STABILITY OF HYDRAULIC SHOCK PROFILES

ZHAO YANG AND KEVIN ZUMBRUN

Abstract. We establish nonlinear $H^2 \cap L^1 \rightarrow H^2$ stability with sharp rates of decay in L^p, $p \geq 2$, of general hydraulic shock profiles, with or without subshocks, of the inviscid Saint-Venant equations of shallow water flow, under the assumption of Evans-Lopatinsky stability of the associated eigenvalue problem. We verify this assumption numerically for all profiles, giving in particular the first nonlinear stability results for shock profiles with subshocks of a hyperbolic relaxation system.

Keywords: shallow water equations; relaxation shock; subshock; Evans-Lopatinsky determinant; hyperbolic balance laws.

2010 MSC: 35B35, 35L67, 35Q35, 35P15.

Contents

1. Introduction 2
 1.1. Main results 3
 1.2. Discussion and open problems 4
2. Hydraulic shock profiles of Saint-Venant equations 6
3. Majda’s type coordinate change and perturbation equations 11
4. The Evans-Lopatinsky determinant 12
5. Integral kernels and representation formula 16
6. Resolvent estimates 21
 6.1. High Frequency analysis 21
 6.2. Pointwise estimates on resolvent kernels 23
7. Pointwise estimates on Green kernels 27
8. Linear stability 36
 8.1. Linear orbital stability estimates 36
 8.2. Linear phase estimates 37
9. Short-time existence and nonlinear damping estimate 39
 9.1. Preliminaries 40
 9.2. Energy estimates 42
10. Nonlinear stability 44
 11. Numerical verifications 46
 11.1. Numerical calculation of the Evans-Lopatinsky determinant 46
 11.2. Numerical calculation of the Evans function (smooth case) 46
 11.3. High-frequency stability 47
 11.4. Verification of mid- and low-frequency stability 48
 11.5. Time evolution of perturbed hydraulic shock profile 49
Appendix A. Decomposition map 50
Appendix B. Auxiliary estimates 50

Date: October 18, 2018.

Research of Z.Y. was partially supported by the Hazel King Thompson Summer Reading Fellowship, a Mathematics Department Research Assistantship, and the College of Arts and Sciences Dissertation Year Fellowship.

Research of K.Z. was partially supported under NSF grants no. DMS-1400555 and DMS-1700279.
1. INTRODUCTION

In this paper, by a combination of rigorous analysis and numerical verification, we establish nonlinear stability of nondegenerate hydraulic shock profiles of the inviscid Saint-Venant equations for inclined shallow water flow, across their entire domain of existence, in particular including large-amplitude profiles containing subshock discontinuities. Specifically, assuming spectral stability in the sense of Majda-Erpenbeck [Ma, Er1, Er2, HuZ, Z1], we prove linear and nonlinear $H^2 \cap L^1 \rightarrow H^2$ asymptotic orbital stability, with sharp rates of decay in L^p, $p \geq 2$. We then verify the spectral stability condition numerically, by exhaustive Evans-Lopatinsky/Evans function computations.

The inviscid Saint-Venant equations

\begin{align}
\partial_t h + \partial_x q &= 0, \\
\partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{h^2}{2F^2} \right) &= h - \frac{|q|q}{h^2},
\end{align}

here given in nondimensional form, model inclined shallow water flow, where h is fluid height; $q = hu$ is total flow, with u fluid velocity; and $F > 0$ is the Froude number, a nondimensional parameter depending on reference height/velocity and inclination. Among other applications, they are commonly used in the hydraulic engineering literature to describe flow in a dam spillway, channel, or etc.; see, e.g., [BM, Je, Br1, Br2, Dr, JNRYZ] for further discussion.

Equations (1.1) form a hyperbolic system of balance laws [La, Bre, Da], with the first equation representing conservation of fluid and the second balance between change of momentum and the opposing forces of gravity (h) and turbulent bottom friction ($-h^{-2}|q|q$). More specifically, it has the form of a 2×2 relaxation system [W, L, Bre, Da], with associated formal equilibrium equation

\begin{align}
\partial_t h + \partial_x q_e(h) &= 0,
\end{align}

where $q_e(h) := h^{3/2}$ is the value of q for which gravity and bottom forces cancel. That is, near-equilibrium behavior is formally modeled by a scalar conservation law, or generalized (inviscid) Burgers equation. On the other hand, short-time, or transient, behavior is formally modeled by the first-order part of (1.1), with zero-order forcing term $h - h^{-2}q^2$ ($q > 0$) set to zero; for later reference, we note that this coincides with the equations of isentropic γ-law gas dynamics with $\gamma = 2$ [Bre, Dal, Sm].

As discussed, e.g., in [W, L, JK], the formal approximation (1.2) is valid for general 2×2 relaxation systems in the vicinity of an equilibrium point $(h, q) = (h_0, q_e(h_0))$ provided there holds the subcharacteristic condition that the characteristic speed $q'_e(h_0)$ of (1.2) lies between the characteristic speeds of (1.1). This is also the condition for hydrodynamic stability, or stability under perturbation of a constant equilibrium flow $(h, q)(x, t) \equiv (h_0, q_e(h_0))$: for the Saint-Venant equations, the classical Froude number condition of Jeffreys [Je],

\begin{align}
F < 2.
\end{align}

In this regime, one may expect persistent asymptotically-constant traveling wave solutions

\begin{align}
(h, q)(x, t) &= (H, Q)(x - ct), \\
\lim_{z \to -\infty} (H, Q)(z) &= (H_L, Q_L), \\
\lim_{z \to -\infty} (H, Q)(z) &= (H_R, Q_R),
\end{align}

2
analogous to shock waves of (1.2), known as relaxation shocks, or relaxation profiles; in the context of (1.1), we shall call these hydraulic shock profiles. In the complementary regime $F > 2$, one expects, rather, complex behavior and pattern formation [JK]INRYZ[BINRZ].

Indeed, we have the following description of existence (Section 2). Here and elsewhere, let $[h] = h(x^+) - h(x^-)$ of a quantity h across a discontinuity located at x.

Proposition 1.1. Let (H_L, H_R, c) be a triple for which there exists an entropy-admissible shock solution in the sense of Lax [La] with speed c of (1.2) connecting left state H_L to right state H_R, i.e., $H_L > H_R > 0$ and $c[H] = [q_s(H)]$. Then, there exists a corresponding hydraulic shock profile (1.4) with $Q_L = q_s(H_L)$ and $Q_R = q_s(H_R)$ precisely if $0 < F < 2$. The profile is smooth for $H_L > H_R > H_L \frac{2F^2}{1+2F+\sqrt{1+4F^2}}$, and nondegenerate in the sense that c is not a characteristic speed of (1.1) at any point along the profile. For $0 < H_R < H_L \frac{2F^2}{1+2F+\sqrt{1+4F^2}}$, the profile is nondegenerate and piecewise smooth, with a single discontinuity consisting of an entropy-admissible shock of (1.1). At the critical value $H_R = H_L \frac{2F^2}{1+2F+\sqrt{1+4F^2}}$, H_R is characteristic, and there exists a degenerate profile that is continuous but not smooth, with discontinuous derivative at H_R. For $F > 2$, there exist smooth “reverse shock” profiles connecting the endstates in the opposite direction $H_R \rightarrow H_L$, precisely when $H_R < H_L < H_L \frac{1+2F}{\sqrt{1+4F^2}}$. In the degenerate case $H_L = H_L \frac{1+2F}{\sqrt{1+4F^2}}$, H_L is characteristic and there exists an uncountable family of degenerate entropy-admissible piecewise smooth homoclinic profiles connecting H_L to itself, but no smooth profiles. In all cases, these are the only entropy-admissible piecewise smooth, asymptotically-constant traveling waves of (1.1), and $c, Q > 0$.

This corresponds to the picture for general relaxation systems [W]L[YoZ][MZ1], wherein smooth relaxation profiles are known to exist for small-amplitude equilibrium shocks near equilibrium points that are stable as constant solutions, but larger-amplitude profiles contain discontinuities, or “subshocks”, if they exist at all. Meanwhile, profiles initiating from an unstable equilibrium typically connect endstates in a reverse direction corresponding to a non-entropy admissible shock of (1.2) [YoZ] (and in any case cannot be stable as solutions of the associated relaxation system [MZ1]MZ2). Accordingly, we focus hereafter on the case $0 < F < 2$ for which hydraulic shock profiles exist in the proper direction, and examine the stability of such profiles as solutions of (1.1).

1.1. Main results. We first recall that system (1.1) is of classical Kawashima class, meaning that it is of symmetrizable hyperbolic type, with a symmetrizer that simultaneously symmetrizes the linearized zero-order relaxation (or “balance”) term; see Observation 1.1. By the analytical results of [MZ1]MZ3], therefore, we obtain immediately spectral, linearized, and nonlinear orbital stability with sharp rates of smooth hydraulic shock profiles of sufficiently small amplitude, for any fixed endstate H_L. Moreover, by [MZ2], we obtain the same linearized and nonlinear stability results for smooth profiles of arbitrary amplitude, provided they are spectrally stable in the sense of a standard Evans function condition, and nondegenerate in the sense that hyperbolic characteristics do not coincide along the profile with the speed of the wave. Hence, the smooth nondegenerate case may be treated by existing analysis, reducing to a standard numerical Evans function study of intermediate-amplitude waves, as carried out for example in [BHRZ]BH[Z]BLcZ]BLZ[HLYZ1].

We focus here on the complementary large-amplitude case of nondegenerate shock profiles containing subshocks, or $0 < H_R < H_L \frac{2F^2}{1+2F+\sqrt{1+4F^2}}$. The degenerate case $H_R = H_L \frac{2F^2}{1+2F+\sqrt{1+4F^2}}$ we do not treat. For perturbations satisfying appropriate compatibility conditions at the shock, in particular for perturbations supported away from the shock, short-time H^s existence follows by the analysis of Majda [Ma][Mc], as noted in [JLW]. However, so far as we know, there were no results up to now on large-time behavior or existence under perturbation of relaxation profiles containing subshocks. Our main result is the following theorem establishing global existence and nonlinear
asymptotic orbital stability in this case, with sharp rates of decay, assuming spectral stability in the sense of an Evans-Lopatinsky condition analogous to that of the smooth profile case.

Theorem 1.2. For \(0 < F < 2\) and \(0 < H_R < H_L \frac{2F^2}{4F + \sqrt{1 + 4F}}\), let \(\mathbf{W} = (H, Q)\) be a hydraulic shock profile (1.4), and \(v_0\) be an initial perturbation supported away from the subshock discontinuity of \(\mathbf{W}\) of norm \(\varepsilon\) sufficiently small in \(H^s \cap L^1\), \(s \geq 2\). Moreover, assume that \(\mathbf{W}\) is spectrally stable in the sense of the Evans-Lopatinsky condition defined in Section 2. Then, for initial data \(W_0 := \mathbf{W}_0 + v_0\), there exists a global solution of (1.1), with a single shock located at \(ct - \eta(t)\), and \(H^s\) to either side of the shock, satisfying for \(2 \leq p \leq \infty\):

\[
\|\tilde{W}(\cdot, t) - \mathbf{W}(\cdot - ct + \eta(t))\|_{H^s} \leq C\varepsilon(1 + t)^{-1/4},
\]

\[
\|\tilde{W}(\cdot, t) - \mathbf{W}(\cdot - ct + \eta(t))\|_{L^p} \leq C\varepsilon(1 + t)^{-1/2(1-1/p)} ,
\]

\[
|\eta(t)| \leq C\varepsilon(1 + t)^{-1/2},
\]

\[
|\eta(t)| \leq C\varepsilon \log(2 + t).
\]

Estimates (1.5) (i)-(iii) may be recognized as exactly the same as those given for smooth profiles in [MZ2] Thm. 1.2, but with \(\eta\) now an exact shock location forced by the presence of a discontinuity rather than an approximate location designed to optimize errors as in the smooth case. Estimate (1.5) (iv) is a slightly degraded version of bound \(|\eta(t)| \leq C\varepsilon\) of [MZ2]. We complement these results by systematic numerical studies verifying the Evans-Lopatinsky condition for nondegenerate hydraulic shock profiles containing subshocks, and the Evans condition for nondegenerate smooth profiles, across their full domain of existence. Together with our analytical results, this yields linearized and nonlinear orbital stability of (all) nondegenerate hydraulic shock profiles of (1.1).

1.2. Discussion and open problems. Large amplitude hydraulic shock profiles are physically interesting from the point of view of dam break or river bore phenomena. Our results bear on the question whether the Saint-Venant equations (1.1) typically used in hydraulic engineering can model such phenomena. An interesting question for further investigation is whether the modeling of additional physical effects such as viscosity or capillarity become important at large amplitudes, radically changing behavior, or whether the solutions studied here indeed accurately capture behavior even in the discontinuous regime. We mention also the recent introduction in [RG1] [RG2] of vorticity to model (1.1), yielding effectively a \(3 \times 3\) relaxation model with scalar equilibrium system. In the unstable, pattern formation regime analogous to \(F > 2\) for (1.1), this augmented model is seen to give much closer correspondence in wave form for periodic roll wave patterns to that seen in experiment in [Br1] [Br2]. A very interesting open problem would be to study existence and stability of hydraulic shocks for this more complicated model, in particular comparing results to Saint-Venant profiles and experiment.

On the mathematical side, our main contribution here is the treatment for the first time of non-linear stability of relaxation profiles containing subshocks, a topic that so far as we know has up to now not been addressed. (Though see [DR1] [DR2] for related, contemporary, studies of stability of discontinuous solutions of scalar balance laws.) Indeed, at the outset it is perhaps not clear what is the proper framework in which this problem should be approached, as smooth and discontinuous shocks have been treated in the literature by quite different and at first sight incompatible techniques. However, a useful bridge between these two (continuous and discontinuous) domains comes from the study of smooth boundary layer solutions of initial boundary value problems in [YZ] [NZ] and the treatment of piecewise smooth detonation waves in [JLW], in particular the suggestive use of the “good unknown” to separate interior and boundary problems in a convenient way.

Combining these two approaches allows us to formulate the linearized problem by an inverse Laplace transform representation similar to that appearing for smooth profiles in [Zh] [MZ1] [YZ] [NZ], and thereby to obtain detailed pointwise Green function bounds by analogous (stationary
phase, or Riemann saddlepoint) techniques. This allows us as in the smooth profile case to set up a nonlinear iteration based on contraction mapping, for which the nonlinear source loses one derivative. The nonlinear argument is then closed by an energy-based “nonlinear damping” estimate on the half-line modifying the corresponding large-amplitude estimate of \[\text{MZ2}\] on the whole line, which controls higher Sobolev norms in terms of \(L^2\) and an exponentially decaying multiple of the initial high norm, thus closing the iteration. The key new ingredient in the half-line argument is the observation that the hyperbolic Friedrichs symmetrizer \(A^0\) used in the symmetric hyperbolic part of the energy estimates may be chosen so that the boundary conditions become maximally dissipative, a special feature of the one-dimensional case.

We note that all of our nonlinear arguments extend to nondegenerate piecewise smooth relaxation shocks of general \(n \times n\) systems with scalar equilibrium systems, in particular to the \(3 \times 3\) Richard-Gavrilyuks (RG) model of \[\text{RG1, RG2}\]. Thus, the stability problem in that case reduces to an examination of the existence and spectral stability problems. For \(n \times n\) relaxation systems with \(r \times r\) equilibrium systems, \(r > 1\), Lax shocks of the equilibrium system admit \(r - 1 > 0\) outgoing characteristic modes, leading to new, algebraically-decaying contributions from nonlinear source terms in the nonlinear Rankine-Hugoniot equations for which our our current \(L^p\)-based nonlinear iteration scheme appears not to close. However, this should be treatable under further localization conditions on the initial perturbation by a more detailed pointwise analysis as in \[\text{HoZ, RaZ, HRZ}\].

Our estimate \[\text{(1.5)(iv)}\] on the phase \(\eta(t)\) just misses being bounded, featuring a logarithmic growth factor coming from trace contributions not present in the smooth case, of order

\[
\int_0^t |v(s,0)|^2 ds \lesssim \int_0^t \frac{1}{1 + s} ds = \log(1 + t).
\]

It is an interesting question whether this logarithmic factor is a technical artifact that could be removed in Theorem \[\text{(1.2)}\] by additional bounds—perhaps, for example, Strichartz type estimates accounting for transversality of propagators— or a real difference in behavior between smooth and nonsmooth case.

With additional localization of the initial data, a pointwise analysis as in \[\text{HoZ, RaZ, HRZ}\] should give faster decay of the trace of \(v\) at the subshock location \(x = 0\), yielding integrability of \[\text{(1.6)}\] on \((0, +\infty)\) and a uniform bound on \(\eta\). Though we do not show it here, in the present case for which the equilibrium behavior corresponds to a scalar shock, given the \(H^s\) bounds established in Theorem \[\text{(1.2)}\] the weighted norm method of Sattinger \[\text{Sa}\] can be applied in straightforward fashion to yield exponential decay of \(|v(t)|_{L^\infty}\), assuming spatial exponential decay on the initial perturbation. This yields both uniform bounds and time-exponential convergence of the phase to a limiting value, giving the stronger results of time-exponential phase-asymptotic orbital stability and bounded nonlinear stability.

An interesting new issue in the nonsmooth case is compatibility at time \(t = 0\) of Rankine-Hugoniot conditions and initial perturbation. In Figure \[\text{I}\] we display the results of numerical time-evolution of a perturbed subshock-type profile, first with initial perturbation supported away from the subshock (panels (a)-(d)) and second with piecewise smooth initial perturbation supported at the subshock (panels (e)-(h)) and incompatible with the Rankine-Hugoniot conditions at time \(t = 0\). In both cases, stability is clear; however, in the second experiment one can see clearly an additional shock discontinuity originating from the subshock, generated by initial incompatibility.

An interesting open problem would be to analyze the second case by the introduction/tracking of this additional shock wave in the nonlinear Ansatz, “relieving” incompatibility at \(t = 0\). More generally, it would be interesting to treat lower regularity perturbations than piecewise \(H^2\), for example in piecewise Lipshitz class by a paradifferential damping estimate following \[\text{Me}\]. To treat perturbations admitting shocks would also be interesting, but appears to require new ideas. Likewise, in the setting of more general balance laws not admitting a damping estimate, it is
Figure 1. Time-evolution study using CLAWPACK [C1, C2], illustrating stability under perturbation of a discontinuous hydraulic shock. In (a) we show a perturbed profile with C^∞ “bump-type” perturbation supported on an interval away from the subshock. In (b) and (c) we show the solution at intermediate times $T = 0.5$ and 1.0 of the waveform in (a) after evolution under (1.1); stability and smoothness away from the subshock are clearly visible. In (d) we show the solution at time $T = 2.5$, exhibiting convergence to a shift of the original waveform (slightly compressed in the horizontal direction due to scaling of the figure). In (e) we show a perturbed profile with perturbation supported at the subshock. In (f) and (g) we show the solution at times $T = 0.1$ and 0.5 of the waveform in (e) after evolution under (1.1); stability is again clear, but one can see also an additional shock discontinuity emerging from the subshock and propagating downstream, caused by incompatibility of the data with Rankine-Hugoniot conditions at time 0. In (h), we show the solution at time $T = 2.0$, exhibiting convergence to a shift of the original waveform.

not clear how to proceed even for the case of arbitrarily smooth compatible initial perturbations. As noted in [JLW], for example, the time-asymptotic stability of piecewise smooth Zeldovich–von Neumann–Doering (ZND) detonations is an important open problem.

Finally, it would be very interesting to attack by techniques like those used here the open problem cited in [JNRYZ] of nonlinear time-asymptotic stability of discontinuous periodic “roll wave” solutions of (1.1) or its 3×3 analog (RG) in the hydrodynamically unstable regime $F > 2$. It would appear that a Bloch wave analog of the linear analysis here would apply also for periodic waves, similar to that of [JZN], [JNRYZ] in the viscous periodic case; for the requisite Bloch wave framework for discontinuous waves, see [JNRYZ]. A difficulty is the apparent lack of a nonlinear damping estimate given instability of constant states. However, as suggested by L. M. Rodrigues [R], one may hope that an “averaged” energy estimate using “gauge functions”, or specially chosen weights generalizing the Goodman- and Kawashima-type estimates here, as used to obtain damping estimates in the viscous case in [RZ] might yield a nonlinear damping estimate here as well.

Acknowledgement. We thank L. Miguel Rodrigues, Pascal Noble, and Mat Johnson for numerous enlightening discussions on the Saint-Venant equations and shallow water flow. In particular, discussions in the course of our collaboration [JNRYZ] on the parallel case of discontinuous periodic waves, and especially ideas of Rodrigues [R] toward the associated nonlinear stability problem, were crucial in our approach to the simpler case of discontinuous shock profiles treated here. Thanks also to Alexei Mailybaev and Dan Marchesin [MM] for discussions on singular detonation waves in relaxation models for combustion that were the immediate impetus for our study of hydraulic shock.

1 Though, note the degeneracy at $\lambda = 0$ of spectral curves of roll wave solutions of (1.1) described in [JNRYZ] Rmks. 2.1 and 5.1, making this case more complicated.
profiles. Thanks to University Information Technology Services (UIT) division from Indiana University for providing the Karst supercomputer environment in which most of our computations were carried out. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc.

2. HYDRAULIC SHOCK PROFILES OF SAINT-VENANT EQUATIONS

We begin by categorizing the family of hydraulic shock profiles, or piecewise smooth traveling wave solutions of (1.1) with discontinuities consisting of entropy-admissible shocks. For closely related analysis, see the study of periodic “Dressler” waves in [JNRYZ] §2; as discussed in Remark 2.3 this corresponds to the degenerate case $H_s = H_L$, $F > 2$ in our study here. As the first-order derivative part of (1.1) comprises the familiar equations of isentropic gas dynamics, entropy-admissible discontinuities are in this case Lax 1- or 2-shocks satisfying the Rankine-Hugoniot jump conditions and Lax characteristic conditions [La Sm].

Consider the Saint-Venant equations (1.1)

$$
\partial_t h + \partial_x q = 0, \quad \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{h^2}{2F^2} \right) = h - \frac{|q|q}{h^2}.
$$

We seek a traveling wave solution $(h, q) = (H, Q)(x - ct)$ with c constant and $(H(\xi), Q(\xi))$ smooth with

$$
\lim_{\xi \to -\infty} (H, Q)(\xi) = (H_L, Q_L), \quad \lim_{\xi \to +\infty} (H, Q)(\xi) = (H_R, Q_R),
$$

with Lax 1- or 2 shocks at each discontinuity. In smooth regions, we have therefore

$$
-cH' + (Q)' = 0, \quad -cQ' + \left(\frac{Q^2}{H} + \frac{H^2}{2F^2} \right)' = H - \frac{|Q|Q}{H^2},
$$

and at sub-shock discontinuities ξ_j, we have the Rankine-Hugoniot jump conditions

$$
-c[H] + [Q] = 0, \quad -c[Q] + \left[\frac{Q^2}{H} + \frac{H^2}{2F^2} \right] = 0,
$$

where $[f]$ denotes the jump $f(\xi_j^+) - f(\xi_j^-)$ of a quantity f at discontinuity ξ_j.

Our first observation is the standard one, true for general $n \times n$ relaxation systems of block structure $w_t + F(w)_x = \begin{pmatrix} 0 \\ r(w) \end{pmatrix}$, that (H_L, Q_L) and (H_R, Q_R) must necessarily be equilibria, with the triple (H_L, H_R, c) satisfying the Rankine-Hugoniot conditions

$$
c[H] = [q_s(H)] := [H^{3/2}]
$$

of the reduced equilibrium system (1.2), i.e., a (not necessarily entropy-admissible) shock of (1.2).

Integrating the first equation of (2.2), and combining with the first equation of (2.3) gives

$$
Q - cH \equiv \text{constant} =: -q_0.
$$

Meanwhile, taking $(H', Q') \to 0$ in (2.2)(ii), we find that H_L and H_R must be equilibria of the relaxation system (1.1), satisfying $Q_{L,R} = q_s(H_{L,R}) = H_{L,R}^{3/2}$; in particular, note therefore that $Q_L, Q_R > 0$ in the physical regime $H > 0$ that we consider. Substituting $Q_{L,R} = q_s(H_{L,R})$ into (2.5) then gives (2.4). As $q_s(h) = h^{3/2}$ is convex, there are at most two such equilibrium solutions of (2.4) for a given value of q_0, hence, for each possible left state (H_L, Q_L) of (2.1), and choice of speed c, there is at most one possible right state $(H_R, Q_R) \neq (H_L, Q_L)$. Moreover, for such a nontrivial right state to exist, since then $c = [q_s(h)]/[h]$ is given by the Rankine-Hugoniot conditions for (1.2), c must necessarily be positive; from now on, therefore, we take $c > 0$.

7
Next, substituting (2.5) in the second equation of (2.2), we obtain the scalar ODE

\[(2.6) \quad \left(\frac{-q_0^2}{H^2} + \frac{H}{F^2}\right) H' = H - |-q_0 + cH|(-q_0 + cH)/H^2\]

and, substituting in the second equation of (2.3), the scalar jump condition

\[(2.7) \quad \left[\frac{q_0^2}{H} + \frac{H^2}{2F^2}\right] = 0.\]

Since \(-q_0 + cH = Q\) is monotone in \(H\), and (as noted just above) is positive at equilibria \((H_L, Q_L)\) and \((H_R, Q_R)\), we have that \(Q\) is positive on \([H_L, H_R]\) and so we may drop the absolute values in (2.6) in this regime, and in the larger regime \(Q > 0\), replacing (2.6) by

\[\left(\frac{-q_0^2}{H^2} + \frac{H}{F^2}\right) H' = \frac{H^3 - (-q_0 + cH)^2}{H^2}.\]

As the righthand side is cubic, with zeros at equilibria \(H_L\) and \(H_R\), it factors as \((H - H_R)(H - H_L)(H - H_3)\), where \(H_3\) is a third root that—since as observed above, there can be at most two—is not an equilibrium of (1.1). It follows that \(Q_3 = -q_0 + cH_3\) must be negative, or else we would have a contradiction; thus, \(H_3 < \min\{H_L, H_R\}\); this gives in passing \(q_0 > 0\).

Writing (1.1) in abstract form as \(w_t + F(w)_x = (0, r(w))^T\), so that (2.2) becomes \((dF(w) - cI)W' = (0, r(W))^T\), we see that (2.2) is singular precisely when the eigenvalues \(\alpha_{\pm}\) of \((dF - cI)\) take value 0, where (see, e.g., [Sm]) \(\alpha_{\pm} = Q/H \pm \sqrt{H/F^2 - c}\), hence by (2.5)

\[(2.8) \quad \alpha_{\pm} = -q_0/H \pm \sqrt{H/F},\]

along a shock profile. As \(q_0 > 0\), this happens precisely at the “sonic point” where \(\alpha_- = 0\), i.e., the shock speed agrees with a characteristic speed of the hyperbolic relaxation system, or, solving:\(-q_0^2/H^2 + H/F^2 = 0\). Comparing with (2.6), we see that the scalar ODE becomes singular at the same value of \(H\). Following [JNRYZ], we denote this point as

\[(2.9) \quad H_s := (q_0F)^{2/3}.\]

Evidently along the profile, the signs of \(\alpha_{\pm}\) are constant for \(H\) to the right and left of \(H_s\). Taking \(H \to +\infty\), we see that

\[(2.10) \quad \alpha_- < 0 < \alpha_+ \text{ for } H > H_s \text{ and } \alpha_- < \alpha_+ < 0 \text{ for } H < H_s.\]

Recalling the Lax characteristic conditions [La, Sm], we find that the only possible entropy-admissible shock connections are Lax 2-shocks from points \(H_L > H_s\) to points \(H_R < H_s\), i.e., shocks for which \(\alpha_- (H_L) < 0 < \alpha_+ (H_L)\) and \(\alpha_- (H_R), \alpha_+ (H_R) < 0\). In particular, any such discontinuities are decreasing in \(H\), with, moreover, \(H_R < H_s < H_L\).

We find it convenient to introduce a fifth point \(H_s\), defined as satisfying the scalar jump condition (2.7) (and thus, along the profile, by (2.5), the full jump conditions (2.3)) when paired with value \(H_R\). Combining all information, we have

\[(2.11) \quad H_L - \frac{Q_L^2}{H_L^2} = 0, \quad H_R - \frac{Q_R^2}{H_R^2} = 0, \quad Q_L - cH_L = Q_R - cH_R = -q_0, \quad \frac{q_0^2}{H_s} + \frac{H_s^2}{2F^2} = \frac{q_0^2}{H_R} + \frac{H_R^2}{2F^2}.\]
Setting $\nu := \sqrt{\frac{H^2}{H'}} > 1$ and solving for c, q_0, H_* yields

$$c = \frac{\nu^2 + \nu + 1}{\nu + 1} \sqrt{H'}, \quad q_0 = \frac{\nu^2}{\nu + 1} \sqrt{H'^3}. \quad H_* = \begin{cases}
\frac{H_R}{-\nu - 1 + \sqrt{8F^2\nu^4 + \nu^2 + 2\nu + 1}} H_R \quad \text{if } H_R < H_L < H_* \text{ (entropy-admissible)} \\
\frac{H_R}{-\nu - 1 - \sqrt{8F^2\nu^4 + \nu^2 + 2\nu + 1}} H_R \quad \text{if } H_L < H_* < H_R
\end{cases}
$$

from which we keep the nontrivial physically relevant (positive) solution

$$H_* := \frac{-\nu - 1 + \sqrt{8F^2\nu^4 + \nu^2 + 2\nu + 1}}{2(\nu + 1)} H_R. \quad (2.13)$$

Substituting c, q_0 in (2.6) now yields

$$H' = \frac{F^2(H - H_L)(H - H_R)(H - H_3)}{(H - H_*)(H^2 + HH_L + H^2)} \quad (2.14)$$

where

$$H_3 := \frac{\nu^2}{\nu^2 + 2\nu + 1} H_R, \quad H_* := \left(\frac{F \nu^2}{\nu + 1}\right)^\frac{2}{\nu} H_R. \quad (2.15)$$

Since $\nu > 1$, we have $H_3 < H_R < H_L$, recovering our earlier observation on the ordering of roots H_j.

Our analysis of hydraulic shock profiles is based on the following case structure.

Lemma 2.1. With the notation above:

i. $H_* > H_R$ is equivalent to $F\nu^2 - \nu - 1 > 0$, or $H_L > H_R \frac{1 + 2F + \sqrt{1 + 4F}}{2F}$. It is always satisfied when $F > 2$.

ii. $H_* < H_L$ is equivalent to $F < \nu^2 + \nu$, or $H_L > H_R \frac{1 + 2F - \sqrt{1 + 4F}}{2F}$. It is always satisfied when $F < 2$, as is $H_* < H_L$.

Proof. The quadratic conditions in ν follow immediately from (2.15), whence the boundaries in terms of H_L and H_R follow by the quadratic formula. Likewise, applying (2.13), we find that $H_* < H_L$ is equivalent to $2F^2 < \nu^2 + \frac{1}{\nu^2} + 2\nu + \frac{1}{\nu} + 2$, which is always satisfied for $F < 2$, by the inequality $z + 1/z \geq 2$ for $z > 0$. \(\Box\)

Lemma 2.2. With the notation above, H_* lies between H_R and H_*, and there is an admissible Lax 2-shock between the larger of H_*, H_R and the smaller.

Proof. The function $\tilde{q}(H) := q_0^2/H + H^2/2F^2$ appearing in the scalar jump condition $[\tilde{q}] = 0$ is convex, with $c'H(H) = -q_0^2/H^2 + H/F^2$ equal to the prefactor in the lefthand side of (2.6), with $c'(H_*) = 0$ uniquely specifying H_*. By convexity, $c(H_*) = c(H_R)$ implies by Rolle’s theorem that $c'(H_*)$ and $c'(H_R)$ have opposite signs, with $c' > 0$ at the larger of the two points, and c' vanishes somewhere between, hence $H_* \in (H_*, H_R)$. Recalling (2.10), we see that there is then an (entropy-admissible) Lax 2-shock connecting the larger of H_*, H_R to the smaller. \(\Box\)

Proof of Proposition [6]. As noted in the discussion above, in all cases necessarily $c > 0$ for any shock profile, and $Q > 0$ for $H \geq H_R$. Since smooth solutions of (2.14) cannot cross equilibrium H_R, and entropy admissible shocks can only decrease H, we have that connecting profiles must satisfy $H > H_R$, and thus $Q > 0$, for any choice of parameters.

(Case $F < 2$) When $0 < F < 2$, $H_L > H_R \frac{1 + 2F + \sqrt{1 + 4F}}{2F^2}$, then $H_R < H_* < H_*$, and so, by the factorization (2.14), $H' < 0$ on (H_*, H_L), and thus on (H_*, H_L). It follows that there exist
discontinuous traveling wave solutions as depicted in Figure 2(a), consisting of a smooth piece emanating from the equilibrium of (2.6) at H_L and continuing down to H_s, followed by a Lax u-shock from H_s to H_R. However, there does not exist a smooth profile, as the solution emanating from H_L cannot cross the singular point H_s to reach H_R; indeed, one may see by the factorization (2.14) that $H' > 0$ on (H_R, H_s).

In the limiting case when $H'_s = H_R \frac{1+2F+\sqrt{1+4F}}{2F}$, for which $H_s = H_s = H_R$, there exist piecewise smooth traveling wave solutions as depicted in Figure 2(b), with discontinuous derivative at the endpoint $H_R = H_s$.

In the small amplitude region $H_L < H_s < H_R \frac{1+2F+\sqrt{1+4F}}{2F}$, for which $H_s < H_s < H_R$, the corresponding smooth traveling wave profile does not pass the singular point, and so there exist smooth traveling wave solutions as depicted in Figure 2(c). However, there exist no solutions containing shocks, as these would necessarily jump below $H_s < H_R$, and so the solution could never return past H_s, since $H' < 0$ on (H_s, H_s), block approach by smooth solution, and since any admissible discontinuities can only decrease the value of H. See Figure 3 (b) for domain of existence for traveling waves.

(Case $F > 2$.) The case $F > 2$ goes similarly. When $H_s > H_L$, we have, examining the factorization (2.14) and using $F > 2$, that $H' > 0$ on (H_R, H_L), and so there exists a smooth “reverse” connection from H_R to H_L. as $H_R < H_s < H_s$, we have in this case that also $H_s > H_L$, and, since also $H' < 0$ on (H_L, H_s), there is no way to reach H_s starting from either H_R or H_s, and so there can be no discontinuous profile connecting equilibria H_L and H_R in either direction. In the degenerate case $H_L = H_s$, we find that the factor $(H - H_s)$ in the singular prefactor $-\frac{2}{J^2}H^2 + H/F^2$ on the lefthand side of (2.14) exactly cancels with the factor $(H - H_L)$ on the righthand side, and so (2.14) reduces to the nonsingular scalar ODE

\begin{equation}
H' = \frac{F^2 (H - H_R)(H - H_s)}{(H^2 + HH_s + H_s^2)},
\end{equation}

from which we find that $H' > 0$ for all $H > H_R$, with no special significance to the point H_L. Noting that $H_s > H_s = H_L$, we see that there exists an entropy-admissible piecewise smooth homoclinic profile consisting of a smooth part initiating from H_R and increasing to H_s, followed by a Lax 2-shock from H_s back to H_R, and finally a constant piece $H \equiv H_R$. As H_L is not an equilibrium of the reduced ODE (2.16), it cannot be an asymptotic limit and there is no profile connecting to it. Since H_R is a repellor, it can only be a limit at $+\infty$ if the profile is constant there, and so any connecting profile must be a discontinuous solution starting with a smooth piece from H_R at $-\infty$ and ending with a constant piece $H \equiv H_R$ near $+\infty$. However, there exists an uncountable family of multiple-discontinuity homoclinic profiles, in which intermediate shocks (H_{2j}, H_{2j+1}) with $H_s > H_{2j} > H_s > H_{2j+1} > H_R$ are arbitrarily placed in between, with smooth pieces connecting H_{2j+1} to H_{2j+2}, where $H_{2j+1} < H_s < H_{2j+2}$. In the remaining case $H_R < H_s < H_s < H_L$, we have $H' > 0$ on (H_s, H_L) and $H' < 0$ on (H_R, H_s), hence there is no smooth solution leaving either H_R or H_L, and the only admissible shock is from H_s to H_R. Thus, there is no admissible piecewise smooth profile joining the two equilibria H_L, H_R in either sense.

Remark 2.3. The scenario (2.16) treated in the degenerate case $H_s = H_L, F > 2$ may be recognized as the same one considered in [JNRYZ, §2] with regard to existence of periodic entropy-admissible piecewise smooth relaxation profiles; indeed, existence of periodic and quasiperiodic profiles follows by essentially the same construction used here to show existence of homoclinic ones.
Observation 2.4 (Rescaling). By scale-invariance of the Saint-Venant equations \[\text{BL, JNYZ} \], we may perform the rescaling

\[
H(x) = H_L H(x/H_L), \quad H_R = \frac{H_R}{H_L} = \frac{1}{\nu^2}, \quad H_L = 1
\]

to obtain a solution \(H \) for which the left limiting water height is 1. From now on, we omit the underline in \(H \), and simply take \(H_R = 1 \). After rescaling, the domain of existence of hydraulic shock profiles with a sub-shock discontinuity is

\[
0 < F < 2, \quad 0 < H_R < H_C := \frac{2F^2}{1+2F+\sqrt{1+4F}}.
\]

Observation 2.5 (Positivity). We have shown that \(H \) and \(Q \) are positive along hydraulic shock profiles \(W \), hence also in their vicinity. It follows that for purposes of investigating stability their stability, we can drop the absolute value in (1.1)(ii) and write the source term simply as \(h - q^2/h^2 \), as we shall do from now on. We see, further, that \(u, c > 0 \) for steady flow down an incline.

3. Majda’s type coordinate change and perturbation equations

We next recall the general framework introduced by Majda \[\text{Ma, Me} \] for the study of stability of shock waves, converting the original free-boundary problem to a standard initial boundary-value problem on a fixed domain. Consider a general system of balance laws

\[
w_t + F(w)_x - R(w) = 0, \quad w \in \mathbb{R}^n,
\]

admitting a traveling wave solution \(\overline{W}(x - ct) = \overline{W}(\xi) \) that is smooth and solves (3.1) on \(\xi \geq 0 \) and at \(\xi = 0 \) has a discontinuity satisfying the Rankine-Hugoniot condition:

\[
-c[\overline{W}] + [F(\overline{W})] = 0
\]

where \([f(\xi)] = f(0^+) - f(0^-)\).

Let \(w(x,t; s) \) be a family of perturbed solutions to (3.1) with shock at \(x = \zeta(t; s) \) and

\[
w(x,t;0) = \overline{W}(x - ct), \quad \zeta(t; 0) = ct.
\]

Perform the Majda’s type coordinate change \[\text{Ma, Me} \] \(\tilde{t} = t, \quad \xi = \xi(x,t; s) = x - \zeta(t; s) \) and set

\[
u(\xi, \tilde{t}; s) := w(x, t; s)
\]

so that in \(u \) the shock front is fixed at \(\xi = 0 \). In \(u(\xi, \tilde{t}; s) \), balance laws (3.1) become

\[
u_{\tilde{t}} + \xi_t u_\xi + F(u)_\xi - R(u) = 0
\]

and Rankine-Hugoniot condition (3.2) becomes

\[
\xi_t \bigg|_{\xi=0} [u] + [F(u)] = 0.
\]

Now substituting

\[
\xi(x, t; s) = x - ct + \eta(\tilde{t}), \quad u(\xi, \tilde{t}; s) = \overline{W}(\xi) + v(\xi, \tilde{t})
\]
in the interior equation (3.6) and putting linear order terms on the left and quadratic order terms on the right, we obtain that perturbations \(\eta, v \) satisfy

\[
(3.6) \quad v_t + \eta \nabla W + (\nabla W \cdot c \text{ Id}) v = - \eta v_x - N_1(v, \eta) + N_2(v, \eta)
\]

where \(N_j(v, \eta) = O(|v|^2) \). Likewise, substituting (3.5) in the Rankine-Hugoniot condition (3.4) and putting linear order terms on the left and quadratic order terms on the right, we obtain, on the boundary \(\xi = 0 \), that perturbations \(\eta, v \) satisfy

\[
(3.7) \quad \eta \nabla W + (\nabla W \cdot c \text{ Id}) v = - \eta v - N_1(v, v).
\]

Observation 3.1. Specialized to the Saint-Venant equations (1.1), \(N_1(v, v), N_2(v, v) \) are

\[
N_1(v, v) = \left[v^T f_0^1 (1-s) \begin{pmatrix} 2(Q+sv_2)^2 + \frac{1}{2} & -2(Q+sv_2) \\ \frac{1}{2} & (H+sv_1)^2 \end{pmatrix} ds v \right],
\]

\[
N_2(v, v) = \left[v^T f_0^1 (1-s) \begin{pmatrix} 0 & 4(Q+sv_2) \\ \frac{1}{2} & (H+sv_1)^2 \end{pmatrix} ds v \right].
\]

4. **The Evans-Lopatinsky Determinant**

Continuing, we derive now a generalized spectral stability condition following [Kr, Ma, Me, ErH, Er2, JLW, Z1, Z2] in the form of an appropriate “stability function”, or Evans-Lopatinsky determinant. Combining (3.6), (3.7) along with initial conditions gives:

\[
(4.1) \quad \begin{align*}
v_t + \eta \nabla W + (Av)_{\xi} - Ev &= - \eta v_x - N_1(v, v) + N_2(v, v) := IS(\eta, v, v) \\
\eta \nabla W + [Av] &= - \eta v - [N_1(v, v)] := BS(\eta, v) \\
v(0, \xi) &= v_0(\xi) \\
\eta(0) &= \eta_0
\end{align*}
\]

or in “good unknown” \(\bar{v} := v + \eta \nabla W \):

\[
\begin{align*}
\bar{v}_t + (A \bar{v})_{\xi} - E \bar{v} &= IS \\
\eta \nabla W - \eta [R(\nabla W)] + [A \bar{v}] &= BS \\
\bar{v}(0, \xi) &= v_0(\xi) + \eta_0 \nabla W \\
\eta(0) &= \eta_0
\end{align*}
\]

where \(A := dF(W) - c \text{ Id} \) and \(E := dR(W) \).

Observation 4.1. Specialized to the Saint-Venant equation (1.1) with hydraulic shock profile, \(A \) and \(E \) are

\[
(4.3) \quad A = \begin{pmatrix} -c & 1 \\ \frac{H}{E} - \frac{Q^2}{H^2} & 2Q \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 0 \\ \frac{2Q^2}{H^2} + 1 & -\frac{2Q^2}{H^2} \end{pmatrix}.
\]

From (4.3), we see in passing that the Saint-Venant equations are simultaneously symmetrizable in the sense that there exists a positive definite matrix

\[
A^0 = \begin{pmatrix} 2Q(F^2H^2 + F^2Q^2 + H^2) & -H^3 - 2Q^2 \\ -H^3 - 2Q^2 & 2HQ \end{pmatrix}
\]

such that \(A^0 A \) and \(A^0 E \) are symmetric, and \(A^0 E \) is negative semidefinite.
Setting \(\tilde{v} = \tilde{v} - \eta_0 \tilde{W} \) and \(\tilde{\eta} = \eta - \eta_0 \), then yields

\[
\begin{align*}
\tilde{v}_t + (A \tilde{v})_x - E \tilde{v} &= I_S \\
\tilde{\eta}_t[\tilde{W}] - \tilde{\eta}[R(\tilde{W})] + [A \tilde{v}] &= B_S \\
\tilde{v}(0, \xi) &= v_0(\xi) \\
\tilde{\eta}(0) &= 0.
\end{align*}
\] (4.4)

Hereafter we use \(t, x \) in place of \(\tilde{t}, \tilde{x} \).

System (4.4) is essentially the same set of equations studied in [JLW, Z1, Z2] in the context of detonation waves of the ZND model. As noted in [JLW], short time existence and continuous dependence in \(H^s, s \geq 2 \), is provided by the (much simpler, one-d version of the multi-d) analysis of Majda and Métivier [Ma, Me] for general conservation laws; see Section 9 for further details. In particular, we have for \(H^s \) initial data, that a solution exists, is continuous in \(H^s \) with respect to time, and grows in \(H^s \) at no more than exponential rate \(C e^{\alpha t} \), so long as \(|v|_{H^s(\tilde{R})} \) remains bounded; that is, the solution is of “exponential type”. It follows from [D] that the Laplace transform

\[
\tilde{v}(x, \lambda) := \int_{0}^{\infty} e^{-\lambda s} v(x, s) ds
\]

with respect to \(t \) of a bounded solution \(v \in H^s \) is well-defined in \(H^s \), and that the original solution \(v \) is recoverable by the inverse Laplace transform formula

\[
\begin{align*}
v(x, t) &= \frac{1}{2 \pi i} P.V. \int_{a-i \infty}^{a+i \infty} e^{\lambda t} \tilde{v}(x, \lambda) d\lambda, \\
\eta(t) &= \frac{1}{2 \pi i} P.V. \int_{a-i \infty}^{a+i \infty} e^{\lambda t} \tilde{\eta}(\lambda) d\lambda.
\end{align*}
\]

We now solve (4.4) using the Laplace transform. Carrying out the Laplace transform on (4.4)(i)–(ii) and denoting Laplace transform of \(\tilde{v}, \tilde{\eta}, I_S, B_S \) as \(\tilde{v}, \tilde{\eta}, \tilde{I}_S, \tilde{B}_S \), yields

\[
\begin{align*}
\tilde{v}_x &= A^{-1}(E - \lambda I - A_x) \tilde{v} + A^{-1} \tilde{I}_S(\lambda) + A^{-1} v_0 := A(\lambda) \tilde{v} + A^{-1} \tilde{I}_S(\lambda) + A^{-1} v_0, \\
\tilde{B}_S(\lambda) &= \tilde{\eta}[\lambda \tilde{W} - R(\tilde{W})] + [A \tilde{v}].
\end{align*}
\] (4.6)

Definition 4.2. Dropping the inhomogeneous source terms in (4.6), the associated eigenvalue equation is defined as

\[
\begin{align*}
\lambda \tilde{v} + (A \tilde{v})_x &= E \tilde{v}, \\
\tilde{\eta}[\lambda \tilde{W} - R(\tilde{W})] + [A \tilde{v}] &= 0.
\end{align*}
\]

To solve (4.6), by the conjugation lemma of [MeZ], we need to calculate eigenvalues of matrices

\[
\text{lim}_{x \to \pm \infty} A(\lambda) = A^{-1}(E_\pm - \lambda I).
\]

At \(x = -\infty \), the two eigenvalues are

\[
\begin{align*}
\gamma_{1,-}(\lambda) &= \frac{F v(v + 1) \left(-2F + Fv + v^2 - 2F\lambda + \sqrt{F^2(v^2 + v - 2)^2 + 4\lambda v(v + 1)(-F^2 + 2v^2 + 2v) + 4\lambda^2 v^2(v + 1)^2} \right)}{2(-F^2 + v^4 + 2v^3 + v^2)}, \\
\gamma_{2,-}(\lambda) &= \frac{F v(v + 1) \left(-2F + Fv + v^2 - 2F\lambda - \sqrt{F^2(v^2 + v - 2)^2 + 4\lambda v(v + 1)(-F^2 + 2v^2 + 2v) + 4\lambda^2 v^2(v + 1)^2} \right)}{2(-F^2 + v^4 + 2v^3 + v^2)}.
\end{align*}
\] (4.8)

At \(x = +\infty \), the two eigenvalues are

\[
\begin{align*}
\gamma_{1,+}(\lambda) &= \frac{F v(v + 1) \left(Fv + v^2 - 2Fv - 2F\lambda + \sqrt{F^2v^2(-2v^4 + v^2 + v - 1)^2 + 4\lambda v(v + 1)(-F^2v^2 + 2v^2 + 2v) + 4\lambda^2 v^2(v + 1)^2} \right)}{2(-F^2v^4 + v^2 + 2v + 1)}, \\
\gamma_{2,+}(\lambda) &= \frac{F v(v + 1) \left(Fv + v^2 - 2Fv - 2F\lambda - \sqrt{F^2v^2(-2v^4 + v^2 + v - 1)^2 + 4\lambda v(v + 1)(-F^2v^2 + 2v^2 + 2v) + 4\lambda^2 v^2(v + 1)^2} \right)}{2(-F^2v^4 + v^2 + 2v + 1)}.
\end{align*}
\] (4.9)
Letting P (See Figure 3 (a) for an example of domain of consistent splitting).

It is easy to verify that in the domain (2.17) there holds
\[\Re \gamma_1, -(\lambda) > 0, \Re \gamma_2, -(\lambda) < 0, \text{ for all } \Re \lambda > 0, \ F < 2, \ \nu > 1, \]
\[(4.10) \]
\[\Re \gamma_1, +(\lambda) > 0, \Re \gamma_2, +(\lambda) > 0, \text{ for all } \Re \lambda > 0, \ \nu > \frac{1 + \sqrt{1 + 4F}}{2F}. \]

Definition 4.3. We define the domain of consistent splitting Λ as
\[(4.11) \]
\[\Lambda := \{ \lambda : \Re \gamma_1, -(\lambda) > 0, \Re \gamma_2, -(\lambda) < 0, \Re \gamma_1, +(\lambda) > 0, \Re \gamma_2, +(\lambda) > 0 \}. \]

(See Figure 3 (a) for an example of domain of consistent splitting).

By the conjugation lemma [MeZ], there exist locally analytic coordinate changes $T_{\pm}(\lambda, x) (T_+ \equiv Id)$ on $x \geq 0$, converging exponentially to Id as $x \to \pm\infty$, such that $\tilde{v} = T_{\pm} z_{\pm}, A^{-1}(I_S(\lambda) + v_0) = T_{\pm} g$ reduce resolvent equation (4.6) i) to constant coefficients:
\[(4.12) \]
\[z_x = A_{\pm}^{-1}(E_{\pm} - \lambda I)z + g = A_{\pm}(\lambda)z + g. \]

Letting $P_{1,2,\pm}(\lambda)$ be the eigenprojections of $A_{\pm}(\lambda)$ associated with eigenvalues $\gamma_{1,2,\pm}(\lambda)$, solution of (4.6) i) on $x \geq 0$ can be written as
\[(4.13) \]
\[\tilde{v}(\lambda, x) = \begin{cases}
T_-(\lambda, x) \left(e^{\gamma_1, -(\lambda) x} P_{1,-}(\lambda) T_{-1}(\lambda, 0^-) \tilde{v}(\lambda, 0^-)
\right. \\
+ \int_0^x e^{\gamma_1, -(\lambda)(x-y)} P_{1,-}(\lambda) T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy \\
\left. - \int_x^{\infty} e^{\gamma_2, -(\lambda)(x-y)} P_{2,-}(\lambda) T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy \right), \ x < 0, \\
\int_x^{\infty} e^{\gamma_2, +(\lambda)(x-y)} A_{+1}^{-1}(v_0(y) + I_S(\lambda, y)) dy, \ x > 0.
\end{cases} \]

Again $P_{1,-}(\lambda)$ is the projection onto the unstable subspace of $A_-(\lambda)$ and $P_{2,-}(\lambda)$ is the projection onto the stable subspace of $A_-(\lambda)$. Setting $x = 0^+$ in (4.13) yields
\[(4.14) \]
\[T_{-1}(\lambda, 0^-) \tilde{v}(\lambda, 0^-) = P_{1,-}(\lambda) T_{-1}(\lambda, 0^-) \tilde{v}(\lambda, 0^-)
\]
\[= \int_0^{\infty} e^{-\gamma_2, -(\lambda)y} P_{2,-}(\lambda) T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy, \]

\[\tilde{v}(\lambda, 0^+) = -\int_0^{\infty} e^{-A_{+}(\lambda)y} A_{+1}^{-1} \left(v_0(y) + I_S(\lambda, y) \right) dy, \]
which implies
\begin{equation}
\dot{v}(\lambda, 0^+) = - \int_{0^+}^{+\infty} e^{-A_+ (\lambda)y} A_+^{-1}(y) (v_0(y) + \bar{I}_S(\lambda, y)) dy,
\end{equation}
\begin{equation}
P_{2,-}(\lambda)T_-^{-1}(\lambda, 0^-)\dot{v}(\lambda, 0^-) = - \int_{0^-}^{-\infty} e^{-\gamma_{2,-} (\lambda)y} P_{2,-}(\lambda)T_-^{-1}(\lambda, y)A^{-1}(y) (v_0(y) + \bar{I}_S(\lambda, y)) dy.
\end{equation}

Now set
P_{1,-}(\lambda)T_-^{-1}(\lambda, 0^-)\dot{v}(\lambda, 0^-) = \alpha z_{1,-}(\lambda)
with the scale of \(z_{1,-}(\lambda) \) chosen such that
\begin{equation}
T_-(0, x)e^{\gamma_{1,-}(0)x}z_{1,-}(0) = \overline{W}(x).
\end{equation}

Then, \(A(0^-)\dot{v}(\lambda, 0^-) \) can be written as
\begin{align}
A(0^-)\dot{v}(\lambda, 0^-)
= A(0^-)T_-(\lambda, 0^-) (P_{1,-}(\lambda) + P_{2,-}(\lambda)) T_-^{-1}(\lambda, 0^-)\dot{v}(\lambda, 0^-)
= A(0^-)T_-(\lambda, 0^-) \alpha z_{1,-}(\lambda) + A(0^-)T_- (\lambda, 0^-) P_{2,-}(\lambda)T_-^{-1}(\lambda, 0^-)\dot{v}(\lambda, 0^-)
= A(0^-)T_-(\lambda, 0^-) \alpha z_{1,-}(\lambda)
- A(0^-)T_-(\lambda, 0^-) \int_{0^-}^{-\infty} e^{-\gamma_{2,-}(\lambda)y} P_{2,-}(\lambda)T_-^{-1}(\lambda, y)A^{-1}(y) (v_0(y) + \bar{I}_S(\lambda, y)) dy.
\end{align}

Plugging (4.17) along with (4.14)(i) into the matching condition (4.16)(ii) implies
\begin{align}
\dot{B}_S(\lambda) = & \dot{\gamma}[\bar{W} - R(\bar{W})] + A_+ \dot{v}(\lambda, 0^+) - A(0^-)\dot{v}(\lambda, 0^-)
= & \dot{\gamma}[\bar{W} - R(\bar{W})] - \alpha A(0^-)T_- (\lambda, 0^-) z_{1,-}(\lambda)
- A_+ \int_{0^+}^{+\infty} e^{-A_+ (\lambda)y} A_+^{-1}(y) (v_0(y) + \bar{I}_S(\lambda, y)) dy
+ A(0^-)T_-(\lambda, 0^-) \int_{0^-}^{-\infty} e^{-\gamma_{2,-}(\lambda)y} P_{2,-}(\lambda)T_-^{-1}(\lambda, y)A^{-1}(y) (v_0(y) + \bar{I}_S(\lambda, y)) dy.
\end{align}

\textbf{Definition 4.4.} Setting \(M(\lambda) := [\lambda W - R(W) \mid A(0^-)T_- (\lambda, 0^-) z_{1,-}(\lambda)] \), on the domain of consistent splitting, we define the Evans-Lopatinsky determinant function \(\Delta(\lambda) \) as
\begin{equation}
\Delta(\lambda) := \det(M(\lambda)).
\end{equation}

By construction, the Evans-Lopatinsky function is analytic on the set of consistent splitting, in particular on \(\{ \lambda : \Re \lambda \geq 0 \} \setminus \{0\} \). Moreover, by separation of eigenvalues of \(A_- \) at \(\lambda = 0 \), the associated eigenvectors and projections may be extended analytically to a neighborhood of \(\lambda = 0 \), allowing us to extend \(\Delta \) analytically to a neighborhood of \(\{ \lambda : \Re \lambda \geq 0 \} \). (For origins of this standard argument, see, e.g., [PW, GZ, Z1].)

\textbf{Definition 4.5.} Following [Er1, JLW, Z1, Z2, GZ], we say that a profile \(\overline{W} \) is \textit{Evans-Lopatinsky stable} if \(\Delta(\lambda) \) has no zeros on \(\{ \Re \lambda \geq 0 \} \) save for a single, multiplicity-one root at \(\lambda = 0 \).

\textbf{Remark 4.6.} Evidently, Evans-Lopatinsky stability is a generalized spectral stability condition corresponding with the usual notion of spectral stability on the set of consistent splitting, namely, absence of eigenvalues, but also including information on the embedded eigenvalue \(\lambda = 0 \) lying on the boundary of the domain of consistent splitting.
5. Integral kernels and representation formula

With the defined Evans-Lopatinsky determinant matrix $M(\lambda)$, equation (4.18) rewrites as

$$
M(\lambda) \begin{bmatrix}
\tilde{\eta} \\
-\alpha
\end{bmatrix}
$$

(5.1)

$$
= \tilde{B}_S(\lambda) + A_+ \int_{0^+}^{+\infty} e^{-A_+ x} A_+^{-1} \left(v_0(y) + I_S(\lambda, y) \right) dy
- A(0^-) T_-(\lambda, 0^-) \int_{0^-}^{-\infty} e^{-\eta_2(\lambda) y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy.
$$

When M is invertible ($\Delta \neq 0$), solving for $\alpha, \tilde{\eta}$ yields solutions for equation (4.21):

$$
\check{v}(\lambda, x) = \begin{cases}
T_-(\lambda, x) \left(e^{\gamma_1(\lambda) x} z_{1, -}(\lambda) \begin{bmatrix} 0 & -1 \end{bmatrix} M^{-1}(\lambda) \left(\tilde{B}_S(\lambda) + A_+ \int_{0^+}^{+\infty} e^{-A_+ x} A_+^{-1} \left(v_0(y) + I_S(\lambda, y) \right) dy
- A(0^-) T_-(\lambda, 0^-) \int_{0^-}^{-\infty} e^{-\eta_2(\lambda) y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy \right)
+ \int_{x}^{+\infty} e^{\gamma_1(\lambda) x - y} P_{1_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy
- \int_{x}^{-\infty} e^{\gamma_1(\lambda) x - y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy \right), & x < 0, \\
- e^{A_+ x} (\lambda - y) A_+^{-1} \left(v_0(y) + I_S(\lambda, y) \right) dy, & x > 0,
\end{cases}
$$

(5.2)

$$
\tilde{\eta}(\lambda) = \begin{bmatrix} 1 & 0 \end{bmatrix} M^{-1}(\lambda) \left(\tilde{B}_S(\lambda) + A_+ \int_{0^+}^{+\infty} e^{-A_+ x} A_+^{-1} \left(v_0(y) + I_S(\lambda, y) \right) dy
- A(0^-) T_-(\lambda, 0^-) \int_{0^-}^{-\infty} e^{-\eta_2(\lambda) y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) \left(v_0(y) + I_S(\lambda, y) \right) dy \right).
$$

Following the standard analysis in [ZH, MZ], we define the interior source resolvent kernel functions $\tilde{G}_\lambda, G_{1, \lambda},$ and G_λ as follows.

Definition 5.1. Setting $\tilde{B}_S(\lambda) = 0$ in (5.2) and gathering terms in different x, y locations, the interior source \tilde{v}-resolvent kernel $\tilde{G}_\lambda(x; y)$ is defined as

$$
\tilde{G}_\lambda(x; y) := \begin{cases}
- e^{A_+ x} (\lambda - y) A_+^{-1}, & 0 < x < y, \\
0, & 0 < y < x, \\
T_-(\lambda, x) e^{\gamma_1(\lambda) x} z_{1, -}(\lambda) \begin{bmatrix} 0 & -1 \end{bmatrix} M^{-1}(\lambda) A_+ e^{A_+ (\lambda - y) A_+^{-1}}, & x < 0, y > 0, \\
- T_-(\lambda, x) e^{\gamma_1(\lambda) x - y} P_{1_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) + T_-(\lambda, x) e^{\gamma_1(\lambda) x} z_{1, -}(\lambda) \begin{bmatrix} 0 & -1 \end{bmatrix} M^{-1}(\lambda) A(0^-) T_-(\lambda, 0^-) e^{\gamma_2(\lambda) y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y), & x < y < 0, \\
T_-(\lambda, x) e^{\gamma_2(\lambda) x - y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y) + T_-(\lambda, x) e^{\gamma_1(\lambda) x} z_{1, -}(\lambda) \begin{bmatrix} 0 & -1 \end{bmatrix} M^{-1}(\lambda) A(0^-) T_-(\lambda, 0^-) e^{\gamma_2(\lambda) y} P_{2_-(\lambda)} T_{-1}(\lambda, y) A^{-1}(y), & y < x < 0,
\end{cases}
$$

16
and the interior source \(\tilde{\eta} \)-resolvent kernel \(G_{1,\lambda} \) is defined as

\[
G_{1,\lambda}(y) := \begin{cases}
M^{-1}(\lambda) A_+ e^{-A_+ (\lambda) y} A_+^{-1}, & y > 0, \\
M^{-1}(\lambda) A(0^-) T_{-}^{-1}(\lambda, 0^-) e^{-\gamma_{2,-} y} P_{2,-}(\lambda) T_{-}^{-1}(\lambda, y) A^{-1}(y), & y < 0.
\end{cases}
\]

Let

\[
G_{\lambda}(x; y) := \tilde{G}_{\lambda}(x; y) - \nabla \hat{w}(x) G_{1,\lambda}(y),
\]

and split \(G_{\lambda} \) into two parts \(G_{\lambda} = G_{1,\lambda} + G_{2,\lambda} \), where \(G_{1,\lambda} \) and \(G_{2,\lambda} \) are defined as

\[
G_{1,\lambda}(x; y) := \begin{cases}
e^{-A_+ (\lambda) (x-y)} A_+^{-1}, & 0 < x < y, \\
- T_{-}(\lambda, x) e^{\gamma_{1,-}(\lambda)(x-y)} P_{1,-}(\lambda) T_{-}^{-1}(\lambda, y) A^{-1}(y), & x < y < 0, \\
T_{-}(\lambda, x) e^{\gamma_{1,-}(\lambda)(x-y)} P_{2,-}(\lambda) T_{-}^{-1}(\lambda, y) A^{-1}(y), & y < x < 0, \\
0, & \text{otherwise},
\end{cases}
\]

\[
G_{2,\lambda}(x; y) := \begin{cases}
e^{-\gamma_{2,-} y} P_{2,-}(\lambda) T_{-}^{-1}(\lambda, y) A^{-1}(y), & x < 0, y < 0, \\
e^{-\gamma_{2,-} y} P_{2,-}(\lambda) T_{-}^{-1}(\lambda, y) A^{-1}(y), & x > 0,
\end{cases}
\]

which can also be written as

\[
G_{1,\lambda}(x; y) := \begin{cases}
- F_{\lambda}^{y \to x} A_+^{-1}, & 0 < x < y, \\
- F_{\lambda}^{y \to x} \Pi_{\lambda, u}(y) A^{-1}(y), & x < y < 0, \\
F_{\lambda}^{y \to x} \Pi_{\lambda, u}(y) A^{-1}(y), & y < x < 0, \\
0, & \text{otherwise},
\end{cases}
\]

\[
G_{2,\lambda}(x; y) := \begin{cases}
- \left(F_{\lambda}^{y \to x} \Pi_{\lambda, u}(0^-) \right) \left[0 \ 1 \right] + \nabla \hat{w}(x) \left[1 \ 0 \right] M^{-1}(\lambda) A_+ F_{\lambda}^{y \to x} A_+^{-1}, & x < 0, y > 0, \\
- \left(F_{\lambda}^{y \to x} \Pi_{\lambda, u}(0^-) \right) \left[0 \ 1 \right] + \nabla \hat{w}(x) \left[1 \ 0 \right] M^{-1}(\lambda) A(0^-) F_{\lambda}^{y \to x} A_{-}^{-1} \Pi_{\lambda, u}(y) A^{-1}(y), & x < 0, y < 0, \\
0, & \text{otherwise},
\end{cases}
\]

where \(F_{\lambda}^{y \to x} \) is the solution operator from \(y \) to \(x \) of eigenvalue equation \((4.7) \) and \(\Pi_{\lambda, u} \) (\(\Pi_{\lambda, u} \)) is the projection onto the stable (unstable) flow as \(x \to -\infty \).

In addition to these interior source kernels analogous to those of the smooth profile case \cite{ZM, MZ}, we define the boundary source \(\tilde{\eta} \)-, \(\tilde{\nu} \)-resolvent kernel functions \(K_{\lambda}, K_{1,\lambda} \) as follows.

Definition 5.2. Setting \(\tilde{I}_{\lambda}(\lambda, y) = 0, v_0(y) = 0 \) in \((5.2) \) and gathering terms in different \(x \) locations, the boundary source \(\tilde{\nu} \)-resolvent kernel \(\tilde{K}_{\lambda}(x) \) is defined as

\[
\tilde{K}_{\lambda}(x) = \begin{cases}
0, & x > 0, \\
T_{-}(\lambda, x) e^{\gamma_{1,-}(\lambda)(x-y)} T_{1,-}(\lambda, y) \left[0 \ -1 \right] M^{-1}(\lambda), & x < 0,
\end{cases}
\]

and the boundary source \(\tilde{\eta} \)-resolvent kernel \(K_{1,\lambda} \) is defined as

\[
K_{1,\lambda} = \begin{bmatrix} 1 & 0 \end{bmatrix} M^{-1}(\lambda),
\]
and we set
\begin{equation}
K_\lambda(x) := \tilde{K}_\lambda(x) - \overline{\nabla}(x)K_{1,\lambda}.
\end{equation}

Lemma 5.3. G_λ and K_λ are analytic near $\lambda = 0$.

Proof. It suffices to show that $[1 \ 1 \ 1] M^{-1}(\lambda)$ is analytic at 0.

\begin{equation}
[1 \ 1 \ 1] M^{-1}(\lambda) = \frac{1}{\det(M(\lambda))} \begin{bmatrix}
(\lambda - \lambda_0)^2 & - (\lambda - \lambda_0) & 0 \\
-\lambda & \lambda^2 & 0 \\
0 & 0 & \lambda
\end{bmatrix}.
\end{equation}

Since 0 is a simple root of $\det(M(\lambda))$, 0 will not be a pole of $[1 \ 1 \ 1] M^{-1}(\lambda)$ if
\begin{equation}
\begin{bmatrix}
(\lambda - \lambda_0)^2 & - (\lambda - \lambda_0) & 0 \\
-\lambda & \lambda^2 & 0 \\
0 & 0 & \lambda
\end{bmatrix} = \begin{bmatrix}
(\lambda - \lambda_0)^2 & - (\lambda - \lambda_0) & 0 \\
-\lambda & \lambda^2 & 0 \\
0 & 0 & \lambda
\end{bmatrix} - (\lambda - \lambda_0) \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\end{equation}

vanishes, but it does vanish because $\overline{\nabla}$ is a traveling wave solution to (1.1). \hfill \square

Definition 5.4. The corresponding interior/boundary source Green kernels are defined as
\begin{equation}
\tilde{G}(x, t; y) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \tilde{G}_\lambda(x; y) d\lambda, \quad G_1(t; y) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} G_{1,\lambda}(y) d\lambda,
\end{equation}
\begin{equation*}
G(x, t; y) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} G_\lambda(x; y) d\lambda, \quad G^{1,2}(x, t; y) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} G_{1,\lambda}^{1,2}(x; y) d\lambda,
\end{equation*}
\begin{equation*}
\tilde{K}(x, t) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \tilde{K}_\lambda(x) d\lambda, \quad K_1(t) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} K_{1,\lambda} d\lambda,
\end{equation*}
\begin{equation}
K(x, t) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} K_\lambda(x) d\lambda,
\end{equation}
where a is a sufficiently large number.

Proposition 5.5. The interior/boundary source Green kernels satisfy
\begin{equation}
\tilde{K}(x, t) - \overline{\nabla}(x)K_1(t) = K(x, t), \quad \tilde{G}(x, t; y) - \overline{\nabla}(x)G_1(t; y) = G(x, t; y).
\end{equation}

With these definitions, equations (5.2) can be rewritten in the concise form
\begin{equation}
\tilde{v}(\lambda, x) = \tilde{K}_\lambda(x) \tilde{B}_S(\lambda) + \int_{-\infty}^{\infty} \tilde{G}_\lambda(x; y) (v_0(y) + \tilde{I}_S(\lambda, y)) dy,
\end{equation}
\begin{equation}
\tilde{\eta}(\lambda) = K_{1,\lambda} \tilde{B}_S(\lambda) + \int_{-\infty}^{\infty} G_{1,\lambda}(y) (v_0(y) + \tilde{I}_S(\lambda, y)) dy.
\end{equation}

Formally exchanging the order of integration in the inverse Laplace transform formula (4.5), we get finally, a formal description of the solution to (4.4) as
\begin{equation}
\tilde{v}(x, t) = \int_0^t \tilde{K}(t-s, x) B_S(s) ds + \int_{-\infty}^{\infty} \tilde{G}(x, t; y) v_0(y) dy + \int_0^t \int_{-\infty}^{\infty} \tilde{G}(t-s, x; y) I_S(y) dy ds,
\end{equation}
\begin{equation}
\tilde{\eta}(t) = \int_0^t K_1(t-s) B_S(s) ds + \int_{-\infty}^{\infty} G_1(t; y) v_0(y) dy + \int_0^t \int_{-\infty}^{\infty} G_1(t-s; y) I_S(y) dy ds.
\end{equation}

Translating from good unknowns back to original coordinates and validating rigorously the formal exchange of integration, we consolidate our results in the following integral representation.
Proposition 5.6. For \(v \) uniformly bounded in \(H^2 \), the solution of (4.1) may be written as
\[
(5.18)
\]
\[
v(x, t) = \int_0^t K(t - s, x) B_S(s) ds + \int_{-\infty}^{\infty} G(x, t; y) v_0(y) dy + \int_0^t \int_{-\infty}^{\infty} G(t - s, x; y) I_S(s, y) dy ds,
\]
where \(K, G, K_1, \) and \(G_1 \) defined in (5.13) are distributions of order at most two, i.e., expressible as the sum of at most second-order derivatives of measurable functions.

Proof. Using \(\tilde{v} - \mathcal{W} \tilde{\eta} = v \) and Proposition 5.5, (5.17) follows formally by subtracting \(\mathcal{W} \) times (5.16) (ii) from (5.16) (i). Thus, the issue is to show that, interpreted in the sense of distributions, the order of integration may be exchanged in the double-integral terms of (4.5) expanded as
\[
(5.19)
\]
\[
\eta(x, t) = \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \tilde{\eta}(x, \lambda) d\lambda
\]
and
\[
\eta(x, t) = \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \tilde{\eta}(x, \lambda) d\lambda
\]
the single-integral terms being treatable by the standard property that the inverse transform of a product is the convolution of inverse transforms of its factors.

The double-integral terms may be treated similarly as in [ZH, MZ1, MZ2] by a standard device used in semigroup theory to validate the inverse Laplace transform representation of the solution operator \[\mathcal{P} \] §1.7, pp. 28-29, adapted to the context of integral kernels. Namely, applying the resolvent kernel identity \(G_\lambda = (L G_\lambda + \delta_y) / \lambda \) deriving from the defining property \((\lambda - L) G_\lambda = \delta_y \) of the interior resolvent kernel \(G_\lambda \), we may factor
\[
G_\lambda = L^2 G_\lambda / \lambda^2 + L \delta_y / \lambda^2 + \delta_y / \lambda.
\]

By the crude high-frequency bound
\[
(5.20)
\]
\[
(d/dx)^k G_\lambda(x, y) \leq C e^{-\eta|x-y|}
\]
for \(k \geq 0 \) and \(\Re \lambda \geq \alpha, \alpha \) sufficiently large, carried out in Section 6.1, we have therefore that term \(\frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \int_{-\infty}^{\infty} G_\lambda(x, y) \tilde{S}_1(y, \lambda) dy d\lambda \) in (5.18) may be expanded as \(L^2 \) applied to the integral \(\frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \int_{-\infty}^{\infty} G_\lambda(x, y) v_0(y) / \lambda^2 dy d\lambda d\lambda \) plus two explicitly evaluable terms.

Observing for \(\Re \lambda = \alpha \) fixed that the integrand \(e^{\lambda t} G_\lambda(\cdot, y) v_0(y) / \lambda^2 \) is absolutely integrable in \((y, \lambda)\), we have by Fubini's theorem that we may switch the order of integration to obtain instead \(L^2 \) applied to the limit \(\frac{1}{2\pi i} \int_{-\infty}^{\infty} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} G_\lambda(x, y) v_0(y) / \lambda^2 d\lambda dy \), which, since limits and

\footnote{In fact as we show in the following section, they are precisely of order one.}
derivatives of distributions freely exchange, is equal to
\[\frac{1}{2\pi i} \int_{-\infty}^{+\infty} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} L^2 G_\lambda(x, y) v_0(y) / \lambda^2 d\lambda dy. \]

We find in passing that the result is a distribution of at most order 2, since it is expressible as the second-order derivative operator \(L^2 \) applied to a measurable function.

Likewise, we find by standard inverse Laplace transform computations that the order of integration may be exchanged in
\[\lim_{b \to \infty} \int_{-\infty}^{+\infty} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \delta(y)/\lambda^2 d\lambda dy \]
validating the exchange in order for the entire \(G \)-term in (5.18). The first term is at most order 2 since expressible as the first-order operator applied to an order-1 distribution (the delta-function), while the second is order 1. Thus, the entire term is at most of order 2. This justifies the exchange of integration in double-integral terms, validating (5.17)(i).

The \(G_1 \) term in (5.19) goes similarly, using the defining relation \((\lambda - L)G_{1,\lambda} = 0\). Thus, the order of integration may be exchanged also for double-integral terms of (5.19) may be expanded as \(L^2 \) applied to the integral (5.17)(ii), justifying (5.17)(ii); at the same time this shows that \(G_1 \) is a distribution of at most order 2. (Alternatively, observing that the terms in the representation of \(\eta \) are expressible as functions of \(\nu(0, t) \), we may conclude (5.17)(ii) directly from (5.17)(i).)

Similarly, using the property \(K_\lambda = LK_\lambda / \lambda \), and the uniform bound \(|K_\lambda|_{H^1} \leq C \) for \(\Re \lambda \) sufficiently large obtained in Section 6.1 we find that
\[K(x, t) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} K_\lambda(x) d\lambda = L^2 \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} K_\lambda(x) / \lambda^2 d\lambda \]
factors as \(L^2 \) applied to an \(H^a \) function defined by the absolutely convergent integral of
\[e^{\lambda t} K_\lambda(x) / \lambda^2 d\lambda = O(1/|\lambda|^2), \]
so is a distribution of order at most 2. Finally, using the large-\(|\lambda| \) bound \(K_{1,\lambda} = V_h / \lambda + O(1/|\lambda|^2) \) obtained in (6.25), Section 6.1 we find that \(K_1(t) := \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} K_{1,\lambda} d\lambda \) decomposes into the sum of an explicitly evaluable, constant term
\[V_h \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} \lambda^{-1} d\lambda = V_h \]
and an absolutely convergent integral \(\frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} O(|\lambda|^{-2}) d\lambda \), hence is a \(C^0 \) function with respect to \(t \).

Remark 5.7. Noting (Section 6.1) that the crude high-frequency estimate (5.20) holds for \(\Re \lambda \geq -b \) and \(|\lambda| \geq R \) for \(b > 0 \) sufficiently small and \(R > 0 \) sufficiently large, we find by the same analysis used to justify exchange of integration order in the proof of Proposition 5.6 that the contour \(P.V. \int_{a-i\infty}^{a+i\infty} \) in (5.13), Definition 5.4 (interpreted in distributional sense) may be deformed to
\[\lim_{M \to \infty} \left(\int_{-b-iM}^{a-iR} + \int_{b-iR}^{a+iR} + \int_{a+iR}^{-b+iR} + \int_{-b+iR}^{-b-iM} \right) \]
for \(b > 0 \) sufficiently small and \(R > 0 \) sufficiently large. This simplifies somewhat the corresponding analysis of [MZ1] based on more detailed bounds.

6. Resolvent estimates

We now derive bounds on the various resolvent kernels, on the crucial large- and small-\(|\lambda| \) regimes, corresponding via the usual frequency/temporal duality for the Laplace transform to small- and large-\(t \) behavior of the associated time-evolutionary Green kernels. These are obtained with no a priori assumption of spectral stability, that is, we establish in the course of our analysis rigorous
high- and low-frequency Evans-Lopatinsky stability. Intermediate frequencies $1/C \leq |\lambda| \leq C$ for $C > 0$ yield by construction immediately uniform exponential estimates

\begin{equation}
|G_\lambda(x, y)| \leq Ce^{-\eta|x-y|}, \quad \eta > 0,
\end{equation}

and etc., provided the Evans-Lopatinsky condition is satisfied, hence their analysis is trivial in this sense. On the other hand, the verification of the Evans-Lopatinsky condition appears to be quite complicated in this regime, and we find it necessary to carry this out numerically (see Section \text{[I]}).

6.1. **High Frequency analysis.** We now study behavior of system (4.7)(i) in the high frequency regime. Denote $w = \tilde{v}$ and write (4.7)(i) as

\begin{equation}
w_x = -\lambda A^{-1}w + A^{-1}(E - A_x)w
\end{equation}

and perform two diagonalizations $U := \tilde{R}R^{-1}w$ similar to procedures in High Frequency analysis in \text{[JNRYZ]}, we reach a 2 by 2 system in which U satisfies

\begin{equation}
U' = \left(\begin{array}{cc} \mu_1(x) & 0 \\ 0 & \mu_2(x) \end{array} \right) + \left(\begin{array}{cc} M_{11}(x) & 0 \\ 0 & M_{22}(x) \end{array} \right) U + \frac{1}{\lambda} N(\lambda, x) U
\end{equation}

where

\begin{align*}
-A^{-1} &= R \left[\begin{array}{cc} \mu_1 & 0 \\ 0 & \mu_2 \end{array} \right] R^{-1}, \\
M &= R^{-1}(A^{-1}E - A^{-1}A_x)R - R^{-1}R_x,
\end{align*}

\begin{align*}
\mu_{1,2} &= \frac{FH(\sqrt{H_R} + 1)}{FH_R + H^2(\sqrt{H_R} + 1)}, \\
\tilde{R} &= Id + \left[\begin{array}{cc} - \frac{M_{12}M_{21}}{(\mu_1 - \mu_2)^2 \lambda^2} & \frac{M_{12}}{(\mu_1 - \mu_2)\lambda} \\ - \frac{M_{12}M_{21}}{(\mu_1 - \mu_2)^2 \lambda^2} & 0 \end{array} \right],
\end{align*}

\begin{align*}
R &= \left[\begin{array}{cc} -FH & \frac{F(H - H_R)}{\sqrt{H_R} + 1} \\ H^3/2 - FH\sqrt{H_R} - \frac{F(H - H_R)}{\sqrt{H_R} + 1} & H^3/2 + FH\sqrt{H_R} + \frac{F(H - H_R)}{\sqrt{H_R} + 1} \end{array} \right],
\end{align*}

and $|N(\lambda, x)| < C(F, H_R)$ uniformly in $|\lambda| > 1, x \geq 0$.

Lemma 6.1. Let $U = \left[\begin{array}{cc} U_1 & U_2 \end{array} \right]^T$ be solution of $\frac{\partial}{\partial \lambda} \Phi = U_2/U_1$, $\Phi_2 = U_1/U_2$, for $\Re \lambda > -\tilde{\eta}$ ($\tilde{\eta} > 0$, $\tilde{\eta}$ sufficiently small) and $|\lambda|$ sufficiently large, we then have $\Phi_{1,2}(x, \lambda) = O(1/|\lambda|)$ uniformly in $x \geq 0$.

Proof. We find after a brief calculation that

\begin{equation}
\Phi_1' = (\Lambda_{22} - \Lambda_{11})\Phi_1 + \frac{1}{\lambda} \left(N_{21} + N_{22}\Phi_1 - N_{11}\Phi_1 - N_{12}\Phi_1^2 \right).
\end{equation}

For $x < 0$, let $\tilde{\Phi}_\lambda$ denotes the flow of equation $\Phi' = (\Lambda_{22}(\lambda) - \Lambda_{11}(\lambda))\Phi$. For $\Re \lambda \geq -\tilde{\eta},$

\begin{equation}
\Re(\Lambda_{22}(\lambda) - \Lambda_{11}(\lambda)) = (\mu_2 - \mu_1) \Re \lambda + M_{22} - M_{11} \\
\leq \frac{2FH^{5/2}(\sqrt{H_R} + 1)^2}{H^3H_R + H^3 - F^2H_R^2 + 2H^3\sqrt{H_R}} \tilde{\eta} + M_{22} - M_{11} \\
\leq \frac{M_{22} - M_{11}}{2} < -c < 0.
\end{equation}

Define bounded operator T_λ on Banach space $B = C^b((-\infty, 0], C^2)$ by

\begin{equation}
(T_\lambda \Phi)(x) := \int_{-\infty}^x \tilde{\Phi}_\lambda^{y-x} \frac{1}{\lambda} \left(N_{21}(y) + N_{22}(y)\Phi(y) - N_{11}(y)\Phi(y) - N_{12}(y)\Phi^2(y) \right) dy.
\end{equation}

\footnote{Here $C^b((-\infty, 0], C^2)$ is the space of bounded continuous function on $(-\infty, 0]$ associated with the sup norm.}
Claim one: For $L > 0$, the operator \mathcal{T}_λ is a contraction map on $\{ \Phi : \|\Phi\|_\infty \leq L, \Phi \in \mathcal{B} \}$ provided that $|\lambda| \geq \max\{ \frac{C(1+L)^2}{cL}, \frac{4C(1+L)}{c} \}$. This follows from inequalities

$$
| (\mathcal{T}_\lambda \Phi) (x) | \leq \int_{-\infty}^{x} e^{-c(x-y)} \frac{C+2CL+CL^2}{|\lambda|} dy = \frac{C(1+L)^2}{c|\lambda|} \leq L,
$$

$$
| (\mathcal{T}_\lambda \Phi - \mathcal{T}_\lambda \tilde{\Phi}) (x) | \leq \int_{-\infty}^{x} e^{-c(x-y)} \frac{2C(1+L)\|\Phi - \tilde{\Phi}\|_\infty}{|\lambda|} dy \leq \frac{1}{2} \| \Phi - \tilde{\Phi} \|.
$$

Claim two: For $|\lambda| > \frac{8C}{c}$, \mathcal{T}_λ is a contraction map for $L := \frac{4C}{c|\lambda|} < \frac{1}{2}$. This is because

$$
\frac{C(1+L)^2}{cL} \leq \frac{C^2}{2} = |\lambda|, \quad \frac{4C(1+L)}{c} < \frac{8C}{c} < |\lambda|.
$$

Claim two then follows from Claim one.

The unique solution to (6.5) guaranteed by the contraction mapping theorem will be in the ball $F = \left\{ \Phi : \|\Phi\|_\infty \leq L, \Phi \in \mathcal{B} \right\}$, which is of $O(1/|\lambda|)$. On the other hand

$$
\Phi_2 = (\Lambda_{11} - \Lambda_{22}) \Phi_2 + \frac{1}{\lambda} (N_{12} + N_{11} \Phi_2 - N_{22} \Phi_2 - N_{21} \Phi_2^2).
$$

Let $\tilde{\Phi}_\lambda$ now denote the flow of equation $\Phi' = (\Lambda_{11}(\lambda) - \Lambda_{22}(\lambda)) \Phi$. For $\Re \lambda \geq -\eta$, $\Re (\Lambda_{11}(\lambda) - \Lambda_{22}(\lambda)) > c > 0$, we define bounded operator \mathcal{T}_λ on Banach space $C^b((-\infty, 0], \mathbb{C}^2)$

$$
(\mathcal{T}_\lambda \Phi) (x) := \int_{0}^{x} \tilde{\Phi}_\lambda^y \frac{1}{\lambda} (N_{12}(y) + N_{11}(y) \Phi(y) - N_{22}(y) \Phi(y) - N_{21}(y) \Phi^2(y)) dy.
$$

Again inequalities

$$
| (\mathcal{T}_\lambda \Phi) (x) | \leq \int_{0}^{x} e^{c(x-y)} \frac{C+2CL+CL^2}{|\lambda|} dy = \frac{C(1+L)^2}{c|\lambda|} \leq L,
$$

$$
| (\mathcal{T}_\lambda \Phi - \mathcal{T}_\lambda \tilde{\Phi}) (x) | \leq \int_{0}^{x} e^{c(x-y)} \frac{2C(1+L)\|\Phi - \tilde{\Phi}\|_\infty}{|\lambda|} dy \leq \frac{1}{2} \| \Phi - \tilde{\Phi} \|
$$

yield claims one and two, completing the lemma.

\[\square\]

Lemma 6.2. Writing R in (6.1) as $R = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$ and setting $\begin{bmatrix} L_1 \\ L_2 \end{bmatrix} = \begin{bmatrix} R_1 & R_2 \end{bmatrix}^{-1}$, for $\Re \lambda > -\bar{\eta}$ ($\bar{\eta} > 0$, $\bar{\eta}$ sufficiently small), $|\lambda|$ sufficiently large, the solution operator $\mathcal{F}_\lambda^{y \rightarrow x}$ of system (6.12) on $x > 0$ is

$$
\mathcal{F}_\lambda^{y \rightarrow x} = e^{\int_{x}^{y} (\mu_{1,+} + M_{11,+}(\lambda) + \tilde{\lambda}_N_{11,+}(\lambda)) (x-y) dx} (R_{1,+} L_{1,+} + O(1/|\lambda|)) + e^{\int_{x}^{y} (\mu_{2,+} + M_{22,+}(\lambda) + \tilde{\lambda}_N_{22,+}(\lambda)) (x-y) dx} (R_{2,+} L_{2,+} + O(1/|\lambda|)), \quad 0 < x < y.
$$

Moreover, the stable and unstable flow operators of system (6.2) on $x < 0$ are

$$
\mathcal{F}_\lambda^{y \rightarrow x} \Pi_{\lambda,x}(y) = e^{\int_{y}^{x} (\mu_{1,-} + M_{11,-}(\lambda) + \tilde{\lambda}_N_{11,-}(\lambda)) (x-y) dx} (R_{1,-} L_{1,-} + O(1/|\lambda|)), \quad x < y < 0,
$$

$$
\mathcal{F}_\lambda^{y \rightarrow x} \Pi_{\lambda,u}(y) = e^{\int_{y}^{x} (\mu_{2,-} + M_{22,-}(\lambda) + \tilde{\lambda}_N_{22,-}(\lambda)) (x-y) dx} (R_{2,-} L_{2,-} + O(1/|\lambda|)), \quad y < x < 0,
$$

where $\mu_{1,2}, M$ as in (6.3) are independent of λ, $|N(\lambda, x)| < C(F, H_R)$ uniformly in $|\lambda| > 1, x \geq 0$, and the $O(1/|\lambda|)$ terms are independent of x, y.

Proof. By lemma 6.1, solution of (6.3) may be written as \(U = [U_1 \quad \Phi_1 U_1]^T \) with \(\Phi_1 = O(1/|\lambda|) \). The equation for \(U_1 \) then reads

\[
U_1' = (\Lambda_{11} + \frac{1}{\lambda} N_{11}(\lambda, y) + \frac{1}{\lambda} N_{12}(\lambda, y) \Phi_1(\lambda, y)) dy U_1(0).
\]

Integrating from 0 to \(x \) yields solution

\[
U_1(\lambda, x) = e^{\int_0^x (\Lambda_{11}(\lambda, y) + \frac{1}{\lambda} N_{11}(\lambda, y) + \frac{1}{\lambda} N_{12}(\lambda, y) \Phi_1(\lambda, y)) dy} U_1(0).
\]

Hence the full solution to (6.3) is

\[
\begin{bmatrix}
U_1 \\
U_2
\end{bmatrix} = e^{\int_0^x (\Lambda_{11}(\lambda, y) + \frac{1}{\lambda} N_{11}(\lambda, y) + \frac{1}{\lambda} N_{12}(\lambda, y) \Phi_1(\lambda, y)) dy} \begin{bmatrix}
1 \\
\Phi_1(\lambda, x)
\end{bmatrix} U_1(0).
\]

Transforming back to \(w \) coordinate by \(w = R \tilde{R}^{-1} U \) and using estimate \(\Phi_1(\lambda, x) = O(1/|\lambda|) \), \(\tilde{R}^{-1} = Id + O(1/|\lambda|) \), we obtain

\[
w(\lambda, x) = e^{\int_0^x (\Lambda_{11}(\lambda, y) + \frac{1}{\lambda} N_{11}(\lambda, y) + \frac{1}{\lambda} N_{12}(\lambda, y) \Phi_1(\lambda, y)) dy} (R_1(x) + O(1/|\lambda|)).
\]

The projection onto the stable manifold \(\Pi_{\lambda, s}(y) \) is approximately \(\mathcal{R}_1(y) L_1(y) + O(1/|\lambda|) \); following the flow from \(y \) to \(x \) thus yields (6.13) (i). The unstable flow operator (6.13) (ii) can be derived similarly. \(\square \)

6.2. Pointwise estimates on resolvent kernels.

6.2.1. Large \(\lambda \sim \) small time.

Proposition 6.3. For \(\Re \lambda > -\bar{\eta} \) (\(\bar{\eta} > 0 \), \(\bar{\eta} \) sufficiently small) and \(|\lambda| \) sufficiently large, \(G_1^\lambda, G_2^\lambda \), and \(K_\lambda \) can be written as

\[
G_1^\lambda =
\begin{cases}
-e^\gamma (\lambda + M_{11} + \frac{1}{\lambda} N_{11}(\lambda, z) + \frac{1}{\lambda} N_{12}(\lambda, z) \Phi_1(\lambda, z)) (x-y) (R_1(z_{1,1}, z_{1,2} + O(1/|\lambda|)) A_{-1}^{-1} \\
-e^\gamma (\lambda + M_{22} + \frac{1}{\lambda} N_{22}(\lambda, z) + \frac{1}{\lambda} N_{21}(\lambda, z) \Phi_2(\lambda, z)) (x-y) (R_2(z_{2,1}, z_{2,2} + O(1/|\lambda|)) A_{-1}^{-1}, \\
e^\gamma (\lambda + M_{11} + \frac{1}{\lambda} N_{11}(\lambda, z) + \frac{1}{\lambda} N_{12}(\lambda, z) \Phi_1(\lambda, z)) dz (R_1(x) L_1(y) + O(1/|\lambda|)) A_{-1}(y), \\
e^\gamma (\lambda + M_{22} + \frac{1}{\lambda} N_{22}(\lambda, z) + \frac{1}{\lambda} N_{21}(\lambda, z) \Phi_2(\lambda, z)) dz (R_2(x) L_2(y) + O(1/|\lambda|)) A_{-1}(y),
\end{cases}
\]

\[
G_2^\lambda =
\begin{cases}
-e^\gamma (\lambda + M_{11} + \frac{1}{\lambda} N_{11}(\lambda, z) + \frac{1}{\lambda} N_{12}(\lambda, z) \Phi_1(\lambda, z)) dz (R_1(x) L_1(y) + O(1/|\lambda|)) V + \\
\mathcal{W}(x) O(1/|\lambda|) A_{+1} \left(e^{-\gamma (\lambda + M_{11} + \frac{1}{\lambda} N_{11}(\lambda, z) + \frac{1}{\lambda} N_{12}(\lambda, z) \Phi_1(\lambda, z))} (R_1(z_{1,1}, z_{1,2} + O(1/|\lambda|)) \\
+ e^{-\gamma (\lambda + M_{22} + \frac{1}{\lambda} N_{22}(\lambda, z) + \frac{1}{\lambda} N_{21}(\lambda, z) \Phi_2(\lambda, z))} (R_2(z_{2,1}, z_{2,2} + O(1/|\lambda|)) A_{-1}^{-1}, \\
-x < 0, y > 0,
\end{cases}
\]

\[
K_\lambda =
\begin{cases}
-e^\gamma (\lambda + M_{11} + \frac{1}{\lambda} N_{11}(\lambda, z) + \frac{1}{\lambda} N_{12}(\lambda, z) \Phi_1(\lambda, z)) dz (R_1(x) L_1(y) + O(1/|\lambda|)) V + \\
\mathcal{W}(x) O(1/|\lambda|) A_{0} (0-)
\end{cases}
\]

\[
e^\gamma (\lambda + M_{22} + \frac{1}{\lambda} N_{22}(\lambda, z) + \frac{1}{\lambda} N_{21}(\lambda, z) \Phi_2(\lambda, z)) dz (R_2(0-) L_2(y) + O(1/|\lambda|)) A_{-1}(y),
\]

\[
x < 0, y < 0,
\]

\[
23.
\]
Equation (6.18) then follows. To estimate the error terms, we find for
\begin{equation}
(6.21) \int_0^y (\lambda_1(z)+M_1(z))d\lambda \leq \int_0^y (\lambda_1(z)+M_1(z))d\lambda
\end{equation}
where \(\mu_1, R, L, M_1, M_2 \) as in (6.4), \(V \) as in (6.22) are explicitly calculable and independent of \(\lambda, \Phi_{1,2}(\lambda, x) \) as in Lemma 6.2 are \(O(1/|\lambda|) \) terms uniformly in \(x, y \). Moreover, they can be decomposed as
\begin{equation}
(6.20) \quad G_1^\lambda = H_1^\lambda + (G_\lambda^1 - H_1^\lambda), \quad G_2^\lambda = H_2^\lambda + (G_\lambda^2 - H_2^\lambda), \quad K_\lambda = H_{K,\lambda} + (K_\lambda - H_{K,\lambda})
\end{equation}
where \(H_1^{1,\lambda}, H_{K,\lambda} \) are their corresponding lowest order terms defined by
\begin{align}
(6.19) \quad K_\lambda &= \begin{cases} 0, & x > 0, \\
- e^{\int_0^x (\lambda_1(z)+M_1(z))d\lambda} \int_0^y (R_1(x)L_y(0-)+O(1/|\lambda|))V + \int_0^y (R_1(x)L_y(0-)+O(1/|\lambda|)), & x < 0,
\end{cases}
\end{align}
and \(G_1^{1,\lambda} - H_1^{1,\lambda}, K_\lambda - H_\lambda \) are \(O(1/|\lambda|) \) terms.

Proof. As consequences of Lemma 6.2 and using either (5.6) or (5.7), the \(G_1^\lambda \) part (6.17) then follows. As for the \(G_2^\lambda \) part, explicit calculation shows that in the high frequency regime
\begin{equation}
(6.22) \quad [1 \quad 0] M^{-1}(\lambda) = O(1/|\lambda|)
\end{equation}

Equation (6.18) then follows. To estimate the error terms, we find for \(x < y < 0 \)
\begin{align}
(6.23) \quad \left| e^{\int_0^y (\lambda_1(z)+M_1(z))d\lambda} - e^{\int_0^y (\lambda_1(z)+M_1(z))d\lambda} \right| &
\leq \sum_{n=1}^{\infty} e^{c(x-y)} \left(C(x-y) \right)^n \frac{n!}{n!|\lambda|^n} \\
&\leq \sum_{n=1}^{\infty} e^{c(x-y)/|\lambda|} \left(C(x-y) \right)^{n-1} \frac{n|\lambda|}{n-1||\lambda|^n-1}
\end{align}

Thus \(G_1^\lambda - H_1^\lambda \) is an \(O(1/|\lambda|) \) term on \(y < x < 0 \). The other parts can be similarly estimated. \(\square \)
Desingularizing $\tilde{\eta}$-resolvent kernels $G_{1,\lambda}, K_{1,\lambda}$ by multiplying a factor λ, we have the following estimates on $\lambda G_{1,\lambda}, \lambda K_{1,\lambda}$ in the high frequency regime.

Proposition 6.4. For $\Re \lambda > -\tilde{\eta}$ ($\tilde{\eta} > 0$, $\tilde{\eta}$ sufficiently small) and $|\lambda|$ sufficiently large, $\lambda G_{1,\lambda}, \lambda K_{1,\lambda}$ can be written as

(6.24)
$$\lambda G_{1,\lambda} =
\begin{cases}
 e^{-(\lambda \mu_1,+,M_{1,1,}+,\frac{1}{N} N_{1,1,}()\frac{1}{N} N_{1,2,}()\Phi_1,(),})y (V_h + O(1/|\lambda|)) A_+ (R_{1,+,L_{1,}+, + O(1/|\lambda|)) A_+^{-1} \\
 e^{-(\lambda \mu_2,+,M_{2,2,}+,\frac{1}{N} N_{2,2,}()\frac{1}{N} N_{2,1,}()\Phi_2,(),})y (V_h + O(1/|\lambda|)) A_+ (R_{2,+,L_{2,}+, + O(1/|\lambda|)) A_+^{-1}, \quad 0 < y,
\end{cases}
$$

(6.25)
$$e^{\theta_y - (\lambda \mu_2(z)+M_{22}(z)+\frac{1}{N} N_{22}(\lambda,z)+\frac{1}{N} N_{21}(\lambda,z)\Phi_2(z))}dz (V_h + O(1/|\lambda|)) \times
A(0^-) (R_{2}(0^-)L_{2}(y) + O(1/|\lambda|)) A^{-1}(y), \quad y < 0,$$

where $\mu_{1,2}, R, L, M_{11}, M_{22}$ as in (6.4). V_h as in (6.28) are explicitly calculable and independent of $\lambda, \Phi_1(\lambda,x)$ as in Lemma 6.1 are $O(1/|\lambda|)$ terms uniformly in x, y. Moreover, $\lambda G_{1,\lambda}$ can be decomposed as

(6.26)
$$\lambda G_{1,\lambda} = H_{1,\lambda} + (G_{1,\lambda} - H_{1,\lambda}),$$

where $H_{1,\lambda}$ is its corresponding lowest order term defined by

(6.27)
$$H_{1,\lambda} =
\begin{cases}
 e^{-\lambda \mu_1,+,M_{1,1,}+,}y V_h A_+ R_{1,+,L_{1,}+,A_+^{-1} } \\
 e^{-\lambda \mu_2,+,M_{2,2,}+,}y V_h A_+ R_{2,+,L_{2,}+,A_+^{-1}}, \quad 0 < x < y,
\end{cases}
$$

and $\lambda G_{1,\lambda} - H_{1,\lambda}$ is a $O(1/|\lambda|)$ term.

Proof. By definition of $K_{1,\lambda}$ (5.9) and equations (11.16) (11.17), equation (6.25) follows from calculation:

(6.28)
$$\lambda K_{1,\lambda} = [\begin{array}{cc}
1 & 0 \\
0 & \lambda M^{-1}(\lambda)
\end{array}]
\begin{bmatrix}
-\frac{1}{\mu_1(0)} (R_1(0^-))_2 + O(1/|\lambda|) & \frac{1}{\mu_1(0)} (R_1(0^-))_1 + O(1/|\lambda|) \\
\frac{\lambda (W - R(W))_2}{\mu_1(0)} & \frac{\lambda (W - R(W))_1}{\mu_1(0)}
\end{bmatrix}
$$

$$= (H_1 - H) \begin{bmatrix}
F H R + H_1^{3/2} (1 + \sqrt{H R}) & \\
-H_1^{3/2} (\sqrt{H R} + 1) + F(H_1 - H + H_1 H + H_1 \sqrt{H R}) & - F H_1 (\sqrt{H R} + 1)
\end{bmatrix} + O(1/|\lambda|)
$$

By definition of $G_{1,\lambda}$ (5.4), using Lemma 6.2 and equation (6.28), the $\lambda G_{1,\lambda}$ part (6.24) then follows. Following similar calculation as in (6.25), $\lambda G_{1,\lambda} - H_{1,\lambda}$ is an $O(1/|\lambda|)$ term.

6.2.2. Small $\lambda \sim$ large time. Expanding (4.8) (4.9) near $\lambda = 0$ yields

(6.29)
$$\begin{align*}
\gamma_{1,-}(\lambda) &= c_{1,-}^0 + c_{1,-}^1 + O(\lambda^2), \\
\gamma_{2,-}(\lambda) &= -c_{2,-}^1 - c_{2,-}^2 + O(\lambda^3) := \tilde{\gamma}_{2,-}(\lambda) + O(\lambda^3), \\
\gamma_{2,+}(\lambda) &= c_{2,+}^0 + c_{2,+}^1 + O(\lambda^2), \\
\gamma_{1,+}(\lambda) &= c_{1,+}^1 - c_{1,+}^2 + O(\lambda^3) := \tilde{\gamma}_{1,+}(\lambda) + O(\lambda^3),
\end{align*}$$

where $c_{1,2,\pm}$ are positive constant explicitly calculable as functions of F, H_R. Since $A_{\pm}(\lambda)$ ($A_{\pm}(\lambda)$) has distinct eigenvalues $\gamma_{1,2,+}$ ($\gamma_{1,2,-}$) near $\lambda = 0$, we then have following proposition.
Proposition 6.5. The resolvent kernels $G^1_\lambda(x; y)$, $G^2_\lambda(x; y)$, and $K_\lambda(x)$ can be extended holomorphically to $B(0, r)$ for sufficiently small r. Moreover $G^1_\lambda(x; y)$ can be decomposed as

$$G^1_\lambda = S^1_\lambda + R^1_\lambda,$$

where

$$S^1_\lambda(x; y) := \begin{cases} -e^{\bar{\gamma}_{1,+}(\lambda)(x-y)}P_{1,+}(0)A^+_1, & 0 < x < y, \\ e^{\bar{\gamma}_{2,-}(\lambda)(x-y)}P_{2,-}(0)A^-_1, & y < x < 0, \\ 0, & \text{otherwise}, \end{cases}$$

and R^1_λ is a faster-decaying residual

$$R^1_\lambda(x; y) := \begin{cases} -e^{\bar{\gamma}_{2,+}(\lambda)(x-y)}P_{2,+}(\lambda)A^-_1 + e^{\bar{\gamma}_{1,+}(\lambda)(x-y)}P_{1,+}(0) - e^{\gamma_{1,+}(\lambda)(x-y)}P_{1,+}(\lambda) \right) A^-_1, & 0 < x < y, \\ -e^{\gamma_{1,-}(\lambda)(x-y)}T_-(\lambda, x)P_{1,-}(\lambda)T^-_1(\lambda, y)A^-_1(y), & x < y < 0, \\ -e^{\bar{\gamma}_{2,-}(\lambda)(x-y)}P_{2,-}(0)A^-_1 + e^{\bar{\gamma}_{2,-}(\lambda)(x-y)}T_-(\lambda, x)P_{2,-}(\lambda)T^-_1(\lambda, y)A^-_1(y), & y < x < 0, \\ 0, & \text{otherwise}. \end{cases}$$

Further, $G^2_\lambda(x; y)$ is a faster decaying term which can be estimated as

$$|G^2_\lambda| = \left| \frac{O(e^{-\bar{\gamma}_{1,+(x-y)-\theta''}x})}{\left| \frac{O(e^{-\bar{\gamma}_{1,+(x-y)-\theta''}x})}{\left| O(e^{-\bar{\gamma}_{1,+(x-y)-\theta''}x}) \right|} \right|}, \quad x < 0, y > 0,$n

$$|G^2_\lambda| = \left| \frac{O(e^{-\bar{\gamma}_{2,-(y-x)-\theta''}x})}{\left| \frac{O(e^{-\bar{\gamma}_{2,-(y-x)-\theta''}x})}{\left| O(e^{-\bar{\gamma}_{2,-(y-x)-\theta''}x}) \right|} \right|}, \quad x < 0, y < 0,$n

and $K_\lambda(x)$ is a faster decaying term which can be estimated as

$$|K_\lambda| = \left| \frac{O(e^{-\theta''x})}{\left| \frac{O(e^{-\theta''x})}{\left| O(e^{-\theta''x}) \right|} \right|}, \quad x < 0.$$n

Proposition 6.6. The desingularized resolvent kernels $\lambda G_{1,\lambda}(y)$, $\lambda K_{1,\lambda}$ can be extended holomorphically to $B(0, r)$ for sufficiently small r. Moreover, defining

$$V_\lambda = \lim_{\lambda \to 0} \lambda \left[\begin{array}{cc} 1 & 0 \end{array} \right] M^{-1}(\lambda),$$

there holds

$$\lambda K_{1,\lambda} = V_\lambda + O(\lambda),$$

and $\lambda G_{1,\lambda}(y)$ can be decomposed as

$$\lambda G_{1,\lambda} = S_{1,\lambda} + R_{1,\lambda},$$

where

$$S_{1,\lambda}(y) := \begin{cases} e^{-\gamma_{1,+(\lambda)y}V_\lambda A_+P_{1,+}(0)A^-_1,} & 0 < y, \\ e^{-\gamma_{2,-(\lambda)y}V_\lambda A(0^-)P_{2,-}(0)A^-_1,} & y < 0, \end{cases}$$

and $R_{1,\lambda}$ is a faster-decaying residual.
7. Pointwise estimates on Green kernels

With the above preparations, we are now ready to carry out our main linear estimates, obtaining detailed pointwise bounds on the Green kernels of the time-evolution problem.

Theorem 7.1. The interior source \(v \)-Green kernel function \(G \) defined in (5.13) may be decomposed as

\[
G = H^1 + H^2 + S^1 + R,
\]

where, assuming Evans-Lopatinsky stability,

\[
H^1(x, t; y) :=
\begin{cases}
- e^{-\bar{\eta}t + (-\bar{\eta}_{1}+ + M_{1, +})(x-y) R_1(x) L_1(y) A^{-1}(y)} A_1^{-1} \delta(t + \mu_1, + (x-y)) & 0 < x < y, \\
- e^{-\bar{\eta}t + (-\bar{\eta}_{2}+ + M_{2, +})(x-y) R_2(x) L_2(y) A^{-1}(y)} A_2^{-1} \delta(t + \mu_2, + (x-y)) & 0 < x < y,
\end{cases}
\]

\[
H^2(x, t; y) :=
\begin{cases}
- e^{-\bar{\eta}t + \int_{x}^{y} (-\bar{\eta}_{1}+ + M_{1, +}) dz R_1(x) L_1(y) A^{-1}(y)} A_1^{-1} \delta(t + \mu_1, + (x-y)) & 0 < x < y, \\
- e^{-\bar{\eta}t + \int_{x}^{y} (-\bar{\eta}_{2}+ + M_{2, +}) dz R_2(x) L_2(y) A^{-1}(y)} A_2^{-1} \delta(t + \mu_2, + (x-y)) & 0 < x < y,
\end{cases}
\]

\[
S^1(x, t; y) :=
\begin{cases}
\chi_{t \geq 1} \frac{\sqrt{c_{1}^2 + \kappa t} e^{-\frac{(\bar{\eta} c_{1}^2 + \kappa t)^2}{4 c_{1}^2 + \kappa t}}}{\sqrt{4 c_{1}^2 + \kappa t}} P_{1, +}(0) A_{1}^{-1} & 0 < x < y, \\
\chi_{t \geq 1} \frac{\sqrt{c_{2}^2 - \kappa t} e^{-\frac{(\bar{\eta} c_{2}^2 - \kappa t)^2}{4 c_{2}^2 - \kappa t}}}{\sqrt{4 c_{2}^2 - \kappa t}} P_{2, -}(0) A_{2}^{-1} & y < x < 0,
\end{cases}
\]

\[
R(x, t; y) = O(e^{-\bar{\eta}(|x-y|+t)}) + \chi_{t \geq 1} \frac{1}{\sqrt{t}} e^{-\frac{(\bar{\eta} c_{1}^2 + \kappa t)^2}{4 c_{1}^2 + \kappa t}} O \left(\frac{1}{\sqrt{t}} + e^{-\theta |x|} \right),
\]

\[
R_y(x, t; y) = O(e^{-\bar{\eta}(|x-y|+t)}) + \chi_{t \geq 1} \frac{1}{\sqrt{t}} e^{-\frac{(\bar{\eta} c_{2}^2 - \kappa t)^2}{4 c_{2}^2 - \kappa t}} O \left(\frac{1}{\sqrt{t}} + e^{-\theta |x|} \right),
\]
and moreover

\[R_2(x, t; y) := R(x, t; y) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = O(e^{-\eta(|x-y|+t)}) + \chi t \geq 1 e^{-\frac{(t-m|x-y|)^2}{M}} O\left(\frac{1}{t}\right), \]

where \(m, M \) are some positive constant \(\bar{\eta} \) is a sufficiently small positive constant.

The interior source kernel estimates of Theorem 7.1 may be recognized as essentially those of the smooth profile case [MZ1, MZ2]. Namely, as displayed in Figure 4, the principal high-frequency component consists of time-decaying delta-functions moving along hyperbolic characteristics of (1.1) and refracting/reflecting from the shock, while the principal low-frequency component consists of time-algebraically decaying Gaussian signals moving along characteristics of the reduced, equilibrium system (1.2).

The behavior of additional, boundary kernels in the discontinuous (subshock) case is similar.

Theorem 7.2. For \(x > 0 \), the boundary source \(v \)-Green kernel function \(K(x, t) \) defined in (5.13) is identically 0. For \(x < 0 \), it may be decomposed as

\[K(x, t) = H_K + R_K, \]

where, assuming Evans-Lopatinsky stability,

\[H_K(x, t) := -e^{-\bar{\eta} t} \int_0^t e^{-\bar{\eta} \mu_1(z) + M_{11}(z)} dz R_1(x)L_1(0-)V \delta \left(t + \int_0^x \mu_1(z)dz \right), \quad x < 0, \]

\[R_K(x, t) = O(e^{-\bar{\eta}(|x|+t)}), \quad x < 0. \]

Theorem 7.3. The time derivative of interior source \(v \)-Green kernel function \(G_1(t; y) \) defined in (5.13) may be decomposed as

\[G_{1t} = H_1 + S_1 + R_1, \]

where, assuming Evans-Lopatinsky stability,

\[H_1(t; y) := \begin{cases} e^{-\bar{\eta} t} e^{-\bar{\eta} \mu_1, + + M_{11}, +} \nu V_h A_+ R_{11} + L_{11} + A_+^{-1} \delta (t - \mu_1, + y) \\ + e^{-\bar{\eta} t} e^{-\bar{\eta} \mu_2, + + M_{22}, +} \nu V_h A_+ R_{22} + L_{22} + A_+^{-1} \delta (t - \mu_2, + y), \quad 0 < y, \\ e^{-\bar{\eta} t} e^{\bar{\eta} \mu_2, + + M_{22}, +} \nu V_h A(0-) R_2(0-) L_2(y) A^{-1}(y) \delta (t + \int_0^y \mu_2(z) dz), \quad y < 0, \end{cases} \]
Theorem 7.4. The time derivative of boundary source Green kernel function $K_1(t)$ defined in (5.13) may be decomposed as

\begin{equation}
K_{1t} = H_{K_1} + R_{K_1},
\end{equation}

where, assuming Evans-Lopatinsky stability,

\begin{equation}
H_{K_1}(t) = e^{-\eta t}V_h \delta(t) \text{ and } R_{K_1} = O(e^{-\eta t}).
\end{equation}

Observation 7.5 (Special structure on $P_{2,\pm}(0)A_{\pm}^{-1}$). The matrix $P_{2,\pm}(0)A_{\pm}^{-1}$ can be computed symbolically to be

\begin{equation}
P_{2,-}(0)A_{-1} = \begin{pmatrix}
\frac{2+2\sqrt{H_7}}{1-2H_7+\sqrt{H_7}} & 0 \\
\frac{2+2\sqrt{H_7}}{1-2H_7-\sqrt{H_7}} & 0
\end{pmatrix}, \quad P_{1,+}(0)A_{+1}^{-1} = \begin{pmatrix}
\frac{2+2\sqrt{H_7}}{H_R-2+\sqrt{H_R}} & 0 \\
\frac{2+2\sqrt{H_7}}{9H_R-3H_R^2+6\sqrt{H_R}} & 0
\end{pmatrix}.
\end{equation}

In particular, the second columns vanish.

Proof of Theorem 7.4. Case I. $|x-y|/t$ sufficiently large Following [MZ1], we note, for $|x-y|/t > S$, S sufficiently large, that $G = 0$. Taking a sufficiently large in (5.13), we can use Proposition 6.3
to estimate $G^{1,2}(x, t; y)$. For example on $x < y < 0$,

$$
\begin{align*}
|G^{1}(x, t; y)| &= \left| \frac{1}{2\pi} P.V. \int_{-\infty}^{a+i\infty} e^{\lambda t} e^{\int_x^y (\lambda \mu_1(z)+M_1(z))dz} (R_1(x)L_1(y)A^{-1}(y) + O(1/|\lambda|)) d\lambda \right| \\
&\leq \left| \frac{1}{2\pi} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} e^{\int_x^y (\lambda \mu_1(z)+M_1(z))dz} R_1(x)L_1(y)A^{-1}(y)d\lambda \right| \\
&\quad + \left| \frac{1}{2\pi} P.V. \int_{a-i\infty}^{a+i\infty} e^{\lambda t} e^{\int_x^y (\lambda \mu_1(z)+M_1(z))dz} O(1/|\lambda|)d\lambda \right| \\
&\leq e^{a(t+\int_y^x \mu_1(z)dz)+\int_x^y M_1(z)dz} \left| P.V. \int_{-\infty}^{\infty} e^{i\xi \left(t+\int_y^x \mu_1(z)dz\right)} d\xi \right| \\
&\quad + e^{a(t+\int_y^x \mu_1(z)dz)+\int_x^y M_1(z)dz} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\alpha^2 + \xi^2}} d\xi \\
&= e^{a(t+\int_y^x \mu_1(z)dz)+\int_x^y M_1(z)dz} \delta\left(t + \int_y^x \mu_1(z)dz\right) \\
&\quad + e^{a(t+\int_y^x \mu_1(z)dz)+\int_x^y M_1(z)dz} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\alpha^2 + \xi^2}} d\xi.
\end{align*}
$$

(7.20)

In “\lesssim” line, the integral can be explicitly computed because μ_1, M_1, R_1, L_1, and A are independent of λ. And, on the next line, using the triangle inequality for the integral yields the bound. Since there are c, C depending only on F, H_R such that

$$
-C < \mu_2(H(z)) < -c < 0 < c < \mu_1(z) < C,
$$

$\delta\left(t + \int_y^x \mu_1(z)dz\right)$ will be 0 provided that $\frac{|x-y|}{t} < \frac{1}{c}$ or $\frac{|x-y|}{t} > C$ for some C sufficiently large. As for the term in the last row of (7.20), for $|x-y|/t$ sufficiently large, $t + \int_y^x \mu_1(z)dz$ will be a negative number. Thus by sending a to $+\infty$ this term also vanishes. The same result holds on $y < x < 0$ and $0 < x < y$. Similarly, $G^2(x, t; y)$ also vanishes.

Case II. $|x-y|/t$ bounded. First, observe that $|x-y| \leq C \theta$ yields for $\theta > 0$ that

$$
\begin{align*}
e^{-\theta t} &\leq e^{-\theta_1(t+|x-y|)}
\end{align*}
$$

for some $\theta_1 > 0$, a contribution absorbable in error term R. Thus, in this regime, it is enough to show that terms are time-exponentially small in order to verify that they are absorbably in R.

By our construction of resolvent kernels, they are meromorphic on the set of consistent splitting, with poles precisely at zeros of the Evans-Lopatinsky function Δ (4.19). Function Δ is nonvanishing on $\{\lambda : \Re \lambda \geq -a, |\lambda| > r\}$ by a combination of Proposition 11.2 and the assumed Evans-Lopatinsky stability, that is, M is invertible on $\{\lambda : \Re \lambda \geq -a, |\lambda| > r\}$. As observed in Remark 5.7, we can deform the contour of integration in (5.13) to (5.21). Since by Lemma 5.11, G_1^{λ} is holomorphic in a small neighborhood of the origin, we can further deform the contour to the left of the origin and obtain

$$
\begin{align*}
G(x, t; y) &= \frac{1}{2\pi i} \int_{\tilde{\eta} - ir}^{\tilde{\eta} + ir} e^{\lambda t} G_1^{\lambda} d\lambda + \frac{1}{2\pi i} \left(\int_{\tilde{\eta} - ir}^{\tilde{\eta} + ir} + \int_{\tilde{\eta} + ir}^{\tilde{\eta} - ir} \right) e^{\lambda t} G_1^{\lambda} d\lambda \\
&\quad + P.V. \frac{1}{2\pi i} \left(\int_{\tilde{\eta} - i\infty}^{\tilde{\eta} - ir} + \int_{\tilde{\eta} + ir}^{\tilde{\eta} + i\infty} \right) e^{\lambda t} G_1^{\lambda} d\lambda := I + II + III
\end{align*}
$$

(7.21)

for $\tilde{\eta} > 0, \tilde{\eta}$ sufficiently small. We will use superscript $1, 2$ to denote contributions from $G_1^{\lambda, 2}$ to G.

Intermediate frequency contribution II. For $\tilde{\eta}$ in the intermediate frequency regime $[-\tilde{\eta} - iR, -\tilde{\eta} - ir]$ and $[-\tilde{\eta} + ir, -\tilde{\eta} + iR]$, the resolvent kernel is bounded. Therefore term II is time-exponentially small of order $e^{-\tilde{\eta}t}$ and absorbable in R.

30
High frequency contribution III. In this regime, we can again use Proposition 6.3. The term III^1 can be written as

$$III^1 \equiv \frac{1}{2\pi i} P.V. \int_{-\eta-i\infty}^{-\eta+\infty} e^{\lambda} H^1_{\lambda} d\lambda - \frac{1}{2\pi i} \int_{-\eta-iR}^{-\eta+\infty} e^{\lambda} H^1_{\lambda} d\lambda$$

(7.22)

$$+ \frac{1}{2\pi i} P.V. \left(\int_{-\eta-i\infty}^{-\eta-iR} + \int_{-\eta+iR}^{-\eta+\infty} \right) e^{\lambda} (G^1_{\lambda} - H^1_{\lambda}) d\lambda$$

$$:= III^1_a + III^1_b + III^1_c.$$

The term III^1_a can be explicitly computed to be

$$III^1_a = -e^{\eta t + \int_y^z (-\eta \mu_1(z) + M_{11}(z)) dz} R_1(x) L_1(y) A^{-1}(y) \frac{1}{2\pi} P.V. \int_{-\infty}^{\infty} e^{i\xi \left(t + \int_y^z \mu_1(z) dz \right)} d\xi$$

(7.23)

which gives contribution H^1 on $x < y < 0$. As for the term III^1_b, it can be bounded by

$$|III^1_b| \lesssim e^{\eta t + \int_y^z (-\eta \mu_1(z) + M_{11}(z)) dz} R_1(x) L_1(y) A^{-1}(y) \frac{1}{2\pi} \int_{-R}^{R} e^{i\xi \left(t + \int_y^z \mu_1(z) dz \right)} d\xi$$

(7.24)

in which the last inequality follow by $-\bar{\eta} \mu_1(z) + M_{11}(z) > c > \bar{\eta} > 0$ for $\bar{\eta}$ sufficiently small and all $z < 0$. Hence III^1_b is absorbable in R. By Proposition 6.3 $G^1_{\lambda} - H^1_{\lambda}$ expands as $1/\lambda$ times a bounded function $h(x,y)$ plus an error term of order $O(1/|\lambda|^2)$ on the contour of integral III^1_c. Thus,

$$|III^1_c| \lesssim e^{-\eta t} h(x,y) P.V.(\int_{-\infty}^{\infty} + \int_{-\infty}^{R}) \lambda^{-1} d\lambda + e^{-\eta t} \int_{R}^{\infty} \frac{1}{\eta^2 + \xi^2} d\xi \lesssim e^{-\eta t},$$

(7.25)

which again is absorbable in R. Similar analysis can be carried out on $y < x < 0$ and for G^2_{λ}.

Low frequency contribution I.

(Case $t \leq 1$). Estimates in the short-time regime $t \leq 1$ are trivial. Since then $e^{\lambda} G_{\lambda}$ is uniformly bounded on the compact set $[-\bar{\eta} - i\tau, -\bar{\eta} + i\tau]$, we have $|I| \lesssim e^{-\eta t}$ is absorbable in R.

(Case $t \geq 1$). Next, consider I^1, I^2 on the critical regime $t \geq 1$ and $y < x < 0$.

I^1: Decompose $G^1_{\lambda} = S^1_{\lambda} + R^1_{\lambda}$ and write I^1 as

$$I^1 = \frac{1}{2\pi i} \int_{-\eta-i\tau}^{-\eta+\infty} e^{\lambda} S^1_{\lambda} d\lambda + \frac{1}{2\pi i} \int_{-\eta-i\tau}^{-\eta+\infty} e^{\lambda} R^1_{\lambda} d\lambda := I^1_s + I^1_r.$$

(7.26)

We then analyze I^1_s, I^1_r separately.

I^1_s: Deform the integral to write I^1_s as

$$I^1_s = \frac{1}{2\pi i} \left(\int_{-\eta-i\tau}^{-\eta+i\tau} + \int_{\eta-i\tau}^{\eta+i\tau} + \int_{\eta+i\tau}^{-\eta+i\tau} \right) e^{\lambda} S_{\lambda} d\lambda := I^1_{s1} + I^1_{s2} + I^1_{s3},$$

(7.27)

where the saddle point $\eta_{s}(x,y,t)$ is defined as

$$\eta_{s}(x,y,t) := \begin{cases} \frac{\bar{\alpha}}{p}, & \text{if } \frac{\bar{\alpha}}{p} \leq \varepsilon, \\ \pm \varepsilon, & \text{if } \frac{\bar{\alpha}}{p} \geq \pm \varepsilon, \end{cases}$$

(7.28)
with

\[
\alpha := \frac{x - y - \frac{1}{c_1} t}{2t}, \quad p := \frac{c_2}{c_1} (x - y).
\]

A key observation is: When \(|\alpha| / p \leq \varepsilon, \varepsilon \) sufficiently small, \(t / c_1, x - y \) are comparable, that is we have

\[
\frac{1}{2} (x - y) < (1 - \frac{2c_2 - \varepsilon}{c_2 - \varepsilon}) (x - y) < \frac{t}{c_2 - \varepsilon} < (1 + \frac{2c_2 - \varepsilon}{c_2 - \varepsilon}) (x - y) < 2(x - y).
\]

Observation 7.6. Assuming the comparability condition (7.30) and \(y < x < 0, e^{-\theta'|y|} \) is time-exponentially decaying.

Proof. By the comparability condition, \(y < x - \frac{t}{2c_2 - \varepsilon} < \frac{t}{2c_2 - \varepsilon} \), we have \(e^{-\theta'|y|} < e^{-\frac{\theta'}{2c_2 - \varepsilon}} \). \(\square \)

\(I_{S_2}^1 \): i. When \(|\alpha| / p \leq \varepsilon, I_{S_2}^1 \) can be explicitly computed to be

\[
I_{S_2}^1 = \frac{1}{2\pi} e^{-\frac{(t-c_1)^2(x-y)}{4c_2(x-y)}} \int_{-r}^{r} e^{-c_2^2 \theta |(x-y)|} d\xi P_{2,-}(-0) \bar{A}_{-1}
\]

\[
= \frac{1}{\sqrt{4c_2 \pi (x-y)}} e^{-\frac{(t-c_1)^2(x-y)}{4c_2 \pi (x-y)}} P_{2,-}(-0) \bar{A}_{-1}
\]

\[
- \frac{1}{2\pi} e^{-\frac{(t-c_1)^2(x-y)}{4c_2 \pi (x-y)}} \left(\int_{-\infty}^{-r} + \int_{r}^{\infty} \right) e^{-c_2^2 \theta |(x-y)|} d\xi P_{2,-}(-0) \bar{A}_{-1}
\]

\[
= \frac{\sqrt{c_2}}{2c_2 \pi (x-y)} e^{-\frac{(t-c_1)^2(x-y)^2}{4c_2^2 \pi (x-y)}} P_{2,-}(-0) \bar{A}_{-1}
\]

\[
+ \left(\frac{\sqrt{c_2}}{2c_2 \pi (x-y)} - \frac{t-c_1}{4c_2 \pi (x-y)} \right) P_{2,-}(-0) \bar{A}_{-1}
\]

\[
- \frac{1}{2\pi} e^{-\frac{(t-c_1)^2(x-y)}{4c_2 \pi (x-y)}} \left(\int_{-\infty}^{-r} + \int_{r}^{\infty} \right) e^{-c_2^2 \theta |(x-y)|} d\xi P_{2,-}(-0) \bar{A}_{-1}
\]

\[
:= S^1 + I_{S_2Ri}^1 + I_{S_2Re}^1.
\]

where \(S^1 \) gives contribution \(S^1 \) in (7.1) and \(I_{S_2Ri}^1, I_{S_2Re}^1 \) are shown in Appendix B to be absorbable in \(R \).

\(S^1_y \). By direct calculation, \((7.32) \)

\[
|S^1_y| = \left| P_{2,-}(-0) \bar{A}_{-1} \frac{\sqrt{c_2}}{4c_2 \pi (x-y)} e^{-\frac{(t-c_1)^2(x-y)^2}{4c_2^2 \pi (x-y)}} \left(\frac{c_1^2}{2c_2} t - \frac{c_1^2}{2c_2} (x-y) \right) \right| < \frac{1}{t} e^{-\frac{(t-c_1)^2(x-y)^2}{8c_2^2 \pi (x-y)}}.
\]
\[|I_{S2}^1| \lesssim e^{\varepsilon (t-c^{2,1}_-(x-y)) + \varepsilon^2 c^{2,1}_-(x-y)} \int_{-r}^{r} e^{-t c^{2,1}_-(x-y) \xi^2} d\xi \]

(7.33)

\[\lesssim e^{\varepsilon (t-c^{2,1}_-(x-y)) + \varepsilon^2 c^{2,1}_-(x-y)) \]

\[\leq e^{\frac{1}{2} (t-c^{2,1}_-(x-y)) \varepsilon} \leq e^{-\varepsilon t}, \]

Hence it is absorbable in \(R \). Similarly when \(\frac{\alpha}{p} > \varepsilon \), the term \(I_{S2}^1 \) is also time-exponentially small.

\(I_{S1}^1 \) and \(I_{S3}^1 \): i. When \(\left| \frac{\alpha}{p} \right| \leq \varepsilon \), the term \(I_{S1}^1 \) and \(I_{S3}^1 \) can be estimated as

\[|I_{S1}^1|, |I_{S3}^1| \lesssim e^{-c^{2,1}_- r^2 (x-y)} \left| \int_{-\eta}^{\eta} e^{(t-c^{2,1}_-(x-y)) \tilde{\eta} + c^{2,1}_-(x-y) \tilde{\eta}^2} d\tilde{\eta} \right|. \]

(7.34)

Since \(\tilde{\eta} \) is the critical point of quadratic function \((t - c^{1,1}_-(x-y)) \xi + c^{2,1}_-(x-y) \xi^2\), we then have

\[|I_{S1}^1|, |I_{S3}^1| \lesssim e^{-c^{2,1}_- r^2 (x-y)} e^{-(t-c^{2,1}_-(x-y)) \tilde{\eta} + c^{2,1}_-(x-y) \tilde{\eta}^2} |\eta_* + \tilde{\eta}|. \]

Choosing \(\tilde{\eta} \) sufficiently small with respect to \(r^2 \) and using comparability of \(\frac{\tilde{\eta}^2}{c^{2,1}_-} \) and \(x - y \), \(I_{S1}^1, I_{S3}^1 \) is then time-exponentially decaying.

ii. When \(\left| \frac{\alpha}{p} \right| > \varepsilon \), we have

\[|I_{S1}^1|, |I_{S3}^1| \lesssim e^{-c^{2,1}_- r^2 (x-y)} \left| \int_{-\eta}^{\eta} e^{(t-c^{2,1}_-(x-y)) \tilde{\eta} + c^{2,1}_-(x-y) \tilde{\eta}^2} d\tilde{\eta} \right| \]

(7.36)

\[\leq e^{-c^{2,1}_- r^2 (x-y)} (e^{-(t-c^{2,1}_-(x-y)) \tilde{\eta} + c^{2,1}_-(x-y) \tilde{\eta}^2} + e^{-(t-c^{1,1}_-(x-y)) \epsilon + c^{2,1}_-(x-y) \epsilon^2}) (\epsilon + \tilde{\eta}) \]

\[= (e^{-\tilde{\eta} t + (c^{1,1}_- \tilde{\eta} + c^{2,1}_- \tilde{\eta}^2 - c^{2,1}_- r^2)(x-y)} + e^{-\epsilon t + (c^{1,1}_- \epsilon + c^{2,1}_- \epsilon^2 - c^{2,1}_- r^2)(x-y)}) (\epsilon + \tilde{\eta}). \]

Again choosing \(\tilde{\eta}, \epsilon \) sufficiently small with respect to \(r^2 \) yields that \(I_{S1}, I_{S3} \) are time-exponentially small.

\(I_{R1}^1 \): Using \(P_{2,-}(\lambda) = P_{2,-}(0) + O(|\lambda|) \), \(T_-(\lambda, x) = Id + O(e^{-\theta|\lambda|}) \), \(T^{1,-}(\lambda, y) = Id + O(e^{-\theta|\lambda|}) \), \(\gamma_2,-(\lambda) = \tilde{\gamma}_2,-(\lambda) + O(|\lambda|^3) \), and \(A^{-1}(y) = A^{-1} + O(e^{-\theta y}) \), \(R_{\lambda}^1 \) can be estimated as

\[R_{\lambda}^1 = e^{\tilde{\gamma}_2,-(\lambda)(x-y)} P_{2,-}(0) A^{-1} - e^{\gamma_2,-(\lambda)(x-y)} T_-(\lambda, x) P_{2,-}(\lambda) T^{1,-}(\lambda, y) A^{-1}(y) \]

\[= e^{\tilde{\gamma}_2,-(\lambda)(x-y)} P_{2,-}(0) A^{-1} - e^{\gamma_-2, -(\lambda)(x-y)} (1 + O(|\lambda|^3(x-y))) \left(Id + O(e^{-\theta y}) \right) \]

\[\times \left(P_{2,-}(0) + O(|\lambda|) \right) \left(Id + O(e^{-\theta|\lambda|}) \right) \left(A^{-1} + O(e^{-\theta y}) \right) \]

\[= e^{\tilde{\gamma}_2,-(\lambda)(x-y)} \left(O(|\lambda|^3(x-y)) + O(e^{-\theta|\lambda|}) \right) P_{2,-}(0) A^{-1} \]

\[+ e^{\gamma_2,-(\lambda)(x-y)} \left(O(|\lambda|) A^{-1} + P_{2,-}(0) O(e^{-\theta|\lambda|}) A^{-1} + P_{2,-}(0) O(e^{-\theta y}) \right) \]

\[:= #1 + #2. \]

Deform the contour as before to write \(I_{R1}^1 \) as

\[I_{R1} = \frac{1}{2\pi i} \left(\int_{-\eta_* - ir}^{\eta_* + ir} + \int_{\eta_* + ir}^{\eta_* + ir} + \int_{\eta_* + ir}^{\eta_* + ir} \right) e^{\lambda^t R_{\lambda}^1 d\lambda} := I_{R1}^1 + I_{R2}^1 + I_{R3}^1. \]

(7.37)
\(I_{R^2}^1 \): On the contour \([\eta_s - i\tau, \eta_s + i\tau]\), we notice that

\begin{equation}
O(|\lambda|) = O(|\eta_s|) + O(|\xi|), \quad O(|\lambda^3(x - y)|) = \sum_{i=0}^{3} O(|\eta_s|^i||\xi|^{3-i}|x - y|).
\end{equation}

i. When \(\frac{\eta}{p} \leq \varepsilon \), \(I_{R^2}^1 \) can be estimated as

\begin{equation}
|I_{R^2}^1| \lesssim e^{-\frac{(\tau - c_1)(x - y)}{2c_1(x - y)}} \int_{-\tau}^{\tau} e^{-\xi^2c_2(x - y)} O \left(|\eta_s| + |\xi| + \sum_{i=0}^{3} |\eta_s|^i|\xi|^{3-i}|x - y| + e^{-\theta'|x|} + e^{-\theta'|y|} \right) d\xi
\end{equation}

\begin{equation}
\lesssim e^{-\frac{(\tau - c_1)(x - y)}{2c_1(x - y)}} \int_{-\tau}^{\tau} e^{-\xi^2c_2(x - y)} O \left(|\eta_s| + |\xi| + \sum_{i=0}^{3} |\eta_s|^i|\xi|^{3-i}|x - y| \right) d\xi
\end{equation}

\begin{equation}
\text{+ \frac{1}{\sqrt{c_2(x - y)}} e^{-\frac{(\tau - c_1)(x - y)}{2c_1(x - y)}} O(e^{-\theta'|x|})}
\end{equation}

\begin{equation}
:= I_{R^2i}^1 + I_{R^2ii}^1.
\end{equation}

The \(I_{R^2ii}^1 \) term in the last line of (7.40) is absorbable in \(R \) because \(\frac{1}{c_2} \) and \(x - y \) are comparable

so

\(\frac{1}{\sqrt{c_2(x - y)}} e^{-\frac{(\tau - c_1)(x - y)}{2c_1(x - y)}} O(e^{-\theta'|x|}) \) is absorbable in \(R \) (7.6) and by Observation 7.6 the term

\(\frac{1}{\sqrt{c_2(x - y)}} e^{-\frac{(\tau - c_1)(x - y)}{2c_1(x - y)}} O(e^{-\theta'|y|}) \) is time-exponentially small hence also absorbable. The term \(I_{R^2i}^1 \) is shown in Appendix B to be absorbable in \(R \).

ii. When \(\frac{\eta}{p} > \varepsilon \), following the part ii above in the estimation of \(I_{S^2}^1 \), we find that \(I_{R^2}^1 \) is also time-exponentially decaying. Using (7.37) and imitating the way of estimating \(I_{S1}^1 \) and \(I_{S3}^1 \), we find that \(I_{R1}^1 \) and \(I_{R3}^1 \) are also time-exponentially decaying.

In the regime \(t \geq 1 \) and \(x < y < 0 \), by Proposition 6.3, \(G_{\lambda}^1 = R_{\lambda}^1 \). Because \(\Re \gamma_{1,-}(\lambda) > c > 0 \) in a small neighborhood of the origin, \(G_{\lambda}(x; y) \) is then uniformly bounded in \(x < y < 0 \), and so the term \(I_{R}^1 \) in (7.21) is time-exponentially decaying.

Following the way of estimating \(I_{R}^1 \) and using estimates (6.33), \(I^2 \) can be estimated in a similar way and absorbed in \(R \).

\(R \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \): In \(R_{\lambda}^3 \), the terms \(II, III, \text{ and } 3 < I \) are time-exponentially small, hence absorbable in (7.8). By Observation 7.5 any terms in \(R \) that has a labeling “S” will become 0 when right multiplied by \(\left[\begin{array}{c} 0 \\ 1 \end{array} \right] \). The only term remaining to be analyzed is \(I_{R}^1 \). By (7.37), \(\#_1 \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = 0 \), the other term \(\#_2 \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \) is absorbable in (7.8) by Observation 7.6:

Finally estimation of \(R_y \) can be done by estimating \(y \)-derivatives of terms in (A.2)(iii) separately. That is for

\(II \): The \(y \)-derivative of the resolvent kernel is bounded on the intermediate frequency regime, hence \(II_y \) is time-exponentially small;

\(^4 \)Refer to Appendix A equation (A.2) (iii) for decomposition of \(R \).
III\textsubscript{b,c}: Direct computation shows they are time-exponentially small;

\(I_{11,S3}\): \(e^{\lambda t} G_{\lambda,y} \) uniformly bounded, so time-exponentially small;

\(I_{11,S3}^1, \chi_{\bar{p}, \geq e^1} \): When the \(y \)-derivative hits the exponential term, this will bring down only the order-one exponential rate, with no improvement due to differentiation. But, this term is already uniformly bounded for low frequencies. So, these terms again are time-exponentially small by following the estimates in the undifferentiated case;

\(I_{12,R}^1 \): See Appendix B

\(I_{12,R}^1 \): See Appendix B

\(I_R^1 \): Again we demonstrate how to estimate \(\frac{\partial f_k}{\partial y} \) on the critical regime \(y < x < 0 \). By direct computation,

\[
\frac{\partial}{\partial y} \left(-e^{\tilde{\gamma}_2, -\theta(x-y)} P_{2,-}(0) A_{-1} - e^{\tilde{\gamma}_2, -\theta(x-y)} \left(I + O(\lambda^3 |x-y|) \right) \right) = \tilde{\gamma}_2, -\theta(x-y) P_{2,-}(0) A_{-1} - \tilde{\gamma}_2, -\theta(x-y) \left(O(\lambda^3 |x-y|) + O(e^{-|y|}) \right)
\]

\[
= \left(O(\lambda^3) e^{\tilde{\gamma}_2, -\theta(x-y)} \left(O(\lambda^3 |x-y|) + O(e^{-|y|}) \right) \right) P_{2,-}(0) A_{-1} + \tilde{\gamma}_2, -\theta(x-y) \left(O(\lambda^3 |x-y|) + O(e^{-|y|}) \right) \right) P_{2,-}(0) A_{-1}
\]

We then see

\[
|\#_3| = |e^{\tilde{\gamma}_2, -\theta(x-y)}| |O(\lambda^3 + O(\lambda^3 |x-y|) + O(\lambda e^{-|y|}) + O(\lambda e^{-|y|})|).
\]

The estimation is then similar to that of \(I_R^1 \) and we gain another \(\frac{1}{\sqrt{t}} \) from the extra \(\lambda \). Because

\[
\#_4 = e^{\tilde{\gamma}_2, -\theta(x-y)} P_{2,-}(0) O(e^{-|y|}).
\]

The estimation is again similar to that of \(I_R^1 \) in particular by Observation 7.9 this term is time-exponentially small.

\[\square \]

Proof of Theorem 7.2 Following a similar analysis as for High frequency contribution III in the estimation of \(G \) above and noting the bound \((6.34) \) at low frequencies, we find that the boundary source \(v \)-resolvent kernel \(K_\lambda \) is exponentially decaying in \(|x| \), hence the boundary source \(v \)-Green kernel \(K \) decomposes into only an \(H_K \) part and an \(R \) part as written in \((7.9) \). \[\square \]
8. Linear stability

8.1. Linear orbital stability estimates.

Lemma 8.1. The time derivative of equation (5.17)(ii) is

\[\dot{\eta}(t) = \int_0^t K_1(t-s)B_S(s)ds + \int_{-\infty}^\infty G_{1t}(t;y)v_0(y)dy + \int_0^t \int_{-\infty}^\infty G_{1t}(t-s;y)I_S(s,y)dy\,ds. \]

Moreover, \(K_1(0), G_1(0, \cdot) = 0 \).

Proof. Taking time derivative of equation (5.17)(ii), we find besides terms appear in (8.1) two other terms

\[K_1(0)B_S(t) + \int_{-\infty}^\infty G_1(0; y)I_S(t; y)dy. \]

But

\[K_1(0) = \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} M^{-1}(\lambda)d\lambda, \]

\[G_1(0; y) = \begin{cases} \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} M^{-1}(\lambda)A_+F_\lambda^{y\rightarrow 0+}A_+^{-1}d\lambda, & \text{if } y > 0, \\ \frac{1}{2\pi i} P.V. \int_{a-i\infty}^{a+i\infty} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} M^{-1}(\lambda)A(0^-)F_\lambda^{y\rightarrow 0-}\Pi_{\lambda,u}(y)A^{-1}(y), & \text{if } y < 0, \end{cases} \]

by Lemma 6.2, \(F_\lambda^{y\rightarrow 0+}, y > 0 \) and \(F_\lambda^{y\rightarrow 0-}\Pi_{\lambda,u}(y), y < 0 \) are uniformly bounded for \(\Re \lambda > -\bar{\eta}, |\lambda| > R \), hence by estimate (6.22)(i), at high frequency the integrand functions appear in (8.3) are all of order \(O(1/|\lambda|) \). Therefore \(K_1(0), G_1(0; y) \) become zero when sending \(a \) to infinity. \(\square \)

Taking \(B_S = 0, I_S = 0 \) in (5.17) and taking the time derivative of the \(\eta \)-equation yields the linearized integral equations:

\[v(x; t) = \int_{-\infty}^\infty G(x; t; y)v_0(y)dy, \quad \dot{\eta}(t) = \int_{-\infty}^\infty G_{1t}(t; y)v_0(y)dy. \]

Linear orbital stability follows immediately from the Theorem 7.1 we have established. Splitting \(G \) (7.1) into singular part \(H := H^1 + H^2 \) and regular part \(G := S^1 + R \), \(K \) (7.9) into singular part \(H_K \) and regular part \(R_K \), and \(G_{1t} \) (7.11) into singular part \(H_1 \) and regular part \(G_{1t} := S_1 + R_1 \), we then have following lemmas.

Lemma 8.2. Assuming Evans-Lopatinsky stability, for the splitting \(G = G + H \), there hold:

\[\left| \int_{-\infty}^{+\infty} \Gamma(t; \cdot; y)f(y)dy \right|_{L^p} \leq C(1 + t)^{-\frac{1}{2}(1-1/r)}|f|_{L^q}, \]

\[\left| \int_{-\infty}^{+\infty} \Gamma(t; \cdot; y) \begin{bmatrix} 0 \\ f(y) \end{bmatrix} dy \right|_{L^p} \leq C(1 + t)^{-\frac{1}{2}(2-1/r)}|f|_{L^q}, \]
Lemma 8.3. Assuming Evans-Lopatinsky stability, for the splitting $K = R_K + H_K$, there hold:

(8.9) \[\left| \int_0^t R_K(t-s, \cdot) g(s) ds \right|_{L^p} \leq C \left| e^{-\tilde{\eta}(t-s)} g \right|_{L^1(0,t)}, \]

and

(8.10) \[\left| \int_0^t H_K(t-s, \cdot) g(s) ds \right|_{L^p} \leq C \left| e^{-\tilde{\eta}(t-s)} g \right|_{L^p(0,t)}, \]

for all $t \geq 0$, some $C, \tilde{\eta} > 0$, for any $1 \leq p \leq \infty$ ad $f \in L^q$ (resp. L^p), where $1/r + 1/q = 1 + 1/p$.

Lemma 8.4. Assuming Evans-Lopatinsky stability, for the splitting $G_{1t} = \tilde{G}_{1t} + H_1$, there hold:

(8.11) \[\int_{-\infty}^{\infty} |\tilde{G}_{1t}(t; \cdot, y) f(y)| dy \leq C(1 + t)^{-\frac{1}{2q}} |f|_{L^q} + C e^{-\tilde{\eta} t} |f|_{L^p}, \]

(8.12) \[\int_{-\infty}^{\infty} \left| \tilde{G}_{1t}(t; y) \left[\begin{array}{c} 0 \\ f(y) \end{array} \right] \right| dy \leq C(1 + t)^{-\frac{1}{2q} - \frac{1}{2p}} |f|_{L^q}, \]

(8.13) \[\int_{-\infty}^{\infty} |\tilde{G}_{1t}(t; y) f(y)| dy \leq C(1 + t)^{-\frac{1}{2q} - \frac{1}{2p}} |f|_{L^q} + C e^{-\tilde{\eta} t} |f|_{L^p}, \]

and

(8.14) \[\int_{-\infty}^{\infty} |H_1(t; y) f(y)| dy \leq C e^{-\tilde{\eta} t} |f|_{L^\infty} \]

for all $t \geq 0$, some $C, \tilde{\eta} > 0$, for any $1 \leq p, q$ and $f \in L^p$ (resp. L^q).

Lemma 8.5. For K_{1t}, there holds

(8.15) \[\left| \int_0^t K_{1t}(t-s) g(s) ds \right| = V_h g(t) + O(\int_0^t e^{-\tilde{\eta}(t-s)} |g(s)| ds) \leq C \sup_{t/2 \leq s \leq t} |g(s)| + e^{-\tilde{\eta} t/2} |g|_{L^\infty(0,t)} \]

for all $t \geq 0$, some $C, \tilde{\eta} > 0$, and $g \in L^\infty(0,t)$.

Proof of Lemmas. These follow by direct calculation from our more detailed pointwise Green function bounds, exactly as in the proof of [MIZ] Lemma 7.1. \[\square \]

8.2 Linear phase bounds estimates.

Lemma 8.6. Assuming Evans-Lopatinsky stability, for K_1 there hold:

(8.16) \[K_1(t) = V_h + O(1 - e^{-\tilde{\eta} t}), \]

(8.17) \[\left| \int_0^t K_1(t-s) g(s) ds \right| \leq C |g|_{L^1(0,t)} \]

for all $t \geq 0$, some $C, \tilde{\eta} > 0$, and any $g \in L^1$. 37
Proof. By Lemma [8.1] $K_1(0) = 0$, whence (8.16) follows by
\[
K_1(t) = \int_0^t K_1(s)ds = V_h + \int_0^t O(e^{-\tilde{\eta}(t-s)})ds.
\]
Likewise, (8.17) follows immediately from (8.16), using $|V_h + O(1 - e^{-\tilde{\eta}t})| \leq C$. □

Denote $G_1 = \tilde{G} + H_1$, where $H_{1,t} = H_1$.

Lemma 8.7. Assuming Evans-Lopatinsky stability, for the splitting $G_1 = \tilde{G}_1 + H_1$, there hold:

(8.18) \[
\int_{-\infty}^\infty |\tilde{G}_1(t; y)f(y)| dy \leq C(1 + t)^{\frac{1}{2} - \frac{1}{2q}}|f|_{L^q},
\]

(8.19) \[
\int_{-\infty}^\infty \left| \frac{\partial}{\partial y} \tilde{G}_1(t; y) \right| dy \leq C(1 + t)^{-\frac{1}{2q}}|f|_{L^q},
\]

(8.20) \[
\int_{-\infty}^\infty |\tilde{G}_1y(t; y)f(y)| dy \leq C(1 + t)^{-\frac{1}{2q}}|f|_{L^q} + C|\tilde{e}^{-\tilde{\eta}|\cdot|}_1|f|_{L^1},
\]

(8.21) \[
\int_{-\infty}^\infty |H_1(t; y)f(y)|dy \leq C|\tilde{e}^{-\tilde{\eta}|\cdot|}_1|f|_{L^1},
\]

and

(8.22) \[
\int_{-\infty}^\infty |H_1y(t; y)f(y)|dy \leq C|\tilde{e}^{-\tilde{\eta}|\cdot|}_1|f|_{L^1},
\]

for all $t \geq 0$, some $C, \tilde{\eta}, \theta > 0$, for any $1 \leq q$ and $f \in L^q$.

Proof. The estimates on \tilde{G}_1 may be established by deriving pointwise bounds on \tilde{G}_1 directly from resolvent estimates, similarly as was done for G_{1L}, exactly as in the smooth case [MZ1]. Alternatively, these bounds may be derived as in the proof of Lemma [8.6] by integrating in time our pointwise estimates on \tilde{G}_1 using $G_1(t, \cdot) = \int_0^t G_1(s, \cdot)ds$. With these estimates, the bounds (8.18)–(8.20) then follow exactly as in the smooth case [MZ1]. See [MZ1 §6.1, (6.22)–(6.32)] and [MZ1 (7.61)–(7.66)].

Likewise, from the relation $H_{1,t} = H_1$ we may compute

(8.23) \[
H_1 = \int_0^t e^{-\tilde{\eta}s + \int_0^s (-\tilde{\eta}\mu_2(z) + M_{22}(z))dz} V_h A(0^-)R_2(0^-)L_2(y)A^{-1}(y)ds + \int_0^t \mu_2(z)dz ds
\]

This gives $|H_1(y, t)| \sim e^{\int_0^t M_{22}(z)dz} \leq C e^{-\theta|y|}$, $\theta > 0$, verifying (8.22). Differentiating (8.23) gives

(8.24) \[
H_{1,y} = \partial_y \left(e^{\int_0^t M_{22}(z)dz} V_h A(0^-) R_2(0^-) L_2(y) A^{-1}(y) \right)
\]

\[
= M_{22}(y) e^{\int_0^t M_{22}(z)dz} V_h A(0^-) R_2(0^-) L_2(y) A^{-1}(y)
\]

\[
+ e^{\int_0^t M_{22}(z)dz} \partial_y \left(V_h A(0^-) R_2(0^-) L_2(y) A^{-1}(y) \right),
\]

hence $H_{1,y} \leq C e^{-\theta|y|}$, verifying (8.21). □
We next establish nonlinear existence and damping estimates, obtained by Kreiss symmetrizer and Kawashima type energy estimates, respectively. As noted in [JLW], short time existence theory may be concluded by the analysis of shock stability carried out by Kreiss symmetrizer techniques in [Ma Me]. Denote by \bar{R}_0 the punctured real line $(-\infty, a) \cup (a, +\infty)$, and \bar{R} the symmetric version \bar{R}_0. We obtain by the results of [Me] immediately the following short time existence theory if \bar{R}.

Proposition 9.1. For $0 < F < 2$ and $0 < H_R < H_L \frac{2F^2}{1+2F+\sqrt{1+4F}}$, let $\overline{W} = (H, Q)$ be a hydraulic shock (1.4), and v_0 be a perturbation supported away from the subshock discontinuity of \overline{W} and lying in $H^s(\bar{R})$, $s \geq 2$. Moreover, assume that \overline{W} is spectrally stable in the sense of the Evans-Lopatinsky condition defined in Section 7. Then, for initial data $\overline{W}_0 := \overline{W} + v_0$, there exists a unique solution of (1.1) defined for $0 \leq t \leq T$, for some $T > 0$, with a single shock located at $ct - \eta(t)$, and H^s to either side of the shock, such that for $\phi(x, t) := (\overline{W}(x + ct - \eta(t), t) - \overline{W}(x))$, \((\phi, \eta) \in C^0([0, T]; H^s(\mathbb{R})) \times C^{s+1}([0, t]) \).

Moreover, the maximal time of existence T, defined as the supremum of $T > 0$ for which the solution is defined is either $+\infty$ or satisfies $\lim_{t \to T^-} |\phi|_{H^{1, \infty}} = +\infty$. Finally, if $v_0^\ast \to v_0$, with $v_0^\ast \in H^{s+1/2}$, $r \geq s$, then the corresponding solutions (ϕ^r, η^r) converge to (ϕ, η) in $C^0([0, T]; H^s(\mathbb{R})) \times C^{s+1}([0, t])$.

Proof. Noting that the assumption that the perturbation is supported away from the subshock implies compatibility to all orders, we have that the first two assertions follow from Theorems 4.15 and 4.16 of [Me], provided that the subshock satisfies the (shock) Lopatinsky condition of Majda [Ma]. But (see Remark 11.3), Lopatinsky stability of the component subshock is implied in the high-frequency limit by the Evans-Lopatinsky condition for the full shock profile. The third assertion, though not explicitly stated in [Me] Thm. 4.1.5, is established in the course of its proof.

Remark 9.2. In fact, the subshock can be seen directly to satisfy Majda’s Lopatinsky condition, independent of Evans-Lopatinsky stability of the associated relaxation shock profile, by the fact [Ma] that shock waves of isentropic gas dynamics are stable, since the shock Lopatinsky condition depends only on the first-order part of (1.1).

Our main effort will be devoted to proving the following nonlinear damping estimate generalizing the one proved for smooth relaxation profiles in [MZ2] Prop. 1.4.

Proposition 9.3. Under the assumptions of Proposition 9.1, suppose that, for $0 \leq t \leq T$, $\|\phi(\cdot, s)\|_{H^s(\mathbb{R})}$ and $|\dot{\eta}|$ are bounded by a sufficiently small constant $\zeta > 0$. Then, for all $0 \leq t \leq T$ and some $\theta > 0$,

\[|\phi|^2_{H^s}(t) \leq C e^{-\theta t}|v_0|^2_{H^s} + C \int_0^t e^{-\theta(t-\tau)} \left(|\phi|^2_{L^2} + |\dot{\eta}|^2 \right) d\tau. \]

Remark 9.4. In the course of the proof, we show using the Rankine-Hugoniot conditions at the subshock that $|\dot{\eta}|^2$ is controlled by a bounded linear sum of trace terms $|\phi(0^\pm)|^2$ at $\xi = 0$. By one-dimensional Sobolev embedding, these in turn are controlled by a lower-order term $C|\phi|^2_{H^1}$ absorbable in the estimates (9.2) from which (9.3) is obtained, hence (9.2) could be improved to

\[|\phi|^2_{H^s}(t) \leq C e^{-\theta t}|v_0|^2_{H^s} + C \int_0^t e^{-\theta(t-\tau)} |\phi|^2_{L^2} d\tau, \]

slightly improving the estimate of the smooth case [MZ2].

5 Note that we correct a minor typo in [Me] Thm. 4.1.5, which requires data v_0 only in H^s rather than $H^{s+1/2}$. (This is not necessary for our later analysis, but only sharpens our initial regularity assumptions.)
Remark 9.5. For clarity, we carry out the proof of Proposition 9.3 for shock profiles of (1.1); however, the argument applies more generally to profiles of general relaxation systems of the class considered in [MZ2], provided they contain a single subshock. (This allows the freedom to initialize the symmetrizer \(A^0 \) arbitrarily at the endstates of the subshock, as we use crucially to arrange maximal dissipativity with respect to \(A^0 \) of the associated Rankine-Hugoniot conditions.) A very interesting open problem would be to develop corresponding damping estimates in multi-dimensions, perhaps by Kreiss symmetrizer techniques [Kr]; see Remark 9.12 for related discussion.

9.1. Preliminaries. Under the assumptions of Proposition 9.3, the equations (1.1) and profiles \(\overline{W} \) satisfy the structural assumptions made for general relaxation systems in [MZ2] along the smooth portions of \(W \), i.e., everywhere except at the subshock at \(x = 0 \). Thus, we have the following results of [MZ2], denoting by \(\Re M := \frac{1}{2}(M + M^* \) the symmetric part of a matrix \(M \).

Lemma 9.6. Under the assumptions of Proposition 9.3, for some \(\theta > 0 \), and all \(k \geq 0 \),
\[
(9.4) \quad |(d/dx)^k(\overline{W} - \overline{W}_\pm)| \leq C |\overline{W}_x| \leq Ce^{-\theta|x|} \quad \text{as} \quad x \to \pm \infty.
\]
(Stable manifold theorem, plus hyperbolicity of rest points \(\overline{W}_\pm \) of (2.14).)

Lemma 9.7 ([MZ2 HI]). Let \(D \) be diagonal, with real entries appearing with prescribed multiplicity in order of increasing size, and let \(E \) be arbitrary. Then, there exists a smooth skew-symmetric matrix-valued function \(K(D,E) \) such that
\[
\Re (E - KD) = \Re \text{diag} E,
\]
where \(\text{diag} E \) denotes the diagonal part of \(E \).

Lemma 9.8 ([MZ2]). Under the assumptions of Proposition 9.3, there exist diagonalizing matrices \(L_\pm, R_\pm, (\text{LAR})_\pm \) diagonal, \((\text{LR})_\pm = I \), such that
\[
\text{diag} \text{ } (\text{LER})_\pm < 0.
\]

Lemma 9.9 ([MZ2]). There is a correspondence between symmetric positive definite symmetrizers \(A^0, A^0A \) symmetric, and diagonalizing transformations \(L, R, \text{LAR} \) diagonal, given by \(A^0 = L^* L \), or equivalently \(L = O^*(A^0)^{\frac{1}{2}} \), where \(O \) is an orthonormal matrix diagonalizing the symmetric matrix \((A^0)^{\frac{1}{2}} A (A^0)^{-\frac{1}{2}} \). Moreover, the matrix \(O \) (or equivalently \(L \)) may be chosen with the same degree of smoothness as \(A^0 \), on any simply connected domain.

Following [MZ2], we recall also the relations
\[
(9.5) \quad \langle W, SW_x \rangle_{(a,b)} = -\frac{1}{2} \langle W, S_x W \rangle_{(a,b)} + \frac{1}{2} W \cdot SW|_a^b,
\]
and
\[
(9.6) \quad \partial_t \frac{1}{2} \langle W_x, KW \rangle_{(a,b)} = \langle W_x, KW_t \rangle_{(a,b)} + \frac{1}{2} \langle W_x, K_t W \rangle_{(a,b)} + \frac{1}{2} \langle W, K_x W_t \rangle_{(a,b)} + \frac{1}{2} W \cdot KW|_a^b,
\]
here adapted to the case of a domain with boundary, where \(S \) is symmetric and \(K \) skew-symmetric, and \(\langle \cdot, \cdot \rangle_{(a,b)} \) denotes \(L^2 \) inner product on \((a,b) \). When the domain \((a,b) \) is clear (as below, where all energy estimates will be carried out on \((-\infty, 0 \)\)), we omit the subscript \((a,b) \).

9.1.1. Boundary dissipativity. A new aspect in the present, discontinuous, case is boundary dissipativity at the subshock. For a general symmetrizable initial boundary-value problem on \((-\infty, 0) \)
\[
(9.7) \quad v_t + Av_x = f, \quad x \in (-\infty, 0) \quad \text{on} \quad b v = g, \quad x = 0,
\]
with symmetrizer \(A^0 \) symmetric positive definite and \(A^0A \) symmetric, that is noncharacteristic in the sense that \(\det A \neq 0 \) at the boundary \(x = 0^- \), is Lopatinsky stable in the sense of Kreiss [Kr] if \(b \).
is full rank on the stable subspace of A. It is \textit{maximally dissipative} with respect to the symmetrizer A^0 if $A^0 A$ is positive definite on $\ker b$, which yields readily the following key consequence.

Lemma 9.10. Let v be a solution of (9.7), and suppose that (9.7) has maximally dissipative boundary conditions with respect to symmetrizer A^0. Then, for some $\theta, C > 0$,

\[-v(0^-) \cdot A^0 Av(0^-) \leq -\theta |v(0^-)|^2 + C|g|^2. \]

Proof. Decompose $v(0^-) = v_{\ker} + v_{\perp}$, where $v_{\ker} \in \ker b$ and $v_{\perp} \in (\ker b)\perp$. Then,

\[-v(0^-) \cdot A^0 Av(0^-) = -v_{\ker} \cdot A^0 Av_{\ker} - 2v_{\ker} \cdot A^0 Av_{\perp} - v_{\perp} \cdot A^0 Av_{\perp}. \]

By maximal dissipativity, $-v_{\ker} \cdot A^0 Av_{\ker} \leq -\theta_1 |v_{\ker}|^2$. Using Young’s inequality, the middle cross term is bounded by $|2v_{\ker} \cdot A^0 Av_{\perp}| \leq \theta_1 |v_{\ker}|^2 / 2 + C_1 |v_{\perp}|^2$. The last term is bounded by $|v_{\perp} \cdot A^0 Av_{\perp}| \leq C_2 |v_{\perp}|^2$. Summing these estimates, we obtain

\[-v(0^-) \cdot A^0 Av(0^-) \leq -\frac{\theta_1}{2} |v_{\ker}|^2 + (C_1 + C_2)|v_{\perp}|^2. \]

From the fact that b is full rank on $(\ker b)\perp$ and the boundary condition,

\[\theta_2 |v_{\perp}| \leq |bv_{\perp}| = |bv(0^-)| = |g|. \]

Therefore, $-|v_{\ker}|^2 = -(|v_{\ker}|^2 + |v_{\perp}|^2) + |v_{\perp}|^2 = -|v(0^-)|^2 + |v_{\perp}|^2 \leq -|v(0^-)|^2 + |g|^2/\theta_2^2$. Substituting in (9.9), we obtain

\[-v(0^-) \cdot A^0 Av(0^-) \leq -\frac{\theta_1}{2} |v(0^-)|^2 + \frac{C_1 + C_2 + \theta_1/2}{\theta_2^2} |g|^2, \]

which yields (9.8). \hfill \Box

The Lopatinsky condition is necessary and sufficient for maximal L^2 estimates \cite{Kr}. For maximally dissipative boundary conditions, maximal L^2 estimates may be obtained by taking the L^2 inner product of v against the symmetrized equation $A^0 v_t + A^0 Av_x = A^0 f$ and applying (9.5), (9.8). Thus, maximally dissipative boundary conditions are always Lopatinsky stable. The following result shows that the converse is true as well, for some choice of symmetrizer A^0.

Lemma 9.11. For any symmetrizable initial boundary-value problem (9.7) that is Lopatinsky stable, there exists a symmetrizer A^0 with respect to which (9.7) is maximally dissipative.

Proof. Equivalently, $M = \tilde{b}^T A^0 \tilde{b}$ is positive definite, where $\tilde{b} \in \mathbb{R}^{(n-r) \times n}$ is a matrix whose columns span $\ker b$. Let $A = S^{-1} \text{block-diag}\{\Lambda^-, \Lambda^+\} S$,

\[\Lambda^- = \text{diag}\{\lambda_1, \ldots, \lambda_r\}, \quad \Lambda^+ = \text{diag}\{\lambda_{r+1}, \ldots, \lambda_k\}, \]

with $\lambda_1 \leq \ldots \lambda_r < 0 < \lambda_{r+1} \leq \ldots \leq \lambda_k$, and set $A^0 = S^T \text{diag}\{a_1, \ldots, a_1, a_1, \ldots, 1\} S$, $a > 0$. Then, $A^0 A$ is symmetric and $M = -M_1 a + M_2$ with $M_1 = b^T E_1 S \tilde{b}$, $M_2 = b^T E_2 S \tilde{b}$, where $E_1 := \text{block-diag}\{-\Lambda^-, 0\}$ and $E_2 := \text{block-diag}\{0, \Lambda^+\}$ are symmetric positive semidefinite. Thus, we may achieve $M > 0$ for a sufficiently small if and only if M_2 is positive definite, or $\tilde{b} \cap \ker E_2 S = \emptyset$: equivalently, \tilde{b} is full rank on the stable subspace $\ker E_2 S$ of A. \hfill \Box

Remark 9.12. Lemma 9.11 is special to one spatial dimension. A generalization to multi-dimensions is given by the (pseudodifferential) frequency-dependent symmetrizers of Kreiss \cite{Kr} \cite{BS}.

41
9.1.2. Reduced boundary conditions at the subshock. Next, consider the transmission problem

\[v_t + A v_x = f, \quad x \in \mathbb{R}, \]
\[\eta_l [W] + [Av] = g, \quad x = 0, \]

\(v \in \mathbb{R}^n \), arising through linearization about a stationary shock at \(x = 0 \). As noted in [Ma, Me], a key point is that one may eliminate the front variable, converting the boundary condition (9.10)(ii) to a standard boundary condition

\[M[Av] = M g, \quad x = 0, \]

where \(M \in \mathbb{R}^{(n-1) \times n} \) is a matrix whose rows span the subspace \([W]^\perp\), to which the previous, Kreiss theory [Kr] may be applied\(^6\), the front variable being recovered afterward from

\[\eta_l = \frac{|W|}{|W|^2} \cdot \left(-[Av] + g\right), \quad x = 0. \]

The Lopatinsky condition of Majda for stability of the shock is equivalent to Lopatinsky stability of the reduced, initial boundary-value problem (9.10)(i)- (9.11).

Corollary 9.13. Under the assumptions of Proposition 9.3, there exists a choice of symmetrizer \(A^0 \) such that boundary condition (9.11) at the subshock is maximally dissipative with respect to \(A^0 \).

Proof. As noted previously, Majda’s shock Lopatinsky condition for the subshock follows in the high-frequency limit from Evans-Lopatinsky stability of the relaxation profile. Applying Lemma 9.11 we find that there exist symmetrizers \(A^0(0^\pm) \) at \(x = 0^\pm \) for which (9.11) is maximally dissipative. Extending these choices smoothly on \(x \in (-\infty, 0) \) and \(x \in (0, +\infty) \), we obtain the result. □

Remark 9.14. The step in the proof where we extend the value of \(A^0 \) from the subshock to the whole interval is the point where we require the property that there is only a single subshock. If there were subshocks at \(x_0 < x_1 \), then we could not necessarily simultaneously prescribe dissipative values at \(x_0^+, x_1^- \) and also achieve smoothness on \((x_0, x_1)\).

9.2. Energy estimates. We are now ready to carry out the main energy estimates, adapting the argument of [MZ2]. Define the nonlinear perturbation \(v(x,t) := \hat{W}(x+ct - \eta(t), t) - W(x) \) as in the statement of Proposition 9.3 where \(ct - \eta(t) \) denotes subshock location; for definiteness, fix without loss of generality \(\eta(0) = 0 \). As computed in [MZ2], Eq. (3.1) p. 87 the interior equation (4.11) for \(v \) may be put in the alternate quasilinear form

\[v_t + \hat{A} v_x - \hat{E} v = M_1(v)\hat{W}_x + (0, I_r)^t M_2(v) + \hat{\eta}(t)(\hat{W}_x + v_x), \]

where \(\hat{A} := dF(\hat{W}(x+ct - \eta(t), t)) - cld, \hat{E} := dR(\hat{W}(x+ct - \eta(t), t)) \) and

\[M_1(v) = O(|v|) := A(x) - \hat{A}(x, t), \quad M_2(v) = \begin{pmatrix} 0 \\ O(|v|^2) \end{pmatrix}. \]

Following [MZ2], let \(\hat{A}^0 := A^0(\hat{W}(x+ct - \eta(t), t) \) denote a symmetrizer of \(\hat{A} \) as guaranteed by Lemma 9.3 with values \(A^0(\hat{W}(0^\pm)) \) to be specified later, and factor \(\hat{A}^0 \hat{A} = (\hat{A}^0)^{\frac{1}{2}} \hat{O} \hat{D} \hat{O}^t (\hat{A}^0)^{\frac{1}{2}} \), or, equivalently,

\[\hat{A} = (\hat{A}^0)^{-\frac{1}{2}} \hat{O} \hat{D} \hat{O}^t (\hat{A}^0)^{\frac{1}{2}}, \]

where \(\hat{O} \) is orthogonal, \(\hat{O}^t = \hat{O}^{-1} \), and \(C^2 \) is a function of \((u,v)\) (see Lemma 9.9) and \(\hat{D} = \text{diag}\{\hat{a}_1, \hat{a}_2\} \), where \(\hat{a}_j \) denote the eigenvalues of \(\hat{A} \), indexed in increasing order. Define the weighting matrix \(\alpha(x) := \text{diag}\{\alpha_1, \alpha_2\} \), where \(\alpha_j > 0 \) are defined by ODE

\[(\alpha_j)_x = C_* \text{sgn} a_j |W_x| \alpha_j, \quad \alpha_j(0) = 1, \]

\(^6 \) Here, following [Ma], we consider the problem on \(R = (-\infty, 0) \cup (0, +\infty) \) as a problem in the doubled variable \((W(x), W(-x))\) on the half-line \((-\infty, 0)\).
\(C_\ast > 0 \) a sufficiently large constant to be determined later, and set
\[
(9.14) \quad \tilde{A}_\alpha^0 := (\tilde{A}_0^\alpha) \frac{1}{2} \tilde{\Omega}_\alpha \tilde{\Omega}^0 (\tilde{A}_0^\alpha) \frac{1}{2}.
\]
Let \(K_1 := K(\tilde{D}, \alpha \tilde{\Omega}^0 (\tilde{A}_0^0) \frac{1}{2} \tilde{E}(\tilde{A}_0^0) - \frac{1}{2} \tilde{\Omega} + N) \), where \(K(\cdot) \) is as in Lemma \ref{lemma:9.7} and \(N \) is an arbitrary matrix with \(|N|_{C_{1,t}} \leq C(C_\ast) \) and vanishing on diagonal blocks, to be determined later, and set
\[
(9.15) \quad \tilde{K}_\alpha := (\tilde{A}_0^0) \frac{1}{2} \tilde{\Omega} K_1 \tilde{\Omega}^0 (\tilde{A}_0^0) \frac{1}{2}.
\]
Finally, define
\[
(9.16) \quad \mathcal{E}(v) := \langle \tilde{A}_\alpha^0 v_{xx}, v_{xx} \rangle + \langle v_{xx}, \tilde{K}_\alpha v_x \rangle + M|v|_{L^2}^2.
\]
for \(M > 0 \). Since, for \(v \in H^2, |v|_{L^2} \) can be bounded by \(C(|v|_{L^2} + |v_{xx}|_{L^2}) \) for some \(C > 0 \), then the functional defined in (9.16) is equivalent to \(|v|_{H^2}^2 \) if \(M \) is large enough.

Assume without loss of generality that \(v_0 \in H^3 \) (since we may pass to the \(H^2 \) limit by Proposition \ref{prop:9.1}). Then, following to the letter the computations of [MZ2], we obtain using (9.5)–(9.6) the key estimate
\[
\frac{d\mathcal{E}}{dt} \leq -\theta \mathcal{E} + C(|v|_{L^2}^2 + |\eta(t)|^2) + [v_{xx} \cdot \tilde{A}_0^0 \tilde{A} v_{xx}] - [v_{xt} \cdot \tilde{K}_\alpha v_x].
\]
for some \(C, \theta > 0 \), where the terms \([v_{xx} \cdot \tilde{A}_0^0 \tilde{A} v_{xx}] \) and \(-[v_{xt} \cdot \tilde{K}_\alpha v_x] \) arising through integration by parts at the boundary \(x = 0 \) of \(\langle v_{xx}, \tilde{A}_0^0 \tilde{A} v_{xx} \rangle \) and through (9.6), are the sole differences from the whole-line estimate of [MZ2], the corresponding lower-order trace term arising from integration by parts of \(\langle v_t, v_l \rangle \) being absorbable by Sobolev embedding in the other terms.

Proof of Proposition 9.3. For clarity, we carry out the proof for the lowest level of regularity \(s = 2 \); higher orders \(s > 2 \) go similarly. Starting with the \(H^2 \) estimate (9.17), it remains only to show that the new trace terms \(-[v_{xx} \cdot \tilde{A}_0^0 \tilde{A} v_{xx}] \) and \([v_{xt} \cdot \tilde{K}_\alpha v_x] \) in the righthand side may be absorbed in other terms, after which, multiplying by \(e^{\theta t} \) and integrating in time from 0 to \(t \) as in [MZ2], we obtain (9.2), completing the proof. To this end, recall the nonlinear boundary condition (4.11(ii)) at \(x = 0^\pm \):
\[
(9.18) \quad \eta_t |\tilde{W} + v| + [Av] = -[N_1(v, v)] = O(|v(0^\pm)|^2).
\]
To obtain boundary conditions for \(v_{xx} \), we may differentiate (9.18) with respect to \(t \), then convert any \(t \)-derivatives of \(v \) into \(x \)-derivatives using the interior equations, which give \(v_t = -\tilde{A} v_x, v_{xt} = -\tilde{A} v_{xx} \) and \(v_{tt} = \tilde{A}^2 v_{xx} \) plus lower-derivative terms. This yields the first- and second-order boundary conditions
\[
(9.19) \quad \eta_{tt} |\tilde{W} + v| = O((|\eta_t| + |v_x(0^\pm)| + |v(0^\pm)|)^2)
\]
and
\[
(9.20) \quad \eta_{ttt} |\tilde{W} + v| = O((|\eta_t| + |v(0^\pm)| + |v(0^\pm)| + |v_{xx}(0^\pm)| + |v_{xx}(0^\pm)|)^2).
\]

Lopatinsky stability for a boundary condition \(b \) of a noncharacteristic system (9.7) evidently implies also Lopatinsky stability of \(b \tilde{A}^k \) for any positive or negative power \(k \) of \(\tilde{A} \), as these factors leave the stable subspace of \(A \) invariant, hence by continuity Lopatinsky stability of \(b \tilde{A}^2 \) for \(\tilde{A} \) sufficiently close to \(A \). It follows by Lemma 9.13 therefore, that the reduced boundary conditions for (9.20) is Lopatinsky stable. By Lemma 9.11 therefore, we may choose values of \(\tilde{A}_0^0 |\tilde{W}(0^\pm)| \) for which the reduced boundary conditions (9.11) for (9.20) are maximally dissipative. By Lemma 9.8 and the form of the righthand side of (9.20), therefore, we have
\[
[v_{xx} \cdot \tilde{A}_0^0 \tilde{A} v_{xx}] \leq -\theta |v_{xx}(0^\pm)|^2 + C(|\eta_t| + |\eta_{tt}| + |v(0^\pm)| + |v_x(0^\pm)| + |v_{xx}(0^\pm)| + |v_{xx}(0^\pm)|)^2,
\]
and can thus be absorbed in the first two terms on the right-hand side of (9.17) provided that \(|\eta_t|^2\) and \(|\eta_{tt}|^2\) can be so absorbed.

From the original (zero-order) boundary condition (9.18), \(|\eta_t|\) is bounded by \(C|v(0^\pm)|^2\). From the first-order boundary condition (9.19), \(|\eta_t|\) is bounded by \(C(|\eta_t| + |v_x(0^\pm)| + |v(0^\pm)|)^2\), hence, using the bound already obtained for \(|\eta_t|\), by \(C_1(|v_x(0^\pm)| + |v(0^\pm)|)^2\). Thus, by one-dimensional Sobolev embedding, both \(|\eta|^2\) and \(|\eta_{tt}|^2\) are bounded by \(|v|^4_{H^2(\bar{R})} \ll |v|^2_{H^2(\bar{R})}\), so can be absorbed in the \(\mathcal{E}\) term on the right-hand side of (9.17).

Meanwhile, the term \([v_{xx} \cdot \tilde{K}_av_x]\) may be rewritten using the interior equation as \([\tilde{A}v_{xx} \cdot \tilde{K}_av_x]\) plus lower order terms and bounded using Young’s inequality by \(\mu\) plus lower order terms and bounded using Young’s inequality by \([M2]\). Let \(\zeta\) (10.2)

Proof. Following [MZ2], we show in turn that each of (9.21) with \((9.21)\)

Sobolev norms and traces in (9.17), yielding finally the estimate

\[
(9.21) \quad \frac{d\mathcal{E}}{dt} \leq -\theta(\mathcal{E} + |v_{xx}(0^\pm)|^2) + C(|v|^2_{L^2} + |\eta(t)|^2),
\]

implying, and slightly improving, the estimate \(\frac{d\mathcal{E}}{dt} \leq -\theta\mathcal{E} + C(|v|^2_{L^2} + |\eta(t)|^2)\) required to finish the argument (the same one established in the smooth case [MZ2]). This completes the proof. \(\square\)

10. **Nonlinear stability**

With the above preparations, nonlinear orbital asymptotic stability now follows essentially as in [MZ2]. Let \(v(x, t) = W(x + ct - \eta(t), t - \bar{W}(x)\) be the nonlinear perturbation defined in Section 3. For \(s \geq 2\), define

\[
(10.1) \quad \zeta(t) := \sup_{0 \leq s \leq t, 2 \leq p \leq \infty} \left(|v(\cdot, s)|_{L^p} (1 + s)^{\frac{3}{2}(1 - \frac{1}{p})} + |\eta(s)|(1 + s)^{\frac{1}{2}} \right).
\]

Lemma 10.1. Under the assumptions of Theorem [MZ2] for all \(t \geq 0\) for which a solution \(v\) exists with \(\zeta(t)\) uniformly bounded by some fixed, sufficiently small constant, there holds

\[
(10.2) \quad \zeta(t) \leq C_2(|v_0|_{L^1 \cap H^s} + \zeta(t))^2.
\]

Proof. Following [MZ2], we show in turn that each of \(|v(\cdot, s)|_{L^p} (1 + s)^{\frac{3}{2}(1 - \frac{1}{p})}\) and \(|\eta(s)|(1 + s)^{\frac{1}{2}}\) is separately bounded by \(C(|v_0|_{L^1 \cap H^2} + \zeta(t))^2\), for some \(C > 0\), all \(0 \leq s \leq t\), so long as \(\zeta\) remains sufficiently small.

\((|v|_{L^p} \text{ bound.})\) Applying integral equation (5.17)(i) of Proposition 5.6(i), we find that \(v\) may be split into the sum of an interior term

\[
v_I(x, t) = \int_{-\infty}^\infty G(x, t; y)v_0(y)dy + \int_0^t \int_{-\infty}^\infty G(t - s, x; y)I_S(s, y)dyds
\]

involving the Green kernel \(G\) and a boundary term

\[
v_B(x, t) = \int_0^t K(t - s, x)B_S(s)ds
\]

involving the boundary kernel \(K\). Noting by Lemma [S2] that \(G\) satisfies exactly the same \(L^q \to L^p\) estimates as the corresponding kernel in the smooth case [MZ2], and that interior source terms \(I_S\) have the same form, we find by the same computations as in [MZ2] proof of Thm. 1.2] that \(|v(\cdot, s)|_{L^p} (1 + s)^{\frac{3}{2}(1 - \frac{1}{p})}\) is bounded by \(C(|v_0|_{L^1 \cap H^2} + \zeta(t))^2\), as claimed. Thus, it remains only to treat the new boundary portion \(v_B\). Recalling from (1.1) that

\[
B_S(\eta, v) = -\eta[v] - [N_1(v, v)] = O \left((|\eta| + |v(0^\pm)|)^2 \right),
\]

44
we have by one-dimensional Sobolev embedding that $|B_S(s)| \leq C|\zeta(t)|^2(1+s)^{-1}$, we find by Lemma [S.4] that $|v_B(s)|_{L^p} \leq e^{-\eta(t-\cdot)}|B_S|_{L^1(0,t)} + e^{-\eta(t-\cdot)}|B_S|_{L^p(0,t)} \leq C|\zeta(t)|^2(1 + t)^{-1}$, giving the result.

($|\eta|$ bound.) Similarly, by integral equations of Proposition [5.6(ii)], we have that $\dot{\eta}$ may be split into the sum of an interior term

$$\dot{\eta}_I(t) = \eta_0 + \int_{-\infty}^{\infty} G_1(t;y)v_0(y)dy + \int_0^t \int_{-\infty}^{\infty} G_1(t-s;y)I_S(s,y)dyds$$

and a boundary term

$$\dot{\eta}_B(t) = \int_0^t K_1(t-s)B_S(s)ds.$$

As both the estimates on interior terms given in [S.4] and the form of the interior source term I_S are identical to those given for the smooth case in [MZ2], we have by the same computations of [MZ2] proof of Thm. 1.2 that $|\dot{\eta}_I(s)|(1 + s)^{\frac{3}{2}(1 - \frac{1}{p})}$ is bounded by $C|v_0|_{L^1 \cap H^2} + \zeta(t)^2$, as claimed. Likewise, using again the bound $|B_S(t)| \leq C|\zeta(t)|^2(1 + s)^{-1}$ obtained by Sobolev embedding, we find by Lemma [S.5] that $|\dot{\eta}_B(t)| \leq C|\zeta(t)|^2(1 + t)^{-1}$, giving the result.

Proof of Theorem 1.4 (v and $\dot{\eta}$ bounds) (following [MZ2] proof of Thm. 1.2). From Lemma 10.1 it follows by continuous induction that, provided $|v_0|_{L^1 \cap H^1/2} < 1/4C_2^2$, there holds

$$\zeta(t) \leq 2C_2|v_0|_{L^1 \cap H^1/2}$$

for all $t \geq 0$ such that ζ remains small. For, by Proposition 1.1 there exists a solution $v(\cdot, t) \in H^s$ on the open time-interval for which $|v|_{H^s}$ remains bounded and sufficiently small, and thus ζ is well-defined and continuous. Now, let $[0, T)$ be the maximal interval on which $|v|_{H^s}$ remains strictly bounded by some fixed, sufficiently small constant $\delta > 0$. By Proposition 9.3 we have

$$|v(t)|^{2}_{H^s} \leq C|v(0)|^{2}_{H^s}e^{\eta t} + C \int_0^t e^{-\eta_2(t-\tau)}(|v|^{2}_{L^2} + |\dot{\eta}|^{2}(\tau))d\tau$$

and so the solution continues so long as ζ remains small, with bound (10.3), at once yielding existence and the claimed bounds on $|v|_{L^p \cap H^s}$, $2 \leq p \leq \infty$, and $|\eta|$.

(η bound.) Similarly, by integral equation 5.17(ii) of Proposition 5.6 we have that η may be split into the sum of an interior term

$$\eta_I(t) = \eta_0 + \int_{-\infty}^{\infty} G_1(t;y)v_0(y)dy + \int_0^t \int_{-\infty}^{\infty} G_1(t-s;y)I_S(s,y)dyds$$

and a boundary term

$$\eta_B(t) = \int_0^t K_1(t-s)B_S(s)ds.$$

Applying Lemma 8.4 we find that $|\eta_I(t)|$ is bounded by

$$C|v_0|_{L^1} + \int_0^t |v|(|v| + |\dot{\eta}|)ds \leq C|v_0|_{L^1} + \zeta^2 \int_0^t (1 + s)^{-1}ds \leq C|v_0|_{L^1 \cap H^2} \log(2 + t).$$

Likewise, applying Lemma 8.5 we find that $|\eta_B(t)|$ is bounded by

$$C \int_0^t |I_B|(s)ds \leq C \int_0^t |v|^2(s)ds \leq C\zeta^2 \int_0^t (1 + s)^{-1}ds \leq C\zeta^2 \log(1 + t).$$

Summing, we obtain the claimed bound (1.5)(iv) on $|\eta|$, completing the proof.

$$\square$$
11. Numerical verifications

In this section we verify numerically the spectral stability assumptions made in the analysis.

11.1. Numerical calculation of the Evans-Lopatinsky determinant. For robustness of numerical implementation, let

\begin{equation}
\dot{w}_{1,-}(\lambda, x) = e^{\gamma_{1,-}(\lambda)x}T_{-}(\lambda, x)e^{\gamma_{1,-}(\lambda)x}z_{1,-}(\lambda), \quad x < 0,
\end{equation}

We find the \(w_{1,-} \) solves

\begin{equation}
\dot{w}' = \left(A^{-1}(E - \lambda I - A_x) - \gamma_{1,-} \right) w.
\end{equation}

In \(w_{1,-} \), the Evans-Lopatinsky determinant (4.19) becomes

\begin{equation}
\Delta(\lambda) = \det \left(\left[\lambda W - R(W) \right] A(0^-)w_{1,-}(\lambda, 0^-) \right)
\end{equation}

11.1.1. Change of independent variable. Profile \(H(x) \) solves (2.14). The fact that \(H' < 0 \) for \(x < 0 \) allows us to make the change of independent variable \(\tilde{w}(\lambda, H) = w(\lambda, x) \) for system (11.2), yielding

\begin{equation}
H'\tilde{w}' = \left(A^{-1}(E - \lambda I - A_x) - \gamma_{1,-} \right) \tilde{w}
\end{equation}

The Evans-Lopatinsky determinant (11.3) becomes

\begin{equation}
\Delta(\lambda) = \det \left(\left[\lambda W - R(W) \right] A(H_*)\tilde{w}(\lambda, H_*) \right)
\end{equation}

with \([\cdot] = |H_R - |H_*|\). By this change of independent variable, we convert to a problem on the finite interval \([H_*, 1]\) and introduce \(H = 1 \) as a singular point in ODE (11.4). We then may use the hybrid method introduced in [JNRYZ] to calculate mode \(\tilde{w}(H) \), combining power series expansion with numerical ODE solution.

To be specific, we expand \(\tilde{w}(H) \) as a power series of in the vicinity of \(H = 1 \) to write

\begin{equation}
\tilde{w}(\lambda, H) = \sum_{n=0}^{\infty} c_n(F, H_R, \lambda)(H - 1)^n.
\end{equation}

Truncating and evaluating the series at some \(H_- \in (H_*, 1) \) gives approximations

\begin{equation}
\tilde{w}(\lambda, H_-) \approx \sum_{n=0}^{N} c_n(F, H_R, \lambda)(H - 1)^n := \tilde{w}_-.
\end{equation}

We then evolve ODE (11.4) from \(H_- \) to \(H_* \) with initial condition \(\tilde{w}_- \) to get an approximation for \(\tilde{w}(\lambda, H_*) \) which is then substituted in (11.5) to obtain an approximate value of the Evans-Lopatinsky determinant.

11.2. Numerical calculation of the Evans function (smooth case). In this section, we study the spectral stability of small amplitude traveling waves, as depicted in Figure 2(c), using the Evans function. In the small amplitude region \(H_R < H_L < H_R^{1+2F+\sqrt{1+4F}} \), we first see conditions (4.10) become

\begin{equation}
\Re\gamma_{1,-}(\lambda) > 0, \ Re\gamma_{2,-}(\lambda) < 0, \quad \text{for all } \Re \lambda > 0, \ F < 2, \ \nu > 1
\end{equation}

\begin{equation}
\Re\gamma_{1,+}(\lambda) > 0, \ Re\gamma_{2,+}(\lambda) < 0, \quad \text{for all } \Re \lambda > 0, \ \nu < \frac{1 + \sqrt{1 + 4F}}{2F}.
\end{equation}

We then define the corresponding Evans function, following [MZ1] [GZ] [AGJ].
\textbf{Definition 11.1.} Let $v_{1,-}(\lambda, x)$ ($v_{2,+}(\lambda, x)$) be decaying mode as $x \to -\infty$ ($x \to +\infty$) of eigenvalue equation (11.9)
\begin{equation}
(11.9) \quad v' = (A^{-1}(E - \lambda I - A_x)) v
\end{equation}
The Evans function $D(\lambda, x_0)$ is defined as
\begin{equation}
(11.10) \quad D(\lambda, x_0) := \det \left(\begin{array}{cc} v_{1,-}(\lambda, x_0) & v_{2,+}(\lambda, x_0) \end{array} \right).
\end{equation}
Again for numerical robustness and efficiency, we rescale the modes by
\begin{equation}
(11.11) \quad w_{1,-}(\lambda, x) = e^{-\gamma_{1,-}x} v_{1,-}(\lambda, x), \quad w_{2,+}(\lambda, x) = e^{-\gamma_{2,+}x} v_{2,+}(\lambda, x)
\end{equation}
to find that $w_{1,-}$, $w_{2,+}$ solve
\begin{equation}
(11.12) \quad w' = (A^{-1}(E - \lambda I - A_x) - \gamma_{1,-}) w, \quad w' = (A^{-1}(E - \lambda I - A_x) - \gamma_{2,+}) w,
\end{equation}
respectively. Performing the change of independent variable $\tilde{w}_{1,-}(\lambda, H) = w_{1,-}(\lambda, x)$ and $\tilde{w}_{2,+}(\lambda, H) = w_{2,+}(\lambda, x)$, we find that $\tilde{w}_{1,-}$, $\tilde{w}_{2,+}$ satisfy
\begin{equation}
(11.13) \quad H' \tilde{w}' = (A^{-1}(E - \lambda I - A_x) - \gamma_{1,-}) \tilde{w}, \quad H' \tilde{w}' = (A^{-1}(E - \lambda I - A_x) - \gamma_{2,+}) \tilde{w}.
\end{equation}
We then expand $\tilde{w}_{1,-}(H)$, $\tilde{w}_{2,+}(H)$ as power series
\begin{equation}
(11.14) \quad \tilde{w}_{1,-}(\lambda, H) = \sum_{n=0}^{\infty} c_n^-(F, H, R, \lambda)(H - 1)^n, \quad \tilde{w}_{2,+}(\lambda, H) = \sum_{n=0}^{\infty} c_n^+(F, H, R, \lambda)(H - H_R)^n.
\end{equation}
Accordingly, in H coordinates a rescaled Evans function is defined as
\begin{equation}
(11.15) \quad D(\lambda, H_m) := \det \left(\begin{array}{cc} \tilde{w}_{1,-}(\lambda, H_m) & \tilde{w}_{2,+}(\lambda, H_m) \end{array} \right)
\end{equation}
for some $H_m < H < H_R < H_m < 1$.

Note that $|\gamma_{2,+}| \gg |\gamma_{1,-}|$. Thus, it is numerically more robust if we evaluate $D(\lambda, \cdot)$ at some H_m closer to H_R. (In fact, we find this in practice essential in order to do computations for even reasonably sized $|\lambda|$ of order one. In the extreme case, we only evolve (11.12)(i) toward H_R and never evolve (11.12)(ii) towards 1. That is, after evaluating the truncated series (11.14) at some $H_l < H_R < H_l < H_l < 1$, we evolve (11.12) (i) from H_l to H_l.

(Note, the numerically calculated Evans function differs from the defined one by a nonzero analytic function, but this is harmless as we are searching for roots.)

\section*{11.3. High-frequency stability.}

Using the result of Lemma 6.2 we now prove high-frequency stability of both smooth and discontinuous hydraulic shock waves.

\textbf{Nonvanishing of Evans-Lopatinsky determinant (11.19) at high frequency.} Evaluating (6.16) at $x = 0^-$ and substituting in the second column of (11.19), yields
\begin{equation}
(11.16) \quad A(0^-)w_{1,-}(\lambda, 0^-) = A(0^-)R_1(0^-) + O(1/|\lambda|) = -\frac{1}{\mu_1(0^-)} R_1(0^-) + O(1/|\lambda|)
\end{equation}
where R_1 is the first column of R.

\textbf{Proposition 11.2.} For any F, H_R, there exists $C(F, H_R)$, such that $\Delta(\lambda)$ does not vanish for all $\Re \lambda > -\bar{\eta}, |\lambda| > C(F, H_R)$.

47
Proof. Substituting (11.16) in the Lopatinsky determinant (11.19), in the high frequency region, we have

\[\Delta(\lambda) = -\frac{\lambda}{\mu_1(H_s)} \det \left(\begin{bmatrix} H_R - H_s & 0 \\ Q_R - Q_s & H_s^{3/2}(\sqrt{H_R} + 1) - F(H_s - H_R + H_s^2) \end{bmatrix}^{\ast} - F(H_s^{3/2} + \sqrt{H_R}H_s^2 + FH_R) \right) + O(1) \]

which is nonvanishing. The constant \(C \) should be sufficiently large such that \(T_\lambda \) becomes contraction mapping. \(\square \)

Remark 11.3. The principal, \(\lambda \)-order, term in the righthand side of (11.17) can be recognized as the Lopatinsky condition of Majda [22] for short-time stability/well-posedness of the component subshock, considered as a solution of the first-order part of (1.1) with forcing terms set to zero; see [Er1] [Z1W] [Z2] for similar observations in the context of detonations. As the first-order system in this case coincides with the equations of isentropic gas dynamics with \(\gamma \)-law pressure (see Introduction), nonvanishing of this principal part is a special case of the theorem of [Ma] [Se2] that shock waves of isentropic gas dynamics are Lopatinsky stable for any monotone pressure function.

Nonvanishing of Evans function (11.10) at high frequency.

The high frequency analysis of Section 6.1 also applies to the smooth case, yielding the following result.

Proposition 11.4. For any \(F, H_R \), there exists \(C(F, H_R) \), such that \(D(\lambda, 0) \) does not vanish for all \(\Re \lambda > -\bar{\gamma}, |\lambda| > C(F, H_R) \).

Proof. In the high frequency regime, following Lemma 6.2, we find that the decaying modes \(v_{1, -} \), \(v_{2, +} \) in Definition 11.1 are up to a scalar multiple equal to

\[\begin{align*}
 v_{1, -}(\lambda, x) &= e^{\int_0^x (\lambda_1(x,y) + \frac{4}{3} \Phi_1(x,y)) \, dy} \left(R_1(x) + O(1/|\lambda|) \right), \\
 v_{2, +}(\lambda, x) &= e^{\int_0^x (\lambda_2(x,y) + \frac{4}{3} \Phi_2(x,y)) \, dy} \left(R_2(x) + O(1/|\lambda|) \right).
\end{align*} \]

Evaluating the Evans function (11.10) at \(x_0 = 0 \) yields

\[D(\lambda) = \det \left(\begin{bmatrix} R_1(0) & R_2(0) \end{bmatrix} \right) + O(1/|\lambda|) \]

which is nonvanishing. The constant \(C \) should be sufficiently large such that \(T_\lambda \) becomes contraction mapping. \(\square \)

Remark 11.5. High frequency stability restricts the study of spectral stability to investigation of the bounded domain \(\{ \lambda : \Re \lambda > -\bar{\gamma}, |\lambda| \leq C(F, H_R) \} \), a numerically feasible problem.

11.4. Verification of mid- and low-frequency stability.

The hybrid schemes described in Sections 11.1–11.2 are implemented in Matlab and show great efficiency (see Table 1, Table 2 in Appendix C.2 for computation time). To determine stability, we fix \(0 < r < R \) and \(a \ll 1 \) and examine the presence of spectrum within the set

\[\Omega(r, R, a) := \{ \lambda - a : \Re \lambda > 0, r < |\lambda| < R \}. \]

At the end, we compute numerically the winding numbers of contours \(\Delta(\partial \Omega(r, R, a)) \) and \(D(\partial \Omega(r, R, a)) \), i.e. we discretize \(\partial \Omega(r, R, a) \) as \(\lambda_0, \lambda_1, \cdots, \lambda_n, \lambda_{n+1} = \lambda_0 \) and calculate the winding number by

\[n(\Omega) := \frac{1}{2\pi} \sum_{i=0}^n \angle \left(\Delta(\lambda_i), \Delta(\lambda_{i+1}) \right), \quad \left(n(\Omega) := \frac{1}{2\pi} \sum_{i=0}^n \angle \left(D(\lambda_i), D(\lambda_{i+1}) \right) \right) \]
number study out to the full theoretical radius provided by high-frequency asymptotics, these
profile. Note that for the exceptional points for which we were not able to carry out a winding-
perturbations of a discontinuous profile. In Figure 6, we display the results for a perturbed smooth
cases, all evolutions clearly indicate stability. In Figure 1, we display the results under two different
amplitude discontinuous hydraulic shocks and small amplitude smooth hydraulic shocks. In both
evolution study using CLAWPACK \[C1, C2\], illustrating stability under perturbations of large
for the rest.

We have verified that all large amplitude discontinuous hydraulic profiles are mid- and low-
frequency stable. Here “all” is limited to discretized existence domain \(F \in [0.05 : 0.05 : 1.95]\),
\(H_R \in [0.01 : 0.01 : H_C(F) - 0.01]\) (1559 points in total) and mid- and low-stability is checked
for \(\Omega := \Omega(0.1, C(F, H_R), 0.000001)\) where \(C(F, H_R)\) defined in Proposition 11.2 can be estimated
by Lemma 6.1. Note that, exceptionally, there are 191 points in the low \(F\) regime requiring
\(C(F, H_R) > 2000\) and one parameter \((F = 0.85, H_R = 0.25)\) even requiring a \(C(F, H_R)\) as large
as \(1.1664 \times 10^6\). It turns out for these values that for that large \(\lambda\), in the power series evaluation
step, the hybrid scheme cannot move enough distance away from the singular point \(H = 1\), causing
problem in the later ODE-evolution step. Numerics are then not robust for these pair of \(F, H_R\). We
have restricted \(C(F, H_R) = 2000\) for roughly half of these low-\(F\) points, and \(C(F, H_R) = 100 - 1,000\)
for the rest.

See Figure 5(a)-(b) for typical images of contours \(\partial \Omega(r, R, a)\) under function \(\Delta(\lambda)\).

We have also verified that all small amplitude smooth hydraulic shock waves are mid- and low-
frequency stable. Here “all” is limited to discretized existence domain \(F \in [0.05 : 0.05 : 1.95]\),
\(H_R \in [0.99 : -0.01 : H_C(F) + 0.01]\) (2227 points in total) and mid- and low-stability is checked
for \(\Omega := \Omega(0.1, C(F, H_R), 0)\) where \(C(F, H_R)\) defined in Proposition 11.3 can be estimated
by Lemma 6.1. Note that, exceptionally, there are 18 points in the \(F \approx 1\) regime requiring \(C(F, H_R) > 2000\).
For the same reasoning, numerics is then not robust for these pairs of \(F, H_R\). We have restricted
\(C(F, H_R) = 2000\) for these points.

See Figure 5(c)-(d) for typical images of contours \(\partial \Omega\) under function \(D(\lambda)\).

11.5. Time evolution of perturbed hydraulic shock profile. We have carried out also a time-
evolution study using CLAWPACK \[C1, C2\], illustrating stability under perturbations of large
amplitude discontinuous hydraulic shocks and small amplitude smooth hydraulic shocks. In both
cases, all evolutions clearly indicate stability. In Figure 11 we display the results under two different
perturbations of a discontinuous profile. In Figure 11 we display the results for a perturbed smooth
profile. Note that for the exceptional points for which we were not able to carry out a winding-
number study out to the full theoretical radius provided by high-frequency asymptotics, these
time-evolution studies bridge the gap between computed \((100 - 2,000)\) and theoretical \((> 2,000)\)
radius. For, nonstable eigenmodes \(\Re \lambda \geq 0\) with \(|\lambda| \geq 100\) should be clearly visible on the timescale
\(0 \leq t \leq 20\) considered, dominating the solution by time \(t = 20\).
Figure 6. Time-evolution study using CLAWPACK [C1] [C2], illustrating stability under perturbation of a smooth hydraulic shock. In (a) we show a perturbed profile with C^∞ “bump-type” perturbation. In (b) and (c) we show the solution at intermediate times $T = 4.0$ and 8.0 of the waveform in (a) after evolution under (1.1); stability and smoothness away from the subshock are clearly visible. In (d) we show the solution at time $T = 12.0$, exhibiting convergence to a shift of the original waveform (slightly compressed in the horizontal direction due to scaling of the figure).

Appendix A. Decomposition map

The decomposition of Green kernel function G can be summarized as

$$
G = \chi_{|x-y|/t<S} (I + II + III), \quad I = \chi_{t\leq 1} I + \chi_{t>1} I, \quad \chi_{t>1} I = \chi_{t>1} (I^1 + I^2),
$$

\begin{equation}
I^1 = I^1_S + I^1_R = I^1_{S1} + I^1_{S2} + I^1_{S3} + I^1_{R1} + I^1_{R2} + I^1_{R3}, \quad I^2 = I^2_R + I^2_{R2} + I^2_{R3},
\end{equation}

$$
I^1 = \chi_{p>e}^2 I^1_S + \chi_{p<\varepsilon}^2 (S^1 + I^1_{S2R} + I^1_{S2Rii}), \quad I^2_R = \chi_{p>e}^2 I^2_R + \chi_{p<\varepsilon}^2 I^2_R,
$$

$$
III = III^1 + III^2 = III^a_a + III^b_a + III^c_a + III^a + III^b + III^c, \quad III^a_a^2 := H^1^2,
$$

in which we see

\begin{equation}
H^1^2 = \chi_{|x-y|/t<S} III^a^2, \quad S^1 = \chi_{|x-y|/t<S, t>1, \alpha/p<\varepsilon} S^1,
\end{equation}

\begin{equation}
R = \chi_{|x-y|/t<S} \left(II + III^b_a + \chi_{t\leq 1} I + \chi_{t>1} \left(I^1_{S1S3R} + \chi_{p>e}^2 I^1_{S2} + \chi_{p<\varepsilon} (I^1_{S2R} + I^1_{S2Rii}) + I^2 \right) \right).
\end{equation}

Appendix B. Auxiliary estimates

I^1_{S2Ri}: Setting $f(u) = \frac{1}{\sqrt{4\varepsilon^2 \pi u}} e^{\frac{(t-c^2_{z_a}(x-y))^2}{4\varepsilon^2}}$, yields $I^1_{S2Ri} = f\left(\frac{t}{c^2_{z_a}}\right) - f(x - y)$, in which by (7.30) $\frac{t}{c^2_{z_a}}$ and $x - y$ are comparable. Writing the difference as an integral yields

\begin{equation}
|I^1_{S2Ri}| = \frac{1}{\sqrt{4\varepsilon^2 \pi}} \left| \int_{x-y}^{4\varepsilon^2} e^{\frac{(t-c^2_{z_a}(x-y))^2}{4\varepsilon^2}} - \frac{(t-c^2_{z_a}(x-y))^2}{24\varepsilon^4} - u \right| du.
\end{equation}
Using that \(\frac{t}{c_{2,-}^2} \) and \(x - y \) are comparable, we have \(e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2u} \leq e^{-(t-c_{2,-}^2(x-y))^2/8c_{2,-}^2} \), which, together with \(x^n e^{-x^2} \lesssim e^{-x^2/2} \) for any \(n \) positive, yields

\[
|I_{S2Ri}^1| \lesssim \int_{x-y} \left| e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2u} \frac{(t-c_{2,-}^2(x-y))^2}{2x_{2,-}^2} - u \right| |du|
\]

\[
\lesssim e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2} \left| (t - c_{2,-}^2(x-y))^2 \right| \int_{x-y} \left| \frac{t}{c_{2,-}^2} u - \frac{1}{2u^2} \right| |du|
\]

\[
\lesssim e^{-(t-c_{2,-}^2(x-y))^2/8c_{2,-}^2} \left| (t - c_{2,-}^2(x-y))^2 \right| \int_{x-y} \left| \frac{1}{(c_{2,-}^2)^{0.5}} - \frac{1}{(x-y)^{0.5}} \right| |du|
\]

\[
\lesssim e^{-(t-c_{2,-}^2(x-y))^2/16c_{2,-}^2} \left| (t - c_{2,-}^2(x-y))^2 \right| \int_{x-y} \left| \frac{1}{(c_{2,-}^2)^{1.5}} - \frac{1}{(x-y)^{1.5}} \right| |du|
\]

\[
\lesssim e^{-(t-c_{2,-}^2(x-y))^2/16c_{2,-}^2} \left| (t - c_{2,-}^2(x-y))^2 \right| \int_{x-y} u^{-2} |du|
\]

(B.2)

\[
\frac{\partial I_{S2Ri}^1}{\partial y} = \frac{1}{\sqrt{4c_{2,-}^2 \pi}} \left| \frac{\partial}{\partial y} \int_{x-y} \left| e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2u} \frac{(t-c_{2,-}^2(x-y))^2}{2x_{2,-}^2} - u \right| |du| \right|
\]

\[
\lesssim e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2} \left| (t - c_{2,-}^2(x-y))^2 \right| \int_{x-y} e^{-(t-c_{2,-}^2(x-y))^2/2c_{2,-}^2} \left| \frac{1}{(t-c_{2,-}^2(x-y))^3} \right| \int_{x-y} u^{-2} |du|
\]

(B.3)

Using that \(e^{-(t-c_{2,-}^2(x-y))^2/4c_{2,-}^2} \) \(\lesssim 1 \) and that for the complementary error function \(\text{erfc}(x) := \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-z^2} dz \), there is the estimate \(\text{erfc}(x) \leq e^{-x^2} \), \(I_{S2Ri}^1 \) can be bounded by

\[
|I_{S2Ri}^1| \lesssim \int_0^\infty e^{-c_{2,-}^2(x-y)^2} dx = \frac{1}{\sqrt{(x-y)c_{2,-}^2}} \text{erfc}(\sqrt{(x-y)c_{2,-}^2}) \lesssim e^{-x^2} \leq e^{-x^2/2},
\]

in which we have used that \(x - y \) is comparable to \(t \) hence is bounded away from 0 and is greater than \(t/2 \). Term \(I_{S2Ri}^1 \) is then time-exponentially small.

(B.4)

When the partial derivative hits the exponential outside the integral we get time-exponentially small terms by following the proof for \(I_{S2Ri}^1 \). When the partial derivative hits inside
the integral we use $x^2e^{-x^2} \lesssim e^{-x^2/2}$ and again get time-exponentially small terms by following the proof for I_{S2Rii}^1.

I_{R2i}^1: Using that $xe^{-x^2} \lesssim e^{-x^2/4}$ and that $\frac{t}{e^{1/2}}$ and $x - y$ are comparable ($\frac{t}{e^{1/2}} < x - y < \frac{2t}{e^{1/2}}$), we have

\begin{equation}
\int_{-r}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} O|\eta_{x}|d\xi \lesssim e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{4e_{2_\gamma}(x-y)}} \int_{-r}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} \left| t - c_{2_\gamma}(x-y) \right| d\xi
\end{equation}

(B.5)

\begin{equation}
\lesssim \frac{|t - c_{2_\gamma}(x-y)|}{(x-y)^{3/2}} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{4e_{2_\gamma}(x-y)}} \lesssim \frac{1}{(x-y)} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{8e_{2_\gamma}(x-y)}} \leq \frac{1}{2e_{2_\gamma}},
\end{equation}

(B.6)

\begin{equation}
\int_{-r}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} O|\eta_{x}^3|d\xi \lesssim e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{4e_{2_\gamma}(x-y)}} \int_{0}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} \xi d\xi
\end{equation}

(B.7)

\begin{equation}
\lesssim e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{4e_{2_\gamma}(x-y)}} \int_{-r}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} \left| t - c_{2_\gamma}(x-y) \right|^{3} d\xi \lesssim \frac{|t - c_{2_\gamma}(x-y)|^{3}}{(x-y)^{3}} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{8e_{2_\gamma}(x-y)}} \leq \frac{1}{t} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{8e_{2_\gamma}(x-y)}} \lesssim \frac{1}{2e_{2_\gamma}},
\end{equation}

(B.8)

\begin{equation}
\int_{-r}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} O|\eta_{x}^2 \xi|d\xi
\end{equation}

(B.9)

\begin{equation}
\begin{aligned}
\lesssim |t - c_{2_\gamma}(x-y)| e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{4e_{2_\gamma}(x-y)}} \int_{0}^{r} e^{-\xi^2 e_{2_\gamma}(x-y)} \xi d\xi \lesssim \frac{|t - c_{2_\gamma}(x-y)|}{(x-y)^{2}} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{8e_{2_\gamma}(x-y)}} \leq \frac{1}{t} e^{-\frac{(t-c_{2_\gamma}(x-y))^2}{8e_{2_\gamma}(x-y)}} \leq \frac{1}{2e_{2_\gamma}},
\end{aligned}
\end{equation}
\[
e^{-\frac{(t-x-y)^2}{4c_1^2(x-y)}} \int_{-r}^{r} e^{-\xi^2c_2^2(x-y)}O[\xi^3(x-y)]d\xi \lesssim (x-y)e^{-\frac{(t-x-y)^2}{4c_1^2(x-y)}} \int_{0}^{r} e^{-\xi^2c_2^2(x-y)} \xi^3d\xi
\]

\((B.10) \)

\[
\lesssim \frac{1}{x-y} e^{-\frac{(t-x-y)^2}{4c_1^2(x-y)}} \lesssim \frac{1}{t} e^{-\frac{(t-x-y)^2}{8c_1^2(x-y)}} .
\]

We then see that all terms are absorbable in \(R \). (7.6)

C.1. Computational environment. In carrying out our numerical investigations, we have used MacBook Pro 2017 with 16GB memory and Intel Core i7 processor with 2.8GHz processing speed for coding and debugging. The main parallelized computation is done in the compute nodes of IU Karst, a high-throughput computing cluster. It has 228 compute nodes. Each node is an IBM NeXtScale nx360 M4 server equipped with two Intel Xeon E5-2650 v2 8-core processors and with 32 GB of RAM and 250 GB of local disk storage.

C.2. Computational time. The following computational times are times elapsed in a single processor of IU Karst.

Table 1. Times to compute a single Evans-Lopatinsky determinant \(\Delta_{F:Hr}(\lambda) \).

\(\lambda \)	\(F,Hr \)	0.1, \(H_C(0.1) - 10^{-5} \)	0.1, 0.002	1, \(H_C(1) - 10^{-5} \)	1, 0.2	1.9, \(H_C(1.9) - 10^{-5} \)	1.9, 0.5
0.01	0.06s	0.06s	0.02s	0.03s	0.025s	0.02s	
1	0.19s	0.21s	0.04s	0.04s	0.04s	0.03s	
100	4.59s	5.45s	0.78s	0.87s	0.02s	0.03s	

Table 2. Times to compute a single Evans determinant \(D_{F:Hr}(\lambda) \).

\(\lambda \)	\(F,Hr \)	0.1, \(H_C(0.1) + 10^{-2} \)	0.1, 0.9	1, \(H_C(1) + 10^{-2} \)	1, 0.9	1.9, \(H_C(1.9) + 10^{-2} \)	1.9, 0.99
0.01	0.11s	0.09s	0.06s	0.06s	0.06s	0.05s	
1	0.25s	0.43s	0.07s	0.05s	0.12s	0.15s	
100	3.05s	4.84s	0.32s	0.58s	0.73s	2.36s	

References

[AGJ] J. Alexander, R. Gardner and C.K.R.T. Jones, *A topological invariant arising in the analysis of traveling waves*, J. Reine Angew. Math. 410 (1990) 167–212.

[BHRZ] B. Barker, J. Humpherys, K. Rudd and K. Zumbrun, *Stability of viscous shocks in isentropic gas dynamics*, Comm. Math. Phys. 281 (2008), no. 1, 231–249.

[BHZ] B. Barker, J. Humpherys, and K. Zumbrun, *One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics*, J. Diff. Eq. 249 (2010), no. 9, 2175–2213.

[BJNRZ] B. Barker, M.A. Johnson, P. Noble, L-M. Rodrigues, and K. Zumbrun, *Stability of St Venant roll-waves: from onset to the large Froude number limit*, J. Nonlinear Sci. 27 (2017) 285–342.

[BL] A. Boudlal and V.Y. Liapidevskii, *Stabilité de trains d’ondes dans un canal découvert*, C.R. Mécanique 330 (2002) 291–295.

[BLZ] B. Barker, O. Lafitte, and K. Zumbrun, *Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity*, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 2, 447–498.

[BLeZ] B. Barker, M. Lewicka and K. Zumbrun, *Existence and stability of viscoelastic shock profiles*, Arch. Ration. Mech. Anal. 200 (2011), no. 2, 491–532.
[BM] N.J. Balmforth and S. Mandre, *Dynamics of roll waves*, J. Fluid Mech. 514 (2004) 1–33.

[Bre] A. Bressan, *Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem*, Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000. xii+250 pp. ISBN: 0-19-850700-3.

[Br1] R.R. Brock, *Development of roll-wave trains in open channels*. J. Hydraul. Div., Am. Soc. Civ. Eng. 95:4 (1969) 1401–1428.

[Br2] R.R. Brock, *Periodic permanent roll waves*. J. Hydraul. Div., Am. Soc. Civ. Eng. 96:12 (1970) 2565–2580.

[BS] S. Benzoni-Gavage and D. Serre, *Multidimensional hyperbolic partial differential equations. First-order systems and applications*, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. xxvi+508 pp. ISBN: 978-0-19-921123-4; 0-19-921123-X.

[C1] Mandli, K.T., Ahmadia, A.J., Berger, M.J., Calhoun, D.A., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J., 2016. Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Computer Science.

[C2] Clawpack Development Team (2017), Clawpack Version 5.4.0, doi:10.5281/zenodo.262111.

[D] G. Doetsch, *Introduction to the Theory and Application of the Laplace Transformation*, Springer-Verlag, New York-Heidelberg (1974), vii + 326 pp.

[Da] C. Dafermos, *Hyperbolic conservation laws in continuum physics*, Springer Verlag 325, Berlin, 2000.

[Dr] R.F. Dressler, *Mathematical solution of the problem of roll-waves in inclined open channels*, Comm. Pure Appl. Math 2 (1949), p 149-194.

[DR1] V. Duchêne, and L.-M. Rodrigues, *Large-time asymptotic stability of Riemann shocks of scalar balance laws*, preprint (2018).

[DR2] V. Duchêne, and L.-M. Rodrigues, *Stability in scalar balance laws: fronts and periodic waves*, in preparation.

[Er1] J. J. Erpenbeck, *Stability of steady-state equilibrium detonations*, Phys. Fluids 5 (1962), 604–614.

[Er2] J. J. Erpenbeck, *Stability of step shocks*. Phys. Fluids 5 (1962) no. 10, 1181–1187.

[F1] K.O. Friedrichs, *Symmetric hyperbolic linear differential equations*, Comm. Pure and Appl. Math. 7 (1954) 345–392.

[F2] K.O. Friedrichs, *On the laws of relativistic electro-magneto-fluid dynamics*, Comm. Pure and Appl. Math. 27 (1974) 749–808.

[GZ] R. A. Gardner and K. Zumbrun, *The gap lemma and geometric criteria for instability of viscous shock profiles*, Comm. Pure Appl. Math. 51 (1998), no. 7, 797–855.

[H] J. Humpherys, *Admissibility of viscous-dispersive systems*, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, 963–974.

[HLyZ1] J. Humpherys, G. Lyng, and K. Zumbrun, *Spectral stability of ideal gas shock layers*, Arch. Ration. Mech. Anal. 194 (2009), no. 3, 1029–1079.

[HRZ] P. Howard, M. Raoofi, and K. Zumbrun, *Sharp pointwise bounds for perturbed viscous shock waves*, J. Hyperbolic Differ. Equ. 3 (2006), no. 2, 297–373.

[HoZ] P. Howard and K. Zumbrun, *Stability of undercompressive shock profiles*, J. Differential Equations 225 (2006), no. 1, 308–360.

[HuZ] J. Humpherys and K. Zumbrun, *Efficient numerical stability analysis of detonation waves in ZND*, Quart. Appl. Math. 70 (2012), no. 4, 685-703.

[Je] H. Jeffreys, *The flow of water in an inclined channel of rectangular section*, Phil. Mag. 49 (1925) 793–807.

[JK] S. Jin and M. Katsoulakis, *Hyperbolic Systems with Supercharacteristic Relaxations and Roll Waves*, SIAM J. Appl. Math. 61 (2000) 273-292.

[JLW] H.K. Jenssen, G. Lyng, and M. Williams, *Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion*, Indiana Univ. Math. J. 54 (2005) 1–64.

[JNRZ] M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. *Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations*, Invent. Math., 197 (2014), no. 1, 115–213.

[JNRYZ] M. Johnson, P. Noble, L.M. Rodrigues, Z. Yang, K. Zumbrun, *Spectral stability of inviscid roll waves*, Preprint (2018).

[JZN] M. Johnson, K. Zumbrun, and P. Noble, *Nonlinear stability of viscous roll waves*, SIAM J. Math. Anal. 43 (2011), no. 2, 577–611.

[K] S. Kawashima, *Systems of a hyperbolic–parabolic composite type, with applications to the equations of magnetohydrodynamics*, thesis, Kyoto University (1983).

[Kr] H.O. Kreiss, *Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math. 23 (1970) 277-298.

[L] T.-P. Liu, *Hyperbolic conservation laws with relaxation*, Comm. Math. Phys. 108 (1987), no. 1, 153–175.

[La] P.D. Lax, *Hyperbolic systems of conservation laws. II*. Comm. Pure Appl. Math. 10 1957 537–566.
Majda, A., *The stability of multidimensional shock fronts*, Mem. Amer. Math. Soc. No. 275, AMS, Providence, 1983.

G. Métivier, *Stability of multidimensional shocks*, Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations, Appl., 47, Birkhäuser Boston, Boston, MA, 2001.

G. Métivier and K. Zumbrun, *Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems*, Mem. Amer. Math. Soc. 175 (2005), no. 826, vi+107 pp.

A. Mailybaev and D. Marchesin, Private communication, *Conservation Laws and Applications* conference, IMPA, Rio de Janeiro, August (2017).

C. Mascia and K. Zumbrun, *Pointwise Green’s function bounds and stability of relaxation shocks*, Indiana Univ. Math. J. 51 (2002), no. 4, 773-904.

C. Mascia and K. Zumbrun, *Stability of large-amplitude shock profiles of general relaxation systems*, SIAM J. Math. Anal. 37 (2005), no. 3, 889-913.

C. Mascia and K. Zumbrun, *Spectral stability of weak relaxation shock profiles*, Comm. Partial Differential Equations 34 (2009), no. 1-3, 119–136.

C. Mascia and K. Zumbrun, *Stability of large-amplitude viscous shock profiles of hyperbolic–parabolic systems*, Arch. Ration. Mech. Anal. 172 (2004), no.1, 93–131.

T. Nguyen and K. Zumbrun, *Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic parabolic systems*, J. Math. Pures Appl. (9) 92 (2009), no. 6, 547–598.

L.M. Rodrigues, private communication: Sobolev-based analysis of long-time stability of discontinuous periodic waves.

L.M. Rodrigues and K. Zumbrun, *Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in inclined thin film flow*, SIAM J. Math. Anal. 48 (2016), no. 1, 268-290.

D. Sattinger, *On the stability of waves of nonlinear parabolic systems*, Adv. Math. 22 (1976) 312–355.

D. Serre, *Systems of conservation laws. 1. Hyperbolicity, entropies, shock waves*, Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 1999. xxii+263 pp. ISBN: 0-521-58233-4.

D. Serre, *Systems of conservation laws. 2. Geometric structures, oscillations, and initial-boundary value problems*, Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 2000. xii+269 pp. ISBN: 0-521-63330-3.

J. Smoller, *Shock waves and reaction-diffusion equations*, Springer-Verlag, New York, second edition, 1994.

G. B. Whitham, *Linear and Nonlinear Waves*, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.

W.-A. Yong, *Basic aspects of hyperbolic relaxation systems*, in "Advances in the theory of shock waves", 259–305, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001.

S. Yarahmadian and K. Zumbrun, *Pointwise Green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers*, SIAM J. Math. Anal. 40 (2009), no. 6, 2328–2350.

W.-A. Yong and K. Zumbrun, *Existence of relaxation shock profiles for hyperbolic conservation laws*, SIAM J. Appl. Math. 60 (2000) no.5, 1565–1575.

K. Zumbrun and P. Howard, *Pointwise semigroup methods and stability of viscous shock waves*, Indiana Mathematics Journal V47 (1998), 741-871; Errata, Indiana Univ. Math. J. 51 (2002), no. 4, 1017-1021.

K. Zumbrun, *High-frequency asymptotics and 1-D stability of ZND detonations in the small-heat release and high-overdrive limits*, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 701–717.

K. Zumbrun, *Stability of detonation waves in the ZND limit*, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 141–182.
Indiana University, Bloomington, IN 47405
E-mail address: yangzha@indiana.edu

Indiana University, Bloomington, IN 47405
E-mail address: kzumbrun@indiana.edu