Statistical mining and integration of complex molecular data including metabolites, proteins, and transcripts is one of the critical goals of systems biology (Ideker, T., Galitski, T., and Hood, L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372). A number of studies have demonstrated the parallel analysis of metabolites and large scale transcript expression. Protein analysis has been ignored in these studies, although a clear correlation between transcript and protein levels is shown only in rare cases, necessitating that actual protein levels have to be determined for protein function analysis. Here, we present an approach to investigate the combined covariance structure of metabolite and protein dynamics in a systemic response to abiotic temperature stress in Arabidopsis thaliana wild-type and a corresponding starch-deficient mutant (phosphoglucomutase-deficient). Independent component analysis revealed phenotype classification resolving genotype-dependent response effects to temperature treatment and genotype-independent general temperature compensation mechanisms. An observation is the stress-induced increase of raffinose-family-oligosaccharide levels in the absence of transitory starch storage/mobilization in temperature-treated phosphoglucomutase plants indicating that sucrose synthesis and storage in these mutant plants is sufficient to bypass the typical starch storage/mobilization pathways under abiotic stress. Eventually, sample pattern recognition and correlation network topology analysis allowed for the detection of specific metabolite-protein co-regulation and assignment of a circadian output regulated RNA-binding protein to these processes. The whole concept of high-dimensional profiling data integration from many replicates, subsequent multivariate statistics for dimensionality reduction, and covariance structure analysis is proposed to be a major strategy for revealing central responses of the biological system under study. Molecular & Cellular Proteomics 7:1725–1736, 2008.

Metabolomic technologies enable the very rapid non-targeted analysis of metabolites and provide a diagnostic tool for pattern recognition of biological samples (2–5). Typical pattern recognition methods are variance discrimination algorithms such as principal components analysis (PCA)1 or independent component analysis (ICA) (2, 6–9). Independent component analysis is an extension of covariance analysis by looking for kurtosis thresholds or high entropy (8, 10) and thus adds a further value for biological interpretation. Variance discrimination of samples relies strongly on a high biological variability of independent biological replicate analysis (4, 11, 12). Recently, we demonstrated that these covariance matrices of experimentally determined metabolite levels are connected with the elasticities of pathway reaction networks (13). Consequently, changes in the structure of these covariance networks reveal biochemical regulations (4). This was confirmed by using topology studies of differential metabolite correlation/covariance networks to investigate a silent phenotype sucrose synthase antisense plant and alterations in a starch-deficient Arabidopsis thaliana mutant (9, 14). Further we used a computational kinetic model of the Calvin cycle coupled to sucrose biosynthesis in plant leaf metabolism to demonstrate changes in metabolite correlation/covariance networks as a response to protein phosphorylation and enzymatic regulation (15, 16). The statistical model implies that variance discrimination analysis such as PCA will optimize sample grouping according to differences in biochemical regulation, thus providing for the first time a fundamental relationship between large scale profiling methods such as metabolomics combined with multivariate data analyses, bio-

1 The abbreviations used are: PCA, principal components analysis; ICA, independent component analysis; WT, wild-type; GC, gas chromatography; TOF-MS, time-of-flight mass spectrometry; RFO, raffinose family oligosaccharides; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGM, phosphoglucomutase.
Integration of Metabolomic and Proteomic Phenotypes

chemical regulation, and pattern recognition (4, 12) (see Fig. 1). However, although regulatory hubs can be identified in differential metabolite correlation networks, causal relationships in experimental systems are not derivable without integration of additional parameters such as external environmental perturbation and further molecular levels like protein concentrations or RNA expression data (1, 4). Computer simulation of enzymatic activities of a biochemical network enables calculation of corresponding metabolite correlation networks (4, 13, 15–17). This idea has been further substantiated by recent calculations of metabolic networks (18, 19). In these studies the authors identified high variances in gene expression and protein activity as causes for metabolite correlations. Obviously, the model for metabolite correlations can be extended to systemic fluctuations in complex biochemical networks (20). Consequently, the integration of rapid sample classification and metabolic network analysis using metabolomic techniques with quantitative non-targeted protein profiling will add a further dimension for protein function analysis and systems biology. Furthermore, integrated metabolite and protein measurements offer an improved method for distinguishing among phenotypes (i.e. causes for phenotypes) (4, 9, 12, 21). The systematic comparison of mRNA expression levels, enzymatic activities, and protein levels revealed a low correlation in most studies so far indicating that high throughput microarrays are not sufficient to understand genome-wide protein dynamics or biochemical regulation (22, 23). The systematic integration of transcript and metabolite profiling, thus, necessitates time course resolution. A more direct interaction can be expected for proteins and metabolites. However, only a few examples are existing, consequently investigating metabolomics and proteomics data integration. Recent examples demonstrate such an approach (9, 11, 24–26). These studies clearly demonstrate the need for data integration, however, show that several further obstacles have to be addressed: (i) data quality and comprehensiveness; (ii) sample throughput; and (iii) algorithms and statistics to extract significant information and to cope with the high dimensionality structure of the data. All these issues are directly related and dominate the outcome of an integrative study. In the present study a strategy for metabolomic and proteomic phenotype integration is shown coping with these problems. The overall strategy is based on recent work by us for the systematic analysis of the combined covariance structure of metabolites and proteins in a complex systemic response (see Fig. 1) (9, 11). Recent approaches were restricted to only low numbers of individual proteins. In the present work we improved protein identification and quantification rates strongly without limiting the sample throughput, which is a requirement to exploit biological variability for sample classification and biological interpretation as described above (4, 9, 11).

Molecular responses of temperature acclimation at 4 and 32 °C after 3 days were investigated in a sugar accumulating starch-deficient A. thaliana plant mutant phosphoglucomutase (PGM) and its corresponding wild-type (WT) ancestor. Metabolites and proteins were identified and quantified from the same tissue samples according to Weckwerth et al. (11). Typical metabolite stress markers and novel members of the RNA-binding protein family indicating involvement of post-transcriptional mechanisms were identified with a significant impact on genotype discrimination, temperature treatment, and cold acclimation, respectively. We propose the applicability of the whole process to all kinds of biological systems revealing systemic responses to environmental conditions and correla-
Integration of Metabolomic and Proteomic Phenotypes

RESULTS AND DISCUSSION

Parallel Metabolite and Protein Analysis by Combining an Integrative Extraction Protocol with GC-TOF-MS and LC-Ion Trap-MS Analysis—Plant material was extracted using an extraction protocol for sequential isolation of metabolites and proteins from one sample to minimize technical standard deviation, increase sample throughput, and exploit metabolite-protein covariance for sample classification (9, 11, 29) (see Fig. 1). The data matrix consists of 36 independent biological replicates of different experiments with 332 variables for each experiment in the form of relative levels of proteins (160) and metabolites (172). In contrast to the former extraction protocol protein recovery was improved 2-fold by adding 40% sucrose into the protein extraction buffer and reducing degradation because of high temperature and long extraction times (29). For metabolite analysis a standard operation protocol consisting of chemical derivatization and subsequent analysis with gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) was performed (9, 11, 14, 36). GC-TOF-MS metabolite profiling resulted in a list of 172 reproducible identifiable mass spectra including known carbohydrates, amino acids, and organic acids (for a complete list of identified metabolites, see supplemental Table S1). For protein analysis we used a label-free non-gel-based approach analyzing tryptic peptides of the complex protein sample on reversed phase liquid chromatography coupled to ion trap mass spectrometry (LC/MS) (9, 11, 30, 37, 38). Recently, it was demonstrated that the cumulative sum of recorded peptides called spectral count in such data-

(50 mM HEPES-KOH, 40% sucrose (w/v), 1% β-mercaptoethanol, pH 7.5) per 50 mg of fresh weight. 600 µl of (3 volumes) TE-buffer (10 mM Tris, 1 mM EDTA-Na2) equilibrated phenol were added and shaken for 30 min at 4 °C. After centrifugation at 4,000 × g and 4 °C for 8 min, the soluble proteins were dissolved in the upper phenolic phase (the high sucrose concentration causes a phase inversion). The phenolic phase was separated and the proteins precipitated out of the phenolic phase overnight in 5 volumes of ice-cold acetone. After centrifugation at 4,000 × g and 4 °C for 8 min the pellets were washed 3 times with ice-cold methanol and stored at −80 °C until further use. The dried protein pellets were then digested in two steps using endoproteinase Lys-C (1:100) first and then Poroszyme® immobilized trypsin according to the manufacturer’s instructions (buffer 1: Lys-C digestion buffer (50 mM Tris, 8 M urea, 100 mM methylamine, pH 7.5); buffer 2: trypsin digestion buffer (50 mM Tris, 10% acetonitrile, 10 mM CaCl2, pH 7.5), after Lys-C digestion the sample is 1:4 diluted to have an end concentration of 2 mM urea). Protein content was determined using the Bradford assay employing ovalbumin as the standard protein. The protein digest was desalted with SPECP® C18 columns. After lyophilization the pellet was stored at −20 °C until use.

GC-TOF-MS Analysis—The GC-TOF-MS analysis was performed on an HP 5890 gas chromatograph with deactivated standard split/splitless liners containing glasswax (Agilent, Böblingen, Germany). One-µl sample was injected in the splitless mode at 230 °C injector temperature. GC was operated on an MDN-35 capillary, 30 m × 0.32 mm inner diameter, 25-µm film (SUPELCO, Bellefonte, PA), at constant flow of 2-ml/min helium. The temperature program started with 2 min isocratic at 85 °C, followed by temperature ramping at 15 °C/min to a final temperature of 360 °C, which was held for 8 min. Data acquisition was performed on a Pegasus II TOF mass spectrometer (LECO, St. Joseph, MI) with an acquisition rate of 20 scans s−1 in the mass range of m/z = 85–600.

The obtained data were analyzed at first by defining a reference chromatogram with the maximum number of detected peaks over a signal/noise threshold of 50. Afterward all chromatograms were matched against the reference with a minimum match factor of 800. Compounds were annotated by retention index and mass spectra comparison to a user defined spectra library. Selected unique peptides were annotated by retention index and mass spectra matched against the reference with a minimum match factor of 800. Afterward all chromatograms were integrated with the maximum number of detected peaks over a signal/noise threshold of 50. The obtained data were analyzed at first by defining a reference chromatogram with the maximum number of detected peaks over a signal/noise threshold of 50. Afterward all chromatograms were matched against the reference with a minimum match factor of 800. Compounds were annotated by retention index and mass spectra comparison to a user defined spectra library. Selected unique peptides were annotated by retention index and mass spectra matched against the reference with a minimum match factor of 800. Afterward all chromatograms were integrated with the maximum number of detected peaks over a signal/noise threshold of 50. The obtained data were analyzed at first by defining a reference chromatogram with the maximum number of detected peaks over a signal/noise threshold of 50. Afterward all chromatograms were matched against the reference with a minimum match factor of 800.
dependent LC/MS analyses correlates with protein abundance in the samples (33, 39, 40). This was also proven in a combination with stable isotope labeling (39). In a recent study we compared spectral count and peak integration from complex total ion chromatograms of a complex protein sample in combination with multivariate data mining (41). Dynamic range and limits of detection were studied by spiking a protein with known concentrations into the complex protein matrix. Both methods gave similar sample pattern recognition; however, spectral count was advantageous with respect to the total number of identified and quantified proteins. A typical protein analysis using peak integration showed high abundance proteins such as Calvin cycle enzymes and protein of the photosystem I and II (9, 11, 30). Using spectral counts the list of identified proteins exceeded significantly these functional protein classes (for a complete list see supplemental Table S2). Low abundance proteins as well as proteins known to be involved in temperature adaptation (At5g15970 and At5g52310) were observed.

All the identified proteins and their corresponding peptide product ion spectra can be downloaded from ProMEX site, a mass spectral reference library for plant proteomics (34). This library can also be used to search with unknown samples for protein identification. All the entries in the data base indicate the experimental conditions under which the protein was detected (34).

Correlation Network Topology Analysis and Sample Pattern Recognition Reveal the Structure of the Metabolite-Protein Covariance Matrix—In recent studies we have proposed that the differential correlation between two components of a data matrix, say a specific metabolite and a protein, reflects the underlying biochemical regulation (4, 9, 14, 15). Following this line we analyzed the correlation network topology of the starch-deficient mutant PGM versus the corresponding wild-type under different temperature regimes 4, 20, and 32 °C (see Fig. 2). Correlation networks and their visualization using multidimensional scaling was generated with Pajek. PGM showed within the complete data set of all temperature treatment, a total of 1990 correlations, and after Bonferroni correction 1020 significant correlations. The wild-type plants exhibited 1535 correlations and 1101 significant correlations after Bonferroni correction. As expected both genotypes exhibited different network topologies (see Fig. 2). A refined analysis revealed that a component of the circadian regulation, named AtGRP7 (At2g21660), was strongly up-regulated under cold and had a strong correlation with proline and glutamine but not with raffinose and galactinol. To further reveal the covariance/correlation structure of the variables, the metabolites and proteins, and to rank the major information content of the data we applied ICA according to Morgenthal et al. and Scholz and Selbig (9, 10) (see Fig. 1). The chemometric analysis of the covariance/correlation structure of a complex data matrix is typically performed with PCA. PCA is applied to the high-dimensional data set first to extract the variables with the highest variance and to reduce data dimensionality. Subsequently, the principal components are used for independent component analysis (for detailed explanation, see Ref. 10). ICA is optimized to detect the inherent differences and ignore differences introduced globally by placing more emphasis on the independence of variables than their variances. The primary feature of the independent components is their kurtosis measure, a negative value indicating
flatter or more uniform distribution throughout the data set and so a strong factor for data separation. Furthermore, ICA is an unsupervised statistical method, thereby guaranteeing that no bias for sample pattern recognition is introduced. Based on sample discrimination it is possible to assign the covariance/correlation structure of the metabolites and proteins to specific biological processes and to identify a ranked list of corresponding correlative biomarkers.

ICA of the metabolites alone gave almost complete separation of sample groups (data not shown). The extracted transformation vectors IC1–IC3 indicated the occurrence of specific metabolites giving similar relative metabolite level responses for different processes because of a time-lag effect or analogous biochemical regulation. This was indeed recently demonstrated in an analysis of temperature-treated plants (43) and the diurnal rhythm of a plant (9). In contrast, the sample pattern of the proteins in ICA revealed a sample pattern according to the performed experiment, showing the genotype separation on the one hand and the temperature gradient on the other. No further biological characteristics were observed using the protein data alone. In Fig. 1 the strategy for the combined analysis of the metabolite-protein covariance matrix is shown. Following this strategy and decomposing the combined metabolite and protein data matrix into independent components revealed additional information, especially for protein marker identification. First, the mutation (PGM) and the WT plants (WT) were separated on IC1 (see Fig. 3A). The second component (IC2) depicts the temperature gradient response in both the mutant and the wild-type plants (see Fig. 3A) and the third component (IC3)
shows temperature stress responses similar in 4 °C and 32 °C treatments, respectively (see Fig. 3B). Eventually, by plotting IC2 and IC3 only differences of temperature treatment were resolved independent from the genotype (see Fig. 3C). Thus, response effects of different genotypes to temperature treatment and general temperature acclimation mechanisms were completely resolved by combining the distinct features of metabolite and protein data.

Biomarker Identification Based on Combined Metabolite-Protein Covariance Analysis—Because of a clear sample discrimination by ICA in Fig. 3 it is possible to assign roles to the detected proteins, which are correlated with a network of significant metabolite marker. This process is based on the biological interpretation of the transformation vectors IC1-IC3, the new independent components IC1 to IC3, allowing for a ranked assignment of metabolite and protein sets involved in the observed phenomena.

In Fig. 4A the loadings of different independent components IC1, IC2, and IC3 are visualized in a biclustering diagram. The loadings of ICA are proportional to the influence of a corresponding metabolite or protein on the observed sample discrimination along the transformation vectors (IC). If the transformation vectors (or independent components) can reasonably be interpreted, the loadings of the different metabolites and proteins are directly related to their importance on this biological phenomenon. It becomes clear that specific metabolites and proteins have different response effects to IC1, IC2, and IC3. Low temperature (IC2) strongly triggers osmolyte biosynthesis including proline, glutamine, and raffinose family oligosaccharides (RFO) like raffinose and galactinol. These compounds are accumulated during cold acclimation (43–45). However, from studies with galactinol synthase mutants, it has been shown that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana (46). Furthermore, a comparison of heat- and cold-shock response patterns revealed that the majority of heat-shock responses on the metabolite level were shared with cold-shock responses (43, 47). These observations coincide with our study visible by IC3 in Fig. 3, which extracts effects similar in cold and heat adaptation. Here, raffinose and galactinol have the highest weights for 4 °C and 32 °C samples in the PGM and the wild-type and have similar mutant/WT ratios in 4 °C and 32 °C samples (see Fig. 4A and supplemental Table S1). Thus, there is evidence that these intermediates were involved in general temperature stress in contrast to proline and glutamine, which showed different loadings on IC2 for 4, 20, and 32 °C (see Fig. 4A; IC2) whereas having conserved levels in PGM and WT (see boxplot for proline in Fig. 4B).
Unexpectedly, the primary effect of starch deficiency and channeling of triosephosphate into sucrose, glucose, and fructose in the PGM mutant has no strong impact on typical metabolite marker for cold acclimation processes. The observation is a stress-induced increase of RFO levels in temperature-treated PGM plants. Thus, starch storage and mobilization is not essential for the typical accumulation of these stress marker metabolites. This indicates that sucrose accumulation and storage in the starch-deficient mutant plants are sufficient to bypass the typical starch storage/mobilization pathways under abiotic stress (48). Furthermore the increase of RFO is not directly correlated with ATGRP7, proline, glutamine, and sucrose (see Fig. 2) for 20, 4, and 32 °C conditions in both the mutant and the wild-type plants indicating that those processes might work independently. This suggests a very complex up/down-regulation of several pathways and metabolic storage pools simultaneously and a high potential of metabolic flexibility (14, 49). However, these processes remain elusive and whether the increased RFO levels origin from storage pools or from de novo synthesis will be tested in future with stable isotope labeling techniques and metabolic flux measurements.

Fructose is highly accumulated in PGM (see supplemental Table S1), thus PGM and WT separate based on the loadings for fructose (see Fig. 4A). However, allantoin, asparagine, and an oxidative derivative of urea parabanic acid, all involved in the urea cycle metabolism, are more discriminatory for PGM and WT based on the loadings for IC1 (see Fig. 4A).
reason is that fructose has also strong influence in temperature adaptation in the plants, thus has high loadings also on IC2. Urea and asparagine metabolism, in contrast, are strongly impaired in the PGM mutant plant compared with the WT plants according to studies analyzing global transcriptional activity in the PGM mutant plant (50). Consequently, intermediates of urea metabolism are unique biomarkers for the PGM mutation probably because of severely retarded growth (see also our recent study (9)). This interaction of metabolic mutation and temperature response is nicely visible in the presented work here, thereby indicating that the proposed integration of different genotypes, experimental conditions, and molecular levels reveal novel insights on the systemic behavior, eventually leading to a new route of functional studies (see Fig. 1).

Because of an improved recognition of sample pattern, which is demonstrated with “proof of concept-metabolite markers” like proline, raffinose, and galactinol (see above), it is possible to assign specific proteins to these processes. In a recent study we investigated the proteins separating PGM and WT (9). The loadings of proteins with respect to their differentiating capability can be seen in the biclustering diagram in Fig. 4A. The ranking is found to be the same for chloroplastic GAPDH (At3g26650) and cytosolic GAPDH (At1g13440) indicating that the chloroplastic isoform has a stronger impact on PGM-WT discrimination (see also (9). However, in this study, we considerably increased the number of quantified proteins. Consequently, new protein markers were identified with higher rankings than GAPDH. Interestingly, proteins involved in redox-stress At3g49110 and At1g19570 have high loadings for IC1 in separating the PGM mutant and the WT.

High protein loadings for IC3, general temperature response similar for 4 and 32 °C, is observed for At2g44650 (see Fig. 4A and supplemental Table S1), a novel chloroplast chaperonin (CPn10) with unknown function (51–53). Recently, a homolog of CPn10 was implicated as having a very specific role in temperature stress adaptation in other species (54, 55). CPn10 shows a mixed-type behavior and is consequently found with high loadings for components, IC2 (temperature gradient marker) and IC3 (general temperature stress marker). Other proteins with high loadings for IC3 are typical temperature stress markers, like cyclophilins or proteins involved in oxidative stress (At3g01480 and At1g65980, respectively).

IC2 encodes differences between 4 and 32 °C temperature acclimation (see Fig. 3A). Accordingly, proteins identified as having high loadings for this component belong to the cold responsive proteins such as At5g52310 low temperature-induced protein 78 (sp Q06738) and At5g15970 cold-regulated protein COR6.6 (KIN2) (see Fig. 3A). At2g37220 and At3g53460 are nuclear encoded, targeted to the chloroplast, and have a consensus sequence-type RNA-binding domain originally isolated in tobacco (56). In our study, these proteins have slightly higher loadings for component IC2 than the cold-regulated proteins. In supplemental Table S2 the PGM mutant and WT ratios to the 20 °C control samples are shown. The ratios of these two RNA-binding proteins decrease strongly under higher temperature. In contrast, the ratios of the cold-regulated proteins increase under 4 °C treatment. Thus, it is very important that biomarkers identified by covariance analysis (multivariate statistics) have to be further compared on their median levels (univariate statistics, multiple means testing, analysis of variance (ANOVA)) (see supplemental Tables S1 and S2).

Other protein markers with very high loadings on IC2 were also RNA-binding proteins, which is also in agreement with recent studies (53, 57–70). Kim et al. (71) demonstrated that over-expression of a glycine-rich RNA-binding protein resulted in enhanced cold-shock resistance in *Escherichia coli*. A novel candidate AT2g21660 (ATGRP7) is a homologue of this protein family. It was identified in our study as the strongest cold treatment marker increasing under cold and decreasing under heat (highest loadings on IC2; see Fig. 4, A and boxplot in B). AT2g21660 (ATGRP7) was subjected to genetic analysis and suggested to be stress-related (72, 73) and a circadian output gene (74). In a recent whole-genome analysis of transcript levels under cold stress this gene showed increasing expression after 2 days, which correlates with our experimental conditions and quantitative protein data. However, the direct correlation of RNA expression and protein levels has to be further studied. In a recent investigation of circadian clock-regulated gene expression a feedback loop between ATGRP7 gene and protein abundance was proposed (75). In a very recent study ATGRP7 was shown to complement cold-sensitive *E. coli* mutants lacking cold-shock proteins (76). ATGRP7 is also a homologue of so-called cold-inducible RNA-binding proteins identified in human, mouse, and rat (77) mediating cold-induced growth suppression. Last, a strong covariance of ATGRP7 is found with the cold-acclimation marker proline (see Figs. 2 and 4A and boxplots in Fig. 4B). The relations of the different biomarkers are summarized in Fig. 5. Biochemical building blocks represent the different metabolic compartments in which the individual marker is involved. Based on the parallel analysis of the starch-deficient mutant versus wild type and the analysis of the metabolite-protein covariance structure a decoupling of starch synthesis and mobilization from temperature compensation mechanisms driven by circadian genes/proteins are observed. These observations together support a functional role of ATGRP7, other RNA-binding proteins, and post-transcriptional control in plant cold adaptation indicating that these processes in plants are closely related and share mechanisms with the mammalian system (77–79).

CONCLUSION

A method is presented combining high throughput metabolite and protein profiling for the investigation of systemic responses of *A. thaliana* to abiotic stress. The integration
clearly benefits from the heterogeneity of the data, thus, improves sample pattern recognition and therefore biological interpretation and identification of potential correlative metabolite-protein biomarker. However, a principle drawback of the presented profiling methods is its unbiased nature. For instance, the coverage of metabolic enzymes is comparatively low, as is the overlap between metabolites and their corresponding enzymes. This agrees with the observation that sample pattern recognition is indeed complementary for both of the molecular fractions, metabolites, and proteins (9, 80). Consequently, the integration of metabolite and protein data adds a further level of complementary information resulting in a better sample pattern recognition. However, for a detailed analysis of the interaction between metabolic enzymes and their corresponding metabolites, targeted approaches are much more feasible (81–84). Also, the quantitative pathway activity information captured in the metabolic network can be compared at the system level with metabolic fluxes estimated by metabolic flux analysis that uses only the metabolic data set (85). In future work system responses to abiotic temperature stress can be compared based on such modeling approaches and by the integration of metabolic and proteomic data sets.

In summary, metabolite profiling using GC-TOF-MS provides a very rapid and comprehensive technique for characterizing biological samples based on identification and quantification of hundreds of compounds. However, sample classification generally relies on covariance between metabolites. Integration of proteomics data from the same sample introduces a further level of causality and reveals an increased

Fig. 5. Proposed interaction of biochemical modules as a response to cold/heat. A cold-induced increase in ATGRP7 and a down-regulation at moderate heat correlates with the increase/decrease of the metabolite markers proline and glutamine (see also supplemental Tables S1 and S2), whereas the raffinose and galactinol of RFO show increase in both temperature treatments, 4 °C and 32 °C. This effect is also observed in the starch-deficient mutant thereby indicating that starch deficiency and resulting changes in starch mobilization and raffinose/galactinol synthesis are not necessarily linked in response to temperature stress and ATGPP7 as long as the sucrose synthesis pathway is functioning. However, these observations have to be investigated in further detail, also according to a recent discussion on plant temperature stress and metabolic effects by Guy et al. (47). A clear correlation of sucrose with RFO is not observed. Here, other methods like conditional correlation analysis are planned in future. In summary, the parallel investigation of the starch-deficient mutant and the corresponding WT and the identification of correlative metabolite-protein biomarkers uncover the separation of starch storage/mobilization and other metabolic processes such as the raffinose/galactinol pathway, proline/glutamine pathways, and cold temperature compensation mechanisms driven by circadian output genes like the RNA-binding protein At2g21660 (ATGRP7).
information extraction based on complementary sample patterns. Consequently, correlated metabolites and proteins can be assigned to distinct biological processes, thereby generating new hypothesis about the interaction of different biochemical building blocks. Besides transcript profiling the integration of enzyme activities represents an important complement to the described mass spectrometry-based protein profiling method. Especially, high throughput platforms for measuring many different enzymatic activities at the same time are very useful (86). Another very important aspect is flux measurement. Especially in the case of abiotic stress it will be interesting to reveal metabolic fluxes between central sugar metabolism and the RFO because these RFO were identified in our study as rather independent general stress markers. The whole concept of high-dimensional data integration from many replicates and multivariate statistics for covariance structure analysis is proposed to be a unique way to reveal systemic responses of the biological system under study, which is a prerequisite for gene/protein function discovery in the genome/systems biology era.

Acknowledgment—We thank Megan McKenzie for revising the manuscript.

* This work was supported by the Max Planck Society. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.mcponline.org) contains supplemental Tables S1 and S2.

These authors contributed equally to this work.

To whom correspondence should be addressed: Ph.: 49-331-567-8109; Fax: 49-331-567-8134; E-mail: weckwerth@mpimp-golm.mpg.de.

REFERENCES

1. Ideker, T., Galitski, T., and Hood, L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372
2. Fiehn, O., Kopka, J., Dorrmann, P., Altmann, T., Trethewey, R. N., and Willmitzler, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161
3. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Hanigan, G. G., and Kell, D. B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252
4. Weckwerth, W. (2003) Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689
5. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., and Willmitzler, L. (2004) Innovation: Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769
6. Liebermeister, W. (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18, 51–60
7. Zamboni, N., and Sauer, U. (2004) Model-independent fluxome profiling from H2 and C13 experiments for metabolic variant discrimination. Genome Biol. 5
8. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., and Selbig, J. (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20, 2447–2454
9. Morgenthal, K., Winkoepf, S., Scholz, M., Selbig, J., and Weckwerth, W. (2005) Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite-protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1, 109–121
10. Scholz, M., and Selbig, J. (2007) Visualization and analysis of molecular data. Methods Mol. Biol. 358, 87–104
11. Weckwerth, W., Wenzel, K., and Fiehn, O. (2004) Process for the integrated extraction identification, and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4, 78–83
12. Weckwerth, W., and Morgenthal, K. (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov. Today 10, 1551–1558
13. Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W. (2003) Observing and interpreting correlations in metabolic networks. Bioinformatics 19, 1019–1026
14. Weckwerth, W., Loureiro, M. E., Wenzel, K., and Fiehn, O. (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U. S. A. 101, 7809–7814
15. Morgenthal, K., Weckwerth, W., and Steuer, R. (2006) Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems 83, 108–117
16. Weckwerth, W. and Steuer, R. (2005) Metabolic networks from a systems perspective: from experiment to biological interpretation. (Vaidyanathan, S., Hanigan, G. G., and Goodacre, R., eds) pp. 265–289, Springer, NY
17. Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W. (2003) Interpreting correlations in metabolic networks. Biochem. Soc. Trans. 31, 1476–1478
18. Camacho, D., Fuente, A., and Mendes, P. (2005) The origin of correlations in metabolomics data. Metabolomics 1, 53–63
19. Mendes, P., Camacho, D., and de la Fuente, A. (2005) Modelling and simulation for metabolomics data analysis. Biochem. Soc. Trans. 33, 1427–1429
20. Rao, C. V., Wolf, D. M., and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237
21. Patterson, S. D., and Aebersold, R. H. (2003) Proteomics: the first decade and beyond. Nat. Genet. 33, 311–323
22. Gibon, Y., Usadel, B., Blaesing, O. E., Kamlage, B., Hoehne, M., Trethewey, R., and Stitt, M. (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biol. 7, R76
23. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730
24. Frey, l. M., Rubio-Aliaga, I., Siwbert, A., Sailer, D., Drobayev, A., Beckers, J., de Angelis, M. H., Aubert, J., Hen, A. B., Fiehn, O., Eichunger, H. M., and Daniel, H. (2007) Profiling of mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2−/− mice. Physiol. Genomics 28, 301–310
25. Clish, C. B., Davidov, E., Oresic, M., Plasterer, T. N., Lavoine, G., Londo, T., Meys, M., Snell, P., Stochaj, W., Adourian, A., Zhang, X., Morel, N., Neumann, E., Verheij, E., Vogels, J., Havekes, L. M., Afeyan, N., Regnier, F., Van Der Gref, J., and Naylor, S. (2004) Integrative biological analysis of the APOE’s-Leiden transgenic mouse. OMICS 8, 3–13
26. Perroud, B., Lee, J., Valkova, N., Dhirapong, A., Lin, P. Y., Fiehn, O., Kultz, D., and Weiss, R. H. (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling, Mol. Cancer 5
27. Caspar, T., Huber, S. C., and Somerville, C. (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol. 79, 11–17
28. Boyes, D. G., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., and Gorlach, J. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510
29. Morgenthal, K., Winkoepf, S., Wolschin, F., and Weckwerth, W. (2006) Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol. Biol. 358, 57–76
30. Winkoepf, S., Glinski, M., Tanaka, N., Tolstikov, V., Fiehn, O., and Weckwerth, W. (2004) Linking protein fractionation with multidimensional monolithic RP peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. Rapid Commun. Mass Spectrom. 18, 643–650
31. Peng, J., Elias, J. E., Thureen, C. C., Licklider, L. J., and Gygi, S. P. (2003)
Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50

Tabb, D. L., McDonald, W. H., and Yates, J. R. (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26

Lin, H., Sadygov, R. G., and Yates, J. R., III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201

Hummel, J., Niemann, M., Wienkoop, S., Schulze, W., Steinhauser, D., Selbig, J., Walther, D., and Weckwerth, W. (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8, 216

Blaschke, T., and Wiskott, L. (2004) CuBICA: independent component analysis by simultaneous third- and fourth-order cumulant diagonalization. IEEE Trans. Signal Process. 52, 1250–1256

Weckwerth, W., Tolstikov, V., and Fiehn, O. (2001) Metabolomic character-ization of transgenic potato plants using GC/TOF and LC/MS analysis reveals silent metabolic phenotypes, in Proceedings of the 49th ASMS Conference on Mass spectrometry and Allied Topics, American Society of Mass Spectrometry, Chicago, USA.

Wienkoop, S., Zoeller, D., Ebert, B., Simon-Rosin, U., Fisahn, J., Glinski, M., and Weckwerth, W. (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 65, 1641–1649

Wienkoop, S., and Weckwerth, W. (2006) Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana. J. Exp. Bot. 57, 1529–1539

Zybalov, B., Coleman, M. K., Floro, L., and Washburn, M. P. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal. Chem. 77, 6218–6224

Cox, B., Kliinger, T., and Emil, A. (2005) Integrating gene and protein expression data: pattern analysis and profile mining. Methods 35, 303–314

Wiest, P., Larrainzar, E., Niemann, M., Gonzalez, E. M., Lehmann, U., and Weckwerth, W. (2006) Stable isotope-free quantitative shotgun pro-teomics combined with sample pattern recognition for rapid diagnostics. J. Sep. Sci. 29, 2793–2801

Weckwerth, W. (2008) Integration of metabolomics and proteomics in mo-lecular plant physiology - coping with the complexity by data-dimension-ality reduction. Physiol. Plant. 132, 176–189

Kaplan, F., Kopka, J., Haskel, D. W., Zhao, W., Schiller, K. C., Gatze, N., Sung, D. Y., and Guy, C. L. (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 136, 4159–4168

Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes dramatically affect Arabidopsis growth, development, and gene expres-sion. Plant Cell 11, 216–268

Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., Yun, D. J., Hong, J. C., Lee, S. Y., Lim, C. O., and Cho, M. J. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247–259

Dickson, R., Weiss, C., Howard, R. J., Alldrick, S. P., Ellis, R. J., Lorimer, G., Azem, A., and Viitanen, P. V. (2000) Reconstitution of higher plant chloroplast RNA-binding proteins (Cp29, Cp31 and Cp33) encoding chloroplast RNA-binding proteins (Cp29, Cp31 and Cp33) are insights from Arabidopsis thaliana. Cell Stress Chaperones 6, 252–260

Li, Q. B., Haskell, D. W., and Guy, C. L. (1999) Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperons at high and low temperature in spinach and tomato. Plant Mol. Biol. 39, 119–133

Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kazukai, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yagi, K., Arakawa, K., Iwata, N., Taya, Y., Nakayama, Y., Nishikawa, T., Shimizu, K., Mori, H., and Tomita, M. (2007) Multiple high throughput analyses monitor the response of E.coli to perturbations. Science 316, 593–597

Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L. A., Rhe, S. Y., and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939

Hill, J. E., and Hemmingsen, S. M. (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6, 190–200

Koumoto, Y., Shimada, T., Kondo, M., Haru-Nishimura, I., and Nishimura, M. (2001) Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J. Biol. Chem. 276, 29688–29694

Neven, L. G., Haskell, D. W., Hofg, A., Li, Q. B., and Guy, C. L. (1993) Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol. 21, 291–305

Gilmour, S. J., Fowler, S. G., and Thomashow, M. F. (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching func-
71. Kim, Y. O., Kim, J. S., and Kang, H. (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42, 890–900
72. Wilkins, M. B., and Holowins, Aw (1965) Occurrence of an endogenous circadian rhythm in a plant tissue culture. Plant Physiol. 40, 907–911
73. Smallwood, M., and Bowles, D. J. (2002) Plants in a cold climate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 831–846
74. Heintzen, C., Nater, M., Apel, K., and Staiger, D. (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 94, 8515–8520
75. Staiger, D., Zecca, L., Wieczorek Kirch, D. A., Apel, K., and Eckstein, L. (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J. 33, 361–371
76. Kim, J. S., Park, S. J., Kwak, K. J., Kim, Y. O., Kim, J. Y., Song, J., Jang, B., Jung, C. H., and Kang, H. (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res. 35, 506–516
77. Peng, Y., Kok, K. H., Xu, R. H., Kwok, K. H. H., Tay, D., Fung, P. C. W., Kung, H. F., and Lin, M. C. M. (2000) Maternal cold inducible RNA binding protein is required for embryonic kidney formation in Xenopus laevis. FEBS Lett. 482, 37–43
78. Burd, C. G., and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621
79. Pan, F., Zarate, J., Choudhury, A., Rupeprecht, R., and Bradley, T. M. (2004) Osmotic stress of salmon stimulates up-regulation of a cold inducible RNA-binding protein (CIRP) similar to that of mammals and amphibians. Biochimie (Paris) 86, 451–461
80. Hoehenwarter, W., Van Dongen, J. T., Wienkoop, S., Steinfath, M., Hummel, J., Erban, A., Sulpcice, R., Regierer, B., Kopka, J., Geigenberger, P., and Weckwerth, W. (2008) A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics, in press
81. Gerber, S. A., Ruah, J., Stemman, O., Kirschnier, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 100, 6940–6945
82. Wienkoop, S., and Weckwerth, W. (2006) Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana. J. Exp. Bot. 57, 1529–1535
83. Mallick, P., Schirle, M., Chen, S. S., Flory, M. R., Lee, H., Martin, D., Ranish, J., Raught, B., Schmitt, R., Werner, T., Kuster, B., and Aebersold, R. (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25, 125–131
84. Brunner, E., Ahrens, C. H., Mohanty, S., Baetschmann, H., Loevenich, S., Potthast, F., Deutsch, E. W., Panse, C., de Lichtenberg, U., Rinner, O., Lee, H., Pedrioli, P. G., Malmstrom, J., Koehler, K., Schrimpf, S., Krijgsveeld, J., Kregenow, F., Heck, A. J., Hafen, E., Schlapbach, R., and Aebersold, R. (2007) A high-quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol. 25, 576–583
85. Stephanopoulos, G. (1998) Metabolic Engineering: principles and methodologies. Academic Press, London
86. Gibon, Y., Blaesing, O., Hannemann, J., Carillo, P., Hohne, M., Hendriks, J., Palacios, N., Cross, J., Seibig, J., and Stitt, M. (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16, 3304–3325