Efficacy of pharmacotherapies for short-term smoking abstinence: A systematic review and meta-analysis
Edward J Mills *1, Ping Wu2, Dean Spurden3, Jon O Ebbert4 and Kumanan Wilson5

Address: 1Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada, 2Department of Epidemiology, LSHTM, UK, 3Pfizer Limited, Tadworth, UK, 4Mayo Clinic College of Medicine, Rochester, USA and 5Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada

Email: Edward J Mills* - emills@sfu.ca; Ping Wu - pwu@ccnm.edu; Dean Spurden - Dean.Spurden@Pfizer.com; Jon O Ebbert - jon.ebert@mayo.edu; Kumanan Wilson - kwilson@ohri.ca
* Corresponding author

Abstract

Background: Smoking cessation has important immediate health benefits. The comparative short-term effectiveness of smoking cessation interventions is not well known. We aimed to determine the relative effectiveness of nicotine replacement therapy (NRT), bupropion and varenicline at 4 weeks post-target quit date.

Methods: We searched 10 electronic medical data bases (inception to October 2008). We selected randomized clinical trials [RCTs] evaluating interventions for our primary outcome of abstinence from smoking at at-least 4 weeks post-target quit date, with biochemical confirmation. We conducted random-effects odds ratio (OR) meta-analysis and meta-regression. We compared treatment effects across interventions using head-to-head trials and calculated indirect comparisons.

Results: We combined a total of 101 trials evaluating delivery of NRT versus inert controls at approximately 4 weeks post-target quit date (total n = 31,321). The pooled overall OR is OR 2.05 (95% Confidence Interval [CI], 1.89-2.23, P =< 0.0001). We pooled data from 31 bupropion trials contributing a total n of 11,118 participants and found a pooled OR of 2.25 (95% CI, 1.94-2.62, P =< 0.0001). We evaluated 9 varenicline trials compared to placebo. Our pooled estimate for cessation at 4 weeks post-target quit date found a pooled OR of 3.16 (95% CI, 2.55-3.91, P =< 0.0001). Two trials evaluated head to head comparisons of varenicline and bupropion and found a pooled estimate of OR 1.86 (95% CI, 1.49-2.33, P =< 0.0001 at 4 weeks post-target quit date. Indirect comparisons were: NRT and bupropion, OR, 1.09, 95% CI, 0.93-1.31, P = 0.28; varenicline and NRT, OR 1.56, 95% CI, 1.23-1.96, P = 0.0002; and, varenicline and bupropion, OR 1.40, 95% CI, 1.08-1.85, P = 0.01.

Conclusion: Pharmacotherapeutic interventions are effective for increasing smoking abstinence rates in the short-term.
Introduction
Smoking remains the leading cause of preventable death in the world.[1] Smoking cessation is associated with important benefits at the individual and societal levels. Given the prevalence of smoking, considerable efforts have been directed toward developing interventions to assist smokers in quitting. However, smoking cessation interventions have had heterogeneous successes.[2] Smoking cessation is necessary to reduce future morbidity and mortality, however many patients have difficulty discontinuing.

Both psychosocial and pharmaceutical interventions have been evaluated for their success in achieving smoking discontinuation.[3,4] Drug therapies are now licensed in North America and Europe to promote smoking cessation. The most commonly evaluated of these has been nicotine replacement therapy [NRT].[5,6] More recently, attention has focused on the use of anti-depressant therapy and specifically the agent bupropion.[7] A new intervention approved in 2006, varenicline, targets nicotine receptors to reduce craving and pleasure sensations. Recent guidelines and evaluations call for combining therapies to provide optimal patient management.[3,8]

We,[9] and others,[10-13] have previously reported on the efficacy of these interventions for longer-term cessation (3-12 months) durations. No systematic review has yet evaluated short-term quit rates from available therapies. Guidelines for smoking cessation programmes consider quitting 4-weeks post-planned quit date as a successful short-term cessation.[14] Short-term smoking abstinence is especially important in patients requiring immediate behaviour changes, such as those with recent cardiovascular events,[15] or undergoing surgery.[16] We conducted a meta-analysis of Randomized Clinical Trials [RCTs] to identify the effectiveness of the various pharmacological interventions in improving abstinence rates at 4-weeks and 6 months.

Methods
Eligibility Criteria
Our primary outcome of interest was smoking abstinence at approximately 4 weeks post-target quit date (TQD). Our secondary outcomes were short-term smoking abstinence defined as 6 months after initiating treatment or closest available data to that time point, within one month. We included any RCT of NRT of any delivery method, bupropion or varenicline. We included only RCTs of at least 4 weeks duration with biochemical confirmation of smoking abstinence because of the likelihood of abstinence over-reporting. While methods of assessing smoking abstinence vary from study to study, the most common method is self-report. However, this can have false cessation rates as high as 30%.[17] False reporting is most likely to occur in a trial setting or in assessing smoking status after a medical event. Laboratory tests are often used to verify smoking status, especially in clinical trials. Methods of biological verification include serum and saliva thiocyanate (SCN), expired carbon monoxide (CO), plasma, saliva and urinary cotinine and plasma and urinary nicotine. Each of these has various strengths and weaknesses.[18] Studies had to report smoking abstinence as either sustained abstinence at the time periods or point-prevalence of abstinence. When both outcomes were available, we considered sustained abstinence to be a superior clinical marker of abstinence. We excluded dose ranging studies, non-RCTs, post-hoc analyses, maintenance therapy, and studies that reported outcomes as self-report.

Study endpoints
Our primary endpoint was the 4-week post-TQD. This is variably reported in studies over years of publications. National committees require data on the 4-week post-TQD and each group of trials of intervention deals with this endpoint differently. Newer studies typically report this as the last 4-weeks of treatment as pharmacotherapy is begun prior to TQD. Where this specific endpoint is reported, we extracted data on 4-week post-TQD. Where not reported, we extracted data on 4 weeks post-intervention. Our secondary endpoint, 6-months post intervention is typically reported as 6 months post-treatment, but may also be reported as 6 months post TQD. Where reported specifically, we extracted data on 6-month post-TQD.

Search strategy
In consultation with a medical librarian (PR), we established a search strategy. We searched independently, in duplicate, the following 10 databases (from inception to October 1, 2008): MEDLINE, EMBASE, Cochrane CENTRAL, AMED, CINAHL, TOXNET, Development and Reproductive Toxicology, Hazardous Substances Data-bank, Psych-info and Web of Science, databases that included the full text of journals (OVID, ScienceDirect, and Ingenta, including articles in full text from approximately 1700 journals since 1993). In addition, we searched the bibliographies of published systematic reviews,[5,19-25,7,10,11,13,26] and health technology assessments.[27] Searches were not limited by language, sex or age.

Study selection
Two investigators (EM, PW) working independently, in duplicate, scanned all abstracts and obtained the full text reports of records, that indicated or suggested that the study was a RCT evaluating a smoking abstinence therapy on the outcomes of interest. After obtaining full reports of the candidate trials (either in full peer-reviewed publica-
tion or press article) the same reviewers independently assessed eligibility from full text papers.

Data collection

Two reviewers (PW, EM) conducted data extraction independently using a standardized pre-piloted form. Reviewers collected information about the smoking intervention tested, the population studied (age, sex, underlying conditions), treatment dosages and dosing schedules, the treatment effect at 4 weeks post-TQD and at 6 months post-intervention, the specific measurement of abstinence (sustained or point-prevalence), and the chemical confirmation methods. Study evaluation included general methodological quality features including allocation concealment, sequence generation, blinding status, intention-to-treat, and appropriate descriptions of loss to follow-up. We entered the data into an electronic database such that duplicate entries existed for each study; when the two entries did not match, we resolved differences through discussion and consensus.

Data analysis

In order to assess inter-rater reliability on inclusion of articles, we calculated the Phi statistic, which provides a measure of inter-observer agreement independent of chance.[28] We calculated the Odds Ratios [OR] and appropriate 95% Confidence Intervals [CIs] of outcomes according to the number of events of abstinence reported in the original studies or sub-studies. Odds Ratios are the preferred effect measure in smoking cessation trials. In circumstances of zero outcome events in one arm of a trial, we added 1 to each arm, as suggested by Sheehe.[29] We first pooled studies of all NRT interventions versus all controls using the DerSimonian-Laird random effects method.[30] which recognizes and anchors studies as a sample of all potential studies, and incorporates an additional between-study component to the estimate of variability.[31] We calculated the I² statistic for each analysis as a measure of the proportion of the overall variation that is attributable to between-study heterogeneity.[32] Forest plots are displayed for each primary analysis, showing individual study effect measures with 95% CIs, and the overall DerSimonian-Laird pooled estimate. We then conducted a meta-regression analysis on the NRT studies with predictors of heterogeneity including the following covariates: placebo control; reporting of sequence generation; reporting of allocation concealment; method of chemical confirmation of abstinence; and plans to quit. We conducted separate meta-regression analyses and calculated the relevant ORs for the covariates as the exponent of the coefficient.[33] We additionally pooled all placebo-controlled trials and evaluated effect sizes at 4 weeks and at 6 months post-TQD. For head-to-head trials of bupropion versus NRT, we conducted pooled random-effects analyses at 4 weeks and at 6 months post-TQD. For varenicline trials, we conducted pooled random-effects analyses of varenicline versus placebo and for head-to-head trials of varenicline versus bupropion or NRT at 4 weeks and at 6 months, post-TQD. Head-to-head trials provide the strongest inferences regarding intervention superiority.[34] However, with so few head-to-head trials of varenicline versus NRT, we conducted indirect comparisons of these interventions versus placebo using methods described by Bucher et al.[35] This method maintains the randomization from each trial and compares the summary estimates of pooled interventions with CIs. Analyses were conducted using StatsDirect (version 2.5.2, http://www.statsdirect.com) and Comprehensive Meta-analysis (version 2, http://www.meta-analysis.com).

Results

Study inclusion

We identified 795 abstracts from our extensive searches. We excluded 532 as irrelevant to meeting our inclusion criteria. We obtained 263 full-text studies for screening. We further excluded 94 studies for reasons explained in figure 1 [See Additional File 1]. In total, we included data from 168 RCTs. Agreement was near perfect (φ = 0.9).

Methods reporting

Nicotine Replacement Therapy

One hundred and fifteen RCTs of NRT provided either safety or efficacy data at approximately 4 weeks post-TQD. [36-150]. Eighty-two (82/115) used a placebo control [36-116,150]. Trials were variably reported with only 43 reporting methods of sequence generation[37,39,41,46, 52,55, 57,70,73-76,80,83,85-92,95-98,103,105,110-112, 114-116, 118,121,125,126,139,142,144,145,148]. Eighteen (18/115) reported on allocation concealment. [37,39, 41,46,70,76,81,84,86,88-90,95, 105,111,112,126,148], 81 (81/115) reported on who was blinded [36-73, 75-78,120,131,132,79-94,96-98,149,100-103,105-116]. Most trials used some form of chemical confirmation of abstinence, with carbon monoxide being the most common (104/115).[36-38,40-57,59-71,73,117-120,122-124, 129-134],[72,74-81,83-94,97-99,135,137-140,149], 100-111, 113-116,141-148], salivary cotinine (26/115). [42,45,46,50, 56,66,68,75,76,79,83,93,95, 103, 106,111,123,125, 128, 129,132-134,145,147,150]. serum
Figure 1
Flow diagram of included studies.

- 474 abstract screened for inclusion after searching with “nicotine” AND “smoking” AND “gum OR Patch OR spray OR inhalers OR Tablet OR lozenge” AND “random*”
- 280 abstracts were obtained when using “bupropion” and “smoking” and “random” and “clinical trial”
- 41 abstracts were obtained when using “varenicline” and “random” and “clinical trial”

- 532 abstracts excluded as irrelevant

- 167 NRT-relevant full-text paper publications retrieved for potential inclusion
- 80 bupropion-relevant full-text-paper were obtained for potential further review
- 16 varenicline-relevant full-text papers were obtained for potential further review

- 115 NRT studies included in analysis.
 - 101 in 4-week efficacy analysis
 - All compare NRT with placebo or no NRT independently.
- 42 bupropion studies included in the analysis
 - 40 studies compare bupropion with placebo
 - 2 studies compare bupropion with education or no Tx.
 - 31 trials in 4-week efficacy analysis
- 11 studies included in the analysis
 - All 11 in 4 week efficacy analysis
 - 10 studies compare varenicline with placebo
 - 1 compares varenicline with NRT

- 52 NRT relevant studies were further excluded:
 - 15: duplicated studies
 - 12: intervention not comparable or NRT can’t be independently evaluated
 - 5: only with one-year abstinence data and no side effect reported
 - 2: smoking reduction studies
 - 4: smoking abstinence and craving studies
 - 12: not NRT side effect and abstinence related studies
 - 1: genotype and NRT response

- 38 bupropion-relevant studies were further excluded:
 - 5: Bupropion can’t be independently evaluated
 - 4: comparison of different dosage
 - 11: duplicate studies
 - 16: not abstinence or bupropion side effects related
 - 2: not RCT

- 5 varenicline-relevant studies were further excluded for the following reason
 - 4: without abstinence data
 - 1: varenicline vs other treatment
status (7/115), (39,43,58,71,114,119,136), or urine sampling (4/115). Most (94/115) reported that participants were trying to quit smoking. (36-39,41,44-52,54-65,117,118,121,122,124-129,131, 132, 68-75,77,78,80-82,85-87,89-91,93,94,97-100,102-106,108,110-116,136-140,143-149).

Bupropion

Forty-two bupropion trials met our inclusion criteria. (113,114,142,143,149,151-187) and reported on outcomes at 4 weeks post-TQD. Almost all trials (40/42) used a placebo control. (113,114,149,151-187), with 2 providing education. (143) and counseling. (142) as controls. The quality of reporting studies varied considerably. We found that important study quality indicators were reported sporadically. Sequence generation was reported in 23 of 42 trials. (113,114,142,143,149,151-187) and found a pooled estimate of 2.11 (95% CI, 1.85-2.40, I2 = 59.5%, 95% CI = 37.6% to 64%, P =< 0.0001). This was not dissimilar from gum versus placebo we pooled data from 41 trials. (36-43,45-47,49-52,54-69,71,73-82,131,84,86-91,94,95,97,98,100,103,105,106,111,114-116,149) (total n = 25,154: 24,654) and found a pooled estimate of 2.13 (95% CI, 1.94-2.34, P =< 0.0001, I2 = 53.6%, 95% CI = 37.6% to 64%, P =< 0.0001) this was not dissimilar when evaluating sustained abstinence (29 RCTs. [45,52,54,56,57,60,61,66,67,69,73,75,81,82,86,87,89,91,94,98,99,103,124,131,139,142,145,149]) n = 14,306, OR 2.36 (95% CI, 2.04-2.73 I2 = 61.4%, 95% CI = 37.5% to 73.5%, P =< 0.0001).

When we specifically looked at the effectiveness of NRT gum versus all inert controls we pooled data from 41 trials. (36-42,45-47,50,67,74,78,106,111,114,117-119,121,123,124,128-132,134,137,138,141,144,146) (n = 9,460) and found an OR of 1.76 (95% CI, 1.54-2.01, P =< 0.0001, I2 = 38.9% 95% CI = 3.8% to 57.6%, P = 0.004). This was not dissimilar from gum versus placebo controls (23 trials. [36-42,45-47,50,67,74,78,106,111,114,124,131]) n = 5818, OR 1.66, 95% CI, 1.41-1.96, P =< 0.0001, I2 = 41.1% P = 95% CI = 0% to 63.2%, P = 0.01. When we specifically examined trials assessing the effectiveness of NRT cutaneous patches versus inert controls we included data from 47 RCTs. [49,51,52,54,56,58-60,62-66,69,71,73,77,79,82,84,86,87,89-91,95,97,100,103,105,106,115,135,139,141-145,149]) (n = 15,980) and found a pooled estimate of 2.11 (95% CI, 1.85-2.40, P =< 0.0001, I2 = 54.8%, 95% CI, 34.7 to 66.7%, P =< 0.0001). This was not different when examining NRT patches versus placebo controls (38 trials [49,51,52,54,56,58-60,62-66,69,71,73,77,79, 82,84,86, 87,89-91,95,97,100,103,105,106,115,135,139,141-145,149]) n = 14,988, OR 2.15, 95% CI, 1.86-2.48, P =< 0.0001, I2 = 59.5%, 95% CI = 39.3 to 70.8%, P =< 0.0001).

When evaluating NRT versus controls at 6 months (96 RCTs, n = 30,422) we found a pooled estimate of OR 1.92 (95% CI, 1.73-2.14, P =< 0.0001, I2 = 64.2%, 95% CI, 54.8 to 70.8%, P =< 0.0001). This was not dissimilar when
Figure 2
Random effects meta-analysis of all NRT trials combined versus all inert controls at 4 weeks, post-TQD.
evaluating NRT as either gum (23 RCTs, n = 5818, OR 1.69, 95% CI, 1.37-2.08, P =< 0.0001, I² = 55.9%, 95% CI, 21.8 to 71.3%, P = 0.0004) or cutaneous patch (43 RCTs, n = 16,298, OR, 1.90, 95% CI, 1.62-2.33, I² = 62.4%, 95% CI, 45.5 to 72.3%, P =< 0.0001).

Bupropion

We pooled data from 31 trials.[114,142,143,149,152-157,162-173,175-177,182-187] contributing a total n of 11,118 participants providing data at approximately 4 weeks post-TQD and found a pooled OR of 2.25 (95% CI, 1.94-2.62, P =< 0.0001, I² = 78, 95% CI, 70-83%, P =< 0.001, See Figure 4). When we evaluated studies assessing sustained cessation (25 randomized cohorts,[142,149,151,152,154,155,159,160,162-166,168,170,171,175,176,180,182,185,187], n = 8,724) we found a pooled OR of 1.96, 95% CI, 1.39-2.79, P = 0.0002, I² = 89%, 95% CI, 86-92%, P =< 0.0001, See Figure 5). We were able to explain the large heterogeneity in the analysis through meta-regression as studies failing to report allocation concealment were associated with increased effect sizes (OR 2.29, 95% CI, 2.05-2.60, P =< 0.0001), as were studies confirming abstinence through urinary cotinine (OR 2.44, 95% CI, 2.18-2.66, P =< 0.0001), but not those utilizing carbon monoxide confirmation (OR 1.30, 95% CI, 0.87-1.95, P = 0.18).

Our secondary outcomes for effectiveness also indicated significant benefits with bupropion over controls at 6 months (OR 1.75, 95% CI, 1.54-1.97, P =< 0.0001, I² = 32%, 95% CI, 0-53%, P =< 0.0001). This effect was consistent when applying only continuous abstinence in the 6 month period (OR 1.94, 95% CI, 1.62-2.32, P =< 0.0001, I² = 34, 95% CI, 0-62, P = 0.04).

Varenicline

When we evaluated varenicline for smoking abstinence at approximately the last 4 weeks of treatment (4 weeks post-TQD) compared to placebo, we pooled 9 trials.[162-164,189-192,194,196] contributing a total n of 5,192 participants. Our pooled estimate for abstinence at 4 weeks post-TQD found a pooled OR of 3.16 (95% CI, 2.55-3.91, P = 0.0001, I² = 53%, 95% CI, 0-76%, P = 0.02, See Figure 6). We were able to explain the heterogeneity in the analysis through meta-regression as studies failing to report allocation concealment were associated with increased effect sizes (OR 3.35, 95% CI, 2.45-4.57, P =< 0.0001). Our 6 month evaluations of varenicline versus placebo yielded similar estimates for continuous abstinence in the 6 month period (OR 2.17, 1.48-3.19, P =< 0.0001). Two trials evaluated head to head comparison of varenicline and bupropion and found a pooled estimate of OR 1.86 (95% CI, 1.49-2.33, P =< 0.0001) using continuous abstinence rates at 4 weeks and, at 6 months post-TQD (OR 1.64, 95% CI, 1.28-2.10, P =< 0.0001).[163,164] One trial evaluated varenicline versus NRT patch (n = 757) for continuous abstinence at the last 4 weeks post-TQD using carbon monoxide confirmation (OR 1.70, 95% CI, 1.26-2.28, P =< 0.001).[188] This same trial reported on continuous abstinence at 6 months (24 weeks), but the difference was not significant (OR 1.29, 95% CI, 0.94-1.77, P = 0.11).

Adjusted indirect comparison (Figure 7)

We applied an adjusted indirect comparison evaluating NRT, bupropion and varenicline on our primary endpoint of 4 weeks post-TQD abstinence. We were unable to display a significant difference between NRT and bupropion at 4-weeks (OR 1.09, 95% CI, 0.93-1.31, P = 0.28). Varenicline was superior to both NRT (OR 1.56, 95% CI, 1.23-1.96, P =< 0.0001) and bupropion at post-TQD (OR 1.40, 95% CI, 1.08-1.85, P = 0.01).

Discussion

This study confirms the short-term effectiveness of all three smoking interventions compared to placebo. Our findings stand in line with outcomes evaluated over a longer period, up to one year, of these same interventions.[9,10] This finding should be of interest to clinicians, policy-makers and patients. As interventions to assist in smoking cessation are increasingly available, the combination of these interventions, along with socio-behavioural interventions, should be a research priority.[8]

The definition of smoking abstinence and relapse are variable across studies. The most common time periods of
Figure 4
Random effects meta-analysis of smoking cessation with bupropion versus controls at 4-weeks post-TQD.
Figure 5
Random effects meta-analysis of sustained smoking abstinence with bupropion versus controls at 4-weeks post-TQD.
smoking cessation required to be considered abstinent are 24 hours, 7 days and 30 days. Relapse is defined by the National Heart, Lung and Blood Institute as having smoked at least a puff for 7 days after having quit. Seventy-five to 80 percent of smokers relapse within the first 6 months. Relapse rates continue to remain high from 6 to 12 months (7 to 35% of those abstinent at 6 months). Relapse occurs at a lower rate following one year of cessation.[4] The National Center for Health Education Code of Practice and Standards for the Evaluation of Group Smoking Cessation Programs recommends at least one year of follow-up before determining if patients have quit smoking.[4] The National Institute for Clinical Excellence (UK) Guidelines require the reporting of short-term abstinence rates. Further, immediate abstinence of smoking following a major cardiovascular event has major benefits in preventing secondary events.[197] We recognize that multiple short-term abstinence attempts followed by relapses may be associated with long term smoking use, an issue that is increasingly complex to manage from a clinical and public health perspective.[198] However, our findings are consistent with the longer term evaluations and indicate that sustained abstinence is possible in the clinical trial setting. Furthermore there are some physiological and health advantages to short-term abstinence. For example, individuals with cardiovascular events can immediately benefit from smoking discontinuation because of improvements in several physiological variables including reduced myocardial oxygen demand, improved myocardial oxygen supply, reduced activation of the sympathetic system, reduced risk of arrhythmias and reduced acute thrombosis risk. These benefits could be particularly critical in the peri-event period when patients are at increased risk of complications or repeat events. Thus even if relapse occurs at a later stage, abstinence around the time of an event could prove beneficial.

When we previously evaluated varenicline to NRT and bupropion, we had data from only 4 trials.[9] This evaluation found that the addition of 7 trials continues to demonstrate elevated varenicline effects compared to NRT and bupropion. Further community effectiveness interventions will be required to ensure generalizability.

There are several strengths and limitations to consider when interpreting our analysis. Strengths of this review include the comprehensive search strategy that improved the likelihood of identifying all relevant studies. Duplicate extraction of data reduced the potential for bias in this component of the synthesis process. By limiting this review to randomized trials we ensured that the included studies would have reduced likelihood of systematic error and therefore have high internal validity. Our use of meta-regression to identify sources of heterogeneity in the meta-analyses is a strength and demonstrated that several of the a priori chosen covariates were predictors of heterogeneity. To reduce patient-reporting bias, we included only studies that chemically confirmed the cessation of smoking at the specific time-points - this has been a weakness in previous reviews.[23]

Limitations of this meta-analysis include the potential for publication bias, in particular the possibility that small negative studies would not be published. Publication bias on short-term effects is likely due to both author-initiated bias and journal-initiated bias against short-term evaluations. We included only published trials so it is possible that other trials have been conducted and never published. However, it is unlikely that the presence of these studies would have altered the findings of our analysis given the large number of studies included and the consistency with the longer-term evaluations (both 6 months and one year).[9,10] We limited our search to English language databases (although we would include non-English articles if identified) so the possibility of quality studies in other languages does exist. We used both direct and indirect comparisons to evaluate the relative effectiveness of agents. Head-to-head trials provide the strongest inferences regarding intervention superiority.[34] In the presence of existing head-to-head trials of varenicline versus NRT,[188] and bupropion,[163,164] it is arguable whether indirect comparisons are required.[199] In this case, the results were consistent. We used the indirect comparison method proposed by Bucher et al., that respects the principle of randomization between trials.[200] Other strategies we have previously applied,[201] including mixed treatment comparisons, offer similar benefits.[199]
Conclusion
In conclusion, our review demonstrates clear efficacy of smoking cessation pharmacotherapies in the short term and provides similar estimates of efficacy as longer term evaluations.[9,10] Given the benefits of smoking abstinence in both primary and secondary prevention of major morbidity, the use of these therapies in patients with active smoking related disease warrants further study.[15]

Future research to evaluate the efficacy and safety of these interventions in combination and in patients with advanced diseases is warranted.

Abbreviations
CO: Carbon monoxide; NRT: Nicotine replacement therapy; OR: Odds ratio; RCT: Randomized Clinical Trial; SCN: Saliva thiocynate; 95% CI: 95% Confidence intervals.

Competing interests
EM, PW and KW have consulted to Pfizer Ltd in the past 5 years. No stock ownership is reported. DS is an employee of Pfizer Ltd. JE declares no conflict of interest. Pfizer Ltd. Is the maker of an NRT product and varenicline. EM and KW are supported by Canadian Institutes of Health Research (CIHR) Canada Research Chairs.

Authors’ contributions
EM, PW, DS, KW and COR conceived the protocol. EM, PW, KW did the search strategies. EM, PW, JO, KW did the data abstraction and analysis. EM, PW, JO, KW wrote the first draft of the manuscript. EM, PW, DS, JO, KW approved the final submitted version.

Funding
This study received unrestricted funding from Pfizer Ltd to evaluate anti-smoking agents. They had no role in the conduct, interpretation or writing of this manuscript.

Acknowledgements
We thank Chris O’Regan for assistance with this study.

References
1. Peto R, Lopez AD, Boreham J, Thun M, Heath C Jr, Doll R: Mortality from smoking worldwide. Br Med Bull 1996, 52:12-21.
2. Law M, Tang JL: An analysis of the effectiveness of interventions intended to help people stop smoking. Arch Intern Med 1995, 155:1933-1941.
3. Kuehn BM: Updated US smoking cessation guideline advises counseling, combing therapies. JAMA 2008, 299:2736.
4. US Public Health Service. Treating Tobacco Use and Dependence: 2008 Update 2008 [http://www.ahrq.gov/path/tobacco.htm].
5. Silagy C, Lancaster T, Stead L, Mant D, Fowler G: Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2004:CD000031.
6. Salanti G, Kavvoura FK, Ioannidis JP: Exploring the geometry of treatment networks. Ann Intern Med 2008, 148:544-553.
7. Hughes J, Stead L, Lancaster T: Antidepressants for smoking cessation. Cochrane Database Syst Rev 2004:CD000031.
8. Shah SD, Wilken LA, Winkler SR, Lin SJ: Systematic review and meta-analysis of combination therapy for smoking cessation. J Am Pharm Assoc (2003) 2008, 48:659-665.
9. Wu P, Wilson K, Dimoulas P, Mills EJ: Effectiveness of smoking cessation therapies: a systematic review and meta-analysis. BMC Public Health 2006, 6:300.
10. Eisenberg MJ, Filion KB, Yavin D, Belisle P, Mottillo S, Joseph L, Gervais A, O’Loughlin J, Paradis G, Rinfret S, Pilote L: Pharmacotherapies for smoking cessation: a meta-analysis of randomized controlled trials. Cmaj 2008, 179:13-144.
11. Cahill K, Stead LF, Lancaster T: Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 2008:CD006103.
12. Stead LF, Perera R, Bullen C, Mant D, Lancaster T: Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2008:CD000031.
13. Hughes JR, Stead L, Lancaster T: Antidepressants for smoking cessation. Cochrane Database Syst Rev 2007:CD000031.
14. NICE: NICE: smoking cessation guidance. 2008 [http://www.nice.org.uk/iru/core/pagedo?pageId=8024618].
15. Wilson K, Gibson N, Willan A, Cook D: Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Arch Intern Med 2000, 160:939-944.
16. Thomsen T, Tomnesen H, Moller AM: Effect of preoperative smoking cessation interventions on postoperative complications and smoking cessation. The British journal of surgery 2009, 96:451-461.
17. Ruth Kj, Neaton JD: Evaluation of two biological markers of tobacco exposure. MR flirt Research Group. Prev Med 1991, 20:574-589.
18. Hounton SH, Carabin H, Henderson NJ: Towards an understanding of barriers to condom use in rural Benin using the Health Belief Model: a cross sectional survey. BMC Public Health 2005, 5:5.
19. Lancaster T, Silagy C, Fowler G: Training health professionals in smoking cessation. Cochrane Database Syst Rev 2000:CD000214.
20. Silagy C: Physician advice for smoking cessation. Cochrane Database Syst Rev 2000:CD000065.
initial results of the Stanford Stop Smoking Project. Jama 1988, 260:1575-1580.

46. Hughes JR, Gust SW, Keenan RM, Fenwick JW, Healey ML: Nicotine vs placebo gum in general medical practice. Jama 1989, 261:1300-1305.

47. Blondal T: Controlled trial of nicotine polacrilex gum with supportive measures. Arch Intern Med 1989, 149:1818-1821.

48. Ross J, Sitzer ML, Maldonado J: Nicotine replacement: effects of postcessation weight gain. J Consult Clin Psychol 1989, 57:87-92.

49. Abelin T, Ehrams R, Buhler-Reichert A, Imhof PR, Muller P, Thommen A, Vesanken K: Effectiveness of a transdermal nicotine system in smoking cessation studies. Methods Find Exp Clin Pharmacol 1989, 11:205-214.

50. Killen JD, Fortmann SP, Newman B, Varady A: Evaluation of a treatment approach combining nicotine gum with self-guided behavioral treatments for smoking relapse prevention. J Consult Clin Psychol 1990, 58:85-92.

51. Manders WD, Laupacis A, Wells GA, Sackett DL: Nicotine replacement therapy with use of a transdermal nicotine patch—a randomized double-blind placebo-controlled trial. Mayo Clin Proc 1990, 65:1329-1337.

52. Tonnessen P, Norregard J, Simonsen K, Sawe U: A double-blind trial of a 16-hour transdermal nicotine patch in smoking cessation. N Engl J Med 1991, 325:311-315.

53. Campbell IA, Prescott R, Tjader-Burton SM: Smoking cessation in hospital patients given repeated advice plus nicotine or placebo chewing gum. Resp Med 1991, 85:155-157.

54. Darupour DM, Heaney SA, Prendergast JJ, Cauwe D, Knowles M, Rolf CN, Cheney RA, Hatlelid K, Thompson AB, Rennard SI: Effect of transdermal nicotine delivery as an adjunct to low-intervention smoking cessation therapy. A randomized, placebo-controlled, double-blind study. Arch Intern Med 1991, 151:749-752.

55. Sutherland G, Stapleton JA, Russell RA, Jarvis MJ, Hapke P, Belcher M, Feyerabend C: Randomised controlled trial of nasal nicotine spray in smoking cessation. Lancet 1992, 340:324-329.

56. Sachs DP, Sawe U, Lischow SJ: Effectiveness of a 16-hour transdermal nicotine patch in a medical practice setting, without intensive group counseling. Arch Intern Med 1993, 153:1881-1890.

57. Tonnesen P, Norregard J, Mikkelsen K, Jorgensen S, Nilsson F: A double-blind trial of a nicotine inhaler for smoking cessation. JAMA 1993, 269:1258-1261.

58. Merz PG, Keller-Stanislavski B, Huber T, Woodcock BG, Rietbrock N: Transdermal nicotine in smoking cessation and involvement of non-specific influences. Int J Clin Pharmacol Ther Toxicol 1993, 31:476-482.

59. Russell MA, Stapleton JA, Feyerabend C, Wiseman SM, Gustavsson G, Sawe U, Connor P: Targeting heavy smokers in general practice: randomised controlled trial of transdermal nicotine patches. Bmj 1993, 306:1308-1312.

60. Westman EC, Levin ED, Rose JE: The nicotine patch in smoking cessation. A randomised trial with telephone counseling. Arch Intern Med 1993, 153:1917-1923.

61. Hjalmarson A, Franzon M, Westin A, Wiklund O: Effect of nicotine nasal spray on smoking cessation. A randomized, placebo-controlled, double-blind trial. Arch Intern Med 1994, 154:2567-2572.

62. Hurt RD, Dale LC, Fredrickson PA, Caldwell CC, Lee GA, Offord KP, Lauger GG, Marusic Z, Neese LW, Lundberg TG: Nicotine patch therapy for smoking cessation combined with physician advice and nurse follow-up. One-year outcome and percentage of nicotine replacement. JAMA 1994, 271:595-600.

63. Fiore MC, Kenford SL, Jorenby DE, Wetter DW, Smith SS, Baker TB: Two studies of the clinical effectiveness of the nicotine patch with different counseling treatments. Chest 1994, 105:524-533.

64. Richmond RL, Harris K, de Almeida Neto A: The transdermal nicotine patch: results of a randomised placebo-controlled trial. Med J Aust 1994, 161:130-135.

65. Levin ED, Westman EC, Stein RM, Carnahan E, Sanchez M, Herman S, Behm FM, Rose JE: Nicotine skin patch treatment increases abstinence, decreases withdrawal symptoms, and attenuates rewarding effects of smoking. J Clin Psychopharmacol 1994, 14:41-49.

66. Stapleton JA, Russell MA, Feyerabend C, Wiseman SM, Gustavsson G, Sawe U, Wiseman D: Dose effects and predictors of outcome in
67. Schneider NG, Olfson M, Fava M, Simon GE, D Worthen M, Baker TB: Efficacy and safety of over-the-counter nicotine replacement therapy for smoking cessation: results from the European CEASE trial. *European Respiratory Society*. Eur Respir J 1999, 13:238-246.
68. Hays JT, Crogan IT, Schroeder DR, Ossow KP, Hurd SD, Wolter TD, Nides MA, Davidson M: Over-the-counter nicotine patch therapy for smoking cessation: results from randomized, double-blind, placebo-controlled trials. *Am J Public Health* 1999, 89:170-1707.
69. Etter JF, Lasalio E, Zellweger JP, Ferro M, Perren TV: Nicotine replacement to reduce cigarette consumption in smokers who are unwilling to quit: a randomized trial. *Clin Psychopharmacol 2002*, 22:487-495.
70. Luft JR, Noyy P, Hattusak D, Jensen J, Call VW: Efficacy of nicotine patch in smokers with a history of alcoholism. *Alcohol Clin Exp Res* 2003, 27:946-954.
71. Schmitt K, Gorgolzie C, Gorozewski A, Schlachter J: Efficacy of over-the-counter nicotine replacement therapy for smoking cessation: a randomized, placebo-controlled trial. *Addiction* 2003, 98:1395-1402.
72. Hughes JR, Ahmarson R, Hattusak D, Jensen J, Call VW: Efficacy of nicotine patch in smokers with a history of alcoholism. *Alcohol Clin Exp Res* 2003, 27:946-954.
73. Coggins K, Allen S, Jensen S, Hattusak D: Treatment of adolescent smokers with the nicotine patch. *Nicotine Tob Res* 2003, 5:115-122.
74. Chou KR, Chen R, Lee JF, Fu CH, Lu RB: The effectiveness of nicotine-patch therapy for smoking cessation in patients with schizophrenia. *Int J Nurs Stud* 2004, 41:321-330.
75. Schuurmans MM, Diacon AH, van Biljon X, Bollinger CT: Prescribing nicotine transdermal patches for pregnant smokers: A randomized controlled study. *Obstet Gynecol* 2000, 96:967-971.
76. Schuurmans MM, Diacon AH, van Biljon X, Bollinger CT: Efficacy and safety of over-the-counter nicotine patches. *Addiction* 2007, 102:1114-1121.
77. Schuurmans MM, Diacon AH, van Biljon X, Bollinger CT: Efficacy and safety of over-the-counter nicotine patches. *Addiction* 2007, 102:1114-1121.
double-blind, randomized, placebo-controlled study. J Clin Pharmacol Ther 2005, 30:689-696.

106. Pledger RC, Deben MW, Zibikowski SM, Johnson KC, Clemens LH: A placebo controlled randomized trial of the effects of phenylpropanolamine and nicotine gum on cessation rates and postcession weight gain in women. Addict Behav 2005, 30:61-73.

107. Renner BD, Geller ED, Leischow S, Daughton DM, Glover PN, Muramoto M, Franzon M, Danielsson T, Landfeldt B, Westin A: Efficacy of the nicotine inhaler in smoking reduction: A double-blind, randomized trial. Nicotine Tob Res 2006, 8:555-564.

108. Tonnesen P, Mikkelsen K, Bremann L: Nurse-conducted smoking cessation in patients with COPD using nicotine sublingual tablets and behavioral support. Chest 2006, 130:334-343.

109. Ahluwalia JS, Okuyemi K, Nollen N, Choi WS, Kaur H, Pulvers K, Mayo MS: The effects of nicotine gum and counseling among African American light smokers: A 2 × 2 factorial design. J Clin Pharmacol 2006, 46:1314-1323.

110. Myung SK, Soo HG, Park S, Kim Y, Kim DJ, Lee do H, Seong MW, Nam MH, Oh SW, Kim JA, Kim MY: Sociodemographic and smoking behavioral predictors associated with smoking cessation according to follow-up periods: a randomized, double-blind, placebo-controlled, postmarketing study of nicotine replacement therapist. J Korean Med Sci 2007, 22:1065-1070.

111. Covey LS, Glassman AH, Jiang H, Fried J, Masmela J, LoDuca C, Petkova E, Rodriguez K: A randomized trial of bupropion and/or nicotine gum as maintenance treatment for preventing smoking relapse. Addict Behav 2007, 32:129-1302.

112. Piper ME, Federman EB, McCarthy DE, Bolt DM, Smith SS, Fiore MC, Baker TB: Efficacy of bupropion alone and in combination with nicotine gum. Nicotine Tob Res 2007, 9:947-954.

113. Oncken C, Cooney J, Feinn R, Lando H, Kranzler HR: Transdermal nicotine for smoking cessation in postmenopausal women. Addict Behav 2007, 32:296-309.

114. Crogan IT, Hurt RD, Dakhl RI, Crogan GA, Sloan JA, Novotny PJ, Rowland KM, Barents NL, Le-Dinhwister NA, Tschetter LK, Garneau SC, Flynn KA, Ebbert LP, Wender DB, Loprinzi CL: Randomized comparison of a nicotine inhaler and bupropion for smoking cessation and relapse prevention. Mayo Clin Proc 2007, 82:186-195.

115. Clavel F, Benhamou S, Company-Huertas A, Flamant R: Helping patients to quit smoking: randomized comparison of groups being treated with acupuncture and nicotine gum with control group. Br Med J (Clin Res Ed) 1985, 291:1538-1539.

116. Fagerström KO: Effects of nicotine chewing gum and follow-up appointments in physician-based smoking prevention. Prev Med 1984, 13:17-27.

117. Hall SM, Tunstall C, Rugg D, Jones RT, Benowitz N: Nicotine gum and behavioral treatment in smoking cessation. J Consult Clin Psychol 1985, 53:256-258.

118. Russell MA, Merriman R, Stapleton J, Taylor W: Effect of nicotine chewing gum as an adjunct to general practitioner’s advice against smoking. Br Med J (Clin Res Ed) 1983, 287:1782-1785.

119. Page AR, Walters DJ, Schliegel RP, Best JA: Smoking cessation in family practice: the effects of advice and nicotine chewing gum prescription. Addict Behav 1988, 11:444-446.

120. Sitton S, Hallert R: Smoking intervention in the workplace using videotape and nicotine chewing gum. Prev Med 1988, 17:48-59.

121. Harackiewicz JM, Blair LW, Sansone C, Epstein JA, Stuchell RN: Nicotine gum and self-help manuals in smoking cessation: an evaluation in a medical context. Addict Behav 1988, 13:19-30.

122. Tonnnesen P, Fryd V, Hansen M, Helset J, Gunnerson AB, Fochammer H, Stockner M: Effect of nicotine chewing gum in combination with group counseling on the cessation of smoking. N Engl J Med 1988, 319:15-18.

123. Gilber JR, Wilson DM, Best JA, Taylor DW, Lindsay EA, Singer J, Willms DG: Smoking cessation in primary care. A randomized controlled trial of nicotine-bearing chewing gum. J Fam Pract 1989, 28:49-55.

124. Segnan N, Piana A, Battista PN, Serone C, Rosso S, Shapiro SH, Aimar D: A randomized trial of smoking cessation interventions in general practice in Italy. Cancer Causes Control 1991, 2:239-246.

125. Ockene JK, Kristeller J, Goldberg R, Amick TL, Pekow PS, Hosmer D, Quirk M, Kalan K: Increasing the efficacy of physician-delivered smoking interventions: a randomized clinical trial. J Gen Intern Med 1991, 6:1-8.

126. McGovern PG, Lando HA: An assessment of nicotine gum as an adjunct to freedom from smoking cessation clinics. Addict Behav 1992, 17:137-147.

127. Palme PL, McBride CM, Hellersdott W, Jeffery RW, Hatsukami D, Allen S, Lando H: Smoking cessation in women concerned about weight. Am J Public Health 1992, 82:1238-1243.

128. Neber M, Cabezas C: Does nurse counseling or offer of nicotine gum improve the effectiveness of physician smoking-cessation advice? Fam Pract Res J 1992, 12:263-270.

129. Richmond RL, Makinson RJ, Kehoe LA, Giugini AA, Webster IV: One-year evaluation of three smoking cessation interventions administered by general practitioners. Addict Behav 1993, 18:187-199.

130. Niaura R, Goldstein MG, Abrams DB: Matching high- and low-dependence smokers to self-help treatment with or without nicotine replacement. Prev Med 1994, 23:70-77.

131. Fortmann SP, Killen JD: Nicotine gum and self-help behavioral treatment for smoking relapse prevention: results from a trial using population-based recruitment. J Consult Clin Psychol 1995, 63:460-468.

132. Gross J, Johnson J, Sigler L, Sitzer ML: Dose effects of nicotine gum. Addict Behav 1995, 20:371-381.

133. Cinciripini PM, Cinciripini LG, Wallfisch A, Haque W, Van Vunakis H: Behavior therapy and the transdermal nicotine patch: effects on cessation outcome, affect, and coping. J Consult Clin Psychol 1996, 64:314-323.

134. Nilsson P, Lundgren H, Soderstrom M, Fagerstrom KO, Nilsson-Ehle P: Effects of smoking cessation on insulin and cardiovascular risk factors—a controlled study of 4 months’ duration. J Intern Med 1996, 240:189-194.

135. Martin JE, Cafla J, Patton CA, Polarek M, Hofstetser CR, Noto J, Beach D: Prospective evaluation of three smoking interventions in 205 recovering alcoholics: one-year results of Project SCRAP-Tobacco. J Consult Clin Psychol 1997, 65:190-194.

136. Niaura R, Abrams DB, Shadel WG, Rohsenow DJ, Monat PM, Sirota AD: Cue exposure treatment for smoking relapse prevention: a controlled clinical trial. Addiction 1999, 94:685-695.

137. Tonnesen P, Mikkelsen KL: Smoking cessation with four nicotine replacement regimes in a lung clinic. Eur Respir J 2000, 16:717-722.

138. Hand S, Edwards S, Campbell IA, Cunnings R: Controlled trial of three weeks nicotine replacement treatment in hospital patients also given advice and support. Thorax 2002, 57:715-718.

139. Molnureux A, Lewis S, Leivers U, Anderson A, Antoniak M, Brackenridge A, Nilsson F, McNeill A, West R, Moxham J, Britton J: Clinical trial comparing nicotine replacement therapy (NRT) plus brief counselling, brief counselling alone, and minimal intervention on smoking cessation in hospital inpatients. Thorax 2002, 57:173-176.

140. Swanston NA, Burroughs CC, Long MA, Lee RW: Controlled trial for smoking cessation in a Navy shipboard population using nicotine patch, sustained-release bupropion, or both. Mil Med 2003, 168:830-834.

141. Luyar M, Filiz A, Bayram, N, Elibek O, Herken H, Topcu A, Dikensoy O, Binici E: A randomized trial of smoking cessation. Mediation versus motivation. Saudi Med J 2007, 28:922-926.

142. Pollak KL, Oncken CA, Lipskus IM, Lyna P, Swamy GK, Pletsch PK, Peterson BL, Heine RP, Brouwer RJ, Fish L, Myers ER: Nicotine replacement and behavioral therapy for smoking cessation in pregnancy. Am J Prev Med 2007, 33:297-305.

143. Prapavessis H, Cameron L, Baldi JC, Robinson S, Borrie K, Harper T, Grove JR: The effects of exercise and nicotine replacement therapy on smoking rates in women. Addict Behav 2007, 32:1418-1427.

144. Okuyemi KS, James AS, Mayo MS, Nollen N, Catley D, Choi WS, Ahluwalia JS: Pathways to health: a cluster randomized trial of nicotine gum and motivational interviewing for smoking cessation in low-income housing. Health Educ Behav 2007, 34:13-34.

145. Gallagher SM, Penn PE, Schindler E, Layne W: A comparison of smoking cessation treatments for persons with schizophrenia and other serious mental illnesses. J Psychoactive Drugs 2007, 39:487-497.
Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.

Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB: A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. *N Engl J Med* 2001, 345:685-690.
smoking cessation in schizophrenia. Nicotine Tob Res 2001, 3:397-403.
185. Gonzales DH, Nides MA, Ferry LH, Kustra RP, Jamerson BD, Segall N, Herrero LA, Krishen A, Sweeney A, Buaron K, Metz A: Bupropion SR as an aid to smoking cessation in smokers treated previously with bupropion: a randomized placebo-controlled study. Clin Pharmacol Ther 2001, 69:438-444.
186. Hays JT, Hurt RD, Rigotti NA, Naura R, Gonzales D, Durcan MJ, Sachs DP, Wolter TD, Buist AS, Johnston JA, White JD: Sustained-release bupropion for pharmacologic relapse prevention after smoking cessation. a randomized, controlled trial. Ann Intern Med 2001, 135:423-433.
187. Hurt RD, Sachs DP, Glover ED, Offord KP, Johnston JA, Dale LC, Khayrallah MA, Schroeder DR, Glover PN, Sullivan CR, Croghan IT, Sullivan PM: A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med 1997, 337:1195-1202.
188. Aubin HJ, Bobak A, Britton JR, Onccken C, Billing CB Jr, Gong J, Williams KE, Reeves KR: Varenicline versus transdermal nicotine patch for smoking cessation: results from a randomized open-label trial. Thorax 2008, 63:717-724.
189. Naura R, Hays JT, Jorenby DE, Leone FT, Pappas JE, Reeves KR, Williams KE, Billing CB Jr: The efficacy and safety of varenicline for smoking cessation using a flexible dosing strategy in adult smokers: a randomized controlled trial. Curr Med Res Opin 2008, 24:1931-1941.
190. Williams KE, Reeves KR, Billing CB Jr, Pennington AM, Gong J: A double-blind study evaluating the long-term safety of varenicline for smoking cessation. Curr Med Res Opin 2007, 23:793-801.
191. Tsai ST, Cho HJ, Cheng HS, Kim CH, Hsueh KC, Billing CB Jr, Williams KE: A randomized, placebo-controlled trial of varenicline, a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist, as a new therapy for smoking cessation in Asian smokers. Clin Ther 2007, 29:1027-1039.
192. Nakamura M, Oshima A, Fujimoto Y, Maruyama N, Ishibashi T, Nakamura M, Oshima A, Fujimoto Y, Maruyama N, Ishibashi T, Reeves KR: Efficacy and tolerability of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, in a 12-week, randomized, placebo-controlled, dose-response study with 40-week follow-up for smoking cessation in Japanese smokers. Clin Ther 2007, 29:1040-1056.
193. Houston TK, Allison JJ, Person S, Kovac S, Williams OD, Kiefe CI: Pharmacokinetics, safety, and tolerability after single and multiple oral doses of varenicline in elderly smokers. J Clin Pharmacol 2006, 46:1234-1240.
194. Onccken C, Gonzalez D, Nides M, Rennard S, Waksy E, Billing CB, Anziano R, Reeves K: Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch Intern Med 2006, 166:1571-1577.
195. Tonstad S, Tonnessen P, Hajek P, Williams KE, Billing CB, Reeves KR: Effect of maintenance therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA 2006, 296:64-71.
196. Tonstad S: Smoking cessation efficacy and safety of varenicline, an alpha4beta2 nicotinic receptor partial agonist. J Cardiovasc Nurs 2006, 21:433-436.
197. Bucher HC, Guyatt GH, Griffith LE, Walter SD: The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997, 50:683-691.
198. Mills EJ, Wu P, Rachlis B, Arora P, Deveraux PJ, Perri D: Primary Prevention of Cardiovascular Mortality and Events With Statin Treatments A Network Meta-Analysis Involving More Than 65,000 Patients. JACC 2008, 52:1769-1781.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp