Improved Spin-State Energy Differences of Fe(II) molecular and crystalline complexes via the Hubbard U-corrected Density

Lorenzo A. Mariano,† Bess Vlaivasavljevich,† and Roberta Poloni*‡
†Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
‡Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, USA
Received January 19, 2021; E-mail: roberta.poloni@grenoble-inp.fr

Abstract: We recently showed that the DFT+U approach with a linear-response U yields adiabatic energy differences biased towards high spin [Mariano et al. J. Chem. Theory Comput. 2020, 16, 6755-6762]. Such bias is removed here by employing a density-corrected DFT approach where the PBE functional is evaluated on the Hubbard U-corrected density. The adiabatic energy differences of six Fe(II) molecular complexes computed using this approach, named here PBE[U], are in excellent agreement with coupled cluster-corrected CASPT2 values for both weak- and strong-field ligands resulting in a mean absolute error (MAE) of 0.44 eV, smaller than the recently proposed Hartree-Fock density-corrected DFT (1.22 eV) and any other tested functional, including the best performer TPSSh (0.49 eV). We take advantage of the computational efficiency of this approach and compute the adiabatic energy differences of five molecular crystals using PBE[U] with periodic boundary conditions. The results show, again, an excellent agreement (MAE=0.07 eV) with experimentally-extracted values and a superior performance compared with the best performers TPSSh (MAE=0.08 eV) and M06-L (MAE=0.31 eV) computed on molecular fragments.

The accurate description of spin-state energetics of transition metal complexes represents a great challenge for electronic structure ab initio methods.10 Yet, the accurate prediction of spin-state energy differences are of critical importance for the understanding of spin crossover phenomena relevant for example for spintronics, molecular electronics and sensors,9,11 and for the catalytic reactivity of biological systems.12 This challenge stems from the lack of error cancellation when computing energy differences, using approximate electronic structure methods, between spin states exhibiting different types and amounts of electronic correlations (dynamic and non-dynamical).13 Because Hartree-Fock (HF) only treats exchange correlations, for example, it tends to stabilize high-spin states over low spin states due to the absence of dynamical correlation that would stabilize doubly occupied orbitals.14,15 On the contrary, local and semilocal functionals within DFT tend to over stabilize low spin states16,17 and by adding a fraction of exact exchange one can, in most cases, reduce such over stabilization.18,22,23 Thus, global hybrids can provide a reasonable description of spin-state energetics depending on the system of choice and the amount of exact exchange.20,21

Song at al. showed that a HF density-corrected DFT approach can yield adiabatic energy differences in good agreement with diffusion Monte Carlo (DMC) calculations.23 The DFT+U approach has also been investigated in this respect in a few studies and we refer the reader to the introduction of Ref. [27] for a recent summary on the topic. The present authors have shown and discussed the bias towards high spin states imposed by the Hubbard term in the total energy and how it can be mitigated by adopting values of U smaller than the computed self-consistent value, U_{sc}.28 Despite the energetics being pathologically wrong for strong-field ligands, the electronic density exhibits a systematic improvement with respect to local and semilocal functionals for both low spin and high spin states and for all systems when adopting a self-consistent U.27,29

Figure 1. Adiabatic energy differences, ΔE_{H-L}, computed using varying DFT approaches, together with the reference CASPT2/CC energies computed in this work. The values are also reported in Tab. 1 for clarity.

In this work we merge the above ideas and adopt a new approach consisting of a Hubbard U density-corrected
DFT where the PBE functional is evaluated on the Hubbard U density, using a linear-response U computed self-consistently. We show that this method allows one to obtain adiabatic energy differences for a series of six Fe(II) molecular complexes in excellent agreement with the chosen reference set. The molecular complexes include varying ligand field strengths from the weak H$_2$O ligand, whose reference ΔE_{H-L} is -1.83 eV, to the strong CNH one, whose ΔE_{H-L} is 2.87 eV (see Tab. [1]), thus allowing for a better assessment of the validity of this approach. Although the choice of the reference method is still matter of debate, we choose the coupled-cluster corrected CASPT2 approach proposed by Pierloot and coworkers. This approach reduces the overstabilization of high spin state by treating the 3s and 3p semicore electrons using CCSD(T) and can be used in principle in systems with non-negligible multiconfigurational character such as the strong-ligand field molecules studied here. Its accuracy has been recently further validated by Radon by comparing with ΔE_{H-L} values extracted from experiments. We show that for Fe(II) complexes exhibiting a weak ligand strength, our result compare very well also with CCSD(T)/T and recent DLPNO-CCSD(T) results. Larger deviations are found with respect to DMC results (vide infra).

We then apply this approach to compute the spin crossover energies of seven compounds, either crystalline or molecular, for which the adiabatic energy differences have been extracted from experiments and we find again very good agreement. In light of this accuracy, this approach can be adopted to study molecular crystals very efficiently with any DFT code including a DFT+U implementation thus avoiding the use of hybrid functionals.

We recall that the DFT+U total energy can be written as:

$$E_{\text{DFT}+U} = E_{\text{DFT}}[\rho(r)] + E_U[n]$$

In the above formula the term E_{DFT} represents the unperturbed DFT energy functional and the E_U is the Hubbard term containing the Hubbard correction for the electronic repulsion within a given subshell and a double-counting term that removes the interactions that are already counted within the DFT term via mean-field. For a clear review we refer the reader to Ref. [58]. The E_U depends on the density through the occupation numbers n computed from the projection of the occupied Kohn-Sham eigenfunctions onto a localized basis set. For projection numbers close to 1/2 the summation term that enters E_U and that multiplies U is the largest. In our recent work we showed that the DFT+U energy yields a systematic bias towards high spin due to the E_U term being systematically larger for low spin states thus resulting in a destabilization of the latter with respect to the former. This bias increases as a function of the ligand field strength: for stronger field ligands the more covalent bonding between Fe and the ligand yields more fractional occupations thus resulting in larger penalizing summation terms. While this penalizing term is necessary to recover the localization of electrons and stabilize the insulating phase in Mott physics, here it results in a systematic unphysical overstabilization of high spin which further increases for molecular complexes with larger covalent character, such as the CO and CNH strong field ligands.

Cococcioni and coworkers implemented an extended Hubbard model in DFT through the inclusion an inter-site effective interaction V within the Hubbard energy. Such a generalized scheme, named DFT+U+V, aims at an improved treatment of electronic correlations. The new Hubbard potential includes two terms of opposite sign: the first on-site term is attractive for Kohn-Sham states that exhibit a localized character (the standard on-site U term) whereas the second inter-site term stabilizes hybridized states. Thus, a competition between these two opposing behaviors should allow for a more balanced description of electronic correlations and thus improved structural and electronic properties. For the six Fe(II) molecular complexes computed here, i.e. Fe(H$_2$O)$_6$ and recent DLPNO-CCSD(T) results. Larger deviations are found with respect to DMC results (vide infra).
Table 1. \(\Delta E_{H-L} \) (in eV) computed using different DFT approaches (upper left table). These are reported in order of decreasing total MAE computed with respect to the CASPT2/CC reference (see text). The MAE computed separately for weak-, strong-ligand and for the whole set (total) are also reported (upper right table). The \(\Delta E_{H-L} \) computed using varying wavefunction methods and taken from the literature are also reported (lower table). * refers to the CASPT2/CC values computed in this work.

DFT methods	H\(_2\)O	NH\(_3\)	NCH	PH\(_3\)	CO	CNH	weak-field	strong-field	total
PBE[U]	-1.50	-0.44	0.21	1.81	2.64	3.23	0.30	0.57	0.44
TPSSh	-1.23	-0.21	0.41	1.51	2.24	2.76	0.53	0.45	0.49
M06-L	-1.44	-0.47	0.11	1.13	1.80	2.27	0.28	0.74	0.51
PBE[U] (atomic proj.)	-1.33	-0.22	0.56	2.17	3.08	3.65	0.44	0.74	0.59
PBE0	-1.80	-0.84	-0.39	0.74	1.34	1.95	0.15	1.13	0.64
TPSS0	-1.61	-0.72	-0.34	0.52	1.09	1.67	0.01	1.38	0.70
B3LYP	-1.46	-0.59	-0.21	0.50	1.25	1.85	0.16	1.28	0.72
SCAN	-0.81	0.21	0.89	2.09	2.86	3.38	0.97	0.60	0.79
TPSS	-0.94	0.18	1.00	2.17	3.06	3.52	0.96	0.69	0.82
BLYP	-1.00	0.04	0.81	1.67	3.06	3.52	0.83	0.85	0.84
M06	-1.98	-0.95	-0.56	0.55	0.97	1.58	0.29	1.44	0.87
PW91	-1.06	0.16	1.10	2.48	3.49	3.98	0.94	0.88	0.91
PBE	-1.17	0.06	1.14	2.69	3.63	4.11	0.89	1.00	0.94
PBE[HF]	-2.06	-1.24	-1.04	0.04	0.58	1.20	0.57	1.87	1.22
M06-2X	-2.16	-1.61	-1.77	-1.68	-1.51	-0.90	0.97	3.84	2.41

Wavefunction methods	\(\Delta E_{H-L} \)	MAE
CASPT2/CC	-1.83\(^a\) -0.64\(^a\) -0.16\(^a\) 2.54\(^a\) 2.02\(^a\) 2.87\(^a\)	
CASPT2	-1.99\(^a\) -0.85\(^a\) -0.27\(^a\) 2.31\(^a\) 1.78\(^a\) 2.66\(^a\)	
	2.11\(^[31]\) -1.27\(^[31]\) -0.81\(^[31]\) 2.09\(^[31]\) 2.78\(^[31]\)	
	-1.83\(^[32]\) -0.98\(^[32]\) -0.32\(^[32]\) 2.41\(^[32]\) 2.07\(^[32]\)	
	-2.02\[^g\] -0.88\[^g\]	
CCSD(T)	-1.45\[^[33]\] -0.66\[^[33]\] -0.19\[^[33]\] 1.51\[^[33]\] 1.25\[^[33]\]	
	-0.09\[^[33]\]	
DLPNO-CCSD(T1)	-1.44\[^[33]\] -0.49\[^[33]\] -0.38\[^[33]\]	
DMC	-1.78\[^[32]\] -1.23\[^[32]\] -1.17\[^[32]\] 0.59\[^[32]\]	
	-2.69\[^[32]\] -1.55\[^[32]\] -1.37\[^[32]\]	
	-0.85,-0.95\[^[37]\]	

\(^{a}\) refers to the CASPT2/CC values computed in this work.

der of 0.1 eV are reported in Ref. [3]. Thus, for water, the extrapolation to CBS is performed using a (6e,10o) active space. See computational methods in the SI for more details.

The Fe semicore 3s3p correlation energy is computed using CCSD(T) by including and freezing the 3s3p electrons, using ORCA. This correction is then added to the CASPT2 energy difference to yield the CASPT2/CC energy difference. The aug-cc-pwCVTZ-DK and cc-pVDZ basis sets were used for Fe and the ligand atoms, respectively (see details in SI). Extrapolation to the CBS limit is not required here as demonstrated by Pierloot and coworkers.\(^{32}\)

The adiabatic energy differences, \(\Delta E_{H-L} \), computed using several choices of DFT functionals including the DFT+U and DFT+U+V approaches are shown in Fig. 1 together with the CASPT2/CC set. The PBE+U energies show an almost constant behavior throughout the molecular series\(^{27}\) due to the penalizing Hubbard term being larger for LS and for strong-field ligands.\(^{27}\) A minor improvement of DFT+U+V as compared to DFT+U is found, possibly due to the values of \(V \) being too low to correct for the bias towards HS (see Tab. S3). For [Fe(PH\(_3\))\(_6\)]\(^{2+}\), we were unable to converge the DFT+U+V calculations for HS and thus the corresponding \(\Delta E_{H-L} \) is omitted.

Despite yielding erroneous spin-state energetics for the molecular series reported here, the DFT+U with a linear-response \(U \) approach systematically improves the electronic density, regardless of the spin state, with a reduction of the energy bowing as a function of fractional occupations which is a manifestation of self-interaction error.\(^{27–29}\) Song at al.\(^{26}\) discuss the case of spin gaps in Fe(II) octahedrally-coordinated complexes in terms of calculations affected by large errors in the density: the error that arises from the approximation of the exchange-correlation functional is comparable or smaller than the error introduced by the use of the approximate density.\(^{51}\) In this respect, the density-corrected DFT approach, discussed in detail in Refs. \(^{52,53}\) consists in employing approximate density functionals on a density different than the self-consistent one and possibly closer to the exact one. This approach implemented using
the Hartree-Fock density has been shown to improve over the self-consistent DFT results the description of many properties such as reaction barriers, weak intermolecular forces, bond energies, and the binding properties of anions. The authors of Ref. 26 showed systematically improved results for spin-state splittings of four Fe(II) molecular complexes computed using the DFT/HF approach. Our working hypothesis is that the Hubbard U-corrected density should yield more accurate results compared to a HF density, since the latter only includes exchange correlations while neglecting dynamic and non-dynamical correlations. We employ a density-corrected DFT by adopting a standard semilocal functional, such as PBE, evaluated on the Hubbard U density. By doing so, we remove the energy bias introduced by the U term discussed above while keeping an improved electronic density. Practically, we perform self-consistent DFT+U calculations by computing U using linear-response theory and then remove the U term from the total energy to compute ΔE_{H-L}. This is not, strictly speaking, a non-self consistent, density-corrected DFT calculation as the kinetic term is computed using the DFT+U orbitals. However, our assumption is that the kinetic energy computed using DFT orbitals matches closely the DFT+U case so that this approach can be seen as a non-self consistent density-corrected DFT method. This assumption is motivated by a recent study employing Kohn-Sham inversion schemes to show that the Kohn-Sham kinetic energy and the Hartree-Fock one are negligibly different when computed on the same HF density.

The results of the Hubbard U_{sc}-corrected density employed using a PBE functional are shown in Fig. 1 and are named PBE[U] henceforth. In the same figure we also show the PBE[HF] results, i.e. using the Hartree-Fock density. We stress that the PBE+U and the PBE values are slightly different compared to those reported in our previous work because of the different geometries employed and the atomic basis used for the projections. The PBE[U] results are in excellent agreement with the reference CASPT2/CC set and provide a systematically improved description of ΔE_{H-L} compared with PBE[HF]. Specifically, PBE[HF] yields a reasonable prediction for weak-field ligands but it performs poorly for strong field ligands. Our computed values of PBE[HF] energies are similar to those reported in Ref. 26 on the same molecular complexes (i.e. $[\text{Fe(H}_2\text{O)}_6]^{4+}$, $[\text{Fe(NCH)}_6]^{4+}$, $[\text{Fe(NH}_3)_6]^{4+} \text{ and } [\text{Fe(CO)}_6]^{4+}$), however, our conclusion on the accuracy of DFT[HF] is somehow different owing to the difference in the corresponding reference values. In particular, the DMC values in Ref. 26 are systematically lower compared to CASPT2/CC values and the largest deviation is found for the CO and NCH. See Tab. 1 for the whole list of ΔE_{H-L} computed either here or in previous studies using wavefunction methods. We note the reasonably good agreement between our CASPT2/CC reference values and published CCSD(T) and DLPNO-CCSD(T) values for weak-field molecules (see Tab. 1).

Thus, we do compute the ΔE_{H-L} using a few DFT functionals in order to establish a comparison for the performance of DFT[U], however, we refer the reader to these articles for a more detailed discussion. GGA functionals overestimate the LS state, although BLYP does so to a lesser extent compared to PBE and PW91. Excellent results have been reported in the past using the optimized OPTX exchange proposed by Handy and Cohen. By adopting global hybrids with increasing admixtures of exact exchange HS is systematically stabilized. PBE0 and B3LYP with a 25% and 20% admixture of exact exchange added respectively to PBE and BLYP functionals show an overcorrection and overall overstabilize HS. Among the meta-GGAs, M06-L performs well in comparison to other meta-GGA functionals as already observed in previous studies. Among the studied functionals, the smallest error is found for the meta-hybrid TPSSh (15% of exact exchange) in agreement with several recent studies. Climbing up the DFT Jacob’s ladder other functionals like double-hybrid and range-separated hybrid functionals have been tested. Kronik et al. employed optimized range-separated hybrid functionals to study $[\text{Fe(H}_2\text{O)}_6]^{4+}$, $[\text{Fe(NCH)}_6]^{4+}$, $[\text{Fe(NH}_3)_6]^{4+}$ and $[\text{Fe(bpy)}_3]^{4+}$ and found good agreement with the available CCSD(T) and CASPT2 reference values. In Refs. 63 and 64 the PBE0-DH-based double-hybrid and SOS0-PBESCAN0-21(a) double-hybrid were employed, respectively, to study $[\text{Fe(H}_2\text{O)}_6]^{4+}$, $[\text{Fe(NCH)}_6]^{4+}$, $[\text{Fe(NH}_3)_6]^{4+}$ and $[\text{Fe(CO)}_6]^{4+}$. The authors reported a good agreement when comparing with the DMC reference values of Ref. 26. If these values are compared with our CASPT2/CC results, a systematic underestimation of ΔE_{H-L} is observed. In Tab. 1 we report the ΔE_{H-L} of each method tested here and the MAE computed with respect to CASPT2/CC. Among the employed approaches, PBE[U] is the best performer with the lowest total MAE of 0.44 eV. It follows TPSSh with a MAE of 0.49 eV and M06-L with MAE of 0.51. PBE[U] with values computed using atomic projectors represents the forth best performer. For the weak-field molecules (i.e. H$_2$O, NH$_3$ and NCH), TPSS0, PBE0 and B3LYP yield the best agreement with the reference with MAEs of 0.01 eV, 0.15 eV and 0.16 eV, respectively. These are followed by M06-L (0.28 eV) and PBE[U] (0.30 eV). We note that PBE[HF] yields a MAE similar to TPSSh for these three molecules (0.57 eV). For strong-field ligands (i.e. PH$_3$,
CO and CNH), the best performers are TPSSH (MAE=0.45 eV) and PBE[U] (MAE=0.57 eV) followed by M06-L and PBE[U] with atomic projectors, while PBE[HF] is the second worst performer after M06-2X (MAE=1.87 eV).

The role of the geometry on the computed ΔE_{HL} was also investigated. For each of the 11 functionals tested above we compute the ΔE_{HL} using the geometries optimized with PBE+U, PBE, TPSSH, B3LYP and PBE0. We do this for $[\text{Fe(NH}_{3})_{6}]^{2+}$ and $[\text{Fe(CO)}_{6}]^{2+}$. The PBE+U geometry is optimized using a procedure that iteratively computes U and then relaxes the geometry with this U until convergence is achieved. Overall, a non-negligible effect of the geometry on the ΔE_{HL} is found (see Tabs. S4 and S5). The ΔE_{HL} change at most by 0.08 eV for $[\text{Fe(NH}_{3})_{6}]^{2+}$, and 0.25 eV for $[\text{Fe(CO)}_{6}]^{2+}$, if the PBE+U geometry is excluded. When the PBE+U geometry is considered, the largest deviation is 0.18 eV and 0.78 eV for the weak- and strong-field ligand molecules, respectively. Specifically, regardless of the functional used to compute ΔE_{HL}, the PBE+U geometry always yields the largest decrease in ΔE_{HL}. This is consistent with the fact that the PBE+U geometry computed using a structurally consistent approach deviates the most from the TPSSH optimized geometry as shown in Tabs. S6 and S7. Because the effect of U is larger for LS due to the larger values of E_{U} as compared to HS, any other functional would destabilize LS more than HS. For stronger-field molecules this effect is more pronounced as confirmed by the larger increase in metal-ligand bond distances in the PBE+U LS geometry with respect to PBE (Tabs. S6 and S7).

To understand why the Hubbard U-corrected PBE density yields significantly improved results compared with the PBE density and the HF density, we compare densities from PBE, PBE+U, PBE+U+V (again computed with U_{sc} and V_{sc}), and Hartree-Fock density with that obtained from the relaxed CASPT2 spin-density matrix in BAGEL. The relaxed spin-density matrix is obtained by adding orbital and configurational relaxation contributions due to dynamical correlation to the unrelaxed density matrix using the CASPT2 Lagrangian. We study the LS case of $[\text{Fe(NH}_{3})_{6}]^{2+}$, $[\text{Fe(NCH})_{6}]^{2+}$, $[\text{Fe(CO)}_{6}]^{2+}$ and $[\text{Fe(CNH)}_{6}]^{2+}$. In Fig. 2 we plot the difference $\delta\rho_{x}(r) = \rho_{x}(r) - \rho_{\text{CASPT2}}(r)$ between the electronic density obtained with $x=[\text{PBE}, \text{PBE+U}, \text{HF}]$, and the CASPT2 relaxed density, for $[\text{Fe(CO)}_{6}]^{2+}$. The same qualitative result is obtained for NCH and the corresponding plots are reported in Fig. S1. A limitation of this analysis is that large density differences are found in the spatial region near the ligand for PBE and PBE+U, while negligible ones are found for the HS density, consistent with a CASSCF active space mostly involving states associated with the Fe, and only marginally associated with the ligand, i.e. the two e_{g} ligand states. Thus, the CASPT2-relaxed density resembles closely the Hartree-Fock one near the ligand, which is the reference method used to get the CASSCF wavefunction. Due to this limitation, in what follows we limit our considerations to the spatial region near the iron. When PBE density is used, the $\delta\rho_{\text{PBE}}(r)$ is negative within the spatial region associated with the e_{g} orbitals and positive within for the t_{2g} one indicating charge depletion and accumulation, respectively, for PBE compared with CASPT2. We note that CASPT2 calculations with the inclusion of bonding metal-ligand e_{g} states and the $4d$ double shell have been shown to account for non-dynamical correlation, however the self-interaction error arising from the implementation of approximate density-functional yields an overdelocalization of the charge density along the chemical bonds (and less charge near the atom) and a more diffuse character of the electron cloud around the nuclei, as shown in Fig. 2, that can actually mimic these effects sometimes called left-right and radial correlations, respectively. As shown in Fig. 2 and as discussed in the literature, these effects are exaggerated in PBE. The PBE+U density is qualitatively similar to the PBE density but with a smaller deviation from the reference one within the Fe region. We chose not plot the PBE+U+V density because it yields a plot visually identical to the PBE+U one. The Hartree-Fock density exhibits the opposite behavior near the Fe, i.e. charge density accumulates and depletes with the e_{g} and t_{2g} orbitals, respectively. This is consistent with the lack of explicit non-dynamical correlations and absence of self-interaction error. Thus, the effect of the Hubbard U term on the density is qualitatively similar to the case found when increasing the exact exchange admixture in global hybrid functionals.

In what follows we attempt to quantify the error on the density by considering, again, only the region around the Fe. For each method, we extract the electronic charge density distribution around the iron centre, $\rho_{\text{Fe,Bader}}(r)$, by employing the Bader scheme. We evaluate the error on the density, $\Delta\rho_{x}$, as a deviation from the reference, $\rho_{x}^{\text{Fe,Bader}}(r)$, within the Bader region (see SI for more details), as follows:

$$\Delta\rho_{x} = \int (\rho_{x} - \rho_{x}^{\text{Fe,Bader}}) dr \tag{2}$$

The charge density difference, $\rho_{x}^{\text{Fe,Bader}}(r) - \rho_{x}^{\text{CAS}}(r)$, is plotted in Fig. 3 for a weak and a strong-field ligand case, i.e. NCH and CO. For each molecule the opposite behavior of HF and PBE density is clearly visible, together with a reduced deviation from the reference density of PBE+U, in agreement with Fig. 3 and the above considerations. The $\Delta\rho_{x}$ computed for the four molecules is plotted in the right panel of Fig. 3. This metric gives a constant error throughout the molecular series for PBE. The error associated with the HF density is smaller compared to PBE, and significantly smaller for weak-field molecules. This result is consistent with the reasonable prediction of ΔE_{HL} found when employing PBE[HF] for weak-field ligands and with the larger MAE of PBE for both weak- and strong-field ligands (see Tab. 1). The $\Delta\rho_{x}$ increase for molecules with increasing ligand-field strengths when $x=\text{HF}$ and the opposite is found for $x=[\text{PBE+U}, \text{PBE+U+V}]$. This behavior is consistent with the DFT+U approach correcting the density more for strong-field ligand molecules, as shown and discussed previously. The trend along the four molecules correlates with trends in non-dynamical correlations. In agreement with previous studies we find that moving along the spectrochemical series non-dynamical correlation becomes more important. The configuration interaction weight of the dominant electronic configuration computed from the CASSCF calculation decreases from 94% to 89% going from NH$_{3}$ to CNH (see lower panel of Fig. 3). This analysis is in line with our results showing HF to perform better for molecular complexes with weak-field ligands and lower non-dynamical correlation. One would thus expect that HF density would over stabilize HS compared to LS more for strong-field molecules, which is indeed the case here (see Fig. 1 and Tab. 1). PBE+U (with U_{sc}) systematically improves the electronic density for both weak and strong-field ligand
molecules thus yielding an improved description of the spin-state energetics throughout the spectrochemical series. This is further shown in Fig. 4 where we report the $\Delta E_{\text{H-L}}$ computed using the PBE functional evaluated on the PBE+U_{sc} density, for increasing values of U. We only show the results for four complexes for clarity. Higher values of Hubbard U stabilize HS more compared to LS, as expected, and the deviation of $\Delta E_{\text{H-L}}$ from the reference value (shown as a horizontal line on the right y-axis) systematically decreases as U increases.

The effect of U-corrected density on the spin energetics is qualitatively similar to the effect observed when adopting densities computed with increasing amounts of exact exchange. It must be noted, however, that the change in $\Delta E_{\text{H-L}}$ reported here is significantly larger than those computed with a density-corrected approach using hybrid functionals.

To further test the validity of PBE+U, we compute $\Delta E_{\text{H-L}}$ for a set of seven Fe(II) compounds for which the HS-LS energy differences have been extracted from experimental data. The first five compounds, Fe(phen)$_2$(NCS)$_2$, Fe(abpt)$_2$(NCS)$_2$, and Fe(abpt)$_2$(NCSe)$_2$ from Ref. 83 with abpt=4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, Fe[HB(pz)$_3$]$^{2+}$ (pz=pyrazolyl), and FeL$_2$[BF$_4$]$_2$ (L=2,6-di(pyrazol-1-yl)pyridine), are molecular crystals for

Table 2. Adiabatic energy difference (eV), mean signed error (MSE) and mean absolute error (MAE) (in eV) computed with different DFT methods. The reference values are extracted from experimental (exp.) data. a: Ref. 66; b: Ref. 80; c: Ref. 33. The reference value used to calculate MSE and MAE for [Fe(bpy)$_3$]$^{2+}$ is 0.589 eV.

Complex	$\Delta E_{\text{H-L}}$ / Periodic	$\Delta E_{\text{H-L}}$ / Gas phase				
exp.	PBE[U_{sc}]	exp.	PBE[U_{sc}]	TPSSh	M06-L	PBE[HF]
Fe(phen)$_2$(NCS)$_2$	0.155a -0.065	0.093a -0.117	0.372a -0.151a	-0.887		
Fe(abpt)$_2$(NCS)$_2$	0.137a 0.086	0.156a -0.032	0.433a 0.121a	-1.006		
Fe(abpt)$_2$(NCSe)$_2$	0.150a 0.159	0.184a -0.009	0.491a 0.115a	-0.950		
Fe[HB(pz)$_3$]$^{2+}$	0.223a 0.179	0.363a 0.251	0.722a 0.428a	-0.757		
FeL$_2$[BF$_4$]$_2$	0.198a 0.196	0.208a 0.191	0.574a 0.150a	-0.671		
[Fe(tacn)$_3$]$^{2+}$		0.165a 0.166	0.443 0.171	-0.727		
[Fe(bpy)$_3$]$^{2+}$	0.434-0.744b	0.466 0.858	0.513 -0.626			
MSE	-0.062	-0.120 0.305	-0.059 1.055			
MAE	0.065	0.121 0.305	0.079 1.055			

Figure 3. Left figure: charge density difference, $\rho_{\text{Fe,Bader}}^x(r) - \rho_{\text{CAS}}^x(r)$, plotted for CO and NCH ligands for $x=$ HF, PBE, and PBE+U_{sc}. Green and blue correspond to positive and negative isovalues of 0.004 e/bohr3. HF and PBE yield an opposite behavior, with the former yielding a lower deviation from the reference for NCH as compared to CO. Right figure: error on the density estimated by computing $\Delta \rho_x$ (see text), i.e. by integrating the difference in charge density within the Bader region (upper panel). Weight (in %) of the dominant electronic configuration within the CASCF wavefunction (lower panel).

Figure 4. Adiabatic energy differences, $\Delta E_{\text{H-L}}$, computed with PBE+U as function of Hubbard U. On the right y-axis the CASPT2/CC reference values are shown by horizontal vertical dashes.
which Vela et al.66 have extracted the experimental ΔE_{H-L} by removing the (computed) vibrational contribution from the the measured total enthalpy change. The other two are molecular complexes, $[\text{Fe(tacn)}_2]^{2+}$ (tacn = 1,4,7-triazacyclononane) and $[\text{Fe(bpy)}_3]^{3+}$ (bpy = 2,2'-bipyridine). The ΔE_{H-L} of $[\text{Fe(tacn)}_2]^{2+}$ has been extracted by Radonić87 using an approach similar to Ref. 66. The spin gap of $[\text{Fe(bpy)}_3]^{3+}$ has been extracted by Casida et al. from the light-induced population of the high-spin state.66 For all these complexes we first adopt a molecular model to compute the ΔE_{H-L}. For the five molecular crystals, this is done by carving a structure from the fully optimized geometry using periodic boundary conditions, similarly to the procedure adopted in Ref. 66. The geometrical optimization is performed using Quantum Espresso using the PBE functional together with the semiempirical Grimme’s D3 correction combined with the Becke-Johnson (BJ) damping scheme.37

The Hubbard U_{sc} is then computed on the optimized geometry, using periodic boundary conditions. More details are reported in the SI. For $[\text{Fe(tacn)}_2]^{2+}$ and $[\text{Fe(bpy)}_3]^{3+}$ the structure is optimized using TPSSH with ORCA. The gas phase calculations of ΔE_{H-L}, computed using PBE[U], PBE[HF], TPSSh, and M06-L are reported in Tab. 2 together with the experimentally-extracted reference value. For the five crystals, the TPSSh and M06-L results are taken from Ref. 66. For the rest of the calculations (i.e. PBE[HF] and PBE[U] on the seven molecules and TPSSh and M06-L on the last two) we add the D3 correction (similar to Vela et al.66) with the BJ damping scheme, except for M06-L for which this is not implemented. We note the use of four significant digits in Tab. 2 compared to three in Tab. 1 the choice in Tab. 1 was made for consistency with the approximation reported in the values taken from the literature. We choose however to add a significant figure in Tab. 2 because the reported values are closer. PBE[U] and M06-L are the best performers with a MAE of 0.12 eV and 0.08 eV, respectively. They both slightly underestimate the ΔE_{H-L}, resulting in negative values of the mean signed error (MSE). TPSSh systematically overestimates the adiabatic energy differences with a MAE and MSE of 0.31 eV. PBE[HF] yields the largest error with a MAE of 1.06 eV. Consistent with the study of the six molecular complexes reported above, PBE[HF] systematically underestimate the ΔE_{H-L} for these intermediate-/strong-field molecules resulting in the wrong prediction of the ground state for the whole set under study. The five molecular crystals were also studied using a full periodic approach using PBE[U] within the D3+BJ approximation for the dispersion forces. Compared to the gas phase calculations, the only difference is the molecular versus periodic model because the energy functional and the U computed on the LS and HS periodic geometries (vide supra) are the same. PBE[U] with periodic boundary conditions represents the best performers with a MAE of 0.07 eV, i.e. slightly smaller compared to the same calculation performed on molecular fragments. This results confirms the good performance of PBE[U] established above using ab initio data as reference, and it shows its potential for the efficient calculation of adiabatic energy differences in crystalline complexes.

In conclusion, we show that the PBE[U] approach consisting of adopting the PBE functional evaluated on the PBE+U density, with a self-consistent approach for the calculation of U, represents a reliable and computationally efficient method for the calculation of spin gaps of both molecular complexes and molecular crystals. We show that for the six Fe(II) molecular complexes ranging from weak- (H$_2$O) to strong-field ligands (CNH) the MAE associated with the PBE[U] is the smallest among all the studied DFT approaches, including the TPSSh and M06-L functionals. The MAE is computed using the CASPT2/CC calculations as reference values. The performance of the PBE[U] approach is further validated by the good agreement with CCSD(T) energy differences computed for weak-field molecules and reported in the literature. The PBE[HF] approach that uses the PBE functional on the HF density shows a reasonable agreement with reference values for weak-field molecules but a poor performance for strong-field molecules. The calculations performed on five periodic crystals and two additional molecules for which experimentally extracted values are available confirm all these findings.

Acknowledgement This work was funded by the French National Agency for Research (ANR-15-CE06-0003-01). Calculations were performed using resources granted by GENCI under the CINES grant number A0020907211. The froggy platform of the CIMENT infrastructure was also employed for the calculations. B.V. was supported by the Department of Energy, Basic Energy Sciences (DE-SC0019463). Some of the computations supporting this project were performed on High Performance Computing systems at the University of South Dakota, funded by NSF Award 1626516. Also resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, were used for this project.

References

(1) Wilbraham, L.; Verma, P.; Truhlar, D. G.; Gagliardi, L.; Ciofini, I. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost. J. Phys. Chem. Lett. 2017, 8, 2026–2030.
(2) Domingo, A.; Angels Carvajal, M.; De Graaf, C. Spin Crossover in Fe(II) Complexes: An Ab Initio Study of Ligand σ-Donation Effects. Int. J. Quantum Chem. 2010, 110, 331–337.
(3) Radonić, M. Benchmarking Quantum Chemistry Methods for Spin-State Energetics of Iron Complexes Against Quantitative Experimental Data. Phys. Chem. Chem. Phys. 2019, 21, 4854–4870.
(4) Cirera, J.; Paesani, F. Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems. Inorg. Chem. 2012, 51, 8194–8201.
(5) Pierloot, K.; Vancoillie, S. Relative Energy of the High-($^3T_{2g}$) and Low-(1A_g) Spin States of $[\text{Fe(H}_2\text{O})_6]^{3+}$, $[\text{Fe(NH}_3)_6]^{3+}$, and $[\text{Fe(bpy)}_3]^{3+}$: CASPT2 Versus Density Functional Theory. J. Chem. Phys. 2006, 125, 124303.
(6) Swart, M. Accurate Spin-State Energies for Iron Complexes. J. Chem. Theory Comput. 2008, 4, 2057–2066.
(7) Droghetti, A.; Alfé, D.; Sanvito, S. Assessment of Density Functional Theory for Iron(II) Molecules Across the Spin-Crossover Transition. J. Chem. Phys. 2012, 137, 124303.
(8) Cirera, J.; Vua-Nadal, M.; Ruiz, E. Benchmarking Density Functional Methods for Calculation of State Energies of first Row Spin-Crossover Molecules. Inorg. Chem. 2018, 57, 14097–14105.
(9) Kumar, K. S.; Ruben, M. Emerging Trends in Spin Crossover (SCO) Based Functional Materials and Devices. Coord. Chem. Rev. 2017, 346, 176–205.
(10) Molnár, G.; Mikolasek, M.; Ridier, K.; Fahs, A.; Nicolazzi, W.; Bousseksou, A. Molecular Spin Crossover Materials: Review of the Lattice Dynamical Properties. Ann. Phys. 2019, 531, 1900076.
(11) Resines-Urrien, E.; Burzuri, E.; Fernandez-Bartolome, E.; García-García-Tuñón, M. A.; de la Presa, P.; Poloni, R.; Test, S. J.; Sánchez-Costa, J. A switchable iron-based coordination polymer toward reversible acetonitrile electro-optical readout. Chem. Sci. 2019, 10, 6612–6616.
(12) Resines-Urrien, E.; Pizarro López, L.; Fernandez-Bartolome, E.; Gamonal, A.; García-Hernandez, M.; Sánchez Costa, J. Covalent post-synthetic modification of switchable iron-based coor-
dination polymers by volatile organic compounds: a versatile strategy for selective sensor development. *Dalton Trans.* 2020, 49, 7315–7318.

(13) Shaik, S.; Chen, H.; Janardanan, D. Exchange-enhanced reactivity in bond activation by metal-oxo enzymes and synthetic analogs. *Nature Chem.* 2011, 3, 813–822.

(14) Fioleur, B. M.; Guo, Y.; Riplinger, C.; Tucek, F.; Neese, F. Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics. *J. Chem. Theory Comput.* 2020, 16, 2224–2235, PMID: 32196337.

(15) Swart, M. Accurate Spin-State Energies for Iron Complexes. *J. Chem. Theory Comput.* 2008, 4, 2057–2066, PMID: 26629478.

(16) Reiher, M.; Salomon, O.; Arthus Hess, B. Reparameterization of Quantum ESPRESSO. *J. Chem. Theory Comput.* 2018, 14, 5635–5645.

(17) Ioannidis, E. I.; Kulik, H. J. Towards Quantifying the Role of Exact Exchange in DFT Spin-State Energetics. *J. Chem. Theory Comput.* 2015, 11, 2040–2054.

(18) Fouqueau, A.; Casida, M. E.; Heinonen, O.; Burke, K. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes. *J. Chem. Theory Comput.* 2016, 12, 2904–2911.

(19) Mariano, L. A.; Vlaisavljevich, B.; Poloni, R. Biased Spin-State Energies for Iron Complexes. *J. Chem. Theory Comput.* 2016, 12, 4233–4241, PMID: 27508054.

(20) Kim, Y.; Song, S.; Burke, K. Halogen and Chalcogen Bonding Dominated by Density-Driven Errors. *J. Chem. Lett.* 2018, 45, 205–207.

(21) Swart, M.; Groenhof, A. R.; Ehlers, A. W.; Lammertsma, K. Valiation of Exchange-Correlation Functionals for Spin States of Iron Complexes. *J. Chem. Phys.* A 2004, 108, 5479–5483.

(22) Hong, J.; Kim, Y.; Song, S.; Burke, K. Communication: Avoiding Unphysical Non-variational Correlation Corrections from the Exchange Term. *J. Chem. Phys.* 2005, 123, 085127.

(23) Feller, D. Application of systematic sequences of wave functions to the water dimer. *The Journal of Chemical Physics* 1992, 96, 6104–6114.

(24) Janesko, B. G.; Scuseria, G. E. Hartree–Fock Orbitals Significantly Improve Alpha-Based Density Functional Analysis: The Theory of Density-Corrected DFT. *J. Chem. Theory Comput.* 2019, 15, 6636–6646.

(25) Roncali, J.; Schuurmans, A. M.; Hutter, F. H. Free-Atom Orbital Basis Sets: A Case Study. *J. Phys. Chem. A* 2011, 115, 10720–10725.

(26) Feller, D. The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. *J. Chem. Phys.* 1993, 98, 7059–7071.

(27) Feller, D. The Importance of Being Inconsistent. *Annual Review of Physical Chemistry* 2017, 68, 555–581, PMID: 28775832.

(28) Conder, F.; Halgren, T.; Krauss, J.; Burke, K. The Importance of Being Inconsistent. *Annual Review of Physical Chemistry* 2018, 68, 555–581, PMID: 28775832.

(29) Löwdin, P. O.; Neumann, J. C. The Density Matrices in Atomic and Molecular Physics. *Rev. Mod. Phys.* 1950, 23, 289–320.

(30) Chernyshev, A.; Poliakov, M. A.; Lian, J. L.; Ciosi, M.; Cornia, G.; Rabani, E. Generalized Gradient Approximation for Bond Formation Energies in Transition-Metal Complexes. *Organic Geochemistry* 2014, 64, 77–83.

(31) Hahne, H. J. Theoretical Modeling of Spin States of Iron(II) Coordination Compounds. *Mol. Phys.* 1991, 73, 6104–6114.

(32) Swart, M.; Groenhof, A. R.; Ehlers, A. W.; Lammertsma, K. Valiation of Exchange-Correlation Functionals for Spin States of Iron Complexes. *J. Chem. Phys.* A 2004, 108, 5479–5483.

(33) Swart, M.; Groenhof, A. R.; Ehlers, A. W.; Lammertsma, K. Valiation of Exchange-Correlation Functionals for Spin States of Iron Complexes. *J. Chem. Phys.* A 2004, 108, 5479–5483.

(34) Feller, D. Application of systematic sequences of wave functions to the water dimer. *The Journal of Chemical Physics* 1992, 96, 6104–6114.

(35) Feller, D. The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. *J. Chem. Phys.* 1993, 98, 7059–7071.

(36) Helgaker, T.; Klopper, W.; Koch, H.; Naga, J. Basis-set convergence of correlated calculations on water. *The Journal of Chemical Physics* 1993, 99, 1069–1078.

(37) Sim, E.; Song, S.; Burke, K. Quantifying Density Errors in DPT. *J. Phys. Chem. Lett.* 2018, 9, 6385–6392.

(38) Sim, E.; Song, S.; Burke, K. Quantifying Density Errors in DPT. *J. Phys. Chem. Lett.* 2018, 9, 6385–6392.

(39) Verma, P.; Perera, A.; Bartlett, R. J. Increasing the Applicability of DFT I. Non-variational Correlation Corrections from Hartree-Fock DFT for Predicting Transition States. *Chemical Physics Letters* 2012, 524, 10–15.

(40) Gordon, R. G.; Kim, Y. S. Theory for the Forces between Closed-Shell Atoms and Molecules. *J. Chem. Phys.* 1972, 56, 812–813.

(41) Kim, Y.; Song, S.; Burke, K. Halogen and Chalcogen Bonding Dominated by Density-Driven Errors. *J. Chem. Lett.* 2018, 10, 295–296.

(42) Kim, M.-C.; Sim, E.; Burke, K. Density Functional Analysis: The Theory of Density-Corrected DFT. *J. Chem. Theory Comput.* 2019, 15, 6636–6646.

(43) Janesko, B. G.; Schuurmans, M. H. Hartree-Fock Orbiits Significantly Improve the Reaction Barrier Heights Predicted by Semilocal Density Functionals. *J. Chem. Phys.* 2008, 128, 044113.

(44) Alipour, M.; Izadkhast, H. Appraising Spin-State Energies in Transition Metal Complexes Using Double-Hybrid Models: Accountability of SO80-PBESCAN0-2(a) as a Promising Paradigm. *Phys. Chem. Chem. Phys.* 2020, 22, 9388–9404.

(45) Cirera, J.; Babin, V.; Paesani, F. Theoretical Modeling of Spin Crossover in Metal-Organic Frameworks: [Fe[pz]2]+/[P(CN)4]− in a Case Study. *Inorg. Chem.* 2014, 53, 11020–11028.

(46) Cirera, J.; Vela, S.; Pumaran, M.; Cirera, J.; Ribas-Arino, J. Thermal Spin Crossover in Fe(II) and Fe(III). Accurate Spin State Energies at the Solid State. *Phys. Chem. Chem. Phys.* 2020, 22, 4938–4945.

(47) Cirera, J.; Ruiz, E. Assessment of the SCAN Functional for
Spin-State Energies in Spin-Crossover Systems. *J. Phys. Chem.* A 2020, 124, 5053–5058.

(68) Handy, N. C.; Cohen, A. J. Left-right Correlation Energy. *Molecular Physics* 2001, 99, 403–412.

(69) Shinohzaki, T.; Yanai, T. Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory. *Journal of Chemical Theory and Computation* 2016, 12, 4347–4351, PMID: 27479148.

(70) Pierloot, K. The CASPT2 Method in Inorganic Electronic Spectroscopy: from Ionic Transition Metal to Covalent Actinide Complexes. *Molecular Physics* 2003, 101, 2083–2094.

(71) Pierloot, K. *Computational organometallic chemistry*; Marcel Dekker, Inc.; New York, 2001; Chapter 5.

(72) Pierloot, K. Transition Metals Compounds: Outstanding Challenges for Multiconfigurational Methods. *International Journal of Quantum Chemistry* 2011, 111, 3291–3301.

(73) Polo, V.; Kraka, E.; Cremer, D. Some Thoughts about the Stability and Reliability of Commonly Used Exchange-Correlation Functionals - Coverage of Dynamic and Nondynamic Correlation Effects. *Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)* 2002, 107, 291–303.

(74) Gräfenstein, J.; Kraka, E.; Cremer, D. The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits. *J. Chem. Phys.* 2004, 120, 524–539.

(75) Harvey, J. N. On the accuracy of density functional theory in transition metal chemistry. *Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.* 2006, 109, 203–226.

(76) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. *Computational Materials Science* 2006, 36, 354–360.

(77) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved Grid-Based Algorithm for Bader Charge Allocation. *Journal of Computational Chemistry* 2007, 28, 899–908.

(78) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm Without Lattice Bias. *Journal of Physics: Condensed Matter* 2009, 21, 084204.

(79) Yu, M.; Trinkle, D. R. Accurate and Efficient Algorithm for Bader Charge Integration. *J. Chem. Phys.* 2011, 134, 064111.

(80) Daku, L. M. L.; Vargas, A.; Hauner, A.; Fouqueau, A.; Casida, M. E. Assessment of Density Functionals for the High-Spin/Low-Spin Energy Difference in the Low-Spin Iron(II) Tris(2,2'-bipyridine) Complex. *ChemphysChem* 2005, 6, 1393–1410.

(81) Radon, M. Revisiting the Role of Exact Exchange in DFT Spin-State Energetics of Transition Metal Complexes. *Phys. Chem. Chem. Phys.* 2014, 16, 14479–14488.

(82) Gallos, B.; Rea, J. A.; Hauw, C.; Zarembowitch, J. Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a single-crystal x-ray investigation. *Inorganic Chemistry* 1990, 29, 1152–1158.

(83) Moliner, N.; Muñoz, M.; Lérand, S.; Lérand, J.-F.; Solans, X.; Burriel, R.; Castro, M.; Kahn, O.; Rea, J. A. Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. *Inorganica Chimica Acta* 1999, 297, 279 – 288.

(84) Salmon, L.; Molnár, G.; Cobo, S.; Oulié, P.; Etienne, M.; Mahfoud, T.; Demont, P.; Eguchi, A.; Watanabe, H.; Tanaka, K.; Bousseksou, A. Re-investigation of the spin crossover phenomenon in the ferric complex [Fe(HB(pz)3)2][BF4]2. *New J. Chem.* 2009, 33, 1283–1289.

(85) Holland, J. M.; McAllister, J. A.; Lu, Z.; Kilner, C. A.; Thoratn-Pett, M.; Halcrow, M. A. An unusual abrupt thermal spin-state transition in [FeL2][BrF4]2 [L = 2,6-di(pyrazol-1-yl)pyridine]. *Chem. Commun.* 2001, 577–578.

(86) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, 132, 154104.

(87) Smith, D. G. A.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. *J. Phys. Chem. Lett.* 2016, 7, 2197–2203.