Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae
Erik L Jensen, Stephen C. Maberly, Brigitte Gontero

To cite this version:
Erik L Jensen, Stephen C. Maberly, Brigitte Gontero. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. International Journal of Molecular Sciences, MDPI, 2020, 21 (8), pp.2922. 10.3390/ijms21082922. hal-02555638

HAL Id: hal-02555638
https://hal-amu.archives-ouvertes.fr/hal-02555638
Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae

Erik L. Jensen 1,†, Stephen C. Maberly 2 and Brigitte Gontero 1,*

1 Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; erikjensenrojas@gmail.com
2 UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK; scm@ceh.ac.uk
* Correspondence: bmeunier@imm.cnrs.fr; Tel.: +33491164549
† Current address: Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France.

Received: 16 March 2020; Accepted: 20 April 2020; Published: 22 April 2020

Abstract: Carbonic anhydrases (CAs) exist in all kingdoms of life. They are metalloenzymes, often containing zinc, that catalyze the interconversion of bicarbonate and carbon dioxide—a ubiquitous reaction involved in a variety of cellular processes. So far, eight classes of apparently evolutionary unrelated CAs that are present in a large diversity of living organisms have been described. In this review, we focus on the diversity of CAs and their roles in photosynthetic microalgae. We describe their essential role in carbon dioxide-concentrating mechanisms and photosynthesis, their regulation, as well as their less studied roles in non-photosynthetic processes. We also discuss the presence in some microalgae, especially diatoms, of cambialistic CAs (i.e., CAs that can replace Zn by Co, Cd, or Fe) and, more recently, a CA that uses Mn as a metal cofactor, with potential ecological relevance in aquatic environments where trace metal concentrations are low. There has been a recent explosion of knowledge about this well-known enzyme with exciting future opportunities to answer outstanding questions using a range of different approaches.

Keywords: carbonic anhydrase; microalgae; carbon dioxide; CO2-concentrating mechanisms

1. Introduction

Microalgae are a heterogenous group of eukaryotic and prokaryotic microorganisms that are almost exclusively photosynthetic, phylogenetically distinct, and evolved at different geological periods during the Earth’s history [1]. The earliest prokaryotic photosynthetic microalgae, cyanobacteria, appeared more than 2.3 billion years ago [2]. Eukaryotic microalgae, including red and green lineages, evolved over 1.5 billion years ago as the result of an endosymbiosis event between a photosynthetic cyanobacterium and a heterotrophic eukaryote [3]. Other microalgae are the result of additional endosymbiotic events between photosynthetic microalgae and photosynthetic or non-photosynthetic hosts. Therefore, some microalgae are the result of a secondary (e.g., the stramenopiles), tertiary, or even quaternary (e.g., some dinoflagellates) endosymbiosis [4,5]. Microalgae are important primary producers in aquatic environments. Their success is in part the result of highly efficient photosynthetic CO2 fixation, which can be 10 to 50 times higher than that of land plants [6]. Moreover, this high efficiency can occur even in environments where CO2 is usually limiting, because microalgae have evolved different strategies to take up and fix CO2, all of which involve the enzyme carbonic anhydrase.
although all classes of CA catalyze the same reaction, they seem to be unrelated, since they share little or no sequence or structural similarity. All CAs are metalloenzymes that commonly use Zn\(^{2+}\) as a metal ion cofactor; however, it is known that some classes are cambialistic and/or replace Zn\(^{2+}\) with other metals, such as Cd\(^{2+}\), Co\(^{2+}\), Fe\(^{2+}\), or Mn\(^{2+}\) [15]. Seven of the eight classes of CA (currently excluding \(\eta\)-CA found within Plasmodium sp [16]) occur within microalgae, potentially reflecting their evolutionary diversity but also their reliance on this enzyme for carbon fixation. In fact, some CAs classes were first discovered in microalgae (i.e., diatoms) [11,12,17]. Moreover, the class and subcellular distribution of CAs within microalgae cells can also vary among species, even in those belonging to the same family (Figure 1).

\(\theta\)-CA is widely distributed in marine phytoplankton, including other diatom species, such as

Figure 1. Distribution of the predicted carbonic anhydrases (CA) classes in some microalgae. Different CA classes are shown in colors as specified in the legend. In cyanobacteria and green algae, CAs appear also with their common names found in the literature. CAs whose subcellular localization is not fully demonstrated are shown with question marks (?); similarly, those that are predicted only by sequence homology appear with an asterisk (*). Carb: Carboxysome, Cyt: Cytoplasm, Mit: Mitochondrion, Chlp: Chloroplast (stroma), Thyl: Thylakoids (lumen), Pyr: Pyrenoid, PPS: Periplasmic space, CER: Chloroplast endoplasmic reticulum, PPC: Periplastidial compartment.
Table 1. The different carbonic anhydrases (CA) classes, their metal cofactors, and distribution.

CA Class	Metal Cofactor	Organism(s)	References
α-CA	Zn$^{2+}$	Mammals, plants, algae, prokaryotes	[18,19]
β-CA	Zn$^{2+}$	Plants, algae, bacteria	[18]
γ-CA	Zn$^{2+}$, Fe$^{2+}$, Co$^{2+}$	Prokaryotes, plants, fungi, algae	[20]
δ-CA	Zn$^{2+}$, Co$^{2+}$	Marine phytoplankton	[21,22]
η-CA	Zn$^{2+}$	Plasmodium sp	[16]
θ-CA	Zn$^{2+}$	Diatoms, green algae	[11,24]
ι-CA	Mn$^{2+}$	Marine phytoplankton	[1,12]

In this review, we focus on the importance of CAs for inorganic carbon uptake in microalgae, on their role in the algal CO$_2$-concentrating mechanisms, on their diversity, and how these enzymes help microalgae to survive and flourish in modern aquatic environments.

2. The Need for CO$_2$-Concentrating Mechanisms in Microalgae

Aquatic environments are commonly limited by CO$_2$ and so aquatic organisms cannot rely solely on passive CO$_2$ uptake. For instance, in the oceans where the pH is between 7.8 and 8.4, only approximately 1% of the total dissolved inorganic carbon (DIC) is present in the form of CO$_2$, bicarbonate being the most abundant inorganic carbon compound [25–27]. Moreover, at equilibrium with the atmosphere, the concentration of CO$_2$ is around 15 µM, which is lower than the typical values of half saturation constant ($C_{\text{K}_0.5}$) of the CO$_2$-fixing enzyme ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco; $C_{\text{K}_0.5} = 100–180$ µM in cyanobacteria [28], 23–65 µM in diatoms [29], and 15–24 µM in haptophytes [30]). In addition, Rubisco-mediated carboxylation competes with the oxygenation of ribulose 1,5-bisphosphate (RuBP), which reduces carbon fixation and promotes photorespiration [31]. The extent to which these two competitive reactions occur depends on the O$_2$ and CO$_2$ concentrations at the active site of Rubisco and the relative affinity of the enzyme for the two gases. Thus, a CO$_2$ uptake strategy based only on the diffusion of CO$_2$ from the extracellular milieu to the chloroplast will restrict CO$_2$ fixation rates at atmospheric CO$_2$ concentrations. In fresh waters, CO$_2$ concentrations substantially above and below air equilibrium can occur [32], providing an opportunity at high concentrations for species with relatively low abilities to exploit inorganic carbon [33] but producing more challenging inorganic carbon conditions when the concentration of CO$_2$ is very low.

To cope with CO$_2$ limitation, photosynthetic organisms evolved CO$_2$-concentrating mechanisms (CCMs) to increase the concentration of CO$_2$ in the vicinity of the Rubisco active site [34,35]. CCMs have been studied in several photosynthetic microalgae, including green algae [36–38], cyanobacteria [39], and diatoms [34,40]. A biochemical CCM involves the pre-fixation of CO$_2$ into C$_4$ organic compounds (i.e., oxaloacetate), which is a process termed C$_4$ photosynthesis that occurs in 3% of terrestrial higher plants (e.g., Zea mays). This C$_4$ metabolism is present in some aquatic plants (e.g., Hydrilla verticillata and Ottelia alismoides [41–43]) and in some green macroalgae (e.g., Ulva prolifera [44]). In contrast, although C$_4$ photosynthesis has been proposed in the diatom Thalassiosira weissflogii (now called Conticribra weissflogii), more recent data indicate that this type of CCM is not widespread in microalgae [38,45–50].

Biophysical CCMs involving the active transport of inorganic carbon into the cell as HCO$_3^-$ or CO$_2$ are more frequent than biochemical CCMs in microalgae [51,52]. Cyanobacterial CCMs are based on the transport of CO$_2$ or HCO$_3^-$ and are extremely efficient, as they can elevate the CO$_2$ concentration around Rubisco embedded within a polyhedral compartment called a carboxysome, 1000 times above the external CO$_2$ concentration [39]. CCM components have been described both in marine and freshwater cyanobacteria and recently in cyanobacteria living in alkaline lakes [53]. Most bicarbonate transporters belong to the solute carrier family (SLC) and have been well described in mammals and
human proteins [54]; however, other types of transporters have also been found in photosynthetic organisms. The first HCO$_3^-$ transporter described in cyanobacteria was BCT1 from Synechococcus [55]. It belongs to the ATP-binding cassette (ABC) transporter family and has a $K_{0.5}$ for HCO$_3^-$ of 15 µM [55]. It is encoded in the cmpABCD operon, which is highly induced by low CO$_2$ [56]. However, all strong alcaliphilic cyanobacterial strains lack this transporter [53]. Other transporters described in cyanobacteria include the two Na$^+$-dependent HCO$_3^-$ plasma membrane transporters SbtA (a sodium-dependent HCO$_3^-$ symporter; with a $K_{0.5}$ for bicarbonate < 5 µM and low flux of HCO$_3^-$ uptake), which was shown recently to be allosterically regulated [57], and BioA (a sulfate permease or SulP-type sodium-dependent HCO$_3^-$ transporter) that has a low affinity for HCO$_3^-$ ($K_{0.5} = 70–150$ µM) and a high flux of HCO$_3^-$ uptake [55,58]. Another cyanobacterial system comprises two thylakoid CO$_2$ uptake systems based on NAD(P)H dehydrogenase type 1 (NDH-1$_{a/b}$) that are also induced by carbon limitation [59–61].

Eukaryotic microalgal bicarbonate transport is more complex than that of cyanobacteria, since the eukaryotic cell contains organelles surrounded by membranes. In the green alga Chlamydomonas reinhardii, two plasma membrane transporters, high-light activated protein, HLA3 and low CO$_2$ inducible protein, LC1I, have been well studied; more recently, a new transporter, CIBA (for Ci accumulation), was shown to be needed for optimal growth at low CO$_2$ and for bicarbonate uptake and could be located within the thylakoid membrane [62]. Chloroplast membrane transporters include the LClA (also known as NAR1.2), which is known to form a complex with the soluble protein LClB [63]. Two proteins, CCP1 and CCP2, with similarity to mitochondrial carrier proteins are believed to be involved in bicarbonate uptake in the chloroplast. However, the mutants of these proteins do not show an abnormal carbon concentration phenotype; thus, their involvement in CCM is not yet clear [64].

In diatoms, bicarbonate uptake has been studied in the two model species Phaeodactylum tricornutum and Thalassiosira pseudonana. The inorganic flux of carbon in diatoms has been estimated to increase CO$_2$ around Rubisco up to 60 µM, just above the half-saturation concentration [35]. A plasma membrane-bound bicarbonate transporter from P. tricornutum belongs to the solute carrier family (SLC4) and seems to be closely related to a human type rather than those found in green algae [65]. Moreover, three out of seven SLC4 genes found in P. tricornutum are induced by low CO$_2$ and are highly inhibited by the anion exchange inhibitor 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) [65]. SLC4 family proteins are also believed to occur in bicarbonate uptake in the chloroplast. However, the mutants of these proteins do not show an abnormal carbon concentration phenotype; thus, their involvement in CCM is not yet clear [64].

3. Diversity of Carbonic Anhydrases in Microalgae and Their Importance in the CCM

Carbonic anhydrases are widely distributed in photosynthetic organisms [10] and play an important role in HCO$_3^-$/CO$_2$ uptake and in the concentration of CO$_2$ around Rubisco in microalgae. α-CA was first discovered in erythrocytes and widely studied in mammals [67–70], but it is also present in higher plants, algae, and cyanobacteria, among other organisms within all the kingdoms of life. α-CAs are often more active than other classes of CA [10] and are typically found as monomers; however, one type, in the fungus Aspergillus oryzae, is a dimer [71] and two α-CAs in C. reinhardii (CAH1 and CAH2) are tetramers [72]. In C. reinhardii, 12 genes that encode CA isofoms, including three alpha, six beta, and three gamma or gamma-like CAs [73], have been reported and more recently, three more beta CAs have been described [74] (Figure 1). Another extracellular α-CA, EcaA, from cyanobacteria is also found in the periplasmic space; however, it does not have a role in the CCM [75,76]. In the marine eustigmatophyte Nannochloropsis oceanica, the CAH1 located in the lumen of the epiplastid endoplasmic reticulum is also essential for the CCM [77]. Other α-CAs having a possible role in CCMs are found in many other photosynthetic organisms, including haptophytes, rhodophytes, phaeophytes, and cryptomonads [10].

β-CA was discovered in chloroplasts from leaves [78]. They are present in most photosynthetic organisms, and in some non-photosynthetic microorganisms, but not in animals [74]. In contrast to the α-CAs, β-CAs are more frequently found in different oligomeric states, and several trimeric
and tetrameric structures have been reported [79–81]. This class of CA is the best studied in land plants, and the role of β-CA in the CCM of terrestrial C4 plants has been well established, where it is mainly expressed in the cytoplasm of mesophyll cells, thus providing the HCO$_3^-$ required for phosphoenolpyruvate carboxylase [18,82]. β-CA is highly expressed in the green tissues of C3 plants, suggesting a possible role in photosynthesis [83], and in Arabidopsis thaliana, two cytoplasmic β-CAs are essential for growth at low CO$_2$ [84]. In cyanobacteria containing α-carboxysomes, a β-CA (CsoSCA) is present in the carboxysome shell [85] (Figure 1); this CA was first proposed as a new sub-class, which was called ε (epsilon), but later it was shown that the ε-CA is just a modified β-CA, and this denomination is no longer used [86,87].

The γ-CA is a trimeric protein first described in Archaea [88], but it is also present in photosynthetic organisms [10]. In the cyanobacterium Synechococcus PCC7002, the protein CcmM, a component of the β-carboxysomes, is a γ-CA that shares 34%–36% identity with the active site of that from the anaerobic methane-producing species Methanosarcina thermophila from the Archaea domain with the amino acids involved in Zn$^{2+}$ coordination perfectly conserved [75]. Although the Archaelan type is able to replace Zn$^{2+}$ by Fe$^{2+}$ [89], this feature has not been observed in photosynthetic organisms. In contrast, in microalgae and plants, γ-CAs are located in mitochondria, and it is not clear whether they are involved in the CCM or not [18]. However, Wei et al. [90] reported that the RNAi-based down-regulation of a γ-CA in N. oceanica significantly decreased cell growth in cells grown at air CO$_2$ and affected photosynthetic oxygen evolution; thus, this CA is likely to play a role in the CCM, although it is predicted as a mitochondrial protein. So far, the CA activity of other putative γ-CAs from eukaryotic algae has not been shown, and more work is needed to determine their physiological role and possible involvement in CCMs.

Three of the eight known CA classes were first discovered in diatoms [11,12,17,91]. In addition, the highly variable number, classes, and distribution of CAs in diatoms is unique compared to other organisms and might be related to their complex evolutionary origin [92,93]. The subcellular localization of several CAs present in diatom genomes has been predicted or experimentally demonstrated [66,94,95] (Figure 1). In P. tricornutum, five α-CAs are located in the four-layered chloroplast membrane, while in T. pseudonana, only one is present in the chloroplast stroma [95]. In addition, only two β-CAs have been found in the pyrenoid of P. tricornutum and none have been found in T. pseudonana. Two γ-CAs are also found in the mitochondrion of P. tricornutum and three have been found in T. pseudonana; in the latter species, there is also a γ-CA in the cytoplasm. However, as in other algae, the activity and the role of the γ-CA in the diatom CCM has not been studied.

The δ-CA and the ζ-CA were both first discovered in the marine diatom T. weissflogii [17,91]. The δ-CA has been observed in algae derived from secondary endosymbiosis and in prasinophytes [10]. Surprisingly, the δ-CA is a cambialistic CA, where Zn$^{2+}$ can be replaced by Co$^{2+}$ at the active site [21], and in the ζ-CA, Zn$^{2+}$ can be replaced by Cd$^{2+}$ [96]. The CDCA (ζ-CA) from T. weissflogii has a catalytic efficiency (k_{cat}/K_m) of 8.7 × 108 M$^{-1}$ s$^{-1}$ when Zn$^{2+}$ is bound and 1.4 × 108 M$^{-1}$ s$^{-1}$ when Cd$^{2+}$ is bound [23]. These values are comparable to other α-CAs, such as the human CAIL (k_{cat}/K_m = 1.5 × 108 M$^{-1}$ s$^{-1}$) [97]. The ζ-CA occurs naturally in several diatom species, including those from the genus Thalassiosira [98].

θ-CA is found in the lumen of the thylakoids in P. tricornutum [11]. It is likely that its role is to convert HCO$_3^-$ into CO$_2$ inside the thylakoid lumen [10]. In addition, when the mRNA for θ-CA was silenced in P. tricornutum, the growth rate was lower than that of the wild type at air equilibrium and at high CO$_2$ concentration, suggesting that this CA plays a fundamental role in photosynthesis and not just in the CCM [11]. The LCIB from C. reinhardtii was originally described as a β-CA [24] but subsequently classified as an ortholog of a θ-CA with a Cys-Gly-His rich (CGHR) domain [99]. It is found around the pyrenoid and might be involved in the prevention of CO$_2$ leakage from the pyrenoid to the chloroplast stroma [24,100]. BLAST (Basic Local Alignment Search Tool) analysis shows that the θ-CA is also present in the diatoms T. pseudonana, T. oceanica, Fragilaripsis cylindrus, and Fistulifera solaris, suggesting that this CA could be widespread among diatoms (Figure 2) [1].
Rubisco is packed together with carbonic anhydrases [103]. As has been observed for CAH3, it is likely that post-translational modifications triggered by low CO\(_2\) are also regulated by the master regulator of the CO\(_2\) response CCM1 (CIA5) [105]. Another gene, encoding for CAH1, is also a CO\(_2\)-responsive gene regulated by the Myb transcription factor LCR1 [106]. However, no homolog proteins of CCM1 and LCR1 have been described in stramenopiles, alveolates, or haptophytes. In diatoms, it is believed that a transcriptional regulation of the response to CO\(_2\) might exist, which is mediated by the second

\textbf{Figure 2.} Alignment of the \(\theta\)-CA from different diatom species. Only partial sequences are shown. Black, dark gray, and light gray indicate 80% or above, 70%, and 60% of amino acid identity, respectively. Species and protein IDs are the following: Ptric, Phaeodactylum tricornutum (protein ID: XP_002177507.1 – NCBI; 517 aa); Fsol, Fistulifera solaris (protein ID: GAX24004.1 – NCBI; 304 aa); Psnma, Pseudo-nitzchia multiseries (protein ID: OEU22620.1 – NCBI; 407 aa); Tpseu, Thalassiosira pseudonana (protein ID: OEU22620.1 – NCBI; 297 aa); Fcy1, Fragilariopsis cylindrus (protein ID: OEU22620.1 – NCBI; 407 aa); Tpseu, Thalassiosira pseudonana (protein ID: XP_002297283.1 – NCBI; 297 aa); Psemu, Pseudo-nitzchia multiseries (protein ID: 239261 – JGI; 321 aa). The amino acids underlined in red are possibly involved in the active site, as shown by Kikutani et al. [11] Alignments were performed with ClustalW, using MEGAX software, and the figure was processed with GeneDoc.

Finally, the most recently discovered class, \(\iota\)-CA, was highly expressed in \textit{T. pseudonana} grown at low CO\(_2\) [101,102]. This class uses Mn\(^{2+}\) as a cofactor, while no activity has been observed in the presence of Zn\(^{2+}\) or other metals [12]. In addition, it has been shown that \(\iota\)-CA plays a role in the diatom CCM, as it dramatically increases the affinity for CO\(_2\) when overexpressed [12]. Moreover, it has been proposed to be located in the periphery of the chloroplast, presumably in the chloroplast endoplasmic reticulum (CER) boundary (Figure 1). Sequence comparison and phylogenetic analyses show that \(\iota\)-CA is widely distributed in marine phytoplankton, including other diatom species, haptophytes, cryptomonads, and pelagophytes [1,12].

4. Regulation of CA Expression

In the green alga \textit{C. reinhardtii}, the two periplasmic \(\alpha\)-CA, CAH1 and CAH2, show an opposite regulation upon environmental CO\(_2\): CAH1 is more abundant under low CO\(_2\), while CAH2 is more abundant under high CO\(_2\) [72]. In \textit{N. oceanica}, CAH1 was also more abundant in cells cultured at low CO\(_2\) [77]. Blanco-Rivero et al. (2012) showed that after \textit{C. reinhardtii} cells are transferred to low CO\(_2\), the thylakoid luminal CAH3 becomes phosphorylated, more active, and is relocated from the photosystems II area where it is associated to its electron donor side toward the pyrenoid—a specialized compartment inside the chloroplast that is analogous to the carboxysome present in cyanobacteria, where Rubisco is packed together with carbonic anhydrases [103]. As has been observed for CAH3, it is likely that post-translational modifications triggered by low CO\(_2\) are also present in other \(\alpha\)-CAs. In contrast, the two closely related \(\beta\)-CAs, CAH7 and CAH8 (Figure 1), are not regulated by CO\(_2\) [104].

The transcriptional regulation of CA expression has been studied in \textit{C. reinhardtii}. The expression of the low CO\(_2\)-inducible CAH3 appears to be tightly regulated by the master regulator of the CO\(_2\) response CCM1 (CIA5) [105]. Another gene, encoding for CAH1, is also a CO\(_2\)-responsive gene regulated by the Myb transcription factor LCR1 [106]. However, no homolog proteins of CCM1 and LCR1 have been described in stramenopiles, alveolates, or haptophytes. In diatoms, it is believed that a transcriptional regulation of the response to CO\(_2\) might exist, which is mediated by the second...
messenger cAMP [107]. In fact, a bZIP transcription factor in *P. tricornutum* (ptbZIP11) is shown to bind specifically to a CO$_2$-cAMP responsive element in the regulatory region of the *ptca1* gene, encoding for the pyrenoidal β-CA [108].

The patterns of CA expression in response CO$_2$ concentration and their role in CCMs differ among species. For example, in the coccolithophore *Emiliania huxleyi*, the transcript of a δ-CA is highly expressed, but it is not affected by the presence of CO$_2$, and its role in the CCM is unclear [109]. In the marine dinoflagellate *Lingulodinium polyedrum*, it is unclear whether the expression of an external δ-CA is regulated by CO$_2$ concentration; however, this enzyme is important in increasing CO$_2$ availability at the cell surface [110]. In contrast, the δ-CA from *T. weissflogii* and *T. pseudonana* (found in the periplasmic space) are highly up-regulated in cells grown at low CO$_2$ [101,111]. In addition, in *T. pseudonana*, McGinn and Morel (2008) showed that the expression of two isoforms of the δ-CA (Tp1 and Tp2) is down-regulated at the level of protein and transcripts at low concentrations of Zn or Co. A similar pattern of regulation in response to low CO$_2$ and Zn concentration was observed for the Cd-containing ζ-CA (CDCA) [22].

Since many CAs participate actively in photosynthetic CO$_2$ fixation, it is not surprising that their activity is coordinated with diel changes in light availability and the activity of the whole photosynthetic machinery. Many responses to light and dark are mediated by redox conditions within the cell. Two major redox systems exist, based on thioredoxin or glutaredoxin, that are ubiquitous and able to regulate several cellular processes through dithiol–disulfide exchanges with proteins. In *P. tricornutum*, the two pyrenoid-localized β-CAs (Figure 1), named PtCA1 and PtCA2, are regulated by thioredoxins [112,113], while in *A. thaliana*, the chloroplastic β-CA (ID: At3g01500) is regulated by glutaredoxins [112,113]. In addition, PtCA1 is also regulated by CO$_2$ and light [114,115], suggesting that in diatoms, CO$_2$ uptake in the pyrenoid might be controlled by thioredoxins. Moreover, transcriptional regulation may also occur, since the mRNA expression of *ptca1* is down-regulated at high CO$_2$ concentration at the promoter level [115,116]. The CAH8 from *C. reinhardii* is homologous to the β-CA in *A. thaliana* and thus it might be redox regulated, but this needs to be investigated further. However, redox regulation of β-CA also occurs in non-photosynthetic organisms. For example, oxidation of the β-CA from the pathogen *Mycobacterium tuberculosis* can trigger the formation of a disulfide bond at the active site involving the cysteine residues that coordinate the catalytic metal ion, thereby leading to its inactivation [117]. In this case, oxidation can be triggered either by air and H$_2$O$_2$ but also by some oxidative compounds derived from the host.

5. Other Roles of CAs in Microalgae

Carbonic anhydrases are involved in other physiological and metabolic processes in cells, other than the CO$_2$-related metabolism described above. In fact, the first function reported for a CA was on the transport and elimination of CO$_2$ through blood in mammals [118,119]. CAs have been also shown to be essential in acid–base homeostasis in different organisms, including mammals, fish, and arthropods [120]. In plants, the mutation of genes encoding for β-CAs affects the CO$_2$ and environmental-induced stomatal response in *A. thaliana* and *Z. mays* [121,122]. Other roles of CAs in plants include plastid lipid biosynthesis [123] and the regulation of carbon metabolism during root development [124].

Little is known about other roles of CAs in photosynthetic microalgae. A cia1 mutant *C. reinhardii*, which is known to have a high requirement for CO$_2$ and carrying two mutations in the thylakoid luminal α-CA CAH3, is much less effective at carrying out fatty acid (FA) desaturation in the thylakoid membrane. A role of this CA in the control of the composition of the photosynthetic membrane has been proposed [125]. In fact, highly unsaturated FAs are believed to be important for the normal function of photosystems I and II by affecting membrane fluidity [126]. Mackinder et al. (2017) showed that CAH3 also interacts with the proteins from the twin-arginine translocation (tat) pathway, TAT2 and TAT3, and so CAs may also be involved in the transport of proteins to the thylakoid lumen [127].
Chemotaxis towards HCO$_3^-$ has been demonstrated in _C. reinhardtii_ [128] and toward CO$_2$ for five species of microalgae [129]. In this regard, the β-CA, CAH6, is expressed in the flagella of _C. reinhardtii_, and thus, it might be involved in chemotactic movements triggered by environmental inorganic carbon concentrations [127].

A role of mitochondrial CAs in anaplerotic carbon incorporation into the tricarboxylic acid (TCA) cycle has been proposed, in which HCO$_3^-$ is supplied to the cytosolic phosphoenolpyruvate carboxylase (PEPC) of _C. reinhardtii_ [130]. In contrast, diatoms have no predicted cytosolic PEPC, but a mitochondrial PEPC (PEPC2) is predicted in _T. pseudonana_ and _P. tricornutum_ instead [131], suggesting that the same anaplerotic role of mitochondrial CAs is also likely to occur in diatoms. This is even more relevant as these reactions occur in the same compartment; however, this needs to be investigated further.

6. Microalgal CAs and the Ecology of Aquatic Environments

The discovery of CAs that are capable of replacing zinc by other metal ions is of significant relevance, as it reveals an adaptation to the availability of trace metals, and this might have contributed to the ecological success of many photosynthetic microalgae, especially diatoms. This has been extensively reviewed recently by Morel et al. (2020) [15], so we focus specifically on Mn, which is the cofactor of the newly discovered ι-CA [12].

In marine environments, particularly in coastal waters and estuaries, manganese is more abundant than zinc by up to 20–50 times [132,133]. In addition, Mn$^{2+}$ is a cofactor of several other enzymes, such as the Mn-superoxide dismutase (MnSOD) [134], and it is an important component of the photosystem II reaction center [135,136]. Indeed, in _T. pseudonana_, the MnSOD is located in the chloroplast and is the dominant SOD in the cell [134]. Then, it is possible that the total CA activity in _T. pseudonana_ relies on Mn$^{2+}$ as well as Zn$^{2+}$, Co$^{2+}$, and Cd$^{2+}$. Sunda and Huntsman [132] showed that the range of free Mn$^{2+}$ concentration in which there is a cellular regulation of Mn$^{2+}$ is related to the Mn$^{2+}$ concentration found in the natural habitats where diatoms live.

Response to Mn$^{2+}$ availability at the genetic level has been studied in several organisms. In the bacterium _Agrobacterium tumefaciens_, 55 genes were differentially expressed in manganese-limited cells, and the cells showed a reduction in biofilm formation [137]. Furthermore, the Mn-sensing transcriptional regulator MtsR controls the expression of genes related to Mn$^{2+}$ uptake as well as genes controlling _Streptococcus pyogenes_ virulence [138]. In cyanobacteria, a Mn-sensing signaling system, Hik27-Rre16, regulates Mn$^{2+}$ homeostasis by controlling the expression of a Mn$^{2+}$-specific ABC transporter in response to Mn$^{2+}$ availability [139,140]. In _C. reinhardtii_ grown at limited Mn$^{2+}$ concentrations, there is a strong down-regulation of genes involved in photosystem II function and up-regulation of the MnSOD gene; cells also showed defective photosynthesis and a loss of MnSOD activity [141]. It is possible that Mn has an effect on the expression of ι-CA, and this is currently under investigation in Gontero’s group.

7. Conclusions

The first occurrence of CA (an α-CA) in plants was confirmed in 1939. The discovery of β-CAs in plants in 1990 continued with the finding of multiple α- and β-CAs in _C. reinhardtii_ and _A. thaliana_ [18]. Subsequently, there has been a resurgence of interest in CAs from plants and algae over the past decade. Recent work on marine diatoms has uncovered further distinct classes of CA, some of which make use of metal cations other than zinc at the active site including ι-CA, which is widespread among marine phytoplankton, bacteria, and archaea. CA’s diversity, ubiquitous distribution, and multiple forms and location within an organism are testament to the fundamental importance of this enzyme to life on Earth. CA not only has consequences for global productivity but also for the biogeochemistry of trace metals in the ocean. The availability of bioinformatic tools to analyze the ever-growing number of sequenced genomes from algal species will help the global diversity and distribution of CAs to
be investigated. Molecular approaches such as overexpression, gene silencing by CRISP/Cas9, and structural studies will shed light on the numerous metabolic roles of CAs in photosynthetic organisms.

Author Contributions: All authors participated in the conception of this review article. E.L.J. prepared the figures and the draft of this manuscript, supervised by S.C.M. and B.G. All authors participated in writing, reading and reviewing the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Agence Nationale de la Recherche (Signaux-BioNRJ, ANR-15-CE05-0021-03). E.L.J. studentship was funded by Comision Nacional de Investigacion Cientifica y tecnologica (conicyt)—Programa de formacion humano avanzado Becas Chile 2015/2019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nonoyama, T.; Kazamia, E.; Nawaly, H.; Gao, X.; Tsuji, Y.; Matsuda, Y.; Bowler, C.; Tanaka, T.; Dorrell, R. Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. *Biomolecules* 2019, 9, 322. [CrossRef] [PubMed]

2. Soo, R.M.; Hemp, J.; Parks, D.H.; Fischer, W.W.; Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. *Science* 2017, 1440, 1436–1440. [CrossRef] [PubMed]

3. Yoon, H.S.; Hackett, J.D.; Ciniglia, C.; Pinto, G.; Bhattacharya, D. A molecular timeline for the origin of photosynthetic eukaryotes. *Mol. Biol. Evol.* 2004, 21, 809–818. [CrossRef] [PubMed]

4. Dorrell, R.G.; Bowler, C. Secondary Plastids of Stramenopiles. In *Advances in Botanical Research*, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [CrossRef]

5. Keeling, P.J. The endosymbiotic origin, diversification and fate of plastids. *Philos. Trans. R. Soc. B Biol. Sci.* 2010, 365, 729–748. [CrossRef] [PubMed]

6. Bhola, V.; Swalaha, F.; Kumar, R.R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO₂ sequestration. *Int. J. Environ. Sci. Technol.* 2014, 11, 2103–2118. [CrossRef]

7. Raven, A. Photosynthetic and non-Photosynthetic roles of carbonic anhydrase in algae and cyanobacteria. *Phycologia* 1995, 34, 93–101. [CrossRef]

8. Lionetto, M.G.; Caricato, R.; Giordano, M.E.; Schettino, T. The complex relationship between metals and carbonic anhydrase: New insights and perspectives. *Int. J. Mol. Sci.* 2016, 17, 127. [CrossRef]

9. DiMario, R.J.; Machingura, M.C.; Waldrop, G.L.; Moroney, J.V. The many types of carbonic anhydrases in photosynthetic organisms. *Plant Sci.* 2018, 268, 11–17. [CrossRef]

10. Kikutani, S.; Nakajima, K.; Nagasato, C.; Tsuji, Y.; Miyatake, A.; Matsuda, Y. Thylakoid luminal θ-Carbonic anhydrase critical for growth and photosynthesis in the marine diatom *Phaeodactylum tricornutum*. *Proc. Natl. Acad. Sci. USA* 2016, 113, 9828–9833. [CrossRef]

11. Jensen, E.L.; Clement, R.; Kosta, A.; Maberly, S.C.; Gontero, B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. *ISME J.* 2019, 13, 2094–2106. [CrossRef] [PubMed]

12. Noctentini, A.; Supuran, C.T. Carbonic anhydrases: An overview. In *Carbonic Anhydrases*; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [CrossRef]

13. Supuran, C.T. Carbonic Anhydrases and Metabolism. *Metabolites* 2018, 8, 25. [CrossRef] [PubMed]

14. Morel, F.M.M.; Lam, P.J.; Saito, M.A. Trace Metal Substitution in Marine Phytoplankton. *Annu. Rev. Earth Planet. Sci.* 2020, 48, 1–27. [CrossRef]

15. Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum-The η-Carbonic anhydrases. *Bioorganic Med. Chem. Lett.* 2014, 24, 4389–4396. [CrossRef] [PubMed]

16. Lane, T.W.; Saito, M.A.; George, G.N.; Pickering, I.J.; Prince, R.C.; Morel, F.M.M. A cadmium enzyme from a marine diatom. *Nature* 2005, 435, 42. [CrossRef]

17. DiMario, R.J.; Clayton, H.; Mukherjee, A.; Ludwig, M.; Moroney, J.V. Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles. *Mol. Plant.* 2017, 10, 30–46. [CrossRef]
19. Whittington, D.A.; Waheed, A.; Ulmasov, B.; Shah, G.N.; Grubb, J.H.; Sly, W.S.; Christianson, D.W. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. *Proc. Natl. Acad. Sci. USA* **2002**, *98*, 9545–9550. [CrossRef]

20. Supuran, C.T.; Capasso, C. An overview of the bacterial carbonic anhydrases. *Metabolites* **2017**, *7*, 56. [CrossRef]

21. Yee, D.; Morel, F.M.M. In vivo substitution in carbonic of zinc by cobalt of a marine anhydrase diatom. *Limnol. Oceanogr.* **2011**, *51*, 573–577. [CrossRef]

22. McGinn, P.J.; Morel, F.M.M. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. *Physiol. Plant.* **2008**, *133*, 78–91. [CrossRef]

23. Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.; Morel, F.M.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. *Nature* **2008**, *452*, 56–61. [CrossRef] [PubMed]

24. Jin, S.; Sun, J.; Wunder, T.; Tang, D.; Cousins, A.B.; Sze, S.K.; Mueller-Cajar, O.; Gao, Y.-G. Structural insights into the LCIB protein family reveals a new group of α-Carbonic anhydrases. *Proc. Natl. Acad. Sci. USA* **2016**, *113*, 14716–14721. [CrossRef] [PubMed]

25. Kim, J.; Lee, K.; Lee, H.; Kim, M. The effect of seawater CO₂ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. *Limnol. Oceanogr.* **2006**, *51*, 1629–1636. [CrossRef]

26. Gattuso, J.; Gao, K.; Lee, K.; Rost, B.; Schulz, K.G. Approaches and tools to manipulate the carbonate chemistry. In *Guid. to Best Pract. Ocean Acidif. Res. Data Report*; Riebesell, U., Fabry, V., Hansson, L., Gattuso, J., Eds.; Publications Office of the European Union: Luxembourg, 2010; pp. 41–52.

27. Gao, K.; Campbell, D.A. Photophysiological responses of marine diatoms to elevated CO₂ and decreased pH: A review. *Funct. Plant Biol.* **2014**, *41*, 449–459. [CrossRef]

28. Badger, M.R.; Andrews, T.J.; Whitney, S.M.; Ludvig, M.; Yellowlees, D.C.; Leggat, W.; Price, G.D. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-Based CO₂-Concentrating mechanisms in algae. *Can. J. Bot.* **1998**, *76*, 1052–1071. [CrossRef]

29. Young, J.N.; Heureux, A.M.C.; Sharwood, R.E.; Rickaby, R.E.M.; Morel, F.M.M.; Whitney, S.M. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-Concentrating mechanisms. *J. Exp. Bot.* **2016**, *67*, 3445–3456. [CrossRef]

30. Heureux, A.M.C.; Young, J.N.; Whitney, S.M.; Eason-hubbard, M.R.; Lee, R.B.Y.; Sharwood, R.E.; Rickaby, R.E.M. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. *J. Exp. Bot.* **2017**, *68*, 3959–3969. [CrossRef]

31. Husic, D.W.; Husic, H.D.; Tolbert, N.E.; Black, C.C. The oxidative photosynthetic carbon cycle or C₂ cycle. *CRC Crit. Rev. Plant Sci.* **1987**, *5*, 45–100. [CrossRef]

32. Maberly, S.C.; Gontero, B. Ecological imperatives for aquatic carbon dioxide-Concentrating mechanisms. *J. Exp. Bot.* **2017**, *68*, 3797–3814. [CrossRef]

33. Raven, J.A.; Ball, L.A.; Beardall, J.; Giordano, M.; Maberly, S.C. Algae lacking CO₂ concentrating mechanisms. *Can. J. Bot.* **2011**, *89*, 879–890. [CrossRef]

34. Matsuda, Y.; Nakajima, K.; Tachibana, M. Recent progresses on the genetic basis of the regulation of CO₂ acquisition systems in response to CO₂ concentration. *Photosynth. Res.* **2011**, *109*, 191–203. [CrossRef] [PubMed]

35. Hopkinson, B.M.; Dupont, C.L.; Allen, A.E.; Morel, F.M.M. Efficiency of the CO₂-Concentrating mechanism of diatoms. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 3830–3837. [CrossRef] [PubMed]

36. Giordano, M.; Beardall, J.; Raven, J.A. CO₂ concentrating mechanisms in algae: Mechanisms, Environmental Modulation, and Evolution. *Annu. Rev. Plant Biol.* **2005**, *56*, 99–131. [CrossRef] [PubMed]

37. Moroney, J.V.; Somanchi, A. How Do Algae Concentrate CO₂ to Increase the Efficiency of Photosynthetic Carbon Fixation? *Plant Physiol.* **1999**, *119*, 9–16. [CrossRef]

38. Moroney, J.V.; Ynalvez, R.A. Proposed carbon dioxide concentrating mechanism in *Chlamydomonas reinhardtii*. *Eukaryot. Cell* **2007**, *6*, 1251–1259. [CrossRef]

39. Badger, M.R.; Price, G.D. CO₂ concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. *J. Exp. Bot.* **2003**, *54*, 609–622. [CrossRef]

40. Hopkinson, B.M.; Dupont, C.L.; Matsuda, Y. The physiology and genetics of CO₂ concentrating mechanisms in model diatoms. *Curr. Opin. Plant Biol.* **2016**, *31*, 51–57. [CrossRef]
41. Bowes, G.; Rao, S.K.; Estavillo, G.M.; Reiskind, J.B. C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. *Funct. Plant Biol.* 2002, 29, 379–392. [CrossRef]

42. Zhang, Y.; Yin, L.; Jiang, H.-S.; Li, W.; Gontero, B.; Maebly, S.C. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus *Ottelia* (Hydrocharitaceae). *Photosynth. Res.* 2014, 121, 285–297. [CrossRef]

43. Shao, H.; Gontero, B.; Maebly, S.C.; Jiang, H.S.; Cao, Y.; Li, W.; Huang, W.M. Responses of *Ottelia alismoides*, an aquatic plant with three CCMs, to variable CO2 and light. *J. Exp. Bot.* 2017, 68, 3985–3995. [CrossRef]

44. Xu, J.; Fan, X.; Zhang, X.; Xu, D.; Mou, S.; Cao, S.; Zheng, Z.; Miao, J.; Ye, N. Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming Alga, *Ulva prolifera*. *PLoS ONE* 2012, 7, e37438. [CrossRef] [PubMed]

45. Roberts, K.; Granum, E.; Leegood, R.C.; Raven, J.A. C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control. *Plant Physiol.* 2007, 145, 230–235. [CrossRef]

46. Tanaka, R.; Kikutani, S.; Mahardika, A.; Matsuda, Y. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, *Thalassiosira pseudonana*. *Photosynth. Res.* 2014, 121, 251–263. [CrossRef] [PubMed]

47. Clement, R.; Jensen, E.; Prioretti, L.; Maebly, S.C.; Gontero, B. Diversity of CO2 concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. *J. Exp. Bot.* 2017, 68, 3925–3935. [CrossRef] [PubMed]

48. Ewe, D.; Tachibana, M.; Kikutani, S.; Gruber, A.; Río Bártillos, C.; Konert, G.; Kaplan, A.; Matsuda, Y.; Kroth, P.G. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway diatom *Phaeodactylum tricornutum*. *Photosynth. Res.* 2018, 137, 263–280. [CrossRef] [PubMed]

49. Clement, R.; Dimnet, L.; Maebly, S.C.; Gontero, B. The nature of the CO2-Concentrating Mechanisms in a marine diatom, *Thalassiosira pseudonana*. *New Phytol.* 2016, 209, 1417–1427. [CrossRef] [PubMed]

50. Haimovich-dayan, M.; Garfinkel, N.; Ewe, D.; Marcus, Y.; Gruber, A.; Wagner, H.; Kroth, P.G.; Kaplan, A. The role of C4 metabolism in the marine diatom *Phaeodactylum tricornutum*. *New Phytol.* 2013, 197, 177–185. [CrossRef] [PubMed]

51. Spalding, M.H. Microalgal carbon-Dioxide-Concentrating mechanisms: Chlamydomonas inorganic carbon transporters. *J. Exp. Bot.* 2007, 59, 1463–1473. [CrossRef]

52. Price, G.D. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. *Photosynth. Res.* 2011, 109, 47–57. [CrossRef]

53. Klanchui, A.; Cheevadhanarak, S.; Prommeenate, P.; Meechai, A. Exploring Components of the CO2-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis. *Comput. Struct. Biotechnol. J.* 2017, 15, 340–350. [CrossRef] [PubMed]

54. Poschenrieder, C.; Fern, A.; Ter, J.; Barcel, J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. *Int. J. Mol. Sci.* 2018, 19, 1352. [CrossRef] [PubMed]

55. Omata, T.; Price, G.D.; Badger, M.R.; Okamura, M.; Gohta, S.; Ogawa, T. Identification of an ATP-Binding cassette transporter involved in bicarbonate uptake in the cyanobacterium *Synechococcus* sp. Strain PCC 7942. *Proc. Natl. Acad. Sci. USA* 1999, 96, 13571–13576. [CrossRef] [PubMed]

56. McGinn, P.J.; Price, G.D.; Malezsk, R.; Badger, M.R. Inorganic Carbon Limitation and Light Control the Expression of Transcripts Related to the CO2-Concentrating Mechanism in the Cyanobacterium *Synechocystis* sp. Strain PCC6803 1. *Plant Physiol.* 2003, 132, 218–229. [CrossRef] [PubMed]

57. Kaczmzrski, J.A.; Hong, N.; Mukherjee, B.; Wey, L.T.; Rourke, L.; Fo, B.; Peat, T.S.; Price, G.D.; Jackson, C.J. Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the PII-Like Protein, SbtB, from Cyanobium sp. PCC7001. *Biochemistry* 2019, 58, 5030–5039. [CrossRef]

58. Price, G.D.; Woodger, F.J.; Badger, M.R.; Howitt, S.M.; Tucker, L. Identification of a SulP-Type bicarbonate transporter in marine cyanobacteria. *Proc. Natl. Acad. Sci. USA* 2004, 101, 18228–18332. [CrossRef]

59. Badger, M.R.; Price, G.D.; Long, B.M.; Woodger, F.J. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. *J. Exp. Bot.* 2006, 57, 249–265. [CrossRef]

60. Shibata, M.; Ohkawa, H.; Kaneko, T.; Fukuzawa, H.; Tabata, S.; Kaplan, A.; Ogawa, T. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. *Proc. Natl. Acad. Sci. USA* 2001, 98, 2–7. [CrossRef]
61. Sandrini, G.; Tann, R.P.; Schuurmans, J.M.; Van Beusekom, S.A.M.; Matthijs, H.C.P.; Huisman, J. Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom. *Front. Microbiol.* 2016, 7, 1–16. [CrossRef]

62. Machingura, M.C.; Bajsa-hirschel, J.; Laborde, S.M.; Schwartzenburg, J.B.; Mukherjee, B.; Mukherjee, A.; Pollock, S.V.; Fürster, B.; Price, G.D.; Moroney, J.V. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in *Chlamydomonas reinhardtii*. *J. Exp. Bot.* 2017, 68, 3879–3890. [CrossRef]

63. Wang, Y.; Spalding, M.H. Acclimation to very low CO2: Contribution of limiting CO2 inducible proteins, LCIB and LCIA, to onorganic carbon uptake in *Chlamydomonas reinhardtii*. *Plant Physiol.* 2014, 166, 2040–2050. [CrossRef]

64. Pollock, S.V.; Prout, D.L.; Godfrey, A.C.; Lemaire, S.D.; Moroney, J.V. The *Chlamydomonas reinhardtii* proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. *Plant Mol. Biol.* 2004, 56, 125–132. [CrossRef] [PubMed]

65. Nakajima, K.; Tanaka, A.; Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. *Proc. Natl. Acad. Sci. USA* 2013, 110, 1767–1772. [CrossRef] [PubMed]

66. Matsuda, Y.; Hopkinson, B.M.; Nakajima, K.; Dupont, C.L.; Tsuji, Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. *Philos. Trans. R. Soc. B Biol. Sci.* 2017, 372, 20160403. [CrossRef] [PubMed]

67. Meldrum, N.U.; Roughton, F.J.W. The state of carbon dioxide in blood. *Philos. Trans. R. Soc. B Biol. Sci.* 1933, 130, 143–170. [CrossRef]

68. Chegwidden, W.R.; Carter, N.D. Introduction to the carbonic anhydrases. In *The Carbonic Anhydrases*; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkhäuser: Basel, Switzerland, 2000; pp. 1–11. [CrossRef]

69. Forster, R.E. Remarks on the discovery of carbonic anhydrase. In *The Carbonic Anhydrases*; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkhäuser: Basel, Switzerland, 2000; pp. 1–11. [CrossRef]

70. Lomelino, C.L.; Andring, J.T.; McKenna, R. Crystallography and Its Impact on Carbonic Anhydrase Research. *Int. J. Mol. Sci.* 2018, 19, 20160403. [CrossRef]

71. Cuesta-Seijo, J.A.; Borchert, M.S.; Navarro-Poulsen, J.C.; Schnorr, K.M.; Mortensen, S.B.; Lo Leggio, L. Structure of a dimeric fungal α-Type carbonic anhydrase. *FEBS Lett.* 2011, 585, 1042–1048. [CrossRef]

72. Ishida, S.; Muto, S.; Miyachi, S. Structural analysis of periplasmic carbonic anhydrase 1 of *Chlamydomonas reinhardtii*. *Eur. J. Biochem.* 1993, 214, 9–16. [CrossRef]

73. Moroney, J.V.; Ma, Y.; Frey, W.D. The carbonic anhydrase isoforms of *Chlamydomonas reinhardtii*: Intracellular location, expression, and physiological roles. *Photosynth. Res.* 2011, 109, 133–149. [CrossRef]

74. Aspatwar, A.; Haapanen, S.; Parkkila, S. An update on the metabolic roles of carbonic anhydrases in the model alga *Chlamydomonas reinhardtii*. *Metabolites* 2018, 8, 22. [CrossRef]

75. So, A.K.-C.; Espie, G.S. Cyanobacterial carbonic anhydrases. *Can. J. Bot.* 2005, 83, 721–734. [CrossRef]

76. Kupriyanova, E.V.; Sinetova, M.A.; Bedbenov, V.S.; Pronina, N.A.; Los, D.A. Putative extracellular α-Class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: A sequel to an old story. *Metabolites* 2018, 16, 576–586. [CrossRef] [PubMed]

77. Gee, C.W.; Niyogi, K.K. The carbonic anhydrase CAH1 is an essential component of the carbon-Concentrating mechanism in *Nannochloropsis oceanica*. *Proc. Natl. Acad. Sci. USA* 2017, 114, 4537–4542. [CrossRef]

78. Neish, A.C. Studies on Chloroplasts: Factors Affecting Their Flocculation and the Calculation of the Chloroplast Content of Leaf Tissue From Chemical Analysis. *Biochem. J.* 1938, 33, 293–299. [CrossRef]

79. Kimber, M.S.; Pai, E.F. The active site architecture of *Pisum sativum* β-Carbonic anhydrase is a mirror image of that of α-Carbonic anhydrases. *EMBO J.* 2000, 19, 1407–1418. [CrossRef] [PubMed]

80. Cronk, J.D.; Endrizzi, J.A.; Cronk, M.R.; Neill, J.W.O. Crystal structure of *E. coli* β-Carbonic anhydrase, an enzyme with an unusual pH-Dependent activity. *Protein Sci.* 2001, 10, 911–922. [CrossRef] [PubMed]

81. Covarrubias, A.S.; Bergfors, T.; Jones, T.A.; Högbom, M. Structural mechanics of the pH-Dependent activity of β-Carbonic anhydrase from *Mycobacterium tuberculosis*. *J. Biol. Chem.* 2006, 281, 4993–4999. [CrossRef] [PubMed]

82. Hatch, M.D.; Burnell, J.N. Carbonic Anhydrase Activity in Leaves and Its Role in the First Step of C4 Photosynthesis. *Plant Physiol.* 1990, 93, 825–828. [CrossRef]
83. Fabre, N.; Reiter, I.M.; Becuwe-linka, N.; Genty, B.; Rumeau, D. Characterization and evolution of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ. 2007, 30, 617–629. [CrossRef]
84. DiMario, R.J.; Quebedeaux, J.C.; Longstreth, D.J.; Dassanayake, M.; Hartman, M.M.; Moroney, J.V. The Cytoplasmic Carbonic Anhydrases β CA2 and β CA4 Are Required for Optimal Plant Growth at Low CO2. Plant Physiol. 2016, 171, 280–293. [CrossRef]
85. Kerfeld, C.A.; Melnicki, M.R. Assembly, function and evolution of cyanobacterial carboxysomes. Curr. Opin. Plant Biol. 2016, 31, 66–75. [CrossRef]
86. So, A.K.-C.; Espie, G.S.; Williams, E.B.; Shively, J.M.; Heinhorst, S.; Cannon, G.C. A novel evolutionary lineage of carbonic anhydrase (epsi-ol class) is a component of the carboxysome shell. J. Bacteriol. 2004, 186, 623–630. [CrossRef] [PubMed]
87. Sawaya, M.R.; Cannon, G.C.; Heinhorst, S.; Tanaka, S.; Williams, E.B.; Yeates, T.O.; Kerfeld, C.A. The structure of β-Carbonic anhydrase from the carboxysomal shell reveals a distinct subcell with one active site for the price of two. J. Biol. Chem. 2006, 281, 7546–7555. [CrossRef] [PubMed]
88. Alber, B.E.; Ferry, J.G. A carbonic anhydrase from the archaeon Methanosarcina thermophilia. Proc. Natl. Acad. Sci. USA 2006, 91, 6909–6913. [CrossRef] [PubMed]
89. MacAuley, S.R.; Zimmerman, S.A.; Apolinario, E.E.; Evilia, C.; Hou, Y.M.; Ferry, J.G.; Sowers, K.R. The archetype γ-Class carbonic anhydrase (cam) contains iron when synthesized in vivo. Biochemistry 2009, 48, 817–819. [CrossRef] [PubMed]
90. Wei, L.; Xin, Y.; Wang, Q.; Yang, J.; Hu, H.; Xu, J. RNAi-Based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. Plant J. 2017, 89, 1236–1250. [CrossRef] [PubMed]
91. Roberts, S.B.; Lane, T.W.; Morel, F.M.M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 1997, 33, 845–850. [CrossRef]
92. Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004, 306, 79–86. [CrossRef]
93. Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [CrossRef]
94. Samukawa, M.; Shen, C.; Hopkinson, B.M.; Matsuda, Y. Localization of putative carbonic anhydrases in the marine diatom Thalassiosira pseudonana. Photosynth. Res. 2014, 121, 235–249. [CrossRef]
95. Tachibana, M.; Allen, A.E.; Kikutani, S.; Endo, Y.; Bowler, C.; Matsuda, Y. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth. Res. 2011, 109, 205–221. [CrossRef]
96. Alterio, V.; Langella, E.; De Simone, G.; Monti, S.M. Cadmium-Containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar. Drugs. 2015, 13, 1688–1697. [CrossRef] [PubMed]
97. Christianson, D.W.; Cox, J.D. Catalysis by metal-Activated hydroxide in zinc and manganese metalloenzymes. Annu. Rev. Biochem. 1999, 68, 33–57. [CrossRef] [PubMed]
98. Park, H.; Song, B.; Morel, F.M.M. Diversity of the cadmium-Containing carbonic anhydrase in marine diatoms and natural waters. Environ. Microbiol. 2007, 9, 403–413. [CrossRef] [PubMed]
99. Tsuji, Y.; Nakajima, K.; Matsuda, Y. Molecular aspects of the biophysical CO2-Concentrating mechanism and its regulation in marine diatoms. J. Exp. Bot. 2017, 68, 3763–3772. [CrossRef] [PubMed]
100. Yamano, T.; Tsujikawa, T.; Hatano, K.; Ozawa, S.I.; Takahashi, Y.; Fukuzawa, H. Light and low-CO2-Dependent LCIBLCIC complex localization in the chloroplast supports the carbon-Concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 2010, 51, 1453–1468. [CrossRef]
101. Clement, R.; Lignon, S.; Mansuelle, P.; Jensen, E.; Pophillat, M.; Lebrun, R.; Denis, Y.; Pupo, C.; Maberly, S.C.; Gontero, B. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: A proteomic approach. Sci. Rep. 2017, 7, 42333. [CrossRef] [PubMed]
102. Valenzuela, J.J.; López García De Lomana, A.; Lee, A.; Armbrust, E.V.; Orellana, M.V.M.; Baliga, N.S. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 2018, 9, 2328. [CrossRef]
103. Blanco-Rivero, A.; Shutova, T.; Román, M.J.; Villarejo, A.; Martinez, F. Phosphorylation controls the localization and activation of the luminal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS ONE 2012, 7, e49063. [CrossRef]
104. Ynalvez, R.A.; Xiao, Y.; Ayana, S.; Cunnusamy, K.; Moroney, J. Identification and characterization of two closely related beta-carbonic anhydrase from *Chlamydomonas reinhardtii*. *Physiol. Plant.* 2008, 133, 15–26. [CrossRef]

105. Miura, K.; Yamano, T.; Yoshioka, S.; Kohinata, T.; Inoue, Y. Expression Profiling-Based Identification of CO₂-Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in *Chlamydomonas reinhardtii*. *Plant Physiol.* 2004, 135, 1595–1607. [CrossRef]

106. Yoshioka, S.; Taniguchi, F.; Miura, K.; Inoue, T.; Yamano, T.; Fukuzawa, H. The Novel Myb Transcription Factor LCR1 Regulates the CO₂-Responsive Gene Cah1, Encoding a Periplasmic Carbonic Anhydrase in *Chlamydomonas reinhardtii*. *Plant Cell* 2004, 16, 1466–1477. [CrossRef][PubMed]

107. Young, J.N.; Morel, F.M.M. Biological oceanography: The CO₂ switch in diatoms. *Nat. Clim. Chang.* 2015, 5, 1–2. [CrossRef]

108. Ohno, N.; Inoue, T.; Yamashiki, R.; Nakajima, K.; Kitahara, Y.; Ishibashi, M.; Matsuda, Y. CO₂-cAMP-Responsive cis-Elements Targeted by a Transcription Factor with CREB/ATF-Like Basic Zipper Domain in the Marine Diatom. *Plant Physiol.* 2012, 158, 499–513. [CrossRef]

109. Soto, A.R.; Zheng, H.; Shoemaker, D.; Rodriguez, J.; Read, B.A.; Wahlund, T.M. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga *Emiliania huxleyi*. *Appl. Environ. Microbiol.* 2006, 72, 5500–5511. [CrossRef][PubMed]

110. Lapointe, M.; MacKenzie, T.D.B.; Morse, D. An External δ-Carbonic Anhydrase in a Free-Living Marine Dinoflagellate May Circumvent Diffusion-Limited Carbon Acquisition. *Plant Physiol.* 2008, 147, 1427–1436. [CrossRef]

111. Lane, T.W.; Morel, F.M.M. Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom *Thalassiosira weissflogii*. *Plant Physiol.* 2000, 123, 345–352. [CrossRef]

112. Kikutani, S.; Tanaka, R.; Yamazaki, Y.; Hara, S.; Hisabori, T.; Kroth, P.G.; Matsuda, Y.; Yamazaki, Y.; Hara, S.; Kroth, P.G.; et al. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom *Phaeodactylum tricornutum*. *J. Biol. Chem.* 2012, 287, 20689–20700. [CrossRef]

113. Rouhier, N.; Villarejo, A.; Srivastava, M.; Gelhaye, E.; Keech, O.; Droux, M.; Finkemeier, I.; Samuelsson, G.; Dietz, K.J.; Jacquot, J.-P.; et al. Identification of Plant Glutaredoxin Targets. *Antioxid. Redox Signal.* 2005, 7, 919–929. [CrossRef]

114. Harada, H.; Matsuda, Y. Identification and characterization of a new carbonic anhydrase in the marine diatom *Phaeodactylum tricornutum*. *Can. J. Bot.* 2005, 916, 909–916. [CrossRef]

115. Harada, H.; Nakatsuma, D.; Ishida, M.; Matsuda, Y.; Harada, H.; Nakatsuma, D.; Ishida, M.; Matsuda, Y. Regulation of the Expression of Intracellular β-Carbonic Anhydrase in Response to CO₂ and Light in the Marine Diatom *Phaeodactylum tricornutum*. *Plant Physiol.* 2017, 139, 1041–1050. [CrossRef]

116. Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Chen, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K. Ocean Acidification modulates expression of genes and physiological performance of a marine diatom. *PLoS ONE* 2017, 12, 1–13. [CrossRef][PubMed]

117. Nienaber, L.; Cave-freeman, E.; Cross, M.; Mason, L.; Bailey, U.; Amani, P.; Davis, R.A.; Taylor, P.; Hofmann, A. Chemical probing suggests redox-Regulation of the carbonic anhydrase activity of mycobacterial Rv1284. *FEBS J.* 2015, 282, 2708–2721. [CrossRef][PubMed]

118. Geers, C.; Gros, G. Carbon Dioxide Transport and Carbonic Anhydrase in Blood and Muscle. *Physiol. Rev.* 2000, 80, 681–707. [CrossRef][PubMed]

119. Fegler, J. Function of Carbonic Anhydrase in Blood. *Nature* 1944, 153, 137–138. [CrossRef]

120. Henry, R.P. The Role of Carbonic Anhydrase in Blood Ion and Acid-Base regulation. *Amer. Zool.* 1984, 25, 241–251. [CrossRef]

121. Hu, H.; Rappel, W.; Occhipinti, R.; Ries, A.; Böhmer, M.; You, L.; Xiao, C.; Engineer, C.B.; Boron, W.F.; Schroeder, J.I. Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements. *Plant Physiol.* 2015, 169, 1168–1178. [CrossRef]

122. Kolbe, A.R.; Brutnell, T.P.; Cousins, A.B.; Studer, A.J. Carbonic Anhydrase Mutants in Zea mays Have Altered Stomatal Responses to Environmental Signals. *Plant Physiol.* 2018, 177, 980–989. [CrossRef]

123. Hoang, C.V.; Chapman, K.D. Biochemical and Molecular Inhibition of Plastidial Carbonic Anhydrase Reduces the Incorporation of Acetate into Lipids in Cotton Embryos and Tobacco Cell Suspensions and Leaves. *Plant Physiol.* 2002, 128, 1417–1427. [CrossRef]
124. Ogawa, T.; Bao, D.H.; Katoh, H.; Shibata, M.; Pakrasi, H.B.; Bhattacharyya-Pakrasi, M. A two-component system in thylakoid membranes of Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 1248–1255. [CrossRef]

125. Sunda, W.G.; Huntsman, S.A. Interactions among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. Plant Physiol. 1996, 1274, 112–118. [CrossRef]

126. Sato, N.; Sonoike, K.; Tsuzuki, M.; Kawaguchi, A. Photosynthetic characteristics of a mutant of Chlamydomonas reinhardtii impaired in fatty acid desaturation in chloroplasts. Biochim. Biophys. Acta Bioenerg. 1996, 1274, 112–118. [CrossRef]

127. Mackinder, L.C.M.; Chen, C.; Leib, R.D.; Patena, W.; Blum, S.R.; Rodman, M.; Ramundo, S.; Adams, C.M.; Jonikas, M.C. A Spatial Interactome Reveals the Anatomy of the Algal CO2 Concentrating Mechanism. Cell 2017, 171, 1–28. [CrossRef]

128. Chef, H.; Hwan, Y.; Kwak, S. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-Based microfluidic device. Biomicrofluidics 2016, 10, 1–15. [CrossRef]

129. Clegg, M.R.; Maberly, S.C.; Jones, R.I. Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ. 2004, 27, 123–135. [CrossRef]

130. Giordano, M.; Norici, A.; Forssen, M.; Eriksson, M.; Raven, J.A.; Marche, P.; Bianche, V.B. An Anaplerotic Transducer in Cyanobacteria: Insights into the Regulation of Carbon Metabolism in Developing Soybean Root Nodules: The Role of Carbonic Anhydrase. Mol. Plant Microbe Interact. 2000, 13, 14–22. [CrossRef]

131. Kroth, P.G.; Chiovitti, A.; Gruber, A.; Martin-Jezequel, V.; Mock, T.; Parker, M.S.; Stanley, M.S.; Kaplan, A.; Caron, L.; Weber, T.; et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 2008, 3, e1426. [CrossRef]

132. Sunda, W.G.; Huntsman, S.A. Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. J. Phycol. 1986, 22, 259–270. [CrossRef]

133. Sunda, W.G.; Huntsman, S.A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 1995, 40, 1404–1417. [CrossRef]

134. Wolfe-Simon, F.; Starovoytov, V.; Reinfelder, J.R.; Schofield, O.; Falkowski, P.G. Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol. 2006, 142, 1701–1709. [CrossRef]

135. Bondarava, N.; Un, S.; Krieger-Liszkay, A. Manganese binding to the 23 kDa extrinsic protein of Photosystem II. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 583–588. [CrossRef] [PubMed]

136. Wolfe-Simon, F.; Starovoytov, V.; Reinfelder, J.R.; Schofield, O.; Falkowski, P.G. Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol. 2006, 142, 1701–1709. [CrossRef]

137. Bondarava, N.; Un, S.; Krieger-Liszkay, A. Manganese binding to the 23 kDa extrinsic protein of Photosystem II. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 583–588. [CrossRef] [PubMed]

138. Sato, N.; Sonoike, K.; Tsuzuki, M.; Kawaguchi, A. Photosynthetic characteristics of a mutant of Chlamydomonas reinhardtii impaired in fatty acid desaturation in chloroplasts. Biochim. Biophys. Acta Bioenerg. 1996, 1274, 112–118. [CrossRef]

139. Los, D.A.; Zorina, A.; Sinetova, M.; Kryazhov, S.; Mironov, K.; Zinenko, V.V. Stress sensors and signal transducers in cyanobacteria. Sensors 2010, 10, 2386–2415. [CrossRef] [PubMed]

140. Ogawa, T.; Bao, D.H.; Katoh, H.; Shibata, M.; Pakrasi, H.B.; Bhattacharyya-Pakrasi, M. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J. Biol. Chem. 2002, 277, 28981–28986. [CrossRef] [PubMed]

141. Allen, M.D.; Kropat, J.; Tottey, S.; Del Campo, J.A.; Merchant, S.S. Manganese Deficiency in Chlamydomonas reinhardtii Impaired in Fatty Acid Desaturation in Chloroplasts. J. Phycol. 2017, 53, 263–277. [CrossRef]