Case report

Management of recalcitrant polypoidal choroidal vasculopathy by feeder vessel laser photocoagulation

Jay Sheth1,*, Giridhar Anantharamana, Shruti Chandraa, Mahesh Gopalakrishnanaa

1 Department of Vitreo-Retina, Giridhar Eye Institute, Ponneth Temple Road, Kadavanthara, Kochi, India

ABSTRACT

Purpose: To describe management of residual branch vascular network (BVN) in polypoidal choroidal vasculopathy (PCV) by thermal laser photocoagulation of feeder vessel.

Observations: Case report of sixty-four year old female with polypoidal choroidal vasculopathy (PCV) with moderate response to seven doses of intravitreal ranibizumab, six doses of intravitreal bevacizumab and one session of photodynamic therapy (PDT). The patient has resolved polyps but persistence of disease activity due to residual BVN and large pigment epithelial detachment (PED). Patient underwent thermal laser photocoagulation of feeder vessel of BVN identified on indocyanine green angiography (ICGA). There was complete resolution of residual BVN and large PED, which was confirmed on ICGA.

Conclusions and Importance: Recalcitrant cases of PCV without polyps but having BVN with feeder vessel can be managed by ICGA guided thermal laser photocoagulation. The case report illustrates the importance of utilizing multimodal imaging such as video indocyanine green angiography (ICGA) for identification of feeder vessel and its deployment for optimal management of refractory PCV.

1. Introduction

Polypoidal Choroidal Vasculopathy (PCV) is a clinical entity first described by Yannuzzi et al. in 1982, characterized by subretinal polypoidal vascular lesions associated with serous and hemorrhagic pigment epithelial detachments (PED). With advancement in retinal imaging and formulation of new diagnostic criteria, PCV is being increasingly recognized as an important cause of exudative maculopathy in Asian eyes. Multiple studies have documented the prevalence of PCV amongst patients diagnosed with neovascular age related macular degeneration to be as high as 24.5%–54.7% in Chinese and Japanese population respectively, 49% in the Taiwanese and 24.6% in the Korean populations compared to 4% to 9.8% in Caucasians.

Clinically the classical features of PCV include presence of sub-retinal reddish orange nodules and serosanguineous maculopathy, with the exudation being disproportionately larger than the size of lesion. Other findings include hemorrhagic pigment epithelial detachment, submacular hemorrhage and neurosensory retinal detachment in the peripapillary or macular retina. According to current recommendations, indocyanine green angiography (ICGA) is the gold standard for detection and evaluation of PCV. Existing treatment modalities for PCV include photodynamic therapy (PDT), anti-vascular endothelial growth factor (anti-VEGF) agents and thermal laser (TL). However, none of these treatment modalities, either singularly or in combination, may achieve complete regression of disease activity. This calls for continual assessment of each patient with application of multimodal imaging to individualize the treatment strategy. The choice of specific treatment modality and prognosis depends upon multiple factors such as the location and size of PCV lesion, presence or absence of polyp with residual abnormal vascular network (AVN), amount of submacular hemorrhage, presence or absence of leakage on fundus fluorescein angiography (FFA), visual acuity, and so on.

We report a case of recalcitrant PCV non-responsive to standard anti-VEGF therapy, in whom regression of disease activity was achieved by indocyanine green angiography (ICGA) guided thermal laser photocoagulation of feeder vessel.

2. Case report

A sixty-four year old lady of Asian origin presented to our clinic in August 2013 with complaint of metamorphopsia in right eye of one week duration. At presentation, her best-corrected visual acuity (BCVA) was 6/9, N8 with presence of a massive sub-foveal serous pigment epithelial detachment (PED) and shallow serous macular detachment (SMD) which was confirmed on spectral-domain optical coherence tomography (SD-OCT) (Fig. 1B) (Spectralis HRA + OCT, Heidelberg Germany).
Indocyanine green angiography (ICGA) showed blocked fluorescence corresponding to the PED and presence of nodular hyperfluorescence at the nasal margin of PED confirming the presence of Extrafoveal polyps (Fig. 1A). In view of presence of massive PED and good visual acuity, PDT was deferred and subsequently, patient underwent seven doses of intravitreal ranibizumab and two doses of intravitreal bevacizumab, with modest response in form of slow progressive reduction in PED height, but there was persistence of polyps on ICGA (Fig. 2A and B). Once the height of PED reduced appreciably, PDT was deemed to be safe and hence patient underwent a session of full-fluence PDT. The patient responded drastically and there was complete resolution of PED and SMD which was confirmed on ICGA (Fig. 3A and B). However, six months later, the patient presented with recurrence of PED. Repeat dynamic ICGA done showed absence of polyp but presence of large branch vascular network (BVN) with feeder vessel. There was presence of double-layer sign (DLS) corresponding to the location of BVN. Since the patient had good visual acuity (6/9) in absence of polyp, she underwent three doses of intravitreal bevacizumab with minimal response. Dynamic ICGA was repeated again, which showed persistent BVN with feeder vessel. Since the location of the feeder vessel was extrafoveal, we performed ICGA guided thermal laser photocoagulation (power 150 mW, duration 0.1 ms, spot size 100 μm) in combination with intravitreal bevacizumab. The patient responded dramatically with complete resolution of PED, DLS and SMD on SD-OCT. Likewise, ICGA too demonstrated absence of the large BVN network with disappearance of large hypofluorescent area corresponding to PED. Fig. 2 shows a detailed view of ICGA before and after laser photocoagulation of the feeder vessel. The patient's final BCVA improved to 6/6, N6. The patient has been followed-up regularly for over 12 months with stable visual acuity and no recurrence (Fig. 3).

3. Discussion

Management of PCV remains to be a conundrum for practicing retinal physician due to its variable clinical presentation and response to therapy. Although international guidelines have been proposed for systematic evaluation and management of PCV, they are based on the literature present upto March 2012. The treatment of PCV is primarily based on its location, and whether it is active or inactive. Inactive PCV can be safely monitored and observed. For active lesions, the options available include PDT, anti-VEGF therapy and thermal laser photocoagulation. Landmark trials for management of PCV, including the EVEREST study, the LAPTOP study and the FUJISAN trial, have compared the efficacy of anti-VEGF agent ranibizumab, either as
monotherapy or in combination with PDT. With polyp closure rate and improvement in visual acuity being the primary end points of treatment, these three landmark trials ascertained the role of combination therapy of full-fluence PDT (greater polyp closure rate) with anti-VEGF agents (better visual outcomes) in initiating therapy for this disease entity. In the EVEREST study, the reported polyp closure rate of PDT with or without ranibizumab therapy was 77.8% and 71.4% respectively.9

Since the guidelines have been published, the armamentarium of retinal imaging has grown exponentially. These include advancements in spectral domain optical coherence tomography (SD-OCT) and utilization of video/dynamic ICGA for optimal management of PCV-PCV being primarily a choroidal pathology, is best visualized and characterized by ICGA. ICGA permits better identification and demarcation of the entire lesion. Characteristically, the early phase of ICGA (First 1 minute) reveals a distinct pattern of vessels within the choroid which is known as the abnormal vascular network (AVN).12 Nodular hyperfluorescence within the first 6 minutes of ICGA, which ascertains presence of polyps, are seen at the terminal ends of the AVN. This is indicative that the entire PCV lesion is a type 1 neovascularization comprising of abnormal vascular network that forms the primary neovascular tissue complex with the polyps purely being an abnormal aneurysmal dilatation at their terminal end. Knowledge of these facts is essential because they help us guide further treatment strategy in the form of continuation with anti-VEGF agents with/without PDT or switching over to a different treatment modality vis-à-vis thermal laser photocoagulation of feeder vessel. In principle, if a feeder vessel is visualized at an extra-foveal location, its treatment by thermal laser should eventually lead to collapse of the entire network of vessels with associated polyps, culminating in resolution of disease activity. This can be achieved only by performing a dynamic ICGA and plays a vital role in cessation of disease activity, thereby reducing the burden of anti-VEGF injections and PDT.

AVN is classified into two varieties: First, a branching vascular network (BVN) in which a feeder vessel can be recognized on ICGA, which fills the entire network of vessels.5,12 This is best evaluated by performing a video ICGA within the first 30 s in which the feeder vessel can be visualized distinctively which fills the entire vascular network. The second variety of AVN includes the interconnecting channels (IC) in which there are absence of any feeder vessel.

In cases where the feeder vessel to a BVN can be demonstrated on video ICGA, TL to the vessel may help achieve resolution of BVN and subsequently disease activity. Traditionally, thermal laser (TL) photocoagulation has been advocated only for extra-foveal, peripapillary and peripheral PCV as the major concern with TL are chorio-retinal scar formation noted within the first 6 minutes of ICG dye injection. Moreover, if we carefully look at those ICGA images, we have illustrated a bunch of nodular hypercyanescents lesions which undeniably confirms a diagnosis of PCV. To the best of our knowledge, such a cluster of nodular hypercyanescents lesions have not been described in relation to either Wet AMD or even RAP based on current literature.

With regards to the BVN, the evidence based guidelines define it as “Abnormal vascular network appearing within 1 minute of dye injection in the presence of feeder vessel”. Also, corresponding OCT demonstrates a shallow irregular PED which is referred to as the double-layer sign (DLS). In our case, similarly, we demonstrate the network of branching vessels with a feeder (Fig. 1:4A and 2A) and correspondingly also illustrate the DLS on SD-OCT. Also, the patient did not have any other features of Wet AMD, including presence of drusen in either eye. Few other features in our case which are highly characteristic of PCV include lack of response to intravitreal anti-VEGF therapy. Although this is present even in cases of wet AMD, it is seen more in PCV mainly because on immunohistology in PCV, the vascular endothelial cells were negative for vascular endothelial growth factor (VEGF) which is not so in wet AMD.13 Another distinctive feature of PCV includes an excellent response to photodynamic therapy (PDT). This is because it is primarily a pachychoroid disease and hence the good response. In our case, we have shown dramatic response to PDT whereby there was complete resolution of PED and SMD on SD-OCT and disappearance of all nodular hypercyanescence lesion on ICGA (Fig. 2A,2B and 3A,3B). Thus the multimodal imaging features of nodular hypercyanescence and branching vascular network on ICGA, DLS on SD-OCT, lack of any clinical features of wet AMD, lack of response to anti-VEGF therapy and drastic response to PDT indisputably clinches a diagnosis of PCV.

Monés et al.16 have reported management of subfoveal PCV refractory to anti-VEGF and PDT by feeder vessel laser photocoagulation. Our case is complementary to that described by Monés et al. in that there is complete resolution of PCV once the feeder vessel was photocoagulated. In addition, our report is exclusive since it describes management of recalcitrant PCV in whom although the polyps have regressed completely following PDT, still the residual large BVN was a constant source of disease activity. Given the fact that many authors have described residual BVN as source of persistent fluid in PCV,17,18 management of such obstinate cases by thermal laser photocoagulation of feeder vessel, if located extra-foveally, can be strongly considered.

4. Conclusion

Thermal laser continues to be an effective and relatively inexpensive
treatment modality as compared to PDT. Many patients of PCV continue to receive multiple doses of anti-VEGF therapy with variable response since ICGA, especially dynamic ICGA, is seldom performed in clinical practice. Our case report emphasizes on performing a dynamic ICGA for identification of feeder vessel of AVN and its management by thermal laser photocoagulation in cases with resolved polyps but persisting disease activity for achieving long-term disease inactivity. This modality can be safely considered if a feeder vessel can be clearly identified in an extrafoveal location.

Patient consent

Obtained.

Acknowledgments and disclosures

Funding

No funding or grant support.

Conflicts of interest

The following authors have no financial disclosures: JS, AG, SC, MG.

Authorship

All authors attest that they meet the current ICMJE criteria for Authorship.

Acknowledgements

None.

References

1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10:1–8.
2. Liu Y, Wen F, Huang S, et al. Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol. 2007;245:1441–1445.
3. Muruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol. 2007;144(1):15–22.
4. Chang YC, Wu WC. Polypoidal choroidal vasculopathy in Taiwanese patients. Ophthalmic Surg Laser Imag. 2009;40:576–581.
5. Lafont RA, Leys AM, Sneers B, Rasquin F, De Laey JJ. Polypoidal choroidal vasculopathy in Caucasians. Graefes Arch Clin Exp Ophthalmol. 2000;238:752–759.
6. Ladas ID, Rouvas MM, Moschos MM, Synodinos EE, Karagiannis DA, Koutsandra CN. Polypoidal choroidal vasculopathy and exudative age-related macular degeneration in Greek population. Eye (Lond). 2004;18:455–459.
7. Scassellati-Sforzolini B, Mariotti C, Bryan R, Yannuzzi LA, Giuliani M, Giovannini A. Polypoidal choroidal vasculopathy in Italy. Retina. 2001;21:121–125.
8. Koh AH, Expert PCV Panel, Chen LJ, et al. Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina. 2013;33(4):666–716.
9. Tan CS, Ngo WK, Chen JP, Tan NW, Lim TH, EVEREST Study Group. EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99:624–628.
10. Oishi A, Miyamoto N, Mandai M, et al. LAPTOP study: a 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. Ophthalmology. 2014;121(5):1151–1152.
11. Gomi F, Oshima Y, Mori R, et al. Initial versus delayed photodynamic therapy in combination with ranibizumab for treatment of polypoidal choroidal vasculopathy: the Fujisan Study. Retina. 2015;35(8):1569–1576.
12. Japanese Study Group of Polypoidal Choroidal Vasculopathy. Criteria for diagnosis of polypoidal choroidal vasculopathy. Nippon Ganka Gakkai Zasshi. 2005;109(7):417–427.
13. Anantharaman G, Ramkumar G, Gopalakrishnan M, Rajput A. Clinical features, management and visual outcome of polypoidal choroidal vasculopathy in Indian patients. Indian J Ophthalmol. 2010;58:399–405.
14. Cheung CM, Laude A, Wong W, et al. Improved specificity of polypoidal choroidal vasculopathy diagnosis using a modified EVEREST criteria. Retina. 2015;35(7):1375–1380.
15. Nakashizuka H, Mitsuhashi M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49(11):4729–4737.
16. Jordi Monés, Josep Badal, Marc Biarnés. Feeder vessel laser photocoagulation for idiopathic, subfoveal polypoidal choroidal vasculopathy not responding to other anti-vascular endothelial growth factor therapy or photodynamic therapy. Retina Cases Brief Rep. 2016;10:100–103.
17. Kokame GT, Yeung L, Teramoto K, Lai JC, Wee R. Polypoidal choroidal vasculopathy exudation and hemorrhage: results of monthly ranibizumab therapy at one year. Ophthalmologica. 2014;231(2):94–102.
18. Yuzawa M, Mori R, Haruyama M. A study of laser photocoagulation for polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2003;47:379–384.