Epidemiology of Injuries in National Collegiate Athletic Association Men’s Tennis: 2014–2015 Through 2018–2019

Hannah J. Robison, MS, LAT, ATC; Adrian J. Boltz, MSH; Sarah N. Morris, PhD; Christy L. Collins, PhD; Avinash Chandran, PhD, MS

Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN

Context: The National Collegiate Athletic Association (NCAA) has sponsored men’s tennis programs since 1982. The popularity of tennis has grown, as has sponsorship of men’s tennis within NCAA institutions.

Background: Continued monitoring of athletic injuries is important for identifying emerging temporal patterns.

Methods: Exposure and injury data collected in the NCAA Injury Surveillance Program during 2014–2015 through 2018–2019 were analyzed. Injury counts, rates, and proportions were used to describe injury characteristics, and injury rate ratios were used to examine differential injury rates.

Results: The overall injury rate was 4.41 per 1000 athlete-exposures. Lateral ligament complex tears of the ankle (8.5%) were the most reported injury. Trunk (15.1%) and shoulder (13.2%) injuries accounted for the largest proportions of all injuries. Noncontact and overuse were the most common mechanisms of injury among all reported injuries, together accounting for 69.4% of all injuries.

Conclusions: Findings of this study differed slightly from previous studies, most notably in specific injuries reported. Continued monitoring of specific injury incidence as well as greater participation in injury surveillance is needed to inform the development of nuanced injury prevention strategies for this population.

Key Words: collegiate, sport-related, surveillance

Key Points

- Competition injury rate was higher than the practice injury rate in NCAA Men’s Tennis; competition injury rates fluctuated across the study period while practice injury rates remained stable.
- Trunk and shoulder injuries together accounted for over a quarter of all reported injuries, and nearly half of all reported injuries were strains or inflammatory conditions.
- Most injuries were classified as noncontact- or overuse-related, and ankle sprains were commonly reported.

Tennis is an international sport with 87 million players worldwide, 53% of which are men, and it is played from the recreational to highly competitive levels. The United States has the highest percentage of ranking men’s junior tennis players in the world, creating a competitive class of athletes who may participate in intercollegiate tennis. The widespread popularity of men’s tennis leads to a variety of injuries that may differ between novice and experienced tennis players. Men’s tennis has been included in the National Collegiate Athletic Association (NCAA) since 1946 and was sponsored by 749 institutions as of 2018–2019. This substantial population of elite tennis athletes creates a necessity to identify injury trends at the NCAA level.

Collegiate sports injury surveillance provides team medical staff with injury level data that can inform the development and implementation of injury prevention programs. The NCAA has maintained an injury surveillance system since 1982 which is now titled the NCAA Injury Surveillance Program (ISP). Prior researchers of men’s tennis teams participating in the NCAA-ISP during the 2009–2010 and 2014–2015 academic years identified an overall (time loss [TL] and nontime loss [NTL]) injury rate of 4.89 per 1000 athlete exposures (AEs) in collegiate men’s tennis. The incidence rate of competition injuries was higher than practice injuries in this population. Prior researchers have identified the lower extremity as the most common region involved in injuries, specifically the ankle, hip, and groin. The most common injuries reported were strains, sprains, and inflammation. The elite tennis sphere continues to morph at high speeds in accordance with its global popularity, potentially affecting both rates of injury and types of injuries sustained. Therefore, the purpose of this study was to describe the epidemiology of tennis-related injuries captured among NCAA men tennis players between 2014–2015 and 2018–2019.

METHODS

Study Data

Men’s tennis exposure and injury data collected in the NCAA ISP during the 2014–2015 through 2018–2019 athletic seasons were analyzed in this study. The methods...
of the NCAA ISP have been reviewed and approved as an exempt study by the NCAA Research Review Board. Briefly, athletic trainers (ATs) at participating institutions contributed exposure and injury data using their clinical electronic medical record systems. A reportable injury was one that occurred due to participation in an organized intercollegiate practice or competition and required medical attention by a team certified athletic trainer or physician (regardless of time loss). Only scheduled team practices and competitions were retained in this analysis.

RESULTS

A total of 251 men’s tennis injuries from 56,895 AEs were reported to the NCAA ISP during the 2014–2015 through 2018–2019 athletic seasons (rate = 4.41 per 1000 AEs). This equated to a national estimate of 15,583 injuries overall (Table 1). Overall, the competition injury rate was higher than the practice injury rate (IRR = 1.80; 95% CI = 1.39, 2.33). Competition injury rates varied throughout the study period with a dramatic decrease between years 2014–2015 and 2016–2017 followed by a sharp increase in 2017–2018 that leveled in 2018–2019 (Figure A). In contrast, practice injury rates have remained relatively stable across the study period (Figure A). The overall Division I injury rate (rate = 4.96 per 1000 AEs) was higher than Division II (rate = 4.20 per 1000 AEs) and Division III (rate = 3.57 per 1000 AEs) injury rates (Table 1); statistically significant differences were observed when comparing Division I with Division III rates (IRR = 1.39; 95% CI = 1.01, 1.91). Interestingly, practice injury rates across divisions were similar (Table 1); however, the Division I competition injury rate was significantly higher than Division II and Division III (IRR = 1.74; 95% CI = 1.02, 3.00; IRR = 1.92; 95% CI = 1.07, 3.44, respectively).

Injuries by Season Segment

A total of 54 preseason injuries (national estimate: 3,372), 190 regular season injuries (national estimate: 11,920), and 7 postseason injuries (national estimate: 291) were reported between 2014–2015 and 2018–2019 (Table 2). Preseason and regular season injury rates were similar (IRR = 1.30; 95% CI = 0.96, 1.76). Preseason and regular season injury rates differed between the 2014–2015 and 2016–2017 athletic seasons but became more similar during the 2017–2018 and 2018–2019 athletic seasons (Figure B). Postsea-
son rates were not calculated due to the low frequency of reported postseason injuries.

Time Loss

Approximately one-third (34.3%) of all reported injuries resulted in TL of greater than or equal to 1 day (TL was not reported in ~26% of all reported injuries). TL injuries accounted for comparable proportions of reported competition (33.7%) and practice (34.6%) injuries. Rates of competition-related TL injuries sharply decreased between 2014–2015 and 2016–2017 (most sharply during the first year), followed by a threefold increase during the following year, and a subsequent decrease thereafter. (Figure C). Practice-related TL injuries trended downward across the 5-year study period (Figure C). TL injuries were found to account for 34% of Division I injuries (NTL: 49%), 23% of Division II injuries (NTL: 25%), and 48% of Division III injuries (NTL: 35%). Across season segment, TL injuries accounted for 33% of injuries in the preseason (NTL: 33%) and 33% in the regular season (NTL: 43%).

Injury Characteristics

Trunk (15.1%) and shoulder (13.2%) injuries accounted for the largest proportions of all injuries reported during the study period. Shoulder injuries accounted for larger proportions of practice injuries (14.8%) than competition injuries (10.1%). In contrast, injury to the head or face and hip or groin accounted for larger proportions of competition injuries (5.6% and 11.2%, respectively) than practice injuries (3.1% and 7.4%, respectively). Other injuries sustained during the study period were distributed comparably in practices and competitions across the hand or wrist, trunk, thigh, knee, lower leg, and ankle (Table 3). Across both event types, 69.4% of injuries were attributed to either noncontact (35.1%) or overuse (34.3%); and noncontact and overuse injuries accounted for comparable proportions of practice- and competition-related injuries (Table 3). Contact injuries (player, surface, ball, racket, fencing, and net contact) accounted for 15.5% of all injuries. Surface contact injuries accounted for 10.4% of injuries overall and were more prevalently reported among practice injuries (11.1%) than competition injuries (9%).
Injuries by Tennis-Specific Activities and Playing Positions

Most injuries in men’s tennis between 2014–2015 and 2018–2019 occurred during general play (45%). Serving (12%) and forehand shots (6.4%) also accounted for notable proportions of all reported injuries. General play during competition resulted in greater proportions of injury (56.2%) than general play activities during practice (38.9%). Serving and forehand shots accounted for similar proportions of practice and competition injuries (Table 4).

SUMMARY

We aimed to describe the epidemiology of tennis-related injuries among NCAA men’s tennis players during the 2014–2015 through 2018–2019 academic years. Examining event type differences, we observed a higher rate of competition injuries than practice injuries. Division I competition injury rates were significantly higher than Division II or III competition injury rates. The results of our study contrast with existing literature in this population. Although the overall (inclusive of both TL and NTL injuries) practice injury rate observed in our study was comparable with previous reports (TL and NTL injuries from 2009–2010 to 2014–2015), the overall (inclusive of both TL and NTL injuries) competition injury rate was markedly higher than previously observed. It is difficult to contextualize the differences in injury rates observed across NCAA divisions given the dearth of existing empirical evidence related to this topic in previous reports. Authors of future studies should consider investigating differential injury incidence in NCAA men’s tennis across divisions. In both previous and present studies, injury counts remained low across a 5-year period, which may be resultant of a small number of participating programs, which is limited in its representativeness of all NCAA men’s tennis programs. It should be noted that estimates from the latter years of the study may be more indicative of injury burden in this population given the higher number of schools participating in the ISP during the latter years (2017–2018 to 2018–2019) of the study. NCAA ISP recruitment strategies have evolved over time, and the improvements in participation reflect the success of recently employed recruitment strategies (for instance, support and communication from the NCAA Sport Science Institute). Despite this increase in the latter years of the present study, low participation and its associated implications with regard to generalizability of findings are important limitations to note while interpreting the results of the present study. Yearly practice injury rates were stable throughout the study period, whereas competition injury rates varied considerably. Tennis competitions are unique, as a player can participate in multiple events (singles, doubles, or both) for varying amounts of time. Competition injury rates presented here may not be sufficiently sensitive to these nuances of NCAA tennis as a given exposure event (used in the estimate of an AE) may consolidate these exposures, does not capture variations in match duration, and is also based on AT discretion. While the benefits of having standardized measurements of [Table 2. Reported and National Estimates of Injuries, Athlete Exposures (AEs), and Rates per 1000 AEs by Season Segment Across Divisions*]

Division	Preseason	Regular Season		
	Number AEs	Rate per 1000 AEs (95% CI)	Number AEs	Rate per 1000 AEs (95% CI)
I	23	911	110	3967
	3310	119149	22357	1013799
	6.95 (4.11, 9.79)	4.77 (1.93, 7.61)	4.92 (4.00, 5.84)	3.90 (2.98, 4.82)
II	19	1117	40	3106
	2927	117933	10394	406689
	6.49 (3.57, 9.41)	9.47 (6.55, 12.39)	3.85 (2.66, 5.04)	7.64 (6.45, 8.83)
III	12	1343	40	4857
	3190	355724	10326	1165434
	3.76 (1.63, 5.89)	3.78 (1.65, 5.90)	3.87 (2.67, 5.07)	4.39 (3.19, 5.59)
Overall	54	3372	190	11920
	9426	664806	43077	2525893
	5.73 (4.20, 7.26)	5.07 (3.54, 6.60)	4.41 (3.78, 5.04)	4.72 (4.09, 5.35)

Overall, most men’s tennis injuries reported between 2014–2015 and 2018–2019 were strains (27.9%), inflammatory conditions (22.7%), and sprains (11.6%). Sprains and inflammatory conditions accounted for comparable proportions of practice- and competition-related injuries. Strains accounted for slightly higher proportions of competition injuries (30.3%) than practice injuries (26.5%). The most reported injuries during the study period were partial or complete lateral ligament complex tears of the ankle (8.4%), followed by partial or complete adductor (groin) tears (4.0%), and partial or complete hamstring tears (3.6%).
of all reported injuries, a decrease from previous study of this population. However, it is important to note that approximately 26% of all injuries reported did not include TL information. As such, the prevalence of TL injuries may be higher than what is estimated here. More robust collection of tennis injuries with special attention to NTL injury characteristics will be critical in improving the health care provided for NCAA men’s tennis players and therefore should be a focus of future studies. Interestingly, overuse and noncontact injuries accounted for approximately 70% of all reported injuries. Juxtaposed with a low TL prevalence, this should be a focus of future studies.

Table 3. Distribution of Injuries by Body Part, Mechanism, and Injury Diagnosis; Stratified by Event Type

Injury site	Overall	National
Head/face	10 (3.98)	662 (4.25)
Shoulder	28 (10.76)	1630 (10.46)
Arm/elbow	12 (4.78)	806 (5.17)
Hand or wrist	38 (15.14)	2690 (17.26)
Trunk	22 (8.76)	1184 (7.60)
Hip/groin	19 (7.57)	955 (6.13)
Thigh	19 (7.57)	1257 (8.07)
Knee	17 (6.77)	1116 (7.16)
Lower leg	30 (11.95)	1826 (11.72)
Ankle	14 (5.58)	1090 (6.99)
Foot	10 (3.98)	357 (2.29)

Mechanism	Overall	National
Noncontact	88 (35.06)	4768 (30.60)
Player contact	1 (0.04)	32 (0.21)
Surface contact	26 (10.36)	1491 (9.57)
Contact with ball	3 (1.20)	265 (1.70)
Contact with racket	5 (1.99)	166 (1.07)
Contact with fencing	4 (1.59)	758 (4.86)
Overuse	86 (34.26)	5992 (38.45)
Other/unknown	38 (15.14)	2110 (13.54)

Diagnosis	Overall	National
Abrasion/laceration	3 (1.20)	429 (2.75)
Concussion	7 (2.79)	385 (2.47)
Contusion	6 (2.39)	441 (2.83)
Dislocation/subluxation	4 (1.59)	401 (2.57)
Entrapment/impingement	9 (3.59)	477 (3.06)
Fracture	3 (1.20)	420 (2.70)
Illness/dermatological	1 (0.40)	20 (0.13)
Inflammatory condition	57 (22.71)	3693 (23.70)
Spasm	13 (5.18)	684 (4.39)
Sprain	29 (11.55)	1536 (9.86)
Strain	70 (27.89)	4432 (28.44)
Other	49 (19.52)	2665 (17.10)

Report (%不经意的	Overall	National
Estimated (%)		
National		

exposures within the NCAA ISP allows for greater interpretation across and between sports, additional variables may need to be collected to capture competition exposures most accurately in tennis. Further consideration of this limitation as well as improvements in definitional clarity of tennis competition exposures is warranted to better describe at-risk exposure time within the sport and more precisely estimate injury incidence. When examining injury rates by season segment, although more injuries were reported during the regular season, the regular and preseason injury rates were similar. This observation differed from previous NCAA men’s tennis injury surveillance. Tennis participation (in particular, formal training), unlike other NCAA sports, is not regimented by season. Players can and often use a vast network of privately owned facilities and publicly owned courts. Therefore, exposure classification by season segment, albeit a corollary of NCAA schedule structures, may be limited in this context. Overall, TL injuries accounted for approximately one-third of all reported injuries, a decrease from previous study of this population. This trend was consistent across both practice and competition. Interestingly, NTL injuries were found to account for close to 50% of Division I injuries in contrast to 25% of Division II and 35% of Division III injuries. These differences across divisions may be multifactorial in nature and resultant of variations in AT staffing and off-season training patterns. However, it is important to note that approximately 26% of all injuries reported did not include TL information. As such, the prevalence of TL injuries may be higher than what is estimated here. More robust collection of tennis injuries with special attention to NTL injury characteristics will be critical in improving the health care provided for NCAA men’s tennis participants and therefore should be a focus of future studies. Interestingly, overuse and noncontact injuries accounted for approximately 70% of all reported injuries. Juxtaposed with a low TL prevalence, this should...
Table 4. Distribution of Injuries by Men’s Tennis Specific Activities and Player Position*

Activity	Overall Injuries	National Estimate	Competitions Injuries	National Estimate	Practices Injuries	National Estimate	
	Reported (%)	2174 (13.95)	620 (10.94)	1554 (15.67)			
	National Estimate (%)	11.95	13.48	2174 (13.95)	620 (10.94)	1554 (15.67)	
Serving	30 (11.95)		12 (13.48)	1554 (15.67)			
Volley shot	5 (1.99)	765 (4.91)	3 (3.37)	205 (2.07)			
Running	7 (2.79)	379 (2.43)	1 (1.12)	359 (3.62)			
Conditioning	10 (3.98)	953 (6.12)	0 (0)	953 (6.12)			
General play	113 (45.02)	6916 (44.38)	50 (56.18)	3870 (39.04)			
Forehand shot	16 (6.37)	636 (4.08)	7 (7.87)	215 (2.17)			
Backhand shot	13 (5.18)	455 (2.92)	4 (4.49)	293 (2.96)			
Overhand smash shot	5 (1.99)	192 (1.23)	1 (1.12)	172 (1.73)			
Drop shot	3 (1.20)	344 (2.21)	2 (2.25)	198 (2.00)			
Other/unknown	49 (19.52)	2770 (17.78)	9 (10.11)	205 (1.13)			

Position	Overall Injuries	National Estimate	Competitions Injuries	National Estimate	Practices Injuries	National Estimate	
	Reported (%)	6306 (40.47)	3532 (62.30)	2774 (27.98)			
	National Estimate (%)	33.07	47.19	6306 (40.47)	3532 (62.30)	2774 (27.98)	
Singles	83 (33.07)		42 (47.19)	25 (25.31)	2774 (27.98)		
Doubles	26 (10.36)	2075 (13.32)	14 (15.73)	1074 (10.83)			
Other/unknown	142 (56.57)	7202 (46.22)	33 (37.08)	6066 (61.19)			

*Data presented in the order of reported number, followed by the proportion of all injuries attributable to a given category. Data pooled across event types are presented overall and separately for practices and competitions. National estimates were produced using sampling weights estimated based on sport, division, and year. A reportable injury was one that occurred due to participation in an organized intercollegiate practice or competition and required medical attention by a team certified athletic trainer or physician (regardless of time loss). Only scheduled team practices and competitions were retained in this analysis.

The most common injury diagnoses reported were partial or complete lateral ligament complex tears of the ankle, partial or complete adductor (groin) tears, and partial or complete hamstring tears. Lateral ligament complex tear of the ankle has been previously reported as the most prevalent injury in this population, though it was followed by rotator cuff strains and wrists sprains. This difference in specific injury reporting may be partially attributable to participation levels in the NCAA ISP among men’s tennis programs, both throughout the present study and in previous studies. Low and inconsistent participation in the surveillance program has resulted in unstable injury trends. Therefore, examinations of commonly observed injuries among NCAA men’s tennis athletes are important avenues for further research. Most injuries occurred during general play and were attributable to noncontact and overuse mechanisms. Given that the ankle, groin, and hamstring were the most prevalently injured body parts, it could be surmised that these injuries may also be occurring during general play and do not involve contact. Intervention strategies that offer a protective effect against noncontact injuries, such as eccentric training, neuromuscular control, and prophylactic bracing, may be indicated, given the success of these interventions in other sports that report a high prevalence of lower extremity injuries. Notably, the NCAA ISP does not capture preventative interventions, and therefore, this may also serve as an important avenue for future research.

Continued monitoring of NCAA men’s tennis injuries is critical to maintain the health of these athletes as well as the larger population of tennis players throughout the global community. Increased and stable participation in injury surveillance will be necessary to produce consistent observations of specific injuries. The findings of the present study and continued observations will allow for more targeted studies to be developed and implemented to better understand and address the etiology of injuries sustained in NCAA men’s tennis.

ACKNOWLEDGMENTS

The NCAA Injury Surveillance Program was funded by the NCAA. The Datalys Center is an independent nonprofit organization that manages the operations of the NCAA ISP. The content of this report is solely the responsibility of the authors and does not necessarily represent the official views of the funding organization.
We thank the many ATs who have volunteered their time and efforts to submit data to the NCAA-ISP. Their efforts are greatly appreciated and have had a tremendously positive effect on the safety of collegiate student-athletes.

REFERENCES

1. ITF global tennis report: a report on tennis participation and performance worldwide. International Tennis Federation Web site. http://itf.uberflip.com/i/1169628-itf-global-tennis-report-2019-appendices/0? Published 2019. Accessed February 28, 2021.

2. Riek S, Chapman AE, Milner T. A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clin Biomech (Bristol, Avon). 1999;14(7):477–483. doi:10.1016/S0268-0033(98)99097-3

3. Irick E. Student-Athlete participation 1981–82—2018–19: NCAA Sports Sponsorship and Participation Rates Report. National Collegiate Athletic Association Web site. https://ncaaorg.s3.amazonaws.com/research/sportpart/2018-19RES_SportsSponsorshipParticipationRatesReport.pdf. Accessed March 11, 2021.

4. Division I men’s tennis championship history. National Collegiate Athletic Association Web site. https://www.ncaa.com/history/tennis-men/d1. Accessed August 8, 2020.

5. Kerr ZY, Dompier TP, Snook EM, et al. National Collegiate Athletic Association Injury Surveillance System: review of methods for 2004–2005 through 2013–2014 data collection. J Athl Train. 2014;49(4):552–560. doi:10.4085/1062-6050-49-4-552

6. Dick R, Agel J, Marshall SW. National Collegiate Athletic Association Injury Surveillance System commentaries: introduction and methods. J Athl Train. 2007;42(2):173–182.

7. Lynall RC, Kerr ZY, Djoko A, Pluim BM, Hainline B, Dompier TP. Epidemiology of National Collegiate Athletic Association men’s and women’s tennis injuries, 2009/2010-2014/2015. Br J Sports Med. 2016;50(19):1211–1216. doi:10.1136/bjsports-2015-095360

8. Chandran A, Morris SN, Wasserman EB, Boltz A, Collins CL. Methods of the National Collegiate Athletic Association Injury Surveillance Program, 2014–2015 Through 2018–2019. J Athl Train. 2021;56(7):616–621.

9. Baugh CM, Kroskus E, Lanser BL, Lindley TR, Meehan WP. Sports medicine staffing across National Collegiate Athletic Association Division I, II, and III schools: evidence for the medical model. J Athl Train. 2020;55(6):573–579. doi:10.4085/1062-6050-0463-19

10. Pluim BM, Staal JB, Windler GE, Jayanthi N. Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med. 2006;40(5):415–423. doi:10.1136/bjsm.2005.023184

11. Jayanthi N, Sallay PL, Hunker P, Przybylski M. Skill-level related injuries in recreational competition tennis players. Med Sci Tennis. 2005;10:12–15.

12. Hutchinson MR, Laprade RF, Burnett QM 2nd, Moss R, Terpstra J. Injury surveillance at the USTA Boys’ Tennis Championships: a 6-yr study. Med Sci Sports Exerc. 1995;27(6):826–830.

13. Kovacs MS, Ellenbecker TS. A performance evaluation of the tennis serve: implications for strength, speed, power, and flexibility training. Strength Cond J. 2011;33(4):22–30. doi:10.1519/SSC. 0b013e318225d59a

14. Reid M, Elliott B, Crespo M. Mechanics and learning practices associated with the tennis forehand: a review. J Sports Sci Med. 2013;12(2):225–231.

15. Martin C, Bideau B, Bideau N, Nicolas G, Delamarque P, Kupila R. Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players. Am J Sports Med. 2014;42(11):2751–2760. doi:10.1177/0363546514547173

16. Jensen J, Hölmich P, Bandholm T, Zebis MK, Andersen LL, Thorborg K. Eccentric strengthening effect of hip-adductor training with elastic bands in soccer players: a randomised controlled trial. Br J Sports Med. 2014;48(12):332–338. doi:10.1136/bjsports-2012-091095

17. van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–1370. doi:10.1136/bjsports-2018-100045

18. Bellows R, Wong CK. The effect of bracing and balance training on ankle sprain incidence among athletes: a systematic review with meta-analysis. Int J Sports Phys Ther. 2018;13(3):379–388. doi:10.26603/ijsppt20180379

Address correspondence to Avinash Chandran, MS, PhD, Datalys Center for Sports Injury Research and Prevention, 6151 Central Avenue, Suite 117, Indianapolis, IN 46202. Address email to avinashe@datalyscenter.org.