Original

Evaluation of the Solubility, Calcium-Release Ability, and Apatite-Forming Ability of a Novel Chemically Curable Mineral Trioxide Aggregate Material

Chidzuru Inami, Yoshihiro Nishitani, Naoki Haraguchi, and Shinichi Itsuno

Abstract: A novel chemically curable, resin-modified-type mineral trioxide aggregate (MTA) material polymerized by tri-n-butylborane (PCX-TBB), and light-curable, resin-modified-type MTA material (TheraCal LC) clinically useful were evaluated in terms of solubility, calcium-release ability, compressive strength and apatite-forming ability. The solubility of PCX-TBB conformed to ISO 6876, whereas that of TheraCal LC did not conform to the abovementioned standard. The calcium-release ability of PCX-TBB and TheraCal LC showed no difference after 1 day of immersion in purified water. However, after 30 days of immersion, the calcium concentration of PCX-TBB increased and became higher than that of TheraCal LC. The compressive strength of PCX-TBB was stable even if immersed in simulated body fluid (SBF) for 30 days. In contrast, the compressive strength of TheraCal LC showed a tendency to decrease slightly by immersion in SBF. Furthermore, the apatite-forming ability of PCX-TBB was determined to be superior to that of TheraCal LC. The results presented herein suggest that PCX-TBB has potential as a superior MTA material and may have improved hard tissue-induction ability compared to that of TheraCal LC.

Key words: Hard tissue-induction ability, Mineral trioxide aggregate, Tri-n-butylborane, Regeneration

Introdution

Mineral trioxide aggregate (MTA) is an endodontic material that was first developed at the University of Loma Linda in the early 1990s and has been used for root-canal filling, root-end filling, perforation repair, and direct pulp capping. Although the major component of MTA is Portland cement, it is also used in dental materials by modification with radiocontrast agents. MTA has been shown to exhibit excellent sealability and biocompatibility. Furthermore, it can induce regeneration of hard tissues with regular dentinal tubule structures. The hard-tissue-induction abilities of MTA are assumed to arise from the calcium hydroxide produced by the hydration reaction of MTA.

To date, many commercial products containing MTA have been developed, with a preceding ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA). The curing mechanism of these products can be explained based on the hydration reaction of MTA by mixing water and MTA-containing powder. However, these materials need to be further improved in terms of operability and flow ability. Furthermore, they suffer from several problems such as variable curing time and physical properties due to differences in the mixing ratio of powder and water. Recently, a light-curable, resin-modified-type, pulp-capping material composed of Portland cement and resin monomer was on sale (TheraCal LC®, Bisco, Sahumburg, IL, USA). Compared to conventional MTA materials, TheraCal LC exhibits improved operability, greater physical strength, and reduced heavy metal content. Additionally, the calcium-release ability of TheraCal LC®, which is an important performance parameter for hard tissue-induction, is superior to that of ProRoot® MTA by incorporating a highly hydrophilic monomer. However, the cytotoxicity of TheraCal LC® caused by eluted unpolymerized monomer remains a concern.

The MMA/TBB resin is a poly(methyl methacrylate) prepared by polymerization of methyl methacrylate (MMA) with tri-n-butylborane (TBB) and has been recognized as a highly biocompatible resin that can achieve good clinical prognoses as a direct pulp capping material. The excellent biocompatibility of the MMA/TBB resin likely originates from the unique polymerization mechanism initiated by TBB. Based on the biocompatibility of MMA/TBB resin, materials prepared from combinations of MMA/TBB resin and MTA have been studied.

Therefore, this study was performed to evaluate the novel chemically curable, resin-modified-type MTA material polymerized by TBB (PCX-TBB) by comparison with a light-curable MTA material that is already used clinically (TheraCal LC®).

Materials and Methods

Materials

The materials used in this study, their manufacturer details, and compositions are listed in Table 1. PCX-TBB consists of Portland cement, zirconium dioxide, hydroxypropyl methacrylate, and partially oxidized tri-n-butylborane (TBOO) as a polymerization initiator. TheraCal LC® consists of Portland cement, polyethylene glycol dimethacrylate, bisphenol A glycidylmethacrylate (BisGMA) and barium zir-
Specimen preparation

The cured PCX-TBB specimen was prepared by mixing 0.1 g of paste with 1 drop of Catalyst V, which is a polymerization initiator containing TBBO. The cured TheraCal LC® specimen was laminated to be <1 mm thick and each layer was irradiated with an LED (LED.B Guilin Woodpecker Medical Instrument Co., Ltd.) for 20 s.

Solubility

The solubility test was conducted according to the International Organization by standardization guidelines (ISO 6876:2012; dental root canal sealing materials). Four cured specimens with dimensions of 20 mm I.D.×1.5 mm were prepared and stored at 37°C and 95% relative humidity (RH) for 36 h, and then weighed twice using a digital scale with 0.1 mg accuracy (OHAUS, Morristown, NJ, USA). The samples were randomly divided into two groups of two samples and placed into a dish (A) to which 50 ml purified water was added. The dish was subsequently incubated at 37°C for 24 h. A funnel with a filter paper was placed 20 mm above the bottom of dish (B). Purified water was poured into the specimens and placed on the filter paper and then washed into the previously used dish (A) three times with 5 ml of purified water. Dish (B) and the collected water were placed in an oven at 110°C, and the water was evaporated until a constant mass was reached. The solubility rate was calculated according to the following formula and the test was repeated four times.

Solubility rate=[(Final mass of dish (B)-Original mass of dish (B))/Original combined mass of the two specimens]×100 (%)

Calcium-release ability

Five cured specimens with dimensions of 10 mm I.D.×2.0 mm were prepared and stored at 37°C and 95% RH for 24 h. The specimens were subsequently immersed in purified water and stored at 37°C. The specimens were then transferred to fresh purified water after 1, 3, 7, 14, and 30 days. The volume of purified water was adjusted to be 100 mm3 with respect to the surface area of specimen of 1 mm2. The calcium concentration in the purified water was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES; ICPE-9000, Shimadzu Corporation, Kyoto, Japan). The concentration results were calculated using a standard curve, established based on solutions with predefined calcium concentrations.

Compressive strength

Six cured specimens with dimensions of 4.0 mm I.D.×3.0 mm were prepared. Three cured specimens stored at 37°C and 95% RH for 30 days. Other cured specimens were immersed in SBF and soaked at 37°C for 30 days. Each specimen was places in an autograph (AG-X plus, Shimadzu Corporation, Kyoto, Japan) and the compressive strength test was conducted at a crosshead speed of 2.0 mm/min.

Apatite-forming ability

Evaluation of apatite-forming ability was performed with reference to the International Organization of standardization guidelines (ISO 23317:2014; evaluating the apatite-forming ability of implant materials). Five cured bodies with dimensions of 10 mm I.D.×2.0 mm were prepared and stored at 37°C and 95% RH for 24 h. The specimens were subsequently immersed in simulated body fluid (SBF) and soaked at 37°C for 1, 3, 7, 14, and 30 days. The volume of SBF was adjusted to be 100 mm3 with respect to the surface area of specimen of 1 mm2. The resulting ion concentrations in the SBF are shown in Table 2.

Fourier-transform infrared absorption (FT-IR) spectroscopic analysis

The surface of specimens before and after immersed in SBF for 7 days were analyzed by FT-IR spectroscopy (Spectrum 100, Perkin Elmer, Waltham, MA, USA). The spectra of specimens were compared to the spectrum of hydroxyapatite standard. All spectra were recorded at a resolution of 4 cm$^{-1}$ throughout the spectral range 4,000–650 cm$^{-1}$.

Results

Solubility

The ISO 6876:2012 standard recommends a test to evaluate the ma-

Table 1. Materials used in this study, composition and manufacturer information

Material	Manufacture	Component	Composition (Compounding ratio %)
PCX-TBB	Sun Medical Co., Ltd. Moriyama, Japan	Chemically-curable paste	Portland cement (30–40)
		Catalyst V	Zirconium dioxide (30–40)
			Hydroxypropyl methacrylate (20–30)
			TBBO
			n-Hexane
			Ethanol
TheraCal LC®	BISCO Dental Products, Schaumburg, IL, USA	Light-curable paste	Portland cement (30–50)
			Polyethylene glycol dimethacrylate (10–30)
			BisGMA (5–10)
			Barium zirconate (1–10)

Table 2. Ion concentrations contained in SBF (pH 7.4)

Ion	Concentration (mM)
Na$^+$	142.0
K$^+$	5.0
Mg$^{2+}$	1.5
Ca$^{2+}$	2.5
Cl$^-$	147.8
HCO$_3^-$	4.2
HPO$_4^{2-}$	1.0
SO$_4^{2-}$	0.5
terial solubility. To meet this standard, the solubility of the material is stipulated to be ≤3.0%\(^\text{26}\). The solubility (wt%) of the PCX-TBB and TheraCal LC\(^\text{®}\) samples is shown in Table 3. The solubility of PCX-TBB (2.4 wt%) conformed to the ISO 6876:2012 standard. In contrast, the solubility of TheraCal LC\(^\text{®}\) (4.0 wt%) exceeded that of the standard value (3.0 wt%).

Calcium-release ability

The sustained release of calcium was monitored and the results are shown in Table 4. The calcium concentrations after 1 day, 3 days, 7 days, 14 days and 30 days were 49.1 mg/l, 44.1 mg/l, 45.4 mg/l, 41.3 mg/l and 81.3 mg/l, respectively for PCX-TBB, and 51.2 mg/l, 25.3 mg/l, 27.6 mg/l, 18.1 mg/l and 37.5 mg/l, respectively, for TheraCal LC\(^\text{®}\). Almost no difference in the calcium concentration was observed between the PCX-TBB and TheraCal LC\(^\text{®}\) after 1 day of immersion. However, after 3 days of immersion, the calcium concentration of PCX-TBB was higher than that of TheraCal LC\(^\text{®}\), and more than doubled at 14 days and 30 days of immersion.

Compressive strength

The compressive strength of PCX-TBB and TheraCal LC\(^\text{®}\) are shown in Fig. 1. The compressive strength of PCX-TBB was 82.5 MPa without immersion in SBF and 86.2 MPa with SBF immersion. The compressive strength of TheraCal LC\(^\text{®}\) was 124.6 MPa without immersion in SBF and 99.8 MPa with SBF immersion. Although TheraCal LC\(^\text{®}\) has higher physical property compared to PCX-TBB, the property was affected by SBF immersion.

Apatite-forming ability

The SEM image showed that small granular crystals formed in the PCX-TBB and TheraCal LC\(^\text{®}\) specimens immersed in SBF for one day (Fig. 2A and F). The SEM images obtained of the specimens immersed in SBF for 3 days showed that the number of crystals increased in both materials (Fig. 2B and G). At 7, 14, and 30 days of SBF-immersion, the crystals in the PCX-TBB specimen grew continuously and nano-cluster crystals overlapped with each other (Fig. 2 C–E). In contrast, the TheraCal LC\(^\text{®}\) specimens showed crystals that were sparsely formed on the surface (Fig. 2 H–J).

Fourier-transform infrared absorption (FT-IR) spectroscopic analysis

Fig. 3 shows FT-IR spectra of PCX-TBB and TheraCal LC\(^\text{®}\) (without immersion in SBF or immersed in SBF for 7 days), and hydroxyapatite standard. Hydroxyapatite shows a characteristic peak around 1,020 cm\(^{-1}\). Although there is no matched peak in both PCX-TBB and TheraCal LC\(^\text{®}\) to hydroxyapatite without immersion in SBF, a peak corresponding to specific to Hydroxyapatite in each sample immersed in SBF.

Table 3. Solubility of each material

Material	PCX-TBB	TheraCal LC\(^\text{®}\)
Solubility (wt%, Ave±SD)	2.4±0.2	4.0±0.2

Ave, Average value; SD, Standard Deviation.

Table 4. Calcium concentration in purified water (mg/l: Ave±SD)

Material	Soaked days				
	1	3	7	14	30
PCX-TBB	49.1±17.5	44.1±12.2	45.4±12.3	41.3±9.0	81.3±23.9
TheraCal LC\(^\text{®}\)	51.2±22.9	25.3±9.1	27.6±7.5	18.1±8.2	37.5±10.9

Ave, Average value; SD, Standard Deviation.

Table 5. at % of the element and Ca/P ratio in the crystal of SBF-immersed specimens

Material	Days of immersion in SBF					
	1	3	7	14	30	
	Ca at%	P at%	Ca/P ratio	Ca at%	P at%	Ca/P ratio
PCX-TBB	63.05	36.95	1.71	75.05	24.95	3.01
	65.94	34.06	1.94	69.93	30.07	2.33
	67.46	32.54	2.07	70.15	29.85	2.35
	66.49	33.51	1.98	71.36	28.64	2.49
	74.60	25.40	2.94	72.60	27.40	2.65

Figure 1. The compressive strength of PCX-TBB and TheraCal LC\(^\text{®}\). The compressive strength test of each material was carried out after 30 days storage at 37°C, RH 95% or after 30 days immersion in SBF. The compressive strength of PCX-TBB was stable, whereas that of TheraCal LC\(^\text{®}\) showed a tendency to decrease slightly by immersion in SBF.
Figure 2. Scanning electron micrographs showed the surface morphology of PCX-TBB and TheraCal LC® after immersion in SBF: PCX-TBB after: 1 day (A), 3 days (B), 7 days (C), 14 days (D) and 30 days (E); TheraCal LC® after: 1 day (F), 3 days (G), 7 days (H), 14 days (I) and 30 days (J).
Discussion

This study comparatively evaluated a novel chemically curable MTA material polymerized by TBB (PCX-TBB) and a light-curable MTA material (TheraCal LC®) used clinically in terms of solubility, calcium-release ability, and apatite-forming ability.

Calcium hydroxide has been used in a number of treatment modalities for pulp-capping. However, its high solubility is controversial, since the dissolution of calcium hydroxide can result in the majority of dentine bridges under the materials producing tunnel-like defects within 1–2 years. Therefore, approximately 50% of the pulps may become infected or become necrotic owing to microleakage\(^2\),\(^2\). Similarly, in root-end filling cement, the volume loss of the material is undesirable because it reduces sealing ability, creating ideal conditions for bacteria to enter the treatment site\(^3\),\(^4\). Hence, the ISO 6876:2012 standard recommends a test to evaluate the material solubility. There has been some discussion regarding the abovementioned evaluation method in the context of sustained release materials such as MTA\(^5\) because these materials are required to release active ingredients such as calcium. Therefore, in this study, the sustained release of the active ingredient calcium from MTA and its solubility were evaluated simultaneously. The results showed that the solubility of PCX-TBB (2.4 wt%) was lower than that of TheraCal LC® (4.0 wt%) and its calcium-release ability was higher than that of TheraCal LC® (Table 4).

TBB as the initiator can promote the polymerization of the monomer in a high conversion ratio compared to conventional photo-polymerization initiators such as camphorquinone\(^6\). In addition, the polymerization activity of TBB was improved in an environment containing a certain amount of oxygen and water\(^7\). On the other hand, the polymerization of TheraCal LC® was inhibited by oxygen\(^8\). Therefore, it is likely that differences between the solubility of PCX-TBB and that of TheraCal LC® can be ascribed to the elution of insufficiently cured components such as monomer and oligomer. In clinical condition, there are polymerization inhibitors such as water and oxygen. Under such condition, PCX-TBB may be more effective materials compared to TheraCal LC®. Gandolﬁ MG et al. report that the solubility of TheraCal LC® (1.58 wt%) was lower than that of ProRoot MTA (18.34 wt%)\(^9\). Compared with the solubility results of the previous study, there is a slight difference in the elution volume of TheraCal LC® (4.0 wt%) in this study (Table 3). However, there are some differences in sample preparation and immersion methods between the previous and present study. In particular, the sample adjusted based on ISO 6876:2012 in this study, and the surface area is larger than the previous report. Moreover, since the amount of water to be immersed is larger in this study, solubility in water may be increased. There is a possibility that these factors influence the difference in these results.

The compressive strength of PCX-TBB and TheraCal LC® were examined in order to evaluate the influence of calcium-release on physical properties. The compressive strength of PCX-TBB was not affected by immersion in SBF, whereas that of TheraCal LC® showed a tendency to decrease slightly (Fig. 1). It is reported that MTA releases calcium ion due to reaction of MTA and water\(^10\), and the compressive strength of MTA is improved by the hydration reaction\(^11\). Thus, it was presumed that the reduction of the compressive strength of TheraCal LC® which has higher solubility than PCX-TBB may be caused by outflow of the monomer, oligomer and the inorganic material from the cured specimen. In particular, the outflow of the inorganic component derived from MTA

![Figure 3 FT-IR spectra of PCX-TBB and TheraCal LC® (without immersion in SBF, immersed in SBF for 7 days), and hydroxyapatite standard.](image-url)
may be preventing the progression of hydration reaction in SBF. Apatite phase formation and regeneration of hard tissues are important for the clinical success of MTA. Kokubo et al. concluded that the examination of apatite formation on a material in simulated body fluid (SBF) is useful for predicting in vivo bone bioactivity. Therefore, we evaluated the apatite-forming ability according to the ISO 23317:2014 standard. From the SEM observations, it was apparent that PCX-TBB was able to form an increased number of calcium phosphate crystals compared to TheraCal LC (Fig. 2). In the PCX-TBB specimen, nano-cluster crystals were densely formed on the surface and were similar to apatite crystals. In addition, the results of FT-IR supports that the crystals formed on the surface of PCX-TBB and TheraCal LC are calcium phosphate.

The generated crystal morphology significantly influences the bioactivity of the material. Smaller crystal particles absorb more protein, leading to further absorption of cells that can induce hard tissue regeneration. As shown in Fig. 2, in the PCX-TBB samples, many small crystals were densely formed, suggesting that PCX-TBB can induce greater cell proliferation and improved hard tissue regeneration. The ratio of calcium to phosphorus (Ca/P ratio) significantly affects the degree of bioactivity of the material. Previous reports have shown that the Ca/P ratios of MTA immersed in SBF for 1, 7, and 14 days were 3.84, 8.33, and 2.74, respectively. These Ca/P ratios in MTA were higher than the stoichiometric Ca/P ratio for hydroxyapatite (Ca/P = 1.67). Higher Ca/P ratios indicate calcium precipitation on the surface, which can lead to the desired bioactivity, biocompatibility, and hard tissue-induction abilities. The Ca/P ratios obtained in this study are shown in Table 5 and ranged from 1.71 to 2.94 for PCX-TBB and from 2.33 to 3.01 for TheraCal LC. The Ca/P ratios of PCX-TBB and TheraCal LC were higher than that of the stoichiometric ratio of hydroxyapatite; therefore, it is likely that these materials would possess the abovementioned properties.

According to the SEM observations, EDS and FT-IR analyses, both PCX-TBB and TheraCal LC exhibited apatite-forming ability. The number of crystal formed on PCX-TBB was much higher than that of TheraCal LC at all time points (Fig. 2). Thus, PCX-TBB may have improved hard tissue-induction ability compared to that of TheraCal LC.

In conclusion, the novel chemically curable MTA material (PCX-TBB) exhibited low solubility, high calcium-release ability and stable compressive strength. The relevant properties of PCX-TBB were superior to those of the light-curable MTA material (TheraCal LC). Both PCX-TBB and TheraCal LC showed ability to form calcium phosphate crystals (apatite derivatives) with high Ca/P ratios. From the SEM observations, it was apparent that PCX-TBB was able to form an increased number of calcium phosphate crystals compared to TheraCal LC.

Conflicts of Interest

The materials costs relevant to this study were borne by Sun Medical Co., Ltd. Author Chidzuru Inami is an employee of Sun Medical Co., Ltd. Author Chidzuru Inami applied for a patent related to this research, but has not received any patent royalty. There are no other conflicts of interest to disclose.

References

1. Torabinejad M and Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 25: 197-205, 1999
2. Comin-Chiaramonti L, Gavalleri G, Sbaizero O and Comin-Chiaramonti P. Crystallochemical comparison between Portland cements and mineral trioxide aggregate (MTA). J Appl Biomater Biomech 7: 171-178, 2009
3. Okiji T and Yoshida K. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View. Int J Dent 2009: 10.1155/2009/464280
4. Parirokh M and Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review - Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 36: 400-413, 2010
5. Kuratate M, Yoshida K, Shigetani Y, Yoshida N, Ohshima H and Okiji T. Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dentin pulp capped with mineral trioxide aggregate. J Endod 34: 970-974, 2008
6. Nair PN, Duncan HF, Pitt Ford TR and Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with Mineral Trioxide Aggregate: a randomized controlled trial. Int Endod J 42: 422-444, 2009
7. Trab inejad M, Hong CU, Mcdonald F and Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 21: 349-353, 1995
8. Chiang TY and Ding SJ. Comparative physicochemical and biocompatible properties of radiopaque dicalcium silicate cement and mineral trioxide aggregate. J Endod 36: 1683-1687, 2010
9. Basturk FB, Nekoofar MH, Gunday M and Dummer PM. Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate. J Endod 41: 531-534, 2015
10. Chen L and Suh BI. Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: A state-of-the-art review. Dent Mater J 36: 1-7, 2017
11. Gandolfi MG, Siboni F and Prati C. Chemical-physical properties of TheraCal, a novel light-cured MTA-like material for pulp capping. Int Endod J 45: 571-579, 2012
12. Komabayashi T, Zhu Q, Eberhart R and Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dent Mater J 35: 1-12, 2016
13. Lee H, Shin Y, Kim SO, Lee HS, Choi HJ and Song JS. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ teeth. J Endod 41: 1317-1324, 2015
14. Jeanneau C, Laurent P, Rombouts C, Giraud T and About I. Light-cured tricalcium silicate toxicity to the dental pulp. J Endod 43: 2074-2080, 2017
15. Bakhtiar H, Nekoofar MH, Aminishakib P, Abedi F, Naghi Moosavi F, Esnaashari E, Azizi A, Esmaeilion S, Ellini MR, Megzaradeh V, Sezavar M and About I. Human pulp responses to partial pulpotomy treatment with TheraCal as compared with biodentine and ProRoot MTA: a clinical trial. J Endod 43: 1786-1791, 2017
16. Imazumi N, Kondo H, Ohya K, Kasugai S, Araki K and Kurosaki N. Effects of exposure to 4-META/MMTA-TRB resin on pulp cell viability. J Med Dent Sci 53: 127-133, 2006
17. Nakamura M, Inoue T and Shimo no M. Immunohistochemical study of dental pulp applied with 4-META/MMTA-TRB adhesive resin after pulpotomy. J Biomed Mater Res 51: 241-248, 2000
18. Inoue T and Shimo no M. Repair dentinogenesis following transplantation into normal and germ-free animals. Proc Finn Dent Soc 88: 183-194, 1992
19. Nakagawa K, Saita M, Ikeda T, Hirota M, Park W, Lee MC and Ogawa T. Biocompatibility of 4-META/MMTA-TRB resin used as a dental luting agent. J Prosthet Dent 144: 114-121, 2015
20. Hirabayashi C and Imai Y. Studies on MMA-TBB resin. I. Comparison of TBB and other initiators in the polymerization of PMMA/MMA resin. Dent Mater J 21: 314-321, 2002
21. Kwon TY and Imai Y. Polymerization characteristics of ethyl methacrylate-based resin initiated by TBB. Dent Mater J 23: 161-165, 2004
22. Taira Y and Imai Y. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin. Dent Mater J 33: 291-304, 2014
23. Inami C, Shimizu H, Suzuki S, Haraguchi N and Itsuno S. Study on the performance of methyl methacrylate polymerization: Comparison of partially oxidized tri-n-butylborane and benzoyl peroxide with aromatic tertiary amines. Dent Mater J 38: 430-436, 2019.
24. Kaul R, Farooq R, Kaul V, Malik AH, Purra AR and Ahmad L. Evaluation of biological, physical and chemical properties of mineral trioxide aggregate mixed with 4-META/MMA-TBB. Indian J Dent Res 24: 418-422, 2013
25. Chung H, Kim M, Ko H and Yang W. Evaluation of physical and biologic properties of the mixture of mineral trioxide aggregate and 4-META/MMA-TBB resin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011: 10.1016/j.tripleo.2011.04.005.
26. ISO 6876. International Organization for Standardization. Dental root canal sealing materials. 2012
27. ISO 23317. International Organization for Standardization. Implants for surgery – In vitro evaluation for apatite-forming ability of implant materials. 2014
28. Koike T, Polan MAA, Izumikawa M and Saito T. Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. Biomed Res Int 2014: 10.1155/2014/745139
29. Mohammadi Z and Dummer PM. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J 44: 697-730, 2011
30. Desai S and Chandler N. Calcium hydroxide-based root canal sealers: a review. J Endod 35: 475-480, 2009
31. Wu MK, Wesselinek PR and Boersma J. A-1 year follow-up study on leakage of four root canal sealers at different thickness. Int Endod J 28: 185-189, 1995
32. Okamoto Y, Takahata K and Saeki K. Studies on the behavior of partially oxidized tributylborane as a radical initiator for methyl methacrylate (MMA) polymerization. Chem Lett 1998; 1247-1248.
33. Parirokh M and Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review - Part I: Chemical, Physical, and Anti-bacterial Properties. J Endod 36: 16-27, 2010
34. Kokubo T and Takadama H. How useful in SBF in predicting in vivo bone bioactivity? Biomater 27: 2907-2915, 2006
35. Ansari M, Naghib SM, Moztarzadeh F and Salati A. Synthesis and characterization of hydroxyapatite calcium hydroxide for dental composites. Ceramics-Silikáty 55: 123-126, 2011
36. Mehrnaz H, Reza KS, Azam V and Hanieh N. Physicochemical properties of MTA, CEM, hydroxyapatite and nano hydroxyapatite-chitosan dental cements. Biomed Res 27: 442-448, 2016
