Effects of cryopreservation and phenylacetate on biological characters of adherent LAK cells from patients with hepatocellular carcinoma

Ning Zheng, Sheng-Long Ye, Rui-Xia Sun, Yan Zhao, Zhao-You Tang

METHODS: A-LAK cells were obtained from peripheral blood mononuclear cells (PBMCs) of the patients with hepatocellular carcinoma (HCC) by using L-phenylalanine methyl ester (PME) to depleted immunosuppressive monocytes. Proliferative activity of SMMC7721 cell line after treatment with phenylacetate (PA) was observed. A-LAK cells were treated with the supernatant of SMMC7721 cells and that of fresh cells[19]. These results indicated that cryopreservation could increase the immunoactivities of immunocytes. We improved the preparation of adherent lymphokine-activated killer (A-LAK) cells and to study the effects of cryopreservation and phenylacetate (PA) on biological characters of A-LAK cells.

RESULTS: The expansion of A-LAK cells (96.79±69.10 folds on Day 14) was significantly higher than that of non-adherent LAK (NA-LAK) cells (22.77±13.20) as well as conventional LAK cells (4.64±0.91). PA significantly suppressed the growth of SMMC7721 cells, and the inhibitor ratio was 46%. The supernatant of cultured tumor cells intensively suppressed the proliferation and cytotoxicity of A-LAK cells, but the suppressive effect of the supernatant was previously decreased after treatment with PA. Impairments in proliferation and cytotoxicity of A-LAK cells immediately after thawing of cryopreservation and recovery after reactivation with IL-2 were observed. The cytotoxicity of thawed A-LAK cells on Day 5 was significantly higher than that of fresh A-LAK before freezing (54.8±10.2% vs 40.5±6.4%). No significant change in the percentage of lymphocyte subsets was identified in frozen A-LAK cells as compared with that in the fresh control cells.

CONCLUSION: A-LAK cells can be simply prepared by using PME, and showed a synergistic anti-tumor effect with the combination of PA. Cryopreservation can increase the immunoactivities of A-LAK cells from patients with hepatocellular carcinoma.

Zheng N, Ye SL, Sun RX, Zhao Y, Tang ZY. Effects of cryopreservation and phenylacetate on biological characters of adherent LAK cells from patients with hepatocellular carcinoma. World J Gastroenterol 2002;8(2):233-236

INTRODUCTION
Biotherapy of cancer, as the forth modality of tumor treatment, has been accepted[5-16]. Adoptive transfer of LAK cells together with IL-2 has been found to be an effective immunotherapeutic modality for eradication of several tumors[5-9]. However, some reports indicated that clinical responses have been infrequent and transient, and that severe toxicity was associated with the administration of high doses of rIL-2[10-12]. Adherent-lymphokine activated killer (A-LAK) cells have significantly higher cytolytic activity on a per cell basis and greater proliferative capacity than LAK cells[15-16]. But the usage of A-LAK cells was limited by the complex traditional preparation by using nylon wool columns[15-17]. To harvest a large number of actively immunocompetent cells at the right time now becomes an important point of adoptive immunotherapy. The freezing of peripheral blood mononuclear cells (PBMCs) is a common practice, and does not significantly alter the functional activities of immunocompetent cells[18]. The recent reports showed that frozen PBMCs produced significantly larger quantities of IL-1, IL-2, IL-6, and IFN-α than the fresh cells[19]. These results indicated that cryopreservation could increase the immunoactivities of immunocytes. We improved the preparation of A-LAK cells and studied the effects of cryopreservation and phenylacetate (PA) on biological characters of A-LAK cells from the patients with hepatocellular carcinoma.

MATERIALS AND METHODS
Cell lines and Reagents
A human hepatocellular carcinoma cell line, SMMC7721, was maintained in RPMI1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS, Gibco) at 37°C in a 5% CO2 humidified atmosphere. Phenylacetate (PA, Sigma) and L-phenylalanine methyl ester (PME, Sigma) were dissolved in RPMI1640 medium, brought to pH 7.0 and 7.4, respectively and stored in aliquots at 4°C.

Preparation of A-LAK cells
PBMCs were isolated from the patients with hepatocellular carcinoma (HCC) by using a cell separator (CS-3000 plus, Baxter), and then by centrifugation on Ficoll-Hypaque gradients. Cells collected from the gradient interface were washed twice in RPMI 1640 medium (GIBCO) and incubated in medium containing PME (5nmol/L) for 40min at room temperature to remove monocytes. After two washes with complete tissue culture medium (TCM) containing RPMI 1640 medium supplemented with 10%/v/v) heat-inactivated pooled AB human serum. The monocyte-depleted PBMCs were adjusted to the concentration of 2x10^7/ml and incubated in TCM containing rIL-2 (1000U/ml) in a plastic culture flasks positioned on its flat side for 24hr at 37°C in humidified atmosphere of 5% CO2. Following 24hr of activation in rIL-2, supernatants containing cells that did not adhere to plastic were decanted from the flasks, collected, and centrifuged. The recovered non-adherent cells (NA-LAK cells) were resuspended in fresh TCM plus rIL-2 (1000U/L) and cultured for 8-12 days. The cell-free supernatant of the non-adherent cell population was collected.
and used as autologous conditioned medium (AuCM). The cells adherent to plastic (A-LAK cells) were washed twice with prewarmed TCM to remove cells that were not firmly attached to plastic, and then were supplemented with TCM containing 50% (v/v) of AuCM and rIL-2 (1000U/ml). These A-LAK cells were also cultured for 8-12 days and maintained at a concentration of 2x10^5 cells/ml by supplying fresh TCM containing rIL-2 (1000U/ml) as needed. PBMCs were also established in cultures with rIL-2 (1000U/L) and cultured for 4 days as standard, regular LAK cells.

Procedures of freezing and thawing
After 10 days of incubation with rIL-2, A-LAK cells were washed and counted. Then the cells were diluted in the cold freezing medium in an ice bath to give a final concentration of 5x10^6 cells/ml. The freezing medium consisted of 10% (v/v) heat-inactivated pooled AB human serum, 10% dimethyl sulfoxide (DMSO), and 80% RPMI-1640 containing rIL-2 (1000U/ml). The cells were distributed in precooled plastic vials. The vials were frozen according to the routine procedure: at 4°C for 30min→ at 0°C for 30min→ at -20°C for 30min→ at -80°C for 60min→ transferred to liquid nitrogen for storage.

The frozen cells were thawed in a 37°C water bath, and washed at 1000rpm in phosphate-buffered saline twice to remove DMSO. Cell recovery and viability were calculated by trypan blue exclusion. After thawing, the cells were cultured in complete media as described above with 1000U of rIL-2/ml at the concentration of 2x10^5 cells/ml for 7-10 days.

Tumor cell culture and PA treatment
The SMMC7721 cells growing in logarithmic phase were seeded into flasks at a concentration of 2x10^5 cells/flask. The following day, the medium was changed, and PA was added to the medium at 0 and 5mmol/L for 7 days. After cell counts, the medium was changed. Twenty-four hours later, the cell-free supernatants of SMMC7721 cells with PA pre-treatment and non-treatment were collected.

Proliferative activity of A-LAK cells
Fold expansions of fresh A-LAK cells, NA-LAK cells, regular LAK and frozen A-LAK cells were determined by cell counts performed in the presence of trypan blue on day 1,4,7,10, and 14 respectively.

On the other hand, A-LAK cells were incubated by supplying fresh TCM containing 10% (v/v) cell-free supernatant derived from SMMC7721 cells with and without PA administration previously for 14 days. Cell numbers were calculated by hemocytometer cell counts in trypan blue.

Cytotoxicity Assays
The fresh A-LAK cells, frozen A-LAK cells and A-LAK cells treated with SMMC7721 supernatant administered with or without PA were tested as effector cells for cytotoxicity against cultured SMMC7721 cells in MTT assays. SMMC7721 cells as target cells were seeded 2x10^5 cells/well in wells of U-bottomed 96-well plates and incubated for 24hr. Effector cells were added to target cells in effector-to-target ratio of 10:1. After 48-hour incubation at 37°C, stock MTT solution (50µl/well) was added to all wells of an assay, and plates were incubated at 37°C for 6hr. Acid-isopropanol was added to all wells and mixed thoroughly to dissolve the dark blue crystals. After a few minutes at room temperature to ensure that all crystals were dissolved, the plates were read on a Microplate Reader (3550-UV, Bio-Rad), using a test wavelength of 570nm, a reference wavelength of 630nm.

Analyses of phenotype
The surface phenotype of cells was analyzed before freezing, after thawing and after 3 days of restimulation with rIL-2 using monoclonal antibodies CD3, CD4, CD8, CD16, and CD25. Analyses were performed on a flow cytometer (EPI CV-V, Culter Corp.).

Statistics
Statistics analysis of the data was performed using the Student's t-test; P<0.05 was considered statistically significant.

RESULTS

Proliferation of A-LAK cells
A-LAK cells expanded better and faster than autologous non-adherent cells or regular LAK cells under the same growth conditions (Table 1). For HCC patients, the expansions of A-LAK cells varied from 23- to 243-fold by 14 days in culture, which were much higher than those of NA-LAK cells and regular LAK cells.

Culture Days	A-LAK Cells expansion folds	NA-LAK Cells expansion folds	Regular LAK Cells expansion folds
1	1.35±0.39	0.87±0.21 a	0.83±0.09 a
4	2.22±0.85	1.09±0.33 a	0.99±0.03 a
7	4.42±2.05	2.13±0.83 a	1.55±0.14 a
10	22.52±10.47	8.49±3.91 a	3.25±0.64 a
14	96.79±69.10	22.77±13.20	4.64±0.91 a

*P<0.05, vs compared with A-LAK cells of the same day; tP<0.01, vs compared with A-LA cells of the same day

The recovery rate after thawing of the cryopreserved A-LAK cells was 84.3±4.2%. The viability of frozen cells was 96.4±3.8%. The length of storage in liquid nitrogen (ranged from 1 day to 6 months) did not have any detectable effect. The frozen A-LAK cells after thawing maintained a high ability of proliferation. After 3 days of reculture with rIL-2, the expansion folds of thawed A-LAK cells was in the same range as A-LAK cells before freezing (Figure 1).

Effect of PA on SMMC7721 cell proliferation
Having treated with PA at 5mmol/L for 7 days, the SMMC7721 cells propagated from 2.0x10^5 cells/flask to 1.54x10^6 cells/flask. At the same time, the tumor cells without PA treatment proliferated to 2.86x10^6 cells/flask. The inhibitory ratio of PA affecting SMMC7721 proliferation was 46%.

Effect of PA and supernatant of Tumor cells on A-LAK propagation
On day 14 of cell culture, the expansion folds of A-LAK cells treated with the supernatant of SMMC7721 cells were only 55.22±42.37, which were significantly lower than those of normal cultured A-LAK cells (96.79±69.10, P<0.01). However, the expansion folds of A-LAK cells treated with the supernatant of SMMC7721 cells with PA administration previously recovered to 84.72±58.98, which had no
significant statistical difference from those normal cultured A-LAK cells (P>0.05).

Effect of PA and supernatant of tumor cells on A-LAK cell cytotoxicity

The cytotoxicity of A-LAK cells treated with the supernatant of SMMC7721 cells 31.2±9.01% was significantly lower than that of normal cultured A-LAK cells 68.4±8.82% (P<0.001). However, the cytotoxicity of A-LAK cells treated with the supernatant of SMMC7721 cells with PA administration previously approached the normal level 57.1±10.1% (P>0.05).

Effect of cryopreservation on A-LAK cell cytotoxicity

Immediately after thawing, there was a significant decrease in cytotoxic activities. This impairment in activity was temporary, and the complete cytotoxicity could be restored by reincubation of the thawed A-LAK cells with rIL-2 for 1 day (Figure 2). After 5 days of post thaw culture with rIL-2, the cytotoxicity of the thawed A-LAK cells (54.8±10.2%) was significantly higher than that of fresh A-LAK cells before freezing (40.5±6.4%, P<0.05).

DISCUSSION

The application of LAK cells in immunotherapeutic treatment of cancer began in the past decade. The biotherapy may be the most effective method in delayed treatment of residual neoplastic diseases after classic reductive therapy (i.e. chemotherapy and bone marrow transplantation). A large number of immunocompetent cells are required for each adoptive immunotherapy. In some patients, because of the complexity of the preparation of immunocytes, such as LAK cells and A-LAK cells, the immunosuppressive status of the tumor host, and the procedures of the treatment of malignant tumor (i.e. the side effects of chemotherapy on the immune system of the host), it is difficult to obtain sufficient effector cells when they are needed. Therefore, we have carried out experiments to improve the preparation of A-LAK cells, and to determine the effects of cryopreservation and PA on the immunologic function of A-LAK cells obtained from the patients with HCC.

A major contributor to host immunity and immune surveillance against infection, tissue or cell damage and malignancy is the monocyte/macrophage system. The monocytes/macrophages play both positive and negative regulator roles in immune responses[24,25]. They can secret macrophage system. The monocytes/macrophages play both positive against infection, tissue or cell damage and malignancy is the monocyte/macrophage system. The monocytes/macrophages play both positive and negative regulator roles in immune responses[24,25]. Meanwhile, they can also produce some chemotactic factors (such as prostaglandin E2, lipocortin) to intensively suppress the immune responses[26,27]. In addition, some reports indicated that monocytes/macrophages could inhibit the proliferation and cytotoxicity of LAK cells[28]. Thus, the therapeutic effects of LAK cells would be improved by removing monocytes/macrophages from PBMC. The monocyte-depleted PBMC could be incubated with rIL-2 in a plastic flask and the plastic-adherent cells could be harvested as adherent LAK cells. There are several methods that can be used to get rid of monocytes/macrophages from peripheral blood. The routine one is to load PBMC onto prewarmed nylon wool column to remove monocytes/macrophages by adherence to nylon wool. But the complexity of this procedure limited the usage of A-LAK cells. Some reports demonstrated that PME could remove the monocytes/macrophages efficiently without changing the phenotype and cytotoxicity of lymphocytes. Triozzi and colleagues used this procedure to harvest A-LAK cells with efficient anti-tumor activities from the patients with renal cancer[31]. Our results using the same method to prepare A-LAK cells from patients with HCC are similar to those reports.

As shown in Table 2, no significant change in the percentage of lymphocyte subpopulations of A-LAK cells before freezing, immediately after thawing, and 3 days after thawing was identified (P>0.05).

Table 2 Changes of phenotype of frozen A-LAK cells

Case No.	CD3	CD4	CD8	CD4/CD8	CD16	CD25	
Before freezing	6	76.5±10.3	41.4±7.5	40.3±5.3	1.03±0.31	10.4±3.1	52.3±5.9
Day 0 after thawing	6	80.5±11.4	35.9±6.4	36.5±4.9	1.07±0.38	14.1±4.3	49.7±3.1
Day 3 after thawing	6	86.3±8.9	33.1±7.5	42.6±6.0	0.78±0.19	15.4±2.7	46.5±4.7

Change of phenotype of frozen A-LAK cells

As shown in Table 2, no significant change in the percentage of lymphocyte subpopulations of A-LAK cells before freezing, immediately after thawing, and 3 days after thawing was identified (P>0.05).

Figure 2 Effect of cryopreservation on A-LAK cells cytotoxicity
divergence of views from different investigators.

Phenylacetate (PA) is a member of a class of aromatic fatty acids and common metabolite of phenylalanine that is present in human plasma and cerebrospinal fluid in micromolar concentrations. Experimental data indicated that PA was able to promote differentiation, growth inhibition, tumor maturation, and apoptosis in vitro and in vivo of various human leukemia cells, prostate carcinoma cells, breast cancer cells, brain tumor cells and renal cancer cells. The phase I clinical trials at the National Cancer Institute with phenylacetate as a novel, nontoxic differentiation inducers have been finished. Currently in clinical trials, PA was examined for its ability to modify tumor immunity and revealed that it was able to reduce biosynthesis and secretion of TGF-α2, the tumor-derived T-cell suppressor factor, and reverse the tumor immunosuppressive factors derived from tumor cells, antagonize the inhibition of tumor in biotherapy, and coordinate to attack target cells.

REFERENCES

1 Ye SL. Biotherapy of tumor. In: Tang ZY. Contemporary oncology. 2nd ed. Shanghai: Shanghai Med University Press 2000:513-522
2 Bremers AJ, Parmiani G. Immunology and immunotherapy of human cancer: present concepts and clinical developments. Crit Rev Oncol Hematol 2000;34:1-25
3 Cheng JD, Rieger PT, von-Mehren M, Adams GP, Weiner LM. Reverse the tumor-derived T-cell suppressor factor, and reverse the tumor immunosuppressive factors derived from tumor cells, antagonize the inhibition of tumor in biotherapy, and coordinate to attack target cells.
4 Kobari M, Egawa S, Shibuya K, Sunamura M, Saitoh K, Matsuno S.
5 Marti F, Miralettes A, Peiro M, Amil D, Delcassens C, Pinol G, Rueda F, Garcia J. Differential effect of cryopreservation on natural killer cell and lymphokine-activated killer cell activities. Transplantation 1993;55:651-655
6 Hoffman DM, Gitlitz BJ, Belldegrun A, Figlin RA. Adoptive cellular immunotherapy using human adherent lymphokine-activated killer cells. Semin Oncol Nurs 2000;16:Suppl 1:5-12
7 Pawelec G, Rees RC, Eiselein JE. Suppression of immune surveillance in patients with advanced gastric carcinoma. J Cancer Res Clin Oncol 1994;120:240-247
8 Thibault A, Samid D, Cooper MR, Figg WD, Tompkins AC, Patronas N. Phase I study of phenylacetate administered twice daily to patients with advanced pancreatic cancer. J Clin Oncol 1998;16:2657-2661
9 Melder RJ, Whiteside TL, Vujanovic NL, Herberman RB. The potential for monocyte-released immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 2001;11:681-692
10 Schwarz RE, Vujanovic N L, Hiserodt JC. Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by adherence to plastic. Cancer Res 1989;49:1441-1446
11 Kiremidjian-Schumacher L, Roy M, Wishe H, Cohen MW, Stotzky G. Supplementation with selenium augments the functions of natural killer cells: effects of islet species, long-term culture, and cryopreservation on natural killer cell and lymphokine-activated killer cell activities. J Cancer Res Clin Oncol 1994;120:240-247
12 Dio D, DiBenedetto M, Kraemer M, Sainte CO, Derbin C, Crepin S. Discrimination between NK and LAK cytokotic activity of murine spleen cells by MTT assay: differential inhibition by PGE2 and EDTA. J Immunol Methods 2000;241:121-129
13 Boiardi A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G, Parmati G, Williams MA, Newland AC. Monocyte/macrophage system as targets for immunomodulation by intravenous immunoglobulin. Blood Rev 2000;14:134-135
14 Schwartz RE, Vujanovic N L, Hiserodt JC. Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by adherence to plastic. Cancer Res 1989;49:1441-1446
15 Triozzi PL, Aldrich W, Kim J, Kinney P, Sagone A, Rin enhant J. Biological experience.
16 Marti F, Miralettes A, Peiro M, Amil D, Delcassens C, Pinol G, Rueda F, Garcia J. Differential effect of cryopreservation on natural killer cell and lymphokine-activated killer cell activities. Transplantation 1993;55:651-655
17 Jaso-Friedmann L, Leary J H 3rd, Evans DL. Role of function-associated molecules in target cell lysis: analysis of rat adherent lymphokine-activated killer cells. Nat Immun 1993;12:316-325
18 Melder RJ, Whiteside TL, Vujanovic NL, Hiscrodt JC, Herberman RB. The potential for monocyte-released immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 2001;11:681-692
19 Williams MA, Newland AC, Kelsey SM. The potential for monocyte-mediated immunotherapy during infection and malignancy. Part I: apoptosis induction and cytotoxic mechanisms. Leuk Lymphoma 1999;34:1-23.
20 Schwa m, Schneider P, Bland K, Chaud hly. Resistance of macrophages to the suppressive effect of interleukin-10 following thermal injury. Am J Physiol Cardiovasc Physiol 2001;281:C1180-C1187
21 Marselli L, Marchetti P, Tellini C, Giannarelli R, Lencioni C, Del Guerra S, Lupi R, Carmellini M, Mosca F, Navalesi R. Lymphokine release from human lymphomono nuc lear cells after co-culture with isolated pancreatic islets: effects of islet species, long-term culture, and monocyte/macrophage cell culture. Cytokine 2000;12:503-505
22 Beigel CL, Chen DS, Brugg JH, Weidmann E, Mittron PS, Hoelder D. The inhibition of lymphokine-activated killer cells in acute myeloblastic leukemia is mediated by TGF-α1. Exp Hematol 1995;23:1574-1580
23 Paroldi D T cells and tumors. Nat Rev 2001;41:1010-1012
24 Lalig nd T cells and tumors. Nat Rev 2001;41:1010-1012
25 Guerra S, Lupi R, Carmellini M, Mosca F, Navalesi R. Lymphokine release from human lymphomono nuclear cells after co-culture with isolated pancreatic islets: effects of islet species, long-term culture, and monocyte/macrophage cell culture. Cytokine 2000;12:503-505
26 Luoj, Kammerre von, Klesst S. Comparison of the effects of immunosuppressive factors from newly established colon cancer cell cultures on human lymphocyte proliferation and cytokine secretion. Tumor Biol 2000;21:11-20
27 Sakata T, Iwagami S, Tsarata Y, Teraoka H, Hojo K, Suzuki S, Sato K, Suzuki R. The role of lipocortin I in macrophage-mediated immuno suppression in tumor-bearing mice. J Immunol 1990;145:387-396
28 Beigel CL, Chen DS, Brugg JH, Weidmann E, Mittron PS, Hoelder D. The inhibition of lymphokine-activated killer cells in acute myeloblastic leukemia is mediated by TGF-α1. Exp Hematol 1995;23:1574-1580
29 Paroldi D T cells and tumors. Nat Rev 2001;41:1010-1012
30 Laligand T cells and tumors. Nat Rev 2001;41:1010-1012
31 Karimnine, Arinaga S, Inoue N, Nanbara S, Ueo H, Akiyoshi T. Lymphokine-activated killer cell function of peripheral blood mononuclear cells, spleen cells and regional lymph node cells in gastric cancer patients. Clin Exp Immunol 1994;96:484-490
32 Cai JM, Ding ZH, Mai GZ, Li XC. Different susceptibility of murine hemopoietic cells and lymphocytes to freezing-thawing process. Jpn J Exp Med 1998;83:130-134
33 Samid D, Hudgins WR, Shack S, Liu L, Prassana P, Myers CE. Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers. Adv Exp Med Biol 1997;400A:501-505
34 Han S, Wada RK, Siddel N. Differentiation of human neuroblastoma by phenylacetate is mediated by peroxisome proliferator-activated receptor gamma. Cancer Res 2001;61:3998-4002
35 Vasse M, Thibout D, Paysant J, Legrand E, Sorria C, Crepin M. Decrease of breast cancer cell invasiveness by sodium phenylacetate (NaPa) is associated with an increased expression of adhesive molecules. Br J Cancer 2001;84:802-807
36 Watanabe M, Sugano S, Imaj Y, Yoshida K, Onodera R, Amin MR, Uchida K, Yamaguchi R, Tateyama S. Suppression of tumorigenicity, and induction of differentiation of the canine mammary tumor cell line MCM-R2 by sodium phenylacetate. Vet Res 2001;30:27-32
37 Thibout D,Benedetto M, Kraemer M, Sainte CO, Derbin C, Crepin M. Sodium phenylacetate modulates the synthesis of autocrine and peregine growth factors secreted by breast cancer cell lines. Anticancer Res 1998;18:2657-2661
38 Thibout A, Samid D, Cooper MR, Figg WD, Tompkins AC, Patronas N. Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer 1995;75:2923-2938
39 Liu L, Barner M, Weber J, Danielpour D, Qian SW, Shearer GM, Bernard RM. Enhancement of tumor immunogenicity by cryopreservation and derivatives: Changes in surface antigens and tumor-derived immunosuppressive factors. Proc Am Assoc Cancer Res 1993;35:481

Edited by Zhang JZ