PT spectroscopy of the Rabi problem

Yogesh N. Joglekar¹, Rahul Marathe², P. Durganandini², and Rajeev K. Pathak²

¹Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA
²Department of Physics, University of Pune, Ganeshkhind, Pune 411007, India

(Dated: July 18, 2014)

We investigate the effects of a time-periodic, non-hermitian, PT-symmetric perturbation on a system with two (or few) levels, and obtain its phase diagram as a function of the perturbation strength and frequency. We demonstrate that when the perturbation frequency is close to one of the system resonances, even a vanishingly small perturbation leads to PT symmetry breaking. We also find a restored PT-symmetric phase at high frequencies, and at moderate perturbation strengths, we find multiple frequency windows where PT-symmetry is broken and restored. Our results imply that the PT-symmetric Rabi problem shows surprisingly rich phenomena absent in its hermitian or static counterparts.

Introduction. A two-level system coupled to a sinusoidally varying potential is a prototypical example of a time-dependent, exactly solvable Hamiltonian, with profound implications to atomic, molecular, and optical physics [1]. When the frequency of perturbation \(\omega \) is close to the characteristic frequency \(\Delta \) of the two-level system - near resonance - the system undergoes complete population inversion for an arbitrarily small strength \(\gamma \) of the potential [2]. The implications of this result to spin magnetic resonance, Rabi flopping [3], and its generalization, namely the Jaynes-Cummings model [4, 5], have been extensively studied over the past half century [6, 7]. Surprisingly, the quantum Rabi problem, where the full quantum nature of the perturbing bosonic field is taken into account, has only been recently solved [8].

The two-level model is useful because it is applicable to many-level systems when the perturbation frequency is close to or resonant with a single pair of levels. As the detuning away from resonance \(|\Delta - \omega| \) increases, the perturbation strength necessary for population inversion increases linearly with it; in a many-level system, with increased potential strength, transitions to other levels have to be taken into account and the resultant problem is not exactly solvable. Therefore, understanding the behavior of a system in the entire parameter space \((\gamma, \omega)\) requires analytical and numerical approaches. All of these studies are restricted to hermitian potentials.

In recent years, discrete Hamiltonians with a hermitian tunneling term \(H_0 \) and a non-hermitian perturbation \(V \) that are invariant under combined parity and time-reversal (PT) operations have been extensively investigated [9, 10]. The spectrum \(\epsilon_x \) of a PT-symmetric Hamiltonian is real when the strength \(\gamma \) of the non-hermitian perturbation is smaller than a threshold \(\gamma_{PT} \) set by the hermitian tunneling term. Traditionally, the emergence of complex-conjugate eigenvalues that occurs when the threshold is exceeded, \(\gamma > \gamma_{PT} \), is called PT symmetry breaking [17, 19]. It is now clear that PT-symmetric Hamiltonians represent open systems with balanced gain and loss, and PT symmetry breaking is a transition from a quasiequilibrium state (PT-symmetric state) to a state with broken reciprocity (PT-broken state) [20]. Recent experiments on optical waveguides [21, 23] and resonators [24] with amplification and absorption have shown that PT systems display a wealth of novel phenomena [25, 26] that are absent in closed or purely dissipative systems. We note that all experiments and most of the theoretical work, with few exceptions [27, 29], have only explored systems with static gain and loss potentials.

And what of a system perturbed by a time-periodic gain-loss potential \(V(t) \)? What is the criterion for PT-symmetry breaking? What is the analog of Rabi flopping in such a case? We answer these questions by investigating small, \(N \)-site lattices perturbed by a pair of balanced gain-loss potentials \(\pm i \gamma \cos(\omega t) \) located at parity symmetric sites. Such systems can be realized in coupled waveguides with a complex refractive index [22, 23, 28] that varies along the propagation direction, or in coupled resonators [24].

Our primary results are as follows: i) The system can be in "PT-broken phase" even if the spectrum \(\epsilon_x(t) \) of the Hamiltonian \(H(t) \) is real at all times. ii) Near every resonance, the PT symmetric threshold is reduced from its static value \(\gamma_{PT} \) to the detuning, \(\gamma_{PT}(\omega) \propto |\omega - \Delta| \); in particular, it vanishes at the resonance. iii) For any gain-loss strength including \(\gamma \gg \gamma_{PT} \), the PT-symmetric phase is restored at high frequencies \(\omega > \omega_c \propto \gamma \). iv) At intermediate strengths, \(\gamma \sim \gamma_{PT} \), the PT symmetry is broken in multiple windows in the frequency domain. Thus, a harmonic, PT-symmetric perturbation provides a new spectroscopic tool for investigating the level structure of a system.

PT phase diagram. The Hamiltonian for an N-site lattice with constant tunneling is

\[
H_0 = -\hbar J \sum_{x=1}^{N-1} (|x\rangle\langle x+1| + |x+1\rangle\langle x|),
\]

where \(|x\rangle\) is a normalized state localized on site \(x \), \(J \) is the tunneling rate, and \(\hbar = h/(2\pi) \) is the scaled Planck’s constant. The action of the parity operator on the lattice
is given by $x \rightarrow \bar{x} = N + 1 - x$ and the antilinear time-reversal operator acts as $i \rightarrow -i$. The spectrum of H_0 is given by $\epsilon_n = -2\hbar J \cos(k_n) = -\epsilon_n$ and the normalized eigenfunctions are $\psi_n(x) = |n\rangle = \sin(k_n x) / \sqrt{1 + 1/N}$ where $k_n = n\pi/(N + 1)$ with $1 \leq n \leq N$. The energy differences $\hbar\Delta_{nm} = \epsilon_n - \epsilon_m > 0$ define the possible resonances for this N-level system. Motivated by the Rabi problem, here we will only consider $N = \{2, 3, 4\}$. This system is perturbed by a balanced gain-loss potential

$$
V(t) = i\hbar \gamma \cos(\omega t) \langle x_0 | x_0 \rangle - |x_0 \rangle \langle x_0 | \neq V(t). \tag{2}
$$

Eq. (2) implies that at time $t = 0$, x_0 is the gain or amplification site and \bar{x}_0 is the loss or absorption site. The non-hermitian potential satisfies $PTV(t)PT = V(t)$. The total Hamiltonian $H(t) = H_0 + V(t)$ is periodic in time, i.e. $H(t + 2\pi/\omega) = H(t)$, and its properties are best analyzed via its Floquet counterpart, $H = -i\hbar \partial_t + H$. In the frequency domain, the non-Hermitian, PT-symmetric Floquet Hamiltonian is given by

$$
H_{x,x'}^{p,q} = -i\hbar \omega \delta_{p,q} \delta_{x,x'} - \delta_{p,q} \hbar J (\delta_{x,x'+1} + \delta_{x,x'-1})
+ i\hbar \gamma \delta_{x,x'} (\delta_{p,q+1} + \delta_{p,q-1}) (\delta_{x_0,x} - \delta_{x_0,x'}) \tag{3}
$$

where $p, q \in \mathbb{Z}$ denote the Floquet band indices. In practice, a truncated Floquet Hamiltonian with $|p| \leq N_f$ is used, so that H is an $(2N_f + 1) \times (2N_f + 1)$ matrix.

We define PT-symmetry breaking as the emergence of complex-conjugate eigenvalues for the Floquet Hamiltonian H. As we will show below, this can occur even if the instantaneous eigenvalues $\epsilon_\lambda(t)$ of the time-dependent Hamiltonian $H(t)$ are purely real over the entire period $T_\omega = 2\pi/\omega$.

Figure 1 is the PT-symmetric phase diagram of a two-level system in the $(\gamma/J, \omega/J)$ plane. Figure 1(a) shows the largest imaginary part of the spectrum of H. The static threshold $\gamma_{PT}/J = 1$ is suppressed down to zero when the perturbation frequency matches a resonance, $\omega/J = 2$. (b) A close-up of the area marked by the white rectangle in panel (a) shows that for moderate $\gamma/J \sim 1$, multiple PT-symmetric (PTS) and PT-broken (PTB) regions occur when ω is varied. (c) Maximum of the net intensity $I(t) = \langle \psi(t)|G(t)|\psi(t)\rangle$ at two cutoff times $t = 10\pi/\omega$ (open red circles) and $t = 20\pi/\omega$ (solid blue squares), on horizontal logarithmic axis, as a function of ω on the vertical axis, at $\gamma/J = 0.9$ (white dot-dashed line in panel (b)). PTB regions are distinguished by a clear dependence of I_{max} on the cutoff.

A complementary method to distinguish the PT-broken (PTB) region from the PT-symmetric (PTS) region is to track the net intensity $I(t) = \langle \psi(t)|G(t)|\psi(t)\rangle = \langle \psi(t) | G(t) G(t) | \psi(0) \rangle$ of an initially normalized state $|\psi(0)\rangle$. We obtain the non-unitary time-evolution operator

$$
G(t) = T e^{-\frac{i}{\hbar} \int_0^t dt' H(t')} \approx \prod_{k=1}^{t/\delta t} e^{-\frac{i}{\hbar} \delta t H(k\delta t)}, \tag{4}
$$

Figure 1 shows the PT-symmetric phase diagram of a two-level system in the $(\gamma/J, \omega/J)$ plane. Figure 1(a) shows the largest imaginary part of the spectrum of the Hamiltonian H with 101 Floquet bands. The region with zero imaginary part (dark blue) is the PT-symmetric phase and the region with nonzero imaginary part (all other colors) is the PT-broken phase; the static, $\omega = 0$, threshold is given by $\gamma_{PT}/J = 1$. Figure 1(a) has three universal features that appear in systems with larger N as well. The first is a vanishingly small PT-symmetric threshold $\gamma_{PT}/(\omega)$ that occurs when ω is close to the single resonance frequency for the system, $\Delta_{21} = 2J$. The second is the emergence of PT-symmetric phase that occurs at large frequencies. $\omega > \omega_c \propto \gamma$ for any gain-loss strength including $\gamma/J \geq 1$. The third feature is the presence of multiple windows along the frequency axis such that the PT-symmetry is broken within each window. Figure 1(b) is a higher resolution close-up of the parameter space marked by the white rectangle in Fig. 1(a). It shows that for a fixed γ, as the frequency of the PT potential is changed, multiple PT-symmetric and PT-broken regions emerge. These regions are present both below and above the static threshold.
where the discretization time-step $\delta t/T_\omega \ll 1$ is chosen to ensure that $G(t)$ is independent of it. Figure 2(c) shows the maximum intensity I_{max} reached before time t at cutoff times $t = 5T_\omega$ (open red circles) and $t = 10T_\omega$ (solid blue squares), as a function of the \mathcal{PT}-perturbation frequency ω on the vertical axis. These results are for $\gamma/J = 0.9$, initial state localized on the first site, and a time-step $\delta t/T_\omega = 10^{-5}$. In the \mathcal{PT}-symmetric region, $I(t)$ undergoes bounded oscillations and therefore I_{max} is the same for the two time-cutoffs. In a sharp contrast, in the \mathcal{PT}-broken region, $I(t)$ increases exponentially with time and I_{max} doubles on the logarithmic scale when the cutoff is doubled. Thus, both approaches show the existence of multiple frequency windows where \mathcal{PT} symmetry is broken; note that the phase-boundaries in Fig. 2(c) do not exactly match those in Fig. 2(b) due to the finite time-cutoff.

We remind the reader that when $\gamma/J \leq 1$, the 2×2 Hamiltonian $H(t) = \text{i}\hbar \gamma \cos(\omega t)(\sigma_x - \hbar J \sigma_z)$ has a purely real spectrum $\epsilon_n(t) = \pm \hbar [J^2 - \gamma^2 \cos^2(\omega t)]^{1/2}$ at all times, and yet, the norm of the time-evolution operator $G(t)$ is either bounded or exponential-in-time at different frequencies [27].

Figure 2 shows the \mathcal{PT}-symmetric phase diagram of a three-level system, shown is the base-10 log of the maximum imaginary part of the spectrum of \mathcal{H}. Its three features - a linearly vanishing \mathcal{PT}-threshold at the resonance $\omega/J = \sqrt{2} \approx 1.41$, a restored \mathcal{PT}-symmetric phase at high frequencies, and multiple frequency windows with \mathcal{PT}-symmetric and \mathcal{PT}-broken phases at moderate γ/J - are universal.

Figure 2 shows the \mathcal{PT} phase diagram of a three-level system obtained by using 81 Floquet bands. We plot the base-10 logarithm of the largest imaginary part of eigenvalues of \mathcal{H} to easily distinguish the \mathcal{PT}-symmetric phase (blue) and \mathcal{PT}-broken phase (red). For a three-level system, the unperturbed spectrum is given by $\epsilon_n = \{0, \pm \sqrt{2}J\}$, and has two resonance frequencies $\Delta_{21} = \sqrt{2}J = \Delta_{32}$ and $\Delta_{31} = 2\sqrt{2}J$. Fig. 2 shows a linearly vanishing $\gamma_{\mathcal{PT}}(\omega)$ at the first resonance $\omega/J = \sqrt{2}$, a \mathcal{PT}-restored phase at high frequencies, and a number of frequency windows where \mathcal{PT} symmetry is broken at moderate values of $\gamma/J \leq 1$. There is no \mathcal{PT}-broken region near the second resonance, $\omega/J = 2\sqrt{2}$ (not shown) because $V(t)$ does not connect states with same parity. Thus, the phase diagram for a three-level system shares the fundamental characteristics of that for a two-level system.

Lastly, we consider a four-level system, $N = 4$. In this case, the resonances between states with opposite parity occur at $\Delta_{21}/J = 1 = \Delta_{34}/J, \Delta_{23}/J = (\sqrt{5} - 1) \approx 1.236$, and $\Delta_{34}/J = (\sqrt{5} + 1) \approx 3.236$. There are two inequivalent locations for the gain-loss potential, $x_0 = 1$ and $x_0 = 2$, and both have the same static threshold $\gamma_{\mathcal{PT}}/J = 1$. In the first case, only center-two of the four eigenvalues become complex at the threshold, whereas in the second case all four simultaneously become complex [33]. Figure 3 shows the \mathcal{PT} phase diagram obtained with 41 Floquet bands. Both panels, (a) and (b), demonstrate the three salient features discussed earlier for both two and three-level systems.

Understanding the phase boundaries. We now derive the \mathcal{PT}-phase boundaries at occur at high frequencies or vanishingly small γ near a resonance. The natural time-scale for an unperturbed system is proportional to $1/J$ and its static \mathcal{PT} breaking threshold is also set by J. At high frequencies $\omega/J \gg 1$, the rapidly varying potential $\gamma \cos(\omega t)$ is replaced by its average over the characteristic time-scale, $\gamma_{\text{av}} \propto (\gamma/\omega)J$. For any gain-loss strength γ, no matter how large, increasing the frequency reduces the effective strength γ_{av} and thus restores the
PT-symmetric phase. The slope of the linear phase-boundary in the region $\omega/J \gg 1$ will depend upon the number of levels N and the location x_0 of the gain-loss potential, but the linear behavior of the phase boundary is universal.

Next we derive the cone-shaped phase boundary that occurs at small γ in the neighborhood of a resonance $\omega \sim \Delta_{nm}$. For a state $|\psi(t)\rangle = \sum_{n} c_n(t) \exp(-i \epsilon_n t/\hbar) |n\rangle$, the interaction-picture equation of motion for the level-occupation coefficients $c_n(t)$ is given by

$$i\partial_t c_n(t) = \sum_{m=1}^{N} V_{nm}(t) e^{i \Delta_{nm} t} c_m(t), \quad (5)$$

$$V_{nm}(t) = i\gamma \cos(\omega t)|1 - (-1)^{n+m}|m\rangle \langle n| \langle x_0| \langle x_0|m\rangle. \quad (6)$$

For a two-level system, when $\omega \approx \Delta_{21} = 2J$, averaging over high-frequency terms simplifies Eq.(5) to

$$\partial_t^2 c_{1,2}(t) + \left[(\omega/2 - J)^2 - (\gamma/2)^2\right] c_{1,2}(t) = 0. \quad (7)$$

Eq.(7) implies that when $|\omega - 2J| > \gamma$, the coefficients $c_1(t)$ and $c_2(t)$ oscillate in time and remain bounded, and the system is in the PT-symmetric phase. When $|\omega - 2J| < \gamma$, $c_{1,2}(t)$ increase with time exponentially, and the system is in the PT-broken phase. Thus, PT-symmetric phase boundary is given by $\gamma_{PT}(\omega) = |\omega - 2J|$, and the threshold gain-loss strength vanishes as $\omega \rightarrow \Delta_{21} = 2J$. A visual inspection of Fig. 1(a) shows that, indeed, the slope of the phase-boundary lines fanning away from $\omega = 2J$ is one. Eq.(7) also implies that along the cone-shaped phase boundary, the net intensity $I(t)$ grows quadratically with time [20, 21, 24].

When $N = 3$ a similar analysis with three equidistant levels implies that near resonance $c_2(t)$ satisfies a third-order differential equation, $\partial_t^3 c_2(t) + \left[(\omega - \sqrt{2}J)^2 - (3\gamma/4)^2\right] \partial_t c_2(t) = 0$. Therefore, the phase-boundary separating the PT-broken region from the PT-symmetric region is given by $\gamma_{PT}(\omega) = (4/3)|\omega - \sqrt{2}J|$. This, too, can be verified by a visual inspection of Fig. 2. Our analysis also predicts that along this phase boundary, the net intensity of an initially normalized state increases quartically with time, i.e. $I(t) \propto t^4$, because $\partial_t^4 c_2(t) = 0$. In an N-level system, our analysis is applicable to a pair of levels m, n when the PT-perturbation frequency is close to the resonance that connects those levels, $\omega \sim \Delta_{nm}$.

Thus, a vanishingly small PT perturbation induces PT-symmetry breaking when the frequency of the perturbation is close to a resonance. Near resonance, the spatial oscillations of a state match the gain-loss temporal oscillations; as a result, it spends most of the time on the gain-medium site, leading to an exponential growth in the net intensity.

Conclusion. In this paper, we have proposed the PT-symmetric Rabi model. We have shown that a harmonic, gain-and-loss perturbation leads to a rich PT phase diagram with three salient features. Among them is the existence of multiple frequency windows in which PT-symmetry is broken and restored. Time-dependent PT potentials have been extensively investigated in continuum one-dimensional optical structures [25, 26]. Our results show that such potentials are a surprising spectroscopic probe, where the phase of the system - PT-broken or PT-symmetric - denotes the proximity of the perturbation frequency to a resonance of the system.

Although we have focused only on few-level systems here, our results are applicable to larger lattices, particularly in the vicinity of a resonance. Deep in the PT-broken phase, at long times, nonlinear effects also become relevant, although they do not affect our findings.

This work was supported by NSF DMR-1054020 (YJ), Department of Science and Technology, India (RM), BUCD University of Pune (PD), and University of Pune research grant BC/U/D/RG/9 (RP). YJ thanks the hospitality of University of Pune where this work began.

1. J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Reading, MA 1995).
2. I.I. Rabi, Phys. Rev. 51, 652 (1937).
3. A.E. Siegman, Lasers (University Science Books, Palo Alto, CA 1986).
4. E.T. Jaynes and F.W. Cummings, Proc. of the IEEE 51, 89 (1963).
5. F.W. Cummings, Phys. Rev. 140, A 1051 (1965).
6. P.L. Knight and P.W. Milonni, Phys. Rep. 66, 21 (1980).
7. B.W. Shore and P.L. Knight, J. Mod. Opt. 40, 1195 (1993).
8. D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
9. M. Znojil, Phys. Rev. A 82, 052113 (2010).
10. M. Znojil, Phys. Lett. A 375, 3435 (2011).
11. O. Bendix et al., Phys. Rev. Lett. 103, 030402 (2009).
12. L. Jin and Z. Song, Phys. Rev. A 80, 052107 (2009).
13. Y.N. Joglekar et al., Phys. Rev. A 82, 030103(R) (2010).
14. Y.N. Joglekar and A. Saxena, Phys. Rev. A 83, 050101(R) (2011).
15. D.D. Scott and Y.N. Joglekar, Phys. Rev. A 83, 050102(R) (2011).
16. G. Della Valle and S. Longhi, Phys. Rev. A 87, 022119 (2013).
17. C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
18. C.M. Bender, D.C. Brody, and H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
19. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007) and references therein.
20. Y.N. Joglekar et al., Eur. Phys. J. Appl. Phys. 63, 30001 (2013).
21. A. Guo et al., Phys. Rev. Lett. 103, 093902 (2009).
22. C.E. Rüter et al., Nat. Phys. 6, 192 (2010).
23. L. Feng et al., Science 333, 729 (2011).
24. A. Regensburger et al., Nature 488, 167 (2012).
25. Z. Lin et al., Phys. Rev. Lett. 106, 213901 (2011).
26. L. Feng et al., Nat. Mater. 12, 108 (2013).
27. N. Moiseyev, Phys. Rev. A 83, 052125 (2011).
28. X. Luo et al., Phys. Rev. Lett. 110, 243902 (2013).
[29] G. Della Valle and S. Longhi, Phys. Rev. A 87, 022119 (2013).
[30] G. Floquet, Ann. Sci. Ecole Norm. Sup. 12, 47 (1883).
[31] J.H. Shirley, Phys. Rev. 138, B979 (1965).
[32] U. Peskin and N. Moiseyev, J. Chem. Phys. 99, 4590 (1993).
[33] Y.N. Joglekar and J.L. Barnett, Phys. Rev. A 84, 024103 (2011).