1005. The Antibiotic Optimization DOOR: Refining Assessment of Antibiotic Therapy with Desirability of Outcome Ranking

Steven Smoke, PharmD1; Vishal Patel, PharmD2; Nicole Leonida, PharmD2; Maria DeVivo, PharmD, MPA1; Jersey City Medical Center, Union, New Jersey; ‘Community Medical Center, Toms River, New Jersey,

Session: 130. Antibiotic Stewardship: Antibiotic Utilization
Friday, October 4, 2019: 12:15 PM

Background. Desirability of outcome ranking (DOOR) is a novel methodology for incorporating multiple outcomes into a single value to more comprehensively appraise therapeutic strategies. Its primary application has been limited to antibiotic clinical trials, incorporating treatment success and antibiotic toxicity into a single measure. We describe the application of DOOR methodology to a retrospective study evaluating antibiotic optimization.

Methods. This was a single-center, retrospective quasi-experimental study conducted at an academic medical center evaluating the impact of prospective pharmacist review of rapid molecular diagnostic testing (RDT) of blood cultures on antibiotic optimization. Two 8-week time periods were evaluated, corresponding to RDT implementation prior to prospective pharmacist review (RDT-only) and RDT with prospective pharmacist review (RDT-PPR). Patients with a positive blood culture who were not on optimal therapy at the time of gram stain were included in the study. Outcomes included the percentage of patients who received optimal therapy, time to optimal antibiotic therapy, and percentage of patients who had therapy de-escalated. An antibiotic optimization DOOR was created with 3 ordinal ranks. The most desirable outcome, rank one, was patients receiving optimal therapy with no missed de-escalation opportunities. Rank two was patients receiving optimal therapy with a missed de-escalation opportunity. The least desirable outcome, rank three, consisted of patients not receiving optimal antibiotic therapy. Time to optimal therapy was used as a tiebreaker for patients in ranks one and two.

Results. A total of 19 and 29 patients were included in the pre and post-intervention periods, respectively. The percentage of patients reaching optimal therapy was 84% (16/19) and 97% (28/29). P = 0.16. Median time to optimal therapy was 30:28:26 and 22:40:17 (P = 0.32), respectively. DOOR analysis indicated that the probability of a better outcome for the RDT-PPR group than the RDT-only group was 58% (95% CI 54-62).

Conclusion. In this small retrospective study, the use of a novel composite methodology identified the benefit of an intervention that was not detected by standard comparison of individual outcomes.

Disclosures. All authors: No reported disclosures.

1006. Do Antibiotic Choices Made in the ED Influence Inpatient Therapy?

Travis M. Jones, PharmD1; Elizabeth Dodds Ashley, PharmD, MHS1; Melissa D. Johnson, PharmD, MHS2; Rebekah W. Mochring, MD, MPH1; Christina Sarubbi, PharmD3; Rebekah Wrenn, PharmD, BCPS1; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina; 2Duke University Hospital, Durham, North Carolina,

Session: 130. Antibiotic Stewardship: Antibiotic Utilization
Friday, October 4, 2019: 12:15 PM

Background. Inappropriate antibiotic use (AU) is common among inpatients and may begin in the emergency department (ED). ED clinicians often make the first antibiotic decisions in patient care, but it is unknown whether or not these decisions influence inpatient outcomes. Understanding prescribing practices at transitions of care is critical for implementing effective stewardship initiatives.

Methods. We performed a retrospective cohort study of AU in patients admitted to Duke University Hospital through the ED between July and December 2018. Included encounters had a minimum 2-day length of stay and received an antibiotic in both the ED and inpatient setting. Individual encounter IDs were used to link ED and inpatient AU reports generated from the DASON Antimicrobial Stewardship Assessment Portal. We compared the last ED administration date/time to the first inpatient unit administration for each agent. An antibiotic started in the ED was considered continued upon admission if the first inpatient administration occurred within 30 hours following the last ED administration date.

Results. A total of 3,336 encounters and 2,940 unique patients in the analysis. The median (IQR) patient age was 60 (42–72) years, and the most common indications for AU in the ED were sepsis (23.1%), pneumonia (17.8%), ABSSSI (15.5%), and intra-abdominal infection (12.8%). At least one antibiotic initiated in the ED was continued upon admission within 30 hours in 2,493 (74.8%) encounters. The most common antibiotics continued upon admission were piperacillin/tazobactam (32.8%), vancomycin (24.9%), and ceftriaxone (13.7%). The most common indications for agents continued upon admission were pneumonia (18%), intra-abdominal infection (15%), and ABSSSI (15%). There were more antibiotics continued upon admission in 916 (27.4%) encounters.

Conclusion. In our retrospective review of ED antibiotic encounters resulting in admission for at least 2 days, three out of four encounters had at least one antibiotic continued upon admission. This finding highlights the importance of initial appropriate antibiotic selection and suggests stewardship interventions should target EDs as well as inpatient prescribing.

Disclosures. All authors: No reported disclosures.