On \(MT \)-Convexity

Mevliüt TUNC and Hüseyin YILDIRIM

Abstract. In this paper, one new classes of convex functions which is called \(MT \)-convex functions are given. We also establish some Hadamard-type inequalities.

1. Introduction

The following definition is well known in the literature: A function \(f : I \to \mathbb{R} \), \(\emptyset \neq I \subseteq \mathbb{R} \), is said to be convex on \(I \) if inequality

\[
 f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)
\]

holds for all \(x, y \in I \) and \(t \in [0, 1] \). Geometrically, this means that if \(P, Q \) and \(R \) are three distinct points on the graph of \(f \) with \(Q \) between \(P \) and \(R \), then \(Q \) is on or below chord \(PR \).

Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function and \(a, b \in I \) with \(a < b \). The following double inequality:

\[
 f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]

is known in the literature as Hadamard’s inequality (or H-H inequality) for convex function. Keep in mind that some of the classical inequalities for means can come from (1.2) for convenient particular selections of the function \(f \). If \(f \) is concave, this double inequality hold in the inversed way.

In [3], Pachpatte established two Hadamard-type inequalities for product of convex functions.

Theorem 1. Let \(f, g : [a, b] \subseteq \mathbb{R} \to [0, \infty) \) be convex functions on \([a, b] \), \(a < b \). Then

\[
 \frac{1}{b - a} \int_a^b f(x)g(x) \, dx \leq \frac{1}{3} M(a, b) + \frac{1}{6} N(a, b)
\]

and

\[
 2f \left(\frac{a + b}{2} \right) g \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)g(x) \, dx + \frac{1}{6} M(a, b) + \frac{1}{3} N(a, b)
\]

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. convexity, AM-GM inequality.
where $M(a, b) = f(a)g(a) + f(b)g(b)$ and $N(a, b) = f(a)g(b) + f(b)g(a)$.

We recall the well-known AM-GM inequality for n positive real numbers which can be stated as follows.

If $p_1, ..., p_n$ are positive numbers which sum to 1 and f is a real continuous function that is concave up, then

$$\sum_{i=1}^{n} p_i f(x_i) \geq f\left(\sum_{i=1}^{n} p_i x_i\right)$$

A special case is

$$\sqrt[n]{x_1x_2...x_n} \leq \frac{x_1 + x_2 + ... + x_n}{n}$$

with equality iff $x_1 = x_2 = ... = x_n$.

We recall the well-known AM-GM inequality for two positive real numbers which can be stated as follows.

If $x, y \in \mathbb{R}^+$, then

$$\sqrt{xy} \leq \frac{x + y}{2}$$

with equality if and only if $x = y$.

This inequality has many simple proofs. For example, a proof based on the concavity of the logarithmic function is presented in various sources, and the original reference is Jensen’s paper [1]. A proof based on induction, given by Cauchy in 1821, is presented in many sources, as for example in [2], pp. 1–2.

In the following section our main results are given. We establish new a class of convex functions and then we obtain new Hadamard type inequalities for the new class of convex function.

Definition 1. [See [4]] Two functions $f : X \rightarrow \mathbb{R}$ and $g : X \rightarrow \mathbb{R}$ are said to be similarly ordered, shortly f s.o. g, if

$$(f(x) - f(y))(g(x) - g(y)) \geq 0$$

for every $x, y \in X$.

2. MT–Convexity and Related Results

Remark 1. If we take $x = t$ and $y = 1 - t$ in (1.4), we have

$$1 \leq \frac{1}{2\sqrt{t(1-t)}}$$

for all $t \in (0, 1)$.

Definition 2. A function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to belong to the class of $MT(I)$ if it is nonnegative and for all $x, y \in I$ and $t \in (0, 1)$ satisfies the inequality;

$$f(t x + (1 - t) y) \leq \frac{\sqrt{t}}{2\sqrt{1 - t}} f(x) + \frac{\sqrt{1 - t}}{2\sqrt{t}} f(y).$$

Remark 2. In (2.2), if we take $t = 1/2$, inequality (2.2) reduce to Jensen convex.
THEOREM 2. Let \(f \in MT (I) \), \(a, b \in I \) with \(a < b \) and \(f \in L_1 [a, b] \). Then

\[
(2.3) \quad f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx
\]

and

\[
(2.4) \quad \frac{2}{b - a} \int_a^b \tau(x) \, f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]

where \(\tau(x) = \sqrt{\frac{(b-x)(x-a)}{b-a}} \), \(x \in [a, b] \).

PROOF. Since \(f \in MT (I) \), we have, for all, \(x, y \in I \) (with \(t = \frac{1}{2} \) in (2.2)) that

\[
f \left(\frac{x + y}{2} \right) \leq \frac{f(x) + f(y)}{2}
\]

i.e. with \(x = ta + (1-t)b \), \(y = (1-t)a + tb \),

\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{2} (f(ta + (1-t)b) + f((1-t)a + tb)).
\]

By integrating, we get

\[
(2.5) \quad f \left(\frac{a + b}{2} \right) \leq \frac{1}{2} \left[\int_0^1 f(ta + (1-t)b) \, dt + \int_0^1 f((1-t)a + tb) \, dt \right],
\]

Since

\[
\int_0^1 f(ta + (1-t)b) \, dt = \int_0^1 f((1-t)a + tb) \, dt = \frac{1}{b - a} \int_a^b f(u) \, du,
\]

we get the inequality (2.3) from (2.5).

For the proof of (2.4), we first note that if \(f \in MT (I) \), then for all \(a, b \in I \) and \(t \in [0, 1] \), it yields

\[
2 \sqrt{t(1-t)} f(ta + (1-t)b) \leq tf(a) + (1-t) f(b)
\]

and

\[
2 \sqrt{t(1-t)} f((1-t)a + tb) \leq (1-t) f(a) + tf(b).
\]

By adding these inequalities and integrating on \(t \) over \([0, 1] \), we obtain

\[
(2.6) \quad \int_0^1 \sqrt{t(1-t)} \left[f(ta + (1-t)b) + f((1-t)a + tb) \right] dt \leq \frac{f(a) + f(b)}{2}
\]

Therefore,

\[
(2.7) \quad \int_0^1 \sqrt{t(1-t)} f(ta + (1-t)b) \, dt = \int_0^1 \sqrt{t(1-t)} f((1-t)a + tb) \, dt
\]

\[
= \frac{1}{b - a} \int_a^b \frac{\sqrt{(b-x)(x-a)}}{(b-a)^2} f(x) \, dx.
\]

We get (2.4) by combining (2.6) with (2.7) and the proof is completed.

The constant 1 in (2.3) is the best possible because this inequality obviously reduces to an equality for the function \(f(x) = 1 \) for all \(a \leq x \leq b \). Additionally,
Moreover, this function is to be in the class $MT(I)$, because
\[
\frac{\sqrt{t}}{2\sqrt{1-t}} f(x) + \frac{\sqrt{(1-t)}}{2\sqrt{t}} f(y) \geq \frac{\sqrt{t}}{2\sqrt{1-t}} + \frac{\sqrt{(1-t)}}{2\sqrt{t}} = g(t)
\]
\[
\geq \min g(t) = g\left(\frac{1}{2}\right) \quad 0 < t < 1
\]
\[
= 1 \geq f(tx + (1-t)y)
\]
for all $x, y \in [a, b]$ and $t \in [0, 1]$. Thus, the proof is completed. \qed

\textbf{Remark 3.} In (2.3), if we take $x = \frac{a+b}{2}$, inequality (2.3) reduce to Jensen’s inequality.

\textbf{Theorem 3.} Let $f \in MT(I)$, $a, b \in I$ with $a < b$ and $f \in L_1[a,b]$. Then
\[
\frac{\pi}{2} f\left(\frac{a+b}{2}\right) \leq f(a) + f(b).
\]

\textbf{Proof.} Since $f \in MT(I)$, we have
\[
f\left(\frac{a+b}{2}\right) \leq f\left(\frac{ta + (1-t)b}{2} + \frac{(1-t)a + tb}{2}\right)
\]
\[
\leq \frac{1}{2} \left(f(ta + (1-t)b) + f((1-t)a + tb) \right)
\]
\[
\leq \frac{1}{2} \left(\frac{\sqrt{t}}{2\sqrt{1-t}} + \frac{\sqrt{(1-t)}}{2\sqrt{t}} \right) (f(a) + f(b))
\]
Moreover
\[
4\sqrt{t}(1-t)f\left(\frac{a+b}{2}\right) \leq f(a) + f(b)
\]
By integrating, we get
\[
4f\left(\frac{a+b}{2}\right) \int_0^1 \sqrt{t}(1-t)dt \leq f(a) + f(b)
\]
\[
\frac{\pi}{2} f\left(\frac{a+b}{2}\right) \leq f(a) + f(b).
\]
The proof is completed. \qed

\textbf{Theorem 4.} Let $f, g \in MT(I)$, $a, b \in I$ with $a < b$ and $fg \in L_1[a,b]$. Then we have the inequality
\[
(2.8) \quad \frac{1}{b-a} \int_a^b \mu(x) f(x) g(x) \, dx
\]
\[
\leq \frac{1}{12} [f(a)g(a) + f(b)g(b)] + \frac{1}{24} [f(a)g(b) + f(b)g(a)]
\]
where $\mu(x) = \frac{(b-x)(x-a)}{(b-a)^2}$, $x \in [a,b]$.

ON MT–CONVEXITY

Proof. Since \(f, g \in MT(I) \), we have
\[
\begin{align*}
 f(t a + (1 − t) b) & \leq \frac{\sqrt{t}}{2 \sqrt{1 − t}} f(a) + \frac{\sqrt{1 − t}}{2 \sqrt{t}} f(b) \\
 g(t a + (1 − t) b) & \leq \frac{\sqrt{t}}{2 \sqrt{1 − t}} g(a) + \frac{\sqrt{1 − t}}{2 \sqrt{t}} g(b)
\end{align*}
\]
Since \(f \) and \(g \) are nonnegative, we write that
\[
\begin{align*}
 & f(t a + (1 − t) b) g(t a + (1 − t) b) \\
 \leq & \frac{t}{4 (1 − t)} f(a) g(a) + \frac{1}{4} (f(a) g(b) + f(b) g(a)) + \frac{1 − t}{4t} f(b) g(b) \\
 = & \frac{t^2}{4t (1 − t)} f(a) g(a) + \frac{t (1 − t)}{4t (1 − t)} (f(a) g(b) + f(b) g(a)) + \frac{(1 − t)^2}{4t (1 − t)} f(b) g(b)
\end{align*}
\]
Consequently,
\[
\begin{align*}
 t (1 − t) f(t a + (1 − t) b) g(t a + (1 − t) b) \\
 \leq & \frac{1}{4} \left\{ t^2 f(a) g(a) + t (1 − t) [f(a) g(b) + f(b) g(a)] + (1 − t)^2 f(b) g(b) \right\}
\end{align*}
\]
By integrating, we get
\[
\begin{align*}
 & \frac{1}{b − a} \int_a^b \frac{(b − x)(x − a)}{(b − a)^2} f(x) g(x) dx \\
 \leq & \frac{1}{12} [f(a) g(a) + f(b) g(b)] + \frac{1}{24} [f(a) g(b) + f(b) g(a)].
\end{align*}
\]
The proof is completed. \(\square \)

Remark 4. If we choose \(x = \frac{a + b}{2} \) in the inequality (2.5), we obtain the special state of the inequality (1.3).

Theorem 5. Let \(f, g \) be similarly ordered, nonnegative and MT–convex functions on \(I, a, b \in I \) with \(a < b \) and \(f g \in L_1[a, b] \). Then we have the inequality
\[
\frac{1}{b − a} \int_a^b \mu(x) f(x) g(x) dx \leq \frac{f(a) g(a) + f(b) g(b)}{8}
\]
where \(\mu(x) = \frac{(b−x)(x−a)}{(b−a)^2} \), \(x \in [a, b] \).

Proof. Since \(f, g \in MT(I) \), we have
\[
\begin{align*}
 f(t a + (1 − t) b) & \leq \frac{\sqrt{t}}{2 \sqrt{1 − t}} f(a) + \frac{\sqrt{1 − t}}{2 \sqrt{t}} f(b) \\
 g(t a + (1 − t) b) & \leq \frac{\sqrt{t}}{2 \sqrt{1 − t}} g(a) + \frac{\sqrt{1 − t}}{2 \sqrt{t}} g(b)
\end{align*}
\]
Since \(f \) and \(g \) are nonnegative and similarly ordered, we write that
\[
f(ta + (1 - t)b)g(ta + (1 - t)b) \leq \frac{t}{4(1 - t)}f(a)g(a) + \frac{1}{4}(f(a)g(b) + f(b)g(a)) + \frac{1 - t}{4t}f(b)g(b)
\]
\[
= \frac{t^2}{4t(1 - t)}f(a)g(a) + \frac{t(1 - t)}{4t(1 - t)}(f(a)g(b) + f(b)g(a)) + \frac{(1 - t)^2}{4t(1 - t)}f(b)g(b)
\]
\[
\leq \frac{t^2}{4t(1 - t)}f(a)g(a) + \frac{t(1 - t)}{4t(1 - t)}(f(a)g(a) + f(b)g(b)) + \frac{(1 - t)^2}{4t(1 - t)}f(b)g(b)
\]
Consequently,
\[
4t(1 - t)f(ta + (1 - t)b)g(ta + (1 - t)b) \leq tf(a)g(a) + (1 - t)f(b)g(b)
\]
By integrating, we get
\[
\frac{4}{b - a} \int_a^b \mu(x)f(x)g(x)dx \leq \frac{1}{2}[f(a)g(a) + f(b)g(b)].
\]
The proof is completed. \(\square \)

References

[1] J.L.W.V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica 30 (1906), 175–193.
[2] B. Bollobás, Linear Analysis, an introductory course (Cambridge Univ. Press 1990).
[3] B.G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (E), 2003.
[4] H.J. Skala, On the characterization of certain similarly ordered super-additive functionals, Proceedings of the American Mathematical Society, 126 (5) (1998), 1349-1353.