Soil Tillage Systems Impact on Energy Use Pattern and Economic Profitability in Wheat Agroecosystems

Yousefi M, Khoramivafa M*, Mahdavi Damghani AM, Mohammadi GR, Beheshti Alagha A

1Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
3Department of Soil Science, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

*Corresponding author: Khoramivafa M, Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, Email: khoramivafa@razi.ac.ir

Submission: December 12, 2018; Published: January 16, 2019

Abstract

The role of energy management is important and essential in sustainability of production systems. The aims of this study were evaluated the impact of different soil tillage on energy use in wheat agroecosystems. To purpose this research was carried on 2014 to 2016 years in research farm of Razi University in western Iran. The result of this study showed that total energy used in NT, RT, and CT systems was 31.39, 32.85, and 35.16 GJ ha⁻¹. In the other hands, production energy in NT, RT, and CT systems was 200.14, 207.68, and 195.26 GJ ha⁻¹. Accordingly, energy use efficiency (EUE) in NT, RT, and CT systems was 6.38, 6.32, and 5.55. Therefore, amount of EUE of different tillage systems followed the order of NT>RT>CT systems. In this research profitability of NT, RT, and CT systems were 3.23, 2.96, and 2.59. This result showed that more use of machinery and operation due to more use of energy resource can be reduced EUE, Net energy and profitability of agroecosystems.

Keywords: Energy use efficiency; Conservation Tillage; Sustainable production; Profitability; Economic

Abbreviations: EUE: Energy Use Efficiency; EP: Energy Productivity; CT: Conventional Tillage; RT: Reduced Tillage; NT: No Tillage

Introduction

Energy consumption in agricultural sector there has been an increasing trend from scratch to now. In the other hand by moving the pattern of agriculture trend from traditional agriculture to modern agriculture, the use of energy has increased particularly fossil fuel resources [1]. Farmers consumed energy directly in the form of gasoline, diesel, electricity, and seeds, and indirectly in energy-intensive inputs such as fertilizer and pesticides. Use of energy and Intensity of energy use is depending to high input and low input agriculture systems. Any amount the intensity of agricultural operations, chemical input and consumption of other energy inputs, was high it will increase the input energy in to agricultural production systems [2]. In addition of energy use, energy use efficiency was modified due to pattern of energy consumption in agroecosystems. More use of energy resource especially non-renewable energy resources will decrease the energy use efficiency (EUE) of agricultural production systems. Energy input-output analysis is usually applied to evaluate the efficiency and environmental impacts of production systems [3]. The International Energy Agency [4] and the Intergovernmental Panel on Climate Change [5] have calculated that use of energy efficiency measures drive south the greatest portion of emission reductions and stabilize the global climate. The renewed interesting the use of energy efficiency measure so mitigation assessment of greenhouse gases may also be attributed to the relationship between environmental pollutants, energy consumption and economic growth [6]. Studies have been done in this regard that in most studies related to this topic the patterns of tillage systems and use of chemical inputs have a special significance. In the most studies highest shear of input energy is involved to agricultural machinery. Farmers' energy consumption also varies by tillage practice. Conservation tillage systems including reducing or no tillage are associated with lower fuel and input energy. In contrast, a conventional tillage system is associated with greater fuel and higher input energy. For this purpose assessment the impact of different tillage systems on energy and energy use efficiency in agroecosystems is essential problem. Therefore in this study we evaluated the impact of No tillage (NT) systems, Reduction tillage (RT) systems, and Conventional tillage (CT) systems on energy use and it efficiency in wheat agroecosystems in western Iran.

Materials and Methods

Site description

The field experiments were conducted in cultivation years 2014 and 2015 in the research field in Campus of Agriculture and Natural Resources.
Resources in Razi University (34° 21’ N latitude, 47° 9’ E longitude, and altitude 1319m above mean sea level), in Kermanshah province, western Iran. The soil texture at the experimental site was silt-day with a pH of 7.6. Average seasonal rainfall during the experimental period (November-July) was above 440mm. Also the annual average of maximum and minimum temperature during experimental period was 32 °C and 20 °C, respectively.

Tillage systems

The tillage treatments were included conventional tillage (CT) system, reduced tillage (RT) system and no tillage (NT) system that explained below. No tillage system was including direct sowing without any tillage equipment. The RT system was consists of once chisel plow and seed drill in surface of field soil. The CT systems treatment was performed using a once moldboard plowing to 30-35cm depth, than once of chisel plow and with once of disk harrowing for crushing clogs before planting by seed drill in fall. Use of other machinery such as combine and transporting machine were equal in all tillage systems.

Table1: Energy equivalents of input and output in wheat production systems.

Unit	Energy Equivalents	Reference
A. Inputs		
1. Human labor	H	1.96 [24]
2. Machinery	H	62.7 [26]
3. Diesel fuel	L	51.33 [26]
4. Chemical fertilizer	Kg	
(a) Nitrogen		66.14 [15]
(b) Phosphate (P₂O₅)		12.44 [15]
(c) Potassium (K₂O)		11.15 [15]
5. Farmyard manure	Kg	0.3 [22]
6. Pesticides	Kg	
(a) Herbicides		101.2 [23]
(b) Insecticides		199 [21]
7. Electricity	Kwh	3.6 [25]
8. Water for irrigation	M³	1.02 [26]
9. Seed (seed+fungicides)	Kg	17.6 [23]
B. Output		
1. Grain	Kg	14.7 [2]
2. Straw	Kg	12.5 [2]

Energy use Efficiency

\[
\text{Energy use Efficiency} = \frac{\text{Output energy} \left(\frac{MJ}{ha} \right)}{\text{Input energy} \left(\frac{MJ}{ha} \right)}
\]

(1)

Energy Productivity

\[
\text{Energy Productivity} = \frac{\text{Wheat grain yield} \left(\frac{kg}{ha} \right)}{\text{Input energy} \left(\frac{MJ}{ha} \right)}
\]

(2)

Net Energy

\[
\text{Net Energy} = \left(\text{Output energy} \left(\frac{MJ}{ha} \right) \right) - \left(\text{Input energy} \left(\frac{MJ}{ha} \right) \right)
\]

(3)

Energy input and output and indices

Total input and output energy was extracted in different tillage systems of wheat production systems and converted to energy equivalent. In each experimental treatment use of human labor (h), machinery (h), diesel fuel (L), water for irrigation (m³), electricity (Kwh), seed (kg) and chemical fertilizer (kg) as inputs and total biomass of wheat (involved grain yield, straw yield) as output were determined per hectare. The energy equivalents were calculated by multiplying the inputs and output quantities by their respective energy coefficients (Table 1). Energy indices were determined using data for energy input, grain yield and energy output. These indices were energy use efficiency as the ratio of energy output to energy input, energy productivity as grain yield divided by total energy used (kgMJ⁻¹), net energy (MJha⁻¹) and agrochemical energy ratio as the ratio of consumed energy for chemical input to total energy input (%). Energy indicators were calculated by applying Eqs 1-4 [7-9].

Agrochemical Energy Ratio(%) = \frac{\text{Input energy of agrochemicals} \left(\frac{MJ}{ha} \right)}{\text{Total energy input} \left(\frac{MJ}{ha} \right)}

(4)

Economic analysis

For economic analysis in wheat agroecosystems with NT, RT, and CT systems total costs, gross return, net return (gross return minus total cost), Profitability (cost to benefit ratio) and net energy value (total costs divided to total net energy) were calculated Eqs (5-7).
Net Return [USD/ha/year] = (Gross income) - (Total costs)
(5)

Profitability ratio = (Net return)/(Total costs)
(6)

Net energy value (MJ/ha) = (Net energy [MJ/ha]) / (Total Costs [$/ha])
(7)

Result and discussion

Input-output energy analysis in different tillage systems

Input and output energetic types in wheat agroecosystems by NT, RT, and CT systems and their energy equivalents are shown in (Table 2). Results showed that in NT systems were used 33h of human labour and 6.5h of machinery power per hectare of wheat agroecosystems. The amount of consumed diesel fuel per this equipment and operation was 85L ha\(^{-1}\). In RT systems was used of human labour, machinery power and consumed diesel fuel 38h, 9h, and 110L per hectare of wheat agroecosystems. In CT systems this amounts were 46h, 13h, and 150L per hectare respectively. Other input such as chemical fertilizer, manure, irrigation water, seed, and electricity power for water pumping in all three tillage systems were identical (Table 2). Accordingly, the total input energy in NT systems in wheat production was 31394.51MJ ha\(^{-1}\) in which the highest shares were recorded for electricity, N fertilizer, irrigated water and diesel fuel respectively (Figure 1).

![Figure 1: The share of different source of input energy by NT system in wheat production.](image)

Table 2: Consumed input and produced output by different tillage systems in wheat production.

Input	Unit	N tillage	R tillage	C tillage
Human labor	h	33	38	46
Machinery	h	6.5	9	13
Diesel Fuel	L	85	110	150
Fertilizers				
N fertilizers	kg	96	96	96
P\(_2\)O\(_5\)	kg	69	69	69
K\(_2\)O	kg	31.5	31.5	31.5
Manure	kg	6250	6250	6250
Chemical input	kg	2.5	2.5	2.5
Irrigated water	m\(^3\)	4860	4860	4860
Electricity power	kwh	2500	2500	2500
Seed	kg	180	180	180
Output				
Grain yield	kg	5180.4	5157.79	5348.37
Straw yield	kg	9919.2	10548.91	9330.77

Total energy input for RT systems in wheat production was 32844.31MJ ha\(^{-1}\) in which the highest shares were recorded for electricity, diesel fuel, N fertilizer, and irrigated water respectively (Figure 2). In wheat production by CT system consumed energy was 35163.99MJ ha\(^{-1}\) in which the highest shares were recorded for electricity, diesel fuel, N fertilizer, and irrigated water respectively (Figure 3). Accordingly amount of input energy in CT systems was more than RT and NT systems in wheat production. The shear of machinery and diesel fuel energy of input energy in NT, RT, and CT systems were 15, 19, and 24% respectively. In CT systems amount
of machinery using and ultimately the use of fossil fuels are more than other tillage systems such as RT and NT systems in wheat agroecosystems. Parallel with these results Sorensen et al. [10] reported that the total energy input was reduced by 26% for the reduced tillage system and by 41% for the no-tillage system ratio conventional tillage system.

![Figure 2: The share of different source of input energy by RT system in wheat production.](image)

![Figure 3: The share of different source of input energy by CT system in wheat production.](image)

Table 3: Input and output energy by difference tillage systems in wheat production.

Input/tillage systems	N tillage	R tillage	C tillage
Human labor	64.68	74.48	90.16
Machinery	407.55	564.3	815.1
Diesel Fuel	4363.05	5646.3	7699.5
Fertilizers			
N fertilizers	6349.44	6349.44	6349.44
P$_2$O$_5$	858.36	858.36	858.36
K$_2$O	351.225	351.225	351.225
Manure	1875	1875	1875
Chemical input	300	300	300
Irrigated water	4957.2	4957.2	4957.2
Electricity power	9000	9000	9000
Seed	3168	3168	3168
Total energy input	31394.505	32844.305	35163.985

Output

	Grains yield	Straw yield	Total energy output
N tillage	76151.88	123990	200141.88
R tillage	75819.513	131861.375	207680.888
C tillage	78621.039	116343.64	195255.66
Average grain yield in NT, RT, and CT systems in wheat production systems were 5180.4, 5157.79, and 5348.37 kg ha\(^{-1}\), respectively. In the other hand were produced 9919.2, 10548.91, and 9330.77 kg ha\(^{-1}\) of straw in NT, RT, and CT systems in wheat production systems respectively. Total output energy (grain and straw yield) was calculated for all tillage systems (Table 2). Total output energy in NT, RT, and CT systems in wheat production systems were 200141.88, 207680.89, and 195255.66 MJ ha\(^{-1}\) respectively. Summary, in this study the highest share of total input energy in all tillage systems was related to electricity energy that was used by electromotor for water pumping (Table 3). But also, CT systems in wheat production were very dependent to diesel fuel energy because of more tillage and other operation by machinery. Furthermore, CT systems used more than 2 times of fuel input they have not 2 times more energy output than other tillage systems including NT, and RT systems in wheat production per input energy in CT systems.

Energy indicators and forms in wheat production systems

Results of energy indicators for NT, RT, and CT systems in wheat production are shown in Table 4. Energy use efficiency was 6.38, 6.32, and 5.55 for NT, RT, and CT systems in wheat production, respectively. This amount was reported 2.8 for wheat production systems in Turkey [11], 2.9 to 5.2 for wheat in India [12], 4.83 for alfalfa production systems in Iran [13], and 2.67 in corn [9]. Yousefi et al. [2] reported that energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Because energy use efficiency is affected by two items as output yield and consumption inputs. That it has direct relationship with increased the yield and it has an opposite relationship with increased of consumption inputs. Lower energy use efficiency in CT systems in wheat production is cased to more use of energy resource in CT systems. The net energy per hectare for wheat production in NT, RT, and CT systems was about 168747, 174837, and 160092 MJ ha\(^{-1}\) respectively. Yousefi et al. [2] concluded that net energy in high input wheat production system (123,000 MJ ha\(^{-1}\)) was higher than low input wheat production system (42,000 MJ ha\(^{-1}\)) which is due to higher yields (grain and straw) in high input agroecosystems. This amount was observe in other crops 982,000 MJ ha\(^{-1}\) for sugar beet [18], 9836.94 MJ ha\(^{-1}\) for chickpea [19], and 190383.11 for alfalfa [13].

Indicators	Unit	NT	RT	CT
Inputs energy	MJ ha\(^{-1}\)	31394.505	32844.305	35163.985
Output energy	MJ ha\(^{-1}\)	200141.88	207680.89	195255.66
Grain yield	kg ha\(^{-1}\)	5180.4	5157.79	5348.37
Straw yield	kg ha\(^{-1}\)	9919.2	10548.91	9330.77
Energy use efficiency		6.38	6.32	5.55
Energy productivity	kg MJ\(^{-1}\)	0.17	0.16	0.15
Net energy	MJ ha\(^{-1}\)	168747.375	174836.58	160091.675
Agrochemical energy ratio	%	0.39	0.41	0.44

Economic analysis of wheat agro ecosystems under different tillage systems

Results of economic analysis of wheat agroecosystems whith NT, RT, and CT systems are shown in Table 5. The highest cost in wheat production with CT system was paid for diesel fuel and machinery operation (above 30% of total costs), while the highest cost in RT, and NT systems was paid for Fertilizer (Manure and Chemical) (above 20% of total costs). Profitability or benefit to cost ratio in wheat production with NT, RT, and CT systems was 3.23, 2.96, and 2.59 respectively. This indicates greater benefit per unit cost in wheat production with N tillage systems. Benefit to cost ratio was reported 1.10 for soybean, 1.98 for mustard, 2.03 for wheat and 2.30 for chickpea [20], 2.13 and 2.14 in organic and conventional apricot production systems [21]. Wheat production with NT and
RT systems were more profitable ratio to CT systems [22-24]. As will NT system was 1.24 further beneficial than to CT systems. The main reason for this problem was the higher cost of tillage in these systems rather than NT systems [25,26].

Table 5: Economic analysis in wheat production by NT, RT, and CT systems.

Cost and Revenues	Unit	NT	RT	CT
Grain yield	Kg ha⁻¹	5180.4	5157.79	5348.37
Straw yield	Kg ha⁻¹	9919.2	10548.91	9330.77
Sale price				
Grain	$ kg⁻¹	0.34	0.34	0.34
Straw	$ kg⁻¹	0.02	0.02	0.02
Net energy	MJ ha⁻¹	168747.36	174836.6	160091.7

A. costs

- Diesel and Machinery: $ kg⁻¹ 89.74 107.69 156.41
- Fertilizer (Manure and Chemical): $ kg⁻¹ 133.34 133.34 133.34
- Human Labour: $ kg⁻¹ 76.92 92.31 107.69
- Pesticides: $ kg⁻¹ 25.65 25.65 25.65
- Water and Electricity tax: $ kg⁻¹ 8.2 8.2 8.2
- Seed: $ kg⁻¹ 65 65 65
- Transporting: $ kg⁻¹ 64.1 64.1 64.1
- Total cost of production: $ kg⁻¹ 462.95 496.29 560.39

B. Revenues

- Grain yield: $ kg⁻¹ 1761.34 1753.65 1818.45
- Straw yield: $ kg⁻¹ 198.38 210.98 215.62
- Gross return: $ kg⁻¹ 1959.72 1964.66 2006.06
- Net return: $ kg⁻¹ 1496.77 1488.34 1444.67
- Profitability ratio: 3.23 2.96 2.59
- Net Energy value: $ MJ⁻¹ 0.004 0.003 0.004

In the last part of this research we calculated the cost of net energy or energy added value by different tillage systems in wheat agroecosystems. This ratio was calculated for NT, RT, and CT systems in wheat production as 0.004, 0.003, and 0.004 USD MJ⁻¹ which means higher cost per MJ of net energy in CT system ratio to other tillage systems. In the other words per expenditure any dollar of cost the amount of energy added value in NT, RT, and CT systems in wheat production was 364.50, 352.28, and 285.68 MJ respectively.

Improving crop yield and decreasing production costs will cause increase in productivity of wheat agroecosystems. Therefore, it can be stated that in conservation tillage systems such as NT and RT systems the productivity is higher than other tillage systems such as CT system. Thus we can maintain crop production in a satisfactory level and sustainable with reducing the use of nonrenewable energy resource and optimized the energy consumption.

Conclusion

The present investigation was aimed at analyzing the energy consumption of wheat production by different tillage systems in western of Iran. The assessment was carried out in terms of energy used and produced, energy use efficiency, energy productivity, net energy and agrochemical energy ratio in wheat agroecosystems with NT, RT, and CT systems. It was disclosed that the higher amount of input energy was related to CT system in wheat production and lower amount was related to NT systems. The share of diesel fuel and machinery power of input energy in CT systems was more than other systems. Energy use efficiency and productivity in wheat agroecosystems with no tillage systems (6.38 and 0.17 kg MJ⁻¹) was more than conventional tillage systems (5.55 and 0.15 kg MJ⁻¹). Therefore, amount of EUE of different tillage systems followed the order of NT>RT>CT systems. Finally, some economic indices in different tillage systems were incorporated in the present investigation such as net return, profitability and net energy value. The total net return in NT, RT, and CT systems was equal to 1496.77, 1468.34, and 1444.67 ha⁻¹ was achieved for the surveyed region while the profitability of these tillage systems in wheat production was obtained to be 3.23, 2.96, and 2.59. This index was showed than wheat production with no tillage systems is eco-efficient. Calculated the net energy value showed that per compensated one dollar of cost amount of energy added value was 364.50, 352.28, and 285.68 in NT, RT, and CT systems in wheat production respectively. Consequently, can be improvement the sustainability and profitability of agroecosystems production with management approach such as optimized energy use, reducing production costs and use of renewable and conservation input and operation.
References

1. Yousefi M, Khoramivafa M, Mondani F (2014a) Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment 92: 501-505.

2. Yousefi M, Mahdavi Damghani A, Khoramivafa M (2016) Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Environ Sci Pollut Res 23(8): 7390-7397.

3. Ozkan B, Akcaoz H, Fert C (2004) Energy input-output analysis in Turkish agriculture. Renew Energy 29(1): 39-51.

4. IEA (2009) How the energy sector can deliver on climate agreement in Copenhagen-gen. International Energy Agency, France.

5. IPCC (2007) Contribution of Working Group I to the Fourth Assessment Report. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.

6. Hamit HM (2012) Greenhouse gas emissions, energy consumption and economic growth: A panel counteractions analysis from Canadian industrial sector perspective. Energy Econ 34(1): 358-364.

7. Khan S, Khan MA, Hanjra MA, Mu J (2009) Pathways to reduce the environmental footprints of water and energy input in food production. Food policy 34(2): 141-149.

8. Pishgar KSH, Gahderijani M, Sekeydparsi P (2012) Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production 33: 183-191.

9. Yousefi M, Mahdavi Khoramivafa M (2014b) Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment 493: 330-335.

10. Sørensen CG, Halberg N, Oudshoorn W, Bjørn M, Dalgaard R (2014) Environmental footprints of water and energy input in food production, and economic analysis of sugar beet production in Tokat province of Turkey. Energy 32(1): 35-41.

11. Adnan C, Altna S, Erdal G, Erdal G (2009) Energy consumption patterns and economic analysis of irrigated wheat and rainfed wheat production: Case study for Tokat region. Turkey Journal of Food, Agriculture, Ecosystems and Environment 7: 639-644.

12. Yousefi M, Khoramivafa M, Mahdavi DA (2017) Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems. Environ Sci Pollut Res 24(24): 19827-19834.

13. Yaldız O, Ozturk HH, Zeren Y, Bascetinçelik A (1993) Energy use in field crops of Turkey. 5th International Congress of Agricultural Machinery and Energy Kusadasi Turkish.

14. Yousefi M, Mahdavi Damghani AM (2012) Evaluation of energy flow and indicators of chickpea under rainfed condition in Iran. International Journal of Farming and Allied Sciences 1(2): 57-61.

15. Mandal KG, Saha KP, Ghosh PK, Hati KM, Bandyopadhyay KK (2002) Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy 23(5): 337-345.

16. Gundogmus E (2006) Energy use on organic farming: A comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Conversion and Management 47(18-19): 3351-3359.

17. Esengün K, Gunduz O, Erdal G (2007) Input-output energy analysis in dry apricot production of Turkey. Energy Conversations and Management 48(2): 592-598.

18. Ghiyasi M, Pouryousef M, Myandoab M, Tajbakhsh A, Hasanzade Gorttape M, et al. (2008) The evaluation of energy balance of wheat under low input farming in West Azerbaijan. Research Journal of Biological Sciences 12(3): 1408-1410.

19. Mohammad A, Omid M (2010) Economic analysis and relation between input energies and yield of greenhouse cucumber production in Iran. Applied Energy 87: 191-196.

20. Rafiee S, Mousavi ASH, Mohammad A (2010) Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 35(8): 3301-3306.

21. Samavatean N, Rafiee S, Mobih H, Mohammad A (2010) An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy 36(6): 1808-1813.