Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets

Sonia Verma¹*, Abhisek Dwivedy², Neeraj Kumar³ and Bichitra K. Biswal²

¹ Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
² Structural and Functional Biology Laboratory, National Institute of Immunology, New Delhi, India
³ Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India

* Corresponding author

Correspondence:

Dr. Sonia Verma
Department of Transplant Immunology and Immunogenetics
All India Institute of Medical Sciences
New Delhi, 110029, India
Email- soniaverma@aiims.ac.in
Abstract

Over the past two decades, there has been a continued research on the role of small non-coding RNAs including microRNAs (miRNAs) in various diseases. Studies have shown that viruses modulate the host cellular machinery and hijack its metabolic and immune signalling pathways by miRNA mediated gene silencing. Given the immensity of coronavirus disease 19 (COVID-19) pandemic and the strong association of viral encoded miRNAs with their pathogenesis, it is important to study Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) miRNAs. To address this unexplored area, we identified 8 putative novel miRNAs from SARS-CoV-2 genome and explored their possible human gene targets. A significant proportion of these targets populated key immune and metabolic pathways such as MAPK signalling pathway, maturity-onset diabetes, Insulin signalling pathway, endocytosis, RNA transport, TGF-β signalling pathway, to name a few. The data from this work is backed up by recently reported high-throughput transcriptomics datasets obtains from SARS-CoV-2 infected samples. Analysis of these datasets reveal that a significant proportion of the target human genes were down-regulated upon SARS-CoV-2 infection. The current study brings to light probable host metabolic and immune pathways susceptible to viral miRNA mediated silencing in a SARS-CoV-2 infection, and discusses its effects on the host pathophysiology.

Keywords

SARS-CoV-2; COVID-19; miRNA; GO analysis; signalling network.
Background

SARS-CoV-2 is the genesis of 2019–20 coronavirus pandemic, COVID-19. SARS-CoV-2 belongs to the genera Betacoronavirus of subfamily Orthocoronavirinae of the Coronaviridae family and order Nidovirales (1). SARS-CoV-2 is an enveloped virus with single-stranded RNA genome of positive polarity. The 29903 nucleotides long RNA genome consists of 10 Open Reading Frames (ORFs) and encodes 26 proteins (NCBI Reference Sequence: NC_045512.2, SARS-CoV-2 Isolate Wuhan Hu-1) (2). Two additional betacoronaviruses, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), have evolved and caused viral epidemics in the past twenty years. SARS-CoV and MERS-CoV, respectively have infected over 8000 and 857 individuals globally and are associated with high mortality rates (3). The SARS-CoV-2 has infected over 40 million people worldwide and caused over 1.1 million deaths as of October 2020, resulting in a high fatality rate (4). The common symptoms of COVID-19 are fever, sore throat, dry cough, breathlessness, malaise, and fatigue. In rare cases, patients develop acute respiratory distress syndrome and sepsis followed by respiratory and heart failure (5). One of the challenges to control this virus is unavailability of effective therapeutics. The problem is further compounded by the lack of our understanding regarding molecular mechanisms involved in the pathogenesis of SARS-CoV-2 including the host-pathogen interactions.

MiRNAs are 18-22 nucleotides long noncoding RNAs that are found in animals, plants, and some viruses. They regulate genetic network pathways by targeting messenger RNAs (mRNAs) to translational repression or degradation. The biogenesis of miRNAs begins by RNA polymerase II mediated transcription of genome into long primary-miRNAs (pri-miRNAs). The
nuclear Ribonuclease type III enzyme, Drosha cleaves pri-miRNA into small hairpin precursor-
miRNAs (pre-miRNAs) which are then exported to the cytoplasm by nuclear membrane protein,
Exportin5. In the cytoplasm, another Ribonuclease III enzyme- Dicer processes the pre-miRNA
to generate a miRNA duplex intermediate (miRNA: miRNA*). One strand of this intermediate,
mature miRNA binds to protein Argonaute-1 generating the miRNA inducing silencing complex
(RISC) which guides the binding of mature miRNA to target mRNAs (6). Besides eukaryotes,
viruses also encode miRNAs to target host genes involved in important biological processes like
cell growth, cell differentiation, and cellular defense mechanisms as well as to regulate viral gene
expressions to modulate the viral replication cycle (7). Therefore, viral miRNAs aid virus
particles in their continuous proliferation and evasion of the host immune system (8,9).

Various studies have demonstrated a strong association between viral miRNAs and infection
(8,9). However, there is no evidence to suggest the presence of miRNA sequences in SARS-
CoV-2 genome. To address this problem, we applied computational approaches to analyze the
SARS-CoV-2 genome sequence for possible miRNAs. This was of high interest and therefore
the secondary goal of the study was to investigate the potential targets of these miRNAs along
with their associated Gene Ontologies (GO) and signalling pathways. Our data provides a list of
potential viral miRNAs from SARS-CoV-2 and predicts their roles in COVID-19
pathophysiology, thus facilitating further works on the potential biological roles of these
miRNAs.
Results

The putative miRNAs in SARS-CoV-2 genome

As pre-miRNAs form hair-pin loop structures during their biogenesis, we first searched for such arrangements in the SARS-CoV-2 genomic sequence using the VMir software (10). The analysis demonstrated that the direct and reverse genomic strands consist of twenty-four and twenty-two hair-pin loop sequences, respectively. The length of these sequences ranged between 70 and 148 nucleotides, and they had VMir score ≥ 115, hairpin size ≥ 70, and window count ≥ 35 (Figure 1A, Supplementary Material - Sheet 1).

Next, using MFold web server the Minimal Folding Free Energy (MFE) of each sequence was calculated because MFE of the pre-miRNA folding is inversely proportional to the thermodynamic stability of the molecule (11). The secondary structure of these sequences was also predicted using MFold. In total, forty-two potential pre-miRNAs (direct strand-23; reverse strand-18), with MFE ≤ -18 kcal/mol, were recognized to be thermodynamically stable (Supplementary Material - Sheet 2).

The Minimal Folding Free Energy Index (MFEI) distinguishes miRNAs from other coding and non-coding RNAs as pre-miRNAs display higher MFEI value than mRNAs (0.66), tRNAs (0.64) and rRNAs (0.59) (12). Therefore, the MFEI for the forty-one potential pre-miRNAs was calculated, and the values ranged from -0.60 to -0.93 (Supplementary Material- Sheet 3). The pre-miRNAs MD50, MD62, and MD86 on the direct strand and MR5 on the reverse strand, with MFEI ≤ -0.85 kcal/mol, were chosen as the best candidates for the prediction of mature miRNAs via MatureBayes tool (Figure 1B) (13). The MatureBayes prediction revealed 22-nucleotide long 8 mature miRNAs from the pre-miRNA sequences on their 5' and 3' stem locations (Table
As both the strands can serve as mature miRNA depending on the assembly of RISC complex, mature miRNAs on both the arms of stem-loop were used for further analysis.

This work is the first to report that SARS-CoV-2 genome may encode miRNAs and therefore careful validation of these findings was carried out against previously published data. A systematic and comprehensive literature search for RNA sequencing data of SARS-CoV-2 infected samples extracted out a study from the Blanco-Melo et al. group. The study explored the transcriptional response of SARS-CoV-2 infected epithelial cell lines, A549, and A549-ACE-2 cells (14). They reported that over 50% of the sequencing reads from each infected sample aligned with viral sequences while the mock-treated cells showed no viral reads. An alignment search using the mature miRNA sequences was executed against the sequencing reads provided for these samples in the Gene Expression Omnibus (GEO) Dataset: GSE147507. The search identified MR5-5p and MR5-3p together in 15 and 38758 reads from the infected A549 and A549-ACE-2 cells, respectively. The lengths of these sequences varied between 48 to 151 nucleotides proposing the likelihood of the intermediate products of miRNA maturation process. This further implies for the physiological presence of pre-miRNA like molecules in SARS-CoV-2 infected tissues.

Predicting the target mRNAs of the SARS-CoV-2 encoded miRNAs in the human genome

The miRNAs exert their effects by targeting one or more mRNAs. Therefore, predicting the targets of putative miRNAs of SARS-CoV-2 would help understand the pathogenesis of the disease and shed light on the possible host-pathogen interactions. *In silico* prediction of targets by miRDB (15) for all 8 mature miRNAs retrieved 1,121 unique targets in the human genome with score ≥ 80 *(Supplementary Material- Sheet 4)*. Interestingly, some of these targets have
already been associated with pulmonary diseases. For instance, the gene coding for IL-1α was one of the predicted targets for SARS-CoV-2 encoded miRNAs. Interleukin-1α/β (IL-1α/β) are key pro-inflammatory cytokines that mediate acute pulmonary inflammation and enhances survival during influenza virus infection by recruiting CD4+ T cells and aiding to the IgM antibody response (16). Likewise, another predicted target, Bone morphogenetic protein receptor 2 maintains pulmonary arterial hypertension, a form of high blood pressure that affects the arteries of the lungs and the heart (17). Of note, high blood pressure is a significant risk factor in COVID-19 (18). Defects in CHRNA3 and CHRNA5, members of nicotinic acetylcholine receptor family of proteins, are linked with various lung cancers and smoking-related lung disorders (19). Studies showed increased susceptibility of smokers to contract COVID-19 (20) and the genes coding for CHRNA3 and CHRNA5 were also reported amongst the SARS-CoV-2 encoded miRNAs targets in our study.

Blanco-Melo et al. reported 77 and 96 genes down-regulated in infected A549 and A549-ACE-2 cell lines, respectively. Of these, 6 and 4 genes respectively were found to be the targets of SARS-CoV-2 miRNAs in current study (Figure 2Ai, 2Aii, and 2B, Supplementary Material-Sheet 5). The group also reported 2408 genes down-regulated in the post mortem lung samples from COVID-19 patients; of which 126 were predicted as the targets of SARS-CoV-2 miRNAs in our study (Figure 2Aiii and 2B, Supplementary Material-Sheet 5) (14). Our literature mining retrieved two additional studies on transcriptional response of COVID-19 patients. Xiong et al. performed a transcriptomic analysis of both broncho-alveolar lavage fluid (BALF) and peripheral blood of COVID-19 patients and compared with samples from healthy donors (21). Of the 325 and 316 genes reported to be down-regulated in BALF and peripheral blood samples, we found 15 and 7 genes respectively as putative targets of the SARS-CoV-2 miRNAs (Figure 2Aiv,
Zhou et al. reported a metatranscriptome sequencing of BALF from COVID-19 patients and found 739 genes to be down-regulated. 56 genes reported as targets of SARS-CoV-2 miRNAs were also found to be down-regulated in their analysis (Figure 2Av and 2B, Supplementary Material- Sheet 5) (22). Examples of such genes include ABCA1 and CDC42. ABCA1 regulates cholesterol efflux and in association with CDC42 regulates the formation of lipid rafts (23)(24). Lipid rafts are key features of many cardiovascular and inflammatory diseases such as diabetes, which have also been associated with COVID-19 (25). Taken together, many of the targets that we predicted for the SARS-CoV-2 miRNAs have also been reported to be down-regulated during COVID-19 in other studies, signifying a possible viral miRNA mediated repression of human genes.

The potential physiological effects of the SARS-CoV-2 miRNAs on a host cell

The GO analysis of the 1121 potential targets of the SARS-CoV-2 miRNAs was executed using the Cytoscape plugin, ClueGo (26,27) and the results indicated that the major Cellular Component terms populated were the nucleus, cytoplasm, cell junction, nucleoplasm, and endosome (Figure 3A, Supplementary Material- Sheet 6). The Molecular Function enrichment depicted functions such as protein binding, mRNA 3'-untranslated regions (UTR) binding, zinc ion binding, transcription factor activity, and sequence-specific DNA binding (Figure 3B, Supplementary Material- Sheet 6). The GO-Biological Processes analysis suggested that the target gene products primarily populate the negative regulation of transcription from RNA polymerase II promoter, positive regulation of transcription (DNA-templated), positive regulation of transcription from RNA polymerase II promoter, transcription (DNA-templated), and mitotic cell cycle (Figure 3C, Supplementary Material- Sheet 6). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the target genes were enriched in
MAPK signalling pathway, ErbB signalling pathway, maturity-onset diabetes of the young, Insulin signalling pathway, Ras signalling pathway, endocytosis, RNA transport, TGF-β signalling pathway, to name a few (Figure 3D, Figure 4A-D, Supplementary Material- Sheet 6). Interestingly, studies have demonstrated a strong and consistent link between syndromes associated with disruption of few of these pathways and COVID-19. For instance, COVID-19 patients with no prior history of type-2 diabetes have been reported to show hyperglycaemia, lowered insulin levels, and pre-diabetic symptoms (28). The genes coding for PAX4 and PAX6, key proteins involved in the development of pancreatic islets which are often found mutated and/or dysregulated in type 2 diabetes, were found to be potential targets for SARS-CoV-2 miRNAs in our study (29,30).

In a cell, different proteins interact with each other to form a complex protein-protein interaction (PPI) network that comprises of over thousands of interactions. Knowing the interactions between the SARS-CoV-2 miRNA targets would provide an understanding of how the virus controls various molecular and biological processes of its host thus aiding in its survival and replication, while simultaneously evading the host responses. A PPI network of the 1121 targets was constructed using the ReactomeFI plugin in Cytoscape (Figure 5A) (27). The network included 308 proteins/nodes and 593 interactions/edges. To identify the significant interactions within the PPI network, the Molecular COmplex DEtection (MCODE) plugin (31) in Cytoscape was utilized, which predicted 16 significant interaction modules. The graphical representation of the top modules with an interaction score greater than 4 is shown in Figure 5B. In total these modules populated 85 genes, the majority of them are involved in MAPK signalling pathway, RNA transport, and mRNA surveillance. Of note, the RNA transport pathway was connected to the MAPK signalling pathway and the mRNA surveillance pathway through PPP2R3A and
UPF3A, respectively (Figure 6, Table 2). PPP2R3A is a key serine/threonine phosphatase that negatively regulates cell growth, while UPF3A detects truncated mRNA and initiates nonsense-mediated decay (32,33). Taken together, the SARS-CoV-2 hijacks the host metabolism and cellular processes for evading host-mediated RNA degradation and actively maintaining the cell in a growth phase, thus successfully its viral cycle (34,35).
The SARS-CoV-2 attaches to and enters the host cell by binding of its spike (S) protein to the host cell membrane protein, angiotensin-converting enzyme 2 receptors (36). After a SARS-CoV-2 virion attaches to its target cell, the cell’s trans-membrane Serine Protease 2 (TMPRSS2) cleaves the S protein to expose a fusion peptide (37). The virion then releases its RNA into the cell, taking over the cellular translation machinery to generate multiple copies of the virus that subsequently egress to infect more cells. The RNA genome of the virus harbours significant UTRs both at the 5’ and 3’ ends of its open-reading frames that give rise to a range of RNA secondary structures with unknown functions. A recent study has demonstrated the conservation of these structures across many betacoronaviruses (38). RNA secondary structures are primarily involved in enzymatic reactions and are also processed to generate miRNA that regulates host gene silencing. Studies have shown that viruses exploit the cellular machinery to encode miRNA and like eukaryotic miRNAs, the viral miRNAs are generated using the Drosha and/or Dicer proteins of the host (39).

Primarily, DNA viruses such as Herpesviruses, Papillomavirus, and Polyomavirus encode miRNAs (40–42). Epstein–Barr virus, a Herpesviridae family member, expresses 4 mature miRNAs transcribed from its BART and BHRF1 regions as it switches from the latent to the lytic phase of its infection cycle (43). Kaposi’s sarcoma virus, another herpesvirus, expresses over 25 matured miRNAs transcribed from the region between the kaposin and ORF71 of its genome (Cai et al., 2005). These miRNAs are associated with the latency phase of infection and are reported to modulate various genes in the host immune system and cell cycle. Human Cytomegalovirus genome encodes for over 25 miRNAs, which have been shown to interfere
with host immunity, thus increasing the virulence of the virus (45). HBV-miR-3, encoded by the Hepatitis B virus down-regulates the expression of HbcAg, thus inhibiting its replication cycle (46). Adenovirus encodes for the mature miRNA- mivaRNAII-138, which when expressed in HeLa cells modulated core cellular functions such as growth, RNA metabolism, DNA repair, and apoptosis (47). Another report shows that mivaRNAII-138 repressed the expression of CUL4, thus positively modulating the JNK signalling (48). However, recent studies have demonstrated RNA viruses, such as HIV-1, Influenza virus, and Ebola virus to encode viral miRNAs (49–51). Also, the external incorporation of pre-miRNA sequence into the viral RNA has been reported to generate functional miRNAs by cytoplasmic RNA viruses. For example, the incorporation of pri-miR-124 the Sindbis virus genomes resulted in the production of pre-miR-124 and miR-124 in a DGCR8-independent, exportin-5-independent, and Dicer-dependent manner (39). Also, the flavivirus tick-borne encephalitis virus was reported to express an Epstein–Barr virus miRNA through the integration of its miR-BART2 precursor in the 3′-UTR of its genome (52). These examples of miRNA production from cytoplasmic RNA viruses demonstrate that pre-miRNA stem-loops can be processed in the cytoplasm by Dicer-dependent and Drosha independent non-canonical cytoplasmic mechanisms.

Recent studies on the effect of SARS-CoV-2 on host metabolism and immunity have provided interesting correlations to our study. Our results suggest that SARS-CoV-2 miRNAs target a range of genes encoding for TGF-β signalling inhibitors such as DCN, INHBC, SMAD-7, SMURF, and MAPK1. Notably, the serum level of TGF-β1 is elevated during the early phase of SARS-CoVs infection (53). These result in rapid and massive edema and fibrosis of lungs that remodels and ultimately blocks the airways leading to functional failure of the lungs and death of the patients. The increased levels of TGF-β along with dysregulated signalling are possibly
achieved by targeting these aforementioned negative regulators through viral miRNAs. Also, various evidence has shown that hyperglycaemia, regardless of the past medical history of diabetes has emerged as an important risk factor for severe illness and death from COVID-19 (28). Our results suggest that the SARS-CoV-2 miRNAs target the gene encoding SLC2A4, a glucose transporter responsible for the uptake of extracellular glucose into the cytoplasm. Also, the gene for RHOQ, a molecule involved in insulin-mediated glucose is a predicted target for SARS-CoV-2 miRNAs. Notably, the gene for KRAS, a positive regulator of another glucose transporter GLUT4 is amongst the SARS-CoV-2 miRNAs targets. The down-regulation of these molecules is associated with hyperglycaemia and severe diabetes.

T-cell receptor zeta or CD247 plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. Impaired expression of CD247 results in impaired immune response and is associated with immunosuppression in T-cells (54). Our predictions list the gene encoding CD247 as a target for SARS-CoV-2 miRNAs, and the transcriptomics analysis by Xiong et al. demonstrated a down-regulated expression of CD247 in PBMCs of SARS-CoV-2 infected patients (21). TLR8, a key player of the anti-viral innate immunity, is an endosome localized sensor of RNA degradation end products and actively recognizes viral and bacterial pathogens. Further, it activates IRF5 and induces the production of IFNβ, IL-12p70, and TNF (55). Of note, TLR8 is also reported to sense cytoplasmic microRNAs of both host and pathogen origins (56). Rhinovirus, the causative agent of the common cold is known to repress the expression of TLR8 mRNA (57).

This study presents a list of potential viral miRNAs from the SARS-CoV-2 genome and predicts a list of putative gene targets from the human host. Moreover, the study draws a link between genes involved in the SARS-CoV-2 infection-associated symptoms such as lung damage,
diabetes, and cardiovascular diseases and their possible regulation via SARS-CoV-2 miRNAs. Identifying the presence of these viral miRNAs in COVID-19 patient samples will further enhance our understanding of the disease prognosis at a cellular and molecular level, thus aiding the on-going hunt for COVID-19 therapeutics.
Methods

Resources Table

RESOURCE	SOURCE	IDENTIFIER
Deposited Data		
Genome sequence of SARS-CoV-2 (Isolate Wuhan Hu-1)	Wu F. et al., 2020, Nature	NC_045512.2 (Nuccore, NCBI)
Transcriptional response to SARS-CoV-2 infection (A459 and A459-ACE2 cell lines infected with SARS-CoV2, post mortem lung samples of COVID-19 patients)	Blanco M. et al., 2020; Cell	GSE147507 (GEO, NCBI)
The transcriptome of patients infected with SARS-CoV-2 (Peripheral Blood Mononuclear Cells and Broncho-Alveolar Lavage Fluid)	Xiong Y. et al., 2020; Emerg Microbes Infect	CRA002390 (Genome Sequence Archive, BIG Data Center)
The BALF transcriptome data for Pneumonia patients (Broncho-Alveolar Lavage Fluid)	Zhou Z. et al., 2020; Cell Host Microbe	PRJCA002273 (BioProject, BIG Data Center)

Software and Algorithms

Software	Source	Version
VMir	Grundhoff A. et al., 2006; RNA	Version 2.3
MFold	http://unafold.rna.albany.edu/?q=MFold	Version 3.6
Mature-Bayes	http://mirna.imbb.forth.gr/MatureBayes.html	N/A
miRDB	http://mirdb.org	N/A
Cytoscape	https://cytoscape.org	Version 3.8
ClueGO	http://apps.cytoscape.org/apps/cluego	Version 2.5.7
CluePedia	http://apps.cytoscape.org/apps/cluepedia	Version 1.5.7
CytoKEGG	http://apps.cytoscape.org/apps/cytokegg	Version 1.0.1
KEGGParser	http://apps.cytoscape.org/apps/cykeggparser	Version 1.2.9
ReactomeFI	http://apps.cytoscape.org/apps/reactomefiplugin	Version 7.2.3
Precursor miRNAs (pre-miRNAs) prediction

The SARS-CoV-2 genome sequence was downloaded from the NCBI with accession number NC_045512.2. VMir software (10), which consists of two programs VMir analyser and VMir viewer, was used with default settings (window size: 500 nucleotides, step size: 1 nucleotide, conformation: linear, orientation: both, hairpin size: any, minimum VMir score: 115, minimum hairpin size: 70, minimum Window Count: 35) to identify putative pre-miRNA hairpin structures in the SARS-CoV-2 genome.

Secondary structure validation

The VMir-derived pre-miRNA sequences were submitted to the MFold (11) web-server with default parameters for secondary structure prediction and MFE (ΔG in kcal/mol) calculation. The MFEI was also calculated as described in the equation:

\[
\text{MFEI} = \left(\frac{\text{MFE}}{\text{Length of the RNA sequence}} \times 100 \right) / (\text{G+C})\%
\]

The potential pre-miRNA secondary structures were assessed using the following criteria:

i) MFE ≤ −18 kcal/mol

ii) (G+C)% between 30–70 %;

iii) MFEI ≤ −0.85 kcal/mol

Mature miRNAs Prediction
The MatureBayes tool was used at default parameters to predict mature miRNAs (13). MatureBayes incorporates the Naïve Bayes classifier for identifying the putative mature miRNA molecules based on the sequence and structure of the miRNA precursors.

Potential Target genes prediction

miRDB (15), a web server was used for predicting the target genes in the human genome for the mature miRNAs. The server uses the MirTarget algorithm, which is based on a 7-mer seeding approach to predict miRNAs targets in the human gene’s 3’ UTRs. The algorithm scans the 3’ UTR of human genes for hybridization with miRNAs sequence. Target genes with miRDB score ≥ 80 were selected as a predicted target with a score ≥ 80 is most likely to exist in a physiological scenario and not require any other supporting evidence.

Gene Ontology and pathway enrichment analyses of the target mRNAs

Gene ontology is a bioinformatics tool used for investigating functional relationships between gene products and predicting three key aspects: biological process, cellular component, and molecular function. KEGG is a database used for analysing enriched pathways of the selected genes to further understand gene functions. To conduct GO and KEGG pathway analysis for the target mRNAs, the ClueGO (26), CluePedia (58), CytoKEGG, and KEGGParser (59) plugins on Cytoscape (27) were used. GO terms and KEGG pathways with p-value < 0.05 were considered statistically significant. Genes were mapped onto the KEGG pathways using the PaintOmics3 (60) using default parameters. Software packages R and R Studio were used to visualize the top GO terms and KEGG pathways.

PPI Network construction
Using Cytoscape plugin, ReactomeFI (61), PPI network was constructed ($P < 0.05$, FWER Correction). Another Cytoscape plug-in, MCODE (31) was used to identify the interconnected clusters/ modules from the PPI network (degree cut-off = 2, max. depth = 100, k-core = 2, and node score cut-off = 0.2). ClueGO was used to identify the significant GO Terms enriched with the gene clusters retrieved in MCODE.
Competing interests

The authors declare no competing interest.

Funding

Not applicable.

Authors' contributions

SV and AD conceptualized the study, performed the computational analysis and analysed the data. SV, AD, NK and BKB wrote the manuscript.

Acknowledgements

The authors thank Mr. Krushna Chandra Murmu from Institute of Life Sciences, Bhubaneswar, for his suggestions and help in generating Figure 3 using the R package.
References

1. Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold. Vol. 323, JAMA - Journal of the American Medical Association. 2020. p. 707–8.

2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.

3. Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Vol. 101, Antiviral Research. 2014. p. 45–56.

4. World Health Organization. Coronavirus Disease 2019 Situation Report 51 [Internet]. Vol. 2019, WHO Bulletin. 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

5. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Vol. 87, Indian Journal of Pediatrics. 2020. p. 281–6.

6. Cullen BR. Transcription and processing of human microRNA precursors. Vol. 16, Molecular Cell. 2004. p. 861–5.

7. Kincaid RP, Sullivan CS. Virus-Encoded microRNAs: An Overview and a Look to the Future. PLoS Pathog. 2012;8(12).

8. Carl JW, Trgovcich J, Hannenhalli S. Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinformatics. 2013;14.

9. Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Vol. 14,
10. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA. 2006;12(5):733–50.

11. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.

12. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63(2):246–54.

13. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: A probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One. 2010;5(8).

14. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-1045.e9.

15. Chen Y, Wang X. MiRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–31.

16. Schmitz N, Kurrer M, Bachmann MF, Kopf M. Interleukin-1 Is Responsible for Acute Lung Immunopathology but Increases Survival of Respiratory Influenza Virus Infection. J Virol. 2005;79(10):6441–8.

17. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venets G, et al. Familial primary
pulmonary hypertension (Gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67(3):737–44.

18. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguín-Rivera Y, Escalera-Anteza JA, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Vol. 34, Travel Medicine and Infectious Disease. 2020.

19. Improgo MRD, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer. Vol. 92, Progress in Neurobiology. 2010. p. 212–26.

20. Smith JC, Sausville EL, Girish V, Yuan M Lou, Vasudevan A, John KM, et al. Cigarette Smoke Exposure and Inflammatory Signalling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020;53(5):514-529.e3.

21. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–70.

22. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe. 2020;27(6):883-890.e2.

23. Oram JF, Lawn RM. ABCA1: The gatekeeper for eliminating excess tissue cholesterol. Vol. 42, Journal of Lipid Research. 2001. p. 1173–9.
24. Nofer JR, Remaley AT, Feuerborn R, Wolińska I, Engel T, Von Eckardstein A, et al. Apolipoprotein A-I activates Cdc42 signalling through the ABCA1 transporter. J Lipid Res. 2006;47(4):794–803.

25. Michel V, Bakovic M. Lipid rafts in health and disease. Biol Cell. 2007;99(3):129–40.

26. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.

27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

28. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. Diabetes, Obes Metab. 2020;22(8):1443–54.

29. Sujjitoon J, Kootiwut S, Chongjaroen N, Semprasert N, Hanchang W, Chanprasert K, et al. PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects. J Hum Genet. 2016;61(11):943–9.

30. Nishi M, Sasahara M, Shono T, Saika S, Yamamoto Y, Ohkawa K, et al. A case of novel de novo paired box gene 6 (PAX6) mutation with early-onset diabetes mellitus and aniridia. Diabet Med. 2005;22(5):641–4.
31. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4.

32. Göder A, Emmerich C, Nikolova T, Kiweler N, Schreiber M, Kühl T, et al. HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun. 2018;9(1).

33. Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gécz J, et al. A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat Struct Mol Biol. 2009;16(7):747–53.

34. Tarpey PS, Lucy Raymond F, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet. 2007;39(9):1127–33.

35. Zhao RY, Elder RT. Viral infections and cell cycle G2/M regulation. Vol. 15, Cell Research. 2005. p. 143–9.

36. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7).

37. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J Virol. 2011;85(2):873–82.

38. Rangan R, Zheludev IN, Hagey RJ, Pham EA, Wayment-Steele HK, Glenn JS, et al. RNA
genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses:
A first look. Rna. 2020;26(8):937–59.

39. Shapiro JS, Varble A, Pham AM, Tenoever BR. Noncanonical cytoplasmic processing of viral microRNAs. Rna. 2010;16(11):2068–74.

40. Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, et al. Numerous Conserved and Divergent MicroRNAs Expressed by Herpes Simplex Viruses 1 and 2. J Virol. 2010;84(9):4659–72.

41. Qian K, Pietilä T, Rönty M, Michon F, Frilander MJ, Ritari J, et al. Identification and Validation of Human Papillomavirus Encoded microRNAs. PLoS One. 2013;8(7).

42. Seo GJ, Fink LHL, O’Hara B, Atwood WJ, Sullivan CS. Evolutionarily Conserved Function of a Viral MicroRNA. J Virol. 2008;82(20):9823–8.

43. Cai X, Schäfer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2006;2(3):0236–47.

44. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A. 2005;102(15):5570–5.

45. Grey F, Hook L, Nelson J. The functions of herpesvirus-encoded microRNAs. Vol. 197, Medical Microbiology and Immunology. 2008. p. 261–7.

46. Yang X, Li H, Sun H, Fan H, Hu Y, Liu M, et al. Hepatitis B Virus-Encoded MicroRNA
Controls Viral Replication. J Virol. 2017;91(10).

47. Aparicio O, Carnero E, Abad X, Razquin N, Guruceaga E, Segura V, et al. Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair. Nucleic Acids Res. 2009;38(3):750–63.

48. Wakabayashi K, Machitani M, Tachibana M, Sakurai F, Mizuguchi H. A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing. J Virol. 2018;93(2).

49. Ouellet DL, Plante I, Landry P, Barat C, Janelle MÈ, Flamand L, et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res. 2008;36(7):2353–65.

50. Li X, Fu Z, Liang H, Wang Y, Qi X, Ding M, et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell Res. 2018;28(2):157–71.

51. Duy J, Honko AN, Altamura LA, Bixler SL, Wollen-Roberts S, Wauquier N, et al. Virus-encoded miRNAs in Ebola virus disease. Sci Rep. 2018;8(1).

52. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008;36(2):666–75.

53. Pang BS, Wang Z, Zhang LM, Tong ZH, Xu LL, Huang XX, et al. Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin
Med J (Engl). 2003;116(9):1283–7.

Takeuchi T, Suzuki K. CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients. Vol. 52, Rheumatology (United Kingdom). 2013. p. 1551–5.

Moen SH, Ehrnström B, Kojen JF, Yurchenko M, Beckwith KS, Afset JE, et al. Human Toll-like receptor 8 (TLR8) is an important sensor of pyogenic bacteria, and is attenuated by cell surface TLR signalling. Front Immunol. 2019;10(MAY).

Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Vol. 74, Allergy: European Journal of Allergy and Clinical Immunology. 2019. p. 223–35.

Pritchard AL, White OJ, Burel JG, Carroll ML, Phipps S, Upham JW. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PLoS One. 2014;9(9).

Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3.

Arakelyan A, Nersisyan L. KEGGParser: Parsing and editing KEGG pathway maps in Matlab. Bioinformatics. 2013;29(4):518–9.

Hernández-De-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L, Furió-Tarí P, Pappas GJ, et al. PaintOmics 3: A web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018;46(W1):W503–9.
Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: the Reactome FI Cytoscape app for pathway and network-based data analysis. F1000Research. 2014;3:146.
Figure 1. Potential stem-loop structures of pre-miRNAs of SARS-CoV-2. (A) VMir analysis of the SARS-CoV-2 genomic RNA; all hairpins with VMir score ≥115, hairpin size ≥ 70, and window count ≥ 35 are shown. Hairpins are plotted according to genomic position (X-axis) and VMir score (Y-axis). (Hairpins in direct orientation represented as blue triangles; and hairpins in
reverse orientation represented as green diamonds). (B) Secondary structures of the predicated stem-loops of most likely pre-miRNAs candidates generated using MFold.
Figure 2. Target mRNAs are reported to be down-regulated in SARS-CoV-2 infected samples. (A) Venn diagrams showing the number of overlapping genes between the SARS-CoV-2 miRNAs target genes predicted in the current study (white circles) and the down-regulated genes in the SARS-CoV-2 infected samples of three independent transcriptomic studies.
studies (colored circles) - A549 cells (Blanco-Melo et al.) (i), A549-ACE-2 cells (Blanco-Melo et al.) (ii), Post-mortem lung biopsies of COVID-19 patients (Blanco-Melo et al.) (iii), Bronchio-Alveolar Lavage Fluid of COVID-19 patients (Xiong et al.) (iv), peripheral blood of COVID-19 patients (Xiong et al.) (v) and Bronchio-Alveolar Lavage Fluid of COVID-19 patients (Zhuo Zhou et al.) (vi). (B) Heat map showing the expression profiles of overlapping genes in the studies (i-vi) mentioned above (white indicates the absence of the expression levels in the respective study).
Figure 3. Gene Ontology and Pathway Analysis of host target genes for SARS-CoV-2 miRNAs. Top 20 most significant cellular components (A), molecular functions (B), biological processes (C), and KEGG pathway enrichment (D) analysis of 1121 target genes are shown.
Figure 4. KEGG pathways populated with the host target genes for SARS-CoV-2 miRNAs. Painted MAPK signalling pathways (A), RNA transport (B), TGF-β signalling pathway (C), and Insulin signalling pathways (D) with genes in red boxes identified as targets of predicted SARS-CoV-2 miRNAs.
Figure 5. Construction and analysis of target genes from the interaction network. (A) PPI network of the target genes of SARS-CoV-2 miRNAs constructed using ReactomeFI plugin in Cytoscape. The node represents the genes, and the edge represents the interaction among the products of the genes. (B) Modules in the PPI network with most significant interactions belong majorly to the MAPK signalling pathway generated by MCODE analysis (see Figure 6).
Figure 6. Analysis of modules reveal significant signalling pathways. Visualization of KEGG pathway enrichment profiles from the clustered genes of significant modules using ClueGO/CluePedia plugin of Cytoscape software.
Tables

Table 1. List of putative misRNAs predicted by Mature-Bayes.

Mature miRNA	Sequence	Length (nucleotides)	Position*	3'/5'
MD50-5p	UGCCUGGUUUGCCUGGCACGAU	22	38	5'
MD50-3p	CACGAUAUUACGCAACAACUAUU	22	54	3'
MD86-5p	UAUGCAAAAAGUAUUCUACACUC	22	7	5'
MD86-3p	UGGUAAGAGUCAUUUUGCUAUU	22	46	3'
MD62-5p	AUACUAGUUUGUCUGGUUUUAA	22	43	5'
MD62-3p	UGUGUUAUGUAUGCAUCAGCUG	22	75	3'
MR5-5p	ACCAACAUAUUGAUGUGACU	22	31	5'
MR5-3p	UUGACUUUCUCUUUUUGGAGUA	22	47	3'

* position w.r.t to the first nucleotide of the respective pre-miRNA (see Supplementary Material- Sheet 3)

Table 2. List of KEGG pathways enriched for the target mRNAs in the modules.

KEGG ID	KEGG Term	Count	p-Value	Genes
hsa03013	RNA transport	8	1.5E-05	GEMIN8, NUP107, NUP58, RPP14, RPP30, SMN1, TPR, UPF3A
hsa03015	mRNA surveillance pathway	4	2.6E-03	ETF1, GSPT1, PPP2R3A, UPF3A
hsa04010	MAPK signalling pathway	12	2.1E-07	CACNA1C, CACNA2D1, CACNB2, CACNG8, DUSP3, DUSP4, ERBB2, FGF2, MAPK1, MAPK8, PRKacb, RASGRP3