Uniform convexity in L^p Mabuchi geometry, the space of rays, and geodesic stability

Tamás Darvas and Chinh H. Lu

Abstract

The main purpose of this paper is to explore the metric geometry of L^p Mabuchi geodesic rays associated to a Kähler manifold (X, ω), and to provide applications to stability and existence of canonical metrics. First we show that the L^p Mabuchi metric spaces are uniformly convex for $p > 1$, immediately implying that these spaces are uniquely geodesic. Using these findings we show that \mathcal{R}_p^ω, the space of L^p geodesic rays emanating from a fixed Kähler potential, admits a chordal metric, making it a complete geodesic metric space for any $p \geq 1$. We also show that the radial K-energy is convex along the chordal geodesic segments of \mathcal{R}_p^ω. Using the relative Kolodziej type estimate for complex Monge–Ampère equations, and new scaled Laplacian estimates for geodesic segments, we point out that L^p geodesic rays can be approximated by rays of $C^{1,1}$ potentials, with converging radial K-energy. Finally, we use these results to verify (the uniform version of) Donaldson’s geodesic stability conjecture for rays of $C^{1,1}$ potentials.

1 Introduction

Suppose (X, ω) is a compact Kähler manifold with $\dim X = n$. We consider \mathcal{H}, the space of Kähler metrics cohomologous to ω, with its L^p type Mabuchi metric structures (\mathcal{H}, d_p), $p \geq 1$ [31]. For simplicity, to describe our motivation, let us momentarily assume that X has no non-trivial holomorphic vector fields. In the recent breakthrough papers [23, 24, 25] Chen–Cheng provided the first existence theorems of constant scalar curvature Kähler (csck) metrics inside the class \mathcal{H}. Such metrics are minimizers of Mabuchi’s K-energy functional $\mathcal{K} : \mathcal{H} \rightarrow \mathbb{R}$ [65]. Together with [8], the Chen–Cheng results provided a full characterization of existence of csck metrics in terms of d_1-properness of \mathcal{K}. As d_1-properness is actually equivalent with properness in terms of Aubin’s J-functional [31], this also verified an old conjecture of Tian [75], [77, Conjecture 7.12], with the precise statement appearing in [42, Conjecture 2.8].

Energy properness is the strongest form of stability. Contrasting this is uniform K-stability, one of the weakest such conditions. This criterion was first considered by Székelyhidi [72], and was further studied by Dervan, Berman–Boucksom–Jonsson, Boucksom–Hisamoto–Jonsson [45, 5, 16, 17] and many others. The ultimate hope is that (uniform) K-stability is weak enough to be verified using computational techniques of algebraic geometry, this being the main motivation behind the Yau–Tian–Donaldson (YTD) conjecture, seeking to show that some form of K-stability is equivalent with existence of csck metrics.

This paper focuses on Donaldson’s geodesic stability conjecture [49], meant to close the gap between energy properness and uniform K-stability. The uniform version of this
conjecture (see Conjecture 1.7 below) predicts that it is enough to check properness of the K-energy along the geodesic rays of \mathcal{H} to insure existence of csk metrics. Initially, the predictions of Donaldson advocated for the use of smooth geodesic rays [49]. As we know now, the typical regularity of geodesic segments is merely $C^{1,1}$ [22, 10, 40, 28], even when connecting smooth endpoints. Hence the present expectation is that (in its optimal form) Donaldson’s geodesic stability conjecture should hold for rays that have at most two bounded derivatives.

In this work we verify the uniform $C^{1,1}$ geodesic stability conjecture: it is enough to test energy properness along geodesic rays running inside the space of $C^{1,1}$ potentials to insure existence of csk metrics. In addition to obtaining an essentially optimal result, this theorem also makes progress on the variational program designed to attack the uniform YTD conjecture (see [12, 25]). Roughly speaking, to verify the uniform YTD conjecture, one needs to show the same result for $C^{1,1}$ geodesic rays that are induced by the so called test configurations of algebraic geometry [76, 50].

To carry out the above, we first explore in depth the metric geometry of L^p geodesic rays (i.e. rays running inside the d_p-completions of \mathcal{H}), a topic of independent interest. To do this, perhaps surprisingly, we need to first understand uniform convexity of the L^p Mabuchi geometry when $p > 1$, extending work of Calabi–Chen in the particular case $p = 2$ [21]. After exploring the metric space of L^p geodesic rays, we show that such rays can always be approximated via rays of $C^{1,1}$ potentials, with converging radial K-energy. With slightly different formulation, the uniform L^1 geodesic stability conjecture was verified in [24, 25], pointing out that it is enough to test energy properness along L^1 geodesic rays to guarantee existence of csk metrics. This result, together with our approximation theorems just mentioned will yield the geodesic stability theorem for rays of $C^{1,1}$ potentials, i.e., potentials with bounded complex Hessian.

In addition to the above, our results resolve a number of related open questions in Kähler geometry, specified in the paragraphs below.

Uniform convexity and uniqueness of geodesic segments. By \mathcal{H}_ω we denote the space of Kähler potentials associated to \mathcal{H}. The metric completions of $(\mathcal{H}_\omega, d_p)$ are $(\mathcal{E}_\omega^p, d_p)$, and the latter spaces are complete geodesic metric spaces for any $p \geq 1$ [31]. The distinguished d_p-geodesics running between the points of \mathcal{E}_ω^p are called L^p finite energy geodesics (or simply finite energy geodesics, or L^p geodesics, if no confusion arises). These curves arise as limits of solutions to degenerate equations of complex Monge–Ampère type. We recall the basic properties of these spaces in Section 2.1.

For any $p \in [1, \infty)$ it was shown in [25, Theorem 1.5] that the metrics d_p are “convex”: if $[0, 1] \ni t \to u_t, v_t \in \mathcal{E}^p$ are two finite energy geodesic segments then

$$d_p(u_\lambda, v_\lambda) \leq (1 - \lambda)d_p(u_0, v_0) + \lambda d_p(u_1, v_1), \quad \lambda \in [0, 1].$$

(1)

This property is called Buseman convexity in the metric geometry literature [56, Section 2.2], going back to [19]. In the particular case $p = 1$, (1) was established in [7, Proposition 5.1], having applications to the convergence of the weak Calabi flow. In case $p = 2$, (1) follows from the fact that $(\mathcal{E}_\omega^2, d_2)$ is a complete CAT(0) metric space, as shown in [32, Theorem 1], building on estimates of [21, Theorem 1.1].

The CAT(0) property consists of the following estimate: if $u \in \mathcal{E}_\omega^2$ and $[0, 1] \ni t \to v_t \in \mathcal{E}_\omega^2$ is a finite energy geodesic segment then

$$d_2(u, v_\lambda)^2 \leq (1 - \lambda)d_2(u, v_0)^2 + \lambda d_2(u, v_1)^2 - \lambda(1 - \lambda)d_2(v_0, v_1)^2, \quad \lambda \in [0, 1].$$

(2)
As is well known, (2) implies (1) [56, Prop 2.3.2]. Unfortunately, there is very strong evidence that (2) cannot hold for the \(d_p \) metrics when \(p \neq 2 \). Indeed, when restricting to a toric Kähler manifold and toric Kähler metrics, the spaces \((\mathcal{E}_p^\omega, d_p) \) are isometric to the flat \(L^p \) metric spaces of convex functions defined on a convex polytope of \(\mathbb{R}^n \) [47, Section 6]. It is well known however that CAT(0) Banach spaces are in fact Hilbert spaces [20], evidencing that only \((\mathcal{E}^2, d_2) \) can be CAT(0).

Despite this, in the first main result of this paper we show that adequate generalizations of the CAT(0) inequality (2) do hold for the \(d_p \) metrics, in case \(p > 1 \). These can be viewed as the Kähler analogs of classical inequalities of Clarkson and Ball–Carlen–Lieb, regarding the uniform convexity of \(L^p \) spaces [29, 2]. Consequently, the metric spaces \((\mathcal{E}_p^\omega, d_p) \) are uniformly convex for \(p > 1 \), giving them extra structure that will be explored in the latter parts of the paper:

Theorem 1.1. Let \(p \in (1, \infty) \). Suppose that \(u \in \mathcal{E}_p^\omega, \lambda \in [0,1] \) and \([0,1] \ni t \to v_t \in \mathcal{E}_p^\omega\) is a finite energy geodesic segment. Then the following hold:

\[
\begin{align*}
(i) \quad & d_p(u, v_t)^2 \leq (1 - \lambda)d_p(u, v_0)^2 + \lambda d_p(u, v_1)^2 - (p - 1)\lambda(1 - \lambda)d_p(v_0, v_1)^2, \quad \text{if } 1 < p \leq 2. \\
(ii) \quad & d_p(u, v_\lambda)^p \leq (1 - \lambda)d_p(u, v_0)^p + \lambda d_p(u, v_1)^p - \lambda^p(1 - \lambda)^2d_p(v_0, v_1)^p, \quad \text{if } 2 \leq p.
\end{align*}
\]

In the particular case \(p = 2 \) this result recovers the inequalities of Calabi–Chen [21], however our proof of Theorem 1.1 is very different from the argument in [21], as the differentiation of \(d_p \) metrics is problematic for \(p \neq 2 \).

It was pointed out in the comments following [31, Theorem 4.17] that \(d_1 \)-geodesic segments connecting the different points of \((\mathcal{E}_1^\omega, d_1) \) are not unique. However, as a consequence of the above result it follows that uniqueness of \(d_p \)-geodesic segments does hold in case \(p > 1 \):

Theorem 1.2. Let \(p \in (1, \infty) \), and suppose that \([0,1] \ni t \to v_t \in \mathcal{E}_p^\omega\) is the \(L^p \) finite energy geodesic connecting \(v_0, v_1 \in \mathcal{E}_p^\omega \). Then \(t \to v_t \) is the only \(d_p \)-geodesic connecting \(v_0, v_1 \), i.e., \((\mathcal{E}_p^\omega, d_p) \) is a uniquely geodesic metric space.

The metric geometry of geodesic rays. Next we explore the metric geometry of \(\mathcal{R}_u^p \), the space of finite energy \(L^p \) geodesic rays emanating from a fixed potential \(u \in \mathcal{E}_u^\omega \). As a convention, given \(p \in [1, \infty) \), a finite energy geodesic ray \([0, \infty) \ni t \to u_t \in \mathcal{E}_u^\omega \) with \(u_0 = u \) will be simply denoted by \(\{u_t\}_t \in \mathcal{R}_u^p \).

In accordance with the metric space literature, two \(d_p \)-rays \([0, \infty) \ni t \to u_t, v_t \in \mathcal{E}_u^\omega \) are parallel/asymptotic if \(d_p(u_t, v_t) \) is uniformly bounded for \(t \geq 0 \) [20, Chapter II.8]. To start, we point out in Proposition 4.1 that for any \(v \in \mathcal{E}_u^\omega \) and \(\{u_t\}_t \in \mathcal{R}_u^p \) it is possible to find a unique \(\{v_t\}_t \in \mathcal{R}_v^p \) such that \(\{u_t\}_t \) and \(\{v_t\}_t \) are parallel. Consequently, the \(d_p \)-geometries verify Euclid’s 5th postulate for half-lines, answering an open question of Chen–Cheng [25, Remark 1.6], who proved this for \(p = 1 \) under restrictive conditions on the slope of the K-energy along \(\{u_t\}_t \). Thus, we can introduce a natural parallelism operator \(\mathcal{P}_{uv} : \mathcal{R}_u^p \to \mathcal{R}_v^p \) for any \(u, v \in \mathcal{E}_u^\omega \). Moreover it is possible to introduce natural metric structures on \(\mathcal{R}_u^p \) and \(\mathcal{R}_v^p \) making this map an isometry:

Theorem 1.3. Let \(p \in [1, \infty) \). For any \(u \in \mathcal{E}_u^\omega \), \((\mathcal{R}_u^p, d^p_{u,p}) \) is a complete metric space. For any \(v \in \mathcal{E}_v^\omega \) the parallelism operator \(\mathcal{P}_{uv} : (\mathcal{R}_u^p, d^p_{u,p}) \to (\mathcal{R}_v^p, d^p_{v,p}) \) is an isometry.

In this result, the \(d^p_{u,p} \) metric is called the chordal \(L^p \) metric between two rays, defined by the following expression:

\[
d^p_{u,p}(\{u_t\}_t, \{v_t\}_t) := \lim_{t \to \infty} \frac{d_p(u_t, v_t)}{t}, \quad \{u_t\}_t \in \mathcal{R}_u^p, \quad \{v_t\}_t \in \mathcal{R}_v^p.
\]
That this limit exists and is finite follows from (1). Though not necessarily treated as a metric in other works, [25, Corollary 5.6], [12, Formula 1.2] also consider the expression on the right hand side of (3), in the slightly restrictive case of unit speed geodesic rays, and non-Archimedean metrics respectively (see also [8, Lemma 3.1]). Moreover, one would think that the metrics of the graded filtrations defined in [18, Section 3] should be related to the above concept as well.

It was pointed out recently that \(L^1\) Mabuchi geometry can be defined for big classes as well [36]. Using this, it is possible to introduce the metric space of weak \(L^1\) rays in the big context (see [38] where we embed singularity types into the space of \(L^1\) rays).

By the last part of the above theorem, there is no new information gained by considering different starting points for rays, hence it makes sense to restrict attention to the space \((\mathcal{R}_p, d^c_p)\), representing the space of rays emanating from \(0 \in \mathcal{H}_\omega\). The above theorem points out that \(d^c_p\) thus defined gives a complete metric on the space of all \(L^p\) rays emanating from a fixed starting point, that includes the constant ray. In our next main result we point out that the resulting metric spaces have rich geometry:

Theorem 1.4. \((\mathcal{R}_p, d^c_p)\) is a geodesic metric space for any \(p \in [1, \infty)\). Additionally, the radial K-energy is convex along \(d^c_p\)-geodesic segments.

The radial K-energy is defined for any \(\{u_t\}_t \in \mathcal{R}_p\), and is given by the expression

\[
\mathcal{K}\{u_t\} := \lim_{t \to \infty} \frac{\mathcal{K}(u_t)}{t},
\]

where \(\mathcal{K} : \mathcal{E}_p \to (-\infty, \infty]\) is the extended K-energy of Mabuchi from [4, 7]. The radial K-energy is \(d^c_p\)-lsc, possibly equal to \(\infty\), and in the setting of unit speed geodesics, its definition agrees with the \(\mathcal{Y}\) invariant of [25]. Also, there is clear parallel with the non-Archimedean K-energy (see [12] and references therein).

This theorem represents the radial version of [31, Theorem 2] and [7, Theorem 1.2] (building on [3]). In slight contrast with previous speculations in the literature (see for example [17] or [25, Definition 1.8]) it seems more natural to consider the space of all \(d_p\)-rays, not just the ones that have \(d_p\)-unit speed. Allowing for a bigger class of rays makes possible the construction of \(d^c_p\)-geodesic segments running between any two points of \(\mathcal{R}_p\), with good convexity properties. Moreover, the convexity of the radial K-energy on \(\mathcal{R}_p\) could potentially be used to set up the study of optimal degenerations as a convex optimization problem (see [46]).

The \(d^c_p\)-geodesic segments constructed in the proof of the above theorem are called \(d^c_p\)-chords, as they are reminiscent of the classical chords in the chordal geometry of the unit sphere of \(\mathbb{R}^n\) (at least when restricting to \(d_p\)-unit speed rays). In case \(p > 1\), due to uniform convexity (Theorem 1.1), we will construct the \(d^c_p\)-chords directly. In case \(p = 1\), in the absence of uniform convexity, the construction of \(d^1_c\)-chords is done using an approximation procedure, via our next main theorem.

We have \(\mathcal{R}_p \subset \mathcal{R}_p'\) for any \(p' \leq p\). More importantly, by the proof of Theorem 1.4, \(d^c_p\)-chords are automatically \(d^c_{p'}\)-chords as well, giving further evidence that it is more advantageous to consider the space of all rays, not just the ones with \(d_p\)-unit speed. This latter fact again represents the radial version of a well known phenomenon for the family of metric spaces \((\mathcal{E}_p, d_p), p \geq 1\), according to which geodesics are “shared” when comparing different classes. Though the space of \(d_p\)-unit speed rays seems to exhibit a metric structure reminiscent of the Tits geometry attached to CAT(0) spaces [20], none of the above properties hold for these structures.
Next we turn to approximation. The collection of geodesic rays \(\{u_t\}_t \in \mathcal{R}_\omega^p \) with \(u_t \in L^\infty, \ t \geq 0 \) will be denoted by \(\mathcal{R}_\omega^\infty \), and will be referred to as the set of \emph{geodesic rays with bounded potentials}. In addition to having bounded potentials, the rays of \(\mathcal{R}_\omega^\infty \) are actually \(t \)-Lipschitz, and they solve the geodesic equation of \(L^p \) Mabuchi geometry in the weak Bedford–Taylor sense, as opposed to the rays of \(\mathcal{R}_\omega^p, \ p \in [1, \infty) \), that are only limits of solutions to such equations (See Section 2.1). By \(\mathcal{H}_\omega^{1,1} \) we will denote the set of potentials in \(\text{PSH}(X, \omega) \) whose Laplacian (or whose complex Hessian) is bounded. Analogously, the collection of geodesic rays \(\{u_t\}_t \in \mathcal{R}_\omega^1 \) with \(u_t \in \mathcal{H}_\omega^{1,1}, \ t \geq 0 \) will be denoted by \(\mathcal{R}_\omega^{1,1} \), and will be referred to as the set of \emph{geodesic rays with \(C^{1,1} \) potentials}. The space \(\mathcal{R}_\omega^{1,1} \) is defined similarly.

The next result points out that \(\mathcal{R}_\omega^\infty \) is \(d^c_p \)-dense in \(\mathcal{R}_\omega^p \) for any \(p \in [1, \infty) \). Also, we show that \(\mathcal{R}_\omega^{1,1} \) dense among rays with finite radial K-energy. In both cases one can approximate with converging radial K-energy:

Theorem 1.5. Let \(\{u_t\}_t \in \mathcal{R}_\omega^p \) with \(p \in [1, \infty) \). The following hold:

(i) There exists a sequence \(\{u'_t\}_t \in \mathcal{R}_\omega^\infty \) such that \(u'_t \searrow u_t, \ t \geq 0, \ d^c_p(\{u'_t\}_t, \{u_t\}_t) \to 0 \) and \(\mathcal{K}\{u'_t\} \to \mathcal{K}\{u_t\} \).

(ii) If \(\mathcal{K}\{u_t\} < \infty \), then there exists a sequence \(\{v'_t\}_t \in \mathcal{R}_\omega^{1,1} \) such that \(v'_t \searrow u_t, \ t \geq 0, \ d^c_p(\{v'_t\}_t, \{u_t\}_t) \to 0 \) and \(\mathcal{K}\{v'_t\} \to \mathcal{K}\{u_t\} \).

This theorem can be seen as a radial analog of [7, Theorem 1.3], and makes progress on the variational program designed to attack the uniform Yau–Tian–Donaldson conjecture (see step (4) in [12, p. 2], c.f. [18, Conjecture 2.5]). It remains to be seen if the condition \(\mathcal{K}\{u_t\} < \infty \) can be omitted in (ii).

As a first step, in the proof of Theorem 4.5 we show that one can approximate by bounded geodesic rays with possibly diverging radial K-energy. The argument uses [69], and this is already an original result that will suffice in case \(\mathcal{K}\{u_t\} = +\infty \), due to the fact that \(\mathcal{K}\{\cdot\} \) is \(d^c_p \)-lsc. However to obtain (i) a much more delicate construction will be needed in case \(\mathcal{K}\{u_t\} \) is finite, building on the relative Kolodziej type estimate of [37]. To obtain (ii) we will need novel \(C^{1,1} \) estimates along geodesic segments that are”scalable” along rays. These will be obtained using the framework of [57] and [54].

Applications to uniform geodesic stability. We point out applications to characterization of existence of constant scalar curvature Kähler (csck) metrics in terms of geodesic stability. This goes back to Donaldson’s related conjectures in [49].

To start, we say that \((X, \omega) \) is \emph{geodesically \(L^p/C^{1,1} \)-semistable} if for any \(\{u_t\}_t \in \mathcal{R}_\omega^p/\mathcal{R}_\omega^{1,1} \) we have that \(\mathcal{K}\{u_t\} \geq 0 \) for \(p \in [1, \infty] \). Regarding the relevance of semistability for the csck continuity method, we refer to [25]. As an immediate consequence of Theorem 1.5 we obtain the following:

Theorem 1.6. \((X, \omega) \) is \emph{geodesically \(L^1 \)-semistable if and only if it is geodesically \(C^{1,1} \)-semistable.}
Moreover, one can analogously define the space of normalized rays $\mathcal{R}^p/\mathcal{R}^{1,1}/\mathcal{R}^{1,1}$, $p \in [1, \infty]$, where we restrict to rays $\{u_t\}_t \in \mathcal{R}^p/\mathcal{R}^{1,1}/\mathcal{R}^{1,1}$ with $I(u_t) = 0$, $t \geq 0$.

By showing that minimizers of the K-energy on \mathcal{E}_{ω}^1 are actually smooth csck potentials [24, Theorem 1.5], Chen–Cheng have verified the last remaining condition of the existence/properness principle of [42], applied to the case of csck metrics. Together with the necessity result ([8, Theorem 1.5]) their theorem showed that existence of csck metrics in \mathcal{H} is equivalent with properness of \mathcal{K} in the following sense:

$$\mathcal{K}(u) \geq \delta d_{1,G}(G0, Gu) - \gamma, \quad u \in \mathcal{E}_{\omega}^1, \quad (4)$$

for some $\delta, \gamma > 0$.

Clearly, $d_{1,G}(Gv_0, Gv_1) \leq d_1(v_0, v_1)$, $v_0, v_1 \in \mathcal{E}_{\omega}^1$, and we say that $\{u_t\}_t \in \mathcal{R}^1$ is G-calibrated if the curve $t \to Gu_t$ is a $d_{1,G}$-geodesic with the same speed as $\{u_t\}_t$, i.e.,

$$d_{1,G}(Gu_0, Gu_t) = d_1(u_0, u_t), \quad t \geq 0.$$

Geometrically, $\{u_t\}_t$ is G-calibrated if it cuts each G-orbit inside \mathcal{E}_{ω}^1 “perpendicularly”. In case $G = \{Id\}$, every non-constant ray is G-calibrated.

Building on these concepts, it is natural to state the $L^p/C^{1,1}$ uniform analog to Donaldson’s geodesic stability conjecture, with the original formulation in [49] more closely related to the language of “polystability”:

Conjecture 1.7 ($L^p/C^{1,1}$ uniform geodesic stability). Let (X, ω) be a compact Kähler manifold. Then the following are equivalent:

(i) There exists a csck metric in \mathcal{H}.

(ii) There exists $\delta > 0$ such that $\mathcal{K}\{u_t\} \geq \delta \limsup_t d_{1,G}(G0, Gu_t)$ for all geodesic rays $\{u_t\}_t \in \mathcal{R}^p$ ($\{u_t\}_t \in \mathcal{R}^{1,1}$).

(iii) \mathcal{K} is G-invariant and there exists $\delta > 0$ such that for all G-calibrated geodesic rays $\{u_t\}_t \in \mathcal{R}^p$ ($\{u_t\}_t \in \mathcal{R}^{1,1}$) we have that $\mathcal{K}\{u_t\} \geq \delta d_1(0, u_1)$.

To clarify, in the above statement we allow $p \in [1, \infty]$. The statement of (ii) clearly points out that uniform geodesic stability is simply the condition that tests energy properness (expressed in (4)) along a class of geodesic rays. As explained in [33, Theorem 4.7] (see also [12]), the L^1 version of the above conjecture automatically holds, as it is equivalent with (4).

As the notion of G-calibrated rays has an obvious analog in case of the space of finite dimensional rays as well (within the context of Kähler quantization), we included this condition here to perhaps facilitate in the future an alternative definition for uniform K-stability in the presence of vector fields.

As explained in [42, Proposition 5.5], in the above conjecture the d_1 distance is interchangeable with Aubin’s J functional. Lastly, given that rays induced by 1-parameter actions of G are never G-calibrated, the condition that \mathcal{K} is G-invariant (equivalent to vanishing Futaki invariant [55]) is necessary in the statement of (iii).

Using our above theorems, we prove in Theorem 6.2 and Theorem 6.3 that the $C^{1,1}$ and L^1 version of the uniform geodesic stability conjecture are equivalent. As alluded to previously, the breakthrough of Chen–Cheng [24, 25] together with [33, Theorem 4.7] essentially yielded the L^1 version of this conjecture (see Theorem 6.1 below, that is slightly different from the formulation of [25, Theorem 1.1]). Putting all this together we arrive at our last main result, obtaining an almost optimal version of Conjecture 1.7:
Theorem 1.8 \((C^{1,1}\) uniform geodesic stability). Let \((X,\omega)\) be a compact Kähler manifold. Then the following are equivalent:

(i) There exists a csck metric in \(\mathcal{H}\).

(ii) There exists \(\delta > 0\) such that \(\mathcal{K}\{u_t\} \geq \delta \limsup_t \frac{d_t c_t(G_0,Gu_t)}{t}\) for all \(\{u_t\}_t \in \mathcal{R}^{1,1}\).

(iii) \(\mathcal{K}\) is \(G\)-invariant and there exists \(\delta > 0\) s.t. \(\mathcal{K}\{u_t\} \geq \delta d_1(0,u_1)\) for all \(G\)-calibrated geodesic rays \(\{u_t\}_t \in \mathcal{R}^{1,1}\).

Clearly, given the obvious inclusions among classes or geodesic rays, the \(L^p\) versions of Conjecture 1.7 follow. Though slightly different in formulation, the \(L^\infty\) version of this result essentially confirms the equivalences between the conditions (3), (4) and (5) in [25, Question 1.12] (see also the closely related questions of [24, Remark 1.3]). In case \(G = \{Id\}\), the statement of the theorem can be made especially simple:

Theorem 1.9. Let \((X,\omega)\) be a compact Kähler manifold without non-trivial holomorphic vector fields. Then the following are equivalent:

(i) There exists a csck metric in \(\mathcal{H}\).

(ii) There exists \(\delta > 0\) such that \(\mathcal{K}\{u_t\} \geq \delta d_1(0,u_1)\) for all \(\{u_t\}_t \in \mathcal{R}^{1,1}\).

It remains to be seen if in the above stability results one can use rays that have potentials with fully bounded Hessian, not just bounded complex Hessian. Even if possible, this would require substantial amount of new work. Further optimizations are extremely unlikely, given that the typical regularity of geodesics breaks down beyond \(C^2\) estimates. One would think that generalizations to the context of extremal and conical type csck metrics should be possible, using our results together with [58, 80].

Connections with the literature. Uniform convexity of metric spaces is an active area of research (see [67, 59, 63, 66] and references therein). In particular, by [63, Proposition 2.5] the inequalities of Theorem 1.1 are essentially optimal.

The notion of K-stability goes back to work of Tian [76], with generalizations and precisions made along the way by S. Donaldson [50], Li–Xu [64], G. Székelyhidi [72] and many others. Though the precise form of K-stability is still not fully clarified for general Kähler manifolds [1], at least in the absence of non-trivial holomorphic vector fields, it is widely expected that uniform K-stability will be equivalent with existence of csck metrics (see [25, Question 1.12], [12, Conjecture 4.9]). Informally, uniform K-stability simply says that Conjecture 1.7 holds for \(C^{1,1}\) rays that are induced by the so called test configurations of \((X,\omega)\).

Closing the gap between \(L^1\) uniform geodesic stability and uniform K-stability is the last remaining step in the variational program designed to attack the uniform YTD conjecture (see [12, p.2]), with our Theorem 1.8 representing an intermediate step. To facilitate further progress in this direction, based on the findings of Theorem 1.4, one possible approach would be to develop the radial analog of the Kähler quantization scheme, recently extended to the \(d_p\)-metric completions in [41] (building on prior work by Berndtsson [9], Chen–Sun [27], Donaldson [50, 51], Phong–Sturm [68], Song–Zelditch [71], Tian [74] and others). Indeed, in case the Kähler structure \((X,\omega)\) is induced by an ample Hermitian line bundle \((L,h)\), it is pointed out in [15, 18, 12] that \(\mathcal{R}_k\), the space of finite dimensional geodesic rays associated to the space of Hermitian metrics \(\mathcal{H}_k(X)\) on \(H^0(X,L^k)\) admits a natural metric \(d^p_{k,k}\), likely representing the finite dimensional analog of our \(d^p\) metrics. If one could show in the spirit of [41, Theorem 1.1] that the metric
spaces \((R^k_ω, d^k_ω)\) approximate \((R^p_ω, d^p_ω)\) (or relevant parts of it) in the large \(k\)-limit, then that would open the door for a version of Theorem 1.5, where the rays from \(R^∞_ω\) are replaced by \(C^{1,1}\) rays induced by test configurations. Even if successful, it is not clear how convergence of radial K-energy can be achieved (see [18, Conjecture 2.5]), and for the many difficulties that need to be overcome in this approach we refer to the comments following [12, Conjecture 4.9].

Further connections with geodesic rays are explored in [38], related to the metric geometry of the space of singularity types, and complex Monge–Ampère equations with prescribed singularity.

Organization of the paper. In Section 2 we recall basic facts about the \(L^p\) Mabuchi geometry of the space of Kähler metrics, the relative Kolodziej type estimate of [37], and we prove weighted versions of the classical inequalities of Clarkson and Ball–Carlen–Lieb that will be needed later. In Section 3 we prove Theorems 1.1 and 1.2 regarding uniform convexity, and uniqueness of geodesics in \(L^p\) Mabuchi geometry when \(p > 1\). In Section 4 we study the chordal \(L^p\) metric structures on the space of geodesic rays and prove Theorem 1.4. In Section 5 we prove Theorem 1.5, our main approximation result, and in Section 6 we show that the \(C^{1,1}\) version of the uniform geodesic stability conjecture holds.

Acknowledgements. We would like to thank Martin Kell and Alexander Lytchak for enlightening discussions on various notions of convexity in metric spaces. We also thank László Lempert for his suggestions that improved the presentation of the paper. This work was partially supported by NSF grant 1610202.

2 Preliminaries

2.1 The \(L^p\) Finsler geometry of the space of Kähler potentials

In this short section we recall the basics of finite energy pluripotential theory, as introduced by Guedj-Zeriahi [53], and the Finsler geometry of the space of Kähler potentials, as introduced by the first author [31]. For a detailed account on these matters we refer to the recent textbook [54] and lecture notes [33].

As a matter of convention for the duration of the paper we denote by \(V\) the total volume of the Kähler class \([ω]\):

\[
V := \int_X ω^n.
\]

By \(PSH(X, ω)\) we denote the space of \(ω\)-plurisubharmonic (\(ω\)-psh) functions. Extending the ideas of Bedford–Taylor, Guedj–Zeriahi introduced the non-pluripolar Monge–Ampère mass for a general potential \(u \in PSH(X, ω)\) as the following limit [53]:

\[
ω^n_u := \lim_{k \to ∞} \mathbb{1}_{\{u > -k\}}(ω + \sqrt{-1}d\bar{d} \max(u, -k))^n.
\]

For such measures one has an estimate on the total mass \(\int_X ω^n_u \leq \int_X ω^n = V\), and \(E_ω\) is the set of potentials with full/maximum mass:

\[
E_ω := \left\{ u \in PSH(X, ω) \text{ s.t. } \int_X ω^n_u = \int_X ω^n = V \right\}.
\]
Furthermore, potentials $u \in \mathcal{E}_\omega$ that satisfy an L^p type integral condition are members of the so called finite-energy spaces of [53]:

$$\mathcal{E}_\omega^p = \left\{ u \in \mathcal{E}_\omega \text{ s.t. } \int_X |u|^p \omega_u^n < +\infty \right\}.$$

Now we recall some of the main points on the L^p Finsler geometry of the space of Kähler potentials. By definition, the space of Kähler potentials \mathcal{H}_ω is an open convex subset of $C^\infty(X)$, hence one can think of it as a trivial Fréchet manifold. As a result, one can introduce on \mathcal{H}_ω, a collection of L^p type Finsler metrics. If $u \in \mathcal{H}_\omega$ and $\xi \in T_u \mathcal{H}_\omega \simeq C^\infty(X)$, then the L^p norm of ξ is given by the following expression:

$$\|\xi\|_{p,u} = \left(\frac{1}{V} \int_X |\xi|^p \omega_u^n \right)^{\frac{1}{p}}.$$

In case $p = 2$, this construction reduces to the Riemannian geometry of Mabuchi [65] (independently discovered by Sémées [70] and Donaldson [49]).

Using these Finsler structures, one can introduce path length metric structures $(\mathcal{H}_\omega, d_p)$. In [31, Theorem 2], the first author identified the completion of these spaces with $\mathcal{E}_\omega^p \subset \text{PSH}(X, \omega)$ from above, and it turns out that $(\mathcal{E}_\omega^p, d_p)$ is a complete geodesic metric space.

The distinguished d_p-geodesic segments of the completion $(\mathcal{E}_\omega^p, d_p)$ are constructed as upper envelopes of quasi-psh functions, as we now elaborate. Let $S = \{0 < \Re s < 1\} \subset \mathbb{C}$ be the unit strip, and $\pi_{S \times X} : S \times X \to X$ denotes projection to the second component.

We consider $u_0, u_1 \in \mathcal{E}_\omega^p$. We say that the curve $[0,1] \ni t \to v_t \in \mathcal{E}_\omega^p$ is a weak subgeodesic connecting u_0, u_1 if $d_p(v_t, u_0, 1) \to 0$ as $t \to 0, 1$, and the extension $v(s,x) = v_{\Re s}(x)$ is $\pi^*\omega$-psh on $S \times X$, i.e.,

$$\pi^*\omega + i\partial\bar{\partial}\pi_{S \times X} v \geq 0,$$

as currents on $S \times X$.

As shown in [32, 31], a distinguished d_p-geodesic $[0,1] \ni t \to u_t \in \mathcal{E}_\omega^p$ connecting u_0, u_1 can be obtained as the supremum of all weak subgeodesics:

$$u_t := \sup\{v_t \mid t \to v_t \text{ is a subgeodesic connecting } u_0, u_1\}, \ t \in [0,1].$$

Given $u_0, u_1 \in \mathcal{E}_\omega^p$, we call (5) the L^p finite energy geodesic (or simply finite energy geodesic) connecting u_0, u_1. Due to this “Perron type” definition, finite energy geodesic segments satisfy a comparison principle.

In case the endpoints u_0, u_1 are from \mathcal{H}_ω, the finite energy geodesic connecting them is actually $C^{1,1}$ on $S \times X$, as shown by Chen [22] (for a survey see Blocki [10], with the optimal result due to Chu–Tosatti–Weinkove [28]).

Regarding the metric d_p the following double estimate holds for some dimensional constant $C > 1$ and all $p \geq 1$ [31, Theorem 3]:

$$\frac{1}{C} d_p(u_0, u_1)^p \leq \frac{1}{V} \int_X |u_0 - u_1|^p \omega_{u_0}^n + \frac{1}{V} \int_X |u_0 - u_1|^p \omega_{u_1}^n \leq Cd_p(u_0, u_1)^p, \ u_0, u_1 \in \mathcal{E}_\omega^p.$$

We recall that for any $u \in \text{PSH}(X, \omega)$ there exists $u_j \in \mathcal{H}_\omega$ such that u_j decreases to u. This is a result due to Demailly [43] with a simpler proof due to Blocki–Kołodziej [11]. It is well known that the Monge–Ampère energy $I : \mathcal{E}_\omega^1 \to \mathbb{R}$ defined by

$$I(u) = \frac{1}{V(n+1)} \sum_{j=0}^n \int_X u \omega^{n-j} \wedge \omega_u^j$$

9
is affine along finite energy geodesics [31]. Moreover, the same is true for $\sup_X u_t$ in case $u_0 = 0$:

Lemma 2.1. Let $[0, 1] \ni t \to u_t \in \mathcal{E}_+^1$ be a finite energy geodesic with $u_0 = 0$. Then $t \to \sup_X u_t$ is affine.

This is essentially [30, Theorem 1](ii), that is stated for bounded geodesics. Since finite energy geodesic segments can be approximated decreasingly by bounded geodesic segments, the above result follows as a consequence of Hartogs’ lemma [54, Proposition 8.4]. For more on L^p Mabuchi geometry we refer to [33, Chapter 3].

2.2 The relative Kołodziej type estimate

In this short subsection we recall the basics of relative pluripotential theory that are needed to state the relative Kołodziej type estimates of [37]. For more details we refer to the sequence of papers [34, 35, 36, 37].

Let E be a Borel subset of X. Given $\chi \in \text{PSH}(X, \omega)$, we define the χ-relative capacity of E as

$$\text{Cap}_\chi(E) := \sup \left\{ \int_E \omega^n_u ; u \in \text{PSH}(X, \omega), \chi - 1 \leq u \leq \chi \right\}.$$ \hspace{1cm} (6)

When $\chi = 0$, we recover the classical Monge–Ampère capacity Cap_ω (see e.g. [52]). For more on this concept we refer to [37, Section 4].

Given $u \in \text{PSH}(X, \omega)$, we recall the definition of envelopes with respect to singularity type, introduced by Ross and Witt Nyström [69]:

$$P[u] := \text{usc} \left(\lim_{C \to +\infty} P(0, u + C) \right) \in \text{PSH}(X, \omega),$$

where $P(\phi, \psi) := \sup \{ v \in \text{PSH}(X, \omega) \text{ s.t. } v \leq \phi \text{ and } v \leq \psi \}$. In addition to appearing in the statement of the relative Kołodziej type estimate below, this concept also plays a role in Theorem 4.5, where it is used to approximate geodesic rays, via [69].

Finally we recall the following L^∞ estimate from [37]:

Theorem 2.2. [37, Theorem 3.3] Let $a \in [0, 1), A > 0$, $\chi \in \text{PSH}(X, \theta)$ and $0 \leq f \in L^p(X, \omega^n)$ for some $p > 1$. Assume that $u \in \text{PSH}(X, \theta)$, normalized by $\sup_X u = 0$, satisfies

$$\theta_u^n \leq f \omega^n + a\theta^n_\chi.$$ \hspace{1cm} (7)

Assume also that

$$\int_E f \omega^n \leq A[\text{Cap}_\chi(E)]^2,$$ \hspace{1cm} (8)

for every Borel subset $E \subset X$. If $P[u]$ is less singular than χ then

$$\chi - \sup_X \chi - C \left(\|f\|_{L^p}, p, (1-a)^{-1}, A \right) \leq u.$$

Here, given two potentials $u, v \in \text{PSH}(X, \omega)$, we say that u is less singular than v if $u \geq v - C$, for some constant C.

This theorem generalizes the classical estimates of Kołodziej from [62], and it is used in [37] to solve complex Monge–Ampère equations with prescribed singularity type, and to resolve the log-concavity conjecture of the volume in pluripotential theory. Here we will use it in Section 5 to show that it is possible to approximate L^p geodesic rays with bounded ones that have converging radial K-energy.
2.3 Weighted Clarkson and Ball–Carlen–Lieb type inequalities

In this short preliminary section we point out relevant extensions of well known inequalities due to Clarkson [29] and Ball–Carlen–Lieb [2] for L^p spaces, introducing a weight $\lambda \in [0,1]$ into these results. These theorems are almost certainly well known to experts in analysis, but we could not find the versions below in the literature.

Theorem 2.3. Suppose that $p \geq 2$, $\lambda \in [0,1]$ and $f, g \in L^p(\nu)$, where ν is a measure on the set X. Then

$$\lambda\|f\|_p^p + (1 - \lambda)\|g\|_p^p \geq \|\lambda f + (1 - \lambda)g\|_p^p + \lambda \frac{2}{p}(1 - \lambda)\|f - g\|_p^p.$$

(9)

Proof. Since $t \to |t|^\frac{2}{p}$ is a convex function, we can write the following estimates:

$$\lambda\|f\|_p^p + (1 - \lambda)\|g\|_p^p \geq \int_X (\lambda f^2 + (1 - \lambda)g^2)^{\frac{2}{p}} d\nu$$

$$= \int_X ((\lambda f + (1 - \lambda)g)^2 + (1 - \lambda)(f - g)^2)^{\frac{2}{p}} d\nu$$

$$\geq \int_X (\lambda f + (1 - \lambda)g)^2 + \lambda \frac{2}{p}(1 - \lambda)(f - g)^2)^{\frac{2}{p}} d\nu,$$

where in the last step we have used that $(a^2 + b^2)^{\frac{2}{p}} \geq (a^p + b^p)^{\frac{2}{p}}$, $a, b \geq 0$. \qed

Theorem 2.4. Suppose that $1 < p \leq 2$, $\lambda \in [0,1]$ and $f, g \in L^p(\nu)$, where ν is a measure on the set X. Then

$$\lambda\|f\|_p^2 + (1 - \lambda)\|g\|_p^2 \geq \|\lambda f + (1 - \lambda)g\|_p^2 + (p - 1)(1 - \lambda)f - g\|_p^2.$$

(10)

Proof. The proof will be given using diadic approximation. Indeed, it is enough to prove (10) for $\lambda = k \frac{2}{2m}$, $k, m \in \mathbb{N}$ with $1 \leq k \leq 2^m$. We will argue by induction on m. For $m = 1$ and $k = 0, 1, 2$, the statement of (10) is either a triviality or reduces to [2, Proposition 3]. Let us assume that $m > 1$ and the statement holds for $m - 1$. We can assume that k is odd, as otherwise the inequality reduces to the case $m - 1$. Using [2, Proposition 3], we start with the following estimate:

$$\frac{1}{2} \left(\frac{k-1}{2^m} f + (1 - \frac{k-1}{2^m}) g \right)^2 + \frac{1}{2} \left(\frac{k+1}{2^m} f + (1 - \frac{k+1}{2^m}) g \right)^2 \geq$$

$$\geq \left(\frac{k-1}{2^m} f + (1 - \frac{k-1}{2^m}) g \right)^2 + (p - 1) \left(\frac{k-1}{2^m} \right)^2 \left(\frac{k-1}{2^m} \right)^2 \|f - g\|_p^2.$$

(11)

Since both $k + 1$ and $k - 1$ are even, by the inductive step we also have that:

$$\frac{k+1}{2^m} \|f\|_p^2 + (1 - \frac{k+1}{2^m}) \|g\|_p^2 \geq$$

$$\geq \left(\frac{k+1}{2^m} f + (1 - \frac{k+1}{2^m}) g \right)^2 + (p - 1) \left(\frac{k+1}{2^m} \right)^2 \left(\frac{k+1}{2^m} \right)^2 \|f - g\|_p^2,$$

(12)

$$\frac{k-1}{2^m} \|f\|_p^2 + (1 - \frac{k-1}{2^m}) \|g\|_p^2 \geq$$

$$\geq \left(\frac{k-1}{2^m} f + (1 - \frac{k-1}{2^m}) g \right)^2 + (p - 1) \left(\frac{k-1}{2^m} \right)^2 \left(\frac{k-1}{2^m} \right)^2 \|f - g\|_p^2.$$

(13)

11
Adding (11), (12) and then using (13) we arrive at
\[
\frac{k}{2m} \|f\|^p + \left(1 - \frac{k}{2m}\right)\|g\|^p \geq \left(\frac{k}{2m}\right)^p f \left(1 - \frac{k}{2m}\right)\|g\|^p + (p - 1) \left(\frac{k}{2m}\right)^p \|f - g\|^p,
\]
what we desired to prove. \(\Box \)

Remark 2.5. As alluded to at the beginning of the subsection, in case \(\lambda = \frac{1}{2} \), Theorem 2.3 and Theorem 2.4 recover the well known inequalities of Clarkson [29] and Ball–Carlen–Lieb [2, Proposition 3] respectively.

3 Uniform convexity and uniqueness of geodesics

Before proving the main result of this section, we first point out the following result about the “spread” of geodesic segments in \(\mathcal{E}_c^p \), sharing a common smooth endpoint:

Theorem 3.1. Suppose that \(p \geq 1, u \in \mathcal{H}_\omega \) and \([0,l] \ni t \to u_t, v_t \in \mathcal{E}_c^p \) are two finite energy geodesic segments with \(u = u_0 = v_0 \) and \(l \in \mathbb{R}^+ \). Then
\[
\int_X |\dot{u}_0 - \dot{v}_0|^p \omega_u^n \leq \frac{d_p(u_t, v_t)}{t}, \quad t \in [0,l]. \tag{14}
\]

Proof. We first assume that \(u_t \geq v_t \). Furthermore, using \(d_p \)-approximation of the endpoints \(u_t, v_t \in \mathcal{E}_c^p \) by decreasing sequences of potentials in \(\mathcal{H}_\omega \), it is enough to prove (14) for \(C^{1,1} \)-geodesics \(t \to u_t, v_t \) with \(u_t, v_t \in \mathcal{H}_\omega \) (see [7, Proposition 4.3]).

Using the convexity condition (1) and [31, Lemma 5.1] for \(0 \leq s \leq t \leq l \) we have
\[
d_p(u_t, v_t)^p \geq \frac{d_p(u_s, v_s)^p}{s^p} \geq \int_X (u_s - v_s)^p s^p \omega_u^n.
\]
As \(s \to 0^+ \), using the fact that the geodesics are \(C^{1,1} \), we get that \((u_s - v_s)^p / s^p \) uniformly converges to \((\dot{u}_0 - \dot{v}_0)^p \) which is a continuous function on \(X \). Since \(\omega_u^n \to \omega_u^n \) weakly (see [31, Theorem 5(i)]) it follows that
\[
\frac{d_p(u_t, v_t)^p}{t^p} \geq \int_X |\dot{u}_0 - \dot{v}_0|^p \omega_u^n.
\]

We now treat the general case, when \(u_t \) and \(v_t \) may not be comparable. By the previous step, for \(t \in [0,l] \) we have
\[
\frac{d_p(u_t, P(u_t, v_t))^p}{t^p} \geq \int_X |\dot{u}_0 - \dot{w}_0|^p \omega_u^n \quad \text{and} \quad \frac{d_p(v_t, P(u_t, v_t))^p}{t^p} \geq \int_X |\dot{v}_0 - \dot{w}_0|^p \omega_u^n,
\]
where \([0,l] \ni s \mapsto w_s^t \in \mathcal{E}_c^p \) is the finite energy geodesic connecting \(w_0 := u_0 \) and \(w_t := P(u_t, v_t) \).

Due to the comparison principle for geodesics, we note that \(\dot{w}_0^t \leq \dot{u}_0, \dot{v}_0 \). Using the Pythagorean formula [31, Corollary 4.14] and the inequality \(a^p + b^p \geq \max(a^p, b^p) \geq |a - b|^p, a, b \geq 0 \), we can sum up the above inequalities to arrive at the conclusion:
\[
\frac{d_p(u_t, v_t)^p}{t^p} = \frac{d_p(u_t, P(u_t, v_t))^p}{t^p} + \frac{d_p(v_t, P(u_t, v_t))^p}{t^p} \geq \int_X |\dot{u}_0 - \dot{v}_0|^p \omega_u^n, \quad t \in [0,l].
\]
\(\Box \)
Before proceeding we note that Theorem 3.1 implies the following Lidskii type inequality proved in the case of Hodge type Kähler metrics in [41]:

Corollary 3.2. If \(\alpha, \beta, \gamma \in \mathcal{E}_p^p \) with \(\alpha \geq \beta \geq \gamma \) then:

\[
d_p(\beta, \gamma)^p \leq d_p(\alpha, \gamma)^p - d_p(\alpha, \beta)^p.
\]

Proof. By density it is enough to show this estimate for \(\alpha, \beta, \gamma \in \mathcal{H}_\omega \). Let \([0,1] \ni t \to u_t, v_t \in \mathcal{E}_p^p \) be the increasing/decreasing \(C^{1,1} \)-geodesics joining \(u_0 := \beta, u_1 := \alpha \) and \(v_0 := \beta, v_1 := \gamma \) respectively. Then, due to \(t \)-monotonicity, Theorem 3.1, and [31, Theorem 1], the following holds:

\[
d_p(\alpha, \gamma)^p = d_p(u_1, v_1)^p \geq \int_X (|\dot{u}_0|^p + |\dot{v}_0|^p) \omega^n_{\beta} = d_p(\alpha, \beta)^p + d_p(\beta, \gamma)^p.
\]

Next we prove the main result of this section about the uniform convexity of the spaces \((\mathcal{E}_p^p, d_p)\) for \(p > 1 \). This will follow after an adequate combination of Theorem 3.1 and the extension of the inequalities of Clarkson and Ball–Carlen–Lieb, obtained in the previous section.

Theorem 3.3. Suppose that \(u \in \mathcal{E}_p^p \), \(\lambda \in [0,1] \) and \([0,1] \ni t \to v_t \in \mathcal{E}_p^p \) is a finite energy geodesic segment. Then the following hold:

(i) \(d_p(u, v_0)^2 \leq (1 - \lambda)d_p(u, v_0)^2 + \lambda d_p(u, v_1)^2 - (p - 1)\lambda(1 - \lambda)d_p(v_0, v_1)^2 \), if \(1 < p < 2 \).

(ii) \(d_p(u, v_0)^p \leq (1 - \lambda)d_p(u, v_0)^p + \lambda d_p(u, v_1)^p - \lambda^\frac{p}{2}(1 - \lambda)^\frac{p}{2}d_p(v_0, v_1)^p \), if \(2 \leq p \).

Proof. To begin, let \(p \geq 1 \) and \(\lambda \in [0,1] \). By density (and [7, Proposition 4.3]) we can assume that \(u, v_0, v_1 \in \mathcal{H}_\omega \) and hence \(t \to v_t \) is \(C^{1,1} \).

Fixing \(\varepsilon > 0 \) momentarily, let \([0,1] \ni t \to v_t^\varepsilon \in \mathcal{H}_\omega \) be Chen’s smooth \(\varepsilon \)-geodesic connecting \(v_0, v_1 \in \mathcal{H}_\omega \) ([22], for a survey see [33, Section 3.1]). Moreover, let \([0,1] \ni t \to \alpha_t^\lambda \in \mathcal{E}_p^p \) be the \(C^{1,1} \) geodesic connecting \(u \) and \(v_t^\varepsilon \). Let \([0,\lambda] \ni t \to h_t^\varepsilon \in \mathcal{E}_p^p \) be the \(C^{1,1} \) geodesic connecting \(v_0 \) and \(v_t^\varepsilon \). Similarly, let \([\lambda,1] \ni t \to k_t^\varepsilon \in \mathcal{E}_p^p \) be the \(C^{1,1} \) geodesic connecting \(v_t^\varepsilon \) and \(v_1 \).

We now assume that \(2 \leq p \) to address (ii). Using Theorem 3.1 twice, for pairs of geodesics emanating from \(v_t^\varepsilon \), we conclude that

\[
\int_X |\hat{\alpha}_t^\lambda|^p \omega_{\alpha_t^\lambda}^n \leq d_p(u, v_0)^p, \quad \int_X |\hat{\alpha}_t^\lambda - (1 - \lambda)\hat{k}_t^\lambda|^p \omega_{\alpha_t^\lambda}^n \leq d_p(u, v_1)^p.
\]

By the comparison principle for geodesics, we have that \(v_t^\varepsilon \leq h_t^\varepsilon \leq v_t \), \(\varepsilon \in [0,\lambda] \) and \(v_t^\varepsilon \leq k_t^\varepsilon \leq v_t \), \(t \in [\lambda,1] \). Again, by the comparison principle, the concatenation of \(t \to h_t^\varepsilon \) and \(t \to k_t^\varepsilon \) is \(t \)-convex and we obtain that \(\hat{h}_t^\lambda \to \hat{v}_\lambda \) and \(\hat{k}_t^\lambda \to \hat{v}_\lambda \) uniformly on \(X \). Using this and the above two estimates we can write:

\[
(1 - \lambda)d_p(u, v_0)^p + \lambda d_p(u, v_1)^p \geq \int_X (1 - \lambda)|\hat{\alpha}_t^\lambda + \lambda\hat{h}_t^\varepsilon|^p \omega_{\alpha_t^\lambda}^n + \lambda|\hat{\alpha}_t^\lambda - (1 - \lambda)\hat{v}_\lambda|^p \omega_{\alpha_t^\lambda}^n - O(\varepsilon)
\]

\[
\geq (1 - \lambda)\int_X |\hat{\alpha}_t^\lambda + \lambda\hat{v}_\lambda|^p \omega_{\alpha_t^\lambda}^n + \lambda\int_X |\hat{\alpha}_t^\lambda - (1 - \lambda)\hat{v}_\lambda|^p \omega_{\alpha_t^\lambda}^n - O(\varepsilon)
\]

\[
\geq \int_X |\hat{\alpha}_t^\lambda|^p \omega_{\alpha_t^\lambda}^n + \lambda\xi(1 - \lambda)^\frac{p}{2} \left[\int_X |\hat{v}_\lambda|^p \omega_{\alpha_t^\lambda}^n - O(\varepsilon) \right]
\]

\[
\begin{align*}
&= d_p(u, v_0)^p + \lambda\xi(1 - \lambda)^\frac{p}{2} \left[\int_X |\hat{v}_\lambda|^p \omega_{\alpha_t^\lambda}^n - O(\varepsilon) \right],
\end{align*}
\]

(15)
where in the third line we have used Theorem 2.3, and in the last line we have used [31, Theorem 1]. Letting $\varepsilon \to 0$, since $\omega^{\alpha}_{\nu \lambda} \to \omega^{\alpha}_{\nu \lambda}$ and $O(\varepsilon) \to 0$, another application of [31, Theorem 1] gives (ii).

Now we assume that $1 < p \leq 2$ and we address the inequality of (i). The proof is exactly the same, except for (15), where we use the estimate of Theorem 2.4 instead of Theorem 2.3.

Remark 3.4. Suppose that ω is the curvature of a Hermitian line bundle (L,h). By exactly the same arguments, one can show that the inequalities of Theorem 3.3 also hold for the finite dimensional L^p type metric spaces $(H^p_{\omega},d_{p,k})$, as considered in [41]. Using the quantization scheme of this paper [41, Theorem 1.2], an alternative proof of Theorem 3.3 can be thus given when $[\omega]$ is integral.

Finally we point out that using the above result one can show that the finite energy geodesic segments of E^p_ω are the only metric geodesics when $p > 1$:

Theorem 3.5. Let $p \in (1, \infty)$, and suppose that $[0,1] \ni t \mapsto v_t \in E^p_\omega$ is the finite energy geodesic connecting $v_0, v_1 \in E^p_\omega$. Then $t \to v_t$ is the only d_p-geodesic connecting v_0, v_1.

Proof. Suppose that $[0,1] \ni t \mapsto u_t \in E^p_\omega$ is a d_p-geodesic connecting v_0, v_1, and let $h_t \in E^p_\omega$ be the d_p-midpoint of the finite energy geodesic connecting u_t, v_t, $t \in [0,1]$. Assuming that $u_t \neq v_t$, Theorem 3.3 implies that $d_p(v_t, h_t) < \max\{d_p(v_0, u_t), d_p(v_0, v_t)\} = td_p(v_0, v_1)$. Similarly, $d_p(v_1, h_t) < \max\{d_p(v_t, u_1), d_p(v_1, v_t)\} = (1-t)d_p(v_0, v_1)$. The triangle inequality now gives a contradiction, implying that $u_t = v_t$, $t \in [0,1]$. □

A more careful analysis of the above proof yields the following:

Proposition 3.6. Suppose that $p > 1$ and $[0,1] \ni t \mapsto u_t \in E^p_\omega$ is a finite energy geodesic. Let $v \in E^p_\omega$ such that $d_p(v, u_0) \leq (t + \varepsilon)d_p(u_0, u_1)$ and $d_p(v, u_1) \leq (1 - t + \varepsilon)d_p(u_0, u_1)$ for some $\varepsilon > 0$ and $t \in [0,1]$. Then there exists $C(p) > 0$ such that

$$d_p(v, u_t) \leq \varepsilon^{\frac{1}{r}} C d_p(u_0, u_1),$$

where $r := \max(2,p)$.

Proof. Let h be the d_p-midpoint of the finite energy geodesic connecting v and u_t. Then Theorem 3.3 implies that

$$d_p(u_0, h) \leq \left[\frac{1}{2} d_p(u_0, v) + \frac{1}{2} d_p(u_0, u_t) - c d_p(v, u_t) \right]^{\frac{1}{r}},$$

$$d_p(u_t, h) \leq \left[\frac{1}{2} d_p(u_1, v) + \frac{1}{2} d_p(u_1, u_t) - c d_p(v, u_t) \right]^{\frac{1}{r}},$$

for $r := \max(p, 2)$, and $c := c(p) \in (0,1)$. Adding these estimates and using the triangle inequality we arrive at:

$$d_p(u_0, u_1) \leq \left[(t + \varepsilon)^r d_p(u_0, u_1) - c d_p(v, u_t) \right]^{\frac{1}{r}} + \left[(1 - t + \varepsilon)^r d_p(u_0, u_1) - d_p(v, u_t) \right]^{\frac{1}{r}}$$

After dividing by $d_p(u_0, u_1)$, basic calculus yields that

$$\frac{d_p(v, u_t)^r}{d_p(u_0, u_1)^r} \leq \max \left(\frac{(t + \varepsilon)^r - t^r}{c}, \frac{(1 - t + \varepsilon)^r - (1 - t)^r}{c} \right),$$

implying that $d_p(v, u_t) \leq \varepsilon^{\frac{1}{r}} C d_p(u_0, u_1)$, as desired. □
4 The metric geometry of weak L^p geodesic rays

For $u \in \mathcal{E}_u^p$ let \mathcal{R}_u^p denote the space of finite energy L^p geodesic rays emanating from u. Note that we don’t assume that the rays are unit speed, or even non-constant.

Following terminology from metric space theory [20], two rays $\{u_t\}_t, \{v_t\}_t$ are parallel if $d_p(u_t, v_t)$ is uniformly bounded. Given the characteristics of the finite energy spaces, any ray admits a unique parallel ray emanating from an outside point, thus the d_p-geometries verify Euclid’s 5th postulate for half-lines, answering an open question raised in [25, Remark 1.6]:

Proposition 4.1. Let $u, v \in \mathcal{E}_u^p$ then for any $\{u_t\}_t \in \mathcal{R}_u^p$ there exists a unique $\{v_t\}_t \in \mathcal{R}_v^p$ such that $\{u_t\}_t$ is parallel to $\{v_t\}_t$, giving a bijection $\mathcal{P}_{uv} : \mathcal{R}_u^p \rightarrow \mathcal{R}_v^p$. Moreover $d_p(u_t, v_t) \leq d_p(u, v)$, $t \geq 0$.

Proof. Uniqueness follows from $d_p(u_t, v_t) \leq d_p(u, v)$, $t \geq 0$, which is a simple consequence of the convexity of the comparison principle for geodesics we get that, for $0 \leq l \leq t \leq t'$, $v_t' \leq u_t = v_t$, hence $v_t' \leq v_t$. Also, (1) implies

$$\frac{d_p(v_t', u_t)}{t-l} \leq \frac{d_p(v, u)}{t}.$$

Putting the last two sentences together, [7, Proposition 4.3] implies that $l \rightarrow v_l := \lim_{t \rightarrow \infty} v_t \in \mathcal{E}_u^p$ is a finite energy geodesic ray such that $d_p(u_t, v_l) \leq d_p(u, v)$, $l \geq 0$.

If $u \leq v$, the proposition holds by the same argument (the inequality $v_t' \leq v_t'$ being the only difference).

To treat the general case, we simply notice that $h := \max(\sup_X u, \sup_X v) \in \mathcal{H}_\infty \subset \mathcal{E}_u^p$ and $h \geq u, v$. This allows to introduce a ray $\{h_t\}_t \in \mathcal{R}_h^p$ such that $d_p(u_t, h_t) \leq d_p(u, h)$. Since $h \geq v$, it is now possible to introduce another ray $\{v_t\}_t \in \mathcal{R}_v^p$ with $d_p(v_t, h_t) \leq d_p(v, h)$. The estimate $d_p(u_t, v_t) \leq d_p(u, h) + d_p(v, h)$, now follows from the triangle inequality.

Next we introduce the chordal metric on \mathcal{R}_u^p:

$$d_{u,p}^c(\{u_t\}_t, \{v_t\}_t) := \lim_{t \rightarrow \infty} \frac{d_p(u_t, v_t)}{t}, \quad \{u_t\}_t, \{v_t\}_t \in \mathcal{R}_u^p. \quad (16)$$

That the above preceding limit exists and is finite follows again from (1) and the triangle inequality. As we now clarify, $(\mathcal{R}_u^p, d_{u,p}^c)$ is in fact a complete geodesic metric space.

Theorem 4.2. For any $u \in \mathcal{E}_u^p$, $p \geq 1$, $(\mathcal{R}_u^p, d_{u,p}^c)$ is a complete metric space. Moreover for any $v \in \mathcal{E}_v^p$ the map $\mathcal{P}_{uv} : (\mathcal{R}_u^p, d_{u,p}^c) \rightarrow (\mathcal{R}_v^p, d_{v,p}^c)$ is an isometry.

Some aspects of the proof below can be traced back to [8, Lemma 3.1].

Proof. That $d_{u,p}^c$ satisfies the triangle inequality follows from the triangle inequality of d_p. To argue non-degeneracy, suppose that $d_{u,p}^c(\{u_t\}_t, \{v_t\}_t) = 0$. This implies that the increasing function $f(t) = d_p(u_t, v_t)/t$ satisfies $f(0) = 0$ and $\lim_{t \rightarrow \infty} f(t) = 0$. Consequently $f(t) = 0$, $t \geq 0$, implying that $u_t = v_t$, $t \geq 0$.

15
Now suppose that \(\{u^j_t\}_t \subset \mathcal{R}^p_\omega \) is a \(d^c_{u, p}\)-Cauchy sequence. Fixing \(l > 0 \) we have that
\[
\frac{d_p(u^j_t, u^k_t)}{l} \leq d^c_{u, p}([u_t], [u_t]),
\]
Consequently \(\{u^j_t\}_j \subset \mathcal{E}^p_\omega \) is a \(d_p\)-Cauchy sequence with limit \(u_t \in \mathcal{E}^p_\omega \). By the endpoint stability of geodesic segments in \(\mathcal{E}^p_\omega \) ([7, Proposition 4.3]) it follows that \(t \rightarrow u_t \) is a geodesic ray. More importantly, letting \(k \rightarrow \infty \) in (17) it follows that \(\frac{d_p(u^j_t, u_t)}{l} \) is arbitrarily small for high enough \(j \) and any \(l \). This in turn implies that \(d^c_{u, p}([u_t], [u_t]) \rightarrow 0 \), giving completeness.

That the map \(\mathcal{F}_{uv} \) is an isometry, follows from the definition of parallel geodesic rays and the triangle inequality for \(d_p \).

By this theorem, no extra information is gained by choice of initial metric, hence going forward we will only consider the space \((\mathcal{R}^p_\omega, d^c_p)\), the collection of rays emanating from \(0 \in \mathcal{H}_\omega \subset \mathcal{E}^p_\omega \).

Approximation of finite energy rays. In this paragraph we point out that bounded geodesic rays (running inside \(\text{PSH}(X, \omega) \cap L^\infty \)) are dense among the rays of \(\mathcal{R}^p_\omega \). Later, in the presence of finite radial K-energy we will sharpen this result further.

First we start with an auxiliary result, which is a consequence of Corollary 3.2, and it is the radial analog of [31, Lemma 4.16]:

Lemma 4.3. Let \(\{u^j_t\}_t, \{u^j_1\}_j \in \mathcal{R}^p_\omega \) such that \(u^j_t \) is decreasing (increasing a.e.) to \(u_t \) as \(j \rightarrow \infty \) for all \(t \geq 0 \). Then, \(d^c_p([u^j_t], [u^j_1]) \rightarrow 0 \).

Proof. We start by noticing that \(t \rightarrow \sup_X u_t \) and \(t \rightarrow \sup_X u^j_t \) are linear (Lemma 2.1). By our assumption we have that \(\sup_X u^j_t \rightarrow \sup_X u^j_1 \) [54, Proposition 8.4], hence after possibly subtracting the same \(t\)-linear term from all our rays, without loss of generality we can assume that \(\sup_X u_t, \sup_X u^j_t \leq 0 \). By convexity we will obtain that \(0 \geq u^j_t \geq u_t \) (0 \(\geq u_t \geq u^j_t \)) for all \(j \) and \(t \geq 0 \). Consequently, Corollary 3.2 is applicable to yield that:
\[
\frac{d_p(u^j_t, u^j_1)}{l} \leq \frac{|d_p(0, u_t)^p - d_p(0, u^j_t)^p|}{l} = |d_p(0, u_t)^p - d_p(0, u^j_t)^p|, \quad t \geq 0,
\]
where we have used that \(t \rightarrow d_p(0, u^j_t) \) and \(t \rightarrow d_p(0, u^j_1) \) are linear. Now [31, Lemma 4.16] gives that \(d_p(u^j_t, u^j_1) \rightarrow 0 \), in particular \(d_p(u^j_1, u^j_1) \rightarrow d_p(0, u^j_1) \), finishing the proof. \(\square \)

Remark 4.4. Analyzing the above argument we see that in Lemma 4.3 the conditions can be significantly weakened in some cases. For example, it is enough to assume that \(u_t \leq u^j_t \), \(t \geq 0, j \geq 0 \), there exists \(C \geq 0 \) such that \(u^j_t \leq C, \; j \geq 0 \), and that \(u^j_t \) converges to \(u_1 \) pointwise on \(X \), with the exception of a pluripolar set. Using [31, Lemma 5.1] we obtain that \(d_p(u^j_1, u^j_1)^p \leq \int_X |u_1 - u^j_t|^p \omega_n^u \), and the dominated convergence theorem allows to conclude that the right hand side of (18) still converges to zero.

Theorem 4.5. Let \(\{u^j_t\}_t \in \mathcal{R}^p_\omega \). Then there exists a sequence \(\{u^j_t\}_j \in \mathcal{R}^p_\omega \) such that \(u^j_t \in \text{PSH}(X, \omega) \cap L^\infty \) and \(u^j_t \downarrow_X u_t \) as \(j \rightarrow \infty \) for all \(t \geq 0 \). In particular \(d^c_p([u^j_t], [u_t]) \rightarrow 0 \), and we can choose \(\{u^j_t\}_t \) such that
\[
\max_X (u_t, (\sup_X u_1 - j)t) \leq u^j_t \leq t \sup_X u_1.
\]
Proof. It follows from Lemma 2.1 that \(t \to \sup_X u_t/t, \ t > 0 \) is constant, hence we can assume (by adding \(Ct \) to \(u_t \)) that \(\sup_X u_t = 0, \ t \geq 0 \). Consequently \(t \to u_t \) is \(t \)-decreasing. For \(\tau \in \mathbb{R} \) and \(x \in X \) we introduce

\[
\psi_\tau(x) := \inf_{t \geq 0} (u_t(x) - t\tau). \tag{20}
\]

It follows from Kiselman’s minimum principle [60] that either \(\psi_\tau \equiv -\infty \) or \(\psi_\tau \in \text{PSH}(X, \omega) \). More precisely, since \(\sup_X u_t = 0 \) we have that \(\psi_\tau \in \text{PSH}(X, \omega) \) for \(\tau \leq 0 \), and \(\psi_\tau \equiv -\infty \) for all \(\tau > 0 \). Observe also that \(\tau \to \psi_\tau \) is \(\tau \)-decreasing and \(\tau \)-concave. For all \(x \in X \) with \(\psi_0(x) > -\infty \) the curve \(t \to u_t(x) \) is continuous in \((0, +\infty)\). Hence, by the involution property of the Legendre transform, for such \(x \) we have

\[
u_t(x) = \sup_{\tau < 0} (\psi_\tau(x) + t\tau) = \sup_{\tau \in \mathbb{R}} (\psi_\tau(x) + t\tau), \quad t > 0. \tag{21}\]

For \(\varepsilon > 0, \tau < 0 \), set

\[
\psi_\tau^\varepsilon(x) := \max(0, 1 + \varepsilon \tau)\psi_\tau, \text{ and } \phi_\tau^\varepsilon := \mathcal{P}[\psi_\tau^\varepsilon].
\]

We define \(\phi_0^\varepsilon := \lim_{\tau \to -0^-} \phi_\tau^\varepsilon \).

Since \(\tau \to \psi_\tau \) is \(\tau \)-concave, \(\tau \)-decreasing, and \(\psi_\tau \leq 0 \), it is elementary to see that \(\tau \to \psi_\tau^\varepsilon \) is also \(\tau \)-concave and \(\tau \)-decreasing. By elementary properties of \(\mathcal{P}[\cdot] \) we get that \(\tau \to \phi_\tau^\varepsilon \) is also \(\tau \)-concave and \(\tau \)-decreasing (see the proof of [36, Proposition 4.6]). A consequence of a result due to Ross-Witt Nyström [69] (further elaborated in [36, Corollary 1.3]) the curve

\[
[0, \infty) \ni t \to u_t^\varepsilon(x) := \sup_{\tau < 0} (\phi_\tau^\varepsilon(x) + t\tau) \in \text{PSH}(X, \omega) \cap L^\infty \tag{22}
\]
is a (bounded) geodesic ray emanating from 0.

We now prove that \(u_t^\varepsilon \searrow u_t \) as \(\varepsilon \searrow 0 \), for any \(t \geq 0 \). For \(t = 0 \) there is nothing to prove since \(u_0^\varepsilon = u_0 = 0 \) on \(X \). Fix now \(t > 0 \) and \(x \in X \) with \(\psi_0(x) > -\infty \). Then, using \(\tau \)-concavity, there exists \(C > 0 \) depending on \(\psi_0(x), t \) (but not on \(\varepsilon \)) such that

\[
u_t^\varepsilon(x) = \sup_{-C \leq \tau \leq 0} (\phi_\tau^\varepsilon(x) + t\tau), \text{ and } u_t(x) = \sup_{-C \leq \tau \leq 0} (\psi_\tau(x) + t\tau).
\]

By Lemma 4.6 below, the family of functions \(\tau \to \phi_\tau^\varepsilon(x) \) decreases pointwise to the function \(\tau \to \psi_\tau(x) \) as \(\varepsilon \to 0^+ \) for \(\tau < 0 \). Using \(\tau \)-concavity and the fact that \(\psi_0(x) > -\infty \), one can extend this convergence to \(\tau = 0 \) as well. Hence by Dini’s theorem the convergence is uniform on \([-C, 0]\). It thus follows that \(u_t^\varepsilon(x) \searrow u_t(x) \) as \(\varepsilon \to 0^+ \). We conclude that \(u_t^\varepsilon \) decreases to \(u_t \) a.e. on \(X \). But these are \(\omega \)-psh functions, so the convergence holds everywhere on \(X \).

That \(d_\nu^\varepsilon(\{u_t\}_t, \{u_t\}_t) \to 0 \) as \(\varepsilon \to 0^+ \), simply follows from Lemma 4.3.

Since, \(\phi_\tau^\varepsilon = 0 \) for \(\tau \leq -1/\varepsilon \) and \(\psi_\tau \leq \phi_\tau^\varepsilon \), basic properties of Legendre transforms imply that \(u_t \leq u_t^\varepsilon \leq 0 \) and \(-1 \leq u_t^\varepsilon \leq 0 \), since \(\psi_\tau \leq \phi_\tau^\varepsilon \) for all \(\tau \) and \(\phi_\tau^\varepsilon = 0 \) for \(\tau < -1/\varepsilon \). This immediately yields (19) with \(\varepsilon = 1/j \).

\[
\square
\]

Lemma 4.6. Assume that \(\{u_t\}_t \in \mathcal{R}_\omega^1 \) satisfies \(\sup_X u_t = 0 \) for all \(t \geq 0 \). Then for \(\psi_\tau \) defined in (20) we have that \(\int_X \omega_\psi^\tau > 0 \) for all \(\tau < 0 \). Additionally for any \(\tau < 0 \),

\[
\lim_{\varepsilon \to 0} \phi_\tau^\varepsilon = \lim_{\varepsilon \to 0} \mathcal{P}[1 + \varepsilon \tau] \psi_\tau = \psi_\tau. \tag{23}
\]

17
Proof. By the involution property, application of the Legendre transform twice gives back the original convex function. In particular, we have that \(\sup_t \psi_t(x) = \lim_{\tau \to -\infty} \psi_\tau(x) = u_0(x) \) for all \(x \in X \) such that \(\lim_{t \to 0} u_t(x) = 0 \). In particular, we get that \(\psi_\tau \) increases a.e. to 0 as \(\tau \to -\infty \). According to [35, Remark 2.5] we obtain that \(\lim_{\tau \to -\infty} \int_X \omega^n_{\psi_\tau} = \int_X \omega^n > 0 \).

Fixing \(\tau < 0 \), this last identity implies existence of \(\tau_0 < \tau \) such that \(\int_X \omega^n_{\psi_{\tau_0}} > 0 \). By \(\tau \)-concavity of \(\tau \to \psi_\tau \) we get that

\[
\psi_\tau \geq \frac{\tau}{\tau_0} \psi_{\tau_0} + \left(1 - \frac{\tau}{\tau_0} \right) \psi_0.
\]

Finally, by the monotonicity [78, Theorem 1.2] and the multi-linearity of the non-pluripolar mass we obtain that \(\int_X \omega^n_{\psi_\tau} > 0 \), as desired.

To argue (23), we start by noting that \(\lim_{\varepsilon \to 0} P[(1 + \varepsilon \tau) \psi_\tau] \geq \psi_\tau \), and according to [78, Theorem 1.2] and [35, Remark 2.5] we get that

\[
\int_X \omega^n_{\psi_\tau} \leq \int_X \omega^n_{\psi_{\tau_0}} P[(1 + \varepsilon \tau) \psi_{\tau_0}] \leq \lim_{\varepsilon \to 0} \int_X \omega^n_{(1 + \varepsilon \tau) \psi_\tau} = \int_X \omega^n_{\psi_\tau}.
\]

Hence we have equality everywhere, and all the integrals are positive. Consequently, \(\lim_{\varepsilon \to 0} P[(1 + \varepsilon \tau) \psi_\tau] \in F_{\psi_\tau} \) with the notation of [35, Theorem 3.12].

It follows from [30, Proposition 5.1] (or [34, Lemma 3.17]) that \(P[\psi_\tau] = \psi_\tau \), for all \(\tau \leq 0 \) (the result in these works is only stated for rays of bounded potentials, however the proof only uses the comparison principle that holds for finite energy rays as well, implying the result for these more general rays). Putting everything together [35, Theorem 3.12] implies that \(\lim_{\varepsilon \to 0} P[(1 + \varepsilon \tau) \psi_\tau] = \psi_\tau \), as desired. \(\square \)

The construction of geodesic segments in \(\mathcal{R}^p_w \). Next we show that points of \((\mathcal{R}^p_w, d^c_p) \) can be connected by geodesic segments. We first treat the case \(p > 1 \), where due to uniform convexity, the construction can be carried out directly. The case \(p = 1 \) will be treated using approximation, via Theorem 4.5.

Theorem 4.7. If \(p > 1 \), then \((\mathcal{R}^p_w, d^c_p) \) is a complete geodesic metric space.

The proof below shares similarities with the angle bisection techniques of [61].

Proof. By Theorem 4.2, we only have to show that any two rays \(\{u_t\}_t, \{v_t\}_t \in \mathcal{R}^p_w \) can be joined by a distinguished \(d^c_p \)-geodesic when \(p > 1 \).

For any \(t \geq 0 \), we denote by \([0,1] \ni \alpha \to h_{t,\alpha} \in \mathcal{E}^p_w \) the finite energy geodesic connecting \(u_t \) and \(v_t \). To avoid introducing further variables, by \([0,t] \ni s \to \frac{s}{t} h_{t,\alpha} \in \mathcal{E}^p_w \) we denote the finite energy geodesic connecting 0 and \(h_{t,\alpha} \). Finally, we can assume that \(u_t \neq v_t \) for \(t \) large enough. Indeed, if this does not hold, then (1) would give that \(\{u_t\}_t = \{v_t\}_t \), and the geodesic connecting the two rays is the constant one.

First we show that for any \(\alpha \in [0,1] \) and \(l \geq 0 \) there exists \(w_{t,\alpha} \in \mathcal{E}^p_w \) such that \(\lim_{l \to \infty} \frac{1}{l} h_{t,\alpha} = w_{t,\alpha} \). By endpoint stability of geodesic segments ([7, Proposition 4.3]), this will automatically imply that \(\{w_{t,\alpha}\}_t \in \mathcal{R}^p_w \). As we will see, \(\alpha \to \{w_{t,\alpha}\}_t \) will represent the \(d^c_p \)-geodesic connecting \(\{u_t\}_t \) and \(\{v_t\}_t \).

Again, from (1) it follows that for any \(\alpha \in [0,1] \) and \(0 < s \leq t \) we have

\[
\frac{d_p(u_s, \frac{s}{t} h_{t,\alpha})}{s} \leq \frac{d_p(u_t, h_{t,\alpha})}{t} = \frac{\alpha d_p(u_t, v_t)}{t} \leq \alpha d_p^c(\{u_t\}_t, \{v_t\}_t),
\]
Letting \(d \) the \(\text{Theorem 2} \), follows, finishing the proof.

Moreover, letting \(s \), the observation is of independent interest, and is the "radial version" of a well known Proposition 4.8.

Let \(\varepsilon > 0 \). Since \(\frac{d_p(u_s, v_s)}{s} \), \(\exists \), \(d_p^c(\{u_t\}_t, \{v_t\}_t) \), \((24) \) and \((25) \) imply existence of \(s_{\alpha, \varepsilon} > 0 \) such that for any \(s_{\alpha, \varepsilon} \leq s \leq t \) we have

\[
\frac{d_p(u_s, \frac{s}{t}h_{t, \alpha})}{s} \leq (1 + \varepsilon) \frac{d_p(u_s, v_s)}{s} \quad \text{and} \quad \frac{d_p(v_s, \frac{s}{t}h_{t, \alpha})}{s} \leq (1 - \varepsilon) \frac{d_p(u_s, v_s)}{s}.
\]

Now Proposition 3.6 implies that \(d_p(h_{s, \alpha}, \frac{s}{t}h_{t, \alpha}) \leq \varepsilon^\frac{1}{p} C \frac{d_p(u_s, v_s)}{s} \) for any \(s_{\alpha, \varepsilon} \leq s \leq t \). In particular, using (1), for any fixed \(l > 0 \) such that \(\max(l, s_{\alpha, \varepsilon}) \leq s \leq t \) we have

\[
\frac{d_p(l, \frac{s}{t}h_{t, \alpha})}{l} \leq \frac{d_p(h_{s, \alpha}, \frac{s}{t}h_{t, \alpha})}{s} \leq \varepsilon^\frac{1}{p} C \cdot \frac{d_p(u_s, v_s)}{s} \leq \varepsilon^\frac{1}{p} C \frac{d_p^c(\{u_t\}_t, \{v_t\}_t)}{s}.
\]

By shrinking \(\varepsilon \), the expression on the right can be chosen to be as small as we want, implying that the sequence \(\{(\frac{s}{t}h_{t, \alpha})\}_t \in \mathcal{E}_p^c \) is \(d_p^c \)-Cauchy. This is the crucial step! By [31, Theorem 2], \((\mathcal{E}_p^c, d_p) \) is complete, hence \(\lim \frac{s}{t}h_{t, \alpha} =: w_{s, \alpha} \in \mathcal{E}_p^c \), as proposed.

Moreover, letting \(t \to \infty \) on the left hand side of \((24) \) and \((25) \), we obtain that

\[
\frac{d_p(u_s, w_{s, \alpha})}{s} \leq \alpha d_p^c(\{u_t\}_t, \{v_t\}_t) \quad \text{and} \quad \frac{d_p(v_s, w_{s, \alpha})}{s} \leq (1 - \alpha) d_p^c(\{u_t\}_t, \{v_t\}_t), \quad s > 0.
\]

Letting \(s \to \infty \), together with the triangle inequality this gives

\[
d_p^c(\{u_t\}_t, \{v_t\}_t) = d_p^c(\{u_t\}_t, \{v_t\}_t) + d_p^c(\{w_{t, \alpha}\}_t, \{v_t\}_t),
\]

ultimately implying that \(d_p^c(\{u_t\}_t, \{w_{t, \alpha}\}_t) = \alpha d_p^c(\{u_t\}_t, \{v_t\}_t) \) and \(d_p^c(\{w_{t, \alpha}\}_t, \{v_t\}_t) = (1 - \alpha) d_p^c(\{u_t\}_t, \{v_t\}_t) \). Suppose now that \(0 \leq \alpha \leq \beta \leq 1 \). These last two identities together with the triangle inequality give that

\[
(\beta - \alpha) d_p^c(\{u_t\}_t, \{v_t\}_t) \leq d_p^c(\{w_{t, \beta}\}_t, \{w_{t, \alpha}\}_t).
\]

To finish the proof we show that equality holds in this estimate. Indeed, another application of (1) gives that

\[
\frac{d_p(l, \frac{s}{t}h_{s, \alpha}, \frac{s}{t}h_{s, \beta})}{l} \leq \frac{d_p(h_{s, \alpha}, h_{s, \beta})}{s} = \frac{(\beta - \alpha) d_p(u_s, v_s)}{s}, \quad s > 0.
\]

Letting \(s \to \infty \) in this estimate, and after that \(l \to \infty \), the reverse inequality in (27) follows, finishing the proof.

The \(d_p^c \)-geodesic segment \([0, 1] \ni \alpha \to \{w_{t, \alpha}\}_t \in \mathcal{R}_p^c \) constructed in the above theorem will be called the \(d_p^c \)-chord joining \(\{w_{t, 0}\}_t \) and \(\{w_{t, 1}\}_t \), as this curve is reminiscent of the chords joining the different points in the unit sphere of \(\mathbb{R}^n \).

Finally, using approximation, we point out that the same result holds for \(p = 1 \) as well. First we remark that \(d_p^c \)-chords are automatically \(d_p^c \)-chords for any \(p' \leq p \). This observation is of independent interest, and is the “radial version” of a well known phenomenon for the family of metric spaces \((\mathcal{E}_p^c, d_p)\), \(p \geq 1 \):

Proposition 4.8. Let \(1 \leq p' < p \) and \(\{u_t\}_t, \{v_t\}_t \in \mathcal{R}_p^c \). Trivially \(\{u_t\}_t, \{v_t\}_t \in \mathcal{R}_{p'}^c \), and the \(d_p^c \)-chord \([0, 1] \ni \alpha \to \{w_{t, \alpha}\}_t \in \mathcal{R}_p^c \) connecting \(\{u_t\}_t, \{v_t\}_t \) is also a \(d_{p'}^c \)-chord.
Proof. To start, we trace the steps in the proof of Theorem 4.7 and notice that the curves \(\alpha \to h_{t,\alpha} \), introduced in the argument, did not depend on the particular choice of \(p \).

Fixing \(l \geq 0 \) and \(\alpha \in [0,1] \), the crux of the proof is the fact that \(d_p\left(\frac{l}{s}h_{s,\alpha},\frac{l}{t}h_{t,\alpha}\right) \to 0 \) as \(s, t \to \infty \), which follows from uniform convexity (in case \(p > 1 \), as elaborated in (26). Since \(1 \leq p' < p \), we have that \(d_{p'}(\cdot, \cdot) \leq d_p(\cdot, \cdot) \) and \(\mathcal{E}_p^p \subset \mathcal{E}_p^{p'} \), hence the same conclusion holds for \(p' \) as well:

\[
d_{p'}\left(\frac{l}{s}h_{s,\alpha},\frac{l}{t}h_{t,\alpha}\right) \leq d_p\left(\frac{l}{s}h_{s,\alpha},\frac{l}{t}h_{t,\alpha}\right) \to 0 \quad \text{as} \quad s, t \to 0.
\]

The rest of the proof does not use uniform convexity, and goes through without any difficulties for \(p' \) in place of \(p \), arriving at the conclusion that the chord \([0,1] \ni \alpha \to \{w_{t,\alpha}\}_t \in \mathcal{R}^k_p \subset \mathcal{R}^k_{p'} \) is a \(d_{p'} \)-chord as well. \(\square \)

Theorem 4.9. \((\mathcal{R}^k_\omega, d^k_t)\) is a complete geodesic metric space. Moreover, the \(d^k_t \)-chords of this space can be constructed by the method of Theorem 4.7.

Proof. Given \(\{w_{t,0}\}_t, \{w_{t,1}\}_t \in \mathcal{R}^k_\omega \), we will show that there exists a \(d^k_t \)-chord \([0,1] \ni \alpha \to \{w_{t,\alpha}\}_t \in \mathcal{R}^k_\omega \) joining \(\{w_{t,0}\}_t, \{w_{t,1}\}_t \).

Fix any \(p > 1 \). Using Theorem 4.5 we can find \(\{w_{t,0}^k\}_t, \{w_{t,1}^k\}_t \in \mathcal{R}^k_\omega \subset \mathcal{R}^k_\omega \) such that \(w_{t,0}^k \searrow w_{t,0} \) and \(w_{t,1}^k \nearrow w_{t,1}^1 \) for all \(t \geq 0 \). Let \([0,1] \ni \alpha \to \{w_{t,\alpha}^k\}_t \in \mathcal{R}^k_\omega \subset \mathcal{R}^k_\omega \) be the \(d^k_t \)-geodesic joining \(\{w_{t,0}^k\}_t, \{w_{t,1}^k\}_t \), which exists by Proposition 4.8.

We look at the construction of the curves \(\alpha \to \{w_{t,\alpha}^k\}_t \) in the proof of Theorem 4.7 and attempt to construct \(\alpha \to \{w_{t,\alpha}\}_t \) using the same method.

Using the fact that \(d_t(u,v) = I(u) - I(v) \) for \(u \geq v \), and affinity of \(I \) along finite energy geodesics, one deduces that for any \(\alpha \in [0,1] \) and \(0 \leq s < t \) we have

\[
d_t^1\left(\frac{s}{t}h_{s,\alpha},\frac{s}{t}h_{t,\alpha}\right) = I\left(\frac{s}{t}h_{s,\alpha}\right) - I\left(\frac{s}{t}h_{t,\alpha}\right)
= \frac{s}{t}I(h_{s,\alpha}) - \frac{t}{s}I(h_{t,\alpha})
= \frac{s(1-\alpha)}{t}(I(w_{t,0}^k) - I(w_{t,0})) + \frac{ts}{t}I(w_{t,1}^k) - I(w_{t,1}^k)
= s(1-\alpha)(I(w_{t,0}^k) - I(w_{t,1}^k)) + \alpha I(w_{t,1}^k) - I(w_{t,1}^k),
\]

with the last expression converging to zero regardless of the values of \(t > 0 \). From here we get that \(d_t^1\left(\frac{s}{t}h_{s,\alpha},\frac{s}{t}h_{t,\alpha}\right) \to 0 \) as \(k \to \infty \), uniformly with respect to \(t \).

On the other hand, by Proposition 4.8 (and its proof) we get that \(d_t^1\left(\frac{s}{t}h_{s,\alpha},\frac{s}{t}h_{t,\alpha}\right) \to 0 \) as \(t \to \infty \) for any fixed \(k \geq 0 \).

By construction, each sequence \(\{w_{s,\alpha}^k\}_k \subset \mathcal{E}_\omega \) is decreasing and \(d_1 \)-bounded, hence by [31, Lemma 4.16] there exists \(\{w_{s,\alpha}\}_t \in \mathcal{E}_\omega \) such that \(d_t^1(w_{s,\alpha}, w_{s,\alpha}) \to 0 \) as \(k \to \infty \).

Lastly, the triangle inequality gives:

\[
d_t^1\left(\frac{s}{t}h_{t,\alpha}, w_{s,\alpha}\right) \leq d_t^1\left(\frac{s}{t}h_{s,\alpha},\frac{s}{t}h_{t,\alpha}\right) + d_t^1\left(\frac{s}{t}h_{t,\alpha}, w_{s,\alpha}\right) + d_t^1\left(w_{s,\alpha}, w_{s,\alpha}\right)
\]

Putting everything together, for \(s \geq 0 \) fixed, the first and last term on the right hand side can be made arbitrarily small for big \(k \). Next, with \(k \) fixed, the same is true for the middle term for big \(t \), i.e., \(d_t^1(\frac{s}{t}h_{t,\alpha}, w_{s,\alpha}) \to 0 \) as \(t \to \infty \).

As pointed out in the proof of Proposition 4.8, with this last fact in hand the rest of the proof of Theorem 4.7 goes through without any issues for \(p = 1 \). \(\square \)
Convexity of the radial K-energy. Let $p \geq 1$. The radial K-energy is defined for any $\{u_t\}_t \in \mathcal{R}_w^p$, and is given by the expression

$$\mathcal{K}\{u_t\} := \lim_{t \to \infty} \frac{\mathcal{K}(u_t)}{t},$$

where $\mathcal{K} : \mathcal{E}_w^p \to (-\infty, \infty]$ is the extended K-energy of Mabuchi from [4, 7]. In the setting of unit speed geodesics, this definition agrees with the \mathcal{Y} invariant of [25]. Also, there is clear parallel with the non-Archimedean K-energy of [12] (and references therein).

Lemma 4.10. Let $\{u_t\}_t \in \mathcal{R}_w^p, \{v_t\}_t \in \mathcal{R}_w^p$ parallel, with $u, v \in \mathcal{E}^p$ satisfying $\mathcal{K}(u) < \infty$ and $\mathcal{K}(v) < +\infty$. Then $\mathcal{K}\{u_t\} = \mathcal{K}\{v_t\}$.

Proof. By the proof of Proposition 4.1 we can assume that either $u \leq v$ or $v \leq u$.

For each $t > 0$ let $[0, t] \ni l \mapsto v^l_t \in \mathcal{E}_w^p$ be the finite energy geodesic connecting $v^0_t := v$ and $v^1_t := u_t$. It follows from Proposition 4.1 (and its proof) that $\lim_{t \to +\infty} d_p(v^l_t, v^l_t) = 0$ for each l fixed. By convexity of \mathcal{K} [7, Theorem 1.2], for any $0 < l < t$ we have that

$$\mathcal{K}(v^l_t) \leq \left(1 - \frac{l}{t}\right)\mathcal{K}(v) + \frac{l}{t} \mathcal{K}(u_t).$$

Thus, letting $t \to +\infty$ and using lower semicontinuity of \mathcal{K} w.r.t. d_p we obtain

$$\frac{\mathcal{K}(v^l_t)}{t} \leq \frac{\mathcal{K}(v)}{t} + \mathcal{K}\{u_t\}.$$

Letting $l \to +\infty$ yields $\mathcal{K}\{v_t\} \leq \mathcal{K}\{u_t\}$. The reverse inequality is obtained by reversing the roles of u, v. \hfill \Box

By the above lemma it makes sense to restrict to \mathcal{R}_w^p when considering the radial K-energy. Since d_p^e-convergence implies d_p^c-convergence it follows from [25, Proposition 5.9] that the resulting functional

$$\mathcal{K}\{\cdot\} : \mathcal{R}_w^p \to (-\infty, \infty]$$

is d_p^c-lsc. In the last result of this section we point out that $\mathcal{K}\{\cdot\}$ is also convex along the chords of \mathcal{R}_w^p for any $p \geq 1$:

Theorem 4.11. Suppose that $p \geq 1$ and $[0, 1] \ni \alpha \to \{w_{t, \alpha}\}_t \in \mathcal{R}_w^p$ is a d_p-chord joining $\{u_t\}_t, \{v_t\}_t \in \mathcal{R}_w^p$. Then $\alpha \to \mathcal{K}\{w_{t, \alpha}\}$ is convex.

Proof. We use the notation and terminology of the proof of Theorems 4.7 and 4.9, and normalize \mathcal{K} such that $\mathcal{K}(0) = 0$. Using convexity of \mathcal{K} along finite energy geodesics [7, Theorem 1.2] we know that for any $0 < s \leq t$ and $\alpha \in [0, 1]$ we have

$$\frac{\mathcal{K}(\frac{s}{t}h_{t, \alpha})}{s} \leq \frac{\mathcal{K}(h_{t, \alpha})}{t} \leq (1 - \alpha) \frac{\mathcal{K}(u_t)}{t} + \alpha \frac{\mathcal{K}(v_t)}{t}.$$

Since $d_p(\frac{s}{t}h_{t, \alpha}, w_{s, \alpha}) \to 0$, given that \mathcal{K} is d_p-lsc ([7, Theorem 1.2]) it follows that

$$\frac{\mathcal{K}(w_{s, \alpha})}{s} \leq \liminf_{t \to \infty} \frac{\mathcal{K}(\frac{s}{t}h_{t, \alpha})}{s} \leq (1 - \alpha)\mathcal{K}\{u_t\} + \alpha\mathcal{K}\{v_t\}.$$

The result now follows after taking the limit $s \to \infty$. \hfill \Box

Remark 4.12. Many theorems that hold for the finite energy metric spaces (\mathcal{E}_w^p, d_p) admit a radial version for (\mathcal{R}_w^p, d_p). As we already pointed out, Theorem 1.4, Lemma 4.3, and also Theorem 5.1 below are examples of this phenomenon. This does not seem to be limited to only these results either. Indeed, though we will not pursue this further here, one can introduce radial analogs of the operators max(\cdot, \cdot) and $P(\cdot, \cdot)$, and similar identities/inequalities/results hold for these as the ones described in [31, 32].
5 Approximation with converging radial K-energy

Approximation with rays of bounded potentials

The goal of this subsection is to strengthen the conclusion of Theorem 4.5 and obtain Theorem 1.5(i) in the process:

Theorem 5.1. Let \(\{u_t\}_t \in \mathcal{R}_p^n \), \(p \geq 1 \). Then there exists a sequence \(\{u'_t\}_t \in \mathcal{R}_{p}^{\infty} \) such that \(u'_t \) decreases to \(u_t \), for each \(t > 0 \) fixed and \(\mathcal{K}\{u'_t\} \to \mathcal{K}\{u_t\} \). In particular

\[
\lim_{j \to +\infty} d_p^{c}(\{u'_t\}, \{u_t\}) = 0.
\]

In case \(\mathcal{K}\{u_t\} = +\infty \), by the fact that \(\mathcal{K}\{\cdot\} \) is \(d_p^{-}\text{-lsc} \) [25, Proposition 5.9], we will simply invoke Theorem 4.5 for the existence of the sequence of \(\{u'_t\} \). If \(\mathcal{K}\{u_t\} \) is finite, we will need a much more delicate argument, resting on the relative Kolodziej type estimate of [37, Theorem 3.3], as detailed in the argument below.

At places, the argument below shares some similarities with the proof of [39, Theorem 3.2], with the the relative Kolodziej type estimate of [37] taking the place of Perelman’s estimates along the Kähler–Ricci flow on Fano manifolds. Before engaging in the proof of Theorem 5.1, we prove an auxiliary lemma:

Lemma 5.2. Let \(\{u_t\}_t \in \mathcal{R}^1_{\omega} \) with \(\sup_X u_t = 0 \), \(t \geq 0 \). Then

\[
\lim_{j \to \infty} \limsup_{t \to +\infty} \int_{\{u_t \leq -jt\}} \frac{(-u_t)}{t} \omega^n_{u_t} = 0.
\]

Proof. Indeed, it follows from Theorem 4.5 that we can choose \(\{u'_t\}_t \in \mathcal{R}^1_{\omega} \) such that \(u_t \leq \max(u_t, -jt) \leq u'_t \leq 0 \) and \(d_{p}^{c}(\{u'_t\}, \{u_t\}) = \lim_{t \to \infty} \frac{I(u'_t) - I(u_t)}{t} = 0 \). From monotonicity and elementary properties of \(I(\cdot) \) we conclude that \(\lim_{t \to \infty} I(\max(u_t, -jt)) - I(u_t) = 0 \), ultimately implying

\[
0 \leq \lim_{j \to \infty} \lim_{t \to \infty} \int_X \max(u_t, -jt) - u_t \omega^n_{u_t} \leq (n+1) \lim_{j \to \infty} \frac{I(\max(u_t, -jt)) - I(u_t)}{t} = 0.
\]

Consequently both limits are equal to zero, and on the set \(\{u_t \leq -2jt\} \), we have \(0 \geq \max(u_t, -jt) - u_t \geq -\frac{2jt}{t} \). This and the above together yield (29).

Proof of Theorem 5.1. Using Theorem 4.5 and the fact that \(\mathcal{K}\{\cdot\} \) is \(d_p^{-}\text{-lsc} \), we can assume that \(\mathcal{K}\{u_t\} < +\infty \). Also, via Lemma 2.1, by possibly adding \(Ct \) to \(u_t \) we can additionally assume that \(\sup_X u_t = 0 \), i.e., \(t \to u_t \) is \(t\)-decreasing with \(u_{\infty} := \lim_{t \to \infty} u_t \in \text{PSH}(X, \omega) \).

For each \(j > 1, t > 1 \), we let \(\varphi_j^t \in \mathcal{E}(X, \omega) \) be the unique \(\omega\)-psh function, whose existence is guaranteed by [53, Theorem A], such that

\[
\omega^n_{\varphi_j^t} = \left(1 - \frac{1}{2j} \right) \chi_{\{u_t > -jt\}} \omega^n_{u_t} + a_{j,t} \omega^n, \quad \sup_X \varphi_j^t = 0,
\]

where \(0 \leq a_{j,t} \leq 1 \) is a constant arranged so that the measure on the right hand side has total mass equal to \(\int_X \omega^n \).

Next we point out that the conditions of Theorem 2.2 are satisfied with appropriate choice of data. Let \(a := \left(1 - \frac{1}{2j} \right)^{1/2} \in (0,1) \), \(u := \varphi_j^t \), \(\chi := \left(1 - \frac{1}{2j} \right)^{1/2n} \max(u_t, -jt) \),
and \(f := 1 \). Then, using locality of the non-pluripolar complex Monge–Ampère measure (see e.g. [53, Corollary 1.7]) we have that
\[
\omega^n_{\max(u_t,-jt)} \geq \mathbb{1}_{\{u_t < -jt\}} \omega^n_{ut},
\]
hence,
\[
\omega^n_u \leq a \omega^n_x + f \omega^n.
\]
Moreover, due to [14, Proposition 4.3] and [37, Lemma 4.2], there exists \(A(X, \omega) > 0 \) such that for any Borel set \(E \subset X \) we have
\[
\int_E f \omega^n = \int_E \omega^n \leq A \operatorname{Cap}_\omega(E)^2 \leq A \left(1 - \left(1 - \frac{1}{27} \right)^{1/2n} \right)^{-2n} \operatorname{Cap}_\chi(E)^2,
\]
where \(\operatorname{Cap}_\omega \) is the usual Monge–Ampère capacity and \(\operatorname{Cap}_\chi \) is its relative version from [37, Section 3]. Lastly, we note that \(\chi \leq 0 = P[\varphi_j] \), due to [30, Theorem 3], hence all the conditions of Theorem 2.2 are satisfied to imply that
\[
\varphi_j^l = u \geq \chi - C_{j_l} \geq \max(u_t,-jt) - C_j,
\]
where \(C_j > 0 \) is a constant depending on \(j \), but not on \(l > 1 \)! In particular \(\varphi_j^l \) is bounded.

Moreover, for \(1 < j < k \) and \(l > 1 \) we have
\[
\omega^n_{\varphi_j^l} \leq \frac{1 - 2^{-j}}{1 - 2^{-k}} \omega^n_{\varphi_k^l} + \omega^n.
\]
Similarly to (30), this allows for another application of Theorem 2.2, with the choice of data \(a := \left(\frac{1 - 2^{-j}}{1 - 2^{-k}} \right)^{1/2} \in (0,1) \), \(u := \varphi_j^l \), \(\chi := \left(\frac{1 - 2^{-j}}{1 - 2^{-k}} \right)^{1/2} \varphi_k^l \), and \(f := 1 \). Similarly to the above, the conditions of Theorem 2.2 are satisfied to yield that
\[
\varphi_j^l = u \geq \chi - C_{j,k} \geq \varphi_k^l - C_{j,k},
\]
where \(C_{j,k} > 0 \) depends on \(j, k \), but not on \(l > 1 \)!

For each \(l > 1 \) let \([0,l] \ni t \mapsto u_j^l,t \) be the bounded geodesic segment joining \(0 \) and \(\varphi_j^l + C_j \). Then (31) and (32) together with the comparison principle for finite energy geodesics implies that
\[
\frac{C_j}{l} \geq u_j^l,t \geq \max(u_t,-jt), \quad t \in [0,l],
\]
and
\[
\frac{C_j}{l} \geq u_j^l,t \geq u_k^l,t - \frac{D_{j,k}}{l}, \quad 0 < j < k, \quad t \in [0,l],
\]
where \(D_{j,k} \) depends on \(j, k \) but not on \(l > 1 \).

To show that the above geodesic sequences subconverge to appropriate geodesic rays, we first prove a number of estimates in the claims below.

Claim 1. For any \(j > 1 \) we have
\[
\limsup_{t \to +\infty} \frac{\operatorname{Ent}(\omega^n, \omega^n_{\varphi_j^l})}{t} \leq \limsup_{t \to +\infty} \frac{\operatorname{Ent}(\omega^n, \omega^n_{u_t})}{t}.
\]
Since \(\operatorname{Ent}(\omega^n, \omega^n_{u_t}) < +\infty \), for any \(t \geq 0 \), we can write \(\omega^n_{\varphi_j^l} = f_{t,j} \omega^n \) and \(\omega^n_{u_t} = f_t \omega^n \).

Observe first that for any \(g_t \geq 0 \) with \(t \chi \omega^n = \int_X \omega^n \) we have that
\[
\limsup_{t \to +\infty} \int_X g_t \frac{\log(g_t)}{t} \omega^n = \limsup_{t \to +\infty} \int_X \frac{(g_t + B) \log(g_t + B)}{t} \omega^n, \quad \forall B \geq 1.
\]
This follows after splitting up both integrals using the partition \(\{0 \leq g_t \leq C\} \) and \(\{C < g_t\} \) for \(C > 0 \) big and noticing that the \(\limsup \) of integrals on \(\{0 \leq g_t \leq C\} \) is always zero.

By construction, \(1 \leq f_{t,j} + 1 \leq f_t + 2 \) and hence, since \(s \mapsto s \log(s), s > 1 \) is increasing, \((f_{t,j} + 1) \log(f_{t,j} + 1) \leq (f_t + 2) \log(f_t + 2) \). Using the above we then conclude:

\[
\limsup_{t \to +\infty} \int_X \frac{f_{t,j} \log(f_{t,j})}{t} \omega^n = \limsup_{t \to +\infty} \int_X \frac{(f_{t,j} + 1) \log(f_{t,j} + 1)}{t} \omega^n \\
\leq \limsup_{t \to +\infty} \int_X \frac{(f_t + 2) \log(f_t + 2)}{t} \omega^n \\
= \limsup_{t \to +\infty} \int_X \frac{f_t \log(f_t)}{t} \omega^n.
\]

Claim 2. We have

\[
\lim_{j \to +\infty} \limsup_{t \to +\infty} \frac{\mathcal{I}(\varphi_t^j, u_t)}{t} = 0.
\]

Before we start with the argument, we recall that \(\mathcal{I}(v, w) = \int_X (v - w) (\omega^n_w - \omega^n_v) \) for \(v, w \in E^1_\omega \). By (30) we have

\[
\mathcal{I}(\varphi_t^j, u_t) \leq \frac{1}{2j} \int_X |\varphi_t^j - u_t| \omega^n_{\varphi_t^j} + \int_{\{u_t \leq -j\}} |\varphi_t^j - u_t| \omega^n_{u_t} + \int_X |\varphi_t^j - u_t| \omega^n,
\]

and the claim follows from the following three estimates. First, the estimate of (31) and basic properties of \(I(\cdot) \) give that

\[
\lim_{j \to +\infty} \limsup_{t \to +\infty} \frac{1}{2j} \int_X |\varphi_t^j - u_t| \omega^n_{\varphi_t^j} \leq \lim_{j \to +\infty} \limsup_{t \to +\infty} \frac{C_j}{t} + \lim_{j \to +\infty} \limsup_{t \to +\infty} \frac{|I(u_t)|}{t} = 0. \quad (35)
\]

Second, by the dominated convergence theorem we have that

\[
\lim_{t \to +\infty} \int_X \frac{|\varphi_t^j - u_t|}{t} \omega^n \leq \lim_{t \to +\infty} \int_X \frac{|C_j - u_j|}{t} \omega^n = 0. \quad (36)
\]

Third, by Lemma 5.2 and (31),

\[
\lim_{j \to +\infty} \limsup_{t \to +\infty} \int_{\{u_t \leq -j\}} \frac{|\varphi_t^j - u_t|}{t} \omega^n_{u_t} \leq \lim_{j \to +\infty} \limsup_{t \to +\infty} \int_{\{u_t \leq -j\}} \frac{|u_t| + C_j}{t} \omega^n_{u_t} = 0. \quad (37)
\]

Claim 3. We have

\[
\lim_{j \to +\infty} \limsup_{t \to +\infty} \frac{|I(\varphi_t^j) - I(u_t)|}{t} = 0.
\]

This claim follows from Claim 2 and Lemma 5.3 below, with \(\varphi_1 = \varphi_t^j, \varphi_2 = u_t \) and \(\psi = 0 \). Indeed, given (31), we have that \(\max(-I(\varphi_t^j), -I(u_t)) \simeq Ct + C_j \), for a uniform constant \(C \). Lemma 5.3 then gives

\[
\left| \int_X (\varphi_t^j - u_t)(\omega^n_{u_t} - \omega^n) \right| \leq (Ct + C_j) f \left(\mathcal{I}(\varphi_t^j, u_t)/(Ct + C_j) \right).
\]

Hence

\[
\lim_{j \to +\infty} \limsup_{t \to +\infty} \left| \int_X \frac{(\varphi_t^j - u_t)}{t}(\omega^n_{u_t} - \omega^n) \right| = 0.
\]
Again, due to (31) and elementary properties of $I(\cdot)$ we have that

$$0 \leq \limsup_{t \to +\infty} \frac{I(\varphi_t^j) - I(u_t)}{t} \leq \limsup_{t \to +\infty} \int_X \frac{\varphi_t^j - u_t}{t} \omega_{u_t}^n.$$

Putting these last two estimates together and (36), the claim follows.

Claim 4. For any closed smooth real $(1,1)$-form α we have

$$\lim \limsup_{j \to +\infty} \left| \frac{I_\alpha(\varphi_t^j) - I_\alpha(u_t)}{t} \right| = 0.$$

Recall that $I_\alpha(v) := \sum_{j=0}^{n-1} \int_X v \alpha \wedge \omega_v^n$. Since α can be written as the difference of two Kähler forms, and $I_\alpha(\cdot)$ is monotone when $\alpha \geq 0$, notice that the claim follows if we can argue that

$$\lim \limsup_{j \to +\infty} \left| \frac{I_\omega(\varphi_t^j + C_j) - I_\omega(u_t)}{t} \right| = \lim \limsup_{j \to +\infty} \left| \frac{I_\omega(\varphi_t^j) - I_\omega(u_t)}{t} \right| = 0.$$

Using (31) we observe that this last identity is a consequence of

$$\lim \limsup_{j \to +\infty} \left| \frac{I_\omega(\varphi_t^j + C_j) - I_\omega(u_t)}{t} \right| = \lim \limsup_{j \to +\infty} \left| \frac{I_\omega(\varphi_t^j) - I_\omega(u_t)}{t} \right| = 0.$$

However we have that

$$\frac{I_\omega(\varphi_t^j) - I_\omega(u_t)}{t} = \frac{(n+1)(I(\varphi_t^j) - I(u_t))}{t} = \int_X \frac{\varphi_t^j \omega_{\varphi_t^j}^n - \int_X u_t \omega_{u_t}^n}{t}.$$

So, by Claim 3, it is enough to show that

$$\lim \limsup_{j \to +\infty} \left| \frac{\int_X \varphi_t^j \omega_{\varphi_t^j}^n - \int_X u_t \omega_{u_t}^n}{t} \right| = 0.$$

Again, due to (31) and elementary properties of $I(\cdot)$ we have that

$$\lim \limsup_{j \to +\infty} \left| \frac{\int_X (\varphi_t^j - u_t) \omega_{\varphi_t^j}^n}{t} \right| \leq \lim \limsup_{j \to +\infty} \left| \frac{I(\varphi_t^j) - I(u_t)}{t} \right| = 0,$$

where the last identity follows from Claim 3. Due to (30) and (36) we also have

$$\lim \limsup_{j \to +\infty} \left| \frac{\int_X u_t \left(\omega_{\varphi_t^j}^n - \omega_{u_t}^n \right)}{t} \right| \leq \lim \limsup_{j \to +\infty} \left(\frac{1}{2t} \int_X \frac{|u_t|}{t} \omega_{u_t}^n + \int_{\{u_t \leq -tj\}} \frac{|u_t|}{t} \omega_{u_t}^n \right) = 0,$$

where the last equality follows from Lemma 5.2 and the fact that $\int_X |u_t| \omega_{u_t}^n \leq d_t(0, u_t) = t d_1(0, u_1)$ ([31, Theorem 3]).

Conclusion. To start, we recall the Chen–Tian formula for the K-energy that extends to \mathcal{E}_ω^1 (see [7, Theorem 1.2]):

$$\mathcal{K}(u) = \text{Ent}(\omega_u^n, \omega_u^n) + \overline{\mathcal{S}}I(u) - n I_{\text{Ric}} \omega(u), \quad u \in \mathcal{E}_\omega^1.$$
There exists an increasing sequence \(l_k \to +\infty \) such that \(\lim_{k \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{l_k} = \lim_{t \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{t} \). It then follows that

\[
\limsup_{k \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{\varphi_{l_k}^j}^n) - \text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{l_k} = \limsup_{k \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{\varphi_{l_k}^j}^n)}{l_k} - \lim \frac{\text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{l_k}
\]

\[
\leq \limsup_{t \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{\varphi_{l_k}^j}^n)}{t} - \limsup_{t \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{t}.
\]

It thus follows from Claim 1 that

\[
\lim_{j \to +\infty} \limsup_{k \to +\infty} \frac{\text{Ent}(\omega^n, \omega_{\varphi_{l_k}^j}^n) - \text{Ent}(\omega^n, \omega_{u_{l_k}}^n)}{l_k} \leq 0. \tag{38}
\]

We continue with

\[
\limsup_{k \to +\infty} \frac{\mathcal{K}(\varphi_{l_k}^j)}{l_k} \leq \limsup_{k \to +\infty} \frac{\mathcal{K}(\varphi_{l_k}^j) - \mathcal{K}(u_{l_k})}{l_k} + \limsup_{k \to +\infty} \frac{\mathcal{K}(u_{l_k})}{l_k}.
\]

Thus, using the Chen–Tian formula together with (38) and the estimates of Claims 3, 4, we can continue to write that

\[
\lim_{j \to +\infty} \limsup_{k \to +\infty} \frac{\mathcal{K}(\varphi_{l_k}^j)}{l_k} \leq \mathcal{K}\{u_t\}.
\]

As a result, there exists an increasing sequence \(\{j_m\}_m \subset \mathbb{N} \) such that

\[
\limsup_{k \to +\infty} \frac{\mathcal{K}(\varphi_{l_k}^{j_m})}{l_k} \leq \mathcal{K}\{u_t\} + \frac{1}{m}.
\]

Hence, returning to the geodesic segments constructed at the beginning of the argument, by convexity of the K-energy we have, for all \(t \in [0, l_k] \),

\[
\limsup_{k \to +\infty} \frac{\mathcal{K}(u_{l_k}^{j_m})}{t} \leq \limsup_{k \to +\infty} \frac{\mathcal{K}(\varphi_{l_k}^{j_m})}{l_k} \leq \mathcal{K}\{u_t\} + \frac{1}{m}. \tag{39}
\]

Let us fix \(m \geq 1 \) and \(t \in \mathbb{Q}^+ \) momentarily. We use the compactness property of \(\mathcal{E}_1^1_\omega \) (see [7, Corollary 4.8]) to extract a subsequence (again denoted by \(l_k = l_k(m, t) \)) such that \(d_1(u_{l_k}^{j_m}, u_{l_k}^m) \to 0 \) as \(k \to \infty \) for some \(u_{l_k}^m \in \mathcal{E}_1^1_\omega \). Using a diagonal Cantor process it is actually possible to pick the same subsequence of \(\{l_k\}_k \) for each \(m \geq 1 \) and \(t \in \mathbb{Q}^+ \). Moreover, due to the endpoint stability of geodesic segments [7, Proposition 4.3], we get that the convergence extends for all \(t \geq 0 \): there exists \(u_t^m \in \mathcal{E}_1^1_\omega \) such that \(d_1(u_{l_k}^{j_m}, u_t^m) \to 0 \) as \(k \to \infty \) for any \(t \geq 0 \) and \(\{u_t^m\}_t \in \mathcal{R}_\omega^\infty \).

Now we prove additional properties for our sequence \(\{u_t^m\}_t \). By (33), we notice that

\[
\max(u_t, -j_mt) \leq u_t^m \leq 0. \tag{40}
\]
Moreover, by (34) we also have that \(\{u_t^m\}_t \) is \(m \)-decreasing!

Fixing \(t > 0 \), since \(d_1(u_t^{m,k}, u_t^m) \to 0 \) as \(k \to \infty \), due to \(d_1 \)-lower semicontinuity of \(\mathcal{K} \), from (39) we obtain that

\[
\frac{\mathcal{K}(u_t^m)}{t} \leq \mathcal{K}\{u_t\} + \frac{1}{m}, \quad \forall t > 0, \tag{41}
\]

hence \(\mathcal{K}\{u_t^m\} \leq \mathcal{K}\{u_t\} + \frac{1}{m} \), as desired.

Next, we argue that \(d_1(u_t^m, u_t) \to 0 \) for any \(t \geq 0 \), as \(m \to \infty \). But this is simply a consequence of Claim 3. Indeed, due to (40), we only need to argue that:

\[
\lim_{m \to +\infty} \frac{d_1(u_t^m, u_t)}{t} = \lim_{m \to +\infty} \frac{I(u_t^m) - I(u_t)}{t} = 0. \tag{42}
\]

But from \(I \)-linearity, for any \(t \in [0, l_k] \) we have that

\[
\frac{I(u_t^m) - I(u_t)}{t} = \limsup_{k \to \infty} \frac{I(u_t^{l,m}) - I(u_t)}{t} = \limsup_{k \to \infty} \frac{I(u_{l_k}^{l,m}) - I(u_{l_k})}{l_k},
\]

and the right hand side converges to zero as \(m \to +\infty \), by Claim 3.

Finally, \(d_1(u_t^m, u_t) \to 0 \) implies that \(u_t^m \searrow u_t \) ([31, Theorem 5]), hence we can invoke Lemma 4.3 to conclude that \(d_{\phi}^p(\{u_t^m\}_t, \{u_t\}_t) \to 0 \), as \(m \to \infty \).

In the above argument we have used the following lemma whose proof goes along the same lines as [6, Theorem 5.8]:

Lemma 5.3. There exists a continuous non-decreasing function \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) with \(f(0) = 0 \) such that for all \(0 \geq \varphi_1, \varphi_2, \psi \in \mathcal{E}^1_\omega \), we have

\[
\left| \int_X (\varphi_1 - \varphi_2)(\omega_\varphi^m - \omega_\psi^m) \right| \leq Af(I(\varphi_1, \varphi_2)/A),
\]

where \(A = \max(-I(\varphi_1), -I(\varphi_2), -I(\psi), 1) \).

In the proof below we use \(C_n > 0 \) to denote various numerical constants (only dependent on \(\dim X = n \)) and \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) to denote a continuous non-decreasing function such that \(f(0) = 0 \). They may be different from place to place.

Proof. By approximation of finite energy potentials from above by smooth ones, we can assume that \(\varphi_1, \varphi_2, \psi \) are smooth (the convergence of the integrals is assured by the results of [53], see for example [33, Proposition 2.11]). We set \(u = \varphi_1 - \varphi_2 \) and \(v = (\varphi_1 + \varphi_2)/2 \). For \(p = 0, \ldots, n \) let

\[
a_p := \int_X u \omega_\varphi^p \wedge \omega_\psi^{n-p} \quad \text{and} \quad b_p := \int_X i \partial u \wedge \bar{\partial} u \wedge \omega_\varphi^p \wedge \omega_\psi^{n-p-1}.
\]

It follows from [53, Proposition 2.5] that

\[
I(\psi_1, \psi_2) \leq C_n(\|I(\psi_1)\| + \|I(\psi_2)\|), \quad \text{for all } 0 \geq \psi_1, \psi_2 \in \mathcal{E}^1_\omega. \tag{43}
\]

In particular, \(I(\psi, \varphi_j) \leq C_n A, \ j = 1, 2. \)

27
For $p = 0, 1, \ldots, n - 1$ we have, using integration by parts and by the Cauchy–Schwarz inequality,

$$|a_p - a_{p+1}| = \left| \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-1} \right|$$

$$\leq \left(\int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-1} \right)^{\frac{1}{2}} \left(\int_X i \partial (\psi - \varphi_2) \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-1} \right)^{\frac{1}{2}}$$

$$\leq C_n b_p^\frac{1}{2} (\mathcal{I}(\varphi_2, \psi))^{1/2} \leq C_n b_p^\frac{1}{2} A^\frac{1}{2}.$$

In the last line above we have used $\omega_{\varphi_2} \leq 2 \omega_\psi$ and the inequality

$$\int_X i \partial (\psi - \varphi_2) \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-1} \leq \int_X (\psi - \varphi_2)(\omega_{\varphi_2}^n - \omega_\psi^n).$$

It thus follows, by summing up the estimates of $|a_p - a_{p+1}|$ above for $p = 0, \ldots, n - 1$, that

$$|a_0 - a_n| \leq C_n A^\frac{1}{2} \sum_{p=0}^{n-1} b_p^\frac{1}{2}. \quad (44)$$

We claim that there is a non-decreasing continuous function $f : \mathbb{R}^+ \to \mathbb{R}^+$ with $f(0) = 0$ such that

$$b_p \leq Af(\mathcal{I}(\varphi_1, \varphi_2)/A), \quad 0 \leq p \leq n - 1.$$

We proceed by (backwards) induction. For $p = n - 1$ we can simply take $f(s) = C_n s$, $s \geq 0$. By the same argument as above using integration by parts and the Cauchy–Schwarz inequality we have, for $0 \leq p \leq n - 2$,

$$b_p - b_{p+1} = \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2}$$

$$\leq \left| \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge \omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2} \right|$$

$$\leq \left| \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge (\omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-1}) \right|$$

$$\leq \left| \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge (\omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2}) \right| + \left| \int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge (\omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2}) \right|$$

$$\leq C_n \left(\int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge (\omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2}) \right)^{\frac{1}{2}} \left(\int_X i \dot{\varphi} \wedge \partial (\psi - \varphi_2) \wedge (\omega_{\varphi_2}^p \wedge \omega_\psi^{n-p-2}) \right)^{\frac{1}{2}}$$

$$\leq C_n \mathcal{I}(\varphi_2, \psi)^{\frac{1}{2}} b_{p+1}^\frac{1}{2},$$

where we used several times that $\omega_{\varphi_2} \leq 2 \omega_\psi$. Using (43) we thus have

$$b_p \leq b_{p+1} + AC_n (b_{p+1}/A)^{\frac{1}{2}} \leq Af(\mathcal{I}(\varphi_1, \varphi_2)/A) + AC_n f(\mathcal{I}(\varphi_1, \varphi_2)/A)^{\frac{1}{2}}.$$

Consequently, by possibly increasing f, we have that $b_p \leq Af(\mathcal{I}(\varphi_1, \varphi_2)/A)$, proving the claim. Comparing with (44), we thus have

$$|a_0 - a_n| \leq Af(\mathcal{I}(\varphi_1, \varphi_2)/A),$$

what we wanted to prove. \qed
Approximation with rays of $C^{1,1}$ potentials

The goal of this subsection is to prove Theorem 1.5(ii):

Theorem 5.4. Let $p \geq 1$. Suppose that $\{u_t\}_t \in \mathcal{R}_p^\infty$ is such that $\mathcal{K}\{u_t\} < \infty$. Then there exists $\{v_t^k\}_t \subset \mathcal{R}_\omega^{1,1}$ such that $v_t^k \searrow u_t$, $t \geq 0$, $d_p^c(\{v_t^k\}_t, \{u_t\}_t) \to 0$ and $\mathcal{K}\{v_t^k\} \to \mathcal{K}\{u_t\}$.

To argue this result, we need two auxiliary theorems, whose proof will be given at the end of the section. First we will need the following theorem, which will allow to obtain “scaled” $C^{1,1}$ estimates along geodesic rays, via convexity:

Theorem 5.5. Let $[0,1] \ni t \to u_t \in \mathcal{H}_\omega^{1,1}$ be the $C^{1,1}$-geodesic connecting $u_0, u_1 \in \mathcal{H}_\omega^{1,1}$. Then there exists $B > 0$, only depending on (X, ω) such that

$$[0,1] \ni t \to \operatorname{ess sup}_X (\log(n + \Delta_\omega u_t) - Bu_t) \in \mathbb{R}$$

is a convex function.

The proof of this theorem is obtained using the estimates developed in [57]. We will also need the following smoothing argument along bounded geodesic rays, relying on the regularizing property of the weak Monge-Ampère flows, closely following the arguments of [54]:

Theorem 5.6. Let $B > 0$ be from Theorem 5.5, and $\{u_t\}_t \in \mathcal{R}_\omega^\infty$ with $\mathcal{K}\{u_t\} < \infty$ and $\sup_X u_t = 0$, $t \geq 0$. Then there exists $\alpha > 0$ depending on (X, ω) such that for all $s > 0$ and $j \in \mathbb{N}$ one can find $u_j^s \in \mathcal{H}_\omega$ satisfying the following conditions:

(i) $\{u_j^s\}_j$ is decreasing and $u_s \leq u_j^s \leq \alpha j 2^{-j}$,
(ii) $\sup_X (\log(n + \Delta_\omega u_j^s) - Bu_j^s) \leq \alpha 2^j (1 + s)$,
(iii) $d_1(u_j^s, u_s) \leq \alpha 2^{-j} s + \alpha j 2^{-j}$,
(iv) $\operatorname{Ent}(\omega^n, \omega_{u_j^s}^n) \leq \operatorname{Ent}(\omega^n, \omega_u^n)$.

Proof of Theorem 5.4. First we assume that $\{u_t\}_t \in \mathcal{R}_\omega^\infty$ and $\sup_X u_t = 0$, $t \geq 0$. If $\{u_t\}_t$ is the constant ray then we are done, hence after rescaling we can also assume that $d_1(0, u_t) = t$, $t \geq 0$. Let $\{u_j^s\}_{s,j \in \mathbb{N}}$ be the potentials constructed as in Theorem 5.6.

Let us fix $j \in \mathbb{N}$ momentarily. Given $s > 0$, by $[0, s] \ni t \to u^{j,s}_t \in \mathcal{H}_\omega^{1,1}$ we denote the $C^{1,1}$ geodesic connecting $u^{j,s}_0 := 0$ and $u^{j,s}_s := u_j^s$. Using condition (i) in Theorem 5.6 and the comparison principle we get that

$$u_t \leq u^{j,s}_t \leq \frac{\alpha j 2^{-j} t}{s}, \quad t \in [0, s]. \quad (45)$$

Given $t \in (0, s]$, by condition (ii) in Theorem 5.6 and Theorem 5.5 we have that

$$\frac{\operatorname{ess sup}_X (\log(1 + \frac{1}{s} \Delta_\omega u^{j,s}_t) - Bu^{j,s}_t)}{t} \leq \frac{\sup_X (\log(1 + \frac{1}{s} \Delta_\omega u^j_t) - Bu^j_t)}{s} \leq \alpha 2^j \left(1 + \frac{1}{s}\right). \quad (46)$$

Finally, (1) and condition (iii) in Theorem 5.6 implies that

$$\frac{d_1(u^{j,s}_t, u_t)}{t} \leq \alpha 2^{-j} + \frac{\alpha}{s}, \quad t \in [0, s]. \quad (47)$$

Fixing $t > 0$, (45) and (46) gives that $\{u^{j,s}_t\}_{s > t}$ is compact in the $C^{1,\alpha}$ topology, implying existence of $v_t^j \in \mathcal{H}_\omega^{1,1}$ such that $\|v_t^j - u^{j,s}_t\|_{C^{1,\alpha}} \to 0$ as $s \to \infty$ (after passing to
a subsequence). Moreover, letting \(s \to \infty \) in (45), (46) and (47), using Lemma 7.1, we arrive at

\[
\frac{d_1(v^j_t, u_t)}{t} \leq \alpha 2^{-j}, \quad t \in (0, \infty). \tag{48}
\]

Using an Arzela–Ascoli type argument exactly the same way as in the proof of Theorem 5.1, after passing to a subsequence, we can assume that \(\|v^j_t - u^n_t\|_{C^{1,\alpha}} \to 0 \) for all \(t > 0 \) at the same time, implying existence of \(\{v^j_t\} \in \mathcal{R}^{1,1} \) for any \(j \in \mathbb{N} \) with \(d_1(\{v^j_t\}, \{u_t\}) \to 0 \) as \(j \to \infty \). Remark 4.4 implies that \(d^c(\{v^j_t\}, \{u_t\}) \to 0 \), as desired.

Finally, due to the fact that \(\{u^n_j\}_j \) is decreasing for any \(s > 0 \), so is \(\{u^j_n\}_j \) for any \(t \in [0,s] \). A diagonal Cantor process now implies that \(\{v^j_t\}_j \) can be chosen to be decreasing for any \(t > 0 \).

To show that \(\mathcal{K}\{v^j_t\} \to \mathcal{K}\{u_t\} \), we first note that by [25, Proposition 5.9] we have \(\mathcal{K}\{u_t\} \leq \lim \inf_j \mathcal{K}\{v^j_t\} \). Hence it is enough to show that \(\mathcal{K}\{v^j_t\} \leq \mathcal{K}\{u_t\} + f(\alpha 2^{-j}) \) for any \(j \in \mathbb{N} \), where \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) is some continuous function with \(f(0) = 0 \).

To prove this, we recall the Chen–Tian formula for the K-energy that extends to \(\mathcal{E}_\omega^1 \) (see [7, Theorem 1.2]):

\[
\mathcal{K}(u) = \text{Ent}(\omega^n, \omega^n_u) + \overline{S} I(u) - n I_{\text{Ric}}(u), \quad u \in \mathcal{E}_\omega^1. \tag{49}
\]

Now, using conditions (iii) and (iv) in Theorem 5.6 we can start writing:

\[
\frac{\mathcal{K}(u^j_s) - \mathcal{K}(u_s)}{s} \leq \frac{|\mathcal{I}(u^j_s, u_s)|}{s} + n \frac{I_{\text{Ric}}(u^j_s) - I_{\text{Ric}}(u_s)}{s} \leq \frac{\alpha}{s} + \alpha 2^{-j} \frac{|\mathcal{I}|}{s} + n \frac{I_{\text{Ric}}(u^j_s) - I_{\text{Ric}}(u_s)}{s}. \tag{50}
\]

We can suppose that \(-C\omega \leq \text{Ric} \omega \leq C\omega\), and for the rest of the proof \(C > 0 \) will denote a constant only dependent on \((X, \omega)\). Using condition (i) in Theorem 5.6 multiple times, we can start the following estimates

\[
\frac{I_{\text{Ric}}(u^j_s) - I_{\text{Ric}}(u_s)}{s} \leq C \sum_j \int_X (u^j_s - u_s) \omega \wedge \omega^{i_j} \wedge \omega^{n-j-1}_{u_s} \\
\leq C \sum_j \int_X (u^j_s - u_s) \omega^n_{u^j_s/4 + u_s/4} \\
\leq C \sum_j \int_X (u^j_s - u_s)(\omega^n_{u^j_s/4 + u_s/4} - \omega^n_{u_s}) \\
\leq f(\mathcal{I}(u^j_s, u_s)/s) + C\alpha 2^{-j} + \frac{C\alpha}{s},
\]

where \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) is a continuous function with \(f(0) = 0 \), and in the last line we used Lemma 5.3. Together with (50), this inequality implies that

\[
\frac{\mathcal{K}(u^j_s)}{s} \leq \mathcal{K}\{u_t\} + C\alpha 2^{-j} + f(\mathcal{I}(u^j_s, u_s)/s).
\]

Letting \(s \to \infty \), since \(\mathcal{K} \) is convex and \(d_1\text{-lsc} \), we obtain that \(\mathcal{K}\{v^j_t\} \leq \mathcal{K}\{u_t\} + C\alpha 2^{-j} + f(\alpha 2^{-j}) \), as desired, finishing the proof when \(\{u_t\}_t \in \mathcal{R}_c^\infty \).
Given that the complex Hessian of \(\nabla^2 u\), \(\mathcal{K}\{u_t\} < \infty\) by Theorem 5.1, there exists \(\{u_t^k\} \in \mathcal{R}_\omega\) such that \(u_t^k \geq u_t\), \(t \geq 0\), \(d_\nu^p(\{u_t^k\}, \{u_t\}) \leq \frac{1}{2^t}\) and \(\mathcal{K}\{u_t^k\} - \mathcal{K}\{u_t\} \leq \frac{1}{2^t}\).

Let \(\{u_{s,j}\}_j\) be the potentials of Theorem 5.4 associated to the rays \(\{u_t^k\}_t\). By the construction of these potentials, elaborated in the proof of Theorem 5.4, it follows that \(\{u_{s,j}\}_j\) is decreasing for any fixed \(k \in \mathbb{N}\) and \(s > 0\). Using this, a diagonal Cantor process applied to the simultaneous approximation of each \(\{u_t^k\}_t\) described above, yields rays \(\{v_t^k\}_t \in \mathcal{R}_{\omega,1}\) such that \(u_t^k \leq v_t^k\), \(d_\nu^p(\{v_t^k\}, \{u_t^k\}) \leq \frac{1}{2^t}\), \(\mathcal{K}\{v_t^k\} - \mathcal{K}\{v_t^k\} \leq \frac{1}{2^t}\), moreover (!) \(\{v_t^k\}_k\) is decreasing for any fixed \(t > 0\). As \((\mathcal{R}_\omega, d_\nu^p)\) is complete, we obtain that \(d_\nu^p(\{v_t^k\}_t, \{u_t\}_t) \to 0\) and \(\mathcal{K}\{v_t^k\} \to \mathcal{K}\{u_t\}\), as desired.

Remark 5.7. It follows from (48), that the approximating rays \(\{v_t^k\}_t \in \mathcal{R}_{\omega,1}\) in the previous theorem additionally satisfy the estimate:

\[
\frac{1}{t} \text{ess} \sup_x \left(\log(1 + \frac{1}{n} \Delta_\omega v_t^j) - Bv_t^j \right) \leq \alpha 2^j, \quad t > 0, \quad j \in \mathbb{N}.
\]

The proof of Theorem 5.5. First we recall some of the formalism of [57]. Given \(u_0, u_1 \in \mathcal{H}_\omega\), we denote the smooth \(\epsilon\)-geodesic connecting \(u_0, u_1\), i.e., \([0, 1] \ni t \to u_t^\epsilon \in \mathcal{H}_\omega\) solves the following elliptic PDE on \([0, 1] \times X\):

\[
\left(\bar{u}_t^\epsilon - \left| \nabla \bar{u}_t^\epsilon \right|^2 \frac{\omega_t^\epsilon}{\omega_t} \right) \bar{u}_t^\epsilon = \epsilon, \quad u_0^\epsilon := u_0, \quad u_1^\epsilon := u_1.
\]

Given that the complex Hessian of \(u^\epsilon\) is bounded on \([0, 1] \times X\) [22], one can take the limit \(\epsilon \to 0\), to obtain \(u \in C^{1,1}([0, 1] \times X)\), the \(C^{1,1}\)-geodesic connecting \(u_0, u_1\):

\[
[0, 1] \ni t \to u_t \in \mathcal{H}^{1,1}_{\omega,}\infty.
\]

As shown in [57, Theorem 1.1], if one merely has \(u_0, u_1 \in \mathcal{H}^{1,1}_{\omega,}\infty\), the curve in (52) still exists, however it is not known if the total Laplacian of \(u\) on \([0, 1] \times X\) is bounded.

Let us denote the log of the left hand side of (51) by \(F(u^\epsilon)\). Given a smooth function \(h \in C^\infty([0, 1] \times X)\), if \(\bar{h}\) attains its maximum at \((t, x) \in (0, 1) \times X\), then ellipticity of (51) gives that

\[
DF(u^\epsilon)(h)(t, x) := \left. \frac{d}{ds} \right|_{s=0} F(u^\epsilon + sh)(t, x) \leq 0.
\]

Proof of Theorem 5.5. Let us first assume that \(u_0, u_1 \in \mathcal{H}_\omega\). Fix \((t, x) \in [0, 1] \times X\) and \(\epsilon > 0\) momentarily. In [57, page 339] (after equation (2.19)) it is shown that for some constants \(B, C > 1\), dependent only on \((X, \omega)\), we have that

\[
DF(u^\epsilon)(\log(n + \Delta_\omega u_t^\epsilon) - Bu_t^\epsilon)(t, x) \geq \sum_{j=1}^n \frac{1}{1 + \left(\frac{u_t^\epsilon}{u_t^\epsilon}\right)^2} - C,
\]

where we have used normal coordinates of \(\omega\) at \(x\) and \(i\partial\bar{\partial} u_t^\epsilon\) is assumed to be diagonal. Additionally, fix \(\delta > 0\) and \(g(t) := \delta t^2/2\). We also have

\[
DF(u^\epsilon)(g_\delta(t))(t, x) = \frac{\delta}{u_t - \left| \nabla u_t^\epsilon \right|^2 \omega_t^\epsilon}.
\]
Assume that $h_{\varepsilon,\delta}(t, x) := \log(n + \Delta u^j_t) - B u^j_t + g_\delta(t)$ is maximized at $(t, x) \in (0, 1) \times X$. Then by (53), (54) and (55) we obtain at (t, x) that

$$0 \geq DF(u^\varepsilon)(h_{\varepsilon,\delta}) \geq \sum_{j=1}^n \frac{1}{1 + (u^j_t)^{ijj}} + \delta \left(h_t - |\nabla u^j_t|^2_{\omega_{u^j_t}} \right) - C,$$

$$\geq (n + 1) \left[\frac{\delta}{(1 + (u^j_t)^{1,1}) \cdot \ldots \cdot (1 + (u^j_t)^{n,1})(h_t - |\nabla u^j_t|^2_{\omega_{u^j_t}})} \right]^{\frac{1}{n+1}} - C,$$

$$= (n + 1) \left[\frac{\delta}{\varepsilon} \right]^{\frac{1}{n+1}} - C. \quad (56)$$

Thus, for $\varepsilon < \delta(n + 1)^{n+1}/C^{n+1}$ we get a contradiction in the above inequality, implying that the maximum of $h_{\varepsilon,\delta}$ can not be attained at (t, x), an interior point of $[0, 1] \times X$. In particular, we have that

$$\sup_X h_{\varepsilon,\delta}(t, x) \leq \max(\sup_X h_{\varepsilon,\delta}(0, x), \sup_X h_{\varepsilon,\delta}(1, x)), \quad t \in [0, 1], \quad \varepsilon < \delta(n + 1)^{n+1}/C^{n+1}.$$

Letting $\varepsilon \searrow 0$ and $\delta \searrow 0$ thereafter, via Lemma 7.1 we arrive at

$$\mathrm{ess \ sup}_X h_{0,0}(t, x) \leq \max \left(\sup_X h_{0,0}(0, x), \sup_X h_{0,0}(1, x) \right), \quad t \in [0, 1],$$

motivating the introduction of $M_{u_0,u_1}(t) := \mathrm{ess \ sup}_X (\log(n + \Delta u_t) - Bu_t)$. Indeed, we can simply write

$$M_{u_0,u_1}(t) \leq \max(M_{u_0,u_1}(0), M_{u_0,u_1}(1)), \quad t \in [0, 1]. \quad (57)$$

Next we observe that (57) also holds in case we merely have $u_0, u_1 \in \mathcal{H}_{1,1}^\omega$. Indeed, we pick sequences $u^j_0 \searrow u_0$ and $u^j_1 \searrow u_1$, as in Proposition 7.2. Then we apply (57) to $M_{u^j_0,u^j_1}$ and the comparison principle ([10, Theorem 21]) together with Lemma 7.1 gives (57) for $u_0, u_1 \in \mathcal{H}_{1,1}^\omega$.

To finish, we show that $M_{u_0,u_1}(t)$ is actually convex. Let $a, b \in [0, 1]$. Then $t \rightarrow v_t := u_{a+t(b-a)} + \frac{1}{b-M_{u_0,u_1}(a) + t(M_{u_0,u_1}(b) - M_{u_0,u_1}(a))}$ is the $C^{1,1}$ geodesic connecting $v_0 := u_a + M_{u_0,u_1}(a)/B$ and $v_1 := u_b + M_{u_0,u_1}(b)/B$. Applying (57) to v_0, v_1 we arrive at

$$M_{u_0,u_1}(a + t(b-a)) - M_{u_0,u_1}(a) - t(M_{u_0,u_1}(b) - M_{u_0,u_1}(a)) = M_{v_0,v_1}(t) \leq \max(M_{v_0,v_1}(0), M_{v_0,v_1}(1)) = 0,$$

hence $t \rightarrow M_{u_0,u_1}(t)$ is convex, as desired.

\begin{flushright} \Box \end{flushright}

The proof of Theorem 5.6. In the proof of Theorem 5.6 we will use the formalism of [54] adapted to our context. Fixing $\varphi_0 \in \mathcal{E}_\omega^1$ with $\sup_X \varphi_0 = 0$, we consider the following parabolic PDE on $[0, \infty) \times X$ with initial data given by φ_0:

$$\frac{d}{dt} \varphi_t = \log \left[\frac{(\omega + i\partial \bar{\partial} \varphi_t)^n}{\omega^n} \right]. \quad (58)$$

To avoid cumbersome notation, we will denote t-derivatives by dots throughout this paragraph. As shown in [54], $(t, x) \rightarrow \varphi_t(x)$ is smooth on $(0, \infty) \times X$. The initial
Proof. Fixing Corollary 5.9. we now describe: on (X, ω) by sup estimates and maximum principles developed in [54, Section 2] for smooth initial data, also apply for initial data in \mathcal{E}^1_ω. All this implies that the apriori estimates and maximum principles developed in [54, Section 2] for smooth initial data, also apply for initial data in \mathcal{E}^1_ω, as above.

For the remainder of this paragraph we pick a small constant $\lambda > 0$ depending only on (X, ω) such that $\int_X e^{-2\lambda \phi} \omega^n$ is uniformly bounded for all $\phi \in \text{PSH}(X, \omega)$ normalized by $\sup_X \phi = 0$ (see [73, Proposition 2.1].)

Let v be the unique continuous ω-psh function such that

$$v_n := e^{\lambda v - \lambda \varphi_0 - n \log \lambda \omega_n}. \quad (59)$$

By our choice of λ, it follows from [62, 6] (or much more generally [37, Theorem 5.3]) that v is uniformly bounded by a constant depending only on (X, ω).

Lemma 5.8. With $\lambda \in (0, 1)$ and v as above, we have that

$$(1 - \lambda t) \varphi_0 + \lambda v + n (t \log t - t) \leq \varphi_t \leq 0, \quad t \in [0, 1]. \quad (60)$$

Proof. Let $\psi_t := (1 - \lambda t) \varphi_0 + \lambda v + n (t \log t - t)$, $t \in [0, 1]$. The following hold:

$$\psi_t = \lambda (v - \varphi_0) + n \log t = \log \left(\lambda^n t^n \cdot \frac{\omega^n}{\omega_n} \right) \leq \log \left(\frac{\omega^n}{\omega_n} \right).$$

This implies that $t \to \psi_t$ is a subsolution to (58), and an application of the maximum principle [54, Corollary 2.2] yields the first inequality in (60). The second inequality follows from [54, Lemma 2.3].

Simplifying (60), we actually obtain that:

$$\varphi_0 \leq \varphi_t + Ct - Ct \log t, \quad t \in [0, 1]. \quad (61)$$

for some constant $C > 0$ dependent on (X, ω). This can be taken one step further, as we now describe:

Corollary 5.9. There exists a constant $C > 1$ depending on (X, ω) such that $w_t \geq w_{t/2}$ for any $t \in [0, 1]$, where

$$w_t := \varphi_t + Ct - Ct \log t. \quad (62)$$

Proof. Fixing $s \in (0, 1)$, we apply (61) to the flow $t \to \varphi_{s/2 + t}$, starting from $\varphi_{s/2}$. By (61) we have that $\|e^{-\lambda \varphi_{s/2}}\|_{L^2}$ is controlled by $\|e^{-\lambda \varphi_0}\|_{L^2}$ which is uniformly bounded by a constant depending on λ and (X, ω). Hence for $t := s/2 \in [0, 1]$ in (61) we have

$$0 \geq \varphi_s \geq \varphi_{s/2} - Cs + n((s/2) \log(s/2) - s/2),$$

where C only depends on λ and (X, ω). Thus, after possible adjusting C, the function w_t defined by $w_t := \varphi_t + Ct - Ct \log t$ satisfies $w_t \geq w_{t/2}$, $t \in [0, 1]$.

We also point out the following simple monotonicity result:
Lemma 5.10. The map $[0, \infty) \ni t \to \text{Ent}(\omega^n, \omega^n_{\varphi_t}) \in \mathbb{R}$ is decreasing.

Proof. First let us assume that $\varphi_0 \in \mathcal{H}_\omega$ in (58). For $t \geq 0$, we can start by computing
\[
\frac{d}{dt} \text{Ent}(\omega^n, \omega^n_{\varphi_t}) = \frac{d}{dt} \int_X \varphi_t(\omega + i\partial\bar{\partial}\varphi_t)^n
\]
\[
= \int_X \varphi_t(\omega + i\partial\bar{\partial}\varphi_t)^n - \int_X |\nabla \varphi_t|_{\omega_{\varphi_t}}^2 (\omega + i\partial\bar{\partial}\varphi_t)^n
\]
\[
= \int_X (\Delta_{\omega_{\varphi_t}} \varphi_t)(\omega + i\partial\bar{\partial}\varphi_t)^n - \int_X |\nabla \varphi_t|_{\omega_{\varphi_t}}^2 (\omega + i\partial\bar{\partial}\varphi_t)^n
\]
\[
= - \int_X |\nabla \varphi_t|_{\omega_{\varphi_t}}^2 (\omega + i\partial\bar{\partial}\varphi_t)^n \leq 0.
\]

Consequently, $l \to \text{Ent}(\omega^n, \omega^n_{\varphi_l})$ is decreasing on $[0, \infty)$, when $\varphi_0 \in \mathcal{H}_\omega$.

For general $\varphi_0 \in \mathcal{E}_\omega$, let $\varphi_0^j \in \mathcal{H}_\omega$ be such that $d_1(\varphi_0^j, \varphi_0) \to 0$ and $\text{Ent}(\omega^n, \omega^n_{\varphi_0^j}) \to \text{Ent}(\omega^n, \omega^n_{\varphi_0})$ (such sequence exists by [7, Theorem 1.3]). Fixing $t > 0$, by [48, Theorem B] we have that $\varphi_t^j \to_{C^0} \varphi_t$, hence we can conclude that
\[
\text{Ent}(\omega^n, \omega^n_{\varphi_t^j}) = \lim_j \text{Ent}(\omega^n, \omega^n_{\varphi_t^j}) \leq \lim_j \text{Ent}(\omega^n, \omega^n_{\varphi_0^j}) = \text{Ent}(\omega^n, \omega^n_{\varphi_0}),
\]
finishing the proof. \qed

For the remainder of this paragraph, let $\{u_t\} \in \mathcal{R}^\infty$ with $\sup_X u_t = 0$ and $\mathcal{K}\{u_t\} < +\infty$, as in the statement of Theorem 5.6. Since $\sup_X u_s = 0$, $s \geq 0$, by the weak L^1-compactness of PSH(X, ω) we have that $u_s \searrow u_\infty \in \text{PSH}(X, \omega)$.

Recall that $\lambda > 0$ depending only on (X, ω) is such that $\int_X e^{-2\lambda \phi} \omega^n$ is uniformly bounded for all $\phi \in \text{PSH}(X, \omega)$ normalized by $\sup_X \phi = 0$ (see [79], [73, Proposition 2.1]). Then $\|e^{-\lambda u_s}\|_{L^2}$ is uniformly bounded independently of $s > 0$.

We fix $s > 0$ for the remainder of this paragraph, and we construct the sequence u_s^j as follows. For each j we define $u_s^j := w_{s,2^{-j}}$, where $w_{s,t}$ is constructed in (62) with respect to the flow $t \to \varphi_{s,t}$, starting from $\varphi_{s,0} := u_s$. The estimate of Corollary 5.9, together with (61) yields the condition (i) in Theorem 5.6 for $\alpha := 2C$. Condition (iv) follows automatically from Lemma 5.10.

Next we address condition (ii) in Theorem 5.6, which is closely related to [54, Corollary 4.5]:

Lemma 5.11. We have that
\[
\sup_X (\log(n + \Delta_{\omega} u_s^j) - Bu_s^j) \leq \alpha 2^j(1 + s), \quad j \in \mathbb{N}, \quad s > 0.
\]

Proof. From [54, Corollary 4.5] we obtain that for any $j \in \mathbb{N}$ and $s > 0$ we have
\[
\frac{1}{2^j} \log(n + \Delta_{\omega} u_s^j) = \frac{1}{2^j} \log(n + \Delta_{\omega} \varphi_{s,2^{-j}}) \leq C(\text{osc}_X \varphi_{s,2^{-j}-1} + 1),
\]
where $C > 0$ only depends on (X, ω). Using (61) we have that
\[
\text{osc}_X \varphi_{s,2^{-j}-1} \leq -\inf_X \varphi_{s,0} + \alpha = -\inf_X u_s + \alpha.
\]
By [32, Theorem 1] we have that $\inf_X u_s = m_{\{u_t\}} s$ for some constant $m_{\{u_t\}} \leq 0$. Consequently (63) follows after putting the above together with condition (i) in Theorem 5.6 (and possibly increasing the value of $\alpha > 0$). \qed
Next we address condition (iii) in Theorem 5.6:

Lemma 5.12. We have that \(d_1(w^j_s, u_s) \leq \alpha 2^{-j} s + \alpha j 2^{-j} \) for any \(j \in \mathbb{N}, s > 0 \).

Proof. For the flow \(t \mapsto \varphi_{s,t} \), using the equation (58), we can write

\[
I(\varphi_{s,t}) - I(\varphi_{s,0}) = \int_0^t \frac{d}{dt} I(\varphi_{s,t}) dt = \int_0^t \text{Ent}(\omega^n, \omega^n_{\varphi_{s,t}}) dt \\
\leq \text{Ent}(\omega^n, \omega^n_{\varphi_{s,0}}) t = \text{Ent}(\omega^n, \omega^n_{u_s}) t,
\]

where we have used Lemma 5.10. Recall that for \(w^j_s := w_{s,2^{-j}} \), due to property (i) we can continue:

\[
d_1(w^j_s, u_s) = I(w^j_s) - I(u_s) \leq I(\varphi_{s,t}) - I(\varphi_{s,0}) + \alpha j 2^{-j} \leq \text{Ent}(\omega^n, \omega^n_{u_s}) 2^{-j} + \alpha j 2^{-j},
\]

After invoking Lemma 5.13 below, and possibly adjusting \(\alpha > 0 \) again, the proof is finished. \(\square \)

As promised above, we argue that along \(\{u_t\}_t \) the entropy has sublinear growth:

Lemma 5.13. There exists \(C := C(\{u_t\}_t) > 0 \) such that \(\text{Ent}(\omega^n, \omega^n_{u_t}) \leq Ct, \ t \geq 0 \).

Proof. Let \(D > K\{u_t\} \). By the Chen–Tian formula for the extended K-energy (49) we obtain that

\[
\text{Ent}(\omega^n, \omega^n_{u_t}) \leq Dt - \bar{S}I(u_t) + nI_{\text{Ric}} \omega(u_t) \leq Ct + Cd_1(0, u_t) + Cd_1(0, u_t) \leq Ct,
\]

where we have used [39, Proposition 2.5] in the second estimate. \(\square \)

6 Applications to geodesic stability

First we point out how the \(L^1 \) version of Conjecture 1.7 can be derived from [24, 25] and [33, Theorem 4.7]. As mentioned in the introduction, the argument is implicitly contained in [24, 25], but we provide a short proof here as this result is not explicitly stated in that paper. Recall that \(G = \text{Aut}_0(X, J) \), and for the definition of \(G \)-calibrated rays we refer back to the introduction.

Theorem 6.1 (\(L^1 \) uniform geodesic stability). Let \((X, \omega) \) be a compact Kähler manifold. Then the following are equivalent:

(i) There exists a csck metric in \(H_\omega \).

(ii) There exists \(\delta > 0 \) such that \(K\{u_t\} \geq \delta \limsup_t \frac{d_1(G_0, Gu_t)}{t} \) for all \(\{u_t\}_t \in \mathcal{R}^1 \).

(iii) \(K \) is \(G \)-invariant and there exists \(\delta > 0 \) s.t. \(K\{u_t\} \geq \delta d_1(0, u_1) \) for all \(G \)-calibrated geodesic rays \(\{u_t\}_t \in \mathcal{R}^1 \).

We recall that \(\mathcal{R}^p/\mathcal{R}^{1,1}_\omega, p \in [1, \infty] \) is the set of rays \(\{u_t\}_t \in \mathcal{R}^p/\mathcal{R}^{1,1}_\omega \) normalized by the condition \(I(u_t) = 0, t \geq 0 \).

Proof. By [24, Theorem 1.5], the conditions of [33, Theorem 4.7] are satisfied. Indeed, it was pointed out in [42, Theorem 10.1] that all the conditions (A1)-(A4) and (P1)-(P6) hold with the exception of (P3), which is exactly the content of [24, Theorem 1.5].

After comparing with the conclusion of [33, Theorem 4.7], we only need to argue that condition (ii) implies that \(K \) is \(G \)-invariant. However we notice that (ii) implies that \((X, \omega) \) is \(L^1 \)-geodesically semistable, in the sense that, \(K\{u_t\} \geq 0 \) for any \(\{u_t\}_t \in \mathcal{R}^1_\omega \).

Now [25, Lemma 4.1] implies that \(K \) is \(G \)-invariant as desired. \(\square \)
To show that Theorem 1.8 holds, we argue in the next two results that conditions (ii) and (iii) in the previous theorem are equivalent with their $C^{1,1}$ version:

Theorem 6.2. Let (X, ω) be a compact Kähler manifold. Then the following are equivalent:

(i) There exists $\delta > 0$ such that $\mathcal{K}\{u_t\} \geq \delta \limsup_t \frac{d_{1,G}(G_0, Gu_t)}{t}$ for all $\{u_t\}_t \in \mathcal{R}^1$.

(ii) There exists $\delta > 0$ such that $\mathcal{K}\{u_t\} \geq \delta \limsup_t \frac{d_{1,G}(G_0, Gu_t)}{t}$ for all $\{u_t\}_t \in \mathcal{R}^{1,1}$.

Proof. We only need to argue that (ii)\Rightarrow(i). Let $\{u_t\}_t \in \mathcal{R}^1$ and we pick $\{u^k_t\}_t \in \mathcal{R}^{1,1}_\omega$, as in Theorem 5.4. We notice that $|I(u_t) - I(u^k_t)| \to 0$ as $k \to \infty$ for fixed $t \geq 0$, hence by subtracting a linear term form each $\{u^k_t\}_t$ we can assume that $\{u^k_t\}_t \in \mathcal{R}^{\infty}$ with $\mathcal{K}\{u^k_t\} \to \mathcal{K}\{u_t\}$ and $d_t^*(\{u^k_t\}_t, \{u_t\}_t) \to 0$ still holding. Moreover, we have the following sequence of inequalities:

$$\limsup_t \frac{|d_{1,G}(G_0, Gu_t) - d_{1,G}(G_0, Gu^k_t)|}{t} \leq \limsup_t \frac{d_{1,G}(Gu_t, Gu^k_t)}{t} \leq \limsup_t \frac{d_1(u_t, u^k_t)}{t} = d_t^*(\{u_t\}_t, \{u^k_t\}_t).$$

Since the last term converges to zero as $k \to \infty$, we obtain that $\limsup_t d_{1,G}(G_0, Gu^k_t)/t$ converges to $\limsup_t d_{1,G}(G_0, Gu_t)/t$, as desired. \hfill \square

Theorem 6.3. Let (X, ω) be a compact Kähler manifold. Then the following are equivalent:

(i) \mathcal{K} is G-invariant and there exists $\delta > 0$ s.t. $\mathcal{K}\{u_t\} \geq \delta d_1(0, u_t)$ for all G-calibrated geodesic rays $\{u_t\}_t \in \mathcal{R}^1$.

(ii) \mathcal{K} is G-invariant and there exists $\delta > 0$ s.t. $\mathcal{K}\{u_t\} \geq \delta d_1(0, u_t)$ for all G-calibrated geodesic rays $\{u_t\}_t \in \mathcal{R}^{1,1}$.

Proof. We only need to argue that (ii)\Rightarrow(i). Let $\{u_t\}_t \in \mathcal{R}^1$, G-calibrated and non-constant. We can assume that $\mathcal{K}\{u_t\} < \infty$, otherwise there is nothing to prove.

Using Theorem 5.4, we pick $\{u^k_t\}_t \in \mathcal{R}^{1,1}_\omega$ such that $d_t^*(\{u^k_t\}_t, \{u_t\}_t) \to 0$ and $\mathcal{K}\{u^k_t\} \to \mathcal{K}\{u_t\}$. By adjusting with small constants, we can assume that $\{u^k_t\}_t \in \mathcal{R}^{1,1}$, and neither of these rays is constant. Unfortunately $\{u^k_t\}_t$ may not be G-calibrated, and the bulk of the proof consists of finding a new sequence $\{\tilde{u}^k_t\}_t \in \mathcal{R}^{1,1}$ that satisfies this property.

For any $k \geq 1$ and $t \geq 1$, let $g_t^k \in G$ such that

$$d_1(0, g_t^k.u_t^k) \geq d_{1,G}(0, u_t^k) \geq d_1(0, g_t^k.u_t^k) - \frac{1}{t}. \quad (65)$$

The following estimates will be used later:

$$d_1(0, g_t^k.u_t^k) \geq d_1(0, g_t^k.u_t) - d_1(g_t^k.u_t^k, g_t^k.u_t) \geq d_{1,G}(G, 0, Gu_t) - d_1(u_t, u_t^k) \geq d_1(0, u_t^k) - 2d_1(u_t, u_t^k) \geq d_1(0, u_t^k) - 2td_t^*(\{u_t\}_t, \{u_t^k\}_t), \quad (66)$$

where in the first line we have used the triangle inequality; in the second line we have used the definition of $d_{1,G}$ and the fact that G acts on \mathcal{E}_0^1 by d_1-isometry (see [42, Lemma 36].
in the third line we have used the triangle inequality and that \(\{u_t\}_t \) is \(G \)-calibrated; in the last line we have used that \((0, +\infty) \ni t \mapsto d_1(u^k_t, u_t)/t \) is increasing (see [8]).

Let \([0, t] \ni l \mapsto \rho^k_t \in \mathcal{E}_w^1 \) be the finite energy geodesic connecting 0 and \(g^k_t . u_t^k \). From (65) and [33, Lemma 4.9] it follows that

\[
d_1(0, \rho^k_t) \geq d_1(G.0, G.\rho^k_t) \geq d_1(0, \rho^k_t) - \frac{1}{t}, \quad l \in [0, t]. \tag{67}
\]

Using \(G \)-invariance, convexity of \(K \), and that \(K(0) = 0 \), for any \(l \in [0, t] \) we have that

\[
\frac{K(\rho^k_t)}{l} \leq \frac{K(g^k_t . u^k_t)}{t} = \frac{K(u^k_t)}{l} \leq K(u^k_t). \tag{68}
\]

Due to [7, Corollary 4.8], after possibly selecting a subsequence \(t_j \rightarrow \infty \), there exists \(\tilde{\omega}^k \in \mathcal{E}_w^1 \) for any \(l > 0 \), such that \(d_1(\tilde{\omega}^k_t, \rho^k_{t_j}) \rightarrow 0 \). After taking the limit in (67), due to [7, Proposition 4.3] we find that \(\{\tilde{\omega}^k_t\}_t \in \mathcal{R}^1 \) is \(G \)-calibrated. Moreover, due to (66), there exists \(\kappa_0 \) such that \(\{\tilde{\omega}^k_t\}_t \) is not the constant ray for \(k \geq \kappa_0 \).

Next we argue that \(\{\tilde{\omega}^k_t\}_t \in \mathcal{R}^{1,1} \). To start, for \(t \geq 1 \) using (65) and the fact that \(G \) acts by \(d_1 \)-isometries (see [42, Lemma 5.9]), we get that

\[
d_1(0, g^k_t . 0) = d_1(0, (g^k_t)^{-1} . 0) \leq d_1(u^k_t, (g^k_t)^{-1} . 0) + d_1(u^k_t, 0) \\
= d_1(g^k_t . u^k_t, 0) + d_1(u^k_t, 0) \leq 2d_1(u^k_t, 0) + \frac{1}{t} \leq 2d_1(u^k_t, 0) + 1. \tag{69}
\]

Next, let \(B > 0 \) as in the statement of Theorem 5.5. Using Lemma 6.4 below, we have the following estimates.

\[
\max_x \left(\sup_{X} |g^k_t . 0|, \sup_{X} \log |\nabla g^k_t|_\omega, \sup_{X} \left(\log(n + \Delta_\omega (g^k_t . 0)) - B g^k_t . 0 \right) \right) \leq C d_1(g^k_t . 0, 0) + C.
\]

Recall that \(g^k_t . u^k_t = (g^k_t)^* u^k_t + g^k_t . 0 \) (see [42, Lemma 5.8]). In particular, [30, Theorem 1], Remark 5.7 and (69) give that

\[
\sup_{X} |g^k_t . u^k_t| \leq \sup_{X} |u^k_t| + \sup_{X} |g^k_t . 0| \leq Ct + 2Cd_1(u^k_t, 0) t + C \leq Ct + C,
\]

\[
\sup_{X} \left(\log(n + \Delta_\omega (g^k_t . u^k_t)) - B g^k_t . u^k_t \right) \leq Ct + 2Cd_1(u^k_t, 0) t + C \leq Ct + C,
\]

where \(C \) depends on \(k \) but not on \(t \geq 1 \! \! \!). Using [30, Theorem 1] and Theorem 5.5, we find that \(\sup_{X} |\rho^k_t| \leq C \! \! \! L + C \) and \(\sup_{X} \left(\log(n + \Delta_\omega \tilde{\omega}^k_l) - B \tilde{\omega}^k_l \right) \leq C \! \! \! L + C \) for any \(l \in [0, t] \). Lastly, letting \(t_j \rightarrow \infty \), we arrive at \(\sup_X |\tilde{\omega}^k_l| \leq C \! \! \! L + C \) and \(\sup_{X} \left(\log(n + \Delta_\omega \tilde{\omega}^k_l) - B \tilde{\omega}^k_l \right) \leq C \! \! \! L + C \) for any \(l \geq 0 \), what we wanted to argue.

Due to the fact that \(K \) is \(d_1 \)-lsc, \(G \)-invariant and convex, similar to (68), we find that for all \(l > 0 \) and \(k \geq \kappa_0 \) we have:

\[
\frac{K(\tilde{\omega}^k_l)}{d_1(0, \tilde{\omega}^k_l)} \leq \liminf_{t_j \rightarrow \infty} \frac{K(\rho^k_{t_j})}{d_1(0, \rho^k_{t_j})} \leq \liminf_{t_j \rightarrow \infty} \frac{K(g^k_{t_j} . u^k_{t_j})}{d_1(0, g^k_{t_j} . u^k_{t_j})} = \liminf_{t_j \rightarrow \infty} \frac{K(u^k_{t_j})}{d_1(0, u^k_{t_j})} \tag{70}
\]

\[
\leq \liminf_{t_j \rightarrow \infty} \frac{K(u^k_{t_j})}{d_1(0, u^k_{t_j})} \frac{d_1(0, u^k_{t_j})}{d_1(0, u^k_{t_j})} = \frac{K(\tilde{\omega}^k_l)}{d_1(0, \tilde{\omega}^k_l)} \cdot \frac{d_1(0, u^k_{t_j})}{d_1(0, u^k_{t_j})} \leq \frac{K(\tilde{\omega}^k_l)}{d_1(0, \tilde{\omega}^k_l)} \cdot \frac{d_1(0, u^k_{t_j})}{d_1(0, u^k_{t_j})} - 2d_1(\{u^k_t\}_t, \{u_t\}_t),
\]

37
where in the second line we have used (66), and all the denominators are non-zero since \(\{\bar{u}_t^k\}_t \) and \(\{u_t^k\}_t \) are non-constant for \(k \geq k_0 \).

Finally, we use that (ii) holds for \(\{\bar{u}_t^k\}_t \in \mathcal{R}^1 \). Consequently, after letting \(l, t \to \infty \) in (70), we arrive at

\[
\delta \leq \frac{K\{\bar{u}_t^k\}}{d_1(0, \bar{u}_t^k)} \leq \frac{K\{u_t^k\}}{d_1(0, u_t^k)} \cdot \frac{d_1(0, u_t^k)}{d_1(0, u_t^k) - 2d_1(\{u_t^k\}_t, \{u_t^k\}_t)}.
\]

Letting \(k \to \infty \), we now obtain that \(\delta \leq \frac{K(\bar{u}_t^k)}{d_1(0, \bar{u}_t^k)} \), finishing the proof. \(\square \)

Lemma 6.4. Let \((X, \omega)\) be a compact Kähler manifold. There exists \(C := C(X, \omega) > 0 \) such that for all \(f \in G \) we have that \(\sup_X |g.0| \leq Cd_1(0, g.0) + C \) and \(\sup_X \log(n + \Delta_\omega(g.0)) \leq C \).

The Laplacian estimate from this lemma is equivalent with the following estimate for the gradient \(\nabla g \), as a self map of \(X \):

\[
\sup_X |\nabla g|_\omega^2 \leq e^{Cd_1(0, g.0) + C}, \quad g \in G. \tag{71}
\]

The desired Laplacian estimate of the lemma can be extracted from the arguments of [26], as we now elaborate.

Proof. Fix \(g \in G \). Using [42, Lemma 5.8], and the fact that \((g^{-1})^*(g^*\omega) = \omega \), we obtain that \(0 = g^{-1}.(g.0) = g^{-1}.0 + (g^{-1})^*(g.0) \). In particular, we have that

\[
- \inf_X g.0 = \sup_X g^{-1}.0. \tag{72}
\]

Due to [31, Corollary 4] and [33, Lemma 3.45] we have that

\[
0 \leq \sup_X g.0 \leq \int_X g.0 \omega^n + C \leq Cd_1(0, g.0) + C,
\]

and

\[
0 \leq \sup_X g^{-1}.0 \leq \int_X g^{-1}.0 \omega^n \leq Cd_1(0, g^{-1}.0) + C.
\]

Since \(d_1(0, g^{-1}.0) = d_1(g.0, 0) \), one of the desired estimates follows:

\[
\sup_X |g.0| \leq Cd_1(0, g.0) + C. \tag{73}
\]

Now we address the Laplacian estimate. To start, we note that there exists \(C := C(X, \omega) > 0 \) such that \(-C\omega \leq \text{Ric} \omega \leq C\omega \). Pulling back by \(g \) we obtain that \(\text{Ric} \omega_{g.0} \leq C\omega_{g.0} \). We introduce \(F_g := \log \left(\frac{\omega_{g.0}}{\omega^n} \right) \). We obtain that

\[
i\partial \bar{\partial} F_g = \text{Ric} \omega - \text{Ric} \omega_{g.0} \geq -C\omega - C\omega_{g.0}.
\]

In particular, \(\frac{1}{2}g.0 + \frac{1}{2C}F_g \in \text{PSH}(X, \omega) \), implying that

\[
\sup_X \left(\frac{1}{2}g.0 + \frac{1}{2C}F_g \right) \leq C + \int_X \left(\frac{1}{2}g.0 + \frac{1}{2C}F_g \right) \omega^n \leq \frac{1}{2}d_1(0, g.0) + C.
\]
Here, we used Jensen’s inequality to obtain \(\int_X F_g \omega^n \leq 0 \). Using (73) we arrive at:

\[
\sup_X F_g \leq C d_1(0,g.0) + C. \tag{74}
\]

To obtain the Laplacian estimate, we start with Yau’s calculation (for a survey, see [13, Proposition 4.1.2]):

\[
\text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial \log \left(\frac{\omega^n}{\omega_{g.0}} \right) \right] \geq \frac{\text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial \log \left(\frac{\omega^n}{\omega_{g.0}} \right) \right]}{\text{Tr}_{\omega,g.0}} - C \text{Tr}_{\omega,g.0} \omega,
\]

where \(C > 0 \) only depends on \((X,\omega)\). Let \(B := 2C + 1 \). Using the fact that \(\text{Ric} \omega_{g.0} \leq C \omega_{g.0} \), we can continue:

\[
\text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial \left(\log \left(\frac{\omega^n}{\omega_{g.0}} \right) \right) \right] \geq \frac{\text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial \log \left(\frac{\omega^n}{\omega_{g.0}} \right) \right]}{\text{Tr}_{\omega,g.0}} - C \text{Tr}_{\omega,g.0} \omega - B \text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial g.0 \right] \\
\geq \frac{\text{Tr}_{\omega,g.0} \left[i \bar{\partial} \partial \log \left(\frac{\omega^n}{\omega_{g.0}} \right) \right]}{\text{Tr}_{\omega,g.0}} - C \text{Tr}_{\omega,g.0} \omega - nB - C \\
\geq \left(B - 2C \right) \text{Tr}_{\omega,g.0} \omega - nB - C \\
\geq \text{Tr}_{\omega,g.0} \omega - C \geq \left(\frac{\omega^n}{\omega_{g.0}} \right)^{\frac{1}{n-1}} \left(\text{Tr}_{\omega,g.0} \right)^{\frac{1}{n-1}} - C \\
= F_{g}^{\frac{1}{n-1}} \left(\text{Tr}_{\omega,g.0} \right)^{\frac{1}{n-1}} - C.
\]

Let \(x_0 \in X \) be the point where \(\left(\log \text{Tr}_{\omega,g.0} - B \omega.0 \right) \) is maximized. Using the above estimate and (74) we obtain that \(\text{Tr}_{\omega,g.0}(x_0) \leq C d_1(0,g.0) + C \). Together with (73) we arrive at \(\sup_X \log(n + \Delta_{\omega}(g.0)) \leq C d_1(0,g.0) + C \). \(\square \)

7 Appendix

Here we address two likely known facts about Kähler potentials with bounded Laplacian, whose proof we could not find in the literature.

Lemma 7.1. Let \(u, u_j \in H^{1,1}_{\omega} \) and \(B \in \mathbb{R} \). If \(u_j \searrow u \) then

\[
\liminf_j \text{ess sup}_X (\log(n + \Delta_{\omega} u_j) - B u_j) \geq \text{ess sup}_X (\log(n + \Delta_{\omega} u) - B u). \tag{75}
\]

Proof. After picking subsequence, we can assume without loss of generality that the \(\liminf \) on the left hand side is actually a limit. Let \(\delta \in \mathbb{R} \) such that \(\log(n + \Delta_{\omega} u_j(x)) - B u_j(x) < \delta \) for a.e. \(x \in X \) and \(j \in \mathbb{N} \). To conclude, it is enough to show that

\[
\log(n + \Delta_{\omega} u) - B u \leq \delta, \ \text{a.e. on } X. \tag{76}
\]

By assumption, \(\Delta_{\omega} u_j + n \leq e^{B u_j + \delta} \) in the weak sense of positive measures on \(X \). By Dini’s lemma we have that \(\| u_j - u \|_{C^0} \to 0 \), hence passing to the weak limit we have that \(\Delta_{\omega} u + n \leq e^{B u + \delta} \), again in the weak sense of positive measures on \(X \). Since all our measures have bounded densities, (76) follows. \(\square \)
Complementing the above lemma, in the next result we point out that the quantity on the right hand side of (75) can be realized with an appropriate decreasing sequence, constructed via the method of [44]. Let us recall some elements of this work. We denote by \(\text{exph}_x : T_x X \to X \) the “quasiholomorphic exponential map” of \(\omega \) (see [44, Section 2]). Let \(\chi : \mathbb{R} \to \mathbb{R} \) be an even non-negative smooth function supported in \([0, 1]\) such that \(\int_{\mathbb{R}^n} \chi(|\xi|^2) d\lambda(\xi) = 1 \). Given \(u \in \text{PSH}(X, \omega) \), one can introduce \(u_\varepsilon \in C^\infty(X) \) by the following formula:

\[
u_\varepsilon(x) := \frac{1}{\varepsilon^{2n}} \int_{T_x X} u(\text{exph}_x(\xi)) \chi\left(\frac{|\xi|^2}{\varepsilon^2}\right) d\lambda(\xi),\]

where \(d\lambda \) is the Lebesgue measure on \(T_x X \) with respect to \(\omega \).

Proposition 7.2. Let \(u \in \mathcal{H}_{\omega}^{1,1} \) and \(B \in \mathbb{R} \). There exists \(u_j \in \mathcal{H}_{\omega} \) such that \(u_j \) converges to \(u \) decreasingly (and uniformly by Dini’s lemma) and

\[
\lim\sup_X (\log(n + \Delta_\omega u_j) - Bu_j) = \operatorname{ess\ sup}_X (\log(n + \Delta_\omega u) - Bu). \quad (77)
\]

Proof. By possibly rescaling \(u \) with a small constant, we can assume that there exists \(\delta > 0 \) such that \(\omega_\delta \geq \delta \omega \). In particular, it follows from the estimate of [44, Theorem 4.1] that for small enough \(\varepsilon > 0 \) we actually have that \(u_\varepsilon \in \mathcal{H}_{\omega} \). Moreover, \(\|u_\varepsilon - u\|_{C^0} \to 0 \). Also, it follows from [44, Theorem 3.8] that

\[
i\partial \bar{\partial} u_\varepsilon(\zeta, \zeta) = \int_{T_x X} i\partial \bar{\partial} u|_{\text{exph}_x(\varepsilon \xi)}(\zeta, \zeta) \chi(|\xi|^2) d\lambda(\xi) + O(|\varepsilon|)(\zeta, \zeta), \quad \zeta \in T_x X, \ x \in X.
\]

Consequently, by an elementary local calculation, we have that:

\[
\lim_{\varepsilon \to 0} \sup_X (\log(n + \Delta_\omega u_\varepsilon) - Bu_\varepsilon) = \operatorname{ess\ sup}_X (\log(n + \Delta_\omega u) - Bu).
\]

After possibly adding small constants to \(u_\varepsilon \), we can construct the decreasing sequence desired. \(\square \)

References

[1] V. Apostolov, D. M. J. Calderbank, P. Gauduchon, and C. W. Tomniesen-Friedman, Hamiltonian 2-forms in Kähler geometry III, extremal metrics and stability. Invent. Math., 173(3): 547–601, 2008.

[2] K. Ball, E.A. Carlen, E.H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Inventiones Math. 115 (1994) 463–482.

[3] R. Berman, B. Berndtsson, Convexity of the \(K \)-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165–1196.

[4] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. arXiv:1111.7158.

[5] R.J. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau–Tian–Donaldson conjecture, arXiv:1509.04561.

[6] R.J. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. I.H.E.S. 117 (2013), 179–245.

[7] R. Berman, T. Darvas, C.H. Lu, Convexity of the extended \(K \)-energy and the large time behavior of the weak Calabi flow, Geom. and Topol. 21 (2017), no. 5, 2945–2988.
[8] R.J. Berman, T. Darvas, C.H. Lu, Regularity of weak minimizers of the K-energy and applications to properness and K-stability, arXiv:1606.03114.
[9] B. Berndtsson, Probability measures related to geodesics in the space of Kähler metrics, preprint, arXiv:0907.1806.
[10] Z. Błocki, The complex Monge–Ampère equation in Kähler geometry, course given at CIME Summer School in Pluripotential Theory, Cetraro, Italy, July 2011, eds. F. Bracci, J. E. Fornaess, Lecture Notes in Mathematics 2075, pp. 95–142, Springer, 2013.
[11] Z. Błocki, S. Kołodziej, On regularization of plurisubharmonic functions on manifolds. Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093.
[12] S. Boucksom, Variational and non-Archimedean aspects of the Yau–Tian–Donaldson conjecture, arXiv:1805.03289.
[13] S. Boucksom, P. Eyssidieux, V. Guedj, An introduction to the Kähler–Ricci flow, Lecture Notes in Math., 2086, Springer, Cham, 2013.
[14] S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262.
[15] S. Boucksom, D. Eriksson, Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, arXiv:1805.01016.
[16] S. Boucksom, T. Hisamoto, M. Jonsson, Uniform K-stability and asymptotics of energy functionals in Kähler geometry, arXiv:1603.01026, to appear in JEMS.
[17] S. Boucksom, T. Hisamoto, M. Jonsson, Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, 743–841.
[18] S. Boucksom, M. Jonsson, A non-Archimedean approach to K-stability, arXiv:1805.11160.
[19] H. Busemann, The geometry of geodesics, Academic Press, New York, 1955.
[20] M. Bridson, A. Haefliger, Metric spaces of non positive curvature. Grundlehren der Math. Wiss. 319 (1999).
[21] E. Calabi, X.X. Chen, The space of Kähler metrics. II., J. Differential Geom. 61 (2002), no. 2, 173–193.
[22] X.X. Chen, The space of Kähler metrics, J. Differential Geom., 56 (2000), pp. 189–234.
[23] X.X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics, apriori estimates, arXiv:1712.06697.
[24] X.X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics, existence results, arXiv:1801.00656.
[25] X.X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics, general automorphism group, arXiv:1801.05907.
[26] X.X. Chen, T. Darvas, W. He, Compactness of Kähler metrics with bounds on Ricci curvature and I functional, arXiv:1712.05095.
[27] X.X. Chen, S. Sun, Space of Kähler metrics (V) Kähler quantization, in: Metric and Differential Geometry (X.-Z. Dai et al., Eds.), Springer, 2012, pp. 19–42.
[28] J. Chu, V. Tosatti, B. Weinkove, On the $C^{1,1}$ regularity of geodesics in the space of Kähler metrics, Ann. PDE 3 (2017), no.2, 3:15.
[29] J.A. Clarkson, Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414.
[30] T. Darvas, Weak geodesic rays in the space of Kähler potentials and the class $E(X, \omega)$, J. Inst. Math. Jussieu 16 (2017), no. 4, 837–858.
[31] T. Darvas, The Mabuchi geometry of finite energy classes. Advances in Mathematics 285 (2015), 182–219.
[32] T. Darvas, The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017), no. 5, 1275–1313.
[33] T. Darvas, Geometric pluripotential theory on Kähler manifolds, lecture notes, available at https://www.math.umd.edu/~tdarvas/items/Geometric_Pluripotential_Theory.pdf.
[34] T. Darvas, E. Di Nezza, and C.H. Lu, On the singularity type of full mass currents in big cohomology classes, Compos. Math., 154, pp. 380–409.
[35] T. Darvas, E. Di Nezza, and C.H. Lu, Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, pp. 2049–2087.
[36] T. Darvas, E. Di Nezza, and C. H. Lu, L^1 metric geometry of big cohomology classes, arXiv:1802.00087.
[37] T. Darvas, E. Di Nezza, and C. H. Lu, Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity. arXiv:1807.00276.
[38] T. Darvas, E. Di Nezza, and C. H. Lu, The metric geometry of singularity types, preprint 2018.
[39] T. Darvas, W. He, Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, with W. He, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5069–5085.
[40] T. Darvas, L. Lempert, Weak geodesics in the space of Kähler metrics, 19 (2012), no. 5, 1127–1135.
[41] T. Darvas, C. H. Lu, Y. A. Rubinstein, Quantization in geometric pluripotential theory, arXiv:1806.03800.
[42] T. Darvas, Y. A. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017), no. 2, 347–387.
[43] J.-P. Demailly, Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1 (1992), no. 3, 361–409.
[44] J.-P. Demailly, Regularization of closed positive currents of type (1, 1) by the flow of a Chern connection, Actes du Colloque en l’honneur de P. Dolbeault (Juin 1992), edite par H. Skoda et J.M. Trepreau, Aspects of Mathematics, Vol. E 26, Vieweg, (1994) 105–126.
[45] R. Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016, no. 15, 4728–4783.
[46] R. Dervan, G. Székelyhidi, The Kähler–Ricci flow and optimal degenerations, arXiv:1612.07299.
[47] E. Di Nezza, V. Guedj, Geometry and Topology of the space of Kähler metrics on singular varieties, arXiv:1606.07706v1. Compos. Math. 154 (2018), no. 8, 1593–1632.
[48] E. Di Nezza, C. H. Lu, Uniqueness and short time regularity of the weak Kähler-Ricci flow. arXiv:1411.7958, Adv. Math., 305 (2017), 953–993.
[49] S.K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, in: Northern California Symplectic Geometry Seminar (Ya. Eliashberg et al., Eds.), Amer. Math. Soc., 1999, pp. 13–33.
[50] S.K. Donaldson, Scalar curvature and stability of toric varities. J. Diff. Geom. 62 (2002).
[51] S. K. Donaldson, Scalar curvature and projective embeddings, II. Quart. J. Math. 56 (2005).
[52] V. Guedj, A. Zeriahi, Intrinsc capacities on compact Kähler manifolds. J. Geom. Anal. 15 (2005), no. 4, 607–639.
[53] V. Guedj, A. Zeriahi, The weighted Monge–Ampe`re energy of quasipshurisubharmonic functions, Journal of Functional Analysis 250 (2007) 442–482.
[54] V. Guedj, A. Zeriahi, Regularizing properties of the twisted Kähler–Ricci flow. J. Reine Angew. Math. 729 (2017), 275–304.
[55] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983).
[56] J. Jost, Nonpositive curvature: geometric and analytic aspects, (lectures in mathematics: ETH Zurich), Birkhäuser–Verlag, Basel, 1997.
[57] W. He, On the space of Kähler potentials, Comm. Pure Appl. Math. 68 (2015), no. 2, 332–343.
[58] W. He, On Calabi’s extremal metric and properness, arXiv:1801.07636.
[59] M. Kell, Uniformly convex metric spaces. Anal. Geom. Metr. Spaces 2 (2014), 359–380.
[60] K.O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978), no. 2, 137–148.
[61] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publications Mathématiques de l’IHES, Volume 86 (1997), 115–197.
[62] S. Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998), no. 1, 69–117.
[63] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1359–1378.
[64] C. Li, C. Xu, Special test configurations and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no.1, 197–232.
[65] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math. 24, 1987, 227–252.
[66] A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147(5), 1546–1572 (2011).
[67] S. Ohta, Convexities of metric spaces. Geom. Dedicata 125 (2007), 225–250.
[68] D. Phong, J. Sturm, The MongeAmpère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006), 125–149.
[69] J. Ross, D. Witt Nyström. Analytic test configurations and geodesic rays. J. Symplectic Geom. 12 (2014), no. 1, 125–169.
[70] S. Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495–550.
[71] J. Song, S. Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Anal. PDE 3 (2010), 295–358.
[72] G. Székelyhidi, Extremal metrics and K-stability. Ph.D Thesis. arXiv:math/0611002.
[73] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_1(M) > 0$. Invent. Math. 89(1987), 225–246.
[74] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32 (1990), 99–130.
[75] G. Tian, The K-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), 239–265.
[76] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 137.
[77] G. Tian, Canonical Metrics in Kähler Geometry, Birkhäuser, 2000.
[78] D. Witt-Nyström, Monotonicity of non-pluripolar Monge–Ampère measures, arXiv:1703.01950.
[79] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., 50 (2001), 671–703.
[80] K. Zheng, Existence of constant scalar curvature Kähler cone metrics, properness and geodesic stability, arXiv:1803.09506.

University of Maryland
tdarvas@math.umd.edu

Université Paris-Sud
hoang-chinh.lu@u-psud.fr