Branching problem on winding subalgebras of affine Kac-Moody algebras $A^{(1)}_1$ and $A^{(2)}_2$

Duc Khanh Nguyen

Abstract

Consider an affine Kac-Moody algebra g with Cartan subalgebra h. Given Λ in the set P^+ of dominant integral weights of g, we denote by $L(\Lambda)$ the integrable highest weight g-module with highest weight Λ. For $\mu \in h^*$, we denote by $L(\Lambda)_\mu$ the corresponding weight space. Consider the support $\Gamma(g,h)$ of the decompositions of the $L(\Lambda)$ as a h-module:

$$\Gamma(g,h) = \{(\Lambda,\mu) : L(\Lambda)_\mu \neq \{0\}\}.$$

Consider now the winding subalgebra $g[u]$ (for some positive integer u). The winding subalgebra $g[u]$ is isomorphic to g but with a nontrivial embedding in g depending on the parameter u. Given λ in the set \check{P}^+ of dominant integral weights of $g[u]$, we denote by $\check{L}(\lambda)$ the integrable highest weight $g[u]$-module with highest weight λ. Then the g-module $L(\Lambda)$ decomposes as a direct sums of simple $g[u]$-modules $\check{L}(\lambda)$ with finite multiplicities. In this paper, we are interested in the supports of this decomposition, i.e., the set of pairs (Λ,λ) in $P^+ \times \check{P}^+$ such that the integrable highest weight $g[u]$-modules $\check{L}(\lambda)$ is a submodule of $L(\Lambda)$. We show that both $\Gamma(g,h)$ and $\Gamma(g[g[u]])$ are semigroups. Moreover, for the cases $A^{(1)}_1$ and $A^{(2)}_2$, we determine explicitly $\Gamma(g[h])$.

Finally, we describe explicit subsets of $P^+ \times \check{P}^+$ where the two semigroups coincide.

2010 Mathematics Subject Classification. 17B67, 17B10 (primary) 22E65 (secondary).

Key words and phrases. Affine Kac-Moody algebras, winding subalgebras, branching rule.

1 Introduction

One of the most important question in representation theory is how an irreducible module of a Lie algebra g can be decomposed when we consider it as a representation of some given Lie subalgebra \hat{g}. Assume first that g and \hat{g} are finite dimensional and semi-simple. Then, the irreducible g-modules (resp. \hat{g}-modules) are parametrized by the semi-group P_+ (resp. \hat{P}_+) of dominant integral weights. Given $\Lambda \in P_+$, under the action of \hat{g}, the irreducible g-module $L(\Lambda)$ of highest weight Λ decomposes as

$$L(\Lambda) = \bigoplus_{\lambda \in \hat{P}_+} \hat{L}(\lambda)^{mult_{\Lambda,\hat{g}}(\lambda)},$$

where $mult_{\Lambda,\hat{g}}(\lambda)$ is the multiplicity of $\hat{L}(\lambda)$ in $L(\Lambda)$. Understanding the number $mult_{\Lambda,\hat{g}}(\lambda)$ is referred as the branching problem. For example, for \hat{g} diagonally embedded in $g = \hat{g} \times \hat{g}$, the coefficients $mult_{\Lambda,\hat{g}}(\lambda)$ are the multiplicities of the tensor product decomposition of two irreducible representations of \hat{g}. If $\hat{g} = gl_n(\mathbb{C})$ then \hat{P}_+ identifies with the set of non-increasing sequences $\nu = (\nu_1 \geq \cdots \geq \nu_n)$ of n integers and the coefficients are the
Littlewood-Richardson coefficients $e_{\lambda u}^\kappa$. If $\hat{\mathfrak{g}}$ is a Cartan subalgebra of \mathfrak{g}, the multiplicities $\text{mult}_{\Lambda, \hat{\mathfrak{g}}}(\lambda)$ are the Kostka coefficients. The support

$$\Gamma(\mathfrak{g}, \hat{\mathfrak{g}}) = \{ (\Lambda, \lambda) \in P_+ \times \hat{P}_+ : \text{mult}_{\Lambda, \hat{\mathfrak{g}}}(\lambda) \neq 0 \}$$

of these multiplicities is also a fascinating object. Actually, it is a finitely generated semigroup that generates a polyhedral convex cone. For $\hat{\mathfrak{g}}$ diagonally embedded in $\mathfrak{g} = \hat{\mathfrak{g}} \times \hat{\mathfrak{g}}$ this cone is the famous Horn cone. Its description has a very long and rich story (see [3], [2], [8], [1], [13]).

In this paper, we are interested in similar questions for affine Kac-Moody algebras. Assume now that \mathfrak{g} is an affine Kac-Moody algebra and consider integrable highest weight \mathfrak{g}-modules $L(\Lambda)$ as module over some subalgebra $\hat{\mathfrak{g}}$. In the following three cases, we have decompositions similar to (1) with finite multiplicities:

1. $\hat{\mathfrak{g}} = \mathfrak{h}$ is a Cartan subalgebra of \mathfrak{g};
2. $\hat{\mathfrak{g}}$ diagonally embedded in $\mathfrak{g} = \hat{\mathfrak{g}} \times \hat{\mathfrak{g}}$; case of tensor product decomposition.
3. $\hat{\mathfrak{g}}$ is a winding subalgebra of \mathfrak{g} introduced by V. G. Kac and M. Wakimoto in [6].

Recently, several authors studied $\Gamma(\mathfrak{g}, \hat{\mathfrak{g}})$ in the case of the tensor product decomposition of affine (or symmetrizable) Kac-Moody Lie algebras (see [12], [10], [11], [9]).

Here, we start a study of $\Gamma(\mathfrak{g}, \hat{\mathfrak{g}})$ in the winding case. Fix a winding subalgebra $\hat{\mathfrak{g}} = \mathfrak{g}[u]$ of \mathfrak{g} for some given positive integer u. It is a subalgebra of $\hat{\mathfrak{g}}$ isomorphic to \mathfrak{g} but nontrivially embedded (the embedding depends on u) (see [6] or subsection 4.1 for details).

Let δ be the basic imaginary root and d be the scaling element, for any set $S \subset \mathfrak{h}^*$, we denote by \overline{S} the subset of all $\lambda \in S + \mathbb{C}\delta$ such that $\lambda(d) = 0$. Let $k \in \mathbb{Z}_{\geq 0}$, we denote by S^k the subset of S of weights of level k.

Let P (resp. \hat{P}) be the set of all integral weights of \mathfrak{g} (resp. $\mathfrak{g}[u]$). The subset of dominant integral weights of P is denoted by P_+. For $\Lambda \in P_+$ (resp. $\lambda \in \hat{P}_+$), let $L(\Lambda)$ (resp. $\hat{L}(\lambda)$) be the integrable irreducible highest weight \mathfrak{g}-module (resp. $\mathfrak{g}[u]$-module) with highest weight Λ (resp. λ).

Let Q be the root lattice of \mathfrak{g}. Fix $\Lambda \in P_+$, then for each $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P}$, there exists an unique number $b_{\Lambda, \lambda} \in \mathbb{C}$ such that $\lambda + (b_{\Lambda, \lambda} + n)\delta$ is a weight of $L(\Lambda)$ only for $n \in \mathbb{Z}_{\leq 0}$. Also for each $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{\hat{P}}$, there exists an unique number $b_{\Lambda, \lambda, u} \in \mathbb{C}$ such that $\hat{L}(\lambda + (b_{\Lambda, \lambda, u} + n)\delta) \subset L(\Lambda)$ only for $n \in \mathbb{Z}_{\leq 0}$.

The two semigroups can be described as

$$\Gamma(\mathfrak{g}, \hat{\mathfrak{g}}) = \bigcup_{\Lambda \in P_+} \bigcup_{\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P}} (\Lambda, \lambda + (b_{\Lambda, \lambda} - \mathbb{Z}_{\geq 0})\delta), \quad (2)$$

$$\Gamma(\mathfrak{g}, \mathfrak{g}[u]) = \bigcup_{\Lambda \in P_+} \bigcup_{\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{\hat{P}}} (\Lambda, \lambda + (b_{\Lambda, \lambda, u} - \mathbb{Z}_{\geq 0})\delta). \quad (3)$$

Our first main result is the following theorem.
Theorem 1.1. As a subset of $\mathfrak{h}^* \times \mathfrak{h}^*$, the set $\Gamma(g, g[u])$ is a semigroup. Moreover, we have
\[\Gamma(g, g[u]) \subset \Gamma(g, \mathfrak{h}) \cap (P_+ \times \bar{P}_+). \] (4)

In particular, $b_{\Lambda, \lambda, u} \leq b_{\Lambda, \lambda}$ for any $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \bar{P}_+$.

For the cases g is of type $A_1^{(1)}$ and $A_2^{(2)}$, we can compute explicitly the number $b_{\Lambda, \lambda}$. Let Λ_0 be the first fundamental weight and α be the second simple root. Let $\Lambda = m\Lambda_0 + \frac{j\alpha}{2} + b\delta \in P^m$, $(m \in \mathbb{Z}_{\geq 0}, j \in \mathbb{Z}_{\geq 0}, b \in \mathbb{C})$. We then describe a subset $A_u(\Lambda)$ of the set of all $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \bar{P}_+$ such that $b_{\Lambda, \lambda, u} = b_{\Lambda, \lambda}$. Namely, for the case $A_1^{(1)}$, we set
\[A_u(\Lambda) = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [0, um] \cap (j + 2\mathbb{Z}) \cap [j - 1, um - j] \right\} \] if u is even,
\[A_u(\Lambda) = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [0, um] \cap (j + 2\mathbb{Z}) \cap [j - 1, m(u - 1) + j + 1] \right\} \] if u is odd.

For the case $A_2^{(2)}$, we set
\[A_u(\Lambda_0 + b\delta) = \left\{ \Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [0, u/2] \cap \mathbb{Z} \right\}, \] (7)
\[A_u(2\Lambda_0 + b\delta) = \left\{ 2\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [0, u] \cap \mathbb{Z} \right\}, \] (8)
\[A_u(2\Lambda_0 + \frac{\alpha}{2} + b\delta) = \left\{ 2\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [0, u] \cap \mathbb{Z} \right\}, \] (9)
\[A_u(\Lambda) = A_u^{(1)}(\Lambda) \sqcup A_u^{(2)}(\Lambda) \text{ if } m > 2, \] (10)

where
\[A_u^{(1)}(\Lambda) = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [j, \frac{um}{2}] \cap \mathbb{Z} \cap \left(\frac{m(u - 1)}{2} - j + \mathbb{Z}_{\geq 0} \right) \right\}, \] (11)
\[A_u^{(2)}(\Lambda) = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \bigg| j' \in [j, \frac{um}{2}] \cap \mathbb{Z} \cap \left(\frac{m(u - 1)}{2} - j + \mathbb{Z}_{< 0} \right) \right\}. \] (12)

For $A_1^{(1)}$ and $A_2^{(2)}$, we define a subset A_u of $P_+ \times \bar{P}_+$ by
\[A_u = \bigcup_{\Lambda \in P_+} \bigcup_{\lambda \in A_u(\Lambda)} (\Lambda, \lambda + (b_{\Lambda, \lambda} - \mathbb{Z}_{\geq 0}) \delta). \] (13)

For the case $A_2^{(2)}$, we define smaller subsets of A_u by
\[A_u^{(1)} = \bigcup_{\Lambda \in P^m, m > 2} \bigcup_{\lambda \in A_u^{(1)}(\Lambda)} (\Lambda, \lambda + (b_{\Lambda, \lambda} - \mathbb{Z}_{\geq 0}) \delta), \] (14)
\[A_u^{(2)} = \bigcup_{\Lambda \in P^m, m > 2} \bigcup_{\lambda \in A_u^{(2)}(\Lambda)} (\Lambda, \lambda + (b_{\Lambda, \lambda} - \mathbb{Z}_{\geq 0}) \delta). \] (15)
Theorem 1.2. Let \mathfrak{g} be an affine Kac-Moody algebra of type $A_1^{(1)}$ or $A_2^{(2)}$. Let $\Lambda \in P_+$. Then for any $\lambda \in \mathcal{A}_u(\Lambda)$ we have
\[b_{\Lambda,\lambda,u} = b_{\Lambda,\lambda}. \]
Hence
\[\mathcal{A}_u = \mathcal{A}_u \cap \Gamma(\mathfrak{g}, \mathfrak{g}[u]) = \mathcal{A}_u \cap \Gamma(\mathfrak{g}, \mathfrak{h}). \]
Moreover, \mathcal{A}_u is a semigroup only for the case $A_1^{(1)}$. In the case $A_2^{(2)}$, the restriction of \mathcal{A}_u on the pairs of weights of level greater than 2 is a disjoint union of two semigroups $\mathcal{A}_1^{(1)}$ and $\mathcal{A}_2^{(2)}$.

This article is organized as follows. In Section 2, we prepare fundamental knowledge of affine Kac-Moody algebras. In Section 3, we present results around branching on Cartan subalgebras. We prove that the set $\Gamma(\mathfrak{g}, \mathfrak{h})$ is a semigroup. We also compute the number $b_{\Lambda,\lambda}$ for the cases $A_1^{(1)}$ and $A_2^{(2)}$. In Section 4, we introduce the notion of winding subalgebras. The main results of this article, Theorem 1.1 and Theorem 1.2 above, will be presented in Section 4.

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Generalized Cartan matrix of affine type 5

2.2 Realization of a generalized Cartan matrix 5

2.3 Affine Kac-Moody algebras 5

2.4 Weyl group 6

2.5 Realization of affine Kac-Moody algebras 6

2.6 Dominant integral weights and integrable irreducible modules 7

3 Branching on Cartan subalgebras 7

3.1 About the character ch_Λ 8

3.2 About the set of weights $P(\Lambda)$ 8

3.2.1 Semigroup structure 9

3.2.2 Computation for the case $A_1^{(1)}$ 9

3.2.3 Computation for the case $A_2^{(2)}$ 11

4 Branching on winding subalgebras 12

4.1 Winding subalgebras of an affine Kac-Moody algebra 12

4.2 The set of weights $P_{A,u}(\Lambda)$ 13

4.3 An identity of characters 14

4.4 Semigroup structure 14

4.5 About the cases $A_1^{(1)}$ and $A_2^{(2)}$ 16

Acknowledgements 28

References 28

2 Preliminaries

In this section, we recall basic fact about affine Kac-Moody algebras in [4], [5], [6].
2.1 Generalized Cartan matrix of affine type

Set $I = \{0, \ldots, l\}$. Let $A = (a_{ij})_{i, j \in I}$ be a generalized Cartan matrix of affine type, i.e., A is indecomposable of corank 1, $a_{ii} = 2$, $-a_{ij} \in \mathbb{Z}_{\geq 0}$ for $i \neq j$, $a_{ij} = 0$ iff $a_{ji} = 0$ and there exists a column vector u with positive integer entries such that $Au = 0$.

Let $a = t(a_0, \ldots, a_l)$ and $c = (c_0, \ldots, c_l)$ be the vectors of relatively prime integers such that $a_i, c_i > 0$ and $Aa = cA = 0$. The Coxeter number and dual Coxeter number of A are defined by $h = \sum_{i \in I} a_i$ and $h^\vee = \sum_{i \in I} c_i$.

2.2 Realization of a generalized Cartan matrix

Let $(\mathfrak{h}, \Pi, \Pi^\vee)$ be a realization of A where \mathfrak{h} is a \mathbb{C}-vector space of dimension $l + 2$, $\Pi^\vee = \{h_0, \ldots, h_l\}$ is a linearly independent subset in \mathfrak{h} and $\Pi = \{\alpha_0, \ldots, \alpha_l\}$ is a linearly independent subset in \mathfrak{h}^* (the dual space of \mathfrak{h}) such that $\alpha_i(h_j) = \delta_{ij}$.

Let $K = \sum_{i \in I} c_i h_i$ be the canonical central element and $\delta = \sum_{i \in I} a_i \alpha_i$ be the basic imaginary root. Let $d \in \mathfrak{h}$ be the scaling element, i.e., $\alpha_0(d) = 1, \alpha_i(d) = 0$ for $i > 0$. Let $\Lambda_i (i \in I)$ be the fundamental weights, i.e., $\Lambda_i(h_j) = \delta_{ij}, \Lambda_i(d) = 0$ for all $j \in I$. Set $\rho = \sum_{i \in I} \Lambda_i$. Then $\{\alpha_0, \ldots, \alpha_l, \Lambda_0\}$ is a basis of \mathfrak{h}^* and $\{h_0, \ldots, h_l, d\}$ is a basis of \mathfrak{h}.

2.3 Affine Kac-Moody algebras

Let $\mathfrak{g}(A)$ be the affine Kac-Moody algebra corresponding to the matrix A. We call \mathfrak{h} a Cartan subalgebra of $\mathfrak{g}(A)$ and Π, Π^\vee the set of simple roots, coroots of $\mathfrak{g}(A)$, respectively. We have a triangular decomposition

$$\mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+,$$

where \mathfrak{n}_- is the negative subalgebra of $\mathfrak{g}(A)$ and \mathfrak{n}_+ is the positive subalgebra of $\mathfrak{g}(A)$.

An affine Kac-Moody algebra has type $X^{(r)}_N$ with $r = 1, 2, 3$ (here we use the standard notation in [5] to label the type of affine Kac-Moody algebras). In particular, the untwisted affine Kac-Moody of type $A^{(1)}_1$ is defined by the generalized Cartan matrix

$$\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix},$$

and the twisted affine Kac-Moody algebra of type $A^{(2)}_2$ is defined by the generalized Cartan matrix

$$\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}.$$
2.4 Weyl group

Let $Q = \mathbb{Z}\Pi$ be the root lattice and let $Q_+ = \mathbb{Z}_{\geq 0}\Pi$. We define an order on \mathfrak{h}^* by $\lambda \geq \mu$ if $\lambda - \mu \in Q_+$. For each $i \in I$, set $\alpha_i^\vee = \frac{2}{\alpha_i} \alpha_i$. We define a sublattice M of Q by

$$M = \bigoplus_{i=0}^{l} \mathbb{Z}\alpha_i^\vee$$

if $r^\vee = 1$,

$$M = \bigoplus_{i=0}^{l} \mathbb{Z}\alpha_i^\vee$$

if $r^\vee > 1$.

Let $(\cdot \mid \cdot)$ be the standard invariant form on \mathfrak{h}^* which is defined by

$$(\alpha_i \mid \alpha_j) = \frac{c_{ij}}{a_i} a_{ji}, \quad (\alpha_i \mid \Lambda_0) = \frac{1}{a_0} \alpha_i(d), \quad (\Lambda_0 \mid \Lambda_0) = 0 \quad \forall i,j \in I.$$ (22)

For each $\alpha \in \mathfrak{h}^*$, we define $t_\alpha \in GL(\mathfrak{h}^*)$ by

$$t_\alpha(\lambda) = \lambda + \lambda(K)\alpha - \left(\lambda + \frac{\lambda(K)\alpha}{\tau} \right) \delta.$$ (23)

Let W be the Weyl group of $\mathfrak{g}(A)$ the group generated by fundamental reflections $\{ s_0, \ldots, s_l \}$ where $s_i \in GL(\mathfrak{h}^*)$ is defined by $s_i(\lambda) = \lambda - \lambda(h_i)\alpha_i$. Then we have

$$W \cong t_M \times \bar{W}$$ (24)

where $t_M = \{ t_\alpha \mid \alpha \in M \}$ and \bar{W} is the subgroup of W generated by $\{ s_1, \ldots, s_l \}$.

2.5 Realization of affine Kac-Moody algebras

Let $B = (b_{ij})_{i,j \in \{1,\ldots,l\}}$ be a Cartan matrix of finite type. Let $\mathfrak{g}(B)$ be the simple Lie algebra associated to B with Lie bracket $[,]_0$, the standard invariant form $(\cdot \mid \cdot)_0$ (Here we use the notion of standard invariant form for a simple Lie algebra in the book of Carter [4]). We extend $\mathfrak{g}(B)$ to a new Lie algebra

$$\tilde{\mathfrak{g}}(B) = C[t, t^{-1}] \otimes \mathfrak{g}(B) \oplus CK \oplus Cd$$ (25)

with new Lie bracket

$$[t^i \otimes x + \lambda K + \mu d, t^j \otimes y + \lambda' K + \mu' d]$$

$$= t^{i+j} \otimes [x, y]_0 + \mu j t^{i} \otimes y - \mu' t^{j} \otimes x + i \delta_{i+j,0}(x|y)_0 K.$$ (26)

for all $i,j \in \mathbb{Z}$, $x,y \in \mathfrak{g}(B)$ and $\lambda, \lambda', \mu, \mu' \in \mathbb{C}$.

Let $\tilde{\mathfrak{h}}$ be a Cartan subalgebra of $\tilde{\mathfrak{g}}(B)$ and let $\tilde{\Phi}$ be the root system of $\tilde{\mathfrak{g}}(B)$. For each $\alpha \in \tilde{\Phi}$, let

$$\tilde{\mathfrak{g}}(B)_\alpha = \{ x \in \tilde{\mathfrak{g}}(B) \text{ such that } [h, x]_0 = \alpha(h)x \text{ for all } h \in \tilde{\mathfrak{h}} \}.$$ (27)

Let $\tilde{\Pi} = \{ \tilde{\alpha}_1, \ldots, \tilde{\alpha}_l \}$ be the set of simple roots and $\tilde{\Pi}^\vee = \{ \tilde{h}_1, \ldots, \tilde{h}_l \}$ be the set of coroots of $\tilde{\mathfrak{g}}(B)$. It is known that the dimension of $\mathfrak{g}(B)_\alpha$ is one for each $\alpha \in \tilde{\Phi}$. For each $i \in \{1, \ldots, l\}$, let \tilde{e}_i be a basis vector of $\tilde{\mathfrak{g}}(B)_{\tilde{\alpha}_i}$ and \tilde{f}_i be a basis vector of $\tilde{\mathfrak{g}}(B)_{-\tilde{\alpha}_i}$. Then $\mathfrak{g}(B)$ is a Lie algebra with generators $\{ \tilde{h}_1, \ldots, \tilde{h}_l, \tilde{e}_1, \ldots, \tilde{e}_l, \tilde{f}_1, \ldots, \tilde{f}_l \}$.

For any $\sigma \in S_l$ such that $b_{ij} = b_{\sigma(i)\sigma(j)}$ for all $i,j \in \{1, \ldots, l\}$, we can consider it as an automorphism of $\tilde{\mathfrak{g}}(B)$ by sending

$$\tilde{e}_i \mapsto \tilde{e}_{\sigma(i)}, \quad \tilde{f}_i \mapsto \tilde{f}_{\sigma(i)}, \quad \tilde{h}_i \mapsto \tilde{h}_{\sigma(i)}.$$ (28)
Let m be the order of σ and $\eta = e^{2\pi i/m}$. We define the automorphism τ of $\hat{g}(B)$ by

$$
\tau(t^i \otimes x) = \eta^{-i}t^i \otimes \sigma(x), \tau(K) = K, \tau(d) = d
$$

for all $i \in \mathbb{Z}, x \in g(B)$. This map is called a twisted automorphism of $\hat{g}(B)$.

Now, let A be an affine Cartan matrix of type $X_{rN}^{(r)}$. Let \bar{A} be the finite Cartan matrix of type $X_{N}^{(r)}$. If A is an untwisted affine Cartan matrix, i.e., type $X_{N}^{(1)}$, then we have

$$
g(A) \simeq \hat{g}(\bar{A}).
$$

If A is a twisted affine Cartan matrix, i.e., type $X_{N}^{(r)}$ for $r = 2, 3$, we have

$$
g(A) \simeq \hat{g}(\bar{A})^{(r)}.
$$

The simple coroots h_1, \ldots, h_l of $g(A)$ have property

$$
h_i \in 1 \otimes \bar{h}
$$

for each $i \in \{1, \ldots, l\}$, where \bar{h} is the Cartan subalgebra of $\hat{g}(\bar{A})$. For the details, we refer the reader to the proofs of Theorem 18.5, Theorem 18.9 and Theorem 18.14 in [4].

2.6 Dominant integral weights and integrable irreducible modules

Let

$$
P_{+} = \sum_{i \in I} \mathbb{Z}_{\geq 0} \Lambda_i + \mathbb{C}\delta
$$

be the set of dominant integral weights. For any set $S \subset h^*$, we denote by \overline{S} the subset of all $\lambda \in S + \mathbb{C}\delta$ such that $\lambda(d) = 0$. We have

$$
\overline{P}_{+} = \sum_{i \in I} \mathbb{Z}_{\geq 0} \Lambda_i.
$$

For each $\lambda \in P_{+}$, the number $\lambda(K)$ is a non-negative integer and we call it the level of λ. For each $k \in \mathbb{Z}_{\geq 0}$, we denote by P_{+}^k the set of all dominant integral weights of level k. Then we have

$$
P_{+}^k = \left\{ \sum_{i \in I} m_i \Lambda_i \left| \sum_{i \in I} m_i c_i = k, m_i \in \mathbb{Z}_{\geq 0} \right. \right\} + \mathbb{C}\delta.
$$

To forget the dominant property, we use the notations P, \overline{P}, P^k.

For each $\lambda \in P_{+}$, let $L(\lambda)$ be the integrable irreducible highest weight $g(A)$-module with highest weight λ.

3 Branching on Cartan subalgebras

In this section, we recall some facts about branching on Cartan subalgebras of affine Kac-Moody algebras.

Let $\Lambda \in P_{+}$ be a dominant integral weight of $g(A)$, \mathfrak{h} be a Cartan subalgebra of $g(A)$. Regarding $g(A)$-module $L(\Lambda)$ as an \mathfrak{h}-module, it can be decomposed into direct sum of weights spaces

$$
L(\Lambda) = \bigoplus_{\lambda \in h^*} L(\Lambda)^{mult_{A,\mathfrak{h}}}(\lambda),
$$

(36)
where
\[L(\Lambda) = \{ v \in L(\Lambda) \mid hv = \lambda(h)v \ \forall h \in \mathfrak{h} \}. \] (37)
The decomposition (36) is encoded by a formal series \(ch_{\Lambda} \) on \(\mathfrak{h}^* \) as follows
\[ch_{\Lambda} = \sum_{\lambda \in \mathfrak{h}^*} \text{mult}_{\Lambda, \mathfrak{h}}(\lambda) e^{\lambda}, \] (38)
where \(e^{\lambda}(\mu) = \delta_{\lambda, \mu} \) for \(\mu \in \mathfrak{h}^* \). We call \(ch_{\Lambda} \) the character of \(L(\Lambda) \). The set of weights of \(L(\Lambda) \) is defined by
\[P(\Lambda) = \{ \lambda \in \mathfrak{h}^* \mid \text{mult}_{\Lambda, \mathfrak{h}}(\lambda) \neq 0 \}. \] (39)
For each \(\lambda \in \mathfrak{h}^* \), we say \(\lambda \) a maximal weight of \(L(\Lambda) \) if \(\lambda \in P(\Lambda) \) but \(\lambda + n\delta \notin P(\Lambda) \) for any \(n > 0 \). Let \(\text{max}(\Lambda) \) be the set of all maximal weights of \(L(\Lambda) \). We have
\[\text{max}(\Lambda) = W((\Lambda - Q_+) \cap P_+) \] (40)
and
\[P(\Lambda) = W((\Lambda - Q_+) \cap P_+) = \text{max}(\Lambda) - Z_{\geq 0}\delta. \] (41)

3.1 About the character \(ch_{\Lambda} \)
We now recall some facts about the character \(ch_{\Lambda} \) for any affine Kac-Moody algebra.

Denote \(e^{-\delta} \) by \(q \). For each \(\lambda \in \mathfrak{h}^* \), we define the string function \(c^A_{\lambda} \in \mathbb{C}(q) \) of \(L(\Lambda) \) associated to \(\lambda \) by
\[c^A_{\lambda} = \sum_{n \in \mathbb{Z}} \text{mult}_{\Lambda, \mathfrak{h}}(\lambda - n\delta)q^n. \] (42)
Then for any \(w \in W \) we have
\[c^A_{\lambda} = c^A_{w\lambda}. \] (43)
and
\[ch_{\Lambda} = \sum_{\lambda \in \text{max}(\Lambda)} c^A_{\lambda} e^{\lambda}. \] (44)
The character \(ch_{\Lambda} \) can be written in terms of Weyl group, what we call the Weyl-Kac character formula (see Corollary 19.18 in [4]):
\[ch_{\Lambda} = \frac{\sum_{w \in W} \epsilon(w)e^{w(\lambda + \rho)}}{\sum_{w \in W} \epsilon(w)e^{w(\rho)}}. \] (45)

3.2 About the set of weights \(P(\Lambda) \)
In this subsection, we show some facts about the set of weights \(P(\Lambda) \) for any affine Kac-Moody algebra and in particular for the cases \(A_1^{(1)} \) and \(A_2^{(2)} \).

The formula (41) says that for each \(\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \mathcal{P} \), there exists uniquely a number \(b_{\Lambda, \lambda} \in \mathbb{C} \) such that \(\lambda + b_{\Lambda, \lambda}\delta \in \text{max}(\Lambda) \). Hence,
\[P(\Lambda) = \bigcup_{\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \mathcal{P}} (\lambda + (b_{\Lambda, \lambda} - Z_{\geq 0})\delta). \] (46)
Since $\lambda + b\delta \in P(\Lambda + b\delta)$ if and only if $\lambda \in P(\Lambda)$ for all $b \in \mathbb{C}$, we have
\[
b_{\Lambda+b\delta,\lambda} = b_{\Lambda,\lambda} + b. \tag{47}\]

We may assume that $\Lambda \in \overline{P}_+$. With this assumption, in particular, for the cases $A_1^{(1)}$ and $A_2^{(2)}$, we can compute explicitly the set $\text{max}(\Lambda)$, hence the number $b_{\Lambda,\lambda}$ and the set $P(\Lambda)$. The idea of computations bases on the work on S. Kumar and M. Brown in [9].

3.2.1 Semigroup structure

In this part, we study the set $\Gamma(g, h) \subset \mathfrak{h}^* \times \mathfrak{h}^*$.

Theorem 3.1. As a subset of $\mathfrak{h}^* \times \mathfrak{h}^*$, the set $\Gamma(g, h)$ is a semigroup.

Proof. Let (Λ, λ) and $(\bar{\Lambda}, \bar{\lambda})$ be elements in the set $\Gamma(g, h)$. We will show that $(\Lambda + \bar{\Lambda}, \lambda + \bar{\lambda})$ is still in this set. Indeed, $\lambda + \bar{\lambda}$ is a weight of $L(\Lambda) \otimes L(\bar{\Lambda})$. Hence $\lambda + \bar{\lambda}$ is a weight of $L(\Lambda'')$ for some $\Lambda'' \in ((\Lambda + \bar{\Lambda}) - Q_+) \cap \overline{P}_+$. By (41), we have
\[
P(\Lambda'') \subset P(\Lambda + \bar{\Lambda}). \tag{48}\]

It means $\lambda + \bar{\lambda} \in P(\Lambda + \bar{\Lambda})$ and then $\Gamma(g, h)$ is a semigroup. \qed

Remark 3.2. We can prove that $\Gamma(g, h)$ is a semigroup for any symmetrizable Kac-Moody algebra \mathfrak{g} by the same argument.

3.2.2 Computation for the case $A_1^{(1)}$

Let A be the affine Cartan matrix of type $A_1^{(1)}$. Fix $m \in \mathbb{Z}_{\geq 0}$. Let α be the second simple root of $g(A)$. We have
\[
\overline{P}^m_+ = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \right\} \quad j \in [0, m] \cap \mathbb{Z}. \tag{49}\]

We can describe explicitly the set $\text{max}(\Lambda)$ and number $b_{\Lambda,\lambda}$ for the case $A_1^{(1)}$ as follows.

Proposition 3.3. With the setting for $A_1^{(1)}$, let $\Lambda = m\Lambda_0 + \frac{j\alpha}{2} \in \overline{P}^m_+$. For each $k \in \mathbb{Z}$, let n_k be a number which is uniquely determined by k, m, j as follows

1. Write $k = mq + r$ for some $q \in \mathbb{Z}, r \in [0, m]$.

2. Set
\[
n_k = -q(k + r + j) + \begin{cases} -r & \text{if } r \in [0, m - j], \\ -m - j - 2r & \text{if } r \in [m - j, m]. \end{cases} \tag{50}\]

Then we have
\[
\text{max}(\Lambda) = \{ \Lambda + k\alpha + n_k\delta \mid k \in \mathbb{Z} \}. \tag{51}\]

Or, equivalently, for each $\lambda = m\Lambda_0 + \frac{j'\alpha}{2} \in \text{max}(\Lambda)$, we have
\[
b_{\Lambda,\lambda} = n_{j' + 2r}. \tag{53}\]
To prove above proposition, we need the following lemma.

Lemma 3.4. For any affine Kac-Moody algebra, let \(\Lambda \in P_+ \), then

\[
\max(\Lambda) \cap P_+ = \left\{ \Lambda - \sum_{i \in I} m_i \alpha_i \mid m_i \in \mathbb{Z}_{\geq 0} \text{ for all } i, m_i < a_i \text{ for some } i \in I \right\} \cap P_+. \tag{54}
\]

Proof. Since \(P(\Lambda) = W((\Lambda - Q_+) \cap P_+) \) and if \(\mu \in P(\Lambda) \), then \(\mu \leq \Lambda \), we have

\[
\max(\Lambda) \cap P_+ = \{ \mu \in P(\Lambda) \cap P_+, \mu + \delta \notin P(\Lambda) \}
= \{ \mu \in P(\Lambda) \cap P_+, \mu + \delta \notin \Lambda \}
= \left\{ \mu \in P(\Lambda) \cap P_+, \mu = \Lambda - \sum_{i \in I} m_i \alpha_i \mid m_i < a_i \text{ for some } i \in I \right\}
= \left\{ \Lambda - \sum_{i \in I} m_i \alpha_i \mid m_i \in \mathbb{Z}_+ \text{ for all } i, m_i < a_i \text{ for some } i \in I \right\} \cap P_+.
\]

So, we get the conclusion. \(\square \)

With the aid of Lemma 3.4, we can prove Proposition 3.3 as follows.

Proof. We have \(\max(\Lambda) = W(\max(\Lambda) \cap P_+) \). By Lemma 3.4,

\[
\max(\Lambda) \cap P_+ = \left\{ \Lambda - m_0(\delta - \alpha), \Lambda - m_1 \alpha \mid m_i \in \mathbb{Z}_{\geq 0}, m_0 \leq \frac{m-j}{2}, m_1 \leq \frac{j}{2} \right\}. \tag{55}
\]

Recall that \(W = \{ t_{n\alpha}, t_{n\alpha}s_1, \ldots \mid n \in \mathbb{Z} \} \). We have

\[
t_{n\alpha}(\Lambda - m_0(\delta - \alpha)) = \Lambda + (m_0 + mn)\alpha - ((j + 2m_0 + mn)n + m_0)\delta, \tag{56}
\]

\[
t_{n\alpha}s_1(\Lambda - m_0(\delta - \alpha)) = \Lambda + (-j - m_0 + mn)\alpha - ((-j - 2m_0 + mn)n + m_0)\delta, \tag{57}
\]

\[
t_{n\alpha}(\Lambda - m_1 \alpha) = \Lambda + (-m_1 + mn)\alpha - (j - 2m_1 + mn)n\delta, \tag{58}
\]

\[
t_{n\alpha}s_1(\Lambda - m_1 \alpha) = \Lambda + (-j + m_1 + mn)\alpha - (-j + 2m_1 + mn)n\delta. \tag{59}
\]

So an element in \(\max(\Lambda) \) has form \(\Lambda + k\alpha + n_k' \delta \) for some \(n_k' \), \(k \in \mathbb{Z} \). Suppose that \(\Lambda + r\alpha + n_r' \delta \in \max(\Lambda) \), then

\[
t_{qm}(\Lambda + r\alpha + n_r' \delta) = \Lambda + (mq + r)\alpha + (n_r' - (j + 2r + mq)q)\delta \tag{60}
\]

is still in \(\max(\Lambda) \). So, if we write \(k = mq + r \) for some \(q \in \mathbb{Z} \), then

\[
n_r' = n_r' - q(k + r + j). \tag{61}
\]

Let \(0 \leq r < m \), then the expression \(k = mq + r \) is unique. By (56), (57), (58), (59) we get

\[
n_r' = \begin{cases} -r & \text{if } r \in [0, m-j], \\ m - j - 2r & \text{if } r \in [m-j, m]. \tag{62} \end{cases}
\]

Hence we obtain \(n_k' = n_k \) given by (50). It means

\[
\max(\Lambda) = \{ \Lambda + k\alpha + n_k \delta \mid k \in \mathbb{Z} \}. \tag{63}
\]

Since \(\lambda = \Lambda + \frac{i\alpha}{2} \) then \(\lambda + n_{\frac{i\alpha}{2}} \delta \in \max(\Lambda) \). Hence \(b_{\Lambda, \lambda} = n_{\frac{i\alpha}{2}} \) by definition. \(\square \)
3.2.3 Computation for the case $A_2^{(2)}$

For the case $A_2^{(2)}$, the computation is similar. Namely, let A be the affine Cartan matrix of type $A_2^{(2)}$. Fix $m \in \mathbb{Z}_{\geq 0}$. Let α be the second simple root of $\mathfrak{g}(A)$. We have

$$\mathcal{P}_+^m = \left\{ m\Lambda_0 + \frac{j\alpha}{2} \mid j \in \left[0, \frac{m}{2}\right] \cap \mathbb{Z} \right\}. \quad (64)$$

We can describe explicitly the set $\max(\Lambda)$ and number $b_{\Lambda, \lambda}$ for the case $A_2^{(2)}$ as follows.

Proposition 3.5. With the setting for $A_2^{(2)}$, let $\Lambda = m\Lambda_0 + \frac{j\alpha}{2} \in \mathcal{P}_+^m$. For each $k \in \frac{1}{2}\mathbb{Z}$, let n_k be a number which is uniquely determined by k, m, j as follows.

1. Write $k = \frac{m}{2}q + r$ for some $q \in \mathbb{Z}, r \in [0, \frac{m}{2})$.
2. Set

$$n_k = -q(k + r + j) + \begin{cases} -r & \text{if } r \in [0, \frac{m}{2} - j], \\ \frac{m}{2} - j - 2r & \text{if } r \in \left(\frac{m}{2} - j, \frac{m}{2}\right) \cap \left(\frac{m}{2} + \mathbb{Z}\right) \\ \frac{m-1}{2} - j - 2r & \text{if } r \in \left(\frac{m-1}{2} - j, \frac{m}{2}\right) \cap \left(\frac{m-1}{2} + \mathbb{Z}\right). \end{cases} \quad (65)$$

Then we have

$$\max(\Lambda) = \left\{ \Lambda + k\alpha + n_k\delta \mid k \in \frac{1}{2}\mathbb{Z} \right\}. \quad (66)$$

Or, equivalently, for each $\lambda = m\Lambda_0 + \frac{j\alpha}{2}$ in the set

$$(\Lambda - Q + \mathbb{C}\delta) \cap \overline{\mathcal{P}} = \left\{ m\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in \mathbb{Z} \right\}, \quad (67)$$

we have

$$b_{\Lambda, \lambda} = n_{j' - j}. \quad (68)$$

Proof. We have $\max(\Lambda) = W(\max(\Lambda) \cap P_+)$. By Lemma 3.4, $\max(\Lambda) \cap P_+$ contains exactly elements

$$\Lambda - m_0\alpha_0, \Lambda - m_1\alpha, \Lambda - \alpha_0 - m_2\alpha \quad (69)$$

such that

$$m_0, m_1, m_2 \in \mathbb{Z}_{\geq 0}, m_0 \leq \frac{m}{2} - j, m_1 \leq \frac{j}{2} \leq \frac{j+1}{2} \leq m_2 \leq \frac{j+1}{2}. \quad (70)$$

Recall that $W = \left\{ t_{\frac{m}{2}}, t_{\frac{m}{2}}s_1 \mid n \in \mathbb{Z} \right\}$. We have

$$t_{\frac{m}{2}}(\Lambda - m_0\alpha_0) = \Lambda + \frac{mn + m_0}{2}\alpha - \frac{(mn + 2j + 2m_0)n + m_0\delta}{2}, \quad (71)$$

$$t_{\frac{m}{2}}s_1(\Lambda - m_0\alpha_0) = \Lambda + \frac{mn - 2j - m_0}{2}\alpha - \frac{(mn - 2j - 2m_0)n + m_0\delta}{2}, \quad (72)$$

$$t_{\frac{m}{2}}(\Lambda - m_1\alpha) = \Lambda + \frac{mn - 2m_1}{2}\alpha - \frac{(mn + 2j - 4m_1)n + m_0\delta}{2}, \quad (73)$$

$$t_{\frac{m}{2}}s_1(\Lambda - m_1\alpha) = \Lambda + \frac{mn - 2j + 2m_1}{2}\alpha - \frac{(mn - 2j + 4m_1)n + m_0\delta}{2}, \quad (74)$$

$$t_{\frac{m}{2}}(\Lambda - \alpha_0 - m_2\alpha) = \Lambda + \frac{mn + 1 - 2m_2}{2}\alpha - \frac{(mn + 2j + 2 - 4m_2)n + 1}{2}\delta, \quad (75)$$

$$t_{\frac{m}{2}}s_1(\Lambda - \alpha_0 - m_2\alpha) = \Lambda + \frac{mn - 1 - 2j + 2m_2}{2}\alpha - \frac{(mn - 2j - 2 + 4m_2)n + 1}{2}\delta. \quad (76)$$

11
So an element in $\text{max}(\Lambda)$ has form $\Lambda + k\alpha + n_k'\delta$ for some n_k', $k \in \frac{1}{2}\mathbb{Z}$. Suppose that $\Lambda + r\alpha + n_k'\delta \in \text{max}(\Lambda)$, then
\[
\text{max}(\Lambda) = \Lambda + \left(\frac{m}{2}q + r\right)\alpha + \left(n_k' - \left(j + 2r + \frac{m}{2}q\right)q\right)\delta \quad (77)
\]
is still in $\text{max}(\Lambda)$. So, if we write $k = \frac{m}{2}q + r$ for some $q \in \mathbb{Z}$, then
\[
n_k' = n_k' - q(k + r + j). \quad (78)
\]
Let $0 \leq r < \frac{m}{2}$, then the expression $k = \frac{m}{2}q + r$ is unique. By (71), (72), (73), (74), (75), (76) we get
\[
n_k' = \left\{ \begin{array}{ll}
-r & \text{if } r \in [0, \frac{m}{2} - j], \\
\frac{m}{2} - j - 2r & \text{if } r \in \left[\frac{m}{2} - j, \frac{m}{2}\right) \cap (\frac{m}{2} + \mathbb{Z}), \\
\frac{m}{2} - j - 2r & \text{if } r \in \left[\frac{m}{2} - j, \frac{m}{2}\right) \cap (\frac{m}{2} - 1 + \mathbb{Z}).
\end{array} \right. \quad (79)
\]
Hence, we obtain $n_k' = n_k$ given by (65). It means
\[
\text{max}(\Lambda) = \left\{ \Lambda + k\alpha + n_k\delta \mid k \in \frac{1}{2}\mathbb{Z} \right\}. \quad (80)
\]
Since $\lambda = \Lambda + \frac{\delta}{\alpha + \delta$, then $\lambda + n\frac{\alpha}{\alpha + \delta} \in \text{max}(\Lambda)$. Hence, $b_{\lambda, \lambda} = n\frac{\alpha}{\alpha + \delta}$ by definition. \(\square\)

4 Branching on winding subalgebras

In this section, we study the branching problem on winding subalgebras.

4.1 Winding subalgebras of an affine Kac-Moody algebra

In this subsection, we recall the notation of winding subalgebras of an affine Kac-Moody algebra in [6].

Let $g(A)$ with A of type $X_N^{(r)}$ be an affine Kac-Moody algebra which is defined by (30), (31). Fix $u \in \mathbb{Z}_{>0}$ relatively prime with r. We define the Lie homomorphism $\psi_u : g(A) \to g(A)$ by
\[
t^i \otimes x \mapsto t^{u_i} \otimes x, K \mapsto uK, d \mapsto \frac{d}{u} \quad (81)
\]
where $i \in \mathbb{Z}, x \in g(\bar{A})$. It is easy to check that ψ_u is an injective Lie homomorphism. Let $g(A)[u]$ be the image of this map. Then $g(A)[u]$ is a subalgebra of $g(A)$ and isomorphic to $g(A)$. We call $g(A)[u]$ the winding subalgebra of $g(A)$ associated to u.

Set $\bar{K} = \psi_u(K) = uK$. Let $\tilde{\psi}_u : \mathfrak{h} \to \mathfrak{h}$ be the restriction of ψ_u over the Cartan subalgebra \mathfrak{h} of $g(A)$. For each $i \in I$, set $\hat{h}_i = \tilde{\psi}_u(h_i)$. Then by (32), we see that
\[
\hat{h}_i = h_i \text{ for all } i > 0 \text{ and } \hat{h}_0 = \frac{u - 1}{c_0}K + h_0. \quad (82)
\]
Let $t\psi_u : \mathfrak{h}^* \to \mathfrak{h}^*$ the dual map of $\tilde{\psi}_u$. Namely, for each $\lambda \in \mathfrak{h}^*$ we define $t\psi_u$ by
\[
t\psi_u(\lambda)(h) = \lambda(\tilde{\psi}_u(h)) \quad (83)
\]
for all $h \in \mathfrak{h}$. For each $i \in I$, set $\hat{\alpha}_i = t\psi_u(\alpha_i)$. Then by (82), (83) we have
\[
\hat{\alpha}_i = \alpha_i \text{ for all } i > 0 \text{ and } \hat{\alpha}_0 = \frac{u - 1}{a_0}\delta + \alpha_0. \quad (84)
\]
For each $i \in I$, set $\hat{\Lambda}_i = i\hat{\psi}_u(\Lambda_i)$ and $\hat{\rho} = i\hat{\psi}_u(\rho)$. By (82), (83) we have

$$\hat{\Lambda}_i = \Lambda_i + \left(\frac{1}{u} - 1\right) \frac{c_i}{c_0} \Lambda_0 \quad (85)$$

$$\hat{\rho} = \sum_i \hat{\Lambda}_i = \rho + \left(\frac{1}{u} - 1\right) h^\vee \Lambda_0. \quad (86)$$

The map $i\hat{\psi}_u$ induces simple reflections $\hat{s}_i \in Aut(\mathfrak{b}^*)$, which are defined by

$$\hat{s}_i(\lambda) = \lambda - \lambda(h_i)\hat{\alpha}_i. \quad (87)$$

The Weyl group \hat{W} of $\mathfrak{g}(A)[u]$ is generated by simple reflections $\hat{s}_i (i \in I)$ turns out to be

$$\hat{W} \cong t_{u,M} \times \hat{W}. \quad (88)$$

Let

$$\hat{P}_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \hat{\Lambda}_i + \mathbb{C}\delta \quad (89)$$

be the set of dominant integral weights of $\mathfrak{g}(A)[u]$. For each $k \in \mathbb{Z}_{\geq 0}$, let \hat{P}_+^k be the set of dominant integral weights of $\mathfrak{g}(A)[u]$ of level k, i.e.,

$$\hat{P}_+^k = \left\{ \sum_{i \in I} m_i \hat{\Lambda}_i \mid \sum_{i \in I} m_i c_i = k, m_i \in \mathbb{Z}_{\geq 0} \right\} + \mathbb{C}\delta. \quad (90)$$

Let $\lambda \in \hat{P}_+$, we denote the irreducible integrable $\mathfrak{g}(A)[u]$-module of highest weight λ by $\hat{L}(\lambda)$. The winding subalgebra $\mathfrak{g}(A)[u]$ has a triangular decomposition

$$\mathfrak{g}(A)[u] = \hat{n}_- \oplus \mathfrak{h} \oplus \hat{n}_+, \quad (91)$$

where \hat{n}_- is the negative subalgebra of $\mathfrak{g}(A)[u]$ and \hat{n}_+ is the positive subalgebra of $\mathfrak{g}(A)[u]$.

4.2 The set of weights $P_{A,u}(\Lambda)$

For each $\Lambda \in P_+^k (k \in \mathbb{Z}_{\geq 0})$, the $\mathfrak{g}(A)$-module $L(\Lambda)$ can be regarded as a $\mathfrak{g}(A)[u]$-module of level uk. Then it can be decomposed into direct sum of integrable irreducible $\mathfrak{g}(A)[u]$-module of level uk

$$L(\Lambda) = \bigoplus_{\lambda \in \hat{P}_+^k} \hat{L}(\lambda)^{mult_{A,\hat{\psi}_u}(\lambda)}. \quad (92)$$

Set

$$P_{A,u}(\Lambda) = \{ \lambda \in \hat{P}_+ \mid mult_{A,\hat{\psi}_u}(\lambda) \neq 0 \}. \quad (93)$$

For each $\lambda \in \hat{P}_+$, the $\mathfrak{g}(A)[u]$-module $\hat{L}(\lambda)$ is said to be maximal if $\lambda \in P_{A,u}(\Lambda)$ but $\lambda + n\delta \not\in P_{A,u}(\Lambda)$ for any $n > 0$. Let $max_{A,u}(\Lambda)$ be the set of all weight $\lambda \in \hat{P}_+$ such that $\hat{L}(\lambda)$ is a maximal $\mathfrak{g}(A)[u]$-submodule of $L(\Lambda)$. Similarly to Cartan subalgebras, we have

$$P_{A,u}(\Lambda) = max_{A,u}(\Lambda) - \mathbb{Z}_{\geq 0}\delta. \quad (94)$$

The formula (94) says that for each $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \hat{P}_+$, there exists an unique number $b_{\Lambda,\lambda,u} \in \mathbb{C}$ such that $\lambda + b_{\Lambda,\lambda,u}\delta \in max_{A,u}(\Lambda)$. Hence

$$P_{A,u}(\Lambda) = \bigcup_{\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \hat{P}_+} (\lambda + (b_{\Lambda,\lambda,u} - \mathbb{Z}_{\geq 0})\delta). \quad (95)$$

Since $\hat{L}(\lambda + b\delta) \subset L(\Lambda + b\delta)$ if and only if $\hat{L}(\lambda) \subset L(\Lambda)$ for any $b \in \mathbb{C}$, we have

$$b_{\Lambda + b\delta,\lambda,u} = b_{\Lambda,\lambda,u} + b. \quad (96)$$
4.3 An identity of characters

Let $\Lambda \in P^k_+ (k \in \mathbb{Z}_{\geq 0})$, by (40), (43), (44) we have

$$
\left(\sum_{w \in W} \epsilon(w) e^{w(\rho)}\right) c_{\Lambda}^A = \sum_{\lambda \in \max(\Lambda)} \left(\sum_{w \in W} \epsilon(w) e^{w(\lambda + \rho)}\right) c_{\lambda}^A.
$$

(97)

We can suppose that $\lambda + \rho$ in the above equality is regular with respect to W. In this case, there exists unique $\sigma \in W$ and $\lambda' \in \hat{P}_+$ such that $\sigma(\lambda + \rho) = \lambda' + \hat{\rho}$. Let $p(\lambda)$ and $\{\lambda\}$ be $\epsilon(\sigma)$ and λ' in this case, respectively. In the case $\lambda + \hat{\rho}$ is nonregular, set $p(\lambda)$ and $\{\lambda\}$ be 0. Since

$$
\sum_{w \in W} \epsilon(w) e^{w(\lambda + \rho)} = p(\lambda) \sum_{w \in W} \epsilon(w) e^{w\{\lambda\} + \hat{\rho}},
$$

(98)

it follows from the identities (45), (97) that:

Proposition 4.1.

$$
ch_{\Lambda} = \sum_{\lambda \in \max(\Lambda)} p(\lambda) ch_{\{\lambda\}} c_{\lambda}^A.
$$

(99)

4.4 Semigroup structure

We state our first result about the set $\Gamma(g, g[u])$.

Theorem 4.2. As a subset of $\mathfrak{h}^* \times \mathfrak{h}^*$, the set $\Gamma(g, g[u])$ is a semigroup. Moreover, we have

$$
\Gamma(g, g[u]) \subset \Gamma(g, \mathfrak{h}) \cap (P_+ \times \hat{P}_+).
$$

(100)

In particular, $b_{\Lambda, \lambda, \mu} \leq b_{\Lambda, \lambda}$ for any $\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \bar{P}_+$.

Proof.

A. Let (Λ, λ) and $(\bar{\Lambda}, \bar{\lambda})$ be elements in the set $\Gamma(g, g[u])$. We need to show that $(\Lambda + \bar{\Lambda}, \lambda + \bar{\lambda}) \in \Gamma(g, g[u])$. The pair (Λ, λ) is an element of $\Gamma(g, g[u])$ if and only if $\hat{L}(\lambda) \subset L(\Lambda)$. The condition is equivalent to the existence of a nonzero vector $v \in L(\Lambda)$ such that

$$
g(v) = 0, \forall g \in \hat{\mathfrak{n}}_+ \quad \text{and} \quad h(v) = \lambda(h)v, \forall h \in \mathfrak{h}.
$$

(101)

Let \tilde{v} be a nonzero vector in $L(\bar{\Lambda})$ satisfying the same conditions but for the pair $(\bar{\Lambda}, \bar{\lambda})$. To show the semi-group structure of $\Gamma(g, g[u])$ we just need to show the existence of a nonzero vector \tilde{v} in $L(\Lambda + \bar{\Lambda})$ which satisfies the conditions (101) but for the pair $(\Lambda + \bar{\Lambda}, \lambda + \bar{\lambda})$. We make the details in the two following steps.

Step 1. Construction of the vector \tilde{v}. By the fact that $L(\Lambda + \bar{\Lambda})$ is a g-submodule of $L(\Lambda) \otimes L(\bar{\Lambda})$ of multiplicity one, there exists an unique g-stable complementary subspace, which we denote by S such that

$$
L(\Lambda) \otimes L(\bar{\Lambda}) = L(\Lambda + \bar{\Lambda}) \oplus S.
$$

(102)

Let $\pi : L(\Lambda) \otimes L(\bar{\Lambda}) \to L(\Lambda + \bar{\Lambda})$ be the projection with kernel S. Set $\tilde{v} = \pi(v \otimes \bar{v})$. We will show that $\tilde{v} \neq 0$ and satisfies the conditions (101) in the next steps.
Step 2. \(\tilde{v} \) is nonzero. Let

\[
L(\Lambda) = \bigoplus_{\mu \in \mathfrak{h}^*} L(\Lambda)_\mu
\]

(103)

be the weight spaces decomposition of \(L(\Lambda) \). We define

\[
L(\Lambda)^\vee = \bigoplus_{\mu \in \mathfrak{h}^*} (L(\Lambda)_\mu)^*.
\]

(104)

There exists a nonzero vector \(\psi \in L(\Lambda)^\vee \) such that

\[
g(\psi) = 0, \forall g \in \mathfrak{n}_- \quad \text{and} \quad h(\psi) = -\Lambda(h)\psi, \forall h \in \mathfrak{h}.
\]

(105)

Let \(G \) be the minimal Kac-Moody group corresponding to the Kac-Moody algebra \(\mathfrak{g} \) (see [7]). To the vector \(v \in L(\Lambda) \) defined above, we associate a function \(f_v : G \to \mathbb{C}, g \mapsto \psi(g^{-1}(v)) \). Since \(L(\Lambda) \) is irreducible, the function \(f_v \) is nonzero (\(f_v = 0 \) implies \(Gv \subset \text{ker} \psi \)). Let \(B^- \) be the negative Borel subgroup of \(G \). We have

\[
(1, b).f_v = \Lambda(b)^{-1}f_v \quad \text{for all} \quad b \in B^-.
\]

(106)

Indeed,

\[
(1, b).f_v(g) = f_v((1, b)^{-1}.g)
\]

\[
= f_v(gb)
\]

\[
= \psi((b^{-1}g^{-1})(v))
\]

\[
= b(\psi)(g^{-1}(v))
\]

\[
= \Lambda(b)^{-1}\psi(g^{-1}(v))
\]

\[
= \Lambda(b)^{-1}f_v(g).
\]

Similarly, for \(L(\tilde{\Lambda}) \), we define \(\tilde{\psi} \in L(\tilde{\Lambda})^\vee \) and \(f_{\tilde{v}} : G \to \mathbb{C}, g \mapsto \tilde{\psi}(g^{-1}(\tilde{v})) \). Then \(f_{\tilde{v}} \) is nonzero and

\[
(1, b).f_{\tilde{v}} = \tilde{\Lambda}(b)^{-1}f_{\tilde{v}} \quad \text{for all} \quad b \in B^-.
\]

(107)

Set \(f = f_v.f_{\tilde{v}} \). Since \(G \) is irreducible as an indvariety, the function \(f \) is a well-defined nonzero function on \(G \). And of course,

\[
(1, b).f = (\Lambda + \tilde{\Lambda})(b)^{-1}f \quad \text{for all} \quad b \in B^-.
\]

(108)

Moreover, we have

\[
f(g) = (\psi \otimes \tilde{\psi})(g^{-1}(v \otimes \tilde{v})).
\]

(109)

Indeed, by definition

\[
f(g) = f_v(g)f_{\tilde{v}}(g)
\]

\[
= \psi(g^{-1}(v))\tilde{\psi}(g^{-1}(\tilde{v}))
\]

\[
= (\psi \otimes \tilde{\psi})(g^{-1}(v) \otimes g^{-1}(\tilde{v}))
\]

\[
= (\psi \otimes \tilde{\psi})(g^{-1}(v \otimes \tilde{v})).
\]

Now, \(\psi \otimes \tilde{\psi} \) is an element of

\[
L(\Lambda)^\vee \otimes L(\tilde{\Lambda})^\vee = (L(\Lambda) \otimes L(\tilde{\Lambda}))^\vee = L(\Lambda + \tilde{\Lambda})^\vee \oplus S^\vee.
\]

(110)

By (108), (109) we have

\[
\psi \otimes \tilde{\psi} \in L(\Lambda + \tilde{\Lambda})^\vee.
\]

(111)
It implies that
\[\ker(\psi \otimes \bar{\psi}) \supset S. \quad \tag{112} \]

Rewrite \(v \otimes \bar{v} = \pi(v \otimes \bar{v}) + s \) for some \(s \in S \). Then we have
\[
(\psi \otimes \bar{\psi})(g^{-1}(v \otimes \bar{v})) = (\psi \otimes \bar{\psi})(g^{-1}(\pi(v \otimes \bar{v}) + s)) = (\psi \otimes \bar{\psi})(g^{-1}(\pi(v \otimes \bar{v}))) + (\psi \otimes \bar{\psi})(g^{-1}(s)) = (\psi \otimes \bar{\psi})(g^{-1}(\pi(v \otimes \bar{v}))).
\]

It means \(f(g) = (\psi \otimes \bar{\psi})(g^{-1}(\pi(v \otimes \bar{v}))) \). Since \(f \neq 0 \), we have \(\bar{v} = \pi(v \otimes \bar{v}) \neq 0 \).

Step 3. \(\bar{v} \) satisfies the conditions (101). For any \(g \in \mathfrak{n}_+ \) and \(h \in \mathfrak{h} \), we have:
\[
g(\pi(v \otimes \bar{v})) = \pi(g(v \otimes \bar{v})) = \pi(g(v) \otimes \bar{v} + v \otimes g(\bar{v})) = \pi(0) = 0,
\]
\[
h(\pi(v \otimes \bar{v})) = \pi(h(v \otimes \bar{v})) = \pi(h(v) \otimes \bar{v} + v \otimes h(\bar{v})) = \pi((\lambda + \bar{\lambda})(h)(v \otimes \bar{v})) = (\lambda + \bar{\lambda})h(\pi(v \otimes \bar{v})).
\]

We conclude that the set \(\Gamma(\mathfrak{g},\mathfrak{g}[u]) \) is a semigroup.

B. The inclusion (100) comes from the fact that if \(\mu \in (\Lambda - Q + \mathbb{C}\delta) \cap \hat{P}_+ \) and \(\hat{L}(\mu) \subset L(\Lambda) \) then \(\mu \in P(\Lambda) \). Consequently, \(\lambda + b_{\Lambda,\lambda,u} \delta \in P(\Lambda) \). It implies that \(b_{\Lambda,\lambda,u} \leq b_{\Lambda,\lambda} \).

\[\square \]

Remark 4.3. By the same argument, we can prove that the set \(\Gamma(\mathfrak{g},\hat{\mathfrak{g}}) \) is a semigroup for any symmetrizable Kac-Moody algebra \(\mathfrak{g} \) and \(\hat{\mathfrak{g}} \) is a subalgebra of \(\mathfrak{g} \) such that \(\hat{\mathfrak{g}} = (\hat{\mathfrak{g}} \cap \mathfrak{n}_-) \oplus (\hat{\mathfrak{g}} \cap \mathfrak{h}) \oplus (\hat{\mathfrak{g}} \cap \mathfrak{n}_+) \).

4.5 About the cases \(A_1^{(1)} \) and \(A_2^{(2)} \)

In this subsection, we describe a subset \(\mathcal{A}_u(\Lambda) \) of the set of all \(\lambda \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_+} \) such that \(b_{\Lambda,\lambda,u} = b_{\Lambda,\lambda} \). We obtain a set \(\mathcal{A}_u \) when the two sets \(\Gamma(\mathfrak{g},\mathfrak{g}[u]) \) and \(\Gamma(\mathfrak{g},\hat{\mathfrak{g}}) \) coincide.

The case \(A_1^{(1)} \). Let \(\Lambda_0 \) be the first fundamental weight and \(\alpha \) be the second simple root of \(\mathfrak{g}(A) \). Fix \(m \in \mathbb{Z}_{\geq 0} \), \(u \in \mathbb{Z}_{>0} \). Let \(\Lambda = m\Lambda_0 + \frac{j\alpha}{2} + b\delta \in P_+^m \) for some \(j \in [0,m] \cap \mathbb{Z}. \)

We define a subset \(\mathcal{A}_u(\Lambda) \) of \((\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_+^m} \) as follows.

1. If \(u \) is even, set
\[
\mathcal{A}_u(\Lambda) = \left\{ m\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in [0,um] \cap (j + 2\mathbb{Z}) \cap [j - 1, um - j] \right\}. \quad (113)
\]

2. If \(u \) is odd, set
\[
\mathcal{A}_u(\Lambda) = \left\{ m\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in [0,um] \cap (j + 2\mathbb{Z}) \cap [j - 1, m(u - 1) + j + 1] \right\}. \quad (114)
\]
The case $A_2^{(2)}$. Let A be the affine Cartan matrix of type $A_2^{(2)}$. Let Λ_0 be the first fundamental weight and α be the second simple root of $g(A)$. Fix $m \in \mathbb{Z}_{>0}, u \in \mathbb{Z}_{>1}$ such that $(u, 2) = 1$. Let $\Lambda = m\Lambda_0 + \frac{j\alpha}{2} + b\delta \in P_+^m$ for some $j \in [0, \frac{m}{2}] \cap \mathbb{Z}$. We define a subset $A_u(\Lambda)$ of $(\Lambda - Q + \mathbb{C}\delta) \cap P_+^{um}$ as follows.

1. If $m = 1$, then $j = 0$ and set

 \[A_u(\Lambda_0 + b\delta) = \left\{ \Lambda_0 + \frac{j'\alpha}{2} \mid j' \in \left[0, \frac{u}{2}\right] \cap \mathbb{Z} \right\}. \tag{115} \]

2. If $m = 2$, then $j = 0$ or $j = 1$ and set

 \[A_u(2\Lambda_0 + b\delta) = \left\{ 2\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in [0, u] \cap \mathbb{Z} \right\}, \tag{116} \]
 \[A_u(2\Lambda_0 + \frac{\alpha}{2} + b\delta) = \left\{ 2\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in [0, u] \setminus \{u - 1\} \cap \mathbb{Z} \right\}. \tag{117} \]

3. If $m > 2$, set

 \[A_u(\Lambda) = A_u^{(1)}(\Lambda) \cup A_u^{(2)}(\Lambda), \tag{118} \]

 where

 \[A_u^{(1)}(\Lambda) = \left\{ m\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in \left[j, \frac{um}{2}\right] \cap \mathbb{Z} \cap \left(\frac{m(u-1)}{2} - j + 2\mathbb{Z}_{\geq 0}\right) \right\}, \tag{119} \]
 \[A_u^{(2)}(\Lambda) = \left\{ m\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in \left[j, \frac{um}{2}\right] \cap \mathbb{Z} \cap \left(\frac{m(u-1)}{2} - j + \mathbb{Z}_{< 0}\right) \right\}. \tag{120} \]

For $A_1^{(1)}$ and $A_2^{(2)}$, we define a subset A_u of $P_+ \times \hat{P}_+$ by

\[A_u = \bigcup_{\Lambda \in P_+} \bigcup_{\lambda \in A_u(\Lambda)} (\Lambda, \lambda + (b_{\Lambda,\lambda} - \mathbb{Z}_{\geq 0})\delta). \tag{121} \]

For the case $A_2^{(2)}$, we define smaller subsets of A_u by

\[A_u^{(1)} = \bigcup_{\Lambda \in P_+^m, m > 2} \bigcup_{\lambda \in A_u^{(1)}(\Lambda)} (\Lambda, \lambda + (b_{\Lambda,\lambda} - \mathbb{Z}_{\geq 0})\delta), \tag{122} \]
\[A_u^{(2)} = \bigcup_{\Lambda \in P_+^m, m > 2} \bigcup_{\lambda \in A_u^{(2)}(\Lambda)} (\Lambda, \lambda + (b_{\Lambda,\lambda} - \mathbb{Z}_{\geq 0})\delta). \tag{123} \]

Our second main result for the cases $A_1^{(1)}$ and $A_2^{(2)}$ can be stated as follows.

Theorem 4.4. Let g be an affine Kac-Moody algebra of type $A_1^{(1)}$ or $A_2^{(2)}$. Let $\Lambda \in P_+$. Then for any $\lambda \in A_u(\Lambda)$ we have

\[b_{\Lambda,\lambda,u} = b_{\Lambda,\lambda}. \tag{124} \]

Hence

\[A_u = A_u \cap \Gamma(g, g[\lambda]) = A_u \cap \Gamma(g, \delta). \tag{125} \]

Moreover, A_u is a semigroup only for the case $A_1^{(1)}$. In the case $A_2^{(2)}$, the restriction of A_u on the pairs of weights of level greater than 2 is a disjoint union of two semigroups $A_u^{(1)}$ and $A_u^{(2)}$.
Proof. The (non)semigroup property of the sets are trivial by definition and the fact that \(\Gamma(\mathfrak{g}, \mathfrak{h}) \) is a semigroup in Theorem 3.1. We just need to prove that \(b_{\Lambda, \lambda, u} = b_{\Lambda, \lambda} \) for all \(\lambda \in \mathcal{A}_{\mathfrak{g}}(\Lambda) \). By equalities (47), (96), we can suppose that \(\Lambda \in \overline{P}^+ \). The details are given as follows.

The case \(A_1^{(1)} \). The first step is writing explicitly \(ch_{\Lambda} \) in Proposition 4.1. It can be done as follows:

1. We use the result of Proposition 3.3 that

 \[max(\Lambda) = \{ \Lambda + k \alpha + n_k \delta \mid k \in \mathbb{Z} \} \]

 where \(n_k \) is given by (50). Take \(\lambda_k = \Lambda + k \alpha + n_k \delta \in max(\Lambda) \), by using the following data

 \[|\alpha|^2 = 2, \quad \hat{\rho} = \frac{2}{\mathfrak{u}} \Lambda_0 + \frac{1}{2} \alpha, \quad \hat{W} = \{ t_{\alpha n}, t_{\alpha n} s_1 \mid n \in \mathbb{Z} \} \]

 we can easily compute \(p(\lambda_k) \) and \(\{ \lambda_k \} \) for \(\lambda_k + \hat{\rho} \) regular with respect to \(\hat{W} \). As in Proposition 4.7 below, the only possible values of \(k \) are

 \[k = \frac{j' - j}{2} - n(um + 2) \text{ and } k = -\frac{j' + j}{2} - 1 + n(um + 2) \]

 where \(j' \in [0, um] \cap (j + 2\mathbb{Z}) \) and \(n \in \mathbb{Z} \). Set

 \[N_k = -n_k + un(j' + 1 - num - 2n). \]

 If \(k = \frac{j' - j}{2} - n(um + 2) \), then \(p(\lambda_k) = 1 \) and \(\{ \lambda_k \} = m\Lambda_0 + \frac{j' \alpha}{2} - N_k \delta \).

 If \(k = -\frac{j' + j}{2} - 1 + n(um + 2) \), then \(p(\lambda_k) = -1 \) and \(\{ \lambda_k \} = m\Lambda_0 + \frac{j' \alpha}{2} - N_k \delta \).

2. Substitute values of \(p(\lambda_k) \) and \(\{ \lambda_k \} \) into the formula of Proposition 4.1, we can rewrite \(ch_{\Lambda} \) as follows

 \[\sum_{j' \in [0, um] \cap (j + 2\mathbb{Z})} \hat{c}_h_{m\Lambda_0 + \frac{j' \alpha}{2}} \left(\sum_{n \in \mathbb{Z}} q^{N_k c_{\lambda_k}^{A}} - \sum_{n \in \mathbb{Z}} q^{N_k c_{\lambda_k}^{A}} \right) \]

 The coefficients of \(c_{\lambda_k}^{A} \) in the formula (130) are always positive integers since \(\lambda_k \in max(\Lambda) \). Proposition 4.7 below says that \(N_k \) depends on \(n \in \mathbb{Z} \) for each case of \(k \). It attains minimums at \(n = 0 \) for the first case and at \(n = 0 \) or \(n = 1 \) for the second case. The corresponding minimums of \(N_k \) are

 \[-n \frac{j' - j}{2} \text{ and } \min \left(-n \frac{j' - j}{2} - 1, u - n \frac{j' + j}{2} + 1 \right) \]

 Proposition 4.8 below says that

 \[-n \frac{j' - j}{2} \leq \min \left(-n \frac{j' - j}{2} - 1, u - n \frac{j' + j}{2} + 1 \right) \]

 Moreover, the equality

 \[-n \frac{j' - j}{2} = \min \left(-n \frac{j' + j}{2} - 1, u - n \frac{j' + j}{2} + 1 \right) \]

 happens for \(j' \in [0, um] \cap (j + 2\mathbb{Z}) \) if and only if one of the next three conditions follows is satisfied:
1. \(m > 1 \) and \(j' \leq j - 2 \).

2. \(m > 1 \), \(u \) is even, \(j' \geq um - j + 1 \).

3. \(m > 1 \), \(u \) is odd, \(j' \geq m(u - 1) + j + 2 \).

Or equivalently, the equality (133) happens if and only if

\[
 m\Lambda_0 + \frac{j'\alpha}{2} \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_{um}^+} \setminus \mathcal{A}_u(\Lambda). \tag{134}
\]

So, for any \(\lambda = m\Lambda_0 + \frac{j'\alpha}{2} \in \mathcal{A}_u(\Lambda) \), we have

\[
 - n_{\frac{j'-j}{2}} < \min \left(-n_{\frac{j'+j}{2}-1}, u - n_{\frac{j'+j}{2}+1} \right). \tag{135}
\]

By (130), in this case we have \(\lambda + n_{\frac{j'-j}{2}} \delta \in \text{max}_{\mathcal{A}_u}(\Lambda) \). Hence

\[
 b_{\lambda,\mu,\nu} = n_{\frac{j'-j}{2}} = b_{\lambda,\mu}. \tag{136}
\]

The case \(A_2^{(2)} \). The strategy is the same as in the case \(A_1^{(1)} \). The first step is writing explicitly \(ch_{\Lambda} \) in Proposition 4.1. It can be done as follows:

1. We use the result of Proposition 3.5 that

\[
 \text{max}(\Lambda) = \left\{ \Lambda + k\alpha + n_k\delta \middle| k \in \frac{1}{2}\mathbb{Z} \right\} \tag{137}
\]

where \(n_k \) is given by (65). Take \(\lambda_k = \Lambda + k\alpha + n_k\delta \in \text{max}(\Lambda) \), by using the following data

\[
 |\alpha|^2 = 4, \quad \hat{\rho} = \frac{3}{u}\Lambda_0 + \frac{1}{2}\alpha, \quad \hat{W} = \left\{ \frac{t_{\mu_0} s}{\alpha}, \frac{t_{\mu_0} s_1}{\alpha} \middle| n \in \mathbb{Z} \right\} \tag{138}
\]

we can easily compute \(p(\lambda_k) \) and \(\{\lambda_k\} \) for \(\lambda_k + \hat{\rho} \) regular with respect to \(\hat{W} \). As in Proposition 4.9 below, the only possible values of \(k \) are

\[
 k = \frac{j' - j}{2} - n \frac{um + 3}{2} \quad \text{and} \quad k = -\frac{j' + j}{2} - 1 + n \frac{um + 3}{2} \tag{139}
\]

where \(j' \in [0, \frac{um}{2}] \cap \mathbb{Z} \) and \(n \in \mathbb{Z} \). Set

\[
 N_k = -n_k + un \left(j' + 1 - n \frac{um + 3}{2} \right). \tag{140}
\]

If \(k = \frac{j'-j}{2} - n \frac{um+3}{2} \), then \(p(\lambda_k) = 1 \) and \(\{\lambda_k\} = m\Lambda_0 + \frac{j'\alpha}{2} - N_k\delta \).

If \(k = -\frac{j'+j}{2} - 1 + n \frac{um+3}{2} \), then \(p(\lambda_k) = -1 \) and \(\{\lambda_k\} = m\Lambda_0 + \frac{j'\alpha}{2} - N_k\delta \).

2. Substitute values of \(p(\lambda_k) \) and \(\{\lambda_k\} \) into the formula of Proposition 4.1 we can rewrite \(ch_{\Lambda} \) as follows

\[
 \sum_{j' \in [0, \frac{um}{2}] \cap \mathbb{Z}} ch_{m\Lambda_0 + \frac{j'\alpha}{2}} \left(\sum_{k = \frac{j'-j}{2} - n \frac{um+3}{2}} q^{N_k} c_{\lambda_k}^{\Lambda} - \sum_{k = -\frac{j'+j}{2} - 1 + n \frac{um+3}{2}} q^{N_k} c_{\lambda_k}^{\Lambda} \right). \tag{141}
\]

19
The coefficients of $c_{\lambda_k}^\Lambda$ in the formula (141) are always positive integers since $\lambda_k \in max(\Lambda)$. Proposition 4.9 below says that the number N_k depends on $n \in \mathbb{Z}$ for each case of k. It attains minimums at $n = 0$ for the first case and at $n = 0$ or $n = 1$ for the second case. The corresponding minimums of N_k are

$$- n_{\alpha_{k+1}^j} \quad \text{and} \quad \min \left(- n_{\alpha_{k+1}^j-1} \frac{u}{2} - n_{\alpha_{k+1}^j+\frac{1}{2}} \right).$$

(142)

Proposition 4.10 below says that

$$- n_{\alpha_{k+1}^j} \leq \min \left(- n_{\alpha_{k+1}^j-1} \frac{u}{2} - n_{\alpha_{k+1}^j+\frac{1}{2}} \right)$$

Moreover, the equality

$$- n_{\alpha_{k+1}^j} = \min \left(- n_{\alpha_{k+1}^j-1} \frac{u}{2} - n_{\alpha_{k+1}^j+\frac{1}{2}} \right)$$

(144)

happens for $j' \in [0, \frac{um}{2}] \cap \mathbb{Z}$ if and only if one of the next two conditions is satisfied:

1. $m > 2$ and $j' \leq j - 1$.
2. $m \geq 2, j' \in \frac{m(u-1)}{2} + 1 - j + 2\mathbb{Z}_{\geq 0}$.

Or equivalently, the equality (144) happens if and only if

$$m\Lambda_0 + \frac{j'\alpha}{2} \in (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_{u,R}^{\mathbb{Z}}} \setminus \mathcal{A}_u(\Lambda).$$

(145)

So, for any $\lambda = m\Lambda_0 + \frac{j'\alpha}{2} \in \mathcal{A}_u(\Lambda)$, we have

$$- n_{\alpha_{k+1}^j} < \min \left(- n_{\alpha_{k+1}^j-1} \frac{u}{2} - n_{\alpha_{k+1}^j+\frac{1}{2}} \right).$$

(146)

By (141), in this case we have $\lambda + n_{\alpha_{k+1}^j} \delta \in max_{\Lambda,u}(\Lambda)$. Hence

$$b_{\Lambda,\lambda,u} = n_{\alpha_{k+1}^j} = b_{\Lambda,\lambda}.$$

(147)

We have proven the theorem. □

Corollary 4.5. We have

$$P_{A,u}(\Lambda) = \bigcup_{\lambda \in \mathcal{A}_u(\Lambda)} \lambda + (b_{\Lambda,\lambda} - \mathbb{Z}_{\geq 0}) \delta$$

(148)

if A is of type $A_1^{(1)}$ and one of the next three conditions is satisfied:

1. $m = 1, u$ is arbitrary, $j \in \{0, 1\}$.
2. $m > 1, u$ is even, $j \in \{0, 1\}$.
3. $m = 2, u$ is odd, $j = 1$.

or A is of type $A_2^{(2)}$ and $(u, 2) = 1, m = 1, j = 0$.

Proof. We just need to check that if one of the conditions is satisfied then

$$\mathcal{A}_u(\Lambda) = (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_{u,R}^{\mathbb{Z}}}.$$

The conclusion therefore comes from Theorems 4.2 and 4.4. □

Here is an example of Corollary 4.5.
Example 4.6. Consider the case A is of type $A_1^{(1)}$ and $\Lambda = 9\Lambda_0 + \frac{9}{2}$, $u = 4$. Then

$$A_0(\Lambda) = (\Lambda - Q + \mathbb{C}\delta) \cap \overline{P_+} = \left\{ 9\Lambda_0 + \frac{j'\alpha}{2} \mid j' \in \{1, 3, 5, \ldots, 35\} \right\}. \quad (149)$$

Hence the set $\text{max}_{A_4}(9\Lambda_0 + \frac{9}{2})$ contains exactly 18 elements given by

$$9\Lambda_0 + \frac{\alpha}{2}, \quad 9\Lambda_0 + \frac{3\alpha}{2} - \delta, \quad 9\Lambda_0 + \frac{5\alpha}{2} - 2\delta,$$
$$9\Lambda_0 + \frac{7\alpha}{2} - 3\delta, \quad 9\Lambda_0 + \frac{9\alpha}{2} - 4\delta, \quad 9\Lambda_0 + \frac{11\alpha}{2} - 5\delta,$$
$$9\Lambda_0 + \frac{13\alpha}{2} - 6\delta, \quad 9\Lambda_0 + \frac{15\alpha}{2} - 7\delta, \quad 9\Lambda_0 + \frac{17\alpha}{2} - 8\delta,$$
$$9\Lambda_0 + \frac{19\alpha}{2} - 10\delta, \quad 9\Lambda_0 + \frac{21\alpha}{2} - 13\delta, \quad 9\Lambda_0 + \frac{23\alpha}{2} - 16\delta,$$
$$9\Lambda_0 + \frac{25\alpha}{2} - 19\delta, \quad 9\Lambda_0 + \frac{27\alpha}{2} - 22\delta, \quad 9\Lambda_0 + \frac{29\alpha}{2} - 25\delta,$$
$$9\Lambda_0 + \frac{31\alpha}{2} - 28\delta, \quad 9\Lambda_0 + \frac{33\alpha}{2} - 31\delta, \quad 9\Lambda_0 + \frac{35\alpha}{2} - 34\delta.$$

Then $P_{A_4}(9\Lambda_0 + \frac{9}{2}) = \text{max}_{A_4}(9\Lambda_0 + \frac{9}{2}) - \mathbb{Z}_{\geq 0}\delta$.

The next one is a proposition we used in the proof of Theorem 4.4 for the case $A_1^{(1)}$.

Proposition 4.7. Let A be the affine Cartan matrix of type $A_1^{(1)}$. Fix $m \in \mathbb{Z}_{>0}$, $u \in \mathbb{Z}_{>0}$. Let $\Lambda = m\Lambda_0 + \frac{i\alpha}{2} \in \overline{P_+}$.

1. We parametrize $\lambda \in \text{max}(\Lambda)$ such that $\lambda + \dot{\rho}$ is regular with respect to \dot{W} by $\lambda_k = \Lambda + k\alpha + n_k\delta$. Then the only possible values of k are

$$k = \frac{j' - j}{2} - n(um + 2) \quad \text{and} \quad k = -\frac{j' + j}{2} - 1 + n(um + 2) \quad (150)$$

where $j' \in [0, um] \cap (j + 2\mathbb{Z})$ and $n \in \mathbb{Z}$.

2. Let

$$N_k = -n_k + un(j' + 1 - un - 2n). \quad (151)$$

Then

i. If $k = \frac{j' - j}{2} - n(um + 2)$, then $p(\lambda_k) = 1$ and $\{\lambda_k\} = m\Lambda_0 + \frac{j'\alpha}{2} - N_k\delta$.

ii. If $k = -\frac{j' + j}{2} - 1 + n(um + 2)$, then $p(\lambda_k) = -1$ and $\{\lambda_k\} = m\Lambda_0 + \frac{j\alpha}{2} - N_k\delta$.

iii. The function N_k is considered as a function on n and it attains the minimum at $n = 0$ in the first case and at $n = 0$ or $n = 1$ in the second case.

Proof. Since $\lambda_k + \dot{\rho}$ is regular with respect to \dot{W}, there exists unique $\sigma \in \dot{W}$ and $\mu = m\Lambda_0 + \frac{i\alpha}{2} + b\delta \in \dot{P}^\text{num}$ such that $\sigma(\lambda_k + \dot{\rho}) = \mu + \dot{\rho}$.

a. (Proof of 1. and 2.i.) If $\sigma = t_{una}$ for some $n \in \mathbb{Z}$, then $\sigma(\lambda_k + \dot{\rho}) - \dot{\rho}$ equals

$$m\Lambda_0 + \left(\text{num} + 2n + k + \frac{j}{2} \right) \alpha + (n_k - un(2k + j + 1 + num + 2n))\delta. \quad (152)$$

Hence

$$j' \in [0, um] \cap (j + 2\mathbb{Z}) \quad \text{and} \quad k = \frac{j' - j}{2} - n(um + 2). \quad (153)$$

In this case, we have

$$p(\lambda_k) = 1 \quad \text{and} \quad \{\lambda_k\} = m\Lambda_0 + \frac{j'\alpha}{2} + (n_k - un(j' + 1 - num - 2n))\delta. \quad (154)$$
b. (Proof of 1. and 2.ii.) If \(\sigma = t_{\alpha} s_1 \) for some \(n \in \mathbb{Z} \), then \(\sigma (\lambda_k + \dot{\rho}) - \dot{\rho} \) equals
\[
m \Lambda_0 + \left(\text{num} + 2n - k - \frac{j}{2} - 1 \right) \alpha + (n_k - \text{un}(-2k - j - 1 + \text{num} + 2n)) \delta. \tag{155}
\]
Hence
\[
j' \in [0, \text{um}] \cap (j + 2\mathbb{Z}) \text{ and } k = -\frac{j' + j}{2} - 1 + n(\text{um} + 2). \tag{156}
\]
In this case, we have
\[
p(\lambda_k) = -1 \text{ and } \{ \lambda_k \} = m \Lambda_0 + \frac{j' \alpha}{2} + (n_k - \text{un}(j' + 1 - \text{num} - 2n)) \delta. \tag{157}
\]

c. (Proof of 2.iii.) Put \(M = \text{um} + 2 \). We consider the first case when \(k = \frac{j' + j}{2} + nM \).

Write \(k = qm + r \) for some \(q \in \mathbb{Z}, 0 \leq r < m \), then
\[
-N_k = n_r - q(k + r + j) + un(j' + 1 + nM) = n_r - \frac{(j' - j + nM - r)(j' + j + nM + r)}{m} + un(j' + 1 + nM) \tag{158}
\]
\[
= n^2 M \left(u - \frac{M}{m} \right) + n \left(u + uj' - \frac{M}{m} j' \right) + \frac{j^2 - j'^2}{4m} + \left(\frac{r^2}{m} + \frac{rj}{m} + n_r \right). \tag{159}
\]
We have
\[
\frac{r^2}{m} + \frac{rj}{m} + n_r = \begin{cases} \frac{1}{m} r(r + j - m) & \text{if } 0 \leq r \leq m - j, \\ \frac{1}{m} (r - m)(r + j - m) & \text{if } m - j \leq r < m. \end{cases} \tag{160}
\]
The condition \(0 \leq r \leq m - j \) can be rewritten as
\[
\frac{j - m}{2} \leq nM + \frac{j' - j}{2} - m \left(q + \frac{1}{2} \right) \leq \frac{m - j}{2} \tag{162}
\]
and \(m - j \leq r < m \) can be rewritten as
\[
-\frac{j}{2} \leq nM + \frac{j' - j}{2} - m(q + 1) < \frac{j}{2} \tag{163}
\]
It implies that \(\frac{r^2}{m} + \frac{rj}{m} + n_r \) equals
\[
\begin{cases} \frac{|nM + j' - \frac{mp}{2} - (m-j)^2|}{m} & \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } \frac{nM + j' - \frac{mp}{2}}{2} \leq \frac{m-j}{2}, \\ \frac{|nM + j' - \frac{mp}{2}|^2 - \frac{j^2}{4}}{m} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{|nM + j' - \frac{mp}{2}|}{2} \leq \frac{1}{2}. \end{cases} \tag{164}
\]

So \(-N_k = F_{j,j'}(n) \) where \(F_{j,j'} : \mathbb{Z} \to \mathbb{R} \) is defined by
\[
F_{j,j'}(t) = t^2 M \left(u - \frac{M}{m} \right) + t \left(u + uj' - \frac{M}{m} j' \right) + \frac{j^2 - j'^2}{4m} + P_{j,j'}(t) \tag{165}
\]
with \(P_{j,j'}(t) \) is given by

\[
\begin{cases}
\frac{|tM + \frac{j'}{2} - \frac{p}{m}|^2 - (m-j)^2}{m} & \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } |tM + \frac{j'}{2} - \frac{p}{m}| \leq \frac{m-j}{2}, \\
\frac{|tM + \frac{j'}{2} - \frac{p}{m}|^2 - \frac{1}{2}}{m} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } |tM + \frac{j'}{2} - \frac{p}{m}| \leq \frac{1}{2}.
\end{cases}
\]

We will show that the maximum of \(F_{j,j'}(n) \) appears when \(n = 0 \), i.e., \(k = \frac{j+j'}{2} \). To do that, we consider the function \(F : \mathbb{R} \times [0,m] \times [0,um] \to \mathbb{R} \) given by \(F(t,j,j') = F_{j,j'}(t) \) (we also define \(P(t,j,j') \) from \(P_{j,j'}(t) \)). Let \(\Delta(t,j,j') = F(t+1,j,j') - F(t,j,j') \), then it is nonincreasing in \(t \) and \(\Delta(-1,j,j') > 0 > \Delta(0,j,j') \). It implies that \(F(0,j,j') > F(t,j,j') \) for any \(t \in \mathbb{Z}, t \neq 0 \), i.e., \(F_{i,j}(n) \) attains its maximum when \(n = 0 \). Indeed:

\[
\Delta(t,j,j') = 2tM \left(u - \frac{M}{m} \right) + (M+j') \left(u - \frac{M}{m} \right) + u + P(t+1,j,j') - P(t,j,j').
\]

We denote the numbers \(p \) defined on \(P_{j,j'}(t+1) \) and \(P_{j,j'}(t) \) by \(p_1, p_0 \), respectively. Use definition, we have \(\frac{p_1 - p_0}{2} \geq u \). Hence

\[
\partial_t \Delta(t,j,j') = 2M \left(u - \frac{p_1 - p_0}{2} \right) \leq 0, \text{ i.e., } \Delta \text{ is nonincreasing in } t, \tag{168}
\]

\[
\partial_{j'} \Delta(t,j,j') = u - \frac{p_1 - p_0}{2} \leq 0, \text{ i.e., } \Delta \text{ is nonincreasing in } j'. \tag{169}
\]

So \(\Delta(0,j,j') \leq \Delta(0,j,0) \) and \(\Delta(-1,j,um) \leq \Delta(-1,j,j') \). We can easily check that \(\Delta(0,j,0) < 0 < \Delta(-1,j,um) \). Hence, in the case \(k = \frac{j+j'}{2} + nM \), the minimum of \(N_k \) occurs when \(n = 0 \).

For the case \(k = -\frac{j+j'}{2} - 1 + nM \). Since \(k = \frac{j+j'}{2} + \left(n - \frac{j+1}{M} \right) M \), we have

\[
-N_k = F \left(n - \frac{j+1}{M}, j, j' \right). \tag{170}
\]

Then \(N_k \) attains its minimum when \(n = 0 \) or \(1 \).

\[\square\]

Here is the next proposition we used in the proof of Theorem 4.4 for the case \(A_1^{(1)} \).

Proposition 4.8. With \(n_k \) is defined as in (50). For each \(j \in [0,m] \) and \(j' \in [0,um] \cap (j + 2\mathbb{Z}) \), we always have

\[
-n_{\frac{j'}{2}} \leq \min \left(-n_{\frac{j+1}{2} - 1}, u - n_{\frac{j+1}{2} + 1} \right). \tag{171}
\]

Moreover, the equality

\[
-n_{\frac{j'}{2}} = \min \left(-n_{\frac{j+1}{2} - 1}, u - n_{\frac{j+1}{2} + 1} \right) \tag{172}
\]

happens for \(j' \in [0,um] \cap (j + 2\mathbb{Z}) \) if and only if one of the next three conditions follows is satisfied:
1. \(m > 1 \) and \(j' \leq j - 2 \).

2. \(m > 1, u \) is even, \(j' \geq um - j + 1 \).

3. \(m > 1, u \) is odd, \(j' \geq m(u - 1) + j + 2 \).

Proof. Then inequality comes from (53), (130) and Theorem 4.2. To study the equality, we use a fact that

\[
 n_{-(j+k)} = n_k. \tag{173}
\]

Indeed, if \(\Lambda = m\Lambda_0 + \frac{i\alpha}{2} + b\delta \in P^m_+ \) and \(\lambda = \Lambda + k\alpha + n_k\delta \in \max(\Lambda) \), then \(s_1(\lambda) = \Lambda - (j + k)\alpha + n_k\delta \in \max(\Lambda) \). We use the equality (173) to rewrite

\[
 n_{-\frac{j' + j}{2} + 1} = n_{\frac{j' - j}{2}}. \tag{174}
\]

as \(n_x = n_{x+1} \), where \(x = -\frac{j' + j}{2} - 1 \). Use definition (50) for \(n_x \) we check that it happens if and only if

\[
 m > 1 \text{ and } j' \leq j - 2. \tag{175}
\]

We use the equality (173) to rewrite

\[
 -u + n_{\frac{j' + j}{2} + 1} \leq n_{\frac{j' - j}{2}} \tag{176}
\]

as \(n_{x+1} - u \leq n_x \), where \(x = -\frac{j' + j}{2} \). Use definition (50) for \(n_x \) we can check that it happens if and only if

\[
 m > 1, u \text{ is even, } j' \geq um - j + 1, \tag{177}
\]

or

\[
 m > 1, u \text{ is odd, } j' \geq m(u - 1) + j + 2. \tag{178}
\]

Thus we have proven the proposition. □

The next one is a proposition we used in the proof of Theorem 4.4 for the case \(A_2^{(2)} \).

Proposition 4.9. Let \(A \) be the affine Cartan matrix of type \(A_2^{(2)} \). Fix \(m \in \mathbb{Z}_{\geq 0}, u \in \mathbb{Z}_{> 0} \) such that \((u, 2) = 1\). Let \(\Lambda = m\Lambda_0 + \frac{i\alpha}{2} \in \mathcal{T}^m_+ \).

1. We parametrize \(\lambda \in \max(\Lambda) \) such that \(\lambda + \dot{\rho} \) is regular with respect to \(\dot{W} \) by \(\lambda_k = \Lambda + k\alpha + n_k\delta \). Then the only possible values of \(k \) are

\[
 k = \frac{j' - j}{2} - n \frac{um + 3}{2} \text{ and } k = -\frac{j' + j}{2} - 1 + n \frac{um + 3}{2} \tag{179}
\]

where \(j' \in [0, \frac{um}{2}] \cap \mathbb{Z} \) and \(n \in \mathbb{Z} \).

2. Let

\[
 N_k = -n_k + un \left(j' + 1 - n \frac{um + 3}{2} \right). \tag{180}
\]

Then

i. If \(k = \frac{j' - j}{2} - n \frac{um + 3}{2} \), then \(p(\lambda_k) = 1 \) and \(\{\lambda_k\} = m\Lambda_0 + \frac{i\alpha}{2} - N_k\delta \).

ii. If \(k = -\frac{j' + j}{2} - 1 + n \frac{um + 3}{2} \), then \(p(\lambda_k) = -1 \) and \(\{\lambda_k\} = m\Lambda_0 + \frac{i\alpha}{2} - N_k\delta \).

iii. The function \(N_k \) is considered as a function on \(n \) and it attains the minimum at \(n = 0 \) in the first case and at \(n = 0 \) or \(n = 1 \) in the second case.
Proof. Since \(\lambda_k + \hat{\rho} \) is regular with respect to \(\hat{W} \), there exists unique \(\sigma \in \hat{W} \) and \(\mu = m\Lambda_0 + \frac{1}{2}\hat{\rho} + b\delta \in \hat{P}_+ \) such that \(\sigma(\lambda_k + \hat{\rho}) = \mu + \hat{\rho} \).

a. (Proof of 1. and 2.i.) If \(\sigma = \frac{t \alpha_0}{2} \) for some \(n \in \mathbb{Z} \), then \(\sigma(\lambda_k + \hat{\rho}) - \hat{\rho} \) equals

\[
m\Lambda_0 + \left(k + \frac{j}{2} + n \frac{um + 3}{2} \right) \alpha + \left(n_k - un \left(2k + j + 1 + n \frac{um + 3}{2} \right) \right) \delta.
\]

Hence

\[
j' \in \left[0, \frac{um}{2} \right] \cap \mathbb{Z} \quad \text{and} \quad k = \frac{j' - j}{2} - n \frac{um + 3}{2}.
\]

In this case, we have

\[
p(\lambda_k) = 1 \quad \text{and} \quad \{\lambda_k\} = m\Lambda_0 + \frac{j' \alpha}{2} + \left(n_k - un \left(j' + 1 - n \frac{um + 3}{2} \right) \right) \delta.
\]

b. (Proof of 1. and 2.ii.) If \(\sigma = \frac{t \alpha_0}{2} \) for some \(n \in \mathbb{Z} \), then \(\sigma(\lambda_k + \hat{\rho}) - \hat{\rho} \) equals

\[
m\Lambda_0 + \left(-k - \frac{j}{2} - 1 + n \frac{um + 3}{2} \right) \alpha + \left(n_k - un \left(-2k - j - 1 + n \frac{um + 3}{2} \right) \right) \delta.
\]

Hence

\[
j' \in \left[0, \frac{um}{2} \right] \cap \mathbb{Z} \quad \text{and} \quad k = \frac{j' + j}{2} - 1 + n \frac{um + 3}{2}.
\]

In this case, we have

\[
p(\lambda_k) = -1 \quad \text{and} \quad \{\lambda_k\} = m\Lambda_0 + \frac{j' \alpha}{2} + \left(n_k - un \left(j' + 1 - n \frac{um + 3}{2} \right) \right) \delta.
\]

c. (Proof of 2.iii.) Put \(M = um + 3 \). We consider the first case \(k = \frac{j' - j}{2} + \frac{nM}{2} \). Write \(k = \frac{4r}{2} q + r \) for some \(q \in \mathbb{Z}, 0 \leq r < \frac{m}{2} \), then

\[
-N_k = n_r - q(k + r + j) + un \left(j' + 1 + n \frac{M}{2} \right)
\]

\[
= n_r - 2 \left(\frac{j'}{2} + \frac{M}{2} - r \right) \left(\frac{j}{2} + \frac{nM}{2} + r \right) + un \left(j' + 1 + \frac{nM}{2} \right)
\]

\[
= n^2 M \left(u - \frac{M}{m} \right) + n \left(u + u j' \frac{M}{m} \right) + \frac{j^2 - j'^2}{2m} + \left(\frac{2r^2}{m} \frac{2rj}{m} + n_r \right).
\]

We have \(\frac{2r^2}{m} + \frac{2rj}{m} + n_r \) equals

\[
\begin{cases}
\frac{2}{m} r (r + j - \frac{m}{2}) & \text{if } 0 \leq r \leq \frac{m}{2} - j, \\
\frac{2}{m} (r - \frac{m}{2}) (r + j - \frac{m}{2}) & \text{if } \frac{m}{2} - j \leq r < \frac{m}{2}, r \in \frac{m}{2} + \mathbb{Z}, \\
\frac{2}{m} (r - \frac{m}{2}) (r + j - \frac{m}{2}) - \frac{1}{2} & \text{if } \frac{m}{2} - 1 j \leq r < \frac{m}{2}, r \in \frac{m}{2} + \mathbb{Z}.
\end{cases}
\]

The condition \(0 \leq r \leq \frac{m}{2} - j \) can be rewritten as

\[
\frac{2j - m}{4} \leq \frac{nM + j'}{2} - \frac{m}{2} \left(q + \frac{1}{2} \right) \leq \frac{m - 2j}{4}.
\]
and \(\frac{m}{2} - j \leq r < \frac{m}{2} \) can be rewritten as
\[
-\frac{j}{2} \leq \frac{nM + j'}{2} - \frac{m}{2}(q + 1) < \frac{j}{2}.
\] (192)

It implies that \(\frac{2r^2}{m} + \frac{2r}{m} + n_r \) equals
\[
\begin{cases}
\frac{2}{m} | \frac{nM + j'}{2} - \frac{m}{4} p |^2 - | \frac{m-2j}{4} |^2 & \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } \frac{nM + j'}{2} - \frac{m}{4} p \leq \frac{m-2j}{4}, \\
\frac{2}{m} | \frac{nM + j'}{2} - \frac{m}{4} p |^2 - \frac{j^2}{4} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{nM + j'}{2} - \frac{m}{4} p \leq \frac{j}{2}, \\
\frac{2}{m} | \frac{nM + j'}{2} - \frac{m}{4} p |^2 - \frac{j^2}{4} - \frac{1}{2} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{nM + j'}{2} - \frac{m}{4} p \in \left[-\frac{1+j}{2}, \frac{-j}{2} \right],
\end{cases}
\] (193)

So \(-N_k = F_{j,j'}(n)\) where \(F_{j,j'} : \mathbb{Z} \to \mathbb{R} \) is defined by
\[
F_{j,j'}(t) = t^2 \frac{M}{2} \left(u - \frac{M}{m} \right) + t \left(u + uj' - \frac{M}{m} j' \right) + \frac{j^2 - j'^2}{2m} + P_{j,j'}(t)
\] (194)

with \(P_{j,j'}(t) \) is given by
\[
\begin{cases}
\frac{2}{m} | \frac{|M+1|}{2} - \frac{m}{4} p |^2 - | \frac{m-2j}{4} |^2 & \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } \frac{|M+1|}{2} - \frac{m}{4} p \leq \frac{m-2j}{4}, \\
\frac{2}{m} | \frac{|M+1|}{2} - \frac{m}{4} p |^2 - \frac{j^2}{4} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{|M+1|}{2} - \frac{m}{4} p \leq \frac{j}{2}, \\
\frac{2}{m} | \frac{|M+1|}{2} - \frac{m}{4} p |^2 - \frac{j^2}{4} - \frac{1}{2} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{|M+1|}{2} - \frac{m}{4} p \in \left[-\frac{1+j}{2}, \frac{-j}{2} \right],
\end{cases}
\] (195)

We will show that the maximum of \(F_{j,j'}(n) \) appears when \(n = 0 \), i.e., \(k = \frac{-j-j'}{2} \). To do that, we show that the upper bound function \(F^+ : \mathbb{R} \times \left[0, \frac{m}{2} \right] \times \left[0, \frac{um}{m} \right] \to \mathbb{R} \) of \(F_{j,j'}(t) \) and lower bound function \(F^- : \mathbb{R} \times \left[0, \frac{m}{2} \right] \times \left[0, \frac{um}{m} \right] \to \mathbb{R} \) of \(F_{j,j'}(t) \) given below attains their maximum along \(t \in \mathbb{Z} \) when \(t = 0 \).

\[
F^+(t, j, j') = t^2 \frac{M}{2} \left(u - \frac{M}{m} \right) + t \left(u + uj' - \frac{M}{m} j' \right) + \frac{j^2 - j'^2}{2m} + P^+(t, j, j'), \quad (196)
\]
\[
F^-(t, j, j') = t^2 \frac{M}{2} \left(u - \frac{M}{m} \right) + t \left(u + uj' - \frac{M}{m} j' \right) + \frac{j^2 - j'^2}{2m} + P^-(t, j, j'), \quad (197)
\]

where \(P^+(t, j, j') \) is
\[
\begin{cases}
\frac{2}{m} | \frac{|M+1|}{2} - \frac{m}{4} p |^2 - | \frac{m-2j}{4} |^2 & \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } \frac{|M+1|}{2} - \frac{m}{4} p \leq \frac{m-2j}{4}, \\
\frac{2}{m} | \frac{|M+1|}{2} - \frac{m}{4} p |^2 - \frac{j^2}{4} & \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{|M+1|}{2} - \frac{m}{4} p \leq \frac{j}{2},
\end{cases}
\] (198)
and $P^-(t, j, j')$ is
\[
\begin{align*}
\frac{2}{m}((\frac{t+1}{2} - \frac{m}{4} p)^2 - \frac{m - 2j}{4}) & \quad \text{if } \exists p \in 2\mathbb{Z} + 1 \text{ such that } \\
\frac{2}{m}((\frac{t+1}{2} - \frac{m}{4} p)^2 - \frac{t}{4}) - \frac{1}{2} & \quad \text{if } \exists p \in 2\mathbb{Z} \text{ such that } \frac{t}{4} \notin \mathbb{Z}.
\end{align*}
\]
\hspace{1cm} (199)

We just consider the function F^+ and apply similar arguments for F^-. Let $\Delta^+(t, j, j') = F^+(t+1, j, j') - F^+(t, j, j')$, then it is nonincreasing in t and $\Delta^+(-1, j, j') > 0 > \Delta^+(0, j, j')$. It implies that $F^+(0, j, j') > F^+(t, j, j')$ for any $t \in \mathbb{Z}, t \neq 0$. The same results is true for F^-. Hence $F_t(n)$ attains its maximum when $n = 0$. Indeed: $\Delta^+(t, j, j')$ equals
\[
tM \left(u - \frac{M}{m} \right) + \left(j' + \frac{M}{2} \right) \left(u - \frac{M}{m} \right) + u + P^+(t+1, j, j') - P^+(t, j, j').
\]
\hspace{1cm} (200)

We denote the numbers p defining $P^+(t+1, j, j')$ and $P^+(t, j, j')$ by p_1, p_0, respectively. Use definition, we have $\frac{p_1 - p_0}{m} \geq u$. Hence
\[
\partial_t \Delta^+(t, j, j') = M \left(u - \frac{p_1 - p_0}{2} \right) \leq 0, \text{ i.e., } \Delta^+ \text{ is nonincreasing in } t,
\]
\hspace{1cm} (201)
\[
\partial_{j'} \Delta^+(t, j, j') = u - \frac{p_1 - p_0}{2} \leq 0, \text{ i.e., } \Delta^+ \text{ is nonincreasing in } j'.
\]
\hspace{1cm} (202)

So $\Delta^+(0, j, j') \leq \Delta^+(0, j, 0)$ and $\Delta^+(-1, j, \frac{um}{2}) \leq \Delta^+(-1, j, j')$. We can check that $\Delta^+(0, j, 0) < 0 < \Delta^+(-1, j, \frac{um}{2})$. Hence, in the case $k = \frac{j' - j}{2} + \frac{4m}{2}$, the minimum of N_k occurs when $n = 0$.

For the case $k = -\frac{j' + j}{2} - 1 + \frac{4M}{2}$. Since $k = \frac{j' - j}{2} + \left(n - 2\frac{j' + 1}{M}\right) \frac{M}{2}$, we have
\[
- N_k = F \left(n - 2\frac{j' + 1}{M}, j, j' \right).
\]
\hspace{1cm} (203)

Then N_k attains its minimum when $n = 0$ or 1.

Here is the next proposition we used in the proof of Theorem 4.4 for the case $A_2^{(2)}$.

Proposition 4.10. With n_k is defined as in (65). For each $j \in \left[0, \frac{m}{2}\right]$ and $j' \in \left[0, \frac{um}{2}\right] \cap \mathbb{Z}$, we always have
\[
- n' \frac{u}{2} \leq \min \left(-n - \frac{j' + 1}{2} - 1, \frac{u}{2} - n - \frac{j' + 1}{2} + \frac{1}{2}\right).
\]
\hspace{1cm} (204)

Moreover, the equality
\[
- n \frac{u}{2} = \min \left(-n - \frac{j' + 1}{2} - 1, \frac{u}{2} - n - \frac{j' + 1}{2} + \frac{1}{2}\right)
\]
\hspace{1cm} (205)

happens for $j' \in \left[0, \frac{um}{2}\right] \cap \mathbb{Z}$ if and only if one of the next two conditions is satisfied:

1. $m > 2$ and $j' \leq j - 1$.
2. $m \geq 2, j' \in \frac{m(u-1)}{2} + 1 - j + 2\mathbb{Z}_{\geq 0}$.
Proof. Then inequality comes from (68), (141) and Theorem 4.2. We again use the equality (173) to rewrite
\[n_{-\frac{j+j}{2}} - 1 = n_{\frac{j}{2}} \quad \text{and} \quad -\frac{u}{2} + n_{-\frac{j+j}{2} + \frac{1}{2}} = n_{\frac{j}{2}} \quad (206) \]
as \(n_x = n_{x-1} \) and \(n_x = -\frac{u}{2} + n_{x+\frac{1}{2}} \), where \(x = -\frac{j+j}{2} \). Use definition (65), we can check that it happens for \(j' \in [0, \frac{um}{2}] \cap \mathbb{Z} \) if and only if one of two conditions follows is satisfied:

1. \(m > 2 \) and \(j' \leq j - 1 \).

2. \(m \geq 2 \), \(j' \in \frac{m(u-1)}{2} + 1 - j + 2\mathbb{Z}_{\geq 0} \).

We have proven the theorem. \(\square \)

Acknowledgments

The author most grateful to his supervisors Prof. Nicolas Ressayre and Prof. Kenji Iohara for suggesting the subject, and for many useful comments and theirs helping to correct the manuscript while this work was being done. The author also would like to express his special thanks to Prof. Shrawan Kumar, Prof. Peter Littelmann and Prof. Stephane Gaussent for their discussions.

References

[1] P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties. Inventiones Math. 166 (2006), 185–228.

[2] M. Brion, Restriction de reprsentations et projections d’orbites coadjointes [d’aprs Belkale, Kumar et Ressayre]. Sminaire BOURBAKI. Novembre 2011, 64me anne, 2011-2012, no 1043.

[3] M. Brion, La conjecture de Horn : quelques d’eveloppements rcents. SMF GAZETTE. Janvier 2015, no. 14357, 51-59.

[4] R. Carter, Lie algebras of finite type and affine type. Cambridge Studies in Advanced Mathematics, 96. Cambridge University Press, Cambridge, 2005.

[5] V. G. Kac, Infinite Dimensional Lie Algebras. Third edition. Cambridge University Press, Cambridge, 1990.

[6] V. G. Kac. M. Wakimoto, Branching Functions for Winding Subalgebras and Tensor Products. Acta Appl. Math. 21 (1990), no. 1-2, 3-39.

[7] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics, Birkhuser (2002), Vol. 204.

[8] S. Kumar, A survey of the additive eigenvalue problem (with an appendix by M. Kapovich). Transformation Groups 19 (2014), 1051-1148.

[9] S. Kumar, M. Brown, A study of saturated tensor cone for symmetrizable Kac-Moody algebras. Math. Ann. 360 (2014), no. 3-4, 901-936.

[10] S. Kumar, N. Ressayre, On the faces of the tensor cone of symmetrizable Kac-Moody Lie algebras. arXiv:1902.02049.
[11] P. Littelmann, *A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras.* Invent. Math. 116 (1994), no. 1-3, 329-346.

[12] N. Ressayre, *On the tensor semigroup of affine Kac-Moody Lie algebras.* arXiv:1701.02176.

[13] N. Ressayre, *Geometric Invariant Theory and Generalized Eigenvalue Problem.* Inventiones Mathematicae, Volume 180, Issue 2 (2010), pages 389-441.

Universite Lyon, Universit Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
E-mail: khanh.mathematic@gmail.com.