Use of Real-World Evidence (RWE) to Drive Drug Development Strategy and Inform Clinical Trial Design

Speakers:
Jennifer Webster, RWE COE
Simon Dagenais, RWE COE

Moderator:
Jing Liu, Clinical Pharmacology

Event
ASCPT Open-Access Webinar
Monday, April 25, 2022, 12pm EST
Disclaimer

The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Pfizer, ASCPT, or their directors, officers, employees, volunteers, members, chapters, councils, communities or affiliates, or any organization with which the presenter is employed or affiliated.

These PowerPoint slides are the intellectual property of the presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners.
Brief history of RWE in the US

- Congress passed 21st Century Cures Act in December 2016
- Included a provision on Real World Evidence (Section 3022)
- Modified Federal Food, Drug, and Cosmetic Act to add section 505F
- Instructed FDA to evaluate use of RWE in drug approval process and:
 1. Develop framework for using RWE in drug approvals within 2 years
 2. Draft guidance on using RWE in drug approvals within 5 years
 3. Pursue RWE partnerships with industry, academia, professional organizations, etc.

References

https://www.congress.gov/114/bills/hr34/BILLS-114hr34enr.xml
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence

Pfizer

PHI – RWE COE
Important terminology related to RWE

Real world data	Real world insights	Real world evidence
Definition	Answers to internal research questions derived from analyzing real world data	Clinical evidence about the usage and potential benefits or risks of a medical product derived from analysis of RWD
Data relating to patient health status and/or delivery of health care routinely collected from a variety of sources		
Examples	Hypothesis generation	Evidence supporting:
• Medical claims and billing	• Feasibility	• Effectiveness
• Electronic health records	• Patient journey	• Safety
• Patient/product registries	• Unmet needs	• Outcomes
• Patient surveys		
Analogy		

References
https://www.fda.gov/media/120060/download
Source	Type	Examples
Administrative	Closed networks	IBM MarketScan, IQVIA PharMetrics, Optum Clininformatics
Hospital chargemaster	Open networks	IQVIA LAAD, DRG RWD, Symphony IDV
Government	CMS FFS Medicare, Medicaid, VA/DOD	
Pharmacy	Premier, Vizient, IQVIA CDM	
Electronic health records	Core setting	Cerner, Epic, Athena
Clinics	IQVIA AEMR, Optum Panther, IBM Explorx	
Disease	Oncology	Flatiron, Ontada, ConcertAI
Behavioral health	Kaleo, SimplePractice, Valiant	
Patient	Health surveys	Kantor Health NHWS, Gallup National Health
Outcome measures	Public	NHANES, MEPS
Multidimensional	PatientsLikeMe, Citizen	
Consumer genetic testing	23andMe, Ancestry.com	
Social determinants of health	IQVIA/Experian, MarketScan HPM, Optum SES	
Medical devices	Glocke, Livongo	
Mobile device biometrics	Smartphones	iPhone (HealthKit), Android (Google Fit)
Diagnostics	Smart watches	Apple Watch (HealthKit), Fitbit (Google Fit)
Laboratory testing	Genetic testing	Invitae, Neogenomics, Ambry Genomics
Clinicogenomics	Oncology	AACR GENIE, Optum Clinicogenomics
Population genomics	NHGRI 1000 Genomes Project, NIH All of Us	
Diagnostic imaging	Life Image, Ambra Health	
Other	Disease registries	CorEvitas, Target RWE
Other	Other	OM1, COTA Healthcare
Adverse event reports	Regulatory	FDA FAERS, FDA YAES
Mortality	Social media	Twitter, Facebook
Tokenization	Public/Private	CDC WONDER, ObituaryData.com
		HealthVerity, Datavant, Komodo
RWE can be a powerful tool at every step of the product development process.
Today’s Encore Webinar will review R&D applications of RWE based on our article in the January 2022 issue of *Clinical Pharmacology & Therapeutics*

Learning objectives

At the end of this webinar, participants will understand how biopharmaceutical companies can leverage RWD, RWI, and RWE (collectively termed “RWE”) to inform internal decisions throughout the product development process, including:

1. Use of RWE to guide pipeline and portfolio strategy
2. Use of novel sources of RWE to inform product development
3. Use of RWE to inform clinical development
1. Use of RWE to guide pipeline and portfolio strategy
While there are many examples of using RWE to guide R&D portfolio strategy, today we will focus on 3 examples:

Citation	Study Objective	Data Source(s)	Insight
Broder et al. (2018)\(^{17}\)	Estimate prevalence and incidence of neuroendocrine tumors	IBM MarketScan and IQVIA PharMetrics claims databases	Prevalence and incidence increasing over time.
Dellon et al. (2014)\(^{66}\)	Estimate prevalence of EE	IQVIA PharMetrics claims databases	Updated estimates for number of patients with EE in the United States following the introduction of a new ICD-9 diagnosis code specific to EE.
Wallin et al. (2019)\(^{16}\)	Estimate national prevalence for MS by analyzing multiple US databases, covering different population segments.	Optum, IBM, Kaiser Permanente, Department of Veterans Affairs, and the Centers for Medicare and Medicaid claims databases	The 3-year prevalence of MS was 309.2 per 100,000, with an estimated 727,344 cases in the United States, higher than previous studies.
Halpern et al. (2019)\(^{67}\)	Estimate prevalence of agitation among patients with AD	Optum EHR database	Prevalence of agitation over a 2-year period was 44.6%. NLP was used to analyze unstructured data for keywords related to agitation.
Chehade et al. (2021)\(^{68}\)	Describe patient journey for individuals with EG/EoD	Symphony Health Patient Source claims database	Many EG/EoD patients initially diagnosed with irritable bowel syndrome or dyspepsia, highlighting the need for improved diagnosis.
Morgan et al. (2021)\(^{69}\)	Describe diagnostic journey of patients with PSP	Patient interviews and physician chart reviews in France, Germany, Italy, Spain, the United Kingdom, and the United States	Diagnostic delays may be related to patients first presenting to primary care providers before being evaluated by movement disorder specialists.
Background

- Estimates on prevalence and incidence of neuroendocrine tumors (NETs) in the US based on SEER registry suggest they are ultrarare
- Objective was to update estimates of NETs using insurance claims in the US

Methods

- Analyzed claims data from MarketScan and PharMetrics that together include ~100 million individuals in the US
- Estimated annual prevalence and incidence rates based on ICD-9 diagnosis codes among insured

Findings

RWD insights

- Although NETs are rare, claims in the US suggest annual prevalence and incidence may be increasing

References

Broder MS, Cai B, Chang E, Neary MP. Incidence and prevalence of neuroendocrine tumors of the lung: analysis of a US commercial insurance claims database. BMC Pulm Med. 2018;18(1):135.
Combining multiple sources of RWE can help size entire target population

Background
- Older estimates based on literature suggest there are 300,000-400,000 patients with multiple sclerosis (MS) in the US
- Objective was to generate an updated and robust estimate of national prevalence of MS in US using RWD

Methods
- Analyzed claims data from Optum, MarketScan, Kaiser, VA, and CMS
- Combined estimates from different population subgroups into comprehensive national estimate

Findings

RWD insights
- Estimates from 5 recent sources of claims data suggest that 727,344 individuals in the US have MS

References
Wallin MT, Culpepper WJ, Campbell JD, Nelson LM, Langer-Gould A, Marrie RA, et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology. 2019;92(10):e1029-e40.
Background
- Literature suggests that eosinophilic gastrointestinal diseases (EG/EoD) are commonly misdiagnosed
- Objective was to understand the diagnostic journey of patients with EG/EoD in the US

Methods
- Analyzed data from Symphony Health, a large database of insurance claims for multiple payers in the US
- Estimated interval between symptom presentation, gastroenterologist visit, diagnostic test (EGD), and diagnosis

Findings

RWD insights
- Mean delay from symptom presentation to diagnosis of EG/EoD was 4.1 years in the US

References
Chehade M, Kamboj AP, Atkins D, Gehman LT. Diagnostic Delay in Patients with Eosinophilic Gastritis and/or Duodenitis: A Population-Based Study. J Allergy Clin Immunol Pract. 2021;9(5):2050-9 e20.
Background

- Early in COVID-19 pandemic, researchers were interested in repurposing existing drugs to minimize development time
- 25 drugs (anti-microbials and anti-inflammatories) were evaluated in clinical trials for COVID-19
- Based on cell line studies, these drugs were predicted to impact 11 transporter pathways that could result in DDIs

Methods

- Analyzed EHR data from Cerner and USCF to determine if predicted DDIs were occurring based on lab test values

Findings

RWD insights

- 20/25 (80%) existing drugs evaluated for COVID-19 were predicted to cause transporter-mediated clinical DDIs

References

Yee SW, Vora B, Oskotsky T, Zou L, Jakobsen S, Enogieru OJ, et al. Drugs in COVID-19 Clinical Trials: Predicting Transporter-Mediated Drug-Drug Interactions Using In Vitro Assays and Real-World Data. Clin Pharmacol Ther. 2021;110(1):108-22.
2. Use of novel sources of RWE to inform product development

Jennifer Webster
Publicly available resources like SEER & WHO offer high level epi & trends

Scenario: Your team is concerned that incidence rates from the literature give an inaccurate picture within the TPP for MSI-H mCRC, with an opportunity to use large scale RWD for pharmacometric modeling.

The SEER registry aggregates data from cancer registries in a selection of states. Incidence and death rates per 100,000 for colorectal cancer are shown.
Claims and EHR data give insights on more refined subpopulations

Identifying subpopulations in real world data. Example: MSI-H mCRC patients

Option 1: Expert knowledge

Ontologies beyond ICD-9/10

Evidence of Molecular Testing

Line of Therapy Business Rules

Targeted Therapies as Proxies

Option 2: Machine Learning

Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review

Echle, A., Laleh, N. G., Schrammen, P. L., West, N. P., Trautwein, C., Brinker, T. J., ... & Kather, J. N. (2021). Deep Learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review. Immunoinformatics, 100008.
Adding endpoints allows us to understand heterogeneity among subpopulations

Using real world data to challenge epi assumptions in TPP

- MSI-H widely reported to be 15% of CRC
- Only 6% of Stage 4
3. Use of RWE to inform clinical development
Data mining for endpoint discovery: hypothesis generation
Scenario: clinical trial planning for Duchenne Muscular Dystrophy

Mining real world clinical data for safety and efficacy biomarkers

GLDH detects the onset of liver injury in a subject with rhabdomyolysis in a real world prospective trial

FDA guidance on DMD efficacy endpoints

“FDA encourages sponsors to propose and, if necessary, develop endpoints that can validly and reliably assess patients with a wide spectrum of symptoms and disease stages. Sponsors should engage FDA early during the selection and/or development of efficacy endpoints. The sponsor should include an assessment of multiple efficacy endpoints, when feasible.”
Simulations to explore optimal clinical trial designs
Use to inform trial enrichment strategies throughout all stages of the asset lifecycle

Example: Simulation of 100 trials, 50 patients/arm, baseline age 6-12 yrs, duration 3 years, drug predicted to have 30% effect on maximum FVC achieved
Including geographic information allow us to open trials where the patients are treated.
Real world genomics for target discovery and validation
• Genomic data from real world care and from biobanks

Prospective observational studies can be started as soon as FIH

Use of organoids and xenografts to inform disease model and understand drug response and resistance

Causal Inference Modeling for hypothesis generation

Tokenization for long term follow up

RW Single-cell RNAseq to understand tumor microenvironment throughout patient journey
Thank you!