Prognostic Value and Possible Mechanism of m6A Methyltransferase METTL3 in Prostate Cancer

Huifeng Li (✉ urologylihf1301@sina.com)
Qingpu Branch of Zhongshan Hospital, Fudan University

Xiawei Fei
Qingpu Branch of Zhongshan Hospital, Fudan University

Yanting Shen
Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University

Zhenqi Wu
Qingpu Branch of Zhongshan Hospital, Fudan University

Research Article

Keywords: prostate cancer, prognostic predictor, progression-free survival, METTL3, N6-Methyladenosine

Posted Date: January 17th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1204194/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The N6-methyladenosine (m6A) methyltransferase METTL3 has been reported to be closely related to prostate cancer (PCa). Thus, we aimed to explore its prognostic value and possible mechanism in PCa.

Methods: The METTL3 gene and protein expression status in between the PCa and normal tissues as well as the correlation between METTL3 and Gleason score (GS) were evaluated using The Cancer Genome Atlas Project (TCGA) dataset and the tissue microarray (TMA) dataset. The prognostic value of METTL3 was evaluated using 490 PCa patients from TCGA cohort followed by the verification using 515 PCa patients from the dataset integrated by TCGA cohort and International Cancer Genome Consortium (ICGC) cohort. The machine learning methods were used for the possible mechanism of METTL3 which was closely related to the prognosis of PCa. A nomogram was constructed to provide a quantitative approach to predict the prognosis of PCa.

Results: The gene and protein expression levels of METTL3 in the PCa tissues were significantly higher than those in the normal tissues, and the gene and protein expression levels of METTL3 in the high (GS>7) risk PCa tissues were significantly higher than those in the low-moderate risk PCa (GS≤7) tissues. The PCa patients with high expression level of METTL3 had higher risk for the progression-free survival (PFS) events and poorer short-term and long-term PFS than those with low expression level of METTL3. Through using machine learning, a METTL3 related risk model (M-RM) consisted of seven m6A methyltransferase METTL3 target genes was obtained. The high M-RM score was revealed to be significantly related to the poor PFS of PCa as well as the high activity of the KEGG pathways closely related to the process of cell cycle.

Conclusion: METTL3 has the potential to be the prognostic predictor of PCa. Its coded protein may affect the prognosis of PCa mainly through regulating the expression of their target genes closely related to the process of cell cycle. These outcomes will be benefit to improve the prognosis of patients, as well as reduce the mortality of PCa.

Introduction

Prostate cancer (PCa) is the most common malignancy for male, especially in old age, as its incidence is second to lung cancer among men in western countries [1]. In our country, PCa has become the 6th incidence and 7th death of male malignant tumors. With the development of medicine, some curable therapeutic methods such as radical prostatectomy (RP) are proposed and widely used in clinical practice. However, a high recurrence rate still exists [2]. Salvage treatment at the early stage of recurrence is beneficial to prolong survival and even can cure tumor [3]. Therefore, recurrence prediction is of great significance to reduce mortality and improve prognosis of the patients with PCa.

Serum prostate-specific antigen (PSA), Gleason score (GS) and pathological TNM (pTNM) staging are the common methods used to evaluate the recurrence and prognosis of PCa patients. However, there are still
some shortcomings. The rising serum PSA level after curable treatment is unreliable to predict the prognosis of PCa patients, because it does not mean that the patients with rising serum PSA levels are all at a high risk of death from PCa [4]; both GS and pTNM staging are limited by subjective assessment, distant micro-metastasis, and the variations among patients with the same tumor stage or GS [4]. These above have provided the motivation and goal for further exploring a more credible prognostic predictor for PCa patients.

Recently, METTL3 (methyltransferase like 3), a critical N6-methyladenosine (m6A) methyltransferase, has gained increasing attentions. It can maintain the homeostasis of m6A methylation by methylating its target mRNAs, thus participating in diverse pathological processes [5–7]. It is reported that the up-regulated METTL3 was closely related to the progression and poor prognosis of many kinds of cancers, such as gastric cancer [8], bladder cancer [9], oral squamous cell carcinoma [10], lung adenocarcinoma [11], etc. In case of PCa, Ma et al. and Li et al. proposed that the up-regulation of METTL3 was significantly related to the poor over survival (OS) of PCa by using The Cancer Genome Atlas Project (TCGA) cohort [12–13]. However, due to the few OS events in TCGA PRAD cohort (only ten OS events out of five hundred cases), OS is not recommended for PCa survival studies by using TCGA cohort [14]. In addition, how METTL3 affects the prognosis of PCa remains largely uncertain.

Therefore, in this study, we used progression-free survival (PFS) event, the recommended clinical outcome endpoint of PCa survival studies by using TCGA database [14], as a substitute for OS to evaluate the prognostic value of METTL3 for the PCa patients, which is verified subsequently by using the dataset integrated by TCGA cohort and International Cancer Genome Consortium (ICGC) cohort. Then, a series of machine learning methods such as gene co-expression analysis, single-sample gene set enrichment analysis (ssGSEA), etc. were performed to uncover the possible mechanism of METTL3 closely related to the prognosis of PCa. Finally, the nomogram of METTL3 combined with other clinical risk factors was constructed, which provided a quantitative approach to predict the prognosis of PCa. The detail strategy is showed in Figure 1.

Materials And Methods

Gene expression dataset of the prostate tissues

TCGA gene expression data of the prostate tissues were downloaded from TCGA database (https://cancergenome.nih.gov/) and its clinical data for PFS analysis was downloaded from TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [14]. ICGC gene expression data of PCa tissues and its clinical data for PFS analysis were downloaded from ICGC database (https://dcc.icgc.org). The patients with a PFS event were defined as those who had a new tumor event after RP, whether it was a progression of the disease, local recurrence, distant metastasis, new primary tumors at all sites, or died of cancer without a new tumor event, including cases with a new tumor event whose type was N/A [14]. The clinical features were shown in Table 1. RNA modification data was obtained from the RNA modification database by using RMBase (http://rna.sysu.edu.cn) [15].
Table 1
Clinical features of the PCa patients

Clinical features	TCGA cohort	TCGA + ICGC cohort
Age (Mean +/- SE)	60.99 +/- 0.309	61.12 +/- 6.828
GS (6/7/8/9/10 patients)	45/244/63/135/3	Unknown
pT (T2/T3-T4 patients)	377/109	402/109
pN (N0/N1 patients)	340/77	365/77
Distant metastasis (patients)	6	8
Death (patients)	4	5
Death from PCa (patients)	2	Unknown
Patients with PFS event (patients)	89	99
Prior treatment (patients)	Unknown	Unknown

SE: standard error

Immunohistochemical (IHC) analysis

The PCa TMA was purchased from Xinchao Biotech, Shanghai, China. It contained three normal prostate tissues, eight adjacent tissues of PCa, and forty-nine PCa tissues. All paraffin tissue sections obtained from the TMA were dewaxed and rehydrated. After Antigen retrieval, blocking with bovine serum albumin (Sango Biotech, Shanghai, China), the slides were incubated with anti-METTL3 (Abcam, Cambridge, Massachusetts, US) overnight at 4 °C. Then, they were incubated with a secondary antibody of goat antirabbit HRP conjugate (Cell Signaling Technology, Beverly, MA, USA) for 1 h at 25°C. A DAB solution was used for brown color development.

PCa survival analysis of METTL3

490 PCa patients from TCGA cohort were used to evaluate the prognostic value of METTL3, and 515 PCa patients from the cohort integrated by TCGA cohort and ICGC cohort were used for verification. PFS analyses were performed via the Kaplan-Meier and uni-variable Cox algorithm respectively.

Analysis of the mechanism of METTL3 closely related to the prognosis of PCa
By using TCGA cohort and RNA modification data, three main steps were included in this part. Firstly, the m6A methyltransferase METTL3 target genes which were significantly related to the prognosis of PCa patients were selected. These genes should meet the following criteria: (1) the target genes should be significantly co-expressed with METTL3 in PCa (the absolute value of the Pearson's correlation coefficient should be more than 0.3, and P value should be less than 0.05.); (2) the target genes should have the m6A methyltransferase METTL3 protein binding site; (3) the target genes should be significantly related to the prognosis of PCa (P value should be less than 0.05.). Secondly, in order to eliminating the influence of confounding factors, the multi-variable PFS analysis via Least absolute shrinkage and selector operation (LASSO) Cox regression was performed to establish METTL3-related risk model (M-RM) by using “glmnet” R package [16], which was followed by the verification by using 515 PCa patients from the cohort integrated by TCGA cohort and ICGC cohort. Thirdly, ssGSEA was performed to evaluate the activity of the KEGG pathways by calculating their estimate score (ES). Pearson's correlation test was performed to identify the KEGG pathways that were closely related to the M-RM (the absolute value of the correlation coefficient should be more than 0.3, and P value should be less than 0.05.).

Nomogram construction and evaluation

A nomogram that integrated the METTL3 and other clinical risk factors was constructed with TCGA cohort using the ‘rms’ R package [17]. Calibration plot was drawn to describe the degree to which the predicted PFS were consistent with the observed PFS. A concordance index (C-index) was calculated to determine the discrimination of the nomogram via a bootstrap method with 1000 re-samples.

Statistical analysis

Statistical analyses were performed with R software (version 4.1.2). Pearson's correlation test was performed to determine the correlation between two variables. The t-test was used for the comparison between two groups of variables, and the variance test was used for the comparison among three groups of variables. The “survival” R package [18] was used for Kaplan-Meier curve and uni-variate Cox regression analysis. The “maxstat” R package [19] was used to determine the optimal cutoff value of METTL3 for Kaplan-Meier curve. Log Rank (Mantel-Cox) test was used to evaluate long-term PFS, and Breslow (Generalized Wilcoxon) test was used to evaluate short-term PFS. The “pROC” R package [20] was used to draw the time-depend receiver operating characteristic (ROC) curve to evaluate the diagnostic performance for the PFS events of PCa. P value < 0.05 was regarded as statistical significance.

Results

Up-regulated METTL3 was significantly related to PCa as well as the high risk PCa
A total of 496 PCa tissues and 51 normal prostate tissues from TCGA dataset were used to analyze the relationship between METTL3 and PCa. The result showed that the expression level of METTL3 in the PCa tissues was significantly higher than that in the normal prostate tissues (Figure 2A). According to GS, the 496 PCa tissues were divided into three groups including the low-risk (GS<7) (45) group, the moderate-risk (GS=7) (246) group and the high-risk (GS>7) (205) group. We compared the expression levels of METTL3 in these three groups and found that there was a significant difference among them (P<0.001). As can be seen in Figure 2B, the expression level of METTL3 in the high-risk group was significantly higher than that in the low-risk group (P<0.01) as well as the moderate-risk group (P<0.001). Furthermore, through observing the expression level of METTL3 protein by using the PCa TMA dataset, a similar result was got. It was not only that the expression level of METTL3 in the PCa tissues was visibly higher than that in the normal tissues and the AD tissues, but also that the expression level of METTL3 in the high risk PCa tissues (GS>7) was obviously higher than that in the low-moderate risk PCa tissues (GS≤7) (Figure 2C). Taken together, these results suggest that the up-regulated METTL3 is showed close relationship to PCa as well as the high risk PCa.

Up-regulated METTL3 was closely related to the poor PFS of the PCa patients

490 PCa tissues from TCGA cohort were used to evaluate the prognostic value of METTL3 in PCa. PFS analysis via uni-variable Cox regression algorithm showed that the up-regulated METTL3 was significantly related to the poor PFS of the PCa patients (Hazard ratio (HR): 1.58; 95% confidence interval (CI): 1.022-2.449; P<0.05). According to the optimal cutoff value (4.98) of METTL3, PCa patients were divided into two groups, the group of the patients with high expression level of METTL3 and the group of the patients with low expression level of METTL3. Kaplan-Meier curve showed that the patients with high expression level of METTL3 had poorer both short-term and long-term PFS than those with low expression level of METTL3 (Log Rank (Mantel-Cox): X²=6.957, P<0.01; Breslow (Generalized Wilcoxon): X²=5.562, P<0.05; Figure 2D). 515 PCa patients from the cohort integrated by TCGA cohort and ICGC cohort were used for verification. Consistently, the similar results were got (Figure 2E). Above all, we suggest that METTL3 have the potential to be the prognostic predictor for PCa.

Mechanism of METTL3 that was closely related to the prognosis of PCa

In order to uncover the mechanism of METTL3 involved in the prognosis of PCa, firstly, twenty-five m6A methyltransferase METTL3 target genes were identified (S-Table 1) [see Additional file 1], which met the criteria mentioned in "Materials and Methods". Then, these target genes were used to perform the PFS analysis via LASSO Cox regression with 490 PCa tissues from TCGA cohort to establish the M-RM, which was consist of seven m6A methyltransferase METTL3 target genes including small nuclear ribonucleoprotein U1 sub-unit 70 coding gene (SNRNP70), claudin 15 coding gene (CLDN15), non-SMC
condensin I complex sub-unit H coding gene (NCAPH), DExD-box helicase 39A coding gene (DDX39A), RAD54 like coding gene (RAD54L), essential meiotic structure-specific endonuclease subunit 2 coding gene (EME2), and melanocortin 1 receptor coding gene (MC1R) (Figure 3A). The formula of the M-RM score for each patient was: M-RM score = (0.221 * expression level of SNRNP70) + (0.233 * expression level of CLDN15) + (0.008 * expression level of NCAPH) + (0.001 * expression level of DDX39A) + (0.516 * expression level of RAD54L) + (0.014 * expression level of EME2) + (0.324 * expression level of MC1R). Subsequently, the preliminary evaluation of these seven m6A methyltransferase METTL3 target genes and the M-RM were performed. These seven target genes were all moderately positively correlated to METTL3, and significantly related to the PFS of PCa (Figure 3B). The time-dependent ROC showed that the M-RM had a good diagnostic performance for 1-year, 3-year and 5-year PFS events with the area under the curve (AUC) of 0.78 (95% CI: 0.71-0.85), 0.78 (95% CI: 0.72-0.84), and 0.74 (95% CI: 0.65-0.82) (Figure 3C). According to the optimal cutoff value of the M-RM score, the PCa patients were divided into the high M-RM score group and the low M-RM score group. As shown in Figure 3D, the gene expression levels of variables in the M-RM and the number of the PFS events in the same period of time in the high M-RM score group were both obviously higher than those in the low M-RM score group. In addition, Kaplan-Meier curve showed that the patients with high RM score had poorer both short-term and long-term PFS than those with low PFS score (Log Rank (Mantel-Cox): X^2=46.131, $P<0.0001$; Breslow (Generalized Wilcoxon): X^2=40.082, $P<0.0001$; Figure 3E). This result was confirmed by using the cohort integrated by TCGA cohort and ICGC cohort subsequently (Log Rank (Mantel-Cox): X^2=22.123, $P<0.0001$; Breslow (Generalized Wilcoxon): X^2=18.510, $P<0.0001$; Figure 3F). Thus, we believed that METTL3 might affect the prognosis of PCa mainly through regulating the expression of these seven m6A methyltransferase METTL3 target genes in the M-RM. Finally, in order to further understand how the M-RM affected the prognosis of PCa, ssGSEA was performed. And based on it, we found that the M-RM score was significantly positively correlated to the activity of the cell cycle related KEGG pathways, such as cell cycle, DNA replication, base excision repair, etc. (Figure 4). Taken together, we suggest that METTL3 may affect the prognosis of PCa mainly through regulating the expression levels of their target genes which were closely related to the process of cell cycle.

Nomogram construction and evaluation

METTL3 and the clinical risk factors including age, GS, pathological T (pT) staging and pathological N (pN) staging were used for the PFS analysis via multi-variable Cox regression algorithm. The risk model (RM) ($X^2=33.03, P<0.0001$) integrated the METTL3 and pT staging for was established (S-Table 2) [see Additional file 1]. PFS analyses via Kaplan-Meier and uni-variate Cox regression algorithm showed that the RM was significantly related to the prognosis of PCa patients. The patients with high RM score had poorer both short-term and long-term PFS than those with low RM score (Log Rank (Mantel-Cox): $X^2=22.951, P<0.0001$; Breslow (Generalized Wilcoxon): $X^2=15.925, P<0.0001$; Figure 5A). The nomogram based on the RM was drawn to provide the quantitative approach to predict the probability of 1-year, 3-year and 5-year PFS for the PCa patients (Figure 5B). The C-index of the RM was 0.729 (95% CI: 0.651-
0.808; \textit{P}<0.0001). And the calibration curve showed that the RM-based nomogram-predicted 3-year and 5-year PFS of the PCa patients was highly fit with the observed ones (Figure 5C).

Discussion

METTL3 is a critical m6A methyltransferase, which can participate in diverse pathological processes through maintaining the homeostasis of m6A methylation by methylating its target mRNAs [5–7]. Recently, a few studies revealed that the up-regulation of METTL3 was significantly related to the poor OS of the PCa patients by using TCGA cohort [12–13]. However, there were only ten OS events out five hundred cases in TCGA cohort, so that, according to the recommendations of TCGA-CDR, PFS was identified to be more suitable than OS for PCa survival studies [14]. Thus, in this study, by using TCGA database, PFS event was used as the substitute for OS to further evaluate the prognostic value of METTL3 for the PCa patients, and the results showed that the patients with high expression level of \textit{METTL3} had poorer both short-term and long-term PFS than those with low expression level of \textit{METTL3}. Furthermore, the result of the PFS analysis by using 515 PCa patients from the cohort integrated by TCGA cohort and ICGC cohort confirmed it. Taken together, these results suggest that \textit{METTL3} had a good predictive ability for the prognosis of PCa, which is consistent with previous studies [12–13]. In addition, in order to provide a quantitative approach to predict the probability of 1-year, 3-year and 5-year PFS for the PCa patients, the nomogram based on the RM which integrated by the \textit{METTL3} and pT was constructed with TCGA cohort. The RM had a high ability to distinguish the occurrence of the PFS events, and the RM-based nomogram-predicted 3-year and 5-year PFS of PCa patients was also highly fit with the observed ones, indicating the good predictive ability of it for the prognosis of PCa.

It has been reported that the role of METTL3 in the process of tumorigenesis and tumor development is tumor-specific [22–27]. Some studies showed that METTL3 played an oncogenic role in myeloid leukaemia [22], breast cancer [23], bladder cancer [24], colorectal carcinoma [25], etc. Other studies indicated that METTL3 played a tumor suppressor in renal cell carcinoma [26] and glioblastoma [27]. In PCa, a recent study suggested that METTL3 was an oncogenic factor [28]. However, the mechanism of METTL3 that affected the prognosis of PCa were still unclear. Our results revealed that after eliminating the interference of confounding factors, m6A methyltransferase METTL3 target genes \textit{SNRNP70, CLDN15, NCAPH, DDX39A, RAD54L, EME2}, and \textit{MC1R} were identified to significantly affect the prognosis of PCa patients. So far there was no related studies to illuminate the mechanism of these seven genes in PCa. However, we noticed that except \textit{CLDN15}, the rest m6A methyltransferase METTL3 target genes might be closely related to the process of cell cycle. \textit{SNRNP70} and \textit{DDX39A} participated in transcription, \textit{NCAPH} participated in DNA replication, \textit{RAD54L} and \textit{EME2} participated in DNA repair, as well as \textit{MC1R} promoted the process of DNA repair in skin [29]. Furthermore, by using ssGSEA and Pearson's correlation test, we noticed that the activity of some cell cycle related KEGG pathways such as cell cycle, DNA replication, and basic resection repair was significantly enhanced with the increasing of the M-RM scores calculated from the expression levels of these seven m6A methyltransferase METTL3 target genes. These results suggest that METTL3 might participate in PCa progression mainly through regulating the expression of their target genes which were closely related to cell cycle.
In conclusion, *METTL3* had the potential to be developed as a PCa prognostic predictor. The process of cell cycle may be the possible mechanism of it in the prognosis of PCa. Our outcomes will be helpful to improve the prognosis of patients, as well as reduce the mortality of PCa.

Declarations

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki and approved by Ethics Committee of Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University (2020-19).

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Declarations

The authors declare that they have no competing interests.

Funding

This work was supported by the Qingpu Municipal Health Commission under Grant NO.WY2019-07; Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University under Grant NO.YZK2019-09 and NO.QYM2020-04.

Authors’ contributions

SYT and FXW conceived and designed the study and were responsible for the writing and critical reading of the manuscript. SYT contributed to bioinformatical analysis. FXW contributed to sample collection and experiment implementation. WZQ contributed to theoretical and experimental guidance.

Acknowledgements
Authors' information

1Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, R.P. China. 2Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, R.P. China

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2): 87-108.
2. McCammack KC, Raman SS, Margolis DJ. Imaging of local recurrence in prostate cancer. Future Oncol. 2016; 12(21):2401-2415.
3. Rans K, Berghen C, Joniau S, De Meerleer G. Salvage Radiotherapy for Prostate Cancer. Clin. Oncol. (R Coll Radiol). 2020; 32(3): 156-162.
4. Van den Broeck T, van den Bergh RCN, Ar N, Gross T, Moris L, Briers E, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur. Urol. 2019; 75(6): 967-987.
5. Pan Y, Ma P, Liu Y, Li W, Shu Y. Multiple functions of m(6)A RNA methylation in cancer. J Hematol Oncol. 2018;27(11): 48.
6. Wang S, Chai P, Jia R, Jia R. Novel insights on m(6)A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer. 2018;21(17): 101.
7. Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 2019; 512(3): 479-485.
8. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193-1205.
9. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu H, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.
10. Liu L, Wu Y, Li Q, et al. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m(6)A Methylation in Oral Squamous Cell Carcinoma. Mol Ther. 2020;28(10):2177-2190.
11. Zhang Y, Liu X, Liu L, Liang J, He Q, Zhao L, et al. Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. Med Sci Monit. 2020;26:e919644.
12. Ma XX, Cao ZG, Zhao SL. m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci. 2020;24(7):3565-3571.
13. Li J, Xie H, Ying Y, Chen H, Yan H, He L, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020; 19(1):152.

14. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. Cancer Genome Atlas Research Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell. 2018; 173(2): 400-416.

15. Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu L, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Research. 2016; 44(D1):D259-65.

16. Ramsay IS, Ma S, Fisher M, Loewy RL, Ragland JD, Niendam T, et al. Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophr. Res. Cogn. 2017; 11:1-5.

17. Eng KH, Emily S, Kayla M. On representing the prognostic value of continuous gene expression biomarkers with the restricted mean survival curve. Oncotarget. 2015; 6(34):36308-18.

18. Zhang X, Zhang W, Jiang Y, Liu K, Ran L, Song F. Identification of functional IncRNAs in gastric cancer by integrative analysis of GEO and TCGA data. J Cell Biochem. 2019; 120(10):17898-17911.

19. Chen SY, Tang Y, Wang SL, Song YW, Fang H, Wang JY, et al. Timing of Chemotherapy and Radiotherapy Following Breast-Conserving Surgery for Early-Stage Breast Cancer: A Retrospective Analysis. Front Oncol. 2020; 10:571390.

20. Moraru AD, Costin D, Moraru RL, Branisteianu DC. Outcomes of simultaneous vs. sequential pars plana vitrectomy and cataract surgery. Exp Ther Med. 2020; 20(6):183.

21. Diao R, Mu X, Wang T, Li S. Risk score based on ten IncRNA-mRNA expression predicts the survival of stage II–III colorectal carcinoma. PLoS ONE. 2017; 12(8):e0182908.

22. Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017; 552(7683):126-131.

23. Cai XL, Wang X, Cao C, Shi J, Millán-Zambrano G, Robson SC, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Letters. 2018; 415:11-19.

24. Cheng MS, Sheng L, Gao Q, Xiong Q, Zhang QC, Wu MQ, et al. The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappa B/MYC signaling network. Oncogene. 2019; 38(19): 3667-3680.

25. Li T, Hu PS, Zuo Z, Lin J, Li X, Wu Q, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019; 18(1):112.

26. Li X, Tang J, Huang W, Wang F, Li P, Qin C, et al. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 2017; 8(56): 96103-96116.

27. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Reports. 2017; 18(11): 2622-2634.
28. Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y, et al. RNA m6A Methyltransferase METTL3 Promotes the Growth Of Prostate Cancer By Regulating Hedgehog Pathway. Onco Targets Ther. 2019;12:9143-9152.

29. Chen S, Zhu B, Yin C, Liu W, Han C, Chen B, et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 2017;549(7672): 399-403.

Figures

Figure 1
Detail analysis strategy

Figure 2
Prognostic value of the m6A methyltransferase METTL3
(A) Comparison between the expression level of METTL3 in the PCa tissues and that in the normal prostate tissues by using TCGA dataset; (B) Comparison among the expression level of METTL3 in the low-risk PCa tissues (GS<7), the moderate-risk PCa tissues (GS=7) and the high-risk PCa tissues (GS>7) by using TCGA dataset; (C) METTL3 protein expression level in the normal prostate tissue, the AD prostate tissues, the low-moderate risk PCa tissues (GS≤7) and the high risk PCa tissues (GS>7) by using TMA dataset; (D) Kaplan-Meier curve of METTL3 for the PFS of the PCa patients by using TCGA cohort; (E) Kaplan-Meier curve of METTL3 for the PFS of the PCa patients by using the cohort integrated TCGA cohort and ICGC cohort.

Figure 3
Prognostic power of the m6A methyltransferase METTL3 targeted genes
(A) LASSO Cox regression to establish the M-RM; (B) Forest plot of the seven m6A methyltransferase METTL3 target genes in the M-RM: “Cor. (P value)” was the correlation coefficient and P value between METTL3 and each of the variables in the M-RM; (C) Time-dependent ROC of the M-RM score; (D) Preliminary evaluating the prognostic values of the M-RM and the m6A methyltransferase METTL3 target
genes in its formula; (E) Kaplan-Meier curve of the M-RM score for the PFS of the PCa patients by using TCGA cohort; (F) Kaplan-Meier curve of the M-RM score for the PFS of the PCa patients by using the cohort integrated TCGA cohort and ICGC cohort.

Figure 4

Correlations between the activities of KEGG pathways and the M-RM score

(Top) Heatmap of the top ten KEGG pathways that were significantly correlated to the M-RM score; (Bottom) Scatter diagrams of the top ten KEGG pathways that were significantly correlated to the M-RM score.

Figure 5

Correlations between the activities of KEGG pathways and the M-RM score

(Top) Heatmap of the top ten KEGG pathways that were significantly correlated to the M-RM score; (Bottom) Scatter diagrams of the top ten KEGG pathways that were significantly correlated to the M-RM score.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- STable1.xlsx
- STable2.docx