DNA Encoding for Misuse Intrusion Detection System based on UNSW-NB15 Data Set

Omar Fitian Rashid
Department of Computer Technology Engineering, Al-Hikma University College, Baghdad, Iraq

Received: 29/3/2020 Accepted: 29/5/2020

Abstract
Recent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is applied to classify records, either attacks or normal, based on the extracted keys. The results of the current experiment showed that the proposed system achieved good detection rates for all of attacks, which included the Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and Worms, with values of 82.56%, 92.68%, 75.59%, 75.42%, 67%, 99.28%, 81.02%, 73.6%, 85%, and 90.91%, respectively. The values of false alarm rate and accuracy were equal to 24% and 89.05%, respectively. Also, the execution time for the proposed system was found to be short, where the values of the encoding time and matching time for one record were 0.45 and 0.002 second, respectively.

Keywords: Intrusion detection system, DNA Encoding, Pattern Matching Algorithm, Raita Algorithm

UNSW–NB15
ترجمة الحمض النووي لنظام الكشف عن التتفاوت بالاعتماد على مجموعة بيانات 15

عمر فتيان رشيد
قسم هندسة الحواسب، كلية الحكمة الجامعة، بغداد، العراق

الخلاصة
انقلت الأبحاث الحديثة أنه يمكن استخدام تشغيل الحمض النووي وتطابق الأنماط في نظام الكشف عن التسلسل (التفاف) (IDS) وتحمل النتائج عالية في الكشف عن الهجوم، ويتم القناع أن نظام كشف التسلسل هذه استنادًا إلى مجموعة بيانات تم إنشاؤها منذ عقود سابقة. ومع ذلك فإن العديد من الدراسات أوضحت أن مجموعات البيانات هذه لا تعكس بشكل شمالي حركة مرو الهجمات الحالية. يقترح هذا البحث ترميز الحمض النووي جديد لنظام الكشف عن التسلسل استنادًا إلى مجموعة بيانات UNSW–NB15 15. وتم تنفيذ النظام المقترح من خلال بناء ترميز الحمض النووي

Email: omaralrawi08@yahoo.com
Introduction

Many researches on DNA proposed various methods for intrusion detection systems. These systems are constructed through applying several steps, the main two of which are, firstly, proposing and applying a DNA encoding method that is used to convert plaintext (intrusion detection dataset records) to DNA sequence and, secondly, applying pattern matching algorithms to classify these records as normal or attacks. An anomaly intrusion detection system was introduced by Mahdy and Saeb [1], where the gene idea was used. Then, suspicious actions. were detected based on “normal behaviour” and the use of string matching. This system was performed by using two steps; first, the creation of DNA sequence and, second, the control of the network, where a monitoring phase is adopted, the hardware is implemented, and DNA pattern matching is performed. An anomaly IDS was established by Al-Ibaisi et al. [2]. They adopted a new signature sequence with the use of a threshold value that is produced in the system training, converting these network connections to DNA sequences. Finally, DNA sequence was arranged in rows to find the similarity degree and to classify the network traffic as either an attack or normal. This method led to new generations to choose the signature that has the best alignment value for normal sequences. This system was carried out by applying two steps; the first step included DNA sequence encoding, where the main idea is using less space and having available nucleotides for any new value of new attacks attributes values. Also, the system divided the network traffic values into either static or dynamic parameters, where the static parameters included flag, protocol, and services, while the dynamic parameters included integer, real, and Boolean. In the second step, the genetic algorithm was used to enhance the selection of the target solution. A misuse IDS based on DNA sequence was built by Hameed and Rashid [3]. Three steps were followed to perform this system. In the first step, the enhanced DNA encoding method proposed by Al-Ibaisi et al. [2] is used the same number values to represent both integer and Boolean attributes. Then two characters are used to represent these values instead of the three characters that were used previously. This encoding procedure converts these records to DNA sequences. In the second step, the attack signature keys and their positions are extracted by using Teiresias algorithm. In the last step, these records are categorized into two groups, attacks or normal, based on attack signature keys and their positions by using Horspool algorithm. Rashid et al. [4] proposed a novel IDS depending on the concept of DNA sequence. This system is built firstly by converting the network traffic to DNA sequence by using Cryptography encoding idea. Secondly, keys are extracted, and thirdly the Horspool algorithm for matching process is applied. Rashid et al. [5] created a DNA encoding idea to convert all record values, by using KDDCup dataset. After that, Teiresias algorithm is applied in order to find the STR sequence. In the testing phase, the same DNA encoding is used for converting; finally, Brute-force algorithm is applied to group the records as normal or attacks. However, the above techniques are applied based on KDDCUP99, NSLKDD, or both datasets that were produced over twenty years. Many studies showed that these datasets cannot cover the existing network attacks environment [6]. Therefore, the current paper proposed a new DNA encoding method for IDS, based on UNSW-NB15 dataset.

Materials and Methods

Most organisms contain DNA molecules that normally have four chemical bases, namely adenine (A), cytosine (C), guanine (G), and thymine (T) [7]. Many algorithms can search for DNA strings. One algorithm which is very popular is the Raita algorithm. This algorithm works quickly in searching string parts in short or long strings. The searched characters are based on patterns and sequences in a
parent string. Raita algorithm works in reverse, starting from the last part of the character. If the searched character is found, Raita algorithm will search the character from the character in the middle. When searching in the middle of a block, if the character searched has been found, the Raita algorithm will move to other characters. The search will continue from the second character to the character before the last character. Then the search will return from starting the middle character. Raita algorithm has several stages in carrying out its algorithmic process. Precisely, two stages must be performed during the search, which are the pre-processing and searching [8].

The UNSW-NB15 dataset [6] was firstly published in 2015, which contains different modern attacks and real normal activities. This dataset contains nine types of attacks which are Reconnaissance, Shellcode, Exploit, Fuzzers, Worm, DoS, Backdoor, Analysis and Generic, the description of which is shown in Table-1. Also, the network traffic record in this dataset includes 49 features [9]. The UNSW-NB15 dataset has training and testing datasets, both containing normal records and nine types of attack records. These records have 45 features [6].

Table 1- UNSW-NB15 dataset of attack types and their characteristics

| Attack       | Description                                                   |
|--------------|---------------------------------------------------------------|
| Fuzzers      | Aims to stop a program by sending a lot of data.              |
| Analysis     | Includes port scan and spam.                                 |
| Backdoors    | Aims to pass system security in order to access the computer. |
| DoS          | Aims to cut host services to make network server unavailable to users. |
| Exploits     | Aims to exploit about the vulnerability in operating system or part of software. |
| Generic      | Is a mechanism that is utilized with all block ciphers.       |
| Reconnaissance | Aims to gather information.                               |
| Shellcode    | Aims to use a part of code to exploit software vulnerability. |
| Worms        | Aims to replicate itself, then move to different computers.  |

The proposed system is first constructed by building DNA encoding tables for all attribute values. These attributes are divided into four groups:
1. Protocol attributes: which contain 131 different values, all of which are nominal.
2. Service attributes: which contain 13 different values, all of which are nominal.
3. State attributes: which contain 7 different values, all of which are nominal.
4. Digit attributes: which represent the remaining of the attributes, having numerical values that can be either integer, binary, or float.

Therefore, for nominal attributes with values that are equal to 151 values (the total number of protocol, service, and state attributes), four DNA characters are used that can handle all these values. While for numerical attributes with 11 values (from 0 to 9 and a fraction point), two DNA characters are used that can handle all these values to represent each digit separately. The values of attributes and their equivalent DNA sequences are provided by the current work and are shown in Tables-(2, 3, 4 and 5).

Table 2- Protocol attribute values and their equivalent DNA sequence

| Protocol | DNA Seq. | Protocol | DNA Seq. |
|----------|----------|----------|----------|
| 3pc      | AAAC     | merit-inp| CGCT     |
| a/n      | CCTG     | mfe-nsp  | CAAC     |
| aes-sp3-d| TTGG     | mhrp     | GATC     |
| any      | GGAT     | micp     | ATGC     |
| argus    | GCTA     | mobile   | GCAA     |
| aris     | ACGC     | mtp      | AGAC     |
| arp      | GGGG     | mux      | AAGA     |
| ax.25    | TGTC     | narp     | GGAC     |
| bbn-rcc  | GCAC     | netblt   | AGCT     |
| bna      | ACAA     | nsfnet-igp| ATGT     |
| br-sat-mon| CGTT    | nvp      | ATAG     |
| cftd     | GACA     | ospf     | TCCT     |
| cftp     | TCAC     | pgm      | TTAT     |
| Input  | Output |
|--------|--------|
| chaos  | AGTG   |
| compaq-peer | GTTG |
| cphb  | CTTC   |
| cpnx  | CAGA   |
| crtp  | GACG   |
| crudp | TACT   |
| dcn   | CCCC   |
| ddp   | AATA   |
| ddx   | ACCA   |
| dgp   | GTGA   |
| egg   | ATTA   |
| eigrp | CGAT   |
| emcon | GATT   |
| encap | GCAG   |
| etherip | TAGC |
| fc    | CGCG   |
| fire  | GACC   |
| ggp   | GGAT   |
| gmp   | TTAC   |
| gre   | TTTG   |
| hmp   | GGTC   |
| iatp  | CTAA   |
| ib    | GCTT   |
| idpr  | GCCT   |
| idpr-cmtp | CCAT |
| ifmp  | AGAT   |
| igmp  | TGTA   |
| igp   | TCTG   |
| il    | ATGA   |
| i-nlsp | CTCT |
| ip    | GCTG   |
| ipcomp | TGAA |
| ipc   | CTTT   |
| ipip  | GTAC   |
| iptl  | CGGC   |
| ipnip | GGCC   |
| ippc  | ACAC   |
| ipv6  | GTCG   |
| ipv6-frag | CGGG |
| ipv6-no | CTTA |
| ipv6-opts | CCCT |
| ipv6-route | AGCC |
| ipx-n-ip | TATT |
| irtp  | GTTA   |
| isis  | GTGG   |
| iso-ip | TTAA |
| iso-tp4 | TCGC |
| kryptolan | CAAT |
| l2tp  | TCCC   |
| larp  | CGCA   |
| leaf-1 | TCTC |
| leaf-2 | GTCA |
| pri-enc | CTGA |
| pnni  | ptp    |
| pup   | GTTT   |
| pvp   | TTTT   |
| qnx   | GCGG   |
| rdp   | GCGG   |
| rsvp  | GAGT   |
| rvd   | AGCG   |
| sat-mon | GATA |
| sccomce | CCCA |
| scps  | AGAG   |
| scp   | ATCT   |
| sdcp  | ACCC   |
| secure-vmtp | TCCG |
| sep   | CATT   |
| skip  | TGCT   |
| sm   | TGAC   |
| smp   | TACA   |
| sn   | TATG   |
| sprite-rpc | TTCA |
| sps  | CACC   |
| srp  | TGCG   |
| st2  | TTAG   |
| stp  | CCGA   |
| sun-nd | TCCA |
| tcf  | TTCC   |
| Tcp  | CGTG   |
| Tlsp  | GCTC   |
| tp++  | TACG   |
| trunk-1 | GAGC |
| trunk-2 | CCAA |
| Ttp  | TGGC   |
| Udp  | GTAA   |
| Unas  | CATA   |
| Uti  | GTGC   |
| vines | AAGG   |
| Visa  | GTTA   |
| Vmtcp | CCAC   |
| Vrrp  | GCGG   |
| wb-expak | GAAA |
| wb-mon | GTGZ   |
| Wsn  | CACG   |
| Xnet  | GTTT   |
| ATTG  |          |
| CGTC  |          |
| GAAG  |          |
| GAAG  |          |
| GAAG  |          |
An example of converting a UNSW-NB15 dataset record to DNA sequences based on the building tables is given as follows:

**Record:** 47933.0,000009,unas,-,INT,2.0,200.0,111111.1072,254.0,88888888,0,0,0,0.009,0,0,0,0,0,0,0,0,13,8,0

**DNA sequences:** CTCAATTCCCCAACTCACACACACACTTCATACACTCAGCGCAGC
AGCAGTGTGTTGTTCTGTTACAGCCCGCTACACTGTGTTGTTGTTGTTGTTGACACACACACACTTTACACACACACACACACACACACACACACGTCAGGTGCTCTT
GACACACGCTCTGAC

When the conversion is finished, the next step is to extract the keys found in the attack records and, at the same time, not found in the normal records. This is achieved by dividing training dataset records, after converting them to DNA sequences, into blocks each with a length of 5 DNA characters. Then, the blocks found in both attack and normal records are removed and, finally, the blocks with large repetitions are selected. These keys are shown in Table-6.

### Table 6- The extracted keys for Misuse IDS

| Number | Keys     |
|--------|----------|
| 1      | CAACA    |
| 2      | CATTC    |
| 3      | GCGGT    |
| 4      | CTTTA    |
applied to classify these records, as normal or attack, based on keys (i.e. if one of these keys is found then this record is an attack record, otherwise it is a normal record).

An example of the application of Raita algorithm, that is used to find the first key (CAACA) in the sequence "CTGGACACATGGA" is shown in Table- 8. But, before that, a shift table for these keys must be built (Table-7). The search procedure is applied and repeated for all four keys.

### Table 7- Shift tables for the extracted keys

| Character | A | C | G | T |
|-----------|---|---|---|---|
| Key 1 - Shift | 2 | 1 | 5 | 5 |
| Key 2 - Shift | 3 | 4 | 5 | 1 |
| Key 3 - Shift | 5 | 2 | 1 | 5 |
| Key 4 - Shift | 5 | 4 | 5 | 1 |

### Table 8- Example of the application of Raita algorithm

|   | 1st | 2nd | 3rd | 4th | 5th |
|---|-----|-----|-----|-----|-----|
| C | T   | G   | A   | C A A | C A A |
| 2 | 3   | G   | A   | C A A | C A A |
| C | A   | A   | C   | A     | A     |
|   | Move key based on value of character (A) that is equal to 2 | Move key based on value of character (C) that is equal to 1 | Move key based on value of character (C) that is equal to 1 | Move key based on value of character (C) that is equal to 1 | Move key based on value of character (C) that is equal to 1 |

Where the red color in the table indicates mismatch, while the green color indicates match.

### Results and Discussion

The current proposed system uses UNSW-NB15 dataset as a source of information; this is a new dataset that is used to calculate the performance of the IDS and includes 9 various attacks. This dataset has two datasets: training and testing. Firstly, the attack keys are extracted based on the training dataset. Secondly, the proposed system performance is calculated based on 4000 random records of the testing dataset. The experimental environment involves the operating system of Microsoft Windows 10 Professional, a CPU which is Intel 2.50GHz, and memory of 4.00 GB.

The performance of the proposed system is determined by five measurements, the first of which is based on detection rate (DR), calculated as in the following [10]:

![Detection Rate Calculation Formula](image-url)
\[ DR = \frac{TP}{TP + FN} \] \hspace{1cm} \text{........ (1)}

The second and third measurements are based on false alarm rate (FAR) and accuracy, respectively, calculated as shown below [10]:

\[ FAR = \frac{FP}{TN + FP} \] \hspace{1cm} \text{........ (2)}

\[ Accuracy = \frac{TP + TN}{TP + TN + FN + FP} \] \hspace{1cm} \text{........ (3)}

While the fourth measurement is based on the encoding time, which is the time needed to convert the record to DNA sequences. The fifth measurement is the matching time, which is the time needed to classify the testing record. Either as attack or normal, based on the extracted keys. The equation used to calculate time is:

\[ Time = \text{Encoding time} + \text{Matching time} \] \hspace{1cm} \text{... (4)}

The DR results for various attack types and the DR result for all attacks (described previously in Table-1) are shown in Table-9 and Figure-1.

**Table 9- DR results for different attack types**

| Attack        | DR result (%) |
|---------------|---------------|
| Analysis      | 82.56         |
| Backdoor      | 92.68         |
| DoS           | 75.59         |
| Exploits      | 75.42         |
| Fuzzers       | 67            |
| Generic       | 99.28         |
| Reconnaissance| 81.02         |
| Shellcode     | 73.6          |
| Worms         | 85            |
| All attacks   | 90.91         |

![Figure 1 - DR results for different attacks types](image)

As outlined in Table-9 and Figure-1, the best achieved detection rate is obtained for the Generic attack type (99.28%).

The DR, FAR, and accuracy results for all attacks are shown in Table-10 and Figure-2.
Table 10: DR, FAR, and accuracy results that achieved by the proposed IDS

| Measure     | Result (%) |
|-------------|------------|
| DR          | 90.91%     |
| FAR         | 24%        |
| Accuracy    | 89.05%     |

Figure 2: DR, FAR, and accuracy results that achieved by the proposed IDS

As outlined in Table-10 and Figure-2, the achieved detection rate is equal to 90.91%, while FAR value is equal to 24%, and the accuracy value is equal to 89.05%.

From the results shown in Table-11, it is clear that the values of encoding and matching times obtained by the proposed system are equal to 0.45 and 0.002 seconds, respectively, for one record. This indicates that the time values obtained by the proposed method are very short. In addition, the values of the encoding and matching times for one record and for all of the 4000 records are illustrated in Figures-(3 and 4), respectively.

Table 11: encoding time and matching time needed for converting and classify network traffic records

| Time (seconds)                  |
|---------------------------------|
| Matching time for all 4000 records | 1814 |
| Encoding time for all 4000 records    | 8    |
| Total time for all 4000 records     | 1822 |
| Matching time for one record       | 0.45 |
| Encoding time for one record       | 0.002|
| Total time for one record          | 0.452|

Figure 3: Time needed to converting and matching all testing records
Conclusions
The present paper exhibited a new DNA encoding method for an intrusion detection system through the application of Raita algorithm on UNSW-NB15 dataset, as a recent dataset which covers a set of attack types. High detection rate values are achieved for nine attack types. The obtained DR, FAR, and accuracy values are equal to 90.91%, 24%, and 89.05%, respectively. The values of encoding and matching times for one record are equal to 0.45 and 0.002 seconds, respectively. The findings confirm the high efficiency of the proposed method.

References
1. Mahdy, R. and Saeb, M. 2007. Design and implementation of an anomaly-based network intrusion detection system utilizing the DNA model. Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, and Computers.
2. Al-Ibaisi, T., Abu-Dalhoun, A., Al-Rawi, M., Alfonseca, M. and Ortega, A. 2008. Network intrusion detection using genetic algorithm to find best DNA signature. Wseas Transactions on Systems, 7(7): 589-599.
3. Hameed, S. M. and Rashid, O. F. 2014. Intrusion detection approach based on DNA signature. Iraqi Journal of Science, 55(1): 241-250.
4. Rashid, O. F., Othman, Z. A. and Zainudin, S. 2017. A novel DNA sequence approach for network intrusion detection system based on cryptography encoding method. International Journal on Advanced Science Engineering and Information Technology, 7(1): 183-189.
5. Rashid, O. F., Othman, Z. A. and Zainudin, S. 2019. Four Char DNA Encoding for Anomaly Intrusion Detection System. Proceedings of the 2019 5th International Conference on Computer and Technology Applications: 86–92.
6. Moustafa, N. & Slay, J. 2015. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015 Military Communications and Information Systems Conference (MiCiS).
7. Soram, R. and Khomdram, M. 2010. “Biometric DNA and ECDLP Based Personal Authentication System: A Superior Posse of Security”, IJCSNS International Journal of Computer Science and Network Security, 10(1), January 2010.
8. Hudaa, S., Nguyen, P. H., Lestari, S. P., Gunawan, G. and Supiyandi, S. 2020. Data Search using Raita Algorithm. Journal of Critical Reviews, 7(1): 72-75.
9. Janarthanan, T. and Zargari, S. 2017. Feature Selection in UNSW-NB15 and KDDCUP’99 datasets. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE).
10. Wu, S. and Benzhaf, W. 2010. The use of computation intelligence in intrusion detection systems. Applied Soft Computing, 10(1): 1-35.