018) 732–751
Transparency document. Supporting information

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2017.11.082.

References

[1] R. Kuhn, J. Böllmann, K. Krahl, I.M. Bryant, M. Martienssen, Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples, J. Microbiol. Methods 143 (2017) 78–86. http://dx.doi.org/10.1016/j.mimet2017.10.007.

[2] M.E. Gabor, E.J. de Vries, D.B. Janssen, Efficient recovery of environmental DNA for expression cloning by indirect extraction methods, FEMS Microbiol. Ecol. 44 (2003) 153–163. http://dx.doi.org/10.1016/S0168-6496(02)00462-2.

[3] G. Shan, W. Jin, E.K. Lam, X. Xing, Purification of total DNA extracted from activated sludge, J. Environ. Sci. 20 (2008) 80–87. http://dx.doi.org/10.1016/S1001-0742(08)60012-1.

[4] M. Orsini, V. Romano-Spica, A microwave-based method for nucleic acid isolation from environmental samples, Lett. Appl. Microbiol. 33 (2001) 17–20. http://dx.doi.org/10.1046/j.1472-765X.2001.00938.x.

[5] M. Tabatabaei, M.R. Zakaria, R.A. Rahim, N. Abdullah, D.G. Wright, Y. Shirai, M. Shamsara, K. Sakai, M.A. Hassan, Comparative study of methods for extraction and purification of environmental DNA from high-strength wastewater sludge, Afr. J. Biotechnol. 9 (2010) 4926–4937. http://dx.doi.org/10.5897/AJB10.281.

[6] O. Tresse, M.J. Lorrain, D. Roh, Population dynamics of free-floating and attached bacteria in a styrene-degrading bio-trickling filter analyzed by denaturing gradient gel electrophoresis, Appl. Microbiol. Biot. 59 (2002) 585–590. http://dx.doi.org/10.1007/s00253-002-1039-z.

[7] K. Wilson, Preparation of genomic DNA from bacteria, Curr. Proced. Mol. Biol. (2001). http://dx.doi.org/10.1002/0471142727.mb0204s56 00:1:2.4:2.4.1–2.4.5.