Reassessment of C+O=CO (g) Equilibration

In-Ho JUNG

Department of Mining and Materials Engineering, McGill University, H.W. Wong Building, 3610 University Street, Montreal, Quebec, H3A 2B2, Canada. E-mail: in-ho.jung@mcgill.ca
(Received on August 22, 2008; accepted on April 14, 2009)

1. Introduction

The reaction between carbon and oxygen in molten iron is one of the most fundamental reactions in the iron- and steelmaking process, and many experiments have been carried out and the results are well summarized by Kawai and Mori.11 However, the close investigation on the interaction parameters shows very interesting factor. The values of interaction parameter between carbon and oxygen in weight percent standard state, \(e^o_i \), determined in the earlier studies are in range from 0.4 to 0.6, while the values from relatively later studies are in range from 0.3 to even +0.1.

The interaction parameter between carbon and oxygen \(e^o_i \) was mostly determined from the equilibration between CO/CO\(_2\) gas mixture and molten Fe–C metal contained in CaO, MgO, Al\(_2\)O\(_3\) or graphite crucible. In certain cases, a reaction furnace was designed to carry out the equilibration under high pressure up to 80 atm. However, several difficulties of the experiments have been pointed out: (i) precise control and analysis of CO/CO\(_2\) ratio in gas due to very low CO\(_2\) level, (ii) evolution of CO gas during the solidification of samples after equilibration and consequent addition of Al to prevent this oxygen loss, (iii) possible contamination of oxygen due to the adsorption of oxygen to graphic specimens, (iv) very sluggish reaction between Fe–C melt and CO/CO\(_2\) gas especially at high C concentration.

In the present study, several representative experimental studies will be critically reviewed again, and the thermodynamics of the Fe–C–O system will be reassessed based on more recent thermodynamic description of the Fe–C system.

2. Thermodynamics

Carbon and oxygen can react together to produce CO gas:

\[
C(s) + \frac{1}{2} O_2(g) = CO(g), \quad \Delta G^\circ_1 = -114959 - 85.6687T^{10}\]

The standard state of C and O\(_2\) can be changed to the infinite dilution (Henrian) standard state by the following relationships:

\[
C_\text{Henrian} = C(s), \quad \Delta G^\circ_2 = -RT \ln \gamma^o_i \quad \text{equation (2)}
\]

\[
O_2\text{Henrian} = 1/2 O_2(g), \quad \Delta G^\circ_3 = -RT \ln \gamma^o_o \quad \text{equation (3)}
\]

where \(\gamma^o_i \) is the Henrian activity coefficient of \(i \) element. Then, the combination of reactions (1) to (3) can produce the well known reactions:

\[
C + O = CO(g), \quad \Delta G^\circ_4 = \Delta G^\circ_2 - RT \ln \left(\frac{\gamma^o_C}{\gamma^o_o} \right) \quad \text{equation (4)}
\]

2.1. Classical Wagner Interaction Parameter Formalism

Using the Classical Wagner Interaction Parameter Formalism (CWIPF), the Gibbs energy of reaction (4) can be expanded:

\[
\Delta G^\circ_4 = \Delta G^\circ_2 - RT \ln \left(\frac{\gamma^o_C}{\gamma^o_o} \right) = -RT \ln \left(\frac{\rho_C}{\rho_o} \right) \quad \text{equation (5)}
\]

where \(f_C \) and \(f_o \) are the activity coefficients of C and O relative to the infinite dilution standard state given by:

\[
\ln f_C = e_1^o C + e_2^o C^2 + \cdots \quad \text{equation (6)}
\]

\[
\ln f_o = e_0^o O + e_0^o O^2 + \cdots \quad \text{equation (7)}
\]

where the \(e \) coefficients are called first-order interaction parameters. Second or higher order interaction parameters can be included too. Note that \(e_0^o = e_0^o \). These interaction parameters can be determined from the experimental data of the Fe–C (\(e^o_{Fe-C} \)), Fe–O (\(e^o_{Fe-O} \)), and Fe–C–O (\(e^o_{Fe-C-O} \)) system.

In general, the molar Gibbs energy of the Fe–M–O system, \(G \), can be described by the CWIPF as follow:

\[
G = (x_{Fe}g_{Fe}^o + x_{M}g_{M}^o + x_{O}g_{O}^o) + RT \ln x_{Fe} + x_{M} \ln x_{M} + x_{O} \ln x_{O}
\]

where \(g^o \) is the molar Gibbs energy of the i element in the Raoultian standard state, \(\gamma^o_x = 1 \), and \(\gamma^o_o \) and \(\gamma^o_x \) are activity coefficients. When the standard states of M and O are changed to their infinite dilution standard states,

\[
G = (x_{Fe}g_{Fe}^o + x_{M}g_{M}^o + x_{O}g_{O}^o) + RT \ln x_{Fe} + x_{M} \ln x_{M} + x_{O} \ln x_{O}
\]

where \(g_{Fe}^o = \ln \left(g_{Fe}^o + RT \ln \gamma^o_{Fe} \right) \) is the molar Gibbs energy of Fe element in its infinite dilution (Henrian) standard state, \(f_{Fe} = 1 \), and \(f_{M} \) and \(f_{O} \) are activity coefficients relative to the infinite dilution standard state.

The CWIPF can accurately reproduce the measured de-oxidation equilibria over a limited range of temperature and composition. However, the resultant equations extrapolate very poorly outside this range.

2.2. Unified Interaction Parameter Formalism

The CWIPF is very simple and useful for dilute solution, but it has been frequently misunderstood or misapplied to higher concentration range. The formalism obeys the Gibbs–Duhem equation only in the limit of infinite dilution. However, in the case of the Fe–C–O system, [C] interested for iron-making can reach up to carbon saturation, \(5.0 \text{ wt%} \text{C} \) at 1600°C \((x_{O} = \sim 0.21) \). The limit of the CWIPF can be overcome by the Unified Interaction Parameter Formalism (UIPF) by Pelton.12) The equation of the UIFP can be exactly reduced to the original CWIPF at the infinite dilution standard state. Thus, the UIFP used in the present study is a more general solution model covering to higher concentration range.

If only the first- and second-order interaction parameters are considered, the activity coefficient in Eqs. (6) and (7) for the Fe–M–C system can be expanded by the UIFP as follows:

\[
\ln f_C = \sum_{N=M-O} e_{MN} x_N x_L + \ln f_{Fe} ... \text{equation (10)}
\]

\[
\ln f_o = \sum_{N=M-O} e_{ON} x_N x_L + \ln f_{Fe} ... \text{equation (11)}
\]

\[
\ln f_{Fe} = -\sum_{i,j,k=M-O} e_{ijk} x_i x_j x_k \quad \text{equation (12)}
\]

where \(f_{Fe} \) is the first-order interaction parameter (identical to \(e^o_{Fe} \)) between i and j solute elements, and \(e_{ijk} = e_{ijk} \) is the second-order interaction parameter between i, j, k elements (identical to \(e^o_{ij} \)), and \(e_{ijk} = e_{ijk} = e_{ijk} = e_{ijk} \). When \(x_{M} \) and \(x_{O} \) approach to zero, \(\ln f_{Fe} \) becomes diminished faster and the equations become equivalent to the CWIPF. General equations for the UIFP can be found elsewhere.12)
3. Evaluation of Fe–C–O Equilibrium

3.1. Review of Experimental Data

Several key experiments for the Fe–C–O system were critically reviewed in the present study.

The experimental data of Ban-Ya and Matoba \(^{3}\) were mainly used for the thermodynamics of the Fe–C–O system in JSPS evaluation. \(^{3}\) Ban-Ya and Matoba equilibrated the Fe–C melts contained in CaO or MgO crucible with various CO/CO\(_2\) gas mixtures. After equilibration, the samples were not directly quenched, but the power of an induction furnace was turned off and the crucibles were lowered to cool the samples as soon as possible. In order to prevent gas evolution from the melts containing \([\text{wt}\% \text{C}]<0.3\%\) during solidification, about 0.5\% Al was added 15 s before switching off the power. The melts containing \([\text{wt}\% \text{C}]>0.4\%\) were thoroughly solidified without adding Al. The oxygen contents in samples were analyzed by the vacuum fusion method. As mentioned by Ban-Ya and matoba, the intention to approach to equilibration state from both higher \([\text{C}]\) side and lower \([\text{C}]\) side was not always satisfactory for high carbon containing melts. Very small amount of CO\(_2\) gas was mixed with CO for high carbon containing melts. For example, CO\(_2\)/CO ratios for the equilibration with liquid Fe containing 2\% \([\text{C}]\) were less than \(5 \times 10^{-4}\), which is difficult to control.

El-Kaddah and Robertson \(^{9}\) used a high pressure levitation cell to minimize both carbon deposition changing the CO/CO\(_2\) gas composition and effect of thermal diffusion in gas mixture. Gas pressures of CO/CO\(_2\) mixtures were increased up to 80 atm in the temperature range from 1 550 to 1 750°C. Oxygen analysis was carried out by the vacuum fusion method. Specimens containing \([\text{wt}\% \text{C}]<2.0\) at 1 750°C showed CO evolution during solidification, but no evolution of CO was observed for the samples containing at \([\text{wt}\% \text{C}]>2.0\). Thus, about 0.05\% Al was added to the Fe–C melts containing \([\text{wt}\% \text{C}]<2.0\) 20 s before quenching the samples.

Schenck et al. \(^{4}\) used a sealed graphite crucible. About 100–200 g of Fe–C alloy was added in the crucible with 1–2 g of solid Fe\(_3\)O\(_4\) for oxygen source. Then, CO gas was generated by the reaction of Fe\(_3\)O\(_4\) and \([\text{C}]\) (or graphite crucible) at 1 600°C. Although CO gas pressure could build up easily in a sealed crucible, total pressure of gas was not measured in their experiments. For example, 1 g of Fe\(_3\)O\(_4\) can produce 2.9 L of CO gas at 1 atm and 1 600°C. If the empty volume of a crucible is assumed to be 0.05 L, 1 g of Fe\(_3\)O\(_4\) can generate total gas pressure of about 57 atm at 1 600°C. Of course, oxygen solubility at given carbon content can be increased with total pressure of CO gas in a sealed crucible. Therefore, it should be noted that the experimental conditions of Schenck et al. were not well defined, and the results seem to be less reliable to use in the evaluation of the C–O equilibration.

Fisher and Janko \(^{7}\) performed the Fe–C–O equilibration for the Fe–C melt containing 0.01\% \([\text{wt}\% \text{C}]<\) carbon saturation at 1 600°C and 1 atm. CaO, MgO or graphite crucible was used. The experiments were carried out by decarburization route. Oxygen activity was also measured by an emf technique. They obtained very scattered results of oxygen content and activity in high carbon concentration range.

Marshall and Chipman \(^{3}\) observed CO bubbling or blowholes in the quenched Fe–C samples containing 0.02\% \([\text{wt}\% \text{C}]<2.0\) at 20 atm gas pressure. So they intentionally added small amount of Al before quenching process to keep the oxygen in liquid Fe–C. Later, Fuwa and Chipman \(^{7}\) examined this system more carefully and reported the possibility of substantial errors in oxygen content of the previous experiments including their own experiment using Al addition. As [Al] decreases the activity of oxygen significantly, it may increase the equilibrium oxygen content in liquid Fe–C. Thus, they performed the experiments at \([\text{wt}\% \text{C}]<2.0\) where no Al addition was required. In addition, they found that oxygen or water vapor could be easily adsorbed on the porous graphitic surface of the Fe–C specimens. According to their experiment, the carbon-saturated specimen placed under vacuum immediately after preparation or analyzed immediately after experiment contained about 3 wt ppm oxygen. On the other hand, the samples treated as normal procedure contained oxygen up to 20 wt ppm. Base on this result, they claimed the most of samples in the previous studies might be contaminated and have excess oxygen. For example, Fuwa and Chipman \(^{7}\) reported the equilibrium oxygen content at \([\text{wt}\% \text{C}]=2.0\) is about 7 wt ppm at 1 540°C under 1 atm CO atmosphere, while Ban-Ya and Matoba \(^{3}\) reported about 20–30 wt ppm at the same condition.

Matsumoto \(^{10}\) conducted the experiment at \([\text{C}]>1 \text{wt}\%\) without Al addition under 1, 4, 8 and 16 atm CO gas pressures at 1 500°C and found consistent results with Fuwa and Chipman. \(^{7}\) In particular, Matsumoto used both electrolytic iron with carbon and Fe–C alloy premelted in a vacuum furnace as starting Fe–C metal materials. Oxygen contents approached from higher oxygen content side (in case of the electrolytic iron with carbon) were the same as those approached from lower oxygen content side (in case of the premelted Fe–C) within experimental error limits. In this way, he confirmed the equilibration of his experiments. Oxygen content was analyzed by the vacuum fusion method.

Several studies including Marshall and Chipman \(^{2}\) and El-Kaddah and Robertson \(^{3}\) under normal pressure and higher gas pressure (up to 80 atm) claimed that CO bubbles were evolved from the Fe–C samples during the solidification at \([\text{wt}\% \text{C}]<2.0\). However, it is strange why this phenomenon was not observed by Ban-Ya and Matoba \(^{3}\) at \([\text{C}]<0.4\) \text{wt}\%\) at 1 atm gas pressure.

The reported interaction parameters between carbon and oxygen \((e_C^O)\) are quite different in the above experimental studies: \(e_C^O=-0.42\) by Ban-Ya and Matoba, \(^{3}\) \(e_C^O=-0.13\) by Fuwa and Chipman, \(^{7}\) \(e_C^O=0.36\) by El-Kaddah and Robertson, \(^{9}\) and \(e_C^O=0.05\) by Matsumoto. \(^{8}\) Moreover, the Henrian activity coefficient of C \((\gamma_C^H)\) and self interaction parameter of carbon \((c_C)\) used in the above studies are also different.

3.2. Activity of Carbon in Liquid Fe–C

Gustafson \(^{13}\) performed critical evaluation and optimization of all thermodynamic and phase diagram data of the Fe–C system and presented the optimized Gibbs energy functions for all solid (FCC, BCC, Fe\(_3\)C and C) and liquid phases. The phase diagram of the Fe–C system is experimentally well determined and the experimental data are quite consistent with each other. In the case of activity of carbon for solid FCC and BCC solutions, the experimental data are consistent with each other. However, the activity of carbon of liquid phase is somewhat scattered at \([\text{wt}\% \text{C}]>1.0\). Since the phase diagram is the representation of the Gibbs energy functions of all phases with temperature, the phase diagram information can constrain the Gibbs energy function of liquid phase (activity of carbon in liquid solution). In this way, the inconsistency of the activity data in liquid phase was resolved by Gustafson. The thermodynamic assessment of Gustafson is widely used by the Calphad community (for example, it is used for the commercial steel database of FactSage \(^{14}\) and Thermocalc \(^{15}\)). In the present study, the Henrian activity coefficient and interaction parameters of C for liquid Fe–C were taken from the optimized model parameters of Gustafson, as listed in Table 1.
temperatures were varied from 1,540 to 1,750°C.

In the experimental data of Ban-Ya and Matoba, the error at high carbon concentration region might be in fair agreement within experimental error limit. The experimental data of Marshall and Chipman up to 20 atm pressure are also in good agreement with calculated curves up to [wt% C]<1.0.

In the case of Schenck et al., 4) as discussed above in the Sec. 3.1, the experimental gas pressures were not well defined in their experiments due to the usage of a sealed crucible. If the empty volume of a sealed crucible is assumed to be 0.05 L, 1 g FeO would generate total gas pressure of about 57 atm at 1,600°C. In this condition, the oxygen content at carbon saturation will be calculated to be log[wt% O]=−2.26 in the present study, which is close to the maximum value of their experimental data. In the case of 0.5 g of FeO, in 0.05 L sealed crucible, the pressure would be about 28 atm at 1,600°C and the calculated log[wt% O]=−2.56 at carbon saturation, which is close to their lowest experimental data. Big scatter of oxygen contents (from 40 to 85 ppm) at carbon saturation also raises doubts about their experimental results.

Large discrepancy between the present calculations and the experimental data of Ban-Ya and Matoba are found. The experimental data are consistently slightly higher than calculated curves below [wt% C]<0.5. Then, the oxygen content begins to deviate positively from calculations at [wt% C]>0.5. It is hard to explain this deviation clearly. However, it is interesting to see that the activity of carbon

Figure 1 shows the activity of carbon calculated from Gustafson, 13) along with experimental data. Both Ban-Ya and Matoba 3) and El-Kaddah and Robertson 9) determined the activity of carbon from the equilibration of the Fe–C melt with CO/CO2 gas mixtures: C + CO2 (g) = 2CO (g). However, as can be seen in Fig. 1, the experimental results are quite different each other. The discrepancy may result from very sluggish equilibration between the Fe–C melt and CO/CO2 gas mixture. Normally more than 10 h were required to achieve equilibration at high C concentration, and Ban-Ya and Matoba also mentioned that the results were not always satisfactory even after such a long equilibration time. In comparison with the optimized results of Gustafson, 13) the experimental data are in good agreement with the calculated curves at [wt% C]<1.0. The deviation of Ban-Ya and Matoba becomes quite significant at [wt% C]>1.0. The results of El-Kaddah and Robertson are lower than the calculations, but the deviation is less significant. This implies that both experimental data might have some error at [wt% C]>1.0. In the case of Ban-Ya and Matoba, the error at high carbon concentration region might be induced also by the difficulty of very low CO2 control (less than 0.1 volume %) in CO/CO2 gas mixtures. In the case of El-Kaddah and Robertson, the CO2 was controlled between 0.8 vol% and 8.7 vol%.

3.3 Activity of Oxygen in Liquid Fe–O

The Henrian activity coefficient and interaction parameters of O in the Fe–O liquid are relatively well known and the experimental data are more consistent each other. The parameters used in the present study are listed in Table 1, which are taken from recent study.1,14)

Fe–O system	C(s) + 1/2O2(g) = CO(g): ΔG° = −114.959 – 85.668T 14)
eC = eO = 0	(eC = eO = 0): this study

Table 1. Optimized Henrian activity coefficients and interaction parameters for the Fe–C–O system.

![Figure 1](image)

Figure 1. Activity of carbon in liquid Fe–C phase relative to solid standard state. The curves are calculated using the optimized Gibbs energy functions for liquid Fe–C by Gustafson. 13)

![Figure 2](image)

Figure 2. Equilibrium [C] and [O] contents in liquid Fe–C–O in equilibration with CO gas at various temperatures and pressures. Curves are calculated using the interaction parameters $e_i^C = e_i^O = 0.$

The calculated curves are in good agreement with the experimental data of Fuwa and Chipman 3) and Matsumoto 1) at [wt% C]>1.0 and total gas pressure up to 8 atm. Experimental data of El-Kaddah and Robertson 9) at 40 atm total pressure are slightly lower than the calculated curves but they are in fair agreement within experimental error limit. The experimental data of Marshall and Chipman up to 20 atm pressure are also in good agreement with calculated curves up to [wt% C]<1.0.

In the case of Schenck et al. 4) as discussed above in the Sec. 3.1, the experimental gas pressures were not well defined in their experiments due to the usage of a sealed crucible. The empty volume of a sealed crucible is assumed to be 0.05 L, 1 g FeO2 would generate total gas pressure of about 57 atm at 1,600°C. In this condition, the oxygen content at carbon saturation will be calculated to be log[wt% O]=−2.26 in the present study, which is close to the maximum value of their experimental data. In the case of 0.5 g of FeO, in 0.05 L sealed crucible, the pressure would be about 28 atm at 1,600°C and the calculated log[wt% O]=−2.56 at carbon saturation, which is close to their lowest experimental data. Big scatter of oxygen contents (from 40 to 85 ppm) at carbon saturation also raises doubts about their experimental results.

Large discrepancy between the present calculations and the experimental data of Ban-Ya and Matoba are found. The experimental data are consistently slightly higher than calculated curves below [wt% C]<0.5. Then, the oxygen content begins to deviate positively from calculations at [wt% C]>0.5. It is hard to explain this deviation clearly. However, it is interesting to see that the activity of carbon

![Image](image)
in Fig. 1 is also seriously deviated from optimal curves at [wt% C]>1.0. The results of Schenck and Hinze5 are similar to Ban-Ya and Matoba. The results of Fisher and Janke6 are also quite scattered at high carbon concentration (experimental data are scattered within dashed line boundary in Fig. 2). However, the minimum oxygen contents at the given carbon content are in good agreement with calculated curves at [wt% C]<1.0. Similar to the results of Ban-Ya and Matoba,3 the experimental data begin to deviate positively at [wt% C]>1.0.

Fuwa and Chipman7 reported the possible contamination of oxygen in the Fe–C sample at high carbon content. They reported that Fe–C metal sample can be easily contaminated by the atmosphere and about 20 wt ppm excess oxygen can be adsorbed in the metallic sample after experiment. Similar results were also reported by Kusnetsov et al.16 This means that the experimental results with lower [O] seem to be more accurate than the higher [O]. If this error is considered for the results of Ban-Ya and Matoba,3 for example, their results can be in good agreement with the present calculations too.

Recently the author presented the associate model17 to accurately describe the deoxidation phenomena of molten iron by many deoxidizing elements including Ca, Mg, Ba, Al, Ti, Mn, Si, etc. In the case of C, no associates (CO or C\textsubscript{2}O) are required. The evaluated thermodynamic data in Table 1 is incorporated to the FACT FeLq database14 for the complex thermodynamic calculations between molten steel and slag/inclusion/refractory/gas.

4. Conclusions

Several key experimental studies on the Fe–C–O system were critically reviewed and the interaction parameter between oxygen and carbon (ε_{O}^{C}) is reassessed in the present study. Based on the optimized thermodynamic functions of carbon in the Fe–C system, it is suggested that $\varepsilon_{O}^{C} = \varepsilon_{C}^{O} = 0.0$ can reproduce the reliable experimental data for the Fe–C–O system at iron- and steel-making conditions.

REFERENCES

1) Steelmaking Data Sourcebook, Japan Society for the Promotion of Science, 19th Comm. On Steelmaking, Gordon & Breach Science, New York, NY, (1988), 59.
2) S. Marshall and J. Chipman: Trans. Am. Soc. Met., \textbf{30} (1942), 695.
3) S. Ban-Ya and S. Matoba: \textit{Tetsu-to-Hagané}, \textbf{46} (1960), 237.
4) H. Schenck, E. Steinmetz and M. Gloz: \textit{Arch. Eisenhüttenwes.}, \textbf{39} (1968), 69.
5) H. Schenck and H. Hinze: \textit{Arch. Eisenhüttenwes.}, \textbf{37} (1966), 545.
6) W. A. Fischer and D. Janke: \textit{Arch. Eisenhüttenwes.}, \textbf{42} (1971), 249.
7) T. Fuwa and J. Chipman: \textit{Trans. AIME}, \textbf{218} (1960), 887.
8) N. Matsumoto: \textit{Sci. Rep. Res. Inst. Tohoku Univ.}, \textbf{22A} (1970), 75.
9) N. H. El-Kaddah and G. C. Robertson: \textit{Metall. Trans.}, \textbf{8B} (1977), 569.
10) M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald and A. N. Syverud: JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data Vol, 14 Suppl. 1, (1985).
11) C. Wagner: Thermodynamics of Alloy, Addison Wesley, Reading, MA, (1962), 51.
12) A. D. Pelton: \textit{Metall. Mater. Trans.}, \textbf{28B} (1997), 869.
13) P. Gustafson: \textit{Scand. J. Metall.}, \textbf{14} (1985), 259.
14) C. W. Bale, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, R. B. Mahfoud, J. Melançon, A.D. Pelton and S. Petersen: \textit{Calphad}, \textbf{26} (2002) 189.
15) J.-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: \textit{Calphad}, \textbf{26} (2002) 273.
16) L. B. Kusnetsov, G. A. Lopoukhov and A. V. Revyakin: The Second Japan-USSR Joint Symposium on Physical Chemistry of Metallurgical Processes, Tokyo, Japan, (1969), paper no. 2.
17) I.-H. Jung, S. A. Decterov and A. D. Pelton: \textit{Metall. Mater. Trans. B}, \textbf{35B} (2004), 493.