A note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation

Ali AYAD
IRMAR, Campus universitaire de Beaulieu
Université Rennes 1, 35042, Rennes, France
ali.ayad@univ-rennes1.fr
And
IRISA (Institut de recherche en informatique et systèmes aléatoires)
INRIA-Rennes, Campus universitaire de Beaulieu
Avenue du Général Leclerc, 35042 Rennes Cedex, France
ali.ayad@irisa.fr

Abstract

We present in this paper a detailed note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation. This paper is a continuation of [1] which was on the complexity of solving arbitrary ordinary polynomial differential equations in terms of Puiseux series.

Introduction

Let \(K = \mathbb{Q}(T_1, \ldots, T_l)[\eta] \) be a finite extension of a finitely generated field over \(\mathbb{Q} \). The variables \(T_1, \ldots, T_l \) are algebraically independent over \(\mathbb{Q} \) and \(\eta \) is an algebraic element over the field \(\mathbb{Q}(T_1, \ldots, T_l) \) with the minimal polynomial \(\phi \in \mathbb{Z}[T_1, \ldots, T_l][Z] \). Let \(\overline{K} \) be an algebraic closure of \(K \) and consider the two fields:

\[
L = \bigcup_{\nu \in \mathbb{N}^*} K((x^{\frac{1}{\nu}})), \quad \mathcal{L} = \bigcup_{\nu \in \mathbb{N}^*} \overline{K}((x^{\frac{1}{\nu}}))
\]

which are the fields of fraction-power series of \(x \) over \(K \) (respectively \(\overline{K} \)), i.e., the fields of Puiseux series of \(x \) with coefficients in \(K \) (respectively \(\overline{K} \)). Each element \(\psi \in L \) (respectively \(\psi \in \mathcal{L} \)) can be represented in the form \(\psi = \sum_{i \in \mathbb{Q}} c_i x^i \), \(c_i \in K \) (respectively \(c_i \in \overline{K} \)). The order of \(\psi \) is defined by \(\text{ord}(\psi) := \min\{i \in \mathbb{Q}, c_i \neq 0\} \). The fields \(L \) and \(\mathcal{L} \) are differential fields with the differentiation

\[
\frac{d}{dx}(\psi) = \sum_{i \in \mathbb{Q}} ic_i x^{i-1}.
\]

Let \(S(y) = 0 \) be a homogeneous linear ordinary differential equation which is written in the form

\[
S(y) = f_n y^{(n)} + \cdots + f_1 y' + f_0 y
\]

where \(f_i \in K[x] \) for all \(0 \leq i \leq n \) and \(f_n \neq 0 \) (we say that the order of \(S(y) = 0 \) is \(n \)). Let \(y_0, \ldots, y_n \) be new variables algebraically independent over \(K(x) \). We will associate to \(S(y) = 0 \) a non-linear differential polynomial \(R \in K[x][y_0, \ldots, y_n] \) such that \(y \) is a solution of
$S(y) = 0$ if and only if $\frac{y'}{y}$ is a solution of $R(y) = 0$ where the last equation is the ordinary differential equation $R(y, \frac{dy}{dx}, \ldots, \frac{d^{n}y}{dx^{n}}) = 0$. We consider the change of variable $z = \frac{y'}{y}$, i.e., $y' = zy$, we compute the successive derivatives of y and we make them in the equation $S(y) = 0$ to get a non-linear differential equation $R(z) = 0$ which satisfies the above property. R is called the Riccati differential polynomial associated with $S(y) = 0$. We will describe all the fundamental solutions (see e.g. [20, 13]) of the differential equation $R(y) = 0$ in \mathcal{L} by a differential version of the Newton polygon process. There is another way to formulate R: let $(r_i)_{i \geq 0}$ be the sequence of the following differential polynomials

$$r_0 = 1, \quad r_1 = y_0, \ldots, \quad r_{i+1} = y_0r_i + Dr_i, \quad \forall i \geq 1,$$

where $Dy_i = y_{i+1}$ for any $0 \leq i \leq n - 1$. We remark that for all $i \geq 1$, $r_i \in \mathbb{Z}[y_0, \ldots, y_{i-1}]$ has total degree equal to i w.r.t. $y_0, y_1, \ldots, y_{i-1}$ and the only term of r_i of degree i is y_0^i.

Lemma 0.1 The non-linear differential polynomial

$$R = f_n r_n + \cdots + f_1 r_1 + f_0 r_0 \in K[x][y_0, \ldots, y_n]$$

is the Riccati differential polynomial associated with $S(y) = 0$.

1 **Newton polygon of R**

Let R be the Riccati differential polynomial associated with $S(y) = 0$ as in Lemma 0.1. We will describe the Newton polygon $\mathcal{N}(R)$ of R in the neighborhood of $x = +\infty$ which is defined explicitly in [1]. For every $0 \leq i \leq n$, mark the point $(\deg(f_i), i)$ in the plane \mathbb{R}^2. Let \mathcal{N} be the convex hull of these points with the point $(-\infty, 0)$.

Lemma 1.1 The Newton polygon of R in the neighborhood of $x = +\infty$ is \mathcal{N}, i.e., $\mathcal{N}(R) = \mathcal{N}$.

Proof. For all $0 \leq i \leq n$, $\deg_{y_0, \ldots, y_{i-1}}(r_i) = i$ and the only term of r_i of degree i is y_0^i, then $lc(f_i)x^{\deg(f_i)}y_0^i$ is a term of R and $\mathcal{N} \subset \mathcal{N}(R)$. For any other term of f_ir_i in the form $bx^jy_0^\alpha \cdots y_{i-1}^\alpha$, where $b \in K$, $j < \deg(f_i)$ and $\alpha_0 + \cdots + \alpha_{i-1} < i$, the corresponding point $(j - \alpha_1 - \cdots - (i-1)\alpha_{i-1}, \alpha_0 + \cdots + \alpha_{i-1})$ is in the interior of \mathcal{N}. Thus $\mathcal{N}(R) \subset \mathcal{N}$.

Lemma 1.2 For any edge e of $\mathcal{N}(R)$, the characteristic polynomial of R associated with e is a non-zero polynomial. For any vertex p of $\mathcal{N}(R)$, the indicial polynomial of R associated with p is a non-zero constant. Moreover, if the ordinate of p is i_0, then $h_{(R,p)}(\mu) = lc(f_{i_0}) \neq 0$.

Proof. By Lemma 1.1 each edge $e \in E(R)$ joints two vertices $(\deg(f_{i_1}), i_1)$ and $(\deg(f_{i_2}), i_2)$ of $\mathcal{N}(R)$. Moreover, the set $N(R, a(e), b(e))$ contains these two points. Then

$$0 \neq h_{(R,e)}(C) = lc(f_{i_1})C^{i_1} + lc(f_{i_2})C^{i_2} + t,$$

where t is a sum of terms of degree different from i_1 and i_2. For any vertex $p \in V(R)$ of ordinate i_0, $lc(f_{i_0})x^{\deg(f_{i_0})}y_0^{i_0}$ is the only term of R whose corresponding point p. Then

$$h_{(R,p)}(\mu) = lc(f_{i_0}) \neq 0. \square$$

Corollary 1.3 For any edge $e \in E(R)$, the set $A_{(R,e)}$ is a finite set. For any vertex $p \in V(R)$, we have $A_{(R,p)} = \emptyset$.

2
2 Derivatives of the Riccati equation

For each \(i \geq 0 \) and \(k \geq 0 \), the \(k \)-th derivative of \(r_i \) is the differential polynomial defined by

\[
(0)_i := r_i, (1)_i := r'_i := \frac{\partial r_i}{\partial y_0} \quad \text{and} \quad (k+1)_i := (r'_i)^{k+1}_i = \frac{\partial^{k+1} r_i}{\partial y_0^{k+1}}.
\]

Lemma 2.1 For all \(i \geq 1 \), we have \(r'_i = i r_{i-1} \). Thus for all \(k \geq 0 \), \(r^{(k)}_i = (i)_k r_{i-k} \), where \((i)_0 := 1 \) and \((i)_k := i(i-1) \cdots (i-k+1)\).

Proof. We prove the first item by induction on \(i \). For \(i = 1 \), we have \(r'_1 = 1 = 1 \cdot r_0 \). Suppose that this property holds for a certain \(i \) and prove it for \(i + 1 \). Namely,

\[
r'_{i+1} = (y_0 r_i + Dr_i)' = y_0 r'_i + r_i + Dr'_i = i y_0 r_{i-1} + r_i + D(i r_{i-1}) = i(y_0 r_{i-1} + Dr_{i-1}) + r_i = i r_i + r_i = (i + 1)r_i.
\]

The second item is just a result of the first one (by induction on \(k \)). \(\square \)

Definition 2.2 Let \(R \) be the Riccati differential polynomial associated with \(S(y) = 0 \). For each \(k \geq 0 \), the \(k \)-th derivative of \(R \) is defined by

\[
R^{(k)} := \frac{\partial^k R}{\partial y_0^k} = \sum_{0 \leq i \leq n} f_i r^{(k)}_i.
\]

Lemma 2.3 For all \(k \geq 0 \), we have

\[
R^{(k)} = \sum_{0 \leq i \leq n-k} (i + k)_k f_{i+k} r_i.
\]

Proof. For all \(i < k \), we have \(r^{(k)}_i = 0 \) because \(\deg_{y_0}(r_i) = i \). Then by Lemma 2.1 we get

\[
R^{(k)} = \sum_{k \leq i \leq n} f_i r^{(k)}_i = \sum_{k \leq i \leq n} f_i (i)_k r_{i-k} = \sum_{0 \leq j \leq n-k} (j + k)_k f_{j+k} r_j
\]

with the change \(j = i - k \). \(\square \)

Corollary 2.4 The \(k \)-th derivative of \(R \) is the Riccati differential polynomial of the following linear ordinary differential equation of order \(n - k \)

\[
S^{(k)}(y) := \sum_{0 \leq i \leq n-k} (i + k)_k f_{i+k} y^{(i)}.
\]

Proof. By Lemmas 2.1 and 2.3 \(\square \)
3 Newton polygon of the derivatives of R

Let $0 \leq k \leq n$ and $R^{(k)}$ be the k-th derivative of R. In this subsection, we will describe the Newton polygon of $R^{(k)}$. Recall that $R^{(k)}$ is the k-th partial derivative of R w.r.t. y_{0}, then by the section 2 of [1], the Newton polygon of $R^{(k)}$ is the translation of that of R defined by the point $(0, -k)$, i.e., $\mathcal{N}(R^{(k)}) = \mathcal{N}(R) + \{(0, -k)\}$. The vertices of $\mathcal{N}(R^{(k)})$ are among the points $(\deg(f_{i+k}), i)$ for $0 \leq i \leq n - k$ by Lemma 2.3 Then for each edge e_{k} of $\mathcal{N}(R^{(k)})$ there are two possibilities: the first one is that e_{k} is parallel to a certain edge e of $\mathcal{N}(R)$, i.e., e_{k} is the translation of e by the point $\{(0, -k)\}$. The second possibility is that the upper vertex of e_{k} is the translation of the upper vertex of a certain edge e of $\mathcal{N}(R)$ and the lower vertex of e_{k} is the translation of a certain point $(\deg(f_{i}), i_{0})$ of $\mathcal{N}(R)$ which does not belong to e. In both possibilities, we say that the edge e is associated with the edge e_{k}.

Lemma 3.1 Let $e_{k} \in E(R^{(k)})$ be parallel to an edge $e \in E(R)$. Then the characteristic polynomial of $R^{(k)}$ associated with e_{k} is the k-th derivative of that of R associated with e, i.e.,

$$H_{(R^{(k)},e_{k})}(C) = H_{(R,e)}^{(k)}(C).$$

Proof. The edges e_{k} and e have the same inclination $\mu_{e} = \mu_{e_{k}}$ and $\mathcal{N}(R^{(k)}, e_{k}) = \mathcal{N}(R, e) + \{(0, -k)\}$. Then

$$H_{(R^{(k)},e_{k})}(C) = \sum_{(\deg(f_{i+k}), i) \in \mathcal{N}(R^{(k)}, e_{k})} (i + k)k!c(f_{i+k})C^{i} = \sum_{(\deg(f_{j}), j) \in \mathcal{N}(R, e)} (j)k!c(f_{j})C^{j-k} = H_{(R,e)}^{(k)}(C). \Box$$

Corollary 3.2 For any edge $e_{k} \in E(R^{(k)})$, the set $A_{(R^{(k)}, e_{k})}$ is a finite set, i.e., $H_{(R^{(k)}, e_{k})}(C)$ is a non-zero polynomial. For any vertex $p_{k} \in V(R^{(k)})$, we have $A_{(R^{(k)}, p_{k})} = \emptyset$.

Proof. By Corollaries 2.4 and 1.3 \Box

4 Newton polygon of evaluations of R

Let R be the Riccatti differential polynomial associated with $S(y) = 0$. Let $0 \leq c \in \mathbb{R}$, $\mu \in \mathbb{Q}$ and $R_{1}(y) = R(y + cx^{\mu})$. We will describe the Newton polygon of R_{1} for different values of c and μ.

Lemma 4.1 R_{1} is the Riccatti differential polynomial of the following linear ordinary differential equation of order less or equal than n

$$S_{1}(y) := \sum_{0 \leq i \leq n} \frac{1}{i!}R^{(i)}(cx^{\mu})y^{(i)}.$$
Proof. It is equivalent to prove the following analogy of Taylor formula:

\[R_1 = \sum_{0 \leq i \leq n} \frac{1}{i!} R^{(i)}(c x^\mu) r_i \]

which is proved in Lemma 2.1 of [13]. \(\square\)

Then the vertices of \(\mathcal{N}(R_1)\) are among the points \((\deg(R^{(i)}(c x^\mu), i))\) for \(0 \leq i \leq n\). Thus the Newton polygon of \(R_1\) is given by (Lemma 2.2 of [13]):

Lemma 4.2 If \(\mu\) is the inclination of an edge \(e\) of \(\mathcal{N}(R)\), then the edges of \(\mathcal{N}(R_1)\) situated above \(e\) are the same as in \(\mathcal{N}(R)\). Moreover, if \(c\) is a root of \(H_{(R,e)}\) of multiplicity \(m > 1\) then \(\mathcal{N}(R_1)\) contains an edge \(e_1\) parallel to \(e\) originating from the same upper vertex as \(e\) where the ordinate of the lower vertex of \(e_1\) equals to \(m\). If \(m = \deg H_{(R,e)}\), then \(\mathcal{N}(R_1)\) contains an edge with inclination less than \(\mu\) originating from the same upper vertex as \(e\).

Remark 4.3 If we evaluate \(R\) on \(c x^\mu\) we get

\[R(c x^\mu) = \sum_{0 \leq i \leq n} f_i \times (c^i x^{i \mu} + t), \]

where \(t\) is a sum of terms of degree strictly less than \(i \mu\). Then

\[\text{lc}(R(c x^\mu)) = \sum_{i \in B} \text{lc}(f_i) c^i = \sum_{(\deg(f_i), i) \in e} \text{lc}(f_i) c^i = H_{(R,e)}(c), \]

where

\[B := \{0 \leq i \leq n; \deg(f_i) + i \mu = \max_{0 \leq j \leq n} (\deg(f_j) + j \mu; f_j \neq 0)\} \]

\[= \{0 \leq i \leq n; (\deg(f_i), i) \in e \text{ and } f_i \neq 0\}. \]

Lemma 4.4 Let \(\mu\) be the inclination of an edge \(e\) of \(\mathcal{N}(R)\) and \(c\) be a root of \(H_{(R,e)}\) of multiplicity \(m > 1\). Then

\[H_{(R_1,e_1)}(C) = H_{(R,e)}(C + c) \]

where \(e_1\) is the edge of \(\mathcal{N}(R_1)\) given by Lemma 4.2. In addition, if \(e'\) is an edge of \(\mathcal{N}(R_1)\) situated above \(e\) (which is also an edge of \(\mathcal{N}(R)\) by Lemma 4.2) then \(H_{(R_1,e)}(C) = H_{(R,e)}(C)\).

Proof. We have

\[
H_{(R,e)}(C + c) = \sum_{m \leq k \leq n} \frac{1}{k!} H_{(R,e)}^{(k)}(c) C^k
\]

\[
= \sum_{m \leq k \leq n} \frac{1}{k!} H_{(R,e)}^{(k)}(c) C^k
\]

\[
= \sum_{m \leq k \leq n} \frac{1}{k!} \text{lc}(R^{(k)}(c x^\mu)) C^k
\]

\[
= H_{(R_1,e_1)}(C)
\]

where the first equality is just the Taylor formula taking into account that \(c\) is a root of \(H_{(R,e)}\) of multiplicity \(m > 1\). The second equality holds by Lemma 3.1. The third one by Remark 4.3. The fourth one by Lemma 4.1 and by the definition of the characteristic polynomial. \(\square\)
5 Application of Newton-Puiseux algorithm to \(R \)

We apply the Newton-Puiseux algorithm described in [1] to the Riccati differential polynomial \(R \) associated with the linear ordinary differential equation \(S(y) = 0 \). This algorithm constructs a tree \(T = T(R) \) with a root \(\tau_0 \). For each node \(\tau \) of \(T \), it computes a finite field \(K_\tau = K[\theta_\tau] \), elements \(c_\tau \in K_\tau \) \(\mu_\tau \in \mathbb{Q} \cup \{ -\infty, +\infty \} \) and a differential polynomial \(R_\tau \) as above. Let \(\mathcal{U} \) be the set of all the vertices \(\tau \) of \(T \) such that either \(\deg(\tau) = +\infty \) and for the ancestor \(\tau_1 \) of \(\tau \) it holds \(\deg(\tau_1) < +\infty \) or \(\deg(\tau) < +\infty \) and \(\tau \) is a leaf of \(T \). There is a bijective correspondance between \(\mathcal{U} \) and the set of the solutions of \(R(y) = 0 \) in the differential field \(\mathcal{L} \). The following lemma is a differential version of Lemma 2.1 of [4] which separates any two different solutions in \(\mathcal{L} \) of the differential Riccati equation \(R(y) = 0 \).

Lemma 5.1 Let \(\psi_1, \psi_2 \in \mathcal{L} \) be two different solutions of the differential Riccati equation \(R(y) = 0 \). Then there exist an integer \(\gamma = \gamma_{12}, 1 \leq \gamma < n \), elements \(\xi_1, \xi_2 \in K, \xi_1 \neq \xi_2 \) and a number \(\mu_{12} \in \mathbb{Q} \) such that

\[
\text{ord}(R(\gamma)(\psi_i) - \xi_i x^{\mu_{12}}) < \mu_{12}, \text{ for } i = 1, 2.
\]

Proof. By the above bijection, there are two elements \(u_1 \) and \(u_2 \) of \(\mathcal{U} \) which correspond respectively to \(\psi_1 \) and \(\psi_2 \). Let \(i_0 = \max\{i \geq 0; \tau_i(u_1) = \tau_i(u_2) \} \). Denote by \(\tau := \tau_{i_0}(u_1) = \tau_{i_0}(u_2) \) and \(\tau_1 := \tau_{i_0+1}(u_1), \tau_2 := \tau_{i_0+1}(u_2) \). We have \(\tau_1 \neq \tau_2 \) and \(\epsilon := \max(\mu_1, \mu_2) \) is the inclination of a certain edge \(e \) of \(\mathcal{N}(R_\tau) \). There are three possibilities for \(\epsilon \):

- If \(\mu_\tau < \mu_{12} \) then \(\epsilon = \mu_\tau = \mu_2 \). We have \(c_\tau \) is a root of \(H_{(R_\tau,e)} \) of multiplicity \(m_1 \geq 1 \) and \(R_{\tau_1} = R_{\tau}(y + c_\tau x^{\mu_\tau}) \). Then by Lemma [4,2] there is an edge \(e_1 \) of \(\mathcal{N}(R_\tau) \) parallel to \(e \) (so its inclination is \(\epsilon = \mu_\tau \)) originating from the same upper vertex as \(e \) where the ordinate of the lower vertex of \(e_1 \) equals to \(m_1 \). In addition, \(\epsilon \) is also an edge of \(\mathcal{N}(R_{\tau_2}) \) and by Lemma [4,4] we have \(H_{(R_{\tau_2},e_1)}(C) = H_{(R_{\tau_2},e)}(C) \) and

\[
H_{(R_{\tau_1},e_1)}(C) = H_{(R_{\tau},e)}(C + c_\tau). \tag{1}
\]

- If \(\mu_\tau > \mu_{12} \) then \(\epsilon = \mu_{12} \). Then by Lemma [4,2] there is an edge \(e_2 \) of \(\mathcal{N}(R_\tau) \) parallel to \(e \) originating from the same upper vertex as \(e \). By Lemma [4,4] we have \(H_{(R_{\tau_1},e_2)}(C) = H_{(R_{\tau_2},e)}(C) \) and

\[
H_{(R_{\tau_2},e_2)}(C) = H_{(R_{\tau},e)}(C + c_{\tau_2}). \tag{2}
\]

- If \(\mu_\tau = \mu_{12} \) then \(\epsilon \) then \(c_\tau \) and \(c_{\tau_2} \) are two distinct roots of the same polynomial \(H_{(R_{\tau},e)}(C) \). Then equalities of type (1) and (2) hold.

Set \(\gamma = \deg_{C}(H_{(R_{\tau},e)}) - 1 \leq \deg_{y_0,...,y_n}(R) - 1 \leq n - 1 < n \) and \(\gamma \geq 1 \) because that the polynomial \(H_{(R_{\tau},e)}(C) \) has at least two distinct roots \(c_{\tau_1} \) and \(c_{\tau_2} \). Moreover, we have \(\text{ord}(\psi_i - y_{\tau_i}) < \epsilon \) for \(i = 1, 2 \). Let \(\xi_{\tau_1} \in K_{\tau_1} \) and \(\xi_{\tau_2} \in K_{\tau_2} \) be the coefficients of \(C^\gamma \) in the expansion of \(H_{(R_{\tau_1},e_1)}(C) \) and \(H_{(R_{\tau_2},e_2)}(C) \) respectively. There is a point \((\mu_{12}, \gamma) \) on the edge \(e \) which corresponds to the term of \(H_{(R_{\tau},e)}(C) \) of degree \(\gamma \). We know by Lemma [4,4] that

\[
R(y + \psi_i) = \sum_{0 \leq j \leq n} \frac{1}{j!} R^{(j)}(\psi_i) r_j \text{ for } i = 1, 2.
\]

Then \(\text{ord}(R(\gamma)(\psi_i) - \gamma \xi_{\tau_i} x^{\mu_{12}}) < \mu_{12} \) for \(i = 1, 2 \). This proves the lemma by taking \(\xi_i = \gamma \xi_{\tau_i} \) for \(i = 1, 2 \). □
Let \(\{\Psi_1, \ldots, \Psi_n\} \) be a fundamental system of solutions of the linear differential equation \(S(y) = 0 \) (see e.g. [20, 10, 13]) and \(\psi_1, \ldots, \psi_n \) be their logarithmic derivatives respectively, i.e., \(\psi_1 = \Psi'_1/\Psi_1, \ldots, \psi_n = \Psi'_n/\Psi_n \). Then \(R(\psi_i) = 0 \) for all \(1 \leq i \leq n \).

Definition 5.2 Let \(\psi \) be an element of the field \(\mathcal{L} \). We denote by \(\text{span}_r(\psi) \) the \(r \)-differential span of \(\psi \), i.e., \(\text{span}_r(\psi) \) is the \(\mathbb{Z} \)-module generated by \(r_1(\psi), r_2(\psi), \ldots \).

Lemma 5.3 Let \(\psi \in \mathcal{L} \) be a solution of a Riccatti equation \(R_2(y) = 0 \) where \(R_2 \in \mathbb{Z}[y_0, \ldots, y_n] \) of degree \(n \). Then \(\text{span}_r(\psi) \) is the \(\mathbb{Z} \)-module generated by \(r_1(\psi), \ldots, r_{n-1}(\psi) \).

Proof. Write \(R_2 \) in the form \(R_2 = r_n + \alpha_{n-1}r_{n-1} + \cdots + \alpha_1 r_1 + \alpha_0 \) where \(\alpha_i \in \mathbb{Z} \) for all \(0 \leq i < n \). Then

\[
r_{n+1}(\psi) = \psi r_n(\psi) + Dr_n(\psi) = \sum_{0 \leq i < n} \alpha_i (\psi r_i(\psi) + Dr_i(\psi)) = \sum_{0 \leq i < n} \alpha_i r_{i+1}(\psi) = \sum_{0 \leq i < n} \beta_i r_i(\psi)
\]

for suitable \(\beta_i \in \mathbb{Z} \) using the fact that \(r_n(\psi) = \sum_{0 \leq i < n} \alpha_i r_i(\psi) \). \(\Box \)

Consider a \(\mathbb{Z} \)-module \(M := \text{span}_r(\psi_1, \ldots, \psi_n) \), i.e., \(M \) is the \(\mathbb{Z} \)-module generated by \(r_1(\psi_i), r_2(\psi_i), \ldots \) for all \(1 \leq i \leq n \). We define now what we call a \(r \)-cyclic vector for \(M \) (this definition is similar to that of the cyclic vectors in [16, 9, 19]).

Definition 5.4 An element \(m \in M \) is called a \(r \)-cyclic vector for \(M \) if \(M = \text{span}_r(m) \).

The following theorem is called a \(r \)-cyclic vector theorem. It is similar to the cyclic vector theorem of [15, 16, 9, 19].

Theorem 5.5 Let \(M \) be the \(\mathbb{Z} \)-module defined as above. There is a \(r \)-cyclic vector \(m \) for \(M \).

Corollary 5.6 Let \(m \in M \) be a \(r \)-cyclic vector for \(M \). Then for any \(1 \leq i \leq n \), there exists a Riccatti differential polynomial \(R_i \in \mathbb{Z}[y_0, \ldots, y_n] \) such that \(\psi_i = R_i(m) \).

Lemma 5.7 For each element \(m \in M \), one can compute a Riccatti differential polynomial \(R_m \in K[x][y_0, \ldots, y_n] \) such that \(R_m(m) = 0 \). In addition, there is a positive integer \(s \) such that the order of \(R_m(y) = 0 \) and the degree of \(R_m \) w.r.t. \(y_0, \ldots, y_n \) are \(\leq n^s \).

Proof. Each element \(m \in M \) has the form \(m = \alpha_1 \psi_1 + \cdots + \alpha_n \psi_n \) where \(\alpha_1, \ldots, \alpha_n \in \mathbb{Q} \). Then

\[
m = \left(\frac{\Psi_1^{\alpha_1} \cdots \Psi_n^{\alpha_n}}{\Psi_1^{\alpha_1} \cdots \Psi_n^{\alpha_n}} \right)'
\]

is the logarithmic derivative of \(\Psi_1^{\alpha_1} \cdots \Psi_n^{\alpha_n} \). Or Lemma 3.8 (a) of [17] (see also [18, 19]) proves that one can construct a linear differential equation \(S_m(y) = 0 \), denoted by
\[S^\oplus_{\alpha_1 + \cdots + \alpha_n}(y) = 0 \text{ of order } \leq n^{\alpha_1 + \cdots + \alpha_n} \text{ such that } \Psi_1^{\alpha_1} \cdots \Psi_n^{\alpha_n} \text{ is one of its solutions. The equation } S^\oplus_{\alpha_1 + \cdots + \alpha_n}(y) = 0 \text{ is called the } (\alpha_1 + \cdots + \alpha_n)\text{-th symmetric power of the linear differential equation } S(y) = 0. \] In order to compute the equation \(S_m(y) = 0 \) associated with the linear combination \[m = \alpha_1 \psi_1 + \cdots + \alpha_n \psi_n \in M, \] we take the change of variable \[z = y^{\alpha_1 + \cdots + \alpha_n} \] where \(y \) is a solution of \(S(y) = 0 \) and we compute the successive derivatives of \(z \) until we get a linear dependent family over \(K \). The relation between these successive derivatives gives us the linear differential equation \(S_m(z) = 0 \). Let \(R_m \) be the Riccati differential polynomial associated with \(S_m(y) = 0 \), then \(m \) is a solution of the equation \(R_m(y) = 0 \). \(\square \)

Remark 5.8 For any \(1 \leq i \leq n \), we can take \(R_{\psi_i} = R \) where \(R_{\psi_i} \) is defined in Lemma 5.7.

References

[1] A. Ayad, *On the complexity of solving ordinary differential equations in terms of Puiseux series*, Preprint IRMAR (Institut de Recherche Mathématique de Rennes), May 2007. See http://arxiv.org/abs/0705.2127

[2] J. Cano, *The Newton Polygon Method for Differential Equations*, Computer Algebra and Geometric Algebra with Applications, 2005, p. 18-30.

[3] J. Cano, *On the series defined by differential equations, with an extension of the Puiseux Polygon construction to these equations*, International Mathematical Journal of Analysis and its Applications, 13, 1993, p. 103-119.

[4] A. Chistov, *Polynomial Complexity of the Newton-Puiseux Algorithm*, Mathematical Foundations of Computer Science 1986, p. 247 - 255.

[5] A. Chistov, D. Grigoriev, *Polynomial-time factoring of the multivariable polynomials over a global field*, Preprint LOMI E-5-82, Leningrad, 1982.

[6] A.L. Chistov, D. Grigoriev, *Subexponential-time solving systems of algebraic equations*, I and II, LOMI Preprint, Leningrad, 1983, E-9-83, E-10-83.

[7] A.L. Chistov, *Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time*, J. Sov. Math., 34(1986), No. 4 p. 1838-1882.

[8] A.L. Chistov, *Polynomial complexity algorithms for computational problems in the theory of algebraic curves*, Journal of Mathematical Sciences, 59 (3), 1992, p. 855-867.

[9] R. C. Churchill, J. J. Kovacic, *Cyclic Vectors*, Article submitted to Journal of Symbolic Computation.

[10] J. Della Dora, G. Di Crescenzo, E. Tournier, *An Algorithm to Obtain Formal Solutions of a Linear Homogeneous Differential Equation at an Irregular Singular Point*, EUROCAM 1982, p. 273-280.

[11] J. Della Dora, F. Richard-Jung, *About the Newton algorithm for non-linear ordinary differential equations*, Proceedings of the 1997 international symposium on Symbolic and algebraic computation, United States, p. 298 - 304.
[12] D. Grigoriev, *Factorization of polynomials over a finite field and the solution of systems of algebraic equations*, J. Sov. Math., 34(1986), No.4 p. 1762-1803.

[13] D. Grigoriev, *Complexity of factoring and GCD calculating of ordinary linear differential operators*, J. Symp. Comput., 1990, vol.10, N 1, p. 7-37.

[14] D. Grigoriev, M. F. Singer, *Solving ordinary differential equations in terms of series with real exponents*, Trans. AMS, 1991, vol. 327, N 1, p. 329-351.

[15] N. Katz *A simple algorithm for cyclic vectors*, Amer. J. Math. 109 (1987), p. 65-70.

[16] J. J. Kovacic, *Cyclic vectors and Picard-Vessiot extensions*, Technical report, Prolifics, Inc., 1996.

[17] M. F. Singer, *Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations*, Am. J. Math., 103(4), 1981, p. 661-682.

[18] M. F. Singer, F. Ulmer, *Galois Groups of Second and Third Order Linear Differential Equations*, Journal of Symbolic Computation, 16, July 1993, p. 9 - 36.

[19] M. van der Put, M. F. Singer, *Galois Theory of Linear Differential Equations*, Grundlehren der mathematischen Wissenschaften, Volume 328, Springer, 2003.

[20] W. Wasow, *Asymptotic Expansions for Ordinary Differential Equations*, New York, Kreiger Publ. Co. 1976.