Embryonic development of selectively vulnerable neurons in Parkinson's disease

Oliveira, M.A.P.; Balling, R.; Smidt, M.P.; Fleming, R.M.T.

DOI
10.1038/s41531-017-0022-4

Publication date
2017

Document Version
Final published version

Published in
NPJ Parkinson's disease

License
CC BY

Citation for published version (APA):
Oliveira, M. A. P., Balling, R., Smidt, M. P., & Fleming, R. M. T. (2017). Embryonic development of selectively vulnerable neurons in Parkinson's disease. NPJ Parkinson's disease, 3, [21]. https://doi.org/10.1038/s41531-017-0022-4
Embryonic development of selectively vulnerable neurons in Parkinson’s disease

Miguel A. P. Oliveira, Rudi Balling, Marten P. Smidt and Ronan M. T. Fleming

A specific set of brainstem nuclei are susceptible to degeneration in Parkinson's disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson's disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson’s disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson’s disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson’s disease.

Published in partnership with the Parkinson’s Disease Foundation

1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux L-4362, Luxembourg and 2Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
Correspondence: Ronan M. T. Fleming (ronan.m.t.fleming@gmail.com)

Received: 6 July 2016 Revised: 24 May 2017 Accepted: 1 June 2017
Published online: 26 June 2017
operates on a spatiotemporally evolving developmental lineage. Phenotypically similar neuronal populations share certain aspects of their developmental molecular specification program, spatio-temporal proximity, or both. Therefore, in this review we synthesise the literature on the spatiotemporal developmental lineage position and transcription factor specification of a set of neuronal populations with clear evidence of selective vulnerability to degeneration in prodromal or early PD (Fig. 2). Our objective is to assess whether selectively vulnerable neurons share similar developmental molecular specification programs, spatiotemporal proximity or both. We chose to restrict our focus to nuclei associated with prodromal evidence of Lewy pathology, evidence of neuronal cell loss in later stages of PD and sufficient developmental literature (e.g., genetic fate mapping). Specifically, we focus on neuronal populations of the dorsal motor nucleus of the vagus (10N), locus coeruleus (LC), upper raphe nuclei (PnRa), lower raphe nuclei (MoRa) and SNC. We summarise (and detail in Supplementary 1) the known phenotypic characteristics specifying the identity of each of the aforementioned mature neuronal populations. For each mature population, we review salient aspects of its developmental lineage and summarise the main transcription factors required for general specification of the corresponding mitotic progenitor, postmitotic progenitor and mature neuron. Where literature permits, we also distinguish between neuronal subtypes within each of these populations based on the origin of the corresponding progenitors and on variations to general specification programs, especially when subtypes are associated with differential vulnerability. We conclude with a discussion of the developmental features that are shared between precursors of vulnerable neuronal populations. This developmental perspective complements previous efforts to understand the phenotypic characteristics that are shared between selectively vulnerable mature neuronal populations.

Neuronal identity of vulnerable populations

Neuronal identity and its cellular and molecular phenotypic specification is mostly encoded by a profile of transcription factors, expressed by ancestral progenitors and by postmitotic neurons. These transcription factors are expressed early in the developing brain, downstream of specific developmental inductions, and are responsible for the gradual fate restriction of the embryonic pool of pluripotent stem cells. The enormous variety of neuronal populations arises from combinatorial induction that is specific to each particular location within the brain, where subtle inductive differences generate different neuronal populations. Lineage tracing studies provide a powerful means to understand the properties of mature populations, their development, homoeostasis and disease vulnerability, especially when combined with experimental manipulation of signals regulating cell-fate decisions.

Phenotypic characteristics are shared between vulnerable populations. It has been hypothesised that selectively vulnerable neurons share a set of common phenotypic characteristics leading to an increased risk of degeneration in PD. These characteristics,
which include neurotransmission, electrophysiology, morphology and connectivity, do seem to be consistent with age being the single largest risk factor in PD.13 Regarding neurotransmission, the presence of high levels of cytosolic monoamines is hypothesised to underlie selective degeneration13, 32 since these populations also generally include a catecholamine-derived neuromelanin pigment in primates13, 33 (Fig. 3 and Supplementary 1 and 2). Electrophysiological characteristics associated with increased risk include autonomous activity, broad action potentials and a low intrinsic calcium buffering capacity.13 On morphology and connectivity, vulnerable populations are generally characterised as having long, poorly myelinated, highly branched axons and terminal fields.14

Currently, the majority of genes or expression signatures used in the biochemical characterisation of neuronal populations are related to their neurotransmitter identity (Fig. 3 and Supplementary 1 and 2). However, this characterisation only covers the ability to produce, secrete and re-uptake specific neurotransmitters,34, 35 which is not sufficient to completely specify the neuronal identity.34 Some neurons co-release more than one neurotransmitter36, 37 and neuronal plasticity enables neurons to switch between neurotransmitters.34, 38–40 Therefore, a more inclusive characterisation of neuronal identity, besides neurotransmission alone, is required38 (Supplementary 1).

Developmental programs that specify neurotransmitter phenotypes are well studied aspects of neuronal identity,26, 29, 41 particularly with respect to terminal differentiation of monoaminergic neurons (noradrenergic, dopaminergic and serotonergic).34 Neuronal transcriptomic analysis is also a powerful way to characterise neuronal identity,42–44 e.g., transcriptome sequencing is quantitative, and highly reproducible.26, 45 However, the correlation between transcript and protein levels is generally too weak for accurate quantitative inference of one from the other.46

Targeted quantification of key developmental proteins and confirmation of their role in specification of multiple nerve cell functions47, 48 can be used to compliment genome-scale measurements and lead to a more robust characterisation of neuronal identity.49 By inferring cell-type-specific function from developmental programs and expression profiles, one can also assess the cell-type specificity of functional attributes, derived from parallel morphological and electrophysiological studies.28

RESULTS
Development of vulnerable brainstem populations
In the past two decades, substantial progress in developmental neuroscience has uncovered a large set of extracellular signals and transcriptional regulators that control the development and maturation of different types of neurons. However, the developmental program is not yet fully understood for each and every neuronal population. In order to better understand the generation of different neuronal populations, it is important to study the mechanisms behind the maintenance of infinite self-renewal capacity in stem cells (unrestricted fate potential) and the mechanisms responsible for lineage commitment during differentiation.50 The final neuronal phenotype comprises generic pan neuronal characteristics and more specific characteristics, such as origin and termination of axonal projections.51

Neurons originate from multipotent stem cells in the neural plate (Supplementary 3.1) that continuously limit their fate and generate restricted mitotic progenitors that, in a sequential order, give rise to neuronal and glial progenitors.52–54 Neuronal differentiation occurs at different embryonic stages (E) and within different neuromeric segments of the early brain (prosomeres P3-1, mesomeres M1-2 and rhombomeres R1-8) (Fig. 4). For each neuromere-specific neuronal progenitor, the induction of a specific neuronal fate is controlled in a context-dependent manner by a combination of intrinsic factors and extrinsic signalling molecules, both of which act as regulators of neuronal differentiation.52–55 (Supplementary 3.2). Specific intrinsic factors and inductive combinations result in the upregulation (or down-regulation) of certain genes, mostly transcription factors, which are required to be active (resp. inactive) to ensure lineage commitment and generation of specific neuronal fates.50 Developmental transcription factors can either be transiently or
constitutively expressed during development, and still be individually required for fate restriction and the generation of specific mature populations.

Within each neuromere, an initial set of active genes, activated before neurogenesis, confers an intrinsic segmental identity to the corresponding progenitors (Fig. 4), which is inherited or diversified during neuronal induction by extrinsic signals, especially during terminal differentiation. An anatomically defined nucleus may have different neuronal subtypes with differences that can be traced back to the neuromeric origin of the corresponding progenitor. For example, genetic fate mapping of the raphe nucleus has established that different serotonergic neuronal subtypes arise from separate rhombomeres and from variations of the general serotonergic specification program. The transporter responsible for the re-uptake of neurotransmitters from the synaptic cleft is specifically expressed for each population. Serotonergic neurons require the transporter SLC6A4, DN require SLC6A3 and noradrenergic neurons require SLC6A2. For neurotransmitter degradation, the catecholaminergic neurons require catechol-O-methyltransferase (COMT), monoamine oxidase (MAO) and aldehyde dehydrogenase (ALDH), while the serotonergic neurons only require MAO and ALDH. Cholinergic neurons secrete acetylcholine (ACh), which is synthesised by the choline acetyltransferase (CHAT) from acetyl-CoA and choline (Chol). In cholinergic neurons from the 10N, ACh is packed into synaptic vesicles by an energy-dependent process that involves the SLC18A3. This vesicular ACh is released in the synaptic cleft and is rapidly converted into Chol, by the acetylcholinesterase (ACHE), which then is transported intracellularly by SLC5A7.

Vicseromotor populations of the dorsal motor nucleus of the vagus. Vicseromotor neurons are a subset of cranial motor neurons that project from multiple brainstem nuclei, including the 10N, towards internal organs, like lungs, heart and virea. The 10N vicseromotor population project their axons to the viscera, via the vagus nerve.

Progenitors of vicseromotor neurons Multiple subsets of vicseromotor neurons are generated throughout brainstem, except R1, R3 and R5 which are expressed earlier than Phox2a (not required) and Phox2b expression is required for vicseromotor specification, since Phox2b-mutant mice are depleted of all vicseromotor and branchiomotor neurons. In order to generate a motor neuron phenotype, p3 progenitors require low or absent Foxa2 expression. From E10.5 onwards, and within the rhombomeres R2-3 and R5-8, some p3 basal progenitors switch their vicseromotor fate towards serotonergic, which coincides with the up-regulation of Foxa2 and the down-regulation of Nkx2-9 and Phox2b.
In the visceromotor specification program, Ascl1 is expressed but not required.
Post-mitotic motor neurons require the expression of Isl1,65, 87, 88 and Tbx20 is only expressed within branchiomotor and visceromotor neurons.65, 87, 88 like the 10N visceromotor neurons. Both Lhx3/4 are not expressed in the 10N visceral motor neurons, since they are key determinants of the ventral pathway in motor neurons and this population has a dorsal orientation of their axonal projections.65, 93

Developing visceromotor neurons do not express genes characteristic of dorsal progenitor sub-types, such as Dbx1/2 and Irx3. Also, their specification is not dependent on the somatic motor neuron markers Pax6,65, 93 Mnx1,65, 94 Olig2,65, 92 or Isl2,65, 87, 88

Subtype specification program of visceromotor neurons In early PD, Lewy pathology,2, 11 but not cell loss, has been reported in the inferior salivatory nucleus (IS), which is adjacent to the 10N, and projects visceromotor neurons within the glossopharyngeal nerve. In contrast, Lewy pathology is more pronounced and is consistently observed in the 10N.11 Visceromotor neurons from the IS and 10N nuclei both originate from basal p3 progenitors and during development they migrate dorsally into an alar position.64, 65 (Fig. 4a, b). Although these subtypes share the same general specification program, they have different rhombomeric origins. The visceromotor neurons from the IS originate from R6, while those from the 10N originate from R7-8.64, 65 IS progenitors require the Mafb gene to be present and the Hoxa4 and Hoxb4 genes to be absent, whereas 10N progenitors require the opposite (Fig. 4d). To our knowledge, no subtypes have been reported based on variations of the general specification program described above.

Serotonergic populations of raphe nuclei. Raphe nuclei contain the central serotonergic populations (B1–9), totalling 20,000–30,000 neurons in rats, which are distinguishable by their anatomical location, and can be divided into caudal (B1–B4) and rostral clusters (B5–B9). Raphe nuclei clusters are positioned caudal and rostral to rhombomere R4, which is a neuromeric segment that is only populated by motor neurons.82

Progenitors of serotonergic neurons of raphe nuclei. Raphe nuclei contain serotonergic neurons generated from a mixture of rhombomere-derived basal p3 progenitors, which initially reside in the bilateral paramedian territories that flank the floor plate,48, 51, 58, 61, 97 (Fig. 4a, b). These p3 progenitors are common to brainstem visceromotor neurons and branchio-motor neurons,57, 82 with the exception of those that are R4-derived.48, 58, 61

A multipotent pool of hindbrain p3 progenitors are differentially induced along the AP axis, due to a gradient signalling by RA,
FGF8 signalling at rostral positions, FGF4 signalling at caudal positions and ventral SHH signalling. Differential combinatorial induction across the hindbrain determines the neuronal subtype specification program.51, 61 via a rhombomeric-specific expression of Hox genes (Fig. 4d and Supplementary tables 1, 2). Differential expression of Hox genes, the Hox code, results in considerable differences between caudal and rostral serotonergic profiles. Caudal serotonergic populations, which localise within B1–B4 populations, result from progenitors expressing multiple Hox genes, while the rostral serotonergic populations within B1–B4 populations result from progenitors highly expressing Hmx2/3 genes (Fig. 4d upper table). Both Shh signalling at ventral positions51 and rhombencephalic absence of Otx2 expression are required for the correct development of a serotonergic phenotype.61, 100

General specification program of serotonergic neurons of raphe nuclei. The general specification program for serotonergic neurons is known96, 101 although the details of the molecular mechanisms are still poorly understood.58, 60, 61, 102–105 In mice, the rostral and caudal cluster of serotonergic neurons start to differentiate at E10 and E11, respectively.51, 57, 82 and their morphology is only defined after the P0 stage. The serotonergic developmental program mostly occurs through the activation of a pair of genetic cascades51, 57, 98, 106 (Fig. 4d and Supplementary tables 1, 2). The first cascade involves ventral SHH signalling and subsequent activation of both Nkx transcription factors (Nkx2-2) and Foxa2 expression, which results in activation of Gata transcription factors (Gata2/3) and Lmx1b.51, 61, 106 This specification program requires the absence of Otx2 expression and the presence of Nkx2-2 expression.51, 85 Importantly, there is also a parallel secondary cascade, where Ascl1 expression is activated around E11.592, 97 and it instructs a sequential expression of Gata3, Lmx1b, and Insm1.51 Ascl1 and Insm1 are both part of the genetic regulatory network that controls serotonergic identity.108 Insm1 expression contributes with an additional control of THP2 expression.51 On the other hand, Lmx1b, which is expressed downstream from Gata2/3 in both raphe clusters, is required for terminal differentiation and maintenance of all serotonergic populations. Like all aminergic neurons, Lmx1b has been suggested to regulate the expression of the vesicular monoamine transporter,109, 110 Lmx1b might also regulate SLC6A4 (SERT) and TPH2 expression in mature populations.

It has also been described that a complete neurochemical serotonergic phenotype is, to a certain extent, controlled by Pet1.31 Both Lmx1b and Pet1 have been implicated in the regulation of SLC6A4109–112 and Pet1 has been described as the only gene whose expression is limited to hindbrain serotonergic neurons. Pet1 precedes the expression of serotonin by 12 h and acts on the binding sites closer to genes involved in the maturation of the serotonergic phenotype. Examples include TPH2, DDC, SLC6A4 and HTR1A (5-HT1A).111, 112 The developmental combination of Nkx2-2, Lmx1b, and Pet1 seem to be sufficient for the generation of serotonergic neurons in ectopic expression studies.109 However, across all serotonergic populations (B1–9), Pet1 expression is not necessary for specification of ~30% of all serotonergic neurons, which have projections to highly selective targets in the brain and transcend classic anatomical subdivisions of the raphe.51, 59, 112

Subtype specification program of serotonergic neurons of raphe nuclei. Distinct subtypes of serotonergic populations (reviewed in ref. 105) have been defined in different raphe nuclei, either biochemically,44, 48, 60, 113, 114 based on distinct axonal trajectories and firing patterns,115, 116 or based on rhombomere-specific developmental programs.48, 51, 58–61, 101, 105 Both caudal and rostral clusters of the raphe, in the medulla and pons, respectively, contain nuclei that tend to display differential vulnerability to degeneration, but further histopathological studies would be desirable.

In the medullary raphe (caudal cluster), the raphe obscurus (ROb/B2) is more vulnerable than the raphe magnus (RMg/B3, Supplementary 1.2). The raphe obscurus (ROb/B2) is derived from R7-8 progenitors, which do not require Egr2 expression (Fig. 4d). The raphe magnus (RMg/B3) is thought to be derived partially from R5 progenitors, requiring early developmental expression of Egr2,52 and also partially from R6-7 progenitors, which do not require Egr2 expression (Fig. 4d). In the rostral cluster, the median raphe (Mnr/B8) is especially vulnerable, while the dorsal raphe (DR/B6-7) is less vulnerable (Supplementary 1.2). The median raphe (Mnr/B8) originates from a mixture of R1-3 progenitors, while the dorsal raphe (DR/B6-7) originates from R1 progenitors (Fig. 4b).

Expression of En1 and En2 play an intrinsic role in the development of all R1-derived serotonergic neurons.44 Unlike other serotonergic neurons, all R1-derived serotonergic neurons require the expression of Nkx2-131 and do not require expression of Insm1 for terminal differentiation.51, 108 In another deviation from the general specification program, a subset of R1-derived serotonergic neurons require expression of Nkx2-2,51, 84 The relative vulnerability of R1-3-derived neurons within the median raphe is not known.

Noradrenergic populations of the coeruleus complex. Central noradrenergic neurons are found in the medulla (A1, A2) and the pons (A4–7). Within the coeruleus complex of the pons, we focus on the LC (A6), which is the largest central noradrenergic population and the SubC (A4). Coeruleus complex noradrenergic neurons are generated from a mixture of specific rhombomere-derived neuronal progenitors located within R1-6.63

Progenitors of coeruleus complex noradrenergic neurons. During development, multipotent rostral alar progenitors are induced by FGF8 and WNT signalling, from the anteriorly adjacent isthmus organiser, enabling the expression of En1/2, and the AP-graded RA signalling influences all rhombomere-derived progenitor pools, which result in the expression of specific combinations of Hox genes (Fig. 4d and Supplementary table 1). BMPs (BMP5, 7), which are produced in the dorsal ectoderm and roof plate, establish a dorsoventral signalling gradient that specifies the identity of caudal dorosoral progenitors (Fig. 4d and Supplementary table 2). In mice, LC development requires NOTCH-RBPJ signalling and its direct regulation of Ascl1 expression, as well as its indirect regulation through the target gene Hes1.118 In zebrafish, Shh signalling may play an indirect role in the maintenance of LC noradrenergic populations.119

General specification program of coeruleus complex noradrenergic neurons. In mice, the noradrenergic specification program begins with the acquisition of the correct alar progenitor identity and is followed by neurogenesis around E9 (Fig. 4d and Supplementary tables 1, 2). At least four transcription factors, Ascl1, Phox2a/b and Tlx334 are required for this program. Dorsal BMP signalling is required for the downstream expression of Ascl1, Phox2a/b34, 117, 122 and analysis of knock-out phenotypes for these genes suggest that they act according to a linear cascade. Ascl1 expression is essential for dopamine beta-hydroxylase (DBH) expression in all noradrenergic populations and it induces the expression of both Phox2a and Phox2b in the LC120, 123–126 Phox2a/b expression is required for correct specification and differentiation of LC noradrenergic populations.124, 127–129 and mid- to hind-brain motor neurons.121 Phox2a is required for the activation of Phox2b, and the latter is also necessary for the expression of DBH, which is a key enzyme in
noradrenaline synthesis. Lmx1b seems to be required for noradrenergic development, since knockout mice present no vesicular monoamine transporter immunoreactivity in the brainstem.\(^{51, 109, 130}\)

While *Ins2* expression is necessary for the timely onset of TH expression, the expression of *Nr2f2*\(^{31}\) and transient expression of *Onc1t1/2/3* are both required for full development of LC noradrenergic neurons.\(^{132}\) On the contrary, *Gata2* and *Gata3* are not expressed in LC and there is no strict correlation between expression of these genes and noradrenergic differentiation.\(^{133}\)

Coeruleus complex noradrenergic neuronal subtype specification programs. Within the coeruleus complex, the LC is more vulnerable to degeneration than the SubC (Supplementary 1.3). The LC (A6) mainly originates from a dorso-alar R1 progenitor pool,\(^{134}\) (Fig. 4a, b). Alar progenitor pools from R1 to R6 each contribute to the SubC (A4)\(^{135}\) (Fig. 4b), which can be subdivided into dorsal and ventral parts. Like the LC, the dorsal SubC mainly derives from R1 progenitors, but can also include some R2-4 derived neurons. The ventral SubC is mainly derived from alar R4 progenitors, but can also include R2-3 derived neurons.\(^{63}\) A few R2-derived neurons are consistently observed within both the LC and the SubC, and can be identified identified by the expression of Foxa2.\(^{83}\)

Almost all of the LC (A6) and the dorsal part of the SubC (A4) arise from the aforementioned dorso-alar R1 progenitor pool. These progenitors require the expression of *En1* and during development they migrate ventrocaudally to a basolateral location within R1.\(^{63, 134, 135}\) A particular subset of R1-derived neurons can be further distinguished within the caudal LC as they require transient expression of *Tik3* to induce expression of DBH.\(^{136}\) In contrast to noradrenergic LC neurons, the noradrenergic neurons of the SubC and other CNS populations (A1/2/5/7) do not require the developmental expression of *Phox2a*.\(^{124}\) Within each of these anatomically defined nuclei, especially in the C2/A2 and C1/A1 medullary nuclei, there is a subset of neurons that have not yet been associated with any particular thomobone.\(^{63}\)

Mesodiencephalic dopaminergic populations. Mesodiencephalic DN are organised ventrally in a continuum along the mesencephalon and diencephalon.\(^{137-142}\) In the mouse ventral midbrain, the retrolubar field (A8), SNC (A9), and VTA (A10) populations together contain 20,000–30,000 DN, representing almost 75% of all central DN.\(^{68, 143, 144}\)

Progenitors of mesodiencephalic DN. In the mesodiencephalon, a competent pool of multipotent floor plate progenitors is generated and maintained once this region has been defined (Fig. 4d and Supplementary table 1). The correct positioning of the isthmic organizer requires *Gbx2/0tx2*\(^{145}\) and subsequent interaction between floor plate-produced SHH and isthmic-produced FGF8 is required for a ventral mesodiencephalic dopaminergic phenotype (Fig. 4d and Supplementary table 2). WNT1 is expressed in both dorsal (roof plate) and medioventral (floor plate and ventral plate) midbrain and, like FGF8, WNT1 is also produced within the ventricle and required for the development of bilaterally flanking mesodiencephalic dopaminergic populations.\(^{146}\) TGFβ and other members of TGFβ superfamily are essential for the proper development of these populations.\(^{147}\) It has been described that RA signalling is involved in the terminal differentiation program where it is suggested to be essential for a SNC subset of DA neurons.\(^{149}\)

Combinatorial induction diversifies genetic regulation and generates multiple heterogeneous subsets of mesodiencephalic progenitors. Along the anterioposterior axis FGF8, WNT1 and BMP are sensed differently due to variable distance to organisational centres.\(^{150}\) (Fig. 4d and Supplementary tables 1, 2). At least eight different subsets of ventral mesodiencephalic progenitors have already been proposed\(^{151}\) arising from spatiotemporal inductive differences, including floor plate mediolateral differences in SHH signalling.\(^{151, 152}\) In contrast to continuous *Shh* expression within the hindbrain floor plate, mesodiencephalic precursors transiently express *Shh* due to suppression via WNT signalling, which causes a unique neurogenic response within brainstem floor plate precursors and has been suggested to be a prerequisite for differentiation of DN.\(^{153-155}\) Regional *Otx2* expression within the mesodiencephalon is essential for the unique neurogenic potential of mesodiencephalic floor plate cells\(^{158}\) (through the expression of *Lmx1a*\(^{159}\)), since hindbrain and spinal cord floor plate precursors do not appear to undergo neurogenesis.\(^{158}\) In mesodiencephalic floor plate cells, the absence of intrinsic *Otx2* expression shifts them towards a serotonergic neuronal fate.\(^{159-161}\)

General specification program of mesodiencephalic DN. In mice, the first sign of a dopaminergic phenotype appears around E9, with the expression of *Lmx1a* and *Msx2* and *Neurog2*.\(^{164}\) In chick, *Foxa2* is necessary and sufficient for specification of the entire floor plate into a dopaminergic phenotype,\(^{165, 166}\) and its expression can occur via a SHH-dependent or SHH-independent pathway. In this program, both *Foxa1/2*, *Lmx1b*, *Msx2* and *Neurog2* are necessary to promote neurogenesis by maintaining *Lmx1a* and *Lmx1b* expression,\(^{169}\) regulating the expression of *Neurog2* and *Ascl1* and inhibiting *Nkx2.2* expression.\(^{169}\) *Ascl1* has no detected function in the development of normal mesodiencephalic DN, although it can partially rescue the generation of their precursors in the absence of *Neurog2*.

While *Lmx1a* and *Msx1* are required for early differentiation, *Lmx1b* is an essential regulator\(^{144}\) that is co-expressed with *Lmx1a* and the transcriptional repressor *Msx1*. *Lmx1a* expression appears to be directly induced by SHH and it ultimately induces multiple proneural factors, such as *Neurog2*, and then *Msx1*.\(^{158, 164, 165}\) *Neurog2* expression starts neurogenesis, and is required for neuronal differentiation of mitotic precursors and is maintained after neuronal maturation.\(^{150, 157, 176, 177}\) *Msx1* inhibits the expression of neurogenesis regulators, such as *Nkx6-1*,\(^{178}\) nevertheless its expression is neither necessary nor sufficient for the generation of mesodiencephalic DN.\(^{150}\) At E10.5-E11.5 in mice, both *Neurog2* and *Msx1* are responsible for proliferative cascades that allow cells to become postmitotic and to migrate radially from the initial ventricular surface into an intermediate zone of the floor plate mantle. Furthermore, loss of *Onc1t1/2/3* expression results in a diminished generation of ventral mesencephalic DN.\(^{178}\)

Expression of *Nr4a2*\(^{158, 175, 179, 180}\) (Nur1) is crucial for the generation and maintenance of mesodiencephalic dopaminergic populations and is downregulated in PD patients.\(^{181}\) Its expression occurs around E10.5 in mice when the corresponding mitotic precursors exit the cell cycle. This expression marks the developmental stages of both young and fully differentiated neurons, and regulates the expression of proteins involved in dopamine synthesis and transport.\(^{183-185}\) *Nr4a2* represses *Neurog2* expression and its expression can be observed across the mesencephalic flexure, diencephalon and posterior hypothalamus, although it is not exclusively present in mesodiencephalic DN.\(^{140, 180, 182}\)
At later stages of development, immature postmitotic cells derived from the mesodiencephalic floor plate also express Pitx3,149, 186 which is dependent on correct regional specification by Lmx1b187 and modulated by En1.69

Subtype specification program of mesodiencephalic DN. In the mesodiencephalon, the SNC (A9) and the VTA (A10) are vulnerable to degeneration in PD, but SNC DN are considerably more affected than those from the VTA (Supplementary 1.4). Despite their shared origin and general specification program, subtypes of mature mesodiencephalic DN display clear phenotypic diversity.70–73, 76 Multiple vertebrate studies,39, 188–191 including in mice,179, 194–196 suggest that the SNC and VTA both contain mesodiencephalic DN from multiple mesodiencephalic neuromes (M1-2 and P2-1)68, 158, 197 (Fig. 4a, b).

After neurogenesis and during the subsequent radial and tangential migration towards their final locations, post-mitotic mesodiencephalic cells differentiate into mature neurons. However, the developmental programs for VTA and SNC DN are distinct.70, 78, 187 The SNC and VTA both contain different subtypes of mesodiencephalic DN.143, 144 VTA DN arise from paramedian floor plate progenitors, whereas SNC DN, located lateral to the VTA, arise from median floor plate progenitors.152, 155, 156, 198–200 Later, during migration, the intrinsic expression of Otx2 becomes restricted to VTA subtypes,140, 201, 202 while Sox6 expression becomes restricted to SNC subtypes.72, 202–205

Although both SNC and VTA subtypes express Pitx3 during terminal differentiation143, 144 and in aged humans,106 only the SNC, in terms of survival, requires expression of Pitx3.88, 186, 207 Pitx3 suppresses the intrinsic expression of En1 and thereby of posterior markers such as Cck in SNC DN.70, 78, 187 Different patterns of gene expression during development permit the identification of two foetal dopaminergic neuronal subtypes that diversify into five adult mouse DN subtypes.145, 146 The relationship between molecular subtypes and selective vulnerability needs to be established further through advanced gene function analysis. A first sign of such a relationship has been described through the selective requirement of SNC neurons towards RA (RA) signalling and detoxification machinery in the breakdown pathway of DA. The aldehyde dehydrogenase enzyme, Ahd2, depends on the activity of Pitx3 and En1, and the selective dependence of the SNC to this gene has been described.149, 208 This suggests that the SNC has specific requirements in term of genetic programming and metabolic demand that require the neurons to be equipped with high enough levels of Ahd2. This requirement is an inherent vulnerability in terms of function and distinguishes the SNC DN from VTA DN. Additional evidence towards this concept might be discovered through using the subset transcriptome data as described above. In addition to this, nigral neurons have a higher rate of oxidative phosphorylation and a more complex axonal arborisation.209 Such phenotypic differences rely on specific molecular programming as discussed above and highlight the importance of understanding the molecular machinery behind SNC programming.

DISCUSSION

A shared requirement for a specific set of developmental transcription factors can be used to infer functional similarity as well as proximity within a cellular developmental lineage (Fig. 4d). In PD, vulnerable neuronal populations do share certain functional similarities, so we synthesised the literature on required activity of or inactivity of a set of 51 developmental transcription factors across five brainstem regions with clear evidence of vulnerability to degeneration in PD. Within each region, we also refine our analysis to include more and less vulnerable nuclei and neuronal subtypes. Variations in the types, amount and duration of developmental induction results in different sets of required active (or inactive) developmental transcription factors, thereby shaping the landscape of lineage commitment possibilities, e.g., rhombencephalic p3 progenitors receiving a longer duration of developmental induction commit to a serotonergic fate, which correlates with an increase in Foxa2 expression and a decrease of Nkx2-9 and Phox2b expression, in a switch from an otherwise motor fate.77, 82

Our synthesis suggests that some developmental requirements are shared between vulnerable brainstem regions. We find that vulnerable neuronal populations often share a common requirement for Shh signalling, but this induction alone is not sufficient to predict neuronal vulnerability in PD, since many other ventral brainstem nuclei do not seem to be especially vulnerable to degeneration. The activity of some transcription factors is similar in each of the five studied brainstem populations that are vulnerable to degeneration in early PD. For example, Ascl1 is expressed in all five populations, although it is only required for the development of LC noradrenergic and raphe serotonergic populations. Together with Phox2b, Ascl1 co-regulates catecholamine synthetising enzymes in noradrenergic populations.210 During the specification of neuronal fate, the requirement for Ascl1 activity varies depending on the lineage of an individual cell.211 Absence of Ascl1 results in loss of olfactory and autonomic neurons as well as delayed differentiation of retinal neurons.212, 213

Phox2b is required for development of noradrenergic neurons, and visceromotor neurons of the dorsal motor nucleus of the vagus (10N), while its paralogue Phox2a is also required for LC, but not subcereonular (SubC) noradrenergic neurons. Trochlear motor and oculomotor neurons share the same Phox2a and Phox2b developmental requirements as LC noradrenergic neurons,121, 128 however these neurons do not seem to be vulnerable in PD. In most of the brainstem, Phox2b represses serotonergic differentiation and therefore it is required to be absent for specification of raphe serotonergic neurons. Although Phox2b is expressed in caudal midbrain dopaminergic populations, it does not seem to be required for the specification of substantia nigra pars compacta (SNC) DN.214

In mice, Lmx1b expression is required for the expression of monoamine vesicular transporters in all brainstem aminergic neurons (dopaminergic, noradrenergic and serotonergic),191, 109, 130, 174 despite not being required for zebrafish LC noradrenergic populations.184 Visceromotor neurons of the 10N do not express vesicular monoamine transporters,8 but it is not known if Lmx1b is required for the development of these neurons. Importantly, Lmx1a/b is required to control autophagic-lysosomal function, integrity of nerve terminals, long-term survival of midbrain DN215 and activity has been implicated in regulation of mitochondrial function.216 Lmx1a/b conditional ablation, after neuronal specification, results in abnormalities that show striking resemblance to early cellular abnormalities seen in PD. Moreover, a decrease in Lmx1b expression has been reported in midbrain PD of patients.217 Finally, it has been shown that aspecific subset of SNC neurons is absent in Lmx1a mutants.217

Within each of the five vulnerable brainstem regions we considered, different nuclei are more or less vulnerable to degeneration in PD. Of the visceromotor neurons, those in the 10N are more vulnerable to degeneration than those in the inferior salivary (IS) nucleus.7, 51 Even though these nuclei share the same general specification program, the IS originates from the R6 rhombomere, while the 10N originates from the R7-8 rhombomeres.64, 65

Differential vulnerability within mesodiencephalic dopaminergic nuclei is well established and there also exist differences in their developmental specification programs. Medial and paramedial mesodiencephalic floor plate progenitors generate DN in the SNC and VTA, respectively. Both express Pitx3,143, 144, 206 but knock-out of Pitx3 results in selective loss of SNC neurons.68, 186, 207 so Pitx3 expression is required for the development of the SNC but not required for the VTA.

Within some vulnerable nuclei, the existence of different developmental programs that generate different neuronal subtypes are known, e.g., three dopaminergic neuronal subtypes can
be distinguished in human VTA. Within other vulnerable nuclei, differential vulnerability of anatomically distinct areas is known in PD, e.g., there is an increasing fraction of cell loss from medial to dorsolateral SNC. However, to our knowledge, a simultaneous analysis of developmental subtype-specific markers and anatomically resolved quantification of cell loss in PD have not been reported. We suggest that tissue samples from previous cell loss studies should be immunohistopathologically revisited to check if there is a relationship between the relative degree of neuroprotection of neuronal subtypes that are defined by differential expression of known developmental transcription factors responsible for adult maintenance.

The developmental origins of selectively vulnerable neurons needs further clarification. Further experimental work is required to assess the temporal requirement for certain transcription factors (e.g., Onecut, Gata2/3, Is1, Insm1, Pet, Tbx20, Nr2f6, Nr4a2, Pitx3, Lmx1a) that seem to be necessary for specification of a subset of nuclei but are not yet known to be required for other vulnerable nuclei that we have considered. The need for data on the timing of requirements is supported by evidence that Nr4a2 is required for maintenance of mesencephalic DN in adult mice.

This review presents a comprehensive manual curation of the development of ten vulnerable brainstem nuclei in five different brainstem regions. Our compendium of transcription factor requirements is accurate but not yet comprehensive at genome scale. This limitation can be partially overcome by complementing our compendium with developmental omics data, e.g., the Allen developmental primate atlas. In turn, the noise in such large scale datasets can be mitigated by using our manually curated transcription factor requirements as an anchor to benchmark data integration algorithms. Ultimately, cell fate mapping and gene inactivation studies are required to establish the combination of genes required for developmental specification of each neuronal subtype.

CONCLUSIONS
In early PD, mature neurons that are selectively vulnerable to degeneration can be identified by some shared biochemical, morphological and functional characteristics. However, the molecular basis for selective vulnerability in PD remains to be fully elucidated. As mature neuronal identity is largely the result of a developmental program that is specific to each cell type (Fig. 4e), for five brainstem regions, each with at least two nuclei with varying degrees of vulnerability, we compared and contrasted their cellular lineage and their requirement for absence or presence of S1 transcription factors (Fig. 4d). Certain combinations of transcription factors seem to be required for development of many vulnerable brainstem regions, e.g., Ascl1 coregulates catecholamine-synthesizing enzymes in noradrenergic populations.

Within vulnerable brainstem regions, certain nuclei are more vulnerable to degeneration than others and this correlates with important differences in the developmental transcription factor requirements for their lineage, e.g., Pitx3 is expressed in all mesodiencephalic DN but it is only required for development of SNC, but not ventral tegmental area, DN. Of the vulnerable visceromotor neurons, those from the inferior salivary nucleus are less vulnerable than those from the dorsal motor nucleus of the vagus, yet they both have almost the same developmental program, except that they originate from separate rhombencephalic neuromeres. Tracing the molecular consequences of developmental specification programs in more and less vulnerable brainstem nuclei, e.g., with experimental determination of the genomic targets of key transcription factors would help to identify the molecular species that participate in the biochemical pathways that could be associated with differential vulnerability. The development of a comprehensive molecular basis for the shared characteristics of vulnerable neurons is an essential pre-requisite for development of drugs targeted towards the causes of PD.

METHODS
To completely reconstruct an anatomically resolved cellular developmental lineage of adult human neurons as well as the corresponding developmental transcription factors would require human experimental data, which is not available. Fortunately, the brainstem and its development is highly homologous between mammalian species. It also contains the most archaic neuronal networks in the brain, which may be related to susceptibility degeneration in PD. Therefore, we relied on manual curation of developmental studies in model organisms to obtain the details of neuronal progenitor patterning, neurogenesis and cell fate specification as well as the details on genoarchitecture and neuromere-related lineage mapping. Unless indicated otherwise, all statements refer to murine studies. Differentiation and fate restriction requirements were studied by considering multiple loss-of-function studies, which describe the dependence of each neuronal population on a specific set of gene products. In this regard, when possible, we highlight whether a particular gene is necessary to be active, or necessary to be inactive, for each lineage (Fig. 4d). Furthermore, migration patterns were selectively reconstructed by curating lineage tracing studies (Fig. 4c). We used the same neuromere scheme and ontology as the Allen Developing Mouse Brain reference atlas.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files.

ACKNOWLEDGEMENTS
We would like to thank Jens Schwamborn and Diana El Assal for critical comments on early versions of this manuscript. We would also like to thank the reviewers for critical comments that significantly improved the manuscript. This project has received funding from the the Fonds national de la recherche, Luxembourg under grant #6669348, the European Union’s Horizon 2020 research and innovation programme under grant agreement #668738, from the Fonds national de la recherche under the aegis of the EU Joint Programme—Neurodegenerative Disease Research, grant agreement INTER/JPND/ 14/02/SynSpread, and support for international scientific exchange from the Fondation du Pélican.

AUTHOR CONTRIBUTIONS
R.F. and R.B. conceived the project, M.O. and M.S. reviewed and synthesised the literature. M.O., R.B., M.S. and R.F. wrote the manuscript.

ADDITIONAL INFORMATION
Supplementary Information accompanies the paper on the npj Parkinson’s Disease website (doi:10.1038/s41531-017-0022-4).

Competing interests: The authors declare that they have no competing financial interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES
1. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).
2. Dickson, D. W. et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 8, 1150–1157 (2009).
3. Fahn, S. & Sulzer, D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1, 139–154 (2004).
4. Hawkes, C. H. The prodromal phase of sporadic Parkinson’s disease: does it exist and if so how long is it? Mov. Disord. 23, 1799–1807 (2008).
67. Prakash, N. & Wurst, W. Development of dopaminergic neurons in the mam-
malian brain. Cell. Mol. Life Sci. 63, 187–206 (2006).
68. Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: a
review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).
69. Veenvliet, J. V. et al. Specification of dopaminergic subsets involves interplay of
En1 and Pitx3. Development 140, 3373–3384 (2013).
70. Veenvliet, J. V. & Smidt, M. P. Molecular mechanisms of dopaminergic subset
specification: fundamental aspects and clinical perspectives. Cell. Mol. Life Sci. 71,
4703–4727 (2014).
71. Bodea, G. O. & Blaess, S. Establishing diversity in the dopaminergic system. FEBS
Lett. 589, 3773–3785 (2015).
72. Anderegg, A., Poulin, J.-F. & Awatramani, R. Molecular heterogeneity of midbrain
dopaminergic neurons—moving toward single cell resolution. FEBS Lett. 589, 3714–3726 (2015).
73. Blaess, S. & Ang, S.-L. Genetic control of midbrain dopaminergic neuron
development. Wiley Interdiscip. Rev. Dev. Biol. 4, 113–134 (2015).
74. Rekaik, H., Blaudin de Thé, F.-X., Prochiantz, A., Fuchs, J. & Joshi, R. L. Dissecting
the role of engrailed in adult dopaminergic neurons – insights into Parkinson
disease pathogenesis. FEBS Lett. 589, 3786–3794 (2015).
75. Doucet-Beaupré, H., Ang, S.-L. & Lévêque, M. Cell fate determination, neuronal
maintenance and disease state: the emerging role of transcription factors
Lmx1a and Lmx1b. FEBS Lett. 589, 3727–3738 (2015).
76. Huang, E. J. Ventral midbrain dopaminergic neurons: from neurogenesis to
neurodegeneration. FEBS Lett. 589, 3691–3692 (2015).
77. Kramer, E. R. & Liss, B. GDNF-Ret signaling in midbrain dopaminergic neurons
and its implication for Parkinson disease. FEBS Lett. 589, 3760–3772 (2015).
78. Arenas, E., Denham, M. & Vilà, J. C. How to make a midbrain dopami-
nergic neuron. Development 142, 1918–1936 (2015).
79. Cordes, S. P. Molecular genetics of cranial nerve development in mouse. Nat.
Rev. Neurosci. 2, 611–623 (2001).
80. Briscoe, J. & Ericson, J. The specification of neuronal identity by graded sonic
hedgehog signalling. Semin. Cell Dev. Biol. 10, 353–362 (1999).
81. Jacob, J., Hacker, A. & Guthrie, S. Mechanisms and molecules in motor neuron
specification and axon pathfinding. BioEssays 23, 582–595 (2001).
82. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and
serotonergic neuron generation from a common pool of CNS progenitors. Genes
Dev. 13, 2477–2485 (1999).
83. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical
periods of sonic hedgehog signalling required for the specification of motor
neuron identity. Cell 87, 661–673 (1996).
84. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity
by graded Sonic hedgehog signaling. Nature 398, 622–627 (1999).
85. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J. F. Control of hindbrain motor
neuron differentiation by the homeobox gene Phox2b. Development 127,
1349–1358 (2000).
86. Pattyn, A., Guillermot, F. & Brunet, J.-F. Delays in neuronal differentiation in
Mash1/Ascl1 mutants. Dev. Biol. 295, 67–75 (2006).
87. Thor, S., Andersson, S. G. E., Tomlinson, A. & Thomas, J. A. A Lim-homeodomain
combinatorial code for motor-neuron pathway selection. Nature 397, 76–80
(1999).
88. Tsuchida, T. et al. Topographic organization of embryonic motor neurons
defined by expression of Lim homeobox genes. Cell 79, 957–970 (1994).
89. Kraus, F., Haenig, B. & Kispert, A. Cloning and expression analysis of the mouse
T-box gene Tbx20. Mech. Dev. 100, 87–91 (2001).
90. Sharma, K. et al. Lim homeodomain factors Lhx3 and Lhx4 assign subtype
identity to spinal motor neurons and interneuron specification. Neuron 31,
743–755 (2001).
91. Novitch, B. G., shelves, K., Huang, E. J., Ballinger, S. D. & Jessell, T. M. Regulation of
motor neuron subtype identity by repressor activity of Mnx class homeodomain proteins. Development 130, 1523–1536 (2003).
92. Jacobs, B. L. & Amft, E. C. Structure and function of the brain serotonin
system. Physiol. Rev. 72, 165–229 (1992).
93. Lidow, H. G. & Molliver, M. E. Immunohistochemical study of the development of
serotonergic neurons in the rat CNS. Brain Res. Bull. 59, 559–604 (1992).
94. Watson, C. Hindbrain. In The Mouse Nervous System (eds Watson, C., Paxinos, G.
& Puelles, L.) Ch. 12, 398–423 (Academic, 2012).
95. Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF
and Shh signals control dopaminergic and serotonergic cell fate in the anterior
neural plate. Cell 93, 755–766 (1998).
96. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required
for induction of floor plate and adjacent cells, but not most ventral neurons in
the mouse central nervous system. Development 125, 2759–2770 (1998).
97. Tamás, A. & Krumlauf, R. Patternning the vertebrate neuraxis. Science 274,
1109–1115 (1996).
98. Wallace, J. A. & Lauder, J. M. Development of the serotoninergic system in the
rat embryo: an immunocytochemical study. Brain Res. Bull. 10, 459–479 (1983).
99. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news
from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012 (2003).
100. Ericson, J. P. Molecular genetics of the early development of hindbrain sero-
tonergic neurons. Clin. Genet. 68, 487–494 (2005).
101. Deneris, E. S. Molecular genetics of mouse serotonin neurons across the life-
span. Neuroscience 197, 17–27 (2011).
102. Smidt, M. P. & van Hooft, J. A. Subset specification of central serotonergic
neurons. Front. Cell. Neurosci. 7, 200–207 (2013).
103. Liddlea, C., Tannhäuser, B., Stigloher, C., Kremmer, E. & Bally-Cufl, L. The ser-
tonergic phenotype is acquired by converging genetic mechanisms within the
zebrafish central nervous system. Dev. Dyn. 236, 1072–1084 (2007).
104. Pattyn, A. et al. Ascl1/Mash1 is required for the development of central sero-
tonergic neurons. Nat. Neurosci. 7, 589–595 (2004).
105. Jacob, J. et al. Ins1/IA-1 is an essential component of the regulatory network
that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain.
Development 136, 2477–2485 (2009).
106. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonin
neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).
107. Zhao, Z.-Q. et al. Lmx1b is required for maintenance of central serotonergic
neurons and mice lacking central serotonergic system exhibit normal locomotor
activity. J. Neurosci. 26, 12781–12786 (2006).
108. Deneris, E. S. Molecular genetics of mouse serotonin neurons across the life-
span: fundamental aspects and clinical perspectives. In Handbook of Behavioral
Neuroscience, Vol. 21 (eds Müller, C. P. & Jacobs, B. L.) Ch. 3.6, 379–397 (Elsevier, 2010).
109. Calizo, L. H. et al. Raphe serotonin neurons are not homogenous: electro-
physiological, morphological and neurochemical evidence. Neuropharmacology
61, 524–543 (2011).
110. Lo, L., Tiveron, M. C. & Anderson, D. J. MASH1 activates expression of the paired
homeodomain transcription factor Phox2a, and couples pan-neuronal and
embryonic development of selectively vulnerable neurons
MAP Oliveira et al.
subtype-specific components of autonomic neuronal identity. Development 125, 609–620 (1998).
126. Goridis, C. & Brunet, J.-F. Transcriptional control of neurotransmitter phenotype. Curr. Opin. Neurobiol. 9, 47–53 (1999).
127. Tiveron, M.-C., Hirsch, M.-R. & Brunet, J.-F. The expression pattern of the transcrip-
tion factor phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci. 16, 7649–7660 (1996).
128. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).
129. Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).
130. Ding, Y.-Q. et al. Lmx1b is essential for the development of serotonergic neu-
131. Warnecke, M., Oster, H., Revelli, J.-P., Alvarez-Bolado, G. & Eichele, G. Abnormal
dorso-ventral patterning of midbrain.
132. Qian, Y. et al. Formation of brainstem (nor)adrenergic centers and
diencephalic dopamine neurons. Prog. Neurobiol. 74, 393–409 (2003).
133. Tsrarova, K. et al. Essential role of Gata transcription factors in sympathetic neuron. Development 131, 4775–4786 (2004).
134. Aroca, P., Lorente-Canovas, B., Mateos, F. R. & Puelles, L. Locus coeruleus neu-
135. Farkas, L. M., Dünker, N., Roussa, E., Unsicker, K. & Krieglstein, K. transforming
differentiation in mi.
136. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and
dorso-ventral patterning of midbrain. Neuron 18, 411–423 (1997).
137. Farkas, L. M., Dünker, N., Roussa, E., Unsicker, K. & Krieglstein, K. transforming
differentiation in mi.
138. Puelles, E. et al. Otx dose-dependent integrated control of antero-posterior and
dorso-ventral patterning of midbrain.
139. Simeone, A. et al. Otx1b is essential for the development of serotonergic neu-
140. Warnecke, M., Oster, H., Revelli, J.-P., Alvarez-Bolado, G. & Eichele, G. Abnormal
dorso-ventral patterning of midbrain.
141. Smits, S. M., von Oerthel, L., Hoekstra, E. J., Burbach, J. P. H. & Smidt, M. P.
142. Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the
dorso-ventral patterning of midbrain.
143. Harris, C. A. & Studer, L. Too much sonic, too few neurons. Nat. Neurosci. 12, 107–108 (2009).
144. La Manno, G. et al. Molecular diversity of midbrain development in mouse,
dorso-ventral patterning of midbrain.
145. Smidt, M. P. et al. A second independent pathway for development of mesen-
146. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and
dorso-ventral patterning of midbrain.
147. Farkas, L. M., Dünker, N., Roussa, E., Unsicker, K. & Krieglstein, K. transforming
differentiation in mi.
148. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and
dorso-ventral patterning of midbrain.
149. Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the
dorso-ventral patterning of midbrain.
150. Abelson, A. & Hammond, R. Midbrain dopamine neuron differentiation: fac-
151. Farkas, L. M., Dünker, N., Roussa, E., Unsicker, K. & Kriegstein, K. Transforming
growth factor-β is essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J. Neurosci. 23, 5178–5186 (2003).
152. Roussa, E. & Kriegstein, K. Induction and specification of midbrain dopaminergic
cells: focus on Sncg, Tph2, and Tph1. Cell Tissue Res. 318, 23–33 (2004).
153. Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the

Embryonic development of selectively vulnerable neurons
MAP Oliveira et al.

npj Parkinson's Disease (2017) 12

Published in partnership with the Parkinson’s Disease Foundation
183. Castillo, S. O. et al. Dopamine biosynthesis is selectively abolished in substantia nigra/Ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the nurr1 gene. Mol. Cell. Neurosci. 11, 36–46 (1998).
184. Filippi, A. et al. Expression and function of n4r2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC Dev. Biol. 7, 135 (2007).
185. Smits, S. M., Ponnio, T., Conneely, O. M., Burbach, J. P. H. & Smidt, M. P. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur. J. Neurosci. 18, 1731–1738 (2003).
186. Smit, M. P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 1145–1155 (2004).
187. Puelles, L. & Verney, C. Early neurogenic distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J. Comp. Neurol. 394, 283–308 (1998).
188. Verney, C. Distribution of the catecholaminergic neurons in the central nervous system of human embryos and fetuses. Microsc. Res. Tech. 46, 24–47 (1999).
189. Verney, C., Zecovic, N. & Puelles, L. Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J. Comp. Neurol. 429, 22–44 (2001).
190. González, A., Smeets, W. J. & Marín, O. Evidences for shared features in the organization of the basal ganglia in tetrapods: studies in amphibians. Eur. J. Morphol. 37, 151–154 (1999).
191. Smeets, W. J. A., Marín, O. & González, A. Evolution of the basal ganglia: new perspectives through a comparative approach. J. Anat. 196, 501–517 (2000).
192. Medina, L., Puelles, L. & Smeets, W. J. Development of catecholamine systems in the brain of the lizard Gallotia galloti. J. Comp. Neurol. 350, 41–62 (1994).
193. Vitalis, T., Cases, O., Engelkamp, D., Verney, C. & Price, D. J. Defects of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor Paxd. J. Neurosci. 20, 6501–6516 (2000).
194. Puelles, E., Martínez-de-la Torre, M., Watson, C. & Puelles, L. Midbrain. In The Mouse Nervous System (eds Watson, C., Paxinos, G. & Puelles, L.) Ch. 10, 337–359 (Academic, 2012).
195. Puelles, L., Martínez-de-la Torre, M., Ferran, J.-L. & Watson, C. Diencephalon. In The Mouse Nervous System (eds Watson, C., Paxinos, G., & Puelles, L.) Ch. 9, 313–336 (Academic, 2012).
196. Bonilla, S. et al. Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Gliol 56, 809–820 (2008).
197. Puelles, L., Amat, J. A. & Martínez-de-la Torre, M. Segment-related, mosaic neurogenic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of ACHE-positive neuroblasts up to stage HH18. J. Comp. Neurol. 266, 247–268 (1987).
198. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).
199. Rubenstein, J. L. & Rakic, P. Patterning and Cell Type Specification in the Developing CNS and PNS: Comprehensive Developmental Neuroscience (Academic, 2013).
200. Di Salvo, M. et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481–1488 (2010).
201. Di Giovannantonio, L. G. et al. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Dev. Biol. 373, 176–183 (2013).
202. Di Salvo, M., Di Giovannantonio, L. G., Omodei, D., Acampora, D. & Simeone, A. Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int. J. Dev. Biol. 54, 939–945 (2010).
203. Chung, C. Y. et al. The transcription factor orthodenticle homebox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 133, 2022–2031 (2010).
204. Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopaminergic neurons. Cell Rep. 8, 1018–1025 (2014).
205. Reyes, S. et al. Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol. Aging 34, 873–886 (2013).
206. Hwang, D.-Y., Ardañayo, P., Kang, U. J., Semina, E. V. & Kim, K.-S. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphpakia mice. Mol. Brain Res. 114, 123–131 (2003).
207. Jacobson, F. M. J. et al. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons. Development 138, 5213–5222 (2011).
208. facelli, C. et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015).