Dog training alleviates PTSD symptomatology by emotional and attentional regulation

Inon Maoz, Salman Zubedat, Talya Dolev, Shlomit Aga-Mizrachi, Boaz Bloch, Yuval Michaeli, Yuval Eshed, Dan Grinstein and Avi Avital

ABSTRACT

Background: Post-Traumatic Stress Disorder (PTSD) symptoms include re-experiencing, avoidance, hyperarousal, and cognitive deficits, reflecting both emotional and cognitive dysregulation. In recent years, non-pharmacological approaches and specifically animal-assisted therapy have been beneficial for a variety of disorders such as Attention-Deficit/ Hyperactivity Disorder, Autism Spectrum Disorder, and PTSD. However, little is mentioned in the literature about the reciprocal effects of the animal–human interaction.

Objective: To evaluate the effects of a one-year dog training programme on PTSD symptomatology in youngsters with PTSD and on dogs’ behaviour.

Methods: Fifty-three adolescents, previously exposed to interpersonal trauma, were clinically diagnosed with PTSD and assigned to a dog-training programme group (n = 30) and a control group (n = 23) that engaged in other training programmes (e.g. cooking, hairstyling, etc.). Both groups were evaluated at baseline and following 12-months by The Clinician-Administered PTSD Scale for DSM-5 in Children and Adolescents (CAPS-CA-5) and Beck-Depression Inventory (BDI). Additionally, we physiologically measured both emotional and attention dysregulation.

Results: Post-12-months training, a significant alleviation of PTSD symptomatology accompanied by lower depression severity was observed in the dog-training group, compared with a insignificant recovery in the control group. Furthermore, improved emotional and attentional regulation was observed in the dog-training group. Measuring the dogs’ behaviour revealed increased anxiety and decreased selective attention performance, which was inversely correlated with the beneficial effects observed in the dog-training programme group.

Conclusions: Our findings emphasize the role of emotional and attentional regulations on the dog–handler interface, as evidence-based support for the beneficial effects of the dog-training programme, as either a non-pharmacological intervention or as complementary to antidepressants treatment of PTSD. Though pharmacological treatments increase the patients’ well-being by treating certain PTSD symptoms, our suggested dog-training programme seems to influence the PTSD diagnostic status, thus may be implemented in civilians and veterans with PTSD.

El adiestramiento canino alivia la sintomatología de TEPT mediante la regulación emocional y de la atención

Antecedentes: Los síntomas de trastorno de estrés postraumático (TEPT) incluyen re-experimentación, evitación, hiperactividad y déficits cognitivos, reflejando desregulación tanto emocional como cognitiva. En los últimos años, se demostró que los enfoques no farmacológicos y específicamente la terapia asistida por animales son beneficiosos para una variedad de trastornos como el Trastorno por Déficit Atencional e Hiperactividad, el Trastorno del Espectro Autista y el TEPT. Sin embargo, poco se menciona en la literatura acerca de los efectos recíprocos de la interacción animal-humano.

Objetivo: Evaluar los efectos de un programa de adiestramiento canino de un año en la sintomatología de TEPT en los jóvenes con TEPT y en el comportamiento de los perros.

Métodos: Cincuenta y tres adolescentes, previamente expuestos a trauma interpersonal, fueron diagnosticados clínicamente con TEPT y asignados a un grupo de programa de adiestramiento canino (n = 30) y a un grupo control (n = 23) que participaron en otros programas de adiestramiento (ej., cocinar, peluquería, etc.). Ambos grupos fueron evaluados al inicio y después de 12 meses mediante la Escala de TEPT administrada por el Clínico del DSM-5 en niños y adolescentes (CAPS-CA-5) y por sus siglas en inglés y el Inventario de Depresión de Beck (BDI). Adicionalmente, medimos fisiológicamente la desregulación emocional y de la atención.

Resultados: Después del entrenamiento de 12 meses, se observó un alivio significativo de la sintomatología de TEPT junto con una disminución de la severidad de la depresión en el grupo.
1. Introduction

DSM-5 classifies Post-Traumatic Stress Disorder (PTSD) as a psychiatric disorder induced by exposure to traumatic/stressful events. The experience can be either a single isolated event or chronic exposure. PTSD is defined by the coexistence, for at least one month, of re-experiencing, avoidance, hyperarousal, and is no longer classified in the DSM-5 as an ‘anxiety disorder’ but as a ‘Trauma and stressor-related disorder’ (American Psychiatric Association, 2013).

In the common urban population, 39.1% of young adults aged 21–30 reported at least one exposure to a traumatic event, and 23.6% of them were diagnosed with PTSD (Breslau, Davis, Andreski, & Peterson, 1991). More recently, the lifetime prevalence of PTSD was estimated to be more than 7% (Hoppen & Morina, 2019; Kessler et al., 2017).

Following the focus on PTSD in Vietnam’s war veterans, the diagnosis of PTSD was considered to be irrelevant for children and adolescents (American Psychiatric Association, 1980). However, nowadays, the notion that children and adolescents can develop PTSD symptoms after being exposed to traumatic events is commonly accepted. Major advances in this field were made in 2013 when the DSM-5 included the first developmental subtype of an existing disorder, PTSD, for children six years and under (De Young & Landolt, 2018).

Although estimates of PTSD prevalence in children and adolescents who have experienced trauma vary, most studies have reported a prevalence of 30–40% (Fergé et al., 2021). Studies indicate that children can develop PTSD after exposure to a range of traumatic stressors, including violent crime, sexual abuse, natural disasters, and war (Hoppen & Morina, 2019; Kessler et al., 2017).

Further focusing on the age factor, the prevalence of exposure to traumatic events is also high in adolescents and young adults and reported to be ~22% among 14–24 years old (Perkonigg, Kessler, Storz, & Wittchen, 2000). The age factor is essential for acknowledging that youngsters’ exposure to traumatic events can lead to developing PTSD. Moreover, childhood abuse is associated with emotional dysregulation (Dvir, Ford, Hill, & Frazier, 2014).

Since the first acknowledgement that traumatic events may cause an adverse reaction, significant efforts were made to examine possible treatments. To ease the symptoms of PTSD, several pharmacological treatments were implemented to improve patients’ daily functioning and quality of life (Asnis, Kohn, Henderson, & Brown, 2004; Davidson et al., 2006;
Schoenfeld, Marmar, & Neylan, 2004). However, in an assessment to determine their efficacy for veterans suffering from PTSD, medications such as antidepressants (SSRI and others), alpha-adrenergic blockers, antipsychotic medications, and benzodiazepines, the results were found to be inconclusive (Committee on Treatment of Posttraumatic Stress Disorder, 2008). Though these pharmacological treatments increase the patients’ well-being by treating certain symptoms, their effects over the disorder itself were found to be insufficient.

Non-pharmacological psychotherapeutic methods such as Cognitive Behavioural Therapy (CBT) and Prolonged Exposure (PE) (Foa, Rothbaum, & Furr, 2003; Foa, Rothbaum, & Murdock, 1991) allow patients to face the memory of their traumatic experience in a gradual and controlled manner (Jaycox, Zoellner, & Foa, 2002). Although both intervention methods are commonly used and frequently shown to be effective (Bryant & Friedman, 2001; Cohen, Mannarino, Perel, & Staron, 2007), the exposure of patients to their traumatic experiences can be intimidating, and therefore may reduce compliance (Lefkowitz, Prout, Bleiberg, Paharia, & Debiak, 2005).

In recent years, there has been a growing interest regarding complementary and alternative approaches for the treatment of PTSD (Wynn, 2015). For example, exercise augmentation to usual care was shown to reduce PTSD and depressive symptoms (Fetzner & Asmundson, 2015; Powers et al., 2015). Recreational therapy, like participation in group outdoor recreational programmes such as fly-fishing (Vella, Milligan, & Bennett, 2013) and horsemanship activities (Lanning & Krenek, 2013), was shown to improve the quality of life of veterans suffering from PTSD and reduce symptoms of depression (Wynn, 2015).

Animal-assisted therapy (AAT) was shown to be beneficial as a complementary intervention for treating PTSD in veterans (O’haire & Rodriguez, 2018). The benefits of introducing psychiatric service dogs to the homes of military veterans’ families were recently shown (Nieforth, Craig, Behmer, MacDermid Wadsworth, & O’haire, 2021; Rodriguez, LaFollette, Hediger, Ogata, & O’haire, 2020). In general, dog ownership was previously suggested to improve mental health by decreasing social isolation and increasing physical activity (Hoisington et al., 2018). In a recently published meta-analysis examining the effectiveness of AAT of PTSD symptoms in both children and adults, AAT was found to be as effective as traditional psychotherapy (Hediger et al., 2021). In addition, incorporating animals in therapy was shown to enhance collaboration and decrease the number of therapy sessions required (Dietz, Davis, & Pennings, 2012; Lefkowitz et al., 2005).

AAT was also found to be helpful for autism spectrum disorder (Bass, Duchowny, & Llabre, 2009; O’haire, 2013; Sams, Fortney, & Willenbring, 2006) and depression (Beetz, 2017; Holcomb, Jendro, Weber, & Nahm, 1997). In children with pervasive developmental disorders, exposure to a living dog during treatment made the patients more focused and more aware of their environments than when exposed to a ball or a stuffed dog (Martin & Farnum, 2002), emphasizing the possible role of attention and emotional regulation. In support, AAT is also suggested to be highly beneficial for treating attention deficit. In a controlled experiment investigating the effects of animal therapy on children suffering from ADHD, symptoms seemed to improve in a magnitude comparable to stimulant medication for ADHD (Katcher & Teumer, 2006). Another study using CBT and canine-assisted intervention reported a greater reduction of ADHD symptoms severity compared with children who received CBT without an AAT (Schuck, Emm-erson, Fine, & Lakes, 2015). Although the benefits of AAT over attention deficit are addressed by several studies, the lack of unified theoretical foundation impairs the ability to achieve strong empirical support (Busch et al., 2016; Geist, 2011) that can be generalized to other psychopathology such as PTSD.

The pattern of symptoms comprised of high anxiety following chronic stress and attention vigilance, is suggested to exacerbate the emergence of post-traumatic stress symptoms (Wu & Wei, 2020). In PTSD, survival mechanisms are characterized by a transitional state of heightened arousal and hypervigilance, aimed at coping with an immediate threat (Cantor, 2009). Emotional (anxiety) and attentional dysregulation may reflect individual differences in top–down attentional control, which influence the expression of attentional bias such as in PTSD (Schoorl, Putman, Van Der Werff, & Van Der Does, 2014). Recently, we reported that emotional and attentional dysregulation, measured by the auditory sustained attention test (ASAT) and acoustic startle reflex, can indicate emergence of PTSD (Dolev et al., 2021).

The Auditory Sustained Attention Test (ASAT) was previously suggested by us as a systematic method that measures a neurological phenomenon based on the well-known Pre-Pulse inhibition (Avital, Dolev, Agamirachi, & Zuberat, 2011; Dolev et al., 2021; Engel-Yeger et al., 2021; Zuberat et al., 2015) that reflects both modulations of sustained attention and emotional dysregulation. The acoustic startle reflex is associated with emotional dysregulation (Dvir et al., 2014; Ebner-Priemer et al., 2005; Morgan, Grillon, Southwick, Davis, & Charney, 1995), which is a major symptom of PTSD (Morgan, Grillon, Southwick, Davis, & Charney, 1996). War veterans suffering from PTSD were shown to exhibit exaggerated acoustic startle reflex (Morgan et al., 1996), which was also observed in adults who were abused as children (Jovanovic et al., 2009). Therefore, startle reflex measurements can allow a systematic method for evaluating emotional dysregulation in PTSD as well as the efficacy of AAT intervention.
Flashbacks or re-experiencing of the traumatic event considered as a core symptom of PTSD according to the ICD-11 diagnostic criteria (Brewin, 2015). Unlike typical extraction of episodic memories, during a flash-
back, patients suffering from PTSD re-experiencing the traumatic memory as if it was happening here and now, with little to no attention focused on their actual sur-
roundings (Ehlers, Hackmann, & Michael, 2004). Difficulties in focusing attention are not the only link
between PTSD and attentional functioning. Both PTSD and ADHD have been shown to have significantly
associated symptoms (Adler, Kunz, Chua, Rotrosen, & Resnick, 2004) and have a high degree of comorbid-
ity (Antshel et al., 2013; Cuffe, McCullough, & Pumariega, 1994). In addition, ADHD was suggested to increase
vulnerability for developing PTSD (Adler et al., 2004).

Together, measuring attentional dysregulation in a
physiological manner may subserve as a prism to
PTSD symptomatology and its modulation following
AAT intervention.

Utilizing the physiologically measured ASAT, we aim to evaluate the possible beneficial effects of AAT
accurately and objectively (i.e. dog therapy) on PTSD symptomatology. Secondly, we also aim to evaluate the
consequences of the human–dog interaction on the dogs’ attention and anxiety-like behaviour.

2. Methods

2.1. Human subjects

Participants were recruited from the Manof youth-
village in Acre, Israel. Sixty adolescents (age 16 ± 1),
previously exposed to interpersonal trauma, were referred to our study by social workers and teaching
staff. Each participant was first evaluated for PTSD
symptomatology using the Clinician-Administered
PTSD Scale for DSM-5 in Children and Adolescents
(CAPS-CA-5, approved to be used by the NIMH). The
evaluations were made by a psychiatrist and a psychol-
ogist that were blind to the physiological measure-
ments and the subjects’ course of study.

Following sorting of the students to their main
course of study according to personal choice and compatibility, our test group contained 30 participants
with PTSD (14 males and 16 females) to be trained as
dog-handlers and 23 participants with PTSD (12 males
and 11 females) from a variety of other courses which
constituted the control group. The study’s sample size
was calculated to provide more than 85% statistical
power. According to the Technion – Israel Institute of
Technology IRB’s approval, all participants and their
parents signed an informed consent form.

The participants in both experimental and control
groups reported domestic abuse and/or criminal vio-
ence to be the most common traumatization. In addi-
tion, the majority of the female participants reported
sexual abuse. Moreover, all participants had access to
mental health professionals, including social workers
and a psychiatrist. The chief social worker of the youth
village examined the participants in both experimental
and control groups and found no differences in their
usual treatment.

2.2. Dogs

Twelve dogs (7 males and 5 females; age 1.4 ± 0.5 years) from the Manof youth village’sKennel participated in
our study. All dogs were from medium-large size breeds
(Malinois/German-Shepherd) with no previous train-
ing record. The participants were divided into teams of
2–3, each assigned to a specific dog. The dogs’ initial
training was first done by professional dog trainers, and
specific dog-handler assignments were made after evalu-
ating the compatibility between each participant team
and their canine counterparts.

After learning the basics of dog handling, the parti-
cipants’ responsibilities over their canine partners were
gradually increased over the school year. Initial respons-
bilities were over the dogs’ well-being, and only later
permission was given to take the dogs out of the kennel
for walks and start with 3 h daily behavioural training
sessions 3–5 times a week along the following
12 months. Each interaction with a dog, on a specific
working day, was made by a single team member, while
observed by other team members and an instructor.
Before any discipline or actual training exercises
started, the handlers attended 42 h of theoretical course
by the chief trainer. During this course the handlers
learned the principles of dog training, classical and
operant conditioning, the effectiveness of various rein-
forcement schedules and ethical guidelines regarding
treatment and training dogs. The basic discipline ex-
cises with the dogs include responding to verbal com-
mands by using a positive reinforcement incentive such as
food or a training ball, according to each dog’s
individual incentive preference. The participants were
also learning to get familiar with different dog training
methods such as using a clicker, different types of
reinforcements, and leading styles. If needed, negative
feedback was allowed to be given verbally (‘Bad Boy’)
and only with the approval of the instructors. The use of
nonverbal punishments was prohibited.

Next, the future dog handlers work with the dogs on
following footprints on different surfaces. Each partici-

cant first left their own footprints, and 30 minutes later,
they sent their dog to trace them. The footprint was left
on three types of surfaces: sand, grass, and asphalt. At
this stage of the training programme the handler posi-
tively reinforced the dog when tracking the target foot-
print by using food incentive that was later on replaced
by a training ball as positive reinforcer. During the
school year, the participants went through three prac-
tical tests to evaluate satisfactory functioning. In these
tests, an external examiner evaluated the dog handler team performance while tracking footprints that were gradually more difficult to detect, between the first and the final test.

2.3. Procedure

All human participants were assessed using the CAPS-CA-5, Beck Depression Inventory (BDI-II) questionnaires and physiologically examined by the ASAT and Startle measurements. All the samples were taken during morning classes (8 am–2 pm) twice, once at the beginning of the school year and post 12 months. The dogs were assessed using the Canine objective evaluation task at the same time points.

2.4. Clinician-administered PTSD scale for children and adolescents for DSM-5

The Clinician-Administered PTSD Scale (CAPS) is a structured interview for assessing PTSD symptomology severity (Blake et al., 1995). The CAPS-CA-5 (Pynoos et al., 2015) is a version for Child/Adolescent revised by the DSM-5. The CAPS-CA-5 contains a 30-item clinician-administered PTSD scale suitable from the age of 7 and above. It assesses a total of 20 PTSD symptoms providing standardized questions and probes for each symptom. Additional questions target the onset and duration of the symptoms, subjective distress, impact on social functioning, and more. Scoring was made according to the DSM-5 criteria using item clusters for each criterion. The scores summarized by both frequency and intensity rate of each cluster indicate the criterion’s severity in addition to a single total severity score. The measured PTSD-related criteria are: re-experiencing, avoidance behaviour, cognition and mood, hyperarousal and dissociation. After the scoring is made, the PTSD diagnostic status is calculated if at least 1 of each criterion B and C, in addition 2 of each criterion D, E, F and G are met. An informed consent was granted from the US-NIMH to the study’s PI for using CAPS-CA-5.

2.5. Beck Depression Inventory (BDI-II)

The BDI (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961) is a multiple-choice self-report questionnaire for measuring the severity of depression. The inventory’s most current version (BDI-II) was designed for DSM-4 and from the age of 13. Since our study’s participants are Israeli adolescents, we used the Hebrew version of the BDI-II questionnaire. The questionnaire contains 21 multiple-choice questions, each with 4 (0–3) levels of scoring.

2.6. Auditory sustained attention test and emotional dysregulation

The Auditory Sustained Attention Test (ASAT) measures a neurological phenomenon based on the Pre-Pulse Inhibition (PPI) in which weaker acoustic pre-pulse inhibits the reaction to a subsequent strong startling pulse (Zubedat et al., 2014b). A computerized human startle response monitoring system (SR-HLAR startle reflex, San Diego Instruments, San Diego, CA) was used to deliver acoustic startle stimuli via head-phones and record the corresponding electromyography activity. Two disposable electrodes (sensor area 12 mm²) were placed approximately 0.75–1 cm below the pupil on the orbicularis oculi muscle, and a 3rd reference electrode was placed on the mastoid bone. The skin area at the electrode site was cleaned, and a small amount of EEG & ECG Prepping Gel (Signa Gel – Parker Laboratories Inc., Fairfield, New Jersey, USA) was applied on dry skin before placing the electrodes.

The session started with a 1-minute acclimatization period with a 60 dB background noise level that was delivered continuously throughout the session. Then a total of 60 trials were delivered pseudo-randomly with an average 4.55 sec (3–7 sec) inter-trial-interval (ITI). The trials included 10 no-stimulus trials, 30 trials of single 30 ms 102,108,114 dB (10 trials each) ‘pulse alone’ startle stimuli to evaluate individual startle response, and 20 ‘pre-pulse’ trials that consisted of a single 108 dB pulse preceded by a 20 ms pre-pulse of 12 or 24 dB (10 trials each) above background noise (i.e. 72 or 84 dB). The synchronization between the auditory stimuli and EMG recordings, as well as the signals analysis, was conducted by the Mindtension software (Israel). The ASAT was calculated as the percent of the habituated/inhibited response as follows: 100-(max response to ‘pre+pulse’ trial/max response to ‘pulse alone’ trial X 100) (Dolev et al., 2021; Zubedat et al., 2014a).

2.7. Canine objective evaluation task

Dogs were individually inserted into the same room (4 × 4 m) in three different trials for 5 min each (ITI 30 min). In the first trial, the room was empty, and the dog’s behaviour was monitored to measure: (i) distance moved (m); (ii) velocity (m/sec); (iii) anxiety index (distance in the periphery*100 *(total distance)-
-1); (iv) freezing duration (sec). For the second trial, four identical objects were placed one in each corner of the room before allowing the dog to enter and explore them. At the third trial, one of the identical objects was replaced by a novel object different in shape, size, and colour before allowing the dog to enter and explore the room one last time. The dog’s behaviour was monitored to measure: (v) foraging-like
behaviour (sec); and (vi) selective attention (latency to novel object). To prevent smell trails, the room was cleaned using soap water between each trial. The dogs’ movement was recorded from a downwards facing GoPro HERO 5 camera (GoPro Inc., San Mateo, Calif.) fixed to the room’s ceiling. The video footage was analysed using Ethovision XT software (Noldus Inc., The Netherlands) reconfigured to measure dog movement.

2.8. Statistical methods

A mixed design (2 × 2) was utilized with two groups as between subject’s factor (dog programme versus control) and testing time points as a within-subject factor (baseline and post-12-months). Results were analysed with two-way ANOVA for mixed design with interaction analysis and post hoc t-tests. For all the tests, we added effect size calculations (i.e. partial η² for ANOVA). To associate human measurements with those of the dogs, a Pearson’s correlation was computed. The statistical tests were conducted blind to the group identity, using Bonferroni adjusted alpha levels for multiple comparisons. Results were considered statistically significant if P-value < 0.05. Results are displayed as mean ± S.E.M.

3. Results

3.1. Human subjects

The dog programme group (age 16.5 ± 1 years) was comprised of 16 females and 14 males with PTSD, while the control group (age 16.1 ± 1 years) included 11 females and 12 males with PTSD.

Using CAPS-CA-5 assessment, we evaluated differences in PTSD symptomatology between the dog programme and the control group:

3.1.1. Re-experiencing

A significant effect was found for time [F(1,58) = 110.05, P < 0.0001; η² = 0.655], group [F(1,58) = 18.36, P < 0.0001; η² = 0.24] and for the test time × group interaction [F(1,58) = 17.25, P < 0.0001; η² = 0.229]. While at baseline both groups showed similar re-experiencing scores, post 12 months the dog programme group had a significant lower score [t(29) = 6.28, P < 0.0001; Figure 1(a)].

3.1.2. Avoidance

A significant effect was found for time [F(1,58) = 99.01, P < 0.0001; η² = 0.631], group [F(1,58) = 4.74, P < 0.034; η² = 0.076] and for the test time × group interaction [F(1,58) = 23.51, P < 0.0001; η² = 0.288]. While at baseline both groups showed similar avoidance scores, post-12 months the dog programme group scored significantly lower [t(58) = 4.64, P < 0.0001; Figure 1(b)].

3.1.3. Hyperarousal

A significant effect was found for time [F(1,58) = 91.55, P < 0.0001; η² = 0.612], group [F(1,58) = 28.34, P < 0.0001; η² = 0.328] and for the test time × group interaction [F(1,58) = 12.01, P < 0.001; η² = 0.172]. The controls showed increased hyperarousal level at baseline [t(57) = 2.29, P < 0.025] and post-12 months compared to the dog programme subjects, which decreased their hyperarousal score significantly more [t(27) = 6.35, P < 0.0001; Figure 1(c)].

3.1.4. Cognition and mood

A significant effect was found for time [F(1,58) = 94.44, P < 0.0001; η² = 0.62], group [F(1,58) = 18.44, P < 0.0001; η² = 0.241] and for the test time × group interaction [F(1,58) = 13.97, P < 0.0001; η² = 0.194]. While at baseline both groups showed similar cognition and mood score, post-12 months the dog programme group exhibited significantly better cognition and mood evaluations [t(32) = 6.6, P < 0.0001; Figure 1(d)].

3.1.5. Dissociation

A significant effect was found for time [(1,58) = 66.98, P < 0.0001; η² = 0.536], group [(1,58) = 8.17, P < 0.006; η² = 0.123] and for the test time × group interaction [(1,58) = 6.74, P < 0.012; η² = 0.104]. While at baseline both groups showed similar dissociation scores, post-12 months the dog programme group had a significantly lower score [t(22) = 3.93, P < 0.001; Figure 1(e)].

The overall Caps-CA-5 dimensions are summarized by the following methods.

3.1.6. Total symptom severity

A significant effect was found for time [F(1,58) = 125.2, P < 0.0001; η² = 0.683], group [F(1,58) = 27.31, P < 0.0001; η² = 0.32] and for the test time × group interaction [F(1,58) = 19.37, P < 0.0001; η² = 0.25]. While at baseline both groups showed similar total symptom severity scores, post-12 months the dog programme group showed significantly less severity of symptom [t(29) = 7.22, P < 0.0001; Figure 2(a)].

3.1.7. PTSD diagnostic status

To examine the change in PTSD diagnostic status at baseline compared with post-12-months, a Chi-Square test was conducted. However, the baseline rate of PTSD subjects was higher in the dog programme group compared with the controls [χ²(1) = 4.92, P < 0.026], following 12 months, the number of dog programme PTSD subjects significantly decreased [χ²(1) = 41.366, P < 0.0001] while the control showed no significant improvement (Figure 2(b)).
Comparing the dogs’ programme to the control group, statistically significant improvements were observed in all measured PTSD criteria scores following 12 months: (a) Re-experiencing; (b) Avoidance; (c) Hyperarousal; (d) Cognition and Mood Impairment score and (e) Dissociation. Error bars are SEM; $n = 60$ ($**P < 0.001$; $***P < 0.0001$).

Figure 2. PTSD severity and diagnosis status. (a) Total severity score of the Caps-CA-5 criteria revealed a statistically significant improvement in the dog programme group post-12-months; Similarly, (b) the number of positive PTSD diagnostic status was dramatically decreased in the dog programme group post-12-months. ($***P < 0.0001$).
3.2. Beck Depression Inventory (BDI)

A significant effect was found for time \([F(1,24) = 7.592, \ P < 0.011; \eta^2 = 0.24] \) but not for group \([F(1,24) = 3.483, \ P > .074; \eta^2 = 0.127]\) and the test time \times group interaction \([F(1,24) = 1.586, \ P > .22; \eta^2 = 0.062; \text{Figure 3}].\)

3.3. Startle response

A significant effect was found for time \([F(1,27) = 11.60, \ P < 0.002; \eta^2 = 0.318]\), group \([F(1,27) = 7.52, \ P < 0.011; \eta^2 = 0.218]\) and for the test time \times group interaction \([F(1,27) = 6.88, \ P < 0.014; \eta^2 = 0.203]\). Though at baseline both groups showed similar startle response, post-12 months the dog programme group showed a significant decrease of their startle response \([t(27) = 6.7, \ P < 0.0001; \text{Figure 4(a)}]\).

3.4. Auditory Sustained Attention Test (ASAT)

A significant effect was found for group \([F(1,27) = 5.35, \ P < 0.029; \eta^2 = 0.165]\) and for the test time \times group interaction \([F(1,27) = 16.71, \ P < 0.0001; \eta^2 = 0.382]\) but not for the test time \([F(1,27) = 2.51, \ P > .124]\). At baseline both groups showed similar attention performance, however, following 12 months the dog programme group presented a marked increase of attention performance, while the control group deteriorated \([t(27) = 16.46, \ P < 0.0001; \text{Figure 4(b)}]\). Representative signals of the physiologically measured ASAT are presented in Figure 4(c).

3.5. Dogs’ evaluation

Utilizing paired t-test we found that interacting for 12-months with the youngsters from the dog-programme have yielded decreased activity \([t(11) = 3.64, \ P < 0.004]\) an-d velocity \([t(11) = 2.18, \ P < 0.05]\), accompanied by an increase in freezing \([t(11) = 2.2, \ P < 0.05]\) and anxiety-index \([t(11) = 3.42, \ P < 0.006]\). The behavioural parameters at baseline were higher than standard working dogs’ performance (i.e. red line; unpublished data based on 230 dogs). However, after 12-months of training, the behaviors were normalized to the standard performance (Figure 5(a–c)). Nonetheless, the anxiety-index, which was similar to the standard level at baseline, significantly elevated post-12-months (Figure 5(d)).

Furthermore, post 12-months of training, the dogs decreased both their foraging-like behaviour \([t(11) = 3.76, \ P < 0.003; \text{Figure 6(a)}]\) and selective attention performance \([t(11) = 4.52, \ P < 0.001; \text{Figure 6(b)}]\). When compared with the behavioural standard performance (red line), the decrease in foraging-like behaviour falls within standard values, while the selective attention performance deviates from it.

3.6. Associating dog–human measurements

Calculating Pearson’s correlations, we aim to associate the various measurements coming from the dog programme subjects and their specific dogs. At Post 12-months of intensive dog–handler interaction, we found significant inverse correlations between the CAPS-CA-5 cognition and mood scores and dogs’ selective attention performance \([R_p = -0.79, \ P < 0.02]\).

4. Discussion

The goal of the current research is to examine the influence of non-pharmacological intervention methodologically and physiologically over PTSD severity. Specifically, we found a statistically significant improvement in PTSD symptoms in adolescents who were exposed to a dog training programme vs. adolescents trained in other programmes.

Non-pharmacological interventions such as eye movement desensitization and reprocessing (Boudewyns & Hyer, 1996; Diehle, Opmeer, Boer, Mannarino, & Lindauer, 2014), trauma-focused cognitive-behavioural therapy (Diehle et al., 2014; Hinton, Hofmann, Pollack, & Otto, 2009), and more (Weathers, Keane, & Davidson, 2001), were shown to reduce PTSD symptoms measured by CAPS-CA-5. Similarly, our findings revealed that the dog programme experimental group had shown statistically significant improvement post-12-months of training in all evaluated PTSD criteria, compared with the control group. The meaningfulness of the group differences if determent by both statistical significance and effect size. Indeed, the effect size, based on Cohen’s F (Cohen, 2013), indicated that all PTSD criteria showed large effect sizes (ANOVA partial eta square larger than 0.14) for the group variable, with Avoidance and Dissociation parameters showing medium effect size (partial eta square larger between 0.06 and 0.14).
Depression is known to be prevalent in both adult PTSD patients (Shalev et al., 1998) and children/adolescents (Fan, Zhang, Yang, Mo, & Liu, 2011; Kar, Kumar Bastia, Kumar, & Associate, 2006; Kilpatrick et al., 2003). By utilizing the BDI questionnaire, we found a statistically significant decrease in depression scores among both participant groups post-12-months. No significant difference was found between the groups.

Apart from depression symptoms, PTSD is also associated with emotional dysregulation (Dvir et al., 2014), which has been shown to deteriorate various functions in maltreated children, such as increased aggression, decreased attention, social competence, and understanding of negative emotions (Maughan & Cicchetti, 2002; Shields & Cicchetti, 1998; Shields, Ryan, & Cicchetti, 2001; Shipman, Edwards, Brown, Swisher, & Jennings, 2005).

Although evidence for emotional dysregulation found in the literature is mostly based on questionnaires and other non-physiological measurements, several studies have previously utilized acoustic startle response measurements for evaluating emotional dysregulation (Ebner-Priemer et al., 2005; Jovanovic et al., 2009; Morgan et al., 1996). For example, Ebner-Priemer et al. (2005) found that borderline personality disorder patients had a significantly higher startle response compared to controls. Similarly, we found that youngsters suffering from PTSD had exhibited emotional dysregulation at baseline. However, we showed that following 12 months of dog training the emotional dysregulation was regulated with a large effect size (Cohen, 2013).

Apart from the emotional symptoms in PTSD, the re-experiencing symptom is considered as the core symptom in PTSD (American Psychiatric Association,
Memory impairment as well as deficits in attention and learning (Qureshi et al., 2011) emphasize the possible dual role of the attention system in both cognitive and re-experiencing symptoms. Schäfer, Zvielli, Höfler, Wittchen, & Bernstein (2018) suggested that one possible mechanism through which trauma exposure may contribute to the development of PTSD is the dysregulation of attentional processing of trauma event-related cues. Thus, we postulate that attentional dysregulation may underlie the misprocessing of a neutral stimulus (i.e. condition stimulus), eliciting the re-experiencing of the trauma.

To further this hypothesis, we physiologically measured the auditory sustained attention and indeed found a statistically significant improvement in the dog-training programme subjects’ attention performance with a large effect size (Cohen, 2013).

Following the beneficial effects in the dog-training programme subjects and to better understand the underlying mechanism of these effects, we also aimed to examine the dogs’ emotional and attentional performance at the same time points. To the best of our knowledge, the AAT literature has mainly focused on the dog-human interaction effects on the human

Figure 5. Dogs activity and anxiety-like behaviours. (a) Total distance moved (metres) in the entire room; (b) Average velocity (metres/second); (c) Freezing measured as the number of seconds spent without movement. The red line depicted the standard behaviour for working dogs; (d) Anxiety-index percentage calculated as distance moved in the room’s periphery divided by the total distance movedX100 (*P* < 0.05, **P** < 0.006, ***P* < 0.005).

Figure 6. Dogs foraging-like and selective attention performance. (a) Foraging-like behaviour decreased to normal level post 12 months training; However, (b) selective attention performance has deteriorated post 12 months as manifested by longer latency (**P** < 0.003, ***P* < 0.001).
subjects. Evaluation of the animal subjects’ well-being is less common and mostly relies on the handler’s assessment, cortisol level and behavioural observation (Glenk, 2017). Thus, the evaluation of animal subjects’ well-being seems to be governed by subjective assessment. Recently, we have developed a computerized objective evaluation of various dogs’ behaviours such as anxiety and selective attention (data not shown). Comparing to these standard values, we found a negative effect on the dogs’ performance as their anxiety-like behaviour increased and their selective attention ability decreased.

These results suggest that the dog–handler interaction may have influenced the dogs’ behaviours, either by the nature of the interaction itself and/or by the training method utilized in the programme (Rooney & Cowan, 2011).

Finally, we found a strong inverse association between the dogs’ and humans’ measurements suggesting a cross-species interplay, i.e. while the emotional and attentional dysregulation of the handlers was improved along with PTSD symptomatology, the anxiety and selective attention of the dogs deteriorated. Similarly, in our previous study (Zubedat et al., 2014b), we found that the exposure of handlers to stress positively affected the dogs’ performance in an odour detection task. Thus, there seems to be a cross species disequilibrium between the dog and the handler emotional and attentional dysregulation. Together, our current findings emphasizing the reciprocal role of emotional and attentional dysregulations on the dog–handler interface, suggesting the dog-training program, either as a non-pharmacological intervention or as complementary to anti-depressants. Though pharmacological treatments increase the patients’ well-being by treating certain PTSD symptoms, our suggested dog-training programme seems to influence the disorder itself, though a larger study with longitudinal follow-up is required. In sum, our study support previous finding (Nieforth et al., 2021; O’haire & Rodriguez, 2018; Rodriguez, Bryce, Granger, & O’haire, 2018; Rodriguez et al., 2020) and provides evidence-based support for dog therapy to be implemented in civilians and veterans with PTSD.

Acknowledgments

We thank the MANOF youth village staff and students for their collaboration, and especially Mr. Arkadi Shulman the chief trainer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Ethics statement

The Institutional Review Board (IRB) approved the study, and all participants and their parents signed an informed consent form.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author, [A.A.]. The data are not publicly available since they are containing information that could compromise the privacy of research young participants.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

References

Adler, L. A., Kunz, M., Chua, H. C., Rotrosen, J., & Resnick, S. G. (2004). Attention-deficit/hyperactivity disorder in adult patients with posttraumatic stress disorder (PTSD): Is ADHD a vulnerability factor? Journal of Attention Disorders, 8(1), 11–14. doi:10.1177/10870547040800102 American Psychiatric Association. (1980). “Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., revised (DSM-III-R),” American Journal of Psychiatry, 145(10), pp. 1301–1302 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author. Antshel, K. M., Kaul, P., Biederman, J., Spencer, T. J., Hier, B. O., Hendricks, K., & Faraone, S. V. (2013). Posttraumatic stress disorder in adult attention-deficit/hyperactivity disorder: Clinical features and familial transmission. The Journal of Clinical Psychiatry, 74. doi:10.4088/JCP.12m07698 Asnis, G. M., Kohn, S. R., Henderson, M., & Brown, N. L. (2004). SSRIs versus non-SSRIs in post-traumatic stress disorder: An update with recommendations. Drugs, 64 (4), 383–404. doi:10.2165/00003495-200464040-00004 Avital, A., Dolev, T., Aya-Mizrachi, S., & Zubedat, S. (2011). Environmental enrichment preceding early adulthood methylphenidate treatment leads to long term increase of corticosterone and testosterone in the rat. Plos One, 6 (7), e22059. doi:10.1371/journal.pone.0022059 Bass, M. M., Duchowny, C. A., & Llabre, M. M. (2009). The effect of therapeutic horseback riding on social functioning in children with autism. Journal of Autism and Developmental Disorders, 39(9), 1261–1267. doi:10.1007/s10803-009-0734-3 Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. doi:10.1001/archpsyc.1961.01710120031004 Beetz, A. M. (2017). Theories and possible processes of action in animal assisted interventions. Applied Developmental Science, 21(2), 139–149. doi:10.1080/10888691.2016.1262263 Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupe, D. G., Gusman, F. D., Charney, D. S., & Keane, T. M. (1995).
The development of a clinician-administered PTSD scale. *Journal of Traumatic Stress*, 8(1), 75–90. doi:10.1002/jts.2490080106

Boudewyns, P. A., & Hyer, L. A. (1996). Eye Movement Desensitization and Reprocessing (EMDR) as treatment for Post-Traumatic Stress Disorder (PTSD). *Clinical Psychology & Psychotherapy*, 3(3), 185–195. doi:10.1002/(SICI)1099-0879(199609)3:3<185::AID-CPP101>3.0.CO;2-0

Breslau, N., Davis, G. C., Andreski, P., & Peterson, E. (1991). Traumatic events and posttraumatic stress disorder in an urban population of young adults. *Archives of General Psychiatry*, 48(3), 216. doi:10.1001/archpsyc.1991.01810270028003

Brewin, C. R. (2015). Re-experiencing traumatic events in PTSD: New avenues in research on intrusive memories and flashbacks. *European Journal of Psychotraumatology*, 6(1), 27180. doi:10.3402/ejt.v6i1.27180

Bryant, R. A., & Friedman, M. (2001). Medication and nonmedication treatments of post-traumatic stress disorder. *Current Opinion in Psychiatry*, 14(2), 119–123. doi:10.1097/00001504-200103000-00004

Busch, C., Tucha, L., Talarovicova, A., Fuermayer, A. B. M., Lewis-Evans, B., & Tucha, O. (2016). Animal-assisted interventions for children with attention deficit/ hyperactivity disorder: A theoretical review and consideration of future research directions. *Australian and New Zealand Journal of Psychiatry. Psychological Reports*, 118(1), 292–331. doi:10.1177/0033294115626633

Cantor, C. (2009). Post-traumatic stress disorder: Evolutionary perspectives *Australian and New Zealand Journal of Psychiatry*, 43, 1038–1048. doi:10.1177/00048678093270407.

Cohen, J. A., Mannarino, A. P., Perdl, J. M., & Staron, V. (2007). A pilot randomized controlled trial of combined trauma-focused CBT and sertraline for childhood PTSD symptoms. *Journal of the American Academy of Child & Adolescent Psychiatry*, 46(7), 811–819. doi:10.1097/chi.0b013e3180547105

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. *Statistical Power Analysis for the Behavioral Sciences*. doi:10.3109/000488670903270407

Committee on Treatment of Posttraumatic Stress Disorder. (2008). *Treatment of posttraumatic stress disorder: An assessment of the evidence*. Washington, DC: National Academies Press. doi:10.17226/11955

Cuffe, S. P., McCullough, E. L., & Pumariega, A. J. (1994). Comorbidity of attention deficit hyperactivity disorder and post-traumatic stress disorder. *Journal of Child and Family Studies*, 3(3), 327–336. doi:10.1023/A:102234689

Davidson, J., Baldwin, D., Stein, D. J., Kuper, E., Benattia, L., Ahmed, S., & Musgnung, J. (2006). Treatment of posttraumatic stress disorder with venlafaxine extended release: A 6-month randomized controlled trial. *Archives of General Psychiatry*, 63(10), 1158–1165. doi:10.1001/archpsyc.63.10.1158

De Young, A. C., & Landolt, M. A. (2018, November). PTSD in children below the age of 6 years. *Current Psychiatry Reports*, 20(11). Current Medicine Group LLC. I. doi:10.1007/s11920-018-0966-z

Diehl, J., Opmeer, B. C., Boer, F., Mannarino, A. P., & Lindauer, R. J. L. (2014). Trauma-focused cognitive behavioral therapy or eye movement desensitization and reprocessing: What works in children with posttraumatic stress symptoms? A randomized controlled trial. *European Child & Adolescent Psychiatry*, 24(2), 227–236. doi:10.1007/s00787-014-0572-5

Dietz, T. J., Davis, D., & Pennings, J. (2012). Evaluating animal-assisted therapy in group treatment for child sexual abuse. *Journal of Child Sexual Abuse*, 21(6), 665–683. doi:10.1080/10538712.2012.726700

Dolev, T., Zubedat, S., Brand, Z., Bloch, B., Mader, E., Blondheim, O., & Avital, A. (2021). Physiological parameters of mental health predict the emergence of post-traumatic stress symptoms in physicians treating COVID-19 patients. *Translational Psychiatry*, 11(1), 1–9. doi:10.1038/s41398-021-01299-6

Dvir, Y., Ford, J. D., Hill, M., & Frazier, J. A. (2014). Childhood maltreatment, emotional dysregulation, and psychiatric comorbidities. *Harvard Review of Psychiatry*, 22(3), 149–161. doi:10.3928/10760716-20000000000014

Ebner-Priemer, U. W., Badeck, S., Beckmann, C., Wagner, A., Feige, B., Weiss, I., & Bohus, M. (2005). Affective dysregulation and dissociative experience in female patients with borderline personality disorder: A startle response study. *Journal of Psychiatric Research*, 39(1), 85–92. doi:10.1016/j.jpsychires.2004.05.001

Ehlers, A., Hackmann, A., & Michael, T. (2004). Intrusive re-experiencing in post-traumatic stress disorder: Phenomenology, theory, and therapy. *Memory*, 12(4), 403–415. doi:10.1080/09658210440000025

Engel-Yeger, B., Maurer, M., Hawro, T., Zubedat, S., Avital, A., & Kessel, A. (2021). Exaggerated neurophysiological responses to stressor in patients with chronic spontaneous urticaria. *Clinical and Experimental Allergy*, 51(7), Blackwell Publishing Ltd, 936–938. doi:10.1111/cea.13854

Fan, F., Zhang, Y., Yang, Y., Mo, L., & Liu, X. (2011). Symptoms of posttraumatic stress disorder, depression, and anxiety among adolescents following the 2008 Wenchuan earthquake in China. *Journal of Traumatic Stress*, 24(1), 44–53. doi:10.1002/jts.20599

Fergé, J. L., Banydeen, R., Le Terrier, C., Fize, H., Miguel, M., Kentshid-Barnes, N., & Mehdaoui, H. (2021). Mental health of adolescent relatives of intensive care patients: Benefits of an open visitation policy. *American Journal of Critical Care*, 30(1), 72–76. doi:10.4037/ajcc2021799

Fetzer, M. G., & Asmundson, G. J. G. (2015). Aerobic exercise reduces symptoms of posttraumatic stress disorder: A randomized controlled trial. *Cognitive Behaviour Therapy*, 44(4), 301–313. doi:10.1080/16506073.2014.916745

Foa, E. B., Rothbaum, B. O., & Furr, J. M. (2003). Augmenting exposure therapy with other CBT procedures. *Psychiatric Annals*, 33(1), 47–53. doi:10.3928/0048-5713-20030101-08

Foa, E. B., Rothbaum, B. O., & Murdock, T. B. (1991). Treatment of posttraumatic stress disorder in rape victims: A comparison between cognitive-behavioral procedures and counseling. *Journal of Consulting and Clinical Psychology*, 59(5), 715–723. doi:10.1037/0022-006X.59.5.715

Geist, T. S. (2011). Conceptual framework for animal assisted therapy. *Child and Adolescent Social Work Journal*, 28(3), 243–256. doi:10.1007/s10560-011-0231-3

Glenk, L. M. (2017). Current perspectives on therapy dog welfare in animal-assisted interventions. *Anim* 2017, 7, 7. doi:10.3390/ani7020007.

Hediger, K., Wagner, J., Künzi, P., Haefeli, A., Theis, F., Grob, C., Pauli, E., & Gerger, H. (2021). Effectiveness of animal-assisted interventions for children and adults with post-traumatic stress disorder symptoms: A systematic review and meta-analysis. 12, 1879713. doi:10.1080/200819820211879713
Hinton, D. E., Hofmann, S. G., Pollack, M. H., & Otto, M. W. (2009). Mechanisms of efficacy of CBT for Cambodian Refugees with PTSD: Improvement in emotion regulation and orthostatic blood pressure response. CNS Neuroscience & Therapeutics, 15(3), 255–263. doi:10.1111/j.1755-5949.2009.00100.x

Hoisington, A. J., Billera, D. M., Bates, K. L., Stamper, C. E., Stearns-Yoder, K. A., Lowry, C. A., & Brenner, L. A. (2018). Exploring service dogs for rehabilitation of Veterans with PTSD: A microbiome perspective. Rehabilitation Psychology, 63(4), 575–587. doi:10.1037/repp0000237

Holcomb, R., Jendro, C., Weber, B., & Naham, U. (1997). Use of an aviary to relieve depression in elderly males. Anthrozoös, 10(1), 32–36. doi:10.2752/089279397787001292

Hopper, T. H., & Morina, N. (2019). The prevalence of PTSD and major depression in the global population of adult war survivors: A meta-analytically informed estimate in absolute numbers. European Journal of Psychotraumatology, 10(1), 1578637. doi:10.1080/20008198.2019.1578637

Jaycox, L. H., Zollner, L., & Foa, E. B. (2002). Cognitive-behavior therapy for PTSD in rape survivors. Journal of Clinical Psychology, 58(8), 891–906. doi:10.1002/jclp.10-065

Jovanovic, T., Blanding, N. Q., Norrholl, S. D., Duncan, E., Bradley, B., & Ressler, K. J. (2009). Childhood abuse is associated with increased startle reactivity in adulthood. Depression and Anxiety, 26(11), 1018–1026. doi:10.1002/da.20599

Kar, N., Kumar Bastia, B., Kumar, B., & Associate, B. (2006). Post-traumatic stress disorder, depression and generalised anxiety disorder in adolescents after a natural disaster: A study of comorbidity. Clinical Practice & Epidemiology in Mental Health, 2, doi:10.1186/1745-0179-2

Katcher, A. H., & Teumer, S. (2006). A 4-year trial of animal-assisted therapy with public school special education students. In Handbook of Animal-Assisted Therapy: Theoretical Foundations and Guidelines for Practice. Retrieved from https://books.google.com/books?hl=tw&id=ySHkNATIVWAC&oi=fnd&pg=PA227&dq=katcher%2C+A.+H.%2C+a%26teumer%2C+s+%282006%29%3B+a+4-year+trial+of+animal-assisted+therapy+with+public+school+s+special+education+s+in+A.+%2C+F%2C+%28Ed%29%2C+handbook+on+animal-assisted+th

Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Benjet, C., Bromet, E. J., Cardoso, G., & Koenen, K. C. (2017, October). Trauma and PTSD in the WHO World Mental Health Surveys. European Journal of Psychotraumatology, 8 (sup5), 1353383. Taylor and Francis Ltd. doi:10.1080/20008198.2017.1353383

Kilpatrick, D. G., Ruggiero, K. J., Acierno, R., Saunders, B. E., Resnick, H. S., & Best, C. L. (2003). Violence and risk of PTSD, major depression, substance abuse/dependence, and comorbidity: Results from the national survey of adolescents. Journal of Consulting and Clinical Psychology, 71 (4), 692–700. doi:10.1037.0022-006X.K714.692

Lanning, B. A., & Krenek, N. (2013). Examining effects of equine-assisted activities to help combat veterans improve quality of life. Journal of Rehabilitation Research and Development, 50(8), vii–viii. doi:10.1682/JRBD.2013.07.0159

Ledowitz, C., Prout, M., Bleiberg, J., Paharia, I., & Debiak, D. (2005). Animal-assisted prolonged exposure: A treatment for survivors of sexual assault suffering posttraumatic stress disorder. Society & Animals, 13(4), 275–295. doi:10.1163/156853005774653654

Martin, F., & Farnum, J. (2002). Animal-assisted therapy for children with pervasive developmental disorders. Western Journal of Nursing Research, 24(6), 657–670. doi:10.1177/01934502320555403

Maugham, A., & Cicchetti, D. (2002). Impact of child maltreatment and interadult violence on children’s emotion regulation abilities and socioemotional adjustment. Child Development, 73(5), 1525–1542. doi:10.1111/1467-8624.00488

Moran, C. A., Grillon, C., Southwick, S. M., Davis, M., & Charney, D. S. (1995). Fear-potentiated startle in post-traumatic stress disorder. Biological Psychiatry, 38(6), 378–385. doi:10.1006/jn.1994.0321-S

Morgan, C. A., Grillon, C., Southwick, S. M., Davis, M., & Charney, D. S. (1996). Exaggerated acoustic startle reflex in Gulf War veterans with posttraumatic stress disorder. The American Journal of Psychiatry, 153, 64–68 doi:10.1176/appi.153.1.64.

Nieforth, L. O., Craig, E. A., Behmer, V. A., MacDermid Wadsworth, S., & O’Haire, M. E. (2021). PTSD service dogs foster resilience among veterans and military families. Current Psychology 2021, 40, 1–14 doi:10.1007/s12144-021-01990-3.

O’Haire, M. E., & Rodriguez, K. E. (2018). Bayer +, Health A (2018): Preliminary efficacy of service dogs as a complementary treatment for posttraumatic stress disorder in military members and veterans. Journal of Consulting and Clinical Psychology, 86(2), 179–188. doi:10.1037/ccp0000267

O’Haire, M. E. (2013). Animal-assisted intervention for autism spectrum disorder: A systematic literature review. Journal of Autism and Developmental Disorders, 43(7), 1606–1622. doi:10.1007/s11212-011-1990-3.

Perkonigg, A., Kessler, R. C., Storz, S., & Wittchen, H.-U. (2000). Traumatic events and post-traumatic stress disorder in the community: Prevalence, risk factors and comorbidity. Acta Psychiatraca Scandinavica, 101(1), 46–59. doi:10.1034/j.1600-0447.2000.10100146.x

Powers, M. B., Medina, J. L., Burns, S., Kauffman, B. Y., Monfils, M., Asmundson, G. J. G., Diamond, A., McIntyre, C., & Smits, J. A. J. (2015). Exercise augmentation of exposure therapy for PTSD: Rationale and pilot efficacy data. Cognitive Behaviour Therapy, 44(4), 314–327. doi:10.1080/16506073.2015.1012740

Pynoos, R. S., Weathers, F. W., Steinberg, A. M., Marx, B. P., Layne, C. M., Kaloupek, D. G., Schnurr, P. P., Keane, T. M., Blake, D. D., Newman, E., Nader, K. O., & Krieger, J. A. (2015). CAPS-CA-5 1 National Center for PTSD Clinician-administered PTSD scale for DSM-5 child/adolescent version. PTSD.va.Gov. Retrieved from https://www.ptsd.va.gov/professional/assessment/documents/CAPS-CA-5.pdf

Qureshi, U. S., Long, M. E., Bradshaw, M. R., Pyne, J. M., Magruder, K. M., Kimbrell, T., Hudson, T. J., Jawaid, A., Schulz, P. E., & Kunik, M. E. (2011). Does PTSD impair cognition beyond the effect of trauma? The Journal of Neuropsychiatry and Clinical Neurosciences, 23. Retrieved from http://neuro.psychiatryonline.org

Rodriguez, K. E., Bryce, C. I., Granger, D. A., & O’Haire, M. E. (2018). The effect of a service dog on salivary cortisol awakening response in a military population with posttraumatic stress disorder (PTSD). Psychoneuroendocrinology, 98, 202–210. doi:10.1016/j.psyneuen.2018.04.026

Rodriguez, K. E., LaFollette, M. R., Hediger, K., Ogata, N., & O’Haire, M. E. (2020). Defining the PTSD Service Dog Intervention: Perceived Importance, Usage, and Symptom Specificity of psychiatric service dogs for military veterans.
Frontiers in Psychology, 11, 1638. doi:10.3389/fpsyg.2020.01638

Rooney, N. J., & Cowan, S. (2011). Training methods and owner-dog interactions: Links with dog behaviour and learning ability. Applied Animal Behaviour Science, 132 (3–4), 169–177. doi:10.1016/j.applanim.2011.03.007

Sams, M. J., Fortney, E. V., & Willenbring, S. (2006). Occupational therapy incorporating animals for children with autism: A pilot investigation. The American Journal of Occupational Therapy, 60(3), 268–274. American Occupational Therapy Association, Inc. doi:10.5014/ajot.60.3.268

Schäfer, J., Zvielli, A., Höfler, M., Wittchen, H. U., & Bernstein, A. (2018). Trauma, attentional dysregulation, and the development of posttraumatic stress: An investigation of risk pathways. Journal of Psychiatric Research, 102, 60–66. doi:10.1016/j.jpsychires.2018.01.004

Schoenfeld, F. B., Marmar, C. R., & Neylan, T. C. (2004). Current concepts in pharmacotherapy for posttraumatic stress disorder. Psychiatric Services, 55(5), 519–531. doi:10.1176/appi.ps.55.5.519

Schoorl, M., Putman, P., Van Der Werff, S., & Van Der Does, A. J. W. (2014). Attentional bias and attentional control in posttraumatic stress disorder. Journal of Anxiety Disorders, 28(2), 203–210. doi:10.1016/j.janxdis.2013.10.001

Schuck, S. E. B., Emmerson, N. A., Fine, A. H., & Lakes, K. D. (2015). Canine-assisted therapy for children with ADHD: Preliminary findings from the positive assertive cooperative kids study. Journal of Attention Disorders, 19 (2), 125–137. doi:10.1177/1087054715502080

Shalev, A. Y., Freedman, S., Peri, T., Brandes, D., Sahar, T., Orr, S. P., & Pitman, R. K. (1998). Prospective study of posttraumatic stress disorder and depression following trauma. American Journal of Psychiatry, 155(5), 630–637. doi:10.1176/ajp.155.5.630

Shields, A., & Cicchetti, D. (1998). Reactive aggression among maltreated children: The contributions of attention and emotion dysregulation. Journal of Clinical Child Psychology, 27(4), 381–395. doi:10.1207/s15374424jccp2704_2

Shields, A., Ryan, R. M., & Cicchetti, D. (2001). Narrative representations of caregivers and emotion dysregulation as predictors of maltreated children’s rejection by peers.

Developmental Psychology, 37(3), 321–337. doi:10.1037/0012-1649.37.3.321

Shipman, K., Edwards, A., Brown, A., Swisher, L., & Jennings, E. (2005). Managing emotion in a maltreating context: A pilot study examining child neglect. Child Abuse & Neglect, 29(9), 1015–1029. doi:10.1016/j.chiabu.2005.01.006

Vella, E. J., Milligan, B., & Bennett, J. L. (2013). Participation in outdoor recreation program predicts improved psychosocial well-being among veterans with post-traumatic stress disorder: A pilot study. Military Medicine, 178(3), 254. doi:10.7205/MILMED-D-12-00308

Weathers, F. W., Keane, T. M., & Davidson, J. R. T. (2001). Clinician-administered PTSD scale: A review of the first ten years of research. Depression and Anxiety, 13(3), 132–156. doi:10.1002/da.1029

Wu, K., & Wei, X. (2020). Analysis of psychological and sleep status and exercise rehabilitation of front-line clinical staff in the fight against COVID-19 in China. Medical Science Monitor Basic Research, 26, e924085–1. doi:10.12659/MSMBR.924085

Wynn, G. H. (2015). Complementary and alternative medicine approaches in the treatment of PTSD. Current Psychiatry Reports, 17(8), 62. doi:10.1007/s11920-015-0600-2

Zubedat, S., Aga-Mizrachi, S., Cymerblit-Sabba, A., Ritter, A., Nachmani, M., & Avital, A. (2015). Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning. Stress, 18(3), 280–288. doi:10.3109/10253890.2015.1023790

Zubedat, S., Aga-Mizrachi, S., Cymerblit-Sabba, A., Shwartz, J., Leon, J. F., Rozen, S., & Avital, A. (2014b). Human–animal interface: The effects of handler’s stress on the performance of canines in an explosive detection task. Applied Animal Behaviour Science, 158, 69–75. doi:10.1016/j.applanim.2014.05.004

Zubedat, S., Aga-Mizrachi, S., Cymerblit-Sabba, A., Shwartz, J., Leon, J. F., Rozen, S., Varkovitzky, I., Eshed, Y., Grinstein, D., & Avital, A. (2014a). Human-animal interface: The effects of handler’s stress on the performance of canines in an explosive detection task. Applied Animal Behaviour Science, 158. doi:10.1016/j.applanim.2014.05.004