Letter

On the oscillating properties of a two-electron quantum dot in the presence of a magnetic field

A M Maniero¹, C R de Carvalho², F V Prudente³ and Ginette Jalbert²,*

¹ Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, 47808-021, Barreiras, BA, Brazil
² Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, RJ, Brazil
³ Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-115, Salvador, BA, Brazil

E-mail: ginette@if.ufrj.br

Received 13 November 2020, revised 3 March 2021
Accepted for publication 29 March 2021
Published 18 May 2021

Abstract

We give a basic explanation for the oscillating properties of some physical quantities of a two-electron quantum dot in the presence of a static magnetic field. This behaviour was discussed in a previous work of ours (Maniero et al 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185001) and was identified as a manifestation of the de Haas–van Alphen effect, originally observed in the framework of diamagnetism of metals in the 30s. We show that this behaviour is a consequence of different eigenstates of the system assuming, in a certain interval of the magnetic field, the condition of the lowest energy singlet and triplet states.

Keywords: two-electron quantum dot, de Haas–van Alphen effect, de Haas–van Alphen oscillation

(Some figures may appear in colour only in the online journal)

Recently in a series of articles we have studied the behaviour of electrons in quantum dots (QDs) with different confinement profiles and under the influence of external fields [1–3]. By addressing the system constituted of two electrons confined in a QD in the presence of a static external magnetic field we have been faced with a peculiar behaviour of some physical quantities associated with the two electrons that has been known for a long time in the scope of metal diamagnetism. We have observed that some characteristic quantities of the system—such as the exchange energy \(J = E_T - E_S \) (\(E_S \) and \(E_T \) are the energies of the lowest singlet and triplet states, respectively), and the density \(\rho(x_1, x_2) \) of the electronic cloud along one of the axes perpendicular to the magnetic field \(\vec{B} = B\hat{z} \)—display an oscillating behaviour as function of the field magnitude.

This behaviour was originally observed experimentally in the 1930s by de Haas and van Alphen when they were studying the dependence with the magnetic field of the susceptibility of diamagnetic metals [4]. By that time the diamagnetism of metals had already been studied theoretically by several researchers and the model adopted was a free electron gas [5–7]. The phenomenon observed by de Haas and van Alphen aroused even more interest in the quantum description of a free electron system and numerous researchers have addressed the problem over the next two decades, see for instance references [8, 9] and references therein. The so-called de Haas–van Alphen (dHvA) effect still remains a subject of interest and has been reported in different systems [10–15].
Figure 1. It is displayed J_{norm}, σ_x, and L_z of the singlet and triplet states of lowest energy, as a function of b, for the confinement condition given by $\omega_x = \omega_y = \omega_z = 0.000111$ (3D case). As highlighted in the legend the solid squares correspond to the singlet state, whereas the solid circles correspond to the triplet state.

More recently, this oscillating behaviour associated with the properties of an electron system was theoretically predicted in the context of quantum dots in semiconductors. The Coulomb interaction between electrons, which until then had been disregarded according to the free electron model, was taken into account [16–20]. In addition, it was pointed out that two-dimensional electron systems or asymmetric quantum dots have a strong Rashba spin–orbit interaction [21, 22] and its effect on the magnetization of QDs with few electrons has been studied taking into account the Coulomb interaction or not [23, 24]. Furthermore, one finds a recent analysis, where only the geometry of the confinement potential, the curvature of the QD surface, plays the relevant role in describing the properties of QD in the presence of an external field and the other interactions being neglected [25].

The system considered in the present work consists of two interacting electrons in an anisotropic 3D harmonic QD with the presence of a magnetic field, without the spin–orbit interaction. Therefore, the Hamiltonian is given by

$$\hat{H} = \sum_{j=1}^{2} \frac{1}{2m_e} \left[\vec{p}_j + \vec{A}(\vec{r}_j) \right]^2 + g\mu_B \vec{S}_j \cdot \vec{B} + \vec{V}(\vec{r}_j)$$

$$+ \frac{1}{\kappa |\vec{r}_1 - \vec{r}_2|},$$

(1)

where

$$\vec{V}(x, y, z) = \frac{m_e}{2} \left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 \right)$$

(2)

is the anisotropic 3D harmonic confining potential and the vector potential is chosen in the gauge $\vec{\nabla} \cdot \vec{A} = 0$, which for $\vec{B} = B\hat{z}$ yields

$$\vec{A}(\vec{r}) = -\frac{1}{2} \vec{r} \times \vec{B} = \frac{1}{2} (-y\hat{x} + x\hat{y}) B.$$

(3)

One also has that

$$\frac{1}{2m_e} \left(\vec{p}_j + e\vec{A}(\vec{r}_j) \right)^2 = -\frac{\nabla^2}{2m_e} + \frac{\vec{B} \cdot \vec{L}}{2m_e} + \frac{B^2}{8m_e} (x^2 + y^2),$$

(4)

which allows one to write the Hamiltonian in the form

$$\hat{H} = \sum_{j=1}^{2} \left[-\frac{\nabla^2}{2m_e} + \frac{m_e}{2} \left(\Omega_{xj}^2 x_j^2 + \Omega_{yj}^2 y_j^2 \right) \right.$$

$$+ \Omega_{zj}^2 z_j^2) + \frac{\mu_B B}{m_e} \vec{L}_j + \frac{\mu_B B g \hat{S}_z}{m_e}$$

$$+ \frac{1}{\kappa |\vec{r}_1 - \vec{r}_2|},$$

(5)

where $\Omega_{xj}^2 = (\omega_x^2 + \omega_j^2)$ and $\Omega_{yj} = B/2m_e$ is the Larmor frequency. For more details of the present theoretical approach,

Figure 2. It is displayed the same as in the previous figure, except that the confinement condition correspond to the quasi-2D case, i.e., $\omega_x = \omega_y = 0.00111$ and $\omega_z = 1.1$.

$\omega = \omega_j = 0.000111$ (3D case).
see reference [3]. There, we compute the solution Φ of the Schrödinger equation within the framework of the full configuration interaction method (full-CI), employing the Cartesian anisotropic Gaussian-type orbitals as basis functions. In this method Φ is written as a linear combination of configuration state functions (CSFs) which, in turn, are constituted of a linear combination of Slater determinants. In this previous work we compared the precision or the reliability of the results obtained from three different basis sets: 2s2p2d, 2s2p2d2f, and 2s2p2d2f1g. The last one, consisting of 55 basis functions, leads to 1485 (1485) CSFs and 2916 (1485) determinants for the singlet (triplet) states. In the present article, we use only this latter one, the largest basis set, for all numerical computation.

From the solution Φ we can compute some physical quantities of interest such as the root-mean-square $\sigma_x = \sqrt{\langle x^2 \rangle}$, which gives information on the spatial spreading of the two electrons along a direction perpendicular to the magnetic field, as well as the z-component of the total orbital angular momentum of the two electrons, L_z. In our previous paper [3] we performed an approximation in the expansion of Φ by taking into account only the CSFs whose coefficients had modulus greater than an arbitrary value. To accomplish the present work we introduced modifications in the numerical code that allowed us to take into account all the 1485 CSFs, and still with a smaller computation time. These improvements in our code should be the subject of a future paper.

With these numerical modifications we verified that the previously obtained values of the system physical quantities as a function of the magnetic field B did not change and the gain in the computation time allowed us to study in much more detail their behaviour around the extremes of J, i.e. $dJ/dB = 0$ (in fact we have dealt with $J_{\text{norm}} = J/\omega_z$). It is worth remembering that we identified a correlation between the J_{norm} extremes and the crossing of the σ_x curves for the singlet and triplet states [3]. In the present Letter we explore this issue.

All the results displayed in this article were obtained with the same values employed in our previous work, in particular, $\omega_x = \omega_y = \omega_z = 0.000111$ (3D case), and $\omega_x = \omega_y = 0.000111$ with $\omega_z = 1.11$ (quasi-2D case). The computations have been done in atomic units (a.u.), as usual in atomic-molecular calculations. The value $\omega_x = 0.000111$ corresponds to an energy ($\hbar\omega_x$) of 3 meV [26]. The magnetic field is given in units of a characteristic magnetic field $B_c = 2m_e\omega_z$, where m_e is the effective electronic mass which yields 0.067 for the conduction band in GaAs and leads to $B_c \approx 1.49 \times 10^{-9}$ (≈ 3.5 T).

Here, at this point, it is worth noting that the operators \hat{H} and \hat{L}_z commute and, therefore, the eigenstates of \hat{H} are also

Figure 3. It is plotted the first ten singlet energy curves as function of b in the quasi-2D case of the two-electron QD.

Figure 4. A close-up of the previous figure. It is highlighted with thick lines (also colored in online version) the curves of the four eigenstates which play the role of the lowest energy singlet in the range $b \in [0, 3]$.
eigenstates of \hat{L}_z. In figures 1 and 2 we display the behaviour of J_{norm}, σ_x and \hat{L}_z of the singlet and triplet states of lowest energy as function of the normalized field $b = B / B_c$ for $\omega_z = 0.000111$ and $\omega_{\perp} = 1.11$, respectively. One can see the connection between the J_{norm} extremes and the changes of the σ_x values of the singlet and triplet states, which in turn reflects the changing in their z-component of the orbital angular momentum, \hat{L}_z. One also observes that in these extremes points of J_{norm} or, let us say, critical values of b, the J_{norm} curve is a continuous one, whereas its derivative (dJ_{norm} / db) is no longer well-defined. In addition, the singlet and triplet curves for σ_x and \hat{L}_z present interchanged discontinuities in these critical values of the magnetic field. One can understand the continuous behaviour of J_{norm} curve, as well as the discontinuities in the σ_x and \hat{L}_z ones, by following the evolution of the lowest energy eigenstates as a function of b, i.e., by following the lowest energy curves, and identifying the corresponding value of the z-component of the orbital angular momentum, \hat{L}_z. This is what we show below. From now on we shall consider only the quasi-2D case which has more critical points for the same interval of $b \in [0, 7]$.

Although an eigenstate of \hat{H} is also an eigenstate of \hat{L}_z, when we order these states according to their energies for a specific value of b, it does not mean that the order of the lowest energy states remains unchanged as b changes. In fact, what we observe, which is shown in figure 3 for the first ten singlet states ordered by energy, is a complete changing of the position of the eigenstates in respect to the energy. In figure 4 we display a close-up of the previous figure in order to make it easier the visualization. The behaviour of the energy curves (solid black thin lines) may lead to a misunderstanding of what is really happening when b varies. One may believe that each of these lines describes the energy evolution of a specific eigenstate, but is wrong. The curves shown are just the energy curves of the first ten singlet states, computed point by point of b. To track the evolution of the energy of a specific eigenstate we must follow not only its energy but also its \hat{L}_z; this is shown by the four solid (colored in online version) thick lines. If one looks carefully, one can see that the top two thick curves each overlap with more than one thin energy curve. According to these lines, we observe that the role of the lowest energy singlet state is played by four different eigenstates with $\hat{L}_z = 0, -2, -4$ and -6 as b varies from 0 to 7. This is shown clearly in figure 5, where we plot only the curves corresponding to them and indicate with arrows the locations of changing from one eigenstate to other.
J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 11LT01

In figures 6 and 7 we display the corresponding behaviour of the triplet states. Figure 6 shows a close-up of the energies curves for the interval \(b \in [0, 3] \) and one can see an analogous and complex behaviour of the first ten energies levels as function of \(b \) observed in the singlet case. As in that one, the \(i \)th solid black thin line shows the evolution, as function of \(b \), of the \(i \)th energy level and corresponds to different eigenstates along the \(b \)-axis. In the range of \(b \in [0, 7] \) only the triplet states associated to \(L_z = -1, -3 \) and \(-5\) assume, at different values of \(b \), the role of the lowest energy triplet state. Consequently, there are only two changes in the \(L_z \) value in this interval corresponding to \(L_z = -1 \rightarrow -3 \) and \(L_z = -3 \rightarrow -5 \). In figure 7 it is indicated with arrows the place where occurs these changes.

In conclusion, in this Letter we give a basic explanation for the oscillating properties of a two-electron QD that we discussed in a previous work [3] and that we identified as a manifestation of the dHvA effect, originally observed in the framework of diamagnetism of metals [4]. The dHvA effect corresponds to the oscillation behaviour of the magnetization as a function of the magnetic field, and the connection of our results with experiment can simply be done through the relationship between the energy of the two-electron ground state, \(E_g \), and its magnetic moment, \(\mu_{\text{mag}} \): \(\mu_{\text{mag}} = -\partial E_g / \partial b \) [17, 23]. This behaviour is a consequence of the mutual action of the Coulomb interaction and magnetic interaction on the two electrons in the QD, which lead to a complex evolution of the system eigenstates, as a function of the magnetic field \(b \), making different eigenstates to assume in a certain interval of \(b \) the condition of the lowest energy singlet and triplet states. It is worth mentioning that we have discussed a system at temperature \(T = 0 \) K. We expect that, at non-zero temperatures, the change in the behaviour of \(J \) should be the same as that observed in the magnetization in reference [23]; with no sharp variations.

Acknowledgments

This work was partially supported by the Brazilian agencies CNPq, CAPES, FAPESB and FAPERJ.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

ORCID iDs

A M Maniero https://orcid.org/0000-0002-0612-4974

C R de Carvalho https://orcid.org/0000-0001-5694-6565

F V Prudente https://orcid.org/0000-0002-7088-189X

Ginette Jalbert https://orcid.org/0000-0003-2614-7484

References

[1] Olavo L S F, Maniero A M, de Carvalho C R, Prudente F V and Jalbert G 2016 Choice of atomic basis set for the study of two electrons in a harmonic anisotropic quantum dot using a configuration interaction approach J. Phys. B: At. Mol. Opt. Phys. 49 145004

[2] Maniero A M, de Carvalho C R, Prudente F V and Jalbert G 2019 Effect of a laser field in the confinement potential of two electrons in a double quantum dot J. Phys. B: At. Mol. Opt. Phys. 52 095103

[3] Maniero A M, de Carvalho C R, Prudente F V and Jalbert G 2020 Oscillating properties of a two-electron quantum dot in the presence of a magnetic field J. Phys. B: At. Mol. Opt. Phys. 53 185001

[4] De Haas W J and Van Alphen P M 1930 The dependence of the susceptibility of diamagnetic metals upon the field Proc. Roy. Neth. Acad. Arts Sci. 33 1106–18

[5] Fock V 1928 Bemerkung zur quantelung des harmonischen oszillators im magnetfeld Z. Phys. 47 446–8

[6] Landau L D 1930 Diamagnetismus der metallre Z. Phys. 64 629–37

[7] Darwin C G 1931 The diamagnetism of the free electron Math. Proc. Camb. Phil. Soc. 27 86–90

[8] Sondheimer E H and Wilson A H 1951 The diamagnetism of free electrons Proc. R. Soc. A 210 173–90
[9] Dingle R B 1952 Some magnetic properties of metals: I. General introduction, and properties of large systems of electrons Proc. R. Soc. A 211 500–16
[10] Wilde M A, Reuter D, Heyn C, Wieck A D and Grundler D 2009 Inversion-asymmetry-induced spin splitting observed in the quantum oscillatory magnetization of a two-dimensional electron system Phys. Rev. B 79 125330
[11] Terashima T et al 2013 Fermi surface in kFe2AS2 determined via de haas–van alphen oscillation measurements Phys. Rev. B 87 224512
[12] Wang Y et al 2016 De Hass–van Alphen and magnetoresistance reveal predominantly single-band transport behavior in PDTE 2 Sci. Rep. 6 1–7
[13] Romanov V V, Kozhevnikov V A, Tracey C T and Bagraev N T 2019 De Haas–van Alphen oscillations of the silicon nanostucture in weak magnetic fields at room temperature. Density of states Semiconductors 53 1629–32
[14] Hussain G, Rao X, Li N, Chu W J, Liu X G, Zhao X and Sun X F 2020 Electron transport in Dirac nodal-line semimetal zris Phys. Lett. A 384 126938
[15] Le D-N, Le V-H and Roy P 2021 Modulation of Landau levels and de Haas–van Alphen oscillation in magnetized graphene by uniaxial tensile strain/stress J. Magn. Magn. Mater. 522 167473
[16] Maksym P A and Chakraborty T 1990 Quantum dots in a magnetic field: role of electron–electron interactions Phys. Rev. Lett. 65 108
[17] Wagner M, Merkt U and Chaplik A V 1992 Spin-singlet-spintriplet oscillations in quantum dots Phys. Rev. B 45 1951
[18] Magnúsdóttir I and Gudmundsson V 2000 Magnetization of noncircular quantum dots Phys. Rev. B 61 10229
[19] Aldea A, Moldoveanu V, Niţă M, Manolescu A, Gudmundsson V and Tanatar B 2003 Orbital magnetization of single and double quantum dots in a tight-binding model Phys. Rev. B 67 035324
[20] Climente J I, Planelles J and Movilla J L 2004 Magnetization of nanoscopic quantum rings and dots Phys. Rev. B 70 081301
[21] Engels G, Lange J, Schüpers T and Lüth H 1997 Experimental and theoretical approach to spin splitting in modulation-doped InGa1−xAs/InP quantum wells for B → 0 Phys. Rev. B 55 R1958
[22] Avetisyan S, Pietiläinen P and Chakraborty T 2012 Strong enhancement of rashba spin–orbit coupling with increasing anisotropy in the fock-Darwin states of a quantum dot Phys. Rev. B 85 153301
[23] Avetisyan S, Chakraborty T and Pietiläinen P 2016 Magnetization of interacting electrons in anisotropic quantum dots with Rashba spin–orbit interaction Phys. E 81 334–8
[24] Herzog F et al 2016 Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles J. Phys.: Condens. Matter 28 045301
[25] Pereira L F C, Andrade F M, Filgueiras C and Silva E O 2019 Modifications of electron states, magnetization, and persistent current in a quantum dot by controlled curvature Ann. Phys. 531 1900254
[26] Carvalho C R, Jalbert G, Rocha A B and Brandi H S 2003 Laser interaction with a pair of two-dimensional coupled quantum dots J. Appl. Phys. 94 2579–84