Integrals of Braided Hopf Algebras

Xijing Guo, Shouchuan Zhang
Department of Mathematics, Hunan University
Changsha 410082, P.R. China

Abstract

The faithful quasi-dual H^d and strict quasi-dual H^d' of an infinite braided Hopf algebra H are introduced and it is proved that every strict quasi-dual H^d' is an H-Hopf module. The connection between the integrals and the maximal rational H^d-submodule $H^{d\text{rat}}$ of H^d is found. That is, $H^{d\text{rat}} \cong \int^l_{H^d} \otimes H$ is proved. The existence and uniqueness of integrals for braided Hopf algebras in the Yetter-Drinfeld category (B_{H^d}, C) are given.

0 Introduction

Integrals of Hopf algebras were introduced by Larson and Sweedler in [9]. Their connection with the maximal rational H^*-module $H^{*,\text{rat}}$ of H^* was given by Sweedler in [16], i.e.

$$H^{*,\text{rat}} \cong \int^l_{H^*} \otimes H \quad \text{as } H\text{-Hopf modules}$$

Uniqueness of integrals was proved by Sullivan in [14]. The existence of non-zero integrals was given in [3, Theorem 5.3.2]. The integrals have proved to be essential instruments in constructing invariants of surgically presented 3-manifolds or 3-dimensional topological quantum field theories [6] [7] [18].

Recently braided tensor categories were introduced by Joyal and Street [5]. Algebraic structures within them, especially, braided Hopf algebras or “braided groups” as well as cross products and diagrammatic techniques for such algebraic constructions were studied by Majid in [10] [11]. See [12] [13] for introductions. Many braided groups are known, including ones obtained by transmutation [10] from the (co)quasitriangular Hopf algebras, and the universal enveloping algebra of a Lie color algebra, the Nichols algebras [1] and the Lusztig’s quantum algebras [8]. Therefore, it is interesting to extend the Hopf algebra constructions to the braided cases. For finite braided Hopf algebras (braided groups) H, i.e. braided Hopf algebra H with a left dual in braided tensor categories, Bespalov,
Kerler and Lyubashenko [2], and Takeuchi [17] introduced an integral and proved that the integral is an invertible object. Moreover, Takeuchi proved that the antipode is an isomorphism and formula (1) holds.

In this paper we study integrals of infinite braided Hopf algebras in braided tensor categories. A braided Hopf algebra is called an infinite braided Hopf algebra if it has no left duals (See [17]). An important example of infinite braided Hopf algebras is the universal enveloping algebra of a Lie superalgebra. So the integrals of infinite braided Hopf algebras should have important applications in both mathematics and mathematical physics. We introduce faithful quasi-dual H^d and strict quasi-dual H^d_\prime of a braided Hopf algebra H. We prove that every strict quasi-dual $H^{d'}$ is an H-Hopf module. By imitating Larson and Sweedler’s Hopf module construction, we obtain the connection between the integrals and the maximal rational H^d-submodule H^{drat} of H^d. That is, we prove $H^{drat} \cong \int_{H^d}^l \otimes H$. We give the existence and uniqueness of integrals for some infinite braided Hopf algebras living in the Yetter-Drinfeld category ($B BYD, C$).

This paper was organized as follows. In section 1, since it is possible that $\text{Hom}(H, I)$ is not an object in C for braided Hopf algebra H, we introduce strict (or faithful) quasi-dual $H^{d'}$, and prove that every strict quasi-dual $H^{d'}$ is an H-Hopf module. In section 2, we concentrate on braided tensor categories consisting of some braided vector spaces. We prove $H^{drat} \cong \int_{H^d}^l \otimes H$ for an infinite braided Hopf algebra H and the maximal rational H^d-submodule H^{drat} of H^d. That is, we obtain the connection between integrals and the maximal rational H^d-module H^{drat} of H^d. In section 3 we give the existence and uniqueness of integrals for infinite braided Hopf algebras living in the Yetter-Drinfeld category ($B BYD, C$). In section 4 we show the Maschke’s theorem for infinite braided Hopf algebras.

1 Strict quasi-duals and Hopf modules of braided Hopf algebras

In this section we introduce a faithful quasi-dual H^d and strict quasi-dual $H^{d'}$ of braided Hopf algebra H and show that $H^{d'}$ is an H-Hopf module. Using the fundamental theorem of Hopf modules, we show the formula similar to (1)

$$H^{d'} \cong (H^{d'})^{coH} \otimes H$$ as H-Hopf modules in C.

We first recall some notations. Let (C, \otimes, I, C) be a braided tensor category, where I is the identity object and C is the braiding. We also write $W \otimes f$ for $id_W \otimes f$ and $f \otimes W$ for $f \otimes id_W$. Since every braided tensor category is always equivalent to a strict braided
tensor category by [19, Theorem 0.1], we may view every braided tensor category as a strict braided tensor category.

Definition 1.1 Let H be a braided Hopf algebra in \mathcal{C}. If there is an algebra N in \mathcal{C} and a morphism $<,>$ from $N \otimes H$ to I such that

$$<,>(m \otimes H) = (<,> \otimes <,>)(N \otimes C_{N,H} \otimes H)(N \otimes N \otimes \Delta), \quad <,\eta, H> = \epsilon$$

then N is called a left quasi-dual of H. Moreover, if for any objects U, V and four morphisms $f : U \rightarrow V \otimes N$, $f' : U \rightarrow V \otimes N$, $g : U \rightarrow H \otimes V$ in \mathcal{C}, $(V \otimes <,>)(f \otimes H) = (V \otimes <,>)(f' \otimes H)$ implies $f = f'$ and $(<,> \otimes V)(N \otimes g) = (<,> \otimes V)(N \otimes g')$ implies $g = g'$, then N is called a faithful quasi-dual of H under $<,>$, written as H^d. In addition, if there are a left ideal, written as H^d, of H^d and two morphisms: $\rightarrow: H \otimes H^d \rightarrow H^d$ and $\rho: H^d \rightarrow H^d \otimes H$ in \mathcal{C} such that

$$<,>(\rightarrow \otimes H) = <,>(H^d \otimes m)(H^d \otimes C_{H,H})(C_{H,H^d} \otimes H)$$

$$\quad (H^d \otimes <,>)(C_{H^d,H^d} \otimes H)(H^d \otimes \rho) = m$$

and the constraint \rightarrow on $H \otimes H^d$ is a morphism to H^d, then H^d is called a strict quasi-dual of H.

Let $\leftarrow = (S \otimes H^d)C_{H^d,H}$. In fact, if H has a left dual H^* in \mathcal{C}, then H^* is a strict quasi-dual and faithful quasi-dual of H under evaluation $<,>$.

Lemma 1.2 Let H^d be a faithful quasi-dual of H under $<,>$ and $C_{H,H} = C_{H,H}^{-1}$. Then $C_{U,V} = (C_{V,U})^{-1}$, for $U, V = H$ or H^d.

Proof. See that $(H \otimes <,>)(C_{H^d,H} \otimes H) = (<,> \otimes H)(H^d \otimes C_{H,H^d}^{-1}) = (<,> \otimes H)(H^d \otimes C_{H,H})$. Thus $C_{H^d,H} = C_{H,H}^{-1}$. See that $C_{H^d,H} = C_{H^d,H}^{-1}C_{H,H}^{-1}C_{H,H} = C_{H^d,H}^{-1}C_{H^d,H}^{-1}C_{H,H}$ and $(H^d \otimes <,>)(C_{H^d,H} \otimes H) = (<,> \otimes H^d)(H^d \otimes C_{H^d,H}^{-1}) = (<,> \otimes H^d)(H^d \otimes C_{H^d,H})(H^d \otimes C_{H^d,H} \otimes H)$. Thus $C_{H^d,H} = C_{H^d,H}^{-1}$.

If $C_{H,H} = C_{H,H}^{-1}$, then we say that the braiding is symmetric on H. Throughout this section we always assume that the braiding is symmetric on H. For convenience, for $U, V = H$ or H^d we denote the braiding $C_{U,V}$ by C.

Lemma 1.3 $m(H^d \otimes \leftarrow) = (m \otimes H)(\otimes \leftarrow H^d \otimes H)(H^d \otimes H^d \otimes C)(H^d \otimes H^d \otimes \Delta)$

Proof. $<,>(m \otimes H)(H^d \otimes \leftarrow \otimes H) = (<,> \otimes <,>)(H^d \otimes C \otimes H)(H^d \otimes \leftarrow \otimes \Delta) = (<,<> \otimes H^d \otimes m)(H^d \otimes C \otimes C)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes S \otimes \Delta)$ and $<,>(\leftarrow \otimes H)(m \otimes H \otimes H)(\rightarrow \otimes H^d \otimes H \otimes H)(C \otimes H^d \otimes H \otimes H)(H^d \otimes C \otimes H \otimes H)(H^d \otimes H^d \otimes \Delta)$.
$C \otimes H)(H^d \otimes H^d \otimes \Delta \otimes H) = < > (m \otimes H)(\leftarrow \otimes H^d \otimes C)(H^d \otimes C \otimes S \otimes H)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes \Delta \otimes H) = < > (C \otimes H)(\leftarrow \otimes H^d \otimes m)(C \otimes H^d \otimes C)(H^d \otimes C \otimes S \otimes H)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes \Delta \otimes H) = < > (H^d \otimes m)(H^d \otimes C)(H^d \otimes H^d \otimes m \otimes H \otimes C)(H^d \otimes H^d \otimes \Delta \otimes S \otimes S)(H^d \otimes H^d \otimes H \otimes C)(H^d \otimes H^d \otimes H \otimes \Delta \otimes C)(H^d \otimes H^d \otimes \Delta \otimes H) = < > (H^d \otimes m)(H^d \otimes C \otimes S \otimes H)(H^d \otimes H^d \otimes m \otimes m)(H^d \otimes H^d \otimes S \otimes S \otimes H \otimes H \otimes C)(H^d \otimes H^d \otimes \Delta \otimes \Delta \otimes H) = < > (H^d \otimes m)(H^d \otimes C \otimes H)(H^d \otimes H^d \otimes m \otimes m)(H^d \otimes H^d \otimes S \otimes S \otimes H \otimes H \otimes C)(H^d \otimes H^d \otimes \Delta \otimes \Delta \otimes H) = < > (H^d \otimes m)(H^d \otimes C \otimes C)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes \Delta \otimes \Delta \otimes H) = < > (H^d \otimes m)(H^d \otimes C \otimes C)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes \Delta \otimes \Delta \otimes H).$ Thus we complete the proof. □

Theorem 1.4 H^d is an H-Hopf module.

Proof. (1) (H^d, \leftarrow) is a right H-module.

$< > (\leftarrow \otimes H)(\leftarrow \otimes H \otimes H) = < > (H^d \otimes m)(H^d \otimes C)(\leftarrow \otimes S \otimes H) = < > (H^d \otimes m)(H^d \otimes C)(H^d \otimes H \otimes m)(H^d \otimes H \otimes C)(H^d \otimes S \otimes S \otimes H) and < > (\leftarrow \otimes H)(H^d \otimes m \otimes H) = < > (\leftarrow \otimes H)(H^d \otimes m \otimes H) = < > (H^d \otimes C)(H^d \otimes S \otimes H)(H^d \otimes m \otimes H) = < > (H^d \otimes m)(H^d \otimes C)(H^d \otimes m \otimes H)(H^d \otimes C \otimes H)(H^d \otimes S \otimes S \otimes H).$ Thus $\leftarrow (\leftarrow \otimes H) = \leftarrow (H^d \otimes m).$ Obviously, $\leftarrow (H^d \otimes \eta) = id_{H^d \otimes \eta}.$ Therefore, (H^d, \leftarrow) is a right H-module.

(2) (H^d, ρ) is a right H-comodule.

See that $(H^d \otimes < >, \otimes \otimes < >)(C \otimes C \otimes H)(H^d \otimes C \otimes H \otimes H)(H^d \otimes H^d \otimes \rho \otimes H)(H^d \otimes H^d \otimes \rho) = m(H^d \otimes m) = m(m \otimes H) = (H^d \otimes < >, \otimes \otimes < >)(C \otimes C \otimes H)(H^d \otimes C \otimes \Delta)(H^d \otimes H^d \otimes \rho).$ Thus $(\rho \otimes H)\rho = (H^d \otimes \Delta)\rho.$ We also have that $(id \otimes \epsilon)\rho = (H^d \otimes < >, \otimes >)(C \otimes H)(\eta \otimes \rho) = m(\eta \otimes H^d) = id.$ Therefore (H^d, ρ) is a right H-comodule.

(3) See that $(H^d \otimes < >, \otimes >)(C \otimes C \otimes H)(H^d \otimes \rho)(H^d \otimes \leftarrow) = m(H^d \otimes \leftarrow) = m(m \otimes H)(\leftarrow \otimes H^d \otimes H)(C \otimes H^d \otimes \rho \otimes H)(H^d \otimes H^d \otimes C)(H^d \otimes H^d \otimes \Delta) = < > (\leftarrow \otimes H^d)(\leftarrow \otimes C \otimes C \otimes H)(H^d \otimes C \otimes H \otimes H)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes H^d \otimes \rho \otimes \Delta) = < > (\leftarrow \otimes H^d)(\leftarrow \otimes m)(H^d \otimes H^d \otimes C \otimes H)(H^d \otimes \rho \otimes \Delta).$ Thus $\rho \otimes \leftarrow = \leftarrow (\otimes m)(H^d \otimes C \otimes H)(\rho \otimes \Delta).$ From (1)(2)(3), we complete the proof. □

If C has equalizers, then the coinvariant $(H^d)^{coH}$ of H in H^d is an object in $C.$ Here $(H^d)^{coH}$ denotes the equalizer of the diagram
Combining Theorem 1.4 and the braided Hopf module fundamental theorem [17, Theorem 3.4], we have

Theorem 1.5 If \mathcal{C} has equalizers or $(H^d)^{coH}$ is an object in \mathcal{C}, then

$$H^d \cong (H^d)^{coH} \otimes H \quad (as \ H\text{-Hopf modules in } \mathcal{C}).$$

2 Connection between integrals and the maximal rational H^d-submodule H^{drat} of H^d

In this section, we concentrate on braided tensor categories consisting of some braided vector spaces. We obtain $H^{drat} \cong \int_H^d \otimes H$ for an infinite braided Hopf algebra H and the maximal rational H^d-submodule H^{drat} of H^d.

Throughout this section we assume the following unless otherwise stated: H is a braided Hopf algebra in \mathcal{C} with $C_{H,H} = C_{H,H}^{-1}$ and \langle , \rangle is the evaluation of H; there is a faithful quasi-dual $H^d \subseteq H^*$ We also assume that k is a field and there exists a forgetful functor $F : \mathcal{C} \to k\mathcal{M}$, which is the category of vector spaces over k such that $F(U \otimes V) = F(U) \otimes F(V)$ and $F(I) = k$.

Now we give the concept of rational H^d-modules. For H^d-module (M, α), if there is a morphism ρ from M to $M \otimes H$ in \mathcal{C} such that the condition of module-comodule compatibility

$$(MCOM) : (H \otimes \langle , \rangle)(C \otimes M)(H^d \otimes \rho) = \alpha$$

holds, then (M, α) is called rational H^d-module.

$$M^H = \{x \in M \mid h \cdot x = \epsilon(h)x \text{ for every } h \in H\}$$

is called the invariant of H on M. In particular, if M is a regular H-module (i.e. the module operation is m), then M^H is written as \int_H^d. We also denote

$$\{f \in H^* \mid g \ast f = g(1)f \text{ for every } g \in H^*\}$$

by \int_H^{d*}. Moreover, for some subset N of H^*, we also denote

$$\{f \in N \mid g \ast f = g(1)f \text{ for any } g \in N\}$$
by \(f^l_N \). Every element in \(f^l_{H^*} \) is called an integral on \(H \).

Dually, if \((M, \phi)\) is a left \(H \)-comodule, then the set

\[M^{coH} = \{ x \in M \mid \phi(x) = 1 \otimes x \} \]

is called the coinvariant of \(H \) in \(M \).

Corollary 2.1 Assume \(C \) has equalizers and there exists the maximal rational \(H^{drat} \)-submodule \(H^{drat} \) of regular module \(H^d \). If \(\rightarrow \) is a morphism from \(H \otimes H^d \) to \(H^d \) and the constraint on \(H \otimes H^{drat} \) is a morphism to \(H^{drat} \) in \(C \), then

\[H^{drat} \cong \int_{H^d}^l \otimes H \quad \text{(as } H \text{-Hopf modules in } C) \]

Proof. For convenience, let \(H^\square \) denote \(H^{drat} \). Obviously, \(H^\square \) is a strict quasi-dual of \(H \). By Theorem 1.5. It suffices to show \(f_{H^d}^l = (H^\square)^{coH} \). Obviously, \(f^l_{H^d} \subseteq (H^\square)^{coH} \).

Conversely, we see \(m = ((H^\square)^{coH} \otimes <,>)(C \otimes H)(H^d \otimes \rho) = ((H^\square)^{coH} \otimes <,>)(C \otimes \eta) = \epsilon \otimes id_{(H^\square)^{coH}} \). Thus \((H^\square)^{coH} \subseteq f_{H^d}^l \).

Consequently, \(f_{H^d}^l = (H^\square)^{coH} \). \(\square \)

The above corollary is a generalization of Sweedler’s relation (1). In fact, we have

Corollary 2.2 If \(H \) is an ordinary Hopf algebra, then \(f_{H^{rat}}^l = f_{H^*}^l \).

Proof. Obviously \(H^* \) is a faithful quasi-dual of \(H \) and \(H^{rat} \) is a strict quasi-dual of \(H \). By Corollary 2.1, we can complete the proof. \(\square \)

3 Existence and uniqueness of integrals for Yetter-Drinfeld module categories

In this section we give the existence and uniqueness of integrals for braided Hopf algebras in the Yetter-Drinfeld module category \((B, \mathcal{YD}, C)\). Throughout this section, \(H \) is a braided Hopf algebra in \((B, \mathcal{YD}, C)\) with finite-dimensional Hopf algebra \(B \). Let \(b_B \) denote the coevaluation of \(B \) and \(\tau : U \otimes V \to V \otimes U \) denote the flip \(\tau(x \otimes y) = y \otimes x \). If \((M, \alpha)\) is a left \(B \)-module, we can define a left \(B \)-module structure \(\alpha_M^* \) on \(M^* = \text{Hom}_k(M, k) \) such that \((b \cdot x^*)(x) = x^*(S(b) \cdot x) \) for any \(b \in B, x \in M, x^* \in M^* \). If \((M, \phi)\) is a left \(B \)-comodule, we can also define a left \(B \)-comodule structure \(\phi_M^* \) on \(M^* \) such that \((B \otimes <,>)(\phi_M^* \otimes M) = (S^{-1} \otimes <,>)(\tau \otimes M)(M^* \otimes \phi) \). In fact, \(\phi_M^* = (S^{-1} \otimes \hat{\alpha})(b_B \otimes M^* \otimes \phi) \), where \(<,> (\hat{\alpha} \otimes M) =(<,> \otimes <,>)(B^* \otimes \tau \otimes M)(B^* \otimes M^* \otimes \phi) \).

Lemma 3.1 (i) If \((M, \alpha, \phi) \in (B, \mathcal{YD}, C)\), then \((M^*, \alpha_M^*, \phi_M^*) \in (B, \mathcal{YD}, C)\) and the evaluation \(<,> \) is a morphism in \((B, \mathcal{YD}, C)\).
(ii) If \((H, \alpha, \phi)\) is a braided Hopf algebra in \(\mathcal{YD}(B)\) and the antipode \(S\) of \(B\) satisfies \(S = S^{-1}\), then \(\rightarrow\) is a morphism from \(H \otimes H^*\) to \(H^*\) in \(\mathcal{YD}(B)\).

(iii) Let \(f\) be a \(k\)-linear map from \(U\) to \(V\) and \(g\) \(k\)-linear from \(V\) to \(W\) with \(U, V, W\) in \(\mathcal{YD}(B)\). If \(f\) and \(gf\) are two morphisms in \(\mathcal{YD}(B)\) with \(\text{Im}(f) = V\), then \(g\) is a morphism in \(\mathcal{YD}(B)\).

(iv) Let \(M\) be an \(H^*\)-module in \(\mathcal{YD}(B)\), then \(M\) has the maximal \(H^*\)-submodule \(M^{rat}\) in \(\mathcal{YD}(B)\).

Proof. (i) It is clear that \(M^*\) is a \(B\)-module and \(B\)-comodule. For any \(b \in B, h^* \in M^*, h \in M\), on the one hand, \(\sum (b \cdot h^*)(-1) < (b \cdot h^*)_0, h > = \sum S^{-1}(h(-1)) < h^*, S(b) \cdot h(0) >\).

On the other hand,

\[
\sum b_1 h^*_{(-1)} S(b_3) < b_2 \cdot h^*_0, h > = \sum b_1 h^*_{(-1)} S(b_3) < h^*_0, S(b_2) \cdot h > = \sum b_1 S^{-1}((S(b_2) \cdot h)_{(-1)}) S(b_3) < h^*, (S(b_2) \cdot h)_0 > = \sum S^{-1}(h(-1)) b_2 S(b_3) < h^*, S(b_1) \cdot h(0) > = \sum S^{-1}(h(-1)) < h^*, S(b) \cdot h(0) >.
\]

Thus \(M^*\) is a Yetter-Drinfeld \(B\)-module.

Obviously, \(<, >\) is a \(B\)-module homomorphism. In order to show that \(<, >\) is a \(B\)-comodule homomorphism, it is enough to prove that \(\sum h^*_{(-1)} h_{(-1)} < h^*_0, h(0) > = 1_B < h^*, h >\) for any \(h^* \in M^*, h \in M\). Indeed, the left side = \(\sum S^{-1}(h_{(-1)2}) h_{(-1)1} < h^*, h(0) > = 1_B < h^*, h >\). This complete the proof.

(ii) For any \(b \in B, h, x \in H, h^* \in H^*\), we see that

\[
< b \cdot (h \rightarrow h^*), x > = < (h \rightarrow h^*), S(b) \cdot x > = < h^*, (S(b) \cdot x)h > \quad \text{and}
\]

\[
\sum_b < (b_1 \cdot h) \rightarrow (b_2 \cdot h^*), x > = < h^*, S(b_2) \cdot (x(b_1 \cdot h)) > = < h^*, (S(b_2)_1 \cdot x)(S(b_2)_2 \cdot (b_1 \cdot h)) > = < h^*, (S(b_3) \cdot x)((S(b_2)b_1)_1 \cdot h) > = < h^*, (S(b) \cdot x)h >.
\]

This show that \(\rightarrow\) is a \(B\)-module homomorphism. Similarly, we can show that it is a \(B\)-comodule homomorphism.

(iii) For any \(b \in B, u \in U\), since \(g(b \cdot f(u)) = g(f(b \cdot u) = b \cdot (gf(u))\), we have that \(g\) is a \(B\)-module homomorphism. Similarly, \(g\) is a \(B\)-comodule homomorphism.
(iv) It can be shown by usual proof (see [3, Theorem 2.2.6 and Corollary 2.1.19]) that every H^*-submodule and quotient H^*-module of rational H^*-module are rational. The direct sum of rational H^*-modules is a rational. Consequently, The maximal rational H^*-module M^{rat} is the sum of all rational H^*-modules of M. □

Every B-module category (B, M, C^R) determined by quasitriangular Hopf algebra (B, R) is a full subcategory of Yetter-Drinfeld module category $(B^B YD, C)$. Indeed, for any B-module (V, α), define $\phi(v) = \sum R^{(2)}_i \otimes R^{(1)}_i \cdot v$ for any $v \in V$, where $R = \sum_i R^{(1)}_i \otimes R^{(2)}_i$. It is easy to check that (V, α, ϕ) is a Yetter-Drinfeld B-module. Similarly, every B-comodule category (B, M, C^r) determined by coquasitriangular Hopf algebra (B, r) is a full subcategory of Yetter-Drinfeld module category $(B^B YD, C)$.

Example 3.2 (Existence of integrals) Let H be a braided Hopf algebra in $(B^B YD, C)$ and the antipode S of B satisfy $S = S^{-1}$. Then

$$H^{*\text{rat}} \cong \int_{H^*} H \quad \text{(as H-Hopf modules in $(B^B YD, C)$.)}$$

Example 3.3 (Existence of integrals) Let H be a braided Hopf algebra in $(B^B YD, C)$. If λ is a non-zero integral of $H \# B$ with $\lambda(a \otimes b) \neq 0$ for some $a \in H, b \in B$, then $\lambda(id \otimes b)$ is a non-zero integral of H, where $\lambda(id \otimes b)$ denote the k-linear map from H to k by sending h to $\lambda(h \otimes b)$ for any $h \in H$.

Proof. It follows from [13, Theorem 9.4.12] and [1, P11] that the bosonization $H \# B$ of braided Hopf H is a Hopf algebra. For any $f \in H^*$ and any $x \in H$, we see

$$(f \ast \lambda(id \otimes b))(x) = \sum f(x_1)\lambda(x_2 \otimes b)$$

$$= ((f \otimes \epsilon_B) \ast \lambda)(x \otimes b)$$

$$= f(1)\lambda(x \otimes b).$$

Thus $\lambda(id \otimes b)$ is a non-zero integral of H. □

Remark: In Example 3.3 it is possible that B is infinite-dimensional.

Example 3.4 (Existence and uniqueness of integrals) (see [13, Example 9.4.9]) If H is an ordinary coquasitriangular Hopf algebra with a non-zero integral λ, then the braided group analogue H of H has a non-zero integral λ in braided tensor category $(H^B M, C^r)$. Conversely, if H has a non-zero integral, then so does H. Indeed, since the comultiplication operations of H and H are the same, we have that the multiplications of H^* and H^* are the same, so the integrals of H and H are the same. □
Example 3.5 (The uniqueness of integrals) Let \((H, \alpha, \phi)\) be a braided Hopf algebra in \((\mathcal{YD}, C)\) and \(B\) is a finite-dimensional Hopf algebra. If \(\phi\) is trivial, then \(\dim \int_H^1 = 0\) or 1.

Proof. Assume that \(H\) has two linearly independent non-zero integrals \(u^*\) and \(w^*\). Let \(v^*\) is a non-zero integral of \(B\). By [3, Lemma 1.3.2], \((H \otimes B)^* = H^* \otimes B^*\) as vector spaces. Since the \(B\)-comodule operation of \(H\) is trivial, we have that \(u^* \otimes v^*\) and \(w^* \otimes v^*\) are two linear independent integrals of \(H \# B\). This contradicts to the fact \(\dim \int_{(H \# B)^*}^1 = 0\) or 1 (see, [3, Theorem 5.4.2]). \(\Box\)

4 Maschke’s theorem for braided Hopf algebras

In this section we give the relation between the integrals and semisimplicity of braided Hopf algebras. Although authors in [4] gave the Maschke’s theorem for rigid braided Hopf algebras, it is not known if every semisimple braided Hopf algebra is rigid or finite. Thus our research of the Maschke’s theorem for infinite braided Hopf algebras is useful.

Throughout this section we assume that there exists a forgetful functor \(F : C \to k\mathcal{M}\), such that \(F(U \otimes V) = F(U) \otimes F(V)\) and \(F(I) = k\), where \(k\) is a field.

Theorem 4.1 (The Maschke’s theorem) If \(H\) is a finite dimensional braided Hopf algebra living in a braided tensor category \(C\), then \(H\) is semisimple as ordinary algebra over field \(k\) iff \(\epsilon(f_H^1) \neq 0\);

Proof. If \(H\) is semisimple then there is a left ideal \(I\) such that

\[H = I \oplus \ker \epsilon. \]

For any \(y \in I, h \in H\), we see that

\[hy = ((h - \epsilon(h))1_H + \epsilon(h))1_H y \]
\[= (h - \epsilon(h))1_H y + \epsilon(h)y \]
\[= \epsilon(h)y \quad \text{since } (h - \epsilon(h))1_H y \in \ker \epsilon I = 0. \]

Thus \(y \in f_H^1\), and so \(I \subseteq f_H^1\), which implies \(\epsilon(f_H^1) \neq 0\).

Conversely, if \(\epsilon(f_H^1) \neq 0\),

let \(z \in f_H^1\) with \(\epsilon(z) = 1\).

Say \(M\) is a left \(H\)-module and \(N\) is an \(H\)-submodule of \(M\). Assume that \(\xi\) is a \(k\)-linear projection from \(M\) to \(N\). We define

\[\mu(m) = \sum z_1 \cdot \xi(S(z_2) \cdot m) \]
for every $m \in M$. It is sufficient to show that μ is an H-module projection from M to N. Obviously, μ is a k-linear projection. Now we only need to show that it is an H-module map. We see that $\alpha(H \otimes \mu) = \alpha(H \otimes \alpha)(H \otimes id \otimes \xi)(H \otimes id \otimes \alpha)(H \otimes id \otimes id \otimes m \otimes m)(H \otimes id \otimes S \otimes S \otimes H \otimes M)(H \otimes \Delta(z) \otimes \Delta)(\Delta \otimes M) = \alpha(H \otimes \xi)(H \otimes \alpha)(H \otimes m \otimes M)(H \otimes S \otimes H \otimes M)(m \otimes C \otimes H \otimes M)(H \otimes \Delta(z) \otimes \Delta \otimes M)(\Delta \otimes M) = \alpha(H \otimes \xi)(H \otimes \alpha)(H \otimes S \otimes H \otimes M)(H \otimes C \otimes id \otimes H \otimes M)(\Delta \otimes \Delta(z) \otimes H \otimes M)(\Delta \otimes M) = \alpha(H \otimes \xi)(H \otimes \alpha)(H \otimes m \otimes M)(H \otimes S \otimes H \otimes M)(\Delta \otimes H \otimes M)(m \otimes H \otimes M)(H \otimes C \otimes M)(\Delta \otimes z \otimes M) = \alpha(id \otimes \xi)(id \otimes \alpha)(id \otimes m \otimes M)(id \otimes S \otimes H \otimes M)(\Delta(z) \otimes H \otimes M) = \mu \circ \alpha.

Thus μ is an H-module morphism.

Remark: Theorem 4.1 needs not $C_{H,H} = C_{H,H}^{-1}$.

It is well-known that an ordinary algebra H over a field k is called semisimple if every H-submodule N of every H-module M is a direct summand, i.e. if there is a H-submodule L such that $M = N \oplus L$. Similarly we have the following definition. Algebra H in C is called semisimple with respect to C, if every H-submodule N in C of every H-module M in C is a direct summand(i.e. there is a H-submodule L in C such that $M = N \oplus L$).

Theorem 4.2 Let H be a braided Hopf algebra in C. If H is semisimple with respect to C and $\ker \epsilon \in C$, then $\epsilon(J_H^i) \neq 0$.

Proof. It is similar to the proof of Theorem 4.1.

Example 4.3 (see [13, P510]) Let $H = C[x]$ denote the braided line algebra. It is just the usual algebra $C[x]$ of polynomials in x over complex field C, but we regard it as a q-statistical Hopf algebra with

$$\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \epsilon(x) = 0, \quad S(x) = -x, \quad |x^n| = n$$

and

$$C^r(x^n, x^m) = q^{nm}(x^m \otimes x^n).$$

In fact, H is a braided Hopf algebra in $(C^2 \mathcal{M}, C^r)$ with coquasitriangular $r(m, n) = q^{mn}$. Here $|x^n|$ denote the degree of x^n. If $y = \sum_0^n a_i x^i \in J_H^i$, then $a_i = 0$ for $i = 0, 1, 2, \ldots, n$ since $xy = \epsilon(x)y = 0$. Thus $J_H^i = 0$. It follows from Theorem 4.1 that H is not semisimple.

Acknowledgement: The work is supported by The council of Hunan educations.
References

[1] N. Andruskewisch and H.J.Schneider, Pointed Hopf algebras, new directions in Hopf algebras, edited by S.Montgomery and H.J.Schneider, Cambradge University Press, 2002.

[2] Y.Bespalov, T. Kerler and V.Lyubashenko. Integral for braided Hopf algebras, J. Pure and Applied Algebras, 148(2000), 113–164.

[3] S.Dascalescu, C.Nastasecu, S. Raianu, Hopf algebras: an introduction, Marcel Dekker Inc., 2001.

[4] J.A. Guccione and J.J.Guccione, Theory of braided Hopf crossed products, J. Algebra, 261(2003), 54–101.

[5] A.Joyal and R.Street, Braided monoidal categories, Math.Reports 86008; Macquaries University, 1986.

[6] T.Kerler, Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999), 207–281.

[7] G.Guperberg, Non-involutary Hopf algebras and 3-manifold invariants, Duke Math. J. 84 (1996), 83–129.

[8] G.Lusztig, Introduction to quantum groups, Progress on Math., Vol.110, Birkhauser, 1993.

[9] R.G.Larson, M.E.Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. XCI (1969)75-94.

[10] S. Majid, Braided groups. J. Pure and Applied Algebra, 86 (1993), 187–221.

[11] S. Majid, Cross products by braided groups and bosonization, J. Algebra, 165(1994), 165–190.

[12] S.Majid, Algebras and Hopf algebras in braided categories, Lecture notes in pure and applied mathematics advances in Hopf algebras, Vol. 158, edited by J.Bergen and S.Montgomery, 1996.

[13] S.Majid, Foundations of quantum group theory, Cambradge University Press, 1995.

[14] J.B.Sullivan, The Uniqueness of integrals for Hopf algebras and some existence theorem of integrals for commutative Hopf algebras, J. Algebra, 19 (1971), 426-440.
[15] M.E.Sweedler, Hopf algebras, Benjamin, New York, 1969.

[16] M. E. Sweedler, Integrals for Hopf algebras. Ann. of Math. 89 (1969), 323–335.

[17] M. Takeuchi. Finite Hopf algebras in braided tensor categories, J. Pure and Applied Algebra, 138(1999), 59-82.

[18] V.Turaev, Quantum invariants of knots and 3-manifolds, de Qruyter, Berlin, 1994.

[19] Shouchuan Zhang and Hui-Xiang Chen, The double bicrossproducts in braided tensor categories, Communications in algebra, 29(2001), 31–66.