Membrane chaperoning by members of the PspA/IM30 protein family

Adrien Thurottea, Thomas Brüserb, Thorsten Mascherc, and Dirk Schneidera

aInstitut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; bInstitut für Mikrobiologie, Leibniz Universität Hannover, Hannover, Germany; cInstitut für Mikrobiologie, Technische Universität Dresden, Dresden, Germany

ABSTRACT
PspA, IM30 (Vipp1) and LiaH, which all belong to the PspA/IM30 protein family, form high molecular weight oligomeric structures. For all proteins membrane binding and protection of the membrane structure and integrity has been shown or postulated. Here we discuss the possible membrane chaperoning activity of PspA, IM30 and LiaH and propose that larger oligomeric structures bind to stressed membrane regions, followed by oligomer disassembly and membrane stabilization by protein monomers or smaller/different oligomeric scaffolds.

PspA, LiaH and IM30 are phylogenetically related proteins
The proteins PspA, IM30 (Vipp1), LiaH and YjfJ belong to the PspA/IM30 protein family. Structurally, all family members are predicted to be mainly \(\alpha\)-helical,1-4 and PspA, IM30 and LiaH form high-molecular weight homo-oligomeric ring structures. Solely YjfJ is reported to not form such complexes,5 and, in fact, YjfJ is the most distant and least studied protein in this family. Therefore, it will not be further discussed here. The tendency of purified PspA, LiaH and IM30 to form ring structures or other higher order oligomers is extremely pronounced and monomers represent a minor fraction in solution.6-9 The observed homo-oligomeric rings are strikingly similar: PspA has been calculated to form 36-mers, and LiaH also forms ring structures of that size range.3,7 IM30 has the intrinsic propensity to form varying ring sizes containing (at least) 48–68 monomers.1,2 Nevertheless, besides a common phylogenic origin and obvious structural similarities, PspA, IM30 and LiaH have different physiological functions.

PspA, IM30 and LiaH bind and stabilize stressed membranes
The phage shock protein (Psp) system represents a conserved stress response system of bacteria and archaea.10 In enterobacteria, Psp response proteins are encoded by the \(\text{pspABCDE}\) operon and monocistronic \(\text{pspF}\) and \(\text{pspG}\) genes. Thus far, the enterobacterial Psp system is the best characterized representative involving a member of the PspA/IM30 family.

In the absence of stress, PspA inhibits the transcription factor PspF.11 One model suggests that the Psp system is activated when PspA itself senses membrane defects or stress, resulting in liberation of PspF.12 As a result, transcription of the \(\text{psp}\) genes is enhanced and the PspA level increases, which triggers the formation of membrane-protecting PspA assemblies.13 In agreement with this hypothesis, PspA can stabilize stressed membranes \textit{in vitro}.14 Alternatively, the main sensory role is attributed to the membrane components PspB and PspC.15-17 In this model, membrane stress results in recruitment of PspA to PspC, and a concomitant release of PspF activates the Psp response. Indeed, sensing of mistargeted secretins or membrane-destabilizing proteins requires PspB and PspC, which may function in conjunction with PspA.18,19 In non-enterobacteria, PspBC may be replaced by other sensory systems. Recent analyses of the PspA-PspF interaction suggest that the PspAF complex does not necessarily need to dissociate to modulate \(\text{psp}\) gene expression.20 In summary, the function of PspA appears to be dual: (i) membrane binding and membrane protection as well as (ii) upregulation of corresponding genes.
IM30 (Inner Membrane-associated protein of 30 kDa), alternatively named Vipp1 (Vesicle-Inducing Protein in Plastids), is conserved in all organisms harboring thylakoid membranes (TMs), i.e. cyanobacteria (except several Prochlorococcus marinus strains), algae and higher plants. It has been reported that IM30 can somehow functionally replace PspA in Escherichia coli. Thus, while membrane binding and membrane protection appears to be conserved, IM30 must have gained extra functions. Although many IM30-specific functions have been proposed in the past (for a recent review, see ref. 21), a recent report suggests that IM30 can trigger membrane fusion upon membrane binding, a process crucial for TM biogenesis and maintenance. A fusogenic activity would in fact explain many of the previously proposed IM30 activities.

The Lia system is highly conserved in Bacillus and Listeria species (low GC Gram-positive bacteria). Its expression is controlled by the LiaFSR three-component system. In the absence of stress conditions, the bifunctional histidine kinase LiaS is kept in its phosphatase state by the inhibitor protein LiaF, thereby repressing the activity of the transcriptional factor LiaR. Under stress conditions, LiaF presumably releases LiaS, which switches its activity from phosphatase to kinase state. Once activated by phosphorylation, LiaR induces transcription of the liaIH operon. LiaI is the membrane anchor of LiaH, which dynamically scans the membrane and recruits LiaH to the site of envelope damages. It is postulated that oligomeric LiaI/LiaH complexes stabilize a perturbed envelope at the sites of membrane damage.

Are members of the PspA/IM30 protein family membrane chaperones?

While all studied members of the PspA/IM30 family have acquired specific functions during the course of evolution, PspA and IM30 have been shown to directly bind to membrane surfaces and thereby to alter the structure and organization of membranes eventually resulting in membrane stabilization. LiaH is suggested to have the same activity, but experimental verification is still missing. PspA and IM30 preferentially bind to negatively charged membranes or to surface curvature-stressed membranes. Surface attachment of IM30 or PspA increases the packing density of individual lipids, i.e., the lipid bilayer becomes more ordered. Increasing the lipid packing density might be a vital repair strategy if stress-induced defects occur in lipid bilayers. Membrane stress resulting in membrane reorganization and eventually in membrane defects might be induced by heat or osmotic stress, by membrane remodeling agents, such as alcohols, as well as by external forces. Importantly, the major lipid species of bacterial as well as TMs are non-bilayer forming lipids (such as PE (Phosphatidylethanolamine) in E. coli and MGDG (Monogalactosyldiacylglycerol) in cyanobacterial/chloroplasts TMs). While MGDG is crucial for TM organization, excess of MGDG severely decreases the membrane stability. In fact, under prolonged stress affecting membrane integrity or fluidity, the MGDG content is adjusted. Membrane binding of PspA or IM30 proteins might therefore simply spatiotemporally stabilize short-living protein-free (instable) lipid patches by insertion of the hydrophobic side-chains of a membrane-binding amphipathic helix between the lipid acyl-chains of the cytoplasmic lipid bilayer leaflet. Such membrane stabilizing mechanism is discussed for many membrane-active proteins or peptides that contain amphipathic helices, such as antimicrobial peptides or BAR (Bin/Amphiphysin/Rvs)-domain proteins. In case of negative curvature stress or other defects in lipid bilayer structures, binding of PspA or IM30 proteins to membrane surfaces might stabilize the bilayer structure by the discussed hydrophobic insertion mechanism.

The ability of selected proteins to bind and to protect stressed membranes is important for the fitness and survival of microorganisms and plants, which are constantly exposed to different stresses, like cold, heat, reactive oxygen species (generated, among other, by an intense photosynthetic activity), acid or organic solvents. Membrane binding and protection has already been described for oligomeric proteins belonging to the Small Heat Shock Protein (sHSP) family. sHSPs are low-molecular weight proteins (15–42kDa) that form dynamic 9- to 50-mers. However, the sHSPs active unit is most certainly a dimer. Hence, dimer formation requires dissociation of the oligomeric structure. Under heat stress conditions, the cyanobacterial sHSP HspA (also named Hsp17) delocalizes from the cytoplasm and binds to TMs to protect the membrane ultrastructure by increasing the lipid order and reducing membrane fluidity. Lo18, a sHSP from Oenococcus oeni, forms 16-mer spherical complexes. Under ethanol-induced membrane stress, 16-mer complexes disassemble into dimers that bind to membranes and stabilize them. Furthermore, expression of the O. oeni Lo18 in Lactococcus lactis improved acid stress tolerance of L. lactis and heterologous expression of HSP17 from Caenorhabditis elegans enabled E. coli to grow at temperatures that are normally lethal for the wild-type strain.

It is tempting to postulate a similar role for members of the PspA/IM30 family, that is, that the oligomers dissociate on membrane surfaces upon membrane binding to stabilize defined membrane patches. In fact, for
PspA11,20 and IM306,24 dissociation of their large ring assemblies is indicated. IM30 LMWO (lower molecular weight oligomers) bind with an about 5-fold higher affinity to PG liposomes than IM30 rings,6 which argues for binding of monomers rather than high molecular mass oligomers to membrane surfaces and/or IM30 ring disassembly upon membrane binding.24 Increased membrane affinity of LMWO (lower molecular weight oligomers) IM30 is discussed to originate from exposure of amphiphilic helices, which are otherwise involved in formation of coiled-coil-type interactions within IM30 rings.21 Since LMWO (lower molecular weight oligomers) appear to not be stable in solution, formation of the ring structures might simply be vital for shielding the amphiphilic helices. Thereby, PspA or IM30 proteins remain soluble in the absence of stress conditions.

Binding of an IM30 ring to TMs requires a free lipid area of about 380 nm2 (total surface of the ring considered as a disc with an assumed ring diameter of 22 nm).2 In \textit{Synechocystis} PCC 6803 TMs, the proportion of proteins (weight/weight) is 68\%55 and in spinach TMs, the proteins area occupancy has been estimated to be 75\%.56 Thus, binding of IM30 rings seems barely probable \textit{in vivo} within the crowded environment of a TM, unless stressed membrane areas are protein depleted or an unknown mechanism creates such large protein-free lipid domains. In fact, crowding is not homogeneous in cyanobacterial and plant TMs that possess lateral heterogeneity with densely packed and more fluid areas.57,58

However, while a single IM30 ring covers an area of \(\sim380 \text{ nm}^2\), the center of a ring is open leaving a free area of \(\sim80 \text{ nm}^2\).2 Binding of smaller units (such as monomers) or flexibly rearranging scaffolds to damaged membranes could completely cover and protect damaged and/or stressed membranes by stabilizing the order of the lipid bilayer via filling the "gaps" between lipid head groups.

Summary and outlook

Functional characterization of PspA/IM30 proteins has been notoriously difficult. But combining the lessons learned from its best studied members – the PspA from enterobacteria, IM30 (Vipp1) from cyanobacteria and plants, and LiaH from Firmicutes – allowed extracting a first set of common features with respect to their oligomerization, membrane binding and putative membrane protecting function, as discussed here. We propose that membrane protection of members of the PspA/IM30 protein family is mediated by (1.) binding of oligomeric/multimeric assemblies or ring structures to stressed membrane areas followed (2.) by ring dissociation, which results in exposure of membrane-binding amphiphilic helices and finally in coverage of a stressed membrane area by monomers or flexible scaffolds (Fig. 1). Notably, membrane attachment of oligomeric proteins and subsequent local disassembly results in a high monomer concentration that is confined to a selected membrane area.

Clearly, besides the proposed membrane-protective activity of PspA/IM30 proteins, they have gained more specific functions in their special systems, and these activities are likely differently regulated. However, the here described insights can now serve as a starting point for more detailed functional and biochemical analyses that will ultimately unravel both general and organism-specific features of the ubiquitously distributed PspA/IM30 protein family.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the University of Mainz; and the Ernst & Margarete Wagemann Foundation.

References

[1] Bultema JB, Fuhrmann E, Boekema EJ, Schneider D. Vipp1 and PspA: Related but not twins. Commun Integr Biol 2010; 3(2):162-5; PMID:20585511; http://dx.doi.org/10.4161/cib.3.2.10529
[2] Fuhrmann E, Bultema JB, Kahmann U, Rupprecht E, Boekema EJ, Schneider D. The vesicle-inducing protein 1 from \textit{Synechocystis} sp. PCC 6803 organizes into diverse higher-ordered ring structures. Mol Biol Cell 2009; 20 (21):4620-8; PMID:19776353; http://dx.doi.org/10.1091/mbc.E09-04-0319
[3] Hankamer BD, Elderkin SL, Buck M, Nield J. Organization of the AAA(+) adaptor protein PspA is
an oligomeric ring. J Biol Chem 2004; 279(10):8862-6; PMID:14688274; http://dx.doi.org/10.1074/jbc.M307889200

[4] Otters S, Braun P, Hubner J, Wanner G, Vothknecht UC, Chigiri F. The first alpha-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding. Planta 2013; 237(2):529-40; PMID:23053543; http://dx.doi.org/10.1007/s00425-012-1772-1

[5] Jovanovic G, Mehta P, McDonald C, Davidson AC, Uzdavinys P, Ying L, Buck M. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J Mol Biol 2013; 426:1498-511; PMID:24361331; http://dx.doi.org/10.1016/j.jmb.2013.12.016

[6] Heidrich J, Wulf V, Hennig R, Saur M, Markl J, Sonnichsen C, Schneider D. Organization into higher-ordered ring structures counteracts membrane binding of IM30, a protein associated with inner membranes in chloroplasts and cyanobacteria. J Biol Chem 2016; 291:14954-62; PMID:27226585; http://dx.doi.org/10.1074/jbc.M116.722686

[7] Wolf D, Kalamorz F, Wecke T, Juszczyk A, Mader U, Homuth G, Jordan S, Kirstein J, Hoppert M, Voigt B and others. In-depth profiling of the LiaR response of Bacillus subtilis. J Bacteriol 2010; 192(18):4680-93; PMID:20639339; http://dx.doi.org/10.1112/JB.00543-10

[8] Kobayashi R, Suzuki T, Yoshida M. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 2007; 66(1):100-9; PMID:17725563; http://dx.doi.org/10.1111/j.1365-2958.2007.05893.x

[9] Standar K, Mehner D, Osadnik H, Berthelmann F, Hause G, Lünsdorf H, Brüser T. PspA can form large scaffolds in Escherichia coli. FEBS Lett 2008; 582(25-26):3585-9; PMID:18789328; http://dx.doi.org/10.1016/j.felslet.2008.09.002

[10] Vothknecht UC, Otters S, Hennig R, Schneider D. Vipp1: a very important protein in plastids?! J Exp Bot 2012; 63 (4):1699-712; PMID:22131161; http://dx.doi.org/10.1093/jxb/err357

[11] Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 2009; 394(4):764-75; PMID:19804784; http://dx.doi.org/10.1016/j.jmb.2009.09.055

[12] McDonald C, Jovanovic G, Ces O, Buck M. Membrane stored curvature elastic stress modulates recruitment of maintenance proteins PspA and Vipp1. MBio 2015; 6(5); http://dx.doi.org/10.1128/mBio.01188-15

[13] Mehta P, Jovanovic G, Ying L, Buck M. Is the cellular and molecular machinery docile in the stationary phase of Escherichia coli? Biochem Soc Trans 2015; 43(2):168-71; PMID:25849912; http://dx.doi.org/10.1042/BST20140267

[14] Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci U S A 2007; 104 (43):17216-21; PMID:17940034; http://dx.doi.org/10.1073/pnas.0704680104

[15] Yamaguchi S, Darwin AJ. Recent findings about the Yersinia enterocolitica phage shock protein response. J Microbiol 2012; 50(1):1-7; PMID:22367931; http://dx.doi.org/10.1007/s12275-012-1578-7

[16] Yamaguchi S, Reid DA, Rothenberg E, Darwin AJ. Changes in Psp protein binding partners, localization and behaviour upon activation of the Yersinia enterocolitica phage shock protein response. Mol Microbiol 2013; 87(3):656-71; PMID:23290031; http://dx.doi.org/10.1111/mmi.12122

[17] Flores-Kim J, Darwin AJ. Activity of a bacterial cell envelope stress response is controlled by the interaction of a protein binding domain with different partners. J Biol Chem 2015; 290(18):11417-30; PMID:25802329; http://dx.doi.org/10.1074/jbc.m114.614107

[18] Jovanovic G, Engl C, Mayhew AJ, Burrows PG, Buck M. Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli. Microbiology 2010; 156(Pt 10):2920-32; PMID:20595257; http://dx.doi.org/10.1099/mic.0.040055-0

[19] Mehner D, Osadnik H, Lünsdorf H, Brüser T. The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli. J Mol Biol Chem 2012; 287(33):27834-42; PMID:22689583; http://dx.doi.org/10.1074/jbc.M111.2374983

[20] Osadnik H, Schopfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grumbhiller H, Stubbs MT, Brüser T. The PspF-binding domain PspA and the PspA-F complex - New insights into the coiled-coil dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59; PMID:26235546; http://dx.doi.org/10.1111/mmi.13154

[21] Heidrich, J., Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. Biochim Biophys Acta 2016; In press; PMID:27693914; http://dx.doi.org/10.1016/j.bbamem.2016.09.025

[22] DeLisa MP, Lee P, Palmer T, Georgiou G. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 2004; 186 (2):366-73; PMID:14702305; http://dx.doi.org/10.1128/JB.186.2.366-373.2004

[23] Zhang L, Kato Y, Otters S, Vothknecht UC, Sakamoto W. Essential role of Vipp1 in chloroplast envelope maintenance in Arabidopsis. Plant Cell 2012; 24 (9):3695-707; PMID:23001039; http://dx.doi.org/10.1105/tpc.112.103606

[24] Hennig R, Heidrich J, Saur M, Schmuser L, Roeters SJ, Hellmann N, Woutersen S, Bonn M, Weidner T, Markl J, et al. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat Commun 2015; 6:7018; PMID:25952141; http://dx.doi.org/10.1038/ncomms8018

[25] Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32(1):107-46; PMID:18173394; http://dx.doi.org/10.1111/j.1574-6976.2007.00091.x

[26] Jordan S, Junker A, Helmann JD, Mascher T. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 2006; 188
[51] Maitre M, Weidmann S, Rieu A, Fenel D, Schoehn G, Ebel C, Coves J, Guzzo J. The oligomer plasticity of the small heat-shock protein Lo18 from *Oenococcus oeni* influences its role in both membrane stabilization and protein protection. Biochem J 2012; 444(1):97-104; PMID:22360742; http://dx.doi.org/10.1042/BJ20120066

[52] Maitre M, Weidmann S, Dubois-Brissonnet F, David V, Coves J, Guzzo J. Adaptation of the wine bacterium *Oenococcus oeni* to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 2014; 80(10):2973-80; PMID:24584255; http://dx.doi.org/10.1128/AEM.04178-13

[53] Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J. Production of the small heat shock protein Lo18 from *Oenococcus oeni* in *Lactococcus lactis* improves its stress tolerance. Int J Food Microbiol 2016; In press; PMID:27318622; http://dx.doi.org/10.1016/j.ijfoodmicro.2016.06.005

[54] Ezemaduka AN, Yu J, Shi X, Zhang K, Yin CC, Fu X, Chang Z. A small heat shock protein enables *Escherichia coli* to grow at a lethal temperature of 50°C conceivably by maintaining cell envelope integrity. J Bacteriol 2014; 196(11):2004-11; PMID:24659772; http://dx.doi.org/10.1128/JB.01473-14

[55] Szalontai B, Nishiyama Y, Gombos Z, Murata N. Membrane dynamics as seen by fourier transform infrared spectroscopy in a cyanobacterium, *Synechocystis* PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 2000; 1509(1-2):409-19; PMID:11118550; http://dx.doi.org/10.1016/S0005-2736(00)00323-0

[56] Kirchhoff H, Mukherjee U, Galla HJ. Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 2002; 41(15):4872-82; PMID:11939782; http://dx.doi.org/10.1021/bi011650y

[57] Kana R. Mobility of photosynthetic proteins. Photosynthesis Research 2013; 116(2–3):465-79; PMID:23955784; http://dx.doi.org/10.1007/s11120-013-9898-y

[58] Pribil M, Labs M, Leister D. Structure and dynamics of thylakoids in land plants. J Exp Bot 2014; 65(8):1955-72; PMID:24622954; http://dx.doi.org/10.1093/jxb/eru090