Os fundamentos físico-matemáticos da cosmologia relativista

(Physico-mathematical foundations of relativistic cosmology)

Domingos Soares

Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Recebido em 17/8/2012; Aceito em 2/2/2013; Publicado em 9/9/2013

1

Apresento, abreviadamente, os fundamentos da cosmologia relativista, quais sejam, a teoria da relatividade geral e o princípio cosmológico. Discuto alguns modelos relativistas, a saber, o “universo estático de Einstein” e os “universos de Friedmann”. As referências bibliográficas clássicas para as demonstrações tensoriais relevantes são indicadas sempre que necessárias, embora os cálculos em si não sejam apresentados.

Palavras-chave: teoria da relatividade geral, cosmologia, modelos de Friedmann, modelo de Einstein.

I briefly present the foundations of relativistic cosmology, general relativity theory and the cosmological principle. I discuss some relativistic models, namely, “Einstein static universe” and “Friedmann universes”. The classical bibliographic references for the relevant tensorial demonstrations are indicated whenever necessary, although the calculations themselves are not shown.

Keywords: general relativity theory, cosmology, Friedmann models, Einstein model.

1. Introdução

O princípio cosmológico (PC) - a homogeneidade e isotropia do universo - e a teoria da relatividade geral (TRG) constituem os fundamentos físicos e matemáticos da cosmologia relativista. Resumindo tudo o que será apresentado a seguir, podemos dizer que as simetrias introduzidas pelo PC fazem com que as equações de campo completas de Einstein da TRG se reduzam a duas simples equações diferenciais para o fator de escala - ou de expansão - do universo [1, p. 260]. A partir destas duas equações os modelos cosmológicos relativistas mais populares podem ser construídos.

As equações de campo de Einstein da TRG representam uma descrição matemática de uma entidade geométrica, o espaço-tempo, definido por três coordenadas espaciais e uma temporal. Esta entidade de 4 dimensões é estabelecida pelo conteúdo de energia e matéria existentes. Do lado esquerdo das equações temos a descrição geométrica do espaço-tempo e do lado direito, o conteúdo de energia e momento. Colocado de outra forma, a TRG é a teoria da gravitação de Einstein. Ela pode ser entendida simplificadamente pela afirmação de que “o espaço-tempo diz à matéria como se mover e a matéria diz ao espaço-tempo como se curvar” [2, p. 275]. Esta é obviamente uma afirmação incompleta pois não só a matéria curva o espaço-tempo mas também toda forma de energia [3, p. 229].

Einstein utiliza o formalismo tensorial para expressar as suas equações de campo, sendo assim, a TRG é uma teoria tensorial. A propósito, o matemático alemão Georg Friedrich Bernhard Riemann (1826-1866) foi um dos principais responsáveis pelo desenvolvimento do cálculo tensorial, tendo importância enorme para a formulação da TRG. Mas, o que é um tensor? Um tensor é uma entidade matemática que possui em cada ponto do espaço n° componentes, onde n é o número de dimensões do espaço e m é a ordem do tensor. Desta forma, podemos dizer que o escalar é um tensor de ordem 0 - portanto, tem 1 componente - e o vetor é um tensor de ordem 1 - tem n componentes [3, p. 200].

Os tensors utilizados na TRG são tensors de ordem m = 0, 1 e 2 e o “espaço” é o espaço-tempo de n = 4 dimensões (três coordenadas espaciais e uma coordenada temporal). Assim, os tensors de segunda ordem da TRG têm, em princípio, 4² = 16 componentes. Dizemos “em princípio” porque os problemas físicos reais impõem restrições de simetria que reduzem para 10 as componentes realmente necessárias. Os tensors de primeira ordem são os vetores da TRG, chamados de quadrivetores e possuem 4 componentes.

Faremos uma apresentação simplificada das equações de campo de Einstein que consistem de 10 equações diferenciais não lineares - um sistema de equações. Este sistema se simplifica tremendamente quando são impostas restrições de simetria adicionais

1 E-mail: dsoares@fisica.ufmg.br.

Copyright by the Sociedade Brasileira de Física. Printed in Brazil.
dadas pelo PC (ver seção 2 da Ref. [1]) e se reduz a duas equações - somente 2 componentes dos tensors da TRG são necessárias para a formulação completa da cosmologia relativa moderna do estrondão quente (tradução de hot big bang, cf. Ref. [3]).

As equações de Einstein da TRG podem ser expressas de forma qualitativa [1, p. 229] como

\[
\text{curvatura do espaço-tempo} = \text{constante} \times \text{matéria-energia}. \tag{1}
\]

A curvatura do espaço-tempo é dada, matematicamente, pelo tensor de Einstein \(G_{\mu\nu} \)

\[
G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R, \tag{2}
\]

com os índices \(\mu \) e \(\nu \) tomando os valores de 0, 1, 2 e 3. O tensor \(R_{\mu\nu} \) é chamado tensor de Ricci, formado a partir do tensor de curvatura de Riemann, o qual é um tensor de ordem 4, sendo a maneira mais geral de se descrever a curvatura de um espaço de n dimensões qualquer. No caso da TRG, o espaço-tempo de 4 dimensões implica na existência de 4\(^2\) = 256 componentes. O tensor de Ricci, de ordem 2, é a forma reduzida do tensor de Riemann para ser usada nas equações de Einstein. A forma reduzida é obtida através da aplicação de relações de simetria que eliminam os termos redundantes no tensor de Riemann. O tensor \(g_{\mu\nu} \) é o tensor da métrica do espaço-tempo e faz, nas equações de Einstein, o papel do campo [1, p. 179]. E é por isto que dizemos “equações de campo de Einstein”. Não falamos, na TRG, em “ação à distância”; um corpo de prova não “sente” diretamente as fontes de matéria e energia, mas sim o campo, i.e., a métrica - a geometria - que estas fontes geram em sua vizinhança. O campo de métrica transmite as perturbações na geometria (ondas gravitacionais) na velocidade da luz, uma situação análoga ao que ocorre no eletromagnetismo [1, p. 179]. O campo da métrica é o análogo ao campo gravitacional na teoria newtoniana. Finalmente, o termo R, na Eq. (2), é a curvatura escalar, um escalar associado ao tensor de Ricci e ao tensor da métrica. Em termos tensoriais, a curvatura escalar é igual ao trago do tensor de Ricci com relação ao tensor da métrica. A curvatura escalar é também chamada de escalar de Ricci [1, p. 219].

A parte de matéria e energia das equações de Einstein é dada pelo tensor de energia-momento \(T_{\mu\nu} \). As equações de campo de Einstein completas têm, então, a forma compacta seguinte

\[
G_{\mu\nu} = -\kappa T_{\mu\nu}, \tag{3}
\]

onde \(\kappa = 8\pi G/c^4 \) é a constante gravitacional de Einstein, \(G \) é a constante de gravitação universal e \(c \) é a velocidade da luz no vácuo. Finalmente, substituindo a Eq. (2) na Eq. (3), temos a forma explícita das 16 equações de Einstein

\[
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\frac{8\pi G}{c^4} T_{\mu\nu}. \tag{4}
\]

E em formato matricial, ainda com as 16 componentes, teremos

\[
\begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{10} & R_{11} & R_{12} & R_{13} \\
R_{20} & R_{21} & R_{22} & R_{23} \\
R_{30} & R_{31} & R_{32} & R_{33}
\end{pmatrix} = -\frac{8\pi G}{c^4}
\begin{pmatrix}
T_{00} & T_{01} & T_{02} & T_{03} \\
T_{10} & T_{11} & T_{12} & T_{13} \\
T_{20} & T_{21} & T_{22} & T_{23} \\
T_{30} & T_{31} & T_{32} & T_{33}
\end{pmatrix}. \tag{5}
\]

Antes de discutirmos as equações de campo de Einstein, apresentadas acima, faremos, na próxima seção, uma descrição do termo que aparece no lado direito das Eqs. (3), (4) e (5), qual seja, o tensor de energia-momento \(T_{\mu\nu} \). Discutimos na seção 3 as equações da TRG, primeiro, as equações para o vácuo, i.e., na ausência de fontes de matéria e energia, e, então, as equações completas, que são as equações relevantes para a cosmologia. Em seguida, passamos às aplicações cosmológicas das equações completas, na seção 4. Aqui, acrescentamos uma novidade, a inclusão da chamada constante cosmológica \(\Lambda \) na Eq. (4), a qual aumenta a sua generalidade. O universo estático de Einstein - onde aparece explicitamente a constante cosmológica - é discutido na seção 4.1 e os universos de Friedmann, nos quais \(\Lambda = 0 \), são apresentados na seção 4.2. Na seção 5, apresento algumas considerações finais.

É necessário, neste ponto, fazer uma advertência importante. Não é possível um conhecimento completo e satisfatório da TRG sem o domínio - mesmo que rudimentar - das técnicas do cálculo tensorial. Mas é possível, entretanto, ter-se uma ideia geral do quadro teórico, mesmo sem o aprofundamento na demonstração tensorial. É exatamente isto que pretendo, nesta exposição de uma das mais conhecidas aplicações da TRG, qual seja, a cosmologia moderna. Para o leitor interessado no formalismo matemático tensorial, fornecer as referências pertinentes sempre que elas forem necessárias.

2. O tensor de energia-momento

Este é o tensor - lado direito da Eq. (5) - que descreve a atividade energética no espaço. O tensor de energia-momento fornece quantitativamente as \textit{densidades} e os
fluxos de energia e momento gerados pelas fontes presentes no espaço e que determinarão a geometria do espaço-tempo - o lado esquerdo da Eq. (3).

As componentes do tensor de energia-momento [6], p. 137] são as seguintes:

\[T_{00} = \text{densidade de matéria e energia.} \]
\[T_{0\nu} = \text{fluxo de energia (i.e., energia por unidade de área, por unidade de tempo) na direção } \nu; \nu \neq 0. \]
\[T_{\mu0} = \text{densidade da componente } \mu \text{ do momento; } \mu \neq 0. \]
\[T_{\mu\nu} = \text{fluxo da componente } \mu \text{ do momento na direção } \nu (i.e., tensão de cisalhamento). \text{ Note que “fluxo do momento” é o mesmo que “força por área”; } \mu, \nu \neq 0. \]
\[T_{\mu\mu} = \text{fluxo da componente } \mu \text{ do momento na direção } \mu (i.e., forca sobre a área perpendicular, ou seja, pressão, que difere de “tensão de cisalhamento” exatamente por levar em conta a componente da força perpendicular à superfície sobre a qual atua); \mu \neq 0. \]

O tensor de energia-momento é simétrico, ou seja, \[T_{\mu\nu} = T_{\nu\mu}. \] Misner, Thorne e Wheeler [6, p. 141] mostram isto utilizando um argumento físico. Eles consideram as tensões de cisalhamento sobre um cubo muito pequeno de aresta \(L \) e massa-energia igual a \(T_{00} L^3 \) e mostram que ele teria aceleração angular infinita caso o tensor não fosse simétrico.

O tensor de energia-momento, por ser simétrico, tem, no máximo, 10 componentes diferentes, ao invés das 16 de um tensor qualquer \(4 \times 4 \). Como veremos a seguir, os tensors relacionados à geometria do espaço-tempo, no lado esquerdo da Eq. (3), também são simétricos.

Estamos prontos agora para discutir, em mais detalhes, as equações de Einstein da TRG.

3. Equações de campo de Einstein

O enorme sucesso da gravitação de Newton nos fenômenos clássicos - campos gravitacionais fracos e velocidades muito menores do que a velocidade da luz - torna quase obrigatório que qualquer nova teoria de gravitação se reduza, nestes limites, à lei do inverso do quadrado newtoniana. Em outras palavras, no chamado “limite clássico”, na ausência de fontes gravitacionais, a TRG deve cair na equação de Laplace para o potencial gravitacional newtoniano \(\Phi \), \(\nabla^2 \Phi = 0 \), e na equação de Poisson, \(\nabla^2 \Phi = 4\pi G \rho \), sempre que houver a presença de fontes, representadas pela densidade de matéria \(\rho \).

Este foi o caminho seguido por Einstein, e que passaremos a discutir, primeiro, com as equações de campo para a ausência de fontes e, em seguida, com as equações completas, as quais têm como caso particular as primeiras.

Além da redução aos limites newtonianos, Einstein utilizou também, para a postulação das equações de campo, os critérios de simplicidade e de intuição física. Einstein se pergunta: “Qual é a forma mais simples da métrica espaço-temporal, na ausência de fontes, que resultará, no limite clássico, na equação de Laplace para o potencial gravitacional newtoniano? E se houverem fontes, como obter da forma mais simples o tensor da métrica e, ao mesmo tempo, a redução clássica à equação de Poisson?” E ainda, em ambos os casos da teoria geral, ele deveria obter a conservação da energia e do momento.

Após a satisfação destes critérios e da redução aos limites clássicos, a validade das equações formuladas deve, naturalmente, ser verificada pela experiência. Como veremos, esta verificação ocorreu de forma extremamente satisfatória para as equações de campo no vácuo, mas, aparentemente, ainda não ocorreu para as equações completas.

3.1. As equações no vácuo

As equações da TRG no vácuo são em grande maneira - e até certo ponto, paradoxalmente, por não serem as equações completas - as grandes responsáveis pelo prestígio extraordinário de que goza a TRG. É o que veremos a seguir.

As equações no vácuo são aquelas válidas para o campo da métrica no vácuo, como, por exemplo, o campo em torno do Sol, para o qual a densidade de matéria \(\rho = 0 \). Estudando as simetrias do tensor de Ricci \(R_{\mu\nu} \) no limite clássico do tensor da métrica \(g_{\mu\nu} \) [6, p. 222], Einstein postula a seguinte forma, para as equações de campo no vácuo

\[R_{\mu\nu} = 0. \quad (6) \]

Einstein propôs as equações da TRG para o vácuo em 1915, e em 1916 o astrônomo e físico alemão Karl Schwarzschild (1873-1916) obteve a primeira e a mais importante solução exata das equações de campo do vácuo, conhecida como a métrica de Schwarzschild [6, p. 228]. Esta solução aplica-se, por exemplo, ao movimento planetário com grande sucesso, conseguindo a explicação correta para o fenômeno da precessão da órbita de Mercúrio - o que não era conseguido pela gravitação newtoniana - e prevendo novos fenômenos, entre eles, a deflexão de um raio de luz ao passar nas proximidades de uma concentração de matéria [6, p. 223]. Estes, e outros testes, foram realizados com grande sucesso experimental e são eles os responsáveis pela aceitação quase unânime da TRG pela comunidade científica. A métrica de Schwarzschild é ainda responsável pela discussão, atual e controversa, de fenômenos como a radiação gravitacional e os buracos negros.
Não são estas, no entanto, as equações de campo que levarão aos modelos modernos da cosmologia relativista. As equações de campo apropriadas necessitam da presença de fontes de matéria e de radiação para serem propriamente aplicadas ao universo. Estas equações de campo, chamadas completas, ainda não tiveram confirmação experimental definitiva (ver discussão na Ref. [4]) e serão apresentadas a seguir.

3.2. As equações completas

A primeira tentativa para as equações de campo na presença de fontes seria obviamente uma modificação da Eq. (6), i.e., $R_{\mu\nu} = \text{constante} \times T_{\mu\nu}$, a qual não funciona, pois o divergente de $R_{\mu\nu}$ é diferente de zero, implicando em que não há conservação de energia e momento. A segunda escolha é simplesmente substituir $R_{\mu\nu}$ pelo tensor de Einstein $G_{\mu\nu}$ [Eq. (3)], o qual possui divergente nulo [1, p. 299]. As equações de campo completas tomam então a forma da Eq. (3) e, no formato matricial, da Eq. (4). Mas temos simplificações adicionais. Já vimos que o tensor de energia-momento é simétrico. E devido às simetrias do espaço-tempo - tais como, a menor distância de A até B é a mesma de B até A, e, a distância ao longo de um círculo é a mesma nos sentidos horário e anti-horário - o mesmo ocorre para os tensores de Ricci e da métrica [2, p. 240], e eles têm, assim como ocorre para $T_{\mu\nu}$, no máximo 10 componentes diferentes em cada evento do espaço-tempo.

As equações de campo de Einstein completas são então escritas como $G_{\mu\nu} \equiv R_{\mu\nu} - 1/2g_{\mu\nu}R = -\kappa T_{\mu\nu}$, onde κ é a constante gravitacional de Einstein, definida na seção 1. Na forma matricial, temos

\[
\begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{11} & R_{12} & R_{13} & \\
R_{22} & R_{23} & \\
R_{33} & \\
\end{pmatrix}
= \begin{pmatrix}
900 & 901 & 902 & 903 \\
911 & 912 & 913 & \\
922 & 923 & \\
933 & \\
\end{pmatrix}
R = \begin{pmatrix}
-1/2 \\
\end{pmatrix}
- \frac{8\pi G}{c^4} \begin{pmatrix}
T_{00} & T_{01} & T_{02} & T_{03} \\
T_{11} & T_{12} & T_{13} & \\
T_{22} & T_{23} & \\
T_{33} & \\
\end{pmatrix}.
\]

É interessante notar que a equação completa reduz-se à equação para o vácuo quando $T_{\mu\nu} = 0$. Isto ocorre da seguinte forma. A equação completa de Einstein pode ser escrita também na forma $R_{\mu\nu} = -\kappa(T_{\mu\nu} - 1/2g_{\mu\nu}T)$ [1, p. 299]. Fica claro, portanto, que para $T_{\mu\nu} = 0$ teremos $R_{\mu\nu} = 0$, ou seja, a Eq. (4).

4. Modelos cosmológicos

Os modelos cosmológicos são construídos por intermédio das equações de campo completas de Einstein. Uma das mais tediosas e trabalhosas tarefas, na TRG, é o cálculo do tensor de Ricci, da curvatura escalar e, finalmente, do tensor de Einstein $G_{\mu\nu}$, cálculo este feito para um dado tensor da métrica $g_{\mu\nu}$.

Rindler [8, p. 418] mostra como estes cálculos devem ser feitos para uma métrica diagonal genérica dada por

\[(ds)^2 = A(dx_0)^2 + B(dx_1)^2 + C(dx_2)^2 + D(dx_3)^2, \]

onde A, B, C e D são funções arbitrárias de todas as coordenadas espaço-temporais.

Vamos agora obter as equações da cosmologia relativista. O PC, isto é, a redução do universo real a uma idealização homogênea e isotrópica, implica no espaço-tempo com a métrica de Robertson-Walker [1, p. 367], a qual, em coordenadas espaciais esféricas, é dada por

\[
S(t) = \frac{(ds)^2}{(\sqrt{1 - kr^2})^2 + (rd\theta)^2 + (r\sin\theta d\phi)^2}. \]

\[(9)\]

$S(t)$ é o fator de escala do universo e k é a constante de curvatura espacial. Esta equação substitui a Eq. (8) para o cálculo do tensor de Einstein aplicado à cosmologia, isto é, ao universo idealizado do PC.

Para aumentar a generalidade das equações de campo, adicionaremos à curvatura escalar uma constante, a chamada constantes cosmológica Λ, que será essencial para a discussão do universo estático de Einstein, na próxima seção. Esta constante é chamada cosmológica porque ela só tem relevância no contexto da cosmologia, isto é, para a estrutura e a evolução do universo. A equação de campo completa pode ser escrita então como

\[R_{\mu\nu} - \left(\frac{1}{2}R - \Lambda\right)g_{\mu\nu} = -\kappa T_{\mu\nu}. \]

\[(10)\]

A constante cosmológica não altera em nada a validade formal das equações de campo, e pode ser positiva, negativa ou nula. Neste último caso, naturalmente, recuperaremos a formulação usual das equações de campo (Eq. (1)). Segundo Rindler [1, p. 303], “O termo Λ parece ter vindo para ficar; ele pertence às equações de campo tanto quanto uma constante aditiva pertence a uma integral indefinida.” Como a curvatura escalar R, Λ possui dimensões de comprimento$^{-2}$.

Da mesma forma que a equação completa sem Λ, a equação completa com Λ reduz-se à equação para o vácuo quando $T_{\mu\nu} = 0$. Como antes, a equação completa de Einstein pode ser escrita também na forma
R_{\mu\nu} = -\kappa(T_{\mu\nu} - 1/2g_{\mu\nu}T) + g_{\mu\nu}\Lambda. \quad (11)

Esta equação para o vácuo, que substitui a Eq. (1), sem \(\Lambda \), só é importante para eventuais estudos cosmológicos. Ela é totalmente irrelevante, por exemplo, para os estudos do sistema solar. Neste caso, a Eq. (1), e a sua solução, a métrica de Schwarzschild, é perfeitamente satisfatória, mesmo sem houver a constante cosmológica.

Para obtermos as equações da cosmologia relativista faremos a suposição fundamental do PC: toda a matéria - incluindo uma possível "matéria escura" - do universo será, por assim dizer, molida e redistribuída de forma uniforme pelo universo. Teremos desta forma os requisitos físicos do PC, i.e., a homogeneidade e a isotropia da distribuição de matéria. O tensor de energia-momento destas fontes, quais sejam, a matéria e radiação com as características físicas da uniformidade, se reduz aos elementos da diagonal [3, p. 392] [4, p. 140]

\[T_{\mu\nu} = diag(\rho c^2, -p, -p, -p), \quad (12) \]

onde \(p \) é a pressão isotrópica e \(\rho \) é a densidade homogênea do fluido. Um fluido deste tipo é chamado de fluido perfeito. O sinal negativo que aparece em \(p \) implica, na equação de campo, em que uma pressão positiva possui um efeito gravitacional atrativo [1, p. 156] [8, p. 172].

Devemos notar ainda que \(p \) representa a pressão da radiação e da matéria, e, da mesma forma, \(\rho \) deve ser dividida numa parte da radiação e numa parte da matéria. A pressão da radiação só será significativa nos estágios iniciais dos modelos em expansão - um gás de fótons a alta temperatura com \(p = 1/3\rho c^2 \). A pressão da matéria, a qual só aparece em estágios posteriores, é desprezível. Um fluido perfeito de matéria com pressão nula é muitas vezes chamado, tecnicamente, de poeira. Esta poeira permanece em repouso, no substrato espacial, já que qualquer movimento aleatório constituiria uma pressão. Os movimentos globais de expansão ou contração não são excluídos, no entanto.

O trabalho principal para se obter as equações da cosmologia é aplicar o lado esquerdo das equações de campo dadas pela Eq. (11) - o tensor de Einstein - à métrica de Robertson-Walker dada pela Eq. (3). Já dissemos acima que Rindler [1, p. 418] mostra os cálculos detalhados para se obter cada elemento do tensor de Einstein. A métrica de Robertson-Walker, sendo a métrica de um universo homogêneo e isotrópico, com as suas inúmeras simetrias, implica em que o tensor de Einstein, com a constante cosmológica, \(G_{\mu\nu} \equiv R_{\mu\nu} - (1/2R - \Lambda)g_{\mu\nu} \), só terá os elementos da diagonal, exatamente como o tensor de energia-momento

\[G_{\mu\nu} = diag(G_{00}, G_{11}, G_{22}, G_{33}). \quad (13) \]

Rindler [1, p. 392] e Misner, Thorne e Wheeler [1, p. 728] fornecem os resultados dos cálculos para \(G_{\mu\nu} \)

\[G_{00} = -\frac{3}{\Sigma^2} + \frac{3k}{\Sigma^2} + \Lambda, \quad (14) \]

\[G_{11} = G_{22} = G_{33} = -\frac{2\Sigma}{\Sigma^2} + \frac{\Sigma^2}{\Sigma^2} + \frac{k}{\Sigma^2} + \Lambda, \quad (15) \]

onde \(S \) é o fator de escala do universo (cf. Eq. (4)).

Com estes valores para \(G_{\mu\nu} \) e \(T_{\mu\nu} \), as equações de Einstein completas, \(G_{\mu\nu} = -8\pi G/c^4 T_{\mu\nu} \) (Eq. (11)), resultam em apenas duas equações diferenciais não lineares para o fator de escala \(S(t) \)

\[\frac{\Sigma^2}{\Sigma^2} + k = \frac{8\pi G\rho}{3c^2}, \quad (16) \]

\[\frac{2\Sigma}{\Sigma^2} + \frac{\Sigma^2}{\Sigma^2} + k = -\frac{8\pi Gp}{c^4}. \quad (17) \]

As Eqs. (16) e (17) são as equações básicas para a formulação da maioria dos modelos cosmológicos relativistas, com ou sem a constante cosmológica. Além disso, a resolução simultânea deste sistema de equações resulta na equação da conservação da massa e da energia do fluido cósmico [3, p. 393].

A seguir, veremos um modelo cosmológico com \(\Lambda \) e uma família de modelos sem \(\Lambda \).

4.1. O universo estático de Einstein

Logo após a apresentação final da TRG em 1915, Albert Einstein (1879-1955) inaugurou o estudo da cosmologia relativista. Ele publicou, em 1917, um artigo com o sugestivo título Considerações Cosmológicas Relacionadas À Teoria da Relatividade Geral. Ele utiliza a Eq. (14) com \(\Lambda \) positivo para obter um efeito cósmico repulsivo e, assim, contrabalançar exatamente o efeito atrativo da matéria e da radiação do universo. Assim, ele obtém um universo estático, condizente com as ideias prevalecentes na época. Este modelo foi de enorme importância na história da ciência da cosmologia, pois foi motivo de inspiração científica para muitos pesquisadores. O modelo gozava, entretanto, de uma característica indesejável: estaria instável sob pequenas perturbações no estado de equilíbrio estático. O modelo de Einstein é discutido em detalhes por Soares [14, inclusive a sua instabilidade. A Eq. 2 de Soares [14, p. 1302-2] é a mesma Eq. (11) determinada aqui.

4.2. Os universos de Friedmann

O físico, meteorologista e cosmólogo russo Aleksandr Aleksandrovich Friedmann (1888-1925) foi o responsável pela próxima grande contribuição para a cosmologia relativista. Em 1922, ele publicou um artigo, numa prestigiosa revista científica alemã, com o título Sobre a curvatura do espaço, onde ele resolve
as equações de campo completas de Einstein, com as hipóteses de homogeneidade e isotropia do universo - o que posteriormente ficaria conhecido como princípio cosmológico - e obtêm um modelo de curvatura espacial positiva (espaço esférico) com fases de expansão e de contração. Posteriormente, reconheceu-se que este era apenas uma das possibilidades de universos dinâmicos - um universo fechado oscilante - entre outras, quais sejam, os universos abertos: o de curvatura negativa, espaço hiperbólico e o de curvatura nula, espaço plano ou euclidiano.

O trabalho de Friedmann só foi reconhecido pela comunidade científica muito tempo depois de sua publicação. Em sua homenagem, os modelos resultantes da Eq. (16), sem A, receberam o nome de modelos ou universos de Friedmann. Uma discussão detalhada, porém em nível elementar, sobre os modelos de Friedmann está apresentada na Ref. [11].

5. Considerações finais

O modelo estático de Einstein foi o primeiro modelo cosmológico relativista e, também, o primeiro a utilizar a constante cosmológica. Os modelos cosmológicos relativistas modernos também incorporam a constante cosmológica, e conseguem por meio dela obter a consistência entre a idade teórica do universo e os limites impostos pela evolução estelar. Em outras palavras, a constante cosmológica consegue resolver o chamado dilema da idade do universo (mais detalhes na Ref. [12]).

É importante ressaltar que Friedmann (seção 4.2) obteve originalmente apenas o modelo fechado, por meio das equações completas de Einstein e do PC, o qual foi um conceito cosmológico introduzido por ele. Os três modelos de Friedmann modernos apareceram com a generalização introduzida pela métrica de Robertson-Walker (Eq. (1)), que prevê, ainda, outras topologias espaciais globais, especificadas pela constante de curvatura espacial k, além dos conhecidos modelos abertos hiperbólicos, com \(k = -1 \), e plano, com \(k = 0 \) [3, p. 367].

Como foi antecipado na Ref. [4], vimos, na seção 3.1, que os grandes e decisivos testes da TRG são feitos para uma solução das equações de campo de Einstein no vácuo, isto é, na ausência de fontes de energia e momento. Esta solução tem inúmeras aplicações práticas e é dada pela métrica de Schwarzschild. As soluções mais conhecidas das equações de campo completas são exatamente os modelos da cosmologia relativista, válidas para um fluido homogêneo e isotrópico, e elas falham quando confrontadas com as observações. Os modelos relativistas só sobrevivem quando são postuladas as existências de entidades físicas não observadas, tais como, a matéria escura e a energia escura (cf. Ref. [1]).

Referências

[1] M. Harwit, Astrophysical Concepts (Springer, Nova York, 1998).
[2] E.F. Taylor and J.A. Wheeler, Spacetime Physics Introduction to Special Relativity (W.H. Freeman and Company, New York, 1992).
[3] E. Harrison, Cosmology - The Science of the Universe (Cambridge University Press, Cambridge, 2000).
[4] J. Hwang, Modern Cosmology: Assumptions and Limits (arXiv:1206.6297v1 [physics.hist-ph], 2012), http://arxiv.org/abs/1206.6297.
[5] D. Soares, A Tradução de Big Bang (2002), http://www.fisica.ufmg.br/~dsoares/ensino/trg-pdr.pdf.
[6] W. Rindler, Relativity - Special, General, and Cosmological (Oxford University Press, New York, 2006).
[7] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (W.H. Freeman and Company, San Francisco, 1973).
[8] F. Hoyle, G. Burbidge and J.V. Narlikar, A Different Approach to Cosmology: from a Static Universe through the Big Bang towards Reality (Cambridge University Press, Cambridge, 2000).
[9] D. Soares, Uma Pedra no Caminho da Teoria da Relatividade Geral (2009), http://www.fisica.ufmg.br/~dsoares/ensino/trg-pdr.pdf.
[10] D. Soares, Revista Brasileira de Ensino de Física 34, 1302 (2012).
[11] A. Viglioni e D. Soares, Revista Brasileira de Ensino de Física 33, 4702 (2011).
[12] D. Soares, A Idade do Universo, A Constante de Hubble e a Expansão Acelerada (2009), http://www.fisica.ufmg.br/~dsoares/ageunv/idadeunv.pdf.