PROOFS OF CONJECTURES ABOUT SINGULAR RIEmannian FoliATIONS

MARCOS M. ALEXANDRINO

Abstract. We prove that if the normal distribution of a singular riemannian foliation is integrable, then each leaf of this normal distribution can be extended to be a complete immersed totally geodesic submanifold (called section), which meets every leaf orthogonally. In addition the set of regular points is open and dense in each section. This result generalizes a result of Boualem and solves a problem inspired by a remark of Palais and Terng and a work of Szenthe about polar actions.

We also study the singular holonomy of a singular riemannian foliation with sections (s.r.f.s. for short) and in particular the transverse orbit of the closure of each leaf. Furthermore we prove that the closure of the leaves of a s.r.f.s on M form a partition of M which is a singular riemannian foliation. This result proves partially a conjecture of Molino.

1. Introduction

In this section we will recall some definitions and state our main results as Theorem 1.4 and Theorem 1.7.

We start by recalling the definition of a singular riemannian foliation (see the book of P. Molino [9]).

Definition 1.1. A partition \mathcal{F} of a complete riemannian manifold M by connected immersed submanifolds (the leaves) is called a singular foliation of M if it verifies condition (1) and singular riemannian foliation if it verifies condition (1) and (2):

1. \mathcal{F} is singular, i.e., the module \mathcal{X}_F of smooth vector fields on M that are tangent at each point to the corresponding leaf acts transitively on each leaf. In other words, for each leaf L and each $v \in TL$ with foot point p, there is $X \in \mathcal{X}_F$ with $X(p) = v$.

2. The partition is transnormal, i.e., every geodesic that is perpendicular at one point to a leaf remains perpendicular to every leaf it meets.

Let \mathcal{F} be a singular riemannian foliation on a complete riemannian manifold M. A leaf L of \mathcal{F} (and each point in L) is called regular if the dimension
of \(L \) is maximal, otherwise \(L \) is called singular. Let \(L \) be an immersed submanifold of a Riemannian manifold \(M \). A section \(\xi \) of the normal bundle \(\nu L \) is said to be a parallel normal field along \(L \) if \(\nabla^\nu \xi \equiv 0 \), where \(\nabla^\nu \) is the normal connection. \(L \) is said to have a globally flat normal bundle, if the holonomy of the normal bundle \(\nu L \) is trivial, i.e., if any normal vector can be extended to a globally defined parallel normal field.

Now we recall the concept of singular Riemannian foliation with section, which was introduced in [1], [2] and continued to be studied by Töben and I in [17], [3], [4] and recently by Lytchak and Thorbergsson in [8].

Definition 1.2 (s.r.f.s.). Let \(\mathcal{F} \) be a singular Riemannian foliation on a complete Riemannian manifold \(M \). \(\mathcal{F} \) is said to be a singular Riemannian foliation with sections (s.r.f.s. for short) if for each regular point \(p \), the set \(\Sigma := \exp_p(\nu_p L_p) \) is a complete immersed submanifold that meets each leaf orthogonally. \(\Sigma \) is called a section.

Remark 1.3. In [2] it was also assumed that the set of regular points is open and dense in \(\Sigma \). As we will see in Theorem 1.4 this is a consequence of the definition above. We will explain in Remark 1.6 the importance of the density of the set of regular points in a section.

Let \(p \in M \) and \(\text{Tub}(P_p) \) be a tubular neighborhood of a plaque \(P_p \) that contains \(p \). Then the connected component of \(\exp_p(\nu P_p) \cap \text{Tub}(P_p) \) that contains \(p \) is called a slice at \(p \). Let \(S_p \) denote it. Now consider a section \(\Sigma \), a point \(p \in \Sigma \) and a convex normal neighborhood \(B \) of \(p \) in \(M \). Then a connected component of \(B \cap \Sigma \) that contains \(p \) is called local section (centered at \(p \)). These two concepts are related to each other. Indeed, the slice at a singular point is the union of the local sections that contain this singular point (see Theorem 2.4).

A typical example of a s.r.f.s is the partition formed by the orbits of a polar action.

An isometric action of a compact Lie group \(G \) on a complete Riemannian manifold \(M \) is called polar if there exists a complete immersed submanifold \(\Sigma \) of \(M \) that meets all \(G \)-orbits orthogonally and whose dimension is equal to the codimension of the regular \(G \)-orbits. We call \(\Sigma \) a section. A typical example of a polar action is a compact Lie group with a biinvariant metric that acts on itself by conjugation. In this case the maximal tori are the sections. One can find a large number of examples of polar action on symmetric spaces in the work of Kollros [7] and Podestà and Thorbergsson [11].

In [10] page 96, Remark 5.6.8 Palais and Terng proposed a conjecture that can be formulated as follows: Let \(G \) be an isometric action of a compact Lie group on \(M \) such that the distribution of the normal space to the regular orbit is integrable. Then there exists a complete totally geodesic immersed section for the action of \(G \) which meets all orbits perpendicularly. In [6] Heintze, Olmos and Liu proved that Palais and Terng were right in their conjecture. In particular they proved that the set of regular points
is dense in each section (see Tebege [13] for an alternative proof of the density of regular points in a section). We would like to stress that Szenthe [12] worked on the above problem even before Terng and Palais. In fact, Szenthe proved, under some extra assumptions, the existence of a generalized section, i.e., a submanifold (not necessarily complete) that intersect all the leaves orthogonally.

In [5] Boualem proved the following result: Let \(F\) be a singular riemannian foliation such that the closure of each leaf is compact and the distribution of normal spaces to the regular leaves is integrable. Then each leaf of this normal distribution can be extended to be an immersed totally geodesic submanifold (called generalized section), which meets every leaf orthogonally.

He did not prove that the so called generalized section is complete and hence could not give a complete answer to the conjecture of Palais and Terng for the case of singular riemannian foliation. Also the question of the density of the set of regular points in a section was not considered.

In this paper we prove the following result, which gives a complete answer to the conjecture of Palais and Terng for the case of singular riemannian foliations.

Theorem 1.4. Let \(F\) be a singular riemannian foliation on a complete manifold \(M\). Suppose that the distribution of normal spaces of the regular leaves is integrable. Then \(F\) is s.r.f.s. In addition the set of regular points is open and dense in each section.

We note that Lytchak and Thorbergsson [8] have recently proved this result under the additional condition that singular riemannian foliation has no horizontal conjugate point.

Before we state the other main result of this paper, we must briefly recall the notion of isoparametric and equifocal submanifolds. These concepts are fundamental to understand local and global aspects of the theory of s.r.f.s.

A submanifold of an euclidean space is called *isoparametric* if its normal bundle is flat and if the principal curvatures along any parallel normal vector field are constant. The singular partition formed by the parallel submanifolds of an isoparametric submanifold in an euclidean space is a typical example of s.r.f.s. The history of isoparametric submanifolds and their generalizations can be found in the survey [15] of Thorbergsson (see also [16]).

According to the slice theorem (see Theorem 2.4) the restriction of a s.r.f.s to a slice at a singular point is a s.r.f.s which is diffeomorphic to an isoparametric foliation on an open set of an euclidean space. Hence the slice theorem give us a description of the plaques of a s.r.f.s. on a riemannian manifold. However, it does not guarantee that different plaques belong to different leaves. To obtain this kind of information, we need the concept of singular holonomy which is related to the concept of local equifocal submanifold reviewed below.

In [14] Terng and Thorbergsson introduced the concept of equifocal submanifold with flat sections in symmetric space in order to generalize the
definition of isoparametric submanifold in Euclidean space. Now we review the definition of equifocal submanifolds in a riemannian manifold.

Definition 1.5. A connected immersed submanifold \(L \) of a complete Riemannian manifold \(M \) is called *equifocal* if

0) the normal bundle \(\nu(L) \) is globally flat,

1) \(L \) has sections, i.e., for each \(p \in L \) the set \(\Sigma := \exp_p(\nu_p L_p) \) is a complete, immersed, totally geodesic submanifold.

2) For each parallel normal field \(\xi \) along \(L \), the derivative of the map \(\eta_\xi : L \to M, \) defined as \(\eta_\xi(x) := \exp_x(\xi) \), has constant rank.

A connected immersed submanifold \(L \) is called *locally equifocal* if, for each \(p \in L \), there exists a neighborhood \(U \subset L \) of \(p \) in \(L \) such that \(U \) is an equifocal submanifold.

Remark 1.6 (Relation between s.r.f.s. and equifocal submanifolds). In [14] Terng and Thorbergsson proved that the singular partition formed by the parallel submanifolds of an equifocal submanifold \(L \) on \(M \) is a s.r.f.s, when \(M \) is a symmetric space of compact type and the sections are flat. In [2] I proved that the leaves of a s.r.f.s. on a riemannian manifold \(M \) are locally equifocal (see Theorem 2.1). In this proof the property that the set of regular points is dense in a section plays an important role. In [17] Töben used the blow up technique to study local equifocal submanifolds (which he called submanifold with parallel focal structure). He gave a necessary and sufficient condition for a closed embedded local equifocal submanifold to induce a s.r.f.s. Töben’s Theorem (for the case of equifocal submanifold) follows from the next result, which is proved in [3]. Let \(L \) be a closed embedded equifocal submanifold. Suppose that set of regular points of each section \(\Sigma \) is an open and dense set in \(\Sigma \). Define \(\Xi \) as the set of all parallel normal fields along \(L \). Then \(\mathcal{F} := \{\eta_\xi(L)\}_{\xi \in \Xi} \) is a s.r.f.s. Here a point of a section is called regular if there exists only one local section that contains \(p \), i.e., if given two local sections \(\sigma \) and \(\tilde{\sigma} \) that contain \(p \), they have the same germ at \(p \).

The property that each leaf of a s.r.f.s is locally equifocal allow us to extend the holonomy map to the whole local section and hence to define the notion of singular holonomy map (see Proposition 2.3). If we fix a local section \(\sigma \), we can define a Weyl pseudogroup of \(\sigma \) as the pseudogroup generated by the singular holonomy maps defined on \(\sigma \) (see Definition 2.3). The Weyl pseudogroup of a local section centered at \(q \) and the s.r.f.s on a slice \(S_q \) describe completely the s.r.f.s. on a neighborhood of \(q \).

We are finally ready to recall the conjecture that motivate our next result.

In [9] Molino proved that, if \(M \) is compact, the closure of the leaves of a (regular) riemannian foliation form a partition of \(M \) which is a singular riemannian foliation. He also proved that the leaf closure are orbits of a locally constant sheaf of germs of (transversal) Killing fields.
If the foliation is singular riemannian foliation and M is compact, then Molino was able to prove (see [9] Theorem 6.2 page 214) that the closure of the leaves should be a transnormal system, but as he remarked, it remains to prove that the closure of the leaves is in fact a singular foliation. In this paper we prove the Molino’s conjecture, when F is a s.r.f.s. In addition we study the singular holonomy of F and in particular the tranverse orbits of the closure of a leaf. We will not assume that M is compact.

Theorem 1.7. Let F be a s.r.f.s. on a complete riemannian manifold M. Then

a) the closure of the leaves of F form a partition of M which is a singular riemannian foliation, i.e. $\{\overline{L}\}_{L \in F}$ is a singular riemannian foliation.

b) Each point q is contained in an homogenous submanifold O_q (possible with dimension 0). If we fix a local section σ that contains q, then O_q is a connected component of an orbit of the closure of the Weyl pseudogroup of σ.

c) If q is a point of the submanifold \overline{T}, then a neighborhood of q in \overline{T} is the product of the homogenous submanifold O_q with plaques with the same dimension of the plaque P_q.

d) Let q be a singular point and T the intersection of the slice S_q with the singular stratum that contains q. Then the normal connection of T in S_q is flat.

e) Let q be a singular point and T defined as in Item d). Let v be a parallel normal vector field along T, $x \in T$ and $y = \exp_x(v)$. Then $O_y = \eta_v(O_x)$.

One can construct examples that illustrate the above theorem by means of suspension of homomorphisms (see [2] for details). In fact, the suspension technique is very useful to construct examples of s.r.f.s. with nonembedded leaves, with exceptional leaves and also inhomogeneous examples. Other techniques to construct examples of s.r.f.s on nonsymmetric spaces are suitable changes of metric and surgery (see [4] for details).

Corollary 1.8. Let F be a s.r.f.s. on a complete manifold M and q a singular point. Let T denote the intersection of the slice S_q with the stratum that contains q. Suppose that $T = \{q\}$. Then all the leaves of F are closed.

Remark 1.9. According to the slice theorem (see Theorem 2.4) the restriction of the foliation F to the slice S_q is diffeomorphic to an isoparametric foliation \overline{F} on an open set of an euclidean space. Therefore the condition that T is a point is equivalent to saying that a regular leaf of \overline{F} is a full isoparametric submanifold.

Remark 1.10. By the suspension technique one can construct an example of s.r.f.s. such that, for a local section σ, the isometric action of W_σ (the closure of the Weyl pseudogroup of σ) is not polar. In particular, this implies
that there exists a s.r.f.s \(F \) such that the partition formed by the closure of the leaves of \(F \) is not a s.r.f.s. Although the isometric action of \(W_\sigma \) need not to be polar in a neighborhood of a singular point \(q \), if \(\sigma \) is flat, there always exists a totally geodesic submanifold \(N_q \) that is orthogonal to the orbits of \(W_\sigma \). This submanifold \(N_q \) is a slice of \(T \) in \(\sigma \) (see Equation 4.3). It fails to be a section of \(W_\sigma \), if its dimension is lower than the codimension of the regular orbits of \(W_\sigma \). To prove that \(N_q \) is orthogonal to the orbits of \(W_\sigma \) which it meets, one can use the above theorem and a result of Heintze, Olmos and Liu[6].

This paper is organized as follows. In Section 2 we review some facts about s.r.f.s. and fix the notation. In Section 3 and 4 we prove Theorem 1.4 and Theorem 1.7 respectively. In Section 5 we prove Corollary 1.8.

Acknowledgments: I am grateful to Professor Gudlaugur Thorbergsson and Professor Claudio Gorodski for useful suggestions.

2. Facts about s.r.f.s.

In this section we recall some results about s.r.f.s. that will be used in this work. Details can be found in [2]. Throughout this section we assume that \(F \) is a s.r.f.s. on a complete riemannian manifold \(M \).

Let us start with a result that relates s.r.f.s. to equifocal submanifolds (see Definition 1.5 to recall the definitions of equifocal submanifolds and the endpoint map \(\eta_\xi \)).

Theorem 2.1. The regular leaves of \(F \) are equifocal. In particular, the union of regular leaves that have trivial normal holonomy is an open and dense set in \(M \), provided that all the leaves are compact.

A consequence of the first statement of the theorem is that given a regular leaf \(L \) with trivial holonomy then we can reconstruct \(F \) by taking all parallel submanifolds of \(L \). More precisely we have

Corollary 2.2. Let \(L \) be a regular leaf of \(F \).

a) Let \(\beta \) be a smooth curve of \(L \) and \(\xi \) a parallel normal field along \(\beta \). Then the curve \(\eta_\xi \circ \beta \) belongs to a leaf of \(F \).

b) Let \(L \) be a regular leaf with trivial holonomy and \(\Xi \) denote the set of all parallel normal fields along \(L \). Then \(F = \{ \eta_\xi(L) \}_{\xi \in \Xi} \). In particular, if \(\xi \) is a parallel normal field along \(L \) then the endpoint map \(\eta_\xi : L \to L_q \) is surjective, where \(q = \eta_\xi(x) \) for \(x \in L \).

Corollary 2.2 allows us to define singular holonomy map, which will be very useful to study \(F \).

Proposition 2.3 (Singular Holonomy). Let \(L_p \) be a regular leaf, \(\beta \) a smooth curve in \(L_p \) and let \([\beta] \) denote the homotopy class of \(\beta \). Let \(U \) be a local section centered at \(p = \beta(0) \). Then there exists a local section \(V \) centered at \(\beta(1) \) and an isometry \(\varphi_{[\beta]} : U \to V \) that has the following properties:
1) $\varphi[\beta](x) \in L_x$ for each $x \in U$,
2) $d\varphi[\beta]\xi(0) = \xi(1)$, where ξ is a parallel normal field along β.

An isometry as above is called singular holonomy map along β.

We remark that, in the definition of the singular holonomy map, singular points can be contained in the domain U. If the domain U and the range V are sufficiently small, then the singular holonomy map coincides with the holonomy map along β.

Now we recall some results about the local structure of \mathcal{F}, in particular about the structure of the set of singular points in a local section.

Note that, if q is a singular point, the restriction $\mathcal{F}|S_q$ of \mathcal{F} to the slice S_q is also a singular foliation. In fact, since $\mathcal{X}_\mathcal{F}$ acts transitively on the leaves, the plaques (the connected components of the leaves intersected with $\text{Tub}(P)$) are transversal to S_q.

The relation between a slice S_q, a local section and $\mathcal{F}|S_q$ are given by the next result.

Theorem 2.4 (Slice Theorem). Let q be a singular point of M and S_q a slice at q. Then

a) Let ϵ be the radius of the slice S_q. Denote $\Lambda(q)$ the set of local sections σ containing q, such that $\text{dist}(p, q) < \epsilon$ for each $p \in \sigma$. Then $S_q = \bigcup_{\sigma \in \Lambda(q)} \sigma$.
b) $S_x \subset S_q$ for all $x \in S_q$.
c) $\mathcal{F}|S_q$ is a s.r.f.s. on S_q with the induced metric of M.
d) $\mathcal{F}|S_q$ is diffeomorphic to an isoparametric foliation on an open set of \mathbb{R}^n, where n is the dimension of S_q.

From d) it is not difficult to derive the following corollary.

Corollary 2.5. Let σ be a local section. Then the set of singular points of \mathcal{F} contained in σ is a finite union of totally geodesic hypersurfaces. These hypersurfaces are sent by a diffeomorphism to focal hyperplanes contained in a section of an isoparametric foliation on an open set of a euclidean space.

We will call the set of singular points of \mathcal{F} contained in σ the singular stratum of the local section σ. Let M_r denote the set of regular points in M. A Weyl Chamber of a local section σ is the closure in σ of a connected component of $M_r \cap \sigma$.

Corollary 2.6. A Weyl Chamber of a local section is a convex set.

Corollary 2.7. Let γ be a geodesic orthogonal to a regular leaf. Then the singular points are isolated on γ.

Remark 2.8. The above fact can be proved without the Slice Theorem. In fact it was used in [2] to prove the Slice Theorem.

The Slice Theorem establishes a relation between s.r.f.s. and isoparametric foliations. By analogy with the classical theory of isoparametric submanifolds, it is natural to ask if we can define a (generalized) Weyl group action on σ. The next definitions and results answer this question.
Definition 2.9 (Weyl Pseudogroup \(W\)). The pseudosubgroup generated by all singular holonomy maps \(\varphi_{\beta}\) such that \(\beta(0)\) and \(\beta(1)\) belong to the same local section \(\sigma\) is called generalized Weyl pseudogroup of \(\sigma\). Let \(W_\sigma\) denote this pseudogroup. In a similar way we define \(W_\Sigma\) for a section \(\Sigma\). Given a slice \(S\) we will define \(W_S\) as the set of all singular holonomy maps \(\varphi_{\beta}\) such that \(\beta\) is contained in the slice \(S\).

Remark 2.10. To recall the definition of pseudogroups and orbifolds see E. Salem [9, Appendix D].

Proposition 2.11. Let \(\sigma\) be a local section. Then the reflections in the hypersurfaces of the singular stratum of the local section \(\sigma\) leave \(F|\sigma\) invariant. Moreover these reflections are elements of \(W_\sigma\).

One can construct an example of a s.r.f.s. by suspension such that \(W_\sigma\) is larger than the pseudogroup generated by the reflections in the hypersurfaces of the singular stratum of \(\sigma\). The next result gives a sufficient condition to guarantee that both pseudogroups coincide.

Proposition 2.12. Suppose that each leaf of \(F\) is compact and has trivial normal holonomy. Let \(\sigma\) be a local section. Then \(W_\sigma\) is generated by the reflections in the hypersurfaces of the singular stratum of the local section.

Remark 2.13. In [3] Töben and I proved that if \(M\) is simply connected and the leaves of \(F\) are compact, then each regular leaf has trivial holonomy.

Finally let us recall a result related to Theorem 1.7.

Proposition 2.14. Let \(\sigma\) be a local section. Consider a point \(p \in \sigma\), then

\[
W_\sigma \cdot p = L_p \cap \sigma.
\]

In other words, the closure of \(L_p \cap \sigma\) is an orbit of complete closed pseudogroup of local isometries. In particular \(L_p \cap \sigma\) is a closed submanifold.

3. Proof of Theorem 1.4

In this section we will prove Theorem 1.4.

A singular riemannian foliation is called integrable if the distribution of the normal spaces of the regular leaves is integrable. A neighborhood of a leaf of this distribution is called regular section.

In what follows we will need the following result due to Boualem (see Lemma 1.2.1, Proposition 1.2.3 and Lemma 1.2.4 of [5]).

Proposition 3.1 (Boualem [5]). Let \(F\) be an integrable singular riemannian foliation on a complete riemannian manifold \(M\). Let \(S_q\) denote the slice at \(q\) of radius \(\epsilon\). Let \(\sigma\) be a regular section contained in the normal ball \(B_\epsilon(q)\). Suppose also that \(\sigma\) intersects the slice \(S_q\). Then

a) There exists a subspace \(V \subset T_qS_q\) such that \(\sigma \subset D_q := \exp_q(V \cap U)\), where \(U\) is the ball of radius \(\epsilon\) in \(T_qS_q\) centered at \(0\).
b) the map \exp_q^{-1} is a diffeomorphism between the foliation $\mathcal{F}|_{S_q}$ and an integrable singular riemannian foliation $\tilde{\mathcal{F}}$ on the open set U of the inner product space $(T_qS_q, <, >_q)$, where $<, >_q$ denote the metric of T_qM. Furthermore, the submanifold $\tilde{\sigma} := \exp_q^{-1}(\sigma)$ is a regular section of $\tilde{\mathcal{F}}$.

Remark 3.2. Let $<, >_0$ denote the canonical euclidean product. Then there exists a positive definite symmetric matrix A such that $< X, Y >_q = < A X, Y >_0$. The isometry $\sqrt{A} : (T_qS_q, <, >_q) \to (\mathbb{R}^n, <, >_0)$ is a diffeomorphism between the foliation $\tilde{\mathcal{F}}$ and an integrable singular riemannian foliation $\hat{\mathcal{F}}$ on an open set of the inner product space $(\mathbb{R}^n, <, >_0)$.

Proposition 3.3. Let \mathcal{F} be an integrable singular riemannian foliation on a complete riemannian manifold M and γ be a geodesic orthogonal to a regular leaf. Then the set of singular points is isolated on γ.

Proof. Since the set of regular points on γ is open, we can suppose that $q = \gamma(0)$ is a singular point and that $\gamma(t)$ is a regular point for $-\delta < t < 0$. We will show that there exists $\epsilon > 0$ so that the point $\gamma(t)$ is a regular point if $0 < t < \epsilon$.

It follows from Proposition 3.1 that there exist an open set $U \subset T_qS_q$ and an integrable singular riemannian foliation $\tilde{\mathcal{F}}$ on U such that $\exp_q^{-1}(\mathcal{F}) = \tilde{\mathcal{F}}$. Set $\tilde{\gamma} := \exp_q^{-1}(\gamma)$.

Note that, for $t_0 < 0$, the point $0 = \tilde{\gamma}(0)$ is a focal point of the regular leaf $\tilde{L}_{\tilde{\gamma}(t_0)}$. Indeed, since 0 is a leaf of $\tilde{\mathcal{F}}$ with dimension zero and $\tilde{\mathcal{F}}$ is a singular riemannian foliation, each geodesic that joins 0 to $\tilde{L}_{\tilde{\gamma}(t_0)}$ must be orthogonal to $\tilde{L}_{\tilde{\gamma}(t_0)}$.

Since focal points are isolated along $\tilde{\gamma}$, we can choose $\epsilon > 0$, such that $\tilde{\gamma}(t)$ is not a focal point of the plaque $\tilde{P}_{\tilde{\gamma}(t_0)}$ along $\tilde{\gamma}$ for $0 < t < \epsilon$.

Suppose that there exists $0 < t_1 < \epsilon$ such that $x = \tilde{\gamma}(t_1)$ is a singular point.

Let σ be a regular section of $\tilde{\gamma}(t_0)$. It follows from Proposition 3.1 that σ is contained in a subspace V of dimension k. Note that $x \in V$. Now we choose straight lines $l_1, \ldots, l_k : [0, 1] \to V$ such that

1. $l_i(0) \in \sigma$,
2. $l_i(1) = x$,
3. $\{l_i'(1)\}$ is a basis to T_xV.

Since σ is a regular section and $\tilde{\mathcal{F}}$ is a singular riemannian foliation, then the straight lines l_i are orthogonal to the plaque \tilde{P}_x. Therefore we have:

$$\sigma \subset \nu_x := x + \nu_x\tilde{P}_x.$$

Since x is a singular point, it follows that:

$$\dim \sigma < \dim \nu_x.$$
The equations above imply that \(\dim \tilde{P}_{\gamma(t_0)} \cap \nu_x > 0 \). Thus we can find geodesics in the subspace \(\nu_x \) that join \(x \) to the submanifold \(\tilde{P}_{\gamma(t_0)} \cap \nu_x \). Since the foliation is riemannian, these geodesics are also orthogonal to \(\tilde{P}_{\gamma(t_0)} \cap \nu_x \). This implies that \(x \) is a focal point of the submanifold \(\tilde{P}_{\gamma(t_0)} \). This contradicts our choice of \(\epsilon \) and completes the proof. \(\square \)

Lemma 3.4. Let \(S_q \) be the slice at \(q \in M \). Let \(\tilde{F} \) be the integrable singular riemannian foliation on an open set \(U \) of \(T_q S_q \) defined in Proposition 3.1. Consider a subspace \(V \) orthogonal to a regular leaf of \(\tilde{F} \). Then

a) The set of regular points of \(\tilde{F} \) is open and dense in \(V \cap U \), which is orthogonal to the leaves of \(\tilde{F} \). In particular the foliation \(\tilde{F} \) defined in Remark 3.3 is an isoparametric foliation.

b) The set of regular points of \(F \) is open and dense in \(D_\epsilon(q) := \exp_q(V \cap U) \).

c) The submanifold \(D_\epsilon(q) \) is orthogonal to the leaves of \(F \).

d) \(D_\epsilon(q) \) is a totally geodesic submanifold.

Proof. a) By assumption there is a regular section \(\tilde{\sigma} \subset V \). The fact that the set of regular points of \(\tilde{F} \) is open and dense in \(V \cap U \) follows directly from Proposition 3.3. To prove that \(V \cap U \) is orthogonal to the plaque \(\tilde{P}_x \) at \(x \in V \cap U \), define straight lines \(l_1, \ldots, l_k : [0, 1] \to V \) such that

1. \(l_i(0) \in \tilde{\sigma} \),
2. \(l_i(1) = x \),
3. \(\{l_i'(1)\} \) is a basis to \(T_x V \).

Since \(\tilde{\sigma} \) is a regular section and \(\tilde{F} \) is a singular riemannian foliation, the straight lines \(l_i \) are orthogonal to the plaque \(\tilde{P}_x \). To conclude the proof of item a) we note that the properties of \(V \) imply that \(\tilde{F} \) is a s.r.f.s. Now the slice theorem (Theorem 2.4) implies that \(\tilde{F} \) is an isoparametric foliation.

b) The item b) follows directly from item a).

c) Let \(y \in D_\epsilon(q) \) be a regular point and \(\sigma_y \) a regular section that contains \(y \). We want to prove that \(\sigma_y \subset D_\epsilon(q) \). Define \(\tilde{\sigma}_y := \exp_q^{-1}(\sigma_y) \). It follows from Proposition 3.3 that \(\tilde{\sigma}_y \) is a regular section of \(\tilde{F} \). Now item a) implies that \(\tilde{\sigma}_y \subset V \cap U \). Therefore \(\sigma_y \subset D_\epsilon(q) \), i.e., the regular leaf \(L_y \) is orthogonal to \(D_\epsilon(q) \) at \(y \). Since regular points are dense in \(D_\epsilon(q) \), the singular leaves are also orthogonal to \(D_\epsilon(q) \).

d) It follows from item c) and from the fact that regular points are dense in \(D_\epsilon(q) \). \(\square \)

Proposition 3.5. Let \(q \) be a point of \(M \) and \(D_\epsilon(q) \) the submanifold defined in Proposition 3.1. Let \(B_\delta(q) \) be the normal ball of radius \(\delta \) in \(M \) centered at \(q \). Define the disc \(D_\delta(q) := \{\exp_q(v) \text{ such that } v \in T_q D_\epsilon(q) \text{ and } ||v|| < \delta\} \). Then

a) the set of regular points of \(F \) is open and dense in \(D_\delta(q) \).

b) The submanifold \(D_\delta(q) \) is orthogonal to the leaves of \(F \).
c) $D_{\delta}(q)$ is a totally geodesic submanifold.

Remark 3.6. Note that δ (the radius of the normal neighborhood of q) is often greater than ϵ (the radius of the slice S_q) which depends on the leaf L_q.

Proof. Let $\xi \in T_qD_{\epsilon}(q)$ be a vector such that the geodesic $\gamma(t) := \exp_q(t\xi)$ has regular points $(0 \leq t \leq 1)$. It follows from Proposition 3.3 that the singular points are isolated on γ. Since γ is compact, we can cover this geodesic with a finite number of slices with centers $\gamma(t_i)$ so that $\gamma(t_i)$ is the unique possible singular point in $\gamma \cap S_{\gamma(t_i)}$. Now we can construct a submanifold T by gluing the totally geodesic submanifolds $D_{\epsilon}(\gamma(t_i))$ defined in Lemma 3.4. Note that T satisfies the conditions of item a) b) and c).

Since \exp_q is a diffeomorphism and T is totally geodesic, we can find a neighborhood W of ξ in $T_qD_{\epsilon}(q)$ and define a neighborhood of γ in T as $N := \exp_q(W)$. Therefore $N \subset D_{\delta}(q)$. Hence we have constructed a neighborhood N of γ in $D_{\delta}(q)$ that satisfies the conditions of item a), b) and c).

To conclude the proof, note that we can choose the vector ξ arbitrarily close to any vector of $T_qD_{\epsilon}(q)$ for the set of regular points of F is an open and dense set in $D_{\epsilon}(q)$.

Proof of the Theorem

Let $q \in M$ be a point. Define $D_{r_1}(q) := \{\exp_q(v) \mid v \in T_qD_{\epsilon}(q) \text{ and } \|v\| \leq r_1\}$, where r_1 is a positive number. Since $D_{r_1}(q)$ is compact, we can find a compact neighborhood of $D_{r_1}(q)$ and a number $\delta > 0$ such that, for each point x in this neighborhood, $B_\delta(x)$ is a normal ball. Let γ be a geodesic with length r_1 such that $\gamma'(0) \in T_pD_{\epsilon}(q)$.

At first we note that we can extend $D_{\epsilon}(q)$ along the geodesic γ to a noncomplete submanifold which satisfies the items of Proposition 3.5, gluing totally geodesic discs of radius $\delta/2$. To see this let the first disc be $D_{\delta/2}(q)$. It follows from Proposition 3.5 that $D_{\delta/2}(q)$ satisfies the items a),b) and c) . Now we define the second disc as $D_{\delta/2}(\gamma(\delta/4)) := \{\exp_{\gamma(\delta/4)}(v) \mid v \in T_{\gamma(\delta/4)}D_{\delta/2}(q) \text{ and } \|v\| \leq \delta/2\}$. Again, it follows from Proposition 3.5 that $D_{\delta/2}(\gamma(\delta/4))$ satisfies the items a), b) and c). We continue in this way, defining discs D_{i}’s by induction and extending $D_{\epsilon}(q)$ along γ.

Let Σ_{r_1} denote the union of the extensions constructed above along every geodesics γ with length r_1 such that $\gamma'(0) \in T_qD_{\epsilon}(q)$.

Lemma 3.7. Σ_{r_1} can be covered by a finite number of discs D_{i}’s (of radius δ) which satisfy the items a), b) and c) of Proposition 3.5.

Proof. We start the proof with the following claim.

Claim 3.8. Let $x \in D_{r_1}(q)$. Then $D_{r_1}(q) \cap B_{\delta/4}(x)$ belongs to a finite union of discs D_{i}’s (of radius $\delta/2$) which satisfy the items a), b) and c) of Proposition 3.5.
To check this claim, let K denote the set $\{v \in T_xD_i(q)\}$ such that $\exp_p(v) \in B_{\delta/4}(x)$ and $\|v\| \leq r_1$ and choose a vector $v_0 \in K$. As explained above, we can extend $D_i(q)$ along the geodesic $\exp_p(tv_0)$ to a totally geodesic noncomplete submanifold T. Since \exp is continuous, we can find a neighborhood W of the segment v_0, such that $\exp_q(tu) \subseteq T$ for all $u \in W \cap K$ and $0 < t \leq 1$. In other words, we can find a neighborhood W of v_0 such that for all $u \in W \cap K$, the extensions along $\exp_q(tu)$ are the same in $B_{\delta/4}(x)$. The claim now follows from the fact that K is compact.

To conclude the proof of the lemma, we cover $D_{r_1}(q)$ with a finite number of balls $B_{\delta/4}$. Then, using Claim 3.8, we deduce that $D_{r_1}(q)$ is contained in a finite union of discs $D_{\delta/2}(p_i)$ which satisfy the items a), b) and c) of Proposition 3.5. Thus, by the definition of Σ_{r_1}, we conclude that, for each $x \in \Sigma_{r_1}$, there exists i_0 such that $x \in D_{\delta}(p_{i_0})$.

\[\square\]

We are ready to show that Σ_{r_1} is an immersed submanifold in M. Let $G^k(M)$ be the k-Grassmann bundle of TM and $\Pi : G^k(M) \to M$ the natural projection. Let $D^*_i \subset G^k(M)$ be the set $\{T_xD_i/ x \in D_i\}$ and $\Sigma^*_i \subset G^k(M)$ be the set $\{T_xD_i/ x \in \tilde{\Sigma}_{r_1}\}$. Hence we have defined the blow-up’s of D^*_i and Σ^*_i. It is easy to see that D^*_i is embedded in $G^q(M)$. In addition, if D^*_i and D^*_j have a common point then they coincide in a neighborhood of this point. Since Σ^*_i can be covered by a finite numbers of D^*_i, we see that Σ^*_i is embedded in $G^q(M)$. We conclude that Σ_{r_1} is immersed for $\Sigma_{r_1} = \Pi\Sigma^*_i$.

To finish the proof, we choose a sequence $r_1 < \cdots < r_n \to \infty$ and construct Σ_{r_n} and Σ^*_n in a similar way as we have done before. As above we can also show that Σ^*_n is embedded and Σ_{r_n} is immersed. Finally we define $\Sigma^* := \cup_{r_n} \Sigma^*_n$. We can see that Σ^* is a submanifold and that $\Sigma := \cup_{r_n} \Sigma_{r_n}$ is immersed for $\Sigma = \Pi\Sigma^*$. The Hopf and Rinow’s Theorem implies that Σ is complete.

4. Proof of Theorem 1.7

In this section we will prove some propositions and claims, which will imply direct the Theorem 1.7. In fact, item a) of the theorem will follow from Corollary 4.9 and Proposition 4.10. Item b) will follow from Proposition 4.1 and Definition 4.3. The items c) and d) will be proved in Proposition 4.3 and Proposition 4.10 respectively. Finally, item e) will follow from Claim 4.13.

Proposition 4.1. Let S_q denote a slice at a point $q \in M$ and consider two local sections σ_0 and σ_1 that contain q. Then

a) There exists $h \in W_{S_q}$ such that $W_{\sigma_1} = hW_{\sigma_0}h^{-1}$.
b) $\overline{W_{\sigma_1}} \cdot q = \overline{W_{\sigma_0}} \cdot q \subset \sigma_1 \cap \sigma_0$.

Proof. a) Let \(w \in W_{\sigma_1} \). Then there exists a curve \(\beta_1 \) contained in a regular leaf such that \(\beta_1(0) \in \sigma_1, \beta_1(1) \in \sigma_1 \) and \(w = \varphi_{[\beta]} \).

Let \(\alpha \) be a curve contained in a regular leaf of \(F \cap S_q \) such that \(\alpha(0) \in \sigma_0 \) and \(\alpha(1) \in \sigma_1 \). Set \(h := \varphi_{[\alpha]} \).

Now we define two curves that join the local section \(\sigma_0 \) to \(\sigma_1 \) as \(\rho(t) := \varphi_{[\alpha]}(h^{-1}\beta_1(0)) \) and \(\bar{\rho}(t) := \varphi_{[\alpha]}(h^{-1}\beta_1(1)) \). Finally we define the concatenation \(\beta_0 := \rho^{-1} \ast \beta_1 \ast \rho \). Since \(h = \varphi_{[\alpha]} = \varphi_{[\rho]} = \varphi_{[\bar{\rho}]} \), we have that \(\varphi_{[\beta_0]} = h^{-1} \varphi_{[\beta_1]} h \). From the last equation, we conclude that \(W_{\sigma_1} \subset hW_{\sigma_0}h^{-1} \).

By a similar argument one can prove that \(W_{\sigma_1} \supset hW_{\sigma_0}h^{-1} \) and conclude the proof of item a).

b) If \(q \) is a regular point, then \(\sigma_0 = \sigma_1 \) and the result is trivial. Hence we can assume that \(q \) is a singular point.

We can deduce the next claim from the Slice Theorem.

Claim 4.2. Let \(T \) be the intersection of the local section \(\sigma_0 \) with the singular stratum that contains \(q \). Then \(T \subset \sigma_0 \cap \sigma_1 \) and \(h|_T \) is the identity.

On the other hand, it follows directly from the definition of \(W_{\sigma_0} \) that

\[
W_{\sigma_0} \cdot q \subset T.
\]

Now Equation 4.1 and Claim 4.2 imply that

\[
hW_{\sigma_0} \cdot q = W_{\sigma_0} \cdot q.
\]

Finally, using Proposition 2.14, Item a), Claim 4.2 and Equation 4.2 we can prove Item b) as follows:

\[
\begin{align*}
W_{\sigma_1} \cdot q \quad \text{Prop. 2.14} & \quad W_{\sigma_1} \cdot q \\
\text{Item a)} & \quad hW_{\sigma_0}h^{-1} \cdot q \\
\text{Claim 4.2} & \quad hW_{\sigma_0} \cdot q \\
\text{Eq. 4.2} & \quad W_{\sigma_0} \cdot q \\
\text{Prop. 2.14} & \quad W_{\sigma_0} \cdot q
\end{align*}
\]

\[\square\]

Definition 4.3 (Transverse Orbits). Consider a point \(q \) of \(M \) and \(\sigma \) a local section that contains \(q \). Let \(O_q \) denote the submanifold \(\overline{W}_\sigma \cdot q \), where \(\overline{W}_\sigma \) is the connected component of the identity element. It follows from Proposition 4.1 that this definition is independent of the choice of the local section \(\sigma \).

Proposition 4.4. Let \(L \) be a leaf of \(F \) and \(\overline{L} \) the closure of \(L \). Then \(\overline{L} \) is a submanifold of \(M \). In addition if \(q \) is a point of \(\overline{L} \), then a neighborhood of \(q \) in \(\overline{L} \) is the product of \(O_q \) with plaques with the same dimension of \(P_q \).

Proof. Let \(S_q \) be a slice at \(q \).
Claim 4.5. Let T denote the intersection of S_q with the stratum that contains L_q. Then $L \cap S_q \subset T$.

To check the above claim, we can assume that q is a singular point, because the claim is trivial when q is a regular point. Suppose that $L \cap S_q$ is not contained in T. Then Proposition 2.3 implies that $L \cap S_q$ must be equidistant from T. Thus q does not belong to T what contradicts our assumption.

From Claim 4.5 we can deduce the next claim.

Claim 4.6. $L \cap S_q$ are points of S_q.

Now Claim 4.6 and the item b) of the slice theorem (Theorem 2.3) imply the following claim.

Claim 4.7. If $x \in L \cap S_q$, then

(1) the plaque $P_x \subset L$,

(2) the plaque P_x intersect S_q in one point,

(3) the plaque P_x is orthogonal to S_q.

According to Claim 4.7 to prove the proposition it suffices to show that the connected component of $L \cap S_q$ which contains q is the submanifold O_q.

At first we note that if q is a regular point, then S_q is a local section and it follows from Proposition 2.14 that the connected component of $L \cap S_q$ is the submanifold O_q.

Now we suppose that q is a singular point and choose a local section σ that contains T. Since $q \in L$, we have that $q \in W_\sigma \cdot z$, for $z \in L$. This implies that $W_\sigma \cdot q = W_\sigma \cdot z$. Therefore O_q is the connected component of $W_\sigma \cdot z$ that contains q. To conclude the proof we note that Proposition 2.14 implies that the connected component of $W_\sigma \cdot z$ that contains q is the connected component of $L \cap S_q$ that contains q.

\[\square \]

Corollary 4.8. Let L be a leaf of F, \overline{L} the closure of L and $q \in \overline{L}$. Then $L_q \subset \overline{L}$ and $L_q = \overline{L}$.

Corollary 4.9. The singular partition $\{\overline{L}\}_{L \in F}$ is a transnormal system.

Proof. Let γ be a geodesic orthogonal to \overline{L} so that $\gamma(0) \in \overline{L}$. Since $L_{\gamma(0)} \subset \overline{L}$ (see Corollary 4.8), the geodesic γ is orthogonal to the leaf $L_{\gamma(0)}$. Therefore, by the slice theorem, the segment of geodesic $\gamma|_{(-\epsilon, \epsilon)}$ is containted in a local section σ, for a small ϵ.

Since γ is orthogonal to \overline{L}, it follows from Proposition 4.4 that γ is orthogonal to $W_\sigma \cdot \gamma(0)$. Since W_σ is a pseudogroup of isometries, γ is orthogonal to the orbits of W_σ. This fact and Proposition 4.4 imply that γ is orthogonal to $L_{\gamma(t)}$ for every $t \in (-\epsilon, \epsilon)$.

With the above argument one can prove that $\gamma|_{(-\epsilon, \epsilon)}$ is orthogonal to $\{\overline{L}\}_{L \in F}$. To prove that γ is also orthogonal to $\overline{L}_{\gamma(t)}$, we note that γ is orthogonal to the leaf $L_{\gamma(t)}$ and hence is contained in a local section σ. By
Proposition 4.10. Let \(q \) be a singular point and \(T \) the intersection of the slice \(S_q \) with the stratum that contains \(q \). Then the normal connection of \(T \) in \(S_q \) is flat.

Proof. Let \(x_0 \) and \(x_1 \) be points of \(T \) and \(v \) be a vector of the normal space \(\nu_{x_0} T \cap T_{x_0} S_q \). Let \(\|\gamma(\alpha)_0^0 v \| \) denote the parallel normal transport of \(v \) along a curve \(\alpha \subset T \) so that \(\alpha(0) = x_0 \) and \(\alpha(1) = x_1 \). We want to prove that \(\|\gamma(\alpha)_0^0 v \| \) independ of the choice of the curve \(\alpha \). Let \(\|\alpha_0^0 v \| \) denote the parallel transport of \(v \) along \(\alpha \). Since \(T \) is totally geodesic, \(\|\gamma(\alpha)_0^0 v \| = \|\alpha_0^0 v \| \). Thus, it suffices to prove that \(\|\alpha_0^0 v \| \) independ of the choice of the curve \(\alpha \) that joins \(x_0 \) to \(x_1 \).

We choose a local section \(\sigma \) that is tangent to \(v \). It follows from the slice theorem that \(T \subset \sigma \). Since \(\sigma \) is totally geodesic, \(\|\alpha_0^0 v \| \subset \sigma \) for all \(t \).

From now on we consider \(\sigma \) as the ambient space of \(T \).

Let \(N_{x_0} \) be the slice at \(x_0 \) of \(T \) i.e.,

\[
N_{x_0} := \{ \exp_{x_0} v, \text{ for } v \in (\nu_{x_0} T \cap T_{x_0} \sigma) \} \quad \text{and} \quad \exp_{x_0} v \subset S_q.
\]

It follows from the slice theorem that we can choose a basis \(\{ \xi_i \}_{i=1}^k \) of \(T_{x_0} N_{x_0} \) such that \(x_0, \exp_{x_0} (\xi_1), \ldots, \exp_{x_0} (\xi_k) \) are vertices of a simplicial cone contained in the singular stratification of \(N_{x_0} \). Let \(T_i \) denote the singular stratum that contains the curve \(s \to \exp_{x_0} (s \xi_i) \), for small \(s \).

Since \(T_i \) is totally geodesic, the parallel transport \(\|\alpha_0^0 \xi_i \| \) is always tangent to \(T_i \). On the other hand, \(T \) is a totally geodesic hypersurface of \(T_i \). These two facts implies that \(\|\alpha_0^0 \xi_i \| \) independ of the choice of \(\alpha \). Therefore \(\|\alpha_0^0 v \| \) independ of the choice of \(\alpha \) because \(\{ \xi_i \} \) is a basis of \(N_{x_0} \).

\[
\square
\]

Proposition 4.11. The singular partition \(\mathcal{F} := \{ \mathcal{L} \}_{L \in \mathcal{F}} \) is a singular foliation.

Proof. Let \(S_q \) denote the slice at a point \(q \). It suffices to prove that \(\mathcal{F} \cap S_q \) is a singular foliation. Since \(\mathcal{F} \cap S_q \) is already a singular foliation, Proposition 4.14 implies that it is enough to prove that \(\{ O_x \}_{x \in S_q} \) is a singular foliation.

If \(q \) is a regular point, then the slice \(S_q \) is a local section \(\sigma \) and the result follows from the fact that \(\{ O_x \}_{x \in \sigma} \) are orbits of the pseudogroup of isometries \(\mathcal{W}_\sigma \). Thus we can suppose that \(q \) is a singular point.

Let \(T \) denote the intersection of the slice \(S_q \) with the singular stratum that contains \(q \). Since the normal connection of \(T \) in \(S_q \) is flat (see Proposition 4.10), we can define the end point map \(\eta_L : T \to S_q \) where \(\xi \) is a parallel normal vector field along \(T \). One can easily check that:

Claim 4.12. The partition \(\{ \eta_L(T) \}_{L \in \mathcal{F}} \) is a regular foliation, where \(\mathcal{F} \) is the set of all parallel normal vector field along \(T \).
Using Claims 4.12 above and Claim 4.13 below one can show that \(\{O_x\}_{x \in S_q} \) is a singular foliation and conclude the proof.

Claim 4.13. Let \(x \in T \) and \(y = \exp_x(v) \) for \(v \in \nu_x T \). Then \(O_y = \eta_v(O_x) \)

We start the proof of Claim 4.13 choosing a local section \(\sigma \) so that \(v \) is tangent to \(\sigma \). We also consider a curve \(w : (-\epsilon, \epsilon) \to W^0_\sigma \) in the connected component of the identity of \(W_\sigma \) and define a curve \(\alpha(t) := w(t) \cdot x \). Next we review the definitions used in the proof of Proposition 4.10. Let \(N_{\alpha(t)} \) be the slice at \(\alpha(t) \) of \(T \) (see (4.3)) and \(\{\xi_i\} \) a basis of \(T_x N_x \) so that \(x, \exp_x(\xi_1), \ldots, \exp_x(\xi_k) \) are vertices of a simplicial cone contained in the singular stratification of \(N_x \). Let \(T_i \) denote the singular stratum that contains the curve \(s \to \exp_x(s \xi_i) \), for small \(s \).

Since the local isometries of \(W_\sigma \) leave \(T \) invariant, we can conclude that
\[
d w(t)_x \xi_i \in T_{\alpha(t)} N_{\alpha(t)}
\]
We can also deduce that \(w(t) : T_i \to T_i \), using the fact that \(W_\sigma \) leave singular stratum invariant. Therefore we have:
\[
d w(t)_x \xi_i \in T_{\alpha(t)} T_i.
\]
On the other hand, the fact that \(T_i \) is totally geodesic and \(T \) is a totally geodesic hypersurface of \(T_i \) imply that:
\[
\|((\alpha)_0^t \xi_i) \in T_{\alpha(t)} T_i \cap T_{\alpha(t)} N_{\alpha(t)},
\]
where \(\|((\alpha)_0^t \xi_i \) is the parallel transport of \(\xi_i \) along the curve \(\alpha \).

Finally we can deduce from Equations 4.4, 4.5 and 4.6 that:
\[
d w(t)_x \xi_i = \|((\alpha)_0^t \xi_i.
\]
Since \(\{\xi_i\} \) is a basis of \(N_x \), it follows from Equation 4.7 that
\[
d w(t)_x v = \|((\alpha)_0^t v,
\]
which implies Claim 4.13.

\[\blacksquare\]

5. Proof of Corollary 1.8

Let \(\sigma \) be a local section that contains \(q \). The fact that \(T = \{q\} \) implies that \(W_\sigma \) has discrete orbits. Therefore the leaves in a tubular neighborhood of \(L_q \) are closed. Now suppose that there exists a nonclosed leaf \(L \). Let \(\gamma \) be a geodesic orthogonal to \(L \) such that \(\gamma(0) \in L \) and \(\gamma(1) \) is a regular point of \(\sigma \). Since \(L \) is not closed, the submanifold \(O_{\gamma(0)} \) has dimension greater then zero. It follows from item c) of Theorem 1.7 that \(\gamma \) is orthogonal to \(O_{\gamma(0)} \). Since the leaves near to a neighborhood of \(\gamma(1) \) in \(\sigma \) intersect \(\sigma \) only one time, we can use Corollary 2.2 to conclude that all points of \(\gamma \) near to \(\gamma(1) \) are focal points of \(O_{\gamma(0)} \). This contradicts the fact that focal points are isolated.
References

1. M. M. Alexandrino, *Integrable riemannian submersion with singularities*, Geometriae Dedicata, **108** (2004), 141-152.

2. M. M. Alexandrino, *Singular riemannian foliations with sections*, Illinois Journal of Mathematics **48** (2004) No 4, 1163-1182.

3. M. M. Alexandrino, *Generalizations of isoparametric foliations*, to appear in Matemática Contemporânea.

4. M. M. Alexandrino, D. Töben, *Singular riemannian foliations on simply connected spaces*, to appear in Differential Geometry and Applications.

5. H. Boualem, *Feuilletages riemanniens singuliers transversalement intégrables*. Compositio Mathematica **95** (1995), 101-125.

6. E. Heintze, X. Liu and C. Olmos, *Isoparametric submanifolds and a Chevalley-Type restriction theorem*, Preprint 2000, http:// arxiv.org, math.dg.0004028.

7. A. Kollross, *A classification of hyperpolar and cohomogeneity one actions*, Trans. Amer. Math. Soc. **354** (2002), 571-612.

8. A. Lytchak and G. Thorbergsson, *Variationally complete actions on nonnegatively curved manifolds*, Preprint.

9. P. Molino, *Riemannian foliations*, Progress in Mathematics vol. 73, Birkhäuser Boston 1988.

10. R.S.Palais and C.L. Terng, *Critical point theory and submanifold geometry*, Lecture Notes in Mathematics 1353, Springer-Verlag 1988.

11. F. Podestà and G. Thorbergsson, *Polar actions on rank one symmetric spaces*, J. Differential Geometry **53** (1999) No 1, 131-175.

12. J. Szentehe, *Orthogonally transversal submanifolds and the generalizations of the Weyl group*, Periodica Mathematica Hungarica **15** (1984) No 4, 281-299.

13. S. Tebege, *Polar and coisotropic actions on kähler manifolds*, Diplomarbeit, Mathematischen Institut der Universität zu Köln (2003).

14. C.-L. Terng and G. Thorbergsson, *Submanifold geometry in symmetric spaces*, J. Differential Geometry **42** (1995), 665-718.

15. G. Thorbergsson, *A Survey on Isoparametric Hypersurfaces and their Generalizations*, Handbook of Differential Geometry, Vol 1, Elsevier Science B.V. 2000.

16. G. Thorbergsson, *Transformation groups and submanifold geometry*, to appear in Rendiconti di Matematica.

17. D. Töben, *Parallel focal structure and singular riemannian foliations*, to appear in Trans. Amer. Math. Soc.

Marcos Martins Alexandrino, Instituto de Matemática e Estatística, Universidade de São Paulo (USP), Rua do Matão, 1010, Bloco A, 05508 090, São Paulo, Brazil

E-mail address: malex@ime.usp.br
E-mail address: marcosmalex@yahoo.de