This article can be cited before page numbers have been issued, to do this please use: J. F. Hai, S. Luo, H. Yu, H. Chen, Z. Lu, L. Li, Y. Zou and H. Yan, Mater. Adv., 2021, DOI: 10.1039/D0MA01017K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptor via vinylene π-bridges for efficient organic solar cells

Jiefeng Hai,a,b Siwei Luo,a,e Han Yu,a,d Honggang Chen,c Zhenhuan Lu,a Ling Li,a,b Yingping Zou,a,* He Yan*a,d

Abstract: The field of organic solar cells (OSCs) has seen rapid progress in the last two years, due to the emergence of high-performance Y-series non-fullerene acceptors (NFAs). To further extend this family of the Y-series NFAs and tune their optoelectronic properties, herein, we developed a family of the Y-series NFAs (namely BTP-1V, BTP-2V, BTP-3V, and BTP-4V) by inserting vinylene π-bridges between the Y-series central fused core and non-halogenated end group IC. The incorporation of vinylene π-bridges can effectively reduce the bandgap of these NFAs with a significantly red-shifted absorption edge approaching 1020 nm. The optimized OSC device based on PBDB-T/BTP-1V demonstrated an excellent power conversion efficiency (PCE) of 11.03% with an open-circuit voltage (V_{oc}) of 0.84 V, a short-circuit current density of 20.86 mA cm$^{-2}$, a fill factor of 0.63, and an energy loss of 0.58 eV. It is worth noting that the PCE of over 11% is the highest value for binary single-junction OSCs based on the non-halogenated NFA with a bandgap below 1.28 eV. These results demonstrate that the vinylene π-bridges strategy strongly affects device performance, offering insights into the development of efficient OSCs based on ultra-narrow bandgap Y-series NFAs.

Introduction

Thanks to their light weight, low-cost solution processing, flexibility, semi-transparent outlook and compatibility with high throughput roll-to-roll printing methods, organic solar cells (OSCs) have received extensive research attention.1,2 With superior photoinduced electron transfer and suitable phase-separation property, fullerene derivatives have been widely used as electron acceptors in OSCs for many years.3 Due to the intrinsic disadvantages of fullerene acceptors (such as weak photon harvesting ability in the long wavelength range and the limited regulation on their molecular energy levels), the improvement of fullerene-based OSCs faces great challenges.4 Compared with fullerene acceptors, non-fullerene electron acceptors (NFAs) can realize faster carrier separation with negligible driving force, hence achieving lower energy loss (ΔE_{loss}) and greatly improved efficiencies.5 With the tremendous opportunities to tune their chemical structures, NFAs with acceptor-donor-acceptor (A-D-A) configuration provide a wealth of materials choice for potentially achieving efficient OSCs.6 7 Recently, researchers designed acceptor-donor-acceptor'-donor-acceptor (A-DA’D-A) structure NFAs namely Y6 reaching marvellous efficiencies of 15.7%.8 Y6 is a sensational NFA material as pioneered in breaking the power conversion efficiency (PCE) bottleneck of 15% for binary OSCs. The impressive efficiencies in Y-series-based OSCs have been attributed to the wide and high photoresponsivity with a relatively low E_{band}. Therefore, plenty of works related to this innovative Y-series family have been carried out together with extraordinary PCE surpassing 17% for binary single-junction OSCs, showing great potential in commercial application.9,13 However, the modification of the Y-series NFAs is primarily limited to side chain and terminal group engineering, which limits the improvement of their absorption region and PCE.14,15 Therefore, it is necessary to develop ultra-narrow bandgap (ultra-NBG) NFAs with near-infrared region (NIR) absorption for light harvesting.19 Recent studies have suggested that the introduction of π-bridges between central fused core and terminal electron-withdrawing units is an effective strategy to broaden the spectrum for NFA-based organic solar cells. The extensively used π-bridge units include alkoxyl or alkylthio thiophene,20 21 selenophene,22 thiaolize,23 benzene,24 thiency[3,2-b]-thiophene25 and cyclopentadiithiophene.25 These conjugated units with different substituent groups usually weaken the planarity of the whole conjugated molecule to some extent.26 The carbon-carbon double bond group (vinylene) is used to construct D-A narrow bandgap polymers,27,30 but was rarely applied in A-DA’D-A type NFAs based PSCs.31,33 So far, there has been no report about gradually introduction of multi vinylene units into the backbone of NFAs to regulate their optoelectronic properties.
best of our knowledge, the PCE of over 11% is the highest value of binary OSCs based on non-halogenated NFAs with a bandgap below 1.28 eV. Our work suggests that introducing multiple vinylene π-bridges is an alternative strategy to fine-tune the energy level and absorption range, and maintain planarity of whole conjugated molecule, which endows these Y-series NFAs with the huge potential to construct efficient OSCs based on ultra-NBG NFAs.

Results and discussion

Synthesis

The general synthetic routes of the four target Y-series NFAs are shown in Scheme S1, and the detailed synthetic procedures for the intermediates can be found in the ESI†. Compound 3 was obtained in 80% yield through Stille coupling reaction between 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (1) and tributyl(6-undecylthiopheno)3,2-b-thiophen-2-yl)stannane (2). The heptacyclic core 4 was obtained via a two-step successively Cadogan reaction and alkylation reaction from compound 3 in 45% yield. Compound 4 was then converted into its dialdehyde 5 via the Vilsmeier-Haack reaction in good yield. Subsequently, intermediate 5 was reacted with different doses of tributyl(1,3-dioxolan-2-ylmethyl)phosphonium bromide to afford precursor 6 and 7, respectively. The compound 7 was reacted with different doses of tributyl(1,3-dioxolan-2-ylmethyl)phosphonium bromide to produce compound 8 and 9, respectively. The target four Y-series NFAs BTP-1V, BTP-2V, BTP-3V, and BTP-4V were obtained with good yields (82~85%) through a synthetic approach toward a series of the Y-series NFAs, featuring the donor polymer PBDB-T or PCE10/BTP-1V, BTP-2V, BTP-3V, and BTP-4V were designed by introducing different numbers of vinylene units between the central electron-deficient fused benzothiadiazole core and terminal electron-deficient 2-(3-oxo-2,3-dihydro-1H-inden-1-yldene)malononitrile (IC) end-capped unit (Fig. 1). When the number of vinylene was one or three, two asymmetrical Y-series NFAs BTP-1V and BTP-3V were obtained. Compared with Y534 and Y68, asymmetric vinylene modification of the Y-series NFAs simultaneously extends the conjugation length of molecules to enhance the electron-donating properties, generates a large natural dipole moment, and alters the molecular stacking/packing form in the solid state to some extent.35, 36 The 2-butyloctyl side chain on the nitrogen atom of the central fused deficient core provides good solubility and crystallinity. These four Y-series NFAs bear the broader absorption range (550~1000 nm), the narrower optical bandgap (E_{gopt}) (1.21~1.28 eV), and the higher occupied molecular orbital (HOMO) energy levels (−5.54~−5.34 eV), compared to that of the Y6 counterpart. The OSC devices based on these Y-series NFAs blended with the donor polymer PBDB-T or PCE10 were systematically studied. As a result, the best device based on PBDB-T/BTP-1V showed a V_{oc} of 0.84 V, a J_{sc} of 20.86 mA cm$^{-2}$, an FF of 0.63 and a PCE of 11.03%, whereas devices based on PCE10/BTP-2V, PCE10/BTP-3V and PCE10/BTP-4V achieved PCE of 7.87%, 2.04%, 1.04%, respectively. BTP-1V-based device demonstrated the best PCE in these ultra-NBG NFAs-based devices. The lower HOMO energy level of BTP-1V, the more balanced charge transport and the better phase separation morphology in PBDB-T/BTP-1V blend was found to be major reasons for the superior performance of BTP-1V-based devices, compared to that of other BTP-V-based devices. To the
The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the four NFAs were measured by electrochemical cyclic voltammetry (CV) measurements with Ag/AgCl as the reference electrode and the Fc/Fc’ couple used as the internal standard at a scanning rate of 20 mV s⁻¹, with CV curves shown in the SI. The onset oxidation/reduction potentials (\(\phi_{\text{ox/red}}\)) can be obtained from the cyclic voltammograms. According to the equations of \(E_{\text{HOMO,LUMO}} = -e (\phi_{\text{ox/red}} + \phi_{\text{Fc/Fc'}} + 4.8)\) (eV). The \(E_{\text{HOMO}}/E_{\text{LUMO}}\) values of BTP-1V, BTP-2V, BTP-3V, and BTP-4V are estimated to be -5.54 eV/-3.89 eV, -5.43 eV/-3.64 eV, -5.38 eV/-3.58 eV, and -5.34 eV/-3.52 eV, respectively. The electrochemical data of BTP-V-based NFAs are summarized in Table 1. Having obtained the energy level of the four Y-series NFAs, we then compare them in an energy diagram displayed in Fig. 2c. It is worth noting that extending π-conjugated length of the molecular backbone obviously elevates the HOMO energy levels of the BTP-V-based NFAs, and meanwhile slightly lowers the LUMO energy levels, where it effectively reduces the bandgap of these NFAs due to the electron-donating properties of vinylene π-bridges. Compared with the HOMO value of -5.55 eV and LUMO value of -3.87 eV for Y5, the HOMO energy levels of the BTP-V-based NFAs are gradually upshifted and their LUMO energy levels are downshifted slightly. The LUMO levels of these NFAs are also very close to that of the electron transport layer, [(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene-alt-5,5′-bis(2,2′-thiophene)-2,6-naphthalene-1,4,5,8-tetracaboxylic-N,N′-di(2-ethylhexyl)imide)] (PNDIT-F3N), hence promoting efficient charge collection. The result demonstrates that the vinylene π-bridges is an effective method to adjust the bandgaps and energy levels of NFAs.

Theoretical Calculation

For rational design of ultra-NBG NFAs, density functional theory (DFT) calculations were employed to screen possible candidates of the Y-series NFAs with rigid backbone, and proper HOMO/LUMO energy levels. Compared with multi-fused ring on central core to enhance electron-donating ability, we adapted for increasing conjugation length of Y5 to narrow its bandgap. The DFT calculations of Y5, BTP-1V, BTP-2V, BTP-3V and BTP-4V were performed with Gaussian at the B3LYP/6-31G (d,p) level to elucidate the influence of incorporating vinylene into backbone of the fused conjugated molecule on molecular geometries and energy level of molecules, where the long alkyl side chains were simplified into methyl groups (Fig. 3).}

Table 1. Optical and electrochemical properties of Y5, Y6 and four NFAs

Acceptor	\(\lambda_{\text{max}}\) (nm)b	\(\lambda_{\text{max}}\) (nm)b	\(\lambda_{\text{max}}\) (nm)b	\(E_{\text{HOMO}}\) (eV)c	\(E_{\text{LUMO}}\) (eV)c	\(E_{\text{HOMO}}\) (eV)d	\(E_{\text{LUMO}}\) (eV)d
Y5	718	783	899	-5.55 (-5.74)	-3.87 (-3.70)	-5.54 (-5.64)	-3.91 (-3.70)
Y6	731	821	931	-5.65 (-)	-4.10 (-)	-5.59 (-)	-3.90 (-)
BTP-1V	737	829	968	-5.54 (-5.69)	-3.89 (-3.70)	-5.43 (-3.64)	-3.91 (-3.70)
BTP-2V	756	851	968	-5.43 (-3.64)	-3.91 (-3.70)	-5.38 (-3.58)	-3.90 (-3.70)
BTP-3V	768	814	1018	-5.38 (-3.58)	-3.90 (-3.70)	-5.34 (-3.52)	-3.94 (-3.70)
BTP-4V	760	885	1021	-5.34 (-3.52)	-3.94 (-3.70)	-5.34 (-3.52)	-3.94 (-3.70)

aIn chloroform solutions. bIn neat films. c\(E_{\text{HOMO,LUMO}}\) = \(-e (\phi_{\text{ox/red}} + \phi_{\text{Fc/Fc'}} + 4.8)\) (eV). dObtained from DFT calculations. eReference 34. fReference 1.

Fig. 2. Normalized UV-vis absorption spectra of BTP-1V, BTP-2V, BTP-3V, and BTP-4V (a) in chloroform solutions and (b) in neat films. (c) Energy diagrams of Y5, BTP-1V, BTP-2V, BTP-3V and BTP-4V. (d) Architecture of the BTP-V-based devices.
coplanarity for these four Y-series NFAs. The conjugated skeleton length of these NFAs were designed to have different amounts of vinylene π-bridges, with the aim to subtly regulate the conjugation length of the acceptor while promoting the π-electron delocalization, and thereby facilitating photon absorption and charge transportation in the solid state. The intramolecular H–O conformational lock offered four NFAs a planar structure to promote π–π stacking in the solid state. The HOMO/LUMO energy levels of Y5, BTP-1V, BTP-2V, BTP-3V and BTP-4V were calculated to be -5.74/-3.70, -5.69/-3.70, -5.64/-3.70, -5.58/-3.70, and -5.52/-3.70 eV, respectively, which were consistent with the CV measurements and UV-vis spectra. Increasing in π-conjugated length of backbone of the Y-series NFAs clearly uplifted the HOMO level and basically maintained the LUMO level. According to theory calculation, the HOMO orbital was mainly located at the electron-donating core, while the LUMO orbital was delocalized across the entire molecule with more focus on the electron-withdrawing end groups, facilitating charge transport within and across molecules.

Photovoltaic properties

To investigate the photovoltaic performance of the four Y-series NFAs, single-junction OSCs with a conventional architecture of ITO/PEDOT:PSS/active layer/PNDIT-F3N/Ag (Fig. 2d) were fabricated. The details of device photovoltaic parameters are listed in Table 2. The PEDOT:PSS and PNDIT-F3N were selected as the hole and electron transport layer, respectively. Considering matched energy and complementary absorption, the polymer PBDB-T was chosen as the donor material for BTP-1V (PCE10 for BTP-2V, BTP-3V and BTP-4V). The details of device preparation can be found in the ESI†. The current-density-voltage (J-V) curves of the optimal BTP-V-based OSC devices are plotted in Fig. 4a, and the detailed photovoltaic parameters are summarized in Table 2. The PCE10/BTP-4V- and PCE10/BTP-3V-based device showed the low PCE of 1–2%, where the values of J_{oc} (3.61 mA cm^{-2} for BTP-4V, 6.46 mA cm^{-2} for BTP-3V), V_{oc} of (0.67 V for BTP-4V, 0.72 V for BTP-3V) and FF (0.42 for BTP-4V, 0.44 for BTP-3V) are very poor. When the numbers of the vinyl x-bridges of the BTP-V-based NFAs gradually reduced, the photovoltaic parameters of OSCs dramatically increased. Compared to the PCE10/BTP-3V-based device, the BTP-2V-based device exhibited a much higher PCE of 5.78% due to the increased J_{oc} (19.80 mA cm^{-2}), V_{oc} (0.77 V), and FF (0.51). Meanwhile, changing PCE10 to PBDB-T, PBDB/BTP-1V-based device showed a slightly enhanced J_{oc} (20.86 mA cm^{-2}), significantly increased V_{oc} (0.84 V) and FF (0.63), and thus a highest PCE of 11.03%. To our knowledge, the PCE of 11% is the highest values for binary single-junction OSCs based on ultra-NBG (≤1.28 eV) non-halogenated NFAs with IC ending groups to date. The V_{oc} is decreased from BTP-1V (0.84 V), BTP-2V (0.77 V), BTP-3V (0.72 V) to BTP-4V (0.67 V), which is consistent with energy level alignment.

The current densities of all best-performance devices were calibrated with the corresponding EQE data. The EQE spectra of the four BTP-V-based devices are shown in Fig. 4b. The integrated J_{sc} values from EQE curves of PBDB-T/BTP-1V- and PCE10/BTP-2V-based devices are 20.53 and 18.92 mA cm^{-2}, respectively, matching well with the J_{sc} values from the J-V curves (less than 5% mismatch). Generally, PCE10/BTP-2V-based device exhibits a more broaden EQE response from 300 to 960 nm compared to that of the device based on PBDB-T/BTP-1V. This result is consistent with their UV-visible NIR absorption spectra in thin film. However, PBDB-T/BTP-1V-based device showed much higher average EQE values compared to that of the PCE10/BTP-2V-based device. The better stacking in PBDB-T/BTP-1V films is proposed to be the reason for the higher EQE despite their weaker absorption intensity. A discussion on film morphologies will be covered in later sections to support this point. The higher average EQE values is the main reason for the improved J_{sc} value for the PBDB-T/BTP-1V-based device. As a result, in combination with a large V_{oc} and J_{sc}, the PBDB-T/BTP-1V-based device exhibited a much higher PCE of 11.03% compared to that of the PCE10/BTP-2V-based device. The integrated currents from the EQE spectra of PCE10/BTP-3V- and PCE10/BTP-4V-based devices are relatively low. It is revealed that both devices show low integrated currents due to inefficiently harvesting photons in a broad absorption range.

It is noteworthy that the corresponding energy loss (E_{loss}) for BTP-1V-based device is calculated to be 0.58 eV. Generally, E_{loss} is defined by E_{loss} = E_{g} - qV_{oc}, where E_{g} refers to the optical bandgap determined by the smaller value of donor or acceptor. It is relatively small value among the NIR absorption Y-series NFAs. The value of E_{loss} is important to overcome the trade-off between V_{oc} and J_{sc}, which could boost the two parameters simultaneously for high efficiency OSCs based on NFAs. Meanwhile, such the small E_{loss} of BTP-1V-based device is achieved from the Y-series NFAs with an E_{g,opt} of 1.28 eV, indicating a brighter future of efficient OSCs based on ultra-NBG Y-series NFAs.

Charge recombination and carrier mobility

The exciton dissociation and charge extraction behaviours of the respective devices were further studied by plotting photo-generated current density (J_{ph}) against effective voltage (V_{eff}) (Fig. S27). J_{ph} is defined as J_{1} - J_{0}, V_{eff} is calculated as V_{ph} - V_{oc}, where J_{1} and J_{0} represent the current densities under the illumination of AM 1.5 G 100 mW/cm^{2} and in the dark, V_{oc} is the voltage when J_{ph} is zero and V_{ph} is the voltage applied voltage externally. The value of J_{ph}/J_{sat} (J_{sat} is where is saturation photo-generated current density) is defined as a charge excition dissociation probability (P_{dis}). BTP-1V-based device exhibited the highest P_{dis} (93.9%) in the four BTP-V-based devices (82.3% for BTP-2V-based device, 53.4% for BTP-3V-based device, and 50.8% for BTP-4V-based device). It implies that the most
efficient charge extraction and charge collection in the BTP-1V-based device.

Figure 4. (a) J-V characteristics, (b) external quantum efficiency (EQE) spectra of NFAs-based devices. (c) A summary of reported binary single-junction OSCs based on non-halogenated NFAs with IC end group.

Materials	V_{oc} (V)	J_{sc} (mA cm$^{-2}$)	FF (%)	PCE (%)	μ_e/μ_h (10^4 cm2 V$^{-1}$ s$^{-1}$)
PBDB-T/BTP-1V	0.82±0.01	20.58±0.30 (20.86)	62.3±0.7 (63.1)	10.7±0.3 (11.03)	4.48/4.80
PCE10/BTP-2V	0.75±0.02	19.42±0.25 (19.80)	51.0±0.4 (51.4)	7.41±0.25 (7.87)	6.85/2.66
PCE10/BTP-3V	0.70±0.02	6.34±0.09 (6.46)	43.9±0.3 (44.3)	1.95±0.07 (2.06)	9.68/1.15
PCE10/BTP-4V	0.65±0.01	3.54±0.50 (3.61)	42.1±0.4 (42.7)	0.97±0.03 (1.03)	16.65/2.64

The light intensity (P_{light}) dependence of J_{sc} was determined to evaluate the charge carrier recombination behaviour of these four OSC devices. The plots of log J_{sc} versus log P_{light} is shown in Fig. S28. Theoretically, the correlation between J_{sc} and P_{light}^α is written as $J_{sc} \propto P_{light}^\alpha$, where α is the bimolecular recombination index.54 When α value gets close to 1, it implies that all dissociated charges are collected with minimal bimolecular recombination. In our cases, the α values are 0.93, 0.86, 0.83 and 0.85 for BTP-1V-, BTP-2V-, BTP-3V- and BTP-4V-based device, respectively, indicating the most effective carrier collection and the weakest bimolecular recombination in BTP-1V-based device, thus leading to the highest FF. Fig. S29 shows the plots of V_{oc} versus P_{light} of the four optimized BTP-V-based OSC devices. For bimolecular recombination in BHJ OSCs, the semilogarithmic plot of V_{oc} as a function of the light intensity should a linear relationship with a slope of $1/kTq$, where k is the Boltzmann constant, T is room temperature (298 K), and q is the elementary charge.55 In contrast, a slope of $2/kTq$ implies that the trap-assisted or monomolecular recombination is the dominating mechanism.56 The slopes of the four BTP-V-based device curves are 1.20 kTq, 1.71 kTq, 2.53 kTq and 4.01 kTq for BTP-1V-, BTP-2V-, BTP-3V- and BTP-4V-based devices respectively, signifying the dominant bimolecular recombination for BTP-1V-based device, whereas BTP-2V-, BTP-3V- and BTP-4V-based device affected by monomolecular or trap-assisted recombination. The results collectively suggest that charge recombination is effectively suppressed in the BTP-1V-based device. The existence of monomolecular or trap-assisted recombination indicates that domain sizes in the PCE10/BTP-2V, PCE10/BTP-3V and PCE10/BTP-4V blends is large to some extent, whereas the PBDB-T/BTP-1V blends may have more appropriate domain sizes.

Additionally, the photoluminescence (PL) measurements of the neat and blend films were carried out to investigate the exciton dissociation and photo-induced charge transfer between polymer donor and Y-series NFAs. As shown in Fig. S25, PL intensities of the pure acceptors decrease dramatically upon incorporating the other component in the corresponding blend films which suggests that the exciton dissociation and charge transfer between polymer and the four acceptors are generally efficient. PBDB-T/BTP-1V and PCE10/BTP-2V blend films exhibit sufficiently quenching efficiencies (91% for BTP-1V and 87% for BTP-2V) in PL experiments, implying efficient exciton dissociation and charge transfer in blend layers. Meanwhile, PCE10/BTP-3V and PCE10/BTP-4V blend films exhibit deficiently quenching efficiencies (71% for BTP-3V and 66% for BTP-4V) in PL quenching experiments, which indicates that less free charge can be generated in the blends and results in a low external quantum efficiency (EQE) of BTP-3V- and BTP-4V-based devices. The charge-transfer efficiency between PBDB-T and BTP-1V is the highest in four blend films, suggesting that the hole transfer from BTP-1V to the donor polymer PBDB-T is the most effective among the four BTP-V-based blend films.

The space-charge-limited current (SCLC) method was utilized to characterize the charge transport properties of the blend films, as charge transport is closely relevant to molecular packing. Experiments were carried out on the hole-only and electron-only devices with the structures of ITO/PEDOT:PSS/blend film/MoO$_3$/Al and ITO/ZnO/blend film/PNDIT-F3N/Al, respectively. We measured the charge carrier mobilities by fitting the dark J-V curves of these
devices. The electron mobility (μ_e) and the hole mobility (μ_h) are summarized in Table 2, and the J-V curves under the dark condition are shown in the Fig. S30. The values of μ_e/μ_h are 4.48×10$^{-4}$/4.80×10$^{-4}$, 6.85×10$^{-4}$/2.66×10$^{-4}$, 9.68×10$^{-4}$/1.15×10$^{-4}$, 16.45×10$^{-4}$/2.64×10$^{-4}$ cm2 V$^{-1}$ s$^{-1}$ for PBDB-T/BTP-1V, PCE10/BTP-2V, PCE10/BTP-3V and PCE10/BTP-4V blend films, respectively. Compared with PCE10/BTP-2V, PCE10/BTP-3V and PCE10/BTP-4V, PBDB-T/BTP-1V blend film shows the most balanced μ_h/μ_e ratio of 0.93, which is beneficial for charge transport and collection, thus leading to an improved J_{sc} and FF in the corresponding devices. Whereas the unbalanced mobilities of PCE10/BTP-3V and PCE10/BTP-4V blend films is the main reason for the inferior values of J_{sc} and FF.

Morphology

Atomic force microscopy (AFM) was utilized to investigate the surface morphology of active layers (Fig. 5). In AFM height images, all four blends show smooth surface morphologies, and the root mean square roughness (R_q) for PBDB-T/BTP-1V, PCE10/BTP-2V, PCE10/BTP-3V and PCE10/BTP-4V are 1.27, 1.19, 0.94 and 0.81 nm, respectively. As shown in AFM phase images, in comparison to the BTP-2V, BTP-3V and BTP-4V-based blends, the BTP-1V-based blend exhibits the smallest domains, which is beneficial to construct bi-continuous interpenetrating networks in the blend film. The PBDB-T/BTP-1V blend film displays a more well-ordered morphology of BTP-1V and PBDB-T interlayer in the blend film, which facilitates the efficient exciton dissociation and charge transport, resulting in an improved parameter of OSC device.

To investigate the molecular stacking and crystallization of the four BTP-V-based blend films, two-dimensional grazing incidence wide-angle X-ray scattering (GIWAXS) measurements were performed on pure and blend films. As shown in the Fig. 6, the 2D GIWAXS patterns and the corresponding 1D line-cuts in the corresponding 1D line-cuts in the out-of-plane (OOP) and in-plane (IP) directions of the four Y-series NFAs suggest that four blend films adopt a preferential face-on orientation with respect to the substrate, as indicated by the strong (010) $\pi-\pi$ stacking peaks in the OOP direction and the (100) lamellar stacking peaks in the IP direction, which is beneficial for charge transport in the vertical direction across the blend films. The charge trend of $\pi-\pi$ stacking distances of the four blends are similar to that of the corresponding neat acceptor films. The PBDB-T/BTP-1V, PCE10/BTP-2V, PCE10/BTP-3V, and PCE10/BTP-4V blend films showed obvious (010) $\pi-\pi$ stacking peaks at q_z of 1.73 Å$^{-1}$, 1.71 Å$^{-1}$, 1.72 Å$^{-1}$, and 1.70 Å$^{-1}$, respectively, and the corresponding $\pi-\pi$ stacking distances are calculated to be 3.63 Å, 3.67 Å, 3.65 Å and 3.69 Å. The PBDB-T/BTP-1V blend film exhibits the shortest $\pi-\pi$ stacking distance in the four blend films. It is envisaged that the closest $\pi-\pi$ stacking distance of PBDB-T/BTP-1V blend film facilitates the charge transport and restrains charge recombination, thus accounting for the best J_{sc}, FF and PCE values for PBDB-T/BTP-1V-based device. The GIWAXS results generally is consistent with the results of charge recombination studies.

![Fig. 5. AFM height (a, b, c, d) and AFM phase (e, f, g, h) of the blend films PBDB-T/BTP-1V, PCE10/BTP-2V, PCE10/BTP-3V, and PCE10/BTP-4V](image-url)
Conclusions

In summary, we initially designed and synthesized a series of the Y-series BTP-V-based NFAs through a general versatile synthetic approach, featuring ultra-NBG and various electron accepting abilities. Compared with sidechain and terminal group engineering, this synthetic approach of the Y-series NFAs simplified extending conjugated backbone of NFAs by introducing vinylene π-bridges. More importantly, this work opens the door to a great variety Y6 family. These changes of molecular structures have a huge influence on the optical, electronic, and photovoltaic properties of a series of the related BTP-V-based NFAs. The PBDB-T/BTP-1V blend film shows the highest electron mobility, the best balance charge transport, and the least charge recombination among four BTP-V-based NFAs. To the best of our knowledge, this is the first time that the PCE of over 11% has been realized using a non-halogenated Y-series NFA with a bandgap below 1.28 eV. The result not only demonstrates that the fine-tuning extent of NFAs conjugated system is an effective method to adjust their energy levels, optical absorption, charge transport, and morphology, but provides a useful guideline to alter the electrochemical properties of the Y-series NFAs for high-performance ultra-NBG NFAs-based OSCs.

Author contributions

J. H., S. L., and H. Y. contributed equally to this work. J. H. synthesized the four non-fullerene acceptors. S. L. carried out the materials selection, cells fabrication and device characterization. H. Y. carried out the UV-vis, fluorescence, TGA and GIWAXS measurements. H. C. conducted the mass spectrometry and cyclic voltammetry measurements. Z. L. carried out H1 NMR. J. H., S. L., H. Y., L. L., Y. Z., and H. Y. prepared the manuscript and all authors commented on the manuscript. L. L. and H. Y. directed the project.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The work described in this paper was supported by the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), the Natural Science Foundation of China (Grant No. 21962005), and the Natural Science Foundation of Guangxi Province (Grant No. 2017GXNSFAA198343 and 2018GXNSFAA281137). Key Laboratory Research Fund of Guangxi Province (EMFM20161101).

References
3. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.-L. Yip, X. Peng, Y. Cao and Y. Chen, *Nature Photonics*, 2017, 11, 85-90.

4. E. M. Speller, A. J. Clarke, J. Luke, H. K. H. Lee, J. R. Durrant, N. Li, T. Wang, H. C. Wong, J.-S. Kim, W. C. Tsioi and Z. Li, *Journal of Materials Chemistry A*, 2019, 7, 23361-23377.

5. J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao and H. Yan, *Nature Energy*, 2016, 1, 16089.

6. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu and X. Zhan, *Advanced Materials*, 2015, 27, 1170-1174.

7. T. Liu, Z. Luo, Y. Chen, T. Yang, Y. Xiao, G. Zhang, R. Ma, X. Lu, C. Zhan, M. Zhang, C. Yang, Y. Li, J. Yao and H. Yan, *Energy & Environmental Science*, 2019, 12, 2529-2536.

8. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li and Y. Zou, *Joule*, 2019, 3, 1140-1151.

9. Q. Liu, Y. Jiang, K. Jin, Q. Jin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang and L. Ding, *Science Bulletin*, 2020, 65, 272-275.

10. Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao and J. Hou, *Advanced Materials*, 2020, 32, 1908205.

11. L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A.-K.-Y. Jen and Y. Li, *Advanced Materials*, 2020, 32, 1907604.

12. R. Ma, T. Liu, Z. Luo, Q. Guo, Y. Xiao, Y. Chen, X. Li, S. Luo, X. Lu, M. Zhang, Y. Li and H. Yan, *Sci. China Chem.*, 2019, 63, 325-330.

13. Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Tang, B. Lin, K. Xian, B. Gao, C. An, P. Bi, W. Ma and J. Hou, *National Science Review*, 2019, 7, 1239-1246.

14. J. Gao, W. Gao, X. Ma, Z. Hu, C. Xu, W. Wang, Q. An, C. Yang, X. Zhang and F. Zhang, *Energy & Environmental Science*, 2020, 13, 958-967.

15. F. Cai, C. Zuo, Y. Cai, X. Xiao, D. Wang, Y. Zhang, T. Zhang, X. Deng, H. Zhu, J. Hou, *Journal of Materials Chemistry A*, 2020, 8, 1906403.

16. F. Cai, H. Peng, H. Chen, J. Yuan, J. Hai, T.-K. Lau, J. Wang, Y. Wu, H. Liu, X. Lu, Y. Chen and J. Hou, *Journal of Materials Chemistry A*, 2020, 8, 1906971.

17. Y. Chen, F. Bai, Z. Peng, L. Zhu, J. Zhang, X. Zou, Y. Qin, H. Kim, J. Yuan, L.-K. Ma, J. Zhang, H. Yu, P. C. Y. Chow, F. Huang, Y. Zou, H. Ade, F. Liu and H. Yan, *Advanced Energy Materials*, 2020, 2003141.

18. H. Yu, Z. Qi, J. Zhang, Z. Wang, R. Sun, Y. Chang, H. Sun, W. Zhou, J. Min, H. Ade and H. Yan, *Journal of Materials Chemistry A*, 2020, 8, 23756-23765.

19. F. Qi, K. Jiang, F. Lin, Z. Wu, H. Huang, W. Gao, Y. Li, Z. Cai, H. Y. Woo, Z. Zhu and A. K. Y. Jen, *ACS Energy Letters*, 2020, 6, 9-15.

20. H. Yao, Y. Cui, R. Yu, B. Gao, H. Zhang and J. Hou, *Angewandte Chemie International Edition*, 2017, 56, 3045-3049.

21. S. Chen, H. Yao, B. Hu, G. Zhang, L. Arunagiri, L.-K. Ma, J. Huang, J. Zhang, Z. Zhu, F. Bai, W. Ma and H. Yan, *Advanced Energy Materials*, 2018, 8, 1800529.

22. D. Liu, B. Kan, X. Ke, N. Zheng, Z. Xie, D. Lu and Y. Liu, *Advanced Energy Materials*, 2018, 8, 1801618.
48. J. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang, J. L. Yang, S.-Y. Chang, Z. Zhang, W. Huang, R. Wang, D. Meng, F. Gao and Y. Yang, Nature Communications, 2019, 10, 570.

49. X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang and F. Zhang, Journal of Materials Chemistry A, 2019, 7, 7843-7851.

50. M. Luo, L. Zhou, J. Yuan, C. Zhu, F. Cai, J. Hai and Y. Zou, Journal of Energy Chemistry, 2020, 42, 169-173.

51. Y. Li, L. Zhong, B. Gautam, H.-J. Bin, J.-D. Lin, F.-P. Wu, Z. Zhang, Z.-Q. Jiang, Z.-G. Zhang, K. Gundogdu, Y. Li and L.-S. Liao, Energy & Environmental Science, 2017, 10, 1610-1620.

52. W. Li, K. H. Hendriks, A. Furlan, M. M. Wienk and R. A. J. Janssen, Journal of the American Chemical Society, 2015, 137, 2231-2234.

53. C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou and Y. Li, Energy & Environmental Science, 2020, 13, 2459-2466.

54. A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan and A. J. Heeger, ACS Nano, 2013, 7, 4569-4577.

55. S. R. Cowan, A. Roy and A. J. Heeger, Physical Review B, 2010, 82, 245207.

56. W. L. Leong, S. R. Cowan and A. J. Heeger, Advanced Energy Materials, 2011, 1, 517-522.