Analysis of Seventeen Certified Water Reference Materials for Trace and Technology-Critical Elements

Anna Ebeling (1, 2), Tristan Zimmermann (1), Ole Klein (1, 2), Johanna Irrgeher (3) and Daniel Pröfrock (1)*

(1) Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, Geesthacht 21502, Germany
(2) Department of Chemistry, Institute for Inorganic and Applied Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
(3) Chair of General and Analytical Chemistry, Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Franz Josef-Straße 18, Leoben 8700, Austria
* Corresponding author. e-mail: daniel.proefrock@hereon.de

Concentrations of elements in the aquatic environment are a key parameter for various scientific fields such as biogeochemistry, biology and environmental science. Within this context, the scientific community asks for new analytical protocols to be able to quantify more and more elements of the periodic table. Therefore, the requirements for aqueous reference materials have increased drastically. Even though a wide variety of CRMs of different water matrices are available, certified values of many elements (e.g., rare earth elements (REE), technology-critical elements, such as Ga and In, and generally those elements which are not part of current monitoring regulations) do not yet exist. Therefore, the scientific community relies on published elemental concentrations of many CRMs provided by other researchers. Some elements of interest, such as the REE, are well studied and plenty of literature values exist. However, less studied elements, such as Ga and In, are rarely studied. In this study, an ‘externally’ calibrated quantification method based on an optimised online preconcentration method coupled with ICP-MS/MS was used for the quantification of thirty-four elements. The method was applied to seventeen water CRMs covering freshwater, brackish water and seawater. The measured data are combined with a comprehensive literature review on non-certified values in selected water CRMs, and new consensus values are suggested for various non-certified elements.

Keywords: ICP-MS, multi-elemental analysis, seaFAST, natural waters, consensus values.

Received 19 Jul 21 – Accepted 22 Jan 22
Table 1.
Literature overview of studies (listed alphabetically by CRM) providing concentration values of elements of interest (printed in bold) for the water CRM, together with details on the analytical method that lead to the publication of the literature values

Authors	Water CRM	Analytes*	Direct/diluted/preconcentration + matrix reduction	Online/offline preconcentration		
Griesel et al. (2001)	BCR-505	As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, U, V, Zn	Electro-deposition	Offline		
Wang et al. (2014)	BCR-505	Cd, Co, Cu, Dy, Er, Eu, Fe, Gd, Ho, La, Lu, Nd, Ni, Pb, Pr, Sm, Tb, Tm, V, Y, Yb, Zn	Preconcentration-chelating medium	Offline		
Rodushkin and Ruth (1997)	CASS-2	Al, Ba, Cd, Ca, Cu, Fe, Mn, Mo, Ni, Pb, Sb, U, V, Zn	Dilution (fivefold)	-		
Kühn and Kriews (2000)	CASS-3	Bi, Cd, Co, Cu, Eu, Fe, Gd, La, Lu, Mn, Pb, Yb, Zn	Preconcentration	Offline		
Benkhedda et al. (2001, 2002)	CASS-3	Ce, Eu, Gd, La, Lu, Yb	Preconcentration-knotted reactor	Online		
Abbasse et al. (2002)	CASS-3	Cd, Cu, Fe, Mn, Ni, Pb, V, Zn	Preconcentration-chelating medium	Offline		
Rahmi et al. (2007)	CASS-3	Cd, Co, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Sm, Tb, Tm, U, V, Yb, Zn	Preconcentration-chelating medium	Offline		
Lee et al. (2002)	CASS-4	Cd, Co, Cu, Mn, Mo, Ni, U, V	Preconcentration-chelating medium	Online		
Hirata et al. (2003)	CASS-4	Cd, Co, Cu, Mo, Ni, U, V	Preconcentration-chelating medium	Online		
Kajiya et al. (2004)	CASS-4	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb	Preconcentration-chelating medium	online		
Turetta et al. (2004, 2005)	CASS-4	Al, As, Cd, Cr, Cu, Fe, Mn, Mo, Pb, Sb, U, V, Zn	Dilution (10-fold)	-		
Grinberg et al. (2005)	CASS-4	Pu, Th, U	Preconcentration-co-precipitation	Offline		
Zhu et al. (2005a)	CASS-4	Al, Bi, Cd, Ce, Co, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, Ho, La, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Sc, Sm, Sn, Tb, Th, Ti, Tm, U, V, W, Yb, Zn, Zr	Preconcentration-chelating medium	Offline		
Grinberg et al. (2006)	CASS-4	Pu, Th, U	Preconcentration-co-precipitation	Offline		
Lawrence and Kamber (2007)	CASS-4	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb	Preconcentration-chelating medium	Offline		
Point et al. (2007)	CASS-4	Cd, Cu, Mn, Ni, Pb, U, Zn	Preconcentration-chelating medium	Offline		
Sabarudin et al. (2007)	CASS-4	U	Preconcentration-chelating medium	Offline		
Beck et al. (2008)	CASS-4	Mo, U, V	Dilution (25-fold)	-		
Sohrin et al. (2008)	CASS-4	Al, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn	Preconcentration-chelating medium	Offline		
Staniszewski and Freimann (2008)	CASS-4	As, Cu, Fe, Ni, Pb, U, V, Zn	Preconcentration-column	Offline		
Kim et al. (2010)	CASS-4	Ce, Dy, Er, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-chelating medium	Offline		
Bayon et al. (2011)	CASS-4	Ce, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, V, Y, Yb, Zr	Preconcentration-co-precipitation	Offline		
Freslon et al. (2011)	CASS-4	Co, Cr, Dy, Er, Eu, Gd, Ho, La, Mn, Nd, Pr, Sm, Tb, Y	Preconcentration-co-precipitation	Offline		
Oliveira et al. (2011)	CASS-4	Co, V, Mn, Zn, Fe, Mo, U, Cd, Pb, Ni	Preconcentration-chelating medium	Online		
Preconcentration medium	Quatification method	Calibration technique	Range of detection limits a (ng l⁻¹)	Range of relative uncertainty equivalent [%]	Original unit	Measure of uncertainty
-------------------------	----------------------	-----------------------	--------------------------------------	---	---------------	-----------------------
–	TXRF	Internal standard (Co)	5–20	8–20	µg l⁻¹	s
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS\(^g\)	External	0.002–14.6	6.3–25.0	pmol l⁻¹ + nmol l⁻¹	2s
–	ICP-SFMS	External	n.s. (detailed discussion of blank levels)	0.6–41	ng ml⁻¹	U(k = 2)
Iminodiacetic functionalised beads	ICP-QMS\(^d\)	External	0.01–7459	1.0–47.8	pg l⁻¹	“accuracy”
PMBP\(^m\)	ICP-ToF-MS\(^d\)	External	0.003–0.04	1.0–10.2	µg l⁻¹	s
BHQ\(^a\) + C18\(^b\)	ICP-AES	n.s.\(^i\)	60–6000	0.2–7.0	µg l⁻¹	s
Chelex 100 (Bio-Rad)	ICP-QMS	External	0.06–1	3.6–50.0	ng ml⁻¹ + pg ml⁻¹	s (n = 5)
Iminodiacetic functionalised resin chelating disk	ICP-QMS	External	7–400	1.0–12.5	ng ml⁻¹	s (n = 5)
MAF-BHQ\(^q\)	ICP-QMS	External	1–15	3.0–21.2	ng ml⁻¹	s
MAF-BHQ\(^q\)	ICP-QMS	n.s.\(^j\)	0.037–0.297	3.1–37.4	pg ml⁻¹	s (n = 4)
–	ICP-SFMS	Standard addition	0.06–1.5	5.0–24.5	ng ml⁻¹	U(k = 2)
Ca\(_3\)(PO\(_4\))\(_2\)	ETV\(^k\)-ICP-CRC\(^c\)-QMS	External	0.013–0.029	2.3–20.0	pg ml⁻¹	s (n = 5)
Chelex 100 (Bio-Rad)	ICP-QMS, ICP-AES	External	0.03–20	1.5–50.0	µg l⁻¹	s (n = 3)
Ca\(_3\)(PO\(_4\))\(_2\)	ICP-CRC-QMS	External	0.12–0.13	1.0–28.6	µg l⁻¹	s (n = 3)
HDEHP + H\(_2\)MEHP\(^m\)	ICP-QMS	n.s.\(^j\)	0.05–4.33º	0.4–24.2	ng kg⁻¹	s (n = 10)
Metpac cc1 (Dionex)	ICP-QMS	External	0.6–33	1–33	ng l⁻¹	s (n = 5)
CCTS-DHBA\(^o\)	ICP-MS	n.s.\(^j\)	1	0.6	ng ml⁻¹	s
–	ICP-SFMS	External	n.s.\(^j\)	4–7	nmol l⁻¹	s (n = 105)
Nobias Chelate-PA1 (Hitachi)	ICP-CRC-QMS	External	0.2–6.6	0.8–15.9	µg kg⁻¹	s (n = 3)
sodium dibenzylthiocarbamate + silica gel	TXRF	Internal standard (Co)	n.s.	3.7–11.8	ng l⁻¹	n.s.
Chelex 100 (Bio-Rad)	ICP-QMS	n.s.\(^j\)	0.02–0.55	1.3–10.0	ng l⁻¹	s
FeO(OH)\(_2\)	ICP-SFMS	n.s.\(^j\)	0.2–37.6	ng l⁻¹	s (n = 3)	
Mg(OH)\(_2\)	ICP-SFMS	Tm addition	0.001–0.50	3.1–14	ng kg⁻¹	s
AF-Chelate-650 M + 8HQ + C18	ICP-CRC-QMS	ID\(^p\)	0.2–58	0.6–8.3	ng ml⁻¹	s (n = 3)
Authors	Water CRM	Analytes*	Direct/diluted/ preconcentration + matrix reduction	Online/offline preconcentration		
--------------------------	-----------	-----------	---	---------------------------------		
Matsumiya et al. (2012)	CASS-4	Bi, Cd, Cu, Ga, Ni, Pb	Preconcentration-chelating medium	Offline		
Leme et al. (2018)	CASS-4	La, Nd	Preconcentration-chelating medium	Offline		
Rousseau et al. (2013)	CASS-5	Ba, Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-co-precipitation	Offline		
Lemaitre et al. (2014)	CASS-5	Ce, Dy, Er, Eu, Fe, Gd, Ho, La, Lu, Mn, Nd, Pr, Sm, Tb, Y, Yb	Preconcentration-co-precipitation	Offline		
Wang et al. (2014)	CASS-5	Cd, Ce, Co, Dy, Er, Eu, Fe, Gd, Ho, La, Lu, Mn, Nd, Ni, Pb, Pr, Sm, Tb, Tb, Tm, V, Y, Yb, Zn	Preconcentration-chelating medium	Offline		
Minami et al. (2015)	CASS-5	Al, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn	Preconcentration-chelating medium	Offline		
Wysocka and Vassileva (2017)	CASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-chelating medium	Offline		
Rodushkin and Ruth (1997)	NASS-4	Al, Ba, Cd, Ca, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, U, V, Zn	Dilution (livefold) –	–		
Kühn and Kriews (2000)	NASS-4	Bi, Cd, Ca, Cu, Dy, Eu, Fe, Gd, Ho, La, Mn, Pb, Yb, Zn	Preconcentration	Offline		
Yabutani et al. (2001)	NASS-4	Al, As, Bi, Cd, Ce, Co, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Sb, Se, Sm, Sn, Tb, Ti, Tm, U, V, W, Y, Yb, Zn	Preconcentration-chelating medium + co-precipitation	Offline		
Louie et al. (2002)	NASS-4	Cr, Cu, Mn, Ni, V	Dilution (10-fold) –	–		
Shaw et al. (2003)	NASS-4	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-co-precipitation	Offline		
Rahmi et al. (2007)	NASS-4	Cd, Ce, Co, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Sm, Tb, Tm, U, V, Y, Yb, Zn	Preconcentration-chelating medium	Offline		
Maltez et al. (2008)	NASS-4	Cd, Ca, Cu, Ni, Pb, V, Zn	Preconcentration-sorption medium	Online		
Dressler et al. (2001)	NASS-5	Ag, Au, Te, U	Preconcentration-chelating medium	Online		
Willie et al. (2001)	NASS-5	Cd, Ca, Cu, Fe, Mn, Mo, Ni, Pb, V, Zn	Preconcentration-chelating medium	Online		
Willie and Sturgeon (2001)	NASS-5	Cd, Ce, Co, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Ni, Pb, Pr, Sm, Tb, Tm, Yb, Zn	Preconcentration-chelating medium	Online		
Lee et al. (2002)	NASS-5	Cd, Ca, Cu, Mn, Mo, Ni, U, V	Preconcentration-chelating medium	Online		
Leonhard et al. (2002)	NASS-5	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, (Se), U, V, Zn	dilution (10-fold) –	–		
Hirata et al. (2003)	NASS-5	Cd, Ca, Cu, Mn, Mo, Ni, U, V, Zn	Preconcentration-chelating medium	Online		
Shaw et al. (2003)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-co-precipitation	Offline		
Preconcentration medium	Quatification method	Calibration technique	Range of detection limits[^a] (ng l[^-1])	Range of relative uncertainty equivalent (%)	Original unit	Measure of uncertainty
-------------------------	----------------------	-----------------------	---	---	---------------	-----------------------
APDC[^3^] + CTAC-[covered silica]	ICP-MS	External	0.7–4	0.9–12.5	µg l[^-1]	none (s calculated from n = 2 runs)
1-(2-pyridylazo)-2-naphthal	ICP-CRC-QMS	External	3.9–4.0	8.9–13.2	ng l[^-1]	2s
Fe(OH)₃	ICP-SFMS	ID	0.001–0.030	0.7–4.7	ppt[^b]	2s (n = 11)
Mg(OH)₂	ICP-SFMS	Tm addition for REE+Mn, ID for Fe	n.s.	1.4–16.9	ng kg[^-1] + µg kg[^-1]	s (n = 12)
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS	External	0.002–14.6	2.3–25.0	pmol l[^-1] + nmol l[^-1]	2s
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS	External	0.1–8.1	1.1–8.1	nmol kg[^-1] + pmol kg[^-1]	s
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS	External	0.001–0.008	10.3–12.0	ng l[^-1]	U(k = 2)
Iminodiacetic functionalised beads	ICP-QMS	External	0.01–74.59	2.0–47.0	pg l[^-1]	“accuracy”
Chelating resin: Chelex 100 (Bio-Rad); co-precipitation agent: La(NO₃)₃	ICP-QMS	External	0.006–600	2.9–60.0	µg l[^-1]	s (n = 3)
-	ICP-CRC-QMS	Standard addition	20–300	14.9–40.8	µg l[^-1]	s (n = 10)
Mg(OH)₂	ICP-SFMS	ID	0.02–0.2	3.2–17.6	ng l[^-1]	“error”
Chelex 100 (Bio-Rad)	ICP-QMS	External	0.06–1	3.3–33.3	ng ml[^-1] + pg ml[^-1]	s (n = 5)
Nb₂O₅-SiO₂	ICP-QMS	External	10–30	0.8–4.5	µg l[^-1]	s (n = 6)
DDT/P + C18	ICP-QMS	External	0.05–2.24	3.3–17.9	ng ml[^-1]	s (n = 5)
Toyopearl AF-Chelate-650 M (Tosohaas)	ICP-QMS	External	0.1–12[^2]	0.9–28.6	ng l[^-1]	s (n = 3)
Toyopearl AF-Chelate-650 M (Tosohaas)	ICP-TOF-MS	External	0.02–0.05	5–6	ng l[^-1]	s (n = 3)
Iminodiacetic functionalised resin chelating disk	ICP-QMS	External	7–400	3.3–17.9	ng ml[^-1]	s (n = 5)
-	ICP-CRC-QMS	External	0.25–100	7–50	ng l[^-1]	s (n = 6)
MAF-8HQ	ICP-QMS	External	1–15	3.2–46.6	ng ml[^-1]	s
Mg(OH)₂	ICP-SFMS	ID	0.02–0.2	2.2–20.0	ng l[^-1]	“error”
Authors	Water CRM	Analytes	Direct/diluted/preconcentration + matrix reduction	Online/offline preconcentration		
---------------------------------	-----------	----------	---	---------------------------------		
Kajiya et al. (2004)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb	Preconcentration-chelating medium	Online		
Grinberg et al. (2005)	NASS-5	Pu, Tb, U	Preconcentration-co-precipitation	Offline		
Zhu et al. (2005b)	NASS-5	Al, Bi, Cd, Co, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Sc, Sm, Sn, Tb, Ti, Tm, U, V, W, Y, Yb, Zn, Zr	Preconcentration-chelating medium	Offline		
Shiller and Bairamadgi (2006)	NASS-5	Ga	Preconcentration-co-precipitation	Offline		
Field et al. (2007)	NASS-5	As, Ba, Mn, Mo, P, U, V	direct	–		
Firdaus et al. (2007)	NASS-5	Hf, Nb, Ta, W, Zr	Preconcentration-chelating medium	Offline		
Lawrence and Kamber (2007)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb	Preconcentration-chelating medium	Offline		
Rahmi et al. (2007)	NASS-5	Cd, Cs, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Sm, Tb, Tm, U, V, Y, Yb	Preconcentration-chelating medium	Offline		
Sabarudin et al. (2007)	NASS-5	U	Preconcentration-chelating medium	Offline		
Maltez et al. (2008)	NASS-5	Cd, Ca, Cu, Ni, Pb, V, Zn	Preconcentration-sorption medium	Online		
Murphy et al. (2008)	NASS-5	Ba, Mn, Mo, P, U, V	dilution (10-fold)	–		
Sohrin et al. (2008)	NASS-5	Al, Cd, Ca, Cu, Fe, Mn, Ni, Pb, Zn	Preconcentration-chelating medium	Offline		
Zhu et al. (2009)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-chelating medium	Online		
Kim et al. (2010)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb, Tm, Yb	Preconcentration-chelating medium	Offline		
Rahaman et al. (2010)	NASS-5	Mo, U	dilution	–		
Waseem et al. (2010)	NASS-5	V	–	Online		
Agatemor and Beauchemin (2011)	NASS-5	Mo, U	Direct	–		
Bayon et al. (2011)	NASS-5	Ce, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Nd, Pr, Sm, (Sc), Tb, Tb, V, Y, Yb, Zr	Preconcentration-co-precipitation	Offline		
Freslon et al. (2011)	NASS-5	Ce, Co, Cr, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Nd, Pr, Sm, Tb, Y, Yb	Preconcentration-co-precipitation	Offline		
Matsumiya et al. (2012)	NASS-5	(Bi), Cd, Cu, (Ga), Ni, Pb	Preconcentration-chelating medium	Offline		
Scholz et al. (2013)	NASS-5	Mo, U	n.s.	–		
Soyal-Erdene and Huh (2013)	NASS-5	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb	Preconcentration-column	Offline		
Raso et al. (2013)	NASS-6	Ce, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y, Yb, Zr	Preconcentration-co-precipitation	Offline		
Lemaître et al. (2014)	NASS-6	Ce, Dy, Er, Eu, Fe, Gd, Ho, La, Lu, Mn, Nd, Pr, Sm, Tb, Y, Yb	Preconcentration-co-precipitation	Offline		
Wang et al. (2014)	NASS-6	Cd, Ce, Cu, Dy, Er, Eu, Fe, Gd, Ho, La, Lu, Mn, Nd, Ni, Pb, Pr, Sm, Tb, Tm, V, Y, Yb	Preconcentration-chelating medium	Offline		
Clough et al. (2015)	NASS-6	Co, Fe, Pb, V	Preconcentration-chelating medium	Online		
Preconcentration medium	Quatification method	Calibration technique	Range of detection limits [ng l⁻¹]	Range of relative uncertainty equivalent [%]	Original unit	Measure of uncertainty
-------------------------	----------------------	-----------------------	--------------------------------------	---	---------------	------------------------
MAF-8HQ	ICP-QMS	n.s.	0.037–0.297	2.0–84.2	pg ml⁻¹	s (n = 4)
Ca₃(PO₄)₂	ETV-ICP-CRC-QMS	External	0.013–0.029	2.3–16.7	pg ml⁻¹	s (n = 5)
Chelex 100 (Bio-Rad)	ICP-QMS/ICP-AES	External	0.07–20	1.9–32.0	µg l⁻¹	s (n = 3)
Mg(OH)₂	ICP-SFMS	ID	n.s.	15	pmol kg⁻¹	s (n = 58)
TSK-8HQ⁻	ICP-CRC-QMS	Standard addition	0.15–0.23	2–4	pmol kg⁻¹	s (n = 2)
HDEHP+H₂MEHP	ICP-QMS	n.s.	0.05–4.33	7.2–31.6	ng kg⁻¹	s (n = 22)
Chelex 100 (Bio-Rad)	ICP-QMS	External	0.06–1	1.0–68.2	ng ml⁻¹ + pg ml⁻¹	s (n = 5)
CCTS-DHBA	ICP-MS	n.s.	1	5.1	ng ml⁻¹	s
Nb₂O₅·SiO₂	ICP-QMS	External	10–30	0.8–4.5	µg l⁻¹	s
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS	n.s.	14–4200	1.8–39.7	µg l⁻¹	RSD
Nobias chelate PB1 M (Hitachi)	ICP-CRC-QMS	External	0.2–6.6	2.7–9.1	µg kg⁻¹	s (n = 6)
Chelex 100 (Bio-Rad)	ICP-QMS	n.s.	0.02–0.55	0.3–10.2	ng l⁻¹	s
HDEHP+H₂MEHP	ICP-QMS	n.s.	3.5–3.7	5.9	µg l⁻¹	s (n = 4)
		Flow injection	40		µg l⁻¹	s
		chemiluminescence				
FeO(OH)	ICP-SFMS	n.s.	0.9–7.1	ng l⁻¹	s (n = 5)	
Mg(OH)₂	ICP-SFMS	Tm addition	0.001–0.50	2.8–10	ng kg⁻¹	s
APDC + CTAC-covered silica	ICP-MS	External	0.7–4	4.2–16.7	µg l⁻¹	s
RE-Spec chromatographic extraction resin (Eichrom)	ICP-CRC-QMS	ID	n.s.	0.8–0.9	nmol l⁻¹	s (n = 4)
RE-Spec chromatographic extraction resin (Eichrom)	ICP-SFMS	External	0.02–1.0	3.6–10.5	pg ml⁻¹	s (n = 15)
FeO(OH)	ICP-CRC-QMS	External	2.1–408.3	3.1–200.0	pg ml⁻¹	s
Mg(OH)₂	ICP-SFMS	Tm addition for REE+Mn, ID for Fe	n.s.	2.4–18.9	ng kg⁻¹ + µg kg⁻¹	s (n = 11)
Nobias Chelate-PA1 (Hitachi)	ICP-SFMS	External	0.002–14.6	10.0–39.0	pmol l⁻¹ + nmol l⁻¹	2s
AF-Chelate-650	ICP-QMS	External	0.34–19	5–9	nmol l⁻¹	2s
Table 1.
(continued)

Authors	Water CRM	Analytes a	Direct/diluted/ preconcentration + matrix reduction	Online/offline preconcentration
Censi et al. (2017)	NASS-6	Ce, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Y, Yb, Zr	Preconcentration-co-precipitation	Offline
Wysoka and Vassileva (2017)	NASS-6	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-chelating medium	Offline
Crocket et al. (2018)	NASS-6	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-chelating medium	Offline
Wuttig et al. (2019)	NASS-6	Cd, Co, Cu, Fe, Ga, Mn, Ni, Pb, Ti, Zn	Preconcentration-chelating medium dilution (10-fold)	–
Leonhardt et al. (2002)	SLEW-3	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, (Se), U, V, Zn	Preconcentration-co-precipitation	Offline
Lawrence and Kamber (2007)	SLEW-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Y, Yb	Preconcentration-chelating medium	Offline
Beck et al. (2008)	SLEW-3	Mo, U, V	Dilution (25-fold)	–
Rahaman et al. (2010)	SLEW-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Tb, V, Y, Yb, Zr	Dilution	–
Bayon et al. (2011)	SLEW-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Tb, V, Y, Yb, Zr	Preconcentration-co-precipitation	Offline
Wang et al. (2014)	SLEW-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Tb, V, Y, Yb, Zr	Preconcentration-chelating medium	Offline
Mohajerin et al. (2016)	SLEW-3	Fe, Mn, Mo, W	Dilution (1.5–10-fold)	–
Mohajerin et al. (2016)	SLEW-3	Mo, W	Dilution (1.5–10-fold)	–
Wysoka and Vassileva (2017)	SLEW-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-chelating medium	Offline
Peart et al. (1998)	SIRS-1	Al, As, Ba, Be, Bi, Br, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Gd, Ho, I, La, Li, (La), Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sm, Sr, Tb, Tb, (Tm), U, V, W, Y, Yb, Zn	Direct	–
Peart et al. (1998)	SIRS-3	Al, As, Ba, Be, Bi, Br, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Gd, Ho, I, La, Li, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sm, Sr, Tb, Tb, (Tm), U, V, W, Y, Yb, Zn	Direct	–
Revel and Ayrault (2000)	SIRS-3	As, Ba, Ce, Co, Cr, Cs, Eu, Fe, La, (Mo), Rb, Sb, Sc, Sm, Sr, Tb, Tb, (U), Zn	Direct	–
Revel and Ayrault (2000)	SIRS-3	Al, As, Ba, Ce, (Cd), Co, Co, Cs, (Cs), Cu, (Eu), Fe, La, Li, Mg, Mo, Ni, Pb, Rb, Sr, (Sc), (Sm), Sr, (Tb), (Tm), U, V, W, Y, Zn	Direct	–
Dressler et al. (2001)	SIRS-3	Ag, Au, Te, U	Preconcentration-chelating medium Direct	Online
Veyssyere et al. (2001)	SIRS-3	Ag, Au, Ba, Bi, Cd, Co, Cu, Fe, Li, Mn, Mo, Pb, Pd, Pt, Sb, Sn, Tb, V, Y, Zn	Preconcentration-chelating medium Direct	–
Yan et al. (2001)	SIRS-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-knotted reactor Direct	Online
Benkhedda et al. (2001)	SIRS-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-knotted reactor Direct	Online
Aquilina et al. (2002)	SIRS-3	B, Ba, Ce, Cs, Dy, Er, Eu, Gd, Ho, La, Li, Lu, Mn, Mo, Nd, Pr, Rb, Sm, Sr, Tb, Tb, U, Yb	Preconcentration-chelating medium Dilute	Online
Mito et al. (2003)	SIRS-3	Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tb, Yb	Preconcentration-chelating medium Dilute	Online
Laborda et al. (2004)	SIRS-3	Al, Cd, Co, Cr, Cu, La, Mn, Mo, Nd, Ni, Pb, Pr, Sm, V	Preconcentration-chelating medium Dilute	Online

CRM: Certified Reference Material

a. Analytes include Ag, Al, As, Au, Ba, Bi, Br, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Gd, Ho, I, La, Li, Lu, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Sm, Sr, Tb, Tb, (Tm), U, V, W, Y, Yb, Zn
Preconcentration medium	Quatification method	Calibration technique	Range of detection limits \[\text{ng l}^{-1}\]	Range of relative uncertainty equivalent \[\%\]	Original unit	Measure of uncertainty
FeCl₃	ICP-QMS	External	n.s.	3.5–133.3	pmol l\(^{-1}\)	s
Nobias Chelate-PA1	ICP-SFMS	External	0.001–0.08	10.1–11.5	ng l\(^{-1}\)	U\(k = 2\)
Nobias Chelate-PA1	ICP-QMS	External	n.s.	7–16	pmol l\(^{-1}\)	2s
Nobias Chelate-PA1	ICP-SFMS	External	0.06–20.9	0.9–12.5	nmol kg\(^{-1}\)	s
	ICP-CRC-QMS	External	0.25–101	6–36	ng l\(^{-1}\)	s \(n = 6\)
Ca₂(PO₄)₂	ETV-ICP-CRC-QMS	External	0.013–0.029	1.6–16.7	pg ml\(^{-1}\)	s \(n = 5\)
HDEHP+H₂MEHP	ICP-QMS	n.s.	0.05–4.33	4.7–33.3	ng kg\(^{-1}\)	s \(n = 11\)
	ICP-SFMS	External	n.s.	5–8	nmol l\(^{-1}\)	s \(n = 55\)
	ICP-QMS	n.s.	0.5–1.7	nmol kg\(^{-1}\)	s \(n = 12\)	
FeO(OH)	ICP-SFMS	External	n.s.	0.1–8.4	ng l\(^{-1}\)	s \(n = 3\)
Nobias Chelate-PA1	ICP-SFMS	External	0.002–14.6	0.7–55.6	pmol l\(^{-1}\)	2s
	ICP-SFMS	External	4.8–112	2.5–16.1	nmol l\(^{-1}\)	s
	ICP-SFMS	ID	4.8–112	18.5–29.8	nmol l\(^{-1}\)	s
Nobias Chelate-PA1	ICP-SFMS	External	0.001–0.08	10.3–11.5	ng l\(^{-1}\)	U\(k = 2\)
	ICP-QMS	External	n.s.	2.2–75.0	µg l\(^{-1}\)	s \(n = 5\)
	ICP-QMS	n.s.	0.9–50.0	µg l\(^{-1}\)	s \(n = 5\)	
	INAA	n.s.	n.s.	1.7–11.8	µg l\(^{-1}\)	s
	ICP-MS	n.s.	n.s.	7.7–250	µg l\(^{-1}\)	s
DDTP + C18	ICP-QMS	External calibration	0.05–2.24	ng l\(^{-1}\)	s \(n = 6\)	
	ICP-SFMS	n.s.	n.s.	no measure of uncertainty given	pg g\(^{-1}\)	none
	ICP-MS	External + ID for Nd+Yb	n.s.	4.0–18.8	µg l\(^{-1}\)	s
PMBP	ICP-TOF-MS	External	0.003–0.04	1.6–37.5	µg l\(^{-1}\)	s \(n = 3\)
HDEHP+H₂MEHP on C18	ICP-QMS	n.s.	0.1–2.3 (REE)	3–12	ng l\(^{-1}\) + µg l\(^{-1}\)	none
Iminodiacetate chelate resin	ICP-QMS	n.s.	0.002–0.09	0.4–15.0	pg g\(^{-1}\)	s
	ICP-QMS	External (multi-point	1–201	1.2–18.8	ng ml\(^{-1}\)	u
As of the REE, the so-called technology-critical elements (TCEs), which include Te, Ge, Ga, In, Nb, Ta, platinum-group elements and the REE, gain more and more attention and will eventually find their way into the aquatic environment (Nuss and Blengini 2018, Romero-Freire et al. 2019). A potential new contamination source of Ga and In are offshore wind farms, as Ga and In are used in corrosion protection systems (Kirchgeorg et al. 2018, Reese et al. 2020). Moreover, Ga is also of interest as a biogeochemical tracer, for example monitoring dust inputs into the ocean (Shiller and Bairamadgi 2006). However, literature values of these elements in (sea) water CRMs are extremely scarce. As shown in Table 1, currently only five publications provide values for Ga in four of the seventeen studied CRMs (Zhu et al. 2005, Shiller and Bairamadgi 2006, Matsumya et al. 2012, Wuttig et al. 2019, Yeghicheyan et al. 2019) without providing any values for In. To the best of our knowledge, no certified values are available for Ga or In in any water CRMs.

Due to this lack of information, the scientific community depends on quality literature values of non-certified analytes, and profits from advancing and complementary analytical methods providing these literature values. In addition, CRMs are costly due to the complex and demanding certification process. Therefore, it is profitable for the community to be able to choose from a wide variety of literature values not only of recent but also of out-of-stock CRMs that might be still available in laboratories and ready-to-use.

Table 1 gives an overview of studies providing concentration data for CRMs used in this study, together with details of the analytical methods used. The main research tool for the compilation of this overview was the geochemical database GeoReM (Jochum et al. 2005, http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp). However, non-listed literature is also included in Table 1. Literature for this table and for statistical treatment of compiled and measured data was collected until May 2021. No literature data for elements of interest were found for the water CRMs AQUA-1, BCR-403, CASS-2, CASS-6, NASS-7 and ERM-CA-403 until then. Analytical methods for element quantification in water matrices are mainly ICP-MS-based; however, TXRF, INAA and chemiluminescence were also applied.

Authors	Water CRM	Analytes	Direct/diluted/ preconcentration + matrix reduction	Online/offline preconcentration
Laborda et al. (2004)	SIRS-3	Al, Co, La, Nd, Pb, Pr, Sm, V	Direct	
Bowie et al. (2010)	SIRS-3	Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, U, V, Zn	Dilution (10-fold)	
Yeghicheyan et al. (2019)†	SIRS-6	Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Ca, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, Rh, Sb, Sc, Se, Si, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr	Direct/diluted/ preconcentration through evaporation	Offline

The table lists only publications that contain at least one analyte that was not present in the respective CRM Certificate of Analysis. Types of ICP-MS setups are specified when given in the source publication and otherwise stated as 'ICP-MS'.

*Analytes of interest for this study are printed in bold. Analytes set in parentheses were below LOD or LOQ; † reproduced as provided in original publication; ‡ ICP-SFMS: Sector field ICP-MS; † ICP-QMS: Quadrupole ICP-MS; § PMBP: 1-phenyl-3-methyl-4-benzoylpyrazol-5-one; ‡ ICP-TOFMS: Time-of-flight ICP-MS; ‡ BHQ: B-hydroxyquinoline; ‡ C18: octyldecylsilane; ‡ n.s.: not stated; ‡ MAF-BHQ: fluorinated metal alkoxide glass-immobilised B-hydroxyquinoline; ‡ ETV: electrothermal vapourisation; ‡ CRC: Collision reaction cell; ‡ HDEHP/HY2MEHP: mixture of bis(2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl diphenylphosphate; ‡ Not stated in publication, in retrospect calculated from blank values and s of blanks as LOD; ‡ + 3(blank); ‡ CTS-DHBA: cross-linked chitosan 3,4-dihydroxybenzoic acid; ‡ ID: isotope dilution; ‡ APDC: ammonium pyrrolidinedithiocarbamate; ‡ CTAC: cetyltrimethylammonium chloride; ‡ Assumed to be ng l; ‡ DI: DDTP: dithiophosphoric acid O,O-diethyl ester; ‡ For solutions of otolith samples; ‡ TSK-BHQ: vinyl polymer resin-immobilised B-hydroxyquinoline; ‡ Paper written in Japanese; ‡ Interlaboratory comparison.

© 2022 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd on behalf of International Association of Geoanalysts.
In particular, ICP-MS has matured to the method of choice for environmental analysis due to its sensitivity, multi-element capabilities and flexibility in terms of sample introduction methods (Pröfrock and Prange 2012, Wysocka 2021). However, despite the availability of highly sensitive ICP-MS instrumentation, water analysis remains challenging. The combination of a complex sample matrix and low analyte concentrations (ng l$^{-1}$ or even pg l$^{-1}$ levels) may be another reason for the limited data availability. The formation of matrix-related spectral interferences (e.g., polyatomic ions) within the plasma requires the application of high-resolution sector field ICP-MS (ICP-SFMS) or recently introduced tandem ICP-MS setups (ICP-MS/MS). Nevertheless, sample preparation such as preconcentration and matrix removal is crucial for a successful quantification of trace elements. In particular, the dissolved salt matrix has to be reduced in order to minimise interferences, but also to maintain long-term stability of the instrument. Therefore, the majority of studies listed in Table 1 relied on both preconcentration and matrix removal either by chelating (e.g., Sohrin et al. 2008) or co-precipitation protocols (e.g., Shaw et al. 2003). Both methods allow the enrichment of analytes of interest and matrix reduction. Depending on the analysed elements and sample matrix, a direct measurement (e.g., Peart et al. 1998 for river water or Field et al. 2007 for bulk elements in seawater) or simple dilution (e.g., Leonhard et al. 2002) can also be applied.

Chelating media allow both online preconcentration and matrix removal (Sohrin et al. 2008), which has led to the development of sample introduction systems such as the seaFAST by Elemental Scientific (Hathorne et al. 2012, Rapp et al. 2017, Wuttig et al. 2019). Online setups have the advantage of minimising blank values through fewer sample handling steps compared with offline procedures, while also enabling the possibility to continuously monitor blanks during online measurements. Moreover, evaporation of the separated and preconcentrated sample is prevented.

Although the increasing number of published values for non-certified elements in water CRMs is beneficial for the scientific community and data quality, the sheer amount of studies on similar analytes in the same CRM (e.g., eleven studies providing concentrations of REE in NASS-5, cf. Table 1) can be overwhelming. Aside from common databases, a comprehensive compilation allowing for the development of consensus values is currently missing.

As a consequence, the aim of this study was (a) to develop a method for the reliable quantification of thirty-four elements including classical heavy metals, as well as non-certified elements (e.g., REE, Ga, In, Sn, W and Th) in different natural water matrices, (b) to determine values for non-certified elements in seventeen water CRMs and (c) to compile and evaluate available literature values of non-certified elements for these seventeen water CRMs in order

Preconcentration medium	Quatification method	Calibration technique	Range of detection limitsa [ng l$^{-1}$]	Range of relative uncertainty equivalent [%]	Original unit	Measure of uncertainty
–	ICP-QMS	External (double-point calibration)	1–201	1.4–21.4	ng ml$^{-1}$	u
–	ICP-SFMS	External	1–400	0.003–22	µg l$^{-1}$	s ($n = 5$)
–	ICP-MS/ ICP-OES	External / ID	n.s.	0.5–80.0	µg l$^{-1}$ + ng l$^{-1}$	U($k = 2$)

In particular, ICP-MS has matured to the method of choice for environmental analysis due to its sensitivity, multi-element capabilities and flexibility in terms of sample introduction methods (Pröfrock and Prange 2012, Wysocka 2021). However, despite the availability of highly sensitive ICP-MS instrumentation, water analysis remains challenging. The combination of a complex sample matrix and low analyte concentrations (ng l$^{-1}$ or even pg l$^{-1}$ levels) may be another reason for the limited data availability. The formation of matrix-related spectral interferences (e.g., polyatomic ions) within the plasma requires the application of high-resolution sector field ICP-MS (ICP-SFMS) or recently introduced tandem ICP-MS setups (ICP-MS/MS). Nevertheless, sample preparation such as preconcentration and matrix removal is crucial for a successful quantification of trace elements. In particular, the dissolved salt matrix has to be reduced in order to minimise interferences, but also to maintain long-term stability of the instrument. Therefore, the majority of studies listed in Table 1 relied on both preconcentration and matrix removal either by chelating (e.g., Sohrin et al. 2008) or co-precipitation protocols (e.g., Shaw et al. 2003). Both methods allow the enrichment of analytes of interest and matrix reduction. Depending on the analysed elements and sample matrix, a direct measurement (e.g., Peart et al. 1998 for river water or Field et al. 2007 for bulk elements in seawater) or simple dilution (e.g., Leonhard et al. 2002) can also be applied.

Chelating media allow both online preconcentration and matrix removal (Sohrin et al. 2008), which has led to the development of sample introduction systems such as the seaFAST by Elemental Scientific (Hathorne et al. 2012, Rapp et al. 2017, Wuttig et al. 2019). Online setups have the advantage of minimising blank values through fewer sample handling steps compared with offline procedures, while also enabling the possibility to continuously monitor blanks during online measurements. Moreover, evaporation of the separated and preconcentrated sample is prevented.

Although the increasing number of published values for non-certified elements in water CRMs is beneficial for the scientific community and data quality, the sheer amount of studies on similar analytes in the same CRM (e.g., eleven studies providing concentrations of REE in NASS-5, cf. Table 1) can be overwhelming. Aside from common databases, a comprehensive compilation allowing for the development of consensus values is currently missing.

As a consequence, the aim of this study was (a) to develop a method for the reliable quantification of thirty-four elements including classical heavy metals, as well as non-certified elements (e.g., REE, Ga, In, Sn, W and Th) in different natural water matrices, (b) to determine values for non-certified elements in seventeen water CRMs and (c) to compile and evaluate available literature values of non-certified elements for these seventeen water CRMs in order
to propose new consensus values. Within this study, the term consensus value is used in its broadest definition, from Paule and Mandel (1982), as “best” estimates from a series of experimental results’.

Materials and methods

Water CRMs

Seventeen water reference materials were analysed to determine their (trace) element concentrations. Drinking water AQUA-1, riverine waters SLRS-1, SLRS-3 and SLRS-6, estuarine water SLEW-3, near shore seawaters CASS-2, CASS-3, CASS-4, CASS-5 and CASS-6 and (open ocean) seawaters NASS-4, NASS-5, NASS-6 and NASS-7 were purchased from the NRC (Ottawa, Canada). Seawaters BCR-403 and ERM-CA-403 and estuarine water BCR-505 were purchased from the Joint Research Centre (Geel, Belgium). Table 2 provides an overview of the studied water CRMs, their certification year, commercial availability and the certified elements. The matrices comprise of drinking water, fresh- and brackish water from rivers and estuaries, and salt water ranging from nearshore to open ocean seawater. All CRMs were acidified in the process of preparation (to a pH value between 1 and 2 after filtration of the original natural water) and were measured within this study without further pH adjustment. CRMs were selected according to availability in the research group’s CRM collection. Measurement aliquots of the reference materials were stored in acid cleaned 50 ml DigiTUBEs (SCP Science; Quebec, Canada). The reference materials were exclusively handled in a class 10000 cleanroom environment. All manipulation (e.g., preparation of aliquots, packing and unpacking) has been conducted inside a class 100 metal-free clean bench. All CRMs were packed in two LDPE bags to minimise contamination and evaporation during their transportation and storage at 4 °C.

Reagents

Preparatory laboratory work was performed in a class 10000 clean room inside a class 100 clean bench. Type I reagent-grade water (resistivity: 18.2 MΩ cm) was obtained from a Milli-Q Integral water purification system equipped with a QPod-Element polishing system (Merck Millipore; Darmstadt, Germany). Nitric acid (HNO₃, suprapur®, w = 65%, Merck KGaA or ROTIPURAN® Supra, w = 69%, Carl Roth GmbH + Co. KG; Karlsruhe, Germany) was further purified by double sub-boiling in quartz stills (AHF Analysentechnik; Tübingen, Germany) or using PFA acid purification systems (Savillex; Eden Prairie, USA) operated under clean room conditions. Optima grade glacial acetic acid and optima grade ammonia solution (w = 20–22%; Fisher Scientific; Schwerte, Germany) were used without further purification.

All plastic consumables were pre-cleaned by established protocols in solutions of HNO₃ (w = 1–2%) for a minimum of 1 week. Before usage, the material was flushed several times with Milli-Q water and dried inside a metal-free class 100 clean bench operated inside a clean room.

Instrumentation

Online preconcentration: Throughout this work, a seaFAST pico and, after its installation in 2018, a seaFAST SP2 (both Elemental Scientific; Omaha, USA), equipped with two columns filled with Nobias chelate-PA1 (HITACHI High-Tech Fielding Corporation; Tokyo, Japan) resin, were used. The instruments perform the sample loading, washing and elution of the analytes by a syringe driven system. All valves and tubes in contact with the different reagents, as well as the column, consist of high-purity PFA. Both systems consist of an autosampler as well as a hood equipped with an ULPA filter, to protect the samples against airborne contamination during their storage inside the autosampler (for schematics see Rapp et al. 2017).

For measurements using the seaFAST pico, external calibration standard solutions were prepared manually, whereas for measurements using the seaFAST SP2, the automated dilution of two multi-element stock solutions (20 and 1000 ng l⁻¹, respectively) via the integrated SP module was used.

The seaFAST systems were operated following supplier recommendations with a 4 mol l⁻¹ ammonia acetate buffer (pH = 6.0 ± 0.2) and 1.5 mol l⁻¹ HNO₃ as eluent. Samples were preconcentrated by a factor of 20.

ICP-MS/MS: The seaFAST systems were coupled online to an ICP-MS/MS system (Agilent 8800 or, after its installation in 2018, Agilent 8900 with similar settings, cf.
CRM	Matrix	Supplier	Certified elements	Elements with reference value	Elements with indicative value	Elements with information value	Year of certification	Commercial availability*
AQUA-1	Drinking water	NRC	Al, As, Ba, Cd, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, U, V, Zn				2017	Yes
BCR-403	Seawater	BCR	Cd, Cu, Mo, Ni, Pb, Zn				1992	No
BCR-505	Estuarine water	BCR	Cd, Cu, Ni, Zn				1994	No
CASS-2	Nearshore Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn				1989	No
CASS-3	Nearshore Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn				1989	No
CASS-4	Nearshore Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn				1989	No
CASS-5	Nearshore Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, Zn				1999	No
CASS-6	Nearshore Seawater	NRC	B, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, U, V, Zn	As, Cs, V			2016	Yes
NASS-4	Open Ocean Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, U, Zn				1992	No
NASS-5	Seawater	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, U, Zn				1998	No
NASS-6	Seawater	NRC	As, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, Zn				2010	No
NASS-7	Seawater	NRC	B, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, U, V, Zn	As, Cs, V			2016	Yes
ERM-CA-403	Seawater	ERM	As, Cd, Co, Cu, Mn, Mo, Ni, Pb				1992	No
SLEW-3	Estuarine water	NRC	As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn				2000	No
SLRS-1	River water	NRC	Al, As, Ba, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, U, V, Zn				1986	No
SLRS-3	River water	NRC	Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, U, V, Zn				1994	No
SLRS-6	River water	NRC	Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, U, V, Zn				2015	Yes

Included are CRMs that are no longer commercially available but might still be in stock in research facilities for method quantification and development.

* At the time of the preparation of the manuscript (May 2021).
Element quantification: An external calibration, stabilised in diluted HNO₃ with \(w = 0.14\% \), ranging from 0.1 to 100 ng l⁻¹ for In, 10 to 10000 ng l⁻¹ for Al and 1 to 1000 ng l⁻¹ for all other analytes (REE, Co, Cu, Zn, Ga, Ma, Cs, In, Sn, W, Pb, Th and U. The ICP-MS/MS was equipped with x-lenses for measurements in O₂ mode and with either x- or s-lenses in He mode. Detailed operating instrument parameters and configurations are given in Table S1.

Standard addition was performed for the determination of Ga and In in the CRMs BCR-403, BCR-505 and NASS-4 according to DIN 32633:2013-05 procedure E (DIN e.V. 2013) in order to check for potential matrix effects on the quantification of In and Ga in natural waters. Aliquots of a 1000 ng l⁻¹ Ga stock solution and of a 50 ng l⁻¹ In stock solution (both stabilised in HNO₃ with \(w = 0.14\% \)) were added to aliquots of 45 ml CRM. For Ga, the stock solution was added in steps of 25 µl (0, 25, 50, 75, 100, 125, 150 and 175 µl) and for In in steps of 10 µl (0, 10, 20, 30, 40, 50, 60 and 70 µl). The solutions were diluted to 50 ml with high-purity (Milli-Q) water before measurement.

The CRMs were repeatedly measured via external calibration between 2017 and 2020. Therefore, measurement replicates differ for different CRMs (between \(n = 4 \) for REE in AQUA-1 and \(n = 62 \) for REE in CASS-3).

Evaluation strategy

Multi-elemental data were pre-processed using MassHunter version 4.4 (Agilent Technologies; Tokyo, Japan) in time-resolved mode and a custom written Excel® spreadsheet. The isobaric interference of \(^{115}\text{Sn} \) on \(^{115}\text{In} \) was corrected for by peak stripping as implemented in MassHunter using the signal of \(^{116}\text{Sn} \) and the isotopic abundances provided by the Commission on Isotopic Abundances and Atomic Weights (de Laeter et al. 2003).

Limits of detection (LOD) and limits of quantification (LOQ) were calculated in accordance with the blank value method described in DIN 32645:2008-11 (DIN e.V. 2008) based on calibration blanks (\(n = 3 \) per batch). The calibration blanks of all samples were combined to an average blank after outlier elimination.

Combined uncertainties were propagated according to GUM (BIPM 2008) considering overall reproducibility of the general element quantification and measurement precision of the element in a specific CRM. Uncertainties are reported with a coverage factor \(k = 2 \). For concentrations determined by standard addition, expanded uncertainties were calculated according to DIN 32633:2013-05 procedure E.

Statistical treatment of compiled and measured data

Consensus values were calculated without any weighting from the values determined in this study and the available literature values (including information values from CRM certificates where available). When values from external calibration and standard addition were determined, both values were included in the calculation of the consensus values. No consensus value was derived when no literature values were available. The consensus values were calculated following the procedure described in ISO 13528:2015 7.7 Annex C3 Robust analysis Algorithm A/ISO 5725-5 Algorithm A (ISO. 2015). A median \(x^* \) was calculated from \(p \) studies. A standard deviation \(s^* \) was calculated according to Equation (1).

\[
s^* = 1.483 \text{ median of } |x_i - x^*| \text{ with } (i = 1, 2, \ldots, p) \quad (1)
\]

Updated values of \(x^* \) and \(s^* \) were then calculated following Equations (2–5):

\[
\delta = 1.5s^* \quad (2)
\]

\[
\text{For each } x_i \text{ (} i = 1, 2, \ldots, p), \text{ an } x^*_i \text{ was calculated according to Equation (3)}:
\]

\[
x^*_i = \begin{cases}
 x^* - \delta & \text{when } x_i < x^* - \delta \\
 x^* + \delta & \text{when } x_i > x^* + \delta \\
 x_i & \text{otherwise}
\end{cases} \quad (3)
\]

With that, the updated values for \(x^* \) and \(s^* \) were calculated following Equations (4) and (5):

\[
\text{Table S1, Agilent Technologies; Tokyo, Japan. Both instruments were optimised in a daily routine using a tuning solution containing Li, Co, Y, Ce and Tl to maintain a reliable day-to-day performance. The ICP-MS/MS instruments were operated in O₂ mode for the quantification of Sc, Ti, Y and REE and in He mode for the quantification of Al, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ma, Cs, In, Sn, W, Pb, Th and U. The ICP-MS/MS was equipped with x-lenses for measurements in O₂ mode and with either x- or s-lenses in He mode. Detailed operating instrument parameters and configurations are given in Table S1.}

\[
\text{Limits of detection (LOD) and limits of quantification (LOQ) were calculated in accordance with the blank value method described in DIN 32645:2008-11 (DIN e.V. 2008) based on calibration blanks (} n = 3 \text{ per batch). The calibration blanks of all samples were combined to an average blank after outlier elimination.}
\]

\[
\text{Combined uncertainties were propagated according to GUM (BIPM 2008) considering overall reproducibility of the general element quantification and measurement precision of the element in a specific CRM. Uncertainties are reported with a coverage factor } k = 2. \text{ For concentrations determined by standard addition, expanded uncertainties were calculated according to DIN 32633:2013-05 procedure E.}
\]

\[
\text{Statistical treatment of compiled and measured data}
\]

\[
\text{Consensus values were calculated without any weighting from the values determined in this study and the available literature values (including information values from CRM certificates where available). When values from external calibration and standard addition were determined, both values were included in the calculation of the consensus values. No consensus value was derived when no literature values were available. The consensus values were calculated following the procedure described in ISO 13528:2015 7.7 Annex C3 Robust analysis Algorithm A/ISO 5725-5 Algorithm A (ISO. 2015). A median } x^* \text{ was calculated from } p \text{ studies. A standard deviation } s^* \text{ was calculated according to Equation (1).}
\]

\[
s^* = 1.483 \text{ median of } |x_i - x^*| \text{ with } (i = 1, 2, \ldots, p) \quad (1)
\]

\[
\text{Updated values of } x^* \text{ and } s^* \text{ were then calculated following Equations (2–5):}
\]

\[
\delta = 1.5s^* \quad (2)
\]

\[
\text{For each } x_i \text{ (} i = 1, 2, \ldots, p), \text{ an } x^*_i \text{ was calculated according to Equation (3)}:
\]

\[
x^*_i = \begin{cases}
 x^* - \delta & \text{when } x_i < x^* - \delta \\
 x^* + \delta & \text{when } x_i > x^* + \delta \\
 x_i & \text{otherwise}
\end{cases} \quad (3)
\]

\[
\text{With that, the updated values for } x^* \text{ and } s^* \text{ were calculated following Equations (4) and (5):}
\]

\[
\text{Updated values of } x^* \text{ and } s^* \text{ were then calculated following Equations (2–5):}
\]

\[
\delta = 1.5s^* \quad (2)
\]

\[
\text{For each } x_i \text{ (} i = 1, 2, \ldots, p), \text{ an } x^*_i \text{ was calculated according to Equation (3)}:
\]

\[
x^*_i = \begin{cases}
 x^* - \delta & \text{when } x_i < x^* - \delta \\
 x^* + \delta & \text{when } x_i > x^* + \delta \\
 x_i & \text{otherwise}
\end{cases} \quad (3)
\]

\[
\text{With that, the updated values for } x^* \text{ and } s^* \text{ were calculated following Equations (4) and (5):}
\]
Online analysis yielded blank levels that were below the detection limits for most analytes. The multi-element seaFAST-ICP-MS/MS method measured REE, Sc, Ti and Y in O\textsubscript{2} mode and seventeen (trace) metals (Al, Cd, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sn, Th, U, V, W, Zn) in He mode. Each run required 7.5 ml of sample and 12 min for the measurement of one sample. The setup with s-lenses were generally lower than those measured with the x-lenses, with the exception of Fe, Ga, Th and V. The LOD and LOQ of all analytes are given in Table S2. For analytes measured in He mode, values are available for both x- and s-lenses. X-lenses are the standard extraction lenses for robust, high-sensitivity measurements, the more robust x-lenses are preferable due to lower maintenance requirements.

\[x^* = \frac{1}{p} \sum_{i=1}^{p} x_i^* \quad (4) \]

\[s^* = \frac{1.134}{(p-1)} \left(\sum_{i=1}^{p} (x_i^* - x^*)^2 \right)^{1/2} \quad (5) \]

Robust \(x^* \) and \(s^* \) were derived by the iteration of the calculations until the process converges. Convergence was assumed when there was no change in the third significant digit of \(x^* \) and \(s^* \). No consensus value is provided in cases where convergence did not occur.

The expanded uncertainty of the consensus value was calculated according to Equation (6):

\[U(k = 2) = ku = 2 \times 1.25s^*/\sqrt{p} \quad (6) \]

Results and discussion

Method performance

The multi-element seaFAST-ICP-MS/MS method measured REE, Sc, Ti and Y in O\textsubscript{2} mode and seventeen (trace) metals (Al, Cd, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sn, Th, U, V, W, Zn) in He mode. Each run required 7.5 ml of sample and 12 min for the measurement of one sample. Thus, the quantification of thirty-four elements was completed within 24 min with a required 1.5 ml of sample. The combination of matrix removal, preconcentration and online analysis yielded blank levels that were below the detection limits for most analytes, which is vital for the analysis of environmental water samples. The LOD and LOQ of all analytes are given in Table S2. For analytes measured in He mode, values are available for both x- and s-lenses. X-lenses are the standard extraction lenses for robust, high-sensitivity applications, while s-lenses enable higher sensitivities under similar conditions (Agilent 2016). The results of an F-test showed that the blank measurements of x- and s-lenses could not be combined to one LOD or LOQ, with the exception of Fe, Ga, Th and V. The LOD and LOQ of the setup with s-lenses were generally lower than those measured with the x-lenses, with the exception of Fe, Ga and V. Hence, with the application of s-lenses instead of x-lenses, lower LODs and LOQs and higher sensitivities could be obtained with the Agilent ICP-MS/MS system. The application of s-lenses is advised for the quantification of challenging elements (such as Ga and In) in seawater. However, for the quantification of higher abundant elements, the more robust x-lenses are preferable due to lower maintenance requirements.

No significant difference was found between manually prepared calibrations and calibrations prepared by the seaFAST system. The method proved to be very robust against variations in the pH value in preliminary tests (pH range: 5.2–7.0) for the majority of elements. A pH of 6.0 ± 0.2 was adopted as a compromise.

Certified elements

A summarising matrix of the determined elements for all CRMs is provided in Figure 1. Analysis data for certified elements were generally in good accordance with the certificate. The multi-element method is viable for Al in fresh water, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn in fresh, brackish and seawater, and U in fresh and seawater. Exceptions are Cd in ERM-CA-403 and in SLRS-1, Co in SLRS-1, Mo in CASS-5, NASS-5 and NASS-6, Ni in BCR-403 and ERM-CA-403, U in CASS-5 and Zn in BCR-403. However, a re-evaluation of values for SLRS-1 by the USGS (Peart et al. 1998) found different values for Co and Cd, which agree with the analysed data of this study. It is suspected that the measured aliquot of BCR-403 might have been contaminated with Ni and Zn due to the long-term storage and usage. BCR-403 was prepared in 1989 and certified in 1992 (Quevauviller et al. 1992). The deviation of Mo and U concentrations of CASS-5, NASS-5 and NASS-6 might be due to the fact that the concentrations in these CRMs were above the working range of the calibration (1000 ng l-1 for Mo and U).

The determination of Al was challenging and is reflected in relative uncertainties > 40%. This is mainly due to a lower affinity of Al to the NOBIAS chelate-PA1 resin at pH 6 (Sohrin et al. 2008). Low Al concentrations (< 200 ng l-1) in seawater can lead to relative uncertainties of > 90%. However, this was only observed for two of the twelve analysed seawater CRMs. In general, the method provides reliable results for Al in water samples, especially for brackish and freshwater. Additionally, the results for Al measured in seawater CRMs agree with respective literature values (seven references for CASS-4, CASS-5, NASS-4 and NASS-5).

Although the quantification of Fe yielded accurate results, precision can be compromised by relative uncertainties of > 70% for some brackish and seawater CRMs with concentrations < 780 ng l-1. This may be again explained by the lower affinity of Fe to the NOBIAS chelate-PA1 resin at pH 6 (Sohrin et al. 2008), as well as interferences of various Ar species (mainly \(^{40}\text{Ar}^{16}\text{O}^4\)) on m/\(z = 56\). Initial experiments also included the measurement of \(^{54}\text{Fe}\) and \(^{56}\text{Fe}\). However, results showed that the achievable LOD using \(^{54}\text{Fe}\) were poorer than for \(^{56}\text{Fe}\), mainly caused by the lower abundance of the
In addition to the certified elements, numerous non-certified elements were analysed and literature values were collected, and consensus values were suggested. Figure 1 shows all analysed CRMs and gives the number of studies from which a consensus value was calculated. For AQUA-1, BCR-403, CASS-6 and NASS-7, no literature values were found, for the remaining thirteen CRMs at least one other study was found and considered. The following sections will give further details for the determination of Ga, In, Sc, Sn, Th, Ti and W – a selection of elements for which only a limited number of literature values are available.

Non-certified elements

For Ga, seven literature values were found for four water CRMs. The values measured in CASS-4, NASS-6 and SLRS-6 agree within uncertainty (53–77%) with the literature values. For NASS-5, the measured value does not agree with the available literature. The measurement of NASS-6 agrees with the concentration range measured by Wütig et al. (2019). However, the calculated consensus value for Ga (1.9 ± 1.9 ng l⁻¹) has a relative uncertainty of 100% due to the absolute difference in concentration. Relative uncertainties > 70% were obtained for four of the CRMs. This is especially true for very low concentrations (sub ng l⁻¹ range) close to the LOD, which was also described by Yeghichyan et al. (2019). Data obtained by external calibration agrees with the data obtained by standard addition.

Indium: Out of the seventeen analysed CRMs, no literature values were found for In. For BCR-403, BCR-505...
and NASS-4, In was also quantified via standard addition. The results were in good agreement with external calibration. Therefore, we propose external calibration as a suitable and simple way for ultra-trace quantification of In in natural waters. Relative uncertainties around 100% were obtained for three of the CRMs. This is especially true for very low concentrations (sub ng l\(^{-1}\)) range close to the LOQ. The use of s-lenses was especially important for In in terms of lowering LOD and LOQ and allowed for the more precise determination of sub ng l\(^{-1}\) concentrations in seawater.

Scandium: One literature value of Sc was each found for SLEV-3, SLRS-3 and SLRS-6. For SLEV-3, concentrations of REE, as well as Sc, agree with at least one value from the literature. For SLRS-3, no consensus value was determined as the large difference in reported values meant that the iteration process did not lead to convergence. The measured Sc concentration of SLRS-6 (this study 9.3 ± 8.3 ng l\(^{-1}\)) does not agree with data given by Yeghicheyan et al. (2019, 333 ± 15 ng l\(^{-1}\)). Therefore, Sc values provided within this study should only be considered indicative until additional studies confirm the results.

Tin: One literature value of Sn was each found for five of the seventeen water CRMs. The measured data agreed with the values provided for CASS-4, NASS-5 and SLRS-6, but was higher than the literature value for NASS-4 and lower for SLRS-3. However, the literature values given for NASS-4 and SLRS-3 do not provide any measurement uncertainty, making a statistically sound comparison difficult. The quantification of Sn is critically affected by its behaviour on the column. The elution of Sn is characterised by tailing of the elution profile and hence increased uncertainty of the quantification (Sohrin et al. 2008). This could be overcome by the addition of HCl to the eluent reagent. However, it will compromise the quantification of other elements as unpublished preliminary tests showed. Therefore, Sn values provided within this study should only be considered indicative until additional studies confirm the results.

Thorium: Literature values of Th were found for the CRMs CASS-4, NASS-4, NASS-6, SLRS-3 and SLRS-6. While the values determined for CASS-4, NASS-4, SLRS-3 and SLRS-6 do not agree with the literature values, which is partly reflected in high uncertainties for the suggested consensus value (e.g., \(U_{rel}(k = 2) = 260\%\) for NASS-4), the value for NASS-6 agrees with the value provided by Wuttig et al. (2019). Ti values provided within this study should therefore only be considered indicative until additional studies confirm the results.

Tungsten: Literature values of W were found for the CRMs CASS-4, NASS-4, NASS-5, SLEV-3, SLRS-1, SLRS-3 and SLRS-6. Zhu et al. (2003) reported higher W concentrations in CASS-4 than this study, which is also reflected in the relative uncertainty \((U_{rel}(k = 2) = 190\%)\) of the consensus value. The concentration of W for SLEV-3, given by Mohajerin et al. (2016) \((57.0 ± 9.2\text{ ng l}^{-1}\text{ via external calibration and 49.6 ± 9.2 ng l}^{-1}\text{ via ID})\), does not agree with this study \((27.6 ± 7.7\text{ ng l}^{-1})\). Tungsten values provided within this study should therefore only be considered indicative until additional studies confirm the results.

Reference materials

The following sections briefly describe results of all analysed CRMs. A summarising matrix of the determined elements for all CRMs can be found in Figure 1. Measurement results of the analyses of the CRMs that are still commercially available (AQUA-1, CASS-4, NASS-4, NASS-5, SLRS-6) are reported in the manuscript, whereas results for all other CRMs are reported in the Supporting Information.

AQUA-1: The results for thirty-four metals in AQUA-1 are given in Table 3, including certified values. Results for the certified elements are in good agreement with the certified values, although agreement between AI values is due to a high relative uncertainty of \(U_{rel}(k = 2) = 46\%\). No literature values were found for determination of consensus values for non-certified elements before the completion of data analysis. However, data from the recent publication of Yeghicheyan et al. (2021) for the determination of trace element concentrations in AQUA-1 agrees with the values found in this study, with the exception of Ti, which was reported as indicative only in both studies. No literature values were provided for In and W.

BCR-403: The results for thirty-four metals in BCR-403 are given in Table S3, including results for standard addition of Ga and In. The analytical results for the certified elements are in agreement with the certified values, with exception of...
Ni and Zn. No literature values were found for analysed non-certified elements.

BCR-505: The results for thirty-four metals in BCR-505 are given in Table S4, including results for standard addition of Ga and In. The analytical results for the certified elements are in agreement with the certified values. Measured and literature values were combined to suggested consensus values for non-certified elements.

CASS-2: The results for thirty-four metals in CASS-2 are given in Table S5, including certified values. The analytical results for the certified elements are in agreement with the certified values. Measured and literature values were combined to suggested consensus values for non-certified elements.

CASS-3: The results for thirty-four metals in CASS-3 are given in Table S6, including certified and literature values. The analytical results for the certified elements are in agreement with the certified values. Measured data agree within uncertainty with at least one of the provided literature values for each element.

CASS-4: Results for thirty-four metals in CASS-4 are given in Table S7, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. Analytical results for the certified elements are in agreement with the certified values. Measured data agree within uncertainty with at least one of the provided literature values for each element.

Table 3. Measurement results and certified values for AQUA-1

Element	This study–external calibration		Certified			
	c (ng l⁻¹)	U(k = 2) (%)	n	c (ng l⁻¹)	U(k = 2) (%)	
Al	43000	20000	46	6	54600	1600
Cd	6.1	1.8	29	5	4.3	1.4
Ce	63	12	18	4		
Co	26.3	5.4	20	6	27.1	2.8
Cu	7800	1700	22	6	7460	120
Dy	3.67	0.54	15	4		
Er	2.6	0.41	16	4		
Eu	1.15	0.30	26	4		
Fe	36500	8800	24	5	38000	1200
Ga	7.9	4.6	58	6		
Gd	5.6	1.1	19	4		
Ho	0.83	0.14	17	4		
In	0.128	0.059	46	4		
La	66	12	19	4		
Lu	0.41	0.055	13	4		
Mn	2620	540	21	6	2420	80
Mo	209	80	38	6	189	8
Nd	51.2	8.5	17	4		
Ni	490	160	32	6	447	30
Pb	1420	370	26	6	1364	34
Pr	12.8	2.2	17	4		
Sc	2.1	1.1	55	3		
Sm	7.1	1.0	14	4		
Sn	24	13	56	6		
Tb	0.60	0.11	18	4		
Th	1.15	0.64	56	5		
Ti	37.7	9.8	26	4		
Tm	0.372	0.048	13	4		
U	6.65	0.98	15	4	6.95	0.52
V	165	38	23	6	152	8
W	5.7	1.5	26	6		
Y	29	9	31	4		
Yb	2.48	0.48	19	4		
Zn	1050	270	26	6	970	80

The analytical results for the certified elements are in agreement with the certified values. Measured and literature values were combined to suggested consensus values for non-certified elements. Measured data agree within uncertainty with at least one of the provided literature values for each element.
REEs in CASS-4. The data are quite homogeneous, with the exception of data published by Kajiya et al. (2004) whose values are generally lower compared with other studies.

CASS-5: The results for thirty-four metals in CASS-5 are given in Table S8, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values, with the exception of Mo and U. Measured data agree within uncertainty with at least one of the provided literature values for each element.

CASS-6: The results for thirty-four metals in CASS-6 are given in Table 4, including certified values. The analytical results for the certified elements are in agreement with the certified values. No literature values were found for the analysis of non-certified elements.

NASS-4: The results for thirty-four metals in NASS-4 are given in Table S9, including results from standard addition for Ga and In, as well as certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values. The measured concentration of Ti is lower than the concentration published by Yabutani et al. (2001), which leads to a high uncertainty of the suggested consensus value ($U_r(\kappa = 2) = 260\%$).

NASS-5: The results for thirty-four metals in NASS-5 are given in Table S10, including certified and literature values. Measured and literature values were combined to

Table 4.
Measurement results for CASS-6 from measurements with 'external' calibration

Element	c (ng l$^{-1}$)	$U(k = 2)$ (%)	n	c (ng l$^{-1}$)	$U(k = 2)$
Al	2500	1100	46	11	21.7
Cd	28	12	43	12	1.8
Ce	5.5	1.1	20	5	5
Co	75	15	20	12	67.2
Cu	620	160	26	12	530
Dy	1.41	0.24	17	5	1.4
Er	1.19	0.21	18	5	1.4
Eu	0.292	0.064	22	5	2
Fe	1920	920	48	12	1560
Ga	3.8	1.7	46	10	2
Gd	1.85	0.4	21	5	2
Ho	0.35	0.068	19	5	2
In	0.47	0.14	30	11	2
La	1.02	1.9	19	5	7
Lu	0.211	0.048	23	5	0.4
Mn	2330	480	20	12	2220
Mo	7600	2800	37	12	9150
Nd	6.4	1.2	18	5	4
Ni	463	94	20	12	418
Pb	12.5	3.4	27	12	10.6
Pr	1.15	0.27	19	5	2
Sc	< 0.97 (LOQ)			5	4
Sm	1.14	0.22	19	5	4
Sn	6.7	5.8	86	12	2
Tb	0.199	0.040	20	5	0.3
Th	1.6	2.8	170	12	0.2
Ti	10.5	3.8	36	5	120
Tm	0.169	0.038	22	5	0.2
U	2360	810	34	12	2920
V	550	220	41	12	500
W	11.1	2.6	24	12	120
Y	15.6	4.6	30	5	120
Yb	1.24	0.31	25	5	1.6
Zn	1380	280	20	12	1270

Additionally, the certified values are given (reference value for V and information values REE).
suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values, with the exception of Mo, which is slightly below the certified range.

Measured values overlap with at least one of the literature values with the exception of Ti, Ga and Th, for which only one other value was found in literature (Zhu et al. 2005b, Shiller and Bairoamodji, 2006, Bayon et al. 2011). No consensus value is provided for Ti and Th, as the difference between reported values meant that convergence was not achieved following the iteration process. The measured values for each non-certified element overlap with at least one of the existing literature values.

Table 5. Measurement results for NASS-7 from measurements with external calibration

Element	This study–external calibration	Certified				
	c (ng l$^{-1}$)	$U(k = 2)$	$U_{rel}(k = 2)$ (%)	n	c (ng l$^{-1}$)	$U(k = 2)$
Al	340	170	48	20		
Cd	21.3	9.4	44	22		
Ce	3.48	0.62	18	8		
Co	16.3	2.5	16	22		
Cu	233	65	28	21		
Dy	1.51	0.22	15	8		
Er	1.3	0.2	15	8		
Eu	0.230	0.047	20	8		
Fe	570	400	71	21		
Ga	1.71	0.94	55	11		
Gd	1.39	0.27	19	8		
Ho	0.394	0.056	14	8		
In	0.0099	0.0078	79	13		
La	9.8	1.7	17	8		
Lu	0.203	0.036	18	8		
Mn	820	130	16	22		
Mo	8600	1500	17	19		
Nd	609	0.85	14	8		
Ni	265	44	17	22		
Pb	2.7	1.2	42	21		
Pr	1.38	0.25	18	8		
Sc	< 0.97 (LOQ)	7				
Sm	1.06	0.14	13	8		
Sn	5.4	3.7	69	22		
Tb	0.202	0.028	14	8		
Tm	0.9	1.7	200	22		
U	2250	680	30	19		
V	1330	220	16	22		
W	9.1	2.1	21	22		
Y	18.0	5.2	29	8		
Yb	1.23	0.34	27	8		
Zn	500	110	22	22		

Additionally, the certified values are given (reference value for V and information values for REE).

were excluded as outliers from the calculation of the consensus value, as the values are generally higher or lower by a factor of two compared with the mean of the other values published for NASS-5.

NASS-6: The results for thirty-four metals in NASS-6 are given in Table S11, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values, with the exception of Mo, for which the measured concentration range (7500 ± 1600 ng l$^{-1}$) was slightly below the certified range (9890 ± 720 ng l$^{-1}$). The measured values for each non-certified element overlap with at least one of the existing literature values.

NASS-7: The results for thirty-four metals in NASS-7 are given in Table 5, including certified values. The analytical
The results for the certified elements are in agreement with the certified values. However, the measured concentrations for some REE vary from the stated information values, with recoveries between 49% (Nd) and 260% (Eu). No literature values were found for determined non-certified elements.

ERM-CA-403: The results for thirty-four metals in ERM-CA-403 are given in Table 6, including certified values. The analytical results for the certified elements are in agreement with the certified values, with the exception of Ni and Cd. For Ni, the measured concentration in this study of 1370 \(\pm\) 160 ng l\(^{-1}\) was slightly above the certified value of 1040 \(\pm\) 160 ng l\(^{-1}\). For Cd, the measured concentration range (130 \(\pm\) 16 ng l\(^{-1}\)) was above the certified value (94 \(\pm\) 11 ng l\(^{-1}\)). No literature values were found for determined non-certified elements.

SLEW-3: The results for thirty-four metals in SLEW-3 are given in Table S12, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values. For REE, Sc, Mo, U and Th, the measured concentrations overlap with at least one literature value. For W, the concentration given by Mohajerin et al. (2016, 57.0 \(\pm\) 9.2 ng l\(^{-1}\) via external calibration and 49.6 \(\pm\) 9.2 ng l\(^{-1}\) via ID) is different to the value determined in this study (27.6 \(\pm\) 7.7 ng l\(^{-1}\)).

SLRS-1: Results for thirty-four metals in SLRS-1 are given in Table S13, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values, with the exception of Co and Cd. The measured concentration of Co (28.3 \(\pm\) 2.4 ng l\(^{-1}\)) is slightly below the certified value of

Element	This study-external calibration	Certified				
	\(c\) (ng l\(^{-1}\))	\(U(k = 2)\)	\(U_{rel}(k = 2)\) (%)	\(n\)	\(c\) (ng l\(^{-1}\))	\(U(k = 2)\)
Al	2500	1000	40	7		
Cd	130	16	12	7		
Ce	6.05	0.88	15	8	94	11
Co	85.7	10.0	12	7	74	11
Cu	1120	160	14	7	870	130
Dy	1.56	0.21	13	8		
Er	1.20	0.15	13	8		
Eu	0.306	0.057	19	8		
Fe	4900	1300	27	7		
Ga	6.3	1.6	26	7		
Gd	3.52	0.55	16	8		
Ho	0.370	0.054	15	8		
In	0.057	0.010	18	7		
La	6.48	0.94	15	8		
Lu	0.198	0.026	13	8		
Mn	2890	330	12	7	2470	110
Mo	11900	1800	15	7	12000	600
Nd	5.21	0.71	14	8		
Ni	1370	160	11	7	1040	160
Pb	112	15	14	7	98	10
Pr	1.15	0.17	15	8		
Sc	< 0.97 (LOQ)	6				
Sm	1.17	0.19	17	8		
Sn	145	18	12	7		
Tb	0.220	0.033	15	8		
Th	1.97	0.79	40	7		
Ti	51	11	22	8		
Tm	0.176	0.027	16	8		
U	2880	500	17	5		
V	1100	190	17	7		
W	34.4	3.3	9.6	7		
Y	15.6	3.1	20	8		
Yb	1.20	0.17	14	7		
Zn	5480	620	11	7	4600	600

Additionally, the certified values are given.
However, a re-evaluation of this CRM by the US Geological Survey (Peart et al. 1998) reported Co < 12 ng l\(^{-1}\), indicating discrepancies in the determination of Co in SLRS-1. A Cd concentration of 19.6 ± 2.2 ng l\(^{-1}\) was measured in this study compared with the certified value of 15 ± 2 ng l\(^{-1}\), while Peart et al. (1998) reported 34 ± 20 ng l\(^{-1}\).

SLRS-3: The results for thirty-four metals in SLRS-3 are given in Table S14, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. Results of the certified elements are in agreement with the certified values. Literature values and measured values are in good agreement for most non-certified elements, except Sc, Ti and Sn. It was not possible to completely compare the Sn concentration published by Veysseyre et al. (2001, 282 ng l\(^{-1}\)) with this study (198 ± 55 ng l\(^{-1}\)) as no uncertainty was given. For Sc and Th, the large difference between reported values meant that convergence was not achieved following the iteration process.

SLRS-6: The results for thirty-four metals in SLRS-6 are given in Table 7, including certified and literature values. Measured and literature values were combined to suggested consensus values for non-certified elements. The analytical results for the certified elements are in agreement with the certified values. The measured data for non-certified elements agrees with the data published by Yeghicheyan et al. (2019), with the exception of Sc. The Sc concentration measured in this study was 9.3 ± 8.3 ng l\(^{-1}\), while Yeghicheyan et al. (2019) report 333 ± 15 ng l\(^{-1}\). This is reflected in the high relative uncertainty (270%) of the calculated consensus value for Sc.

Table 7. Measurement results for SLRS-6 from measurements with external calibration

Element	c (ng l\(^{-1}\))	U (k = 2)	U\(_{rel}\) (k = 2)	p	U\(_{rel}\) (k = 2)
Al	31000	16000	51	6	33800
Cd	7.9	1.3	6	5	6.3
Ce	314	67	21	4	33800
Co	58.8	6.5	11	6	53
Cu	25600	2600	10	6	23900
Dy	23.3	4.2	18	4	21.9
Er	13	2.3	18	4	12.4
Eu	7.3	1.5	21	4	7.26
Fe	80000	19000	24	6	84300
Ga	7.3	3.9	53	6	11
Gd	33.4	6.6	20	4	31.6
Ho	4.55	0.80	18	4	4.3
In	0.23	0.11	46	6	248.3
La	267	57	21	4	248.3
Lu	1.85	0.32	17	4	1.91
Mn	2290	440	19	7	2120
Mo	188	79	42	7	215
Nd	251	48	19	4	227.8
Ni	610	62	10	6	616
Pb	174	41	23	7	170
Pr	63	13	20	4	59.1
Sc	9.3	8.3	19	4	525
Sm	420	7.8	19	4	39.5
Sn	108	6.6	11	7	10
Tb	401	0.75	19	4	4.07
Th	224	41	18	6	16
Ti	499	99	20	4	333
Tm	1.82	0.35	19	4	1.79
U	666	8.5	13	5	69.8
V	364	76	21	7	1200
W	9.9	2.2	22	7	16.5
Y	124	39	31	4	128
Yb	121	2.8	23	4	11.2
Zn	1870	420	22	7	1760

Additionally, the certified values are given (reference value for Co) and available literature values. Consensus values are suggested combining measured and literature data.
Conclusions

The reported online preconcentration ICP-MS/MS method enabled the quantification of thirty-four elements in seventeen different water CRMs ranging from fresh water to seawater. The method proved to be robust and time efficient. The focus of this study was the development of a quick and versatile multi-element method including as many elements as possible. Due to this broad focus, including a variety of water matrices, certain limitations for the quantification of individual elements cannot be ruled out. Nevertheless, this study also showed that ‘old’ and out-of-stock CRMs are generally still suitable for use and of great benefit to the scientific community.

The measured data were combined with a comprehensive literature review of sixty-one references, reporting values for various non-certified elements of the studied water CRMs, and suggestions for consensus values were derived from an iteration process. The literature review and the suggestion of consensus values summarise the existing literature values for REE that are available within the community. Moreover, the suggested consensus values allow the use of the different available water CRMs for method validation of other elements, such as the emerging TCEs Ga and In, which to date have not been within the focus of the scientific community, nor measured routinely. This clearly highlights the need of new reference materials, taking into account the changing requirements of the scientific community.

Acknowledgements

The authors thank Bettina Rust (Hereon) and Tobias Orth (Hereon and Hochschule Mannheim) for their support in the laboratory and Shaun Lancaster (Montanuniversität Leoben) for proof reading and valuable comments on the manuscript. The two anonymous reviewers are acknowledged for their valuable comments on a previous version of the manuscript. Anna Ebeling was funded by the BSH through the project OffChEm (BSH contract code: 10036781, HZG contract code: 17/2017).

Open Access funding enabled and organized by Projekt DEAL.

Data availability statement

The data that support the findings of this study are available in the Supplementary Material of this article.

References

Abbasse G., Ouddane B. and Fischer J.C. (2002) Determination of total and labile fraction of metals in seawater using solid phase extraction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Journal of Analytical Atomic Spectrometry, 17, 1354–1358.

Agatemor C. and Beauchemin D. (2011) Towards the reduction of matrix effects in inductively coupled plasma-mass spectrometry without compromising detection limits. The use of argon-nitrogen mixed-gas plasma. Spectrochimica Acta Part B, 66, 1–11.

Agilent (2016) Agilent 8900 triple quadrupole ICP-MS technical overview. Agilent publication 5991–6942N.

Anderson R.F. (2020) GEOTRACES: Accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annual Review of Marine Science, 12, 49–85.

Aquilina L., Ladouce B., Doerfliger N., Seidel J.L., Bakalowicz M., Dupuy C. and Le Strat P. (2002) Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France): Implications for fluid transfer across the continental shelf. Chemical Geology, 192, 1–21.

Bau M. and Dulski P. (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143, 245–255.

Bayon G., Birot D., Bollinger C. and Barrat J.A. (2011) Multi-element determination of trace elements in natural water reference materials by ICP-SFMS after Tm addition and iron co-precipitation. Geostandards and Geoanalytical Research, 35, 145–153.

Beck M., Dellwig O., Schnetger B. and Brumsack H.-J. (2008) Cycling of trace metals (Mn, Fe, Mo, U, V, Co) in deep pore waters of intertidal flat sediments. Geochimica et Cosmochimica Acta, 72, 2822–2840.

Benkhedda K., Infante H.G., Adams F.C. and Ivanova E. (2002) Inductively coupled plasma-mass spectrometry for trace analysis using flow injection on-line preconcentration and time-of-flight mass analyzer. TrAC Trends in Analytical Chemistry, 21, 332–342.
Benkhaleda K, Infante H.G., Ivanova E. and Adams F.C. (2001) Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactor. Journal of Analytical Atomic Spectrometry, 16, 995–1001.

BIPMA (2008) Evaluation of measurement data – Guide to the expression of uncertainty in measurement.

Bowie AR, Townsend A.T., Lannuzel D., Remenyi T.A. and van der Merwe P. (2010) Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 676, 15–27.

Censi P., Roso M., Yedidi Y., Ginat H., Saiano F., Zuddas P., Brusa L, D’Alessandro W. and Ingugliatto C. (2017) Geochemistry of Zr, Hf, and REE in a wide spectrum of Eh and water composition: The case of Dead Sea Fault system (Israel). Geochemistry Geophysics Geosystems, 18, 844–857.

Clough R., Sela H., Milne A., Lohan M.C., Tokalioglu S. and Worsfold P.J. (2015) Uncertainty contributions to the measurement of dissolved Co, Fe, Pb and V in seawater using flow injection with solid phase preconcentration and detection by collision/reaction cell-quadrupole ICP-MS. Talanta, 133, 162–169.

Crocket K.C., Hill E., Abell R.E., Johnson C., Gary S.F., Brand T. and Hathorne E.C. (2018) Rare earth element distribution in the NE Atlantic: Evidence for benfick sources, longevity of the seawater signal, and biogeochemical cycling. Frontiers in Marine Science, 5, 1–22.

de Laetor J.R., Böhlke J.K., De Biévre P., Hidaka H., Peiser H.S., Rosman K.J.R. and Taylor P.D.P. (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75, 785.

DIN e.V. (2008) Chemical analysis – Decision limit, detection limit and determination limit under repeatability conditions: Terms, methods, evaluation. DIN 32645:2008-11.

DIN e.V. (2013) Chemical analysis – Methods of standard addition. DIN 32633:2013-05.

Dressler V.L., Pozebon D. and Curtius A.J. (2001) Determination of Ag, Te, U and Au in waters and in biological samples by FI-ICP-MS following on-line preconcentration. Analytica Chimica Acta, 438, 235–244.

Field M.P., LoVigne M., Murphy K.R., Ruiz G.M. and Sherrell R.M. (2007) Direct determination of P, V, Mn, As, Mo, Ba and U in seawater by SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 1145.

Firdaus M.L., Norrisuye K., Sato T., Urushihara S., Nakagawa Y., Umetani S. and Sohrin Y. (2007) Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 583, 296–302.

Freslon N., Bayon G., Birot D., Bollinger C. and Barrat J.A. (2011) Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)₂ co-precipitation. Talanta, 85, 582–587.

Griesel S., Reus U. and Prange A. (2001) Electro-deposition as a sample preparation technique for total-reflection X-ray fluorescence analysis. Spectrochimica Acta Part B, 56, 2107–2115.

Grinberg P., Willie S. and Sturgeon R.E. (2005) Determination of U, Th and Pu in natural waters, biological materials and clinical samples by ETH-ICP-MS. Journal of Analytical Atomic Spectrometry, 20, 717.

Grinberg P., Yang L.U., Mester Z., Willie S. and Sturgeon R.E. (2006) Comparison of laser ablation, electrothermal vaporization and solution nebulization for the determination of radionuclides in liquid samples by inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 21, 1202.

Hathorne E.C., Haley B., Stichel T., Grasse P., Zieringer M. and Frank M. (2012) Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry Geophysics Geosystems, 13, 1–12.

Hirata S., Kajiyu T., Takano N., Aihara M., Honda K., Shikino O. and Nakayama E. (2003) Determination of trace metals in seawater by on-line column preconcentration inductively coupled plasma-mass spectrometry using metal alkoxide glass immobilized 8-quinolinal. Analytica Chimica Acta, 499, 157–165.

ISO (2015) Statistical methods for use in proficiency testing by interlaboratory comparison. ISO 13528:2015, International Organization for Standardization (Geneva).

Jochum K.P., Nohl U., Herwig K., Lammel E., Hofmann A.W. (2005) GeoRefV: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29, 333–338.

Kajiyu T., Aihara M. and Hirata S. (2004) Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry with on-line column pre-concentration inductively coupled fluoroated metal alkoxide glass immobilized 8-quinolinole. Spectrochimica Acta Part B, 59, 543–550.

Kim I., Kim S. and Kim G. (2010) Analytical artifacts associated with the chelating resin extraction of dissolved rare earth elements in natural water samples. Aquatic Geochemistry, 16, 611–620.
Kirchgeorg T., Weinberg I., Höning M., Baier R., Schmid M.J. and Brockmeyer B. (2018)
Emissions from corrosion protection systems of offshore wind farms. Evaluation of the potential impact on the marine environment. Marine Pollution Bulletin, 136, 257–268.

Kühn M. and Kriews M. (2000)
Improved detection of transition and rare earth elements in marine samples with the CETAC DSX-100 preconcentration/matrix elimination system and ICP-MS. Fresenius’ Journal of Analytical Chemistry, 367, 440–444.

Laborda F., Medrano J. and Castillo J.R. (2004)
Influence of the number of calibration points on the quality of results in inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 19, 1434.

Law R., Hanke G., Angelidis M.O., Batty J., Bignert A., Dachs J., Davies I., Dengo Y., Dufek A., Herut B., Hylland K., Lepom P., Mehtonen J., Piha H., Roese P., Tronczynski J., Vethaak V. and Velikova D. (2010)
Marine strategy framework directive: Task group 8. Report contaminants and pollution effects, 171.

Lawrence M.G. and Kamber B.S. (2007)
Rare earth element concentrations in the natural water reference materials (NRCC) NASS-5, CASS-4 and SLEW-3. Geostandards and Geoanalytical Research, 31, 95–103.

Lee J.H. and Byrne R.H. (1993)
Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochimica et Cosmochimica Acta, 57, 295–302.

Lee K.-H., Oshima M. and Motomizu S. (2002)
Inductively coupled plasma-mass spectrometric determination of heavy metals in sea-water samples after pre-treatment with a chelating resin disk by an on-line flow injection method. The Analyst, 127, 769–774.

Lemaître N., Bayon G., Ondrèas H., Caprais J.-C., Freslon N., Bollinger C., Rouget M.-L., de Prunel E., Ruffine L., Olu-Le Roy K. and Sarthou G. (2014)
Trace element behaviour at cold seeps and the potential export of dissolved iron to the ocean. Earth and Planetary Science Letters, 404, 376–388.

Leme F.O., Limo L.C., Papai R., Aikba N., Batista B.L. and Gaubeur L. (2018)
A novel vortex-assisted dispersive liquid-phase microextraction procedure for preconcentration of europium, gadolinium, lanthanum, neodymium, and ytterbium from water combined with ICP techniques. Journal of Analytical Atomic Spectrometry, 33, 2000–2007.

Leonhard P., Pepelnik R., Prange A., Yamada N. and Yamada T. (2002)
Analysis of diluted sea-water at the ng l−1 level using an ICP-MS with an octopole reaction cell. Journal of Analytical Atomic Spectrometry, 17, 189–196.

Louie H., Wu M., Di P., Snitch P. and Chappell G. (2002)
Direct determination of trace elements in sea-water using reaction cell inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 17, 587–591.

Maltez H.F., Vieira M.A., Ribeiro A.S., Curtius A.J. and Carasek E. (2008)
Simultaneous on-line pre-concentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma-mass spectrometry using silica gel modified with niobium(V) oxide. Talanta, 74, 586–592.

Matsumiya H., Kitokata K. and Hiraide M. (2012)
Collection of trace metals with cationic surfactant-silica particles followed by flotation with an anionic surfactant for seawater analysis. Analytical and Bioanalytical Chemistry, 402, 1973–1977.

McLennan S.M. (1989)
Rare earth elements in sedimentary rocks, influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200.

Minami T., Konagaya W., Zheng L., Takano S., Sasaki M., Murata R., Nakaguchi Y. and Sohrin Y. (2015)
An off-line automated preconcentration system with ethylenediaminetetraacetic chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 854, 183–190.

Mitlo H., Ohata M. and Furuta N. (2003)
Determination of rare earth elements in river water by fully automated on-line column inductively coupled plasma-mass spectrometry using iminodiacetate chelate resin as a column. Bunseki Kagaku, 52, 575–582.

Mohajerin T.J., Helz G.R. and Johannesson K.H. (2016)
Tungsten–molybdenum fractionation in estuarine environments. Geochimica et Cosmochimica Acta, 177, 105–119.

Murphy K.R., Field M.P., Waite T.D. and Ruiz G.M. (2008)
Trace elements in ships’ ballast water as tracers of mid-ocean exchange. Science of the Total Environment, 393, 11–26.

Nuss P. and Blengini G.A. (2018)
Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles. Science of the Total Environment, 613–614, 569–578.

Oliveira E.P., Yang L.U., Sturgeon R.E., Santelli R.E., Bezerra M.A., Willie S.N. and Capilla R. (2011)
Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma-mass spectrometry following on-line analyte separation/preconcentration. Journal of Analytical Atomic Spectrometry, 26, 578.
Radoškina I. and Ruth T. (1997) Determination of trace metals in estuarine and seawater reference materials by high resolution inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 12, 1181–1185.

Romero-Freire A., Santos-Echeandia J., Neira P. and Cabelo-Garduño A. (2019) Less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) in the marine environment: Review on their concentrations in water and organisms. Frontiers in Marine Science, 6, 1–9.

Rousseau T.C.C., Sonke J.E., Chmeleff J., Candraudap F., Laczan F., Boaventura G., Seyler P. and Jeandel C. (2013) Rare earth element analysis in natural waters by multiple isotope dilution-sector field ICP-MS. Journal of Analytical Atomic Spectrometry, 28, 573.

Saborudin A., Oshima M., Tokayanagi T., Hakim L., Oshita K., Gao Y.H. and Motimizu S. (2007) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 581, 214–220.

Scholz F., McManus J. and Sommer S. (2013) The manganese and iron shuttle in a modern euxinic basin and implications for molybdenum cycling at euxinic ocean margins. Chemical Geology, 355, 56–68.

Shaw T.J., Duncan T. and Schnetger B. (2003) A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwater by isotope dilution ICP-MS. Analytical Chemistry, 75, 3396–3403.

Shiller A.M. and Bairamadgi G.R. (2006) Dissolved gallium in the northwest Pacific and the south and central Atlantic Oceans: Implications for aeolian Fe input and a reconsideration of profiles. Geochemistry Geophysics Geosystems, 7, 1–14.

Soehn Y., Urushihara S., Nakatsuka S., Kono T., Higo E., Minami T., Norisuye K. and Umetani S. (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICP-MS after preconcentration using an ethylenediaminetetraacetic acid chelating resin. Analytical Chemistry, 80, 6267–6273.

Soyer-Oerdene T.-O. and Huh Y. (2013) Rare earth element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323). Chemical Geology, 358, 75–89.

Staniszewski B. and Freimann P. (2008) A solid phase extraction procedure for the simultaneous determination of total inorganic arsenic and trace metals in seawater: Sample preparation for total-reflection X-ray fluorescence. Spectrochimica Acta Part B, 63, 1333–1337.

Turetta C., Capodaglio G., Cairns W., Rabar S. and Cescon P. (2005) Benthic fluxes of trace metals in the lagoon of Venice. Microchemical Journal, 79, 149–158.
Trace element determination in seawater by ICP-SFMS coupled with a microflow nebulization/desolvation system. Analytical and Bioanalytical Chemistry, 380, 258–268.

Veyseye A. Moutard K. Ferrari C. Velde K.V.D. Barbante C. Cozzi G. Capodaglio G. and Bouton C. (2001) Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne valleys, French Alps: Initial results. Atmospheric Environment, 35, 415–425.

Wang B.S., Lee C.P. and Ho T.Y. (2014) Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: The influence of low level Mg and Ca. Analytical and Bioanalytical Chemistry, 406, 1707–1716.

Waseem A. Yaqoob M. and Nabi A. (2010) Flow-injection determination of vanadium in seawater samples with acidic potassium permanganate chemiluminescence. Analytical Sciences, 26, 355–360.

Willie S.N. Lam J. Yang L. and Tao G. (2001) On-line removal of Ca, Na and Mg from iminodiacetate resin for the determination of trace elements in seawater and fish otoliths by flow injection ICP-MS. Analytica Chimica Acta, 447, 143–152.

Willie S.N. and Sturgeon R.E. (2001) Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry. Spectrochimica Acta Part B, 56, 1707–1716.

Wuttig K. Townsend A.T. van der Merwe P. Gault-Ringold M. Holmes T. Schallenberg C. Loutour P. Tonnard M. Rijkenberg M.J.A. Lannuzel D. and Bowie A.R. (2019) Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 197, 653–668.

Wysocka I. (2021) Determination of rare earth elements concentrations in natural waters – A review of ICP-MS measurement approaches. Talanta, 221, 121656.

Wysocka I. and Vassileva E. (2017) Method validation for high resolution sector field inductively coupled plasma-mass spectrometry determination of the emerging contaminants in the open ocean. Rare earth elements as a case study. Spectrochimica Acta Part B, 128, 1–10.

Yabutani T. Chiba K. and Haraguchi H. (2001) Multielement determination of trace elements in seawater by inductively coupled plasma-mass spectrometry after tandem preconcentration with cooperation of chelating resin adsorption and lanthanum coprecipitation. Bulletin of the Chemical Society of Japan, 74, 31–38.

Yan X.P. Kerrich R. and Hendry M.J. (2001) Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada. Chemical Geology, 176, 151–172.

Yeghicheyan D., Aubert D., Boughnink-Le Coz M., Chmeleff J., Delpoux S. Djouraev I. Gnanier G. Lacan F. Piro J.-L. Rousseau T. Cloquet C. Marquet A. Menilli C. Pradaux C. Freyder R. Vieira da Silva-Filho E. and Suchorski K. (2019) A new interlaboratory characterisation of silicon, rare earth elements and twenty-two other trace element concentrations in the natural river water certified reference material SLS-6 (NRC-CNRC). Geostandards and Geoanalytical Research, 43, 475–496.

Yeghicheyan D., Grinberg P., Alleman L.Y., Belhadj M., Cause L., Chmeleff J., Cardier L. Djouraev I. Dumoulin D., Dumont J., Freyder R., Marlot H. Cloquet C. Kumskang P. Malot B. Jeandel C. Marquet A. Riote J. Tharaud M. Billon G. Frommetter G. Séby F. Guihler A. Deschamps P. and Mester Z. (2021) Collaborative determination of trace element mass fractions and isotope ratios in AQUA-1 drinking water certified reference material. Analytical and Bioanalytical Chemistry, 413, 4959–4978.

Zhu Y., Itoh A., Fujimori E., Umemura T. and Haraguchi H. (2005a) Multielement determination of trace metals in seawater by inductively coupled plasma-mass spectrometry after tandem preconcentration using a chelating resin. Bulletin of the Chemical Society of Japan, 78, 659–667.

Zhu Y., Itoh A. and Haraguchi H. (2005b) Multielement determination of trace metals in seawater by ICP-MS using a chelating resin-packed minicolumn for preconcentration. Bulletin of the Chemical Society of Japan, 78, 107–115.

Zhu Y., Umemura T., Haraguchi H., Inagaki K. and Chiba K. (2009) Determination of REEs in seawater by ICP-MS after on-line preconcentration using a syringe-driven chelating column. Talanta, 78, 891–895.

Supporting information

The following supporting information may be found in the online version of this article:

Table S1. Representative instrument settings for the ICP-MS/MS systems.
Table S2. LOD and LOQ of the measured analytes. Table S3. Element results for BCR-403 from measurements with external calibration and results for Ga and In of measurements using standard addition.
Table S4. Element results for BCR-505 from measurements with external calibration and results for Ga and In of measurements using standard addition.
Table S5. Element results for CASS-2 from measurements with external calibration.
Table S6. Element results for CASS-3 from measurements with external calibration.
Table S7. Element results for CASS-4 from measurements with external calibration.
Table S8. Element results for CASS-5 from measurements with external calibration.

Table S9. Element results for NASS-4 from measurements with external calibration and results for Ga and In of measurements using standard addition.

Table S10. Element results for NASS-5 from measurements with external calibration.

Table S11. Element results for NASS-6 from measurements with external calibration.

Table S12. Element results for SLEW-3 from measurements with external calibration.

Table S13. Element results for SLRS-1 from measurements with external calibration.

Table S14. Element results for SLRS-3 from measurements with external calibration.

This material is available from: http://onlinelibrary.wiley.com/doi/10.1111/ggr.12422/abstract (This link will take you to the article abstract).