RIGIDITY OF COMMUTING AFFINE ACTIONS ON REFLEXIVE
BANACH SPACES

CHRISTIAN ROSENDAL

ABSTRACT. We give a simple argument to show that if a is an affine isometric action
of a product $G \times H$ of topological groups on a reflexive Banach space X with linear
part π, then either $\pi(H)$ fixes a unit vector or $a|_{\pi}$ almost fixes a point on X.

It follows that any affine isometric action of an abelian group on a reflexive Banach
space X, whose linear part fixes no unit vectors, almost fixes points on X.

1. LINEAR REPRESENTATIONS AND COCYCLES

When X is a vector space, the group of bijective affine transformations of X, $\text{Aff}(X)$, can be decomposed as a semidirect product
\[
\text{Aff}(X) = GL(X) \ltimes X,
\]
with respect to the natural action of $GL(X)$ on X. The product in $GL(X) \ltimes X$ is then simply $(T, x) \cdot (S, y) = (TS, Ty + x)$, while the corresponding action of $(T, x) \in GL(X) \ltimes X$ on X is given by $(T, x) \cdot y = Ty + x$.

Thus, an action α of a group G by affine transformations of the vector space X can be viewed as a homomorphism of G into $\text{Aff}(X)$, which thus can be split into a linear representation $\pi : G \to GL(X)$, called the linear part of α, and an associated cocycle $b : G \to X$ such that the following cocycle identity holds,
\[
b(gf) = \pi(g)b(f) + b(g),
\]
for all $g, f \in G$.

If, moreover, X is a reflexive Banach space and $\pi : G \to GL(X)$ is a fixed isometric linear representation of a topological group G on X that is strongly continuous, i.e., such that for every $x \in X$ the map $g \in G \to gx \in X$ is continuous, we can consider the corresponding vector space $Z^1(G, \pi)$ of continuous cocycles $b : G \to X$ associated to π. The subspace $B^1(G, \pi) \subseteq Z^1(G, \pi)$ consisting of those cocycles b for which the corresponding affine action α fixes a point on X, i.e., for which there is some $x \in X$ such that $b(g) = x - \pi(g)x$ for all $g \in G$, is called the set of coboundaries. Note that if b is a coboundary, then $b(G)$ is a bounded subset of X. Conversely, if $b(G)$ is a bounded set, then any orbit Θ of the corresponding affine action is bounded and so, by reflexivity of X, its closed convex hull $C = \overline{\text{conv}(\Theta)}$ is a weakly compact convex set on which G acts by affine isometries. It follows by the Ryll-Nardzewski fixed point theorem [4] that G fixes a point on C, meaning that b must be a coboundary.

Every compact set $K \subseteq G$ determines a seminorm $\|\cdot\|_K$ on $Z^1(G, \pi)$ by $\|b\|_K = \sup_{g \in K} \|b(g)\|$ and the family of seminorms thus obtained endows $Z^1(G, \pi)$ with a locally convex topology. With this topology, one sees that a cocycle b belongs to the closure $\overline{B^1(G, \pi)}$ if and only if the corresponding affine action $\alpha = (\pi, b)$ almost has

The author’s research was partially supported by NSF grants DMS 0901405 and DMS 1201295.
fixed points, that is, if for any compact set \(K \subseteq G \) and \(\epsilon > 0 \) there is some \(x = x_{K,\epsilon} \in X \) verifying
\[
\sup_{g \in K} \| (\pi(g)x + b(g)) - x \| = \sup_{g \in K} \| b(g) - (x - \pi(g)x) \| < \epsilon.
\]

If, for any \(K \), we can choose \(x = x_{K,1} \) above to have arbitrarily large norm, we see that the supremum
\[
\sup_{g \in K} \| \pi(g)\frac{x}{\|x\|} - \frac{x}{\|x\|} \| < \frac{\sup_{g \in K} \| b(g) \| + 1}{\|x\|}
\]
can be made arbitrarily small, which means that the linear action \(\pi \) almost has invariant unit vectors. If, on the other hand, for some \(K \) the choice of \(x_{K,1} \) is bounded (but non-empty), then the same bound holds for any compact \(K' \supseteq K \), whereby we find that \(b(G) \subseteq X \) is a bounded set, i.e., that \(b \in B^1(G,\pi) \). Thus, this shows that if \(\pi \) does not almost have invariant unit vectors, the set \(B^1(G,\pi) \) will be closed in \(Z^1(G,\pi) \). In fact, if \(b \in Z^1(G,\pi) \setminus B^1(G,\pi) \) and \(\pi \) does not almost have invariant unit vectors, then for any constant \(\epsilon \) there is a compact set \(K \subseteq G \) such that no vector is \((\alpha(K),\epsilon)\)-invariant, where \(\alpha = (\pi,b) \).

Conversely, a result of A. Guichardet [3], valid for locally compact \(\sigma \)-compact \(G \), states that if \(\pi \) does not have invariant unit vectors and \(B^1(G,\pi) \) is closed in \(Z^1(G,\pi) \), then \(\pi \) does not almost have invariant unit vectors.

We define the first cohomology group of \(G \) with coefficients in \(\pi \) to be the quotient space \(H^1(G,\pi) = Z^1(G,\pi)/B^1(G,\pi) \), while the reduced cohomology group is \(\overline{H^1}(G,\pi) = Z^1(G,\pi)/\overline{B^1}(G,\pi) \).

2. AFFINE ACTIONS OF PRODUCT GROUPS ON REFLEXIVE SPACES

In the following, let \(X \) be a reflexive Banach space, \(G \) and \(H \) be topological groups and \(\pi \) be a strongly continuous linear isometric representation of \(G \times H \) on \(X \). We also fix a cocycle \(b \in Z^1(G \times H,\pi) \) and let \(\alpha \) be the corresponding affine isometric action of \(G \times H \) on \(X \).

Proposition 1. One of the following must hold,

1. there is a \(\pi(H) \)-invariant unit vector;
2. for any closed convex \(\alpha(H) \)-invariant sets \(C \subseteq X \), \(\alpha|_C \) almost has fixed points on \(C \).

Proof. Assume that there are no \(\pi(H) \)-invariant unit vectors in \(X \). Then, if \(\pi^n : H \to GL(X^n) \) denotes the diagonal representation on \(X^n = (X \oplus \ldots \oplus X)_2 \), \(\pi^n(H) \) has no invariant unit vectors on \(X^n \). By reflexivity, for any \(x \in X^n \), \(C = \text{conv}(\pi^n(H)x) \) is a \(\pi^n(H) \)-invariant weakly compact convex subset of \(X^n \) and thus, by the Ryll-Nardzewski fixed point theorem, \(\pi^n(H) \) fixes a point on \(C \), whereby \(0 \in \text{conv}(\pi^n(H)x) \).

Therefore, for any \(\epsilon > 0 \) and \((y_1,\ldots,y_n) \in X^n \) there are \(h_i \in H \) and \(\lambda_i > 0 \), \(\sum \lambda_i = 1 \), such that for all \(k = 1,\ldots,n \),
\[
\| \sum \lambda_i \pi(h_i)y_k \| < \epsilon.
\]

In particular, if \(C \subseteq X \) is a closed convex \(\alpha(H) \)-invariant set, \(\epsilon > 0 \) and \(K \subseteq G \) compact, fix \(y \in C \) and find \(g_1,\ldots,g_n \in K \) such that \((\alpha(g_1)y,\ldots,\alpha(g_n)y) \) is \(\frac{\epsilon}{2} \)-dense in \(\alpha(K)y \). Choose now \(h_i \) and \(\lambda_i \) as above such that
\[
\| \sum \lambda_i \pi(h_i)(y - \alpha(g_k)y) \| < \frac{\epsilon}{2}
\]
for all $k = 1, \ldots, n$. Thus, if $g \in K$, pick k such that $\|a(g)y - a(g_k)y\| < \frac{\epsilon}{2}$. Then, since $\|\sum_i \lambda_i \pi(h_i)\| < 1$,
\[
\|\sum_i \lambda_i a(h_i)y - a(g)\| = \left\| \sum_i \lambda_i a(h_i)y - \left(\sum_i \lambda_i a(g)\|a(h_i)y\| \right) \right\| \\
= \left\| \sum_i \lambda_i a(h_i)y - \left(\sum_i \lambda_i a(h_i)a(g)\right) \right\| \\
< \sum_i \lambda_i \pi(h_i)(y - a(g)y) \\
< \sum_i \lambda_i \pi(h_i)(y - a(g_k)y) + \frac{\epsilon}{2} \\
< \epsilon.
\]

In other words, the point $\sum_i \lambda_i a(h_i)y \in C$ is $(a(K), \epsilon)$-invariant. \hfill \square

Corollary 2. Let π be a strongly continuous isometric linear representation of an abelian topological group G on a reflexive Banach space X and suppose that $\pi(G)$ has no fixed unit vectors. Then $H^1(G, \pi) = 0$, i.e., any affine isometric action with linear part π almost has fixed points on X.

Proof. It suffices to consider the linear representation of $G \times G$ given by π separately on the first and second factor and then apply Proposition 1. \hfill \square

Let us also note that Corollary 2 fails for more general Banach spaces, e.g., for ℓ_1. To see this, let π denote the left regular representation of Z on $\ell_1(Z)$ and let $b \in Z^1(Z, \pi)$ be given by $b(n) = e_0 + e_1 + \ldots + e_{n-1}$. Then π has no invariant unit vectors. Also, if $x = \sum_{n=-k}^k a_n e_n$ is any finitely supported vector, we have
\[
\|x - a(1)x\| = |a_{-k} + |a_{-k+1} - a_{-k}| + \ldots + |a_{-1} - a_{-2}| + |a_0 - a_{-1} + 1|
+ |a_1 - a_0| + \ldots + |a_k - a_{k-1}| + |a_k| \\
> 1.
\]

So $\|x - a(1)x\| > 1$ for all $x \in \ell_1(Z)$ and $b \in B^1(G, \pi)$.

Corollary 3. If $a(G \times H)$ has no fixed point on X and $\pi(G)$ and $\pi(H)$ no invariant unit vectors, then
\begin{enumerate}
\item $a|G$ and $a|H$ almost have fixed points, and
\item $\pi|G$ and $\pi|H$ almost have invariant unit vectors.
\end{enumerate}

Proof. Item (1) follows directly from Proposition 1 which means that $b|G \in B^1(G, \pi|G)$ and $b|H \in B^1(H, \pi|H)$. However, neither $a(G)$ nor $a(H)$ have fixed points, i.e., $b|G \notin B^1(G, \pi|G)$ and $b|H \notin B^1(H, \pi|H)$. For if, e.g., $a(H)$ fixed a point $x \in X$, then $C = \{x\}$ would be a closed convex $a(H)$-invariant set on which $a|G$ would have almost fixed points, i.e., x would be fixed by $a(G)$ and so x would be a fixed point for $a(G \times H)$, contradicting our assumptions. Thus, neither $B^1(G, \pi|G)$ nor $B^1(H, \pi|H)$ is closed, whereby (2) follows. \hfill \square

Corollary 4. Suppose $G = G_1 \times \ldots \times G_n$ is a product of topological groups and $\pi : G \rightarrow GL(X)$ is a linear isometric representation on a separable reflexive space X. Then X
admits a decomposition into $\pi(G)$-invariant linear subspaces $X = V \oplus Y_1 \oplus \ldots \oplus Y_n \oplus W$, such that

1. V is the space of $\pi(G)$-invariant vectors,
2. any $b \in Z^1(G, \pi^W)$ factors through a cocycle defined on G_i,
3. $Z^1(G, \pi^W) \subseteq B^1(G_1, \pi^W) \oplus \ldots \oplus B^1(G_n, \pi^W)$,

where π^W denotes the restriction of π to the invariant subspace W and similarly for Y_i.

Proof. By Theorem 4.10 of [2], for any group of linear isometries of a separable reflexive space Y there is an invariant decomposition of Y into the subspace of fixed points and a canonical complement. Thus, by recursion on the size of $s \subseteq \{1, \ldots, n\}$, we obtain a $\pi(G)$-invariant decomposition

$$X = \sum_{s \subseteq \{1, \ldots, n\}} X_s,$$

where every non-zero $x \in X_s$ is fixed by $\pi\{\prod_{i \in s} G_i\}$ and by none of $\pi(G_i)$ for $i \in s$. So if $b \in Z^1(G, \pi^X)$ and $g \in \prod_{i \in s} G_i$, then for any $h \in \prod_{i \in s} G_i$,

$$b(h) + b(g) = \pi(g)b(h) + b(g) = b(gh) = b(hg) = \pi(h)b(g) + b(h),$$

i.e., $\pi(h)b(g) = b(g)$, which implies that $b(g) = 0$. It follows that if $s \neq \emptyset$, then any $b \in Z^1(G, \pi^X)$ factors through a cocycle defined on $\prod_{i \in s} G_i$.

Also, if $|s| > 2$, then by Corollary 3 we see that any $b \in Z^1(G, \pi^X)$ can be written as $b = b_1 \oplus \ldots \oplus b_n$, where $b_i \in B^1(G_i, \pi^X_i)$. Thus, if we set $V = X_\emptyset$, $Y_i = X_{\{i\}}$ and $W = \sum_{|s| > 2} X_s$, the result follows.

Proposition 1 was shown by Y. Shalom [5] in the special case of locally compact σ-compact G and H and $X = H$ a Hilbert space, but by different methods essentially relying on the local compactness of G and H and the euclidean structure of X. This also provided the central lemma for the rigidity results of [5] via the following theorem, whose proof we include for completeness.

Theorem 5 (Shalom [5] for locally compact G and H). Let $\pi: G \times H \rightarrow GL(\mathcal{H})$ be a strongly continuous isometric linear representation of a product of topological groups on a Hilbert space \mathcal{H} and assume that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors. Then $Z^1(G \times H, \pi) = B^1(G \times H, \pi)$ and so $H^1(G \times H, \pi) = 0$.

Proof. Let $b \in Z^1(G \times H, \pi)$ be given with corresponding affine isometric action a and fix compact subsets $K \subseteq G$, $L \subseteq H$ and an $\varepsilon > 0$. Then, by Proposition 1, the closed convex $a(G)$-invariant set $C \subseteq \mathcal{H}$ of $(a(L), c/2)$-invariant points is non-empty. Similarly, there is an $(a(K), c/2)$-invariant point in \mathcal{H}.

Now, by the euclidean structure of \mathcal{H}, for any $y \in \mathcal{H}$, there is a unique point $P(y) \in C$ closest to y and, as $a(G)$ acts by isometries on \mathcal{H} leaving C invariant, the map P is $a(G)$-equivariant, i.e., $P(a(g)y) = a(g)P(y)$. Moreover, using the euclidean structure again, P is 1-Lipschitz, whereby

$$\|P(y) - a(g)P(y)\| = \|P(y) - P(a(g)y)\| \leq \|y - a(g)y\|,$$

for all $y \in \mathcal{H}$ and $g \in G$. In particular, if $y \in \mathcal{H}$ is $(a(K), c/2)$-invariant, then $P(y)$ is both $(a(K), c/2)$- and $(a(L), c/2)$-invariant, i.e., $P(y)$ is $(a(K \times L), c)$-invariant. Since K, L and c are arbitrary, we have that $b \in B^1(G \times H, \pi)$. □
U. Bader, T. Gelander, A. Furman and N. Monod [1] studied the structure of affine actions of product groups on uniformly convex spaces (a subclass of the reflexive spaces) and in this setting obtained a slightly weaker result than Shalom. Namely, if $\pi: G \times H \to GL(X)$ is a strongly continuous isometric linear representation of a product of topological groups on a uniformly convex space X such that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors, then either

(a) π almost has invariant unit vectors, or

(b) $Z^1(G \times H, \pi) = B^1(G \times H, \pi)$.

Proposition [1] is somewhat independent of their statement and shows that one can add that $\alpha|_G$ and $\alpha|_H$ almost have fixed points to (a) above.

References

[1] Bader, U., Furman, A., Gelander, T. & Monod, N., Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57–105.
[2] Ferenczi, V. & Rosendal, C., On isometry groups and maximal symmetry, preprint.
[3] Guichardet, A., Sur la cohomologie des groupes topologiques. II. Bull. Sci. Math., 96 (1972), 305–332.
[4] Ryll-Nardzewski, C., Generalized random ergodic theorems and weakly almost periodic functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 271–275.
[5] Shalom, Y., Rigidity of commensurators and irreducible lattices. Invent. Math., 141 (2000), 1–54.

Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607-7045, USA
E-mail address: rosendal.math@gmail.com
URL: http://homepages.math.uic.edu/~rosendal