Immunologic hypo- or non-responder in natural dengue virus infection

Guey Perng, Emory University
Kulkanya Chokephaibulkit, Mahidol University

Journal Title: Journal of Biomedical Science
Volume: Volume 20, Number 1
Publisher: BMC | 2013-05-31, Pages 34-34
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1423-0127-20-34
Permanent URL: https://pid.emory.edu/ark:/25593/vhmwb

Final published version: http://dx.doi.org/10.1186/1423-0127-20-34

Copyright information:

© 2013 Perng and Chokephaibulkit; licensee BioMed Central Ltd.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (https://creativecommons.org/licenses/by/2.0/).

Accessed December 1, 2022 11:55 PM EST
Immunologic hypo- or non-responder in natural dengue virus infection

Guey Chuen Perng1,2,3* and Kulkanya Chokephaibulkit4

Abstract
Serologically defined primary dengue virus infection and/or subsequent homologous serotype infection is known to be associated with less severe disease as compared with secondary subsequent heterologous serotype infection. In geographical locales of high dengue endemicity, almost all individuals in the population are infected at some point in time and should therefore are at high risk of secondary infection. Interestingly, dengue viremia in healthy blood donors whose sera apparently lack detectable levels of specific antibody to dengue viral antigens has been reported. The incidence rate of potential immunologic hypo- or non-responders following natural primary dengue virus infection in dengue endemic regions, who do become immune responders only after repeated exposure, has not been described. These are the patients who may be diagnosed as primary infection in the subsequent infection, but actually are secondary infection. This concept has important implications with regards to the hypothesis of immunological enhancement of dengue pathogenesis, which has largely been advanced based on empirical observations and/or from in vitro experimental assays. The fact that dengue naïve travelers can suffer from severe dengue upon primary exposure while visiting dengue endemic countries underscores one of the major problems in explaining the role of immune enhancement in the pathogenesis of severe dengue virus infection. This evidence suggests that the mechanism(s) leading to severe dengue may not be associated with pre-existing enhancing antibody. Consequently, we propose a new paradigm for dengue virus infection classification. These include a) patients with naïve primary infection, b) those that are serologically defined primary in dengue endemic zones and c) those who are serologically defined secondary dengue virus infection. We submit that clarity with regards to such definitions may help facilitate the delineation of the potential mechanisms of severe dengue virus infection.

Keywords: Nonresponder, Naïve, Flavivirus, Dengue fever, DHF

Review
Dengue is one of the most important vector-borne human diseases globally as well as a major public health burden and threat. There are four distinct viral serotypes, each one of them is capable of causing a wide spectrum of dengue manifestations including plasma leakage and shock with multi-organ failure. The resurgence of the dengue endemicity has resulted from numerous oscillating environmental, social and economical factors. Two-fifths of the world’s population is at risk of dengue virus infection, with approximately one-half million requiring hospitalization, with an estimated 25,000 deaths annually, according to the WHO. Currently, there are no effective antiviral modalities and/or preventive vaccines available to combat or control dengue virus infection. The precise mechanism by which only a small percentage of dengue virus infected individuals progressing to severe dengue disease remains poorly understood.

The pathophysiology of severe dengue virus infection is very complex and may involve multiple factors. One of the factors believed to play a role in the pathogenesis of severe dengue disease is the presence of pre-existing dengue reactive antibody as available data from dengue epidemic countries have indicated that severe disease more frequently occurs during subsequent viral infections with a different dengue serotype [1,2], as defined by the standard serological test. However, recent results obtained from non-dengue endemic regions [3] and...
from travelers suggest that the frequency of severe dengue diseases during primary infection in immune-naive individuals is similar to that of heterologous secondary infections in endemic areas [4]. The immune enhancement theory is further put to question by the study by Libraty et al [5] which included a cohort study that revealed the lack of an association between maternal antibodies and development of severe dengue in infected infants. Collectively, the evidence suggests that as yet undefined factor(s) play a critical role in the development of severe dengue in naïve primary infection. We submit that the cause of severe pathology in truly naïve individuals infected by dengue virus may be distinguishable from that of serologically defined primary infection in dengue endemic zones.

According to the WHO guidelines, it is required that paired specimens from individual patients be simultaneously processed to clearly define the infection as primary or secondary in dengue endemic regions. But, very often, paired-sample collection is impractical in routine clinical practice. This limitation has led to the definition of primary and secondary infection in dengue endemic zones by the analysis of the ratio of IgM/IgG on a single sample; if the value is >1.2, then it is a primary infection, but if the value is ≤1.2, it is noted as a secondary infection. Epidemiologically, serological surveillance studies

| Table 1 DENV detection in blood donations collected in Puerto Rico in 2007 |
|---------------------------------|-----------------|-----------------|-----------------|
| Unit | S/CO by TMA* | S/CO by eTMA | CDC Testing |
| | Initial | Retest | Initial | Retest | Serotype* | Viral load (Copies/ml) | C6/36# | Anti-DENV IgM |
| 1 | 27.75 | 38.99 | 87.16 | 88.52 | DENV-2 | 1.12 × 10^9 | Pos | Neg |
| 2 | 32.34 | 33.30 | 91.10 | 83.09 | DENV-2 | 5.08 × 10^8 | Pos | Pos |
| 3 | 33.30 | 37.38 | 91.10 | 83.09 | DENV-2 | 1.35 × 10^8 | Pos | Neg |
| 4 | 37.66 | 39.16 | 87.13 | 89.32 | DENV-3 | 7.25 × 10^7 | Pos | Neg |
| 5 | 40.29 | 27.03 | 82.29 | 92.04 | DENV-3 | 1.37 × 10^7 | Pos | Neg |
| 6 | 32.73 | 35.03 | 91.10 | 83.09 | DENV-3 | 1.18 × 10^7 | Pos | Neg |
| 7 | 33.91 | 32.87 | 91.10 | 83.09 | DENV-3 | 7.67 × 10^6 | Pos | Neg |
| 8 | 31.97 | 30.59 | 91.10 | 83.09 | DENV-3 | 4.49 × 10^6 | Pos | Neg |
| 9 | 19.14 | 13.94 | 91.10 | 83.09 | DENV-2 | 2.82 × 10^6 | Pos | Pos |
| 10 | 33.10 | 38.68 | 87.86 | 89.91 | DENV-3 | 6.39 × 10^5 | Pos | Neg |
| 11 | 31.25 | 33.56 | 91.10 | 83.09 | DENV-3 | 3.50 × 10^5 | Pos | Neg |
| 12 | 5.68 | 20.55 | 29.48 | 21.59 | DENV-3 | 1.00 × 10^5 | Pos | Neg |
| 13 | 34.81 | 37.21 | 76.16 | 32.72 | <10^3 | Neg | Neg | Neg |
| 14 | 23.38 | 31.07 | 31.25 | 31.18 | <10^3 | Neg | Neg | Neg |
| 15 | 14.23 | 23.26 | 28.59 | 3.28 | <10^3 | Neg | Pos | Pos |
| 16 | 13.14 | 25.77 | 29.26 | 12.51 | <10^3 | Neg | Neg | Neg |
| 17 | 11.51 | 5.63 | <10^3 | <10^3 | <10^3 | Neg | Neg | Neg |
| 18 | 8.17 | 16.58 | <10^3 | <10^3 | <10^3 | Neg | Neg | Neg |
| 19 | 6.64 | 8.91 | <10^3 | <10^3 | <10^3 | Neg | Pos | Pos |
| 20 | 5.06 | 4.12 | 29.96 | 8.61 | <10^3 | Neg | Neg | Neg |
| 21 | 3.37 | 4.95 | <10^3 | <10^3 | <10^3 | Neg | Pos | Pos |
| 22 | 2.95 | 25.28 | <10^3 | <10^3 | <10^3 | Neg | Pos | Pos |
| 23 | 8.20 | 1.40 | <10^3 | <10^3 | <10^3 | Neg | Neg | Neg |
| 24 | 4.46 | 0.01 | 24.80 | 0.06 | <10^3 | Neg | Neg | Neg |
| 25 | 1.02 | 2.29 | 28.01 | 0.01 | <10^3 | Neg | Neg | Neg |
| 26 | 0.45 | 26.38 | 27.55 | <10^3 | <10^3 | Neg | Neg | Neg |
| 27 | 0.17 | 26.18 | 30.99 | <10^3 | <10^3 | Neg | Neg | Neg |
| 28 | 0.30 | 25.31 | 29.11 | <10^3 | <10^3 | Neg | Neg | Neg |
| 29 | 0.50 | 24.34 | 17.85 | <10^3 | <10^3 | Neg | Neg | Neg |

*TMA reactive when the S/CO ratio is 1.00 or greater. *Serotype-specific, real-time RT-PCR. *C6/36=the mosquito cell line used for infectivity studies. *Unit 3 was involved in a transfusion transmission. *Four TMA nonreactive samples were eTMA reactive. Bold text indicates positive values. With permission from originally published in Transfusion 2012 Aug; 52(8):1657-66.
have revealed that about 85 to 95% of school-aged children in endemic countries are positive for dengue IgG antibody [2,6,7]. Interestingly, a recent report [8] demonstrates that dengue viremia can exist in healthy blood donors whose sera apparently lack detectable levels of specific antibody to dengue virus (Table 1), and the incidence varies, ranging from 0.7/1000 to 4.5/1000, dependent upon season and year [9]. Thus, besides the use of the IgM/IgG ratio, it is difficult at best to distinguish between primary and secondary infection. It is further complicated by the incidence of non-classical serologic responses, in which the ratio value is often slightly below 1.2. Such cases are very often arbitrarily assigned as secondary infection, and thus the definition has been called into question [10]. The fact that there exist asymptomatic dengue viremia positive but antibody undetectable individuals in dengue endemic geographical locales, presents an important challenge to the blood supply of that region [11-13]. Dengue inapparent infection has been documented in literature since 1939, in which volunteers intravenously received serum taken from an acute dengue patient, but no clinical symptoms were observed, and yet serum taken from this subject was able to infect a new healthy volunteer. Hence the term dengue inapparent infection was instituted [14]. Interestingly, it has been proposed that asymptomatic dengue cases may account for the introduction and spread of dengue viruses in non-endemic regions [15]. Consequently, the cumulative evidence suggests that asymptomatic viremia may have an important role in dengue transmission and warrant a more in depth investigation.

Within the context of diagnoses that are based on serological tests, it is important to note the results that have been recorded following routine vaccinations. The estimated frequency of immunologic non-responders among Hepatitis B vaccine and Venezuelan equine encephalitis (VEE) vaccine recipients is around 1-10% [16-18] and about 18-26% [19], respectively. However, the occurrence of such non-responders following natural Hepatitis B or VEE infection has not so far been investigated or documented. Furthermore, although the frequency of hypo- or non-responders in natural dengue virus infection has never been explored, recent data accumulated from screening of healthy blood donors living in a dengue endemic zone suggest that the incidence ranges from 4.5 to 0.7 per 1000 donors [9]. In addition, extrapolation of cumulative data of seroconversion following monovalent or tetravalent dengue vaccine trials suggested that hypo- or non-responders after a single dose of vaccine was found to be between 15 to 22% (Figure 1), regardless where the trials are performed. Epidemiologically, the prevalence of IgM and/or IgG negative individuals reported in serological studies conducted in dengue endemic regions indicates that the range is 1 to 10% among populations in various geographical areas [6,7,20-26]. These data suggest that subjects that are initially immune non-responders may be re-challenged repeatedly with the incoming virus throughout their lives in endemic countries. Interestingly, it has been documented that the frequency of reattack rate in dengue endemic regions or during an outbreak is about 1:20, or 5-8% [27-32]. Coincidentally, the seroconversion rate in dengue vaccine trials can be up to 90 to 99% after the 2nd and 3rd dose [33,34]. Consequently, several pragmatic questions can be asked; should immunologic non-responders after being re-challenged be defined as primary or secondary infection in dengue endemic regions? Will these non-responders develop severe dengue after repeated exposures with the virus in the natural setting? These questions should be thoughtfully considered and investigated.

One of avenues that can be linked to the immune non-responder is genetic polymorphism in ethnic origin of populations and perhaps in a specific individual.
In a general term, immune related genetic polymorphisms are much more likely contributing to the phenomena. These include genes for human leukocyte antigens (HLA) or major histocompatibility class, for antibody genes, for cytokines, for Toll-like receptors or receptors in pathogen pattern recognition and others [53,54]. Some of these genetic polymorphisms have been associated with quality of immune response and viral disease development, as well as that found in individuals who are hypo- or non-responders to hepatitis B vaccination [55-62]. Recent evidence suggests that defective in antigen intake by the antigen-presenting cells and/or unable to present antigen properly and adequately is not a cause of non-responsiveness to hepatitis B surface antigen from HLA polymorphism [63]. Scientifically, the cascade and complexity of immune responses in pathogen- or vaccine-induced can be highly variable among individuals. Consequently, any genes within the immune response network would potentially contribute to the pleiotropic variation seen in an infected population or vaccinees.

As for how to differentiate the naïve primary infection from hypo/non-responder when no host gene biomarkers are currently available, a number of methods have been proposed. These include a) analysis of an individual’s genetic background and HLA typing, b) performing a much more laborious laboratory test such as the identification of a molecular signature using whole genome transcriptional analysis in PBMC [64] or c) the assessment of CD4+ T cell subsets, CD31+ thymic naïve CD4+ T cells, a prognostic marker for immune competence [65]. Thus, in order to further advance the understanding of the pathogenesis of severe dengue, three major categories, naïve primary infection, serologically defined primary infection in endemic zones, and secondary infection, are suggested and should be implemented where it is applicable in the interpretation of results.

The presence of different dengue serotypes and a sub-genotype group within a serotype are the well-established complexity in dengue. Each serotype or sub-genotype is capable of inducing typical dengue diseases. Although some sub-genotypes may induce severe dengue more often than others [66,67], dependent upon geographical zones, the concept on the immune nonresponder in dengue endemic regions has not been established in spite of epidemiologically results indicate that repeating exposure with alternate viral serotype correlates with dengue severity [68]. Consequently, in dengue endemic zones, is severe dengue a result of alternate heterologous infection in the prior exposure individual or a non-responder constantly re-challenged by circulating virus remains to be investigated. Currently, there is no assay that can differentiate the sequence of serotype infections in an individual [69]. Therefore, diagnostic tool that can efficiently differentiate the previous infected serotype prior to current other serotype infection is urgently needed.

Conclusion

The ability to identify and distinguish these 3 categories will shed new light on the development of better diagnostic tools, mitigation of the threat to the blood supply in dengue-endemic countries, and pave a new avenue for molecular processes of immune development in the design and generation of modern vaccines. Furthermore, with a clearer definition of the virus pre-exposure, the search for better diagnostic marker and the identity of the pathogenic cause for severe dengue may be much simpler and faster to reach a consensus which would greatly facilitate the institution of effective and appropriate preventive medicine strategy.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GCP collected information, designed and organized the structure of the contents and wrote the manuscript. KC reviewed literature, discussed and suggested the contents as well as edited the manuscript. Both authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Dr. Aftan A. Ansari, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, for his helpful discussion and suggestions to the manuscript. This study was supported in part by Thailand Research Fund for Senior Research Scholar, and by a startup grant from the National Science Council (NSC99-2321-B006-008) with the Center of Infectious Disease and Signaling Research, NCKU, Taiwan.

Author details

1Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan. 2Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan. 3Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA. 4Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Received: 28 March 2013 Accepted: 27 May 2013 Published: 31 May 2013

References

1. Halstead SB, Nimmanithy S, Cohen SN: Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 1970, 42(3):311–328.
2. Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, Salitul V, Phanthumachinda B, Halstead SB: Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 1984, 120(5):653–669.
3. Chao DY, Lin TH, Hwang KP, Huang JH, Liu CC, King CC: 1998 dengue hemorrhagic fever epidemic in Taiwan. Emerg Infect Dis 2004, 10(3):552–554.
4. Meltzer E, Schwartz E: A travel medicine view of dengue and dengue hemorrhagic fever. Travel Med Infect Dis 2009, 7(5):278–283.
5. Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, Jarman RG, Yoon IK, Gibbons RV, Brion JD, Capeding RZ: A prospective
nested case-control study of Dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 2009, 6(10):e1000171.

4. Thai KT, Binh TQ, Giao PT, Phuong HL, le Hung Q, Van Nam N, Nga TT, Groen J, Nagelkerke N, de Vries FS: Seroprevalence of dengue antibodies, annual incidence and risk factors among children in southern Vietnam. Trop Med Int Health 2002, 7(10):379-386.

5. Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, Cuadra R, Rocha J, Perez MA, Silva S, Rocha C, Harris E: Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 2006, 74(3):449-456.

6. Stramer SL, Linen JM, Carrick JM, Foster GA, Krysztof DE, Zou S, Dodd RY, Tirado-Marrejo LM, Hunsperger E, Santiago GA, Munoz-Jordan JL, Tomashov KH: Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion 2012, 52(8):1657–1666.

7. Petersen LR, Tomashov KM, Biggerstaff BJ: Estimated prevalence of dengue viremia in Puerto Rican blood donations, 1995 through 2010. Transfusion 2012, 52(1):164–1651.

8. Prince HE, Yeh C, Lape-Nixon M: Utility of IgM/IgG ratio and IgG avidity for distinguishing primary and secondary dengue virus infections using sera collected more than 30 days after disease onset. Clin Vaccine Immunol 2011, 18(11):1951–1956.

9. Wilder-Smith A, Chen LH, Massad E, Wilson ME: Threat of dengue to blood safety in dengue-endemic countries. Emerg Infect Dis 2009, 15(1):8–11.

10. Teo D, Ng LC, Lam S: Is dengue a threat to the blood supply? Transfusion 2009, 49(2):166–77.

11. Dias LL, Amarrilla AA, Poloni TR, Covas DT, Aquino VH, Figueiredo LT: Detection of dengue virus in sera of Brazilian blood donors. Transfusion 2012, 52(8):1667–1671.

12. Scott H: A History of Tropical Medicine. Baltimore: The Williams & Wilkins Company, 1999.

13. Chastel C: Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front Physiol 2012, 3:70.

14. Jafarzadeh A, Zarei S, Shokri F: Seroreplacement of dengue antibodies, assayed by indirect immunofluorescence, in dengue virus-infected patients. Hum Vacchin 2011, 5(3):205–212.

15. Chastel C: Detection of dengue virus in sera of Brazilian blood donors. Transfusion 2012, 52(8):1667–1671.

16. Scott H: A History of Tropical Medicine. Baltimore: The Williams & Wilkins Company, 1999.

17. Hollinger FB: Factors influencing the immune response to hepatitis B vaccine, booster dose guidelines, and vaccine protocol recommendations. Am J Med 1989, 87(3A):365–405.

18. Poordad F, Khungar V: Emerging therapeutic options in hepatitis C virus infection. Am J Manag Care 2011, 17 Suppl 4:R123–510.

19. Pittman PR, Makuch RS, Mangiafico JA, Cannon TL, Gibbs PH, Peters CJ: Emerging therapeutic options in hepatitis C virus infection. Am J Trop Med Hyg 1992, 47(3):317–320.

20. Sun W, Eckels KH, Putnak Jr, Lyons AG, Thomas SJ, Vaughn DW, Gibbons RV, Fernandez S, Gunther VJ, Lam S, Perng and Chokephaibulkit: dengue virus antibodies in asymptomatic Costa Rican children, 2002–2003: a pilot study. Rev Panam Salud Publica 2006, 21(5–6):379–293.

21. Stramer SL, Tomashov KM, Stammer SL, Hunsperger E: Prevalence of anti-dengue immunoglobulin G antibodies among American Red Cross blood donors in Puerto Rico. Transfusion 2012, 52(8):1652–1656.
chimeric dengue serotype 2 vaccine is safe and highly immunogenic in healthy dengue-naive adults. Hum Vaccin 2006, 2(6):255–260.

48. Durbin AP, Whitehead SS, McArthur J, Perreault Jr, Reynolds MJ, Perreault JR, Thumar B, Murphy BR, Karzon RA: rDEN4delta30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. J Infect Dis 2005, 191(5):710–718.

49. McArthur JH, Durbin AP, Maron JA, Wainionek KA, Thumar B, Pierro DJ, Schmidt AC, Baney JE Jr, Murphy BR, Whitehead SS: Phase I clinical evaluation of rDEN4delta30-200-201: a live attenuated dengue 4 vaccine candidate designed for decreased hepatotoxicity. Am J Trop Med Hyg 2008, 79(5):678–684.

50. Durbin AP, Karzon RA, Sun W, Vaughn DW, Reynolds MJ, Perreault Jr, Thumar B, Men R, Lai CJ, Ekins WR, Chanock RM, Murphy BR, Whitehead SS: Attenuation and immunogenicity in humans of a live dengue virus type–4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am J Trop Med Hyg 2001, 65(5):405–413.

51. Bhamarapravati N, Sutee Y: Live attenuated tetravalent dengue vaccine. Vaccine 2000, 18(Suppl 2):44–47.

52. WHO: Dengue vaccine development: report of the twelfth peer review meeting, 29–31 August 1994. 1996 ed. New Delhi: WHO Regional Office for South-East Asia; 1994.

53. Poland GA, Kennedy RB, Ovsyannikova IG: Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog 2011, 7(2):e1002344.

54. Parf UP, Zhang W, Zhang L, Wu XP, Zhu XL, Yan BR, Li X, Xu AQ, Liu Y, Li H: CD32 genetic polymorphism in immune response to hepatitis B vaccination in two independent Chinese populations. PLoS One 2012, 7(9):e35303.

55. Davila S, Froeling FE, Tan A, Bonnard C, Boland GJ, Snippe H, Hibberd ML, Seielstad M: New genetic associations detected in a host response study to hepatitis B vaccine. Genes Immun 2010, 11(3):232–238.

56. Godkin A, Davenport M, Hill AV: Molecular analysis of HLA class II associations with hepatitis B virus clearance and vaccine nonresponsiveness. Hepatology 2005, 41(6):1383–1390.

57. Hohler T, Reuss E, Evers N, Dietrich E, Rittner C, Freitag CM, Vollmar J, Schneider PM, Fimmers R: Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: a vaccination study in twins. Lancet 2002, 360(9338):991–995.

58. McDermott AB, Zuckerman JB, Sabin CA, Marsh SC, Madrigal JA: Contribution of human leukocyte antigens to the antibody response to hepatitis B vaccination. Tissue Antigens 1997, 50(1):8–14.

59. Png E, Thalamuthu A, Ong RT, Snippe H, Boland GJ, Seielstad M: A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region. Hum Mol Genet 2011, 20(19):3893–3898.

60. Weissman JY, Tsuchiyose MM, Tong MJ, Co R, Chin K, Ettenger RB: Lack of response to recombinant hepatitis B vaccine in nonresponders to the plasma vaccine. JAMA 1988, 260(12):1734–1738.

61. Wang C, Tang J, Song W, Lobashevsky E, Wilson CM, Kaslow RA: HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination. Hepatology 2004, 39(4):978–988.

62. Chen J, Liang Z, Lu F, Fang X, Liu S, Zeng Y, Zhu F, Chen X, Shen T, Li J, Zhuang H: Toll-like receptors and cytokines/cytokine receptors polymorphisms associate with non-response to hepatitis B vaccine. Vaccine 2011, 29(4):706–711.

63. Desombere I, Cao T, Gijbels Y, Leroux-Roels G: Non-responsiveness to hepatitis B surface antigen vaccines is not caused by defective antigen presentation or a lack of B7 co-stimulation. Clin Exp Immunol 2005, 140(1):126–137.

64. Erwin-Cohen R, Porter A, Pittman P, Ross C,Dasika L: Host responses to live-attenuated Venezuelan equine encephalitis virus (TC-83): Comparison of naive, vaccine responder and nonresponder to TC-83 challenge in human peripheral blood mononuclear cells. Hum Vacc Immunother 2012, 8(8):1053–1065.

65. Kohler S, Thiel A: Life after the thymus: CD31+ and CD31– human naive CD4+ T-cell subsets. Blood 2009, 113(4):769–774.

66. Gubler DJ, Kuno G (Eds): Dengue And Dengue Hemorrhagic Fever, ed First. Wallingford, UK: CAB, 1997.

67. Roco-Hesse R: Dengue virus markers of virulence and pathogenicity. Future Virol 2009, 4(6):581.

68. Halstead SB: Dengue. Lancet 2007, 370(9599):1644–1652.

69. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Nooer A, Marpols HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW: Dengue: a continuing global threat. Nat Rev Microbiol 2010, 8(12):Suppl 9–516.