Roles of Salmonella multidrug efflux pumps in tigecycline resistance

Tsukasa Horiyama1–3†, Eiji Nikaido1–3†, Akihito Yamaguchi2,3 and Kunihiko Nishino1,4*

1Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; 2Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; 3Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; 4PRESTO, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyodaku, Tokyo 102-8666, Japan

*Corresponding author. Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. Tel: +81-6-6879-8546; Fax: +81-6-6879-8549; E-mail: nishino@sanken.osaka-u.ac.jp
†The first two authors contributed equally to this study.

Received 20 July 2010; returned 4 August 2010; revised 30 September 2010; accepted 13 October 2010

Objectives: Salmonella enterica strains exhibiting decreased susceptibility to tigecycline have been reported. In this study, we sought to elucidate the roles of Salmonella multidrug efflux pumps and AcrAB regulators in tigecycline resistance.

Methods: We examined the involvement of multidrug efflux pumps and AcrAB regulators in resistance to tigecycline and other glycylcyclines by determining the MICs of the drugs for Salmonella multidrug efflux pump and AcrAB regulator-overproducing or -deleted strains. Strains of S. enterica serovar Typhimurium derived from the wild-type strain ATCC 14028s were used in this study.

Results: A plasmid carrying the tet gene conferred resistance to 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline (‘DMG-DMDOT’) minocycline, doxycycline and tetracycline, but does not affect tigecycline resistance. Deletion of acrB resulted in strains with significantly increased susceptibility to tigecycline and other glycylcyclines. Plasmids carrying the acrB or acrEF gene restored increased susceptibility of the acrB-deleted mutant to all tested compounds. Deletion of ramA, a positive regulator of acrB, slightly increased susceptibility to tigecycline. Overexpression of ramA and deletion of ramR, a repressor of ramA, resulted in decreased susceptibility to all tested compounds. This phenotype, modulated by ramA or ramR, was not observed in the acrB-deleted background.

Conclusions: AcrAB and AcrEF confer resistance to tigecycline and tetracycline derivatives in Salmonella. RamA and RamR are also involved in resistance to tigecycline in an AcrAB-dependent manner.

Keywords: glycylcyclines, multidrug resistance, resistance–nodulation–cell division family

Introduction

Salmonella causes a variety of diseases in humans, ranging from gastroenteritis to bacteraemia and typhoid fever.1 In the 1990s, the prevalence of multidrug-resistant Salmonella enterica increased dramatically in the UK, USA and Canada.2–5 Many other countries have also documented outbreaks associated with drug-resistant Salmonella in poultry, beef and pork.6–10 Emerging resistance in Salmonella has been observed in both humans and animals, and, thus, is a potentially serious public health problem.11,12 Drug resistance in bacteria is often associated with multidrug efflux pumps that decrease cellular drug accumulation.13,14 Drug resistance in Salmonella spp. is of grave concern, more so in quinolone-resistant and extended-spectrum β-lactamase-producing isolates that cause complicated infections. This has necessitated the search for newer classes of antimicrobials, such as glycylcyclines. Tigecycline (GAR-936), 9-((butylglycylamido)-minocycline, is a novel broad-spectrum antibiotic that is classified as a glycylcycline and is a derivative of minocycline.15 Modification at the 9 position enables tigecycline to overcome the two major mechanisms responsible for tetracycline resistance: tetracycline-specific efflux pump acquisition; and ribosomal protection. Tigecycline is a poor substrate for tetracycline-specific efflux pumps; it attaches to ribosomes that have been modified by the Tet(M) protein.15 It has strong antibacterial activity against many Gram-positive and Gram-negative organisms and lacks cross-resistance to other compounds. It is effective against multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum β-lactamase-expressing Enterobacteriaceae and penicillin-resistant Streptococcus pneumoniae.16–18

© The Author 2010. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org

Downloaded from https://academic.oup.com/jac/article-abstract/66/1/105/726752 by guest on 30 July 2018
However, some bacterial strains are less susceptible to tigecycline. Tigecycline has been reported to have poor activity against *Pseudomonas aeruginosa*, in which there is active efflux by MexXY–OprM, a member of the resistance–nodulation–cell division (RND) family of efflux pumps. In *Enterobacter cloacae*, *Escherichia coli*, Morganella morgani and *Klebsiella pneumoniae*, it has also been reported that resistance to tigecycline results from overproduction of AcrAB. In *E. cloacae* and *K. pneumoniae*, it was reported that tigecycline resistance resulting from overproduction of AcrAB may be caused by overexpression of its positive regulator RamA.

S. enterica strains exhibiting decreased susceptibility to tigecycline have recently emerged. A recent study has shown that *Salmonella* has at least nine multidrug efflux pumps. These pumps are classified into four families: RND; major facilitator; multidrug and toxic compound extrusion; and ATP-binding cassette. Among these pumps, AcrAB is effective in generating multidrug resistance and has wide substrate specificity. AcrAB is an RND family of efflux pumps. In *Pseudomonas aeruginosa*, multidrug efflux pumps and AcrAB regulator-mediated multidrug resistance in *Salmonella* acrAB have recently emerged. A recent study has shown that RamA is a master regulator of *Salmonella* acrAB. RamR is a local repressor of ramA, and RamA and RamR are involved in AcrAB-mediated multidrug resistance in *Salmonella*. In this study, we investigated the roles of *Salmonella* multidrug efflux pumps in resistance to tigecycline and other glyyclcyclines using *Salmonella* multidrug efflux pumps and AcrAB regulator-overproducing or -deleted strains.

Materials and methods

Bacterial strains, plasmids and growth conditions

Bacterial strains and plasmids used in this study are listed in Table 1. The strains of *S. enterica* serovar Typhimurium used in this study are derived from the wild-type strain ATCC 14028s. Bacterial strains were grown at 37°C in Luria–Bertani (LB) broth. Ampicillin was added to the growth medium at a final concentration of 100 mg/L for plasmid maintenance.

Construction of gene deletion mutants

To construct the ΔramR mutant, gene disruption was performed as described by Datsenko and Wanner. The following oligonucleotide primers were used for the construction of the mutants: ramR-P1 (TCCA ATCCCAAGCGGAAATTAGCCGATGGGGATCGCGGATGCTGTTAGCGGAC TGCTT); and ramR-P2 (AAGCTCTGAAAGCGCAACCCGATGATAGCG CAATCGCGTATCATGATATCTCCTTATG). The chloramphenicol resistance gene cat, flanked by Fip recognition sites, was amplified by PCR using the primers listed above. The resulting PCR products were used to transform the recipient ATCC 14028s strain that harbours plasmid pKD46.

Table 1. Strains and plasmids used in this study

Strain or plasmid	Original name	Characteristics	Source or reference
wild-type	ATCC 14028s	*S. enterica* serovar Typhimurium wild-type	29
wild-type/pBR322-tet	NKS1203	ATCC 14028s/pBR322-tet	this study
ΔacrB	NKS1204	ATCC 14028s/pBR322-Δtet	this study
ΔacrB/pBR322-tet	NKS148	ΔacrB::KmR/pBR322-tet	37
ΔacrB/pBR322-Δtet	NKS442	ΔacrB::KmR/pBR322-Δtet	this study
ΔacrB/Δacrb	NKS1219	ΔacrB::KmR/pUC118	37
ΔacrB/Δacrb/ΔacrEF	NKS576	ΔacrB::KmR/pacrEF	37
ΔacrB/Δacrb/ΔacrD	NKS757	ΔacrB::KmR/pacrD	37
ΔacrB/Δacrb/ΔmdtABC	NKS758	ΔacrB::KmR/pmdtABC	37
ΔacrB/Δacrb/ΔmdsABC	NKS451	ΔacrB::KmR/pmdsABC	37
ΔacrB/Δacrb/ΔemrAB	NKS443	ΔacrB::KmR/emrAB	37
ΔacrB/Δacrb/ΔmdfA	NKS759	ΔacrB::KmR/mdfA	37
ΔacrB/Δacrb/ΔmdtK	NKS447	ΔacrB::KmR/mdtK	37
ΔacrB/Δacrb/ΔmacAB	NKS446	ΔacrB::KmR/macAB	37
ΔtolC	NKS174	ΔtolC/pBR322-tet	37
ΔtolC/Δacrb	NKS1220	ΔtolC/pBR322-Δtet	this study
ΔtolC/Δacrb/ΔtolC	NKS745	ΔtolC/pUC118	37
ΔtolC/Δacrb/ΔtolC	NKS775	ΔtolC/pacrAB	37
ΔtolC/Δacrb/ΔtolC	NKS747	ΔtolC/pacrEF	37
ΔtolC/Δacrb/ΔtolC	NKS748	ΔtolC/pacrD	37
ΔtolC/Δacrb/ΔtolC	NKS749	ΔtolC/pmdtABC	37
ΔtolC/Δacrb/ΔtolC	NKS754	ΔtolC/pmdsABC	37
ΔtolC/Δacrb/ΔtolC	NKS751	ΔtolC/pemrAB	37
ΔtolC/Δacrb/ΔtolC	NKS750	ΔtolC/mdfA	37

Continued
Table 1. Continued

Strain or plasmid	Original name	Characteristics	Source or reference
ΔtolC::pmdtK	NKS753	ΔtolC::pmdtK	37
ΔtolC::pmacAB	NKS752	ΔtolC::pmacAB	37
ΔacrAB	NKS145	ΔacrAB::CmR	25
ΔacrEF	NKS176	ΔacrEF	25
ΔacrD	NKS177	ΔacrD	25
ΔmdtABC	NKS151	ΔmdtABC::CmR	25
ΔmdsABC	NKS168	ΔmdsABC::CmR	25
ΔemrAB	NKS133	ΔemrAB::CmR	25
ΔmdfA	NKS135	ΔmdfA::CmR	25
ΔmdtK	NKS137	ΔmdtK::CmR	25
ΔmacAB	NKS136	ΔmacAB::CmR	25
ΔacrAB	NKS175	ΔacrAB::CmR	25
ΔacrAB acrEF	NKS181	ΔacrABΔacrEF	25
ΔacrAB acrEF acrD	NKS183	ΔacrABΔacrEFΔacrD	25
ΔacrAB acrEF acrD mdtABC	NKS185	ΔacrABΔacrEFΔacrDΔmdtABC	25
ΔacrAB acrEF acrD mdtABC mdsABC	NKS186	ΔacrABΔacrEFΔacrDΔmdtABCΔmdsABC::CmR	25
ΔacrAB acrEF acrD mdtABC mdsABC emrAB	NKS188	ΔacrABΔacrEFΔacrDΔmdtABCΔmdsABCΔemrAB::CmR	25
ΔacrAB acrEF acrD mdtABC mdsABC emrAB mdfA	NKS190	ΔacrABΔacrEFΔacrDΔmdtABCΔmdsABCΔemrABΔmdfAΔmdfK::KmR	25
ΔacrAB acrEF acrD mdtABC mdsABC emrAB mdfA mdtK	NKS195	ΔacrABΔacrEFΔacrDΔmdtABCΔmdsABCΔemrABΔmdfAΔmdfK::KmR	25
ΔacrAB acrEF acrD mdtABC mdsABC emrAB mdfA mdtK macAB	NKS196	ΔacrABΔacrEFΔacrDΔmdtABCΔmdsABCΔemrABΔmdfAΔmdfK::KmRΔmacAB::CmR	25
ΔmarA	NES15	ΔmarA::CmR	27
Δrob	NES23	Δrob::CmR	27
ΔsoxS	NES21	ΔsoxS::CmR	27
ΔsdiA	NES34	ΔsdiA::CmR	27
ΔramA	NES57	ΔramA::CmR	27
ΔramR	NKS910	ΔramR::CmR	27
ΔacrB ramR	NKS1211	ΔacrB::KmRΔramA::CmR	25
wild-type/vector (pMAL)	NES79	ATCC 14028s/pMALc2X	this study
wild-type/pramA	NES80	ATCC 14028s/pramA	this study
ΔacrB/vector (pMAL)	NKS1209	ΔacrB::KmR/pMALc2X	this study
ΔacrB/pramA	NKS1210	ΔacrB::KmR/pramA	this study

Plasmids

Plasmid	Source or reference
pKD3	rep_resize ApR FRT CmR FRT Takara Bio, Inc.
pBR322-tet	CoE1-type plasmid carrying tet gene Takara Bio, Inc.
pBR322-Δtet	pBR322, but tet gene disrupted this study
pUC118	rep_UC118 ApR Takara Bio, Inc.
pacrAB	acrAB genes cloned into pUC118, ApR
pacrEF	acrEF genes cloned into pUC118, ApR
pacrD	acrD genes cloned into pUC118, ApR
pmdtABC	mdtABC genes cloned into pUC118, ApR
pmdsABC	mdsABC genes cloned into pUC118, ApR
pemrAB	emrAB genes cloned into pUC118, ApR
pmdfA	mdfA genes cloned into pUC118, ApR
pmdtK	mdtK genes cloned into pUC118, ApR
pmacAB	macAB genes cloned into pUC118, ApR
pMALc2X	vector, ApR New England Biolabs
pramA	ramA-His6 gene cloned into pMALc2X, ApR

Downloaded from https://academic.oup.com/jac/article-abstract/66/1/105/726752 by guest on 30 July 2018
which expresses Red recombinase. The chromosomal structure of the mutated loci was verified by PCR.30

Chemicals

Tigecycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline (DMG-DMDOT), minocycline, doxycycline and tetracycline were obtained from Wyeth-Lederle Japan (Tokyo, Japan).

Determination of MICs of toxic compounds

The MICs of various agents were determined on LB agar plates containing tigecycline, DMG-DMDOT, minocycline, doxycycline and tetracycline at various concentrations. Agar plates were prepared by the 2-fold agar dilution technique as described previously.31 To determine the MICs, bacteria were grown in LB broth at 37°C overnight, diluted into the same medium and then tested at a final inoculum size of 10^5 cfu/μL using a multipoint inoculator (Sakuma Seisakusyo, Tokyo, Japan) after incubation at 37°C for 20 h. The MIC was the lowest concentration of the compound that inhibited cell growth.

Results and discussion

Involvement of the tet gene in tigecycline resistance

Previous studies suggest that the tetracycline resistance determinant gene tet does not affect susceptibility to tigecycline in Enterobacteriaceae, S. aureus and S. pneumoniae isolates.32,33 In order to confirm whether tet is involved in resistance to

| Table 2. Susceptibilities of Salmonella multidrug efflux pump and AcrAB regulator-overproducing or -deleted strains to tigecycline and other glyyclcyclines

Strain	TGC	DMG-DMDOT	MIN	DOX	TET
Wild-type	1	2	4	4	4
Wild-type/pBR322-tet	1	16	16	64	256
ΔacrB	0.25	0.5	0.25	0.5	1
ΔacrB/pBR322-tet	0.25	4	0.5	4	32
ΔacrB/Δtet	0.25	0.5	0.25	0.5	1
ΔacrB/vector	0.25	0.5	0.25	0.5	1
ΔacrB/pacrAB	2	2	4	4	4
ΔacrB/pacrEF	2	2	4	2	2
ΔacrB/pmdfA	0.25	0.5	0.25	0.5	1
ΔtolC	0.25	0.5	0.25	0.5	1
ΔtolC/pBR322-tet	0.25	4	0.5	4	32
ΔtolC/Δtet	0.25	0.5	0.25	0.5	1
ΔtolC/Vector	0.25	0.5	0.25	0.5	1
ΔtolC/pacrAB	0.25	0.5	0.25	0.5	1
ΔtolC/pacrEF	0.25	0.5	0.25	0.5	1
ΔtolC/pmdfA	0.25	0.5	0.25	0.5	1
ΔacrAB	0.25	0.5	0.25	0.5	1
ΔacrEF	1	2	4	4	4
ΔacrAB acrEF	0.25	0.5	0.25	0.5	1
ΔacrAB acrEF acrD mdtABC mdsABC emrAB mdfA mdtK macAB	0.25	0.5	0.25	0.5	1
ΔramA	0.5	2	4	4	4
ΔramR	4	4	16	16	8
ΔacrB ramR	0.25	0.5	0.25	0.5	1
Wild-type/vector(pMAL)	1	2	4	4	4
Wild-type/promA	4	4	16	16	8
ΔacrB/vector(pMAL)	0.25	0.5	0.25	0.5	1
ΔacrB/promA	0.25	0.5	0.25	0.5	1

TGC, tigecycline; MIN, minocycline; DOX, doxycycline; TET, tetracycline. Values in bold type are larger than those for parental control strains. MICs of all tested compounds for ΔacrB harbouring pacrD, pmdtABC, pmdsABC, pemrAB, pemrK or pmacAB were the same as those for ΔacrB/vector. MICs of all tested compounds for ΔtolC harbouring pacrD, pmdtABC, pmdsABC, pemrAB, pemrK or pmacAB were the same as those for ΔtolC/vector. MICs of all tested compounds for ΔacrD, ΔmdtABC, ΔmdsABC, ΔemrAB, ΔmdfA, ΔmdtK and ΔmacAB were the same as those for wild-type. MICs of all tested compounds for ΔacrAB acrEF acrD mdtABC mdsABC emrAB mdfA mdtK were the same as those for ΔacrAB. MICs of all tested compounds for ΔmarA, Δrob, ΔsoxS and ΔsdiA were the same as those for wild-type.
Tigecycline resistance conferred by efflux pumps

Effects of drug efflux pumps on MICs of tigecycline and other glycylcyclines

The plasmids carrying the acrAB, acrEF and mdfA genes conferred resistance to tetracycline in the ΔacrB mutant (Table 2). This is in agreement with the results of a previous study. The plasmids carrying acrAB and acrEF conferred resistance to all tested compounds in the ΔacrB mutant (2- to 16-fold increase in MICs compared with ΔacrB/vector) (Table 2). However, the plasmids carrying acrAB and acrEF did not confer resistance to the ΔtolC mutant. These results indicate that the AcrAB–TolC and AcrEF–TolC systems are involved in resistance to tigecycline and other glycylcyclines. Deletion of the acrA gene resulted in strains with significantly increased (4- to 16-fold compared with wild-type) susceptibility to all tested compounds, although deletion of the acrEF gene did not affect susceptibility to any of the tested compounds (Table 2). These results suggest that AcrAB makes a principal contribution to resistance to tigecycline and other glycylcyclines. Stepwise deletion of the nine efflux genes from the ΔacrB mutant did not affect susceptibility to any of the tested compounds (Table 2). These data support the claim discussed above that AcrAB plays a critical role in resistance to tigecycline and other glycylcyclines.

Involvement of AcrAB regulators in resistance to tigecycline and other glycylcyclines

Deletion of the ramA gene resulted in slightly increased (2-fold decrease in MIC compared with wild-type) susceptibility to tigecycline (Table 2) and overexpression of ramA in the wild-type strain resulted in decreased (2- to 4-fold increase in MICs compared with wild-type) susceptibility to all tested compounds (Table 2). Deletion of the ramR gene resulted in significantly decreased (2- to 4-fold increase in MICs compared with wild-type) susceptibility to all tested compounds. Deletion of other AcrAB regulator genes, such as marA, rob, soxS and sdiA, did not affect susceptibility to any of the tested compounds. These results suggest that RamA and RamR are involved in resistance to tigecycline and other glycylcyclines. To investigate the involvement of the AcrB efflux pump in glycylcycline resistance modulated by RamA and RamR, we determined the MICs for the RamA-overproducing ΔacrB strain and the ΔacrB ramR double mutant. Neither overproduction of RamA nor RamR deletion in the ΔacrB mutant affected susceptibility to the tested compounds. These data indicate that RamA and RamR are involved in resistance to tigecycline and other glycylcyclines in an AcrAB-dependent manner.

Conclusions

Our results suggest that AcrAB and its close homologue AcrEF confer tigecycline resistance in S. enterica serovar Typhimurium ATCC 14028s. Results for the ΔacrB mutant showed that the AcrAB efflux pump made a significant contribution to resistance to all the compounds that were tested, but that deletion of the acrEF gene did not affect susceptibility to these compounds. These findings may be attributable to the difference in expression level between the acrAB and acrEF genes. A recent study has shown that acrEF is repressed by the histone-like nucleoid structuring protein (H-NS), whereas acrAB is not repressed and is constitutively expressed in S. enterica. AcrAB therefore makes a principal contribution to resistance to tigecycline and other glycylcyclines.

Deletion of the ramA gene, one of several regulators of Salmonella multidrug efflux pumps, resulted in strains with slightly increased susceptibility to tigecycline, and overexpression of the ramA gene resulted in resistance to all tested compounds. Deletion of the ramR gene also resulted in significant resistance to all tested compounds. This resistance, modulated by RamA and RamR, was dependent on the presence of the AcrB efflux pump. Our data suggest that RamA and RamR are effective in exhibiting resistance and that marA, rob, soxS and sdiA do not affect susceptibility to tigecycline and other glycylcyclines.

In this study, we elucidated the mechanism of tigecycline resistance in Salmonella. Our results suggest that the AcrAB–TolC and AcrEF–TolC systems play a role in resistance to tigecycline and other glycylcyclines, and that AcrAB makes a major contribution. In addition, overexpression of ramA and inactivation of ramR conferred increased (4-fold) resistance to tigecycline in an AcrAB-dependent manner.

Funding

This study was supported by a research grant from the Asahi Glass Foundation, the Naito Foundation, the Research Foundation for Pharmaceutical Sciences, the Takeda Science Foundation, the Uehara Memorial Foundation, the Waksman Foundation of Japan Inc. and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation. This study was also supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, a Grant-in-Aid from the Japan Society for the Promotion of Science, and PRESTO, Japan Science and Technology Agency, Japan.

Transparency declarations

None to declare.

References

1 Scherer CA, Miller SI. Molecular pathogenesis of Salmonella. In: Groisman EA, ed. Principles of Bacterial Pathogenesis. New York: Academic Press, 2001; 266–333.
2 Glynn MK, Bopp C, Dewitt W et al. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N Engl J Med 1998; 338: 1333–8.
3 Thriftall EJ, Ward LR, Skinner JA et al. Increase in multiple antibiotic resistance in nontyphoidal salmonellas from humans in England and
Wales: a comparison of data for 1994 and 1996. Microb Drug Resist 1997; 3: 263–6.

4 Ng LK, Mulvey MR, Martin I et al. Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob Agents Chemother 1999; 43: 3018–21.

5 Hosek G, Leschinsky DD, Irons S et al. Multidrug-resistant Salmonella serotype Typhimurium–United States, 1996. Morb Mortal Wkly Rep 1997; 46: 308–10.

6 Cody SH, Abbott SL, Marfin AA et al. Two outbreaks of multidrug-resistant Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in northern California. JAMA 1999; 281: 1805–10.

7 Davies A, O’Neill P, Towers L et al. An outbreak of Salmonella typhimurium DT104 food poisoning associated with eating beef. Commun Dis Rep CDR Rev 1996; 6: R159–62.

8 Grein T, O’Flanagan D, McCarthy T et al. An outbreak of multidrug-resistant Salmonella typhimurium food poisoning at a wedding reception. Ir Med J 1999; 92: 238–41.

9 Molbak K, Baggesen DL, Aarestrup FM et al. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104, N Engl J Med 1999; 341: 1420–5.

10 Villar RG, Macek MD, Simons S et al. Investigation of multidrug-resistant Salmonella serotype Typhimurium DT104 infections linked to raw-milk cheese in Washington State. JAMA 1999; 281: 1811–6.

11 Cloeckaert A, Chaslus-Dauno E. Mechanisms of quinolone resistance in Salmonella. Vet Res 2001; 32: 291–300.

12 Piddock LJ. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 2002; 26: 3–16.

13 Nishino K. Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 1996; 178: 5853–9.

14 Zgurskaya HI, Nishino K. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 2000; 37: 219–25.

15 Petersen PJ, Jacobs NV, Weiss WJ et al. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 1999; 43: 738–44.

16 Peterson LR. A review of tigecycline—the first glycylcycline. Int J Antimicrob Agents 2002; 28 Suppl 4: S215–22.

17 Kelesidis T, Karageorgopoulos DE, Kelesidis I et al. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 2008; 62: 895–904.

18 Stein GE, Craig WA. Tigecycline: a critical analysis. Clin Infect Dis 2006; 43: 518–24.

19 Dean CR, Visalli MA, Projan SJ et al. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PA01. Antimicrob Agents Chemother 2003; 47: 972–8.

20 Keeney D, Ruzin A, Bradford PA, RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 2007; 13: 1–6.

21 Keeney D, Ruzin A, McAleese F et al. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 2008; 61: 46–53.

22 Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 2005; 49: 791–3.

23 Hentschke M, Wolters M, Sobottka I et al. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54: 2720–3.

24 Capoor MR, Nair D, Posti J et al. Minimum inhibitory concentration of carbapenems and tigecycline against Salmonella spp. J Med Microbiol 2009; 58: 337–41.

25 Nishino K, Latifi T, Grais EM. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59: 126–41.

26 Nishino K, Nikaio E, Yamaguchi A. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta 2000; 1794: 834–43.

27 Nikaio E, Yamaguchi A, Nishino K. AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 2008; 283: 24245–53.

28 Abouzeed YM, Baucheron S, Cloeckaert A, et al. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52: 2428–34.

29 Fields PI, Swanson RV, Haidaris CG et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 1986; 83: 5189–93.

30 Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97: 6640–5.

31 Nishino K, Yamada J, Hirakawa H et al. Roles of ToIC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 2003; 47: 3030–3.

32 Fluit AC, Florijn A, Verhoef J et al. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 2005; 49: 1636–8.

33 Hirata T, Saito A, Nishino K et al. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48: 2179–84.

34 McNicholas P, Chopra I, Rothstein DM. Genetic analysis of the tetA(C) gene on plasmid pBR322. J Bacteriol 1992; 174: 7926–33.

35 Tuckman M, Petersen PJ, Projan SJ. Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycyclines. Microb Drug Resist 2000; 6: 277–82.

36 Nishino K, Hayashi-Nishino M, Yamaguchi A. H-NS modulates multidrug resistance of Salmonella enterica serovar Typhimurium by repressing multidrug efflux genes acrEF. Antimicrob Agents Chemother 2009; 53: 3541–3.

37 Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2010; 65: 1372–6.