Prolonged viral shedding in feces of children with COVID-19: a systematic review and synthesis of data

Wen-Ting Li · Yun Zhang · Miao Liu · Yan-Qin Liu · Xiang Ma

Received: 14 April 2022 / Revised: 25 August 2022 / Accepted: 9 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
During the coronavirus disease 2019 (COVID-19) epidemic, many reports have indicated that children shed the virus longer than adults in stool, and that most of the children had mild or even asymptomatic infections, which increased the potential risk for feces to be a source of contamination and may play an important role in the spread of the virus. In this review, we collected relevant literature to summarize the duration of fecal viral shedding in children with COVID-19. We found that in about 60% of the cases, the fecal shedding time was between 28 and 42 days, which was much longer than that of adults. We further explored the possible reason for prolonged shedding and its the potential impact. The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the significant difference in expression of angiotensin-converting enzyme 2 (ACE2) in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children.

Conclusion: Children with COVID-19 show prolonged fecal shedding compared to adults. Several mechanisms may be involved in the longer fecal viral shedding. Viral shedding in the stool could be contributing to a possible route of transmission. Therefore, we think that further preventive measures in children should be taken to reduce the spread of the disease.

What is Known:
- Children with COVID-19 are more likely to have asymptomatic infections and to experience mild symptoms.
- Some patients continue to shed the virus in feces, despite respiratory samples testing negative.

What is New:
- Children with COVID-19 carried a longer-term fecal viral shedding than adults.
- The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the difference in expression of ACE2 in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children.

Keywords COVID-19 · Children · Stool · Viral shedding

Abbreviations
- ACE2: Angiotensin-converting enzyme 2
- COVID-19: Coronavirus disease 2019
- PCR: Polymerase chain reaction
- RNA: Ribonucleic acid
- SARS-CoV-2: Syndrome coronavirus 2
- 2019-nCoV: 2019 Novel coronavirus
- MERS-CoV: Middle East respiratory syndrome coronavirus

Introduction
COVID-19 continues to pose a global threat with the emergence of new variants. It has been reported that children with COVID-19 often had a milder disease course and they were possible sources of its spread [1]. Children have also reported to have prolonged shedding of syndrome coronavirus 2
(SARS-CoV-2) in feces compared to adults[2–4], which, combined with the possibility of fecal–oral transmission [5], lead to concerns that children may be potential sources of undetected community transmission. This study aims to summarize the existing data on the duration of fecal viral shedding in children with COVID-19 and explore the reasons for prolonged shedding and its potential effects.

Method

A systematic electronic databases search was performed in PubMed/MEDLINE and Web of Science using the search terms “COVID-19 or 2019-nCoV or SARS-CoV-2” and “pediatrics or children or infant or neonate or teenagers or adolescents” and “fecal or fecal or stool or rectal” between 2019 and the present time (i.e., January 6, 2022). In addition, the reference lists of all known primary and review articles were scrutinized to identify cited articles not captured by the electronic searches. Studies were included if they reported data on the duration of gastrointestinal viral shedding in children with COVID-19 in English.

The initial search produced 153 potentially relevant articles. After removing duplicates and excluding irrelevant articles, 70 full-text articles were assessed. Articles were further excluded because of the following: (1) the articles did not present original data (n = 7); (2) reported cases with incomplete information (n = 7); (3) review articles, meta-analyses, perspectives, comments, opinion articles, and letters (n = 21); (4) no original data (n = 7); (5) incomplete information (n = 7); (6) adult-only or including both adults and children but not presenting sufficient data for children (n = 10).

Studies included in data synthesis (n = 25) = 176 patients.
meta-analyses, perspectives, comments, opinion articles, and letters (n = 21); (4) studies including adult-only or including adults and children but not did not present sufficient data for children (n = 10); and (5) studies not written in English (Fig. 1).

Results

A total of 25 studies (n = 176 patients) were included in the final analysis [2–4, 6–27]. Among the selected studies, 14 (56%) were from China and 11 (44%) were from other countries (South Korea: three, Japan: one, Singapore: one, Italy: one, the Netherlands: one, Germany: one, India: one, and Iran: one). The number of cases enrolled in each study ranged from one to 49 and the age ranged from 7 days to 210 months. Of the 176 cases, 175 (99.4%) had a positive nasopharyngeal or throat swab (one case had positive stool specimens only). The duration of viral shedding via the respiratory route ranged from 0 day to at least 1 month, and the duration of gastrointestinal viral shedding ranged from 6 to 100 days. Several studies reported the duration of viral shedding as a range only, and thus, the mean value could not be calculated. The prevalence of all gastrointestinal symptoms was 24% (43/176), including diarrhea, vomiting, abdominal pain, liver function abnormality, nausea, gastric appetite, and constipation (Table 1).

According to the viral shedding time of anal/rectal swabs and stool specimens, these cases can be divided further into five groups: less than 14 days, 14–28 days, 28–42 days, 42–56 days, and more than 56 days. In 60% of the cases, the gastrointestinal shedding time was between 28 and 42 days, while only 4% of the cases presented shedding time shorter than 14 days, and only 2% of the cases reported shedding time longer than 56 days. The number of cases in the remaining two groups accounted for 26% and 8%, respectively (Fig. 2).

Discussion

SARS-CoV-2, SARS-CoV, and the Middle East respiratory syndrome-CoV (MERS-CoV) are three new species from the same coronavirus family, which are notorious to global people as they caused epidemics of serious respiratory disease. A clear difference between them was the detection of viral RNA in stool. It was reported that MERS-CoV RNA was detectable in only 14.6% of stool samples from infected patients [28], while for SARS-CoV and SARS-CoV-2, the RNA prevalence in stool samples was very high. Ling et al. found that the SARS-CoV-2 RNA can be detected in the stool of 81.8% (54/66) adult patients, and the median time from the onset of symptoms to first negative RT-PCR results for stool specimens was 11.0 (9.0–16.0) days [29]. Chen et al. found that the median duration time of positive RT-PCR test results for viral RNA in feces was 9, 8, and 14 days in uncomplicated, mild, and severe adult patients, respectively [30]. In one systematic review of 55 studies (1348 patients), the median duration of fecal RT-PCR positivity of children and adults was 22 days and 18 days, respectively [31]. Another meta-analysis suggested a median duration of 19.2 days for fecal viral clearance in adults [32]. In this study, we investigated the duration of gastrointestinal viral shedding in children and found that 60% of the cases were between 28 and 42 days, and some children presented viral excretion time of over 56 days. These findings demonstrated that children with COVID-19 have a longer-term fecal viral shedding than adults.

The reasons why children need a longer time to shed SARS-CoV-2 in their stool have not yet been fully understood. In the following, we summarize several possible mechanisms. First, SARS-CoV-2 gains entry to cells through the ACE2 receptor [33], which has been detected in intestinal cells [34]. Recently, in vitro models of SARS-CoV-2 infection show that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of adult origin [35]. The different expression of ACE2 in the intestines from children and adults may play a role in the duration of gastrointestinal viral shedding. Second, the duration of viral shedding is related closely to the host immune status. Several studies have suggested that immunocompromised COVID-19 patients may have prolonged periods of SARS-CoV-2 viral shedding [36, 37]. A study of 104 COVID-19 patients by Hao et al. reported that a decrease in T cells and B cells was associated with prolonged viral RNA shedding [38]. For other respiratory viral infections, such as influenza [39], adenovirus [40], and norovirus [41], current data available suggest high rates of asymptomatic carriage in the stool and a prolonged carrier state in children, which are related in part to children’s current stage of immune development. It can be interpreted that prolonged fecal viral RNA shedding in children with COVID-19 may be related to the immaturity of their immune systems. Third, gut microbiota has been reported to play a key role in determining the sensitivity of patients to viral infection. An animal study showed that the bacterial microbiome prevented persistent murine norovirus infection via the replenishment of the bacterial microbiota related to host immune specificity [41]. Another research has confirmed that Coprobacillus spp. has been observed to upregulate ACE2 in the murine gut [42]. Recently emerging evidence has suggested a link between the infection of COVID-19 and gut microbiome status [43–45]. Studies show that when compared to the microbiota of adults, children have less...
Table 1 Characteristics of the included studies

Study	Setting	Age	Sample size	Specimens tested	Method	Duration of respiratory viral shedding	Duration of gastrointestinal viral shedding	Gastrointestinal symptoms
1. Cho and Ha [8]	Korea	45 days	1	Nasal swab, urine and serum specimens, stool specimens	RT-PCR	21 days	>12 weeks	Diarrhea
2. Holm-Jacobsen et al. [24]	Denmark	22 days	1	Pharyngeal and rectal swabs	RT-PCR	11 days	45 days	N/A
3. Uda et al. [27]	Japan	21 months	1	Nasopharyngeal and stool samples	RT-PCR	13 days	61 days	N/A
4. De Ioris et al. [9]	Italy	8 days–210 months	22	Nasopharyngeal swab, stool samples	RT-PCR	8 days	14 days	Diarrhea and vomiting
5. Wolf et al. [21]	Germany	2 years, 5 years	2	Nasopharyngeal swabs, stools samples	RT-PCR	5–6 days	>4 weeks	Vomiting
6. Dong et al. [10]	China, Wuhan	2 years	2	Nasopharyngeal, rectal specimen	RT-PCR	0 day	45 days	Vomiting (n=1)
7. Xing et al. [2]	China, Qingdao	1.5 years, 5 years, 6 years	3	Throat swabs, fecal specimens	RT-PCR	15 days	23 days	Abdominal pain and diarrhea (n=1)
8. Tariverdi et al. [26]	Iran	27 months	1	Nasopharyngeal and stool samples	RT-PCR	>1 month	>1 month	diarrhea
9. Mohanty et al. [25]	India	17 months, 36 months	2	Nasal/throat swab, stool samples	RT-PCR	Not tested	99 days	N/A
10. Chen et al. [7]	China, Liaocheng	11 months	1	Nasopharyngeal swab, fecal samples	RT-PCR	22 days	100 days	N/A
11. Ma et al. [3]	China, Jinan	11 months–9 years	6	Nasal/throat, stool swab	RT-PCR	1–14 days	>22–35 days	N/A
12. Slaats et al. [18]	Netherlands	7 days	1	Nasopharyngeal swab, stool samples	RT-PCR	19 days	42 days	N/A
13. Cai et al. [6]	China, Shanghai	11.5±5.12 years	49	Nasopharyngeal swab, pharyngeal swab, and stool specimen	RT-PCR	14.1±6.4 days (asymptomatic cases) 14.8±8.4 days (symptomatic cases) 28.1±13.3 days (asymptomatic cases) 30.8±18.6 days (symptomatic cases)	N/A	
14. Xu et al. [4]	China, Guangzhou	2 months–15 years	10	Nasopharyngeal and rectal swab	RT-PCR	2–20 days	6–29 days	N/A
15. Jiehao et al. [14]	China, Shanghai	3–131 months	10	Nasopharyngeal/ pharyngeal swabs, stool samples, urine, serum	RT-PCR	12 days	10–30 days	N/A
16. Liu et al. [16]	China, Shanghai	7–139 months	9	Nasopharyngeal/ oropharyngeal swabs, stool samples	RT-PCR	4–13 days	43 days	N/A
17. Hua et al. [13]	China, Hangzhou	8.2 years	43	Respiratory, fecal swab	RT-PCR	14.5 days	30.6 days	Diarrhea (n=3), vomiting and abdominal pain (n=2), liver function abnormality (n=4)
18. Fan et al. [11]	China, Jingzhou	3 months	1	Oropharyngeal swabs, the anal swabs	RT-PCR	14 days	28 days	Diarrhea
19. Zhang et al. [23]	China, Tianjin	6–9 years	3	Throat swab, stool	RT-PCR	10.6 days	>24 days	Nausea (n=1), gastric appetite (n=2)
20. Kam et al. [15]	Singapore	6 months	1	Nasopharyngeal specimens, stool sample	RT-PCR	16 days	>9 days	N/A
diverse microbiota despite the higher bacterial load [46], and thus, the differences in the gut microbiota may alter the ability of the virus to gain cellular entry into the gut, which may further influence the duration of viral shedding. Four, other factors could also play a role. Ma et al. [3] think that children often have poorer hand hygiene practices, causing contamination of the gastrointestinal tract through repeated touching with hands containing the virus or its fragments, and they are more prone to silent aspiration, and thus, the virus in the sputum or saliva may enter the gastrointestinal tract through swallowing.

In addition to the reasons for prolonged viral shedding in feces, the infectivity of these particles and whether they harbor the potential to be spread fecally orally have yet to be discussed. During the SARS-CoV-1 outbreak in 2003, high concentrations of SARS CoV were found in the feces and urine of a patient, which, leading to the formation of viral aerosols, and later studies suggest that the plumbing and ventilation systems interacted to transmit the SARS-CoV at an apartment complex in Hong Kong rapidly [47]. Recent studies have been able to isolate live viruses from stool or rectal swabs [5, 48, 49]. Lin et al. demonstrated that gastrointestinal symptoms can be more severe when the SARS-CoV-2 is present in gastrointestinal tissue confirming by endoscopy [50]. Moreover, it has been reported that viral particles in environmental settings may remain viable for up to 3 h in aerosols and 72 h on solid surfaces [51]. These findings suggested that viral shedding in the stool could be contributing to a possible route of transmission.

Recently, a new SARS-CoV-2 variant called Omicron was first reported in South Africa and quickly spread to other countries [52]. Compared with the previous variants, Omicron appears to be more infectious but causes a milder disease with younger patients and fewer hospitalizations [53, 54]. Given the situation, mild and atypical presentations of the infection in children may make early discovery difficult, and combined with the prolonged viral shedding in their feces and poorer hand hygiene practices, it may lead to further transmission of the disease.

Conclusion

Children with COVID-19 show prolonged fecal shedding compared to adults. The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the significant difference in expression of ACE2 in the intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children. Viral shedding in the stool could be contributing to a possible route of transmission. Therefore, to reduce the spread of the disease, further preventive measures in children should be taken, including hand hygiene and disinfection of public areas and health places.
Acknowledgements The authors would like to thank the support of the Key Laboratory of Pediatric Respiratory Disease, Jinan Children’s Hospital.

Authors’ contributions X. Ma and W.T. Li contributed to the conception and design of the manuscript. W.T. Li edited the manuscript. All the authors contributed to the literature search, revised the article, and approved its final version.

Funding This work was supported by the Key Laboratory of Pediatric Respiratory Disease (Xiang Ma is the PI).

Declarations

Ethical approval This is a review article. No ethical approval is required.

Conflict of interest The authors declare no competing interests.

References

1. Kelvin AA, Halperin S (2020) COVID-19 in children: the link in the transmission chain. Lancet Infect Dis 20:633–634. https://doi.org/10.1016/S1473-3099(20)30366-X
2. Xing Y-H, Ni W, Wu Q, Li W-J, Li G-J, Wang W-D, Tong J-N, Song X-F, Wing-Kin Wong G, Xing Q-S (2020) Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect 53:473–480. https://doi.org/10.1016/j.jmii.2020.03.021
3. Ma X, Su L, Zhang Y, Zhang X, Gai Z, Zhang Z (2020) Do children need a longer time to shed SARS-CoV-2 in stool than adults? J Microbiol Immunol Infect 53:373–376. https://doi.org/10.1016/j.jmii.2020.03.010
4. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J et al (2020) Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 26:502–505. https://doi.org/10.1038/s41591-020-0817-4
5. Xiao F, Sun J, Xu Y, Li F, Huang X, Li H, Zhao J, Huang J, Zhao J (2020) Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerg Infect Dis 26:1920–1922. https://doi.org/10.3201/eid2608.200681
6. Cai J, Wang X, Zhao J, Ge Y, Xu J, Tian H, Chang H, Xia A, Wang J, Zhang J et al (2020) Comparison of clinical and epidemiological characteristics of asymptomatic and symptomatic SARS-CoV-2 infection in children. Virol Sin 35:803–810. https://doi.org/10.1007/s12250-020-00312-4
7. Chen S, Shi J, Tang W, Zhang A, Pan L, An M, Zhang H, Xue S, Wu K, Chen S et al (2020) An asymptomatic SARS-CoV-2-infected infant with persistent fecal viral RNA shedding in a family cluster: a rare case report. Front Med (Lausanne) 7:562875–562875. https://doi.org/10.3389/fmed.2020.562875
8. Cho SM, Ha GY (2020) A case of COVID-19 in a 45-day-old infant with persistent fecal virus shedding for more than 12 weeks. Yonsei Med J 61:901–903. https://doi.org/10.3349/ymj.2020.61.10.901
9. De Ioris MA, Scarselli A, Ciofi Degl’Atti ML, Ravà L, Scaramuzzi R, Concato C, Romani L, Scrocca R, Geremia C, Carletti M et al (2020) Dynamic viral severe acute respiratory syndrome coronavirus 2 RNA shedding in children: preliminary data and clinical consideration from an Italian regional center. The Journal of the Pediatric Infectious Diseases Society 9:366–369. https://doi.org/10.1093/jpids/piaa065
10. Dong Q-Q, Qiu L-R, Cheng L-M, Shu S-N, Chen Y, Zhao Y, Hao Y, Shi H, Luo X-P (2020) Kindergartens reopening in the period of regular epidemic prevention and control, beneficial or harmful? Curr Med Sci 40:817–821. https://doi.org/10.1007/s11596-020-2257-2
11. Fan Q, Pan Y, Wu Q, Liu S, Song X, Xie Z, Liu Y, Zhao L, Wang Z, Zhang Y et al (2020) Anal swab findings in an infant with COVID-19. Pediatr Investig 4:48–50. https://doi.org/10.1002/pd4.12186
12. Han MS, Seong M-W, Heo EY, Park JH, Kim N, Shin S, Cho SI, Park SS, Choi EH (2020) Sequential analysis of viral load in a neonate and her mother infected with severe acute respiratory syndrome coronavirus 2. Clin Infect Dis 71:2236–2239. https://doi.org/10.1093/cid/ciaa447
13. Hua C-Z, Miao Z-P, Zheng J-S, Huang Q, Sun Q-F, Lu H-P, Su F-F, Wang W-H, Huang L-P, Chen D-Q et al (2020) Epidemiological features and viral shedding in children with SARS-CoV-2 infection. J Med Virol 92:2804–2812. https://doi.org/10.1002/jmv.26180
14. Jiehao C, Jin X, Dajiong L, Zhi Y, Lei X, Zhenghai Q, Yuehua Z, Hua Z, Ran J, Pengcheng L et al (2020) A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis 71:1547–1551. https://doi.org/10.1093/cid/ciaa198
15. Kam K-Q, Yung CF, Cui L, Tzer Pin Lin R, Mak TM, Maiwald M, Li J, Chong CY, Nadua K, Tan NWH et al (2020) A well infant with coronavirus disease 2019 with high viral load. Clin Infect Dis 71:847–849. https://doi.org/10.1093/cid/ciaa201
16. Liu P, Cai J, Jia R, Xia S, Wang X, Cao L, Zeng M, Xu J (2020) Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19. Emerging Microbes & Infections 9:1254–1258. https://doi.org/10.1080/22221751.2020.1772677
17. Park JY, Han MS, Park KU, Kim JY, Choi EH (2020) First pediatric case of coronavirus disease 2019 in Korea. J Korean Med Sci 35:e124–e124. https://doi.org/10.3346/jkms.2020.35.e124
18. Slaats MALJ, Versteylen M, Gast KB, Oude Munnik BB, Pas SD, Bentvelsen RG, van Beek R (2020) Case report of a neonate with high viral SARS-CoV-2 loads and long-term virus shedding. J Infect Public Health 13:1878–1884. https://doi.org/10.1016/j.jiph.2020.01.013
19. Tan Y-p, Tan B-y, Pan J, Wu J, Zeng S-z, Wei H-y (2020) Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China. Journal of Clinical Virology 127:104353. https://doi.org/10.1016/j.jcv.2020.104353
20. Tang A, Tong Z-D, Wang H-L, Dai Y-X, Li K-F, Liu J-N, Wu W-J, Yuan C, Yu M-L, Li P et al (2020) Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis 26:1337–1339. https://doi.org/10.3201/eid2606.200301
21. Wolf GK, Glueck T, Huebner M, Muenchhoff M, Hoffmann D, French LE, Kepper OT, Prozor U (2020) Clinical and epidemiological features of a family cluster of symptomatic and asymptomatic severe acute respiratory syndrome coronavirus 2 infection. Journal of the Pediatric Infectious Diseases Society 9:362–365. https://doi.org/10.1093/jpids/piaa060
22. Zhang B, Liu S, Dong Y, Zhang L, Zhong Q, Zou Y, Zhang S (2020) Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19). J Infect 81:e49–e52. https://doi.org/10.1016/j.jinf.2020.04.023
23. Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, Guo W, Cai C, He S, Xu Y (2020) Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J Med Virol 92:909–914. https://doi.org/10.1002/jmv.25795
24. Holm-Jacobsen BN, Vonasek JH, Hagstrom S, Donneborg ML, Sørensen S (2021) Prolonged rectal shedding of SARS-CoV-2 in
a 22-day-old-neonate: a case report. BMC Pediatr 21:506–506. https://doi.org/10.1186/s12874-021-02976-7

25. Mohanty MC, Taur PD, Sawant UP, Yadav RM, Potdar V (2021) Prolonged fecal shedding of SARS-CoV-2 in asymptomatic children with inborn errors of immunity. J Clin Immunol 41:1748–1753. https://doi.org/10.1007/s10875-021-01132-1

26. Tarverdi M, Farahbakhsh N, Gouklani H, Khozrarifar F, Tamaddondar M (2021) Dysentery as the only presentation of COVID-19 in a child: a case report. J Med Case Rep 15:65–65. https://doi.org/10.1186/s13256-021-02672-1

27. Uda K, Okita K, Soneda K, Taniguchi K, Horikoshi Y (2021) Kawasaki disease following coronavirus disease 2019 with prolonged fecal viral shedding. Pediatr Int 63:597–599. https://doi.org/10.1111/ped.14452

28. Corman VM, Albarakk AM, Omrani AS, Albarakk MM, Farah M, Almasri M, Muth D, Sieberg A, Meyer B, Assiri M (2020) Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis 62:477–483. https://doi.org/10.1093/cid/civ591

29. Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ, Dai FH, Wu F, Song ZG, Huang W, Chen J (2020) Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J 133(9):1039–1043. https://doi.org/10.3736/CJM9.00000000000000774

30. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C et al (2020) The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 92:833–840. https://doi.org/10.1002/jmv.25825

31. Morone G, Palomba A, Iosa M, Caporaso T, De Angelis D, Venturiero V, Savor A, Cioito P, Cardone D, Gimigliano F et al (2020) Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: a systematic review. Front Med (Lausanne) 7:562. https://doi.org/10.3389/fmed.2020.00562

32. Elshazli RM, Kline A, Al-Beltagi M, Saeed NK, Bediwy AS, El-Sawaf Y (2021) Paediatric gastrointestinal disorders in SARS-CoV-2 infection: epidemiological and clinical implications. World J Gastroenterol 27:1716–1727. https://doi.org/10.3748/wjg.v27.i16.1716

33. Shah V (2021) Letter to the editor: microbiota in the respiratory system - a possible explanation to age and sex variability in susceptibility to SARS-CoV-2. Microbiol Insights 14:1178636120988604–11786361209988604. https://doi.org/10.1186/s13256-020-02672-1

34. Hoffmann M, Klein-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schieglens TS, Herrler G, Wu N-H, Nitsche A et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven prostanoid inhibitor. Cell 181:271-280. e278. https://doi.org/10.1016/j.cell.2020.02.052

35. Hamming I, Timens W, Bulthuis MLC, Lely AT, Goor HV (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. J Pathol 203:631–637. https://doi.org/10.1002/path.1570

36. Giobbe GG, Bonfante F, Jones BC, Gagliano O, Luni C, Zambaiti E, Perin S, Laterza C, Busslinger G, Stuart H et al (2021) SARS-CoV-2 infection and replication in human gastric organoids. Nat Commun 12:6610–6610. https://doi.org/10.1038/s41467-021-26762-2

37. Dolan SA, Mulcahy Levy J, Moss A, Pearce K, Butler M, Jung S, Dominguez SR, Mwangi E, Maloney K, Rao S (2021) SARS-CoV-2 persistence in immunocompromised children. Pediatr Blood Cancer 68:e29277–e29277. https://doi.org/10.1002/pbc.29277

38. El Dannan H, Al Hassani M, Ramsi M (2020) Clinical course of COVID-19 among immunocompromised children: a clinical case series. BMJ case reports 13:e237804. https://doi.org/10.1136/bcr-2020-237804

39. Hao S, Lian J, Lu Y, Jia H, Hu J, Yu G, Wang X, Xu K, Ni Q, Li Y et al (2020) Decreased B cells on admission associated with prolonged viral RNA shedding from the respiratory tract in coronavirus disease 2019: a case-control study. J Infect Dis 222:367–371. https://doi.org/10.1093/infdis/jiaa311

40. Lau LHL, Ip DKM, Nishiura H, Fang VJ, Chan K-H, Peiris JSM, Leung GM, Cowling BJ (2013) Heterogeneity in viral shedding among individuals with medically attended influenza A virus infection. J Infect Dis 207:1281–1285. https://doi.org/10.1093/infdis/jit034

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.