HOROFUNCTIONS ON SIERPIŃSKI TYPE TRIANGLES

DANIELE D’ANGELI

Abstract. We study an infinite set of graphs which are recursively constructed from an infinite word in a finite alphabet. These graphs are inspired by the construction of the Sierpiński gasket. We show that there are infinitely many non-isomorphic such graphs and we describe the horofunctions on the standard case.

1. Introduction

This paper deals with two combinatorial aspects related to the so-called Sierpiński gasket. This graph belongs to the class of fractal objects of non-integer Hausdorff dimension. It is realized by a repeated construction of an elementary shape on progressively smaller length scales. The Sierpiński gasket appears in different contexts: analysis on fractals [8], [9], [14] some physical models as dimer and Ising models [1], [4], [5], [15] and combinatorics [2], [7]. Moreover the Sierpiński gasket is the limit space of the Hanoi Towers group on three pegs [10] establishing a connection with the theory of self-similar groups [12]. One can construct an infinite sequence of finite graphs which are inspired to the Sierpiński gasket. In this paper we inductively construct such a sequence getting a natural limit graph which is an infinite marked graph. The vertices of this graph are labelled by infinite words over a finite alphabet of three symbols. This coding has a geometrical meaning: by reading the n–th letter of such infinite word we can construct the next (finite) graph of the finite sequence, and mark it in a precise vertex (see [3] for comparison). The results contained in the paper are the following: first, we give a classification, up to isomorphisms of such infinite graphs depending on the corresponding infinite words; then we study the

Date: March 1, 2018.
2010 Mathematics Subject Classification. 05C10, 05C60, 05A16.
Key words and phrases. Horofunctions, Sierpiński gasket, Busemann points.
The author was supported by Austrian Science Fund projects FWF P24028-N18 and P29355-N35.
The horofunction of a particular case that we call standard. The problem of isomorphism is studied in the context of non-marked graphs, i.e., we construct such infinite marked graphs and then we forget the marked vertex and compare them. The study of horofunctions is a classical topic in the setting of C^*-algebras and Cayley graphs of groups, giving rise to the description of the Cayley compactification and the boundary of a group [6, 13]. It is inspired by the seminal work of Gromov in the study of a suitable definition of boundary for a metric space [11]. Given a proper metric space X, one associates with every point of X a continuous real-valued function in the space endowed with the topology of uniform convergence on compact sets. The topological boundary of this space of functions modulo the constant functions is called the horofunction boundary of X [16]. It is immediate that in the case of an infinite graph G with the usual metric d one gets the discrete topology, so every function on it is continuous. This implies that (G, d) is automatically complete and locally compact. Moreover in our case G is countable, and d is proper since every vertex has finite degree. The fractal structure of the graphs studied in this paper allows to give a complete description of the horofunctions.

2. Sierpiński type triangles

In this section we define infinitely many marked graphs that can be thought as approximations of the famous Sierpiński gasket. Each of these graphs is inductively constructed from an infinite word in a finite alphabet. The vertices of such graphs are labeled by infinite words in this alphabet.

We will show that there are infinitely many isomorphism classes of such graphs, regarded as non-marked graphs.

Let us start by fixing the finite alphabet $X = \{u, l, r\}$, and a triangle with the vertices labeled by u (up), l (left), r (right), with the obvious geometric meaning. Take an infinite word $w = w_1w_2\cdots$, with $w_i \in X$. We denote by w_n the prefix $w_1\cdots w_n$ of length n of w.

Definition 2.1. The infinite Sierpiński type graph Γ_w is the marked graph inductively constructed as follows:

Step 1: Mark the vertex corresponding to w_1 in the simple triangle. Denote this marked graph Γ^1_w.

Step 2: Take three copies of Γ^m_w and glue them together in such a way that each one shares exactly one (extremal) vertex with each other copy. These copies occupy the up, left or right position in the new graph. This has, by construction, three marked points, we keep the
one in the copy corresponding to the letter w_{n+1}. Call this graph Γ_w^{n+1} and identify with w_{n+1} the marked vertex.

Step 3: Denote by Γ_w the limit of the marked graphs Γ_w^n.

The limit in the previous definition means that in Γ_w we have an increasing sequence of subgraphs marked at w_n isomorphic to the graphs Γ_w^n.

By definition, for each w, the graph Γ_w is the limit of finite graphs Γ_w^n, $n \geq 1$. Each one of these finite graphs has three external points, that can thought as the boundary of the graph Γ_w^n. These represent the points where we (possibly) glue the three copies of Γ_w^n to get Γ_w^{n+1}. We denote them by $U_w^n = u \cdots u$ (the upmost one), $L_w^n = l \cdots l$ (the leftmost one), $R_w^n = r \cdots r$ (the rightmost one). More precisely, passing from Γ_w^n to Γ_w^{n+1}, we identify L_w^n and R_w^n of the upper copy isomorphic to Γ_w^n with the vertices U_w^n of the left and right copies isomorphic to Γ_w^n, respectively, and we identify L_w^n of the right copy isomorphic to Γ_w^n with R_w^n of the left one.

We label by the same letters the corresponding vertices in Γ_w.

Remark 2.2. If we consider the word $w := l^\infty$, then we get

We want to study the isomorphism problem for such graphs. We consider these graphs as non-marked and denote by “\simeq” the corresponding equivalence relation. More explicitly, $G \simeq G'$ if there exists an isomorphism $\phi : G \to G'$. Notice that, if there exists such isomorphism ϕ (of two non-marked graphs), it can be seen as an isomorphism of the marked graphs (G, v) and (G', v') rooted at the points $v \in G$ and $v' = \phi(v) \in G'$, for any $v \in G$. We will use this observation in the sequel.
Moreover, it is clear that the limit Γ_w is obtained as an exhaustion of triangles. What w detects is the position of the smaller triangles inside the bigger ones. In what follows $d(\cdot, \cdot)$ will denote the discrete distance in the graphs regarded as metric spaces.

Remark 2.3. We stress the fact that, even if all (marked) graphs $\{\Gamma_w\}$ are limits of the same finite graphs $\{\Gamma^n_w\}$, they are a priori non isomorphic as non marked graphs. An easy example to show that consists in considering the graphs Γ_l^∞ and Γ_v, where $v = v_1v_2 \cdots$ and v_i is not definitively equal to u, l or r (see the figure below). In this case Γ_v does not contain any vertex of degree 2, contrary to Γ_l^∞. In particular there is no isomorphism between the two graphs.

![Graph Diagram](image)

Remark 2.4. Notice that different words may correspond to the same vertex of Γ_v^n. More precisely for any k and $n > k + 1$ the following pairs of vertices are identified $u^k lv = l^k uv, u^k rv = r^k uv$ and $r^k lv = l^k rv$, for any word v in the alphabet X. From now on we consider such elements as identified and choose just one representation for them.

Recall that two infinite words w and v are cofinal if there exists n in \mathbb{N} such that $v_i = w_i$ for all $i > n$. This is clearly an equivalence relation: the cofinality and we denote it by \sim.

Notice that an infinite word x corresponds to a vertex of Γ_v if and only if $x \sim v$ (see Remark 2.10).

In what follows, given an infinite word $x \in \Gamma_v$ we use the notation $x \in \Gamma_v^n$ meaning that x is an infinite word corresponding to a vertex belonging to the n-th subgraph Γ_v^n of Γ_v, obtained after the first n steps in the
construction of Γ_v. More precisely, $x \in \Gamma^n_v$ if $x \in \Gamma_v$ and it corresponds to a vertex of the subgraph $\Gamma^n_v \hookrightarrow \Gamma_v$ in the natural embedding of the finite graph Γ^n_v into the infinite graph Γ_v.

If we want to emphasize the vertices of the finite graph Γ^n_v we prefer using the notation \underline{x}_n.

Lemma 2.5. If $v \sim w$ then $\Gamma_v \simeq \Gamma_w$.

Proof. If $v \sim w$ then there is n such that $v_{n+k} = w_{n+k}$ for all $k \geq 1$. The graphs Γ^n_v and Γ^n_w are isomorphic as non-marked graphs by construction. Let $\phi_n : \Gamma^n_v \rightarrow \Gamma^n_w$ be the identity isomorphism of non-marked graphs. Then ϕ_n extends to an isomorphism $\phi : \Gamma_v \rightarrow \Gamma_w$ since $v_{n+k} = w_{n+k}$ for each $k \geq 1$. \hfill \Box

Lemma 2.6. $\Gamma_v \simeq \Gamma_w$ if and only if there exist two vertices $x \in \Gamma_v$ and $y \in \Gamma_w$ such that, for every n the sets

$$\{d(x, U^x_n), d(x, L^x_n), d(x, R^x_n)\}$$

and

$$\{d(y, U^y_n), d(y, L^y_n), d(y, R^y_n)\}$$

coincide.

Proof. First notice that, since $x \in \Gamma_v$ and $y \in \Gamma_w$ then $x \sim v$ and $y \sim w$ so that for $T = U, L, R$ one has $T^n_x = T^n_w$ and $T^n_y = T^n_w$ for every n sufficiently large.

Suppose there exists an isomorphism $\phi : \Gamma_v \rightarrow \Gamma_w$ such that $\phi(x) = y$. And assume there is n such that

$$\{d(x, U^x_n), d(x, L^x_n), d(x, R^x_n)\} \neq \{d(y, U^y_n), d(y, L^y_n), d(y, R^y_n)\}.$$

Denote by $M_n := \min\{m^x_n, m^y_n\}$ where

$$m^x_n := \max\{d(x, U^x_n), d(x, L^x_n), d(x, R^x_n)\}$$

and

$$m^y_n := \max\{d(y, U^y_n), d(y, L^y_n), d(y, R^y_n)\}.$$

We claim that the balls $B_x(M_n)$ and $B_y(M_n)$ are not isomorphic, as graphs. If $m^x_n \neq m^y_n$ then only one of $B_x(M_n)$ and $B_y(M_n)$ contains a copy isomorphic to Γ^n_v (regarded as a non marked graph). If $m^x_n = m^y_n$ then, the other two distances from x and y to the boundary vertices do not coincide and so the part of the graphs $B_x(M_n)$ and $B_y(M_n)$ exceeding the copy of Γ^n_v and Γ^n_w, respectively are not isomorphic.
Viceversa suppose that the sets \(\{d(x, U^w_n), d(x, L^w_n), d(x, R^w_n)\} \) and \(\{d(y, U^w_n), d(y, L^w_n), d(y, R^w_n)\} \) coincide for each \(n \). Let \(\phi : \Gamma_v \rightarrow \Gamma_w \) be the map such that \(\phi(x) = y \). The balls \(B_x(M_n) \) and \(B_y(M_n) \) are isomorphic for each \(n \) and so the map \(\phi \) is an isomorphism of (non-marked) graphs, since \(\lim B_x(M_n) = \Gamma_v \) and \(\lim B_y(M_n) = \Gamma_w \) regarded as non-marked graphs. \[\square \]

Lemma 2.7. Let \(x_n, y_n \in \Gamma^w_n \) be two vertices such that
\[
\{d(x_1, U^w_n), d(x_1, L^w_n), d(x_1, R^w_n)\} = \{d(y_1, U^w_n), d(y_1, L^w_n), d(y_1, R^w_n)\}
\]
then the same holds for every \(k \leq n \).

Proof. Observe that, in general, when we pass from \(\Gamma^w_s \) to \(\Gamma^w_{s+1} \) exactly one of the elements in \(\{d(x, U^w_s), d(x, L^w_s), d(x, R^w_s)\} \) is preserved. More precisely if \(s = t \in \{u, l, r\} \) then \(d(x, T^w_s) = d(x, T^w_t) \), for \(T \in \{U, L, R\} \). In the other cases the distance increases by \(2^{n-1} \). This implies that if there is a \(k \) in which the sets of distances do not coincide then they cannot coincide for \(k + 1 \). \[\square \]

The following result describes points with same distances from the boundary points, as elements in the same orbit under the action of the symmetric group. We must take into account the exceptions of the Remark (2.1).

Lemma 2.8. Let \(x_n, y_n \in \Gamma^w_n \) be two vertices. Then
\[
\{d(x_1, U^w_n), d(x_1, L^w_n), d(x_1, R^w_n)\} = \{d(y_1, U^w_n), d(y_1, L^w_n), d(y_1, R^w_n)\}
\]
if and only if there exists \(\sigma \in \text{Sym}\{u, l, r\} \) such that \(\sigma(x_1) = y_1 \), where
\[
\sigma(x) = \sigma(x_1) \cdots \sigma(x_{n-1})\sigma(x_n) = \sigma(x_{n-1})\sigma(x_n).
\]

Proof. Suppose the sets of distances coincide and proceed by induction on \(n \). For \(n = 1 \) the assertion is trivially verified. First suppose, without loss of generality, that \(x_n = y_n = u \). It follows from Lemma (2.7) that there exists a permutation \(\sigma \in \text{Sym}\{u, l, r\} \) such that \(\sigma(x_1) = y_1 \). We want to prove that this permutation is the identity or the transposition \((l, r) \). The distances of \(x_{n-1} \) and \(y_{n-1} \) from \(U^w_{n-1} \) must be the same. This implies that \(\{i : x_i = u\} = \{i : y_i = u\} \). For the indices which are not equal to \(u \) we observe that, \(d(x_{n-1}, R^w_{n-1}) \) is equal either to \(d(y_{n-1}, R^w_{n-1}) \) or to \(d(y_{n-1}, L^w_{n-1}) \). The first case gives the identity, the second case the transposition \((l, r) \).

Suppose now that \(x_n \neq y_n \), this implies that \(x_{n-1} \) and \(y_{n-1} \) belong to different copies isomorphic to \(\Gamma^w_w \) of the graph \(\Gamma^w_n \). Suppose, for example that \(x_n =
u and \(y_n = r \). If \(d(x_n, L^w_n) = d(y_n, L^w_n) \) as before we can show that \(\sigma \) is equal to \((r, u)\), since we have \(d(x_{n-1}, L^w_{n-1}) = d(y_{n-1}, L^w_{n-1}) \). If the distances of \(x_n \) and \(y_n \) from one (all) of the boundary vertices do not coincide, we have \(d(x_n, U^w_n) = d(y_n, R^w_n) \) and \(d(x_n, L^w_n) = d(y_n, U^w_n) \), \(d(x_n, R^w_n) = d(y_n, L^w_n) \). The same property holds at level \(n - 1 \) so that there exists a permutation \(\sigma \) such that \(\sigma(x_{n-1}) = y_{n-1} \). This permutation cannot be the transposition \((r, u)\) because this would imply that \(d(x_{n-1}, L^w_{n-1}) = d(y_{n-1}, L^w_{n-1}) \). And so it is the permutation \((u, r, l)\).

On the other hand we prove that permutations preserve distances from boundary in the case that \(\sigma \) is a transposition, say \(\sigma = (l, r) \). One can easily verify that the same argument can be applied to any permutation of \(\text{Sym} \{u, l, r\} \). If \(n = 1 \) it is clear that \(x_1 \) and \(\sigma(x_1) \) satisfy the claim. It follows that

\[
\sigma(x_n) = \sigma(x_1) \cdots \sigma(x_{n-1}) \sigma(x_n) = \sigma(x_{n-1}) \sigma(x_n),
\]

and the sets of distances from \(x_{n-1} \) and \(\sigma(x_{n-1}) \) to the boundary points coincide by induction. These two points belong to the graph \(\Gamma^w_{n-1} \), and one is obtained by the other via the transformation \((l, r)\) corresponding to the reflection with respect to the vertical axis. If \(x_n = u \) then both \(x_n \) and \(\sigma(x_n) \) are vertices of the upper part of \(\Gamma^w_n \) obtained from each other by the same reflection. If \(x_n = l \) (resp. \(x_n = r \)) the vertices \(x_n \) and \(\sigma(x_n) \) live, respectively, in the left and right (resp. right and left) part of \(\Gamma^w_n \), and so they are obtained from each other by the reflection with respect to the vertical axis, and in particular preserve distances to the boundary vertices.

The group \(\text{Sym} \{u, l, r\} \) consists of six elements and its action factorizes in orbits consisting of three (e.g. the boundary points) or six elements.

Theorem 2.9. There are infinitely many isomorphism classes of the graphs \(\Gamma^w \). More precisely \(\Gamma^w \simeq \Gamma^w \) if and only there exists \(\sigma \in \text{Sym} \{u, l, r\} \) such that \(w \sim \sigma(v) \).

Proof. Suppose that there exists \(\sigma \in \text{Sym} \{u, l, r\} \) such that \(\sigma(v) \sim w \), hence there is \(N \in \mathbb{N} \) and there is \(\sigma \in \text{Sym} \{u, l, r\} \) such that \(\forall n \geq N \) one has \(\sigma(v_n) = w_n \). Consider the graphs \(\Gamma^v \) and \(\Gamma^v_{\sigma(v)} \) and the sequences of increasing subgraphs \(\{\Gamma^n_v\} \) and \(\{\Gamma^n_{\sigma(v)}\} \). From Lemma 2.8 we get

\[
\{d(v, U^w_n), d(v, L^w_n), d(v, R^w_n)\} = \{d(\sigma(v), U^{\sigma(v)}_n), d(\sigma(v), L^{\sigma(v)}_n), d(\sigma(v), R^{\sigma(v)}_n)\}
\]

for every \(n \). Hence Lemma 2.6 implies that \(\Gamma^v \) and \(\Gamma^v_{\sigma(v)} \) are isomorphic. Lemma 2.5 gives that \(\Gamma^v \simeq \Gamma^w \).
Viceversa suppose there exists an isomorphism $\phi : \Gamma_v \to \Gamma_w$. Without loss of generality we can assume that $\phi(v) = w$. If we restrict ϕ to the finite graphs Γ_n^v and Γ_n^w we get, by Lemma (2.8), an isomorphism ϕ_n which corresponds to a permutation $\sigma \in \text{Sym}(\{u, l, r\})$. This automorphism is determined by the images of the boundary vertices U_n^v, L_n^v, R_n^v. Only one of them will coincide with the corresponding boundary vertex of the graph Γ_n^{v+1}, the same for U_n^w, L_n^w, R_n^w. More precisely, if $T \in \{U, L, R\}$ is such that $T_n^v = T_{n+1}^v$ then $\phi(T_n^v) = \phi(T_{n+1}^v) = \phi(T_n^w) = \phi(T_{n+1}^w)$, for $T = U, L$ or R. So the the permutation yielding the isomorphism between the graphs Γ_n^{v+1} and Γ_n^{w+1} is given by the same permutation σ. This implies that $\phi(v) = \sigma(v) = w$. The cofinality follows.

Remark 2.10. We can refine the last statement by considering that each infinite word v cofinal with w can be seen as a vertex of the graph Γ_w. In fact if it belongs to the same graph of w, there exists n such that v_n and w_n are vertices in Γ_n^w. This implies that $v_{n+k} = w_{n+k}$ for each $k \geq 1$. So Theorem (2.9) implies that each isomorphism class contains exactly 6 graphs, except the class of constant words which contains only 3 graphs (because the orbit of such a word under $\text{Sym}(\{u, l, r\})$ contains only three elements).

3. Horofunctions

In this section we explicitly compute the horofunctions for the graphs constructed in the previous section. We need some definitions (for more details see [6] or [16]).

Let $G = (V, E)$ be a graph, and $\{x_n\}_{n \in \mathbb{N}}$ be a sequence of vertices such that $d(o, x_n) \to \infty$. For every n we define the function

$$f_n(y) := d(x_n, o) - d(x_n, y),$$

whose limit for $n \to \infty$, considered in the space of (continuous) functions on G with the topology of uniform convergence on finite sets, gives the horofunction associated with the sequence $\{x_n\}_{n \in \mathbb{N}}$.

One considers the space of horofunctions up to the equivalence relation which identifies functions whose difference is uniformly bounded. Points which are limit of the geodesic rays in the graph are called Busemann points (see [17]). The notion of Busemann point was introduced by Rieffel in [13].

We want to study the horofunctions on the Sierpiński type graph corresponding to $w = l^\infty$ up to the equivalence stated above.
3.1. The standard case. In this section we compute the horofunctions of the infinite graph Γ_w where $w = l^\infty$. We choose $o = w$. Let \(\{x_n\} \) be a sequence of vertices in Γ_w such that \(d(o, x_n) \to \infty \). By construction, for each n there exists $k = k(n)$ such that $x_n \in \Gamma^k \setminus \Gamma^{k-1}$. The following result gives a necessary condition for the existence of the limit of the functions \(f_n \). In what follows we omit the superscript w.

Lemma 3.1. Suppose that there exist infinitely many indices i such that \(d(x_i, U_{k(i)-1}) < d(x_i, R_{k(i)-1}) \) and infinitely many indices j such that \(d(x_j, U_{k(j)-1}) > d(x_j, R_{k(j)-1}) \).

Then \(\lim f_n \) does not exist.

Proof. Take y such that \(d(o, y) = 1 \), for example \(y = U_1 \). For the indices i such that \(d(x_i, U_{k(i)-1}) < d(x_i, R_{k(i)-1}) \) we have \(d(x_i, o) = d(x_i, U_{k(i)-1}) + d(o, U_{k(i)-1}) \) and \(d(x_i, U_1) = d(x_i, U_{k(i)-1}) + d(U_1, U_{k(i)-1}) \) and so \(f_i(U_1) = 1 \). Analogously one can prove that \(f_j(U_1) = 0 \). And so the limit of \(f_n(U_1) \) does not exist.

The previous Lemma implies that the sequences \(\{x_n\} \) that we have to consider to have a limit are those such that \(d(x_i, U_{k(i)-1}) < d(x_i, R_{k(i)-1}) \), \(d(x_i, U_{k(i)-1}) > d(x_i, R_{k(i)-1}) \) or \(d(x_i, U_{k(i)-1}) = d(x_i, R_{k(i)-1}) \), provided i is sufficiently large.

Actually we will show that, (up to equivalence), there are only three limit functions.

Let us introduce the following sequence of vertices \(\{c_n\} \), where $c_n := r^n u$. Geometrically the c_n's are points symmetric with respect to o, more precisely there are two paths from c_n to o which realize the distance.

Theorem 3.2. There are infinitely many horofunctions in the graph Γ_{l^∞}.

More precisely:

1. the function f_U corresponding to the Busemann points $\lim U_n$;
2. the function f_R corresponding to the Busemann points $\lim R_n$;
3. infinitely many functions equivalent to the function f_c obtained as $\lim f_n$ associated with the sequence \(\{c_n\} \).

Proof. It is clear that f_U and f_R are non-equivalent horofunctions. The function f_c is not equivalent to f_U and f_R. In fact $f_c(U_n) = f_c(R_n) = 2^{n-1}$, as one can easily check.
Moreover, all the sequences of points \(\{x_n\} \) satisfying conditions of Lemma 3.1 at bounded distance from \(\{c_n\} \) (i.e., there exist \(M > 0 \) so that for every \(n \) there exists \(k \) such that \(d(x_n, c_k) < M \) give rise to horofunctions not equal but equivalent to \(f_c \). It remains to prove that if \(\{x_n\} \) is a sequence whose limit \(f \) exists, and such that it is not at bounded distance from \(\{c_n\} \), then either \(f = f_U \) or \(f = f_R \). From Lemma 3.1 we can suppose that, for \(n \) sufficiently large, \(x_n \) is a vertex in the upper part of \(\Gamma^U_w \), for some \(k = k(n) \) (the case in which \(x_n \) definitely belongs to the right part of \(\Gamma^U_w \) is symmetric and left to the reader). Denote by \(\gamma_n := \min_k d(x_n, c_k) \), by our assumption \(\gamma_n \to \infty \). Fix a vertex \(y \), then there exists \(h \) to be the minimum index such that \(y \in \Gamma^U_w \). We want to prove that \(f(y) = f_U(y) \).

We use the notation \(U_k(n) \) and \(R_k(n) \) as before. We have that

\[
d(x_n, y) = \begin{cases}
 d(x_n, U_k(n) - 1) + d(U_k(n) - 1, y) & \text{or,} \\
 d(x_n, c_k(n)) + d(c_k(n), R_k(n) - 1) + d(R_k(n) - 1, y)
\end{cases}
\]

In order to prove that, for \(n \) large enough the distance is given by the first of the two expressions above, we observe that

\[
d(x_n, U_k(n) - 1) \leq d(c_k(n), R_k(n) - 1) = 2^{k(n)-1}, \quad d(U_k(n) - 1, y) \leq 2^{k(n)-1}
\]

and \(d(R_k(n) - 1, y) \geq 2^{k(n)-1} - 2^h \). This gives

\[
2^{k(n)-1} < \gamma_n + 2^{k(n)-1} - 2^h \iff 2^h < \gamma_n,
\]

which is verified for \(n \) large enough. So in the limit

\[
f(y) = \lim_n (d(x_n, o) - d(x_n, y)) = \lim_n (d(x_n, U_k(n) - 1) + d(U_k(n) - 1, o) - d(x_n, U_k(n) - 1) - d(U_k(n) - 1, y)) = f_U(y).
\]

\[\square\]

Remark 3.3. The Busemann function \(f_U = \lim f_n \) associated with the point \(U = \lim U_n \) can be easily described in the following way. Project each vertex \(y \) of the graph on the geodesic ray connecting \(o \) to \(U \), denote by \(y_U \) the image of the projection. then \(f_U(y) = d(o, y_U) \). This follows from the fact that for each \(y \) the value \(f_U(y) \) can be computed as difference of distances in a finite graph \(\Gamma^U_w \).

The same can be said for \(f_R \).
HOROFUNCTIONS ON SIERPIŃSKI TYPE TRIANGLES

Fig. Horofunctions in Γ_{∞} (up to equivalence)

ACKNOWLEDGMENTS

Some of the results contained in this paper were obtained during my stay-
ing at Technion University of Haifa. Among the others, I want to thank
Uri Bader, Uri Onn, Amos Nevo, Michael Brandenbursky and Vladimir
Finkelstein for useful discussions. Moreover I am grateful to the anony-
mos referees for recommending various improvements in exposition.

REFERENCES

[1] S.-C. Chang and L.C. Chen, Dimer coverings on the Sierpiński gasket, J. Stat.
 Phys., 131, (2008), no. 4, 631–655.
[2] D. D’Angeli and A. Donno, Weighted spanning trees on some self-similar graphs,
 Electron. J. Combin., 18, (2011), no. 1, P16 (28 pages).
[3] D. D’Angeli and A. Donno, Isomorphism problem for infinite Sierpiński
 Carpet graphs, AIP Conference Proceedings 1648, (2015); doi:
 http://dx.doi.org/10.1063/1.4912788
[4] D. D’Angeli, A. Donno and T. Nagnibeda, Partition functions of the Ising model
 on some self-seminar Schreier graphs, in Progress in Probability: Random Walks,
 Boundaries and Spectra, Springer Basel, 64, (2011), 277–304.
[5] D. D’Angeli, A. Donno and T. Nagnibeda, Counting dimer coverings on self-similar
 Schreier graphs, European J. Combin., 33, (2012), no. 7, 1484–1513.
[6] M. Develin, Cayley Compactifications of Abelian Groups, Annals of Combinato-
 rics, 6, no. 3-4, (2002), 295–312.
[7] A. Donno and D. Iacono, The Tutte polynomial of the Sierpiński and Hanoi graphs,
 Adv. Geom., 13, (2013), Issue 4, 663–694.
[8] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Analysis, 1, no. 1, (1992), 1–35.
[9] P. J. Grabner and W. Woess, Functional iterations and periodic oscillations for random walk on the Sierpinski graph, Stochastic Proc. Appl, 69, (1997), 127–138.
[10] R. I. Grigorchuk and Z. Šunić, Self-similarity and branching in group theory, in: “Groups St. Andrews 2005, I”, London Math. Soc. Lecture Note Ser., 339, Cambridge Univ. Press, Cambridge, (2007), 36–95.
[11] M. Gromov, Hyperbolic manifolds, groups and actions, pp. 183–213 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I. Kra and B. Maskit, Ann. of Math. Stud., 97, Princeton Univ. Press, 1981.
[12] V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, (2005).
[13] M. A. Rieffel, Group C^*-algebras as compact quantum metric spaces, Doc. Math., 7, (2002), 605–651.
[14] A. Teplyaev, Spectral Analysis on Infinite Sierpiński Gaskets, Journal of Functional Analysis, 159, no. 2, (1998), 537–567.
[15] E. Teufl and S. Wagner, Exact and asymptotic enumeration of perfect matchings in self-similar graphs, Discrete Math., 309, no. 23–24, (2009), 6612–6625.
[16] C. Walsh, The horofunction boundary of the Hilbert geometry, Adv. Geom., 8, no. 4, (2008), 503–529.
[17] C. Webster and A. Winchester, Busemann points of infinite graphs, Trans. Amer. Math. Soc., 358, no. 9, (2006), 4209–4224.

Institut für Diskrete Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

E-mail address: dangeli@math.tugraz.at