On ψ_{gs}-closed Sets in Bitopological Spaces

Lezel Mernilo Tutanes

Mathematics Department, College of Arts and Sciences, Bukidnon State University, Malaybalay City, Bukidnon, Philippines

Abstract. In this paper, the properties of ψ_{gs}-closed sets in bitopological spaces are investigated. The relationships between ψ_{gs}-closed set and other closed sets in bitopological spaces are established and some properties of ψ_{gs}-closure and ψ_{gs}-interior are provided.

2020 Mathematics Subject Classifications: 18F60, 05C69, 30H80

Key Words and Phrases: Bitopological Spaces, ψ_{gs}-closed sets, ψ_{gs}-interior, ψ_{gs}-closure

1. Introduction

Over the years, many researchers have introduced different types of sets in topological spaces. One of these sets is the semi-open set, which was introduced and studied by Levine [12]. Thereafter, the notion of generalized closed sets (briefly, g-closed set) in topological spaces was introduced and investigated in [13]. In 2000, the concepts between closed sets and g-closed sets in topological spaces were studied in [10] and a few years later, the same author [11] studied ψ-closed sets in topological spaces. Ramya and Parvathi introduced a new concept of ψ_{g}-generalized closed (briefly, ψ_{g}-closed) sets in topological spaces. Recently, a new class of sets namely ψ generalized semi-closed (briefly, ψ_{gs}-closed) sets were introduced in topological spaces and some of their basic properties were investigated.

Nowadays, a new concept coined from topological spaces is the so-called bitopological spaces (briefly, BTS). Bose [2], studied semi continuity and semi open mappings in BTS. Thereafter, in [7] and [8], the concepts on generalized closed and semi open sets in bitopological spaces were investigated.

The concepts of bitopological spaces have been widely investigated up to other types of spaces, like soft bitopological spaces. The researcher of this present study was inspired by the work of Şenel and Cagman where in [5] they studied soft closed sets on soft bitopological spaces. Thereafter in [6] they investigated soft topological subspaces. In addition, in [3] a new approach to Hausdorff space theory via the soft sets was investigated by Şenel and further studied soft topology generated by L-soft sets in [4]. With all these concepts in

DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4060

Email address: lmernilotutanes@gmail.com (L.M.Tutanes)
mind, we are motivated to define and introduce ψ_{gs}-closed sets in bitopological spaces and will intend to further study in other spaces such as soft bitopological spaces.

Moreover, we are interested to find the properties of ψ_{gs}-closed sets in BTS and their relationship to other existing sets and will intend to investigate the properties of ψ_{gs}-interior and ψ_{gs}-closure of a set. In general, this study establishes some properties of ψ_{gs}-closed set in bitopological spaces. Specifically, this study investigates some properties of ψ_{gs}-closed set in BTS; establishes the relationships between ψ_{gs}-closed set and other closed sets in BTS; and provides some properties of ψ_{gs}-closure and ψ_{gs}-interior in BTS.

The major contributions of this study are the original results on ψ_{gs}-closed set in BTS. The findings reveal that every (i, j)-ψ-closed set, τ_i closed set, regular-closed set, semi-closed set, α-ψ-closed set, α_{gs}-ψ-closed set in (X, τ_i) is (i, j)-ψ_{gs}-closed where $i, j \in \{1, 2\}$. Hence, (i, j)-ψ_{gs}-closed set is bigger than those of the mentioned sets. Also, it was found out that the intersection of (i, j)-ψ_{gs}-closed sets is (i, j)-ψ_{gs}-closed. Furthermore, the results on ψ_{gs}-closure and ψ_{gs}-interior in BTS are analogous to that in other spaces.

We are motivated to have the results or theorems since these results could also be applied in other spaces to come up with analogous results or theorems. This study could serve as a resource material for future researches and possible applications. This may encourage other mathematics enthusiasts to come up with more results and to establish possible research directions for further study.

2. Preliminaries

In this section, some basic definitions and some known results are provided. Examples are also given for a clearer understanding of several terms defined.

A collection τ of subsets of a nonempty set X is a topology on X if $\varnothing, X \in \tau$, $\{M_\omega : \omega \in \Omega\} \subseteq \tau$ implies $\bigcup_{\omega \in \Omega} M_\omega \in \tau$, and $A, B \in \tau$ implies $A \cap B \in \tau$. If τ is a topology on X, then (X, τ) is called a topological space, and the elements of τ are called τ-open (or simply open) sets. A subset F of X is said to be τ-closed (or simply closed) if its complement $X \setminus F$ is open.

The interior of A, denoted by $\text{int}(A)$, is the union of all open sets contained in A. That is, $\text{int}(A) = \bigcup\{O \in \tau : O \subseteq A\}$.

The closure of A, denoted by $\text{cl}(A)$, is the intersection of all closed sets containing A. That is, $\text{cl}(A) = \bigcap\{F \subseteq X : F \text{ is closed and } F \supseteq A\}$.

Now, if τ_1 and τ_2 are arbitrary topologies on X then (X, τ_1, τ_2) is called a bitopological space. The interior of A and the closure of A with respect to τ_i are denoted by $\text{int}_i(A)$ and $\text{cl}_i(A)$, respectively. Note that through out this context $i, j \in \{1, 2\}$ such that $i \neq j$.

Definition 1. Let (X, τ) be a topological space. A subset A of X is called

(i) semi-open set [12] if $A \subseteq \text{cl}(\text{int}(A))$;
(ii) regular-open set [19] if \(A = \text{int} (\text{cl} (A)) \);

(iii) \(\alpha \)-open set [16] if \(A \subseteq \text{int} (\text{cl} (\text{int} (A))) \);

(iv) semi-generalized closed (briefly, sg-closed) set [1] if \(\text{scl} (A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\);

(v) \(\alpha \)gs-closed set [18] if \(\alpha \text{cl} (A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\); and

(vi) \(\psi \)-closed set [11] if \(\psi \text{cl} (A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\); and

(vii) \(\psi \) generalised semi-closed (briefly, \(\psi \)gs-closed) set [9] if \(\psi \text{cl} (A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\).

The complement of semi-open (resp. regular-open, \(\alpha \)-open, gs-closed, \(\alpha \)gs-closed, \(\psi \)-closed, and \(\psi \)gs-closed) set is called semi-closed (resp. regular-closed, \(\alpha \)-closed, gs-open, \(\alpha \)gs-open, \(\psi \)-open, and \(\psi \)gs-open) set.

Definition 2. Let \((X, \tau_1, \tau_2)\) be a bitopological space. A subset \(A \) of \(X \) is called

(i) \((i, j)\)-semi open set [15] if \(A \subseteq \text{cl}_j (\text{int}_i (A)) \);

(ii) \((i, j)\)-semi generalized closed (briefly, \((i, j)\)-sg closed) set [17] if \((i, j)\)-scl \(A \) \(\subseteq U \) whenever \(A \subseteq U \) and \(U \) is \((i, j)\)-semi open; and

(iii) \((i, j)\)-\(\psi \)-closed set [20] if \((i, j)\)-scl \(A \) \(\subseteq U \) whenever \(A \subseteq U \) and \(U \) is \((i, j)\)-sg open.

The complement of \((i, j)\)-semi open (resp. \((i, j)\)-sg closed and \((i, j)\)-\(\psi \)-closed) set is called \((i, j)\)-semi closed (resp. \((i, j)\)-sg open and \((i, j)\)-\(\psi \)-open) set.

The next result was proven in [14].

Lemma 1. If a subset \(A \) of \(X \) is semi-open (respectively, semi-closed, sg-closed, gs-closed, g-closed, \(\psi \)-closed, and \(\psi \)gs-closed) set in \((X, \tau_i)\) for \(i \in \{1, 2\} \), then it is semi-open (respectively, semi-closed, sg-closed, gs-closed, g-closed, \(\psi \)-closed) set in \((X, \tau_1, \tau_2)\).

The next Theorem is a composition of several results from Gowsalya, S. and Balamani, N. in [9].

Theorem 1. Let \((X, \tau_1, \tau_2)\) be bitopological space. Then

(i) Every semi-closed set in \((X, \tau)\) is \(\psi \)gs-closed in \((X, \tau)\).

(ii) Every closed set in \((X, \tau)\) is \(\psi \)gs-closed set in \((X, \tau)\).

(iii) Every regular-closed set in \((X, \tau)\) is \(\psi \)gs-closed in \((X, \tau)\).

(iv) Every \(\alpha \)-closed set in \((X, \tau)\) is \(\psi \)gs-closed in \((X, \tau)\).

(v) Every \(\psi \)-closed set in \((X, \tau)\) is \(\psi \)gs-closed in \((X, \tau)\).

(vi) Every \(\alpha \)gs-closed set in \((X, \tau)\) is \(\psi \)gs-closed in \((X, \tau)\).
3. \(\psi gs\)-closed sets and its relationship to other closed sets in BTS

In this section, some properties of \(\psi gs\)-closed sets in BTS are investigated. Moreover, the relationship to some other existing closed sets in BTS is established.

Definition 3. A subset \(A\) of a bitopological space \((X, \tau_1, \tau_2)\) is called \((i, j)\)-\(\psi\) generalized semi-closed (briefly, \((i, j)\)-\(\psi gs\)-closed) set if \((i, j)\)-\(\psi cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \((i, j)\)-semi-open in \((X, \tau_1, \tau_2)\), \(i, j \in \{1, 2\}\) where \(i \neq j\). The complement of \((i, j)\)-\(\psi gs\)-closed set is called \((i, j)\)-\(\psi gs\)-open set.

Example 1. Let \((X, \tau_1, \tau_2)\) be a bitopological space such that \(X = \{a, b, c\}\), \(\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\), and \(\tau_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\) and \(A = \{b, c\}\). Note that \(X\) is the only \((1, 2)\)-semi-open set containing \(A = \{b, c\}\). Since \(A = \{b, c\}\) is a \(\psi\) closed set, it follows that \((i, j)\)-\(\psi cl(\{b, c\}) = \{b, c\} \subseteq X\). Thus \(A = \{b, c\}\) is a \((1, 2)\)-\(\psi\) generalized semi closed set. Similarly, \(\emptyset, \{b\}, \{c\}\) and \(X\) are \((1, 2)\)-\(\psi\) generalized semi closed sets.

Throughout this context, the open (resp., closed) set in \((X, \tau_1, \tau_2)\) is denoted by \((i, j)\)-open (resp., \((i, j)\)-closed) set.

Proposition 1. Every \((i, j)\)-\(\psi\)-closed set is \((i, j)\)-\(\psi gs\)-closed.

Proof. Let \(A\) be \((i, j)\)-\(\psi\)-closed set and \(U\) be \((i, j)\)-semi-open in \((X, \tau_1, \tau_2)\) such that \(A \subseteq U\). Then \((i, j)\)-\(\psi cl(A) = A \subseteq U\). Hence \(A\) is \((i, j)\)-\(\psi gs\)-closed in \((X, \tau_1, \tau_2)\).

Theorem 2. Every \(\psi gs\)-closed set in \((X, \tau_i)\) is \(\psi gs\)-closed set in \((X, \tau_1, \tau_2)\).

Proof. Let \(A\) be \(\psi gs\)-closed set in \((X, \tau_i)\). Then \(\psi cl(A) \subseteq U\) where \(U\) is semi-open in \(\tau_i\) such that \(A \subseteq U\). Since, for each \(i \in \{1, 2\}\), every semi-open in \((X, \tau_i)\) is semi-open in \((X, \tau_1, \tau_2)\) by Lemma 1, it follows that \(U\) is semi-open in \((X, \tau_1, \tau_2)\). Moreover, by Lemma 1, every \(\psi\)-closed in \(\tau_i\) is \(\psi\)-closed in \((X, \tau_1, \tau_2)\). Thus \((i, j)\)-\(\psi cl(A) \subseteq \psi cl(A) \subseteq U\). Hence \(A\) is a \(\psi gs\)-closed set in \((X, \tau_1, \tau_2)\).

The following corollary follows from Theorem 1 and Theorem 2.

Corollary 1. Let \((X, \tau_i)\) be a topological space and \((X, \tau_1, \tau_2)\) be bitopological space. Then the following statements hold.

(i) Every \(\tau_i\) closed set is \((i, j)\)-\(\psi gs\)-closed set.

(ii) Every regular-closed set in \((X, \tau_i)\) is \((i, j)\)-\(\psi gs\)-closed.

(iii) Every semi-closed set in \((X, \tau_i)\) is \((i, j)\)-\(\psi gs\)-closed.

(iv) Every \(\alpha\)-closed set in \((X, \tau_i)\) is \((i, j)\)-\(\psi gs\)-closed.

(v) Every \(\psi\)-closed set in \((X, \tau_i)\) is \((i, j)\)-\(\psi gs\)-closed.

(vi) Every \(\alpha gs\)-closed set in \((X, \tau_i)\) is \((i, j)\)-\(\psi gs\)-closed.
Theorem 3. Let A be a (i, j)-ψ-closed set and $A \subseteq B \subseteq (i, j)$-$\psi\text{cl}(A)$. Then B is also a (i, j)-ψgs-closed set.

Proof. Let A be a (i, j)-ψ-closed set and $A \subseteq (i, j)$-$\psi\text{cl}(A)$. Suppose U is (i, j)-semi-open such that $B \subseteq U$. We want to show (i, j)-$\psi\text{cl}(B) \subseteq U$. Since $A \subseteq B$ and $B \subseteq U$, it follows that $A \subseteq U$. Also, by Proposition 1, A is a (i, j)-ψgs-closed set since A is a (i, j)-ψ-closed set; and so (i, j)-$\psi\text{cl}(A) \subseteq U$. Note that $B \subseteq (i, j)$-$\psi\text{cl}(A)$ implies

$$(i, j)$-$\psi\text{cl}(B) \subseteq (i, j)$-$\psi\text{cl}((i, j)$-$\psi\text{cl}(A)) = (i, j)$-$\psi\text{cl}(A) \subseteq U.$$

\[\square \]

Theorem 4. Let $\{A_k\}$ be (i, j)-ψgs-closed set, $k \in \mathbb{N}$. Then $\bigcap_{k=1}^{\infty} A_k$ is (i, j)-ψgs-closed set.

Proof. Suppose $U = \bigcap_{k=1}^{\infty} A_k$ is (i, j)-semi-open such that $\bigcap_{k=1}^{\infty} A_k \subseteq U$. We want to show that (i, j)-$\psi\text{cl}(\bigcap_{k=1}^{\infty} A_k) \subseteq U$. From our assumption, A_k is (i, j)-ψgs-closed set for each $k \in \mathbb{N}$. It follows that (i, j)-$\psi\text{cl}(A_k) \subseteq U_k$ for each k such that $A_k \subseteq U_k$ where U_k is (i, j)-semi-open. Now,

$$(i, j)$-$\psi\text{cl}(\bigcap_{k=1}^{\infty} A_k) \subseteq \bigcap_{k=1}^{\infty} (i, j)$-$\psi\text{cl}(A_k) \subseteq \bigcap_{k=1}^{\infty} U_k = U.$$

\[\square \]

Note that if A_k is (i, j)-ψgs-closed set, then by Definition 3, $X \setminus A_k$ is (i, j)-ψgs-open set. Moreover, by De Morgan’s law, $X \setminus (\bigcap_{k=1}^{\infty} A_k) = \bigcup_{k=1}^{\infty} (X \setminus A_k)$. Hence the following corollary follows.

Corollary 2. If $\{B_k\}$ be (i, j)-ψgs-open set, $k \in \mathbb{N}$, then $\bigcup_{k=1}^{\infty} B_k$ is (i, j)-ψgs-open set.

4. ψgs-closure and ψgs-interior in BTS

In this section, the ψgs-closure and ψgs-interior in bitopological spaces are introduced and some of their properties are explored.

Definition 4. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. An element $x \in A$ is called (i, j)-ψgs-interior point of A if there exists a (i, j)-ψgs-open set O such that $x \in O \subseteq A$. The set of all (i, j)-ψgs-interior points of A is called the (i, j)-ψgs-interior of A and is denoted by (i, j)-ψgs-$\text{Int}(A)$.

Theorem 5. The (i, j)-ψgs-interior of a subset A of X is the countable union of (i, j)-ψgs-open sets contained in A, that is,

$$(i, j)$-$\psi\text{gs}$-$\text{Int}(A) = \bigcup\{O : O \text{ is (i, j)-}\psi\text{gs}\text{-open and } O \subseteq A\}.$$
Proof. Let $x \in (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$. Then there exists a $(i,j)\text{-}\psi_{gs}\text{-open set } O$ such that $x \in O \subseteq A$ implying $x \in \bigcup\{O : O \text{ is } (i,j)\text{-}\psi_{gs}\text{-open and } O \subseteq A\}$. Next, suppose $y \in \bigcup\{O : O \text{ is } (i,j)\text{-}\psi_{gs}\text{-open and } O \subseteq A\}$. Then there exists $(i,j)\text{-}\psi_{gs}\text{-open set } O_0 \subseteq A$ such that $y \in O_0$. Thus $y \in (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$.

The previous theorem implies that $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$ is contained in A, where A is any subset of X, being the union of all $(i,j)\text{-}\psi_{gs}\text{-open sets}$ contained in A. Now Corollary 2 entails that the arbitrary union of $(i,j)\text{-}\psi_{gs}\text{-open sets}$ is also $(i,j)\text{-}\psi_{gs}\text{-open}$, hence we can say that $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$ is $(i,j)\text{-}\psi_{gs}\text{-open}$. Consequently, $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$ is the largest $(i,j)\text{-}\psi_{gs}\text{-open set}$ contained in A, as stated in the following remark.

Remark 1. Let (X, τ_1, τ_2) be a bitopological space and $A, B \subseteq X$. Then the following hold:

(i) $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A) \subseteq A$;

(ii) $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$ is $(i,j)\text{-}\psi_{gs}\text{-open set}$; and

(iii) If $B \subseteq A$ such that B is $(i,j)\text{-}\psi_{gs}\text{-open set}$, then $B \subseteq (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$.

Theorem 6. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. A is $(i,j)\text{-}\psi_{gs}\text{-open set}$, if and only if $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A) = A$.

Proof. Let A be $(i,j)\text{-}\psi_{gs}\text{-open set}$ and $x \in A$. Note that by Remark 1 (i), $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A) \subseteq A$. Hence it suffices to show $A \subseteq (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$. Suppose $x \notin (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$. Then $x \notin O$ for all $(i,j)\text{-}\psi_{gs}\text{-open sets } O$ such that $A \subseteq O$. It follows that $x \in X-O$ such that $A \cap (X-O) = \emptyset$. This is a contradiction since $x \in A \cap X-O$. Thus $x \in (i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$. Consequently, $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A) = A$. Conversely, suppose $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A) = A$. By Remark 1 (ii), $(i,j)\text{-}\psi_{gs}\text{-}\text{Int}(A)$ is $(i,j)\text{-}\psi_{gs}\text{-open set}$, and so A is $(i,j)\text{-}\psi_{gs}\text{-open set}$.

Definition 5. Let $A \subseteq X$. Then $x \in X$ is $(i,j)\text{-}\psi_{gs}\text{-adherent to } A$ if $V \cap A \neq \emptyset$ for every $(i,j)\text{-}\psi_{gs}\text{-open set } V$ containing x. The set of all $(i,j)\text{-}\psi_{gs}\text{-adherent points of } A$ is called the $(i,j)\text{-}\psi_{gs}\text{-closure}$ of A and is denoted by $(i,j)\text{-}\psi_{gs}\text{-Cl}(A)$.

Theorem 7. The $(i,j)\text{-}\psi_{gs}\text{-closure}$ of a subset A of X is the countable intersection of $(i,j)\text{-}\psi_{gs}\text{-closed sets}$ containing A, that is,

$$(i,j)\text{-}\psi_{gs}\text{-Cl}(A) = \bigcap\{F : F \text{ is } (i,j)\text{-}\psi_{gs}\text{-closed and } A \subseteq F\}.$$

Proof. Let $x \in (i,j)\text{-}\psi_{gs}\text{-Cl}(A)$. Then $O \cap A \neq \emptyset$ for every $(i,j)\text{-}\psi_{gs}\text{-open set } O$ containing x. Suppose $x \notin \bigcap\{F : F \text{ is } (i,j)\text{-}\psi_{gs}\text{-closed and } A \subseteq F\}$. It follows that there exists $(i,j)\text{-}\psi_{gs}\text{-closed } F_0$ such that $A \subseteq F_0$ and $x \in X \setminus F_0$. Note that $X \setminus F_0$ is $(i,j)\text{-}\psi_{gs}\text{-open set}$ containing x such that $(X \setminus F_0) \cap A = \emptyset$, a contradiction. Thus $x \in \bigcap\{F : F \text{ is } (i,j)\text{-}\psi_{gs}\text{-closed and } A \subseteq F\}$.

Next, let \(y \in \cap \{ F : F \text{ is } (i, j)\)-\(\psi\)gs-closed and \(A \subseteq F \} \). Then \(y \in F \) for all \((i, j)\)-\(\psi\)gs-closed such that \(A \subseteq F \). Suppose on the contrary, \(y \notin (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \). It implies that \(U \cap A = \emptyset \) for some \((i, j)\)-\(\psi\)gs-closed set \(U \) containing \(y \). Hence there exists \((i, j)\)-\(\psi\)gs-closed set \(X \setminus U \) such that \(y \notin X \setminus U \) and \(A \subseteq X \setminus U \), a contradiction. Consequently, \(y \in (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \). \(\square \)

Theorem 7 indicates that \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \) contains \(A \) since the intersection of all \((i, j)\)-\(\psi\)gs-closed sets contains \(A \). Now Theorem 4 implies that the arbitrary intersection of \((i, j)\)-\(\psi\)gs-closed sets is also \((i, j)\)-\(\psi\)gs-closed, thus it follows that \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \) is \((i, j)\)-\(\psi\)gs-closed. Hence, \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \) is the smallest \((i, j)\)-\(\psi\)gs-closed set that contains \(A \), as stated in the following remark.

Remark 2. Let \((X, \tau_1, \tau_2) \) be a bitopological space and \(A, B \subseteq X \). Then the following hold:

(i) \(A \subseteq (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \);

(ii) \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \) is \((i, j)\)-\(\psi\)gs-closed set; and

(iii) If \(A \subseteq B \) such that \(B \) is \((i, j)\)-\(\psi\)gs-closed set, then \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \subseteq B \).

Theorem 8. \(A \) is \((i, j)\)-\(\psi\)gs-closed set, if and only if \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) = A \).

Proof. Let \(A \) be \((i, j)\)-\(\psi\)gs-closed set and \(x \in (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \). Then for all \((i, j)\)-\(\psi\)gs-open set \(U \) containing \(x \), we have \(U \cap A \neq \emptyset \). Suppose on the contrary, \(x \notin A \). Then \(x \in X \setminus A \) where \(X \setminus A \) is \((i, j)\)-\(\psi\)gs-open and \((X \setminus A) \cap A = \emptyset \), a contradiction since \(x \in (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \). Thus \(x \in A \), and so \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \subseteq A \). Note that by Remark 2 (i), \(A \subseteq (i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \), and hence \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) = A \). Conversely, suppose \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) = A \). By Remark 2 (ii), \((i, j)\)-\(\psi\)gs-\(\text{Cl}(A) \) is \((i, j)\)-\(\psi\)gs-closed set, and so \(A \) is \((i, j)\)-\(\psi\)gs-closed set. \(\square \)

Acknowledgements

We are thankful to the Bukidnon State University Research Unit for the financial assistance.

References

[1] P. Bhattacharyya and B.K. Lahiri. Semi-generalized closed sets in topology. *Indian J. Math.*, 29:376–382, 1987.

[2] S. Bose. Semi Open Sets, Semi Continuity and Semi Open Mappings in Bitopological Spaces. *Bull. Cal. Math. Soc.*, 73:237–246, 1981.

[3] G. Şenel. A New Approach to Hausdorff Space Theory via the Soft Sets. *Mathematical Problems in Engineering*, 9:1–6, 2016.
REFERENCES

[4] G. Şenel. Soft Topology Generated by L-Soft Sets. Journal of New Theory, 4(24):88–100, 2018.

[5] G. Şenel and N. Cagman. Soft Closed Sets on Soft Bitopological Space. Journal of New Results in Science, 3(5):57–66, 2014.

[6] G. Şenel and N. Cagman. Soft topological subspaces. Annals of Fuzzy Mathematics and Informatics, 10(4):525–535, 2015.

[7] T. Fukutake. On Generalized Closed Sets in Bitopological spaces. Bull. Fukuoka. Univ. of Educ., 35:19–28, 1985.

[8] T. Fukutake. Semi Open Sets on Bitopological Spaces. Bull. Fukuoka. Univ. of Educ., 38:1–7, 1989.

[9] S. Gowsalya and N. Balamani. ψgs-Closed Sets in Topological Spaces. International Journal of Advance Foundation and Research in Computer, 3(4):52–61, 2016.

[10] M. Veera kumar. Between closed and g-closed sets. Mem.Fac Sci. KochiUniv.Math., (21):1–19, 2000.

[11] M. Veera kumar. Between ψ-closed sets and gsp-closed sets spaces. Antarctica. J.Math., 2(1):123–141, 2005.

[12] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, (70):36–41, 1963.

[13] N. Levine. Generalized closed sets in topological spaces. Rend. Circ. Mat. Palermo, 19(2):89–96, 1970.

[14] Y. Mahdi. Semi-open and semi-closed sets in bitopological spaces. In First Science Conference of Education College, pages 18–19, Hillah, 2007. Babylon Univ.

[15] Y. K. Mahdi. Semi-open and semi-closed set in Bitopological Spaces. The first scientific conference of the Faculty of Physical Education, 18:1–8, 2007.

[16] O. Njastad. On some classes of nearly open sets. Pacific J. Math., 15:961–970, 1965.

[17] H.M. Abu-Donia O.A. El-Tantawi. Generalized separation axioms in bitopological spaces. Arab. J. Sci. Eng., 1:117–129, 2005.

[18] M. Rajamani and K. Vishwanathan. αgs-closed sets in topological spaces. Acta Cienia Indica, XXXM(3):521–526, 2004.

[19] M. Stone. Application of the theory of Boolean rings to general topology. Trans. Amer.Math. Soc., 41:374–481, 1937.

[20] R. Nithya kalyani Veronica Viayan. A study on (i, j)-ψ, and (i, j)-ψ closed sets in bitopological spaces. International Journal of Computer Application, 4:40–48, 2013.