The role of non-hematopoietic stromal cells in the persistence of inflammation

Francesca Barone*, Saba Nayar and Chris D. Buckley*

Centre for Translational Inflammation Research, Arthritis Research UK, Rheumatology Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK.

*Correspondence: c.d.buckley@bham.ac.uk

INTRODUCTION

Inflammation involves the complex interaction between infiltrating cells, belonging to the immune system and tissue-resident stromal cells. The stroma, formerly considered the theatrical stage for the role of director of the immune response, regulating the process of leukocyte recruitment, organization of leukocytes within the tissue and exit via the escape route of the lymphatic endothelium. In physiological conditions, stromal cells provide an important structural component for tissues. Stroma consists of extracellular matrix (ECM), mesenchymal cells and a scaffold of nerves, epithelium, blood, and lymphatic vessels. Tissue-resident macrophages, although considered by some as part of the tissue stroma, are largely bone marrow-derived and bear the hallmark of the hematopoietic tissue. Under pathogen threat or in the target tissue of chronic inflammation and cancer, stromal cells acquire novel features, critical for the development of the pathological process and functional for its persistence. This review will provide the reader with a better understanding of the role of pathogenic stroma in inflammation. As both epithelium and nerves appear to be more implicated in disease initiation, rather than persistence, this review will focus on the role of fibroblasts, lymphatic and blood vessels.

FIBROBLASTS

The most abundant cell type within tissue stroma is the fibroblast (Filer et al., 2006). Fibroblasts are traditionally defined by their spindle shaped morphology and their ability to adhere to plastic culture vessels in vitro (Turin and Croft, 1989). They are believed to arise from three distinct cellular origins: primary mesenchyme, local epithelial-mesenchymal transition (EMT), or bone marrow-derived precursors (circulating fibrocytes; Abe et al., 2001; Kalluri and Neilson, 2003). It is widely accepted that the majority of fibroblasts originate from primary mesenchymal cells and that, upon appropriate stimulation, fibroblasts proliferate to generate new progeny (Iwano et al., 2002; Parsons et al., 2005). In physiological conditions fibroblasts provide mechanical strength to tissues by producing ECM components (type I, III, and V collagen and fibronectin), factors that regulate ECM turnover, such as metalloproteinases (MMPs) and proteins involved in the formation of basement membrane (type IV collagen and laminin; Marinovich et al., 1993; Sabatelli et al., 2001; Tomita et al., 2002). The intimate relationship between fibroblasts and mesenchymal stromal cells (MSC) and the clinical challenge to use MSC for tissue repair has driven renewed interest in fibroblasts as therapeutic target. Our group has largely contributed to this characterization utilizing antibodies raised against different components of this heterogeneous population. This screening exercise has provided us with some key markers that, together with others present in the literature (Table 1), can now be used to better understand distribution, function, and plasticity of the complex fibroblast family (Buckley et al., 2005; Halder et al., 2005).

Fibroblast behavior has mainly been explored in three pathological conditions: chronic inflammation, tissue fibrosis, and cancer. Interestingly, while these three conditions dramatically differ in etiology and genetic predispositions, they converge in that there are profound modifications both in terms of phenotype and function occurring to the stromal component. Whether these newly acquired properties are intrinsic to changes occurring in the fibroblasts or derive from the conditioning of the pathogenic infiltrating cells is still under investigation and seems to differ in the diverse conditions (Buckley et al., 2001).
Marker	Function	Fibroblast subtype	Other expressing cells
Vimentin	Intermediate filament associated protein	Miscellaneous	Endothelial cells, myoepithelial cells, neurons
α-SMA	Intermediate filament associated protein	Myofibroblasts	Vascular smooth muscle cells, pericytes, myoepithelial cells
Desmin	Intermediate filament associated protein	Skin fibroblasts	Muscle cells, vascular smooth muscle cells
FSP1	Intermediate filament associated protein	Miscellaneous	Invasive carcinoma cells
Discoid-domain receptor 2	Collagen receptor	Cardiac fibroblasts	Endothelial cells
FAP	Serine protease	Activated fibroblasts	Activated melanocytes
α1β1 integrin	Collagen receptor	Miscellaneous	Monocytes, endothelial cells
Prolyl 4-hydroxylase	Miscellaneous	Endothelial cells, cancer cells, epithelial cells	
Pro-collagen 1α2		Miscellaneous	Osteoblasts, chondroblasts
CD248	Unknown	Miscellaneous	Pericytes
VCAM-1	Cell adhesion	Miscellaneous	Activated endothelial cells

Table 1 | Fibroblast markers.

Adapted from Kalluri and Zeisberg (2006).

Fibroblasts play a crucial role in determining the site at which inflammation occurs, and influence the persistence of the inflammatory process (Takeamura et al., 2001). Different events have been shown to take place in order to elicit the modifications required for fibroblast activation. Signals derived from the surrounding infiltrating cells, such as proinflammatory cytokines have been shown to play a key role in the activation of rheumatoid arthritis (RA) synovial fibroblasts (Ohata et al., 2009). Similarly, leukocyte-derived signals such as IL-4 (Th2), interferon gamma (Th1), and TNF have been shown to modify the fibroblast transcriptional profile (Parronage et al., 2003). Nonetheless, a growing body of evidence suggests that intrinsic events such as the occurrence of epigenetic modifications in the fibroblast genome might contribute to the persistence of the activated phenotype (Ospelt et al., 2011).

Once activated, synovial fibroblasts have been shown to produce TGFβ, IL-1, and IL-6, cyclooxygenase-2, the polysaccharide hyaluronan, as well as inflammatory chemokines (e.g., IL-8, CCL5, CXCL1, CXCL13, CCL19) which are able to drive accumulation and segregation of the leukocytes in distinct compartments within the inflamed joints (Buckley et al., 2000, 2001; Bradfield et al., 2003; Peduto et al., 2009). The histological finding of TLOs in RA synovium has been associated with severe disease progression and erosions (Van de Sande et al., 2011). TLOs are not specific to RA and other chronic diseases, such as Sjogren’s syndrome, Hashimoto thyroiditis, and Crohn’s disease share a similar pattern of fibroblast activation and production of lymphoid cytokines/chemokines (Alaoui and Pujol-Borrell, 2006).

Rheumatoid arthritis synovial fibroblasts produce survival factors (e.g., type I interferon, IL-15, BAFF) that inhibit leukocyte apoptosis (Pilling et al., 1999; Burger et al., 2001). Gp38 expression is associated with the acquisition of a motile, contractile phenotype and it has been detected in cells derived from various types of cancers (i.e., vascular tumors, tumors of the central nervous system, malignant mesothelioma, squamous cell carcinomas, and germ cell tumors). Gp38 expression seems to identify more aggressive forms of tumors, with higher invasive and metastatic potential (Schacht et al., 2005; Raça et al., 2009). Gp38 expression is observed both by tumor cells and by the cancer-associated fibroblasts (CAF), a population of fibroblasts that surrounds and mingle with the malignancy favoring its organization and metastasis in to the surrounding tissue. The expression of gp38 in the context of tumor-associated lymphangiogenesis will be later discussed. CAF as well as fibroblasts from the inflamed synovium are also characterized by FAP (fibroblast activation protein) expression (Ospelt et al., 2010).
Fibroblast activation protein, also known as “seprase,” is a cell-surface 170 kDa type II transmembrane serine protease (Rettig et al., 1986; Aoyama and Chen, 1990), belonging to the family of post-prolyl aminopeptidases (Niedermeier et al., 1998). Dipeptidyl peptidase IV (DPPIV or CD26) is the most studied closest member to FAP, with 61% nucleotide sequence and 48% amino acid sequence identity (Scalon et al., 1994). FAP was identified as an inducible antigen by F19 monoclonal antibody and expressed on developing (Rettig et al., 1988; Garin-Chesa et al., 1990; Niedermeier et al., 2001) and reactive mesenchyme of various tumors, transformed cell lines, and granulation tissue of wound healing (Rettig et al., 1986, 1988; Aoyama and Chen, 1990; Garin-Chesa et al., 1990; Kelly et al., 1994; Monksy et al., 1994). When over-expressed in epithelial and fibroblastic cell lines, FAP has been proven to affect cell adhesion, migration, proliferation, and apoptosis (Wang et al., 2005).

Recently a novel immunosuppressive role for FAP-positive fibroblasts has been shown in the tumor environment. By using a FAP-DTR mice, in which deletion of FAP + fibroblasts is induced upon dipheria toxin administration, Kianman et al. (2010) have shown that depletion of FAP-expressing cells in Lewis lung carcinoma and pancreatic ductal adenocarcinoma causes rapid hypoxic necrosis of both tumor and stromal cells by a process involving IFNα and TNFα. These studies support the hypothesis that FAP activity and FAP-expressing fibroblasts facilitate tumor growth both directly as well as acting on the immune cells recruited against the malignancy. This suggests that cancerous cells, early in the disease establishment are able to modify the local environment and induce the formation of a stroma able to protect the same malignancy against the self-immune-surveillance, thus establishing a novel immunological role for stromal cells in cancer persistence and spreading.

Vascular Structures

Lymphatic Vessels

Striking changes in the lymphatic vasculature are associated with inflammation, which include acute and chronic infections, autoimmune diseases such as RA, Crohn’s disease, wound healing, cancer, and transplant rejection (Tammela and Alitalo, 2010; Alitalo, 2011). Neo-lymphangiogenesis is a critical mechanism regulating changes in interstitial fluid. Deregulated activation of its cascade results in defective leukocyte drainage and persistence of the inflammatory process. Recent studies show that induction of the NF-κB pathway activates Prox1 and this in turn activates the expression of the VEGFR-3 promoter, leading to increased receptor expression on lymphatic endothelial cells. This phenomenon enhances the responsiveness of pre-existing lymphatic endothelium to VEGFR-3 ligands, VEGF-C and VEGF-D, which stimulates lymphangiogenesis (Alitalo et al., 2002; Zhang et al., 2007; Watari et al., 2008; Kang et al., 2009; Rster et al., 2010). Other proinflammatory cytokines, e.g., IL-1 and TNFα are known to induce VEGF-CD expression in infiltrating and tissue-resident cells such as macrophages, dendritic cells (DCs), mast cells, and fibroblasts (Rustamali et al., 1998; Hamrah et al., 2003; Cursiefen et al., 2004; Alitalo et al., 2005; Baluk et al., 2005; Kataru et al., 2009; Kuender et al., 2009; Yao et al., 2010; Zumsteg and Christofori, 2012). Similarly, ITα2 secreted by lymphocytes at the site of inflammation has been documented to support inflammatory lymphangiogenesis (Mounzer et al., 2010). Data from models of inflamed cornea in mice and renal transplant induced inflammation in humans have shown that inflammation-mediated lymphangiogenesis does not occur solely by proliferation or continuous sprouting of existing lymphatic vessels but also includes incorporation of BM-derived lymphangiogenic progenitors (such as CD11b+ macrophages) into the existing or growing lymphatic vessels. These CD11b+ progenitors have the capability to trans-differentiate into L Polyester + vessels under pathological conditions, contributing to the increased lymphatic vessel density observed at inflammatory sites (Maruyama et al., 2005; Kojaschki et al., 2006; Mahb-El Hajjami and Soroa, 2008; Lee et al., 2010). Lymphangiogenesis is thought to facilitate resolution of inflammation, providing drainage of tissue edema, clearance of inflammatory cells and also favoring adaptive immune cell function by promoting macrophage and DCs mobilization to the draining lymph nodes. Inhibiting lymphangiogenesis by blocking VEGFR activity exacerbates pulmonary edema and favors the establishment of chronic myositis in the lung (Baluk et al., 2005; Poder et al., 2008; Kataru et al., 2008; Huggerer et al., 2011; Kim et al., 2012). Taken together, these data suggest that the signals that activate the induction of the inflammatory process also program its resolution. It is believed that such a coordinated series of events is altered in chronic inflammation, where the number of the infiltrating leukocytes overcomes the drainage capacity of the newly developing lymphatics. It is debatable whether newly formed lymphatic vessels are able to establish functional connections and deliver antigen, fluid, and cells to the draining lymph nodes. The inability of lymphatic vessels to deliver antigens to the draining lymph nodes could favor the persistence of TLOs, where an excess of antigen is presented in structures whose stroma component is potentially unable to exert the tollerogenic activity attributed to lymph node stroma (Kline and Thomas, 1976; Eleta et al., 1986; Iossi et al., 1995; Riggero et al., 1994; Angeli et al., 2006; Angeli and Randalph, 2006; Thaustat et al., 2006; Li et al., 2011). In this context the ectopic expression of CCL21 on newly formed (but yet non-functional lymphatic vessels) might compete with the chemokine gradient established by pre-existing functional lymphatic vessels, thus contributing to the entrapment of leukocytes and DCs within the TLOs (Kojaschki et al., 2004; Burman et al., 2005).

Lymphatic vessels have also been shown to play a role in immune regulation. For example the decoy chemokine receptor D6, which acts as a scavenger of inflammatory CC chemokines, is known to be expressed on lymphatic endothelium (Nabbs et al., 2001; Jamieson et al., 2005; Martinez de la Torre et al., 2005). In addition, inflamed lymphatic endothelium mediates suppression of DC maturation via CD11b interaction with ICAM-1 receptor (expressed on lymphatic endothelial cells; Podgrabinska et al., 2009).

However, lymphangiogenesis is a double-edged sword, as tumor cells can use this process as a mechanism to drive metastasis. Tumor cells enter lymphatic vasculature by invading pre-existing lymphatic vessels or by eliciting neo-lymphangiogenesis on the periphery of the tumor, stimulating the secretion of growth factor (VEGF) on tumor-associated fibroblasts and macrophages (Jeltes et al., 2002).
et al., 1997; Karpinen et al., 2001; Mandriota et al., 2001; Skobe et al., 2001; Stacker et al., 2001; Schoppmann et al., 2002). Interestingly, high density of lymphatic vessels correlates with high incidence of lymph node metastasis and poor prognosis in some cancers (Beasley et al., 2002; Altaldo et al., 2005; Cao, 2005; Kyras et al., 2005). As mentioned above, gp38 is highly expressed on the lymphatic endothelium and its expression correlates with poor prognosis and increased risk of lymph node metastasis (Schacht et al., 2005; Kitano et al., 2010). Lymphangiogenesis has also been found to play a pathogenic role in transplantation biology where it sustains delivery of donor antigens to the recipient lymph node, ultimately favoring the generation of an immune response against the transplanted tissue (Tammela and Alitalo, 2010; Alitalo, 2011; Seeger et al., 2012). These data suggest a key role for lymphatic vessel function and homeostasis in the regulation of the balance between immunity and tolerance as well the persistence of inflammation compared to its resolution.

BLOOD VESSELS

Similar to the fibroblasts and lymphatic vessels, blood vessels undergo remodeling during inflammation. Blood endothelium changes its structure and phenotype and participates in the inflammatory response mainly regulating leukocyte recruitment into the tissue. This phenomenon is characterized by loss of vascular integrity, which results in exposure of the sub-endothelium matrix and efflux of plasma-protein rich from the extravascular space (Pober and Sessa, 2007). The newly formed extravascular matrix supports leukocyte extravasations and it is associated with the expression of leukocyte adhesion molecules such as E-selectin, VCAM-1, and ICAM-1 (Adams and Shaw, 1994; Clark et al., 2006; Ley and Reuter, 2006). Moreover, inflammatory stimuli such TNFα, IL-1, certain bacteria and viruses, physical and oxidative stress (Pober and Sessa, 2007), and anti-endothelial cell antibodies (found in systemic inflammatory disease such as vasculitides; Meroni et al., 1995) all elicit NF-κB translocation and binding to promoter regions of genes commonly up-regulated during blood endothelial cell activation (Bierhaus et al., 1997; Hunt and Jard, 1998; Pober and Sessa, 2007). Failure to restore homeostasis of the blood endothelium contributes to chronic inflammatory disease and edema. Activated blood endothelial cells synthesize cytokine such as IL-6, which regulates the acute phase response, and chemosattractants, such as IL-8 and MCP-1 that help establishing the chemotactic gradient necessary for the influx of various inflammatory cells into the site of inflammation (Pober and Cotran, 1990; Mantovani et al., 1997; Middleton et al., 1997). Blood endothelial cells are also able to act as an antigen-presenting cell, expressing class II HLA molecules, in a phenomenon that has been shown to contribute to transplant rejection (Pober et al., 1996). Expression of co-stimulatory molecules such as OX40, ICOS, and CD2, known to be important in the formation and activation of T cell memory, has been documented in activated human endothelial vessels (Shiao et al., 2005), suggesting a role for the endothelium not only in leukocyte recruitment but also their education.

Additional endothelial changes are observed in various chronic inflammatory diseases, such as Sjögren’s syndrome, thyroiditis, and RA. As mentioned above, chronically inflamed organs often acquire TLOs that are accompanied by conversion of flat venular endothelial cells into tall and plump endothelial cells that very closely resemble high endothelial venules (HEVs) found in the T cell rich area of the lymph node. These ectopic HEVs are characterized by expression of the lymph node trafficking code, Peripheral node addressin (PNAd) that binds L-selectin expressed on naïve/central memory T lymphocytes and mature DCs. This homing machinery, supported by the ectopic expression of CCL21, allows HEVs in peripheral tissue to misguide influx of CCR7 + memory T cells into the inflamed tissue leading to amplification and maintenance of chronic inflammation (Girard and Springer, 1999; Barone et al., 2005; Manzo et al., 2005; Aresu and Puoti-Borrelli, 2006). Our group has recently demonstrated that endothelium cultured with fibroblasts derived from inflamed synovium behaves differently in terms of leukocyte recruitment compared to endothelium cultured with a healthy dermal fibroblasts (McGettrick et al., 2009). While reinforcing the concept that fibroblasts convey site specificity to the immune response, these data highlight the active role of the stroma in the shaping of the immune response from its earliest phases.

Growth of new blood vessels from existing ones is a very important component of many diseases including cancer and chronic inflammation (Pandya et al., 2006; Costa et al., 2007). Angiogenesis in these conditions ensures continuous oxygen and nutrient supply to pathogenic cells, thus sustaining their growth and survival. Several cells types including malignant cells, synovial fibroblasts, keratinocytes, and monocytes/macrophages are capable of producing classic angiogenic factors (such as VEGF, angiopoetin, and PDGF) when the environment becomes hypoxic. Moreover, inflammatory cytokines such as IL-1, TNFα (low dose), and IL-8 have been reported to be pro-angiogenic, thus supporting this process while exerting other proinflammatory activity. Blood vessels formed during pathological angiogenesis are structurally and functionally abnormal. Tumor vasculature is highly disorganized, vessels are tortuous and dilated, with uneven diameter, excessive branching and shunts that lead to chaotic and variable blood flow, often resulting in the establishment of hypoxic and acidic areas in the malignant tissue. The chaotic architecture and disturbed blood flow contributes to lower therapeutic effectiveness for several drugs (Jain, 1988; Giaccia, 1996; Helmlinger et al., 1997; Ruijs and Jain, 2000; Eberhard et al., 2000). Malignancy-associated neo-vascularization shows a non-uniform pattern of adhesion molecules that coupled with distorted blood supply (Jiang et al., 1997; Elciuc and Cerchiai, 1999) might explain why leukocyte-endothelial interaction is low in cancer. Similarly, the new vessels formed at the site of inflammation also exhibit structural and functional abnormalities. In RA, the vascular network is reported to be dysfunctional as it is unable to restore tissue oxygen homeostasis and the rheumatoid joints are believed to remains markedly hypoxic during disease (Taylor and Sivakumar, 2005). In both tumor and RA impaired angiogenesis ultimately favors the selection of cells that are metabolically resistant to lack of oxygen, thus reducing the effectiveness of therapy aimed to disturb the neo-angiogenic process.
CONCLUSION
Current treatments targeting leukocytes have led to a dramatic change in the management of inflammatory disease. However, this approach does not result in a definitive cure and even in patients that achieve clinical remission, relapse occurs once treatment is withdrawn. This suggests that other non-leukocyte targets need to be addressed if persistent inflammation is to be resolved. In this review we have explored the role of stromal cells in disease pathogenesis and suggest that stromal cells provide an attractive, site-specific target for therapy. Combined therapies, aimed at silencing the stroma, provide an alternative approach to curing persistent inflammatory disease.

REFERENCES

Bradfield, P. F., Amft, N., Vernon-Young, S. J. (2012). Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 3, 285 doi: 10.3389/fimmu.2012.00283

Buckley, C. D., Amft, N., Bradfield, P. F., Pilling, D., Rose, E., Atema-Nowak, M., Fitzgerald, F., et al. (2000). Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on stromal T cells contributes to their accumulation within the thymus-associated zone. J. Immunol. 165, 2423–2430.

Buckley, C. D., Lidereau, R., Reynolds, G., Torensma, R., De Ville d’Excoffier, C., Chen, L., Borges, L. P., et al. (2011). Association of vascular endothelial growth factor receptor 3 (VEGFR-3) with chemokine-dependent stromal cell migration in limiting acute inflammation. J. Clin. Invest. 125, 1277–1283.

Eloka-O, Elskicker, M., and Myregard, P. (1998). Lymph vessels of the transplanta
tional skin. Nephrol. Dial. Transplant. 13, 84–90.

Flister, M. J., Wilber, A., Hall, K. L., Iwano, M., Plieth, D., Danoff, T. M., et al. (2000). Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. J. Immunol. 164, 474–481.

Furr, A. G., Berry, M. L., Kim, A., Nelson, A. W., Welsh, M. P., and Artis, D. (1992). Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 175, 1477–1482.

Furey, A., Pitalia, C., and Buckley, C. D. (2006). Targeting the stromal microenvironment in chronic inflammatory disorders. Curr. Opin. Pharmacol. 6, 785–801.

Flater, M. I., Wilber, A., Hall, K. L., Iwano, M., Plieth, D., Danoff, T. M., et al. (2000). Evidence that fibroblasts induce lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Proc. Natl. Acad. Sci. U.S.A. 107, 4118–4123.

Barone, F., Bombardieri, M., Manzo, A., Huggenberger, R., Solda, S. S., Brander, D., Ullmann, S., Zimmermann, K., Amolinska, M., et al. (2011). An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117, 6967–6978.

Hut, B. J., and Jost, K. M. (1998). Endothelial cell activation: a central pathological process. BMJ 316, 1239–1243.

Iwano, M., Plieth, D., Danoff, T. M., et al. (2000). Fibroblasts support B-cell pseudoproliferation via a stromal cell-dependent mechanism. J. Clin. Invest. 107, N19–N33.

Blesa, M., Chen, W. T., and Chen, L. (1990). A 170-kDa membrane-bound pro-
tease is associated with the expression of malignancy in malignant melanoma cells. Proc. Natl. Acad. Sci. USA 87, 4231–4235.

Bontems, T., Okamoto, H., Toyama, Y., and Menonah, S. (2006). Molecular lites of rheumatoid inflammatory rheumatoid synovium. Arthritis Rheum. 52, 1773–1784.

Barone et al. Stromal cells in inflammation

“fimmu-03-00416” — 2013/1/10 — 19:54 — page 5 — #5
Barone et al.

Stromal cells in inflammation

“fimmu-03-00416” — 2013/1/10 — 19:54 — page 6 — #6
Rettig, W. J., Garin-Chesa, P., Beresford, Raica, M., Cimpean, A. M., and Ribatti, Podgrabinska, S., Kamalu, O., Mayer, Anticancer Res. Proinflammatory cytokines regulate differential expression in normal and H. R., Oettgen, H. F., Melamed, M. H. R., Feickert, H. J., Jennings, M. T., Cohen, J., et al. (1986). Differen-

tumor progression and metastasis. Proc. Natl. Acad. Sci. U.S.A. 91, 5075–5080.

distinctive expression in human astrocytoma subsets. J. Immunol. 159, 1041–1050.

The role of endothelial cells in inflammation. Nat. Rev. Immunol. 3, 283–288.

The role of endothelial cells in inflammation. J. Immunol. 179, 5799–5812.

Cancer 10, 2997–3006.

Rettig, W. J., Chosa, P. G., Beresford, H. R., Feickert, H. J., Jennings, M. T., Cohen, J., et al. (1986). Differen-
thecytokines in rheumatoid arthritis. Curr. Opin. Rheumatol. 17, 293–298.

Shi, K., Takehara, K., Oishi, T., et al. (2005). T-cell functions in wound healing in mouse skin. J. Anat. 207, 915–922.

This article was submitted to Frontiers in Antigen Presenting Cell Biology, a specialty of Frontiers in Immunology. Copyright © 2013 Barone, Nayar and Buckley. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Conflict of Interest Statement. The authors declare that the research was conducted in the absence of any commer-
cial or financial relationships that could be construed as a potential con-
flict of interest.

Received: 06 July 2012; accepted: 20 December 2012; published online: 24 January 2013.

Gleim, Barone F, Nayar S and Buckley CD (2013). The role of non-lymphatic vascular cells in the persistence of inflam-
matary. Front. Immunol. 4:416. doi: 10.3389/ﬁmmu.2012.00416

www.frontiern.org January 2013 | Volume 3 | Article 416 | 7

Stromal cells in inflammation

expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273, 8435–8438.

Regattieri, R., Fontana, R. Jr, Thomas, G. A., Muz, J., Farini, R. H., Kowal, T. A., et al. (1994). Detection of canine alveolar lung rejection by pulmonary lymphoscintigraphy. J. Thorac. Cardiovasc. Surg. 108, 258–256.

Sahabadi, F., Ronkay, L., Lattanzio, G., Braghetta, P., Benacchi, C., et al. (2001). Collagen VII deficiency affects the organization of fibrinogen in the extracellular matrix of cultured fibroblasts. Matrix Biol. 19, 475–486.

Scaino, M. J., Raj, B. K., Calvisi, D., Garin-Chesa, P., Semo-Monsac, M. P., Heseler, H. J., et al. (1994). Molecular cloning of Fibulin1 proteination protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epidermal cancers. Proc. Natl. Acad. Sci. U.S.A. 91, 5607–5611.

Shishido, Y., Endo, S. S., Johnson, L. A., Jackson, D. G., Hong, Y. E., and Demarz, M. (2005). Up-

regulation of the lymphatic marker podoplanin, a mucin-type trans-
membrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am. J. Pathol. 166, 915–922.

Schatz, V., Ramon, M. L., Hong, Y. E., Hains, Y. S., Dong, D., Harvey, N., et al. (2003). Thalidomide/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphohypoplasia. EMBO J. 22, 3564–3576.

Shapiro, S. E., Bondy, P., Stockil, J., Koh, R., Urlich, R., Causig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangio-

genesis. Am J Pathol 161, 947–956.

Sjoer, H., Benami, M., and Seguret, S. (2012). The role of lymphatics in rural inflammation. Neprol. Dial. Transplant 27, 2285–2291.

Shao, L., McIntosh, M., and Poole, J. S. (2005). Memory T cells and their con-
tinuation in human alveolar injury. J. Immunol. 175, 4886–4896.