Groups of fast homeomorphisms of the interval and the ping-pong argument. (English)
J. Comb. Algebra 3, No. 1, 1-40 (2019)

Summary: We adapt the Ping-Pong lemma, which historically was used to study free products of groups, to the setting of the homeomorphism group of the unit interval. As a consequence, we isolate a large class of generating sets for subgroups of Homeo⁺(I) for which certain finite dynamical data can be used to determine the marked isomorphism type of the groups which they generate. As a corollary, we will obtain a criterion for embedding subgroups of Homeo⁺(I) into Richard Thompson’s group F. In particular, every member of our class of generating sets generates a group which embeds into F and in particular is not a free product. An analogous abstract theory is also developed for groups of permutations of an infinite set.

MSC:
20B07 General theory for infinite permutation groups
20B10 Characterization theorems for permutation groups
20E07 Subgroup theorems; subgroup growth
20E34 General structure theorems for groups
20F65 Geometric group theory

Keywords:
algebraically fast; dynamical diagram; free group; geometrically fast; geometrically proper; homeomorphism group; piecewise linear; ping-pong lemma; symbol space; symbolic dynamics; Thompson’s group; transition chain

Full Text: DOI arXiv

References:
[1] C. Bleak, An algebraic classification of some solvable groups of homeomorphisms, J. Algebra, 319 (2008), no. 4, 1368–1397. Zbl 1170.20024 MR 2383051 · Zbl 1170.20024
[2] C. Bleak, A minimal non-solvable group of homeomorphisms, Groups Geom. Dyn., 3 (2009), no. 1, 1–37. Zbl 1188.20037 MR 2466019 · Zbl 1188.20037
[3] C. Bleak and B. Wassink, Finite index subgroups of R. Thompson’s group F, to appear in Groups, Complexity, and Cryptology. arXiv:0711.1014
[4] M. G. Brin, The ubiquity of Thompson’s group F in groups of piecewise linear homeomorphisms of the unit interval, J. London Math. Soc. (2), 60 (1999), no. 2, 449–460. Zbl 0957.20025 MR 1724861 · Zbl 0957.20025
[5] M. G. Brin, Elementary amenable subgroups of R. Thompson’s group F, Internat. J. Algebra Comput., 15 (2005), no. 4, 619–642. Zbl 1110.20018 MR 2160570 · Zbl 1110.20018
[6] M. G. Brin and F. Guzmán, Automorphisms of generalized Thompson groups, J. Algebra, 203 (1998), no. 1, 285–348. Zbl 0930.20039 MR 1620674 40C. Bleak, M. G. Brin, M. Kassabov, J. T. Moore and M. C. B. Zaremsky
[7] M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), no. 3, 485–498. Zbl 0563.57022 MR 782231 · Zbl 0563.57022
[8] M. G. Brin and C. C. Squier, Presentations, conjugacy, roots, and centralizers in groups of piecewise linear homeomorphisms of the real line, Comm. Algebra, 29 (2001), no. 10, 4557–4596. Zbl 0986.57025 MR 1855112 · Zbl 0986.57025
[9] K. S. Brown, Finiteness properties of groups, Proceedings of the Northwestern conference on cohomology of groups (Evanson, Ill., 1985), J. Pure Appl. Algebra, 44 (1987), no. 1-3, 45–75. Zbl 0613.20033 MR 885095 · Zbl 0613.20033
[10] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42 (1996), no. 3-4, 215–256. Zbl 0880.20027 MR 1426438 · Zbl 0880.20027
[11] R. Fricke and F. Klein, Vorlesungen über die theorie der automorphen funktionen. Band 1, Teubner, Leipzig, 1897. Zbl 28.0334.01 MR 183872
[12] S. Kim, T. Kohba, and Y. Lodha, Chain groups of homeomorphisms of the interval and the circle, to appear in Ann. Sci. Éc. Norm. Supér.}
[13] F. Klein, Neue Beiträge zur Riemann’schen Functionentheorie, \textit{Math. Ann.}, 21 (1883), no. 2, 141–218. Zbl 15.0351.01 MR 1510193

[14] A. M. Macbeath, Packings, free products and residually finite groups, \textit{Proc. Cambridge Philos. Soc.}, 59 (1963), 555–558. Zbl 0118.03204 MR 148731

[15] A. Navas, Quelques groupes moyennables de difféomorphismes de l'intervalle, \textit{Bol. Soc. Mat. Mexicana (3)}, 10 (2004), no. 2, 219–244 (2005). Zbl 1077.57024 MR 2135961

[16] J. Tits, Free subgroups in linear groups, \textit{J. Algebra}, 20 (1972), 250–270. Zbl 0236.20032 MR 286898

[17] S. White, The group generated by \(x \downarrow x \uparrow 1 \) and \(x \downarrow x \uparrow \pi \) is free, \textit{J. Algebra}, 118 (1988), no. 2, 408–422. Zbl 0662.20024 MR 969681

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.