Enzyme Linked Immunosorbent Assay (ELISA) Technique Guideline

Rachmat Hidayat¹*, Patricia Wulandari²

¹ Department of Biology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
² Cattleya Mental Health Center, Palembang, Indonesia

ARTICLE INFO

Keywords:
ELISA
Antigen
Antibody
Guideline

*Corresponding author:
Rachmat Hidayat

E-mail address:
dr.rachmat.hidayat@gmail.com

All authors have reviewed and approved the final version of the manuscript.

https://doi.org/10.32539/bsm.v5i5.228

ABSTRACT

ELISA (Enzyme-linked immunosorbent assay) is a technique used to assess the quantification of peptide, protein, antibody and hormone levels, based on the principle of antigen-antibody binding. In the ELISA technique, antigen immobilization will be carried out on a solid surface, then bound with antibodies to form an antigen-antibody bond complex, where the antigen-antibody complex is bound to the enzyme. The detection signal in the form of a color change will be formed due to the reaction between the enzyme and the substrate.

1. Introduction

ELISA is generally carried out on a plate containing 96 wells, where the antibody binding process with protein will occur. This very simple process makes ELISA easy to do. Ease of ELISA for washing, making it easier to clean the following materials when tested. This will make testing with ELISA specific.

The ELISA examination procedure begins with the process of attaching (coating) the antigen and / or antibody to the surface of the well on the plate. Furthermore, the blocking step is carried out (blocking) antigen and antibody bonds at the unspecific-site with a blocking agent. After incubation and washing, the plates were incubated with enzyme-bound antibodies. Next, washing the plates was carried out and continued with the addition of the substrate so that the color change would be produced and the OD (optical density) value was read with an ELISA reader.

The washing stage is an important one to remove antibodies that are not bound to antigens. In addition, make sure that no washing liquid is left on the plate, because it is feared that it will affect the next stage of the inspection.

Terminology

- ELISA plate: a container for antigen-antibody collection, which generally contains 96 test wells.
• Antigen: A protein to be assessed for levels, derived from the sample to be tested. If we are going to assess IL-12 levels by using ELISA from serum samples, then the IL-12 contained in our serum is termed an antigen.

• Antibody: A protein that binds to an antigen. If we are going to assess IL-12 levels using ELISA from a serum sample, then an antibody will be added, then the antibody is a protein that will bind to IL-12, or known as anti-IL-12.

• Standard: A protein that will be graded, which has known levels. If we are going to assess IL-12 levels using ELISA from serum samples, the standard is the IL-12 protein that has known levels, for example the standard IL-12 level is 100 pg / mL. Generally, this standard will be made into several concentrations, so that you will get a graph depicting the standard VS the OD value of the standard. The graph will be used to calculate the levels in the sample.

• OD (Optical Density) value: a value that describes the intensity of the color change on ELISA

• ELISA reader: Tool used to get the OD value from an ELISA examination.

ELISA type

There are several types of ELISA, namely: direct, indirect, sandwich or competitive. In the immobilization stage the antigen can be attached directly to the plate or indirectly to the plate, by binding with antibodies that have been attached to the bottom of the plate. Furthermore, the antigen is detected directly with the primary antibody bound to the enzyme or the antigen is detected indirectly with the secondary antibody that is bound to the primary antibody and the enzyme. Enzymes that are generally bound to antibodies include: alkaline phosphatase (AP) or horseradish peroxidase (HRP).

1. Direct ELISA

In this type, the antigen is attached to the bottom of the plate, then the antigen will be detected through the antibody bound to the enzyme.

Advantages:
• Examination with this method is faster
• Cross-reaction with secondary antibodies can be eliminated

Disadvantages:
• The resulting signal amplification is weak
• Lack of flexibility in selecting enzyme labeled primary antibodies
• There may be reactions between primary antibodies and enzymes bound to these primary antibodies.

2. Indirect ELISA

In this method, the antigen is attached to the base of the plate, then, the primary antibody which is not labeled with the enzyme is inserted. Next, put back the enzyme labeled secondary antibody, which will bind to the primary antibody.

Advantages:
• The sensitivity of the test is increased with the use of primary and secondary antibodies.

Disadvantages:
• Cross-reactions can occur with secondary antibodies which will result in a non-specific signal.
• Longer incubation time is required
• The cost required is greater than the direct method

3. ELISA sandwich

In this method, the antibody is first attached to the base of the plate. Next, the test sample (antigen) is inserted into the well on the plate, then a secondary antibody bound to the enzyme is inserted into the well on the plate.

Advantages:
• Has high specificity
• Suitable for use with less pure samples

Disadvantages:
• The cost is quite large because it uses two antibodies

448
4. Competitive ELISA

Competitive ELISA is an ELISA examination method where there is a competitive reaction between the sample antigen and antigen bond that is attached to the bottom of the *plate* well with the primary antibody. In this method, the non-sample antigen is attached to the bottom of the *plate*. Next, the sample antigen and primary antibody are inserted into the well. Then put secondary antibodies that are bound to the enzyme in the wells on the *plate*.

ELISA data interpretation

The final result of the ELISA examination will be obtained the OD value *(optical density)*, however the OD value is not the level of the ELISA examination, it is still necessary to process the OD value data. The first thing to do is to make a standard OD value curve VS standard content, so that the line equation will be obtained from the curve. The equation obtained will be used to convert the OD value of the sample into a grade value.
Figure 3. Standard ELISA

Figure 4. Making Serial Concentration Standard

Figure 5. Changes in Color Intensity on ELISA Plate
2. References

1. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–1175. doi: 10.1172/JCI104130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Immunochemistry. 1969;6:43–52. doi: 10.1016/0019-2791(69)90177-3. [PubMed] [CrossRef] [Google Scholar]

3. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. 1999;127:617–633. doi: 10.1111/j.1469-8137.1994.tb02968.x. [CrossRef] [Google Scholar]

4. Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci. 2013;14:10242–10297. doi: 10.3390/ijms140510242. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci. 2001;161:839–851. doi: 10.1016/S0168-9452(01)00490-3. [CrossRef] [Google Scholar]

6. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670–3695. doi: 10.1016/j.bbagen.2013.02.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Avrameas S, Ternynck T, Guesdon JL. Coupling of enzymes to antibodies and
antigens. Scand J Immunol. 1978;8:7–23. doi: 10.1111/j.1365-3083.1978.tb03880.x. [CrossRef] [Google Scholar]

8. Nakane PK, Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem. 1974;22:1084–1091. doi: 10.1177/22.12.1084. [PubMed] [CrossRef] [Google Scholar]

9. Craven GR, Steers E, Anfinsen CB. Purification, composition and molecular weight of the β-galactosidase of Escherichia coli K12. J Biol Chem. 1965;240:2468–2477. [PubMed] [Google Scholar]

10. Dray F, Andrieu JM, Renaud F. Enzyme immunoassay of progesterone at the picogram level using β-galactosidase as label. Biochim Biophys Acta. 1975;403:131–138. doi: 10.1016/0005-2744(75)90016-9. [PubMed] [CrossRef] [Google Scholar]

11. Comoglio S, Celada F. An immuno-enzymatic assay of cortisol using E. coli β-galactosidase as label. J Immunol Methods. 1976;10:161–170. doi: 10.1016/0022-1759(76)90167-8. [PubMed] [CrossRef] [Google Scholar]

12. Hitchcock CHS, Bailey FJ, Crimes AA, Dean DAG, Davis PJ. Determination of soya proteins in food using an enzyme-linked immunosorbent assay procedure. J Sci Food Agric. 1981;32:157–165. doi: 10.1002/jfsa.2740320211. [CrossRef] [Google Scholar]

13. Crowther JR. Stages in ELISA. Methods Mol Biol. 2009;516:43–78. doi: 10.1007/978-1-60327-254-4_3. [PubMed] [CrossRef] [Google Scholar]

14. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) Quant Assay immunoglobul G Immunochim. 1971;8:871–874. [PubMed] [Google Scholar]

15. Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–236. doi: 10.1016/0014-5793(71)80319-8. [PubMed] [CrossRef] [Google Scholar]

16. Belanger L, Sylvestre C, Dufour D. Enzyme-linked immunoassay for alpha-fetoprotein by competitive and sandwich procedures. Clin Chim Acta. 1973;48:15–18. doi: 10.1016/0009-8981(73)90211-8. [PubMed] [CrossRef] [Google Scholar]

17. Lindström P, Wager O. IgG autoantibody to human serum albumin studied by the ELISA-technique. Scand J Immunol. 1978;7:419–425. doi: 10.1111/j.1365-3083.1978.tb00472.x. [PubMed] [CrossRef] [Google Scholar]

18. Slightom EL. The analysis of drugs in blood, bile, and tissue with an indirect homogeneous enzyme immunoassay. J Forensic Sci. 1978;23:292–303. doi: 10.1520/JFS10760J. [PubMed] [CrossRef] [Google Scholar]

19. Nierwenhuijzen Kruseman AC. Application of ELISA for assessment of antiserum immunoreactivity in endocrine immunocytochemical studies. J Clin Pathol. 1983;36:406–410. doi: 10.1136/jcp.36.4.406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Matyjaszek-Matuszek B, Pyzik A, Nowakowski A, Jarosz MJ. Diagnostic methods of TSH in thyroid screening tests. Ann Agric Environ Med. 2013;20:731–735. [PubMed] [Google Scholar]

21. Oguri H, Hirama M, Tsumuraya T, Fujii I, Maruyama M, Uehara H, Nagumo Y. Synthesis-based approach toward direct sandwich immunoassay for ciguatoxin CTX3C. J Am Chem Soc. 2003;125:7608–7612. doi: 10.1021/ja034990a. [PubMed] [CrossRef] [Google Scholar]

22. Boscolo S, Pelin M, De Bortoli M, Fontanive G, Barreras A, Bert F, Sosa S, Chaloin O, Bianco A, Yasumoto T, Prato M, Poli M, Tubaro A. Sandwich ELISA assay for the quantitation of...
palytoxin and its analogs in natural samples. Environ Sci Technol. 2013;47:2034–2042. doi: 10.1021/es304222t. [PubMed] [CrossRef] [Google Scholar]

23. Ueda H, Tsumoto K, Kubota K, Suzuki E, Nagamune T, Nishimura H, Schueler PA, Winter G, Kumagai I, Mohoney WC. Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat Biotechnol. 1996;14:1714–1718. doi: 10.1038/nbt1296-1714. [PubMed] [CrossRef] [Google Scholar]

24. Suzuki T, Munakata Y, Morita K, Shinoda T, Ueda H. Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay. Anal Sci. 2007;23:65–70. doi: 10.2116/analsci.23.65. [PubMed] [CrossRef] [Google Scholar]

25. Ihara M, Suzuki T, Kobayashi N, Goto J, Ueda H. Open-sandwich enzyme immunoassay for one-step noncompetitive detection of corticosteroid 11-deoxycortisol. Anal Chem. 2009;81:8298–8304. doi: 10.1021/ac900700a. [PubMed] [CrossRef] [Google Scholar]