Controlling parasympathetic regulation of heart rate: a gatekeeper role for RGS proteins in the sinoatrial node

Alexandra S. Mighiu and Scott P. Heximer*

Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, ON, Canada

Neurotransmitters released from sympathetic and parasympathetic nerve terminals in the sinoatrial node (SAN) exert their effects via G-protein-coupled receptors. Integration of these different G-protein signals within pacemaker cells of the SAN is critical for proper regulation of heart rate and function. For example, excessive parasympathetic signaling can be associated with sinus node dysfunction (SND) and supraventricular arrhythmias. Our previous work has shown that one member of the regulator of G-protein signaling (RGS) protein family, RGS4, is highly and selectively expressed in pacemaker cells of the SAN. Consistent with its role as an inhibitor of parasympathetic signaling, RGS4-knockout mice have reduced basal heart rates and enhanced negative chronotropic responses to parasympathetic agonists. Moreover, RGS4 appears to be an important part of SA nodal myocyte signaling pathways that mediate G-protein-coupled inwardly rectifying potassium channel (GIRK) channel activation/deactivation and desensitization. Since RGS4 acts immediately downstream of M2 muscarinic receptors, it is tempting to speculate that RGS4 functions as a master regulator of parasympathetic signaling upstream of GIRKs, HCNs, and L-type Ca2+ channels in the SAN. Thus, loss of RGS4 function may lead to increased susceptibility to conditions associated with increased parasympathetic signaling, including bradyarrhythmia, SND, and atrial fibrillation.

Keywords: RGS protein, sinoatrial node, parasympathetic signaling, GIRK channels, bradyarrhythmia

SINUS NODE DYSFUNCTION

Sinus node dysfunction (SND) can be associated with bradycardia/bradyarrhythmias, sinus node exit block, and increased susceptibility to atrial fibrillation (Benditt et al., 1995; Mangrum and DiMarco, 2000; Dobrzynski et al., 2007). This condition, also known as sick sinus syndrome, occurs commonly within the aging adult population, but is particularly prevalent in patients with heart disease, on anti-arrhythmic therapy, with high vagal tone, or after surgical correction of congenital heart defects. Genetic predisposition for SND has also been proposed in patients and that have this condition in conjunction with abnormal ion channel and GTPase activating protein (GAP) junction function (Bezzina et al., 1999; Benson et al., 2003; Groenewegen et al., 2003; Schulze-Bahr et al., 2003; Veldkamp et al., 2003; Ueda et al., 2004; Mohler and Bennett, 2005; Smits et al., 2005; Milanese et al., 2006). Thus in order to treat and prevent SND, it may be important to understand the cast of molecules that coordinate the balance between autonomic signaling pathways within pacemaker cells of the sinoatrial node (SAN).

G-PROTEIN-COUPLED RECEPTORS MEDIATED AUTONOMIC CONTROL OF HEART RATE IN THE SAN

Heart rate regulation by the autonomic nervous system occurs at the level of specialized autorhythmic (pacemaker) cells in the SAN. Sympathetic neurotransmitters work via Gaαi/o-coupled β-adrenergic receptors (β-ARs) to increase adenylyl cyclase activity, intracellular cAMP concentration, and protein kinase A (PKA) activity. As a result cAMP-regulated effectors such as hyperpolarization-activated cyclic nucleotide-gated cation (HCN), delayed rectifier, and voltage-gated Ca2+ channels are enlisted by sympathetic activity to increase pacemaker cell firing rate (Irisawa et al., 1993; DiFrancesco, 2006). By contrast, vagal parasympathetic activity decreases HR via Gaαi/o-coupled cholinergic M2 muscarinic receptors (M2 muscarinic receptor). Several effects, mediated by both Gaαi/o and Gβγ subunits contribute to this reduction in HR. Gβγ heterodimers directly activate G-protein-coupled inward rectifying potassium (GIRK) channels, resulting in membrane hyperpolarization. Gaαi/o can also inhibit adenylyl cyclase activity to reduce intracellular cAMP levels and PKA activity, thus leading to decreased depolarizing currents carried by HCN and L-type Ca2+ channels (DiFrancesco, 1993; Kubo et al., 1993; Fischmeister et al., 2006). Since dysregulation of parasympathetic activity occurs in SND and selected cardiac arrhythmias (Dobrzynski et al., 2007), it is of clinical interest to identify key molecular regulators of parasympathetic signaling. In particular, our laboratory studies molecules that regulate the activity of G-protein signaling downstream of parasympathetic activation inside SAN cells.

RGS PROTEINS ATTENUATE G-PROTEIN SIGNALING IN THE SAN

The activation of the Gaαi/o-coupled M2 muscarinic receptor by cholinergic (parasympathetic) activity produces a cascade of physiologic changes within the cell. The timing and duration of these
changes are mainly dependent on the lifetime of the activated (GTP-bound) $\alpha_{i/o}$ subunit. In the basal state, the quiescent (GDP-bound) $\alpha_{i/o}$ subunit is complexed with the $\beta\gamma$ and coupled to the intracellular surface of the receptor. Specifically, M2 muscarinic receptor activation results in the exchange of GTP for GDP on the α subunit and the dissociation of GTP-bound G from the $\beta\gamma$ heterodimer. This condition marks the activated (“ON”) state (Clapham and Neer, 1997; Hamm, 1998) of parasympathetic signaling during which time the α and $\beta\gamma$ subunits are free to engage downstream parasympathetic effector molecules such as GIRK channels and adenylyl cyclase. Effector signaling is terminated following Gα-catalyzed hydrolysis of GTP and reformation of the quiescent (“OFF”) receptor-coupled complex. Importantly, the intrinsic rate of GTP hydrolysis by Gα subunits (the rate limiting step for signal termination) is very slow. Therefore, to produce the rapid ON-OFF kinetic changes needed to modulate autonomic activity in vivo cells require additional factors that increase the rate of GTP hydrolysis of the Gα subunit. This class of molecules is called GAPs. Regulator of G-protein signaling (RGS) proteins (Hepler, 1999; Ross and Wilkie, 2000) are a mammalian family of > 35 GAPs for Gα subunits (Berman et al., 1996; Watson et al., 1996). By increasing the rates of GTP hydrolysis by up to 2000-fold RGS proteins are among the most potent inhibitors of G-protein signaling identified to date.

Endogenous RGS proteins have recently been shown to play an important role in the regulation of muscarinic receptor-mediated signaling. In embryonic stem cell-derived cardiomyocytes, expression of RGS-insensitive α_{i2} and α_{o} subunits enhanced sensitivity of these cells to the M2 muscarinic and adenosine receptor agonists (Fu et al., 2006). Similar observations were also shown in the intact animal and isolated perfused hearts (Fu et al., 2006, 2007). Despite M2R and adenosine receptor (A1R) both mediating negative chronotropic effects, it appears that these receptors may do so through distinct intracellular mechanisms. Specifically, the M2R appears to signal via α_{i2} and α_{o}, whereas the adenosine receptor appears to signal predominantly via α_{o}. It may not be surprising, therefore, that the contribution of GIRK currents to M2R- versus A1R-mediated heart rate slowing effects appears to be different. Tertiapin-Q abolished the increased responsiveness of RGS-resistant α_{i2} tissues to carbachol suggesting the importance of GIRK activity as a primary pathway mediating the M2R chronotropic response and establishing a role for endogenous RGS proteins as inhibitors of this pathway. By contrast, the enhanced sensitivity of RGS-resistant α_{o} cells to A1R agonist is unaffected by tertiapin-Q, suggesting minimal contribution of GIRK activation to the heart rate slowing effects of A1R agonists. Since, as outlined above, A1R preferentially couple to α_{o}, it has been suggested that A1R are likely to use a GIRK-independent pathway (e.g., $I_{Ca,L}$ or I_{T}) to mediate its bradyecardic effects. These exciting observations prompted the search for RGS proteins that may selectively regulate the activity of α_{i2} and α_{o} or their associated receptors in pacemaker cells of the SAN. A number of different RGS proteins have been identified in the atrial myocardium (Kardestuncer et al., 1998; Doupnik et al., 2001); however, the specific RGS protein responsible for this effect was not characterized in these studies.
as a master regulator of parasympathetic signaling downstream of the M2 muscarinic receptor. As summarized by the comparison of M2 muscarinic receptor-dependent signaling events in Figures 1A,B, the loss of RGS4 function in pacemaker cells of the SAN may be expected to result in increased GIRK channel currents, decreased adenylyl cyclase activity/cAMP production, leading to decreased activation of HCN4, protein kinase A, and L-type calcium channel currents. As discussed above, loss of RGS4 is known to increase M2 muscarinic receptor-dependent GIRK currents, however the question of whether HCN4 and L-type calcium channel currents are affected in any meaningful way remains to be determined.

More recently, RGS6 was also shown to be an important regulator of M2R-dependent signaling in the SAN. Specifically, two groups working independently showed that RGS6-deficient mice, displayed enhanced bradycardic responses to carbachol in intact animals, isolated hearts, and cultured SAN cells (Posokhova et al., 2010; Yang et al., 2010). As was the case for RGS4 deficiency, the phenotypes associated with loss of RGS6 appeared consistent with its ability to regulate GIRK channel activity. It remains to be determined whether RGS6 will also be capable of regulating GIRK channel independent effectors of negative chronotropy.

HEART-INTRINSIC REGULATION OF VAGAL SIGNALING – A POSSIBLE ROLE FOR RGS PROTEINS?

It is interesting to consider whether there may exist heart-intrinsic mechanisms that would allow for rapid changes in RGS protein activity, and thus rapid changes in heart rate and cardiac output in response to certain physiologic stimuli. One stimulus that is believed to regulate heart rate at the level of the SAN is atrial stretch. This pathway has been proposed to be one of the intrinsic mechanisms whereby increased venous return may result in rapid upregulation of cardiac output via alterations of the autonomic signaling balance. Specifically, small increases in atrial pressure have been shown to reduce the heart’s response to vagal stimulation resulting in rapid heart rate increase (Bolter and Wilson, 1999). Of potential relevance to this article is the observation that the increased heart rate effect is apparently mediated by rapid inhibition of GIRK channel activity in response to atrial stretch. Indeed, it was shown that Tertiapin-Q could eliminate the mechanosensitive component of muscarinic control in rat atria (Han et al., 2010). Although the cellular mechanisms by which stretch is sensed and exerts its effects on the SAN are not known it is tempting to speculate that the rapid regulation of GIRK channels in response to changing atrial pressures may be partly explained by changes in RGS protein activity. While, there are wide number of pathways that have been proposed to regulate the function of RGS4, an intriguing possibility for linking mechanosensation to increased RGS4 function is the Ca2+/Calmodulin pathway. Mechanical stretch has been associated with increased intracellular calcium levels in atrial tissues, and rapid activation of RGS4 activity was shown to be associated with Ca2+/calmodulin binding to an allosteric site on the RGS4 protein (Popov et al., 2000; Ishii et al., 2001, 2002). Thus, atrial stretch might be expected to increase RGS4 activity, resulting in decreased parasympathetic signals and heart rate increase. It remains to be determined whether other RGS proteins important for regulation of GIRKs in the SAN (i.e., RGS6) may also be regulated by mechanosensitive pathways.

INCREASED I\(_{K_{Ach}}\) MAY BE PRO-ARRHYTHMOGENIC – DOES LOSS OF RGS PROTEIN EXPRESSION RENDER HEARTS MORE SUSCEPTIBLE?

In animal models of AF, stimulation with the muscarinic agonist carbachol can facilitate the induction of AF (Wakimoto et al., 2001), whereas inhibition of G\(_{i/o}\) signaling can reduce susceptibility to vagal-mediated AF (Aastrup et al., 2009, 2011). In the clinic, Coumel (1996) have described cases of AF where vagal activity preceded the onset of atrial arrhythmias (Herweg et al., 1998). Several observations suggest that activation of I\(_{K_{Ach}}\) may be a key component of parasympathetic pathway-mediated initiation and maintenance of AF. Firstly, studies show that reducing I\(_{K_{Ach}}\) using both genetic disruption (Kovoor et al., 2001) and pharmacological inhibition (Hashimoto et al., 2006) of GIRK currents confers resistance to AF, while increasing I\(_{K_{Ach}}\) facilitates induction of AF (Kovoor et al., 2001). Furthermore, Voigt et al. (2008) demonstrated the presence of agonist-independent I\(_{K_{Ach}}\) activity in a canine model of chronic AF. Importantly, evidence from human studies confirms the presence of constitutively active (agonist-independent) I\(_{K_{Ach}}\) in patients with persistent AF.
Aistrup, G. L., Cokić, L. Ng, J., Gor-
don, D., Koduri, H., Browne, S.,
Arapı, D., Segon, Y., Goldstein, J.,
Angulo, A., Wasserman, J. A., Gold-
berger, J. J., Kadish, A. H., and Arora,
R. (2011). Targeted nonviral gene-
based inhibition of Gαs(αi)-mediated va-
gal signaling in the pos-
terior left atrium decreases vagal-
induced atrial fibrillation. Heart
Rhythm 8, 1722–1729.

Aistrup, G. L., Villuendas, R., Ng, J.,
Gilchrist, A., Lynch, T. W., Gor-
don, D., Cokić, L, Mottl, S., Zhou,
R., Dean, D. A., Wasserman, J. A.,
Goldberger, J. J., Kadish, A. H., and
Arora, R. (2009). Targeted G-protein
inhibition as a novel approach
to decrease vagal atrial fibrilla-
tion by selective parasympathetic
atenuation. Circ. Res. 83, 481–492.

REFERENCES

Berman, D. M., Wilkie, T. M., and
Gillum, A. G. (1996). GaIP and
RGaP are GTαs-activating pro-
teins for the Gi subfamily of G
protein alpha subunits. Cell 86,
445–452.

Bezzina, C., Veldkamp, M. W., van Denv
Berg, M. P., Postma, A. V., Rook, M.
B., Viersma, J. W., van Langen, I. M.,
Tan-Sindirunata, G., Bink-Bödelkens,
M. T., van Der Hout, A. H., Mann-
ens, M. M., and Wilde, A. A. (1999). A single Na(+) channel mutation
carries both long-QT and Brugada
syndromes. Circ. Res. 85, 1206–1213.

Bohrer, C. P., and Wilson, S. J. (1999).
Influence of right atrial pressure on the cardiac pacemaker response to
vagal stimulation. Am. J. Physiol.
276, R1112–R1117.

Chou, C. C., Nguyen, B. L., Tan, A.
Y., Chang, P. C., Lee, H. L., Lin, F.
C., Yeh, S. J., Fishbein, M. C.,
Lin, S. F., Wu, D., Wen, M. S., and
Chen, P. S. (2008). Intracellular
calcium dynamics and acetylcholine-
induced triggered activity in the pul-
monary veins of dogs with pacing-
induced heart failure. Heart Rhythm
5, 1170–1177.

Chowdari, K. V., Mirnics, K., Semwal,
P., Wood, J., Lawrence, E., Bhatai, T.,
Deshpande, S. N., Thelma, B. K., Fer-
rell, R. E., Middleton, F. A., Devlin,
B., Levitt, P., Lewis, D. A., and
Nimnual, V. L. (2002). Association
and linkage analyses of RGS4 poly-
morphisms in schizophrenia. Hum.
Mol. Genet. 11, 1373–1380.

Cifelli, C., Rose, R. A., Zhang, H.,
Voigtlaender-Bolz, J., Bolz, S. S.,
Backs, P. H., and Heximer, S. P.
(2008). RGS4 regulates parasympa-
thetic signaling and heart rate control
in the sinoatrial node. Circ. Res.
103, 527–535.

Clapham, D. E., and Neer, E. J. (1997). G
protein beta gamma subunits. Annu.
Rev. Pharmacol. Toxicol. 37, 167–203.

Coulom, P. (1996). Autonomic influ-
ence in atrial tachyarrhythmias. J. Cardiovasc. Electrophysiol. 7,
999–1007.

DiFrancesco, D. (1993). Pacemaker
mechanisms in cardiac tissue. Annu.
Rev. Physiol. 55, 453–472.

DiFrancesco, D. (2006). Funny channels
in the control of cardiac rhythm and
mode of action of selective blockers.
Pharmacol. Rev. 53, 399–406.

Dobrev, D., Friedrich, A., Voigt, N., Jost,
N., Wettwer, E., Christ, T., Knaut,
M., and Ravens, U. (2005). The G
protein-gated potassium current
I(K,ACh) is constitutively active in
patients with chronic atrial fibrilla-
tion. Circulation 112, 3979–3976.

Dobrev, D., Wettwer, E., Himmel, H. M.,
Kortner, A., Kuhlisch, E., Schuler, S.,
Siffert, W., and Ravens, U. (2000). G-
Protein beta(3)-subunit 825T allele
is associated with enhanced human atrial
arrhythmias. Circulation 102, 692–697.

Dobrzynski, H., Boyett, M. R., and
Anderson, R. H. (2007). New
insights into pacemaker activity:
promoting understanding of sick
sinus syndrome. Circulation 115,
1921–1932.

Doupnik, C. A., Davidson, N., Lester,
H. A., and Kofuji, P. (1997). RGS
proteins reconstitute the rapid gap-
kinezick kinetics of betagamma-
activated inwardly rectifying K+ chan-
nels. Proc. Natl. Acad. Sci. U.S.A. 94,
10461–10466.

Doupnik, C. A., Jaen, C., and Zhang,
Q. (2004). Measuring the modu-
atory effects of RGS proteins on GIRK channels. Meth. Enzymol. 389,
131–154.

Doupnik, C. A., Xu, T., and Shimanan,
J. M. (2001). Profile of RGS expres-
sion in single rat atrial myocytes.
Biochim. Biophys. Acta 1522, 97–107.

Druy, K. M., Blumer, K. J., Kang, V. H.,
and Kehrl, J. H. (1996). Inhibition of
G-protein-mediated MAP kinase
activation by a new mammalian gene
family. Nature 379, 742–746.

Fischmeister, R., Castro, L. R., Bi-
Gerges, A., Rochais, E., Jurevicus,
J., Leroy, J., and Vandecasteele, G.
(2006). Compartimentation of cyclic
nucleotide signaling in the heart: the
role of cyclic nucleotide phosphodi-
erases. Circ. Res. 99, 816–828.

Fu, Y., Huang, X., Piao, L., Lopatin,
A. N., and Nesibig, R. R. (2007).
Endogenous RGS proteins modu-
late SA and AV nodal functions in
isolated heart: implications for sick
sinus syndrome and AV block. Am.
J. Physiol. Heart Cir. Physiol. 292,
H2532–H2539.

Fu, Y., Huang, X., Zhong, H., Mortensen,
R. M., D’Alecy, L. G., and Neubig, R.
(2006). Endogenous RGS proteins
and Galpa subtypes differentially
control muscarinic and adenosine-
mediated chronotropic effects. Circ.
Res. 98, 659–666.
Mighiu and Heximer RGS proteins control pacemaker function

Groenewegen, W. A., Firozui, M., Bezzi, C. R., Vlieks, S., Van Langen, J. M., Sandkuilj, L., Smits, J. F., Hulsbeek, M., Roed, M. B., Jongma, H. J., and Wilde, A. A. (2003). A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ. Res. 92, 14–22.

Hamm, H. E. (1998). The many faces of G protein signaling. J. Biol. Chem. 273, 669–672.

Han, S., Wilson, S. J., and Bolter, C. P. (2010). Tertiapin-Q removes a mecanosensitive component of muscarinic control of the sinoatrial pacemaker in the rat. Clin. Exp. Pharmacol. Physiol. 37, 900–904.

Hashimoto, N., Yamashita, T., and Tsuruzoe, N. (2006). Tertiapin, a selective RGS4 & RGS10 activator of RGS modulation. Precoupling and receptor-Kir3 channel signaling associate with G protein-coupled receptor signaling in membrane depolarization regulates G protein cycle via RGS proteins in the heart. Circ. Res. 92, 976–983.

Voigt, N., Maguy, A., Yeh, Y. H., Qi, X., Ravens, U., Dobrev, D., and Nattel, S. (2008). Changes in IKACH gating kinetics in a cardiac K+ channel activity with atrial tachycardia remodelling in canine atrial cardiomyocytes. Cardiovasc. Res. 77, 35–43.

Wakimoto, H., Maguire, C. T., Kvooor, P., Hammer, P. E., Gehrmann, J., Triedman, J. K., and Berul, C. I. (2001). Induction of atrial tachycardia and fibrillation in the mouse heart. Cardiovasc. Res. 50, 463–473.

Watson, N., Linder, M. E., Druey, K. M., Kehrl, J. H., and Blumer, K. J. (1996). RGS family members, R7 and R5, negatively regulate heterotrimeric G protein alpha-subunits. Nature 383, 172–175.

Xie, Y., Wolf, D. W., Wei, T., Wang, B., Deng, C., Kiriu, J. K., Jiang, H., Qin, J., Abel, P. W., and Tiu, Y. (2009). Breast cancer migration and invasion depend on proteasome degradation of regulator of G protein signaling 4. Cancer Res. 69, 5743–5751.

Yang, J., Huang, L., Maity, B., Gao, Z., Lorca, R. A., Gudmundsson, H., Li, J., Stewart, A., Swaminathan, P. D., Itieawuich, S. R., Shepherd, A., Shy, J., Tamirisa, P., Kvooor, A., Blumer, K. J., Kelly, D. P., and Muslin, A. J. (1999). RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J. Clin. Invest. 104, 567–576.
Chen, C. K., Kutschke, W., Mohler, P. J., Mohapatra, D. P., Anderson, M. E., and Fisher, R. A. (2010). RGS6, a modulator of parasympathetic activation in heart. Circ. Res. 107, 1345–1349.

Zhang, H., Gu, S., Al-Sabeq, B., Wang, S., He, J., Tam, A., Cifelli, C., Mathalone, N., Tiriqari, S., Boyd, S., and Heximer, S. P. (2012). Origin-specific epigenetic program correlates with vascular bed-specific differences in Rgs5 expression. FASEB J. 26, 181–191.

Zhang, Q., Dickson, A., and Doupnik, C. A. (2004). Gbetagamma-activated inwardly rectifying K(+) (GIRK) channel activation kinetics via Galphat and Galphao-coupled receptors are determined by Galphaspecific interdomain interactions that affect GDP release rates. J. Biol. Chem. 279, 29787–29796.

Zhang, Q., Pacheco, M. A., and Doupnik, C. A. (2002). Gating properties of GIRK channels activated by Galphat(o) - and Galphat(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation. J. Physiol. (Lond.) 545, 355–373.

Zhang, S., Watson, N., Zahner, J., Rottman, J. N., Blumer, K. J., and Muslin, A. J. (1998). RGS3 and RGS4 are GTPase activating proteins in the heart. J. Mol. Cell. Cardiol. 30, 269–276.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 February 2012; paper pending published: 04 March 2012; accepted: 23 May 2012; published online: 13 June 2012.

Citation: Mighiu AS and Heximer SP (2012) Controlling parasympathetic regulation of heart rate: a gatekeeper role for RGS proteins in the sinoatrial node. Front. Physio. 3:204. doi: 10.3389/fphys.2012.00204

This article was submitted to Frontiers in Cardiac Electrophysiology, a specialty of Frontiers in Physiology. Copyright © 2012 Mighiu and Heximer. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.