Innovative technology for assessing the quality of information security systems in the design of a modern educational environment

O M Bulgakov¹, A M Kadnova², N I Grebennikova³, V A Meshcheryakov⁴ and R V Belyaev⁵

¹Krasnodar University of the Ministry of Internal Affairs of the Russian Federation, 128, Yaroslavskaya str., Krasnodar, 350005, Russian Federation
²Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation, 53, Patriots ave., Voronezh, 394065, Russian Federation
³Voronezh State Technical University, 14, Moscow ave., Voronezh, 394026, Russian Federation
⁴Central branch of the Russian State University of Justice, 72, Koltsovskaya str., Voronezh, 394006, Russian Federation
⁵Air Force Academy named after Professor N.E. Zhukovsky and Yu. A. Gagarin, 53 a, Starykh Bolshevikov str., Voronezh, 394064, Russian Federation

E-mail: aizhana_kadnova@mail.ru

Abstract. The article describes an experimentally-based innovative technology for assessing the performance characteristic «Usability» of the information security system in the automated system of the digital educational environment. This characteristic consists of indicators: the structure of a typical operation, time index and probability rate. On the basis of the obtained results of the assessment of the listed indicators it is possible to choose an information security system for the designed digital educational environment.

1. Introduction
Restricted information circulating in any modern digital educational environment (DEE) is subject to many risks and threats of different and mixed nature. The security of such an educational environment is ensured by the presence of protected automated systems (AS) in it. The function of protecting the information circulating in the protected AS is performed by the information security system (ISS), which implements the electronic protective measures [1]. ISS is a complex human-machine system, to the design of which a particular attention should be paid, since a poor-quality DEE protection mechanism can lead to unacceptable damage.

The quality and effectiveness of ISS functioning depends on its ergonomic support [2-3]. One of the ways to obtain the maximum possible coordination of the ISS technical component with the operator's features is to develop a convenient program interface [4-5]. The main operator interacting with the ISS through the interface is the security administrator [6-10], who has a direct impact on the effectiveness of the protection of information circulating in the protected AS and in the DEE as a whole. According to GOST 28806-90 [11], the assessment of the performance characteristic «Usability» is relevant for the
ISS. Thus, the purpose of the article is to develop the system of indicators of the performance characteristic “Usability” of the DEE AS ISS and the methods of their assessment.

2. Materials and methods
The performance characteristic «Usability» of the ISS can be assessed theoretically and experimentally. Theoretical assessment has some weaknesses and limitations, therefore it is advisable to take an assessment on the basis of an experiment.

The assessment of the performance characteristic «Usability» is a gradual assessment of three indicators that characterize any typical operation performed by the ISS security administrator. These parameters include: the structure of a typical operation, time index and the probability rate.

Assessment of the ISS performance characteristic “Usability” based on the experiment represents the following.

Before the start of the experiment, the choice of the ISS, which will be the platform for the experiment fulfillment, should be made, in our case, it is «Guard NT 3.0». Furthermore, in accordance with the program documentation [8] and the survey of ISS administrators, a list is specified containing typical operations that will be performed by the supposed ISS administrators. Then, groups of users are formed, who, as ISS administrators, will perform operations from the composed list.

The realization of experiment involved 81 fifth-year students trained in the specialty 10.05.01 – «Computer security». All participants were divided into quantitative equal groups, depending on the level of proficiency in the «Guard NT 3.0» ISS.

To assess the indicator «structure of a typical operation» of the «Guard NT 3.0» ISS performance characteristic «Usability>, each operation performed by security administrators was divided into elementary actions.

To assess the indicator «time index» the average time of fulfillment of all operations by each group of security administrators was identified. The used tool was the IOGraph V1.0.1 application, which implements the mouse-tracking technology («screen-scaping» technology).

The assessment of the indicator «probability rate» was carried out by constructing the functions of distribution of the time taken by operators to execute typical operations. The experimental evaluation and the calculations are resulting in the values of timeliness of performing typical operations by the ISS administrators.

3. Results and its discussion
The particularity of this experiment was to create the most realistic conditions for the interaction of operators with the selected ISS.

The participants of the experiment acting as administrators of the «Guard NT 3.0» ISS performed the following typical operations: «Exporting settings of «Information media registering» program», «Editing properties for information media groups», «Editing permissions», «Classification mark assignment», «User reidentification», «Working with an event filter «, «Computer locking».

Each of the above named operations can be decomposed into a sequence of elementary actions, which, in its turn, is an indicator of «Guard NT 3.0» ISS performance characteristic «Usability» – the structure of a typical operation. As an example, let us consider the structure of a typical operation «Exporting settings of «Information media registering» program».

The operation «Exporting settings of «Information media registering» program» has the following structure. The security administrator selects the menu item «Information media», then «Export settings». After that, a window will appear where the security administrator selects the information media groups, the settings of which he will export, and clicks the «Next» button. Then, in the window that appears, the security administrator selects the media the settings of which he needs to export to other computers and clicks the «Next» button. In the window that appears, the security administrator selects the required computer or computers and clicks the «Finish» button. Then the settings will be transferred to the selected computers.

During the performance of typical operations by each group of users, the IOGraph V1.0.1 tool, that
implements the mouse-tracking method, recorded the required execution time of these operations. The results of the assessment of the time index are presented in table 1.

Table 1. The results of the time index assessment of «Guard NT 3.0» ISS performance characteristic «Usability».

Name of typical operation performed by the «Guard NT 3.0» ISS administrator	The value of the time index of a typical operation, s		
Exporting settings of «Information media registering» program	user group «entry–level users»	user group «mid–level users»	user group «advanced users»
Editing properties for information media groups	70	55	50
Editing permissions	120	75	70
Classification mark assignment	200	120	110
User reidentification	60	35	35
Working with an event filter	100	100	100
Computer locking	350	300	300

Based on the obtained values of the time index of typical operations performance by the groups of users presented in table 1, an estimation of the probability rate of the «Guard NT 3.0» ISS performance characteristic «Usability» was obtained, which is presented in table 2. At the same time, according to [13, 14], in the operational evaluation, a truncated normal distribution was used to describe the statistical characteristics of the typical operations execution by a group of users.

Table 2. The results of the probability rate assessment of «Guard NT 3.0» ISS performance characteristic «Usability».

Name of typical operation performed by the «Guard NT 3.0» ISS administrator	Time of execution of typical operation by the «Guard NT 3.0» ISS administrator, s	Probability of execution of typical operation by the «Guard NT 3.0» ISS administrator		
Exporting settings of «Information media registering» program	40	0.0013	0.0667	0.1586
50	0.0227	0.3084	0.4999	
60	0.1586	0.6914	0.8412	
70	0.4999	0.9331	0.9771	
80	0.8412	0.9937	0.9986	
90	0.9771	-	-	
100	0.9998	-	-	
Editing properties for information media groups	40	-	0.0001	0.0013
50	-	0.0061	0.0227	
60	-	0.0667	0.1586	
70	-	0.3084	0.4999	
80	-	0.6914	0.8412	
90	0.0013	0.9331	0.9771	
100	0.0227	0.9937	0.9986	
110	0.1586	0.9998	0.9999	
120	0.4999	-	-	
130	0.8412	-	-	
140	0.9771	-	-	
150	0.9986	-	-	

Editing permissions	80	-	0.0013
100	-	0.0227	0.1586
120	-	0.4999	0.8412
140	-	0.9771	0.9986
4. Conclusion

Summing up what has been said, the article describes an innovative technology for assessing the ISS performance characteristic «Usability», namely the experimentally-based assessment of its indicator «structure of a typical operation», time index and probability rate. The assessment of the indicator «structure of a typical operation» was carried out by way of decomposing the operations performed by the security administrator during the operation of ISS. The assessment of the time index was carried out by determining the average time of execution of typical operations by security administrators. The assessment of the probability rate was carried out by constructing the functions of distribution of the time taken by security administrators to execute typical operations. The obtained values will allow to choose the most effective ISS for the designed educational environment. The results can be used, for example, when designing software for the following tasks: big data analytics for IoT platform [15], data flows in an IP-based networks [16], information security risk estimation for cloud infrastructure [17].

References

[1] Kadnova A M, Makarov O Yu, Mishin S A and Rogozin E A 2019 Algorithm of the creation of the protected automated systems. Information technology security 26 93-100
[2] Boehm B W, Lipow M, MacLeod G J, Brown J R and Kaspar H 1978 Characteristics of Software Quality (Amsterdam: North-Holland) p 208
[3] Boehm B W 1981 Software engineering economics (USA: Prentice Hall) p 512
[4] Nazarenko N A and Osetrov A V 2015 Special aspects of the ergonomic evaluation of user interfaces of the dedicated man-machine systems Biotechnosphere 1 38-43
[5] ISO/IEC 15408-2:2008 «Information technology – Security techniques – Evaluation criteria for IT security» Available at: https://www.iso.org/standard (accessed 15 December 2019)
[6] ISO/IEC 17000:2004 Conformity assessment – Vocabulary and general principles Available at:
https://www.iso.org/ru/standard (accessed 15 December 2019)

[7] Kadnova A M, Bokova O I, Rogozin E A and Serpilin A S 2019 System of indicators of quality of functioning at creation of system of information security on object of informatization of Internal Affairs Department Devices and systems. Management, control, diagnostics 1 32-9

[8] The system of information security «Guardian of NT 3.0». Administrator's Guide. Available at: https://www.guardnt.ru/doc (accessed 15 December 2019)

[9] Plumbaum T, Stelter T and Korth A 2009 Semantic Web Usage Mining: Using Semantics to Understand User Intentions Proc. of the 17th Int. Conf. on User Modeling, Adaptation, and Personalization: formerly UM and AH Trento (Italy) 391-6

[10] Couper M P, Tourangeau R, Conrad F G and Crawford S D 2004 What they see is what we get: response options for web surveys Social Science Computer Review 22 111-27

[11] Nakamichi N, Shima K, Sakai M and Matsumoto 2006 K Detecting low usability web pages using quantitative data of users’ behavior Proc. of the 28th int. conf. on Software engineering (Shanghai, China) 569-76

[12] State Standard 28806-90 Quality of software. Terms and definitions Available at: http://docs.cntd.ru/document (accessed 15 December 2019)

[13] Kadnova A M 2019 Methodical approach to evaluation of probabilistic indicator of timeliness of typical operations by the administrator of the information security system of the automated system Bulletin of the Dagestan State Technical University 3 87-96

[14] Druzhinin G V 1977 Reliability of automated systems (Moscow: Energy) p 536

[15] Ivanova D and Elenkov A 2019 Big Data Analytics for Air Quality Monitoring Assessment Based on IoT Platform International Journal on Information Technologies and Security 2(11) 43-50

[16] Nedyalkov I, Stefanov A and Georgiev G 2019 Studying and Characterization of the Data Flows in an IP-Based Network International Journal on Information Technologies and Security 1(11) 3-12

[17] Tsaregorodtsev A V, Kravets O Ja, Choporov O N and Zelenina A N 2018 Information Security Risk Estimation for Cloud Infrastructure International Journal on Information Technologies and Security 4(10) 67-76