Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought

Mallikarjuna Swamy B. P.1, Helal Uddin Ahmed1, Amelia Henry1, Ramil Mauleon1, Shalabh Dixit1, Prashant Vikram1, Ram Tilatto2, Satish B. Verulkar3, Puvvada Perraju4, Nimai P. Mandal5, Mukund Variar5, Robin S.6, Ranganath Chandrababu6, Onkar N. Singh7, Jawaharlal L. Dwivedi8, Sankar Prasad Das9, Krishna K. Mishra10, Ram B. Yadav11, Tamal Lata Aditya12, Biswajit Karmakar12, Kouji Satoh13, Ali Moumen13a, Shoshi Kikuchi13, Hei Leung1, Arvind Kumar*

1 International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines, 2 Directorate of Rice Research (DRR), Hyderabad, Andhra Pradesh, India, 3 Indira Gandhi Krishi Vishwavidyalaya (IGKV), Raipur, Chattisgarh, India, 4 Jawaharlal Nehru Krishi Vishwavidyalaya (JNKVV), Jabalpur, Madhya Pradesh, India, 5 Central Rainfed Upland Rice Research Station (CRURRS), Hazaribagh, India, 6 Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India, 7 Central Rice Research Institute (CRI), Cuttack, India, 8 Narendra Dev University of Agriculture and Technology (NDUAT), Faizabad, Uttar Pradesh, India, 9 ICAR Research Complex for NEH Region, Tripura Centre (ICARNEHR), Tripura, India, 10 Regional Agricultural Research Station (RARS), Nepalganj, Nepal, 11 National Rice Research Program, Hardinath, Nepal, 12 Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh, 13 Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan

Abstract

Background: Rice (*Oryza sativa* L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge.

Methodology/Principal Findings: Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC$_4$F$_3$ mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC$_4$F$_3$-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha$^{-1}$ over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia.

Conclusions/Significance: Given the importance of rice in daily food consumption and the popularity of IR64, the BC$_4$F$_3$ lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL combinations in different genetic backgrounds to maximize yield advantage under drought.

Citation: Swamy B. P. M, Ahmed HU, Henry A, Mauleon R, Dixit S, et al. (2013) Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS ONE 8(5): e62795. doi:10.1371/journal.pone.0062795

Editor: Turgay Unver, Cankiri Karatekin University, Turkey

Received October 3, 2012; Accepted March 25, 2013; Published May 8, 2013

Copyright: © 2013 Swamy B.P. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank the Bill & Melinda Gates Foundation (BMGF), USA, and Generation Challenge Program (GCP), Mexico, for providing financial support to this study. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: A.kumar@irri.org
+ Current address: Rice Research Institute of Iran, Amol, Mazandaran, Iran

Introduction

Among cereals, rice (*Oryza sativa* L.) is the most drought-sensitive crop. Even a mild drought stress during the reproductive stage results in severe yield losses [1–3]. Most of the semi-dwarf high-yielding varieties developed during the green revolution era were meant for irrigated ecosystems and are highly susceptible to drought [4]. Since high-yielding drought-tolerant cultivars are not available, farmers in drought-prone areas cultivate either high-yielding cultivars with good grain quality that are drought susceptible or low-yielding traditional cultivars that are drought susceptible. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge.
tolerant but have poor grain quality and also less input-use efficiency [5–7]. An understanding of the sources of genetic variation and physiological mechanisms involved facilitates the development of an appropriate strategy to breed drought-tolerant cultivars [8,9]. Deep root growth, which may increase water uptake during progressive soil drying, is suggested to be a likely mechanism to confer increased yield under drought. However, there is little direct evidence in the literature of deep root growth conferring a yield advantage under drought [10]. A drought-yield effect of QTLs for deep roots and improved soil penetration [11–14] is yet to be confirmed.

Recent studies have identified QTL for yield under drought in rice [15–18]. Some of these QTL were derived from traditional donors and carry linkages for undesirable traits along with an effect on grain yield under drought [18]. The advanced backcross QTL (AB-QTL) approach involves two or more backcrosses to the improved recurrent parent to simultaneously identify and introgress QTL in the recurrent parent and to reduce undesirable linkages [19,20]. AB-QTL analysis on lines with similar agromorphological characters also provides the opportunity to impose uniform drought stress on all lines and to control differences due to phenology, leading to the detection of more reliable QTL. However, the genetic mapping of complex traits from parents with similar genetic backgrounds is difficult due to low polymorphism.

Expression profiling of contrasting parents under drought stress helps to identify differentially expressed genes and their regions in the genome [21]. The regions enriched with differentially expressed genes can be further genotyped with polymorphic molecular markers to detect the loci for complex traits. The differential expression patterns of drought-responsive genes in different plant tissues at different growth stages could provide an opportunity to characterize the traits associated with yield advantage under drought and to understand the physiological and molecular mechanisms that confer increased drought tolerance.

In this study, major QTL for grain yield under drought were narrowly delimited by expression polymorphism, and then identified in multiple mapping populations by genotyping and phenotyping under managed drought stress. We report physiological differences in backcross inbred lines (BILs) that were genetically similar but showed contrasting responses in yield under drought. The study identified lines with different combinations of QTL in the IR64 background that showed enhanced grain yield under drought in multi-location evaluations in the target environment, thereby confirming the value of these QTL for sustainable yield under drought stress.

Results

Four QTL for Grain Yield under Drought Identified

To define the QTL regions responsible for improved grain yield under drought in BILs derived from and IR64 x Aday Sel cross [22] (Table S1), we used Affymetrix Rice Chip analysis to identify genome polymorphism. This approach was chosen after attempts to characterize the QTL regions with SSR markers did not reveal sufficient polymorphism between the parents. Four polymorphic regions were found at 6.8–7.3, 6.7–7.2, 14.6–16.5, and 18.6–19.3 Mb on chromosomes 2, 4, 9, and 10, respectively. In total, 5, 3, 8, and 5 polymorphic SSR markers in the regions detected by the chip-based analysis on chromosomes 2, 4, 9, and 10, respectively, were run on the whole population to detect QTL for grain yield (GY) (Table 1) and related traits (days to 50% flowering, DTF; plant height, PH; Table S2). The mapping results validated the regions predicted by the Affymetrix Rice Chip analysis. Four QTL were identified for GY under drought stress; qDTY2.2, qDTY4.1, qDTY9.1, and qDTY10.1, by both Interval and Composite Interval mapping methods (Table 1 and Fig. S1). The phenotypic variance explained by the QTL ranged from 6 to 19.2% (Table 1). None of these four qDTY QTL was associated with GY under non-stress conditions. QTL analyses in connected populations also consistently detected the major effect QTL qDTY2.2 and qDTY9.1 (Table S3 and Fig. S2).

Physiological Characterization of BILs Contrasting for Yield under Drought

Two pairs of genetically similar BILs (+QTL and −QTL lines from an IR64 × Aday Sel cross; pair 1: +QTL IR77298-5-6-B-18 and −QTL IR77298-5-6-B-11, and pair 2: +QTL IR77298-14-1-2-B-10 and −QTL IR77298-14-1-2-B-13) that were contrasting for yield under drought were characterized in the field to study the physiological mechanisms associated with increased yield under drought. +QTL lines showed cooler canopy temperature and greater stomatal conductance than −QTL lines and IR64 under the most severe drought stress, but not under mild drought stress or non-stress conditions (Fig. 1, Fig. S3). BILs within each pair did not differ significantly in shoot mass or NDVI (Normalized Difference Vegetation Index; Fig. 2), but shoot mass was greater towards the end of the 2010DS and NDVI was consistently greater in 2010DS-ROS in one pair of BILs (+QTL IR77298-14-1-2-B-10 and −QTL IR77298-14-1-2-B-13) compared to the other pair. Root growth at depth in terms of root length density was not greater in +QTL lines in any experiment (Table 2).

Meta-analysis of Differentially Expressed Genes Relative to the Entire Genome and within the Drought Yield QTL Regions

Transcriptome data of the same parental +QTL and −QTL BILs under two water stress treatments (0.5 FTSW, 0.2 FTSW) from a previous study by Moumeni et al. [21] were re-analyzed to determine their association with QTL detected in this study. For the root transcriptome, highly contrasting counts of DEGs were detected from comparison of +QTL and −QTL lines between the two BIL pairs used, with 570 DEGs in pair 1 and 2,127 DEGs in pair 2, an almost fourfold difference in DEG counts between the two BIL pairs. For the leaf transcriptome, a similar number of DEGs was detected from comparison of +QTL and −QTL lines between the two BIL pairs (748 DEGs in pair 1; 779 in pair 2). For the panicle transcriptome, both +QTL and −QTL BIL pairs had similar but low DEG counts (240 DEGs in pair 1; 201 in pair 2).

For the first meta-analysis, the number of DEGs was counted within 1 MB genome blocks, with sliding window blocks of 500 kb, for the entire genome, to determine whether DEGs were aggregating (having a significantly higher number of DEGs than anywhere else in the genome at p<0.01) in blocks of the genome, adapting the genomic method of Bruce et al. [23] for gene expression data. For pair 1, aggregation analysis of the root, leaf, and panicle transcriptomes all pointed to the five genome regions in chromosomes 5, 9, 10, and 12. For pair 2, transcriptomes from leaf and panicle tissues showed five overlapping regions of DEG aggregates in chromosomes 2, 8, and 11, whereas, for the root transcriptome, only the chromosome 8 DEG aggregation region overlapped with the regions from leaf and panicle tissues, and a unique aggregation region was found in chromosome 3. A total of 5 and 9 distinct DEG aggregation regions were determined for
Table 1. QTL for grain yield under drought in IR64×Aday Sel derived populations.

Population	Year	Chromosome	Marker interval	Peak marker	LOD	F value	R²	Additive effect
IR77298-5-6-B-18/IR64 (P1)	DS09	9	RM566-RM24350	RM566	5.5	39.4	9.6	201.7
IR77298-5-6-B-18/IR64 (P1)	DS10	9	RM566-RM24350	RM566	4.7	36.7	8.2	89.2
IR77298-5-6-B-18/IR64 (P1)	DS09 & DS10	9	RM566-RM24350	RM566	7.6	50.9	13.0	134.4
IR77298-5-6-B-18/IR72298-5-6-B-11 (P2)	DS09	9	RM566-RM24350	RM566	11.7	77.2	19.0	352.6
IR77298-5-6-B-18/IR64 (P1)	DS09	2	RM236-279	RM236	3.4	28.6	6.0	166.7
IR77298-5-6-B-18/IR64 (P1)	DS10	2	RM236-RM279	RM236	5.4	19.5	9.3	105.5
IR77298-5-6-B-18/IR64 (P1)	DS09 & DS10	2	RM236-RM279	RM236	5.3	37.3	9.1	121.8
IR77298-14-1-2/IR64 (P4)	DS08	2	RM236/RM279-RM555	RM236/RM279	6.5	35.0	11.2	112.8
IR77298-14-1-2-B-10/IR64 (P3)	DS10	2	RM236-RM279	RM236	1.47	108.3	3.0	147.5
IR77298-14-1-2-B-10/IR64 (P3)	DS10	10	RM258-RM25694	RM258	10.0	28.7	17.0	298.1
IR77298-14-1-2/IR64 (P4)	WS07	4	RM335-RM518	RM518	6.5	14.7	11.2	127.1

The allelic source for all QTL was Aday Sel. LOD, Logarithm of odds ratios; R², Phenotypic variance; Additive effect, grain yield (kg ha⁻¹) additive effect over the population mean presented in Table S1.

doi:10.1371/journal.pone.0062795.t001

Figure 1. Canopy temperature dynamics over the A. 2010DS and B. 2010DS-ROS, as measured mid-day on sunny days with an infrared camera, and C. stomatal conductance during the 2010DS-ROS. Significant differences among lines are indicated by *(p<0.05) and **(p<0.01). D. Infrared thermal image showing contrasting canopy temperatures of +QTL and –QTL lines, taken 98 days after sowing (DAS) in 2010DS-ROS.

doi:10.1371/journal.pone.0062795.g001
pairs 1 and 2, respectively, and no common regions exist between the two BIL pairs (Table S4).

The second meta-analysis used QTL region information from this study. Using all the DEGs from the significance (re)analysis, we found that there was significant association of 96 DEGs in QTL on chromosomes 2, 4, 9, and 10 ($p < 0.05$, Table 3), with 91 of these DEGs located within the DEG aggregation regions found in chromosomes 2, 9, and 10. Further analysis for enrichment of biological themes/categories in this subset of DEGs, however, showed no explicitly drought-responsive categories being identified using the GO-SLIM and Mapman gene classification (Table 4). However, interesting significant associations of these DEGs with previously identified QTL ($p < 0.05$, using the Gramene QTL categories) were found, such as QTL for root length, deep root dry weight, root weight, penetrated root thickness, and root penetration index, as well as QTL associated with yield traits (spikelet density, spikelet fertility, seed weight, and other grain/seed-related QTL; Table S5).

Improved Lines with QTL Introgressions Identified

From the six mapping populations, 4 lines with four QTL combinations, 15 lines with three QTL combinations, 29 lines with two QTL combinations, and 19 lines with different single QTL were identified. These lines were further selected for yield under drought and under well-watered conditions, high phenotypic and genetic similarity to IR64, and grain quality traits similar to those of IR64 (Table 5, Table S6). Before advancing to evaluation in the target environment, the IR64 QTL lines were screened under managed drought stress in large plots at IRRI, in which all lines showed a yield advantage of 194 to 1920 kg ha$^{-1}$ over IR64. Subsequently, the three most promising lines, IR87707-445-B-B, IR87707-446-B-B, and IR87707-182-B-B, were evaluated in target drought-prone ecosystems in Bangladesh, India, and Nepal. The three lines showed yield advantages of 528

Table 2. Root length density of $+$QTL lines, $-$QTL lines, and IR64 at different depths in field drought studies, as sampled with a 4-cm diameter corer tube placed mid-way between hills of adjacent rows.

Depth	Genotype	2009 WS	2010DS	2010DS-ROS
0–15 cm IR64	7.07±0.96	9.24±1.09	0.89±0.02	
IR77298-14-1-2-B-10 (+)	8.00±0.12			
IR77298-14-1-2-B-13 (−)	0.79±0.16			
IR 77298-5-6-B-18 (+)	4.80±0.48	12.91±2.48	0.63±0.03	
IR77298-5-6-B-11(−)	8.36±1.86	11.43±1.45	1.00±0.14	
15–30 cm IR64	2.95±0.52	3.58±0.61	0.75±0.09	
IR77298-14-1-2-B-10 (+)	0.74±0.08			
IR77298-14-1-2-B-13 (−)	0.86±0.19			
IR 77298-5-6-B-18 (+)	2.64±0.35	3.04±0.57	0.74±0.14	
IR77298-5-6-B-11(−)	2.33±0.22	2.67±0.70	0.92±0.09	
30–45 cm IR64	0.69±0.11	1.16±0.20	0.41±0.15	
IR77298-14-1-2-B-10 (+)	0.36±0.05			
IR77298-14-1-2-B-13 (−)	0.49±0.06			
IR 77298-5-6-B-18 (+)	0.55±0.07	0.99±0.17	0.48±0.26	
IR77298-5-6-B-11(−)	0.48±0.06	1.44±0.63	0.52±0.10	
45–60 cm IR64	0.29±0.07	0.69±0.16	0.49±0.16	
IR77298-14-1-2-B-10 (+)	0.52±0.16			
IR77298-14-1-2-B-13 (−)	0.65±0.13			
IR 77298-5-6-B-18 (+)	0.32±0.08	0.79±0.14	0.19±0.10	
IR77298-5-6-B-11(−)	0.33±0.06	1.08±0.42	0.54±0.23	

Values shown are means ± s.e. No significant differences were observed among genotypes at any depth sampled.

doi:10.1371/journal.pone.0062795.t002
to 1875 kg ha$^{-1}$ over IR64 under drought, and produced either similar or higher yields than IR64 under well-watered conditions (Table 6).

Discussion

Crop genetic improvement for drought is challenging because of its complex genetic nature and poor understanding of the physiological and molecular mechanisms associated with drought tolerance [8,9]. We applied multiple approaches including genetic mapping, physiological characterization, and expression analyses to identify major-effect drought grain yield QTL, and successfully deployed them to improve grain yield under drought in the background of rice mega-variety IR64.

QTL, when mapped back to the physical genome, often translate to tens of megabases in size, which is not precise for identification of gene(s) underlying the QTL effect. We used a meta-analysis approach that combines results from the analysis of differentially expressed genes (DEGs) in QTL and non-QTL lines under two drought stress conditions (Table 3).

Table 3. Number of differentially expressed genes in +QTL and –QTL lines under two drought stress conditions.

+QTL NIL	Transcriptome source tissue	Associated QTL	Number of DEGs within QTL	Enrichment of DEGs within QTL regions (Fisher exact test p value)
IR77298-5-6-B-18	leaf	DTY 10.1	15	0.003
		DTY 9.1	23	0.007
	panicle	DTY 10.1	7	0.004
	root	DTY 10.1*	19	0.029
		DTY 10.1*	11	0.045
IR77298-14-1-2-B-10	leaf	DTY 2.2	8	0.000
	root	DTY 2.2	6	0.025
		DTY 4.1	5	0.032

DEG, differentially expressed genes; *DTY 10.1 resolves to two adjacent regions when physically mapped to the Nipponbare reference genome.

doi:10.1371/journal.pone.0062795.t003

Table 4. Enriched GO-SLIM and Mapman pathways from the differentially expressed genes associated with drought-yield QTL.

Biological category	Gene category	Number of associated DEGs	Enrichment p value	
GO-SLIM_TG5	biological_process	amino acid and derivative metabolic process	9	0.0144
	cellular_component	plastid	9	0.0315
	cellular_component	thylakoid	8	0.0150
	molecular_function	lipid binding	4	0.0320
	molecular_function	molecular_function	11	0.0304
	molecular_function	oxygen binding	8	0.0007
	molecular_function	transferase activity	18	0.0007
Mapman release 31	amino acid metabolism.synthesis.serine-glycine-cysteine group.cysteine.OASTL	1	0.0497	
	glycolysis.PFK	1	0.0334	
	.misc.misc2	3	0.0005	
	misc.protease inhibitor/seed storage/lipid transfer protein (LTP) family protein	4	0.0001	
	misc.UDP glucosyl and glucoronyl transferases	5	0.0054	
	not assigned.no ontology.pentatricopeptide (PPR) repeat-containing protein	12	0.0000	
	polyamine metabolism.synthesis.SAM decarboxylase	1	0.0235	
	protein.aa activation.valine-trna ligase	1	0.0169	
	protein.degradation.serine protease	3	0.0105	
	protein.glycosylation	3	0.0009	
	protein.synthesis.initiation.deoxyhypusine synthase	1	0.0068	
	secondary metabolism.flavonoids.dihydroflavonols.flavonoid 3’-monooxygenase	1	0.0068	
	secondary metabolism.phenylnpropanoids.lignin biosynthesis.HCT	1	0.0465	

doi:10.1371/journal.pone.0062795.t004
Line	QTL	DTF (NS)	PH (cm) (NS)	GY (kg ha\(^{-1}\)) (NS)	GY (kg ha\(^{-1}\)) (S)	Bio (kg ha\(^{-1}\)) NS	Bio (kg ha\(^{-1}\)) S	AC (%)	GT	MP	CS	GS (%)	
IR87729-69-B-B-B	qDTY9.1, qDTY2.2, qDTY10.1, qDTY4.1	83	91	4312	6308	2011	1943	5541	407	1	1	94.4	
IR87728-491-B-B	qDTY9.1, qDTY2.2, qDTY4.1	82	95	6232	1041	1879	5255	3557	20.3	1	1	92.6	
IR87707-186-B-B-B	qDTY9.1, qDTY4.1, qDTY4.1	78	99	4550	6103	2068	2632	4865	3759	21.6	2	1 96.9	
IR87707-359-B-B-B	qDTY9.1, qDTY4.1, qDTY4.1	81	98	4638	6361	1934	2581	22.0	95.3				
IR87707-446-B-B-B	qDTY2.2, qDTY4.1	80	98	3752	4388	2556	3000	5911	3811	22.2	1	1	97.0
IR87707-445-B-B-B	qDTY2.2, qDTY4.1	77	96	5045	5844	2555	3023	5347	3244	22.3	1	1	96.9
IR 87707-182-B-B-B	qDTY2.2, qDTY4.1	78	97	3875	5225	1926	2891	22.1	96.9				
IR87728-162-B-B	qDTY9.1, qDTY3.2	84	94	6115	1147	1636	5642	3445	20.1	1	1	92.4	
IR87705-83-12-B	qDTY2.2, qDTY10.1	80	95	4796	5526	1916	2270	4946	3366	19.8	1	1	95.0
IR87705-80-15-B	qDTY9.1, qDTY4.1	81	89	3850	5516	2074	2151	17.8	94.6				
IR87705-72-12-B	qDTY2.2, qDTY4.1	80	91	3569	6090	1879	1892	6064	3661	19.2	2	1	96.5
IR87705-6-8-B	qDTY4.1	81	88	5399	6208	2152	2588	21.0	95.5				
IR87739-395-B-B	qDTY9.1	83	92	6627	2440	2046	4608	3762	19.1	2	1	93.4	
IR87705-36-3-B	qDTY10.1	82	97	5052	6909	2116	6047	3501	20.3	1	1	95.3	
IR64	qDTY4.1	80	96	2987	5435	636	1442	4860	3015	21.8	1/L	1	1

LSD 0.05
3 7 1053 690

DTF, Days to 50% flowering; PH, Plant height; GY, Grain yield; Bio, Straw biomass at harvest; S, Stress; NS, Non-stress; AC, Amylose content; GT, Gelatinization temperature (I, intermediate; L, low); MP, Milling potential; CS, Chalkiness score; GS, Genetic similarity.
doi:10.1371/journal.pone.0062795.t005
Drought stresses also pointed to differences in root development or regulation of root function rather than deep root growth. The physiological characterization of the BILs showed that +QTL lines maintained higher transpiration rates under drought, as evidenced by cooler canopy temperature and higher stomatal conductance than −QTL lines as soil water availability decreased (Fig. 1). We expected that this transpiration advantage in +QTL lines as soil water availability decreased (Fig. 1). We expected that this transpiration advantage in +QTL lines would be conferred by greater root growth at depth, but this was not observed. The similar shoot and root growth among +QTL and −QTL lines within BIL pairs suggests that the yield advantages under drought are not due to architectural or allometric differences in plant growth. Therefore, these results point to differences in water uptake among QTL lines; the QTL effect in the BILs appears to be associated with root anatomy/development or regulation of root function rather than deep root growth.

Gene expression in leaf, panicle, and root tissues under different drought stresses also pointed to differences in root development between the +QTL and −QTL BILs. Aggregation analysis of transcriptome data already available from genome-wide comparisons [21] allowed us to identify a subset of DEGs that aggregated in 14 blocks in the genome, which we then overlayed with QTL information independently generated in the present study, as well as from other published studies. The co-localization of DEGs in this study with published QTL suggests that some of the DEGs

Table 6. Yield of QTL-introgressed IR64 lines in the target ecosystem in Bangladesh, Nepal, and India.

Entry	Grain yield (kg ha⁻¹)	Rajshahi	Nepalgunj	Hazaribagh	Rewa	Raipur	Hyderabad 1	Hyderabad 2	Raipur	Rewa
IR70/70-4/B-8	467	170	1	2	3	4	5	6	7	8
IR70/70-46/B-8	492	109	1	2	3	4	5	6	7	8
IR70/70-122-B-8	544	137	1	2	3	4	5	6	7	8
IR64	599	980	1	2	3	4	5	6	7	8
LSD	240	156	3	2	4	5	6	7	8	9

doi:10.1371/journal.pone.0062795.t006
Multiple QTLs Enhance Yield under Drought in Rice

Plant Materials and Mapping Populations for Physiological and Genetic Study

Two BILs, IR72298-14-1-2 (BC3F4.4) and IR72298-5-6-B-18 (BC3F2.3), were derived from a cross between drought-tolerant traditional donor Aday Sel and drought-susceptible recurrent parent IR64. These backcross lines had been fixed for most of the agro-morphological traits such as days to 50% flowering (DTF), plant height (PH), grain yield (GY), and biomass (BIO), but showed differential performance under drought [22]. A set of around 60 single panicles from the two lines with differential performance under drought was selected and evaluated under drought stress in lowland conditions. For physiological characterization, we used two pairs of +QTL and −QTL BILs (IR72298-5-6-B-18 (+QTL) and IR72298-5-6-B-11 (−QTL) and IR72298-14-1-2-B-10 (+QTL), and IR72298-14-1-2-B-13 (−QTL) that showed contrasting performance for grain yield under drought. We presumed that the drought tolerant high yielding BILs contained QTL and drought susceptible low yielding BILs did not, and designated them as +QTL and −QTL lines respectively. Subsequently, +QTL lines (IR72298-5-6-B-18, IR72298-14-1-2-B-10) as well as IR72298-14-1-2, a drought tolerant line from the same population, were crossed with −QTL lines and with IR64 in different combinations to develop six mapping populations (Table S1) to identify, introgress, and pyramid QTL for grain yield under drought in the IR64 background.

Phenotypic Characterization

Phenotypic characterization

All field-based phenotyping experiments were conducted at the International Rice Research Institute in lowland transplanted conditions (IRRI, Los Baños, Philippines, 14°30’S, 121°15’E). Drought stress (stress) and well-watered control (non-stress) experiments were managed as described by Venuprasad et al. [17]. To characterize the physiological response of +QTL and −QTL BILs, three lowland field experiments were conducted (2009 wet season (2009WS), 2010 dry season (2010DS), and 2010DS in a rainout shelter (2010DS-RS)). The soil was classified as an Isohythermic Typic Hapludalf in 2009WS and 2010DS, and Aquandic Epiaquoll at the site used in 2010DS-RS, ranging in bulk density at 30 cm from 0.86 to 1.3 g cm⁻³. Four replicates per genotype were planted in randomized complete block design plots in blocks of 3-m length with 4 rows per plot. Soil water potential was monitored in all seasons with three tensiometers installed in each experimental field (Soilmoisture Equipment Corp, CA, USA) and it reached −70 kPa at a depth of 20 cm from 60–75 days after sowing in 2010DS, indicating that the most severe drought treatment was applied in that season (Fig. S2). Canopy temperature was measured at midday from a 3-m ladder by infrared thermography (NEC Avio Infrared Technologies Co. Ltd., Tokyo, Japan). Leaf stomatal conductance was measured at mid-day with a porometer (AP4, Delta-T Devices, Cambridge,
UK). Shoot growth dynamics were monitored by destructive harvests in 2009WS and 2010DS, and with NDVI measured around mid-day in 2010DS-ROS (Greenseeker Hand-held Sensor, NTech Industries, CA, USA). Root samples were taken at 94 DAS in 2009WS, at 73 DAS in 2010DS, and at 94 DAS in 2010DS-ROS to a depth of 60 cm using a 4-cm-diameter core sampler according to Henry et al. [38].

Six BC4F3 mapping populations were screened for grain yield under stress and non-stress conditions during the dry seasons (Table S1). An alpha lattice design with two replications and two 4-m rows per plot was used in all experiments. Based on cumulative rainfall, rainfall distribution, and yield reductions compared to the non-stress treatment, a range of drought severities was achieved. Severe droughts occurred in 2008DS, 2010DS, 2011DS, and 2012DS. In all experiments, data on DTF, PH, and GV per plot (normalized to 12% moisture content) were recorded as described in the standard evaluation system of IRRI [39].

Defining QTL Regions using Affymetrix Rice Genome

Array DNA Analysis

Based on screening with 600 SSR markers, low polymorphism was detected between the +QTL and −QTL BILs due to their similar genetic background. We used genomic DNA hybridization on an Affymetrix GeneChip Rice Genome Array to determine regions with significant differences between BILs of one pair (IR77290-5-6-B-18 (+QTL) and IR77290-5-6-B-11 (−QTL)). Probeset intensity and differentially hybridized probesets (at p<0.05) between the +QTL and −QTL BILs were determined using the R/Bioconductor packages Affy and R/MAANOVA. To identify genome blocks that were polymorphic between the lines of interest, aggregation of differentially hybridized probesets along the genome was determined at 1000 kb, with sliding windows of 500 kb as described by Bruce et al. [29]. Out of 17 candidate regions, 4 regions that showed significant differences between the +QTL and −QTL BILs in the GeneChip results were selected for further QTL analysis. A polymorphism survey between parents of the six mapping populations was conducted using MC-QTL software [44]. The same enrichment test was then made for the DEGs determined from the Agilent 44k oligoarray data as described by Moumeni et al. [21]. The DEGs determined from the reanalysis were tested for enrichment in the four QTL regions (gene models from the Michigan State University Rice Genome Annotation Project, release 6.1: http://rice.plantbiology.msu.edu/) using a Fisher exact test (significance p<0.05, method from McNally et al. [45]. The same enrichment test was then made for all DEGs against the GO-SLIM, Mapman (http://mapman.gabipd.org/), and Gramene QTL (http://gramene.org/qtl/) annotation of the MSU 6.1 genome. All microarray data and information on the transcriptomes of the three tissues are available at NCBI GEO accessions GSE30463 (root expression data), GSE30449 (shoot expression data) and GSE30462 (panicle expression data) (http://www.ncbi.nlm.nih.gov/geo/).

Identification of IR64 Introgression Lines

From among 2806 lines in six populations, a set of 84 lines with high yield under both stress and non-stress conditions, and with phenotypic similarity to IR64, was genotyped with foreground markers for QTL qDTY2.2, qDTY9.1, qDTY10.1, and qDTY10.1 to identify lines with combinations of one, two, three, and four QTL. Background genotyping of the 84 lines was carried out with 580 SSR markers randomly distributed throughout the genome to identify introgression lines with high genetic similarity to IR64. In 2011DS, 84 lines were evaluated for yield under stress and non-stress conditions. These 84 lines were analyzed for amylose content (AC), gelatinization temperature (GT), milling potential (MP), and chalkiness (GS) following the protocol as described in the standard evaluation system of IRRI [39] with the aim to identify lines with quality traits similar to those of IR64. The three best identified IR64 QTL lines (Table 6) were evaluated under non-stress and drought stress conditions at one site each in Bangladesh (Rajshahi) and Nepal (Nepalganj) and at four sites in India (Hyderabad, Rewa, Raipur, and Hazaribagh).

Supporting Information

Figure S1 QTLs identified for grain yield under drought stress.

(DOCX)

Figure S2 Major effect QTL DTY2.2 and DTY9.1 identified in multiple populations.

(DOCX)

Figure S3 Soil water potential measured by tensiometers in each field study season.

(DOCX)

Table S1 Mean for yield and related traits under 2007DS to 2010DS.

(DOCX)

Table S2 QTLs for yield related traits under drought stress and non-stress conditions during 2007DS to 2010DS.

(DOCX)

Table S3 QTLs for grain yield under drought identified by multi-population joint analyses.

(DOCX)
Table S4 Regions of aggregation of differentially expressed genes from the re-analyzed transcriptome dataset. (DOCX)

Table S5 Enriched Gramene QTL categories of the subset candidate genes in IR77298-14-I-2-B-10 (+QTL) and IR77298-14-I-2-B-13 (−QTL). (DOCX)

Table S6 Performance of 84 IR64-NILs under non-stress (NS) and drought stress (S) conditions. (DOCX)

Table S7 List of candidate genes associated with yield-under-drought QTLs. (DOCX)

Table S8 Candidate genes/gene families and their biological functions under stress conditions. (DOCX)

References
1. O’Toole JC (1982) Adaptation of rice to drought prone environments. In: Drought resistance in crops with emphasis on rice. Los Batos (Philippines): International Rice Research Institute. pp. 195–213.
2. Verulkar SB, Mandal NP, Dwivedi JL, Singh BN, Sinha PK, et al. (2010) Breeding resilient and productive genotypes adapted to drought prone rainfed ecosystems of India. Field Crop Res 117: 197–208.
3. Venuprasad R, Bool ME, Dalid CO, Bernier J, Kumar A, et al. (2009a) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167: 261–269.
4. Lafitte HR, Yongsheng G, Yan S, Li ZK, (2007) Whole-plant responses, key processes, and adaptation to drought: the case of J Exp Bot 58: 169–175.
5. Mackill D, Coffman W, Garrity D (1996) Rainfed Lowland Rice Improvement. International Rice Research Institute. Manila, Philippines.
6. Courtois B, McLaren G, Sinha PK, Prasad K, Yadava R, et al. (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breeding 5: 59–66.
7. Mandal NP, Sinha PK, Varian M, Shukla PD, Ferrag P, et al. (2010) Implications of genotype x environment interactions in breeding superior genotypes for favourable and unfavorable rainfed upland environments. Field Crop Res 118: 135–144.
8. Blum A (1983) Plant breeding for stress environments. Boca Raton, Florida (USA): CRC Press. 222 pp.
9. Sinclaire TR (2013) Challenges in breeding for yield increase for drought. Trends Plant Sci 16: 289–293.
10. Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crop Res 107: 221–231.
11. Shen L, Courtois B, McNally KI, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-assisted selection. Theor Appl Genet 105: 75–83.
12. Price AH, Steele KA, Moore BJ, Barraclough PB, Clark LJ (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-pegeneration ability. Theor Appl Genet 100: 49–56.
13. Steele KA, Price AH, Shaduldhar HE, Witcombe JR (2006) Marker assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112: 201–221.
14. Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101: 189–196.
15. Bernier J, Kumar A, Venuprasad R, Spander D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47: 305–316.
16. Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crop Res 103: 42–52.
17. Venuprasad R, Dalid CO, Delvalle M, Zhao D, Espiritu M, et al. (2009b) Identification and characterization of large-effect quantitative trait loci (QTL) for grain yield under lowland drought stress and aerobic conditions in rice using bulk-sedengen analysis (BSA). Theor Appl Genet 119: 170–190.
18. Vikram P, Swamy BPM, Dixit S, Ahmed HU, Sta Cruz MT, et al. (2011) qDTY1.1, a major QTL for rice grain yield under drought with consistent effect in multiple elite genetic backgrounds. BMC Genet 12: 89.
19. Xiao J, Li J, Yuan L, Tankelsky SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a sub specific cross. Theor Appl Genet 92: 230–244.
20. Tankelsky SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203.
21. Moumeni A, Satoh KK, Kondoli HH, Asano TT, Hosaka AA, et al. (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11: 174.
22. Venuprasad R, Impa SM, Veeresh Gowda RF, Atlin GN, Serraj R (2011) Rice Near-isogenic lines (NILs) containing a major QTL for grain yield under lowland drought stress. Field Crop Res 125: 38–46.
23. Bruce MA, Hass A, Bai J, Mauleon R, Diaz MG, et al. (2009) Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics 10: 129.
24. Nguyen HT, Bahu RG, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37: 1426–1434.
25. Zhang J, Zheng HG, Aarti AA, Pantuwan G, Nguyen TT, et al. (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103: 19–29.
26. Robin S, Pathan MS, Courtois B, Lafitte R, Carandang S, et al. (2003) Mapping osmotic adjustment in an advanced back-cross inbreds population of rice. Theor Appl Genet 107: 1289–1296.
27. You R, Xiong L, Xue W, Xing Y, Luo L, et al. (2005) Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet 111: 1127–1136.
28. Lancerac JC, Pantuwan G, Jongdev B, Tsoojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135: 384–399.
29. Babu RC, Nguyen BD, Chamareek V, Shimmugusandaram P, Chezhian P, et al. (2003) Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance. Crop Sci 43: 1457–1469.
30. Lafitte HR, Price A.H, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: association among traits and genetic markers. Theor Appl Genet 109: 1237–1240.
31. Srivithya A, Reddy VLN, Hariprasad AS, Jayaprada M, Srithar S, et al. (2010) Identification and mapping of landrace derived QTL associated with yield and its components in rice under different nitrogen levels and environments. Int J Plant Breeding Genet 4: 210–227.
32. Brodani C, Rangel PHN, Brodani RPY, Ferreira ME (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104: 1192–1203.
33. Hiratani S, Huang N, Courtois B, Venuprasad R, Shahidkar HE, et al. (2003) Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107: 679–690.
34. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, et al. (2003) Detection of secondary traits and field performance. Crop Sci 43: 1457–1469.
35. Zou GH, Mei HW, Liu HY, Liu GL, Hu SP, et al. (2005) Grain yield response to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet 112: 106–113.
36. Lin MH, Lin CW, Chen JC, Lin YC, Cheng SY, et al. (2007) Tagging rice drought-related QTL with SSR DNA markers. Crop, Environ Bioinformatics 4: 135–144.

Text S1 Supplementary References. (DOCX)

Acknowledgments
The authors acknowledge the development of initial BIL pairs by R. Venuprasad and G. Atlin, and technical support from M. Del Valle, L. Quatichon, J. Guevarra, M.T. Sta Cruz, and P. Maturan for the QTL study and R. Torres, L. Holongbayan, N. Turiang, L. Satioquia, for the physiological study.

Author Contributions
Conceived and designed the experiments: AK MSBP AH RM. Performed the experiments: MSBP AH HUA RM ST SV PNP MV RS RC ONS JLD SPD KKM RBY TLA BK KS. Analyzed the data: BPM S HUA AH RM SD PV. Contributed reagents/materials/analysis tools: AK KS AM SK HL. Wrote the paper: MSBP AH HL RM AK.

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e62795
38. Henry A, Veeresh Gowda RP, Torres RO, McNally KL, Serraj R (2011) Genetic variation in root architecture and drought response in Oryza sativa: rainfed lowland field studies of the Oryza SNP panel. Field Crop Res 120: 205–214.

39. IRRI (International Rice Research Institute) (1996) SES (Standard Evaluation System for Rice). International Network for Genetic Evaluation of Rice. IRRI, Los Baños, Philippines.

40. SAS Institute, Inc. (2004) SAS online doc 9.1.3. SAS Institute Inc., Cary, NC.

41. R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

42. Nelson JC (1997) Software for marker-based genomic analysis and breeding. Mol Breeding 3: 239–245.

43. Wang S, Basten CJ, Zeng ZB (2010) Windows QTL Cartographer 2.5. Department of Statistics. Available: http://statgen.ncsu.edu/qtlcart/wqtlcart.htm.

44. Jourjon MF, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21: 128–130.

45. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, et al. (2009) Genome wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Aca Sci USA 106: 12273–12278.