The sub-fractional CEV model

Axel A. Aranedaa,* Nils Bertschingera,b

a Frankfurt Institute for Advanced Studies
60438 Frankfurt am Main, Germany.

b Department of Computer Science, Goethe University
60629 Frankfurt am Main, Germany.

This version: January 17, 2020

Abstract

The sub-fractional Brownian motion (sfBm) could be considered as the intermediate step between
the standard Brownian motion (Bm) and the fractional Brownian motion (fBm). By the way, sub-
fractional diffusion is a candidate to describe stochastic processes with long-range dependence and
non-stationarity in their increments. In this note, we use sfBm for financial modeling. In particular,
we extend the results provided by Araneda [Axel A. Araneda. The fractional and mixed-fractional
CEV model. Journal of Computational and Applied Mathematics, 363:106–123, 2020] arriving at the
option pricing under the sub-fractional CEV model.

Keywords: sub-fractional diffusion, CEV model, option pricing, sub-fractional Fokker-Planck.

1 Introduction

The sub-fractional Brownian motion, in short sfBm, is a stochastic process which emerges from the occu-
pation time fluctuations of branching particle systems [2]. It owns the main properties of the fractional
Brownian motion (fBm) as long-range dependence, self-similarity and H\ölder paths (see [2] [3] for details
and properties of sfBm). However, a key difference among them is the sfBm has non-stationary incre-
ments. Besides, the sfBm has more weakly correlated increments and their covariance decays at a higher
rate, in comparison to the fBm.

Then, diffusion processes under sfBm could be considered to model some financial time-series which
exhibits long-range dependency and non-stationarity increments [4, 5]. Some attempts has been ad-
dressed in the literature extending the Black-Scholes (B-S) model under sfBm [6–10]. However, in this
communication, we consider a sub-fractional extension for Constant Elasticity of Variance (CEV) model,
which is capable to address some shortcomings of the B-S approach as the leverage effect and the implied
volatility skew [11].

Following the procedure given by Araneda [1] to fractional case, and the Itô calculus for sfBm [12],
we derive the sub-fractional Fokker-Planck equation and the transition probability density function for
the sub-fractional CEV (sfCEV) is obtained, leading to the price formula for an European Call option in
terms of the non-central chi-squared distribution and the M-Whittaker function.

2 The model

We consider that the asset price S is ruled by following stochastic differential equation:

$$dS = rSdt + \sigma S^{\frac{\alpha}{2}} dB^H_t$$

*Corresponding author. Email: araneda@fias.uni-frankfurt.de, Tel.:+49 69 798 47501
where \(r \) is the constant-risk-free rate of interest, \(\sigma \) a positive constant and \(\alpha \in [0, 2] \) the constant elasticity parameter. \(B_H^t \) is a sub-fractional Brownian motion with Hurst exponent \(H > 1/2 \). At the limit case \(H \to 1/2 \), the Eq. (1) becomes the standard CEV model proposed by Cox [13, 14]. If \(\alpha \to 2 \), the Eq. (1) goes to the sub-fractional Black-Scholes model addressed by Tudor [7].

Defining the new variable \(x = S^{2-\alpha} \), and using sub-fractional Itô rules [7, 12]:

\[
\begin{align*}
\frac{dx}{(2-\alpha)\left[rx + Ht^{2H-1}(2-2^{2H-1})(1-\alpha)\sigma^2\right]} + (2-\alpha)\sigma\sqrt{x}dB_H^t
\end{align*}
\]

3 Fokker-Planck equation and option pricing

3.1 Derivation of the Fokker-Planck equation for sub-fractional diffusions

We will follow and extend the procedure given in [15] for diffusion processes under fractional Brownian motion, but this time applied to sub-fractional case.

First, we start with the following SDE:

\[
\begin{align*}
dy = f(y, t) dt + g(y, t) dB_H^t
\end{align*}
\]

being \(dB_H^t \) a sub-fractional Brownian motion.

Let \(h = h(x) \) an scalar function. Using the Itô formula for sBm [12], we have:

\[
\begin{align*}
dh = \left[f \frac{\partial h}{\partial x} + Ht^{2H-1}(2-2^{2H-1})g^2 \frac{\partial^2 h}{\partial x^2} \right] dt + g \frac{\partial h}{\partial x} dB_H^t \end{align*}
\]

Then, taking expectations over (4):

\[
\begin{align*}
E\left(\frac{dh}{dt}\right) = E\left(f \frac{\partial h}{\partial x}\right) + E\left[Ht^{2H-1}(2-2^{2H-1})g^2 \frac{\partial^2 h}{\partial x^2}\right]
\end{align*}
\]

Later, by the definition of expectations:

\[
\begin{align*}
E[h(x)] = \int h(x) P(x, t) dx
\end{align*}
\]

where \(P \) is the transition probability density function at time \(t \); the relations (5) and (6) yields to:

\[
\begin{align*}
\int_{-\infty}^{\infty} h \frac{\partial P}{\partial t} dx = \int_{-\infty}^{\infty} \left[f \frac{\partial h}{\partial x} + Ht^{2H-1}(2-2^{2H-1})g^2 \frac{\partial^2 h}{\partial x^2}\right] Pdx
\end{align*}
\]

After that, using the following results:

\[
\begin{align*}
\int_{-\infty}^{\infty} f \frac{\partial h}{\partial x} Pdx = -\int_{-\infty}^{\infty} h \frac{\partial (fP)}{\partial x} dx \quad \int_{-\infty}^{\infty} g^2 \frac{\partial^2 h}{\partial x^2} Pdx = \int_{-\infty}^{\infty} h \frac{\partial (g^2P)}{\partial x} dx
\end{align*}
\]

the Eq. (7) goes to:

\[
\begin{align*}
\int_{-\infty}^{\infty} h \left[\frac{\partial P}{\partial t} + \frac{\partial (fP)}{\partial x} - Ht^{2H-1}(2-2^{2H-1}) \frac{\partial (g^2P)}{\partial x^2}\right] dx = 0
\end{align*}
\]
Finally, the Fokker-Planck equation related to the process \([3]\), emerges from \([8]\):

\[
\frac{\partial P}{\partial t} = Ht^{2H-1} (2 - 2^{2H-1}) \frac{\partial}{\partial x^2} \Bigg[(g^2 P) - \frac{\partial (f P)}{\partial x} \Bigg] \tag{9}
\]

3.2 Transition probability density function for the sub-fractional CEV model and the European Call price

We comeback to the process defined in the Eq. \([2]\). The evolution from \(x(t = 0) = x_0\) to \(x(t = T) = x_T\) is given by the transition probability density function \(P = P(x_T, t|x_0, 0)\), which obeys the the related sub-fractional Fokker-Planck equation. Since \(f = (2 - \alpha) \left[r x + Ht^{2H-1} (2 - 2^{2H-1}) (1 - \alpha) \sigma^2 \right]\) and \(g = (2 - \alpha) \sigma \sqrt{x}\), and replacing in \([9]\), the Fokker-Planck equation related to the process \([2]\) is given by:

\[
\frac{\partial P}{\partial t} = \frac{\partial}{\partial x^2} \Bigg[Ht^{2H-1} (2 - 2^{2H-1}) (2 - \alpha)^2 \sigma^2 x P \Bigg] - \frac{\partial}{\partial x} \Bigg\{ [(2 - \alpha) r x + Ht^{2H-1} (2 - 2^{2H-1}) (2 - \alpha) (1 - \alpha) \sigma^2] P \Bigg\} \tag{10}
\]

Later, defining the rescaled time \(\tau = -(2 - \alpha) rt\), the relation \([10]\) becomes:

\[
\frac{\partial P}{\partial \tau} = \frac{\partial^2}{\partial x^2} [a(\tau) x P] + \frac{\partial}{\partial x} [(x + b(\tau)) P]
\]

with,

\[
a(\tau) = -\frac{\sigma^2}{r} (2 - \alpha) (1 - 2^{2H-2}) 2H \left(1 - \frac{\tau}{b} \right)^{2H-1} \\
b(\tau) = -\frac{\sigma^2}{r} (1 - \alpha) (1 - 2^{2H-2}) 2H \left(1 - \frac{\tau}{b} \right)^{2H-1}
\]

Since the ratio \(a(\tau)/b(\tau)\) is time-independent (constant), the PDE \([10]\) could be solved using the Feller’s lemma with time varying coefficients \([11]\, [16]\). Thus:

\[
P (x, \tau | x_0, 0) = \frac{1}{\phi(\tau)} \left(\frac{x e^{-\tau}}{x_0} \right)^{\frac{b-a}{2a}} \exp \left[-\frac{(x + x_0 e^{-\tau})}{\phi(\tau)} \right] I_{1-b/a} \left[\frac{2}{\phi(\tau)} \sqrt{e^{-\tau} x_0} \right]
\]

where \(I_\nu\) is the modified Bessel function of first kind of order \(\nu\), and \(\phi\) is defined by:

\[
\phi(\tau) = -\frac{\sigma^2}{r} (2 - \alpha) \int_0^\tau 2H (1 - 2^{2H-2}) \left(1 - \frac{s}{b} \right)^{2H-1} e^{-s} ds \\
= -\frac{\sigma^2}{r} (2 - \alpha) \int_0^\tau 2H (1 - 2^{2H-2}) \left(2H + 1 + e^{-\frac{1}{2} \tau} (-\tau)^{-H} M_{H,H+1/2} (-\tau) \right)
\]

being \(M_{k,v} (t)\) the M-Whittaker function.

Later, in terms of the original variables \((S, t)\), the transition probability density related to the process \([1]\) is written as:

\[
P (S_T, T | S_0, 0) = (2 - \alpha) k_s^{\frac{1-\alpha}{\sigma^2}} \left(y_s w_s^{1-2\alpha} \right)^{\frac{1-\alpha}{\sigma^2}} e^{-y-w} I_{1/(2-\alpha)} (2 \sqrt{y_s w_s}) \tag{11}
\]
with:

\[k_s = \left[\varphi (- (2 - \alpha) rT) \right]^{-1}, \quad \text{(12)} \]
\[y_s = k_s S_0^{2-\alpha} e^{r(2-\alpha)T}, \quad \text{(13)} \]
\[w_s = k_s S_T^{2-\alpha}, \quad \text{(14)} \]

Using the same arguments supplied in [1], and defining \(z_s(t) = k_s(t)E^{2-\alpha} \), the European Call price at the inception time is given by:

\[
C_H (S_0, 0) = e^{-rT} \int_{-\infty}^{\infty} \max \{ S_T - E, 0 \} P(S_T, T|S_0, 0) \, dS_T
\]

\[
= S_0 Q \left(2z_s; 2 + \frac{2}{2-\alpha}, 2y_s \right) - E e^{-rT} \left[1 - Q \left(2y_s; \frac{2}{2-\alpha}, 2z_s \right) \right]
\]

being \(Q(\cdot) \) the non-central chi-squared complementary distribution function.

The Fig. 1 shows the price of an at-the-money European Call option under the sub-fractional CEV model (blue), in function of the elasticity parameter, for short (3 months, 1a) and long (2 years, 1b) maturities, with \(H = \{0.5, 0.7, 0.9\} \). Besides, the price under the fractional CEV is also drawn (red) by way of comparison. In all the cases, the sub-fractional pricing is lower than the fractional one for a fix \(H > 0.5 \). When the Hurst exponent is equal to 0.5, both models fit with the standard CEV. For \(\alpha = 2 \), the sub-fractional (fractional) CEV converges to the sub-fractional (fractional) Black-Scholes.

4 Summary

In this note, we consider the Constant Elasticity of Variance model under sub-fractional diffusion. This approach allow to us the model of assets where their prices presents features as long-range dependency, non-stationarity increments leverage effect and in the case of their options, the volatility skew pattern. Using sub-fractional Itô rules, the transition probability density function is obtained solving the corresponding sub-fractional Fokker-Planck equation in terms of the M-Whittaker function. Then, the price of a call option is obtained.

4

Figure 1: Price of a European Call option under both fractional and sub-fractional CEV model as a function of the elasticity (\(\alpha \)) and the Hurst exponent (\(H \)). We fix \(\sigma = 30\% \), \(S_0 = E = 100 \) and \(r = 5\% \).
References

[1] Axel A. Araneda. The fractional and mixed-fractional CEV model. *Journal of Computational and Applied Mathematics*, 363:106–123, 2020.

[2] Tomasz Bojdecki, Luis G. Gorostiza, and Anna Talarczyk. Sub-fractional Brownian motion and its relation to occupation times. *Statistics & Probability Letters*, 69(4):405–419, 2004.

[3] Constantin Tudor. Some properties of the sub-fractional Brownian motion. *Stochastics An International Journal of Probability and Stochastic Processes*, 79(5):431–448, 2007.

[4] Kevin E. Bassler, Joseph L. McCauley, and Gemunu H. Gunaratne. Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets. *Proceedings of the National Academy of Sciences*, 104(44):17287–17290, 2007.

[5] Raffaello Morales, Tiziana Di Matteo, and Tomaso Aste. Non-stationary multifractality in stock returns. *Physica A: Statistical Mechanics and its Applications*, 392(24):6470–6483, 2013.

[6] Constantin Tudor. Sub-fractional Brownian motion as a model in finance. Working Paper, University of Bucharest, 2008.

[7] Constantin Tudor. Some aspects of stochastic calculus for the sub-fractional Brownian motion. *Ann. Univ. Bucuresti, Mathematica*, pages 199–230, 2008.

[8] Junfeng Liu, Li Li, and Litan Yan. Sub-fractional model for credit risk pricing. *International Journal of Nonlinear Sciences and Numerical Simulation*, 11(4):231–236, 2010.

[9] Feng Xu and Runze Li. The pricing formulas of compound option based on the sub-fractional Brownian motion model. In *Journal of Physics: Conference Series*, volume 1053, page 012027. IOP Publishing, 2018.

[10] Feng Xu and Shengwu Zhou. Pricing of perpetual American put option with sub-mixed fractional Brownian motion. *Fractional Calculus and Applied Analysis*, 22(4):1145–1154, 2019.

[11] Vadim Linetsky and Rafael Mendoza. Constant Elasticity of Variance (CEV) diffusion model. In Rama Cont, editor, *Encyclopedia of Quantitative Finance*. John Wiley & Sons, Ltd, 2010.

[12] Litan Yan, Guangjun Shen, and Kun He. Itô’s formula for a sub-fractional Brownian motion. *Communications on Stochastic Analysis*, 5(1):9, 2011.

[13] John C. Cox. Notes on option pricing I: Constant elasticity of variance diffusions. Working paper, Stanford University, 1975.

[14] John C. Cox. The constant elasticity of variance option pricing model. *The Journal of Portfolio Management*, 23(5):15–17, 1996.

[15] Gazanfer Ünal. Fokker-Plank-Kolmogorov equation for fBm: Derivation and analytical solutions. In *Mathematical Physics*, pages 53–60. World Scientific, 2007.

[16] Jaume Masoliver. Nonstationary Feller process with time-varying coefficients. *Physical Review E*, 93(1):012122, 2016.