Effective Symbolic Dynamics

Douglas Cenzer1,2

Department of Mathematics
University of Florida
Gainesville, FL 32611-8105, USA

S. Ali Dashti 3

Department of Mathematics, University of Florida

Jonathan L.F. King 4

Department of Mathematics, University of Florida

Abstract

We investigate computable subshifts and the connection with effective symbolic dynamics. It is shown that a decidable \(\Pi_1^0 \) class \(P \) is a subshift if and only if there is a computable function \(F \) mapping \(2^\mathbb{N} \) to \(2^\mathbb{N} \) such that \(P \) is the set of itineraries of elements of \(2^\mathbb{N} \). A \(\Pi_1^0 \) subshift is constructed which has no computable element. We also consider the symbolic dynamics of maps on the unit interval.

Keywords: Computability, symbolic dynamics, \(\Pi_1^0 \) Classes.

1 Introduction

Computable analysis studies the effective content of theorems and constructions in analysis. In this paper, we study computable dynamical systems and symbolic dynamics associated with computable functions on the Cantor space \(2^\mathbb{N} \) and the unit interval \([0, 1]\). The papers of Gregorczyk [8] and Lacombe [12] which initiated the study of computable analysis provide the starting point of our study since those papers provide careful definitions of computably closed sets of reals and computable...
real functions. Computable real dynamical systems have been studied by Cenzer [2], where the Julia set of a computably continuous real function is shown to be a Π₀¹ class and Ko [11], who examined fractal dimensions and Julia sets. The computability of complex dynamical systems have recently been investigated by Rettinger and Weihrauch [15], and by Braverman and Yampolsky [1]. Weihrauch [16] has provided a comprehensive foundation for computability theory on various spaces, including the space of compact sets and the space of continuous real functions. The computability of symbolic dynamical systems has recently been studied by Delvenne [6,7].

Effectively closed sets (Π₀¹ classes) occur naturally in the application of computability to many areas of mathematics. See the recent surveys of Cenzer and Remmel [3,4] for many examples. In particular, the computability of a closed set \(K \) in a computable metric space \((X, d) \) may be defined in terms of the distance function \(d_K \), where \(d_K(x) \) is the infimum of \(\{ d(x, y) : y \in K \} \). \(K \) is a Π₀¹ class if and only if \(d_K \) is upper semi-computable and \(K \) is a decidable (or computable) closed set if \(d_K \) is computable. One important example in Euclidean space is the set of zeroes of a computably continuous function. This leads easily to related examples such as the set of fixed points or the set of extrema of a computably continuous function. That is, for any continuous function \(F \), it is easy to see that the set of zeroes of \(F \), the set of fixed points of \(F \), and the set of points where \(F \) attains an extremum, are all closed sets. For a computably continuous function \(F \), the corresponding closed sets are all Π₀¹ classes. In fact, Nerode and Huang [9] showed that any Π₀¹ class of reals may be represented as the set of zeroes of a computably continuous function. Ko extended the Nerode-Huang results [10] to show that any Π₀¹ class may be represented as the set of zeroes of a polynomial time computable function. Thus Π₀¹ classes also appear naturally in the theory of polynomial time computable functions on the reals.

The outline of this paper is as follows. Section 2 contains definitions and preliminaries. In section 3, we construct a subsimilar Π₀¹ class with no computable element. The symbolic dynamics of effective dynamical systems on the Cantor space \(2^\mathbb{N} \) is studied in section 4. For any finite \(k \), the shift function on \(\{0, 1, \ldots, k\}^\mathbb{N} \) is defined by \(\sigma(x) = y \), where \(y(n) = x(n+1) \). A closed set \(Q \subseteq \{0, 1, \ldots, k\}^\mathbb{N} \) is said to be a subshift if it is closed under the shift function. We will refer to a Π₀¹ class which is also a subshift as a subsimilar Π₀¹ class.

Fix a finite alphabet \(\Sigma \), let \(F : \Sigma^\mathbb{N} \to \Sigma^\mathbb{N} \) be a computable function and let a partition \(\{U_0, U_1, \ldots, U_k\} \) of \(\Sigma^\mathbb{N} \) into clopen sets be given. The itinerary of a point \(x \in \Sigma^\mathbb{N} \) is the sequence \(It(x) \in \{0, 1, \ldots, k\}^\mathbb{N} \) where
\[
It(x)(n) = i \iff F^n(x) \in U_i.
\]
Now let \(IT[F] = \{It(x) : x \in \Sigma^\mathbb{N}\} \). We show that \(IT[F] \) is a decidable subsimilar Π₀¹ class and that, for any decidable subsimilar Π₀¹ class \(Q \subseteq \Sigma^\mathbb{N} \), there exists a computable \(F \) such that \(Q = IT[F] \).

In section 5, we briefly examine symbolic dynamics for functions on the unit interval and pose some problems for future study. The class of unimodal maps and their interesting dynamical properties play an important role in many areas.
of modern science and have undergone thorough investigation both experimentally and theoretically. (See for example [5].) One of the earliest papers to study the symbolic dynamics of unimodal and other mappings is [14].

2 Preliminaries

We begin with some basic definitions. Let \(\mathbb{N} = \{0, 1, 2, \ldots\} \) denote the set of natural numbers. For any set \(\Sigma \), \(\Sigma^* \) denotes the set of finite strings of elements from \(\Sigma \) and \(\Sigma^\omega \) denotes the set of countably infinite sequences from \(\Sigma \). We write \(\Sigma^{<n} \) for \(\bigcup_{i<n} \Sigma^i \). For any set \(A \), we let \(\text{card}(A) \) denote the cardinality of the set \(A \).

For a string \(w = (w(0), w(1), \ldots, w(n-1)) \), \(|w| \) denotes the length \(n \) of \(w \). The shift function on strings is defined by \(\sigma(w) = (w(1), \ldots, w(n-1)) \). The empty string has length 0 and will be denoted by \(\lambda \). A string of \(n \) \(k \)'s will be denoted \(k^n \). For \(m < |w| \), \([w]m \) is the string \((w(0), \ldots, w(m-1)) \). We say \(w \) is an initial segment of \(v \) (written \(w \preceq v \)) if \(w = v[m] \) for some \(m \). Given two strings \(v \) and \(w \), the concatenation \(v \bowtie w \) is defined by

\[
v \bowtie w = (v(0), v(1), \ldots, v(m-1), w(0), w(1), \ldots, w(n-1)),
\]

where \(|v| = m \) and \(|w| = n \). For \(a \in \Sigma \), we write \(v \bowtie a \) (or just \(wa \)) for \(w \bowtie (a) \) and we write \(a \bowtie w \) (or just \(aw \)) for \((a) \bowtie w \). For any \(x \in \Sigma^\omega \) and any finite \(n \), the initial segment \(x[n] \) of \(x \) is \((x(0), \ldots, x(n-1)) \). For a string \(w \in \Sigma^* \) and any \(x \in \Sigma^\omega \), we write \(w \prec x \) if \(w = x[n] \) for some \(n \). For any \(w \in \Sigma^\omega \) and any \(x \in \Sigma^\omega \), we let \(w \bowtie x = (w(0), \ldots, w(n-1), x(0), x(1), \ldots) \). The shift function on \(\Sigma^\omega \) is defined by \(\sigma(x) = (x(1), x(2), \ldots) \).

The topology on \(\Sigma^\omega \) has a basis of intervals, which are clopen sets of the form

\[
J[w] = \{ x : w \prec x \}.
\]

A subset of \(\Sigma^\omega \) is clopen if and only if it is a finite union of intervals.

A tree \(T \) over \(\Sigma^* \) is a set of finite strings from \(\Sigma^* \) which contains the empty string \(\lambda \) and which is closed under initial segments. We say that \(w \in T \) is an immediate successor of \(v \in T \) if \(w = va \) for some \(a \in \Sigma \). We will assume that \(\Sigma \subseteq \mathbb{N} \), so that \(T \subseteq \mathbb{N}^* \). For any tree \(T \), an infinite path through \(T \) is a sequence \((x(0), x(1), \ldots) \) such that \(x[n] \in T \) for all \(n \). We let \(|T| \) denote the set of infinite paths through \(T \). It is well-known that a subset \(Q \) of \(\Sigma^\omega \) is closed if and only if \(Q = [T] \) for some tree \(T \). A subset \(P \) of \(\mathbb{N}^\omega \) is a \(\Pi_0^0 \) class (or effectively closed set) if \(P = [T] \) for some computable tree \(T \). A node \(w \in T \) is extendible if there exists \(x \in |T| \) such that \(w \prec x \). The set of extendible nodes forms a tree \(T_P \) which is a co-c.e. subset of \(\Sigma^* \) but is not in general computable. \(P \) is said to be decidable (or computable) if \(T_P \) is a computable set. A tree \(T \subseteq \Sigma^* \) said to be subsimilar if for every \(v \) and \(w \), \(v \bowtie w \in T \) implies \(w \in T \). The closed set \(P \) is subsimilar (or a subshift) if \(T_P \) is subsimilar. Equivalently \(P \) is a subshift if it is closed under the shift function.

A function \(F : \Sigma^\omega \to \Sigma^\omega \) is computable (or computably continuous) if there exists a computable approximating function \(f : \Sigma^* \to \Sigma^* \) such that, for all \(x \in \Sigma^\omega \) and all \(v, w \in \Sigma^* \):

\[
(i) \ v \prec w \longrightarrow f(v) \preceq f(w).
\]
(ii) $(\forall m)(\exists n)(\forall v \in \Sigma^n)|f(v)| \geq m$.

(iii) $F(x) = \bigcup_n f(x[n])$.

Note that (iii) implies (ii) by compactness.

A function $F : [0,1] \to [0,1]$ is computable if there exists a computable approximating sequence $\langle f_n \rangle$ of functions $f_n : D \to D$ (where D is the set of dyadic rationals in $[0,1]$) and a computable modulus function $M : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, all $d \in D$ and all $x \in [0,1]$,

$$|x - d| < 2^{-M(n)} \implies |F(x) - f_n(d)| < 2^{-n}.$$

3 Undecidable subshifts

In this section, we construct a subsimilar Π^0_1 class with no computable element. We will give the construction in $2^\mathbb{N}$, but it can be generalized to Σ^N for any finite Σ. Now every decidable Π^0_1 class has a computable element (in fact, the leftmost path is computable). Hence we have an undecidable subsimilar Π^0_1 class.

Let us say that a string v is a factor of a string w if there exist w_1 and w_2 such that $w = w_1 \sim v \sim w_2$. For any set S of strings, we may define a closed set P_S, where $x \in P_S$ if and only if, for all n and all $w \in S$, w is not a factor of $x[n]$. If the set P_S is nonempty, then S is said to be avoidable. For this section, we restrict ourselves to $\Sigma = \{0,1\}$

Lemma 3.1 Given any sequence x_0, x_1, \ldots of elements of $2^\mathbb{N}$, there is a nonempty subshift containing no x_i.

Proof. Define the sequence l_0, l_1, \ldots by

$$l_n = 3(2^{n(n+3)}).$$

This will imply that $l_{n+1} = 2^{n+4}l_n$. Now let $w_n = x_n[2l_n]$ for each n and define subshift P to consist of all x which do not contain any w_n as a factor. Clearly $x_i \notin P$ for all i. It remains to show that P is nonempty, that is, $\{w_n : n \in \mathbb{N}\}$ is avoidable.

It is important to notice that given any word w of length $2k$, it has at most $k+1$ distinct factors of length k. Since there are 2^k words of length k, for k large enough so that $2^k > k + 1$, there are words of length k that do not appear as a factor of w. With this in mind, we construct recursively two sequences of words $\langle A_n \rangle_{n \in \mathbb{N}}$ and $\langle B_n \rangle_{n \in \mathbb{N}}$ such that, for all n:

(i) $|A_n| = |B_n| = l_n$;

(ii) $A_n \neq B_n$;

(iii) A_n and B_n are not factors of w_n; this is possible for $n = 0$ since $|w_0| = 6$ so w_0 has at most 4 distinct factors of length 3.

(iv) A_{n+1} and B_{n+1} are taken from $\{A_n, B_n\}^*$, have A_n as a prefix, and have length $m = 2^{n+4} = l_{n+1}/l_n$. This is possible since there are 2^{m-1} such words, but there are at most $l_{n+1} + 1$ factors of length l_{n+1} in w_{n+1} and $2^{m-1} \geq l_{n+1} + 1 + 2$.

D. Cenzer et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 89–99
The function of the following lemma.

Theorem 3.3 There is a nonempty subsimilar \(\Pi_1^0 \) class if for any subsequence \(\langle l_n \rangle \) such that \(l_n > 2^2 \) for all \(n \in \mathbb{N} \), then there is a nonempty subsimilar \(\Pi_1^0 \) class \(P \) such that no element of \(P \) contains any factor \(v_k \).

Proof. For the first part, simply let \(w_{n_k} = v_k \) and choose arbitrary words \(w_i \) of length \(2l_i \) for \(i \notin \{ n_k : k \in \mathbb{N} \} \) and apply the lemma.

For the second part, we have

\[
x \in P \iff (\forall n)(\forall k)[v_k \text{ is not a factor of } x[n]]
\]

\(\square \)

Theorem 3.3 There is a nonempty subsimilar \(\Pi_1^0 \) class \(P \) with no computable element.

Proof. Let the sequence \(\langle l_n \rangle \) be given as in Lemma 3.1. Let \(\phi_0, \phi_1, \ldots, \phi_e, \ldots \) be an enumeration of partial computable functions.

Now define the partial recursive function \(\phi \) so that \(\phi(k) = \phi_k[2l_k] \) if \(\phi_k(i) \downarrow \) for all \(i < 2l_k \), and \(\phi(k) \) is undefined otherwise.

By Theorem 3.2, there is a nonempty subsimilar \(\Pi_1^0 \) class \(P \) such that no element of \(P \) has any word \(\phi(k) \) as a factor. Now let \(y \) be any computable element of \(2^\mathbb{N} \). Then \(y = \phi_k \) for some \(k \) such that \(\phi_k \) is a total function. Thus \(\phi(k) = \phi_k[k] \) is defined and is not a factor of any \(x \in P \) and hence certainly \(\phi_k \notin P \). \(\square \)

4 Symbolic Dynamics for Functions on \(\Sigma^\mathbb{N} \)

Fix a finite alphabet \(\Sigma = \{0, 1, \ldots, k\} \), let \(F : \Sigma^\mathbb{N} \to \Sigma^\mathbb{N} \) be a computable function and let a partition \(\{U_0, U_1, \ldots, U_k\} \) of \(\Sigma^\mathbb{N} \) into clopen sets be given. The itinerary of a point \(x \in \Sigma^\mathbb{N} \) is the sequence \(It(x) \subseteq \{0, 1, \ldots, k\}^\mathbb{N} \) where

\[
It(x)(n) = i \iff F^n(x) \in U_i.
\]

Now let \(IT[F] = \{ It(x) : x \in \Sigma^\mathbb{N} \} \). We observe that \(IT[F] \) is a subshift. That is, suppose \(y = It(x) \in IT[F] \). Then \(\sigma(y) = It(F(x)) \), so that \(\sigma(y) \in IT[F] \) as well. The function \(It \) is continuous and hence \(IT[F] \) is a closed set, as seen by the proof of the following lemma.
Lemma 4.1 The function from $\Sigma^N \to \{0,1,\ldots,k\}^N$ mapping x to $I(x)$ is computable.

Proof. Given clopen sets U_0, \ldots, U_k, there exists a finite j and a finite subset W of $\{0,1\}^j$ such that each U_i is a finite union of intervals $J[w]$ for some set of $w \in W$. Thus one can determine from $y[j]$ the unique i for which $y \in U_i$. Given $x \in \Sigma^N$, let $y = I(x)$. To compute $y(n)$, it suffices to find the first j values of $F^n(x)$, which can be computed uniformly from x and n. □

Theorem 4.2 Let $F : \Sigma^N \to \Sigma^N$ be computable and let $\{U_0, U_1, \ldots, U_k\}$ be a partition of Σ^N into clopen sets. Then

(a) For any computable $x \in \Sigma^N$, the itinerary $I(x)$ is computable.

(b) The set $IT[F]$ of itineraries is a decidable, subsimilar Π^0_1 class.

Proof. Part (a) follows from the well-known result that computable functions map computable points to computable points and (b) follows from the fact that the image of a decidable Π^0_1 class under a computable function is a decidable Π^0_1 class. See [3,4]. □

Next we prove the converse. Note that $F^0(x) = x$ for all $x \in \Sigma^N$ and therefore $IT[F]$ meets every U_i. Note that if Q is a subshift and Q does not meet $J[i]$, then $Q \subseteq \{0,1,\ldots,i-1,i+1,\ldots,k\}^N$.

Theorem 4.3 Let $\Sigma = \{0,1,\ldots,k\}$ be a finite alphabet and let $Q \subseteq \Sigma^N$ be a decidable, subsimilar Π^0_1 class which meets $J[i]$ for all i. Then there exists a partition $\{U_0, \ldots, U_k\}$ and a computable $F : \Sigma^N \to \Sigma^N$ such that $Q = IT[F]$.

Proof. We will use the partition given by $U_i = J[i]$. Since Q is decidable, we can define a function $G : \Sigma^N \to Q$ such that $G(x) = x$ for all $x \in Q$. Let $Q = [T]$ where T is a computable tree without dead ends. The approximating function g for G is defined as follows. For any $w \in \{0,1,\ldots,k\}^N$, find the longest initial segment v such that $v \in T$ and let $g(v)$ be the lexicographically least (or leftmost) extension of v which is in $T \cap \{0,1,\ldots,k\}^n$; this exists since T has no dead ends. Now let $F(x) = \sigma(G(x))$. We claim that $IT(F) = Q$.

For any $x \in Q$, we have $F(x) = \sigma(x)$ and $\sigma(x) \in Q$, since Q is a subshift. Hence $F^n(x) = \sigma^n(x)$, so that $F^n(x)(0) = x(n)$, so that $F^n(x)$ belongs to the set $U_{x(n)}$. Thus the itinerary $I(x) = x$. This shows that $Q \subseteq IT[F]$.

Next consider any $x \in \Sigma^N$. We will show by induction that $F^n(x) = \sigma^n(G(x))$ for all $n > 0$. For $n = 1$, this is the definition. Then

$$F^{n+1}(x) = \sigma(G(F^n(x))) = \sigma(G(\sigma^n(G(x)))),$$

by induction. But $G(x) \in Q$, so that $\sigma^n(G(x)) \in Q$ by subsimilarity and therefore $G(\sigma^n(G(x))) = \sigma^n(G(x))$ and finally $F^{n+1}(x) = \sigma^{n+1}(G(x))$, as desired. It follows that for $n > 0$, $I(x)(n) = G(x)(n)$. But for $n = 0$, the assumption that Q meets $J[x(0)]$ implies that $G(x)(0) = x(0)$ and hence $I(x)(0) = x(0) = G(x)(0)$ as well. Therefore $I(x) \in Q$ as desired. □
5 Unimodal Maps

In this section, we consider symbolic dynamics for mappings on the unit interval, which is much more complicated. We recall some definitions and facts of [14].

Definition 5.1 A function \(F : [0, 1] \to [0, 1] \) is a unimodal map with critical point \(c \) if

(i) \(F(c) \) is the unique absolute maximum of \(F \);
(ii) \(F \) is strictly increasing over the interval \([0, c)\) and is strictly decreasing over \((c, 1]\).
(iii) \(F(0) = 0 = F(1) \).

The value of the critical point is not essential for this discussion, so for simplicity \(c \) is taken to be \(\frac{1}{2} \). Given any \(x \in [0, 1] \) the itinerary of \(x \) under \(F \), \(\text{It}(x) \), is defined as follows:

\[
\text{It}(x)_i = \begin{cases}
1 & F^i(x) > \frac{1}{2}, \\
C & F^i(x) = \frac{1}{2}, \\
0 & F^i(x) < \frac{1}{2}
\end{cases}
\]

Hence the space of itineraries, \(IT[F] \), of the elements of the interval \([0, 1]\) is a symbolic subspace of \(X = \{0, 1, C\}^\omega \). In contrast to the symbolic dynamics of \(\Sigma_N \), the function taking \(x \) to \(\text{It}(x) \) need not be continuous and the set of itineraries need not be a closed set. We are also interested in the subset of itineraries in \(2^N \), that is,

\[
I[F] = 2^N \cap \{ \text{It}(x) : x \in [0, F(c)] \}.
\]

The most important itinerary of a unimodal map \(F \) is its kneading sequence, \(KS(F) \), which is \(\text{It}(F(\frac{1}{2})) \). There is a connection between the kneading sequence and the set \(I[F] \) by way of the following well-known linear ordering on \(\{0, 1, C\}^* \). Here \(C \) represents the critical point \(\frac{1}{2} \).

A word \(w \in \{0, 1, C\}^* \) is said to be even (respectively, odd) if it has an even (odd) number of ones. The ordering is defined as follows.

- \(0 < C < 1 \)

- For any \(w_1 \) and \(w_2 \),
 (i) If \(w_1 \leq w_2 \), then \(w_1 \leq w_2 \) and vice versa.
 (ii) Otherwise, let \(u \) be the largest common prefix of \(w_1 \) and \(w_2 \) and let \(|u| = m \).
 If \(u \) is even, then \(w_1 < w_2 \) if and only if \(w_1(m) < w_2(m) \) and if \(u \) is odd, then \(w_1 < w_2 \) if and only if \(w_1(m) > w_2(m) \).

This ordering can be extended to \(\{0, 1, C\}^N \) just using clause (ii). For finite words, this is clearly a computable linear ordering.

A finite word \(w \) is called shift-maximal if \(\sigma^i(w) \leq w \) for all \(i \) with \(1 \leq i \leq |w| - 1 \). Similarly an infinite word \(x \) is shift-maximal iff \(\sigma^i(x) \leq x \) for all \(i \).

It is well-known that the kneading sequence \(KS(F) \) for a unimodal map \(F \) is shift-maximal [14].
Given a shift-maximal \(x \in \{0,1,C\}^\mathbb{N} \), \(y \in 2^\mathbb{N} \) is said to be admissible with respect to \(x \) if \(\sigma^i(y) \leq x \) for all \(i \). Let \(\text{Adm}(x) \) be the set of all admissible sequences with respect to \(x \).

Theorem 5.2 For any computable shift-maximal sequence \(x \in \{0,1,C\}^\mathbb{N} \), \(\text{Adm}(x) \) is a decidable, subsimilar \(\Pi^0_1 \) class.

Proof. It is immediate from the definition that \(\text{Adm}(x) \) is a subshift. For the effectiveness, we have \(\text{Adm}(x) = [T] \), where \(w \in T \iff (\forall i < |w|)\sigma^i w \leq x[|w|] \). \([T] \) is decidable since, for any \(w \in T \), either \(w \sim 0 \) or \(w \sim 1 \) in \(T \).

Theorem 5.3 Given any decidable, subsimilar \(\Pi^0_1 \) subclass \(Q \) of the cantor space, there exists a shift maximal sequence, \(x \in 2^\omega \), such that \(Q \subseteq \text{Adm}(x) \).

Proof. Let \(T \) be a computable tree without dead ends such that \(Q = [T] \) and such that \(w \in T \) implies \(\sigma(w) \in T \). Let \(x(0) = 1 \), since clearly (1) is shift-maximal. Suppose we have defined the shift-maximal word \(s = x[n] \in T \) such that for all \(w \in T \cap \{0,1\}^{\leq n}, w \leq x[n] \). Let \(w \in T \) be the maximal word of length \(n + 1 \). We claim that \(s \prec w \). To see this, let \(w = v \upharpoonright i \) for \(v \in T \) and suppose by way of contradiction that \(s \neq v \). Since \(T \) has no dead ends, \(s \upharpoonright j \in T \) for some \(j \). Since \(s \) is shift-maximal, \(v \prec s \), so that \(w = v \upharpoonright i < s \upharpoonright j \), contradicting the assumption that \(w \) is maximal in \(T \). Now let \(x(n) = w(n) \) so that \(x[n+1] = w \). To see that \(w \) is shift-maximal, let \(u = \sigma^i(w) \) for some \(i \). Then \(u \in T \) since \(Q \) is subsimilar and thus \(u \leq w \) by maximality of \(w \) in \(T^{\leq n+1} \). Proceeding in this fashion, we construct \(x \in T \) such that \(x[n] \) is shift-maximal for all \(n \), and hence \(x \) is shift-maximal. Also \(x \) is maximal in \(Q \), so that, for any \(y \in Q \), \(y \leq x \).

It is not the case that every decidable, subsimilar \(\Pi^0_1 \) class \(Q \) equals \(\text{Adm}(x) \) for the maximal element \(x \) of \(Q \). For example, if \(x = 10^\omega \), then \(\text{Adm}(x) = 2^\mathbb{N} \). However, for \(S = \{111\} \) and \(Q = \text{P}_S \), we have \(x \in Q \) and thus \(x \) is the maximal element of \(Q \), but certainly \(Q \neq \text{Adm}(x) = 2^\mathbb{N} \).

We return to the analysis of unimodal maps. The connection between the kneading sequence and the itineraries is given by the following [17]. For a continuous function \(F \), let \(\text{Adm}(F) \) denote \(\text{Adm}(\text{KS}(F)) \).

Proposition 5.4 For any unimodal map \(F : [0,1] \to [0,1] \) with kneading sequence \(\text{KS}(F) \), the set \(\text{Adm}(F) \) is the closure of the set \(I[F] \).

Next we consider computable unimodal maps.

Theorem 5.5 For any computable unimodal map \(F : [0,1] \to [0,1] \) and any computable real \(x \in [0,1] \), \(I(x) \) is a computable sequence. In particular, the kneading sequence \(\text{KS}(F) \) is computable.

Proof. Note that, for any computable \(x \), \(L(x) = \{ n : F^n(x) < \frac{1}{2} \} \) and \(R(x) = \{ n : F^n(x) > \frac{1}{2} \} \) are both c.e. sets. Suppose first that \(F^n(x) \neq \frac{1}{2} \) for any \(n \). Then \(L(x) \) and \(R(x) \) are complements and hence both sets are computable. Then \(I(x)(n) = 0 \iff n \in L(x) \), so that \(I(x) \) is computable.
For the other case, we first consider the kneading sequence. If $F^n(\frac{1}{2}) = \frac{1}{2}$ for some n, then $KS(F)$ is periodic and certainly computable. Thus $KS(F)$ is computable in any case. Now for arbitrary $x \in [0,1]$ such that $F^n(x) = \frac{1}{2}$ for some n, then $I(x) = I(x)[n + 1^{-}KS(F)]$ and is therefore computable since $KS(F)$ is computable.

We have the following corollary to Theorems 5.2 and 5.5.

Corollary 5.6 For any computable unimodal map $F : [0,1] \to [0,1]$, $Adm(F)$ is a decidable, subsimilar Π^0_1 class.

The remaining goal is to find a converse to this result, that is, given a decidable subsimilar Π^0_1 class, to find a computable unimodal map F with $Adm(F) = Q$. We will make some progress in this direction.

For the rest of the section, we confine the discussion of unimodal maps to the quadratic maps $F_\mu(x) = \mu x(1-x)$. These form a so-called full family, so that, by [17], we have

Proposition 5.7 For any $\mu_0 < \mu_1$ and for every shift-maximal $y \in \{0,1,C\}^\mathbb{N}$, there exists a parameter $\mu \in [\mu_0,\mu_1]$ such that $KS(F_\mu) = y$.

For $\mu > 3$, the unimodal map $F_\mu = \mu x(1-x)$ has $F_\mu(\frac{1}{2}) > \frac{1}{2}$, so that there exist points $x_0 \in (0,\frac{1}{2})$ and $x_1 \in (\frac{1}{2},1)$ such that $F_\mu(x_0) = \frac{1}{2} = F_\mu(x_1)$ and therefore $0C \prec I(x_0)$ and $1C \prec I(x_1)$. In general, F_μ may have kth order inverses of $\frac{1}{2}$ for all k.

It is clear that the surjective quadratic map F_4 has 2^k k-th order inverses of $\frac{1}{2}$ for all k and hence for any $w \in \{0,1\}^*$, there exists x such that $wC \prec I(x)$; we will say that this x is the coordinate of the path wC. For this map, we have the following.

Lemma 5.8 Let $F(x) = 4x(1-x)$ and let $It(x)$ be the itinerary of x under F. Then It is one-to-one, $I[F] = 2^\mathbb{N}$, and the inverse of It, restricted to $2^\mathbb{N}$, is computable.

For the surjective quadratic map $F = F_4$, we say that wC is a legal inverse path (l.i.p.) if the coordinate $r \in [0,1]$ of the path is the greatest numerical value of any point on the path, that is, if $F^n(r) < r$ for $n \leq |w|$. Metropolis et al [14] provides the following crucial fact.

Proposition 5.9 There is a one-to-one correspondence between the set of periodic kneading sequences of the full family of the quadratic maps and the set of legal inverse paths of F_4. In particular, $(wC)^\omega$ is a periodic kneading sequence for some μ if and only if wC is a legal inverse path for F_4. Moreover, if x_w is the coordinate of wC and μ_w has kneading sequence $(wC)^\omega$, then in general $x_v < x_w$ if and only if $\mu_v < \mu_w$.

It follows from Proposition 5.9 that if $<w_nC>$ is a sequence of legal inverse paths such that the corresponding sequence $<x_{w_n}>_{n<\omega}$ converges, then the sequence $<\mu_{w_n}>_{n<\omega}$ also converges. We also need the following corollary.
Corollary 5.10 For any finite string w, if wC is shift-maximal, then wC is a legal inverse path for F_4 and there exists a μ such that $(wC)^\omega = KS(F_\mu)$.

Proof. Suppose that wC is shift-maximal. Then $(wC)^\omega$ is also shift-maximal, so that by Proposition 5.7 $(wC)^\omega = KS(F_\mu)$ or some μ. It follows by Proposition 5.9 that wC is a legal inverse path for F_4.

We next give a condition for a finite word $w \in \{0, 1\}^*$ which will imply that wC is shift-maximal if w is shift-maximal. Suppose that w is shift-maximal but wC is not shift-maximal. Then some $\sigma^i(wC) > wC$; let $\sigma^i(wC) = uC$ and let $v = w[i]$, so that $w = vu$. Then $wC < uC$. But we know that $u < w$, which implies that $uC < wC$ unless u is a prefix of w. With this in mind, we say that for finite words u and w, $u \neq w$ is a proper prefix-suffix (in short PS) of w, if there exists words t and v such that $w = uv$ and $w = tu$. Call a PS of w trivial if $|u| = 1$; in this case wC will be shift-maximal. Note that given any shift-maximal sequence $x \in 2^N$, $x[n]$ is a shift-maximal word for all n, but it might have PS factors. Call $x \in 2^N$ strongly shift-maximal if there is an increasing function $f : \mathbb{N} \to \mathbb{N}$ such that, for all n, $x[f(n)]$ has at most a trivial proper PS. For example, fix any m and let

$$x = 10^m110^m1110^m\ldots$$

Then for each n, $10^m1110^m\ldots$ is shift-maximal.

The argument above has proved the following.

Lemma 5.11 If the finite word w has at most a trivial proper PS and is shift-maximal, then wC is shift-maximal.

Theorem 5.12 Given any (computable) strong shift-maximal sequence $x \in 2^N$, there is a (computable) unimodal map F with kneading sequence x.

Proof. Let $x \in 2^N$ be a strong shift-maximal sequence. Then by Lemma 5.11, we can find a subsequence $<w_n>_{n<\omega}$ of the initial segments of x such that w_nC is shift-maximal word for each n. It follows from Proposition 5.7 and Corollary 5.10 that each w_nC is a legal inverse path and hence there exist μ_n such that F_{μ_n} has kneading sequence $(w_nC)^\omega$. Since $\lim_n w_nC = x$, it follows from Proposition 5.9 that $\lim_n \mu_n = \mu$ exists and that $KS(F_\mu) = x$.

If x is computable, then we can compute the sequence w_n (since testing to see if w_nC is shift-maximal is computable) and then compute μ_n from w_n. By Proposition 5.7, we may assume that μ_{n+2} is between μ_n and μ_{n+1}, so that the limit μ is also computable.

References

[1] Braverman, M. and M. Yampolski, *Non-computable Julia sets*, J. Amer. Math. Soc. 19 (2006), 551–578.

[2] Cenzer, D. *Effective dynamics*, in “Logical Methods in honor of Anil Nerode’s Sixtieth Birthday” (J. Crossley, J. Remmel, R. Shore and M. Sweedler, eds.), Birkhauser (1993), 162–177.

[3] Cenzer, D. and J.B. Remmel, *Π^0_1 classes in mathematics*, in “Recursive Mathematics” (Y. Ersov, S. Goncharov, A. Nerode and J.B. Remmel, eds.), North-Holland Studies in Logic and Found. Math. 138 (1998), 623–821.
[4] Cenzer, D. and J.B. Remmel, “Effectively closed sets”, Association for Symbolic Logic Lecture Notes, to appear.

[5] Collet, P. and J.P. Eckmann, “Iterated Maps On The Interval As Dynamical Systems”, Birkhuser (1980).

[6] Delvenne, J.-C. “Dynamics, Information and Computation”, Ph. D. thesis, Universite Catholique De Louvain (2005).

[7] Delvenne, J.-C., P. Kurka, and V. Blondel, Decidability and Universality in Symbolic Dynamical Systems, Fund. Informaticae 74 (2006), 463–490.

[8] Grzegorczyk, A., On the definitions of computable real continuous functions, Fund. Math. 44 (1957), 61–71.

[9] Huang, W. and A. Nerode, Applications of pure recursion theory to recursive analysis, Acta Sinica 28 (1985), 625–636.

[10] Ko, K., “Complexity Theory of Real Functions”, Birkhauser, (1991).

[11] Ko, K., On the computability of fractal dimensions and Julia sets, Ann. Pure Appl. Logic 93 (1998), 195–216.

[12] LaCombe, D., Extension de la notion de fonction recursive aux d’une ou plusieurs variables reelles Comptes Rendus Acad. Sci. Paris 241 (1955), 2478–2480.

[13] Lind, D. and B. Marcus, “An Introduction to Symbolic Dynamics and Coding”, Cambridge University Press, (1995).

[14] Metropolis, N., M. L. Stein, and P. R. Stein, On Finite Limit Sets for Transformation of the Unit Interval, Journal of Combinatorial Theory (A) 15 (1973), 25–44.

[15] Rettinger, R. and K. Weihrauch, The computational complexity of some Julia sets, in “Proc. 35th ACM Symposium on Theory of Computing (San Diego, June 2003)” (M.X. Goemans, ed.), ACM Press, New York (2003), 177–185.

[16] Weihrauch, K., “Computable Analysis”, Springer (2000).

[17] Xie, H., “Grammatical Complexity And One-Dimensional Dynamical Systems”, World Scientific (1996).