Distance and Similarity Measures using Max-Min Operators of Neutrosophic Hypersoft Sets with Application in Site Selection for Solid Waste Management Systems

MUHAMMAD NAVEED JAFAR¹, MUHAMMAD SAEED¹, KAINAT MUNIBÁ², FATEN S. ALAMRÍ³, HAMIDEN ABD EI-WAHED KHALIFA⁴,⁵
¹ Department of Mathematics, University of Management and Technology, 54000, C-Block Johar Town Lahore, Pakistan
² Department of Environmental Sciences and Policy, Lahore School of Economics, DHA Phase-VI Lahore Pakistan
³ Mathematical Science Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi-Arabia
⁴ Department of Mathematics, College of Science and Arts, Qassim University, Al-Badayya, 51951, Saudi Arabia
⁵ Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt

*Correspondence: muhammad.saeed@umt.edu.pk

ABSTRACT The idea of a neutrosophic hypersoft set (NHSS) was coined by Smarandache in 2018 as a generalization of the soft set. This structure is a hybrid of a neutrosophic set with a hypersoft set. It can be a valuable structure for dealing with multi-attributes, multi-objective problems with disjoint attributive values. Similarity measures (SM) play a vital role in measuring the similarity index that how much the things are similar. Different types of similarity measures were developed in literature with different fuzzy, intuitionistic, and neutrosophic theories. It is intended to merge the neutrosophic theory with the hypersoft set theory and propose different similarity measures with the help of new proposed distances with max-min operators. Also, we proved different theorems and properties of distance and similarity measures. Then as solid waste management is a global issue, and there are some Solid Waste Management Systems (SWMS) for environment protection, so an example will be given for the site selection for SWMS to check the validity of proposed techniques. To verify the validity and superiority of the suggested work, it is contrasted to several existing methodologies, which show that decision-making issues with more bifurcation attributes provide more accurate and precise outcomes and can only be solved using this technique. In the future, the presented methodologies could be used in case studies with several qualities that are further bifurcated and multiple decision-makers. This proposed work can also be extended to many existing hypersoft set hybrids, such as Fuzzy hypersoft sets (FHSs), Intuitionistic hypersoft sets (IHSs), Bipolar hypersoft sets (Bi-HSs), m-polar HSs, and Pythagorean hypersoft sets (PHSs).

INDEX TERMS: neutrosophic hypersoft sets (NHSS), neutrosophic hypersoft Matrices (NHSMs), Distance Measures (DM), Similarity Measures (SM), Landfill, Incinerator, Composting, Solid Waste Management System (SWMS), Air Quality Index (AQI), and Multi-Attributive Decision Making (MADM), Truthness (T), Indeterminacy (Í), and Falsity (F).

I. INTRODUCTION
While addressing different real-life problems, we need to choose the best option from a list of many. MADM is a decision-making tool that helps us in such processes. The majority of everyday decisions are fraught with ambiguity, and they must be tailored to solve various issues in the real world. Uncertain data is one of the most challenging factors in tackling these difficulties. Many mathematical theories have been developed to overcome these difficulties including Fuzzy Sets (FS) [1], Intuitionistic Fuzzy Sets (IFSS) [2] Pythagorean Fuzzy Sets (PFSS)[3], and Generalized orthopair [4] etc. In these sets uncertainty depends upon different functions, including membership and non-membership functions. Then in 1998, Smarandache [5] proposed neutrosophic set (NS) theory as a generalization of the theories mentioned above. He considered truthness (T), indeterminacy (I), and falsity (F) independently. Single valued neutrosophic Set (SVNS) is a robust formal framework proposed by Wang et al. [6] and applied to solve real-life problems. Molodtsove [7] proposed a Soft set (SS) as a parametrized family of sets with aggregation operators. Maji et al. [08-09] redefined the aggregation operators of SS, and developed a decision-making algorithm using choice values of objects. He applied the proposed algorithm in the house selection problem. Later on, in 2004, Roy and Maji [10]...
proposed the theoretic approach of Fuzzy soft sets (FSSs) and
developed an algorithm for real-life problems.

Many researchers have hybridized the
neutrosophic set theory with the soft set theory and extended it
in different directions. Wang et al. [11-12] proposed SVNS and
Interval Valued neutrosophic sets (IVNS). Peng et al. [13] have
coined the term simplified neutrosophic sets (SNSs) that have
been proposed with the primary goal of dealing with challenges
involving a collection of a particular number of attributes, Maji
et al. [14] worked on NSS, Ye [15] proposed TOPSIS technique
based on SVN Linguistic numbers, Tian et al. [16] proposed
simplified Linguistic normalized weighted numbers in
neutrosophic environment and applied it in the investment
plans in metal companies, Wang and Li [17] worked on multi-
valued neutrosophic soft sets (MVNS) and Broumi et al. [18]
developed rough neutrosophic soft sets, Jun et al. [19] proposed
neutrosophic cubic sets. Furthermore, a large number of
aggregate operators have been proposed by various researchers
based on different techniques. The operators that researchers
proposed are Dombi t-norm and t-conorms by Dombi [20], Riaz
et al. [21] proposed cubic m-polar aggregation operators with
Dombi t-norms. Power average, exponential operational law,
prioritized average, by Yager et al. [22-23]. Riaz and Hashmi
[24] presented m-polar neutrosophic soft mappings and applied
them in multiple personality disorders associated with mental
disorders. Hashmi et al. [25] proposed m-polar neutrosophic
generalized and m-polar generalized Einstein operators and
used them in the diagnostic process of COVID-19.

Furthermore, a variety of information metrics
for the SVNS model have been presented over the years,
including similarity measures, distance measures, entropy
measures, inclusion measures, and correlation coefficients and
graphs in the neutrosophic environment. Due to the
contributions of Broumi and Smarandache [26], Cui and Ye
[27], Ye [28-34], sahin et al. [35], Ye and Zhang [36], Ye and
Fu. [37], Majumdar and Samanta [38], Peng and Smarandache
[39], Mondal and Pramanik [40], Chai et al.[41], Liu [42], Jafar
et al.[43], Garg and Nancy [44], Akram et al.[45-46], some of
the most important research publications on similarity
and distance measures for SVNSs have been published. In a row
of these contributions, Yang et al. [47] presented a robust
clustering method, Yang and Lin [48] proposed inclusion and
similarity measures between Type-2 fuzzy sets. Hung and Yang
[49] given similarity measures of Type-2 fuzzy sets. Hussain
and Yang [50] worked on distance measures in Pythagorean
fuzzy sets. Ejegwa et al. worked a lot in uncertain
environments. They proposed different techniques of decision
making using Pythagorean fuzzy sets like correlation
coefficients [51]. Some new statistical viewpoints of
correlation [52], Distance Measures [53], fuzzy algorithms
using correlation measures [54], and proposed modified Zhang
and Xu's distance measures [55] in PFS.

The idea of the hypersoft set (HSS) was
coined by Smarandache [56] in 2018 as an extension of the soft
set. It is useful for dealing with multi-attributes, multi-objective
problems with disjoint attributive values. This structure has
been extended in different uncertain environments. Jafar et al.
[57] proposed Fuzzy hypersoft sets (FHS) and their aggregation
operators. Saeed et al. [58-59] proposed complex multi-fuzzy
hypersoft sets to solve MCDM problems using entropy and
similarity measures. They advocated the use of entropy and
similarity of efficient complex fuzzy hypersoft sets in the
assessment of SWMS. Jafar et al. [60] proposed the matrix
theory of IFHSs, proposed the MADM algorithm, and applied
it in staff selection. Complex neutrosophic hypersoft mappings
were also suggested by Saeed et al. [61-62] and used to
diagnose infectious disorders and diagnose hepatitis. Saqlain
et al. [63-66] extended HSSs to NHSSs and proposed the
TOPSIS in the NHSS environment by using similarity
measures. Considered single and multi-valued NHSSs, and
tangent similarity measures for single-valued neutrosophic
hypersoft sets (SVNHSS), further bring an extension of NHSS
to m-Polar and Interval-valued m-Polar NHSS. Application in
decision-making in NHSSs theory is given by Rahman et al.
[67].

The similarity between two sets of objects is
a crucial way of measuring how much is similar. SM for
extension of FSs has been applied and proposed in different
fields of daily life, including medical diagnoses, economics,
agriculture, multi-criteria decision making (MCDM), and
pattern recognition. Trigonometric similarities measures can
be defined by using the trigonometric functions including cosine,
tangent, and cotangent applied in various fields of our daily
lives. Garg and Wang [68] proposed an algorithm for multi
attributive problems. Similarity Measure on m-polar Interval-
valued neutrosophic set by Saeed et al. [69]. In strategic
decision-making, cosine similarity measures are given by Wei.
[70]. Cotangent similarity measures of single value
neutrosophic soft set and its application in fault diagnosis in the
steam turbine are given by Ye et al. [71], Khan et al. [72],
and Ahsan et al. [73] CMFHS mapping and applied in HIV
diagnosis with treatment. Jafar et al. [74] proposed
Trigonometric Similarity measures and applied them in the
renewable energy source selection.

The idea of the hypersoft set (HSS) was
coined by Smarandache [56] in 2018 as an extension of the soft
set. It is useful for dealing with multi-attributes, multi-objective
problems with disjoint attributive values. This structure has
been extended in different uncertain environments. Jafar et al.
[57] proposed Fuzzy hypersoft sets (FHS) and their aggregation
operators. Saeed et al. [58-59] proposed complex multi-fuzzy
hypersoft sets (CMFHS) and used them to solve MCDM
problems using entropy and similarity measures. They
advocated the use of entropy and similarity of efficient complex
fuzzy hypersoft sets in the assessment of SWMS. Jafar et al.
[60] proposed the matrix theory of IFHSs, proposed the
MADM algorithm, and applied it in the staff selection problem.
Complex neutrosophic hypersoft mappings were also suggested
by Saeed et al. [61-62] and used to diagnose infectious
and diagnose hepatitis. Saqlain et al. [63-66] extended
HSSs to NHSSs and proposed the TOPSIS in the NHSS
environment by using similarity measures. The proposed single
and multi-valued NHSSs and tangent similarity measures for
single-valued neutrosophic hypersoft sets (SVNHSS) further
This work has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3144306, IEEE Access

extended the concept of NHSS to m-Polar and Interval-valued m-Polar NHSS. Some more applications of NHSSs theory were given by Rahman et al. [67].

The human population is increasing at an exponential rate along with drastic effects on the environment, which has put the earth’s sustainability at stake. One of the most prominent consequences of the increasing human population is urbanization. Urbanization has disturbed the equilibrium of the natural environment. In every urban sector, a huge amount of solid waste is generated. Proper disposal and management of this solid waste is a challenging task nowadays. After using the 3R (Reduce, Reuse, And Recycle) strategy, some waste still needs to be properly disposed of. There are some management systems in practice like Incineration, composting, and landfill. Many factors need to be considered to install any of those management systems that include environmental, economic, social, political, and ecological factors. An organic portion of the solid waste can be used to make good quality compost for agricultural purposes. Incinerators can be installed to produce energy. The remaining waste is dumped into a landfill site. The most challenging task to implement any of the SWMS mentioned above is site selection. Many factors need to be considered, including land cost, groundwater level, social concerns, distance from urban areas, distance from main roads, the geology of the land, slope of the land, Air quality index (AQI), etc.

This study has chosen four distinct factors to analyze which type of site will be more suitable for which type of solid waste management system. These factors include AQI, distance from the population, economic values, and slope of the land. Air Quality Index (AQI) is one of the essential environmental factors; all the three proposed management systems will affect the AQI of the regions differently, so present AQI of any region will help in decision making. Experts have given the criteria that describe which AQI level will best suit the SWMS. Distance from the populated area is another one of the most important social concerns. All three SWMS have their proposed ideal and acceptable distances proposed by experts that must be followed. The slope of the land is also one of the most important geographical factors for any of these three SWMS. The ideal slope of the land is flat land, but to some extent, less than 20 percent is acceptable.

Economic factors include the cost of the land, building cost, operating cost, etc. Many researchers used different DM techniques in environmental issues and gave the solutions to such problems, like Luo et al. [75] used the best worst ANP decision-making technique in incineration plant site selection. Guiqin et al. [76] applied informational technology and the Analytical Hierarchy Process (AHP) in landfill site selection. Ming-Lui et al. [77] used the hybrid modified multi-attributive decision making (MADM) technique in composting for sustainable developments. Here in the following table, it is intended to show some research article which we will show the comparison of our proposed study with the existing similarity measures.
We employ Distance and similarity metrics to investigate the best SWMS site selection problem according to geography as a mathematical model. Under certain technical attribution variables, the results suggest the optimal geographical place for installing SWM systems.

The rest of the research is organized as follows. We review the basic notions of SSs, HSSs, and NHSSs in Section II. In Section III, we propose six distance measures for NHSSs. In section IV, we provide operators, theorems, and assertions concerning these distance similarity measurements. In Section V, given resources were used to determine the accuracy of the similarity measurements. In this section, we gave a real-life case study, and finally, the conclusion portion is in Section VI, and future investigations are also covered.

II. PRELIMINARIES
This section reviews the definitions of soft sets, hypersoft sets, and neutrosophic hypersoft sets.

Definition ([07]) the terminology of Soft set was given by French Philosopher D. Molodstove in 1999. [07] For dealing with vague scenarios and unpredictable decision-making problems, it is defined as Let \(\mathcal{M} = \{ R_1, R_2, R_3, \ldots R_n \} \) be a finite set of alternatives, and \(P \) be a set of attributes. Let \(P(\mathcal{M}) \) denote the power set of \(\mathcal{M} \) and \(A \subset P \). A pair \((\lambda, A) \) is called a soft set over \(\mathcal{M} \), where the relation \(\lambda \) is given by

Researchers	Similarity Measures	Title of the Article
Broumi and Samandrache [26]	SVNSs	"Several similarity measures of neutrosophic sets"
Cui and Ye [27]	SVNSs	"Improved symmetry measures of simplified neutrosophic sets and their decision making method based on a sine entropy weight model"
Ye [31]	SVNSs	"Clustering methods using distance-based similarity measures of single-valued neutrosophic sets"
Sahin et al. [35]	SVNSs	"new similarity measure based on falsify value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition"
Ye and Zang [36]	SVNSS	"Single valued neutrosophic similarity measures for multiple attribute decision making"
Ye and Fu. [37]	SVNSs	Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function"
Majumdar and Samanta [38]	NSs	"On similarity and entropy of neutrosophic sets."

Peng and Samandrache [39] | NSs | New multi-parametric similarity measure for neutrosophic set with big data industry evaluation"

Mondal and Pramanik [40] | SVNSs | "Neutrosophic tangent similarity measure and its application to multiple attribute decision making"

Chai et al.[41] | SVNSs | "New similarity measures for single-valued neutrosophic sets with applications in pattern recognition and medical diagnosis problems"

Liu et al.[42] | SVNSs | "Some similarity measures of neutrosophic sets based on the Euclidean distance and their application in medical diagnosis"

Jafar et al.[43] | SVNSs | "Similarity measures of tangent, cotangent and cosines in neutrosophic environment and their application in selection of academic programs"

Garg and Nancy [44] | SVNSs | "Some new parametric distance measures on single-valued neutrosophic sets with applications to pattern" |

Saqlain et al.[64] | SVNHSS | "Distance and similarity measures for neutrosophic hypersoft set (NHSS) with construction of NHSS-TOPSIS and applications"

Jafar et.al [74] | SVNHSS | "Trigonometric Similarity Measures for neutrosophic Hypersoft Sets with Application to Renewable Energy Source Selection"
\[\lambda: A \rightarrow P(\mathbb{R}) \]

Definition (63)

Let \(P \) be a set of parameters and let \(Y = \{y_1, y_2, y_3, \ldots, y_n\} \) be a finite set. The power set of \(Y \) is denoted by \(P(Y) \). Let \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2 \) for \(n \geq 1 \) be \(n \) well-defined features, whose corresponding feature values are the sets \(\mathbb{F}^2 \times \mathbb{F}^2 \times \mathbb{F}^2 \times \ldots \times \mathbb{F}^2 \) with \(\mathbb{F}^2 = \{0, 1, 2, \ldots, n\} \) for \(l \neq m, l, m = 1, 2, \ldots, n \), respectively, and let their relation be \(\omega = \mathbb{F}^2 \times \mathbb{F}^2 \times \mathbb{F}^2 \times \ldots \times \mathbb{F}^2 \rightarrow P(Y) \) and \(\varphi(\mathbb{F}^2 \times \mathbb{F}^2 \times \mathbb{F}^2 \times \ldots \times \mathbb{F}^2) = \varphi(\omega) \), where \(\epsilon \leq n \).

Def.:

Let \(P \) and \(Q \) be the two NHSS then Addition and Multiplication, Subtraction and Division of \(P \) and \(Q \) are defined as follow:

Addition:

\[P \oplus Q = \{ (\omega, \epsilon_P(\varphi(\omega)) + \epsilon_Q(\varphi(\omega)), \epsilon_P(\varphi(\omega)) + \epsilon_Q(\varphi(\omega)) \} \]

Multiplication:

\[P \odot Q = \{ (\omega, \epsilon_P(\varphi(\omega)) \epsilon_Q(\varphi(\omega)), \epsilon_P(\varphi(\omega)) \epsilon_Q(\varphi(\omega)) \} \]

Subtraction:

\[P \ominus Q = \{ (\omega, \epsilon_P(\varphi(\omega)) - \epsilon_Q(\varphi(\omega)), \epsilon_P(\varphi(\omega)) - \epsilon_Q(\varphi(\omega)) \} \]

Division:

\[P \oslash Q = \{ (\omega, \epsilon_P(\varphi(\omega)) \epsilon_Q(\varphi(\omega)), \epsilon_P(\varphi(\omega)) \epsilon_Q(\varphi(\omega)) \} \]

III. DISTANCE MEASURES WITH THEORY AND APPLICATIONS

Based on the axiomatic concept of distance and similarity between SVNHSs, we offer numerous new formulas for SVNHS distance and similarity measures in this section.

Distance Measures for SVNHSs

A real-valued function \(d: \beta(Y) \times \beta(Y) \rightarrow [0, 1] \) is called a distance measure and \(D \) satisfies the following axioms for \(P, Q \) and \(R \in \beta(Y) \):

\(D_1) \) \(0 \leq D(P, Q) \leq 1 \)

\(D_2) \) \(D(P, Q) = 0 \) if and only if \(P = Q \)

\(D_3) \) \(D(P, Q) = D(Q, P) \)

\(D_4) \) \(P \subseteq Q \subseteq R \) then

\(D(P, R) \geq D(P, Q) \) and \(D(P, R) \geq D(Q, R) \)

Brouni and Florentin [26] proposed Hausdorff distance in NS, and we convert that distance in NHSS as follows:

\[d^*_{NS}(P, Q) = \frac{1}{n} \sum_{t=1}^{n} \max \left\{ \epsilon_P(\varphi(\omega)) - \epsilon_Q(\varphi(\omega)),\epsilon_P(\varphi(\omega)) - \epsilon_Q(\varphi(\omega)) \right\} \]

Where the proofs of \(D_1 - D_4 \) are very simple according to the above definition.

We will discuss \(D_5 \)

The proof of \(D_5 \) for the above definition between two NHSSs
Since $\mathbb{P} \subseteq \mathbb{Q} \subseteq \mathbb{R}$ implies
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_P(\mathcal{P}(\omega))_\tau\| &\leq \|t_Q(\mathcal{P}(\omega))_\tau - t_P(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_P(\mathcal{P}(\omega))_\tau\| &\geq \|f_Q(\mathcal{P}(\omega))_\tau - f_P(\mathcal{P}(\omega))_\tau\|,
\end{align*}
\]
We have to prove that $D(\mathbb{P}, \mathbb{R}) \geq D(\mathbb{P}, \mathbb{Q})$, so for this we will discuss three cases

Case-I

So, as
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_P(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\| &\leq \|f_P(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
But we have for all τ from discourse set we have
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_p(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\| &\leq \|f_p(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
On the other hand
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_p(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
And
\[
\begin{align*}
\|t_Q(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\| &\leq \|t_Q(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
Combining (a)-(d) we obtain
\[
\begin{align*}
\frac{1}{n} \sum_{\tau=1}^{n} \max\{\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \\
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\|\} \\
\}
\]
\[
\begin{align*}
\leq \frac{1}{n} \sum_{\tau=1}^{n} \max\{\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \\
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\|\} \\
\}
\]
So we conclude that
\[
\frac{d_H(\mathbb{P}, \mathbb{Q})}{d_H(\mathbb{P}, \mathbb{R})} \leq \frac{d_H(\mathbb{Q}, \mathbb{R})}{d_H(\mathbb{Q}, \mathbb{R})}
\]
Case-II

So, as
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_p(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\| &\leq \|f_p(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
But we have for all τ from discourse set we have
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_p(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\| &\leq \|f_p(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
And finally
\[
\begin{align*}
\|t_Q(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\| &\leq \|t_Q(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|, \\
\|f_Q(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\| &\leq \|f_Q(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
Combining (a') - (d') we obtain
\[
\begin{align*}
\frac{1}{n} \sum_{\tau=1}^{n} \max\{\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \\
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\|\} \\
\}
\]
\[
\begin{align*}
\leq \frac{1}{n} \sum_{\tau=1}^{n} \max\{\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \\
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\|, \|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\|\} \\
\}
\]
So we conclude that
\[
\frac{d_H(\mathbb{P}, \mathbb{Q})}{d_H(\mathbb{P}, \mathbb{R})} \leq \frac{d_H(\mathbb{Q}, \mathbb{R})}{d_H(\mathbb{Q}, \mathbb{R})}
\]
Case-III

So, as
\[
\begin{align*}
\|t_p(\mathcal{P}(\omega))_\tau - t_Q(\mathcal{P}(\omega))_\tau\| &\leq \|t_p(\mathcal{P}(\omega))_\tau - t_R(\mathcal{P}(\omega))_\tau\|, \\
\|f_p(\mathcal{P}(\omega))_\tau - f_Q(\mathcal{P}(\omega))_\tau\| &\leq \|f_p(\mathcal{P}(\omega))_\tau - f_R(\mathcal{P}(\omega))_\tau\|.
\end{align*}
\]
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3144306, IEEE Access

Let \mathbb{P} and \mathbb{Q} be two NHSs then $d_k(\mathbb{P}, \mathbb{Q})$ for $k=1, 2, 3...6$ is a distance between NHSs then we define all the distances like

1. $d^1(\mathbb{P}, \mathbb{Q}) = \frac{1}{3|V|} \sum_\tau \left(|\epsilon_\mathbb{P}(\phi(\omega))_\tau - \epsilon_\mathbb{Q}(\phi(\omega))_\tau| + |\xi_\mathbb{P}(\phi(\omega))_\tau - \xi_\mathbb{Q}(\phi(\omega))_\tau| \right)$

2. $d^2(\mathbb{P}, \mathbb{Q}) = \frac{1}{3|V|} \sum_\tau \left(|\xi_\mathbb{P}(\phi(\omega))_\tau - \xi_\mathbb{Q}(\phi(\omega))_\tau| - |\epsilon_\mathbb{P}(\phi(\omega))_\tau - \epsilon_\mathbb{Q}(\phi(\omega))_\tau| \right)$

3. $d^3(\mathbb{P}, \mathbb{Q}) = \frac{1}{3|V|} \sum_\tau \left(|\xi_\mathbb{P}(\phi(\omega))_\tau - \xi_\mathbb{Q}(\phi(\omega))_\tau| + |\epsilon_\mathbb{P}(\phi(\omega))_\tau - \epsilon_\mathbb{Q}(\phi(\omega))_\tau| \right)$

4. $d^4(\mathbb{P}, \mathbb{Q}) = \frac{1}{3|V|} \sum_\tau \left(|\xi_\mathbb{P}(\phi(\omega))_\tau - \xi_\mathbb{Q}(\phi(\omega))_\tau| - |\epsilon_\mathbb{P}(\phi(\omega))_\tau - \epsilon_\mathbb{Q}(\phi(\omega))_\tau| \right)$

5. $d^5(\mathbb{P}, \mathbb{Q}) = 1 - \frac{\alpha}{\sum_\tau |\xi_\mathbb{P}(\phi(\omega))_\tau - \xi_\mathbb{Q}(\phi(\omega))_\tau|}$

6. $d^6(\mathbb{P}, \mathbb{Q}) = 1 - \frac{\alpha}{\sum_\tau |\epsilon_\mathbb{P}(\phi(\omega))_\tau - \epsilon_\mathbb{Q}(\phi(\omega))_\tau|}$

In the light of the \mathbf{D}_4 for $d^k(\mathbb{P}, \mathbb{Q})$ for $k=1, 2, 3...6$, if $d^k(\mathbb{P}, \mathbb{Q})$ satisfied the all for axioms of the distance, they are qualified for validity. So you can easily understand just like the previous definition we can easily prove all four properties.

Theorem. Let \mathbb{P} and \mathbb{Q} be two NHSs then $d^k(\mathbb{P}, \mathbb{Q})$ for $k=1, 2, 3...6$ is a distance between NHSs then we define all the distances like
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3144306, IEEE Access

Then

Proof.

i. \(d^1(P, Q) = \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| + |\ell^\tau_Q(\omega(\omega)) - \ell^\tau_P(\omega(\omega))|) \)

Then

\(d^1(P, Q^c) = \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| + |\ell^\tau_Q(\omega(\omega)) - \ell^\tau_P(\omega(\omega))|) \)

ii. \(d^1(P, Q) = \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| + |\ell^\tau_Q(\omega(\omega)) - \ell^\tau_P(\omega(\omega))|) \)

Note: The theorem can be proved with the refined complement on the same line.

iii. \(d^1(P, P \cap Q) = d^1(Q, P \cup Q) \)

Proof.

iv. \(d^1(P, P \cup Q) = d^1(Q, P \cap Q) \)

In these proofs, iii and iv are similar in being verified in a similar pattern. Here these four proofs with six definitions are 24 proofs and for sample we prove some results remaining you can verify easily.

IV. SIMILARITY MEASURES WITH THEORY AND APPLICATIONS

Let \(P \) and \(Q \) be two SVNHSs and a mapping \(S \) such that \(S: \beta(y) \times \beta(y) \rightarrow [0,1] \) is called a similarity measure between \(P \) and \(Q \) if \(S \) satisfies the following axioms for \(P, Q \) and \(R \subseteq \beta(y) \):

\(S_1): \quad 0 \leq S(P, Q) \leq 1 \)

\(S_2): \quad S(P, Q) = 0 \text{ if and only if } P = Q \)

\(S_3): \quad S(P, Q) = S(Q, P) \)

\(S_4): \quad P \subseteq Q \subseteq R \text{ Then } S(P, R) \leq S(P, Q) \text{ and } S(P, R) \leq S(Q, R) \)

Theorem. Let \(P \) and \(Q \) be two SVNHSs then \(S^k(P, Q) \) for \(k = 1, 2, 3, ..., 6 \) are the similarity measures in between SVNHSs \(P \) and \(Q \).

1. \(S^1(P, Q) = 1 - \frac{1}{3|\tau|} \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| + |\ell^\tau_Q(\omega(\omega)) - \ell^\tau_P(\omega(\omega))|) \)

Eq. (4.1)

2. \(S^2(P, Q) = 1 - \frac{1}{3|\tau|} \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| - (\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))) \ell^\tau_Q(\omega(\omega)) \ell^\tau_P(\omega(\omega))) \)

Eq. (4.2)

3. \(S^3(P, Q) = 1 - \frac{1}{3|\tau|} \sum_{\tau} (|\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))| + (\ell^\tau_P(\omega(\omega)) - \ell^\tau_Q(\omega(\omega))) \ell^\tau_Q(\omega(\omega)) \ell^\tau_P(\omega(\omega))) \)

Eq. (4.3)

4. \(S^4(P, Q) = \)
\[S^6(P, Q) = \alpha \sum_{\tau} \left(\frac{c(\tau)}{\tau} \right) + \beta \sum_{\tau} \left(\frac{d(\tau)}{\tau} \right) + \gamma \sum_{\tau} \left(\frac{e(\tau)}{\tau} \right) \]

Where \(\alpha + \beta + \gamma = 1 \) and \(\alpha, \beta, \gamma \in [0,1] \), Eq. (4.5)

To check the validity of the proposed similarity measure, we verify all four \((S_1 - S_4)\) Axioms of the similarity measure. \(S_1, S_3\) and \(S_4\) are straightforward so we only prove the conditions \(S_2\) and \(S_4\) in the interest of brevity. We only present the proof of \(S^k(P, Q)\) for \(k=1\), and the proofs for \(k=2,3,4...6\) can be generated in a similar way. So, for \(k = 1\), \(S^k(P, Q)\)

\[S^1(P, Q) = 1 - \frac{1}{3|\tau|} \sum_{\tau} \left(|t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| \right) \]

\(S_1): \ S^1(P, Q) = 1 \text{ if and only if } P = Q

\[1 - \frac{1}{3|\tau|} \sum_{\tau} \left(|t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| \right) = 1 \]

\(\Rightarrow\) Which is only possible when

\[|t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| = 0 \]

\[\Rightarrow |t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| = 0, |t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| = 0, |t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| = 0 \]

\[t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau) = t^k_3(\omega)\tau, t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau) = t^k_3(\omega)\tau, \]

\[t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau) = t^k_3(\omega)\tau \]

Then by definition (4.1) we have

\[S^1(P, Q) = 1 - \frac{1}{3|\tau|} \sum_{\tau} \left(|t_x(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_y(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| + |t_z(\tau(p(\omega)_1) - t^k_3(\omega)\tau)| \right) \]

\[\Rightarrow S^1(P, Q) = 1 \]
Note: The theorem can be proved with the refined complement (Eq. 2.8) on the same line.

\[= 1 - \frac{1}{3|\mathcal{Y}|} \sum_{\tau} \left(|f_\tau^p(\varphi(\omega)) - \delta_\tau^p(\varphi(\omega))| \right) \]

\[+ \left| f_\tau^p(\varphi(\omega)) + \delta_\tau^p(\varphi(\omega)) - 1 \right| \]

\[+ \left| f_\tau^p(\varphi(\omega)) - \delta_\tau^p(\varphi(\omega)) \right| \]

\[= 1 - \frac{1}{3|\mathcal{Y}|} \sum_{\tau} \left(|f_\tau^q(\varphi(\omega)) - \delta_\tau^q(\varphi(\omega))| \right) \]

\[+ \left| f_\tau^q(\varphi(\omega)) + \delta_\tau^q(\varphi(\omega)) - 1 \right| \]

\[+ \left| f_\tau^q(\varphi(\omega)) - \delta_\tau^q(\varphi(\omega)) \right| \]

\[= S^1(\mathcal{P}, \mathcal{Q}) \]

\[\text{V. ALGORITHM AND ILLUSTRATIVE EXAMPLES} \]

This portion intends to discuss an algorithm depending upon the proposed work, then use that algorithm in site selection of solid-waste management systems.

The algorithm based on NHSS similarity measures

Let \(\mathcal{Q}^1, \mathcal{Q}^2, \ldots, \mathcal{Q}^n \) represent different sites separate set of geographical areas, \(\mathcal{P}^1, \mathcal{P}^2, \ldots, \mathcal{P}^n \) represent a set of geographical region norms \(S^1, S^2, S^3 \ldots S^n \) is set of possibilities for SWM Systems in each geographical region. Using a decision-making technique, a decision-maker can evaluate \(\mathcal{P} \) and \(\mathcal{Q} \) SWM system type under \(\mathcal{P} \) norms. This analysis can be used to determine which SWM systems should be deployed in which geographic region. As a result, it will be able to select the greatest match between geographic locations and SWMS.

Now we'll go over how to put the proposed distance similarity metrics for neutrosopic hypersoft sets into practice.

Step 1: To begin, geographical regions should be assessed and SWMS that can be used in these areas. Following that, the regional norms and SWMS should be determined. A decision matrix in terms of neutrosopic hypersoft sets should be used to show the relationship between geographical regions and norms.

Step 2: The decision matrix in terms of neutrosopic hypersoft sets should be used to show the relationship between the norms and the alternatives, which is the type of SWMS (see, e.g., below Table 2).

Step 3: Using equations (Eq. 4.1)-(Eq. 4.6) to calculate for the association between norms and alternatives.

Step 4: The best choice is determined by selecting the greatest value, which indicates the best option for each geographical location. The bold font is used to emphasize this value (see, e.g., below Table 4-Table 9).

To better understand the concept, we've included a flow chart of the proposed algorithm.
APPLICATIONS
A huge amount of solid-waste is generated in every urban sector. Proper disposal and management of this solid waste is a challenging task nowadays. There are many factors that need to be considered for proper disposal and management, including environmental, economic, ecological, social, and political factors. After using 3R (Reduce, Reuse, and Re-cycle) strategy, there is still some waste to be disposed of. Incineration is a way in which energy can be produced through solid waste. The organic portion of the solid waste can be used for composting to produce good fertilizers for crops. The final fate of all the remaining waste is landfilling. As mentioned earlier, for all three waste, the most challenging task is site selection. For the solution of this issue, in this study, we try to overcome the world problem by developing a mathematical technique. For solving this problem, we assume ten different geographical regions with linked with key factors that we discussed earlier. Let $C = \{Q^1, Q^2, Q^3, Q^4, Q^5, Q^6, Q^7, Q^8, Q^9, Q^{10}\}$

Now we will take a set of the most useable WSM Systems $S = \{\text{Landfill, Composting, Incinerator}\}$

Now we will suppose the most suitable criteria’s that effects both regions and SWMS

Let $P = \begin{pmatrix} P^1 & P^2 & P^3 & P^4 \\ \end{pmatrix}$

\begin{align*}
P^1 &= \text{Air Quality Index (AQI)} \\
P^2 &= \text{Distance From Population} \\
P^3 &= \text{Economical Factor} \\
P^4 &= \text{Slope (E) } \\
\end{align*}

$P: (P^1 \times P^2 \times P^3 \times P^4) \rightarrow P(C)$ and $Q: (P^1 \times P^2 \times P^3 \times P^4) \rightarrow P(S)$

Now we evaluate $\{Q^1, Q^2, Q^3, Q^4\}$ And Landfill, composting, and incinerator. So

\[
p^i = \begin{cases}
0 - 50 \text{ (Good)} \\
51 - 100 \text{ (Moderate)} \\
100 - 150 \text{ (Unhealthy for sensitive)} \\
150 - 200 \text{ (unhealthy)} \\
200 - 300 \text{ (V. Unh) } \\
> 300 \text{ (Hazardous)}
\end{cases}
\]

Table.02: Decision matrix between criteria’s and geographical regions

Table.03: Decision matrix between criteria’s and geographical regions

Table.04: Distance similarity measures using $S^1(P, Q)$

Table.05: Distance similarity measures using $S^2(P, Q)$
Table 06: Distance similarity measures using \(S^3(P, Q) \)

Power type	\(AQI \) (51-100)	Slope (2-8)%	Distance (1Km-2Km)	Economy	Moderate
Landfill	\((0.5,0.3,0.2) \)	\((0.6,0,4,0.4) \)	\((0.3,0,4,0.6) \)	\((0,1,0,4,0.6) \)	
Composting	\((0.7,0,2,0.4) \)	\((0.7,0,4,0.7) \)	\((0.8,0,2,0.3) \)	\((0,4,0,4,0.5) \)	
Incinerator	\((0.9,0,1,0.1) \)	\((0.8,0,3,0.1) \)	\((0.8,0,3,0.5) \)	\((0,6,0,3,0.4) \)	

Table 07: Distance similarity measures using \(S^4(P, Q) \)

Table 08: Distance similarity measures using \(S^5(P, Q) \)

Table 09: Distance similarity measures using \(S^6(P, Q) \)

VI. RESULT DISCUSSIONS AND COMPARISON WITH EXISTING TECHNIQUES

We compared proposed similarity measures methodologies to those proposed by [38], Peng and Samandrache [39], Mondal and Pramanik [40], and Chai et al. [41], Liu et al. [42], Jafar et al. [43], Garg and Nancy [44]. Here the comparison is proposed based on additional bifurcation qualities and their corresponding attributive values. The existing structure of SVNSS are not dealing sub-

Similarity measures

geographical regions

Table 06: Distance similarity measures using \(S^3(P, Q) \)

- **Landfill**
 - \(S^1 \): 0.9960
 - \(S^2 \): 0.9803
 - \(S^3 \): 0.9910
 - \(S^4 \): 0.9983
- **Composting**
 - \(S^1 \): 0.1000
 - \(S^2 \): 0.1000
 - \(S^3 \): 0.1000
 - \(S^4 \): 0.9950
- **Incinerator**
 - \(S^1 \): 0.9940
 - \(S^2 \): 0.9856
 - \(S^3 \): 0.9716

Table 07: Distance similarity measures using \(S^4(P, Q) \)

- **Landfill**
 - \(S^1 \): 0.8980
 - \(S^2 \): 0.8980
 - \(S^3 \): 0.8780
 - \(S^4 \): 0.8340
- **Composting**
 - \(S^1 \): 0.9090
 - \(S^2 \): 0.9306
 - \(S^3 \): 0.8540
 - \(S^4 \): 0.8950
- **Incinerator**
 - \(S^1 \): 0.8710
 - \(S^2 \): 0.8780
 - \(S^3 \): 0.8280

Table 08: Distance similarity measures using \(S^5(P, Q) \)

- **Landfill**
 - \(S^1 \): 0.5936
 - \(S^2 \): 0.5968
 - \(S^3 \): 0.5325
 - \(S^4 \): 0.4134
- **Composting**
 - \(S^1 \): 0.6293
 - \(S^2 \): 0.7241
 - \(S^3 \): 0.4652
 - \(S^4 \): 0.5841
- **Incinerator**
 - \(S^1 \): 0.5122
 - \(S^2 \): 0.5325
 - \(S^3 \): 0.3986

Table 09: Distance similarity measures using \(S^6(P, Q) \)

- **Landfill**
 - \(S^1 \): 0.4729
 - \(S^2 \): 0.4806
 - \(S^3 \): 0.4506
 - \(S^4 \): 0.3856
- **Composting**
 - \(S^1 \): 0.6510
 - \(S^2 \): 0.6705
 - \(S^3 \): 0.4874
 - \(S^4 \): 0.5851
- **Incinerator**
 - \(S^1 \): 0.4593
 - \(S^2 \): 0.5002
 - \(S^3 \): 0.3850

The existing distance similarity measures in this research on the basis of attribution and sub-attributions for SVNS, Broumi and Samandrache [26], Cui and Ye [27], Ye [31], sahin et al. [35], Ye and Zang [36], Ye and Fu. [37], Majumdar and Samanta [44]. Here the comparison is proposed based on additional bifurcation qualities and their corresponding attributive values. The existing structure of SVNSS are not dealing sub-
attributions. But the proposed structure can deal with sub-attributions. This comparison is not based on numerical values. Saqlain et al. [65] suggested distance similarity measures in NHSS, and finally, even we compared our results with Jafar et al. [75] who given trigonometric similarity measures in NHSS’s environment considered sub-attributions, but our proposed structure is uniquely presented using Max-Min operators. In this study, the NHSS proposes six different distance similarity measures that deal with multi-attributive values and multi-objective decision-making problems. NHSS’s have a split construction that provides greater accuracy and efficiency. We also made a comparison table in Table 10 to demonstrate the originality of the suggested strategies and how they differ from current parallels. The numerical results are presented in Table 4-Table 9 shows the results that for the SWMS where we install these systems, the result shows that \(\text{Q}^1 \) should be selected for composting according to all of the proposed distance similarity measures for NHSS are consistent with each other. For

VII. CONCLUSION
For dealing with material that is partial, indeterminate, uncertain, or imprecise, neutrosophic hypersoft sets (NHSS’s) can be a strong mathematical paradigm. NHSS is more effective at dealing with uncertain and ambiguous information than fuzzy sets and intuitionistic fuzzy sets in general. In the case of NHSS, however, no one has examined distance similarity measures using Max-Min operators. Six different newly developed distances and applied in similarity measures to the NHSS environment also developed an algorithm to solve MCDM using the provided similarity metrics. Some properties, Theorems, Axioms as well as many results relating to distance and similarity measures are proved and applied to the site selection of solid waste management systems (SWMS) using the proposed six distance and similarity measures. As a result, we proposed a mathematical model as a solution to a global problem. Finally, compare the proposed theory to the existing theories in Table 10. Supplier selection, manufacturing frameworks, and several other management frameworks could all benefit from the NHSS-Similarity metrics. In the future, the presented methodologies could be used in case studies with several qualities that are further bifurcated, as well as multiple decision-makers. This proposed work can also be extended to many existing hybrids of the hypersoft set, such as FHS’s, IHSs,
Bi-polar HSs, m-polar HSs, Pythagorean HSs (with its hybrids, fuzzy, intuitionistic, and neutrosophic), and many others.

Acknowledgments.

REFERENCES

[1] L.A. Zadeh, “Fuzzy sets”, Information and Control, Vol. 8, pp. 338-353, 1965.
[2] K.T. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, Vol. 20(1), pp. 87–96, 1986.
[3] R.R. Yager, “Pythagorean fuzzy subsets”, In Proceeding of the Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada 57–61, 2013.
[4] R.R. Yager, “Generalized orthopair fuzzy sets”, IEEE Transactions and Fuzzy System, Vol. 25(5), pp. 1222-1230, 2016.
[5] F. Smarandache, “Neutrosophic set: A generalization of intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics”, Vol. 24(3), pp. 287-297, 2005.
[6] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, “single valued neutrosophic sets” multispace and multi-structure, vol. 4, pp.410-413, 2010.
[7] D. Molodtsov, “Soft set theory”, International Journal of Computers and Mathematics with Applications. Vol. 37, pp. 19-31, 1999.
[8] P.K. Maji, R. Biswas, A.R. Roy, “Soft set theory. Computers and Mathematics with Applications. Vol. 45(5), pp. 555-562, 2003.
[9] P.K. Maji, A.R. Roy and R. Biswas, “An application of soft sets in a decision making problem”, Computers & Mathematics with Applications, 44(8-9), 1077-1083, 2002.
[10] A.R. Roy, P.K. Maji, "A fuzzy soft set theoretic approach to decision making problems", Journal of Computational and Applied Mathematics, vol. 203, pp.412-418,2007.
[11] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, “Single valued neutrosophic sets”, Multi-space and Multi-structure, Vol. 4, pp.410-413, 2010.
[12] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman “Interval neutrosophic sets and logic” theory and applications in computing. Hexis, Phoenix, 2005.
[13] J.J. Peng, J. Wang, H. Zhang, X. Chen X, “Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. International Journal of System Science, Vol. 47(10), pp. 2342–2358, 2016.
[14] P.K. Maji, “Neutrosophic soft set. Annals of Fuzzy Math Information, Vol. 5(1), pp.157–168, 2013.
[15] J. Ye “An extended TOPSIS method for multiple attribute group decision making based on single value neutrosophic linguistic numbers”, Journal of Intellelgent and Fuzzy Syststsem, Vol. 28(1), pp.247–255: 2015
[16] Z.P. Tian, J.Q. Wang, H.Y.Zhang, “Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems” Filomat, and Vol. 30 (12), pp. 3339–3360: 2016.
[17] J.Q. Wang, Li. XE, “An application of the TODIM method with multi-valued neutrosophic set”. Control Decision 30(6), pp.1139–1142, 2015.
[18] S. Broumi, F. Smarandache, M. Dhar, “Rough neutrosophic set”, Italian Journal of Pure and Applied Math Vol. 32, pp. 493–502, 2014.
[19] Y.B. Jun, F. Smarandache, C.S.Kim, “Neutrosophic cubic sets”, “New Math Natural Comput, Vol. 13(1), pp.41–54, 2017.
[20] J. Dombi, “A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by operators”, Fuzzy Sets and Systems, vol. 8(2), pp. 149–163, 1982.
[21] M.Riazi, M.A. Khokhar, D.Pamucar, M.Asllam, “Cubic M-polar Fuzzy Hybrid Aggregation Operators with Dombi’s T-norm and T-conorm with Application”, Symmetry Vol.13, 646, 2021, https://doi.org/10.3390/sym13040646.
[22] R.R. Yager, “The power average operator” IEEE Transactions System Man Cyber Part A Syst Hum, Vol. 31(6), pp. 724–731, 2001.
[23] R.R. Yager, “Prioritized aggregation operators”. International Journal of Appro Reason, Vol.48 (1), pp. 263–274, 2008.
[24] M. Riazi, M.R.Hashmi, “m-Polar neutrosophic soft mapping with application to multiple personality disorder and its associated mental disorders”, Artificial Intelligence Review. Vol. 54, pp. 2717–2763, 2021. https://doi.org/10.1007/s10462-020-09912-8
[25] M.R. Hashmi, M.Riazi, F. Samandrache, “M-polar Neutrosophic Generalized Weighted and m-polar Neutrosophic Generalized Einstein Weighted Aggregation Operators to Diagnose Coronavirus (COVID-19)”, Journal of Intelligent and Fuzzy Systems, Vol. 39(5), pp. 7381-7401, 2020. DOI: 10.3233/JIFS-200761
[26] S. Broumi, F. Smarandache, “Several similarity measures of neutrosophic sets” Neutrosophic Sets and Systems Vol. 1(10), pp. 54–62, 2013.
[27] W.H. Cui, J.Ye, “Generalised distance-based entropy and dimension root entropy for simplified neutrosophic sets”, Entropy, Vol. 20(11), pp. 844–855, 2018.
[28] J. Ye, “Multi criteria decision-making method using the correlation coefficient under single-valued neutrosophic environment” International Journal of Genetic System, Vol. 42(4), pp. 386–394, 2013.
[29] J. Ye, “A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets” Journal of Intelligence and Fuzzy System, Vol. 26(5), pp. 2459–2466, 2014.
[30] J.Ye, “Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making” International Journal of Fuzzy System, Vol. 16(2), pp. 204–211, 2014.
[31] J.Ye, “Clustering methods using distance-based similarity measures of single-valued neutrosophic sets”, Journal of Intelligent and Fuzzy System, Vol. 23(4), pp. 379–389.
2014.

[32] J.Ye, “Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses”, Artificial Intelligence Med. Vol. 63(3), pp. 171–179, 2015.

[33] J. Ye, “Single-valued neutrosophic clustering algorithms based on similarity measures” Journal of Classify, Vol. 34(1), pp.148–162, 2017.

[34] J.Ye, “Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine” Soft Computing, Vol. 21(3), pp. 817–825, 2017.

[35] M. Sahin, N. Olgun, V. Uluçay, A. Kargin, F. Smarandache “ A new similarity measure based on falsify value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition”, Neutrosophic Sets and Systems, Vol. 15, pp. 31–48, 2017.

[36] J. Ye, Q.S. Zhang, “Single valued neutrosophic similarity measures for multiple attribute decision making” Neutrosophic Sets and System, Vol. 2, pp. 48–54, 2014.

[37] J.Ye, J. Fu, “Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function”, Computer Methods Programs Biomed, Vol. 123, pp. 142–149, 2016.

[38] P. Majumdar, S.K. Samanta, “On similarity and entropy of neutrosophic sets” Journal of Intelligent and Fuzzy System 26(3):1245–1252, 2014.

[39] X. Peng, F. Smarandache, “New multiparametric similarity measure for neutrosophic set with big data industry evaluation”, Artificial Intelligence Review, Vol. 53, pp. 3089–3125, 2020.

[40] K. Mondal, S. Pramanik, “Neutrosophic tangent similarity measure and its application to multiple attribute decision making”, Neutrosophic Sets and System, Vol. 9, pp. 80–87, 2015.

[41] J.S. Chai, G. Selvachandran, F. Smarandache, C. Vassilis, Gerogiannis, L.H. Son, Q.T. Bui, B. Vo, “New similarity measures for single-valued neutrosophic sets with applications in pattern recognition and medical diagnosis problems”, Complex and Intelligent System, Vol. 7, pp. 703–723, 2021. https://doi.org/10.1007/s40477-020-00220-w

[42] C. Liu, “New similarity measures of simplified neutrosophic sets and their applications”, Journal of Information Process System 14(3):790–800, 2018.

[43] M.N. Jafar, A. Farooq, K. Javed, N. Nawaz, “Similarity measures of tangent, cotangent and cosine in neutrosophic environment and their application in selection of academic programs”, International Journal of Computer Applications, Vol. 177(46), pp. 17-24, 2020.

[44] H. Garg, A. Nancy, “Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis” , Information, Vol. 8(4), pp. 162–181, 2017.

[45] M. Akram, F. Ilyas, H. Garg, “Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information”, Soft Computer, Vol. 24, pp. 3425–3453, 2020. https://doi.org/10.1007/s00500-019-04105-0

[46] M. Akram, S. Naz, F. Smarandache, “Generalization of maximizing deviation and TOPSIS method for MADM in simplified neutrosophic hesitant fuzzy environment”, Symmetry, Vol. 11(8), pp. 1058–1084, 2019.

[47] M.S. Yang, K.L. Wu, “A similarity-based robust clustering method” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26(4), pp. 434-448, 2004.

[48] M.S. Yang, D.C. Lin, “On similarity and inclusion measures between type-2 fuzzy sets with an application to clustering”, Computers & Mathematics with Applications, Vol. 57(6), pp. 896-907, 2009.

[49] M.S. Yang, Z. Hussain, “Fuzzy entropy for pythagorean fuzzy sets with application to multicriterion decision making”, Complexity Vol. 2018, Article ID 2832839, 2018. https://doi.org/10.1155/2018/2832839.

[50] W.L. Hung, M. S. Yang, “Similarity Measures between Type-2 Fuzzy Sets”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 12(6), pp. 827-841, 2004.

[51] P.A. Ejegwa, S. Wen, Y. Feng, W. Zhang and N. Tang, Novel Pythagorean fuzzy correlation measures via Pythagorean fuzzy deviation, variance and covariance with applications to pattern recognition and career placement,” IEEE Transactions on Fuzzy Systems, 2021, doi: 10.1109/TFUZZ.2021.3063794.

[52] P.A. Ejegwa, S. Wen, S., Y. Feng, W. Zhang & J. Chen, “Some new Pythagorean fuzzy correlation techniques via statistical viewpoint with applications to decision-making problems” Journal of Intelligent and Fuzzy System, Vol. 40, pp. 9873-9886, 2021.

[53] P.A. Ejegwa, J.A Awolola, “Novel distance measures for Pythagorean fuzzy sets with applications to pattern recognition problem”, Granular Computing, Vol. 6, pp. 181–189, 2021. https://doi.org/10.1007/s41066-019-00176-4

[54] P.A. Ejegwa, I.C. Onyeke, V. Adah, “A Pythagorean fuzzy algorithm embedded with a new correlation measure and its application in diagnostic processes”, Granular Computing, Vol. 6(4), 1037-1046, 2021.

[55] P.A. Ejegwa, “Modified Zhang and Xu’s distance measure for Pythagorean fuzzy sets and its application to pattern recognition problems” Neural Computers and Applications. Vol. 32, pp. 10199–10208, 2020. https://doi.org/10.1007/s00521-019-04554-6

[56] F. Smarandache, “Extension of soft set to hypersoft set, and then to pithologic hypersoft set”, Neutrosophic sets and system, Vol. 22, pp.168-170, 2018.

[57] M.N. Jafar, M. Saeed, “Aggregation operators of Fuzzy hypersoft sets”, Turkish Journal of Fuzzy Systems, Vol.11 (1), pp.1-17, 2021.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3144306, IEEE Access

M. Saeed, M. Ahsan, and T. Abdeljawad, “A Development of Complex Multi-Fuzzy Hypersoft Set With Application in MCDM Based on Entropy and Similarity Measure,” in IEEE Access, vol. 9, pp. 60026–60042, 2021, doi: 10.1109/ACCESS.2021.3073206.

M. Saeed, M. Ahsan, M. H. Saeed, A. Mehmood and S. El-Morsy, ”Assessment of Solid Waste Management Strategies Using an Efficient Complex Fuzzy Hypersoft Set Algorithm Based on Entropy and Similarity Measures,” in IEEE Access, vol. 9, pp. 150700-150714, 2021, doi: 10.1109/ACCESS.2021.3125727.

M.N.Jafar, M. Saeed, M.Haseeb, A. Habib, “Matrix Theory for Intuitionistic Fuzzy Hypersoft Sets and its application in Multi-Attributive Decision-Making Problems” In Theory and Application of Hypersoft Set (pp. 65–84). 2021 Pons Publishing House, https://doi.org/10.5281/zenodo.4787683

M. Saeed, M. Ahsan, M. H. Saeed, A. Mehmood and T. Abdeljawad, ”An application of neutrosophic hypersoft mapping to diagnose hepatitis and propose appropriate treatment,” IEEE Access, Vol. 9, pp. 70455-70471, 2021.

M. Saeed, M. Ahsan, A. Mehmood, M. H. Saeed and J. Asad, ”Infectious Diseases Diagnosis and Treatment Suggestions Using Complex Neutrosophic Hypersoft Mapping,” in IEEE Access, vol. 9, pp. 146730-146744, 2021, doi: 10.1109/ACCESS.2021.3123659.

M.Saqlain, S.Moin, M. N.Jafar, M.Saeed, S.Broumi, “Aggregate Operators of Neutrosophic Hypersoft Set”. Neutrosophic Sets and Systems, Vol. 32, pp.294-306, 2020.

M. Saqlain, M. Riaz, M.A. Saleem, M.S. Yang, Distance and similarity measures for neutrosophic hypersoft set (NHSS) with construction of NHSS-TOPSIS and applications, IEEE Access, vol. 9, pp. 30803-30816, and 2021.

M. Saqlain, S. Moin, N. Jafar, M. Saeed and S. Broumi, ”Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hypersoft sets”, Neutrosophic Sets and Systems, Vol. 32, pp. 317-329, 2020.

M. Saqlain, L.X. Xin, “Interval valued, m-polar and m-polar interval valued neutrosophic hypersoft sets”, Neutrosophic Sets and Systems, Vol.36, pp. 389-399, 2020.

A.U. Rahman, M. Saeed and A. Dhital, “Decision making application based on neutrosophic parameterized hypersoft set theory”, Neutrosophic Sets and Systems, Vol. 41(1), pp. 1-14, 2021.

L. Wang, H.Garg, “Algorithm for Multiple Attribute Decision-Making with Interactive Archimedean Norm Operations under Pythagorean Fuzzy Uncertainty”, International Journal Computer Intelligent System, Vol. 14 (1), pp. 503 – 527, 2021.

M. Saeed, M. Saqlain, A. Mehmood, “Application of Similarity Measure on m-polar Interval-valued Neutrosophic Set in Decision Making in Sports”, Neutrosophic Sets and Systems, Vol. 38, pp. 317-334, 2020.

G. Wei, “Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications to Strategic Decision Making”, Informatica, vol.28(3), pp. 547–564, 2017.

J.Ye, “Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine”, Soft Computing, Vol. 21(3), pp. 817–825, 2017.

M.J.Khan, P.Kumam, N.A. Alshredhi, W.Kuman, “Improved cosine and cotangent function-based similarity measures for q-rung orthopair fuzzy sets and TOPSIS method”. Complex and Intelligent System. 2021. https://doi.org/10.1007/s40747-021-00425-7

M. Ahsan, M. Saeed, A. Mehmood, M.H. Saeed and J. Asad, “The Study of HIV Diagnosis Using Complex Fuzzy Hypersoft Mapping and Proposing Appropriate Treatment”, IEEE Access, vol.9, pp.104405-104417, 2021. doi: 10.1109/ACCESS.2021.3099335.

M.N.Jafar, M. Saeed, M.Saqlain, M.S.Yang, “Trigonometric Similarity Measures for Neutrosophic Hypersoft Sets with Application to Renewable Energy Source Selection” IEEE Access, Vol.9. pp. 129178-129187, 2021.

C.Luo, Y. Ju, D.R. Ernesto, S. Gonzalez, P. Dong A.Wang, “The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China” Energy, Vol. 211 (2020) 118564.

K.M. Liu, S.H. Lin, J.C. Hsieh , H.H. Tzeng, “Improving the food waste composting facilities site selection for sustainable development using a hybrid modified MADM model”, Waste Management, Vol. 75:44-59, 2018, doi: 10.1016/j.wasman.2018.02.017

G. Wang, L. Qin, G.Li, L. Chen “Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China” Journal of Environmental Management, Vol. 90(8), 2414-2421, 2009, doi: 10.1016/j.jenvman.2008.12.008.

MUHAMMAD NAVEED JAFAR
was born in Pakistan, in December 1987. He is Ph.D. scholar and doing his Ph.D. from University of Management and Technology (UMT) Lahore, Pakistan. He is teaching in Lahore Garrison University Lahore, Pakistan and He taught Mathematics at intermediate and degree level with exceptional results. He has supervised 7 M.S. students, and published more than 30 articles in recognized journals. His research interests include fuzzy mathematics, soft set theory, hypersoft set, neutrosophic sets Multi-
MUHAMMAD SAEED was born in Pakistan, in July 1970. He received the Ph.D. degree in mathematics from Quaid-i-Azam University, Islamabad, Pakistan, in 2012. He taught mathematics at undergraduate and graduate levels with exceptional results. He was involved as a teacher trainer for professional development for More than five years. He worked as the Chairman of the Department of Mathematics at UMT, Lahore, from 2014 to 2021. Under his dynamics leadership, the Mathematics Department has produced ten Ph.D.’s. He has supervised 20 M.S. students, 4 Ph.D., and published more than 100 articles in recognized journals. His research interests include fuzzy mathematics, rough sets, soft set theory, hypersoft set, neutrosophic sets, algebraic and hybrid structures of soft sets and hypersoft sets, multicriteria decision making, optimizations, artificial intelligence, pattern recognition and optimization under convex environments, graph theory in fuzzy-like, soft-like, and hypersoftlike environments, similarly, distance measures and their relevant operators in multipolar hybrid structures. He was awarded the “Best Teacher” in 1999, 2000, 2001, and 2002.

KAINAT MUNIBA KHAN was born on 20 February 1998 in Mardan city KPK, Pakistan. She got her bachelor’s degree from the University of Punjab in Environmental Sciences, She is a research scholar in the Department of Environmental Sciences and Policy at Lahore School of Economics. She is doing research with a well-known environmentalist Prof.Dr.Muhammad Nawaz. She is a debater, Host, and researcher. There are two research articles are already on her account. She had got more than 35 certificates and awards in her career.

HAMIDEN ABD EL-WAHEDE KHALIFA received Ph.D degree from Tanta University Faculty of Science, Tanta, Gharbia Governorate, Egypt. Recently attached with Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt, as Associate Professor. She is also attached with Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Saudi Arabia for research projects. She has published more than 50 publications in peer-reviewed journals. Her areas of interest are: Game Theory, Operation Research, Multi-objective linear programming, Fuzzy Mathematics, Rough Sets, Decision Making, Optimizations.

FATEN S. AL-AMRI graduated from the USA 2020 with PhD in system modeling and analysis in statistics from Virginia commonwealth university. Her PhD research was in Bayesian dose response modeling, experimental design and nonparametric modeling. I am interested to research work in spatial aera, environmental statistics and brain imaging. She is currently working as Assistant Professor at Department of mathematical sciences, College of Science Princess Nourah bint Abdulrahman University.