Research Paper
The Effect of 10 Weeks Core Muscle Training on Levels of Follistatin, Myostatin, and Pain in Elderly Women

Fatemeh Taheri1, Mehrdad Fathi2, Keyvan Hejazi3

1. Department of Sport Physiology, Faculty of Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
2. Department of Sport Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3. Department of Sport Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran.

A B S T R A C T

Aims: Structural postural changes due to aging are common among the elderly due to decreased muscle mass and tissue. We evaluated the effect of 10 weeks of core muscle training on serum levels of follistatin, myostatin, and pain in older women with low back pain.

Methods & Materials: A total of 18 older women with low back pain (aged 60 to 70 y) were randomly assigned into two groups: experimental (n=9) and control (n=9). The training program of core muscles included 55 to 60 min sessions, 3 times per week for 10 weeks. Before and after the training, serum follistatin and myostatin, along with pain intensity and lumbar function, were evaluated. The obtained data were analyzed by paired sample t test and Analysis of Covariance (ANCOVA) to compare intragroup and intergroup differences, respectively.

Findings: Core muscle training led to a significant reduction in the relative pain scale (P=0.001). Follistatin (P=0.001) and myostatin (P=0.001) levels increased and decreased significantly at the end of the training period, respectively. Lumbar function improved in the training group. Changes in means of between groups in relative pain scale, follistatin, myostatin, and lumbar function have a significant difference (P<0.05).

Conclusion: Core muscle training was associated with a decline in myostatin level, increase in follistatin level, and improving lumbar function. In summary, core muscle training may decrease muscle atrophy related to age.

Keywords: Low back pain, Aged, Follistatin, Myostatin

English Version

1. Introduction

Changes in skeletal muscle mass are among the inevitable old age problems and are associated with progressive skeletal, muscular weakness [1]. Because of the growth of the elderly population, loss of body mass and tissue has become significantly more prevalent, which is one of the structural-postural changes due to aging [2]. If muscle mass begins to decline, symptoms of decreased functional independence and back pain will gradually increase with age. This decreasing trend is intensified by having bad habits [3, 4]. However, improving lifestyle such as following a proper diet and exercising are solid and appropriate ways to deal with this erosive process [2, 5]. Many studies have examined muscle changes that occur with age.
These studies have found that aging is associated with an increase in atrophy and muscle weakness of the lower extremities more than the upper extremities [6]. Also, there is an inverse relationship between aging and the size of the muscles of the central part of the body (abdomen and back) [7].

On the other hand, several studies have shown that muscle weakness is associated with musculoskeletal pain, such as back pain [8]. Because with increasing age, the muscles of the central part of the body, such as the multifidus muscle, become weak and atrophic, and this weakness can cause Low Back Pain (LBP) [9]. Therefore, the decrease in muscle mass during the aging process is an indirect but very influential factor in causing LBP [8]. Besides, losing muscle mass is associated with a decrease in physical function of the elderly, which affects their quality of life [2, 10].

Myostatin is a secretory factor and a member of a large family of secretory growth factors and has a critical negative regulatory role in skeletal muscle growth and homeostasis, which is secreted into the bloodstream as an endocrine agent after expression in skeletal muscle. Myostatin exerts its inhibitory effect (inhibition of proliferation and differentiation of satellite cells) on the surface of muscle cells by binding to the activin receptor and ultimately reducing muscle mass [11]. It has been observed that the expression of myostatin increases during periods of inactivity, and also the inhibition of serum myostatin leads to an increase in strength and muscle mass [12].

Another factor related to muscle mass that can be mentioned is follistatin. It is a single-chain polypeptide with diverse functions and is a member of the large family of growth factor-beta, the largest family of secretory growth factors, differentiation, and homeostasis of the body. This family plays a significant role in regulating and promoting the growth of body tissues [13]. Essential roles of follistatin include neutralizing the actions of growth factor-beta transporter proteins, including myostatin, tissue growth and differentiation, and regeneration and repair of damaged tissues [13].

Recent research has shown that various exercises can increase follistatin and reduce myostatin [14]. Santos et al. examined the effect of eight weeks of resistance training in different ways (including high and low-intensity squats) on the expression of myostatin gene inhibitors in active men. The subjects were grouped in strength training, resistance training, and controls. The researchers concluded that the expression of myostatin signaling pathway inhibitors was increased [15]. Yarahmadi et al. evaluated the effectiveness of core stability exercises on functional disability, dynamic balance, and lumbar-pelvic proprioception in patients with non-specific chronic LBP and concluded that a significant improvement was observed in functional disability, dynamic balance, and proprioception of the core stability of the exercise group [16]. By examining the effect of 6 to 12 weeks of core stability training on the lumbar joint position sense in 38 patients with LBP, Pantoma et al. concluded that core stability training improved the sense of lumbar joint position and reduced pain and functional disability [17]. Rastegar Moghaddam et al. reported that performing 10 weeks of core stability exercises significantly increased the longitudinal and transverse cross-sectional areas of the multifidus muscle. On the other hand, the subjects’ level of pain in the group of core stability exercises in the fifth and tenth weeks compared to the beginning of the intervention was significantly reduced [18]. After studying the effect of eight weeks of elastic band resistance training on serum myostatin and body composition of 26 older women, Vatankhah Khozani et al. concluded that the training significantly reduced the percentage of fat and myostatin level in the intervention group compared to the control group [19].

In summary, very little research has been done on the different forms of exercise, and which exercise method can have the most positive effects on the follistatin and myostatin factors. Regarding the effects of different training methods, especially core stability training exercises, there are still ambiguities about how these exercises affect physiological factors such as follistatin and myostatin. Different exercises can have various effects on the ratio of follistatin to myostatin, anaerobic function, and fatigue index. However, no research has investigated the difference between core stability training exercises on these indicators. Thus, we decided to answer whether core muscle training exercises affect serum follistatin and myostatin, as well as the pain in women with chronic LBP. Therefore, the present study aimed to evaluate the effect of 10 weeks of core muscle training on the levels of follistatin, serum myostatin, and pain in women with chronic LBP.

2. Materials and Methods

This research is a quasi-experimental study in which the experimental and control groups were compared with pre-test and post-test. The study population includes older women over 60 years (age range between 60 and 70 years) with chronic low back pain selected by the available and purposive sampling method. In the first stage, women were introduced to the nature and manner of cooperation with the study procedure. The inclusion criteria included chronic low back pain (more than 3 months), age over 55 years, body mass index between 25 and 30 kg/m². The exclusion criteria included pregnancy, specific spinal abnormalities (spondylolysis or spondylolisthesis), lumbar scoliosis with
an angle of more than 10 degrees, severe osteoarthritis of
the knee, and severely debilitating diseases. Subjects volun-
tarily participated in the research based on the study condi-
tions and consciously signed the consent form. The samples
were then randomly divided into experimental (n=9) and
control (n=9) groups.

To evaluate the body composition, we measured the sub-
jects’ height with Seka height meter (made in Germany)
with 5-mm precision accuracy. Their hips and waist cir-
cumferences were measured with a tape measure (Mabis,
Japan) with 5-mm precision accuracy. Finally, we mea-
sured their body fat percentage and weight with a precision
accuracy of 100 g using a bioelectrical impedance device
(model InBody _720 / South Korea).

All measurements were performed while the subjects had
abstained from eating and drinking four hours before the
test. So their bladder, stomach, and intestines were empty
as much as possible. The subjects were allowed to enter the
project after cardiovascular examination, blood pressure
measurement, and electrocardiogram registration by a spe-
cialist physician.

In this study, the numerical version of the Visual Analog
Scale (VAS) was used to estimate the subjects’ pain inten-
sity [20]. On the VAS, a horizontal line 100 mm long is
presented with two extremes of painless (left) and severe
pain (right) on either side of the line. Based on these two
extremes, the person marks his pain status on the line. The
amount of pain is calculated in millimeters. The interpreta-
tion of data obtained from VAS is as follows: the numbers
0-4 mm are painless, 5-44 mm is mild pain, 45-74 mm is
moderate pain, and 75-100 mm indicates severe pain [20].

The Back Performance Scale (BPS) was assessed by a
15-point scale (Borg 6-20 points) (five tests). The tests on
this scale included wearing socks, picking up paper from
the floor, getting out of bed, leaning forward, and lifting a
box. Each test had four answers, from simple (zero points)
to difficult (3 points). In the test of the wearing sock, the
person sits on a high bench so that her feet did not touch the
ground. Then, he was asked to raise his feet to her abdomen
by bending the knee and grasp the toes with both hands.
In the test of picking paper from the ground, a person in a
standing position was asked to remove the paper placed on
the ground before her. In the getting out of the bed test, the
person is asked to lay down and then sit without using her
hands. In the leaning forward test, the person should stand
with straight knees 10 cm apart and is asked to bring the
hands as close to the ground as possible without bending
the knees. In the box lifting test, the person should stand
before the table with a height of approximately 76 cm and
place a box weighing 5 kg on the floor and back on the table
for 1 minute. Then, the number of repetitions was recorded.
The maximum score was 15 and represented the person’s
worst lumbar function, and the minimum score was zero,
which represents the best lumbar function.

The exercise activity protocol was also implemented for
10 weeks and included eight types of core ground muscle
exercises focusing on isotonic and isometric strengthening
of the lumbar and multifidus muscle [18] (Figure 1).

The core muscle exercises were as follows: A, Boat or
contraction of the back muscles, without leaning on a chair,
B: Deep breathing with chest muscle stretching and con-
traction of the back muscles without leaning on a chair, C:
Isometric contraction in the muscles that open the waist,
D: corrected crunches and sit-ups E: Bridge movement, F:
lumber extension when lying on the stomach, G: Shoulder
flexion and static strengthening of the muscles that stabilize
the spine, H: Thigh flexion. In all exercises, remind the sub-
ject not to hold her breath and talk to the subjects constantly.

In this study, blood samples were collected 48 hours be-
fore the training session and 48 hours after it. The Sampling
was performed between 6 and 7 AM after 8 to 10 hours of
fasting. About 5 mL of blood were taken from the vein of
the subject’s left hand in a sitting position and at rest.

To determine the amount of follistatin and myostatin, we
used the ELISA method and laboratory kit of follistatin and
myostatin (CUSABIO Japan).

The collected data were analyzed by SPSS version 21.
After ensuring the normality of the data distribution using
the Shapiro-Wilk test and homogeneity of variances by
Levene’s test, the correlated t test and Analysis of Covari-
ance (ANCOVA) were used to compare intragroup and in-
tergroup changes, respectively. The significance level was
considered less than 0.05.

3. Results

The characteristics of the experimental and control groups
are shown in Table 1. Table 2 shows that the changes of
intragroup variables of weight (P=0.1), body mass index
(P=0.9), body fat percentage (P=0.5), skeletal muscle mass
(P=0.8) did not change significantly at the end of the training
period. The relative pain scale (P=0.001) was significantly
reduced. Follistatin (P=0.001) and myostatin (P=0.001)
levels increased and decreased significantly at the end of the
training period, respectively. But in the control group,
these changes were not significant (P>0.05). There was a
significant difference between the experimental and control
groups in the intergroup mean variables regarding relative pain scale, serum follistatin, and myostatin (P<0.05).

The changes in the intragroup means in the tests of rising from the bed (P=0.03), bringing the fingers to the ground (P=0.03), lifting the box (P=0.04), and the total score of lumbar function scales of women with chronic LBP decreased significantly at the end of the study period (P=0.02) (Table 3). Changes in mean intergroup variables in the tests of wearing socks, getting out of bed, bringing fingers to the ground, lifting the box, and total score of lumbar function scales are significantly different between the experimental and control group (P<0.05).

4. Discussion

This study aimed to evaluate the effect of 10 weeks of core muscle training on the levels of follistatin, serum myostatin, and pain in women with chronic LBP. The present study results showed that core muscle training led to a significant increase in follistatin levels and a significant decrease in serum myostatin. Hoffman et al. also reported that three to six months of resistance training and elastic band training with dietary supplementation improved exercise performance and increased follistatin, decreased the ratio of follistatin to activin A, and did not significantly alter myostatin levels [21]. In the study of follistatin changes, the muscle’s anabolic response is consistent with previous studies [22, 23]. In other words, due to anabolic resistance and disruption of muscle anabolic signaling pathways, the muscles of the elderly do not respond like the muscles of young people to protein supplements and require more time and protein consumption [22]. More than 80% of protein synthesis after food intake is related to protein consumption and amino acids play an essential role in this process [24]. Follistatin is a positive regulator of muscle growth factor, and various studies have been performed to evaluate changes in this hormone in response to exercise.

After exercise, the levels of activin-follistatin gene expression in rat liver change, and activin mRNA levels decrease [25]. In general, few studies have examined...
muscle hypertrophy markers in response to core stability exercises in older women with LBP. The cellular and molecular mechanisms that transmit cellular signals, followed by muscle growth, are not yet fully disclosed. Exercise-induced muscle contraction is the process of converting a mechanical signal into a series of molecular events. These molecules regulate gene expression, protein synthesis, and protein breakdown by activating specific signaling pathways that include primary and secondary messengers, followed by muscle cell adaptation [26]. Primary messengers who initiate cascading processes include calcium current, redox potential, stretching, phosphorylation potential, and mechanical tensions. Muscle tension alone and independent of the increase in contractile activity can also stimulate protein synthesis through several pathways. Extracellular matrix stretching activates intracellular signals, leading to changes in gene expression and protein synthesis [27]. According to the results of the present study and previous studies, core stability training by balancing the positive and negative regulators of muscle growth can play a role in improving the physical condition of the elderly. By the decline of muscle growth regulators in old age, the inhibitory role

Table 1. Anthropometric characteristics of women with chronic low back pain

Groups	Variables (Mean±SD)	Age (y)	Height (cm)	Weight (kg)	Body Mass Index (kg/m²)	Percentage of Body Fat (%)
Experimental (9 women)		68.8±2.22	161.46±3.64	66.4±4.53	25.6±4.8	33.8±8.7
Control (9 women)		69.54±3.85	161.21±2.63	66.59±2.32	25.68±3.52	33.59±5.6

Table 2. Variation of body composition, relative pain scale, and follistatin and myostatin levels in elderly women

Variables	Groups	Mean±SD	Changes	Between Groups					
		Pre-test	Post-test	Within the Group	Between Groups				
		t	P	t	P	t	P	t	P
Weight (kg)	Experimental	66.4±4.53	66.68±4.92	1.00	0.1	0.17	0.86		
	Control	66.59±2.32	66.61±1.87	1.77	0.11	-1.3	0.2		
Body mass index (kg/m²)	Experimental	25.6±4.8	26.1±3.9	0.114	0.9				
	Control	25.68±3.52	25.59±2.34	0.466	0.65				
Percentage of body fat (%)	Experimental	33.8±8.7	33.06±8.4	0.6	0.5				
	Control	33.59±5.6	33.63±5.7	-0.68	0.51				
Skeletal muscle mass (%)	Experimental	28.36±3.9	29.2±1.98	0.1	0.8	1.15	0.26		
	Control	28.23±2.3	28.12±2.32	-0.13	0.89				
Relative scale of pain (Score)	Experimental	6.5±1.378	2.92±1.98	-4.9	0.001	-3.7	0.002		
	Control	6.39±1.11	6.57±1.00	-0.14	0.89				
Follistatin (ng/mL)	Experimental	27.8±3.6	63.8±6.4	14.2	0.001	10.32	0.001		
	Control	28.1±5.2	30.5±7.23	0.85	0.41				
Myostatin (ng/mL)	Experimental	4.04±0.15	3.53±0.29	5.30	0.001	4.69	0.001		
	Control	4.06±0.18	4.15±0.32	-1.05	0.32				

*Statistical significance at the level of P<0.05.
of negative regulators, including myostatin, is more prominent [19]. Of course, it is also worth considering that older people have mobility limitations due to the problems created in the physiological and physical condition; therefore, applying the exercise load and maintaining the training duration face limitations that the use of this type of exercise can help these people more. Therefore, this type of training intervention helps rehabilitation and sports programs for the elderly [17].

The present study results showed that core stability exercises lead to a significant reduction in the degree of pain and improved lumbar function in older women with chronic LBP. In the study of chronic LBP changes in older women, the multifidus muscle plays a stabilizing role in the spine and prevents the spine from bending. As we know, multifidus muscle atrophy is associated with low back pain [28]. The multifidus muscle is in a confined anatomical position. It is surrounded on both sides by transverse and shock-absorbing processes, and its volume and hypertrophy can increase only from transverse and superficial directions. This is the reason for the triangular shape of this muscle [29]. The cross-sectional area of the multifidus muscle decreases with age, and if this muscle atrophy is compensated, chronic low back pain in older women can be reduced.

In studying the cause of chronic LBP, several etiologies have been stated, including atrophy, loss of strength, and mass of multifidus muscle due to aging [28, 30]. Thus, the weakness of abdominal muscles, deep trunk muscles, and lack of proper control of deep trunk muscles such as multifidus muscle are among the main etiologies [31]. Numerous studies have reported a reduction in LBP in response to exercise [32, 33]. However, the mechanism of this reduction is not well understood. Three theories are proposed to explain the mechanism of pain relief: 1) mechanical theory (increase of core strength and stability), 2) neurological theory (desensitization), and 3) acting theory (classified activity) [34]. In all these theories, exercise is a physical or behavioral tool that reduces the severity of pain and disability due to low back pain [34]. In mechanical theory, core stability exercise was performed for 10 weeks, and only after five weeks, the pain decreases significantly. Also, from the perspective of physiological adaptation to sports activity, neuronal adaptation, which is the first response of the neuromuscular system to sports activity [35], can be responsible for increasing strength and subsequently reducing chronic LBP in older women [22, 36]. Contradictory results are likely to be due to differences in the participants’ physiological conditions, health, duration, type and intensity of exercise, and nutritional status. Since this study had

Table 3. Comparison of intragroup and intergroup variance changes in lumbar function subscales of women with chronic low back pain

Variables	Groups	Mean±SD Pre-test	Mean±SD Post-test	Changes Within the Group	Between Groups				
					t	P	t	P	
Test of wearing socks	Experimental	1.5±1.04	1.1±0.83	-2.29	0.05	-1.00	0.01†		
	Control	1.55±0.94	1.75±0.9667	-0.35	0.72	1.64	0.12		
Test for removing paper from the ground	Experimental	1.5±0.8	1.00±0.62	-1.15	0.16	-2.54	0.02†		
	Control	1.45±0.6	1.5±0.51	-1.5	0.16				
Get out of bed test	Experimental	2.17±0.98	1.17±1.1	-4.27	0.03†				
	Control	2.0±0.725	1.95±0.82	0.8	0.44				
Test to bring the fingers to the ground	Experimental	1.33±1.3	0.81±0.67	-4.2	0.03†	-2.13	0.04†		
	Control	1.3±1.031	1.05±0.51	1.315	0.22				
Box lifting test	Experimental	2.33±0.51	1.5±0.54	4.00	0.04†	-2.35	0.03†		
	Control	2.3±0.47	2.25±0.78	0.00	1.00				
Total score (percentage)	Experimental	58.5±15.9	33.3±13.3	4.64	0.02†	-3.19	0.01†		
	Control	53.3±10.0	50.3±8.8	0.61	0.55				

†Statistically significance at the level of P<0.05.
many limitations, including various diets, different adaptive responses to physical activity, a small number of subjects due to the withdrawal of some of them from participating in the present study, and individual differences, caution should be observed in interpreting the results.

5. Conclusion

In general, core muscle exercises led to a significant reduction in the relative intensity of pain. Follistatin and myostatin levels increased and decreased significantly at the end of the training period, respectively. The low back function also improved in older women with chronic LBP at the end of the training. However, due to the importance of physical activity in preventing and treating many pains, experts recommend exercise counseling to treat chronic back pain. Besides, exercise increases the strength and social participation of older women. Therefore, these interventions are a good treatment for chronic LBP, which is very common, especially among the elderly.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Bojnourd University of Medical Sciences (Code: IR.IAU. BOJNOURD.REC.1395.023).

Funding

The article was extracted from the MA. thesis of the first author at the Department of Sports Physiology, Faculty of Sports Sciences, Islamic Azad University of Bojnourd.

Authors’ contributions

Implementation of the protocol: Fatemeh Taheri and Mehrdad Fathi; Final approval: All Authors; Conceptualization: Mehrdad Fathi; Data analysis, Writing – original draft, and writing – review & editing: Keyvan Hejazi.

Conflicts of interest

The authors declared no conflict of interest.
مقاله پژوهشی

تأثیر ده هفته تمرینات عضلات مرکزی بر سطوح فولیستاتین، مایوستاتین و میزان درد زنان سالمند

نام: دکتر مهرداد فتحی

گروه: گروه فیزیولوژی ورزشی، دانشگاه فردوسی مشهد، دانشکده علوم ورزشی

نشانی: 98/51/38833910

مکان عبادت: گروه سبزروی دانشگاه فردوسی مشهد

تاریخ دریافت: 1399/09/09

مقدمه

تغییرات توده عضله اسکلتی یکی از مشکلات اجتناب ناپذیر سالمندی محسوب می شود و همراه با کاهش پیشرونده عضلات اسکلتی است، به طوری که این کاهش با افزایش سن و آسیب سایر عوامل مربوط به بافت عضله، که از جمله تغییرات ساختاری و همچنین ضعف عضلات، وابسته به سن است. این تغییرات موجب شده که با افزایش سن عضلات بخش مرکزی بدن به خصوص عضله چند سر دچار ضعف و آتروفی شده و به همراه کم شدن میزان تنش عضلانی و کاهش اثر عضلانی ناشی از متوسط تنش عضله اسکلتی مشکلات اجتناب ناپذیر سالمندی محسوب می شود و همراه با کاهش پیشرونده عضلات اسکلتی است، به طوری که این کاهش با افزایش سن و آسیب سایر عوامل مربوط به بافت عضله، که از جمله تغییرات ساختاری و همچنین ضعف عضلات، وابسته به سن است. این تغییرات موجب شده که با افزایش سن عضلات بخش مرکزی بدن به خصوص عضله چند سر دچار ضعف و آتروفی شده و به همراه کم شدن میزان تنش عضلانی و کاهش اثر عضلانی ناشی از متوسط تنش عضلانی و کاهش اثر عضLean...
بنابراین می‌توان گفت کاهش توده عضلانی یک عامل غیر مستقیم، اما بسیار تأثیرگذار در ایجاد دردهای عضلانی و حساسیت اندام ساماندهی. به ویژه و در افراد مسن که کاهش عملکرد کمری است، کاهش توده عضلانی با کاهش عملکرد عضلانی و جسمانی افراد سالمند توأم بوده، به این که کاهش بیو‌کیفیت زندگی از زبان سالمند کافی سازی می‌شود.

مایوستاتین نوعی فاکتور ترشحی و عضو خانواده مایوستاتین است. مایوستاتین نوعی فاکتور ترشحی و عضو خانواده بزرگ ترکیبی فاکتورهای رشد است. مایوستاتین در سطح سلول‌های عضلانی با اتصال به گیرنده اکتیویتین تأثیر مهاری خود (مهار تکثیر و تمایز سلول‌های ماهواره‌ای) و در نهایت کاهش توده عضلانی را اعمال می‌کند. مشاهده شده است که بیان مایوستاتین هنگام دوره‌های بی تحرکی افزایش می‌یابد. همچنین مهار مایوستاتین سرمی به افزایش قدرت و توده عضلانی می‌انجامد.

یکی دیگر از عوامل مرتبط با توده عضلانی که می‌توان به آن اشاره کرد فولیستاتین است. فولیستاتین یک پلی پپتید یکپارچه است و از خانواده ی بزرگ فاکتور رشد بتا، بزرگترین خانواده ترشح کننده فاکتورهای رشد، تمایز و هموستازی بدن است. این خانواده نقش‌های بسیار مهمی را در تنظیم و پیشرفت رشد بافت‌های بدن ایفا می‌کند. از نقش‌های مهم فولیستاتین می‌توان به خنثی سازی اعمال پروتئین‌های خانواده انتقال دهنده فاکتور رشد بتا، از جمله مایوستاتین، رشد و تمایز بافت‌های آسیب‌پذیر و ترمیم بافت‌های آسیب‌پذیر اشاره کرد.

با توجه به نقش مهمی که فولیستاتین و مایوستاتین در عضلات اسکلتی ایفا می‌کنند، تحقیقات اخیر نشان داده‌اند که تمرینات مختلف ورزشی می‌توانند تأثیرات مثبتی بر فاکتورهای فولیستاتین و مایوستاتین سرمی و همچنین میزان درد زنان مبتلا به کمر درد مزمن داشته باشند.

این تحقیق از نوع نیمه تجربی است با دو گروه آزمایش و کنترل با طرح پیش آزمون و پس آزمون مورد مقایسه قرار گرفتند. جامعه آماری این پژوهش شامل زنان بالای ۶۰ سال و زنان مبتلا به کمر درد مزمن بود.

مواد و روش‌ها

این تحقیق از نوع نیمه تجربی است با دو گروه آزمایش و کنترل با طرح پیش آزمون و پس آزمون مورد مقایسه قرار گرفتند. جامعه آماری این پژوهش شامل زنان بالای ۶۰ سال و زنان مبتلا به کمر درد مزمن بود.

۲ Pantoma

۱ Santos
از روی زمین، بعد شدن از روی زمین، خن شدن به جلو و پدید کردن جایی بود. تست دارای هزار چندان جواب از سه (شامل صفر) به مشکل (شامل صفر) بود.

در تست جرخاپویشی، فرد روی لیست قبلاً به برنده تبرکی که پایه به زمین نسبت تست و از روی خودش به کپی شد کپی با خبر کردن زانو به سمت شکم باز استفاده به دست افتادن پا را ایجاد می‌کرد.

در تست برطاقانی کافی از روی زمین، فرد در حال استفاده تعادل به برنده کافی و به همراه روی زمین نشسته شد که بعد و قطعه به هدف مدل تست به دست افتاده کپی را به برنده نسبت تست و خود خودش به دست افتاده کپی را با را ایجاد می‌کرد.

در تست مسیری کافی از روی زمین، فرد در حال استفاده تعادل به برنده کافی و به همراه روی زمین نشسته شد که بعد و قطعه به هدف مدل تست به دست افتاده کپی را به برنده نسبت تست و خود خودش به دست افتاده کپی را با را ایجاد می‌کرد.

در مطالعه، فرد به میدان تمرینی و خود را انداخته به مرحله اولیه در آزمودنی ها یافته و گزارش شد. شماره

173

2

علی‌اصفهانی و همکاران. تأثیر ده‌هفته تمرینات عضلات مرکزی بر سطوح فولیستاتین، مایوستاتین و میزان درد زنان سالمند

3. Seca
estrovan@ebook.tums.ac.ir

شماره ۲۷ دوره ۲۷ شماره ۲۰۰۰ بهار

یافته‌ها

جدول مشخصات آزمودنی های گروه آزمایش و کنترل نشان می‌دهد. نتایج

۱. تغییرات میانگین‌های درون گروهی در متغیرهای وزن و درصد چربی بدن با کاهش

۲. در پایان دوره تمرینی تغییر

۳. کاهش پل

۴. انقباض ایزومتریک

۵. دو حال که تغییرات میانگین‌های درون گروهی در متغیرهای وزن و

فاطمه طاهری و همکاران. تأثیر ده هفته تمرینات عضلات مرکزی بر سطوح فولیستاتین، مایوستاتین و میزان درد زنان سالمند
فاطمه طاهری و همکاران. تأثیر ده هفته تمرینات عضلات مرکزی بر سطوح فولیستاتین، مایوستاتین و میزان درد زنان مبتلا به کمر درد مزمن

جدول ۱. معیارهای آنتروپومتری زنان مبتلا به کمر درد مزمن

متغیرها	گروه آزمایش	گروه کنترل
سن (سال)	۲۵/۲/۹۲/۷۸	۲۵/۲/۹۲/۷۸
قد (سانتی‌متر)	۱۶۱/۵۹/۶۴	۱۶۱/۵۹/۶۴
وزن (کیلوگرم)	۶۶/۴۶/۴۳	۶۶/۴۶/۴۳
نمایه توده بدن (کیلوگرم/مترمربع)	۲۵/۶۸/۸۶	۲۵/۶۸/۸۶
درصد چربی بدن (درصد)	۳۳/۵۱/۳۵	۳۳/۵۱/۳۵

جدول ۲. تغییرات میانگین در متغیرهای آزمایش و کنترل

متغیرها	گروه آزمایش	گروه کنترل
تغییرات پیش آزمون پس آزمون (پیش - پس)	۹۹/۶۸/۴۱/۲۲	۹۹/۶۸/۴۱/۲۲
درصد توده بدن (کیلوگرم/مترمربع)	۲۵/۶۸/۸۶	۲۵/۶۸/۸۶
درصد چربی بدن (درصد)	۳۳/۵۱/۳۵	۳۳/۵۱/۳۵
مقیاس نسبی درد (امتیاز)	۶/۵۷/۵۲	۶/۵۷/۵۲
فولیستاتین (نانوگرم/میلی لیتر)	۲۷/۸۵/۶۴	۲۷/۸۵/۶۴
مایوستاتین (نانوگرم/میلی لیتر)	۴/۰۵/۵۳	۴/۰۵/۵۳
بحث
هدف از مطالعه حاضر بررسی تأثیر ده هفته تمرینات عضلات مرکزی بر سطوح فولیستاتین، مایوستاتین سرمی و میزان درد زنان مبتلا به کمر درد مزمن است.

نتایج تحقیق حاضر نشان داد که تمرینات عضلات مرکزی منجر به افزایش معناداری سطوح فولیستاتین و کاهش معنادار مایوستاتین سرمی شد. در این زمینه، هافمن و همکاران گزارش کردند که سه تا شش ماه تمرینات استیکتی و تمرینات باندی با مصرف مکمل غذایی منجر به بهبود عملکرد در تمرینات و افزایش فولیستاتین، کاهش و عدم تغییر معنادار در سطوح Aنسبت فولیستاتین به اکتیوین.

به عبارت دیگر، ۲۱-۲۲، ۲۳ هم خوان با مطالعات پیشین است به علت مقاومت آنابولیک و اختلال در مسیرهای سیگنالینگ آنабولیک عضله به علت پاسخ آنابولیک عضله آنتی‌ژنیک و افزایش پروتئین درصدا در زنان مسن مبتلا به کمر درد پرداخته است. مکانیسم‌های سلولی و مولکولی که باعث انتقال سیگنال‌های سلولی و به دنبال آن رشد فولیستاتین در عضله، در بررسی تغییرات فولیستاتین پاسخ آنابولیک عضله بیشتر پروتئین دارد. درصد سنتز پروتئین پس از دریافت غذا بیش از ۸۰٪ بوده و در این بین اسیدهای آمینه نقش مهمی هستند.

فولیستاتین فاکتور تنظیم‌گر مثبت رشد عضلانی است و در بررسی تغییرات این هورمون در پاسخ به فعالیت ورزشی مطالعات مختلفی انجام شده است. پس از فعالیت ورزشی ها تغییرات واریانس درون گروهی و بین گروهی در خرده مقیاس های عملکرد کمری زنان مبتلا به کمر درد مزمن به طور کلی مطالعات کمی به بررسی مارکرهای هایپرتروفی عضلانی در پاسخ به تمرینات ثبات مرکزی در زنان مسن مبتلا به کمر درد پرداخته است. هنوز به طور دقیق شناخته نشده است.

انقباض عضلانی ناشی از فعالیت ورزشی، قابلیت تبدیل سیگنال مکانیکی به پی سلولی و قابلیت مولکولی است که از طریق هنوز به طور دقیق شناخته نشده است.

جدول ۳: مقایسه تغییرات شیخش درون گروهی و بین گروهی در خرده مقیاس های عملکرد کمری زنان مبتلا به کمر درد مزمن

تکنیکی	متغیرها	گروه ها	تغییرات پیش آزمون	پس آزمون	درون گروه	بین گروه
آزمون پوشیدن	آزمایش	-1/2/20	۱/۳/۲۰	t	P	
جوراب	کنترل	-1/2/20	۱/۳/۲۰			
آزمون برخاستن	آزمایش	-0/2/20	۱/۳/۲۰			
کاغذ از زمین	کنترل	-0/2/20	۱/۳/۲۰			
آزمون بلند کردن	آزمایش	-0/2/20	۱/۳/۲۰			
جعبه	کنترل	-0/2/20	۱/۳/۲۰			

(۱) انقباض عضلانی ناشی از فعالیت ورزشی، فرایند تبدیل سیگنال مکانیکی به پی سلولی و قابلیت مولکولی است که از طریق هنوز به طور دقیق شناخته نشده است.

(۲) هنوز به طور دقیق شناخته نشده است.

(۳) هنوز به طور دقیق شناخته نشده است.

(۴) هنوز به طور دقیق شناخته نشده است.

(۵) هنوز به طور دقیق شناخته نشده است.
فعال سازی مسیرهای سیگنالی ویژه که شامل پیامبرهای اولیه و ثانویه است، موجب تنظیم بیان ژن، سنتز و تجزیه پروتئین و به دنبال آن سازگاری در سلول عضلانی می‌شود.

پیامبرهای اولیه که آغازگر فرایندهای اقیانوسی هستند، می‌توانند تغییراتی را در ساختاری که شامل پیامبرهای اولیه و ثانویه است، موجب تنظیم بیان ژن، سنتز و تجزیه پروتئین و به دنبال آن سازگاری در سلول عضلانی می‌شود.

کشش ماتریکس خارج سلولی سیگنال‌های داخل سلولی را فعال می‌کند که درنهایت منجر به تغییر در بیان ژن و سنتز پروتئین می‌شود.

در واقع، با توجه به نتایج پژوهش حاضر و مطالعات گذشته، ممکن است بتوان گفت تمرینات ثبات مرکزی با برقراری تعادل بین تنظیم‌کننده‌های منفی و مثبت رشد عضلانی می‌تواند در بهبود وضعیت جسمانی سالمندان نقشی ایفا کند، هر چند با توجه به افول تنظیم‌کننده‌های رشد عضلانی در سالمندی، تنظیم‌کننده‌های منفی که میوستاتین نیز از آن دسته است، برجسته‌تر است.

به‌طوری‌که افراد سالخورده به علت مشکلات ایجادشده در وضعیت فیزیولوژیک و جسمانی دارای محدودیت‌های حرکتی خاصی هستند. به همین منظور اعمال بار تمرین و حفظ رعایت مدت تمرین با محدودیت‌های فیزیولوژیکی و کشش‌های بدنی محتوایی‌های فیزیکی و ورزشی می‌تواند به تمرین‌های فیزیکی و ورزشی ساکت‌کردن احساس مشکوک از بهبود قدرت و ثبات عضلانی کمک بکند.

نتیجه‌گیری‌ها

به طور کلی می‌توان گفت که تمرین‌های مربوط به تقویت عضله، بهبود قدرت و ثبات عضلانی و بهبود عملکرد کمر در زنان سالمند واقعیت‌ها است.

حذف مدل فیت استری و ورزش‌های سالمند مفید است.
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش
این تحقیق در کمیته اخلاق دانشگاه علوم پزشکی بجنورد با شماره مجوز IR.IAU.BOJOURD.REC.1395.023 تأیید و رسیده است.

حامی مالی
این مقاله از پایان‌نامه کارشناسی ارشد توسط لول، م رگوه، فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه آزاد اسلامی، واحد بجنورد گرفته شده و با هزینه شخصی انجام شده است.
References

[1] Lynch GS. Sarcopenia-age-related muscle wasting and weakness: Mechanisms and treatments. Berlin: Springer Science & Business Media; 2010. [DOI:10.1007/978-90-481-9713-2]

[2] Deschenes MR. Effects of aging on muscle fibre type and size. Sports Medicine (Auckland, NZ). 2004; 34(12):809-24. [DOI:10.2165/00007256-200434120-00002]

[3] Bales CW, Ritchie CS. Redefining nutritional frailty: Interventions for weight loss due to undernutrition. In: Bales CW, Ritchie CS, editors. Handbook of clinical nutrition and aging. New Jersey: Humana Press; 2009. [DOI:10.1007/978-1-60327-385-5_9]

[4] Sreeja V, Jana A, Aparnathi K, Prajapati J. Role of whey proteins in combating geriatric disorders. Journal of the Science of Food and Agriculture. 2013; 93(15):3662-9. [DOI:10.1002/jsfa.6345]

[5] Nedergaard A, Henrikksen K, Karsdal MA, Christiansen C. Musculoskeletal-ageing and primary prevention. Best Practice & Research Clinical Obstetrics & Gynaecology. 2013; 27(5):673-88. [DOI:10.1016/j.bpobgyn.2013.06.001] [PMID]

[6] Brown LA, Guzman SD, Brooks SV. Emerging Molecular Mediators and Targets for Age-related Skeletal Muscle Atrophy: Molecular targets involved in sarcopenia. Translational Research. 2020; 221:44-57. [DOI:10.1016/j.trsl.2020.03.001] [PMID]

[7] Ikezoe T, Mori N, Nakamura M, Ichihashi N. Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles. European Journal of Applied Physiology. 2012; 112(1):43-8. [DOI:10.1007/s00421-011-1952-x] [PMID]

[8] Angeletti C, Guetti C, Ursini ML, Taylor Jr R, Papola R, Petrucci E, et al. Low back pain in a natural disaster. Pain Practice. 2014; 14(2):E8-16. [DOI:10.1111/pbp.12087] [PMID]

[9] Ikezoe T, Mori N, Nakamura M, Ichihashi N. Atrophy of the lower limbs in elderly women: Is it related to walking ability? European Journal of Applied Physiology. 2011; 111(6):899-95. [DOI:10.1007/s00421-010-1728-8] [PMID]

[10] Beas-Jiménez JdD, López-Lluch G, Sánchez-Martínez I, Muro-Jiménez A, Rodríguez-Bies E, Navas P. Sarcopenia: Implications of physical exercise in its pathophysiology, prevention and treatment. Revista Andaluza de Medicina del Deporte. 2011; 4(4):158-66. https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-sarcopenia-implicaciones-fisico-exercicio-em-X188754611937888

[11] McFarland DC, Vellman SG, Pesall JE, Liu C. Effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2006; 144(4):S01-A. [DOI:10.1016/j.cbpa.2006.04.020] [PMID]

[12] Eilers W, Chambers D, Cleaboy M, Foster K. Local myostatin inhibition improves skeletal muscle glucose uptake in insulin resistant high fat diet fed mice. American Journal of Physiology-Endocrinology and Metabolism. 2020; 319(1):E163-74. [DOI:10.1152/ajpendo.00118.2019] [PMID]

[13] Attarzadeh Hosseini SR, Motahari Rad M, Hejazi K. Effects of Ramadan fasting and regular physical activity on serum myostatin and follistatin concentrations. International Journal of Applied Exercise Physiology. 2016; 5(3):38-45. https://www.academia.edu/31162506/Effects_of_Ramadan_fasting_and_Regular_Physical_Activity_on_Serum_Myostatin_and_Follistatin_Concentrations

[14] Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine and Science in Sports and Exercise. 2010; 42(11):2023-9. [DOI:10.1249/MSS.0b013e3181e0b9a8] [PMID] [PMCID]

[15] Santos AR, Lamas L, Ugrinowitch C, Tricoli V, Miyabara EH, Soares AG, et al. Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression. International Journal of Sports Medicine. 2015; 36(9):761-8. [DOI:10.1055/s-0035-1547219] [PMID]

[16] Yahyadmeh V, Hadadnehad M, Shojaodin S. [The effect of Eight weeks core stabilization on functional disability, dynamic balance and proprioception lombo-pelvic of subject with non-specific chronic low back pain (Persian)]. Journal of Anesthesiology and Pain. 2017; 8(3):54-66. http://japims.iums.ac.ir/article-1-5347-4a.html

[17] Puntmetakul R, Chalermratanakul R, Haing SS, Tapanya W, Saiklang P, Boucraut R. The effect of core stabilization exercise on lumbar joint position sense in patients with subacute non-specific low back pain: A randomized controlled trial. Journal of Physical Therapy Science. 2018; 30(11):1390-5. [DOI:10.1589/jpts.30.1390] [PMID] [PMCID]

[18] Rastegar MM M, Haghighi A, Askarri R. [Effect of core stabilization exercise on the reduction of low back pain and ultrasonic changes of multifidus in aged-women with chronic low back pain (Persian)]. Anesthesiology and Pain. 2016; 7(2):62-74. https://japims.iums.ac.ir/article-1-5244-en.html

[19] Vatankhah-khozani S, Haghshenas R, Faramarzi M. [The effect of 8 weeks of elastic band resistance training on serum myostatin and body composition in elderly women (Persian)]. Journal of Sport Biosciences. 2019; 10(3):347-52. [DOI:10.22059/jsb.2019.261967.1296]

[20] Hawker GA, Mian S, Kenderdinska T, French M. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short-form mcgill pain questionnaire (sf-mpq), chronic pain grade scale (cpgs), short-form 36 bodily pain scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (iacop). Arthritis Care & Research. 2011; 63(11):S240-S252. [DOI:10.1002acr.20543] [PMID]

[21] Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, Bachl N, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). European Journal of Applied Physiology. 2016; 116(5):885-97. [DOI:10.1007/s00421-016-3344-8] [PMID] [PMCID]

[22] Greig CA. Nutritional approaches to the management of sarcopenia. Nutrition Bulletin. 2013; 38(3):344-8. [DOI:10.1111/nbu.12046]

[23] Robinson S, Cooper C, Ahie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. Journal of Aging Research. 2012; 2012:510801. [DOI:11.2741/2012/510801] [PMID] [PMCID]

[24] Kim JS, Wilson JM, Lee SR. Dietary implications on mechanisms of sarcopenia: Roles of protein, amino acids and antioxidants. The Journal of Nutritional Biochemistry. 2010; 21(1):1-13. [DOI:10.1016/j.jnutbio.2009.05.001] [PMID]

[25] Gholamnezhad Z, Mégarbane B, Rezaee R. Molecular mechanisms mediating adaptation to exercise. In: Xiao J, editors. Physical exercise for human health. Advances in Experimental Medicine and Biology (vol 116(5)):885-97. [DOI:10.1007/s00421-016-3344-8] [PMID] [PMCID]

[26] Burkehl TJ. Mechanotransduction in skeletal muscle. Frontiers in Bioscience: A Journal and Virtual Library. 2007; 12:1747-91. [DOI:10.2741/2057] [PMID] [PMCID]

[27] Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism. 2013; 17(2):162-84. [DOI:10.1016/j.cmet.2012.12.012] [PMID] [PMCID]
[28] Freeman MD, Woodham MA, Woodham AW. The role of the lumbar multifidus in chronic low back pain: A review. PM & R. 2010; 2(2):142-6. [DOI:10.1016/j.pmrj.2009.11.006] [PMID]

[29] Stokes M, Rankin G, Newham DJ. Ultrasound imaging of lumbar multifidus muscle: Normal reference ranges for measurements and practical guidance on the technique. Manual Therapy. 2005; 10(2):116-26. [DOI:10.1016/j.math.2004.08.013] [PMID]

[30] Cheung WK, Cheung JPY, Lee WN. Role of ultrasound in low back pain: A review. Ultrasound in Medicine & Biology. 2020; 46(6):1344-58. [DOI:10.1016/j.ultrasmedbio.2020.02.004] [PMID]

[31] Chang WD, Lin HY, Lai PT. Core strength training for patients with chronic low back pain. Journal of Physical Therapy Science. 2015; 27(3):619-22. [DOI:10.1589/jpts.27.619] [PMID] [PMCID]

[32] Owen PJ, Miller CT, Rantalainen T, Simson KJ, Connell D, Hahne AJ, et al. Exercise for the intervertebral disc: A 6-month randomised controlled trial in chronic low back pain. European Spine Journal. 2020; 29:1887-99. [DOI:10.1007/s00586-020-06379-7] [PMID]

[33] Sipaviciene S, Kliziene I. Effect of different exercise programs on non-specific chronic low back pain and disability in people who perform sedentary work. Clinical Biomechanics. 2020; 73(1):17-27. [DOI:10.1016/j.clinbiomech.2019.12.028] [PMID]

[34] Helmhout PH, Staal JB, Maher CG, Petersen T, Rainville J, Shaw WS. Exercise therapy and low back pain: Insights and proposals to improve the design, conduct, and reporting of clinical trials. Spine. 2008; 33(16):1782-8. [DOI:10.1097/BRS.0b013e31817b8666] [PMID]

[35] Kravitz L. Resistance training: Adaptations and health implications. Idea Today. 1996; 14:38-49. http://www.unm.edu/~lkravitz/Article%20folder/resistben.html

[36] Kukuljan S, Nowson CA, Sanders K, Daly RM. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: An 18-mo randomized controlled trial. Journal of Applied Physiology. 2009; 107(6):1864-73. [DOI:10.1152/japplphysiol.00392.2009] [PMID]
This Page Intentionally Left Blank