Biogenesis, Functions, and Role of CircRNAs in Lung Cancer

Huanhuan Dong*
Junliang Zhou*
Yue Cheng
Meiqi Wang
Shuqing Wang
Hui Xu

Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China

*These authors contributed equally to this work

Abstract: CircRNAs, a class of endogenous non-coding RNAs with closed-loop structures, have attracted increasing attention because of their good stability, high specificity of tissue expression, long half-life, and highly conserved sequence. CircRNAs have multiple biological functions, including miRNA sponge, transcription regulator, protein translation, interaction with protein, RNA maturation, and so on. These functions indicate the important role of circRNAs in tumorigenesis and malignant progression and their potential as potent diagnostic biomarkers and therapeutic molecules. In recent years, an increasing body of evidence suggests that circRNAs play a crucial role in proliferation, migration, invasion, and apoptosis of lung cancer cells. Therefore, circRNAs have gradually become a research focus in the diagnosis and treatment of lung cancer patients. This review summarizes the classification, biogenesis, and function of circRNAs, and discusses the role of circRNAs in the diagnosis, prognosis, and treatment of lung cancer patients.

Keywords: circRNA, lung cancer, diagnosis, prognosis, treatment

Introduction

According to data reported by a cancer journal, approximately 2.2 million new lung cancer (LC) cases worldwide make it the second cancer (11.4% of all cancers), and approximately 1.8 million deaths place lung cancer at the top of the list of cancer-related deaths (18.0% of all cancer deaths, much more than other cancers).1 Lung cancers are generally divided into two pathological types: 85% of the total cases are non-small cell lung cancer (NSCLC), and 15% of the total cases is small cell lung cancer (SCLC).2 NSCLC can be mainly classified into three types: lung adenocarcinoma (LUAD; 40%), lung squamous cell carcinoma (LUSC; 25%), and large cell lung carcinoma (LCLC; 10%).1 Although advances in diagnosis and treatment have improved the survival rates of lung cancer patients, the 5-year survival rate of advanced lung cancer patients is only 17.7%.3 Moreover, the survival rate of patients with early stage LC is significantly higher than that of patients with advanced LC. Therefore, more effective biomarkers are crucial for early diagnosis and prediction of prognosis.

Circular RNAs (circRNAs), a class of endogenous non-coding RNAs, were first discovered in RNA viruses via electron microscopy in 1976.4 In contrast to linear RNAs, circRNAs have no 5’ to 3’ polarity and a polyadenylated tail but form a highly stable covalent closed-loop structure, which makes them more stable in tissues and plasma.5 Many studies have confirmed the crucial role of circRNAs in the development and progression of various cancers.6 Furthermore, an increasing body of research
shows that abnormal expression of circRNAs plays an important role in the development and progression of LC. This suggests that circRNAs can function as potential targets for the diagnosis and prognosis of LC. The current review introduces the classification and biogenesis of circRNAs, and summarizes the roles and corresponding mechanisms of many discovered circRNAs in lung cancer, and discusses the potential value of circRNAs as diagnostic and prognostic biomarkers for lung cancer.

Classification and Biogenesis of circRNAs

Based on their origins and compositions, circRNA can be mainly classified into six categories (Table 1).

Exonic circRNAs (ecircRNAs)

EcircRNA consists of one or multiple exons, which is the most common type (more than three-fourths of the whole). There are two types of ecircRNA formation, namely, direct back-splicing, and exon skipping. The direct back-splicing model includes two mechanisms, intron-pairing-driven, and RNA-binding proteins (RBPs)-driven circularization, while lariat-driven circularization is the main mechanism in the exon-skipping model.

Intronic circRNA (ciRNAs)

CiRNAs are only composed of introns that have failed to be debranched and abundantly distributed in the nucleus. Furthermore, the processing of ciRNAs mainly depends on consensus sequence motif that might be essential for escaping from de-branching.

Exonic-Intronic circRNAs (ElciRNAs)

ElciRNAs consist of exons and introns that are retained between the exons. That is to say, in circular RNA containing several exons and introns, introns were not removed.

Table 1 Classification of circRNAs

Type	Example	References	
Exonic circRNAs	HIPK2/3	[8]	
Intronic circRNA	ci-ankrd52	[11]	
Exonic-intronic circRNAs	cSMARCA5	[16]	
Intergenic circRNAs	chr5: 10,213,603	10,224,173	[13]
tRNA intronic circRNAs	tric31905	[14]	
Antisense circRNAs	circANRIL	[17]	

Intergenic circRNAs

The two intronic RNA fragments with GT-AG splicing signal act as splicing donor and acceptor to form the entire circRNA.

tRNA Intronic circRNAs (tricRNAs)

Pre-tRNAs, which containing introns, are cut by endonuclease complex and forming a special type of intronic circRNAs and mature tRNAs.

Antisense circRNAs

Mechanically speaking, they are also a type of ecircRNAs, but are formed from antisense non-coding RNAs. Schematic of circRNAs biogenesis is shown in Figure 1.

Functions of circRNAs

miRNA Sponge

MiRNA is an important negative regulator of protein expression, which inhibits the translation of target gene mRNA or promotes the degradation of mRNA by binding to mRNA. Many studies have demonstrated that circRNAs can act as competitive endogenous RNAs (ceRNAs), namely miRNA sponges, which bind to miRNAs by means of microRNA response elements (MREs) to inhibit the function of miRNAs. For example, CDR1As were observed to act as miRNA sponges, with more than 70 conserved binding sites of miRNA-7, and overexpression of ciRS-7 competitive binding to miR-7 and facilitated malignant progression in esophageal squamous cell carcinoma (ESCC). Moreover, circRNA-FOXO3 inhibits proliferation, migration, and invasion of NSCLC cells through specifically sponging miR-155 and abrogating the inhibition of FOXO3 gene. In addition, circ-HIPK3 can both facilitate tumor progression by regulating miR-421/ZIC5 axis in glioma and promote epithelial–mesenchymal transition (EMT) of cervical cancer through sponging miR-338-3p to release HIF-1α gene. It can also inhibit tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. Therefore, one circRNA can sponge multiple miRNAs to play a role in promoting or inhibiting tumorigenesis in different cancers.

Translation Regulator

Further evidence has suggested that circRNAs can be involved in regulating gene transcription. Compared with
ecircRNAs, which are mainly located in the cytoplasm, EElciRNAs and cirRNAs are predominantly located in the nucleus and do not sponge miRNA, so they are normally involved in regulating gene expression levels. EElciRNAs may form EElciRNA-U1 snRNA complexes through specific RNA–RNA interactions with U1 snRNA, and then interact with the promoters of the Pol II transcription complex to promote gene expression.

Similar to EElciRNAs, cirRNAs also can interact with polymerase II complex, such as c-siRT7, which down-regulates the expression of the corresponding genes ANKRD52 and SIRT7 by interacting with the polymerase II complex. Thus, circRNA plays a crucial role in the regulation of gene expression.

Protein Translation

CircRNAs were initially considered to be non-coding RNAs, but more and more evidence has emerged that

Figure 1 Biogenesis of circRNAs. (A) CircRNAs are mainly produced by three mechanisms: lariat-driven, intron-pairing-driven, RNA-binding proteins (RBPs)-driven circularization. (B) Intergenic circRNAs are spliced by two intronic circRNA fragments containing GT:AG splicing signals. (C) TricRNAs are produced from pre-tRNAs that containing introns.
some circRNAs can also encode proteins. As long as circRNA has a complete and sufficiently long open reading framework, and with the help of some necessary regulatory elements, such as N6-methyladenosine (m^6A) modifications and the internal ribosome entry site (IRES) element, it can be translated into proteins, but the translation efficiency may be slightly lower than that of linear RNA.26-28 As early as 1986, it was found that the circRNA of the hepatitis δ virus can generate a kind of subcellular localization of proteins.

Interaction with Protein
CircRNAs can bind to and interact with RNA-binding proteins (RBPs) through conserved protein-binding sites. For instance, CDR1as and circSry can bind with the miRNA effector AGO to cleave it and eventually promote its degradation.15 CDK2 is essential for G1-S phase transition, the formation of circ-Foxo3–p21–CDK2 complex would inhibit the function of CDK2; then, cell cycle progression would be arrested in G1 phase.32 In addition, circ-Foxo3 could bind to senescence-related proteins ID1 and E2F1 and stress-related proteins HIF1α and FAK to decrease levels of these proteins in the nucleus, block the anti-senescence function of these proteins and promote cellular senescence.33 In summary, the interaction between circRNAs and proteins can alter the biological activity of proteins to affect their biological function or change the subcellular localization of proteins.

RNA Maturation
A variety of circRNA–protein interactions can be used to control ribosomal RNA maturation. For example, circANRIL binding to the C-terminal lysine-rich domain of PES1 hinders pre-rRNA binding and exonuclease-mediated rRNA maturation, thereby circANRIL impairs ribosome biogenesis, leading to activation of p53, promoting cell apoptosis and decreasing cell proliferation.17 Consequently, circRNAs can be involved in regulating rRNA maturation.

Inhibit RNA Polymerase II Elongation
Acting as endogenous small regulatory RNAs, circRNAs can interfere with gene expression in the nucleus. The complex formed by circRNAs with NRDE-3 associates with NRDE-2 and recruits it into the nucleus, where it inhibits RNAP II during the elongation phase of transcription.34 These nuclear-localized circRNAs direct an NRDE-2-dependent silencing of pre-mRNAs 3ʹ to sites of RNAi, thus inhibiting gene expression during the elongation phase of transcription. This is also a part of the regulation of gene expression.

Modulate Linear Splicing
CircRNAs are generally produced by pre-mRNA spliceosome.35 CircRNAs production competes with linear splicing of flanking exons, and they can mutually regulate each other by competing for splice sites. Splicing factor-mediated exon circularization replaces linear splicing, thereby reducing the production of its mRNA. In brief, these competition effects might regulate the levels of both circRNAs and mRNAs.

The functions of circRNA are shown in Figure 2

CircRNAs in Lung Cancer
Advanced studies suggest that circRNAs may play an important role in the progression and development of lung cancer. CircRNAs can be involved in regulating the proliferation, migration, invasion, and apoptosis of tumor cells, and play a crucial role in the diagnosis, prognosis, and treatment of lung cancer.

CircRNAs as Potential Diagnostic Biomarkers in Lung Cancer
Compared with other non-coding RNAs, circRNAs have higher tolerance to RNA exonuclease due to their covalently closed structure.36 Therefore, circRNAs can function as potential diagnostic biomarkers for lung cancer by virtue of their stable structure, high abundance, and tissue-specific expression (Table 2).

circ-ITCH
Circ-ITCH can sponge of miR-7 and miR-214 and inhibit the activation of the Wnt/β-catenin pathway in lung cancer, and thus regulate lung cancer cell proliferation.37 Circ-ITCH serves as epigenetic miRNA sponges to competitively inhibit the binding between miRNA and ITCH, thereby increasing ITCH expression. ITCH can promote proteasome
Figure 2 Function of circRNAs. (A) miRNA sponge (B) Translation regulator (C) Protein translation (D) Protein sponge (E) RNA maturation (F) Inhibit RNA polymerase II elongation (G) Modulate linear splicing.
Table 2 CircRNAs as Potential Diagnostic Biomarkers in Lung Cancer

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circ-ITCH	miRNA sponge	circ-ITCH[−miR-730]−miR-214[−Wntβ-catenin]†	Down	Proliferation↓	Age (≥60), TNM	[37]
circPVT1	miRNA sponge	circPVT[−miR-125b]−E2F2 pathway†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	Distant metastasis	[38]
circMET	miRNA sponge	circMET[−miR-145-5p]−CXCL3†	Up	Proliferation↑, migration↑, invasion↑	TNM, LNM, tumor differentiation, OS	[39]
circGFRA1	miRNA sponge	circGFRA1[−miR-18B-3p]−PI3K/AKT↑	Up	Proliferation↑	Unknown	[40]
hsa_circ_0013958	miRNA sponge	hsa_circ_0013958[−miR-134]−cyclin D1↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑	TNM, LNM	[41]
circ_0005280	Unknown	Unknown -	Down	Unknown	Age (≥60), tumor size	[62]
circRNA100146	miRNA sponge	circRNA100146[−miR-361-3p]−miR-615-5p−SF3B3↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑	Unknown	[66]
hsa_circ_0001946	miRNA sponge	hsa_circ_0001946[−miR]−NER signaling pathway↑	Down	Proliferation↓, migration↓, invasion↓, apoptosis↓, cisplatin sensitivity↑	Unknown	[70]
hsa_circ_0030998	miRNA sponge	hsa_circ_0030998[−miR-558]−MMP1/MMP17↑	Down	Proliferation↓, migration↓, invasion↓, Taxol resistance↓	TNM, distal metastasis	[72]
circFARSA	miRNA sponge	circFARSA[−miR-330-5p]−miR-326−FASN↑	Up	Migration↑, invasion↑	Gender	[73]
circCCS	miRNA sponge	circCCS[−miR-383]−E2F7↑	Up	Proliferation↑, migration↑, apoptosis↓	TNM, LNM, tumor size	[77]
circIGF1R	miRNA sponge	circIGF1R[−miR-1270]−VANGL2↓	Down	Migration↓, invasion↓	LNM, tumor size	[82]
circRNA_102179	miRNA sponge	circRNA_102179[−miR-330-5p]−HMGB3↑	Up	Proliferation↑, migration↑, invasion↑	Unknown	[95]
circSATB2	miRNA sponge	circSATB2[−miR-326]−FSCN1↑	Up	Proliferation↑, migration↑, invasion↑	LNM	[96]
circ-ZKSCAN1	miRNA sponge	circ-ZKSCAN1[−miR-330-5p]−FAM83A↑	Up	Proliferation↑, migration↑	OS, tumor size, clinical stage	[97]
hsa_circ_0007059	miRNA sponge	hsa_circ_0007059[−miR-378]−Wntβ-catenin↑ /ERK1/2↑	Down	Proliferation↓, EMT↓, apoptosis↑	TNM, LNM	[99]
circ-PITX1	miRNA sponge	circ-PITX1[−miR-1248]−CCND2↑	Up	Proliferation↑, migration↑, invasion↑, glycolysis↑, glutamine metabolism↑, apoptosis↓	Unknown	[126]

(Continued)
Table 2 (Continued).

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circ_0000429	miRNA	circ_0000429†-miR-1197†-MADD†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	Unknown	[132]
circ_0001287	miRNA	circ_0001287†-miR-21†-PTEN†	Down	Proliferation↑, migration↑, invasion↑, radio-resistance↓	N status, histological grade	[136]
hsa_circ_0000064	Unknown	hsa_circ_0000064†-caspase-3/9†/bax†/p21†/CDK6/cyclin D1†/bcl-2†/MMP-2/9†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	TNM, LNM, T stage	[147]

Notes: ↑, up-regulated; ↓, down-regulated.

Abbreviations: TNM, the high stage of tumor node metastasis; LNM, lymph node metastasis; OS, overall survival.

degradation and inhibit Wnt/β-catenin pathway. Thus, it can be concluded that circ-ITCH can act as a tumor suppressor gene in lung cancer by controlling miRNA activity, which increases the concentration of ITCH and results in suppression of the canonical Wnt/β-catenin pathway. Consequently, the related research of circ-ITCH is important for the diagnosis and treatment of cancer.

circPVT1
CircPVT1 can sponge miR-125b and promote E2F2 expression in NSCLC. C-Fos upregulated circPVT1 in NSCLC and decreased the Ago2-based activity of miR-125b, which increased the E2F2 and the downstream effector expression. Overexpressed E2F2 is crucial for cell cycle regulation in NSCLC and is significantly associated with poor prognosis. In summary, c-Fos-activated circPVT1 acts as a ceRNA and may be considered as a diagnostic biomarker and therapeutic target for NSCLC patients.

circMET
CircMET primarily sponge miR-145-5p to regulate CXCL3 expression in NSCLC cells and is significantly upregulated in NSCLC tissues. Thus, circMET promotes the expression level of CXCL3. CXCL3 is a well-known oncogene, which has been confirmed to promote cancer progression. Taken together, circMET might be considered a novel diagnostic biomarker and potential therapeutic target for NSCLC treatment.

circFGRA1
The expression of circFGRA1 in NSCLC tissues increased, consistent with the previous data in breast cancer and ovarian cancer, and was negatively correlated with the expression of miR-188-3p. CircFGRA1 acts as a ceRNA to sponge miR-188-3p, and the circGFRA1/miR-188-3p axis may regulate the proliferation of NSCLC cells through the PI3K/AKT signaling pathway, which is a classical oncogenic signaling pathway. Consequently, circGFRA1 plays a crucial role in NSCLC, and might be a potential diagnostic biomarker and therapeutic target for NSCLC.

hsa_circ_0013958
hsa_circ_0013958 could act as a sponge of miR-134 and inhibit miR-134 activity. Studies have shown that miR-134 could inhibit the expression of CCND1. It promotes G1-S progression by sequentially phosphorylating retinoblastoma proteins, thereby promoting the initiation and progression of tumor cells. In conclusion, the up-regulated expression of hsa_circ_0013958 is closely related to the tumorigenesis of NSCLC and could be used as a potential diagnostic biomarker for NSCLC.

CircRNAs as Potential Prognostic Biomarkers in Lung Cancer
Prognostic assessment plays a momentous role in the treatment of lung cancer, which can help prolong the survival of lung cancer patients. Hence, circRNAs have gradually gained some value as potential prognostic biomarkers for lung cancer (Table 3).

circFGFR3
The high expression of circFGFR3 promotes the invasion and proliferation by sponging miR-22-3p to upregulate the Gal-1, p-AKT, and p-ERK1/2 expressions in NSCLC cells. miR-22-3p acts as a tumor suppressor gene in multiple cancers, including NSCLC. Gal-1, p-AKT, and...
Table 3 CircRNAs as Potential Prognostic Biomarkers in Lung Cancer

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circFGFR3	miRNA	circFGFR3†-miR-22-3p†-Gal-1†	Up	Proliferation†, invasion†	TNM, LNM, tumor size, tumor differentiation, OS	[43]
circ_0003645	miRNA	circ_0003645†-miR-1179†-TMEM14A†	Up	Proliferation†, migration†, invasion†, apoptosis↓	TNM, LNM, OS	[46]
CDR1as	miRNA	CDR1as†-miR-71†-EGFR†/CCNE1†/PIK3CD†	Up	Proliferation†, apoptosis↓	TNM, LNM, OS, tumor size	[47, 59]
circ_POLA2	miRNA	circ_POLA2†-miR-326†-GNB1†	Up	Unknown	Distant metastasis, TNM, OS	[48]
circ-FOXM1	miRNA	circ-FOXM1†-miR-1304-5p†-PPDPF†/MACC1†	Up	Proliferation†, migration†, invasion†, apoptosis↓	TNM, LNM	[49]
circPIP5K1A	miRNA	circPIP5K1A†-miR-600†-HIF-1α†	Up	Proliferation†, migration†, invasion†, apoptosis↓	Unknown	[86, 87]
circRNA_010763	miRNA	circRNA_010763†-miR-715†-c-Myc†	Up	Proliferation†, migration†, invasion†	Unknown	[93]
circRNA_100876	Unknown	Unknown	Up	Unknown	LNM, tumor staging, OS	[101]
circ-ANXA7	miRNA	circ-ANXA7†-miR-331†-LAD1†	Up	Proliferation†, migration†	TNM, LNM, tumor size, recurrence status, OS	[119]
circ-PTEN	miRNA	circ-PTEN†-miR-155†-miR-330-3p†-PTEN†	Down	Proliferation†	TNM, tumor size, OS	[140]
hsa_circ_0008003	miRNA	hsa_circ_0008003†-miR-488†-ZNF281†	Up	Proliferation†, migration†, invasion†	TNM, LNM	[142]
circ-MTHFD2	Unkn	Unknown	Up	Unknown	TNM, LNM, tumor size, recurrence, smoking history, OS	[157]

Notes: †, up-regulated; ‡, down-regulated.
Abbreviations: TNM, the high stage of tumor node metastasis; LNM, lymph node metastasis; OS, overall survival.

p-ERK1/2 are downstream regulators of miR-22-3p in NSCLC cells. The AKT and ERK1/2 pathways activated abnormally by forced expression of Gal-1 are closely related to tumor proliferation and invasion.44,45 Therefore, circFGFR3 may upregulate the Gal-1 expression and activate the AKT and ERK1/2 pathways to promote NSCLC cell invasion and proliferation, and it may be a novel biomarker for the prognosis of lung cancer.

circ_0003645
Circ_0003645 was both increased in the NSCLC cells and tissues, and functions as an oncogene in NSCLC.46 Circ_0003645 could upregulate TMEM14A expression by acting as a ceRNA to sponge miR-1179. Circ_0003645 affects cell growth, apoptosis, and metastatic properties, and thus participates in the initiation and progression of NSCLC. Elevated circ_0003645 expression in NSCLC...
tissues was related to advanced TNM stages and positive lymph node invasion. Additionally, a high expression of circ_0003645 results in a worse overall survival. Therefore, circ_0003645 may possess significant potential as a prognostic predictor and therapeutic target for patients with NSCLC.

CDR1as

Plenty of research evidence has suggested that circRNA CDR1as could function as an oncogene through sponge of tumor suppressor miR-7.21 Tumor suppressor miR-7 can induce apoptosis and G1/S arrest, while CDR1AS can negatively regulate the antitumor effects of miR-7.47 The cell growth-related target gene expression of miR-7, EGFR, CCNE1, and PIK3CD can be remarkably elevated by the overexpression of CDR1as. That is to say, CDR1as could promote cell growth via the miR-7/EGFR/CCNE1/PIK3CD signaling pathway in NSCLC. Consequently, CDR1as may serve as a novel prognostic marker for NSCLC.

Circ_POLA2

Circ_POLA2 is significantly upregulated in lung cancer cells and tissues, and promotes lung cancer progression via miR-326/GNB1 axis.48 GNB1 is a direct target of miR-326 and necessary for the miR-326-mediated suppression on the stemness of lung cancer cells. In conclusion, circ_POLA2 plays a potential regulatory role via regulating the miR-326/GNB1 axis in lung cancer stemness. Meanwhile, lung cancer patients with a high expression of circ_POLA2 exhibited a worse overall survival. Thus, circ_POLA2 may act as a potential prognostic biomarker and therapeutic target for lung cancer treatment.

circ-FOXM1 (hsa_circ_0025033)

The expression of circ-FOXM1 is remarkably increased in NSCLC tissues and cell lines and promotes NSCLC cell progression.49 Circ-FOXM1 can upregulate PPDPF and MACC1 expression via acting as a sponge of miR-1304-5p to facilitate cell growth and invasion. Previously, studies indicated that PPDPF and MACCC1 were elevated and involved in tumor invasion and metastasis in different types of malignancies.50,51 In addition, the high expression of circ-FOXM1 was tightly connected to advanced TNM stages, lymph node invasion, and poor prognosis. To sum up, circ-FOXM1 may play a crucial role in the progression of NSCLC, which could function as a novel potential prognostic marker and therapeutic target for NSCLC.

CircRNAs as Potential Therapeutic Target in Lung Cancer

With further research on circRNAs, many circRNAs have been proven to be involved in the initiation and progression of lung cancer, and their potential targets and mechanisms in the treatment of lung cancer have also been gradually known to the public. The correlational research of circRNAs may contribute to further breakthroughs in the treatment of lung cancer (Table 4).

circ_0003998

The expression of circ_0003998 has been verified to be associated with NSCLC resistance to docetaxel (DTX).52 The expression level of circ_0003998 was originally significantly increased in DTX-resistant NSCLC tissues and cells, while knockdown of circ_0003998 inhibited cell colony formation and enhanced apoptosis and DTX sensitivity of DTX-resistant NSCLC cells in vitro and in vivo. Meanwhile, circ_0003998 directly sponged miR-136-5p, and CORO1C was a functionally crucial target of miR-136-5p in regulating DTX-resistant NSCLC cell colony formation, apoptosis, and DTX sensitivity. In summary, circ_0003998 modulated CORO1C expression by acting as a ceRNA of miR-136-5p to regulate DTX-resistant NSCLC cell colony formation, apoptosis, and DTX sensitivity at least partially, revealing the potential of circ_0003998 as a therapeutic target for chemoresistant NSCLC.

circRNA_103762

CircRNA_103762 was remarkably highly expressed in NSCLC tissues and cell lines and circRNA_103762 acts as an oncogene in NSCLC.53 A series of cell experiments in vitro determined that the upregulation of circRNA_103762 was associated with multidrug resistance (MDR). The circRNA_103762 was upregulated in NSCLC patients after cisplatin chemotherapy, and down-regulation of circRNA_103762 expression can reduce IC50 values of different drugs. Furthermore, circRNA_103762 enhanced MDR by inhibiting CHOP expression in NSCLC cells, which has been pointed out to be related to tumor in early reports, and its expression can be induced by chemotherapeutic drugs and is associated with MDR.54,55 Based on the above results, the correlation between circRNA_103762 and MDR of NSCLC provides new ideas and strategies for the therapy of NSCLC.
Table 4 CircRNAs as Potential Therapeutic Target in Lung Cancer

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circ_0003998	miRNA sponge	circ_0003998†-miR-136-5p/-C1OR1C†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓, dx sensitivity↓	TNM, LNM, tumor metastasis	[52]
circRNA_103762	Unknown	circRNA_103762†-CHOP†	Up	Proliferation↑, migration↑, invasion↑, mdr↑	OS	[53]
hsa_circ_0020123	miRNA sponge	hsa_circ_0020123†-miR-144†-ZEB1† /EZH2†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑	TNM, LNM, tumor differentiation, OS	[56]
circSEC31A	miRNA sponge	circSEC31A†-miR-376A†-SEC31A†	Up	Migration↑, invasion↑, glycolysis↑, apoptosis↓	TNM, LNM, tumor size	[57]
circCDYL	miRNA sponge	circCDYL†-miR-185-5p†/TNRC6A†-ERK1/2†	Down	Proliferation↓, apoptosis↑	Unknown	[58]
circRNA-FOXO3	miRNA sponge	circRNA-FOXO3†-miR-1551-FOXO3†	Down	Proliferation↓, migration↓, invasion↓, apoptosis↑	Unknown	[22]
circFADS2	miRNA sponge	circFADS2†-miR-498†-HMGA2†	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑	TNM, LNM, tumor differentiation, OS	[60,61]
hsa_circ_100395	miRNA sponge	hsa_circ_100395†-miR-1228†-TCF21†	Down	Proliferation↑, migration↑, invasion↓	TNM, LNM, OS	[63]
circRNA_102231	Unknown	Unknown	Up	Proliferation↑, migration↑, proliferation↑	TNM, LNM	[64]
circUBAP2	miRNA sponge	circUBAP2†-miR-3182†-KLF4†	Up	Proliferation↑, migration↑, invasion↑, chemo-resistance↑	LNM, disease stage	[65]
hsa_circ_0008305	miRNA	circPTK2†-miR-429†/miR-200b-3p†-TIF1†	Down	Invasion↓, migration↓, emt↓	Unknown	[67]
circFGFR1	miRNA sponge	circFGFR1†-miR-381-3p†-CXC4R4†	Up	Proliferation↑, migration↑, invasion↑	Tumor size	[68]
circENO1	miRNA sponge	circ-ENO1†-miR-22-3p†-ENO1†	Up	Proliferation↑, migration↑, apoptosis↑, glycolysis↑, emt↑	Unknown	[69]
hsa_circRNA_103809	miRNA sponge	hsa_circRNA_103809†-miR-4302†-ZNFI21† /MYC† hsa_circRNA_103809†-miR-377-3p†-GOTI†	Up	Proliferation↑, invasion↑, apoptosis↑, cisplatin resistance↑	Unknown	[71,158]
circ_0026134	miRNA sponge	circ_0026134†-miR-1256/-miR-1287†-TCTN1†/GAGE1†	Up	Proliferation↑, migration↑, invasion↑	Unknown	[74]

(Continued)
circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circ0001320	miRNA sponge	circ0001320,-miR-558,-TNFAIP1/-TPM1	Down	Proliferation\(^{↓}\), invasion\(^{↓}\), apoptosis\(^{↑}\)	Unknown	[75]
circ-BANP	miRNA sponge	circ-BANP,-miR-503,-LARP1	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\), apoptosis\(^{↓}\)	Clinical stages, LNM, OS	[76]
circHIPK3	miRNA sponge	circHIPK3,-miR124,-3p,-STAT3,-PRKAA\(^{↑}\) (STK11 mutant)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\), glycolysis\(^{↑}\), apoptosis\(^{↓}\)	TNM, LNM, tumor size	[78–81]
circMAN2B2	miRNA sponge	circMAN2B2,-miR-1275	Up	Proliferation\(^{↑}\), invasion\(^{↑}\)	Unknown	[83]
circNDUFB2	Protein scaffold	circNDUFB2,-IGF2BP3\(^{↑}\)(m6A-dependent)	Down	Proliferation\(^{↓}\), migration\(^{↓}\), invasion\(^{↓}\), immune responses\(^{↓}\)	LNM, tumor size	[84]
circ-PAX2	miRNA sponge	circ-PAX2,-miR-186	Up	Proliferation\(^{↑}\), migration\(^{↑}\), apoptosis\(^{↓}\)	TNM	[85]
circPTPRA	miRNA sponge	circPTPRA,-miR-96,-5p,-RASSF8\(^{↑}\) /E-cadherin\(^{↓}\)	Down	Migration\(^{↓}\), invasion\(^{↓}\), emt\(^{↓}\)	OS	[88]
circBIRC6	miRNA sponge	circBIRC6,-miR-145,-FSCN1/-S6K1\(^{↑}\)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\)	Unknown	[89]
circCDR1as	miRNA sponge	circCDR1as,-miR-219,-5p,-SOX5\(^{↑}\)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\), apoptosis\(^{↑}\), stemness\(^{↑}\), cisplatin resistance\(^{↑}\)	Unknown	[90,91]
circRNA_001010	miRNA sponge	circRNA_001010,-miR-5112,-CDK4\(^{↑}\)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\), apoptosis\(^{↓}\)	Unknown	[92]
hsa_circRNA_101237	miRNA sponge	hsa_circRNA_101237,-miR-490,-3p,-MAPK1\(^{↑}\)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\)	TNM, LNM, OS, tumor size	[94]
circ_0002483	miRNA sponge	circ_0002483,-miR-182,-5p,-GRB2\(^{↑}\) /FOXO1\(^{↓}\) /FOXO3\(^{↓}\)	Down	Proliferation\(^{↓}\), invasion\(^{↓}\), taxol sensitivity\(^{↓}\)	OS	[98]
hsa_circ_0012673	miRNA sponge	hsa_circ_0012673,-miR-320a,-LIMK1\(^{↑}\)	Up	Proliferation\(^{↑}\), migration\(^{↑}\), invasion\(^{↑}\), emt\(^{↑}\)	Unknown	[100]

(Continued)
Table 4 (Continued).

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circTADA2A	miRNA sponge	propofol↑-circTADA2A-3p↑-miR-455-3p↑-FOXM1↓	Down	Proliferation↑, migration↑, invasion↑, aerobic glycolysis↑	Unknown	[102]
hsa_circ_0002130	miRNA sponge	hsa_circ_0002130↑-miR-489↑-GLUT1↑/HK2↑/LDHA↑	Up	Proliferation↑, glycolysis↑, apoptosis↑, osimertinib-resistant↑	Unknown	[103]
circ_000376	miRNA sponge	circ_000376↑-miR-1182↑-NOVA2↑	Up	Migration↑, invasion↑, glycolysis↑	TNM, LNM, tumor size	[104]
circ_000735	miRNA sponge	circ_000735↑-miR-635↑-FAM183F↑/circ_000735↑-miR-940↑-BMPER↑	Up	Proliferation↑, migration↑, invasion↑, glycolysis↑, apoptosis↑	TNM, LNM, OS	[105,106]
circ_0014130	miRNA sponge	circ_0014130↑-miR-142-5p↑-IGF-1↑/circ_0014130↑-miR-136-5p↑-BCL2↑	Up	Proliferation↑, apoptosis↑	Tumor size, distant metastasis	[107,108]
circ_0016760	miRNA sponge	circ_0016760↑-miR-4295↑-E2F3↑/circ_0016760↑-miR-1287↑-GAGE1↑	Up	Proliferation↑, migration↑, invasion↑, glycolysis↑, apoptosis↑	TNM, LNM, OS	[109,110]
circ_0020123	miRNA sponge	circ_0020123↑-miR-488-3p↑-ZFX↑/circ_0020123↑-miR-488-3p↑-ADAM9↑/circ_0020123↑-miR-488-3p↑-THBS2↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑	TNM, LNM	[56,111,112]
circ_100565	miRNA sponge	circ_100565↑-miR-506-3p↑-HMGAT↑/circRNA_100565↑-miR-337-3p↑-ADAM128↑	Up	Proliferation↑, migration↑, invasion↑, autophagy↑, apoptosis↑, cisplatin resistance↑	TNM, LNM, OS	[113,113]
circ_ZFR	miRNA sponge	circ_ZFR↑-miR-195-5p↑-KPNA4↑/circ_ZFR↑-miR-101-3p↑-CUL4B↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↑, ptx resistance↑	Unknown	[114,115]
circABCB10	miRNA sponge	circABCB10↑-miR-1252↑-FOXR2↑/circABCB10↑-miR-584-5p↑-E2F5↑	Up	Proliferation↑, migration↑, invasion↑	OS	[116,117]
circAGFG1	miRNA sponge	circAGFG1↑-miR-203-3p↑-ZNF281↑	Up	Proliferation↑, migration↑, invasion↑	Unknown	[118]
circDCUN1D4	RBPs	circDCUN1D4↑-TXNIP↑/HuR↑	Down	Migration↓, invasion↓, glycolysis↓	LNM, OS	[120]
Table 4 (Continued).

circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
hsa_circ_0007580	miRNA sponge	circDENND2A↑-miR-34a↓-CCNE1	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	Unknown	[121]
hsa_circ_0006571	miRNA sponge	circEPSTI1↑-miR-145↓-HMGB3↑	Up	Proliferation↑, migration↑, invasion↑	Unknown	[122,123]
hsa_circ_0000284	miRNA sponge	circFOXPI↑-miR-185-5p↓-WNT1↑	Up	Proliferation↑, apoptosis↓	Unknown	[124]
hsa_circ_0087862	miRNA sponge	circEPSTI1↑-miR-212-3p↓-ADAM10↑	Up	Proliferation↑, migration↑, invasion↑, glycolysis↑	TNM, distant metastasis	[125]
hsa_circ_0087623	miRNA sponge	circ_EPB41L2↑-miR-211-5p↓-CDH4↑	Down	Proliferation↓, migration↓, invasion↓	Unknown	[127]
hsa_circ_0018414	miRNA sponge	hsa_circ_0018414↑-miR-6071-3p↓-DKK1↓	Down	Proliferation↓, stemness↓, apoptosis↓	Unknown	[128]
hsa_circ_0000284	miRNA sponge	circ_ZNF609↑-miR-1253-3p↓-RAB3D↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	TNM, LNM, tumor size, OS	[129]
hsa_circ_0000284	miRNA sponge	hsa_circ_0000284↑-miR-1270-3p↓-PLAGL2↑	Up	Proliferation↑, migration↑, invasion↑	Unknown	[130,131]
hsa_circ_0000284	miRNA sponge	circ_SOX4↑-miR-1270-3p↓-PLAGL2↑	Up	Proliferation↑, migration↑, invasion↑	Unknown	[134]
hsa_circ_0000284	miRNA sponge	circ_0000284↑-miR-377-3p↓-PD-L1↑	Up	Proliferation↑, migration↑, invasion↑	LNM, OS, tumor stage	[135]
hsa_circ_0000284	miRNA sponge	circ_0074027↑-miR-185-3p↓-BRD4↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	TNM, tumor differentiation, OS	[137]
hsa_circ_0000284	miRNA sponge	circ_MAGI3↑-miR-515-5p-5p↓-HDGF↑	Up	Proliferation↑, glycolysis↑	TNM, OS	[138]
hsa_circ_0000284	miRNA sponge	circ_PRMT5↑-miR-377/382/498-3p↓-EZH2↑	Up	Proliferation↑	TNM, LNM, tumor size, OS	[139]
hsa_circ_0000284	miRNA sponge	hsa_circ_0000284↑-miR-138-3p↓-Sirt1↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	spinal metastasis	[141]
hsa_circ_0000284	miRNA sponge	circ_SMARCA5↑-miR-19b-3p↓-HOXA9↑	Down	Proliferation↓, migration↓, invasion↓	Unknown	[143]
hsa_circ_0000284	miRNA sponge	circ_TUBA1C↑-miR-143-3p↓	Up	Proliferation↑, apoptosis↓	Unknown	[144]
hsa_circ_0000284	miRNA sponge	hsa_circ_0000284↑-miR-545-3p↓-PRKCA↑	Up	Invasion↑, apoptosis↓	OS	[145]

(Continued)
circRNA	Function	Mechanism	Expression Pattern	Cell Characteristics	Clinical Characteristics	References
circRNA_103993	miRNA sponge	circRNA_103993\textminus miR-1271\textminus ERG↑	Up	Proliferation↑, apoptosis↓	Unknown	[146]
hsa_circ_0001073	miRNA sponge	hsa_circ_0001073\textminus miR-626\textminus LIFR↓	Down	Proliferation↑, invasion↓, apoptosis↑	Unknown	[148]
hsa_circ_0010235	miRNA sponge	hsa_circ_0010235\textminus miR-433-3p\textminus TIPR↑	Up	Proliferation↑, migration↑, invasion↓, autophagy↑, apoptosis↓	TNM, LNM, tumor size, OS, recurrence, smoking history	[149]
hsa_circ_0038646	miRNA sponge	hsa_circ_0038646\textminus miR-331-3p\textminus GRIK3↑	Up	Proliferation↑, migration↑	Unknown	[150]
hsa_circ_11780	miRNA sponge	hsa_circ_11780\textminus miR-544a\textminus FBXV7↑	Down	Proliferation↑, migration↑, invasion↓	Tumor size, distant metastasis, OS	[151]
hsa_circ_0002874	miRNA sponge	hsa_circ_0002874\textminus miR-1273\textminus MDM2-P53↑	Up	Apoptosis↓, paclitaxel resistance↑	TNM, histology	[152]
circCCDC66	miRNA sponge	circCCDC66\textminus miR-33a-5p\textminus KPNA4↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	Unknown	[153]
circP4HB	miRNA sponge	circP4HB↑\textminus miR-133a-5p\textminus vimentin↑	Up	Migration↑, invasion↑, emt↑	OS	[154]
circARHGAPI0	miRNA sponge	circARHGAPI0\textminus miR-150-5p\textminus GLUT1↑	Up	Proliferation↑, migration↑, invasion↑, emt↑	Unknown	[155]
circVANGL1	miRNA sponge	circVANGL1\textminus miR-195-1\textminus Bcl-2↑	Up	Proliferation↑, migration↑, invasion↑, apoptosis↓	TNM, tumor size, OS	[156]

Notes: ↑, up-regulated; ↓, down-regulated.

Abbreviations: TNM, the high stage of tumor node metastasis; LNM, lymph node metastasis; OS, overall survival; MDR, multidrug resistance; EMT, epithelial–mesenchymal transition.

hsa_circ_0020123

The expression level of hsa_circ_0020123 in NSCLC tissues was significantly higher than that in normal tissues, and higher hsa_circ_0020123 expression level was associated with a poorer differentiation degree, lymph node metastasis, a higher TNM stage, and a shorter overall survival.56 hsa_circ_0020123 facilitates the growth and metastasis of NSCLC cells through sponging miR-144 to suppress their functions. Thence, the well-known oncogenes EZH2 and ZEB1, which were targeted by miR-144, were upregulated by high-level hsa_circ_0020123. It is worth noting that knockdown hsa_circ_0020123 could dramatically inhibit NSCLC growth and metastasis in nude mice test. Therefore, it can be concluded that hsa_circ_0020123 might serve as a promising prognostic predictor and therapeutic target for NSCLC treatment.

circSEC31A

CircSEC31A and SEC31A were significantly highly expressed in NSCLC cells and tissues, and circSEC31A expression levels were closely associated with tumor size, TNM stage, and lymphatic metastasis.57 CircSEC31A could promote NSCLC cell migration, invasion, glycolysis, and apoptosis by sponging miR-376a, and SEC31A was directly targeted and inhibited by miR-376a in NSCLC Cells. That is to say, circSEC31A promoted NSCLC malignant progression through modulating SEC31A expression by acting as a miR-376a sponge. Conversely, knockdown of circSEC31A weakened tumor growth and thus suppressed NSCLC malignant progression. Based on the above results, we draw the conclusion that circSEC31A may serve as a novel molecular target for NSCLC therapy.
circCDYL
CircCDYL was decreased in NSCLC patients’ tissues and plasma, also downregulated in NSCLC cell lines. However, the overexpression of circCDYL can inhibit proliferation and induce apoptosis in NSCLC cells. The downregulated circCDYL binds to miR-185-5p, and miR-185-5p was upregulated in NSCLC. After that, TNRC6A is a downstream target of miR-185-5p and mRNA and protein levels were downregulated in NSCLC. Further, circCDYL repressed the phosphorylation of ERK1/2, which was induced by miR-185-5p or si-TNRC6A. Taken together, circCDYL inhibits ERK1/2 signaling pathway by targeting miR-185-5p/TNRC6A to block NSCLC malignant progression. Therefore, circCDYL possesses the potential to be a promising therapeutic target for NSCLC treatment.

CircRNAs Associated with Chemotherapy and Radiotherapy
At present, chemotherapy plays an indispensable role in the treatment of lung cancer, especially preoperative neoadjuvant chemotherapy to shrink tumor or reduce tumor stage and postoperative adjuvant chemotherapy to prevent recurrence and metastasis, but chemotherapy resistance in cancer cells becomes a fundamental challenge. Our common chemotherapy drugs for lung cancer include cisplatin, Taxol, 5-Fu, MIT, and so on. Cisplatin, a kind of heavy metal drug, is one of the most commonly used chemotherapy drugs at present, hsa_circRNA_103809, circ_PIP5K1A, circRNA CDR1as, circRNA_100565 can promote cisplatin resistance. While hsa_circ_0001946 can enhance cisplatin sensitivity. Taxol, which is extracted from the bark of the Pacific Yew tree, is also one of the most commonly used chemotherapy drugs. Circ_0003998, circ_ZFR can reduce Taxol sensitivity. While hsa_circ_0030998, circ_0002483 can actually reduce Taxol resistance. Other common resistant chemotherapy drugs, such as osimertinib, an effective EGFR-tyrosine kinase inhibitor for advanced NSCLC patients, have also been found to promote resistance by hsa_circ_0002130. In addition, other studies have found that circRNA_103762 can even promote multidrug resistance (MDR). Consequently, circRNAs are one of the important breakthroughs in solving chemotherapy resistance.

Radiotherapy is a relatively common and effective treatment method, especially for patients with advanced lung cancer, radiotherapy can effectively control the further growth of tumor, relieve a series of symptoms caused by lung cancer, and control bone metastasis and brain metastasis. For patients with early lung cancer, radiotherapy can be considered in the case of inoperable, and it works very well. Studies have shown that circRNAs can modulate radiotherapy resistance. For example, circ_0001287 can reduce radiotherapy resistance, thus providing new clues for the treatment of lung cancer. Therefore, circRNAs are closely related to the solution of radiotherapy resistance.

Conclusion and Perspective
Lung cancer, the second most common cancer and the leading cause of cancer-related deaths, still has so many difficult problems to solve in its diagnosis and treatment. Appearance of circRNAs points out a new direction for the study of lung cancer. Because of its unique structure, circRNAs have advantages in the diagnosis, prognosis, and treatment of lung cancer.

Compared with other protein or non-coding RNA biomarkers, circRNAs have higher sensitivity via their stable structure and high abundance, and higher specificity via their tissue-specific expression. Moreover, some abundant expression has been found in blood, which is conducive to Clinical Blood Testing of circRNA, making circRNA an ideal biomarker.

At the same time, the application of circRNAs in lung cancer still has plenty of limitations. Firstly, although many reports have mentioned that the abnormal expression of circRNAs may be related to lung cancer TNM stage, a relatively accurate diagnostic standard value has not been established to measure the relationship between abnormal expression level of circRNAs and TNM stage. This is still a shortcoming in the early diagnosis of lung cancer. Therefore, a large amount of experimental data are needed to support the staging or early diagnosis of lung cancer. Secondly, a certain amount of circRNAs are still unstable and have a short half-life in the blood, and can only be maintained in a relatively stable content in lung cancer tissues or cells, which has formed a certain obstacle to the non-invasive assisted diagnosis of lung cancer. Finally, as a novel diagnostic marker that has not been widely recognized, the technology, cost, and efficiency of the detection and identification of circRNAs remain to be solved, which increases the difficulty in the clinical application and popularization of circRNAs.
In addition, lung cancer is a kind of tumor with extremely high malignancy, and effective prognostic analysis can help prolong the survival rate of lung cancer patients. It is of concern that the abnormal expression of many circRNAs can affect the prognosis of lung cancer. Based on the comparison of preoperative and postoperative expression, or the change of expression during treatment, the expression level of circRNAs may be able to assess the therapeutic effect and determine tumor growth to some extent.

Target therapy is the frontier of lung cancer treatment. The regulatory mechanism of circRNAs related to lung cancer, especially miRNA sponge, which has been studied extensively, provides effective targets for target therapy of lung cancer. In terms of high-expression circRNAs, exogenous fully complementary siRNA can be introduced to bind to specific back-splice junction of targeted circRNAs and degrade the circRNAs. Additionally, antisense oligonucleotide binding to specific splicing signals of targeted circRNAs can also be introduced into pre-mRNA to interfere with the circRNAs production. In clinical applications of circRNA therapeutics, circRNAs have not been used as a single tumor therapeutic target, more as an adjuvant therapy. However, with the continuous exploration of the molecular mechanism of circRNA, circRNA may play a unique role in lung cancer treatment in the future. In the case of chemotherapy, there are various chemotherapy drugs for lung cancer, and evidences have suggested that diverse circRNAs can enhance or reduce chemotherapy resistance in lung cancer. Even in radiotherapy, a few circRNAs can affect the radiotherapy effect of lung cancer.

In conclusion, although there have been many research achievements on circRNAs, the research on circRNAs is still in its infancy, and their functional role in tumorigenesis is still largely unknown. The evidence that has been found so far makes circRNAs not only as valuable diagnostic and prognostic biomarkers but also as promising therapeutic targets in lung cancer treatment.

Acknowledgments
We thank the authors of references for providing the data for the final manuscript.

Funding
This publication was supported by the National Natural Science Foundation of China (No.31600662) and Haiyan Foundation from Harbin Medical University Cancer Hospital (No. JJMS2020-02) to H.X.

Disclosure
The authors declare no conflict of interest.

References
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survival. Mayo Clin Proc. 2008;83(5):584–594. doi:10.1016/S0025-6196(07)70350-5
3. Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(4):504–535. doi:10.6004/jnccn.2017.0050
4. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852–3856. doi:10.1073/pnas.73.11.3852
5. Memezak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
6. Chen RX, Liu HL, Yang LL, et al. Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 2019;23(20):8771–8778.
7. Chen Y, Wei S, Wang X, Zha X, Han S. Progress in research on the role of circular RNAs in lung cancer. World J Surg Oncol. 2018;16(1):215. doi:10.1186/s12957-018-1515-2
8. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–157. doi:10.1261/rna.035667.112
9. Wang J, Zhu M, Pan J, Chen C, Xiao S, Song Y. Circular RNAs: a rising star in respiratory diseases. Respir Res. 2019;20(1):3. doi:10.1186/s12931-018-0962-1
10. Hu W, Bi ZY, Chen ZL, et al. Emerging landscape of circular RNAs in lung cancer. Cancer Lett. 2018;427:18–27. doi:10.1016/j.canlet.2018.04.006
11. Zhang Y, Zhang XO, Chen T, et al. Circular intronic long non-coding RNAs. Mol Cell. 2013;51(6):792–806. doi:10.1016/j.molcel.2013.08.017
12. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–264. doi:10.1038/nsmb.2959
13. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4. doi:10.1186/s13059-014-0571-3
14. Schmidt CA, Matera AG. tRNA introns: presence, processing, and purpose. Wiley Interdiscip Rev RNA. 2020;11(3):e1583. doi:10.1002/wrna.1583
15. Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–4422. doi:10.1038/emboj.2011.359
16. Yu J, Xu QG, Wang ZG, et al. Circular RNA CSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 2018;68(6):1214–1227. doi:10.1016/j.jhep.2018.01.012
17. Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. doi:10.1038/ncomms12429
18. Beermann J, Piccoli MT, Viercek J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. *Physiol Rev*. 2016;96(4):1297–1325. doi:10.1152/physrev.00041.2015

19. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. *Nature*. 2013;495(7441):384–388. doi:10.1038/nature12193

20. Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. *J Biotechnol*. 2016;238:42–51. doi:10.1016/j.jbiotec.2016.09.011

21. Li RC, Ke S, Meng FK, et al. CIRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/FOXO13. *Cell Death Dis*. 2018;9(8):838. doi:10.1038/s41419-018-0852-y

22. Zhang Y, Zhao H, Zhang L. Identification of the tumor suppressive function of circular RNA FOXO3 in nonsmall cell lung cancer through sponging mir155. *Med Mol Rep*. 2018;47(6):7692–7700. doi:10.3892/mmr.2018.8830

23. Han C, Wang S, Wang H, Zhang J. Exosomal CircHIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. *Cancer Biother Radiopharm*. 2020. doi:10.1089/cbr.2019.3492

24. Qian W, Huang T, Feng W. Circular RNA HIPK3 promotes EMT of cervical cancer through sponging miR-338-3p to up-regulate HIF-1alpha. *Cancer Manag Res*. 2020;12:177–187. doi:10.2217/cmr.20.32235

25. Zhang H, Dai Q, Zheng L, Yuan X, Pan S, Deng J. Knockdown of circ HIPK3 inhibits tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. *Biochem Biophys Res Commun*. 2020;533(3):501–509. doi:10.1016/j.bbrc.2020.09.050

26. Yang Y, Wang Z. Efficient backsplicing produces translatable circular RNAs. *RNA*. 2015;21(2):172–179. doi:10.1261/rna.048272.114

27. Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. *Science*. 1995;268(5209):415–417. doi:10.1126/science.7536344

28. Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. *Nature*. 1986;323(6088):558–560. doi:10.1038/323558a0

29. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. *Cell*. 2016;166(1):22–37 e9. doi:10.1016/j.molcel.2017.02.017

30. Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. *Sci Rep*. 2015;5:16435. doi:10.1038/srep16435

31. Du WW, Yang W, Liu E, Yang Z, Dha liwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. *Nucleic Acids Res*. 2016;44(6):2846–2858. doi:10.1093/nar/gkw027

32. Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. *Eur Heart J*. 2017;38(18):1402–1412.

33. Guan G, Bochner AF, Burkhart KB, Burton N, Paveliec DM, Kennedy S. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. *Nature*. 2010;465(7301):1097–1101. doi:10.1038/nature09095

34. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circular RNA biogenesis competes with pre-mRNA splicing. *Mol Cell*. 2014;56(1):55–66. doi:10.1016/j.molcel.2014.08.019

35. Yang Z, Xie L, Han L, et al. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. *Theranostics*. 2017;7(12):3106–3117. doi:10.7150/thno.19016

36. Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. *Biomed Res Int*. 2016;2016:1579490. doi:10.1155/2016/1579490

37. Li X, Zhang Z, Jiang H, et al. Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. *Cell Physiol Biochem*. 2018;51(5):2324–2340. doi:10.1055/s-0040-1708576

38. Pei X, Chen SW, Long X, et al. circMET promotes NSCLC cell proliferation, metastasis, and immune evasion by regulating the Mir-145-5p/CXCL3 axis. *Aging*. 2020;12(13):13038–13058.

39. Yao J, Xu G, Zhu L, Zheng H. circGFRA1 enhances NSCLC progression by sponging miR-188-3p. *Onco Targets Ther*. 2020;13:549–558. doi:10.2147/OTT.S230795

40. Zhu X, Wang X, Wei S, et al. Isca. circRNA 0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. *FEBS J*. 2017;284(14):2170–2182. doi:10.1111/febs.14132

41. de Fraipont F, Gazzeri S, Cho WC, Eymin B. Circular RNAs and RNA splice variants as biomarkers for prognosis and therapeutic response in the liquid biopsies of lung cancer patients. *Front Genet*. 2019;10:390. doi:10.3389/fgen.2019.00390

42. Qiu BQ, Zhang PF, Xiong D, et al. CircRNAs fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galexin-1-AKT/ERK1/2 signaling. *J Cell Physiol*. 2019;234(7):11256–11264. doi:10.1002/jcp.27783

43. Chung LY, Tang SJ, Sun GH, et al. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. *Clin Cancer Res*. 2012;18(15):4037–4047. doi:10.1158/1078-0432.CCR-11-3348

44. Zhang PF, Li KS, Shen YH, et al. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/P13K/AKT signaling. *Cell Death Dis*. 2016;7:e2201. doi:10.1038/cddis.2015.324

45. An J, Shi H, Zhang N, Song S. Elevation of circular RNA circ0036645 forecasts unfavorable prognosis and facilitates cell progression via miR-1179/TMEM14A pathway in non-small cell lung cancer. *Biochem Biophys Res Commun*. 2019;511(4):921–925. doi:10.1016/j.bbrc.2019.03.011

46. Zhang X, Yang D, Wei Y. Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer. *Onco Targets Ther*. 2018;11:3979–3987. doi:10.2147/OTT.S158316

47. Fan Z, Bai Y, Zhang Q, Qian P. CircRNA circPOLA2 promotes lung cancer cell stemness via regulating the miR-326/GNB1 axis. *Environ Toxicol*. 2020;35(10):1146–1156. doi:10.1002/tox.22980

48. Liu G, Shi H, Deng L, et al. Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer. *Biochem Biophys Res Commun*. 2019;513(1):207–212. doi:10.1016/j.bbrc.2019.03.013

49. Mao Z, Li X, Ma X, Wang X, Zhang J, Fan X. Pancreatic progenitor cell differentiation and proliferation factor predicts poor prognosis in hepatocellular carcinoma. *Medicine*. 2019;98(9):e15452. doi:10.1097/MD.0000000000015452

50. Stein U, Walther W, Artl F, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. *Nat Med*. 2009;15(1):59–67. doi:10.1038/nm.1889
52. Zhang W, Song C, Ren X. Circ_003998 regulates the progression and doxorubicin sensitivity of DTX-resistant non-small cell lung cancer cells by the miR-136-5p/CORO1C axis. Technol Cancer Res Treat. 2021;20:1533033821990040. doi:10.1177/1533033821990040

53. Xiao G, Huang W, Zhan Y, Li J, Tong W. CircRNA_103762 promotes multitrafing resistance in NSCLC by targeting DNA damage inducible transcript 3 (CHOP). J Clin Lab Anal. 2020;34(6):e23252. doi:10.1002/jcla.23252

54. Dilishara MG, Jayasooriya RG, Park SR, Choi YH, Choi IW, Kim GY. Caffic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells. Mol Cell Biochem. 2016;418(1–2):13–20. doi:10.1007/s11010-016-2726-x

55. Tan W, Liao Y, Qiu Y, et al. miRNA_146a promotes chemotheropy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP). Cancer Lett. 2018;428:55–68. doi:10.1016/j.canlet.2018.04.028

56. Qu D, Yan B, Xin R, Ma T. A novel circular RNA hsa_circ_0020123 exerts oncogenic properties through suppression of miR-144 in non-small cell lung cancer. Am J Cancer Res. 2018;8(8):1387–1402.

57. Cheng F, Yu J, Zhang X, Dai Z, Fang A. CircSEC31A promotes the malignant progression of non-small cell lung cancer through regulating SEC31A expression via sponging miR-376a. Cancer Manag Res. 2020;12:11527–11539. doi:10.2147/CMAR.S280124

58. Bian WX, Xue F, Wang LY, Xing XF. Circular RNA CircCDYL regulates proliferation and apoptosis in non-small cell lung cancer cells by sponging miR-185-5p and upregulating TNRC6A. Cancer Manag Res. 2021;13:633–642. doi:10.2147/CMAR.S280315

59. Yan B, Zhang W, Mao XW, Jiang LY. Circular RNA cir-7 correlates with advance disease and poor prognosis, and its down-regulation inhibits cells proliferation while induces cells apoptosis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2018;22(24):8712–8721.

60. Zhao F, Han Y, Liu Z, Zhao Z, Li Z, Jia K. circFADS2 regulates lung cancer cells proliferation and invasion via acting as a sponge of miR-498. Biores Rep. 2018;38:4. doi:10.1016/j.bsr.20180570

61. Gao N, Wang FX, Wang G, Zhao QS. Targeting the HMGA2 oncogene by miR-498 inhibits non-small cell lung cancer biological behaviors. Eur Rev Med Pharmacol Sci. 2018;22(6):1693–1699.

62. Li L, Du M, Wang C, He P. Reduced expression of circRNA novel_circ_0005280 and its clinical value in the diagnosis of non-small cell lung cancer. J Thorac Dis. 2020;12(12):7281–7289. doi:10.21037/jtd-20-2977

63. Chen D, Ma W, Ke Z, Xie F. CircRNA hsa_circ_100395 regulates miR-1228/TCP21 pathway to inhibit lung cancer progression. Cell Cycle. 2018;17(16):2080–2090. doi:10.1080/15384101.2018.151553

64. Zong L, Sun Q, Zhang H, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance. Biomed Pharmacother. 2018;102:639–644. doi:10.1016/j.biopha.2018.03.084

65. Zheng G, Huang J, Chen W, You P, Ding Y, Tu P. circUBAP2 exacerbates malignant capabilities of NSCLC by targeting KLF4 through miR-3182 modulation. Aging. 2021;13(8):11083–11095. doi:10.18632/aging.202745

66. Chen L, Nan A, Zhang N, et al. Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Mol Cancer. 2019;18(1):13. doi:10.1186/s12935-019-0943-0

67. Wang L, Tong X, Zhou Z, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TGF1gamma in non-small cell lung cancer. Mol Cancer. 2018;17(1):140. doi:10.1186/s12934-018-0889-7

68. Zhang PF, Pei X, Li KS, et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 2019;18(1):179. doi:10.1186/s12934-019-1111-2

69. Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA-ENO1 promotes glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10(12):885. doi:10.1038/s41419-019-2127-7

70. Huang MS, Liu JY, Xia XB, et al. Hsa_circ_001946 inhibits lung cancer progression and mediates cisplatin sensitivity in non-small cell lung cancer via the nucleotide excision repair signaling pathway. Front Oncol. 2019;9:508. doi:10.3389/fonc.2019.00508

71. Liu W, Ma W, Yuan Y, Zhang Y, Sun S. Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochim Biophys Acta. 2020;500(4):846–851. doi:10.1016/j.bbabio.2020.04.172

72. Li X, Feng Y, Yang B, et al. A novel circular RNA, hsa_circ_0030989 suppresses lung cancer tumorigenesis and Taxol resistance by sponging miR-558. Mol Oncol. 2021;15:2235–2248. doi:10.1002/1878-0261.12852

73. Hang D, Zhou J, Qin N, et al. A novel plasma circular RNA circFARS3A is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7(6):2783–2791. doi:10.1002/cam4.1514

74. Chang H, Qu J, Wang J, Liang X, Sun W. Circular RNA circ_0026134 regulates non-small cell lung cancer cell proliferation and invasion via sponging miR-1256 and miR-1287. Biomed Pharmacother. 2019;112:108743. doi:10.1016/j.biopharm.2019.108743

75. Mao Y, He JX, Zhu M, Dong YQ, He JX. Circ0001320 inhibits lung cancer cell growth and invasion by regulating TNFAIP1 and TSPAN1 expression through sponging miR-558. Hum Cell. 2021;34(2):466–477. doi:10.1007/s13577-020-00453-4

76. Han J, Zhao G, Ma X, et al. CircRNA circ-BANP-mediated miR-503/LARP1 signaling contributes to lung cancer progression. Biochem Biophys Acta. 2018;503(4):2429–2435. doi:10.1016/j.bbrc.2018.06.172

77. Yuan Y, Zhou X, Kang Y, et al. Circ-CCS is identified as a cancer-promoting circRNA in lung cancer partly by regulating the miR-383/217 axis. Life Sci. 2021;267:118955. doi:10.1016/j.lfs.2020.118955

78. Chen X, Mao R, Su W, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA1/AMPKalpha signaling in STK11 mutant lung cancer. Autophagy. 2020;16(4):659–671. doi:10.1002/ajcp.2019.1634945

79. Hong W, Zhang Y, Ding J, Yang Q, Xie H, Gao X. circHIPK3 acts as competing endogenous RNA and promotes non-small cell lung cancer progression through the miR-107/BDNF signaling pathway. Biomed Res Int. 2020;2020:6075902. doi:10.1155/2020/6075902

80. Gu F, Zhang J, Yan L, Li D. CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway. Open Life Sci. 2020;15(1):683–695. doi:10.1515/biol-2020-0070

81. Lu H, Han X, Ren J, Ren K, Li Z, Sun Z. Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging mi-149. Cancer Biol Ther. 2020;21(2):113–121. doi:10.1080/15384407.2019.1669995
98. Li X, Yang B, Ren H, et al. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 2019;10(12):953. doi:10.1038/s41419-019-2180-2

99. Gao S, Yu Y, Liu L, Meng J, Li G. Circular RNA hsa_circ_0007059 restricts proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 2019;233:116692. doi:10.1016/j.lfs.2019.116692

100. Qin H, Liu J, Du ZH, Hu R, Yu YK, Wang QA. Circular RNA hsa_circ_0012673 facilitates lung cancer cell proliferation and invasion via miR-320a/LIMK1 axis. Eur Rev Med Pharmacol Sci. 2020;24(4):1841–1852.

101. Yan JT, Zhao SH, Liu QP, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 2017;213(5):453–456. doi:10.1016/j.prp.2017.02.011

102. Zhao H, Wei H, He J, et al. Propofol disrupts cell carcinogenesis and aerobic glycolysis by regulating circTADA2A/miR-455-3p/FoxM1 axis in lung cancer. Cell Cycle. 2020;19(19):2538–2552. doi:10.1080/15384101.2020.1810393

103. Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–5307. doi:10.2147/OTT.S243214

104. Li C, Liu H, Niu Q, Gao J. CircRNA_0000376, a novel circRNA, promotes the progression of non-small cell lung cancer through regulating miR-1182/NOVA2 network. Cancer Manag Res. 2020;12:7635–7647. doi:10.2147/CMAR.S258340

105. Tai G, Zhang M, Liu F. CircRNA_000735 enhances the proliferation, metastasis and glycolysis of non-small cell lung cancer by regulating the miR-635/FAM83F axis. Exp Lung Res. 2021;47(3):136–148. doi:10.1080/01902148.2021.1881185

106. Huang W, Xu C, Liu M, Cui W, Peng G. Downregulation of Hsa_circ_000735 inhibits the proliferation, migration, invasion, and glycolysis in non-small-cell lung cancer by targeting miR-940/BMPER axis. Onco Targets Ther. 2020;13:8427–8439. doi:10.2147/OTT.S253474

107. Wang M, Shi J, Jiang H, Xu K, Huang Z. Circ_0014130 participates in the proliferation and apoptosis of non-small cell lung cancer cells via the miR-142-5p/IGF-1 axis. Cancer Biother Radiopharm. 2020;35(3):233–240. doi:10.1089/cbr.2019.2965

108. Geng Y, Bao Y, Zhang W, Deng L, Su D, Zhang H. Circular RNA hsa_circ_0014130 inhibits apoptosis in non-small cell lung cancer by sponging miR-136-5p and upregulating BCL2. Mol Cancer Res. 2020;18(5):748–756. doi:10.1158/1541-7786.MCR-19-0998

109. Li Y, Hu J, Li L, et al. Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochem Biophys Res Commun. 2018;503(3):136–148. doi:10.1016/j.bbrc.2018.07.164

110. Yan X, Wang T, Wang J. CircRNA_0016760 acts as a sponge of MicroRNA-4295 to enhance E2F transcription factor 3 expression and facilitates cell proliferation and glycolysis in nonsmall cell lung cancer. Cancer Biother Radiopharm. 2020;35(3):233–240. doi:10.1089/cbr.2019.2965

111. van J, Hao L, Zheng X, Li Z. Circular RNA circ_0020123 promotes non-small cell lung cancer progression by acting as a ceRNA for miR-488-3p to regulate ADAM9 expression. Biochem Biophys Res Commun. 2019;515(2):303–309. doi:10.1016/j.bbrc.2019.05.158

112. Lu J, Ma X, Lin J, Hou P. Circ_0020123 increases ZFX expression to facilitate non-small cell lung cancer progression by sponging miR-142-3p. Cancer Manag Res. 2021;13:1687–1698. doi:10.2147/CMAR.s295595

113. Li L, Wei H, Zhang H, Xu F, Che G. Circ RNA_100565 promotes proliferation, migration and invasion in non-small cell lung cancer through upregulating HMGA2 via sponging miR-306-3p. Cancer Cell Int. 2020;20:160. doi:10.1186/s12935-020-01241-8

114. Zhang H, Wang X, Hu B, Zhang F, Wei H, Li L. Circular RNA ZFR accelerates non-small cell lung cancer progression by acting as a miR-101-3p sponge to enhance CUL4B expression. Artif Cells Nanomed Biotechnol. 2019;47(1):3410–3416. doi:10.1080/21691401.2019.1652623
115. Li J, Fan R, Xiao H. Circ ZFR contributes to the paclitaxel resistance and progression of non-small cell lung cancer by upregulating KPNAA4 through sponging miR-195-5p. Cancer Cell Int. 2021;21(1):15. doi:10.1186/s12935-020-01702-0

116. Tian X, Zhang L, Jiao Y, Chen J, Shan Y, Yang W. CircABC10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the mir-1252/FoxR2 axis. J Cell Biochem. 2019;120(3):3765–3772. doi:10.1002/jcb.27657

117. Ma D, Qin Y, Huang C, et al. Circular RNA ABC10 promotes nonsmall cell lung cancer progression by increasing E2F5 expression through sponging miR-584-5p. Cell Cycle. 2020;19(13):1611–1620. doi:10.1080/15384101.2020.1761617

118. Xue YB, Ding MQ, Xue L, Luo JH. CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression. Thorac Cancer. 2019;10(6):1692–1701. doi:10.1111/1759-7714.13131

119. Wang Y. circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis. Cancer Cell Int. 2021;21(1):85. doi:10.1186/s12935-021-01791-5

120. Liang Y, Wang H, Chen B, et al. circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucleic Acids. 2021;23:353–366. doi:10.1016/j.omtn.2020.11.012

121. Zhang Y, Shan C, Chen Y, et al. CircDENND2A promotes nonsmall cell lung cancer progression via regulating MiR-34a/CCNE1 signaling. Front Genet. 2020;11:987. doi:10.3389/fgen.2020.00987

122. Xie Y, Wang L, Yang D. CircEPST1I promotes the progression of non-small cell lung cancer through miR-145/HMGBl3 axis. Cancer Manag Res. 2020;12:6827–6836. doi:10.2147/CMAR.S252893

123. Yang T, Li M, Li H, Shi P, Liu J, Chen M. Downregulation of circEPST1I represses the proliferation and invasion of nonsmall cell lung cancer by inhibiting TRIM24 via miR-1248 upregulation. Biochem Biophys Res Commun. 2020;530(1):348–354. doi:10.1016/j.bbrc.2020.06.106

124. Li O, Kang J, Zhang JJ, et al. Circle RNA FOXP1 promotes cell proliferation in lung cancer by regulating miR-185-5p/Wnt1 signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(12):6767–6778.

125. Lu J, Zhu Y, Qin Y, Chen Y. CircNFLX acts as a miR-212-3p sponge to enhance the malignant progression of non-small-cell lung cancer by up-regulating ADAM10. Cell Cycle. 2020;9:5777–5787. doi:10.2147/CMAR.S272309

126. Yue Q, Xu Y, Deng X, et al. Circle RNA FOXP1 promotes the progression of non-small cell lung cancer through regulating miR-1248/CCNE1 signaling. Front Genet. 2020;11:987. doi:10.3389/fgen.2020.00987

127. Wang J, Ma J, Wu JC, Hao ZZ, Zhang YN, Zhang YJ. CircRNA EPB41L2 inhibits tumorigenicity of lung adenocarcinoma cells. Cancer Manag Res. 2020;24(7):3749–3760. doi:10.2147/CAMR.S282162
146. Lv YS, Wang C, Li LX, Han S, Li Y. Effects of circRNA_103993 on the proliferation and apoptosis of NSCLC cells through miR-1271/ERG signaling pathway. *Eur Rev Med Pharmacol Sci*. 2020;24(16):8384–8393.

147. Luo YH, Zhu XZ, Huang KW, et al. Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. *Biomed Pharmacother*. 2017;96(1):892–898. doi:10.1016/j.biopha.2017.12.015

148. Liu Q, Cao G, Wan Y, Xu C, He Y, Li G. Hsa_circ_0001073 targets miR-626/LIFR axis to inhibit lung cancer progression. *Environ Toxicol*. 2021;36(6):1052–1060. doi:10.1002/tox.23104

149. Zhang F, Cheng R, Li P, Lu C, Zhang G. Hsa_circ_0010235 functions as an oncogenic drive in non-small cell lung cancer by modulating miR-433-3p/TIPRL axis. *Cancer Cell Int*. 2021;21(1):73. doi:10.1186/s12935-021-01764-8

150. Du H, He Z, Feng F, et al. Hsa_circ_0038646 promotes cell proliferation and migration in colorectal cancer via miR-331-3p/GRIK3. *Oncol Lett*. 2020;20(1):266–274.

151. Liu Y, Yang C, Cao C, Li Q, Jin X, Shi H. Hsa_circ_RNA_0011780 represses the proliferation and metastasis of non-small cell lung cancer by decreasing FBXW7 via targeting miR-544a. *Onco Targets Ther*. 2020;13:745–755. doi:10.2147/OTT.S236162

152. Xu J, Ni L, Zhao F, et al. Overexpression of hsa_circ_0002874 promotes resistance of non-small cell lung cancer to paclitaxel by modulating miR-1273f/MDM2/p53 pathway. *Aging*. 2021;13(4):5986–6009. doi:10.18632/aging.202521

153. Wang Y, Zhao W, Zhang S. STAT3-induced upregulation of circCCDC66 facilitates the progression of non-small cell lung cancer by targeting miR-33a-5p/KPNA4 axis. *Biomed Pharmacother*. 2020;126:110019. doi:10.1016/j.biopha.2020.110019

154. Wang T, Wang X, Du Q, et al. The circRNA circP4HB promotes NSCLC aggressiveness and metastasis by sponging miR-133a-5p. *Biochem Biophys Res Commun*. 2019;513(4):904–911. doi:10.1016/j.bbrc.2019.04.108

155. Jin M, Shi C, Yang C, Liu J, Huang G. Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 axis. *Mol Ther Nucleic Acids*. 2019;18:219–231. doi:10.1016/j.omtn.2019.08.016

156. Wang L, Ma H, Kong W, Liu B, Zhang X. Up-regulated circular RNA VANGL1 contributes to progression of non-small cell lung cancer through inhibition of miR-195 and activation of Bcl-2. *Biosci Rep*. 2019;39(6);BSR20182433.

157. Geng QQ, Wu QF, Zhang Y, Zhang GJ, Fu JK, Chen NZ. Clinical significance of circ-MTHFD2 in diagnosis, pathological staging and prognosis of NSCLC. *Eur Rev Med Pharmacol Sci*. 2020;24(18):9473–9479.

158. Zhu X, Han J, Lan H, Lin Q, Wang Y, Sun X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). *BMC Cancer*. 2020;20(1):1190. doi:10.1186/s12885-020-07680-w