Research Article

Comparative Genomics Reveals Pathogenicity-Related Loci in Shewanella algae

Jui-Hsing Wang,1,2 Guo-Cheng He,3 Yao-Ting Huang,2 and Po-Yu Liu4,5,6

1Division of Infectious Disease, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
2Department of Internal Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
3Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
4Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
5Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
6Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan

Correspondence should be addressed to Yao-Ting Huang; ythuang@cs.ccu.edu.tw and Po-Yu Liu; liupoyu@gmail.com

Received 29 December 2019; Accepted 20 February 2020; Published 30 March 2020

Academic Editor: Pietro Mastroeni

Copyright © 2020 Jui-Hsing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shewanella algae is an emerging marine zoonotic pathogen and accounts for considerable mortality and morbidity in compromised hosts. However, there is scarce literature related to the understanding of the genetic background of virulence determinants in S. algae. In this study, we aim to determine the occurrence of common virulence genes in S. algae using whole-genome sequence and comparative genomic analysis. Comparative genomics reveals putative-virulence genes related to bile resistance, chemotaxis, hemolysis, and motility. We detected the existence of hlyA, hlyD, and hlyIII involved in hemolysis. We also found chemotaxis gene cluster cheYZA operon and cheW gene. The results provide insights into the genetic basis underlying pathogenicity in S. algae.

1. Introduction

Shewanella algae is an emerging marine zoonotic pathogen. The organism was first classified in 1990 by Simidu et al. [1], emended by Nozue et al. [2], and described as a Gram-negative, motile bacillus, with hydrogen sulfide production, exhibiting hemolysis on sheep blood agar. S. algae is found in marine environments throughout the world and has been linked with both human and marine animal infections [3, 4]. Currently, there are at least three other Shewanella species found in clinical specimens and S. algae accounts for the majority of isolates from humans [5, 6]. S. algae has also been reported to cause diseases in marine animal, both wild and cultured [7–9]. However, there is scarce literature related to the understanding of the genetic background of virulence determinants in S. algae.

Marine ecosystem consists of a large variety of organisms that impact human health [10]. The advance of sequencing technology allows the identification of determinants in pathogenic microorganisms and has become an important approach to study the fundamental mechanisms of pathogenesis [11, 12]. Comparative genomics further enables the investigation of core elements of pathogenesis factors in great detail [13]. Recently, there have been attempts to use whole-genome sequencing in the study of marine pathogens [14]. Therefore, genomic comparison of the clinical S. algae isolates could provide clues for pathogenic or fitness determinants [15].

The aims of the study were to determine the occurrence of common virulence genes found in S. algae isolates from clinical setting using whole-genome sequence and comparative genomic analysis and to explore the relationship among the tested genomes.

2. Materials and Methods

2.1. Bacterial Strains, Media, and Growth Conditions. S. algae strains ACCC, YHL, and CHL were obtained from various clinical sources (Table 1). Glycerol stock of stored isolates
was grown in trypticase soy agar with 5% sheep blood (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) at 30°C for 24 hours. Single colonies were inoculated in tryptic soy broth (Becton, Dickinson and Company, Franklin Lakes, NJ). The isolates were preliminarily identified using 16S rRNA gene sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (bioMérieux, Marcy l’Etoile, France). A part of 16S rRNA gene was amplified using the primers of B27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and U1492R (5’-GGTTACCTTGTTACGACTT-3’) [9, 16]. The nucleotide sequences were aligned, and BLAST search was performed against the GenBank database of the National Center for Biotechnology Information (NCBI) [17].

2.2. Genome Sequencing and Assembly. Nucleic acids were extracted from overnight culture using the QIAGEN Genomic-tip 100G kit and the Genomic DNA Buffer Set (QIAGEN, Paisley, UK) according to the manufacturer’s protocol. The DNA concentrations were measured by Qubit dsDNA HS Assay kit using Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA, USA). The DNA sample was sheared, in a microTUBE using Covaris S2 (Covaris, Woburn, MA, USA), into the desired size fragment of the library. The indexed PCR-free library preparation was performed using multiplexed high-throughput sequencing TruSeq DNA Sample Preparation Kit (Illumina) with 2 μg of DNA on the basis of the manufacturer’s protocol. Genome sequencing was performed using paired-end 250 bp sequencing on the Illumina MiSeq platform (Illumina, Inc., San Diego, CA). Raw sequence files were artifact-filtered and trimmed with DUK (http://duk.sourceforge.net/) and FASTX-toolkit fastx_trimmer (https://github.com/agordon/fastx_toolkit), respectively. Assembly was performed with a hybrid approach by ALLPATHS, version R46652 and Velvet version 1.2.07.

2.3. Public Genome Download. Genome sequence of human isolated S. algae MARS 14 was retrieved from the NCBI Genome website (https://www.ncbi.nlm.nih.gov/assembly/GCF_000947195.1/).

2.4. Phylogenetic Analysis Based on Whole-Genome Sequences. Genome-based phylogenetic analysis was performed using pairwise comparison of average nucleotide identity. The whole-genome average nucleotide identity (ANI) was calculated with the use of a modified algorithm [18]. Phylogenetic trees were visualized using MEGA7.

2.5. Annotation and Comparative Genomics. The annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [19] and the DOE-JGI Microbial Genome Annotation Pipeline version 4.10.5 [20]. The prediction was done using Glimmer 3.02 [21]. The non-translated genes were predicted by tRNAscan-SE [22], RNAmmer [23], and RFAM [24]. Functional classification of the predicted genes was carried out using RPSBLAST program v. 2.2.15 [25]. Analysis of the functional annotation was further performed using the Integrated Microbial Genomes & Microbiomes system v.5.0 [26] and the Pathosystems Resource Integration Center [27]. CDS count for these strains was derived. Comparative genome analysis was performed using EDGAR platform (http://edgar.computational.bio) [28]. The core genome and the singletons for the 4 related S. algae genomes were generated for Prokka-annotated genomes using EDGAR (http://edgar.computational.bio). We compared the S. algae genomes using the MUMmer software package [29] together with the Circos visualization engine [30].

3. Results

3.1. Genome Sequencing and Assembly. The genome sequencing consisted of 250 bp paired-end reads, yielding approximately 0.88 Gbp to 1.24 Gbp for each isolate. The de novo assembly of genome sequence data revealed that the number of contigs (>200 bp) varied from 27 to 74 for each genome. The maximum contig size among the genomes was 976,090bp aligned to YHL. The GC content ranged from 52.96% for CHL to 53.08% for ACCC. Table 1 shows the descriptive statistics of the genomic characteristics for the strains in this study. The sequence data were publicly available in NCBI SRA database (accession number: ACCC [LVCY00000000.1], CHL [LVDF00000000.1], and YHL [LVDU00000000.1]).

3.2. Genome-Based Phylogenetic Analysis. The average nucleotide identity (ANI) was calculated and revealed that tested S. algae strains were identical in terms of nucleotide sequences, as shown in Figure 1.
3.3. Comparative Genomics. We constructed a pan-genome dataset using whole-genome sequence of sequenced *S. algae* strains. Figure 2 shows orthologous genes shared among strains and depicts the position and color-coded function of the *S. algae* genes. The numbers of orthologous and strain-specific unique genes are shown in the Venn diagram. Core genome for the *S. algae* strains consists of 1354 coding sequences (Figure 3). The set of unique genes harbored by each strain varies from 335 for *S. algae* YHL to 466 for *S. algae* CHL. Following genome map construction, we conducted genome mapping among the *S. algae* strains in the study. In this comparison, colored arcs indicate regions of high similarity as revealed by the NUCmer script from the MUMmer software package. As shown in Figure 4, the alignment revealed an obvious syntenic relationship in these strains.

3.4. Analysis of Putative-Virulence-Related Genes. As illustrated in Table 2, genes encoded *exbBD*, *galU*, and *htpB* are shared with *S. algae* genomes. Heat shock protein gene *clpP* and hemolysis homologous genes, *hlyA*, *hlyD*, *hlyIII*, and *tolC*, were found in each *S. algae* genome. Gene cluster *cheYZA* operon and *cheW* involved in chemotaxis were detected in all tested *S. algae*. Flagellar gene operons are present in all tested *S. algae* genome.
4. Discussion

Shewanella algae has become an emerging marine zoonotic pathogen world-wide [5]. The spectrum of *S. algae* infection is broad with considerable morbidity and mortality in compromised hosts [31, 32]. Thus, understanding genomic characterization of *S. algae* is important for determining molecular epidemiology, understanding its pathogenesis, identifying specific biomarkers, tracing evolution of these strains, and developing control strategy of these pathogens in host...
Figure 3: Comparison of the gene contents of the Shewanella algae in this study, Venn diagram showing the numbers of conserved and strain-specific coding sequences (CDSs).

Figure 4: Genomes mapping between strains in the study. Each colored arc indicates an orthologous match between two species. The color segments in the outer circle are randomly displayed and do not correspond to a particular scheme. A minimum seed match size of 500 bp was used.
Gene	locus_tag	Length	locus_tag	Length	locus_tag	Length	locus_tag	Length		
hlyA	BN1227_RS19795	443	AYI97_RS17645	443	AYI82_RS07480	443	AYI77_RS13890	443		
hlyD	BN1227_RS18765	352	AYI97_RS03440	352	AYI82_RS05095	352	AYI77_RS05040	352		
hlyIII	BN1227_RS10295	226	AYI97_RS09385	226	AYI82_RS06545	226	AYI77_RS04320	226		
tolC	AYI97_RS03690	466	AYI97_RS12455	466	AYI82_RS07370	466	AYI77_RS04785	466		
htpB (groL)	AYI97_RS09385	226	AYI97_RS06545	226	AYI82_RS05095	226	AYI77_RS05040	226		
galU	AYI97_RS19990	303	AYI97_RS18495	303	AYI82_RS05620	303	AYI77_RS16730	303		
exbB	AYI97_RS02650	238	AYI97_RS04225	238	AYI82_RS07480	238	AYI77_RS13890	238		
cheY	AYI97_RS06385	127	AYI97_RS05630	127	AYI82_RS05620	127	AYI77_RS20450	127		
cheZ	AYI97_RS06375	776	AYI97_RS05620	776	AYI82_RS05620	776	AYI77_RS20450	776		
cheA	AYI97_RS06180	696	AYI97_RS05630	696	AYI82_RS05620	696	AYI77_RS20450	696		
cheW	AYI97_RS06350	164	AYI97_RS05595	164	AYI82_RS05620	164	AYI77_RS20950	164		
clpP	AYI97_RS05170	202	AYI97_RS17685	202	AYI82_RS05095	202	AYI77_RS14495	202		
FlgA	AYI97_RS06595	235	AYI97_RS05050	235	AYI82_RS05050	235	AYI77_RS09380	235		
FlgB	AYI97_RS06580	132	AYI97_RS05045	132	AYI82_RS05050	132	AYI77_RS09380	132		
FlgC	AYI97_RS06575	138	AYI97_RS05040	138	AYI82_RS05050	138	AYI77_RS09380	138		
FlgD	AYI97_RS06570	221	AYI97_RS05035	221	AYI82_RS05050	221	AYI77_RS09380	221		
Gene	locus_tag	Length								
------	----------------	--------	----------------	--------	----------------	--------	----------------	--------	----------------	--------
FlgE	BN1227_RS06915	453	AYI97_RS06565	453	AYI82_RS05810	453	AYI77_RS20820	453		
FlgF	BN1227_RS06920	247	AYI97_RS06560	247	AYI82_RS05805	247	AYI77_RS20815	247		
FlgG	BN1227_RS06925	263	AYI97_RS06555	263	AYI82_RS05800	263	AYI77_RS20810	263		
FlgH	BN1227_RS06930	224	AYI97_RS06550	224	AYI82_RS05805	224	AYI77_RS20815	224		
			AYI82_RS05800	223	AYI77_RS20810	223				
FlgI	BN1227_RS06935	363	AYI97_RS06545	363	AYI82_RS05800	363	AYI77_RS20810	363		
FlgJ	BN1227_RS06940	336	AYI97_RS06540	336	AYI82_RS05785	336	AYI77_RS20795	336		
FlgK	BN1227_RS06945	641	AYI97_RS06535	641	AYI82_RS05780	641	AYI77_RS20790	641		
FlgL	BN1227_RS06950	401	AYI97_RS06530	401	AYI82_RS05775	401	AYI77_RS20785	401		
FlgM	BN1227_RS06880	106	AYI97_RS06600	106	AYI82_RS05055	94	AYI77_RS09375	94		
	BN1227_RS21265	94	AYI97_RS14315	94	AYI82_RS05845	94	AYI77_RS20855	94		
FlgN	BN1227_RS06875	143	AYI97_RS06605	143	AYI82_RS05060	171	AYI77_RS09370	171		
FlgP	BN1227_RS06870	155	AYI97_RS06610	155	AYI82_RS05855	171	AYI77_RS09370	171		
FlgT	BN1227_RS06860	385	AYI97_RS06620	385	AYI82_RS05865	143	AYI77_RS20860	143		
FlhA	BN1227_RS07090	239	AYI97_RS06390	239	AYI82_RS04955	239	AYI77_RS20445	239		
FlhB	BN1227_RS21115	236	AYI97_RS14215	236	AYI82_RS05635	236	AYI77_RS09475	236		
FlhD	BN1227_RS06970	456	AYI97_RS06510	456	AYI82_RS04980	445	AYI77_RS20325	451		
FlhE	BN1227_RS21190	445	AYI97_RS14240	445	AYI82_RS05755	456	AYI77_RS20325	451		
FlhF	BN1227_RS07000	110	AYI97_RS06480	110	AYI82_RS05900	111	AYI77_RS09340	111		
FlhG	BN1227_RS21300	111	AYI97_RS14350	111	AYI82_RS05725	110	AYI77_RS20355	110		
FlhH	BN1227_RS07005	569	AYI97_RS06475	569	AYI82_RS05085	555	AYI77_RS09345	555		
FlhI	BN1227_RS21295	555	AYI97_RS14345	555	AYI82_RS05820	555	AYI77_RS20360	569		
FlhJ	BN1227_RS07010	347	AYI97_RS06470	347	AYI82_RS05080	328	AYI77_RS09350	324		
FlhK	BN1227_RS21290	328	AYI97_RS14340	328	AYI82_RS05715	328	AYI77_RS20365	347		
FlhL	BN1227_RS07015	322	AYI97_RS06465	324	AYI82_RS05710	324	AYI77_RS20370	324		
FlhM	BN1227_RS07020	446	AYI97_RS06460	446	AYI82_RS05070	441	AYI77_RS09360	441		
FlhN	BN1227_RS21280	441	AYI97_RS14330	441	AYI82_RS05705	446	AYI77_RS20375	446		
FlhO	BN1227_RS07025	149	AYI97_RS06455	149	AYI82_RS05700	149	AYI77_RS20380	149		
FlhP	BN1227_RS07040	135	AYI97_RS06445	174	AYI82_RS04960	145	AYI77_RS11650	135		
FlhQ	BN1227_RS07035	174	AYI97_RS14220	145	AYI82_RS05690	174	AYI77_RS20390	174		
FlhR	BN1227_RS21170	145	AYI97_RS17155	135	AYI82_RS09710	135	AYI77_RS20300	135		
Table 2: Continued.

Gene	locus_tag	Length	locus_tag	Length	locus_tag	Length	locus_tag	Length
FliM	BN1227_RS07040	342	AY197_RS06440	342	AY182_RS05685	342	AY177_RS18030	238
	BN1227_RS21315	300	AY197_RS14365	300	AY182_RS06430	300	AY177_RS20395	342
FliN	BN1227_RS07045	126	AY197_RS06435	126	AY182_RS05110	114	AY177_RS18025	114
	BN1227_RS21320	114	AY197_RS14370	114	AY182_RS05680	126	AY177_RS20400	126
FliO	BN1227_RS07050	119	AY197_RS06430	119	AY182_RS05675	119	AY177_RS20405	119
FliP	BN1227_RS07055	247	AY197_RS06425	247	AY182_RS05115	265	AY177_RS18020	265
	BN1227_RS21325	265	AY197_RS14375	265	AY182_RS05670	247	AY177_RS20410	247
FliQ	BN1227_RS07060	89	AY197_RS06420	89	AY182_RS05120	89	AY177_RS18015	89
	BN1227_RS21330	89	AY197_RS14380	89	AY182_RS05665	89	AY177_RS20415	89
FliR	BN1227_RS07065	265	AY197_RS06415	265	AY182_RS05125	259	AY177_RS18010	259
	BN1227_RS21335	259	AY197_RS14385	259	AY182_RS05660	265	AY177_RS20420	265
FliS	BN1227_RS06980	136	AY197_RS06500	136	AY182_RS04975	126	AY177_RS09455	126
	BN1227_RS21185	126	AY197_RS14235	126	AY182_RS05745	136	AY177_RS20335	136
flhA	BN1227_RS21345	692	AY197_RS14395	692	AY182_RS05135	692	AY177_RS18000	692
	BN1227_RS07075	701	AY197_RS06405	701	AY182_RS05650	701	AY177_RS20430	701
flhB	BN1227_RS07140	105	AY197_RS06340	105	AY182_RS05585	105	AY177_RS20960	105
	BN1227_RS21340	376	AY197_RS14390	376	AY182_RS05130	376	AY177_RS18005	376
	BN1227_RS07070	378	AY197_RS06410	378	AY182_RS05655	378	AY177_RS20425	378
flhF	BN1227_RS07080	458	AY197_RS06400	458	AY182_RS05645	458	AY177_RS20435	458
reservoirs. In this study, we investigated the core genetic structure underlying *S. algae* virulence. The pathogenicity and distribution patterns of the *S. algae* strains extended our understanding of their pathogenic potential.

Previous attempts have been made to report the basic features of the genome of *S. algae* from various sources [33, 34]. In the present study, we used comparative genomics to analyze chromosomal sequence of four isolates to determine the common genetic content and organization, unique virulence attributes, and evolutionary relationship with other strains. Whole-genome sequence analysis of *S. algae* detected the presence of chemotaxis gene cluster cheYZA operon that is conserved in the chemotactic bacteria [35]. Chemotaxis is a directed motility in response to concentration gradients of signals. The cheA was demonstrated to be essential for chemotaxis using a two-component pathway [36]. In brief, CheA phosphorylates cheY and then is dephosphorylated by the phosphatase cheZ [37]. Previous studies revealed that CheW and CheA share structural homology and bind to the same site on chemoreceptors [37]. CheW is essential to the activation of CheA and the formation of CheA-CheW complex [38]. Owing to the wide range of *S. algae* habitats, the drivers of its chemotaxis could be very diverse. Previous studies have demonstrated that pathogenic bacteria use chemotaxis to localize reservoirs. Further study would be needed to identify the microenvironments suit for *S. algae* and the trigger of its chemotaxis.

Biliary tract infection is main manifestation of *S. algae* infection, and bile resistance has been noted in pathogenic strains [31]. In the study we also identified genes associated with bile adaption. The *exbBD* gene encodes Ton energy transduction system implicated in the response to bile [39, 40]. We also detected *galU*, *htpB*, and *wecA* involved in bile resistance [41–43]. The results support an earlier genomic study suggesting a common mechanism of bile resistance in *Shewanella*.

Motility is one characteristic of *S. algae* [3]. We identified series of flagellar gene operons in *S. algae* genomes. These flagellar systems are unique and require more study regarding the evolution and organization. Hemolysis is a main pathogenic feature in *S. algae* [44]. The gene *hlyA* encodes RTX pore-forming toxin α-hemolysin, which alters membrane permeability and causes cell lysis in a variety of human and animal hosts [45].

5. Conclusions

In conclusion, this is one of the few studies tracking genetic background of putative virulence-related genes in *S. algae*. Although the number of strains was limited, we highlighted the unique characteristics of core virulence determinants in these strains, as a high level of genomic conservation.

Data Availability

The sequence data are publicly available in NCBI SRA database (accession number: ACCC [LVCY00000000.1], CHL [LVDF00000000.1], and YHL [LVDU00000000.1]).

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors acknowledge the Taiwan’s Ministry of Science and Technology (106-2221-E-194-056-MY3 and 107-2221-E-194-030-MY2), Taichung Tzu Chi Hospital (TTCRD 109-15) and Taichung Veterans General Hospital (TCVGH-1093901C) for providing funding for this study.

References

[1] U. Simidu, K. Kita-Tsukamoto, T. Yasumoto, and M. Yotsu, “Taxonomy of four marine bacterial strains that produce tetrodotoxin,” *International Journal of Systematic Bacteriology*, vol. 40, no. 4, pp. 331–336, 1990.
[2] H. Nozue, T. Hayashi, Y. Hashimoto et al., “Isolation and characterization of shewanella alga from human clinical specimens and emendation of the description of *S. alga* simidu et al., 1990, 335,” *International Journal of Systematic Bacteriology*, vol. 42, pp. 628–634, 1992.
[3] J. M. Janda and S. L. Abbott, “The genus *Shewanella*: from the briny depths below to human pathogen,” *Critical Reviews in Microbiology*, vol. 40, no. 4, pp. 293–312, 2014.
[4] A. J. Martin-Rodriguez, O. Martin-Pujol, F. Artilles-Campelo, M. Bolanos-Rivero, and U. Romling, “Shewanella spp. infections in gran canaria, Spain: retrospective analysis of 31 cases and a literature review,” *JMM Case Reports*, vol. 4, Article ID e005131, 2017.
[5] K. Youssf, S. Bekal, V. Usongo, and A. Touati, “Current trends of human infections and antibiotic resistance of the genus shewanella,” *European Journal of Clinical Microbiology & Infectious Diseases*, vol. 36, no. 8, pp. 1353–1362, 2017.
[6] Y. S. Chen, Y. C. Liu, M. Y. Yen et al., “Skin and soft-tissue manifestations of Shewanella putrefaciens infection,” *Clinical Infectious Diseases*, vol. 25, no. 2, pp. 225–229, 1997.
[7] C. Chen, C. Hu, X. Chen, and L. Zhang, “Identification and characterization of shewanella alga as a novel pathogen of ulcer disease of fish scinemos occelata,” *Oecologia et Limnologia Sinica*, vol. 34, pp. 1–8, 2003.
[8] S. Y. Tseng, P. Y. Liu, Y. H. Lee et al., “The pathogenicity of shewanella alga and ability to tolerate a wide range of temperatures and salinities,” *Canadian Journal of Infectious Diseases and Medical Microbiology*, vol. 2018, Article ID 6976897, 9 pages, 2018.
[9] Z. Han, J. Sun, A. Lv et al., “Isolation, identification and characterization of Shewanella alga from reared tongue sole, Cynoglossus semilaevis G¨unther,” *Aquaculture*, vol. 468, pp. 356–362, 2017.
[10] P. Turgeon, P. Michel, P. Levallois et al., “Antimicrobial-ResistantEscherichia coliin public beach waters in quebec,” *Bulletin of Veterinary Preventive Medicine*, vol. 23, no. 2, pp. 111–118, 2017.
[11] M. Harcet, M. Roller, H. Cetkovic et al., “Demosponge est sequencing reveals a complex genetic toolkit of the simplest
