Solving Optimization Problems over the Stiefel Manifold by Smooth Exact Penalty Functions

Nachuan Xiao* Xin Liu†

December 18, 2022

Abstract

In this paper, we present a novel penalty model called ExPen for optimization over the Stiefel manifold. Different from existing penalty functions for orthogonality constraints, ExPen adopts a smooth penalty function without using any first-order derivative of the objective function. We show that all the first-order stationary points of ExPen with a sufficiently large penalty parameter are either feasible, namely, are the first-order stationary points of the original optimization problem, or far from the Stiefel manifold. Besides, the original problem and ExPen share the same second-order stationary points. Remarkably, the exact gradient and Hessian of ExPen are easy to compute. As a consequence, abundant algorithm resources in unconstrained optimization can be applied straightforwardly to solve ExPen.

Keywords: orthogonality constraint, Stiefel manifold, penalty function

1 Introduction

In this paper, we consider the following optimization problem

$$\min_{X \in \mathbb{R}^{n \times p}} f(X)$$

subject to

$$X^\top X = I_p,$$

where I_p denotes the $p \times p$ identity matrix, and $f : \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$ satisfies the following assumption throughout this paper.

Assumption 1.1. Blank assumptions on f

1. f and ∇f are locally Lipschitz continuous in $\mathbb{R}^{n \times p}$.

The feasible region of the orthogonality constraints $X^\top X = I_p$ is the Stiefel manifold embedded in the $n \times p$ real matrix space, denoted by $S_{n,p} := \{X \in \mathbb{R}^{n \times p} | X^\top X = I_p\}$. We also call it as the Stiefel manifold for brevity. Optimization problems with orthogonality constraints have wide applications in statistics [49, 17], scientific computation [37, 43], image processing [6] and many other related areas [25, 41, 68]. Interested readers could refer to some recent works [21, 35, 63, 59], a recent survey [33], and several books [4, 10] for details.

*The Institute of Operations Research and Analytics, National University of Singapore, Singapore. (email: xnc@lsec.cc.ac.cn).
†State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, China (email: liuxin@lsec.cc.ac.cn). Research is supported in part by the National Natural Science Foundation of China (No. 12125108, 11971466, 11991021), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. ZDBS-LY-7022).

1 A mapping $T : \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^m$ is locally Lipschitz continuous over $\mathbb{R}^{n \times p}$ if for any $X_0 \in \mathbb{R}^{n \times p}$, there exists a constant M and $\delta > 0$ such that for any $X \in \mathbb{R}^{n \times p}$ satisfying $\|X - X_0\|_F \leq \delta$, it holds that $\|T(X) - T(X_0)\| \leq M \|X - X_0\|_F$.
1.1 Motivation

Optimization over the Stiefel manifold, which is a smooth and compact Riemannian manifold, has been discovered to enjoy a close relationship with unconstrained optimization. However, developing optimization approaches over the Stiefel manifold is inherently complicated by the nonconvexity of the manifold. Various existing unconstrained optimization approaches, i.e., the approaches for solving nonconvex unconstrained optimization problems, can be extended to their Riemannian versions by the local diffeomorphisms between the Stiefel manifold and Euclidean space. The approaches, called Riemannian optimization approaches for brevity hereinafter, include gradient descent with line-search [3, 4, 60, 36, 58], conjugate gradient methods [2], Riemannian accelerated gradient method [67, 66, 54, 13], Riemannian adaptive gradient methods [7], etc. With the frameworks and geometrical materials described in [4], theoretical results of these Riemannian optimization approaches have been established by following almost the same proof techniques as their unconstrained prototypes. These results include the global convergence, local convergence rate, worst-case complexity, saddle-point-escaping properties, etc., see [12, 55, 69, 5, 13, 24, 32] for instances.

The Riemannian optimization approaches usually consist of two fundamental parts. The first one is the so-called “retraction” which maps a point from the tangent space to the manifold. Retractions can be further categorized into two classes: the geodesic-like retractions and the projection-like ones. The former ones require to calculate the geodesics along the manifold and hence are expensive. The latter ones enjoy relatively lower computational cost, but as demonstrated in various existing works [21, 61, 63], computing the projection-like retractions is still more expensive than matrix-matrix multiplication. The second part is called “parallel transport” which moves a tangent vector along a given curve on a Stiefel manifold “parallelly”. The purpose of parallel transport is to design the manifold version of some advanced unconstrained optimization approaches, such as conjugate gradient methods or gradient methods with momentum. However, as illustrated in [4], computing the parallel transport on Stiefel manifold is equivalent to finding a solution to a differential equation, which is definitely impractical in computation. To this end, the authors of [4] have proposed the concept of vector transport, which can be regarded as an approximation to parallel transport, hence is computationally affordable. Unfortunately, due to the approximation error introduced by vector transports, analyzing the convergence properties of Riemannian optimization algorithms is challenging and usually cannot directly follow the their unconstrained origins, see [35] for instances. As illustrated in various existing works [67, 66, 12, 69, 5, 13], both parallel transports and geodesics play an essential role in establishing convergence properties. It is still difficult to verify whether their theoretical convergence properties is valid when these approaches are built by retractions and vector transports.

To avoid computing the retractions, parallel transports, or vector transports to the Stiefel manifold, some approaches aim to find smooth mappings from the Euclidean space to the Stiefel manifold, which directly reformulates OCP to unconstrained optimization. Among them, [39, 38] construct equivalent unconstrained problems for OCP by exponential function for square matrices. To efficiently compute the matrix exponential, they apply the iterative approach proposed by [30]. Therefore, their approaches require $O(n^3)$ flops in each iteration for computing the matrix exponential and thus are computationally expensive in practice. Inspired by [39, 38], several recent works use Cayley transformation [27, 47, 16, 40] to avoid computing the matrices exponential. These approaches require computing the inverse of $n \times n$ matrices in each iterate, which still requires $O(n^3)$ flops in general. Furthermore, calculating the derivatives through the exponential mapping or the Cayley transformation can be more costly. In particular, as illustrated in the numerical experiments in [16, 1], when applying nonlinear conjugate gradient methods, the computational time of these approaches is usually much higher than existing Riemannian conjugate gradient approaches.

Recently, some infeasible approaches have been verified to be efficient in solving optimization problems over the Stiefel manifold. They utilize a completely different angle with existing Riemannian optimization approaches. Based on the framework of the augmented Lagrangian method (ALM) [28, 51, 48, 8], the authors of [21] have proposed the proximal linearized augmented Lagrangian method (PLAM) and its column-wise normalization version (PCAL) for (OCP). Both PLAM and PCAL update the multipliers corresponding to the orthogonality constraints by a closed-form expression. Additionally, [1] have proposed the landing algorithm, which follows a two-step alternative
updating framework. Inspired by the closed-form updating scheme in PLAM and PCAL, the authors of [61] have proposed an exact penalty function named PenC,

$$
\min_{\|X\|_F \leq K} h_{\text{PenC}}(X) = f(X) - \frac{1}{2} \langle \Phi(X^\top \nabla f(X)), X^\top X - I_p \rangle + \frac{\beta}{4} \|X^\top X - I_p\|_F^2,
$$

where $K \geq \sqrt{p}$ is a prefixed constant and Φ is the symmetrization operator defined as

$$
\Phi(M) := \frac{1}{2}(M + M^\top).
$$

In [61], the authors have illustrated the equivalence between OCP and PenC, which further proposed the corresponding infeasible first-order and second-order methods PenCF and PenCS, respectively. Moreover, successive works [62, 34] have illustrated that PenC could be extended to objective function with special structures. The above-mentioned penalty-function-based approaches are verified to enjoy high efficiency and scalability due to avoiding retractions or parallel transport to the Stiefel manifold. However, their penalty functions involve the first-order derivatives of the original objective, which leads to two limitations. Firstly, the smoothness of the penalty function requires higher-order smoothness of the original objective function. Secondly, calculating an exact gradient of these penalty functions is usually expensive in practice. As a result, many existing unconstrained optimization approaches cannot be directly applied to minimize these penalty functions.

1.2 Contributions

The contributions of this paper can be summarized as the following two folds.

A novel penalty function We propose a novel penalty function

$$
\min_{X \in \mathbb{R}^{n \times p}} h(X) := f\left(X \left(\frac{3}{2}I_p - \frac{1}{2}X^\top X\right)\right) + \frac{\beta}{4} \|X^\top X - I_p\|_F^2,
$$

and construct the following unconstrained optimization problem which is abbreviated as ExPen.

$$
\min_{X \in \mathbb{R}^{n \times p}} h(X). \quad \text{(ExPen)}
$$

With a sufficiently large penalty parameter β, we illustrate that any first-order stationary point (FOSP) of ExPen is either feasible and hence a FOSP of OCP, or far away from the Stiefel manifold. Besides, we prove that any eigenvalue of the Riemannian Hessian at any first-order stationary point $X \in \mathcal{S}_{n,p}$ is an eigenvalue of $\nabla^2 h(X)$. Then we show that any second-order stationary point (SOSP) of ExPen is an SOSP of OCP. We call the above two relationships the first-order relationship and second-order relationship, respectively, for brevity. These two relationships imply that ExPen can be regarded as an exact penalty function.

A universal tool The exact penalty model ExPen builds up a bridge between various existing unconstrained optimization approaches and OCP. Moreover, those rich theoretical results of unconstrained optimization approaches can be directly applied in solving OCP. In particular, some newly developed techniques for unconstrained optimization can be extended to solve optimization over the Stiefel manifold through ExPen. We use the nonlinear conjugate gradient method as an example. It is difficult to find a compromise between computational efficiency and theoretical guarantee if we adopt Riemannian optimization approaches to achieve this extension. Preliminary numerical experiments illustrates that ExPen yields direct and efficient of nonlinear conjugate gradient solver from SciPy package.
1.3 Notations

In this paper, the Euclidean inner product of two matrices $X, Y \in \mathbb{R}^{n \times p}$ is defined as $\langle X, Y \rangle = \text{tr}(X^\top Y)$, where tr($A$) is the trace of the square matrix A. Besides, $\|\cdot\|_2$ and $\|\cdot\|_F$ represent the 2-norm and the Frobenius norm, respectively. The notations $\text{diag}(A)$ and $\text{Diag}(x)$ stand for the vector formed by the diagonal entries of matrix A, and the diagonal matrix with the entries of $x \in \mathbb{R}^n$ to be its diagonal, respectively. We denote the smallest eigenvalue of A by $\lambda_{\min}(A)$. We set the Riemannian metric on Stiefel manifold as the metric inherited from the standard inner product in $\mathbb{R}^{n \times p}$. We set T_X as the tangent space of Stiefel manifold at X, which can be expressed as

$$
T_X := \{ D \in \mathbb{R}^{n \times p} \mid \Phi(D^\top X) = 0 \},
$$

while N_X is denoted as the normal space of Stiefel manifold at X,

$$
N_X := \{ D \in \mathbb{R}^{n \times p} \mid D = X\Lambda, \Lambda = \Lambda^\top \}.
$$

And $\text{grad} f(X)$ denotes the Riemannian gradient of f at $X \in S_{n,p}$ in Riemannian metric that is inherited from the Euclidean metric, namely,

$$
\text{grad} f(X) := \nabla f(X) - X\Phi(X^\top \nabla f(X)).
$$

Besides, we use $\nabla^2 f(X)[D]$ to represent the Hessian-matrix product. The Riemannian Hessian of f at $X \in S_{n,p}$ in Euclidean measure is denoted as $\text{hess} f(X) : T_X \rightarrow T_X$, whose bilinear form can be written as

$$
\langle D_1, \text{hess} f(X)[D_2] \rangle := \langle D_1, \nabla^2 f(X)[D_2] - D_2\Phi(X^\top \nabla f(X)) \rangle, \quad \forall D_1, D_2 \in T_X.
$$

Finally, $P_{S_{n,p}}(X) = UV^\top$ denotes the orthogonal projection to Stiefel manifold, where $X = U\Sigma V^\top$ is the economic SVD of X with $U \in S_{n,p}$, $V \in S_{p,p}$ and Σ is $p \times p$ diagonal matrix with the singular values of X on its diagonal.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we present several preliminaries and useful lemmas. Then we explore the first-order and second-order relationships between OCP and ExPen, respectively, in Section 3. We show how to solve OCP through unconstrained optimization approaches by an illustrative example in Section 4 and draw a brief conclusion in the last section.

2 Preliminaries

In this section, we provide several preliminary properties of ExPen. We first introduce the definitions, assumptions and define several constants. Then we give some preliminary properties of ExPen. Finally, we present the computational complexity of calculating the derivatives of ExPen.

2.1 Definitions

The first-order optimality condition of problem OCP can be written as

Definition 2.1. [4] Given a point $X \in S_{n,p}$, we call X a first-order stationary point of OCP if $\text{grad} f(X) = 0$.

According to [20], any $X \in \mathbb{R}^{n \times p}$ is a first-order stationary point of OCP if and only if it satisfies

$$
\begin{cases}
\nabla f(X) - X\Phi(X^\top \nabla f(X)) = 0; \\
X^\top X = I_p.
\end{cases}
$$

Next, we present the definition of the second-order optimality condition of OCP.
Clearly, we have

\[h \text{stationary point of } \exists \]

for any \(D \in \mathcal{T}_X \), then we call \(X \) a second-order stationary point of OCP.

Besides, we present the definitions of first-order and second-order optimality conditions of ExPen. Given a point \(X \in \mathbb{R}^{n \times p} \), we say \(X \) is a first-order stationary point of a differentiable function \(h : \mathbb{R}^{n \times p} \rightarrow \mathbb{R} \) if and only if \(\nabla h(X) = 0 \). And when \(h \) is twice-order differentiable, \(X \) is a second-order stationary point of \(h \) if and only if \(X \) is a first-order stationary point of \(h \) and

\[
\langle \nabla^2 h(X)[D], D \rangle \geq 0, \quad \forall D \in \mathbb{R}^{n \times p}. \tag{2.1}
\]

Next we present the definitions of Łojasiewicz inequality [45, 46] in the following, which coincide with the definitions in [9].

Definition 2.2. Let \(f \) be a differentiable function. Then \(f \) is said to have the Riemannian Łojasiewicz gradient inequality at \(X \in \mathbb{R}^{n \times p} \) if and only if there exists a neighborhood \(U \) of \(X \), and constants \(\theta \in (0, 1], C > 0 \), such that for any \(Y \in U \),

\[
\|\nabla f(Y)\|_F \geq C|f(Y) - f(X)|^{1-\theta}.
\]

Besides, we present the definitions of Riemannian Łojasiewicz inequality [31].

Definition 2.3. Let \(f \) be a differentiable function. Then \(f \) is said to have the Riemannian Łojasiewicz gradient inequality at \(X \in \mathbb{R}^{n \times p} \) if and only if there exists a neighborhood \(U \) of \(X \), and constants \(\theta \in (0, 1], C > 0 \), such that for any \(Y \in U \),

\[
\|\text{grad } f(Y)\|_F \geq C|f(Y) - f(X)|^{1-\theta}.
\]

The constant \(\theta \) is usually named as Łojasiewicz exponent in the gradient inequality.

2.2 Assumptions

In this subsection, we present some additional assumptions on the objective function \(f \) in OCP, which are usually optional throughout this paper. Before presenting these additional assumptions using in some parts of this paper, we first define some set and operators.

- \(\Omega := \{ X \in \mathbb{R}^{n \times p} \mid \|X\|_2 \leq 1 + \frac{1}{12} \} \);
- \(\overline{\Omega}_r := \{ X \in \mathbb{R}^{n \times p} \mid \|X^TX - I_p\|_F \leq r \} \);
- \(G(X) := \nabla f(Y) \bigg|_{Y = X(\frac{1}{2}I_p - \frac{1}{2}X^TX)} \);
- \(H(X) := \nabla^2 f(Y) \bigg|_{Y = X(\frac{1}{2}I_p - \frac{1}{2}X^TX)} \);
- \(J_X(D) := D \left(\frac{3}{2}I_p - \frac{1}{2}X^TX \right) - X\Phi(D^TX) \);
- \(g(X) := f \left(X \left(\frac{3}{2}I_p - \frac{1}{2}X^TX \right) \right) \).

Clearly, we have \(\overline{\Omega}_{1/12} \subset \overline{\Omega}_{1/6} \subset \Omega \). In addition, we present several constants for the theoretical analysis of ExPen.

- \(M_0 := \sup_{X \in \Omega} f(X) - \inf_{X \in \Omega} f(X) \);
- \(M_1 := \sup_{X \in \Omega} \|G(X)\|_F \);
- \(M_2 := \sup_{X,Y \in \Omega, X \neq Y} \frac{\|\nabla g(X) - \nabla g(Y)\|_F}{\|X - Y\|_F} \);
• \(\hat{\beta} := \max \{12M_1, 6M_2\} \).

Clearly, parameters \(M_0, M_1 \) and \(M_2 \) are well-defined constants independent of the penalty parameter \(\beta \).

Assumption 2.5. The global Lipschitz continuity of \(f \)

\[f \text{ is globally Lipschitz continuous in } \mathbb{R}^{n \times p}. \]

Although Assumption 2.5 is restrictive, it is optional in our theoretical analysis. It will be specifically mentioned where applicable. Moreover, under Assumption 2.5, we define several additional constants for ExPen,

\[\hat{M}_1 := \sup_{X \in \mathbb{R}^{n \times p}} \|G(X)\|_F; \]
\[\hat{M}_2 := \sup_{X, Y \in \mathbb{R}^{n \times p}, X \neq Y} \frac{\|\nabla g(X) - \nabla g(Y)\|_F}{\|X - Y\|_F}; \]
\[\hat{\beta} := \max \{12\hat{M}_1, 6\hat{M}_2\}. \]

We emphasize that parameters \(\hat{M}_1 \) and \(\hat{M}_2 \) are independent with the penalty parameter \(\beta \). Besides, it follows from Assumption 2.5 that \(\hat{M}_1 \geq M_1 \) and \(\hat{M}_2 \geq M_2 \).

Furthermore, when we analyze the hessian at \(h(X) \), the objective function \(f \) in OCP should be twice-differentiable. As a result, in some cases we assume the objective function \(f \) be twice differentiable.

Assumption 2.6. The second-order differentiability of \(f \)

\[\nabla^2 f(X) \text{ exists at every } X \in \mathbb{R}^{n \times p}. \]

In the rest of this subsection, we present several useful lemmas for further use. We first show that \(\Phi \) is the Jacobian of the mapping \(X \mapsto X \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) \) in the following lemma.

Proposition 2.7. For any \(X, Y \in \mathbb{R}^{n \times p} \), let \(D = Y - X \), we have

\[\left\| Y \left(\frac{3}{2}I_p - \frac{1}{2}Y^T Y \right) - X \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) - \Phi(D) \right\|_F = \mathcal{O}(\|D\|_F^2). \]

Besides,

\[\left\| Y \left(\frac{3}{2}I_p - \frac{1}{2}Y^T Y \right) - X \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) - \Phi(D) - \left[D\Phi(D^T X) + \frac{1}{2}XD^T D \right] \right\|_F = \mathcal{O}(\|D\|_F^3). \]

Proof. Let \(D = Y - X \), from the expression of \(Y \left(\frac{3}{2}I_p - \frac{1}{2}Y^T Y \right) \) we can conclude that

\[
\begin{align*}
Y \left(\frac{3}{2}I_p - \frac{1}{2}Y^T Y \right) \\
= X \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) + D \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) - X\Phi(X^T D) - D\Phi(D^T X) - \frac{1}{2}XD^T D - \frac{1}{2}DD^T D \\
= X \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) + \Phi(D) - \Phi(D^T X) - \frac{1}{2}XD^T D - \frac{1}{2}DD^T D,
\end{align*}
\]

and thus complete the proof. \(\square \)

In the following Lemma, we present the expression of \(\nabla h(X) \):

Proposition 2.8. For any \(X \in \mathbb{R}^{n \times p} \),

\[\nabla h(X) = G(X) \left(\frac{3}{2}I_p - \frac{1}{2}X^T X \right) - X\Phi(X^T G(X)) + \beta X(X^T X - I_p). \]
Proof. First, we aim to prove that the linear mapping J_X is self-adjoint for any $X \in \mathbb{R}^{n \times p}$. From the expression of J_X, for any $Z, W \in \mathbb{R}^{n \times p}$, we then obtain

$$
\langle J_X(W), Z \rangle = \left \langle W \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - X \Phi(X^\top W), Z \right \rangle \\
= \text{tr} \left (Z^\top W \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right) - \text{tr} \left (Z^\top X \Phi(X^\top W) \right) \\
\overset{(i)}{=} \text{tr} \left (W^\top Z \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right) - \text{tr} \left (W^\top X \Phi(X^\top Z) \right) \\
= \left \langle Z \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - X \Phi(X^\top Z), W \right \rangle = \langle J_X(Z), W \rangle.
$$

(2.2)

Here (i) follows the fact that $\text{tr} \left (AB \right) = \text{tr} \left (A^\top B \right)$ holds for any square matrix A and any symmetric matrix B. By Proposition 2.7, for any $X, Y \in \mathbb{R}^{n \times p}$, let $D = Y - X$, we have

$$
f \left (Y \left (\frac{3}{2} I_p - \frac{1}{2} X^\top Y \right) \right) - f \left (X \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right) \\
= \langle G(X), J_X(D) \rangle + O(\|D\|_F^2) = \langle D, J_X(G(X)) \rangle + O(\|D\|_F^2) \\
= \left \langle D, G(X) \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - X \Phi(X^\top G(X)) \right \rangle + O(\|D\|_F^2),
$$

which illustrates that

$$
\nabla g(X) = G(X) \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - X \Phi(X^\top G(X)).
$$

Then from the fact that $h(X) = g(X) + \beta \|X^\top X - I_p\|_F^2$, we could conclude that

$$
\nabla h(X) = G(X) \left (\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - X \Phi(X^\top G(X)) + \beta X(X^\top X - I_p),
$$

and complete the proof. \hfill \Box

We can conclude from the definition of M_1 and Proposition 2.8 that $\|\nabla g(X)\|_F \leq 2M_1$ for any $X \in \Omega$. Besides, from the expression of $h(X)$ illustrated in Lemma 2.8, we can conclude that $\nabla h(X) = \nabla f(X)$ holds for any $X \in S_{n,p}$. Furthermore, the following proposition illustrates the expression of $\nabla^2 h(X)$.

Proposition 2.9. Suppose $f(X)$ satisfies the conditions in Assumption 2.6, then

$$
\nabla^2 g(X)[D] = J_X \left (\mathcal{H}(X)[J_X(D)] \right) - D \Phi(X^\top G(X)) - X \Phi(D^\top G(X)) - G(X) \Phi(D^\top X).
$$

Moreover,

$$
\nabla^2 h(X)[D] = \nabla^2 g(X)[D] + \beta (2X\Phi(X^\top D) + D(X^\top X - I_p)).
$$

Proof. As illustrated in (2.2) from Lemma 2.8, the mapping J_X is self-adjoint for any $X \in \mathbb{R}^{n \times p}$. Then
by Proposition 2.7, for any $Y \in \mathbb{R}^{n \times p}$ and let $D = Y - X$, we have

$$f \left(Y \left(\frac{3}{2} I_p - \frac{1}{2} Y^T Y \right) \right) - f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) \right)$$

$$= f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) + J_X(D) - \left[D \Phi(D^T X) + \frac{1}{2} XD^T D \right] \right) - f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) \right) + O(\|D\|_F^3)$$

$$= \left \langle G(X), J_X(D) \right \rangle - \left \langle D \Phi(D^T X) + \frac{1}{2} XD^T D \right \rangle + \frac{1}{2} \left \langle \mathcal{H}(X)[J_X(D)], J_X(D) \right \rangle + O(\|D\|_F^3)$$

$$= \left \langle D, \nabla g(X) \right \rangle - \left \langle \Phi(D^T G(X)), \Phi(D^T X) \right \rangle - \frac{1}{2} \left \langle D^T D, X^T G(X) \right \rangle$$

$$\quad + \frac{1}{2} \left \langle \mathcal{H}(X)[J_X(D)], J_X(D) \right \rangle + O(\|D\|_F^3).$$

Therefore, the hessian of $g(X)$ can be expressed as

$$\nabla^2 g(X)[D] = J_X(H(X)[J_X(D)]) - D \Phi(X^T G(X)) - X \Phi(D^T G(X)) - G(X) \Phi(D^T X).$$

Moreover, since

$$\|Y^T Y - I_p\|_F^2 - \|X^T X - I_p\|_F^2$$

$$= \left \langle 4D, X(X^T X - I_p) \right \rangle + 4 \left \langle \Phi(D^T X), \Phi(D^T X) \right \rangle + 2 \left \langle D^T D, X^T X - I_p \right \rangle + O(\|D\|_F^3),$$

the hessian of $h(X)$ can be expressed as

$$\nabla^2 h(X)[D] = \nabla^2 g(X)[D] + \beta \left \langle 2X \Phi(X^T D) + D(X^T X - I_p) \right \rangle.$$

Next, we give an important equality.

Lemma 2.10. For any $X \in \mathbb{R}^{n \times p}$, we have

$$\left \langle X(X^T X - I_p), \nabla g(X) \right \rangle = -\frac{3}{2} \left \langle (X^T X - I_p)^2, \Phi(X^T G(X)) \right \rangle.$$

Proof. Consider the inner product of $\nabla g(X)$ and $X(X^T X - I_p)$, the following equality holds for any $X \in \mathbb{R}^{n \times p}$,

$$\left \langle X(X^T X - I_p), \nabla g(X) \right \rangle$$

$$= \left \langle X(X^T X - I_p), G(X) \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) \right \rangle - \left \langle X(X^T X - I_p), X \Phi(X^T G(X)) \right \rangle$$

$$= \left \langle (X^T X - I_p) \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right), \Phi(X^T G(X)) \right \rangle - \left \langle (X^T X - I_p) X^T X, \Phi(X^T G(X)) \right \rangle$$

$$= -\frac{3}{2} \left \langle (X^T X - I_p)^2, \Phi(X^T G(X)) \right \rangle.$$

Finally, we arrive at the main proposition in this preliminary section.

Proposition 2.11. Suppose Assumption 2.5 holds, and \hat{X} is a first-order stationary point of ExPen, then $\|\hat{X}\|_2 \leq 1 + \frac{M_1}{p}$. Furthermore, when $\beta \geq \hat{\beta}$, we can conclude that all the first-order stationary points of ExPen are contained in Ω.
Proof. Let \(\tilde{X} = U\Sigma V^\top \) be the singular value decomposition of \(\tilde{X} \), namely, \(U \in \mathbb{R}^{n \times p} \) and \(V \in \mathbb{R}^{n \times p} \) are the orthogonal matrices and \(\Sigma \) is a diagonal matrix with singular values of \(\tilde{X} \) on its diagonal and \(\sigma_1 \leq \ldots \leq \sigma_p \). Suppose the statement to be proved is not true, we achieve \(\sigma_p > 1 + \frac{\tilde{M}_1}{p} \). Let \(D := U\text{Diag}(0, \ldots, 0, 1)V^\top \), then from the first-order optimality condition, we have

\[
\langle \nabla h(\tilde{X}), D \rangle = 0.
\]

Besides, Assumption 2.5 illustrates that \(\| G(X) \|_F \) is bounded and thus

\[
| \langle \nabla \tilde{X}, \nabla g(\tilde{X}) \rangle | = \| \left(\tilde{D}, G(X) \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) - \left(D, X\Phi(X^\top G(X)) \right) \right) \| \\
\leq \left| \text{tr} \left(\left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) D^\top G(X) \right) \right| + \frac{1}{2} \left| \text{tr} \left(D^\top XX^\top G(X) \right) \right| + \frac{1}{2} \left| \text{tr} \left(G(X)^\top XD^\top X \right) \right|
\]

\[
\leq \left| \frac{3}{2} - \frac{1}{2} \sigma_p^2 \right| \tilde{M}_1 + \frac{1}{2} \sigma_p \tilde{M}_1 + \frac{1}{2} \sigma_p \tilde{M}_1
\]

\[
\leq \frac{3(\sigma_p^2 + 1)}{2} \tilde{M}_1.
\]

On the other hand, from the definition of \(\tilde{D} \), we can conclude that

\[
\langle \tilde{X}(\tilde{X}^\top - I_p), \tilde{D} \rangle = \sigma_p (\sigma_p^2 - 1).
\]

Notice that when \(\beta \geq 3\tilde{M}_1 \), for any \(t \geq 1 + \frac{\tilde{M}_1}{p} \), it holds that

\[
\frac{(t^2 - 1)t}{t^2 + 1} \geq 1 - \frac{2}{t^2 + 1} \geq 1 - \frac{1}{1 + \frac{3\tilde{M}_1}{2\beta}} \geq \frac{3\tilde{M}_1}{2\beta}.
\]

Therefore, when \(\beta \geq 3\tilde{M}_1 \), we achieve

\[
\langle \nabla h(\tilde{X}), \tilde{D} \rangle \geq \beta \langle \tilde{X}(\tilde{X}^\top - I_p), \tilde{D} \rangle - | \langle \nabla \tilde{X}, \nabla g(\tilde{X}) \rangle | \geq (\sigma_p^2 - 1)(\beta \sigma_p) - \frac{3(\sigma_p^2 + 1)}{2} \tilde{M}_1 > 0,
\]

which contradicts to the first-order optimality. Therefore, we can conclude that \(\| \tilde{X} \|_2 \leq 1 + \frac{\tilde{M}_1}{p} \). \(\square \)

Additionally, in the following proposition, we illustrate that Assumption 2.5 implies that ExPen is bounded below for any \(\beta > 0 \).

Proposition 2.12. Suppose Assumption 2.5 holds, then for any \(\beta > 0 \), ExPen is bounded below over \(\mathbb{R}^{n \times p} \).

Proof. For any \(X \in \mathbb{R}^{n \times p} \), it holds from Assumption 2.5 that

\[
| g(X) - g(0) | = \left\| f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right) - f(0) \right\| \leq \tilde{M}_1 \left\| X \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right\|_F
\]

\[
\leq p \tilde{M}_1 \left(\frac{1}{2} \left\| X \right\|_F^3 + \frac{3}{2} \frac{1}{2} \left\| X \right\|_2 \right).
\]

Moreover, it holds that \(\| X^\top X - I_p \|_F \geq (\| X \|_2^2 - 1)^2 \). Therefore, for any \(X \in \mathbb{R}^{n \times p} \) that satisfies \(\| X \|_2 \geq \frac{128p\tilde{M}_1}{\beta} + 2 \), it holds that \((\| X \|_2^2 - 1)^2 \geq \frac{1}{16} \| X \|_2^4 \). Then we achieve

\[
\frac{h(X) - h(0)}{\beta} \geq \frac{p}{4} \left\| X^\top X - I_p \right\|_F - | g(X) - g(0) |
\]

\[
\geq \frac{p}{4} \left(\| X \|_2^2 - 1 \right)^2 - p \tilde{M}_1 \left(\frac{1}{2} \| X \|_F^3 + \frac{3}{2} \frac{1}{2} \| X \|_2 \right)
\]

\[
\geq \frac{\beta}{64} \| X \|_2^4 - p \tilde{M}_1 \left(\frac{1}{2} \| X \|_F^3 + \frac{3}{2} \| X \|_2 \right) \geq \frac{\beta}{64} \| X \|_2^4 - 2p \tilde{M}_1 \| X \|_2^3 > 0.
\]
As a result, it holds that
\[
\inf_{X \in \mathbb{R}^{n \times p}} h(X) = \min \left\{ \inf_{\|X\|_2 \leq \frac{12\rho \Delta t}{p} + 2} h(X), \inf_{\|X\|_2 \geq \frac{12\rho \Delta t}{p} + 2} h(X) \right\}
\geq \min \left\{ \inf_{\|X\|_2 \leq \frac{12\rho \Delta t}{p} + 2} h(X), h(0) \right\} > -\infty.
\]

Hence we complete the proof.

2.3 Computational complexity of the first-order oracle

In this subsection, we analyze the cost of calculating the first-order derivative of \(h(X) \), which takes the main computational cost in each iterate of a first-order algorithm such as gradient descent methods, nonlinear conjugate gradient methods, etc. Then we compare it with the fundamental operations in Riemannian optimization approaches. From the expression for \(\nabla h(X) \) illustrated in Lemma 2.8, we find that computing \(\nabla h(X) \) only involves computing \(\nabla f \) and matrix-matrix multiplication. The computational cost of the basic linear algebra operations and the overall costs of computing the gradient of \(h \) are listed in Table 1, while a comparison between several fundamental operations in Riemannian optimization and their corresponding operations for \(h(X) \) are listed in Table 2. Here, FO denotes the computational costs of computing the gradient of \(f \), and those terms in bold stand for the operations that cannot be parallelized.

Table 1: Computational complexity the first-order oracle in ExPen.

Compute \(\nabla f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \right) \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \)	\(X^\top X \)	\(\frac{np^2}{2} \)
\(X(X^\top X - I_p) \)		
\(G(X) = \nabla f(Y) \mid Y = X(\frac{3}{2} I_p - \frac{1}{2} X^\top X) \)		
\(G(X) \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right) \)		
Compute \(X\Phi \left(X^\top G(X) \right) \)	\(\Phi \left(X^\top G(X) \right) \)	\(2np^2 \)
\(X\Phi \left(X^\top G(X) \right) \)	\(2np^2 \)	
In total	\(1\text{FO} + 9np^2 \)	

Table 2: Comparison on the computational complexity of the first-order oracles among Riemannian optimization approaches, ExPen-based approaches and the specialized optimization algorithm PLAM. Here \(\mathcal{L}_\beta(X, \Lambda) := f(X) - \frac{1}{2} \left(X^\top X - I_p, \Lambda \right) + \frac{\beta}{4} \| X^\top X - I_p \|_F^2 \).

3 Properties of ExPen

In this section, we analyze the theoretical properties of ExPen.
3.1 First-order relationship

In this subsection, we study the first-order relationship between OCP and ExPen. The main theoretical results of this subsection can be summarized in Figure 1. Here “A.”, “D.”, “P.”, “T.” are the abbreviations of “Assumption”, “Definition”, “Proposition”, and “Theorem”, respectively.

![Diagram of first-order relationship between OCP and ExPen](image)

Figure 1: Roadmap of the first-order relationship between OCP and ExPen.

The following theorem categorizes the first-order stationary points of ExPen in Ω.

Theorem 3.1. Suppose $X^* \in \Omega$ is a first-order stationary point of ExPen, and $\beta \geq \bar{\beta}$, then either X^* is a first-order stationary point of OCP, or $\sigma_{\min}(X^*) \leq \sqrt{\frac{2M_1}{p}}$.

Proof. Suppose $\sigma_{\min}(X^*) > \sqrt{\frac{2M_1}{p}}$, then $\beta X^* X^* - 2M_1 I_p$ is positive definite. Besides, from Lemma 2.10 we achieve

$$0 = \langle \nabla h(X^*), X^* (X^* X^* - I_p) \rangle$$

$$\geq \langle \beta X^* (X^* X^* - I_p), X^* (X^* X^* - I_p) \rangle - \left| \langle \nabla g(X^*), X^* (X^* X^* - I_p) \rangle \right|$$

$$\geq \left(\beta \sigma_1 X^* \right) \left(\sigma_1 X^* \right) - \frac{3}{2} \left\| X^* G(X^*) \right\|_F \cdot I_p, \left(X^* X^* - I_p \right)$$

$$\geq \left(\beta \sigma_1 X^* \right) \left(\sigma_1 X^* \right) - \frac{3}{2} \left\| X^* \right\|_2 \left\| G(X^*) \right\|_F \cdot I_p, \left(X^* X^* - I_p \right)$$

which illustrates that $X^* X^* = I_p$. Then we can conclude that $0 = \nabla h(X^*) = \nabla f(X^*)$ and thus complete the proof. \hfill \Box

As illustrated in Theorem 3.1, any first-order stationary point of ExPen in Ω is either a first-order stationary point of OCP, or is far from the Stiefel manifold. The following theorem illustrates that any infeasible first-order stationary point of ExPen cannot be a second-order stationary point of $h(X)$.

Theorem 3.2. Suppose Assumption 2.6 holds, $\beta \geq \bar{\beta}$, then any infeasible first-order stationary point \tilde{X} of ExPen in Ω is not a second-order stationary point of ExPen. More specifically, $\lambda_{\min}(\nabla^2 h(\tilde{X})) \leq -\frac{\beta}{24}$.

Proof. Suppose the statement is not true, namely, \tilde{X} is a second-order stationary point of OCP. Since $\beta \geq 12M_1$, it holds that $\sigma_{\min}(\tilde{X}^* \tilde{X}) \leq \frac{1}{6}$ by Proposition 3.1. Let $\tilde{X} = U \Sigma V^\top$ be the singular value decomposition of \tilde{X}, namely, $U \in \mathbb{R}^{n \times p}$ and $V \in \mathbb{R}^{n \times p}$ are the orthogonal matrices and Σ is a diagonal matrix with singular values of \tilde{X} on its diagonal. Without loss of generality, we assume $\sigma_1 \leq \frac{1}{\sqrt{6}}$, which is the first entry of the diagonal matrix Σ.

Then we denote $D = -u_1 v_1^\top$, where u_1 and v_1 are the first columns of U and V, respectively. It holds that

$$(\tilde{X} + tD)^\top (\tilde{X} + tD) = \tilde{X}^\top \tilde{X} + 2tD^\top \tilde{X} + t^2 D^\top D = V^\top \Sigma^2 V - 2t\sigma_1 v_1 v_1^\top + t^2 v_1 v_1^\top.$$
Due to the first-order stationarity of \(\tilde{X} \), it holds \(\nabla h(\tilde{X}) = 0 \) which implies \(D^\top \nabla h(\tilde{X}) = 0 \). First, we have
\[
\| (\tilde{X} \pm t D)^\top (\tilde{X} \pm t D) - I_p \|_F^2 = \| \tilde{X}^\top \tilde{X} - I_p + 2t \Phi(\tilde{X}^\top D) + t^2 D^\top D \|_F^2
\geq \| \tilde{X}^\top \tilde{X} - I_p \|_F^2 + 4t^2 \left\langle \Phi(\tilde{X}^\top D), \Phi(\tilde{X}^\top D) \right\rangle + 2t^2 \left\langle D^\top D, \tilde{X}^\top \tilde{X} - I_p \right\rangle + O(t^3)
\geq \| \tilde{X}^\top \tilde{X} - I_p \|_F^2 + t^2 + O(t^3).
\]
As a result,
\[
h(\tilde{X} + t D) \leq h(\tilde{X}) + t \cdot \left\langle D, \nabla h(\tilde{X}) \right\rangle + \frac{t^2}{2} \| \nabla^2 g(\tilde{X}) \|_F \| D \|_F^2 - \frac{\bar{\beta}}{8} t^2 + O(t^3)
\leq h(\tilde{X}) + \frac{t^2}{2} M_2 - \frac{\bar{\beta} t^2}{8} + O(t^3) \leq h(\tilde{X}) - \frac{t^2 \bar{\beta}}{24} + O(t^3),
\]
which contradicts to the second-order optimality of ExPen. Therefore, we can conclude that any infeasible first-order stationary point of ExPen in \(\Omega \) is not a second-order stationary point of ExPen, and \(\lambda_{\min}(\nabla^2 h(\tilde{X})) \leq -\frac{\bar{\beta}}{24} \).

Combining Proposition 2.11 with Theorem 3.1, we arrive at the following corollary.

Corollary 3.3. Suppose Assumptions 2.5 and 2.6 hold, and \(\beta \geq \hat{\beta} \). Let \(X^* \) be a first-order stationary point of ExPen, then either \(X^* \) is a first-order stationary point of OCP, or is far from the Stiefel manifold and can not be a second-order stationary point of ExPen.

The proof of this corollary is straightforward and hence omitted.

3.2 Second-order relationship

In this subsection, we study the first-order relationship between OCP and ExPen. The main theoretical results of this subsection can be summarized in Figure 2.

![Figure 2: Roadmap of the second-order relationship between OCP and ExPen under Assumption 2.6.](image)

We first analyze the relationship between Riemannian hessian of the original objective function \(f \) and the Euclidean hessian of the penalty function \(h \).

Lemma 3.4. Suppose \(f(X) \) satisfies Assumption 2.6. Then for any given \(X \in S_{n,p} \) and any \(D_1 \in T_X \), the following equality holds,
\[
\left\langle D_1, \nabla^2 h(X)[D_1] \right\rangle = \left\langle D_1, \nabla^2 f(X)[D_1] - D_1 \Phi(X^\top \nabla f(X)) \right\rangle.
\]
Proof. Since $D_1 \in \mathcal{T}_X$, by the definition of \mathcal{T}_X we have $\Phi(D_1^T X) = 0$. Moreover, the definition of J_X indicates that $J_X(D_1) = D_1$. As a result, from Proposition 2.9 we can conclude that

$$\nabla^2 h(X)[D_1] = \nabla^2 g(X)[D_1] = I_X(\mathcal{H}(X)[J_X(D_1)]) - D_1 \Phi(X^T \nabla f(X)) - \nabla f(X)\Phi(X^T D_1) - X\Phi(D_1^T \nabla f(X)) \quad (3.2)$$

Therefore, for any $D_1 \in \mathcal{T}_X$, we have

$$\left\langle D_1, \nabla^2 h(X)[D_1] \right\rangle = \left\langle D_1, \nabla^2 f(X)[D_1] - D_1 \Phi(X^T \nabla f(X)) \right\rangle - \left\langle \Phi(D_1^T X), \Phi(D_1^T \nabla f(X)) \right\rangle$$

$$= \left\langle D_1, \nabla^2 f(X)[D_1] - D_1 \Phi(X^T \nabla f(X)) \right\rangle.$$

\[\Box\]

Lemma 3.5. Suppose $f(X)$ satisfies Assumption 2.6 and $X \in S_{n,p}$ is a first-order stationary point of $h(X)$. Then for any $D_1 \in \mathcal{T}_X$ and any $D_2 \in \mathcal{N}_X$, we have

$$\left\langle D_2, \nabla^2 h(X)[D_1] \right\rangle \geq (2\beta - M_2) \|D_2\|_F^2; \quad (3.3)$$

$$\left\langle D_1, \nabla^2 h(X)[D_2] \right\rangle = 0. \quad (3.4)$$

Proof. Since $D_1 \in \mathcal{T}_X$, by the definition of \mathcal{T}_X we have $\Phi(D_1^T X) = 0$. Besides, the definition of J_X indicates that $J_X(D_1) = D_1$. Since $D_1 \in \mathcal{T}_X$ and $D_2 \in \mathcal{N}_X$, we have $J_X(D_2) = 0$. Besides, there exists a symmetric matrix $\Lambda_2 \in \mathbb{R}^{p \times p}$ such that $D_2 = X\Lambda_2$. Then we have

$$\left\langle D_2, \nabla^2 h(X)[D_1] \right\rangle = \left\langle D_2, I_X(\nabla^2 f(X)[J_X(D_1)]) - D_1 \Phi(X^T \nabla f(X)) - X\Phi(D_1^T \nabla f(X)) \right\rangle$$

$$= -\left\langle D_2, D_1 \Phi(X^T \nabla f(X)) \right\rangle - \left\langle D_2, X\Phi(D_1^T \nabla f(X)) \right\rangle$$

$$= -\text{tr} \left(\Lambda_2 X^T D_1 X^T \nabla f(X) \right) - \text{tr} \left(\Lambda_2 \Phi(D_1^T XX^T \nabla f(X)) \right)$$

$$= \text{tr} \left(\Lambda_2 \Phi(D_1^T XX^T \nabla f(X)) \right) - \text{tr} \left(\Lambda_2 \Phi(D_1^T XX^T \nabla f(X)) \right)$$

$$= \text{tr} \left(\Lambda_2 \left[D_1 XX^T \nabla f(X) - \Phi(D_1^T XX^T \nabla f(X)) \right] \right) = 0.$$

Here (i) follows the fact that $D_1^T X$ is skew-symmetric, and (ii) directly uses the fact that for any $T \in \mathbb{R}^{p \times p}$, $T - \Phi(T)$ is skew-symmetric.

Moreover, notice that $D_2 \in \mathcal{N}_X$ implies that $\|\Phi(D_2^T X)\|_F = \|D_2\|_F$. Then by the expression of $\nabla^2 h(X)$ in Proposition 2.9, we can conclude that

$$\left\langle D_2, \nabla^2 h(X)[D_2] \right\rangle = \left\langle D_2, \nabla^2 g(X)[D_2] \right\rangle + 2\beta \left\|\Phi(D_2^T X)\right\|_F^2 \geq (2\beta - M_2) \|D_2\|_F^2,$$

which completes the proof. \[\Box\]

Theorem 3.6. Suppose $f(X)$ satisfies Assumption 2.6, for any first-order stationary point $X \in S_{n,p}$ of OCP, any eigenvalue of $\text{hess } f(X)$ is an eigenvalue of $\nabla^2 h(X)$. In turn, any eigenvalue of $\nabla^2 h(X)$ is either an eigenvalue of $\text{hess } f(X)$, or greater than $2\beta - M_2$.

Proof. Let σ_1 be an eigenvalue of $\text{hess } f(X)$, it follows from Definition 2.2 that there exists an $\hat{D}_1 \in \mathcal{T}_X$ such that

$$J_X \left(\nabla^2 f(X)[\hat{D}_1] - \hat{D}_1 \Phi(X^T \nabla f(X)) \right) = \sigma_1 \hat{D}_1.$$

In addition, Lemma 3.4 indicates that

$$\nabla^2 h(X)[\hat{D}_1] = J_X(\nabla^2 f(X)[\hat{D}_1] - \hat{D}_1 \Phi(X^T \nabla f(X))) = \sigma_1 \hat{D}_1.$$
Therefore, any eigenvalue of \(hess f(X) \) is an eigenvalue of \(\nabla^2 h(X) \).

On the other hand, Lemma 3.4 and Lemma 3.5 verify that the linear operator \(\nabla^2 h(X) \) maps a vector in \(T_X \) or \(N_X \) to \(T_X \) or \(N_X \), respectively. Then any eigenvector of \(\nabla^2 h(X) \) is either in \(T_X \) or \(N_X \). For any \(D_2 \in N_X \), (3.3) implies that

\[
\langle D_2, \nabla^2 h(X)[D_2] \rangle \geq (2\beta - M_2) \| D_2 \|_F^2,
\]

from which we can conclude that any eigenvalue of \(\nabla^2 h(X) \) is either an eigenvalue of \(hess f(X) \), or greater than \(2\beta - M_2 \).

Based on Theorem 3.6, we can establish the second-order relationship between OCP and ExPen.

Theorem 3.7. Suppose \(f(X) \) satisfies Assumption 2.6 and \(\beta \geq \bar{\beta} \), then any second-order stationary point of \(h(X) \) in \(\Omega \) is a second-order stationary point of OCP. Moreover, OCP and ExPen have exactly the same second-order stationary points in \(\Omega \).

Proof. Let \(X \in \Omega \) be a second-order stationary point of \(h(X) \), then all eigenvalues of \(\nabla^2 h(X) \) are nonnegative. It follows from Theorems 3.1 and 3.2 that \(X \) is feasible. We can further conclude \(X \) is a first-order stationary point of OCP by Proposition 2.8. In addition, Theorem 3.6 shows that all eigenvalues of \(hess f(X) \) consist of a subset of the spectra of \(\nabla^2 h(X) \), and thus are nonnegative. Namely, \(X \) is a second-order stationary point of OCP.

In turn, let \(X \in S_{n,p} \) be a second-order stationary point of OCP, naturally, all the eigenvalues of \(hess f(X) \) are nonnegative. Then we can immediately obtain that all the eigenvalues of \(\nabla^2 h(X) \) are nonnegative resulting from Theorem 3.6 and the fact that \(2\beta \geq M \). Hence, \(X \) is a second-order stationary point of \(h(X) \).

Based on the second-order relationship between OCP and ExPen in \(\Omega \) illustrated in Theorem 3.7, we can immediately obtain their second-order relationship in \(\mathbb{R}^{n \times p} \) by utilizing Proposition 2.11. We omit the proof, since it is quite straightforward.

Corollary 3.8. Suppose Assumptions 2.5 and 2.6 hold, and \(\beta \geq \hat{\beta} \), then OCP and ExPen share the same second-order stationary points.

3.3 Estimating Stationarity

When we implement an infeasible approach to ExPen, the returned solution is usually infeasible since the iterates are not necessarily restricted on \(S_{n,p} \). Sometimes we pursue high accuracy for the feasibility at the same time. To this end, we impose an orthonormalization as a postprocess after obtaining a solution \(X \) with mild accuracy by applying an unconstrained optimization approach to solve ExPen. Namely,

\[
X \rightarrow \mathcal{P}_{S_{n,p}}(X), \quad (3.5)
\]

where \(\mathcal{P}_{S_{n,p}} : \mathbb{R}^{n \times p} \rightarrow S_{n,p} \) is the projection on Stiefel manifold defined in Section 1.3.

In this subsection, we study the relationship between the stationarity of \(\mathcal{P}_{S_{n,p}}(X) \) with respect to OCP and the stationarity \(X \) with respect to ExPen. More specifically, we aim to estimate an upper-bound for \(\| \text{grad } f(\mathcal{P}_{S_{n,p}}(X)) \|_F \) from \(\| \nabla h(X) \|_F \). Therefore, we could explicitly setting the stopping criteria for ExPen to achieve a desired accuracy in solving OCP. Moreover, the iteration complexity of various unconstrained optimization approaches directly follows from existing rich results when applied to solve ExPen.

The following lemma guarantees that the postprocess (3.5) can further reduce the function value if the current iterate is sufficiently close to the Stiefel manifold.
Proposition 3.9. Suppose \(X \in \overline{\Omega}_{1/6} \), then it holds that

\[
h(\mathcal{P}_{S_{n,p}}(X)) \leq h(X) - \left(\frac{\beta}{4} - \frac{M_1}{2} \right) \| X^T X - I_p \|_F^2.
\]

Proof. By the SVD of \(X \), we first conclude that

\[
\| X \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) - \mathcal{P}_{S_{n,p}}(X) \|_F = \| U \Sigma \left(\frac{3}{2} I_p - \frac{1}{2} \Sigma^2 \right) V^T - U V^T \|_F
\]

\[
= \| \Sigma \left(\frac{3}{2} I_p - \frac{1}{2} \Sigma^2 \right) - I_p \|_F = \left\| \left(\frac{1}{2} \Sigma + I_p \right) (\Sigma - I_p)^2 \right\|_F
\]

\[
\leq \frac{1}{2} \left\| \Sigma^2 - I_p \right\|_F^2 = \frac{1}{2} \left\| X^T X - I_p \right\|_F^2.
\]

(3.6)

Here (i) directly follows from \((\Sigma + 2I_p)(\Sigma - I_p)^2 \leq (\Sigma + I_p)^2 (\Sigma - I_p)^2\) when \(\Sigma \preceq \frac{5}{6} I_p \), and the fact that \(\| A^2 \|_F \leq \| A \|_F^2 \) holds for any symmetric matrix \(A \).

Then we can conclude that

\[
h(X) - h(\mathcal{P}_{S_{n,p}}(X)) = f \left(X \left(\frac{3}{2} I_p - \frac{1}{2} X^T X \right) \right) - f(\mathcal{P}_{S_{n,p}}(X)) + \frac{\beta}{4} \left\| X^T X - I_p \right\|_F^2
\]

\[
\geq \left(\frac{\beta}{4} - \frac{M_1}{2} \right) \left\| X^T X - I_p \right\|_F^2.
\]

Here (ii) follows the Lipschitz continuity of \(f \), and (iii) is directly from (3.6).

Lemma 3.10. For any \(X \in \overline{\Omega}_{1/6} \), we have

\[
\| \nabla h(X) \|_F^2 \geq \| \nabla g(X) \|_F^2 + \left(\frac{7}{3} \beta^2 - 4\beta M_1 \right) \left\| X^T X - I_p \right\|_F^2.
\]

Proof. Since \(h(X) = g(X) + \frac{\beta}{4} \| X^T X - I_p \|_F^2 \), we have

\[
\langle \nabla h(X), \nabla h(X) \rangle = \langle \nabla g(X), \nabla g(X) \rangle + 2\beta \left(\nabla g(X), X(X^T X - I_p) \right) + \beta^2 \left\| X(X^T X - I_p) \right\|_F^2
\]

\[
= \| \nabla g(X) \|_F^2 - 3\beta \left(\Phi(X^T G(X)), (X^T X - I_p)^2 \right) + \beta^2 \left\| X(X^T X - I_p) \right\|_F^2
\]

\[
\geq \| \nabla g(X) \|_F^2 + \left(\frac{2}{3} \beta^2 - 4\beta M_1 \right) \left\| X^T X - I_p \right\|_F^2.
\]

Here the second equality directly follows Lemma 2.10.

The following lemma illustrates the relationship between \(\| \nabla h(X) \|_F \) and \(\| \nabla f(\mathcal{P}_{S_{n,p}}(X)) \|_F \).

Lemma 3.11. Suppose \(\beta \geq \bar{\beta}, X \in \overline{\Omega}_{1/6} \), then it holds that

\[
\| \nabla h(X) \|_F \geq \frac{1}{2} \| \nabla f(\mathcal{P}_{S_{n,p}}(X)) \|_F + \frac{\beta}{4} \left\| X^T X - I_p \right\|_F.
\]

Proof. Suppose \(X \) has singular value decomposition as \(X = U \Sigma V^T \), we can conclude that

\[
\| X - \mathcal{P}_{S_{n,p}}(X) \|_F = \| \Sigma - I_p \|_F \leq \frac{6}{11} \| \Sigma^2 - I_p \|_F = \frac{6}{11} \left\| X^T X - I_p \right\|_F.
\]

(3.7)
Therefore, the results in Lemma 3.10 illustrates that
\[
\|\nabla h(X)\|_F \geq \frac{1}{2} \|\nabla g(X)\|_F + \frac{\sqrt{6}\beta_2^2 - 36\beta M_1}{3} \left\| X^T X - I_p \right\|_F \\
\geq \frac{1}{2} \left\| \nabla g(\mathcal{P}_{S_{n,p}}(X)) \right\|_F - \frac{3M_2 \beta_1}{11} \left\| X^T X - I_p \right\|_F + \frac{\sqrt{6}\beta_2^2 - 36\beta M_1}{3} \left\| X^T X - I_p \right\|_F \\
\geq \frac{1}{2} \|\text{grad} f(\mathcal{P}_{S_{n,p}}(X))\|_F + \frac{\beta}{4} \left\| X^T X - I_p \right\|_F.
\]

\[\square\]

Proposition 3.12. Suppose Assumption 2.6 holds, given any \(X \in \mathcal{T}_{1/6} \), then it holds that
\[
\sigma_{\min}(hess f(\mathcal{P}_{S_{n,p}}(X))) \geq \sigma_{\min}(\nabla^2 h(X)) - \left\| \nabla^2 g(X) - \nabla^2 g(\mathcal{P}_{S_{n,p}}(X)) \right\|_F - \frac{9}{2} \left\| \nabla h(X) \right\|_F \tag{3.8}
\]

Proof. Let \(Y := \mathcal{P}_{S_{n,p}}(X) \), i.e. let \(X = U\Sigma V^T \) be the singular value decomposition of \(X \), then \(Y = U\Sigma V^T \). Then from Lemma 3.4, for any \(D_1 \in \mathcal{T}_Y \), it holds that
\[
\left\langle D_1, \nabla^2 h(Y)[D_1] \right\rangle = \left\langle D_1, \nabla^2 f(X)[D_1] - D_1 \Phi(X^T \nabla f(X)) \right\rangle.
\]

Therefore, the \(\sigma_{\min}(\text{hess} f(Y)) \) can be expressed by
\[
\sigma_{\min}(\text{hess} f(Y)) = \min_{D_1 \in \mathcal{T}_Y, \left\| D_1 \right\|_F = 1} \left\langle D_1, \nabla g(Y)[D_1] \right\rangle.
\]

Let \(\bar{D} := \arg \min_{D_1 \in \mathcal{T}_Y, \left\| D_1 \right\|_F = 1} \left\langle D_1, \nabla g(Y)[D_1] \right\rangle \), then it holds that
\[
\left| \left\langle \bar{D}, \nabla^2 g(X)[\bar{D}] \right\rangle - \left\langle \bar{D}, \nabla^2 g(X)[\bar{D}] \right\rangle \right| \leq \left\| \nabla^2 g(X) - \nabla^2 g(Y) \right\|_F.
\]

Besides, from the expression of the hessian of \(\left\| X^T X - I_p \right\|_F \), we achieve
\[
\left\langle \bar{D}, \nabla^2 h(X)[\bar{D}] + 2X\Phi(D^T X) \right\rangle \leq \left\langle \bar{D}, \nabla^2 h(X)[\bar{D}] \right\rangle + 2 \left\langle \bar{D}, \nabla^2 h(X)[\bar{D}] \right\rangle \leq \left\| \bar{D} \right\|_F^2 \left\| X^T X - I_p \right\|_F + 2 \left\| \bar{D} \right\|_F \left\| \Phi((X - Y)^T \bar{D}) \right\|_F^2 \leq \left\| X^T X - I_p \right\|_F + 2 \left\| X - Y \right\|_F \left\| \bar{D} \right\|_F^2 \leq \left\| X^T X - I_p \right\|_F + \frac{72}{121} \left\| X^T X - I_p \right\|_F^2 \leq \frac{11}{10} \left\| X^T X - I_p \right\|_F.
\]

Therefore, we conclude that
\[
\sigma_{\min}(\nabla h(X)) = \min_{D \in \mathbb{R}^d, \left\| D \right\|_F = 1} \left\langle D, \nabla^2 h(X)[D] \right\rangle \leq \min_{D \in \mathcal{T}_Y, \left\| D \right\|_F = 1} \left\langle D, \nabla^2 h(Y)[D] \right\rangle \leq \left\langle D, \nabla^2 h(Y)[D] \right\rangle \leq \sigma_{\min}(hess f(Y)) + \left\| \nabla^2 g(X) - \nabla^2 g(Y) \right\|_F + \frac{11\beta}{10} \left\| X^T X - I_p \right\|_F \leq \sigma_{\min}(hess f(Y)) + \left\| \nabla^2 g(X) - \nabla^2 g(Y) \right\|_F + \frac{9}{2} \left\| \nabla h(X) \right\|_F,
\]

and complete the proof. \(\square \)
3.4 Łojasiewicz gradient inequality

In this section, we study the relationship between the Riemannian Łojasiewicz gradient inequality for \(f(X) \) and the Euclidean Łojasiewicz gradient inequality for \(h(X) \).

Proposition 3.13. Suppose \(f(X) \) satisfies the Riemannian Łojasiewicz gradient inequality at \(X \in S_{n,p} \) with Łojasiewicz exponent \(\theta \in \left(0, \frac{1}{2} \right) \), i.e. there exists a neighborhood \(U \subset S_{n,p} \) and a constant \(C > 0 \) such that

\[
\|\text{grad} f(Y)\|_F \geq C(f(Y) - f(X))^{1-\theta},
\]

holds for any \(Y \in U \) and the penalty parameter of ExPen satisfies \(\beta > \max\{8CM_1, 1, \bar{\beta}\} \). Then \(h(X) \) satisfies the Łojasiewicz gradient inequality at \(X \in S_{n,p} \) with Łojasiewicz exponent \(\theta \in \left(0, \frac{1}{2} \right) \).

Proof. For any \(Y \in \Omega \), we denote \(Z := Y(Y^\top Y)^{-1/2} \). It is clear that \(Z \in S_{n,p} \). By Lemma 2.8 and the Riemannian Łojasiewicz gradient inequality of \(f \), we have

\[
\|\nabla g(Z)\|_F = \|\text{grad} f(Z)\|_F \geq C(f(Z) - f(X))^{1-\theta} = C|g(Z) - g(X)|^{1-\theta}.
\]

Besides, since

\[
\left\| \left(\frac{3}{2} I_p - \frac{1}{2} X^\top X \right)^2 X^\top X - I_p \right\|_F^2 = \left\| X^\top X - I_p + (I_p - X^\top X)X^\top X + \frac{1}{4} X^\top X (X^\top X - I_p) \right\|_F^2
\]

we obtain

\[
|g(Y) - g(Z)| \leq M_1 \left\| Y^\top Y - I_p \right\|_F^2.
\]

Together with Lemma 3.11, we can conclude that

\[
\|\nabla h(Y)\|_F \geq \frac{1}{2} \|\nabla g(Z)\|_F + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F,
\]

In addition, since \(\theta \in \left(0, \frac{1}{2} \right) \), and \(Y \in \Omega \), we have

\[
|h(Y) - h(X)|^{1-\theta} = \left| g(Y) - g(X) + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F^{1-\theta} \right|^{1-\theta}
\]

\[
\leq |g(Y) - g(X)|^{1-\theta} + \left(\frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F^{2-2\theta} \right)^{1-\theta} \leq |g(Y) - g(X)|^{1-\theta} + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F.
\]

Therefore, we have

\[
\|\nabla h(Y)\|_F \geq \|\nabla g(Z)\|_F + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F \geq C|g(Z) - g(X)|^{1-\theta} + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F
\]

\[
(\text{i}) \geq C|g(Y) - g(X)|^{1-\theta} - C|g(Z) - g(Y)|^{1-\theta} + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F
\]

\[
(\text{ii}) \geq C|g(Y) - g(X)|^{1-\theta} - CM_1^{1-\theta} \left\| Y^\top Y - I_p \right\|_F^{2-2\theta} + \frac{\beta}{4} \left\| Y^\top Y - I_p \right\|_F
\]

\[
\geq C|g(Y) - g(X)|^{1-\theta} + \frac{\beta}{8} \left\| Y^\top Y - I_p \right\|_F \geq \min \left\{ C, \frac{1}{2} \right\} |h(Y) - h(X)|^{1-\theta}.
\]

Here inequality (i) uses the fact that \(|a|^{1-\theta} + |b|^{1-\theta} \geq (|a| + |b|)^{1-\theta} \geq |a + b|^{1-\theta} \) for any \(a, b \in \mathbb{R} \), \(\theta \in \left(0, \frac{1}{2} \right) \). Besides, inequality (ii) directly follows from (3.9). As a result, we obtain

\[
\|\nabla h(Y)\|_F \geq \min \left\{ C, \frac{1}{2} \right\} |h(Y) - h(X)|^{1-\theta},
\]

which concludes the proof. \(\square \)
Besides, we can even show that OCP and ExPen share the same local minimizers.

Theorem 3.14. Suppose Assumptions 2.5 and 2.6 hold, and \(\beta \geq \hat{\beta} \), then ExPen and OCP share the same local minimizers.

Proof. By Corollary 3.3 and Corollary 3.8, we can conclude that any local minimizers of ExPen are on Stiefel manifold. Since \(h(X) = f(X) \) holds for any \(X \in S_{n,p} \), then any local minimizers of ExPen are local minimizers of OCP.

On the other hand, let \(X^* \in S_{n,p} \) be a local minimizer of OCP, then there exists \(\gamma \in \left(0, \frac{1}{12} \right) \) such that \(f(Z) \geq f(X) \) holds for any \(Z \in S_{n,p}, \|Z - X^*\|_F \leq \gamma \). Then for any \(Y \in \mathbb{R}^{n \times p}, \|Y - X^*\|_F \leq \frac{\gamma}{2}, \) \(Y \in \overline{\Omega}_{1/12}, \) we can obtain that

\[
\|P_{S_{n,p}}(Y) - X^*\|_F \leq \|P_{S_{n,p}}(Y) - Y\|_F + \|Y - X^*\|_F \leq \frac{\gamma}{2} + \frac{\gamma}{2} \leq \gamma.
\]

Here the second inequality recalls the relationship (3.7). Then it follows from Proposition 3.9 that

\[
h(Y) - h(X^*) \geq h(Y) - h(P_{S_{n,p}}(Y)) + h(P_{S_{n,p}}(Y)) - h(X^*) \geq \left(\frac{\beta + M_1}{2} \right) \|Y^\top Y - I_p\|_F^2 \geq 0,
\]

which concludes the proof. \(\square \)

4 Application

4.1 Theoretical analysis for nonlinear conjugate gradient method

Nonlinear conjugate gradient (CG) methods are a class of important methods for solving unconstrained optimization problems. The first CG method, called Fletcher-Reeves CG (FR-CG), was proposed in [18]. Then various nonlinear CG methods were developed [29, 18, 15, 50, 19, 44, 14, 22]. Interested readers can refer to the survey [23] for details. Recently, a number of works extend CG methods to optimization problems over the Stiefel manifold [2, 53, 52, 70]. These works are developed within the frameworks provided by [4], and thus extensively involve retractions and parallel or vector transports. Hence, as discussed before, we are forced to comply with the low efficiency if using the parallel transports or the lack of convergence if choosing the vector transport instead.

Contrarily, applying nonlinear CG methods to minimizing ExPen over \(\mathbb{R}^{n \times p} \) can inherit both of the efficiency and convergence properties directly. The exact penalty model ExPen provides a bridge between the unconstrained optimization approaches and the original model OCP. In this section, we demonstrate the power of this “bridge” through directly applying the FR-CG method to solve OCP through ExPen. First of all, we present an ExPen version of the FR-CG in Algorithm 1. To prove the convergence of Algorithm 1, we first illustrate a nice property of ExPen through the following lemma.

Lemma 4.1. Suppose \(\beta \geq 384 M_0 \). For any sequence \(\{X_k\} \) that satisfies \(X_0 \in \overline{\Omega}_{1/24}, \) \(h(X_k) \leq h(X_0) \) and \(\|X_{k+1} - X_k\|_F \leq \frac{1}{24} \) for any \(k \geq 0 \). Then it holds that \(\{X_k\} \subset \overline{\Omega}_{1/12} \).

Proof. Firstly, for any \(Y \in \overline{\Omega}_{1/24} \) and \(Z \in \Omega \setminus \overline{\Omega}_{1/12} \), we have

\[
h(Y) - h(Z) < \sup_{W \in \Omega} h(W) - \inf_{W \in \Omega} h(W) + \frac{\beta}{1152} - \frac{\beta}{288} \leq M_0 - \frac{\beta}{384} \leq 0. \quad (4.1)
\]

Then we prove the lemma by induction. Suppose \(\{X_0, ..., X_k\} \subset \overline{\Omega}_{1/12} \). Then notice that \(\|X_{k+1} - X_k\|_F \leq \frac{1}{24} \), it holds that \(X_{k+1} \in \overline{\Omega}_{1/6} \). Together with the fact that \(h(X_{k+1}) \leq h(X_0) \), it directly follows from (4.1) that \(X_{k+1} \in \overline{\Omega}_{1/12} \). Therefore, the induction illustrates that \(\{X_k\} \subset \overline{\Omega}_{1/12} \), thus we complete the proof. \(\square \)
Algorithm 1: Nonlinear FR-CG method for solving ExPen.

Require: Input data: functions \(f \).
1. Choose initial guess \(X_0 \) and parameters \(0 < \delta \leq \sigma \leq \frac{1}{2} \), set \(k := 0, D_0 = -\nabla h(X_0) \).
2. while not terminate do
3. Compute the stepsize \(\eta_k \) by strong Wolfe line search [23]:
 \[
 h(X_k + \eta_k D_k) - h(X_k) \leq \delta \eta_k \langle \nabla h(X_k), D_k \rangle,
 \]
 \[
 |\langle \nabla h(X_k + \eta_k D_k), D_k \rangle| \leq -\sigma \langle \nabla h(X_k), D_k \rangle.
 \]
4. \(X_{k+1} = X_k + \eta_k D_k \).
5. Compute the CG update parameter \(\tau_k = \frac{\|\nabla h(X_{k+1})\|_F^2}{\|\nabla h(X_k)\|_F^2} \).
6. Compute the search direction \(D_{k+1} = -\nabla h(X_{k+1}) + \tau_k D_k \).
7. Set \(k := k + 1 \).
8. end while
9. Return \(X_k \).

Lemma 4.1 guarantees that the iterates generated by any monotonic algorithm starting from an initial point \(X_0 \in \Omega_{1/12} \) are restricted in the region \(\Omega_{1/6} \) under mild conditions. Then the Step 3 in Algorithm 1 indicates that \{\(h(X_k) \)\} is monotone decreasing. Then combining Lemma 4.1 and Assumption 1.1, we conclude that the objective function \(f \) satisfies the Lipschitz conditions and boundness conditions in [23]. Therefore, based on the Zoutendijk condition [71] and [23, Theorem 4.2], we can directly establish the follow global convergence result for Algorithm 1 and omit its proof.

Theorem 4.2. Suppose \(\beta \geq \max\{384M_0, \hat{\beta}\} \). Let \(\{(X_k, D_k)\} \) be the sequence generated by Algorithm 1 initiated from \(X_0 \in \Omega_{1/24} \). If the inequalities
\[
\langle \nabla h(X_k), D_k \rangle < 0 \quad \text{and} \quad \eta_k \|D_k\|_F \leq \frac{1}{24}
\]
hold for all \(k \geq 0 \) and we further have
\[
\sum_{k=0}^{+\infty} \frac{\langle \nabla h(X_k), D_k \rangle^2}{\|D_k\|_F^2} < +\infty,
\]
then any accumulation point of \{\(X_k \)\} is a first-order stationary point of OCP.

Remark 4.3. Algorithm 1 and Theorem 4.2 take FR-CG as example. In fact, if we update the parameter sequence \(\{\tau_k\} \) by the PRP [50], DY [14], or HS [29] formulas, we can obtain similar global convergence properties as well. Interested readers are referred to the survey paper [23] for details.

Remark 4.4. The condition (4.2) in Theorem 4.2 refers to the Zoutendijk condition [71, 23], which is sufficient for the global convergence properties for a great number of nonlinear conjugate gradient methods.

Remark 4.5. It is worth mentioning that a small penalty parameter \(\beta \) may lead to the failure of convergence, while a large penalty parameter may result in a large condition number, thus lead to slow convergence rate. Several existing works on developing penalty methods for OCP have suggested some practically useful choice of the penalty parameter \(\beta \), interested readers could refer to [21, 61, 62] for details.

4.2 Numerical experiments

In this section, we numerically demonstrate the power of the “bridge”, provided by ExPen, between the unconstrained optimization approaches and the original model OCP. All the numerical experiments in this section are run in serial in a platform with AMD Ryzen 5800H CPU and 16GB RAM under Ubuntu 18.10 running Python 3.7.0 and Numpy 1.20.0 [26].
We choose nonlinear eigenvalue problem and the Brockett function minimization as the test problems. The details of how to construct the test instances are described in the following two subsections, respectively.

In the presented experiments, we set the penalty parameter β in ExPen as suggested in [21, 61, 62], i.e. $\beta = \|\nabla f(X_0)\|_F / 10$, where X_0 is the initial point. Besides, we choose the nonlinear conjugate gradient solver [18, 48] provided in the package SciPy 1.6.3 [57] to minimize ExPen in $\mathbb{R}^{n \times p}$. This optimization approach is referred as ExPen-CG. We terminate ExPen-CG when $\|h(X_k)\|_F \leq 10^{-3}$, or the maximum number of iterations exceeds 10000, while keeping all the other parameters as their default values in the package.

For comparison, we first select the Riemannian conjugate gradient (RCG) solver from the package PyManopt (version 0.2.5) [56]. RCG is one of the state-of-the-art Riemannian solvers in Python platform. Furthermore, we also choose some state-of-the-art infeasible optimization solvers into the comparisons. These solvers include PCAL [21], PenC [61] and SLPG [63] from the STOP package [64]. We terminate these solvers when the maximum number of iterations exceeds 10000 and set the tolerance for gradient as 10^{-3}. Meanwhile, we set the other parameters in these solvers by default. Furthermore, for the final solution \tilde{X} generated by all the compared algorithms, we project \tilde{X} onto the Stiefel manifold as the post-processing step employed in [21, 61, 62, 63].

4.2.1 Nonlinear eigenvalue problems

In this subsection, we test the performance of all the compared solves in solving a class of nonlinear eigenvalue problems arisen from electronic structure calculation [42, 65, 11],

$$
\min_{X \in \mathbb{R}^{n \times p}} f(X) = \frac{1}{2} \text{tr} \left(X^T LX \right) + \frac{\alpha}{4} \rho_X^T L^\dagger L \rho_X
$$

s. t. $X^T X = I_p$, \hspace{1cm} (4.3)

where $\rho_X := \text{diag}(XX^T)$, L is a tridiagonal matrix with 2 as diagonal entries and -1 as subdiagonal entries. Besides, L^\dagger refers to the pseudo-inverse of L. We initiate all the compared solvers at the same initial point, which is randomly generated over $S_{n,p}$. Table 3 and Table 4 illustrate the performance of all the compared algorithms in solving problem 4.3 with different combinations of problem parameters n, p. Here, we run each instance for 10 times and present the averaged results. We can learn from Table 3 and Table 4 that all the compared solvers reach similar function values while ExPen-CG is comparable with the state-of-the-art solvers. Remarkably, ExPen-CG outperforms RCG in terms of CPU time and iterations.

Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
$n = 250, p = 50$					
ExPen-CG	2.810709e+03	567.5	5.63e-04	1.79e-14	1.16
PCAL	2.810709e+03	1528.3	8.44e-04	9.83e-15	1.54
PenC	2.810709e+03	1211.4	8.00e-04	1.01e-14	1.21
SLPG	2.810709e+03	1275.3	8.40e-04	9.97e-15	1.25
RCG	2.810709e+03	1103.1	9.78e-04	5.49e-15	4.28
$n = 500, p = 50$					
ExPen-CG	2.810709e+03	632.6	6.83e-04	1.92e-14	3.52
PCAL	2.810709e+03	1739.5	8.67e-04	1.00e-14	4.64
PenC	2.810709e+03	1486.1	9.04e-04	9.99e-15	3.82
SLPG	2.810709e+03	1274.7	8.16e-04	9.77e-15	3.67
RCG	2.810709e+03	1111.7	9.78e-04	5.85e-15	9.96
$n = 1000, p = 50$					
ExPen-CG	2.810709e+03	715.6	9.35e-04	2.06e-14	5.14
PCAL	2.810709e+03	1849.6	9.72e-04	1.07e-14	7.61
PenC	2.810709e+03	1580.9	9.05e-04	1.09e-14	6.18
Table 3 continued from previous page

Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
SLPG	2.810709e+03	1303.6	7.69e-04	1.11e-14	6.12
RCG	2.810709e+03	1492.2	9.82e-04	7.80e-15	18.53

\(n = 1500, p = 50 \)

Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
ExPen-CG	2.810709e+03	787.0	7.88e-04	2.22e-14	7.29
PCAL	2.810709e+03	1680.7	9.24e-04	1.13e-14	9.70
PenC	2.810709e+03	1651.8	9.29e-04	1.10e-14	9.00
SLPG	2.810709e+03	1281.3	8.54e-04	1.10e-14	8.51
RCG	2.810709e+03	1206.9	9.83e-04	8.32e-15	20.17

\(n = 2000, p = 50 \)

Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
ExPen-CG	2.810709e+03	866.4	7.52e-04	2.35e-14	10.14
PCAL	2.810709e+03	1863.0	8.45e-04	1.16e-14	14.17
PenC	2.810709e+03	1619.0	9.18e-04	1.15e-14	11.78
SLPG	2.810709e+03	1583.1	8.96e-04	1.14e-14	10.93
RCG	2.810709e+03	1140.2	9.85e-04	8.43e-15	24.49

Table 3: The results of the nonlinear eigenvalue problems with varying \(n \).
Furthermore, we exhibit the convergence curves of ExPen-CG in the aspect of function value gap evaluated by \(f(X_k) - f(X^*) \), the stationarity \(\| \nabla f(X_k) \| \) and the feasibility \(\| X_k \top X_k - I_p \|_F \). Here \(f(X^*) \) is computed by RCG solver from PyManopt package that satisfies \(\| \text{grad} f(X^*) \|_F \leq 10^{12} \). In Figure 3, we present the curves of ExPen-CG under different combination of the parameters. From Figure 3(a), 3(d) and 3(g), we can observe that the sequence \(\{ X_k \} \) generated by ExPen-CG achieves almost the same function values as RCG. Moreover, Figure 3(c), 3(f) and 3(i) illustrate that the sequence generated by ExPen-CG converges towards \(S_{n,p} \).

Figure 3: The convergence curves of ExPen-CG on nonlinear eigenvalue problems.
4.2.2 Brockett function minimization problems

In this subsection, we test the numerical performance of all the tested algorithms on minimizing the Brockett function over the Stiefel manifold [58],

$$\min_{X \in \mathbb{R}^{n \times p}} f(X) = \frac{1}{2} \text{tr} \left(X^\top B X C \right)$$

s. t. $X^\top X = I_p$, \hspace{1cm} (4.4)

where $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{p \times p}$ are two randomly generated symmetric matrices. We initiate ExPen-CG and RCG at the same point, which is randomly generated over $S_{n,p}$. Table 5 and Table 6 illustrate the performance of these compared algorithms with different combinations of problem parameters n and p. Here, we run each instance for 10 times and present the averaged results. We observe that all the compared algorithms achieve almost the same function values, and ExPen-CG achieves comparable performance as all the compared algorithms. In particular, ExPen-CG outperforms RCG in all the test instances.

Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
$n = 250, p = 50$					
ExPen-CG	-9.611694e+00	962.7	7.97e-04	1.64e-14	2.99
PCAL	-9.610215e+00	2209.5	9.96e-04	8.46e-15	3.07
PenC	-9.610213e+00	2326.1	9.93e-04	8.43e-15	3.26
SLPG	-9.610306e+00	1848.4	9.46e-04	8.27e-15	2.45
RCG	-9.613055e+00	2417.4	9.92e-04	3.84e-15	12.39

| $n = 500, p = 50$ |
ExPen-CG	-9.570277e+00	859.4	7.45e-04	1.69e-14	6.97
PCAL	-9.568621e+00	1917.1	9.90e-04	8.20e-15	6.81
PenC	-9.568620e+00	2176.8	9.90e-04	8.29e-15	7.61
SLPG	-9.568844e+00	1844.6	9.44e-04	8.11e-15	6.15
RCG	-9.571521e+00	2172.6	9.96e-04	3.15e-15	24.76

| $n = 1000, p = 50$ |
ExPen-CG	-1.056750e+01	816.8	7.55e-04	1.69e-14	9.17
PCAL	-1.056576e+01	1789.7	9.91e-04	8.22e-15	10.03
PenC	-1.056577e+01	2190.5	9.90e-04	8.20e-15	11.79
SLPG	-1.056600e+01	1637.0	9.48e-04	7.97e-15	10.81
RCG	-1.056893e+01	3078.1	9.94e-04	3.07e-15	49.66

| $n = 1500, p = 50$ |
ExPen-CG	-1.059979e+01	723.9	7.62e-04	1.63e-14	12.14
PCAL	-1.059830e+01	1632.3	9.87e-04	7.80e-15	14.00
PenC	-1.059828e+01	2004.8	9.96e-04	7.87e-15	16.55
SLPG	-1.059850e+01	1518.6	9.28e-04	7.90e-15	12.49
RCG	-1.060131e+01	2845.3	9.96e-04	2.79e-15	66.11

| $n = 2000, p = 50$ |
ExPen-CG	-1.098884e+01	712.2	7.63e-04	1.67e-14	16.49
PCAL	-1.098736e+01	1584.2	9.81e-04	7.97e-15	19.29
PenC	-1.098741e+01	1837.1	9.67e-04	7.93e-15	21.78
SLPG	-1.098743e+01	1514.2	9.61e-04	7.80e-15	15.59
RCG	-1.099041e+01	3106.6	9.94e-04	2.61e-15	101.91

Table 5: The results of the Brockett function minimization problems with varying n.

23
Solver	Fval	Iteration	Stationarity	Feasibility	CPU time(s)
n = 1000, p = 10					
ExPen-CG	-2.551708e+00	343.1	6.20e-04	4.62e-15	0.86
PCAL	-2.551070e+00	623.4	9.50e-04	2.19e-15	0.98
PenC	-2.551053e+00	675.0	9.78e-04	1.90e-15	1.01
SLPG	-2.551101e+00	582.3	9.41e-04	2.21e-15	0.87
RCG	-2.552008e+00	1278.9	9.91e-04	1.09e-15	5.69
n = 1000, p = 30					
ExPen-CG	-6.479578e+00	576.9	6.95e-04	9.92e-15	3.16
PCAL	-6.478547e+00	1345.6	9.89e-04	4.87e-15	3.99
PenC	-6.478539e+00	1553.4	9.94e-04	5.10e-15	4.42
SLPG	-6.478541e+00	1289.7	9.72e-04	4.86e-15	4.81
RCG	-6.480546e+00	2474.2	9.95e-04	2.11e-15	22.56
n = 1000, p = 50					
ExPen-CG	-1.032617e+01	838.2	7.45e-04	1.64e-14	9.00
PCAL	-1.032438e+01	1698.3	9.94e-04	8.25e-15	9.66
PenC	-1.032442e+01	2127.4	9.88e-04	8.22e-15	11.58
SLPG	-1.032457e+01	1522.5	9.39e-04	8.13e-15	9.71
RCG	-1.032752e+01	2895.4	9.96e-04	3.10e-15	49.96
n = 1000, p = 70					
ExPen-CG	-1.312272e+01	850.7	7.84e-04	2.02e-14	12.65
PCAL	-1.312096e+01	2131.2	9.96e-04	1.03e-14	14.91
PenC	-1.312099e+01	2492.5	9.97e-04	1.03e-14	16.79
SLPG	-1.312106e+01	1848.2	9.54e-04	1.01e-14	16.20
RCG	-1.312455e+01	3298.1	9.96e-04	3.74e-15	69.18
n = 1000, p = 100					
ExPen-CG	-2.039827e+01	1169.3	7.91e-04	2.69e-14	22.14
PCAL	-2.039602e+01	2413.2	9.97e-04	1.31e-14	24.27
PenC	-2.039603e+01	2838.3	9.94e-04	1.31e-14	27.86
SLPG	-2.039626e+01	2289.9	9.43e-04	1.29e-14	24.60
RCG	-2.040059e+01	4261.6	9.96e-04	4.85e-15	128.97

Table 6: The results of the Brockett function minimization problems with varying \(p \).

5 Conclusion

The optimization over the Stiefel manifold has a close connection with unconstrained optimization. To efficiently extend existing unconstrained optimization approaches to their Stiefel versions and establish the corresponding theoretical analysis, most existing approaches are mainly based on the frameworks summarized in [4]. These approaches always involve computing the retractions and parallel/vector transports. However, computing retractions or parallel transport on the Stiefel manifold lack efficiency or scalability, while computing the vector transport can hardly inherit nice techniques in theoretical analysis.

In this paper, we present a novel exact smooth penalty function and its corresponding penalty model ExPen for OCP. We show that ExPen is well-defined under mild assumptions and study its theoretical properties. As illustrated in Figure 1 and Figure 2, we have proved the first-order and second-order relationships between OCP and ExPen, respectively. These properties guarantee that ExPen and OCP share first-order or second-order stationary points or local minimizers with a sufficiently large given penalty parameter.

In conclusion, we can directly adopt unconstrained optimization approaches to solve OCP through
the bridge built by ExPen. Meanwhile, we can easily inherit the nice convergence properties of those approaches. We use the nonlinear conjugate gradient method as an instance. We present its ExPen version and establish its global convergence, worst-case complexity and the ability to escaping the saddle point. It is worth mentioning that this ExPen version is performed in Euclidean space and hence avoids computing the retractions or parallel transports on the Stiefel manifold. Our present example highlights that those progress in nonconvex unconstrained optimization will immediately benefit optimization over the Stiefel manifold through ExPen. Moreover, the presented numerical examples further address the great potential of ExPen.

References

[1] Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold without retraction. In International Conference on Artificial Intelligence and Statistics, pages 5636–5657. PMLR, 2022.

[2] Traian Abrudan, Jan Eriksson, and Visa Koivunen. Conjugate gradient algorithm for optimization under unitary matrix constraint. Signal Processing, 89(9):1704–1714, 2009.

[3] Traian E Abrudan, Jan Eriksson, and Visa Koivunen. Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56(3):1134–1147, 2008.

[4] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.

[5] Kwangjun Ahn and Suvrit Sra. From nesterov’s estimate sequence to riemannian acceleration. In Conference on Learning Theory, pages 84–118. PMLR, 2020.

[6] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regularizations in training deep networks? In Advances in Neural Information Processing Systems, pages 4261–4271, 2018.

[7] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv preprint arXiv:1810.00760, 2018.

[8] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press, 2014.

[9] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

[10] Nicolas Boumal. An introduction to optimization on smooth manifolds. Available online, May, 2020.

[11] Yunfeng Cai, Lei-Hong Zhang, Zhaojun Bai, and Ren-Cang Li. On an eigenvector-dependent nonlinear eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 39(3):1360–1382, 2018.

[12] Chris Criscitiello and Nicolas Boumal. Efficiently escaping saddle points on manifolds. arXiv preprint arXiv:1906.04321, 2019.

[13] Chris Criscitiello and Nicolas Boumal. An accelerated first-order method for non-convex optimization on manifolds. arXiv preprint arXiv:2008.02252, 2020.

[14] Yu-Hong Dai and Yaxiang Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1):177–182, 1999.

[15] James W Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAM Journal on Numerical Analysis, 4(1):10–26, 1967.
[16] Edgar Fuentes Figueroa and Oscar Dalmau. Transportless conjugate gradient for optimization on stiefel manifold. *Computational and Applied Mathematics*, 39:1–18, 2020.

[17] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395, 1981.

[18] Reeves Fletcher and Colin M Reeves. Function minimization by conjugate gradients. *The computer journal*, 7(2):149–154, 1964.

[19] Roger Fletcher. *Practical methods of optimization*. John Wiley & Sons, 2013.

[20] Bin Gao, Xin Liu, Xiaojun Chen, and Ya-xiang Yuan. A new first-order algorithmic framework for optimization problems with orthogonality constraints. *SIAM Journal on Optimization*, 28(1):302–332, 2018.

[21] Bin Gao, Xin Liu, and Ya-xiang Yuan. Parallelizable algorithms for optimization problems with orthogonality constraints. *SIAM Journal on Scientific Computing*, 41(3):A1949–A1983, 2019.

[22] William W Hager and Hongchao Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. *SIAM Journal on Optimization*, 16(1):170–192, 2005.

[23] William W Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient methods. *Pacific Journal of Optimization*, 2(1):35–58, 2006.

[24] Andi Han and Junbin Gao. Escape saddle points faster on manifolds via perturbed riemannian stochastic recursive gradient. *arXiv preprint arXiv:2010.12191*, 2020.

[25] Dongyoon Han and Junmo Kim. Unsupervised simultaneous orthogonal basis clustering feature selection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5016–5023, 2015.

[26] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[27] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled cayley transform. In *International Conference on Machine Learning*, pages 1969–1978. PMLR, 2018.

[28] Magnus R Hestenes. Multiplier and gradient methods. *Journal of optimization theory and applications*, 4(5):303–320, 1969.

[29] Magnus Rudolph Hestenes, Eduard Stiefel, et al. *Methods of conjugate gradients for solving linear systems*, volume 49. NBS Washington, DC, 1952.

[30] Nicholas J. Higham and Pythagoras Papadimitriou. A parallel algorithm for computing the polar decomposition. *Parallel Computing*, 20:1161–1173, 1994.

[31] S Hosseini. Convergence of nonsmooth descent methods via kurdyka–lojasiewicz inequality on riemannian manifolds. *Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn (2015,(INS Preprint No. 1523))*, 2015.

[32] Thomas Y Hou, Zhenzhen Li, and Ziyun Zhang. Analysis of asymptotic escape of strict saddle sets in manifold optimization. *SIAM Journal on Mathematics of Data Science*, 2(3):840–871, 2020.

[33] Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization. *Journal of the Operations Research Society of China*, 8(2):199–248, 2020.
[34] Xiaoyin Hu and Xin Liu. An efficient orthonormalization-free approach for sparse dictionary learning and dual principal component pursuit. *Sensors*, 20(3041), 2020.

[35] Wen Huang and Ke Wei. Riemannian proximal gradient methods. *arXiv preprint arXiv:1909.06065*, 2019.

[36] Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization on stiefel manifold. *Mathematical Programming*, 153(2):535–575, 2015.

[37] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. *Physical review*, 140(4A):A1133, 1965.

[38] Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. *arXiv preprint arXiv:1909.09501*, 2019.

[39] Mario Lezcano-Casado and David Martinez-Rubio. Cheap orthogonal constraints in neural networks: A simple parametrization of the orthogonal and unitary group. In *International Conference on Machine Learning*, pages 3794–3803. PMLR, 2019.

[40] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via the cayley transform. *arXiv preprint arXiv:2002.01113*, 2020.

[41] Xuelong Li, Han Zhang, Rui Zhang, Yun Liu, and Feiping Nie. Generalized uncorrelated regression with adaptive graph for unsupervised feature selection. *IEEE transactions on neural networks and learning systems*, 30(5):1587–1595, 2018.

[42] Xin Liu, Xiao Wang, Zaiwen Wen, and Yaxiang Yuan. On the convergence of the self-consistent field iteration in kohn–sham density functional theory. *SIAM Journal on Matrix Analysis and Applications*, 35(2):546–558, 2014.

[43] Xin Liu, Zaiwen Wen, Xiao Wang, Michael Ulbrich, and Yaxiang Yuan. On the analysis of the discretized kohn–sham density functional theory. *SIAM Journal on Numerical Analysis*, 53(4):1758–1785, 2015.

[44] Y Liu and C Storey. Efficient generalized conjugate gradient algorithms, part 1: theory. *Journal of optimization theory and applications*, 69(1):129–137, 1991.

[45] Stanisław Łojasiewicz. Sur le probleme de la division. 1961.

[46] Stanislaw Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. *Les équations aux dérivées partielles*, 117:87–89, 1963.

[47] Kehelwala DG Maduranga, Kyle E Helfrich, and Qiang Ye. Complex unitary recurrent neural networks using scaled cayley transform. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 4528–4535, 2019.

[48] Jorge Nocedal and Stephen Wright. *Numerical optimization*. Springer Science & Business Media, 2006.

[49] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2(11):559–572, 1901.

[50] Boris Teodorovich Polyak. The conjugate gradient method in extremal problems. *USSR Computational Mathematics and Mathematical Physics*, 9(4):94–112, 1969.

[51] Michael JD Powell. A method for nonlinear constraints in minimization problems. *Optimization*, pages 283–298, 1969.

[52] Hiroyuki Sato. A dai–yuan-type riemannian conjugate gradient method with the weak wolfe conditions. *Computational optimization and Applications*, 64(1):101–118, 2016.
[53] Hiroyuki Sato and Toshihiro Iwai. A new, globally convergent riemannian conjugate gradient method. *Optimization*, 64(4):1011–1031, 2015.

[54] Jonathan W Siegel. Accelerated optimization with orthogonality constraints. *arXiv preprint arXiv:1903.05204*, 2019.

[55] Yue Sun, Nicolas Flammarion, and Maryam Fazel. Escaping from saddle points on riemannian manifolds. *arXiv preprint arXiv:1906.07355*, 2019.

[56] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation. *arXiv preprint arXiv:1603.03236*, 2016.

[57] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods*, 17(3):261–272, 2020.

[58] Lei Wang, Bin Gao, and Xin Liu. Multipliers correction methods for optimization problems over the stiefel manifold. *arXiv preprint arXiv:2011.14781*, 2020.

[59] Lei Wang, Xin Liu, and Yin Zhang. A distributed and secure algorithm for computing dominant svd based on projection splitting. *arXiv preprint arXiv:2012.03461*, 2020.

[60] Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints. *Mathematical Programming*, 142(1-2):397–434, 2013.

[61] Nachuan Xiao, Xin Liu, and Ya-xiang Yuan. A class of smooth exact penalty function methods for optimization problems with orthogonality constraints. *Optimization Methods and Software*, pages 1–37, 2020.

[62] Nachuan Xiao, Xin Liu, and Ya-xiang Yuan. Exact penalty function for $\ell_{2,1}$ norm minimization with orthogonality constraints. *optimization online preprint*, 2020.

[63] Nachuan Xiao, Xin Liu, and Ya-xiang Yuan. A penalty-free infeasible approach for a class of nonsmooth opimtization problems over the stiefel manifold. *arXiv preprint arXiv:2103.05514*, 2021.

[64] Nachuan Xiao, Lei Wang, Bin Gao, Xin Liu, and Ya-xiang Yuan. STOP: a toolbox for Stiefel manifold optimization, 2022. URL https://stopt.gitee.io/.

[65] Chao Yang, Weiguo Gao, and Juan C Meza. On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. *SIAM Journal on Matrix Analysis and Applications*, 30(4):1773–1788, 2009.

[66] Hongyi Zhang and Suvrit Sra. Towards riemannian accelerated gradient methods. *arXiv preprint arXiv:1806.02812*, 2018.

[67] Jingzhao Zhang, Hongyi Zhang, and Suvrit Sra. R-spider: A fast riemannian stochastic optimization algorithm with curvature independent rate. *arXiv preprint arXiv:1811.04194*, 2018.

[68] Rui Zhang, Feiping Nie, and Xuelong Li. Feature selection under regularized orthogonal least square regression with optimal scaling. *Neurocomputing*, 273:547–553, 2018.

[69] Pan Zhou, Xiao-Tong Yuan, and Jiashi Feng. Faster first-order methods for stochastic non-convex optimization on riemannian manifolds. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 138–147. PMLR, 2019.

[70] Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold. *Computational optimization and Applications*, 67(1):73–110, 2017.

[71] G Zoutendijk. Nonlinear programming, computational methods. *Integer and nonlinear programming*, pages 37–86, 1970.