Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis

Rex A Hess*

Reproductive Biology & Toxicology; Department of Comparative Biosciences; College of Veterinary Medicine; University of Illinois; Urbana, IL USA

Keywords: Testis, Histopathology, Efferent ductules, Epididymis, Rete testis, Sperm granuloma, Atrophy, Estrogen receptor, Ion and water transport

Introduction

Testicular atrophy is one of the more easily recognized endpoints in male reproductive pathology; however, an interpretation of the mechanism causing seminiferous tubular atrophy is not always easy to uncover. The observation of luminal dilation in the rete testis and/or seminiferous tubules is a signature lesion that could lead one to conclude that testicular atrophy may be a long-term outcome. It has been known since 1924 that occlusion of the efferent ductules near the rete testis will induce increased pressure within the seminiferous tubules and lead to testicular atrophy. Yet, the literature is filled with long-term studies showing testicular atrophy, without histopathological evaluation of the efferent ductule region. This is partially due to the difficulty in finding these delicate tubules that are buried in the epididymal fat pad of rodents, but also because for years most authors considered these ducts to be nothing more than a conduit from rete testis to the epididymis. However, evidence began to reveal that disruption of the kidney-like function of efferent ductules could result in fluid accumulation within the rete testis and seminiferous tubules and eventually testicular atrophy.

As early as the 1930’s, it was known that developmental exposure to high doses of natural estrogens, as well as diethylstilbestrol (DES) could induce malformation of the male reproductive tract. However, the prevailing hypothesis to explain these data was that estrogen exposure disrupted testosterone and its metabolite 5a-dihydrotestosterone (DHT), the dominant male sex steroid and that estrogen did not have a distinct function in the adult male reproductive tract, but rather played a role in early development during the ambisexual stage and in establishing male behavioral patterns. In 1997, examination of the estrogen receptor α knockout mouse (Esr1KO) revealed that ESR1 has a major function in regulating fluid resorption in efferent ductules of the testis, which is essential for increasing the concentration of sperm and their maturational development in the head of the epididymis.

Efferent ductules are small, coiled tubes that transport sperm rapidly from rete testis chambers to the epididymal head (Fig. 1). In rodent species, efferent ducts are buried in the epididymal fat pad, beginning as 3-7 individual wide-lumen ducts but merging into a single, highly convoluted tubule with a narrow
lumen under the capsule of the initial segment of the epididymis. In man and larger mammals, these ductules are more numerous than in rodent species and open independently into the epididymis at multiple sites in the caput epididymis. Most importantly, these ductules form the major portion of the caput region within a densely organized connective tissue that is attached to the tunica albuginea of the testis. The discovery that ESR1 is essential for male fertility altered our view of the role that efferent ductules play in the head of the epididymis and provided the basis for testing new hypotheses to explain numerous observed pathologies in the testis and epididymis.

Several reviews have been written about estrogen’s function in the male reproductive tract and should be examined for a more detailed understanding of its molecular interactions and physiological relevance. However, histopathological changes in testis and epididymis following ESR1 disruption were found to be similar to those observed after exposures to several environmental compounds and some classes of therapeutic biological products, as well as surgical ligation of the ductules. Therefore, this review will focus on some common histopathological responses of the efferent ductules and head of the epididymis that induce fluid accumulation in the testis, which may contribute to the atrophy of seminiferous tubules.

Source of Estrogen in the Male Reproductive Tract

Estrogen synthesis is controlled by the aromatase enzyme complex of cytochrome P450 (P450arom) encoded by the CYP19 gene and a ubiquitous NADPH cytochrome P450 reductase. Testis is a major site for estrogen synthesis in the male and for many years it was assumed that Sertoli cells were the primary source during development, but in the adult only Leydig cells produced estrogen. Immuno localization of P450arom was a major challenge, but in 1993 Nitta et al. became the first laboratory to demonstrate its presence in the mammalian spermatid and cytoplasmic droplets of sperm traversing the epididymis. The high concentrations of systemic androgens throughout the body are a blunt force on nearly every tissue in the male, but the unique system of estrogen synthesis in the male reproductive system creates a sequestered androgen/estrogen balance that can be focused specifically on cells expressing the requisite steroid receptors.

It was surprising that the P450arom knockout mouse (AromKO) did not show histopathological results similar to the Esr1KO mouse. Testicular degeneration in the AromKO male began with ageing and was independent of the efferent ductule abnormalities found in the Esr1KO male. Several explanations have been proposed and some have been tested. First, ESR1 expression in the efferent ductule epithelium is constitutive and thus continues to be expressed in the absence of estrogen. Several reviews have been written about estrogen’s function in the male reproductive tract and should be examined for a more detailed understanding of its molecular interactions and physiological relevance. However, histopathological changes in testis and epididymis following ESR1 disruption were found to be similar to those observed after exposures to several environmental compounds and some classes of therapeutic biological products, as well as surgical ligation of the ductules. Therefore, this review will focus on some common histopathological responses of the efferent ductules and head of the epididymis that induce fluid accumulation in the testis, which may contribute to the atrophy of seminiferous tubules.

Source of Estrogen in the Male Reproductive Tract

Estrogen synthesis is controlled by the aromatase enzyme complex of cytochrome P450 (P450arom) encoded by the CYP19 gene and a ubiquitous NADPH cytochrome P450 reductase. Testis is a major site for estrogen synthesis in the male and for many years it was assumed that Sertoli cells were the primary source during development, but in the adult only Leydig cells produced estrogen. Immuno localization of P450arom was a major challenge, but in 1993 Nitta et al. became the first laboratory to demonstrate its presence in the mammalian spermatid and cytoplasmic droplets of sperm traversing the epididymis. The high concentrations of systemic androgens throughout the body are a blunt force on nearly every tissue in the male, but the unique system of estrogen synthesis in the male reproductive system creates a sequestered androgen/estrogen balance that can be focused specifically on cells expressing the requisite steroid receptors.

It was surprising that the P450arom knockout mouse (AromKO) did not show histopathological results similar to the Esr1KO mouse. Testicular degeneration in the AromKO male began with ageing and was independent of the efferent ductule abnormalities found in the Esr1KO male. Several explanations have been proposed and some have been tested. First, ESR1 expression in the efferent ductule epithelium is constitutive and thus continues to be expressed in the absence of estrogen. Several reviews have been written about estrogen’s function in the male reproductive tract and should be examined for a more detailed understanding of its molecular interactions and physiological relevance. However, histopathological changes in testis and epididymis following ESR1 disruption were found to be similar to those observed after exposures to several environmental compounds and some classes of therapeutic biological products, as well as surgical ligation of the ductules. Therefore, this review will focus on some common histopathological responses of the efferent ductules and head of the epididymis that induce fluid accumulation in the testis, which may contribute to the atrophy of seminiferous tubules.
endogenous estrogen but ‘antagonistic’ when endogenous estrogens are present. Treatment with an aromatase inhibitor also showed no effect on efferent ductule morphology, but did decrease the expression of ESR2 and GPER, while increasing androgen receptor (AR) in the rat. It also delayed the development of the head of the epididymis. Thus, disruption of estrogen pathways in the male can lead to subtle or delayed histopathological results and depend on the presence or absence of its receptors, which are constitutively expressed in efferent ductules.

Estrogen Receptors in the Male

The presence of the female hormone in the male reproductive tract suggested that the target cell and tissue for this luminal estrogen could be the epididymal epithelium, luminal sperm or even the female reproductive tract. Classical mediation of estrogen function is through two estrogen receptors, ERα (ESR1) and ERβ (ESR2), which are members of the nuclear receptor family of transcription factors and bind to estrogen response elements to mediate gene transcription. It has been known for 35 years that an estrogen receptor-like protein exists in male reproductive tissues and that estradiol binding is very strong in efferent ductules and the initial segment epididymis. Subsequent studies confirmed this hypothesis, as the efferent ductules were found to express Er1 mRNA 3.5-fold greater than uterine tissue and immunohistochemistry revealed intense co-localization of ESR1 and AR in both ciliated and non-ciliated cells of the epithelium (Fig. 3).

In contrast, localization of ESR1 in the testis and epididymis has been a challenge, as major differences are found between species, as well as between individuals within a species. Results differ between immunohistochemical localization and mRNA analysis of testicular tissues and depend upon antibody source, age of development and experimental design. In general, most studies have concluded that testicular expression of ESR1 is low, but under certain conditions and in some species can be found in germ cells of the testis and sperm. On the other hand, ESR2 is expressed nearly ubiquitously throughout the male reproductive system. Therefore caution must be exercised when studying estrogen action in the testis. ESR1 expression in epididymis is also controversial, due to some studies showing no immunohistochemical staining while others using better fixation and optimal staining have found the protein both in cytoplasm and the nucleus.

In addition to the genomic effects of estrogen, rapid non-genomic and membrane-associated responses have finally been recognized as indisputable pathways contributing to estrogen’s role in specific cellular functions, including the male reproductive system. ESR1 and ESR2 are involved in rapid, non-genomic transduction effects of estradiol, but the G protein-coupled estrogen receptor-1 (GPER-1) also mediates multiple downstream signaling pathways. However, this area of investigation has become complicated because some studies have shown an ER antagonist inhibiting GPER-1 activity, while other studies show activation.

Histopathology of Estrogen Receptor Dysfunction in Efferent ductules and Epididymis

Our acceptance of estrogen and its receptor, ESR1, having a major role in regulating fluid physiology in the male reproductive tract began with the analysis of the Er1 knockout mice and treatment of rodents and other species with the pure anti-estrogen ICI 182,780 (ICI). Deletion of Er1 gene caused male infertility, not only due to a disruption in male sexual behavior, but also because the sperm failed to mature properly in the male reproductive tract. Treatment with ICI induced subfertility at first, but over time complete infertility and resulted in numerous histopathological changes that were similar to those found in testes, efferent ductules and epididymides of the Er1KO.
There are two basic mechanisms known to cause fluid accumulation and backpressure atrophy of the testis (Fig. 4): a) Inhibition of fluid resorption by the efferent ductule epithelium causing luminal dilution, and b) Compaction of the luminal contents causing occlusion of the efferent ductules. ESR1 disruption (Table 1) involves the first mechanism in rodent species because rodent efferent ductules have essentially a funnel-like design (Fig. 1). When the accumulation of luminal fluids exceeds the capacity of the single common duct exit, fluid pushes back into the testis causing dilation of rete testis and the seminiferous tubules.13,14,19

Histopathological changes in the male reproductive system following Esr1 disruption were consistent with the inhibition of fluid reabsorption by the efferent ductule epithelium.6 Severe dilation of the lumen (Fig. 5) was observed in the efferent ductules, rete testis and seminiferous tubules.6,29,35,71,74,76,78,79,86 Estrogen action through ESR1 regulates directly a number of major genes or indirectly several proteins involved in ion exchange and water transport in the efferent ductule epithelium. Most notably, ESR1 helps to maintain the activity of sodium/hydrogen exchanger-3 (SLC9A3) and aquaporins 1 and 9 (AQP1, AQP9), which facilitate the resorption of Na+ and water. Also ESR1 provides an inhibitory influence on the Cl- transporters cystic fibrosis transmembrane conductance regulator (CFTR) and Slc26a3 (DAR), as well as Na+/K+ ATPase α1 (Slc9a1), which would decrease the secretion of Cl- and movement of water at the luminal surface, while balancing the removal of cytoplasmic Na+ at the basal plasmalemma. Fluid resorption is further dependent on the endocytic apparatus of the nonciliated cells,119 which was also disorganized after the disruption of ESR1 activity.6,76,88,89,95

Recent studies have shown that estrogen works through the classical activation function (AF) domain, AF-1, but is regulated by the AF-2 domain.97 However, it also maintains a capability for ligand-independent activation in the efferent ductule epithelium, possibly working through phosphorylation of the AF-1 domain,120 or even its membrane receptor.13,50,53-59 Disruption of this ESR1 activity alters the luminal fluid composition, resulting in an alkaline, hypo-osmotic environment that resulted in abnormal sperm morphology.117,121 Treatment of the Esr1KO sperm with cAMP rescued all defective motility parameters.

In addition to the fluid-transport genes, estrogen also regulates several structural proteins responsible for maintenance of the efferent ductule epithelium. Loss of ESR1 activity resulted in significant alterations in epithelial morphology (Fig. 6). There was a 52% reduction in epithelial height, decreases in the endocytic apparatus, a dramatic reduction in the number and size of microvilli and also cilia.5,29,37,47,74,76,89,90,122 Thus, both direct effects (those regulating proteins necessary for ions and water fluxes) and indirect (epithelial morphology) were mediated by ESR1 inactivation in this critical region of the male tract.

Several other gene manipulation models and chemical treatments (Table 1) also inhibit fluid resorption in the efferent ductules, resulting in dilation of rete testis and seminiferous tubules. However, many of these appear to either decrease ESR1 activity97,123-125 or inhibit ESR1 associated pathways.77,126,127 Surprisingly, the knockout of two genes regulated by ESR1, Sler9a3 and Car2, produced normal epithelial morphology in the efferent ductules, while exhibiting luminal dilations of the ductules and rete testes that were greater than those observed in the Esr1KO.77 Thus, from a histopathological viewpoint, fluid accumulation with luminal dilation may or may not be associated with altered epithelial morphology. One explanation might be that efferent ductules adapt to the accumulation of fluid in the Sler9a3 and Car2 knockout mice and simply show excessive growth during development. When evaluating global gene knockout mice, it becomes difficult to separate developmental versus adult functions of a gene. This problem was seen in Esr1KO model, as the rete testis and efferent ductules were already dilated at 10 days of age, prior to puberty.78 Therefore, treatment of the adult male with the antiestrogen ICI was necessary to show ESR1 regulation of both epithelial morphology and physiological function, separate from any developmental influence.

Finally, understanding estrogen activity in the epididymis has been a challenge because androgens have the primary role in its
Historically, others have used castration followed by estrogen treatment models to study estrogen function in the epididymis. However, such studies must now be reinterpreted because ESR1 is constitutively expressed in efferent ductules after castration and high dosages of estradiol down-regulated both AR and ESR1. Thus, an interpretation of the castration model as being representative of estrogen’s function in the epididymis appears to be invalid.

![Histopathology of Occlusions in Efferent Ductules and the Epididymal Head](image)

Compaction of the luminal contents with occlusion of the efferent ductules is the second basic mechanism known to cause fluid accumulation and backpressure atrophy of seminiferous tubules (Fig. 4). If sperm production and Sertoli cell secretions continue uninhibited following efferent ductule blockage, the
Table 1. Causes of efferent ductule dysfunction, with potential for the induction of testicular atrophy

CAUSE	DESCRIPTION	POTENTIAL TARGET*	REFERENCES
CHEMICAL			
ICI 182,780	Fulvestrant	Inhibition of fluid resorption; blocks ESR1 and ESR2; similar to Esr1/KO	6,7, 66-68,
			88-90
GR40370X	5-hydroxytryptamine receptor agonant; Serotonin-like, monoamine neurotransmitter	Inhibition of fluid resorption; vasoconstriction of venous plexus	156
PDE4 inhibitor	Phosphodiesterase-4 inhibitor	Inhibition of fluid resorption followed by occlusion; sperm granulomas	147
Uranyl nitrate hexahydrate	Dietary long-term exposure; proximal convoluted tubules of kidney sensitive	Inhibition of fluid resorption; progressive dilation of seminiferous tubules	157
LTI-1	Leukotriene A(4) hydrolase inhibitor	Occlusion; dysregulation in fluid reabsorption; sperm granuloma	2
6-chloro-6-deoxysugars	α-chlorohydrin-like chemicals	Occlusion; dysregulation of fluid resorption; sperm granuloma effector ductules; initial segment epididymis necrosis; inhibit glyceraldehyde-3-phosphate dehydrogenase	148,158-165
Isoproterenol	Beta-adrenergic agonist	Potential increase in rate of resorption; upregulates endothelin receptor-A; Et-1 increases Slc9a3 and inflammation	166-168
Benomylβ	Methyl [1-[(butylamino)carbonyl]-1H-benzimidazol-2-yl]carbamate	Occlusion; microtubule disruption; germ cell sloughing; sperm granuloma	4,130, 131, 135, 136, 169, 170
2-Methylimidazole	Polymerization cross-linking and catalytic curing agent for epoxy resins	Occlusion; efferent duct sperm granuloma	171
EDS	Ethane-1,2-dimethyl-sulfonate	Occlusion; alkylating agent, cellular toxicity; sperm granuloma	158, 172
Cadmium	Chemical element, Cd	Occlusion; vascular endothelium; sperm granuloma	173, 174
1,3-dinitrobenzene	m-Dinitrobenzene	Occlusion; impaired oxygen transport; sperm granuloma	175, 176
Dibutyl phthalate (DBP)	Di-n-butyl phthalate	Occlusion; prenatal exposure; epididymal malformation	177
Linuron	N-(3,4-dichlorophenyl)-N'-methoxy-N'-methyleurea	Occlusion; herbicide; prenatal exposure; epididymal malformation	178
DES	Diethylstilbestrol	Neonatal exposure; decreases androgen receptor; sperm granuloma; dilation of lumen	179-185
Estradiol	β-estradiol 17-cypionate; 17β-estradiol; estradiol benzoate; ethinyl estradiol	Neonatal exposure; sperm granuloma; dilation lumen	181, 182, 186-188
GENE MANIPULATIONd			
Esr1 KO	Estrogen receptor-α	Inhibition of fluid resorption; decreases in SLC9a3, CA2, AOP-1, AOP-9, CAR14, SLC4A4; increases in CFTR, SLC9A1, SLC26A3	6, 19, 35,
			74, 75, 77-80, 97
AF2ERKI MT	ESR1 AF-2 mutation	Inhibition of fluid resorption; blocks ESR1 AF-2 domain; similar to Esr1 KO	97
SLC9A3 KO	Sodium/hydrogen exchanger-3	Inhibition of fluid resorption	77
Car2 MT	Carbonic anhydrase II	Inhibition of fluid resorption	77
Gpr64 KO	G protein-coupled receptor 64 (He6)	Inhibition of fluid resorption	126
He6 KO	GPR64; orphan member of the LNB-7TM (B2) subfamily of G-protein-coupled receptors	Inhibition of fluid resorption; proximal efferent ductules; partial sperm stasis inhibition of fluid resorption; decreased expression of ESR1 and SLC9A3; also occlusion	123, 124
Lgr4 KO or MT	G protein-coupled receptor	Inhibition of fluid resorption; inhibition of SLC9A3 by over phosphorylation	127
Prkar1a+/+−	Protein kinase A (PKA) type I α regulatory subunit (Rlus)	Inhibition of fluid resorption; inhibition of fluid resorption; ductule contraction; sperm stasis; decreased expression of ESR1	125
Fst OE	Follistatin; inhibitor of activin	*Notch signaling; blocked connection with efferent ducts	189
Lfng KO	O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase	*Transmembrane, oncogene, efferent ductule overgrowth	190
Notch1 OE	Notch homolog 1, translocation-associated		

(continued on next page)
following sequence of events will occur: a) proximal efferent ductules dilate and attempt to resorb the excess fluid; b) sperm become more compacted as fluid is resorbed; c) the rete testis begins to dilate and press into the testicular parenchyma; d) dilation of the seminiferous tubular lumens begins in regions proximal to the rete testis junction; e) tubular dilation in all regions of the testis may occur; f) spermatogenesis appears to be normal at first, but over time degenerative changes can appear; g) long term blockage of the proximal efferent ductules leads to cessation of spermatogenesis and tubular atrophy. From a practical point of view, one of the most sensitive indicators of fluid accumulation is the rapid increase in testis weight, which is often unilateral.\(^{129, 133}\) However, the increase in testis weight, as well as severity of the tubular dilation and degeneration depends on a number of factors, including: how many efferent ductules were occluded; time elapsed since the onset of the occlusions; dosage of the offending compound; whether the compound also has direct effects on the seminiferous epithelium.\(^{142-146}\) What is known is that the sloughed cells plugged the common efferent ductule into the epididymal lumen. Originally, it was hypothesized that the sloughed cells plugged the common efferent ductule lumen, but microdissection of treated ductules revealed that the occlusions were located primarily in the proximal region near the rete testis.\(^{136}\) Furthermore, several other compounds are known to induce sloughing of germ cells without inducing occlusions,\(^{137-141}\) thus, carbendazim appears to have direct effects on the ductal epithelium, as well as its known effects on the seminiferous epithelium.

The potential direct effect of carbendazim on efferent ductules appears to be through the disruption of microtubule-dependent pathways responsible for membrane recycling along the microvillus border of the nonciliated cells. Although this hypothesis has not been tested in efferent ductules, in other tissues the turnover and displacement of ion and water transport proteins was disrupted with microtubule poisons,\(^{142-146}\) which could cause an increased rate of fluid resorption, sperm stasis and luminal compaction. Carbendazim has also been shown to increase the activity of Na+/K+-ATPase along the basolateral border of the nonciliated cells,\(^{136}\) which could be a normal response to an increase in Na+ flux at the luminal surface. However, other potential mechanisms should also be explored. For example, a carbendazim-like sperm granuloma with seminiferous tubular

Table 1. Causes of efferent ductule dysfunction, with potential for the induction of testicular atrophy (Continued)

CAUSE	DESCRIPTION	POTENTIAL TARGET*	REFERENCES
Pkd1 KO	Polycystic kidney disease 1 homolog	Abnormal epididymal development; dilation of efferent ductules	191
TE rat MT	Outbred Wistar strain	Autoimmune disorder; sperm granuloma	192
Dax1 KO	Nr0b1; transcription	‘Occlusion; overgrowth of Sertoli cell and efferent duct epithelium	193
Prox-E-AR or CEAR KO	Androgen receptor knockout in initial segment or caput epididymis	Occlusion; differentiation failure in caput epididymis; sperm granuloma	194, 195
Dicer1KO	Endoribonuclease; RNA interference	Occlusion; abnormal growth and blockage	196

HUMAN DISEASE

CAUSE	DESCRIPTION	POTENTIAL TARGET*	REFERENCES
Von Hippel-Lindau disease	Papillary cystadenoma of the epididymis; also cystic kidney	Dysregulation of HIF1a; upregulation of vascular endothelial growth factor (VEGF)	197-201
Young’s syndrome	Chronic sinopulmonary infections; azoospermia	Abnormal secretion or resorption; occlusion of caput and middle epididymis	202-205
Varicocele	Dilation of veins near rete testis and efferent ductules	Occlusion; compression of efferent ducts and edema; blockage	206
Spontaneous granuloma	Caput epididymis efferent ductules	Occlusion; sperm granuloma; fibrosis; recanalization	207-209
Renal failure	Renal dialysis; renal malformations; renal cysts	Dilation of rete testis and epididymis; can lead to occlusion; intraductal calcium oxalate deposits	210-216

PHYSICAL

CAUSE	DESCRIPTION	POTENTIAL TARGET*	REFERENCES
Ligation of ductules	Surgical blockage	Fluid accumulation; greater testicular effects when occluded closer to the rete testis	1, 129, 133, 150, 151, 217-225
Arterial occlusion	Superior epididymal artery	Occlusion; localized ischaemia, sperm granuloma	151, 226, 227

*Potential target for mechanisms in efferent ductules and rete testis, not necessarily testis or other organs.

Including its metabolite carbendazim.

Abnormal secretion or resorption; occlusion

Dilation of rete testis and epididymis; sperm granuloma

Abnormal secretion or resorption; occlusion

Abnormal secretion or resorption; occlusion
atrophy can be induced by a phosphodiesterase-4 inhibitor, which appears to inhibit fluid resorption rather than increase the rate of uptake. The unknown factor in both cases is the stimulus for polymorphonuclear leukocyte recruitment and subsequent formation of sperm granulomas.

Multiple pathways are likely involved in the onset of granuloma formation and ductal blockage and both mechanisms could overlap in some instances. For example, it has been known for many years that α-chlorohydrin inhibits glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in spermatozoa but also induces efferent ductule sperm granulomas, similar to those observed with carbendazim. The occlusions were thought to be due to a disruption in blood flow. However, subsequent studies revealed that G3PDH is a microtubule-associated protein and 24 hours following α-chlorohydrin treatment β-tubulin disappears in the initial segment epithelium. If a similar effect is observed in the efferent ductule epithelium, then the mechanism leading to compaction of luminal sperm and formation of sperm granulomas following α-chlorohydrin treatment may overlap with that of carbendazim and indirectly be increasing the rate of fluid resorption.

Complications of histopathological interpretations

The interpretation of histopathological changes in the testis and head of the epididymis will depend on several common factors but also differ depending on which mechanism is causing the accumulation of fluid (Table 3). A major complication occurs if the seminiferous tubules and rete testis are dilated, but histological sections of the efferent ductules and initial segment epididymis have not been preserved. This is a serious problem because partial or total occlusion of the efferent ductules and efferent ductules will produce fluid accumulation in the testis similar to the Esr1 KO mouse; however, different mechanistic interpretations are required for each condition. Another major problem is time post exposure or post development. Occlusions of the proximal efferent ductules produce rapid increases in testicular weight and dilation of the tubules. However, when an occlusion or the inhibition of fluid resorption occurs further away from the rete testis, there can be a delay in the onset of increased testicular weight, with the delay taking up to several weeks. The more distal an occlusion occurs, the greater the surface areas of normal efferent ductule epithelium that will remain for continued resorption of luminal fluid, while the ductal wall stretches in diameter to accommodate the continual release of sperm and fluid from the testis.

Prior to seminiferous tubular atrophy, testicular histopathology can show a wide range of responses to fluid accumulation following ductal occlusions, depending on numerous factors already stated. Testicular dilation may be mild to moderate, with normal spermatogenesis or severe dilation with thinning of the...
Degenerative changes in the seminiferous epithelium may include the formation of multinucleated germ cells, sloughing of immature germ cells, epithelial vacuolation, hypospermatogenesis, and apoptosis. However, the testis and head of the epididymis have a remarkable capacity to adapt to the accumulation of fluid, as some testes having only one unobstructed efferent ductule still exhibited normal spermatogenesis in a limited number of seminiferous tubules, although an increase in atrophy was noted over a 70-day period.

Species considerations are always complicated, not only from a metabolism and target organ perspective, but also because the histopathology may differ significantly, without an obvious reason. Estrogen receptor studies provide a good example. The \textit{Esr1} knock-out mouse testis showed an increase in testis weight and dilation of rete testis and seminiferous tubules over an 80-day period post birth, after which testis weight declined until total atrophy was observed. However, the knockout mouse was lacking ESR1 from development, therefore the pure antiestrogen ICI was used to determine if the same response would occur in the adult male. In the rat a similar time response was noted with testis weight and dilation of rete testis and seminiferous tubules over an 80-day period post birth, after which testis weight declined until total atrophy was observed. However, the same treatment in the pubertal mouse gave confusing results. In the mouse, by day 8 post-treatment the efferent ductule lumen was dilated and epithelial structural integrity was already compromised, but the rete testis did not dilate until day 59. Furthermore, the mouse testis never increased in weight out to day 125 and atrophy was observed in only about 30% of the seminiferous tubules. Thus, the interpretation became complicated and we were never able to determine why backpressure atrophy did not occur with ICI treatment, even though the efferent ductules and rete testis exhibited nearly identical histopathological changes as seen in the \textit{Esr1} knock-out mouse.

In the case of inhibited fluid resorption, it is unclear whether tubular atrophy is due to the fluid backpressure or a direct effect of the chemical, such as the antiestrogen ICI, on the seminiferous epithelium? In the \textit{Esr1} knock-in mouse (ENERKI), in which a point mutation in the ligand-binding domain of ESR1 allows for ligand-independent signaling, the efferent ductules were basically normal but with aging the testes showed focal seminiferous tubular atrophy similar to the ICI-treated mouse. Thus, blockage or physical ligation of the proximal efferent ductules of every species will result in testicular swelling and seminiferous tubular atrophy through rapid pressure-sensitive mechanisms, but long-term testicular effects of fluid accumulation following the inhibition of fluid resorption by the efferent ductule epithelium will depend on the species, the response time and other factors not yet uncovered.

Aberrant or blind-ending efferent ductules are an additional complication for histopathologists, as these small tubules are present in about 60% and 40% of the control testes/epididymides in rats and mice, respectively. The lumen of a blind-ending ductule is continuous with that of the male reproductive tract but is connected only at one end, presumably due to a failure in development from the mesonephric system of the embryo. In rodents, blind-ending tubules are smaller in diameter, have a

\textbf{Figure 6. Efferent ductules from control and antiestrogen ICI 182,780 treated mice.} (A) Light microscopy of the control proximal efferent ductule epithelium. Nc, nonciliated cell; Ci, ciliated cell. (B) Transmission electron microscopy of the control proximal efferent ductule epithelium. The nonciliated cell (Nc) has a short columnar height (double red arrow) and a prominent brush border of microvilli (Mi). The ciliated cell (Ci) has an abundance of basal bodies (red arrows) supporting the ciliary structures that protrude into the lumen. (C) Light microscopy of the ICI-treated proximal efferent ductule epithelium. The epithelium is shorter than normal and nonciliated cells (Nc) have a scant cytoplasm compared to the control. Ci, ciliated cell. (D) Transmission electron microscopy of the ICI-treated proximal efferent ductule epithelium. The nonciliated cell (Nc) is shorter in height (double red arrow) and is missing the normal finger-like projections of the microvillus border (*). The number of basal bodies (red arrows) supporting cilia (Ci) is greatly reduced.
Table 2. Potential mechanisms for inducing occlusions in the head of the epididymis

Cause	Potential Mechanisms	References
Fluid resorption	Increase in the rate of Na⁺-uptake at the lumen; upregulate endothelin-1 or ET(A);	126, 136, 149, 166-168, 196, 228
	increase in ESR1 expression	
Microtubule disruption	Indirect effect on fluid resorption; disruption of epithelial recycle of apical vesicles and membrane proteins associated with ions and water transport	136, 142, 144-146, 149, 229-235
Inflammation	Inhibition of immune tolerance; extravasation of luminal germ cells; influx of macrophages and neutrophils; stretching of ductal epithelium	2, 147, 171, 236, 237
Leakage of fluid	Damage to the tight junctions of the vascular endothelium; leakage at the efferent ductal epithelium	124, 161, 173, 174, 209
Ischemia	Inhibition of blood flow; dilation of veins; arterial occlusions; also damage to the endothelium	151, 152, 156, 173, 174, 206, 226, 227, 238
Sperm stasis	Inhibition of peritubular smooth muscle tone, either directly or indirectly through inhibition of sympathetic nerves	147, 239, 240
Developmental malformations	Abnormal growth that blocks the lumen	123, 124, 177, 178, 194, 195

*These are suggested mechanisms based on collective data and not necessarily direct association with efferent ductules and epididymis.

Table 3. Complications associated with histopathological interpretations of inhibited fluid resorption and sperm granulomas formation in the head of the epididymis

INHIBITION OF FLUID RESORPTION

Potential Efferent Ductule Effects	Histopathological Complications
Luminal dilation	Dilation may differ depending on region of the ductule; a time-response may be involved; blind ending ducts may confuse the interpretation
Epithelial height decrease	Can be absent even with large luminal dilation
Endocytic apparatus decrease	Can be absent even with large luminal dilation
Microvillus border decrease in height	Can be absent even with large luminal dilation
Potential Testicular Effects	Species and time dependent; this can be transient; correlated with tubular dilation; must examine over time; may be unilateral
Testis weight increase	Species and time dependent; may be induced during development; may be unilateral; could miss observation in histology section
Luminal dilation of rete testis	Species and time dependent; may be induced during development; may be unilateral; could miss observation in histology section
Luminal dilation of seminiferous tubules	Species and time dependent; not all tubules will show equal effects; must section rete testis region, as this region may be more severe; luminal diameter may be dilated but tubular diameter may not be enlarged; may be unilateral
Seminiferous epithelial degeneration (multinucleated giant cells, vacuolation, sloughing, hypospermatogenesis, apoptosis)	Species and time dependent; correlated with tubular dilation; must examine over time; ranges from normal to mild to severe; rete testis proximity may be more severe; may lead to atrophy
Atrophy of seminiferous tubules	Must examine after long-term effects; not all tubules will show equal effects; may be unilateral

INDUCTION OF SPERM GRANULOMA

Potential Efferent Ductule Effects	Histopathological Complications
Luminal compaction of sperm	Dose and time dependent; not all ductules will show equal effects; proportional to dosage; may be unilateral; could miss observation in histology section
Neutrophil granulocyte inflammation	Dose and time dependent; not all ductules will show equal effects; may subside with the onset of fibrosis
Fibrosis	Must examine after long-term effects; may require serial sections
Recanalization	Must examine after long-term effects; may require serial sections
Potential Testicular Effects	Species and time dependent; this can be transient; correlated with tubular dilation; may be unilateral; must examine over time
Testis weight increase	Species and time dependent; this can be transient; correlated with tubular dilation; may be unilateral; must examine over time
Rete testis lumen dilated	Depends on location of occlusion and species; proportional to dosage; may be unilateral
Seminiferous tubular lumen dilated	Depends on location of occlusion and species; proportional to dosage; may be unilateral

*Appears to be ESR1 related.
**Transient increase, then decrease following seminiferous epithelial degeneration.
†Depends on the species and age or time post treatment or developmental.
clogged lumen with no sperm, store more intensely but lack the typical number of lysosomes in their cytoplasm. In larger mammals, such as the dog, bull and man, the blind-ending ductules are capable of accumulating stagnant sperm, dilating in size and forming sperm granulomas. Thus, the presence of these aberrant tubules must be taken into consideration when interpreting the histopathological responses observed in the head of the epididymis, but appear to be capable of contributing to ductal occlusions only in the larger species.

Conclusion

Disruption of efferent ductule epithelial function results in the accumulation of luminal fluids that is capable of backpressure into the rete testis and seminiferous tubules, causing transient dilation, epithelial degeneration and even testicular atrophy. This histopathological sequence was originally discovered following surgical ligation of the efferent ductules or treatment with chemicals that induced sperm granulomas in the head of the epididymis. However, a similar morphological sequela in the testis was also observed following the disruption of ESR1 function in the efferent ductules, which revealed the importance of preserving these delicate ducts for evaluation, but also brought attention to the role that estrogen plays in maintaining fluid resorption by the efferent ductal epithelium. Although efferent ductules are difficult to preserve for routine histological sectioning, their evaluation is essential for determining the mechanism of testicular injury if dilation is observed in the rete testis and/or seminiferous tubules, but also when unexplained seminiferous tubular atrophy is present in a long term study. Backpressure atrophy of the testis can be rapid and once the efferent ductules are occluded the lesion appears to be permanent.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Van Wagenen G. Degeneration of germinal epithelium in the testis of the rat as a result of efferent duct ligation. Anat Rec 1924; 27:189-90.
2. Neill DK, Creasy DM, Hess RA, Baxter E, Pereira ME, Johnson CA, Vinken P, Snook SS. Efferent duct toxicity with secondary testicular changes in rats following administration of a novel leukotriene A4 hydrolyase inhibitor. Toxicol Pathol 2012; 40:705-14.
3. Ilo KY, Hess RA. Structure and function of the ductuli efferentes: a review. Microsc Res Tech 1994; 29:432-67.
4. Hess RA, Nakai M. Histopathology of the male reproductive system induced by the fungicide benomyl. Histol Histopathol 2001; 16:207-24.
5. Hess RA. The Efferent Ductules: Structure and Functions. In: Robaire B, Hinton B, eds. The Epididymis: from Molecules to Clinical Practice. New York: Kluwer Academic/Plenum Publishers, 2002:49-88.
6. Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, Luhahn DB. A role for oestrogens in the male reproductive system. Nature 1997; 390:509-12.
7. Burrows H. Carcinoma mammae occurring in a male mouse under continued treatment with oestrin. Am J Cancer 1935; 24:613-6.
8. McLachlan JA, Newbold RR, Bullock B. Reproductive tract lesions in males exposed perinatally to diethylstilbestrol. Science 1975; 190:991-2.
9. Wolf R, Genglinger A. Sur la transformation des Poulters males en intersexues par injection d’hormone femaille (folliculine) aux embryons. Arch Anat Hist Embryol 1935; 20:219-78.
10. Pinilla L, Cocconi M, Zoppo S, Martini L. Effect of neonatal estrogenization on testosterone metabolism in the prostate and in the epididymis of the rat. J Steroid Biochem 1989; 32:459-65.
11. Greco TL, Duilio TM, Gorski J. Estrogen receptors, estradiol, and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts. Endocrin Rev 1993; 14:59-71.
12. Carreau S, Hess RA. Oestrus and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1517-35.
13. Hess RA, Fernandes SA, Gomes GR, Oliveira CA, Lazari MF, Porto CS. Estrogen and its receptors in efferent ductules and epididymis. J Androl 2011; 32:600-13.
14. Joseph A, Shair BD, Hess RA. Estrogen, efferent ductules, and the epididymis. Biol Reprod 2011; 84:207-17.
15. Klinefelter GR, Hess RA. Toxicity of the efferent ducts and accessory organs in the male. In: Korach KS, ed. Reproductive and Developmental Toxicology. New York: Marcel Dekker, Inc., 1998:553-91.
16. Hess RA, Zhou Q, Nie R, Oliveira C, Cho H, Nakai M, Carnes K. Estrogens and epidudymal function. Reprod Fertil Dev 2001; 13:273-83.
17. Jorgensen N, Meyrs ER, Main KM, Skakkebaek NE. Testicular dysgenesis syndrome comprises some but not all cases of hypospadias and impaired spermatogenesis. J Androl 2010; 33:298-303.
18. Wolfradt-Veje C, Main KM, Skakkebaek NE. Testicular dysgenesis syndrome: fetal origin of adult reproductive problems. Clin Endocrinol (Oxf) 2009; 71:459-65.
19. Hess RA, Zhou Q, Nie R. The Role of Estrogens in the Endocrine and Paracrine Regulation of the Efferent Ductules, Epididymis and Vas deferens. In: Robaire B, Hinton BT, eds. The Epididymis: from Molecules to Clinical Practice. New York: Kluwer Academic/Plenum Publishers, 2002:317-38.
20. Hess RA. Estrogen in the adult male reproductive tract: A review. Reprod Biol Endocrinol 2003; 1:52.
21. Carreau S, Woliwczak S, Galerda-Denis I, Aroma-tose, oestrogens and human male reproduction. Philos Trans R Soc Lond B Biol Sci 2010; 365:1571-9.
22. Hess RA. Oestrogen in fluid transport and reabsorption in efferent ducts of the male reproductive tract. Rev Reprod 2000; 5:84-92.
23. Nitta H, Bunick D, Janulis L, Newton SC, Millette CF, Osawa Y, Shizuta Y, Toda K, Bahr JM. Germ cells of the mouse testis express P450 aromatase. Endocrinology 1993; 132:1396-401.
24. Janulis L, Hess RA, Bunick D, Nitta H, Jansen S, Osawa Y, Bahr JM. Mouse epididymal sperm contain active P450 aromatase which decreases as sperm traverse the epididymis. J Androl 1998; 19:65-71.
25. Janulis L, Bahr JM, Hess RA, Jansen S, Osawa Y, Bunick D. Rat testicular germ cells and epithelial sperm contain active P450 aromatase. J Androl 1998; 19:65-71.
26. O’Donnell L, Robertson KM, Jones ME, Simpson ER, Estrogen and spermatogenesis. Endocrinol Reprod 2002; 1:2028-319.
27. Robertson KM, O’Donnell L, Jones ME, Meachem SJ, Boon WC, Fisher CR, Graves KH, Maclachlan RI, Simpson ER. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp19) gene. Proc Natl Acad Sci U S A 1999; 96:7986-91.
28. Robertson KM, O’Donnell L, Simpson ER, Jones ME. The phenotype of the aromatase knockout mouse reveals dietary phytoestrogens impact significantly on testis function. Endocrinology 2002; 143:2913-21.
29. Toda K, Okada T, Hayashi Y, Saitara T. Preserved tissue structure of efferent ductules in aromatase-deficient mice. J Endocrinol 2008; 199:137-46.
30. Oliveira CA, Mahecha GA, Carnes K, Prins GS, Saunder PT, Franca LR, Hess RS. Differential hormonal regulation of estrogen receptors ER alpha and ER beta and androgen receptor expression in rat efferent ductules. Reproduction 2004; 128:73-86.
31. McDevitt MA, Glidewell-Kenney C, Weiss J, Cham- bon P, Jameson JL, Levine JE. Estrogen response element-independent estrogen receptor (ER)-alpha signaling does not rescue sexual behavior but restores normal testosterone secretion in male ERalpha knock-out mice. Endocrinology 2007; 148:5288-94.
32. Sinkevicius KW, Burdette JE, Woloszyn K, Hewitt SC, Hamilton K, Sugg SL, Temple KA, Wondisford FE, Korach KS, Woodruff TK, et al. An estrogen receptor-alpha knock-in mutation provides evidence of ligand-independent signaling and allows modulation of ligand-induced pathways in vivo. Endocrinology 2008; 149:2970-9.
33. Sinkevicius KW, Laine M, Lotan TL, Woloszyn K, Richburg JH, Greene GL. Estrogen-dependent and -independent estrogen receptor-alpha signaling separately regulate male fertility. Endocrinology 2009; 150:2889-905.
34. Picciarelli-Lima P, Oliveira AG, Reis AM, Kalapothakis K, Mahecha GA, Hess RA, Oliveira CA. Effects of 3beta-diol, an androgen metabolite with intrinsic estrogen-like effects, in modulating the aquaporin-9 expression in the rat efferent ductules. Reprod Biol Endocrinol 2006; 4:51.
35. Rau R, Gregory M, Smith CE, Cey DG, Lubahn DB, Hess RA, Herms L. Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-alpha deficient mice fed lab chow versus casein. Mol Reprod Dev 2006; 73:226-37.
36. Gomes FR, Yasuhara F, Siu ER, Fernandes SA, Avel- lar MC, Lazari MF. Paternos de Vito. Treatments with Fulvestrant and Anastrozole Differentially Affect Gene Expression in the Rat Efferent Ductules. Biol Reprod 2011; 84:52-61.
37. Lazari MF, Lucas TF, Yasuhara F, Gomes FR, Siu ER, Royer C, Fernandes SA, Porto CS. Estrogen receptors and function in the male reproductive system. Arch Bras Endocrinol Metab 2009; 53:923-33.
38. Pearl CA, Art-Taras E, Berger T, Roser JF. Reduced endogenous estrogen delays epididymal development
but has no effect on efferent duct morphology in boars. Reproduction 2007; 134:593-604.
39. Chang EC, Charn TH, Park SH, Helferich WG, Kemm B, Katenellenbogen JA, Katenellenbogen BS. Eretro-epidermal receptor alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol 2008; 22:1032-43.
40. Ellman S, Stinch F, Thiel F, Beckmann MW, Strick R, Klein SP. Eretro-epidermal receptor alpha and beta: from molecular structures to clinical targets. Cell Mol Life Sci 2009; 66:2405-26.
41. Nilsson S, Gustafsson JA. Eretrogonadotropin: receptors: therapies targeted to receptor subtypes. Clinical pharmacology and therapeutics 2010; 88:5-55.
42. Danzo BJ, Eller BC. The presence of a cytoplasmic estrogen receptor in sexually mature rabbit epididymis: comparison with the estrogen receptor in immature rabbit epididymal cytosol. Endocrinology 1979; 103:1128-39.
43. Schleicher G, Dews U, Stumpf WE, Sar M. Differential distribution of dihydrotestosterone and estradiol binding sites in the epididymis of the mouse. An autoradiographic study. J Cell Biol 1984; 81:139-46.
44. Hess RA, Gut DH, Bunick D, Lubahn DB, Farrell A, Bahr J, Cooke PS, Greene GL. Eretrogonadal receptor (alpha and beta) expression in the excructant ducts of the adult male rat reproductive tract. J Androl 1997; 18:1-18.
45. Ramesh R, Pearl CA, At-Taras E, Roser JF, Berger T. The presence of a cytoplasmic cytokeratin intermediate filaments. Mol Pharmacol 2011; 79:400-10.
46. Ferrt D, Bakhaus K, Wapelhorst B, Grosser G, Gunther S, Alber J, Doring B, Kliessch S, Weidner W, Galaska CE, et al. Membrane transporters for sulfa drugs in the human testis - cellular localization, expression pattern and functional analysis. PLoS One 2013; 8:e62638.
47. Chimetto A, Sirianni R, Casaburi I, Pezzi V. Role of Eretrogonadotropin Receptors and G Protein-Coupled Estradiol Receptor in Regulation of Hypothalamic-Pituitary-Testis Axis: A赠 mothelial Hormones. Frontiers in endocrinology 2014; 5:1.
48. Ge LC, Chen ZJ, Liu HY, Zhang KS, Liu H, Huang HB, Zhang G, Wong CK, Giey JP, Du J, et al. Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor alpha/beta in low doses of hispinol A promoting growth of Sertoli TM4 cells. Toxicol Lett 2014.
49. Profsonist ER, Barton M. Estradiol Biology: New Insights into GPER Function and Clinical Opportunity. Endocrinology 2005; 146:1426-34.
50. Han G, Li F, Yu X, White RE. GPER: a novel target for non-genomic estrogen action in the cardiovascular system. Pharmacol Rev 2013; 71:53-60.
51. Hamann SB, Wetmore CE, Miniewicz. Recent advances in extravascular steroid receptor actions. Endocrinology 2011; 152:4489-95.
52. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab 2009; 20:477-82.
53. Hamann SB, Wetmore CE, Miniewicz. Membrane receptors: nature and actions. Endocr Rev 2007; 28:726-41.
54. Stahl, G. Estradiol and DHT, the two main forms of sex hormones, are able to bind to GPER. J Androl 2014; 35:199-202.
55. Lucas TF, Siu ER, Lazari MF, Porto CS. Physiopathological studies of 17beta-estradiol signaling in male Sertoli cells: insights from targeted gene deletion. J Androl 2001; 50:4943-51.
56. Lucas TF, Royer C, Siu ER, Lazar MF, Porto CS. Expression and signaling of G protein-coupled estrogen receptor 1 (GPER) in rat sertoli cells. Biol Reprod 2006; 75:389-95.
57. Boui C, Delalande C, Bouraima-Lelong H, Durand P, Carreau S. 17beta-Estradiol regulates cyclin A1 and cyclin B1 gene expression in adult rat seminiferous tubules. J Mol Endocrinol 2012; 48:89-97.
58. Fietz D, Bakhaus K, Wapelhorst B, Grosser G, Gunther S, Alber J, Doring B, Kliessch S, Weidner W, Galaska CE, et al. Membrane transporters for sulfa drugs in the human testis - cellular localization, expression pattern and functional analysis. PLoS One 2013; 8:e62638.
59. Lucke A, Aoki M, Erbertseder F, Rosland SJ, Orton P, Jovanovic M, et al. GPER and its role in mouse reproductive tract. Endocrinology 2011; 152:4489-95.
60. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab 2009; 20:477-82.
61. Lucas TF, Siu ER, Lazari MF, Porto CS. Physiopathological studies of 17beta-estradiol signaling in male Sertoli cells: insights from targeted gene deletion. J Androl 2001; 22:227-36.
62. Saunders PT, Sharpe RM, Williams K, Macpherson AJ, Conley AJ, Van Klompenberg M, Roser JF, Berger T. The presence of a cytoplasmic cytokeratin intermediate filaments. Mol Pharmacol 2011; 79:400-10.
Spermatogenesis

101. Oliveira CA, Victor-Costa AB, Hess RA. Cellular and androgen receptor and estrogen-signaling pathways in inducing epididymal gene expression. Reprod Biol Endocrinol 2009; 7:63:31-43.

102. Eddy EM, Korach KS. Transactivating function (AF) mediated AF-1 activity of estrogen receptor alpha is crucial to maintain male reproductive tract function. Appl Microscopy 2013; 43:103-9.

103. Turner KJ, Morley M, MacPherson S, Millar MR, Lassurguere J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

104. Chimento A, Sirianni R, Delalande C, Silandre D, Lassergue J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

105. Cardoso L, Nascimento A, Royer C, Porto C, Lazari M. Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction 2009.

106. Ebling FJ, Nwagwu MO, Baines H, Myers M, Kerr JB. The hypogonadal (hpg) mouse as a model to investigate the estrogenic regulation of spermatogenesis. Hum Fertil (Camb) 2006; 9:127-35.

107. Pinto PI, Singh PB, Condeca JB, Teodosio HR, M. Induction of spermatogenic cell apoptosis in prepuberal rat testes following carbendazim treatment. J Vet Med Sci 2010; 72:565-71.

108. Ebling FJ, Nwagwu MO, Baines H, Myers M, Kerr JB. The hypogonadal (hpg) mouse as a model to investigate the estrogenic regulation of spermatogenesis. Hum Fertil (Camb) 2006; 9:127-35.

109. Chimento A, Sirianni R, Delalande C, Silandre D, Lassergue J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

110. Lassergue J, Livera G, Habert R, Jegou B. Time-course of ICI 182,780 on estrogen receptor expression, fluid resorption and sperm transit in testicular efferent ducts. Biol Reprod 2010; 82:498-57.

111. Hess RA. Estrogen in regulating epididymal gene expression. Mol Endocrinol 2001; 15:773-85.

112. Turner KJ, Morley M, MacPherson S, Millar MR, Lasserguere J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

113. Gancarczyk M, Paziewska-Hejmej A, Carreau S, Tabaczewski AB, Bliska B, Bulo M, Parolini O, Apostoli P, Caimi L, Ciana P, et al. Target-specific action of organochlorine compounds in reproductive and nonproductive tissues of estrogen-reporter male mice. Toxicol Appl Pharmacol 2006; 210:189-96.

114. Quintar AA, Nishioka S, Torres AI, Maldonado CA, Pfaff DW, Canario AV. ICI 182,780 has agonistic and antagonistic effects and a dose of the fungicide carbendazim (methyl 2-benzimidazole carbamate) on the male reproductive system in the rat. J Androl 1992; 13:507-18.

115. Russo M, Troncone G, Guarino FM, Angelini F, Carcassi M, Del Rio P, Argentieri R, et al. Target-specific action of organochlorine compounds in reproductive and nonproductive tissues of estrogen-reporter male mice. Toxicol Appl Pharmacol 2006; 210:189-96.

116. Cardoso L, Nascimento A, Royer C, Porto C, Lazari M. Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction 2009.

117. Chimento A, Sirianni R, Delalande C, Silandre D, Lassergue J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

118. Mahato D, Goulding EH, Korach KS, Eddy EM. Estrogen receptor-alpha is required by the supporting Sertoli cells and in sperm release. Gen Comp Endocrinol 2008; 155:838-46.

119. Hermo L, Clermont Y, Morales C. Fluid-phase and adsorptive endocytosis in ciliated epithelial cells of the testis in the Mouse Epididymis and Consequent Defects in sperm Function. Biol Reprod 2010; 82:353-6.

120. Chimento A, Sirianni R, Delalande C, Silandre D, Lassergue J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.

121. Joseph A, Hess RA, Schaeffer DJ, Ko C, Hudgin-Spivey S, Chambon P, Shur BD. Absence of Estrogen Receptor-alpha is required by the supporting Sertoli cells and in sperm release. Gen Comp Endocrinol 2008; 155:838-46.

122. Chimento A, Sirianni R, Delalande C, Silandre D, Lassergue J, Livera G, Habert R, Jegou B. The hypogonadal (hpg) mouse as a model to study the Sertoli cell and spermatids in the mouse testis. Biochem Biophys Res Commun 2006; 346:276-80.
ether on testicular histology in F344 rats. J Androl 1984; 5:369-80.

142. Elkejer ML, Birn A, Agre P, Christensen EI, Nielsen S. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells. Eur J Cell Biol 1995; 67:57-72.

143. Berton S, Nauma NN, Gali T, Sabolic I, Smith PJ, Brown D. Tansus toxin-mediated cleavage of cellu-

144. Piner J, Sutherland M, Millar M, Turner K, Newall J. Structures in testicular spermatozoa in the male reproductive tract. Am J Physiol Reproductive 1980: 278: F171-25.

145. Pastor-Soler N, Bagius C, Sabolic I, Tyszczuk R, McKee M, Van Hock A, Brown D, Brown A. Aquaporin-9 expression along the male reproductive tract. Biol Reprod 2001: 65:384-93.

146. Sabolich I, Herak-Kramberger CM, Litjovenjic M, Bies-

147. Foley GL, Bassily N, Hess RA. Intratubular spermatic wholes in bull spermatozoon in vitro. J Reprod Fertil 1962; 45:177-83.

148. Filippi S, Vannelli GB, Granchi S, Luconi M, Cres-

149. Creasy DM. Pathogenesis of male reproductive toxic-

150. Harrison RG. The effect of ligation of the vasa effer-

151. Macmillan EW. Higher epididymal obstructions in rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granu-

152. Creasy DM. Histopathology of the male reproductive organs and fertility of the male rat. J Reprod Fertil 1974; 38:379-86.

153. Klinefelter GR, Laskey JW, Roberts NR, Slott V, Kemkowski J. Selective inhibition of PDE4 in Wistar rats... J Reprod Fertil 1977; 51:469-71.

154. Ford WC, Waites GM. The effect of high doses of 6-

155. Wong PY, Yeung CH. Inhibition by alpha-chlorohy-

156. Klinefelter GR, Laskey JW, Roberts NR, Slott V, Kemkowski J. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granu-

157. Mason KE, Shaver SL. Some functions of the caput epididymis. Ann N Y Acad Sci 1952; 55:585-93.

158. Cooper ER, Jones AR, Jackson H. Effects of alpha-

159. Harrison RG. The effect of ligation of the vasa effer-

160. Ericsson RJ. Male antifertility compounds: U-5897 as a rat chemosterilant. J Reprod Fertil 1970; 20:212-25.

161. Reijonen K, Kormano M, Ericsson RJ. Studies on the rat epididymal blood vessels following alpha-chloro-

162. Wong PY, Yeung CH. Absorptive and secretory functions of the perfused rat cauda epididymis. J Physiol 1978; 275:13-26.

163. Wong PY, Yeung CH. Inhibition by alpha-chlorohy-

164. Ford WC, Wates GM. The effect of high doses of 6-

165. Ford WC, Wates GM. Activities of various 6-chloro-

166. Filippi S, Vannelli GB, Granchi S, Luconi M, Cres-

167. Mason KE, Shaver SL. Some functions of the caput epididymis. Ann N Y Acad Sci 1952; 55:585-93.

168. Fishers JS, Turner KJ, Brown D, Sharpe RM. Effect of neonatal estrogen exposure on testicular epidermal differentiation of the cat. Toxicol Pathol 2001; 129:589-601.

169. Fishers JS, Pastor-Soler N, Sharpe RM, Breton S. Immunoeexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estro-

170. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

171. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

172. Klinefelter GR, Laskey JW, Roberts NR, Slott V, Kemkowski J. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granu-

173. Bird BD, Sharpe RM. Immunoexpression of male rats to estradiol benzoate causes rete testis dilation and backflow impairment of spermatogenesis. Acta Reprod 1998; 252:17-33.

174. Hahn KL, Beres B, Rowton MJ, Skinner MK, Chang Y, Ransil B, Aranazova N, Williams K, Fuller JS, Walker M, Turner KJ, Saunders TK, Sharpe RM. Inhibition by alpha-chlorohydrin of fluid reabsorption in the rat cauda epididymis. J Reprod Fertil 1970; 22:213-22.

175. Suvarikova A, Suvarikova D, Toth L. Selective inhibition of PDE4 in Wistar rats can lead to dilatation... J Reprod Fertil 1977; 51:469-71.

176. Ford WC, Wates GM. Effects of various 6-chloro-

177. Ford WC, Wates GM. Activities of various 6-chloro-

178. Ford WC, Wates GM. Activities of various 6-chloro-

179. Miyaso H, Naito M, Hirai S, Matsuno Y, Komiyama H. Endocrine disrupting effects of low dose 17-

180. Naito M, Hirai S, Terayama H, Qu N, Hayashi S, Hayama N, Kawamura H, Nakan T, Itoh M. Neon-

181. Fisher JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol. J Androl 2001; 22:323-38.

182. Naito M, Hirai S, Terayama H, Qu N, Hayashi S, Hayama N, Kawamura H, Nakan T, Itoh M. Neon-

183. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Effect of neonatal estrogen exposure on testicular epidermal differentiation of the cat. Toxicol Pathol 2001; 129:589-601.

184. Fishers JS, Pastor-Soler N, Sharpe RM, Breton S. Immunoeexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estro-

185. McKinnell C, Atanassova N, Williams K, Fisher JS, McKee M, Van Hoek A, Brown D, Breton S. Aquaporin 9 expression in the developing rat epididymis is modulated by ste-

186. Naito M, Hirai S, Terayama H, Qu N, Hayashi S, Hayama N, Kawamura H, Nakan T, Itoh M. Neon-

187. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Effect of neonatal estrogen exposure on testicular epidermal differentiation of the cat. Toxicol Pathol 2001; 129:589-601.

188. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Effect of neonatal estrogen exposure on testicular epidermal differentiation of the cat. Toxicol Pathol 2001; 129:589-601.

189. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

190. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

191. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

192. Fishers JS, Turner KJ, Fraser HM, Saunders PT, Brown D, Sharpe RM. Immunoeexpression of aqua-

193. Jeffs B, Meeks JJ, Ito M, Martinson FA, Matzuk MM, Jameson JL, Russell JD. Blockage of the rete testis and efferent ductules by ectopic sertoli and leydig cells causes infertility in da1-deficient male mice. Endocri-

194. Breton S, Nsumu NN, Galli T, Sabolic I, Smith PJ, Brown D. Aquaporin 9 expression along the male reproductive tract. Biol Reprod 2001: 65:384-93.

195. Sabolich I, Herak-Kramberger CM, Litjovenjic M, Bies-

196. Foley GL, Bassily N, Hess RA. Intratubular spermatic wholes in bull spermatozoon in vitro. J Reprod Fertil 1962; 45:177-83.

197. Filetts RJ, Smith RJ. Male antifertility compounds: U-5897 as a rat chemosterilant. J Reprod Fertil 1970; 20:212-25.

198. Reijonen K, Kormano M, Ericsson RJ. Studies on the rat epididymal blood vessels following alpha-chloro-

199. Hoffer AP, Hamilton DW, Fawcett DW. The ultra-

200. Ericsson RJ. Male antifertility compounds: U-5897 as a rat chemosterilant. J Reprod Fertil 1970; 20:212-25.

201. Pastor-Soler N, Bagius C, Sabolic I, Tyszczuk R, McKee M, Van Hock A, Brown D, Breton S. Aquaporin-9 expression along the male reproductive tract. Biol Reprod 2001: 65:384-93.

202. Sabolich I, Herak-Kramberger CM, Litjovenjic M, Bies-

203. Foley GL, Bassily N, Hess RA. Intratubular spermatic wholes in bull spermatozoon in vitro. J Reprod Fertil 1962; 45:177-83.

204. Ericsson RJ. Male antifertility compounds: U-5897 as a rat chemosterilant. J Reprod Fertil 1970; 20:212-25.
211. Nistal M, Gonzalez-Peramato P, Sousa G, Garcia-Handelsman DJ, Conway AJ, Boylan LM, Turtle JR.

204. Nistal M, Riestra ML, Galmes-Belmonte I, Paniagua Hendry WF, Levison DA, Parkinson MC, Parslow JM,

203. Jones MA, Young RH, Scully RE. Adenocarcinoma of the kidney. Urology 1998; 51:477-9.

201. Leung SY, Chan AS, Wong MP, Yuen ST, Fan YW,

199. Pozza D, Masci P, Amodeo S, Marchionni L. Papillary cystadenoma of the epididymis: a disorder of mesonephric development. Hum Pathol 1997; 21:951-6.

198. Thakore K, Danaci M, Sarikaya S, Odabas F, Uras C, Tokgoz B, Sezer T, Turgur T, Erdogan N, Akpolat T. Prevalence of epididymal, seminal vesicle, prostate, and testicular cysts in autosomal dominant polycystic kidney disease. Urology 2002; 60:138-41.

197. Nistal M, Jimenez-Heffernan JA, Garcia-Viera TP, Paniagua R. Cystic transformation and calcium oxalate deposits in rete testis and efferent ducts in dialysis patients. Hum Pathol 1996; 27:356-41.

196. Ginev S, Pourbagher MA, Torun D, Eglitez T, Pourbagher A, Oktar!des H. Calcification of the epididymis and the tunica albuginea of the corpora cavernosa in patients on maintenance hemodialysis. J Androl 2004; 25:75-82.

195. Bouzaini G, Lunelli L, Berlingheri M, Gruppi E, Carmignani M. Epididymis micro lithiasis and semen abnormalities in young adult kidney transplant recipients. Andrologia 2012.

194. Barthak RM. Transport of spermatozoa from seminiferous tubules to epididymis in the mouse: a histological and quantitative study. J Reprod Fertil 1968; 23:35-48.

193. Harrison RG, Macmillan EW. The effects of high epididymal obstruction upon the Leydig-cell volume of the rat testis. J Endocrinol 1954; 11:89-96.

192. Van Wagener G. Changes in the tests of the rat following ligation of the ductuli efferentis. Anat Rec 1925; 29:399.

191. White WE. The duration of fertility and the histological changes in the reproductive organs after ligation of the vas efferentia in the rat. Proc Royal Soc (London) B 1933; 133:544-50.

189. Chalumeau C, du Chéryon D, Defontaine N, Kellersmann O, Pallard M, Poggiolli J. NH3 activity and trafficking depend on the state of actin organization in proximal tubule. Am J Physiol Renal Physiol 2001; 280:F283-90.

188. Li XC, Hopper U, Zhao JL. AT1 receptor-mediated uptake of angiotensin II and ANPE-3 expression in proximal tubule cells from a microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol 2009; 297:F1342-52.

187. Lapierre LA, Ducheau D, Drake KR, Goldentier JR, Kenworthy AK. Coordinated regulation of cavin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res 2012; 318:103-15.

186. Tang KSK, Primakoff P, Woolman-Gamer L, Myles DG. Mechanism of infertility in Male Guinea Pigs Immunized with Sperm PH-20. Biology of Reproduction 1997; 56:1133-41.

185. Collin O, Dambr JP, Bergh A. Effects of endothelin-1 on the rat testicular vasculature. J Androl 1996; 17:360-6.

184. Povysil C. Spermatic granulomas of ischemic origin in the rat epididymis. Invest Urol 1976; 14:219-24.

183. Billups KL, Tillman SL, Chang TS. Reduction of epididymal sperm motility after ablation of the inferior mesenteric plexus in the rat. Ferret Steril 1990; 53:1076-8.

182. Billups KL, Tillman SL, Chang TS. Ablation of the inferior mesenteric plexus in the rat: alteration of sperm storage in the epididymides and vas deferens. J Urol 1990; 143:625-9.

181. Aridhas MM, Subramanian S, Sekhar P, Hasan GC, Govindarajulu P, Akbarsha MA. Microinjection in the epididymides to overcome ductal obstruction caused by chronic exposure to chromium - a study in the mature bonnet monkey (Macaca radiata Geoffroy). Reproduction 2004; 128:127-37.

180. Labrecque M, Hays M, Chen-Mok M, Barone MA, Soka! D. Frequency and patterns of early reanalysis after vasectomy. BMC Urol 2006; 6:25.