The κ-Fréchet–Urysohn property for locally convex spaces

S. Gabriyelyan

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, P.O. 653, Israel

Abstract

A topological space X is κ-Fréchet–Urysohn if for every open subset U of X and every $x \in U$ there exists a sequence in U converging to x. We prove that every κ-Fréchet–Urysohn Tychonoff space X is Ascoli. We apply this statement and some of known results to characterize the κ-Fréchet–Urysohn property in various important classes of locally convex spaces. In particular, answering a question posed in [7] we obtain that $C_p(X)$ is Ascoli iff X has the property (κ).

Keywords: κ-Fréchet–Urysohn, Ascoli space, $C_p(X)$, $C_k(X)$, Banach space, weak topology

2010 MSC: 46A03, 46A08, 54C35

1. Introduction

Following Arhangel’kii, a topological space X is said to be κ-Fréchet–Urysohn if for every open subset U of X and every $x \in U$, there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq U$ converging to x. Clearly, every Fréchet–Urysohn space is κ-Fréchet–Urysohn. In [10, Theorem 3.3] Liu and Ludwig showed that a topological space X is κ-Fréchet–Urysohn if and only if X is a κ-pseudo open image of a metric space. Below we give another characterization of κ-Fréchet–Urysohn spaces, see 2.1. It is known that there are κ-Fréchet–Urysohn spaces which are not k-spaces, and there are sequential spaces which are not κ-Fréchet–Urysohn, see [10] or Proposition 2.6 below.

Let X be a Tychonoff (=completely regular and Hausdorff) space. Denote by $C_k(X)$ and $C_p(X)$ the space $C(X)$ of all real-valued continuous functions on X endowed with the compact-open topology and the pointwise topology, respectively. Following [2], X is called an Ascoli space if every compact subset K of $C_k(X)$ is evenly continuous (i.e., if the map $(f, x) \mapsto f(x)$ is continuous as a map from $K \times X$ to \mathbb{R}). In [4] we noticed that X is Ascoli if and only if every compact subset of $C_k(X)$ is equicontinuous. The classical Ascoli theorem [3, Theorem 3.4.20] states that every k-space is Ascoli.

In [14, Theorem 2.1], Sakai characterized those spaces $C_p(X)$ which are κ-Fréchet–Urysohn. Recall that a family $\{A_i\}_{i \in I}$ of subsets of a set X is said to be point-finite if the set $\{i \in I : x \in A_i\}$ is finite for every $x \in X$. A family $\{A_i\}_{i \in I}$ of subsets of a topological space X is called strongly point-finite if for every $i \in I$, there exists an open set U_i of X such that $A_i \subseteq U_i$ and $\{U_i\}_{i \in I}$ is point-finite. Following Sakai [14], a topological space X is said to have the property (κ) if every sequence of pairwise disjoint finite subsets of X has a strongly point-finite subsequence.

Theorem 1.1 ([14]). The space $C_p(X)$ is κ-Fréchet–Urysohn if and only if X has the property (κ).
A characterization of the spaces $C_k(X)$ which are κ-Fréchet–Urysohn is given in \[15\].

In \[7\] we proved the following theorem.

Theorem 1.2 (\[7\]). If $C_p(X)$ is Ascoli, then it is κ-Fréchet–Urysohn.

However, the question (see \[7, Question 2.4\]) of whether every κ-Fréchet–Urysohn space $C_p(X)$ is Ascoli remained open. In this short note we answer this question in the affirmative using the following somewhat unexpected result.

Theorem 1.3. Each κ-Fréchet–Urysohn space X is Ascoli.

Now Theorems 1.1-1.3 immediately imply the following characterization of spaces $C_p(X)$ which are Ascoli.

Corollary 1.4. Let X be a Tychonoff space. Then $C_p(X)$ is Ascoli if and only if X has the property (κ).

Denote by $D(\Omega)$ the space of test functions over an open subset Ω of \mathbb{R}^n. In \[5\] we proved that $D(\Omega)$ and the strong dual $D'(\Omega)$ of $D(\Omega)$, the space of distributions, are not Ascoli. Therefore, by Theorem 1.3 $D(\Omega)$ and $D'(\Omega)$ are not κ-Fréchet–Urysohn spaces. Below we apply Theorem 1.3 and some of the main results from \[1, 4, 5, 6, 8\] to characterize the κ-Fréchet–Urysohness in various important classes of locally convex spaces.

2. Proof of Theorem 1.3

We start from the following characterization of κ-Fréchet–Urysohn spaces. The closure of a subset A of a topological space X is denoted by \overline{A} or $\text{cl}_X(A)$.

Theorem 2.1. A topological space X is κ-Fréchet–Urysohn if and only if each point $x \in X$ is contained in a dense κ-Fréchet–Urysohn subspace of X.

Proof. The necessity is clear. To prove sufficiency, fix an open subset U of X and a point $x \in \overline{U}$. Let Y be a dense κ-Fréchet–Urysohn subspace of X containing x. Then $V := U \cap Y$ is an open subset of Y. We claim that $x \in \text{cl}_Y(V)$. Indeed, if $W \subseteq Y$ is an open neighborhood of x in Y, take an open $W' \subseteq X$ such that $W = W' \cap Y$. Then the set $W' \cap U$ is open in X. Since Y is dense in X the set $(W' \cap U) \cap Y = (W' \cap Y) \cap (U \cap Y) = W \cap V$ is not empty. Thus $x \in \text{cl}_Y(V)$ and the claim is proved. Finally, since Y is κ-Fréchet–Urysohn there is a sequence $\{y_n\}_{n \in \mathbb{N}} \subseteq V \subseteq U$ converging to x. \hfill \Box

Corollary 2.2. Let Y be a dense subset of a homogeneous space (in particular, a topological group) X. If Y is κ-Fréchet–Urysohn, then X is also a κ-Fréchet–Urysohn.

Proof. Fix arbitrarily $y_0 \in Y$. Let $x \in X$. Take a homeomorphism h of X such that $h(y_0) = x$. Then $x \in h(Y)$ and $h(Y)$ is a κ-Fréchet–Urysohn space. Therefore, each element of X is contained in a dense κ-Fréchet–Urysohn subspace of X and Theorem 2.1 applies. \hfill \Box

In \[10, Theorem 4.1\] Liu and Ludwig proved that the product of a family of bi-sequential spaces is κ-Fréchet–Urysohn. Note that any countable product of bi-sequential spaces is bi-sequential, see \[12, Proposition 3.D.3\]. On the other hand, countable products of W-spaces are W-spaces (\[9, Theorem 4.1\]) and there are W-spaces which are not bi-sequential (\[8, Example 5.1\]). Taking into account that bi-sequential spaces and W-spaces are Fréchet–Urysohn spaces, the next corollary essentially generalizes Theorem 4.1 of \[10\].
Corollary 2.3. Let \(\{X_i : i \in I\} \) be a family of topological spaces such that \(\prod_{i \in I'} X_i \) is Fréchet–Urysohn for any countable subset \(I' \) of \(I \). Then the space \(X = \prod_{i \in I} X_i \) is \(\kappa \)-Fréchet–Urysohn.

Proof. For every \(z = (z_i) \in X \), set
\[
\sigma(z) := \{ x = (x_i) \in X : \{ i : x_i \neq z_i \} \text{ is finite} \}.
\]

Clearly, \(\sigma(z) \) is a dense subspace of \(X \). Proposition 2.6 of \([7]\) states that \(\sigma(z) \) is Fréchet–Urysohn. By Theorem 2.1, \(X \) is \(\kappa \)-Fréchet–Urysohn. \(\square \)

Below we prove Theorem 1.3.

Proof of Theorem 1.3. Suppose for a contradiction that \(X \) is not an Ascoli space. Then there exists a compact set \(K \) in \(C_k(X) \) which is not equicontinuous at some point \(z \in X \). Therefore there is \(\varepsilon_0 > 0 \) such that for every open neighborhood \(U \) of \(z \) there exists a function \(f_U \in K \) for which the open set \(W_{f_U} := \{ x \in U : |f_U(x) - f_U(z)| > \varepsilon_0 \} \) is not empty. Set
\[
W := \bigcup \{ W_{f_U} : U \text{ is an open neighborhood of } z \}.
\]

Then \(W \) is an open subset of \(X \) such that \(z \in \overline{W} \setminus W \). As \(X \) is \(\kappa \)-Fréchet–Urysohn, there is a sequence \(\{x_n : n \in \mathbb{N}\} \subseteq W \) converging to \(z \). For every \(n \in \mathbb{N} \), choose an open neighborhood \(U_n \) of \(z \) such that \(x_n \in W_{f_{U_n}} (\subseteq U_n) \) and, therefore,
\[
|f_{U_n}(x_n) - f_{U_n}(z)| > \varepsilon_0 \quad (\text{for all } n \in \mathbb{N}). \tag{2.1}
\]

Set \(S := \{x_n : n \in \mathbb{N}\} \cup \{z\} \). Then \(S \) is a compact subset of \(X \). Denote by \(p \) the restriction map \(p : C_k(X) \to C_k(S), p(f) = f|_S \). Then \(p(K) \) is a compact subset of the Banach space \(C_k(S) \). Applying the Ascoli theorem to the compact space \(S \) we obtain that the sequence \(\{p(f_{U_n})\}_{n \in \mathbb{N}} \subseteq p(K) \) is equicontinuous at \(z \in S \) and, therefore, there is an \(N \in \mathbb{N} \) such that
\[
|f_{U_n}(x_i) - f_{U_n}(z)| < \frac{\varepsilon_0}{2} \quad \text{for all } i \geq N \text{ and } n \in \mathbb{N}.
\]

In particular, for \(i = n = N \) we obtain \(|f_{U_n}(x_N) - f_{U_n}(z)| < \frac{\varepsilon_0}{2} \). But this contradicts (2.1). Thus \(X \) is an Ascoli space. \(\square \)

The next corollary strengthens Theorem 1.3 of \([7]\).

Corollary 2.4. Let \(X \) be a Čech-complete space. Then \(C_p(X) \) is Ascoli if and only if \(X \) is scattered.

Proof. If \(C_p(X) \) is Ascoli, then \(X \) is scattered by Theorem 1.3 of \([7]\). Conversely, if \(X \) is scattered, then, by Corollary 3.8 of \([14]\), \(X \) has the property \((\kappa)\). Thus, by Corollary 1.4, \(C_p(X) \) is Ascoli. \(\square \)

Let \(E \) be a locally convex space over a field \(F \), where \(F = \mathbb{R} \) or \(\mathbb{C} \), and let \(E' \) the dual space of \(E \). If \(E \) is a Banach space, denote by \(B \) the closed unit ball of \(E \) and set \(B_w := (B, \sigma(E, E')|_B) \), where \(\sigma(E, E') \) is the weak topology on \(E \).

Corollary 2.5. (i) If \(E \) is a Banach space, then \(B_w \) is \(\kappa \)-Fréchet–Urysohn if and only if \(E \) does not contain an isomorphic copy of \(\ell_1 \).

(ii) A Fréchet space \(E \) over \(F \) is \(\kappa \)-Fréchet–Urysohn in the weak topology if and only if \(E = F^N \) for some \(N \leq \omega \).

(iii) If \(X \) is a \(\mu \)-space and a \(k_{\mathbb{R}} \)-space, then \(C_k(X) \) is \(\kappa \)-Fréchet–Urysohn in the weak topology if and only if \(X \) is discrete.

(iv) The weak* dual space of a metrizable barrelled space \(E \) is \(\kappa \)-Fréchet–Urysohn if and only if \(E \) is finite-dimensional.
PROOF. (i) Theorem 1.9 of [5] or Theorem 6.1.1 and Corollary 1.7 of [6] state that B_w is Ascoli if and only if B_w is Fréchet–Urysohn if and only if E does not contain an isomorphic copy of ℓ_1. Now Theorem 1.3 applies.

(ii) Corollary 1.7 of [6] states that E is Ascoli in the weak topology if and only if $E = F^N$ for some $N \leq \omega$. This result and Theorem 1.3 imply the desired.

(iii) Corollary 1.9 of [6] states that $\mathcal{C}(X)$ is Ascoli in the weak topology if and only if X is discrete. Now the assertion follows from Theorem 1.3 and the fact that any product of metrizable spaces is κ-Fréchet–Urysohn (see Fact 1.2 of [7]).

(iv) Corollary 1.14 of [6] states that the weak* dual space of E is Ascoli if and only if E is finite-dimensional, and Theorem 1.3 applies.

Now we consider direct locally convex sums of locally convex spaces. The simplest infinite direct sum of lcs is the space φ, the direct locally convex sum $\bigoplus_{n \in \mathbb{N}} E_n$ with $E_n = F$ for all $n \in \mathbb{N}$. It is well known that φ is a sequential non-Fréchet–Urysohn space, see Example 1 of [8].

Proposition 2.6. An infinite direct sum of (non-trivial) locally convex spaces is not κ-Fréchet–Urysohn. In particular, φ is not a κ-Fréchet–Urysohn space.

Proof. Let $L = \bigoplus_{i \in I} E_i$ be the direct locally convex sum of an infinite family $\{E_i\}_{i \in I}$ of locally convex spaces. It is well known that every E_i can be represented as a direct sum $F \oplus E'_i$. Therefore L contains φ as a direct summand. Since the projection of L onto φ is open and the κ-Fréchet–Urysohn property is preserved under open maps (see Proposition 3.3 of [7]), it is sufficient to show that φ is not a κ-Fréchet–Urysohn space.

We consider elements of φ as functions from \mathbb{N} to F with finite support. Recall that the sets of the form

$$\{f \in \varphi : |f(n)| < \varepsilon_n \text{ for every } n \in \mathbb{N}\},$$

(2.2)

where $\varepsilon_n > 0$ for all $n \in \mathbb{N}$, form a basis at 0 of φ (see for example [13, Example 1]). For every $n, k \in \mathbb{N}$, set

$$U_{n,k} := \left\{ f \in \varphi : |f(1)| > \frac{1}{2n} \text{ and } |f(n)| > \frac{1}{2k} \right\},$$

and set $U := \bigcup_{n,k \in \mathbb{N}} U_{n,k}$. It is easy to see that all the sets $U_{n,k}$ are open in φ and $0 \notin U_{n,k}$. Hence U is an open subset of φ such that $0 \notin U$. To show that φ is not κ-Fréchet–Urysohn, it suffices to prove that (A) $0 \in U$, and (B) there is no a sequence in U converging to 0.

(A) Let W be a basic neighborhood of zero in φ of the form (2.2). Choose an $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon_1$, and take $k \in \mathbb{N}$ such that $\frac{1}{k} < \varepsilon_n$. It is clear that $U_{n,k} \cap W$ is not empty. Thus $0 \in U$.

(B) Suppose for a contradiction that there is a sequence $S = \{f_j\}_{j \in \mathbb{N}}$ in U converging to 0. For every $j \in \mathbb{N}$, take $n_j, k_j \in \mathbb{N}$ such that $f_j \in U_{n_j,k_j}$. Since $f_j \to 0$, the definition of $U_{n,k}$ implies that $\frac{1}{2n_j} < |f_j(1)| \to 0$, and hence $n_j \to \infty$. Without loss of generality we can assume that $1 \leq n_1 < n_2 < \cdots$. For every $n \in \mathbb{N}$, define $\varepsilon_n = \frac{1}{4k_j}$ if $n = n_j$ for some $j \in \mathbb{N}$, and $\varepsilon_n = 1$ otherwise. Set

$$V := \{ f \in \varphi : |f(n)| < \varepsilon_n \text{ for every } n \in \mathbb{N}\}.$$

Then, V is a neighborhood of 0, and the construction of $U_{n,k}$ implies that $V \cap U_{n_j,k_j} = \emptyset$ for every $j \in \mathbb{N}$. Thus $S \cap V = \emptyset$ and hence $f_j \not\to 0$, a contradiction.

Recall that a strict (LF)-space E is the direct limit $E = \text{s-ind}_{\mathbb{N}} E_n$ of an increasing sequence

$$E_0 \hookrightarrow E_1 \hookrightarrow E_2 \hookrightarrow \cdots$$
of Fréchet (= locally convex complete metric linear) spaces in the category of locally convex spaces and continuous linear maps. The space $D(\Omega)$ of test functions is one of the most famous and important examples of strict (LF)-spaces.

Corollary 2.7. A strict (LF)-space E is κ-Fréchet–Urysohn if and only if E is a Fréchet space.

Proof. Theorem 1.2 of [5] states that E is an Ascoli space if and only if E is a Fréchet space or $E = \varphi$. Now the assertion follows from Theorem 1.3 and Proposition 2.6. □

One of the most important classes of locally convex spaces is the class of free locally convex spaces. Following [11], the free locally convex space $L(X)$ on a Tychonoff space X is a pair consisting of a locally convex space $L(X)$ and a continuous map $i : X \to L(X)$ such that every continuous map f from X to a locally convex space E gives rise to a unique continuous linear operator $\bar{f} : L(X) \to E$ with $f = \bar{f} \circ i$. The free locally convex space $L(X)$ always exists and is essentially unique.

Corollary 2.8. Let X be a Tychonoff space. Then $L(X)$ is a κ-Fréchet–Urysohn space if and only if X is finite.

Proof. It is well known that $L(D)$ over a countably infinite discrete space D is topologically isomorphic to φ. By Theorem 1.2 of [6], $L(X)$ is an Ascoli space if and only if X is a countable discrete space. This fact, Theorem 1.3 and Proposition 2.6 immediately imply the assertion. □

References

[1] T. Banakh, Fans and their applications in General Topology, Functional Analysis and Topological Algebra, [arXiv:1602.04857](https://arxiv.org/abs/1602.04857).

[2] T. Banakh, S. Gabriyelyan, On the C_k-stable closure of the class of (separable) metrizable spaces, Monatshefte Math. 180 (2016), 39–64.

[3] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.

[4] S. Gabriyelyan, On the Ascoli property for locally convex spaces, Topology Appl. 230 (2017), 517–530.

[5] S. Gabriyelyan, Topological properties of strict (LF)-spaces and strong duals of Montel strict (LF)-spaces, Monatshefte Math., accepted.

[6] S. Gabriyelyan, On reflexivity and the Ascoli property for free locally convex spaces, available in [arXiv:1805.07028](https://arxiv.org/abs/1805.07028).

[7] S. Gabriyelyan, J. Grebík, J. Kąkol, L. Zdomskyy, The Ascoli property for function spaces, Topology Appl. 214 (2016), 35–50.

[8] S. Gabriyelyan, J. Kąkol, G. Plebanek, The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces, Studia Math. 233 (2016), 119–139.

[9] G. Gruenhage, Infinite games and generalizations of first countable spaces, General Topology Appl. 6 (1976), 339-352.

[10] C. Liu, L.D. Ludwig, κ-Fréchet–Urysohn spaces, Houston J. Math. 31 (2005), 391–401.
[11] A.A. Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941), 299–301.

[12] E. Michael, A quintuple quotient quest, General Topology Appl. 2 (1972), 91–138.

[13] P.J. Nyikos, Metrizability and Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793–801.

[14] M. Sakai, Two properties of $C_p(X)$ weaker than Fréchet-Urysohn property, Topology Appl. 153 (2006), 2795–2804.

[15] M. Sakai, κ-Fréchet-Urysohn property of $C_k(X)$, Topology Appl. 154 (2007), 1516–1520.