Can functional walk tests add value to the prediction of cardiorespiratory fitness after stroke? A prospective cohort study

Mari Gunnes1,2*, Inger-Lise Aamot Akset3, Turid Follestad4, Bent Indredavik1,2, Torunn Askim1,2

1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway, 2 Stroke Unit, Department of Internal Medicine, St. Olav’s University Hospital, Trondheim, Norway, 3 Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway, 4 Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway

* mari.gunnes@gmail.com

Abstract

Background
Cardiorespiratory fitness is often impaired following stroke, and peak oxygen consumption (VO_{2peak}) is an important prognostic value of all-cause mortality. The primary objective was to investigate whether functional walk tests assessed in the subacute phase after stroke added value in predicting VO_{2peak} in chronic stroke, in addition to age, sex and functional dependency. Secondary objectives were to investigate associations between daily physical activity and functional walk tests, and with VO_{2peak}.

Methods
This prospective cohort study included eligible participants originally included in the randomized controlled trial Life After Stroke. Functional walk tests, i.e., six-minute walk test (6MWT) and maximal gait speed, were assessed at inclusion and 18 months later. VO_{2peak} [ml/kg/min] was assessed by a cardiopulmonary exercise test on a treadmill 20 months after inclusion. Daily physical activity was measured by a uniaxial accelerometer (activPAL) at 18-month follow-up.

Results
Ninety-two community-dwelling individuals, with a mean (SD) age of 69.2 (10.6) years and 33 (35.9%) women, were included 3 months after stroke onset. Eighty-three (90.2%) participants had a modified Rankin Scale (mRS) score of 1 or 2, indicating functional independence. An overall assessment of four prediction models indicated the combination of age, sex, mRS and 6MWT as predictors to be the best fitted model in predicting VO_{2peak} (adjusted R^2 = 0.612). Secondary results showed statistically significant, but not clinically significant, associations between daily physical activity and functional walk tests, and with VO_{2peak}.
Conclusions
6MWT add significant value to the prediction of mean VO$_{2\text{peak}}$ in the chronic phase in mild strokes, in combination with age, sex and functional dependency. This prediction model may facilitate clinical decisions and rehabilitation strategies for mildly affected stroke survivors in risk of low levels of VO$_{2\text{peak}}$. Future studies should validate the model in various stages after stroke and in patients moderately and severely affected.

Introduction
Cardiorespiratory fitness (CRF), measured as peak oxygen consumption (VO$_{2\text{peak}}$), is often impaired following stroke. VO$_{2\text{peak}}$ assessed throughout all stages post-stroke are shown to range between 26% and 87% of normative values [1]. A strong inverse relationship between CRF and all-cause mortality in healthy individuals [2] and patients with cardiovascular and other chronic diseases [3, 4] has established its prognostic value. In individuals after stroke, low CRF often leads to low social participation and reduced quality of life [5]. In addition, it exacerbates underlying cardiovascular and metabolic risk factors, which, in turn, contribute to increased risk of recurrent stroke [6].

Despite the well-established importance of CRF, it is currently the only major risk factor that is not routinely or regularly assessed after stroke [7, 8]. A cardiopulmonary exercise test (CPET) is considered the gold standard for measuring VO$_{2\text{peak}}$ [9]. However, a CPET is expensive, time-consuming, and requires trained staff and advanced laboratory equipment often unavailable in rehabilitation facilities. VO$_{2\text{peak}}$ is, however, closely related to several factors associated with health status, including age, sex and functional disability after stroke [10]. Despite some inconsistency due to methodological variability, previous cross-sectional studies have also shown that functional walk tests assessing walking capacity are associated with VO$_{2\text{peak}}$ post-stroke [11]. To address whether functional walk tests add value to a prediction model including already established determinants of CRF, like age, sex and functional disability, would be useful for determining the possibility of estimating VO$_{2\text{peak}}$ without requiring CPET.

Further, improved walking capacity and increased CRF are important rehabilitation targets following stroke. These are also commonly used outcome measures in rehabilitation studies aiming to increase daily physical activity. However, previous research has yielded inconsistent findings regarding the relationship between daily physical activity and functional walk tests [12–15], and between daily physical activity and VO$_{2\text{peak}}$ [6, 15–17] after stroke. Further investigations confirming how walking capacity and CRF is associated with daily physical activity in community-dwelling individuals after stroke would be useful in order to optimize future post stroke rehabilitation.

The study objectives were to test the hypotheses that (a) walking capacity, as measured by six-minute walk test (6MWT) and maximal gait speed, in the subacute phase after stroke, add value to the prediction of VO$_{2\text{peak}}$ in the chronic phase, in addition to age, sex and functional disability, and that (b) higher levels of walking capacity and CRF, respectively, are associated with higher levels of daily physical activity in chronic stroke.

Materials and methods
Study design, setting, and participants
This prospective, observational cohort study represents extended analyses of a subsample of participants originally included in the multisite, randomized controlled clinical trial Life After Stroke.
Stroke (LAST) [18]. No statistically significant differences were shown between the intervention and control group in LAST, hence, participants in the present study were treated as one group.

For LAST, participants were recruited from October 18, 2011 to June 26, 2014 at the outpatient clinics of the stroke units of two Norwegian hospitals and consecutively randomized 10 to 16 weeks after acute stroke. Eligible individuals met each of the following inclusion criteria: diagnosed with first-ever or recurrent stroke (infarction or intracerebral hemorrhage), age ≥ 18 years, discharged from hospital or inpatient rehabilitation at inclusion, community dwelling, modified Rankin Scale (mRS) score < 5, and cognitive function as evaluated by the Mini-Mental State Examination (MMSE) > 20 points (>16 points for participants with aphasia). Exclusion criteria were serious medical comorbidity with shortened life expectancy or a condition contraindicating motor training. Informed, consenting participants were randomly allocated to either the intervention group or the control group and followed prospectively for 18 months after inclusion [19].

At 18-month follow-up, participants assigned to one of the sites (i.e., Trondheim) were invited to participate in the present study. Cardiopulmonary exercise tests (CPETs) were performed within 3 months after the 18-month follow-up, i.e., approximately 20 months after inclusion. Only individuals considered able to tolerate the CPET were included, and a medical assessment was performed to screen for any comorbidity that might represent contraindications. Eligible participants were able to walk (with or without an assistive device but without personal assistance) and understand simple oral instructions in order to perform the test. Participants were excluded if they suffered advanced congestive heart failure, peripheral arterial disease with claudication, unstable angina, uncontrolled hypertension, severe cognitive impairments or aphasia, and/or significant orthopedic or pain conditions that limited participation.

All participants gave written informed consent. Ethical approval for the study was granted by the Regional Committee of Medical and Health Research Ethics (REC no. 2011/1427) and registered with ClinicalTrials.gov (no. NCT01467206).

Baseline assessments

At inclusion, age, sex, living condition, type of stroke, and medical history were recorded. Stroke severity was measured by the National Institutes of Health Stroke Scale (NIHSS) [20], which is a neurologic scale that assesses the severity of neurological impairments of stroke; a high overall score indicates severe symptoms [20]. The modified Rankin Scale (mRS) was used to assess the overall level of functional independence [21]. mRS is a global outcome measure that combines physical, mental, and speech aspects into a single score graded as 0 (no symptoms at all), 1 (no significant disability), 2 (slight disability), 3 (moderate disability), 4 (moderately severe disability), 5 (severe disability) or 6 (deceased) [21]. Cognitive function was assessed by the Mini-Mental State Examination (MMSE) [22], which is a brief screening tool that provides a quantitative assessment of cognitive impairment. A summary score between 0 and 30 (maximal) of 11 questions or tasks assess different cognitive domains, such as orientation to time and place, attention, calculations, language, and visual constructions [22].

Outcome measurements

Cardiopulmonary exercise test (CPET). CRF level was defined by VO₂peak [ml/kg/min] and assessed by a symptom limited CPET obtained by a treadmill protocol. As deconditioned or elderly individuals often cannot meet the rigorous conditions for maximal oxygen consumption (VO₂max), assessing exercise capacity by VO₂peak is more commonly used [9, 23].
After a 10-minute warm-up (i.e., treadmill walking without incline, used to assess gait safety and to select target walking velocity), an individualized ramp protocol was used. Participants were encouraged not to use the handrails, but minimal handrail support was allowed to keep their balance if necessary. Participants had to walk at their fastest preferred walking speed, and the workload was increased every minute by increasing the inclination by 2–3%. The test was terminated by standard clinical criteria according to guidelines by the American College of Cardiology [24]. Ventilatory gas measurements were performed with a MetaMax II (Cortex Biophysics, Germany), using mixing chamber analysis with sample frequency of 10 seconds. The highest average over 30 seconds was determined as VO$_{2peak}$. The MetaMax was calibrated every test day using the standard two-point gas calibration procedure, including measurements of ambient air and a gas mix (16% O$_2$ and 4% CO$_2$), a calibration of the volume transducer with a calibrated 3 L syringe and barometric pressure, as recommended by the manufacturer [25].

For safety reasons, the blood pressure (BP) was measured at rest (before the test procedure), directly after participants reached their maximal exercise level during CPET, and 5–10 minutes post-test to confirm an approximate return of BP to baseline. An OSZ5 automated blood pressure monitor (Welch Allyn, Germany) was used. Further, heart function was monitored continuously with a 12-lead electrocardiogram during CPET, and testing was discontinued if the subject showed any sign of cardiovascular dysfunction. The test was performed in a location with continuous access to medical assistance and a short distance to the emergency unit.

Functional walk tests. For 6MWT, participants were requested to ‘walk as far as possible for six minutes, but no jogging or running’ on a 30-meter-long course according to standard protocol; farther distance walked indicated higher walking endurance [26]. During the test, participants could use their usual walking aids. They were allowed to slow down, stop, or rest as necessary, and resume walking as soon as they were able to. Further, the standardized phrases for encouragement were used every minute, as specified in the guidelines of the American Thoracic Society [27].

Maximal gait speed was measured over a 10-meter distance, with two meters at each end for acceleration/deceleration [28]. The participants were instructed to walk as fast as they could safely without running. The procedure was performed twice at both test occasions, whereas the fastest attempt of the two tests at each occasion were used for further analyses.

Daily physical activity. Daily physical activity was measured by a uniaxial accelerometer (activPAL, PAL Technologies Ltd, Glasgow, UK), which was attached to the participants’ unaffected thigh and worn for at least 4 consecutive days at 18-month follow-up. It has been shown that the accelerometer accurately determines the amount of time spent upright during standing and walking activities [29]. Hence, in the present study, daily physical activity was defined as the average number of hours spent walking between 07.00 am and 11.00 pm each day. The activPAL software package (activPAL Professional Research Edition) was used to process the raw acceleration-data signals from the accelerometers. The average daily time spent walking was calculated for each participant. The daily physical activity was recorded as missing if a participant had validly recorded data for less than 2 days.

Statistical analyses
Baseline characteristics at inclusion were compared between included and non-included participants (i.e., those screened but ineligible due to prescribed criteria) using independent samples t-tests, Chi-squared tests with continuity corrections, or Fisher’s exact tests as appropriate. The distribution of continuous variables and residuals from linear regressions was visually inspected by histograms and normal quantile-quantile (Q-Q) plots. Multiple ordinary least-
squares linear regression was used to assess the added value of the two functional walk tests to predict VO$_{2peak}$, compared to a model that included only age, sex and mRS (model A). All included predictors were assessed at inclusion. Three multiple regression models were considered, including either 6MWT [m] (model B), maximal gait speed [m/s] (model C), or both in combination (model D), as additional predictors to model A. Further, an interaction term between age and sex was included in each model. The models were checked for violation of the assumptions of multicollinearity, normality, linearity, and homoscedasticity. The model fit was compared between the models with model A defined as the reference model, by likelihood ratio tests, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). To study the out-of-sample performance, 5-fold cross-validation was used.

Multiple linear regressions were also used to assess the associations between walking [hours/day] as dependent variable, and 6MWT [m], maximal gait speed [m/s], and VO$_{2peak}$ [ml/kg/min] as predictors in three separate regression models, each adjusted for age, sex and mRS. Walking was assessed at 18-month follow-up, and contrary to our primary analyses, results from 6MWT, maximal gait speed, and covariates were also assessed 18 months after inclusion for these secondary analyses.

Two-sided P-values < .05 were considered statistically significant, and results from multiple linear regressions were reported as unstandardized regression coefficients with 95% confidence intervals (CI) and p-values. The statistical analyses were performed using SPSS 25.0, Stata/MP 16, and Excel 2016.

Results

Of the 380 participants enrolled in LAST, 188 (49.5%) were assigned to St. Olav’s University Hospital. For different reasons specified in the flowchart (Fig 1), 23 (12.2%) participants were not retested in LAST 18 months later, leaving 165 (87.8%) subjects assessed at follow-up. Among those, 73 (44.2%) participants were not eligible for CPET, leaving a total of 92 participants eligible for the study, with test procedures performed from May 2013–January 2016.

The study sample had a mean (SD) age of 69.2 (10.6) years at baseline and included 33 (35.9%) women and 59 (64.1%) men (Table 1). Most participants scored 1 (n = 61, 66.3%) or 2 (n = 22, 23.9%) at the mRS.

Results from the CPET, activPAL and functional walk tests at inclusion and follow-up are presented in Table 2. All individuals remained asymptomatic during CPET, normal blood pressure responses were observed, and no adverse events were recorded. Among the total sample, 2 individuals declined to wear the accelerometer and data from 7 participants were missing due to technical problems with the sensor. Hence, a total of 83 participants (31 women and 52 men) provided valid accelerometry data, whereas 7 individuals wore the activPAL for 3 days and 2 persons for 2 days instead of 4 days as prescribed by the protocol. During the functional walk tests, five individuals used a cane/crutch at inclusion, and one of them used a cane/crutch at the 18-month follow-up. During quality check of the functional walk tests, one measurement error was deleted from the related analyses among the maximal gait speed data at inclusion.

Relationships between VO$_{2peak}$ and the functional walk tests at inclusion are shown for males and females separately in Fig 2. No interaction effects between sex and the functional walk tests were found to be statistically significant when included in the regression models. Hence, results from models without these interactions are presented. The multiple regression analyses showed that age, sex, and mRS alone (model A) accounted for 52.2% of the variance in VO$_{2peak}$ (Table 3). After entry of the functional walk tests, both separately and in combination, the adjusted R2 increased from 49.4% (model A) to 61.2% (model B), 56.7% (model C)
and 61.3% (model D), respectively (Table 3). Results from the likelihood ratio tests, AIC, and BIC, in addition to results from the cross-validation (i.e., cross-validated R^2 and RMSE), indicated that model B should be considered the best fitted model.

Table 4 shows that 6MWT added statistically significant value to the prediction of VO$_{2peak}$ in model B ($p<0.001$). Further, there was a significant interaction term between age and sex ($p=0.040$). The mean decline in VO$_{2peak}$ per year was 0.23 ml/kg/min less (95% CI: 0.01 to 0.46) for females than males.

Average time spent walking [hours/day] was found to increase by increased 6MWT, maximal gait speed and VO$_{2peak}$ ($p\leq0.016$), (Table 5). There were no statistically significant

Fig 1. Flowchart of study participants and reasons for non-inclusion in the study. Abbreviations: MMSE, Mini-Mental State Examination; LAST, Life After Stroke; CPET, cardiopulmonary exercise test.

https://doi.org/10.1371/journal.pone.0255308.g001

Table 3
Table 1. Baseline demographics and stroke characteristics of participants.

Demographics	Total sample (n = 92)	Non-participants (n = 96)	P
Demographics			
Age, mean (SD)	69.2 (10.6)	73.8 (10.62)	0.003*
< 80 y	78 (84.8)	67 (69.8)	0.023†
≥ 80 y	14 (15.2)	29 (30.2)	
Sex			
Female	33 (35.9)	47 (49.0)	0.096†
Male	59 (64.1)	49 (51.0)	
Domestic circumstances			
Living with someone	75 (81.5)	59 (61.5)	0.004†
Living alone	17 (18.5)	37 (38.5)	
MMSE score, mean (SD)	28.03 (2.26)	28.03 (2.28)	0.997*
≥25	83 (90.2)	84 (87.5)	0.700†
<25	8 (8.7)	11 (11.5)	
Stroke characteristics			
Days after stroke, mean (SD)	105.9 (12.9)	104.7 (13.5)	0.535*
Stroke type			
Infarction	83 (90.2)	94 (97.9)	0.053†
Hemorrhage	9 (9.8)	2 (2.1)	
NIHSS score, mean (SD)	1.17 (1.45)	2.21 (2.73)	0.001*
Range	0 to 7	0 to 12	
Mild stroke	<8	92 (100)	0.001*
Moderate stroke	8–16	5 (5.2)	
Severe stroke	>16	0	
mRS score, mean (SD)	1.43 (0.67)	2.08 (0.94)	
mRS = 1	61 (66.3)	32 (33.4)	
mRS = 2	22 (23.9)	30 (31.3)	
mRS = 3	9 (9.8)	28 (29.2)	
mRS = 4	0	6 (6.3)	
Comorbidity, prior to stroke onset			
Stroke	12 (13.0)	28 (29.2)	0.012†
TIA	14 (15.2)	12 (12.5)	0.743†
Myocardial infarction	7 (7.6)	25 (26.0)	0.002†
Heart failure	0	5 (5.2)	0.059‡
Atrial fibrillation	12 (13.0)	31 (32.3)	0.003†
Hypertension	50 (54.3)	68 (70.8)	0.029†
Diabetes	9 (9.8)	20 (20.8)	0.058‡
Lung diseases	12 (13.0)	21 (21.9)	0.162†

Data are shown for both participants included in the study (n = 92) and for non-participants (n = 96), i.e., those screened but not included in the study due to exclusion criteria. P-values show group differences between total sample and non-participants. Abbreviations: MMSE, Mini-Mental State Examination; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; SD, standard deviation; P, P-value; TIA, transient ischemic attack. Data are reported as numbers (percentages) of participants unless otherwise indicated.

* Independent samples t-test
† Chi-Square test with continuity correction
‡ Fisher’s exact test

https://doi.org/10.1371/journal.pone.0255308.t001
interaction effects between sex and the functional walk tests, or sex and VO$_{2peak}$. Fig 3 illustrates the associations between 6MWT, maximal gait speed, and VO$_{2peak}$ and time spent walking.

Discussion

The primary objective of this study was to investigate whether functional walk tests assessed in the subacute phase after stroke added value in predicting VO$_{2peak}$ in chronic stroke, in addition to age, sex, and functional dependency. This is the first study to give evidence that the 6MWT performed three months after stroke onset added value to the prediction of VO$_{2peak}$ in the chronic phase after stroke. Secondary objectives were to investigate the associations between daily physical activity and functional walk tests, and with VO$_{2peak}$ in chronic stroke. The results showed statistically, but not clinically, significant associations.

To our knowledge, similar prediction models as presented in our study have not previously been published within this patient group. In a cross-sectional study by Harmsen et al., however, they reported an explained variance of VO$_{2peak}$ by 67% when 6MWT was corrected for...
They concluded that 6MWT can be used to predict mean VO\textsubscript{2peak} at an aggregated group level [30]. Our study found an only slightly less explained variance of VO\textsubscript{2peak} by 63.8% (model B) and was further based on a prospective design with a long-term follow-up period, including easily available predictors. However, our results provided a standard deviation for the residuals (i.e., RMSE) of 5.07 ml/kg/min of mean VO\textsubscript{2peak} (model B), indicating an error too large to...
accurately predict VO$_{2\text{peak}}$ in individual patients. This is in line with others suggesting similar values to have poor prediction accuracy for clinical purposes in an individual level [30, 31]. Predictions of mean VO$_{2\text{peak}}$ levels in chronic stroke may provide a reasonable reflection of CRF at a reduced risk and with simpler methods. Such information allows clinicians to choose the most appropriate treatments in patients at risk of low-CRF levels and researchers to identify groups of people eligible for experimental interventions targeting increased cardiorespiratory responses.

Previous research have shown the relationship between walking capacity and VO$_{2\text{peak}}$ after stroke to be inconsistent with correlation coefficients to range from 0.29 to 0.74 [11]. However, most studies have been limited to bivariate analyses, which enables only restricted insight into determinants influencing this relationship [11]. Patterson et al., however, have shown that VO$_{2\text{peak}}$ explained almost half of the variance (adjusted $R^2 = 48\%$) in walking distance assessed by 6MWT, and that this accounted for people with milder deficits following stroke, as the association was stronger for those who walked more quickly [32]. The values of the adjusted R^2 from the reference model and models B and C in our study, indicate that maximal gait speed contributes less to the prediction of VO$_{2\text{peak}}$ than 6MWT. Furthermore, maximal gait speed did not contribute significantly in the prediction of VO$_{2\text{peak}}$ when added in combination with 6MWT (model D), although both were statistically significant when included one by one. The possible interpretation of this might be the strong multicollinearity between the two functional walk tests ($r = 0.86$), as both gait speed and distance partly measure the same domains in patients with stroke [33]. Still, with 6MWT remaining statistically significant when combined with maximal gait speed, this strengthen the argument that 6MWT appears to be the strongest predictor of the two functional walk tests. There are indications that gait speed is primarily dependent on neuromotor control and lower body muscle strength rather than CRF [33, 34]. Others speculate whether a short, fast walk, such as required in assessing maximal gait speed, would engage anaerobic metabolism, while a longer walk, such as required by the 6MWT, would engage aerobic metabolism, the latter closer related to VO$_{2\text{peak}}$ [35].

Secondary results show statistically significant associations between average time spent walking per day and 6MWT, maximal gait speed, and VO$_{2\text{peak}}$ in the chronic stage after stroke. However, the effect sizes indicate that the associations are not reflecting impact on clinical practice. A possible interpretation may be that functional capacity measured in the clinic does not necessarily reflect real-world performance. Rand et al. indicated similar findings in their study, in which participants demonstrated sufficient ability to walk in the laboratory yet revealed low levels of physical activity at home [14]. Our results showed that several of the participants demonstrated an ability to cover a considerable walking distance during the 6MWT.
walked with a high maximal gait speed, and demonstrated high values of VO\textsubscript{2peak}. Despite this, there were varying degrees to which this potential was reflected in equivalent high levels of physical activity in their everyday lives. Clinicians should be aware that even individuals with mild motor impairment may present a lower amount of daily physical activity than expected \cite{14}. Hence, this may be an incentive for encouraging and motivating apparently mildly affected individuals to engage in sports, household tasks, and other physical activities in their everyday lives. However, methodological issues may also explain the lack of stronger associations, as the accelerometers did not measure intensity levels during time spent walking. Identifying levels of intensity during daily physical activity would probably show stronger

Model A	VO\textsubscript{2peak} [ml/kg/min]		
	B	95% CI	P
Age, years	-0.50	-0.64 to -0.36	< 0.001
Sex, female vs male (at mean age*)	-4.25	-6.89 to -1.61	0.002
Age * sex, female vs male	0.30	0.05 to 0.56	0.019
mRS score			
mRS 2 vs 1	-4.63	-7.67 to -1.60	0.003
mRS 3 vs 1	-3.35	-7.57 to 0.87	0.118

Model B			
Age, years	-0.35	-0.49 to -0.21	< 0.001
Sex, female vs male (at mean age*)	-1.91	-4.39 to -0.39	0.129
Age * sex, female vs male	0.23	0.01 to 0.46	0.040
mRS score			
mRS 2 vs 1	-0.73	-3.78 to 2.33	0.638
mRS 3 vs 1	4.18	-0.51 to 8.88	0.080
6MWT, [m]	0.03	0.02 to 0.05	< 0.001

Model C			
Age, years	-0.38	-0.52 to -0.23	< 0.001
Sex, female vs male (at mean age*)	-2.03	-4.72 to -0.66	0.138
Age * sex, female vs male	0.25	0.02 to 0.49	0.036
mRS score			
mRS 2 vs 1	-2.06	-5.16 to 1.04	0.190
mRS 3 vs 1	2.64	-2.30 to 7.59	0.291
Max gait speed, [m/s]	7.20	3.56 to 10.85	< 0.001

Model D			
Age, years	-0.34	-0.47 to -0.20	< 0.001
Sex, female vs male (at mean age*)	-1.57	-4.13 to 0.99	0.227
Age * sex, female vs male	0.23	0.01 to 0.45	0.045
mRS score			
mRS 2 vs 1	-0.53	-3.61 to 2.54	0.730
mRS 3 vs 1	4.90	0.02 to 9.77	0.049
6MWT, [m]	0.03	0.01 to 0.05	0.001
Max gait speed, [m/s]	2.41	2.09 to 6.91	0.289

Data from a total of 91 participants are presented. Age is mean-centered. Abbreviations: VO\textsubscript{2peak}, peak oxygen consumption; mRS, modified Rankin Scale; 6MWT, six-minute walk test; B, unstandardized regression coefficient; CI, confidence interval; P, P-value.

*At mean age: The coefficient for the sex difference vary by age due to interaction. The value at the mean age is given.

https://doi.org/10.1371/journal.pone.0255308.t004
associations between our variables, as higher-intensity levels of daily activities induce an effect on functional capacity [5, 36].

Study limitations

The number of participants eligible for CPET determined the sample size for these analyses, and most participants who were excluded suffered serious heart disease or other stroke-related impairments contraindicating participation. Hence, selection bias probably occurred toward individuals less affected by stroke, and the results are not generalizable to individuals severely affected by stroke. However, the study sample is fairly representative of the Norwegian stroke population, as the median score of NIHSS is < 3 in acute stroke [37]. Further, the proportion of women and men in our study was similar to the distribution by sex among the Norwegian stroke population in the same age group [37], and more women were included than previously reported in similar studies [11].

Altogether, 15 participants were ineligible for CPET due to very poor walking ability; a bicycle protocol instead may have allowed some of these individuals to participate. However, bicycle protocols risk artificially low levels of VO$_{2peak}$, having shown consistent reports of lower VO$_{2peak}$ values compared to treadmill testing [38]. A limitation of our test procedure was the lack of reporting participants’ uses of medications, in particular, beta-blockers, as recommended by guidelines [39]. A consequence of beta-blockers may be a reduction in VO$_{2peak}$.

Table 5. Results from three multiple linear regression analyses with walking [hours/day] as dependent variable and independent variables as listed in each regression analyses.

Walking [hours/day]	B	95% CI	P
6MWT [m]			
Age, years	-0.003	-0.019 to 0.014	0.749
Sex, female vs male (at mean age)	0.074	-0.235 to 0.384	0.634
mRS score			
mRS2 vs 1	0.253	-0.143 to 0.649	0.208
mRS 3 vs 1	-0.001	-0.650 to 0.649	0.998
Max gait speed [m/s]			
Age, years	-0.006	-0.022 to 0.009	0.421
Sex, female vs male (at mean age)	0.098	-0.220 to 0.415	0.543
mRS score			
mRS2 vs 1	0.177	-0.214 to 0.567	0.371
mRS 3 vs 1	-0.128	-0.764 to 0.508	0.690
VO$_{2peak}$ [ml/kg/min]			
Age, years	-0.002	-0.021 to 0.017	0.820
Sex, female vs male (at mean age)	0.063	-0.266 to 0.391	0.706
mRS score			
mRS2 vs 1	0.164	-0.241 to 0.568	0.423
mRS 3 vs 1	-0.254	-0.898 to 0.390	0.435

Data from a total of 84 participants are presented. Age is mean-centred. Abbreviations: 6MWT, six-minute walk test; mRS, modified Rankin Scale; VO$_{2peak}$, peak oxygen consumption; B, unstandardized regression coefficient; CI, confidence interval; P, P-value. Non-significant interaction terms between age and sex were found in all three regression models and omitted from the final analyses.

*At mean age: The coefficient for the sex difference vary by age due to interaction. The value at the mean age is given.

https://doi.org/10.1371/journal.pone.0255308.t005
due to their effect of limiting maximum heart rate and consequently diminished cardiac output [40].

Although participants in our study were included three months post-stroke, after most spontaneous recovery and early rehabilitation has occurred [41], different factors may have affected both walking capacity and CRF during the following months. Still, a prospective design with an 18-month follow-up period should be regarded as a strength compared to several previous cross-sectional analyses within this field [42].

Conclusions

In conclusion, the present study showed that 6MWT performed in the subacute phase after stroke, added significant value in predicting VO$_{2\text{peak}}$ in the chronic phase after stroke, in addition to age, sex and functional dependency after stroke. Hence, this model can be used to predict mean VO$_{2\text{peak}}$ in the chronic phase after stroke in mildly affected community-dwelling people. This may facilitate clinical decisions and be useful for research purposes by providing information needed to select and further develop appropriate interventions for groups of people at risk of low CRF levels after stroke. However, the residual standard deviations were too large to accurately predict VO$_{2\text{peak}}$ at an individual level. Future studies are necessary to validate the prediction model in various stages after stroke and in patients moderately and severely affected by stroke.

Acknowledgments

The authors would like to thank Ole Petter Norvang and Ailan Phan for their contributions in including participants and data collection, as well as all the individuals with stroke who were willing to participate in this study. We are also grateful that we were able to use the laboratory equipment for exercise testing by the Department of Clinical Services at St. Olav’s University Hospital.

Author Contributions

Conceptualization: Mari Gunnes, Inger-Lise Aamot Aksetøy, Bent Indredavik, Torunn Askim.

Data curation: Mari Gunnes.

Formal analysis: Mari Gunnes, Turid Follestad, Torunn Askim.

Funding acquisition: Bent Indredavik, Torunn Askim.

Investigation: Mari Gunnes, Inger-Lise Aamot Aksetøy, Bent Indredavik.

Methodology: Mari Gunnes, Turid Follestad, Torunn Askim.

Project administration: Mari Gunnes, Torunn Askim.

Resources: Inger-Lise Aamot Aksetøy.

Supervision: Inger-Lise Aamot Aksetøy, Turid Follestad, Bent Indredavik, Torunn Askim.

Validation: Mari Gunnes, Turid Follestad.

Fig 3. Relationship between time spent walking, functional walk tests and cardiorespiratory fitness. Scatterplots illustrating the relationship between time spent walking [hours/day], and (A) 6-minute walk test (6MWT) [m], (B) maximal gait speed [m/s], and (C) VO$_{2\text{peak}}$ [ml/kg/min] in chronic stroke. Abbreviation: r_s = Spearman correlation coefficient.

https://doi.org/10.1371/journal.pone.0255308.g003
References

1. Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review. International journal of stroke: official journal of the International Stroke Society. 2012; 7(6):499–510. https://doi.org/10.1111/j.1747-4949.2012.00791.x PMID: 22568786

2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitave predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Jama. 2009; 301(19):2024–2035. https://doi.org/10.1001/jama.2009.681 PMID: 19454641

3. Keteyian SJ, Brawner CA, Savage PD, Ehrman JK, Schairer J, Divine G, et al. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. American Heart Journal. 2008; 156(2):292–300. https://doi.org/10.1016/j.ahj.2008.03.017 PMID: 18657659

4. Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC. Association of Physical Activity or Fitness With Incident Heart Failure: A Systematic Review and Meta-Analysis. Circulation Heart failure. 2015; 8(5):853–861. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002070 PMID: 26175539

5. Gordon NF, Gulanick M, Costa F, Franklin BA, Roth EJ, et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Circulation. 2004; 109(16):2031–2041. https://doi.org/10.1161/01.CIR.0000126280.65777.A4 PMID: 15117863

6. Michael K, Macko RF. Ambulatory activity intensity profiles, fitness, and fatigue in chronic stroke. Topics in stroke rehabilitation. 2007; 14(2):5–12. https://doi.org/10.1310/tsr1402-5 PMID: 17517569

7. Mattlage AE, Redlin SA, Rosterman LR, Harn N, Sisante JV, Abraham MG, et al. Use of a Nonexercise Estimate for Prestroke Peak Vo2 During the Acute Stroke Hospital Stay. Cardiopulmonary Physical Therapy Journal. 2016; 27(3):96–103. https://doi.org/10.1097/CPT.000000000000026 PMID: 27478424

8. Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease—The past, present, and future. Progress in Cardiovascular Diseases. 2019; 62(2):86–93. https://doi.org/10.1016/j.pcad.2019.01.002 PMID: 30639135

9. Dobrovolny CL, Ivey FM, Rogers MA, Sorkin JD, Macko RF. Reliability of Treadmill Exercise Testing in Older Patients With Chronic Hemiparetic Stroke. Archives of physical medicine and rehabilitation. 2003; 84(9):1308–1312. https://doi.org/10.1016/s0003-9993(03)00150-3 PMID: 13680566

10. Boss HM, Deijle IA, Van Schaik SM, de Melker EC, van den Berg BTJ, Weinstein HC, et al. Cardiorespiratory Fitness after Transient Ischemic Attack and Minor Ischemic Stroke: Baseline Data of the MoveIT Study. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association. 2017; 26(5):1114–1120. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.029 PMID: 28089564

11. Outermans J, van de Port I, Wittink H, de Groot J, Kwakkel G. How strongly is aerobic capacity correlated with walking speed and distance after stroke? Systematic review and meta-analysis. Physical therapy. 2015; 95(6):835–853. https://doi.org/10.1093/ptj/pjv032 PMID: 25573761

12. Fulk GD, Reynolds C, Mondal S, Deutsch JE. Predicting home and community walking activity in people with stroke. Archives of physical medicine and rehabilitation. 2010; 91(10):1582–1586. https://doi.org/10.1016/j.apmr.2010.07.005 PMID: 20975518

13. Mudge S, Stott NS. Timed walking tests correlate with daily step activity in persons with stroke. Archives of physical medicine and rehabilitation. 2009; 90(2):296–301. https://doi.org/10.1016/j.apmr.2008.07.025 PMID: 19236983

14. Rand D, Eng JJ, Tang PF, Jeng JS, Hung C. How active are people with stroke?: use of accelerometers to assess physical activity. Stroke; a journal of cerebral circulation. 2009; 40(1):163–168. https://doi.org/10.1161/STROKEAHA.108.523621 PMID: 18948606

15. Salbach NM, Brooks D, Romano J, Woon L, Dolmage TE. Cardiorespiratory responses during the 6-minute walk and ramp cycle ergometer tests and their relationship to physical activity in stroke. Neurorehabilitation and neural repair. 2014; 28(2):111–119. https://doi.org/10.1177/1545968313498826 PMID: 23921421
16. Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Archives of physical medicine and rehabilitation. 2005; 86(8):1552–1556. https://doi.org/10.1016/j.apmr.2004.12.026 PMID: 16084807

17. Katoh J, Murakami M, Hirayama M, Nagata Y, Hayakawa M, Tanizaki T. Correlations of pedometric measurement of daily physical activity with exercise endurance by oxygen uptake kinetics in ambulatory stroke patients. Journal of Physical Therapy Science 2002; 14(2):77–80. https://doi.org/10.1589/jpts.14.77

18. Askim T, Langhammer B, Ihle-Hansen H, Gunnes M, Lydersen S, Indredavik B. Efficacy and Safety of Individualized Coaching After Stroke: the LAST Study (Life After Stroke): A Pragmatic Randomized Controlled Trial. Stroke; a journal of cerebral circulation. 2018; 49(2):426–432. https://doi.org/10.1161/STROKEAHA.117.018827 PMID: 29284737

19. Askim T, Langhammer B, Ihle-Hansen H, Magnussen J, Engstad T, Indredavik B. A Long-Term Follow-Up Programme for Maintenance of Motor Function after Stroke: Protocol of the life after Stroke-The LAST Study. Stroke research and treatment. 2012; 2012:392101. https://doi.org/10.1155/2012/392101 PMID: 23227428

20. Brott T, Adams HP Jr., Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke; a journal of cerebral circulation. 1989; 20(7):864–870. https://doi.org/10.1161/01.str.20.7.864 PMID: 2749846

21. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke; a journal of cerebral circulation. 2007; 38(3):1091–1096. https://doi.org/10.1161/01.STR.0000258355.22810.c6 PMID: 17272767

22. Folstein MF, Folstein SE, McHugh PR. “Mini- mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research. 1975; 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6 PMID: 1202204

23. Courbon A, Calmels P, Roche F, Ramas J, Piaud M, Fayolle-Minon I. Relations hip between maximal exercise and walking capacity in adult hemiplegic stroke patients. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2006; 85(5):436–442. https://doi.org/10.1097/01.phm.0000214359.94735.c8 PMID: 16628151

24. Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Froelicher VF, et al. ACC/AHA guidelines for Exercise Testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Journal of the American College of Cardiology. 1997; 30(1):260–311. https://doi.org/10.1016/s0735-1097(97)00150-2 PMID: 9207652

25. Medbøe J, Mammen A, Welde B, von Heimburg E, Stokke R. Examination of the Metamax I and II oxygen analysers during exercise studies in the laboratory. Scandinavian Journal of Clinical and Laboratory Investigation. 2002; 62(8):585–598. https://doi.org/10.1080/003655102764654321 PMID: 12564617

26. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, et al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Canadian Medical Association journal. 1985; 132(8):919–923. Available from: The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure (nih.gov) PMID: 3978515

27. ATS statement: guidelines for the six-minute walk test. American journal of respiratory and critical care medicine. 2002; 166(1):111–117. https://doi.org/10.1164/ajrccm.166.1.1161012 PMID: 12091180

28. Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age and ageing. 1997; 26(1):15–19. https://doi.org/10.1093/ageing/26.1.15 PMID: 9143432

29. Taraldsen K, Askim T, Sletvold O, Einersen EK, Bjostad KG, Indredavik B, et al. Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. Physical therapy. 2011; 91(2):277–285. https://doi.org/10.2522/ptj.20100159 PMID: 21212377

30. Harmsen WJ, Ribbers GM, Slaman J, Heijenbrok-Kal MH, Khajeh L, van Kooten F, et al. The six-minute walk test predicts cardiorespiratory fitness in individuals with aneurysmal subarachnoid hemorrhage. Topics in stroke rehabilitation. 2017; 24(4):250–255. https://doi.org/10.1080/10749357.2016.1260263 PMID: 27915583

31. Ross RM, Murthy JN, Wollak ID, Jackson AS. The six minute walk test accurately estimates mean peak oxygen uptake. BMC pulmonary medicine. 2010; 10:31. https://doi.org/10.1186/1471-2466-10-31 PMID: 20504351

32. Patterson SL, Forrester LW, Rodgers MM, Ryan AS, Ivrey FM, Sorkin JD, et al. Determinants of walking function after stroke: differences by deficit severity. Archives of physical medicine and rehabilitation. 2007; 88(1):115–119. https://doi.org/10.1016/j.apmr.2006.10.025 PMID: 17207686

33. Dalsgård U, Severinsson K, Overgaard K. Relations between 6 minute walking distance and 10 meter walking speed in patients with multiple sclerosis and stroke. Archives of physical medicine and rehabilitation. 2012; 93(7):1167–1172. https://doi.org/10.1016/j.apmr.2012.02.026 PMID: 22421626
34. Tang A, Sibley KM, Bayley MT, McIlroy WE, Brooks D. Do functional walk tests reflect cardiorespiratory fitness in sub-acute stroke? Journal of NeuroEngineering and Rehabilitation. 2006; 3:23. https://doi.org/10.1186/1743-0003-3-23 PMID: 17010203

35. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Philadelphia: Lippincott Williams & Wilkins; 2005.

36. Luo L, Meng H, Wang Z, Zhu S, Yuan S, Wang Y, et al. Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine. 2019. https://doi.org/10.1016/j.rehab.2019.07.006 PMID: 31465865

37. Fjaertoft H, Indredavik B, Morch B, Skogseth-Stephani R, Halle K, Varmdal T. Norwegian Stroke Register. Annual report 2018. Trondheim, St Olavs Hospital: 2018.

38. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. 1983; 55(5):1558–1564. https://doi.org/10.1152/jappl.1983.55.5.1558 PMID: 6643191

39. van de Port IG, Kwakkel G, Wittink H. Systematic review of cardiopulmonary exercise testing post stroke: Are we adhering to practice recommendations? Journal of Rehabilitation Medicine: Official Journal of the UEMS European Board of Physical and Rehabilitation Medicine. 2015; 47(10):881–900. https://doi.org/10.2340/16501977-2031 PMID: 26551052

40. Gordon NF, Duncan JJ. Effect of beta-blockers on exercise physiology: implications for exercise training. Medicine and Science in Sports and Exercise. 1991; 23(6):668–676. Available from: Effect of beta-blockers on exercise physiology: implications. . . Medicine & Science in Sports & Exercise (lww.com) PMID: 1679517

41. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? International Journal of stroke: official journal of the International Stroke Society. 2013; 8(1):25–32. https://doi.org/10.1111/j.1747-4949.2012.00967.x PMID: 23280266

42. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ. 2009; 338:b375. https://doi.org/10.1136/bmj.b375 PMID: 19237405