Influence of biofeedback weight bearing training in sit to stand to sit and the limits of stability on stroke patients

DAE JUNG YANG, PhD, PT

1) Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: 1113 Noksaeok-ro, Samho-eup, Yeongam-gun, Jeollanam-do, Republic of Korea

Abstract. [Purpose] The purpose of this study is to observe the influence of biofeedback weight bearing training in sit to stand to sit and limits of stability on stroke patients. [Subjects and Methods] For subjects of this study, 30 stroke patients were randomly divided into two groups of 15, a biofeedback weight bearing training group and a functional weight bearing training group. Biofeedback weight bearing training was conducted for 30 minutes, five times a week for eight weeks, using Biorescue. Analysis of sit to stand to sit was done with LUKOtronic while the analysis of limits of stability was done with Biorescue. [Results] In a comparison of sit to stand to sit and limits of stability between the two groups before and after intervention, Group I showed significant difference in sit to stand to sit and limits of stability when compared to Group II. [Conclusion] This study concludes that biofeedback weight bearing training is more effective in improving sit to stand to sit and limits of stability in stroke patients.

Key words: Biofeedback, Sit to stand to sit, Stroke

INTRODUCTION

Stroke is one of the high incidence diseases in modern society and is a representative disease that causes damage in the central nerve system with ischemia or hemorrhage of the cerebral artery1). It induces motor and sensory disorders by damaging the motor cortex, premotor cortex, and motor tract of the cerebrum and is accompanied by various symptoms, in which complex functional disorders occur depending on the damaged area2).

Most of the stroke patients exhibit at least a minimum of 27% weight bearing on the paralyzed leg while sustaining an erect posture3). Although lately various weight bearing training intervention methods have been offered to correct abnormal weight bearing and to improve execution of everyday movement of hemiplegia patients4), rehabilitation intervention methods based on biofeedback have been suggested due to lack of motivation and loss of interest in patients from existing weight bearing training intervention methods5).

Rehabilitation based on biofeedback is a training method to improve damaged function by using sensation of physical contact and body movement that creates interest in attendance. It is more effective than conventional training interventions6).

The sit to stand to sit is a movement from sitting to standing upright and then sitting down again, which is a basic everyday movement performed on average four times every hour7). Standing up from a chair requires complex movement and stability of knee and ankle joints. Patients with hemiplegia secondary to stoke show more weight bearing to the un-paralyzed leg than the affected leg when conducting the sit to stand to sit compared to normal people and required a longer time to perform. The center of gravity to anterior-posterior and interior-exterior is different from normal people8).

Balance is an ability to maintain the line of gravity of a body within the base of support to sustain positional stability. Stoke reduces physical activity and leads to left-right posture imbalance and asymmetry, affecting factors involved in upright
standing and balancing reaction which creates severe problems in balancing ability. Reduced balancing capability affects mobility which makes it difficult to carry on independent daily life. This study provides basic reference on rehabilitation of stroke patients by studying the influence of biofeedback weight bearing training in sit to stand to sit and LOS in stroke patients.

SUBJECTS AND METHODS

This study was approved by bioethics Committee of Sehan university center (IRB) (Approval number: 2015-15) on January 1, 2016. The participants’ rights were protected according to the guidelines established by the University of Sehan. Thirty in-patients who were diagnosed and being treated for stroke were included in this study. Detailed criteria for the selection were hemiplegia patient diagnosed with stroke less than a year, patients who are able to walk for at least 10 m by themselves, patients who are able to communicate and score K-MMSE 24 or over, and patients without musculoskeletal diseases that might affect the experiment. The subjects of this study were randomly selected and allocated into 15 patients in a biofeedback weight bearing group (Group I) and the other 15 patients in a functional weight bearing group (Group II).

Each received standard physical therapy including CNS development therapy prior to the experiment. For biofeedback weight bearing training, Biorescue (RM Ingenierie, France) which provides real-time feedback on movement of force plate and pressure center was used. Training was conducted for 30 minutes each day, five times a week, for eight weeks. The LUKOtronic movement analysis system (Lutz-Kovacs Electronic, Austria) was used to measure execution time of sit to stand to sit. Infrared markers were placed on C5, PSIS, greater trochanter, lateral epicondyle, lateral malleolus, and heel; and the subjects were asked to stand up in a comfortable pace from a sitting position at knee height (from ground to lateral femoral condylar) while hip, knee, and both ankles were flexed at 90° and both feet were apart as wide as the pelvis on a flat, adjustable chair with no back support and arm rest. Biorescue (RM Ingenierie, France), which is capable of measuring migration length and area of center of pressure (COS), was used to analyze and measure limits of stability (LOS).

The results of this study were analyzed with Windows SPSS 18.0 program. Characteristics of the subjects were analyzed with descriptive statistics, and comparison of sit to stand to sit and LOS between the two groups before and after intervention was done in analysis of covariance, with statistical reference level of α=0.05.

RESULTS

Data on the general characteristics of the subjects is summarized in Table 1. The difference between before and after intervention in sit to stand to sit and LOS between the biofeedback weight bearing training group and the functional weight bearing training group is summarized in Table 2. In comparison of sit to stand to sit and LOS between the two groups before and after intervention, Group I showed significant difference in sit to stand to sit (p<0.01) and LOS (p<0.05) when compared to Group II.

Table 1. General characteristics of the subjects
Gender (male/female)

Age (years)
Weight (kg)
Height (cm)
Stroke duration (month)

Table 2. Comparison of sit to stand to sit and balance ability between groups
Group I (n=15)

Pre
STSTS (unit: sec)
LOS (unit: cm²)

Values are show as the mean ± SD. *p<0.05, **p<0.01
Group I: biofeedback weight bearing training
Group II: functional weight bearing training
STSTS: sit to stand to sit; LOS: limited of stability
DISCUSSION

The result of the study, influence of biofeedback weight bearing training in sit to stand and LOS in stroke patients, shows there was significant improvement in sit-to-stand execution time and LOS capacity with biofeedback weight bearing training and is more effective in improving sit-to-stand execution time and LOS capacity compared to functional weight bearing training.

Cheng et al.\textsuperscript{15)16) found significant differences in range of postural sway, weight bearing rate, and sit-to-stand execution time in the experiment group when conducting sit to stand to sit and a decrease in fall at follow-up after six months. The training was conducted five times a week for a three-week intervention with a total of 54 participants allocated into two groups, an experimental group of 30 subjects who received intervention program consisting of repetitive sit to stand and symmetrical weight bearing and control group of 24 subjects who received a general rehabilitation intervention program.

Sherrington et al.16) studied 120 patients with iliac joint fracture who were divided into three groups of weight bearing, non-weight bearing and control group. The four month follow up shows a significant difference in LOS and five-times standing up test in the weight bearing group. Group I in the present study showed significant decrease in sit to stand to sit execution time after eight weeks of intervention of biofeedback weight bearing training. It is considered that biofeedback weight bearing training provides motivation and real-time feedback information to hemiplegia patients with difficulty in moving their weight center to their affected leg resulting in reduced sit to stand to sit execution time and improved weight bearing capability17).

Cheng et al.18) divided 52 patients with hemiplegia caused by stroke into experiment groups of 28 who received an intervention of general rehabilitation training and dynamic visual feedback body weight shift and a control group of 24 who received general rehabilitation training. Intervention was conducted five times a week, for three weeks, and the balancing capability of each group was compared. The result showed the experiment group had a significant difference in dynamic balancing capability than the control group.

The study carried out by Morone et al.19) divided 50 patients with hemiplegia from subacute stroke into experiment groups of 25 who conducted game-based balancing training and a control group of 25 who conducted general balancing training and arranged a four week intervention, three times a week. They reported that the experimental group showed significant improvement in the Berg balance scale (BBS), Barthel index, functional movement capability and 10 m walk capability compared to control group.

Srivatava et at.20) researched visual feedback balance training that used sense of pressure on 40 stroke patients for four weeks, five times a week. The result showed significant improvement in BBS, LOS, gait speed and Barthel index. Balance capability was still intact at test on balancing capability after three months. The present study also proved that biofeedback weight bearing training improved balance capability. It has been found that visual biofeedback weight bearing training on stroke patients with asymmetrical weight bearing is effective in improving sit to stand to sit and LOS. Biofeedback weight bearing training paired with present nerve physical therapy is anticipated to result in a more effective outcome of functional improvement in stroke patients.

ACKNOWLEDGEMENT

The research has been conducted by the research grant of Sehan university in 2016.

REFERENCES

1) Peurala SH, Könönen P, Pitkänen K, et al.: Postural instability in patients with chronic stroke. Restor Neurol Neurosci, 2007, 25: 101–108. [Medline]
2) Hackett ML, Anderson CS: Predictors of depression after stroke: a systematic review of observational studies. Stroke, 2005, 36: 2296–2301. [Medline] [CrossRef]
3) Nichols DS: Balance retraining after stroke using force platform biofeedback. Phys Ther, 1997, 77: 553–558. [Medline]
4) Arene N, Hidler J: Understanding motor impairment in the paretic lower limb after a stroke: a review of the literature. Top Stroke Rehabil, 2009, 16: 346–356. [Medline] [CrossRef]
5) Holden MK: Virtual environments for motor rehabilitation: review. Cyberpsychol Behav, 2005, 8: 187–211, discussion 212–219. [Medline] [CrossRef]
6) Cho KH, Lee KJ, Song CH: Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. Tohoku J Exp Med, 2012, 228: 69–74. [Medline] [CrossRef]
7) Roy G, Nadeau S, Gravel D, et al.: The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clin Biomech (Bristol, Avon), 2006, 21: 585–593. [Medline] [CrossRef]
8) Mak MK, Levin O, Mizrahi J, et al.: Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease. Clin Biomech (Bristol, Avon), 2003, 18: 197–206. [Medline] [CrossRef]
9) Daneshjoo A, Mohktar AH, Rahnama N, et al.: The effects of comprehensive warm-up programs on proprioception, static and dynamic balance on male soccer players. PLoS One, 2012, 7: e51568. [Medline] [CrossRef]
10) Tyson SF, DeSouza LH: Reliability and validity of functional balance tests post stroke. Clin Rehabil, 2004, 18: 916–923. [Medline] [CrossRef]
11) Baek IH, Kim BJ: The effects of horse riding simulation training on stroke patients' balance ability and abdominal muscle thickness changes. J Phys Ther Sci, 2014, 26: 1293–1296. [Medline] [CrossRef]
12) Eng JJ, Chu KS: Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch Phys Med Rehabil, 2002, 83: 1138–1144. [Medline] [CrossRef]
13) Galli M, Cimolin V, Crivellini M, et al.: Quantitative analysis of sit to stand movement: experimental set-up definition and application to healthy and hemiplegic adults. Gait Posture, 2008, 28: 80–85. [Medline] [CrossRef]
14) Mong Y, Teo TW, Ng SS: 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch Phys Med Rehabil, 2010, 91: 407–413. [Medline] [CrossRef]
15) Cheng PT, Wu SH, Liaw MY, et al.: Symmetrical body-weight distribution training in stroke patients and its effect on fall prevention. Arch Phys Med Rehabil, 2001, 82: 1650–1654. [Medline] [CrossRef]
16) Sherrington C, Lord SR, Herbert RD: A randomized controlled trial of weight-bearing versus non-weight-bearing exercise for improving physical ability after usual care for hip fracture. Arch Phys Med Rehabil, 2004, 85: 710–716. [Medline] [CrossRef]
17) Goldie PA, Maryas TA, Evans OM, et al.: Maximum voluntary weight-bearing by the affected and unaffected legs in standing following stroke. Clin Biomech (Bristol, Avon), 1996, 11: 333–342. [Medline] [CrossRef]
18) Cheng PT, Wang CM, Chung CY, et al.: Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clin Rehabil, 2004, 18: 747–753. [Medline] [CrossRef]
19) Morone G, Tramontano M, Iosa M, et al.: The efficacy of balance training with video game-based therapy in subacute stroke patients: a randomized controlled trial. BioMed Res Int, 2014, 2014: 580861. [Medline] [CrossRef]
20) Srivastava A, Taly AB, Gupta A, et al.: Post-stroke balance training: role of force platform with visual feedback technique. J Neurol Sci, 2009, 287: 89–93. [Medline] [CrossRef]