THE AMBIGUITY INDEX OF AN EQUIPPED FINITE GROUP

F.A. BOGOMOLOV AND VIK.S. KULIKOV

Abstract. In [10], the ambiguity index $a_{(G,O)}$ was introduced for each equipped
finite group (G,O). It is equal to the number of connected components of a Hurwitz
space parametrizing coverings of a projective line with Galois group G assuming that
all local monodromies belong to conjugacy classes O in G and the number of branch
points is greater than some constant. We prove in this article that the ambiguity
index can be identified with the size of a generalization of so called Bogomolov
multiplier ([8], see also [1]) and hence can be easily computed for many pairs (G,O).

Introduction

Let G be a finite group and O be a subset of G consisting of conjugacy classes C_i of
G, $O = C_1 \cup \cdots \cup C_m$, which together generate G. The pair (G,O) is called an equipped
group and O is called an equipment of G. We fix the numbering of conjugacy classes
contained in O. One can associate a C-group (\tilde{G}, \tilde{O}) to each equipped group (G,O). The C-group \tilde{G} is generated by the letters of the alphabet $Y = Y_O = \{y_g \mid g \in O\}$ subject to relations:

$$y_{g_1}y_{g_2} = y_{g_2}y_{g_1}^{-1}g_2y_{g_2}^{-1}y_{g_1}.$$ \(1\)

We assume $\tilde{O} = Y_O$ in the definition of \tilde{G}.

There is an obvious natural homomorphism $\beta : \tilde{G} \to G$ given by $\beta(y_g) = g$. It
was shown in [10], that the commutator subgroup $[\tilde{G}, \tilde{G}]$ is finite. The order $a_{(G,O)}$ of
the group $\ker \beta \cap [\tilde{G}, \tilde{G}]$ was called the ambiguity index of the equipped finite group
(G,O).

The notion of equipped groups is related to the description of Hurwitz spaces
parametrizing maps between projective curves with G as the monodromy group and the ambiguity index $a_{G,O}$ is equal to the properly defined “asymptotic” number of
connected components of Hurwitz space parametrizing covering of curves with fixed ramification data. More precisely, let $f : \tilde{E} \to F$ be a morphism of a non-singular complex irreducible projective curve E onto a non-singular projective curve F. Let us choose a point $z_0 \in F$ such that z_0 is not a branch point of f hence the points $f^{-1}(z_0) = \{w_1, \ldots, w_d\}$, where $d = \deg f$, are simple. If we fix the numbering of points in $f^{-1}(z_0)$ then we call f a marked covering.
Let \(B = \{z_1, \ldots, z_n\} \subset F \) be the set of branch points of \(f \). The numbering of the points of \(f^{-1}(z_0) \) defines a homomorphism \(f_* : \pi_1(F \setminus B, z_0) \to \Sigma_d \) of the fundamental group \(\pi_1 = \pi_1(F \setminus B, z_0) \) to the symmetric group \(\Sigma_d \). Define \(G \subset \Sigma_d \) as \(\text{im} f_* = G \). It acts transitively on \(f^{-1}(z_0) \). Let \(\gamma_1, \ldots, \gamma_n \) be simple loops around, respectively, the points \(z_1, \ldots, z_n \) starting at \(z_0 \). The image \(g_j = f_*(\gamma_j) \in G \) is called a local monodromy of \(f \) at the point \(z_j \). Each local monodromy \(g_j \) depends on the choice of \(\gamma_j \), therefore it is defined uniquely up to conjugation in \(G \).

Denote by \(O = C_1 \cup \cdots \cup C_m \subset G \) the union of conjugacy classes of all local monodromies and by \(\tau_i \) the number of local monodromies of \(f \) belonging to the conjugacy class \(C_i \). The collection \(\tau = (\tau_1 C_1, \ldots, \tau_m C_m) \) is called the monodromy type of \(f \). Assume that the elements of \(O \) generate the group \(G \). Then the pair \((G, O)\) is an equipped group.

Let \(\text{HUR}^m_{d, G, O, \tau}(F, z_0) \) be the Hurwitz space (see the definition of Hurwitz spaces in [4] or in [9]) of marked degree \(d \) coverings of \(F \) with Galois group \(G \subset \Sigma_d \), local monodromies in \(O \), and monodromy type \(\tau \). Hurwitz space \(\text{HUR}^m_{d, G, O, \tau}(F, z_0) \) may consists of a different number of connected components. However it was proved in [9] that for each equipped finite group \((G, O)\), \(O = C_1 \cup \cdots \cup C_m \), there is a number \(T \) such that the number of irreducible components of each non-empty Hurwitz space \(\text{HUR}^m_{d, G, O, \tau}(F, z_0) \) is equal to \(a_{(G,O)} \) if \(\tau_i \geq T \) for all \(i = 1, \ldots, m \). The number \(T \) does not depend on the base curve \(F \) and degree \(d \) of the coverings.

The subgroup \(B_0(G) \subset H^2(G, Q/Z) \) was defined and studied in [1]. It consists of elements of \(H^2(G, Q/Z) \) which restrict trivially onto abelian subgroups of \(G \). It was conjectured in [2] that \(B_0(G) \) is trivial for simple groups. This conjecture was partially solved already in [2] and it was completely solved by Kunyavski in [8], and by Kunyavski-Kang in [7] for a wider class of almost simple groups. The latter consists of groups \(G \) which contain some simple group \(L \) and in turn are contained in the automorphism group \(\text{Aut}L \). Kunyavski in [8] called \(B_0(G) \) as Bogomolov multiplier and we are going to use his terminology here. Denote by \(b_0(G) \) the order of the group \(B_0(G) \) and denote by \(h_2(G) \) the Schur multiplier of the group \(G \), that is, the order of the group \(H_2(G, Z) \).

The aim of this article is to prove

Theorem 1. For an equipped finite group \((G, O)\) we have the following inequalities

\[
\text{b}_0(G) \leq a_{(G,O)} \leq h_2(G).
\]

In particular, \(a_{(G,G\setminus\{1\})} = b_0(G) \).

Since, by [8], \(b_0(G) = 1 \) for a finite almost simple group \(G \), we conclude:

Corollary 1. Let \(G \) be a finite almost simple group. Then there is a constant \(T \) such that for any projective irreducible non-singular curve \(F \) each non-empty Hurwitz space \(\text{HUR}^m_{d, G, G\setminus\{1\}, \tau}(F, z_0) \) is irreducible if all \(\tau_i \geq T \).
It was shown in [10] that if \(O_1 \subset O_2 \) are two equipments of a finite group \(G \), then \(a_{(G,O_2)} \leq a_{(G,O_1)} \).

For a symmetric group \(\Sigma_d \), the famous Clebsch–Hurwitz Theorem ([3], [6]) states that the ambiguity index \(a_{(\Sigma_d,T)} = 1 \), where \(T \) is the set of transpositions in \(\Sigma_d \), and it was shown in \([11]\) that the ambiguity index \(a_{(\Sigma_d,O)} = 1 \) if the equipment \(O \) contains an odd permutation \(\sigma \in \Sigma_d \) such that \(\sigma \) leaves fixed at least two elements. Theorem 8 (see subsection 3.4) gives the complete answer on the value of \(a \) of \(G,O \) an equipped finite group \((G,O)\) and in Section 4, we give a cohomological description of the ambiguity indices.

In Section 3, we investigate the properties of ambiguity indices of a quasi-cover of \((G,O)\) and in Section 4, we give a cohomological description of the ambiguity indices.

In Section 5, we give examples of finite groups \(G \) which Bogomolov multiplier \(b_0(G) > 1 \). Therefore for such groups \(G \) each non-empty space \(\text{HUR}_{d,G,O,\tau}(\mathbb{F},z_0) \) consists of at least \(b_0(G) > 1 \) irreducible components for any \(\tau = (\tau_1,\ldots,\tau_m) \) with big enough \(\tau_i \).

In this article, if \(\mathbb{F} \) is a free group freely generated by an alphabet \(X \), \(N \) is a normal subgroup of \(\mathbb{F} \), and a group \(G = \mathbb{F}/N \), then a word \(w = w(x_{i_1},\ldots,x_{i_n}) \) in letters \(x_{i_j} \in X \) and their inverses will be considered as an element of \(G \) in case if it does not lead to misunderstanding.

1. **C-GROUPS AND THEIR PROPERTIES**

Let us remind the definition of a \(C \)-group (see, for example, [12]).

Definition 2. A group \(G \) is a \(C \)-group if there is a set of generators \(x \in X \) in \(G \) such that the basis of relations between \(x \in X \) consists of the following relations:

\[
x_i^{-1}x_jx_i = x_k, \quad (x_i,x_j,x_k) \in M,
\]

where \(M \) is a subset of \(X^3 \).

Thus the \(C \)-structure of \(G \) is defined by \(X \subset G \) and \(M \subset X^3 \).

Let \(\mathbb{F} \) be a free group freely generated by an alphabet \(X \). Denote by \(N \) the subgroup of \(\mathbb{F} \) normally generated by the elements \(x_i^{-1}x_jx_i^{-1}, (x_i,x_j,x_k) \in M \). The group \(N \) is a normal subgroup of \(\mathbb{F} \). Let \(f: \mathbb{F} \to G = \mathbb{F}/N \) be the natural epimorphism given by presentation 2. In the sequel, we consider each \(C \)-group \(G \) as an equipped group \((G,O)\) with the equipment \(O = f(\mathbb{F}) \) (where \(\mathbb{F} \) is the orbit of \(X \) under the action of the group of inner automorphisms of \(\mathbb{F} \)). The elements of \(O \) are \(C \)-generators of the \(C \)-group \(G \). In particular, the equipped group \((\mathbb{F},\mathbb{F})\) is a \(C \)-group.

A homomorphism \(f: G_1 \to G_2 \) of a \(C \)-group \((G_1,O_1)\) to a \(C \)-group \((G_2,O_2)\) is called a \(C \)-homomorphism if it is a homomorphism of equipped groups, that is, \(f(O_1) \subset O_2 \). In particular, two \(C \)-groups \((G_1,O_1)\) and \((G_2,O_2)\) are \(C \)-isomorphic if they are isomorphic as equipped groups.
Claim 1. (Lemma 3.6 in [12]) Let N be a normal subgroup of \mathbb{F} normally generated by elements of the form $w_i^{-1}x_jw_iw_kx_j^{-1}w_i^{-1}$, where w_i and w_k are some elements of \mathbb{F} and $x_j, x_k \in X$. Let $f : \mathbb{F} \to G \simeq \mathbb{F}/N$ be the natural epimorphism. Then $(G, f(X))$ is a C-group and f is a C-homomorphism.

To each C-group (G, O), one can associate a C-graph. By definition, the C-graph $\Gamma = \Gamma_{(G, O)}$ of a C-group (G, O) is a directed labeled graph whose set of vertices $V = \{v_g \mid g \in O\}$ is in one to one correspondence with the set O. Two vertices v_{g_1} and v_{g_2}, $g_1, g_2 \in O$, are connected by a labeled edge $e_{v_{g_1}, v_{g_2}, v_g}$ (here v_{g_1} is the tail of $e_{v_{g_1}, v_{g_2}, v_g}$, v_{g_2} is the head of $e_{v_{g_1}, v_{g_2}, v_g}$, and v_g is the label of $e_{v_{g_1}, v_{g_2}, v_g}$) if and only if in G we have the relation $g^{-1}g_1g = g_2$ with some $g \in O$.

A C-homomorphism $f : (G_1, O_1) \to (G_2, O_2)$ of C-groups induces a map $f_* : \Gamma_{(G_1, O_1)} \to \Gamma_{(G_2, O_2)}$ from the C-graph $\Gamma_{(G_1, O_1)}$ in the C-graph $\Gamma_{(G_2, O_2)}$, where by definition, $f_*(v_g) = v_{f(g)}$ for each vertex v_g of $\Gamma_{(G_1, O_1)}$ and $f_*(e_{v_{g_1}, v_{g_2}, v_g}) = e_{v_{f(g_1)}, v_{f(g_2)}, v_{f(g)}}$ for each edge $e_{v_{g_1}, v_{g_2}, v_g}$ of $\Gamma_{(G_1, O_1)}$.

The following Claim is obvious.

Claim 2. A C-homomorphism $f : (G_1, O_1) \to (G_2, O_2)$ is a C-isomorphism if f_* is one-to-one between the sets of vertices of $\Gamma_{(G_1, O_1)}$ and $\Gamma_{(G_2, O_2)}$.

In the sequel, we will consider only finitely presented C-groups (as groups without equipment) and C-graphs consisting of finitely many connected components. Denote by m the number of connected components of a C-graph $\Gamma_{(G, O)}$.

Then it is easy to see that $G/[G, G] \simeq \mathbb{Z}^m$ and any two C-generators g_1 and g_2 are conjugated in the C-group G if and only if v_{g_1} and v_{g_2} belong to the same connected component of $\Gamma_{(G, O)}$.

Thus the set O of C-generators of the C-group (G, O) is the union of m conjugacy classes of G and there is a one-to-one correspondence between the conjugacy classes of G contained in O and the set of connected components of $\Gamma_{(G, O)}$.

Denote by $\tau : G \to H_1(G, \mathbb{Z}) = G/[G, G]$ the natural epimorphism. In the sequel, we fix some numbering of the connected components of $\Gamma_{(G, O)}$. Then the group $H_1(G, \mathbb{Z}) \simeq \mathbb{Z}^m$ obtains a natural base consisting of vectors $\tau(g) = (0, \ldots, 0, 1, 0, \ldots, 0)$, where 1 stands on the i-th place if g is a C-generator of G and v_g belongs to the i-th connected component of $\Gamma_{(G, O)}$. For $g \in G$ the image $\tau(g)$ is called the type of g.

Lemma 1. Let g_1, g_2 be two C-generators of a C-group (G, O), N the normal closure of $g_1g_2^{-1}$ in G, and $f : G \to G_1 = G/N$ the natural epimorphism. Then

(i) (G_1, O_1) is a C-group, where $O_1 = f(O)$, and f is a C-homomorphism;
(ii) the map $f_* : \Gamma_{(G, O)} \to \Gamma_{(G_1, O_1)}$ is a surjection.
(iii) if $g_1g_2^{-1}$ belong to the center $Z(G)$ of the group G and let v_{g_1} and v_{g_2} belong to different components of $\Gamma_{(G, O)}$, then

(iii$_1$) the number of connected components of the C-graph $\Gamma_{(G_1, O_1)}$ is less than the number of connected components of the C-graph $\Gamma_{(G, O)}$;
(iii$_2$) $f : [G, G] \to [G_1, G_1]$ is an isomorphism.
Proof. Claims (i), (ii), and (iii) are obvious.

To prove (iii2), note that N is a cyclic group generated by $g_1g_2^{-1}$, since $g_1g_2^{-1}$ belongs to the center $Z(G)$. The type $\tau((g_1g_2^{-1})^n)$ is non-zero for $n \neq 0$, since v_{g_1} and v_{g_2} belong to different connected components of $\Gamma_{(G,O)}$. Therefore to complete the proof, it suffices to note that the groups N and $[G,G]$ have trivial intersection, since $\tau(g) = 0$ for all $g \in [G,G]$. \hfill \Box

A C-group (G,O) is called a C-finite group if the set of vertices of C-graph $\Gamma_{(G,O)}$ is finite or, the same, if the equipment O of G is a finite set.

Proposition 1. ([10]) Let (G,O) be a C-finite group. Then the commutator $[G,G]$ is a finite group.

As it was mentioned in Introduction, for each finite equipped group (G,O), one can associate a C-group (\tilde{G}, \tilde{O}) defined as follows. The group \tilde{G} is generated by the letters of the alphabet $Y = Y_O = \{y_g | g \in O\}$ subject to relations

$$y_{g_1}y_{g_2} = y_{g_2}y_{g_1}^{-1}y_{g_2}^{-1}y_{g_1}. \quad (3)$$

Here $\tilde{O} = Y_O$ and there is a natural epimorphism $\beta_O : \tilde{G} \to G$ given by $\beta_O(y_g) = g$.

Note also that a homomorphism of equipped groups $f : (G_1, O_1) \to (G, O)$ induces a C-homomorphism $\tilde{f} : (\tilde{G}_1, \tilde{O}_1) \to (\tilde{G}, \tilde{O})$ such that $f \circ \beta_{O_1} = \tilde{f} \circ \beta_O$.

Let the elements of a subset S of an equipment O of a group G generate the group G and $O = S^G$. Denote by F_S a free group freely generated by the alphabet $Y_S = \{y_g | g \in S\}$ and R_S is the normal subgroup of F_S such that the natural epimorphism $h_S : F_S \to F_S/R_S \simeq G$ gives a presentation of the group G.

Claim 3. Let $\tilde{R}_S \subset R_S$ be the normal subgroup normally generated by the elements of R_S of the form $w_{i,j}^{-1} y_{g_i} w_{i,j} y_{g_j}^{-1}$, where $w_{i,j} \in F_S$ and $y_{g_i}, y_{g_j} \in Y_S$. Then the C-group (\tilde{G}, \tilde{O}) has the following presentation: $\tilde{G} \simeq F_S/\tilde{R}_S$ such that the images of the elements of Y_S are C-generators of \tilde{G}.

Proof. Denote by $G_1 = F_S/\tilde{R}_S$. By Claim 1, G_1 is a C-group with C-equipment $O_1 = Y_{\tilde{G}_1}$ and there is a natural epimorphism $\beta_S : ((G_1, O_1) \to (G, O)$ given by $\beta_S(y_g) = g$ for $g \in S$.

Assume that S consists of elements $g_1, \ldots, g_n \in O$. If $S \neq O$ then choose an element $g_{n+1} \in O \setminus S$. It is conjugated to some $g_i \in S$. Denote by $R_{g_{n+1}}$ the set of all presentations of g_{n+1} in the form

$$g_{n+1} = w(g_1, \ldots, g_n)^{-1}gw(g_1, \ldots, g_n), \quad g \in S. \quad (4)$$

Note that if

$$g_{n+1} = w_i(g_1, \ldots, g_n)^{-1}g_iw_i(g_1, \ldots, g_n)$$

and $g_{n+1} = w_j(g_1, \ldots, g_n)^{-1}g_jw_j(g_1, \ldots, g_n)$, then

$$w_jw_i^{-1}g_iw_iw_j^{-1} = g_j,$$
that is,
\[w_j(y_{g_1}, \ldots, y_{g_n}) w_i^{-1}(y_{g_1}, \ldots, y_{g_n}) y_g w_i(y_{g_1}, \ldots, y_{g_n}) w_j^{-1}(y_{g_1}, \ldots, y_{g_n}) y_g^{-1} \in R_S. \] (5)

Similarly, if \(g_{n+1} = w_i(g_1, \ldots, g_n) \) and \(g_{n+1}^{-1} g_i g_{n+1} = g_j \) for some \(g_i, g_j \in S \), then
\[w(y_{g_1}, \ldots, y_{g_n})^{-1} y_g w(y_{g_1}, \ldots, y_{g_n}) y_g^{-1} \in R_S. \] (6)

Therefore, if \(S_1 = S \cup \{ g_{n+1} \} \), \(F_{S_1} \) is a free group freely generated by the alphabet \(Y_{S_1} = \{ y_g \mid g \in S_1 \} \), \(R_{g_{n+1}} \) is the set of words of the form
\[w(y_{g_1}, \ldots, y_{g_n})^{-1} y_g w(y_{g_1}, \ldots, y_{g_n}) y_g^{-1} \]
defined by all relations (4), and \(\tilde{R}_{S_1} \) is the normal closure in \(F_{S_1} \) of the set \(\tilde{R}_S \cup R_{g_{n+1}} \), then \(G_1 \simeq F_{S_1}/\tilde{R}_{S_1} \) in view of relations (4) and (6).

Note that if we have a relation \(g_i^{-1} g_j g_i = g_k \) for some \(g_i, g_j, g_k \in S_1 \) then
\[y_{g_i}^{-1} y_{g_j} y_{g_k}^{-1} \in \tilde{R}_{S_1}. \] (7)

If \(S_1 \neq O \), then we can repeat the construction described above and obtain a presentation \(G_1 \simeq F_{S_2}/\tilde{R}_{S_2} \), and so on. After several steps we obtain a presentation \(G_1 \simeq F_O/\tilde{R}_O \). Note that, by induction, we deduce that for any relation in \(G \) of the form \(g_i^{-1} g_j g_i = g_k \) for some \(g_i, g_j, g_k \in O \) we have \(y_{g_i}^{-1} y_{g_j} y_{g_k}^{-1} \in \tilde{R}_O \). Therefore there is a natural \(C \)-homomorphism \(f : (\tilde{G}, \tilde{O}) \to (G_1, O_1) \). By Claim 2, \(f \) is a \(C \)-isomorphism.

For an equipped finite group \((C, O)\), consider a presentation of \(G \) of the following form. Let us take a free group \(F = F_O \) freely generated by the alphabet \(X_O = \{ x_g \mid g \in O \} \). Consider a normal subgroup \(R_O \subset F \) such that \(F/R_O \simeq G \). Let \(h_O : F \to F/R_O \simeq G \) be the natural epimorphism.

We can associate to \((G, O)\) a group \(\overline{G} = F/[F, R_O] \).

Denote by \(\alpha_O : \overline{G} \to G \) the natural epimorphism. By Claim 1, \((\overline{G}, \overline{O})\) is a \(C \)-group, where \(\overline{O} = h_O(X_O) \). It is evident that there is the natural epimorphism of \(C \)-groups \(\kappa_O : (\overline{G}, \overline{O}) \to (G, \tilde{O}) \) sending \(\kappa_O(x_g) = y_g \) for all \(g \in O \) and such that \(\alpha_O = \beta_O \circ \kappa_O \).

The \(C \)-group \((\overline{G}, \overline{O})\) is called the universal central \(C \)-extension of the equipped finite group \((G, O)\).

It is easy to see that \(\alpha_O : \overline{G} \to G \) is a central extension of groups, that is, \(\ker \alpha_O \) is a subgroup of the center \(Z(\overline{G}) \).

We have
\[\ker \alpha_O \cap (\overline{G}, \overline{O}) = (R_O \cap [F, F])/[F, R_O]. \]

By Hopf’s integral homology formula, we have \(H_2(G, \mathbb{Z}) \simeq (R_O \cap [F, F])/[F, R_O] \). Denote by \(h_2(G) \) the order of the group \(H_2(G, \mathbb{Z}) \) and denote by \(K_{(G, O)} \) the subgroup of \((R_O \cap [F, F])/[F, R_O] \) generated by the elements of \(R_O \) of the form \([w, x_g]\), where \(g \in O \) and \(w \in F \), and let \(k_{(G, O)} \) be its order.
Theorem 3. For an equipped finite group \((G, O)\) we have

\[h_2(G) = k(G, O) a(G, O). \]

Proof. We have \(\ker \kappa_O \subset \ker \alpha_O\). Therefore \(\ker \kappa_O \subset Z(\tilde{G})\).

Let us show that for some \(n \geq 0\) there is a sequence of \(C\)-groups \(\overline{G}_0 = \mathbb{F}/R_0, \ldots, \overline{G}_n = \mathbb{F}/R_n\), a sequence of \(C\)-homomorphisms

\[\varphi_i : (\overline{G}_i, \overline{O}_i) \rightarrow (\overline{G}_{i+1}, \overline{O}_{i+1}), \quad 0 \leq i \leq n - 1, \]

where \((\overline{G}_0, \overline{O}_0) = (\overline{G}, \overline{O})\), and a \(C\)-homomorphism \(\tilde{\kappa} : (\overline{G}_n, \overline{O}_n) \rightarrow (\tilde{G}, \tilde{O})\) such that

(i) \(\kappa = \tilde{\kappa} \circ \varphi\), where \(\varphi = \varphi_n \circ \cdots \circ \varphi_0\);

(ii) for each \(i\) the homomorphism \(\varphi_i : [\overline{G}_i, \overline{O}_i] \rightarrow [\overline{G}_{i+1}, \overline{O}_{i+1}]\) is an isomorphism;

(iii) \(\tilde{\kappa}_*\) induces a one-to-one correspondence between the connected components of the \(C\)-graphs \(\Gamma(\overline{G}_n, \overline{O}_n)\) and \(\Gamma(\tilde{G}, \tilde{O})\).

Indeed, let us put \(R_0 = R_O\) and consider the map \(\kappa_*\). If it is induces a one-to-one correspondence between the connected components of the \(C\)-graphs \(\Gamma(\overline{G}, \overline{O})\) and \(\Gamma(\tilde{G}, \tilde{O})\), then \(n = 0\) and it is nothing to prove.

Otherwise, for some \(g \in O\) there is a vertex \(v_{y_g}\) of \(\Gamma(\overline{G}, \overline{O})\) which preimage \(\kappa^{-1}_*(v_{y_g})\) contains at least two vertices, say \(v_{x_g}\) and \(v_{\overline{y}_g}\) (here \(\overline{y}\) is an element of \(X^{\overline{G}}\)), of \(\Gamma(\overline{G}, \overline{O})\) belonging to different connected components of \(\Gamma(\overline{G}, \overline{O})\).

Denote by \(R_1\) the normal closure of \(R_O \cup \{x_g \overline{y}_g^{-1}\}\) in \(G\) and consider the natural homomorphism \(\varphi_0 : \overline{G} \rightarrow \overline{G}_1 = \mathbb{F}/R_1\). The element \(x_g \overline{y}_g^{-1}\), considered as an element of \(\overline{G}\), belongs to \(\ker \kappa\). Therefore, \(x_g \overline{y}_g^{-1} \in Z(\overline{G})\).

Denote by \(\kappa_1 : \overline{G}_1 \rightarrow \tilde{G}\) the homomorphism induced by \(\kappa\). By Lemma 1, the homomorphism \(\varphi_1\) is a \(C\)-homomorphism of \(C\)-groups. It is easy to see that \(\varphi_0 : [\overline{G}_0, \overline{O}_0] \rightarrow [\overline{G}_1, \overline{G}_1]\) is an isomorphism and the number of connected components of the \(C\)-graph \(\Gamma(\overline{G}_1, \overline{O}_1)\) is less than the number of connected components of the \(C\)-graph \(\Gamma(\overline{G}, \overline{O})\).

Assume now that \(\kappa_*\) is not a one-to-one correspondence between the connected components of the \(C\)-graphs \(\Gamma(\overline{G}_1, \overline{O}_1)\) and \(\Gamma(\tilde{G}, \tilde{O})\). Then for some \(g_1 \in O\) there is a vertex \(v_{y_{g_1}}\) of \(\Gamma(\tilde{G}, \tilde{O})\) which preimage \(\kappa_*^{-1}(v_{y_{g_1}})\) contains at least two vertices \(v_{x_{g_1}}\) and \(v_{\overline{y}_{g_1}}\) of \(\Gamma(\overline{G}_1, \overline{O}_1)\) belonging to different connected components of \(\Gamma(\overline{G}_1, \overline{O}_1)\).

Hence we can repeat the construction described above and obtain a \(C\)-group \((\overline{G}_2, \overline{O}_2)\) and \(C\)-homomorphisms \(\varphi_1 : \overline{G}_1 \rightarrow \overline{G}_2 = \mathbb{F}/R_2\) and \(\kappa_2 : \overline{G}_2 \rightarrow \tilde{G}\) such that \(\varphi_1 : [\overline{G}_1, \overline{G}_1] \rightarrow [\overline{G}_2, \overline{G}_2]\) is an isomorphism and the number of connected components of the \(C\)-graph \(\Gamma(\overline{G}_2, \overline{O}_2)\) is less than the number of connected components of the \(C\)-graph \(\Gamma(\overline{G}_1, \overline{O}_1)\). Since the number of connected components of the \(C\)-graph \(\Gamma(\overline{G}, \overline{O})\) is finite, after several \((n)\) steps of our construction we obtain the desired sequences of \(C\)-groups and \(C\)-homomorphisms.

Now, consider the \(C\)-homomorphism \(\tilde{\kappa} : \overline{G}_n \rightarrow \tilde{G}\). The \(C\)-graph \(\Gamma(\tilde{G}, \tilde{O})\) consists of connected components \(\Gamma_1, \ldots, \Gamma_m\). Let \(\{v_{g_{i,1}}, \ldots, v_{g_{i,1}}\}\) be the set of the vertices of
where the group inverses such that

since all $\cup \{v_{g_{i,j}}, v_{\eta_{i,j},1}, \ldots, v_{\eta_{i,j},r_{i,j}}\}, \mathcal{O}_{i,j,k} \in \mathcal{O}_n$ for $1 \leq k \leq r_{i,j}$.

Since the graph \mathbf{G}_i is connected, there are words $w_{i,j,k}$ in letters of X_O and their inverses such that

$$\mathcal{O}_{i,j,k} = w_{i,j,k}x_{g_{i,j}}^{-1}w_{i,j,k}^{-1}, \quad 1 \leq k \leq r_{i,j}.$$

Obviously, the elements $u_{i,j,k} = [w_{i,j,k}, x_{g_{i,j}}] = \mathcal{O}_{i,j,k}x_{g_{i,j}}^{-1} \in [\mathcal{O}_n, \mathcal{O}_n] \cap \ker \pi$.

Therefore $u_{i,j,k}$, as elements of \mathbb{F} belong to $R_O \cap [\mathbb{F}, \mathbb{F}]$.

Consider the group $\mathcal{O}_{n+1} = \mathbb{F}/R_{n+1}$, where the group R_{n+1} is the normal closure of $R_n \cup \{u_{i,j,k}\}_{1 \leq i \leq m, 1 \leq j \leq l_i, 1 \leq k \leq r_{i,j}}$ in \mathbb{F}. Then, by Claim 1 $\mathcal{O}_{n+1} = \mathbb{F}/R_{n+1}$ is a C-group and the natural map $\pi_1 : \mathcal{O}_{n+1} \rightarrow \mathcal{G}$, induced by π, is a C-homomorphism. Moreover, $\ker \varphi_n$ of the natural epimorphism $\varphi_n : \mathcal{O}_n \rightarrow \mathcal{O}_{n+1}$ is a subgroup of $[\mathcal{G}, \mathcal{G}] \simeq [\mathbb{F}, \mathbb{F}] / [\mathbb{F}, R_O]$ generated by the elements $u_{i,j,k} = [w_{i,j,k}, x_{g_{i,j}}]$, where $1 \leq i \leq m, 1 \leq j \leq l_i$, and $1 \leq k \leq r_{i,j}$.

To complete the proof of Theorem 3 it suffices to note that π_1 induces a one-to-one correspondence between the sets of vertices of the C-graphs $\Gamma_{(\mathcal{O}_{n+1}, \mathcal{O}_{n+1})}$ and $\Gamma_{(\mathcal{G}, \mathcal{O})}$, since all $u_{i,j,k} = \mathcal{O}_{i,j,k}x_{g_{i,j}}^{-1}$ belong to ker φ_n. Therefore π_1 is an isomorphism. \hfill \Box

Lemma 2. Let the order of $g \in O$ be n and let $[x_g, w] \in ([\mathbb{F}, \mathbb{F}] \cap R_O)/[\mathbb{F}, R_O] \subset \mathbb{F}/[\mathbb{F}, R_O]$. Then the order of the element $[x_g, w]$ is a divisor of n.

Proof. The elements x_g^n and $[x_g, w]$ belong to the center of the group $\mathbb{F}/[\mathbb{F}, R_O]$. Therefore

$$[x_g^n, w] = x_g^{n-1}[x_g, w]x_g^{1-n}[x_g^{n-1}, w] = [x_g, w][x_g^{n-1}, w] = \cdots = [x_g, w]^n$$

is the unity of $\mathbb{F}/[\mathbb{F}, R_O]$. \hfill \Box

Proposition 2. Let the equipment O of an equipped finite group (G, O) consists of conjugacy classes of elements of orders coprime with $h_2(G)$. Then $a_{(G, O)} = h_2(G)$.

Proof. It follows from Lemma 2 and Theorem 3. \hfill \Box

2. Proof of Theorem 1

By definition, the **Bogomolov multiplier** $b_0(G)$ of a finite group G is the order of the group

$$B_0(G) = \ker[H^2(G, \mathbb{Q}/\mathbb{Z}) \rightarrow \bigotimes_{A \subset G} H^2(A, \mathbb{Q}/\mathbb{Z})]$$

where A runs over all abelian subgroups of G.

Remark 1. Note that it suffices to consider only restrictions to abelian groups with two generators in order to define that the element $w \in H^2(G, \mathbb{Q}/\mathbb{Z})$ is contained in $B_0(G)$.
There is a natural duality between $H^2(G, \mathbb{Q}/\mathbb{Z})$ and $H_2(G, \mathbb{Z})$. Both groups are finite for finite groups G and duality implies an isomorphism of $H^2(G, \mathbb{Q}/\mathbb{Z})$ and $\text{Hom}(H_2(G, \mathbb{Z}), \mathbb{Q}/\mathbb{Z})$ as abstract groups.

By Theorem 3 we have the inequality $h_2(G) \geq a_{(G,O)}$ for any equipped finite group (G, O). By Corollary 2 in [10], we have inequality $a_{(G,O)} \geq (a_{(G,G\setminus \{1\})})$ for each equipment O of G. Therefore to prove Theorem 1 it suffice to show that for the equipped finite group $(G, G \setminus \{1\})$ its ambiguity index $a_{(G,G\setminus \{1\})}$ is equal to $b_0(G)$.

In notation used in Section 1 and by Theorem 3, we have

$$a_{(G,G\setminus \{1\})} = \frac{h_2(G)}{k_{(G,G\setminus \{1\})}},$$

where $k_{(G,G\setminus \{1\})}$ is the order of the subgroup $K_{G\setminus \{1\}}$ of the group

$$(R_{G\setminus \{1\}} \cap [F_{G\setminus \{1\}}, F_{G\setminus \{1\}}])/[F_{G\setminus \{1\}}, R_{G\setminus \{1\}}] \cong H_2(G, \mathbb{Z})$$

generated by the elements of $R_{G\setminus \{1\}}$ of the form $[w, x_g]$, where $g \in G \setminus \{1\}$ and $w \in F_{G\setminus \{1\}}$.

Lemma 3. Let for some $w_1, w_2 \in F_{G\setminus \{1\}}$ the commutator $[w_1, w_2]$ belong to $R_{G\setminus \{1\}}$. Then $[w_1, w_2]$, considered as an element of $F_{G\setminus \{1\}}/[F_{G\setminus \{1\}}, R_{G\setminus \{1\}}]$, belongs to $K_{G\setminus \{1\}}$.

Proof. First of all, note that if $[x_g, w] \in K_{G\setminus \{1\}}$, then $[x_g, w] = [w, x_g^{-1}] = [x_g^{-1}, w^{-1}] = [x_g^{-1}, w]$ in $K_{G\setminus \{1\}}$, since $K_{G\setminus \{1\}}$ is a subgroup of the center of the C-group $G_{G\setminus \{1\}} = F_{G\setminus \{1\}}/[F_{G\setminus \{1\}}, R_{G\setminus \{1\}}]$ and these four commutators are conjugated to each other in $F_{G\setminus \{1\}}$. Similarly, $[w, x_g] = [x_g, w^{-1}] = [w^{-1}, x_g^{-1}] = [x_g^{-1}, w^{-1}] \in K_{G\setminus \{1\}}$, since $[w, x_g]$ is the inverse element to the element $[x_g, w]$. Note also that for any w_1 the element $w_1 [w, x_g] w_1^{-1}$ belongs to $K_{G\setminus \{1\}}$ if $[w, x_g] \in K_{G\setminus \{1\}}$.

Next, the elements w_1^{-1} and w_2^{-1}, considered as elements of G, are equal to some elements g_1 and g_2 of G. Therefore if $[w_1, w_2] \in R_{G\setminus \{1\}}$ then

$$w_1 x_{g_1}, w_2 x_{g_2}, [x_{g_1}, x_{g_2}], [w_1, x_{g_1}], [w_1, x_{g_2}] \in R_{G\setminus \{1\}}.$$

In addition, we have $[w_1, w_2 x_{g_2}] \in [F_{G\setminus \{1\}}, R_{G\setminus \{1\}}]$ and

$$[w_1, w_2 x_{g_2}] = [w_1, w_2] (w_2 [w_1, x_{g_2}] w_2^{-1}).$$

Therefore $[w_1, w_2] \in R_{G\setminus \{1\}} \cap [F_{G\setminus \{1\}}, F_{G\setminus \{1\}}]$ (as an element of $K_{G\setminus \{1\}}$) is the inverse element to the element $[w_1, x_{g_2}] \in K_{G\setminus \{1\}}$ and hence $[w_1, w_2] \in K_{G\setminus \{1\}}$.

To complete the proof of Theorem 1 note that, by Lemma 3, for each imbedding $i : H \to G$ of an abelian group H generated by two elements the image of $i_* : H_2(H, \mathbb{Z}) \to H_2(G, \mathbb{Z})$ is a subgroup of $K_{G\setminus \{1\}}$ and the group $K_{G\setminus \{1\}}$ is generated by the images of such elements. Therefore the group

$$K_{G\setminus \{1\}} = \{ \varphi \in \text{Hom}(H_2(G, \mathbb{Z}), \mathbb{Q}/\mathbb{Z}) \mid \varphi(w) = 0 \text{ for all } w \in K_{G\setminus \{1\}} \}$$

coincides with the group $B_0(G)$ and its order is equal to $a_{(G,G\setminus \{1\})} = \frac{h_2(G)}{k_{(G,G\setminus \{1\})}}$.

\qed
3. Quasi-covers of equipped finite groups

In this section we use notations introduced in Sections 1.

3.1. Definitions. Let \(f : (G_1, O_1) \to (G, O) \) be a homomorphism of equipped groups. We say that \(f \) is a cover of equipped groups (or, equivalently, \((G_1, O_1)\) is a cover of \((G, O)\)) if

\[
\begin{align*}
(i) & \text{ \(f \) is an epimorphism such that } f(O_1) = O; \\
(ii) & \ker f \text{ is a subgroup of the center } ZG_1 \text{ of } G_1; \\
(iii) & f_* : H_1(G_1, Z) \to H_1(G, Z) \text{ is an isomorphism.}
\end{align*}
\]

Let \(f : (G_1, O_1) \to (G, O) \) be a homomorphism of equipped finite groups. We say that \(S \subset O_1 \) is a section of \(f \) if \(f|_S : S \to O \) is a one-to-one correspondence. Denote by \(O_S \subset O_1 \) the orbit of \(S \) under the action of the group of the inner automorphisms of \(G_1 \).

Let \(f : (G_1, O_1) \to (G, O) \) be an epimorphism of equipped groups such that \(\ker f \subset ZG_1 \). We say that \(f \) is a quasi-cover of equipped groups (or, equivalently, \((G_1, O_1)\) is a quasi-cover of \((G, O)\)) if there is a section \(S \) of \(f \) such that \(O_S = O_1 \).

Below, we will assume that for a quasi-cover \(f \) of equipped groups a section \(S \) is chosen and fixed.

3.2. Properties of quasi-covers.

Lemma 4. Let \(f : (G_1, O_1) \to (G, O) \) be a cover of equipped finite groups and \(S \subset O_1 \) a section. Then \(G_1 \) is generated by the elements of \(S \).

Proof. Denote by \(G_S \) the subgroup of \(G_1 \) generated by the elements of \(S \). Obviously, \(\varphi = f|_{G_S} : G_S \to G \) is an epimorphism and \(\ker \varphi \subset \ker f \). Therefore, to prove Lemma it suffices to show that \(\ker f \subset G_S \). To show this, let us consider the natural epimorphism \(f_1 : G_1 \to G_2 = G_1/\ker \varphi \) and the natural epimorphism \(\psi : G_2 \to G \) induced by \(f \). Obviously, \(\psi : (G_2, f_1(O_1)) \to (G, O) \) is a cover of equipped finite groups and \(\psi_H : H \to G \) is an isomorphism, where \(H = f_1(G_S) \). Therefore \(G_2 \simeq \ker \psi \times G \). Consequently, \(\ker \psi = 0 \), since \(\psi_* : H_1(G_2, Z) \to H_1(G, Z) \) is an isomorphism. \(\square \)

If \(S \) is a section of a cover \(f : (G_1, O_1) \to (G, O) \), then Lemma 4 implies that \(O_S = S^{G_1} \) is an equipment of \(G_1 \) and \(f : (G_1, O_S) \to (G, O) \) is also a cover of equipped groups.

Below, we fix a section \(S \) of a cover \(f : (G_1, O_1) \to (G, O) \). Then the cover \(f \) can be considered as a quasi-cover.

In notations used in Section 1 consider the universal central C-extension \(\alpha_O : (\overline{G}, O) \to (G, O) \) of an equipped finite group \((G, O)\). We have two natural epimorphisms \(h_O : F_O \to G = F_O/R_O \) and \(\beta_O : F_O \to \overline{G} = F_O/[F_O, R_O] \) such that \(h_O = \alpha_O \circ \beta_O \).
Lemma 5. Let $f : (G_1, O_1) \to (G, O)$ be a quasi-cover of equipped finite groups. Then there is an epimorphism $\alpha_S : (\overline{G}, \overline{O}) \to (G_1, O_S)$ of equipped groups such that $\alpha_O = f \circ \alpha_S$.

Proof. By Lemma 4, there is an epimorphism $h_S : F_O \to G_1$ defined by $h_S(x_g) = \hat{g} \in S$ for all $g \in G$, where $\hat{g} = f_{|S}^{-1}(g)$. Denote by $R_S = \ker h_S$. Obviously, we have $f \circ h_S = h_O$. Therefore $R_S \subset R_O$.

Let us show that the group $[F_O, R_O]$ is a subgroup of R_S. Indeed, consider any $w \in R_O$. Then, as an element of G_1, the element $w \in \ker f$ and, consequently, w belongs to the center of G_1. In particular, it commutes with any generator $\hat{g} \in S$ of G_1 and hence $[w, x_g] = \hat{g} \in R_S$, that is, $[F_O, R_O] \subset R_S$.

The inclusion $[F_O, R_O] \subset R_S$ implies the desired epimorphism α_S. \hfill \Box

We say that a cover (resp., a quasi-cover) of equipped finite groups $f : (G_1, O_1) \to (G, O)$ is maximal if for any cover of equipped finite groups $f_1 : (G_2, O_2) \to (G_1, O_1)$ such that $f_2 = f \circ f_1$ is also a cover (resp., quasi-cover) of equipped finite groups, the epimorphism f_1 is an isomorphism.

Theorem 4. For any cover (resp., quasi-cover) of equipped finite groups $f : (G_1, O_1) \to (G, O)$, there is a maximal cover (resp., quasi-cover) $f_2 : (G_2, O_2) \to (G, O)$ for which there is a cover $f_1 : (G_2, O_2) \to (G_1, O_S)$ such that

(i) $f_2 = f \circ f_1$;
(ii) $\ker f_2 \simeq H_2(G, \mathbb{Z})$ (resp., $[\overline{G}, \overline{G}] \cap \ker f_2 \simeq H_2(G, \mathbb{Z})$).

Proof. Consider the epimorphism $\alpha_S : (\overline{G}, \overline{O}) \to (G_1, O_S)$ defined in the proof of Lemma 5. The group $\ker \alpha_S$ is a subgroup of the center of \overline{G}.

Since $(\overline{G}, \overline{O})$ is a C-group and \overline{O} consists of M conjugacy classes, where $M = |O| = \rk F_O$, then $H_1(\overline{G}, \mathbb{Z}) = \overline{G}/[\overline{G}, \overline{G}] = \mathbb{Z}^M$. Let $\tau : \overline{G} \to \mathbb{Z}^M$ be the natural homomorphism (that is, τ is the type homomorphism $\overline{G} \to H_1(\overline{G}, \mathbb{Z})$, see Introduction). The image $\tau(\ker \alpha_S)$ is a sublattice of maximal rank in \mathbb{Z}^M. Let us choose a \mathbb{Z}-free basis a_1, \ldots, a_M in $\tau(\ker \alpha_S)$ and choose elements $\overline{y}_i \in \ker \alpha_S$, $1 \leq i \leq M$, such that $\tau(\overline{y}_i) = a_i$.

Denote by H_S a group generated by the elements \overline{y}_i, $1 \leq i \leq M$, and denote by $K_S = [\overline{G}, \overline{G}] \cap \ker \alpha_S$. Then it is easy to see that $H_S \simeq \mathbb{Z}^M$ is a subgroup of the center of \overline{G}, the intersection $H_S \cap [\overline{G}, \overline{G}]$ is trivial, and $\ker \alpha_S \simeq K_S \times H_S$.

Denote by $G_2 = \overline{G}/H_S$ the quotient group and by $\alpha_{H_S} : \overline{G} \to G_2$, $f_1 : G_2 \to G_1$ the natural epimorphisms. We have $\alpha_S = f_1 \circ \alpha_{H_S}$. Denote also by $O_2 = \alpha_{H_S}(\overline{O})$. Then it is easy to see that $\alpha_{H_S} : (\overline{G}, \overline{O}) \to (G_2, O_2)$ and $f_1 : (G_2, O_2) \to (G_1, O_S)$ are central extensions of equipped groups.

By construction, it is easy to see that $[\overline{G}, \overline{G}] \cap \ker \alpha_{H_S}$ is trivial and $\ker f_1 \subset [G_1, G_1]$ is a subgroup of the center of G_1. Therefore the epimorphism f_1 is a cover of equipped
groups. In addition, it is easy to see that \(\alpha_O = f_1 \circ \alpha_{H_S} \) and \(f_2 = f \circ f_1 : (G_2, O_2) \to (G, O) \) is a cover (resp., quasi-cover) of equipped groups. We have

\[
K_S \simeq \ker f_1 \subset \alpha_{H_O}([G, G] \cap \ker \alpha_0) = \alpha_{H_O}(H_2(G, Z)) \subset [G_2, G_2].
\]

Therefore, if \(k_{f_i} = |\ker f_i|, i = 1, 2 \), is the order of the group \(\ker f_i \) and \(k_f \) is the order of \(\ker f \), then

\[
h_2(G) = k_{f_2} = k_{f_1}k_f.
\]

Since we can repeat the construction described above to the cover (resp., quasi-cover) \(f_2 \) and applying again equality (8), where new \(f \) is our \(f_2 \) and new \(f_1 \) is a cover existence of which follows from assumption that old \(f_2 \) is not maximal, we obtain that new \(f_1 \) is an isomorphism, that is, the covering \(f_2 \) is maximal. \(\square \)

In the case then \(f_1 : (G, G \setminus \{1\}) \to (G, G \setminus \{1\}) \) is an isomorphism of equipped finite groups, a maximal cover \(f_2 : (G_2, O_2) \to (G, G \setminus \{1\}) \), constructed in the proof of Theorem 4 will be called a universal maximal cover.

Corollary 2. For any equipped finite group \((G, O) \) there is a maximal cover of equipped groups.

For any cover (resp., quasi-cover) \(f : (G_1, O_1) \to (G, O) \) of equipped finite groups, \(k_f = |\ker f| \leq h_2(G) \) (resp., \(k_f = |\ker f \cap [G_1, G_1]| \leq h_2(G) \)) and \(f \) is maximal if and only if \(k_f = h_2(G) \).

3.3. The ambiguity index of a quasi-cover of equipped group. Let \((\tilde{G}, \tilde{O})\) be the \(C \)-group associated with an equipped group \((G, O)\) and \(\beta_O : (\tilde{G}, \tilde{O}) \to (G, O) \) the natural epimorphism of equipped groups (see definitions in Section 1).

Theorem 5. Let \(f : (G_1, O_1) \to (G, O) \) be a quasi-cover of equipped finite groups. Then there is a natural \(C \)-epimorphism \(\kappa_S : (\overline{G}, \overline{O}) \to (\tilde{G}_1, \tilde{O}_S) \) such that \(\kappa_O = \tilde{f} \circ \kappa_S \) and \(\alpha_O = \beta_O \circ \tilde{f} \circ \kappa_S = f \circ \beta_{O_S} \circ \kappa_S \), where the \(C \)-epimorphism \(\kappa_O : (\overline{G}, \overline{O}) \to (\tilde{G}, \tilde{O}) \) is defined in Section 1 and the \(C \)-epimorphism \(\tilde{f} : (\tilde{G}_1, \tilde{O}_S) \to (\tilde{G}, \tilde{O}) \) is associated with \(f \).

Proof. In notations used in the proof of Lemma 5, we have an inclusion \(R_S \subset R_O \) of normal subgroups of \(\mathbb{F}_O \) which induces \(f : G_1 = \mathbb{F}_O/R_S \to G = \mathbb{F}_O/R_O \).

Let \(\tilde{R}_S \subset R_S \) be the normal subgroup normally generated by the elements of \(R_S \) of the form \(w_{i,j}^{-1}x_{y_i}w_{i,j}x_{y_j}^{-1} \), where \(w_{i,j} \in \mathbb{F}_O \) and \(x_{y_i}, x_{y_j} \in X_O \). For any \(w \in R_O \) and any generator \(x, g \in O \), the commutator \([x_g, w] \in R_S \), since \(f \) is a central extension of groups. Therefore

\[
[\mathbb{F}_O, R_O] \subset \tilde{R}_S
\]

By Claim \(3 \) \(\tilde{G}_1 \simeq \mathbb{F}_S/\tilde{R}_S \). Therefore inclusion (9) induces an epimorphism \(\kappa_S : \overline{G} = \mathbb{F}_O/[[\mathbb{F}_O, R_O]] \to \mathbb{F}/\tilde{R}_S \simeq \tilde{G}_1 \). Obviously, the \(C \)-epimorphism \(\kappa_S : (\overline{G}, \overline{O}) \to (\tilde{G}_1, \tilde{O}_S) \) satisfies all properties claimed in Theorem 4. \(\square \)
Proof. For quasi-covers \(zx \) that \(\ker \) in the case of maximal covers, and \(f \) splits completely in \(f \). Let \(k_f \) the order of the group \(\ker f \cap [G_1, G_1] \) and by \(k_{fs} \) the order of the group \(\ker \tilde{f}_S \cap [\tilde{G}_1, \tilde{G}_1] \).

Corollary 3. Let \(f : (G_1, O_1) \to (G, O) \) be a quasi-cover of equipped finite groups, \(S \) a section of \(f \). Then

\[h_2(G) = a_{(G,O)}k_{fs}k_S = k_f a_{(G_1,O_1)}k_S, \]

where \(k_S \) is the order of the group \(\ker k_S \cap [G, G] \).

Corollary 4. Let \(f : (G_1, O_1) \to (G, O) \) be a cover (resp., quasi-cover) of equipped finite groups, \(S \) a section of \(f \). Then for any equipment \(\tilde{O} \) of \(G_1 \) (resp., such that \(O_1 \subset \tilde{O} \)) we have an inequality \(a_{(G_1, \tilde{O})} \leq h_2(G) \).

If \(f \) is maximal, then \(a_{(G_1, \tilde{O})} = 1 \).

Proof. If \(f \) is a cover, then \(f : (G_1, \tilde{O}) \to (G, f(\tilde{O})) \) is also a cover of equipped groups and \(a_{(G_1, \tilde{O})} \leq h_2(G) \) by Corollary 3.

As it was mention in the Introduction, we have \(a_{(G_1, \tilde{O})} \leq a_{(G_1, O_1)} \) if \(O_1 \subset \tilde{O} \) and if \(f \) is a quasi-cover, then \(a_{(G_1, O_1)} \leq h_2(G) \) by Corollary 3.

If \(f \) is maximal, then \(k_f = h_2(G) \) by Corollary 2 and therefore if \(f \) is a cover then \(f : (G_1, \tilde{O}) \to (G, f(\tilde{O})) \) is also maximal. It follows from Corollary 3 that \(a_{(G_1, \tilde{O})} = 1 \) in the case of maximal covers, and \(a_{(G_1, \tilde{O})} \leq a_{(G_1, O_1)} = 1 \) in the case of maximal quasi-covers \(f \).

Let \(f : (G_1, O_1) \to (G, O) \) be a cover of equipped finite groups such that \(f^{-1}(O) = O_1 \). We say that \(f \) splits over a conjugacy class \(C \subset O \) if \(f^{-1}(C) \) consists of at least two conjugacy classes of \(G_1 \). The number \(s_f(C) \) of the conjugacy classes containing in \(f^{-1}(C) \) is called the splitting number of the conjugacy class \(C \) for \(f \). We say that \(f \) splits completely over \(C \) if \(s_f(C) = k_f \), where \(k_f = |\ker f| \).

Let \(C \) be a conjugacy class in \(G \). Consider the subgroups \(K_C \subset K_{G \setminus \{1\}} \) of the group

\[(R_{G \setminus \{1\}} \cap [\mathbb{Z}_{G \setminus \{1\}}, \mathbb{Z}_{G \setminus \{1\}}]) / \mathbb{Z}_{G \setminus \{1\}}, R_{G \setminus \{1\}} \cong H_2(G, \mathbb{Z}), \]

where \(K_C \) is generated by the elements of \(R_{G \setminus \{1\}} \) of the form \([x_h, x_g], h \in G \setminus \{1\}\). Let \(k_C \) be the order of the group \(K_C \).

Proposition 3. Let \(f : (G_1, O_1) \to (G, G \setminus \{1\}) \) be a universal maximal cover of equipped finite groups and let \(C \) be a conjugacy class in \(G \). Then \(h_2(G) = s_f(C)k_C \).

Proof. For \(g \in C \) the preimage \(f^{-1}(C) \) consists of the conjugacy classes of the elements \(z^x_g \), where \(z \in \ker f = (R_{G \setminus \{1\}} \cap [\mathbb{Z}_{G \setminus \{1\}}, \mathbb{Z}_{G \setminus \{1\}}]) / \mathbb{Z}_{G \setminus \{1\}}, R_{G \setminus \{1\}} \cong H_2(G, \mathbb{Z}) \). Note that \(\ker f \subset ZG_1 \) and \(\ker f \) acts transitively on the set of the conjugacy classes \(C_1, \ldots, C_{k_f(C)} \) involving in \(f^{-1}(C) \), \(z(C_i) = C_j \) if \(z \mathcal{G} \in C_j \) for \(\mathcal{G} \in C_i \).
Let \(x_g \in C_1 \), where \(g \in C \). Then \(z(C_1) = C_1 \) if and only if for some \(w \in G_1 \) we have \(wx_gw^{-1} = zx_g \), that is, \(z = [w,x_g] \).

If \(f(w) = h \) then \(w = z_1x_h \) for some \(z_1 \in \ker f \) and therefore \(z = [x_h,x_g] \), that is, \(z \in K_C \). The inverse statement that each element \(z \in K_C \) leaves fixed the conjugacy class \(C_1 \) is obvious. \qed

Proposition 4. Let \(f : (G_1,O_1) \to (G,G \setminus \{1\}) \) be a universal maximal cover of equipped finite groups. Then \(a_{(G,O)} = h_2(G) \) if and only if \(f \) splits completely over each conjugacy class \(C \subset O \).

If \(s_f(C) = 1 \) for some conjugacy class \(C \subset O \) then \(a_{(G,O)} = 1 \).

Proof. We have \(k_f = h_2(G) \).

The map \(g \mapsto x_g \) is a section in \(O_1 \). Denote by \(\overline{O} \) the equipment of \(G_1 \) consisting of the elements conjugated to \(x_g, g \in O \). Therefore \(f : (G_1,\overline{O}) \to (G,O) \) is a maximal cover of equipped groups and Proposition 4 follows from Corollary 3. \qed

Proposition 5. Let \(f : (G_1,O_1) \to (G,G \setminus \{1\}) \) be a universal maximal cover of equipped finite groups and let \(C_1 \subset O \) and \(C_2 \subset O \) be two conjugacy classes containing in an equipment of \(G \). Then \(a_{(G,O)} = 1 \) if \(s_f(C_1) \) and \(s_f(C_2) \) are coprime.

Proof. Follows from Corollary 3 since the group \(\ker f_s \cap [\tilde{G}_1,\tilde{G}_1] \subset H_2(G,\mathbb{Z}) \) contains two subgroups \(K_{C_1} \) and \(K_{C_2} \) whose indices in \(H_2(G,\mathbb{Z}) \) are coprime. \qed

Proposition 6. Let \(f : (G_1,O_1) \to (G,G \setminus \{1\}) \) be a universal maximal cover of equipped finite groups and let \(h_2(G) = pq \), where \(p \) and \(q \) are coprime integers. Let \(C_1 \subset O \) be a conjugacy class such that \(s_f(C_1) = q \) and let \(s_f(C) \) is coprime with \(p \) for each conjugacy class \(C \subset O \). Then the ambiguity index \(a_{(G,O)} = p \).

Proof. Follows from Corollary 3 since the group \(\ker f_s \cap [\tilde{G}_1,\tilde{G}_1] \subset H_2(G,\mathbb{Z}) \) generated by the subgroups \(K_{C_1} \) of index \(p \) in \(\ker f \) and subgroups of indices also coprime with \(p \). \qed

3.4. The ambiguity indices of symmetric groups and alternating groups.

In [5], it was proved the following theorems

Theorem 6. (Theorem 3.8 in [5]) Let \(\Sigma_d \) be a maximal cover of the symmetric group \(\Sigma_d \). The conjugacy classes of \(\Sigma_d \) which split in \(\tilde{\Sigma}_d \) are: (a) the classes of even permutations which can be written as a product of disjoint cycles with no cycles of even length; and (b) the classes of odd permutations which can be written as a product of disjoint cycles with no two cycles of the same length (including 1).

Theorem 7. (Theorem 3.9 in [5]) Let \(\tilde{A}_d \) be the maximal cover of the alternating group \(\tilde{A}_d \). The conjugacy classes of \(\tilde{A}_d \) which split in \(\tilde{A}_d \) are: (a) the classes of permutations whose decompositions into disjoint cycles have no cycles of even length; and (b) the classes of permutations which can be expressed as a product of disjoint cycles with at least one cycle of even length and with no two cycles of the same length (including 1).
Remind that, by definition, an equipment O of Σ_d must contain a conjugacy class of odd permutation since the elements of the equipment must generate the group.

It is well known that for the symmetric group Σ_d, $d \geq 4$, and for the alternating group A_d, $d \neq 6, 7$, $d \geq 4$, the Schur multiplier $h_2(\Sigma_d) = h_2(A_d) = 2$. The following theorems are straightforward consequences of Proposition 3 and Theorems 4 – 7.

Theorem 8. Let O be an equipment of a symmetric group Σ_d. Then $a(\Sigma_d, O) = 2$ if and only if O consists of conjugacy classes of odd permutations such that they can be written as a product of disjoint cycles with no two cycles of the same length (including 1) and conjugacy classes of even permutations such that they can be written as a product of disjoint cycles with no cycles of even length. Otherwise, $a(\Sigma_d, O) = 1$.

Theorem 9. Let O be an equipment of an alternating group A_d, $d \neq 6, 7$. Then $a(A_d, O) = 2$ if and only if O consists of conjugacy classes of permutations whose decompositions into disjoint cycles have no cycles of even length and the classes of permutations which can be expressed as a product of disjoint cycles with at least one cycle of even length and with no two cycles of the same length (including 1). Otherwise, $a(A_d, O) = 1$.

It is well known that in the case when $d = 6, 7$, the Schur multiplier $h_2(A_d) = 6$.

For $\sigma \in A_d$ denote by $c(\sigma) = (l_1, \ldots, l_m)$ the cycle type of permutation σ, that is, the collection of lengths l_i of non-trivial (that is $l_i \geq 2$) cycles entering into the factorization of σ as a product of disjoint cycles. For a conjugacy class C in A_d the collection $c(C) = c(\sigma)$ is called the cycle type of C if $\sigma \in C$. It is well known that the cycle type $c(C)$ does not depend on the choice of $\sigma \in C$ and there are at most two conjugacy classes in A_d of a given cycle type c.

The group A_d, $d = 6, 7$, has the following non-trivial conjugacy classes:

(I) two conjugacy classes of each cycle type (5), $(2, 4)$, and (if $d = 7$) (7);
(II) two conjugacy classes of cycle type (3) and one conjugacy class of cycle type $(3, 3)$;
(III) one conjugacy class of cycle type $(2, 2)$ and one conjugacy class of cycle type $(2, 2, 3)$ if $d = 7$.

Proposition 7. The ambiguity index $a(A_d, O)$, $d = 6, 7$, takes the following values:

(1) $a(A_d, O) = 6$ if O contains only the elements of conjugacy classes of type (I);

(II) $a(A_d, O) = 2$ if O contains only the elements of conjugacy classes of type (I) and the elements of at least one conjugacy class of type (II);

(III) $a(A_d, O) = 3$ if O contains only the elements of conjugacy classes of type (I) and the elements of at least one conjugacy class of type (III);

(II+III) $a(A_d, O) = 1$ if O contains the elements of at least one conjugacy class of type (II) and the elements of at least one conjugacy class of type (III).
Proof. Let \(f : (G_1, O_1) \rightarrow (A_d, A_d \setminus \{1\}) \) be the universal maximal cover.

Note that, by \(S \), \(a_{(A_d, A_d \setminus \{1\})} = 1 \). Therefore there exist elements \(\sigma_1, \ldots, \sigma_4 \) in \(A_d \) such that \([x_{\sigma_1}, x_{\sigma_2}]\) and \([x_{\sigma_3}, x_{\sigma_4}]\) in \((\mathbb{F}_{A_d \setminus \{1\}}, \mathbb{F}_{A_d \setminus \{1\}}) \cap R_{A_d} / [\mathbb{F}_{A_d \setminus \{1\}}, R_{A_d}]\) have, respectively, order two and three.

It is easy to see that for an element \(\sigma \) belonging to a conjugacy class \(C \) of type (I) the centralizer \(Z(\sigma) \subset A_d \) of the element \(\sigma \) is a cyclic group generated by \(\sigma \). Therefore \(K_C \) is the trivial group and hence \(s_f(C) = h_2(A_d) \). Therefore, by Proposition 4 \(a_{(A_d, O)} = 6 \) if \(O \) contains only the elements of conjugacy classes of type (I).

Let \(\sigma \) is of cycle type \((3, 3)\). Without loss of generality, we can assume that \(\sigma = \sigma_1 \sigma_2 \), where \(\sigma_1 = (1, 2, 3) \) and \(\sigma_2 = (4, 5, 6) \). Then the centralizer \(Z(\sigma) \subset A_d \) of \(\sigma \) is \(K_{1,2} \times \langle \sigma_2 \rangle \), where \(K_{1,2} = \langle \sigma_1 \rangle \times \langle \sigma_3 \rangle \) and \(\sigma_3 = (1, 2)(3, 4) \). We have \([x_\sigma, x_{\sigma_2, \sigma_1}^{-1}] = [x_{\sigma_1}, x_{\sigma_2}] \) in the group \(\mathbb{F}_{A_d \setminus \{1\}} / [\mathbb{F}_{A_d \setminus \{1\}}, R_{A_d}] \). Therefore \(K_C \), where \(C \) has type \((2, 2, 3)\), is a group of order at most two since the order of \(\sigma_1 \) is two (see Lemma 2) and it is of order two if and only if \([x_{\sigma_1}, x_{\sigma_2}]\) is not the unity in \(\mathbb{F}_{A_d \setminus \{1\}} / [\mathbb{F}_{A_d \setminus \{1\}}, R_{A_d}] \).

But, the embeddings \(\langle \sigma_1, \sigma_2 \rangle \subset A_d \subset \Sigma_d \) define a sequence of homomorphisms
\[
H_2(\langle \sigma_1, \sigma_2 \rangle, \mathbb{Z}) \rightarrow H_2(A_d, \mathbb{Z}) \rightarrow H_2(\Sigma_d, \mathbb{Z})
\]
such that the image of the non-trivial element \([x_{\sigma_1}, x_{\sigma_2}]\) in \(H_2(\langle \sigma_1, \sigma_2 \rangle, \mathbb{Z}) \) is a non-trivial in \(H_2(\Sigma_d, \mathbb{Z}) \). Therefore \(s_f(C) = 3 \) for the conjugacy class \(C \) of cyclic type \((2, 2, 3)\) and, similarly, \(s_f(C) = 3 \) for the conjugacy class \(C \) of cyclic type \((2, 2)\), since \(K_C \) is a subgroup of \(H_2(A_d, \mathbb{Z}) \cong \mathbb{Z}/6\mathbb{Z} \) generated by the elements of the second order (see Proposition 3) and only the elements of \(K_{C_1} \) and \(K_{C_2} \) can generate the subgroup of order two in \(H_2(A_d, \mathbb{Z}) \).

4. Cohomological description of the ambiguity indices

In notations used in Section 1 for an equipped finite group \((G, O)\) a subgroup \(K_{(G, O)} \) of \(H_2(G, \mathbb{Z}) \) was defined as follows: \(K_{(G, O)} \) is the subgroup of \((R_O \cap [\mathbb{F}_O, \mathbb{F}_O]) / [\mathbb{F}_O, R_O]\) generated by the elements of \(R_O \) of the form \([w, x]\), where \(g \in O \) and \(w \in \mathbb{F}_O \), and \(k_{(G, O)} \) is its order.
Denote

\[B_{(G,O)} = K_{(G,O)}^1 = \{ \varphi \in \text{Hom}(H_2(G, \mathbb{Z}), \mathbb{Q}/\mathbb{Z}) \mid \varphi(w) = 0 \text{ for all } w \in K_{(G,O)} \} \]

a subgroup of \(H^2(G, \mathbb{Q}/\mathbb{Z}) \) dual to \(K_{(G,O)} \). As in the proof of Theorem \(\text{[1]} \) it is easy to show that

\[B_{(G,O)} = \ker[H^2(G, \mathbb{Q}/\mathbb{Z}) \to \bigotimes_{A \subset G} H^2(A, \mathbb{Q}/\mathbb{Z})], \]

where \(A \) runs over all abelian subgroups of \(G \) generated by two elements \(g \in O \) and \(h \in G \). Let \(b_{(G,O)} \) be the order of the group \(B_{(G,O)} \). In particular, \(b_{(G,G\setminus\{1\})} = b_0(G) \).

The next theorem immediately follows from Theorem \(\text{[3]} \)

Theorem 10. For an equipped finite group \((G,O)\) we have \(a_{(G,O)} = b_{(G,O)} \).

The group \(H^2(G, \mathbb{Q}/\mathbb{Z}) \) is a direct sum of primary components \(H^2(G, \mathbb{Q}/\mathbb{Z}) = \Sigma_p H^2(G, \mathbb{Q}/\mathbb{Z})_p \) where primes \(p \) run through a subset of primes dividing the order of \(H^2(G, \mathbb{Q}/\mathbb{Z}) \) and hence \(G \). Therefore we have the following:

Proposition 8. If the set of conjugacy classes \(O \) consists of all classes of power of prime order then \(a_{(G,O)} = b_0(G) \). Moreover it is sufficient to consider such classes only for primes dividing \(h_2(G) \).

Note that \(H^2(G, \mathbb{Q}/\mathbb{Z})_p \) embeds into \(H^2(\text{Syl}_p(G), \mathbb{Q}/\mathbb{Z})_p \) where \(\text{Syl}_p(G) \) is a Sylow \(p \)-subgroup of \(G \). Similarly the \(p \)-primary component \(B_0(G)_p \) is a subgroup of \(B_0(\text{Syl}_p(G)) \).

More explicit versions of Proposition \(\text{[3]} \) for different groups provide with simple methods to compute \(B_O(G) \)

5. **An example of a finite group \(G \) with \(b_0(G) > 1 \)**

The following groups where constructed in the article of Saltman \(\text{[13]} \).

Consider a finite \(p \)-group \(G_p \) which is a central extension of \(\mathbb{Z}_p^4 = A_p \) with generators \(x_i \). The center of \(G_p \) is generated by pairwise commutators \(x_i x_j x_i^{-1} x_j^{-1} = [x_i, x_j] \) with one relation between \([x_1, x_2][x_3, x_4] = 1\). Thus there is natural exact sequence:

\[1 \to \mathbb{Z}_p^5 \to G_p \to A_p \to 1 \]

Lemma 6. (\(\text{[1]}, \text{[3]} \)) \(B_0(G_p) = \mathbb{Z}/p \).

Proof. It is shown in \(\text{[1]} \) using standard spectral sequence that for a central extension \(G \) of an abelian group \(A \) the group \(B_0(G) \) is contained in the image of \(H^2(A, \mathbb{Q}/\mathbb{Z}) \) in \(H^2(G, \mathbb{Q}/\mathbb{Z}) \). The group \(H^2(A_p, \mathbb{Q}/\mathbb{Z}) = \mathbb{Z}_p^6 \) which is generated by elements \([x_i, x_j]^*\).

The kernel of the map \(H^2(A_p, \mathbb{Q}/\mathbb{Z}) \to H^2(G_p, \mathbb{Q}/\mathbb{Z}) \) is naturally dual to the center \(\mathbb{Z}_p^5 \) of \(G_p \). Thus the image of \(H^2(A_p, \mathbb{Q}/\mathbb{Z}) \) in \(H^2(G_p, \mathbb{Q}/\mathbb{Z}) \) is a cyclic \(p \)-group generated by one element \(w \). Let us show that the latter is in \(B_0(G_p) \). It is enough to check that it is trivial on any abelian subgroup in \(G_p \) which surjects onto rank 2 subgroup
$\mathbb{Z}_p^2 \subset \mathbb{Z}_p^4 = A_p$. However G_p does not contain such subgroups. Indeed assume that the restriction w on a subgroup with generators $x_1, y_1 \in G_p$ is trivial. It means that the commutator $[x, y] = 1$ in G_p where x, y are projections of x_1, y_1 into A_p. On the other hand the only nontrivial relation between commutators of elements in A_p is $[x_1, x_2][x_3, x_4] = 1$ which is not equal to $[x, y]$ for any pair $x, y \in A_p$. Hence w restricts trivially onto any subgroup with two generators in G_p and generates $B_0(G_p)$.

References

[1] F. Bogomolov The Brauer group of quotient spaces of linear representations Izv. Akad. Nauk SSSR Ser. Mat., 51:3 (1987) 485—516
[2] F. Bogomolov J. Maciel; T. Petrov Unramified Brauer groups of finite simple groups of Lie type Al. Amer. J. Math. 126:4 (2004), no. 4, 935–949.
[3] A. Clebsch: Zür Theorie der Riemann'schen Fläche. Math. Ann., 6 (1872), 216 – 230.
[4] W. Fulton: Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. of Math., 90:3 (1969), 542 – 575.
[5] P.H. Hoffman, J.P. Humphreys: Projective Representations of the Symmetric Groups. Oxford Science Publications, Clarendon Press Oxford (1992).
[6] A. Hurwitz: Uber Riemann’sche Flächen mit gegebenen Verweigungs punkten. Math. Ann., 39, (1981), 1 – 61.
[7] Ming-chang Kang, B. Kunyavskii: The Bogomolov multiplier of rigid finite groups, arXiv:1304.2691
[8] B.Kunyavskii The Bogomolov multiplier of finite simple groups Cohomological and geometric approaches to rationality problems, 209—217, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA,(2010) 209—217,
[9] Vik.S. Kulikov, V. M. Kharlamov: Covering semigroups, Izv. Math., 77:3 (2013), 594 – 626.
[10] Vik.S. Kulikov: Factorizations in finite groups, Sb. Math., 204:2 (2013), 87 –116.
[11] Vik.S. Kulikov: Factorization semigroups and irreducible components of Hurwitz space. II, Izv. Math., 76:2 (2012), 356 – 364.
[12] Vik. S. Kulikov: Hurwitz curves. UMN, 2007, 62:6(378), 3 – 86.
[13] D. Saltman Noether’s problem over an algebraically closed field Invent. Math. 77 vol 1 (1984), 71–84.