SYNTHESIS AND APPLICATION OF UV RAY’S PROTECTIVE MONO AZO ACID DYES ON WOOL, SILK AND NYLON

Smita Bait¹, Supriya Pandit², Suvidha Shinde³, Nagaiyan Sekar⁴ and Ravindra Adivarekar⁵

¹,²Colour Department, Wool Research Association, Thane-400607
³⁴Dyes Department, Institute of Chemical Technology, Mumbai - 400 019
⁵Textile Department, Institute of Chemical Technology, Mumbai - 400 019

Abstract- Health hazards due to exposure of skin to solar Ultraviolet radiation are increasing very rapidly due to environmental degradation or ozone layer depletion. It may be greatly reduced by minimizing the time exposure to UV rays. UV protection by fabrics has recently become the focus of great interest. A key element in achieving the goal of reduced UVR exposure is making proper UV protective goods with good UPF protection > 40. Keeping this in mind, the current research aimed at new area of research on synthesis of UVR protective functional dyes containing benzophenone based UV absorbers and its application on wool, silk and nylon fabrics. All the wool, silk and nylon fabrics dyed with synthesised dyes shows less than 5% UVA and UVB transmission indicating good protection against UV radiation, Dyed fabric also exhibits good to excellent washing, rubbing and light fastness properties.

Keywords- Mono azo acid dyes, 4-hydroxy benzophenone, 2, 4-dihydroxy benzophenone, 2 hydroxy-4-methoxy benzophenone, light fastness, UPF factor, UVA UVB blocking.

I. INTRODUCTION

Technical textiles are the fastest growing sector of the textile industry [1] Technical textiles account for over 40% of the total textile production in many developed countries. The current volume of the market worldwide for technical textiles is more than $60 billion [2,3]. Medical textiles plays very important role in application areas of technical textiles. The demand for medical textiles products is enormous both in developed and developing countries [4]. Protection against ultraviolet (UV) radiation is one of the most important need for skin diseases[5,6,7,8].

In the last decade growing awareness is seen concerning protective properties of textiles against UV radiation originating from sunlight [9]. Protection against UV radiation is usually controlled by applying sunscreen which contains a UV absorber composition [10]. The safest protection from UV radiation exposure is obtained by clothing and its protectiveness depends on fabric composition, fabric parameters like GSM and UV absorbing properties [11].

Benzophenone is an excellent UV absorber [12], which prevents the photo degradation of many vinyl polymers [13]. Compounds 4-hydroxy benzophenone, 2, 4-dihydroxy benzophenone and 2-hydroxy-4-methoxy benzophenone bearing hydroxyl and Methoxy (as auxochrome) groups and a keto (chromophore) group. This compound has wide applications as a polymer additive[14]. In the literature few benzophenone based acid, reactive and disperse azo dyes are reported [9,13, 15,16, 17,18,19].

There has been a progressive increase in the incidence of skin cancers, particularly that of cutaneous melanomas over the last few decades [20]. Evidence from various disciplines has implicated ultraviolet radiation (UVR) from the sun as an important factor in causing skin cancer. UV radiation
(UV) is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders [21]. Health risks associated with exposure to solar UVR may be greatly reduced by minimizing the time exposure. UV protection by fabrics has recently become the focus of great interest, particularly in connection with environmental degradation or ozone layer depletion. Clothing is perceived as a good means of sun protection, but not all apparel is sufficiently protective against UV radiation [22]. A key element in achieving the goal of reduced UVR exposure is making proper UV protective goods with good UPF (ultraviolet protection factor) protection > 40. These kinds of textiles are very much encouraged in high altitude countries for protection from skin related disease [23].

Keeping this in mind, the present study is an attempt to synthesis Novel azo acid dyes with built-in UV-absorber and its application on textile fabrics. The synthesized acid dyes are applied on wool, silk, and nylon respectively. The dyed fabrics are evaluated for ultraviolet protection factor (UPF), UV-A and UV-B transmission, photo-stability of the dyes and fastness properties including light fastness.

II. EXPERIMENTAL

A. Materials

4-hydroxy benzophenone, 2,4-dihydroxy benzophenone, 2-hydroxy-4-methoxy benzophenone, Orthanilic acid, Metanilic acid, 3-amino benzoic acid, 4-amino benzoic acid, sodium nitrite, sodium carbonate, Dimethylformamide, Acetone, Methanol conc. HCl were purchased from S. D. Fine Chemicals Ltd, Mumbai, India. Lyogen WSN was procured from Archroma, Thane. All reagents were characterized by melting or boiling point and used without further purification. Solvents were used after distillation at their boiling point and drying according to standard process. Ready for dyeing wool, silk and nylon (100%) substrate, woven wool fabric (weight 173 gm/m2, ends per inch 55 and picks per inch 48), woven silk fabric (weight 51 gm/m2, ends per inch 320 and picks per inch 146) and knitted nylon fabric (190 gm/m2, courses/inch 60 and wales/inch 38) was purchased from Kiran Threads, Surat, India.

All the compounds were purified by recrystallization and confirmed by TLC silica plate. Thin layer chromatography (TLC) was performed using aluminium plates coated with silica gel 60 F254 supplied by Merck. Melting points were recorded on instrument from Sunder Industrial Product, Mumbai.

The UV-Vis spectrum of the synthesized azo dyes was recorded on Perkin Elmer UV-Vis spectrometer Lambda. The L*, a*, b*, C*, h°, K/S, DEcmc, and %STR-WSUM of dyed fabrics were obtained using a X-rite Color i7, color eye reflection spectrophotometer (under D65 standard light source and 10° observer).

B. Synthesis of UV rays protective mono azo acid dyes

General procedure for preparation of Azo Dyes (6a-6d) (7a–7d) and (8a–8d)

To a 100 mL round bottom flask, metaanilic acid/orthanilic acid (1.73 g, 0.01 mol) and Na2CO3 (0.53 gm, 0.005) dissolved in minimum quantity of water were added, then sodium nitrite (0.75g, 0.011 mol) dissolved in minimum amount of water was added to the round bottom flask. The solution was cooled to 0–5°C with an ice bath. Then 2.5 ml hydrochloric acid was cooled to 0–5°C and poured quickly to the round bottom flask. The nitrous acid was checked by using starch-iodide paper. When diazotization was complete, the excess nitrous acid was decomposed with urea. A mixture of, Na2CO3 (1.059g, 0.01) and NaOH (0.4gm, 0.01 mol) was dissolved in 50 mL H2O and stirred till dissolution, then 0.01 mol benzophenone was added in the solution and stirred till it gets completely dissolved. The mixture temperature was cooled to 0–5°C. The above diazonium salt solution of was slowly added drop wise to the coupling component during 0.5h, at the same time, the pH value
was kept between 8.5~9. The reaction mixture was stirred for 2 h, the pH value of the mixture was adjusted to 2~3 by the 10% (wt/wt) aqueous solution of HCl, filtered, and the yellow filter cake was purified by DMF-ether to give dye1-6. Dye 7-12 was also synthesised by the same procedure.

C. The synthetic scheme for the preparation of dyes 6a-e, 7a-e and 8a-e is shown in Scheme 1

![Synthesis scheme of benzophenone based acid dyes](image)

Figure 1: Synthesis scheme of benzophenone based acid dyes (6a-6d) (7a-7d) and (8a-8d)
Table 1. Properties of Synthesised Acid dyes

Dye No.	Dye	Compound Structure	Molecular Formula	Yield (%)	Elemental analysis	M.P. (°C)	Wavelength (in Methanol)	Colour
Dye 1	Orthanilic acid/2,4-diOH Benzophenone (7a)	![Compound Structure](image1)	C$_{19}$H$_{14}$N$_2$O$_6$S	82.15	C, 57.28; H, 3.54; N, 7.03; O, 24.10; S, 8.05	226	290/360nm	![Color](image2)
Dye 2	Orthanilic acid/4-OH Benzophenone (6a)	![Compound Structure](image3)	C$_{19}$H$_{14}$N$_2$O$_5$S	73.17	C, 59.68; H, 3.69; N, 7.33; O, 20.92; S, 8.39	213	295/375 nm	![Color](image4)
Dye 3	Orthanilic acid/2-OH,4-OCH$_3$ Benzophenone (8a)	![Compound Structure](image5)	C$_{20}$H$_{16}$N$_2$O$_6$S	79.54	C, 58.25; H, 3.91; N, 6.79; O, 23.28; S, 7.77	185	325/445 nm	![Color](image6)
Dye 4	Metaniolic acid/2,4-diOH Benzophenone (7b)	![Compound Structure](image7)	C$_{19}$H$_{14}$N$_2$O$_6$S	88.99	C, 57.28; H, 3.54; N, 7.03; O, 24.10; S, 8.05	206	290/405 nm	![Color](image8)
Dye	Structure	Formula	Solubility	C, H, N, O, S (%)	Temp (°C)	Wavelength (nm)		
-----	-----------	---------	------------	----------------	----------	----------------		
5	![Structure 6b](image)	C$_{19}$H$_{14}$N$_2$O$_5$S	77.85	C, 59.68; H, 3.69; N, 7.33; O, 20.92; S, 8.39	225	295/370		
6	![Structure 8b](image)	C$_{20}$H$_{16}$N$_2$O$_6$S	79.36	C, 58.25; H, 3.91; N, 6.79; O, 23.28; S, 7.77	215	335/360		
7	![Structure 7c](image)	C$_{20}$H$_{14}$N$_2$O$_5$	71.61	C, 66.30; H, 3.89; N, 7.73; O, 22.08	135°C-140	290/360		
8	![Structure 6c](image)	C$_{20}$H$_{14}$N$_2$O$_4$	86.95	C, 69.36; H, 4.07; N, 8.09; O, 18.48	100-115	295/360		
C. General Procedure of Dyeing Wool Silk and Nylon

Dyeing of Wool, silk, nylon fabric was carried out in a laboratory dyeing machine (R.B.E. Electronics) with a material to liquor ratio of 1:20 and depth of the shade was 1% and 2% (calculated on weight of the fabric). The dyeing bath was adjusted at pH 4 to 5 by using acetic acid in water and Lyogen WSN is used as levelling agent. Wool, silk and nylon fabrics were dyed using the above dye solution. Dyeing was started at room temperature and temperature was raised to 100 °C, maintained at this temperature for 1 hour, and then cooled to 50 °C. At the end of the dyeing process, dyed samples were rinsed with warm and cold water and then air dried.
III. TESTING

A. Determination of UPF Factor (UPF and UV transmission)

The transmission of ultraviolet radiation (UV-R) through a specimen is measured on a spectrophotometer (Labsphere UPF TesterV-2000F Fabric Analyzer). Percentage UVA and UVB transmission were measured and the UPF is calculated according to AATCC Test Method 183-2010. The ultraviolet protection factor (UPF) is computed as the ratio of the erythemally weighted ultraviolet radiation (UV-R) irradiance at the detector with no specimen to the erythemally weighted UV-R irradiance at the detector with a specimen present. UPF rating, %UV A blocking and %UV B blocking are recorded.

B. UV Light exposure and colour fading measurement

UV light exposure and color fading measurement is study carried out using customized method based on AATCC 186. Samples were exposed for 100 hrs at 60˚C temp. at irradiance of 0.77Watt/m2. Colour difference between unexposed and exposed samples and colour strength after 100hrs of exposure is measured on reflectance spectrophotometer (Color i7, X-rite).

C. Fastness Property

Light fastness of the dyed samples was tested on Xenon arc lamp apparatus by ISO 105- BO2 method. Washing Fastness of dyed samples was tested on Washometer (from SDL Atlas) by the ISO 105- C10- C(3) method. The shade change, together with staining of adjacent fabrics, was rated according to appropriate grey scales. Rubbing fastness of the fabric is tested on MAG rubbing tester by ISO 105 X12:2016(E) method including both dry and wet rubbing. Staining of cotton rubbing cloth is assessed with the grey scale for staining under suitable illuminant.

IV. RESULTS & DISCUSSIONS

A. UV protective properties of undyed and dyed wool, silk and nylon fabric

Sr. No.	Sample Name	% Shade	Wool UPF	T(UV-A)	T(UV-B)	Silk UPF	T(UV-A)	T(UV-B)	Nylon UPF	T(UV-A)	T(UV-B)
1	Undyed		56	5.76	0.96	8	19.04	6.79	45	8.32	1.25
2	Dye 1	1%	382	0.37	0.25	46	3.52	1.78	1391	0.09	0.06
3	Dye 1	2%	540	0.42	0.36	60	2.30	1.57	1651	0.11	0.05
4	Dye 2	1%	299	0.34	0.33	30	3.43	3.40	594	0.16	0.15
5	Dye 2	2%	343	0.32	0.28	34	3.37	2.66	870	0.18	0.08
6	Dye 3	1%	311	0.38	0.31	32	3.85	2.52	1462	0.07	0.07
7	Dye 3	2%	393	0.27	0.26	46	2.54	1.90	1565	0.07	0.06
8	Dye 4	1%	314	0.40	0.36	36	4.31	2.21	1768	0.09	0.05
9	Dye 4	2%	371	0.36	0.26	43	3.24	2.12	1895	0.07	0.05
10	Dye 5	1%	297	0.40	0.32	29	4.09	2.66	1798	0.05	0.05
11	Dye 5	2%	326	0.33	0.31	41	2.70	2.07	1983	0.05	0.05
12	Dye 6	1%	324	0.45	0.28	29	5.63	2.50	1426	0.12	0.07
The ultraviolet protection capability of the undyed and dyed wool is evaluated according to AATCC 183-2010. Ultraviolet protection factor (UPF), UVA transmission and UVB transmission of undyed and dyed wool, silk and nylon fabrics are mentioned in table no. 2. UPF of undyed wool fabric is 56, whereas wool fabric dyed with synthesised dyes with 1% and 2% shade shows UPF above 234 and above 326 respectively. and the and the highest UPF obtained is for dye 10, which is 455 foe 1% shade and 576 for 2% shade, indicating excellent ultraviolet protection. Generally, the UV protective property of the fabrics is evaluated as good when the ultraviolet transmittance is less than 5%. Undyed wool fabric shows 5.76% and 0.90% UVA and UVB transmission respectively. Wool fabric dyed with all the sythesised dyes (benzophenone as coupler) shows UV (A) transmission below 0.45 and UV (B) transmission below 0.37. UPF of undyed silk fabric is 8, silk fabric dyed with 1% and 2% shade shows UPF in the range of 27-46 and 34-62 respectively, indicating very good ultraviolet protection. Out of 12 synthesised dyes 8 dyed shows UPF above 30 indicating excellent protection against UV Rays. Undyed silk shows 19.05 % UV-A Transmission and 6.79% UV-B transmission. Silk fabric dyed with synthesised dyes shows UV (A) transmission in the range of 1.68-5.63% and UV (B) transmission in the range of 1.42-3.40%. UPF of undyed nylon fabric is 45, nylon fabric dyed with 1% and 2% shade shows UPF in the range of 594-1890 and 870-2000 indicating excellent Ultraviolet ray’s protection. Out of 12 synthesised dyes 11 dyed shows UPF above 1000 indicating excellent protection against UV Rays on nylon fabric. Undyed nylon shows 8.32% UV-A Transmission and 1.25% UV-B transmission. Nylon fabric dyed with synthesised dyes (benzophenone as coupler) shows UV (A) transmission in the range of 0.05-0.18% and UV (B) transmission in the range of 0.05-0.15%.

B. Colour Parameters of undyed and dyed Wool fabric after 100hrs UV Exposure

Sample Description	UV Exposure	L*	a*	b*	C*	h°	K/S	DEcmc	%STR-WSUM
Undyed Wool	Before Exposure	87.83	-0.27	14.21	14.22	91.09	0.377	5.04	164.82
	After Exposure	86.73	-0.96	21.73	21.76	92.54	0.779	2.84	94.06
Wool Dye 1 1%	Before Exposure	74.43	13.77	50.28	52.14	74.68	5.930		
	After Exposure	74.47	9.80	48.30	49.28	78.53	5.754	2.84	94.06
Wool Dye 1 2%	Before Exposure	68.30	17.68	54.50	57.30	72.02	10.753		
Sample Description	UV Exposure	L*	a*	b*	C*	h°	K/S	DEcmc	%STR-WSUM
--------------------	-------------	-----	-----	-----	-----	-----	-----	-------	-----------
Wool Dye 7 1%	Before Exposure	74.43	9.37	38.25	39.38	76.24	3.026		
	After Exposure	74.78	7.83	35.09	35.95	77.43	2.726	1.64	88.21
Wool Dye 7 2%	Before Exposure	69.09	11.05	41.60	43.04	75.13	4.893		
	After Exposure	68.71	10.24	38.03	39.38	74.93	4.447	1.54	91.33
Wool Dye 8 1%	Before Exposure	59.27	19.72	62.97	65.99	72.62	19.516		
	After Exposure	58.54	19.71	61.44	64.53	72.22	18.496	0.68	94.77
Wool Dye 8 2%	Before Exposure	50.16	22.26	56.41	60.64	68.46	25.416	0.70	
	After Exposure	49.58	22.69	55.48	59.94	67.75	24.131	0.70	94.94
Wool Dye 9 1%	Before Exposure	76.91	10.32	40.02	41.33	75.54	2.496		
	After Exposure	78.55	8.03	38.64	39.46	78.25	2.418	1.91	86.23
Wool Dye 9 2%	Before Exposure	55.60	21.04	58.53	62.20	70.23	20.388		
	After Exposure	56.15	20.44	57.23	60.77	70.35	18.965	0.57	90.13
Wool Dye 10 1%	Before Exposure	63.42	18.46	61.46	64.18	73.29	14.186		
	After Exposure	64.09	18.26	61.70	64.34	73.51	14.401	0.33	96.93
Wool Dye 10 2%	Before Exposure	67.19	13.38	46.26	48.16	73.87	7.876		
	After Exposure	66.79	11.18	39.92	41.45	74.36	5.875	2.68	81.53
Wool Dye 11 1%	Before Exposure	53.87	30.01	64.22	70.89	64.96	23.604		
	After Exposure	54.48	28.88	60.70	67.14	64.71	18.613	1.31	78.63
Wool Dye 11 2%	Before Exposure	48.51	30.61	57.68	65.30	62.04	26.777		
C. Colour Parameters of undyed and dyed Silk fabric after 100hrs UV Exposure

Table 4. Colour parameters of undyed and dyed silk fabric

Sample Description	UV Exposure	L*	a*	b*	C*	h*	K/S	DEcmc	%STR-WSUM
Untreated Silk	Before Exposure	94.58	-0.29	5.11	5.12	93.23	0.054		
	After Exposure	89.08	0.61	18.52	18.53	88.12	0.427	14.39	678.11
Silk Dye 1 1%	Before Exposure	85.97	1.86	40.64	40.68	87.38	2.260		
	After Exposure	83.17	3.88	32.53	32.76	83.20	1.398	4.06	86.05
Silk Dye 1 2%	Before Exposure	83.08	4.64	49.60	49.81	84.66	4.738		
	After Exposure	79.42	7.18	39.53	40.18	79.70	2.641	4.82	81.43
Silk Dye 2 1%	Before Exposure	72.93	12.98	71.92	73.08	79.77	14.303		
	After Exposure	71.57	14.13	68.11	69.56	78.28	10.923	2.77	76.00
Silk Dye 2 2%	Before Exposure	62.21	20.16	68.34	71.25	73.57	20.337		
	After Exposure	64.34	18.07	69.42	71.14	75.41	16.296	2.15	80.12
Silk Dye 3 1%	Before Exposure	86.43	3.98	40.80	40.99	84.43	2.075		
	After Exposure	85.29	4.28	35.39	35.65	83.11	1.464	2.41	86.88
Silk Dye 3 2%	Before Exposure	83.35	7.87	48.62	49.25	80.81	3.748		
	After Exposure	82.22	7.48	43.65	44.29	80.28	2.798	2.02	88.68
Silk Dye 4 1%	Before Exposure	86.10	3.04	43.42	43.52	85.99	1.958		
	After Exposure	84.47	4.37	37.00	37.26	83.26	1.463	3.02	87.28
Silk Dye 4 2%	Before Exposure	84.56	5.67	45.83	46.18	82.94	3.851		
	After Exposure	81.79	6.47	41.22	41.72	81.08	2.720	2.32	97.11
Silk Dye 5 1%	Before Exposure	78.26	16.18	72.78	74.55	77.47	5.733		
	After Exposure	78.69	15.13	57.51	59.29	74.56	3.946	3.53	68.82
Silk Dye 5 2%	Before Exposure	73.81	22.68	81.69	84.78	74.48	11.690		
	After Exposure	73.89	21.17	78.22	70.99	72.67	9.101	3.57	77.85
Silk Dye 6 1%	Before Exposure	66.36	24.09	72.83	76.71	71.70	13.118		
	After Exposure	65.02	24.09	62.79	66.79	68.85	11.570	4.07	88.19
Silk Dye 6 2%	Before Exposure	57.76	28.87	69.35	75.12	67.40	21.780		
	After Exposure	55.57	29.49	64.78	71.18	65.52	20.941	2.37	96.27
D. Colour Parameters of undyed and dyed Nylon fabric after 100hrs UV Exposure

Table 5. Colour parameters of undyed and dyed nylon fabric

Sample Description	UV Exposure	L*	a*	b*	C*	h°	K/S	DEcmc	%STR-WSUM
Untreated	Before Exposure	93.56	-0.53	3.59	3.63	98.34	0.052		
	After Exposure	92.32	-0.30	4.10	4.11	94.14	0.059	0.80	141.42
Nylon Dye 1 1%	Before Exposure	80.22	10.75	54.05	55.11	78.75	6.301		
	After Exposure	80.20	10.80	49.04	50.21	77.58	4.684	1.98	81.08
Nylon Dye 1 2%	Before Exposure	78.23	10.72	64.23	65.12	80.53	12.785		
	After Exposure	77.84	11.03	60.82	61.82	79.72	10.048	1.29	86.30
Nylon Dye 2 1%	Before Exposure	49.81	29.67	59.71	66.68	63.58	28.490		
	After Exposure	59.88	25.11	56.25	61.26	64.45	21.117	4.08	74.12
Nylon Dye 2 2%	Before Exposure	53.80	40.88	68.67	79.91	59.23	30.594		
	After Exposure	57.56	36.95	65.80	75.46	60.68	18.667	2.72	60.26
Nylon Dye 3 1%	Before Exposure	77.49	15.43	64.40	66.23	76.53	9.291		
	After Exposure	78.34	15.00	61.80	63.60	76.35	8.059	0.97	85.63
Nylon Dye 3 2%	Before Exposure	76.37	19.20	72.01	74.52	75.07	16.203		
	After Exposure	76.34	17.78	69.03	71.29	75.55	14.729	1.14	89.46
Nylon Dye 4 1%	Before Exposure	83.70	7.84	58.67	59.19	82.39	8.302		
	After Exposure	82.43	7.67	55.17	55.70	82.09	6.687	1.36	91.46
Nylon Dye 4 2%	Before Exposure	79.29	13.44	66.66	68.00	78.60	15.873		
	After Exposure	78.98	14.40	65.54	67.20	77.63	14.090	0.81	95.30
Nylon Dye 5 1%	Before Exposure	50.25	28.93	62.38	68.76	65.12	30.317		
	After Exposure	50.25	29.25	61.55	68.14	64.59	29.589	0.55	95.29
Undyed and Dyed wool fabrics are exposed to UV radiation for 100 hours. Colour parameters such as L*a*b*, c*h* and K/S of unexposed and exposed fabrics are measured on reflectance spectrophotometer (i7, X-rite). Colour Strength after exposure and colour difference between unexposed and exposed sample is also measured. The results are mentioned in table no. 3-5. From the result, it is observed that after 100 hrs UV exposure most of the wool fabric dyed with synthesized dyes retain colour strength in the range of 54.78 – 96.93%, dyed silk fabric retain colour strength in the range of 68.82 – 97.11% whereas nylon fabric dyed with synthesized dyes retain colour strength in the range of 58.36 – 96.17%.

Sample Description	UV Exposure	L*	a*	b*	C*	h*	K/S	DEcmc	%STR-WSUM
Nylon Dye 71%	Before Exposure	78.17	10.56	41.62	42.93	75.77	3.000		
	After Exposure	80.05	9.97	36.71	41.80	74.49	2.213	3.72	73.76
Nylon Dye 72%	Before Exposure	69.32	14.92	46.14	48.49	72.08	5.654		
	After Exposure	74.34	12.42	38.62	44.24	72.28	4.176	3.97	73.85
Nylon Dye 81%	Before Exposure	64.70	22.05	61.41	65.25	70.25	12.132		
	After Exposure	70.93	21.07	49.45	51.88	70.37	7.081	8.49	58.36
Nylon Dye 82%	Before Exposure	58.20	26.06	61.66	66.94	67.09	20.178		
	After Exposure	62.63	22.25	55.60	59.27	68.39	14.427	5.47	71.49
Nylon Dye 91%	Before Exposure	78.60	11.28	49.22	50.50	77.09	3.423		
	After Exposure	80.78	9.03	41.75	42.72	77.79	2.474	3.16	65.62
Nylon Dye 92%	Before Exposure	73.81	14.97	52.26	54.36	74.01	4.986		
	After Exposure	76.81	12.03	44.96	46.54	75.02	3.500	3.22	63.20
Nylon Dye 101%	Before Exposure	50.71	20.85	59.56	63.11	70.71	29.89		
	After Exposure	51.32	21.36	61.45	65.11	70.13	28.11	0.67	94.04
Nylon Dye 102%	Before Exposure	46.04	22.18	54.18	58.54	67.73	30.514		
	After Exposure	46.76	21.32	55.31	60.64	67.02	28.494	0.98	93.34
Nylon Dye 111%	Before Exposure	63.39	30.26	67.90	74.34	65.98	13.823		
	After Exposure	65.99	27.51	55.85	62.87	61.75	11.050	3.65	79.93
Nylon Dye 112%	Before Exposure	65.90	34.44	66.64	75.02	62.67	16.263		
	After Exposure	66.19	32.93	58.57	69.75	59.34	12.709	4.17	78.14
Nylon Dye 121%	Before Exposure	79.13	14.67	58.36	60.17	75.89	5.814		
	After Exposure	81.72	10.79	49.03	50.21	77.59	3.510	3.88	58.82
Nylon Dye 122%	Before Exposure	81.01	13.36	57.11	58.65	76.84	5.190		
	After Exposure	81.91	11.70	50.13	51.48	76.86	3.639	2.63	72.07
E. Fastness properties of Wool

Sr. No.	Sample Name	% Shade	Washing Fastness	Light Fastness	Rubbing Fastness		
			Change in shade	Staining on Wool	Staining on Cotton	Dry Rub	Wet Rub
1	Dye 1	1%	4-5	5	4-5	6	5
		2%	4-5	4-5	4-5	6	4-5
2	Dye 2	1%	5	5	5	4-5	5
		2%	4-5	5	4-5	5	4-5
3	Dye 3	1%	4	4-5	4	6	5
		2%	3-4	3-4	3-4	6	4-5
4	Dye 4	1%	4-5	4	4-5	6	5
		2%	5	5	5	7	4-5
5	Dye 5	1%	4-5	4	4-5	5	4-5
		2%	5	5	5	4-5	4
6	Dye 6	1%	4	4-5	3-4	6	5
		2%	5	5	5	5-6	4-5
7	Dye 7	1%	4-5	4-5	5	6	5
		2%	4-5	5	4-5	6	4
8	Dye 8	1%	4-5	4-5	4	4-5	4
		2%	5	5	5	4	3-4
9	Dye 9	1%	4-5	4-5	4-5	5-6	4
		2%	5	5	5	5-6	3-4
10	Dye 10	1%	4-5	4-5	4	6	4-5
		2%	5	5	5	5-6	4
11	Dye 11	1%	4	4-5	4	6	3
		2%	4-5	4	5	3-4	3-4
12	Dye 12	1%	4-5	5	3-4	7	4
		2%	4-5	5	4-5	6	4-5

F. Fastness properties of Silk

Sr. No.	Sample Name	% Shade	Washing Fastness	Light Fastness	Rubbing Fastness		
			Change in shade	Staining on Silk	Staining on Cotton	Dry Rub	Wet Rub
1	Dye 1	1%	5	5	5	6	5
							4-5

@IJMTER-2018, All rights Reserved
Table 8. Washing, light and rubbing fastness of undyed and dyed nylon fabric

Testing	% Shade	Washing Fastness	Light Fastness	Rubbing Fastness		
		Change in shade	Staining on Nylon	Staining on Cotton	Dry Rub	Wet Rub
Sr. No.	Sample Name					
1	Dye 1	1%	4-5	4-5	6	5
		2%	4-5	4-5	6	5
2	Dye 2	1%	4-5	4-5	4-5	5
		2%	4	4	3	4-5
3	Dye 3	1%	4-5	4-5	3-4	4-5
		2%	4	4	5	3-4
4	Dye 4	1%	5	5	6-7	5
		2%	5	5	7	5
From table no 6-8 it is observed that wool, silk and nylon fabric dyed with newly synthesized acid dyes exhibited good to excellent fastness to washing, light and rubbing.

V. CONCLUSION

The UV rays protective dyes based on 4-hydroxy benzophenone, 2,4-di hydroxy benzophenone and 2-hydroxy-4-methoxy benzophenone are synthesized using simple diazo-coupling process. All the wool, silk and nylon fabrics dyed with synthesized dyes shows less than 5% UVA and UVB transmission indicating good protection against UV radiation. Synthesized dyes also exhibits good to excellent washing, rubbing and light fastness properties when applied on wool, silk and nylon.

VI. ACKNOWLEDGMENT

The authors’ gratefully acknowledge the financial support received from Ministry of Textiles, Govt. of India for funding this research.

REFERENCES

[1] A. Chaudhary, M.N. Shahid,”Growth and development of technical textiles in India: a comparative analysis of tenth and eleventh five year plan”, International Journal of Engineering Research & Technology, vol. 2(5), pp. 413–428, 2013
[2] I. Aiello, M. Ghedini, M.L. Deda, “Synthesis and spectroscopic characterization of organometallic chromophores for photoluminescent materials: Cyclopalladated complexes”, Journal of Luminescence, vol. 96(2-4), pp. 249-259, 2002
[3] A.R. Horrocks, S.C. Anand, Handbook of technical textiles. Cambridge CB1 6AH England: Woodhead Publishing Limited, 2000
[4] S. Rajendram, S.C. Anand, “Contribution of textiles to medical and healthcare products and developing innovative medical devices”, Indian Journal of Fibres & Textile Research, vol. 31, pp. 215-229, 2006
[5] T. Anitha, “Medicinal Plants Used in Skin Protection”, Asian Journal of Pharmaceutical and Clinical Research, vol. 5(3), pp. 35-38, 2012
6. M. Akgun, B. Becerir, H.R. Alpay, “Ultraviolet (UV) protection of textiles: a review. International Scientific Conference”, UNITECH 10 gabrovo, pp. 301–311, Nov. 2010
7. G. Hustvedt, P.C Crews, “The ultraviolet protection factor of naturally-pigmented cotton”, The Journal of Cotton Science, Vol. 9, pp. 47–55, 2005
8. A.K. Sarkar, “An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants” BioMed Central Dermatology, vol. 4(15), pp. 1-8, 2004
9. B.M. Youssef, M.H. Ahmed, M.M.H. Arief, H.M. Mashaly, R.A. Abdelghaffar, S.A. Mahmoud, “Synthesis and Application of Functional (Anti-UV) Azo-dyes based on γ-acid on Wool Fabrics” Indian Journal of Science and Technology, vol. 7, pp. 1005–1013, 2014
10. R. Korac, K.M. Khambholja, “Potential of herbs in skin protection from ultraviolet radiation” Pharmacognosy Review, vol. 5 (10), pp. 164-173, 2011
11. K. Krzysztof, L.S. Barbara, “Effect of selected metrological parameters of dyed polyester textiles on their UV-barrier properties” Fibers and Polymers, vol 15(10), pp. 2077–2085, 2014
12. G. T. Carroll, N.J. Turro, J.T. Koberstein, “Patterning dewetting in thin polymer films by spatially directed photocrosslinking” Journal of Colloid and Interface Science, vol. 351(2), pp. 556-560, 2010
13. B.C. Dixit, H.M. Patel, "Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone". E-Journal of Chemistry, vol. 8(2), pp. 615–620, 2011
14. W. Huang, B. Hou, M. Liu, Z. Li, “Improvement in tribological performances of magnesium alloy using amide compounds as lubricating additives during sliding” Tribology Letters, vol. 18(4), pp. 445-446, 2005
15. B. Dixit, H.M. Patel, D.J. Desai, R.B. Dixit, “Studies on dyeing performance of novel acid azo dyes and mordent acid azo dyes based on 2, 4-dihydroxybenzophenone”, E-Journal of Chemistry, vol. 6(2), pp. 315–322, 2009
16. W. Czajkowski, J. Paluszkiewiez, “Synthesis of bifunctional monochlorotriazine reactive dyes increasing UV-protection properties of cotton fabrics”. Fibres & Textiles in Eastern Europe, vol. 16(5), pp. 122–126, 2008
17. H.M. Patel, B.C. Dixit, “Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone-5- sulfonic acid on wool and silk fabrics” Journal of Saudi Chemical Society, vol. 18, pp. 507–512, 2014
18. B. Dixit, H.M. Patel, R.B. Dixit, R. B., D.J. Desai, “Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics” Journal of the Serbian Chemical Society, vol. 75(5), pp. 605–614, 2010
19. L. He, G. Gong, H.S. Freeman, W. Jian, M. Chen, D. Zhao, “Studies involving reactive dyes containing a benzophenone ultraviolet absorber”. Coloration Technology, vol. 127, pp. 47–54, 2010
20. S.V. Deo, S. Hazarika, N.K. Shukla, N.K., S. Kumar, M. Kar, A. Somaity, “Surgical management of skin cancers: Experience from a regional cancer centre in North India” Indian Journal of Cancer, vol. 42(3), pp. 145-150, 2005
21. J.D. Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, “UV radiation and the skin” International Journal of Molecular Sciences, vol. 14(6), pp. 12222-12248, 2013
22. S. Shahdhi, M. Ghoranneviss, “Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric”. Clothing and Textile Research Journal, vol 34(1), pp. 37-47, 2016
23. T. Gambichler, J. Laperre, K. Hoffmann, “The European standard for sun-protective clothing “, Journal of the European Academy of Dermatology and Venereology, Vol. 20, pp. 125–130., 2006