1-OH-Pyrene and 3-OH-Phenanthrene in Urine Show Good Relationship with their Parent Polycyclic Aromatic Hydrocarbons in Muscle in Dairy Cattle

Hwan-Goo Kang1 and Sang-Hee Jeong2

1Toxicology & Chemistry Division, National Veterinary Research and Quarantine Service, Anyang 430-824
2GLP Research Center, College of Natural Science, Hoseo University, Asan 336-795, Korea

(Received February 7, 2011; Revised February 12, 2011; Accepted February 15, 2011)

The toxicities of phenanthrene (PH) and pyrene (PY) are less than benzo(a)pyrene (BaP), but both compounds are found in higher concentrations in the air, feed, and food. Most PAHs are metabolized to hydroxylated compounds by the hepatic cytochrome P450 monooxigenases system. Metabolites are excreted into urine and feces. We determined concentrations of PH, PY and BaP in muscle and hydroxylated metabolites, 3-OH-PH, 1-OH-PY, and 3-OH-BaP, respectively, in urine from dairy cattle (n = 24). We also evaluated the relationship between parent compounds in muscle and their metabolites in urine. Concentrations of PH and PY in muscle ranged from 0.7~4.8 ng/g (1.8 ± 1.7) and 0.4~4.1 ng/g (1.2 ± 1.2), respectively. Concentrations of 3-OH-PH and 1-OH-PY in urine ranged from 0.1~5.9 ng/ml (2.9 ± 3.7) and 0.5~3.6 ng/ml (1.9 ± 2.3), respectively. Correlation coefficient for PY concentration in muscle versus 1-OH-PY in urine was 0.657 and for PH concentration in muscle versus 3-OH-PH in urine was 0.579. Coefficient determination for PY and PH concentrations in muscle was 0.886 and for 1-OH-PY and 3-OH-PH in urine was 0.834. This study suggests that 1-OH-PY and 3-OH-PH could be used as biomarkers for PAHs exposure in dairy cattle.

Key words: Exposure biomarker, Polycyclic aromatic hydrocarbons, Dairy cattle, 1-OH-Pyrene, 3-OH-Phenanthrene

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous environmental contaminants present as mixtures in air and food (WHO, 1998). Phenanthrene (PH) and pyrene (PY) are found abundantly in the air and food, and thus could be used as an index of PAHs contamination (Costera et al., 2009; Martorell et al., 2010). Benzo(a)pyrene (BaP) is a known carcinogen in humans (Hecht et al., 2010) and laboratory animals (Knafla et al., 2006). The BaP is metabolized to an epoxide which binds covalently to macromolecules in body.

Metabolic activation of PAHs occurs primarily through the action of CYP1A family P450 monooxygenases, such as CYP1A1 which hydroxylates PAHs (Elovaara et al., 2007; Vakharia et al., 2001). Urinary monohydroxy-PAHs have been suggested as biomarkers for assessing human exposure to PAHs (Li et al., 2008). Correlations were reported between PH concentration and the corresponding urinary monohydroxy-PH metabolites in people with airborne PH exposure (Chetiyanukornkul et al., 2006), and between urinary PY and monohydroxy-PY metabolites in industrial workers (Fustinoni et al., 2010; Liu et al., 2010; McClean et al., 2007). Urine 1-OH-PY concentrations were reported to be sensitive biomarker in rats orally exposed to PAHs for 28 d (Kang et al., 2007). 1-OH-PY is the main PAH metabolite in human and goat, thus 1-OH-PY in urine and milk has been suggested as a marker of exposure in these species (Campo et al., 2010; Onyemauwa et al., 2009).

Though numerous studies evaluated 1-OH-PY and 3-OH-PH in humans, there have been few studies documenting concentrations of PAH metabolites urine from domestic animals how it relates to tissue PAH concentrations to our knowledge. The purpose of this study was to evaluate the correlations between parent compounds in muscle and their metabolites in urine by determination of amounts of BaP, PH, and PY in muscle and their respective hydroxylated metabolites, 3-OH-BaP, 3-OH-PH and 1-OH-PY in urine from dairy cattle.
MATERIALS AND METHODS

Chemicals. Benzo(a)pyrene, phenanthrene and pyrene were purchased from Sigma-Aldrich (St. Louis, USA), and 3-OH-benzo(a)pyrene, 1-OH-pyrene and 3-OH-phenanthrene were purchased from Midwest Research Institute (Kansas, USA).

Sampling. Skeletal muscle and urine were randomly collected from same dairy cattle (n = 24) at slaughter houses in the Kyeunggi province, Republic of Korea.

Determination of parent compounds in muscle and their metabolites in urines. The concentrations of BaP, PH and PY in muscle and of 3-OH-BaP, 1-OH-PY, and 3-OH-PH in urine were determined using HPLC with fluorescence detection according to the method by Kang et al (Kang et al., 2007). Briefly, 3 g of muscle frozen with liquid nitrogen, homogenized, extracted with 50 ml of hexane, and concentrated to about 1 ml at 45°C with a rotary evaporator. After purification using an activated Florisil cartridge (Waters, USA), PAHs were eluted with 18 ml of hexane and dichloromethane (3 : 1, v/v) solution. After drying the eluent at 45°C, it was dissolved with 1 ml of acetonitrile by sonication. For the determination of metabolites in urine, 7 ml of 0.2 mol sodium acetate buffer (pH 5.0) was added into 5 ml of urine for acidification and then β-glucuronidase (13,200 U) and sulfatase (220 U) solution were added. After incubating (37°C, 210 rpm) for 16 h and centrifugation (3,000 ×g for 10 min), the supernatant was purified with an activated Sep-Pak C18 cartridge (Waters, USA). The metabolites were eluted with 10 ml of hexane and dichloromethane (3 : 1, v/v) then evaporated at 45°C, and dissolved with 1 ml of acetonitrile.

Statistical analysis. Coefficient determination (R²) were determined between the parent compounds and their corresponding metabolites by linear regression plotting by Microcal.

![Fig. 1. Correlation between phenanthrene and pyrene in muscle and 3-OH-phenanthrene and 1-OH-pyrene in urine of dairy cattle.](image-url)
RESULTS

Distribution of parent PAHs in muscle and their metabolites in urine. The concentrations of PH in muscle ranged from 0.7 to 4.8 ng/ml (mean = 1.8 ± 1.7). The concentrations of PY ranged from 0.4 to 4.1 ng/ml (mean = 1.2 ± 1.2). Concentrations of 3-OH-PY in urine were from 0.1 to 5.9 ng/ml (mean = 2.9 ± 3.7). The concentrations of 1-OH-PY ranged from 0.5 to 3.6 ng/ml (mean = 1.9 ± 2.3). Neither BaP in muscle nor its metabolite 3-OH-BaP in urine was detected.

Correlation between parent PAHs in muscle and their metabolites in urine. The coefficient determination (R^2) between the concentration of pyrene in muscle and 1-OH-PY in urine was 0.667, and for PH in muscle and 3-OH-PH in urine was 0.570. The coefficient determination for the concentration of PY and PH in muscle was 0.883 and for 1-OH-PY and 3-OH-PH in urine was 0.803.

DISCUSSION

Metabolites of PH, PY, and other PAHs in body fluid are useful biomarker for PAHs exposure in humans and other species (Gundel et al., 2000; Jacob and Grimmer, 1996; Keimig et al., 1983; Zhao et al., 1992). The major hydroxylated metabolites for PY, PH and BaP are 1-OH-PY, 3-OH-PH and 3-OH-BaP, respectively (Jacob and Grimmer, 1996; Keimig et al., 1983).

PY forms a relatively large proportion of the high molecular weight PAHs found in foods. Its metabolite, 1-OH-PY in urine is representative of occupational and dermal PY and total PAH exposure and it is a good indicator for mutagenic activity in animals and human liver (Buckley and Lioy, 1992; Jongeneelen et al., 1988).

The main metabolite of PY in urine and milk is 1-OH-PY. Thus 1-OH PY could be considered as a marker of rumen PAH exposure as it has been in humans. Because 1-OH-PY and 3-OH-PH were detected in milk, metabolites PAHs should be considered when evaluating milk safety (Lapole et al., 2007).

3-OH-BaP and 3-OH-PH were most abundant metabolites of BaP and PH exposure, respectively, in human urine (Gundel et al., 2000; Jongeneelen et al., 1985). Urine can be obtained quickly and easily in live animals and people, and thus is a useful biological sample for assessment of exposure to environmental contaminants. Urine 1-OH-PY concentrations reflect recent exposure, while the presence of PAH-adducts reflects more persistent, long time exposure (Jongeneelen, 2001; Ovrebo et al., 1994). The amount of the parent compound in tissues and urine are proportional to the dosage given in rats (Kang et al., 2009). Urinary 1-OH-PY could be used as a biological monitoring index for human exposure to high concentrations of PAHs, but it is not applicable for biological monitoring of extremely low concentration PAH exposures (Hara et al., 1997). The major metabolite detected in goat urine and milk of goats orally dosed with PY, PH, and BaP was 1-OH-PY, thus it can be used as an indicator of the ruminant PAH exposure (Costera et al., 2009). The geometric mean for 1-OH-PY in urine samples from people in the US was 0.050 ng/ml (Li et al., 2008). The mean concentration of urinary 1-OH-PY in cattle from a remote rural area in Germany was 0.46–1.35 ng/ml and in cattle close to a busy highway was 3.27–10.5 ng/ml (Ferrari et al., 2002). The findings of this study were similar. The concentrations of 1-OH-PY in urine from dairy cattle ranged from 0.5 to 3.6 ng/ml. These results suggest that dairy cattle are exposed to higher concentration of PAHs than people or that cattle metabolize PAHs differently. According to present study, levels of PH and PY in muscle and their metabolite in urine were also closely related to each other. This data also suggests that dairy cattle also are exposed to a similar ratio of PH and PY as people. Conclusively this study suggest that 1-OH-PY and 3-OH-PH are useful biomarkers for PAH exposure in dairy cattle as in people, but more extensive studies are required to use these biomarkers under conditions of low-level PAH exposure in dairy cattle.

ACKNOWLEDGEMENTS

This project was supported by grants from National Veterinary Research and Quarantine Service, Republic of Korea. The authors also express deep thanks to Dr. Bischoff at Cornell University for her kind review on this paper.

REFERENCES

Buckley, T.J. and Lioy, P.J. (1992). An examination of the time

Table 1. Parent polycyclic aromatic hydrocarbon in muscle and their metabolites in urine in dairy cattle

Phenanthrene	Pyrene	Benzo(a)pyrene	3-OH-Phenanthrene	1-OH-Pyrene	3-OH-Benzo (a)pyrene
Mean ± SD	Range	ND	2.9 ± 3.7	1.9 ± 2.3	ND
1.8 ± 1.7	0.7–4.8	ND	2.9 ± 3.7	1.9 ± 2.3	ND
1.2 ± 1.2	0.4–4.1	ND	0.1–5.9	0.5–3.6	ND

Data are the ng/g in muscle and the concentrations of their metabolites are ng/ml in urine. ND; not detected.
course from human dietary exposure to polycyclic aromatic hydrocarbons to urinary elimination of 1-hydroxypyrene. Br. J. Ind. Med., 49, 113-124.

Campos, L., Rossella, F., Pavanella, S., Mielzynska, D., Siwinska, E., Kapka, L., Bertazzi, P.A. and Fustinoni, S. (2010). Urinary profiles to assess polycyclic aromatic hydrocarbons exposure in coke-oven workers. Toxicol. Lett., 192, 72-78.

Chetiyawardana, T., Toriba, A., Kameda, T., Tang, N. and Hayakawa, K. (2006). Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem., 386, 712-718.

Costera, A., Feidt, C., Dzurla, M.A., Monteau, F., Le Bizec, B. and Rychen, G. (2009). Bioavailability of polycyclic aromatic hydrocarbons (PAHs) from soil and hay matrices in lactating goats. J. Agric. Food Chem., 57, 5352-5357.

Elovaaara, E., Mikkola, J., Stockmann-Juvala, H., Luukkanen, L., Keski-Hynnula, H., Kostiainen, R., Pasanen, M., Pelkonen, O. and Vainio, H. (2007). Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver. Arch. Toxicol., 81, 169-182.

Ferrari, S., Mandel, F. and Berset, J.D. (2002). Quantitative determination of 1-hydroxypyrene in bovine urine samples using high-performance liquid chromatography with fluorescence and mass spectrometric detection. Chemosphere, 47, 173-182.

Fustinoni, S., Campo, L., Ciria, P.E., Martiniotti, I., Buratti, M., Longhi, O., Foa, V. and Bertazzi, P. (2010). Dermal exposure to polycyclic aromatic hydrocarbons in asphalt workers. Occup. Environ. Med., 67, 456-463.

Gundel, J., Schaller, K.H. and Angerer, J. (2000). Occupational exposure to polycyclic aromatic hydrocarbons in a fireproof stone producing plant: biological monitoring of 1-hydroxypyrene, 1-, 2-, 3- and 4-hydroxyphenanthrene, 3-hydroxybenz(a)anthracene and 3-hydroxybenzo(a)pyrene. Int. Arch. Occup. Environ. Health, 73, 270-274.

Hara, K., Hanaoka, T., Yamano, Y. and Itani, T. (1997). Urinary 1-hydroxypyrene levels of garbage collectors with low-level exposure to polycyclic aromatic hydrocarbons. Sci. Total Environ., 199, 159-164.

Hecht, S.S., Carmella, S.G., Villalta, P.W. and Hochhalter, J.B. (2010). Analysis of phenanthrene and benzo[a]pyrene tetraol enantiomers in human urine: relevance to the bay region diol epoxide hypothesis of benzo[a]pyrene carcinogenesis and to biomarker studies. Chem. Res. Toxicol., 23, 900-908.

Jacob, J. and Grammer, G. (1996). Metabolism and excretion of polycyclic aromatic hydrocarbons in rat and in human. Cent. Eur. J. Public Health, 4 Suppl, 33-39.

Jongeneelen, F.J. (2001). Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann. Occup. Hyg., 45, 3-13.

Jongeneelen, F.J., Leijdekkers, C.M., Bos, R.P., Theuws, J.L. and Henderson, P.T. (1985). Excretion of 3-hydroxy-benzo(a)pyrene and mutagenicity in rat urine after exposure to benzo(a)pyrene. J. Appl. Toxicol., 5, 277-282.

Jongeneelen, F.J., vd Akker, W., Bos, R.P., Anzoni, R.B., Theuws, J.L., Roelofs, H.M. and Henderson, P.T. (1988). 1-Hydroxypyrene as an indicator of the mutagenicity of coal tar after activation with human liver preparations. Mutat. Res., 204, 195-201.

Kang, H.G., Jeong, S.H., Cho, M.H. and Cho, J.H. (2007). Changes of biomarkers with oral exposure to benzo[a]pyrene, phenanthrene and pyrene in rats. J. Vet. Sci., 8, 361-368.

Keimig, S.D., Kirby, K.W., Morgan, D.P., Keiser, J.E. and Hubert, T.D. (1983). Identification of 1-hydroxypyrene as a major metabolite of pyrene in pig. Xenobiotica, 13, 415-420.

Knafla, A., Philippus, K.A., Brecher, R.W., Petrovic, S. and Richardsson, M. (2006). Development of a dermal cancer slope factor for benzo[a]pyrene. Regul. Toxicol. Pharmacol., 45, 159-168.

Lapole, D., Rychen, G., Grova, N., Monteau, F., Le Bizec, B. and Feidt, C. (2007). Milk and urine excretion of polycyclic aromatic hydrocarbons and their hydroxylated metabolites after a single oral administration in ruminants. J. Dairy. Sci., 90, 2624-2629.

Li, Z., Sandau, C.D., Romanoff, L.C., Caudill, S.P., Sjodin, A., Needham, L.L. and Patterson, D.G., Jr. (2008). Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ. Res., 107, 320-331.

Liu, G., Yu, L., Li, J., Liu, X. and Zhang, G. (2010). PAHs in soils and estimated air-soil exchange in the Pearl River Delta, South China. Environ Monit Assess.

Martorell, I., Perello, G., Mari-Cid, R., Castell, V., Llobet, J.M. and Domingo, J.L. (2010). Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environ. Int., 36, 424-432.

McClellan, M.D., Rinehart, R.D., Sapkota, A., Cavallari, J.M. and Herrick, R.F. (2007). Dermal exposure and urinary 1-hydroxypyrene among asphalt roofers. J. Occup. Environ. Hyg., 4 Suppl 1, 118-126.

Onyewuauwa, F., Rappaport, S.M., Sobus, J.R., Gajdosova, D., Wu, R. and Waidyanatha, S. (2009). Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 877, 1117-1125.

Ovrebo, S., Haugen, A., Fjeldstad, P.E., Hemminki, K. and Szyfter, K. (1994). Biological monitoring of exposure to polycyclic aromatic hydrocarbon in an electrode paste plant. J. Occup. Med., 36, 303-310.

Vakharia, D.D., Liu, N., Pause, R., Fasco, M., Bessette, E., Zhang, Q.Y. and Kanimsky, L.S. (2001). Effect of metals on polycyclic aromatic hydrocarbon induction of CYP1A1 and CYP1A2 in human hepatocyte cultures. Toxicol. Appl. Pharmacol., 170, 93-103.

Zhao, Z.H., Quan, W.Y. and Tian, D.H. (1992). Experiments on the effects of several factors on the 1-hydroxypyrene level in human urine as an indicator of exposure to polycyclic aromatic hydrocarbons. Sci. Total Environ., 113, 197-207.