Bioinformatics analysis of homologies between pathogen antigens, autoantigens and the CFTR cystic fibrosis protein: A role for immunoabsorption therapy?

Christopher J. Carter

PolygenicPathways, 20 Upper Maze Hill, Saint Leonard’s on Sea, East Sussex, TN38 OLG.

Abstract

The cystic fibrosis CFTR chloride channel is involved in pathogen entry into epithelial cells, and provides the glutathione and hypochlorous acid necessary for bactericidal and viricidal actions. CFTR mutations block these effects, diminishing pathogen defence and allowing pathogen accumulation in the extracellular space, where antibody encounter is likely. The pathogen antigens observed in cystic fibrosis (including P. Aeruginosa, S. Aureus and S. Maltophilia proteins) are homologous to the autoantigens reported in cystic fibrosis and all are homologous to the CFTR protein itself. Antibodies to pathogens and autoantigens may also target the CFTR protein, acting as antagonists, further compromising its function. The tripartite relationship between pathogen antigens, autoantigens and the CFTR protein creates a feed forward cycle, diminishing the function of the CFTR protein and increasing the probability of pathogen accumulation and further antibody encounters at every turn. Kegg pathway analysis of the CFTR/autoantigen interactome indicates that the CFTR protein is also involved in pathogen entry pathways, diabetes and pancreatic and gastric acid secretion pathways, in pathways related to cardiac myopathy, and in the gonadotrophin signalling network, all which are relevant to cystic fibrosis. Interruption of this cycle by antigen and antibody adsorption, and possible by immunosuppressant therapy may perhaps be of clinical benefit in cystic fibrosis.
Introduction.

Cystic fibrosis is a devastating condition caused by mutations in the cystic fibrosis transmembrane conductance regulator CFTR chloride channel. The disease affects many organs resulting in general debilitation but especially targets the respiratory system leading to difficulty in breathing. There is no apparent cure or preventive strategy. The disease appears to have an immune and autoimmune component as antibodies to Saccharomyces cerevisiae and Stenotrophomonas maltophilia and to neutrophil cytoplasmic antigens and bactericidal/permeability-increasing protein (BPI) and many other proteins (the adrenoreceptor ADRB2, Calgranulin, heat shock proteins, mucins, myeloperoxidase, rheumatoid factor and 12-tumour necrosis factor, inter alia are observed in many patients Bae, Choi, et al. 2010). The disease is also influenced by infection. For example Burkholderia infection causes severe respiratory infections in cystic fibrosis patients and is often associated with this condition (LiPuma, 1998, LiPuma, 1998, Coutinho, 2007). Stenotrophomonas maltophilia infection has also been reported to worsen pulmonary symptoms while infection with S.Aureus or P.Aeruginosa are known to decrease the lifespan of cystic fibrosis patients.

Many bacteria and viruses cause problems by molecular mimicry of human proteins. When homologous to receptors, they may act as decoys, or when homologous to peptide ligands that may act as dummy ligands or decoy substrates. For example the measles virus V protein is a decoy substrate for IkappaB kinase (Pfaller & Conzelmann, 2008). They may also use the host’s cognate receptors to gain entry, as is the case with the AIDS virus and the CCR5 or CXCR4 chemokine receptors. When such mimics are antigenic and homologous to host proteins they may cause problems related to autoimmunity. Such mimicry is extensive (Elde & Malik, 2009) and has been observed between Herpes simplex, a risk factor in Alzheimer’s disease, and Alzheimer’s disease susceptibility gene products (Carter, 2010b), or between the proteins of the Epstein Barr virus or of gut bacterial flora and multiple sclerosis autoantigens (Westall, 2006, Toussirot & Roudier, 2008).

As reported below, proteins from pathogens implicated in cystic fibrosis, and many others (bacteria, fungi and viruses) are homologous to diverse CFTR mutants. Many of these homologous regions are immunogenic, suggesting an important autoimmune component to cystic fibrosis that may be amenable to therapy.

Methods

Mutant CFTR proteins were identified from the Cystic fibrosis mutation database http://www.genet.sickkids.on.ca/app. A “polymutant” protein was constructed (Fig 1) that included 19 point mutations, and was used for bioinformatics analysis. The sequence of this protein as well as the common DeltaF508 deletion mutation was compared with viral, bacterial and fungal proteins using the NCBI BLAST server. Heptapeptides centred on the point mutation were also screened against viral and bacterial proteomes. Pathogen antigen and autoantigens described in cystic fibrosis were aligned with the delta508 mutant using the Uniprot CLUSTAL alignment server http://www.uniprot.org/. Antigenicity was predicted using the immune epitope database server http://tools.immuneepitope.org/main/index.html. Antigenicity predictions from these
programmes are calculated on the basis of charge, hydrophobicity and surface localization. B cell antigenicity was determined using the BepiPred linear epitope prediction method (Larsen, Lund, et al. 2006) (See Table 1 for the predicted antigenicity of individual amino acids) and T cell antigenicity using the Average Relative Binding matrix methods that predicts IC_{50} values for the binding of epitopes to major histocompatibility complex (MHC) molecules. The B cell antigenicity of the 7 native and mutant proteins can be directly compared, as the algorithm defines antigenicity, amino acid by amino acid, along the length of the protein. In contrast, T cell epitopes are referenced as 9 amino acid strings, and each mutation generates a series of epitopes that are distinct from those in the native protein. There are 11 numerous T cell epitopes across multiple HLA-antigens and the native/mutant comparisons were restricted to HLA DRB1*0301, one of the most common alleles.

The CFTR interactome was downloaded from the Protein, Signalling, Transcriptional & Inflammation Networks Gateway (pSTIING) database and pathway analysis performed at KEGG pathways. Host proteins interacting with viruses were obtained from the VirusMint database and from the Herpes/host viral interaction database (Carter, 2010c) http://www.polygenicpathways.co.uk/herpeshost.html. The BLAST analyses return a large number of hits to multiple proteins from hundreds of bacterial, viral and fungal species. The CFTR protein is homologous to several proteins from the same species, resulting in a certain number of overall hits per species. These were semi-quantitatively analysed using a tag cloud server at http://www.tagcloud-generator.com/generator.php#anker which generates tags, sized according to the number of hits per species. The tag size was set to a font size of 4 to 25. Because of the large volume of data generated by the BLAST analyses, the original saved BLAST searches and the maps of the KEGG pathway analysis are stocked in an online database at http://www.polygenicpathways.co.uk/cysfib.htm

Results

The immunity spectrum of the CFTR mutants.

The localisation of the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that were examined is depicted in Fig 1.

Several of these mutations are in regions of high predicted B-cell antigenicity (R171H, G480C, G551D, S895N, K1250A, N1303K) while others are less so (Fig 2).

The CFTR F508 deletion or point mutations can dramatically change the antigenicity, not only of the amino acid concerned, but also of the surrounding peptide as shown in Fig 2. For example the F508Del mutant markedly increases the predicted B-cell antigenicity over a long stretch of amino acids, not only confined to the deleted amino acid and also generates two T cell epitopes that have a higher affinity (1.5 - 3-4 fold) than those of the native protein (Fig 3). For the 19 other mutants, B cell antigenicity can be increased, decreased or little changed by the point mutation (Fig 462). The T cell epitope landscape is dramatically changed by the 19 point mutations as shown in Fig 2. All of these sequences are T cell epitopes and will bind to MHC molecules, although with different affinities. High concentrations of antigens, likely consequence of the hyper colonisation by pathogens containing these epitopes...
might be expected to saturate all MHC binding sites. 57 T cell epitopes were generated by the polymutant protein, compared to 50 for the native protein. The following epitope changes resulted in large increases in T cell epitope affinity:

LSHHGHKQLM > LSHDHKQLM (127 fold); ITLSGGQRA > ITLSGDQRA (63 fold); CVLSHGHKQ > CVLSHDHKQ (63 fold); FDDMESIPA > FDDMESIRA (6 fold); IAIYLGIGL > IAIYLCIGL (3.9 fold); DMESIPAVT > DMESIRAVT (5.2 fold). Certain epitopes in the native protein are lost due to the mutation (N=27), while others are gained (N=34), many of which were of intermediate T cell affinity (Fig 2).

The ten T cell epitopes (mutant Delta F508 protein) with the highest affinity are homologous to proteins expressed by a number of bacterial species, including S.Aureus. Other noteworthy species containing CFTR epitope homologues included Clostridial species, and Klebsiellae (Table 2, which are known to colonise CF patients (see Table 3). This type of epitope mapping may be of use in identifying novel pathogen suspects that may pose a problem in cystic fibrosis. For example, proteins from B.cereus and Brachyspira species were well represented as CFTR epitope matches (See Table 2).

F508del CFTR homology with autoantigens and pathogen proteins

The F508del mutant protein is homologous to ten autoantigens and four P.Aeruginosa and S.Maltophilia antigens reported in cystic fibrosis. The autoantigens are in turn homologous to proteins from three major pathogens implicated in cystic fibrosis (S.Aureus, P.Aeruginosa, and S.Maltophilia) (Table 4), suggesting that the autoantigens are likely to have been created by antibodies that initially targeted the pathogen proteins. The Blast results for this exercise are available at http://www.polygenicpathways.co.uk/cftrpathant.htm

Several viral or bacterial pathogens colonise cystic fibrosis patients to a much greater extent than observed with the normal population. Many of these pathogens have been reported to worsen symptomatology, for example S.Maltophilia and even S.Aureus or P.Aeruginosa. These effects are summarised in Table 3.

The heptapeptides surrounding the 19 point mutations, or the octapeptide surrounding the F508del mutation, are all homologous to proteins expressed by S.Aureus, P.Aeruginosa, and S.Maltophilia (Table 5), as well as to many other strains (not shown: see website BLASTs).

The delta508 mutant or the entire polymutant is also homologous to proteins expressed by multiple viral, bacterial and fungal strains, many of which, in particular P.Aeruginosa, S.Aureus and S.Maltophilia, are known to hypercolonise cystic fibrosis patients or to be associated with symptom exacerbation (Table 6). This survey also identified many other pathogens expressing proteins with CFTR homology, which might perhaps be considered as potential antibiotic targets. These included B.Cereus, Gordonia bronchialis and several clostridial species (Table 6).
The CFTR protein, mutated or not, contains a large number of T cell epitopes (82,376 vs. various MHC alleles) of which 1303 were of high affinity (< 100nM). The 4_5_6_number of pathogen protein homology with the 10 highest affinity epitopes is shown in Table 7. Numerous pathogen species are represented, with *P.*Aeruginosa, *S.*Aureus and *S.*Maltophilia figuring highly as pathogens expressing proteins with homology to these CFTR epitopes.

9. *P.*Aeruginosa and *S.*Aureus vatches in the mutant CFTR protein

Vatches (Viral mATCHES are short contiguous amino acid stretches covering the 2_entire human proteome that are identical in human, and viral proteins and also in the 3_proteins of other pathogens) see http://www.polygenicpathways.co.uk/blasts.htm. They are a probable legacy of our evolutionary decent from microorganisms, and of 4_pathogen mimicry of human proteins: Despite chromosomal shuffling over millions of 5_years, the current human DNA can still encode for quite large peptide stretches that 6_are identical to those expressed by pathogen proteins (Carter, 2010d, Carter, 2010a, 7_Carter, 2010b). The *S.*Aureus and *P.*Aeruginosa vatches within the CFTR polymutant 8_are shown in Fig 4. The CFTR polymutant displays extensive homology with proteins 9_expressed by these two pathogens. The homologous regions are often within highly 10_11_immunogenic regions of the CFTR and pathogen proteins, and also cover the CFTR 12_point mutations.

24. Homology with the native CFTR protein

As the mutations in cystic fibrosis are point mutations, the native protein too is 25_evidently homologous to these same pathogen proteins. However, the pathogen 26_irradiance pathways are intact in these cases, and the immune system is not 27_compromised by CFTR mutations. There is no reason to suppose that high levels of 28_pathogen proteins could be attained, or that the host could not appropriately deal with 29_the pathogens. Whether the CFTR mutations increase or decrease homology to 30_pathogens is also perhaps irrelevant, as the hyper colonisation by pathogens would be 31_an expected consequence of any functional mutation (see discussion); an outcome that 32_would favour antibody production that could target any CFTR matching epitopes. As 33_antibodies are able to enter cells, such targeting could be relevant to domains in both 34_the intracellular and extracellular portions of the CFTR protein.

39. Pathway analysis of the CFTR interactome (Fig 5)

Pathway analysis of protein interaction networks is a powerful tool for 41_divining the functions of particular proteins. Those proteins shown to interact with the 42_CFR protein, from pSTIING, are shown in Table 8. Pathway analysis of the CFTR interactome (Table 9) also included the 43_autoantigens reported in cystic fibrosis, as their function is also likely to be 44_compromised by their respective autoantibodies. This pathway analysis clearly 45_demonstrates an important role for the CFTR protein in the immune system and in 46_pathogen invasion (Table 9:Fig 5 See http://www.polygenicpathways.co.uk/cysfib.htm for coloured KEGG pathways). For 47_example, a number of CFTR binding partners are involved in antigen processing or
chemokine signalling and in lysosomal function, which is also related to antigen processing and pathogen destruction, as well as in chemokine signalling. While others are involved in bacterial invasion and Vibrio infection or pathogen destruction (endocytosis, junctions, phagosomes and lysosomes). These pathways are illustrated in Fig 5.

Interaction with viruses in the CFTR interactome.

The virusMINT and HSV-1 interactions showed that a number of the CFTR interacting proteins also interact with viral proteins from the adenovirus and papillomavirus as well as the Epstein-Barr, Herpes simplex, Hepatitis B and C and 12 HIV-1 viruses (Table 8), all of which also express proteins with homology to the 13 CFTR protein (Table 7). In other words, certain viral proteins with homology to CFTR may bind to the same targets as the CFTR protein and, when present, could form an integral part of the CFTR interactome. With the exception of a replete HIV-1 interaction database, viral/human protein networks are not extensively referenced in online databases, and more interactions are likely to exist.

Certain of the CFTR interactome pathways trace out a route that is used by the Herpes simplex virus, and probably other related viruses, during its life cycle. This involves entry and endocytosis, entry and exit to and from lysosomes, phagosomes and nuclei, and interference with protein processing pathways (see http://www.polygenicpathways.co.uk/herpeshost.html for a detailed view). These pathways suggest that the CFTR protein is involved in both bacterial and viral defence (Fig 5).

The pancreas, cardiac myopathy and the vas deferens in cystic fibrosis

Pancreatic insufficiency and diabetes are common features of cystic fibrosis, as are cardiac myopathy and related cardiovascular problems (Moss, 1982). Bilateral loss of the vas deferens in men, or of the uterus and vagina in women are also commonly associated with cystic fibrosis. The CFTR/autoantigen pathway analysis indicates that the CFTR protein is involved in pancreatic and gastric acid secretion pathways, in several pathways related to cardiac myopathy, and in the gonadotrophin signalling network, which latter controls the development of the sexual organs. The autoantigens implicated in cystic fibrosis are also members of a signalling network related to diabetes (Table 8; Fig 5). These pathways relate to all of the coexisting conditions described above. The involvement of the CFTR protein in these signalling networks indicates that these associated conditions are a direct result of defects in CFTR signalling.

Immune related genes that modify cystic fibrosis symptomatology or pathogen colonisation

Many genes that modify the progression or severity of the cystic fibrosis are related to immune function. These include inflammation related genes (interleukins IL1B, IL8 and IL10, transforming growth factor-beta1, tumour necrosis factor-alpha 50 and its receptor TNFR) antioxidant related genes (glutathione-S-transferase),
prostaglandin-endoperoxide synthase genes (COX1 and COX2) as well as CD95, Toll receptor TLR9, T cell receptor beta and HLA antigens. Immune activation and inflammation also play a key role in the airways in cystic fibrosis (Machen, 2006b).

There are a large number of MHC molecules, each of which has differing affinity for 5 distinct epitopes. HLA-DR2, (which recognises HLA-DRB1*15 and HLA-DRB1*16 alleles), as well as HLA-DQB1*0201, HLA-DRB1*0301, and DR7/DQA*0201 and 7HLA-B-18 have all been associated with cystic fibrosis symptomatology or pathogen colonisation.

Discussion

Nearly 2,000 mutations/polymorphisms have been described in cystic fibrosis patients. The most common is the DeltaF508 deletion which is expressed in almost 1570% of patients and the G551D, G542X, and R553X mutations are also relatively common. 20 different mutations were covered by this survey. Several mutations, particularly truncations, result in non-expression of the CFTR protein or compromised delivery to the cell surface (Davidson & Porteous, 1998). The bacterial and viral homology is of less direct relevance to these mutants, although defects in the immune and microbial related functions of the CFTR protein would also favour pathogen colonisation and immune dysfunction. These and other mutant proteins result in malfunction of the chloride channel encoded by the CFTR protein, with the resultant pulmonary pathology associated with cystic fibrosis.

In addition to its actions as a chloride channel, CFTR has a number of other properties that are highly relevant to immunity and microbiology. For example it controls the efflux of glutathione which exerts viricidal and bactericidal properties, including the S.Aureus and P.Aeruginosa targets. Glutathione levels are reduced in cystic fibrosis and glutathione aerosols have been reported to ameliorate lung epithelia oxidative stress in cystic fibrosis patients. Clinical trials with glutathione or its prodrugs are ongoing. CFTR is also important in pathogen defence, providing the chloride for the generation of hypochlorous acid by myeloperoxidase in neutrophil phagosomes. This bactericidal mechanism is defective in cystic fibrosis, likely rendered the more so by the presence of myeloperoxidase autoantibodies in cystic fibrosis.

The CFTR protein is also expressed in lymphocytes and negatively regulates the nuclear factor kappa beta (NFKB) and toll receptor (TLR4) mediated innate immune response. The delta F508 mutation has also been shown to inhibit the antigen presentation pathway (Hampton & Stanton, 2010), and autoantigens and other antigens in cystic fibrosis would therefore not be properly processed. CFTR mutations also increase immune activation in mice.

In addition to these effects, CFTR is a pattern recognition receptor that recognises P.Aeruginosa. The CFTR protein appears to be involved in P.Aeruginosa ingestion and destruction, as the delta508 mutation in infected transgenic mice increases the pulmonary P.Aeruginosa burden and decreases its clearance. This mutation-related reduced uptake of the pathogen into epithelial cells favours multiplication of P.Aeruginosa within the lungs. The CFTR protein is also an entry portal for Chlamydia Trachomatis, and Salmonella Typhi, but not the closely related murine S. typhimurium and the delta508 mutation also reduces pathogen entry into epithelial cells. C.Trachomatis binding to CFTR also reduces its chloride channel activity. Not all bacteria use the CFTR protein which may itself thus determine which bacteria are
Thus the CFTR mutations might be expected to compromise not only the chloride channel, but also the ability to kill pathogens via glutathione, or hypochlorous acid. Mutations might also be expected to alter the ability to process antigens to pathogens, or to self. CFTR mutations also activate the immune system. Many of the mutations in the CFTR protein lie within regions that are highly immunogenic, and such high immunogenicity would be shared by the viral, bacterial and fungal homologues of the protein, of which there are several thousand. The autoantigens reported in cystic fibrosis, as well as P. Aeruginosa antigens are also homologous to the Delta508 mutant protein, again within regions that are highly immunogenic. Given the vast number of pathogen proteins that show homology with various regions of the CFTR protein, and the fact that such species are more abundant in cystic fibrosis patients, cross-reactivity with the CFTR protein would seem inevitable, although to date no antibodies to CFTR have been reported or apparently assessed. Although many of the CFTR mutations are intracellular, antibodies do enter cells, and even if not mounting an intracellular immune response would be expected to bind to the immunogenic regions of the CFTR protein, in effect producing protein knockdown, equivalent to the effects of the truncated mutants that fail to reach the cell surface. It is also clear that the viral homologues of the CFTR protein are capable of binding to CFTR binding partners, potentially modifying the function of CFTR by interactome interference.

Infliximab

Infliximab is a tumour necrosis factor -alpha (TNF) monoclonal antibody used to treat autoimmune disorders. TNF antagonism prevents the activation of other inflammatory cytokines and leukocyte activation and this approach is a target in many autoimmune and inflammatory conditions (Hoffman, 2009). A recent case study has reported 2 year remission in a cystic fibrosis patient treated with infliximab. Apart from the use of immunosuppressants in cystic fibrosis lung transplant patients, and limited studies with cyclosporine, the therapeutic potential of this class of drug does not appear to have been widely studied. TNF is one of the autoantigens reported in cystic fibrosis, and shares sequence similarities with the CFTR protein (Table 2). Although certain TNF antibodies would be expected to cross-react with the CFTR protein, such effects would depend upon the epitopes targeted by the antibody, and these details are not available.

A possible scenario for cystic fibrosis (Fig 6)

Irrespective of any homology to pathogens, CFTR mutations lead to defects in chloride channel function, but also to a reduction in glutathione levels and defects in hypochlorous acid production, that would compromise viral and bacterial destruction. The channel itself is involved in bacterial entry, and impaired CFTR function reduces bacterial entry into epithelial cells, resulting in increased colonisation of the extracellular milieu. In this space, the likelihood of encountering immunocompetent cells is increased, favouring the production of anti-pathogen antibodies. Pathogen binding to the CFTR channel also impairs its function. Such mutations may also compromise the immune system, rendering it less able to process antigens, but more
susceptible to activation. Polymorphisms in immune, inflammation and glutathione related genes fine tune this network, modifying its function, for better or worse.

Upon infection, the surfeit of pathogens triggers an immune response that generates antibodies to the pathogen that also target human proteins that are homologous to the antigenic pathogen proteins, generating the autoantigens observed in cystic fibrosis. As judged by epitope homology, antibodies to pathogen proteins and to autoantigens may also tag the CFTR protein, rendering it incapable of assuming its normal functions. The constant presence of the pathogens and of the autoantigens sustains this immune response. Viral infections, in particular, would also be expected to modify CFTR function via the theft of interactome partners. Thus, antibody knockdown would have the same effect on CFTR function as the mutations that prevent CFTR expression, or its delivery to the cell surface. In these cases, the antibodies are acting as antagonists, rather than as immune activators. In extreme cases, an autoimmune response to the CFTR protein might be expected to damage, or 15 kill the cells in which the protein resides. The bioinformatics analysis suggests that antibodies to the CFTR protein should be detectable in cystic fibrosis. This does not appear to have been assessed, judging from the absence of any mention of CFTR autoantibodies in the literature. However, the high titre of pathogen antibodies, whose targets are homologous to the CFTR protein, suggests that even low affinity T cell epitope binding sites would be saturated.

Taken together, although clearly a genetic disorder, these data suggest that cystic fibrosis has a crucial autoimmune component, triggered by pathogens with homology to the mutant and related proteins.

Antibacterial agents are already used in cystic fibrosis (Wat, 2003). There are no phage or bacterial vaccines as yet, and antiviral agents and vaccination strategies could also perhaps be useful. Unfortunately, the repertoire of pathogens colonising cystic fibrosis patients is so vast that polypharmacy, with its attendant risks, might seem the only plausible option. Clearly the potential benefits of glutathione supplementation appear to be promising. Other methods of enhancing pathogen defence require further research.

It is possible that immunosuppression might be of benefit in cystic fibrosis. This is extremely counter-intuitive, given the problems of multiple infections in these patients, but a carefully controlled and supervised clinical trial may well be warranted. Indeed, the reported benefits of Infliximab (see above), although only so far reported in a case study suggest that such approaches may be of more general clinical use.

If the problems in cystic fibrosis stem even partly from autoantigens and autoantibodies, then their riddance can only be beneficial. Immunoabsorption/plasma exchange has been reported to be of benefit in the autoimmune disorder, myasthenia gravis and this type of therapy may be applicable to cystic fibrosis, using targeted antigen and antibody columns to remove the circulating antibodies and antigens. Tryptophan or phenylalanine columns have also been reported to be of use in antibody adsorption.

In summary, CFTR mutations are themselves responsible for bacterial hypercolonisation, and for reduced bactericidal and viricidal effects, creating a situation where antibody generation to a plethora of pathogens in inevitable. These antibodies target other antigens that are homologous to the pathogens’ proteins, and these include the various autoantigens that have been recorded in cystic fibrosis. The pathogen antigens and autoantigens are both homologous to the CFTR protein itself, and antibody related CFTR antagonism is a likely consequence of these effects. Interruption of this feed forward cycle may be of clinical benefit in cystic fibrosis.
Table 1: The antigenicity index (B-cell epitope) for single amino acids defined by the BepiPred server. The top 6 scoring amino acids are marked in red in other tables.

Symbol	Amino acid	B-epitope antigenicity
P	Proline	0.145
G	Glycine	0.035
D	Aspartate	0.018
E	Glutamate	0.003
S	Serine	-0.008
T	Threonine	-0.011
Q	Glutamine	-0.012
N	Asparagine	-0.013
A	Alanine	-0.024
W	Tryptophan	-0.025
K	Lysine	-0.031
R	Arginine	-0.062
H	Histidine	-0.071
V	Valine	-0.112
F	Phenylalanine	-0.138
I	Isoleucine	-0.138
M	Methionine	-0.138
C	Cysteine	-0.175
Table 2: T cell epitopes of the F508del mutant and their homologies in relation to bacterial and viral proteins. Genera or individual species known to colonise the airways in cystic fibrosis are highlighted in bold.

Allele	Epitope	IC50 nM	Equivalent Pathogen sequence and pathogens
HLA A*0250	TIKENIIGV	3.5	• TIKENIIG: Anaerococcus prevotii; Chryseobacterium gleum; **Prevotella** copri
HLA A*0211		28.4	• TIKEFIIGV: Bacillus Cereus
HLA A*0203		57.9	• TIKENIFIG: **Staphylococcus** lentus
HLA A*0212		98.8	• TIKENII: Bacillus copri
HLA A*0250	IKENIIGVS	8.8	• IKENII-VS: **Bacteroides** ovatus
			• IKEVNIIGV: Filifactor alocis
			• KENIIGIVS: Brachyspira pilosicoli
			• KEQNIIGVS: Clostridium perfringens
HLA A*0250	IGVSYDEYRI	44.4	• GISYDEYR: Brachyspira pilosicoli
HLA A*6801		61.7	• IGVSY-EYR: **Prevotella** marshii
			• IGDSEYDEYR: Acinetobacter calcoacticus
			• IIGVSIYDE: Coralimargarita akajimensis
			• IIGVSYMDE Brevibacillus brevis
			• IIGVSCYDE Xanthomonas campestris
			• IIGVSYTDE: Burkholderia phage
HLA B*1503	KENIIGVSY	45.9	• KENIPVSY: Shewanella frigidimarina
			• KENIIGIS : Clostridium botulinum
HLA A*3201		63.5	• KENDIIGVS: **Clostridium difficile**
			• KEQNIIGVS Clostridium Perfringens
			• KENIIIGIVS:Brachyspira pilosicoli
			• NIIGVS: **Staphylococcus aureus**
			• KENIIIG: **Staphylococcus aureus**
HLA A*0250	NIIGVSYDE	62.6	• IIGVSYD: Pantoea sp AND Cellulomonas flavigena and Klebsiella sp.AND Cronobacter turicensis and So
HLA B*1503	76.6		
------------	------		
cellulosum AND Enterobacter sakazakii AND Buchnera aphidicola AND Pelobacter propionicus			
• NIIGVSY: Clostridium acetobutylicum			
• GVSYDEY: Sulfurimonas autotrophica AND Eubacterium cylindroide			
• IIGVSYD: Pantoea sp AND Cellulomonas flavigena and Klebsiella sp. AND Cronobacter turicensis and Sorangium cellulosum AND Enterobacter sakazakii AND Buchnera aphidicola AND Pelobacter propionicus			
Table 3: A summary of some of the pathogen species isolated from cystic fibrosis patients and their effects on disease.

Bacteria	Colonisation and effects on symptoms
Achromobacter. xylosoxidans	Prevalent in CF patients
Acinetobacter baumannii	Isolated from Russian children with CF
Burkholderia Cepacia	Associated with cystic fibrosis
Chlamydia pneumoniae	Associated with exacerbation of symptoms
Clostridium difficile	Increased in CF patients
Corynebacterium pseudodiphtheriticum	Isolated from CF children’s sputum
Haemophilus influenzae	Often recorded in CF sputum
Helicobacter pylori	Increased in patients with pancreatic sufficiency: Certain Mutations protect against H.Pylori infection in patients with pancreatic insufficiency
Klebsiella species	Increase in CF patients
Multiple strains of Mycobacteria	UK case report (Brown, 2010)
Pneumocystis jirovecii	Isolated from French children with CF
Prevotella species	Isolated from the airways of CF patients
Pseudomonas Aeruginosa	Infections decrease the life expectancy of CF patients
Staphylococcus Aureus	
Stenotrophomonas maltophilia	Associated with worsened clinical status
Streptococcus Millerii	Isolated from CF airways
Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae	These species are prevalent in the airways of cystic fibrosis patients
Others	Over 60 bacterial genera, not typically associated with cystic fibrosis were isolated from the sputum of CF patients including species of :- Actinobacillus, Aggregatibacter, Chryseomonas, Flavimonas, Haemophilus, Pseudomonas, Stenotrophomonas, Vibrio, Acidovorax, Azonexus, Comomonas, Delftia, Eikenella, Kingella, Neisseria, Brevundimonas, Spingobium, Sphingopyxis, Xanthobacter, Abiotrophia, Enterococcus, Gemella, Granulicatella, Lactobacillus, Lactococcus, Leuconostoc, Staphylococcus, Streptococcus, Butyrovibrio, Catonella, Dialister, Megasphaera, Moryella, Oribacterium, Peptinophilus, Peptostreptococcus, Selenomonas, Veillonella, Bulleida, Fusobacterium, Leptotrichia, Actinomyces, Arthrobacter, Atopobium, Corynebacterium, Micrococcus, Propionibacterium, Rhodococcus, Rothia, Scardovia, Tessaracoccus, Bacteroides, Porphyromonas, Prevotella, Bergeyella, Capnocytophage, Mycoplasma, treponema
Viruses	
----------------------	---
Epstein-Barr	Infection can exacerbate respiratory symptoms (Winnie & Cowan, 1992)
Herpes simplex HSV-1	Association has been observed but appears to be rare
Cytomegalovirus	Infection is a consistent problem in lung transplant CF patients
(Herpesvirus 5)	
Hepatitis B	Occasionally observed in CF patients
Hepatitis C	Increased in CF patients
Influenza	Infection worsens symptoms (Dharmaraj & Smyth, 2009)
Respiratory syncytial virus	Increased in CF children
Rhinovirus	Rhinoviruses (common cold virus) exacerbate CF symptoms (Brownlee & Turner, 2008)

Fungi	
Candida and Aspergillus species; Scedosporium apiospermum and Exophiala dermatitidis	Isolated from the respiratory tract of CF patients (Muller & Seidler, 2010)
Table 4 Clustal alignment of the autoantigens or of the antigens to P. Aeruginosa and S. Maltophilia recorded in cystic fibrosis, with the Delta505F mutant. The top 6 high scoring immunogenic amino acids (B cell epitope) are marked in red.

* = identical : = conserved . = semi-conserved: The autoantigen sequences were subsequently compared with S. Aureus (S. Aur), S. Maltophilia (S. Malt) and P. Aeruginosa (P. Aer) proteins, as shown below the Clustal alignments. These alignments are shown by the boxed regions or by double underlined regions in the autoantigen sequences. Original Lineups are at http://www.polygenicpathways.co.uk/cftrpathant.htm

Antigen	CFTR Delta508F/antigen/pathogen alignment
Adrenergic beta receptor 2 (Fraser & Venter, 1982)	
CFTR MP TDIKEN II GVS Y DEY RYSVIKA 25	
ADRB2 VTAIELCIAVDRYFAITSPFKYQSLTIN 32 P. Aer	
ADRB2 VTAIELCIAVDRYFAITSPFKYQSLTIN 32 S. Aur	
ADRB2 VTAIELCIAVDRYFAITSPFKYQSLTIN 32 S. Aur	
ADRB2 VTAIELCIAVDRYFAITSPFKYQSLTIN 32 S. Aur	
ADRB2 VTAIELCIAVDRYFAITSPFKYQSLTIN 32 S. Malt	
Bactericidal/permeability-increasing protein BPI	
CFTR MP TDIKEN II GVS Y DEY RYSVIKA 25	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 S. Aur	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 S. Malt	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 P. Malt	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 P. Malt	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 S. Aur	
BPI NPGVVRIS QKLDSQGTAALQKLKRIKIPYSDFKIE 42 S. Aur	
Calgranulin B (S100A9)	
CFTR MP GDIKEN II GVS Y DEY RYSVIKA 25	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 P. Aer	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 S. Aur	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 P. Aer	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 S. Aur	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 S. Aur	
S100A9 MTKMQLERNEI ITI TFQY S K LGH PD L NQ EFKELVRK 43 S. Aur	
Glutamate decarboxylase

Protein	Sequence	Species
GAD2	MTCKMSQNERTIINTFHOYSVKLGPHDTLNQGEFKELVRK	S.Aur
GAD2	MTCKMSQNERTIINTFHOYSVKLGPHDTLNQGEFKELVRK	S.Malt
GAD2	MTCKMSQNERTIINTFHOYSVKLGPHDTLNQGEFKELVRK	P.Aer
SPD1	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Aur
SPD1	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Malt
SPD1	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Aur
SPD1	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Aur
SPD1	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Malt
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.malt
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.malt
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Salm
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Malt
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Salm
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Malt
Bix	LACDFpterLAFQVMNILLQYVKSFDRSTKVIDFHYNELQ	S.Salm

Heat shock protein 60

Protein	Sequence	Species
CFTR	M-----G-----IKENIIGV-----SYD-----EYVRYSVIKA	S.Aur
HSPD1	IPATIAKNAVGSLIVEKIMQSSSEVGDAMAGDFVNMVEK	S.Aur
HSPD1	IPATIAKNAVGSLIVEKIMQSSSEVGDAMAGDFVNMVEK	P.Aer
HSPD1	IPATIAKNAVGSLIVEKIMQSSSEVGDAMAGDFVNMVEK	S.Aur
HSPD1	IPATIAKNAVGSLIVEKIMQSSSEVGDAMAGDFVNMVEK	P.Aer
HSPD1	IPATIAKNAVGSLIVEKIMQSSSEVGDAMAGDFVNMVEK	S.Aur
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 S.Aur	
-------	---	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 S.Malt	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 P.Aer	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 S.Aur	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 P.Aer	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 P.Aer	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 P.Aer	
HSPD1	IPAMTIKA\textsc{NAG\textsc{E}G\textsc{V\textsc{E}}L\textsc{I}V\textsc{E}}KIMQSSSEVGYDAMAGDFVNMVEK 43 S.Aur	
Mucin 1 (tracheal)	CFTR MPG------TIKEN11GVS------YDEY------RYRSVIKA 25	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Aur	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 P.Malt	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Aur	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Aur	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 P.Aer	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Aur	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Malt	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 S.Aur	
MUC1	RPGSVVQLTLAFREGTINHVDQFNQYKTEAASRNLTISD 44 P.Aer	
Myeloperoxidase MPO	CFTR	MPO
-------------------	----------	-----------------------------------
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Aur
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 P. Aer
	MPO	LPTYRSYNSVDPRIANVFTNAFYGHTLIOP
		32 S. Malt
Proteinase 3		

CFTR MP ------ GT ------ IKENII-GVS ------ ------ YDEYR ------ YRSVIKA ------		
25 PRN3 VPRTN3		
MPO LPTYRYNDSVDPRIANVFTNAFYRGLIQ 32 S.Malt MPO LPTYRYNDSVDPRIANVFTNAFYRGLIQ 32 S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P.Aer PCRTN P.Aer		
S.Malt		
P. Aer	S. Malt	S. Aur
---	---	---
PRTN3	VPRRIGFDSGGPLICDGIQGIDSFVIWGCATRLFDFTRVALYVDDWIRSLRRV	
	*	**
Factor	PRTN3 VPRRKAGICFQDSGPGICDGIQGDSTVIWGCATRLPFDFFTRVALYDWRSTLRRV	S.Aur
-------------	---	-------
Rheumatoid		
factor		
CFTR	M---PG------------TIKENIIG-------VS---------------------YDEYR---Y---RSVIKA	
RF		
KR S.Malt		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		
RF		
KR S.Aur		

Note: The table contains sequences for various factors and their interactions, with specific positions highlighted for comparison.
KR P. Aer
** * : * ; * * : : :
RF
KR P. Aer
** * : * ; * * : : :
RF
KR P. Aer
** * : * ; * * : : :
RF
KR S. Malt
** * : * ; * * : : :
RF
KR S. Malt
** * : * ; * * : : :
RF
KR P. Aer
** * : * ; * * : : :
RF
KR P. Aer
** * : * ; * * : : :
RF
KR S. Malt
** * : * ; * * : : :
RF
KR P. Malt
** * : * ; * * : : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR S. Malt
** * : * ; * * : :
RF
KR S. Malt
** * : * ; * * : :
RF
KR S. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
RF
KR P. Malt
** * : * ; * * : :
Table 5: Proteins from S. Aureus, P. Aeruginosa or S. Maltophilia, that contain regions homologous to the regions surrounding various CFTR mutants. The position of the mutant amino acid is shown in red within the sequences used for BLAST analysis.

Mutant	Pathogen protein homologue												
F508Del ENII+GVSY Del = ENII+GVSY	• >gb	ADI98793.1	probable regulatory protein DeoR family [Staphylococcus aureus subsp. aureus ED133] ENII +SY										
	• GENE ID: 323774 SACOL0921	CBS domain-containing protein [Staphylococcus aureus subsp. aureus COL] +NIIGV											
	• GENE ID: 6476997 Smal_2508	hypothetical protein Stenotrophomonas maltophilia R551-3] +IIGV Y											
	• >ref	ZP_01368311.1	hypothetical protein PaerPA_01005469 [Pseudomonas aeruginosa PACS2]										
		EN+IGV											
R74W NALWRCF	• >ref	ZP_06881604.1	adenylate cyclase [Pseudomonas aeruginosa PAb1] NALWR										
	• GENE ID: 6477391 Smal_2892	tRNA(Ile)-lysidine synthetase [Stenotrophomonas maltophilia R551-3] LWRC											
	• GENE ID: 3793024 SAB1831c	hypothetical protein [Staphylococcus aureus RF122] NA WRC											
R117H KEEHSIA	• >gb	ACD39272.1	hypothetical protein PACL_0484 [Pseudomonas aeruginosa] EEH IA										
	• gb	EFM07570.1	staphylococcal accessory regulator U [Staphylococcus aureus subsp. aureus ATCC BAA-39] K EHSI										
	• GENE ID: 5759828 pEDINA_p19	hypothetical protein [Staphylococcus aureus] KEEH											
	• GENE ID: 6476459 Smal_3331	threonine dehydratase [Stenotrophomonas maltophilia R551-3] EEH IA											
Gene ID	Description												
------------------	--												
G124C IYLCLG	0891	RND efflux transporter [Pseudomonas aeruginosa PA7] IYLCLG											
	GENE ID: 5356552 PSPA7_0172	3-oxoacyl-(acyl carrier protein) synthase [Pseudomonas aeruginosa PA7] LCIGL											
	>gb	ADI96785.1	hypothetical protein SAOV_0248 [Staphylococcus aureus subsp. aureus ED133] LCIGL										
	>gb	ADI96785.1	hypothetical protein SAOV_0248 [Staphylococcus aureus subsp. aureus ED133] LCIGL										
	GENE ID: 6393293 Smlt3043	putative ISXac3 like transposase [Stenotrophomonas maltophilia K279a] YLCI											
V201M AHFMWIA	GENE ID: 3913891 SAUSA300_0980	hypothetical protein [Staphylococcus aureus subsp. aureus USA300_FPR3757] HFMWIA											
	>ref	ZP_06876458.1	putative acyltransferase [Pseudomonas aeruginosa PAb1] MWIA										
	GENE ID: 6477949 Smal_0246	hypothetical protein [Stenotrophomonas maltophilia R551-3] MWIA											
N287K MIEKLRQ	>gb	ADI98383.1	hypothetical protein SAOV_1921c [Staphylococcus aureus subsp. aureus ED133] MIEKLRQ										
	GENE ID: 6477998 Smal_0813	hypothetical protein [Stenotrophomonas maltophilia R551-3] MIEKLR											
	M+EKLR												
R344W IILWKIF	>dbj	BAA88419.1	hydrophobic transmembrane protein [Staphylococcus aureus] IILW IF										
	GENE ID: 5355417 PSPA7_0951	hypothetical protein [Pseudomonas aeruginosa PA7] IL WKIF											
	GENE ID: 6476673 Smal_2260	hypothetical protein [Stenotrophomonas maltophilia R551-3] WKIF											
R352E AVTEQFP	emb	CAW29475.1	Gene info linked to CAW29475.1 probable major facilitator superfamily (MFS) transporter [Pseudomonas										
Location	Description												
----------	-------------												
38-42	aeruginosa LESB58 AV EQFP												
43-53	• gb	ADL22468.1	Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrD [Staphylococcus aureus subsp. aureus JKD6159] VTEQF Sbjct 490 VTEQF 494										
54-60	• GENE ID: 6476745 Smal_3466	RND efflux system, outer membrane lipoprotein, NodT family [Stenotrophomonas maltophilia R551-3] VTEQF											
61-67	K464A GAGATSL												
68-80	• >ref	ZP_06878929.1	fimbrial subunit CupA4 [Pseudomonas aeruginosa PAb1] Length=402 GAGATL										
81-91	• GENE ID: 6395375 Smlt1512	putative exported fimbriae-related chaperone [Stenotrophomonas maltophilia K279a] AGATSL											
92-102	• gb	EFM07900.1	molybdate ABC superfamily ATP binding cassette transporter, binding protein [Staphylococcus aureus subsp. aureus ATCC BAA-39] AGATS										
103-113	M469I SLLIVIM												
114-124	• >gb	ADL66280.1	Sec family Type I general secretory pathway preprotein translocase SecY_1 [Staphylococcus aureus subsp. aureus str. JKD6008] SLLIVI										
125-135	• GENE ID: 6478455 Smal_1028	hypothetical protein [Stenotrophomonas maltophilia R551-3] LLIV+M											
136-146	G480C PSECKIK												
147-157	• gb	EES98134.1	conserved hypothetical protein [Staphylococcus aureus subsp. aureus TCH130] SECKI										
158-168	• GENE ID: 6394958 sucD	succinyl-CoA synthetase subunit alpha [Stenotrophomonas maltophilia K279a] P ECKI											
169-179	• >gb	AAD21623.1	succinyl-CoA synthetase alpha subunit [Pseudomonas aeruginosa PAO1] P ECKI Sbjct 130 PGECKI 135										
180-185	V510D IFGDSYD												
186-191	• GENE ID: 6477620 Smal_0071	beta-lactamase [Stenotrophomonas maltophilia R551-3]											
	FGDSYD	G551D SGDQRA	A561E LAR EVYK	P841R ESIRAVT	S895N KGNNTHS								
---	---	---	---	---	---								
	• >gb	ADI96775.1	conserved hypothetical protein [Staphylococcus aureus subsp. aureus ED133] IF GDYS	• >gb	ADL23188.1	oligopeptide ABC superfamily ATP binding cassette transporter, membrane protein [Staphylococcus aureus subsp. aureus JKD6159] SGDQRA	• A37 thiotransferase enzyme MiaB [Staphylococcus aureus ST398] LARE YK	• GENE ID: 6391398 Smlt0713	hypothetical protein [Stenotrophomonas maltophilia K279a] ESIRAV	• >pdb	3ITP	A Structure related to 3ITP_A Chain A, Crystal Structure Of Staphylococcal Nuclease Variant	
	• >ref[ZP_06881234.1] hypothetical protein PaerPAb_26559 [Pseudomonas aeruginosa PAb1] FGDSY	• >ref[ZP_06881833.1] DNA polymerase I [Pseudomonas aeruginosa PAb1] SGDQ	• GENE ID: 6474448	AAA ATPase [Stenotrophomonas maltophilia R551-3] AREVY	• GENE ID: 5354737	hypothetical protein [Pseudomonas aeruginosa PA7] LARE YK	• >gb	AAK50437.1	unknown [Pseudomonas aeruginosa] AREVY	• >gb	ADL23193.1	phosphate ABC superfamily ATP binding cassette transporter, membrane protein [Staphylococcus aureus subsp. aureus JKD6159] E IRAV Sbjct 180 EAIRAV 185	• >ref[ZP_06879943.1] succinyl-diaminopimelate desuccinylase [Pseudomonas aeruginosa PAb1] SIRAVT
Gene ID	**Protein Name**	**Species**	**Gene Function**										
------------	------------------	-------------	------------------										
6474583	Smal_3703	Stenotrophomonas maltophilia R551-3	hypothetical protein										
6478446	Smal_1019	Stenotrophomonas maltophilia R551-3	alpha-glucosidase										
7179795	PLES_56671	Pseudomonas aeruginosa LESB58	hypothetical protein										
6477662	Smal_0113	Stenotrophomonas maltophilia R551-3	filamentous haemagglutinin family outer membrane protein										
G1349D	LSHDH	Stenotrophomonas maltophilia K279a	putative transmembrane protein										

Note: The table above lists genes and their associated proteins from various bacterial species, along with their gene IDs, hypothetical protein annotations, and protein functionality details.
Table 6: Tag clouds of the bacterial, viral and fungal species with homology to the 5CFTR polymutant or to the Delta508F CFTR mutant (an octapeptide surrounding the 6deletion point): Tag sizes range from 4 to 30 and are correlated with the number of 7CFTR homologies per pathogen species. The pathogens in red (genera or species) 8have been recorded as overpopulating cystic fibrosis patients (from Table 3). See 9http://www.polygenicpathways.co.uk/cysfib.htm for raw BLAST data.

| Polymutant vs Bacteria | Anthomonas campestris | Staphylococcus epidermidis | Clostridium sporogenes | Pseudomonas aeruginosa | Thermobacterium italicus | Clostridium sporogenes | Caldicellulosiruptor saccharolyticus | Brucella | Geobacillus thermodenitrificans | Gardnerella vaginalis | Clostridium butyricum | Mycobacterium smegmatis | Corynebacterium pseudotuberculosis | Clostridium botulinum | Clostridium kluyveri | Xanthomonas oryzae | Lysinibacillus sphaericus | Caldicellulosiruptor becscii | Geobacillus kaustophilus | Thermotoga lettingae | Lactobacillus johnsonii | Coprococcus comes | Orientia tsutsugamushi | Pneumocystis jirovecii | Clostridium caridivorans | Thermobacterium halotolerans | Bacteroides thetaiotaomicron | Clostridium scindens | Verrucomicrobiae bacterium | ButyrylVibrio proteoclasticus | Thermocrinis albus | Hemophilus influenzae | Lactobacillus jensenii | Porphromonas gingivalis | Corynebacterium efficiens | Butyribacillus extructa | Subdoligranulum variabile | Clostridium spiroforme | Shigella | Streptococcus | Sanguinis | Streptococcus | Agalactiae | Paenibacillus | Bacillus capillosus | Bacillus pantothenicus | Alkaliphilus metallicolens | Escherichia coli | Bacillus cereus | Listeria grayi | Streptococcus | Gallolyticus | Symbiobacterium thermophilum | Brevibacillus brevis | Clostridium thermocellum | Ruminococcus |
Bacteria	Virus
Eubacterium eligens, *Opitutus terrae*, *Exiguobacterium sibiricum*	*Foot-and-mouth disease virus*
Erwinia amylovora, *Bifidobacterium catenulatum*	*West Nile virus*
Nostoc sp, *Microcystis aeruginosa*	*Newcastle disease virus*
Bacillus pseudiofirmus	*Synechococcus phage*
Cytophaga hutchinsonii, *Gemella haemolysans*	*S. phage*
Geobacillus sp, *Enterobacter cloacae*	*Human adenovirus*
Lactobacillus sakei, *Bacillus thuringiensis*	*CRYPTOPHLEBIA*
Aeromonas hydrophila, *Parvimonas micra*	*Pseudomonas phage*
Bacillus anthracis, *Aeromonas salmonicida*	*Acidianus rod-shaped virus*
Lysinibacillus fusiformis, *Aggregatibacter aphrophilus*	*Jordanian-type virus*
Bacillus mycoides, *Lactobacillus crispatus*	*Clostridium phage*
Dehalococcoides ethenogenes	*Norwalk-like virus*
Granulicatella elegans, *Prochlorococcus marinus*	*Black queen cell virus*

Polymutant Viruses

Virus	Notes
Xestia c-nigrum granulovirus	Foot-and-mouth disease virus
Influenza A virus, *West Nile virus*	*Norwalk-like virus*
Neodiprion sertifer NPV	*Human herpesvirus 1*
Lettuce mosaic virus, *Streptococcus phage* *Leuconostoc phage*	*Human herpesvirus 5*
Hyphantria cunea	
nucleopolyhedrovirus, *Hepatitis B virus*	
terrae phage, *Dengue virus*	
Human adenovirus	
Cryptophlebia	
leucotreta granulovirus	
Enterobacteria phage, *Natrialba phage*	
Human papillomavirus	
Human herpesvirus 1	
Synechococcus phage	
Breda virus	
Acanthocystis turfacea Chlorella virus	
Acidianus rod-shaped virus	
Turkey coronavirus	
Mamestrea configurata NPV-A, *Staphylococcus phage*	
Pseudomonas phage	
Mammalian orthoreovirus	
Murid herpesvirus	
Cereal yellow dwarf virus	
Border disease virus | Rotavirus | GB virus C | Escherichia phage | Bacillus phage | Human immunodeficiency virus 2 | Invertebrate iridescent virus | Human herpesvirus 2 | Hosta virus X | Human Respiratory syncytial virus | Human herpesvirus 8 | Epstein-Barr | Stretch Lagoon orbivirus | Human Herpesvirus 3 | Acinetobacter phage | Human bocavirus | Tyuleniy virus | Feldmannia species virus | Rubella | Human herpesvirus 7 | Escherichia phage | Siberian stargazer herpesvirus | Maguari virus | Mycoplasma fermentans | Human calicivirus | Mokola virus | Epizootic hemorrhagic disease virus | Brochothrix phage | Hepatitis C virus | Lactobacillus phage | Human T-lymphotropic virus | Human enterovirus | Choristoneura fumiferana | Human endogenous retrovirus K | Sinorhizobium phage | Japanese encephalitis virus | Amsacta moorei entomopoxvirus | Burkholderia phage | Mumps | Lactate dehydrogenase-elevating virus | Norovirus

Polymutant Fungi

- **Candida glabrata** | Debaryomyces hansenii | Ustilago maydis | Vanderwaltozyma polyspora | Ashbya gossypii | Moniliophthora perniciosa | Penicillium marneffei | Lachancea thermotolerans | Kluveromyces lactis | Sordaria macrospora | Aspergillus fumigatus | Coprinopsis cinerea | Emericella nidulans | Podospora amera | Scheffersomyces stipitis | Nectria haematococca | Schizosaccharomyces pombe | Aspergillus flavus | Saccharomyces cerevisiae | Cryptococcus neoformans | Phaeosphaeria nodorum | Schizosaccharomyces pombe | Aspergillus clavatus | Ajellomyces capsulatus | Aspergillus niger | Pichia pastoris | Schizopyllium commune | Yarrowia lipolytica | Gibberella moniliformis | Trichophyton verrucosum | Alternaria brassicicola | Schizosaccharomyces japonicus | Aspergillus oryzae | Talaromyces
| **stipitatus** Neurospora crassa | **Debaryomyces hansenii** Nectria haematococca Gibberella zeae |
|---------------------------------|---|
| **Verticillium albo-atrum** Kluveromyces lactis **Candida** dublinskiensis **Aspergillus** nidulans **Sclerotinia** | |
| **sclerotiorum Arthrodema benhamiae** Schizosaccharomyces japonicus Magnaporthe oryzae **Coccidioides posadasii Candida** tropicalis | |
| **Uncinocarpus reesii** Neosartorya fischeri **Pachia guilliermondii** Funarium oxysporum **Coccidioides immitis Meyerozyma guilliermondii** Botryotinia fuckeliana **Pyrenophora tritici-repentis** | |
| **Pichia guilliermondii** Magnaporthe oryzae **Clavispora lusitaniae Paracoccidioides brasiliensis Lodderomyces elongisporus** | |
| **Vanderwaltozyma polyspora** | |

DeltaF508	**Gordonia bronchialis Catenibacterium mitsuokai Lactobacillus ultunensis**
Bacteria	**Aggregatibacter** actinomycetemcomitans **Neisseria gonorrhoeae Orientia tsutsugamushi Pseudomonas syringae Clostridium nové**
Waddlia chondrophila Fusobacterium varium	
Streptomyces scabies Bacillus thuringiensis Vibrio harveyi Anaerococcus vaginalis	
Pedobacter Selenomonas Bacteroides vulgatus	
Streptococcus Millerii Bacillus cereus Sebaldella termitidis	
Idiomarina loihensis DesulfoVibrio Clostridium spiroforme Treponema denticola Francisella tularensis	
Catenulispora acidiphila	
Bacteroides thetaiotaomicron Clostridium cellulolyticum Clostridium perfringens Frankia Photobacterium damselae Bacteroides pectinophilus Rhodococcus Helicobacter pylori Clostridium papyrosolvens Peptoniphilus	
Bacteroides	Enterococcus faecalis
------------	----------------------
Burkholderia cenocepacia	Burkholderia glumae
Francisella philomiragia	Rickettsia
Pediococcus acidilactici	Oribacterium
Lactobacillus casei	Enterococcus faecalis

Viruses

Virus	Description	
DeltaF508	Equine infectious anemia virus	
Trichoplusia ni	Hepatitis C virus	
Human immunodeficiency virus	Escherichia phage	
Mycobacterium phage	Tamiami virus Mushroom bacilliform virus	
Staphylococcus phage	Geobacillus virus Molluscum	
contagiosum virus	Lumpy skin disease virus	Feline coronavirus
------------------	--------------------------	-------------------
Dengue virus	Human herpesvirus 3	Lactobacillus phage
Human herpesvirus 7	Influenza A virus	Human papillomavirus
Human cytomegalovirus	Antheraea mylitta cypovirus	Enterobacteria phage
cyanophages	Marseillevirus	Human Herpesvirus 1
Lumpy skin disease virus	Mycobacterium phage	Main Drain virus
Feline coronavirus	Measles	Acanthamoeba polyphaga mimivirus
Dengue virus	Human papillomavirus	Chronic bee paralysis virus
Human herpesvirus 3	Capsicum chlorosis virus	Japanese encephalitis virus
Norovirus	Lactobacillus phage	Broad bean true mosaic virus
Lactobacillus phage	Human	Enterobacteria phage
Marseillevirus	Human	Synechococcus phage
Human	Herpesvirus 1	Synechococcus phage
Human	Measles	Haemorrhagic kidney syndrome virus
Amsacta moorei entomopoxvirus	Northway virus	Aedes aegypti virus
Highlands J virus	Western equine encephalomyelitis virus	Bacillus phage
Western equine encephalomyelitis virus	Campylobacter phage	Human poliovirus
Haemorrhagic kidney syndrome virus	Food mosaic Marseillevirus	Sclerosporpha macrospora virus
Pseudomonas phage	Musca domestica salivary gland hypertrophy virus	Deerpox virus
Murine cytomegalovirus	Toscana virus	Listeria monocytogenes
Epstein-Barr virus	Toscana virus	Gloxinia tospovirus
Human herpesvirus 6	Maromegalovirus	Human enterovirus 71
Human enterovirus 71	SARS coronavirus	Emiliana nervosa
Haemorrhagic kidney syndrome virus	Adoxophyes honmai NPV	Klebsiella phage
Infectious bronchitis virus	Human	Canna streak virus
Bovine papillomavirus	Human	Influenza A virus
Foot-and-mouth disease virus	Acidianus filamentous virus	Burkholderia cepacia
Plasmids	Leptospira biflexa temperate bacteriophage	Paramecium bursaria
Chlorella virus	Simian-Human immunodeficiency virus	Erwinia phage
Bacteriophage	Mumps	African swine fever virus
Bidens mottle virus	Peanut mottle virus	Streptococcus phage
Peanut	Human herpesvirus 8	Streptococcus phage
Brochothrix phage	Human endogenous retrovirus K	Vaccinia virus
Aeromonas phage	Human Respiratory syncytial virus	Neisseria meningitidis
Clostridium phage	Human endogenous retrovirus	Wheat yellow mosaic virus
Human herpesvirus 8	Human	Elephant endotheliotropic herpesvirus 2
Pea	Human endogenous retrovirus	Massilia virus

DeltaF508 Fungi	Ashbya gossypii	Lachancea thermotolerans
Puccinia sorghi	Hypocreanecorina	Moniliophthora perniciosa
Trichoderma hamatum	Aspergillus	
oryzae Aspergillus terreus Nectria haematococca
Lentinula edodes Sclerotinia sclerotiorum Puccinia graminis Vanderwaltozyma polypora Fusarium oxysporum Puccinia recondita Paracoccidioides brasiliensis
Debaryomyces hansenii Zygosaccharomyces rouxii
Cadophora gregata Schizosaccharomyces japonicus
Enterocytozoon bieneusi Dekkera bruxellensis
Emericella nidulans Ajellomyces capsulatus
Coccidioides immitis Verticillium albo-atrum Clavispora lusitaniae
Botryotinia fuckeliana Ajellomyces dermatitidis Uncinocarpus reesii Chaetomium globosum Debaryomyces hansenii
Puccinia placenta Trichoderma asperillum Aspergillus niger Brettanomyces custersianus Coprinopsis cinerea
Sordaria macrospora Gibberella zeae
Saccharomyces cerevisiae Candida tropicalis Neurospora crassa
Penicillium chrysogenum Phaeosphaeria nodorum Neosartorya fischeri Aspergillus fumigatus Scheffersomyces stipitis Laccaria bicolor
Lodderomyces elongisporus Pichia guillermondii Puccinia striiformis Tubereulasterum Candida albicans Trichophyton mentagrophytes Pichia stipitis Arthrodema benhamiae Podospora anserina Aspergillus nidulans Yarrowia lipolytica
Ajellomyces dermatitidis Aspergillus flavus Chaetomium globosum Arthrodema otae
Lodderomyces elongisporus Pichia pastoris Arthrodema benhamiae Aspergillus nigere Magnaporthe oryzae Candida dubliniensis Kluyveromyces lactis
Cryptococcus neoformans Penicillium marneffei Schizosaccharomyces pombe
Malassezia globosa Coprinopsis cinerea Opegrapha varia Pyrenophora tritici-repentis Encephalitozoon intestinalis Candida glabrata Clavispora lusitaniae
Blastocladiella emersonii
Table 7: Bacterial and viral homologues of the ten highest affinity CFTR T cell epitopes; Genera or species known to colonise CF patients are shown in bold.

Allele	CFTR Position	Epitope	Ic50 nM	Pathogen homologue
HLA A*0211	1:263-271	EMIENIQSV	2.1	EMIENIQ \ Flavobacterium johnsoniae; Paenibacillus curdianolyticus Xanthomonas fuscans: Xanthomonas oryzae IENIQSV Vibrio fischeri EMIENTQ Klebsiella pneumoniae
HLA A*0250	1:263-271	EMIENIQSV	2.3	
HLA A*0211	1:869-877	FLAEVAASL	1.9	LAEVAASL
HLA A*0250	1:869-877	FLAEVAASL	2.1	Slackia heliotrinireducens: Actinosynnema mirum: Brevibacillus brevis; Dinoroseobacter shibae FLAEVADSL Pseudomonas fluorescens FLAQEVAASL Burkholderia cenocepacia FLAEVA Stenotrophomonas maltophilia FLAEVAA Ruminococcus sp: Pseudomonas mendocina
HLA A*0202	1:869-877	FLAEVAASL	2.3	
HLA A*0211	1:199-207	FMWIAPLQV	1.6	MWIAPL \ Lactobacillus delbrueckii WIAPLQ Comamonas testosterone: Ferrimonas balearica: Starkeya novella: Rhodobacter capsulatus Vibrio parahaemolyticus: Xanthomonas campestris WIAPLTV Staphylococcus aureus WIRPLQV Pseudomonas aeruginosa FMWGAPL Stenotrophomonas maltophilia WLAPLQV Borrelia recurrentis FMWIA Prevotella oris: Clostridium carboxidivorans
HLA A*0250	1:199-207	FMWIAPLQV	2.2	V201M
HLA A*0211	1:1138-1146	IMSTLQWAV	2.4	MSTSAIQWAV \ Streptomyces lividans IMGTLQW
HLA A*0250	1:1138-1146	IMSTLQWAV	2.4	
HLA A*0250	1:136-144	LLHPAIFGL	2.1	
------------	----------	-----------	-----	
		LHPAIFGL		
		Gluconobacter oxydans		
		LHPAIFG		
		Cytophaga hutchinsonii		
		LLQPAIFG		
		Photorhabdus asymbiotica		
		LNPAIFGL		
		Brachyspira pilosicoli		
		LHPALFGL		
		Brevundimonas sp		
		LLHPDIFG		
		Sinorhizobium medicae		
		LLHP-VFGL		
Stenotrophomonas maltophilia				
		LLHIPAIF		
		Pseudomonas aeruginosa		

HLA A*0211	1:209-217	LLMGLIWE	1.9
HLA A*0250	1:209-217	LLMGLIWE	1.9
HLA A*0219	1:209-217	LLMGLIWE	2.3
HLA A*0202	1:209-217	LLMGLIWE	2.4
		LLMGLIWE	
Stenotrophomonas maltophilia			
		Pseudomonas aeruginosa	

| HLA A*254-1162 | 1.9 |
| | SLMRSVSRV | **Pseudomonas aeruginosa** | **Stenotrophomonas maltophilia** |
HLA A*0211	1:1154-1162	SLMRSVSRV	2.3
Citromicrobium bathyomarinum			
LMRVSRR			
Pseudocowpox virus			
LMRNVSRV			
Clostridium asparagiforme			
MRSVSRV			
Erythrobacter litoralis			
SLMR-VSR			
Stenotrophomonas maltophilia			
LMRQARSVSR			
Pseudomonas aeruginosa			

HLA A*0250	1:768-776	VLNLMTHSV	2.1
VLNLMTH			
Ralstonia sp: Leptothrix cholodnii:			
Rhodoferax ferrireducens			
LNLMTTH			
Lactobacillus jenensis			
+LMTHSV			
Streptomyces clavuligerus			
LNLMT S			
Human herpesvirus 5			
(cytomegalovirus)			
NLMTH			
Staphylococcus aureus			

HLA A*0250	1:121-129	YLCIGLCLL
G124C		
2.2		
LCIGLCL		
Bacteroides sp: Bacillus cereus:		
Bacillus thuringiensis:		
Chlorobaculum parvum		
IGLCLL		
Stenotrophomonas maltophilia		

HLA A*0211	1:88-96	YLGEVTKAV	1.7
YLGEVTKAV			
Streptococcus oralis			
Streptococcus pneumoniae and other strep species:			
Eubacterium cylindroide:			
Lysinibacillus fusiformis			

HLA A*0250	1:88-96	YLGEVTKAV	2.1
YLGEVTKAV			
Streptococcus oralis			
Streptococcus pneumoniae and other strep species:			
Eubacterium cylindroide:			
Lysinibacillus fusiformis			
Table 8: The binding partners of the CFTR protein as defined by pSTIING. The viral binding partners of these proteins are also noted.

Gene symbol	Name	Viral binding
ADCY8	Adenylate cyclase type 8 activated adenylyl cyclase)	-
AHSA1	Activator of 90 kDa heat shock protein ATPase homolog 1	-
AIFM1	Apoptosis-inducing factor 1, mitochondrial precursor	-
APIB1	AP-1 complex subunit beta-1	HIV-1
APOA2	Apolipoprotein A-II precursor	Hepatitis C, HSV-1 (Carter, 2010c)
ATAD3A	ATPase family AAA domain-containing protein 3A	-
ATP2A2	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 2) ATPase)	-
ATP2A3	Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 3)	-
ATXN2L	Ataxin-2-like protein	-
BCR	Breakpoint cluster region protein	-
C6orf48	Protein G8	-
C8orf55	C8orf55 protein	-
CALU	Calumenin precursor	-
CANX	Calnexin precursor	HIV1, HSV-1
CAPNS1	Calpain small subunit 1	-
CD59	CD59 glycoprotein precursor	HIV-1, HSV-1 (Carter, 2010c)
CDH1	Epithelial-cadherin precursor	-
CLCA1	Chloride channel, calcium activated, family member 1	-
CLINT1	Clathrin interactor 1	-
CLTA	Clathrin light chain A	-
CLTCL1	Clathrin heavy chain 2	-
COPB1	Coatamer subunit beta	HIV-1
CSE1L	Exportin-2	Epstein-Barr,
CSTB	Cystatin-B	-
DAB2	Disabled homolog 2	-
DERL1	Derlin-1	-
DNAJA1	DnaJ homolog subfamily A member 1	Moloney murine leukemia virus
DNAJA2	DnaJ homolog subfamily A member 2	-
DNAJB1	DnaJ homolog subfamily B member 1	HSV-1 (Carter, 2010c)
DNAJC5	DnaJ homolog subfamily C member 5	-
EDG4	Lysoosphosphatidic acid receptor Edg-4	-
EMD	Emerin	HSV-1 (Carter, 2010c)
EPS8	Epidermal growth factor kinase substrate 8	-
EXO1	Exonuclease 1	-
Protein	Description	References
-----------	---	-----------------------------------
FAM120A	UPF0318 protein FAM120A	-
FAT	Cadherin-related tumor suppressor homolog precursor	-
FLOT2	Flotillin-2	-
GNA11	Guanine nucleotide-binding protein subunit alpha-11 subunit alpha	-
GNA12	Guanine nucleotide-binding protein G(i), alpha-2 subunit	-
GNB2L1	Guanine nucleotide-binding protein subunit beta 2-like 1	Epstein-Barr, Human adenovirus 2 and 5, HIV-1,
GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein	Human papillomavirus type 18
GPIAP1	GPI-anchored membrane protein 1	Vaccinia Virus
GRN	Granulins precursor	HIV-1
HAX1	HS1-associating protein X-1	Epstein-Barr, HIV-1
HCLS1	Hematopoietic lineage cell-specific protein	-
HSP90AB1	Heat shock protein HSP 90-beta	HSV-1 (Carter, 2010c)
HSPA1A	Heat shock 70 kDa protein 1	Epstein-Barr HSV-1 (Carter, 2010c)
HSPA1L	Heat shock 70 kDa protein 1L	Simian virus 40
HSPA2	Heat shock-related 70 kDa protein 2	-
HSPA5	78 kDa glucose-regulated protein precursor protein grp78	Epstein-Barr HSV-1 (Carter, 2010c)
HSPA7	Heat shock 70 kDa protein 7	-
HSPA9B	Stress-70 protein, mitochondrial precursor	-
HSPB1	Heat shock protein beta-1	Epstein-Barr
HSPD1	60 kDa heat shock protein, mitochondrial precursor	Epstein-Barr, HIV-1
IL1RAPL1	X-linked interleukin-1 receptor accessory protein-like 1 precursor	-
IPO7	Importin-7	-
Kab	KARP-1-binding protein 1	-
KPNB1	Importin beta-1 subunit	HIV-1, HSV-1, Simian virus 40, Papillomavirus, HSV-1 (Carter, 2010c)
LGALS3	Galectin-3	-
LGALS4	Galectin-4	-
LIMA1	LIM domain and actin-binding protein 1	-
LIN7C	Lin-7 homolog C	-
LMNA	Lamin-A/C	Adenovirus, HIV-1, HSV-1, Papillomavirus, HSV-1 (Carter, 2010c)
LMO7	LIM domain only protein 7	-
LRRFIP2	Leucine-rich repeat flightless-interacting protein 2	-
MLP	Mucin-like protein	-
Protein Code	Description	References
-------------	---	------------
MS4A5	Membrane-spanning 4-domains subfamily A member 5	
MUC13	Mucin-13 precursor	
PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	
PDCD6	Programmed cell death protein 6	HSV-1 (Carter, 2010c)
PDZK1	PDZ domain-containing protein 1 exchanger regulatory factor 3)	
PLD2	Phospholipase D2	
PLEKHA6	Pleckstrin homology domain-containing family A member 6	
PPP2R1A	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform	HIV-1, Papillomavirus, Simian virus 40
PRKAR2A	cAMP-dependent protein kinase type II-alpha regulatory subunit	Adenovirus, Hepatitis B, HIV-1
PRKDC	DNA-dependent protein kinase catalytic subunit	Adenovirus, HIV-1, HSV-1,
PSAP	Proactivator polypeptide precursor	
PSMD2	26S proteasome non-ATPase regulatory subunit 2	Epstein-Barr
PSME2	Proteasome activator complex subunit 2	
RCN1	Reticulocalbin-1 precursor	Epstein-Barr
RCN2	Reticulocalbin-2 precursor	Epstein-Barr, Papillomavirus,
REPS1	RalBP1-associated Eps domain-containing protein 1	
RNF5	E3 ubiquitin-protein ligase RNF5	
RPS27A	Ubiquitin	HIV-1
RYK	Tyrosine-protein kinase RYK precursor	
RYR2	Ryanodine receptor 2	
S100A7	Protein S100-A7	
S100A9	Protein S100-A9	
SEC61A1	Protein transport protein Sec61 subunit alpha isoform 1	
SEC61A2	Protein transport protein Sec61 subunit alpha isoform 2	
SFXN3	Sideroflexin-3	
SH3BGRL2	SH3 domain-binding glutamic acid-rich-like protein 2	
SLC9A2	Sodium/hydrogen exchanger 2 exchanger 2)	
SLC9A3R1	Ezrin-radixin-moesin-binding phosphoprotein 50 exchange regulatory cofactor NHE-RF) exchanger	
SLC9A3R2	Na(+)/H(+) exchange regulatory cofactor NHE-RF2	
SNX4	Sorting nexin-4	
SNX9	Sorting nexin-9	
SORL1	Sortilin-related receptor precursor	-
----------	-------------------------------------	---
SPTLC1	Serine palmitoyltransferase 1	-
SQRDL	Sulfide:quinone oxidoreductase, mitochondrial precursor	-
STX1A	Syntaxin-1A	-
SVIL	Supervillin	-
TACSTD1	Tumor-associated calcium signal transducer 1 precursor	-
TCEB1	Transcription elongation factor B polypeptide 1	HIV-1
TCEB2	Transcription elongation factor B polypeptide 2	HIV-1
TFG	Protein TFG	-
TIAM1	T-lymphoma invasion and metastasis-inducing protein 1	-
TJP1	Tight junction protein ZO-1	-
TJP3	Tight junction protein ZO-3	-
TMEM43	Transmembrane protein 43	-
TMOD3	Tropomodulin-3	-
TPM3	Tropomyosin alpha-3 chain	Ectromelia virus strain Moscow
TRIP12	Thyroid receptor-interacting protein 12	-
UBE2J1	Ubiquitin-conjugating enzyme E2 J1	-
UBE3A	Ubiquitin-protein ligase E3A	Papillomavirus
UNQ1922	Galactosyltransferase	-
VCP	Transitional endoplasmic reticulum ATPase ATPase p97 subunit)	-
VPS4A	Vacuolar protein sorting-associating protein 4A	-
WFS1	Wolframin	-
WSB1	WD repeat and SOCS-containing protein 1	-
XPNPEP3	Putative Xaa-Pro aminopeptidase 3	-
XPO1	Exportin-1	HIV-1
Pathway and number of proteins	Gene symbols	Comments
-------------------------------	-------------	---------
Protein processing in endoplasmic reticulum (18)	CANX, DERL1, DNAJA1, DNAJB1, DNAJC5, HSP90AB1, HSPA1A, HSPA1L, HSPA2, HSPA5, BIP, RNF5, SEC61A1, SEC61A2, UBE2J1, VCP, WFS1+, CALU	Endoplasmic reticulum stress is a feature of cystic fibrosis
Ubiquitin mediated proteolysis (5)	TCEB1, TCEB2, TRIP12, UBE2J1, UBE3A	Protein degradation via this pathway is impaired in CF patients (Paul, 2008)
Protein export (3)	HSPA5, SEC61A1, SEC61A2	
Antigen processing and presentation (8)	CANX, HSPA1A, HSPA1L, HSPA2, HSPA5, HSP90AB1, PSME2 + Autoantigen TNF	The delta F508 mutation has also been shown to inhibit the antigen presentation pathway (Hampton & Stanton, 2010),
Chemokine signalling pathway (5)	ADCY8, GNAI2, TIAM1 + IL1RAPL1, + autoantigen TNF	CFTR controls the NFkB mediated chemokine inflammatory response
Endocytosis (10)	CLTA, CLTLC1, DAB2, HSPA1A, HSPA1L, HSPA2, PLD2, VPS4A + CLINT1, COPB1,	CFTR is a pattern recognition receptor that allows entry of P.Aeruginosa by endocytosis
Vibrio cholerae infection (4)	CFTR, SEC61A1, SEC61A2, TJP1	Inflammation of airway epithelial cells due to bacterial colonisation is a characteristic feature of cystic fibrosis (Machen, 2006a)
Bacterial invasion of epithelial cells (4)	CDH1, CLTA, CLTCL1, HCLS1.	
Chagas disease (3)	GNA11, GNAI2, PPP2R1A	
Toxoplasmosis (5)	GNAI2, HSPA1A, HSPA1L, HSPA2 + autoantigen TNF	-
Lysosome (5)	AP1B1, CLTA, CLTCL1, PSAP + CSTB	The CFTR protein is involved in lysosomal acidification in alveolar macrophages and these cells are less able to kill bacteria in CFTR knockout mice
Phagosome (2)	CANX, SEC61A1, SEC61A2	CFTR provides the
Dilated cardiomyopathy (7) | ADCY8, RYR2, TPM3, ATP2A2, EMD, LMNA + Autoantigen TNF | Cardiomyopathy is a complication of cystic fibrosis
Hypertrophic cardiomyopathy (HCM) (6) | ATP2A2, EMD, LMNA, RYR2, TPM3 + Autoantigen TNF |
Arrhythmogenic right ventricular cardiomyopathy (ARVC) (4) | ATP2A2, EMD, LMNA, RYR2 + TMEM43 |
Cardiac muscle contraction (3) | ATP2A2, RYR2, TPM3 |
Pathways in cancer (9) | BCR, CDH1, FAT, HSP90AB1, TCEB1, TCEB2, TFG, TPM3 + WSB1 |
Thyroid cancer (3) | CDH1, TFG, TPM3 |
Spliceosome (3) | HSPA1A, HSPA1L, HSPA2 |
Pancreatic secretion (6) | ADCY8, ATP2A2, ATP2A3, CFTR, CLCA1, RYR2 |
Type 1 Diabetes | GAD2, HSPD1 and and TNF autoantigens |
Tight junction (5) | GNAI2, HCLS1, PPP2R1A, TJP1, TJP3 |
Gap junction (4) | ADCY8, GNA11, GNAI2, TJP1, CDH1, LMO7, TJP1 |
Adherens junction (3) | CDH1, LMO7, TJP1 |
Apoptosis (6) | AIFM1, CAPNS1, LGALS3, PRKAR2A, PDCD6, TNF |
Calcium signalling pathway (5) | ADCY8, ATP2A2, ATP2A3, GNA11, RYR2. Added RCN1, RCN2 |
MAPK signalling pathway (4) | HSPA1A, HSPA1L, HSPA2, HSPB1 + autoantigen TNF |

chloride for the generation of hypochlorous acid by myeloperoxidase in neutrophil phagosomes. This bactericidal mechanism is defective in cystic fibrosis.
Pathway Description	Genes Involved	Description
Gonadotrophin releasing hormone signalling pathway (3)	ADCY8, GNA11, PLD2;	CFTR is expressed in the hypothalamus, in GnRH containing cells, and controls the reproductive endocrine axis
Progesterone-mediated oocyte maturation (3)	ADCY8, GNAI2, HSP90AB1	Respiratory epithelial ion transport is regulated by progesterone and oestrogen
Gastric acid secretion (3)	ADCY8, CFTR, GNAI2	The CFTR chloride channel modulates gastric acid secretion (Schubert, 2010)
Long-term depression (3)	GNA11, GNAI2, PPP2R1A	-
The position and nature of the CFTR mutations studied (highlighted in red). Del = deletion; X = stop codon termination.

A polymutant protein containing all of the point mutations was constructed for bioinformatics analysis.

```
MQRSPLEKASVVSKLFFSWTRPILKRGYQRQRLSELDIYQPSVDSDNLSEKLERWDELASKNNPLIN
NATIVE
MQRSPLEKASVVSKLFFSWTRPILKRGYQRQRLSELDIYQPSVDSDNLSEKLERWDELASKNNPLIN
```

Polymutant

```
MQRSPLEKASVVSKLFFSWTRPILKRGYQRQRLSELDIYQPSVDSDNLSEKLERWDELASKNNPLIN
```

Fig 1

```
```
Fig 2 The B-cell and T-cell immunogenic profile of the CFTR mutations. The antigenicity is based on a scan of the whole protein and not simply of the amino acid concerned.
Fig 3

The effects of CFTR mutations on B-cell and T-cell immunogenicity. The plots are based on scans of the entire CFTR protein. All mutants were used to constitute a polymutant protein. The epitope prediction servers generate a table of antigenicity values for each amino acid along the entire length of the protein. The delta values reflect subtraction of the native from the CFTR values.

As a rough guideline, peptides with IC₅₀ values <50 nM are considered high affinity, <500 nM intermediate affinity and <5000 nM low affinity.
Fig 4: Examples of P. Aeruginosa or S. Aureus vatches within the polymutant CFTR protein. Highly predictive threshold at 0.35) The alignment regions are boxed and the identical amino acids shaded in grey.

Red amino acids are the point mutations within the CFTR protein.
Fig 5 Results of the Kegg pathway analysis of the CFTR interactome, including the autoantigens observed in cystic fibrosis. The spokes radiating from the CFTR protein contact with proteins within the CFTR interacome. Proteins known to bind to viral proteins are highlighted in white. The pathways on the right (entry/endocytosis/intercellular spread/protein removal) are those used by Herpes simplex and many other viruses during their sojourn in the host cell. The pathways relating to diseases are shown on the left.
Fig 6. A pathogenic feed forward cycle in cystic fibrosis

1: CFTR mutations result in chloride channel deficiency with associated problems in fluid homoeostasis. They also favour pathogen accumulation in the extracellular milieu. 2: CFTR mutations also compromise glutathione and hypochlorous acid availability, reducing bactericidal and viricidal effects. 3: Hypercolonisation by diverse pathogens results in antibody production. 4: Because of pathogen mimicry, these antibodies also target autoantigens, and possibly the CFTR protein itself. Epitope sharing between pathogen/autoantigen and the CFTR protein favours the maintenance of antibody production. 5: Reductions in CFTR and autoantigen function compromises CFTR related pathways, which include those related to the associated pathologies of cystic fibrosis. Repeated reductions in CFTR function continue the cycle, resulting in further pathogen colonisation etc.
Reference List

Ajonuma LC, Fok KL, Ho LS et al. (2010) CFTR is required for cellular entry and internalization of Chlamydia trachomatis. Cell Biol Int 34: 593-600.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.

Araujo FG, Novaes FC, Santos NP, Martins VC, Souza SM, Santos SE & Ribeiro-dos-Santos AK. (2005) Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil. Braz J Med Biol Res 38: 11-15.

Armstrong D, Grimwood K, Carlin JB, Carzino R, Hull J, Olinsky A & Phelan PD. (1998) Severe viral respiratory infections in infants with cystic fibrosis. Pediatr Pulmonol 26: 371-379.

Aron Y, Polla BS, Bienvenu T, Dall’ava J, Dusser D & Hubert D. (1999) HLA class II polymorphism in cystic fibrosis. A possible modifier of pulmonary phenotype. Am J Respir Crit Care Med 159: 1464-1468.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.

Araujo FG, Novaes FC, Santos NP, Martins VC, Souza SM, Santos SE & Ribeiro-dos-Santos AK. (2005) Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil. Braz J Med Biol Res 38: 11-15.

Armstrong D, Grimwood K, Carlin JB, Carzino R, Hull J, Olinsky A & Phelan PD. (1998) Severe viral respiratory infections in infants with cystic fibrosis. Pediatr Pulmonol 26: 371-379.
1Chanson M, Scerri I & Suter S. (1999) Defective regulation of gap junctional coupling in cystic fibrosis pancreatic duct cells. J Clin Invest 103: 1677-1684.

3Chatr aryamontri A, Ceol A, Peluso D et al. (2009) VirusMINT: a viral protein interaction database. Nucleic Acids Res 37: D669-D673.

5Coffey M, Hassan J, Feighery C, Fitzgerald M & Bresnihan B. (1989) Rheumatoid factors in cystic fibrosis: associations with disease manifestations and recurrent bacterial infections. Clin Exp Immunol 77: 52-57.

7Coutinho HD. (2007) Burkholderia cepacia complex: virulence characteristics, importance and relationship with cystic fibrosis. Indian J Med Sci 61: 422-429.

9Cox MJ, Allgaier M, Taylor B et al. (2010) Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 5: e11044.

11Czerska K, Sobczynska-Tomaszew ska A, Sands D, Nowakowska A, Bak D, Werthem K, Poznanski J, Zielenski J, Norek A & Bal J. (2010) Prostaglandin-endoperoxide synthase genes COX1 and COX2 - novel modifiers of disease severity in cystic fibrosis patients. J Appl Genet 51: 323-330.

14DCruz OJ, Dunn TS, Pichan P, Hass GG, Jr. & Sachdev GP. (1996) Antigenic cross-reactivity of human tracheal mucin with human sperm and trophoblasts correlates with the expression of mucin 8 gene messenger ribonucleic acid in reproductive tract tissues. Fertil Steril 66: 316-326.

17Davidson DJ & Porteous DJ. (1998) Genetics and pulmonary medicine. 1. The genetics of cystic fibrosis lung disease. Thorax 53: 389-397.

19Deriy LV, Gomez EA, Zhang G, Beacham DW, Hopson JA, Gallan AJ, Shchechenko PD, Bindokas VP & Nelson DJ. (2009) Disease-causing mutations in the cystic fibrosis transmembrane conductance regulator determine the functional responses of alveolar macrophages. J Biol Chem 284: 35926-35938.

22Desenclos JC, Bourbon-d Razes M, Rolin B, Garandeau P, Ducos J, Brechot C & Thiers V. (2001) Hepatitis C in a ward for cystic fibrosis and diabetic patients: possible transmission by spring-loaded finger-stick devices for self-monitoring of capillary blood glucose. Infect Control Hosp Epidemiol 22: 701-707.

25Dharmaraj P & Smyth RL. (2009) Vaccines for preventing influenza in people with cystic fibrosis. Cochrane Database Syst Rev: CD001753.

27Doring G, Albus A & Hoiby N. (1988) Immunologic aspects of cystic fibrosis. Chest 94: 109S-115S.

28Elde NC & Malik HS. (2009) The evolutionary conundrum of pathogen mimicry. Nat Rev Microbiol 7: 787-797.

29Emre U, Bernius M, Roblin PM, Gaerlan PF, Summersgill JT, Steiner P, Schachter J & Hammerschlag MR. (1996) Chlamydia pneumoniae infection in patients with cystic fibrosis. Clin Infect Dis 22: 819-823.

31Field TR, Sibley CD, Parkins MD, Rabin HR & Surette MG. (2010) The genus Prevotella in cystic fibrosis airways. Anaerobe 16: 337-344.

33Fomsgaard A, Svenson M & Bendtzen K. (1989) Auto-antibodies to tumour necrosis factor alpha in healthy humans and patients with inflammatory diseases and gram-negative bacterial infections. Scand J Immunol 30: 219-223.

35Forde AM, Feighery C & Jackson J. (1998) Characterisation of anti-neutrophil cytoplasmic antibody target antigens using electrophoresis and western blotting techniques. Br J Biomed Sci 55: 247-252.

37Fraser CM & Venter JC. (1982) Autoantibodies to beta 2-adrenergic receptors and allergic respiratory disease. Surv Immunol Res 1: 365-370.

39Fraser CM, Venter JC & Kaliner M. (1981) Autonomic abnormalities and autoantibodies to beta-adrenergic receptors. N Engl J Med 305: 1165-1170.

41Fraternale A, Paolelli MF, Casabianca A, Nencioni L, Garaci E, Palamara AT & Magnani M. (2009) GSH and analogs in antiviral therapy. Mol Aspects Med 30: 99-110.
Gal SL, Hery-Arnaud G, Ramel S, Virmaux M, Damiani C, Totet A & Nevez G. (2010) Pneumocystis jirovecii and cystic fibrosis in France. Scand J Infect Dis 42: 225-227.

3Gatti E & Pierre P. (2003) Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol 15: 468-473.

5Godfrey RW. (1997) Human airway epithelial tight junctions. Microsc Res Tech 38: 488-499.

6Goto S, Bono H, Ogata H, Fujibuchi W, Nishioka T, Sato K & Kanehisa M. (1997) Organizing and computing metabolic pathway data in terms of binary relations. Pac Symp Biocomput: 175-186.

8Goyal R, Nada R, Das A & Marwaha RK. (2006) Disseminated herpes simplex infection with cystic fibrosis: a case report. Indian J Pathol Microbiol 49: 607-609.

10Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S & Cavanaugh CM. (2010) Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J.

12Hampton TH & Stanton BA. (2010) A novel approach to analyze gene expression data demonstrates that the DeltaF508 mutation in CFTR downregulates the antigen presentation pathway. Am J Physiol Lung Cell Mol Physiol 298: L473-L482.

15Herout V, Benesova D, Vavrova V, Vanicek H, Hrobonova V, Tycova V, Marek J & Kokstejn Z. (1990) Cardiomyopathy and changes of skeletal muscles in cystic fibrosis. Acta Univ Carol Med (Praha) 36: 201-203.

17Hillian AD, Londono D, Dunn JM, Goddard KA, Pace RG, Knowles MR & Drumm ML. (2008) Modulation of cystic fibrosis lung disease by variants in interleukin-8. Genes Immun 9: 501-508.

19Hoffman HM. (2009) Therapy of autoinflammatory syndromes. J Allergy Clin Immunol 124: 1129-1138.

20Hudson VM. (2001) Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 30: 1440-1461.

22Jaffe A & Balfour-Lynn IM. (2002) Treatment of severe small airways disease in children with cystic fibrosis: alternatives to corticosteroids. Paediatr Drugs 4: 381-389.

24Jarzabek K, Zbucka M, Pepinski W, Szamatowicz J, Domitrz J, Janica J, Wolczynski S & Szamatowicz M. (2004) Cystic fibrosis as a cause of infertility. Reprod Biol 4: 119-129.

26Jensen P, Johansen HK, Carmi P, Hoiby N & Cohen IR. (2001) Autoantibodies to pancreatic hsp60 precede the development of glucose intolerance in patients with cystic fibrosis. J Autoimmun 17: 165-172.

28Jin R, Hodges CA, Drumm ML & Palmert MR. (2006) The cystic fibrosis transmembrane conductance regulator (Cftr) modulates the timing of puberty in mice. J Med Genet 43: e29.

30Johannesson M, Askling J, Montgomery SM, Ekbom A & Bahmanyar S. (2009) Cancer risk among patients with cystic fibrosis and their first-degree relatives. Int J Cancer 125: 2953-2956.

32John G, Yildirim AO, Rubin BK, Gruenert DC & Henke MO. (2010) TLR-4-mediated innate immunity is reduced in cystic fibrosis airway cells. Am J Respir Cell Mol Biol 42: 424-431.

34Jones AM & Helm JM. (2009) Emerging treatments in cystic fibrosis. Drugs 69: 1903-1910.

35Kaiser GI, Laszlo A & Gyurkovits K. (1977) Cystic fibrosis: a HLA associated hereditary disease? Acta Paediatr Acad Sci Hung 18: 27-29.

37Kerbiriou M, Teng L, Benz N, Trouve P & Ferec C. (2009) The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells. PLoS One 4: e8436.

39Hoste S, Chargui A, Belfodil R, Corcelle E, Duranton C, Rubera I, Poujeol C, Mograbi B, Tauc M & Poujeol P. (2010) CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules. Am J Physiol Renal Physiol 298: F435-F453.
Lachenal F, Nkana K, Nove-Josserand R, Fabien N & Durieu I. (2009) Prevalence and clinical significance of auto-antibodies in adults with cystic fibrosis. *Eur Respir J* 34: 1079-1085.

Laki J, Laki I, Nemeth K et al. (2006) The 8.1 ancestral MHC haplotype is associated with delayed onset of colonization in cystic fibrosis. *Int Immunol* 18: 1585-1590.

Larsen JE, Lund O & Nielsen M. (2006) Improved method for predicting linear B-cell epitopes. *Immunome Res* 2: 2.

Levy H, Murphy A, Zou F et al. (2009) IL1B polymorphisms modulate cystic fibrosis lung disease. *Pediatr Pulmonol* 44: 580-593.

Libby DM, Gibofsky A, Fotino M, Waters SJ & Smith JP. (1983) Immunogenetic and clinical findings in idiopathic pulmonary fibrosis. Association with the B-cell alloantigen HLA-DR2. *Am Rev Respir Dis* 127: 618-622.

LiPuma JJ. (1998) Burkholderia cepacia epidemiology and pathogenesis: implications for infection control. *Curr Opin Pulm Med* 4: 337-341.

Machen TE. (2006b) Innate immune response in CF airway epithelia: hyperinflammatory? *Am J Physiol Cell Physiol* 291: C218-C230.

Machen TE. (2006a) Innate immune response in CF airway epithelia: hyperinflammatory? *Am J Physiol Cell Physiol* 291: C218-C230.

Male D, Brostoff J, Roth D & Roitt I. (2010) *Immunology*. Elsevier.

Mazzu J, Rossi A & Weinberg JM. (2010) Innovative uses of tumor necrosis factor alpha inhibitors. *Dermatol Clin* 28: 559-575.

McDonald TV, Nghiem PT, Gardner P & Martens CL. (1992) Human lymphocytes transcribe the cystic fibrosis transmembrane conductance regulator gene and exhibit CF-defective cAMP-regulated chloride current. *J Biol Chem* 267: 3242-3248.

McMillan SA, Hill AJ, Graham CA, Nevin NC & Fay AC. (1989) T cell receptor beta chain polymorphisms are associated with cystic fibrosis. *J Med Genet* 26: 431-433.

Merlo CA & Boyle MP. (2003) Modifier genes in cystic fibrosis lung disease. *J Lab Clin Med* 141: 237-241.

Muller FM & Seidler M. (2010) Characteristics of pathogenic fungi and antifungal therapy in cystic fibrosis. *Expert Rev Anti Infect Ther* 8: 957-964.

Moss AJ. (1982) The cardiovascular system in cystic fibrosis. *Pediatrics* 70: 728-741.

Muller FM & Seidler M. (2010) Characteristics of pathogenic fungi and antifungal therapy in cystic fibrosis. *Expert Rev Anti Infect Ther* 8: 957-964.

Nathan BM, Laguna T & Moran A. (2010) Recent trends in cystic fibrosis-related diabetes. *Curr Opin Endocrinol Diabetes Obes* 17: 335-341.

Neumann AU, Phillips S, Levine I, Ijaz S, Dahari H, Eren R, Dagan S & Naoumov NV. (2010) Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. *Hepatology* 52: 875-885.

Ng A, Bursteinas B, Gao Q, Mollison E & Zvelebil M. (2006) pSTIING: a 'systems' approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer. *Nucleic Acids Res* 34: D527-D534.

Paez PL, Becerra MC & Albesa I. (2010) Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus. *FEBS Microbiol Lett* 303: 101-105.

Painter RG, Marrero L, Lombard GA, Valentine VG, Nauseef WM & Wang G. (2010) CFTR-mediated halide transport in phagosomes of human neutrophils. *J Leukoc Biol* 87: 933-942.

Paul S. (2008) Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. *Bioessays* 30: 1172-1184.
Pedersen SK, Sloane AJ, Prasad SS, Sebastian LT, Lindner RA, Hsu M, Robinson M, Bye PT, Weinberger RP & Harry JL.
(2005b) An immunoproteomic approach for identification of clinical biomarkers for monitoring disease: application to cystic fibrosis. *Mol Cell Proteomics* 4: 1052-1060.

Pedersen SK, Sloane AJ, Prasad SS, Sebastian LT, Lindner RA, Hsu M, Robinson M, Bye PT, Weinberger RP & Harry JL.
(2005a) An immunoproteomic approach for identification of clinical biomarkers for monitoring disease: application to cystic fibrosis. *Mol Cell Proteomics* 4: 1052-1060.

Pfaller CK & Conzelmann KK. (2008) Measles virus V protein is a decoy substrate for IkappaB kinase alpha and prevents Toll-like receptor 7/9-mediated interferon induction. *J Virol* 82: 12365-12373.

Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ & Colledge WH. (1998) Salmonella virB uses CFTR to enter intestinal epithelial cells. *Nature* 393: 79-82.

Pier GB, Grout M, Zaidi TS & Goldberg JB. (1996) How mutant CFTR may contribute to Pseudomonas aeruginosa infection in cystic fibrosis. *Am J Respir Crit Care Med* 154: S175-S182.

Rottner M, Freyssinet JM & Martinez MC. (2009) Measles virus V protein is a decoy substrate for IkappaB kinase alpha and prevents Toll-like receptor 7/9-mediated interferon induction. *J Virol* 82: 12365-12373.

Sediva A, Bartunkova J, Kolarova I, Hrusak O, Vavrova V, Macek M, Jr., Lockwood CM & Dunn AC. (1998) Antineutrophil cytoplasmic autoantibodies (ANCA) in children with cystic fibrosis. *J Autoimmun* 11: 185-190.

Sikkens EC, Cahen DL, Kuipers EJ & Bruno MJ. (2010) Pancreatic enzyme replacement therapy in chronic pancreatitis. *Best Pract Res Clin Gastroenterol* 24: 337-347.

Sikkens EC, Cahen DL, Kuipers EJ & Bruno MJ. (2010) Pancreatic enzyme replacement therapy in chronic pancreatitis. *Best Pract Res Clin Gastroenterol* 24: 337-347.

Santini B, Boscarato S, Gay V & Barbera C. (1990) Il rischio di infezione da virus epatite B nei pazienti con fibrosi cistica. *Minerva Pediatr* 42: 367-370.

Scruby ML. (2010) Gastric secretion. *Curr Opin Gastroenterol*.

Schroeder TH, Lee MM, Yacono PW, Cannon CL, Gerceker AA, Golan DE & Pier GB. (2002) CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. *Proc Natl Acad Sci U S A* 99: 6907-6912.

Schroeder TH, Reiniger N, Meluleni G, Grout M, Colema FT & Pier GB. (2001) Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. *J Immunol* 166: 7410-7418.

Stanke F, Becker T, Kumar V et al. (2010) Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. *J Med Genet*.
1. Stechova K, Kolouskova S, Sumnik Z et al. (2005) Anti-GAD65 reactive peripheral blood mononuclear cells in the pathogenesis of cystic fibrosis related diabetes mellitus. *Autoimmunity* 38: 319-323.

2. Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Gielen J, Barmeier H & Ratjen F. (2005) Prospective evaluation of emerging bacteria in cystic fibrosis. *J Cyst Fibros* 4: 41-48.

3. Sweezy NB, Smith D, Corey M, Ellis L, Carpenter S, Tullis DE, Durie P & O'Brodovich HM. (2007) Amiloride-insensitive nasal potential difference varies with the menstrual cycle in cystic fibrosis. *Pediatr Pulmonol* 42: 519-524.

4. Talmaciu I, Varlotta L, Mortensen J & Schidlow DV. (2000) Risk factors for emergence of Stenotrophomonas maltophilia in cystic fibrosis. *Pediatr Pulmonol* 30: 10-15.

5. Taylor TJ, Brockman MA, McNamee EE & Kniepe DM. (2002) Herpes simplex virus. *Front Biosci* 7: d752-d764.

6. Tolle R, Cardinale F, Santostasi T, Polizzi A, Mappa L, Manca A, De Robertis F, Silecchia O & Armenio L. (2008) Association of interleukin-10 gene haplotypes with Pseudomonas aeruginosa airway colonization in cystic fibrosis. *J Cyst Fibros* 7: 329-332.

7. Toma J, Whitcomb JM, Petropoulos CJ & Huang W. (2010) Dual-tropic HIV type 1 isolates vary dramatically in their utilization of CCR5 and CXCR4 coreceptors. *AIDS* 24: 2181-2186.

8. Toussirot E & Roudier J. (2008) Epstein-Barr virus in autoimmune diseases. *Best Pract Res Clin Rheumatol* 22: 883-896.

9. Vij N, Mazur S & Zeitlin PL. (2009) CFTR is a negative regulator of NFkappaB mediated innate immune response. *PLoS One* 4: e4664.

10. Vinzenz F, Bizzarri B, Ghiselli A, de'AN, Fornaroli F & de'Angelis G. (2010) Cystic fibrosis and Crohn's disease: successful treatment and long term remission with infliximab. *World J Gastroenterol* 16: 1924-1927.

11. Wagner S, Janzen RW, Mohs C, Pohlmann S, Klingel R & Grutzmaecher PW. (2008) Long-term treatment of refractory myasthenia gravis with immunoadsorption. *DEP - 20081104. Dtsch Med Wochenschr* 133: 2377-2382.

12. Wat D. (2003) Impact of respiratory viral infections on cystic fibrosis. *Postgrad Med J* 79: 201-203.

13. Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I, Tom S, Tullis E & Ratjen F. (2010) Stenotrophomonas Maltophilia in Cystic Fibrosis: Serologic Response and Effect on Lung Disease. *Am J Respir Crit Care Med*.

14. Welkon CJ, Long SS, Thompson CM, Jr. & Gilligan PH. (1985) Clostridium difficile in patients with cystic fibrosis. *Am J Dis Child* 139: 805-808.

15. Westall FC. (2006) Molecular mimicry revisited: gut bacteria and multiple sclerosis. *J Clin Microbiol* 44: 2099-2104.

16. Wine JJ, Brayden DJ, Hagiwara G, Krouse ME, Law TC, Muller UJ, Solc CK, Ward CL, Widdicombe JH & Xia Y. (1991) Cystic fibrosis, the CFTR, and rectifying Cl- channels. *Adv Exp Med Biol* 290: 253-269.

17. Winnie GB & Cowan RG. (1992) Association of Epstein-Barr virus infection and pulmonary exacerbations in patients with cystic fibrosis. *Pediatr Infect Dis J* 11: 722-726.

18. Yahav J, Samra Z, Blau H, Dinari G, Chodick G & Shmuely H. (2006) Helicobacter pylori and Clostridium difficile in cystic fibrosis patients. *Dig Dis Sci* 51: 2274-2279.

19. Yamazaki Z, Idezuki Y, Inoue N, Yoshizawa H, Yamawaki N, Inagaki K & Tsuda N. (1989) Extracorporeal immunoadsorption with IM-PH or IM-TR column. *Biomater Artif Cells Artif Organs* 17: 117-124.

20. Zhang Y & DUAN K. (2009) Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa. *Sci China C Life Sci* 52: 501-505.
