Purity Results on F-crystals

Jinghao Li

Let $n \in \mathbb{N}$. Let k be a perfect field of characteristic $p > 0$. Let $W(k)$ be the ring of Witt vectors with coefficient in k and let $B(k)$ be its fractional field.

Let σ be the absolute Frobenius automorphism:

$\sigma : W(k) \rightarrow W(k)$

$x = (x_0, x_1, \cdots) \mapsto \sigma(x) = (x_0^p, x_1^p, \cdots)$.

We extend σ naturally to an automorphism of $B(k)$.

A σ^n-F-crystal (or F^n-crystal or F-crystal if $n = 1$) over k (or Spec k) is a pair (M, F) consisting of a free $W(k)$-module M of finite rank, together with a σ^n-linear endomorphism $F : M \rightarrow M$, i.e. F is additive and $F(ax) = \sigma^n(a)F(x)$ for all $a \in W(k)$ and $x \in M$, which induces an automorphism of $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

The exterior powers of an F^n-crystal (M, F) are the F^n-crystals $(\wedge^i M, \wedge^i F)$ ($i = 0, 1, 2, \cdots$) with underlying modules $\wedge^i M$ and σ^n-endomorphisms $\wedge^i F$ defined by

$\wedge^i F(m_1 \wedge \cdots \wedge m_i) = F(m_1) \wedge \cdots \wedge F(m_i)$.

For $i = 0$ and $(M, F) \neq 0$, we define $(\wedge^0 M, \wedge^0 F)$ to be $(W(k), \sigma)$.

A morphism of F^n-crystals $f : (M, F) \rightarrow (M', F')$ is a $W(k)$-linear map $f : M \rightarrow M'$ such that $fF = F'f$.

The category of F^n-crystals up to isogeny is obtained from the category of F^n-crystals by keeping the same objects, but tensoring Hom groups, which are \mathbb{Z}_p modules, over \mathbb{Z}_p with \mathbb{Q}_p.

An isogeny between F^n-crystals is a morphism of F^n-crystals which becomes an isomorphism in the category of F^n-crystals up to isogeny.

An F^n-crystal is said to be divisible by $\lambda > 0$ if for all $m \in \mathbb{N}$, we have $F^m = 0 \mod p^{\lfloor m/\lambda \rfloor}$, where $\lfloor \cdot \rfloor : \mathbb{R} \rightarrow \mathbb{Z}$ is the floor function.

The Hodge slopes of an F^n-crystal (M, F) are the integers defined as follows. The image $F(M)$ is a $W(k)$-submodule of M of rank $r = \text{rank}(M)$, so by the theory of elementary divisors, since $W(k)$ is a discrete valuation ring, in particular a principal ideal domain, there exist $W(k)$-bases $\{v_1, \ldots, v_r\}$ and $\{w_1, \ldots, w_r\}$ of M such that for all $1 \leq i \leq r$ we have

$F(v_i) = p^{a_i}w_i$

for some integers $0 \leq a_1 \leq a_2 \leq \cdots \leq a_r$. These integers are called the Hodge slopes of (M, F).

The Hodge polygon of (M, F) is the graph of the Hodge function on $[0, r]$ defined on integers $0 \leq i \leq r$ by
Hodge_F(i) = least Hodge slope of ($\Lambda^i M, \lambda^i F$) = \begin{cases}
0, & i = 0, \\
\lambda_1 + \cdots + \lambda_i, & 1 \leq i \leq r
\end{cases}
and then extended linearly between successive integers.

The Newton slopes of an F^n-crystal (M, F) are the sequence of $r = \text{rank}(M)$ rational numbers $0 \leq \lambda_1 \leq \cdots \leq \lambda_r$ defined in the following way.

Pick an algebraically closed field extension k' of k, and consider the F^n-crystal over k': $(M \otimes W(k), F \otimes \sigma^n)$ obtained from (M, F) by extension of scalars. For each non-negative rational number $\lambda = \frac{a}{b}$ with $a \in \mathbb{Z}, b \in \mathbb{N}, (a, b) = 1$, we denote by $E(\lambda)$ the F^n-crystal over k' defined by:

$E(\lambda) = ((\mathbb{Z}_p[T]/(T^b - p^a)) \otimes \mathbb{Z}_p) W(k')$, (multiplication by $T^n \otimes \sigma^n$).

Theorem 0 (Dieudonné–Manin, [De72, (Theorem, Page 85)]) If k' is an algebraically closed extension of k, then for any F^n-crystal (M, F) over k, $(M \otimes W(k)) B(k')$ is isomorphic to a finite direct sum of $E(\lambda_i) \otimes W(k') B(k')$'s with $\lambda_i \in \mathbb{Q}_{\geq 0}$.

By the above theorem, we can write $(M \otimes W(k)) B(k', F \otimes \sigma^n) \cong \bigoplus_{i=1}^s E(a_i/b_i) \otimes B(k')$ for an increasing sequence $a_1/b_1 \leq a_2/b_2 \leq \cdots \leq a_s/b_s$ with $\sum b_i = r$. The Newton slopes of (M, F) are defined to be the sequence of r rational numbers $(\lambda_1, \cdots, \lambda_r) := (a_1/b_1 \text{ repeated } b_1 \text{ times}, a_2/b_2 \text{ repeated } b_2 \text{ times}, \cdots, a_s/b_s \text{ repeated } b_s \text{ times}).$

The Newton polygon of (M, F) is the graph of the Newton function on $[0, r]$, defined on integers $0 \leq i \leq r$ by

$\text{Newton}_F(i) = \text{least Newton slope of } (\Lambda^i M, \lambda^i F) = \begin{cases}
0, & i = 0, \\
\lambda_1 + \cdots + \lambda_i, & 1 \leq i \leq r
\end{cases}$
and then extended linearly between successive integers. Let $\{\mu_1, \mu_2, \cdots, \mu_t\} = \{\lambda_1, \lambda_2, \cdots, \lambda_r\}$ with $\mu_1 < \mu_2 < \cdots < \mu_t$ for $1 \leq t \leq r$ and let r_i be the multiplicity of μ_i for $1 \leq i \leq t$.

Here is the graph of the Newton polygon of (M, F):
For another characterization of the Newton slopes, we choose an auxiliary integer $N \geq 1$ which is divisible by $r!$, where $r = \text{rank}(M)$, and consider the discrete valuation ring $R = W(k')[X]/(X^N - p) = W(k'[p^{1/N}])$. We can extend σ to an automorphism of R by requiring that $\sigma(X + (X^N - p)) = X + (X^N - p)$. For each $\lambda \in \frac{1}{N} \mathbb{Z}$, we can speak about $p^\lambda = X^N + (X^N - p)$ in R.

Let $K = \text{Frac}(R)$. By an analogue of Dieudonné–Manin’s theorem over K, we know that $M \otimes_{W(k)} K$ admits a K-basis e_1, \ldots, e_r which transforms under the σ–linear endomorphism $F \otimes \sigma$ by the formula $(F \otimes \sigma)(e_i) = p^\lambda_i e_i$ for $1 \leq i \leq r$. An equivalent characterization of the Newton slopes is by the existence of an R-basis u_1, \ldots, u_r of $M \otimes_{W(k)} R$ with respect to which the matrix of $F \otimes \sigma$ is upper-triangular, with p^λ_i's along the diagonal, i.e. $F(u_i) \equiv p^\lambda_i u_i \mod \sum_{1 \leq j \leq i} Ru_j$ for all $1 \leq i \leq r$.

The second characterization of Newton slopes shows:

1. The Newton slopes of the m^{th} iterate (M, F^m) of (M, F) are $(m\lambda_1, \ldots, m\lambda_r)$.
2. All Newton slopes λ_i of (M, F) are equal to 0 if and only if F is a σ^n-linear automorphism of M.
3. All Newton slopes λ_i of (M, F) are > 0 if and only if F is topologically nilpotent on M, i.e. if and only if we have $F^r(M) \subset pM$ where $r = \text{rank}(M)$.

The break points of an F^n-crystal (M, F) are defined to be the points where the Newton polygon changes slopes.
Remark: From the definition of the Newton slopes, we have that all break points have integer coordinates.

Let \(m \in \mathbb{N} \). Let \(R \) be an \(\mathbb{F}_p \)-algebra, let \(W_m(R) \) be the ring of Witt vectors of length \(m \) with coefficients in \(R \) and let \(\sigma \) be the Frobenius endomorphisms of \(W_m(R) \) for any \(m \in \mathbb{N} \). Let \(\mathcal{M}^\sigma(W_m(R)) \) be the abelian category whose objects are \(W_m(R) \)-modules endowed with \(\sigma^m \)-linear endomorphisms and whose morphisms are \(W_m(R) \)-linear maps that respect the \(\sigma^m \)-linear endomorphisms. We identify \(\mathcal{M}^\sigma(W_m(R)) \) with a full subcategory of \(\mathcal{M}^\sigma(W_{m+1}(R)) \). With a little abuse of terminology, we call the following morphism modulo \(p^m \):

\[
\mathcal{M}^\sigma(W_{m+1}(R)) \to \mathcal{M}^\sigma(W_m(R))
\]

\[
O \mapsto O \otimes_{W_{m+1}(R)} W_m(R),
\]

for any \(s \in \mathbb{N}_{>0} \). If \(S \) is an \(\mathbb{F}_p \)-scheme, in a similar way we define \(\mathcal{M}^\sigma(W_m(S)) \). If \(S = \text{Spec} \, R \), we identify \(\mathcal{M}^\sigma(W_m(R)) = \mathcal{M}^\sigma(W_m(S)) \).

In general, we can define an \(F^n \)-crystal \(\mathcal{C} \) over any \(\mathbb{F}_p \)-algebra \(R \), cf. [Ka79, (2.1)]. The evaluation of the \(F^n \)-crystal \(\mathcal{C} \) at the thickening \((R \hookrightarrow W_m(R))\) is a triple \((m\mathcal{C}, F, m\nabla)\), where \(m\mathcal{C} \) is a locally free \(W_m(R) \)-module of finite rank, \(F : m\mathcal{C} \to m\mathcal{C} \) is a \(\sigma^m \)-linear endomorphism, and \(m\nabla \) is an integrable and topologically nilpotent connection on \(m\mathcal{C} \) that satisfies certain axioms.

In this paper, connections as \(m\nabla \) will play no role. A morphism \(\phi : \mathcal{C} \to \mathcal{C}_1 \) of \(F^n \)-crystals over \(R \) defines naturally a morphism in the category of \(\mathcal{M}^\sigma(W_m(R)) \)

\[
m\phi : m\mathcal{C} \to m\mathcal{C}_1.
\]

The association \(\phi \to m\phi \) defines a \(\mathbb{Z}_p \)-linear (evaluation) functor from the category of \(F^n \)-crystals over \(R \) into the category \(\mathcal{M}^\sigma(W_m(R)) \).

Let \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) be two objects of \(\mathcal{M}^\sigma(W_m(R)) \) such that their underlying \(W_m(R) \)-modules are locally free of finite ranks. Let \(S = \text{Spec} \, R \). We consider the functor

\[
\text{Hom}(\mathcal{O}_1, \mathcal{O}_2) : \text{Sch}^S \to \text{SET}
\]
from the category Sch^S of S-schemes to the category SET of sets, with the property that $\text{Hom}(\mathcal{O}_1, \mathcal{O}_2)(S_1)$ is the set underlying the $\mathbb{Z}/p^n\mathbb{Z}$-module of morphisms of $\mathcal{M}(W_m(S_1))$ that are between $f'(\mathcal{O}_1)$ and $f'(\mathcal{O}_2)$; Here $f : S_1 \to S$ is the structural morphism of S_1 and f^* is the pullback to S_1

\[
\begin{array}{ccc}
 f'^*(\mathcal{O}_1) & \to & \mathcal{O}_1 \\
 \downarrow & & \downarrow \\
 S_1 & \to & S \\
\end{array}
\quad
\begin{array}{ccc}
 f'^*(\mathcal{O}_2) & \to & \mathcal{O}_2 \\
 \downarrow & & \downarrow \\
 S_1 & \to & S. \\
\end{array}
\]

Lemma 0 The functor $\text{Hom}(\mathcal{O}_1, \mathcal{O}_2)$ is representable by an affine S-scheme which locally is of finite presentation.

Proof of Lemma 0: In [Va06, (Lemma 2.8.4.1)], Vasiu proved the lemma in the case when $n = 1$. We note that the proof for a general natural number n goes the same way.

Now let R be a reduced \mathbb{F}_p-algebra. Let R^perf be its perfect closure.

Example: If $R = k[x_1, \cdots, x_n]$, then $R^\text{perf} = \bigcup_{u \geq 1} k[x_1^u, \cdots, x_n^u]$.

Talking about an F^n-crystal over $S = \text{Spec } R$, we can look at its pullback to its perfect closure R^perf. The pullback of such an F-crystal to R^perf is a finite rank locally free $W(R^\text{perf})$-module M equipped with a Frobenius linear map $F : M \to M$ such that $F(M) \supset p'M$ for some $t \geq 0$.

Let $S = \text{Spec } R$ be a reduced affine \mathbb{F}_p-scheme. Let \mathcal{C} be an F^n-crystal over S. For any \mathbb{F}_p-homomorphism $\phi : R \to k$, the pullback $\mathcal{C}^{(\phi)}$ is an F^n-crystal over k. Its Newton polygon depends only on the underlying point $\text{Ker}(\phi) \in S$. This allows us to speak about the Newton slopes and Newton polygons of \mathcal{C} at various points of S.

We define a function

\[f^{\mathcal{C}} : S \to \text{Set of Newton Polygons} \]

\[s \mapsto \text{NP}(\mathcal{C}_s), \text{ where } \mathcal{C}_s \text{ is the pullback of } \mathcal{C} \text{ to the algebraic closure } \bar{k(s)} \text{ of the residue field } k(s) \text{ of the point } s \in S, \text{ i.e.,} \]

\[
\begin{array}{ccc}
 \mathcal{C}_s & \to & \mathcal{C} \\
 \downarrow & & \downarrow \\
 \text{Spec } \bar{k(s)} & \to & S. \\
\end{array}
\]

By the Newton polygon stratification of an \mathbb{F}_p-scheme S defined by an F^n-crystal \mathcal{C} over S we mean the stratification of S with the property that each stratum of it is of the form $f^{\mathcal{C}}_u^{-1}(\text{a fixed Newton Polygon})_{\text{red}}$. For a given Newton polygon ν, let $S_\nu = f^{\mathcal{C}}_u^{-1}(\nu)_{\text{red}}$.

Clearly we have a set partition: $S = \bigsqcup_{\nu \in I} S_\nu$, where I is the set of all possible Newton Polygons.

Example: Let $R = k[t]$ and $R^\text{perf} = k[t]_{\text{perf}}$. Let $S = \text{Spec } R$ be as above. Let $I \in W(R^\text{perf})$ be the image of $(t, 0, 0, \cdots) \in W(R)$. Suppose M is an F-crystal over R such that its pullback to R^perf is an F-crystal (M^perf, F) where $M^\text{perf} = W(R^\text{perf}) \oplus W(R^\text{perf})$ with $[e_1, e_2]$ as a basis.
and \(F(e_1) = te_1 + pe_2, \) \(F(e_2) = pe_1 \). We observe that when \(t = 0 \) the corresponding Newton polygon \(\nu_1 \) has no break point in the middle (i.e., it is not the starting or ending point) and a unique slope 1. When \(t \neq 0 \), the corresponding Newton polygon \(\nu_2 \) has the break point \((1, 0)\) in the middle and two Newton slopes 0 and 2. Thus in this case as sets we have \(S_{\nu_1} = \{(t)\}, \) \(S_{\nu_2} = S \setminus \{(t)\} \) and \(S_{\nu} = \emptyset \) for \(\nu \neq \nu_1 \) or \(\nu_2 \).

Theorem 1 (Grothendieck–Katz, [Ka79, Theorem 2.3.1]) Let \(S \) be an \(\mathbb{F}_p \)-scheme, \(\mathcal{C} \) be an F-crystal over \(S \) and \(\nu \) be a Newton polygon. Then the set
\[
S_{\geq \nu} = \{s \in S | NP(\mathcal{C}_s) \text{ lies above } \nu\}
\]
is Zariski closed in \(S \).

Corollary 1 Let \(S \) be an \(\mathbb{F}_p \)-scheme, \(\mathcal{C} \) be an F-crystal over \(S \) and \(\nu \) be a Newton polygon. All the strata \(S_{\nu} \) of the Newton polygon stratification of \(S \) defined by \(\mathcal{C} \) are locally closed subschemes of \(S \).

Types of purity notions:

Let \(S \) be an \(\mathbb{F}_p \)-scheme. Let \(T \) be a reduced locally closed subscheme of \(S \). Let \(\overline{T} \) be the schematic closure of \(T \), i.e., topologically \(\overline{T} \) is the Zariski closure of \(T \) in \(S \) and endowed with the reduced ringed structure.

(à la Nagata–Zariski) Suppose \(S \) is locally Noetherian. We say \(T \) is weakly pure in \(S \), if each non-empty irreducible component of \(\overline{T} \setminus T \) has pure codimension 1 in \(\overline{T} \).

Suppose \(S \) is locally Noetherian. We say \(T \) is universally weakly pure in \(S \), if for every locally Noetherian scheme \(S_1 \) equipped with a morphism \(S_1 \rightarrow S \), the locally closed subscheme \((T_\times S_1)_{\text{red}} \) is weakly pure in \(S_1 \).

(Vasiu) We say \(T \) is pure in \(S \), if \(T \) is an affine \(S \)-scheme.

(folklore) We say \(T \) is strongly pure in \(S \), if locally in the Zariski topology of \(\overline{T} \) there exists a global function \(f \) on \(\overline{T} \) such that \(T = \overline{T}_f \) is the largest open subscheme of \(\overline{T} \) over which \(f \) is invertible.

Lemma 1 Let \(S \) be a reduced locally Noetherian \(\mathbb{F}_p \)-scheme. If \(T \subset S \) is locally closed and \(S \)-affine, then \(\overline{T} \setminus T \) is either \(\emptyset \) or of pure codimension 1 in \(S \). In particular, purity implies weak purity.

Proof of Lemma 1: Since this is a local statement, we can assume both \(S = \text{Spec } R \) and \(T = \text{Spec } A \) are reduced affine schemes. By replacing \(S \) by \(\overline{T} \), we can assume \(T \) is open dense in \(S \). If \(T = S \), the statement is proved. Otherwise, let \(x \) be a generic point of an irreducible component of \(S \setminus T \) and let \(d = \dim \mathcal{O}_{S,x} \). We need to show \(d = 1 \). Since \(T \) is dense in \(S \) and \(S \setminus T \neq \emptyset \), we know \(d \geq 1 \). Consider the pullback \(\hat{T} \) of \(T \) in the following commutative diagram:

\[
\begin{array}{ccc}
\hat{T}_\text{red} & \xrightarrow{\epsilon} & \text{Spec } \mathcal{O}_{S,x}_\text{red} \\
\downarrow & & \downarrow \\
T' & \xrightarrow{\phi} & S = \text{Spec } R.
\end{array}
\]
By replacing \(S \) by \(\text{Spec} \, \tilde{\mathcal{O}}_{S,x_{\text{red}}} \) and \(T \) with \(\hat{T}_{\text{red}} \), we can assume \(R \) is a local, reduced, complete noetherian \(\mathbb{F}_p \)-algebra and all the points in \(S \setminus T \) are of codimension \(\geq d \) in \(S \). As \(R \) is local, complete ring, it is also excellent (cf. [Hi80, (34.B)]). Thus the normalization \(S^n \) of \(S \) is a finite \(S \)-scheme. Consider the following commutative diagram:

\[
\begin{array}{ccc}
T^n & \longrightarrow & S^n = \text{Spec} \, R^n \\
\downarrow & & \downarrow \\
T^c & \longrightarrow & S = \text{Spec} \, R.
\end{array}
\]

Since the morphism \(S^n \to S \) is both finite and surjective, for any preimage of \(x \) in \(S^n \), say \(\tilde{x} \in S^n \), we have \(\dim \mathcal{O}_{S^n,\tilde{x}} = \dim \mathcal{O}_{S,x} \). By replacing \(x \) by \(\tilde{x} \), \(T \) by \(T^n \) and \(S \) by \(S^n \), we can assume both \(T = \text{Spec} \, A \) and \(S = \text{Spec} \, R \) are affine, normal, reduced, Noetherian \(\mathbb{F}_p \)-schemes and all the points in \(S \setminus T \) are of codimension \(\geq d \). For \(1 \leq i \leq n \), let \(T_i = \text{Spec} \, A_i \subset S_i = \text{Spec} \, R_i \) be the irreducible components of \(T \) and \(S \) respectively and we have \(A_i \) and \(R_i \) are all normal, integral, Noetherian \(\mathbb{F}_p \)-algebras. Now suppose \(d \geq 2 \). At the level of rings, the codimension 1 points are height 1 prime ideals. Therefore for any \(1 \leq i \leq n \) we have,

\[
R_i \hookrightarrow A_i = \bigcap_{p \text{ a prime of height 1}} A_{i,p} = \bigcap_{p \text{ a prime of height 1}} R_{i,p} = R_i
\]

(cf. [Hi80, (17.H)] for the first and third equalities). Therefore

\[
S = \text{Spec} \prod_{i=1}^n R_i = \text{Spec} \prod_{i=1}^n A_i = T,
\]

which is a contradiction. Hence \(d = 1 \) and Lemma 1 is proved. □

We have the following obvious implications and identifications:

Strong purity \(\Rightarrow \) purity \(\Rightarrow \) univeral weak purity \(\Rightarrow \) weak purity
Purity = universal purity
Strong purity = universal strong purity

Theorem 2 (A. J. de Jong and F. Oort, [JO00, (Theorem 4.1)]) Let \(S \) be a reduced locally Noetherian \(\mathbb{F}_p \)-scheme and let \(\mathcal{C} \) be an \(F \)-crystal over \(S \). Then the Newton polygon stratification of \(S \) defined by \(\mathcal{C} \) is universally weakly pure in \(S \).

Theorem 3 (A. Vasiu, [Va06, (Theorem 6.1)]) Let \(\mathcal{C} \) be an \(F \)-crystal over a reduced locally Noetherian \(\mathbb{F}_p \)-scheme \(S \). Then the Newton polygon stratification of \(S \) defined by \(\mathcal{C} \) is pure in \(S \).

Let \(P_0 \) be a point in the \(xy \)-coordinate plane and let

\[
S_{P_0} = \{ s \in S \mid NP(\mathcal{C}, s) \text{ has } P_0 \text{ as a break point} \}.
\]

It can be shown that topologically \(S_{P_0} \) is locally closed in \(S \) (We will prove this in the proof of Theorem 5), and we endow it with the reduced ringed structure.

Theorem 4 (Y. Yang, [Ya10, (Theorem 1.1)]) Let \(S \) be a reduced locally Noetherian \(\mathbb{F}_p \)-scheme and let \(\mathcal{C} \) be an \(F \)-crystal over \(S \). Fix a point \(P_0 \) in the \(xy \)-coordinate plane. Then \(S_{P_0} \)
is universally weakly pure in S.

Our main result is the following theorem, which will imply Theorems 2 to 4:

Theorem 5 (J. Li) Let S be a reduced locally Noetherian \mathbb{F}_p-scheme. Let \mathcal{C} be an F^n-crystal over S, $n \geq 1$. Fix a point P_0 in the xy-coordinate plane. Then S_{P_0} is pure in S.

Proof of Theorem 5: It will be done in 5 steps.

Step 1. Reduction step.

Since purity is a local statement, we first assume $S = \text{Spec } R$ is affine and we need to show that S_{P_0} is an affine scheme. Let $P_0 = (a, b)$. If $(a, b) \notin \mathbb{N}^2$ or $a = 0$ and $b \neq 0$, then $S_{P_0} = \emptyset$ and the theorem holds trivially. If $(a, b) = (0, 0)$, then $S_{P_0} = S$. Again the theorem holds trivially. Now we suppose $a, b \in \mathbb{N}_{>0}$. By replacing \mathcal{C} by $\wedge^a \mathcal{C}$, we see that $S_{(a, b)} = \{ s \in S | \text{NP}(\wedge^a \mathcal{C}_s) \text{ has } (1, b) \text{ as a break point} \}$. Therefore, we can assume $a = 1$. By replacing \mathcal{C} by \mathcal{C}^∞ with c a large integer (For example $c = r!$, where $r = \text{rank}(\mathcal{C})$), we can assume that for each point $s \in S$, all Newton slopes of \mathcal{C}_s are integers. Now let $S_{\geq v_1} = \{ s \in S | \text{NP}(\mathcal{C}_s) \geq v_1 \}$, where v_1 is the following Newton polygon:

From Theorem 1, $S_{\geq v_1}$ is closed in S, thus affine and since $(1, b)$ is a break point of v_1, we have $S_{P_0} \subset S_{\geq v_1}$. By replacing S by $S_{\geq v_1}$, we can assume $\text{NP}(\mathcal{C}_s) \geq v_1$ for any $s \in S$. Let $S_{\geq v_2} = \{ s \in S | \text{NP}(\mathcal{C}_s) \geq v_2 \}$, where v_2 is the following Newton polygon:
We have $S_{P_0} = S\setminus S_{\geq 2}$ and this shows that S_{P_0} is locally closed in S. If $S_{\geq 2} = \emptyset$, then $S_{P_0} = S$ is affine and the theorem is proved. Now we suppose $S_{\geq 2} \neq \emptyset$ and $S_{P_0} = S\setminus S_{\geq 2}$ is an open subscheme of $S = \text{Spec } R$ and we need to show S_{P_0} is affine. The statement is local in the faithfully flat topology of S and thus we can assume that S is local. Let \hat{R} be the completion of R and let $\hat{S} := \text{Spec } \hat{R}$. As \hat{S} is a faithfully flat S-scheme, to show that S_{P_0} is affine it suffices to show that $S_{P_0} \times_S \hat{S}$ is affine. Let $\hat{S}_1 = \text{Spec } \hat{R}_1, \cdots, \hat{S}_j = \text{Spec } \hat{R}_j$ be the irreducible components of the reduced scheme of \hat{S} (Here $j \in \mathbb{N}$); They are spectra of local, complete, integral, Noetherian \mathbb{F}_p-algebras. The scheme $S_{P_0} \times_S \hat{S}$ is affine if and only if the irreducible components $S_{P_0} \times_S \hat{S}_1, \cdots, S_{P_0} \times_S \hat{S}_j$ of the reduced scheme of $S_{P_0} \times_S \hat{S}$ are all affine, cf. Chevalley’s theorem in [Gr61, Ch. II, Cor. (6.7.3)]. So to prove the theorem we can assume $R = \hat{R} = \hat{R}_1$. As R is a local, complete ring, it is also excellent, cf. [Hi80, (34.B)]. Thus the normalization S'' of S is a finite S-scheme. So S'' is a semilocal, complete, integral, normal scheme. This implies S'' is local. But S_{P_0} is affine if and only if $S_{P_0} \times_S S''$ is affine, cf. [Va06, (Lemma 2.9.2)]. Thus to prove the theorem, we can also assume S is normal, i.e., $S = S''$. We emphasize that for the rest of the proof we will use the fact that R is a complete, integral, local, normal \mathbb{F}_p-algebra and $U := S_{P_0}$ is an open subscheme of $S = \text{Spec } R$. We can assume $U \neq \emptyset$ and hence it is dense in S. Let k_S be the field of fractions of R and k be its algebraic closure.

Step 2. The affine S-scheme H_m.

Now let \mathcal{C}_0 be an F^n-crystal of rank 1 and slope b over \mathbb{F}_p, that is $\mathcal{C}_0 = (\mathbb{Z}_p, p^b \sigma^n)$. Let $\mathcal{C}_{0,S}$ be its pullback to S:

\[
\begin{array}{ccc}
\mathcal{C}_{0,S} & \xrightarrow{\sigma} & \mathcal{C}_0 \\
\downarrow & & \downarrow \\
S & \xrightarrow{} & \text{Spec } \mathbb{F}_p.
\end{array}
\]

Let $m \in \mathbb{N}$ and $m >> 0$. Let $m \mathcal{C}_{0,S}$ be the evaluation of $\mathcal{C}_{0,S}$ at $W_m(S) = W_m(R)$ and $m\mathcal{C}$ be the evaluation of \mathcal{C} at $W_m(S)$. We view these evaluations as $W_m(R)$-modules equipped with σ^n-linear endomorphisms. By Lemma 0, the functor $\text{HOM}(m\mathcal{C}_{0,S}, m\mathcal{C})$ is representable by an affine S-scheme H_m which is of finite presentation and it is Noetherian since S is Noetherian. In other words, we have an affine morphism of finite type: $H_m \rightarrow S$. Let x be a point of U in S. Consider the stalk at x: $V_x := \mathcal{O}_{U,x} = \mathcal{O}_{S,x}$. It is an integrally closed noetherian
local domain of dimension one. Therefore, V_s is a discrete valuation ring. Let W_s be a discrete valuation ring with an algebraically closed residue field such that $V_s \hookrightarrow W_s$ and to simplify our notation, let $W := W_s^{\text{perf}}$ be its perfect closure. Consider the pullback of \mathcal{C} to W:

\[
\begin{array}{ccc}
\mathcal{C}_W & \longrightarrow & \mathcal{C} \\
\downarrow & & \downarrow \\
\text{Spec } W & \longrightarrow & S.
\end{array}
\]

As $S = S_{\mu}$, all Newton slopes of \mathcal{C}_W are greater or equal to b at every point of $\text{Spec } W$. By [Ka79, (Theorem 2.6.1)], we have an isogeny $\phi: \mathcal{C}_W \rightarrow \mathcal{C}'_W$, where \mathcal{C}'_W is an F^n–crystal over W which is divisible by b and the cokernel of ϕ is annihilated by p^t for $t = (r - 1)b$. Let φ be the isogeny from \mathcal{C}'_W to \mathcal{C}_W. Next we prove the following lemma:

Lemma 2 Let W be a perfect discrete valuation ring of characteristic p with an algebraically closed residue field. Let (M, F) be an F^n-crystal over W such that at each point of $\text{Spec } W$, all its Newton slopes are greater than or equal to b and it is divisible by b. Assume the multiplicity of its Newton slope b is 1 at each point of $\text{Spec } W$, then there exists a unique sub-F^n-crystal (M_1, F_1) of (M, F) which is also a direct summand, where (M_1, F_1) is an F^n-crystal over W of rank 1, Newton slope b.

Proof of Lemma 2: Since (M, F) is divisible by b, we have $F(M) \subset p^b M$. Let w be an arbitrary point in $\text{Spec } W$ and let (M_w, F_w) be the pullback of (M, F) to $k(w)$, where $k(w)$ is the algebraic closure of the residue field $k(w)$ at w.

\[
\begin{array}{ccc}
(M_w, F_w) & \longrightarrow & (M, F) \\
\downarrow & & \downarrow \\
\text{Spec } k(w) & \longrightarrow & \text{Spec } W.
\end{array}
\]

We have $F_w(M_w) \subset p^b M_w$ and $(1, b)$ is a break point of the Newton polygon of (M_w, F_w) for every $w \in \text{Spec } W$. If $F_w(M_w) \subset p^{b+1} M_w$, then all the Newton slopes of (M_w, F_w) will be greater than b, which is a contradiction. Thus $F_w(M_w) \not\subset p^{b+1} M_w$ and $F_w(M_w) \subset p^b M_w$. Since for every point $w \in \text{Spec } W$ the multiplicity of the Newton slope b of (M_w, F_w) is 1, therefore the point $(1, b)$ lies on the Hodge polygon of (M_w, F_w) at every point $w \in \text{Spec } W$ and by [Ka79, (Theorem 2.4.2)], lemma holds. ■

Applying Lemma 2, we have a monomorphism: $\tilde{\mathcal{C}}_{0, W} \hookrightarrow \mathcal{C}'_W$, where $\tilde{\mathcal{C}}_{0, W}$ is an F^n–crystal over W of rank 1 and Newton slope b and j_m admits a unique splitting. Modulo p^m, at the level of evaluation we get a monomorphism: $\tilde{\mathcal{C}}_{0, W} \hookrightarrow m\mathcal{C}'_W$. Let $\mathcal{C}_{0, W}$ be the pullback of $\mathcal{C}_{0, S}$ to $\text{Spec } W$:

\[
\begin{array}{ccc}
\mathcal{C}_{0, W} & \longrightarrow & \mathcal{C}_{0, S} \\
\downarrow & & \downarrow \\
\text{Spec } W & \longrightarrow & S.
\end{array}
\]

Since $\mathcal{C}_{0, W}$ is also an F^n-crystal over W of rank 1 and Newton slope b, modulo p^m we have $m\mathcal{C}_{0, W}$ isomorphic to $m\mathcal{C}_{0, W}$. Now we have a morphism $i_W(m)$ from $m\mathcal{C}_{0, W} \rightarrow m\mathcal{C}_W$ by composing the following morphisms: $m\mathcal{C}_{0, W} \cong m\mathcal{C}_{0, W} \hookrightarrow m\mathcal{C}'_W \rightarrow m\mathcal{C}_W$, where φ_m is the isogeny φ.
modulo p^n, and thus its cokernel is annihilated by p'. Let f_m be the composition of the morphisms: $m\mathcal{C}_{0,W} \cong m\tilde{\mathcal{C}}_{0,W} \hookrightarrow m\mathcal{C}'_W$ and we know that f_m is a monomorphism that splits.

Step 3. Gluing morphisms.

Before we glue the morphisms, let us first discuss three useful cases of inductive limits.

Let $V \hookrightarrow V_1$ be a monomorphism of commutative $\mathbb{F}_{p'}$-algebras. Suppose we have an inductive limit $V_1 = \text{ind lim} \, V_\alpha$ of commutative V-subalgebras of V_1 indexed by the set of objects Λ of a filtered, small category. For $\alpha \in \Lambda$, let $f^\alpha : \text{Spec } V_\alpha \to \text{Spec } V$ be the natural morphism. Let (O, ϕ_O) and $(O', \phi_{O'})$ be objects of $M'(W_m(V))$ such that O and O' are free $W_m(V)$-modules of finite rank. Let (O_1, ϕ_{O_1}) and $(O'_1, \phi_{O'_1})$ be the pullbacks of (O, ϕ_O) and $(O', \phi_{O'})$ (respectively) to objects of $M'(W_m(V_1))$. We consider a morphism

$$u_1 : (O_1, \phi_{O_1}) \to (O'_1, \phi_{O'_1})$$

of $M'(W_m(V_1))$. We fix ordered $W_m(V)$-bases B_O and B'_O of O and O' (respectively). Let B_1 be the matrix representation of u_1 with respect to the ordered $W_m(V_1)$-basis of O_1 and O'_1 defined naturally by B_O and B'_O (respectively). Let V_{u_1} be the V-subalgebra of V_1 generated by the components of the Witt vectors of length m with coefficients in V_1 that are entries of B_1. As V_{u_1} is a finitely generated V-algebra, there exists $\alpha_0 \in \Lambda$ such that $V_{u_1} \hookrightarrow V_{\alpha_0}$. This implies that u_1 is the pullback of a morphism

$$u_{\alpha_0} : f^{\alpha_0}_m(O, \phi_O) \to f^{\alpha_0}_m(O', \phi_{O'})$$

of $M'(W_m(V_{\alpha_0}))$. Here are three special cases of interest.

(a) If V is a field and V_1 is an algebraic closure of V, then as V_α’s we can take the finite field extensions of V that are contained in V_1.

(b) If V_1 is a local ring of an integral domain V, then as V_α’s we can take the V-algebras of global functions of open, affine subschemes of Spec V that contain Spec V_1.

(c) We consider the case when V is a discrete valuation ring that is an $N - 2$ ring in the sense of [Hi80, (31.A)], when V_1 is a faithfully flat V-algebra that is also a discrete valuation ring, and when each V_{α} is a V-algebra of finite type. The flat morphism $f^{\alpha_0}_m : \text{Spec } V_{\alpha_0} \to \text{Spec } V$ has quasi-sections, cf. [Gr64, Ch. IV, Cor. (17.16.2)]. In other words, there exists a finite field extension \tilde{k} of k and a V-subalgebra \tilde{V} of \tilde{k} such that: (i) \tilde{V} is a local, faithfully flat V-algebra of finite type of \tilde{k}, and (ii) we have a morphism $f^{\alpha_0}_m : \text{Spec } \tilde{V} \to \text{Spec } V_{\alpha_0}$ such that $\tilde{f} := f^{\alpha_0}_m \circ \phi_{\alpha_0}$ is the natural morphism Spec $\tilde{V} \to$ Spec V. As V is an $N - 2$ ring, its normalization in \tilde{k} is a finite V-algebra and so a Dedekind domain. This implies that we can assume \tilde{V} is a discrete valuation ring. For future use, we recall that any excellent ring is a Nagata ring (cf. [Hi80, (34.A)]) and so also an $N - 2$ ring (cf. [Hi80, (31.A)]). Let

$$\tilde{u} : \tilde{f}^*_m(O, \phi_O) = f^{\alpha_0}_m(f^{\alpha_0}_m(O, \phi_O)) \to \tilde{f}^*_m(O', \phi_{O'}) = f^{\alpha_0}_m(f^{\alpha_0}_m(O', \phi_{O'}))$$

be the pullback of u_{α_0} to a morphism of $M'(W_m(\tilde{V}))$. If V is the local ring of an integral $\mathbb{F}_{p'}$-scheme \tilde{U}, then \tilde{V} is a local ring of the normalization of \tilde{U} in \tilde{k}. So from (b) we get that there exists an open subscheme \tilde{U} of this last normalization that has \tilde{V} as a local ring and that has the property that \tilde{u} extends to a morphism of $M'(W_m(\tilde{U}))$.

11
Facts:

1. If u_1 is a monomorphism and (O_1, ϕ_{O_1}) is a direct summand of $(O'_1, \phi_{O'_1})$, then u_{a_0} is a monomorphism and $f_m^{a_n}(O, \phi_O)$ is a direct summand of $f_m^{a_n}(O', \phi_{O'})$.

2. If u_1 is a morphism such that its cokernel is annihilated by p', by enlarging V_{u_1}, we can assume $\text{Coker}(u_{a_0})$ is also annihilated by p', cf. [Va06, 2.8.3].

Now let

$$v := \max \{ v(1, 1, b, c) \mid c = 0, 1, 2, \ldots \}, \text{Maximum hodge slope of } \mathbb{C}_k,$$

cf. [Va06, 5.1.1(b)] for the function $v(\cdot, \cdot, \cdot, \cdot)$ with $M_1 = \mathbb{C}_0 \cdot k$ and $M_2 = \mathbb{C}_k$ (v does not depend on m). Replacing m by $m + v$, from the above discussion (case (c)), we get that there exists a finite field extension $k_{\bar{S}, \tilde{\varphi}_v}$ of $k_{\bar{S}}$ and an open, affine subscheme $U_{\tilde{\varphi}_v}$ of the normalization of U in $k_{\bar{S}, \tilde{\varphi}_v}$, such that $U_{\tilde{\varphi}_v}$ has a local ring \tilde{V}_x which is a discrete valuation ring that dominates V_x and moreover we have a morphism

$$i_{U_{\tilde{\varphi}_v}}(m + v) : m + v \mathbb{C}_{0, U_{\tilde{\varphi}_v}} \to m + v \mathbb{C}_{U_{\tilde{\varphi}_v}},$$

where $m + v \mathbb{C}_{0, U_{\tilde{\varphi}_v}}$ and $m + v \mathbb{C}_{U_{\tilde{\varphi}_v}}$ are the pullbacks of $m + v \mathbb{C}_{0, S}$ and $m + v \mathbb{C}$ to $\text{Spec } U_{\tilde{\varphi}_v}$ respectively. Modulo p^m, we have a morphism

$$i_{U_{\tilde{\varphi}_v}}(m) : m \mathbb{C}_{0, U_{\tilde{\varphi}_v}} \to m \mathbb{C}_{U_{\tilde{\varphi}_v}},$$

where $m \mathbb{C}_{0, U_{\tilde{\varphi}_v}}$ and $m \mathbb{C}_{U_{\tilde{\varphi}_v}}$ are the pullbacks of $m \mathbb{C}_{0, S}$ and $m \mathbb{C}$ to $\text{Spec } U_{\tilde{\varphi}_v}$ respectively. Let I_m be the set of morphisms $m \mathbb{C}_{0, k} \to m \mathbb{C}_k$ that are reductions modulo p^m of morphisms $m + v \mathbb{C}_{0, k} \to m + v \mathbb{C}_k$. From [Va06, (Theorem 5.1.1(b)+ Remark 5.1.2)], we get that each morphism in I_m lifts to a morphism $m \mathbb{C}_{0, k} \to \mathbb{C}_k$. Thus I_m is a finite set. Based on the above discussion (case (a)), by replacing (S, U) by its normalizations (\bar{S}, \bar{U}) in a finite field extension of $k_{\bar{S}}$, we can assume that I_m is the set of pullbacks of a set of morphisms L_{m} of $\mathcal{M}^0(W_m(k_{\bar{S}}))$. Since $i_{U_{\tilde{\varphi}_v}}(m)$ is the reduction modulo p^m of the morphism $i_{U_{\tilde{\varphi}_v}}(m + v)$, thus $i_{U_{\tilde{\varphi}_v}}(m) \in I_m$ and the pullback of $i_{U_{\tilde{\varphi}_v}}(m)$ to a morphism of $\mathcal{M}^0(W_m(k_{\bar{S}, \tilde{\varphi}_v}))$ is also the pullback of a morphism in L_m. As $V_x = \tilde{V}_x \cap k_{\bar{S}}$, inside $W_m(k_{\bar{S}, \tilde{\varphi}_v})$ we have $W_m(V_x) = W_m(\tilde{V}_x) \cap W_m(k_{\bar{S}})$. This implies that the pullback of $i_{U_{\tilde{\varphi}_v}}(m)$ to a morphism of $\mathcal{M}^0(W_m(\tilde{V}_x))$ is in fact the pullback of a morphism of $\mathcal{M}^0(W_m(V_x))$. From the above discussion (case (b)) (applied with (V_1, V) replaced by (V_x, R)), we get the existence of an open subscheme U_{V_x} of U that has V_x as a local ring and such that we have a morphism

$$i_{U_{V_x}}(m) : m \mathbb{C}_{0, U_{V_x}} \to m \mathbb{C}_{U_{V_x}},$$

where $m \mathbb{C}_{0, U_{V_x}}$ and $m \mathbb{C}_{U_{V_x}}$ are the pullbacks of $m \mathbb{C}_{0, S}$ and $m \mathbb{C}$ to $\text{Spec } U_{V_x}$ respectively. Using the above Facts 1 and 2, if we apply similar arguments on $j_m : m \mathbb{C}_{0, W} \cong m \mathbb{C}_W$ and $\varphi_m : m \mathbb{C}_W \to m \mathbb{C}_{U_{V_x}}$, we can assume that $i_{U_{V_x}}(m)$ is the composition of two morphisms $j_{U_{V_x}}(m) : m \mathbb{C}_{0, U_{V_x}} \to m \mathbb{C}_{U_{V_x}}$ and $\varphi_{U_{V_x}}(m) : m \mathbb{C}_{U_{V_x}} \to m \mathbb{C}_{U_{V_x}}$, where $j_{U_{V_x}}(m)$ is a monomorphism that splits and the cokernel of $\varphi_{U_{V_x}}(m)$ is annihilated by p'. Now at the level of modules consider the following diagram:

$$\begin{array}{ccc}
 m \mathbb{C}_{0, U_{V_x}} & \xrightarrow{i_{U_{V_x}}(m)} & m \mathbb{C}_{U_{V_x}} \\
 m \mathbb{C}_{0, k} \downarrow & & \downarrow m \mathbb{C}_{k} \\
 m \mathbb{C}_{U_{V_x}} \xrightarrow{i_{U_{V_x}}(m)} & & m \mathbb{C}_{U_{V_x}} \\
\end{array}$$

12
Let $m\mathcal{C}_{0,k} = (W_m(k), p^b\sigma^m)$. Since the Newton polygon of \mathcal{C}_k has $(1,b)$ as a break point, at the level of evaluation there is a unique rank 1 free sub-$W_m(k)$-module $m\mathcal{E}_k = (W_m(k), p^b\sigma^m)$ of $m\mathcal{C}_k$. The morphism $i_{U_{V_x}}(m)$ is nonzero mod p^t (assuming $m > t$) since $i_{U_{V_x}}(m) = \varphi_{U_{V_x}}(m) \circ j_{U_{V_x}}(m)$, where $\text{Coker}(\varphi_{U_{V_x}}(m))$ is annihilated by p^t and $j_{U_{V_x}}(m)$ is a monomorphism that splits. Therefore the morphism $i_{k,a}(m)$ is not a zero morphism if $m > t$, thus it must factor through $m\mathcal{E}_k$

$$i_{k,a}(m) : m\mathcal{C}_{0,k} \xrightarrow{f_{i}(m)} m\mathcal{E}_k \hookrightarrow m\mathcal{C}_k.$$

Let $\epsilon = f_{i}\epsilon(1) \in W_m(k)$ and consider the following commutative diagram

$$m\mathcal{C}_{0,k} = W_m(k) \xrightarrow{f_{i}(m)} m\mathcal{E}_k = W_m(k)$$

We have $p^b\sigma^m(\epsilon) = p^b\sigma^m(f_{i}(m)\epsilon(1)) = f_{i}(m)(p^b\sigma^m(\epsilon)) = f_{i}(m)(p^b) = p^b f_{i}(m)(1) = p^b \epsilon$. Therefore, $\sigma^m(\epsilon) = \epsilon \mod p^{m-b}$. Let $\epsilon = p^t \epsilon'$, where $\epsilon' \in W_m(k)$ is invertible. Since the cokernel of $f_{i}(m)$ is annihilated by p^t (as the pullback to $\text{Spec} k$ of $\varphi_{U_{V_x}}(m)$ is annihilated by p^t and the pullback to $\text{Spec} k$ of $j_{U_{V_x}}(m)$ splits), we have $1 \leq t_k \leq t$. We now have $\sigma^m(\epsilon') = \epsilon' \mod p^{m-b-t_k}$. Therefore $\sigma^m((\epsilon')^{-1}) = (\epsilon')^{-1} \mod p^{m-b-t_k}$. This shows that multiplication by $(\epsilon')^{-1}$ is an automorphism of $W_{m-b-t_k}(k)$ and of $W_{m-b-t_k}(k)$ since $t_k \leq t$. Replacing m by $m-b-t_k$ and composing $f_{i}(m)$ with this automorphism $W_{m-b-t_k}(k)$

$$W_m(k) \xrightarrow{\text{multiplication by } (\epsilon')^{-1}} W_m(k)$$

we can assume $f_{i}(m)(1) = 1 \in W_m(k)$.

Now let $y \in U$ be another point of codimension 1. Similarly we can construct a morphism $f_{i}(m)$ and by the above construction $f_{i}(m)$ and $f_{i}(m)$ coincide. This tells us that the pullbacks of $i_{U_{V_x}}(m)$ and $i_{U_{V_x}}(m)$ to morphisms of $\mathcal{M}'(W_m(U_{V_x} \cap U_{V_y}))$ coincide and therefore they glue together. Now we glue the morphisms $i_{U_{V_x}}(m)$ for all $x \in U$ with codimension 1 and we obtain a morphism $i_{U_{V_x}}(m) : m\mathcal{C}_{0,U_0} \rightarrow m\mathcal{C}_{U_0}$, where U_0 is an open subscheme of U and S and codim $(U \setminus U_0) \geq 2$. By the definition of H_m, we have constructed an S-section $j : U_0 \rightarrow H_m$.

Step 4. Sections of H_m.

By the gluing argument of Step 3, we have an open subscheme U_0 of S with codim$(U \setminus U_0) \geq 2$ and a section $j : U_0 \rightarrow H_m$ such that the following diagram commutes:

$$\begin{array}{ccc}
U_0 & \xrightarrow{j} & H_m \\
\downarrow & & \downarrow \\
U & \xrightarrow{\text{section } j} & S.
\end{array}$$

Let J_m be the schematic closure of $j(U_0)$ in H_m. As H_m is affine and Noetherian, J_m is also an affine, Noetherian S-scheme. Since S is Noetherian, normal and integral, we get that U_0 is also Noetherian, normal and integral and therefore J_m is integral. Now we have the following commutative diagram:
Now consider the pullback \tilde{J}_m of J_m to U:

\[
\begin{array}{c}
U_0 \xrightarrow{\text{open}} U \xrightarrow{\text{affine}} S.
\end{array}
\]

Claim: The morphism g is an isomorphism, i.e., $\tilde{J}_m \cong U$.

Proof of Claim: To prove that g is an isomorphism, we can assume $U = \text{Spec } A$ is affine. As g is an affine morphism, we can also assume $\tilde{J}_m = \text{Spec } B$ is also affine. Since U_0 is open dense in both U and \tilde{J}_m, therefore U and \tilde{J}_m are birationally equivalent. Thus their fractional fields Frac(A) and Frac(B) are equal. Since U_0 is in both U and \tilde{J}_m, we have $A_p = B_p$ for any prime $p \in \text{Spec } A$ of height 1. As A is a Noetherian normal domain, we have

\[
A \hookrightarrow B \subset \bigcap_{q \in \text{Spec } b \text{ of height } 1} B_q \subset \bigcap_{p \in \text{Spec } A \text{ of height } 1} A_p = A
\]

(cf. [Hi80, (17.H)] for the equality part; The first monomorphism is given by $g^\#$). Therefore $A = B$ and the claim is proved.

Now we have a section from $U \cong \tilde{J}_m \hookrightarrow H_m$.

Step 5. Final output: $U = J_m$ for $m >> 0$.

Claim: If $m >> 0$, then $U = J_m$.

Proof of Claim: Suppose not. Let η be the generic point of an irreducible component of $J_m \setminus U$. Consider the stalk at η: $\mathcal{O}_{J_m, \eta} := R_p$, which is a normal, local Noetherian ring but not a field since U is dense in J_m. Now we have dim$(R_p) \geq 1$. Therefore, we can find a prime ideal $q \in U \subset S_p$, such that dim$(R_p/q) = 1$. Now the normalization $(R_p/q)^\alpha$ of R_p/q is an integrally closed Noetherian local ring of dimension one, thus a discrete valuation ring. The morphism Spec$(R_p/q) \to J_m$ obtained from composing the natural morphisms Spec$(R_p/q)^\alpha \to \text{Spec } R_p/q \to \text{Spec } R_p \to J_m$ sends the generic point of Spec$(R_p/q)^\alpha$ to U and the closed point to $J_m \setminus U$. With the help of a little commutative algebra, we can further assume the generic point of Spec$(R_p/q)^\alpha$ is mapped into $U_0 \subset U$. Let D be the completion of the discrete valuation ring $(R_p/q)^\alpha$, it is isomorphic to a power series ring $l[[t]]$ for some field l of characteristic p by Cohen structure theorem, cf. [Ei07, (Theorem 7.7)]. By injecting $l[[t]]$ to $\tilde{l}[[t]]$, we can further assume l is algebraically closed. Now we look at the pullback of \mathcal{C} to Spec D:

\[
\begin{array}{c}
\mathcal{C}_D \xrightarrow{\text{open}} \mathcal{C} \xrightarrow{\text{affine}} S.
\end{array}
\]
It is an F^α-crystal such that at the generic point $\text{Spec}(\text{Frac}(D))$ of D its Newton polygon has $(1, b)$ as a break point and at the closed point $\text{Spec} l$ of D all Newton slopes are at least $b + 1$. Suppose the generic point $\text{Spec}(\text{Frac}(D))$ is mapped to $z \in U_0$, we pull back the following morphisms to $\text{Spec}(D)$:

$$
\begin{array}{ccc}
\text{Spec} E & \xrightarrow{\psi_{U_0}(m)} & \text{Spec} D \\
\text{mC}_{0, D} & \xrightarrow{j_{U_0}(m)} & \text{mC}'_{U_0} \\
\text{mC}_0 & \xrightarrow{m \mathcal{C}_{U_0}} & \text{mC}'_{U_0} \\
\end{array}
$$

Let $E = D_{\text{Perf}}$ and $m_{0, E}, m_{E}$ and m_{E}' be the pullback of $m_{0, D}, m_{D}$ and m_{D}' to $\text{Spec} E$ respectively:

$$
\begin{align*}
\text{Spec} E & \xrightarrow{\psi_{U_0}(m)} \text{Spec} D \\
\text{mC}_{0, E} & \xrightarrow{j_{U_0}(m)} \text{mC}'_{E} \\
\text{mC}_0 & \xrightarrow{m \mathcal{C}_{U_0}} \text{mC}'_{E} \\
\end{align*}
$$

Recall $r = \text{rank}(E) = \text{rank}(m_{E}) = \text{rank}(m_{E}') = \text{rank}(m_{E})$. Let $m_{0, E} = (W_m(E), F^t)$, let $m_{E} = (W_m(E), F^t)$ and let $m_{0, E}' = (W_m(E), p^b \sigma^m)$. Since C' is divisible by b, we can assume $F' = p^b G$. Let x be a basis element of $M_{0}/p^m M_{0}$ (We can assume $\sigma^m x = x$) and consider the following morphism at the level of $W_m(E)$-modules:

$$
m_{E}' \xrightarrow{\gamma} m_{E}' \xrightarrow{\gamma} m_{E}
$$

where $y = (y_1, y_2, \cdots, y_r)$ and $y_i \in W_m(E)$ for $i = 1, 2, \cdots, r$. We have $p^h G(y) = p^h G(y(x)) - p^h \gamma(x) = \bar{F}(y(x)) - \gamma(p^h x) = \gamma(p^h \sigma^m x) = \gamma(p^h x) = 0$. Therefore $G(y) = y \mod p^m b$. Since the cokernel of $\gamma : m_{E}'_{E} \to m_{E}$ is annihilated by p^t and $y : m_{0, E}' \to m_{E}'$ is a monomorphism that splits, we can write $y = p^h z$ for $0 \leq t_0 \leq t$ and $z = (z_1, z_2, \cdots, z_r)$ is not divisible by p, where $z_i = (z_{i, 0}, z_{i, 1}, z_{i, 2}, \cdots, z_{i, m-1})$ with $z_{i, j} \in E$ for $1 \leq i \leq r, 0 \leq j \leq m - 1$.

Subclaim 1: $y \neq 0 \mod p^h$ at the closed point $\text{Spec} l$ of $\text{Spec} E$.

Proof of Subclaim 1: Recall $E = l[[T]]^{\text{Perf}}$. As $G(y) = y \mod p^{m-b} x$ with $0 \leq t_0 \leq t$, we have $G(z) = z \mod p^{m-b-t}$. Since $z = (z_1, z_2, \cdots, z_r)$ is not divisible by p, modulo p in $E'/l[[T]]^{\text{Perf}}$ we have $(z_{1, 0}, z_{2, 0}, \cdots, z_{r, 0}) \neq 0$. Suppose $z = 0$ at the closed point $\text{Spec} l$, then for some $v \in \mathbb{N}$, we have $z_{i, 0} \in l[[T]]^{\text{Perf}}$ and $z_{i, 0} = 0 \mod T^v$ for all $i = 1, 2, \cdots, r$. Now $\tilde{T} = T^v$ and let $z_{i, 0} = \tilde{T} f_{i, 0}^v$ for some $f \in \mathbb{N}$, for all $i = 1, 2, \cdots, r$ and $z_{i, 0}^v \neq 0 \mod \tilde{T}$ for some $1 \leq i_0 \leq r$. Let $\overline{\mathcal{C}}$ be \mathcal{C} mod p. We have $\overline{\mathcal{C}}((z_{1, 0}^v, z_{2, 0}^v, \cdots, z_{r, 0}^v)) = \overline{G((z_{1, 0}, z_{2, 0}, \cdots, z_{r, 0}))} = \overline{G(\tilde{T} f_{1, 0}^v, \cdots, z_{r, 0}^v))} = \overline{T^v \frac{G((z_{1, 0}, z_{2, 0}, \cdots, z_{r, 0}))}{\mathcal{C}}}$. This contradicts the fact that $z_{i, 0}^v \neq 0 \mod \tilde{T}$ and thus $z \neq 0$ at the closed point. As $y = p^h z$, we have $y \neq 0 \mod p^h$ at the closed point and Subclaim 1 is proved.

Evaluating the morphism γ at the closed point $\text{Spec} l$ of $\text{Spec} E$ we have a morphism $$\beta : (W_m(l), p^h \sigma^m) \to (N, \hat{F})$$
where \((N, \hat{F}) = (\mathcal{C}_l \mod p^m)\) and \(\xi_l\) is the pullback of \(\mathcal{C}_D\) to the closed point \(\text{Spec} \, l\). Since \(y \neq 0 \mod p^h\) at \(\text{Spec} \, l\), the morphism \(\beta\) is non-zero when reduced modulo \(p^h\).

Subclaim 2: \(\mathcal{C}_l\) has Newton slope \(b\).

Proof of Subclaim 2: Let \(\mathcal{C}_l = (M_l, F_l)\) and suppose all Newton slopes of \(\mathcal{C}_l\) are at least \(b + 1\). By [Ka79, (Sharp Slope Estimate 1.5.1)] we have \(F_l^i(M_l) \subset p^{(b+1)u-h} M_l\) for all \(u \in \mathbb{N}\), where \(h > 0\) is a fixed number. If \(u > h + t_0 + 1\), we have \(F_l^u(M_l) \subset p^{t_0 + h + 1} M_l\). Let \((N, \hat{F}^u) = (M_l, F_l^u) \mod p^m\) and we also have \(\hat{F}^u(N) \subset p^{t_0 + h + 1} N\). Now consider the following morphism

\[
\alpha : (W_m(l), (p^b \sigma^m)^y) \rightarrow (N, \hat{F}^u)
\]

where as a function \(\alpha = \beta\). Since the morphism \(\beta\) is non-zero when reduced modulo \(p^h\), so is the morphism \(\alpha\). However, \(p^b u e = p^b u \alpha(1) = \alpha(p^b u) = \alpha((p^b \sigma^m)^y(1)) = \hat{F}^u(\alpha(1)) = \hat{F}^u(e) \in p^{m + t_0 + 1} N\) and thus \(p^{m - t_0} \alpha(1) = p^{m - t_0} e = p^{m - t_0} p^b u e \in p^{m + t_0 + 1} N = p^{m + 1} N = 0\) if \(m \geq b u + t + 1 \geq b u + t_0 + 1\), which is a contradiction since \(\alpha \mod p^h\) is non-zero. Subclaim 2 is therefore proved.

By Subclaim 2, the \(F^n\)-crystal \(\mathcal{C}_D\) has Newton slope \(b\) at the closed point \(\text{Spec} \, l\), a contradiction by our assumption. Therefore the claim is proved, i.e., \(U = J_m\).

Now we have \(S \rho_0 = U = J_m\) and \(J_m\) is affine, therefore \(S \rho_0\) is affine and Theorem 5 is thus proved. ■

First application of Theorem 5:

Proposition 1 Theorem 5 implies Theorem 3, i.e., if \(S \rho_0\) is pure in \(S\) for each point \(P_0\) in the xy-coordinate plane, then the Newton polygon stratification of \(S\) defined by \(\mathcal{C}\) is pure in \(S\).

Proof of Proposition 1: Let \(S\) and \(\mathcal{C}\) be as above and let \(\nu_0\) be a Newton polygon. We need to show that the set

\[
S_{\nu_0} = \{ s \in S | NP(\mathcal{C}_s) = \nu_0 \}
\]

is an affine \(S\)-scheme. To prove that \(S_{\nu_0}\) in \(S\) is affine, we can further assume \(S\) is affine. Let the break points of \(\nu_0\) be \(Q_0, Q_1, \cdots, Q_t\) and let

\[
S_{\geq \nu_0} = \{ s \in S | NP(\mathcal{C}_s) \geq \nu_0 \}.
\]

Notice for any \(s \in S\), the Newton polygon \(NP(\mathcal{C}_s)\) is \(\nu_0\) if and only if \(NP(\mathcal{C}_s) \geq \nu_0\) and moreover \(Q_0, Q_1, \cdots, Q_t\) are all break points of \(NP(\mathcal{C}_s)\). Therefore \(S_{\nu_0} = S_{\geq \nu_0} \cap S_{Q_0} \cap S_{Q_1} \cap \cdots \cap S_{Q_t}\). By Theorem 1, \(S_{\geq \nu_0}\) is closed in \(S\), thus affine. By Theorem 5, \(S_{Q_i}\) is affine for \(i = 0, 1, \cdots, t\). Since \(S\) is affine thus separated, we conclude that \(S_{\nu_0}\) is affine. ■

Second application of Theorem 5:

Proposition 2 Theorem 5 implies Theorem 4.

Proof of Proposition 2: From Theorem 5, we know that \(S \rho_0\) is pure. As purity implies universal weak purity, we have \(S \rho_0\) being universally weakly pure. ■
Now we have the following implications:

Theorem 5 ⇒ Theorem 4 ⇒ Theorem 2.

Theorem 5 ⇒ Theorem 3 ⇒ Theorem 2.

Third application of Theorem 5:

Let $C = (M, F)$ be an F^n-crystal over an algebraically closed field k of char $p > 0$. Let \overline{M} be the reduction modulo p of M and let $\overline{F} : \overline{M} \to \overline{M}$ be the reduction modulo p of F. Then the p-rank t of C can be defined equivalently as follows:

(i) It is $\dim_{\mathbb{F}_p}(|x \in \overline{M}| \overline{F}(x) = x)$.

(ii) It is the multiplicity t of the Newton slope 0 of C.

(iii) It is the unique non-negative integer such that $(t, 0)$ is a break point of the Newton polygon of C.

Let S be a locally Noetherian \mathbb{F}_p-scheme and let \mathfrak{C} be an F^n-crystal over S. For each $t \in \mathbb{N}$, let Y_t be the reduced, locally closed subscheme of S formed by those points $s \in S$ with the property that the p-rank of the pullback of \mathfrak{C} to $k(s)$, where $k(s)$ is the algebraic closure of the residue field of s, is exactly t. We call Y_t the stratum of p-rank t of the p-rank stratification of S defined by \mathfrak{C}.

Based on (iii), one gets the following corollary:

Corollary 2 Let S be a locally Noetherian \mathbb{F}_p-scheme and \mathfrak{C} be an F-crystal over S, then the p-rank strata of S defined by \mathfrak{C} are pure in S.

Proof of Corollary 2: Let Y_t be a stratum of the p-rank stratification of S as above. A point $s \in S$ belongs to Y_t if and only if $(t, 0)$ is a break point of the Newton polygon of \mathfrak{C}, s. Using the same notation as in the statement of Theorem 5, this shows that $Y_t = S_{(t,0)}$. By Theorem 5, Y_t is affine in S. ■

Since purity implies weak purity, Corollary 2 implies the following theorem:

Theorem 6 (Th. Zink, [Zi01, (Proposition 5)]) Let S be a locally Noetherian \mathbb{F}_p-scheme and \mathfrak{C} be an F-crystal over S, then the p-rank strata of S defined by \mathfrak{C} are weakly pure in S.

Fourth application of Theorem 5:

Let R be an \mathbb{F}_p-algebra and let A be an $n \times n$ matrix with coefficients in R, i.e., $A \in M_{n \times n}(R)$.

Let $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ be an n-dimensional vector whose entries are variables x_1, x_2, \ldots, x_n and let \underline{b}
be a constant n–dimensional vector with coefficients in R, i.e., $\underline{b} \in R^n$. Let $\underline{x}^{[p]} = \begin{bmatrix} x_1^p \\ x_2^p \\ \vdots \\ x_n^p \end{bmatrix}$.

Consider the following Artin-Schreier equation:

$$\underline{x} = A\underline{x}^{[p]} + \underline{b}$$

Let S be a R-scheme. Define

$$\phi : S \to \mathbb{N}$$

$$s \mapsto d = \dim_{\mathbb{F}_p}(k(s) \mid x = A_s\underline{x}^{[p]} + \underline{b}_s),$$

where $k(s)$ is the algebraic closure of the residue field $k(s)$ of $s \in S$, A_s is the canonical image of A in $M_{n \times n}(k(s))$ and \underline{b}_s is the canonical image of \underline{b} in $k(s)^n$.

Let S be an R-scheme. For any $d \in \mathbb{N}$, let Y_d be the reduced, locally closed subscheme of S formed by those points $s \in S$ with the property $\phi(s) = d$. We call Y_d the stratum of the Artin-Schreier stratification of S defined by the equation $\underline{x} = A\underline{x}^{[p]} + \underline{b}$.

By the first proof of Theorem 2.4.1 (b) in [Va13], the Artin-Schreier stratification of S defined by the equation $\underline{x} = A\underline{x}^{[p]} + \underline{b}$ is equivalent to the Artin-Schreier stratification of S defined by the equation $\underline{x} = \tilde{A}\underline{x}^{[p]}$ for some $\tilde{A} \in M_{n \times n}(R)$. Therefore from now on, we will always assume $\underline{b} = \underline{0}$ in the Artin-Schreier stratification.

Corollary 3 Let $S = \text{Spec } R$ be a locally Noetherian affine \mathbb{F}_p-scheme. Let \underline{x}, $\underline{x}^{[p]}$ and A be defined as above. Then each Artin-Schreier stratum of S defined by the equation $\underline{x} = A\underline{x}^{[p]}$ is pure in S.

Proof of Corollary 3: Let S_0 be a stratum of the Artin-Schreier stratification of S defined by the equation $\underline{x} = A\underline{x}^{[p]}$. By replacing S by the schematic closure $\overline{S_0}$ of S_0 in S, we can assume that S_0 is open dense in S. We can further assume that the \mathbb{F}_p-scheme S is reduced. Consider the pullback of S_0 in the following commutative diagram:

$$\begin{array}{ccc}
S^{\text{perf}}_0 & \xrightarrow{\text{integral}} & S_0 \\
\downarrow \text{open} & & \downarrow \text{open} \\
S^{\text{perf}} & \xrightarrow{\text{integral}} & S = \text{Spec } R
\end{array}$$

Since the morphism $S^{\text{perf}}_0 \to S_0$ is integral and S_0 is an open subscheme of S, to prove that S_0 is affine it suffices to prove that S^{perf}_0 is affine, cf. [Va06, (Lemma 2.9.2)]. Therefore, we can assume $R = R^{\text{perf}}$, i.e., R is a reduced, Noetherian perfect \mathbb{F}_p–algebra.
Now consider the F-crystal $\mathcal{C} = (W(R)^{2n}, F)$ over R, where $F = g \begin{bmatrix} I_n & 0_n \\ 0_n & pI_n \end{bmatrix} \sigma_{W(R)}$. Here g is a fixed invertible matrix in $GL_{2n}(W(R))$ lifting $\overline{g} = \begin{bmatrix} A & I_n \\ I_n & 0_n \end{bmatrix} \in GL_{2n}(R)$, I_n is the $n \times n$ identity matrix, 0_n is the $n \times n$ zero matrix and $\sigma_{W(R)}$ is the Frobenius endomorphism of $W(R)$.

Claim: For any $d \in \mathbb{N}$, the stratum of p-rank d of the p-rank stratification of S defined by \mathcal{C} is the same as the stratum Y_d (using the same notation as in the definition of Artin-Schreier stratification) of the Artin-Schreier stratification of S defined by the equation $\underline{x} = A\underline{x}^{[p]}$.

Proof of Claim: Let $s \in S = \text{Spec } R, \overline{k(s)}$ be the algebraic closure of its residue field, $\sigma_{W(\overline{k(s)})}$ be the Frobenius endomorphism of $W(\overline{k(s)})$ and $F_s = F \otimes_{W(\overline{k(s)})} g_s \begin{bmatrix} I_n & 0_n \\ 0_n & pI_n \end{bmatrix} \sigma_{W(\overline{k(s)})}$, where g_s is the canonical image of g in $GL_{2n}(W(\overline{k(s)}))$. Consider the pullback $\mathcal{C}_s = (W(\overline{k(s)})^{2n}, F_s)$ of \mathcal{C} to Spec $k(s)$:

$$\xymatrix{ \mathcal{C}_s & \mathcal{C} \\
\text{Spec } k(s) \ar[r] \ar[d] & S = \text{Spec } R \ar[d]
}$$

We investigate the \mathbb{F}_p-Vector space $V = \{\underline{z} \in \mathcal{C}_s|F_s(\underline{z}) = \underline{z}\}$, where $F_s = \overline{g}_s \begin{bmatrix} I_n & 0_n \\ 0_n & 0_n \end{bmatrix} \sigma_{W(\overline{k(s)})} = \begin{bmatrix} A_s & 0_n \\ I_n & 0_n \end{bmatrix}$ is the reduction modulo p of F_s, where A_s is the canonical image of A in $M_{n \times n}(\overline{k(s)})$ and g_s is g_s mod p, and $\overline{\mathcal{C}_s} = (\overline{k(s)}^{2n}, \overline{F_s})$ is the reduction modulo p of \mathcal{C}_s. Suppose

$$\underline{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_{2n} \end{bmatrix} \in \overline{k(s)}^{2n}.$$ We have $\underline{z} \in V$ if and only if $\begin{bmatrix} A_s & 0_n \\ I_n & 0_n \end{bmatrix} \begin{bmatrix} z_1^p \\ \vdots \\ z_{2n}^p \end{bmatrix} = \begin{bmatrix} z_1 \\ \vdots \\ z_{2n} \end{bmatrix}$ if and only if

$$A_s \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} = \begin{bmatrix} z_1^p \\ z_2^p \\ \vdots \\ z_n^p \end{bmatrix}$$ and $z_{n+1} = z_1^p, z_{n+2} = z_2^p, \ldots, z_{2n} = z_n^p$. Therefore

$$\dim_{\mathbb{F}_p} V = \dim_{\mathbb{F}_p}(\{\underline{z} \in \overline{k(s)}^{2n}|\underline{z} = A\underline{z}^{[p]}\}) := d,$$

which means the stratum of p-rank d in the p-rank stratification of S defined by \mathcal{C} is the same as the stratum Y_d in the Artin-Schreier stratification of S defined by the equation $\underline{x} = A\underline{x}^{[p]}$. Since $s \in S$ is arbitrary chosen and thus d is arbitrary, Claim is proved.

By Corollary 2, each Artin-Schreier stratum of S defined by the equation $\underline{x} = A\underline{x}^{[p]}$ is pure in S. This ends the proof of Corollary 3. ■

Remark: Deligne and Vasiu also obtained the results of Corollary 2 and 3 using different methods, cf. [De11] and [Va14].
References

[Be74] Pierre Berthelot: Cohomologie cristalline des schémas de caractéristique $p > 0$, Lecture Notes in Math., Vol. 407, Springer-Verlag, Berlin-New York, 1974.

[BM90] Pierre Berthelot and William Messing: Théorie de Dieudonné cristalline III. Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, 173247, Progr. Math., Vol. 86, Birkhäuser Boston, Boston, MA, 1990.

[De11] Pierre Deligne: An unpublished proof, notes to A. Vasiu, 2011.

[De72] Michel Demazure: Lectures on p-divisible groups, Lecture Notes in Math., vol. 302, Springer-Verlag, 1972.

[Ei07] David Eisenbud: Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, 2007.

[Gr61] Alexander Grothendieck: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphisms, Inst. Hautes Études Sci. Publ. Math., vol. 11, 1961.

[Gr64] Alexander Grothendieck: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schéma, Inst. Hautes Études Sci. Publ. Math., vol. 20, 1964, vol. 24, 1965, vol. 28, 1996, and vol. 32, 1967.

[Ha08] Michiel Hazewinkel: Witt vectors, part 1, manuscript, 148 pages, 2008.

[Hi80] Matsumura Hideyuki: Commutative algebra, second ed., Benjamin/Cummings, Reading, MA, 1980.

[HT01] Michael Harris and Richard Taylor: On the geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies 151, PUP 2001.

[Ii94] Luc Illusie: Crystalline cohomology. Motives (Seattle, WA, 1991), 4370, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.

[JO00] Aise Johan de Jong and Frans Oort: Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), no. 1, 209–241.

[Ka79] Nicholas Michael Katz: Slope filtration of F-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I, Astérisque, No. 63 (1979), 113–163.

[NVW10] Marc-Hubert Nicole, Adrian Vasiu and Torsten Wedhorn: Purity of level m stratifications, Ann. Sci. École Norm. Sup. (4) 43 (2010), no. 6, 925955.

[Se79] Jean-Pierre Serre: Local fields, Grad. Texts in Math., vol. 67, Springer-Verlag, 1979.

[Va06] Adrian Vasiu: Crystalline boundedness principle, Ann. Sci. École Norm. Sup. 39 (2006), no. 2, 245–300.
[Va13] Adrian Vasiu: *A motivic conjecture of Milne*, *J. Reine Agew. Math. (Crelle)* 685 (2013), 181247.

[Va14] Adrian Vasiu: *Talk on Conference on Arithmetic Algebraic Geometry on the occasion of Gerd Faltings’ 60th birthday*, Max Planck Institute for Mathematics, 2014.

[Ya10] Yanhong Yang: *An improvement of de Jong–Oort’s purity theorem*, preprint, 2010, arXiv:1004.3090.

[Zi01] Thomas Zink: *On the slope filtration*, *Duke Math. J.* 109 (2001), no. 1, 79–95.