NADPH Oxidases Act as Key Enzyme on Germination and Seedling Growth in Barley (Hordeum vulgare L.)

Yushi Ishibashi¹, Tomoya Tawaratsumida², Shao-Hui Zheng¹, Takashi Yuasa² and Mari Iwaya-Inoue²

¹Coastal Bioenvironment Center, Saga University, Karatsu, Saga 840-0021, Japan;
²Department of Plant resources, Graduate School of Bioresource and Biocenvironmental Science, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan

Abstract: Reactive oxygen species (ROS) play an important role in seed germination. Although hydrogen peroxide (H₂O₂), a type of ROS, enhances the germination rate of various plant seeds, little is known about the mechanism. NADPH oxidases catalyze the production of superoxide anion (O₂⁻) that is one of the ROS and the enzymes regulate plant development. We, therefore, investigated the role of NADPH oxidases in seed germination and seedling growth in barley (Hordeum vulgare L.). The production of O₂⁻ was observed both in embryo and aleurone layers in barley seeds treated with distilled water (DW). However, it was suppressed in seeds treated with diphenylene iodonium (DPI) chloride, NADPH oxidase inhibitor. Moreover, DPI markedly delayed germination and remarkably suppressed α-amylase activity in barley seeds, indicating the importance of NADPH oxidases in germination of barley seeds. The gene expression and the enzyme activity of NADPH oxidases gradually increased after imbibition, and the enzyme activities were closely correlated with seedling growth after imbibition. Besides, DPI markedly suppressed the seedling growth. These results indicated that NADPH oxidases perform a crucial function in germination and seedling growth in barley. These facts clearly reveal that O₂⁻ produced by NADPH oxidases after imbibition regulates seed germination and seedling growth in barley.

Key words: Barley, Germination, NADPH oxidases, Reactive oxygen species, Seedling growth.

Seed germination and seedling growth are important in seed physiology and agriculture fields. The germination of the barley seed is especially important because of the production of malt for beer and whiskey. Therefore, analysis of germination mechanism of barley is very important in both agriculture and breeding fields. Reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) enhanced germination and released residual dormancy of barley seeds (Mabuchi, 1994). In contrast, the exogenously supplied antioxidant, ascorbic acid which acts as an ROS scavenger significantly suppressed germination of barley and wheat (Ishibashi et al., 2006; Ishibashi and Iwaya-Inoue, 2006). Production of hydrogen peroxide at the early imbibition period has been demonstrated in seeds of soybean (Puntarulo et al., 1988), maize (Hite et al., 1999), wheat (Caliskan et al., 1998) and Zinnia elegans (Ogawa and Iwabuchi, 2001); ROS produced after imbibition probably regulated seed germination. Indeed, H₂O₂ scavenging regulated germination ability during wheat seed maturation (Ishibashi et al., 2008). However, the mechanism of ROS production involved in seed germination is still not clear.

In developing or germinating seeds, the active mitochondria is one of the major sources of ROS, generating O₂⁻ and subsequently H₂O₂ (Noctor et al., 2007). Approximately 2−3% of the oxygen used by the mitochondrial respiration results into O₂⁻ and hydrogen peroxide production (Puntarulo et al., 1988). However, treatment with exogenous H₂O₂ promoted seed germination in a dose-dependent manner as did respiratory inhibitors, indicating that H₂O₂ itself possibly promotes seed germination rather than O₂⁻ (Ogawa and Iwabuchi, 2001; Oracz et al., 2009). The NADPH oxidases of the plasma membrane, which transfer electrons from cytoplasmic NADPH to oxygen, are also major source of O₂⁻, which is subsequently dismutated to H₂O₂ (Cross and Segal, 2004). Plant homologues of the mammalian gp91phox of respiratory burst NADPH oxidase complexes
have been identified and partially characterized in several plant species, including rice (Groom et al., 1996; Yoshie et al., 2005), Arabidopsis thaliana (Keller et al., 1998; Torres et al., 1998), tomato (Amicucci et al., 1999), potato (Yoshioka et al., 2001), tobacco (Yoshioka et al., 2003), and barley (Trujillo et al., 2006; Lightfoot et al., 2008). ROS produced by NADPH oxidases have been shown to play various important roles in cellular signaling and development in plants, such as plant defense response, programmed cell death, abiotic stress, stomatal closure, and root hair development (Baxter-Burrell et al., 2002; Torres et al., 2002; Foreman et al., 2003; Kwak et al., 2003; Yoshioka et al., 2003; Jones et al., 2007). Although the dual role of NADPH oxidase is now quite well documented in plants, there exist few studies on seeds in this area. We, therefore, investigated the role of NADPH oxidases in seed germination and seedling growth in barley.

Materials and Methods

1. Plant material

Hordeum vulgare L. cv. Seijou was used as the material. This cultivar was grown in a 30 m² plot in an experimental field of Kyushu University, Fukuoka from 2006 to 2007. Irrigation, fertilization and pesticide treatment were performed to ensure optimal plant growth. Ripe kernels were harvested on 1 June, 2007 and stored at 4ºC, in a dehydrated condition.

2. Germination test and seedling growth

Twenty seeds of barley were placed on filter paper in a petri dish (diameter 9 cm). Six milliliters of DW, 10, 50, and 100 mM of H₂O₂ and 1 mM of DPI were applied to each dish. The concentrations of these solutions were determined according to Mabuchi (1994) and Oracz et al. (2009). The petri dishes were incubated at 22ºC in the dark, and the number of germinating seeds was counted daily for 5 d. Seeds were considered as germinated when the radicle had protruded through the seed coat. Using a plastic scale with mm markings, shoot and root lengths were measured daily for 5 d after imbibition. Shoot and root lengths were measured from the tip to the seed. Measurements were rounded to the nearest mm.

3. Localization of O₂⁻ in seeds

Hand-cut longitudinal sections of seed treated with water for 2 d were incubated in 6 mM nitroblue tetrazolium (NBT) in 10 mM Tris-HCl buffer, pH 7.4 at room temperature for 30 min. O₂⁻ was visualized as deposits of dark-blue insoluble formazan compounds (Beyer and Fridovich, 1987) using stereo (Stemi DV4, Zeiss) and light microscopes (Eclipse, Nikon).

4. Quantitative real-time PCR

Total RNA was extracted from barley seedling (whole plant) by the SDS/phenol/LiCl method (Chirgwin et al., 1979) and cDNA was synthesised from total RNA (1 μg) using Rever TraACE reverse transcriptase (TOYOBO) according to the manufacturer’s protocol. cDNA (1 μL) was amplified in a reaction solution containing 10 μL of SYBR Green realtime PCR master mix, 2 μL of plus solution, 0.1 μL each of 50 μM forward and reverse primers, 6.8 μL of water using SYBER Green realtime PCR master mix -plus- (TOYOBO). The amplification was conducted with a real-time PCR machine (MJ Mini, Bio-Rad) as follows: 1 min at 94ºC followed by 40 cycles of 15 s at 94ºC, 30 s at 56ºC, 30 s at 72ºC, and 5 min at 72ºC. A melt curve was obtained from the PCR product at the end
of the amplification by heating from 50°C to 95°C. From the melt curve, the optimal temperature for data acquisition was determined. To examine gene expression of NADPH oxidases including NADPH oxidase families in barley, we used primers with a particular conserved region of NADPH oxidases in barley. The expression of NADPH oxidases and HvActin was analyzed by these primer pairs: NADPH oxidase-forward (5'-GTTTAAAGGAATCATGAATGAGAT-3'), NADPH oxidase-reverse (5'-GAATTTTGTCGTGCATTTGCCATT-3'), HvActin-forward (5'-GCCGTGCTTTCCCTCTATG-3'), HvActin-reverse (5'-GCTTCTCCTTGATGTCCCTTA). Relative values of NADPH oxidases transcript were calculated by normalizing against the amount of mRNA for a HvActin (Trevaskis et al., 2006) following the method of Pfaffl method (2001). The quantitative PCR values were compared with zero time (dry seed) for each time point and expressed as relative levels of expression.

5. Enzyme activity

Alpha-amylase activity was measured using the Amylase HR Reagent (Megazyme International Ireland, Ltd.) according to the manufacturer’s instructions. Extracts were diluted to a final concentration of 1:6 with extraction buffer, before 200 μL of the diluted extract were reacted with 200 μL of HR reagent at 40°C for exactly 5 min. The reaction was stopped by adding 3 mL of stop reagent. Spectrophotometric measurement was carried out in 1 cm cuvettes at 410 nm using a spectrophotometer (U-1800, Hitachi). There were five replications of each treatment.

Enzymatic activities of NADPH oxidases were assayed according to the procedure of Van Gestelen et al. (1997) and Sarath et al. (2007). Five seeds were ground into fine powder with liquid nitrogen in a mortar with a pestle, weighed and transferred to 2 mL tubes and kept on ice. One milliliter of cold 10 mM Naphosphate buffer, pH 6.0 was added to each tube and the contents were mixed and sonicated using a sonicator for 15 s. Homogenates were clarified by centrifugation at 16,000 × g for 15 min at 4°C in a refrigerated centrifuge. Crude seed homogenates (0.2 mL) were precipitated with acetone (9:1 acetone:homogenate) at −20°C for 15 min. Precipitated proteins were recovered by centrifugation at 12,500 rpm for 10 min at 4°C. Protein pellets were resuspended in buffer (50 mM Tris-HCl, pH 8.0, 0.1 mM MgCl₂, 0.25 M sucrose and 0.1% Triton-X100) and used for assay of NADPH oxidases. NADPH-dependent superoxide generation was measured using NBT. NBT is rapidly converted to monoformazan by two molecules of superoxide. This reaction is detected by a spectrophotometer (U-1800, Hitachi) at 550 nm. Monoformazan concentrations were calculated using an extinction coefficient of 12.8 mM⁻¹ cm⁻¹. It was confirmed that the NBT reduction rates were strictly linear with time up to 10 to 15 min and were linearly dependent on the protein concentration in the sample. Protein concentration was determined according to the method of Bradford (1976) using bovine serum albumin (BSA) as standard. The results are expressed as μmol mg⁻¹ protein.

Fig. 2. Localization of O₂⁻ produced after imbibitions in barley seeds. A, B and C were treated with DW. D, E and F were treated with 1 mM DPI. Emb, embryo; Endo, endosperm; Aleu, aleurone layer; S.E, scutellar epithelial cell. Scale bars are 2 mm (A, D), 0.3 mm (B, E) and 50 μm (C, F), respectively.
Results

1. Effect of DPI, NADPH oxidases inhibitor, on germination and localization of O$_2^-$ in barley seed

In plants, it is known that ROS promotes seed germination. However, the role of NADPH oxidase which is one of the major sources of ROS in seed germination is still not clear. We, therefore, examined the effect of DPI, NADPH oxidase inhibitor, on barley seed germination. Barley seed treated with distilled water (DW) had the germination rate of 40% at 2 d after treatment (DAT), and were fully germinated at 5 DAT, while seeds treated with 100 mM H$_2$O$_2$ as source of ROS had about 40% germination rate at 1 DAT, and fully germinated at 2 DAT (Fig. 1A). These results indicated that seed germination of barley was also accelerated by ROS. In contrast, seeds treated with 1 mM DPI solution had the germination rate of about 5% at 2 DAT, and their germination rate was markedly delayed in comparison with that of DW treatment. Barley seeds treated with solutions containing both DPI and H$_2$O$_2$ resulted in a significant reversal of the inhibitory effects observed in the DPI treatment (Fig. 1B).

NADPH oxidase catalyzes the production of O$_2^-$ from oxygen and NADPH (Lambeth, 2004). To analyze O$_2^-$ accumulation in barley seeds, the seeds were stained with 6 mM NBT. When DW-treated seed was incubated with NBT, accumulation of O$_2^-$ was observed as development of dark-blue color in regions of embryo and aleurone layer including scutellar epithelial cells but not in the endosperm (Fig. 2). However, in DPI-treated seeds, accumulation of O$_2^-$ was hardly observed. Although, in DPI-treated seeds, accumulation of O$_2^-$ was observed slightly in embryo, the accumulation was markedly lower than that in DW-treated seeds. These results indicated that the germination rate of barley seed depends on ROS production including O$_2^-$, and DPI suppressed germination by reducing the O$_2^-$ produced in barley seed.

2. Effect of DPI on α-amylase activity and seedling growth in barley seeds

α-Amylase, an endohydrolase, is a key enzyme in seed germination, since cereal α-amylase can degrade amylose and amylpectin in endosperm to low molecular linear oligosaccharides. The α-amylase activity in DW-treated seeds increased during 4 DAT and the level of activity was maintained until 5 DAT (Fig. 3A). Although α-amylase activity in DPI-treated seeds slightly increased during treatment, the activity was markedly lower than that in the control. Additionally, DPI markedly suppressed both shoot and root growth in the time frame of the experiment (Fig. 3B, C). DPI-treated seeds showed only marginal growth if any from 4 to 5 DAT; the lengths of these shoots and roots at 4–5 DAT were only about 3.9 and 0.8 mm, respectively, which were extremely shorter than those in DW treated plants.

Fig. 3. Effects of DPI on α-amylase activity (A), length of shoot (B) and root (C). Open and closed circles show control (DW) and DPI treatments, respectively. An asterisk indicates statistical significance at the 5% level (Student’s t-test). The reported values are the means and SD of five replications.
Ishibashi et al. -- NADPH Oxidases Regulate Barley Germination and Seedling Growth

The gene expression in seeds treated with DPI also increased as well as DW treatment after imbibitions. In addition, the enzyme activity of NADPH oxidases was closely correlated with α-amylase activity, shoot and root lengths after imbibition ($R^2 = 0.824$, $R^2 = 0.954$ and $R^2 = 0.915$, respectively) (Fig. 5).

Discussion

The present study shows that NADPH oxidases are important for germination and seedling growth of barley. This is illustrated by the use of an NADPH oxidases inhibitor, DPI. Since DPI can inhibit flavin-containing enzymes (Foreman et al., 2003), it is possible that proteins other than NADPH oxidases are also targets for DPI inhibition. However, our data on NADPH oxidases activity...
Bouteau et al., 2008). In this study, DPI treatment facilitated the shift from a dormant to a non-dormant status in seeds (Bailly, 2004; Oracz et al., 2007; El-Maarouf and al., 2006). Recently, it has been reported that ROS could be a ubiquitous signal involved in dormancy alleviation and facilitate the shift from a dormant to a non-dormant state of the NADPH oxidases activity but not the gene expression of NADPH oxidase.

It is known that ROS plays a key role in the release of dormancy and the completion of germination (Bailly et al., 2008). Treating seeds with H2O2 has been shown to promote germination in several species such as rice (Narado et al., 1998), Zinnia elegans (Ogawa and Iwabuchi, 2001) and wheat (Wahid et al., 2007). Our data also showed that treatment with H2O2 as an exogenous source of ROS significantly promoted seed germination (Fig. 1). The disproportion of H2O2 resulting in an increased O2 level is considered to enhance the oxidative respiration, which can be the reason why the promotion of seed germination was observed. However, respiratory inhibitors promoted the germination of Z. elegans, sunflower and barley seeds (Ogawa and Iwabuchi, 2001; Oracz et al., 2009; unpublished), suggesting that such promotion effects are not mainly attributable to the increased O2 level and that the oxidative respiration is not a rate-limiting step for the seed germination. DPI treatment delayed seed germination and suppressed the accumulation of O2 generated in aleurone layer of barley seed (Figs. 1A, 2). Furthermore, the inhibitory effect of DPI on barley seed germination was reversed by H2O2 (Fig. 1B). These results indicated that seed germination in barley was regulated by ROS including H2O2 and O2 produced by NADPH oxidase after imbibition.

The seed germination and dormancy is complicatedly accounted for by control of plant hormones such as abscisic acid (ABA), gibberellins (GA), ethylene, auxin or brassinosteroids (Feurtado et al., 2007). ROS plays a dual role in seed physiology as an actor of cellular signaling pathway and a toxic role (Bailly, 2004). ROS plays a key role in seed physiology as an actor of “oxidative window” for germination. This window is an “oxidative window” of barley seeds.

In conclusion, NADPH oxidases control seed germination and seedling growth in barley through ROS production. ROS plays a dual role in seed physiology as an actor of cellular signaling pathway and a toxic role (Bailly, 2004). Recently, Bailly et al. (2008) have proposed the concept of an “oxidative window” for germination. This window is arrangement of critical levels of ROS on germination. Within the oxidative window ROS play a role in cell signaling on seed germination, on the other hand, upper level of oxidative window is harmful on seed germination because of leading to oxidative damage. NADPH oxidase may play in seed physiology as an actor in “oxidative window” of barley seeds.

Acknowledgements

This work was supported by research fellowships from the JSPS to YI. (No. 204092)

Reference

Amicucci, E., Gaschler, K. and Ward, J.M. 1999. NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol. 1: 924-928.
Ishibashi, Y., Yamamoto, K., Tawaratsumida, T., Yuasa, T. and Iwaya-Inoue, M. 2006. Infl uences of ascorbic acid on germination of barley seeds by hydrogen peroxide. Plant J. 51: 513-522.

Hepler, P.K., Vidal, L. and Cheung, AY. 2001. Polarized cell growth in higher plants. Annu. Rev. Plant Physiol. Mol. Biol. 52: 179-187.

Hibberd, D.R., Auh, C. and Scandalios, J.G. 1999. Catalase activity and homologues of the mammalian respiratory burst oxidase gp91phox in Arabidopsis thaliana. Plant Physiol. 120: 626-630.

Ishibashi, Y. and Iwaya-Inoue, M. 2006. Ascorbic acid suppresses germination and dynamic states of water in wheat seeds. Plant Physiol. 51: 172-175.

Ishibashi, Y., Nonji, Y., Oda, S. and Iwaya-Inoue, M. 2006. Infl uences of low temperature and ascorbic acid on germination of barley seeds. Cryobiol. Cryotechnol. 52: 181-186.

Ishibashi, Y., Yamamoto, K., Tawaratsumida, T., Yuasa, T. and Iwaya-Inoue, M. 2006. Hydrogen peroxide scavenging regulates germination ability during wheat (Triticum aestivum L.) seed maturation. Plant Signal. Behav. 3: 183-188.

Jones, M.A., Raymond, M.J., Yang, Z. and Smirnoff, N. 2007. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J. Exp. Bot. 58: 1261-1270.

Keller, T., Danude, H.G., Werner, D., Doerner, P., Dixon, R.A. and Lamb, C. 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca? binding motifs. Plant Cell 10: 255-266.

Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D. and Schroeder, J.J. 2003. NADPH oxidase Arabidopsis and Arabidopsis genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623-2633.

Kwak, J.M., Nguyen, V. and Schroeder, J.L. 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141: 325-329.

Lambeth, J.D. 2004. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol. 4: 181-189.

Lichtfoot, D.J., Boettcher, A., Little, A., Shirley, N. and Able, A.J. 2008. Identification and characterisation of barley (Hordeum vulgare) respiratory burst oxidase homologue family members. Funct. Plant Biol. 35: 347-359.

Mabuchi, T. 1994. Studies on the dormancy-awakening and -breaking in the two-bowed barley seed. Jpn. J. Crop Sci. 63: 436-441*.

Naredo, M.E.B., Juliano, A.B., Lu, B.R., de Gunuan, F. and Jackson, M.T. 1998. Responses to seed dormancy-breaking treatments in rice species (Oryza L). Seed Sci. Technol. 26: 675-689.

Noctor, G., De Parpe, R. and Foyer, C.H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 12: 125-134.

Ogawa, K. and Iwabuchi, M. 2001. A mechanism for promoting the germination of Zizia densis leaves by hydrogen peroxide. Plant Cell Physiol. 42: 286-291.

Oracz, K., El-Maazrouf-Bouteau, H., Frandsen, J., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. 2007. ROS production and protein oxidation as novel mechanism of seed dormancy alleviation. Plant J. 50: 452-465.

Oracz, K., El-Maazrouf-Bouteau, H., Kramer, I., Bogatek, R., Corbineau, F. and Bailly, C. 2007. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 150: 494-505.

Paffi, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: 2062/2007.

Puntarulo, S., Sánchez, R.A. and Boveris, A. 1988. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 86: 826-830.

Rodriguez, A., Gruenzberg, K. and Takeda, S. 2002. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol. 129: 1627-1632.

Sarath, G., Hou, G., Baird, L.M. and Mitchell, R.B. 2007. Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4 grasses. Plant Physiol. 220: 697-708.

Torres, M.A., Dangl, J.L. and Jones, J.D. 2002. Arabidopsis gp91phox homologues Arabidopsis and Arabidopsis are required for accumulation...
of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA. 99: 517-522.

Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K.E. and Jones, J.D.G. 1998. Six *Arabidopsis thaliana* homologues of the human respiratory burst oxidase (gp91phox). *Plant J.* 14: 365-370.

Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.J. 2006. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. *Plant Physiol.* 140: 1397-1405.

Trujillo, M., Altschmied, L., Schweizer, P., Kogel, K.H. and Hückelhoven, R. 2006. Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus *Blumeria graminis* f. sp. *hordei*. *J. Exp. Bot.* 57: 3781-3791.

Van Gestelen, P., Axard, H. and Caubergs, R.J. 1997. Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. *Plant Physiol.* 115: 543-550.

Wahid, A., Perveen, M., Gelani, S. and Basra, S.M. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. *J. Plant Physiol.* 164: 283-294.

Wynner, C.L., Bibikova, T.N. and Gilroy, S. 1997. Cytoplasmic free calcium distribution during the development of root hairs of *Arabidopsis thaliana*. *Plant J.* 12: 427-439.

Yamane, K., Mitsuoka, S., Kawasaki, M., Taniguchi, M. and Miyake, H. 2009. Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. *Plant Prod. Sci.* 12: 319-326.

Yoshir, Y., Goto, K., Takai, R., Isumo, M., Takayama, S., Isegai, A. and Che, F.S. 2005. Function of the rice gp91phox homologs *Osrbha* and *OsrbhE* genes in ROS-dependent plant immune responses. *Plant Biotechnol.* 22: 127-135.

Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D.G. and Doke, N. 2003. *Nicotiana benthamiana* gp91phox homologs *NbrbohA* and *NbrbohB* participate in H2O2 accumulation and resistance to *Phytophthora infestans*. *Plant Cell* 15: 706-718.

Yoshioka, H., Sugie, K., Park, H.J., Maeda, H., Tsuda, N., Kawakita, K. and Doke, N. 2001. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. *Mol. Plant-Microbe Interact.* 14: 725-730.

* In Japanese with English abstract.