Review

Summary of best evidence for enhanced recovery after surgery for patients undergoing lung cancer operations

Yutong Lu a,1, Zhenwei Yuan b,1, Yuqiang Han a,1, Yanfang Zhang a, Renhua Xu a,*

a School of Nursing, Binzhou Medical University, Yantai, Shandong, China
b Library, Binzhou Medical University, Yantai, Shandong, China

A R T I C L E I N F O

Keywords:
Lung cancer
Enhanced recovery after surgery
Evidence summary
Evidence-based medicine

A B S T R A C T

According to the cancer burden report released by the International Agency for Research on Cancer (IARC) in 2020, the mortality rate of lung cancer is 18%, ranking first in the world, and its morbidity and mortality rates are highest in China. Pneumonectomy is the preferred treatment for lung cancer patients, but surgery carries a significant risk of perioperative complications, which may affect the patient's functional recovery and quality of life. So, the rehabilitation of the large number of lung cancer patients in China requires greater attention. A number of studies have shown that the enhanced recovery after surgery (ERAS) protocol can reduce the risk of death, readmission rate, adjuvant chemotherapy time, postoperative pain level, anesthesia medication amount, length of stay, and hospitalization expenses. Foreign literature has successively issued guidelines to improve recovery among lung cancer patients, but Chinese-specific literature for patients undergoing lung cancer surgery or thoracic surgery remains inadequate. Some Chinese expert consensus have only considered part of the content of ERAS in thoracic surgery. To summary the evidence of the ERAS program for lung cancer surgery patients at home and abroad based on evidence-based medicine is necessary. Therefore, this study used evidence-based practical thinking as a guide to (1) evaluate, integrate, and summarize relevant evidence guidelines and data resources at home and abroad so as to construct an enhanced recovery program for lung cancer patients suitable for Chinese national conditions and (2) provide a scientific basis for future research and practice in related fields.

Introduction

Lobectomy is the treatment of choice in the early stage (stage I or II) of lung cancer, but even with minimally invasive surgery,1,2 the resulting surgical incision is still one of the most painful,3 and there is a significant risk of perioperative complications.4 Complications not only reduce patient satisfaction, but also may impact patients with a huge associated socioeconomic impact in terms of quality of life, functional recovery, and health-related quality of life.5 Therefore, the perioperative rehabilitation of lung cancer patients cannot be ignored.

The concept of enhanced recovery after surgery (ERAS) was first proposed by Danish doctor Henrik Kehlet in 1995 and introduced into colorectal surgery.6 So far, the application effect of ERAS has been fully verified. For different types of research, the main indicators used to evaluate the effectiveness of ERAS programs include the length of stay, complication rates, readmission rates, and hospitalization expenses. To date, ongoing research has focused on the potential impact of ERAS programs on chronic postoperative pain after thoracotomy, new opioid dependence, cancer recurrence, and the impact of enhanced recovery protocols on patient-reported outcomes and quality-of-life indicators.7 It is likely that the full potential of thoracic enhanced recovery protocols has not yet been realized and that more widespread adoption and study of these methods will lead to further improvements in patient care and outcomes.

The present study aimed to research and evaluate relevant available evidence of ERAS for patients with lung cancer surgery, then create a summary of the best evidence available to use as a reference in clinical practice, so as to construct an enhanced recovery after surgery program more suitable for application to lung cancer patients under Chinese national conditions and provide scientific reference for subsequent research.

* Corresponding author.
E-mail address: renhua_xu@bzc.edu.cn (R. Xu).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.apjon.2022.03.006
Received 26 January 2022; Accepted 11 March 2022
2347-5625/© 2022 The Authors. Published by Elsevier Inc. on behalf of Asian Oncology Nursing Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Methods

Identification of evidence-based issues

We used the PIPOST method as a guide to identify research questions, where “P” (population) is the target population for the application of evidence, that is, patients undergoing lung cancer surgery; “I” (intervention) is the recommended intervention, that is, enhanced recovery intervention; “O” (outcome) is the outcome indicator(s), that is, the patient’s complication rate, postoperative pain, and quality of life, etc.; “S” (setting) is the application evidence site; and “T” (type) is the type of evidence, that is, evidence-based guidelines, evidence summaries, practice recommendations, best-practice information sheets, systematic reviews, and expert consensus.

Evidence retrieval

According to the 6S model, we performed literature searches of Medline, PubMed, the Web of Science, the Cochrane Library, ClinicalKey, Embase, the Chinese Biomedical Literature Database (Sinomed), the China Academic Journals (CNKI) database, Wanfang Data, Ovid, the Registered Nurses’ Association of Ontario database, UpToDate, National Guideline Clearinghouse database, the Guidelines International Network, the National Institute for Health and Care Excellence database, the European Society for Medical Oncology, and other databases. We also conducted manual reviews of the references of relevant studies. The search time was from the January 1995 until May 2021, and each database was searched using the following keyword string: “lung cancer or lung carcinoma or lung neoplasm or lung malignancy or VATS lobectomy or thoracoscopic surgery” and “fast track or enhanced recovery after surgery or enhanced recovery or enhanced recovery pathway or multimodal perioperative care or multimodal perioperative management or perioperative surgical home or FTS or ERAS.” Additionally, the guideline used “fast track or enhanced recovery or multimodal perioperative or perioperative surgical home” and “lung cancer or VATS lobectomy or lobectomy or thoracic surgery” as search keywords.

Evidence inclusion and exclusion criteria

For a study to be included, the research object had to be lung cancer surgery patients; the research content had to include ERAS measures; and the research was either a guideline (in the last 10 years), evidence summary, best-practice information sheet, practice recommendation, expert consensus, or systematic review. In contrast, studies were excluded if the research content involved ERAS but the theme was not consistent with the content of the research; the study record was available as an abstract-only or translated version; the retrieved record was a news story, the study was only available behind a paywall/not available open access or other interpretation of a guideline or systematic review; the language of publication was Chinese or English; or the quality of the research was inadequate.

Evidence evaluation standard

To evaluate guidelines, the updated version of the Appraisal of Guidelines for Research and Evaluation Instrument II, which was published in December 2017 and is used to assess an article’s scope and purpose, stakeholder involvement, rigor of development, clarity of presentation, applicability, and editorial independence, was applied, considering six fields, 23 entries, and an additional two comprehensive evaluation items. Each item was scored from one to seven points, and the higher the score, the greater the degree of conformity of the item. Meanwhile, no corresponding quality-evaluation tool exists by which to evaluate evidence summaries, practice recommendations, and best-practice evidence information sheets, so we judged the quality of these types of evidence by tracing the original document of each evidence source and selecting the corresponding evaluation tool for quality evaluation. The 2017 updated version of the AMSTAR 2 evaluation criteria was used to assess systematic reviews. Finally, the 2016 version of the Australian Joanna Briggs Institute (JBI) Evidence-based Health Care Center corresponding evaluation standards for evaluation was used to assess expert opinions/consensuses, quasi-experimental study, randomized controlled trials, and cohort studies.

Evidence description and summary

The 2014 version of the JBI Evidence Pre-grading System was used for the evidence-level classification, and the 2014 version of the JBI Evidence Rank System was used for the recommended-level classification. According to the different research design types, the evidence level was divided into levels 1–5. The more rigorous the research design, the higher the level of evidence, and the recommended level of evidence was set according to the feasibility, suitability, validity, and clinical significance of the evidence, ultimately receiving either a Grade A recommendation (strong recommendation) or a Grade B recommendation (weak recommendation).

Literature evaluation quality process

A team of two main literature reviewers (both with experience in evidence-based nursing learning and related training), one literature search consulting expert, and one evidence-based field consulting expert was established to evaluate the literature quality. In the case of disagreement, third-party experts were consulted. Based on the principles of the latest released or updated high-quality guidelines, the team jointly decided on the process of document inclusion and evaluation.

Results

Literature search results and general information

A total of 14 articles were included, including five clinical practice guidelines, three expert consensus, four systematic reviews, and two evidence summaries. Detailed general information of the included studies is shown in Table 1.

Literature quality-evaluation results

The quality-evaluation results of the guidelines are presented in Table 2.

Quality evaluation results of expert consensus

This study included three expert consensus, two of them were evaluated as “unclear” for item six; in contrast, the rest of the ratings were “yes” and were allowed to be included.

Quality evaluation results of systematic reviews

A total of nine systematic reviews were included in this study. The studies by Huang et al, Li et al, and Fiore et al received “yes” ratings, except for item 3 of all three studies, which received a “no” rating. Considering the study by Sebio Garcia et al, except for items 3 and 15, which received “no” ratings, the rest of the items received “yes” ratings and were allowed to be included. In addition, five of the included articles were sourced from the evidence summary by Bibo et al, including one of the aforementioned included systematic reviews. Considering the remaining four articles, among the research items of Li et al, item 3 received a “no” rating, item 4 received an “unclear” rating, and the rest received “yes” ratings, respectively, while research items 3, 10, 15, and 16 received “no” ratings and the rest received “yes” ratings.
when considering the study by Steffens et al.29 All research items of Cavaleri et al.35 except for items 3 and 4 received “no” ratings, and the rest received “yes” ratings. Finally, the research items of Ni et al.36 items 3, 5, and 15 received “no” ratings; meanwhile, research items 2 and 4 received “partial yes” ratings, and the rest received “yes” ratings. The upon studies’ research design is relatively complete and all these studies are included.

Quality evaluation results of randomized controlled trials

A total of eight randomized controlled studies were included in this study, four of which were sourced from the evidence summary of Sørensen et al.27-32 In the two studies of Lijkendijk et al.34,35 item 3 received an “unclear” rating and items 4, 5, and 6 received “no” ratings, respectively. The research items of Holbek et al.33 received the same ratings as those recorded for Lijkendijk et al.34,35 although item 9 also received a “no” rating. Research items 1, 2, 4, and 5 of the study by Brunelli et al.9 received an “unclear” rating, and the rest received “yes” ratings. The other four studies were chosen from the report of Bibo et al.26,30-32 Of them, research items 2, 4, 5, 8, and 9 of Bhatia et al.33 received “unclear” ratings and the rest received “yes” ratings; research items 4 and 5 of Liu et al.26 received “no” ratings and the rest received “yes” ratings; research items 4, 5, 6, 8, and 9 of Laurent et al.38 received “no” ratings and the rest received “yes” ratings; and item 2 received an “unclear” rating, item 4 received a “no” rating, and the rest received “yes” ratings when considering the study of Lai et al.39 The upon studies’ research design is relatively complete and all these studies are included.

Evidence summary and analysis

Through the evaluation and integration of the evidence, 84 best-evidence points were summarized for five aspects, including risk assessment, preoperative management, intraoperative management, postoperative management, and discharge follow-up for patients with lung cancer surgery, as shown in Table 3.

Discussion

In this study, we focused on the related measures of enhanced recovery after surgery included in different guidelines, expert consensus, etc. in various databases, and committed to integrating relevant measures to promote a complete ERAS program. In our results, the main content of ERAS for lung cancer surgery patients is divided into five main components, risk assessment, preoperative management, intraoperative management, postoperative management, and discharge follow-up, but some of our included literature did not cover all the aspects. Regarding the parts of post-discharge follow-up and risk assessment, some literature’s content is not focused on these two aspects, but spread out in the article. Based on the results, we found that different literature on enhanced recovery techniques have different emphases. It is necessary to synthesize the evidence, and at regular intervals we need to update the new evidence and adjust the conflicting recommendations between the conclusions of the old and new evidence.

In the guidelines quality evaluation section, most of the included guidelines were rated B, with only one guideline rated A by Berna et al.14

Table 1
Evidence Source and Content.

Literature Source (institution/database)	Author	Literature Type	Publication/Update Date	Research Subject
Medlive	Berna et al.14	Evidence-based guideline	2021	Patient management for enhancing recovery after surgery of pneumonectomy patients
Medlive	Zhi et al.15	Evidence-based guideline	2020	Airway management of patients during the perioperative period of thoracic surgery
ERAS/ESCT	Batchelor et al.16	Evidence-based guideline	2018	Optimal perioperative management of patients undergoing thoracic surgery
Pubmed/PACTS	Piccioni et al.17	Evidence-based guideline	2020	Anesthesia care management during the perioperative period of thoracic surgery (pre-hospitalization and preoperative)
Pubmed/PACTS	Piccioni et al.18	Evidence-based guideline	2020	Anesthesia care management during the perioperative period of thoracic surgery (intraoperative and postoperative)
Medlive	Wang et al.19	Expert consensus	2019	Perioperative lung protection in thoracic surgery
Medlive	China enhanced recovery after surgery expert group31	Systematic review	2016	The management of enhanced recovery after surgery
Web of Science	Gao et al.21	Systematic review	2019	Enhanced recovery after surgery management strategy
Web of Science	Fiore et al.22	Systematic review	2015	The effect of enhanced recovery after lung resection
Embase	Huang et al.23	Systematic review	2020	Evaluation of the effect of avoiding the use of a thoracic drainage tube after thoracic surgery
OVID	Li et al.24	Systematic review	2017	Management effect of enhanced recovery after lung cancer surgery
OVID	Sebio Garcia et al.25	Systematic review	2016	The effect of preoperative exercise for patients with lung cancer
Web of Science	Bibo et al.26	Evidence summary	2021	Pulmonary rehabilitation/physiotherapy before lung resection
OVID	Sørensen et al.27	Evidence summary	2021	Optimal suction level of digital chest drainage device after lobectomy

Table 2
Methodological Evaluation of the Guidelines Included in This Study.

Study	Standardized Scores in Various Domains (%)	≥ 60%	≤ 30%	Quality Evaluation
Berna et al.14	Domain 1: Scope and Purpose 69.4 63.9 66.7 88.9 100 6 0 A			
Zhi et al.15	Domain 2: Stakeholder Involvement 66.7 58.3 62.5 91.7 45.8 4 0 B			
Batchelor et al.16	Domain 3: Rigor of Development 69.4 36.1 65.6 100 54.2 3 0 B			
Piccioni et al.17	Domain 4: Clarity of Presentation 72.2 50.0 74.0 88.9 42.1 91.7 4 0 B			
Piccioni et al.18	Domain 5: Applicability 72.2 50.0 74.0 88.9 52.1 91.7 4 0 B			

Y, recommended; YM, recommended after modification
Subject of Evidence	Evidence Content	Original Resource	Evidence Level	Recommendation
Nutritional status	The following indicators were used to determine whether the patient has a severe nutritional risk: (1) weight loss of ≥10%-15% within six months; (2) the patient's food intake is <60% of the recommended intake for >10 days; (3) the body mass index is <18.5 kg/m²; and (4) the albumin level is <30 g/L (no liver or kidney dysfunction)	Guideline Level 3	A	
Anemia	Patients with ASA level ≥ 3 are at greater risk of complications. Identify and investigate anemia.	Guideline Level 3	A	
Lung function assessment	Assess the patient’s dyspnea, airway inflammation, and smoking; perform a lung function test, and, if necessary, a cardiopulmonary exercise test; finally, FEV₁ is a must-check item before surgery.	Guideline Level 3	B	
Airway management	Patients undergoing thoracic surgery require airway preparation.	Guideline Level 5	B	
Anemia management	Iron therapy is the first-line treatment for iron-deficiency anemia; for non-special cases, blood transfusion or erythropoiesis should not be used for anemia just before surgery.	Guideline Level 3	B	
Preoperative education	Patients regularly receive special preoperative consultations; introduce treatment-related knowledge and various suggestions to promote recovery through oral, written, and multimedia forms.	Guideline Level 1	A	
Nutrition management	Preoperative malnourished patients should take oral nutrition supplements.	Guideline Level 1	A	
Quit smoking	Quit smoking ≥ 4 weeks before surgery.	Guideline Level 1	A	
Quit drinking	Stop drinking for ≥ 4 weeks before surgery.	Guideline Level 1	A	
Anemia management	Iron therapy is the first-line treatment for iron-deficiency anemia; for non-special cases, blood transfusion or erythropoiesis should not be used for anemia just before surgery.	Guideline Level 1	A	
Pre-rehabilitation	Pre-rehabilitation can improve the patient's exercise capacity and enhance preoperative lung function.	Systematic review	Level 1 A	
Fasting before surgery	Patients are allowed to drink clear liquid before anesthesia and 2 h before surgery, and patients should fast for 6 h before the induction of anesthesia.	Guideline Level 1	A	
Carbohydrate therapy	Regular use of clear liquids to supplement carbohydrates.	Guideline Level 1	A	
Medication before anesthesia	Avoid routine preoperative sedatives to relieve anxiety.	Guideline Level 1	A	
Venous Thrombosis Prevention	Thoracic surgery patients are at high risk of postoperative VTE.	Guideline Level 5	A	
Preventive use of antibiotics	Routine intravenous antibiotic prophylaxis should be completed within 60 min before the skin incision is made.	Guideline Level 3	B	
Prevent atrial fibrillation	Patients who took β-blockers before surgery should continue to take them after surgery.	Guideline Level 1	A	
Airway management	Patients undergoing thoracic surgery require airway preparation.	Guideline Level 5	B	
Preventive patients with pathogenic tracheal-colonization bacteria should use antibiotics rationally		Guideline Level 3	B	

(continued on next page)
Table 3 (continued)

Subject of Evidence	Evidence Content	Original Resource	Evidence Level	Recommendation
Mode of administration	Chlorhexidine oropharyngeal disinfection	Guideline Level 1	A	
	Use nebulized inhalation for patients who are unable to inhale, such as the elderly, the infirm, infants, and those with very low inspiratory flow rates	Guideline Level 1	A	
Catheter indwelling	Avoid routine nasogastric tube placement	Guideline Level 3	A	
	Low-risk patients should avoid routine use of urinary catheters and do not need to use urinary catheters for urine output	Guideline Level 5	B	
Intraoperative management	Warm technology	Guideline Level 1	A	
temperature monitoring	Use a convective active warming device to maintain the patient's body temperature	Guideline Level 1	A	
Lung protection	Establish lung isolation with double-lumen tube or bronchial blocker	Guideline Level 1	A	
	Use active lung-protection strategies during single-lung ventilation	Guideline Level 1	A	
	Non-intubation anesthesia is not recommended	Guideline Level 5	B	
	Lung protection strategy: low tidal volume (4-6 mL/kg), positive end-expiratory pressure; ventilation for ventilation measurement, and lung recruitment strategy	Guideline Level 1	A	
Anesthesia Technique	Use a combination of local anesthesia and general anesthesia to ease recovery from anesthesia and allow extubation as soon as possible	Guideline Level 5	A	
	Monitor the depth of inhalation anesthesia and intravenous anesthesia with an EEG bispectral index of 40–60; elderly patients should avoid a prolonged EEG bispectral index of < 45	Expect consensus	Level 5 B	
	Avoid PaCO2 of < 35 mmHg for a long time	Expect consensus	Level 5 A	
Preemptive analgesia	Reduce postoperative opioid use	Guideline Level 1	A	
	Intraoperative injection of magnesium sulfate or ketamine to relieve postoperative pain	Guideline Level 1	A	
Liquid management	As conventional capacity management, avoid very strict or loose liquid solutions, and focus on goal-oriented personalized capacity management	Guideline Level 2	A	
	Use vasopressors and fluid restriction to avoid insufficient intraoperative perfusion, balanced crystalloids solution is preferred	Guideline Level 1	B	
	Doppler-guided blood flow detection and titration for postoperative fluid management	Guideline Level 1	A	
Blood sugar control	Insulin is used to control blood sugar at < 10 mmol/L during surgery, and attention should be paid to avoid hypoglycemia	Expect consensus	Level 5 B	
Surgical technique: minimally invasive surgery	Use VATS	Guideline Level 1	A	
Air leakage treatment	Use surgical sealant (glue or patch) for intraoperative air leakage	Guideline Level 1	A	
	Consider the use of central venous catheters according to the specific situation	Guideline Level 5	A	
Postoperative management	Some patients may consider not using a thoracic drainage tube	Systematic review	Level 1 A	
Stay in ICU	Do not enter the ICU ward systematically after surgery	Guideline Level 3	A	
	For patients with comorbidities, intraoperative complications, and a risk of postoperative complications, consider them entering the intermediate care unit after surgery	Guideline Level 5	A	
Postoperative ventilation	Non-routine use of preventive non-invasive ventilation to reduce postoperative complications or hospital stay	Guideline Level 1	A	
	Unconventional use of high-flow oxygen therapy to reduce postoperative complications or hospital stay	Guideline Level 1	A	
Postoperative multimodal analgesia	Paravertebral block and thoracic epidural analgesia have equivalent analgesic effects; epidural analgesia is used in major surgical operations (e.g., thoracotomy, thoracoctomy, thoracic wall resection), and paravertebral block is used in VATS	Guideline Level 1	A	
	Dexamethasone can be given to prevent PONV and relieve pain	Guideline Level 1	A	
	For patients with chronic pain who have been taking opioids for a long time, consider ketamine	Guideline Level 1	A	
	Use a visual analog scoring method, digital rating scale, language rating scale, etc. to evaluate the pain of patients in different states	Expect consensus	Level 5 B	
	For patients with known or confirmed coagulation dysfunction, use thoracic paravertebral block	Guideline Level 1	A	
	The erector spine plane block is a kind of multimodal analgesia, which is suitable for VATS	Guideline Level 4	A	
	A fascial pain block, as a kind of multimodal analgesia, is suitable for VATS	Guideline Level 1	A	
Chest drainage tube management	Avoid conventional application of external negative pressure suction flow	Guideline Level 1	A	
	Use a digital drainage system	Guideline Level 1	A	

(continued on next page)
Table 3 (continued)

Subject of Evidence	Evidence Content	Original Resource	Evidence Level	Recommendation
When air leakage is no longer observed and the drainage tube produces 300 mL/day of non-blood, non-chylous fluid, immediately remove the chest drainage tube	Guideline	Level 1	A	
Drainage using a single chest tube	Guideline	Level 1	A	
Low attractive force reduces total fluid drainage and the duration of possible air leaks	Evidence summary	Level 1	A	
Early removal of the catheter	Guideline	Level 1	A	
Early removal of the nasogastric tube	Guideline	Level 3	A	
Early activity	Guideline	Level 2	A	
Patients with persistent cough after surgery affecting the quality of life should be assessed using the LCQ-MC scale	Guideline Level 4 B	Level 4 B	B	
Continuous cough after operation can be treated with inhaled corticosteroids and bronchodilators	Guideline	Level 1	A	
Clean the surgical incision regularly and check the situation	Expect consensus	Level 5	A	
Resume oral intake as soon as possible for patients who are malnourished before surgery, they should be placed on oral nutrition preparations after surgery; for those who are still malnourished when discharged from the hospital, they should be encouraged to continue oral nutrition preparations outside the hospital for several weeks	Expect consensus	Level 5	A	
Encourage patients to cough, breathe deeply, stimulate spirometry, practice oral care, raise the head of the bed (≥ 30°)	Expect consensus	Level 5	A	
Strengthen follow-up and testing after discharge; guide patients' self-care through the telephone or outpatient service	Expect consensus	Level 5	A	

ASA, American Society of Anesthesiologists; ECG, electroencephalography; FEV₁, amount of air forced from the lungs in 1 s; ICU, intensive care unit; LCQ-MC, Mandarin Chinese version of the Leicester Cough Questionnaire; PaCO₂, partial pressure of carbon dioxide; PONV, postoperative nausea and vomiting; VTE, venous thromboembolism; VATS, video-assisted thoracoscopic surgery

Most guidelines are of good quality, but are not rated as A due to lack of discussion or clear explanation in some domain (such as domains 2 and 5) resulting in low scores in that domain.

In the evaluation of the quality of expert consensus, some expert consensus have discrepancies or discrepancies with previous versions or viewpoints. Because this article believes that some discrepancies with previous viewpoints are updates of evidence or viewpoints, two of expert consensus were evaluated as "unclear" for item 6. Therefore, the quality of all included expert consensus is good. The content of their articles was included in the evidence rating of subsequent enhanced recovery surgery evidence.

In the quality assessment part of systematic reviews, some systematic reviews only included randomized controlled trials, and some included literature of other trial designs except RCTs. The quality of their research designs was all included in the quality rating.

In the RCT quality rating section, most studies did not describe allocation concealment and blinding, and there may be measurement bias. However, all literature showed that ERAS can promote perioperative rehabilitation with consistent research results, so the results are considered to be reliable, and the quality of the research design is considered to be included in the quality rating.

In summary table, we subdivided the five areas into smaller sections for convenience in clinical practice. It is hoped that this summary of evidence will help integrate existing knowledge into practice, align perioperative care and encourage future practice to address existing knowledge gaps. As the recommendation grade for most of the included ERAS elements is strong, the use of a systematic ERAS pathway has the potential to improve outcomes after thoracic surgery.

So far, the concept of enhanced recovery after surgery has been widely disseminated in China, but in practical applications, the extent of dissemination and implementation varies in different regions. In the application of thoracic surgery, the thoracic surgery department of West China Hospital, which is located in the southwest of China, is the first to create single-direction thoracoscopic lobectomy for lung cancer patients. So, West China Hospital has a faster speed and process to introduce and further develop ERAS for lung cancer patients. Hospitals in southwest China that were influenced by West China Hospital, accepted and adopted the concept of ERAS faster, too. Meanwhile, a series of thoracic surgery ERAS training courses led by West China Hospital also indirectly radiated to hospitals across the country. The top 3-A hospitals in the north and east of China have also successively carried out and continued to develop ERAS for thoracic surgery. At present, the process of implementing ERAS technology in a part of 3-A hospitals in China has been relatively mature, but there are individual and regional differences in the standardized application of ERAS by different medical staff in different hospitals. In addition, ERAS pays attention to the patient's sense of recovery experience. China is a large country composed of 56 ethnic groups. Different ethnic groups are distributed in different regions. The customs and cultural differences of patients still have an impact on the implementation of ERAS program. In general, the development of ERAS is inseparable from the continuous program improvement process and more detailed solutions for lung cancer patients. At the same time, the integration of medical care and multidisciplinary cooperation is also very important. Furthermore, it needs to be combined with the standardized application of ERAS clinical programs.

Limitations

Our research systematically searched 16 databases, guideline networks, etc., and manually searched the references of some relevant literature to fully include the relevant literature on enhanced recovery after surgery, but guidelines that are more than ten years old, the guidelines before the update, Consensus and other literature have been excluded, and there may be some bias. In addition, only Chinese and English databases were searched in this study, and some minor language literature were not included.

Conclusions

This article summarized the best evidence of ERAS techniques for patients undergoing lung cancer surgery and provided clinical medical staff with a scientific evidence-based basis for this technique. The literature included in this study were mainly written in English. The included articles report different concepts, attitudes, and understandings of enhancing recovery after surgery technology. There are obvious cultural and regional differences between foreign medical service systems and
domestic medical environments, so the application of ERAS technology in clinical practice should combine the best evidence and fully consider the status quo of the department, clinical experience, and patient conditions in order to develop a personalized and practical plan. In future research, further attention could be paid to the in-depth verification of the in-depth differences between primary and secondary interventions in patients with lung cancer surgery being managed under an ERAS protocol. This will help to provide richer and more reliable evidence resources for the enhanced recovery management of lung cancer patients in China and elsewhere and improve the science and effectiveness of clinical practice.

Authors’ contributions

Conceived and designed the analysis: Renhua Xu, Yutong Lu, Zhenwei Yuan, Yuqiang Han, Yanfang Zhang
Collected the data: Yutong Lu
Contributed data or analysis tools: Yutong Lu, Zhenwei Yuan
Performed the analysis: Yutong Lu
Wrote the paper: Renhua Xu, Yutong Lu, Zhenwei Yuan, Yuqiang Han, Yanfang Zhang

Funding

This work was supported by the Projects of Shandong Provincial Social Science Planning and Management Office (Grant No. 21CGJL01, RHX), Shandong Province Department of Science and Technology (Grant No. 2018GSF118159, RHX), Shandong Province Natural Science Foundation (Grant No.ZR2016CL08, RHX), and Binzhou Medical University (Grant No. JYKTZD2021012, RHX, HYCX2021-004, YTL).

Declaration of competing interest

None declared.

Acknowledgements

We thank Professor Jun-e Liu from the Capital Medical University School of Nursing for her thesis guidance.

References

1. Vachani A, Sequist LV, Spira A. AJRCCM: 100-year anniversary. The shifting landscape for lung cancer: past, present, and future. Am J Respir Crit Care Med. 2017;195:1150–1160.
2. Bogart JA, Wallen J. Management of patients with stage I lung cancer. J Oncol Pract. 2017;13:69–76.
3. Martin LW, Sarosiek BM, Harrison MA, et al. Implementing a thoracic enhanced recovery program: lessons learned in the first year. Ann Thorac Surg. 2018;105:1597–1604.
4. Templeton R, Greenhalgh D. Preoperative rehabilitation for thoracic surgery. Curr Opin Anaesthesiol. 2019;32:23–28.
5. Fawcett WJ, Mythen MG, Scott MJ. Enhanced recovery: joining the dots. Br J Anaesth. 2011;106:751–755.
6. Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth. 1997;78:606–617.
7. Hayward N, Nickell I, Zhang A, et al. Enhanced recovery after thoracic surgery. Semin Respir Crit Care Med. 2020;30:259–267.
8. Zha Z, Xu Y, Xing W, Zhou Y, Gu Y. The composition of different types of evidence based problems. J Nurses Training. 2017;32:1991–1994.
9. Dicenso A, Bayley L, Haynes RB. Accessing pre-appraised evidence: fine-tuning the SS model into a 6S model. Evid Base Nurs. 2009;12:99–101.
10. AGREE II. Users manual and 23-item instrument. Available from: https://www.agreetrust.org/about-the-agree2/protocol-introduction-to-agree-ii-; 15 Oct 2017. Accepted October 7, 2021. Last accessed.
11. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.
12. Joanna Briggs Institute. Supporting document for the Joanna Briggs Institute levels of evidence and grades of recommendation. Available from: https://jbi.global/sites/default/files/2019-05/%E8%BF%99%E6%9E%81%E7%AE%A1%E5%91%8A%E5%9B%BE%E6%9C%89%20%E6%80%BB%E7%AD%89%20%E8%AF%A2%E7%BB%93%E6%80%9C%E8%AF%89%20%E7%9C%8B%E5%88%97%20%E5%9C%96%E5%9B%A2%E6%88%90%E5%8D%8F%E8%AE%A1%E7%89%88-v2.pdf. Accessed October 7, 2021. Last accessed.
13. Wang C, Hu Y. JBI evidence pre-classification and evidence rank system (2014 edition). J Nurses Training. 2015;30:964–967.
14. Berman P, Quinell C, Assouad J, et al. Guidelines on enhanced recovery after pulmonary lobectomy. Anesth Crit Care Pain Med. 2021;40:100791.
15. Zhi X, Liu L. Chinese guidelines for perioperative airway management in thoracic surgery (2020 edition). Chin J Clin Thorac Cardiovasc Surg. 2021;28:251–262.
16. Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the ERAS Society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardiothorac Surg. 2019;55:91–115.
17. Piccioni F, Droghetti A, Bertani A, et al. Recommendations from the Italian inter-society consensus on Perioperative Anesthesia Care in Thoracic surgery (PACTS) part 1: preadmission and preoperative care. Perioper Med. 2020;9:37.
18. Piccioni F, Droghetti A, Bertani A, et al. Recommendations from the Italian inter-society consensus on Perioperative Anesthesia Care in Thoracic surgery (PACTS) part 2: intraoperative and postoperative care. Perioper Med. 2020;9:31.
19. Wang T, Li D, Cui Y, et al. Chinese expert consensus on lung protection in perioperative period of thoracic surgery (2019 edition). Chin J Clin Thorac Cardiovasc Surg. 2019;26:835–842.
20. Li Y, Li Y, Yang Y, et al. Expert consensus on perioperative management of enhanced recovery after surgery in China (2016). Zhonghua Wai Ke Za Zhi. 2016;54:413–419.
21. Gao S, Barrelo S, Chen L, et al. Clinical guidelines on perioperative management strategies for enhanced recovery after lung surgery. Transl Lung Cancer Res. 2019;8:1174–1187.
22. Fiore Jr JF, Bejjani J, Conrad K, et al. Systematic review of the influence of enhanced recovery pathways in elective lung resection. J Thorac Cardiovasc Surg. 2016;151:708–715, e706.
23. Huang L, Kehlet H, Holbek BL, Jensen TK, Petersen RH. Efficacy and safety of omitting chest drains after video-assisted thoracoscopic surgery: a systematic review and meta-analysis. J Thorac Dis. 2021;13:1130–1142.
24. Li S, Zhou K, Che G, et al. Enhanced recovery programs in lung cancer surgery: systematic review and meta-analysis of randomized controlled trials. Cancer Manag Res. 2017;9:667–670.
25. Sebio Garcia R, Yáñez Brage MJ, Giménez Mohuydens E, Granger CL, Denehy L. Functional and postoperative outcomes after preoperative exercise training in patients with lung cancer: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2016;23:486–497.
26. Bibi I, Goldblatt J, Merry C. Does preoperative pulmonary rehabilitation/physiotherapy improve patient outcomes following lung resection? Interact Cardiovasc Thorac Surg. 2021;32:933–937.
27. Sørensen MF, Holbek BL, Petersen RH, Christensen TD. What is the optimal level of suction on digital chest drainage devices following pulmonary lobectomy? Interact Cardiovasc Thorac Surg. 2021;32:938–941.
28. Li X, Li Y, Yan S, et al. Impact of preoperative exercise therapy on surgical outcomes in lung cancer patients with or without COPD: a systematic review and meta-analysis. Cancer Manag Res. 2019;11:1765–1777.
29. Steffens D, Beckenkamp PR, Hancock M, Wang Y, Wang X, Shihoe ADL. Preoperative exercise halve the postoperative complication rate in patients with lung cancer: a systematic review of the effect of exercise on complications, length of stay and quality of life in patients with cancer. Br J Sports Med. 2018;52:344.
30. Cavalieri V, Granger C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst Rev. 2017;6, CD005200.
31. Ni HJ, Pudanini B, Yuan XT, Li HF, Shi L, Yuan P. Exercise training for patients pre- and post-surgically treated for non-small cell lung cancer: a systematic review and meta-analysis. Integr Cancer Ther. 2017;16:63–73.
32. Brunelli A, Salati M, Pompili C, Refai M, Sabbatini A. Regulated tailored suction vs regulated seal: a prospective randomized trial on air leak duration. Eur J Cardiothorac Surg. 2013;43:899–904.
33. Holbek BL, Christensen M, Hansen HJ, Kehlet H, Petersen RH. The effects of low suction on digital drainage devices after lobectomy using video-assisted thoracoscopic surgery: a randomized controlled trial. Eur J Cardiothorac Surg. 2019;55:673–681.
34. Lijkendijk M, Licht PB, Neckelmann K. The influence of suction on chest drain duration after lobectomy using electronic chest drainage. Ann Thorac Surg. 2019;107:1621–1625.
35. Lijkendijk M, Neckelmann K, Licht PB. External suction and fluid output in chest drains after lobectomy: a randomized clinical trial. Ann Thorac Surg. 2018;105:393–398.
36. Bhata R, Kayser B. Preoperative high-intensity interval training is effective and safe in deconditioned patients with lung cancer: a randomized clinical trial. J Rehabil Med. 2019;51:712–718.
37. Liu Z, Qin T, Pei L, et al. Two-week multimodal prehabilitation program improves perioperative functional capability in patients undergoing thoracoscopic lobectomy for lung cancer: a randomized controlled trial. Aesthet Anesth. 2020;131:840–849.
38. Laurent H, Aubreton S, Galvaing G, et al. Preoperative respiratory muscle endurance training improves ventilatory capacity and prevents pulmonary postoperative complications after lung surgery. Eur J Phys Rehabil Med. 2020;56:73–81.
39. Lai Y, Wang X, Zhou K, Su J, Che G. Impact of one-week preoperative physical training on clinical outcomes of surgical lung cancer patients with limited lung function: a randomized trial. Ann Transl Med. 2019;7:544.