Abstract

AIM: To determine swallowing outcomes and hyolaryngeal mechanics associated with post radiation therapy head and neck cancer (rtHNC) patients using videofluoroscopic swallow studies.

METHODS: In this retrospective cohort study, video-
fluoroscopic images of rtHNC patients (n = 21) were compared with age and gender matched controls (n = 21). Penetration-aspiration of the bolus and bolus residue were measured as swallowing outcome variables. Timing and displacement measurements of the anterior and posterior muscular slings elevating the hyolaryngeal complex were acquired. Coordinate data of anatomical landmarks mapping the action of the anterior muscles (suprahyoid muscles) and posterior muscles (long pharyngeal muscles) were used to calculate the distance measurements, and slice numbers were used to calculate time intervals. Canonical variate analysis with post-hoc discriminant function analysis was performed on coordinate data to determine multivariate mechanics of swallowing associated with treatment. Pharyngeal constriction ratio (PCR) was also measured to determine if weak pharyngeal constriction is associated with post radiation therapy.

RESULTS: The rtHNC group was characterized by poor swallowing outcomes compared to the control group in regards to: Penetration-aspiration scale (P < 0.0001), normalized residue ratio scale (NRRS) for the valleculae (P = 0.002) and NRRS for the piriform sinuses (P = 0.003). Timing and distance measurements of the anterior muscular sling were not significantly different in the two groups, whereas for the PMS time of displacement was abbreviated (P = 0.002) and distance of excursion was reduced (P = 0.02) in the rtHNC group. A canonical variate analysis shows a significant reduction in pharyngeal mechanics in the rtHNC group (P < 0.0001). The PCR was significantly higher in the test group than the control group (P = 0.0001) indicating reduced efficiency in pharyngeal clearance.

CONCLUSION: Using videofluoroscopy, this study shows rtHNC patients have worse swallowing outcomes associated with reduced hyolaryngeal mechanics and pharyngeal constriction compared with controls.

Key words: Swallow mechanics; Post radiation; Head and neck cancer; Fluoroscopy; Anatomy

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Quality videofluoroscopic imaging of barium swallows is useful to determine swallowing outcomes for safe and efficient swallowing, conventional kinematics, and underlying functional anatomy associated with outcomes. This retrospective study of radiation therapy head and neck cancer (rtHNC) patients compared with age and gender matched controls and found that swallowing outcomes were significantly worse in rtHNC patients. Conventional kinematics indicated a reduction in laryngeal elevation. Computational analysis of swallowing mechanics using coordinate data of anatomical landmarks is here used to visualize impaired functional anatomy associated with poor outcomes in order to suggest particular targets for rehabilitation.

INTRODUCTION

The oropharyngeal phase of swallowing is a complex physiological process involving the conversion of a respiratory conduit into an alimentary canal in less than one second. Videofluoroscopic swallowing studies, also known as modified barium swallows (MBS), are the standard instrumental tool for assessing oropharyngeal swallowing safety and efficiency. Swallowing safety is threatened when a bolus penetrates or is aspirated into the airway. The retention of a bolus in the valleculae or piriform sinuses is an indication of swallowing inefficiency. Reduced hyolaryngeal elevation is thought to underlie incomplete clearance of the bolus from the pharynx[1]. Residual bolus retained in pharyngeal spaces such as the piriform sinuses (residue) is predictive of aspiration[2]. Both outcomes are observed among post radiation therapy head and neck cancer (rtHNC) patients[3]. However, the underlying mechanics associated with these outcomes is poorly understood.

Recent anatomical and magnetic resonance imaging (MRI) studies have shown that two muscular slings elevate the hyolaryngeal complex to stretch open the upper esophageal sphincter in young healthy adults[4-6]. It is not known if altered function of one or both of these slings is associated with poor swallowing outcomes (penetration, aspiration, or residue). To determine if poor swallowing outcomes are associated with altered function of the two-sling mechanism, we compared kinematic and morphological data collected from MBS imaging of rtHNC patients with age and gender matched controls.

The hyolaryngeal complex is comprised of the hyoid bone, laryngeal cartilages, and associated structures including the cricopharyngeus muscle, which forms the upper esophageal sphincter. Two muscular slings elevate the hyolaryngeal complex in swallowing[5] (Figure 1). The suprahyoid muscles (mylohyoid, geniohyoid, stylohyoid, and digastric) form an anterior sling with proximal attachments to the mandible and cranial base and distal attachments to the body of the hyoid, which translates force to the larynx via the thyrohyoid membrane and likely assisted by the thyrohyoid muscle[7]. A posterior sling comprised of the long pharyngeal muscles (stypo­pharyngeus, palatopharyngeus and salpingopharyngeus) has superior attachments to the stylohyoid process, auditory tube, and structures associated with the palate, and inferior attachments inserting primarily on the lateral pharyngeal wall and thyroid cartilage[7,8]. These muscular slings function to elevate the hyolaryngeal complex and...
Table 1  Inter-rater reliability of each swallowing outcome and kinematic measurement as determined by intraclass correlation coefficients

| Outcome Measurement                        | Intraclass Correlation Coefficient | Lower 95% CI Limit | Upper 95% CI Limit |
|-------------------------------------------|------------------------------------|--------------------|--------------------|
| Penetration-aspiration scale              | 0.87                               | 0.75               | 0.95               |
| Normalized residue ratio scale (valleculae)| 0.93                               | 0.85               | 0.97               |
| Normalized residue ratio scale (piriform recess) | 0.91                               | 0.82               | 0.96               |
| Anterior sling distance measurement       | 0.87                               | 0.75               | 0.95               |
| Posterior sling distance measurement      | 0.88                               | 0.77               | 0.94               |
| Anterior sling time measurement           | 0.88                               | 0.74               | 0.95               |
| Posterior sling time measurement          | 0.90                               | 0.77               | 0.96               |
| Pharyngeal constriction ratio             | 0.81                               | 0.66               | 0.90               |

![Figure 1 Two-sling mechanism for hyolaryngeal elevation in swallowing.](image)

The pharyngeal constrictor muscles and the long pharyngeal muscles were used to document the effect of treatment on the pharyngeal constrictor muscles and the long pharyngeal muscles described above. Additionally, the pharyngeal constrictor ratio (PCR), a reliable surrogate for strength of pharyngeal constriction, was measured for each group to document the effect of treatment on the pharyngeal constrictor muscles and the long pharyngeal muscles. We hypothesized that swallowing outcome variables, kinematic measurements, multivariate morphometric analysis, and PCR of the rtHNC group will indicate impairment when compared to the control group.

**MATERIALS AND METHODS**

Under a research protocol approved by the Boston University Medical Campus Institutional Review Board, a review of patient records was used to establish a test and control group. MBS imaging studies were recorded under routine radiographic protocols. An attempt was made to attach a radiopaque marker to each subject as an external scalar. Images were produced by a GE Precision Fluoroscopic unit and recorded digitally by a computer workstation at 30 frames/s. QuickTime™ software was used to trim each imaging study to include one episode of cued lateral view 5 mL swallows of thin liquid barium solution [Varibar Thin Liquid (40% wt/vol)].

Ninety-three patients with MBS studies were identified. Dysphagic patients related to rtHNC were placed in the test group \((n = 28)\), while patients complaining of swallowing difficulty who showed no instrumental evidence of dysphagia were placed in the control group \((n = 45)\). Of the 28 subjects in the rtHNC group, two lacked scalars and five could not be age or gender matched with the “normal” group. This left a final cohort of 21 subjects in each group composed of 14 males and 7 females with a mean age of 64 ± 13 years (test group) and 63 ± 11 years (control group).

Swallowing outcomes were collected along with spatial and temporal data from video files using ImageJ image analysis software equipped with QuickTime™ plug-ins [http://rsbweb.nih.gov/ij](http://rsbweb.nih.gov/ij). Raters blinded to group assignment analyzed video files. Reliability was tested for all measurements by using a second judge to re-measure variables in 50% of MBS studies. Inter-rater reliability is reported in Table 1. In swallowing episodes requiring more than one swallow to clear the bolus, measurements were taken from the first swallow.

To measure penetration and aspiration we used a 1-8 ordinal scale called the penetration-aspiration scale (PAS)[14]. In the PAS scoring system 1-2 is considered functionally normal, 3-5 indicates bolus penetration into the laryngeal vestibule, and 6-8 indicates aspiration of the bolus into the airway. To quantify residue we used the normalized residue ratio scale (NRRS) for the valleculae and piriform sinuses[15]. The NRRS is a continuous measurement that incorporates the ratio of residue relative to pharyngeal space (valleculae and piriform sinuses) and the amount of residue scaled by an internal anatomical scalar (C2-C4 measurement described above). Differences in PAS in the two groups were evaluated using Mann-Whitney U tests, and differences in NRRS for the valleculae and piriform sinuses were compared using two-tailed t-tests with Bonferroni correction \((α = 0.05, P < 0.025)\).
Kinematic data collected from video files included duration and displacement measurements representing the anterior and posterior slings. The movement of the hyoid towards the mandible represented the action of the anterior muscular sling (AMS). The movement of the larynx towards the cranial base represented the action of the posterior muscular sling (PMS). Each AMS and PMS time and distance measurement was measured at minimum and maximum elevation. For the AMS, the minimum position was defined as one frame prior to the first rostral movement of the hyoid related to pharyngeal swallowing and maximum position was defined as the most rostral movement of the hyoid during swallowing. For the PMS, the minimum position was defined as one frame prior to the first rostral movement of the larynx during pharyngeal swallowing and maximum position was defined as the frame where the larynx reaches its superior position during swallowing.

Duration of AMS and PMS movement was determined by dividing the difference in minimum and maximum frame numbers by 30 (fps). Displacement of the hyoid (representing the action of the AMS) and elevation of the posteroinferior edge of the cricoid toward the cranial base (representing the action of the PMS) were calculated using a coordinate mapping technique designed to track the components of the two-sling mechanism of hyolaryngeal elevation\(^{[16]}\) (Figure 2). Displacement measurements of the hyoid and larynx were mathematically calculated from coordinate data. Timing and spatial measurements were compared using two-tailed \(t\)-tests with Bonferroni correction (\(\alpha = 0.05, P < 0.025\)).

The nine coordinates mapping the elements of the anterior and PMSs in order to calculate kinematic variables were also used in a computational analysis of swallowing mechanics. The coordinate data set included nine coordinates for each subject at minimum and maximum excursion for the test group and control group. MorphoJ, software for geometric morphometric analysis, was used to perform a procrustes fit of all coordinates\(^{[17]}\) (Figure 3). The procrustes fit resolved differences in scale and rotation between all subjects at both excursion points. Following the procrustes superimposition of coordinates, a canonical variate analysis was executed with classification variables assigned to each set of coordinates named by condition (test and control group) and excursion (minimum and maximum position of the hyolaryngeal complex).

To evaluate differences in pharyngeal constriction between test and control groups, the PCR was measured using the lateral view MBS studies\(^{[13]}\). PCR is a ratio of the area of the hypopharynx at maximum constriction to the area of the hypopharynx at rest. Significance of differences in PCR was determined using a two-tailed \(t\)-test.

**RESULTS**

All swallowing outcome variables indicated significantly worse swallowing in the rtHNC group than in the control group. PAS scores were highly significantly (\(P < 0.0001\)) greater in rtHNC (4.43 ± 2.42) than in the control (1.29 ± 0.56), NRRS scores for the valleculae were significantly (\(P = 0.002\)) greater in rtHNC (0.22 ± 0.20) than in the control (0.05 ± 0.11), and NRRS scores for the piriform sinuses were significantly (\(P = 0.003\)) greater in HNC (0.31 ± 0.36) than in the control (0.05 ± 0.14).

The duration of PMS elevating the larynx was significantly (\(P = 0.002\)) briefer in rtHNC (0.29 ± 0.11 s) than in the control (0.48 ± 0.23 s), and the displacement of the larynx by the posterior sling muscles is significantly (\(P = 0.02\)) reduced in rtHNC (0.89 ± 0.63 cm) than in the control (1.41 ± 0.73 cm). While these PMS measurements showed significant differences, the AMS measurements did not (Figure 4).

PCR was highly significantly (\(P = 0.0001\)) worse in rtHNC (0.16 ± 0.11) than in the control (0.05 ± 0.04).

The scatter plot of canonical variate scores with classification variable highlighted indicated that CV1 is associated with the excursion of the hyolaryngeal complex and CV2 is associated the test and control groups (Figure 5). Swallowing mechanics indicated by differences in shape change was highly significantly (\(P\))
< 0.0001) reduced in the rtHNC ($D = 2.98$) than in the control ($D = 4.54$). Eigenvectors for each coordinate demonstrate the direction and degree of covariant shape change of the control (Figure 6) and test (Figure 7) groups for visual comparison.

**DISCUSSION**

This study shows significant differences in swallowing safety and efficiency as measured by PAS and NRRS, respectively. Kinematic measurements showed that reduced function of the PMS which elevates the hyolaryngeal complex is associated with rtHNC. In contrast, the anterior sling was not significantly reduced in the test group. Finally, a computational analysis of swallowing mechanics confirms that the long pharyngeal muscles are implicated in this cohort of dysphagic patients, and that extending the head and neck while swallowing is presumably attempted to compensate for loss of pharyngeal function.

**Swallowing outcomes**

Poor swallowing outcomes among rtHNC patients, including increased penetration-aspiration and residue, are consistent with other findings in the literature\[18,19\]. However, this is the first time that the NRRS has been used to quantify residue in head and neck cancer patients. These findings confirm that the test and control groups used here are appropriate for a retrospective pseudo-experimental design for investigating underlying mechanisms of dysphagia, specifically focusing on the role of the two-sling mechanism of hyolaryngeal elevation.

**Kinematic measurements**

Reduced hyolaryngeal elevation and hyoid movement has been noted among rtHNC patients\[20,21\], and reduced hyoid and laryngeal motility have also been associated with penetration-aspiration\[10,22\]. Association of the structures that underlie laryngeal elevation with poor swallowing outcomes has not been reported. Our data indicate a significantly diminished function of the PMS among rtHNC patients in both time and distance measurements with a large effect size changes for both timing and distance measurements (Cohen’s $D = 1.46$ for timing and 0.77 for distance). This is consistent with findings in the radiation oncology literature that the longitudinal PMS presumed to lie within the pharyngeal constrictor region of interest in computed tomography.
...the thyrohyoid membrane connects the hyoid and larynx univariate kinematic studies of swallowing. For example, tures that covary in function, a fact that complicates Deglutition is a dynamic process of interrelated struc-...
Relative importance of pharyngeal constriction

While this study demonstrates that the two-sling mechanism is important to hyolaryngeal elevation, we cannot say that reduced function of the two-sling mechanism is solely responsible for the poor swallowing outcomes. It is also possible that the functional difference between the groups could be explained by the significantly different degrees of pharyngeal constriction as measured by the PCR between the test and control groups (\(P = 0.0001\)). A higher PCR indicates weaker pharyngeal constriction\(^{[13]}\). A Spearman rank-order correlation of PCR with the PAS for the entire sample was \(r = 0.74\), whereas distance measurements of the PMS correlated with PAS was \(r = -0.42\), suggesting that poor swallowing outcomes in rtHNC patients are more strongly correlated with PCR than with PMS function. A recent study shows the correlation between PCR and residue as measured by NRRS\(^{[30]}\). However, it is likely that a reduced function of the posterior sling contributes to higher PCR. Leonard \(\text{et al}^{[31]}\) have suggested that reduced hyolaryngeal approximation, a function that can be related to the PMS, is associated with weaker pharyngeal constriction.

It remains unclear how to best characterize differences in the two-sling mechanism associated with disordered swallowing. While diminished PMS function is indicated by kinematic measurements, eigenvectors of coordinates also demonstrate differences in the skeletal elements of the two-sling mechanism (Figures 6 and 7). Computational analysis of swallowing is currently being developed to include tongue base retraction and pharyngeal wall movement to provide a comprehensive approach to determining swallowing mechanics underlying effective and disordered swallowing. Registration of soft tissue landmarks is a confounding factor in this development.

In conclusion, this study demonstrates significant differences in swallowing outcomes between rtHNC patients and “normal” controls. We demonstrate reduced laryngeal elevation kinematics attributable to deficits in the PMS in the rtHNC group compared to the control group. Furthermore, multivariate computational analysis of swallowing reveals functional differences in the two-sling mechanism associated with pathology including different positioning of skeletal levers in addition to reduced laryngeal elevation. Whether the shape changes in the test group represent compensatory or maladaptive behaviors remains unclear. While video-fluoroscopic imaging has been in use for some time, the investigative and diagnostic power of this modality is likely underutilized.
structural displacements in normal swallowing: a videofluoroscopic study. Dysphagia 2014; 29: 722-730 [PMID: 25142243 DOI: 10.1007/s00455-014-9568-z]

Jaffer NM, Ng E, Au FW, Steele CM. Fluoroscopic evaluation of oropharyngeal dysphagia: anatomic, technical, and common etiologic factors. AJR Am J Roentgenol 2015; 204: 49-58 [PMID: 25539237 DOI: 10.2214/AJR.13.12374]

Steele CM, Bailey GL, Chau T, Molfenter SM, Oshalla M, Waito AA, Zoratto DC. The relationship between hyoid and laryngeal displacement and swallowing impairment. Clin Otolaryngol 2011; 36: 30-36 [PMID: 21414151 DOI: 10.1111/j.1749-4486.2010.02219.x]

Kendall KA, McKenzie S, Leonard RJ, Gonçalves ML, Walker A. Timing of events in normal swallowing: a videofluoroscopic study. Dysphagia 2000; 15: 74-83 [PMID: 10758189 DOI: 10.1007/s00455-00016-0]

Leonard RJ, Kendall KA, McKenzie S, Gonçalves ML, Walker A. Structural displacements in normal swallowing: a videofluoroscopic study. Dysphagia 2000; 15: 146-152 [PMID: 10839828 DOI: 10.1007/s00455-00016-0]

Leonard R, Rees CJ, Belafsky P, Allen J. Fluoroscopic surrogate for pharyngeal strength: the pharyngeal constriction ratio (PCR). Dysphagia 2011; 26: 13-17 [PMID: 19856026 DOI: 10.1007/s00455-009-9258-4]

Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98 [PMID: 8721066 DOI: 10.1007/BF00417897]

Pearson WG, Molfenter SM, Smith ZM, Steele CM. Image-based measurement of post-swallow residue: the normalized residue ratio scale. Dysphagia 2013; 28: 167-177 [PMID: 23089830 DOI: 10.1007/s00455-012-9426-9]

Thompson TZ, Obeidin F, Davidoff AA, Hightower CL, Johnson CZ, Rice SL, Sokolove RL, Taylor BK, Tuck JM, Pearson WG. Coordinate mapping of orolaryngeal mechanics in swallowing. J Vis Exp 2014; (87) [PMID: 24836901]

Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011; 11: 353-357 [PMID: 21429143 DOI: 10.1111/j.1755-0998.2010.02924.x]

Feng FY, Kim HM, Lyden TH, Haxer MJ, Feng M, Worden FP, Chepeha DB, Eisbruch A. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 2007; 68: 1289-1298 [PMID: 17560051 DOI: 10.1016/j.ijrobp.2007.02.049]

Gillespie MB, Brodsky MB, Day TA, Lee FS, Martin-Harris B. Swallowing-related quality of life after head and neck cancer treatment. Laryngoscope 2004; 114: 1362-1367 [PMID: 15280708 DOI: 10.1097/00005537-200404000-00008]

Kendall KA, McKenzie SW, Leonard RJ, Jones C. Structural mobility in deglutition after single modality treatment of head and neck carcinomas with radiotherapy. Head Neck 1998; 20: 720-725 [PMID: 9790294]

Pauloski BR, Rademaker AW, Logemann JA, Newman L, MacCracken E, Gaziano J, Stachowiak L. Relationship between swallow motility disorders on videofluorography and oral intake in patients treated for head and neck cancer with radiotherapy with or without chemotherapy. Head Neck 2006; 28: 1069-1076 [PMID: 16823874 DOI: 10.1002/hed.200459]

Bingie L, Tong Z, Xinting S, Jiamin X, Guijin J. Quantitative videofluoroscopic analysis of penetration-aspiration in post-stroke patients. Neurol India 2010; 58: 42-47 [PMID: 20228462 DOI: 10.4103/0028-3886.60395]

Eisbruch A, Schwartz M, Rasch C, Vineberg K, Damen E, Van As CJ, Marsh R, Pameijer FA, Balm AJ. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 2008; 70: 1425-1439 [PMID: 15590174 DOI: 10.1016/j.ijrobp.2004.05.050]

Cook JD, Dosds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol 1989; 257: C478-C479 [PMID: 2596608]

Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am 2008; 19: 691-707, vii [PMID: 18940636 DOI: 10.1016/j.pmr.2008.06.001]

Shaw SM, Martino R. The normal swallow: muscular and neurophysiological control. Otolaryngol Clin North Am 2013; 46: 937-956 [PMID: 24262952 DOI: 10.1016/j.cot.2013.09.006]

Mepani R, Antonkin S, Massey B, Kern M, Logemann J, Pauloski B, Rademaker A, Easterling C, Shaker R. Augmentation of deglutitive thyrohyoid muscle shortening by the Shaker Exercise. Dysphagia 2009; 24: 26-31 [PMID: 18685991 DOI: 10.1007/s00455-008-9167-y]

Meng H, Murakami G, Suzuki D, Miyamoto S. Anatomical variations in stylopharyngeus muscle insertions suggest inter-individual and left/right differences in pharyngeal clearance function of elderly patients: a cadaveric study. Dysphagia 2008; 23: 251-257 [PMID: 18427989 DOI: 10.1007/s00455-007-9131-2]

Milorko KV, Pearson WG, Langmore SE. Effortful pitch glide: a potential new exercise evaluated by dynamic MRI. J Speech Lang Hear Res 2014; 57: 1243-1250 [PMID: 24686494 DOI: 10.1044/2014_JSLHR-S-13-0168]

Stokely SL, Peladeau-Pigeon M, Leigh C, Molfenter SM, Steele CM. The Relationship Between Pharyngeal Constriction and Post-swallow Residue. Dysphagia 2015; 30: 349-356 [PMID: 25920993 DOI: 10.1007/s00455-015-9606-5]

Leonard R, Kendall KA, McKenzie S. Structural displacements affecting pharyngeal constriction in nondysphagic elderly and nonelderly adults. Dysphagia 2004; 19: 133-141 [PMID: 15382802 DOI: 10.1007/s00455-003-0508-6]
