Intermolecular Interactions Studies of ZnO-Tryptophan Suspension

A S Alameen¹, S A Yaseen¹, F A Sait¹, S B Undre² and P B Undre¹*

¹Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra-431004, India
²Department of Chemistry, Indian Institute of Teacher Education, Gandhinagar, Gujarat -382016, India

*Corresponding author e-mail: prabhakar25u@gmail.com

Abstract. The physicochemical properties (PCPs) have been studied to demonstrate the intermolecular interactions of ZnO nanoparticles (NPs) suspension. Tryptophan (Tryp) was dissolved in water and used as dilute solution to study the dispersion of ZnO NPs in different concentrations (25 to 150 µM) with 25 step. Density ρ, apparent molar volume V̂, refractive index (RI) nD and speed of light c have been reported. Man Singh equations were used to calculate the viscosity η, surface tension γ and friccohesity σ, activation energy ∆µ∗ was calculated using Arrhenius equation on the basis of pendant drop number (PDN) and viscous flow time (VFT) which counted by Borosil ManSingh Survismeter (BMS) instrument for solutions at room temperature. The physicochemical properties revealed the effect of ZnO NPs concentration on intermolecular interactions in dispersion systems. The results depicted the strong role of Tryptophan on ZnO NPs dispersion process in the term of solute–solvent and solute–solute interactions and free chemical reaction suspension.

1. Introduction

The nanoparticles have physicochemical properties differ from bulk materials and being emerged in many applications [1]. Nanoparticles suspension have attracted a lot of attention of researchers and manufacturers and designated as one of the nanotechnology approach to be more stable compared to micro particles suspension because of potent Brownian motion in nanofluids rather than micro fluids [2, 3]. Several physical methods are used to prepare nanoparticles suspension in one step or two steps including stirrers, ultrasonicators, magnetron sputtering system and high-pressure homogenizer [4]. The suspension of NPs has been recognized in different areas and applications such as biomedical, drug delivery, lubrications, magnetic fluids and heat transfer [5-11]. The agglomeration of NPs is actual challenge in nanofluids and many procedures were applied to maintain the stability of suspension to obtain homogeneous dispersion [12, 13] using additives such as surfactants or controlling pH value [14]. Dispersion of nanoparticles in water facilitated with polyethylene glycol showed good dispersion activity, and the optical density increased by increase the micro molar concentration of NPs [15, 16]. TiO2 [17, 18], Ag [19], chitosan [20], CeO2 [21] and Fe3O4 [22] NPs were used in dispersion processes to obtain homogeneous and stable suspension in different ways and promising outcomes were reported. The optical absorbance of ZnO NPs dispersed in aqueous tryptophan appeared in small peaks compared to absorbance of tryptophan in reverse way for first day.
dispersion, when the concentration of ZnO NPs increase, ZnO NPs absorbance increase and tryptophan absorbance decrease, unlike after seven days dispersion the absorbance of ZnO NPs disappeared [23]. Tryptophan is hydrophobic amino acid which being used in many fields including medical, diet, biosensor, anticancer, stress applications, reduction of fatigue, and antimicrobial activity [24-27]. The present work aimed to study the intermolecular interactions of dispersed ZnO NPs in aqueous Tryptophan media to assess the dispersion activity on the basis of physicochemical properties (PCPs) to demonstrate and enlighten the effect of ZnO NPs in suspension with the help of tryptophan. We chose ZnO NPs in this work due to their attractive properties among the metal oxide nanoparticles and found to be useful in potential applications such as biocompatible materials, anti-microorganism, cytotoxicity, ointments and creams. The results of this study may provide useful approach to explore dispersion activities of ZnO NPs with tryptophan and new path to enhance nanomaterials solubility and size reduction.

2. Experimental

2.1. Materials
Zinc oxide nanoparticles prepared elsewhere [23], tryptophan and water HPLC with spectroscopic grade (Molychem Company, India). All chemicals have been used without any further purification.

2.2. Preparation of suspension
Stock solutions of ZnO@Tryp-water (Ternary system) and Tryp-water (binary system) were prepared in micro molar concentration (150 µM) in 250 ml, respectively. Solutions were kept 30 minutes on stirrer followed by 30 minutes in ultrasonic bath (120 watt, 20 kHz, from Aczet). Further, the micro molar (µM) ZnO@Tryp-water solution was diluted using Tryp-water solution into six concentrations (25, 50, 75, 100, 125 and 150 µM). The solutions were kept in sealed volumetric flask avoiding contaminations and chemical reactions to be used for further studies after seven days. A schematic diagram of the experimental method implemented in this study is shown in Figure 1.

2.3. Physicochemical properties measurements
Density measurements were performed using a glass pycnometer (10 cm3) with error ±10$^{-2}$ and weighted using analytical balance from Contech with accuracy 10$^{-3}$ gm. Refractive index (RI) was recorded by Abbe refractometer from BESTO with error ±10$^{-4}$. The PH variation of all samples was monitored using DBK ATC PH meter with error ±10$^{-2}$. Borosil Man Singh Surfismeter has been used to determine the viscosity, surface tension, friccohesity and activation energy by recording the pendant drop number (PDN) using digital counter and the viscous flow time (VFT) using racing watch (±0.01 sec) for all dispersion system concentrations. Data of both, binary and ternary systems are listed in Table 1. All measurements have been repeated three times at room temperature and the calibration was performed using distilled water.

3. Results and discussion

3.1. Apparent molar Volume (V_ϕ)
Intermolecular interactions can be understood by studying the molar apparent volume, which indicates to the steady of the interaction by monitoring appearance of the molar volume after the process and its variation. It mainly depends on the density, which is in turn a good indicator of the solute-solvent and solute-solute interactions in dilute solutions. The density of suspensions increased by increase the micro molar concentration as shown in Table 1. The apparent molar volume V_ϕ (m3·mol$^{-1}$) was calculated using densities data with the help of following equation (1):

$$V_\phi = \frac{1000 (\rho^0 - \rho)}{m \rho^0} + \frac{M}{\rho}$$ (1)
Where, ρ° and ρ are the densities of the solvent and solution respectively, m (10$^{-6}$ mol/L) is the molarity of solute and M (kg·mol$^{-1}$) is the molar mass of solute [28]. The variation in apparent molar volume with an increase in micro molar concentration for both, DSF and DSW samples is reported in Figure 1.

Figure 1. Schematic diagram of the experiment

Figure 2. It is obvious from Figure 2 that V_ϕ decreases by increase the concentration which indicates that the interaction appears more effective by increase ZnO NPs concentration in dispersion system causing ion-ion interactions rather than ion-solvent interactions [29] keeping into account, the monitoring of pH value to assess the stability of dispersion to be maintained in normal value or small range variation [30, 31], in the all process the pH values were in normal range without any high or sudden change which indicates to stability of suspension for both dispersed samples as fresh prepared (DSF) and dispersed samples after one week (DSW), Table 1.

3.2. Speed of light

Speed of light in medium can be calculated on the basis of refractive index (n_D) which is defined as the ratio of the speed of light in a vacuum to speed of light in second medium. The speed of light, C in suspensions was calculated with following equation:

$$C = \frac{3 \times 10^8}{n_D}$$

(2)

The 3×10^8 ms$^{-1}$ is value of light speed in vacuum and n_D is the refractive index. The variation in speed of light values with increase in micro molar concentration of ZnO NPs for both, DSF and DSW samples is plotted in Figure 3. It is observed from Figure 3 that, the values of speed of light vary and decrease by increasing ZnO NPs micro molar concentration which is theoretically reasonable with respect to the speed of light value in water and supported by behaviour of refractive index of dispersions.
Figure 2. Variation in Apparent molar volume with micro molar concentration of ZnO@Tryp-Water suspensions (a) fresh samples (DSF) (b) after 7 days (DSW) at room temperature.

Table 1: Density (ρ, ±10^{-3} g cm^{-3}), apparent molar volume, \(V_\phi\) (cm^3·mol^{-1}), refractive index (\(n_\rho\), ±10^{-5}), speed of light (C, ±10^{-3} m/s), pH (±10^{-2}), viscosity (η, mPa.s), surface tension (γ, mN m^{-1}), friccohesity (σ, s cm^{-1}) and activation energy (\(\Delta \mu_2^*\), kJmol^{-1}) for Tryp-Water and nanofluid (ZnO @ Tryp - Water) at (T= 298.15, ±1) for DSF and DSW.

µM	ρ	\(V_\phi\)	\(n_\rho\)	Cx10^{8}	pH	η	γ	σ	\(\Delta \mu_2^*\)
150	1.0343	197.207	1.3336	2.2496	8.15	1.0373	74.253	0.013970	-72.687
25	1.0296	79.207	1.3334	2.2499	7.820	1.0286	74.451	0.013815	-91.418
50	1.0336	78.738	1.3339	2.2490	7.790	1.0290	75.286	0.013667	-91.634
75	1.0358	78.539	1.3342	2.2485	7.770	1.0299	76.001	0.013551	-91.752
100	1.0376	78.391	1.3343	2.2484	7.750	1.0305	76.133	0.013536	-91.840
125	1.0409	78.124	1.3345	2.2480	7.730	1.0308	76.375	0.013496	-91.968
150	1.0425	78.002	1.3346	2.2479	7.760	1.0310	76.493	0.013478	-92.030
25	1.0295	79.219	1.3334	2.2499	6.960	1.0008	74.987	0.013346	-90.530
50	1.0323	78.861	1.3336	2.2496	7.050	1.0017	75.744	0.013224	-90.707
75	1.0341	78.689	1.3341	2.2487	7.120	1.0020	75.876	0.013205	-90.792
100	1.0376	78.391	1.3344	2.2482	7.220	1.0026	76.133	0.013169	-90.943
125	1.0393	78.256	1.3345	2.2480	7.330	1.0027	76.258	0.013148	-91.004
150	1.0419	78.051	1.3345	2.2480	7.370	1.0035	76.449	0.013126	-91.122
Figure 3. Variation in Speed of light with micro molar concentration of ZnO@Tryp-Water suspensions (a) (DSF) (b) (DSW) at room temperature.

3.3. Viscosity

Considering the flow and fluid motion, the internal friction forces have a noticeable effect in addition to the forces of adhesion with the wall of the vessel or tube. The more liquid molecules in the medium of the liquid, the less effect of the adhesion forces, and therefore, the flow is greater, unlike the particles which are close to the wall of the vessel or tube, the adhesive forces are added to the friction forces and limit the flow, taking into account the density of liquid and for this purpose the viscosity of the suspensions is studied, as it inevitably expresses the flow property of the fluids and explains this dynamical concept. VFT was used to calculate viscosity of suspensions using the following equation (3):

$$\eta = \left(\frac{\rho}{\rho_0}\right) \left(\frac{t}{t_0}\right) \eta_0$$ \hspace{1cm} (3)

Where ρ_0, ρ, t_0 and t are the density and VFT of solvent and solution respectively, η_0 is a viscosity of media [32, 33]. The variation in viscosity with increase in micro molar concentration for DSF and DSW samples is reported in Figure 4 and Table 1. Figure 4 shows that the values of viscosity increase with increasing the micro molar concentration of ZnO NPs in the dispersion solutions for both, DSF and DSW. Generally, the viscosity of DSF is higher than viscosity of DSW, this may referred to the effect of Tryp that competes with ZnO NPs in the solutions and decreases the fluid mobility. The increment of the flow property causes increasing in friction forces of ZnO NPs @ Tryp-water suspension which promote the effect of hydrophilic - hydrophilic interactions where the Tryp induces the solute-solvent interactions making ZnO NPs interact effectively in the suspension and this may leads to decrease nano-size and affect the solubility, and that denotes to the strong effect of amino acid additive (Tryp) [23].
3.4. Surface Tension

The forces that affect the fluid molecules internally give a difference in the motion of the molecules whenever they go to the surface of the fluid. Since, the molecules in the depth of the liquid are surrounded by other molecules from all sides, this makes them in an almost uniform effect, but the matter is different at the surface of the fluid. The molecules dynamics become more restricted and repositioning in the solution to reduce the area and thus, appears tense and tight, this is known as surface tension, whether the liquid is in a container or in the form of drops due to the forces of cohesion. The surface tension of the dispersion system was calculated by the following equation (4) [32, 33]:

$$\gamma = \left(\frac{n_0}{n} \right) \left(\frac{\rho}{\rho_0} \right) \gamma_0$$ (4)

Where n_0 and n are PDN of media and solution respectively, γ_0 is the surface tension of media. The variation in surface tension with increase in micro molar concentration for both DSF and DSW samples is represented in Figure 5 and Table 1. From Figure 5, it is clear that the values of surface tension increase with increasing the concentration of ZnO NPs in the suspension for both DSF and DSW. By increasing the concentration on ZnO NPs in the dispersion system, it is noticed that the solution surface becomes tenser and the solutions molecules cohere to each other at the surface. The presence of Tryp in ZnO NPs suspension leads to form tense drops due to increase the cohesive forces on the surface.

![Figure 4. Variation in viscosity with micro molar concentration of ZnO@Tryp-Water suspensions (a) (DSF) (b) (DSW) at room temperature.](image-url)
3.5. Friccohesity

If the effect of the friction and cohesion forces in liquids is combined and interconnected to be measurable and assessable, a new and wonderful concept will be deduced, which is friccohesity. Friccohesity is already introduced by Man Singh and has become used in fluid dynamics and physiochemical properties studies. The friccohesity of dispersion systems has been calculated using Man Singh equation (5):

$$\sigma = \frac{\eta_0}{\gamma_0} \left(\frac{t}{t_0} \right) \left(\frac{n}{n_0} \right)$$ \hspace{1cm} (5)

Where η_0 and γ_0 are reference viscosity and surface tension respectively, t_0 and t are the VFT of media and solution respectively, n_0 and n are PDN of media and solution respectively [32,33]. The variation in friccohesity with increase in micro molar concentration for both DSF and DSW is plotted in Figure 6. From Figure 6 it is observed that, the friccohesity of ZnO NPs suspension in the presence Tryptophan, decreased with increasing concentration of ZnO NPs due to product of intermolecular forces effect. The more release of Zn^{2+} and dipoles of water induced ion-dipole interaction by increasing ZnO NPs concentration and leads to weaker interconnected forces which can be explained by the friccohesity behaviour, Table 1.

3.6. Activation Energy

In molecular interaction, an amount of energy which stimulates the reaction to take place should be taken into account to keep the interaction free from any chemical change. This energy must be small and not reach the limit that allows a chemical reaction to establish. The interaction must be in the mode of solvent, solute, dipoles, ions interactions and intermolecular collisions. They study of activation energy concept for dispersion systems is the important factor, otherwise, the interaction will jump to new chemical stage which disturbs the intermolecular interaction and hence the dispersion activity will be interrupted. The activation energy ($\Delta \mu_2^*$, j/mol) was calculated with following equation (6) :

$$\Delta \mu_2^* = RT \left\{ \ln \left(\frac{\eta_0 V_1}{hN} \right) - \left[\frac{1}{V_2} \left(1000\eta - (V_1 - V_2) \right) \right] \right\}$$ \hspace{1cm} (6)
Where R is gas constant, T is solution temperature (room temperature), h is Planck constant and N is Avogadro number, V_1 is the solute volume and V_2 is the solvent volume [32, 33]. The variation in activation energy with increase in micro molar concentration for both DSF and DSW samples is reported in Figure 7. It is obvious from Figure 7 that the activation energy decreases in negative direction for all samples which promote molecules orientations because at lower activation energy greater proportion of the collision between solute-solvent including more molecules in the collisions and it is observed that the activation energy for DSW is higher than DSF in general, which revealed the strong effect of Tryp and may cause the dissolving of ZnO NPs if the suspension kept for a time more than one week, this gives a glance to use Tryptophan to increase solubility of ZnO NPs in such applications that prefer soluble NPs rather than dispersion [23].

![Figure 6](image1)

Figure 6. Variation in Friccohesity with micro molar concentration of ZnO@Tryp-Water suspensions (a) (DSF) (b) (DSW) at room temperature.

![Figure 7](image2)

Figure 7. Variation in Activation energy with micro molar concentration of ZnO@Tryp-Water suspensions (a) (DSF) (b) (DSW) at room temperature.
4. Conclusion
In this study, the intermolecular interactions of ZnO@Tryp-water suspension have been studied on the basis of physicochemical properties such as density ρ, apparent molar volume V^ϕ, refractive index n_D, speed of light C, viscosity η, surface tension γ and friccohesity σ, and activation energy. The reported properties used to demonstrate the dispersion activity of ZnO NPs and the results revealed the effect of micro molar concentration of ZnO NPs on the dispersion process and variation was observed with strong role of tryptophan appeared obviously in the outcomes, which induce the interaction toward decreasing the particle size or to be soluble in water rather than dispersion. This might be beneficial in many applications that use ZnO NPs as a solute like ointments, sunscreen, skin creams, microorganism swimmers fighting and biological studies.

References
[1] Kreuter J, 1983 Physicochemical characterization of polyacrylic nanoparticles International Journal of Pharmaceutics, 14(1) pp 43-58
[2] Hwang Y, Park H S, Lee J K and Jung W H, 2006 Thermal conductivity and lubrication characteristics of nanofluids Current Applied Physics 6 pp e67-e71
[3] Keblinski P, Philpott S R, Choi S U S, and Eastman J A, 2002 Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) International journal of heat and mass transfer 45(4) pp 855-863
[4] Hwang Y, Lee J K, Lee J K, Jeong Y M, Cheong S I, Ahn Y C and Kim S H, 2008 Production and dispersion stability of nanoparticles in nanofluids Powder Technology 186(2) pp 145-153
[5] Webb R L and Kim N Y, 2005 Enhanced heat transfer Taylor and Francis NY
[6] Ku J H, Cho H H, Koo J H, Yoon S G and Lee J K, 2000 Heat transfer characteristics of liquid-solid suspension flow in a horizontal pipe. KSME international journal 14(10) pp 1159-1167
[7] Xuan Y and Li Q, 2003 Investigation on convective heat transfer and flow features of nanofluids J. Heat transfer 125(1) pp 151-155
[8] Patel H E, Das S K, Sundararajan T, Sreekumaran Nair A, George B and Pradeep T, 2003 Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects Applied Physics Letters 83(14) pp 2931-2933
[9] Sun Y P, Li X Q, Zhang W X and Wang H P, 2007 A method for the preparation of stable dispersion of zero-valent iron nanoparticles Colloids and Surfaces A: Physicochemical and Engineering Aspects 308(1-3) pp 60-66
[10] Yaseen S A, Alameen A S, Saif F A, Undre S B and Undre P B, 2020 Dispersion and Optical Activities of Copper (II) Metal Oxide Nanoparticles with Polyethylene Glycol in
Aqueous Medium Studied with Physicochemical Properties and UV-Vis Spectrophotometry

[17] Cacua K, Murshed S S, Pabón E and Buitrago R, 2020 Dispersion and thermal conductivity of TiO$_2$/water nanofluid. *Journal of Thermal Analysis and Calorimetry* **140**(1) pp 109-114

[18] Bihari P, Vippola M, Schultes S, Praetner M, Khandoga A G, Reichel C A, Coester C, Tuomi T, Rehberg M and Krombach F, 2008 Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. *Particle and fibre toxicology* **5**(1) p 14

[19] Sharma V, Verma D and Okram G S, 2020 Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles. *Journal of Physics: Condensed Matter* **32**(14) p 145302

[20] Kim H S, Lee S H, Eun C J, Yoo J and Seo Y S, 2020 Dispersion of chitosan nanoparticles stable over a wide pH range by adsorption of polyglycerol monostearate. *Nanomaterials and Nanotechnology* **10** p 1847980420917260

[21] Yaseen S A, Alameen A S, Saif F A, Undre S B and Undre P B, 2020 The study of CeO2 nanoparticles dispersed in water with folic acid. *AIP Conference Proceedings* **2244**(1) p 070028

[22] Pandya S R and Singh M, 2015 Dispersion and optical activities of newly synthesized magnetic nanoparticles with organic acids and dendrimers in DMSO studied with UV/vis spectrophotometry. *Journal of Molecular Liquids* **211** pp 146-156

[23] Alameen A S, Yaseen S A, Saif F A, Undre S B and Undre P B, 2020 A study of optical properties of ZnO-tryptophan aqueous dispersion. *AIP Conference Proceedings* **2244**(1) p 070007

[24] Marin G A and Larrain R E, 2019 Changes in behavior and plasma metabolites after tryptophan supplementation in steers. *Journal of Veterinary Behavior* **32** pp 24-29

[25] Nguyen L, Salem S M, Salze G P, Dinh H and Davis D A, 2019 Tryptophan requirement in semi-purified diets of juvenile Nile tilapia Oreochromis niloticus. *Aquaculture* **502** pp 258-267

[26] Farris J W, Hinchcliff K W, McKeever K H, Lamb D R and Thompson DL, 1998 Effect of tryptophan and of glucose on exercise capacity of horses. *Journal of Applied Physiology* **85**(3) pp 807-816

[27] Finland G, Eijsink V G and Nissen-Meyer J, 2002 Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. *Biochemistry* **41**(30) pp 9508-9515

[28] Vashistha N, Chandra A and Singh M, 2018 Influence of rhodamine B on interaction behaviour of lanthanide nitrates with 1st tier dendrimer in aqueous DMSO: A physicochemical, critical aggregation concentration and antioxidant activity study. *Journal of Molecular Liquids* **260** pp 323-341

[29] Rocha Pinto R, Santos D, Mattedi S and Aznar M, 2015 Density, refractive index, apparent volumes and excess molar volumes of four protic ionic liquids+ water at T= 298.15 and 323.15 K. *Brazilian Journal of Chemical Engineering* **32**(3) pp 671-682

[30] Wen D and Ding Y, 2005 Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. *Journal of Nanoparticle Research*, **7**(2-3), pp 265-274

[31] Manjula S, Kumar S M, Raichur A M, Madhu G M, Suresh R and Raj M A, 2005 A sedimentation study to optimize the dispersion of alumina nanoparticles in water. *Cerâmica*, **51**(318) pp 121-127

[32] Bangia J K, Singh M, Om H, Behera K and Gulia M, 2017 Physicochemical study of nanoemulsions of aqueous cellulose acetate propionate, cellulose acetate butyrate and tween80 with castor, olive and linseed oils from temperature (293.15 to 313.15) K. *Journal of Molecular Liquids* **255** pp 758–766

[33] Singh M, Singh S, 2019 *Survismeter: Fundamentals, Concepts and Applications*, Pan Stanford Publishing Pte Ltd Singapore, ISBN 978-981-4774-70-3 (Hardcover) 978-0-429-02761-1(e-Book)