Deducing Physical Properties of Weakly Bound States from Low-Energy Scattering Data

Application to $^{16}O \leftrightarrow ^{12}C + \alpha$

Jean-Marc Sparenberg$^{(1,[2])}$ \hspace{1cm} Pierre Capel$^{([1,2],3,[4])}$ \hspace{1cm} Daniel Baye$^{(1)}$

(1) Université Libre de Bruxelles, Belgium
(2) TRIUMF, Vancouver, Canada
(3) Michigan State University, East Lansing, USA
(4) Mainz University, Germany

July 4, 2010
International Nuclear Physics Conference, Vancouver, Canada
1. Bound ↔ scattering states: 16O ↔ 12C+α example

2. Bound ↔ scattering states: potential model
 - using several partial waves
 - using a single partial wave

3. Bound ↔ scattering states: effective-range expansion (ERE)
 - Test on 16O+N potential models
 - Test on 12C+α potential model
 - Analysis of 12C+α experimental scattering data

4. Conclusions and perspectives
1 Bound ↔ scattering states: $^{16}\text{O} \leftrightarrow ^{12}\text{C}+\alpha$ example

2 Bound ↔ scattering states: potential model
 - using several partial waves
 - using a single partial wave

3 Bound ↔ scattering states: effective-range expansion (ERE)
 - Test on $^{16}\text{O}+\text{N}$ potential models
 - Test on $^{12}\text{C}+\alpha$ potential model
 - Analysis of $^{12}\text{C}+\alpha$ experimental scattering data

4 Conclusions and perspectives
^{16}O subthreshold bound states $\leftrightarrow ^{12}\text{C}+\alpha$ low-energy scattering

- Two weakly bound states below $^{12}\text{C}+\alpha$ threshold ($\hbar = 2\mu = e = 1$)
 - 1^-: $E_b = -\kappa_b^2 = -45$ keV
 - 2^+: $E_b = -\kappa_b^2 = -245$ keV, $\in \alpha$-cluster 0^+_2 rotational band
- Slowly decreasing $^{12}\text{C}+\alpha$ channel radial wave function
 \[R_b(r) \sim r \rightarrow \infty C_b \exp(-\kappa_br) / r|\eta_b| + 1 \]
 - $|\eta_b| = Z_1Z_2/2\kappa_b$
 - Asymptotic Normalization Constant (ANC) C_b
- Astrophysical interest: impact on $^{12}\text{C} (\alpha, \gamma) ^{16}\text{O}$ at 300 keV
- Indirect access to ANC: radiative cascade, α transfer, $^{16}\text{N} \beta$ decay...
- Here: $^{12}\text{C}+\alpha$ elastic-scattering phase shifts $\delta_l(E)$ for $l = 1, 2$
1. **Bound ↔ scattering states: \(^{16}\text{O} \leftrightarrow ^{12}\text{C} + \alpha\) example**

2. **Bound ↔ scattering states: potential model**
 - using several partial waves
 - using a single partial wave

3. **Bound ↔ scattering states: effective-range expansion (ERE)**
 - Test on \(^{16}\text{O} + \text{N}\) potential models
 - Test on \(^{12}\text{C} + \alpha\) potential model
 - Analysis of \(^{12}\text{C} + \alpha\) experimental scattering data

4. **Conclusions and perspectives**
$^{12}\text{C} + \alpha \ l = 2$ potential models from phase-shift inversion (I)

- One phase shift...
 - fitted on experimental data
 - [Tischhauser et al., PRL 2002]
 - [Buchmann, private com. 2004]
 - with two resonances removed

- An infinity of potentials...
 - arbitrary binding energies; here: $E_b = -245 \text{ keV}$ (experiment)
 - arbitrary ANCs; here:
 - $C_b = 20, 200, 2000 \times 10^3 \text{ fm}^{-1/2}$

- All potentials are equal, but some potentials are more equal than others:
 - only one fits the $0^+, 2^+, 4^+$ \(\alpha\)-cluster rotational band
 \[C_b \approx 145(10) \times 10^3 \text{ fm}^{-1/2} \]

[Sparenberg, PRC 2004]
$^{12}\text{C} + \alpha \ l = 2$ potential models from phase-shift inversion (II)

- All potentials are equal, but some potentials are more equal than others:
 - only one has a shorter nuclear range
 \[C_b \approx 190(10) \times 10^3 \text{ fm}^{-1/2} \] (preliminary)

- For a potential decreasing faster than \(\exp(-2\kappa_b r) \), both \(E_b = -\kappa_b^2 \) and \(C_b \) can be deduced from the corresponding partial-wave scattering matrix

 \[\text{[Blokhintsev et al., PAN 2008]} \]

- Possibility to avoid potential model (cf $^{16}\text{O} \ 1^-\text{ state}$)?
Bound ↔ scattering states: effective-range expansion (ERE)

1. Bound ↔ scattering states: $^{16}\text{O} \leftrightarrow ^{12}\text{C}+\alpha$ example

2. Bound ↔ scattering states: potential model
 - using several partial waves
 - using a single partial wave

3. Bound ↔ scattering states: effective-range expansion (ERE)
 - Test on $^{16}\text{O}+\text{N}$ potential models
 - Test on $^{12}\text{C}+\alpha$ potential model
 - Analysis of $^{12}\text{C}+\alpha$ experimental scattering data

4. Conclusions and perspectives
Definitions

- Scattering matrix (charged and neutral cases, partial wave l):
 - phase shifts ($E = k^2 > 0$): $S_l(k) = e^{2i\sigma_l} e^{2i\delta_l}$
 - bound states ($E_b = -\kappa_b^2 < 0$): $S_l(k) \sim_{k \to i\kappa_b} (-1)^{l+1} i e^{-\pi \eta_b} \frac{|C_b|^2}{k - i\kappa_b}$

- Effective-range function

 $K_l(k^2) = F^{-1}_l(k^2) + \frac{2w_l(\eta^2)}{l!2a_B^{2l+1}} h(\eta^2)$,

 $K_l(k^2) = F^{-1}_l(k^2) + ik^{2l+1}$

 - nuclear Bohr radius $a_B = 2/Z_1 Z_2$
 - Sommerfeld parameter $\eta = 1/a_B k$
 - $F_l(k^2) \propto e^{2i\delta_l} - 1 \Rightarrow$ phase shift: $K_l(k^2) = k^{2l+1} \cot \delta_l(k) (\eta = 0)$
 - analytic \Rightarrow Taylor expansion: $K_l(k^2) = -\frac{1}{a_l} + \frac{r_l}{2} k^2 - P_l r_l^3 k^4 + O(k^6)$
 (scattering length, effective range, shape parameter...)

- $F_l(k^2) \propto e^{2i\delta_l} - 1 \Rightarrow$ poles of S_l and F_l coincide

 - condition on bound-state energy: $F^{-1}_l(-\kappa_b^2) = 0$
 - condition on bound-state ANC [Iwinski et al., PRC 1984]

 $|C_b| = \kappa_b^l \frac{\Gamma(l + 1 + |\eta_b|)}{l!} \left[-\frac{dF^{-1}_l}{dk^2} \right]_{\kappa^2 = -\kappa_b^2}^{-\frac{1}{2}}$
$^{16}\text{O}+\text{N}$ Woods-Saxon potential: diffuseness a, variable depth

- **Bound-state energy (first order ERE)**
 \[
 \frac{1}{a_l} \approx \left(-\frac{r_l}{2} + \frac{1}{6a_B^{2l-1}l!^2} \right) \kappa_b^2
 \]

- **Bound-state ANC (first order ERE)**
 \[
 |C_b| \frac{l!}{\Gamma(l+1+|\eta_b|)} \approx \kappa_b^{l+1} \sqrt{a_l} \propto \kappa_b^l
 \]

- **Application:** $^{17}\text{F} \ s_{1/2}$ state at -105 keV
 - 5% error on a_0
 - (0.4% with second order)
 - 0.1% error on ANC (from a_0)

- **Conclusion:** weakly-bound-state ANC can be deduced from ERE

[Sparenberg et al., PRC 2010]
Test on $^{12}\text{C}+\alpha \ l = 2$ potential model: $V_{\text{nuc}}(r) = -112.332e^{-(r/2.8)^2}$

[cf Buck and Rubio, JPG 1985]

- Quick convergence of ER function on [0-5] MeV and of bound-state properties: **third order** sufficient
- ANC very sensitive to slope

ERE order	$C_b \ (10^3 \ \text{fm}^{-1/2})$
0	10.9
1	imaginary!
2	89.7
3	138.2
4	138.5
exact	138.4

- Phase shifts very sensitive: requires **fifth order** above 2 MeV
Analysis of 12C+α experimental scattering data

Fit of experimental data [Tischhauser et al., PRL 2002, PRC 2009]

- Narrow 2.7 MeV resonance removed
- Polynomial fit of ERF K_2 on [1.95-3.1] MeV (92 points)
- Starting values of parameters: Gaussian-potential ERF
- Bound-state constraint: $E_b = -245$ keV
 \Rightarrow one parameter (a_2) less
- No strong constraint on ANC

order	ERF χ^2	$C_b \left(10^3 \text{ fm}^{-1/2}\right)$
2	7.0	19.7
3	4.1	31.0
4	4.1	179.2
5	4.1	151.2
Conclusions

- Bound-state ANC can be deduced from single-partial-wave scattering phase shift but only for weak binding energy
- $^{12}\text{C} + \alpha$ 2^+ subthreshold bound state ANC
 - third-order effective-range expansion sufficient, in principle
 - no strong constraint (yet?) from $l = 2$ phase shift only
 - rather well constrained by rotational-band potential model:
 \[C_b \approx 145(10) \times 10^3 \text{ fm}^{-1/2} \]

Perspectives

- Use ERE as background phase shift in R-matrix fit
- Use Effective-Range Padé Expansion (instead of Taylor) \Rightarrow resonances
- $^{12}\text{C} + \alpha$ 1^- subthreshold bound state ANC