In situ measurement-based partitioning behavior of perfluoroalkyl acids in the atmosphere

Seung-Kyu Kim1,2†, Donghao Li3, Kurunthachalam Kannan4

1Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
2Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
3Key Laboratory of Nature Resource of the Changbai Mountain and Functional Molecular, Yanbian Univeristy, Ministry of Education, Park Road 977, Yanji City, Jilin Province 13302, China
4Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York 12201, United States

Abstract
Environmental fate of ionizable organic pollutants such as perfluoroalkyl acids (PFAAs) are of increasing interest but has not been well understood because of uncertain values for parameters related with atmospheric interphase partitioning behavior. In the present study, not only the values for air-water partition coefficient (K_{AW}) and dissociation constant (pK_a) of PFAAs were induced by adjusting to in situ measurements of air-water distribution coefficient between vapor phase and rainwater but also gas-particle partition coefficients were also estimated using three-phase partitioning model of ionizable organic pollutants, in situ measurements of PFAAs in aerosol and air vapor phase, and obtained parameter values. The pK_a values of PFAAs we obtained were close to the minimum values suggested in literature except for perfluorooctane sulfonic acids, and COSMOtherm-modeled K_{AW} values were assessed to more appropriate among suggested values. When applying parameter values we obtained, it was predicted that air particle-associated fate and transport of PFAAs could be negligible and PFAAs could distribute ubiquitously along the transection from urban to rural region by pH-dependent phase transfer in air. Our study is expected to have some implications in prediction of the environmental redistribution of other ionizable organic compounds

Keywords: Acidity, Fog, Inter-phase distribution, Ionizable organic pollutants, PFAAs, pK,

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received March 30, 2019 Accepted April 23, 2019

†Corresponding Author
E-mail: skkim@incheon.ac.kr
Tel: +82-32-835-8862 Fax: +82-32-835-0806
ORCID: 0000-0002-1602-3288

Copyright © 2020 Korean Society of Environmental Engineers

http://eeer.org
1. Introduction

Per- and polyfluoroalkyl substances (PFASs) are global pollutants, which were listed as persistent organic pollutants (POPs) by the Stockholm Convention [1]. Once released into the environment, organic pollutants experience various phase-partitioning between solid phases (e.g., soil, sediment, air particle, and biota, etc.), water phase, and air vapor phase. Particularly, atmospheric fate and transport plays an important role to their redistribution among environmental compartments and long-range transport, as frequently mentioned as ‘grasshopper effect’ [2].

In atmosphere, the partitioning behavior of neutral PFASs such as fluorotelomer alcohols (FTOHs) and perfluooctane sulfonamidoethanols (FOSEs) have been predicted comparatively easily using their two-phase partitioning coefficient (e.g., gas-particle partition) because of their less soluble property [3, 4]. Acid PFAS group (perfluoroalkyl acids (PFAAs)) exist as the free acid form (i.e., neutral species) and their conjugate base form (i.e., ionic species) as shown in perfluoroalkyl carboxylic acids/carboxylates (PFCAs) or perfluoroalkane sulfonic acids/sulfonates (PFSAs) [5]. Differently from neutral PFASs, the environmental fate of PFAAs has been less known and is still in debate, which is related with the presence of both neutral and ionic species and the significant uncertainties in their physicochemical properties such as dissociation constant (i.e., pKa) and air-water partition coefficient (K_{AW}) [6-8].

PFAAs are dissociated into their ionic species when they meet the aqueous phase and in the typical aquatic pH conditions are known to exist as mostly ionic species, which is difficult to be volatilized [8]. Therefore, their airborne transport mechanism has been ignored for long time because PFAAs were considered to be rarely present in the atmosphere. Their presence observed in rain water, had not been well explained, was later attributed to the
transformation of volatile and less soluble precursors (i.e., neutral PFASs) to soluble PFCAs and PFSAs [6, 7]. In our previous study [8], however these ionizable organic pollutants (i.e., PFCAs and PFSAs) were measured in rain samples as well as air samples such as gas- and particle-phases. Furthermore, gradually decreasing distribution pattern from source (urban) area to non-source (rural) area could not be explained by previous precursor-based transport mechanism [6, 7, 9]. Furthermore, elevated occurrence of PFAAs in surface runoff samples implicated that their redistribution among environmental compartments through air-water (or surface) partition might occur significantly [8, 10]. Since then, several studies also confirmed the presence of PFAAs in atmospheric compartments including aerosol and air vapor phases [11-13]. As a possible mechanism to account for the occurrence of PFAAs in atmosphere, McMurdoo et al. [14] proposed “PFAAs enrichment in aerosol by the splashing of surface water and occurrence of gaseous PFAAs by gradual volatilization of water molecules”. Thus, the redistribution of PFAAs through atmospheric transport can be more significant in coastal region or urban area with large human and/or industrial activities and large water body, considering that 1) surface water can be easily splashed into air by strong wind and wave, 2) their ionic species can exist abundantly in seawater (particularly, they can highly accumulate in the surface microlayer) [15], and additionally 3) fog can frequently be formed owing to difference of air-water temperature [16]. By redistribution process in the environment, human being may be exposed to these toxic substances through multiple pathways via drinking, food intake, dermal contact and inhalation [17, 18].

Differently from insoluble and neutral POPs, ionizable organic pollutants such as PFAAs distribute among three phases in atmosphere, including particle phase, vapor phase, and aqueous phase [11, 12, 14]. The redistribution of PFAAs among environmental compartments thus may be significantly influenced by the atmospheric three-phase
distribution (or partitioning) behavior which strongly depends on the extent of their
dissociation [19]. It is thus indispensable to use accurate values for the parameters related
with their dissociation such as pK_a, solution pH, and water volume (e.g., relative humidity) in
predicting their atmospheric interphase-partitioning behavior. Until recently, wide ranges of
pK_a and K_{AW} (~10,000 times difference between minimum and maximum values) have been
suggested (see references described in section 3.2). Uncertain parameter values could be
significant factors amplifying the uncertainty in the prediction of atmospheric fate and
transport, including air-water distribution coefficient (D_{AW}), gas-particle partition coefficient
(K_p) dry/wet deposition, and long-range transport potential [12, 20-22].

The present work aimed 1) to estimate the reliable pK_a and K_{AW} values by adjusting the
in situ D_{AW} measured between air vapor phase and rainwater, 2) to induce K_p using the in situ
measured gas-aerosol partition coefficient (K'_p) and adjusted values for K_{AW} and pK_a, and
finally 3) to predict their occurrence in each phase of atmosphere with variation of
meteorological condition.

2. Materials and Methods

2.1. Sampling and Chemical Analysis

The present study focuses on the interpretation of the partition behavior of ionizable organic
compounds such as PFAAs, based on our previous measurements [8]. Thus, only brief
information on sampling of atmospheric phases was described here and the more details of
sampling and chemical analysis were presented elsewhere [8].

In brief, three atmospheric phases (air gaseous and particulate phases, and rainwater)
were collected at the Washington Park in downtown Albany, New York with a population of
96,000. The Washington Park (ca., total area of 360,000 m2) lake has a water surface area of 2
× 10^5 m^2 and an average depth of 3 m (so, lake water volume = ~70,000 m^3). All of the atmospheric samples were collected on the roof of a lakehouse building about ten meters above the surface of lake, located at the Washington Park. Gaseous and particulate phase of air (n = 8) were collected from May to July, 2007 using a high-volume air sampler. PUF/XAD-2/PUF sandwich (Supelco, Bellefonte, PA) and quartz fiber filter (QMA, Whatman) were used to collect gaseous and particulate phases, respectively. The collected air samples were kept at 4°C with prior to analysis and were extracted with no desiccation in a few days after sampling. Desiccation of QMA can cause a removal of water phase on the filter and sequential volatilization of neutral species in water phase. Thus, no desiccation of QMA sample can prevent the potential loss of neutral species. Rainwater samples (n = 3) of ~200 mL were collected in methanol-rinsed polypropylene bottles equipped with a funnel next to air sampler.

2.2. Partition Behavior of PFAAs among Atmospheric Compartments

Once organic acids such as PFCAs and PFSAs are dissociated in aqueous phase, the acids (hereafter, neutral species) are in equilibrium with their conjugate base (hereafter, ionic species) as shown in an example of perfluorooctanoic acids (PFOA) Eqs. (1-1) and (1-2). Such a dissolution yields the presence of both neutral species ($C_7F_{15}COOH$) and ionic species ($C_7F_{15}COO^-$) that strongly depends on their dissolution constants (pK_a) and pH of aqueous phase as shown in Eq. (1-2).

$$[C_7F_{15}COOH] = [H^+][C_7F_{15}COO^-] \text{ in aqueous phase}$$ (1-1)
Typically atmosphere consists of aerosol phase (air particle phase and water droplet phase) and air vapor phase. As POPs, well known as representative neutral organic compounds, are rarely water soluble, their K_p can be well modeled using a two-phase (i.e., air vapor-particle) sorption equation where a water droplet phase of aerosol can be ignored [23]. However, PFAAs can be present in all of three phases and then their speciation in vapor and water phases should be quantified in advance, being expressed by D_{AW} (dimensionless) incorporating both neutral and ionic species as shown in Eq. (2).

\[
D_{AW} = \frac{K_{AW}}{1 + 10^{(pH - pK_a)}}
\]

where D_{AW} indicates the ratio of the concentration of neutral species in air vapor to the total concentration of neutral and ionic species in aqueous phase at the given solution pH. The K_{AW} is the air-water partition coefficient of neutral species (m^3_{water}/m^3_{air vapor}).

Gas-particle partitioning can be quantified on basis of the measured concentrations as expressed in Eq. (3), in which the term of \(C_{p'} \) (unit; mol/m^3) indicates the measured concentrations of all PFAA species present on aerosol that is a sum of neutral species adsorbed on particle, neutral species in water phase, and ionic species in water phase, and the
denominator \((C_A; \text{mol/m}^3) \) indicates the measured concentration of neutral PFAA species present in vapor phase.

\[
K_P' = \frac{(C_P'/TSP)}{C_A}
\]

(3)

where \(TSP \) is the mass concentration of total suspended particulate matter in air (\(\mu g/m^3 \)). Although \(K_P' \) based on the measured \(C_P' \) and \(C_A \) indicates TSP-normalized partition coefficient, PFAAs on aerosol \((C_P') \) include both neutral and ionic species in aerosol (i.e., particle-phase and water-phase) and then can vary with the volume of water phase (i.e., relative humidity). Therefore, it is necessary to convert \(K_P' \) to the gas-particle partition coefficient independent on the volume of water-phase \((K_P) \), which is known to be a conventional gas-particle partition coefficient for insoluble organic pollutants.

Contrary to \(K_P' \), the \(K_P \) is defined as the partitioning coefficient between air vapor and particle for the neutral species alone. Meanwhile, it is difficult to isolate and measure solely neutral species adsorbed on particle-phase because both neutral and ionic species exist together in aerosol consisting of particle and water-phase. Furthermore neutral species can be lost via evaporation when filter paper is desiccated. Alternatively, the \(K_P' \) can be converted to \(K_P \) by multiplied by the fraction of particle-adsorbed neutral species to total species in aerosol \((\alpha_{neutral \ on \ particle'}) \) as given by the following expression:

\[
K_P \left(= \frac{C_P'/TSP}{C_A} \right) = K_P' \alpha_{neutral \ on \ particle'}
\]

(4-1)
\[
\alpha_{\text{neutral on particle}} = \frac{c_{\text{neutral on particle}} (= C_p)}{c_{\text{total aerosol}} (= C'_p)} = \frac{c_{\text{neutral on particle}}}{c_{\text{neutral on particle}} + c_{\text{neutral in water}} + c_{\text{ionic in water}}}
\]

\((4-2) \)

Likewise, the fractions of neutral species adsorbed on the air particle \((\alpha_{\text{neutral on particle}})\), neutral species dissolved in water phase \((\alpha_{\text{neutral in water}})\), ionic species in water phase \((\alpha_{\text{ionic in water}})\), and neutral species in air vapor \((\alpha_{\text{neutral in air vapor}})\) in total air which consist of gaseous, particulate, and water phases can be calculated as follows:

\[
\alpha_{\text{neutral on particle}}
= \frac{c_{\text{neutral on particle}}TSP}{(c_{\text{neutral on particle}}TSP + c_{\text{neutral in water}}V_{W,rH} + c_{\text{ionic in water}}V_{W,rH}) + c_{\text{neutral in air vapor}}V_{\text{air vapor}}}
\]

\((5-1) \)

\[
\alpha_{\text{free acid in water droplet}}
= \frac{c_{\text{neutral in water}}V_{W,rH}}{(c_{\text{neutral on particle}}TSP + c_{\text{neutral in water}}V_{W,rH} + c_{\text{ionic in water}}V_{W,rH}) + c_{\text{neutral in air vapor}}V_{\text{air vapor}}}
\]

\((5-2) \)

\[
\alpha_{\text{anion in water droplet}}
= \frac{c_{\text{ionic in water}}V_{W,rH}}{(c_{\text{neutral on particle}}TSP + c_{\text{neutral in water}}V_{W,rH} + c_{\text{ionic in water}}V_{W,rH}) + c_{\text{neutral in air vapor}}V_{\text{air vapor}}}
\]
\[\alpha_{\text{free acid in air vapor}} = \frac{C_{\text{neutral in air vapor}} V_{\text{air vapor}}}{(C_{\text{neutral on particle}} TSP + C_{\text{neutral in water}} V_{W,rH} + C_{\text{ionic in water}} V_{W,rH}) + C_{\text{neutral in air vapor}} V_{\text{air vapor}}} \]

(5-4)

where \(C_{\text{neutral on particle}} \), \(C_{\text{neutral in water}} \), \(C_{\text{ionic in water}} \), and \(C_{\text{neutral in air vapor}} \) are the concentrations of neutral species adsorbed on air particle (mol/\(\mu g \text{ air particle} \)), neutral species dissolved in water phase of air (mol/m\(^3\) water phase of air), ionic species dissolved in water phase of air (mol/m\(^3\) water phase of air), and neutral species in air vapor phase (mol/m\(^3\) air vapor), respectively. The \(V_{W,rH} \) and \(V_{\text{air vapor}} \) indicate the volume of water phase (m\(^3\) water droplet/m\(^3\) air) at a given relative humidity (rH) and the volume of air vapor phase (m\(^3\) air vapor/m\(^3\) air) in an unit air volume (V\(_{\text{air}}\); 1 m\(^3\) air), respectively. Strictly speaking total air volume is the sum of the volumes of air vapor (V\(_{\text{air vapor}}\)), air water (V\(_{W,rH}\)), and air particle (V\(_{\text{air particle}}\)), but practically V\(_{\text{air}}\) (= 1 m\(^3\) air) \(\approx \) V\(_{\text{air vapor}}\) because the faction of V\(_{W,rH}\) and V\(_{\text{air particle}}\) account for just 10\(^{-5}\) (at relative humidity = 50\%) and 10\(^{-11}\) (at a typical TSP = 60 \(\mu g/m^3 \)), respectively.

Dividing Eqs. (5-1) to (5-4) by \(C_{\text{neutral in water}} V_{W,rH} \) yields
\[
\alpha_{\text{neutral on particle}} = \frac{K_{PW} \left(\frac{TSP}{V_{W, RH}} \right)}{K_{PW} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pKa)} + K_{AW} \left(\frac{V_{air}}{V_{W, RH}} \right)}
\]

(6-1)

\[
\alpha_{\text{neutral in water droplet}} = \frac{1}{K_{PW} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pKa)} + K_{AW} \left(\frac{V_{air}}{V_{W, RH}} \right)}
\]

(6-2)

\[
\alpha_{\text{ionic in water droplet}} = \frac{10^{(pH-pKa)}}{K_{PW} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pKa)} + K_{AW} \left(\frac{V_{air}}{V_{W, RH}} \right)}
\]

(6-3)

\[
\alpha_{\text{neutral in air vapor}} = \frac{K_{AW} \left(\frac{V_{air}}{V_{W, RH}} \right)}{K_{PW} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pKa)} + K_{AW} \left(\frac{V_{air}}{V_{W, RH}} \right)}
\]

(6-4)

where \(K_{PW}\) is the particle-water partition coefficient (unit: \(m^3/\mu g\)) which is frequently used to explain partitioning between sediment and water in aquatic systems. The \(K_{PW}\) is associated with organic carbon-water partition coefficient (\(K_{OC}\)) or octanol-water partition coefficient (\(K_{OW}\)) as shown in Eq. (7).

\[
K_{PW} = \beta f_{OC} K_{OC} = \beta f_{OC} (0.41 K_{OW})
\]

(7)

where \(\beta\) is a correction factor (\(= 10^{12}\)) to match the units of \(K_{PW}\) (\(m^3/\mu g\)) and \(K_{OC}\) (L/kg). The \(f_{OC}\) is the fraction of organic carbon in particle (dimensionless) and 0.2 was used for \(f_{OC}\) of air.
particle [24, 25].

Again, the fractions of individual-phase of neutral and ionic species in aerosol are induced from Eqs. (6-1) to (6-4) and can be obtained as follows:

\[
\alpha_{\text{neutral on particle'}} = \frac{\beta f_{OC} K_{OC} \left(\frac{TSP}{V_{W, RH}} \right)}{\beta f_{OC} K_{OC} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pK_a)}}
\]

\[
\alpha_{\text{neutral on water droplet'}} = \frac{1}{\beta f_{OC} K_{OC} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pK_a)}}
\]

\[
\alpha_{\text{neutral on water droplet'}} = \frac{10^{(pH-pK_a)}}{\beta f_{OC} K_{OC} \left(\frac{TSP}{V_{W, RH}} \right) + 1 + 10^{(pH-pK_a)}}
\]

where we used the relationship of \(K_{OC} = 0.41 K_{OW} \) [26].

3. Results and Discussion

3.1. PFAAs Measured in Atmospheric Compartments

Mean concentrations of PFAAs used for atmospheric partitioning of this study were listed in Table 1. Of six PFCAs, PFOA was the most prevalent compound which was detected in all samples of air vapor (n = 8), air particle (n = 8), and rainwater (n = 3). Perfluoroheptanoic acids (PFHpA), perfluorononanoic acids (PFNA), perfluorodecanoic acids (PFDA) were detected above LOQ in all samples except for only one air particle sample, two air particle samples, and one rainwater sample, respectively. More highly fluorinated PFCAs, perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA), were less frequently detected. Particularly, air particle samples did not contain any detectable level of
PFUnDA and contained PFDoDA above LOQ in only two samples. This may be attributable to rare occurrence of the highly fluorinated compounds in atmosphere. Otherwise, a relatively high particle-phase concentration would have been observed considering their relatively high octanol-air partition coefficients (K_{OA}) compared with C7-C10 PFCAs.

Of four PFSAs, perfluorooctanesulfonic acid (PFOS) was also predominantly found in three atmospheric phases. The other PFSAs were not at all detected at least one of three phases; that is, perfluorohexanesulfonic acid (PFHS) in air particles and rainwater, perfluorodecanesulfonic acid (PFDS) in air vapors, and perfluorooctane sulfonamide (PFOSA) in rainwaters were not detected. Thus, it was not allowed to calculate their D_{AW} values and to predict their pK_{a} for the three PFSAs.

3.2. Estimation of pK_{a} from Observed D_{AW}
As mentioned earlier, the partitioning of PFAAs among atmospheric compartments strongly depends on their pK_{a} and K_{AW} and solution pH (Eqs. (1)-(8)). A pH of 4.5 was used for a typical rainwater and air water phase on the basis of the meteorological data measured at urban area including northeastern states of US and Canada [11, 27]. For pK_{a}, a number of values for PFAAs have been suggested so far, which were estimated theoretically [28, 29], calculated from computational approach using software COSMO-RS [30, 31] and SPARC [32], or measured from laboratory experiment [33-35]. The suggested pK_{a} values ranged from -0.21 to 3.8 for PFOA and from -3.3 to 0.14 for PFOS (Table 2). Various two-phase partition coefficients including K_{AW}, K_{OW}, and K_{OA} have been also estimated from molecular structure (i.e., quantitative structure-activity relationships (QSARs)) using a variety of tools such as U.S. EPA’s EPI Suite, ClogP, SPARC, and COSMOtherm [36]. According to previous results (see the literature in Table 2), those QSAR-based models produced the partition coefficients
that differed more than three orders of magnitude: for instance, log $K_{AW} = -2.37$ (COSMOtherm) to 0.57 (EPI Suite) for PFOA and -2.40 (COSMOtherm) to -0.35 (EPI Suite) for PFOS. Recently, Kim et al. [37] who used molar volume as a molecular descriptor suggested K_{AW} values greater than 10 times than the maximum values suggested by previous QSAR-based models (Table 2).

Such wide ranges of pK_a and K_{AW} (~10,000 times difference between minimum and maximum values) could be significant factors enlarging the uncertainty in the prediction of atmosphere-associated fate and transport including D_{AW}, K_p, dry/wet deposition, and long-range transport potential [12, 20-22]. To cover all PFAAs, we tested the sensitivity of D_{AW} with varying pK_a (-4 to 4) and K_{AW} (10^{-4} to 10^5) suggested (Fig. 1). At a given pK_a, the D_{AW} value increases proportionally to 1:1 as K_{AW} value increase. The suggested K_{AW} range (log $K_{AW} = -2.37$ to 2.57 for PFOA and -2.4 to 3.29 for PFOS) produced the differences of 10^4 and 10^5 for D_{AW}, respectively. Similarly, D_{AW} value at a given K_{AW} increased in proportion to the increment of pK_a; that is, the pK_a ranging from -4 to 4 yielded the variation of eight orders of magnitude in D_{AW} value. This implied again that the use of the more accurate values for pK_a, pH and K_{AW} could be very important.

In the present study, we induced more reasonable values for K_{AW} and pK_a from D_{AW} values which were calculated from PFAA concentrations measured in air vapor and rainwater. In calculating $D_{AW} (= C_{air\ vapor}/C_{rainwater})$, it was assumed that the solely neutral species in air vapor phase and both neutral and ionic species in rainwater were present because the ionic species are nonvolatile: for example, log K_{AW} of PFOA is -2.37 for neutral species (at suggested minimum value) versus -6.5 for ionic species [38]. The measured D_{AW} values in this study ranged from 7.9×10^{-6} to 8.4×10^{-6} as for all investigated PFAAs (Table 3). When based on measured D_{AW}, thus log K_{AW} values should be within -4.0 to 0 for PFOA and -2 to 2
for PFOS as for their suggested pK_a ranges. This indicated that at least the maximum values of K_{AW} which were suggested by Kim et al. [37] would be not supported by our measurement. Two laboratory studies reported the K_{AW} values of 0.001 [39] and 0.004-0.007 [40], which were a good agreement with COSMOtherm-modeled data within less than an order of magnitude. So, the COSMOtherm-modeled values [36] were used for K_{AW} values of individual PFAAs in this study in order to maintain systematic consistency among the estimates of K_{AW}. As the next step, we adjusted pK_a values (at COSMOtherm-based K_{AW} and pH = 4.5) to produce the best fitting (within ±1%) to the measured D_{AW} (Table 3). The estimated pK_a values in this study were close to the minimum values of previously suggested values except for PFOS which was greater than the suggested maximum value but were slightly higher than the estimates of SPARC.

Under the typical atmospheric condition (relative humidity = 50% and TSP = 60 µg/m³), the combination of the adjusted pK_a values and the minimum K_{AW} values suggested in literature predicted the 25% and 75% of PFOA and 33% and 67% of PFOS in air vapor and water phase, respectively. On the other hand, the use of the maximum value of suggested K_{AWS} yielded the presence of almost 100% of PFOA and PFOS in air vapor phase. Similarly, the major phase of PFAA might significantly change within the suggested pK_a range of -0.21 to 3.8 for PFOA and -3.3 to -0.14 for PFOS. For instance, it was predicted under the same typical condition with their adjusted K_{AWS} that the majority of atmospheric PFOA and PFOS might exist in water phase when their minimum pK_a values were applied while 99% of PFOA and 4.5% of PFOS in atmosphere might exist in air vapor phase when their maximum pK_a values were used. Again, this indicated that use of inappropriate values for pK_a and K_{AW} would cause significant errors in prediction of partitioning among three phases and related fate and transport.
3.3. Estimation of K_p from Measured K'_p

The K'_p was calculated using Eq. (3) from TSP-normalized total concentrations (a sum of neutral and ionic species) measured from aerosol and the concentration measured from air vapor phase (i.e., gaseous concentration of neutral species). The $\log K'_p$ values measured in this study, ranging from -2.27 ± 0.26 for PFOS to -1.65 ± 0.47 for PFDoDA, were in very good agreement with $\log K'_p$ values measured at a semi-urban location in Toronto, Canada [11] and at Lake Chaohu, China [13] (Table 4). It is particularly noticeable that the $\log K'_p$ values we obtained most closely matched the values measured by annular diffusion denuder sampler used to avoid the sampling artifacts [11].

According to Eqs. (4) and (8-1), the K_p can be induced by multiplying K'_p and the fraction of neutral species on air particle to all species in aerosol ($\alpha_{\text{neutral on particle}}'$). Our $\log K_p$ values ranged from -8.28 ± 0.27 (for PFNA) to -6.66 ± 0.23 (for PFOS). Contrary to K'_p, the K_p values showed the differences by an order of magnitude between different studies (Table 4). Unfortunately, Ahrens et al. [11] used the fraction of neutral species in water phase to all species in water phase instead of $\alpha_{\text{neutral on particle}}'$. So, the difference between measured K_p values may originate from the equation error. Use of different pK_a values, for which SPARC-modeled value was used in in Ahrens et al. [11], can be another possible cause of K_p difference.

3.4. Dependency of Atmospheric Fate on pH and Relative Humidity

A pH of 4.5, a typical value measured at urban area, was used in this study. Acid rain monitoring showed the variation of pH of 3.2-5.4 in the study area [27, 41]. Rain pH can be changed by acid-causing gases (ACGs) like SO_2, NO_x, and CO_2 as well as by particulate
matter (PM), causing large variation as shown evidently in observed pH values (from < 4.5 to 7.5) [42].

Fig. 2 shows the pH-dependence of the occurrence of PFAAs in each of three phases. Under the meteorological condition of rH = 50% and TSP = 60 µg/m³, the pH = 4.5 yielded that > 90% of individual PFCAs (90% of PFOA) and 86% of PFOS might exist in water phase, 0.2-10% of PFCAs (10% of PFOA) and 14% of PFOS in vapor phase, and < 1% of PFCAs and PFOS in particle phase. The water phase fraction of PFAAs, mostly ionic species, can increase with increment of pH and then reach more than 99% above pH = 6.0. It was predicted that drastic change in the fraction of PFAAs could occur in the lower pH condition. At pH = ~3.5 and ~3.7, a half of PFOA and PFOS may exist in vapor phase and another half in water phase. More acidified condition (i.e., more severe atmospheric pollution by ACGs) can cause the prevalent vapor phase (> 99%) of PFOA at pH = 1.3 and of PFOS at pH = 1.5. Consequently, PFAAs in ACG-polluted air of urban/industrial area, i.e., at low pH air condition, can be moved via gaseous diffusion and wind-driven gaseous transport to other region and then can reside more shortly in the environmental system of the emitted region. On the other hand, PFAAs in rural area, of which air may be less polluted by ACGs and then be at relatively high pH (mostly, > ~5.4), can reside much longer in the environment of the domain system because the majority of individual PFAAs may exist in water phase (e.g., clouds and fogs) and can fall down via deposition of atmospheric water (e.g., rainfall and snow). Moreover it is difficult for deposited PFAAs to be evaporated considering the higher pH condition of freshwater (pH = ~7.5) where non-volatile ionic species may exist exclusively. In short, PFAAs can distribute ubiquitously and relatively uniformly from urban to rural regions by their pH-dependent atmospheric fate.

The volume of atmospheric water is extremely variable in time and space with the
meteorological condition. Dependency of phase fractions of each species on relative humidity was presented in Fig. 3. Increase of relative humidity is inevitably associated with increasing occurrence of PFAA in water phase. In > 40% of rH, the most of PFOA and PFOS (i.e., > 80%) may exist in atmospheric water phase. However, the more than 1% of PFAAs (e.g., 5% of PFOA and 7% of PFOS) can be still present as a neutral species in vapor phase even in water-saturated condition such as fog. Vapor phase fraction of PFOA and PFOS may be more abundant below 5% and 8% of rH, respectively. More fluorinated PFCAs (> C10 PFCAs) were predicted to exist mostly in a vapor phase (> 50%) under the perfectly dried condition (< 2% of rH). Air particle-phase of PFAA accounted for < 0.1% in any cases with rH variation and exceeded 1% only for an extreme condition such as TSP = 5,000 µg/m³ and rH = 0%. This indicates that dry deposition and rain scavenging of particle-adsorbed PFAAs are likely negligible.

4. Conclusions

Environmental fate of ionizable organic pollutants such PFAAs strongly depends on their water-phase associated physicochemical properties such as pKₐ, pH, and Kₐw. So far a wide range of values for the parameters (~10,000 times difference between minimum and maximum values of pKₐ and Kₐw) have been suggested, could be significant factors enlarging the uncertainty in the prediction of atmosphere-associated fate and transport including Dₐw, Kₚ, dry/wet deposition, and long-range transport potential. The result of our sensitivity analysis showed that the major phase of PFAAs present in atmosphere could significantly change within the range of suggested values for the parameters, indicating that the accurate values for the parameters are essential in assessing atmospheric and sequential fate. So, we induced the pKₐ and Kₐw values by adjusting to in situ measurements of Dₐw between air
vapor phase and rainwater, and estimated K_p of PFAAs using *in situ* measured gas-aerosol partition coefficient and obtained parameter values.

Our study is expected to have some implications in prediction of the environmental redistribution of other ionizable organic compounds since the atmospheric three-phase partitioning of ionizable organic pollutant is strongly associated with their redistribution among environmental compartments via volatilization, dry/wet deposition, rainfall scavenging, advection, and sorption to terrestrial surface. The redistribution of ionizable organic pollutants through atmospheric fate can be of particular importance in the coastal region where those pollutant can move backward, i.e., from the sea to the land. Our study will be helpful to understand such a fate of ionizable organic pollutants.

Acknowledgments

This work was supported by Incheon National University (International Cooperative) Research Grant in 2014.

References

[1] Wang T, Wang Y, Liao C, Cai Y, Jiang G. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants. *Environ. Sci. Technol.* 2009;43:5171-5175.

[2] Gouin T, Wania F. Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties. *Environ. Sci. Technol.* 2007;41:5986-5992.

[3] Wang Z, Xie Z, Möller A, Mi W, Wolschke H, Ebinghaus R. Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoralkyl substances in northern
German coast. *Atmos. Environ.* 2014;95:207-213.

[4] Xie Z, Wang Z, Mi W, Möller A, Wolschke H, Ebinghaus R. Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic. *Sci. Rep.* 2015;5:8912.

[5] Buck RC, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. *Int. Environ. Assess. Manage.* 2011;7:513-541.

[6] Ellis DA, Martin JW, De Silva AO, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. *Environ. Sci. Technol.* 2004;38:3316-3321.

[7] Wallington TJ, Hurley MD, Xia J, et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. *Environ. Sci. Technol.* 2006;40:924-930.

[8] Kim S-K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. *Environ. Sci. Technol.* 2007;41:8328-8334.

[9] Yarwood G, Kemball-Cook S, Keinath M, et al. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. *Environ. Sci. Technol.* 2007;41:5756-5762.

[10] Kim S-K, Li D-H, Shoeib M, Zoh K-D. Contribution of diffuse inputs to the aqueous mass load of perfluoroalkyl acids in river and stream catchments in Korea. *Sci. Total Environ.* 2014;470-471:1430-1440.

[11] Ahrens L, Harner T, Shoeib M, Lane DA, Murphy JG. Improved characterization of gas-particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers. *Environ. Sci. Technol.* 2012;46:7199-7206.
[12] Vierke L, Ahrens L, Shoeib M, et al. In situ air-water and particle-water partitioning of perfluorocarboxylic acids, perfluorosulfonic acids and perfluoroctyl sulfonamide at a wastewater treatment plant. *Chemosphere* 2013;92:941-948.

[13] Liu W, He W, Wu J, Wu W, Xu F. Distribution, partitioning and inhalation exposure of perfluoroalkyl acids (PFAAs) in urban and rural air near Lake Chaohu, China. *Environ. Pollut.* 2018;243:13-151.

[14] McMurdo C, Ellis D, Webster E, Butler J, Christensen RD, Reid LK. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA. *Environ. Sci. Technol.* 2008;42:3969-3974.

[15] Ju X, Jin Y, Sakaki K, Saito N. Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian coastal waters in China. *Environ. Sci. Technol.* 2009;42:3538-3542.

[16] Cho Y-K, Kim M-O, Kim B-C. Sea fog around the Korean peninsula. *J. Appl. Meteorol.* 2000;39:2473-2479.

[17] Wang T, Wang P, Meng J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. *Chemosphere* 2015;129:87-99.

[18] Tian Z, Kim S-K, Shoeib M, Oh J-E, Park J-E. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway. *Sci. Total Environ.* 2016;553:266-275.

[19] Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental organic chemistry. 2nd ed. Hoboken, NJ, John Wiley & Sons; 2002.

[20] Qureshi A, MacLeod M, Hungerbühler K. Modeling aerosol suspension soils and oceans as sources of micropollutants to air. *Chemosphere* 2009;77:495-500.

[21] Franco A, Haushild M, Jolliet O, Trapp S. Atmospheric fate of non-volatile and ionizable
compounds. *Chemosphere* 2011;85:1353-1359.

[22] Gomis MI, Wang Z, Scheringer M, Cousins IT. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. *Sci. Total Environ.* 2015;505:981-991.

[23] Pankow JF. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. *Atmos. Environ.* 1987;21:2275-2283.

[24] Masiol M, Hopke PK, Felton HD, et al. Analysis of major air pollutants and submicron particles in New York City and Long Island. *Atmos. Environ.* 2017;148:203-214.

[25] Squizzato S, Masiol M, Rich DQ, Hopke PK. A long-term source apportionment of PM$_{2.5}$ in New York State during 2005-2016. *Atmos. Environ.* 2018;192:35-47.

[26] Mackay D. Multimedia environmental models – The fugacity approach. 2nd ed. Boca Raton: Taylor & Francis; 2001.

[27] Jenkins J, Roy K, Driscoll C, Buerkett C. Acid rain in the Adirondacks: An environmental history. New York: Cornell University Press; 2007.

[28] Rayne S, Forest K. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. *J. Environ. Sci. Health A.* 2009a;44:1145-1199.

[29] Rayne S, Forest K, Friesen KJ. Computational approaches may underestimate pK$_a$ values of longer-chain perfluorinated carboxylic acids: Implication for assessing environmental and biological effects. *J. Environ. Sci. Health A.* 2009b;44:317-326.

[30] Klamt A, Eckert F, Diedenhofen M, Beck ME. First principles calculations of aqueous pK$_a$ values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pK$_a$ scale. *J. Phys. Chem. A* 2003;107:9380-9386.
[31] Eckert F, Klamt A. Accurate prediction of basicity in aqueous solution with COSMO-RS. J. Comput. Chem. 2006;27:11-19.

[32] Hilal SH, Karickhoff SW, Carreira LAA. Rigorous test for SPARC’s chemical reactivity models: Estimation of more than 4300 ionization pKₐs. Quant. Struct.-Act. Relat. 1995;14:348-355.

[33] Igarashi S, Yotsuyanagi T. Homogeneous liquid-liquid extraction by pH dependent phase separation with a fluorocarbon ionic surfactants and its application to the preconcentration of porphyrin compounds. Microchim. Acta 1992;106:37-44.

[34] Moroi Y, Yano H, Shibata O, Yonemitsu T. Determination of acidity constants of perfluoroalkanoic acids. Bull. Chem. Soc. Jpn. 2001;74:667-672.

[35] Burns D, Ellis DA, Li H, McMurdo CJ, Webster E. Experimental pKₐ determination for perfluorooctanoic acid (PFOA) and the potential impact of pKₐ concentration dependence on laboratory-measured partitioning phenomena and environmental modeling. Environ. Sci. Technol. 2008;42:9283-9288.

[36] Arp HPH, Niederer C, Goss K-U. Predicting the partitioning behavior of various highly fluorinated compounds. Environ. Sci. Technol. 2006;40:7298-7304.

[37] Kim M, Li LY, Grace JR, Ye C. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors. Environ. Pollut. 2015;196:462-472.

[38] Wania FA. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ. Sci. Technol. 2007;41:4529-4535.

[39] Li H, Ellis DA, Mackay D. Measurement of low air-water partition coefficients of organic acids by evaporation from a water surface. J. Chem. Eng. Data 2007;52:1580-1584.
[40] Kutsuna S, Hori H. Experimental determination of Henry’s law constant of perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas stripping method with a helical plate. Atmos. Environ. 2008;42:8883-8892.

[41] Khwaja HA, Husain L. Chemical characterization of acid precipitation in Albany, New York. Atmos. Environ. 1990;24:1869-1882.

[42] Singh S, Elumalai SP, Pal AK. Rain pH estimation based on the particulate matter pollutants and wet deposition study. Sci. Total Environ. 2016;563-564:293-301.

[43] Ding G, Peijnenburg WJGM. Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds. Crit. Rev. Environ. Sci. Technol. 2013;43:598-678.

[44] Arp HPH, Goss K-U. Gas/particle partitioning behavior of perfluorocarboxylic acids with terrestrial aerosols. Environ. Sci. Technol. 2009;43:8542-8547.

[45] Brooke D, Footitt A, Nwaogu TA. Environmental risk evaluation report: Perfluorooctanesulphonate (PFOS). Reseatch Contractor: Building Research Establishment Ltd., Risk and Policy Analysts Ltd. This report was produced by the Environment Agency’s Science Group. Available from: http://www.environmentagency.gov.uk/commondata/105385/pfos_rer_sept04_864557.pdf; 2004.

[46] Wang Z, MacLeod M, Cousins IT, Scheringer M, Hungerbuhler K. Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environ. Chem. 2011;8:389-398.

[47] Labadie P, Chevreuil M. Partitioning behavior of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France). Environ. Pollut. 2011;159:391-397.

[48] Higgins CP, Luthy RG. Sorption of perfluorinated surfactants on sediments. Environ. Sci.
Table 1. Concentrations of PFAAs Measured in Atmospheric Compartments

PFASs	air vapor (mol/m³)	air particle (mol/µg)	rain water (mol/m³)
PFHpA	7.2E-16 ± 3.1E-16	1.5E-17 ± 8.6E-18	1.5E-09 ± 9.1E-11
PFOA	7.6E-15 ± 3.8E-15	6.6E-17 ± 2.7E-17	6.7E-09 ± 3.9E-10
PFNA	4.6E-16 ± 1.0E-16	5.0E-18 ± 2.7E-18	3.0E-09 ± 4.8E-10
PFDA	1.2E-15 ± 8.7E-16	8.2E-18 ± 6.5E-18	2.2E-09 ± 3.4E-12
PFUnDA	2.7E-16 ± 1.6E-17	–	1.0E-09 ± 1.7E-10
PFDaDA	4.4E-16 ± 1.4E-16	1.0E-17 ± 7.0E-18	9.3E-10 ± 0.0E+00
PFHAs	7.7E-16 ± 2.5E-16	–	–
PFOS	3.4E-15 ± 1.4E-15	1.9E-17 ± 9.8E-18	1.9E-09 ± 6.6E-10
PFDaS	–	3.1E-18 ± 1.0E-18	5.6E-10 ± 0.0E+00
PFOSA	1.3E-15 ± 1.4E-15	1.0E-17 ± 6.2E-18	–

PFAS concentration include neutral and ionic species. Values <LOQ was treated to 'zero'.

Table 2. Physicochemical Properties for Fate of PFAAs Recommended in Literature

PFASs	pKa value	refs.	Log K_{OW}	Log K_{OC}	Log K_{OC}											
PFHpA	-0.2 – 3.8	[11,29,43-46]	-2.66	[36]	2	[37]	3.82	[36]	1.19	[37]	3.82	[36]	1.19	[37]	2.1	[47]
PFOA	-0.21 – 3.8	[11,29,43-46]	-2.37	[36]	2.57	[37]	4.3	[36]	1.79	[37]	4.3	[36]	1.79	[37]	2.11	[48]
PFNA	-0.21 – 2.575	[11,29,43]	-2.03	[36]	3.14	[37]	4.84	[36]	2.4	[37]	4.84	[36]	2.4	[37]	2.5	[48]
PFDA	-0.42 – 2.606	[11,29,43]	-1.79	[36]	3.7	[37]	5.3	[36]	3	[37]	5.3	[36]	3	[37]	2.92	[48]
PFUnDA	-0.39 – 3.128	[11,29,43]	-1.52	[36]	4.18	[37]	5.76	[36]	3.51	[37]	5.76	[36]	3.51	[37]	3.47	[48]
PFDaDA	-0.87 – 3.2	[11,29,43]	-0.58	[46]	4.84	[37]	6.41	[36]	4.21	[37]	6.41	[36]	4.21	[37]	4.7	[47]
PFOS	-0.3 – 0.14	[11,45]	-2.4	[36]	3.29	[37]	5.25	[36]	2.56	[37]	5.25	[36]	2.56	[37]	2.68	[48]
Table 3. Estimated pK_a from Observed D_{AW} of PFAAs between Air Vapor and Rainwater

	Measured D_{AW}	Estimated pK_a				
	median	average	min	max	this study	SPARCa
PFHpA	4.2E-07	3.8E-07	1.3E-07	8.4E-07	0.75	-0.20
PFOA	1.1E-06	1.2E-06	6.3E-07	3.0E-06	0.96	-0.21
PFNA	1.1E-07	1.4E-07	7.9E-08	5.0E-07	-0.31	-0.21
PFDA	4.9E-07	5.6E-07	2.1E-07	1.4E-06	0.04	-0.22
PFUnDA	2.7E-07	2.6E-07	1.9E-07	3.9E-07	-0.55	-0.22
PFDa	4.7E-07	4.8E-07	2.5E-07	7.5E-07	-1.24	-0.22
PFOS	1.5E-06	1.8E-06	6.3E-07	8.4E-06	1.16	0.14

a pK_a estimated using SPARC (requoted from [11]).

Table 4. Measured Gas-particle Partition Coefficients ($Log K_p$ versus $Log K_P$)

	Log K_P' (m3/µg)	Log K_P (m3/µg)			
	This study	[11]a	[13]a	This study	[11]a
PFHpA	-1.66 ± 0.33	-1.67	-7.88 ± 0.36 (0.75)b	-	
PFOA	-2.05 ± 0.26	-2.43	-7.59 ± 0.26 (0.96)	-7.14 ± 0.3 (-0.21)	
PFNA	-2.00 ± 0.28	-2.31	-8.28 ± 0.27 (-0.31)	-7.02 ± 0.5 (-0.21)	
PFDA	-2.17 ± 0.40	-2.26	-7.63 ± 0.32 (0.04)	-7.08 ± 0.6 (-0.22)	
PFUnDA	-1.59	-1.64	-6.31 ± 0.3 (-0.22)	-	
PFDa	-1.65 ± 0.47	-1.75	-7.40 ± 0.29 (-0.55)	-6.53 ± 0.6 (-0.22)	
PFBS	-2.30	-2.52	-1.90 ± 0.4 (0.14)	-	
PFHS	-1.59	-	-	-	
PFOS	-2.27 ± 0.26	-1.42	-6.66 ± 0.23 (1.16)	-5.78 ± 0.3 (0.14)	

acited literature; bvalues in parentheses indicate pK_a used.
Fig. 1. Dependency of D_{AW} on pK_a and K_{AW}. The red and blue solid lines indicate the maximum and minimum value of observed D_{AW} (see Table 3).
Fig. 2. Fraction of neutral and ionic species of PFOA (a) and PFOS (b) adsorbed on air particle, in air vapor, and in water phase with pH values. A vertical solid line indicates pH = 4.5.
Fig. 3. Fraction of neutral and ionic species of PFOA (a) and PFOS (b) adsorbed on air particle, in air vapor, and in water phase with relative humidity.