Robotic vs. laparoscopic major hepatectomy

Ioannis A. Ziogas¹, Samer Tohme², David A. Geller²

¹Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
²Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA.

Correspondence to: Prof. David A. Geller, Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, University of Pittsburgh Medical Center, Montefiore 7 South, 3459 Fifth Avenue, Pittsburgh, PA 15260, USA. E-mail: gellerda@upmc.edu

How to cite this article: Ziogas IA, Tohme S, Geller DA. Robotic vs. laparoscopic major hepatectomy. Mini-invasive Surg 2020;4:69. http://dx.doi.org/10.20517/2574-1225.2020.63

Received: 19 Jun 2020 First Decision: 31 Aug 2020 Revised: 31 Aug 2020 Accepted: 3 Sep 2020 Published: 12 Oct 2020

Academic Editor: Giulio Belli Copy Editor: Cai-Hong Wang Production Editor: Jing Yu

Abstract

The introduction of laparoscopic technology and surgical robots in hepatobiliary surgery in the 1990s and 2000s, respectively, has dramatically revolutionized the field. Even though laparoscopic and robotic major hepatectomy was slower to adopt compared to minimally-invasive minor hepatectomy, the number of major hepatectomies performed with both approaches worldwide has significantly increased and is still rising. Despite the few comparative studies between laparoscopic and robotic major hepatectomy, most studies are focused on describing the procedures or reporting the outcomes of each method, either separately, or mixed with minor hepatectomies. Based on the available data, the direct comparison between the two techniques has shown that when robotic major hepatectomy is performed by experienced hepatobiliary surgeons in high-volume centers, it can lead to similar operating times, estimated blood loss, hospital length of stay, complication and mortality rates compared to its laparoscopic counterpart. The likelihood of achieving a margin-negative resection in cancer patients, as well as long-term disease-free and overall-survival are comparable between the groups. However, broader adoption of the robotic approach might be a hurdle in low-volume centers due to the high fixed capital and annual maintenance cost of the surgical robot.

Keywords: Hepatectomy, liver resection, major hepatectomy, laparoscopic, robotic, minimally-invasive
INTRODUCTION

The introduction of minimally-invasive technology in the approach of liver disorders in the early 1990s has since revolutionized the field of liver surgery\(^\text{[1-5]}\). Laparoscopic liver surgery does not only include pure laparoscopy, but also hand-assisted laparoscopic, as well as hybrid approaches, where the initial part of the procedure (i.e., liver mobilization, early dissection) is done laparoscopically, while later a small incision is made to complete the transection of the liver parenchyma\(^\text{[6,7]}\). The liver is classified in individual territories according to the segmentation of the vessels and bile ducts, introduced by Couinaud in the 1950s\(^\text{[8,9]}\), and the Brisbane 2000 nomenclature is utilized to define minor and major hepatectomy in the field of liver surgery\(^\text{[10,11]}\). Minor hepatectomy is defined as the resection of two or fewer Couinaud segments, while major hepatectomy is the removal of three or more Couinaud segments\(^\text{[10]}\). The first series on laparoscopic liver resections consisted mostly of minor liver resections\(^\text{[3,4,12,13]}\). The first laparoscopic major hepatectomy (LMH) was performed in 1997\(^\text{[14]}\). The higher risk for uncontrolled hemorrhage and the requirement of advanced technical expertise, particularly related to major vessel dissection, have slowed the broader adoption of minimally-invasive approaches for major hepatectomy\(^\text{[15]}\).

The technological advances of our era have also led to the broader implementation of robotics in several fields of surgery, including liver surgery. The ability to obtain three-dimensional and magnified intraoperative vision, the significant decrease in hand tremor, as well as the benefit for the surgeon of operating under more relaxed and comfortable circumstances, have led to a considerable growth in robotic surgery, which can overcome the rigid instrumentation and the limited two-dimensional vision associated with laparoscopic surgery\(^\text{[16,17]}\). These characteristics, along with the advent of wristed instruments, can lead to improved dexterity and higher precision in surgical dissection; this is of particular benefit to liver resection, as hilar dissection, curved transection of the liver parenchyma and the resection of lesions in the posterosuperior segments can be more feasible with the use of a robot\(^\text{[18]}\). The first large series of robotic liver resection was reported in 2002\(^\text{[19]}\), and although most current experience is based on minor resections, several studies have reported robotic major hepatectomy (RMH). This review aims to summarize the current state of evidence after LMH vs. RMH. We acknowledge that there is still a very important role for open hepatectomy in cases of multiple bilobar liver tumors or large tumors near critical vascular structures. However, we will focus on the differences between LMH and RMH, as a full review of open major hepatectomy is beyond the scope of this review.

INTERNATIONAL CONSENSUS AND LEARNING CURVES

Before engaging in a head-to-head comparison between LMH and RMH, it is worth mentioning two points that may favor the former approach. First, LMH has been performed for many more years than its robotic counterpart; second, irrespective of the procedural, hospitalization, and total economic cost, the cost of purchasing a robot for a hospital is considerable and has been a major limiting factor to the broader adoption of robotic liver surgery. These two points are of paramount importance, as data suggest that outcomes improve as experience with a surgical approach grows\(^\text{[20]}\). It is also worth mentioning that during the second international consensus on laparoscopic liver surgery (Morioka 2014), the jury concluded that laparoscopic minor hepatectomy had at that point already become standard practice, while LMH was still considered to be an innovative procedure still under exploration\(^\text{[21]}\). According to the 2018 international consensus statement on robotic hepatectomy, RMH was deemed to be as safe and feasible as both LMH and open major hepatectomy\(^\text{[21]}\).

For the purpose of this review, we performed a non-systematic search of the PubMed bibliographic database using combinations of the following terms: “laparoscopic”, “robotic”, “minimally invasive”, “hepatectomy”, “major hepatectomy”, “liver resection”, and “major liver resection” (last search March 2020). We included comparative or non-comparative studies reporting on the number of LMH and RMH cases. Tables 1, 2, and 3 present the previously published cases of RMH and LMH\(^\text{[6,7,12-14,20,22-109]}\), and it is apparent that the experience with LMH is greater than that of the robotic approach.
Table 1. Previously published reports on robotic major hepatectomy

Author	Country/region	Study period	Total number of robotic cases	Robotic major hepatectomy		
				Total major	Left hepatectomy	Right hepatectomy
Giulianiatti et al.[35] 2011	Italy & USA	Mar 2002-Mar 2009	70	27	5	20
Ji et al.[36] 2011	China	Apr 2009-Jul 2009	13	9	6	2
Tsung et al.[37] 2014	USA	Nov 2007-Dec 2011	57	21	n/a	n/a
Spampinato et al.[38] 2014	Italy	Jan 2009-Dec 2012	25	25	7	16
Yu et al.[39] 2014	South Korea	May 2010-Oct 2011	13	3	3	0
Wu et al.[40] 2014	Taiwan	Jan 2012-Dec 2012	52	14	0	0
Felli et al.[41] 2015	Italy	Apr 2013-May 2014	20	2	2	0
Lee et al.[42] 2016	China	Sep 2010-Jan 2015	70	14	10	4
Kingham et al.[43] 2016	USA	2010-2014	64	6	4	2
Lai et al.[44] 2016	China	May 2009-Feb 2015	100	27	6	20
Lee et al.[45] 2016	China	Sep 2010-Apr 2015	15	5	3	2
Sham et al.[46] 2016	USA	May 2011-Dec 2014	71	17	n/a	n/a
Chen et al.[47] 2016	Taiwan	May 2013-Aug 2015	13	13	0	13
Chen et al.[48] 2017	Taiwan	Jan 2012-Oct 2015	183	92	32	41
Quijano et al.[49] 2017	Spain	Oct 2010-Apr 2016	21	5	2	1
Magistri et al.[50] 2017	Italy	Jan 2012-May 2016	22	2	0	2
Efano et al.[51] 2017	Russia	May 2010-Jun 2016	40	2	2	0
Daskalaki et al.[52] 2017	USA	Jan 2009-Dec 2013	68	29	2	21
Choi et al.[53] 2017	South Korea	Dec 2008-May 2016	70	54	27	12
Khan et al.[54] 2018	International	2006-2016	61	16	8	8
Goja et al.[55] 2019	India	Feb 2015-Jan 2016	21	6	3	3
Lim et al.[56] 2019	Canada	2011-2017	61 (55)	9 (4)	n/a	n/a
Marino et al.[57] 2019	Italy	Apr 2016-Mar 2017	14	14	0	14
Marino et al.[58] 2019	Italy	Apr 2015-May 2017	35	35	35	0
Fruscione et al.[59] 2019	USA	2011-2016	57	57	20	20
Gravetz et al.[60] 2019	USA	2013-2017	33	8	n/a	n/a
Magistri et al.[61] 2019	Italy	Jul 2014-Sep 2017	60	3	1	2
Lee et al.[62] 2019	South Korea	Jun 2016-Apr 2018	13	8	8	0
Mejia et al.[63] 2020	USA	Aug 2013-Sep 2018	43	8	4	4
Sucandy et al.[64] 2020	USA	2013-2018	80	24	14	6
Beaud et al.[65] 2020	International	Jan 2008-Oct 2016	115	17	6	9

*Numbers in parentheses represent the number of cases after propensity score-matching. n/a: not available.

Table 2. Previously published reports on laparoscopic major hepatectomy

Author	Country/region	Study period	Total number of laparoscopic cases	Laparoscopic major hepatectomy		
				Total major	Left hepatectomy	Right hepatectomy
Huscher et al.[66] 1997	Italy	1993-Dec 1995	20	14	6	5
Gigot et al.[67] 2002	Europe	Feb 1994-Dec 2000	37	2	n/a	n/a
O’Rourke et al.[68] 2004	Australia	Nov 1999-Sep 2002	12	12	0	12
Dulucq et al.[69] 2005	France	Jan 1995-Jan 2004	32	11	4	6
Vibert et al.[70] 2006	France	Jan 1995-Dec 2004	89	38	3	27
Topal et al.[71] 2007	Belgium	n/a	2	2	0	2
Gayet et al.[72] 2007	France	n/a	41	41	0	37
Koffron et al.[73] 2007	USA	Jul 2001-Nov 2006	300	119	47	64
Dagher et al.[74] 2007	France	Feb 1999-Jan 2006	70	19	5	12
Gumbs et al.[75] 2008	France	n/a	3	3	0	0
Gumbs et al.[76] 2008	France	n/a	5	5	0	0
Cho et al.[77] 2008	South Korea	Jan 2004-Dec 2007	128	47	23	13
Buell et al.[78] 2008	USA	Jan 2001-Apr 2008	253	69	24	33
Topal et al.[79] 2008	Belgium	Oct 2002-Jun 2007	109	21	4	14
Dagher et al.[80] 2008	France	Since Feb 1999	20	20	0	20
Wakabayashi et al.[81] 2009	Japan	Jul 1995-Apr 2008	176	39	10	12
Castaing et al.[82] 2009	France	Jan 1997-May 2007	60	26	0	22
Authors	Region	Study Period	Number of Cases			
----------------------------	-----------------	--------------------	-----------------			
Nguyen et al.[(62) 2009	USA & Europe	Feb 2000-Sep 2008	109			
Vigano et al.[(63) 2009	France	Jan 1996-Aug 2008	174			
Bryant et al.[(64) 2009	France	May 1996-Dec 2007	166			
Yoon et al.[(65) 2009	South Korea	Oct 1998-Jun 2007	46			
Cho et al.[(66) 2009	South Korea	May 2003-Apr 2007	40			
Baker et al.[(67) 2009	USA	Jan 2006-May 2008	33			
Dagher et al.[(68) 2009	International	1997-2008	210			
Cai et al.[(69) 2009	China	2005-2007	19			
Dagher et al.[(70) 2009	France	Feb 2002-Aug 2007	22			
Yoon et al.[(71) 2010	South Korea	Sep 2003-Nov 2008	69			
Nitta et al.[(72) 2010	Japan	Nov 2002-Dec 2008	42			
Dagher et al.[(73) 2010	Europe	1998-2008	163			
Martin et al.[(74) 2010	USA	Jan 2000-Jun 2009	90			
Ji et al.[(75) 2011	China	Apr 2009-Jul 2009	20			
Shafaei et al.[(76) 2011	USA & Europe	1997-2009	68			
Cho et al.[(77) 2011	Japan	Aug 2005-Feb 2010	27			
Abu Hilal et al.[(78) 2011	UK	2006-2009	36			
Bhjani et al.[(79) 2012	Canada	Jun 2006-May 2010	57			
Topal et al.[(80) 2012	Belgium	Oct 2002-Dec 2008	20			
Cannon et al.[(81) 2012	USA	2004-2010	35			
Gumos et al.[(82) 2012	USA	Nov 2008-Oct 2010	53			
Abu Hilal et al.[(83) 2013	UK	Mar 2006-Nov 2011	84			
Tsung et al.[(84) 2014	USA	Nov 2007-Dec 2011	114			
Spampinato et al.[(85) 2014	Italy	Jan 2009-Dec 2012	25			
Yu et al.[(86) 2014	South Korea	Jul 2007-Oct 2011	17			
Wu et al.[(87) 2014	Taiwan	Jan 2012-Dec 2012	69			
Medbery et al.[(88) 2014	USA	May 2008-Mar 2012	48			
Zhang et al.[(89) 2014	China	Jul 2011-Mar 2013	25			
Ahn et al.[(90) 2014	South Korea	Jan 2005-Feb 2013	51			
Benkabbou et al.[(91) 2015]	Morocco	Jun 2010-Feb 2013	13			
Xiao et al.[(92) 2015	China	Jan 2010-Dec 2012	41			
Takahara et al.[(93) 2015*	Japan	2000-2010	436 (387)			
Allard et al.[(94) 2015	France	Jan 2006-Dec 2013	176			
Beppu et al.[(95) 2015*	Japan	Jan 2005-Dec 2010	210 (171)			
deAngelis et al.[(96) 2015]	France	Jan 2000-Dec 2013	52			
van der Poel et al.[(97) 2016	UK	Aug 2003-Mar 2015	159			
Lee et al.[(98) 2016	China	Nov 2003-Jan 2015	66			
Lai et al.[(99) 2016	China	Oct 1998-Feb 2015	35			
Takahara et al.[(100) 2016]	Japan	Jan 2011-Dec 2013	929			
Cipriani et al.[(101) 2016]	UK	Aug 2004-Apr 2015	133			
Ratti et al.[(102) 2016	Italy	2008-2014	56			
Tranchart et al.[(103) 2016]	International	1997-2013	89			
Unterreiner et al.[(104) 2016]	France	Jan 2012-Jan 2015	18			
Komatsu et al.[(105) 2016	France	Jan 2006-May 2014	38			
Martinez-Cecilia et al.[(106) 2017*	Europe	Jan 2005-Dec 2012	287 (225)			
Sotiropoulos et al.[(107) 2017]	Greece	Jan 2012-Jan 2017	42			
Peng et al.[(108) 2017	China	Jan 2013-Oct 2016	36			
Chen et al.[(109) 2017	China	Apr 2015-Sep 2016	225			
Efano et al.[(110) 2017	Russia	May 2010-Jun 2016	91			
Lim et al.[(111) 2019*	France	2011-2017	111 (55)			
Marino et al.[(112) 2019	Italy	Apr 2016-Mar 2017	20			
Fruscone et al.[(113) 2019]	USA	2011-2016	116			
Jang et al.[(114) 2019	South Korea	Jan 2014-Jul 2017	37			
Cipriani et al.[(115) 2019]	Italy	Jan 2005-Nov 2017	145			
Chen et al.[(116) 2019	Taiwan	Dec 2010-Dec 2016	436			
Lee et al.[(117) 2019	South Korea	Jun 2016-Apr 2018	10			
Mejia et al.[(118) 2020	USA	Jun 2005-Sep 2018	171			
Cipriani et al.[(119) 2020]	Europe	Jan 2007-Feb 2016	597 (545)			
Beard et al.[(120) 2020*	International	Jul 2002-Oct 2017	514 (115)			

*Numbers in parentheses represent the number of cases after propensity score-matching. n/a: not available
Determining the learning curve for each approach is also of major significance. The learning curve is “the improvement in performance over time or the change in the ability to complete a task until failure is decreased to a constant acceptable rate”[110]. Data suggest that the learning curve for LMH is around 45-60 cases[93,111-113]. van der Poel et al.[93] reported that 55 is the “golden” number for LMH; however, all surgical operations were performed by two experienced hepatobiliary surgeons with at least three years of additional experience on minor laparoscopic hepatectomy. For RMH, Chen et al.[30] described an initial phase of 15 patients followed by an intermediate phase of 25 patients. The accumulated experience of the first 15 cases (defined as the “initial learning curve”), mostly comprised of right and left hemihepatectomies, was followed by more complex cases, such as trisectionectomy and 8-5-4 trisegmentectomy, in the next 25 cases (“phase of increased competency”). Their last 52-case “matured phase” was associated with an overall improvement in outcomes. However, the authors did not mention who their “learning curve” refers to, as “all procedures were performed by the same operative team”, but they do not specify their prior experience with minor robotic resections or even with LMH. Tsung et al.[20] reported that the outcomes of their robotic cases between 2010-2011 were superior to those of the robotic cases between 2007-2010, but the authors pooled together both minor and major resections for this comparison.

OPERATING TIME

A systematic review and pooled analysis of outcomes on robotic liver resections showed that the mean operating time for RMH (≥ 4 segments) was 405 ± 100 min[18], while another more recent systematic review reported similar pooled mean operating time for RMH (≥ 3 segments) of 403.4 ± 107.5 min[114]. A systematic literature review on LMH[115] showed that mean operating time in all individuals studies was lower than the pooled operating times reported in the RMH systematic reviews[18,114]. Additionally, in a systematic review comparing LMH to open major hepatectomy, the pooled mean operating time in the LMH arm was 285 ± 105.6 min[116]. Similarly, in a large multicenter study from Europe, Cipriani et al.[109] reported a median operating time of 300 min (IQR 205-380) for LMH, and more specifically 300 min (IQR 160-240) for right hepatectomy and 270 min (IQR 160-290) for left hepatectomy. Tsung et al.[20] compared RMH vs. LMH, and showed that both overall operating room time (452 min vs. 348.5 min) and operating time (330 min vs. 280.5 min) were significantly longer in the RMH group. Spampinato et al.[44] also showed that operating time was longer in RMH (330, IQR 240-725 min) when compared to LMH (360, IQR 180-600 min), while all procedures were performed by surgeons experienced in minimally-invasive liver surgery. Notably, a more recent study showed no difference in median operating time between RMH (194, range 152-255 min) and LMH (204, 149-280 min), and all of the operations were again performed by experienced minimally-invasive

Table 3. Previously published reports on the comparison of laparoscopic and robotic liver resection along with the number of major hepatectomy cases in each group

Author	Total laparoscopic	Laparoscopic major hepatectomy	Total robotic	Robotic major hepatectomy
Ji et al. [41] 2011	20	4	13	9
Tsung et al. [20] 2014	114	42	57	21
Spampinato et al. [28] 2014	25	25	25	25
Yu et al. [105] 2014	17	11	13	3
Wu et al. [33] 2014	69	4	52	14
Lee et al. [46] 2016	66	2	70	14
Lai et al. [48] 2016	35	1	100	27
Efanov et al. [34] 2017	91	11	40	2
Lim et al. [56] 2019*	111 (55)	15 (8)	61 (55)	9 (4)
Marino et al. [35] 2019	20	20	14	14
Fruscione et al. [42] 2019	116	116	57	57
Lee et al. [36] 2019	10	3	13	8
Mejia et al. [46] 2020	171	46	43	8
Beard et al. [48] 2020*	514 (115)	53 (21)	115	18

*Numbers in parentheses represent the number of cases after propensity score-matching.
hepatobiliary surgeons. A Korean group recently published the initial experience of a single surgeon with robotic liver surgery and showed that there was no difference in operating time between robotic and laparoscopic left hepatectomy (248.6 ± 37.5 min vs. 226.7 ± 26.6 min). Another recent study comparing robotic vs. laparoscopic right hepatectomy demonstrated that operating time was significantly shorter in the robotic group compared to the laparoscopic one (425 ± 139 min vs. 565.18 ± 183.73 min), and all procedures were performed by the same young surgeon. That may serve as an indicator that as experience with RMH grows, operating time seems to decrease and to be equivalent to, or even shorter than, that of LMH. However, a major confounding factor is surgeon’s surgical expertise and prior experience with minimally-invasive major hepatectomy; thus, future studies comparing operating time, as well as other parameters, between RMH and LMH should always mention primary surgeon’s prior experience and should make sure that the two comparison groups are equivalent regarding this parameter.

ESTIMATED BLOOD LOSS
The pooled estimated blood loss (EBL) in RMH based on two systematic reviews was 543.4 ± 371 mL and 380 ± 505 mL, respectively. The pooled mean EBL for the LMH arm in a systematic review comparing LMH to open major hepatectomy was 450.6 ± 563.2 mL, which is comparable to the pooled rates reported in the RMH systematic reviews. However, major deviations were found between the individual RMH or LMH studies themselves included in each systematic review. Cipriani et al. reported a median EBL of 350 mL (IQR 125-1350) for LMH, and more specifically 400 mL (IQR 200-800) for right hepatectomy and 300 mL (IQR 50-260) for left hepatectomy. Studies directly comparing EBL between RMH and LMH showed that EBL in RMH was lower than that in LMH, while the difference was not statistically significant in any of the individual studies.

LENGTH OF STAY
Two prior systematic reviews on RMH reported a pooled mean hospital length of stay (LOS) of 10.5 ± 4.8 and 11 ± 6 days, respectively. The mean LOS of most individual studies included in a systematic review on LMH was shorter than that of the two RMH systematic reviews. Another systematic review showed that the pooled mean LOS for LMH was 10 ± 8.7 days. Cipriani et al. reported a median LOS of 6 days (IQR 4-10) for LMH, and more specifically 7 days (IQR 4-13) for right hepatectomy, and 5 days (IQR 4-10) for left hepatectomy. Studies reporting on the direct comparison of RMH vs. LMH did not demonstrate any statistically significant difference between the two arms.

COMPLICATIONS, SURVIVAL AND ONCOLOGIC OUTCOMES
When comparing RMH and LMH, Tsung et al. reported that no difference was observed between the two groups with a complication rate of 24% (n = 5/21) vs. 32% (n = 13/42), respectively, while only one patient in the RMH group experienced a major complication (Clavien-Dindo grade ≥ 3) (4.8% vs. 0%, respectively). The 90-day mortality rate was 0% in both groups. Similar complication rates were documented by Spampinato et al. RMH: 20% (n = 5/25) vs. LMH: 36% (n = 9/25), with 4% (n = 1/25) and 12% (n = 3/25) of the patients experiencing a major complication (Clavien-Dindo grade ≥ 3), respectively. However, one patient in the LMH group died. Marino et al. also failed to show a difference in morbidity with 21.4% (n = 3/14) of the patients in the RMH arm vs. 15% (n = 3/20) in the LMH group experiencing any complications, while no major complications occurred. Ninety-day mortality was 0% in both groups. The largest and most recent comparative study between RMH and LMH was performed by Fruscione et al. and also did not show a significant difference in complications between the two groups. Specifically, the complication rate for RMH was 28.1% (n = 16/57) and for LMH 35.3% (n = 41/116), with 7% (n = 4/57) and 9.5% (n = 11/116) being classified as major complications (Clavien-Dindo grade ≥ 3). No death was reported in either of the comparison arms. Additionally, when RMH and LMH were performed for liver malignancies, none of the four studies showed a difference in surgical margin status between the two approaches (positive margins: 0%-8.3% vs. 7%-15%, respectively), and long-term outcomes were comparable when reported.
ECONOMIC COST
Mejia et al.\cite{46} reported that the adjusted room and board charges were significantly lower in the LMH vs. the RMH group, with no other difference between the two groups regarding economic cost. Of note, when comparing the cost of LMH vs. RMH, the fixed capital cost ($1,000,000-$2,600,000 for a robotic system with a 10-year longevity period)\cite{117-120} and annual maintenance cost ($90,000-$175,000)\cite{120} for a hospital to purchase and maintain a surgical robot, should also be taken into consideration. The addition of this cost can be burdensome, particularly for low-volume liver surgery centers, and this remains a significant driving factor for the slow spread of RMH and robotic liver surgery in general. It should also be noted that access to the robot in the operating room can be a challenge due to competition with other surgical service lines.

CONCLUSION
The introduction of laparoscopy and robotic surgical systems in liver surgery has significantly changed the current state of practice. Although both approaches have been more widely tested for minor liver resections, the number of LMHs and RMHs performed worldwide has significantly increased over recent years, and is still on the rise. Although there is a considerable deviation in outcomes after RMH, especially during early experience, when RMH is performed by experienced surgeons in high-volume liver centers, it can be associated with equivalent operating time, EBL, LOS, morbidity and mortality, and comparable oncologic outcomes in terms of achieving a margin-negative resection and long-term overall survival. The fixed capital and annual maintenance costs for the robotic surgical system may pose a significant obstacle in the broader adoption of RMH, particularly in low-volume centers.

DECLARATIONS
Authors’ contributions
Study concept, data acquisition, data analysis and interpretation, drafting, critical revision, final approval of the manuscript: Ziogas IA, Tohme S, Geller DA

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2020.

REFERENCES
1. Nguyen KT, Gamblin TC, Geller DA. World review of laparoscopic liver resection-2,804 patients. Ann Surg 2009;250:331-41.
2. Ciria R, Cherqui D, Geller DA, Briceno J, Wakabayashi G. Comparative short-term benefits of laparoscopic liver resection: 9000 cases and climbing. Ann Surg 2016;263:761-77.
3. Reich H, McGlynn F, DeCaprio J, Budin R. Laparoscopic excision of benign liver lesions. Obstet Gynecol 1991;78:956-8.
4. Gagner M, Rheault M, Dubuc J. Laparoscopic partial hepatectomy for liver tumor. Surg Endosc 1992;6:99.
5. Ziogas IA, Tsoulfas G. Advances and challenges in laparoscopic surgery in the management of hepatocellular carcinoma. World J Gastrointest Surg 2017;9:233-45.
6. O’Rourke N, Fielding G. Laparoscopic right hepatectomy: surgical technique. J Gastrointest Surg 2004;8:213-6.
7. Nitta H, Sasaki A, Fujita T, Inabashi H, Hoshikawa K, et al. Laparoscopic-assisted major liver resections employing a hanging technique: the original procedure. Ann Surg 2010;251:450-3.
8. Couinaud C. Lobes and segments hepatic. Notes sur l’architecture anatomique et chirurgicale du foie. Press Med 1954;62:709-12. (in French)
9. Couinaud C. Le foie: études anatomiques et chirurgicales. Paris: Masson; 1951. (in French)
10. Strasberg S, Belghiti J, Clavien PA, Gadzijev E, Garden JO, et al. The Brisbane 2000 terminology of liver anatomy and resections. HPB 2000;2:333-9.
11. Wakabayashi G, Cherqui D, Geller DA, Buell JF, Kaneko H, et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 2015;261:619-29.
12. Koffron AJ, Auffenberg G, Kung R, Abecasis M. Evaluation of 300 minimally invasive liver resections at a single institution: Less is more. Ann Surg 2007;246:385-92.
13. Buell JF, Thomas MT, Radich S, Marvin M, Nagubandi R, et al. Experience with more than 500 minimally invasive hepatic procedures. Ann Surg 2008;248:475-85.
14. Huischer CG, Lirici MM, Chiodini S, Recher A. Current position of advanced laparoscopic surgery of the liver. J R Coll Surg Edinb 1997;42:219-25.
15. Nguyen KT, Geller DA. Laparoscopic liver resection-current update. Surg Clin North Am 2010;90:749-60.
16. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, et al. Transatlantic robot-assisted telesurgery. Nature 2001;413:379-80.
17. Hanna T, Imber C. Robotics in HPB surgery. Ann R Coll Surg Engl 2018;100:31-7.
18. Nota CL, Rinkes IHB, Molenaar IQ, van Santvoort HC, Fong Y, et al. Robot-assisted laparoscopic liver resection: a systematic review and pooled analysis of minor and major hepatectomies. HPB (Oxford) 2016;18:113-20.
19. Giulianiotti PC, Coratti A, Angeli M, Sbrana F, Ceeconi S, et al. Roboticies in general surgery: personal experience in a large community hospital. Arch Surg 2003;138:777-84.
20. Tsung A, Geller DA, Sukato DC, Sabbaghian S, Tohme S, et al. Robotic versus laparoscopic hepatectomy: a matched comparison. Ann Surg 2014;259:549-55.
21. Liu R, Wakabayashi G, Kim HJ, Choi GH, Yiengpruksawan A, et al. International consensus statement on robotic hepatectomy surgery in 2018. World J Gastroenterol 2019;25:1432.
22. Wu YM, Hu RH, Lai HS, Lee PH. Robotic-assisted minimally invasive liver resection. Asian J Surg 2014;37:53-7.
23. Fellii E, Santoro R, Colasanti M, Vennarecci G, Lepiane P, et al. Robotic liver surgery: preliminary experience in a tertiary hepatobiliary unit. Updates Surg 2015;67:27-32.
24. Lee KF, Cheung YS, Chong CC, Wong J, Fong AK, et al. Laparoscopic and robotic hepatectomy: experience from a single centre. ANZ J Surg 2016;86:122-6.
25. Kingham TP, Leung U, Kuk D, Gönen M, D’Angelica MI, et al. Robotic liver resection: a case-matched comparison. World J Surg 2016;40:1422-8.
26. Lai EC, Tang CN. Long-term survival analysis of robotic versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: a comparative study. Surg Laparosc Endosc Percutan Tech 2016;26:162-6.
27. Lee KF, Fong AK, Chong CC, Cheung SY, Wong J, et al. Robotic liver resection for primary hepatolithiasis: is it beneficial? World J Surg 2016;40:2490-6.
28. Sham JG, Richards MK, Seo YD, Pillarisetty VG, Yeung RS, et al. Efficacy and cost of robotic hepatectomy: is the robot cost-prohibitive? J Robot Surg 2016;10:307-13.
29. Chen PD, Wu CY, Hu RH, Ho CM, Lee PH, et al. Robotic liver donor right hepatectomy: a pure, minimally invasive approach. Liver Transpl 2016;22:1509-18.
30. Chen PD, Wu CY, Hu RH, Chen CN, Yuan RH, et al. Robotic major hepatectomy: is there a learning curve? Surgery 2017;161:642-9.
31. Chen PD, Wu CY, Hu RH, Chou WH, Lai HS, et al. Robotic versus open hepatectomy for hepatocellular carcinoma: a matched comparison. Ann Surg Oncol 2017;24:1021-8.
32. Quijano Y, Vicente E, Ielpo B, Duran H, Díaz E, et al. Hepatobilio-pancreatic robotic surgery: Initial experience from a single center institute. J Robot Surg 2017;11:355-65.
33. Magistri P, Tarantino G, Guidetti C, Assirati G, Olivieri T, et al. Laparoscopic versus robotic surgery for hepatocellular carcinoma: the first 46 consecutive cases. J Surg Res 2017;217:92-9.
34. Efanov M, AliKhanov R, Tsivirkun V, Kazakov I, Melekhina O, et al. Comparative analysis of learning curve in complex robot-assisted and laparoscopic liver resection. HPB 2017;19:818-24.
35. Daskalaki D, Gonzalez-Heredia R, Brown M, Bianco FM, Tzvetanov I, et al. Financial impact of the robotic approach in liver surgery: a comparative study of clinical outcomes and costs between the robotic and open technique in a single institution. J Laparoendosc Adv Surg Tech 2017;27:375-82.
36. Choi GH, Chong JU, Han DH, Choi JS, Lee WJ. Robotic hepatectomy: the Korean experience and perspective. Hepatobiliary Surg Nutr 2017;6:230-8.
37. Khan S, Beard RE, Kingham PT, Fong Y, Boerner T, et al. Long-term oncologic outcomes following robotic liver resections for primary...
38. Goja S, Yadav SK, Chaudhary RJ, Singh MK, Soin AS. Transition from open to robotic assisted liver resection: a retrospective comparative study. Is experience of laparoscopic liver resections needed? Laparosc Endosc Robot Surg 2019;2:94-8.

39. Lim C, Salloum C, Tudisco A, Ricci C, Osses M, et al. Short- and long-term outcomes after robotic and laparoscopic liver resection for malignancies: a propensity score-matched study. World J Surg 2019;43:1594-603.

40. Marino MV, Shabat G, Guarasi D, Gulotta G, Komorowski AL. Comparative study of the initial experience in performing robotic and laparoscopic right hepatectomy with technical description of the robotic technique. Dig Surg 2019;36:241-50.

41. Marino MV, Gulotta G, Komorowski AL. Fully robotic left hepatectomy for malignant tumor: technique and initial results. Updates Surg 2019;71:129-35.

42. Fruscione M, Pickens R, Baker EH, Cochran A, Khan A, et al. Robotic-assisted versus laparoscopic major liver resection: analysis of outcomes from a single center. HPB 2019;21:906-11.

43. Gravetz A, Sucandy I, Wilfong C, Patel N, Spence J, et al. Single-institution early experience and learning curve with robotic liver resections. Am Surg 2019;85:115-9.

44. Magistri P, Guerrini GP, Ballarin R, Assirati G, Tarantino G, et al. Improving outcomes defending patient safety: the learning journey in robotic liver resections. Biomed Res Int 2019;2019:1835085.

45. Lee SJ, Lee JH, Lee YJ, Kim SC, Hwang DW, et al. The feasibility of robotic left-side hepatectomy with comparison of laparoscopic and open approach: consecutive series of single surgeon. Int J Med Robot 2019;15:e1982.

46. Mejia A, Cheng SS, Vivian E, Shah J, Oduor H, et al. Minimally invasive liver resection in the era of robotics: analysis of 214 cases. Surg Endosc 2020;34:339-48.

47. Sucandy I, Schlosser S, Bourdeau T, Spence J, Attili A, et al. Robotic hepatectomy for benign and malignant liver tumors. J Robot Surg 2020;14:75-80.

48. Beard RE, Khan S, Troisi RI, Montalti R, Vanlander A, et al. Long-term and oncologic outcomes of robotic versus laparoscopic liver resection for metastatic colorectal cancer: a multicenter, propensity score matching analysis. World J Surg 2020;44:887-95.

49. Gigot JF, Glineur D, Santiago Azagra J, Goergen M, Ceuterick M, et al; Hepatobiliary and Pancreatic Section of the Royal Belgian Society of Surgery and the Belgian Group for Endoscopic Surgery. Laparoscopic liver resection for malignant liver tumors: preliminary results of a multicenter European study. Ann Surg 2002;226:90-7.

50. Dulucu JL, Wintringer P, Stabilini C, Berticelli J, Mahajna A. Laparoscopic liver resections: a single center experience. Surg Endosc 2005;19:886-91.

51. Vibert E, Perniceni T, Levard H, Denet C, Shahri NK, et al. Laparoscopic liver resection. Br J Surg 2006;93:67-72.

52. Topal B, Aerts R, Penninckx F. Laparoscopic intrahepatic Glissonian approach for right hepatectomy is safe, simple, and reproducible. Surg Endosc 2007;21:2111.

53. Gayet B, Cavaliere D, Vibert E, Perniceni T, Levard H, et al. Totally laparoscopic right hepatectomy. Am J Surg 2007;194:685-9.

54. Dagher I, Proske JM, Carloni A, Richa H, Tranchart H, et al. Laparoscopic liver resection: results for 70 patients. Surg Endosc 2007;21:619-24.

55. Gumbs AA, Bar-Zakai B, Gayet B. Totally laparoscopic extended left hepatectomy. J Gastrointest Surg 2008;12:1152.

56. Gumbs AA, Gayet B. Multimedia article. Totally laparoscopic extended left hepatectomy. Surg Endosc 2008;22:2076-7.

57. Cho JY, Han HS, Yoon YS, Shin SH. Experiences of laparoscopic liver resection including lesions in the posteroinferior segments of the liver. Surg Endosc 2008;22:2344-9.

58. Topal B, Fieuws S, Aerts R, Vandeweyher H, Pennineckx F. Laparoscopic versus open liver resection of hepatic neoplasms: comparative analysis of short-term results. Surg Endosc 2008;22:2088-13.

59. Dagher I, Caillard C, Proske JM, Carloni A, Lainas P, et al. Laparoscopic right hepatectomy: original technique and results. J Am Coll Surg 2008;206:756-60.

60. Wakabayashi G, Nitta H, Takahara T, Shimazu M, Kitajima M, et al. Standardization of basic skills for laparoscopic liver surgery towards laparoscopic donor hepatectomy. J Hepatobiliary Pancreat Surg 2009;16:439-44.

61. Castaing D, Vibert E, Tomatis M, Ponti A, et al. Oncologic results of laparoscopic and open hepatectomy for colorectal liver metastases in two specialized centers. Ann Surg 2009;250:849-55.

62. Nguyen KT, Laurent A, Dagher I, Geller DA, Steel J, et al. Minimally invasive liver resection for metastatic colorectal cancer: a multi-institutional, international report of safety, feasibility, and early outcomes. Ann Surg 2009;250:842-8.

63. Viganò L, Laurent A, Tayar C, Tomatis M, Ponti A, et al. The learning curve in laparoscopic liver resection: improved feasibility and reproducibility. Ann Surg 2009;250:772-80.

64. Bryant R, Laurent A, Tayar C, Cherqui D. Laparoscopic liver resection-understanding its role in current practice: the Henri Mondor Hospital experience. Ann Surg 2009;250:103-11.

65. Yoon YS, Han HS, Shin SH, Cho JY, Min SK, et al. Laparoscopic treatment for intrahepatic duct stones in the era of laparoscopy: laparoscopic intrahepatic duct exploration and laparoscopic hepatectomy. Ann Surg 2009;249:286-91.

66. Cho JY, Han HS, Yoon YS, Shin SH. Outcomes of laparoscopic liver resection for lesions located in the right side of the liver. Arch Surg 2009;144:25-9.

67. Baker TB, Jay CL, Ladner DP, Preecewski LB, Clark L, et al. Laparoscopy-assisted and open living donor right hepatectomy: a comparative study of outcomes. Surgery 2009;146:817-23; discussion 823-5.

68. Dagher I, O’Rourke N, Geller DA, Cherqui D, Belli G, et al. Laparoscopic major hepatectomy: an evolution in standard of care. Ann Surg 2009;250:856-60.
Cai XJ, Wang YF, Liang YL, Yu H, Liang X. Laparoscopic left hemihepatectomy: a safety and feasibility study of 19 cases. Surg Endosc 2009;23:2556-62.

Dagher I, Di Giuro G, Dubrez J, Lainas P, Smadja C, et al. Laparoscopic versus open right hepatectomy: a comparative study. Am J Surg 2009;198:173-7.

Yoon YS, Han HS, Cho JY, Ahn KS. Total laparoscopic liver resection for hepatocellular carcinoma located in all segments of the liver. Surg Endosc 2010;24:1630-7.

Giulianotti PC, Coratti A, Sbrana F, Addio P, Bianco FM, et al. Robotic liver surgery: results for 70 resections. Surgery 2011;149:29-39.

Dagher I, Belli G, Fantini C, Laurent A, Tayar C, et al. Laparoscopic resection for hepatocellular carcinoma: a European experience. J Am Coll Surg 2010;211:16-23.

Martin RC, Scoggins CR, McMasters KM. Laparoscopic hepatic lobectomy: advantages of a minimally invasive approach. J Am Coll Surg 2010;210:627-34, 634-6.

Shafaez, Kazaryan AM, Marvin MR, Cannon R, Buell JF, et al. Is laparoscopic repeat hepatectomy feasible? A tri-institutional analysis. J Am Coll Surg 2011;212:171-9.

Cho A, Yamamoto H, Kainuma O, Souda H, Ikeda A, et al. Safe and feasible extrahepatic Glissonian access in laparoscopic anatomical liver resection. Surg Endosc 2011;25:1333-6.

Abu Hilal M, Di Fabio F, Teng MJ, Lykoudis P, Primrose JN, et al. Single-centre comparative study of laparoscopic versus open right hepatectomy. J Gastrointest Surg 2011;15:818-23.

Bhejani FD, Fox A, Pitruz K, Gallinger S, Wei A, et al. Clinical and economic comparison of laparoscopic to open liver resections using a 2-to-1 matched pair analysis: an institutional experience. J Am Coll Surg 2012;214:184-95.

Topal H, Tiek J, Aerts R, Topal B. Outcome of laparoscopic major liver resection for colorectal metastases. Surg Endosc 2012;26:2451-5.

Cannon RM, Scoggins CR, Callender GG, McMasters KM, Martin RC 2nd. Laparoscopic versus open resection of hepatic colorectal metastases. Surgery 2012;152:567-73; discussion 573-4.

Gumbs AA, Tsa T, Hoffman JP. Initial experience with laparoscopic hepatic resection at a comprehensive cancer center. Surg Endosc 2012;26:480-7.

Abu Hilal M, Di Fabio F, Syed S, Wiltshire R, Dimovska E, et al. Assessment of the financial implications for laparoscopic liver surgery: a single-center UK cost analysis for minor and major hepatectomy. Surg Endosc 2013;27:2542-50.

Ji WB, Wang HG, Zhao ZM, Duan WD, Lu F, et al. Robotic-assisted laparoscopic anatomic hepatectomy in China: initial experience. Ann Surg 2011;253:342-8.

Medbery RL, Chadis TD, Sweeney JF, Knechtle SJ, Kooby DA, et al. Laparoscopic vs open right hepatectomy: a value-based analysis. J Am Coll Surg 2014;218:929-39.

Zhang X, Yang J, Yan L, Li B, Wen T, et al. Comparison of laparoscopic-assisted and open donor right hepatectomy: a prospective case-matched study from China. J Gastrointest Surg 2014;18:744-50.

Ahn KS, Kang KJ, Kim YH, Kim TS, Lim TJ. A propensity score-matched case-control comparative study of laparoscopic and open liver resection for hepatocellular carcinoma. J Laparoendosc Adv Surg Tech A 2014;24:872-7.

Benkabou A, Souadka A, Serji B, Hachim H, El Malki HO, et al. Laparoscopic liver resection: initial experience in a North-African single center. Tunis Med 2015;93:523-6.

Xiao L, Xiang LJ, Li JW, Chen J, Fan YD, et al. Laparoscopic versus open liver resection for hepatocellular carcinoma in posterolateral segments. Surg Endosc 2015;29:2994-3001.

Takahara T, Wakabayashi G, Beppu T, Aihara A, Hasegawa K, et al. Long-term and perioperative outcomes of laparoscopic vs open liver resection for hepatocellular carcinoma with propensity score matching: a multi-institutional Japanese study. J Hepatobiliary Pancreat Sci 2015;22:721-7.

Allard MA, Cunha AS, Gayet B, Adam R, Goere D, et al. Early and long-term oncological outcomes after laparoscopic resection for colorectal liver metastases: a propensity score-based analysis. Ann Surg 2015;262:794-802.

Beppu T, Wakabayashi G, Hasegawa K, Gotohda N, Mizuguchi T, et al. Long-term and perioperative outcomes of laparoscopic versus open liver resection for colorectal liver metastases with propensity score matching: a multi-institutional Japanese study. J Hepatobiliary Pancreat Sci 2015;22:711-20.

de’Angelis N, Zwinknazy N, Brunetti F, Valente R, Costa M, et al. Laparoscopic versus open resection for colorectal liver metastases: a single-center study with propensity score analysis. J Laparoendosc Adv Surg Tech A 2015;25:12-20.

van der Poel MJ, Besselink MG, Cipriani F, Armstrong T, Takhar AS, et al. Outcome and learning curve in 159 consecutive patients undergoing total laparoscopic hemihepatectomy. JAMA Surg 2016;151:923-8.

Spampinato MG, Coratti A, Bianco L, Caniglia F, Laurenzi A, et al. Perioperative outcomes of laparoscopic and robot-assisted major hepatectomies: an Italian multi-institutional comparative study. Surg Endosc 2014;28:2973-9.

Takahara T, Wakabayashi G, Konno H, Gotoh M, Yamaue H, et al. Comparison of laparoscopic major hepatectomy with propensity score matched open cases from the national clinical database in Japan. J Hepatobiliary Pancreat Sci 2016;23:721-3.

Cipriani F, Grasshede M, Stanton L, Armstrong T, Takhar A, et al. Propensity score-based analysis of outcomes of laparoscopic versus open liver resection for colorectal metastases. Br J Surg 2016;103:1504-12.

de’Angelis N, Zwinknazy N, Brunetti F, Valente R, Costa M, et al. Laparoscopic versus open resection for colorectal liver metastases: a single-center study with propensity score analysis. J Laparoendosc Adv Surg Tech A 2015;25:12-20.
99. Untereiner X, Cagniet A, Memeco R, Tzidakis S, Piardi T, et al. Laparoscopic hepatectomy versus open hepatectomy for colorectal cancer liver metastases: comparative study with propensity score matching. Hepatobiliary Surg Nutr 2016;5:290-9.
100. Komatsu S, Bruscia R, Goumard C, Perdigao F, Soubrone O, et al. Laparoscopic versus open major hepatectomy for hepatocellular carcinoma: a matched pair analysis. Surg Endosc 2016;30:1965-74.
101. Martinez-Cecilia D, Cipriani F, Shelat V, Ratti F, Tranchart H, et al. Laparoscopic versus open liver resection for colorectal metastases in elderly and octogenarian patients: a multicenter propensity score based analysis of short- and long-term outcomes. Ann Surg 2017;265:1192-200.
102. Sotiropoulos GC, Machairas N, Kostakis ID, Stamopoulos P, Charalampoudis P, et al. Early experience in starting a laparoscopic liver resection program in greece. ISLS 2017;21:e2016.
103. Peng L, Xiao J, Liu Z, Zhu J, Wan R, et al. Laparoscopic left-sided hepatectomy for the treatment of hepatolithiasis: a comparative study with open approach. Int J Surg 2017;40:117-23.
104. Chen J, Li H, Liu F, Li B, Wei Y. Surgical outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma for various resection extent. Medicine (Baltimore) 2017;96:e6466.
105. Yu YD, Kim KH, Jung DH, Namkoong JM, Yoon SY, et al. Robotic versus laparoscopic liver resection: a comparative study from a single center. Langenbecks Arch Surg 2014;399:1039-45.
106. Jang EJ, Kim KW. Early experience of laparoscopic liver resection: a single institution experience with 37 consecutive cases. Ann hepato-pancreatic Surg 2019;23:115-2.
107. Cipriani F, Ratti F, Cardella A, Catena M, Paganelli M, et al. Laparoscopic versus open major hepatectomy: analysis of clinical outcomes and cost effectiveness in a high-volume center. J Gastrointest Surg 2019;23:2163-73.
108. Chen TH, Yang HR, Jeng LB, Hsu SC, Hsu CH, et al. Laparoscopic liver resection: experience of 436 cases in one center. J Gastrointest Surg 2019;23:1949-56.
109. Cipriani F, Alzoubi M, Fuks D, Ratti F, Kawai T, et al. Pure laparoscopic versus open hemihepatectomy: a critical assessment and realistic expectations - a propensity score-based analysis of right and left hemihepatectomies from nine European tertiary referral centers. J Hepatobiliary Pancreat Sci 2020;27:3-15.
110. Nomi T, Fuks D, Kawaguchi Y, Mal F, Nakajima Y, et al. Learning curve for laparoscopic major hepatectomy. Br J Surg 2015;102:796-804.
111. Cheek SM, Geller DA. The learning curve in laparoscopic major hepatectomy: what is the magic number? JAMA Surg 2016;151:929.
112. Brown KM, Geller DA. What is the learning curve for laparoscopic major hepatectomy? J Gastrointest Surg 2016;20:1065-71.
113. Halls MC, Alseidi A, Berardi G, Cipriani F, Van der Poel M, et al. A comparison of the learning curves of laparoscopic liver surgeons in differing stages of the IDEAL paradigm of surgical innovation: standing on the shoulders of pioneers. Ann Surg 2019;269:221-8.
114. Tsilimigras DI, Moris D, Vagios S, Merath K, Pawlik TM. Safety and oncologic outcomes of robotic liver resections: a systematic review. J Surg Oncol 2018;117:1517-30.
115. Lin NC, Nitta H, Wakabayashi G. Laparoscopic major hepatectomy: a systematic literature review and comparison of 3 techniques. Ann Surg 2013;257:10-13.
116. Kasai M, Cipriani F, Gayet B, Alighetti L, Ratti F, et al. Laparoscopic versus open major hepatectomy: a systematic review and meta-analysis of individual patient data. Surgery 2018;163:985-95.
117. Packiam V, Bartlett DL, Tohme S, Reddy S, Marsh JW, et al. Minimally invasive liver resection: robotic versus laparoscopic left lateral sectionectomy. J Gastrointest Surg 2012;16:2233-8.
118. Winter JM, Talamini MA, Stanfield CL, Chang DC, Hundt JD, et al. Thirty robotic adrenalectomies: a single institution’s experience. Surg Endosc 2006;20:119-24.
119. Barbash GI, Glied SA. New technology and health care costs--the case of robot-assisted surgery. N Engl J Med 2010;363:701-4.
120. Ho C, Tsakonas E, Tran K, Cimon K, Severn M, et al. Robot-assisted surgery compared with open surgery and laparoscopic surgery: clinical effectiveness and economic analyses [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2011.