Analysis of CERN Computing Infrastructure and Monitoring Data

Christian Nieke, CERN IT / Technische Universität Braunschweig

On behalf of the CERN IT Analytics Working Group
IT Analytics Working Group

- **Goals:**
 - Coordinate analysis and trending of application/service usage data
 - E.g. batch computing, data storage, network...
 - At different stages of maturity
 - Getting a quantitative understanding of a service (exploratory)
 - Informing strategy or planning decisions (hypothesis check)
 - Developing & validating predictive models
Data Sources - Before

No common analysis goal
No common schema
No common format
No common repository
No shared documentation
No easy way of joining
Getting the Big Picture

- Combined Activity
 - Enable integrated studies crossing single data source / service boundaries
 - Using a common base repository of prepared input data
 - Provide an exchange forum for discussion on analysis methods, tools and result validation
Common Repository

- Data Warehouse
 - Write once, read many
- Hadoop cluster
 - Raw files in any format
 - Using Hadoop jobs for cleaning and pre-processing
 - Export in CSV, Avro, Parquet, … for Analysis
Example: EOS file system operations

Processed Parameters

Name	Type	Link	Description	Purpose	Remarks
td	String	-	client trace identifier \(<<username>>.<<pid>>@<<client-host>>\)	This identifier can be used to aggregate sessions \(\text{of the same user, with the same job on the same machine}\)	
path	String	-	Full namespace path to the file	The folder structure in the path could be usefulfull to match the file to a project/user/programm etc.	
ruid	Int	-	mapped unix user id	Allows aggregation by user	ruid==1 means root process, which is usually an internal process like rebalancing, draining etc.
rgid	Int	-	mapped unix group id	Allows aggregation by group	
host	String	**LanDB**	name of the disk server serving the file	Allows aggregation by user host and links to LanDB	
fid	Int	-	EOS file id	Allows aggregation by file	unique per EOS instance (e.g. eosatlas, eoscms,...)
fsid	-		EOS file system id, e.g. disk	Allows aggregation of files by file system (disk)	
ots	Date	-	File open time as unix timestamp \(\text{in seconds since January 1st, 1970 at UTC}\)	Aggregation by time	
Data Sources - Federation

Diagram showing the integration of data sources:
- **Batch Jobs**
- **Batch Nodes (Hardware and Configuration)**
- **Network**
- **Experiment Dashboards: Job Monitoring**
- **Experiment Dashboards: Data Transfers**
- **Experiments: File Popularity**
- **Data Storage Operations**

Key connections:
- Scheduler-Id
- Job-Id
- Host name

The diagram illustrates how these components interact within the Hadoop ecosystem.
Example Analysis Workflow

- Job Performance: Geneva vs. Budapest
 - Different computing centers
 - Different hardware
 - CPU, Memory, Network, ….

- Do we get the same performance?
 - Compare CPU time used per job
CPU Time and Location

- Based on batch computing logs and network configuration

We need more information to understand this distribution.
Tasks

- Based on experiment job dashboard

Different distributions for different tasks
Tasks

• Selecting a single task

Let’s randomly select this one
Tasks

• It seems like there are still more underlying effects

CMS Jobs - Subset January + February 2015, restricted to one task: 29,965 items

This is not just a simple shift
HepSpec Benchmark

- HepSpec Factor based on batch benchmarks

High benchmark result is correlated with low CPU time
Scaling by CPU Factor

- Removes “expected” deviation

CMS Jobs - Subset January + February 2015, restricted to one task: 29,965 items

Now this looks like an answer.

But what do we actually see?
- Job specific?
- AMD vs. Intel?
- Network delay?
- Data placement?
Conclusion

• Combined Effort
 • CERN IT and Experiments
 • Federated data repository for uniform access
 • Understanding the system as a whole

• Examples for Actions Taken
 • Rebalancing batch slots per machine to avoid swapping
 • User notification in case of inefficient jobs
 • Activated TTreeCache for ROOT in ATLAS
Resources

• Twiki
 - https://twiki.cern.ch/twiki/bin/view/ITAnalyticsWorkingGroup/WebHome

• Contact:
 - Dirk Duellmann, CERN IT (Working Group Chair)
 - or myself