ABSTRACT

We analyze two simultaneous *NuSTAR* and *SWIFT* data of the Atoll type neutron star (NS) X-ray binary 4U 1728–34 observed on 1 and 3 October, 2013. Based on power density spectra, hardness ratio and colour-colour diagram, we infer that the first and second observations belong to the island state and lower banana state, respectively. During island state, a low-frequency quasi-periodic oscillation (LFQPO) at ~ 4.53 Hz is observed along with four type-I X-ray bursts ($\sim 10 - 15$ s duration each). The X-ray luminosity of the source during the island and lower banana states are found to be $L_X = 1.1$ and 1.6×10^{37} erg s$^{-1}$, respectively which correspond to $\sim 6\%$ and $\sim 9\%$ of the Eddington luminosity. The combined burst spectrum is well represented by a blackbody with a characteristic temperature of $2.32^{+0.05}_{-0.05}$ keV and the blackbody radius of $9.87^{+1.86}_{-1.86}$ km which is consistent with the typical radius of the neutron star. The persistent energy spectra from both observations in the energy band $1 - 79$ keV are well described with thermal emission from the NS surface ($kT_{bb} \simeq 1 - 2.5$ keV), Comptonized emission of thermal seed photons from the hot boundary layer/corona and the strong reflection component from the accretion disc. We detect a broad Iron line in the $5 - 8$ keV band and reflection hump in the $15 - 30$ keV band. These features are well modelled by the `relxill` reflection model. From joint spectral fitting, we constrain the inclination angle of the binary system and inner disc radius to be $22^\circ - 40^\circ$ and $(2.8 - 4.3) \times R_{ISCO}$, respectively. From inner disc radius, we estimate the magnetic field to be $(3.3 - 6.5) \times 10^8$ Gauss.

Key words: accretion, accretion discs - stars: neutron - X-rays: binaries - stars: individual 4U 1728–34

1 INTRODUCTION

A neutron star (NS) low mass X-ray binary (LMXB) has a low mass companion star ($\lesssim 1 M_\odot$) from which it accretes matter during the course of evolution. The transfer of matter towards the compact object generally occurs via accretion disc in which the matter moves in near Keplerian orbits. Guided by the observational evidences, the Keplerian disc in many models is terminated at some larger inner disc radii (R_{in}) by radiation drag or strong magnetic field. Depending upon the mass accretion rate, LMXBs exhibits variation in their spectral characteristics. Sometimes the hot surface of the NSs may be directly visible in the X-ray band and this can be used as an important probe to determine the NS radii. In the last few years, asymmetric Iron Kα lines originating from the inner part of the accretion disc has been observed from the persistent spectra of many NS LMXBs (Bhattacharyya & Strohmayer 2007; Cackett et al. 2008; Pandel et al. 2008; Papitto et al. 2009; Reis et al. 2009). The broad Iron line observed in NS LMXBs are generally interpreted in terms of reflection of the primary X-ray continuum on the inner accretion disc. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object.

NS LMXBs are classified into two categories: Atoll and Z-sources, depending upon the track described in the X-ray colour-colour diagram or hardness-intensity diagram (Hasinger & van der Klis 1988). In the colour-colour dia-
gram of atoll sources, two branches are usually observed, the island and the banana (banana branch is again sub categorized as lower banana and upper banana). The island branch is associated with low mass accretion rate and the source usually show characteristics of the low/hard state. In this state, it is generally believed that the accretion disc is truncated relatively far away from the compact object. As the mass accretion rate increases, the source moves from the island to the banana branch. It is thought that the accretion disc approaches the compact object and the source spectra usually show soft state characteristics. While moving from island to banana state, the temperature of the corona generally decreases and thermal emission in the form of blackbody/disc blackbody increases (van der Klis 1995).

4U 1728–34 is an atoll type low mass X-ray binary and possibly an ultracompact X-ray binary with an evolved, Hydrogen poor, donor star (Shaposhnikov et al. 2003). The compact object of this binary is a weakly magnetized accreting neutron star and its optical counterpart is not identified yet. It was discovered in 1976 with the astronomy satellite SAS-3 (Lewin et al. 1976; Hoffman et al. 1976). Type-I X-ray burst as well as double peaked burst profile have been observed from this source (Basinska et al. 1984; Hoffman et al. 1976). Type-I burst morphology indicates Helium rich bursts (Galloway et al. 2008). Previously, several authors used the Eddington luminosity of burst profile to constrain the distance of the source in the range 4.1 to 5.1 kpc (Di Salvo et al. 2000; Galloway et al. 2003). The source also showed the presence of kilo-hertz quasi-periodic oscillations (kHz QPO’s) in the persistent emission and a nearly coherent oscillation at ~ 363 Hz (Strohmayer et al. 1993) which has been considered to be the spin frequency of the neutron star.

It is well known that the spectra of the NS LMXBs can be described with the different combination of models. So far, for the soft X-ray range, the two main models widely used are ‘eastern model’ by Mitsuda et al. (1984, 1985) and ‘western model’ by White et al. (1984). The ‘eastern model’ consists of a multi-temperature disc component and a single-temperature blackbody component originating from the NS surface or the boundary layer between the disc and the NS. On the other hand, the ‘western model’ uses a single-temperature blackbody and a Comptonized component which is the inverse Compton scattering of the soft seed photon from the disc by the hot energetic electrons of the corona. In the soft spectral state, the soft thermal component dominates while during the hard spectral state soft component decreases and Comptonization component becomes predominant. In the past years, spectral analysis of the source has been performed using the data from the satellites like Einstein (Grindlay & Hertz 1981), ROSAT (Schulz 1994), ASCA (Narita et al. 2001), BeppoSAX (Piraino et al. 2000; Di Salvo et al. 2000), Chandra (D’Ai et al. 2006), INTEGRAL (Falanga et al. 2004), RXTE (D’Ai et al. 2006) and XMM-Newton (Ng et al. 2010; Egron et al. 2011). It is one of few NSXBs which is detected in Radio band and shows a hard powerlaw tail during its island state (Migliari et al. 2003; Tarana et al. 2007). Two possible origins non-thermal tail has been anticipated: (1) hard tail is caused by the Comptonization of disc photons in the presence of thermal/non-thermal hybrid population of hot electron near the compact object (Pontanien & Compill 1998). This model successfully accounts the origin of hard tail in 4U 1820-30 (Tarana et al. 2007) (2) Hard X-ray photons in the tail may also originate from the base of the jet (Markoff et al. 2003) or the bulk motion Comptonization model (Titarchuk & Zannias 1994).

Apart from the continuum processes, the hard X-ray photons can be reflected off the inner edge of the accretion disc and give rise to reflection spectra which allow for new views of the accretion geometry in LMXBs. The most important features of the disc reflection in X-ray binaries are: (1) a broad emission line in the Fe-K band (6.4 – 6.97 keV) and (2) a Compton back-scattering hump peaking at ~ 15 – 30 keV (Fabian et al. 1989). Broad emission lines ~ 6 – 7 keV has been detected in the X-ray spectra of 4U 1728–34 (Egron et al. 2011) reported the broad Iron line from the spectral analysis of a XMM-Newton observation and interpreted this as the emission from the highly ionized Iron, which could come from the ionized inner accretion disc or from a strongly ionized corona. They fitted the continuum with the thermal Comptonized models, compTT and nthcomp separately and no blackbody component was statistically required. To fit the Iron line profile, they used different line models like diskline, relline as well as the self-consistent relativistically smeared reflection model. Broadband BeppoSAX (0.1 – 200 keV) and RXTE (3.0 – 60 keV) spectra of 4U 1728-34 was well described by a two component model - a soft component produced by the disc and a Comptonized spectrum responsible for the hard emission (Di Salvo et al. 2000; Piraino et al. 2000). D’Ai et al. (2006) performed the spectral analysis of the source using a simultaneous Chandra and RXTE observation taken on March 2002. They interpreted the residual seen within ~ 6 – 9 keV energy band as the presence of two absorption edges of ionized Iron at 7 – 9 keV. Falanga et al. (2004) fitted broadband spectrum of 3 – 200 keV obtained from the INTEGRAL data with a multicolor disk blackbody and a Comptonized emission. The INTEGRAL spectra showed no reflection features, but a change of spectral shape between soft and hard state was reported. Therefore, 4U 1728-34 shows variable reflection which can be caused by the detection of the source in two different states. To fit the spectra obtained from INTEGRAL and RXTE data, Tarana et al. (2011) used several combinations of models for different spectral states. Hard state spectra showed the presence of residuals at high energy (> 50 keV) which was modelled either with a power-law or a Comptonization component. They used a Gaussian component to fit the broad emission line after fixing the line energy at 6.5 keV and constraining line width at ~ 0.3 – 0.7 keV.

In this work, for the first time, we present a detailed broad band study of the source 4U 1728-34 using NuSTAR and SWIFT spectra in the energy band 1 – 79 keV during the island and the lower banana branch. NuSTAR observation shows type-I X-ray bursts from the NS surface. We perform spectral analysis of these bursts and estimate the radius of the NS. We also study the broadband spectrum during the non-burst period. Here we investigate the origin and the nature of the broad Iron line observed ~ 5 – 8 keV.
and Compton hump in the 15–30 keV energy band in the light of the disc reflection spectra modelling.

The paper is organised as follows: We describe the observations and the detail of data reduction in sec.2. In sec.3 and sec.4 we describe the temporal and spectral analysis, respectively. Finally, in sec.5 we discuss our findings. We quote the uncertainties on model parameters at the 90% confidence level.

2 OBSERVATION AND DATA REDUCTION

2.1 NuSTAR FPMA and FPMB

NuSTAR observed the source 4U 1728–34 on 2013 October 1 and October 3 (Obs. ID: 80001012002 and 80001012004). NuSTAR data were collected with the focal plane module telescopes (FPMA and FPMB). The net exposure after instrumental downtime correction are ∼ 27.3 and ∼ 26.3 ks, respectively. Table 1 lists the observation details.

We performed the data reduction using the standard NuSTAR data analysis software (NuSTARDAS v1.5.1) with the latest calibration (version 20150904). We employed the nupipeline task (version v 0.4.3) to filter the event file as well as to apply the default depth correction. We extracted a circular region with a radius of 100″ centered on the source, which is away from the source, was used for the background. Source and background light curves and spectra were extracted from the FPMA and FPMB data and response files were generated employing the nuproduct task. The data from the two FPM were modelled simultaneously in order to minimize systematic effects. Using GRPPHA, we grouped the spectral counts using 200 counts per spectral bin.

2.2 SWIFT/XRT

The source was also observed by *SWIFT/XRT* simultaneously with the *NuSTAR* observation. 4U 1728–34 was observed for 2.1 ks and 1.9 ks on 2013 October 1 and October 3, respectively, with the XRT operated in Windowed Timing (WT) mode, the details of which are provided in Table 1. Following standard procedure for filtering and screening, *SWIFT/XRT* data were reduced using the xrtpipeline v 0.13.1 tool. The background subtracted average count rate in this mode was found to be ∼ 20 counts/s, which is well below the prescribed photon pile-up limit of the WT mode data (∼ 100 counts/s; Romano et al. 2006). Using isselect v 2.4c we extracted source and background events from a rectangular box of 40 pixels long and 15 pixels wide. The latest *SWIFT/XRT* spectral redistribution matrices (RMF ver. 15) were taken from the calibration database and the xrtmkarf tool was used along with the exposure map file to generate an auxiliary response file (ARF) for the current observations.

3 TEMPORAL ANALYSIS

3.1 X-ray bursts and persistent lightcurve

First *NuSTAR* observation was performed on 1 October, 2013 with an exposure of ∼ 62 ks (Obs Id:80001012002, hereafter OBS 1). The left panel of Fig. 1 shows the background subtracted lightcurve of 4U 1728–34 in the energy band 3–79 keV obtained with the *NuSTAR* data (for both the observation) is shown in the right panel when no bursts have been detected. The source was detected with an average persistent intensity was observed (∼ 100 counts/s; Romano et al. 2006). Using isselect v 2.4c we extracted source and background events from a rectangular box of 40 pixels long and 15 pixels wide. The latest *SWIFT/XRT* spectral redistribution matrices (RMF ver. 15) were taken from the calibration database and the xrtmkarf tool was used along with the exposure map file to generate an auxiliary response file (ARF) for the current observations.

![Figure 1. The left panel shows the plot of 3–79 keV, background subtracted *NuSTAR* lightcurve from the OBS 1 of 4U 1728–34 with the lightcurve bin size 0.75 sec. Four type-I X-ray bursts have been detected in the light curve. The light curve of the persistent emission (for both the observation) is shown in the right panel when no bursts have been detected.](image)
Figure 2. Light curve of the individual type-I X-ray burst detected in the first NuSTAR observation of 4U 1728–34 are shown in four panels. It may be noted that the 2nd and 4th X-ray bursts have significantly broader, plateau-like peak profile with low peak counts while the 1st and 3rd bursts have very sharp peak profiles with high peak counts.

Table 1. Observation details for the SWIFT and NuSTAR on 4U 1728–34

Instrument	Obs. ID.	Obs. start date (dd/mm/yyyy)	Effective exposure time (ks)	Count rate (cts/s)	Obs. Mode
NuSTAR/FPMA, FPMB	80001012002	01/10/2013	27.3	51 ± 4	SCIENCE
NuSTAR/FPMA, FPMB	80001012004	03/10/2013	26.3	67 ± 3	SCIENCE
SWIFT/XRT	00080185001	01/10/2013	2.1	20 ± 1	WT
SWIFT/XRT	00080185002	03/10/2013	1.9	16 ± 1	WT

and 1300 counts s⁻¹, respectively. Lightcurves of four burst profile are shown in four panels of Fig. 2. The start and end time of the bursts were determined when the flux was ~ 10% of the peak above the persistent emission label. The X-ray bursts usually peaked ~ 6 sec after the initial start.

3.2 Power density spectra

We extracted power density spectra (PDS) from both the observations using SWIFT/XRT lightcurves in the energy band 0.5 – 10 keV. Lightcurves from both the SWIFT/XRT observations consist of two ~ 1 ks continuous stretch of lightcurve with a gap between them. To avoid the gap, we treated each stretch of lightcurve separately to compute PDS. PDS were rms normalized and white noise subtracted. Both left and right panels of Fig. 3 show PDS from the continuous part of the lightcurve from both the observations. A low-frequency quasi-periodic oscillation (LFQPO) is observed at ~ 4.53 Hz in OBS 1. This is a typical characteristic of the source when it passes through the island state (Di Salvo et al. 2001). During OBS 2, no QPO is detected in the PDS. Lack of low-frequency QPO is the characteristic of banana state (Di Salvo et al. 2001).
3.3 Hardness ratio and colour-colour diagram

Fig. 4 shows the hardness ratio of both the observations of the source 4U 1728–34 with NuSTAR/FPMA data. We defined the energy range 3–5 keV as the soft band (S) and the energy range 7–20 keV as the hard band (H). We calculated the ratio of the counts detected in the two bands (H/S) as a function of time. In the left panel of Fig. 4, hardness ratios of the OBS 1 and the OBS 2 are denoted by black and red colours, respectively. From the hardness ratio diagram, it is clear that the NuSTAR OBS 1 is harder compared to the OBS 2. The hardness ratio lies in the range 1.6–1.8 and 1.4–1.6 for the OBS 1 and OBS 2, respectively. To ensure whether two observations belong to two different branches, we plotted colour-colour diagram (CCD) which is shown in the right panel of Fig. 4. The soft color is defined as the ratio of count rate in 5–7 keV & 3–5 keV and the hard color is defined as the ratio of count rate in 7–20 keV & 5–7 keV. Both observations, shown by black and red circles occupy different regions in the CCD. A comparison of the shape of the CCD between our work and from [Di Salvo et al. (2006)], clearly indicates that the OBS 1 belongs to the island branch while the OBS 2 belongs to the lower banana branch.

4 SPECTRAL ANALYSIS

4.1 The burst spectra

We used NuSTAR/FPMA data to produce the spectra during the bursts. We considered the beginning and the end times of each burst when the count rate was ~10% of the peak above the persistent emission label. For all the bursts, spectra were accumulated using central 20 sec of each burst profile as a good time interval (GTI). Initially, all the burst spectra were analyzed separately. We used a simple absorbed blackbody component (bbody in XSPEC) to fit all the burst spectra and found that the best-fit parameters were similar within errors (see Table 2). So, in order to improve the statistics, we fitted all the burst spectra obtained from NuSTAR/FPMA (OBS 1) were added. We also extracted the persistent emission spectrum excluding the gap and outburst intervals. We subtracted the persistent emission spectrum from the combined burst spectrum by using the persistent emission spectrum as the background spectra in XSPEC. A similar technique was used by [Di Salvo et al. (2000)], [Falanga et al. (2003)] to analyse X-ray burst spectra from the source 4U 1820–30 and also by [Pahari et al. (2013)] to compute spectra from excess flux in GRS 1915+105. Thus, the resultant spectra are consisted of counts contributed solely by the thermoluminescent X-ray bursts. A similar exercise has been performed for NuSTAR/FPMB burst spectra as well.

To model individual as well as combined burst spectrum, we used a simple blackbody model (bbody in XSPEC) and to account for interstellar absorption we employed tbabs model with the abundances set to wilm [Wilms et al. (2000)], and the cross section to vern [Verner et al. (1996)]. Due to the lack of calibrated spectra below 3 keV in NuSTAR, the equivalent hydrogen column density (N_H) was not well constrained by the NuSTAR data. Therefore, we fixed the interstellar column density to N_H = 2.5 × 10^{22} cm^{-2}. [D'Ai et al. (2006), Eronen et al. (2011)]. From the burst spectrum, the best-fit blackbody temperature and the radius of blackbody emission were found to be kT_{bb} = 2.2 ± 0.05 keV and 9.87 ± 1.86 km respectively assuming the distance of 5 kpc and color correction factor of 1.7. In Table 2, we reported the best-fit parameter values obtained by fitting the individual burst spectrum as well as the combined spectrum with the absorbed bbody model. Combined burst spectrum along with the residuals (in units of σ) with respect to the best-fit model is shown in the left panel of Fig. 5.

4.2 The Persistent spectra

4.2.1 The broadband continuum

We simultaneously fitted spectra of NuSTAR/FPMA and FPMB in the 3.5–79 keV energy band and Swift/XRT spectra in the 1–10 keV energy band using XSPEC v 12.8.2 [Arnaud (1996)]. We introduced a cross normalization factor to take into account the cross calibrations of the different instruments used. It was fixed to 1 for NuSTAR/FPMA and kept free for others instruments. It is well known that different combinations of continuum models can fit the data of neutron star LMXBs equally well [Barret (2004)]. We first attempted to fit the continuum with the typical model used for NS LMXBs of the atoll class. This model consisted of a single temperature blackbody component (bbody in XSPEC) and a thermal Comptonization component compTT [Titarchuk (1994)], modified by the interstellar absorption modelled by tbabs with vern cross section [Verner et al. (1996)] and wilm abundances [Wilms et al. (2000)]. The same combination of the continuum model was previously used many times for the source 4U 1728–34 (see e.g. [D’Ai et al. (2006), Di Salvo et al. (2000), Falanga et al. (2003)]. This continuum model, tbabs x (bbody+CompTT), resulted in \chi^2/dof=1693/949 and 1927/843 for the OBS 1 and OBS 2, respectively (where dof is the degrees of freedom). The continuum fitting yielded the best-fit electron temperature of the Comptonizing plasma of kT_e \sim 6–11 keV, seed photon temperature of kT_{seed} \sim 0.5–1.1 keV and optical depth of τ \sim 2–4. To test, whether another thermal component is required or not, we added a disk blackbody (diskbb in XSPEC) to the existing continuum model. The addition of the diskbb model was found to be statistically insignificant. However, the combination of one thermal component (bbody) and one Comptonized component (CompTT) provided a formally unacceptable fit, because of the presence of evident residuals at 5–8 keV, 15–20 keV and small residuals at \sim 1.8 keV and \sim 2.3 keV. Residuals obtained from fitting both observations are shown in the right panel of Fig. 5. The most prominent reflection feature is a clear, broad Iron kα line profile at energies \sim 6.4 keV. The observed broad excess flux in the 10–20 keV energy band is consistent with a Compton back-scattering hump. Previously, Compton hump peaking at 10–20 keV energy range has also been observed from the NuSTAR spectra of another NS LMXB Ser X-1 by [Miller et al. (2013)].

Before modelling reflection features, we tested other combinations of thermal and Comptonized component to fit the continuum. A combination of a cutoff power-law (cutoffpl model in XSPEC) and blackbody component (bbody) provided \chi^2/dof = 1824/950 and 1927/844 for the OBS 1 and OBS 2, respectively, with the cutoff power-law index Γ = 1.34 ± 0.03 and high energy cutoff
value 19.1^{+0.52}_{-0.31} keV (for OBS 1). The combination of \texttt{bbody} model with another Comptonization model \texttt{nthcomp} in \textsc{XSPEC} provided $\chi^2/dof=1953/949$ and 1604/843 for the OBS 1 and OBS 2, respectively with the asymptotic power-law photon index $\Gamma \sim 2 - 2.5$ and electron temperature $kT_e \sim 9 - 11$ keV and seed photon temperature $kT_{seed} \sim 1.0 - 1.5$ keV. With all the choice of continuum models, prominent residuals in the $\sim 5 - 8$ keV and $\sim 15 - 30$ keV energy bands were observed. Recovery of the reflection features like broad Fe Kα emission line and Compton hump with all the continuum models indicates the significance of its presence in all measurements.

4.2.2 The broad Iron line & reflection hump

We tried to fit the large excess seen $\sim 5 - 8$ keV with a Gaussian line (\texttt{Gaussian} in \textsc{XSPEC}). We added a Gaussian model with the continuum model \texttt{tbabs\times(bbody+CompTT)}. The addition of this model to the data improved the fit significantly for 3 additional parameters ($\Delta\chi^2 = -485$ and -882 for the OBS 1 and OBS 2, respectively) and corresponding χ^2/dof values are 1208/946 and 1110/841 with line energy centre at 6.50 ± 0.04, line width $\sigma = 0.78 \pm 0.10$ keV and equivalent width $EW \sim 135$ eV. We then tried to substitute the Gaussian at 6.6 keV with a \texttt{laor} line profile (\texttt{laor} in \textsc{XSPEC}, Laor 1991). This model \texttt{TBabs\times(bbody+CompTT+laor)} did not result in considerable improvement of the fit, since it provided $\chi^2/dof = 1231/945$ and 1224/839 for the OBS 1 and OBS 2, respectively. During the fitting with \texttt{laor} line profile, we fixed the outer radius of the disc and the inclination angle to the value $400 R_G$ (where $R_G = GM/c^2$ is the gravitational radius) and 60°, respectively (as the inclination was not well constraint and there is no prior knowledge of source inclination, see Egron et al. 2011; Falanga et al. 2006). This model provided an estimate of the inner radius of the disc $R_{in} \lesssim 8R_G$, line energy $E_{LAOR} = 6.46_{-0.05}^{+0.06}$ keV and emissivity index $\beta = 1.8 \pm 0.16$. For both the observations, these parameter values were consistent within errors. The
primary reason of failure of both models to provide a satisfactory fit is the presence of Compton hump in the energy band $15 - 30$ keV which cannot be modelled by the Gaussian or by the laor model.

The broadening of the line seen ~ 6.5 keV and the presence of other emission features (see Fig. 5 Right panel) are highly suggestive for fitting the broad-band spectrum with a self-consistent reflection model. Therefore, to fit the spectra, we applied the reflection model relxill (García et al. 2014), which calculates disc reflection features due to an irradiating power-law source. It combines the relativistic convolution kernel relconv (Dauser et al. 2010) with the reflection grid xillver (García et al. 2013), in which reflection spectrum is chosen for each relativistically calculated emission angle rather than averaged. The fit parameter of the relxill model are the two emissivity indices, the breaking radius R_{br} where the emissivity changes, the dimensionless spin a, the binary inclination i, the inner and outer disc radii R_{in} and R_{out}, the ionization parameter $\log \xi$, the Iron abundance A_{Fe}, the reflection fraction R_{ref}, the normalization N and the index Γ and high-energy cut-off E_{cut} of the power-law.

We first employed two component spectral model using blackbody emission from the NS surface along with the self-consistent relxill model. This model provided fit to the joint spectra from OBS 1 and OBS 2 with χ^2/dof $=1140/944$ and 1088/839 respectively. However, many spectral parameters from both OBS 1 and OBS 2 can not be constraint and significant residual around $3 - 6$ keV exists in the fitted spectra even when reflection features are properly taken care of. This necessitates the addition of another component with the previous modelling. We introduced multi-temperature disk blackbody emission (diskbb in XSPEC) along with the combination of single temperature blackbody from the NS surface and relxill reflection model. However, this did not improve the fitting and reduced χ^2 remains similar. This implies that the shape of the real incident spectra that cause the reflection from the disc is very different than an incident power-law. Therefore, we introduced a thermal Comptonization model nthcomp in XSPEC as a third component to the combination of blackbody and reflection models. We tied the cutoff power-law energy of the incident spectra in relxill to that of the Comptonizing electron temperature ($\sim 3kT_e$). However, it may be noted that the reflection amplitude (R_{ref}) predicted by the best-fit relxill model may not be the correct one due to the introduction of a thermal Comptonization model.

The use of thermal blackbody and thermal Comptonization models along with the self-consistent reflection models like reflonx (Ross & Fabian 2003), xillver (García et al. 2013) and relxill is not a new approach. Previously, during the modelling of broadband spectra from both neutron star as well as black hole X-ray binaries, the combination of thermal emission from NS surface/BH accretion disk, thermal Comptonization and self-consistent reflection models have been used. For example, Di Salvo et al. (2013) showed that the broadband Suzaku spectra in the energy range $0.7 - 200$ keV from the Atoll-type NS LMXB 4U 1705-44 (the characteristics of which is similar the source analyzed in this work) can be best described by thermal blackbody bbody in XSPEC, thermal Comptonization nthcomp in XSPEC and self-consistent reflection model like reflonx or relxill. In another approach, while modelling the hard state spectra from the BHXB GX 339-4 observed with XMM-Newton, Basak & Zdziarski (2010) found that along with the disk blackbody diskbb in XSPEC and the currently best Compton reflection model relxill, a Comptonization model nthcomp is also required to fit the spectra in the energy range $0.3 - 10$ keV. They found that the setting the disk truncation radius to that of the reflector leads to unphysical behaviour of inner disk radius. Additionally, they discussed inaccuracies introduced to the reflection fraction due to normalization of the incident and reflected flux in 20-40 keV energy range. We found that the combination of thermal blackbody, thermal Comptonization and self-consistent reflection model fitted our spectra during island and lower banana branch observations very well. Spectral parameters are consistent with earlier estimation.

The model TBabs x (bbody+CompTT+relxill) resulted in χ^2/dof $= 1098/940$ and 937/836 for the OBS 1 and OBS 2, respectively. Fitted spectra along with model components and residuals are shown in the left and right panel of Fig. 6. We fixed the outer radius $R_{out} = 1000R_G$ as the sensitivity of the reflection fit goes down to a larger value of the outer disc radius. The source has a known spin frequency of ~ 363 Hz (Strohmayer et al. 1999). The dimensionless spin parameter a can be calculated from the spin frequency using the relation $a \approx 0.47/P[ms]$ (Braith et al. 2000). Since $v = 363$ Hz for the source 4U 1728-34, we fixed it at 0.17 while fitting. As the inner radius for several other NS LMXBs were found in the range $5 - 20R_G$ (e.g. Cackett et al. 2010), we set the breaking radius larger than this range at $R_{br} = 25R_G$.

The obtained inner disc radius lies at $R_{in} \approx (2.8 - 4.3) \times R_{ISCO}$. We found a moderately high ionization parameter of $\log \xi \approx 3.3 - 3.7$, which may be expected for a broad Fe line. From both the observations, our spectral fit resulted in relatively flat power-law with $\Gamma \approx 2.0$. From the OBS 1, we inferred moderately low disc inclination angle of $i \approx 32^\circ$ but the same was fixed to the value 32° for OBS 2. Iron abundance with respect to the solar value was found to be in the range $A_{Fe} \approx 2 - 5$ and consistent from both observations within error-bars. Model parameters of the best fit spectra for OBS 1 and OBS 2 are summarized in Table 3 along with the 2σ errors. Best fit model spectra for both the observations are shown in the left and right panels of Fig. 7 along with individual model components. In order to constrain inner disc radius as well as disc inclination angle from our best-fit model, we computed $\Delta \chi^2$ for each of the parameters using steppar in XSPEC. The resultant $\Delta \chi^2$ while varying inner disc radius as the free parameter between 1 R_{ISCO} and 6 R_{ISCO} for the OBS 1 and OBS 2 are shown in the left panel of Fig. 8. The right panel shows the resultant $\Delta \chi^2$ while varying the disc inclination angle in OBS 1 between 10° and 60°. In both panels, 2σ and 3σ significance levels are shown by horizontal lines. Within 3σ bounds, the disc inclination angle from OBS 1 is found to be $31.6^{+6.9}_{-9.0}$ degree while the inner disc radius are found to be $3.1^{+0.5}_{-0.2}$ and $3.9^{+1.6}_{-0.7}R_{ISCO}$.
for the OBS 1 and OBS 2, respectively.

4.2.3 Complex absorption

From the spectral analysis based on Chandra and RXTE or BeppoSAX data [D’Ai et al. 2005] showed that the Iron line complex at ~ 6.5 keV may also be well described with two absorption edges. Following [D’Ai et al. 2005], Egron et al. (2011) also employed two absorption edges to fit the excess seen ~ 6.5 keV in the XMM-Newton spectra of 4U 1728–34. In this work, We observed a significant improvement of the fit when we employed two smeared edge model (smedge in XSPEC) to the continuum model $\text{TBabs} \times (\text{bbody}+\text{CompTT})$. Our spectral fitting required two smeared edges to fit the broad residuals seen in the Fe K band. The model $\text{TBabs} \times \text{smedge} \times \text{smedge} (\text{bbody}+\text{CompTT})$ resulted in $\chi^2/dof = 1129/943$ and 1004/839 for the OBS 1 and OBS 2, respectively with the edge energies $E_{\text{edge}} = 6.81 \pm 0.06$ keV ($\tau \simeq 1.33$) and $8.97^{+0.30}_{-0.25}$ keV ($\tau \simeq 0.20$) for the OBS 1 and $E_{\text{edge}} = 7.02 \pm 0.06$ keV ($\tau \simeq 1.39$) and $9.0^{+0.18}_{-0.20}$ keV ($\tau \simeq 0.64$) for the OBS 2, respectively. The smedge widths were not well constrained for OBS 2 and we have frozen those to the value 10 keV. However, it may be noted that modelling with the reflection model relxill provided us statistically better fit compared to the two smedge models.

5 DISCUSSION

In this work, we used two SWIFT/XRT and NuSTAR simultaneous observations of the Atoll-type NS LMXB 4U 1728–34 with a gap of one day and performed both the timing and spectral analysis. Using power density spectral study, hardness ratio and colour-colour diagram, we showed that the OBS 1 belongs to the island state while the OBS 2 belongs to the lower banana state. We observed a LF QPO at ~ 4.53 Hz which is a signature of the island state. Later broadband spectral analysis of both observations in the energy range $1 – 79$ keV also suggests that the OBS 2 is relatively softer than the OBS 1, which is consistent with dual spectral states of both observations.

5.1 Burst emission

We observed four type-I X-ray bursts from the OBS 1. Interestingly after an initial rise, they show different morphologies. Fig. 4 shows that bursts with high peak count rate show sharp fall in intensity as soon as they reach the peak count rate. However, bursts with low peak count rate spent $\sim 2 – 3$ sec at the peak and then they follow exponential fall. Burst profiles with low peak counts are typical evidence of photospheric radius expansion profile of such alternating occurrence of photospheric radius expansion where the radius expansion drives the photosphere to large radii [Galloway et al. 2003, 2010]. Therefore, it is evident that true critical luminosity was not achieved in this source during photospheric radius expansions and brightest bursts from our observations do not show photospheric radius expansion. However, the reason of such alternating occurrence of photospheric radius expansion X-ray bursts and bright X-ray bursts profiles is not well understood. Therefore, considering individual bursts as well as combined burst, we performed burst spectral analysis in the energy range $3 – 79$ keV. The combined burst spectral analysis provided the effective blackbody temperature of ~ 2.2 keV. The measured color temperature and the effective temperature are related by, $T_{\text{col}} = fT_{\text{eff}}$, where f is the spectral hardening factor which may range over $1.2 – 1.7$ [London et al. 1984]. If we assume the distance of the source ~ 5 kpc and spectral hardening factor 1.7, then the effective radius of the emitting region becomes $\simeq 9.87$ km (using the relation, $R_{\text{eff}} = f^2R_{\text{in}}$), which is comparable to the radius of the neutron star [Di Salvo et al. 2004, Shaposhnikov et al. 2003].
Figure 6. Unfolded energy spectra of 4U 1728–34 during both the observations are shown in both panels where NuSTAR and SWIFT spectra are jointly fitted using the best-fit model $\text{TBabs} \times (\text{bbody+CompTT+relxill})$. Bottom panel shows residuals of the fitted spectra for OBS 1 and OBS 2, respectively.

Table 2. Best-fit parameter values of the individual burst spectra as well as the combined burst spectrum in the energy band 3 – 20 keV

Parameter	Burst 1	Burst 2	Burst 3	Burst 4	Combined
$N_H (\times 10^{22} \, \text{cm}^{-2})$	2.5 (f)				
kT_{bb} (keV)	2.27 ± 0.07	2.20 ± 0.08	2.11 ± 0.07	2.11 ± 0.10	2.22 ± 0.05
R_{NS} (km)	8.09 ± 1.65	8.67 ± 1.76	10.41 ± 2.11	9.54 ± 1.79	9.87 ± 1.86
χ^2/dof	101/103	128/106	160/111	115/99	217/181

N_H is the neutral Hydrogen absorption column density, kT_{bb} is the blackbody temperature, R_{NS} is the radius of blackbody emission and χ^2/dof is the reduced χ^2 of the best fit. The color correction factor and the distance to the source are assumed to be 1.7 and 5 kpc, respectively.

5.2 Persistent emission

In the persistent spectra, we described the continuum emission from the LMXB 4U 1728–34 with a blackbody emission from the NS surface together with a Comptonized emission from an extended corona or the boundary layer. Joint SWIFT and NuSTAR spectra detected a broad emission feature centred at energy \sim 6.5 keV, compatible to a fluorescent Fe Kα line. The observed Fe Kα line has a broadness of $\sigma/E \approx 0.1$. The broadness of the line suggests the reflection of hard X-ray photons in the accretion disc where the strong velocity field broadens discrete features and relativistic effects distort their shapes. In the observation analysed here, the relativistic reflection model `relxill` successfully modelled the iron line complex that includes both line as well as reflection hump features. Our spectral fit estimated an inner accretion disc radius $R_{in} \approx (2.8 - 4.3) \ R_{ISCO}$. For a spinning neutron star with $a = 0.17$, R_{ISCO} can be approximated as $R_{ISCO} \approx (6 \ G M/c^2)(1 - 0.54a)$ (van der Klis 2004). So, the inner accretion disc radius would correspond to $R_{in} = (15 - 23) \ G M/c^2 = 32 - 48$ km for a mass of 1.4 M_\odot (as $R_{ISCO} \approx 5.4 \ G M/c^2$ here). Our estimate of the inner disc radius is compatible with the value of 25 – 100 km inferred by Egron et al. (2011) after modelling a XMM-Newton spectrum of this source. The obtained value of the inner disc radius suggests that the disc would be truncated moderately far away from the neutron star surface. During the NuSTAR observation, the source was observed in the low/hard state for which the disc should be truncated far from the compact object. Moreover, the Keplerian frequency associated with this truncation radius was found to be in the range $210 - 386$ Hz, which is consistent with the observed spin frequency (~ 363 Hz) by Strohmayer et al. (1996). It may be noted that the orbital frequency is calculated by using the following relation (van der Klis 2004)

$$v_{orb} \approx 1200 (r_{orb}/15 \, \text{km})^{-3/2} m_{1.4}^{1/2} \, \text{Hz}$$

where $m_{1.4}$ is the mass of the NS in units of $1.4M_\odot$. The system inclination with respect to the line of sight was estimated to be $31^\circ \pm 3^\circ$ degree with 3σ significance. The measured inclination is consistent with this system as no X-ray dips were observed in its NuSTAR light curve. While modelling reflection features, we observed that while going from hard island state to relatively soft lower banana state, the reflected flux decreases as well as the ionization parameter increases from $\log \xi = 3.3$ to 3.8 although the width of the Iron line complex does not change. High ionization parameter is also consistent with Egron et al. (2011). A closer inspection of Fig. 4 reveals that the Iron line complex from both observations has a broad blue
wing in addition to the broad red wing of the line. This makes the line width unusually broader and symmetric than usual asymmetric line profile. Such large width of the Iron line can be explained by processes like Compton broadening in a hard corona (Reis et al. 2009). To produce the observed line width of ~ 0.7 keV, the electrons in the Comptonizing cloud should have a temperature of ~ 15 keV (Rybicki & Lightman 1979). Our best-fit model estimated an electron temperature ($3kT_e = 13 - 21$ keV from Table 3) is very similar to that of the proposed value. Optically thin boundary layers are often considered to be the origin of such Comptonization. Therefore, if such Comptonized photons are the source of incident photons for reflection, a symmetric broadening is expected. Such a broad, symmetric Iron line profile have also been observed from the NuSTAR spectrum of the source Aql X-1 (King et al. 2010). However, further investigation of the origin of such broadening is out of the scope of the present work.

From both observations, our best-fit spectral model provided an unabsorbed bolometric flux in the $0.001 - 100$ keV band is $\sim 3.87 - 5.05 \times 10^{-9}$ ergs cm$^{-2}$ s$^{-1}$, which corresponds to the X-ray luminosity of $L_X \sim 1.1 - 1.6 \times 10^{37}$ ergs s$^{-1}$ for an assumed distance of 5 kpc (Di Salvo et al. 2000).

This luminosity is 6 – 9% of the Eddington luminosity, typical for atoll sources ($L_{Edd} \sim 1.76 \times 10^{38}$ ergs s$^{-1}$ for a 1.4M_\odot neutron star). Therefore, accretion rate is moderate in both island and lower banana branch observations. Moderate accretion rate during these two branches was also observed from this source by Tarana et al. (2007). It is generally believed that during the high/soft states, when the accretion rate is high ($\sim 10\%$ of the L_{Edd}), the disc extends close to the compact object, whereas in the quiescence the inner disc radius truncates far from the compact object ($\sim 100\frac{GM}{c^2}$). From the inferred accretion rate as well as the inner disc radius, it is expected that our observation lies in the boundary of hard to soft X-ray spectral state transition or more accurately transiting from island state to lower banana state. We found that between the two observations analyzed here, the temperature of the NS (which is equivalent to the blackbody temperature) increases, whereas the electron temperature of the Comptonizing corona decreases as the source moves from the harder island state (OBS 1) to the softer lower banana state (OBS 2).

The detection of the phenomenon like thermonuclear X-ray burst and quasi-periodic oscillations suggest that the magnetic field of the NS in LMXBs is not very strong (may
Additional, from the OBS 1 and OBS 2 we calculated the type-I X-ray bursts have been observed from the NS surface. 4U 1728–34 has not been significantly detected, but frequent pulsations from the accreting NS are observed when the NS lie in the range 10^8 – 10^10 G [Papitto et al. 2013]. X-ray pulsations from the accreting NS are observed when the NS magnetic field is strong enough to channel down some fraction of the accreted matter from the NS surroundings to the magnetic poles. So far X-ray pulsations from the source 4U 1728–34 has not been significantly detected, but frequent type-I X-ray bursts have been observed from the NS surface. Additionally, from the OBS 1 and OBS 2 we calculated the inner disc radius to be 3.1^{+0.5}_{-1.3} and 3.9^{+1.6}_{-0.7} R_{ISCO} respectively with 3σ significances. This is fairly large truncation radius of the order of ~30-50 km. It has been observed that in some LMXBs the disc truncation occurs at moderate radii due to the pressure exerted by the magnetic field of the NS [Degenaar et al. 2014] or due to evaporation of the inner disc at low accretion rate [Papitto et al. 2013]. We explored both possibilities follows. To estimate the magnetic field, we used the following relation given by Illarionov & Sunyaev (1975)

\[R_{in} = 4 \times 10^8 B_{11}^{4/7} \dot{m}_{15}^{-2/7} M^{-1/7} \text{cm} \]

where \(B_{11} \) is the magnetic field in units of 10^{11} G, \(\dot{m}_{15} \) is the mass accretion rate in units of 10^{15} gm s^{-1} and

Table 3. Best-fit spectral parameters of the combined *SWIFT* and *NuSTAR* spectra for both the observations using model: TBabs × (bbody + comptT + relxill). Quoted errors are at 90% confidence level.

Component	Parameter	OBS 1	OBS 2
TBABS	\(N_{bb}(\times 10^{22}\text{cm}^{-2}) \)	3.91 ± 0.12	4.05^{+0.22}_{-0.09}
BLACKBODY	\(kT_{bb}(\text{keV}) \)	0.71 ± 0.05	2.40 ± 0.02
BLACKBODY	\(N_{BB} \times (\times 10^{-2}) \)	0.63^{+0.04}_{-0.14}	1.24^{+0.07}_{-0.17}
COMPPT	\(kT_{seed}(\text{keV}) \)	1.46 ± 0.10	0.53 ± 0.03
COMPPT	\(kT_{c}(\text{keV}) \)	7.1^{+7.0}_{-1.5}	4.6^{+0.3}_{-0.6}
	Optical depth(\(\tau \))	2.39^{+0.77}_{-0.87}	3.32 ± 0.40
RELXILL	\(n_{relxill} \)	0.02 ± 0.01	0.15^{+0.04}_{-0.01}

The outer radius of the *relxill* spectral component was fixed to 1000R_G and the spin parameter was set to a = 0.17. Breaking radius was set to \(R_{br} = 25R_G \). \(^{a,b,c}\) denotes the normalization component of the *bbody*, *comptT* and *relxill* model, respectively.

\(R_{in} \) was set to \(4 \times 10^8 B_{11}^{4/7} \dot{m}_{15}^{-2/7} M^{-1/7} \text{cm} \)
M is the mass of the NS in M_\odot units. The average mass accretion rate for this source is $2.6 \pm 1.6 \times 10^{-9} M_\odot$ yr$^{-1}$ (Heinke et al. [2013]). Using the measured inner disc radius from the reflection model and assuming the mass of the NS to $1.4 M_\odot$, we estimated a magnetic field strength of $B \approx (3.3 - 6.5) \times 10^9$ G. As the calculated magnetic field strength of the NS in this binary is not very high ($\sim 10^8$ G) and the accretion rate during the persistent emission onto the compact object is moderate ($\sim 5 - 8\%$ of the Eddington limit), therefore, the second possibility that the evaporation occurs at the inner disc at moderate accretion rate may be the favourable one with the observed moderate disc truncation scenario in our case.

We found that the inner disc is truncated moderately far from the NS surface. Even if the total bolometric flux increases from island state to lower banana state, the inner disc remains at similar truncation radius within 3σ limits. At the same time NuSTAR observation showed the evidence of type-I X-ray burst which requires dumping of accreting material onto neutron star surface. It essentially indicates that the accreted material is still reaching to the surface of the NS in spite of moderate disc truncation. This behaviour can be explained with the model given by Kluzniak & Wilson [1991]. According to this model, the accreted material can free fall crossing the ‘gap’ between the disc and the NS surface and then strikes the NS surface, creating a hot accretion belt with a temperature inversion.

6 ACKNOWLEDGEMENTS

This research has made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Centre (HEASARC). Aditya S. Mondal would like to thank Inter-University Centre for Astronomy and Astrophysics (IUCAA) for hosting him during subsequent visits.

REFERENCES

Arnaud K. A., 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, Jacoby G. H., Barnes J., eds., p. 17
Barret D., 2001, Advances in Space Research, 28, 307
Basak R., Zdziarski A. A., 2016, MNRAS, 458, 2199
Basinska E. M., Lewin W. H. G., Sztajno M., Cominsky L. R., Marshall F. J., 1984, ApJ, 281, 337
Bhattacharyya S., Strohmayer T. E., 2007, ApJl, 664, L103
Braje T. M., Romani R. W., Rauch K. P., 2000, ApJ, 531, 447
Cackett E. M. et al., 2010, ApJ, 720, 205
Cackett E. M. et al., 2008, ApJ, 674, 415
D’Aì A. et al., 2005, ArXiv Astrophysics e-prints
D’Aì A. et al., 2006, A&A, 448, 817
Dauser T., Wilms J., Reynolds C. S., Brenneman L. W., 2010, MNRAS, 409, 1534
Degenaar N., Miller J. M., Harrison F. A., Kennea J. A., Kouveliotou C., Younes G., 2014, ApJ, 796, L9
Di Salvo T., Iaria R., Burderi L., Robba N. R., 2000, ApJ, 542, 1034
Di Salvo T. et al., 2015, MNRAS, 449, 2794
Di Salvo T., Méndez M., van der Klis M., Ford E., Robba N. R., 2001, ApJ, 546, 1107
Egron E. et al., 2011, A&A, 530, A99
Fabian A. C., Rees M. J., Stella L., White N. E., 1989, MNRAS, 238, 729
Falanga M., Götz D., Goldoni P., Farinelli R., Goldwurm A., Mereghetti S., Bazzano A., Stella L., 2006, A&A, 458, 21
Galloway D. K., Muno M. P., Hartman J. M., Psaltis D., Chakrabarty D., 2008, ApJS, 179, 360
Galloway D. K., Psaltis D., Chakrabarty D., Muno M. P., 2003, ApJ, 590, 999
Galloway D. K., Yao Y., Marshall H., Misanovic Z., Weinberg N., 2010, ApJ, 724, 417
García J. et al., 2014, ApJ, 782, 76
García J., Dauser T., Reynolds C. S., Kallman T. R., McClintock J. E., Wilms J., Eikmann W., 2013, ApJ, 768, 146
Grindlay J. E., Hertz P., 1981, ApJl, 247, L17
Hasinger G., van der Klis M., 1989, A&A, 225, 79
Heinke C. O., Ivanova N., Engel M. C., Pavlovskii K., Sivakoff G. R., Cartwright T. F., Gladstone J. C., 2013, ApJ, 768, 184
Hoffman J. A., Lewin W. H. G., Doty J., Hearn D. R., Clark G. W., Jernigan G., Li F. K., 1976, ApJ, 210, L13
Illarionov A. F., Sunyaev R. A., 1975, A&A, 39, 187
King A. L. et al., 2016, ApJl, 819, L29
Kluzniak W., Wilson J. R., 1991, ApJl, 372, L87
Lauer A., 1991, ApJl, 376, 90
Lewin W. H. G., Clark G., Doty J., 1976, IAUC, 2922
London R. A., Howard W. M., Taam R. E., 1984, ApJl, 287, L27
Markoff S., Nowak M. A., Wilms J., 2005, ApJ, 635, 1203
Migliari S., Fender R. P., Rupen M., Jonker P. G., Klein-Wolt M., Hjellming R. M., van der Klis M., 2003, MNRAS, 342, L67
Miller J. M. et al., 2013, ApJl, 779, L2
Mitsuda K. et al., 1984, PASJ, 36, 741
Mitsuda K., Inoue H., Nakamura N., Tanaka Y., 1989, PASJ, 41, 97
Narita T., Grindlay J. E., Barret D., 2001, ApJ, 547, 420
Ng C., Díaz Trigo M., Cadolle Bel M., Migliari S., 2010, A&A, 522, A96
Pahari M., Misra R., Mukherjee A., Yadav J. S., Pandey S. K., 2013, MNRAS, 430, 2334
Pandel D., Kaaret P., Corbel S., 2008, ApJ, 688, 1288
Papitto A. et al., 2013, MNRAS, 429, 3411
Papitto A., Di Salvo T., D’Aì A., Iaria R., Burderi L., Riggio A., Menna M. T., Robba N. R., 2009, A&A, 493, L39
Piraino S., Sartelangelo A., Kaaret P., 2000, A&A, 360, L35
Poutanen J., Coppi P. S., 1998, Physica Scripta Volume T, 77, 57
Reis R. C., Fabian A. C., Young A. J., 2009, MNRAS, 399, L1
Romano P. et al., 2006, A&A, 456, 917
Ross R. R., Fabian A. C., 2005, MNRAS, 358, 211
Rybicki G. B., Lightman A. P., 1979, Radiative processes in astrophysics
Schulz N. S., 1999, ApJl, 511, 304
Shaposhnikov N., Titarchuk L., Haberl F., 2003, ApJl, 593, L35
Strohmayer T. E., Zhang W., Swank J. H., Smale A.,
Titarchuk L., Day C., Lee U., 1996, ApJl, 469, L9
Tarana A., Bazzano A., Ubertini P., Zdziarski A. A., 2007,
ApJ, 654, 494
Tarana A., Belloni T., Bazzano A., Méndez M., Ubertini
P., 2011, MNRAS, 416, 873
Titarchuk L., 1994, ApJ, 434, 570
Titarchuk L., Zannias T., 1998, ApJ, 493, 863
van der Klis M., 1995, X-ray Binaries, 252
van der Klis M., 2000, in Rossi2000: Astrophysics with the
Rossi X-ray Timing Explorer, Strohmayer T. E., ed.
Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G.,
1996, ApJ, 465, 487
White N. E., Peacock A., Hasinger G., Mason K. O., Manzo
G., Taylor B. G., Branduardi-Raymont G., 1986, MNRAS,
218, 129
Wilms J., Allen A., McCray R., 2000, ApJ, 542, 914