Distribution of the zeros of the Riemann zeta function in longer intervals

Tsz Ho Chan

March 29, 2022

Abstract

In this paper, we extend the result of Fujii on the second moment of $S(t + h) - S(t)$ to longer range of h under the Riemann Hypothesis and an quantitative form of the Twin Prime Conjecture.

1 Introduction

Throughout this article, we shall assume the Riemann Hypothesis RH of the Riemann zeta function $\zeta(s)$. Let

$$S(t) = \frac{1}{\pi} \arg \zeta\left(\frac{1}{2} + it\right),$$

$$F(x, T) = \sum_{0 < \gamma, \gamma' \leq T} x^{i(\gamma - \gamma')} w(\gamma - \gamma')$$

with $w(u) = \frac{4}{4 + u^2}$.

Here, γ and γ' run over the imaginary parts of the non-trivial zeros of $\zeta(s)$. In [4], Fujii applied Goldston’s result [6] to obtain, under RH

$$\int_0^T (S(t + h) - S(t))^2 \, dt = \frac{T}{\pi} \left[\int_0^{h \log (T/2\pi)} \frac{1 - \cos \alpha}{\alpha} \, d\alpha
ight]$$

$$+ \int_1^\infty \frac{F(\alpha)}{\alpha^2} \left(1 - \cos (\alpha h \log \frac{T}{2\pi}) \right) \, d\alpha + o(T)$$

where

$$F(\alpha) = F(\alpha, T) := \left(\frac{T}{2\pi \log \frac{T}{2\pi}} \right)^{-1} F\left(\frac{T}{2\pi}, T \right),$$

and $0 < h = o(1)$.

To extend the above result to a longer range $0 < h = O(1)$, one needs to improve the error term. The first step in this direction was accomplished in the author’s [2] which improves the error term of the second moment of $S(t)$ to $O(T/\log^2 T)$ under an quantitative form of the Twin Prime Conjecture TPC (see next section). We shall use the more precise estimates in [2] and [3] to prove
Theorem 1.1. Assume RH and TPC. Fix a large number A.

\[
T \int_0^T (S(t + h) - S(t))^2 \, dt = \frac{T}{\pi^2} \int_0^{hL} \frac{1 - \cos \alpha}{\alpha^2} \, d\alpha + \frac{T}{\pi^2} \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} \, d\alpha \\
+ \frac{T}{\pi^2} \left[\log \log 2 + C_0 - \sum_{m=2}^{\infty} \sum_{p} \frac{1}{mp^m} \right] (1 - \cos (h \log 2)) - \frac{T}{\pi^2} \int_0^{h \log 2} \frac{1 - \cos \alpha}{\alpha^2} \, d\alpha \\
- \frac{T}{\pi^2} \int_2^\infty \frac{r(u) \sin (h \log u)}{u} \, du + \frac{T}{\pi^2} \sum_{m=2}^{\infty} \sum_{p} \frac{1 - \cos (hm \log p)}{m^2 p^m} \\
+ \frac{T}{\pi^2} \sin (hL) + \frac{T}{\pi^2 L^2} \frac{h^2 (20 + 3h^2)}{4(4 + h^2)^2} - \frac{3T}{2\pi^2 L^2} \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} \, d\alpha + O\left(\frac{T}{L^2} \right)
\]

for $0 < h \leq A$. The implicit constant in the error term may depend on A. $F_h(\alpha)$ and $r(u)$ are given by (1) and (6) respectively. C_0 is Euler’s constant.

This prompts us to study

\[
\int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} \, d\alpha \quad \text{and} \quad \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} \, d\alpha.
\]

We have

Theorem 1.2. Assume RH. For T sufficiently large,

\[
0 \leq \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} \, d\alpha < 9,
\]

and

\[
0 \leq \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} \, d\alpha < 6.
\]

The author would like to thank Prof. Daniel Goldston for suggesting this problem. Here and throughout this paper, p will denote a prime number. $\Lambda(n)$ is von Mangoldt’s lambda function. Also, we have $L = \log \frac{T}{2\pi}$.

2 Preparations

We shall use a strong quantitative form of the Twin Prime Conjecture (abbreviated as TPC): For any $\epsilon > 0$,

\[
\sum_{n=1}^{N} \Lambda(n) \Lambda(n + d) = \mathcal{G}(d)N + O(N^{1/2 + \epsilon}) \quad \text{uniformly in} \quad |d| \leq N.
\]

\[
\mathcal{G}(d) = 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)p}\right) \prod_{p|d, p>2} \frac{p-1}{p-2} \quad \text{if} \quad d \text{ is even}, \quad \text{and} \quad \mathcal{G}(d) = 0 \quad \text{if} \quad d \text{ is odd}.
\]
Also, we need to generalize $F(x, T)$ to

$$F_h(x, T) = \sum_{0 < \gamma, \gamma' \leq T} \cos \left((\gamma - \gamma' - h) \log x \right) w(\gamma - \gamma' - h).$$ \hspace{1cm} (1)

Note that $F_0(x, T) = F(x, T)$. From \(\text{(3)} \),

$$F_h(x, T) = \frac{T}{2\pi} \left[\frac{4 \cos (h \log x)}{4 + h^2} \log x - \frac{8h \sin (h \log x)}{(4 + h^2)^2} \right] + O\left(\frac{T}{x^{1/2-\epsilon}} \right)$$

for $1 \leq x \leq \frac{T}{\log T}$ under RH, and

$$F_h(x, T) = \frac{T}{2\pi} \left[\frac{4 \cos (h \log x)}{4 + h^2} \log x - \frac{8h \sin (h \log x)}{(4 + h^2)^2} \right] + O(1)$$

for $\frac{T}{\log^2 T} \leq x \leq T$ under RH and TPC. Define

$$F_h(\alpha) = F_h(\alpha, T) := \left(\frac{TL}{2\pi} \right)^{-1} F_h \left(\frac{T}{2\pi} \alpha, T \right)$$

for $\alpha \geq 0$ and $F_h(-\alpha) = F_h(\alpha)$. So, \(\text{(2)} \) and \(\text{(3)} \) can be summarized as

$$F_h(\alpha) = \begin{cases}
\frac{4 \cos (h L \alpha)}{4 + h^2} \alpha - \frac{8h \sin (h L \alpha)}{(4 + h^2)^2} L^{-1} \\
+ \left(\frac{T}{2\pi} \right)^{-2} \left[(\log \frac{T}{2\pi})^2 - 2 \log \frac{T}{2\pi} \right] + O(x \log x) + O\left(\frac{T}{x^{1/2-\epsilon}} \right)
\end{cases}$$

for $0 \leq \alpha \leq 1 - \frac{3 \log \log T}{\log T}$,

$$F_h(\alpha) = \begin{cases}
\frac{4 \cos (h L \alpha)}{4 + h^2} \alpha + O(T^{-1/2-\epsilon} L^{-1})
\end{cases}$$

for $1 - \frac{3 \log \log T}{\log T} \leq \alpha \leq 1$. \hspace{1cm} (4)

Recall from \(\text{(5)} \),

$$k(u) = \begin{cases}
\left(\frac{1}{2u^2} - \frac{\pi^2}{2} \cot \left(\frac{\pi^2 u}{2} \right) \right)^2, & \text{if } |u| \leq \frac{1}{2\pi}, \\
\frac{1}{2u^2}, & \text{if } |u| > \frac{1}{2\pi},
\end{cases}$$

and $\hat{k}(u)$ denotes the Fourier transform of $k(u)$. One can easily check that $k''(u)$ is bounded, piecewise continuous and $\ll u^{-4}$ when $u > \frac{1}{2\pi}$. Also,

$$k(0) = 0, k \left(\frac{1}{2\pi} \right) = \pi^2; k'(0) = 0, k' \left(\frac{1}{2\pi} \right) = 3\pi^2 - 4\pi^3.$$ \hspace{1cm} (5)

We need the following lemmas.

Lemma 2.1. Let $x = (T/2\pi)^{\beta}$ with $\beta > 0$,

$$\sum_{0 < \gamma, \gamma' \leq T} \hat{k}((\gamma - \gamma') \log x) = \frac{TL}{4\pi^2 \beta} \int_{-\infty}^{\infty} F(\alpha) k \left(\frac{\alpha}{2\pi \beta} \right) d\alpha + \frac{\pi^2 T}{16L} \frac{F(\beta)}{\beta^2}$$

$$- \frac{T}{64\pi^4 L \beta^3} \int_{-\infty}^{\infty} F(\alpha) k'' \left(\frac{\alpha}{2\pi \beta} \right) d\alpha.$$
Proof: This is essentially Lemma 2.6 of [2].

Lemma 2.2. Let \(x = (T/2\pi)^\beta \) with \(\beta > 0 \),

\[
\sum_{0 < \gamma, \gamma' \leq T} k((\gamma - \gamma' - h) \log x) = \frac{TL}{4\pi^2 \beta} \int_{-\infty}^{\infty} F_h(\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha + \frac{\pi^2 T F_h(\beta)}{16L \beta^2} - \frac{T}{64\pi^4 L \beta^3} \int_{-\infty}^{\infty} F_h(\alpha)k''\left(\frac{\alpha}{2\pi \beta}\right) d\alpha.
\]

Proof: This is just very similar to Lemma 2.1 above. We use the fact that \(k(u) \) is even.

Lemma 2.3.

\[
\int_{0}^{\beta^-} \sin (hL\alpha)k''\left(\frac{\alpha}{2\pi \beta}\right) d\alpha = 2(\pi^6 - 4\pi^4)\beta \sin (hL\beta) - 4\pi^4 hL\beta^2 \cos (hL\beta)
\]

\[
- (2\pi hL\beta)^2 \int_{0}^{\beta} \sin (hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha.
\]

Proof: Use integration by parts twice and (5).

Lemma 2.4.

\[
\int_{0}^{\beta^-} \alpha \cos (hL\alpha)k''\left(\frac{\alpha}{2\pi \beta}\right) d\alpha
\]

\[
= 2(\pi^6 - 6\pi^4)\beta^2 \cos (hL\beta) + 4\pi^4 hL\beta^3 \sin (hL\beta)
\]

\[
- 8\pi^2 hL\beta^2 \int_{0}^{\beta} \sin (hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha - (2\pi hL\beta)^2 \int_{0}^{\beta} \cos (hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha.
\]

Proof: Use integration by parts twice and (5) again.

Lemma 2.5.

\[
\int_{0}^{\beta^-} \alpha^2 k''\left(\frac{\alpha}{2\pi \beta}\right) d\alpha = 2(\pi^6 - 6\pi^4)\beta^2.
\]

Proof: Set \(h = 0 \) in Lemma 2.4.

Lemma 2.6.

\[
\int_{\beta}^{1} \frac{\cos (hL\alpha)}{\alpha^3} d\alpha = \frac{\cos (hL\beta)}{2\beta^2} - \frac{\cos (hL)_2}{2} - \frac{hL \sin (hL\beta)}{2\beta}
\]

\[
+ \frac{hL \sin (hL)}{2} - \frac{(hL)^2}{2} \int_{\beta}^{1} \frac{\cos (hL\alpha)}{\alpha} d\alpha.
\]

Proof: Use integration by parts twice.
Lemma 2.7.
\[
\int_\beta^1 \sin (hL\alpha) \frac{d\alpha}{\alpha^4} = \frac{\sin (hL/3)}{3\beta^3} - \frac{\sin (hL)}{3} + \frac{hL \cos (hL/3)}{6\beta^2} - \frac{hL \cos (hL)}{6} - \frac{(hL)^2 \sin (hL/3)}{6\beta} + \frac{(hL)^2 \sin (hL)}{6} - \frac{(hL)^3}{6} \int_\beta^1 \cos (hL\alpha) \frac{d\alpha}{\alpha}.
\]

Proof: Use integration by parts thrice.

3 \(S_4\) and \(S_5\)

We shall follow Fujii \[4\] closely. Let \(x = (T/2\pi)^{\beta}\) with \(0 < \beta < 1\). By Goldston’s explicit formula of \(S(t)\) in \[6\] under RH, Fujii got (see p. 76 & 77 of \[4\])
\[
\int_0^T (S(t + h) - S(t))^2 \, dt = S_3 + S_4 + S_5 + O\left(\frac{x \log \log x}{\log x}\right) + O(\log^3 T)
\]

where
\[
S_3 = \frac{2}{\pi^2 \log x} \sum_{0 < \gamma, \gamma' \leq T} \hat{k}((\gamma - \gamma') \log x) - \hat{k}((\gamma - \gamma' - h) \log x),
\]
\[
S_4 = \frac{T}{\pi^2} \sum_{p \leq x} \cos (h \log p) - 1 \left(f^2 \left(\frac{\log p}{\log x} \right) - 2 f \left(\frac{\log p}{\log x} \right) \right),
\]
\[
S_5 = \frac{T}{\pi^2} \sum_{m = 2}^{\infty} \sum_{p^m \leq x} \cos (hm \log p) - 1 \left(f^2 \left(\frac{m \log p}{\log x} \right) - 2 f \left(\frac{m \log p}{\log x} \right) \right).
\]

Here \(f(u) = \frac{u}{\pi} \cot \left(\frac{u}{\pi} \right)\) and \(\hat{k}(u)\) is defined as in the previous section. We note that with Euler’s constant \(C_0\),
\[
\sum_{p \leq u} \frac{1}{p} = \log \log u + C_0 + \sum_p \left(\log \left(1 - \frac{1}{p} \right) + \frac{1}{p} \right) + r(u),
\]
\[
r(u) \ll \frac{\log u}{\sqrt{u}} \tag{6}
\]
under RH. Consider
\[
\Sigma_1 = \sum_{p \leq x} \cos (h \log p) - 1 \frac{1}{p} f^2 \left(\frac{\log p}{\log x} \right), \quad \Sigma_2 = \sum_{p \leq x} \cos (h \log p) - 1 \frac{1}{p} f \left(\frac{\log p}{\log x} \right).
\]

By partial summation,
\[
\Sigma_1 = \int_2^x \frac{\cos (h \log u) - 1}{u \log u} f^2 \left(\frac{\log u}{\log x} \right) du + \int_2^x (\cos (h \log u) - 1) f^2 \left(\frac{\log u}{\log x} \right) du \tag{\ref{eq:partial_summation}}
\]
\[
= \Sigma_{1,1} + \Sigma_{1,2},
\]
\[
\Sigma_2 = \int_2^x \frac{\cos (h \log u) - 1}{u \log u} f \left(\frac{\log u}{\log x} \right) du + \int_2^x (\cos (h \log u) - 1) f \left(\frac{\log u}{\log x} \right) du \tag{\ref{eq:partial_summation}}
\]
\[
= \Sigma_{2,1} + \Sigma_{2,2}.
\]
Then
\[\Sigma_1 - 2\Sigma_2 = (\Sigma_{1,1} - 2\Sigma_{2,1}) + (\Sigma_{1,2} - 2\Sigma_{2,2}). \]

As \(f(0) = 1, f(1) = 0 \) and \(f(u) = 1 + O(u^2) \), by integration by parts,
\[
\Sigma_{1,2} - 2\Sigma_{2,2} = -r(2^-)(c\log(h\log 2) - 1) \left[f^2 \left(\frac{\log 2}{\log x} \right) - 2f \left(\frac{\log 2}{\log x} \right) \right] \\
- \int_2^x r(u) \cos \left(\frac{\log u}{\log x} \right) \left[\frac{1}{u \log x} \left(\frac{\log u}{\log x} \right) f' \left(\frac{\log u}{\log x} \right) - 2f \left(\frac{\log u}{\log x} \right) \right] \, du \\
+ h \int_2^x r(u) \left[f^2 \left(\frac{\log u}{\log x} \right) - 2f \left(\frac{\log u}{\log x} \right) \right] \, du \\
= \left[\log \log 2 + C_0 - \sum_{m=2}^{\infty} \sum_{p} \frac{1}{mp^m} \right] (1 - \cos(h\log 2)) \\
- h \int_2^\infty r(u) \frac{\sin(h\log u)}{u} \, du + O \left(\frac{1}{\beta^3 L^3} \right)
\]

by \(f^2 - 2f = (f - 1)^2 \) and Taylor series of \(\log(1 + x) \).

\[
\Sigma_{1,1} - 2\Sigma_{2,1} = \int_2^x \cos \left(\frac{\log u}{\log x} \right) \left[f^2 \left(\frac{\log u}{\log x} \right) - 2f \left(\frac{\log u}{\log x} \right) \right] \, du \\
- \int_2^x 1 - \cos \left(\frac{\log u}{\log x} \right) \left[1 - \frac{\pi \log u}{2 \log x} \cot \left(\frac{\pi \log u}{2 \log x} \right) \right]^2 \, du + \int_2^x \frac{1 - \cos \left(\frac{\log u}{\log x} \right) \alpha}{u \log x} \, du \\
= - \int_0^1 \frac{1 - \cos (hL\alpha)}{\alpha} \left[1 - \frac{\pi \alpha}{2\beta} \cot \left(\frac{\pi \alpha}{2\beta} \right) \right]^2 \, d\alpha + \int_0^1 \frac{1 - \cos (hL\alpha)}{\alpha} \, d\alpha \\
- \int_0^{\log 2/L} \frac{1 - \cos (hL\alpha)}{\alpha} \, d\alpha + O \left(\frac{1}{\beta^4 L^6} \right)
\]

by substituting \(\alpha = \log u/L \). Therefore,
\[
S_4 = \frac{T}{\pi} \left[\log \log 2 + C_0 - \sum_{m=2}^{\infty} \sum_{p} \frac{1}{mp^m} \right] (1 - \cos(h\log 2)) \\
+ \frac{T}{\pi^2} \int_0^\beta \frac{1 - \cos (hL\alpha)}{\alpha} \, d\alpha - \frac{T}{\pi^2} \int_0^\beta \frac{1 - \cos (hL\alpha)}{\alpha} \left[1 - \frac{\pi \alpha}{2\beta} \cot \left(\frac{\pi \alpha}{2\beta} \right) \right]^2 \, d\alpha \\
- \frac{T}{\pi^2} \int_0^{\log 2/L} \frac{1 - \cos \alpha}{\alpha} \, d\alpha - \frac{Th}{\pi^2} \int_2^\infty r(u) \frac{\sin(h\log u)}{u} \, du + O \left(\frac{1}{\beta^4 L^3} \right).
\]
\[
S_3 = \frac{T}{\pi^2} \left[\sum_{m=2}^{\infty} \sum_{p^m \leq x} \frac{1 - \cos (hm \log p)}{m^2 p^m} \right] - \sum_{m=2}^{\infty} \sum_{p^m \leq x} \frac{1 - \cos (hm \log p)}{m^2 p^m} \left(f\left(\frac{m \log p}{\log x} \right) - 1 \right)^2
\]
\[
= \frac{T}{\pi^2} \sum_{m=2}^{\infty} \sum_{p} \frac{1 - \cos (hm \log p)}{m^2 p^m} + O\left(\frac{1}{\beta^4 L^4} \right).
\]

\section{S_3}

Applying Lemma 2.1 and Lemma 2.2, we have

\[
S_3 = \frac{T}{2\pi^4 \beta^2} \int_{-\infty}^{\infty} (F(\alpha) - F_h(\alpha)) k\left(\frac{\alpha}{2\pi \beta} \right) d\alpha + \frac{T}{8L^2} \frac{F(\beta) - F_h(\beta)}{\beta^3}
\]
\[
- \frac{T}{32\pi^6 L^2 \beta^4} \int_{-\infty}^{\infty} (F(\alpha) - F_h(\alpha)) k''\left(\frac{\alpha}{2\pi \beta} \right) d\alpha
\]
\[
= S_{3,1} + S_{3,2} - S_{3,3}
\]

From (9),

\[
F(\alpha) - F_h(\alpha) = (1 - \cos (hL\alpha))\alpha + \frac{h^2}{4 + h^2} \cos (hL\alpha)\alpha + \frac{8h \sin (hL\alpha)}{(4 + h^2)^2 \beta} + E
\]

where

\[
E = \begin{cases}
O(T^{-(1/2-c)L^{-1}}) + O(\alpha T^{\alpha-1}), & \text{if } 0 \leq \alpha \leq 1 - \frac{3 \log \log T}{\log T}, \\
O(T^{-(1/2-c)L^{-1}}) + O(\alpha T^{\alpha-1} L^{-1}), & \text{if } 1 - \frac{3 \log \log T}{\log T} \leq \alpha \leq 1.
\end{cases}
\]

Since \(F(\alpha)\) and \(F_h(\alpha)\) are even,

\[
S_{3,1} = \frac{T}{\pi^4 \beta^2} \int_{0}^{\infty} (F(\alpha) - F_h(\alpha)) k\left(\frac{\alpha}{2\pi \beta} \right) d\alpha.
\]

Let \(\epsilon_T = 3 \log \log T/\log T\). We split the above integral into four pieces:

\[
I = \int_{0}^{\infty} = \int_{0}^{\beta} + \int_{\beta}^{1-\epsilon_T} + \int_{1-\epsilon_T}^{1} + \int_{1}^{\infty} = I_1 + I_2 + I_3 + I_4.
\]
By (9), (10) and the definition of $k(u)$,

$$I_1 = (\pi \beta)^2 \int_0^\beta \frac{1 - \cos(hL\alpha)}{\alpha} \left[1 - \frac{\pi \alpha}{2\beta} \cot \left(\frac{\pi \alpha}{2\beta}\right)\right]^2 d\alpha$$

$$+ \frac{h^2}{4 + h^2} \int_0^\beta \alpha \cos(hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha$$

$$+ \frac{8h}{(4 + h^2)^2L} \int_0^\beta \sin(hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha + O(\beta^{-1}L^{-3}),$$

$$I_2 = (\pi \beta)^2 \int_0^{1-\epsilon_T} \frac{1 - \cos(hL\alpha)}{\alpha} d\alpha + \frac{(\pi \beta)^2 h^2}{4 + h^2} \int_0^{1-\epsilon_T} \cos(hL\alpha) d\alpha$$

$$+ \frac{(\pi \beta)^2 8h}{(4 + h^2)^2L} \int_0^{1-\epsilon_T} \sin(hL\alpha) d\alpha + O(L^{-4}),$$

$$I_3 = (\pi \beta)^2 \int_{1-\epsilon_T}^1 \frac{1 - \cos(hL\alpha)}{\alpha} d\alpha + \frac{(\pi \beta)^2 h^2}{4 + h^2} \int_{1-\epsilon_T}^1 \cos(hL\alpha) d\alpha$$

$$+ \frac{(\pi \beta)^2 8h}{(4 + h^2)^2L} \int_{1-\epsilon_T}^1 \sin(hL\alpha) d\alpha + O(L^{-4}),$$

$$I_4 = (\pi \beta)^2 \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha.$$

Thus,

$$S_{3,1} = \frac{T}{\pi^2} \int_0^\beta \frac{1 - \cos(hL\alpha)}{\alpha} \left[1 - \frac{\pi \alpha}{2\beta} \cot \left(\frac{\pi \alpha}{2\beta}\right)\right]^2 d\alpha + \frac{T}{\pi^2} \int_0^1 \frac{1 - \cos(hL\alpha)}{\alpha} d\alpha$$

$$+ \frac{T}{\pi^4 \beta^2} \left[\frac{h^2}{4 + h^2} \int_0^\beta \alpha \cos(hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha\right]$$

$$+ \frac{8h}{(4 + h^2)^2L} \int_0^\beta \sin(hL\alpha)k\left(\frac{\alpha}{2\pi \beta}\right) d\alpha + \frac{T h^2}{\pi^2(4 + h^2)} \int_0^1 \cos(hL\alpha) d\alpha$$

$$+ \frac{8Th}{\pi^2(4 + h^2)^2L} \int_0^1 \sin(hL\alpha) d\alpha + \frac{T}{\pi^2} \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha + O(\beta^{-1}L^{-2}).$$

Apply (9) and (10) directly,

$$S_{3,2} = \frac{T}{8 L^2 \beta^2} - \frac{T \cos(hL\beta)}{2(4 + h^2)L^2 \beta^2} + \frac{T h \sin(hL\beta)}{(4 + h^2)^2 L^3 \beta^3} + O(L^{-4}).$$

Similar to the treatment of $S_{3,1}$,

$$S_{3,3} = \frac{T}{16 \pi^6 L^2 \beta^4} \int_0^\infty (F(\alpha) - F_h(\alpha))k''\left(\frac{\alpha}{2\pi \beta}\right) d\alpha$$

and we split the integral into four pieces:

$$J = \int_0^\infty = \int_0^\beta + \int_{\beta}^{1-\epsilon_T} + \int_{1-\epsilon_T}^1 + \int_1^\infty = J_1 + J_2 + J_3 + J_4.$$
By Lemma 2.6 and 2.7

\[J_1 = 2(\pi^6 - 6\pi^4)\beta^2 \left[1 - \frac{4\cos(hL\beta)}{4 + h^2} \right] - \frac{16\pi^4h\sin(hL\beta)}{4 + h^2} + \frac{32\pi^4h^2 \cos(hL\beta)}{(4 + h^2)^2} \beta^2 + \frac{16(\pi^6 - 4\pi^4)h \sin(hL\beta)}{(4 + h^2)^3} \beta^2 \]
\[+ \frac{16\pi^2h^2 \beta^2 L^2}{4 + h^2} \int_0^\beta \alpha \cos(h\Lambda)k\left(\frac{\alpha}{2\pi\beta}\right)d\alpha \]
\[+ \frac{128\pi^2h}{(4 + h^2)^2} \beta^2 L \int_0^\beta \sin(h\Lambda)k\left(\frac{\alpha}{2\pi\beta}\right)d\alpha + O(\beta^{-1}L^{-2}). \]

By Lemma 2.6 and 2.7

\[J_2 + J_3 = \int_\beta ^1 \left[\alpha - \frac{4\cos(h\Lambda)}{4 + h^2} + \frac{8h \sin(h\Lambda)}{(4 + h^2)^2} \right] \frac{24\pi^4\beta^4}{4 - \beta^4} d\alpha \]
\[= 12\pi^4(\beta^2 - \beta^4) - \frac{16\pi^4(12 + h^2) \cos(hL\beta)}{(4 + h^2)^2} \beta^2 \]
\[+ \frac{16\pi^4(12 + h^2) \cos(hL\beta)}{(4 + h^2)^2} \beta^4 \delta^4 + \frac{16h(12 + h^2) \sin(hL\beta)}{(4 + h^2)^2} \beta^3 L \]
\[- 64\pi^4h \sin(hL) \beta^4 + \frac{16\pi^4h^2(12 + h^2)}{(4 + h^2)^2} \beta^4 L \int_\beta ^1 \delta^4 \left(\frac{\cos(h\Lambda)}{\alpha} \right) d\alpha + O(L^{-2}). \]
\[J_4 = 24\pi^4 \beta^4 \int_1 ^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} d\alpha. \]

Thus,

\[S_{3,3} = \frac{T}{8\beta L} - \frac{3T}{4\pi L} + \frac{T \cos(hL\beta)}{2(4 + h^2)L^2 \beta^2} + \frac{8Th \sin(hL\beta)}{\pi^2(4 + h^2)^2 \beta L} \]
\[+ \frac{Th \sin(hL\beta)}{(4 + h^2)^2 L^2} \beta^3 + \frac{T(12 + h^2) \cos(hL\beta)}{\pi^2(4 + h^2)^2 L^2} - \frac{Th(12 + h^2) \sin(hL\beta)}{\pi^2(4 + h^2)^2 L} \]
\[- \frac{4T \sin(hL\beta)}{\pi^2(4 + h^2)^2 L^3} + \frac{Th^2}{\pi^4 \beta^2 (4 + h^2)^2} \int_0^\beta \alpha \cos(h\Lambda)k\left(\frac{\alpha}{2\pi\beta}\right)d\alpha \]
\[+ \frac{8Th}{\pi^4 \beta^2 (4 + h^2)^2 L} \int_0^\beta \sin(h\Lambda)k\left(\frac{\alpha}{2\pi\beta}\right)d\alpha \]
\[+ \frac{Th^2(12 + h^2)}{\pi^2(4 + h^2)^2} \int_1 ^1 \cos(h\Lambda) \left(\frac{\alpha}{\alpha} \right) d\alpha \]
\[+ \frac{3T}{2\pi^3 L^2} \int_1 ^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} d\alpha + O(\beta^{-1}L^{-4}). \]
Finally, combining the results for \(S_{3,1}, S_{3,2} \) and \(S_{3,3} \), we have

\[
S_3 = \frac{T}{\pi^2} \int_0^\beta \frac{1 - \cos (hL \alpha)}{\alpha} \left[1 - \frac{\pi \alpha}{2\beta} \cot \left(\frac{\pi \alpha}{2\beta} \right) \right]^2 d\alpha + \frac{T}{\pi^2} \int_0^\beta \frac{1 - \cos (hL \alpha)}{\alpha} d\alpha + T \int_0^\beta \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha + \frac{T}{\pi^2} \int_1^\beta \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha + \frac{3T}{\pi(1 + h^2) \cos (hL)} \frac{1}{2\pi^2 L^2} \int_1^\beta \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} d\alpha + O(\beta^{-1} L^{-2})
\]

as

\[
\int_\beta^1 \frac{\sin (hL \alpha)}{\alpha^2} d\alpha = -\sin (hL) + \frac{\sin (hL \beta)}{\beta} + hL \int_\beta^1 \frac{\cos (hL \alpha)}{\alpha} d\alpha.
\]

Remark: We keep some of the \(O(TL^{-2}) \) terms explicit because, with more effort, one can make the error term = \(C_1 TL^{-2} + o(TL^{-2}) \).

5 Proof of Theorem 1.1

Take \(\beta = 1/2 \). Combining the results on \(S_3, S_4 \) and \(S_5 \), we have

\[
\int_0^T (S(t + h) - S(t))^2 dt = \frac{T}{\pi^2} \int_0^1 \frac{1 - \cos (hL \alpha)}{\alpha} d\alpha + \frac{T}{\pi^2} \int_1^\infty \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha + \frac{T}{\pi^2} \left[\log 2 + C_0 - \sum_{m=2}^{\infty} \sum_p \frac{1}{mp^m} \right] (1 - \cos (h \log 2)) + \frac{T}{\pi^2} \int_0^{h \log 2} \frac{1 - \cos \alpha}{\alpha} d\alpha
\]

\[
+ \frac{Th}{2\pi^2} \int_2^\infty \frac{r(u)}{u^2} du + \frac{T}{\pi^2} \sum_{m=2}^{\infty} \sum_{p} \frac{1 - \cos (hm \log p)}{m^2 p^m}
\]

\[
+ \frac{Th \sin (hL)}{\pi^2 (1 + h^2) L} + \frac{T}{\pi^2 L^2} \frac{h^2 (20 + 3h^2)}{4(1 + h^2)^2} - \frac{3T}{2\pi^2 L^2} \int_1^\beta \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} d\alpha + O \left(\frac{T}{L^2} \right)
\]

which gives the theorem. Again, one can make the error term = \(C_1 TL^{-2} + o(TL^{-2}) \) with more effort.

The theorem improves that of Fujii as

\[
\begin{itemize}
 \item \(h \) is allowed to be \(O(1) \).
 \item All the terms besides first two contribute \(O(Th^2) + O(TL^{-2}) \).
 \item It is conjectured in [3] that
 \[
 F_h(\alpha) = F(\alpha) \frac{4 \cos (hL \alpha)}{4 + h^2} + o(1) \text{ for } 1 \leq \alpha \leq A \text{ with arbitrary large } A.
 \]
\end{itemize}

(11)
Furthermore, as
\[\sum_{p \leq x} \frac{1 - \cos (h \log p)}{p} = \int_{2}^{x} \frac{1 - \cos (h \log u)}{u \log u} du + \int_{2}^{x} 1 - \cos (h \log u) dr(u) \]
\[= \int_{\log 2}^{\log x} \frac{1 - \cos \alpha}{\alpha} d\alpha - r(2^{-}) (1 - \cos (h \log 2)) \]
\[- h \int_{2}^{\infty} \frac{r(u) \sin (h \log u)}{u} du + O\left(\frac{\log x}{\sqrt{x}} \right), \]

Theorem 1.1 gives
\[\int_{0}^{T} (S(t+h) - S(t))^2 dt \]
\[= \frac{T}{\pi^2} \int_{0}^{1} \frac{1 - \cos (h\alpha)}{\alpha^2} d\alpha + \frac{T}{\pi^2} \int_{1}^{\infty} \frac{F(\alpha) - F_h(\alpha)}{\alpha^2} d\alpha \]
\[+ \frac{T}{\pi^2} \left[\sum_{m=1}^{x} \sum_{p^m \leq x} \frac{1 - \cos (h \log p)}{m^2 p^m} + C_i(h \log x) - \log (h \log x) - C_0 \right] \]
\[+ \frac{Th \sin (hL)}{\pi^2 (4 + h^2)L} + \frac{T}{\pi^2 L^2} \frac{h^2 (20 + 3h^2)}{4(4 + h^2)^2} - \frac{3T}{2\pi^2 L^2} \int_{1}^{\infty} \frac{F(\alpha) - F_h(\alpha)}{\alpha^4} d\alpha + O\left(\frac{T}{L^2} \right) \]

where \(C_i(x) = -\int_{x}^{\infty} \frac{\cos t}{t} dt = C_0 + \log x + \int_{0}^{x} \frac{\cos t - 1}{t} dt \) is the cosine integral. If we assume Montgomery’s conjecture on \(F(\alpha) \) and \(F_h(\alpha) \), the first two terms account for the GUE part of Berry’s formula (19) conjectured in [1] by a similar calculation as page 79 of [4]. Moreover, the third term is the non-GUE part of Berry’s formula. So, our theorem is even more precise than Berry’s formula.

6 Proof of Theorem 1.2

First, let us consider
\[L(x, t) = \sum_{0 < \gamma \leq T} \frac{x^{i(\gamma - t)}}{1 + (t - \gamma)^2} \]
where the sum here is over of the imaginary parts of the non-trivial zeros of the Riemann zeta function.

Lemma 6.1. For all \(\alpha \) and \(h \), we have
\[F_h(\alpha) \leq F(\alpha). \]

Proof: First, by partial fractions and Cauchy’s residue theorem,
\[\int_{-\infty}^{\infty} \frac{1}{(1 + (t - a)^2)(1 + (t - b)^2)} dt = \frac{2\pi}{4 + (a - b)^2}, \]
Then
\[
0 \leq \int_{-\infty}^\infty |L(x,t) - L(x,t-h)|^2 dt
= 2 \sum_{0 < \gamma, \gamma' \leq T} x^{i(\gamma - \gamma')} \int_{-\infty}^\infty \frac{1}{(1 + (t - \gamma)^2)(1 + (t - \gamma')^2)} dt
- 2 Re \sum_{0 < \gamma, \gamma' \leq T} x^{i(\gamma - \gamma' - h)} \int_{-\infty}^\infty \frac{1}{(1 + (t - \gamma)^2)(1 + (t - h - \gamma')^2)} dt
= \pi F(x, T) - \pi F_h(x, T).
\]

Set \(x = \left(\frac{T}{2\pi} \right)^\alpha \) and divide through by \(T L^2 \pi^2 \), we have the lemma.

Assuming RH, Montgomery [8] proved that, for fixed \(0 < \beta < 1 \),
\[
\left(\frac{TL}{2\pi} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} \left[\sin \frac{\beta(\gamma - \gamma')L}{2} \right]^2 w(\gamma - \gamma') \sim \frac{1}{\beta} + \frac{\beta}{3}
\]
(12)

as \(T \to \infty \). This also holds for \(\beta = 1 \) by Goldston [5]. Using (5), one can prove similarly that for fixed \(0 < \beta \leq 1 \),
\[
\left(\frac{TL}{2\pi} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} \left[\sin \frac{\beta(\gamma - \gamma' - h)L}{2} \right]^2 w(\gamma - \gamma' - h) \\
\sim \frac{1}{\beta} + \frac{8\beta}{4 + h^2} \frac{2 \sin (hL\beta)}{hL\beta} - 1 - \cos (hL\beta)
\]
(13)
as \(T \to \infty \) under RH only (similar to [5] or using Lemma 7 of [7] in the argument of Chan [3]). Note that \(2 \sin x - 1 - \cos x \leq \frac{x^2}{6} \) by simply looking at their Taylor series. We also need the following

Lemma 6.2. For any real number \(c \),
\[
\int_{c-1}^{c+1} F_h(\alpha)(1 - |\alpha - c|) d\alpha
= \left(\frac{TL}{2\pi} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} \cos (L(\gamma - \gamma' - h)c) \left[\sin \frac{(\gamma - \gamma' - h)L}{2} \right]^2 w(\gamma - \gamma' - h),
\]
\[
\int_{c-1}^{c+1} F(\alpha)(1 - |\alpha - c|) d\alpha
= \left(\frac{TL}{2\pi} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} \left(\frac{T}{2\pi} \right)^{i(\gamma - \gamma')} \left[\sin \frac{(\gamma - \gamma')L}{2} \right]^2 w(\gamma - \gamma').
\]
Proof: The second one follows from the first one by setting $h = 0$. To prove the first one, we have, from the definition of $F_h(\alpha)$,

$$\int_{c-1}^{c+1} F_h(\alpha)(1 - |\alpha - c|)d\alpha = \int_{-1}^{1} F_h(\alpha - c)(1 - |\alpha|)d\alpha$$

$$= \sum_{0<\gamma,\gamma'\leq T} \int_{-1}^{1} \cos(L(\gamma - \gamma' - h)(\alpha - c))(1 - |\alpha|)d\alpha w(\gamma - \gamma' - h)$$

$$= \sum_{0<\gamma,\gamma'\leq T} 2 \cos(L(\gamma - \gamma' - h)c) \frac{1 - \cos(L(\gamma - \gamma' - h))}{((\gamma - \gamma' - h)L)^2} w(\gamma - \gamma' - h)$$

by integration by parts. This gives the lemma as $\cos 2x = 1 - 2 \sin^2 x$.

Note: (12) and (13) can be proved by setting $c = 0$ in Lemma 6.2 and using the asymptotic formulas for $F(\alpha)$ and $F_h(\alpha)$ like (5).

Lemma 6.3. Assume RH. For any $\epsilon > 0$ and T sufficiently large,

$$0 \leq \int_{c}^{c+1} (F(\alpha) - F_h(\alpha))d\alpha \leq \frac{16}{3} + \epsilon$$

uniformly for any real number c.

Proof: From Lemma 6.1 we have $F(\alpha) - F_h(\alpha) \geq 0$. This gives the lower bound as well as

$$\frac{1}{2} \int_{c-1/2}^{c+1/2} (F(\alpha) - F_h(\alpha))d\alpha \leq \int_{c-1}^{c+1} (F(\alpha) - F_h(\alpha))(1 - |\alpha - c|)d\alpha.$$

So, by Lemma 6.2

$$\int_{c-1/2}^{c+1/2} (F(\alpha) - F_h(\alpha))d\alpha \leq 2 \left(\frac{T L}{2\pi}\right)^{-1} \sum_{0<\gamma,\gamma'\leq T} \left[\frac{\sin \left(\frac{\gamma-\gamma'}{2}\right)L}{\frac{(\gamma-\gamma')L}{2}}\right]^2 w(\gamma - \gamma')$$

$$+ 2 \left(\frac{T L}{2\pi}\right)^{-1} \sum_{0<\gamma,\gamma'\leq T} \left[\frac{\sin \left(\frac{\gamma-\gamma'-h}{2}\right)L}{\frac{(\gamma-\gamma'-h)L}{2}}\right]^2 w(\gamma - \gamma' - h).$$

Now, using (12) and (13) with $\beta = 1$ and $2 \sin \frac{x}{2} - 1 - \cos x \leq \frac{x^2}{6}$, the right hand side of the above inequality is

$$\leq 2 \left(\frac{4}{3} + \frac{\epsilon}{4}\right) + 2 \left(\frac{4}{3} + \frac{\epsilon}{4}\right) = \frac{16}{3} + \epsilon$$

when T is sufficiently large.

We are now in the position to prove Theorem 1.2. By Lemma 6.1 and 6.3

$$0 \leq \int_{1}^{\infty} \frac{F(\alpha) - F_h(\alpha)}{\alpha^2}d\alpha \leq \sum_{c=1}^{\infty} \frac{1}{c^2} \int_{c}^{c+1} (F(\alpha) - F_h(\alpha))d\alpha < 5.4 \frac{\pi^2}{6} < 9.$$

Similarly,

$$0 \leq \int_{1}^{\infty} \frac{F(\alpha) - F_h(\alpha)}{\alpha^4}d\alpha \leq \sum_{c=1}^{\infty} \frac{1}{c^4} \int_{c}^{c+1} (F(\alpha) - F_h(\alpha))d\alpha < 5.4 \frac{\pi^4}{90} < 6.$$
References

[1] M.V. Berry, *Semiclassical formula for the number variance of the Riemann zeros*, Nonlinearity 1 (1988), 399-407.

[2] T.H. Chan, *On the second moment of $S(t)$ in the theory of the Riemann zeta function*, Preprint.

[3] T.H. Chan, *Pair Correlation of the zeros of the Riemann zeta function in longer ranges*, Preprint.

[4] A. Fujii, *On the Distribution of the Zeros of the Riemann Zeta Function in Short Intervals*, Proc. Japan Acad., 66, Ser. A (1990), 75-79.

[5] D.A. Goldston, *Large Differences between Consecutive Prime Numbers*, Thesis, U. of Calif., Berkeley, 1981.

[6] D.A. Goldston, *On the function $S(t)$ in the theory of the Riemann zeta function*, J. Number Theory 27 (1987), 149-177.

[7] D.A. Goldston and H.L. Montgomery, *On pair correlations of zeros and primes in short intervals*, Analytic Number Theory and Diophantine Problems (Stillwater, OK, July 1984), 70, Prog. Math., Birkhauser, Boston, 1987, pp. 183-203.

[8] H.L. Montgomery, *The pair correlation of zeros of the zeta function*, Analytic Number Theory (St. Louis Univ., 1972), Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, 1973, pp. 181-193.

Tsz Ho Chan
Case Western Reserve University
Mathematics Department, Yost Hall 220
10900 Euclid Avenue
Cleveland, OH 44106-7058
USA
txc50@po.cwru.edu