Dark Left-Right Model: CDMS, LHC, etc.

Ernest Ma

Physics and Astronomy Department, University of California, Riverside, California 92521, USA

Abstract. The Standard Model of particle interactions is extended to include fermion doublets \((n,e)_R \) transforming under the gauge group \(SU(2)_R \) such that \(n \) is a Dirac scotino (dark-matter fermion), with odd \(R \) parity. Based on recent CDMS data, it is shown how this new dark left-right model (DLRM2) favors a \(Z^\prime \) gauge boson at around 1 or 2 TeV and be observable at the LHC. The new \(W^\pm_R \) gauge bosons may also contribute significantly to lepton-flavor-changing processes such as \(\mu \rightarrow e\gamma \) and \(\mu - e \) conversion in a nucleus or muonic atom.

Keywords: left-right symmetry, dark matter, generalized lepton number

PACS: 12.60.Cn, 12.10.Dm, 95.35.+d

LEFT-RIGHT EXTENSION OF STANDARD MODEL

If the Standard Model (SM) of particle interactions is extended to accommodate \(SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X \), then the conventional assignment of

\[
\begin{align*}
(v,l)_L & \sim (1,2,1,-1/2), \\
(u,d)_L & \sim (3,2,1,1/6), \\
(v,l)_R & \sim (1,1,2,-1/2), \\
(u,d)_R & \sim (3,1,2,1/6),
\end{align*}
\]

implies the well-known result that \(X = (B-L)/2 \) and \(Y = T^R_3 + (B-L)/2 \). There must then be Higgs bidoublets

\[
\Phi = \left(\begin{array}{c} \phi^0_1 \\ \phi^-_1 \\ \phi^0_2 \\ \phi^+_2 \end{array} \right), \quad \bar{\Phi} = \left(\begin{array}{c} \bar{\phi}^0_1 \\ -\bar{\phi}^-_1 \\ \bar{\phi}^0_2 \\ -\bar{\phi}^+_2 \end{array} \right),
\]

both transforming as \((1,2,2,0) \), yielding lepton Dirac mass terms

\[
\begin{align*}
m_l &= f_i \langle \phi^0_2 \rangle + f'_i \langle \bar{\phi}^0_2 \rangle, \\
m_\nu &= f_i \langle \phi^0_1 \rangle + f'_i \langle \bar{\phi}^0_2 \rangle,
\end{align*}
\]

and similarly in the quark sector. This results in the appearance of phenomenologically undesirable tree-level flavor-changing neutral currents from Higgs exchange, as well as inevitable \(W_L - W_R \) mixing. If supersymmetry is imposed, then \(\Phi \) can be eliminated, but then \((M_\nu)_{ij} \propto (M_\ell)_{ij} \) as well as \((M_d)_{ij} \propto (M_u)_{ij} \), contrary to what is observed. Hence the prevalent thinking is that \(SU(2)_R \times U(1)_{B-L} \) is actually broken down to \(U(1)_Y \) at a very high scale from an \(SU(2)_R \) Higgs triplet \((\Delta^+_R, \Delta^+_R, \Delta^0_R) \sim (1,1,3,1) \) which provides \(\nu_R \) at the same time with a large Majorana mass from \(\langle \Delta^0_R \rangle \).

The canonical seesaw mechanism for neutrino mass is thus implemented and everyone should be happy. But wait, no remnant of the \(SU(2)_R \) gauge symmetry is detectable at the TeV scale and we will not know if \(\nu_R \) really exists. Is there a natural way to lower the \(SU(2)_R \times U(1)_{B-L} \) breaking scale?
The answer was already provided 23 years ago [1] in the context of the superstring-inspired supersymmetric E_6 model. The fundamental 27 fermion representation here is decomposed under $[(SO(10), SU(5))]$ as

$$27 = (16, 10) + (16, 5^*) + (16, 1) + (10, 5) + (10, 5^*) + (1, 1).$$ (5)

Under its maximum subgroup $SU(3)_C \times SU(3)_L \times SU(3)_R$, the 27 is organized instead as $(3, 3^*, 1) + (1, 3, 3^*) + (3^*, 1, 3)$, i.e.

$$\begin{pmatrix}
 d & u & h \\
 d & u & h \\
 d & u & h
\end{pmatrix}
+ \begin{pmatrix}
 N & E^c & \nu \\
 E & N^c & e \\
 \nu^c & e^c & n^c
\end{pmatrix}
+ \begin{pmatrix}
 d^c & d^c & d^c \\
 u^c & u^c & u^c \\
 h^c & h^c & h^c
\end{pmatrix}.$$ (6)

It was realized [1] in 1987 that there are actually two left-right options: (A) Let E_6 break down to the fermion content of the conventional $SO(10)$, given by $(16, 10) + (16, 5^*) + (16, 1)$, which is the usual left-right model which everybody knows. (B) Let E_6 break down to the fermion content given by $(16, 10) + (10, 5^*) + (1, 1)$ instead, thereby switching the first and third rows of $(3^*, 1, 3)$ and the first and third columns of $(1, 3, 3^*)$. Thus $(\nu, e)_R$ becomes $(n, e)_R$ and n_R is not the mass partner of ν_L. This is referred to by the Particle Data Group as the Alternative Left-Right Model (ALRM). Here the usual left-handed lepton doublet is part of a bidoublet:

$$\begin{pmatrix}
 \nu \\
 e
\end{pmatrix}_L \sim (1, 2, 2, 0).$$ (7)

In this supersymmetric model, ψ_L is still the Dirac mass partner of ψ_R and gets a seesaw mass, whereas n_R (which couples to e_R through W_R) mixes with the usual neutralinos, the lightest of which is a dark-matter candidate.

DARK LEFT-RIGHT MODEL

Two simpler nonsupersymmetric versions of the ALRM with n_R as dark matter have recently been proposed [3, 4]. We call them Dark Left-Right Models (DLRM and DLRM2). We impose a global $U(1)$ symmetry S, so that under $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$, a generalized lepton number is conserved, such that $L = S - T_{3R}$ in DLRM and $L = S + T_{3R}$ in DLRM2. The resulting dark-matter fermion n_R has $L = 0$ (Majorana) in DLRM and $L = 2$ (Dirac) in DLRM2. This talk is on DLRM2, with particle content [4] under $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ given below:

$$\psi_L = (\nu, e)_L \sim (1, 2, 1, -1/2; 1), \quad \psi_R \sim (1, 1, 1, 0; 1),$$ (8)

$$\psi_R = (n, e)_R \sim (1, 1, 2, -1/2; 3/2), \quad n_L \sim (1, 1, 1, 0; 2),$$ (9)

$$Q_L = (u, d)_L \sim (3, 2, 1, 1/6; 0), \quad d_R \sim (3, 1, 1, -1/3; 0),$$ (10)

$$Q_R = (u, h)_R \sim (3, 1, 2, 1/6; -1/2), \quad h_L \sim (3, 1, 1, -1/3; -1),$$ (11)

$$\Phi \sim (1, 2, 2, 0; -1/2), \quad \Phi^e \sim (1, 2, 2, 0; 1/2),$$ (12)

$$\Phi_L = (\phi^0_L, \phi^+_L) \sim (1, 2, 1, 1/2; 0), \quad \Phi_R = (\phi^0_R, \phi^+_R) \sim (1, 1, 2, 1/2; 1/2).$$ (13)
As a result, the Yukawa terms $\bar{\psi}_L \Phi \psi_R$, $\bar{\psi}_L \tilde{\Phi} L \nu_R$, $\bar{Q}_L \Phi Q_R$, $\bar{Q}_R \Phi h_L$ are allowed, whereas $\bar{\psi}_L \Phi \psi_R$, $\bar{Q}_L \Phi Q_R$ are forbidden together with the bilinear terms $\bar{n}_L \nu_R$, $\bar{h}_L d_R$. The breaking of $SU(2)_L \times U(1)_Y$ leaves $L = S + T_3R$ unbroken, so that $v_2 = \langle \phi^0 \rangle \neq 0$ (if ϕ^0 has $L = 0$), but $\langle \phi^0 \rangle = 0$ (if ϕ^0 has $L = -1$). The former contributes to m_e and m_u, whereas the latter means that v_L and n_R are not Dirac mass partners and can be completely different particles. In fact, m_ν, m_d come from $v_3 = \langle \phi^0_L \rangle$, and m_n, m_h from $v_4 = \langle \phi^0_R \rangle$. This structure guarantees the absence of tree-level flavor-changing neutral currents. As for the gauge bosons and their interactions, let $e/g_L = \sin \theta_W$, $e/g_R =
abla$, $e/g_X = \sqrt{1 - s^2_L - s^2_R}$, then

$$A = s_L W_L^0 + s_R W_R^0 + \sqrt{c^2_L - s^2_R} X,$$

$$Z = c_L W_L^0 - (s_L s_R/c_L) W_R - (s_L \sqrt{c^2_L - s^2_R}/c_L) X,$$

$$Z' = (\sqrt{c^2_L - s^2_R}/c_L) W_R - (s_R/c_L) X,$$

$$g_Z = e/s_L c_L, \quad J_Z = J_{3L} - s^2_L J_{em},$$

$$g_{Z'} = e/s_R c_L \sqrt{c^2_L - s^2_R}, \quad J_{Z'} = s^2_R J_{3L} + c^2_L J_{3R} - s^2_R J_{em}. \quad (18)$$

To avoid $Z - Z'$ mixing at tree level, the condition $v_2^2/(v_2^2 + v_3^2) = s^2_R/c^2_L$ must be imposed. In that case, $M_{W_L} \sim \sqrt{c^2_L - s^2_R}/c_L M_{Z'}$. Note that W_R does not mix with W_L because they have different R parity. In Fig. 1, the present Tevatron bound on $M_{Z'}$ is shown for various values of s^2_R, showing a typical bound of about 1 TeV.
CDMS AND MORE

The usual leptons have $L = 1$ as expected, but there are now new particles also with lepton number: W^+_R, ϕ^+_R, ψ^+_R have $L = 1$ and h has $L = -1$ as well as $B = 1/3$. Thus they all have odd R parity, i.e. $R = (-)^{3B+L+2j} = -1$, even though the model is nonsupersymmetric. The scotino n has $L = 2$ and thus also odd R. The lightest n is a dark-matter candidate, and will be considered below in the context of recent data from the CDMS-II collaboration [5]. Two possible dark-matter signal events were observed with an expected background of 0.9 ± 0.1. The most stringent bound on the elastic spin-independent scattering cross section of $nq \rightarrow nq$ occurs at $m_n = 70$ GeV, and it is 3.8×10^{-8} pb. In the DLRM2,

$$\mathcal{L} = \frac{g^2_{ZnV}}{M^2_{Z^{'}}}(\bar{n}\gamma_\mu n)(u\gamma^\mu u + d\gamma^\mu d),$$

where $nV = c^2_L/4$, $uV = c^2_L/4 - 5s^2_R/12$, $dV = s^2_R/12$. Let $f_P = g^2_{ZnV}(2uV + dV)/M^2_{Z^{'}}$, $f_N = g^2_{ZnV}(uV + 2dV)/M^2_{Z^{'}}$, then

$$\sigma_0 \approx \frac{4m^2_P[Zf_P + (A - Z)f_N]^2}{\pi A}.$$

Using 73Ge, i.e. $Z = 32$ and $A - Z = 41$, as an estimate, the CDMS bound (of 3.8×10^{-8} pb at $m_n = 70$ GeV) implies a bound on $M_{Z^{'}}$. In Fig. 2, the resulting lower bounds on $M_{Z^{'}}$ from the Tevatron search and from CDMS are plotted as functions of s^2_R.

FIGURE 2. Lower bounds on $M_{Z^{'}}$ vs s^2_R from the Tevatron search (red solid line) and from the CDMS search at $m_n = 70$ GeV (blue dashed line). The dotted segments assume a simple extrapolation of the Tevatron data.
To obtain the correct dark-matter relic abundance, the annihilation of $\bar{n}n \to Z' \to SM$ fermions is considered. The thermally averaged cross section multiplied by the relative velocity of the annihilating particles is given by

$$\langle \sigma v_{\text{rel}} \rangle_{Z'} = \frac{\pi \alpha^2 (3 - 9 r + 10 r^2) m_n^2}{2 c^4_L r^2 (1 - r)^2 (4 m_n^2 - M_{Z'}^2)^2},$$

where $r = s_R^2/c_L^2$. Fixing the above at 1 pb, the values of m_n and $M_{Z'}$ are constrained as a function of s_R^2. For $m_n = 70$ GeV, there is no solution, but if m_n is greater than about 300 GeV, solutions exist which are consistent with the Tevatron bound as well as the CDMS bound. In the range $0.3 < m_n < 1.0$ TeV, the latter is well approximated by $\sigma_0 < 2.2 \times 10^{-7}$ pb ($m_n/1$ TeV)$^{0.86}$. In Fig. 3, the cases $m_n = 400$ and 600 GeV are shown.

The $\bar{n}n$ annihilation to leptons through W_R^\pm exchange also contributes, i.e.

$$\langle \sigma v_{\text{rel}} \rangle_{W_R} = \frac{3 g_R^4 m_n^2}{64 \pi (m_n^2 + M_{W_R}^2)^2},$$

but it is subdominant and has been neglected.

LHC AND MORE

At the LHC ($E_{cm} = 14$ GeV), Z' may be discovered with 10 dilepton events. Using the cuts

- $p_T > 20$ GeV for each lepton,
- $|\eta| < 2.4$ for each lepton,
- $|M_{l^- l^+} - M_{Z'}| < 3 \Gamma_{Z'}$,

the SM background is negligible. With an integrated luminosity of 1 fb$^{-1}$, the discovery reach of the Z' of the DLRM2 is about 2 TeV, as shown in Fig. 4.
To distinguish this Z' from others, the following ratios [6] may be considered:

\[
\frac{\Gamma(Z' \to t\bar{t})}{\Gamma(Z' \to \mu^-\mu^+)} = \frac{(9 - 24r + 17r^2)}{3(1 - 4r + 5r^2)} = 4.44 \ (g_L = g_R),
\]

\[
\frac{\Gamma(Z' \to b\bar{b})}{\Gamma(Z' \to \mu^-\mu^+)} = \frac{5r^2}{3(1 - 4r + 5r^2)} = 0.60 \ (g_L = g_R),
\]

where $r = s_R^2/c_L^2$. In the conventional left-right model, the numerator for $b\bar{b}$ is changed to $(9 - 12r + 8r^2)$, i.e. 13.6 larger ($g_L = g_R$). In the ALRM, the denominator for both is changed to $3(2 - 6r + 5r^2)$, i.e. 2.6 larger ($g_L = g_R$).

There are also important loop effects [2] on rare processes from the new interactions $\gamma W_R^+W_R^-$, $ZW_R^+W_R^-$, $W_R^+\bar{n}_R e_R$, $W_R^+\bar{u}_R h_R$, etc. The anomalous magnetic moment of the muon receives a contribution of order 10^{-10}, below the present experimental sensitivity of 10^{-9}. The flavor-changing radiative decay $\mu \to e\gamma$ has the branching fraction

\[
B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left(\frac{s_L M_{W_L}}{s_R M_{W_R}}\right)^4 \left|\sum_i U_{\mu i} U_{ei} F_\gamma(r_i)\right|^2,
\]

where $r_i = n_{ri}^2/M_{W_R}^2$ and

\[
F_\gamma(r_i) = \frac{r_i(-1 + 5r_i + 2r_i^2)}{(1 - r_i)^3} + \frac{6r_i^3 \ln r_i}{(1 - r_i)^4}.
\]
It is suppressed by M_{W_R} and for $M_{W_R} = 1.17$ TeV (corresponding to $M_{Z'} = 1.4$ TeV), the current experimental bound of 1.2×10^{-11} implies $|\sum_i U_{\mu i} U_{e i} F_Z(r_i)| < 0.05$ for $g_L = g_R$. A more sensitive probe of the existence of these new interactions is $\mu \rightarrow eee$ or $\mu - e$ conversion in a nucleus or muonic atom [7]. The reason is that there is an effective $\mu \rightarrow eZ$ vertex from $ZW^+_R W^-_R$ and $W^+_R \bar{n}_R e_R$, given by

$$g_{\mu e Z} = \frac{e^3 s_L}{16 \pi^2 s_R c_L} \sum_i U_{\mu i} U_{e i} F_Z(r_i),$$

(27)

where $F_Z(r_i) = r_i / (1 - r_i) + r_i^2 \ln r_i / (1 - r_i)^2$, which is not suppressed if r_i is not small, which holds even if the $SU(2)_R$ scale is much greater than the electroweak scale. This unusual (nondecoupling) property depends crucially on the $ZW^+_R W^-_R$ vertex, which is not available in other extensions of the SM, including all $U(1)'$ models. The current experimental bound of 1.0×10^{-12} on $B(\mu \rightarrow eee)$ implies $|\sum_i U_{\mu i} U_{e i} F_Z(r_i)| < 1.44 \times 10^{-3}$ for $g_L = g_R$.

CONCLUSION

The presence of ν_R is unavoidable in a left-right gauge extension of the Standard Model. However, it does not have to be the Dirac mass partner of ν_L. In that case, it should be renamed n_R and could function as a scotino, i.e. a dark-matter fermion. In the context of the recently proposed new dark left-right model (DLRM2), latest CDMS observations are shown to be consistent with the lightest n at about a few hundred GeV in mass with the new Z' gauge boson at less than 2 TeV. The latter should then be accessible directly at the LHC, while the W^\pm_R gauge boson may contribute indirectly to enhancing rare lepton-flavor-changing processes such as $\mu \rightarrow eee$ and $\mu - e$ conversion in a nucleus or muonic atom.

ACKNOWLEDGMENTS

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837. I thank D. Delepine and the other organizers of the VI International Workshop on the Dark Side of the Universe for their great hospitality and a stimulating meeting in Leon.

REFERENCES

1. E. Ma, Phys. Rev. D36, 274 (1987).
2. E. Ma, Phys. Rev. D62, 093022 (2000).
3. S. Khalil, H.-S. Lee, and E. Ma, Phys. Rev. D79, 041701(R) (2009).
4. S. Khalil, H.-S. Lee, and E. Ma, Phys. Rev. D81, 051702(R) (2010).
5. Z. Ahmed et al., Science 327, 1619 (2010).
6. S. Godfrey and T. A. W. Martin, Phys. Rev. Lett. 101, 151803 (2008).
7. M. Yamanaka, These Proceedings.