On a conjecture of V. V. Shchigolev

C. Bekh-Ochir and S. A. Rankin

November 10, 2009

Abstract

V. V. Shchigolev has proven that over any infinite field k of characteristic $p > 2$, the T-space generated by $G = \{x_1^p, x_2^p, \ldots\}$ is finitely based, which answered a question raised by A. V. Grishin. Shchigolev went on to conjecture that every infinite subset of G generates a finitely based T-space. In this paper, we prove that Shchigolev’s conjecture was correct by showing that for any field of characteristic $p > 2$, the T-space generated by any subset $\{x_1^p x_2^p, x_3^p, \ldots\}$, $i_1 < i_2 < i_3 < \cdots$, of G has a T-space basis of size at most $i_2 - i_1 + 1$.

1 Introduction

In [2] (and later in [3], the survey paper with V. V. Shchigolev), A. V. Grishin proved that in the free associative algebra with countably infinite generating set $\{x_1, x_2, \ldots\}$ over an infinite field of characteristic 2, the T-space generated by the set $\{x_1^2, x_2^2, \ldots\}$ is not finitely based, and he raised the question as to whether or not over a field of characteristic $p > 2$, the T-space generated by $\{x_1^p, x_2^p, \ldots\}$ is finitely based. This was resolved by V. V. Shchigolev in [4], wherein he proved that over an infinite field of characteristic $p > 2$, this T-space is finitely based. Shchigolev then raised the question in [4] as to whether every infinite subset of $\{x_1^p, x_2^p, \ldots\}$ generates a finitely based T-space. In this paper, we prove that over an arbitrary field of characteristic $p > 2$, every subset of $\{x_1^p, x_2^p, \ldots\}$ generates a T-space that can be generated as a T-space by finitely many elements, and we give an upper bound for the size of a minimal generating set.

Let p be a prime (not necessarily greater than 2) and let k denote an arbitrary field of characteristic p. Let $X = \{x_1, x_2, \ldots\}$ be a countably infinite set, and let $k_0(X)$ denote the free associative k-algebra over the set X.

Definition 1.1. For any positive integer d, let

$$S^{(d)} = S^{(d)}(x_1, x_2, \ldots, x_d) = \sum_{\sigma \in \Sigma_d} \prod_{i=1}^{d} x_{\sigma(i)},$$

where Σ_d is the symmetric group on d letters. Then define $S^{(d)}_1 = \{ S^{(d)} \}$, the T-space generated by $\{ S^{(d)} \}$, and for all $n \geq 1$, $S^{(d)}_{n+1} = (S^{(d)}_n S^{(d)}_1)^{S}$.

1
Let $I : i_1 < i_2 < \cdots$ be a sequence of positive integers (finite or infinite), and then for each $n \geq 1$, let $R_{n,I}^{(d)} = \sum_{j=1}^{n} S_{ij}^{(d)}$. When the sequence I is understood, we shall usually write $R_{n,I}^{(d)}$ instead of $R_{n,I}^{(d)}$. Finally, let $R_{\infty,I}^{(d)}$ (even if the sequence is finite) denote the T-space generated by $\{ S_{ij}^{(d)} \mid i \in I \}$. We shall prove that $R_{\infty,I}^{(d)}$ has a T-space basis of size at most $i_2 - i_1 + 1$.

Definition 1.2. Let $H_1 = \{ x_1^p \}^S$, and for each $n \geq 1$, let $H_{n+1} = (H_n H_1)^S$.

Then for any positive integer n, let $L_{n,I} = \sum_{j=1}^{n} H_{ij}$, and let $L_{\infty,I}$ denote the T-space generated by $\{ h_i \mid i \in I \}$. We prove that $L_{\infty,I}$ is finitely generated as a T-space, with a T-space basis of size at most $i_2 - i_1 + 1$. In particular, this proves that Shchigolev’s conjecture is valid.

2 Preliminaries

In this section, k denotes an arbitrary field of characteristic an arbitrary prime p, and V_i, $i \geq 1$, denotes a sequence of T-spaces of $k_0(X)$ satisfying the following two properties:

(i) $(V_i V_j)^S = V_{i+j}$;

(ii) for all $m \geq 1$, $V_{2m+1} \subseteq V_{m+1} + V_1$.

Lemma 2.1. For any integers r and s with $0 < r < s$, $V_{s+t(s-r)} \subseteq V_r + V_s$ for all $t \geq 0$.

Proof. The proof is by induction on t. There is nothing to show for $t = 0$. For $t = 1$, let $m = s - r$ in (ii) to obtain that $V_{2s-2r+1} \subseteq V_{s-r+1} + V_1$, then multiply by V_{r-1} to obtain $V_{r-1} V_{2s-2r+1} \subseteq V_{r-1} V_{s-r+1} + V_{r-1} V_1 \subseteq (V_{r-1} V_{s-r+1})^S + (V_{r-1} V_1)^S = V_s + V_r$. But then $V_{2s-r} = (V_{r-1} V_{2s-2r+1})^S \subseteq V_s + V_r$, as required.

Suppose now that $t \geq 1$ is such that the result holds. Then $V_{s+t(s-r)} = (V_{s+t(s-r)} V_{s-r})^S \subseteq ((V_s + V_r) V_{s-r})^S = V_{2s-r} + V_s \subseteq V_r + V_s + V_s = V_r + V_s$. The result follows now by induction. □

For any increasing sequence $I : i_1 < i_2 < \cdots$ of positive integers, we shall refer to $i_2 - i_1$ as the initial gap of I.

Proposition 2.1. For any increasing sequence $I = \{ i_j \}_{j \geq 1}$ of positive integers, there exists a set J of size at most $i_2 - i_1 + 1$ with entries positive integers such that the following hold:

(i) $1, 2 \in J$;

(ii) $\sum_{j=1}^{\infty} V_{ij} = \sum_{j \in J} V_{ij}$.

Proof. The proof of the proposition shall be by induction on the initial gap. By Lemma 2.1, for a sequence with initial gap 1, we may take $J = \{ i_1, i_2 \}$. Suppose now that $l > 1$ is an integer for which the result holds for all increasing
sequences with initial gap less than \(l \), and let \(i_1 < i_2 < \cdots \) be a sequence with initial gap \(i_2 - i_1 = l \). If for all \(j \geq 3 \), \(V_{i_j} \subseteq V_{i_1} + V_{i_2} \), then \(J = \{ 1, 2 \} \) meets the requirements, so we may suppose that there exists \(j \geq 3 \) such that \(V_{i_j} \) is not contained in \(V_{i_1} + V_{i_2} \). By Lemma 2.1, this means that there exists \(j \geq 3 \) such that \(i_j \notin \{ i_2 + ql \mid q \geq 0 \} \). Let \(r \) be least such that \(i_r \notin \{ i_2 + ql \mid q \geq 0 \} \), so that there exists \(t \) such that \(i_2 + tl < i_r < i_2 + (t + 1)l \). Form a sequence \(I' \) from \(I \) by first removing all entries of \(I \) up to (but not including) \(i_r \), then prepend the integer \(i_2 + tl \). Thus \(i'_1 \), the first entry of \(I' \), is \(i_2 + tl \), while for all \(j \geq 2 \), \(i'_j = i_r + (i_2 + tl) \leq l - 1 \). By hypothesis, there exists a subset \(J' \) of size at most \(i'_2 - i'_1 + 1 \leq l = i_2 - i_1 \) that contains 1 and 2 and is such that \(\sum_{j=1}^{\infty} V_{i'} = \sum_{j \in J'} V_{j} \). Set

\[
J = \{ 1, 2 \} \cup \{ r + j - 2 \mid j \in J', \ j \geq 2 \}.
\]

Then \(|J| = |J'| + 1 \leq i_2 - i_1 + 1 \) and

\[
V_{i_2 + tl} + \sum_{j=r}^{\infty} V_{i_j} = \sum_{j=1}^{\infty} V_{j} = \sum_{j \in J'} V_{j} = V_{i_2 + tl} + \sum_{j \geq 2} V_{j}
\]

and by Lemma 2.1, \(V_{i_2 + tl} \subseteq V_{i_1} + V_{i_2} \), so

\[
V_{i_1} + V_{i_2} + \sum_{j=r}^{\infty} V_{i_j} = V_{i_1} + V_{i_2} + V_{i_2 + tl} + \sum_{j=r}^{\infty} V_{i_j} = V_{i_1} + V_{i_2} + V_{i_2 + tl} + \sum_{j \geq 2} V_{j}
\]

\[
= V_{i_1} + V_{i_2} + \sum_{j \geq 3} V_{i_j}.
\]

Finally, the choice of \(r \) implies that

\[
\sum_{j \in J} V_{i_j} = V_{i_1} + V_{i_2} + \sum_{j \in J} V_{i_j} = V_{i_1} + V_{i_2} + \sum_{j=r}^{\infty} V_{i_j} = \sum_{j=1}^{\infty} V_{i_j}.
\]

This completes the proof of the inductive step. \(\square \)

We remark that in Proposition 2.1, it is possible to improve the bound from \(i_2 - i_1 + 1 \) to \(2(\log_2(2(i_2 - i_1))) \).

In the sections to come, we shall examine some important situations of the kind described above.

3 The \(R_n^{(d)} \) sequence

We shall have need of certain results that first appeared in [1]. For completeness, we include them with proofs where necessary. In this section, \(p \) denotes an arbitrary prime, \(k \) an arbitrary field of characteristic \(p \), and \(d \) an arbitrary positive integer.

The proof of the first result is immediate.
Lemma 3.1. Let d be a positive integer. Then
\[
S^{(d+1)}(x_1, x_2, \ldots, x_{d+1}) = \sum_{i=1}^{d+1} S^{(d)}(x_1, x_2, \ldots, \hat{x}_i, \ldots, x_{d+1})x_i
\]
(1)
\[
= S^{(d)}(x_1, x_2, \ldots, x_d)x_{d+1} + \sum_{i=1}^{d} S^{(d)}(x_1, x_2, \ldots, x_i, \ldots, x_{d}) \quad (2)
\]
\[
= x_{d+1}S^{(d)}(x_1, x_2, \ldots, x_d) + \sum_{i=1}^{d} S^{(d)}(x_1, x_2, \ldots, x_i, x_{d+1}, \ldots, x_d). \quad (3)
\]

Corollary 3.1. Let d be any positive integer. Then modulo $S^{(d)}_1$,
\[
S^{(d+1)}(x_1, x_2, \ldots, x_{d+1}) \equiv S^{(d)}(x_1, \ldots, x_d)x_{d+1} \equiv x_{d+1}S^{(d)}(x_1, \ldots, x_d).
\]

Proof. This is immediate from (2) and (3) of Lemma 3.1. \qed

We remark that Corollary 3.1 implies that for every $u \in S^{(d)}_1$ and $v \in k_0(X)$, $[u, v] \in S^{(d)}_1$. While we shall not have need of this fact, we note that in \cite{1}, Shchigolev proves that if the field is infinite, then for any T-space V, if $v \in V$, then $[v, u] \in V$ for any $u \in k_0(X)$.

The next proposition is a strengthened version of Proposition 2.1 of \cite{1}.

Proposition 3.1. For any $u, v \in k_0(X)$,
\[(i) \ (S^{(d)}_1uv)^S \subseteq S^{(d)}_1 + (S^{(d)}_1u)^S + (S^{(d)}_1v)^S; \text{ and}\]
\[(ii) \ (uvS^{(d)}_1)^S \subseteq S^{(d)}_1 + (uS^{(d)}_1)^S + (vS^{(d)}_1)^S.\]

Proof. We shall prove the first statement; the proof of the second is similar and will be omitted. By (1) of Lemma 3.1
\[
\sum_{i=1}^{d} S^{(d)}(x_1, \ldots, \hat{x}_i, \ldots, x_{d+1})x_i = S^{(d+1)}(x_1, \ldots, x_{d+1}) - S^{(d)}(x_1, \ldots, x_d)x_{d+1}
\]
and by (2) of Lemma 3.1 $S^{(d+1)}(x_1, \ldots, x_{d+1}) - S^{(d)}(x_1, \ldots, x_d)x_{d+1} \in S^{(d)}_1$. Let $v \in k_0(X)$. Then
\[
S^{(d)}(x_2, \ldots, x_{d+1})v + \sum_{i=2}^{d} S^{(d)}(x_1, \ldots, \hat{x}_i, \ldots, x_{d+1})x_i v
\]
\[
= \sum_{i=1}^{d} S^{(d)}(x_1, x_2, \ldots, \hat{x}_i, \ldots, x_{d+1})x_i v \in (S^{(d)}_1v)^S.
\]

Now for each $i = 2, \ldots, d$, we use two applications of Corollary 3.1 to obtain
\[
S^{(d)}(x_1, \ldots, \hat{x}_i, \ldots, x_{d+1})x_i v \equiv S^{(d+1)}(x_1, \ldots, \hat{x}_i, \ldots, x_{d+1}, x_i v)
\]
\[
\equiv S^{(d)}(x_2, \ldots, \hat{x}_i, \ldots, x_{d+1}, x_i v)x_1 \mod S^{(d)}_1.
\]
Thus
\[S^{(d)}(x_2, \ldots, x_{d+1})x_1v + \left(\sum_{i=2}^{d} S^{(d)}(x_2, \ldots, \hat{x}_i, \ldots, x_i)v\right)x_1 \in (S_1^{(d)}v)^S + S_1^{(d)}. \]

Thus for \(u \in k_0(X) \), we obtain \(S^{(d)}(x_2, \ldots, x_{d+1})uv \in (S_1^{(d)}u)^S + (S_1^{(d)}v)^S + S_1^{(d)}, \)
and so
\[(S_1^{(d)}uv)^S \subseteq (S_1^{(d)}u)^S + (S_1^{(d)}v)^S + S_1^{(d)}, \]
as required. \(\square \)

Corollary 3.2. Let \(d \) be any positive integer. Then the sequence \(S^{(d)}_n \), \(n \geq 1 \), satisfies

(i) For all \(m, n \geq 1 \), \((S_m^{(d)}S_n^{(d)})^S = S_{m+n+1}^{(d)} \).

(ii) For all \(m \geq 1 \), \(S_{2m+1}^{(d)} \subseteq S_m^{(d)} + S_1^{(d)} \).

Proof. The first statement follows immediately from Definition 3.1 by an elementary induction argument. For the second statement, let \(m \geq 1 \). Then by Proposition 3.1 for any \(u, v \in S_m^{(d)} \), \((S_1^{(d)}uv)^S \subseteq S_1^{(d)} + (S_1^{(d)}u)^S + (S_1^{(d)}v)^S \), which implies that \((S_1^{(d)}S_mS_n^{(d)})^S \subseteq S_1^{(d)} + (S_1^{(d)}S_m)^S \). By (i), this yields \(S_{2m+1}^{(d)} \subseteq S_1^{(d)} + S_m^{(d)} \), as required. \(\square \)

Theorem 3.1. Let \(I \) denote any increasing sequence of positive integers with initial gap \(g \). Then \(R^{(d)}_{\infty, I} \) is finitely based, with a \(T \)-space basis of size at most \(g + 1 \).

Proof. Denote the entries of \(I \) in increasing order by \(i_j, j \geq 1 \). By Corollary 3.2 and Proposition 2.1 there exists a set \(J \) of positive integers with \(|J| \leq i_2 - i_1 + 1 \) and \(R^{(d)}_{\infty, I} = R^{(d)}_{n, J} = \sum_{j \in J} S_j^{(d)} \). Since for each \(i \), the \(T \)-space \(S_i^{(d)} \) has a basis consisting of a single element, the result follows. \(\square \)

4 The \(L_n \) sequence

We shall make use of the following well known result. An element \(u \in k_0(X) \) is said to be essential if \(u \) is a linear combination of monomials with the property that each variable that appears in any monomial appears in every monomial.

Lemma 4.1. Let \(V \) be a \(T \)-space and let \(f \in V \). If \(f = \sum f_i \) denotes the decomposition of \(f \) into its essential components, then \(f_i \in V \) for every \(i \).

Proof. We induct on the number of essential components, with obvious base case. Suppose that \(n > 1 \) is an integer such that if \(f \in V \) has fewer than \(n \) essential components, then each belongs to \(V \), and let \(f \in V \) have \(n \) essential components. Since \(n > 1 \), there is a variable \(x \) that appears in some but not all essential components of \(f \). Let \(z_x \) and \(f_x \) denote the sum of the essential components of \(f \) in which \(x \) appears, respectively, does not appear. Then evaluate
at $x = 0$ to obtain that $f_x = f|_{x=0} \in V$, and thus $z_x = f - f_x \in V$ as well. By hypothesis, each essential component of f_x and of z_x belongs to V, and thus every essential component of f belongs to V, as required.

Corollary 4.1. $S_1^{(p)} \subseteq H_1$.

Proof. $S^{(p)}$ is one of the essential components of $(x_1 + x_2 + \cdots + x_p)^p$, and since $(x_1 + x_2 + \cdots + x_p)^p \in H_1$, it follows from Lemma 4.1 that $S^{(p)} \in H_1$. Thus $S_1^{(p)} \subseteq H_1$.

Corollary 4.2. For every $m \geq 1$, $S_m^{(p)} \subseteq H_m$.

Proof. The proof is an elementary induction, with Corollary 4.1 providing the base case.

Corollary 4.3. For any $u \in H_1$ and any $v \in k_0(X)$, $[u, v] \in H_1$.

Proof. It suffices to observe that

$$[x^p, v] = \sum_{i=0}^{p} x^i [x, v] x^{p-i} = \frac{1}{(p-1)!} S^{(p)}(x, \ldots, x, [x, v]),$$

which belongs to H_1 by virtue of Corollary 4.1.

We remark again that in [3], Shchigolev proves that if k is infinite, then every T-space in $k_0(X)$ is closed under commutator in the sense of Corollary 4.3. Since we have not required that k be infinite, we have provided this closure result (see also Lemma 4.1 below).

Lemma 4.2. For any $m, n \geq 1$, $(H_m H_n)^S = H_{m+n}$.

Proof. The proof is by an elementary induction on n, with Definition 1.2 providing the base case.

Lemma 4.3. For any $m \geq 1$, $(S_1^{(p)} H_{2m})^S \subseteq H_1 + H_{m+1}$ and $(H_{2m} S_1^{(p)})^S \subseteq H_1 + H_{m+1}$.

Proof. By Proposition 4.1 (i), for any $u, v \in H_m$, we have $S_1^{(p)} uv \subseteq S_1^{(p)} + (S_1^{(p)} u)^S + (S_1^{(p)} v)^S$. By Corollary 4.2, this gives $S_1^{(p)} H_m H_m \subseteq H_1 + (H_1 H_m)^S$, and then from Lemma 4.2, we obtain $S_1^{(p)} H_{2m} \subseteq H_1 + H_{m+1}$. The proof of the second part is similar.

Lemma 4.4. Let $m \geq 1$. For every $u \in H_m$ and $v \in k_0(X)$, $[u, v] \in H_m$.

Proof. The proof is by induction on m, with Corollary 4.3 providing the base case. Suppose that $m \geq 1$ is such that the result holds. It suffices to prove that for any $v \in k_0(X)$, $[x_1^p x_2^p \cdots x_m^p x_{m+1}^p, v] \in H_{m+1}$. We have

$$[x_1^p x_2^p \cdots x_m^p x_{m+1}^p, v] = [x_1^p x_2^p \cdots x_m^p, v] x_{m+1}^p + x_1^p x_2^p \cdots x_m^p [x_{m+1}^p, v].$$
By hypothesis, \([x_1^p x_2^p \cdots x_n^p, v] \in H_m\), while \(x_{m+1}^p \in H_1\) and thus by Corollary 4.3 \([x_{m+1}^p, v] \in H_1\) as well. Now by definition, \([x_1^p x_2^p \cdots x_n^p, v] x_{m+1}^p \in H_{m+1}\) and \(x_1^p x_2^p \cdots x_m^p x_{m+1}^p \in H_{m+1}\), which completes the proof of the inductive step. \(\square\)

Lemma 4.5. Let \(m \geq 1\). Then \(H_i S^{(p)} H_{2m-i} \subseteq H_1 + H_{m+1}\) for all \(i\) with \(1 \leq i \leq 2m - 1\).

Proof. Let \(m \geq 1\). We consider two cases: \(2m - i \geq m\) and \(2m - i < m\). Suppose that \(2m - i \geq m\), and let \(u \in H_i, w \in H_{m-1}\) and \(z \in H_{m-i+1}\). Then \(u S^{(p)} w z = ([u, S^{(p)} w] + S^{(p)} w u) z = [u, S^{(p)} w] z + S^{(p)} w u z\). Since \(u \in H_i\), it follows from Lemma 4.4 that \([u, S^{(p)} w] \in H_i\). But then by Lemma 4.2 \([u, S^{(p)} w] z \in H_{i+m-1} = H_{m+1}\). As well, by Corollary 4.1 and Lemma 4.2, \(S^{(p)} w u z \in S_1^{(p)} H_{m-1+i+m-i+1} = S_1^{(p)} H_{2m}\), and by Lemma 4.3 \(S^{(p)} H_{2m} \subseteq H_1 + H_{m+1}\). Thus \(u S^{(p)} w z \in H_1 + H_{m+1}\). This proves that \(H_i S^{(p)} H_{m-1} H_{m-i+1} \subseteq H_1 + H_{m+1}\), and so by Lemma 4.2 \(H_i S^{(p)} H_{2m-i} = H_i S^{(p)} (H_{m-1} H_{m-i+1})^S \subseteq H_1 + H_{m+1}\). The argument for the case when \(2m - i < m\) is similar and is therefore omitted. \(\square\)

Proposition 4.1. Let \(p > 2\). Then for every \(m \geq 1\), \(H_{2m+1} \subseteq H_1 + H_{m+1}\).

Proof. First, consider the expansion of \((x + y)^p\) for any \(x, y \in k_0(X)\). It will be convenient to introduce the following notation. Let \(J_p = \{1, 2, \ldots, p\}\). For any \(J \subseteq J_p\), let \(P_J = \prod_{i=1}^{p} z_i\), where for each \(i, z_i = x\) if \(i \in J\), otherwise \(z_i = y\). As well, for each \(i\) with \(1 \leq i \leq p - 1\), we shall let \(S^{(p)}(x, y; i) = S^{(p)}(x, x, \ldots, x, y, y, \ldots, y)\). Observe that \(S^{(p)}(x, y; i) = i!(p - i)! \sum_{|J| = i} P_J\).

We have
\[
(x + y)^p = \sum_{i=0}^{p} \sum_{J \subseteq J_p, |J| = i} P_J = y^p + x^p + \sum_{i=1}^{p-1} \frac{1}{i!(p - i)!} S^{(p)}(x, y; i).
\]

Let \(u = \sum_{i=1}^{p-1} \frac{1}{i!(p - i)!} S^{(p)}(x, y; i)\), so that \((x + y)^p = x^p + y^p + u\), and note that \(u \in S_1^{(p)}\). Then \((x + y)^{2p} = y^{2p} + x^{2p} + 2 x^p y^p + [y^p, x^p] + u^2 + (x^p + y^p) u + u(x^p + y^p)\).

Since \((x + y)^{2p}, x^{2p}, y^{2p}\), and, by Lemma 4.2 \([y^p, x^p]\) all belong to \(H_1\), it follows (making use of Corollary 4.2 where necessary) that \(2 x^p y^p \in H_1 + H_1 S_1^{(p)} + S_1^{(p)} H_1\).

Consequently, for any \(m \geq 1\),
\[
x_1^p \prod_{i=1}^{m} (2 x_i^p x_{2i+1}^p) \in H_1 (H_1 + H_1 S_1^{(p)} + S_1^{(p)} H_1)^m.
\]

By Corollary 4.1 Lemma 4.2 and Lemma 4.5 \(H_1 (H_1 + H_1 S_1^{(p)} + S_1^{(p)} H_1)^m \subseteq H_1 + H_{m+1}\), and since \(p > 2\), it follows that \(\prod_{i=1}^{2m+1} x_i^p \in H_1 + H_{m+1}\). Thus \(H_{2m+1} \subseteq H_1 + H_{m+1}\), as required. \(\square\)
Theorem 4.1 (Shchigolev’s conjecture). Let $p > 2$ be a prime and k a field of characteristic p. For any increasing sequence $I = \{ i_j \}_{j \geq 1}$, $L_{\infty, I}$ is a finitely based T-space of $k_0\langle X \rangle$, with a T-space basis of size at most $i_2 - i_1 + 1$.

Proof. By Lemma 4.2 and Proposition 4.1, the sequence H_n of T-spaces of $k_0\langle X \rangle$ meets the requirements of Section 2. Thus by Proposition 2.1, for any increasing sequence $I = \{ i_j \}_{j \geq 1}$ of positive integers, there exists a set J of positive integers such that $|J| \leq i_2 - i_1 + 1$ and $L_{\infty, I} = \sum_{j=1}^{\infty} H_{i_j} = \sum_{j \in J} H_{i_j}$. Since for each i, H_i has T-space basis $\{ x_1^{p_1} x_2^{p_2} \cdots x_i^{p_i} \}$, it follows that $L_{\infty, I}$ has a T-space basis of size $|J| \leq i_2 - i_1 + 1$.

Shchigolev’s original result was that for the sequence I^+ of all positive integers, L_{∞, I^+} is a finitely-based T-space, with a T-space basis of size at most p. It was then shown in [1], a precursor to this work, that L_{∞, I^+} has in fact a T-space basis of size at most 2 (the bound of Theorem 4.1 since $i_1 = 1$ and $i_2 = 2$).

It is also interesting to note that the results in this paper apply to finite sequences. Of course, if I is a finite increasing sequence of positive integers, then $L_{\infty, I}$ has a finite T-space basis, but by the preceding work, we know that it has a T-space basis of size at most $i_2 - i_1 + 1$.

References

[1] C. Bekh-Ochir and S. A. Rankin, On a problem of A. V. Grishin, preprint, arXiv:0909.2266.

[2] A. V. Grishin, T-spaces with an infinite basis over a field of characteristic 2, International Conference in Algebra and Analysis Commemorating the Hundredth Anniversary of N. G. Chebotarev, Proceedings, Kazan 5–11, June, 1994, p. 29 (Russian).

[3] A. V. Grishin and V. V. Shchigolev, T-spaces and their applications, Journal of Mathematical Sciences, Vol 134, No. 1, 2006, 1799–1878 (translated from Sovremennaya Matematika i-Ee Prilozheniya, Vol. 18, Algebra, 2004).

[4] V. V. Shchigolev, Examples of T-spaces with an infinite basis, Sbornik Mathematics, Vol 191, No. 3, 2000, 459–476.