A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh

H Mahmood1,4, M R H Siddique1 and M Akhter2,3

1Forestry and Wood Technology Discipline, Khulna University, Khulna - 9208, Bangladesh
2Assistant Conservator of Forests, Forest Department, Ministry of Environment and Forest, Dhaka, Bangladesh
3Food and Agricultural Organization of the United Nations, Bangladesh
E-mail: mahmoodhossain@hotmail.com

Abstract. Estimations of biomass, volume and carbon stock are important in the decision making process for the sustainable management of a forest. These estimations can be conducted by using available allometric equations of biomass and volume. Present study aims to: i. develop a compilation with verified allometric equations of biomass, volume, and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations for different trees and shrubs of Bangladesh. Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement in use and development of allometric equations. A list of documents containing allometric equations was prepared from secondary sources. The documents were collected, examined, and sorted to avoid repetition, yielding 50 documents. These equations were tested through a quality control scheme involving operational verification, conceptual verification, applicability, and statistical credibility. A total of 517 allometric equations for 80 species of trees, shrubs, palm, and bamboo were recorded. In addition, 222 allometric equations for 39 species were validated through the quality control scheme. Among the verified equations, 20%, 12% and 62% of equations were for green-biomass, oven-dried biomass, and volume respectively and 4 tree species contributed 37% of the total verified equations. Five gaps have been pinpointed for the existing allometric equations of Bangladesh: a. little work on allometric equation of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equation for belowground biomass and carbon estimation, and d. lower proportion of valid allometric equations. It is recommended that site and species specific allometric equations should be developed and consistency in field sampling, sample processing, data recording and selection of allometric equations should be maintained to ensure accuracy in estimation of biomass, volume, and carbon stock in different forest types of Bangladesh.

1. Introduction
Bangladesh is one of the most densely populated countries in the world with only 0.06% of the world’s forest [1] and 0.017 ha of per capita forest land [2]. The huge population (166.3 million) exerts immense pressure on her forest resources for the demand of timber, fuel wood, and other forest products. Measurement of forest biomass and volume are important for estimating forest productivity. Appropriate estimation of forest stocking, productivity, nutrient cycling, nutrient budget, amount of
carbon stock, and prediction of future status are important considerations for the sustainable management of forest resources [3, 4]. Tree biomass and volume can be measured from both destructive (clear-cut) and non-destructive (allometric equation) methods [3, 5]. Allometric method is frequently used for estimating the biomass and volume of forest plant species, which is the most powerful tool of measurement [6, 7, 8, 9]. The use of appropriate equations for estimating biomass and volume will contribute in improving the accuracy of forest resource assessment, and also guide the forest policies and management interventions [10, 11]. Considering this importance, different research and academic institutions and individual researchers have developed biomass and volume allometric equations for estimating biomass and volume stock of a particular forest of Bangladesh.

Choice of allometric equations is one of the key sources of uncertainty in forest biomass estimation. About one-fourth of the published equations contain blunders, oversights, or forecast unrealistic values [12]. Therefore, verification and validation of allometric equation is imperative, before its application in estimation of biomass and volume [13]. Validating and verifying an allometric equation is vast in extent, and diverse in regards to methods, assumptions and conclusions. Recently, [13] proposed a systematic transparent quality control method to quantify the degree of confidence for the allometric equations without involving equation development. Quantitative reviews of available allometric equations have been implemented at a regional scale, but few countries have developed a national database for biomass and volume allometric equations [12]. In South Asia, the first regional database was developed in 2014 [14], while [15] have developed the first database for Bangladesh in 2013. However, these databases were not comprehensive and quality controlled. Repetition of some allometric equations was also observed. The use and development of allometric equations should be specific to the conditions of the country, which is crucial for three reasons. The first is that the assessment of tree and forest resources of a country should be accurate. The second is that country specific models are more efficient, and the third reason is the amount of uncertainty of the models used. However, the overall objective is to improve the quality of estimates for a multitude of purposes including timber volume, wood energy biomass, carbon stocks, etc. in trees and forest resources of Bangladesh. To achieve this overall objective, we have to have the status of the existing tree allometric equations, forest resource estimation methods, and a verified database of tree allometric equations. Therefore, a quality controlled comprehensive database of allometric equations is needed to assess the gaps and scope for the development of new allometric equations with important tree species of different forest types of Bangladesh. The specific objectives of the present study were to: i. develop a compilation with valid allometric equations of biomass, volume and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations with different trees and shrubs.

2. Material and Methods

2.1. Collection of Information

Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement and experiences in the use and development of allometric equations. A draft list of documents containing allometric equations was prepared through consultation with key stakeholders and online search (Google Scholar) results. This list was updated by taking time and identifying unlisted documents. The listed documents were collected from bibliographic databases such as: Science Direct, Springer Link, CABI, AGRIS, AGRICOLA, JSTOR, ResearchGate. Sometimes personal and official communications were established with identified key stakeholders to obtain their research articles, reports, theses, bulletins, monographs, inventory reports and proceedings papers. Hard and soft copies of the collected documents were maintained for references.
2.2. Compilation of Information

The collected documents were sorted considering relevance and repetition. The information of the allometric equations in the sorted documents was grouped and recorded into 8 different categories. The categories were plant ecology (Population), geographical location, ecoregions (FAO, Udvardy, Bailey, WWF, Holridge and IUCN Biocological zones-Bangladesh), equation parameters (coefficients, constants, variables and ranges), plant components (leaves, Branches, Stump, Stems, Bark, Root, etc.), taxonomical description (Family, Genus, Species), fit statistical information (R2, adjusted R2, RMSE, sample number, bias correction, Akaike information criterion, furnival index) and Bibliography.

2.3. Quality control of the allometric equations

All the allometric equations were tested through a quality control scheme following four types of verification (operational verification, conceptual verification, applicability, statistical credibility) according to [13]. The detail process of verification has been given below:

- Operational verification: Too large or too small predicted biomass or volume values
- Conceptual verification: Predicted biomass or volume are lower than “0” or have negative values
- Applicability: Under which condition the model can be applied (Population ecology, environmental condition of the site where the equation was developed, tree component measured, Taxonomic reference, Range of applicability)
- Statistical credibility: Sample size should be at least 30 trees and the coefficient of determination should be higher than 0.85

3. Results

3.1. Documents of allometric equations

A total of 53 documents were identified that contained the allometric equations for plants of Bangladesh. The collected documents were sorted, considering relevance and repetition, and 50 documents were found (i.e. 96% of the total document of allometric equations). Most of the documents were Journals (52%) followed by reports (24%), bulletins and theses (figure 1). The list of documents containing allometric equations of Bangladesh has been presented as Appendix 1.

![Figure 1. Document type of available literature in percentage.](image)

Most of the documents were prepared during the last decade of the twentieth century (1991-2000). However, the number of studies on the development of allometric equations has increased rapidly
during 2011 to 2016, which contributed 26% of the total allometric documents of Bangladesh (figure 2).

![Figure 2. Year-wise publication of the documents.](image)

3.1. Total number of allometric equations

This study recorded a total of 517 allometric equations on volume, biomass, carbon and nutrients for 80 species of tree, shrub, palm and bamboo. Higher preference, about 92% of the total allometric equations, was recorded for trees and 6% for shrubs. Among these equations, 70% equations were for volume estimation and only 6% equations were for oven-dry biomass estimation. Unfortunately, there is not a single equation for below-ground biomass estimation (table 1).

Category	Volume	Green biomass	Oven-dried biomass	Air-dried biomass	Carbon	Nutrients	Length of split leaf	Total
Tree	360	78	11	0	25	3	0	477
Shrub	1	1	11	0	3	6	0	31
Palm	0	2	0	0	0	0	1	3
Bamboo	0	3	0	3	0	0	0	6
Total	361	84	31	3	28	9	1	517

3.2. Verified allometric equations

Considering operational and conceptual verification, applicability and statistical credibility, the total number of allometric equations was reduced to 222, which was 43% of the total allometric equations. Most of the equations (45%) failed to meet the requirements of statistical credibility and conceptual verification (24%) (table 2). About 97% of the valid allometric equations were for individual species, while only 3% equations for mixed species. Irrespectively, about 77% of allometric equations were for plantation followed by natural forest (15%) and home garden (7%).

Category	Operational verification	Conceptual verification	Applicability	Statistical credibility	Final validation
Valid	473	394	517	285	222
Not valid	44	123	0	232	295
Total	517	517	517	517	517
Trees contained 196 verified equations which were 41% of the total allometric equations under the tree category. Shrubs contained 26 verified equations which were 84% of the total allometric equations of the shrub category (table 1 and 3). Surprisingly, not a single verified allometric equation was found for palm and bamboo. Under valid allometric equations, about 62% and 12% of the equations were observed for volume and oven-dry biomass respectively (figure 3).

Table 3. Number of verified allometric equations according to plant and equation types in Bangladesh.

Category	Volume	Green biomass	Oven-dried biomass	Carbon	Nutrients	Total
Tree	138	44	10	1	3	196
Shrub	0	0	17	3	6	26
Palm	0	0	0	0	0	0
Bamboo	0	0	0	0	0	0
Grand total	138	44	27	4	9	222

Figure 3. Percentage of valid allometric equations in different categories.

Thirty-nine species of 18 families and 31 genera have a total of 222 verified allometric equations. But, *Sonneratia apetala, Acacia mangium* and *Acacia auriculiformis* have each of 12 volume equations. *Senna siamea* has 23 allometric equations for green biomass, but other species have few equations under each category. These four species contributed 37% of the total verified allometric equations (Table 4). Species wide valid allometric equations in Bangladesh have been prepared and presented in Appendix 2.
Table 4. List of species with verified allometric equations in Bangladesh.

Genus	Species	Local name	Volume	Green biomass	Oven-dried biomass	Carbon	Nutrient	Remark
Acacia	mangium	Mangium	12	12				
Acacia	auriculiformis	Akashmon	12	5	1			
Acacia	nilotica	Babla	2					
Aegialitis	rotundifolia	Nuniya	2					
Aegiceras	corniculatum	Khulshi	4	1	3			
Albizia	procera	Koroi	2					
Albizia	spp	Koroi	6					Mixed species
Albizia	saman	Rain tree	6					
Albizia	richardiana	Rajkori	2					
Aphanamixis	polystachya	Pitraj	2					
Artocarpus	chaplasha	Chapalish	2					
Artocarpus	heterophyllus	Kathal	2					
Avicennia	officinalis	Baen	2					
Azadirachta	indica	Neem	2					
Breeonia	chinensis	Kadam	1					
Ceriops	decandra	Goran	5					
Dalbergia	sissoo	Sissoo	5					
Dipterocarpus	turbinatus	Telya	3					
Eucalyptus	camaldulensis	Garjan	7					
Eucalyptus	tereticornis	Eucalyptus	1					
Eucalyptus	brassiana	Eucalyptus	1					
Excoecaria	agallocha	Gewa	5	1	3			
Falcataria	moluccana	Moluccena	2					
Gmelina	arborea	Gamar	2					
Hevea	brasiliensis	Rubber	10					
Kandelia	candel	Goria	5	1	3			
Lagerstroemia	speciosa	Jarul	1					
Lannea	coromandelica	Badi	1					
Mangifera	indica	Am	2					
Melia	azadarach	Bokain	2					
Mixed			1	4	1	1		
Pinus	caribaea	Pine	8					
Senna	siamea	Minjiri	8	23				
Shorea	robusta	Sal	7					
Sonneratia	apetala	Keora	12					
Swietenia	macrophylla	Mahogany	6					
Syzygium	cumini	Kalojam	1					
Tectona	grandis	Teak	2				1	
Terminalia	arjuna	Arjun	2					
A total of 58 verified allometric equations were observed for all over Bangladesh for different species. These allometric equations were developed from sample trees that were collected from different locations of Bangladesh. Therefore, these equations overlap different ecoregions of Bangladesh. Conversely, the other 164 verified allometric equations were found under all categories of ecoregions in Bangladesh as described by FAO, Udvardy, WWF and Bailey (table 5).

Table 5. Numbers of allometric equations and species in different ecoregions of Bangladesh.

Ecoregion	Zones	Equation number	Species number
FAO	Tropical moist Deciduous Forest	38	12
	Tropical rain forest	26	12
Udvardy	Tropical humid forests	76	14
	Tropical dry forests / Woodlands	12	9
WWF	Tropical humid forest	12	6
	Tropical and subtropical moist broadleaf forests	10	1
	Tropical and subtropical dry broadleaf forests	77	20
	Mangrove	33	5
Bailey	Rainforest Division	101	21
	Rainforest Regime Mountain	12	9
Holdridge	Subtropical moist	13	4
	Subtropical wet	13	10
	Tropical moist	10	2
Bangladesh IUCN	Brahmaputra-Jamuna flood plain	4	2
	Chittagong Hills and the CHTs	6	2
	Ganges flood plain	2	1
	Offshore island	14	2
	Sundarbans	33	5
	Surma-Kushia flood plain	1	1
	Sylhet hills	11	8

* Overlapped ecoregions have not considered in this table.

4. Discussion

Allometric equations for trees and shrubs are fundamental to assess standing volume, biomass or carbon stock, bioenergy, nutrient cycling, payment for environmental services etc. [7, 10, 11]. Inappropriate use and development of allometric equations may give an inaccurate estimate of forest resources that may lead to inappropriate decisions on forest management issues and initiatives [16]. In Bangladesh, 5% species of trees and shrubs have allometric equations for estimating biomass and volume. However, this percentage was reduced to 2.5% considering only the verified equations. Four tree species contributed about 37% of the total valid allometric equations, and 12% verified equations were for oven-dried biomass of 10 species. This scenario pinpointed five gaps in the existing allometric equations of Bangladesh. This situation indicates: a. little work on allometric equations of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equation for below-ground biomass and carbon estimation, and d. lower proportion of valid allometric equations.
Bangladesh Forest Research Institute (BFRI) was usually responsible for the development of allometric equations for estimating volume and biomass since 1971. Forest Department also developed some volume allometric equations in cooperation with BFRI under specific forest inventory from 1971 to 2000. The contribution of individual researchers in developing allometric equations was quite low during that period. Recently (2001-2016), the contribution from the individual researchers has increased. Previously, almost all efforts were given to derived volume equations for different tree species in the natural forest and plantation, to estimate the commercial volume stock of timber in particular forest and species as well. This could be the reason a very small number of biomass allometric equations were found in Bangladesh during 1971 to 2000. Few fuel wood species (*Acacia mangium, Acacia auriculiformis, Senna siamea* and *Sonneratia apetala*) have gotten more emphasis to derive allometric equations.

Development of biomass and volume allometric equations requires extensive planning, field works, sample analysis in the laboratory, and data analysis. These activities are mostly destructive, difficult, and expensive to repeat. Therefore, these activities require consistency in field work and equation selection process. Most of the allometric equations, 45% and 24% of the total allometric equations, failed to meet the requirements of statistical credibility and conceptual verification respectively under quality control scheme. This large proportion of invalid equations (57%) may be from lack of awareness on the quality control scheme of the derived allometric equations. So, it is suggested to include interval of calibration, residual standard deviation, coefficient of regression value, number of sample trees and location of sample tree or data collection in the document to meet the requirements of quality control scheme.

During the last National Forest Assessment in Bangladesh (2005-07), globally available equations and factors were used to calculate the above-ground biomass of forest. The Sundarban Carbon inventory in 2009-10 used the globally available equations for the mangrove species to calculate the carbon stock in the Sundarban Reserved Forest [17]. However, the accuracy can be questionable as they were using some general allometric equations [16, 18]. Therefore, development of allometric equations for local species, considering various factors for different forest types, is essential to ensure accuracy in volume, biomass and carbon estimation [12]. Major species of bamboo natural/homestead, coastal afforestation, fresh water swamp forest, inland chars, mango plantation, associate species of Sal forest, major species of the Sundarbans and tree species outside the forest (table 6) should be given more emphasis during the development of biomass and volume allometric equations in Bangladesh.

Table 6. List of recommended species for further development of allometric equations in Bangladesh.

Acacia catechu	Bombax ceiba	Dendrocalamus longispathus
Adina cordifolia	Borassus flabellifer	Dillenia indica
Albizia lebbeck	Bruguiera gymnorrhiza	Dillenia pentagyna
Albizia odoratissimus	Bruguiera sexangula	Diospyros peregrina
Anacardium occidentale	Butea monosperma	Diospyros philippensis
Areca catechu	Calophyllum inophyllum	Duabanga grandiflora
Avicennia alba	Cassia fistula	Dysoxylum binectariferum
Avicennia marina	Cerbera manghas	Erythrina orientalis
Avicennia officinalis	Chickrassia tabularis	Excoecaria indica
Bambusa arundinacea	Clerodendrum inerne	Feronia limonia
Bambusa balcooa	Cocos nucifera	Ficus bengalensis
Bambusa longispathata	Cynometra ramiflora	Ficus hispida
Bambusa polymorpha	Dalbergia sisoo	Ficus religiosa
Bambusa tulda	Dalbergia spinosa	Heritiera fomes
Bambusa vulgaris	Dillenia pentagyna	Hibiscus tiliaeus
Barringtonia acutangula	Delonix regia	Khaya anthotheca
Leucaena leucocephala	Pongamia pinnata	Pithecellobium dulce
Litchi chinensis	Psidium guajava	Tamarix indica
Lumnitsera racemosa	Rhizophora apiculata	Terminalia belerica
Melocanna baccifera	Rhizophora mucronata	Terminalia catappa
Michelia champca Schima wallichii Toona ciliata
Mimosops elengi Sonneratia apetala Trema orientalis
Moringa oleifera Sonneratia caseolaris Xylocarpus granatum
Nypa fruticans Spondias dulce Xylocarpus mekongensis
Phoenix paludosa Syzygium grandis Zizyphus mauritiana
Phoenix sylvestris Tamarindus indica

Acknowledgements
We greatly acknowledge the financial support of FAO through GCP/BGD/058/USA (LOA Code: FAOBGDLOA 2015-026) to accomplish this work. The authors also thank FAO for providing financial support (Travel and Accommodation) to present the paper at the International conference WRE2016, Shanhai, China. We would like to thank Bangladesh Forest Department, Bangladesh Forest Research Institute, Institute of Forestry and Environmental Sciences, University of Chittagong, Department of Forestry and Environmental Science, Shahjalal University of Science & Technology, and Forestry and Wood Technology Discipline, Khulna University for their cordial logistic supports during the collection of the extensive literature.

Appendix A

Sl no	Source
1	Alamgir, M., Al-Amin, M. 2008. Allometric models to estimate biomass organic carbon stock in forest vegetation. Journal of Forestry Research 19 (2): 101-106
2	Chaffey, D.R., Miller, F.R., Sandom, J.H. 1985. A forest inventory of the Sundarbans, Bangladesh. Project report 140, Overseas Development Administration, Land Resources Development Centre, England
3	Cox, F.Z. 1984. Volume functions for plantation species and elements for growth models for Teak. Field Document no 2, Assistance to the Forestry Sector of Bangladesh, Food and Agricultural Organization of the United Nations, FAO/UNDP Project BGD/79/017
4	Das, N. 2014. Modeling Develops to Estimate Leaf Area and Leaf Biomass of Lagerstroemia speciosa in West Vanugach Reserve Forest of Bangladesh. ISRN Forestry, doi. org/10.1155/2014/486478
5	Das, S., Davidson, J., Latif, M.A., Rahman, F., Das, S. 1985. Tree volume tables for Moluccana (Paraserianthes falcataria syn. Albizia falcataria syn. A. moluccana) in Bangladesh. Bulletin no 4, Inventory Division, Bangladesh Forest Research Institute, Chittagong.
6	Das, S., Rahman, M.F., Reza, N.A., Latif, M.A. 1992. Tree volume tables for Sal (Shorea robusta Gaertn. f.) in the plantations of Bangladesh. Bulletin 7, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong, 1-11 pp.
7	Davidson, J., Das, S., Khan, S.A., Latif, M.A., Zashimuddin, M. 1985. Tree volume tables for small Eucalypt round wood in Bangladesh. Bulletin no 4, Silviculturer Research Division, Bangladesh Forest research Institute, Chittagong
8	Deb, J.C., Halim, M.A., Ahmed, E. 2012. An allometric equation for estimating stem biomass of Acacia auriculiformis in the north-eastern region of Bangladesh. Southern Forests 74(2): 103–113
9 Drigo, R., Latif, M.A., Chowdhury, J.A., Shaheduzzaman, M. 1987. The maturing mangrove plantations of the coastal afforestation project. Food and Agricultural Organization of the United Nations, FAO/UNDP Project BDG/85/085, Assistant to the Forestry Sector.

Sl no	Source
10	Drigo, R., Shaheduzzaman, M., Chowdhury, J.A. 1988. Inventory of forest resources of Southern Sylhet Forest Division. Assistance to Forestry Sector - Phase II, Field Document no 3, Food and Agriculture Organisation of the United Nations, FAO/UNDP Project BGD/85/085
11	Hossain, S.M.Y., Martin, A.R. 2013. Merchantable timber production in Dalbergia sissoo plantations across Bangladesh: regional patterns, management practices and edaphic factors. Journal of Tropical Forest Science 25(3): 299-309
12	Islam, S.M.Z., Ahmed, K.U., Khan, M.I. 2014. Mathematical models for estimating stem volume and volume tables of Rubber tree. Bulletin 10, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong.
13	Islam, S.M.Z., Khan, M.I. Ahmed, K.U. 2012. Volume equations and tables for Rajkoroi (Albizia richardiana King and Prain) planted in the southern part of Bangladesh. Bangladesh Journal of Forest Science 32 (1): 28-39
14	Islam, S.S., 1988. Commercial volume table for teak (Tectona grandis) in Bangladesh by regression technique. Bano Biggyan Patrika 17 (1&2): 55-67
15	Islam, S.S., Kabir, J., Masum, A.K.M. 2012. Volume Table of Raintree (Samanea saman) in Bangladesh by Regression Technique. Open Journal of Statistics 2: 115-119
16	Islam, S.S., Reza, N.A., Hasnin, M., Khan, M.A.S., Islam, M.R., Siddiqi, N.A. 1992. Volume table of young Keora (Sonneratia apetala) trees for the western coastal belt of Bangladesh. Bulletin 1, Plantation Trial Unit Series, Bangladesh Forest Research Institute, Chittagong, 1-23 pp.
17	Khan, M.N.I., Faruque, O. 2010. Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. iForest 3: 153-158
18	Kingston, B. 1979. A collation of tree and bamboo volume tables of Bangladesh. Field Document no 15, Food and Agricultural Organization of the United Nations, UNDP/FAO Project BGD/72/005, Forest Research Institute, Chittagong
19	Latif M.A., Habib, M.A. 1994. Biomass tables for Acacia mangium grown in the plantations in Bangladesh. Journal of Tropical Forest Science 7(2): 296- 302
20	Latif, M.A., 1988. Biomass tables for young Eucalyptus grown in Bangladesh. Bano Biggyan Patrika 17 (1 & 2): 46-54
Sl no	Source
-------	--------
21	Latif, M.A., Das, S., Rahman, M.F., Chowdhury, J.A. 1994. Tree volume tables for Baen (Avicennia officinalis L.) in the coastal plantations of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Bangladesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 21-23 pp.
22	Latif, M.A., Habib, M.A. 1993. Biomass table for Acacia auriculiformis grown in the plantation in Bangladesh. Indian Journal of Forestry 16 (4): 323-327
23	Latif, M.A., Habib, M.A. 1994. Biomass tables for minjiri (Cassia Siamea Lam.) grown in the plantations in Bangladesh. Bangladesh Journal of Forest Science 23 (1): 59-64
24	Latif, M.A., Habib, M.A., Das, S., 1993. Tree volume tables for Acacia mangium in the plantations of Bangladesh. Bangladesh Journal of Forest Science 22 (1 & 2): 23-29
25	Latif, M.A., Islam, M.N. 1984a. Tree volume volume tables for Syzygium grande (Wt.) Wald (Dhakijam). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 25-57.
26	Latif, M.A., Islam, M.N. 1984b. Tree volume tables for Artocarpus chaplasha Roxb. (Chapalish). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 58-92.
27	Latif, M.A., Islam, M.N. 1984c. Tree volume tables for Dipterocarpus turbintus Gaertn. F. (Tali Garjan). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 122-128.
28	Latif, M.A., Islam, M.N. Choudhury, J.H. 1984. Tree volume tables for Gmelina arborea Roxb. (Gamar). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 93-121.
29	Latif, M.A., Islam, M.N., Islam, S.S. 1985. Tree volume tables for Teak (Tectona grandis) in Bangladesh. Bulletin no 5, Inventory Division, Bangladesh Forest Research Institute, Chittagong.
Sl no	Source
-------	--------
30	Latif, M.A., Islam, M.S., Islam, S.M.Z. 1999. Volume tables for sissoo, kori, mahogany, eucalyptus and bokain planted on croplands in the western part of Bangladesh. Bangladesh Forest Research Institute, Chittagong.
31	Latif, M.A., Islam, M.S., Islam, S.M.Z., 2000. Volume tables for Sissoo, Koroi, Akashmoni, Babla, Mahogany, and Rain tree planted on embankments and road sides in the coastal areas of Bangladesh. Bulletin 9, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong.
32	Latif, M.A., Islam, S.M.Z. 2000. Volume tables for 11 important tree species grown in the home gardens of Bangladesh. Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong.
33	Latif, M.A., Islam, S.M.Z. 2004. Timber and fuelwood volume tables for Acacia auriculiformis, A. mangium, Eucalyptus camaldulensis and Dalbergia sissoo in plantations in Bangladesh. Forestry Sector Project, Bangladesh Forest Department and Bangladesh Forest Research Institute, Chittagong.
34	Latif, M.A., Islam, S.S., Davidson, J. 1986. Metric volume tables for some tree species found in the natural forests of Bangladesh. Bulletin 6, Inventory Division, Bangladesh Forest Research Institute, Chittagong.
35	Latif, M.A., Khan, A.F.M.K., Hossain, M.M. 1998. Stump diameter -DBH - volume relationships for Teli Garjan (Dipterocarpus turbinatus), Dhakijam (Syzygium grande) and Teak (Tectona grandis) in Bangladesh. Bangladesh Journal of Forest Science 27 (1): 16-24
36	Latif, M.A., Rahman, M.F., Das, S. 1995. Volume table for Acacia auriculiformis, Cassia siamea and Pinus caribaea in Bangladesh. Bangladesh Journal of Forest Science 24 (2): 22-30
37	Mahmood, H., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2015b. Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees DOI: 10.1007/s00468-015-1314-0
38	Mahmood, H., Shaikh, M.A.A., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2016. Above-ground biomass, nutrients and carbon in Aegiceras corniculatum of the Sundarbans. Open Journal of Forestry 6 (2): 72-89
39	Mahmood, H., Siddique, M.R.H., Bose, A., Limon, S.H., Chowdhury, M.R.K. Saha, S. 2012. Allometry, above-ground biomass and nutrient distribution in Ceriops decandra (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh. Wetlands Ecology and Management 20: 539-548
Sl no	Source
-------	--------
40	Mahmood, H., Siddique, M.R.H., Saha, S., Abdullah, S.M.R. 2015a. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands Ecology and Management 23 (4): 765-774
41	Rahman, M.F., Das, S., Latif, M.A. 2001. Volume table for Koroi (albizia procera) and Arjun (Terminalia arjuna) trees planted in the central part of Bangladesh. Bangladesh Journal of Forest Science 30 (1): 39-46.
42	Rahman, M.F., Das, S., Reza, N.A., Chowdhury, J.A., Latif, M.A. 1994. Tree volume table for Keora (Sonneratia apetala Buch.-Ham) in the coastal plantation of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Bangladesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 1-20 pp.
43	Rahman, M.M., Kamaluddin, M. 1996. Volume table for natural hybrid trees of Acacia mangium X Acacia auriculiformis in plantations of Bangladesh. Chittagong University Studies, 20 (1): 89-94
44	Revilla, J.A.V., Ahmed, I.U., Hossain, A. 1998a. Forest Inventory of the Sundarbans Reserved Forest, Final Report, Volume 1. Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh
45	Revilla, J.A.V., Ahmed, I.U., Saha, U.K. 1998b. Forest Inventory of the Natural Forest and Forest Plantations (Sylhet Forest Division), Final Report. Gob/Wb, Forest Resources Management Project, Technical Assistance Component. (Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh).
46	Roy, B. 2012. Species-specific allometric models for estimation of aboveground stem biomass of three dominant tree species at Satchari National park. Unpublished MS thesis. Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
47	Sarker, S.K., Das, N., Chowdhury, M.Q., Haque, M.M. 2013. Developing allometric equations for estimating leaf area and leaf biomass of Artocarpus chaplasha in Raghunandan Hill Reserve, Bangladesh. Southern Forests 75(1): 51-57
48	Siddique, M.R.H., Mahmood, H., Chowdhury, M.R.K. 2012. Allometric relationship for estimating above-ground biomass of Aegialitis rotundifolia Roxb. of Sundarbans mangrove forest, in Bangladesh. Journal of Forestry Research 23 (1): 23-28.
49	Sylvander, R., Latif, M.A., Karlsson, A. 2001. Forest inventory of the Sal forest of Bangladesh, Volume 1, Technical Report, Forestry Sector Project, Forest Department, Ministry of Environment and Forest, Dhaka
Ullah, M.R., Banik, G.R., RajibBanik. 2014. Developing Allometric Models for Carbon Stock Estimation in Eighteen Year Old Plantation Forests of Bangladesh. Jacobs Journal of Microbiology and Pathology 1(1): 006
Appendix B

Genus	Species	Local name	Family	Vegetation Component	Equation	Sample size	R²	MSE	Ref. No		
Senna	siamea	Minjiri	Leguminosae	Total above-ground green biomass	\(\log(\text{Green biomass}) = -1.5851 + 2.4855 \times \log(\text{DBH}) \)	120	0.972	0.0232	23		
Senna	siamea	Minjiri	Leguminosae	Total above-ground green biomass	\(\log(\text{Green biomass}) = -4.4303 + 2.4855 \times \log(\text{GBH}) \)	120	0.972	0.0232	23		
Senna	siamea	Minjiri	Leguminosae	Total above-ground green biomass	\(\log(\text{Green biomass}) = -2.0847 + 2.1723 \times \log(\text{DBH}) + 0.5141 \times \log(\text{Height}) \)	120	0.977	0.0189	23		
Senna	siamea	Minjiri	Leguminosae	Total above-ground green biomass	\(\log(\text{Green biomass}) = -4.5714 + 2.1723 \times \log(\text{GBH}) + 0.5141 \times \log(\text{Height}) \)	120	0.977	0.0189	23		
Senna	siamea	Minjiri	Leguminosae	Stem green biomass	\(\log(\text{Green biomass}) = -2.1442 + 2.5917 \times \log(\text{DBH}) \)	120	0.966	0.0313	23		
Senna	siamea	Minjiri	Leguminosae	Stem green biomass	\(\log(\text{Green biomass}) = -5.1110 + 2.5917 \times \log(\text{GBH}) \)	120	0.966	0.0313	23		
Senna	siamea	Minjiri	Leguminosae	Stem green biomass	\(\log(\text{Green biomass}) = -2.7095 + 2.2372 \times \log(\text{DBH}) + 0.5817 \times \log(\text{Height}) \)	120	0.972	0.0257	23		
Senna	siamea	Minjiri	Leguminosae	Stem green biomass	\(\log(\text{Green biomass}) = -5.2705 + 2.2372 \times \log(\text{GBH}) + 0.5817 \times \log(\text{Height}) \)	120	0.972	0.0257	23		
Senna	siamea	Minjiri	Leguminosae	Branch green biomass	\(\log(\text{Green biomass}) = -5.1100 + 2.5917 \times \log(\text{GBH}) \)	120	0.570	0.3528	23		
Senna	siamea	Minjiri	Leguminosae	Branch green biomass	\(\log(\text{Green biomass}) = -5.5434 + 1.9752 \times \log(\text{GBH}) \)	120	0.570	0.3528	23		
Senna	siamea	Minjiri	Leguminosae	Branch green biomass	\(\log(\text{Green biomass}) = -3.2955 + 1.3142 \times \log(\text{DBH}) + 1.0521 \times \log(\text{Height}) \)	120	0.585	0.3355	23		
Senna	siamea	Minjiri	Leguminosae	Branch green biomass	\(\log(\text{Green biomass}) = -4.7999 + 1.3142 \times \log(\text{GBH}) + 1.0521 \times \log(\text{Height}) \)	120	0.585	0.3355	23		
Senna	siamea	Minjiri	Leguminosae	Leaves and twigs green biomass	\(\log(\text{Green biomass}) = -2.1219 + 1.3142 \times \log(\text{DBH}) + 1.0521 \times \log(\text{Height}) \)	120	0.761	0.1568	23		
Senna	siamea	Minjiri	Leguminosae	Leaves and twigs green biomass	\(\log(\text{Green biomass}) = -4.3311 + 1.9299 \times \log(\text{GBH}) \)	120	0.761	0.1568	23		
Senna	siamea	Minjiri	Leguminosae	Leaves and twigs green biomass	\(\log(\text{Green biomass}) = -0.6183 + 2.8726 \times \log(\text{DBH}) - 1.5471 \times \log(\text{Height}) \)	120	0.820	0.098	23		
Senna	siamea	Minjiri	Leguminosae	Leaves and twigs green biomass	\(\log(\text{Green biomass}) = -3.9067 + 2.8726 \times \log(\text{GBH}) - 1.5471 \times \log(\text{Height}) \)	120	0.820	0.098	23		
Senna	siamea	Minjiri	Leguminosae	Stem and branch green biomass	\(\log(\text{Green biomass}) = -2.0512 + 2.6006 \times \log(\text{DBH}) \)	120	0.964	0.0339	23		
Senna	siamea	Minjiri	Leguminosae	Stem and branch green biomass	\(\log(\text{Green biomass}) = -5.0282 + 2.6006 \times \log(\text{GBH}) \)	120	0.964	0.0339	23		
Senna	siamea	Minjiri	Leguminosae	Stem and branch green biomass	\(\log(\text{Green biomass}) = -2.9256 + 2.0525 \times \log(\text{DBH}) + 0.8996 \times \log(\text{Height}) \)	120	0.978	0.0201	23		
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R²	MSE	F1	Ref. No
---------------	---------	------------	-----------------	-----------	----------------------	--	-------------	----------	-----------	----------	---------
Senna	*siamea*	Minjiri	Leguminosae	kg	Stem and branch green biomass	$\log(\text{Green biomass}) = -5.2752 + 2.0525 \cdot \log(\text{GBH}) + 0.8969 \cdot \log(\text{Height})$	120	0.978	0.0201	23	
Senna	*siamea*	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	$\log(\text{Green biomass}) = -2.5173 + 2.281 \cdot \log(\text{DBH}) + 0.494 \cdot \log(\text{Height})$	120	0.809	0.1641	23	
Senna	*siamea*	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	$\log(\text{Green biomass}) = -2.9974 + 1.98 \cdot \log(\text{DBH}) + 0.494 \cdot \log(\text{Height})$	120	0.811	0.1613	23	
Senna	*siamea*	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	$\log(\text{Green biomass}) = -5.264 + 1.98 \cdot \log(\text{GBH}) + 0.494 \cdot \log(\text{Height})$	120	0.811	0.1613	23	

Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R²	MSE	F1	Ref. No
Sonnerata	*apetala*	Keora	Lythraceae	m³	Total volume over bark	$\log(\text{Volume}) = -12.0901 + 2.502194 \cdot \log(\text{GBH})$	713	0.912	42		
Sonnerata	*apetala*	Keora	Lythraceae	m³	Total volume over bark	$\log(\text{Volume}) = -11.6632 + 1.941989 \cdot \log(\text{GBH}) + 0.754839 \cdot \log(\text{Height})$	713	0.991	42		
Terminalia	*arjuna*	Arjun	Combretaceae	m³	Total volume over bark	$\log(\text{Volume}) = -11.1885 + 2.221244 \cdot \log(\text{GBH})$	177	0.986	41		
Terminalia	*arjuna*	Arjun	Combretaceae	m³	Total volume over bark	$\log(\text{Volume}) = -11.3794 + 1.896423 \cdot \log(\text{GBH}) + 0.653558 \cdot \log(\text{Height})$	177	0.997	41		
Shorea	*robusta*	Sal	Dipterocarpaceae	m³	Total volume over bark	$\log(\text{Volume}) = -12.0554 + 2.517894 \cdot \log(\text{DBH})$	499	0.966	0.0385	0.057	38
Shorea	*robusta*	Sal	Dipterocarpaceae	m³	Total volume over bark	$\log(\text{Volume}) = -9.615639 + 2.033071 \cdot \log(\text{DBH}) + 0.7361229 \cdot \log(\text{Height})$	499	0.955	0.0077	0.088	38
Shorea	*robusta*	Sal	Dipterocarpaceae	m³	Total volume over bark	$\log(\text{Volume}) = -11.938881 + 2.033071 \cdot \log(\text{GBH}) + 0.7361229 \cdot \log(\text{Height})$	499	0.955	0.0077	0.088	38
Shorea	*robusta*	Sal	Dipterocarpaceae	m³	Total volume over bark	$\log(\text{Volume}) = -12.0554 + 2.517894 \cdot \log(\text{DBH})$	499	0.966	0.0385	0.057	38

International Conference on Water Resource and Environment 2016 (WRE2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 39 (2016) 012057 doi:10.1088/1755-1315/39/1/012057
Species	Family	m3	Total volume under bark	Volume = 0.003255 + 0.0000269 * DBH'^(2) * Height	499	0.962	0.0065	0.080	38
Shorea robusta	Dipterocarpaceae	m3	Total volume under bark	Volume = 0.003255 + 0.0000027255 * GBH'^(2) * Height	499	0.962	0.0065	0.080	38
Sonneratia apetala	Keora	m3	Total volume over bark	Volume = 0.0052 - 0.0022 * X + 0.0005 * DBH'^(2)	461	0.86	0.0000	0.009	16
Sonneratia apetala	Keora	m3	Total volume over bark	Log (Volume) = -9.1937 + 1.7683 * Log (DBH) + 0.7358 * Log (Height)	461	0.95	0.0547	0.003	16
Sonneratia apetala	Keora	m3	Total volume over bark	Log (Volume) = -9.2587 + 1.6463 * Log (DBH) + 0.9138 * Log (Height)	464	0.94	0.0744	0.005	16
Acacia mangium	Fabaceae	m3	Total volume over bark	Log (Volume) = -10.7488 + 2.2178 * Log (GBH)	132	0.98	0.0152	0.006	24

Note: The table includes equations for calculating the total volume under and over bark for different species. The equations involve variables such as DBH (diameter at breast height) and height, with coefficients and constants provided for each species. The table also includes the coefficients for each variable and the correlation coefficients (r) for the models.
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R2	MSE	FI	Ref. No
Acacia	mangium	Mangium	Fabaceae	m³	Total volume over bark	Log (Volume) = -9.1426 + 1.7612 * Log (DBH) + 0.83335 * Log (Height)	132	0.989	0.0091	0.0048	24
Acacia	mangium	Mangium	Fabaceae	m³	Total volume under bark	Log (Volume) = -11.1587 + 1.7612 * Log (GBH) + 0.83335 * Log (Height)	132	0.989	0.0091	0.0048	24
Acacia	mangium	Mangium	Fabaceae	m³	Total volume under bark	Log (Volume) = -10.2221 + 1.74054 * Log (DBH)	132	0.977	0.0219	0.0048	24
Acacia	mangium	Mangium	Fabaceae	m³	Total volume under bark	Log (Volume) = -11.6633 + 2.3246 * Log (GBH)	132	0.977	0.0219	0.0048	24
Mixed		kg			Total above-ground green biomass	Log (Green biomass) = -1.3933 + 2.39602 * Log (DBH)	294	0.948			20
Mixed		kg			Total above-ground green biomass	Log (Green biomass) = -4.136 + 2.39602 * Log (GBH)	294	0.948			20
Mixed		kg			Total above-ground green biomass	Log (Green biomass) = -2.228 + 1.81492 * Log (DBH) + 0.85007 * Log (Height)	294	0.9575			20
Mixed		kg			Total above-ground green biomass	Log (Green biomass) = -4.306 + 1.81492 * Log (GBH) + 0.85007 * Log (Height)	294	0.9575			20
Tectona	grandis	Teak	Lamiaceae	cft	Total volume over bark	Volume = 0.084 * DBH^2.263	635	0.88	0.23	40.79	17
Tectona	grandis	Teak	Lamiaceae	cft	Total volume under bark	Log (Volume) = -9.1426 + 1.7612 * Log (DBH) + 0.83335 * Log (Height)	132	0.989	0.0091	0.0048	24
Acacia	auriculiformis	Akashmon	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -1.3577 + 2.4177 * Log (DBH)	139	0.9674			22
Acacia	auriculiformis	Akashmon	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -2.2782 + 1.9736 * Log (DBH) + 0.80131 * Log (Height)	139	0.986	0.0084		22
Acacia	auriculiformis	Akashmon	Leguminosae	kg	Stem green biomass	Log (Green biomass) = -3.1661 + 2.1982 * Log (DBH) + 0.74749 * Log (Height)	139	0.983	0.0119		22
Acacia	auriculiformis	Akashmon	Leguminosae	m³	Total volume over bark	Log (Volume) = -8.208 + 2.2389 * Log (DBH)	139	0.959	0.0061		36
Acacia	auriculiformis	Akashmon	Leguminosae	m³	Total volume over bark	Log (Volume) = -10.7709 + 2.2389 * Log (GBH)	139	0.959	0.0061		36
Acacia	auriculiformis	Akashmon	Leguminosae	m³	Total volume over bark	Log (Volume) = -9.125 + 1.918 * Log (DBH) + 0.67988 * Log (Height)	139	0.988	0.0648		36
Acacia	auriculiformis	Akashmon	Leguminosae	m³	Total volume over bark	Log (Volume) = -11.3205 + 1.918 * Log (GBH) + 0.67988 * Log (Height)	139	0.988	0.0648		36
Acacia	auriculiformis	Akashmon	Leguminosae	m³	Total volume under bark	Log (Volume) = -9.187 + 2.468 * Log (DBH)	139	0.9688	0.0059		36
Species	Genus	Family	Total volume under bark	Log (Volume)	R²	p-value	n				
--------------	------------	-----------	-------------------------	--------------------------------------	------	---------	----				
Acacia auriculiformis Akashmon	Leguminosae	m³	Total volume under bark	Log (Volume) = -12.0121 + 2.468 * Log (GBH)	0.9688	0.0059	36				
Acacia auriculiformis Akashmon	Leguminosae	m³	Total volume under bark	Log (Volume) = -10.2398 + 2.100244 * Log (DBH) + 0.780214 * Log (Height)	0.9773	0.0048	36				
Genus	Species	Local name	Family	Unite of Vegetation Component	Equation	Sample size	R^2	MSE	FI	Ref.	
-----------------	----------------	------------	-------------------------	-------------------------------	---	------------	--------	-------	-------	------	
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under bark $\log (Volume) = -12.536 + 2.648 \log (GBH) + 0.783 \log (Height)$	139	0.977	0.004	36		
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark $\log (Volume) = -11.165 - 1.871 \log (GBH)$	120	0.979	0.004	36		
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark $\log (Volume) = -11.353 - 2.403 \log (GBH)$	120	0.979	0.004	36		
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark $\log (Volume) = -9.514 - 1.871 \log (DBH) + 0.897 \log (Height)$	120	0.989	0.005	36		
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark $\log (Volume) = -11.656 - 2.403 \log (GBH)$	120	0.989	0.005	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark $\log (Volume) = -8.784 - 2.403 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark $\log (Volume) = -11.345 - 2.403 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -11.656 - 2.403 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -9.334 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -12.766 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -10.177 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -12.539 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -9.116 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -11.958 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -9.751 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark $\log (Volume) = -11.966 - 2.483 \log (GBH)$	120	0.986	0.002	36		
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark $\log (Volume) = -11.839 - 2.403 \log (GBH)$	124	0.973	0.031	36		
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark $\log (Volume) = -11.507 - 1.973 \log (GBH) + 0.624 \log (Height)$	124	0.979	0.008	36		
Swietenia	macrophylla	Mahogany	Malvaceae	m3	Total volume over bark $\log (Volume) = -1.8565 - 2.403 \log (GBH)$	124	0.942	0.025	36		
Species	Common Name	Family	m³	Total Volume over bark	Log (Volume) = \(-12.4361459 + 1.8661846 \times \) Log (GBH) + 1.2282822 \times \) Log (Height)						
------------------	-------------	-----------	-----	------------------------	--						
Swietenia macrophylla	Mahogany	Meliaceae	m³	Total volume over bark	245 0.96 \n	Albizia spp	Koroi	Mimosaceae	m³	Total volume over bark	178 0.929 \n
Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation	Sample size	R2	MSE	F1	Ref. No
---	---	---	---	---	---	---	---	---	---	---	---
Albizia	spp	Koroi	Mimosaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -12.4 + 1.7131 \times \text{Log (GBH)} + 1.58245 \times \text{Log (Height)} \)	178	0.967	31		
Dalbergia	sissoo	Sissoo	Fabaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -12.427775 + 2.6056676 \times \text{Log (GBH)} \)	202	0.902	31		
Dalbergia	sissoo	Sissoo	Fabaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -12.5189939 + 1.9800535 \times \text{Log (GBH)} + 1.0775148 \times \text{Log (Height)} \)	202	0.934	31		
Acacia	nilotica	Babla	Mimosaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -11.875835 + 1.8829999 \times \text{Log (GBH)} + 1.0819988 \times \text{Log (Height)} \)	128	0.91	31		
Acacia	nilotica	Babla	Mimosaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -12.87524 + 2.5086408 \times \text{Log (GBH)} \)	190	0.952	31		
Albizia	saman	Rain tree	Mimosaceae	m³	Total volume over bark	\(\text{Log (Volume)} = -12.3213818 + 1.8912934 \times \text{Log (GBH)} + 1.183443 \times \text{Log (Height)} \)	190	0.974	31		
Ceriops	decandra	Goran	Rhizophoraceae	g	Leaf	Oven-dried biomass = 2.99 \times (\text{Collar girth})^{1.95}	48	0.89	0.02	39	
Ceriops	decandra	Goran	Rhizophoraceae	g	Branch	Oven-dried biomass = 0.23 \times (\text{Collar girth})^{3.09}	48	0.94	0.03	39	
Ceriops	decandra	Goran	Rhizophoraceae	g	Bark	Oven-dried biomass = 0.77 \times (\text{Collar girth})^{2.23}	48	0.97	0.01	39	
Ceriops	decandra	Goran	Rhizophoraceae	g	Stem with bark	Oven-dried biomass = 3.22 \times (\text{Collar girth})^{2.27}	48	0.97	0.01	39	
Ceriops	decandra	Goran	Rhizophoraceae	g	Total above-ground	Oven-dried biomass = 4.70 \times (\text{Collar girth})^{2.41}	48	0.97	0.01	39	
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R2	MSE	RMSE	AIC
-----------	---------------	------------	--------------	-----------	----------------------	---	-------------	--------	--------	--------	--------
Aegialitis rotundifolia	Nuniya	Plumbaginaceae	g	Leaf	Oven-dried biomass = 13.96 * (Collar girth) - 12.38 * (Height) - 0.01 * (Height at girth measurement point) + 0.08 * (Collar girth) * (Height) + (Height at girth measurement point)	50	0.88	1392.78	37.32	48	
Aegialitis rotundifolia	Nuniya	Plumbaginaceae	g	Branch	Oven-dried biomass = 3.09 * (Collar girth)^2 - 22.887 * (Height)^2 + 0.13 * (Collar girth) * (Height) * (Height at girth measurement point)	50	0.92	8626.98	92.882	48	
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Leaf	Log 10 (Oven-dried biomass) = 0.9256 * Log 10 (DBH^2) - 2.133	30	0.8499	0.051	0.226	-86.652	1.146
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Branch	Log 10 (Oven-dried biomass) = 1.1656 * Log 10 (DBH^2) - 1.7047	30	0.9669	0.016	0.126	-122.159	1.043
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Bark	Log 10 (Oven-dried biomass) = 1.0824 * Log 10 (DBH^2) - 1.7568	30	0.9933	0.003	0.052	-175.484	1.007
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Stem without bark	Log 10 (Oven-dried biomass) = 1.0927 * Log 10 (DBH^2) - 1.025	30	0.9937	0.003	0.051	-176.616	1.007
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Oven-dried biomass) = 1.0996 * Log 10 (DBH^2) - 0.8572	30	0.9953	0.002	0.044	-185.005	1.005
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Nitrogen) = 1.0972 * Log 10 (DBH^2) - 3.0845	30	0.9922	0.0032	0.0567	7	1.008583
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Phosphorus) = 1.0947 * Log 10 (DBH^2) - 5.6790	30	0.9905	0.0039	0.0623	1.01033	40
Excoecaria agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Potassium) = 1.0990 * Log 10 (DBH^2) - 3.0370	30	0.9929	0.0029	0.054	1.007774	40
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R2	MSE	RMS	AIC
---------------	-------------	------------	-------------------	-----------	----------------------	---	-------------	--------	-------	-------	-------
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Carbon) = 1.1 * Log 10 (DBH^2) - 1.1937	30	0.9953	0.0019	0.044	1.005136
Kandelia	candel	Goria	Rhizophoraceae	kg	Leaf	Oven-dried biomass = 0.014 * (DBH)^2 + 0.03	25	0.89	0.004	0.06	-133.53
Kandelia	candel	Goria	Rhizophoraceae	kg	Branch	Sqrt (Oven-dried biomass) = 0.29 * (DBH) - 0.21	25	0.87	0.03	0.16	-86.947
Kandelia	candel	Goria	Rhizophoraceae	kg	Bark	Sqrt (Oven-dried biomass) = 0.66 * sqrt (DBH) - 0.57	25	0.86	0.01	0.1	-110.07
Kandelia	candel	Goria	Rhizophoraceae	kg	Stem without bark	Sqrt (Oven-dried biomass) = 1.19 * Sqrt (DBH) - 1.02	25	0.86	0.03	0.18	-80.521
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Oven-dried biomass = 0.21 * (DBH)^2 + 0.12	25	0.94	0.38	0.62	-18.875
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Nitrogen = 0.39 * (DBH)^2 + 0.49	25	0.95			
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Phosphorus = 0.77 * (DBH)^2 + 0.14	25	0.95			
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Potassium = 0.87 * (DBH)^2 + 0.07	25	0.95			
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Carbon = 0.09 * (DBH)^2 + 0.05	25	0.96			
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Stem biomass	Oven-dried biomass = 0.092486 * ((DBH)^2 * (Height))^2 + 1.4765	600	0.9674		-600.02	1.01066
Albizia	saman	Rain tree	Mimosaceae	m^3	Stem volume	Log (Volume) = - 8.3013 + 2.1746 * Log (DBH)	205	0.86	0.07	0.21	0.15
Albizia	saman	Rain tree	Mimosaceae	m^3	Stem volume	Log (Volume) = - 9.1864 + 1.8502 * Log (DBH) + 0.8234 * Log (Height)	205	0.9	0.05	0.18	0.15
Above-ground biomass

Oven-dried biomass:

\[\text{Oven-dried biomass} = 0.696735 + 0.536662 \times \text{(Biomass)}^{0.8720} \]

Carbon:

\[\text{Carbon} = -0.379625 + 0.500132 \times \text{(Biomass)}^{0.8970} \]

Vegetation Component Equations

Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R²	MSE	AIC	F1	Bias correction	Ref. No
Acacia	mangium	Mangiu	Fabaceae	kg	Total above-ground green biomass	\(\log(\text{Green biomass}) = -1.4659 + 2.3256 \times \log(\text{DBH}) \)	132	0.979	0.019	5	3		19
Acacia	mangium	Mangiu	Fabaceae	kg	Total above-ground green biomass	\(\log(\text{Green biomass}) = -4.1281 + 2.3256 \times \log(\text{GBH}) \)	132	0.979	0.019	5	3		19
Acacia	mangium	Mangiu	Fabaceae	kg	Total above-ground green biomass	\(\log(\text{Green biomass}) = -1.7073 + 2.1922 \times \log(\text{DBH}) + 0.2331 \times \log(\text{Height}) \)	132	0.977	0.018	2	5		19
Acacia	mangium	Mangiu	Fabaceae	kg	Total above-ground green biomass	\(\log(\text{Green biomass}) = -4.2168 + 2.1922 \times \log(\text{GBH}) + 0.2331 \times \log(\text{Height}) \)	132	0.977	0.018	2	5		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem green biomass	\(\log(\text{Green biomass}) = -2.2782 + 2.5213 \times \log(\text{DBH}) \)	132	0.955	0.043	3	1		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem green biomass	\(\log(\text{Green biomass}) = -5.1644 + 2.5213 \times \log(\text{GBH}) \)	132	0.955	0.043	3	1		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem green biomass	\(\log(\text{Green biomass}) = -2.7344 + 2.2692 \times \log(\text{GBH}) + 0.4406 \times \log(\text{Height}) \)	132	0.958	0.039	4	7		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem green biomass	\(\log(\text{Green biomass}) = -5.3320 + 2.2692 \times \log(\text{GBH}) + 0.4406 \times \log(\text{Height}) \)	132	0.958	0.039	4	7		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem and branch green biomass	\(\log(\text{Green biomass}) = -1.8493 + 2.3906 \times \log(\text{DBH}) \)	132	0.975	0.021	1	1		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem and branch green biomass	\(\log(\text{Green biomass}) = -4.5859 + 2.3906 \times \log(\text{GBH}) \)	132	0.975	0.021	1	1		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem and branch green biomass	\(\log(\text{Green biomass}) = -2.4276 + 2.0709 \times \log(\text{GBH}) + 0.5586 \times \log(\text{Height}) \)	132	0.981	0.015	8	3		19
Acacia	mangium	Mangiu	Fabaceae	kg	Stem and branch green biomass	\(\log(\text{Green biomass}) = -4.7982 + 2.0709 \times \log(\text{GBH}) + 0.5586 \times \log(\text{Height}) \)	132	0.981	0.015	8	3		19
Species	Type	Stem biomass Log (Oven-dried biomass) =	Regression Coefficients	R²	SE Intercept	SE Slope							
-----------------------	-----------	--------------------------------------	-------------------------	-----	--------------	-----------							
Artocarpus chaplasha	Moraceae	-0.53361 + 0.988759 * Log (DBH) * (Height) * (Wood density)	101	0.99	-427.62	46							
Lagerstroemia speciosa	Lythraceae	-1.34008 + 0.83123 * Log (DBH) + 0.47969 * Log (Height)	312	0.963	-309.79	4							

Species	Type	Leaf Log (Oven-dried biomass) =	Regression Coefficients	R²	SE Intercept	SE Slope						
Artocarpus chaplasha	Moraceae	-4.44814 + 2.0483 * Log (DBH)	200	1.019	47	1						
Lagerstroemia speciosa	Lythraceae	-1.34008 + 0.83123 * Log (DBH) + 0.47969 * Log (Height)	312	0.963	4	1						
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sampl e size	R2	RMS E	AIC	FI	Ref No
-------	---------	------------	--------	-----------	----------------------	----------	--------------	-------	-------	---------	--------	--------
Tectona grandis	Teak	Lamiaceae	kg	Stem biomass	Log (Oven-dried biomass) = 0.07908 + 0.83931 * Log ((DBH)^(2) * (Height) * (Wood density))	101	0.94	-76.89	46			
Albizia richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) = -10.996396 + 2.247808 * Log (DBH)	511	0.98	7				
Albizia richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) = -10.831293 + 1.699319 * Log (DBH) + 0.813706 * Log (Height)	511	0.98	7				
Mixed			m3	Total volume over bark	Log (Volume) = -9.4209 + 1.7480 * Log (DBH) + 0.9310 * Log (Height)	954	0.98	4				
Eucalyptus brassiana		Myrtaceae	m3	Total volume over bark	Log (Volume) = -10.996396 + 2.247808 * Log (DBH)	101	0.94	-76.89	46			
Eucalyptus tereticornis		Myrtaceae	m3	Total volume over bark	Log (Volume) = -9.4209 + 1.7480 * Log (DBH) + 0.9310 * Log (Height)	954	0.98	4				
Eucalyptus camaldulensis		Myrtaceae	m3	Total volume over bark	Log (Volume) = -9.4209 + 1.7480 * Log (DBH) + 0.9310 * Log (Height)	954	0.98	4				
Artocarpus chaplasha	Chapalish	Moraceae	m3	Total volume over bark	Log (Volume) = -10.996396 + 2.247808 * Log (DBH)	511	0.98	7				
Artocarpus chaplasha	Chapalish	Moraceae	m3	Total volume over bark	Log (Volume) = -9.3520 + 1.8055 * Log (DBH) + 0.8590 * Log (Height)	427	0.97	3.27	26			
Gmelina arborea	Gamar	Lamiaceae	m3	Total volume over bark	Log (Volume) = -8.179774 + 2.24074 * Log (DBH)	427	0.97	0.03	3.27	26		
Gmelina arborea	Gamar	Lamiaceae	m3	Total volume over bark	Log (Volume) = -8.468706 + 1.63902 * Log (DBH) + 0.784847 * Log (Height)	486	0.96	3.68	28			
Dipterocarpus turbinatus	Telyagaran	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) = -8.9942 + 1.4963 * Log (DBH) + 1.1461 * Log (Height)	436	0.97	0.034	1.82	27		
Hevea brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) = -10.5628 + 2.1502 * Log (DBH)	583	0.95	12				
Hevea brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) = -11.2768 + 1.8795 * Log (DBH) + 0.6928 * Log (Height)	583	0.97	12				
Hevea brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Log (Volume) = -10.6451 + 2.1607 * Log (DBH)	583	0.95	12				

International Conference on Water Resource and Environment 2016 (WRE2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 39 (2016) 012057 doi:10.1088/1755-1315/39/1/012057

IOP Conf. Series: Earth and Environmental Science 39 (2016) 012057
Species	Rubber	Family	Volume Unit	Total volume under bark	Log (Volume) = -11.3509 + 1.8930 * Log (GBH) + 0.6848 * Log (Height)	Value	R²	N	
Hevea brasiliensis	Rubber	Euphorbiaceae	m³	Total volume under bark		583	0.97	12	
Hevea brasiliensis	Rubber	Euphorbiaceae	m³	Total volume over bark		388	0.93	12	
Genus	Species	Local name	Family	Unit of V	Vegetation Component	Equation	Sample size	R²	Ref. No
--------------	---------------	----------------	-------------------	-----------	----------------------	---	-------------	------	---------
Hevea	brasiliensis	rubber	Euphorbiaceae	m³	Total volume over bark	Log (Volume) = -11.355075 + 1.90505 * Log (GBH) + 0.67956 * Log (Height)	388	0.96	12
Hevea	brasiliensis	rubber	Euphorbiaceae	m³	Total volume under bark	Log (Volume) = -10.58495 + 2.14861 * Log (GBH)	388	0.93	12
Hevea	brasiliensis	rubber	Euphorbiaceae	m³	Total volume over bark	Log (Volume) = -11.43443 + 1.92013 * Log (GBH) + 0.670876 * Log (Height)	388	0.96	12
Hevea	brasiliensis	rubber	Euphorbiaceae	m³	Total volume under bark	Log (Volume) = 0.01097 - 0.00064 * (GBH) + 0.000055 * (GDB)^2	195	0.96	12
Acacia	auriculiformis	Akashmoni	Leguminosae	m³	Total volume over bark	Volume = 0.027119694 + 0.0000024095 * (GBH)^2	141	0.94	33
Acacia	auriculiformis	Akashmoni	Leguminosae	m³	Total volume over bark	Volume = 0.02059085 + 0.00000257258 * (GBH)^2	68	0.92	33
Acacia	mangium	Mangium	Fabaceae	kg	Branch and stem less than 30 cm girth to 10 cm girth green biomass	Green biomass = 17.17526 + 0.011026 * (GBH)^2	68	0.85	33
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Timber volume over bark	Volume = 0.003083594 + 0.00000291538 * (GBH)^2	117	0.97	33
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Timber volume over bark	Volume = 0.005034521 + 0.00000269095 * (GBH)^2	60	0.96	33
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Timber volume over bark	Volume = 0.0076339 - 0.00058066 * (Height) + 0.000016216 * (GBH)^2	94	0.97	33
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Timber volume over bark	Volume = 0.00444242 + 0.00000274784 * (GBH)^2	94	0.97	33
Acacia	mangium	Mangium	Fabaceae	m³	Total volume over bark	Volume = 0.0379401 - 0.0027469 * (GBH) + 0.000099945 * (GBH)^2	44	0.93	33
Acacia	mangium	Mangium	Fabaceae	m³	Total volume over bark	Volume = 0.01368013 - 0.00018226 * (Height) + 0.000005503 * (GBH)^2	44	0.97	33
Acacia	mangium	Mangium	Fabaceae	m³	Timber volume over bark	Volume = 0.047423 - 0.00387 * (GBH) + 0.000109 * (GBH)^2	37	0.90	33
Acacia	mangium	Mangium	Fabaceae	m³	Total volume over bark	Volume = -0.04085 + 0.00437656 * (Height) + 0.0000627199 * (GBH)^2	159	0.96	33
Acacia	mangium	Mangium	Fabaceae	m³	Timber volume over bark	Volume = 0.010632025 + 0.00000280124 * (GBH)^2	133	0.95	33
Dalbergia	sissoo	Sissoo	Fabaceae	m³	Total volume over bark	Volume = 0.012282107 + 0.00168945 * (Height) - 0.000019455 * (GBH)^2	80	0.97	33
Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R²	Ref. No.
---------	---------	------------	--------	-----------	----------------------	----------	-------------	------	----------
Dalbergia	sissoo	Sissoo	Fabaceae	m³	Total volume under bark	Log (Volume) = -12.14678171 + 2.49978991 * Log (GBH)	181	0.973	30
Dalbergia	sissoo	Sissoo	Fabaceae	m³	Total volume under bark	Log (Volume) = -11.8405276 + 2.460467 * Log (GBH) + 0.6152993 * Log (Height)	181	0.982	30
Swietenia	macrophylla	Mahogany	Meliaceae	m³	Total volume under bark	Log (Volume) = -12.045383 + 2.460647 * Log (GBH)	120	0.979	30
Swietenia	macrophylla	Mahogany	Meliaceae	m³	Total volume under bark	Log (Volume) = -11.716535 + 2.084968 * Log (GBH) + 0.534389 * Log (Height)	120	0.99	30
Albizia	spp	Koroi	Mimosaceae	m³	Total volume under bark	Log (Volume) = -12.093533 + 2.463398 * Log (GBH)	103	0.931	30
Albizia	spp	Koroi	Mimosaceae	m³	Total volume under bark	Log (Volume) = -11.961135 + 1.967741 * Log (GBH) + 0.907724 * Log (Height)	103	0.947	30
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Total volume under bark	Log (Volume) = -11.523307 + 1.91628 * Log (GBH) + 0.738982 * Log (Height)	151	0.945	30
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m³	Total volume under bark	Log (Volume) = -11.041653 + 2.1705 * Log (GBH)	143	0.935	30
Melia	azadarach	Bokain	Meliaceae	m³	Total volume under bark	Log (Volume) = -10.962743 + 1.889575 * Log (GBH) + 0.505435 * Log (Height)	143	0.951	30
Mangifera	indica	Am	Anacardiaceae	m³	Total over bark volume	Log (Volume) = -11.237269 + 2.24506 * Log (GBH)	343	0.975	32
Mangifera	indica	Am	Anacardiaceae	m³	Total over bark volume	Log (Volume) = -11.25377 + 1.96697 * Log (GBH) + 0.52237 * Log (Height)	343	0.981	32
Lannea	coromandelica	Badi	Anacardiaceae	m³	Total over bark volume	Log (Volume) = -11.519102 + 2.01724 * Log (GBH) + 0.56356 * Log (Height)	87	0.971	32
Syzygium	cumini	Kalojam	Myrtaceae	m³	Total over bark volume	Log (Volume) = -11.24854 + 2.24804 * Log (GBH)	99	0.966	32
Artocarpus	heterophyllus	Kathal	Moraceae	m³	Total over bark volume	Log (Volume) = -11.06320 + 2.18208 * Log (GBH)	119	0.97	32
Artocarpus	heterophyllus	Kathal	Moraceae	m³	Total over bark volume	Log (Volume) = -10.99533 + 1.80823 * Log (GBH) + 0.68951 * Log (Height)	119	0.983	32
Albizia	spp	Koroi	Mimosaceae	m³	Total over bark volume	Log (Volume) = -11.50692 + 2.31757 * Log (GBH)	140	0.968	32
Albizia	spp	Koroi	Mimosaceae	m³	Total over bark volume	Log (Volume) = -11.19651 + 1.85690 * Log (GBH) + 0.67878 * Log (Height)	140	0.979	32
Swietenia	macrophylla	Mahogany	Meliaceae	m³	Total over bark volume	Log (Volume) = -11.46122 + 2.29592 * Log (GBH)	105	0.981	32
Swietenia	macrophylla	Mahogany	Meliaceae	m³	Total over bark volume	Log (Volume) = -11.27102 + 1.88064 * Log (GBH) + 0.64629 * Log (Height)	105	0.99	32
Azadirachta	indica	Neem	Meliaceae	m³	Total over bark volume	Log (Volume) = -11.33340 + 2.25814 * Log (GBH)	36	0.974	32
Azadirachta	indica	Neem	Meliaceae	m³	Total over bark volume	Log (Volume) = -11.42823 + 1.89235 * Log (GBH) + 0.71493 * Log (Height)	36	0.985	32
Aphanamixis	polystachya	Pitraj	Meliaceae	m³	Total over bark volume	Log (Volume) = -11.25645 + 2.25821 * Log (GBH)	105	0.973	32
Aphanamixis polystachya
Pitraj Meliaceae m³ Total over bark volume Log (Volume) = -11.25528 + 1.98544 * Log (GBH) + 0.47163 105 0.987 32

Albizia saman
Rain tree Mimosaceae m³ Total over bark volume Log (Volume) = -11.37623 + 2.26924 * Log (GBH) 153 0.981 32

Genus	Species	Local name	Family	Unit of Y	Vegetation Component	Equation	Sample size	R²	MSE	RMS	AIC	FI	Ref No
Albizia	saman	Rain tree	Mimosaceae	m³	Total over bark volume	Log (Volume) = -11.31983 + 1.91118 * Log (GBH) + 0.63606 * Log (Height)	153	0.99					32
Breonia	chinensis	Kadam	Rubiaceae	m³	Total volume over bark	Log (Volume) = -10.4647 + 2.3911 * Log (DBH) + 0.6373 * Log (Height)	51	0.9906	5				10
Dipterocarpus turbinatus	Telya garjan	Dipterocarpaceae	m³	Total volume over bark	Log (Volume) = -9.5258 + 2.1229 * Log (DBH) + 0.5993 * Log (Height)	49	0.9666	7				10	
Lagerstroemia speciosa	Jarul	Lythraceae	m³	Total volume over bark	Log (Volume) = -9.6744 + 2.1065 * Log (DBH) + 0.6675 * Log (Height)	74	0.9862	8				10	
Xylica	xylocarpa	Lohakat	Leguminosae	m³	Total volume over bark	Log (Volume) = -9.4303 + 2.0988 * Log (DBH) + 0.6042 * Log (Height)	94	0.9872	3				10
Shorea	robusta	Sala	Dipterocarpaceae	m³	Total volume over bark	Log (Volume) = -10.0253 + 2.1163 * Log (DBH) + 0.7588 * Log (Height)	79	0.9878	7				10
Sonneratia	apetala	Keora	Lythraceae	m³	Total volume over bark	Log (Volume) = -8.66152 + 1.5856 * Log (DBH) + 0.77152 * Log (Height)	91	0.98					9
Sonneratia	apetala	Keora	Lythraceae	m³	Total volume over bark	Log (Volume) = -9.29715 + 1.70514 * Log (DBH) + 0.95088 * Log (Height)	236	0.98					9
Sonneratia	apetala	Keora	Lythraceae	m³	Total volume over bark	Log (Volume) = -9.23507 + 1.69673 * Log (DBH) + 0.92309 * Log (Height)	133	0.98					9
Sonneratia	apetala	Keora	Lythraceae	m³	Total volume over bark	Log (Volume) = -8.75215 + 1.75034 * Log (DBH) + 0.64233 * Log (Height)	214	0.92					9
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Leaf	Log 10 (Oven-dried biomass) = 0.76 * Log 10 ((DBH²) - 1.39)	29	0.93	0.02	0.12	-119.05	0.0	38
Species	Taxonomy	Type	Biomass Parameter	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4	R²	N	Ref.			
-----------	------------------	------------	--	---------------	---------------	---------------	---------------	-----------	-----	------			
Aegiceras corniculatum	Myrsinaceae	kg	Bark	Log 10 (Oven-dried biomass) = 1.04 * Log 10 (DBH^2) - 1.80	29	0.99	0.004	0.07	-154.68	0.0	38		
Aegiceras corniculatum	Myrsinaceae	kg	Stem without bark	Log 10 (Oven-dried biomass) = 1.04 * Log 10 (DBH^2) - 0.99	29	0.99	0.004	0.07	-154.68	0.1	38		
Aegiceras corniculatum	Myrsinaceae	kg	Total above-ground	Sqrt (Oven-dried biomass) = 0.48 * DBH - 0.13	29	0.99	0.03	0.18	-96.57	0.6	38		
Aegiceras corniculatum	Myrsinaceae	g	Total above-ground	Sqrt (Nitrogen) = 0.67 * DBH + 0.11	29	0.99	0.09	0.31	-66.27	1.8	38		
Aegiceras corniculatum	Myrsinaceae	g	Total above-ground	Sqrt (Phosphorus) = 0.94 * DBH + 0.08	29	0.98	0.19	0.43	-45.94	3.6	38		
Aegiceras corniculatum	Myrsinaceae	g	Total above-ground	Sqrt (Potassium) = 1.06 * DBH - 0.18	29	0.99	0.17	0.41	-49.25	3.6	38		
Aegiceras corniculatum	Myrsinaceae	kg	Total above-ground	Sqrt (Carbon) = 0.33 * DBH - 0.09	29	0.99	0.02	0.13	-177.67	0.3	38		

International Conference on Water Resource and Environment 2016 (WRE2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 39 (2016) 012057
doi:10.1088/1755-1315/39/1/012057
References
[1] F 2010 The Food and Agriculture Organization of the United Nations Global Forests Resource Assessment
[2] Altrell D, et al. 2007 National forest and tree resources assessment: 2005 Bangladesh Forest Department, Ministry of Environment and Forests Bangladesh Space Research and Remote Sensing Organization, Ministry of Defense and Food and Agriculture Organization of the United Nations 5 116
[3] Golley B F, et al. 1975 Mineral Cycling in a Tropical Moist Forest Ecosystem University of Georgia Press. Athens
[4] Mahmood H 2014 Carbon pools and fluxes in Bruguiera parviflora dominated naturally growing mangrove forest of Peninsular Malaysia Wet. Ecol. Magt. 22(1) 15
[5] Ketterings Q M, et al. 2001 Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forest For. Ecol. Magt. 146 199
[6] Mahmood H, et al. 2004 Allometric relationships for estimating above and below-ground biomass of saplings and trees of Bruguiera parviflora (Wight and Arnold) Malaysia App. Biol. 33(1) 37
[7] Mahmood H, et al. 2012 Allometry, above-ground biomass and nutrient distribution in Ceriops decandra (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh Wet. Ecol. Magt. 20 539
[8] Komiyama A, et al. 2005 Common allometric equations for estimating the tree weight of mangroves J. Trop. Ecol. 21 471
[9] Komiyama A, et al. 2008 Allometry, biomass, and productivity of mangrove forest: a review Aqu. Bot. 89 128
[10] Morgan W B and Moss P A 1985 Biomass energy and urbanisation: commercial factors in the production and use of biomass fuels in tropical Africa Biomass 6 285
[11] Bombelli A, et al. 2009 Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables: Biomass Food and Agriculture Organization – Global Terrestrial Observation System 18
[12] Henry M, et al. 2011 Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations Silva Fennica 45(3B) 477
[13] Birigazzi L, et al. 2015 Toward a transparent and consistent quality control procedure for tree biomass allometric equations Xiv World Forestry Congress, Durban, South Africa 7 11
[14] Sandeep S, et al. 2014 Inventory of volume and biomass tree allometric equations for South Asia Food & Agriculture Organization of the United Nations, Rome, Italy
[15] Akhter M, et al. 2013 Tree volume and biomass allometric equations of Bangladesh FD and FAO, Dhaka, Bangladesh
[16] Mahmood H, et al. 2015 Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh Wet. Ecol. Magt. 23 (4) 765
[17] Rahman M M, et al. 2015 Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones Wet. Ecol. Magt. 23 (2) 269
[18] Mahmood H, et al. 2016 Above-ground biomass, nutrients and carbon in Aegiceras corniculatum of the Sundarbans Open J. For. 6 (2) 72