A weighted ℓ_1-minimization approach for sparse polynomial chaos expansions

Ji Penga, Jerrad Hamptonb, Alireza Doostanb,*

aMechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
bAerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA

Abstract

This work proposes a method for sparse polynomial chaos (PC) approximation of high-dimensional stochastic functions based on non-adapted random sampling. We modify the standard ℓ_1-minimization algorithm, originally proposed in the context of compressive sampling, using a priori information about the decay of the PC coefficients and refer to the resulting algorithm as weighted ℓ_1-minimization. We provide conditions under which we may guarantee recovery using this weighted scheme. Numerical tests are used to compare the weighted and non-weighted methods for the recovery of solutions to two differential equations with high-dimensional random inputs: a boundary value problem with a random elliptic operator and a 2-D thermally driven cavity flow with random boundary condition.

Keywords: Compressive sampling, Sparse approximation, Polynomial chaos, Basis pursuit denoising (BPDN), Weighted ℓ_1-minimization, Uncertainty quantification, Stochastic PDEs

1. Introduction

As we analyze engineering systems of increasing complexity, we must strategically confront the imperfect knowledge of the underlying physical models and their inputs, as well as the implied imperfect knowledge of a quantity of interest (QOI) predicted from these models. The understanding

*Corresponding Author: Alireza Doostan
Email address: alireza.doostan@colorado.edu (Alireza Doostan)
of outputs as a function of inputs in the presence of such uncertainty falls within the field of uncertainty quantification. The accurate quantification of the uncertainty of the QOI allows for the rigorous mitigation of both unfounded confidence and unnecessary diffidence in the anticipated QOI.

Probability is a natural mathematical framework for describing uncertainty, and so we assume that the system input is described by a vector of independent random variables, Ξ. If the random variable QOI, denoted by $u(\Xi)$, has finite variance, then the polynomial chaos (PC) expansion is given in terms of the orthonormal polynomials $\{\psi_j(\Xi)\}$ as

$$u(\Xi) = \sum_{j=1}^{\infty} c_j \psi_j(\Xi).$$

(1)

A more detailed exposition on the use of PC expansion in this work is given in Section 2.2.

To identify the PC coefficients, c_j in (1), sampling methods including Monte Carlo simulation [3], pseudo-spectral stochastic collocation [4, 5, 6, 7], or least-squares regression [8] may be applied. These methods for evaluating the PC coefficients are popular in that deterministic solvers for the QOI may be used without being adapted to the probability space. However, the standard Monte Carlo approach suffers from a slow convergence rate. Additionally, a major limitation to the use of the last two approaches above is that the number of samples needed to approximate c_j increases exponentially with the dimension of the input uncertainty, i.e., the number of random variables needed to describe the input uncertainty, see, e.g., [9, 10, 11, 12, 13]. In this work, we use the Monte Carlo sampling method while considerably improving the accuracy of approximated PC coefficients (for the same number of samples) by exploiting the approximate sparsity of the coefficients c_j. As u has finite variance, the c_j in (1) necessarily converge to zero, and if this convergence is sufficiently rapid, then $u(\Xi)$ may be approximated by

$$\hat{u}(\Xi) = \sum_{j \in \mathcal{C}} c_j \psi_j(\Xi),$$

(2)

where the index set \mathcal{C} has few elements. When this occurs we say that \hat{u} is reconstructed from a sparse PC expansion, and that u admits an approximately sparse PC representation. By truncating the PC basis implied by (1) to P elements, we may perform calculations on the truncated PC
basis. If we let \(c \) be a vector of \(c_j \), for \(j = 1, \ldots, P \), then the approximate sparsity of the QOI (implied by the sparsity of \(c \)) and the practical advantage of representing the QOI with a small number of basis functions motivate a search for an approximate \(c \) which has few non-zero entries. We seek to achieve an accurate reconstruction with a small number of samples, and so look to techniques from the field of compressive sampling.

Let \(\xi \) represent a realization of \(\Xi \). We define \(\Psi \) as the matrix where each row corresponds to the row vector of \(P \) PC basis functions evaluated at sampled \(\xi \) with the corresponding \(u(\xi) \) being an entry in the vector \(u \). We assume \(N < P \) samples of \(\xi \), so that \(\Psi \) is \(N \times P \), \(c \) is \(P \times 1 \), and \(u \) is \(N \times 1 \). Compressive sampling seeks a solution \(c \) with minimum number of non-zero entries by solving the optimization problem

\[
P_{0,\epsilon} \equiv \{ \text{arg min}_{c} \|c\|_0 : \|\Psi c - u\|_2 \leq \epsilon \}.
\]

Here \(\|c\|_0 \) is defined as the number of non-zero entries of \(c \), and a solution to \(P_{0,\epsilon} \) directly provides an optimally sparse approximation in that a minimal number of non-zero entries are used to recover \(u \) to within \(\epsilon \) in the \(\ell_2 \) norm. In general, the cost of finding a solution to \(P_{0,\epsilon} \) grows exponentially in \(P \) \([29]\). To resolve this exponential dependence, the convex relaxation of \(P_{0,\epsilon} \) based on \(\ell_1 \)-minimization, also referred to as basis pursuit denoising (BPDN), has been proposed \([21, 22, 24, 23, 29]\). Specifically, BPDN seeks to identify \(c \) by solving

\[
P_{1,\epsilon} \equiv \{ \text{arg min}_{c} \|c\|_1 : \|\Psi c - u\|_2 \leq \epsilon \}
\]

using convex optimization algorithms \([21, 30, 31, 32, 33, 34, 35, 36]\). In practice, \(P_{0,\epsilon} \) and \(P_{1,\epsilon} \) may have similar solutions, and the comparison of the two problems has received significant study, see, e.g., \([29]\) and the references therein.

Note in \((4)\) the constraint \(\|\Psi c - u\|_2 \leq \epsilon \) depends on the observed \(\xi \) and \(u(\xi) \); not in general \(\Xi \) and \(u(\Xi) \). As a result, \(c \) may be chosen to fit the input data, and not accurately approximate \(u(\Xi) \) for previously unobserved realizations \(\xi \). To avoid this situation, we determine \(\epsilon \) by cross-validation \([16]\) as discussed in Section 3.3.

To assist in identifying a solution to \((4)\), note that for certain classes of functions, theoretical analysis suggests estimates on the decay for the magnitude of the PC coefficients \([37, 38, 39]\). Alternatively, as we shall see
In Section 4.2, such estimates may be derived by taking into account certain relations among physical variables in a problem. It is reasonable to use this a priori information to improve the accuracy of sparse approximations [40]. Moreover, even if this decay information is unavailable, each approximated set of PC coefficients may be considered as an initialization for the calculation of an improved approximation, suggesting an iterative scheme [41, 40, 42, 43, 18, 20].

In this work, we explore the use of a priori knowledge of the PC coefficients as a weighting of \(\ell_1 \) norm in BPDN in what is referred to as weighted \(\ell_1 \)-minimization (or weighted BPDN),

\[
P_{1,\epsilon}^{(W)} \equiv \{ \arg \min_{c} \| W c \|_1 : \| \Psi c - u \|_2 \leq \epsilon \}, \tag{5}
\]

where \(W \) is a diagonal matrix to be specified. Previously, \(\ell_1 \)-minimization has been applied to solutions of stochastic partial differential equations with approximately sparse \(c \) [14, 16, 18, 20], but these approximately sparse \(c \) include a number of small magnitude entries which inhibit the accurate recovery of larger magnitude entries. The primary goal of this work is to utilize a priori information about \(c \), in the form of estimates on the decay of its entries, to reduce this inhibition and enhance the recovery of a larger proportion of PC coefficients; in particular those of the largest magnitude. We provide theoretical results pertaining to the quality of the solution identified from the weighted \(\ell_1 \)-minimization problem (5).

The rest of this paper is structured as follows. In Section 2, we introduce the problem of interest as well as our approach for the stochastic expansion of its solution. Following that, in Section 3, we present our results on weighted \(\ell_1 \)-minimization and its corresponding analysis for sparse PC expansions. In Section 4, we provide two test cases which we use to describe the specification of the weighted \(\ell_1 \)-minimization problem and explore its performance and accuracy. In particular, in Section 4.2, we utilize a simple dimensional relation to derive approximate upper bounds on the PC expansion coefficients of the velocity field in a flow problem.

2. Problem Statement and Solution Approach

2.1. PDE formulation

Let the random vector \(\Xi \), defined on the probability space \((\Omega, \mathcal{F}, \mathbb{P}) \), characterize the input uncertainties and consider the solution of a partial
differential equation defined on a bounded Lipschitz continuous domain $D \subset \mathbb{R}^D$, $D \in \{1, 2, 3\}$, with boundary ∂D. The uncertainty implied by Ξ may be represented in one or many relevant parameters, e.g., the diffusion coefficient, boundary conditions, and/or initial conditions. Letting L, I, and B depend on the physics of the problem being solved, the solution u satisfies the three constraints

$$
L(x, t, \Xi; u(t, x, \Xi)) = 0, \quad x \in D, \\
I(x, \Xi; u(0, x, \Xi)) = 0, \quad x \in D, \\
B(x, t, \Xi; u(t, x, \Xi)) = 0, \quad x \in \partial D.
$$

(6)

We assume that $(\Omega, \mathcal{F}, \mathbb{P})$ is formed by the product of d probability spaces, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P}_k)$ corresponding to each coordinate of Ξ, denoted by Ξ_k; here $\mathcal{B}(\cdot)$ represents the Borel σ-algebra. We further assume that the random variable Ξ_k is continuous and distributed according to the density ρ_k implied by \mathbb{P}_k. Note that this entails $\Omega = \mathbb{R}^d$, $\mathcal{F} = \mathcal{B}(\mathbb{R}^d)$, that each Ξ_k is independently distributed, and that the joint distribution for Ξ, denoted by ρ, equals the tensor product of the marginal distributions $\{\rho_k\}$.

In this work, we assume that conditioned on the ith random realization of Ξ, denoted by $\xi^{(i)}$, the numerical solution to (6) may be calculated by a fixed solver; for our examples we use the finite element solver package FEniCS [44]. For any fixed x_0, t_0, our objective is to reconstruct the solution $u(x_0, t_0, \Xi)$ using N realizations $\{u(x_0, t_0, \xi^{(i)})\}$. For brevity we suppress the dependence of $u(x_0, t_0, \Xi)$ and $\{u(x_0, t_0, \xi^{(i)})\}$ on x_0 and t_0.

The two specific physical problems we consider are a boundary value problem with a random elliptic operator and a 2-D heat driven cavity flow with a random boundary condition.

2.2. Polynomial Chaos (PC) expansion

Our methods to approximate the solution u to (6) make use of the PC basis functions which are induced by the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which Ξ is defined. Specifically, for each ρ_k we define $\{\psi_{k,j}\}_{j \geq 0}$ to be the complete set of orthonormal polynomials of degree j with respect to the weight function ρ_k [45, 2]. As a result, the orthonormal polynomials for Ξ are given by the products of the univariate orthonormal polynomials,

$$
\psi_{\alpha}(\Xi) = \prod_{k=1}^{d} \psi_{k,\alpha_k}(\Xi_k),
$$

(7)
where each α_k, representing the kth coordinate of the multi-index α, is a non-negative integer. For computation, we truncate the expansion in (1) to the set of P basis functions associated with the subspace of polynomials of total order not greater than q, that is $\sum_{k=1}^{d} \alpha_k \leq q$. For convenience, we also order these P basis functions so that they are indexed by $\{1, \ldots, P\}$ as opposed to the vectorized indexing in (7). The basis set $\{\psi_j\}_{j=1}^{P}$ has the cardinality

$$P = \frac{(d + q)!}{d! q!}. \quad (8)$$

For the interest of presentation, we interchangeably use both notations for representing PC basis. For any fixed x_0, t_0, the PC expansion of u and its truncation are then defined by

$$u(x_0, t_0, \Xi) = u(\Xi) = \sum_{j=1}^{\infty} c_j \psi_j(\Xi) \approx \sum_{j=1}^{P} c_j \psi_j(\Xi). \quad (9)$$

Tough u is an arbitrary function in $L_2(\Omega, \mathbb{P})$, we are limited to an approximation in the span of our basis polynomials, and the error incurred from this approximation is referred as truncation error.

In this work we assume that, for each k, ρ_k is known a priori. Two commonly used probability densities for ρ_k are uniform and Gaussian; the corresponding polynomial bases are, respectively, Legendre and Hermite polynomials [2]. We furthermore set Ξ_k to be uniformly distributed on $[-1, 1]$ and our PC basis functions are constructed from the orthonormal Legendre polynomials. The presented methods, however, may be applied to any set of orthonormal polynomials and their associated random variables.

We use the samples $\xi^{(i)}$, $i = 1, \ldots, N$, of Ξ to evaluate the PC basis and identify a corresponding solution $u(\xi^{(i)})$ to (6). This evaluated PC basis forms a row of $\Psi \in \mathbb{R}^{N \times P}$ in (4), that is $\Psi(i, j) = \psi_j(\xi^{(i)})$. The corresponding solution $u(\xi^{(i)})$ is the associated element of the vector u. We are then faced with identifying the vector of PC coefficients $c \in \mathbb{R}^{P}$ in (9), which we address by considering techniques from compressive sampling.

2.3. Sparse PC expansion

As the PC expansion in (9) is a sum of orthonormal random variables defined by $\psi_j(\Xi)$, the exact PC coefficients may be computed by projecting
$$u(\Xi)$$ onto the basis functions $$\psi_j(\Xi)$$ such that

$$c_j = \mathbb{E}[u(\Xi)\psi_j(\Xi)] = \int_\Omega u(\xi)\psi_j(\xi)\rho(\xi)d\xi.$$

To compute the PC coefficients non-intrusively, besides the standard Monte Carlo sampling, which is known to converge slowly, we may estimate this expectation via, for instance, sparse grid quadrature. While this latter approach performs well when $$d$$ and $$q$$ are small, it may become impractical for high-dimensional random inputs. Alternatively, $$c$$ may be computed from a discrete projection, e.g., least-squares regression [8], which generally requires $$N > P$$ solution realizations to achieve a stable approximation.

We assume that $$c$$ is approximately sparse, and seek to identify an appropriate $$C$$, as in (2), having a small number of elements and giving a small truncation error. To this end we extend ideas from the field of compressive sampling. If the number of elements of $$C$$, denoted by $$|C|$$, is small, then using only the columns in $$\Psi$$ corresponding to elements of $$C$$ reduces the dimension of the PC basis from $$P$$ to $$|C|$$. This significantly reduces the number of PC coefficients requiring estimation and consequently the number of solution realizations $$N$$. We define $$\Psi_C$$ as the truncation of $$\Psi$$ to those columns only relevant to the basis functions of $$C$$, and similarly define $$c_C$$ as the truncation of $$c$$. If $$|C| < N$$, then the determination of $$|C|$$ coefficients gives an optimization problem less prone to overfit the data [46], even when $$N < P$$. For example, the least-squares approximation of $$c_C$$, $$\hat{c}_C = (\Psi_C^T\Psi_C)^{-1}\Psi_C^T u$$, minimizing $$\|\Psi_C c_C - u\|_2$$ is well-posed and will have a unique solution if $$\Psi_C$$ is of full rank.

Note that the identification of $$C$$ is critical to the optimization problem $$P_{0, \epsilon}$$ in (4). If we instead have a solution to $$P_{1, \epsilon}$$, then we may infer a $$C$$ by noting the entries of the approximated $$c$$ which have magnitudes above a certain threshold. Motivated to obtain more accurate sparse solutions, we next introduce a compressive sampling technique which modifies $$P_{1, \epsilon}$$ by weighting each $$c_j$$ differently in $$\|c\|_1$$. As we shall discuss later, these weights are generated based on some a priori information on the decay of $$c_j$$, when available.

3. Weighted ℓ_1-minimization

To develop a weighted ℓ_1-minimization $$P_{1, \epsilon}^{(W)}$$, we do not consider any changes to the algorithm solving $$P_{1, \epsilon}$$, but instead transform the problem
with the use of weights, such that the same solver may be used. We define the diagonal weight matrix W, with diagonal entries $w_j \geq 0$, and consider the new weighted problem $P_{1,\epsilon}^{(W)}$ in (5) with

$$\|Wc\|_1 = \sum_{j=1}^{p} w_j |c_j|. \tag{10}$$

If a priori information is available for c_j, it is natural to use it to define W [40]. Heuristically, columns with large anticipated $|c_j|$ should not be heavily penalized when used in the approximation, that is the corresponding w_j should be small. In contrast, $|c_j|$ which are not expected to be large should be paired with large w_j. This suggests allowing w_j to be inversely related to $|c_j|$, [41],

$$w_j = \begin{cases} |c_j|^{-p}, & c_j \neq 0, \\ \infty, & c_j = 0. \end{cases} \tag{11}$$

The parameter $p \in [0,1]$ may be used to account for the confidence in the anticipated $|c_j|$. Large values of p lead to more widely dispersed weights and indicate greater confidence in these $|c_j|$ while small values lead to more clustered weights and indicate less confidence in these $|c_j|$. These weights deform the ℓ_1 ball, as Fig. 1 shows, to discourage small coefficients from the solution and consequently enhance the accuracy. A detailed discussion of weighted ℓ_1-minimization and examples in signal processing are given in [41].

As in [42, 41], to insure stability, we consider a damped version of w_j in (11),

$$w_j = (|c_j| + \epsilon_w)^{-p}, \tag{12}$$

where ϵ_w is a relatively small positive parameter. In the numerical examples of this paper, we set $\epsilon_w = 5 \times 10^{-5} \cdot \hat{c}_1$ to generate w_j in $P_{1,\epsilon}^{(W)}$, where $\hat{c}_1 = \frac{1}{N} \sum_{i=1}^{N} u(\xi(i))$ is the Monte Carlo estimate of the degree zero PC coefficient (or, equivalently, the sample average of u).

Remark 3.1 (Choice of p in (12)). When defined based on the exact values $|c_j|$, the weights w_j in (12) together with (10) imply an ℓ_r-minimization problem of the form $P_{r,\epsilon} \equiv \{ \arg \min \|c\|_r : \|\Psi c - u\|_2 \leq \epsilon \}$ to solve for c, where $r = 1 - p \in [0,1]$. Depending on the value of r, such a minimization problem may outperform the standard ℓ_1-minimization, see, e.g., [42]. In practice, however, an optimal selection of r (or p) is not a trivial task and necessitates further analysis. In the present study, similar to [41], we choose $p = 1$.
3.1. Setting weights w_j

As the true c is unknown, an approximation of c must be employed to form the weights. In [42, 41, 47, 20] an iterative approach is proposed wherein these weights are computed from the previous approximation of c. More precisely, at iteration $l+1$, the weights are set by

$$w_j = \left(|\hat{c}_j^{(l)}| + \epsilon_w \right)^{-1},$$

where $\hat{c}_j^{(l)}$ is the estimate of c_j obtained from $P_{1,\epsilon}^{(W)}$ at iteration l and $w_j = 1$ at iteration $l = 1$. However, the solution to such iteratively re-weighted ℓ_1-minimization problems may be expensive due to the need for multiple $P_{1,\epsilon}^{(W)}$ solves. Additionally, the convergence of the iterates is not always guaranteed [41]. Moreover, as we will observe from the results of Section 4, unlike the weighted ℓ_1-minimization, the accuracies obtained from the iteratively re-weighted ℓ_1-minimization approach are sensitive to the choice of ϵ_w. In particular, for relatively large or small values of ϵ_w, the iteratively re-weighted ℓ_1-minimization may even lead to less accurate results as compared to the standard ℓ_1-minimization.

Alternatively, to set w_j, we here focus our attention on situations where a priori knowledge on c_j in the form of decay of $|c_j|$ are available. This includes

![Fig. 1: Schematic of approximation of a sparse $c_0 \in \mathbb{R}^3$ via standard and weighted ℓ_1-minimization (based on [41]). (a) Standard ℓ_1-minimization where, depending on Ψ, the problem $P_{1,0}$ with $u = \Psi c_0$ may have a solution c such that $\|c\|_1 \leq \|c_0\|_1$. (b) Weighted ℓ_1-minimization for which there is no c with $\|Wc\|_1 \leq \|Wc_0\|_1$.](image-url)
primarily a class of linear elliptic PDEs with random inputs \([37, 38, 39]\). We also provide preliminary results on a non-linear problem, specifically a 2-D Navier-Stokes equation, for which we exploit a simple physical dependency among solution variables to generate the approximate decay of \(|c_j|\). We notice that the success of our weighted \(\ell_1\)-minimization depends on the ability of our approximate \(|c_j|\) to reveal \textit{relative importance} of \(|c_j|\) rather than their precise values. As we shall empirically illustrate in Section 4, when such decay information is used, the weighted \(\ell_1\)-minimization approach outperforms the iteratively re-weighted \(\ell_1\)-minimization.

To solve \(P_{1,\epsilon}(W)\), the standard \(\ell_1\)-minimization solvers may be used. In this work we use the MATLAB package SPGL1 \([35]\) based on the spectral projected gradient algorithm \([48]\). Specifically, \(\tilde{c} = Wc\) may be solved from \(P_{1,\epsilon}\) with the modified measurement matrix \(\tilde{\Psi} = \Psi W^{-1}\). We then set \(c = W^{-1}\tilde{c}\).

We defer presenting examples of setting \(w_j\) to Section 4 and instead provide theoretical analysis on the quality of the solution to the weighted \(\ell_1\)-minimization problem \(P_{1,\epsilon}(W)\). In particular, we limit our theoretical analysis to determining if \(P_{1,\epsilon}(W)\) is equivalent to solving \(P_{0,\epsilon}\), finding an optimally sparse solution \(c\).

3.2. Theoretical recovery via weighted \(\ell_1\)-minimization

Following the ideas of \([49, 50, 51, 52, 23, 53]\), we consider analysis which depends on vectors in the kernel of \(\Psi\). We consider \(c_0\) to be a sparse approximation, such that \(\Psi c_0 + e = u\) where \(\|e\|_2 \leq \epsilon\) indicates a small level of truncation error and/or noise is present, implying that exact reconstructions are themselves approximated by a sparse solution. Stated another way, \(c_0\) is a solution to \(P_{0,\epsilon}\). Let \(c_1\) be a solution to \(P_{1,\epsilon}(W)\). Further, let \(C = \text{Supp}(c_0)\), and note that \(s = |C|\) is the sparsity of \(c_0\).

The following theorem is closely related to Theorem 1 of \([49]\) and provides a condition to compare a solution to \(P_{1,\epsilon}(W)\) with a solution to \(P_{0,\epsilon}\), in terms of the Restricted Isometry Constant (RIC) \(\delta_s\), \([54, 49]\); defined such that for any vector, \(x \in \mathbb{R}^p\), supported on at most \(s\) entries,

\[
(1 - \delta_s)\|x\|_2^2 \leq \|\Psi x\|_2^2 \leq (1 + \delta_s)\|x\|_2^2.
\]

While we follow Theorem 1 of \([49]\) due to the simplicity of its proof, we note that improved conditions on the RIC have been presented in more recent studies \([55, 56]\).
Theorem 3.1. Let s be such that $\delta_{3s} + 3\delta_{4s} < 2$. Then for any approximate solution, c_0, supported on C with $|C| \leq s$, any solution c_1 to $P^W_{1,\epsilon}$ obeys

$$\|c_0 - c_1\|_2 \leq C \cdot \epsilon,$$

where the constant C depends on s, $\max_{j \in C} w_j$, and $\min_{j \in C^c} w_j$.

Proof. Our proof is essentially an extension of the proof of Theorem 1 in [49] to account for the weighted ℓ_1 norm. Let $h := c_1 - c_0$. Note that as $c_1 = c_0 + h$ solves the weighted ℓ_1-minimization problem $P^W_{1,\epsilon}$,

$$\|W c_0\|_1 - \|W h\|_{c,1} \leq \|W (c_0 + h)\|_1 = \|W c_1\|_1 \leq \|W c_0\|_1,$$

where we use notation for an ℓ_r norm restricted to coordinates in a set S as $\|x\|_{S,r}$. It follows that for some $0 \leq \beta \leq 1$,

$$\|W h\|_{c,1} \leq \beta \|W h\|_{c,1}. \quad (14)$$

Sort the entries of h supported on C^c in descending order of their magnitudes, divide C^c into subsets of size M, and enumerate these sets as C_1, \ldots, C_n, where C_1 corresponds to the indices of the M largest entries of sorted h, C_2 corresponds to the indices of the next M largest entries of sorted h, and so on. Let $S = C \cup C_1$, and note that the kth largest (in magnitude) entry of any x accounts for less than $1/k$ of the $\|x\|_1$, so that

$$\|h\|_{S,2} \leq \sum_{k \in S^c} h_k^2 \leq \sum_{k=M+1}^P k^{-2} \leq \|h\|_{c,1}^2 \cdot \frac{1}{M}.$$

We now bound the unweighted ℓ_1 norm from above by the weighted ℓ_1 norm, to achieve

$$\|h\|_{c,1}^2 \cdot \frac{1}{M} \leq \|W h\|_{c,1}^2 \cdot \frac{1}{M \min_{i \in C^c} w_i^2}.$$

From the condition (14),

$$\|W h\|_{c,1}^2 \cdot \frac{1}{M \min_{i \in C^c} w_i^2} \leq \|W h\|_{c,1}^2 \cdot \frac{\beta^2}{M \min_{i \in C^c} w_i^2}.$$

Bounding the weighted ℓ_1 norm from above by the unweighted ℓ_1 norm gives,

$$\|W h\|_{c,1}^2 \cdot \frac{\beta^2}{M \min_{i \in C^c} w_i^2} \leq \|h\|_{c,1}^2 \cdot \frac{\beta^2 \max_{j \in C^c} w_j^2}{M \min_{i \in C^c} w_i^2}.$$
Bounding this by the ℓ_2 norm yields the desired inequality,
\[
\|h\|_{S,c}^2 \leq \|h\|_{C}^2 \cdot \frac{\beta^2|S| \max_{j \in C} w_j^2}{M \min_{i \in C} w_i^2}.
\]
Let
\[
\eta := \frac{\beta^2|S| \max_{j \in C} w_j^2}{M \min_{i \in C} w_i^2}.
\]
It follows that
\[
\|h\|_2^2 = \|h\|_{S,c}^2 + \|h\|_{S,c}^2 \leq (1 + \eta)\|h\|_{C,c}^2.
\]
Following the proof from Theorem 1 of \cite{49} we have that
\[
\|\Psi h\|_2 \geq \left(\sqrt{1 - \delta_{M + |C|}} - \frac{|C|}{M} \sqrt{1 + \delta_M}\right) \|h\|_{C,c},
\]
and it follows that
\[
\|h\|_2 \leq \sqrt{1 + \eta} \|h\|_{C,c} \leq \frac{\sqrt{1 + \eta}}{\sqrt{1 - \delta_{M + |C|}} - \frac{|C|}{M} \sqrt{1 + \delta_M}} \|\Psi h\|_2,
\]
\[
\leq \frac{2\sqrt{1 + \eta}}{\sqrt{1 - \delta_{M + |C|}} - \frac{|C|}{M} \sqrt{1 + \delta_M}} \cdot \epsilon,
\]
which yields the proof with the remaining arguments from Theorem 1 of \cite{49}.

In the case of recovery with no truncation error, that is $\epsilon = 0$, we expand on the consideration of the parameter β in the above proof. We note that results for the case of $\epsilon = 0$ may not guarantee that a sparsest solution to $P_{0, \epsilon}$ has been found, but may help to verify that as sparse as possible a solution to $\mathbf{u}_1 = \Psi \mathbf{c}_1$ has been found. Stated another way, the computed solution that recovers \mathbf{u}_1 may have verifiable sparsity, where \mathbf{u}_1 is close to \mathbf{u}.

We show how \mathbf{W} and \mathcal{C} affect the recovery when $\epsilon = 0$ through the null-space of Ψ. Specifically, recall that the difference between any two solutions to $\Psi \mathbf{c} = \mathbf{u}$ is a vector in the null-space of Ψ, denoted by $\mathcal{N}(\Psi)$. It follows that
\[
\beta_{\mathbf{W}} = \max_{\mathbf{c} \in \mathcal{N}(\Psi)} \frac{\|\mathbf{W} \mathbf{c}\|_{\mathcal{C},1}}{\|\mathbf{W} \mathbf{c}\|_{\mathcal{C},1}},
\]
(15)

12
is a bound on β in (14) for the case that $\epsilon = 0$.

When β_W is small we notice that adding to the sparse solution, c_0, any vector $c \in \mathcal{N}(\Psi)$ will induce a relatively small change in $\|W(c_0 + c)\|_{c,1}$ while inducing a larger change in $\|W(c_0 + c)\|_{c^c}$. We see that we may decrease β_W if we make w_j smaller for $j \in C$, and larger for $j \in C^c$, and this is consistent with our intuition regarding the identification of weights. As such, for small β_W we expect that $\|c + c_0\|_1 > \|c_0\|_1$ for all $c \in \mathcal{N}(\Psi)$, and the following theorem shows that a critical value for β_W is 1.

Theorem 3.2. If $\beta_W < 1$, then finding a solution to $P_{1,0}^{(W)}$ is identical to finding a solution to $P_{0,0}$. This result is sharp in that if $\beta_W \geq 1$, a solution to $P_{1,0}^{(W)}$, may not be identical to any solution of $P_{0,0}$.

Proof. Closely related to β_W, we define the quantity γ_W given by

$$\gamma_W = \max_{c \in \mathcal{N}(\Psi)} \frac{\|Wc\|_{c,1}}{\|Wc\|_1},$$

where the two constants are related by

$$\beta_W = (\gamma_W^{-1} - 1)^{-1}.$$

Recalling that c_0 is supported on C, we have that

$$\|W(c + c_0)\|_1 = \|W(c + c_0)\|_{c,1} + \|Wc\|_{c^c,1}.$$

Applying the reverse triangle inequality to $\|W(c + c_0)\|_{c,1}$, we have that

$$\|W(c + c_0)\|_1 \geq \|Wc_0\|_{c,1} - \|Wc\|_{c,1} + \|Wc\|_{c^c,1}.$$

By the definition of γ_W in (16) we have that

$$\|Wc\|_{c,1} \leq \gamma_W \|Wc\|_1,$$

$$\|Wc\|_{c^c,1} = \|Wc\|_1 - \|Wc\|_{c,1},$$

$$\geq (1 - \gamma_W)\|Wc\|_1.$$

It follows that

$$\|W(c + c_0)\|_1 \geq \|Wc_0\|_{c,1} - \gamma_W \|Wc\|_{c,1} + (1 - \gamma_W)\|Wc\|_1,$$

$$= \|Wc_0\|_{c,1} + (1 - 2\gamma_W)\|Wc\|_1,$$
which implies that when $\gamma_W < 0.5$, or equivalently when $\beta_W < 1$,
\[\|W(c + c_0)\|_1 > \|Wc_0\|_{c,1} = \|Wc_0\|_1, \]
and as such c_0 solves $P_{1,0}^{(W)}$. To show sharpness, let W be the identity matrix. For $\alpha > 0$ define Ψ and u by
\[\Psi = \left(\begin{array}{ccc} \alpha & 0 & 1 \\ 0 & \alpha & 1 \end{array} \right); \quad u = \left(\begin{array}{c} \alpha \\ \alpha \end{array} \right). \]

Note that the solution to $P_{0,0}$ is always $(0 \ 0 \ \alpha)^T$, and as such $\beta_W = \alpha/2$. If $\beta_W = 1$, corresponding to $\alpha = 2$, then $(0 \ 0 \ 2)^T$ or $(1 \ 1 \ 0)^T$ are both solutions to $P_{1,0}^{(W)}$. If $\beta_W > 1$, corresponding to $\alpha > 2$, the solution to $P_{1,0}^{(W)}$ is $(1 \ 1 \ 0)^T$.

As an aside, we note that if $\beta_W < 1$, corresponding to $\alpha < 2$, the unique solution to $P_{1,0}^{(W)}$ is $(0 \ 0 \ \alpha)^T$ as guaranteed by the theorem.

This result suggests β_W as a measure of quality of W with smaller β_W being preferable. The following bound is useful in relating the recovery via weighted ℓ_1-minimization of a particular c_0 to a uniform recovery in terms of the one implied by the RIC.

Theorem 3.3. Let
\[c := \min_{i \in C} w_i / \max_{i \in C} w_i; \]
\[C := \max_{i \in C} w_i / \min_{i \in C} w_i. \]

It follows that,
\[c \beta_I \leq \beta_W = \max_{c \in N(\Psi)} \frac{\|Wc\|_{c,1}}{\|Wc\|_{C'}} \leq C \beta_I. \quad (17) \]

Further,
\[\beta_I \leq \frac{\sqrt{2} \delta_2 |C|}{1 - \delta_2 |C'|}, \quad (18) \]
where δ is a RIC.
Proof. We first note that (17) follows from the definition of \(\beta_W \) in (15). To show (18), note that by Lemma 2.2 of [57], it follows that for any vector \(x \) in the null space of \(\Psi \),
\[
\|x\|_{C,1} \leq \frac{\sqrt{2} \delta_{2|C|}}{1 - \delta_{2|C|}} \|x\|_{c^*,1},
\]
which shows the bound.

To complete our discussion on the theoretical analysis of weighted \(\ell_1 \)-minimization, we require a sufficiently small RIC \(\delta_s \) to bound \(\beta_I \) and \(\beta_W \) in Theorem 3.3, and hence \(\beta \) in (14). For this, we report the result of [58, Theorem 4.3] – on general bounded orthonormal basis \(\{\psi_j\} \) – specialized to the case of multi-variate Legendre PC expansions.

Corollary 3.1. Let \(\{\psi_j\}_{1 \leq j \leq P} \) be a Legendre PC basis in \(d \) independent random variables \(\Xi = (\Xi_1, \ldots, \Xi_d) \) uniformly distributed over \([-1, 1]^d\) and with a total degree less than or equal to \(q \). Let the matrix \(\Psi \) with entries \(\Psi(i,j) = \psi_j(\xi(i)) \) correspond to realizations of \(\{\psi_j\} \) at \(\xi(i) \) sampled independently from the measure of \(\Xi \). If
\[
N \geq C3^q \delta^{-2} s \log^3(s) \log(P),
\]
then the RIC, \(\delta_s \), of \(\frac{1}{\sqrt{N}} \Psi \) satisfies \(\delta_s \leq \delta \) with probability larger than \(1 - P^{-\gamma \log^3(s)} \). Here, \(C \) and \(\gamma \) are constants independent of \(N, q, \) and \(d \).

Proof. The proof is a direct consequence of Theorem 4.3 in [58] by observing that \(\{\psi_j\}_{1 \leq j \leq P} \) admits a uniform bound \(\sup_j \|\psi_j\|_{\infty} = 3^2 \), see, e.g. [16].

Remark 3.2 (Weighted \(\ell_1 \)-minimization vs. \(\ell_1 \)-minimization). While our theoretical analyses provide insight on the accuracy of the solution to the weighted \(\ell_1 \)-minimization problem \(P_{1,\epsilon}^{(W)} \) relative to the solution to \(P_{0,\epsilon} \) or \(P_{0,0} \), they do not provide conclusive comparison between the accuracy of the solution to \(P_{1,\epsilon}^{(W)} \) and the standard \(\ell_1 \)-minimization problem \(P_{1,\epsilon} \). However, for cases where the choice of \(W \) is such that the constant \(C \) in (17) is sufficiently smaller than 1, more accurate solutions may be expected from \(P_{1,\epsilon}^{(W)} \) than \(P_{1,\epsilon} \).
3.3. Choosing ϵ via cross validation

The choice of $\epsilon > 0$ for the optimization problems in (4) or (5) is critical. If ϵ is too small, then c will overfit the data and give unfounded confidence in $u(\Xi)$; if ϵ is too large, then c will underfit the data and give unnecessary diffidence in $u(\Xi)$. In this work, following [16], the selection of ϵ is determined by cross-validation; here we divide the available data into two sets, a reconstruction set of N_r samples used to calculate c_r, and a validation set of N_v samples to test this approximation. For the reconstruction set we let $c_r(\epsilon_r)$ denote the calculated solution to (4) or (5) as a function of ϵ_r, and in this manner identify an optimal ϵ which is then corrected based on N_r and N_v. This algorithm is summarized below where the subscript indicates which data set is used in calculating the quantity: r for the reconstruction set; v for the validation set.

Algorithm 1 Algorithm for choosing ϵ using cross-validation.

Randomly divide the N samples of $\Xi, u(\Xi)$ into two sets, a reconstruction set with N_r samples and a validation set with N_v samples.

Let $\epsilon^* = \arg\min_{\epsilon_r > 0} \| \Psi_v c_r(\epsilon_r) - u_v \|_2$.

Return $\epsilon = \sqrt{\frac{N}{N_r}} \epsilon^*$.

We note that the optimal ϵ is dependent on the algorithm used to calculate c_r as well as the data input into that algorithm. In this paper we set $N_r = \lfloor \frac{4}{5} N \rfloor$ and $N_v = N - N_r$.

4. Numerical examples

In this section, we empirically demonstrate the accuracy of the weighted ℓ_1-minimization approach in estimating statistics of solutions to two differential equations with random inputs.

4.1. Case I: Elliptic equation with stochastic coefficient

We first consider the solution of an elliptic realization of (6) in one spatial dimension, defined by

$$\begin{align*}
-\nabla \cdot (a(x, \Xi) \nabla u(x, \Xi)) &= 1 \\
u(0, \Xi) &= u(1, \Xi) = 0.
\end{align*}$$

(20)
We assume that the diffusion coefficient $a(x, \Xi)$ is modeled by the expansion

$$a(x, \Xi) = \bar{a}(x) + \sigma_a \sum_{k=1}^{d} \sqrt{\lambda_k} \varphi_k(x) \Xi_k,$$

in which the random variables $\{\Xi_k\}_{k=1}^{d}$ are independent and uniformly distributed on $[-1, 1]$. Additionally, $\{\varphi_k\}_{k=1}^{d}$ are the eigenfunctions of the Gaussian covariance kernel

$$C_{aa}(x_1, x_2) = \exp \left[-\frac{(x_1 - x_2)^2}{l_c^2}\right],$$

corresponding to d largest eigenvalues $\{\lambda_k\}_{k=1}^{d}$ of $C_{aa}(x_1, x_2)$ with correlation length $l_c = 1/16$. In our numerical tests, we set $\bar{a}(x) = 0.1$, $\sigma_a = 0.021$, and $d = 40$ resulting in strictly positive realizations of $a(x, \Xi)$. Noting that d represents the dimension of the problem in stochastic space, the Legendre PC basis functions for this problem are chosen as in (7), where we use an incomplete third order truncation, i.e., $q = 3$, with only $P = 2500$ basis functions. The PC basis functions $\{\psi_j\}$ are sorted such that, for any given order q, the random variables Ξ_k with smaller indices k appear first in the basis. The quantity of interest is $u(0.5, \Xi)$, the solution in the middle of the spatial domain.

4.1.1. Setting weights w_j

Recently, work has been done to derive estimates for the decay of the coefficients $c_\alpha(x)$ in the Legendre PC expansion of the solution $u(x, \Xi) \approx \sum_\alpha c_\alpha(x) \psi_\alpha(\Xi)$ to problem (20), [59, 39, 60]. Such estimates allow us to identify a priori knowledge of c and set the weights w_j in the weighted ℓ_1-minimization approach. In particular, following [39, Proposition 3.1], the coefficients c_α admit the bound

$$\|c_\alpha\|_{H_0^1(D)} \leq C_0 \frac{||\alpha||!}{\alpha!} e^{-\sum_{k=1}^{d} g_k \alpha_k}, \quad g_k = -\log \left(\frac{r_k}{(\sqrt{3} \log 2)}\right),$$

(21)

for some $C_0 > 0$ and $\alpha! = \prod_{k=1}^{d} \alpha_k!$. The coefficients r_k in (21) are given by

$$r_k = \frac{\sigma_a \sqrt{\lambda_k} \|\varphi_k\|_{L_\infty(D)}}{a_{\text{min}}}, \quad a_{\text{min}} = \bar{a} - \sigma_a \sum_{k=1}^{d} \sqrt{\lambda_k} \|\varphi_k\|_{L_\infty(D)}.$$

As suggested in [39], a tighter bound on $\|c_\alpha\|_{H_0^1(D)}$ is obtained when the g_k coefficients are computed numerically using one-dimensional analyses instead of the theoretical values given in (21). Specifically, for each k, the random variables Ξ_j,
$j \neq k$, in (20) are set to their mean values and the PCE coefficients c_{α_k} of the corresponding solution – now one-dimensional at the stochastic level – are computed via, for instance, least-squares regression or sufficiently high level stochastic collocation. Notice that the total cost of such one-dimensional calculations depends linearly on d. Using these c_{α_k} values, the coefficient g_k is computed from the one-dimensional version of (21), i.e., $|c_{\alpha_k}| \sim e^{-g_k \alpha_k}$. In the present study, we adopt this numerical procedure to estimate each g_k.

As depicted in Fig. 2, the bound in (21) allows us to identify an anticipated c, which we use for setting the weights w_j in the weighted ℓ_1-minimization approach. The magnitude of reference coefficients was calculated by the regression approach of [8] using a sufficiently large number of solution realizations.

![Fig. 2: Polynomial chaos coefficients c of $u(0.5, \Xi)$ and the corresponding analytical bounds obtained from (21) (□ reference; • analytical bound).](image)

We see that the reference values $|c_j|$ associated with some of the second and third degree basis functions decay slower than anticipated, but that the estimate is a reasonable guess without the use of realizations of $u(x, \Xi)$.

4.1.2. Results

To demonstrate the convergence of the standard and weighted ℓ_1-minimization, we consider an increasing number $N = \{81, 200, 1000\}$ of random solution samples. For each analysis, we estimate the truncation error tolerance ϵ in (4) based on the cross-validation algorithm described in Section 3.3. To account for the dependency of the compressive sampling solution on the choice of realizations, for each N, we perform 100 replications of standard
and weighted ℓ_1-minimization, corresponding to independent solution realizations. We then generate uncertainty bars on solution accuracies based on these replications.

Fig. 3 displays a comparison between the accuracy of ℓ_1-minimization, weighted ℓ_1-minimization, iteratively re-weighted ℓ_1-minimization, and (isotropic) sparse grid stochastic collocation with Clenshaw-Curtis abscissas. The level one sparse grid contains $N = 81$ points. In particular, we observe that both ℓ_1-minimization and weighted ℓ_1-minimization result in smaller standard deviation and root mean square (rms) errors, compared to the stochastic collocation approach. Additionally, the weighted ℓ_1-minimization using the analytical decay of $|c_\alpha|$ outperforms the iteratively re-weighted ℓ_1-minimization. Moreover, for small sample sizes N, the weighted ℓ_1-minimization outperforms the non-weighted approach. This is expected as the prior knowledge on the decay of $|c_\alpha|$ has comparable effect on the accuracy as the solution realizations do. In fact, the trade-off between the prior knowledge (in the form of weights w_j) and the solution realizations (data) may be best seen in a Bayesian formulation of the compressive sampling problem (4). We refer the interested reader to [61, 62] for further information on this subject.

In the presence of the a priori estimates of the PC coefficients, one may consider solving a weighted least-squares regression problem $P_{\ell_1}^{(W)} \equiv \{\arg \min_{c_C} \|Wc_C\|_2^2 : \|\Psi_c c_C - u\|_2 \leq \epsilon\}$, in which $c_C \in \mathbb{R}^P$ denotes vectors supported on a set C with cardinality $|C| \leq N$ identified based on the decay of PC coefficients. For example, to generate a well-posed weighted least-squares problem, C may contain the indices associated with $|C| \leq \lfloor N/2 \rfloor$ largest (in magnitude) PC coefficients from (21). Stated differently, the estimates of PC coefficients may be utilized to form least-squares problems for small subsets of the PC basis function that are expected to be important. However, our numerical experiments indicate that, unlike in the case of weighted ℓ_1-minimization, the accuracy of such an approach is sensitive to the quality of the PC coefficient estimates, based on which C is set. Fig. 4 presents an illustration of such observation.
Fig. 3: Comparison of relative error in statistics of $u(0.5, \Xi)$ for ℓ_1-minimization, weighted ℓ_1-minimization, and isotropic sparse grid stochastic collocation (with Clenshaw-Curtis abscissas) for the case of the elliptic equation. The uncertainty bars are generated using 100 independent replications for each sample size N. (--- ℓ_1-minimization; --- weighted ℓ_1-minimization; --- iteratively re-weighted ℓ_1-minimization; --- stochastic collocation).
Fig. 4: Comparison of relative rms error for ℓ_1-minimization, weighted ℓ_1-minimization, weighted least-squares regression, and sparse grid collocation for the case of the elliptic equation. In the weighted least-squares approach the set C with cardinality $|C| = \lfloor N/2 \rfloor$ contains the indices of the largest (in magnitude) upper bounds on the PC coefficients (– ℓ_1-minimization; — weighted ℓ_1-minimization; — weighted least-squares regression; — stochastic collocation).

4.2. Case II: Thermally driven flow with stochastic boundary temperature

Following [63, 9, 64], we next consider a 2-D heat driven square cavity flow problem, shown in Fig. 5a, as another realization of (6). The left vertical wall has a deterministic, constant temperature \bar{T}_h, referred to as the hot wall, while the right vertical wall has a stochastic temperature $\bar{T}_c < \bar{T}_h$ with constant mean \bar{T}_c, referred to as the cold wall. Both top and bottom walls are assumed to be adiabatic. The reference temperature and the reference temperature difference are defined as $\bar{T}_{ref} = (\bar{T}_h + \bar{T}_c)/2$ and $\Delta \bar{T}_{ref} = \bar{T}_h - \bar{T}_c$, respectively. In dimensionless variables, the governing equations (in the small temperature difference regime, i.e., Boussinesq approximation) are given by

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla p + \frac{\Pr}{\sqrt{Ra}} \nabla^2 u + \Pr T \hat{y},$$

$$\nabla \cdot u = 0,$$

$$\frac{\partial T}{\partial t} + \nabla \cdot (uT) = \frac{1}{\sqrt{Ra}} \nabla^2 T,$$

(22)
where \hat{y} is the unit vector $(0,1)$, $\mathbf{u} = (u,v)$ is velocity vector field, $T = (\bar{T} - \bar{T}_\text{ref})/\Delta \bar{T}_\text{ref}$ is normalized temperature (\bar{T} denotes non-dimensional temperature), p is pressure, and t is time. Non-dimensional Prandtl and Rayleigh numbers are defined, respectively, as $\text{Pr} = \tilde{\mu} \tilde{c}_p / \tilde{\kappa}$ and $\text{Ra} = \tilde{\rho} g \beta \Delta \bar{T}_\text{ref} \tilde{\rho} / (\tilde{\mu} \tilde{\kappa})$, where the superscript tilde ($\tilde{\cdot}$) denotes the non-dimensional quantities. Specifically, $\tilde{\rho}$ is density, \tilde{L} is reference length, g is gravitational acceleration, $\tilde{\mu}$ is molecular viscosity, $\tilde{\kappa}$ is thermal diffusivity, and the coefficient of thermal expansion is given by β. In this example, the Prandtl and Rayleigh numbers are set to $\text{Pr} = 0.71$ and $\text{Ra} = 10^6$, respectively. For more details on the non-dimensional variables in (22), we refer the interested reader to [64, 63, 9].

On the cold wall, we apply a (normalized) temperature distribution with stochastic fluctuations of the form

$$T_c(x = 1, y, \Xi) = \bar{T}_c + T'_c,$$

$$T'_c = \sigma_T \sum_{i=1}^{d} \sqrt{\lambda_i} \varphi_i(y) \Xi_i,$$

where \bar{T}_c is a constant mean temperature. In (23), Ξ_i, $i = 1, \ldots, d$, are independent random variables uniformly distributed on $[-1,1]$. $\{\lambda_i\}_{i=1}^{d}$ and $\{\varphi_i(y)\}_{i=1}^{d}$ are the d largest eigenvalues and the corresponding eigenfunctions of the exponential covariance kernel

$$C_{T_c,T_c}(y_1,y_2) = \exp \left(-\frac{|y_1 - y_2|}{l_c} \right),$$

where l_c is the correlation length. Following [65], the eigenpairs $(\lambda_i, \varphi_i(y))$ in (23) are, respectively, given by

$$\lambda_i = \frac{2l_c}{l_c^2 \omega_i^2 + 1},$$

and

$$\varphi_i(y) = \begin{cases} \cos(\omega_i y) / \sqrt{0.5 + \sin(\omega_i)^2 / 2\omega_i}, & i \text{ is odd}, \\ \sin(\omega_i y) / \sqrt{0.5 - \sin(\omega_i)^2 / 2\omega_i}, & i \text{ is even}, \end{cases}$$

where each ω_i is a root of

$$\omega_i + (1/l_c) \tan(0.5\omega_i) = 0.$$
In our numerical test we let \((T_h, \bar{T}_c) = (0.5, -0.5), d = 20, l_c = 1/21, \) and \(\sigma_T = 11/100. \) A realization of the cold wall temperature \(T_c \) is shown in Fig. 5b. Our quantity of interest, the vertical velocity component at \((x, y) = (0.25, 0.25) \) denoted by \(v(0.25, 0.25) \), is expanded in the Legendre PC basis of total degree \(q = 4 \) with only the first \(P = 2500 \) basis functions retained, as described in the case of the elliptic problem. We seek to accurately reconstruct \(v(0.25, 0.25) \) with \(N < P \) random samples of \(\Xi \) and the corresponding realizations of \(v(0.25, 0.25) \).

4.2.1. Approximate bound on PC coefficients

In order to generate the weights \(w_j \) for the weighted \(\ell_1 \)-minimization reconstruction of \(v(0.25, 0.25) \), we derive an approximate bound on the PC coefficients of the velocity \(v \) in (22) at a fixed point in space.

For the interest of notation, we start by rewriting \(T'_c \) in (23) as

\[
T'_c(y, \Xi) = \sum_{i=1}^{d} \nu_i(y) \Xi_i, \tag{24}
\]

where \(\nu_i(y), i = 1, \ldots, d, \) is given by

\[
\nu_i(y) = \sigma_T \sqrt{\frac{\lambda_i}{0.5 + (-1)^{i-1}\sin(\omega_i)/2\omega_i}} \sin \left(\omega_i y + \frac{\pi}{2} \left((-1)^i + 1 \right) \right).
\]
We write the PC expansion of v as $v = \sum_j c_j \psi_j(\Xi)$ and seek approximate bounds on $|c_j|$ to set the weights w_j in the weighted ℓ_1-minimization results. By the orthonormality of the PC basis, c_j is

$$c_j = \int_{[-1,1]^d} v(\xi) \psi_j(\xi) \left(\frac{1}{2} \right)^d d\xi. \quad (25)$$

To approximately bound the coefficients c_j, we examine the functional Taylor series expansion of v around $v = v(\bar{T}_c)$. Note that by an appropriate definition of functional derivatives $\frac{\delta^k v}{\delta T^k_c}$ of v with respect to T_c, see, e.g., [66],

$$v(\Xi) = \sum_{k=0}^{\infty} \frac{1}{k!} \int_{[0,1]^k} \frac{\delta^k v}{\delta T^k_c}(y, \Xi) \prod_{j=1}^k T'_c(y_j, \Xi) dy,$$

where y_j is a copy of the spatial coordinate variable y. Plugging (26) in (25), we arrive at

$$c_j = \int_{[-1,1]^d} \psi_j(\xi) \sum_{k=0}^{\infty} \frac{1}{k!} \int_{[0,1]^k} \frac{\delta^k v}{\delta T^k_c}(y, \xi) \prod_{j=1}^k T'_c(y_j, \xi) \left(\frac{1}{2} \right)^d dy d\xi. \quad (27)$$

To handle the functional derivatives, we consider the dimensional relation

$$\left| \frac{\delta^k v}{\delta T^k_c}(y) \right| \approx C \left| \frac{v(\bar{T}_c)}{\bar{T}_c} \right|,$$

which we assume to hold uniformly in y and Ξ, for some constant $C \geq 0$. This, together with (24), allows us to derive the approximate bound

$$|c_j| \lesssim C|v(\bar{T}_c)| \sum_{k=0}^{\infty} \frac{1}{k!|T_c|^k} \left| \int_{[-1,1]^d} \psi_j(\xi) \left(\sum_{i=1}^d t_i \xi_i \right)^k \left(\frac{1}{2} \right)^d d\xi \right|,$$

where $t_i = \int_0^1 \nu_i(y) dy$. In (29), the approximation comes from the assumption (28) on the functional derivatives. To evaluate the RHS of (29), we consider a finite truncation of the sum and a Monte Carlo (or quadrature) estimation of the integral.

In Fig. 6, we display the approximate upper bound on $|c_j|$ of $v(0.25, 0.25)$ obtained from (27) by limiting k to 4. To generate a reference solution, we
employ the least-squares regression approach of [8] with $N = 40,000$ random realizations of $v(0.25, 0.25)$. For the accuracies of interest in this study, the convergence of this reference solution was verified. For the sake of illustration, we normalize the estimated $|c_j|$ so that $|c_0|$, the module of the approximate zero degree coefficient, matches its reference counterpart. Despite the rather strong assumption (28) on the functional derivatives, we note that the resulting estimates of $|c_j|$ describe the trend of the reference values qualitatively well. As we shall see in what follows, such qualitative agreement is sufficient for the weighted ℓ_1-minimization to improve the accuracy of the standard ℓ_1-minimization for small samples sizes N.

Remark 4.1. We stress that the assumption (28), while here lead to appropriate estimates of $|c_j|$ for our particular example of interest, it may not give equally reasonable estimates for other problems or choices of flow parameters, e.g., larger Ra numbers. A weaker assumption on the functional derivatives in (28), however, requires further study and is the subject of our future work.

![Index of PC coefficients (j)](image)

Fig. 6: Approximate PC coefficients of $v(0.25, 0.25)$ vs. the reference coefficients obtained by least-squares regression using sufficiently large number of realizations of $v(0.25, 0.25)$ (\Box reference; \bullet approximate bound).

4.2.2. Results

We provide results demonstrating the convergence of the statistics of $v(0.25, 0.25)$ as a function of the number of realizations N. For this, we consider sample sizes $N = \{41, 200, 1000\}$ with $N = 41$ corresponding to the number of grid points in level one sparse grid collocation using Clenshaw-Curtis abscissas.
Fig. 7 displays comparisons between the accuracies obtained to approximate \(v(0.25, 0.25)\). Similar to the previous example, the weighted \(\ell_1\)-minimization approach achieves superior accuracy, particularly for the small sample size \(N = 41\). The results obtained for the iteratively re-weighted \(\ell_1\)-minimization correspond to \(\epsilon_w = 5 \times 10^{-2} \cdot \hat{c}_1\), where \(\hat{c}_1\) is the sample average of \(v(0.25, 0.25)\). This leads to the smallest average rms errors among the trial values \(\epsilon_w = \{5 \times 10^{-2}, 5 \times 10^{-3}, 5 \times 10^{-4}\} \cdot \hat{c}_1\). To show the sensitivity of this approach to the choice of \(\epsilon_w\), we present rms error plots in Fig. 8 corresponding to multiple values of \(\epsilon_w\). In particular, for the cases of \(\epsilon_w = \{5 \times 10^{-3}, 5 \times 10^{-4}\} \cdot \hat{c}_1\), when \(N = 1000\) we observe loss of accuracy compared to the standard \(\ell_1\)-minimization. On the other hand, the weighted \(\ell_1\)-minimization results are relatively insensitive to the choice of \(\epsilon_w\), and best performance is obtained with \(\epsilon_w = 5 \times 10^{-4} \cdot \hat{c}_1\), i.e., the smallest and most intuitive value among the trials.

We note that the rather poor performance of the sparse grid collocation is due to the relatively large contributions of some of the higher order PC modes, as may be observed from Fig. 6. Fig. 9 shows the magnitude of PC coefficients of \(v(0.25, 0.25)\) obtained using standard and weighted \(\ell_1\)-minimization with \(N = \{200, 1000\}\) samples. The better approximation quality of the weighted \(\ell_1\)-minimization may be seen particularly from Figs. 9a and 9b. Finally, in Fig. 10, we present a comparison between the rms errors obtained from \(\ell_1\)-minimization, weighted \(\ell_1\)-minimization, weighted least-squares regression, and sparse grid stochastic collocation. The weighted least-squares regression approach performs poorly for \(N = \{200, 1000\}\) as some of the basis functions are selected incorrectly given the approximate bounds on the PC coefficients.

5. Conclusion

Within the context of compressive sampling of sparse polynomial chaos (PC) expansions, we introduced a weighted \(\ell_1\)-minimization approach, wherein we utilized a priori knowledge on PC coefficients to enhance the accuracy of the standard \(\ell_1\)-minimization. The a priori knowledge of PC coefficients may be available in the form of analytical decay of the PC coefficients, e.g., for a class of linear elliptic PDEs with random data, or derived from simple dimensional analysis. These a priori estimates, when available, can be used to establish weighted \(\ell_1\) norms that will further penalize small PC coefficients, and consequently improve the sparse approximation. We provided analyt-
ical results guaranteeing the convergence of the weighted ℓ_1-minimization approach.

The performance of the proposed weighted ℓ_1-minimization approach was demonstrated through its application to two test cases. For the first example, dealing with a linear elliptic equation with random coefficient, existing analytical bounds on the magnitude of PC coefficients were adopted to establish the weights. In the second case, for a thermally driven flow problem with stochastic temperature boundary condition, we derived an approximate bound for the PC coefficients via a functional Taylor series expansion and a simple dimensional analysis. In both cases we demonstrated that the weighted ℓ_1-minimization approach outperforms the non-weighted counterpart. Furthermore, better accuracies were obtained using the weighted ℓ_1-minimization approach as compared to the iteratively re-weighted ℓ_1-minimization. Numerical experiments illustrate the sensitivity of the latter approach, unlike the former, with respect to the choice of a parameter defining the weights. Finally, we demonstrated that selection of subsets of PC basis and solving well-posed weighted least-squares regression may result in poor accuracies.

While our numerical and analytical results were for the case of Legendre PC expansions, our work may be extended to other choices of PC basis, such as those based on Hermite or Jacobi polynomials.

6. Acknowledgements

We would like to thank Prof. Raul Tempone for bringing to our attention the use of the analytical PC estimates of the elliptic problem within the context of weighted ℓ_1-minimization. We gratefully acknowledge the financial support of the Department of Energy under Advanced Scientific Computing Research Early Career Research Award de-sc0006402.

This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research.
Fig. 7: Comparison of relative error in statistics of $v(0.25,0.25)$ computed via ℓ_1-minimization, weighted ℓ_1-minimization, iteratively reweighted ℓ_1-minimization, and stochastic collocation. The error bars are generated using 100 independent replications with fixed samples size N. (\(\rightarrow\) ℓ_1-minimization; \(\rightarrow\) weighted ℓ_1-minimization; \(\rightarrow\) iteratively re-weighted ℓ_1-minimization; \(\rightarrow\) stochastic collocation).
Fig. 8: Relative average rms errors corresponding to multiple values of ϵ_w to set the weights w_j. The results demonstrate the sensitivity of the iteratively re-weighted approach to the choice of ϵ_p (solid lines: ℓ_1-minimization; weighted ℓ_1-minimization; iteratively re-weighted ℓ_1-minimization; solid lines $\epsilon_w = 5 \times 10^{-2} \cdot \hat{c}_1$; dashed lines $\epsilon_w = 5 \times 10^{-3} \cdot \hat{c}_1$; dotted dashed lines $\epsilon_w = 5 \times 10^{-4} \cdot \hat{c}_1$). Here, \hat{c}_1 is the sample average of $v(0.25, 0.25)$.
Fig. 9: Approximation of PC coefficients of $v(0.25, 0.25)$ using $N = 200$ samples (a), (b) and $N = 1000$ samples (c), (d) (□ reference; red ℓ_1-minimization; green weighted ℓ_1-minimization).
Fig. 10: Comparison of relative rms error for ℓ_1-minimization, weighted ℓ_1-minimization, weighted least-squares regression, and sparse grid collocation for the cavity flow problem. In the weighted least-squares approach, the set \mathcal{C} with cardinality $|\mathcal{C}| = \lfloor N/2 \rfloor$ contains the indices of the largest (in magnitude) approximate upper bounds on the PC coefficients (red line: ℓ_1-minimization; black line: weighted ℓ_1-minimization; blue line: weighted least-squares regression; green line: stochastic collocation).
References

[1] R. Ghanem, A. Sarkar, Mid-frequency structural dynamics with parameter uncertainty, Comput. Methods Appl. Mech. Engrg. 191 (2002) 5499–5513.

[2] D. Xiu, G. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing 24 (2) (2002) 619–644.

[3] M. Reagan, H. Najm, R. Ghanem, O. Knio, Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection, Combustion and Flame 132 (3) (2003) 545–555.

[4] L. Mathelin, M. Hussaini, A stochastic collocation algorithm for uncertainty analysis, Tech. Rep. NAS 1.26:212153; NASA/CR-2003-212153, NASA Langley Research Center (2003).

[5] D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27 (3) (2005) 1118–1139.

[6] I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45 (3) (2007) 1005–1034.

[7] P. G. Constantine, M. Eldred, E. Phipps, Sparse pseudospectral approximation method, Computer Methods in Applied Mechanics and Engineering 229 (2012) 1–12.

[8] S. Hosder, R. Walters, R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in: 44th AIAA aerospace sciences meeting and exhibit, AIAA-2006-891, Reno (NV), 2006.

[9] O. L. Maitre, O. Knio, Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, Springer, 2010.

[10] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
[11] A. Doostan, G. Iaccarino, N. Etemadi, A least-squares approximation of high-dimensional uncertain systems, Tech. Rep. Annual Research Brief, Center for Turbulence Research, Stanford University (2007).

[12] A. Doostan, G. Iaccarino, A least-squares approximation of partial differential equations with high-dimensional random inputs, Journal of Computational Physics 228 (12) (2009) 4332–4345.

[13] A. Doostan, A. Validi, G. Iaccarino, Non-intrusive low-rank separated approximation of high-dimensional stochastic models, Computer Methods in Applied Mechanics and Engineering 263 (1) (2013) 42–55.

[14] A. Doostan, H. Owhadi, A. Lashgari, G. Iaccarino, Non-adapted sparse approximation of PDEs with stochastic inputs, Tech. Rep. Annual Research Brief, Center for Turbulence Research, Stanford University (2009).

[15] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics 25 (2) (2010) 183–197.

[16] A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational Physics 230 (2011) 3015–3034.

[17] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics 230 (2011) 2345–2367.

[18] L. Mathelin, K. Gallivan, A compressed sensing approach for partial differential equations with random input data, Commun. Comput. Phys. 12 (2012) 919–954.

[19] L. Yan, L. Guo, D. Xiu, Stochastic collocation algorithms using ℓ_1-minimization, International Journal for Uncertainty Quantification 2 (3).

[20] X. Yang, G. E. Karniadakis, Reweighted ℓ_1 minimization method for stochastic elliptic differential equations, Journal of Computational Physics 248 (2013) 87–108.
[21] S. Chen, D. Donoho, M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20 (1998) 33–61.

[22] S. Chen, D. Donoho, M. Saunders, Atomic decomposition by basis pursuit, SIAM Rev. 43 (1) (2001) 129–159.

[23] D. Donoho, Compressed sensing, IEEE Transactions on information theory 52 (4) (2006) 1289–1306.

[24] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, Information Theory, IEEE Transactions on 52 (2) (2006) 489–509.

[25] E. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Found. Comput. Math. 6 (2) (2006) 227–254.

[26] E. Candès, T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on information theory 52 (12) (2006) 5406–5425.

[27] E. Candès, J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems 23 (3) (2007) 969–985.

[28] E. Candès, M. Wakin, An introduction to compressive sampling, Signal Processing Magazine, IEEE 25 (2) (2008) 21–30.

[29] A. Bruckstein, D. Donoho, M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review 51 (1) (2009) 34–81.

[30] M. R. Osborne, B. Presnell, B. A. Turlach, A new approach to variable selection in least squares problems, IMA journal of numerical analysis 20 (3) (2000) 389–403.

[31] I. Daubechies, M. Defrise, C. D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics 57 (11) (2004) 1413–1457.

[32] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation 4 (4) (2005) 1168–1200.
[33] M. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, Selected Topics in Signal Processing, IEEE Journal of 1 (4) (2007) 586–597.

[34] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale l1-regularized least squares, Selected Topics in Signal Processing, IEEE Journal of 1 (4) (2007) 606–617.

[35] E. v. Berg, M. P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction, available from http://www.cs.ubc.ca/labs/scl/spgl1 (June 2007).

[36] D. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing, Proceedings of the National Academy of Sciences 106 (45) (2009) 18914–18919.

[37] I. Babuśka, R. Tempone, G. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis 42 (2) (2004) 800–825.

[38] A. Cohen, R. DeVore, C. Schwab, Convergence rates of best n-term galerkin approximations for a class of elliptic spdes, Foundations of Computational Mathematics 10 (6) (2010) 615–646.

[39] J. Beck, F. Nobile, L. Tamellini, R. Tempone, On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods, Mathematical Models and Methods in Applied Sciences 22 (09) (2012) 1250023.

[40] O. Escoda, L. Granai, P. Vandergeynst, On the use of a priori information for sparse signal approximations, IEEE Transactions in Signal Processing 9 (2006) 3468–3482.

[41] E. Candès, M. Wakin, S. Boyd, Enhancing sparsity by reweighted ℓ1 minimization, Journal of Fourier Analysis and Applications 14 (5) (2008) 877–905.

[42] R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing, in: in 33rd International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2008.
[43] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, B. Hassibi, Improved sparse recovery thresholds with two-step reweighted ℓ_1 minimization, in: Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1603–1607.

[44] A. Logg, K.-A. Mardal, G. N. Wells, et al., Automated Solution of Differential Equations by the Finite Element Method, Springer, 2012. doi:10.1007/978-3-642-23099-8.

[45] R. A. Askey, W. J. Arthur, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Vol. 319, AMS, Providence RI, 1985.

[46] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

[47] D. Needell, Noisy signal recovery via iterative reweighted l_1-minimization, in: Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, 2009.

[48] E. van den Berg, M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing 31 (2) (2008) 890–912.

[49] E. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics LIX (2006) 1207–1223.

[50] A. Juditsky, A. Nemirovski, Accuracy guarantees for ℓ_1-recovery, IEEE Trans. Inform. Theory 57 (2011) 7818–7839.

[51] A. Juditsky, A. Nemirovski, On verifiable sufficient conditions for sparse signal recovery via ℓ_1 minimization, Mathematical programming 127 (1) (2011) 57–88.

[52] R. Gribonval, M. Nielsen, Sparse representations in unions of bases, Information Theory, IEEE Transactions on 49 (12) (2003) 3320–3325.

[53] A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc. 22 (2009) 211–231.
[54] E. Candès, T. Tao, Decoding by linear programming, Information Theory, IEEE Transactions on 51 (12) (2005) 4203–4215.

[55] Q. Mo, S. Li, New bounds on the restricted isometry constant δ_{2k}, Applied and Computational Harmonic Analysis 31 (3) (2011) 460–468.

[56] J. Andersson, J. Strömberg, On the theorem of uniform recovery of random sampling matrices, arXiv preprint arXiv:1206.5986.

[57] E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique 346 (9) (2008) 589–592.

[58] H. Rauhut, R. Ward, Sparse legendre expansions via ℓ_1-minimization, Journal of Approximation Theory 164 (5) (2012) 517–533.

[59] M. Bieri, R. Andreev, C. Schwab, Sparse tensor discretization of elliptic sPDEs, Tech. Rep. Research Report No. 2009-07, Seminar für Angewandte Mathematik, SAM, Zürich, Switzerland (2009).

[60] G. Migliorati, F. Nobile, E. Schwerin, R. Tempone, Analysis of the discrete L^2 projection on polynomial spaces with random evaluations, Tech. rep., Mathematics Institute of Computational Science and Engineering, Lausanne, Switzerland (2011).

[61] M. E. Tipping, Sparse bayesian learning and the relevance vector machine, The Journal of Machine Learning Research 1 (2001) 211–244.

[62] S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing, Signal Processing, IEEE Transactions on 56 (6) (2008) 2346–2356.

[63] O. LeMaitre, M. Reagan, H. Najm, R. Ghanem, O. Knio, A stochastic projection method for fluid flow. ii: Random process, J. Comp. Phys. 181 (2002) 9–44.

[64] P. L. Quéré, Accurate solutions to the square thermally driven cavity at high rayleigh number, Computers & Fluids 20 (1) (1991) 29–41.

[65] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover, 2002.

[66] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, 1959.