Аллотрансплантация почки в настоящее время во всем мире является предпочтительным методом заместительной терапии у пациентов с терминальной стадией поражения почечной функции. Классические хирургические принципы сосудистой реконструкции и создания мочевого оттока при пересадке почки полностью изучены и стандартизированы. Несмотря на это, эволюция хирургической техники все же является непрерывным процессом. Целью данного клинического сообщения является акцентирование внимания хирургов-трансплантологов и специалистов, занятых в лечении реципиентов почек, на отражающем современные тенденции развития хирургии виде робот-ассистированной трансплантации почки (РАТП), как на щадящем методе оперативного лечения пациентов с терминальной стадией поражения почек. Результаты первого опыта в виде хорошей первичной функции трансплантата почки демонстрируют возможность использования РАТП как варианта хирургического вмешательства. Накопление же достаточного пула проведенных операций в значительной степени улучшит результаты использования такого метода лечения.

Ключевые слова: робототехника, минимально-инвазивная хирургия, роботизированная хирургия, почка, хроническая почечная недостаточность, терминальная стадия поражения почек, трансплантация почки, робот-ассистированная трансплантация почки.

ROBOT-ASSISTED KIDNEY TRANSPLANTATION. FIRST EXPERIENCE

* S.V. Shchekaturov¹, I.V. Semeniakin², A.K. Zokoev¹, T.B. Makhmudov¹, R.R. Poghosyan¹

¹ Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
² Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation

Kidney transplantation is the preferred renal replacement therapy for patients with end-stage renal disease. Traditional surgical approaches consisting of vascular and urinary outflow reconstruction during kidney transplant have been sufficiently studied and standardized. However, surgical techniques are still evolving. The objective of this clinical report is to focus the attention of kidney transplant surgeons and specialists on the currently trending robot-assisted kidney transplantation (RAKT) as a minimally invasive procedure for surgical treatment of patients with end-stage renal disease. In our first experience, good primary graft function was achieved. This shows that RAKT is a surgical option. With considerable number of surgeries and experience, RAKT outcomes would be improved significantly.

Keywords: robotics, minimally invasive surgery, robotic surgery, kidney, chronic kidney disease, end-stage renal disease, kidney transplantation, robot-assisted kidney transplantation.
ВВЕДЕНИЕ

Несмотря на то что открытая хирургия является методом выбора при трансплантации почки у взрослых реципиентов, маловзвзвенные хирургические методики продолжают завоевывать свою нишу. Так, лапароскопическая и роботассистированная нефрэктомия у живого родственного донора в значительной степени заменили обычную хирургию, начиная с конца 1990-х гг. [1]. Они зарекомендовали себя в качестве стандарного подхода, при котором обеспечивается однородная функция трансплантата, однаковая частота отторжения, одинаковые урологические осложнения, равноценная выживаемость пациентов с ожирением [10, 11], однако может иметь место гипертензия, короткое время нахождения в стационаре [2–4].

В первую очередь РАТП выполнял András Hoznek [5]. В настоящее время в мире описано более 500 таких операций [6]. В России опыт выполнения РАТП минимален [7–9]. РАТП обладает следующими преимуществами: лучшая визуализация, удобство манипулирования инструментами, прецизионная точность, минимальные хирургические и инфекционные послеоперационные осложнения, особенно у пациентов с ожирением [10, 11], однако может иметь место длительное время операции и тепловой ишемический шок [12, 13], что в итоге может влиять на усугубление реперфузионной травмы и восстановление функции трансплантата [14].

В период с января по апрель 2020 года в Российском научном центре хирургии имени академика Б.В. Петровского выполнено 4 РАТП: от умершего донора – 3, от родственного – 1.

В данной статье мы представляем технику проведения операции и описание одного из клинических примеров.

Использованная методика является на сегодняшний день достаточно стандартной при проведении подобных вмешательств. Полученный же результат впервые выполненных роботических операций со-поставим с таковыми при открытой хирургии и требует дальнейшего наблюдения.

Пациент, мужчина 50 лет с терминальной стадией поражения почек в исходе глюмерулонефрита. Заболевание выявлено во время обследования по поводу двусторонней пневмонии в феврале 2017 года. Постепенное ухудшение почечной функции привело к развитию терминальной стадии, и 17.08.2017 была начата плановая почечная заместительная терапия через артериовенозную фистулу, а 17.12.2019 выполнена робототехническая аллотрансплантация почки у умершего человека. Донор – женщина 50 лет, причина смерти – ОНМК по геморрагическому типу. Селекционный блок представлен в табл. 1.

Таблица 1

Селекционный блок донора и реципиента: группа крови, HLA-генотип, несовместимость по HLA, перекрестная проба на совместимость (cross-match)

Пол	Реципиент	Донор
Возраст	Мужчина	Женщина
Группа крови	0(1) Rh(+), A 2,10 B 15,15 Dr 6,6	0(1) Rh(–), A 2,19 B 15,16 Dr 4,2
Несовместимость	A 19 B 16 Dr 4,2 (MM4)	Отрицательно

Заболевание выявлено во время обследования по поводу двусторонней пневмонии в феврале 2017 года. Постепенное ухудшение почечной функции привело к развитию терминальной стадии, и 17.08.2017 была начата плановая почечная заместительная терапия через артериовенозную фистулу, а 17.12.2019 выполнена робототехническая аллотрансплантация почки у умершего человека. Донор – женщина 50 лет, причина смерти – ОНМК по геморрагическому типу. Селекционный блок представлен в табл. 1.

ХИРУРГИЧЕСКАЯ ТЕХНИКА

Пациент был фиксирован в положении Тренделенбурга с углом наклона головного конца в 20–30° и разворотом стола с наклоном влево также на 20–30°. Стация с манипуляторами «patient cart» («da Vinci System», Intuitive Surgical, USA) располагалась справа от операционного стола у ног пациента. В качестве основы было выбрано наиболее подходящее расположение точек для портов, подобно тому, как они устанавливаются для выполнения радикальной прератипотомии. При этом имелось все же некоторые отличия, в том числе от методики, разработанной в ходе исследования IDEAL (Innovation, Development, Exploration, Assessment, Long-term study) [15], и схожесть с методикой, описанной Ugo Boggi et al. [16].

Так, порт для камеры (12 мм) был установлен несколько выше и левее пупка. Рабочие порты (8 мм) располагались по дуге, отклоненной влево, на расстоянии 8 см друг от друга. Ассистентский порт был установлен в левой подвздошной области. Через 7-см разрез по Пфаненштилю был введен ассистентский порт в виде ретрактора с ножом диафрагмой (Seal Cap Assembly «Dextrus», Ethicon, USA) (рис. 1).

Интраоперационно: первым этапом были выделены подвздошные сосуды (наружная подвздошная вена и наружная подвздошная артерия) справа. Да-

126
Рис. 1. Роботическая трансплантация почки: а – схема расположения портов; б – ретрактор Seal Cap «Dextrus». C – 12-мм порт для камеры; R1, R2, R3 – 8-мм порты для манипуляторов системы «da Vinci System», соответственно нумерации; A – 10-мм ассистентский порт; P – надлобковый разрез для ретрактора с герметизирующей крышкой; da Vinci – расположение станции с манипуляторами

Fig. 1. Robotic kidney transplantation: a – illustration of port placement; b – retractor with sealing cap (Seal Cap «Dextrus»). C – 12-mm camera port; R1, R2, R3 – 8-mm robotic ports, corresponding original numbering of da Vinci manipulators; A – 10-mm assistant port; P – suprapubic incision for retractor with sealing cap; da Vinci – patient cart placement

Рис. 2. Начальный этап операции (выделение и подготовка к будущим анастомозам подвздошных сосудов): а – скелетированы наружные подвздошные сосуды (артерия и вена); б – пережата наружная подвздошная вена зажимами типа «Бульдог», выполнена примерка размера венотомии

Fig. 2. The initial stage of the operation (preparation for future iliac vessels anastomoses): а – skeletonized iliac vessel bed (artery and vein); б – external iliac vein clamped with a robotic bulldog clamp, try-on before venotomy

лее через ассистентский ручной порт в брюшную полость на ледяную подушку в салфетке была уложена донорская почка (рис. 2).

Трансплантат (левая почка), имеющий 1 артерию и 1 вену, помещен в правую подвздошную ямку без кранцальноокулярной инверсии. Сформированы анастомозы: вена трансплантата «конец в бок» наружной подвздошной вены с использованием Пролена 5/0, артерия трансплантата «конец в бок» наружной подвздошной артерии также Проленом 3/0 (рис. 3).

После пуска кровотока трансплантат равномерно заполнился кровью, окрасился в розовый цвет, тургор удовлетворительный. Сформирован экстравезикальный анастомоз мочеточника с мочевым пузырем на JJ-стенте по Личу–Грецеру с использованием ПДС 5/0. Последним этапом выполнена экстрaperitonealная трансплантация. При контрольном эндо-ультразвуковом (УЗИ) исследовании с цветным доплеровским картированием (ЦДК) при помощи датчика robotic drop-in ultrasound transducer (BK medical, Denmark) кровоток в трансплантате распределен равномерно (рис. 4).

Консольное время составило 140 мин, длительность формирования сосудистых анастомозов – 45 мин, кровопотеря – 20 мл.

Индукционная терапия базиликсимабом. Назначена иммуносупрессивная терапия: такролимусом с 1-х суток, преднизолоном с 1-х суток, микрофенолата мофетилом с 3-х суток. В течение первых суток выделялось 5400 мл мочи. Креатинин в первые сутки: 629 мкмоль/л (7,1 мк%); скорость клубочковой фильтрации (СКФ-EPDI) 8,15 мл/мин/1,73 м². Субоптимизация креатинина (<3 мк%) на 5-е сутки. Выписан на 14-е сутки с креатинином 109 мкмоль/л (1,2 мк%), СКФ-EPDI 67,6 мл/мин/1,73 м². При УЗИ: толщина трансплантата 6,2 см, толщина коркового слоя от 0,68 до 0,8 см, синус 3,1 см. Пирамидки не изменены. Полость лоханки 1,4 см. Парателихма не изменена. Корковый слой не изменен. Скопление жидкости вокруг почки не определялось. При цветном доплеровском картировании показатели кровотока удовлетворительные – табл. 2.

При обследовании через 2,5 мес. после операции функция трансплантата удовлетворительная: креатинин 111,7 мкмоль/л (1,3 мк%), СКФ-EPDI 66,35 мл/мин/1,73 м². Пациент продолжает получать трехкомпонентную иммуносупрессивную терапию в виде такролимуса, микрофенолата мофетила и преднизолона. По данным УЗИ (рис. 5): толщина трансплантата 6,2 см, толщина корко-
вого слоя 0,7 см, синус 2,9 см. Пирамидки не изменены. Умеренное расширение лоханки. Пarenхима не изменена. Корковый слой не изменен. Скопление жидкости вокруг почки не определялось. Показатели кровотока при цветном доплераовском картировании представлены в табл. 3.

Рис. 3. Этап формирования сосудистых анастомозов: а, б – венозный анастомоз «конец в бок» (наружная подвздошная вена пережата зажимами типа «Бульдог»): вена трансплантата – наружная подвздошная вена; в, г – артериальный анастомоз «конец в бок» (наружная подвздошная артерия пережата зажимами типа «Бульдог»): артерия транспланта – наружная подвздошная артерия

Fig. 3. Stage of vascular anastomoses: а, б – end-to-side venous anastomosis (the external iliac vein clamped with a robotic bulldog clamp): the graft vein – the external iliac vein; в, г – arterial anastomosis end to side (the external iliac artery clamped with a robotic bulldog clamp): the graft artery – the external iliac artery

Рис. 4. Пуск кровотока. Этап урологической реконструкции и экстраперитонезация трансплантата: а – вид трансплантата с зоной анастомозов после пуска кровотока; б – формирование уретеронеоцистоанастомоза по Личу–Грегуару; в – интраоперационное УЗИ с использованием robotic drop-in ultrasound transducer (BK medical, Denmark)

Fig. 4. Kidney graft reperfusion. The stage of urinary outflow reconstruction and graft extraperitonization: а – time of reperfusion; б – ureteroneocystostomy, Lich–Gregoire technique; в – intraoperative ultrasound using a robotic drop-in ultrasound transducer (BK medical, Denmark)
По данным компьютерной томографии отмечается низкое расположение трансплантата в полости таза, равномерное распределение контрастного препарата в артериальную фазу. Выполненная ретроградная цистография не выявила признаков пузырно-мочеточникового рефлюкса (рис. 6).

Все операции были выполнены по аналогичной методике. В одном из случаев отмечен тромбоз вс-
нозного анастомоза после пуска кровотока, по по-
воду чего выполнена венотомия и тромбэктомия без
конверсии.

ОБСУЖДЕНИЕ

В последнее десятилетие одновременно с ростом интереса к минимально-инвазивной хирургии с ис-
пользованием роботических систем увеличивается
и эффективность ее использования. Не остается в
стороне и трансплантация органов. Так, наряду с
вошедшей в повседневную практику лапароскопи-
ческой донорской нефрэктомией набирает популяр-
ность РАТП. Выполнение подобного оперативного
вмешательства как с технической, так и с логисти-
ческой точки зрения возможно и от умерших, и от
живых доноров, как при стандартной ситуации, так и
при наличии различных аномалий донорского орга-
на [17]. При этом некоторые исследования отмечают,
что у хирургов с большой практикой в роботиче-
ской хирургии кривая обучения для РАТП минималь-
на или вообще отсутствует вне зависимости от их
предыдущего опыта в открытой трансплантации в
отличие от опытных коллег-хирургов, владеющих
методами традиционной трансплантации [18]. Для
традиционного же хирурга, как и во многих других
роботизированных процедурах, кривая обучения
может быть существенным ограничением для ши-
рокомасштабного освоения сложной техники. Одна-
ко несмотря на то, что в настоящее время, согласно
данным современной литературы, обобщенные ре-
зультаты открытой и роботической трансплантации
могут быть сопоставимы, данная проблема требует
дальнейшего изучения.

ЗАКЛЮЧЕНИЕ

Приведенное клиническое наблюдение сопоста-
вимо с ранним опытом внедрения РАТП в других
трансплантационных центрах [19]. Отсутствие пос-
леоперационных осложнений, минимальное исполь-
зование анальгетиков, ранняя активизация, выписка
пациента, и прежде всего удовлетворительная функ-
ция трансплантата, являются хорошим результатом
первого опыта применения такой высокотехноло-
гичной операции.

Авторы заявляют об отсутствии конфликта интересов.
The authors declare no conflict of interest.

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

1. Martin GL, Guise AI, Bernie JE, Bargman V, Gog-
gins W, Sundaram CP. Laparoscopic Donor Nephrecto-
my: Effects of Learning Curve on Surgical Outcomes.
Тзветанов I, Бейарано-Пинеда L, Giulianotti PC, Jeon H, Garcia-Roca R, Bianco F et al. State of the art of robotic surgery in organ transplantation. World J Surg. 2013; 37: 2791–2799. PMID: 24101021. doi: 10.1007/s00268-013-2244-x.

11. Giulianotti P, Gorodner V, Shrama F, Tzetanov I, Jeon H, Bianco F et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. Am JTransplant. 2010; 10: 1478–1482. PMID: 20486912. doi: 10.1111/j.1600-6143.2010.03116.x.

12. Oberholzer J, Giulianotti P, Danielson KK, Spaggiari M, Bejarano-Pineda L, Bianco F et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant. 2013; 13: 721–728. PMID: 23437881. doi: 10.1111/ajt.12078.

13. Territo A, Mottrie A, Abaza R, Rogers C, Menon M, Bhandari M et al. Robotic kidney transplantation: current status and future perspectives. Minerva Urol Nefrol. 2017; 69: 5–13. PMID: 28009142. doi: 10.23736/S0393-2249.16.02856-3.

14. Weissenbacher A, Oberhuber R, Cardini B, Weiss S, Ulmer H, Bosmuller C et al. The faster the better: anastomosis time influences patient survival after deceased donor kidney transplantation. Transpl Int. 2015; 28: 535–543. PMID: 25557890. doi: 10.1111/tri.12516.

15. Sood A et al. Ontogeny of a surgical technique: Robotic kidney transplantation with regional hypothermia. International Journal of Surgery. 2016; 25: 158–161. doi: 10.1016/j.ijjsu.2015.12.061.

16. Boggi U, Vistoli F, Signori S, D’Imporzano S, Amorese G, Consani G et al. Robotic renal transplantation: first European case. Transplant International. 2011; 24: 213–218. PMID: 21091963. doi: 10.1111/j.1432-2277.2010.01191.x.

17. Siena G, Campi R, Decaestecker K, Tuğcu V, Sahin S, Alcaraz A et al. Robot-assisted Kidney Transplantation with Regional Hypothermia Using Grafts with Multiple Vessels After Extracorporeal Vascular Reconstruction: Results from the European Association of Urology Robotic Urology Section Working Group. Eur Urol Focus. 2018 Mar; 4 (2): 175–184. PMID: 30049659. doi: 10.1016/j.euf.2018.07.022.

18. Sood A, Ghani KR, Ahlawat R, Modi P, Abaza R, Jeong W et al. Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur Urol. 2014 Aug; 66 (2): 371–378. PMID: 24631408. doi: 10.1016/j.eururo.2014.02.055.

19. Breda A, Territo A, Gausa L, Tuğcu V, Alcaraz A, Masquera M et al. Robot-assisted Kidney Transplantation: The European Experience. Eur Urol. 2018 Feb; 73 (2): 273–281. PMID: 28916408. doi: 10.1016/j.eururo.2017.08.028.