Peculiar electronic, strong in-plane and out-of-plane second harmonic generation and piezoelectric properties of atom-thick α-M_2X_3 (M = Ga, In; X = S, Se): role of spontaneous electric dipole orientations

Lei Hu * and Xuri Huang *

Second harmonic generation (SHG) and piezoelectric properties of two-dimensional (2D) materials are sparking great interest. However, out-of-plane SHG in 2D materials has been rarely reported; the theoretical out-of-plane piezoelectric response in atom-thick 2D materials is very limited at the present stage. α-M_2X_3 monolayers exhibit out-of-plane spontaneous polarizations, promising out-of-plane SHG and piezoelectricity. Here, we perform first-principles calculations of the electronic, SHG and piezoelectric properties of single- and few-layer α-M_2X_3. Results indicate the bandgaps of α-M_2X_3 monolayers are in the visible range, and become much narrower as the layer number goes up. Furthermore, the narrower bandgaps are broadened by more than 1.00 eV by switching the electric dipole orientation in few-layer α-M_2X_3. α-M_2X_3 monolayers exhibit superior in-plane and out-of-plane SHG properties; in particular, their out-of-plane SHG coefficients are comparable with those of GaAs crystals. Furthermore, the out-of-plane SHG coefficients can be effectively tuned by switching the electric dipole orientation in α-M_2X_3 few-layers. α-M_2X_3 monolayers exhibit superior in-plane and considerable out-of-plane piezoelectricity, and the latter is significantly enhanced in bilayer α-M_2X_3 because of the built-in electric field originating from the parallel electric dipoles. Our work will stimulate research on the ultrathin 2D photo detection, SHG and piezoelectric devices.

1. Introduction

Second harmonic generation (SHG) and piezoelectric properties caused by noncentrosymmetry in two-dimensional (2D) atom-thick materials are sparking great interest. For instance, 2D MoS_2, GaSe, SiC, BN and GeC nanosheets display fascinating prospects in ultrathin SHG devices. However, these 2D materials only exhibit in-plane SHG properties as they embody out-of-plane centrosymmetric characters, i.e. out-of-plane SHG has not been discovered in these 2D materials. On the other hand, monolayer BN, MoS_2, GaSe, GaSSe, buckled hexagonal compounds and doped graphene, have a wide range of applications including in mechanical stress sensors, actuators and energy harvesting devices since they are piezoelectric. Even though a recent calculation has found strong out-of-plane piezoelectricity in multilayer MoS_2 and a recent experiment has shown that out-of-plane piezoelectricity occurs in multilayer (10 nm-thick) α-In_2Se_3 flakes, the obtained out-of-plane piezoelectricity in atom-thick 2D materials such as monolayers and bilayers is very limited. This makes it impossible to fabricate effective ultrathin 2D piezoelectric devices allowing out-of-plane mechanical–electrical energy conversions.

On the other hand, 2D nanosheets exfoliated from α- and β-In_2Se_3 bulk crystals are attracting great attention in the aspects of the thermal conductivity, phase transformation, photoresponsibility, sensitivity, dielectric and optical properties. The electric field perpendicular to α- and β-In_2Se_3 monolayers induce a semiconductor to metal transition. Remarkably, the class of α-M_2X_3 ferroelectric monolayers exhibit in-plane and out-of-plane reversible spontaneous polarizations, promising in-plane and out-of-plane SHG and piezoelectric responses. Indeed, out-of-plane SHG has been recently discovered in monolayer α-In_2Se_3; however the features and magnitude of the SHG coefficients are still unknown. Moreover, monolayer multiferroics exhibit very small out-of-plane SHG coefficients and piezoelectric responses. This simulates us to explore the SHG and piezoelectricity of α-M_2X_3 monolayers using first-principles calculations, expecting to find strong out-of-plane SHG and piezoelectricity.

Experiments indicate that the physical properties of In_2Se_3 multilayer nanosheets, such as optical bandgap and thermal
conductivity,17 show a strong layer-dependent behavior. These remind us to study the correlation between the layer thickness and the electronic, piezoelectric and SHG properties of atomic-thick M\textsubscript{2}X\textsubscript{3} nanosheets. It should be noted that the nanosheet in our theoretical calculations is much thinner than that in previous experiments.17,23 Moreover, the van der Waals heterostructure of α-In\textsubscript{2}Se\textsubscript{3}/WSe\textsubscript{2} shows a significant bandgap reduction when switching the electric dipole orientation of the In\textsubscript{2}Se\textsubscript{3} layer. In essence, switching the electric orientation is changing stacking sequences. It has been shown SHG of few-layer GaSe nanosheets27 and piezoelectricity of multilayer MoS\textsubscript{2}15 can be effectively tuned by using various stacking sequences. Therefore, it is meaningful to explore how the electric dipole orientation affects the electronic, piezoelectric and SHG properties of few-layer M\textsubscript{2}X\textsubscript{3}.

2. Calculation models and details

Single- and few-layer β-M\textsubscript{2}X\textsubscript{3} nanosheets are centrosymmetric, their piezoelectricity and SHG vanish. We thereby study the electronic, piezoelectric and SHG properties of monolayer α-M\textsubscript{2}X\textsubscript{3} (M = Ga, In; X = S, Se), and their top and side views are displayed in Fig. 1. To study the layer-dependent behavior, the bilayer and trilayer exfoliated from α-Ga\textsubscript{2}S\textsubscript{3} and α-In\textsubscript{2}Se\textsubscript{3} bulk crystals are considered, which are respectively named as AA and AAA stacking. Furthermore, to investigate the effect of the electric dipole orientation, bilayer AB is achieved by switching the electric dipole orientation of the bottom layer in AA, while trilayer ABA is attained by switching the electric dipole orientation of the middle layer in AAA.

All calculations are on the basis of the density functional theory (DFT) using the projector-augmented wave (PAW)28 method as implemented in the Vienna Ab initio Simulation Package (VASP).29–32 The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE)33 with van der Waals (vdW) correction proposed by Grimme (DFT-D2)34 is employed. The single electron wave functions are expanded with a large wave cutoff energy of 500 eV. To minimize the periodic interaction along the z axis, the vacuum spacing between adjacent nanosheets is set to be at least 20 Å. A gamma-centered k-point grid of 11 × 11 × 1 is used to optimize geometry structures, and the convergence criteria for electronic and ionic relaxations are respectively set as 10−7 and 10−3 eV Å−1. A k-point grid of 31 × 31 × 1 is used to calculate piezoelectric coefficients of monolayers and few-layers. The more dense k-point grid of 60 × 60 × 1 is used to obtain SHG coefficients of monolayers, while the k-point of 45 × 45 × 1 is applied for few-layers.

3. Results and discussions

3.1. Structural properties

As shown in Fig. 1, α-M\textsubscript{2}X\textsubscript{3} monolayers are five atoms thick, with atoms arranged in the sequence of X–M–X–M–X in the direction perpendicular to the layers. Table 1 summarizes the calculated in-plane constant a and effective thickness h of α-M\textsubscript{2}X\textsubscript{3} monolayers. As the α-M\textsubscript{2}X\textsubscript{3} bulk crystal contains three basic layers, the theoretical h of α-M\textsubscript{2}X\textsubscript{3} monolayers is simply taken as 1/3 of the lattice constant c of optimized bulk crystals. The calculated h are larger than that of monolayer MX\textsubscript{2} (M = Mo, W; X = S, Se)35 and GaX (X = S, Se, Te),27 indicating a stronger SHG intensity in α-M\textsubscript{2}X\textsubscript{3} monolayers than that in MoX\textsubscript{2} and GaX monolayers as the SHG intensity shows a quadratic dependence on the thickness, according to the dipole theory.4 It is very convenient to identify layer numbers of α-M\textsubscript{2}X\textsubscript{3} nanosheets using the effective thickness value in further experiments, which will accelerate explorations of their properties.

Similar to previous calculations,36 the formation energies of single- and few-layer α-M\textsubscript{2}X\textsubscript{3} nanosheets are defined as $E_f = E/N - E_{ref}/N_{ref}$, where E and E_{ref} are respectively the energies of nanosheets and corresponding bulk crystals. N and N_{ref} are the numbers of atoms in the respective unit cells. The calculated formation energies of monolayer α-M\textsubscript{2}X\textsubscript{3}, few-layer α-Ga\textsubscript{2}S\textsubscript{3} and α-In\textsubscript{2}Se\textsubscript{3} are shown in Fig. 2. The formation energies of α-M\textsubscript{2}X\textsubscript{3} monolayers are comparable or even smaller than that of monolayer MoS\textsubscript{2}. The formation energies of monolayer, bilayer
AA, and trilayer AAA \(\alpha\)-Ga\(_2\)S\(_3\) (\(\alpha\)-In\(_2\)Se\(_3\)) decrease as their layer numbers increase, suggesting it is more likely to successfully obtain \(\alpha\)-Ga\(_2\)S\(_3\) (\(\alpha\)-In\(_2\)Se\(_3\)) nanosheets with larger layer numbers. Indeed, trilayer AAA \(\alpha\)-In\(_2\)Se\(_3\), i.e. 3.1 nm-thick \(\alpha\)-In\(_2\)Se\(_3\) nanosheets have been synthesized using mechanical exfoliation.\(^{21}\) Moreover, the formation energy of \(\alpha\)-Ga\(_2\)S\(_3\) nanosheets is to some extent smaller than that of corresponding \(\alpha\)-In\(_2\)Se\(_3\) nanosheets, indicating it is more likely to obtain \(\alpha\)-Ga\(_2\)S\(_3\) nanosheets. Furthermore, the difference of the formation energy can be negligible for AA (AAA) and AB (ABA), ensuring the feasibility to achieve AB (ABA) by switching the electric dipole orientation in AA (AAA) from the standpoint of energetics.

3.2. Electronic properties

In contrast to the previous bandgap calculation using the HSE06 functional with 25% exact exchange,\(^{25}\) we calculated the band structure of single-layer \(\alpha\)-M\(_2\)X\(_3\) using 30% EE, cf. ESI (SI-1\(^{\dagger}\)). The calculated band structures are displayed in Fig. 3. \(\alpha\)-M\(_2\)X\(_3\) monolayers are indirect bandgap semiconductors with their valence band maximum (VBM) located between the \(M\) (0.0, 0.5, 0.0) and gamma (0.0, 0.0, 0.0) points. The conduction band minimum (CBM) is located at the \(M\) point for monolayer \(\alpha\)-Ga\(_2\)S\(_3\) and \(\alpha\)-Ga\(_2\)Se\(_3\), while for single-layer \(\alpha\)-In\(_2\)S\(_3\) and \(\alpha\)-In\(_2\)Se\(_3\) it is located at the gamma point. The top valence band of \(\alpha\)-M\(_2\)X\(_3\) monolayers is relatively flat, resulting in a high density of electronic states in the top valence band region as shown in Fig. 3(e), which is the origin of large SHG coefficients.\(^7\)

Table 1 summarizes the PBE and HSE06 bandgaps of \(\alpha\)-M\(_2\)X\(_3\) monolayers. The PBE bandgap of 0.88 eV for monolayer \(\alpha\)-In\(_2\)Se\(_3\) gets very close to the calculated bandgap of 0.82 eV using PBE + SOC,\(^{24}\) suggesting spin-orbital coupling (SOC) does not significantly modify the electronic property. The HSE06 bandgap of 1.80 eV for single-layer \(\alpha\)-In\(_2\)Se\(_3\) gets close to the calculated bandgap of 1.92 eV using the GW approximation,\(^{24}\) but slightly larger than the bandgap of 1.45 eV calculated using HSE06 with 25% exact exchange.\(^{25}\) The energy gaps of each monolayer at the gamma point are close to their respective indirect bandgaps, which is more evident for \(\alpha\)-In\(_2\)S\(_3\) and \(\alpha\)-In\(_2\)Se\(_3\) monolayers. It is expected the interband optical transition at the gamma point improves optical responses of \(\alpha\)-M\(_2\)X\(_3\) monolayers because no phonons are required for this optical transition to proceed. Additionally, the HSE06 bandgaps of \(\alpha\)-M\(_2\)X\(_3\) monolayers are large enough to avoid current leakages, and thereby they are promising in piezoelectric devices.

Fig. 4 displays the band structures of bilayer AA and AB, and trilayer ABA \(\alpha\)-Ga\(_2\)S\(_3\) calculated using HSE06. If there were no interlayer interaction, the band structure of bilayer AA \(\alpha\)-Ga\(_2\)S\(_3\) should be identical to that of monolayer \(\alpha\)-Ga\(_2\)S\(_3\). Nevertheless, the bands from different \(\alpha\)-Ga\(_2\)S\(_3\) layers in AA are pronouncedly splitted. Comparisons of Fig. 3(c) and 4(c) show the bottom valence bands from various \(\alpha\)-Ga\(_2\)S\(_3\) layers in AA are splitted by as large as 1.31 eV. Resultantly, the bandgap of AA significantly gets reduced by 1.15 eV in comparison with that of monolayer \(\alpha\)-Ga\(_2\)S\(_3\) as Table 1 shows, and that of trilayer AAA \(\alpha\)-Ga\(_2\)S\(_3\) further decreases as shown in Fig. 4(a). In brief, we find the bandgap of

![Fig. 2](image-url)
Fig. 2 Calculated formation energies of monolayer \(\alpha\)-M\(_2\)X\(_3\), few-layer \(\alpha\)-Ga\(_2\)S\(_3\) and \(\alpha\)-In\(_2\)Se\(_3\). The formation energy of the synthesized MoS\(_2\) monolayer is shown for comparison.

Width	E (meV/atom)
ML	39.2
AA	24.7
ABA	25.8
AB	18.6
MLA	20.4
ML	49.5
AA	36
ABA	38.3
AB	25.1
MLA	27.7
ML	51

Table 1 Calculated in-plane constants \(a \) (Å), effective thicknesses \(h \) (Å), PBE bandgaps \(E_{\text{PBE}} \) (eV), HSE06 bandgaps \(E_{\text{HSE06}} \) (eV), minimum direct energy gaps \(E_{\text{min}} \) (eV) and SHG coefficients \(\chi^{(2)}(0) \) (pm \(V^{-1} \)) of monolayer \(\alpha\)-M\(_2\)X\(_3\) (\(M = \text{Ga, In}; X = \text{S, Se} \), few-layer \(\alpha\)-Ga\(_2\)S\(_3\) and \(\alpha\)-In\(_2\)Se\(_3\)

Width	\(a \) (Å)	\(h \) (Å)	\(E_{\text{PBE}} \) (eV)	\(E_{\text{HSE06}} \) (eV)	\(E_{\text{min}} \) (eV)	\(\chi^{(2)}(0) \) (pm \(V^{-1} \))			
\(\alpha\)-Ga\(_2\)S\(_3\)	ML	3.59	8.94	1.79	2.95	3.25	25.4	23.8	162.6
	AA	3.59	17.88	0.65	1.80	2.05	23.0	27.4	184.2
	AB	3.59	17.88	1.64	2.80	3.04	25.0	0.3	0.8
	ABA	3.59	26.82	1.52	2.64	2.81	24.2	6.4	47.6
\(\alpha\)-Ga\(_2\)Se\(_3\)	ML	3.77	9.40	1.06	2.04	2.30	34.6	26.2	208.0
	AA	3.83	9.18	1.29	2.30	2.36	30.6	36.6	207.6
	AB	3.99	9.68	0.88	1.80	1.83	42.2	41.8	252.6
	ABA	4.00	29.04	0.45	1.25	1.26	48.2	8.2	61.4
\(\alpha\)-In\(_2\)S\(_3\)	ML	3.83	9.18	1.29	2.30	2.36	30.6	36.6	207.6
	AA	3.99	9.68	0.88	1.80	1.83	42.2	41.8	252.6
	AB	3.99	19.36	0.57	1.45	1.46	44.0	4.0	0.02
	ABA	4.00	29.04	0.45	1.25	1.26	48.2	8.2	61.4
Few-layer \(\alpha \)-Ga\(_2\)S\(_3\) nanosheets becomes much narrower as their layer number increases. This bandgap reduction is also pronounced for few-layer \(\alpha \)-In\(_2\)Se\(_3\) nanosheets. Fig. 4(a) indicates the bandgap of trilayer AAA \(\alpha \)-In\(_2\)Se\(_3\) nearly vanishes. Similarly, optical absorption spectra show the bandgap decreases from 2.80 eV to 1.45 eV as the layer thickness increases from 3.1 nm to 20.1 nm.\(^{23}\) Considering the effective thickness of monolayer \(\alpha \)-In\(_2\)Se\(_3\) is ~1 nm, the optical bandgap of 1.45 eV for \(\alpha \)-In\(_2\)Se\(_3\) nanosheets with ~20 layers gets close to our theoretical value of 1.48 eV for \(\alpha \)-In\(_2\)Se\(_3\) bulk crystals. Nevertheless, the experimental bandgap of 2.8 eV for 3.1 nm-thick (trilayer) \(\alpha \)-In\(_2\)Se\(_3\) nanosheets significantly varies from the zero bandgap of trilayer AAA \(\alpha \)-In\(_2\)Se\(_3\). Moreover, PBE calculations also find the bandgap of bilayer AA and trilayer AAA \(\alpha \)-In\(_2\)Se\(_3\) is closed.\(^{23}\) It seems further bandgap measurements of few-layer \(\alpha \)-In\(_2\)Se\(_3\) are emergently needed to interpret the huge divergence between experimental and theoretical bandgaps. On the other hand, we note the band splitting in non-ferroelectric MoS\(_2\) nanosheets is not so pronounced.\(^{25}\) Single-layer MoS\(_2\) embodies out-of-plane centrosymmetric characters and in-plane non-centrosymmetric characters. Therefore, the pronounced band splitting in few-layer \(\alpha \)-Ga\(_2\)S\(_3\) (\(\alpha \)-In\(_2\)Se\(_3\)) nanosheets is caused by the built-in electric field originated from the parallel out-of-plane electric polarizations (dipoles) of \(\alpha \)-Ga\(_2\)S\(_3\) (\(\alpha \)-In\(_2\)Se\(_3\)) layers (cf. ESI-3†). This is further affirmed by semiconducting \(\alpha \)-In\(_2\)Se\(_3\) monolayers becoming metallic when an electric field perpendicular is applied.\(^{24}\)

The band splitting of bilayer AB \(\alpha \)-Ga\(_2\)S\(_3\) is not pronounced, and accordingly the bandgap difference between monolayer and bilayer AB \(\alpha \)-Ga\(_2\)S\(_3\) is very small. This is because the built-in electric field significantly decreases as the out-of-plane electric polarizations (dipoles) of \(\alpha \)-Ga\(_2\)S\(_3\) layers are antiparallelly
aligned (cf. ESI-3†). Furthermore, the band splitting in Fig. 4(b) is minor in ABA \(\alpha \)-Ga\(_2\)S\(_3\) as expected. The divergence of electronic properties between AA and AB \(\alpha \)-Ga\(_2\)S\(_3\) is further emphasized in Fig. 4(e) and (f). The peaks in the conduction band region of bilayer AB \(\alpha \)-Ga\(_2\)S\(_3\) look similar to that of monolayer \(\alpha \)-Ga\(_2\)S\(_3\). Nevertheless, the peaks in AA \(\alpha \)-Ga\(_2\)S\(_3\) are significantly split, particularly for the peaks between \(-3\) and \(-2\) eV. Briefly, the bandgap in AA \(\alpha \)-Ga\(_2\)S\(_3\) is broadened by 1.00 eV in AB \(\alpha \)-Ga\(_2\)S\(_3\), which is very advantageous for applications as photodetectors since one can select the sensing photon energy window by switching electric dipole orientation. Additionally, the zero bandgap in AAA \(-\)In\(_2\)Se\(_3\) is open in ABA \(\alpha \)-In\(_2\)Se\(_3\), indicating the semiconducting nature can be achieved by switching the electric dipole orientation.

3.3. SHG properties

The length-gauge formulism at the independent-particle level derived by Aversa and Sipe and rearranged by Rashkeev et al. is used to calculate second-harmonic generation (SHG) coefficients (cf. ESI-2†), and its details are displayed in a previous work. Similar to previous works, the energy differences between HSE06 and PBE bandgaps are used for scissors corrections to reduce the errors caused by neglected many-body effects. The effective unit cell volume is applied to reduce underestimations caused by the large vacuum spacing. For \(\alpha \)-M\(_2\)X\(_3\) monolayers and few-layers, the effective volume is obtained by multiplying the area of in-plane unit cell and the effective thickness. Because single- and few-layer \(\alpha \)-M\(_2\)X\(_3\) belong to \(C_{3v} \) symmetry, they have even static SHG coefficients and only three of them are independent dictated by Kleinman’s symmetry: \(\chi_{xxy}^{(2)}(0) = \chi_{xxz}^{(2)}(0) = \chi_{yyz}^{(2)}(0) = -\chi_{yyz}^{(2)}(0) = -\chi_{xxz}^{(2)}(0) = -\chi_{xxy}^{(2)}(0) \) and \(\chi_{zzz}^{(2)}(0) = \chi_{zzz}^{(2)}(0) = \chi_{zzy}^{(2)}(0) = \chi_{zxx}^{(2)}(0) = \chi_{zxx}^{(2)}(0) = \chi_{zyy}^{(2)}(0) \). The static \(\chi_{xxz}^{(2)}(0) \) and \(\chi_{zzz}^{(2)}(0) \) are summarized in Table 1. The static \(\chi_{zzz}^{(2)}(0) \) describes the in-plane SHG phenomenon, which has been discovered in previous experiments of MoS\(_2\), GaSe\(^4\) and BN\(^4\) monolayers. Even though the static \(\chi_{zzz}^{(2)}(0) \) of \(\alpha \)-M\(_2\)X\(_3\) monolayers is much smaller than that of MoS\(_2\) (ref. 35) and GaSe\(^2\), it is still comparable with \(\chi_{zzz}^{(2)}(0) \) of 28.2 pm V\(^{-1}\) for an archetypal nonlinear optical crystal AgGaSe\(_2\), ensuring \(\alpha \)-M\(_2\)X\(_3\) monolayers can be used as in-plane two-dimensional SHG devices. More importantly, \(\alpha \)-M\(_2\)X\(_3\) monolayers have additional SHG components \(\chi_{zzz}^{(2)}(0) \) and \(\chi_{xxy}^{(2)}(0) \) compared with MoS\(_2\) and GaSe monolayers. Especially, the calculated \(\chi_{zzz}^{(2)}(0) \) of \(\alpha \)-M\(_2\)X\(_3\) monolayers are comparable or even larger than the static SHG coefficient of 173.2 pm V\(^{-1}\) for GaAs crystals. Therefore, \(\alpha \)-M\(_2\)X\(_3\) monolayers are of great importance in ultrathin two-dimensional devices allowing strong out-of-plane SHG occurs.

Fig. 5 represents the calculated real and imaginary parts of SHG coefficients \(\chi_{xxy}^{(2)}(-2\omega,\omega,0,0) \), \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) and \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) of \(\alpha \)-M\(_2\)X\(_3\) monolayers. The \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) and \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) components are significant in the entire range of optical energy. The \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) component is several times larger than \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) and \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \). For \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \), the electric field of both incoming and outgoing photons is parallel to the \(z \) axis, and thereby the electric depolarization vanishes. To analyze the prominent features in SHG spectra, the absolute values of imaginary part of \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) and \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) for monolayer \(\alpha \)-Ga\(_2\)S\(_3\) are plotted in Fig. 6 and compared with the absorptive part of corresponding dielectric function \(\varepsilon' \). The first prominent peak between 1.7 and 3.8 eV in the \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) spectrum is caused by double-photon resonances (cf. Fig. 6(a) and (b)). In contrast, the double-peak structure between 3.8 and 5.6 eV in \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) comes from single- and double-photon resonances. These single- and double-photon resonances only involve optical transitions for the electric filed vector \(\vec{E} \) parallel to the \(z \) axis (\(\vec{E} \parallel \vec{z} \)). Fig. 6 further suggests the first prominent peak between 2.2 and 3.6 eV in the \(\chi_{zzz}^{(2)}(-2\omega,\omega,0,0) \) spectrum is
caused by double-photon resonances with $\vec{E} \parallel \vec{x}$ (cf. Fig. 6(c) and (d)), while the peak between 3.9 and 5.4 eV in $\chi^{(2)}_{zz}(2\omega,\omega,\omega)$ comes from both single- and double-photon resonances with $\vec{E} \parallel \vec{x}$.

As shown in Table 1, the HSE06 bandgaps of few-layer Ga_2S_3 are in the visible range. In contrast, the HSE06 bandgaps of few-layer In_2Se_3 and AAA Ga_2S_3 are much narrower, which promises low laser damage thresholds. Therefore, we focus on SHG properties of bilayer AA and AB, and AAA Ga_2S_3 and their real and imaginary parts of $\chi^{(2)}_{xx}(2\omega,\omega,\omega), \chi^{(2)}_{yy}(2\omega,\omega,\omega)$ and $\chi^{(2)}_{zz}(2\omega,\omega,\omega)$ are displayed in Fig. 7. The line shape of the three SHG spectra of AA Ga_2S_3 is very similar to that of monolayer Ga_2S_3, and the SHG spectra of AA are significantly redshifted in comparison with that of monolayer Ga_2S_3 because of the sizable bandgap reduction. Moreover, the calculated $\chi^{(2)}_{zz}(0), \chi^{(2)}_{zz}(0)$ and $\chi^{(2)}_{xx}(0)$ of AA Ga_2S_3 are very close to those of monolayer Ga_2S_3, respectively. These suggest that optical transitions occur within each Ga_2S_3 layer, namely the SHG property of each Ga_2S_3 layer is not modified by the built-in electric field of the neighboring Ga_2S_3 layer. According to the electric dipole theory, the SHG intensity shows a quadratic dependence on the SHG coefficient and the layer thickness,

which is further corroborated by its vanishing static $\chi^{(2)}_{zz}(0)$ and $\chi^{(2)}_{xx}(0)$. The electric dipole in the z (x) direction of the top and bottom Ga_2S_3 layers in bilayer AB points oppositely, and according to their contribution to the static $\chi^{(2)}_{xx}(0)$ and $\chi^{(2)}_{yy}(0)$ which cancels each other. The electric dipole in the z direction is the out-of-plane electric dipole, while the electric dipole in the x direction is the in-plane electric dipole. The $\chi^{(2)}_{xx}(2\omega,\omega,\omega)$ component of trilayer $\text{AB} \text{Ga}_2\text{S}_3$ is 1/3 that of monolayer Ga_2S_3 as the contribution of the middle and bottom layers to $\chi^{(2)}_{xx}(2\omega,\omega,\omega)$ in trilayer AB cancels each other. Therefore, we propose that one can effectively tune the out-of-plane SHG coefficient by switching the electric dipole orientation in 2D nanosheets. Additionally, we summarize $\chi^{(2)}(0)$ of AB and AAA In_2Se_3 in Table 1, which indicates the obtained optical rules are valid for other M_2X_3 nanosheets. The SHG property of few-layer In_2Se_3 in recent experiments could be obtained by analogy.

3.4. Piezoelectric properties

To obtain piezoelectric strain coefficients d_{ij} which measure mechanical-electrical energy conversion ratios, we calculate elastic constants C_{ij} and piezoelectric stress coefficients e_{ij} using density functional perturbation theory (DFPT). The clamped-ion elastic and piezoelectric coefficients are obtained from purely electronic contributions, while the relaxed-ion coefficients are obtained from the sum of electronic and ionic contributions. The relaxed-ion elastic and piezoelectric coefficients are physically meaningful and can be directly compared with experimental results. As shown in Table 2, single- and few-layer M_2X_3 have three independent elastic constants: C_{11}, C_{12} and C_{66}. The calculated clamped-ion and relaxed-ion elastic constants follow the correlation of $C_{66} \approx (C_{11} - C_{12})/2$. The relaxed-ion elastic constants fulfill the Born criteria of stability of 2D hexagonal structures, and are all larger than 0. Therefore, these monolayers and few-layers are mechanically stable. The calculated relaxed-ion Young’s moduli ($Y = (C_{11}^2 + C_{12}^2)/C_{11}$) of single-layer M_2X_3 are smaller than that of graphene (341 N m$^{-1}$) and monolayer BN (275.9 N m$^{-1}$), and comparable with that of monolayer TMDCs. Therefore, M_2X_3 monolayers are much softer than graphene and monolayer BN, and their stiffness is comparable with that of monolayer TMDCs.

Moreover, the calculated Young’s moduli of bilayer (trilayer) Ga_2S_3 are about two (three) times that of monolayer Ga_2S_3. This is because, of the same strain, the force needed for bilayers (trilayers) is two (three) times that of monolayers.

Single- and few-layer M_2X_3 have two independent piezoelectric stress coefficients e_{11} and e_{12} dictated by C_{2v} symmetry. The piezoelectric strain coefficients d_{11} and d_{12}, which respectively measure the mechanical-electrical energy conversion ratios, are expressed as $d_{11} = e_{11} / (C_{11} - C_{12})$ and $d_{12} = e_{12} / (C_{11} + C_{12})$. The relaxed-ion e_{11} values of monolayer Ga_2S_3 and In_2Se_3 in Fig. 8(a) are even larger than that of monolayer 2H-CrTe_2, which has the largest e_{11} of 654 pC m$^{-1}$ among TMDCs. The relaxed-ion d_{11} values of single-layer Ga_2Se_3 and In_2Se_3 in Fig. 8(c) are comparable with the maximum d_{11} of 13.45 pm V$^{-1}$ for monolayer TMDCs, and...
larger than the maximum d_{11} of 8.47 pm V$^{-1}$ for Janus group-III chalcogenide monolayers.11 The relaxed-ion d_{11} values of α-In$_2$S$_3$ and α-In$_2$Se$_3$ monolayers are comparable with the maximum d_{11} of 2.30 pm V$^{-1}$ for group-III chalcogenides.10 Therefore, α-M$_2$X$_3$ monolayers are promising in ultrathin piezoelectric sensors and nano-generators. Fig. 8(a) and (c) further suggest the electronic and ionic polarizations of α-Ga$_2$S$_3$ and α-Ga$_2$Se$_3$ monolayers both positively contribute to relaxed-ion piezoelectric coefficients e_{11} and d_{11}, resulting in significant in-plane piezoelectricity. In contrast, the electronic and ionic polarizations of α-In$_2$S$_3$ and α-In$_2$Se$_3$ monolayers oppositely contribute to relaxed-ion e_{11} and d_{11}, resulting in smaller in-plane piezoelectricity. Our calculation also generates relaxed e_{11} and d_{11} are respectively 369 pC m$^{-1}$ and 3.72 pm V$^{-1}$ for monolayer MoS$_2$, in good agreement with previous theoretical values of 364 pC m$^{-1}$ and 3.73 pm V$^{-1}$,8 indicating our theoretical results are numerically reliable.

Fig. 8(b) and (d) suggest α-M$_2$X$_3$ monolayers have nonzero out-of-plane piezoelectric coefficients e_{31} and d_{31}. The electronic and ionic polarizations of all α-M$_2$X$_3$ monolayers both negatively contribute to e_{11} and d_{11}. The d_{31} values of α-M$_2$X$_3$ monolayers are comparable with the maximum d_{31} of 0.46 pm V$^{-1}$ for monolayer Janus group-III chalcogenides11 and the maximum d_{31} of 0.658 pm V$^{-1}$ for bucked hexagonal compounds.12 However, the bucked hexagonal compounds are energetically metastable. In contrast, α-M$_2$X$_3$ monolayers are energetically, dynamically25 and mechanically stable, ensuing they are experimentally feasible.

The calculated piezoelectric coefficients e_{11} and e_{31} of AA and AB α-Ga$_2$S$_3$ are summarized in Fig. 8(e), while their d_{11} and d_{31} coefficients are displayed in Fig. 8(f). Comparisons of Fig. 8(a) and (e) show the clamped-ion (relaxed-ion) e_{11} of AB α-Ga$_2$S$_3$ is exactly twice that of monolayer α-Ga$_2$S$_3$. This is because, of the same strain, the change of polarization charges in the x direction of bilayer AB α-Ga$_2$S$_3$ is twice that of monolayer α-Ga$_2$S$_3$. Therefore, the piezoelectric effect occurs within each α-Ga$_2$S$_3$ layer in AB, namely the piezoelectricity of each α-Ga$_2$S$_3$ layer is not modified by the built-in electric field of the neighboring α-Ga$_2$S$_3$ layer. This is further affirmed by the relaxed-ion d_{11} of 10.4 pm V$^{-1}$ for AB α-Ga$_2$S$_3$ being very close to that (10.7 pm V$^{-1}$) for monolayer α-Ga$_2$S$_3$. The relaxed-ion d_{31} of bilayer AB nearly vanishes since the piezoelectric contribution to d_{31} of each α-Ga$_2$S$_3$ layer cancels each other.

Fig. 8(a) and (e) further suggest the clamped-ion e_{11} of 485.1 pC m$^{-1}$ for bilayer AA α-Ga$_2$S$_3$ is exactly twice that (243.6 pC m$^{-1}$) of monolayer α-Ga$_2$S$_3$, while the relaxed-ion e_{11} of 1350.3 pC m$^{-1}$ for AA α-Ga$_2$S$_3$ is to some extent smaller than twice that (755.6 pC m$^{-1}$) of monolayer α-Ga$_2$S$_3$. The clamped-ion e_{11} of -240.2 pC m$^{-1}$ for AA α-Ga$_2$S$_3$ is much larger than that (-11.4 pC m$^{-1}$) of monolayer α-Ga$_2$S$_3$, namely the clamped-ion e_{11} of AA α-Ga$_2$S$_3$ is much enhanced by the strong built-in electric field originated from the parallel out-of-plane electric polarizations of α-Ga$_2$S$_3$ layers. The relaxed-ion d_{31} of -0.91 pm V$^{-1}$ for AA α-Ga$_2$S$_3$ is accordingly several times larger.

Table 2 Theoretical elastic constants C_{ij} and Yang moduli Y (N m$^{-2}$) in both clamped- and relaxed-ion cases of monolayer α-M$_2$X$_3$ and few-layer α-Ga$_2$S$_3$

	C_{11}	C_{12}	C_{66}	Y_{11}	C_{11}	C_{12}	C_{66}	Y_{11}
α-Ga$_2$S$_3$ ML	146.7	48.6	48.9	130.5	115.5	45.0	35.1	104.3
AA	293.3	97.6	97.6	261.0	228.2	83.3	72.4	197.7
AB	292.3	96.2	97.6	260.6	224.3	85.4	69.3	191.7
AB	439.2	145.8	146.7	390.7	348.7	134.5	106.6	296.8
AB	ab							
α-Ga$_2$Se$_3$ ML	120.9	39.9	40.2	107.7	91.8	42.0	24.6	72.5
α-In$_2$S$_3$ ML	117.0	43.2	36.6	101.0	75.6	36.6	19.2	57.8
α-In$_2$Se$_3$ ML	96.3	35.1	30.6	83.5	68.4	24.0	21.9	59.9
vanish in atomic-thick 2D MoStE such as monolayer MoSSe is about 6.3 pm V⁻¹. Moreover, the large electric dipole (0.165 e⁻) of AA z-In₂Se₃ is much larger than that (0.07 e⁻) of monolayer z-In₂Se₃.²⁵

The effective thickness of monolayer MoSSe is about 6.3 Å while its flake size is more than 5 µm.²⁴ The effective thickness of monolayer MoSe₂ is considered as the average of that of MoS₂ and MoSe₂ monolayers.²⁵ In contrast, it is easy to impose stresses along the z direction to achieve large \(d_{33}(\partial P_3/\partial \sigma_3) \) because of the large size of atomic-thick 2D materials. Therefore, it is more reasonable to induce out-of-plane piezoelectricity by imposing stresses along the z direction within atomic-thick 2D materials. Moreover, the \(d_{31} \) coefficient of -1.234 pm V⁻¹ for multilayer MoStE decreases to -0.417 pm V⁻¹ of bilayer MoStE (cf. ESI-4†), being smaller than that of AA Ga₂S₃. The small bandgap of AAA z-Ga₂S₃ is disadvantageous to avoid current leakages. The piezoelectric coefficient \(d_{11} \) of ABA z-Ga₂S₃ should be close to that of monolayer z-Ga₂S₃, while its \(d_{31} \) coefficient is around 1/3 that of monolayer z-Ga₂S₃ since the piezoelectric response occurs within each z-Ga₂S₃ layer.

4. Summaries

We have carried out first-principles calculations of structural, electronic, SHG and piezoelectric properties of single- and few-layer z-M₂X₃ (M = Ga, In; X = S, Se). Firstly, z-M₂X₃ few-layers are energetically favorable and mechanically stable, ensuring bilayer AA and trilayer AAA can be successfully attained by mechanical exfoliation and bilayer AB and trilayer ABA can be achieved by switching the electric dipole orientation. Secondly, the relative flat top valence band of z-M₂X₃ monolayer promises large SHG coefficients, and their large bandgaps are helpful to avoid current leakages in piezoelectric devices. The splitting of energy bands in few-layer AA and AAA is very pronounced because of the built-in electric field originated from the parallel out-of-plane electric dipoles, while in contrast, that of AB and ABA is not pronounced because the built-in electric field significantly diminishes as the out-of-plane electric dipoles are antiparallelly aligned. Therefore, we propose a completely new method, i.e. switching the electric dipole orientation to tune electronic structures and bandgaps, which is very advantageous to tune the sensing photon energy window and achieve the semiconducting nature. Thirdly, the in-plane SHG coefficients of z-M₂X₃ monolayers are comparable with that of AgGaS₂ crystals. More importantly, we find out-of-plane SHG in z-M₂X₃ monolayers and their out-of-plane SHG coefficients are comparable with that of GaAs crystals. Furthermore, SHG occurs within each z-M₂X₃ layers in AA and AB, and accordingly one can achieve an enhanced out-of-plane SHG intensity in AA.
and eliminate the out-of-plane SHG in AB. Fourthly, the stiffnessness of α-Mo$_2$X$_3$ monolayers is comparable that with monolayer TMDCs. α-Mo$_2$X$_3$ monolayers exhibit strong in-plane and considerable out-of-plane piezoelectricity. Furthermore, out-of-plane piezoelectricity vanishes in AB α-Ga$_2$S$_3$, and it is greatly enhanced in AA α-Ga$_2$S$_3$ as the electric dipoles are parallely aligned. To our knowledge, out-of-plane SHG in 2D materials has been rarely reported, while the out-of-plane piezoelectricity has been rarely limited in ultrathin 2D materials. Here we have presented strong out-of-plane SHG and piezoelectricity in ultrathin 2D materials. In general, our research will stimulate researches that use these materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by National Nature Science foundation of China (21373099, 21573090), Jilin Province Science and Technology Development Plan (20150101005JC) and the Ministry of Education of China (213006110020). We also thank professor Yong-Fan Zhang in Fuzhou University for SHG calculation program developing.

References

1. D. Neshev and Y. Kivshar, *Science*, 2014, 344, 483.
2. X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone and X. Zhang, *Science*, 2014, 344, 488.
3. W. Jie, X. Chen, D. Li, L. Xie, Y. Y. Hui, S. P. Lau, X. Cui and J. Hao, *Angew. Chem., Int. Ed.*, 2015, 54, 1185.
4. X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu and D. P. Yu, *J. Am. Chem. Soc.*, 2015, 137, 7994.
5. I. J. Wu and G. Y. Guo, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2008, 78, 035447.
6. G. Y. Guo and J. C. Lin, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2005, 72, 075416.
7. L. Hu and D. S. Wei, *Phys. Chem. Chem. Phys.*, 2017, 19, 2235.
8. K. A. N. Duerdoth, M. T. Ong and E. J. Reed, *J. Phys. Chem. Lett.*, 2012, 3, 2871.
9. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin and X. Zhang, *Nat. Nanotechnol.*, 2015, 10, 151.
10. W. Li and J. Li, *Nano Res.*, 2015, 8, 3796.
11. Y. Guo, S. Zhou, Y. Bai and J. Zhao, *Appl. Phys. Lett.*, 2017, 110, 163102.
12. M. N. Blonsky, H. L. Zhuang, A. K. Singh and R. G. Hennig, *ACS Nano*, 2015, 9, 9885.
13. M. T. Ong and E. J. Reed, *ACS Nano*, 2012, 6, 1387.
14. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone and Z. L. Wang, *Nature*, 2014, 514, 470.
15. L. Dong, J. Lou and V. B. Shenoy, *ACS Nano*, 2017, 11, 8242.
16. Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng and K. Lai, *Nano Lett.*, 2017, 17, 5508.
17. S. Zhou, X. Tao and Y. Gu, *J. Phys. Chem. C*, 2016, 120, 4753.
18. X. Tao and Y. Gu, *Nano Lett.*, 2013, 13, 3501.
19. G. Almeida, S. Dogan, G. Bertoni, C. Giannini, R. Gaspari, S. Perissinotto, R. Krahne, S. Ghosh and L. Manna, *J. Am. Chem. Soc.*, 2017, 139, 3005.
20. R. B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moore and B. Yu, *ACS Nano*, 2014, 8, 514.
21. W. Peng, W. Zheng, F. Gao, X. Chen, G. Liu, T. Hasan, W. Cao and P. Hu, *Chem. Mater.*, 2016, 28, 4278.
22. D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. Tsai, G. S. Hwang and K. Lai, *Nano Lett.*, 2015, 15, 8136.
23. J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta and A. Castellanos-Gomez, *Adv. Opt. Mater.*, 2016, 4, 1939.
24. L. Debbichi, O. Eriksson and S. Lebêgue, *J. Phys. Chem. Lett.*, 2015, 6, 3098.
25. W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang and W. Zhu, *Nat. Commun.*, 2017, 8, 14956.
26. H. Wang and X. Qian, *Nano Lett.*, 2017, 17, 5027.
27. L. Hu, X. R. Huang and D. S. Wei, *Phys. Chem. Chem. Phys.*, 2017, 19, 11131.
28. P. E. Blöchl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 50, 17953.
29. G. Kresse and J. Furthmüller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, 54, 11169.
30. G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, 6, 15.
31. G. Kresse and J. Hafner, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1993, 47, 558.
32. G. Kresse and J. Hafner, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 49, 14251.
33. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
34. S. Grimme, *J. Comput. Chem.*, 2006, 27, 1787.
35. C. Y. Wang and G. Y. Guo, *J. Phys. Chem. C*, 2015, 119, 13268.
36. H. L. Zhuang and R. G. Hennig, *Chem. Mater.*, 2013, 25, 3232.
37. C. Aversa and J. E. Sipe, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1995, 52, 14636.
38. S. N. Rashkeev, W. R. L. Lambrecht and B. Segall, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1998, 57, 3905.
39. Z. Fang, J. Lin, R. Liu, P. Liu, Y. Li, X. Huang, K. Ding, L. Ning and Y. Zhang, *CrystEngComm*, 2014, 16, 10569.
40. M. Grüning and C. Attaccalite, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2014, 89, 081102.
41. H. C. Hseueh, G. Y. Guo and S. G. Louie, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2011, 84, 085404.
42. F. Karlický and M. Otýpek, *Ann. Phys.*, 2014, 526, 408.
43. Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean and T. F. Heinz, *Nano Lett.*, 2013, 13, 3329.
44. L. Bai, Z. Lin, Z. Wang, C. Chen and M. H. Lee, *J. Chem. Phys.*, 2004, 120, 8772.
45. Z. Ma, K. Wu, R. Sa, Q. Li and Y. Zhang, *J. Alloys Compd.*, 2013, 568, 16.
46 X. Wu, D. Vanderbilt and D. R. Hamann, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2005, 72, 035105.

47 H. L. Zhuang, M. D. Johannes, M. N. Blonsky and R. G. Hennig, *Appl. Phys. Lett.*, 2014, 104, 022116.

48 M. Born and H. Huang, *Dynamical Theory of Crystal Lattices*, Clarendon Press, Oxford, 1954.

49 F. Mouhat and F. X. Coudert, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2014, 90, 224104.

50 D. Çakır, F. M. Peeters and C. Sevik, *Appl. Phys. Lett.*, 2014, 104, 203110.

51 M. M. Alyörük, Y. Aierken, D. Çakır, F. M. Peeters and C. Sevik, *J. Phys. Chem. C*, 2015, 119, 23231.

52 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi and J. Lou, *ACS Nano*, 2017, 11, 8192.