THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF THE
POSET \((\mathbb{N}_0^3, \leq)\) WITH COFINITE DOMAINS AND IMAGES

OLEG GUTIK AND OLHA KROKHMALNA

ABSTRACT. Let \(n \) be a positive integer \(\geq 2 \) and \(\mathbb{N}_0^n \) is the \(n \)-th power of positive integers with the product order of the usual order on \(\mathbb{N} \). In the paper we study the semigroup of injective partial monotone selfmaps of \(\mathbb{N}_0^n \) with cofinite domains and images. We show that the group of units \(H(\mathbb{N}) \) of the semigroup \(\mathcal{P}O_{\infty}(\mathbb{N}_0^n) \) is isomorphic to the group \(\mathcal{S}_n \) of permutations of an \(n \)-element set, and describe the subsemigroup of idempotents of \(\mathcal{P}O_{\infty}(\mathbb{N}_0^n) \). Also in the case \(n = 3 \) we describe the subsemigroup of partial bijections of the poset \(\mathbb{N}_0^3 \) and Green’s relations on the semigroup \(\mathcal{P}O_{\infty}(\mathbb{N}_0^3) \).

1. Introduction and preliminaries

We shall follow the terminology of [19] and [44].

In this paper we shall denote the cardinality of the set \(A \) by \(|A| \). We shall identify all sets \(X \) with their cardinality \(|X| \). For an arbitrary positive integer \(b \) by \(\mathcal{S}_n \) we denote the group of permutations of an \(n \)-elements set. Also, for infinite subsets \(A \) and \(B \) of an infinite set \(X \) we shall write \(A \subseteq^* B \) if and only if there exists a finite subset \(A_0 \) of \(A \) such that \(A \setminus A_0 \subseteq B \).

An algebraic semigroup \(S \) is called inverse if for any element \(x \in S \) there exists a unique \(x^{-1} \in S \) such that \(xx^{-1}x = x \) and \(x^{-1}xx^{-1} = x^{-1} \). The element \(x^{-1} \) is called the inverse of \(x \in S \).

If \(S \) is a semigroup, then we shall denote the subset of idempotents in \(S \) by \(E(S) \). If \(S \) is an inverse semigroup then \(E(S) \) is closed under multiplication and we shall refer to \(E(S) \) as a band (or the band of \(S \)). If the band \(E(S) \) is a non-empty subset of \(S \) then the semigroup operation on \(S \) determines the following partial order \(\leq \) on \(E(S) \): \(e \leq f \) if and only if \(ef = fe = e \). This order is called the natural partial order on \(E(S) \). A semilattice \(E \) is a commutative semigroup of idempotents. A semilattice \(E \) is called linearly ordered or a chain if its natural order is a linear order.

If \(S \) is a semigroup, then we shall denote the Green relations on \(S \) by \(\mathcal{R}, \mathcal{L}, \mathcal{J}, \mathcal{D} \) and \(\mathcal{H} \) (see [22] or [19] Section 2.1]):

\[
\begin{align*}
a\mathcal{R}b & \text{ if and only if } aS^1 = bS^1; \\
a\mathcal{L}b & \text{ if and only if } S^1a = S^1b; \\
a\mathcal{J}b & \text{ if and only if } S^1aS^1 = S^1bS^1; \\
\mathcal{D} & = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}; \\
\mathcal{H} & = \mathcal{L} \cap \mathcal{R}.
\end{align*}
\]

The \(\mathcal{R} \)-class (resp., \(\mathcal{L} \)-, \(\mathcal{H} \)-, \(\mathcal{D} \)- or \(\mathcal{J} \)-class) of the semigroup \(S \) which contains an element \(a \) of \(S \) will be denoted by \(R_a \) (resp., \(L_a, H_a, D_a \) or \(J_a \)).

If \(\alpha : X \to Y \) is a partial map, then by \(\text{dom} \alpha \) and \(\text{ran} \alpha \) we denote the domain and the range of \(\alpha \), respectively.

Let \(\mathcal{J}_\lambda \) denote the set of all partial one-to-one transformations of an infinite set \(X \) of cardinality \(\lambda \) together with the following semigroup operation: \(x(\alpha \beta) = (x\alpha)\beta \) if \(x \in \text{dom}(\alpha \beta) = \{ y \in \text{dom} \alpha : y\alpha \in \text{dom} \beta \} \).
The semigroup \mathcal{S}_α is called the symmetric inverse semigroup over the set X (see [19, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [48] and it plays a major role in the semigroup theory. An element $\alpha \in \mathcal{S}_\alpha$ is called cofinite, if the sets $\lambda \setminus \text{dom} \alpha$ and $\lambda \setminus \text{ran} \alpha$ are finite.

For an arbitrary partial order called a partial map λ and the symmetric inverse semigroup was introduced by Wagner [48] and it plays a major role in the semigroup theory. An element $\alpha \in \mathcal{S}_\alpha$ is called cofinite, if the sets $\lambda \setminus \text{dom} \alpha$ and $\lambda \setminus \text{ran} \alpha$ are finite.

If X is a non-empty set and \leq is reflexive, antisymmetric, transitive binary relation on X then \leq is called a partial order on X and (X, \leq) is said to be a partially ordered set or shortly a poset.

Let (X, \leq) be a partially ordered set. A non-empty subset A of (X, \leq) is called:

- a chain if the induced partial order from (X, \leq) onto A is linear, i.e., any two elements from A are comparable in (X, \leq);
- an ω-chain if A is order isomorphic to the set of negative integers with the usual order \leq;
- an anti-chain if any two distinct elements from A are incomparable in (X, \leq).

For an arbitrary $x \in X$ and non-empty $A \subseteq X$ we denote

$$\uparrow x = \{y \in X : x \leq y\}, \quad \downarrow x = \{y \in X : y \leq x\}, \quad \uparrow A = \bigcup_{x \in A} \uparrow x \quad \text{and} \quad \downarrow A = \bigcup_{x \in A} \downarrow x.$$

We shall say that a partial map $\alpha : X \rightarrow X$ is monotone if $x \leq y$ implies $(x)\alpha \leq (y)\alpha$ for $x, y \in \text{dom} \alpha$.

Let \mathbb{N} be the set of positive integers with the usual linear order \leq and n be an arbitrary positive integer greater then or equal 2. On the Cartesian power $\mathbb{N}^n = \mathbb{N} \times \cdots \times \mathbb{N}$ we define the product partial order, i.e.,

$$(i_1, \ldots, i_n) \leq (j_1, \ldots, j_n) \quad \text{if and only if} \quad i_k \leq j_k \quad \text{for all} \quad k = 1, \ldots, n.$$

Later the set \mathbb{N}^n with this partial order will be denoted by \mathbb{N}^n.

For an arbitrary positive integer $n \geq 2$ by $\mathcal{P}\mathcal{O}_\times(\mathbb{N}^n_\leq)$ we denote the semigroup of injective partial monotone selfmaps of \mathbb{N}^n_\leq with cofinite domains and images. Obviously, $\mathcal{P}\mathcal{O}_\times(\mathbb{N}^n_\leq)$ is a submonoid of the semigroup \mathcal{S}_ω and $\mathcal{P}\mathcal{O}_\times(\mathbb{N}^n_\leq)$ is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup $\mathcal{P}\mathcal{O}_\times(\mathbb{N}^n_\leq)$ by \mathbb{I} and the group of units of $\mathcal{P}\mathcal{O}_\times(\mathbb{N}^n_\leq)$ by $H(\mathbb{I})$.

The bicyclic semigroup (or the bicyclic monoid) $\mathcal{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q, subject only to the condition $pq = 1$. The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a group congruence. Moreover, every homomorphism h of the bicyclic semigroup is either an isomorphism or the image of $\mathcal{C}(p, q)$ under h is a cyclic group (see [19, Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semigroups and in the theory of topological semigroups. For example a well-known Andersen’s result [11] states that a (0–)simple semigroup with an idempotent is completely (0–)simple if and only if it does not contain an isomorphic copy of the bicyclic semigroup. Semigroup and shift-continuous topologizations of the bicyclic monoid and its generalizations, they embedding into compact-like topological semigroups was studied in [5] [6] [7] [8] [9] [11] [14] [18] [20] [21] [24] [25] [26] [28] [31] [33] [35] [43] [46] and [2] [3] [4] [10] [12] [33] [42], respectively.

The bicyclic monoid is isomorphic to the semigroup of all bijections between upper-sets of the poset (\mathbb{N}, \leq) (see: see Exercise IV.1.11(ii) in [47]). So, the semigroup of injective isotone partial selfmaps with cofinite domains and images of positive integers is a generalization of the bicyclic semigroup. Hence, it is a natural problem to describe semigroups of injective isotone partial selfmaps with cofinite domains and images of posets with ω-chain.

The semigroups $\mathcal{I}_\times(\mathbb{N})$ and $\mathcal{I}_\times(\mathbb{Z})$ of injective isotone partial selfmaps with cofinite domains and images of positive integers and integers, respectively, are studied in [34] and [35]. It was proved that the semigroups $\mathcal{I}_\times(\mathbb{N})$ and $\mathcal{I}_\times(\mathbb{Z})$ have similar properties to the bicyclic semigroup: they are bisimple and every non-trivial homomorphic image $\mathcal{I}_\times(\mathbb{N})$ and $\mathcal{I}_\times(\mathbb{Z})$ is a group, and moreover the semigroup $\mathcal{I}_\times(\mathbb{N})$ has $\mathbb{Z}(+) = \mathbb{Z}(+) \times \mathbb{Z}(+)$ as a maximal group image and $\mathcal{I}_\times(\mathbb{Z})$ has $\mathbb{Z}(+) \times \mathbb{Z}(+)$, respectively.
In the paper \[36\] algebraic properties of the semigroup \(I^\lambda_\text{cf}\) of cofinite partial bijections of an infinite cardinal \(\lambda\) are studied. It is shown that \(I^\lambda_\text{cf}\) is a bisimple inverse semigroup and that for every non-empty chain \(L\) in \(E(I^\lambda_\text{cf})\) there exists an inverse subsemigroup \(S\) of \(I^\lambda_\text{cf}\) such that \(S\) is isomorphic to the bicyclic semigroup and \(L \subseteq E(S)\). described the Green relations on \(I^\lambda_\text{cf}\) and proved that every non-trivial congruence on \(I^\lambda_\text{cf}\) is a group congruence. Also, the structure of the quotient semigroup \(I^\lambda_\text{cf}/\sigma\), where \(\sigma\) is the least group congruence on \(I^\lambda_\text{cf}\), is described.

In the paper \[32\] the semigroup \(\mathcal{I}_\infty(Z^n_{\text{lex}})\) of monotone injective partial selfmaps of the set of \(L_n \times_{\text{lex}} \mathbb{Z}\) having cofinite domain and image, where \(L_n \times_{\text{lex}} \mathbb{Z}\) is the lexicographic product of \(n\)-elements chain and the set of integers with the usual linear order was studied. There it is described the Green relations on \(\mathcal{I}_\infty(Z^n_{\text{lex}})\), showed that the semigroup \(\mathcal{I}_\infty(Z^n_{\text{lex}})\) is bisimple and established its projective congruences. Also, in \[32\] there it is proved that \(\mathcal{I}_\infty(Z^n_{\text{lex}})\) is finitely generated, every automorphism of \(\mathcal{I}_\infty(Z)\) is inner, and it is showed that in the case \(n \geq 2\) the semigroup \(\mathcal{I}_\infty(Z^n_{\text{lex}})\) has non-inner automorphisms. In \[32\] we proved that for every positive integer \(n\) the quotient semigroup \(\mathcal{I}_\infty(Z_n^{\text{lex}})/\sigma\), where \(\sigma\) is a least group congruence on \(\mathcal{I}_\infty(Z_n^{\text{lex}})\), is isomorphic to the direct power \((Z(+))^{2n}\). The structure of the sublattice of congruences on \(\mathcal{I}_\infty(Z_n^{\text{lex}})\) which are contained in the least group congruence is described in \[29\].

In the paper \[30\] algebraic properties of the semigroup \(\mathcal{P}_\infty(N^2_\leq)\) are studied. The properties of elements of the semigroup \(\mathcal{P}_\infty(N^2_\leq)\) as monotone partial bijection of \(N^2_\leq\) are described and showed that the group of units of \(\mathcal{P}_\infty(N^2_\leq)\) is isomorphic to the cyclic group of order two. Also in \[30\] the subsemigroup of idempotents of \(\mathcal{P}_\infty(N^2_\leq)\) and the Green relations on \(\mathcal{P}_\infty(N^2_\leq)\) are described. In particular, there was proved that \(D = \mathcal{I}\) in \(\mathcal{P}_\infty(N^2_\leq)\). In \[31\] the natural partial order \(\leq\) on the semigroup \(\mathcal{P}_\infty(N^2_\leq)\) is described and shown that it coincides with the natural partial order which is induced from symmetric inverse monoid \(S_{N \times N}\) over the set \(N \times N\) onto the semigroup \(\mathcal{P}_\infty(N^2_\leq)\). Also, there it is proved that the semigroup \(\mathcal{P}_\infty(N^2_\leq)\) is isomorphic to the semidirect product \(\mathcal{P}_\infty(N^2_\leq) \rtimes Z_2\) of the monoid \(\mathcal{P}_\infty^+(N^2_\leq)\) of orientation-preserving monotone injective partial selfmaps of \(N^2_\leq\) with cofinite domains and images by the cyclic group \(Z_2\) of the order two. The congruence \(\sigma\) on the semigroup \(\mathcal{P}_\infty(N^2_\leq)\), which is generated by the natural order \(\leq\) on the semigroup \(\mathcal{P}_\infty(N^2_\leq): \sigma = \alpha \sigma \beta\) if and only if \(\alpha\) and \(\beta\) are comparable in \((\mathcal{P}_\infty(N^2_\leq), \leq)\) was described. It is proved that the quotient semigroup \(\mathcal{P}_\infty^+(N^2_\leq)/\sigma\) is isomorphic to the free commutative monoid \(\mathcal{AM}_\omega\) over an infinite countable set and show that quotient semigroup \(\mathcal{P}_\infty(N^2_\leq)/\sigma\) is isomorphic to the semidirect product of the free commutative monoid \(\mathcal{AM}_\omega\) by the group \(Z_2\).

In the paper \[38\] the semigroup \(\mathbb{I}_{\infty}\) of all partial co-finite isometries of positive integers is studied. The semigroup \(\mathbb{I}_{\infty}\) is a some generalization of the bicyclic monoid and it is a submonoid of \(I'_\infty(N)\). Green's relations on the semigroup \(\mathbb{I}_{\infty}\), its band is described there and it is proved that \(\mathbb{I}_{\infty}\) is a simple \(E\)-unitary \(F\)-inverse semigroup. Also there is described the least group congruence \(c_{mg}\) on \(\mathbb{I}_{\infty}\) and proved that the quotient-semigroup \(\mathbb{I}_{\infty}/c_{mg}\) is isomorphic to the additive group of integers. An example of a non-group congruence on the semigroup \(\mathbb{I}_{\infty}\) was presented. Also there it was proved that a congruence on the semigroup \(\mathbb{I}_{\infty}\) is a group congruence if and only if its restriction onto an isomorphic copy of the bicyclic semigroup in \(\mathbb{I}_{\infty}\) is a group congruence.

In the paper \[39\] submonoids of the monoid \(I_\infty'(N)\) of almost monotone injective co-finite partial selfmaps of positive integers \(N\). Let \(C^\leq N\) be a subsemigroup \(I_\infty'(N)\) which is generated by the partial shift \(n \mapsto n + 1\) and its inverse partial map. In \[39\] it was shown that every automorphism of a full inverse subsemigroup of \(I_\infty'(N)\) which contains the semigroup \(C^\leq N\) is the identity map. Also there is constructed a submonoid \(\mathbb{I}_\infty^{[3]}\) of \(I_\infty'(N)\) with the following property: if \(S\) is an inverse submonoid of \(I_\infty'(N)\) such that \(S\) contains \(\mathbb{I}_\infty^{[3]}\) as a submonoid, then every non-identity congruence \(C\) on \(S\) is a group congruence. Also, there it was proved that that if \(S\) is an inverse submonoid of \(I_\infty'(N)\) such that \(S\) contains \(C^\leq N\) as a submonoid then \(S\) is simple and the quotient semigroup \(S/C_{mg}\), where \(C_{mg}\) is minimum group congruence on \(S\), is isomorphic to the additive group of integers.

We observe that the semigroups of all partial co-finite isometries of integers established in \[15, 16, 37\].
The monoid \mathbf{I}^n_{∞} of cofinite partial isometries of the n-th power of the set of positive integers \mathbb{N} with the usual metric for a positive integer $n \geq 2$ was studied in [10]. The semigroup \mathbf{I}^n_{∞} is a submonoid of $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ for any positive integer $n \geq 2$. In [10] it was proved that for any integer $n \geq 2$ the semigroup \mathbf{I}^n_{∞} is isomorphic to the semidirect product $\mathcal{I}_n \ltimes (\mathcal{P}_\infty(N^n), \cup)$ of the free semilattice with the unit $(\mathcal{P}_\infty(N^n), \cup)$ by the symmetric group \mathcal{J}_n.

Later in this paper we shall assume that n is an arbitrary positive integer ≥ 2.

In this paper we study the semigroup of injective partial monotone selfmaps of $\mathcal{P}_\infty(N^n_{\leq})$. We show that the group of units $H(\mathcal{I})$ of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ is isomorphic to the group \mathcal{J}_n and describe the subgroup of idempotents of $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$. Also in the case $n = 3$ we describe the property of elements of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ as partial bijections of the poset N^n_{\leq} and Green’s relations on the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$.

2. Properties of elements of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ as monotone partial permutations

In this short section we describe properties of elements of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ as monotone partial transformations of the poset N^n_{\leq}.

It is obvious that the group of units $H(\mathcal{I})$ of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ consists of exactly all order isomorphisms of the poset N^n_{\leq} and hence Theorem 2.8 of [28] implies that the following theorem.

Theorem 1. For any positive integer n the group of units $H(\mathcal{I})$ of the semigroup $\mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ is isomorphic to the group \mathcal{J}_n of permutations of an n-elements set. Moreover, every element of $H(\mathcal{I})$ permutates coordinates of elements of \mathbb{N}^n, and only so permutations are elements of $H(\mathcal{I})$.

Since every $\alpha \in \mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ is a cofinite monotone partial transformations of the poset N^n_{\leq} the following statement holds.

Lemma 1. If $(1, \ldots, 1) \in \text{dom} \alpha$ for some $\alpha \in \mathcal{P}\mathcal{O}_\infty(N^n_{\leq})$ then $(1, \ldots, 1)\alpha = (1, \ldots, 1)$.

For an arbitrary $i = 1, \ldots, n$ define

$$\mathcal{K}_i = \{(1, \ldots, \underbrace{m, \ldots, 1}_{\text{ith}}, \ldots, 1) \in \mathbb{N}^n : m \in \mathbb{N}\}$$

and by $\text{pr}_i : \mathbb{N}^n \to \mathbb{N}^n$ denote the projection on the i-th coordinate, i.e., for every $(m_1, \ldots, m_i, \ldots, m_n) \in \mathbb{N}^n$ put $(m_1, \ldots, \underbrace{m_i, \ldots, m_i}_{\text{ith}}, \ldots, m_n)\text{pr}_i = (1, \ldots, \underbrace{m_i, \ldots, m_i}_{\text{ith}}, \ldots, 1)$.

Lemma 2. Let $\{\mathcal{X}_1, \ldots, \mathcal{X}_k\}$ be a set of points in $\mathbb{N}^n \setminus \{(1, \ldots, 1)\}$, $k \in \mathbb{N}$. Then the set $\mathbb{N}^n \setminus (\uparrow \mathcal{X}_1 \cup \ldots \cup \uparrow \mathcal{X}_k)$ is finite if and only if $k \geq n$ and for every \mathcal{K}_i, $i = 1, \ldots, n$, there exists $\mathcal{X}_j \in \{\mathcal{X}_1, \ldots, \mathcal{X}_k\}$ such that $\mathcal{X}_j \in \mathcal{K}_i$.

Proof. (\Leftarrow) Without loss of generality we may assume that $\mathcal{X}_j \in \mathcal{K}_i$ for every positive integer $j \leq n$. Then simple verifications imply that the set $\mathbb{N}^n \setminus (\uparrow \mathcal{X}_1 \cup \ldots \cup \uparrow \mathcal{X}_k)$ is finite, and hence so is the set $\mathbb{N}^n \setminus (\uparrow \mathcal{X}_1 \cup \ldots \cup \uparrow \mathcal{X}_k)$.

(\Rightarrow) Suppose to the contrary that there exist a subset $\{\mathcal{X}_{1,1}, \ldots, \mathcal{X}_{1,n}\}$ and an integer $i \in \{1, \ldots, n\}$ such that $\mathbb{N}^n \setminus (\uparrow \mathcal{X}_1 \cup \ldots \cup \uparrow \mathcal{X}_k)$ is finite and $\mathcal{X}_j \notin \mathcal{K}_i$ for any $j \in \{1, \ldots, k\}$.

The definition of \mathcal{K}_i ($i = 1, \ldots, n$) implies that \mathcal{K}_i with the induced partial order from \mathbb{N}^n_{\leq} is an ω-chain such that $\downarrow \mathcal{K}_i = \mathcal{K}_i$. Hence, for any $\mathcal{X} \in \mathbb{N}^n$ we have that either $\mathcal{K}_i \cup \uparrow \mathcal{X}$ is finite or $\mathcal{K}_i \cap \uparrow \mathcal{X} = \emptyset$. Then by our assumption we get that the set $\mathbb{N}^n \setminus (\uparrow \mathcal{X}_1 \cup \ldots \cup \uparrow \mathcal{X}_n)$ is infinite, a contradiction. The inequality $k \geq n$ follows from the above arguments.

Later for an arbitrary non-empty subset A of \mathbb{N}^n by ε_A we shall denote the identity map of the set $\mathbb{N}^n \setminus A$. It is obvious that the following lemma holds.
Lemma 3. For an arbitrary non-empty subset A of \mathbb{N}^n, ε_A is an element of the semigroup $\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$, and hence so are $\varepsilon_A \alpha$, $\alpha \varepsilon_A$ and $\varepsilon_A \alpha \varepsilon_A$ for any $\alpha \in \mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$.

Proposition 1. For arbitrary element α of the semigroup $\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$ there exists a unique permutation $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that $(\mathcal{K}_i \cap \text{dom } \alpha) \alpha \subseteq \mathcal{K}_i$ for any $i = 1, \ldots, n$.

Proof. Lemma 3 implies that without loss of generality we may assume that $(1, \ldots, 1) \notin \text{dom } \alpha$ and $(1, \ldots, 1) \notin \text{ran } \alpha$.

Since for any $i = 1, \ldots, n$ the set \mathcal{K}_i with the induced order from the poset \mathbb{N}^n is an ω-chain, the set $\mathcal{K}_i \cap \text{dom } \alpha$ contains the least element x_i. By Lemma 2 the set $\mathbb{N}^n \setminus (\uparrow p_i \cup \cdots \cup \uparrow p_n)$ is finite and hence so is $\text{dom } \alpha \setminus (\uparrow p_i \cup \cdots \cup \uparrow p_n)$. Since α is a cofinite partial bijection of \mathbb{N}^n we have that $(\uparrow p_i \cup \cdots \cup \uparrow p_n) \alpha = (\uparrow p_i) \alpha \cup \cdots \cup (\uparrow p_n) \alpha$ and the set $\mathbb{N}^n \setminus ((\uparrow p_i) \alpha \cup \cdots \cup (\uparrow p_n) \alpha)$ is finite. Also, since α is a monotone partial bijection of the poset \mathbb{N}^n we obtain that $(\uparrow p_i) \alpha \subseteq \uparrow (\ell_i) \alpha$ for all $i = 1, \ldots, n$. Then by Lemma 2 there exists a permutation $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that $(\uparrow p_i) \alpha \in \mathcal{K}_i$ for any $i = 1, \ldots, n$, because $\mathbb{N}^n \setminus (\uparrow p_i) \alpha \cup \cdots \cup (\uparrow p_n) \alpha \subseteq \mathbb{N}^n \setminus (\uparrow p_i) \alpha \cup \cdots \cup (\uparrow p_n) \alpha$ and the set $\mathbb{N}^n \setminus (\uparrow p_i) \alpha \cup \cdots \cup (\uparrow p_n) \alpha$ is finite. This implies that $(\sigma) \alpha \in \mathcal{K}_i$ for all $\sigma \in \mathcal{K}_i \cap \text{dom } \alpha$ and any $i = 1, \ldots, n$.

The proof of uniqueness of the permutation σ for $\alpha \in \mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$ is trivial. This completes the proof of the proposition. \square

Theorem 2 and Proposition 1 imply the following corollary.

Corollary 1. For every element α of the semigroup $\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$ there exists a unique element σ of the group of units $H(\mathbb{I})$ of $\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n)$ such that $(\mathcal{K}_i \cap \text{dom } \alpha) \sigma \alpha \subseteq \mathcal{K}_i$ and $(\mathcal{K}_i \cap \text{dom } \alpha) \sigma^{-1} \alpha \subseteq \mathcal{K}_i$ for all $i = 1, \ldots, n$.

Lemma 4. There does not exist a finite family $\{L_1, \ldots, L_k\}$ of chains in the poset \mathbb{N}^n such that $\mathbb{N}^2 = L_1 \cup \cdots \cup L_k$. Moreover, every co-finite subset in \mathbb{N}^n has no property.

Proof. Suppose to the contrary that there exists a positive integer k such that $\mathbb{N}^2 = L_1 \cup \cdots \cup L_k$ and L_i is a chain for each $i = 1, \ldots, k$. Then $\{(1, k+1), (2, k), \ldots, (k, 2), (k+1, 1)\}$ is an anti-chain in the poset \mathbb{N}^2 which contains exactly $k + 1$ elements. Without loss of generality we may assume that $L_i \cap L_j = \emptyset$ for $i \neq j$. Since $\mathbb{N}^2 = L_1 \cup \cdots \cup L_k$, by the pigeonhole principle (or by the Dirichlet drawer principle, see [13] Section 7.3) there exists a chain L_i, $i = 1, \ldots, k$, which contains at least two distinct elements of the set $\{(1, k+1), (2, k), \ldots, (k, 2), (k+1, 1)\}$, a contradiction.

Assume that A is a co-finite subset of \mathbb{N}^n such that $A = \mathbb{N}^n \setminus \{x_1, \ldots, x_p\}$ for some positive integer p. For every $i = 1, \ldots, p$ we put $L_{k+i} = \{x_i\}$. Then for every finite partition $\{L_1, \ldots, L_k\}$ of A such that L_i is a chain for each $i = 1, \ldots, k$ the following family $\{L_1, \ldots, L_k, L_{k+1}, \ldots, L_{k+p}\}$ is a finite partition of the poset \mathbb{N}^n such that L_i is a chain for each $i = 1, \ldots, k + p$. This contradicts the above part of the proof, and hence the second statement of the lemma holds. \square

For any distinct $i, j \in \{1, \ldots, n\}$ we denote

$$\mathcal{K}_{i,j} = \{(x_1, \ldots, x_n) \in \mathbb{N}^n : x_k = 1 \text{ for all } k \in \{1, \ldots, n\} \setminus \{i, j\}\}$$

and

$$\mathcal{K}_{i,j}^c = \mathcal{K}_{i,j} \setminus (\mathcal{K}_i \cup \mathcal{K}_j)$$

Lemma 5. Let n be a positive integer ≥ 3. Let σ_i be an arbitrary element of $\mathcal{K}_i \setminus \{1, \ldots, 1\}$ for $i = 3, \ldots, n$ and $\overline{y}_{1,2}$ be an arbitrary element of $\mathcal{K}_{1,2}$. Then there exists a finite family $\{L_1, \ldots, L_k\}$ of chains in the poset \mathbb{N}^n such that $L_1 \cup \cdots \cup L_k = \mathbb{N}^n \setminus (\uparrow \overline{y}_{1,2} \cup \uparrow \sigma_3 \cup \cdots \cup \uparrow \sigma_n)$.

Proof. Let \(\overline{x} = (x_1, \ldots, x_i, \ldots, 1) \) for \(i = 3, \ldots, n \) and \(\overline{x}_{1,2} = (y_1, y_2, 1, \ldots, 1) \). Then for any element \(\overline{a} = (a_1, \ldots, a_n) \) of the set \(\mathbb{N}^n \setminus \left(\uparrow \overline{y}_{1,2} \cup \uparrow \overline{x}_3 \cup \cdots \cup \uparrow \overline{x}_n \right) \) the following conditions hold:

(i) \(a_i < x_i \) for any \(i = 3, \ldots, n \);
(ii) if \(a_1 \geq y_1 \) then \(a_2 < y_2 \);
(iii) if \(a_2 \geq y_1 \) then \(a_1 < y_1 \).

These conditions imply that
\[
\mathbb{N}^n \setminus \left(\uparrow \overline{y}_{1,2} \cup \uparrow \overline{x}_3 \cup \cdots \cup \uparrow \overline{x}_n \right) = \bigcup \{ S(k_3, \ldots, k_n) : k_3 < x_3, \ldots, k_n < x_n \},
\]
where
\[
S(k_3, \ldots, k_n) = \bigcup \{ L_i(k_3, \ldots, k_n) : i = 1, \ldots, y_1 - 1 \} \cup \bigcup \{ R_j(k_3, \ldots, k_n) : j = 1, \ldots, y_2 - 1 \},
\]
with
\[
L_i(k_3, \ldots, k_n) = \{ (i, p, k_3, \ldots, k_n) \in \mathbb{N}^n : p \in \mathbb{N} \}
\]
and
\[
R_j(k_3, \ldots, k_n) = \{ (p, j, k_3, \ldots, k_n) \in \mathbb{N}^n : p \in \mathbb{N} \}.
\]
We observe that for arbitrary positive integers \(i, j, k_3, \ldots, k_n \), the sets \(L_i(k_3, \ldots, k_n) \) and \(R_j(k_3, \ldots, k_n) \) are chains in the poset \(\mathbb{N}^n \). Since the set \(\mathbb{N}^n \setminus \left(\uparrow \overline{y}_{1,2} \cup \uparrow \overline{x}_3 \cup \cdots \cup \uparrow \overline{x}_n \right) \) is the union of finitely many sets of the form \(S(k_3, \ldots, k_n) \), the above arguments imply the required statement of the lemma. \(\Box \)

Proposition 2. Let \(\alpha \) be an element of the semigroup \(\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n) \) such that \((X_i \cap \text{dom } \alpha) \alpha \subseteq X_i \) for all \(i = 1, \ldots, n \). Then \((X_{i_1, i_2} \cap \text{dom } \alpha) \alpha \subseteq X_{i_1, i_2} \) for all distinct \(i_1, i_2 = 1, \ldots, n \).

Proof. Suppose to the contrary that there exists \(\overline{x} \in X_{i_1, i_2} \cap \text{dom } \alpha \) such that \((\overline{x}) \alpha \not\in X_{i_1, i_2} \). By Theorem 1 without loss of generality we may assume that \(i_1 = 1 \) and \(i_2 = 2 \), i.e., \(\overline{x} \in X_{1,2} \) and \((\overline{x}) \alpha \not\in X_{1,2} \). By Lemma 1 \(\overline{x}
ot\in (1, \ldots, 1) \).

For every \(i = 3, \ldots, n \) we put \(\overline{x}_i = (1, 1, \ldots, x_i, \ldots, 1) \in \text{dom } \alpha \) is the smallest element of \(X_i \) such that \((\overline{x}_i) \alpha \not\in (1, \ldots, 1) \). There exists \(x_{1,2} = (x_1, x_2, 1, \ldots, 1) \in \text{dom } \alpha \cap X_{1,2} \) such that \(\overline{x} \leq \overline{x}_{1,2} \). Since \(\alpha \in \mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n) \), \((\overline{x}) \alpha \leq (\overline{x}_{1,2}) \alpha \not\in X_{1,2} \).

Now, the monotonicity of \(\alpha \) implies that \((\uparrow \overline{x}_{1,2}) \alpha \subseteq (\uparrow \overline{x}_{1,2}) \alpha \) and \((\uparrow \overline{x}_i) \alpha \subseteq (\uparrow \overline{x}_i) \alpha \) for any \(i = 3, \ldots, n \). By our assumption we have that
\[
X_{1,2} \cap \text{ran } \alpha \subseteq (\mathbb{N}_0^n \setminus \{ \uparrow \overline{x}_{1,2} \cup \uparrow \overline{x}_3 \cup \cdots \cup \uparrow \overline{x}_n \}) \alpha.
\]
Since the partial transformation \(\alpha \) preserves chains in the poset \(\mathbb{N}_0^n \), Lemma 5 implies that the set \(X_{1,2} \cap \text{ran } \alpha \) is a union of finitely many chains, which contradicts Lemma 3. The obtained contradiction implies the assertion of the proposition. \(\Box \)

Theorem 2. Let \(\alpha \) be an element of the semigroup \(\mathcal{P} \mathcal{O}_\infty(\mathbb{N}^n) \) such that \((X_i \cap \text{dom } \alpha) \alpha \subseteq X_i \) for all \(i = 1, 2, 3 \). Then the following assertions hold:

(i) if \((x_1, x_2, x_3) \in \text{dom } \alpha \) and \((x_1, x_2, x_3) = (x_1, x_2, x_3) \) then \(x_1 \leq x_1, x_2 \leq x_2 \) and \(x_3 \leq x_3 \) and hence \((\overline{x}) \alpha \leq (\overline{x}) \alpha \) for any \(\overline{x} \in \text{dom } \alpha \);

(ii) there exists a smallest positive integer \(n_\alpha \) such that \((x_1, x_2, x_3) \alpha = (x_1, x_2, x_3) \) for all \((x_1, x_2, x_3) \in \text{dom } \alpha \cap \uparrow (n_\alpha, n_\alpha, n_\alpha) \).

Proof. (i) We shall prove the inequality \(x_1 \leq x_1 \) by induction. The proofs of the inequalities \(x_2 \leq x_2 \) and \(x_3 \leq x_3 \) are similar.

By Proposition 2 we have that if \(x_1 = 1 \) then \(x_1 = 1 \), as well.

Next we shall show the following statement holds:

if for some positive integer \(p > 1 \) the inequality \(x_1 < 1 \) implies \(x_1 \leq x_1 \) then the equality \(x_1 = p \) implies \(x_1 \leq x_1 \), too.
Suppose to the contrary that there exists \((x_1, x_2, x_3) \in \text{dom } \alpha\) such that \(x_1 = p = (x_1, x_2, x_3)\) and \((x_1, x_2, x_3)\alpha = (x_1^\alpha, x_2^\alpha, x_3^\alpha)\) and \(x_1 + 1 \leq x_1^\alpha\). We define a partial map \(\varpi: \mathbb{N}^3 \rightarrow \mathbb{N}^3\) with \(\text{dom } \varpi = \mathbb{N}^3 \setminus \{1\} \times L(x_2) \times L(x_2)\) and \(\text{ran } \varpi = \mathbb{N}^3\) by the formula
\[
(i_1, i_2, i_3)\varpi = \begin{cases} (i_1 - 1, i_2, i_3), & \text{if } i_2 \in L(x_2) \text{ and } i_3 \in L(x_2); \\ (i_1, i_2, i_3), & \text{otherwise}, \end{cases}
\]
where \(L(x_2) = \{1, \ldots, x_2\}\) and \(L(x_3) = \{1, \ldots, x_3\}\). It is obvious that \(\varpi \in \mathcal{PO}_\infty(\mathbb{N}_\leq^3)\), and hence \(\gamma\varpi^k \in \mathcal{PO}_\infty(\mathbb{N}_\leq^3)\) for any positive integer \(k\) and any \(\gamma \in \mathcal{PO}_\infty(\mathbb{N}_\leq^3)\). This observation implies that without loss of generality we may assume that \(x_1^\alpha = x_1 + 1\). Then the assumption of the theorem implies that there exists the smallest element \((i_m, 1, 1)\) of \(\mathcal{K}_1\) such that \(i_m^\alpha > x_1^\alpha + 1\), where \((i_m, 1, 1) = (i_m, 1, 1)\). Since \((^\uparrow(i_m, 1, 1))\alpha \subseteq \uparrow(i_m^\alpha, 1, 1), (^\uparrow(x_1, x_2, x_3))\alpha \subseteq \uparrow(x_1^\alpha, x_2^\alpha, x_3^\alpha)\) and the set \(\mathbb{N}^3 \setminus \text{ran } \alpha\) is finite, our assumption implies that the set
\[
\mathcal{I}_{x_1}(\alpha) = \{(x_1, p_2, p_3) \in \text{dom } \alpha: p_2, p_3 \in \mathbb{N}\}
\]
is a union of finitely many subchains of the poset \((\mathbb{N}^3, \leq)\). This contradicts Lemma \(\text{(iii)}\) because the set \(\mathcal{I}_{x_1}(\alpha)\) with the induced partial order from \(\mathbb{N}^3\) is order isomorphic to a some cofinite subset of the poset \(\mathbb{N}^3\). The obtained contradiction implies the requested inequality \(x_1^\alpha \leq x_1\) and hence we have that statement \((i)\) holds.

The last assertion of \((i)\) follows from the definition of the poset \(\mathbb{N}^3_\leq\):

\((ii)\) Fix an arbitrary element \(\alpha\) of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}^3_\leq)\) such that \((\mathcal{X}_i \cap \text{dom } \alpha)\alpha \subseteq \mathcal{X}_i\) for all \(i = 1, 2, 3\). Suppose to the contrary that for any positive integer \(n\) there exists \((x_1, x_2, x_3) \in \text{dom } \alpha \cap \uparrow(n, n, n)\) such that \((x_1, x_2, x_3)\alpha \neq (x_1, x_2, x_3)\). We put \(N_{\text{dom } \alpha} = |\mathbb{N}^3 \setminus \text{dom } \alpha| + 1\) and \(M_{\text{dom } \alpha} = \max \{\{x_1: (x_1, x_2, x_3) \notin \text{dom } \alpha\}, \{x_2: (x_1, x_2, x_3) \notin \text{dom } \alpha\}, \{x_3: (x_1, x_2, x_3) \notin \text{dom } \alpha\}\} + 1\).

The definition of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}^3_\leq)\) implies that the positive integers \(N_{\text{dom } \alpha}\) and \(M_{\text{dom } \alpha}\) are well defined. Put \(n_0 = \max \{N_{\text{dom } \alpha}, M_{\text{dom } \alpha}\}\). Then our assumption implies that there exists \((x_1, x_2, x_3) \in \text{dom } \alpha \cap \uparrow(n_0, n_0, n_0)\) such that \((x_1, x_2, x_3)\alpha = (x_1^\alpha, x_2^\alpha, x_3^\alpha) \neq (x_1, x_2, x_3)\). By statement \((i)\) we have that \((x_1^\alpha, x_2^\alpha, x_3^\alpha) < (x_1, x_2, x_3)\). We consider the case when \(x_1^\alpha < x_1\). In the cases when \(x_2^\alpha < x_2\) or \(x_3^\alpha < x_3\) the proofs are similar. We assume that \(x_1 \leq x_2\) and \(x_1 \leq x_3\). By statement \((i)\) the partial bijection \(\alpha\) maps the set \(S = \{(x, y, z) \in \mathbb{N}^3: x, y, z \leq x_1 - 1\}\) into itself. Also, by the definition of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}^3_\leq)\) the partial bijection \(\alpha\) maps the set
\[
\{(x_1, 1, 1), \ldots, (x_1, 1, x_1), (x_1, 2, 1), \ldots, (x_1, 2, x_1), \ldots, (x_1, x_1, 1), \ldots, (x_1, x_1, 1)\}
\]
into \(S\), too. Then our construction implies that
\[
|S \setminus \text{dom } \alpha| = |\mathbb{N}^3 \setminus \text{dom } \alpha| = N_{\text{dom } \alpha} - 1
\]
and
\[
|\{(x_1, 1, 1), \ldots, (x_1, 1, x_1), (x_1, 2, 1), \ldots, (x_1, 2, x_1), \ldots, (x_1, x_1, 1), \ldots, (x_1, x_1, 1)\}| \geq N_{\text{dom } \alpha},
\]
a contradiction. In the case when \(x_2 \leq x_1\) and \(x_2 \leq x_3\) or \(x_3 \leq x_1\) and \(x_3 \leq x_2\) we get contradictions in similar ways. This completes the proof of existence of a such positive integer \(n_\alpha\) for any \(\alpha \in \mathcal{PO}_\infty(\mathbb{N}^3_\leq)\). The existence of such minimal positive integer \(n_\alpha\) follows from the fact that the set of all positive integers with the usual order \(\leq\) is well-ordered.

Theorem \(\text{(iii)}\) and Proposition \(\text{(i)}\) imply the following corollary.

Corollary 2. For arbitrary element \(\alpha\) of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}^3_\leq)\) there exist elements \(\sigma_1, \sigma_2\) of the group of units \(H(\mathbb{I})\) of \(\mathcal{PO}_\infty(\mathbb{N}^3_\leq)\) and a smallest positive integer \(n_\alpha\) such that
\[
(x_1, x_2, x_3)\sigma_1\alpha = (x_1, x_2, x_3)\alpha\sigma_2 = (x_1, x_2, x_3)
\]
for each \((x_1, x_2, x_3) \in \text{dom } \alpha \cap \uparrow(n_\alpha, n_\alpha, n_\alpha)\).

Corollary \(\text{(ii)}\) implies
Corollary 3. \(|\mathbb{N}^3 \setminus \text{ran } \alpha| \leq |\mathbb{N}^3 \setminus \text{dom } \alpha|\) for an arbitrary \(\alpha \in \mathcal{PO}_\infty(\mathbb{N}_\leq^3)\).

3. Algebraic properties of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}_\leq^3)\)

Proposition 3. Let \(X\) be a non-empty set and let \(\mathcal{PB}(X)\) be a semigroup of partial bijections of \(X\) with the usual composition of partial self-maps. Then an element \(\alpha\) of \(\mathcal{PB}(X)\) is an idempotent if and only if \(\alpha\) is an identity partial self-map of \(X\).

Proof. The implication \((\Leftarrow)\) is trivial.

\((\Rightarrow)\) Let an element \(\alpha\) be an idempotent of the semigroup \(\mathcal{PB}(X)\). Then for every \(x \in \text{dom } \alpha\) we have that \((x)\alpha = (x)\alpha\) and hence we get that \(\text{dom } \alpha^2 = \text{dom } \alpha\) and \(\text{ran } \alpha^2 = \text{ran } \alpha\). Also since \(\alpha\) is a partial bijective self-map of \(X\) we conclude that the previous equalities imply that \(\text{dom } \alpha = \text{ran } \alpha\).

Fix an arbitrary \(x \in \text{dom } \alpha\) and suppose that \((x)\alpha = y\). Then \((x)\alpha = (x)\alpha\alpha = (y)\alpha = y\). Since \(\alpha\) is a partial bijective self-map of the set \(X\) we have that the equality \((y)\alpha = y\) implies that the full preimage of \(y\) under the partial map \(\alpha\) is equal to \(y\). Similarly the equality \((x)\alpha = y\) implies that the full preimage of \(y\) under the partial map \(\alpha\) is equal to \(x\). Thus we get that \(x = y\) and our implication holds.

Proposition 3 implies the following corollary.

Corollary 4. An element \(\alpha\) of \(\mathcal{PO}_\infty(\mathbb{N}_\leq^n)\) is an idempotent if and only if \(\alpha\) is an identity partial self-map of \(\mathbb{N}_\leq^n\) with the cofinite domain.

Corollary 4 implies the following proposition.

Proposition 4. Let \(n\) be a positive integer \(\geq 2\). The subset of idempotents \(E(\mathcal{PO}_\infty(\mathbb{N}_\leq^n))\) of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}_\leq^n)\) is a commutative submonoid of \(\mathcal{PO}_\infty(\mathbb{N}_\leq^n)\) and moreover \(E(\mathcal{PO}_\infty(\mathbb{N}_\leq^n))\) is isomorphic to the free semilattice with unit \((\mathcal{P}^*(\mathbb{N}^n), \cup)\) over the set \(\mathbb{N}^n\) under the mapping \((\varepsilon)\mathfrak{h} = \mathbb{N}^n \setminus \text{dom } \varepsilon\).

Later we shall need the following technical lemma.

Lemma 6. Let \(X\) be a non-empty set, \(\mathcal{PB}(X)\) be a semigroup of partial bijections of \(X\) with the usual composition of partial self-maps and \(\alpha \in \mathcal{PB}(X)\). Then the following assertions hold:

\(\text{(i)}\) \(\alpha = \gamma \alpha\) for some \(\gamma \in \mathcal{PB}(X)\) if and only if the restriction \(\gamma|_{\text{dom } \alpha}: \text{dom } \alpha \to X\) is an identity partial map;

\(\text{(ii)}\) \(\alpha = \alpha \gamma\) for some \(\gamma \in \mathcal{PB}(X)\) if and only if the restriction \(\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to X\) is an identity partial map.

Proof. \(\text{(i)}\) The implication \((\Leftarrow)\) is trivial.

\(\text{(\Rightarrow)}\) Suppose that \(\alpha = \gamma \alpha\) for some \(\gamma \in \mathcal{PB}(X)\). Then \(\text{dom } \alpha \subseteq \text{dom } \gamma\) and \(\text{dom } \alpha \subseteq \text{ran } \gamma\). Since \(\gamma: X \to X\) is a partial bijection, the above arguments imply that \((x)\gamma = x\) for each \(x \in \text{dom } \alpha\). Indeed, if \((x)\gamma = y \neq x\) for some \(y \in \text{dom } \alpha\) then since \(\alpha: X \to X\) is a partial bijection we have that either

\[(x)\alpha = (x)\gamma \alpha = (y)\alpha \neq (x)\alpha, \quad \text{if } y \in \text{dom } \alpha,\]

or \((y)\alpha\) is undefined. This completes the proof of the implication.

The proof of \(\text{(ii)}\) is similar to that of \(\text{(i)}\).

Lemma 6 implies the following corollary.

Corollary 5. Let \(n\) be a positive integer \(\geq 2\) and \(\alpha\) be an element of the semigroup \(\mathcal{PO}_\infty(\mathbb{N}_\leq^n)\). Then the following assertions hold:

\(\text{(i)}\) \(\alpha = \gamma \alpha\) for some \(\gamma \in \mathcal{PO}_\infty(\mathbb{N}_\leq^n)\) if and only if the restriction \(\gamma|_{\text{dom } \alpha}: \text{dom } \alpha \to \mathbb{N}^n\) is an identity partial map;

\(\text{(ii)}\) \(\alpha = \alpha \gamma\) for some \(\gamma \in \mathcal{PO}_\infty(\mathbb{N}_\leq^n)\) if and only if the restriction \(\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to \mathbb{N}^n\) is an identity partial map.
The following theorem describes the Green relations \mathcal{L}, \mathcal{R}, \mathcal{H} and \mathcal{D} on the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$.

Theorem 3. Let α and β be elements of the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$. Then the following assertions hold:

(i) $\alpha\mathcal{L}\beta$ if and only if $\alpha = \mu\beta$ for some $\mu \in H(\mathbb{I})$;

(ii) $\alpha\mathcal{R}\beta$ if and only if $\alpha = \beta\nu$ for some $\nu \in H(\mathbb{I})$;

(iii) $\alpha\mathcal{H}\beta$ if and only if $\alpha = \beta\nu$ for some $\mu, \nu \in H(\mathbb{I})$;

(iv) $\alpha\mathcal{D}\beta$ if and only if $\alpha = \mu\beta\nu$ for some $\mu, \nu \in H(\mathbb{I})$.

Proof. (i) The implication (\Rightarrow) is trivial.

(\Leftarrow) Suppose that $\alpha\mathcal{L}\beta$ in the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$. Then there exist $\gamma, \delta \in \mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ such that $\alpha = \gamma\beta$ and $\beta = \delta\alpha$. The last equalities imply that $\text{ran} \alpha = \text{ran} \beta$.

Next we consider the following cases:

(i) $(\mathcal{X}_i \cap \text{dom } \gamma) \alpha \subseteq \mathcal{X}_i$ and $(\mathcal{X}_j \cap \text{dom } \beta) \beta \subseteq \mathcal{X}_j$ for all $i, j = 1, 2, 3$;

(ii) $(\mathcal{X}_i \cap \text{dom } \alpha) \alpha \subseteq \mathcal{X}_i$ for all $i = 1, 2, 3$ and $(\mathcal{X}_j \cap \text{dom } \beta) \beta \nsubseteq \mathcal{X}_j$ for some $j = 1, 2, 3$;

(iii) $(\mathcal{X}_j \cap \text{dom } \alpha) \subseteq \mathcal{X}_j$ for some $i = 1, 2, 3$ and $(\mathcal{X}_j \cap \text{dom } \beta) \beta \subseteq \mathcal{X}_j$ for all $j = 1, 2, 3$;

(iv) $(\mathcal{X}_i \cap \text{dom } \alpha) \alpha \nsubseteq \mathcal{X}_i$ and $(\mathcal{X}_j \cap \text{dom } \beta) \beta \nsubseteq \mathcal{X}_j$ for some $i, j = 1, 2, 3$.

Suppose that case (i) holds. Then Proposition 1 and the equalities $\alpha = \gamma\beta$ and $\beta = \delta\alpha$ imply that

(1) $(\mathcal{X}_i \cap \text{dom } \gamma) \gamma \subseteq \mathcal{X}_i$ and $(\mathcal{X}_j \cap \text{dom } \delta) \delta \subseteq \mathcal{X}_j$, for all $i, j = 1, 2, 3$,

and moreover we have that $\alpha = \gamma\delta\alpha$ and $\beta = \delta\gamma\beta$. Hence by Lemma 3 we have that the restrictions $(\gamma\delta)_{\text{dom } \alpha} : \text{dom } \alpha \rightarrow \mathbb{N}^3$ and $(\delta\gamma)_{\text{dom } \beta} : \text{dom } \beta \rightarrow \mathbb{N}^3$ are identity partial maps. Then by condition 1 we obtain that the restrictions $\gamma_{\text{dom } \alpha} : \text{dom } \alpha \rightarrow \mathbb{N}^3$ and $\delta_{\text{dom } \beta} : \text{dom } \beta \rightarrow \mathbb{N}^3$ are identity partial maps, as well. Indeed, otherwise there exists $\pi \in \text{dom } \alpha$ such that either $(\pi)\gamma \nsubseteq \pi$ or $(\pi)\delta \nsubseteq \pi$, which contradicts Theorem 2(ii). Thus, the above arguments imply that in case (i) we have the following equality $\alpha = \beta$.

Suppose that case (i) holds. By Corollary 4 there exists an element μ of the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ such that $(\mathcal{X}_j \cap \text{dom } \beta) \mu \beta \subseteq \mathcal{X}_j$ for all $j = 1, 2, 3$, and since $\alpha\mathcal{L}\beta$ we have that $\alpha = \gamma\beta = \gamma\mu\beta = \gamma(\mu^{-1}\mu)\beta = (\gamma\mu^{-1})(\mu\beta)$ and $\beta = (\mu\beta)\alpha$. Hence we get that $\alpha\mathcal{L}(\mu\beta)$,

$(\mathcal{X}_i \cap \text{dom } \alpha) \alpha \subseteq \mathcal{X}_i$ and $(\mathcal{X}_j \cap \text{dom } \beta) \mu\beta \subseteq \mathcal{X}_j$ for all $i, j = 1, 2, 3$. Then we apply case (i) for elements α and $\mu\beta$ and obtain the equality $\alpha = \mu\beta$, where μ is the above determined element of the group of units $H(\mathbb{I})$.

In case (i) the proof of the equality $\alpha = \mu\beta$ is similar to case (i).

Suppose that case (i) holds. By Corollary 4 there exist elements μ_α and μ_β of the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ such that $(\mathcal{X}_j \cap \text{dom } \alpha) \mu_\alpha \alpha \subseteq \mathcal{X}_j$ and $(\mathcal{X}_j \cap \text{dom } \beta) \mu_\beta \beta \subseteq \mathcal{X}_j$ for all $i, j = 1, 2, 3$, and since $\alpha\mathcal{L}\beta$ we have that $\alpha = \gamma\beta = \gamma\mu_\beta \beta = \gamma(\mu^{-1}_\beta \mu_\beta) \beta = (\gamma\mu^{-1}_\beta)(\mu_\beta)$. Hence we get that $\mu_\alpha \alpha = (\gamma\mu^{-1}_\beta)(\mu_\beta)$ and $\beta = \delta\alpha = \delta\mu_\alpha \alpha = \delta(\mu^{-1}_\alpha \mu_\alpha) \alpha = (\mu^{-1}_\alpha)(\mu_\alpha \alpha)$. The last two equality imply that $\mu_\beta \beta \subseteq \mathcal{X}_j$ for all $i, j = 1, 2, 3$. Then we apply case (i) for elements $\mu_\alpha \alpha$ and $\mu_\beta \beta$ and obtain the equality $\mu_\alpha \alpha = \mu_\beta \beta$. Hence $\alpha = \mu^{-1}_\alpha \mu_\alpha \alpha = \mu^{-1}_\alpha \mu_\beta \beta$. Since $\mu_\alpha, \mu_\beta \in H(\mathbb{I})$, $\mu = \mu^{-1}_\alpha \mu_\beta \beta \in H(\mathbb{I})$ as well.

The proof of assertion (ii) is dual to that of (i).

Assertion (iii) follows from (i) and (ii).

(iv) Suppose that $\alpha\mathcal{D}\beta$ in $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$. Then there exists $\gamma \in \mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ such that $\alpha\mathcal{L}\gamma$ and $\gamma\mathcal{R}\beta$. By statements (i) and (ii) there exist $\mu, \nu \in H(\mathbb{I})$ such that $\alpha = \mu\gamma$ and $\gamma = \beta\nu$ and hence $\alpha = \mu\beta\nu$. Converse, suppose that $\alpha = \mu\beta\nu$ for some $\mu, \nu \in H(\mathbb{I})$. Then by (i), (ii), we have that $\alpha\mathcal{L}(\beta\nu)$ and $(\beta\nu)\mathcal{R}\beta$, and hence $\alpha\mathcal{D}\beta$ in $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$.

Theorem 3 implies Corollary 6 which gives the inner characterization of the Green relations \mathcal{L}, \mathcal{R}, and \mathcal{H} on the semigroup $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ as partial permutations of the poset \mathbb{N}_3^3.

Corollary 6.

(i) Every \mathcal{L}-class of $\mathcal{P}\mathcal{O}_{\infty}(\mathbb{N}_3^3)$ contains exactly 6 distinct elements.
(ii) Every R-class of $PO_{\infty}(N_3^2)$ contains exactly 6 distinct elements.
(iii) Every H-class of $PO_{\infty}(N_3^3)$ contains at most 6 distinct elements.

Proof. Statements (i), (ii) and (iii) are trivial and they follow from the corresponding statements of Theorem 3.

Lemma 7. Let α, β and γ be elements of the semigroup $PO_{\infty}(N_3^3)$ such that $\alpha = \beta\alpha\gamma$. Then the following statements hold:

(i) if $(\mathcal{K}_i \cap \text{dom } \beta)\beta \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$, then the restrictions $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ and $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ are identity partial maps;
(ii) if $(\mathcal{K}_i \cap \text{dom } \gamma)\gamma \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$, then the restrictions $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ and $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ are identity partial maps;
(iii) there exist elements σ_β and σ_γ of the group of units $H(\mathbb{I})$ of $PO_{\infty}(N_3^3)$ such that $\alpha = \sigma_\beta\alpha\sigma_\gamma$.

Proof. (i) Assume that the inclusion $(\mathcal{K}_i \cap \text{dom } \beta)\beta \subseteq \mathcal{K}_i$ holds for any $i = 1, 2, 3$. Then one of the following cases holds:

(1) $(\mathcal{K}_i \cap \text{dom } \alpha)\alpha \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$;
(2) there exists $i \in \{1, 2, 3\}$ such that $(\mathcal{K}_i \cap \text{dom } \alpha)\alpha \notin \mathcal{K}_i$.

If case (1) holds then the equality $\alpha = \beta\alpha\gamma$ and Proposition 1 imply that $(\mathcal{K}_i \cap \text{dom } \gamma)\gamma \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$. Suppose that $\text{(x)}\beta < \text{x}$ for some $\text{x} \in \text{dom } \alpha$. Then by Theorem 2(i) we have that

$$(\text{x})\alpha = (\text{x})\beta\alpha\gamma \leq (\text{x})\alpha\gamma \leq (\text{x})\alpha,$$

which contradicts the equality $\alpha = \beta\alpha\gamma$. The obtained contradiction implies that the restriction $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ is an identity partial map. This and the equality $\alpha = \beta\alpha\gamma$ imply that the restriction $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ is an identity partial map too.

Suppose that case (2) holds. Then by Corollary 1 there exists an element σ of the group of units $H(\mathbb{I})$ of the semigroup $PO_{\infty}(N_3^3)$ such that $(\mathcal{K}_i \cap \text{dom } \alpha)\sigma\alpha \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$. Now, the equality $\alpha = \beta\alpha\gamma$ implies that

$$\alpha\sigma = \beta\alpha\gamma\sigma = \beta\alpha\gamma\sigma = \beta\sigma\gamma\sigma = \beta(\sigma\gamma\sigma).$$

By case (1) we have that the restrictions $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ is an identity partial map, which implies that $\beta\alpha = \alpha$. Then we have that $\alpha = \beta\alpha\gamma = \alpha\gamma$ and hence by Corollary 5 the restriction $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ is an identity partial map, which completes the proof of statement (i).

(ii) The proof of this statement is dual to (i). Indeed, assume that the inclusion $(\mathcal{K}_i \cap \text{dom } \gamma)\gamma \subseteq \mathcal{K}_i$ holds for any $i = 1, 2, 3$. Then one of the following cases holds:

(1) $(\mathcal{K}_i \cap \text{dom } \alpha)\alpha \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$;
(2) there exists $i \in \{1, 2, 3\}$ such that $(\mathcal{K}_i \cap \text{dom } \alpha)\alpha \notin \mathcal{K}_i$.

If case (1) holds then the equality $\alpha = \beta\alpha\gamma$ and Proposition 1 imply that $(\mathcal{K}_i \cap \text{dom } \beta)\beta \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$. Similar as in the proof of statement (i) Theorem 2(i) implies that the restrictions $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ and $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ are identity partial maps.

Suppose that case (2) holds. Then by Corollary 1 there exists an element σ of the group of units $H(\mathbb{I})$ of the semigroup $PO_{\infty}(N_3^3)$ such that $(\mathcal{K}_i \cap \text{dom } \alpha)\sigma\alpha \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$. Now, the equality $\alpha = \beta\alpha\gamma$ implies that

$$\sigma\alpha = \sigma\beta\alpha\gamma = \sigma\beta\alpha\gamma = \sigma(\beta\alpha\gamma) = (\sigma\beta\alpha\gamma)\gamma.$$

By case (1) we have that the restrictions $\gamma|_{\text{ran } \alpha}: \text{ran } \alpha \to N^3$ is an identity partial map, which implies that $\alpha = \sigma\gamma$. Then we have that $\alpha = \beta\alpha\gamma = \beta\alpha$ and hence by Corollary 5 the restriction $\beta|_{\text{dom } \alpha}: \text{dom } \alpha \to N^3$ is an identity partial map as well, which completes the proof of statement (ii).

(iii) Assume that $\alpha = \beta\alpha\gamma$. By the Lagrange Theorem (see: [11] Section 1.5) for every element σ of the group of permutations \mathcal{S}_n the order of σ divides the order of \mathcal{S}_n. This, Proposition 1 and the
equality $\alpha = \beta \alpha \gamma$ imply that
\[(2) \quad (\mathcal{H}_i \cap \text{dom } \beta^6) \beta^6 \subseteq \mathcal{H}_i \quad \text{and} \quad (\mathcal{H}_i \cap \text{dom } \gamma^6) \gamma^6 \subseteq \mathcal{H}_i, \quad \text{for any } i = 1, 2, 3.\]

Also, the equality $\alpha = \beta \alpha \gamma$ implies that
\[\alpha = \beta \alpha \gamma = \beta (\beta \alpha \gamma) \gamma = \beta^2 \alpha \gamma^2 = \ldots = \beta^6 \alpha \gamma^6.\]

Then statements (i), (ii) and conditions (2) imply that the restrictions $\beta^6|_{\text{dom } \alpha} : \text{dom } \alpha \rightarrow \mathbb{N}^3$ and $\gamma^6|_{\text{ran } \alpha} : \text{ran } \alpha \rightarrow \mathbb{N}^3$ are identity partial maps. By Corollary 11 there exist unique elements $\sigma_\beta, \sigma_\gamma \in H(\mathbb{I})$ such that $(\mathcal{H}_i \cap \text{dom } \beta) \beta \sigma_{\beta}^{-1} \subseteq \mathcal{H}_i, (\mathcal{H}_i \cap \text{dom } \beta) \sigma \beta \subseteq \mathcal{H}_i, (\mathcal{H}_i \cap \text{dom } \alpha) \gamma \sigma_{\gamma}^{-1} \subseteq \mathcal{H}_i$ and $(\mathcal{H}_i \cap \text{dom } \gamma) \sigma \gamma \subseteq \mathcal{H}_i$ for all $i = 1, 2, 3$. Then we have that
\[(3) \quad \beta^6 = (\mathbb{I} \mathbb{I}) (\mathbb{I} \mathbb{I}) (\mathbb{I} \mathbb{I}) =
= (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) =
= (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta)\]
and
\[(4) \quad \gamma^6 = (\mathbb{I} \mathbb{I}) (\mathbb{I} \mathbb{I}) (\mathbb{I} \mathbb{I}) =
= (\gamma \sigma_{\gamma}^{-1} \sigma \gamma) (\gamma \sigma_{\gamma}^{-1} \sigma \gamma) (\gamma \sigma_{\gamma}^{-1} \sigma \gamma) =
= (\gamma \sigma_{\gamma}^{-1} \sigma \gamma) (\gamma \sigma_{\gamma}^{-1} \sigma \gamma) (\gamma \sigma_{\gamma}^{-1} \sigma \gamma).\]

We claim that $(\mathbb{I})(\beta \sigma_{\beta}^{-1}) = \mathbb{I}$ for any $\mathbb{I} \in \text{dom } \alpha$. Assume that $(\mathbb{I})(\beta \sigma_{\beta}^{-1}) \neq \mathbb{I}$ for some $\mathbb{I} \in \text{dom } \alpha$. Then the choice of the element $\sigma \beta \in H(\mathbb{I})$, Theorem 2 (i) and (3) imply that
\[(\mathbb{I})\beta^6 = (\mathbb{I})(\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta) <
< (\mathbb{I})(\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta) \leq
\leq (\mathbb{I})(\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta) <
< (\mathbb{I})(\beta \sigma_{\beta}^{-1} \sigma \beta) (\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta) \leq
\leq (\mathbb{I})(\beta \sigma_{\beta}^{-1} \sigma \beta) (\sigma \beta) <
< (\mathbb{I})(\sigma \beta) \leq
\leq \mathbb{I},\]
which contradicts that the restriction $\beta^6|_{\text{dom } \alpha} : \text{dom } \alpha \rightarrow \mathbb{N}^3$ is an identity partial map. Hence we have that $(\mathbb{I})(\beta \sigma_{\beta}^{-1}) = \mathbb{I}$ for any $\mathbb{I} \in \text{dom } \alpha$, which implies that the equality $(\mathbb{I}) \beta = (\mathbb{I}) \sigma \beta$ holds for any $\mathbb{I} \in \text{dom } \alpha$.

Using 11 as in the above we prove the equality $(\mathbb{I}) \gamma = (\mathbb{I}) \sigma \gamma$ holds for any $\mathbb{I} \in \text{ran } \alpha$.

The obtained equalities and the definition of the composition of partial maps imply statement (iii).

Lemma 8. Let α and β be elements of the semigroup $\mathcal{P}(\mathbb{N}^3)$ and A be a cofinite subset of \mathbb{N}^3. If the restriction $(\alpha \beta)|_A : A \rightarrow \mathbb{N}^3$ is an identity partial map then there exists an element σ of the group of units $H(\mathbb{I})$ of $\mathcal{P}(\mathbb{N}^3)$ such that $(\mathbb{I}) \alpha = (\mathbb{I}) \sigma$ and $(\mathbb{I}) \beta = (\mathbb{I}) \sigma^{-1}$ for all $\mathbb{I} \in A$ and $\mathbb{I} \in (A) \alpha$.

Proof. We observe that one of the following cases holds:

(1) $(\mathcal{H}_i \cap A) \alpha \subseteq \mathcal{H}_i$ for any $i = 1, 2, 3$;

(2) there exists $i \in \{1, 2, 3\}$ such that $(\mathcal{H}_i \cap A) \alpha \not\subseteq \mathcal{H}_i$.

If case (1) holds then the assumption of the lemma and Proposition 11 imply that $(\mathcal{H}_i \cap (A) \alpha) \beta \subset \mathcal{H}_i$ for any $i = 1, 2, 3$. Suppose that $(\mathbb{I}) \alpha < \mathbb{I}$ for some $\mathbb{I} \in A$. Then by Theorem 2 (i) we have that
\[(\mathbb{I}) \alpha \beta < (\mathbb{I}) \beta \leq \mathbb{I}\]
which contradicts the assumption of the lemma. Similar we show that the case $(7) \beta < \gamma$ for some $\gamma \in (A)\alpha$ does not hold. The obtained contradictions implies that $(x)\alpha = x$ and $(x)\beta = x$ for all $x \in A$.

Suppose that case (2) holds. Then by Corollary 11 there exists an element σ of the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $(\mathcal{K}_i \cap \text{dom } \alpha)\sigma_{\alpha} \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$. Now, the assumption of the lemma implies that

$$(x)\alpha \beta = (x)\alpha \mathbb{I} \beta = (x)\alpha \sigma^{-1} \beta = x,$$

and hence by the above part of the proof we get that $(x)\alpha \sigma = x$ and $(y)\sigma^{-1} \beta = x$ for all $y \in (A)\alpha$. The obtained equalities and the definition of the composition of partial maps imply the statement of the lemma.

Lemma 9. Let α, β, γ and δ be elements of the semigroup $\mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $\alpha = \gamma \beta \delta$. Then there exist $\gamma^*, \delta^* \in \mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $\alpha = \gamma^* \beta \delta^*$, dom $\gamma^* = \text{dom } \alpha$, ran $\gamma^* = \text{ran } \beta$, dom $\delta^* = \text{ran } \beta$ and ran $\delta^* = \text{ran } \alpha$.

Proof. For a cofinite subset A of \mathbb{N}_3 by ι_A we denote the identity map of A. It is obvious that $\iota_A \in \mathcal{P}O_{\infty}(\mathbb{N}_3)$ for any cofinite subset A of \mathbb{N}_3. This implies that $\alpha = \iota_{\text{dom } \alpha} \alpha \iota_{\text{ran } \alpha}$ and $\beta = \iota_{\text{dom } \beta} \beta \iota_{\text{ran } \beta}$, and hence we have that

$$\alpha = \iota_{\text{dom } \alpha} \alpha \iota_{\text{ran } \alpha} = \iota_{\text{dom } \alpha} \gamma \beta \delta \iota_{\text{ran } \alpha} = \iota_{\text{dom } \alpha} \gamma \iota_{\text{dom } \beta} \beta \iota_{\text{ran } \beta} \delta \iota_{\text{ran } \alpha}.$$

We put $\gamma^* = \iota_{\text{dom } \alpha} \gamma \iota_{\text{dom } \beta}$ and $\delta^* = \iota_{\text{ran } \beta} \delta \iota_{\text{ran } \alpha}$. The above two equalities and the definition of the semigroup operation of $\mathcal{P}O_{\infty}(\mathbb{N}_3)$ imply that $\text{dom } \gamma^* \subseteq \text{dom } \alpha$, $\text{ran } \gamma^* \subseteq \text{dom } \beta$, $\text{dom } \delta^* \subseteq \text{ran } \beta$ and $\text{ran } \delta^* \subseteq \text{ran } \alpha$. Similar arguments and the equality $\alpha = \gamma^* \beta \delta^*$ imply the converse inclusions which implies the statement of the lemma.

Theorem 4. $\mathcal{D} = \mathcal{J}$ in $\mathcal{P}O_{\infty}(\mathbb{N}_3)$.

Proof. The inclusion $\mathcal{D} \subseteq \mathcal{J}$ is trivial.

Fix any $\alpha, \beta \in \mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $\alpha \mathcal{J} \beta$. Then there exist $\gamma, \delta, \alpha, \beta \in \mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $\alpha = \gamma \delta \alpha$ and $\beta = \gamma \beta \delta \beta$. Then only one of the following cases holds:

1. $(\mathcal{K}_i \cap \text{dom } (\gamma \alpha \beta)) \gamma \alpha \beta \subseteq \mathcal{K}_i$ for any $i = 1, 2, 3$;
2. there exists $i \in \{1, 2, 3\}$ such that $(\mathcal{K}_i \cap \text{dom } (\gamma \alpha \beta)) \gamma \alpha \beta \not\subseteq \mathcal{K}_i$.

If case (1) holds then Lemma 1(i) implies that $(\gamma \alpha \beta) : \text{dom } \alpha \rightarrow \mathbb{N}_3$ and $(\delta \beta \alpha) : \text{ran } \alpha \rightarrow \mathbb{N}_3$ are identity partial maps. Now by Lemma 5 there exist elements σ_{α} and σ_{β} of the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{P}O_{\infty}(\mathbb{N}_3)$ such that $(x)\gamma = (x)\sigma_{\alpha}$, $(y)\beta = (y)\sigma_{\beta}^{-1}$, $(u)\beta = (u)\sigma_{\beta}$ and $(v)\delta = (v)\sigma_{\delta}^{-1}$, for all $x \in \text{dom } \alpha$, $y \in \text{dom } \alpha \gamma$, $u \in \text{ran } \alpha$ and $v \in \text{ran } (\alpha)\delta = \text{ran } \beta$. Then the above arguments imply that $\alpha = \sigma_{\alpha} \beta \sigma_{\delta}^{-1}$ and hence by Theorem 3(iv) we get that $\alpha \mathcal{D} \beta$ in $\mathcal{P}O_{\infty}(\mathbb{N}_3)$.

If case (2) holds then we have that

$$\alpha = \gamma \alpha \beta \delta \alpha = (\gamma \alpha \beta)^2 \alpha (\delta \beta \alpha)^2 = \ldots = (\gamma \alpha \beta)^6 \alpha (\delta \beta \alpha)^6$$

and

$$\beta = \gamma \beta \alpha \beta \delta \beta = (\beta \gamma \alpha)^2 (\delta \alpha \beta)^2 = \ldots = (\gamma \beta \alpha)^6 (\delta \alpha \beta)^6.$$

We put

$$\gamma^* = \gamma \beta (\gamma \beta)^5 \quad \text{and} \quad \delta^* = \delta \beta (\delta \beta)^5.$$
Lemma 7(i) implies that $(\gamma_\alpha \gamma_\beta^2): \text{dom } \alpha \to \mathbb{N}^3$ and $(\delta_2^2 \delta_3): \text{ran } \alpha \to \mathbb{N}^3$ are identity partial maps. Now by Lemma 8 there exist elements σ_α and σ_β of the group of units $H(I)$ of the semigroup $\mathcal{P}E_\infty(\mathbb{N}^3_\alpha)$ such that $(\pi)\gamma_\alpha = (\pi)\sigma_\alpha$, $(\pi)\gamma_\beta^2 = (\pi)\sigma_\beta^{-1}$, $(\pi)\delta_3^2 = (\pi)\sigma_\beta$ and $(\pi)\delta_3 = (\pi)\sigma_\beta^{-1}$, for all $\pi \in \text{dom } \alpha$, $\bar{y} \in (\text{dom } \alpha)\gamma_\alpha = \text{ran } \alpha = \text{dom } \beta$, $\bar{u} \in \text{ran } \alpha$ and $\bar{v} \in (\text{ran } \alpha)\delta_3^2 = (\text{ran } \alpha)\delta_3^2 = \text{ran } \beta$. Then the above arguments imply that $\alpha = \sigma_\alpha \beta \sigma_\beta^{-1}$ and hence by Theorem 8(iv) we get that $\alpha \mathcal{D} \beta$ in $\mathcal{P}E_\infty(\mathbb{N}^3_\alpha)$. □

Acknowledgements

We thank the referee for many comments and suggestions.

References

[1] O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
[2] L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521–529.
[3] T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Sushchikewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211–218.
[4] T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803–2814.
[5] S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Mat. Visn. Tov. Im. Shevchenka 13 (2016), 21–28.
[6] S. Bardyla, On a semitopological α-bicyclic monoid, Visn. L’viv. Univ., Ser. Mekh.-Mat. 81 (2016), 9–22.
[7] S. Bardyla, On locally compact shift-continuous topologies on the α-bicyclic monoid, Topol. Algebra Appl. 6 (2018), 34–42.
[8] S. Bardyla, On locally compact semitopological graph inverse semigroups, Mat. Stud. 49 (2018), no. 1, 19–28.
[9] S. Bardyla, On locally compact topological graph inverse semigroups, Topology Appl. 267 (2019), 106873. DOI: 10.1016/j.topol.2019.106873
[10] S. Bardyla, Embedding of graph inverse semigroups into CLP-compact topological semigroups, Topology Appl. 272 (2020), 107058. DOI: 10.1016/j.topol.2020.107058
[11] S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discrete Math. 21 (2016), no. 2, 163–183.
[12] S. Bardyla and A. Ravsky, Closed subsets of compact-like topological spaces, Preprint arXiv:1907.12129.
[13] G. Berman and K. D. Fryer, Introduction to Combinatorics, New-York, Academic Press, 1972.
[14] M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), no. 21–23, 219–226.
[15] O. Bezushchak, On growth of the inverse semigroup of partially defined co-finite automorphisms of integers, Algebra Discrete Math. (2004), no. 2, 45–55.
[16] O. Bezushchak, Green’s relations of the inverse semigroup of partially defined co-finite isometries of discrete line, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2008), no. 1, 12–16.
[17] P. J. Cameron, Permutation Groups, Cambridge Univ. Press, London, 1999.
[18] I. Chuchman and O. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119–132.
[19] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
[20] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126.
[21] I. R. Filhel and O. V. Gutik, On the closure of the extended bicyclic semigroup, Carpathian Math. Publ. 3 (2011), no. 2, 131–157.
[22] J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), 163–172.
[23] P. A. Grillet, Semigroups. An Introduction to the Structure Theory, Marcel Dekker, New York, 1995.
[24] O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visn. L’viv. Univ., Ser. Mekh.-Mat. 80 (2015), 33–41.
[25] O. Gutik, On locally compact semitopological 0-bisimple inverse ω-semigroups, Topol. Algebra Appl. 6 (2018), 77–101.
[26] O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. L’viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98–108.
[27] O. V. Gutik and K. M. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, Mat. Metody Fiz.-Mekh. Polya 59 (2016), no. 4, 31–43.

THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF THE POSET (\mathbb{N}^3, \leq) ...
