Preparation of *Piper nigrum* Microcapsules by Spray Drying and Optimization with Response Surface Methodology

Yang Yu¹, Ran Wei¹, Xinru Jia¹, Xiaoxu Zhang¹, Hongqin Liu¹*, Bo Xu², and Baocai Xu¹

¹ School of Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People’s Republic of CHINA

² University of Virginia, Charlottesville, VA 22903, U.S.

Abstract: To overcome the problems of incomplete flavor components from *Piper nigrum* extract and the *Piper nigrum* product easy deterioration in the storage process, microcapsules of the whole *Piper nigrum* were prepared by spray-drying combined with enzymatic hydrolysis. Under the best conditions for the microencapsulation obtained by the response surface methodology, which have been determined as the ratio of core and wall material (1:0.2, w/w), proportion of wall materials (starch sodium octenyl succinate : maltodextrin : xanthan gum) (1:1:0.2, w/w/w), wall material concentration (11%, w/v) and inlet air temperature (180°C), the embedding rate of the prepared *Piper nigrum* microcapsules reached 90.21%. Fourier transform infrared spectroscopy, scanning electron microscopy and particle size distribution studies established that the *Piper nigrum* powder was entrapped within the microcapsules, which had intact morphology and uniform particle size distribution. Besides, gas chromatography-mass spectrometry analysis demonstrated that the prepared *Piper nigrum* microcapsules could preserve the major of the volatile aroma components of *Piper nigrum*, carene, D-limonene, α-phellandrene, and (-)-β-pinene. The obtained results showed that the microcapsules might contribute to the development of preserving original flavor from *Piper nigrum* and have potential applications in the commodity market.

Key words: *Piper nigrum*, microencapsulation, spray drying, response surface methodology, enzymatic hydrolysis

1 Introduction

Piper nigrum, cultivated in warm climate regions worldwide, such as Asia, North America¹, is commonly used spice in the world due to its edibility and commercial value.² The survey suggested that the total *Piper nigrum* production increased by 25% in a decade (from 2006 to 2016). With the development of modern food industry, flavor standardization of natural spices, safety of flavoring agent and eco-friendly techniques of extraction have drawn increasing attention in recent years.¹². Under the circumstance of advanced technology, the extraction assisted by microwave, ultrasound, pressurized liquid and supercritical fluid has gradually played an essential role in the fields of separation and purification³–⁴. However, the property, quantity and composition of substance are the keys to the selection of the extraction methods⁵. It is worth noting that there are significant differences in flavor compounds between the *Piper nigrum* products and the *Piper nigrum* raw material, and the extracted components are often insufficiency. Meanwhile, the extracts are easily oxidized and deteriorated under conditions of high light, temperature and the like⁶.

The microcapsules consist of one or several different types ingredients as core material, and are coated with another materials. The coating materials is called shell material, wall material or encapsulant. Maltodextrin (MD) is a kind of carbohydrates that can wrap the core material to form a cover, encapsulate flavor and reduce exposure to oxygen. It is cheap, highly water soluble, bland in flavor and low viscosity at a high solid ratio⁷. Gum, such as xanthan gum (XG), is also used for encapsulation due to its good stabilization of emulsion over a wide pH range⁸. Moreover, it is compatible with most starches, carbohydrates, and proteins. Some studies have demonstrated that
the use of mixtures of MD and gums appeared to offer a good balance between cost and efficiency of microencapsulation using a spray dryer6, 10. Starch is a kind of natural macromolecule with hydrophilic properties, which is widely used in the food industry to retain and protect volatile compounds. Starch sodium octenyl succinate (SOSS), as a new kind of modified starch, has amphiphilic molecular structure featured with hydrophobic alkenyl groups, which is widely used in food, pharmaceutical and industrial fields11, 13

Microencapsulation by spray drying is the most common and economically viable technology to protect liquids, solids or even gases against the surrounding environment into microscopic particles22. To overcome the problems of incomplete flavor components from \textit{Piper nigrum} extract and the \textit{Piper nigrum} product easy deterioration in the storage process, enzymatic technology14, 15 and microencapsulation technology16 can be thought as an advisable alternative to retain the original flavor and stabilize the flavor compounds. Enzymatic technology is used to highly release the active components from \textit{Piper nigrum}, and microencapsulation is performed to stabilize the flavor compounds of the \textit{Piper nigrum} products16.

Therefore, in order to maintain and stabilize the natural flavor of \textit{Piper nigrum}, microcapsules of the whole \textit{Piper nigrum} were prepared by spray-drying combined with enzymatic hydrolysis, in the meantime, the optimization of the microencapsulation process was performed by response surface methodology (RSM). Besides, the products were evaluated on volatile aroma components, particle size and surface morphology, etc.

\section*{2 Material and Methods}

\subsection*{2.1 Materials and reagents}

\textit{Piper nigrum} was obtained from Yunnan, China. Starch sodium octenyl succinate (SOSS, 99\%) of food-grade was purchased from Guangzhou Huahui Biological Industry Co., Ltd. Xanthan gum (XG, 99\%) and maltodextrin (MD, 99\%) were food-grade and supplied by Shanghai Yuanpu Biological Technology Co., Ltd. Petroleum ether (≥ 90\%), ethanol (99.8\%) and methanol (99.8\%) were analytical grade and purchased from Sigma Chemical Company. Cellulase (50,000 U/g) and neutral protease (100,000 U/g) were obtained from Henan Yatong Food Raw Material Co., Ltd. Sodium stearoyl lactylate (SSL) (99.8\%) was food-grade and obtained from Jinan Lanxin Biological Technology Co., Ltd. Mixed standards of \textit{n}-alkanes (C\textsubscript{n}-C\textsubscript{25}) were purchased from sigma Aldrich (Beijing, China). Distilled water was used for the preparation of all solutions.

\subsection*{2.2 Preparation of core material containing piperine}

Our previous work has shown that enzymatic hydrolysis can increase the extraction efficiency of piperine from \textit{Piper nigrum}17. Therefore, enzymatic hydrolysate containing \textit{Piper nigrum} flavor compounds was as the core material. It was prepared via the following routes. \textit{Piper nigrum} sample was first ground into a fine powder by using a laboratory grinder mill, and then the powder was sieved less than 10 mesh. Then, a mixture of 10 g of \textit{Piper nigrum} farina, 0.008 g of cellulose, 0.01 g of neutral protease, 0.04 g of SSL and 50 mL water was stirred thoroughly at 60°C for about 4 h. The mixture was then quickly heated to 90°C and kept for 5 min in order to inactivate the enzyme, and then quickly cooled to room temperature. After that, the enzymatic hydrolysate was obtained and collected for the next step.

\subsection*{2.3 Preparation of microcapsules by spray-drying}

SSOS, MD and XG powders, as wall materials (the ratio of the three materials was 1:1:0.2 (w/w/w)), were dispersed in distilled water (wall material concentration was 11\% (w/v)) with vigorous agitation, which was continued until the wall materials completely dissolved.

The enzymatic hydrolysate of \textit{Piper nigrum} was then added into the solution of the wall materials (the ratio of core and wall material was set as 1:0.2 (w/w)) with agitation by means of a high-speed blender (UltraTurrax T-25, IKA Instruments, Germany).

Microencapsulation was performed by spray drying. The emulsion was fed to a mini spray dryer (B290 Buchi, Flawil, Switzerland) at the inlet air temperature of 180°C. The nozzle cleaner was set to level 4 and the aspiration rate was set to 100\%. The feed rate of the peristaltic pump was set to 6.67 mL/min, and the speed of the suction pump was set to 100\%. The powders, which got from above conditions, were collected and stored at 4°C in a closed container without light16, 18.

\subsection*{2.4 Determination of microencapsulation efficiency}

The extraction method of piperine from initial \textit{Piper nigrum} powder was that 2 g of \textit{Piper nigrum} powder was dissolved in 20 mL ethanol into a container with ultrasound for about 30 mins20. While the measurement of piperine in the microcapsule requires that 2 g of the prepared microcapsules was firstly mixed with moderate amount of petroleum ether, and then was shaken gently by hands for 2 mins at room temperature. After that, the mixture was filtered and the retained sample was rinsed three times with 20 mL petroleum ether. The collected sample was ground, and then 2 g of sample were dispersed in 20 mL of ethanol with ultrasound for 30 mins.

The content of piperine was detected at the wavelength of 343 nm using UV-vis spectrophotometer (Shimadzu UV-3600) with Ultraviolet Spectrophotometry20. The external standard method was used for quantitative analysis. The standard curve was $y = 0.2645x + 0.0042$, $R^2 = 0.9996$ ($n = 13$).
The encapsulation efficiency was calculated by the following equation:

\[Y_e = \frac{M_e}{P_e} \times 100\% \] \hspace{1cm} (1)

where \(Y_e (\%) \) was encapsulation efficiency, \(M_e (\text{mg/mL}) \) was the content of piperine in produced Piper nigrum microcapsules, \(P_e (\text{mg/mL}) \) was the content of piperine in Piper nigrum powder added in the process of the preparation of microcapsules.

2.5 Experimental design

The main factors affecting the microencapsulation efficiency were the ratio of the core and wall material, proportion of wall materials, wall material concentration and inlet air temperature. In order to optimize the microencapsulation process conditions, a single-factor experiment was first performed. Based on the results of the single factor experiment, the ratio of the core and wall material was set to 1:0.2 (w/w).

Then, the analysis experiment using Box-Behnken’s response surface method was performed, in which the proportion of wall materials (\(x_1 \)), wall material concentration (\(x_2 \)) and inlet air temperature (\(x_3 \)) were used as the independent variables, and the microencapsulation efficiency (\(y \)) was used as the response value. In order to facilitate multiple regression analysis, the actual variables were coded in Table 1.

In Table 2, experiments 1~12 were factorial experiments, and 13~17 were central experiments. The 17 experimental points were divided into factor points and zero points, where the factor point were three-dimensional vertices composed of independent variables with values of \(x_1, x_2, \) and \(x_3, \) and the zero point was the center point of the region. The zero-point experiment was repeated five times to estimate the experimental error.

In the regression analysis, the relationship among the independent variables (\(x \)) and dependent variables (\(y \)) was valued by the following second order polynomial equation:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 \]

where \(\beta_0, \beta_1, \beta_2, \beta_3, \beta_{12}, \beta_{13}, \beta_{23}, \beta_{11}, \beta_{22}, \beta_{33} \) were constant coefficients. \(\beta_0 \) was the constant coefficient of intercept, \(\beta_1, \beta_2, \text{and } \beta_3 \) were constant coefficients of linear, \(\beta_{12}, \beta_{13}, \text{and } \beta_{23} \) were constant coefficients of quadratic, \(\beta_{11}, \beta_{22}, \text{and } \beta_{33} \) were constant coefficients of interaction terms.

2.6 Fourier transform infrared spectroscopy (FTIR) analysis

In order to avoid disturbances of other ingredients in the Piper nigrum enzymatic hydrolyzate, Piper nigrum essential oil extracted by steam distillation was used as the infrared detection sample. Pure wall material, Piper nigrum essential oil extracted from Piper nigrum, and microcapsules samples were diluted with potassium bromide powder at a mass ratio of 1:100 respectively. Then they were ground and pressed into a transparent wafer using the specific presser. Finally, the sample wafer was put into the sample cell. The infrared spectra were collected in the range of 400-4000 cm\(^{-1}\) at ambient temperature using a Nicolet iS10 FT-IR spectrometer (Thermo Fisher, USA).

2.7 Identification of chemical compounds from Piper nigrum powder and microcapsules by solid-phase microextraction (SPME) and gas chromatography (GC) - mass spectrometry (MS)

A certain amount of Piper nigrum powder and microcapsules sample (approximately 5.0 g) were placed into a 15 mL glass vial and sealed with a Teflon septum cap, respectively. Each sample was heated at 60°C for 30 mins. After that, the SPME fiber coated with carboxen/polydimethylsiloxane (CAR/PDMS, 65 μm, Bellefonte, PA, USA) was conditioned in the GC-MS injection port for 30 min at 240°C to remove any contaminants, and then was exposed to the vial headspace and inserted into the injection port of the GC system\(^{21}\).

The volatile constituents were analyzed with a mass detector model 7000B (Agilent Technologies, Palo Alto, CA, USA) coupled to a 7890A GC equipped with a HP-5MS capillary column (30 m × 250 μm × 0.25 μm) from Agilent. The injector temperature was 240°C with a splitless injector. The oven temperature program was held at 40°C for 5 mins, increased by 5°C/min to 240°C and was maintained for 4 mins. The carrier gas was helium at a constant flow of 1 mL/min. Mass spectra were recorded at 70 eV in the EI mode. The temperature of the quadrupole mass detector, ion source and transfer line were maintained at 150°C, 230°C and 250°C, respectively. The scanning quality range was m/z 40~400. Compound identification was based on mass spectra matching with the standard NIST 2014 MS library and also on the comparison of retention indexes (RI) sourced from the NIST Standard Reference Database and references\(^{22}\). The calculation of RI was according to references\(^{21,23-25}\). In addition, the relative contents of individual components were calculated using their GC peak areas\(^{22}\). All analyses of the volatile compounds were made in triplicate.

2.8 Morphology

The morphology of the microcapsules was observed by a scanning electron microscope (SEM, Sigma 300, Zeizz) under high vacuum conditions at a voltage of 10 kV. The microcapsules were dissolved in the petroleum ether and the mixture was dropped on silicon sheet (10 mm × 10 mm). The sample was measured until the solution evaporated completely at room temperature.

2.9 Particle size

Particle size of the microcapsules was determined using a particle size analyzer (Nano Brook 90PlusZeta; Brookhaven...
The suspension sample was prepared by mixing the emulsions with distilled water at 25°C.

3 Results and Discussion

3.1 Microencapsulation efficiency and its condition optimization

The experimental results reported in our previous work indicated that surfactant-assisted enzymatic hydrolysis could promote the effective release of piperine in *Piper nigrum*. For the composition of the emulsion, the content of the extracted piperine markedly increased from 0.14% of *Piper nigrum*. For the composition of the emulsion, the content of the core material (enzymolysis solution) was greatly increased, so that the active ingredients of *Piper nigrum* were distributed in a large amount in the emulsion and the prepared microcapsules contain more piperine, which greatly preserved the original ingredients and the biological activities of *Piper nigrum*. Therefore, enzymatic hydrolysis had a certain effect on the improvement of microencapsulation efficiency.

The polynomial regression model equation, which were calculated for the microencapsulation efficiency, were fitted as follow: \(y = 87.24 - 1.29x_1 - 1.32x_2 - 0.33x_3 - 0.74x_1x_2 - 4.42x_1x_3 - 2.89x_2x_3 - 0.23x_1^2 - 1.77 - x_2^2 - 3.46x_3^2 \). The appropriate level range of the operating conditions was obtained through the single factor experiments. The proportion of wall material of 1:1.5:0.2, wall material concentration was also one of the factors affecting the success of microencapsulation. Therefore, the proportion of functional wall material was one of the key factors for the efficiency of microcapsules. When the wall material solid content was high, the film formation speed of the microcapsule coating material and the density of the capsule wall were improved. It would enhance the encapsulation of the core material, reduced the diffusion and migration of the core material to the wall material, and thus improved the embedding rate of the microcapsule. However, when the wall material was too high, the components in the system could not be fully emulsified, the emulsion was not stable enough, and the microcapsule film formed on the surface was not dense enough. However, when the content of MD was low, the active ingredients in the system cannot be embedded, resulting in poor film-forming ability and low microencapsulation efficiency of microcapsules. Therefore, the proportion of functional wall material was one of the key factors for the success of microencapsulation. Secondly, the wall material concentration was also one of the factors affecting the efficiency of microencapsulation. When the wall material solid content was high, the film formation speed of the microcapsule coating material and the density of the capsule wall were improved. It would enhance the encapsulation of the core material, reduced the diffusion and migration of the core material to the wall material, and thus improved the embedding rate of the microcapsule. However, when the wall material was too high, the emulsion viscosity

Table 1: Coded levels for independent variables in developing experimental data.

Independent variable	Unit	Symbol	Coded and actual levels
proportion of wall materials/\(x_1\)	(w/w/w)	A	1:1.0:2, 1:1.5:0.2, 1:2.0:2
wall material concentration/\(x_2\)	% (w/v)	B	10, 15, 20
inlet air temperature/\(x_3\)	ºC	C	160, 170, 180

Table 2: Design matrix in the response surface design and obtained experimental results.

Run no.	A	B	C	Microencapsulation efficiency (%)
1	-1	-1	0	86.86
2	1	-1	0	85.51
3	-1	1	0	86.44
4	1	1	0	82.12
5	-1	0	-1	80.96
6	1	0	-1	87.46
7	-1	0	1	88.46
8	1	0	1	77.30
9	0	-1	-1	80.79
10	0	1	-1	83.19
11	0	-1	1	86.60
12	0	1	1	77.43
13	0	0	0	86.68
14	0	0	0	88.07
15	0	0	0	86.68
16	0	0	0	88.07
17	0	0	0	86.68
would also increase. The obtained emulsion was easy to stick and block around the nozzle, which led to a long time for the flavor substances in \textit{Piper nigrum} to be heated. To some extent, it would cause the loss of active ingredients and affect the evaporation of water and the atomization of liquids. Finally, the embedding rate of the microcapsules was reduced.

Moreover, the results of RSM also showed that among quadratic and interaction terms of independent variables, x_1x_2, x_2x_3, x_1^2, and x_3^2 were significant ($p<0.05$). It indicated that the experimental factor was not a simple linear relationship to the response value. Thence the experimental parameters were further optimized by the Design-Expert software, and the most favorable conditions were the proportion of wall materials of 1:1:0.2 (SSOS: MD: XG, w/w/w), wall material concentration of 11\(^\circ\)w/v, and inlet air temperature of 180\(^\circ\)C. Under the above conditions, the predicted value of microencapsulation efficiency could reach to 90.62\%.

3.2 FTIR analysis

The microcapsules of \textit{Piper nigrum} were analyzed by FTIR spectroscopy in order to verify the presence of the piperine in the microcapsules. The FTIR spectrum of pure \textit{Piper nigrum} microcapsules showed that the weak absorption band observed at a wavelength of 3648.71 cm\(^{-1}\) was characteristic for hydroxyl (-OH) groups. The peaks presented with strong intensity at approximately 2927.30 cm\(^{-1}\) and 2858.41 cm\(^{-1}\) belonged to C-H stretching vibration of the methylene groups. The signal at 1635.67 cm\(^{-1}\) corresponded to the C=C stretching vibration.

![FTIR spectra](image)

Fig. 1 FTIR of pure wall materials (a), \textit{Piper nigrum} microcapsules (b), and \textit{Piper nigrum} essential oil (c).
the strong absorption band at the 1367.45 cm\(^{-1}\) and 1456.76 cm\(^{-1}\) was associated to C-H bending vibration\(^{30}\).

As shown in Fig. 1b, the spectra of the *Piper nigrum* microcapsules also showed peaks characteristic of *Piper nigrum* essential oil, and there was no new chemical bond between the microcapsules and the wall materials spectrums, thus confirming that the *Piper nigrum* essential oil was contained in the wall material and there was no chemical reaction between the core materials and SSOS-MD-XG mixtures. Similar results have been reported by other studies\(^ {29, 30}\).

3.3 Analysis of volatile aroma components

By using GC-MS analysis, twenty-one and fourteen odor-active volatile compounds were detected in *Piper nigrum* powder and *Piper nigrum* microcapsules, respectively (Fig. 2). The odor-active volatile compounds identified from *Piper nigrum* powder and *Piper nigrum* microcapsules were presented in Table 4. As it can be seen, the quantities of alkenes in *Piper nigrum* powder and microcapsules were both high. More specifically, the most important volatile compounds for aroma in these two samples were carene, D-limonene, \(\alpha\)-phellandrene, and \(\delta\)-\(\beta\)-pinene. Furthermore, the highest content of the two samples was D-limonene. Indeed, similar results were obtained in previous studies focusing on *Piper nigrum*\(^ {23, 30}\).

The recovery percentages of most volatile compounds were relatively low (no more than 15%) while some main volatile compounds, such as D-limonene and carene, were higher recovery percentages in microcapsules. Meanwhile, some volatile components, such as \(\beta\)-caryophyllene and \((+/-)\)-\(\delta\)-elemene, were not detected in the microcapsules. Previous studies reported that the volatile retention quantity of carbohydrate had no relation to the relative content of aroma compounds, but with the volatile molecular weight increasing, it would increase correspondingly. In addition, it was established that some volatile compounds were lost during microencapsulation\(^ {35, 36}\).

However, most of main components from *Piper nigrum* powder had a little change before and after microencapsulation, which proved that most of the volatile components could be maintained by microencapsulation and the natural flavor of *Piper nigrum* could be retained to the greatest extent.

3.4 Morphology

Figure 3 revealed that the microcapsules had a broad size distribution with an irregular shape (Fig. 3A). In general, microcapsules that produced by spray drying generally had a spherical or irregular shape and various sizes\(^ {25, 30, 37}\). Those microcapsules produced with SSOS, MD and XG powders as wall materials were characterized by larger deformations and irregular surfaces (folds) (Figs. 3B-3D). These irregular surfaces were mainly represented by many shrinkages and dents on the surface of the microcapsules, which were consistent with some previous reports\(^ {38, 39}\).

The shape irregularity of the microcapsules was closely related to the components of core material including flavor compounds, essential oil and other cellulose and lignin, etc. Besides, the presence of depressions on the surface of the microparticles has been associated to the shrinkage at the early stages of the drying and subsequent cooling\(^ {40, 41}\).

3.5 Particle size determination

The particle size distribution curve of *Piper nigrum* microcapsules emulsions was presented in Fig. 4. As it can be seen in Fig. 4, the particle size distribution of emulsions was uniform. More specifically, the average particle size distributions of the emulsions were 0.15 \(\mu\)m, which were slightly lower than those previous studies on different microcapsules\(^ {28, 38}\). The enormous differences between studies mainly arose from the emulsification methods\(^ {28}\) and the properties of wall and core materials. In addition, recent studies have shown that the average particle size distributions of the microcapsules carried out by the ultrasonic emulsification method were generally smaller\(^ {42}\), which may be attributed to cavitation and mechanical function of ultrasound\(^ {43, 44}\).

1794

Fig. 2 Chromatograms for odour active volatile of *Piper nigrum* powder (A) and *Piper nigrum* microcapsules (B).
Preparation of Piper nigrum Microcapsules

4 Conclusions

In conclusion, the produced Piper nigrum enzymatic hydrolyzate, the wall material used and the spray drying conditions were effective in keeping the natural chemical compounds in the Piper nigrum microcapsules. The best conditions for the microencapsulation have been determined as the ratio of core and wall material ($1:0.2$, w/w), proportion of wall materials ($1:1:0.2$, SSOS : MD : XG, w/w/w), wall material concentration (11%, w/v) and inlet air temperature ($180\ degrees$). Under the optimal conditions determined by RSM, the microencapsulation efficiency of Piper nigrum could achieve 90.21%. In the microscopic observation, the shape of the microcapsules was irregular and the average particle size of the emulsion was $0.15\ \mu m$.

Table 4 Comparison of all compounds in Piper nigrum powder and Piper nigrum microcapsules ($n = 3$ for each analysis).

No.	Name	Piper nigrum powder	Piper nigrum microcapsules				
		RI^a	Relative contents (%)	Base of ID^b	RI^a	Relative contents (%)	Base of ID^b
1	1R-(+)-α-Pinene	930	6.16	MS,RI	932	8.07	MS,RI
2	(-)-Camphene	944	0.21	MS,RI	945	0.31	MS,RI
3	(-)-β-Pinene	976	16.46	MS,RI	977	20.13	MS,RI
4	α-Phellandrene	1007	8.18	MS,RI	1007	13.29	MS,RI
5	Carene	1017	19.36	MS,RI	1017	21.50	MS,RI
6	D-Limonene	1039	23.41	MS,RI	1039	23.95	MS,RI
7	(Z)-β-Ocimene	1040	0.51	MS,RI	1040	-	-
8	γ-Terpine	1066	0.47	MS,RI	1066	0.63	MS,RI
9	Terpinolene	1091	2.89	MS,RI	1091	3.26	MS,RI
10	Linalool	1104	0.33	MS,RI	1104	1.36	MS,RI
11	2,6-dimethyl-octa-2,4,6-triene	1149	0.46	MS,RI	1149	0.48	MS,RI
12	α-Terpinol	1181	0.05	MS	1180	0.10	MS
13	(++)-δ-Elemene	1351	1.77	MS	-	-	-
14	(-)-α-Cubebeene	1364	0.38	MS,RI	1363	0.50	MS
15	α-Copaene	1393	3.32	MS,RI	1392	3.06	MS,RI
16	β-Elemene	1399	0.41	MS,RI	1394	0.10	MS,RI
17	(-)-α-Gurjunene	1407	0.18	MS,RI	-	-	-
18	β-Caryophyllene	1445	12.40	MS,RI	-	-	-
19	10,10-dimethyl-2,6-dimethylenebicyclo[7.2.0]undecane	1439	0.21	MS,RI	-	-	-
20	(+)-β-Selinene	1517	0.45	MS	-	-	-
21	(+)-δ-Cadinene	1542	0.49	MS	-	-	-

- Non-detected; Relative percentage content (%) = peak area alone/total peak area × 100; RI^a: calculated retention index, RI^b: reported retention index, *MS: compounds were identified by MS spectra; RI: compounds were identified by comparison to references.

Fig. 3 SEM of the Piper nigrum microcapsules.

Fig. 4 Particle size of Piper nigrum microcapsules emulsions.
Based on the findings, this study could provide a useful guideline for the microencapsulation of *Piper nigrum*.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFC1600401-3), Beijing Municipal Science and Technology Project (2017100001317015) and National Natural Science Foundation of China (31871749).

References

1) Baenas, N.; Belovic, M.; Ilic, N.; Moreno, D.A.; Garcia-Viguera, C. Industrial use of pepper (*Capsicum annum* L.) derived products: Technological benefits and biological advantages. *Food chem.* 274, 872-885 (2019).

2) Andrade, K.S.; Trivellin, G.; Ferreira, S.R.S. Piperine-rich extract obtained by high pressure methods. *J. Supercrit Fluid.* 128, 370-377 (2017).

3) Mazzutti, S.; Riehl, C.A.S.; Ibañez, E.; Ferreira, S.R.S. Green-based methods to obtain bioactive extracts from *Plantago major* and *Plantago lanceolate*. *J. Supercrit Fluid.* 119, 211-220 (2017).

4) Viganó, J.; Zabot, G.L.; Martínez, J. Supercritical fluid and pressurized liquid extractions of phytonutrients from passion fruit by-products: Economic evaluation of sequential multi-stage and single-stage processes. *J. Supercrit Fluid.* 122, 88-89 (2017).

5) Wang, Y.; Jiang, Z.T.; Li, R. Composition comparison of essential oils extracted by hydrodistillation and microwave-assisted hydrodistillation from black pepper (*Piper nigrum* L.) grown in China. *J. Essent. Oil Bear Plants* 12, 374-380 (2009).

6) Lee, Y.K.; Ahn, S.I.; Kwak, H.S. Optimizing microencapsulation of peanut sprout extract by response surface methodology. *Food Hydrocoll.* 30, 307-314 (2013).

7) Pourashouri, P.; Shabanpour, B.; Razavi, S.H.; Jafari, S.M.; Shabani, A.; Aubourg, S.P. Oxidative stability of spray-dried microencapsulated fish oils with different wall materials. *J. Aquat. Food Prod. Technol.* 23, 567-578 (2014).

8) Fu, D.W.; Deng, S.M.; McClements, D.J.; Zhou, L.; Zou, L.Q. *et al.* Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. *Food Hydrocoll.* 89, 80-89 (2019).

9) Apintanapong, M.; Noomhorm, A. The use of spray drying to microencapsulate 2-acetyl-1-pyrroline, a major flavour component of aromatic rice. *J. Food Sci. Tech.* 38, 95-102 (2003).

10) Bhandari, B.R.; Dumoulin, E.D.; Richard, H.M.J.; Noleau, I.; Lebert, A. Flavor encapsulation by spray drying: Application to citral and linalyl acetate. *J. Food. Sci.* 57, 217-221 (1992).

11) Fang, J.M.; Fowler, P.A.; Tomkinson, J.; Hill, C.A.S. An investigation of the use of recovered vegetable oil for the preparation of starch thermoplastics. *Carbohydr Polym.* 50, 429-434 (2002).

12) Soliman, E.A.; Moghazy, A.Y.E.; Mohy, E.D.M.S.; Massoud, M.A. Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of anti-fungal activity. *J. Encapsulation Adsorpt. Sci.* 3, 48-55 (2013).

13) Dutta, S.; Bhattacharjee, P. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. *J. Food Eng.* 201, 49-56 (2017).

14) Tomazelli Junior, O.; Kuhn, F.; Padilha, P.J.M.; Vicente, L.R.M.; Costa, S.W. *et al.* Microencapsulation of essential thyme oil by spray drying and its antimicrobial evaluation against *Vibrio alginolyticus* and *Vibrio parahaemolyticus*. *Braz. J. Biol.* 78, 311-317 (2018).

15) Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. *LWT-Food Sci. Technol.* 62, 177-186 (2015).

16) Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release - A review. *Int. J. Food Sci. Technol.* 4, 1-21 (2006).

17) Yu, Y.; Hu, S.Q.; Fu, D.J.; Zhang, X.X.; Liu, H.Q. *et al.* Surfactant-assisted enzymatic extraction of piperine from *Piper nigrum* L. *Int. J. Food Prop.* 23, 52-62 (2020).

18) Shaikh, J.; Bhosale, R.; Singhal, R. Microencapsulation of black pepper oleoresin. *Food Chem.* 94, 105-110 (2006).

19) Rathod, S.S.; Rathod, V.K. Extraction of piperine from *Piper longum* using ultrasound. *Ind. Crops. Prod.* 58, 259-264 (2014).

20) Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Sequential microwave-ultrasound-assisted extraction for isolation of piperine from black pepper (*Piper nigrum* L.). *Food Bioprocess Technol.* 10, 2199-2207 (2017).

21) Matsushita, T.; Zhao, J.J.; Igura, N.; Shimoda, M. Identification of commercial spices based on the similarities between gas chromatographic fingerprints. *J. Sci. Food Agric.* 98, 2989-3000 (2018).

22) Chandran, J.; Amma, K.P.P.; Menon, N.; Purushothaman, J.; Nisha, P. Efect of enzyme-assisted extraction on quality and yield of volatile oil from black pepper and cardamom. *Food Sci. Biotechnol.* 21, 1611-1617.
Preparation of Piper nigrum Microcapsules

J. Oleo Sci. 71, (12) 1789-1797 (2022)

23) Prodhane, M.A.I.; Sleman, A.A.; Kim, S.; McClain, C.; Zhang, X. Generalization of reference system for calculating the second dimension retention index in GC × GC-MS. J. Anal. Test. 2, 263-273 (2018).

24) Wang, Z.; Wei, J.W.; Wang, Y.; Zhu, T.T.; Huang, M.Q. et al. A new method to predict the content changes of aroma compounds during the aging process of Niulan-shan Baijiu using the GM(1,1)gray model. Flavour Frag. J. 37, 5-19 (2022).

25) Zheng, Y.; Sun, B.G.; Zhao, M.M.; Zheng, F.P.; Huang, M.Q. et al. Characterization of the key odorants in Chinese zhiha aroma-type Baijiu by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 64, 5367-5374 (2016).

26) Reineccius, G.A. The spray drying of food flavors. Dry Technol. 22, 1289-1324 (2007).

27) Balasubramani, P.; Viswanathan, R.; Vairamani, M. Response surface optimisation of process parameters for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosyst. Eng. 114, 205-213 (2013).

28) Tontul, I.; Topuz, A. Influence of emulsion composition and ultrasonication time on flaxseed oil powder properties. Powder Technol. 264, 54-60 (2014).

29) Sanchez-Reinoso, Z.; Osorio, C.; Herrera, A. Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterisation of microencapsulates. Powder Technol. 318, 110-119 (2017).

30) Fernandes, R.V.B.; Borges, S.V.; Silva, E.K.; Silva, Y.F.; Barboza, H.J. et al. Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind. Crop Prod. 94, 413-423 (2016).

31) Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; Gonzalez-Laredo, R.F. et al. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT-Food Sci. Tech. 64, 571-577 (2015).

32) Banerjee, S.; Chattopadhyay, P.; Ghosh, A.; Goyary, D.; Karmakar, S.; Veer, V. Influence of process variables on essential oil microencapsulation by carbohydrate polymer-protein blends. Carbohydr. Polym. 93, 691-697 (2013).

33) Che, Man, Y.B.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem. 90, 815-819 (2005).

34) Huang, G.Q.; Sun, Y.T.; Xiao, J.X.; Yang, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem. 135, 534-539 (2012).

35) Jeleń, H.H.; Gracka, A. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation. J. Chromatogr. A 1418, 200-209 (2015).

36) Rulken, W.H.; Thijssen, H.A.C. The retention of organic volatiles in spray-drying aqueous carbohydrate solutions. Int. J. Food Sci. Tech. 7, 95-105 (1972).

37) Chew, S.C.; Tan, C.P.; Nyam, K.L. Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using beta-cyclodextrin/gum arabic/sodium caseinate. J. Food Eng. 237, 78-85 (2018).

38) Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 115, 443-451 (2013).

39) Daza, L.D.; Fujita, A.; Fávaro-Trindade, C.S.; Rodrigues-Ract, J.N.; Granato, D.; Genovese, M.I. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process. 97, 20-29 (2016).

40) Hijo, A.A.C.T.; Da Costa, J.M.G.; Silva, E.K.; Azvedo, V.M.; Malta, M.R.; Borges, S.V. Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J. Food Process Eng. 38, 1-10 (2015).

41) Da Costa, J.M.G.; Silva, E.K.; Hijo, A.A.C.T.; Azvedo, V.M.; Malta, M.R. et al. Microencapsulation of Swiss cheese bioaroma by spray-drying: Process optimization and characterization of particles. Powder Technol. 274, 296-304 (2015).

42) Jafari, S.M.; He, Y.H.; Bhandari, B. Role of powder particle size on the encapsulation efficiency of oils during spray drying. Dry Technol. 25, 1081-1089 (2007).

43) Shen, L.L.; Chen, J.P.; Bai, Y.J.; Ma, Z.C.; Huang, J.; Feng, W. Physical properties and stabilization of microcapsules containing thyme oil by complex coacervation. J. Food Sci. 81, 2258-2262 (2016).

44) Spada, J.C.; Marczak, L.D.F.; Tessaro, I.C.; Cardozo, N.S.M. Effect of ultrasound treatment on particle size, rheology, microstructure, colour and water holding capacity of a soy-based dessert. Acta Alimentaria 45, 242-249 (2016).

CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International). This license allows users to share and adapt an article, even commercially, as long as appropriate credit is given and the distribution of derivative works is under the same license as the original. That is, this license lets others copy, distribute, modify and reproduce the Article, provided the original source and Authors are credited under the same license as the original.