Data Article

Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran

Khadijeh Jafari a, Farzaneh Baghal Asghari b, Edris Hoseinzadeh c, Zahra Heidari d, Majid Radfard e,f, Hossein Najafi Saleh f,*, Hossein Faraji g,*

a Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
b Department of Environmental Health, School of public Health, Tehran University of Medical Sciences, Tehran, Iran
c Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
d Bachelor of Environmental Health, Department of Health, Isfahan University of Medical Sciences, Isfahan, Iran
e Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
f Department of Environmental Health Engineering, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
g Students Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

A R T I C L E I N F O

Article history:
Received 2 March 2018
Received in revised form 13 May 2018
Accepted 18 May 2018
Available online 23 May 2018

Keywords:
Groundwater
Agricultural indicator
Drinking indicator
Abhar
Iran

A B S T R A C T

The main objective of this study is to assess the quality of groundwater for drinking consume and agriculture purposes in abhar city. The analytical results shows higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulfate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume. Agricultural index, in terms of the hardness index, 73.3% of the samples in hard water category and 73.3% in sodium content were classified as good. Therefore, the main problem in the agricultural sector was the total hardness Water was estimated. For the RSC index, all 100% of the samples were desirable. In the physicochemical parameters of drinking water, 100% of the samples were undesirable in terms of electrical conductivity.

* Corresponding authors.
E-mail addresses: najafi.saleh@gmail.com (H.N. Saleh), faraji_hoseyn@yahoo.com (H. Faraji).

https://doi.org/10.1016/j.dib.2018.05.096
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
and 100% of the samples were desirable for sodium and chlorine parameters. Therefore, the main water problem in Abhar is related to electrical conductivity and water total hardness.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Chemistry
More specific subject area	Describe narrower subject area
Type of data	Tables and figure
How data was acquired	EC, pH and chloride were analyzed using multiple parameters ion meter model Thermo Orion 5 Star. Sulfate (SO₄⁻²) was measured using a double beam UV–Vis spectrophotometer model Perkin Elmer Lambda 35 by turbidmetric, stannous chloride, and molybdo silicate, respectively. Sodium, calcium and magnesium were analyzed using flame photometer model CL-378 (Elico, India). Total hardness was determined by EDTA titrimetric method. TDS was measured gravimetrically. Agricultural indicator such as SAR, RSC, PI, KR, MH, and PS, % Na, SSP and TH were calculated using their formulas.

Data format	Raw, Analyzed
Experimental factors	All water samples in polyethylene bottles were stored in a dark place at room temperature until the metals analysis
Experimental features	Determine the content levels of physical and chemical parameters
Data source location	Abhar, Zanjan province, Iran
Data accessibility	Data are included in this article

Value of data

- Determination of the Agricultural and drinking water indices including SAR, %Na, SSP, MH, KR, RSC, EC, Ca²⁺, Mg²⁺, pH, TDS, TH, HCO₃⁻, Na⁺, K⁺, Cl⁻, and SO₄²⁻ in ground water was conducted in Abhar city, Iran.
- The level of EC, TDS and total hardness in the water samples indicates that maximum of them are unsuitable for drinking consume.
- Agricultural indices such as SAR and SSP indicated 100, 90% of samples in the studied area had SAR and SSP values within the excellent category respectively for irrigation purposes.
- Data of this study can help to better understand the quality of groundwater in this area.
- The present data of this study recommends that regular monitoring of groundwater is essential to avoid major environmental threat.

1. Data

Summary of the physical and chemical variables for the collected groundwater samples were presented in Table 1. The analytical results show higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulphate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume Table 2.
As shown in Tables 3, 4, the calculated SAR, SSP, PI, MH, KR and Na% values were compared with the groundwater quality classification, where 100,90% of samples in the studied area had SAR and SSP values within the excellent category respectively for irrigation purposes.
2. Experimental design, materials and methods

2.1. Study area description

Abhar is one of the cities of Zanjan province and Abhar city center. The city with 99,285 people in 2016 is considered as the second most populated city of Zanjan province after Zanjan city. The height of Abhar city is 1540 m. The maximum relative humidity in the city is 94.4% and at least 23.3%. The average annual rainfall is 300 mm. This area is considered as a semi-cold and dry in Iran country [8] (Fig. 1).

2.2. Determination of the physico-chemical parameters concentration and agricultural indicators

In order to assess the physico-chemical parameters, a total of 30 samples taken from Abhar County (Fig. 1). Water samples were collected in a plastic container of 1-L capacity for detailed chemical analysis from all observation wells. These containers were washed thoroughly with distilled water and dried before being filled with water samples. The containers were numbered serially along with a proper record of well/sample location, date, static water level, and prior to the sampling. Groundwater samples were collected after the well was subjected to pumping for at least 5–10 min to obtain the composite sample. The pH and EC of the groundwater of the wells were measured by using HACH HQ40d and its in situ values are recorded [9–15].

Well ID	RSC	PI	KR	MH	Na%	SAR	SSP
P1	0.12	59.16	0.50	39.79	33.60	1.83	33.27
P2	−0.21	58.89	0.33	54.80	25.56	1.03	25.08
P3	−1.28	72.17	1.16	35.04	53.81	3.47	53.67
P4	−0.2	55.20	0.52	25.21	34.68	2.31	34.37
P5	−0.33	62.48	0.44	43.76	31.09	1.32	30.77
P6	0.43	66.03	0.61	52.00	38.24	1.97	37.80
P7	−2.64	63.63	0.91	41.95	47.72	3.10	47.58
P8	0.68	69.60	0.56	32.62	36.17	1.62	35.88
P9	−0.48	58.65	0.43	37.86	30.74	1.44	30.30
P10	0.04	60.86	0.47	48.38	32.52	1.56	31.86
P11	0.27	66.69	0.59	53.04	37.65	1.82	37.07
P12	0.32	58.42	0.49	31.81	33.15	1.86	32.84
P13	−0.61	51.99	0.20	57.00	17.42	0.64	17.00
P14	0.43	65.73	0.55	44.02	35.72	1.72	35.39
P15	−0.08	57.53	0.32	33.01	24.82	1.03	24.37
P16	−0.08	65.13	0.59	36.49	37.45	1.86	37.14
P17	1.07	82.87	1.10	37.23	52.76	2.82	52.49
P18	0.2	73.28	0.41	28.99	29.41	0.96	29.05
P19	0.16	71.82	0.46	21.05	31.84	1.14	31.53
P20	0.24	75.40	0.61	21.62	38.20	1.48	37.82
P21	−1.84	63.68	0.82	33.06	45.27	2.86	45.08
P22	0.24	73.79	0.44	25.71	30.86	1.04	30.52
P23	−0.08	72.89	0.99	36.42	49.95	3.02	49.78
P24	0.12	66.42	0.29	27.16	23.04	0.75	22.67
P25	−0.08	61.59	0.43	36.88	30.23	1.32	29.82
P26	−0.52	66.23	0.45	19.75	31.50	1.15	31.21
P27	−0.59	61.20	0.35	22.64	26.24	0.95	25.95
P28	0.03	78.43	1.05	36.00	51.42	2.68	51.27
P29	−1.68	65.93	0.92	45.50	48.10	3.18	47.87
P30	0.24	74.79	0.42	25.76	29.79	0.96	29.41
Min	−2.64	51.99	0.20	19.75	17.42	0.64	17.00
Max	1.07	82.87	1.16	57.00	53.81	3.47	53.67
Ave	−0.20	66.02	0.58	36.15	35.63	1.76	35.30
SD	0.78	7.28	0.26	10.40	9.31	0.81	9.38
and analyzed in the Centre for Water Resources Development and Management (CWRDM). Water samples collected in the field for chemical constituents, such as TDS, TH, Ca^{2+}, Mg^{2+}, CO_3^{2-}, HCO_3^-, Na^+, Cl^- and SO_4^{2-}, were analyzed following the BIS standard. EC, pH and chloride (Cl^-) were

Parameters	Range	Water class	Samples (%)
	< 250	Excellent	Nil
EC	250–750	Good	53.3
	750–2250	Permissible	46.7
	> 2250	Doubtful	Nil
SAR	0–10	Excellent	100
	10–18	Good	Nil
	18–26	Doubtful	Nil
	> 26	Unsuitable	Nil
RSC	< 1.25	Good	100
	1.25–2.5	Doubtful	Nil
	> 2.5	Unsuitable	Nil
KR	< 1	suitable	90
	1–2	Marginal suitable	10
	> 2	Unsuitable	Nil
SSP	< 50	Good	90
	> 50	Unsuitable	10
PI	> 75	Class-I	10
	25–75	Class-II	90
	< 25	Class-III	Nil
MH	< 50	Suitable	86.7
	> 50	Harmful &Unsuitable	13.3
Na%	< 20	Excellent	3.3
	20–40	Good	73.3
	40–60	Permissible	23.4
	60–80	Doubtful	Nil
	> 80	Unsuitable	Nil
T.H	< 75	Soft	Nil
	75–150	Moderately Hard	13.3
	150–300	Hard	73.3
	> 300	Very Hard	13.4

Table 4
Classification of groundwater sample for irrigation use on the basic of EC, SAR, RSC, KR, SSP, PI, MH, Na%, T.H.

Fig. 1. Location of the study area in Abhar city, Zanjan province, Iran.
analyzed using multiple parameters ion meter model Thermo Orion 5 Star. Sulfate (SO₄²⁻) was measured using a double beam UV–Vis spectrophotometer model Perkin Elmer Lambda 35 by turbid-metric, stannous chloride, and molybdosilicate, respectively. Sodium (Na⁺), calcium (Ca²⁺) and magnesium (Mg²⁺) were analyzed using flame photometer model CL-378 (Elico, India). Total hardness was determined by EDTA titrimetric method [1,16–18]. TDS was measured gravimetrically and Agricultural indicator such as SAR, RSC, PI, KR, and MH, % Na, SSP and TH were calculated by their formulas presented in Table 5.

Acknowledgements

The authors want to thank the respected management of Iran’s water resources for their supports from authors.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.096.

References

[1] M. Yousefi, H. Najafi Saleh, A.A. Mohammad, A.H. Mahvi, M. Ghadrpoori, H. Suleimani, Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran, Data Brief 15 (2017) 901–907.
[2] A. Abbasnia, N. Yousefi, A.H. Mahvi, R. Nabizadeh, M. Radfard, M. Yousefi, M. Alimohammadi, Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran), Hum. Ecol. Risk Assess.: Int. J. (2018), http://dx.doi.org/10.1080/10807039.2018.1458396.
[3] M. Radfard, M. Yunesian, R. Nabizadeh Nodelhi, H. Biglari, M. Hadi, N. Yosefi, M. Yousefi, A. Abbasnia, A.H. Mahvi, Drinking water quality and Arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran, Hum. Ecol. Risk Assess.: Int. J. (2018), http://dx.doi.org/10.1080/10807039.2018.1458210.
[4] M. Yousefi, M. Ghoochani, A.H. Mahvi, Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran, Ecotoxicol. Environ. Saf. 148 (2018) 426–430.
[5] M. Yousefi, A.A. Mohammadi, M. Yaseri, A.H. Mahvi, Epidemiology of fluoride and its contribution to fertility, infertility, and abortion: an ecological study in West Azerbaijan Province, Poldasht County, Iran, Fluoride 50 (2017) 343–353.
[6] F.B. Asghari, J. Jaafari, M. Yousefi, A.A. Mohammadi, R. Dehghanzadeh, Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system, Hum. Ecol. Risk Assess.: Int. J. 24 (2018) 1138–1149.
[7] M. Yousefi, H.N. Saleh, M. Yaseri, A.H. Mahvi, H. Soleimani, Z. Saeedi, et al., Data on microbiological quality assessment of rural drinking water supplies in Poldasht county, Data Brief 17 (2018) 763–769.
[8] (a) M. Yousefi, M.H. Dehghani, S.M. Nasab, V. Taghavimanesh, S. Nazmara, A.A. Mohammadi, Data on trend changes of drinking groundwater resources quality: a case study in Abar, Data Brief 17 (2018) 424–430;
(b) H. Soleimani, A. Abbasnia, M. Yousefi, A.A. Mohammadi, F.C. Khorasgani, Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran, Data Brief 17 (2018) 148–156.

Table 5
Summary of water quality indices in present study [1].

Indices	Formula
Residual sodium carbonate (RSC)	RSC= (CO₃²⁻ + HCO₃⁻) + (Ca²⁺ + Mg²⁺)
Permeability index (PI)	PI = Na+K/HCO₃⁻ × 100
Kelly’s ratio (KR)	KR = Na/Ca²⁺Mg²⁺
Magnesium hazard(MH)	MH = Mg/Ca²⁺Na⁺ × 100
Sodium percentage (Na %)	Na⁺/ = (Na+K)/(Ca²⁺Mg²⁺ + Na⁺K) × 100
Sodium adsorption ratio (SAR)	SAR = Na¹⁰⁰/Ca²⁺Mg²⁺
Soluble sodium percentage (SSP)	SSP = Na¹⁰⁰/Ca²⁺Mg²⁺ + Na⁺ × 100
[9] F.B. Asghari, A.A. Mohammadi, M.H. Dehghani, Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran, Data Brief 18 (2018) 375–379.

[10] V. Kazemi Moghadam, M. Yousefi, A. Khosravi, M. Yasri, A.H. Mahvi, M. Hadei, A.A. Mohammadi, Z. Robati, A. Mokamel, High concentration of fluoride can be increased risk of abortion, Biol. Trace Elem. Res. (2018).

[11] M. Yousefi, M. Yasri, R. Nabizadeh, E. Hooshmand, M. Jalizadeh, A.H. Mahvi, A.A. Mohammadi, Association of hypertension, body mass index and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran, Biol. Trace Elem. Res. (2018).

[12] H.N. Saleh, M.H. Dehghani, R. Nabizadeh, A.H. Mahvi, F. Hossein, M. Ghaderpoori, et al., Data on the acid black 1 dye adsorption from aqueous solutions by low-cost adsorbent-Cerastoderma lamarckii shell collected from the northern coast of Caspian Sea, Data Brief 17 (2018) 774–780.

[13] M. Mirzabeygi, M. Yousefi, H. Soleiman, A.A. Mohammadi, A.H. Mahvi, A. Abbasnia, The concentration data of fluoride and health risk assessment in drinking water in the Arakdan city of Yazd province, Iran, Data Brief 18 (2018) 40–46.

[14] A.A. Mohammadi, M. Yousefi, M. Yasri, M. Jalizadeh, A.H. Mahvi, Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran, Sci. Rep. 7 (2017) 17300.

[15] A. Abbasnia, M. Alimohammadi, A.H. Mahvi, R. Nabizadeh, M. Yousefi, A.A. Mohammadi, H. Pasalari H, M. Mirzabeigi, Assessment of groundwater quality, and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran, Data Brief 16 (2018) 182–192.

[16] A.A. Mohammadi, K. Yaghmaeian, H. Faraji, R. Nabizadeh, M.H. Dehghani, J.K. Khaili, et al., Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using geographic information system, Desalination Water Treat. 68 (2017) 170–176.

[17] A. Takdastana, M. Mirzabeygi (Radfard), M. Yousefi, A. Abbasnia, R. Khodadadia, A.H. Mahvi, D. Jalili Naghan, Neuro-fuzzy inference system Prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran, Data Brief 18 (2018) 255–261.