INVITED REVIEW

Ureteroscopy is more cost effective than shock wave lithotripsy for stone treatment: systematic review and meta-analysis

Robert M. Geraghty1 · Patrick Jones1 · Thomas R. W. Herrmann2 · Omar Aboumarzouk3 · Bhaskar K. Somani1

Received: 19 February 2018 / Accepted: 30 April 2018 / Published online: 5 May 2018
© The Author(s) 2018

Abstract

Introduction A rising incidence of kidney stone disease has led to an increase in ureteroscopy (URS) and shock wave lithotripsy (SWL). Our aim was to compare the cost of URS and SWL for treatment of stones.

Methods A systematic review and meta-analysis based on Cochrane and PRISMA standards was conducted for all studies reporting on comparative cost of treatment between URS and SWL. The cost calculation was based on factual data presented in the individual studies as reported by the authors. English language articles from January 2001 to December 2017 using Medline, PubMed, EMBASE, CINAHL, Cochrane library and Google Scholar were selected. Our study was registered with PROSPERO (International prospective register of systematic reviews)—registration number CRD 42017080350.

Results A total of 12 studies involving 2012 patients (SWL-1243, URS-769) were included after initial identification and screening of 725 studies with further assessment of 27 papers. The mean stone size was 10 and 11 mm for SWL and URS, respectively, with stone location in the proximal ureter (n = 8 studies), distal ureter (n = 1), all locations in the ureter (n = 1) and in the kidney (n = 2). Stone free rates (84 vs. 60%) were favourable for URS compared to SWL (p < 0.001). Complication rates (23 vs. 30%) were non-significantly in favor of SWL (p = 0.11) whereas re-treatment rates (11 vs. 27%) were non-significantly in favor of URS (p = 0.29). Mean overall cost was significantly lower for URS ($2801) compared to SWL ($3627) (p = 0.03). The included studies had high risk of bias overall. On sub-analysis, URS was significantly cost-effective for both stones < 10 and ≥ 10 mm and for proximal ureteric stones.

Conclusion There is limited evidence to suggest that URS is less expensive than SWL. However, due to lack of standardization, studies seem to be contradictory and further randomized studies are needed to address this issue.

Keywords Ureteroscopy · Shock wave lithotripsy · Cost · Effectiveness · Outcomes

Introduction

The worldwide incidence of kidney stone disease (KSD) is rising [1]. The use of ureteroscopy (URS) for KSD has also risen, whilst shockwave lithotripsy (SWL) use has fallen [2]. This trend has resulted from improvement of technique, minimization of scopes and better laser fragmentation technology [3]. While stones in the ureter and most stones up to 2 cm in the kidney are suitable for both URS and SWL, several prospective randomized controlled trials have demonstrated the superiority of URS over SWL in terms of stone free rate (SFR) and retreatment rates [4].

Majority of stones might be amenable for either URS or SWL and although treatment is tailored after patient counseling, for patients suitable for both modalities, a major factor in treatment selection is the cost associated with it, especially with healthcare resources already stretched to its limit. These costs can vary greatly depending on the initial purchase price, cost of consumables and repair, durability of the instruments, the negotiated discounts available from manufacturers and the reimbursement received by the providers.

While cost is increasingly an important factor in the decision-making, to date, there has been no review comparing the cost of URS and SWL. Although individual cost of
URS and SWL has been mentioned, there is no clear way to compare costs due to discrepancies across various health-care systems and partly because indirect costs are difficult to measure [5–8]. In the absence of clear cost comparison, we wanted to look the cost of surgical stone management as has been reported by the authors in studies comparing both URS and SWL. To this end, we perform a systematic review and meta-analysis of all studies reporting on comparative cost of treatment between URS and SWL.

Methods and Materials

Evidence acquisition: criteria for considering studies for this review

Population Adults with ureteral or renal urolithiasis
Intervention Ureteroscopy
Comparator Shockwave lithotripsy
Outcome Cost
Study design Systematic review and meta-analysis

Inclusion criteria:
(1) all published articles written in the English language
(2) studies reporting on comparative cost of treatment between URS and SWL
(3) URS will include rigid, semi-rigid and flexible.

Exclusion criteria:
(1) studies examining treatment for non-urolithiasis conditions
(2) older studies using the same data as a more recent study—the longest cohort was chosen to avoid duplication
(3) grey literature and decision analysis models which did not have real patient data

Search strategy and study selection

The systematic review was performed according to the Cochrane review guidelines [9]. The search strategy was conducted to find relevant studies from Ovid medline without revisions (2001–2017), PubMed (2001–2017), EMBASE (2001–2017), Cochrane Library (2017), CINAHL (2001–2017), Clinicaltrials.gov, Google Scholar and individual urologic journals.

The search terms used included: ‘ureteroscopy’, ‘URS’, ‘ureterorenoscopy’, ‘retrograde intrarenal surgery’, ‘RIRS’, ‘shockwave lithotripsy’, ‘SWL’, ‘ESWL’, ‘cost’, ‘calculi*’, ‘stone*’, ‘nephrolithiasis’ and ‘uroolithiasis’. Boolean operators (AND, OR) were used to refine the search.

As the cost data prior to 2001 was not relevant anymore, the search was limited to English language articles published between January 2001 and December 2017. Authors of the included studies were contacted in the case of data not being available or clear. If the authors did not reply data was estimated from the graphs and other data provided in the study and if the data could not be estimated, then the study was excluded from analysis. Our study was registered with PROSPERO (International prospective register of systematic reviews)—registration number—CRD 42017080350.

Two experienced reviewers (RG and BS) identified all studies. All studies that appeared to fit the inclusion criteria were included for full review. Each reviewer independently selected studies for inclusion in the review and all discrepancies were resolved with mutual agreement and consensus with the third author (PJ) (Fig. 1).

Data extraction and analysis

The following variables were extracted from each study: year of publication, country of study, study period, treatment modality, price/cost, age, stone size, location of stone, stone free rate, complications, hospital stay, retreatment rate and operative time. Bias analysis was performed using the GRADE guidelines [10].

Cost was converted to US dollars based on the mean exchange rate of the year of publication. Cost was rounded to the nearest dollar. Data was collated using Microsoft Excel (version 12.2.4) and analysed using Revman (version 5.0) and SPSS (version 21). Those studies with no standard deviations for cost were not given weight in the forest plot analysis. Forest plots were generated in Revman 5.3.

Continuous data was presented as standard mean difference and for dichotomous data risk difference was used. Data heterogeneity was assessed using a Chi squared test. If there were no significant heterogeneity then random effects were used. If there was a significant result, this was adjusted for using standard mean difference and random effects on forest plot analysis.

Results

Study characteristics

There were 12 studies examining the cost of URS vs. SWL [11–22]. These took place in the USA [11, 12, 20, 21], China, [13–15, 19], Egypt [16], Taiwan [17] and the UK [18, 22]. Seven of the included studies were retrospective cohort studies [12–14, 18–21] two were prospective cohort studies [17, 22] and the remaining three [11, 15, 16]. The
studies took place over a mean 2-year period. Overall there were 2012 patients, with 1243 undergoing SWL and 769 undergoing URS. Studies were subdivided further according to stone size (see Tables 1, 2).

Patient and stone demographics

The mean age of patients in the SWL group was 49.4 years (range: 37–60), and the URS group was 48.5 years (range: 20–60). Stone size was similar between the two groups with a mean size of 10.2 mm (range: 6.2–20 mm) for SWL and 11 mm for URS (range: 6.4–20 mm) (Table 2). There were five studies examining stones smaller than 10 mm [11, 12, 14, 16, 20], two studies examining stones less than 15 mm [20, 21] and five studies examining stones 10 mm and larger [12, 14, 16, 17, 22].

Eight studies compared treatment of proximal ureteric stones only [12–17, 19, 21]. The others compared distal stones [11], ureteric stones of all locations [18] and renal stones [20, 22].

Intra- and post-operative characteristics

The studies predominantly used semi-rigid URS. Six studies used semi-rigid URS, three used flexible URS, one study using rigid URS, one study used either flexible or semi-rigid URS and one study did not specify the type of URS (Table 1).

The mean initial SFR was significantly higher for URS (84%) vs. SWL (60%). Comparison between the randomized trials demonstrated significantly higher stone free rates for
Table 1 URS vs. SWL study demographics

Study	Country	Study type	Study period	Patients, n	SWL, n	URS, n	Type of URS
Pearle et al. 2001	USA	Prospective randomized trial	1995–2000	64	32	32	Semi-rigid
Parker et al. 2004	USA	Retrospective cohort	1997–2001	154	73	81	Flexi/semirigid -unclear
Parker et al. 2004	USA	Retrospective cohort	1997–2001	66	38	28	Flexi/semirigid -unclear
Wu et al. 2004	China	Retrospective cohort	2002–2003	80	41	39	Semi-rigid
Wu et al. 2005	China	Retrospective cohort	2002–2003	113	68	45	Semi-rigid
Wu et al. 2005	China	Retrospective cohort	2002–2003	107	51	56	Semi-rigid
Lee et al. 2006	China	Prospective randomized trial	2001–2003	42	22	20	Semi-rigid
Salem 2009	Egypt	Prospective randomized trial	N/A	110	58	52	Semi-rigid
Salem 2009	Egypt	Prospective randomized trial	N/A	90	42	48	Semi-rigid
Huang et al. 2009	Taiwan	Prospective cohort	1998–1999	241	201	40	Semi-rigid
Huang et al. 2009	Taiwan	Prospective cohort	1998–1999	207	159	48	Semi-rigid
Koo et al. 2011	UK	Retrospective cohort	N/A	88	51	37	Flexible
Cui et al. 2014	China	Retrospective cohort	2010–2012	160	80	80	Rigid
Cone et al. 2014	USA	Retrospective cohort	2010–2011	158	78	80	Flexible
Cone et al. 2017	USA	Retrospective cohort	2010–2011	113	51	62	Flexible (n = 39), semirigid (n = 23)
Chan et al. 2017	UK	Prospective cohort	2008–2013	219	198	21	Flexible
Total				2012	1243	769	

N/A not available

Table 2 SWL vs. URS patient and stone demographics

Study	Age, year ± SD (range)	Stone size, mm ± SD (range)	Location
Pearle et al. 2001	41.2 ± 14.9	7.4 ± 2.3	Distal ureter
Parker et al. 2004	50 ± 17	< 10	Proximal ureter
Parker et al. 2004	55 ± 15	> 10	Proximal ureter
Wu et al. 2004	51	12.8 ± 0.4	Proximal ureter
Wu et al. 2005	47.5 ± 1.5	6.9 ± 0.2	Proximal Ureter
Wu et al. 2005	51.5 ± 1.9	12.1 ± 0.3	Proximal Ureter
Lee et al. 2006	54.2 ± 16.7	17.9 ± 3.9	Proximal ureter
Salem, 2009	42.8 (37-60)	6.2 (5-9)	Proximal ureter
Salem, 2009	45.4 (37-55)	12.5 (11-20)	Proximal ureter
Huang et al. 2009	52.5 ± 16.1	< 10	Proximal Ureter
Huang et al. 2009	52.5 ± 16.1	> 10	Proximal ureter
Koo et al. 2011	51.2 ± 14.9	< 20	Ureteric (all locations)
Cui et al. 2014	40.6 ± 9.8	9.8 ± 3.5	Proximal ureter
Cone et al. 2014	54 ± 15	7.0 ± 0.27	Renal
Cone et al. 2017	53 ± 13	7.64 ± 3.32	Proximal ureter
Chan et al. 2017	54.1 ± 13.3	12.4 ± 2.4	Lower pole renal
Total	49.4	10.2	11.0
Table 3 SWL vs. URS intra- and post-operative characteristics

Study	Initial SFR (%)	Complications, n (%)	Retreatment (%)					
	SWL	URS	SWL	URS	SWL	URS	SWL	URS
Pearle et al. 2001 [11]	66%	69%	3 (9%)	8 (25%)	None	None		
Parker et al. 2004 [12] <10 mm	60%	90%	20 (27.4%)	19 (23.5%)	N/A	N/A		
Parker et al. 2004 [12] ≥10 mm	45%	93%	17 (44.7%)	12 (42.9%)	N/A	N/A		
Wu et al. 2004 [13]	61%	92%	None	None	39%	8%		
Wu et al. 2005 [14] <10 mm	85.30%	91.10%	N/A	N/A	14.7%	8.9%		
Wu et al. 2005 [14] ≥10 mm	35.20%	76.80%	N/A	N/A	64.8%	23.2%		
Lee et al. 2006 [15]	31.80%	35%	2 (9%)	13 (65%)	31.80%	40%		
Salem, 2009 [16] <10 mm	80%	100%	N/A	N/A	40.48%	8.33%		
Salem 2009 [16] ≥10 mm	60%	88%	54 (93%)	27 (52%)	20.69%	None		
Huang et al. 2009 [17] <10 mm	75.60%	95.00%	N/A	N/A	24.4%	5%		
Huang et al. 2009 [17] ≥10 mm	66.70%	85.40%	N/A	N/A	33.3%	14.6%		
Koo et al. 2011 [18]	45.10%	64.90%	4 (8%)	4 (11%)	7.50%	2.50%		
Cui et al. 2014 [19]	77.50%	97.50%	30 (38%)	31 (39%)	21.60%	16.20%		
Cone et al. 2014 [20]	55%	95%	N/A	N/A	12.80%	5%		
Cone et al. 2017 [21]	47.10%	88.70%	N/A	N/A	N/A	N/A		
Chan et al. 2017 [22]	62.60%	76.20%	N/A	N/A	34%	10%		
Total	60% ± 15%	84% ± 16%	136 (23%)	117 (30%)	27% ± 16%	11% ± 11%		
p (χ²)	< 0.001	0.26	< 0.001	0.07	< 0.001			
OR (95% CI)	4.58 (3.52–5.97)	0.72 (0.50–1.03)	3.43 (2.48–4.74)					

N/A not available. SWL Shockwave lithotripsy, URS Ureteroscopy

Fig. 2 a–c forest plot of SFR, complications and re-treatment
URS ($I^2 = 30\%$: risk difference = 0.17, 95% CI 0.08–0.26, $p < 0.001$) (Table 3 and Fig. 2a).

The total number of complications for each group were 136 for SWL and 117 for URS. The mean complication rates were 23% for SWL and 30% for URS. There was no statistical difference between the two when examining the randomized trials ($I^2 = 96\%$, risk difference = 0.14, 95% CI −0.03–0.31, $p = 0.11$) (Table 3 and Fig. 2b).

There were higher retreatment rates for SWL (27%) than for URS (11%). Meta-analysis of the randomized trials demonstrated no significant difference between URS and SWL ($I^2 = 91\%$, risk difference = 0.12, 95% CI −0.10–0.33, $p = 0.29$) (Table 3 and Fig. 2c).

Table 4 SWL vs. URS cost data and hospital stay

Study	Price ($)	P (SWL vs. URS cost)	Hospital stay, days ± SD (range)			
	SWL ± SD	URS ± SD	SWL	URS		
Pearle et al. 2001 [11]	$7343	$6088	N/A	94% day-case 75% day-case		
Parker et al. 2004 [12]	< 10 mm	$14,900 ± 7600	$9200 ± 4400	<0.001	N/A	N/A
	≥ 10 mm	$16,900 ± 7000	$10,000 ± 7100	<0.0001	N/A	N/A
Wu et al. 2004 [13]		$1401 ± 104	$953 ± 35	0.001	N/A	N/A
Wu et al. 2005 [14]	< 10 mm	$1091.00 ± 39	$955 ± 40	0.01	N/A	N/A
	≥ 10 mm	$1771 ± 95	$1153 ± 62	<0.001	N/A	N/A
Lee et al. 2006 [15]		$1637	$2154	N/A	1.8 ± 0.4	4.7 ± 2
Salem 2009 [16]		$1300	$1140	<0.05	N/A	N/A
Huang et al. 2009 [17]	< 10 mm	$642 ± 288	$630 ± 159	0.47	2.0 ± 0.7	2.9 ± 1.4
	≥ 10 mm	$734 ± 303	$698 ± 167	0.32	2.0 ± 0.7	2.9 ± 1.4
Huang et al. 2009 [17]	< 10 mm	$632 ± 114	$688 ± 212	0.04	2.0 ± 0.7	2.9 ± 1.4
	≥ 10 mm	$690 ± 130	$846 ± 232	0.03	2.0 ± 0.7	2.9 ± 1.4
Koo et al. 2011 [18]		$4059 ± 2106	$665 ± 624	<0.001	N/A	N/A
Cui et al. 2014 [19]		$120 ± 25	$1180 ± 258	<0.05	0.25 ± 0.7	2.8 ± 2.3
Cone et al. 2014 [20]		$3167	$4470	N/A	N/A	N/A
Cone et al. 2017 [21]		$3167	$4470	N/A	N/A	N/A
Chan et al. [22]		$931	$1564	<0.001	0 ± 0.4	2.4 ± 3.5
Total		$3637	$2801.33	1.2	3.1	

N/A not available

Cost and hospital stay

URS (mean: $2801) was significantly cheaper than SWL (mean: $3637) (standard mean difference = 1.64, 95% CI 0.13–3.15, $I^2 = 99\%$, $p = 0.03$) (Table 4 and Fig. 3). Cost breakdown is itemized in Table 5.

The mean hospital stay was significantly shorter for SWL (1.2 days, range: 0–2) compared to URS (3.1 days, range: 0–4.7).

Table 5 SWL vs. URS cost breakdown

Study or Subgroup	Mean ± SD	Total	Mean ± SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI	Year	Std. Mean Difference IV, Random, 95% CI	
Wu et al. 2004	1,401	104	41	953	35	10.8%	5.66 [4.66, 6.66]	2004	
Parker et al. 2004a	16,900	7,000	38	10,000	7,100	28%	11.2%	0.97 [0.45, 1.49]	2004
Parker et al. 2004a	14,900	7,600	73	9,200	4,400	81%	11.3%	0.93 [0.59, 1.26]	2004
Wu et al. 2005b	1,771	95	51	1,153	62	56%	10.7%	7.72 [6.60, 8.84]	2005
Wu et al. 2005a	1,091	39	68	955	40	45%	11.2%	3.43 [2.84, 4.02]	2005
Huang et al. 2009a	642	288	201	630	159	40%	11.3%	0.04 [-0.30, 0.38]	2009
Huang et al. 2009b	734	303	159	698	167	48%	11.3%	0.13 [-0.19, 0.45]	2009
Koo et al. 2011	4,059	2,106	51	665	624	37%	11.2%	2.03 [1.51, 2.55]	2011
Cui et al. 2014	120	25	80	1,180	258	80%	11.1%	-5.76 [-6.47, -5.05]	2014
Total (95% CI)	762	454	100%	1.64 [0.13, 3.15]					

Heterogeneity: $T^2 = 5.24$; $Chi^2 = 698.66$, df = 8 ($P < 0.000001$); $I^2 = 99\%$

Test for overall effect: $Z = 2.13$ ($P = 0.03$)
Table 5 SWL vs. URS Itemized cost breakdown (as reported by individual studies)

Study	Cost breakdown and calculation for each study (based on the individual studies)	Study population
	SWL	URS
Pearle et al. 2001 [11]	Hospital fee, anaesthesia professional fee, urology professional fee	Hospital fee, anaesthesia professional fee, urology professional fee, office stent removal, urology fee for stent removal
	Adults with solitary radiopaque distal ureteral calculus below bony pelvis ≤ 15 mm	
Parker et al. 2004 [12]	Initial procedure, additional procedures, radiographs, clinics	Initial procedure, additional procedures, radiographs, clinics
Wu et al. 2004 [13]	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment
Wu et al. 2005 [14]	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits and any ancillary/retreatment procedures	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment
Lee et al. 2006 [15]	Hospital charges, operating room, radiology, surgeon, anaesthesia and auxiliary procedures	Hospital charges, operating room, radiology, surgeon, anaesthesia, auxiliary procedures and SWL machine
Salem, 2009 [16]	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment
Huang et al. 2009 [17]	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment	Pre-op evaluation, operation, perioperative monitoring, postoperative care, office visits, ancillary procedures and retreatment
Koo et al. 2011 [18]	Procedural + overheads	Procedural + overheads
Cui et al. 2014 [19]	N/A	N/A
Cone et al. 2014 [20]	Surgeons fee, anaesthesia, facility cost, stent placement	Surgeons fee, anaesthesia, facility cost, stent placement
Cone et al. 2017 [21]	N/A	N/A
Chan et al. 2017 [22]	Cost per procedure (NHS tariff)	Cost per procedure (NHS tariff)
	Adults with symptomatic radiopaque renal calculi < 20 mm	
	Adults with single radiopaque stone 8–15 mm. Patient choice on treatment	
	Adults with radiopaque renal stones < 15 mm. Patient choice on treatment	
	Adults with radiopaque ureteral stones < 15 mm. Patient choice on treatment	
	Adults with single radiopaque or radiolucent lower pole renal stones 10–20 mm	
Sub-analyses

Stone size

Subanalysis of studies comparing SWL and URS was possible for stone size smaller than 10 or 10 mm and larger. Both groups favoured URS in terms of cost (< 10 mm: Std mean diff = 0.90, 95% CI 0.68–1.12, $I^2 = 98\%$, $p < 0.001$; ≥ 10 mm: Std mean diff = 0.78, 95% CI 0.51–1.04, $I^2 = 99\%$, $p < 0.001$).

Proximal ureteric stones

Proximal ureteric stones treated with URS had significantly cheaper costs (Std. mean diff = 0.99, 95% CI 0.82–1.15, $p < 0.001$).

Risk of bias analysis

Risk of bias was analysed in each study (Fig. 4). The overall the risk of bias was high. There were only three prospective randomized trials with the remaining studies being prospective cohort studies ($n = 2$) and retrospective studies ($n = 7$). The randomized trials scored a ‘low’ certainty on bias analysis using GRADE, and the observational studies scored a ‘very low’ certainty.

None of the studies were blinded, although given that these were surgical studies binding is not always feasible. The data was complete for all studies except these four studies [13, 15, 19, 20], however none of the studies provided a patient/study participant flow diagram to allow for easy assessment of attrition bias.

Reporting bias was suspected in two studies [19, 22]. Cui et al. [19]. performed a retrospective study with 80 patients in each treatment arm and it is possible that other patients were treated during the same time period but excluded from the study. Thus there is a high risk of selection and reporting bias. Chan et al. [22]. had very large numbers of SWL but relatively few patients undergoing URS, which reduced the power of the study increased the risk of Type II statistical error.

Discussion

Principal findings

This study is the first meta-analysis comparing cost of URS and SWL as reported by the authors and has comprehensively examined all objective outcome measures. The analysis shows that URS has higher SFR and lower retreatment rates in comparison to SWL. While the cost was significantly lower for URS, the complication rates were relatively higher.
than SWL although this was not statistically significant. URS seem to be more cost effective for treatment of stones of all sizes.

Meaning of the study: implications for clinicians and policymakers

This review has demonstrated the overall advantage of URS in terms of cost, SFR and retreatment rates. While the calculation of costs across studies is not standardized, the comparison within each study is done using similar parameters. These costs might vary across various healthcare systems but considering that the studies have been reported from different countries, the results are generalizable to most patients. Treatment decisions should be individualized for patients after informed consent and should be based on clinical needs rather than economical compulsions.

Strengths and limitations

The strength of our review is the systematic approach used to review the literature on the cost comparison for URS and SWL. Two independent researchers not involved in any of these reported studies performed the data extraction. Furthermore, a meta-analysis and risk of bias has also been conducted with sub-analysis of available stone parameters.

An obvious weakness of our review is the dependence on primary studies, which did not have standardized reporting of cost and comes from different healthcare setups where the treatment costs are variable. Similarly, the cost of URS has changed dramatically in the study period and new technologies adopted in the past few years have had a big influence on the cost.

The non-randomized studies were potentially prone to bias in patient selection and outcome reporting and the randomized studies were not blinded. Only Parker et al. [12] had a chance of blinding as their subjects underwent general anaesthesia (GA) for both URS and SWL, whereas all other studies used sedation for SWL rather than GA. While cost was calculated, their quality of life was not reported, which can be especially affected in patients undergoing URS with a post-operative stent insertion. None of the studies provided sample size/power calculations or CONSORT [23] flow diagrams for patient involvement in the study.

There was significant heterogeneity between the studies for all outcome measures. For continuous data like the cost and hospital stay, this was adjusted for by using standard mean difference and fixed effects analysis on forest plot. Heterogeneity would be expected given differences in available equipment, which could thereby affect outcomes and cost variation between countries. Cost also varied depending on what studies included in their ‘cost’, which would range from the procedure itself to the entire initial hospital stay plus office visits/additional hospital stays. Despite a lack of randomization, which is often unachievable in invasive surgical studies, [24] the outcome measures were objective and often dichotomous (i.e., SFR, retreatment rate, complication rate), therefore reducing the risk of a placebo effect.

Strengths and weaknesses in relation to other studies, discussing important differences in results

Hospital stay was significantly longer for URS but given that only three studies provided this data and there was a high heterogeneity between the studies (\(\chi^2: p < 0.001, I^2 = 80\%\)), this result must be open to interpretation. Modern studies have demonstrated that day-case URS is becoming increasingly more feasible and therefore more comparable to SWL [25].

Decision analysis models were excluded as they do not include patient data. However, published decision analysis models can provide a useful tool to compare SWL and URS. Lotan et al. [26] demonstrated that above a SFR of 80% URS is more cost-effective than SWL. Another model by Cone et al. [20] demonstrated that a 67% SFR using SWL would be cost effective and a SFR < 71% using URS would not be cost effective, concluding that URS could be considered as a first-line treatment for renal or ureteric calculi < 1.5 cm in patients who desire to be stone free. Mean SFR for studies in this meta-analysis was 84%. Seven studies crossed this cost-effectiveness threshold, covering proximal ureteric stones and all renal stones [12, 13, 16, 17, 19–21]. The results also demonstrate a trend, reflected in another systematic review, that higher case volume results in higher SFR and fewer complications [27].

Although SWL is less invasive, over the last decade there is a shift from physician delivered to technician delivered treatment, perhaps coupled with a relative lack in technological advancements and investment in SWL when compared to URS. Optimization of SWL with training and proper maintenance can offer better treatment outcomes, which in turn can decrease the overall cost of SWL [28].

The limitations of our study relate to the heterogeneous nature of the studies included from different countries with variable practice patterns. The SFR was not defined consistently across studies [29]. Similarly the measurement of cost varied across studies although for each study as the cost of procedures would vary between healthcare systems and the author’s account of cost was taken into consideration.

Future studies

There are large numbers of retrospective case series within the surgical literature suggesting ways to minimize costs [29, 30]. This constitutes a very poor evidence base on which to base recommendations. There needs to be a trend towards
larger randomized trials that are powered towards the desired outcome, and therefore able to accurately assess the true cost-effectiveness. In addition to comparing the cost of SWL and URS it needs to include quality of life measurements, which is a significant cause of morbidity in especially in URS.

Conclusion

There is limited evidence to suggest that URS is less expensive than SWL. However, due to lack of standardization, studies seem to be contradictory and further randomized studies are needed to address this issue.

Author contributions RMG: data collection, manuscript writing and data analysis; PF: data analysis, editing; HTRW: manuscript editing; OA: manuscript editing; BKS: project development, Protocol and editing

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interest and no funding was received for this.

Research involving human participants ethical approval As this is a systematic review, no ethical approval was required.

Informed consent As this is a systematic review, no informed consent was required.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Scales CD, Smith AC, Hanley JM et al (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165
2. Geraghty R, Jones P, Somani B (2017) Worldwide trends of urinary stone disease treatment over the last two decades: a systematic review. J Endourol 31(6):547–556
3. Pietropaolo A, Proietti S, Geraghty R et al (2017) Trends of ‘uroolithiasis: interventions, simulation, and laser technology’ over the last 16 years (2000–2015) as published in the literature (PubMed): a systematic review from European section of uro-technology (ESUT). World J Urol 35(11):1651–1658
4. El-Nahas AR, Ibrahim HM, Youssef RF et al (2012) Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10–20 mm. BJU Int 110(6):898–902
5. Izamin I, Anizah I, Rizal AM et al (2009) Comparing extracorporeal shock wave lithotripsy and ureteroscopy for treatment of proximal ureteral calculi: A cost-effectiveness study. Med J Malaysia 64(1):12–21
6. Hendrikx AJM, Strijbos WEM, De Knijff DW et al (1999) Treatment for extended-mid and distal ureteral stones: SWL or ureteroscopy? Results of a multicenter study. J Endourol 13(10):727–733
7. Pardalis DS, Kosmaouglou EV, Kapotis CG (1999) Endoscopy vs. extracorporeal shockwave lithotripsy in the treatment of distal ureteral stones: 10 years’ experience. J Endourol 13(3):161–164
8. Bierkens AF, Hendrikx AJM, De La Rosette JJMCH et al (1998) Treatment of mid- and lower ureteric calculi: extracorporeal shock-wave lithotripsy vs laser ureteroscopy. A comparison of costs, morbidity and effectiveness. Br J Urol 81:31–35
9. Higgins JPT, Green S (eds) Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org. Updated March 2011
10. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating evidence and strength of recommendations. BMJ 336:924
11. Pearle MS, Nadler R, Bercowsky E et al (2001) Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for management of distal ureteric calculi. J Urol 166(4):1255–1260
12. Parker BD, Frederick RW, Reilly TP et al (2004) Efficiency and cost of treating proximal ureteral stones: SWL or URS. Urology 64(6):1102–1106
13. Wu CF, Shee JJ, Lin WY et al (2004) Comparison between extracorporeal shock wave lithotripsy and Holmium:YAG laser lithotripsy in the treatment of proximal ureteral stones. J Urol 172(5 Pt 1):1899–1902
14. Wu CF, Chen CS, Lin WY et al (2005) Therapeutic options for proximal ureteral stone: Extracorporeal shock wave lithotripsy versus Holmium:YAG laser lithotripsy in treating large proximal ureteral stones. J Urol 178(5):1673–1677
15. Lee YH, Tsai JY, Jiaan BP et al (2006) Prospective randomized trial comparing shock wave lithotripsy and ureteroscopic lithotripsy for management of large upper third ureteral stones. Urology 67(3):480–484
16. Salem HK (2009) A prospective randomized study comparing shock wave lithotripsy and Holmium:YAG laser lithotripsy for the management of proximal ureteral calculi. Urology 74(6):1216–1221
17. Huang CY, Chen SS, Chen LK (2009) Cost-effectiveness of treating ureteral stones in a Taipei city hospital: Shock wave lithotripsy versus Holmium:YAG laser lithotripsy. J Endourol 19(10):1515–1519
18. Koo V, Young M, Thompson T et al (2011) Cost-effectiveness and efficiency of shockwave lithotripsy vs flexible ureteroscopic holmium: yttrium–aluminium–garnet laser lithotripsy in the treatment of lower pole renal calculi. BJU Int 108(11):1913–1916
19. Cui Y, Cao W, Shen H et al (2014) Comparison of ESWL and ureteroscopic holmium laser lithotripsy in management of ureteral stones. PLoS One 9(2):e87634
20. Cone EB, Eiserh BH, Ursiny M et al (2014) Cost-effectiveness comparison of renal calculi treated with ureteroscopic laser lithotripsy versus shockwave lithotripsy. J Endourol 28(6):639–643
21. Cone EB, Pareek G, Ursiny M et al (2017) Cost-effectiveness comparison of ureteral calculi treated with ureteroscopic laser lithotripsy versus shockwave lithotripsy. World J Urol 35(1):161–166
22. Chan LH, Good DW, Laing K et al (2017) Primary SWL is an efficient and cost-effective treatment for lower pole renal stones between 10 and 20 mm in size: A Large Single center study. J Endourol 31(5):510–516
23. Mohr D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285:1987–1991
24. McCulloch P, Taylor I, Sasaki M et al (2002) Randomised trials in surgery: problems and possible solutions. BMJ 324(7351):1448–1451
25. Ghosh A, Oliver R, Way C et al (2017) Results of day-case ureterorenoscopy (DC-URS) for stone disease: prospective outcomes over 4.5 years. World J Urol 35(11):1757–1764
26. Lotan Y, Gettman MT, Roehrborn CG et al (2002) Management of ureteral calculi: a cost comparison and decision making analysis. J Urol 167(4):1621–1629
27. Geraghty R, Somani B (2017) Bilateral simultaneous ureteroscopic (BS-URS) approach in the management of Bilateral Urolithiasis is a safe and effective strategy in the contemporary era—evidence from systematic review. Curr Urol Rep 18(2):11
28. Chaussy CG, Tiselius H-G (2018) How can and should we optimize extracorporeal shockwave lithotripsy? Urolithiasis 46(1):3–17
29. Somani BK, Desai M, Traxer O, Lahme S (2014) Stone free rate (SFR): a new proposal for defining levels of SFR. Urolithiasis 42(2):95
30. Chapman RA, Somani BK, Robertson A et al (2014) Decreasing cost of flexible ureterorenoscopy: single-use laser fiber cost analysis. Urology 83(5):1003–1005