Haploidization in *Saccharomyces cerevisiae* induced by a deficiency in homologous recombination

Wei Song and Thomas D. Petes

Department of Molecular Genetics and Microbiology, Duke University Medical Center,

Durham, NC 27710

Copyright 2012.
Running title: Haploidization in Rec- Yeast

Key phrases: *S. cerevisiae*, chromosome loss, parasexual cycle, microarrays

Corresponding author: Thomas D. Petes

Address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710

Phone: 919 684-4986; FAX: 919 684-6033

Email: tom.petes@duke.edu
Abstract

Diploid *S. cerevisae* strains lacking the *RAD52* gene required for homologous recombination have a very high rate of chromosome loss. Two of four isolates sub-cultured about 20 times (approximately 500 cell divisions) became haploid. These strains were capable of mating with wild-type haploids to produce diploid progeny capable of undergoing meiosis to produce four viable spores.
In previous studies (Mortimer et al. 1981; Yoshida et al. 2003), it was shown that diploid *Saccharomyces cerevisiae* strains that lacked the Rad52p had substantially elevated frequencies of chromosome loss relative to wild-type strains. In X-ray treated *rad52* mutants, chromosome loss rates were further elevated (Mortimer et al. 1981). Since *rad52* strains are unable to efficiently repair double-stranded DNA breaks (DSBs) by homologous recombination (Krogh and Symington 2004) and since non-homologous recombination is suppressed in diploid cells (Shrivastav et al. 2008), these high frequencies of chromosome loss likely reflect the lack of repair of DSBs generated spontaneously or induced by X-rays. Previous studies of chromosome loss in *rad52* strains involved genetic approaches that were restricted to specific chromosomes. In the study below, we used DNA microarrays allowing us to examine all chromosomes. This approach revealed that two of four sub-cultured *rad52* diploids underwent rapid chromosome loss eventually resulting in haploidy.

Results

We constructed a diploid (WS82, Table 1 footnote) homozygous for the *rad52* mutation; the haploid strains used in the construction (WS30-3 and WS53) differed by >25,000 single-nucleotide polymorphisms (SNPs). Four independent isolates of this diploid were sub-cultured on plates from a single cell to a colony at least 18 times, representing about 450 cell divisions. Samples were taken for analysis from the strain before sub-culturing and after various numbers of sub-culturing events. DNA was isolated from each isolate and the chromosome compositions were examined by comparative genome hybridization (CGH) microarrays. For two of the four isolates, we observed progressive chromosome loss, culminating in haploidization for two of these
isolates (Table 1). For example, in WS82-1, although the starting strain was a normal diploid (Fig. 1A), by the fifth sub-cloning (SC5), the isolate had lost chromosomes IV, V, X, XII, and XIII (Fig. 1B). Continued sub-cloning resulted in further chromosome loss (Fig. 1C-1D).

By the eighteenth sub-cloning, WS82-1 had the same gene dosage for all sixteen chromosomes (Fig. 1E). This hybridization pattern, by itself, cannot distinguish between haploids and diploids. To determine whether the strain was a haploid or diploid, we crossed WS82-1 from SC18 with a RAD52 MATα haploid strain (EAS18). The resulting strain would be a diploid or a triploid, depending on whether the strain shown in Fig. 1E was a haploid or diploid, respectively. When induced to undergo meiosis, diploid strains have good spore viability (>80%) whereas triploids have poor spore viability (<50%) (St. CHARLES et al. 2010). We found that the strain produced by the cross had excellent spore viability (143 viable spores of 160 total, 89%), indicating that the sub-cultured derivative of WS82-1 shown in Fig. 1E was a haploid rather than a diploid. Similarly, by the same criteria described above, WS82-2 underwent haploidization. The WS82-3 and WS82-4 isolates will be described further below.

In addition to detecting changes in gene dosage, oligonucleotide-containing microarrays can also be used to determine whether a diploid strain is heterozygous or homozygous for a SNP (GRESHAM et al. 2008). We used SNP arrays to confirm haploidy in the sub-cultured derivatives of WS82-1 and WS82-2 and to determine whether the chromosomes were preferentially lost from one of the two haploid parental strains (WS30-3 and WS53). Fig. 2A illustrates that genomic DNA isolated from sub-culture 0 of WS82-1 hybridized equally well to WS30-3-specific and WS53-specific
oligonucleotides; although all chromosomes were examined, only the data for chromosome VII are shown in Fig. 2A. In contrast, genomic DNA isolated from SC18 of WS82-1 (the presumptive haploid strain) preferentially hybridized to the WS30-3-specific oligonucleotides for chromosome VII (Fig. 2B) and to the WS53-specific oligonucleotides for chromosome XIV (Fig. 2C). As shown in Table 1 (SC18 for WS82-1 and SC22 for WS82-2), of 32 chromosome losses, 12 were losses of the WS30-3-derived chromosomes and 20 were losses of the WS53-derived chromosomes; this difference is not statistically significant. These results confirm that WS82-1 and WS82-2 are haploid strains and further show that, as expected, none of the retained chromosomes had undergone mitotic recombination.

In contrast to the progressive chromosome loss observed in the WS82-1 and WS82-2, WS82-3 and WS82-4 underwent a different process. From the CGH analysis (samples labeled with “C” in Table 2), by SC22, WS82-3 appeared to have lost 13 of 16 chromosomes (retaining two copies of III, VIII, and IX), and WS82-4 appeared to have lost one complete set of chromosomes by SC18. At SC5, by CGH arrays, WS82-4 had lost chromosomes VIII, X, and XIII. After SC10, however, genomic DNA isolated from WS82-4 had a pattern of hybridization by SNP arrays indicating that it was trisomic for many chromosomes. For example, in Fig. 2D, the pattern of hybridization at SC10 indicated that the strain had three copies of chromosome XI, two derived from the WS30-3 parent and one derived from the WS53 parent. Similarly, for WS82-3, by SC5, the SNP array indicated that most of the homologues were present in more than two copies (Table 2). The discrepancy between the number of chromosomes in these strains as determined by CGH and SNP microarrays reflects what is measured by the
two different methods. The CGH analysis can only detect deviations in copy number from the average copy number of the experimental strain (Fig. 1 legend); although two-fold differences are usually clear, smaller differences are not. In contrast, with the SNP arrays, the relative hybridization levels of the experimental strain to each homologue are measured independently (Fig. 2 legend). In this type of array, by examining the hybridization values to the SNP-specific oligonucleotides, it is simple to determine both copy number and whether the homologues are identical. Thus, for WS82-4 (SC10), it is clear that there is one copy of chromosome XI derived from WS53 because the normalized hybridization ratio is 1, and two copies of XI derived from WS30-3 because the normalized hybridization ratio is about 1.4. In summary, where there is a discrepancy between the number of chromosomes as determined with CGH and SNP arrays, the SNP arrays are more accurate. We point out that no discrepancies for the two types of arrays were observed for WS82-1 and WS82-2.

There are two explanations of the apparent genome duplications observed in isolates WS82-3 and WS82-4. First, it is possible that, during sub-culturing within each of these isolates, two derivatives arose, one that had lost the \textit{MATa}-containing copy of chromosome III and one that had lost the \textit{MAT\alpha}-containing copy of III. Mating between these derivatives would result in a strain with either two, three or four copies of each homologue, consistent with the SNP array data. An alternative possibility is that, during sub-culturing, WS82-3 and WS82-4 underwent whole-genome duplication. We favor the second possibility for two reasons. First, in the strains observed immediately after the postulated genome duplication (SC5 for WS82-3 and SC10 for WS82-4), WS82-3 had two copies of both the \textit{MATa} and \textit{MAT\alpha}-containing chromosomes, and WS82-4 had
two copies of the $MAT\alpha$- and one copy of the $MAT\alpha$-containing chromosomes. If the
diploidization reflected mating, we would expect that the resulting strain would have only
two copies of chromosome III, one with each mating type. Second, we and others (J.
McCUSKER, personal communication) have observed that haploid strains of the YJM789
genetic background spontaneously diploidize; consequently, as the WS82 diploid loses
chromosomes derived from the other genetic background, the diploidization phenotype
characteristic of the WS53/YJM789 haploid parent may emerge.

Although the $rad52$ mutation stimulates both chromosome loss and gain in the sub-
cultured cells in our experiments, it is likely that the main effect at the cellular level is to
increase the rate of chromosome loss, and the chromosome gain observed in two
isolates reflects either mating or whole-genome duplication during sub-culturing. A
strong argument that the chromosome gains and losses in $rad52$ strains are not a
consequence of an elevated rate in nondisjunction is that the individual homologues in
WS82-1, and WS82-2 become monosomic, rather than exhibiting a mixture of
monosomic and trisomic chromosomes. It should also be pointed out that chromosome
loss continued in the WS82-3 and WS82-4 isolates after mating/genome duplication.
For example, the number of chromosomes in WS82-3 decreased from 44 at SC5 to 34
at SC22.

Discussion

We showed that $rad52$ diploids have high rates of chromosome loss, culminating in
haploidy in some sub-cultured isolates. Since aneuploid strains grow slowly (TORRES et
al., 2007), it is difficult to calculate an accurate rate of chromosome loss. However, after
5 cycles of sub-culturing, since the average number of chromosomes lost in WS82-1
and WS82-2 was five, we calculate a frequency of loss of about 0.04 chromosomes/cell division (five loss events/125 cell divisions). If we multiply the rate of loss of chromosome V in a wild-type diploid (2 x 10⁻⁶/division; KLEIN 2001) by sixteen (the number of yeast chromosomes), we estimate that the comparable frequency of chromosome loss in wild-type diploids is about 3 x 10⁻⁵, about three orders of magnitude less than for the rad52 diploids.

The high rate of chromosome loss in rad52 strains has a straightforward explanation. Yeast cells have a low level of spontaneous DNA damage that can be detected as foci of fluorescently-tagged DNA repair proteins (LISBY et al. 2001). Since efficient repair of this damage by homologous recombination requires Rad52p, chromosomes with DSBs would be lost from the diploid. Since there is no efficient mechanism that compensates for this loss, the diploid would undergo progressive chromosome loss until the haploid state is reached. Although chromosome loss presumably continues in haploid cells, haploid cells that lose a chromosome would fail to divide since all yeast chromosomes contain essential genes.

As discussed above, strains with more than two copies of some of the homologues were observed in two rad52 isolates likely reflecting a genome-duplication phenotype associated with one of haploid parental strains, although mating between aneuploid derivatives is also possible. In WS82, therefore, the cell population derived from initially diploid rad52/rad52 isolates will have a complex composition of genotypes. The ratio of the various classes of near-diploid, near-haploid, and various other classes will presumably be dependent on the relative division rates of euploid and aneuploid strains,
as well as environmental factors. For example, haploid cells adapt more quickly than diploid cells in a variety of environments (GERSTEIN et al. 2011).

Three other studies are relevant to our observations. ALABRUDZINSKA et al. (2011) showed by FACS analysis that diploid S. cerevisiae strains lacking Ctf18p (a protein involved in loading PCNA on DNA and interactions with the cohesion complex) have very high levels of chromosome loss, with some isolates having the DNA content of haploid or near-haploid strains by FACS analysis. In ctf18 diploids, chromosome loss appears to involve a different mechanism than that observed in rad52 strains, with some ctf18 derivatives undergoing rapid reduction to near-haploidy whereas other derivatives had levels of DNA greater than the diploid level. In addition, tetraploid yeast strains undergo rapid formation of near-diploid strains in a pathway that appears to involve concerted chromosome loss (GERSTEIN et al. 2006). In C. albicans, diploid strains lacking Rad52p have high rates of chromosome loss and terminal deletions (ANDALUZ et al. 2011). The loss events, however, are subsequently followed by re-duplication events and, therefore, diploidy is preserved.

Lastly, our results suggest that, at least under lab conditions, diploid Saccharomyces cerevisae strains can exchange information through two pathways. In wild-type strains, the traditional sexual pathway is presumably the primary mechanism for genetic interchange. However, in rad52 diploid strains, chromosome loss results in fertile haploid strains without the necessity of undergoing meiosis. This pathway mimics some aspects of parasexual life cycles observed in Aspergillus nidulans and Candida albicans (PONTECORVO 1956; FORCHE et al. 2008).
We thank MARGARET DOMINSKA for her help with strain dissection, and LUCAS ARGUESO and all members of the PETES and JINKS-ROBERTSON labs for helpful comments and advice. The research was supported by NIH grants GM24110, GM52319, and 5RC1ES18091.
Literature cited

ALABRUDZINSKA, M., M. SKONECZNY, and A. SKONECZNA, 2011 Diploid-specific genome stability genes of *S. cerevisiae* genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS ONE 6: e21124.

ANDALUZ, E., A. BELLIDO, J. GOMEZ-RAJA, A. SELMECKI, K. BOUCHONVILLE et al., 2011 Rad52 function prevents chromosome loss and truncation in *Candida albicans*. Mol. Microbiol. 79: 1462-1482.

CASPER, A. M., P. A. MIECZKOWSKI, M. GAWEL, and T. D. PETES, 2008 Low levels of DNA polymerase alpha induce mitotic and meiotic instability in the ribosomal DNA gene cluster of *Saccharomyces cerevisiae*. PLoS Genet. 4: e1000105.

FORCHE, A., K. ALBY, D. SCHAEFER, A. D. JOHNSON, J. BERMAN et al., 2008 The parasexual cycle in *Candida albicans* provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6: 1-14.

GERSTEIN, A. C., H.-J. CHUN, A. GRANT, and S. P. OTTO, 2006 Genomic convergence toward diploidy in *Saccharomyces cerevisiae*. PLoS Genet. 2: e145.

GERSTEIN, A. C., L. A. CLEATHERO, M. A. MANDEGAR, and S. P. OTTO, 2011 Haploids adapt faster than diploids across a range of environments. J. Evol. Biol. 24: 531-540.

GOLDSTEIN, A. L., and J. H. MCCUSKER, 1999 Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. Yeast 15: 1541-1553.

GRESHAM, D., M. J. DUNHAM, and D. BOTSTEIN, 2008 Comparing whole genomes using DNA microarrays. Nature Rev. Genet. 9: 291-302.
KLEIN, H. L., 2001 Spontaneous chromosome loss in *Saccharomyces cerevisiae* is suppressed by DNA damage checkpoint functions. Genetics 159: 1501-1509.

KROGH, B. O., and L. S. SYMINGTON, 2004 Recombination proteins in yeast. Ann. Rev. Genet. 38: 233-271.

LEMOINE, F. J., N. P. DEGTYAREVA, K. LOBACHEV, and T. D. PETES, 2005 Chromosomal translocations in yeast induced by low levels of DNA polymerase: a model for chromosome fragile sites. Cell 120: 587-598.

LISBY, M., R. ROTHSTEIN, and U. H. MORTENSEN, 2001 Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98: 8276-8282.

MCCULLEY, J. L., and T. D. PETES, 2010 Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms. Proc. Natl. Acad. Sci. USA 107: 11465-11470.

MORTIMER, R. K., R. CONTOPoulos, and D. SCHILD, 1981 Mitotic chromosome loss in a radiation-sensitive strain of the yeast *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. USA 78: 5778-5782.

PONTECORVO, G., 1956 The parasexual cycle in fungi. Ann. Rev. Micro. 10: 393-400.

SHRIVASTAV, M., L. P. DE HARO, and J. A. NICKOLOFF, 2008 Regulation of DNA double-strand break repair pathway choice. Cell Res. 18: 134-147.

ST. CHARLES, J., M. L. HAMILTON, and T. D. PETES, 2010 Meiotic chromosome segregation in triploid strains of *Saccharomyces cerevisiae*. Genetics 186: 537-550.
ST. CHARLES, J., E. HAZKANI-COVO, Y. YIN, S. L. ANDERSEN, F. S. DIETRICH, P. W.

GREENWELL, E. MALC, P. MIECKOWSKI, and T. D. PETES, accepted for publication to Genetics. High-resolution genome-wide analysis of irradiated (UV and gamma rays) diploid yeast cells reveals a high frequency of genome loss of heterozygosity (LOH) events. Manuscript number 137927.

TORRES, E. M., T. SOKOLSKY, C. M. TUCKER, L. Y. CHAN, M. BOSELLI et al., 2007 Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317: 916-924.

WEI, W., J. H. McCUSKER, R. W. HYMAN, T. JONES, Y. NING et al. 2007 Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM786. Proc. Natl. Acad. Sci. USA 194: 12825-12830.

YOSHIDA, J., K. UMEZU, and H. MAKI, 2003 Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae. Genetics 164: 31-46.
Figure Legends:

Figure 1. CGH microarray analysis of aneuploidy in the sub-cultured rad52/rad52 diploid strain WS82.

To examine the effects of the rad52 mutation on chromosome loss, we sub-cultured independent isolates of WS82 18-22 times. Each sub-culturing involved growth from a single cell to a colony in plates incubated at 30°C for four days. The first ten sub-cultures were done on YPR-LG (rich growth medium with 0.005% galactose, 2% raffinose) plates and the subsequent sub-cultures were done on plates containing YPD (LEMOINE et al., 2005). DNA was isolated from sub-cultured samples and analyzed by CGH microarrays as described previously (LEMOINE et al. 2005; MCCULLEY and PETES 2010). In brief, sub-cultured DNA samples were labeled with Cy5-dUTP and hybridized in competition with control samples labeled with Cy3-dUTP to microarrays containing PCR fragments with ORFs and intergenic regions. The log2 Cy5/Cy3 ratio for each ORF or intergenic region was divided by median log2 Cy5/Cy3 ratio for all elements present on the array. Representative microarrays from isolate WS82-1 are shown. The data are depicted with CGH-Miner software. Each of the horizontal lines depicts one of the sixteen yeast chromosomes, shown in order from chromosome I at the top to XVI at the bottom. A gray line indicates that the chromosome is euploid, whereas a green line shows that the chromosome is under-represented. Most of the short red segments represent “noise” in the analysis, although the red segment on chromosome XII is a region of the ribosomal DNA that is often amplified. Fig. 1A-1E show the CGH analysis for the diploid before sub-culturing, and after 5, 10, and 14 rounds of sub-culturing,
respectively. SC5, SC10, and SC14 are monosomic for 5, 10, and 13 of the 16 chromosomes, respectively. Note that the starting strain (Fig. 1A) and SC18 (Fig. 1F) are both euploid, but a genetic test (described in the text) demonstrates that SC18 is haploid rather than diploid.

Figure 2. Analysis of chromosome loss using SNP microarrays. WS82 was derived from a cross of the haploids WS30-3 (closely related to S288c, sequence in SGD) and WS53 (closely related to YJM789, sequenced by Wei et al. 2007). Four 25-base oligonucleotides were designed for each of 13,000 SNPs distinguishing S288c and YJM789 (St. Charles et al., in press); for each SNP, two of the oligonucleotides had the sequence of the S288c form (Watson and Crick) and two had the sequence of the YJM789 form (Watson and Crick). These oligonucleotides were incorporated in Agilent microarrays. Genomic DNA isolated from experimental strains labeled with Cy3-dUTP was hybridized to these arrays in competition with a control heterozygous strain that was labeled with Cy5-dUTP (McCulley and Petes 2010). For each oligonucleotide, we determined the ratio of hybridization (R_M) of Cy5/Cy3. These values were centered to a value of 1 by dividing each of the oligonucleotide R_M by average of all oligonucleotide R_M values of the microarray. Loss of heterozygosity for a particular SNP results in an increased hybridization signal for one pair of strain-specific oligonucleotides and a decrease in the signal for the other pair of strain-specific oligonucleotides (Gresham et al. 2008). Since WS30-3 is not isogenic to S288c, only oligonucleotides that distinguished WS30-3 SNPs from WS53 SNPs were used in the analysis. In each panel, we show the ratio of hybridization of the experimental strain to the control strain (Y axis).
versus the position of the probe in SGD coordinates (X axis). Hybridization to S288c/WS30-3 oligonucleotides is shown in red and hybridization to YJM789/WS53 oligonucleotides is shown in blue.

A. Chromosome VII, WS82-1, before sub-culturing. In this strain, the ratios of hybridization to both types of oligonucleotides were about 1, indicating that WS82-1, before sub-culturing, had one copy each of the WS30-3- and WS53-derived chromosomes. All chromosomes in this strain had the same pattern.

B. Chromosome VII, WS82-1, SC18. After SC18, the strain had lost the WS53-derived chromosome VII and retained the WS30-3-derived chromosome VII. In these experiments, the retained chromosome had a hybridization ratio of about 1.5 and the lost chromosome had a ratio of about 0.5. The difference in hybridization ratios is not greater because there is some degree of cross-hybridization of genomic DNA from the different strains to the strain-specific oligonucleotides.

C. Chromosome XIV, WS82-1, SC18. After SC18, this isolate had lost the WS30-3-derived chromosome XIV and retained the WS53-derived copy.

D. Chromosome XI, WS82-4, SC10. After SC10, genomic DNA was isolated and hybridized to the SNP arrays. Although the hybridization ratios were higher for the WS30-3-specific oligonucleotides, the hybridization ratios for the WS53 oligonucleotides were higher than expected if the experimental strain lacked the WS53-derived chromosome. The simplest explanation of this pattern is that the strain had three copies of chromosome XI, two derived from WS30-3 and one derived from WS53.
Table 1. Number of each homologue (I-XVI) per cell in two derivatives of the rad52/rad52 diploid WS82 (WS82-1 and WS82-2) that show progressive chromosome loss during sub-culturing.1

Strain	SC	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI
WS82-1																	
	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5	2	2	2	1	1	2	2	2	2	1	2	1	2	2	2	2
	10	2	2	2	1	1	1	2	1	1	1	2	1	1	2	1	1
	14	2	1	2	1	1	1	1	1	1	1	2	1	1	1	1	1
	18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
WS82-2																	
	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5	2	2	2	1	2	2	2	2	2	1	2	1	2	2	2	2
	10	2	1	1	1	1	1	2	1	2	1	2	1	2	1	2	1
	14	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	18	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1WS82 was constructed by a cross of WS30-3 (MAT^a ade5-1 leu2-3 trp1-289 ura3-52 his7-2 LEU2::XII rad52Δ::NAT) and WS53 (MAT^a ho::hisG lys5 rad52Δ::NAT). WS30-3 was constructed by transformation of EAS18 (MAT^a ade5-1 leu2-3 trp1-289 ura3-52 his7-2 LEU2::XII; CASPER et al. 2008) with a PCR fragment generated by amplifying the plasmid pAG25 (GOLDSTEIN and MCCUSKER 1999) with primers WS5 (5’ GGAGGTTGCCAAGAAGTTCTTGGTGCTTTGGTGTGTTGTTGCGTACGCTGCAGGTCGAC) and WS6 (5’ AGTAATAAATGATGCAAATTITTTTATTGTTTTCGAGCCAACGTACGCTGCAGGTCGAC). The same fragment was used to derive WS53 from YJM849 (MAT^a ho::hisG lys5 Gal⁺), a strain obtained from J. MCCUSKER (Duke University) that is isogenic with YJM789 (MAT^a ho::hisG lys2 gal2; WEI et al. 2007), except for alterations introduced by transformation. WSMD58-2, a diploid generated by crossing MS71 (a MAT^a strain otherwise isogenic with EAS18) with YJM850 (a MAT^a strain otherwise isogenic with YJM849) was used as a control in the CGH experiments.
We used CGH microarrays to determine the number of chromosomes per cell for all 16 chromosomes in four isolates of WS82 before sub-culturing (SC 0) and after various numbers of sub-cultures (single cell to colony for each sub-culture). Genomic DNA of the two sub-cultured strains that had undergone haploidization was examined by SNP arrays. In the rows showing the 18th sub-culturing of WS82-1 and the 22nd sub-culturing of WS82-2, the boldface numbers indicate that the retained chromosome was derived from WS53/YJM789 parent, and italics show that the retained chromosome was derived from the WS30-3/MS71 parent.
Table 2. Number of each homologue (I-XVI) per cell in two derivatives of the *rad52/rad52* diploid WS82 (WS82-3 and WS82-4) that underwent genome duplications during sub-culturing.¹

Strain	SC²	I³	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI
WS82-3	0C	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	0S	2-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5C	1	2	1	1	1	1	2	2	2	2	2	2	1-2,1-2	2	2	2
	5S	2	2	2	2	2	2	2	2,1	2	2	2	2,1	1-2,1-2	2	2	2
	10C	2	2	2	2	2	2	2	2,1	2	2	2	2	1	1	1	1
	10S	2	2	2	2	2	2	2	1,2	2,1	2	2	2	1	1	1	1
	14C	2	2	2	2	2	2	2	2,1	2,1	2	2	2	1	1	1	1
	14S	2	2	2	2	2	2	2	1,2	2	2	2	2	1	1	1	1
	18C	1	1	1	1	1	1	1	2	2	2	2	2	1	1	1	1
	18S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	22C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	22S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
WS82-4	0C	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	0S	1,1	1	1,1	1,1	1	1,1	1	1	1	1	1	1	1	1	1	1
	5C	2	2	2	2	2	2	2	1	2	2	2	2	1-2,1-2	2	2	2
	5S	1,1	1	1,1	1,1	1	1,1	1	1	1	1	1	1	1	1	1	1
	10C	2	2	2	2	2	2	2	1	2	2	2	2	1-2,1-2	2	2	2
	10S	1,1	1	1,1	1	1	1	1	1	1	1	1	1	1	1	1	1
	14C	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1
	14S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	18C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	18S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

¹As discussed in the text, in the WS82-3 and WS82-4 isolates, during sub-culturing the strain underwent genome duplication. In WS82-3, this duplication event occurred between SC0 and SC5, and in WS82-4, the duplication occurred between SC5 and SC10.

²SC shows the sub-culture number. C and S indicate results obtained with CGH and SNP microarray analysis, respectively. Analysis of chromosome number by CGH arrays was performed as described in the Table 1 legend.

³As in Table 1, the number in boldface in the “S” row is the number of WS53/YJM789-derived chromosomes and the number in italics is the number of WS30-3/MS71-derived chromosomes. A range of numbers indicates that the sample of cells was heterogeneous. For example, in WS82-4 at SC5, chromosome IX has the numbers (1-2, 1), indicating that all of the cells in the culture have one copy of chromosome IX derived from WS30-3/MS71 and some of the cells in the culture have two copies of IX.
from WS53/YJM789 and others have one copy. As discussed in the text, the number of chromosomes based on CGH microarrays is often smaller than that based on SNP microarrays after SC0 for WS83-2 and SC5 of WS83-4 as a consequence of a genome duplication.
