Pull-in actuation in hybrid micro-machined contactless suspension

K V Poletkin, R Shalati, J G Korvink, V Badilita
Spin&Photon Applications (SPA-) Lab, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen D-76344, Germany
E-mail: kirill.poletkin@kit.edu, jan.korvink@kit.edu, vlad.badilita@kit.edu

Abstract. This paper presents a result of study of the pull-in phenomenon in the hybrid micro-machined contactless suspension (\(\mu\)-HCS), combining inductive suspension and electrostatic actuation, reported at PowerMEMS 2015 [1]. Assuming the quasi-static behavior of a levitated proof mass, a non-linear analytical model describing the pull-in actuation along the vertical direction is developed. The developed model allows us to predict the static pull-in parameters of the suspension and to show a dependence of these parameters on suspension design. It is shown that the pull-in displacement can be larger by almost a factor of two than one occurring in a spring-mass system with constant stiffness (classic pull-in). The model is verified by using numerical estimations as well as experimental data and agrees well with measurements and calculations.

1. Introduction

Micro-machined contactless suspensions (\(\mu\)-CS), employing the phenomena of electromagnetic levitation, eliminate mechanical attachments between stationary and moving parts in Micro-Electro-Mechanical Systems (MEMS) and as a result provide the solution of fundamental issue in MEMS related to the domination of friction over inertial forces in the micro-world. As a result, a new generation of micro-sensors and actuators based on levitation have been demonstrated.

Depending on a source of force field, \(\mu\)-CS can be simply classified as electrostatic, magnetic, and hybrid. For instance, electrostatic suspensions (\(\mu\)-ECS) were successfully used in micro-inertial sensors [2]. Magnetic suspensions (\(\mu\)-MCS) can be also further classified as inductive, diamagnetic and superconducting suspensions, which found applications in micro-bearings [3, 4], micro-inertial sensors [5, 6], bistable switches [7] and nano-force sensors [8]. Hybrid suspensions (\(\mu\)-HCS) combine different force fields, which make the main difference of \(\mu\)-HCS from both \(\mu\)-ECS and -MCS.

In particular, capabilities of \(\mu\)-HCS were demonstrated in applications as micro-motors [9, 10] and micro-accelerators [11]. A wide range of different operation modes such as the linear and angular positioning, bistable linear and angular actuations and the adjustment of stiffness components of \(\mu\)-HCS were demonstrated and experimentally studied in the prototypes reported in [1, 12, 13]. Thus, \(\mu\)-HCS establish a promising direction for further improvements in performance and operation capabilities of micro-sensors and -actuators.

In this work, the pull-in phenomenon in \(\mu\)-HCS shown in Fig. 1 is analytically and numerically studied. In order to model micro-machined inductive CSs, the qualitative technique developed in [14], where the induced eddy current within a levitated micro-object is approximated by a magnetic dipole, is used. Note that this technique has been recently generalized in [15, 16], where the induced eddy current is approximated by a system of dipoles. Then, a reduced analytical
model of \(\mu \)-HCS, which describes the behaviour of levitated proof mass in a vertical direction, is derived. Using the obtained analytical model, the static pull-in behavior of \(\mu \)-HCS is studied and verified by experimental result published in \([1, 12]\).

2. A reduced model

In order to develop a model of \(\mu \)-HCS shown in Fig. 1, let us consider its scheme shown in Fig. 2. It consists of stabilization and levitation coils to provide the stable levitation of a disk shaped proof mass (PM) and the embedded electrodes as shown in Fig. 2. Changing the equilibrium position of PM by means of electrostatic force acting on its bottom surface and keeping the same current in the coils the dynamics of \(\mu \)-HCS is adjusted. Also, applying the pull-in voltage to the electrodes the bi-stable actuation is performed \([1, 12]\).

Assigning an origin to the equilibrium point \(O \) and assuming that the resistivity of conducting PM, and its linear and angular velocities are small, then the exact quasi-static nonlinear model, which describes the behavior of PM along the vertical \(y \)-axis, is \([16, 17]\)

\[
md^2y/dt^2 + mg + \frac{I^2}{L} \frac{dM}{dy} M + \frac{A}{4} \frac{U^2}{(h+y)^2} = F, \tag{1}
\]

where \(m \) is the mass of levitated PM, \(g \) is the gravity acceleration, \(I \) is the amplitude of a harmonic current \(i \) of coils, \(L \) is the self inductance of the PM, \(M \) is the mutual inductance between the PM and coils, \(U \) is the applied voltage to the electrodes both of which has the same area of \(A_e \), \(A = \varepsilon_0 A_e \), \(\varepsilon_0 \) is the permeability of free space, \(F \) is the force acting on the PM along the \(y \)-axis.

In a general case, the mutual inductance, \(M \), is a complex nonanalytic function. This fact becomes the main difficulty for analytical study of suspension model (1). However, accounting for particularities of micro-machined performance of device \([15]\) such that the linear sizes of coils and PM is much larger than the levitation height, \(h_l \), and the distribution of density of induced eddy current is not homogenous. Due to these particularities of the device, the force interaction along vertical direction is reduced to interaction between eddy current, \(i_{el} \) and levitation coil current \([18]\). Considering both the levitation coil and the eddy current circuit as filamentary circles, the mutual inductance between the levitation coil and eddy current can be described by the Maxwell formula.

Moreover, upon holding a certain condition described in \([13]\), the Maxwell formula can be well approximated by the logarithmical function \([14]\). Hence, accounting for (1), the following

\[
l_i = i \text{ and } l_e = i_e
\]
reduced analytical model of suspension in the dimensionless form can be proposed as follows

\[\frac{d^2 \lambda}{d\tau^2} + 1 - \eta \frac{\kappa}{1 + \kappa \lambda} \left[\ln \frac{4}{\xi(1 + \kappa \lambda)} - 2 \right] + \frac{\beta}{(1 + \lambda)^2} = \tilde{F}, \]

where \(\eta = \mu^2 a^2/(mgL), \) \(a = r_1 \mu_0, \) \(\mu_0 \) is the magnetic permeability of free space, \(r_1 \) is the radius of levitation coil, \(\xi = h_1/(2r_1), \) \(\tau = \sqrt{g/ht}, \) \(\lambda = y/h, \) \(\beta = AU^2/(4mgh^2), \) \(\kappa = h/h_1 \) and \(\tilde{F} = F/mg. \) As it is shown in [14], the accuracy of approximation of modelling the electromagnetic force is dependent on the parameter \(\xi. \) If the parameter \(\xi \) is less than 0.3, the electromagnetic force is approximated by the logarithmic function with the error less than six percentages. Upon trending the parameter \(\xi \) to the zero, the error between the exact equation and approximation as well trends to the zero. Worth noting that in all known prototypes of \(\mu \)-HCS published in the literature the parameter \(\xi \) is less than 0.25. This fact provides the applicability of the reduced model for further analytical study of \(\mu \)-HCS.

3. Static pull-in

At the equilibrium point (\(\lambda = \beta = 0 \)), \(\eta \) must be equal to \(D = \ln 4/\xi - 2. \) Hence, the equilibrium state is defined by the following equation

\[f(\lambda, \beta) \equiv - \frac{\kappa \lambda}{1 + \kappa \lambda} - \frac{\ln(1 + \kappa \lambda)}{D(1 + \kappa \lambda)} - \frac{\beta}{(1 + \lambda)^2} = 0. \]

Using (3), the bifurcation diagram can be mapped as shown in Fig. 3, which depicts the distribution of centre and saddle as well as pull-in points depending on the design parameters. The pull-in points correspond to the transient state, in which the sign of \(f(\lambda, \beta) \) is changeable in the vertical direction [19]. For a case of \(\kappa = 1, \) pull-in has the following parameters: displacement is \(\lambda_{pi} = (1 - e - D)/(2D + e), \) the square of voltage is \(\beta_{pi} = -(\lambda_{pi} + \ln(1 + \lambda_{pi}))/D(1 + \lambda_{pi}). \) For a case, when \(\kappa \) is small (\(\kappa \ll 1), \) pull-in parameters can be approximated as \(\lambda_{pi} \approx -1/(3-2\kappa) \) and \(\beta_{pi} \approx \kappa(1+1/D)(2-2\kappa)^2/(3-2\kappa)^3. \) Once \(\kappa \) tends to zero, the pull-in displacement becomes the same as in classic static pull-in occurring in the spring-mass system with electrostatic actuation [20] and corresponds to \(\lambda_{pi} = 1/3. \) However, the square of pull-in voltage is different from the classic static pull-in and becomes \(\beta_{pi} = \kappa(1+1/D)^4/27. \)

Fig. 4 provides comparison of results of experimental measurements of static pull-in behavior along vertical direction reported in [1] and modelling. Table 1 shows the parameters of the device

Figure 3. Bifurcation diagrams and their evolution in depending on the suspension design parameters: a) the effect of \(\xi \) changing in a range from 3 \times 10^{-5} \ to 0.2; b) the effect of \(\kappa \) in a range from 0.1 to 1.0 (centre and saddle are corresponding to stable and unstable equilibrium, respectively).

Figure 4. Static pull-in behavior for experiment reported in [1]: a) comparison of modelling and experiment (parameters of device are shown in Table 1; b) measurement of applied voltage vs the proof mass displacement [1].
Table 1. Results of measurements and modelling of the static pull-in displacement.

Parameters	Device [1]	Device [12]
Levitation height, h_l	180 μm	200 μm
Spacing, h	100 μm	120 μm
Diameter of levitation coil, d_l	2 mm	2 mm
Pull-In displacement	39 μm	45 μm
	0.09	0.1
κ	0.55	0.6
Pull-In displacement	41 μm	49 μm

and sums up results of study of the static pull-in displacements taking from Fig. 4. In addition, Tab. 1 provides results for μ-HCS reported in [12]. As it is seen from analysis of Fig. 4 and Tab. 1 the modelling agrees well with experimental data.

4. Conclusion
In this work the static pull-in behavior of μ-HCSs have been studied. Pull-in parameters were defined analytically based on the developed model. Results of modelling were verified by experimental data. This fact provides the applicability of the reduced model for further analytical study of pull-in phenomenon in μ-HCS. Moreover, we showed that the pull-in displacement in μ-HCS is larger in comparing with classic static pull-in displacement. In particular, for a μ-HCS having design parameters such as $\kappa = 1$ and $\xi = 0.2$ the pull-in displacement can be larger by almost a factor of two in compared to classic one.

Acknowledgments
KVP acknowledges with thanks the support from German Research Foundation (Grant KO 1883/26-1). JGK acknowledges support from the European Research Council (ERC) under contract 290586.

References
[1] Poletkin K V, Lu Z, Wallrabe U and Badilita V 2015 J. Phys.: Conf. Series 660 012005
[2] Murakoshi T, Endo Y, Fukatsu K, Nakamura S and Esashi M 2003 Japan. J. Appl. Phys 42 2468–72
[3] Lu Z, Poletkin K V, den Hartogh B, Wallrabe U and Badilita V 2014 Sens. Actuator A-Phys. 220 134–143
[4] Poletkin K V, Moazenzadeh A, G Mariappan S, Lu Z, Wallrabe U, Korvink J G and Badilita V 2016 IEEE Magn. Lett. 7 1–3 URL http://dx.doi.org/10.1109/LMAG.2016.2612181
[5] Zhang W, Chen W, Zhao X, Wu X, Liu W, Huang X and Shao S 2006 Sens. Actuator A-Phys. 132 651–5
[6] Garmire D, Choo H, Kant R, Govindjee S, Sequin C, Muller R and Demmel J 2007 Transducers 2007 – 2007 Int. Solid-State Sensors, Actuators and Microsystems Conf. (IEEE) pp 1203–06
[7] Dieppedale C, Desloges B, Rostaing H, Delamare J, Cugat O and Meunier-Carus J 2004 Proc. IEEE Sensors vol 1 pp 493–96
[8] Abadie J, Piat E, Oster S and Boukallel M 2012 Sensor. Actuat. A-Phys. 173 227–37
[9] Liu W, Chen W Y, Zhang W P, Huang X G and Zhang Z R 2008 Electron. Lett. 44 681–683
[10] Xu Y, Cui Q, KAN R, Blunier H and Zhou J 2017 IEEE-ASME Trans. Mechatron. PP 1–1 ISSN 1083-4435
[11] Sari I and Kraft M 2015 Sensor. Actuat. A-Phys. 222 15–23
[12] Poletkin K V, Lu Z, Wallrabe U and Badilita V 2015 J. Microelectromech. Syst. 24 1248–50
[13] Poletkin K V 2017 2017 19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) pp 934-37 URL https://doi.org/10.1109/TRANSDUCERS.2017.7994203
[14] Poletkin K V, Chernomorsky A, Shearwood C and Wallrabe U 2014 Int. J. Mech. Sci. 82 110–21
[15] Poletkin K V, Lu Z, Wallrabe U, Korvink J and Badilita V 2017 Int. J. Mech. Sci. 131-132 753–66
[16] Poletkin K V, Lu Z, Wallrabe U, G Korvink J and Badilita V 2017 Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017 Transducers-2017 19th Int. Conf. on (IEEE) pp 528–31
[17] Poletkin K V, Chernomorsky A I and Shearwood C 2012 IEEE Sens. J. 12 2407–2413
[18] Lu Z, Poletkin K V, Wallrabe U and Badilita V 2014 Micromachines 5 1469–1484
[19] Andronov A A, Vitt A A and Khainkin S E 2013 Theory of Oscillators vol 4 (Elsevier)
[20] Elata D and Bamberger H 2006 J. Microelectromech. Syst. 15 131–140