Dehn surgery, homology and hyperbolic volume

IAN AGOL
MARC CULLER
PETER B SHALEN

If a closed, orientable hyperbolic 3–manifold M has volume at most 1.22 then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M; \mathbb{Z}_2)$ and $H_1(M; \mathbb{Z}_7)$ have dimension at most 3. The proof combines several deep results about hyperbolic 3–manifolds. The strategy is to compare the volume of a tube about a shortest closed geodesic $C \subset M$ with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

1 Introduction

We shall prove:

Theorem 1.1 Suppose that M is a closed, orientable hyperbolic 3–manifold with volume at most 1.22. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M; \mathbb{Z}_2)$ and $H_1(M; \mathbb{Z}_7)$ have dimension at most 3. Furthermore, if M has volume at most 1.182, then $H_1(M; \mathbb{Z}_7)$ has dimension at most 2.

The bound of 2 for the dimension of $H_1(M; \mathbb{Z}_p)$ is sharp when p is 3 or 5. Indeed, the manifolds $m003(-3,1)$, and $m007(3,1)$ from the list given in [10] have respective volumes 0.94\ldots and 1.01\ldots, and their integer homology groups are respectively isomorphic to $\mathbb{Z}_5 \oplus \mathbb{Z}_5$ and $\mathbb{Z}_3 \oplus \mathbb{Z}_6$.

Apart from these two examples, the only example known to us of a closed, orientable hyperbolic 3–manifold with volume at most 1.22 is the manifold $m003(-2,3)$ from the list given in [10]. These three examples suggest that the bounds for the dimension of $H_1(M; \mathbb{Z}_p)$ given by Theorem 1.1 may not be sharp for $p \neq 3, 5$.

The proof of Theorem 1.1 depends on several deep results, including a strong form of the “log 3 Theorem” of Anderson, Canary, Culler and Shalen [4, 8]; the Embedded Tube Theorem of Gabai, Meyerhoff and N Thurston [9]; the Marden Tameness Conjecture,
Ian Agol, Marc Culler and Peter B Shalen

recently proved by Agol [1] and by Calegari and Gabai [7]; and an even more recent result due to Agol, Dunfield, Storm and W Thurston [3]. The strategy of our proof is to compare the volume of a tube about a shortest closed geodesic $C \subset M$ with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

After establishing some basic conventions in Section 2, we carry out the strategy described above in Sections 3–6, for the case of manifolds which are “non-exceptional” in the sense that they contain shortest geodesics with tube radius greater than $(\log 3)/2$.

In Section 5, for the case of non-exceptional manifolds with volume at most 1.22, we establish a bound of 3 for the dimension of $H_1(M; \mathbb{Z}_p)$ for any prime p. In Section 6, again for the case of non-exceptional manifolds with volume at most 1.22, we establish a bound of 2 for the dimension of $H_1(M; \mathbb{Z}_p)$ for any odd prime p. In Section 7 we use results from [9] to handle the case of exceptional manifolds, and complete the proof of Theorem 1.1.

The research described in this paper was partially supported by NSF grants DMS-0204142 and DMS-0504975.

2 Definitions and conventions

2.1 If g is a loxodromic isometry of hyperbolic 3–space \mathbb{H}^3 we shall let A_g denote the hyperbolic geodesic which is the axis of g. The cylinder about A_g of radius r is the open set $Z_r(g) = \{ x \in \mathbb{H}^3 \mid \text{dist}(x, A_g) < r \}$.

2.2 Suppose that M is a complete, orientable hyperbolic 3–manifold. Let us identify M with \mathbb{H}^3/Γ, where $\Gamma \cong \pi_1(M)$ is a discrete, torsion-free subgroup of $\text{Isom}_+ \mathbb{H}^3$. If C is a simple closed geodesic in M then there is a loxodromic isometry $g \in \Gamma$ with $A_g/\langle g \rangle = C$. For any $r > 0$ the image $Z_r(g)/\langle g \rangle$ of $Z_r(g)$ under the covering projection is a neighborhood of C in M. For sufficiently small $r > 0$ we have

$$\{ h \in \Gamma \mid h(Z_r(g)) \cap Z_r(g) \neq \emptyset \} = \langle g \rangle.$$

Let R denote the supremum of the set of r for which this condition holds. We define tube$(C) = Z_R(g)/\langle g \rangle$ to be the maximal tube about C. We shall refer to R as the tube radius of C, and denote it by tuberad(C).

2.3 If C is a simple closed geodesic in a closed hyperbolic 3–manifold M, it follows from [13], [2] that $M - C$ is homeomorphic to a hyperbolic manifold N of finite volume having one cusp. The manifold N, which by Mostow rigidity is unique up to isometry, will be denoted drill$_C(M)$.
2.4 If \(C \) is a shortest closed geodesic in a closed hyperbolic 3–manifold \(M \), ie, one such that \(\text{length}(C) \leq \text{length}(C') \) for every other closed geodesic \(C' \), then in particular \(C \) is simple, and the notions of 2.2 and 2.3 apply to \(C \).

2.5 Suppose that \(N = \mathbb{H}^3/\Gamma \) is a non-compact orientable complete hyperbolic manifold of finite volume. Let \(\Pi \cong \mathbb{Z} \times \mathbb{Z} \) be a maximal parabolic subgroup of \(\Gamma \) (so that \(\Pi \) corresponds to a peripheral subgroup under the isomorphism of \(\Gamma \) with \(\pi_1(N) \)). Let \(\xi \) denote the fixed point of \(\Pi \) on the sphere at infinity and let \(B \) be an open horoball centered at \(\xi \) such that \(\{ g \in \Gamma \mid gB \cap B \neq \emptyset \} = \Pi \). Then \(\mathcal{H} = B/\Pi \), which we identify with the image of \(B \) in \(N \), is called a cusp neighborhood in \(N \).

If \(\mathcal{H} \) is a cusp neighborhood in \(N = \mathbb{H}^3/\Gamma \) then the inverse image of \(\mathcal{H} \) under the covering projection \(\mathbb{H}^3 \to N \) is a union of disjoint open horoballs. The cusp neighborhood \(\mathcal{H} \) is maximal if and only there exist two of these disjoint horoballs whose closures have non-empty intersection.

2.6 If \(N \) is a complete, orientable hyperbolic manifold of finite volume, \(\hat{N} \) will denote a compact core of \(N \). Thus \(\hat{N} \) is a compact 3–manifold whose boundary components are all tori, and the number of these tori is equal to the number of cusps of \(N \).

3 Drilling and packing

Lemma 3.1 Suppose that \(M \) is a closed, orientable hyperbolic 3–manifold, and that \(C \) is a shortest geodesic in \(M \). Set \(N = \text{drill}_C(M) \). If \(\text{tuberad}(C) \geq (\log 3)/2 \) then \(\text{vol} N < 3.0177 \text{ vol} M \).

Proof The proof is based on a result due to Agol, Dunfield, Storm and W Thurston [3]. We let \(L \) denote the length of the geodesic \(C \) in the closed hyperbolic 3–manifold \(M \), and we set \(R = \text{tuberad}(C) \) and \(T = \text{tube}(C) \). Proposition 10.1 of [3] states that

\[
\text{vol} N \leq (\coth^3 2R)(\text{vol} M + \frac{\pi}{2}L \tanh R \tanh 2R).
\]

Note that

\[
\text{vol} T = \pi L \sinh^2 R = \left(\frac{\pi}{2}L \tanh R \right) (2 \sinh R \cosh R) = \left(\frac{\pi}{2}L \tanh R \right) (\sinh 2R).
\]

Thus

\[
\text{vol} N \leq (\coth^3 2R) \left(\text{vol} M + \frac{	ext{vol} T \tanh 2R}{\sinh 2R} \right)
= (\coth^3 2R) \left(\text{vol} M + \frac{\text{vol} T}{\cosh 2R} \right).
\]
In the language of [16], the quantity \((\text{vol} T) / (\text{vol} M)\) is the density of a tube packing in \(\mathbb{H}^3\). According to [16, Corollary 4.4], we have \((\text{vol} T) / (\text{vol} M) < 0.91\). Hence \(\text{vol} N < f(x) \cdot \text{vol}(M)\), where \(f(x)\) is defined for \(x \geq 0\) by

\[
f(x) = (\coth^3 2x) \left(1 + \frac{0.91}{\cosh 2x} \right).
\]

Since \(f(x)\) is decreasing for \(x \geq 0\), and since a direct computation shows that \(f(0.5495) = 3.01762\ldots\), we have \(\text{vol} N < 3.0177 \cdot \text{vol} M\) whenever \(R \geq 0.5495\).

It remains to consider the case in which \(0.5495 > R \geq \frac{\log 3}{2} = 0.5493\ldots\). In this case we use [16, Theorem 4.3], which asserts that the tube-packing density \((\text{vol} T) / (\text{vol} M)\) is bounded above by \((\sinh R)g(R)\), where \(g(x)\) is defined for \(x > 0\) by

\[
g(x) = \frac{\arcsin \frac{1}{2 \cosh r}}{\arcsinh \frac{\tanh r}{\sqrt{3}}}.
\]

Since \(g(x)\) is clearly a decreasing function for \(x > 0\), and since \(\sinh R\) is increasing for \(x > 0\), we have

\[
(\text{vol} T) / (\text{vol} M) < (\sinh 0.5495)g((\log 3)/2) = 0.90817\ldots
\]

Hence \(\text{vol} N < f_1(x) \cdot \text{vol}(M)\), where \(f_1(x)\) is defined for \(x \geq 0\) by

\[
f_1(x) = (\coth^3 2x) \left(1 + \frac{0.90817}{\cosh 2x} \right).
\]

Again, \(f_1(x)\) is decreasing for \(x \geq 0\), and we see by direct computation that \(f_1((\log 3)/2) = 3.017392\ldots\). Hence we have \(\text{vol} N < 3.0174 \cdot \text{vol} M\) in this case.

Lemma 3.2 Suppose that \(M\) is a closed, orientable hyperbolic 3–manifold such that \(\text{vol} M \leq 1.22\), and that \(C\) is a shortest geodesic in \(M\). Set \(N = \text{drill}_C(M)\). If \(\text{tuberad}(C) > (\log 3)/2\) then the maximal cusp neighborhood in \(N\) has volume less than \(\pi\).

Proof We let \(d(\infty) = .853276\ldots\) denote Böröczky’s lower bound [6] for the density of a horoball packing in hyperbolic space. It follows from the definition of the density of a horoball packing that the volume of a maximal cusp neighborhood in \(N\) is at most \(d(\infty) \cdot \text{vol} N\). **Lemma 3.1** gives \(\text{vol} N < 3.0177 \cdot 1.22 < \pi/d(\infty)\), and the conclusion follows. \(\square\)
4 Filling

As in [4], we shall say that a group is *semifree* if it is a free product of free abelian groups; and we shall say that a group \(\Gamma \) is *\(k \)--semifree* if every subgroup of \(\Gamma \) whose rank is at most \(k \) is semifree. Note that \(\Gamma \) is 2--semifree if and only if every rank-2 subgroup of \(\Gamma \) is either free or free abelian.

The following improved version of [4, Theorem 6.1] is made possible by more recent developments.

Theorem 4.1 Let \(k \geq 2 \) be an integer and let \(\Phi \) be a Kleinian group which is freely generated by elements \(\xi_1, \ldots, \xi_k \). Let \(z \) be any point of \(\mathbb{H}^3 \) and set \(d_i = \text{dist}(z, \xi_i \cdot z) \) for \(i = 1, \ldots, k \). Then we have

\[
\sum_{i=1}^{k} \frac{1}{1 + e^{d_i}} \leq \frac{1}{2}.
\]

In particular there is some \(i \in \{1, \ldots, k\} \) such that \(d_i \geq \log(2k-1) \).

Proof If \(\Gamma \) is geometrically finite this is included in [4, Theorem 6.1]. In the general case, \(\Gamma \) is topologically tame according to [1] and [7], and it then follows from [15, Theorem 1.1], or from the corresponding result for the free case in [14], that \(\Gamma \) is an algebraic limit of geometrically finite groups; more precisely, there is a sequence of geometrically finite Kleinian groups \((\Gamma_j)_{j \geq 1} \) such that each \(\Gamma_j \) is freely generated by elements \(\xi_{1j}, \ldots, \xi_{kj} \), and \(\lim_{j \to \infty} \xi_{ij} = \xi_i \) for \(i = 1, \ldots, k \). Given any \(z \in \mathbb{H}^3 \), we set \(d_{ij} = \text{dist}(z, \xi_{ij} \cdot z) \) for each \(j \geq 1 \) and for \(i = 1, \ldots, k \). According to [4, Theorem 6.1], we have

\[
\sum_{i=1}^{k} \frac{1}{1 + e^{d_{ij}}} \leq \frac{1}{2}
\]

for each \(j \geq 1 \). Taking limits as \(j \to \infty \) we conclude that

\[
\sum_{i=1}^{k} \frac{1}{1 + e^{d_i}} \leq \frac{1}{2}.
\]

\(\square \)

Let us also recall the following definition from [4, Section 8]. Let \(\Gamma \) be a discrete torsion-free subgroup of \(\text{Isom}_+ (\mathbb{H}^3) \). A positive number \(\lambda \) is termed a *strong Margulis number* for \(\Gamma \), or for the orientable hyperbolic 3--manifold \(N = \mathbb{H}^3 / \Gamma \), if whenever \(\xi \) and \(\eta \) are non-commuting elements of \(\Gamma \), we have

\[
\frac{1}{1 + e^{\text{dist}(\xi \cdot z, z)}} + \frac{1}{1 + e^{\text{dist}(\eta \cdot z, z)}} \leq \frac{2}{1 + e^{\lambda}}.
\]

Algebraic & Geometric Topology 6 (2006)
The following improved version of [4, Proposition 8.4] is an immediate consequence of Theorem 4.1.

Corollary 4.2 Let \(\Gamma \) be a discrete subgroup of \(\text{Isom}_+(\mathbb{H}^3) \). Suppose that \(\Gamma \) is 2–semifree. Then \(\log 3 \) is a strong Margulis number for \(\Gamma \).

Lemma 4.3 Let \(N \) be a non-compact finite-volume hyperbolic 3–manifold. Suppose that \(S \) is a boundary component of the compact core \(\hat{N} \), and \(\mathcal{H} \) is the maximal cusp neighborhood in \(N \) corresponding to \(S \). If infinitely many of the manifolds obtained by Dehn filling \(\hat{N} \) along \(S \) have 2–semifree fundamental group then \(\mathcal{H} \) has volume at least \(\pi \).

Proof Suppose that \((N_i) \) is an infinite sequence of distinct hyperbolic manifolds obtained by Dehn filling \(\hat{N} \) along \(S \), and that \(\pi_1(N_i) \) is 2–semifree for each \(i \).

Thurston’s Dehn filling theorem [5, Appendix B], implies that for each sufficiently large \(i \), the manifold \(N_i \) admits a hyperbolic metric; that the core curve of the Dehn filling \(N_i \) of \(\hat{N} \) is isotopic to a geodesic \(C_i \) in \(N_i \); that the length \(L_i \) of \(C_i \) tends to 0 as \(i \to \infty \); and that the sequence of maximal tubes \((\text{tube}(C_i))_{i \geq 1} \) converges geometrically to \(\mathcal{H} \). In particular

\[
\lim_{i \to \infty} \text{vol}(\text{tube}(C_i)) = \text{vol } \mathcal{H}.
\]

According to Corollary 4.2, \(\log 3 \) is a strong Margulis number for each of the hyperbolic manifolds \(N_i \). It therefore follows from [4, Corollary 10.5] that \(\text{vol } \text{tube}(C_i) > V(L_i), \)

where \(V \) is an explicitly defined function such that \(\lim_{x \to 0} V(x) = \pi \). In particular, this shows that

\[
\text{vol } \mathcal{H} \geq \lim_{i \to \infty} V(L_i) \geq \pi. \quad \square
\]

5 **Non-exceptional manifolds, arbitrary primes**

5.1 A closed hyperbolic 3–manifold \(M \) will be termed \textit{exceptional} if every shortest geodesic in \(M \) has tube radius at most \((\log 3)/2 \).

In this section we shall prove a result, Proposition 5.3, which gives a bound of 3 for the dimension of \(H_1(M; \mathbb{Z}_p) \) for any prime \(p \) when \(M \) is a non-exceptional manifold with volume at most 1.22.
Lemma 5.2 Suppose that M is a compact, irreducible, orientable 3–manifold, such that every non-cyclic abelian subgroup of $\pi_1(M)$ is carried by a torus component of ∂M. Suppose that either

(i) $\dim H_1(M; \mathbb{Q}) \geq 3$, or
(ii) M is closed and $\dim H_1(M; \mathbb{Z}_p) \geq 4$ for some prime p.

Then $\pi_1(M)$ is 2–semifree.

Proof Let X be any subgroup of $\pi_1(M)$ having rank at most 2. According to [11, Theorem VI.4.1], X is free, or free abelian, or of finite index in $\pi_1(M)$. If $\dim H_1(M; \mathbb{Q}) \geq 3$, it is clear that X has infinite index in $\pi_1(M)$. If M is closed and $H_1(M; \mathbb{Z}_p) \geq 4$ for some prime p, then Proposition 1.1 of [17] implies that every 2–generator subgroup of $\pi_1(M)$ has infinite index. Thus in either case X is either free or free abelian. This shows that $\pi_1(M)$ is 2–semifree.

Proposition 5.3 Suppose that M is a closed, orientable, non-exceptional hyperbolic 3–manifold such that $\text{vol } M \leq 1.22$. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 3 for every prime p.

Proof Since M is non-exceptional, there is a shortest geodesic C in M with $R = \text{tubercad}(C) > (\log 3)/2$. We set $N = \text{drill}_C(M)$. Let \mathcal{H} denote the maximal cusp neighborhood in N. Since $R > (\log 3)/2$, Lemma 3.2 implies that $\text{vol } \mathcal{H} < \pi$.

Now assume that $\dim H_1(M; \mathbb{Z}_p) \geq 4$ for some prime p. There is an infinite sequence (M_i) of manifolds obtained by distinct Dehn fillings of \hat{N} such that $H_1(M_i; \mathbb{Z}_p)$ has dimension at least 4 for each i. (For example, if (λ, μ) is a basis for $H_1(\partial \hat{N}, \mathbb{Z}_p)$ such that λ belongs to the kernel of the inclusion homomorphism $H_1(\partial \hat{N}, \mathbb{Z}_p) \to H_1(\hat{N}, \mathbb{Z}_p)$, we may take M_i to be obtained by the Dehn surgery corresponding to a simple closed curve in $\partial \hat{N}$ representing the homology class $\lambda + ip\mu$.) It follows from Thurston’s Dehn filling theorem [5, Appendix B] that for sufficiently large i the manifold M_i is hyperbolic. Hence by case (ii) of Lemma 5.2, the fundamental group of M_i is 2–semifree for sufficiently large i. Thus Lemma 4.3 implies that $\text{vol } \mathcal{H} \geq \pi$, a contradiction.

6 Non-exceptional manifolds, odd primes

Proposition 6.3, which is proved in this section, gives a bound of 2 for the dimension of $H_1(M; \mathbb{Z}_p)$ for any odd prime p when M is a non-exceptional manifold with volume at most 1.22.
Definition 6.1 Let N be a connected manifold, $\star \in N$ a base point, and Q a subgroup of $\pi_1(N, \star)$. We shall say that a connected based covering space $r : (N', \star') \to (N, \star)$ carries the subgroup Q if $Q \leq r_2(\pi_1(N', \star')) \leq \pi_1(N, \star)$.

Lemma 6.2 Suppose that \mathcal{H} is a maximal cusp neighborhood in a finite-volume hyperbolic 3–manifold N. Let \star be a base point in \mathcal{H}, and let $P \leq \pi_1(N, \star)$ denote the image of $\pi_1(\mathcal{H}, \star)$ under inclusion. Then there is an element β of $\pi_1(N, \star)$ with the following property:

(†) For every based covering space $r : (N', \star') \to (N, \star)$ which carries the subgroup $\langle P, \beta \rangle$ of $\pi_1(N, \star)$, there is a maximal cusp neighborhood \mathcal{H}' in N' which is isometric to \mathcal{H}.

Proof. We write $N = \mathbb{H}^3/\Gamma$, where Γ is a discrete, torsion-free subgroup of $\text{Isom}(\mathbb{H}^3)$. Let $q : \mathbb{H}^3 \to N$ denote the quotient map and fix a base point \star' which is mapped to \star by q. The components of $q^{-1}(\mathcal{H})$ are horoballs. Let B_0 denote the component of $q^{-1}(\mathcal{H})$ containing \star'. The stabilizer Γ_0 of B_0 is mapped onto the subgroup P of $\pi_1(N, \star)$ by the natural isomorphism $\iota : \Gamma \to \pi_1(N, \star)$.

Since \mathcal{H} is a maximal cusp, there is a component $B_1 \neq B_0$ of $q^{-1}(\mathcal{H})$ such that $\overline{B_1} \cap \overline{B_0} \neq \emptyset$. We fix an element g of Γ such that $g(B_0) = B_1$, and we set $\beta = \iota(g) \in \pi_1(N, \star)$.

To show that β has property (†), we consider an arbitrary based covering space $r : (N', \star') \to (N, \star)$ which carries the subgroup $\langle P, \beta \rangle$ of $\pi_1(N, \star)$. We may identify N' with \mathbb{H}^3/Γ', where Γ' is some subgroup of Γ containing $\langle \Gamma_0, g \rangle$.

Since $\Gamma_0 \subset \Gamma'$, the cusp neighborhood \mathcal{H} lifts to a cusp neighborhood \mathcal{H}' in N'. In particular \mathcal{H}' is isometric to \mathcal{H}. The horoballs B_0 and $B_1 = g(B_0)$ are distinct components of $(q')^{-1}(\mathcal{H}')$, where $q' : \mathbb{H}^3 \to N'$ denotes the quotient map. Since $g \in \Gamma'$ and $\overline{B_1} \cap \overline{B_0} \neq \emptyset$, the cusp neighborhood \mathcal{H}' is maximal.

Proposition 6.3 Suppose that M is a closed, orientable, non-exceptional hyperbolic 3–manifold such that $\text{vol } M \leq 1.22$. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every odd prime p.

Proof. Since M is non-exceptional, we may fix a shortest geodesic C in M with $R = \text{tuberculad}(C) > (\log 3)/2$. We set $N = \text{drill}_C(M)$. Let \mathcal{H} denote the maximal cusp neighborhood in N. Since $R > (\log 3)/2$, Lemma 3.2 implies that $\text{vol } \mathcal{H} < \pi$.

As in the statement of Lemma 6.2, we fix a base point $\star \in \mathcal{H}$, and we denote by $P \leq \pi_1(N, \star)$ the image of $\pi_1(\mathcal{H}, \star)$ under inclusion. We fix an element β of $\pi_1(N, \star)$ having property (†) of Lemma 6.2. We set $Q = \langle P, \beta \rangle \leq \pi_1(N, \star)$.
Suppose that $\dim H_1(M;\mathbb{Z}_p) \geq 3$ for some prime p. We shall prove the proposition by showing that this assumption leads to a contradiction if p is odd.

It follows from Poincaré duality that the image of the inclusion homomorphism $\alpha : H_1(\partial \hat{N};\mathbb{Z}_p) \to H_1(\hat{N};\mathbb{Z}_p)$ has rank 1. Hence the image of P under the natural homomorphism $\pi_1(N,\star) \to H_1(N;\mathbb{Z}_p)$ has dimension 1. It follows that the image \hat{Q} of Q under this homomorphism has dimension either 1 or 2. In the case $\dim \hat{Q} = 1$ we shall obtain a contradiction for any prime p. In the case $\dim \hat{Q} = 2$ we shall obtain a contradiction for any odd prime p.

First consider the case $\dim \hat{Q} = 1$. We have assumed $\dim H_1(M;\mathbb{Z}_p) \geq 3$. Thus there is a $\mathbb{Z}_p \times \mathbb{Z}_p$–regular based covering space (N',\star') of (N,\star) which carries Q. By property (\dagger), there is a maximal cusp neighborhood \mathcal{H}' in N' which is isometric to \mathcal{H}. In particular $\mathrm{vol} \mathcal{H}' < \pi$.

Since in particular (N',\star') carries P, the boundary of the compact core \hat{N} lifts to \hat{N}'. As N' is a p^2–fold regular covering, it follows that \hat{N}' has $p^2 \geq 4$ boundary components.

It follows from Thurston’s Dehn filling theorem [5, Appendix B] that there are infinitely many hyperbolic manifolds obtained by Dehn filling one boundary component of \hat{N}'. If Z is any hyperbolic manifold obtained by such a filling, then Z has at least three boundary components, and it follows from case (i) of Lemma 5.2 that $\pi_1(Z)$ is 2–semifree. It therefore follows from Lemma 4.3 that each maximal cusp neighborhood in N' has volume at least π. Since we have seen that $\mathrm{vol} \mathcal{H}' < \pi$, this gives the desired contradiction in the case $\dim \hat{Q} = 1$.

It remains to consider the case in which $\dim \hat{Q} = 2$ and the prime p is odd. Since we have assumed that $\dim H_1(M;\mathbb{Z}_p) \geq 3$, there is a p–fold cyclic based covering space (N',\star') of (N,\star) which carries Q. Since N' carries P, the boundary of the compact core \hat{N} lifts to \hat{N}', and as N' is a p–fold regular covering, it follows that \hat{N}' has p boundary components.

We claim that the inclusion homomorphism $\alpha' : H_1(\partial \hat{N}',\mathbb{Z}_p) \to H_1(\hat{N}',\mathbb{Z}_p)$ is not surjective. To establish this, we consider the commutative diagram

\[
\begin{array}{ccc}
H_1(\partial \hat{N}';\mathbb{Z}_p) & \xrightarrow{\alpha'} & H_1(N';\mathbb{Z}_p) \\
\downarrow & & \downarrow r_* \\
H_1(\partial \hat{N};\mathbb{Z}_p) & \xrightarrow{\alpha} & H_1(N;\mathbb{Z}_p)
\end{array}
\]

where $r : N' \to N$ is the covering projection. Since (N',\star') carries Q we have $\hat{Q} \subset \mathrm{Im} r_*$. Hence surjectivity of α' would imply $\hat{Q} \subset \mathrm{Im} \alpha$. This is impossible: we
observed above that $\text{Im} \alpha$ has rank 1, and we are in the case $\dim \hat{Q} = 2$. Thus α' cannot be surjective.

Since \hat{N}' has p boundary components, it follows from Poincaré duality that $\dim \text{Im} \alpha' = p \geq 3$. Since α' is not surjective and p is an odd prime, it follows that $\dim H_1(N'; \mathbb{Z}_p) \geq p + 1 \geq 4$.

Since (N', \star') carries Q, some subgroup Q' of $\pi_1(N', \star')$ is mapped isomorphically to Q by r_\sharp. In particular Q' has rank at most 3. Since $\dim H_1(N'; \mathbb{Z}_p) \geq 4$, there is a p^2–fold cyclic based covering space (N'', \star'') of (N', \star') which carries Q'. Hence (N'', \star'') is a p^2–fold (possibly irregular) based covering space of (N, \star) which carries Q. By property (†), there is a maximal cusp neighborhood \mathcal{H}'' in N'' which is isometric to \mathcal{H}. In particular $\text{vol} \mathcal{H}'' < \pi$.

Since $P \leq Q$, there is a component T of $\partial \hat{N''}$ such that Q' contains a conjugate of the image of $\pi_1(T)$ under the inclusion homomorphism $\pi_1(T) \to \pi_1(N')$. Hence T lifts to the p–fold cyclic covering space N'' of N'. It follows that the covering projection $r' : N'' \to N'$ maps $p \geq 3$ components of $(r')^{-1}(\partial \hat{N''})$ to T. As $\hat{N''}$ has at least three boundary components, $\hat{N''}$ must have at least five boundary components.

Hence if Z is any hyperbolic manifold obtained by Dehn filling one boundary component of $\hat{N''}$, we have $\dim H_1(Z; \mathbb{Q}) \geq 4 > 3$, and it follows from case (i) of Lemma 5.2 that $\pi_1(Z)$ is 2–semifree. It therefore follows from Lemma 4.3 and Thurston’s Dehn filling theorem that each maximal cusp neighborhood in N'' has volume at least π. Since we have seen that $\text{vol} \mathcal{H}'' < \pi$, we have the desired contradiction in this case as well. □

7 Exceptional manifolds

Our treatment of exceptional manifolds begins with Proposition 7.1 below, the proof of which will largely consist of citing material from [9]. In order to state it we must first introduce some notation.

For $k = 0, \ldots, 6$ we define constants τ_k as follows:

\[
\begin{align*}
\tau_0 &= 0.4779 \\
\tau_1 &= 1.0756 \\
\tau_2 &= 1.0527 \\
\tau_3 &= 1.2599 \\
\tau_4 &= 1.2521 \\
\tau_5 &= 1.0239 \\
\tau_6 &= 1.0239
\end{align*}
\]
For $k = 0, \ldots, 6$ let E_k be the 2–generator group with presentation

$$E_k = \langle x, y : r_{1,k}, r_{2,k} \rangle,$$

where the relators $r_{1,k} = r_{1,k}(x, y)$ and $r_{2,k} = r_{2,k}(x, y)$ are the words listed below (in which we have set $X = x^{-1}$ and $Y = y^{-1}$):

- $r_{1,0} = xyXyyXxxyxyy$,
- $r_{2,0} = XyxyXyxxyxyy$,
- $r_{1,1} = XXyXYXyXyyXyy$, $r_{2,1} = XXyyXyxxyxyxxyy$,
- $r_{1,2} = XxyXyxXYxxyXyy$, $r_{2,2} = XXyXXyXyxyxyy$,
- $r_{1,3} = XXyxyXxyXyXxyXyyXyy$, $r_{2,3} = XXyxyXyxxyxyXYxxyXyyXyy$,
- $r_{1,4} = XXyxyXXyXxyXyyXYxXyyXYxXyy$, $r_{2,4} = XXyxyXXxyXyxXyyXYxXyyXYxXyy$,
- $r_{1,5} = XyXXyXYxxyXYxxy$, $r_{2,5} = XyxyXYyXXyXyxyxy$,
- $r_{1,6} = YYXYyXXyXYxXyy$, $r_{2,6} = YYXyXXyXyxyXyy$.

The group E_0 is the fundamental group of an arithmetic hyperbolic 3–manifold which is known as Vol3. This manifold, which was studied in [12], is described as m007(3,1) in the list given in [10], and can also be described as the manifold obtained by a $(-1,2)$ Dehn filling of the once-punctured torus bundle with monodromy $-R^2L$.

Proposition 7.1 Suppose that M is an exceptional closed, orientable hyperbolic 3–manifold which is not isometric to Vol3. Then there exists an integer k with $1 \leq k \leq 6$ such that the following conditions hold:

1. M has a finite-sheeted cover \tilde{M} such that $\pi_1(\tilde{M})$ is isomorphic to a quotient of E_k; and
2. there is a shortest closed geodesic C in M such that $\text{vol}(\text{tube}(C)) \geq \tau_k$.

Proof This is in large part an application of results from [9], and we begin by reviewing some material from that paper.

We begin by considering an arbitrary simple closed geodesic C in a closed, orientable hyperbolic 3–manifold $M = \mathbb{H}^3/\Gamma$. As we pointed out in 2.2, there is a loxodromic
isometry \(f \in \Gamma \) with \(A_f / \langle f \rangle = C \). If we set \(R = \text{tuberad}(C) \) and \(Z = \ZR(f) \), it follows from the definitions that \(\text{tube}(C) = Z / \langle f \rangle \), that \(h(Z) \cap Z = \emptyset \) for every \(h \in \Gamma - \langle f \rangle \), and that there is an element \(w \in \Gamma - \langle f \rangle \) such that \(w(Z) \cap Z \neq \emptyset \).

Let us define an ordered pair \((f, w)\) of elements of \(\Gamma \) to be a GMT pair for the simple geodesic \(C \) if we have (i) \(A_f / \langle f \rangle = C \), (ii) \(w \notin \langle f \rangle \), and (iii) \(w(Z) \cap Z \neq \emptyset \). Note that since \(\langle f \rangle \) must be a maximal cyclic subgroup of \(\Gamma \), condition (ii) implies that the group \(\langle f, w \rangle \) is non-elementary.

Set \(Q = \{(L, D, R) \in C^3 : \text{Re} L, \text{Re} D > 0\} \). For any point \(P = (L, D, R) \in Q \) we will denote by \((f_P, w_P)\) the pair \((f, w) \in \text{Isom}_+^{\mathbb{H}^3} \times \text{Isom}_+^{\mathbb{H}^3}, \) where \(f, w \in PGL_2(\mathbb{C}) = \text{Isom}_+^{\mathbb{H}^3} \) are defined by

\[
f = \begin{bmatrix} e^{L/2} & 0 \\ 0 & e^{-L/2} \end{bmatrix}
\]

and

\[
w = \begin{bmatrix} e^{R/2} & 0 \\ 0 & e^{-R/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{D/2} & 0 \\ 0 & e^{-D/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.
\]

With this definition, \(f_P \) has (real) translation length \(\text{Re} L \), and the (minimum) distance between \(A_f \) and \(w(A_f) \) is \((\text{Re} D)/2 \).

In [9, Section 1], it is shown that if \((f, w)\) is a GMT pair for a shortest geodesic \(C \) in a closed, orientable hyperbolic 3–manifold and \(\text{tuberad}(C) \leq (\log 3)/2 \), then \((f, w)\) is conjugate by some element of \(\text{Isom}^{\mathbb{H}^3} \) to a pair of the form \((f_P, w_P)\) where \(P \in Q \) is a point such that \(\exp(P) \doteq (e^L, e^D, e^R) \) lies in the union \(X_0 \cup \cdots \cup X_6 \) of seven disjoint open subsets of \(C^3 \) that are explicitly defined in [9, Proposition 1.28].

For every \(k \) with \(0 \leq k \leq 6 \) and every point \(P = (L, D, R) \) such that \(\exp(P) \in X_k \), it follows from [9, Definition 1.27 and Proposition 1.28] that

(I) the isometries \(r_{1,k}(f_P, w_P) \) and \(r_{2,k}(f_P, w_P) \) have translation length less than \(\text{Re} L \);

and it follows from [9, Table 1.1] that

(II) \(\pi \text{Re}(L) \sinh^2(\text{Re}(D)/2) > \tau_k \).

According to [9, Proposition 3.1], if \(C \) is a shortest geodesic in a closed, orientable hyperbolic 3–manifold, and if some GMT pair for \(C \) has the form \((f_P, w_P)\) for some \(P \) with \(\exp(P) \in X_0 \), then \(M \) is isometric to \(\text{Vol3} \).

Now suppose that \(M \) is an exceptional closed, orientable hyperbolic 3–manifold. Let us choose a shortest closed geodesic \(C \) in \(M \). By the definition of an exceptional manifold, \(C \) has tube radius \(\leq (\log 3)/2 \). Hence the facts recalled above imply that \(C \) has a GMT pair of the form \((f_P, w_P)\) for some \(P \) such that \(\exp(P) \in X_k \) for some \(k \) with \(0 \leq k \leq 6 \);
and furthermore, that if \(M \) is not isometric to \(\text{Vol}3 \), then \(1 \leq k \leq 6 \). We shall show that conclusions (1) and (2) hold with this choice of \(k \).

For \(i = 1, 2 \) it follows from property (I) above that the element \(r_{i,k}(f, \omega) \) has real translation length less than the real translation length \(\text{Re} L \) of \(f \). Since \(C \) is a shortest geodesic in \(M \), it follows that the conjugacy class of \(r_{i,k}(f, \omega) \) is not represented by a closed geodesic in \(M \). As \(M \) is closed it follows that \(r_{i,k}(f, \omega) \) is the identity for \(i = 1, 2 \). Hence the subgroup of \(\Gamma \) generated by \(f \) and \(\omega \) is isomorphic to a quotient of \(\mathcal{E}_k \). Since we observed above that \(\langle f, \omega \rangle \) is non-elementary, there is a non-abelian subgroup \(Y \) of \(\pi_1(M) \) which is isomorphic to a quotient of \(\mathcal{E}_k \). In particular \(Y \) has rank 2, and it cannot be a free group of rank 2 since the relators \(r_{1,k} \) and \(r_{2,k} \) are non-trivial. Hence by [11, Theorem VI.4.1] we must have \(|\pi_1(M) : Y| < \infty \). This proves (1).

Finally, we recall that

\[\text{vol tube}(C) = \pi(\text{length}(C)) \sinh^2(\text{tuberad}(C)) = \pi(\text{Re} L) \sinh^2((\text{Re} D)/2). \]

Hence (2) follows from (II).

We shall also need the following slight refinement of [17, Proposition 1.1].

Proposition 7.2 Let \(p \) be a prime and let \(M \) be a closed 3–manifold. If \(p \) is odd assume that \(M \) is orientable. Let \(X \) be a finitely generated subgroup of \(\pi_1(M) \), and set \(n = \dim H_1(X; \mathbb{Z}_p) \). If \(\dim H_1(M; \mathbb{Z}_p) \geq \max(3, n + 2) \), then \(X \) has infinite index in \(\pi_1(M) \). In fact, \(X \) is contained in infinitely many distinct finite-index subgroups of \(\pi_1(M) \).

Proof In this proof, as in [17, Section 1], for any group \(G \) we shall denote by \(G_1 \) the subgroup of \(G \) generated by all commutators and \(p \)-th powers, where \(p \) is the prime given in the hypothesis. Since \(\dim H_1(X; \mathbb{Z}_p) = n \) we may write \(X = E X_1 \) for some rank-\(n \) subgroup \(E \) of \(X \).

We first assume that \(n \geq 1 \). Set \(\Gamma = \pi_1(M) \). Let \(\mathcal{S} \) denote the set of all finite-index subgroups \(\Delta \) of \(\Gamma \) such that \(\Delta \supseteq X \) and \(\dim H_1(\Delta; \mathbb{Z}_p) \geq n + 2 \). The hypothesis gives \(\Gamma \in \mathcal{S} \), so that \(\mathcal{S} \neq \emptyset \). Hence it suffices to show that every subgroup \(\Delta \in \mathcal{S} \) has a proper subgroup \(D \) such that \(D \in \mathcal{S} \).

Any group \(\Delta \in \mathcal{S} \) may be identified with \(\pi_1(\tilde{M}) \) for some finite-sheeted covering space \(\tilde{M} \) of \(M \). In particular, \(\tilde{M} \) is a closed 3–manifold, and is orientable if \(p \) is odd. Since \(\Delta \in \mathcal{S} \) we have \(X \leq \Delta = \pi_1(\tilde{M}) \) and \(\dim H_1(\tilde{M}; \mathbb{Z}_p) = \dim H_1(\Delta; \mathbb{Z}_p) \geq n + 2 \). Now set \(D = E \Delta_1 \leq \Delta \). Applying [17, Lemma 1.5], with \(\tilde{M} \) in place of \(M \), we deduce that \(D \) is a proper, finite-index subgroup of \(\Delta \), and that \(\dim H_1(D; \mathbb{Z}_p) \geq 2n + 1 \geq n + 2 \).
On the other hand, since $\Delta \in S$, we have $X \leq \Delta$, and hence $X = E X_1 \leq E \Delta_1 = D$. It now follows that $D \in S$, and the proof is complete in the case $n \geq 1$.

If $n = 0$ then, since $\dim H_1(M; \mathbb{Z}_p) \geq 3$, there exists a finitely generated subgroup $X' \geq X$ such that $H_1(X'; \mathbb{Z}_p)$ has dimension 1. The case of the Lemma which we have already proved shows that X' has infinite index. Thus X has infinite index as well. \qed

Corollary 7.3 Let p be a prime and let M be a closed, orientable 3–manifold. Let X be a finite-index subgroup of $\pi_1(M)$, and set $n = \dim H_1(X; \mathbb{Z}_p)$. Then $\dim H_1(M; \mathbb{Z}_p) \leq \max(2, n + 1)$.

Lemma 7.4 Suppose that M is an exceptional hyperbolic 3–manifold with volume at most 1.22. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M; \mathbb{Z}_2)$ and $H_1(M; \mathbb{Z}_7)$ have dimension at most 3. Furthermore, if M has volume at most 1.182, then $H_1(M; \mathbb{Z}_7)$ has dimension at most 2.

Proof If M is isometric to Vol3 then $\pi_1(M)$ is generated by two elements, and the conclusions follow. For the rest of the proof we assume that M is not isometric to Vol3, and we fix an integer k with $1 \leq k \leq 6$ such that conditions (1) and (2) of Proposition 7.1 hold.

By condition (2) of Proposition 7.1, we may fix a shortest closed geodesic C in M such that vol(T) $\geq \tau_k$, where $T =$ tube(C). It follows from a result of Przeworski’s [16, Corollary 4.4] on the density of cylinder packings that vol(T) < 0.91 vol M, and so vol M $> \tau_k / 0.91$. If $k = 3$ we have $\tau_k / 0.91 > 1.22$, and we get a contradiction to the hypothesis. Hence $k \in \{1, 2, 4, 5, 6\}$.

Furthermore, we have $\tau_1 / 0.91 > 1.182$. Hence if vol M ≤ 1.182 then $k \in \{2, 4, 5, 6\}$.

By condition (1) of Proposition 7.1, $\pi_1(M)$ has a finite-index subgroup X which is isomorphic to a quotient of \mathcal{E}_k. From the defining presentations of the groups \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_4, \mathcal{E}_5, and \mathcal{E}_6, we find that $H_1(\mathcal{E}_1; \mathbb{Z})$ is isomorphic to $\mathbb{Z}_7 \oplus \mathbb{Z}_7$, that $H_1(\mathcal{E}_2; \mathbb{Z})$ and $H_1(\mathcal{E}_4; \mathbb{Z})$ are isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_{12}$, while $H_1(\mathcal{E}_5; \mathbb{Z})$ and $H_1(\mathcal{E}_6; \mathbb{Z})$ are isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. (One can check that the two groups \mathcal{E}_5 and \mathcal{E}_6 are isomorphic to each other.) In particular, since $k \in \{1, 2, 4, 5, 6\}$ we have $\dim H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 1$ for any prime $p \neq 2, 7$, and $\dim H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 2$ for $p = 2$ or 7. As X is isomorphic to a quotient of \mathcal{E}_k, it follows that $\dim H_1(X; \mathbb{Z}_p) \leq 1$ for any prime $p \neq 2, 7$, and $\dim H_1(X; \mathbb{Z}_p) \leq 2$ for $p = 2$ or 7. Hence by Corollary 7.3, we have $\dim H_1(M; \mathbb{Z}_p) \leq 2$ for $p \neq 2, 7$, and $\dim H_1(M; \mathbb{Z}_p) \leq 3$ for $p = 2, 7$.

It remains to prove that if vol M ≤ 1.182 then $\dim H_1(M; \mathbb{Z}_7) \leq 2$. We have observed that in this case $k \in \{2, 4, 5, 6\}$. By the list of isomorphism types of the
Dehn surgery, homology and hyperbolic volume

$H_1(E_k;\mathbb{Z})$ given above, it follows that $\dim H_1(E_k;\mathbb{Z}_7) = 0 < 1$. Hence in this case the argument given above for $p \neq 2, 7$ goes through in exactly the same way to show that $\dim H_1(M;\mathbb{Z}_7) \leq 2$. □

Proof of Theorem 1.1 For the case in which M is non-exceptional, the theorem is an immediate consequence of Propositions 5.3 and 6.3. For the case in which M is exceptional, the assertions of the theorem are equivalent to those of Lemma 7.4. □

References

[1] I Agol, Tameness of hyperbolic 3–manifolds arXiv:math.GT/0405568
[2] I Agol, Volume change under drilling, Geom. Topol. 6 (2002) 905–916 MR1943385
[3] I Agol, N M Dunfield, P A Storm, W P Thurston, Lower bounds on volumes of hyperbolic Haken 3–manifolds arXiv:math.DG/0506338
[4] J W Anderson, R D Canary, M Culler, P B Shalen, Free Kleinian groups and volumes of hyperbolic 3–manifolds, J. Differential Geom. 43 (1996) 738–782 MR1412683
[5] M Boileau, J Porti, Geometrization of 3–orbifolds of cyclic type, Appendix A by M Heusener and J Porti, Astérisque 272 (2001) MR1844891
[6] K Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243–261 MR512399
[7] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385–446 MR2188131
[8] M Culler, P B Shalen, Paradoxical decompositions, 2–generator Kleinian groups, and volumes of hyperbolic 3–manifolds, J. Amer. Math. Soc. 5 (1992) 231–288 MR1135928
[9] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. (2) 157 (2003) 335–431 MR1973051
[10] C Hodgson, J Weeks, SnapPea Available at http://www.geometrygames.org/SnapPea/
[11] W H Jaco, P B Shalen, Seifert fibered spaces in 3–manifolds, Mem. Amer. Math. Soc. 21 (1979) viii+192 MR539411
[12] K N Jones, A W Reid, Vol3 and other exceptional hyperbolic 3–manifolds, Proc. Amer. Math. Soc. 129 (2001) 2175–2185 MR1825931
[13] S Kojima, Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469–516 MR1669649
[14] H Namazi, J Souto, Nonrealizability in handlebodies and ending laminations in preparation

Algebraic & Geometric Topology 6 (2006)
[15] **K Ohshika**, *Realizing end invariants by limits of minimally parabolic, geometrically finite groups* arXiv:math.GT/0504546

[16] **A Przeworski**, *A universal upper bound on density of tube packings in hyperbolic space*, J. Differential Geom. 72 (2006) 113–127 MR2215457

[17] **P B Shalen, P Wagreich**, *Growth rates, \(\mathbb{Z}_p \)-homology, and volumes of hyperbolic 3–manifolds*, Trans. Amer. Math. Soc. 331 (1992) 895–917 MR1156298

Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607-7045, USA

agol@math.uic.edu, culler@math.uic.edu, shalen@math.uic.edu

Received: 14 July 2006