Effectivized Hölder-logarithmic stability estimates for the Gel’fand inverse problem

M I Isaev1,2 and R G Novikov3,4

1Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France
2Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
3Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France
4Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, 117997 Moscow, Russia

E-mail: isaev.m.i@gmail.com and novikov@cmap.polytechnique.fr

Received 4 April 2014, revised 26 June 2014
Accepted for publication 24 July 2014
Published 20 August 2014

Abstract
We give effectivized Hölder-logarithmic energy and regularity dependent stability estimates for the Gel’fand inverse boundary value problem in dimension $d = 3$. This effectivization includes explicit dependance of the estimates on coefficient norms and related parameters. Our new estimates are given in L^2 and L^∞ norms for the coefficient difference and related stability efficiently increases with increasing energy and/or coefficient difference regularity. Comparisons with preceeding results are given.

Keywords: Schrödinger equation, Gel’fand inverse problem, Hölder-logarithmic stability

1. Introduction and main results

Many physical processes are described by models consisting of systems of partial differential equations. The coefficients of these equations describe the properties of the medium where these processes take place. The related inverse problem lies in finding unknown parameters of the model on the basis of the observed data. Most of inverse problems are known to be ill-posed in general, see e.g. [4, 23] for an introduction to this theory. This weakness constitutes a severe difficulty for the numerical treatment. Theoretical stability and instability results enables us to quantify ill-posedness of such problems.

In the present work we consider the problem of reconstructing from boundary measurements potential v of the equation
where
\[D \text{ is an open bounded domain in } \mathbb{R}^3, \quad \partial D \in C^2, \tag{1.2} \]
\[v \in L^\infty(D). \tag{1.3} \]

Equation (1.1) can be regarded as the stationary Schrödinger equation of quantum mechanics at fixed energy \(E \). Equation (1.1) at fixed \(E \) arises also in acoustics and electrodynamics.

As in section 5 of Gel’fand’s work [9] we consider an operator establishing a relationship between \(\psi \) and \(\frac{\partial \psi}{\partial \nu} \) on \(\partial D \) for all sufficiently regular solutions \(\psi \) of equation (1.1) in \(\bar{D} = D \cup \partial D \) at fixed \(E \), where \(\nu \) is the outward normal to \(\partial D \). As in [16, 26] (for example) we represent such an operator as the Dirichlet-to-Neumann map \(\Phi(E) \) defined by the relation
\[\Phi(E)(\psi|_{\partial D}) = \left. \frac{\partial \psi}{\partial \nu} \right|_{\partial D}, \tag{1.4} \]
where we assume also that
\[E \text{ is not a Dirichlet eigenvalue for operator } -\Delta + v \text{ in } D. \tag{1.5} \]

The map \(\Phi = \Phi(E) \) can be regarded as all possible boundary measurements for the physical model described by equation (1.1) at fixed \(E \) under assumption (1.5).

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given \(\Phi \) for some fixed \(E \), find \(v \).

This problem is known as the Gel’fand inverse boundary value problem for the Schrödinger equation at fixed energy \(E \) in three dimensions (see [9, 26]). For \(E = 0 \) this problem can be regarded also as a generalization of the Calderón problem of the electrical impedance tomography in three dimensions (see [5, 26]).

Let, for real \(m \geq 0 \)
\[
H^m(\mathbb{R}^3) = \left\{ w \in L^2(\mathbb{R}^3) : F^{-1}\left(1 + |\xi|^2 \right)^m Fw \in L^2(\mathbb{R}^3) \right\},
\]
\[
\| w \|_{H^m(\mathbb{R}^3)} = \left\| F^{-1}\left(1 + |\xi|^2 \right)^m Fw \right\|_{L^2(\mathbb{R}^3)}.
\tag{1.6}
\]

where \(F \) denote the Fourier transform
\[
Fw(\xi) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} e^{ix\cdot\xi}w(x)dx, \quad \xi \in \mathbb{R}^3.
\]

In addition, for real \(m \geq 0 \), we consider the spaces \(W^m(\mathbb{R}^3) \) defined by
\[
W^m(\mathbb{R}^3) = \left\{ w \in L^1(\mathbb{R}^3) : \left(1 + |\xi|^2 \right)^m Fw \in L^\infty(\mathbb{R}^3) \right\},
\]
\[
\| w \|_{W^m(\mathbb{R}^3)} = \left\| \left(1 + |\xi|^2 \right)^m Fw \right\|_{L^\infty(\mathbb{R}^3)}.
\tag{1.7}
\]

We note that for integer \(m \) the space \(W^m(\mathbb{R}^3) \) contains the standard Sobolev space \(W^{m,1}(\mathbb{R}^3) \) of \(m \)-times smooth functions in \(L^1 \) on \(\mathbb{R}^3 \).

In the present work we obtain, in particular, the following theorems:
Theorem 1.1. Suppose that D satisfies (1.2) and v_1, v_2 satisfy (1.3), (1.5) for some real E. Suppose also that: \[\|v_j\|_{L^\infty(D)} \leq N \text{ for some } N > 0, \quad j = 1, 2; \quad \text{supp}(v_2 - v_1) \subset D, \] \[v_2 - v_1 \in H^m(\mathbb{R}^3), \quad \|v_2 - v_1\|_{H^m(\mathbb{R}^3)} \leq N H^m \text{ for some } m > 0 \text{ and } N H^m > 0. \] Let
\[
\delta = \|\hat{\Phi}_2(E) - \hat{\Phi}_1(E)\|_{L^\infty(\partial D) \rightarrow L^\infty(\partial D)}, \tag{1.8}
\]
where $\hat{\Phi}_1(E), \hat{\Phi}_2(E)$ denote the Dirichlet-to-Neumann maps for v_1, v_2, respectively. Then, there exist some positive constants $\alpha, \beta, \A, \B, \tilde{\alpha}, \tilde{\beta}$ depending on D only such that
\[
\alpha \beta \tau \delta \leq \alpha \beta \tau \delta \tag{1.9}
\]
for any $\tau \in (0, 1]$ and $E \geq 0$.

Besides, estimate (1.9) is also fulfilled for any $\tau \in (0, 1)$ and $E < 0$ under the following additional condition:
\[
\alpha E + \beta (1 - \tau)^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 > 0. \tag{1.10}
\]

Theorem 1.2. Suppose that D satisfies (1.2) and v_1, v_2 satisfy (1.3), (1.5) for some real E. Suppose also that: \[\|v_j\|_{L^\infty(D)} \leq N \text{ for some } N > 0, \quad j = 1, 2; \quad \text{supp}(v_2 - v_1) \subset D, \] \[v_2 - v_1 \in W^m(\mathbb{R}^3), \quad \|v_2 - v_1\|_{W^m(\mathbb{R}^3)} \leq N W^m \text{ for some } m > 3 \text{ and } N W^m > 0. \] Let δ be defined by (1.8). Then, there exist some positive constants $\tilde{\alpha}, \tilde{\beta}, \tilde{\alpha}, \tilde{\beta}$ depending on D only such that
\[
\|v_2 - v_1\|_{L^\infty(D)} \leq \tilde{\alpha} \left(\alpha E + \tilde{\beta} (1 - \tau)^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{\frac{1}{2}} \delta \tag{1.11}
\]
for any $\tau \in (0, 1]$ and $E \geq 0$.

Besides, estimate (1.11) is also fulfilled for any $\tau \in (0, 1)$ and $E < 0$ under the following additional condition:
\[
\tilde{\alpha} E + \tilde{\beta} (1 - \tau)^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 > 0. \tag{1.12}
\]

Note that (1.10), (1.12) are some smallness conditions for δ for the case when $E < 0$.

Theorems 1.1 and 1.2 are proved in sections 3 and 4, respectively. These proofs are based on lemmas 2.1, 2.2 and 2.3 given in section 2. Then these proofs are based on the intermediate estimates (3.7), (4.8) which may be of independent interest.

Note also that in the present work we are focused on estimating the coefficient difference in L^2 and L^∞ norms, using the Parseval formula (2.5) for L^2-case and inequality (4.2) for L^∞-case. Namely, simplicity of formulas (2.5), (4.2) explains our choice of L^2 and L^∞ cases for basic considerations.
Remark 1.1. We recall that (see formulas (3.20), (3.21) of [30])

$$\Phi_2(x, y, E) - \Phi_1(x, y, E)$$

is continuous for $$x, y \in \partial D, \ x \neq y, \ x, y \in \partial D,$$ (1.13)

where $$\Phi_2(x, y, E), \Phi_1(x, y, E)$$ denote the Schwartz kernels of the corresponding integral operators $$\Phi_2(E), \Phi_1(E)$$ and constant $$c > 0$$ depends on $$D, v_1, v_2, E$$ only. In particular, (1.13) implies that $$\delta$$ is correctly defined in (1.8).

In fact, one can get estimates of theorems 1.1, 1.2 and lemma 2.1 with modified constants for $$\delta$$ defined by

$$\delta = \| \Phi_2(E) - \Phi_1(E) \|_{L^2(\partial D) \rightarrow L^2(\partial D)},$$

and without considerable modifications of the proofs.

Remark 1.2. The estimates of theorem 1.2 can be regarded as a significant effectivization of the following estimates of [16] for the three-dimensional case

$$\| v_2 - v_1 \|_{L^2(D)} \leq C_1(N_m, D, m, E) \left(\ln \left(3 + \delta^{-1} \right) \right)^{-s}$$

for $$E \in \mathbb{R}$$

$$\| v_2 - v_1 \|_{L^2(\partial D)} \leq C_2(N_m, D, m, \tau)(1 + \sqrt{E}) \delta^s$$

$$+ C_3(N_m, D, m, \tau)(1 + \sqrt{E})^{1-s}(\ln \left(3 + \delta^{-1} \right))^{-s}$$

(1.15)

for $$E \geq 0, \ \tau \in (0, 1)$$ and any $$s \in [0, s_1].$$ Here $$\delta$$ is defined by (1.8) and $$s_1 = (m - 3)/3.$$

In addition, estimates (1.14) and (1.15) were obtained in [16] under the assumptions that: $$D$$ satisfies (1.2), $$v_j$$ satisfies (1.3), (1.5), supp $$v_j \subset D, \ v_j \in W^{m,1}(\mathbb{R}^3), \ \| v_j \|_{W^{m,1}(\mathbb{R}^3)} \leq N_m, \ j = 1, 2,$$ for some integer $$m > 3$$ and $$N_m > 0.$$

Actually, theorem 1.2 was obtained in the framework of finding the dependance of $$C_1, C_2, C_3$$ of (1.14) and (1.15) on $$N_m, m$$ and $$\tau.$$ One can see that the estimates of theorem 1.2 depend explicitly on coefficient norms $$N, N^{v_1}, v_2$$ and parametes $$m, \tau$$ and imply (1.14), (1.15) with some $$C_1, C_2, C_3$$ explicitly dependent on $$N_m, m, \tau$$ as a corollary. Besides, in theorem 1.2 we do not assume that each of potentials $$v_1, v_2$$ is $$m$$-times differentiable and is supported in $$D$$ (in a similar way with theorem 2.1 of [34]).

By the way we would like to note also that even for $$E = 0$$ the reduction of Hölder-logarithmic stability estimates like (1.9), (1.11) to pure logarithmic estimates like (1.14) is not optimal for large $$m$$ because of the following asymptotic formula:

$$\sup_{\delta \in [0,1]} \left| \frac{\delta^s}{\left(\ln \left(3 + \delta^{-1} \right) \right)^{\mu}} \right| = O \left(\frac{\mu}{\tau} e^{-\tau} \right) \ as \ \mu \rightarrow +\infty.$$

In particular, even for $$E = 0$$ the Hölder-logarithmic estimates (1.9), (1.11) are much more informative than their possible pure logarithmic reductions.

Remark 1.3. Theorem 1.1 was obtained as an extention of theorem 1.2 to the $$L^2$$-norm case. In addition, it is important to note that the second (‘logarithmic’) term of the right-hand side of (1.9) is considerably better than the analogous term of (1.11). In particular
\[R = O\left(\left(\ln \left(3 + \delta^{-1} \right) \right)^{-2m^3} \right) \text{ for } \delta \to 0, \]
\[R = O\left(E^{-m} \right) \text{ for } E \to +\infty, \]
whereas
\[\hat{R} = O\left(\left(\ln \left(3 + \delta^{-1} \right) \right)^{-\frac{m-1}{3}} \right) \text{ for } \delta \to 0, \]
\[\hat{R} = O\left(E^{-\frac{m-1}{3}} \right) \text{ for } E \to +\infty \]
where \(R \) and \(\hat{R} \) denote the second (‘logarithmic’) terms of the right-hand sides of (1.9) and (1.11), respectively.

Remark 1.4. The estimates of theorem 1.1 should be compared also with the following estimate of [21] for the three-dimensional case
\[\| v_2 - v_1 \|_{H^{-m}(\mathbb{R})} \leq C \left(E^2 \delta + \left(\sqrt{E} + \ln \delta^{-1} \right)^{(2m-3)} \right), \] (1.16)
where \(C = C(N_m, D, \text{supp}(v_2 - v_1), m) > 0, \| v_j \|_{H^m(D)} \leq N_m (j = 1, 2), \text{supp}(v_2 - v_1) \subset D, \) \(m > 3/2, \) \(\delta \) is the distance between the boundary measurements (Cauchy data) for \(v_1, v_2 \) and is, roughly speaking, similar to \(\delta \) of (1.8) and where \(\delta \leq 1/e. \)

A principal advantage of (1.9) in comparison with (1.16) consists in estimation \(v_2 - v_1 \) in the \(L^2 \)-norm instead of the \(H^{-m} \)-norm. Besides, estimate (1.9) depends explicitly on coefficient norms \(N, N_m \) and parameters \(m, \tau \) in contrast with (1.16). In addition, in (1.9) we do not assume that each of \(v_1, v_2 \) belongs to \(H^m. \)

Remark 1.5. In the literature on problem 1.1 estimates of the form (1.14) are known as global logarithmic stability estimates. The history of these estimates goes back to [1] for the case when \(s_1 \leq 1 \) and to [33] for the case when \(s_1 > 1. \)

In addition, estimates of the form (1.9), (1.11), (1.15), (1.16) are known in the literature as Hölder-logarithmic energy and regularity dependent stability estimates. For the case when \(\tau = 1 \) in (1.9), (1.11) or when \(s = 0 \) in (1.15) the history of such estimates in dimension \(d = 3 \) goes back to [29, 31], where such energy and regularity dependent rapidly convergent approximate stability estimates were given for the inverse scattering problem.

Then for problem 1.1 energy dependent stability estimates changing from logarithmic type to Hölder type for high energies were given in [20]. However, this high energy stability increasing of [20] is slow. The studies of [20, 29, 31, 33] were continued, in particular, in [16, 21, 25] and in the present work.

Remark 1.6. In theorems 1.1, 1.2 we consider the three-dimensional case for simplicity only. Similar results hold in dimension \(d > 3. \)

As regards to logarithmic and Hölder-logarithmic stability estimates for Problem 1.1 in dimension \(d = 2, \) we refer to [35, 37, 38]. In addition, for problems like Problem 1.1 the history of energy and regularity dependent rapidly convergent approximate stability estimates in dimension \(d = 2 \) goes back to [28].
Remark 1.7. In a similar way with results of [17, 18] and subsequent studies of [36], estimates (1.9), (1.11) can be extended to the case when we do not assume that condition (1.5) is fulfilled and consider an appropriate impedance boundary map (Robin-to-Robin map) instead of the Dirichlet-to-Neumann map.

Remark 1.8. Apparently, estimates analogous to estimates of theorems 1.1 and 1.2 hold if we replace the difference of DtN maps by the difference of corresponding near field scattering data in a similar way with results of [10, 14, 19].

Remark 1.9. The optimality (in different senses) of estimates like (1.14), (1.15) was proved in [12, 13, 24]. See also [6, 15] and references therein for the case of inverse scattering problems.

Remark 1.10. Estimates (1.9), (1.11) for $\tau = 1$ are roughly speaking coherent with stability properties of the approximate monochromatic inverse scattering reconstruction of [29, 31], implemented numerically in [2]. Estimates (1.9), (1.11) for $E = 0$ are roughly speaking coherent with stability properties of the reconstruction of [32].

In addition, estimates (1.9), (1.11) can be used for the convergence rate analysis for iterative regularized reconstructions for problem 1.1 in the framework of an effectivization of the approach of [10] for monochromatic inverse scattering problems.

2. Lemmas

Let \hat{v} denote the Fourier transform of v

$$
\hat{v}(\xi) = Fv(\xi) = \frac{1}{(2\pi)^3} \int e^{i\xi x} v(x) dx, \quad \xi \in \mathbb{R}^3.
$$

Lemma 2.1. Suppose that D satisfies (1.2) and v_1, v_2 satisfy (1.3), (1.5) for some real E. Suppose also that $\|v_j\|_{L^\infty(D)} \leq N, \ j = 1, 2, \text{for some } N > 0$. Let δ be defined by (1.8). Then

$$
|\hat{v}_2(\xi) - \hat{v}_1(\xi)| \leq c_1(1 + N)^2 \left(e^{2c_2 \delta} + \frac{\|v_1 - v_2\|_{L^2(D)}}{\sqrt{E + \rho^2}} \right)
$$

for any $\rho > 0$ such that

$$
|\xi| \leq 2\sqrt{E + \rho^2}, \quad E + \rho^2 \geq (1 + N)^2 r^2,
$$

where $L = \max_{x \in \partial D}$ and constants $c_1, c_2 > 0$ depend on D only.

Some version of estimate (2.2) was given in [16] (see formula (4.13) of [16]). Lemma 2.1 is proved in section 6. This proof is based on results presented in section 5.

Lemma 2.2. Let $w \in H^m(\mathbb{R}^3), \|w\|_{H^m(\mathbb{R}^3)} \leq N_{H^m}$ for some real $m > 0$ and $N_{H^m} > 0$, where the space $H^m(\mathbb{R}^3)$ is defined in (1.6). Then, for any $r > 0$
\[
\left(\int_{|\xi| > r} |F_w(\xi)|^2 d\xi \right)^{1/2} \leq c_2 N_{W^m} r^{-m},
\]

where \(F_w \) is defined according to (2.1) and \(c_2 = (2\pi)^{-3/2} \).

Proof of lemma 2.2. Note that

\[
\int_{|\xi| > r} |F_w(\xi)|^2 d\xi \leq \left(\frac{1 + |\xi|^2}{r^m} \right)^{\frac{1}{2}} \left(\frac{\|F_w\|_{L^2(\Bbb{R}^m)}}{r^m} \right)^2.
\]

Using (1.6), (2.4) and the Parseval theorem

\[
\|F_w\|_{L^2(\Bbb{R}^m)} = (2\pi)^{-3/2}\|w\|_{L^2(\Bbb{R}^m)}
\]

for \(\hat{w} \equiv F^{-1}(1 + |\xi|^2)^{1/2}Fw \), we get estimate (2.3).

Lemma 2.3. Let \(w \in W^m(\Bbb{R}^3) \), \(\|w\|_{W^m(\Bbb{R}^3)} \leq N_{W^m} \) for some real \(m > 3 \) and \(N_{W^m} > 0 \), where the space \(W^m(\Bbb{R}^3) \) is defined in (1.7). Then, for any \(r > 0 \)

\[
\int_{|\xi| > r} |F_w(\xi)|^2 d\xi \leq \tilde{c}_2 \frac{N_{W^m}}{m - 3} r^{3-m},
\]

where \(F_w \) is defined according to (2.1) and \(\tilde{c}_2 = 4\pi \).

Proof of lemma 2.3. Note that

\[
r^m |F_w(\xi)| \leq \left(1 + |\xi|^2 \right)^{m/2} |F_w(\xi)| \leq N_{W^m} \quad \text{for} \ |\xi| \geq r.
\]

Using (2.7), we obtain that

\[
\int_{|\xi| > r} |F_w(\xi)|^2 d\xi \leq \int_{r}^{+\infty} \frac{N_{W^m}}{t^m} 4\pi t^2 dt \leq \frac{4\pi N_{W^m}}{m - 3} r^{3-m}.
\]

3. Proof of theorem 1.1

This proof consists of the two parts. In the first part, using the Parseval formula and lemmas 2.1, 2.2, we obtain the intermediate estimate (3.7) which may be of independent interest. In the second part, proceeding from estimate (3.7), we obtain estimate (1.9), where we consider separately the cases: (a) \(\delta \) satisfies (3.9) and \(\delta \leq 1 \); (b) \(\delta \) satisfies (3.9) and \(\delta > 1 \); (c) \(\delta \) satisfies (3.15).

Using the Parseval formula (2.5), we get that

\[
\|v_2 - v_1\|_{L^2(D)} = (2\pi)^{3/2}\|\hat{v}_2 - \hat{v}_1\|_{L^2(\Bbb{R}^3)} \leq (2\pi)^{3/2} \left(I_1(r) + I_2(r) \right)
\]

\[
I_1(r) = \int_{r}^{+\infty} \frac{N_{W^m}}{t^m} 4\pi t^2 dt \leq \frac{4\pi N_{W^m}}{m - 3} r^{3-m},
\]

\[
I_2(r) = \int_{r}^{+\infty} \frac{N_{W^m}}{t^m} 4\pi t^2 dt \leq \frac{4\pi N_{W^m}}{m - 3} r^{3-m}.
\]
for $r > 0$, where \hat{v}_j is defined according to (2.1) with $v_j \equiv 0$ on $\mathbb{R}^3 \setminus D, j = 1, 2$

$$I_1(r) = \left(\int_{|\xi| \leq r} \left| \hat{v}_2(\xi) - \hat{v}_1(\xi) \right|^2 d\xi \right)^{1/2}.$$

$$I_2(r) = \left(\int_{|\xi| \leq r} \left| \hat{v}_2(\xi) - \hat{v}_1(\xi) \right|^2 d\xi \right)^{1/2}.$$

Let

$$r = q(1 + N)^{-4/3} \left(E + \rho^2 \right)^{1/3}, \quad q = \frac{1}{2\pi} \left(\frac{16\pi^2}{3} \right)^{-1/3},$$

(3.2)

where c_1 is the constant of lemma 2.1.

Then, using lemma 2.1 for $|\xi| \leq r$, we get that

$$I_1(r) \leq \left(\frac{4\pi r^3}{3} c_1^3 (1 + N)^2 \left(e^{2\delta_3} \rho^2 + \frac{\| v_1 - v_2 \|_{L^2(D)}}{\sqrt{E + \rho^2}} \right) \right)^{1/2}$$

$$\leq (2\pi)^{-1/3} \left(\frac{\sqrt{E + \rho^2} e^{2\delta_3} \rho^2}{2} + \frac{\| v_1 - v_2 \|_{L^2(D)}}{2} \right)$$

(3.3)

for $q(1 + N)^{-4/3}(E + \rho^2)^{1/3} \leq 2\sqrt{E + \rho^2}$ and $E + \rho^2 \geq (1 + N)^2\eta^2$.

In addition, using (2.3), we have that

$$I_2(r) \leq c_2 N_{H^2} r^{-m}.$$

(3.4)

Let $r_2 = r_2(D) \geq \eta$ be such that

$$E + \rho^2 \geq r_2^2 \implies q \left(E + \rho^2 \right)^{1/3} \leq 2\sqrt{E + \rho^2}.$$

(3.5)

Using (3.1), (3.3)–(3.5) with r defined in (3.2), we obtain that

$$\| v_2 - v_1 \|_{L^2(D)} \leq \left(\frac{\sqrt{E + \rho^2} e^{2\delta_3} \rho^2}{2} + \frac{\| v_1 - v_2 \|_{L^2(D)}}{2} \right)$$

$$+ (2\pi)^{-1/2} c_2 \left(1 + N \right)^m \frac{4m}{q^m} N_{H^2} \left(E + \rho^2 \right)^{-\frac{4m}{3}}.$$

(3.6)

\[
\frac{1}{2} \| v_2 - v_1 \|_{L^2(D)} \leq \left(\frac{\sqrt{E + \rho^2} e^{2\delta_3} \rho^2}{2} \right)
+ \left(1 + N \right)^m \frac{4m}{q^m} N_{H^2} \left(E + \rho^2 \right)^{-\frac{4m}{3}}
\]

(3.7)

for $E + \rho^2 \geq (1 + N)^2 \eta^2$, where L, c_2 are the constants of lemmas 2.1, 2.2 and q, r_2 are the constants of formulas (3.2), (3.5).
Let \(\tau \in (0, 1) \) and
\[
\gamma = \frac{1 - \tau}{2L}, \quad \rho = \gamma \ln \left(3 + \delta^{-1}\right).
\] (3.8)
Due to (3.7), for \(\delta \) such that
\[
E + \left(\gamma \ln \left(3 + \delta^{-1}\right)\right)^2 \geq (1 + N)^2 r_2^2
\] (3.9)
the following estimate holds:
\[
\frac{1}{2} \| v_1 - v_2 \|_{L^2(D)} \leq \frac{1}{2} \left(E + \left(\gamma \ln \left(3 + \delta^{-1}\right)\right)^2 \right)^{1/2} \left(3 + \delta^{-1}\right)^{2L} \delta
+ \frac{(1 + N)^{4n}}{q^m} \cdot \left(E + \left(\gamma \ln \left(3 + \delta^{-1}\right)\right)^2 \right)^{\frac{m}{2}},
\] (3.10)
where \(\gamma \) is defined in (3.8). Note that
\[
\left(3 + \delta^{-1}\right)^{2L} \delta = (1 + 3\delta)^{1-\varepsilon}\delta^\varepsilon \leq 4\delta \quad \text{for} \quad \delta \leq 1.
\] (3.11)
Combining (3.10), (3.11), we get that
\[
\| v_2 - v_1 \|_{L^2(D)} \leq A_1 \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1}\right)\right)^2 \right)^{1/2} \delta^\varepsilon
+ B_1 \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1}\right)\right)^2 \right)^{\frac{m}{2}},
\] (3.12)
for \(\delta \) satisfying (3.9), \(\delta \leq 1 \), and some positive constants \(A_1, B_1, \lambda \) depending on \(D \) only.
On other hand, for \(\delta \) satisfying (3.9) and \(\delta > 1 \), we have that
\[
\| v_2 - v_1 \|_{L^2(D)} \leq c_3 \| v_2 - v_1 \|_{L^2(D)} \leq c_3 2N
\]
\[
\leq 2c_3 \left(\frac{E + \gamma^2 \left(\ln \left(3 + \delta^{-1}\right)\right)^2}{r_2^2} \right)^{1/2} \delta^\varepsilon,
\] (3.13)
where
\[
c_3 = \left(\int_D 1 \, dx \right)^{1/2}.
\] (3.14)
Besides, in view of definition (1.6), we have that
\[
\| v_2 - v_1 \|_{L^2(D)} \leq \| v_2 - v_1 \|_{H^2(\mathbb{R})} \leq N_{H^2}.
\]
Hence, for \(\delta \) such that
\[
0 < E + \left(\gamma \ln \left(3 + \delta^{-1}\right)\right)^2 \leq (1 + N)^2 r_2^2
\] (3.15)
the following estimate holds:

\[\| v_2 - v_1 \|_{L^2(D)} \leq (1 + N)^{\frac{2m}{3}} N^{r^2} \left(E + r^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{\frac{m}{3}}. \]

(3.16)

Combining (3.8), (3.12), (3.13), (3.16), we obtain estimate (1.9). Note that for \(E < 0 \) the additional condition (1.10) arises, actually, from (3.15). This completes the proof of theorem 1.1.

4. Proof of theorem 1.2

This proof consists of the two parts. In the first part, using the inverse Fourier transform formula and lemmas 2.1, 2.3, we obtain the intermediate estimate (4.8) which may be of independent interest. In the second part, proceeding from estimate (4.8), we obtain estimate (1.11), where we consider separately the cases: (a) \(\delta \) satisfies (4.10) and \(\delta \leq 1 \); (b) \(\delta \) satisfies (4.10) and \(\delta > 1 \); (c) \(\delta \) satisfies (4.16).

Due to the inverse Fourier transform formula

\[v(x) = \int_{\mathbb{R}^3} e^{-i\xi \cdot x} \hat{v}(\xi) d\xi, \quad x \in \mathbb{R}^3, \]

(4.1)

we have that

\[\| v_1 - v_2 \|_{L^2(D)} \leq \sup_{x \in D} \left| \int_{\mathbb{R}^3} e^{-i\xi \cdot x} (\hat{v}_2(\xi) - \hat{v}_1(\xi)) d\xi \right| \leq \tilde{I}_1(r) + \tilde{I}_2(r) \]

(4.2)

for \(r > 0 \), where

\[\tilde{I}_1(r) = \int_{|\xi| \leq r} \left| \hat{v}_2(\xi) - \hat{v}_1(\xi) \right| d\xi, \]

\[\tilde{I}_2(r) = \int_{|\xi| > r} \left| \hat{v}_2(\xi) - \hat{v}_1(\xi) \right| d\xi. \]

Let

\[r = \tilde{q}(1 + N)^{-2/\beta} \left(E + \rho^2 \right)^{1/6}, \quad \tilde{q} = \left(\frac{8\pi c_1 c_3}{3} \right)^{-1/3}, \]

(4.3)

where \(c_1 \) is the constant of lemma 2.1 and \(c_3 \) is defined by (3.14).

Then, combining the definition of \(\tilde{I}_1 \), lemma 2.1 for \(|\xi| \leq r \) and the inequality

\[\| v_2 - v_1 \|_{L^2(D)} \leq c_3 \| v_2 - v_1 \|_{L^2(D)} \]

we get that

\[\tilde{I}_1(r) \leq \frac{4\pi r^3}{3} c_1 (1 + N)^2 \left(e^{2\rho^2} + \frac{c_3}{\sqrt{E + \rho^2}} \right) \]

\[\leq \frac{1}{2c_3} \sqrt{E + \rho^2} e^{2\rho^2} + \frac{\| v_1 - v_2 \|_{L^2(D)}}{2} \]

(4.4)

for \(\tilde{q}(1 + N)^{-2/\beta} \left(E + \rho^2 \right)^{1/6} \leq 2\sqrt{E + \rho^2} \) and \(E + \rho^2 \geq (1 + N)^2 r_0^2 \).
In addition, using (2.6), we get that
\[
\tilde{I}_2(r) \leq \tilde{c}_2 \frac{N_{W,n}}{m - 3} r^{3-m}.
\]
(4.5)

Let \(\tilde{r}_2 = \tilde{r}_2(D) \geq \eta \) be such that
\[
E + \rho^2 \geq \tilde{r}_2^2 \implies \tilde{q}(E + \rho^2)^{1/6} \leq 2\sqrt{E + \rho^2}.
\]
Using (4.2), (4.4)–(4.6) with \(r \) defined in (4.3), we obtain that
\[
\| v_2 - v_1 \|_{L^\infty(D)} \leq \frac{1}{2c_3} \sqrt{E + \rho^2} e^{2\rho \delta \tilde{L}} + \frac{\| v_1 - v_2 \|_{L^\infty(D)}}{2} + \tilde{c}_2 \frac{1 + N}{(m - 3)\tilde{q}^{m-3}} N_{W,n} \left(E + \rho^2 \right)^{-\frac{m-3}{6}},
\]
(4.7)
\[
\frac{1}{2} \| v_2 - v_1 \|_{L^\infty(D)} \leq \frac{1}{2c_3} \sqrt{E + \rho^2} e^{2\rho \delta \tilde{L}} + 4\pi \frac{(1 + N)}{(m - 3)\tilde{q}^{m-3}} N_{W,n} \left(E + \rho^2 \right)^{-\frac{m-3}{6}}
\]
(4.8)

for \(E + \rho^2 \geq (1 + N)^2 \tilde{r}_2^2 \), where \(\tilde{L} \), \(\tilde{c}_2 \) are the constants of lemmas 2.1, 2.3 and \(c_3, \tilde{q}, \tilde{r}_2 \) are the constants of formulas (3.14), (4.3), (4.6).

Let \(\tau \in (0, 1) \) and
\[
\gamma = \frac{1 - \tau}{2L}, \quad \rho = \gamma \ln \left(3 + \delta^{-1} \right).
\]
(4.9)

Due to (4.8), for \(\delta \) such that
\[
E + \left(\gamma \ln \left(3 + \delta^{-1} \right) \right)^2 \geq (1 + N)^2 \tilde{r}_2^2
\]
(4.10)

the following estimate holds:
\[
\frac{1}{2} \| v_1 - v_2 \|_{L^\infty(D)} \leq \frac{1}{2c_3} \left(E + \left(\gamma \ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{1/2} \left(3 + \delta^{-1} \right)^{2\rho \delta \tilde{L}}
\]
\[
+ 4\pi \left(1 + N \right) \frac{2}{(m - 3)\tilde{q}^{m-3}} N_{W,n} \left(E + \left(\gamma \ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{\frac{m-3}{6}},
\]
(4.11)

where \(\gamma \) is defined in (4.9). Note that
\[
\left(3 + \delta^{-1} \right)^{2\rho \delta \tilde{L}} \delta = (1 + 3\delta)^{1-\epsilon} \delta^\epsilon \leq 4\delta^\epsilon \quad \text{for } \delta \leq 1.
\]
(4.12)
Combining (4.11), (4.12), we get that

\[
\| v_2 - v_1 \|_{L^\infty(D)} \leq \tilde{A}_1 \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{1/2} \delta^{1/2} + \tilde{B}_1 \frac{(1 + N)^{2(m-3)/m} - N_{W^m}}{m - 3} \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{-m-3/6} \tag{4.13}
\]

for \(\delta \) satisfying (4.10), \(\delta \leq 1 \), and some positive constants \(\tilde{A}_1, \tilde{B}_1, \tilde{\gamma} \) depending on \(D \) only. On the other hand, for \(\delta \) satisfying (4.10) and \(\delta > 1 \), we have that

\[
\| v_2 - v_1 \|_{L^\infty(D)} \leq 2N \leq 2 \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{1/2} \delta^{1/2}. \tag{4.14}
\]

Besides, using (1.7) and (4.2), we get that

\[
\| v_2 - v_1 \|_{L^\infty(D)} \leq \int_{\mathbb{R}^d} \left(1 + |\xi|^2 \right)^{-m/2} \| v_2 - v_1 \|_{W^m(\mathbb{R}^d)} \, d\xi \\
\leq N_{W^m} \int_0^{+\infty} \frac{4\pi^2 t^2}{\left(1 + t^2 \right)^{m/2}} \, dt \leq c_4 \frac{e^{m-3}}{m - 3} N_{W^m} \tag{4.15}
\]

for some \(c_4 > 0 \). Here we used also that

\[
\int_0^{+\infty} \frac{4\pi^2 t^2}{\left(1 + t^2 \right)^{m/2}} \, dt \leq \int_0^1 \frac{4\pi^2 t^2}{\left(1 + t^2 \right)^{m/2}} \, dt + \int_1^{+\infty} \frac{4\pi^2 t^2}{t^m} \, dt \leq c_4 \left(1 + \frac{1}{m - 3} \right) \leq c_4 \frac{e^{m-3}}{m - 3}.
\]

Hence, for \(\delta \) such that

\[
0 < E + \left(\gamma \ln \left(3 + \delta^{-1} \right) \right)^2 \leq (1 + N)^2 \frac{e^2}{2}, \tag{4.16}
\]

using (4.15), we get that

\[
\| v_2 - v_1 \|_{L^\infty(D)} \leq c_4 \frac{1}{m - 3} \left(E + \gamma^2 \left(\ln \left(3 + \delta^{-1} \right) \right)^2 \right)^{-m-3/6} \tag{4.17}
\]

Combining (4.9), (4.13), (4.14) and (4.17), we obtain estimate (1.11). Note that for \(E < 0 \) the additional condition (1.12) arises, actually, from (4.16). This completes the proof of theorem 1.2.

5. Faddeev functions

Suppose that

\[
v \in L^m(D), \quad v \equiv 0 \text{ on } \mathbb{R}^3 \setminus D, \tag{5.1}
\]
where D satisfies (1.2). More generally, one can assume that

v is a sufficiently regular function on \mathbb{R}^3

with sufficient decay at infinity. \hfill (5.2)

Under assumptions (5.2), we consider the functions ψ, μ, h:

$$\psi(x, k) = e^{ik \cdot x} \mu(x, k), \quad \mu(x, k) = 1 + \int_{\mathbb{R}^3} g(x - y, k) v(y) \mu(y, k) dy,$$

$$g(x, k) = -(2\pi)^{-3} \int_{\mathbb{R}^3} \frac{e^{i\xi \cdot x}}{\xi^2 + 2k^2} d\xi,$$ \hfill (5.4)

where $x \in \mathbb{R}^3, k \in \mathbb{C}^3, \text{Im} k \neq 0$,

$$h(k, l) = (2\pi)^{-3} \int_{\mathbb{R}^3} e^{i(k - l) \cdot x} v(x) \mu(x, k) dx,$$ \hfill (5.5)

where $k, l \in \mathbb{C}^3, k^2 = l^2, \text{Im} k = \text{Im} l \neq 0$. Here, (5.4) at fixed k is considered as a linear integral equation for μ, where μ is sought in $L^\infty(\mathbb{R}^3)$.

The functions ψ, h and $G = e^{ik \cdot x}$ are known as the Faddeev functions, see [7, 8, 11, 26]. These functions were introduced for the first time in [7, 8].

In particular, we have that

$$(\Delta + k^2) G(x, k) = \delta(x),$$

$$(-\Delta + v(x)) \psi(x, k) = k^2 \psi(x, k),$$

where $x \in \mathbb{R}^3, k \in \mathbb{C}^3 \backslash \mathbb{R}^3$.

We recall also that the Faddeev functions G, ψ, h are some extension to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, h is an extension of the classical scattering amplitude).

Note also that G, ψ, h in their zero energy restriction, that is for $k^2 = 0, l^2 = 0$, were considered for the first time in [3]. The Faddeev functions G, ψ, h were, actually, rediscovered in [3].

For further considerations we will use the following notations:

$$\Sigma_E = \{ k \in \mathbb{C}^3; k^2 = k_1^2 + k_2^2 + k_3^2 = E \},$$

$$\Theta_E = \{ k \in \Sigma_E; l \in \Sigma_E; \text{Im} k = \text{Im} l \},$$

$$|k| = (|\text{Re} k|^2 + |\text{Im} k|^2)^{1/2} \text{ for } k \in \mathbb{C}^3.$$

Under assumptions (5.2), we have that:

$$\mu(x, k) \to 1 \text{ as } |k| \to \infty,$$ \hfill (5.6)

where $x \in \mathbb{R}^3, k \in \Sigma_E$;

$$\hat{\psi}(\xi) = \lim_{(k, l) \in \Theta_E, k - l = \xi} h(k, l) \text{ for any } \xi \in \mathbb{R}^3,$$ \hfill (5.7)

where $\hat{\psi}$ is defined by (2.1).

Results of the type (5.6) go back to [3]. Results of the type (5.7) go back to [11]. These results follow, for example, from equation (5.4), formula (5.5) and the following estimates:
\begin{equation}
g(x, k) = O\left(|x|^{-3}\right) \text{ for } x \in \mathbb{R}^3,
\end{equation}
uniformly in \(k \in \mathbb{C}^3 \backslash \mathbb{R}^3 \),
\begin{equation}
\| A^{-s}g(k)A^{-s} \|_{L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)} = O\left(|k|^{-3}\right), \text{ for } s > 1/2,
\end{equation}
as \(|k| \to \infty \), \(k \in \mathbb{C}^3 \backslash \mathbb{R}^3 \).

where \(g(x, k) \) is defined in (5.4), \(g(k) \) denotes the integral operator with the Schwartz kernel \(g(x - y, k) \) and \(A \) denotes the multiplication operator by the function \((1 + \|\cdot\|^2)^{1/2}\). Estimate (5.8) was given in [11]. Estimate (5.9) was formulated, first, in [22]. Concerning proof of (5.9), see [40]. In addition, estimate (5.9) in its zero energy restriction goes back to [39].

In the present work we use the following lemma:

Lemma 5.1. Let \(D \) satisfy (1.2) and \(v \) satisfy (5.1). Let \(\|v\|_{L^\infty(D)} \leq N \) for some \(N > 0 \). Then
\begin{equation}
|\mu(x, k)| \leq c_s (1 + N) \text{ for } x \in \mathbb{R}^3, \ |k| \geq r_3 (1 + N),
\end{equation}
where \(\mu(x, k) \) is the Faddeev function of (5.4) and constants \(c_s, r_3 > 0 \) depend on \(D \) only.

Lemma 5.1 is proved in section 6. This proof is based on estimates (5.8) and (5.9).

In addition, we have that (see [27, 30]):
\begin{equation}
h_2(k, l) - h_1(k, l) = (2\pi)^{-3} \int_{\mathbb{R}^3} \psi_1(x, -l)(v_2(x) - v_1(x))\psi_2(x, k) dx
\end{equation}
for \((k, l) \in \Theta_E \), \(|\text{Im } k| = |\text{Im } l| \neq 0 \),
and \(v_1, v_2 \) satisfying (5.2),
\begin{equation}
h_2(k, l) - h_1(k, l) = (2\pi)^{-3} \int_{\mathbb{R}^3} \psi_1(x, -l)\left[(\Phi_2 - \Phi_1)\psi_2(\cdot, k) \right](x) dx
\end{equation}
for \((k, l) \in \Theta_E \), \(|\text{Im } k| = |\text{Im } l| \neq 0 \),
and \(v_1, v_2 \) satisfying (1.5), (5.1),
\begin{equation}
(1.) , (5.12)
\end{equation}
where \(\psi_1, h_1 \) denote \(\psi \) and \(v \) of (5.3) and (5.5) for \(v = v_j \), and \(\hat{\Phi}_j \) denotes the Dirichlet-to-Neumann map \(\Phi \) for \(v = v_j \) in \(D \), where \(j = 1, 2 \).

In the present work we also use the following lemma:

Lemma 5.2. Let \(D \) satisfy (1.2). Let \(v_j \) satisfy (5.1), \(\|v_j\|_{L^\infty(D)} \leq N, \ j = 1, 2 \), for some \(N > 0 \). Then
\begin{equation}
|\hat{v}_1(\xi) - \hat{v}_2(\xi) - h_1(k, l) + h_2(k, l)| \leq \frac{c_r N (1 + N) \|v_1 - v_2\|_{L^\infty(D)}}{E + \rho^2}^{1/2}
\end{equation}
for \((k, l) \in \Theta_E \), \(\xi = k - l \), \(|\text{Im } k| = |\text{Im } l| = \rho \),
\begin{equation}
E + \rho^2 \geq r_3^2 (1 + N)^2,
\end{equation}
where \(E \in \mathbb{R}, \hat{v}_j \) is the Fourier transform of \(v_j \), \(h_j \) denotes \(h \) of (5.5) for \(v = v_j, (j = 1, 2) \) and constants \(c_r, r_3 > 0 \) depend on \(D \) only.

Some versions of estimate (5.13) were given in [16, 27, 30] (see, for example, formula (3.18) of [16]). Lemma 5.2 is proved in section 6.
6. Proofs of lemmas 2.1, 5.1 and 5.2

Proof of lemma 5.1. Using (5.1), (5.4) and (5.9), we get that

\[\| \mu(\cdot, k) - 1 \|_{L^2(D)} \leq \left\| \int g(\cdot - y)v(y)\mu(y, k)dy \right\|_{L^2(D)} \]
\[\leq c_7 \frac{N}{|k|} \| \mu(\cdot, k) \|_{L^2(D)}, \quad (6.1) \]

\[\| \mu(\cdot, k) \|_{L^2(D)} \leq c_1 + c_7 \frac{N}{|k|} \| \mu(\cdot, k) \|_{L^2(D)}, \quad (6.2) \]

where \(c_3 \) is defined by (3.14) and \(c_7 \) is some positive constant depending on \(D \) only. Hence, we obtain that

\[\| \mu(\cdot, k) \|_{L^2(D)} \leq 2c_3 \quad \text{for} \quad |k| \geq 2c_7N. \quad (6.3) \]

We use also that

\[\int_D \frac{1}{|x - y|^r}dy \leq \int_D 1dy + \int_{|x-y|<1} \frac{1}{|x - y|^r}dy \leq c_8^2, \quad x \in D, \quad (6.4) \]

where \(c_8 = c_3(D) > 0 \). Using (5.1), (5.4), (5.8), (6.3), (6.4), we get that

\[|\mu(x, k)| \leq 1 + \left(\int_D |g(x - y)v(y)\mu(y, k)dy \right)^{1/2} \]
\[\leq 1 + \left(\int_D |g(x - y)v(y)\mu(y, k)dy \right)^{1/2} N \| \mu(\cdot, k) \|_{L^2(D)} \]
\[\leq c_5(D)(1 + N) \quad \text{for} \quad x \in D, \quad |k| \geq 2c_7N. \quad (6.5) \]

\[\square \]

Proof of lemma 5.2. Due to (5.1), (5.11), we have that

\[h_2(k, l) - h_1(k, l) = (2\pi)^{-3} \int_D \psi_l(x, -l)(v_2(x) - v_1(x))\psi_2(x, k)dx \]
\[= (2\pi)^{-3} \int_D e^{ik-ls}\mu_1(x, -l)(v_2(x) - v_1(x))\mu_2(x, k)dx \]
\[= \hat{\gamma}_2(k-l) - \hat{\gamma}_1(k-l) + I_\Delta \quad (6.6) \]
for \((k, l) \in \Theta_E, \, |\text{Im } k| = |\text{Im } l| \neq 0,\) where

\[
I_3 = (2\pi)^{-3}\int_D \left[\mu_1(x, -l) - 1 \right] (v_2(x) - v_1(x)) \mu_2(x, k) \, dx
+ (2\pi)^{-3}\int_D \left[\mu_1(x, -l) \right] (v_2(x) - v_1(x)) \left(\mu_2(x, k) - 1 \right) \, dx
+ (2\pi)^{-3}\int_D \left[\mu_1(x, -l) - 1 \right] (v_2(x) - v_1(x)) \left(\mu_2(x, k) - 1 \right) \, dx.
\]

(6.7)

Note that, for \((k, l) \in \Theta_E, \, E \in \mathbb{R}, \, |\text{Im } k| = |\text{Im } l| = \rho\)

\[
|k| = \sqrt{\text{Re } k^2} + |\text{Im } k|^2 = \sqrt{k^2 + 2|\text{Im } k|^2} = \sqrt{E + 2\rho^2} = |l|.
\]

(6.8)

Using estimates (6.1), (6.3), (6.5) in (6.7), we get that

\[
I_3 \leq (2\pi)^{-3}\left(\| \mu_1(\cdot, -l) - 1 \|_{L^2(D)} \| v_2 - v_1 \|_{L^2(D)} \| \mu_2(\cdot, -l) \|_{L^2(D)}
+ \| \mu_1(\cdot, -l) \|_{L^2(D)} \| v_2 - v_1 \|_{L^2(D)} \| \mu_2(\cdot, -l) \|_{L^2(D)}
+ \| \mu_2(\cdot, -l) - 1 \|_{L^2(D)} \| v_2 - v_1 \|_{L^2(D)} \| \mu_2(\cdot, -l) - 1 \|_{L^2(D)} \right)
\leq 2c_3c_7N \| v_1 - v_2 \|_{L^2(D)} c_5(1 + N) + c_5(1 + N) \| v_1 - v_2 \|_{L^2(D)} 2c_3c_7N
\leq \frac{(2\pi)^3|k|}{(2\pi)^3|l|}
+ \frac{(1 + c_5(1 + N)) \| v_1 - v_2 \|_{L^2(D)} 2c_3c_7N}{\sqrt{E + 2\rho^2}}.
\]

(6.9)

for \((k, l) \in \Theta_E, \, |\text{Im } k| = |\text{Im } l| = \rho\) and \(|k| = |l| = \sqrt{E + 2\rho^2} \geq 2c_7N\).

Using estimates (6.6), (6.10) and (6.11), we get that

\[
|h_2(k, l) - h_1(k, l)| \leq c_9 \| \psi_1(\cdot, -l) \|_{L^2(\partial D)} \| \psi_2(\cdot, k) \|_{L^2(\partial D)}.
\]

(6.10)

where

\[
c_9 = (2\pi)^{-3}\int_{\partial D} \, dx.
\]

Using formula (5.3) and lemma 5.1, we find that

\[
\| \psi_j(\cdot, k) \|_{L^2(\partial D)} \leq c_5(1 + N)e^{1|\text{Im } k|}, \, j = 1, 2,
\]

for \(k \in \Sigma_E, \, |k| \geq r_1(1 + N),\)

(6.11)

where \(L = \max_{x \in \partial D}.\) Combining (6.8), (6.10) and (6.11), we get that

\[
|h_2(k, l) - h_1(k, l)| \leq c_9c_1^2(1 + N)^2e^{2r_1\rho \delta},
\]

for \((k, l) \in \Theta_E, \, \rho = |\text{Im } k| = |\text{Im } l|,
\]

\[
E + \rho^2 \geq r_1^2(1 + N)^2.
\]

(6.12)
Note that for any $\xi \in \mathbb{R}^3$ satisfying $|\xi| \leq 2\sqrt{E + \rho^2}$ (where $\rho > 0$) there exist some pair $(k, l) \in \Theta_k$ such that $\xi = k - l$ and $|\text{Im} \, k| = |\text{Im} \, l| = \rho$. Therefore, estimates (5.13) and (6.12) imply (2.2).

Acknowledgements

The authors are grateful to referees for remarks that have helped to improve the presentation.

References

[1] Alessandrini G 1988 Stable determination of conductivity by boundary measurements Appl. Anal. 27 153–72
[2] Alexeenko N V, Burov V A and Rumyantseva O D 2008 Solution of three-dimensional acoustic inverse scattering problem, II: modified Novikov algorithm Acoust. J. 54 469–82
Alexeenko N V, Burov V A and Rumyantseva O D 2008 Acoust. Phys. 54 407–19 (Engl. transl.)
[3] Beals R and Colfman R 1985 Multidimensional inverse scattering and nonlinear partial differential equations Proc. Symp. Pure Math. 43 45–70
[4] Belina L and Klibanov M V 2012 Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (New York: Springer) p 407
[5] Calderón A P 1980 On an inverse boundary problem, Seminar on Numerical Analysis and its Applications to Continuum Physics Soc. Brasileira de Matematica (Rio de Janeiro) pp 61–73
[6] di Cristo M and Rondi L 2003 Examples of exponential instability for inverse inclusion and scattering problems Inverse Probl. 19 685–701
[7] Faddeev L D 1965 Growing solutions of the Schrödinger equation Dokl. Akad. Nauk. SSSR 165 514–7
Faddeev L D 1966 Sov. Phys. Dokl. 10 1033–5 (Engl. Transl.)
[8] Faddeev L D 1974 The inverse problem in the quantum theory of scattering II, Current Problems in Mathematics vol 3 (Moscow, Russia: Akad. Nauk. SSSR Vsesojuz. Inst. Naucn. i Tehn. Informacii) pp 93–180 259
Faddeev L D 1976 J. Sov. Math. 5 334–96 (Engl. Transl.)
[9] Gel’fand I M 1954 Some problems of functional analysis and algebra Proc. Int. Congress of Mathematicians (Amsterdam) pp 253–76
[10] Hähner P and Hohage T 2001 New stability estimates for the inverse acoustic inhomogeneous medium problem and applications SIAM J. Math. Anal. 33 670–85
[11] Henkin G M and Novikov R G 1987 The ∂-equation in the multidimensional inverse scattering problem Usp. Mat. Nauk. 42 93–152
Henkin G M and Novikov R G 1987 Russ. Math. Surv. 42 109–80 (Engl. Transl.)
[12] Isaev M I 2011 Exponential instability in the Gel’fand inverse problem on the energy intervals J. Inverse Ill-Posed Probl. 19 453–73
[13] Isaev M I 2013 Instability in the Gel’fand inverse problem at high energies Appl. Anal. 92 2262–74
[14] Isaev M I 2013 Energy and regularity dependent stability estimates for near-field inverse scattering in multidimensions J. Math. 318 154 10
[15] Isaev M I 2013 Exponential instability in the inverse scattering problem on the energy interval Funkt. Anal. Prilozh. 47 28–36
Isaev M I 2013 Funct. Anal. Appl. 47 187–94 (Engl. Transl.)
[16] Isaev M I and Novikov R G 2012 Energy and regularity dependent stability estimates for the Gel’fand inverse problem in multidimensions J. Inverse and Ill-posed Probl. 20 313–25
[17] Isaev M I and Novikov R G 2013 Stability estimates for determination of potential from the impedance boundary map Algebr. Anal. 25 37–63
Isaev M I and Novikov R G 2014 St. Petersburg Math. J. 25 23–41 (Engl. Transl.)
[18] Isaev M I and Novikov R G 2013 Reconstruction of a potential from the impedance boundary map Eurasian J. Math. Comput. Appl. 1 5–28
[19] Isaev M I and Novikov R G 2013 New global stability estimates for monochromatic inverse acoustic scattering SIAM J. Math. Anal. 45 1495–504
[20] Isakov V 2011 Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map Discrete Contin. Dyn. Syst. Ser. S 4 631–40
[21] Isakov V, Nagayasu S, Uhlmann G and Wang J-N 2014 Increasing stability of the inverse boundary value problem for the Schrödinger equation Contemp. Math. 615 131–41
[22] Lavine R B and Nachman A I 1987 On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations ed M Ablowitz, B Fuchsteiner and M Kruskal (Singapore: World Scientific) pp 33–44
[23] Lavrent’ev M M, Romanov V G and Shishatskii S P 1986 Ill-posed problems of mathematical physics and analysis, Translated from the Russian by J. R. Schulenberger. Translation edited by Lev J. Leifman. Translations of Mathematical Monographs, 64 (Providence, RI: American Mathematical Society) vi+290 pp.
[24] Mandache N 2001 Exponential instability in an inverse problem for the Schrödinger equation Inverse Probl. 17 1435–44
[25] Nagayasu S, Uhlmann G and Wang J-N 2013 Increasing stability in an inverse problem for the acoustic equation Inverse Probl. 29 025013
[26] Novikov R G 1988 Multidimensional inverse spectral problem for the equation \(-\Delta \psi + (v(x) - E_0(x))\psi = 0\) Funkt. Anal. Prilozhen 22 11–22
Novikov R G 1988 Funct. Anal. Appl. 22 263–72 (Engl. Transl.)
[27] Novikov R G 1996 \(\partial\bar{\partial}\)-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation Commun. Partial Differ. Equa. 21 597–618
[28] Novikov R G 1998 Rapidly converging approximation in inverse quantum scattering in dimension 2 Phys. Lett. A 238 73–78
[29] Novikov R G 2005 The \(\partial\bar{\partial}\)-approach to approximate inverse scattering at fixed energy in three dimensions Int. Math. Res. Pap. 6 287–349
[30] Novikov R G 2005 Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential Inverse Problems 21 257–70
[31] Novikov R G 2008 The \(\partial\bar{\partial}\)-approach to monochromatic inverse scattering in three dimensions J. Geom. Anal. 18 612–31
[32] Novikov R G 2009 An effectivevization of the global reconstruction in the Gel’fand-Calderon inverse problem in three dimensions Contemp. Math. 494 161–84
[33] Novikov R G 2011 New global stability estimates for the Gel’fand–Calderon inverse problem Inverse Problems 27 015001
[34] Novikov R G 2013 Approximate Lipschitz stability for non-overdetermined inverse scattering at fixed energy J. Inverse Ill-Posed Probl. 21 813–23
[35] Novikov R and Santacesaria M 2010 A global stability estimate for the Gel’fand–Calderon inverse problem in two dimensions J. Inverse Ill-Posed Probl. 18 765–85
[36] Päivärinta L and Zubeldia M The inverse Robin boundary value problem in a half-space (arXiv:1311.0947)
[37] Santacesaria M 2013 Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions Appl. Anal. 92 1666–81
[38] Santacesaria M A Hölder-logarithmic stability estimate for an inverse problem in two dimensions J. Inverse Ill-Posed Probl. (doi:10.1515/jiip-2013-0055)
[39] Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann. Math. 125 153–69
[40] Weder R 2013 Generalized limiting absorption method and multidimensional inverse scattering theory Math. Methods Appl. Sci. 92 1666–81