Characterization of the complete plastome of *Cyperus rotundus* L. (Cyperaceae)

Renjie Wu\(^a\), Cong Yu\(^b\) and Yang Wu\(^a\)

\(^a\)College of Life Science, Jinggangshan University, Ji’an, China; \(^b\)Institute of Physical Education, Jinggangshan University, Ji’an, China

ABSTRACT

Cyperus rotundus L. (Cyperaceae) is a sedge belonging to the family Cyperaceae and is widely distributed in tropical and warmer temperate regions worldwide. It is one of the oldest traditional medicinal herbs in China, India, Japan, and Korea. In this study, we sequenced the complete chloroplast genome of *C. rotundus* on the Illumina HiSeq Platform. The chloroplast genome is 182,986 bp in length, with a typical quadripartite structure and consisting of a pair of inverted repeat (IR) regions (35,969 bp) separated by a large single-copy (LSC) region (100,733 bp) and a small single-copy (SSC) region (10,315 bp). It was predicted to contain a total of 133 genes, with an overall GC content of 33.26%. Phylogenetic analysis suggested *C. rotundus* is sister to *Eleocharis celluosa* and *Eleocharis dulcis.*

ARTICLE HISTORY

Received 21 September 2020
Accepted 29 October 2020

KEYWORDS

Cyperus rotundus; chloroplast genome; Cyperaceae; phylogenetic

CONTACT
Yang Wu
wuyangfenghao@126.com
College of Life Science, Jinggangshan University, Ji’an, Jiangxi 343009, China

The complete chloroplast genome of *C. rotundus* has a typical quadripartite structure and is a circular molecule 182,986 bp in length, consisting of two inverted repeats (IR) regions of 35,969 bp, separated by large single-copy (LSC) and small single-copy (SSC) regions of 100,733 bp and 10,315 bp, respectively. The overall GC content of the chloroplast genome was 33.26%, whereas the corresponding values of the LSC, SSC, and IR regions were 30.91%, 25.11%, and 37.73%, respectively. A total of 133 genes were annotated in the sequenced *C. rotundus* chloroplast genome, containing 41 transfer RNAs, 8 ribosomal RNAs and 84 protein-coding genes. These genes belong to several categories with different functions, and 34 duplicated genes are located in the IR regions, including 14 protein-coding genes (rps3, rpl22, rps19, rpl2, rps7, ndhB, rpl32, ycf68, rps15, ndhH, ndhA, ndhI, ndhG, and rpl33), seven tRNA genes (trnH-GUG, trnM-CAU, trnL-CAG, trnL-GAU, trnA-UGC, trnR-ACG, and trnN-GUU), and four rRNA genes (rrn16, rrn23, rrn4.5, and rrn5). The transcription regulation of genes was believed to be affected by introns and exons. There are 100 unique genes, among which 16 genes contained one intron, and one gene (ycf3) contained two introns. Chloroplast genomes have been proven to be significant in reconstructing phylogenetic relationships (Hong et al. 2017). To investigate the relationship of
C. rotundus, the chloroplast genomes of C. rotundus and 8 other species from Cyperaceae were aligned using MAFFT ver. 7.307 (Katoh and Standley 2013). A phylogenetic tree (Figure 1) was constructed with the maximum likelihood method using RAxML (Stamatakis 2014). The result of the phylogenetic analysis revealed that C. rotundus is not monophyletic. The C. rotundus is sister to Eleocharis celluosa and Eleocharis dulcis. The complete plastid genome sequence of C. rotundus will provide genetic and genomic information to promote its horticulture, officinal utilization and systematics research of Cyperaceae.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This research was supported by the National Natural Science Foundation of China [31260482].

Data availability statement
The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MT937176.

References
Anand P, Divya J, Rashmi TP. 2019. Pharmacognostical analysis of different parts of Cyperus rotundus L. Plant Sci Today. 6(sp1):607–612.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.
Himaja N, Anitha K, Joshna A, Pooja M. 2014. Review article on health benefits of Cyperus rotundus. Indian J Drugs. 2(4):136–141.
Hong SY, Cheon KS, Yoo KO, Lee HO, Cho KS, Suh JT, Kim SJ, Nam JH, Sohn HB, Kim YH. 2017. Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front Plant Sci. 8:1696.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
Liu C, Shi LC, Zhu YJ, Chen HM, Zhang JH, Lin XH, Guan YJ. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 13(1):715.
Okoli CAN, Shilling DG, Smith RL, Bewick TA. 1997. Genetic diversity in purple nutsedge (Cyperus rotundus L) and yellow nutsedge (Cyperus esculentus L.). Biol Control. 8(2):111–118.
Peerzada AM, Ali HH, Naeem M, Latif M, Bukhari AH, Tanveer A. 2015. Cyperus rotundus L.: traditional uses, phytochemistry, and pharmacological activities. J Ethnopharmacol. 174:540–560.
Qasim M, Abideen Z, Adnan MY, Ansari R, Gul B, Khan MA. 2014. Traditional ethnobotanical uses of medicinal plants from coastal areas. J Coast Life Med. 2(1):22–30.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.