Untargeted profiling of field cultivated bush tea \((Athrixia\ phylicoides\ DC.) \) based on metabolite analysis

Mohale K. Cecilia\(^{1,}\), Assress H. Abrha\(^{2,}\), Nyoni Hlengilizwe\(^{3,}\), Araya T. Hintsa\(^{1,}\), Muhammad Umar\(^{4,}\), Mudau F. Nixwell\(^{1,5,}\), Shinawar Waseem Ali\(^{6,}\), Muhammad Inam Afzal\(^{7,}\), Miquel Martorell\(^{8,}\), Bahare Salehi\(^{9,}\), William N. Setzer\(^{10,11,}\), Muhammad Umair Sattar\(^{12,}\), Muhammad Imran\(^{13,}\), Javad Sharifi-Rad\(^{14,1}\)

\(^{1}\)University of South Africa, Department of Agriculture and Animal Health, Private Bag X6, Florida, 1710, South Africa

\(^{2}\)Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, South Africa

\(^{3}\)ARC-Roodeplaat, Vegetable and Ornamental Plant Institute, Private Bag X293, Pretoria, 0001, South Africa

\(^{4}\)Department of Biosciences, COMSATS University Islamabad, Park road, Tarlai kalan, Islamabd, 45550, Pakistan

\(^{5}\)School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa.

\(^{6}\)Institute of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore-54590, Pakistan

\(^{7}\)Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Chile

\(^{8}\)Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Chile

\(^{9}\)Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran

\(^{10}\)Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA

\(^{11}\)Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT, 84043, USA

\(^{12}\)Punjab Food Authority, Lahore, Pakistan

\(^{13}\)University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan

\(^{14}\)Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Correspondence to: umer.imperial@gmail.com; bahare.salehi007@gmail.com; mudauf@ukzn.ac.za; javad.sharirifrad@gmail.com

Received April 5, 2020; Accepted April 30, 2020; Published June 25, 2020

Doi: http://dx.doi.org/10.14715/cmb/2020.66.4.14

Copyright: © 2020 by the C.M.B. Association. All rights reserved.

Abstract: Bush tea \((Athrixia\ phylicoides\ DC.) \) is an aromatic South African indigenous plant used for many decades as a health beverage and medicine. Several studies have extensively investigated wild bush tea’s secondary metabolites, but the entire profiling of cultivated bush tea’s metabolites is limited in the literature. Thus, the objective of this study was to profile cultivated bush tea metabolites using liquid chromatography-quadrupole time of flight-tandem mass spectrometry (LC-QTOF-MS). The 31 metabolites profiled included; benjaminamide, chlorogenic, chrysosplenetin, coumarin, 6Z-docosenamide, naringemin 7-O-β-D-glucoside, 5-p-coumaroylquinic acid, integrastatin A, lutetin 7-O-(6-O-malonyl-β-D-glucoside), 1,3-dicaffeoylquinic acid, magnoshinin, okanin, (2S)-5-hydroxy-7-methoxy-6,8-dimethylflavone, (9Z,12Z,15Z)-octadecatrienoic acid, 2′-deaminio-2′-hydroxy-6′-dehydroparomamine, O-butanoylcarmitine, myricitrin, goric acid, tetracenoxyin X, sakurain, n-tryptophan, linoleamide, laricitrin 7-monoglucoside, l-β-phenylalanine, l-proline, pheophytin A, pheophorbide A, Pi(18:0/20:4(8Z,11Z,14Z,17Z)), steardionic acid, and giberellin A14 aldehyde. These annotated metabolites included phenolics, flavonoids, and quinic acids, indicating that bush tea is rich in metabolites, which have a potential wide range of health benefits.

Keywords: *Athrixia phylicoides*; Metabolites; Bush tea; LC-QTOF-MS; Phytochemistry.

Introduction

The effects of consumption of herbal teas, which contain thousands of phytochemicals, on general health and relief of symptoms in severe diseases have been reported (1-4). The quality of tea is inevitably associated with the presence and concentration of phytochemicals (5-8), thus, the discovery of novel tea compounds has increased globally since about 80% of the world’s population depends on traditional medicines and herbal teas for primary health care (9).

Bush tea \((Athrixia\ phylicoides\ DC.) \), an aromatic leafy shrub native to South Africa (10), holds an impressive history treating various ailments (11) and contributed to the primary health care of ancient people (12). Several studies have been conducted to assess bush tea’s potential as an herbal tea, and demonstrated that bush plant has phytochemicals and secondary metabolites, which have healing effects and pharmacological properties (13-16). However, these studies have only identified and characterized bush tea sampled from the wild. Metabolomics approaches such as untargeted ultraperformance liquid chromatography–mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted \(^1\)H NMR have been recommended for tea phytochemical composition profiling to evaluate the tea quality (17). In bush tea, the whole profiling of cultivated bush tea’s metabolites using metabolomic analysis is still not investigated. In this study, cultivated bush tea metabolites were profiled using liquid chromatography-quadrupole
time of flight-tandem mass spectrometry (LC-QTOF-MS/MS).

Materials and Methods

Experimental site
The trial was carried out at the Agricultural Research Council Vegetable and Ornamental Plant Institute situated about 25 km north of central Pretoria on the Moloto/KwaMhlanga Road (R573), GPS coordinates 25° 59” S; 28° 35” E. The farm covers approximately 4000 ha, of which only 650 ha is under irrigation. The bush tea was grown under 40% shade net and drip irrigation at frequency of 2.5 mm/h. Agronomic practices such as fertilization was applied as per Tshivhandekano et al. (18) who recommended that 150 N kg/ha.

Sample preparation
Two-year mature leaf and twig samples were harvested from bush tea plants. Harvested leaves were air-dried at room temperature in the shade. Samples were then ground to a powder using a benchtop grinder and stored in glass vials below -50°C until extraction.

Extraction of bush tea samples for LC-MS
Ten milligrams of each sample were weighed into 2-mL Eppendorf tubes. One mL solvent (0.1% formic acid in methanol) was added to dissolve the samples and vortexed for 1 min then placed in a sonicator waterbath for 30 min. Samples were then centrifuged for 5 min at 10,000 rpm on a benchtop centrifuge. Approximately 700 μL of the supernatant were pipetted into HPLC vials and fitted with metal caps with rubber septa and secured with a crimper.

QTOF LC-MS analysis
The supernatants were subsequently injected into the QTOF LC-MS (Thermo Scientific, Dionex Ultimate 3000 Dionex Softron GmbH, Dornierstr. 4, Germany). Metabolites were separated using a gradient of H₂O with 0.1% formic acid (solvent A) and acetonitrile (solvent B), using a Dionex Ultimate 3000 UPLC at a flow rate 0.3 mL/min on a Waters BEH C18, 2.1 × 100 mm column. Mass spectrometry data was obtained on a QTOF Bruker Impact II (Bruker Daltonics GmbH, Bremen, Germany) using electron spray ionization (ESI) running in positive mode, that scans between 50-1600 m/z, with nebulizer at 1.8 bar and dry gas as 8 L/min.

Liquid chromatography-MS data were analyzed using the Compass data analysis tool version 4.3.110 and converted into buckets after peak integration and Pareto scaling. Peaks were identified according to actual mass, MS/MS and retention time (RT). Accurate mass and MS/MS spectral data were compared to the Kyoto Encyclopedia of Genes and Genomes (KEGG), Chemical Entities of Biological Interest (CheBI), Chemspider and MetFrag databases.

Results and Discussion
There is lack of distinct literature on compounds in cultivated bush tea. The previous studies reported compounds from bush tea that were harvested from the wild, which is considered unsustainable since the domestication of the wild plant is critical to avoid extirpation of this plant. The results from this study in Tables 1 and 2 demonstrate the 31 compounds detected from cultivated bush tea using LC-QTOF-MS. The compounds annotated were validated through fragment ions denoted in Table 1 and 2, and chromatogram in Figure 1. The selected extracted ion chromatograms of the cultivated bush tea extract included O-butanylocarnitine, l-β-phenylalanine, d-tryptophan, chlorogenate, coumarin, naringenin-7-O-β-d-glucoside, chrysospleninetin, steardonic acid, gibberellin A14 aldehyde, 9Z,12Z,15Z-octadecatrienoic acid, 6Z-docosenamide (Figure 1). About nine compounds were previously reported to be present in bush tea while 25 compounds are newly detected bush tea compounds (Table 3).

The secondary metabolites profiled included benzaminamide (mass 681.627; RT 8.85 min; C₄₂H₅₄NO₁₈) which was isolated from Ficus mucuso Welw. ex Ficalho and possess antimicrobial activities (19). Another secondary metabolite annotated chlorogenate or chlorogenic acid (mass 354.095; RT 4.61 min; C₁₇H₁₅O₉) was also profiled as one of the compounds in bush tea (Figure 2). This finding is consistent to with results reported by de Beer et al. (20) who reported the presence of chlorogenic acid in bush tea. Chlorogenate was also reported as a compound that lowers the risk of blood pressure (21). Chrysospleninetin (mass 374.107; RT 8.96 min; C₁₉H₁₉O₈), a secondary metabolite that was repor-
Compound	Retention time (min)	Elemental composition	[M+H]+	Frag ion 1	Frag ion 2	Frag ion 3	Frag ion 4
Benjaminamide	8.85	C₁₇H₂₁NO₆	681.627	298.2740			
Chlorogonate	4.61	C₁₂H₁₇O₉	354.0951	117.0335	135.0441	145.0284	163.0390
Chryso sple nitin	8.96	C₁₅H₂₀O₉	374.1072	135.0441	299.0550	302.0421	317.0655
Coumarin	5.16	C₉H₈O₂	146.037	91.0542	119.0491		
6Z-Docosenamide	11.93	C₁₈H₃₀NO	337.334	71.0542	85.0102	86.0600	97.0648
Naringenin 7-O-β-d-glucoside	8.70	C₁₇H₂₃O₁₀	434.121	362.0632	377.0867	405.0816	
5-p-Coumaroylquinic acid	4.21	C₁₇H₂₁O₈	338.108	91.0542	119.0491	147.0441	
Integastatin A	7.25	C₂₈H₃₉O₉	332.0526	347.0706	375.0710	405.0816	
Luteolin 7-O-(6-O-malonyl-β-d-glucoside)	6.29	C₁₆H₂₀O₄	534.101	135.0441	145.0284	163.0389	
1,3-Dia cetoxyquinic acid	5.18	C₂₀H₂₂O₂	516.126	135.0441	145.0284	163.0390	499.1234
Magnoshinin	8.85	C₁₇H₂₃O₈	414.204	119.0491	135.0804	135.0804	135.0804
Okanin	6.55	C₁₅H₂₃O₆	288.063	153.0182	163.0389	163.0390	163.0390
(2S)-5-Hydroxy-7-methoxy-6,8-dimethylflavanone	9.00	C₁₇H₂₃O₆	298.121	107.0491	119.0491	135.0804	147.0441
(9Z,12Z,15Z)-Octadecatrienoic acid	10.18	C₁₈H₃₀O₂	278.225	81.0699	95.0855	95.0855	123.1168
2″-Deamino-2″-hydroxy-6″-dehydroparomamine	6.48	C₁₁H₂₁NO₂	322.138				
O-Butanoylcarnitine	3.09	C₁₁H₂₁NO₂	231.147	214.1438			
Myricitrin	6.90	C₂₁H₂₀O₁₂	464.095	303.0499			
Gorlic acid	10.18	C₁₈H₃₀O₂	278.225	67.0542	81.0699	95.0855	123.1168
Tetracenomycin X	8.18	C₁₅H₁₉NO₂	484.101	119.0491	147.0441	147.0441	147.0441
Sakuranin	6.36	C₂₂H₂₄O₁₀	448.137	419.0972			
N-(2-Hydroxyheptadecanoyl)-1-O-β-d-glucosyl-15-methylhexadecasphing-4-enine	5.52	C₄₀H₇₇NO₉	301.049	536.5037	554.5143		

Table 1. LC/Q-TOF-MS exact masses for cultivated bush tea secondary metabolites and their main fragment ions.

Compound	Retention time (min)	Element composition	[M+H]+	Frag ion 1	Frag ion 2	Frag ion 3	Frag ion 4
d-Tryptophan	4.13	C₁₁H₁₂N₂O₂	204.093	91.0542	118.0541	132.0808	144.0808
Linoleamide	3.83	C₁₈H₃₃NO	279.256	83.0491	83.0855	186.0600	
Laricitrin 7-monoglucoside	8.26	C₁₁H₁₉NO₂	494.106	333.0605	318.037	85.0824	
L-β-Phenylalanine	3.33	C₁₉H₂₁NO₂	165.079	120.0808			
L-Proline	9.22	C₉H₁₈NO₂	115.063	70.0651			
Pheophytin A	11.25	C₁₉H₂₁NO₄	870.569	533.2547	533.2546	593.2758	
Pheophorbide A	11.57	C₁₉H₂₁NO₄	592.2686	461.2336	461.2335		
PI(18:0/20:4(8Z,11Z,14Z,17Z))	12.46	C₁₉H₂₁NO₂	886.5571	549.2459	591.2564	609.2670	
Stearidonic acid	9.94	C₁₈H₂₈O₂	276.209	93.0699	109.1012	135.1168	149.1325
Gibberellin A14 aldehyde	9.38	C₁₇H₂₀O₄	332.199	127.0389	287.2006		

Table 2. LC/Q-TOF-MS exact masses for the cultivated bush tea metabolites and their main fragment ions.
Untargeted profiling of *Athrixia phylicoides* tea.

Mohale K. Cecilia et al.

Table 3. Compounds previously found in bush tea and newly annotated.

Novel compounds found in this study	Compounds found previously in wild bush tea	References
Benjaminnamide	Chlorogenate	(16, 20)
	Chrysosplenetin	(25)
	Coumarin	(23)
6Z-Docosenamide	Naringenin 7-O-beta-d-glucoside	(25)
	5-p-Coumaroylquinic acid	(16)
Integrastatin A		
Luteolin 7-O-(6-O-malonyl-beta-d-glucoside)	1,3-Dicaffeoylquinic acid	
Magnoshinin		
Okainin		
PI(18:0/20:4(8Z,11Z,14Z,17Z)		
(2S)-5-Hydroxy-7-methoxy-6,8-dimethylflavanone		
(9Z,12Z,15Z)-Octadecatrienoic acid		
Gorlic acid		
Sakuranin		
Tetracenomycin X		
D-Tryptophan		
2”-Deamino-2”-hydroxy-6”-dehydroaromamine		
O-Butanoylcaritnine		
Linoleamide		
N-(2-Hydroxyheptadecanoyl)-1-O-beta-d-glucosyl-15-methylhexadecasphing-4-ene		
Laricitrin 7-monogluscoside		
t-Phenylalanine		(25)
t-Proline		(25)
Pheophytin A		
Pheophorbide A		
Steardionic acid		
Gibberellin A14 aldehyde		

...ted to have been isolated from the root of *Berneuxia thibetica* Decne. and possesses an anti-viral activity (22), was also annotated from bush tea extracts in this study. Consistent with Padayachee (23), a phenylpropa-noicoumarin (mass 146.037; RT 5.16 min; C₁₁H₁₃O₂) was present in bush tea and this secondary metabolite was reported to play a significant role in the sweet and aromatic odor quality of green tea (24) and possesses anti-microbial properties. Bush tea extract from this study had a flavonone glycoside naringenin-7-O-beta-d-glucoside (mass 434.121; RT 8.70 min; C₂₁H₂₂O₁₀) also known as prunin (Figure 2), this metabolite was detected in wild bush tea (25). A polyphenolic acid, 5-p-coumaroylquinic acid (mass 338.108; RT 6.48 min; C₁₆H₁₈O₈), a compound commonly found in teas and fruits (26) was detected.

Bush tea extracts in this study also contained an antiviral compound, integrastatin A (mass 332.0526; RT 7.25 min; C₂₀H₂₀O₉) also found in bush tea. This study also reported the presence of luteolin 7-O-beta-d-glucoside (mass 534.101; RT 6.29 min; C₂₈H₂₂O₁₁), a plant flavonoid that possesses antioxidant, antiviral, and antibacterial properties (27). A caffeoylquinic acid (CQA), the main constituent of chlorogenic acid, 1,3-dicaffeoylquinic acid (mass 516.127; RT 5.18 min; C₂₅H₂₄O₁₂), was also found in bush tea extract.

This study showed that bush tea also contains a neolignan, an anti-inflammatory compound magnoshinin (mass 414.204; RT 8.85 min; C₂₅H₂₅O₁₂) (28). A chalconoid compound, okanin (mass 288.063; RT 6.55 min; C₁₅H₁₂O₆) was annotated and it possess antimicrobial and anti-inflammatory properties (29). Bush tea extract in this study contained a flavonone, (2S)-5-hydroxy-7-methoxy-6,8-dimethylflavanone (mass 298.121; RT 5.16 min; C₁₂H₂₀O₅), was detected. A flavonoid, myricitrin (mass 464.095; RT 6.90 min; C₂₁H₂₀O₁₂), was also found in cultivated bush tea extract (Figure 2). This compound is a nitric oxide and protein kinase C inhibitor, which possesses antipsychotic-like and anxiolytic-like effects in animal models of psychosis and anxiety (30). Gorlic acid (mass 278.225; RT 10.18 min; C₁₈H₃₀O₂) was detected. The study also showed that bush tea extracts contain a...
flavonone compound called sakuranin (mass 448.137; RT 6.36 min; \(\text{C}_{22}\text{H}_{24}\text{O}_{10} \)), which exhibits antioxidant activity (31).

The primary metabolites annotated in this study included a compound n-tryptophan (mass 204.093; RT 4.13 min; \(\text{C}_{11}\text{H}_{20}\text{N}_{2}\text{O} \)), which is an \(\alpha \)-amino acid. L-tryptophan (mass 279.256; RT 3.83 min; \(\text{C}_{11}\text{H}_{13}\text{NO} \)), a fatty amide lipid molecule was also detected from bush tea extracts. A lipid, lacticin 7-monoglucoside (mass 494.106; RT 8.26 min; \(\text{C}_{22}\text{H}_{20}\text{O}_{10} \)), was also detected. An essential amino acid, L-\(\beta \)-phenylalanine (mass 165.079; RT 3.33 min; \(\text{C}_{11}\text{H}_{12}\text{NO} \)), was found in bush tea extract. The amino acid L-proline (mass 115.063; RT 9.22 min; \(\text{C}_{2}\text{H}_{4}\text{NO} \)) was present in cultivated bush tea extract. A chlorophyll compound, phophytoxin a (mass 870.565; RT 11.25 min; \(\text{C}_{55}\text{H}_{35}\text{NO}_{2} \)), was also profiled (Figure 2) and it has been reported to possess antimicrobial, antioxidant and anti-aging effect (32).

Consistent with Malongane and McGaw and Nyoni and Mudau (25) phophorhbia A (mass 592.2686; RT 11.57 min; \(\text{C}_{29}\text{H}_{30}\text{NO}_{2} \)), a product of chlorophyll breakdown, which was found to possess anticancer activity (33), was also present in bush tea. An acidic phosphatidyl-

untargeted profiling of Athrixia phylicoides tea.

References

1. Kozak M, Sobczak P, Żukiewicz-Sobczak W. Health properties of selected herbal plants. Health Problems of Civilization 2016; 10(2): 64-70.
2. Salehi B, Zucca P, Orhan IE et al. Allicin and health: A comprehensive review. Trends in Food Science and Technology 2019; 86: 502-516.
3. Salehi B, Valussi M, Flaviana Bezerra Morais-Braga M et al. Tagetes spp. Essential oils and other extracts: Chemical characterization and biological activity. Molecules 2018; 23(11).
4. Salehi B, Zakaria ZA, Gyawali R et al. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019; 24(7).
5. Butt MS, Imran A, Sharif MK et al. Black tea polyphenols: a mechanistic treatise. Critical reviews in food science and nutrition 2014; 54(8): 1002-1011.
6. Imran M, Salehi B, Sharifi-Rad J et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019; 24(12).
7. Mishra AP, Saklani S, Sharifi-Rad M et al. Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cellular and Molecular Biology 2018; 64(5): 65-70.
8. Sharifi-Rad M, Salehi B, Sharifi-Rad J, Setzer WN, Iriit M. Pulicaria vulgaris Gaertn. Essential oil: An alternative or complementary treatment for Leishmaniasis. Cellular and Molecular Biology 2018; 64(8): 18-21.
9. Cleverdon R, Elhalaby Y, McAlpine M, Gittings W, Ward W. Total Polyphenol Content and Antioxidant Capacity of Tea Bags: Comparison of Black, Green, Red Rooibos, Chamomile and Peppermint over Different Steep Times. Beverages 2018; 4(1): 15.
10. Leeholohonolo N, Mariga IK, Ngezimana W, Mudau FN. Bush tea (Athrixia phylicoides DC.) success stories in south Africa: A review. ESci Journal of Crop Production 01/01 2013; 2(2): 37-43.
11. Mashimbye MJ, Mudau FN, Soudny P, Van Ree T. A New Flavonol from Athrixia phylicoides (Bush Tea): research article. South African Journal of Chemistry 2006; 59(1): 1-2.
12. Van Wyk B-E, Gerickke N. People's Plants: A Guide to Useful Plants of Southern Africa: Briza Publications; 2000.
13. Chellan N, Muller CJ, de Beer D, Joubert E, Page BJ, Louw J. An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism. Phytomedicine: international journal of phytotherapy and phytomachnology Jun 15 2012; 19(8-9): 730-736.
14. McGaw LJ, Baglia VP, Steenkamp PA et al. Antifungal and antibacterial activity and chemical composition of polar and non-polar extracts of Athrixia phylicoides determined using bioautography and HPLC. BMC complementary and alternative medicine Dec 13 2013; 13: 356.
15. Tshivhendekano I, Ntshelo K, Ngezimana W, Tshikalange TE, Mudau FN. Chemical compositions and antimicrobial activities of Athrixia phylicoides DC. (bush tea), Monsonia burkeana (special tea) and synergistic effects of both combined herbal teas. Asian Pacific journal of tropical medicine Sep 2014; 7s1: S448-453.
16. Lerotholi L, Chaudhary SK, Combrinck S, Viljoen A. Bush tea (Athrixia phylicoides): A review of the traditional uses, bioactivity and phytochemistry. South African Journal of Botany 2017/05/01/ 2017; 110: 4-17.
17. Kellogg JJ, Graf TN, Painie MF, McCune JS, Kvalheim OM, Oberlies NH. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study. May 26 2017; 80(5): 1457-1466.
18. Tshivhendekano I, Ngezimana W, Tshikalange TE, Makunga

Acknowledgements

This work was supported by CONICYT PIA/APOYO CCTE AFB170007.

Interest conflict

The authors declare no conflict of interest.
Untargeted profiling of Athrixia phylicoides tea.

NP, Mudau FN. Nitrogen application influences quality, pharmacological activities and metabolite profiles of Athrixia phylicoides DC. (Bush tea) cultivated under greenhouse and field conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2018/07/04 2018; 68(5): 388-400.

19. Bankeu JJ, Khayala R, Lenta BN et al. Isoflavone dimers and other bioactive constituents from the figs of Ficus mucuso. Journal of natural products Jun 24 2011; 74(6): 1370-1378.

20. de Beer D, Joubert E, Malherbe CJ, Jacobus Brand D. Use of countercurrent chromatography during isolation of 6-hydroxyxyletolin-7-O-beta-glucoside, a major antioxidant of Athrixia phylicoides. Journal of chromatography A Sep 9 2011; 1218(36): 6179-6186.

21. Farah A, Monteiro M, Donangelo CM, Lafay S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of nutrition Dec 2008; 138(12): 2309-2315.

22. Lu P, Wu JM, Chen LJ, Li W. [Chemical constituents from Laggera pterodonta]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials May 2014; 37(5): 816-819.

23. Padayachee K. The phytochemistry and biological activities of Athrixia phylicoides. MSc Dissertation University of Witwatersrand, Johannesburg, South Africa 2011.

24. Kumazawa K, Masuda H. Identification of potent odorants in different green tea varieties using flavor dilution technique. Journal of agricultural and food chemistry Sep 25 2002; 50(20): 5660-5663.

25. Malongane F, McGaw LJ, Nyoni H, Mudau FN. Metabolic profiling of four South African herbal teas using high resolution liquid chromatography-mass spectrometry and nuclear magnetic resonance. Food chemistry Aug 15 2018; 257: 90-100.

26. Shmuel Y. Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC 2004.

27. Li Y-L, Li J, Wang N-L, Yao X-S. Flavonoids and a new polyacetylene from Bidens parviflora Willd. Molecules 2008; 13(8): 1931-1941.

28. Kimura M, Suzuki J, Yamada T et al. Anti-Inflammatory Effect of Neolignans Newly Isolated from the Crude Drug "Shin-i" (Flos Magnoliate). Planta medica Aug 1985; 51(4): 291-293.

29. Song D-m, Jung K-h, Moon J-h, Shin D-m. Photochemistry of chalcone and the application of chalcone-derivatives in photo-alignment layer of liquid crystal display. Optical Materials 2003/01/01/ 2003; 21(1): 667-671.

30. Pereira M, Siba IP, Chioca LR et al. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Progress in neuro-psychopharmacology & biological psychiatry Aug 15 2011; 35(7): 1636-1644.

31. Hasegawa M, Shirato T. Flavonoids of Various Prunus Species. IV. The Flavonoids in the Wood of Prunus donarium var. spontanea. Journal of the American Chemical Society 1955/07/01 1955; 77(13): 3557-3558.

32. Kusmita L, Puspitaningrum I, Limantara L. Identification, Isolation and Antioxidant Activity of Pheophytin from Green Tea (Camellia Sinensis (L.) Kuntze). Procedia Chemistry 2015/01/01/ 2015; 14: 232-238.

33. She LC, Liu C-M, Chen CT, Li HT, Li WJ, Chen CY. The anticancer and anti-metastasis effects of phytochemical constituents from leucaena leucocephala. Biomedical Research (India) 01/01 2017; 28: 2893-2897.