\textbf{XMM-NEWTON DISCOVERY OF 217 s PULSATIONS IN THE BRIGHTEST PERSISTENT SUPERSOFT X-RAY SOURCE IN M31}

\textbf{SERGEY P. TRUDOLYUBOV} and \textbf{WILLIAM C. PRIEDHORSKY}

Received 2007 August 6; accepted 2007 November 1

\textbf{ABSTRACT}

We report on the discovery of a periodic modulation in the bright supersoft X-ray source XMMU J004252.5+411540 detected in the 2000–2004 XMM-Newton observations of M31. The source exhibits X-ray pulsations with a period \( P \sim 217.7 \) s and a quasi-sinusoidal pulse shape and pulsed fraction \( \sim 7\%–11\% \). We did not detect statistically significant changes in the pulsation period on the timescale of 4 yr. The X-ray spectra of XMMU J004252.5+411540 are extremely soft and can be approximated with an absorbed blackbody of temperature 62–77 eV and a weak power-law tail of photon index \( \Gamma \sim 1.7–3.1 \) in the 0.2–3.0 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 21 mag suggest that it belongs to M31. The estimated bolometric luminosity of the source varies between \( \sim 2 \times 10^{38} \) and \( \sim 8 \times 10^{38} \) ergs s\(^{-1}\) at 760 kpc, depending on the choice of spectral model. The X-ray pulsations and supersoft spectrum of XMMU J004252.5+411540 imply that it is almost certainly an accreting white dwarf, steadily burning hydrogen-rich material on its surface. We interpret X-ray pulsations as a signature of the strong magnetic field of the rotating white dwarf. Assuming that the X-ray source is powered by disk accretion, we estimate its surface field strength to be in the range \( 4 \times 10^{12} \) G < \( B_0 \) < \( 8 \times 10^{13} \) G. XMMU J004252.5+411540 is the second supersoft X-ray source in M31 showing coherent pulsations, after the transient supersoft source XMMU J004319.4+411758 with an 865.5 s pulsation period.

\textit{Subject headings:} galaxies: individual (M31) — novae, cataclysmic variables — X-rays: binaries — X-rays: stars

1. INTRODUCTION

Luminous supersoft X-ray sources (SSSs) (Kahabka & van den Heuvel 2006, and references therein) were first discovered in the Magellanic Clouds with the \textit{Einstein Observatory} and later were established as a major new source class on the basis of the results of \textit{ROSAT} observations. SSSs have very soft spectra typically described by blackbody models with temperatures of \( \sim 20–80 \) eV with no strong hard component and luminosities of \( \sim 10^{35}–10^{36} \) ergs s\(^{-1}\). Although supersoft X-ray sources are not a homogeneous class, the observed properties of the majority of SSSs are consistent with those of accreting white dwarfs (WDs) in binary systems that are steadily or cyclically burning hydrogen-rich matter (van den Heuvel et al. 1992). The required accretion rates in these systems can be as high as \( 10^{-7} \) \( M_\odot \) yr\(^{-1}\). Another subclass of SSSs are single, highly evolved stars on their way to the WD phase. In addition, a number of more luminous (\( L_X \sim 10^{38}–10^{39} \) ergs s\(^{-1}\)) X-ray sources also classified as SSSs have been recently discovered in nearby galaxies, with some of them proposed as intermediate-mass black hole (IMBH) candidates (Fabbiano 2006, and references therein).

The nearby giant spiral M31 presents an excellent opportunity to study various X-ray source populations. Earlier observations of M31 with the \textit{ROSAT} satellite revealed a significant population of supersoft X-ray sources (Supper et al. 1997, 2001; Kahabka 1999; Greiner 2000). The advent of a new generation of X-ray telescopes (\textit{Chandra} and \textit{XMM-Newton}) has allowed us to study SSSs in much greater detail (Osborne et al. 2001; Trudolyubov et al. 2001, 2005; Di Stefano et al. 2004; Greiner et al. 2004; Orio 2006). Most of the SSSs detected in M31 appear to be transient/recurrent or highly variable in X-rays. The observations with \textit{XMM-Newton} and \textit{Chandra} are starting to provide valuable information on the short-term variability of M31 SSSs: timing studies of M31 X-ray sources have led to the discovery of \( 865 \) s pulsations in the transient SSS XMMU J004319.4+411758 (Osborne et al. 2001) and significant short-term variations in other SSSs (Orio 2006; Trudolyubov et al. 2007).

The X-ray source XMMU J004252.5+411540 was discovered in the M31 field by the \textit{Einstein Observatory} (source 69 in Trinchieri & Fabbiano 1991) and detected in subsequent observations with \textit{ROSAT} (source 58 in Primini et al. 1993), \textit{Chandra} (source 2-12 in Kong et al. 2002), and \textit{XMM-Newton} (source 352 in Pietsch et al. 2005). The \textit{Chandra} and \textit{XMM-Newton} spectroscopy of the source revealed a thermal spectrum with an effective temperature of \( \sim 60–70 \) eV (Di Stefano et al. 2004; Orio 2006; Trudolyubov et al. 2007), placing it in the supersoft source class. Assuming a distance of 760 kpc (van den Bergh 2000), the estimated unabsorbed luminosity of J004252.5+411540 in the 0.3–1.5 keV energy band can be as high as \( \sim 5 \times 10^{38} \) ergs s\(^{-1}\), making it the brightest persistent supersoft source in M31.

In this paper, we report on the discovery of the coherent 217.7 s pulsations in the flux of XMMU J004252.5+411540, using the archival data of \textit{XMM-Newton} observations. We also study X-ray spectral properties of the source, search for its optical/UV counterparts, and discuss its nature.

2. OBSERVATIONS AND DATA REDUCTION

In our analysis we used the data of the four longest available 2000–2004 \textit{XMM-Newton} observations of the central region of M31 (Table 1) with three European Photon Imaging Camera (EPIC) instruments (MOS1, MOS2, and pn) (Turner et al. 2001; Struuds et al. 2001) and the Optical Monitor (OM) telescope (Mason et al. 2001). We reduced \textit{XMM} data using the \textit{XMM-Newton} Science Analysis System (SAS ver. 7.0.0)\(^{3}\). We performed standard screening of the original X-ray data to exclude

\footnotesize{1} Institute of Geophysics and Planetary Physics, University of California, Riverside, CA 92521.
\footnotesize{2} Los Alamos National Laboratory, Los Alamos, NM 87545.
\footnotesize{3} See http://xmm.vilspa.esa.es/user.
time intervals with high background levels, applying an upper count rate threshold of 20% above the average background level. The standard SAS tool 

barycen was used to perform barycentric correction on the original EPIC event files used for timing analysis.

We generated EPIC-pn and MOS images of the source field in the 0.3–7.0 keV energy band and used the SAS standard maximum likelihood (ML) source detection script edetect_chain to detect point sources. We used bright X-ray sources with known ess of the source X-ray spectrum, only data in the 0.2

energy range were used in the spectral analysis. For timing analysis, we used standard XANADU/XRONOS version 5½ tasks.

In the following analysis we assume an M31 distance of 760 kpc (van den Bergh 2000). All parameter errors quoted are 68% (1 σ) confidence limits.

3. RESULTS

On the basis of the Chandra aspect solution, limited by ∼0.5” systematics, the source location is α = 00°42’52.52′′, δ = 41°15’40″ (J2000 equinox) (Kong et al. 2002; Voss & Gilfanov 2007) (Fig. 1, left). We used the data of simultaneous XMM-Newton/OM observations to search for UV counterparts to the source. We did not detect any stellar-like objects in the OM images down to the limit of ∼19m in the OM UVW1 (291 nm) band within the error circle of XMMU J004252.5+411540 (Fig. 1, right).

We also searched for the optical counterparts to the source using the Local Group Galaxies Survey (LGGS) catalog for the M31 field reaching the 23 mag limit in the U, B, V, R and I bands (Massey et al. 2006). Two very faint cataloged objects have been found inside the 3 σ error box of XMMU J004252.5+411540: LGGS J004252.49+411540.2 (mV = 22.0) at a distance of 0.4″ and LGGS J004252.44+411538.9 (mV = 21.7) at a distance of 1.4″. This result allows us to put a conservative 21 mag upper limit on the brightness of the source optical/UV counterpart.

3.1. X-Ray Pulsations

We performed timing analysis of XMMU J004252.5+411540 using the data from all three XMM-Newton/EPIC detectors in the 0.2–1 keV energy band. After a barycentric correction of the photon arrival times in the original event lists, we performed a fast Fourier transform (FFT) analysis using the standard XRONOS task powspec, in order to search for coherent periodicities. For the analysis of XMM-Newton data, we used combined synchronized EPIC-pn and MOS light curves with 2.6 s time bins to improve sensitivity. We found strong peaks in the Fourier spectra of data from the 2000 June 25 and 2002 January 6 XMM-Newton observations at the frequency of ∼4.6 × 10⁻³ Hz (Fig. 2, left panels). The strengths of the peaks in the individual Fourier spectra (Fig. 2) correspond to the period detection confidence of ∼1.5 × 10⁻³ and ∼8 × 10⁻⁷ for these observations (Vaughan et al. 1994).

To estimate the pulsa
tions periods more precisely, we used an epoch-folding technique, assuming no period change during individual observations. The most likely values of the pulsation period (Table 2) were obtained fitting the peaks in the χ² versus trial period distribution with a Gaussian. The period errors in

\[ \chi^2 \text{ statistics and fitted to analytic models using the XSPEC version 12½ fitting package (Arnaud 1996). MOS1 and MOS2 data were fitted simultaneously, but with normalizations varying independently. For} \]

\[ \text{timing analysis, we used standard XANADU/XRONOS version 5½ tasks.} \]

\[ \text{In the following analysis we assume an M31 distance of 760 kpc (van den Bergh 2000). All parameter errors quoted are 68% (1 σ) confidence limits.} \]

\[ \text{3. RESULTS} \]

\[ \text{On the basis of the Chandra aspect solution, limited by} \]

\[ \text{∼0.5″ systematics, the source location is α = 00°42’52.52’’}, \]

\[ δ = 41°15’40″ (J2000 equinox) (Kong et al. 2002; Voss & Gilfanov 2007) (Fig. 1, left). We used the data of simultaneous XMM-Newton/OM observations to search for UV counterparts to the source. We did not detect any stellar-like objects in the OM images down to the limit of ∼19m in the OM UVW1 (291 nm) band within the error circle of XMMU J004252.5+411540 (Fig. 1, right).} \]

\[ \text{We also searched for the optical counterparts to the source using the Local Group Galaxies Survey (LGGS) catalog for the M31 field reaching the 23 mag limit in the U, B, V, R and I bands (Massey et al. 2006). Two very faint cataloged objects have been found inside the 3 σ error box of XMMU J004252.5+411540: LGGS J004252.49+411540.2 (mV = 22.0) at a distance of 0.4″ and LGGS J004252.44+411538.9 (mV = 21.7) at a distance of 1.4″. This result allows us to put a conservative 21 mag upper limit on the brightness of the source optical/UV counterpart.} \]

\[ \text{3.1. X-Ray Pulsations} \]

\[ \text{We performed timing analysis of XMMU J004252.5+411540 using the data from all three XMM-Newton/EPIC detectors in the 0.2–1 keV energy band. After a barycentric correction of the photon arrival times in the original event lists, we performed a fast Fourier transform (FFT) analysis using the standard XRONOS task powspec, in order to search for coherent periodicities. For the analysis of XMM-Newton data, we used combined synchronized EPIC-pn and MOS light curves with 2.6 s time bins to improve sensitivity. We found strong peaks in the Fourier spectra of data from the 2000 June 25 and 2002 January 6 XMM-Newton observations at the frequency of ∼4.6 × 10⁻³ Hz (Fig. 2, left panels). The strengths of the peaks in the individual Fourier spectra (Fig. 2) correspond to the period detection confidence of ∼1.5 × 10⁻³ and ∼8 × 10⁻⁷ for these observations (Vaughan et al. 1994).} \]

\[ \text{To estimate the pulsation periods more precisely, we used an epoch-folding technique, assuming no period change during individual observations. The most likely values of the pulsation period (Table 2) were obtained fitting the peaks in the χ² versus trial period distribution with a Gaussian. The period errors in} \]

\[ \text{http://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/xronos.html.} \]

\[ \text{http://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/xronos.html.} \]
Table 2 were computed following the procedure described in Leahy (1987). Then the source light curves were folded using the periods determined from the epoch-folding analysis. The resulting folded light curves of the source in the 0.2–1 keV energy band during 2000 June 25 and 2002 January 6 observations are shown in Fig. 2 (right panels). Although the power density spectra of the 2001 June 29 and 2004 July 16 observations have much weaker (with excess power ≤20) peaks at the pulsation frequency, we still performed a search for the pulsations in the data of these observations using the epoch-folding technique. The epoch-folding analysis of the source light curves obtained during the 2001 June 29 and 2004 July 16 observations revealed distinct peaks in the \( \chi^2 \) versus trial period distribution at the periods of 217.66 s and 217.75 s (Table 2). We did not detect a significant change of

Fig. 1.—Left: Combined 0.3–7 keV XMM-Newton/EPIC-MOS image covering central region of M31. The position of supersoft pulsating source XMMU J004252.5+411540 is marked with an arrow. Right: XMM-Newton/OM UVW1 (291 nm) band image of M31 field taken on 2002 January 6. The image is a 2' × 2' square centered on the XMMU J004252.5+411540 position. The localization of XMMU J004252.5+411540 is shown with black circle of 1.5' radius (3 \( \sigma \)).

Fig. 2.—Left: Power spectra of XMMU J004252.5+411540 obtained using the data of the 2000 June 25 (upper panel) and 2002 January 6 XMM-Newton/EPIC observations (lower panel) in the 0.2–1 keV energy band. Right: Corresponding pulse profiles folded with most likely pulsation periods, corrected for background.
the pulsation period between the four observations used in the analysis.

The source demonstrates quasi-sinusoidal pulse profiles in the 0.2–1 keV energy band during all four observations. The pulsed fraction, defined as $(I_{\text{max}} - I_{\text{min}})/(I_{\text{max}} + I_{\text{min}})$, where $I_{\text{max}}$ and $I_{\text{min}}$ represent source intensities at the maximum and minimum of the pulse profile, is somewhat lower during the 2001 June 29 observation (6.7%) than in the 2002 January 6 observation folded at the corresponding best pulsation period (Fig. 3).

As can be seen from Figure 3, there is a significant difference between the pulse profiles at low and high energies. The peak of the pulse profile in the 0.5–1 keV band is shifted compared with that in the 0.2–0.5 keV band. In addition, the pulsed fraction in the 0.5–1 keV band (12.8% ± 2.1%) appears to be higher than that at lower energies (7.5% ± 1.2%).

### 3.2. Variability on a Timescale of Hours

The source is also variable on a timescale of hours during all XMM-Newton observations. The characteristic timescale of the variability varies between ~6000 and ~8000 s. This variability can be either aperiodic or quasi-periodic: the existing observations are not long enough to make a definitive conclusion on its nature. The analysis of the long 2001 October 5 Chandra/ACIS-S observation reveals somewhat similar variability on a timescale of ~14,000 s.

### 3.3. X-Ray Spectra

The pulse-phase–averaged spectra of the XMMU J00425.2+411540 source are extremely soft, with only a small fraction of photons detected above 1 keV (Fig. 4). Nevertheless, the source spectra cannot be adequately fitted with a single soft spectral component (i.e., blackbody or other thermal models): an additional hard component is required to approximate the excess at higher energies (Di Stefano et al. 2004; Orio 2006). We used a sum of the absorbed blackbody and power-law models to approximate EPIC-pn and MOS spectra in the 0.2–3 keV energy range (Fig. 4). The best-fit spectral model parameters are shown in Table 2. The soft blackbody component has characteristic temperatures $kT \sim 62–67$ eV, emitting radii $R_{\text{bb}} \sim 13,000–20,000$ km, and estimated bolometric luminosity $L_{\text{bol}} \sim (5–8) \times 10^{38}$ erg s$^{-1}$. The hard power-law component is relatively weak, contributing less than 1% of the total flux in the 0.2–1 keV energy range. The photon index of the power-law component is poorly constrained for all four observations: the overall quality of the fit and soft-component parameters are not particularly sensitive to the choice of the photon index. The equivalent absorbing column required by these model fits, $N_{\text{HI}} \sim (1.1–1.6) \times 10^{21}$ cm$^{-2}$, is somewhat higher than the expected foreground column in the M31 direction, $7 \times 10^{20}$ cm$^{-2}$ (Dickey & Lockman 1990).

Although our simple two-component model provides a good overall description of the source spectra, the relatively high reduced $\chi^2 \sim 1.2–1.7$ of the fits suggests a more structured shape.
of the source spectrum and a need for additional components (see also Orio 2006). The approximation with the sum of absorbed blackbody and power-law models leaves bump-like residuals in the 0.3–0.8 keV energy range, especially evident in the higher quality 2002 January 6 data (Fig. 4). These residuals can indicate the presence of discrete emission/absorption features intrinsic to the source or be a result of incomplete spectral background subtraction (the source is embedded in the bright unresolved emission that has a soft thermal spectrum rich in emission lines [Shirey et al. 2001]).

To investigate the effect of additional discrete model features on the continuum spectral parameters, we added a Gaussian line to the existing two-component model and used it to approximate the EPIC-pn spectrum of the 2002 January 6 observation (Fig. 5, right panels). The addition of the Gaussian line at ~0.53 keV greatly improved the quality of the spectral fit ($\chi^2 = 141.1$ [143 dof] with $\Delta \chi^2 \sim 106$ for three additional parameters) and led to a significant change in the soft-component temperature and emitting radius: $kT = 76^{+12}_{-3}$ eV, $R_{bb} = 7000^{+1100}_{-1400}$ km, and an absorbing column depth $N_H = (9 \pm 1) \times 10^{20}$ cm$^{-2}$. As a result, the estimated a bolometric luminosity of the source dropped from $\sim 7.6 \times 10^{38}$ to $\sim 2.0 \times 10^{38}$ ergs s$^{-1}$. The application of this model to the data of 2000 June 25 observation yields similar results: $kT = 74^{+1}_{-3}$ eV, $R_{bb} = 6600^{+2000}_{-1400}$ km, $N_H = (8 \pm 2) \times 10^{20}$ cm$^{-2}$, and a bolometric luminosity of $\sim 1.7 \times 10^{38}$ ergs s$^{-1}$ with $\chi^2 = 1.15$ for 111 dof. We also tried to add a set of the discrete absorption features (absorption lines and edges) to the original two-component model. This approach produced similar results: increase of the blackbody model temperature $kT \sim 72$–$80$ eV, decrease of the emitting radius $R_{bb} \sim 7000$–$12,000$ km, and overall decrease of the bolometric luminosity to $\sim 2(4) \times 10^{38}$ ergs s$^{-1}$.

This is yet another demonstration of the huge uncertainty of SSS luminosity estimates, which has poorly understood systematic components determined by the quality of instrument calibration, background subtraction, foreground absorbing column estimation, and choice of spectral model. This uncertainty extends well beyond standard statistical errors of the absorbed simple blackbody fits, usually adopted in the spectral analysis of SSSs, and can affect final conclusions about their nature. In the case of XMMU J004252.5+411540, a simple two-component model fit results in estimated source luminosities that are super-Eddington assuming a 1.4 $M_\odot$ compact object accreting hydrogen-rich
The source bolometric luminosity of 9 \times 10^{38} \text{ ergs s}^{-1} for 2001 June 29 and 2002 January 6 observations, and suggested that the source could be linked to the ultraluminous supersoft X-ray sources found in other nearby galaxies and interpreted as IMBH candidates (Kong & Di Stefano 2005). Our analysis of the same data sets yields consistently lower source luminosity estimates \((\sim 5 \times 10^{38} \text{ ergs s}^{-1})\) for the same model approximation, which become even lower \((\sim 2 \times 10^{38} \text{ ergs s}^{-1})\) when more complex models are used for spectral fitting. It should be noted that a similar problem is observed for some of the bright SSSs detected in nearby galaxies (Swartz et al. 2002; Di Stefano & Kong 2003; Kong & Di Stefano 2003; Carpano et al. 2006). Although the spectral properties and long-term variability of these sources resemble those of the Galactic and Magellanic SSSs, the use of a simple blackbody model to approximate their spectra leads to extremely high estimated unabsorbed luminosities \(\gtrsim 10^{39} \text{ ergs s}^{-1}\), exceeding the Eddington limit for an accreting white dwarf. On the other hand, the use of alternative models and a different choice of the absorbing column (which is usually very hard to constrain given the extreme softness of the source spectrum and limited instrument bandpass) can sometimes lead to a significant reduction (up to an order of magnitude) of the estimated unabsorbed luminosity of the source.

4. DISCUSSION

The X-ray pulsations and supersoft spectrum of XMMU J004252.5+411540 imply that it is almost certainly an accreting white dwarf in a binary system. The 217.7 s pulsation period is the shortest known among SSSs to date. It is too short to be interpreted as binary orbital period even for a double-degenerate system. The remaining possible explanations for the observed modulation include stellar rotation and nonradial g-mode pulsations of the white dwarf. Periodic variations on a timescale of 1000–2500 s have been recently detected in the postnova SSSs (Drake et al. 2003; Ness et al. 2003) and in one of the prototype SSSs, CAL 83 (Schmidtke & Cowley 2006), and interpreted as a signature of nonradial pulsations of the white dwarf. In the case of XMMU J004252.5+411540, the short-period, long-term stability of the modulation and the absence of multiperiodicity argue against that interpretation. Therefore, it is more plausible to assume that the observed modulation results from the rotation of a magnetized accreting white dwarf. The strength of the WD magnetic field should not be extremely high, so its spin and orbital periods are not locked. The energy spectrum of XMMU J004252.5+411540 is typical for luminous supersoft X-ray sources and soft intermediate polars. Assuming that the source is located in M31, its observed luminosity \((\sim 3 \times 10^{37} \text{ ergs s}^{-1})\) is too high for intermediate polars (Haberl & Motch 1995). On the other hand, the absence of a bright optical counterpart makes the interpretation of the source as Galactic foreground system unlikely. The remaining possibility is that XMMU J004252.5+411540 is a luminous supersoft source located in M31. In that case, XMMU J004252.5+411540 is the second M31 SSS with coherent X-ray pulsations detected, after the supersoft transient XMMU J004319.4+411758, which shows pulsations with an 865.5 s period (Osborne et al. 2001; King et al. 2002).

The results of our spectral analysis suggest that the estimated source luminosity is probably close to or may slightly exceed the isotropic Eddington luminosity. Assuming that the source luminosity \((\sim 2 \times 10^{38} \text{ ergs s}^{-1})\) is produced in the process of burning of the hydrogen-rich material on the WD surface, we can estimate the required accretion rate as \(M \sim 5 \times 10^{-7} \text{ M}_\odot \text{ yr}^{-1}\), or \(\sim 3.2 \times 10^{19} \text{ g s}^{-1}\) (assuming the energy yield of nuclear burning of 0.007 MeV). Such a high accretion rate would imply either Roche lobe thermal mass transfer from a near–main-sequence companion with a mass larger than that of the WD or a mass transfer in a wide symbiotic (WD+red giant) system (van den Heuvel et al. 1992; Kahabka & van den Heuvel 2006).

If the X-ray pulsations observed in XMMU J004252.5+411540 result from the rotation of a magnetized WD, accreting from the...
Keplerian disk (King et al. 2002), one can estimate the strength $B_0$ of the WD magnetic field. Assuming a dipole configuration of the pulsar magnetic field, the magnetospheric radius inside which the accretion flow is channeled by the field is (Davidson & Ostriker 1973; Lamb et al. 1973; Ghosh & Lamb 1979a)

$$R_M \sim 0.5 \left( \frac{\mu^4}{2GM_X M^2} \right)^{1/7} \approx 8.5 \times 10^8 \frac{M_1^{2/7}}{m_X^{-1/7}} \frac{1}{\mu_3^{4/7}} \text{ cm},$$

(1)

where $\dot{M}$ denotes the accretion rate through the disk, $M_X$ is the WD mass, $\mu = B_0 R_{\text{edd}}$ is the magnetic moment of the WD, $M_1 = M/10^{19}$ g s$^{-1}$, $m_X = M_X/M_\odot$, and $\mu_3 = \mu/10^{24}$ G cm$^{-3}$. The matter will be magnetically channeled to the surface if $R_M \lesssim R_{\text{wd}}$. This condition is satisfied for a surface field

$$B_0 \sim 2.4 \times 10^8 R_9^{-5/4} M_1^{1/2} m_X^{5/6} \text{ G},$$

(2)

where $R_9 = R_{\text{wd}}/10^9$ cm. For a 1 M$_\odot$ white dwarf with $R_{\text{wd}} \sim 10^9$ cm accreting matter at a rate $\dot{M} \sim 3.2 \times 10^{-9}$ g s$^{-1}$, $B_0 \gtrsim 4 \times 10^5$ G.

In order to keep the “propeller” effect from preventing effective accretion onto white dwarf, the magnetospheric radius, $R_M$, must be less than corotation radius $R_c = GM_X/(4\pi^2)^{1/3}P^{2/3}$, where $P$ is the WD spin period (Illarionov & Sunyaev 1975). As a result, we obtain

$$B_0 \lesssim 8.6 \times 10^3 R_9^{-3} M_1^{1/2} m_X^{5/6} P^{7/6} \text{ G}.$$  

(3)

For the observed period $P = 217.7$ s, $m_X = 1$, $R_9 \sim 1$, and $M_1 \sim 3.2$, the estimated white dwarf surface magnetic field $B_0 \lesssim 8 \times 10^6$ G.

In the highly magnetized SSS scenario, the accreted matter is channeled by the field and steadily arrives at the magnetic poles. Ideally, most of the hydrogen burning is expected to occur near the poles (King et al. 2002), creating bright hot spots. The observed energy dependence of the pulse profile supports this picture, suggesting a higher temperature of the emitting region responsible for the modulation. The estimated fractional polar cap area $f \sim (R_{\text{wd}}/2R_M) \sim (R_{\text{wd}}/2R_c) \sim 0.09$ (Davidson & Ostriker 1973) implies a relatively large size of the accretion (hot spot) region, in agreement with the quasi-sinusoidal profile pulse and low amplitude of the modulation (~10%).

In the accretion process, angular momentum is transferred to the white dwarf and its rotation period should change (Pringle & Rees 1972; Rappaport & Joss 1977; Ghosh & Lamb 1979b). Assuming that disk accretion is occurring in the system and that all the specific angular momentum of the accreting material is transferred to the white dwarf at the magnetospheric radius $R_M \lesssim R_c$, one can estimate the maximum rate of change of the spin period as

$$\dot{P} \sim -7 \times 10^{-8} \frac{\dot{M}_{10}^{1/3} m_X^{2/3} P^{7/3}}{\text{s yr}^{-1}},$$

(4)

where $\dot{M}_{10}$ is the moment of inertia of the white dwarf in units of $10^{30}$ g cm$^2$. For the typical white dwarf parameters ($\dot{M}_{10} \sim 1$, $m_X = 1$), the observed spin period is $P = 217.7$ s, and $M_1 \sim 3.2$, the estimated spin-up rate is $|\dot{P}| \lesssim 0.065$ s yr$^{-1}$. The period change of such magnitude could, in principle, be detected in XMMU J004252.5+411540 with sufficiently long (>50 ks) XMM-Newton observations spaced by a period of $\gtrsim 5$ yr (Table 2). The measurement of the period change can then be used to further constrain the accretion rate in the system, providing an independent, better estimate of the bolometric luminosity of the source than is presently possible with spectral analysis. Unfortunately, only one of the existing observations (2002 January 6) is sufficiently long to obtain a good estimate of the pulsation period. Future long XMM-Newton observations of the central region of M31 would allow a more detailed study of the evolution of the pulsation period of XMMU J004252.5+411540 and possibly improve our understanding of this and other luminous supersoft X-ray sources, both Galactic and extragalactic.

The authors would like to thank France Córdova for careful reading of the manuscript and useful suggestions. Support for this work was provided through NASA grant NAG5-12390. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. XMM-Newton is an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

REFERENCES

Aramaki, K. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco: ASP), 17

Barnard, R., Trudolyubov, S., Kolb, U. C., Haswell, C. A., Osborne, J. P., & Priedhorsky, W. C. 2007, A&A, 469, 875

Carpano, S., Wilms, J., Schirmer, M., & Kendziorra, E. 2006, A&A, 458, 747

Cutri, R. M., et al. 2003, 2MASS All Sky Point Source Catalog (Univ. Mass., Amherst, NASA/IPAC, Caltech)

Davidson, K., & Ostriker, J. P. 1973, ApJ, 179, 585

Dickey, J. M., & Lockman F. J. 1990, ARA&A, 28, 215

Di Stefano, R., & Kong, A. K. H. 2003, ApJ, 590, L13

Di Stefano, R., et al. 2004, ApJ, 610, 247

Drake, J. J., et al. 2003, ApJ, 584, 448

Fabbiano, G. 2006, ARA&A, 44, 323

Ghosh, P., & Lamb, F. K. 1979a, ApJ, 212, 259

———. 1979b, ApJ, 234, 296

Greiner, J. 2000, NewA, 5, 137

Greiner, J., DiStefano, R., Kong, A., & Primini, F. 2004, ApJ, 610, 261

Illarionov, A. F., & Sunyaev, R. A. 1975, A&A, 39, 185

Haberl, F., & Motch, C. 1995, A&A, 297, L37

Kahabka, P. 1999, A&A, 344, 459

Kahabka, P., & van den Heuvel, E. P. J. 2006, in Compact Stellar X-Ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 461

King, A. R., Osborne, J. P., & Schenker, K. 2002, MNRAS, 329, L43

Kong, A. K. H., Garcia, M. R., Primini, F. A., Murray, S. D., Di Stefano, R., & McClintock, J. E. 2002, ApJ, 577, 738

Kong, A. K. H., & Di Stefano, R. 2003, ApJ, 590, L13

———. 2005, ApJ, 632, L107

Lamb, F. K., Petrich, C. J., & Pines, D. 1973, ApJ, 184, 271

Leahy, D. A. 1987, A&A, 180, 275

Mason, K. O., et al. 2001, A&A, 365, L36

Massey, P., Olsen, K. A. G., Hodge, P. W., Strong, S. B., Jacoby, G. H., Schlingman, W., & Smith, R. C. 2006, AJ, 131, 2478

Monet, D. G., et al. 2003, AJ, 125, 984

Ness, J.-U., et al. 2003, ApJ, 594, L127

Orio, M. 2006, ApJ, 643, 844

Osborne, J. P., et al. 2001, A&A, 378, 800

Rappaport, S., & Joss, P. C. 1977, Nature, 266, 683

Primini, F. A., Forman, W., & Jones, C. 1993, ApJ, 410, 615

Pietsch, W., Freyberg, M., & Haberl, F. 2005, A&A, 434, 483

Pringle, J. E., & Rees, M. J. 1972, A&A, 21, 1

Schmidke, P. C., & Cowley, A. P. 2006, AJ, 131, 600

Shirey, R., et al. 2001, A&A, 365, L195

Strueder, L., et al. 2001, A&A, L18

Supe, R., Hasinger, G., Lewin, W. H. G., Magnier, E. A., van Paradis, J., Pietsch, W., Read, A. M., & Truemper, J. 2001, A&A, 373, 63

TRUDOLYUBOV & PRIEDHORSKY  Vol. 676
Supper, R., Hasinger, G., Pietsch, W., Truemper, J., Jain, A., Magnier, E. A., Lewin, W. H. G., & van Paradijs, J. 1997, A&A, 317, 328
Swartz, D. A., Ghosh, K. K., Suleimanov, V., Tennant, A. F., & Wu, K. 2002, ApJ, 574, 382
Trinchieri, G., & Fabbiano, G. 1991, ApJ, 382, 82
Trudolyubov, S., Kotov, O., Priedhorsky, W., Córdova, F., & Mason, K. 2005, ApJ, 634, 314
Trudolyubov, S. P., Priedhorsky, W. C., & Córdova, F. A. 2007, ApJ, submitted (astro-ph/0610809)
Trudolyubov, S. P., Borozdin, K. N., & Priedhorsky, W. C. 2001, ApJ, 563, L119
Turner, M., et al. 2001, A&A, 365, L27
van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)
vanden Heuvel, E. P. J., Bhattacharya, D., Nomoto, K., & Rappaport, S. A. 1992, A&A, 262, 97
Vaughan, B. A., et al. 1994, ApJ, 435, 362
Voss, R., & Gilfanov, M. 2007, A&A, 468, 49