A NOTE ON REAL KILLING SPINORS IN WEYL GEOMETRY

VOLKER BUCHHOLZ
Humboldt Universität zu Berlin, Institut für Reine Mathematik, Ziegelstraße 13a, D-10099 Berlin.

Abstract: This text is dedicated to the real Killing equation on 3-dimensional Weyl manifolds. Any manifold admitting a real Killing spinor of weight 0 satisfies the conditions of a Gauduchon-Tod geometry. Conversely, any simply connected Gauduchon-Tod geometry has a 2-dimensional space of solutions of the real Killing equation on the spinor bundle of weight 0.

Subj. Class: Differential Geometry
1991 MSC: 53C05;53C10;53A30
Keywords: Weyl geometry; Spin geometry; Killing equation

1 Introduction

In [2] we introduced the spinor geometry on Weyl manifolds and investigated the Dirac-, Twistor- and Killing equation in this context. Concerning the real Killing equation we presented in [2] the following result:

Theorem 1.1 (see [2], Theorem 3.1) Let \(\psi \in \Gamma(S^w) \) be a real Killing spinor on a Weyl manifold \((M^n, c, W)\), i.e. there exists a density \(\beta \in \Gamma(L^{-1}) \) for which

\[
\nabla S^w \psi = \beta \otimes \nu \psi, \quad \beta \in \Gamma(C \otimes L^{-1})
\]

is satisfied. Then the following statements hold:

1. \(R = 4n(n-1)\beta^2 \).
2. \(w \neq 0 \): \(W \) is exact and Einstein-Weyl.
3. \(w = 0, n \geq 4 \): \(W \) is exact and Einstein-Weyl.

The following equations were obtained within the proof and will play an important role in the sequel:

\[
\mu^2 \text{Ric'} \otimes \psi = 2 \left(n - 1 - \frac{n-1}{n-2} \right) \nabla \beta \otimes \psi + \left(1 - \frac{n-1}{n-2} \right) \mu^{12} \text{Alt} \nabla \beta \otimes c \otimes \psi + \frac{R}{n} \nu \psi - \mu^2 F \otimes \psi \quad (1)
\]
\[
F \cdot \psi = -\frac{4(n-1)}{n-2} \nabla \beta \cdot \psi.
\] (2)

Theorem 1.1 gives no statement for the case \(n = 3 \) and \(w = 0 \). In the next section we prove that in three dimensions the existence of a real Killing spinor of weight 0 is essentially equivalent to the fact that this manifold is a Gauduchon-Tod geometry:

Definition 1.2 (see [4], Proposition 5) A 3-dimensional Weyl manifold \((M^3, W, c)\) is called Gauduchon-Tod geometry, if there exists a density \(\beta \in \Gamma(L^{-1}) \) such that the following conditions are satisfied:

1. \(W \) is Einstein-Weyl;
2. \(R = 24\beta^2 \);
3. \(4\nabla \beta = \ast F \).

Remark: The \(\kappa \in C^\infty(M, \mathbb{R}) \) in ([4], Proposition 5) is related to the \(\beta \in \Gamma(L^{-1}) \) of Definition 1.2 in the following way: \(\kappa_{\ast \gamma} = -4\beta \). For more information on Gauduchon-Tod geometries, e.g. their classification, see [4] and the references therein.

Hence, the main result of this text is as follows:

Theorem 1.3 Let \((M^3, c, W)\) be a CSpin-manifold.

1. If \(\psi \in \Gamma(S^0) \) is a real Killing spinor then the space of solutions of the Killing equation is 2-dimensional and \((M^3, c, W)\) is a Gauduchon-Tod geometry.
2. Conversely, any simply connected Gauduchon-Tod geometry has a two dimensional space of Killing spinors of weight 0.

Acknowledgement: I would like to thank N. Ginoux for pointing out a gap in a former version of [2]. This concerns the real Killing equation in dimension 3 and for weight 0.

2 The proof of Theorem 1.3

Let \((M^3, c, W)\) be a CSpin-manifold. The curvature tensor of the Weyl structure \(W \) is given by

\[
\mathcal{R} = \text{Ric}^N \triangle c + F \otimes c,
\]

where \(\triangle : T^{2,0} \times T^{2,0} \rightarrow T^{4,0} \)

\[
\omega \triangle \eta := [(23) + (12)(24)(34) - (24) - (12)(23)]\omega \otimes \eta, \quad \omega, \eta \in T^{2,0}
\]

is the so called Kulkarni-Nomizu product (see [1]) and

\[
\text{Ric}^N := -\text{sym}_0 \text{Ric} - \frac{1}{12} \text{Rc} + \frac{1}{2} F
\] (3)

is the normalized Ricci tensor of \(W \) (see [3]). \text{sym}_0 denotes the symmetric trace free part of a \((2,0)\)-tensor. The following Lemma is a tool for calculations with Kulkarni-Nomizu products in spin geometry:

Lemma 2.1 Let \(\omega \) be a \((2,0)\)-tensor. Then the following algebraic identity holds in any dimension:

\[
\mu^{34} \omega \triangle c = 2 \text{Alt} \mu^2 \omega - 2 \text{Alt} \omega.
\]
Proof:

\[\mu^{34} \omega \bigtriangleup c = [\mu^{34} + (12)(24)(34) - (24) - (12)(23)] \omega \otimes c = [\mu^{24} + (12)\mu^{32} - \mu^{32} - (12)\mu^{24}] \omega \otimes c \]

\[= [\mu^{23} + (12)\mu^{32} - \mu^{32} - (12)\mu^{23}] \omega \otimes c = [-2\mu^{23} + 2tr^{23} + 2(12)\mu^{32} - 2(12)tr^{23}] \omega \otimes c \]

\[= -2|\mu^{32} - (12)\mu^{12}] \omega \otimes c - 2 \text{Alt} \omega = -2[1 - (12)]|\mu^{2}\omega \otimes c - 2 \text{Alt} \omega \]

\[= 2 \text{Alt} \mu^{2}\omega - 2 \text{Alt} \omega. \]

\[\square \]

Lemma 2.2 Let \(4\nabla \beta = *F\) be satisfied on \((M^3, c, W)\). Then the following identities are true for any spinor \(\psi \in \Gamma(S^w)\):

\[\frac{1}{4} \text{Alt} \nu^2 F \otimes \psi - \text{Alt} \nabla \beta \otimes \nu \psi - \frac{1}{2} F \otimes \psi = 0. \] (4)

and

\[(\nu \nabla \beta - \nabla \beta \cdot \nu) \cdot \psi - \frac{1}{2} \mu^2 F \otimes \psi = 0. \] (5)

Proof: Denote by \((e_1, e_2, e_3)\) a local weightless conformal frame on \((M^3, c, W)\) as well as \((\sigma_1, \sigma_2, \sigma_3)\) its dual. In dimension 3 we have the important relation

\[e_i \cdot e_j \cdot \psi = -\sum_{k=1}^{3} \epsilon_{ijk} e_k \cdot \psi. \] (6)

Here \(\epsilon_{ijk}\) denotes the Levi-Civita symbol. Since the \(*\)-operator on 2-forms is defined by the formula

\[*F = \frac{1}{2} \sum_{i,j=1}^{3} F(e_i, e_j) * (\sigma_i \wedge \sigma_j) = \frac{1}{2} \sum_{i,j,k=1}^{3} F(e_i, e_j) e_{ijk} \sigma_k \]

we can rewrite the assumption as follows:

\[8 \nabla_{e_k} \beta = \sum_{i,j=1}^{3} \epsilon_{ijk} F(e_i, e_j). \] (7)

From the algebraic identity

\[F \cdot \psi = \sum_{i,j=1}^{3} F(e_i, e_j) e_i \cdot e_j \cdot \psi = -\sum_{i,j,k=1}^{3} \epsilon_{ijk} F(e_i, e_j) e_k \cdot \psi = -8 \sum_{k=1}^{3} (\nabla_{e_k} \beta) e_k \cdot \psi \]

and (7) then follows:

\[F \cdot \psi = -8 \nabla \beta \cdot \psi, \] (8)

Using (7) and (8) we get:

\[\frac{1}{4} \text{Alt} \nu^2 F \otimes \psi - \text{Alt} \nabla \beta \otimes \nu \psi - \frac{1}{2} F \otimes \psi \]

\[= \frac{1}{4} \sum_{i,j,k=1}^{3} F(e_j, e_k) \sigma_i \wedge \sigma_j \otimes e_i \cdot e_k \cdot \psi - \sum_{i,j=1}^{3} (\nabla_{e_i} \beta) \sigma_i \wedge \sigma_j \otimes e_j \cdot \psi - \frac{1}{2} \sum_{i,j=1}^{3} F(e_i, e_j) \sigma_i \wedge \sigma_j \otimes \psi \]
\[
0 = \frac{1}{4} \mu^2 \text{Alt} \nu \mu^2 F \otimes \psi - \mu^2 \text{Alt} \nabla \beta \otimes \nu \psi - \frac{1}{2} \mu^2 F \otimes \psi
\]

\[
= \frac{1}{4} \mu^2 \nu \mu^2 F \otimes \psi - \mu^2 \nabla \beta \otimes \nu \psi - \frac{1}{2} \mu^2 F \otimes \psi - \frac{1}{4} \mu^4 \nu \mu^2 F \otimes \psi + \mu^2 \nabla \beta \otimes \nu \psi
\]

\[
= \frac{1}{4} \nu F \cdot \psi - \frac{1}{2} \mu^2 F \otimes \psi + 3 \nabla \beta \otimes \psi - \frac{1}{2} \mu^2 F \otimes \psi + \frac{3}{4} \mu^2 F \otimes \psi + \nabla \beta \cdot \nu \psi
\]

\[
= \frac{1}{4} \nu F \cdot \psi - \frac{1}{2} \mu^2 F \otimes \psi + 3 \nabla \beta \otimes \psi - \frac{1}{2} \mu^2 F \otimes \psi + \frac{3}{4} \mu^2 F \otimes \psi + \nabla \beta \cdot \nu \psi
\]

\[
= \nu \nabla \beta \cdot \psi + \nabla \beta \otimes \psi - \frac{1}{4} \mu^2 F \otimes \psi
\]

\[
0 = \frac{1}{4} (\nu \nabla \beta - \nabla \beta \cdot \nu) \cdot \psi - \frac{1}{4} \mu^2 F \otimes \psi.
\]

Hence (\ref{2}) is true. \hfill \Box

After these preliminary calculations we get to the proof of Theorem 1.3. Let \(\psi \in \Gamma(S^0) \) be a real Killing spinor. The first statement follows immediately from the existence of an equivariant quaternionic structure \(j \) on the spinor module, which commutes with the Clifford multiplication. By Theorem 1.1 and its proof we have

\[
R = 24 \beta^2; \quad F \cdot \psi = -8 \nabla \beta \cdot \psi.
\]

Since \(\psi \) vanishes nowhere the second equation is equivalent to

\[
4 \nabla \beta = \ast F
\]

by (\ref{2}). Therefore we have already verified the conditions 2. and 3. of the definition of a Gauduchon-Tod geometry. It remains to proof that the manifold is Einstein-Weyl. To this end we have to
simplify (1) by means of \(R = 24\beta^2 \) and \(Ric' = \text{sym}_qRic + \frac{1}{2}Rc - \frac{1}{2}F \) to

\[
\mu^2\text{sym}_qRic' \otimes \psi = -((\nabla\beta \cdot \nu - \nu\nabla\beta) \cdot \psi - \frac{1}{2}\mu^2 F \otimes \psi)
\]

But the righthandside vanishes according to (5). Hence \(W \) is Einstein-Weyl.

Conversely, let \(W \) be a simply connected Gauduchon-Tod geometry. Is is sufficient to show that \(S^0 \) is flat with respect to \(\nabla^\beta = \nabla^S,0 - \beta \otimes \nu \). To this end, we have to proof that the curvature of \(\nabla^\beta \) vanishes. We use the properties of Gauduchon-Tod geometries given in Definition 1.2, the result of Lemma 2.1 and the equations (4) and \(R^{S,0} = \frac{1}{4}\mu^{34}Ric^N \triangle c = -\frac{1}{4}\mu^{34} (\frac{1}{12}Rc - \frac{1}{2}F) \triangle c \).

\[
\begin{align*}
\mathcal{R}^\beta &= \text{Alt}\nabla^\beta \circ \nabla^\beta = \text{Alt}\nabla^\beta \circ (\nabla^{S,0} - \beta \otimes \nu) \\
&= \text{Alt} \left(\nabla^{S,0} \circ \nabla^{S,0} - \nabla^\beta \otimes \nu - (12)\beta \otimes \nu \nabla^{S,0} - \beta \nu \nabla^{S,0} + \beta^2 \nu \nu \right) \\
&= \mathcal{R}^{S,0} - \text{Alt}(\nabla^\beta)\nu + \beta^2 \text{Alt} \nu^{12} = -\frac{1}{4}\mu^{34} \left(\frac{1}{12}Rc - \frac{1}{2}F \right) \triangle c - \text{Alt}(\nabla^\beta)\nu + \beta^2 \text{Alt} \nu^{12} \\
&= -\frac{1}{4} \left(\frac{1}{6} R \text{Alt} \nu^2 c - \text{Alt} \nu^2 F + 2F \right) - \text{Alt}(\nabla^\beta)\nu + \beta^2 \text{Alt} \nu^{12} \\
&= -\frac{1}{24} R \text{Alt} \nu^{12} + \frac{1}{4} \text{Alt} \nu^2 F - \frac{1}{2} F - \text{Alt}(\nabla^\beta)\nu + \beta^2 \text{Alt} \nu^{12} \\
&= \frac{1}{4} \text{Alt} \nu^2 F - \frac{1}{2} F - \text{Alt}(\nabla^\beta)\nu \\
&= 0.
\end{align*}
\]

\(\square \)

References

[1] A.L. Besse. *Einstein manifolds*. Springer Verlag, 1987.

[2] V. Buchholz. Spinor equations in Weyl geometry. to appear in *Proc. of the Winter School on Geometry and Physics, Srni*, 1999; math.DG/9901125 v2.

[3] D. Calderbank, H. Pederson. Einstein-Weyl geometry. *Odense Universitet, preprint*, No. 40, 1997.

[4] P. Gauduchon, K.P. Tod. Hyper-hermitian metrics with symmetry. *Journal of Geometry and Physics*, pages 291–304, 1998.