ON LEARNING UNIVERSAL REPRESENTATIONS ACROSS LANGUAGES

Xiangpeng Wei1,2∗, Rongxiang Weng3, Yue Hu1,2, Luxi Xing1,2, Heng Yu3, Weihua Luo3
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{weixiangpeng, huyue, xingluxi}@iie.ac.cn
3Machine Intelligence Technology Lab, Alibaba Group, Hangzhou, China
{wengrx, yuheng.yh, weihua.luowh}@alibaba-inc.com

ABSTRACT

Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations and show the effectiveness on cross-lingual understanding and generation. Specifically, we propose a Hierarchical Contrastive Learning (HiCTL) method to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on two challenging cross-lingual tasks, XTREME and machine translation. Experimental results show that the HiCTL outperforms the state-of-the-art XLM-R by an absolute gain of 4.2% accuracy on the XTREME benchmark as well as achieves substantial improvements on both of the high-resource and low-resource English→X translation tasks over strong baselines.

1 INTRODUCTION

Pre-trained models (PTMs) like ELMo (Peters et al., 2018), GPT (Radford et al., 2018) and BERT (Devlin et al., 2019) have shown remarkable success of effectively transferring knowledge learned from large-scale unlabeled data to downstream NLP tasks, such as text classification (Socher et al., 2013) and natural language inference (Bowman et al., 2015; Williams et al., 2018), with limited or no training data. To extend such pretraining-finetuning paradigm to multiple languages, some endeavors such as multilingual BERT (Devlin et al., 2019) and XLM (Conneau & Lample, 2019) have been made for learning cross-lingual representation. More recently, Conneau et al. (2020) present XLM-R to study the effects of training unsupervised cross-lingual representations at a huge scale and demonstrate promising progress on cross-lingual tasks.

However, all of these studies only perform a masked language model (MLM) with token-level (i.e., subword) cross entropy, which limits PTMs to capture the co-occurrence among tokens and consequently fail to understand the whole sentence. It leads to two major shortcomings for current cross-lingual PTMs, i.e., the acquisition of sentence-level representations and semantic alignments among parallel sentences in different languages. Considering the former, Devlin et al. (2019) introduced the next sentence prediction (NSP) task to distinguish whether two input sentences are continuous segments from the training corpus. However, this simple binary classification task is not enough to model sentence-level representations and semantic alignments among parallel sentences in different languages. For the latter, Huang et al. (2019) defined the cross-lingual paraphrase classification task, which concatenates two sentences from different languages as input.
and classifies whether they are with the same meaning. This task learns patterns of sentence-pairs well but fails to distinguish the exact meaning of each sentence.

In response to these problems, we propose to strengthen PTMs through learning universal representations among semantically-equivalent sentences distributed in different languages. We introduce a novel **Hierarchical Contrastive Learning (HiCTL)** framework to learn language invariant sentence representations via self-supervised non-parametric instance discrimination. Specifically, we use a BERT-style model to encode two sentences separately, and the representation of the first token (e.g., \[CLS\] in BERT) will be treated as the sentence representation. Then, we conduct instance-wise comparison at both sentence-level and word-level, which are complementary to each other. At the sentence level, we maximize the similarity between two parallel sentences while minimizing which among non-parallel ones. At the word-level, we maintain a bag-of-words for each sentence-pair, each word in which is considered as a positive sample while the rest words in vocabulary are negative ones. To reduce the space of negative samples, we conduct negative sampling for word-level contrastive learning. With the HiCTL framework, the PTMs are encouraged to learn language-agnostic representation, thereby bridging the semantic discrepancy among cross-lingual sentences.

The HiCTL is conducted on the basis of XLM-R (Conneau et al., 2020) and experiments are performed on several challenging cross-lingual tasks: language understanding tasks (e.g., XNLI, XQuAD, and MLQA) in the XTREME (Hu et al., 2020) benchmark, and machine translation in the IWSLT and WMT benchmarks. Extensive empirical evidence demonstrates that our approach can achieve consistent improvements over baselines on various tasks of both cross-lingual language understanding and generation. In more detail, our HiCTL obtains absolute gains of 4.2% (up to 6.0%) on zero-shot sentence retrieval tasks, e.g. BUCC and Tatoeba) accuracy on XTREME over XLM-R. For machine translation, our HiCTL achieves substantial improvements over baselines on both low-resource (IWSLT English→X) and high-resource (WMT English→X) translation tasks.

2 Related Work

Pre-trained Language Models. Recently, substantial work has shown that pre-trained models (PTMs) (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019) on the large corpus are beneficial for downstream NLP tasks. The application scheme is to fine-tune the pre-trained model using the limited labeled data of specific target tasks. For cross-lingual pre-training, both Devlin et al. (2019) and Conneau & Lample (2019) trained a transformer-based model on multilingual Wikipedia which covers various languages, while XLM-R (Conneau et al., 2020) studied the effects of training unsupervised cross-lingual representations on a very large scale.

For sequence-to-sequence pre-training, UniLM (Dong et al., 2019) fine-tuned BERT with an ensemble of masks, which employs a shared Transformer network and utilizing specific self-attention mask to control what context the prediction conditions on. Song et al. (2019) extended BERT-style models by jointly training the encoder-decoder framework. XLNet (Yang et al., 2019) trained by predicting masked tokens auto-regressively in a permuted order, which allows predictions to condition on both left and right context. Raffel et al. (2019) unified every NLP problem as a text-to-text problem and pre-trained a denoising sequence-to-sequence model at scale. Concurrently, BART (Lewis et al., 2020) pre-trained a denoising sequence-to-sequence model, in which spans are masked from the input but the complete output is auto-regressively predicted.

Previous works have explored using pre-trained models to improve text generation, such as pre-training both the encoder and decoder on several languages (Song et al., 2019; Conneau & Lample, 2019; Raffel et al., 2019) or using pre-trained models to initialize encoders (Edunov et al., 2019; Zhang et al., 2019a; Guo et al., 2020). Zhu et al. (2020) and Weng et al. (2020) proposed a BERT-fused NMT model, in which the representations from BERT are treated as context and fed into all layers of both the encoder and decoder. Zhong et al. (2020) formulated the extractive summarization task as a semantic text matching problem and proposed a Siamese-BERT architecture to compute the similarity between the source document and the candidate summary, which leverages the pre-trained BERT in a Siamese network structure. Our approach also belongs to the contextual pre-training so it could be applied to various downstream NLU and NLG tasks.

Contrastive Learning. Contrastive learning (CTL) (Saunshi et al., 2019) aims at maximizing the similarity between the encoded query \(q \) and its matched key \(k^+ \) while keeping randomly sampled
Figure 1: Illustration of Hierarchical Contrastive Learning (HiCTL). n is the batch size, m denotes the number of negative samples for word-level contrastive learning. B and V indicates the bag-of-words of the instance $⟨x_i, y_i⟩$ and the overall vocabulary of all languages, respectively.

Contrastive learning is at the core of several recent work on unsupervised or self-supervised learning from computer vision (Wu et al., 2018; Oord et al., 2018; Ye et al., 2019; He et al., 2019; Chen et al., 2020; Tan et al., 2020) to natural language processing (Mikolov et al., 2013; Mnih & Kavukcuoglu, 2013; Devlin et al., 2019; Clark et al., 2020b; Feng et al., 2020; Chi et al., 2020). Kong et al. (2020) improved language representation learning by maximizing the mutual information between a masked sentence representation and local n-gram spans. Clark et al. (2020b) utilized a discriminator to predict whether a token is replaced by a generator given its surrounding context. Iter et al. (2020) proposed to pre-train language models with contrastive sentence objectives that predict the surrounding sentences given an anchor sentence. In this paper, we propose HiCTL to encourage parallel cross-lingual sentences to have the identical semantic representation and distinguish whether a word is contained in them as well, which can naturally improve the capability of cross-lingual understanding and generation for PTMs.

3 Methodology

3.1 Hierarchical Contrastive Learning

We propose hierarchical contrastive learning (HiCTL), a novel comparison learning framework that unifies cross-lingual sentences as well as related words. HiCTL can learn from both non-parallel and parallel multilingual data, and the overall architecture of HiCTL is illustrated in Figure 1. We represent a training batch of the original sentences as $x = \{x_1, x_2, \ldots, x_n\}$ and its aligned counterpart is denoted as $y = \{y_1, y_2, \ldots, y_n\}$, where n is the batch size. For each pair $⟨x_i, y_i⟩$, y_i is either the translation in the other language of x_i when using parallel data or the perturbation through reordering tokens in x_i when only monolingual data is available. x_i^\top is denoted as a modified version of x where the i-th instance is removed.

Sentence-Level CTL. As illustrated in Figure 1a, we apply the XLM-R as the encoder to represent sentences into hidden representations. The first token of every sequence is always a special token...
The sentence-level contrastive loss for \(x \), denoted as \(\tilde{x} \), is given by:

\[
L_{\text{sctl}}(x_i) = -\log \frac{\exp \circ s(q, k^+) \exp \circ s(q, k^-) \sum_{j=1}^{y \in \{x, y^+\}} \exp \circ s(q, k_j^-)}{\exp \circ s(q, k^+) \exp \circ s(q, k_j^+) \sum_{j=1}^{y \in \{x, y^+\}} \exp \circ s(q, k_j^-)}.
\]

Symmetrically, we also expect \(r_{y_i} \), (the query, denoted as \(\tilde{q} \)) to be as similar as possible to \(r_{y_i} \) (the positive sample, denoted as \(k^+ \)) but dissimilar to all other instances in the same training batch, thus,

\[
L_{\text{sctl}}(y_i) = -\log \frac{\exp \circ s(\tilde{q}, \hat{k}^+)}{\exp \circ s(\tilde{q}, \hat{k}^+ + \sum_{j=1}^{y \in \{x^+, y^-\}} \exp \circ s(\tilde{q}, k_j^-)}.
\]

The sentence-level contrastive loss over the training batch can be formulated as:

\[
L_S = \frac{1}{2n} \sum_{i=1}^{n} \{ L_{\text{sctl}}(x_i) + L_{\text{sctl}}(y_i) \}.
\]

For sentence-level contrastive learning, we treat other instances contained in the training batch as negative samples for pre-training, as shown in Figure 2. Given a training batch \(\{(x_i, y_i)\}_{i=1}^{n} \), where \(n \) is the batch size. In this context, having obtained the embeddings of a triplet, an anchor \(q \) and a positive \(k^+ \) as well as a negative \(k^- \) (supposing \(q, k^+ \) and \(k^- \) are representations of sentences \(x_i \), \(y_i \) and \(y_i^+ \) in \(x^+ \) and \(y^- \), respectively), we construct a harder negative sample \(\hat{k}^- \) to replace \(k^- \):

\[
\hat{k}^- = \begin{cases}
q + \lambda(k^- - q), \lambda \in \left(\frac{d^+}{d^-}, 1\right] & \text{if } d^- > d^+; \\
k^- & \text{if } d^- \leq d^+.
\end{cases}
\]

where \(d^+ = \| k^+ - q \|_2 \) and \(d^- = \| k^- - q \|_2 \). For the first condition, the hardness of \(\hat{k}^- \) increases when \(\lambda \) becomes smaller. To this end, we intuitively set \(\lambda \) as:

\[
\lambda = \left(\frac{d^+}{d^-} \right)^\zeta \rho \mu \gamma, \quad \zeta \in (0, 1)
\]
where $p_{av}^+ = \frac{1}{100} \sum_{j \in [-100,-1]} e^{-L_S^{(j)}}$ is the average log-probability over the last 100 training batches and L_S formulated in Eq. (4) is the sentence-level contrastive loss of one training batch. During pre-training, when the model tends to distinguish positive samples easily, which means negative samples are not informative already. At this time, $p_{av}^+ \uparrow$ and $\frac{L_{ICL}}{L} \downarrow$, which leads $\lambda \downarrow$ and harder negative samples are adaptively synthesized in the following training steps, vice versa. As hard negative samples usually result in significant changes of the model parameters, we introduce the slack coefficient ζ to prevent the model from being trained in the wrong direction, when it accidentally switch from random negative samples to very hard ones. In practice, we empirically set $\zeta = 0.9$.

Word-Level CTL. Intuitively, predicting the related words in other languages for each sentence can bridge the representations of words in different languages. As shown in Figure [1b] we concatenate the sentence pair (x_i, y_i) as $x_i \circ y_i$: [CLS] x_i [SEP] y_i [SEP] and the bag-of-words of which is denoted as B. For word-level contrastive learning, the final state of the first token is treated as the query (\bar{q}), each word $w_t \in B$ is considered as the positive sample and all the other words ($\mathcal{V}\backslash B$, i.e., the words in \mathcal{V} that are not in B where \mathcal{V} indicates the overall vocabulary of all languages) are negative samples. As the vocabulary usually with large space, we propose to only use a subset $S \subset \mathcal{V}\backslash B$ sampled according to the normalized similarities between \bar{q} and the embeddings of the words. As a result, the subset S naturally contains the hard negative samples which are beneficial for learning high-quality representations [Ye et al., 2019]. Specifically, the word-level contrastive loss for (x_i, y_i) is defined as

$$L_{wcll}(x_i, y_i) = -\frac{1}{|B|} \sum_{t=1}^{|B|} \log \frac{\exp \circ s(\bar{q}, e(w_t))}{\exp \circ s(\bar{q}, e(w_t)) + \sum_{w_j \in S} \exp \circ s(\bar{q}, e(w_j))}. \quad (7)$$

where $e(\cdot)$ is the embedding lookup function and $|B|$ is the number of unique words in the concatenated sequence $x_i \circ y_i$. The overall word-level contrastive loss can be formulated as:

$$L_W = \frac{1}{n} \sum_{i=1}^n L_{wcll}(x_i, y_i). \quad (8)$$

Multi-Task Pre-training. Both MLM and translation language model (TLM) are combined with HiCTL by default, as the prior work [Conneau & Lample, 2019] has verified the effectiveness of them in XLM. In summary, the model can be optimized by minimizing the entire training loss:

$$L = L_{LM} + L_S + L_W, \quad (9)$$

where L_{LM} is implemented as either the TLM when using parallel data or the MLM when only monolingual data is available to recover the original words of masked positions given the contexts.

3.2 Cross-lingual Fine-tuning

Language Understanding. The representations produced by HiCTL can be used in several ways for language understanding tasks whether they involve single text or text pairs. Concretely, (i) the [CLS] representation of single-sentence in sentiment analysis or sentence pairs in paraphrasing and entailment is fed into an extra output-layer for classification. (ii) The pre-trained encoder can be used to assign POS tags to each word or to locate and classify all the named entities in the sentence for structured prediction, as well as (iii) to extract answer spans for question answering.

Language Generation. We also explore using HiCTL to improve machine translation. In the previous work, [Conneau & Lample, 2019] has shown that the pre-trained encoders can provide a better initialization of both supervised and unsupervised NMT systems. [Liu et al., 2020] has shown that NMT models can be improved by incorporating pre-trained sequence-to-sequence models on various language pairs but highest-resource settings. As illustrated in Figure [3] we use the model pre-trained by HiCTL as the encoder, and add a new set of decoder parameters that are learned from scratch. To prevent pre-trained weights from being washed out by supervised training,
Table 1: Overall results on XTREME benchmark. Results of mBERT (Devlin et al., 2019), XLM (Conneau & Lample, 2019) and XLM-R (Conneau et al., 2020) are from XTREME (Hu et al., 2020). Results of ‡ are from our in-house replication. HNS is short for “Hard Negative Samples”.

Model	Pair sentence	Structured prediction	Question answering	Sentence retrieval	Avg.
	XNLI	PAWS-X	POS	NER	
mBERT	65.4	81.9	70.3	62.2	
XLM	69.1	80.9	70.1	61.2	
XLM-R Base	76.2	-	-	-	57.6
HICTL Base	77.3	84.5	71.4	64.1	61.9
XLM-R	79.2	86.4	73.8	65.4	65.1
HICTL	81.6	87.5	74.8	66.2	66.0
+ HNS	84.7	92.8	77.2	69.0	71.1

Cross-lingual zero-shot transfer (models are trained on English data)

Model	XQuAD	MLQA	TyDiQA-GoldP	BUCC	Tatoeba	Avg.
mBERT	64.5	49.4	61.4	44.2	59.7	56.7
XLM	59.8	44.3	48.5	32.6	43.6	56.8
XLM-R Base	63.7	46.3	-	-	-	-
HICTL Base	73.5	58.7	65.8	47.6	61.9	66.0
XLM-R	76.6	60.8	71.6	53.2	65.1	66.0
HICTL	77.9	61.7	72.8	54.5	66.0	68.4
+ HNS	82.9	65.6	72.4	54.7	66.2	71.8

Translate-train-all (models are trained on English training data and its translated data on the target language)

Model	XQuAD	MLQA	TyDiQA-GoldP	BUCC	Tatoeba	Avg.
mBERT	72.4	58.3	67.6	49.8	64.2	64.2
XLM-R	80.4	65.6	72.4	54.7	66.2	67.9
HICTL	84.5	67.3	74.4	57.1	69.7	71.8
+ HNS	82.9	67.4	74.8	57.3	71.1	77.6

we train the encoder-decoder model in two steps. In the first step, we freeze the pre-trained encoder and only update the decoder. In the second step, we train all parameters for a relatively small number of iterations. In both cases, we compute the similarities between the [CLS] representation of the encoder and all target words in advance. Then we aggregate them with the logits before the softmax of each decoder step through an element-wise additive operation. The encoder-decoder model is optimized by maximizing the log-likelihood of bitext at both steps.

4 EXPERIMENTS

We consider two evaluation benchmarks: nine cross-lingual language understanding tasks in the XTREME benchmark and machine translation tasks (IWSLT’14 English\rightarrowGerman, IWSLT’14 English\rightarrowSpanish, WMT’16 Romanian\rightarrowEnglish, IWSLT’17 English$\rightarrow\{\text{French, Chinese}\}$ and WMT’14 English$\rightarrow\{\text{German, French}\}$). In this section, we describe the data and training details, and provide detailed evaluation results.

4.1 DATA AND MODEL

During pre-training, we follow Conneau et al. (2020) to build a Common-Crawl Corpus using the CCNet (Wenzek et al., 2019) tool for monolingual texts. Table 7 (see appendix A) reports the language codes and data size in our work. For parallel data, we use the same (English-to-X MT dataset as (Conneau & Lample, 2019), which are collected from MultiUN (Eisele & Yu, 2010) for French, Spanish, Arabic and Chinese, the IIT Bombay corpus (Kunchukuttan et al., 2018a) for Hindi, the OpenSubtitles 2018 for Turkish, Vietnamese and Thai, the EUbookshop corpus for German, Greek and Bulgarian, Tanzil for both Urdu and Swahili, and GlobalVoices for Swahili. Table 8 (see appendix A) shows the statistics of the parallel data.

We adopt the Transformer-Encoder (Vaswani et al., 2017) as the backbone with 12 layers and 768 hidden units for HICTL Base, and 24 layers and 1024 hidden units for HICTL. We initialize the parameters of HICTL with XLM-R (Conneau et al., 2020). Hyperparameters for pre-training and fine-tuning are shown in Table 9 (see appendix B). We run the pre-training experiments on 8 V100 GPUs, batch size 1024. The number of negative samples $m=512$ for word-level contrastive learning.

4.2 EXPERIMENTAL EVALUATION

Cross-lingual Language Understanding (XTREME) There are nine tasks in XTREME that can be grouped into four categories: (i) sentence classification consists of Cross-lingual Natural Language Inference (XNLI) (Conneau et al., 2018) and Cross-lingual Paraphrase Adversaries from
Table 2: Comparison with existing methods on XTREME tasks.

Model	XNLI Acc.	PAWS-X Acc.	POS F1	NER F1	XQuAD F1 / EM	MLQA F1 / EM	TyDiQA-GoldP F1 / EM	BUCC F1	Tatoeba Acc.
FILTER	83.9	91.4	76.2	67.7	82.4 / 68.0	76.2 / 57.7	68.3 / 50.9		
VECO	83.0	91.1	75.1	65.7	79.9 / 66.3	73.1 / 54.9	75.0 / 58.9		
HICTL	84.7	92.8	77.2	69.0	82.9 / 67.4	74.8 / 57.3	71.1 / 53.2		

Table 3: Ablation study on XTREME tasks.

Model	XNLI Acc.	PAWS-X Acc.	POS F1	NER F1	XQuAD F1 / EM	MLQA F1 / EM	TyDiQA-GoldP F1 / EM	BUCC F1	Tatoeba Acc.	Avg.
FULL MODEL	84.7	92.8	77.2	69.0	82.9 / 67.4	74.8 / 57.3	71.1 / 53.2			74.8
w/o Sentence-CTL	82.9	90.5	75.9	67.8	82.3 / 66.7	74.3 / 56.5	69.7 / 52.3	71.4	62.6	72.4
w/o Word-CTL	84.3	92.1	76.3	68.4	82.5 / 66.9	74.1 / 56.7	70.2 / 52.5	76.8	68.4	74.2
w/o MT data	84.2	92.4	76.6	68.2	82.6 / 67.0	74.5 / 56.8	70.1 / 52.3	74.7	66.8	73.8

Word Scrambling (PAWS-X) (Zhang et al., 2019b). (ii) Structured prediction includes POS tagging and NER. We use POS tagging data from the Universal Dependencies v2.5 (Nivre et al., 2018) treebanks. Each word is assigned one of 17 universal POS tags. For NER, we use the Wikiann dataset (Pan et al., 2017). (iii) Question answering includes three tasks: Cross-lingual Question Answering (XQuAD) (Artetxe et al., 2019), Multilingual Question Answering (MLQA) (Lewis et al., 2019), and the gold passage version of the Typologically Diverse Question Answering dataset (TyDiQA-GoldP) (Clark et al., 2020a). (iv) Sentence retrieval includes two tasks: BUCC (Zweigenbaum et al., 2017) and Tatoeba (Artetxe & Schwenk, 2019), which aims to extract parallel sentences between the English corpus and target languages. As XTREME provides no training data, thus we directly evaluate pre-trained models on test sets.

Table 2 provides detailed results on four categories in XTREME. First, compared to the state-of-the-art XLM-R baseline, HICTL further achieves significant gains of 1.43% and 2.80% on average on nine tasks with cross-lingual zero-shot transfer and translate-train-all settings, respectively. Second, mining hard negative samples via smoothed linear interpolation play an important role in contrastive learning, which significantly improves accuracy by 1.6 points on average. Third, HICTL with hardness aware augmentation delivers large improvements on zero-shot sentence retrieval tasks (scores 5.8 and 6.0 points higher on BUCC and Tatoeba, respectively). Following (Hu et al., 2020), we directly evaluate pre-trained models on test sets without any extra labeled data or fine-tuning techniques used in (Fang et al., 2020; Luo et al., 2020). These results demonstrate the capacity of HICTL on learning cross-lingual representations. We also compare our best model with two existing models: FILTER (Fang et al., 2020) and VECO (Luo et al., 2020). The results demonstrate that HICTL achieves the best performance on most tasks with less monolingual data.

Ablation experiments are present at Table 3. Comparing the full model, we can draw several conclusions: (1) removing the sentence-level CTL objective hurts performance consistently and significantly, (2) the word-level CTL objective has least drop compared to others, and (3) the parallel (MT) data has a large impact on zero-shot multilingual sentence retrieval tasks. Moreover, Table 2 provides the comparisons between HICTL and existing methods.

Machine Translation The main idea of HICTL is to summarize cross-lingual parallel sentences into a shared representation that we term as semantic embedding, using which semantically related words can be distinguished from others. Thus it is natural to apply this global embedding to text generation. We fine-tune the pre-trained HICTL with the base setting on machine translation tasks with both low-resource and high-resource settings. For the low-resource scenario, we choose IWSLT’14 English→German (En→De) and IWSLT 14 English→Spanish (En→Es), WMT’16.

2 We split 7k sentence pairs from the training dataset for validation and concatenate dev2010, dev2012, tst2010, tst2011, tst2012 as the test set.
Table 4: BLEU scores [%] on high-resource tasks. Results with † and ‡ are from VECO [Luo et al., 2020] and our in-house implementation, respectively. In our implementation, we use XLM-R and the best version of HiCTL (pre-traind with CCNet-100 and hard negative samples) to initialize the encoder, respectively.

Model	Layers	Encoder	Decoder	WMT’14
Randomly Initialize				
Transformer-Big [Vaswani et al., 2017]	6 6	28.4 41.0		
Deep-Transformer [Liu et al., 2020a]	60 12	30.1 43.8		
Deep MSC Model [Wei et al., 2020]	18 6	30.56	-	
Pre-trained Models Initial				
CNTM [Yang et al., 2020]	18 6	30.1	42.3	
BERT-fused NMT [Zhu et al., 2020]	12 12	30.75	43.78	
mBART† [Liu et al., 2020b]	24 6	31.5	44.4	
VECO [Luo et al., 2020]	24 6	30.91	43.27	
XLM-R‡	24 6	31.74	43.95	
HiCTL	24 6	31.74	43.95	

Table 5: BLEU scores [%] on low-resource tasks. Results with ‡ are from our in-house implementation. We provide additional experimental results (to follow experiments in Zhu et al. [2020]) on IWSLT’14 English→Spanish (En→Es) task. HiCTLBase represents the BASE sized model that is pre-trained on CCNet-100 with hard negative samples.

Model	IWSLT’14	WMT’16	IWSLT’17			
	En→De	De→En	En→Es	Ro→En	En→Fr	En→Zh
Transformer [Vaswani et al., 2017]‡	28.64 34.51 39.3 33.51 35.8 26.5					
BERT-fused NMT [Zhu et al., 2020]	30.45 36.11 41.4 39.10 38.7 28.2					
HiCTLBase	31.88 37.96 42.1 39.88 40.2 29.9					

During fine-tuning, we use the pre-trained model to initialize the encoder and introduce a randomly initialized decoder. We develop a shallower decoder with 4 identical layers to reduce the computation overhead. At the first fine-tune step, we concatenate the datasets of all language pairs in either low-resource or high-resource settings to optimize the decoder only until convergence. Then we tune the whole encoder-decoder model using a per-language corpus at the second step. The initial learning rate is 2e-5 and inverse_sqrt learning rate [Vaswani et al., 2017] scheduler is also adopted. For WMT’14 En→De, we use beam search with width 4 and length penalty 0.6 for inference. For other tasks, we use width 5 and a length penalty of 1.0. We use multi-bleu.perl to evaluate IWSLT’14 En↔De and WMT tasks, but sacreBLEU for the remaining tasks, for fair comparison with previous work.

Results on both high-resource and low-resource tasks are reported in Table 4 and Table 5 respectively. We implemented standard Transformer (apply the base and big setting for IWSLT and WMT tasks respectively) as baseline. The proposed HiCTL can improve the BLEU scores of the eight tasks by 3.34, 2.95, 3.24, 3.45, 2.8, 6.37, 4.4, and 3.4. In addition, our approach also outperforms the BERT-fused model [Yang et al., 2020], a method treats BERT as an extra context.
Table 6: **BLEU scores [%] on Zero-shot MT via Language Transfer.** We bold the highest transferring score for each language family.

Test Languages	Fine-tuning Languages	mBART	HiCTL	mBART	HiCTL
Cs→En	Cs→En	21.6	22.4	-	-
Ro→En	Ro→En	19.5	19.0	-	-
It→En	It→En	16.7	18.6	-	-
Nl→En	Nl→En	17.0	18.1	-	-
Hi→En	Hi→En		23.5	25.2	
Ne→En	Ne→En		14.5	16.0	16.0
Si→En	Si→En		13.0	14.7	
Gu→En	Gu→En		0.0	0.1	

and fuses the representations extracted from BERT with each encoder and decoder layer. Note we achieve new state-of-the-art results on IWSLT’14 En→De, IWSLT’17 En→{Fr, Zh} translations. These improvements show that mapping different languages into a universal representation space is beneficial for both low-resource and high-resource translations.

We also evaluate our model on tasks where no bi-text is available for the target language pair. Following mBART [Liu et al., 2020b], we adopt the setting of language transfer. That is, no bi-text for the target pair is available, but there is bi-text for translating from some other language into the target language. For explanation, supposing there is no parallel data for the target language pair Italian→English (It→En), but we can transfer knowledge learned from Czech→English (Cs→En, a high-resource language pair) to It→En. We consider X→En translation, covering Indic languages (Ne, Hi, Si, Gu) and European languages (Ro, It, Cs, Nl). For European languages, we fine-tune on Cs→En translation, the parallel data is from WMT’19 that contains 11M sentence pairs. We test on {Cs, Ro, It, Nl}→En, in which test sets are from previous WMT (Cs, Ro) or IWSLT (It, Nl) competitions. For Indic languages, we fine-tune on Hi→En translation (1.56M sentence pairs are from IITB [Kunchukuttan et al., 2018b]), and test on {Ro, It, Cs, Nl}→En translations.

Results are shown in Table 6. We can always obtain reasonable transferring scores at low-resource pairs over different fine-tuned models. However, our experience shows that the randomly initialized models without pre-training always achieve near 0 BLEU. The underlying scenario is that multilingual pre-training produces universal representations across languages so that once the model learns to translate one language, it learns to translate all languages with similar representations. Moreover, a failure happened in Gu→En translation, we conjecture that we only use 0.3GB monolingual data for pre-training, which is difficult to learn informative representations for Gujarati.

5 **Conclusion**

We have demonstrated that pre-trained language models (PTMs) trained to learn commonsense knowledge from large-scale unlabeled data highly benefit from hierarchical contrastive learning (HiCTL), both in terms of cross-lingual understanding and generation. Learning universal representations at both word-level and sentence-level bridges the semantic discrepancy across languages. As a result, our HiCTL sets a new level of performance among cross-lingual PTMs, improving on the state of the art by a large margin.

Acknowledgments

We would like to thank the anonymous reviewers for the helpful comments. We also thank Jing Yu for the instructive suggestions. This work is supported by the National Key R&D Program of China under Grant No.2017YFB0803301 and No. 2018YFB1403202.
REFERENCES

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. *Transactions of the Association for Computational Linguistics*, 7:597–610, 2019.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of monolingual representations. *arXiv preprint arXiv:1910.11856*, 2019.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https://www.aclweb.org/anthology/D15-1075.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy Bengio. Generating sentences from a continuous space. In *Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016*, pp. 10–21, 2016. URL https://doi.org/10.18653/v1/k16-1002.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *Proceedings of Machine Learning and Systems 2020*, pp. 10719–10729, 2020.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham Singhal, Wenhui Wang, Xia song, Xian-Ling Mao, Heyan Huang, and Ming Zhou. Infoxlm: An information-theoretic framework for cross-lingual language model pre-training. *CoRR*, abs/2007.07834, 2020. URL https://arxiv.org/abs/2007.07834.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in typologically diverse languages. *arXiv preprint arXiv:2003.05002*, 2020a.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training text encoders as discriminators rather than generators. In *8th International Conference on Learning Representations, ICLR 2020*. OpenReview.net, 2020b.

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In *Proc. of NIPS 2019*, pp. 7059–7069, 2019. URL http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2475–2485, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1269. URL https://www.aclweb.org/anthology/D18-1269.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 8440–8451, Online, July 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.acl-main.747.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423.
Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding and generation. In Advances in Neural Information Processing Systems 32, NeurIPS 2019, pp. 13063–13075. Curran Associates, Inc., 2019.

Sergey Edunov, Alexei Baevski, and Michael Auli. Pre-trained language model representations for language generation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4052–4059. Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1409. URL https://www.aclweb.org/anthology/N19-1409.

Andreas Eisele and Chen Yu. Multiun: A multilingual corpus from united nation documents. In International Conference on Language Resources & Evaluation, 2010.

Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, and Jingjing Liu. FILTER: an enhanced fusion method for cross-lingual language understanding. CoRR, abs/2009.05166, 2020. URL https://arxiv.org/abs/2009.05166.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic BERT sentence embedding. CoRR, abs/2007.01852, 2020. URL https://arxiv.org/abs/2007.01852.

Junliang Guo, Zhirui Zhang, Linli Xu, Hao-Ran Wei, Boxing Chen, and Enhong Chen. Incorporating bert into parallel sequence decoding with adapters. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 10843–10854. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/7a6a74cbe87bc60030a4bd041dd47b78-Paper.pdf.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 1735–1742. IEEE Computer Society, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770–778. IEEE Computer Society, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for unsupervised visual representation learning. CoRR, abs/1911.05722, 2019.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization. CoRR, abs/2003.11080, 2020. URL https://arxiv.org/abs/2003.11080.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang, and Ming Zhou. Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2485–2494, Hong Kong, China, November 2019. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/d19-1252.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky. Pretraining with contrastive sentence objectives improves discourse performance of language models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4859–4870, Online, 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.acl-main.439.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Spanbert: Improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguistics, 8:64–77. 2020. URL https://transacl.org/ojs/index.php/tacl/article/view/1853.
Lingpeng Kong, Cyprien de Masson d’Autume, Lei Yu, Wang Ling, Zihang Dai, and Dani Yogatama. A mutual information maximization perspective of language representation learning. In 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net, 2020.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhattacharyya. The IIT bombay english-hindi parallel corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018. European Language Resources Association (ELRA), 2018a.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhattacharyya. The IIT Bombay English-Hindi parallel corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018b. URL https://www.aclweb.org/anthology/L18-1549.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics, 2020.

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk. Mlqa: Evaluating cross-lingual extractive question answering. arXiv preprint arXiv:1910.07475, 2019.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural machine translation. arXiv preprint arXiv:2008.07772, 2020a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. CoRR, abs/2001.08210, 2020b.

Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, Bin Bi, Songfang Huang, Fei Huang, and Luo Si. VECO: variable encoder-decoder pre-training for cross-lingual understanding and generation. CoRR, abs/2010.16046, 2020. URL https://arxiv.org/abs/2010.16046.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26, pp. 3111–3119, 2013.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. In Advances in Neural Information Processing Systems 26, pp. 2265–2273, 2013.

Joakim Nivre, Mitchell Abrams, Zeljko Agic, Lars Ahrenberg, Lene Antonsen, and et al. Universal Dependencies 2.2, 2018. URL https://hal.archives-ouvertes.fr/hal-01930733. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathematics and Physics, Charles University.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. Cross-lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946–1958, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1178. URL https://www.aclweb.org/anthology/P17-1178.
Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL https://www.aclweb.org/anthology/N18-1202.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. URL https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A theoretical analysis of contrastive unsupervised representation learning. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pp. 5628–5637, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/saunshi19a.html.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MASS: masked sequence to sequence pre-training for language generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, volume 97, pp. 5926–5936. PMLR, 2019.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI, volume 12356 of Lecture Notes in Computer Science, pp. 776–794. Springer, 2020. doi: 10.1007/978-3-030-58621-8_45. URL https://doi.org/10.1007/978-3-030-58621-8_45.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, NIPS 2017, pp. 5998–6008. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Xiangpeng Wei, Heng Yu, Yue Hu, Yue Zhang, Rongxiang Weng, and Weihua Luo. Multiscale collaborative deep models for neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 414–426, Online, July 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.acl-main.40.

Rongxiang Weng, Heng Yu, Shujian Huang, Shanbo Cheng, and Weihua Luo. Acquiring knowledge from pre-trained model to neural machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 9266–9273, 2020.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzman, Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from web crawl data. arXiv preprint arXiv:1911.00359, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, pp. 3733–3742. IEEE Computer Society, 2018.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi Zhao, Weinan Zhang, Yong Yu, and Lei Li. Towards making the most of BERT in neural machine translation. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 9378–9385. AAAI Press, 2020. URL https://www.aclweb.org/anthology/N18-1101.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. XLNet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems 32, NeurIPS 2019, pp. 5753–5763. Curran Associates, Inc., 2019.

Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via invariant and spreading instance feature. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 6210–6219. Computer Vision Foundation / IEEE, 2019.

Xingxing Zhang, Furu Wei, and Ming Zhou. HIBERT: Document level pre-training of hierarchical bidirectional transformers for document summarization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5059–5069, Florence, Italy, July 2019a. Association for Computational Linguistics. doi: 10.18653/v1/P19-1499. URL https://www.aclweb.org/anthology/P19-1499.

Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1298–1308, Minneapolis, Minnesota, June 2019b. Association for Computational Linguistics. doi: 10.18653/v1/N19-1131. URL https://www.aclweb.org/anthology/N19-1131.

Han Zhao, Junjie Hu, and Andrej Risteski. On learning language-invariant representations for universal machine translation. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 11352–11364. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/zhao20b.html.

Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Zhou Jie. Hardness-aware deep metric learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 72–81, 2019. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Zheng_Hardness-Aware_Deep_Metric_Learning_CVPR_2019_paper.html.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. Extractive summarization as text matching. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6197–6208. Association for Computational Linguistics, 2020. URL https://www.aclweb.org/anthology/2020.acl-main.552.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. Incorporating BERT into neural machine translation. In 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=Hyl7ygStwB.

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp. Overview of the second BUCC shared task: Spotting parallel sentences in comparable corpora. In Proceedings of the 10th Workshop on Building and Using Comparable Corpora, pp. 60–67, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-2512. URL https://www.aclweb.org/anthology/W17-2512.
During pre-training, we follow Conneau et al. (2020) to build a Common-Crawl Corpus using the CCNet (Wenzek et al., 2019) tool for monolingual texts. Table 7 reports the language codes and data size in our work. For parallel data, we use the same (English-to-X) MT dataset as Conneau & Lample (2019), which are collected from MultiUN (Eisele & Yu, 2010) for French, Spanish, Arabic and Chinese, the IIT Bombay corpus (Kunchukuttan et al., 2018a) for Hindi, the OpenSubtitles 2018 for Turkish, Vietnamese and Thai, the EUbookshop corpus for German, Greek and Bulgarian, Tanzil for both Urdu and Swahili, and GlobalVoices for Swahili. Table 8 shows the statistics of the parallel data.

A PRE-TRAINING DATA

During **pre-training**, we follow Conneau et al. (2020) to build a Common-Crawl Corpus using the CCNet (Wenzek et al., 2019) tool for monolingual texts. Table 7 reports the language codes and data size in our work. For parallel data, we use the same (English-to-X) MT dataset as Conneau & Lample (2019), which are collected from MultiUN (Eisele & Yu, 2010) for French, Spanish, Arabic and Chinese, the IIT Bombay corpus (Kunchukuttan et al., 2018a) for Hindi, the OpenSubtitles 2018 for Turkish, Vietnamese and Thai, the EUbookshop corpus for German, Greek and Bulgarian, Tanzil for both Urdu and Swahili, and GlobalVoices for Swahili. Table 8 shows the statistics of the parallel data.

B HYPERPARAMETERS FOR PRE-TRAINING AND FINE-TUNING

As shown in Table 9, we present the hyperparameters for pre-training HiCTL. We use the same vocabulary as well as the sentence-piece model with XLM-R (Conneau et al., 2020). During fine-tuning on XTREME, we search the learning rate over \{5e-6, 1e-5, 1.5e-5, 2e-5, 2.5e-5, 3e-5\} and batch size over \{16, 32\} for **BASE-size models.** And we select the best **LARGE-size model** by searching the learning rate over \{3e-6, 5e-6, 1e-5\} as well as batch size over \{32, 64\}.

https://github.com/facebookresearch/cc_net
Table 9: Hyperparameters used for pre-training.

Hyperparameters	BASE	LARGE
Number of layers	12	24
Hidden size	768	1024
FFN inner hidden size	3072	4096
Attention heads	12	16
Mask percent	15%/25%	15%/25%
Adam ϵ	$1e^{-6}$	$1e^{-6}$
Adam β	(0.9, 0.98)	(0.9, 0.999)
Learning rate	$2.5e^{-4}$	$1e^{-4}$
Learning rate schedule	linear	linear
Warmup steps	10,000	10,000
Attention dropout	0.1	0.1
Dropout	0.1	0.1
Max sequence length	256	256
Batch size	1024	1024
Training steps	200k	200k

Table 10: Results on Cross-lingual Natural Language Inference (XNLI) for each language. We report the accuracy on each of the 15 XNLI languages and the average accuracy of our HICTL as well as five baselines: BiLSTM (Conneau et al., 2018), mBERT (Devlin et al., 2019), XLM (Conneau & Lample 2019), Unicoder (Huang et al., 2019) and XLM-R (Conneau et al., 2020). Results of ‡ are from our in-house replication.

MODEL	en	fr	es	de	el	bg	ru	tr	ar	vi	th	hi	sw	ur	Avg	
BiLSTM	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	65.6
mBERT	81.4	74.3	70.5	72.1	73.1	73.1	73.1	73.1	73.1	74.7	74.7	75.5	75.5	76.2	75.1	75.9
XLM	85.0	78.7	78.9	77.8	76.6	77.4	75.3	73.5	73.1	76.5	76.5	76.5	76.5	76.5	76.5	75.1
Unicoder	85.1	79.0	79.4	77.8	77.2	77.2	76.3	72.8	73.5	76.4	76.4	76.4	76.4	76.4	76.4	75.1
XLM-R$_{Base}$	85.8	79.7	80.7	78.7	77.5	79.6	78.1	74.2	73.8	74.6	74.6	74.6	74.6	74.6	74.6	75.4
HICTL$_{Base}$	86.3	80.5	81.3	79.5	78.9	80.6	79.0	75.4	74.8	77.4	77.4	77.4	77.4	77.4	77.4	77.3
Machine translate at training (Translate-train)																
BiLSTM	73.7	68.3	68.8	66.4	66.4	66.4	66.4	64.5	65.8	66.0	62.8	67.0	62.1	58.2	56.6	65.4
mBERT	81.9	77.8	75.9	70.7	70.7	70.7	70.7	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6	61.6
XLM	85.0	80.2	80.8	80.3	78.1	79.3	79.1	74.7	76.5	76.6	76.6	76.6	76.6	76.6	76.6	76.7
Unicoder	85.1	80.0	81.1	79.9	77.7	80.2	77.9	75.3	76.7	76.4	75.2	79.4	71.8	71.8	64.5	67.9
HICTL$_{Base}$	85.7	81.3	82.1	80.2	81.4	81.0	80.5	79.7	77.4	78.2	77.5	80.2	75.4	73.5	72.9	79.1
Fine-tune multilingual model on all training sets (Translate-train-all)																
XLM	85.0	80.8	81.3	80.3	79.1	80.9	78.3	75.6	77.6	78.5	76.0	79.5	72.9	72.8	68.5	77.8
Unicoder	85.6	81.1	82.3	80.9	79.5	81.4	79.7	76.8	78.2	77.9	77.9	80.5	73.4	73.4	69.6	78.5
XLM-R$_{Base}$	85.4	81.4	82.2	80.3	80.4	81.3	79.7	78.6	77.3	79.7	77.9	80.2	76.1	73.1	73.0	79.1
HICTL$_{Base}$	86.5	82.3	83.2	80.8	81.6	82.2	81.3	80.5	78.1	80.4	80.7	80.7	76.7	73.8	73.9	80.0
XLM-R	89.1	85.1	86.6	85.7	85.3	85.9	83.5	83.2	83.1	83.7	81.5	83.7	81.6	78.0	78.1	83.6
XLM-R2	88.9	84.7	86.2	84.8	85.0	85.3	82.4	82.7	82.4	82.8	80.9	83.0	80.2	77.3	77.2	82.9
HICTL	89.3	85.5	86.9	86.1	85.7	86.1	83.7	83.9	83.3	83.5	81.8	84.2	81.0	78.4	77.9	83.8

C Results for Each Dataset and Language

Below, we provide detailed results for each dataset and language on XTREME, as shown in Table 10 [4]. Results of XLM-R are from our implementation.

D Visualization of Sentence Embeddings

We collect 10 sets of samples from Wmt’14-19, each of them contains 100 parallel sentences distributed in 5 languages. As the t-SNE visualization in Figure 4, a set of sentences under the same meaning are clustered more densely for HICTL than XLM-R, which reveals the strong capability
Table 11: PAWS-X accuracy scores for each language.

Model	en	de	es	fr	ja	ko	zh	avg
Translate-train-all								
XLM-R	95.7	92.2	92.7	92.5	84.7	85.9	87.1	90.1
HiCTL, Wiki-15 + MT	96.6	93.2	93.3	92.9	86.5	87.3	88.6	91.2
HiCTL, CCNet-100 + MT	96.9	93.8	94.4	94.3	88.0	88.2	89.4	92.2
HARD NEGATIVE SAMPLES								
Translate-train-all								
XLM-R	9.7	92.2	95.0	94.2	89.1	89.5	90.2	92.8

Table 12: POS results (Accuracy) for each language.

Model	af	ar	bg	be	ca	da	de	el	en	es	et	fa	fi	fr	he	hi	hu	id	it
Translate-train-all																			
XLM-R	90.6	67.4	89.1	89.9	86.8	96.3	89.6	87.1	74.0	70.8	86.0	87.7	68.6	77.4	82.8	72.6	91.1		
HiCTL, Wiki-15 + MT	91.0	69.3	89.1	89.4	87.8	97.6	88.2	74.8	72.0	86.7	87.9	70.2	79.0	84.2	74.3	90.8			
HiCTL, CCNet-100 + MT	91.8	70.2	90.7	90.8	89.0	98.3	89.7	**90.1**	78.2	73.0	88.5	80.2	78.7	**80.0**	86.4	74.5	**92.0**		
HARD NEGATIVE SAMPLES	92.2	71.0	91.5	91.3	90.0	97.7	91.0	89.4	75.7	73.5	88.8	90.1	71.1	79.7	85.4	75.1	91.7		

of HiCTL on learning universal representations across different languages. Note that the t-SNE visualization of HiCTL still demonstrates some noises, we attribute them to the lack of hard negative examples for sentence-level contrastive learning and leave this to future work for consideration.
Table 13: NER results (F1) for each language.

Model	en	fr	de	el	cs	et	es	eu	fi	fr	he	hu	id	it	ja	jv	
Translate-train-all																	
XLM-R	86.8	81.4	55.2	82.9	81.1	79.1	81.5	81.4	81.3	60.6	64.1	81.6	83.2	83.2	86.1	79.1	53.2
HICTL, Wiki-15 + MT	87.0	82.3	55.2	84.7	79.0	81.2	80.1	81.6	79.8	61.4	62.9	82.8	80.5	90.4	74.6	79.8	54.8
+ Hard Negative Samples																	
XLM-R	88.6	80.9	55.4	85.6	84.7	79.0	81.2	82.0	82.5	80.6	81.2	82.5	64.2	81.2	83.0	77.3	64.4
HICTL, CCNet-100 + MT	89.9	82.0	56.6	83.4	83.4	82.8	84.8	83.0	83.8	65.4	65.4	82.0	82.6	60.5	74.7	81.5	58.1
+ Hard Negative Samples																	
XLM-R	74.2	58.0	63.3	68.3	69.8	59.5	57.5	86.2	82.3	68.5	70.7	59.8	58.5	2.4	72.6	75.9	59.7
HICTL, Wiki-15 + MT	75.0	56.7	62.2	69.4	68.8	57.9	55.6	87.9	84.2	71.9	74.4	61.6	59.2	2.2	74.2	79.5	58.1
+ Hard Negative Samples																	
XLM-R	61.5	51.4	76.1	47.9	92.1	63.4	80.5	55.9	37.8	74.6	76.7	78.0	68.4	74.5	68.8	80.4	70.2
HICTL, CCNet-100 + MT	63.0	50.9	76.8	47.0	94.6	68.8	80.9	59.3	41.5	77.3	78.2	80.3	70.2	77.9	72.1	81.3	66.2
+ Hard Negative Samples																	
XLM-R	15.8	53.3	51.2	63.1	66.2	59.0	81.0	84.4	76.9	19.8	28.3	37.8	28.9	36.7	68.9	26.6	77.9
HICTL, Wiki-15 + MT	18.7	55.8	51.0	65.5	67.3	61.2	82.9	84.4	78.3	22.2	28.6	41.4	33.5	41.6	71.2	21.6	80.2
+ Hard Negative Samples																	

Table 14: Tatoeba results (Accuracy) for each language.

Model	af	ar	bg	de	el	cs	et	es	eu	fi	fr	he	hu	id	it	ja	
Translate-train-all																	
XLM-R	59.7	50.5	72.2	45.4	89.5	61.3	77.6	51.7	38.6	71.7	72.8	76.9	66.3	71.1	65.1	77.5	
HICTL, Wiki-15 + MT	61.5	51.4	76.1	47.9	92.1	63.4	80.5	55.9	37.8	74.6	76.7	78.0	68.4	74.5	68.8	80.4	
+ Hard Negative Samples																	
XLM-R	50.3	68.8	51.0	65.5	67.3	61.2	82.9	84.4	78.3	22.2	28.6	41.4	33.5	41.6	71.2	21.6	80.2
HICTL, CCNet-100 + MT	59.9	68.8	51.0	65.5	67.3	61.2	82.9	84.4	78.3	22.2	28.6	41.4	33.5	41.6	71.2	21.6	80.2
+ Hard Negative Samples																	

Figure 4: Visualizations (t-SNE projection) of sentence embeddings output by HICTL (left) and XLM-R (right). We collect 10 sets of samples from WMT’14-19, each of them contains 100 parallel sentences distributed in 5 languages (i.e., English, French, German, Russian, and Spanish). Each set is identified by a color and different languages marked by different shapes. We can see that a set of sentences under the same meaning are clustered more densely for HICTL than XLM-R, which reveals the strong capability of HICTL on learning universal representations across different languages.