EXTREMES AND LIMIT THEOREMS FOR DIFFERENCE OF CHI-TYPE PROCESSES

Patrik Albin1, Enkelejd Hashorva2, Lanpeng Ji2,3 and Chengxiu Ling2,4

Abstract. Let $\{\zeta^{(κ)}_{m,k}(t), t ≥ 0\}, κ > 0$ be random processes defined as the differences of two independent stationary chi-type processes with m and k degrees of freedom. In this paper we derive the asymptotics of $\mathbb{P} \left\{ \sup_{t \in [0,T]} \zeta^{(κ)}_{m,k}(t) > u \right\}, u → ∞$ under some assumptions on the covariance structures of the underlying Gaussian processes. Further, we establish a Berman sojourn limit theorem and a Gumbel limit result.

Mathematics Subject Classification. 60G15, 60G70.

Received August 16, 2015. Revised April 27, 2016. Accepted July 13, 2016.

1. Introduction

Let $X(t) = (X_1(t), \ldots, X_{m+k}(t)), t ≥ 0, m ≥ 1, k ≥ 0$ be a vector process with independent components which are centered stationary Gaussian processes with almost surely (a.s.) continuous sample paths, and unit variance. Set $r_i(t) = \mathbb{E} \{X_i(t)X_i(0)\}, t ≥ 0$ and suppose that

$$r_i(t) = 1 - C_i |t|^\alpha + o(|t|^\alpha), \quad t → 0 \quad \text{and} \quad r_i(t) < 1, \quad \forall t ≠ 0, 1 ≤ i ≤ m + k, \quad (1.1)$$

where $α ∈ (0, 2]$ and $C := (C_1, \ldots, C_{m+k}) ∈ (0, ∞)^{m+k}$. Define the random processes $\{\zeta^{(κ)}_{m,k}(t), t ≥ 0\}, κ > 0$ by

$$\zeta^{(κ)}_{m,k}(t) := \left(\sum_{i=1}^{m} X_i^2(t) \right)^{κ/2} - \left(\sum_{i=m+1}^{m+k} X_i^2(t) \right)^{κ/2} = |X^{(1)}(t)|^κ - |X^{(2)}(t)|^κ, \quad t ≥ 0. \quad (1.2)$$

Keywords and phrases. Stationary Gaussian process, stationary chi-type process, extremes, Berman sojourn limit theorem, Gumbel limit theorem, Berman’s condition.

* E. Hashorva, L. Ji and C. Ling were partially supported by the Swiss National Science Foundation (SNSF) grant 200021-140633/1, E. Hashorva is partially supported from SNSF grant 200021-166274, C. Ling acknowledges Fundamental Research Funds for Central Universities (XDJK2016C118), and Fundamental Science and Advanced Technology Funds of Chongqing, China (cstc2016jcyjA0036).

1 Department of Mathematical Sciences, Chalmers University of Technology, SE-412, 96 Gothenburg, Sweden.
2 Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland.
3 Institute for Information and Communication Technologies, HEIG-VD, University of Applied Sciences of Western Switzerland, Route de Cheseaux 1, 1401 Yverdon-les-Bains, Switzerland.
4 School of Mathematics and Statistics, Southwest University, Beibei District 400715 Chongqing, China. \texttt{lcx98@swu.edu.cn}
In this paper we shall investigate the asymptotics of

\[P \left\{ \sup_{t \in [0,T]} s_{m,k}^{(\kappa)}(t) > u \right\}, \quad u \to \infty \tag{1.3} \]

for given positive \(T \). The study of the asymptotics of (1.3) is of interest in engineering applications concerned with the safety of structures; see, e.g., [17–19] and the references therein. More precisely, of interest is the calculation of the probability that the Gaussian vector process exits a predefined safety region \(S_u \subset \mathbb{R}^{m+k} \) up to the time \(T \), i.e.,

\[P \{ X(t) \notin S_u, \text{ for some } t \in [0,T]\}. \]

In the aforementioned papers, various types of safety regions \(S_u \) have been considered for smooth Gaussian vector processes. Particularly, a safety region given by a ball centered at 0 with radius \(u > 0 \)

\[B_u = \left\{ (x_1, \ldots, x_{m+k}) \in \mathbb{R}^{m+k} : \left(\sum_{i=1}^{m+k} x_i^2 \right)^{1/2} \leq u \right\} \]

has been extensively studied; see, e.g., [2,5,14,22]. Referring to [1,2], we know that for \(k = 0 \)

\[P \{ X(t) \notin B_u, \text{ for some } t \in [0,T]\} = P \left\{ \sup_{t \in [0,T]} |X(t)| > u \right\} = TH_{m,0}^{c,0}(C)u^{\frac{3}{2}}P\{ |X(0)| > u \}(1 + o(1)), \quad u \to \infty, \]

where \(H_{m,0}^{c,0}(C) \) is a positive constant (see (2.3) below for a precise definition). Very recently [23] obtained the tail asymptotics of the product of two Gaussian processes which has the same tail asymptotic behavior as \(\sup_{t \in [0,T]} s_{1,1}^{(2)}(t) \).

Our first result extends the findings of [2,23] and suggests an asymptotic approximation for the exit probability of \(X \) from the safety regions \(S_u^{(\kappa)} \) defined by

\[S_u^{(\kappa)} = \left\{ (x_1, \ldots, x_{m+k}) \in \mathbb{R}^{m+k} : |x^{(1)}|^\kappa - |x^{(2)}|^\kappa \leq u \right\}. \]

Since chi-type processes appear naturally as limiting processes (see, e.g., [3,4,20]), when one considers two independent asymptotic models, the study of the supremum of the difference of the two chi-type processes is also of some interest in mathematical statistics and its applications.

Although for \(k \geq 1 \) the random process \(s_{m,k}^{(\kappa)} \) is not Gaussian and the analysis of the supremum cannot be directly transformed into the study of the supremum of a related Gaussian random field (which is the case for chi-type processes; see, e.g., [10,17–19,21,22,25]), it turns out that it is possible to apply the techniques for dealing with extremes of stationary processes developed mainly in [2,5,6]. In the second part of Section 2 we derive a sojourn limit theorem for \(s_{m,k}^{(\kappa)} \). Further, we show a Gumbel limit theorem for the supremum of \(s_{m,k}^{(\kappa)} \) over an increasing infinite interval. We refer to [2–4,15,22,26] for results on the Gumbel limit theorem for Gaussian processes and chi-type processes.

Brief outline of the paper: our main results are stated in Section 2. In Section 3 we present proofs of Theorem 2.1, Theorems 2.2 and 2.3 followed then by an appendix.

2. MAIN RESULTS

We first introduce some notation. Let \(\{ Z(t), t \geq 0 \} \) be a standard fractional Brownian motion (fBm) with Hurst index \(\alpha/2 \in (0,1) \), i.e., it is a centered Gaussian process with a.s. continuous sample paths and covariance function

\[\text{Cov}(Z(s), Z(t)) = \frac{1}{2} \left(s^\alpha + t^\alpha - |s-t|^\alpha \right), \quad s, t \geq 0. \]
In the following, let \(\{ Z_i(t), t \geq 0 \}, 1 \leq i \leq m + k \) be independent copies of \(Z \) and define \(W_\kappa \) to be a Gamma distributed random variable with parameter \((k/\kappa, 1)\). Further let \(O_1 = (O_1, \ldots, O_m), O_2 = (O_{m+1}, \ldots, O_{m+k}) \)
denote two random vectors uniformly distributed on the unit sphere of \(\mathbb{R}^m \) and \(\mathbb{R}^k \), respectively. Hereafter we shall suppose that \(O_1, O_2, W_\kappa \) and \(Z_i \)’s are mutually independent. Define for \(m \geq 1, \ k \geq 0, \ \kappa > 0 \)
\[\eta^{(\kappa)}_{m,k}(t) = Z^{(\kappa)}_{m,k}(t) + E, \quad t \geq 0, \] (2.1)
where \(E \) is a unit mean exponential random variable being independent of all the other random elements involved, and (recall \(C = (C_1, \ldots, C_{m+k}) \) given in (1.1))
\[\tilde{Z}^{(\kappa)}_{m,k}(t) = \begin{cases} L_1(t), & \kappa > 1, \\ L_1(t) + L_2(t), & \kappa = 1, \\ L_2(t), & \kappa < 1, \end{cases} \]
with \(L_1(t) = \sum_{i=1}^{m} \sqrt{2C_i}O_i(t) - \left(\sum_{i=1}^{m} C_iO_i(t)^2 \right)t\alpha, \)
\[L_2(t) = W_\kappa - \left(W_\kappa^2/\kappa + 2(W_\kappa/\kappa)^{1/\kappa} \sum_{i=m+1}^{m+k} \sqrt{2C_i}O_i(t) \right)\kappa/2, \] (2.2)
Here we set \(\sum_{i=m+1}^{m+k} c_i = : 0. \)
We state next our main result.

Theorem 2.1. If \(\{ \zeta^{(\kappa)}_{m,k}(t), t \geq 0 \} \) is given by (1.2) with the involved Gaussian processes \(X_i \)’s satisfying (1.1), then, for any \(T > 0 \)
\[\mathbb{P} \left\{ \sup_{t \in [0,T]} \zeta^{(\kappa)}_{m,k}(t) > u \right\} = T H_{\alpha,\kappa}^{m,k}(C) u^{2/\kappa} \mathbb{P} \left\{ \zeta^{(\kappa)}_{m,k}(0) > u \right\} (1 + o(1)) \]
holds as \(u \to \infty \), where \(\tau = 2/\kappa - 1 \) for \(\kappa \in (0, 1) \), and 1 otherwise, and with \(\eta^{(\kappa)}_{m,k} \) given by (2.1),
\[H_{\alpha,\kappa}^{m,k}(C) = \lim_{a \to 0} \frac{1}{a} \mathbb{P} \left\{ \sup_{j \geq 1} \eta^{(\kappa)}_{m,k}(aj) \leq 0 \right\} \in (0, \infty). \] (2.3)

Remarks:
(a) The tail asymptotics of the Gaussian chaos \(\zeta^{(\kappa)}_{m,k}(0) \) is discussed in Lemma 3.1 below.
(b) The most obvious choice of \(\kappa = 1 \) which corresponds to the difference of \(L_2 \)-norm of two independent multivariate Gaussian processes. For the case \(\kappa = 2 \) and \(m = k = 1 \) the problem was (implicitly) investigated by considering the product of two independent Gaussian processes in the recent contribution [23].
(c) Since \(O_1 \) is uniformly distributed on the unit sphere of \(\mathbb{R}^m \), we have, for \(\kappa > 1 \) and \(C = 1 \), that \(\eta^{(\kappa)}_{m,k}(t) \overset{d}{=} \sqrt{2Z(t)} - t^\alpha + E \). In such a case, the constant \(H_{\alpha,\kappa}^{m,k}(1) \) coincides with the classical Pickands constant \(H_\alpha \); see, e.g., [22]. Approximation of Pickands constant \(H_\alpha \) has been considered by a number of authors; see the recent contribution [8] which gives some simulation algorithms. Precise estimation of the general Pickands constant \(H_{\alpha,\kappa}^{m,k}(C) \) seems to be hard to find, due to the complexity of the process \(\eta^{(\kappa)}_{m,k} \).
(d) We see from Theorem 2.1 and Lemma 3.1 that, if \(\kappa > 2, \) then, for any \(m, k \geq 1 \)
\[\mathbb{P} \left\{ \sup_{t \in [0,T]} \zeta^{(\kappa)}_{m,k}(t) > u \right\} = \mathbb{P} \left\{ \sup_{t \in [0,T]} \zeta^{(\kappa)}_{m,0}(t) > u \right\} (1 + o(1)) \]
holds as \(u \to \infty \), which means that \(X_{m+1}, \ldots, X_{m+k} \) do not influence the tail asymptotic of \(\sup_{t \in [0,T]} \zeta^{(\kappa)}_{m,k}(t) \).
This is not so surprising as the tail asymptotic behavior of \(\zeta^{(\kappa)}_{m,k}(0) \) is subexponential.
Next, we consider the sojourn time of \(\zeta^{(\kappa)}_{m,k} \) above a threshold \(u > 0 \) in the time interval \([0, t] \) defined by
\[L^{(\kappa)}_{m,k,t}(u) = \int_0^t \mathbb{I}\{ \zeta^{(\kappa)}_{m,k}(s) > u \} \, ds, \quad t > 0, \]
Theorem 2.2. Under the assumptions and notation of Theorem 2.1, we have, for any $x > 0$
\[
\int_{x}^{\infty} \mathbb{P}\left\{ u_{\alpha}\frac{1}{\sqrt{n}} I_{m,k,t}(u) > y \right\} \, dy = u_{\alpha}\frac{1}{\sqrt{n}} \mathbb{E}\left\{ I_{m,k,t}(u) \right\} \mathcal{T}_n(x)(1 + o(1))
\]
holds as $u \to \infty$ for all continuity point $x > 0$ of $\mathcal{T}_n := \mathbb{P}\left\{ \int_{0}^{\infty} \mathbb{I}\{s_{m,k}(s) > 0\} \, ds > x \right\}$.

In the following, we derive a Gumbel limit theorem for $\sup_{t \in [0,T]} \zeta_{m,k}(t)$ under a linear normalization, which is also of interest in extreme value analysis and statistical tests. We refer to [4, 6, 13, 15] for its applications in deriving approximations of the critical values of the proposed test statistics.

Theorem 2.3. Under the assumptions and notation of Theorem 2.1, if further the following Berman-type condition
\[
\lim_{t \to \infty} \max_{1 \leq l \leq m+k} |r_l(t)(\ln t)^c| = 0, \quad \text{with} \quad c = \begin{cases}
\frac{2}{\kappa} - 1, & 0 < \kappa < 1, \\
1, & 1 \leq \kappa \leq 2, \\
k + 1 - 2\kappa/\kappa, & \kappa > 2
\end{cases} \tag{2.4}
\]
holds, then
\[
\lim_{T \to \infty} \sup_{x \in \mathbb{R}} \left| \mathbb{P}\left\{ a_T^{(\kappa)} \left(\sup_{t \in [0,T]} \zeta_{m,k}^{(\kappa)}(t) - b_T^{(\kappa)} \right) \leq x \right\} - \exp\left(-e^{-x} \right) \right| = 0,
\]
where, for all T large
\[
a_T^{(\kappa)} = \frac{(2 \ln T)^{1-\kappa/2}}{\kappa}, \quad b_T^{(\kappa)} = (2 \ln T)^{\kappa/2} + \frac{\kappa}{2(2 \ln T)^{1-\kappa/2}} \left(K_0 \ln \ln T + \ln D_0 \right), \tag{2.5}
\]
with (below $\Gamma(\cdot)$ denotes the Euler Gamma function)
\[
D_0 = \left(\frac{H_{m,k,C}}{\Gamma(m/2)\Gamma(k/2)} \right)^2 \times \begin{cases}
2^{\frac{\kappa}{2}}(\frac{\kappa}{2} - 1)^{2(1-\frac{\kappa}{2})} \left(\Gamma\left(\frac{k}{\kappa} \right) \right)^{2}, & 0 < \kappa \leq 1, \\
2^{\frac{\kappa}{2}}(\frac{\kappa}{2} - 1)^{2(1-\frac{\kappa}{2})} \left(\Gamma\left(\frac{k}{\kappa} \right) \right)^{2}, & 1 < \kappa < 2, \\
2^{\frac{\kappa}{2}} \left(\Gamma\left(\frac{k}{\kappa} \right) \right)^{2}, & \kappa = 2, \\
2^{\frac{\kappa}{2}} \left(\Gamma\left(\frac{k}{\kappa} \right) \right)^{2}, & \kappa > 2
\end{cases}
\]
\[
K_0 = \begin{cases}
m - 2 + (2/\alpha)(2/\kappa - 1) + k(1 - 2/\kappa), & 0 < \kappa \leq 1, \\
m - 2 + 2/\alpha + k(1 - 2/\kappa), & 1 < \kappa < 2, \\
m - 2 + 2/\alpha, & \kappa \geq 2.
\end{cases}
\]

Under the assumptions of Theorem 2.3, we have the following convergence in probability (denoted by $\overset{p}{\to}$)
\[
\frac{\sup_{t \in [0,T]} \zeta_{m,k}^{(\kappa)}(t)}{(2 \ln T)^{\kappa/2}} \overset{p}{\to} 1, \quad T \to \infty,
\]
which follows from the fact that $\lim_{T \to \infty} b_T^{(\kappa)}/(2 \ln T)^{\kappa/2} = 1$ and that $a_T^{(\kappa)}$ is bounded away from zero, together with elementary considerations. In several cases such a convergence in probability can be strengthened to the pth mean convergence which is referred to as the Seleznjev pth mean convergence since the idea was first suggested by Seleznjev in [24], see also [12]. In order to show the Seleznjev pth mean convergence of crucial importance
Proof. If the same notation and assumptions as in Section 1. B y \(h \) if two functions \(\eta \) with \(\kappa > 0 \) (or the convergence of finite dimensional distributions if both sides of it are random processes) and equality in

\[
\mathbb{P} \left\{ \sup_{t \in [0,T]} \zeta_{m,k}^{(\kappa)}(t) > u \right\} \leq KT u^\beta \exp \left(-\frac{1}{2} u^{2/\kappa} \right),
\]

where \(K \) and \(\beta \) are two positive constants not depending on \(T \) and \(u \). Note that the above result also follows immediately from Theorem 2.1 combined with Lemma 3.1 below. Hence utilizing Lemma 4.5 in [25] we arrive at our last result.

Corollary 2.4 (Seleznjev pth mean theorem). Under the assumptions of Theorem 2.3, we have, for any \(p > 0 \)

\[
\lim_{T \to \infty} \mathbb{E} \left\{ \left(\frac{\sup_{t \in [0,T]} \zeta_{m,k}^{(\kappa)}(t)}{(2 \ln T)^{\kappa/2}} \right)^p \right\} = 1.
\]

3. Further results and Proofs

Before presenting the proof of Theorem 2.1 we first give some preliminary lemmas. Hereafter we use the same notation and assumptions as in Section 1. By \(\overset{d}{\to} \) and \(\overset{d}{=} \) we shall denote the convergence in distribution (or the convergence of finite dimensional distributions if both sides of it are random processes) and equality in distribution function, respectively. Further, we write \(f_{\xi}(\cdot) \) for the pdf of a random variable \(\xi \) and write \(h_1 \sim h_2 \) if two functions \(h_i(\cdot), i = 1, 2 \) are such that \(h_1/h_2 \) goes to 1 as the argument tends to some limit. For simplicity we shall denote, with \(\kappa > 0 \) and \(\tau = \max(2/\kappa - 1, 1) \),

\[
q_\kappa = q_\kappa(u) = u^{-2\tau/(\alpha \kappa)}, \quad w_\kappa(u) = \frac{1}{\kappa} u^{2/\kappa - 1}, \quad u > 0.
\]

In the proofs of Lemmas 3.1–3.3, we denote \(u_{\kappa,x} = u + x/w_\kappa(u) \) for all \(u, x > 0 \).

Lemma 3.1. Let \(\{\zeta_{m,k}^{(\kappa)}(t), t \geq 0\} \) be given by (1.2). For all integers \(m \geq 1, k \geq 0 \) we have as \(u \to \infty \)

\[
\mathbb{P} \left\{ \zeta_{m,k}^{(\kappa)} > u \right\} \sim \frac{\int_{0}^{\zeta_{m,k}^{(\kappa)}(0)} f_{\zeta_{m,k}^{(\kappa)}(0)}(u)}{w_\kappa(u)} \sim \frac{2^{2-(m+k)/2}}{\kappa^2 \Gamma(k/2) \Gamma(m/2)} \frac{u^{m/\kappa - 1}}{w_\kappa(u)} \exp \left(-\frac{1}{2} u^{2/\kappa} \right) \times \begin{cases} \frac{\Gamma(k/\kappa)}{[w_\kappa(u)]^{\kappa/\kappa}}, & \kappa < 2, \\ \Gamma(k/2), & \kappa = 2, \\ \kappa^{2k/2-2} \Gamma(k/2), & \kappa > 2, \end{cases}
\]

where \(\Gamma(k/\kappa)/\Gamma(k/2) : = 1 \) for \(k = 0 \) and all \(\kappa > 0 \).

Proof. The claim follows from Theorem 1 in [11]. \(\square \)

Lemma 3.2. If \(\{\zeta_{m,k}^{(\kappa)}(t), t \geq 0\} \) is as in Theorem 2.1, then

\[
\left\{ w_\kappa(u) \zeta_{m,k}^{(\kappa)}(q_\kappa t) - u \right\} \{\zeta_{m,k}^{(\kappa)}(0) > u\}, \ t \geq 0 \} \overset{d}{\to} \left\{ \eta_{m,k}^{(\kappa)}(t), \ t \geq 0 \right\}, \ u \to \infty,
\]

with \(\eta_{m,k}^{(\kappa)} \) given by (2.1). Recall that \(\overset{d}{\to} \) stands for the convergence of finite dimensional distributions.
Proof. We henceforth adopt the notation introduced in Section 2. By Lemma 3.1, we have
\[w_\kappa(u) \left(\frac{\zeta_{\kappa}}{s_{m,k}(0)} - u \right) \left\{ \frac{\zeta_{\kappa}}{s_{m,k}(0)} > u \right\} \xrightarrow{d} E, \quad u \to \infty. \]
Thus, in view of Theorem 5.1 in [5], it suffices to show that, for any \(0 < t_1 < \cdots < t_n < \infty, n \in \mathbb{N} \)
\[p_k(u) := P \left\{ \bigcap_{j=1}^n \left\{ \zeta_{\kappa} \left(q_{\kappa} t_j \right) \leq u_{\kappa, z_j} \right\} \cap \left\{ \zeta_{\kappa} \left(0 \right) = u_{\kappa, x} \right\} \right\}, \quad u \to \infty \]
holds for all \(x > 0 \) and \(z_j \in \mathbb{R}, 1 \leq j \leq n \). Define below
\[\Delta_{iu}(t_j) = X_i(q_{\kappa} t_j) - r_i(q_{\kappa} t_j) X_i(0), \quad 1 \leq i \leq m + k, \ 1 \leq j \leq n. \]
By (1.1) we have
\[u^{2r/s} \text{Cov}(\Delta_{iu}(s), \Delta_{iu}(t)) \to C_i(s^a + t^a - |s - t|^a) = 2C_i \text{Cov}(Z_i(s), Z_i(t)), \quad u \to \infty, s, t > 0, 1 \leq i \leq m + k. \]
Therefore,
\[\{ u^{r/s} \Delta_{iu}(t), t \geq 0 \} \xrightarrow{d} \{ \sqrt{2C_i} Z_i(t), t \geq 0 \}, \quad u \to \infty, \ 1 \leq i \leq m + k. \]
Furthermore, by the independence of \(\Delta_{iu}(t) \)'s and \(X_i(0) \)'s, the random processes \(Z_i \)'s can be chosen such that they are independent of \(\zeta_{\kappa}/s_{m,k}(0) \). Note that \(X^{(1)}(0) = R_1 O_1 \) holds for some \(R_1 > 0 \) which is independent of \(O_1 \). Then, using the Taylor’s expansion of \((1 + x)^{r/s} = 1 + \kappa x/2 + o(x), x \to 0 \) for any \(z_j \in \mathbb{R}, 1 \leq j \leq n \) we have
\[p_0(u) = P \left\{ \bigcap_{j=1}^n \left\{ \left| X^{(1)}(q_{\kappa} t_j) \right|^\kappa \leq u_{\kappa, z_j} \right\} \left| X^{(1)}(0) \right|^\kappa = u_{\kappa, x} \right\} \]
\[\quad = P \left\{ \bigcap_{j=1}^n \left\{ w_\kappa(u) \left(R_i^\kappa \left(1 + \frac{1}{R_i^\kappa} V_u(t_j) \right)^{r/s} - R_i^\kappa \right) \leq z_j - x \right\} \right\}, \quad u \to \infty, \]
\[\quad = \left\{ \bigcap_{j=1}^n \left\{ \frac{\kappa}{2} w_\kappa(u) R_i^\kappa - 2 V_u(t_j) (1 + o_p(1)) \leq z_j - x \right\} \right\}, \quad u \to \infty, \]
\[\quad = \left\{ \bigcap_{j=1}^n \left\{ \sum_{i=1}^m C_i O_i^2 \left(1 + o_p(1) \right) - \left(\sum_{i=1}^m C_i O_i^2 \right) \right\} = \sum_{i=1}^m C_i O_i^2 \left(1 + o_p(1) \right) + x \leq z_j \right\}, \quad u \to \infty, \]
where \(V_u(t_j) := \sum_{i=1}^m \Delta_{iu}^2(t_j) + 2 \sum_{i=1}^m \Delta_{iu}(t_j) r_i(q_{\kappa} t_j) X_i(0) - \sum_{i=1}^m (1 - r_i^2(q_{\kappa} t_j)) X_i^2(0) \). Consequently, the claim for \(k = 0 \) follows. Next, for \(k \geq 1 \), we rewrite \(p_k(u) \) as (recall that \(u_{\kappa, x} = u + x/w_\kappa(u) \))
\[p_k(u) = \int_0^\infty \left\{ \bigcap_{j=1}^n \left\{ \frac{\zeta_{\kappa}}{s_{m,k}(0)} \left(q_{\kappa} t_j \right) \leq u_{\kappa, z_j} \right\} \left| X^{(1)}(0) \right|^\kappa = u_{\kappa, x+y}, \left| X^{(2)}(0) \right|^\kappa = \frac{y}{w_\kappa(u)} \right\} \]
\[\times f_{X^{(1)}(0)}(u_{\kappa, x+y}) f_{X^{(2)}(0)}(y/w_\kappa(u)) \]
\[\quad \times \Phi_{\kappa, u}(y) \ dy. \]
\[\quad \times h_\kappa,u(y) \ dy, \quad \tag{3.3} \]

where
\[
\begin{align*}
\mathcal{h}_{\kappa,u}(y) & := \frac{f_{X(1)(0)^\kappa}(u_{\kappa,x+y}) f_{X(2)(0)^\kappa}(y/w_{\kappa}(u))}{w_{\kappa}(u) f_{\zeta_m(0)^\kappa}(u_{\kappa,x})} \\
& = \frac{f_{X(1)(0)^\kappa}(u_{\kappa,x+y}) f_{\zeta_m(0)^\kappa}(u)}{f_{X(1)(0)^\kappa}(u_{\kappa,y}) f_{\zeta_m(0)^\kappa}(u_{\kappa,x})} \frac{f_{X(2)(0)^\kappa}(y/w_{\kappa}(u))}{w_{\kappa}(u) f_{\zeta_m(0)^\kappa}(u)} \\
& \sim \frac{f_{X(1)(0)^\kappa}(u_{\kappa,y}) f_{X(2)(0)^\kappa}(y/w_{\kappa}(u))}{f_{0} \int_{0}^{\infty} f_{X(1)(0)^\kappa}(u_{\kappa,y}) f_{X(2)(0)^\kappa}(y/w_{\kappa}(u)) \, dy}, \quad u \to \infty.
\end{align*}
\]

Here the last step follows by Lemma 3.1.

Noting that $X(2)(0) \overset{d}{=} R_2 O_2$ holds for some $R_2 > 0$ which is independent of O_2, we have by similar arguments as in (3.2) that, for any $t \geq 0$

\[
\begin{align*}
\left(w_{\kappa}(u) | X(2)(0) \right)^{1/\kappa} = y} \\
& = \left(w_{\kappa}(u) \right)^{2/\kappa} \left\{ R_2^\kappa = \frac{y}{(w_{\kappa}(u))^{1/\kappa}} \right\} \\
& = \left(w_{\kappa}(u) \right)^{2/\kappa} \left\{ R_2^\kappa = \frac{y}{(w_{\kappa}(u))^{1/\kappa}} \right\} \\
& = y^{2/\kappa} + 2y^{1/\kappa} \left(\frac{w_{\kappa}(u)}{u^2} \right)^{1/\kappa} \left\{ \sum_{i=m+1}^{m+k} \sqrt{2C_i O_i Z_i(t)} (1 + o_p(1)) + \sum_{i=m+1}^{m+k} C_i Z_i^2(t) (1 + o_p(1)) \right\} \\
& =: \theta_{\kappa,u}(y, t).
\end{align*}
\]

This together with (3.2) and (3.3) implies that

\[
\begin{align*}
p_k(u) & = \int_{0}^{\infty} \mathbb{P} \left\{ \sum_{j=1}^{n} \frac{\sqrt{2C_i O_i Z_i(t_j)}}{u^{(\tau-1)/\kappa}} (1 + o_p(1)) - \left(\sum_{i=1}^{m} \frac{C_i O_i^2}{u^{2/(\tau-1)/\kappa}} \right) t_j^\alpha (1 + o_p(1)) + x + y \right\} \mathcal{h}_{\kappa,u}(y) \, dy \\
& \leq z_j + w_{\kappa}(u) | X(2)(Q_x, t_j) |^{\kappa} \left\{ | X(2)(0) |^{\kappa} = \frac{y}{w_{\kappa}(u)} \right\} \mathcal{h}_{\kappa,u}(y) \, dy \\
& = \int_{0}^{\infty} \mathbb{P} \left\{ \sum_{j=1}^{n} \frac{\sqrt{2C_i O_i Z_i(t_j)}}{u^{(\tau-1)/\kappa}} (1 + o_p(1)) - \left(\sum_{i=1}^{m} \frac{C_i O_i^2}{u^{2/(\tau-1)/\kappa}} \right) t_j^\alpha (1 + o_p(1)) + x + y \right\} \mathcal{h}_{\kappa,u}(y) \, dy \\
& \leq z_j + (\theta_{\kappa,u}(y, t_j))^{1/\kappa} \mathcal{h}_{\kappa,u}(y) \, dy.
\end{align*}
\]

Recalling that $\tau = \max(2/\kappa - 1, 1)$ and $w_{\kappa}(u) = (1/\kappa)u^{2/\kappa - 1}$, we have by (3.5) that $(\theta_{\kappa,u}(y, t_j))^{1/\kappa} = y + o_p(1)$ for $\kappa > 1$. While for $\kappa \in (0, 1]$, it follows by (3.4) and Lemma 3.1 that,

\[
\begin{align*}
h_{\kappa,\infty}(y) & := \lim_{u \to \infty} \mathcal{h}_{\kappa,u}(y) = \frac{1}{\Gamma(k/\kappa)} y^{k/\kappa - 1} e^{-y}, \quad y > 0,
\end{align*}
\]
which is the pdf of a Gamma distributed random variable with parameter \((k/\kappa, 1)\). Hence, combining (3.4)–(3.7) and (2.2) for the definition of \(\hat{Z}^{(\kappa)}_{m,k}(t)\), the claim in (3.1) follows. Consequently, the proof of Lemma 3.2 is complete.

The next lemma corresponds to Condition B in [2]; see also [1,3]. As shown in Chapter 5 in [1] this condition is crucial in ensuring that the double sum part is asymptotically negligible with respect to the principal sum. Denote in the following by \([x]\) the integer part of \(x \in \mathbb{R}\).

Lemma 3.3. If \(\{c^{(\kappa)}_{m,k}(t), t \geq 0\}\) is as in Theorem 2.1, then for any \(T, a > 0\)

\[
\limsup_{u \to \infty} \left[\sum_{j=N}^{\lceil T/(aq_{\kappa}) \rceil} \mathbb{P} \left\{ c^{(\kappa)}_{m,k}(aq_{\kappa}j) > u \right\} \right] \leq 2K_p \int_{aN}^{\infty} x^{-2} \, dx = \frac{2K_p}{aN} \to 0, \quad N \to \infty.
\]

Proof. Note first that the case \(k = 0\) is treated in [2], page 119. Using the fact that the standard bivariate Gaussian distribution is exchangeable for \(u > 0\) we have

\[
\mathbb{P} \left\{ c^{(\kappa)}_{m,k}(q_{\kappa}t) > u \right\} = 2 \mathbb{P} \left\{ c^{(\kappa)}_{m,k}(q_{\kappa}t) > u, \left| X^{(1)}(q_{\kappa}t) \right| > \left| X^{(1)}(0) \right| \right\} = u_{\kappa,x+y}, \left| X^{(2)}(0) \right| \right\} = \frac{y}{w_{\kappa}(u)} \rightbra
\]

Further, it follows from Lemma 3.1 that, for any \(k \geq 1\)

\[
\Theta(u) = \int_0^\infty \int_0^\infty \mathbb{P} \left\{ c^{(\kappa)}_{m,k}(q_{\kappa}t) > u, \left| X^{(1)}(q_{\kappa}t) \right| > \left| X^{(1)}(0) \right| \right\} \frac{f_{X^{(1)}(0)}|_{\kappa}^\infty (u_{\kappa,x+y} + f_{X^{(2)}(0)}|_{\kappa}^\infty (y/w_{\kappa}(u))) \rightbra
\]

Moreover, in view of the treatment of the case \(k = 0\) in [2], page 119 we readily see that, for any \(p \geq 1\), with \(R(t) := \max_{1 \leq i \leq m} r_i(t)\), \(r(t) := \min_{1 \leq i \leq m} r_i(t)\) and \(\Phi(\cdot)\) denoting the \(N(0,1)\) distribution function

\[
\mathbb{P} \left\{ \left| X^{(1)}(q_{\kappa}t) \right| > u_{\kappa,y} \right\} \leq 4m \left(1 - \Phi \left(\frac{1 - R(q_{\kappa}t)}{\sqrt{m(1 - r^2(q_{\kappa}t))}} \right) \right) \leq K_p t^{-\alpha p/2}, \quad \forall q_{\kappa}t \in (0, T]
\]

holds for some \(K_p > 0\) not depending on \(u, t\) and \(y\). Consequently,

\[
\mathbb{P} \left\{ c^{(\kappa)}_{m,k}(q_{\kappa}t) > u \right\} \leq 2K_p t^{-\alpha p/2} \int_0^\infty \mathbb{P} \left\{ \left| X^{(1)}(0) \right| > u_{\kappa,y} \right\} \frac{f_{X^{(2)}(0)}|_{\kappa}^\infty (y/w_{\kappa}(u))) \rightbra
\]

Therefore, with \(p = 4/\alpha\)

\[
\limsup_{u \to \infty} \sum_{j=N}^{\lceil T/(aq_{\kappa}) \rceil} \mathbb{P} \left\{ c^{(\kappa)}_{m,k}(aq_{\kappa}j) > u \right\} \leq 2K_p \int_{aN}^{\infty} x^{-2} \, dx = \frac{2K_p}{aN} \to 0, \quad N \to \infty
\]

establishing the proof. \(\square\)
The lemma below concerns the accuracy of the discrete approximation to the continuous process, which is related to Condition C in [2]. As shown in [3] (see Eq. (7) therein), in order to verify Condition C the following lemma is sufficient. Its proof is relegated to the appendix.

Lemma 3.4. If \(\{\zeta_{m,k}(t), t \geq 0\} \) is as in Theorem 2.1, then there exist some constants \(C, p > 0, d > 1 \) and \(\lambda_0, u_0 > 0 \) such that

\[
P \left\{ \frac{\zeta_{m,k}(q_{\kappa} t)}{\lambda} > u + \frac{\lambda}{w_{\kappa}(u)}, \zeta_{m,k}(0) \leq u \right\} \
\leq Ct^d \lambda^{-p} P \left\{ \zeta_{m,k}(0) > u \right\}
\]

for \(0 < t^\alpha \leq \lambda < \lambda_0 \) and \(u > u_0 \). Here \(\alpha \) is \(\alpha/2 \) for \(\kappa \geq 1 \), and \((\alpha/2) \min(\kappa/(4(1-\kappa)), 1)\) otherwise.

Proof of Theorem 2.1. It follows from Lemmas 3.1–3.4 that all the assumptions of Theorem 1 in [2] are satisfied by the process \(\zeta_{m,k} \), which immediately establishes the proof. \(\square \)

Proof of Theorem 2.2. In view of (3.8) with \(p = 4/\alpha \) and letting \(v_\kappa = v_\kappa(u) = 1/q_\kappa(u) = u^{2\alpha/(\alpha x)} \), we obtain

\[
v_\kappa \int_0^T \mathbb{P} \left\{ \zeta_{m,k}(s) > u, \zeta_{m,k}(0) > u \right\} ds = \int_0^T \mathbb{P} \left\{ v_\kappa(s)/v_\kappa/u, \zeta_{m,k}(0) > u \right\} ds
\]

\[
\leq K_4/\alpha \int_0^T s^{-2} ds \leq K_4/\alpha N, \quad u \to \infty.
\]

Hence,

\[
\lim_{N \to \infty} \lim_{u \to \infty} v_\kappa \int_0^T \mathbb{P} \left\{ \frac{\zeta_{m,k}(s)}{\zeta_{m,k}(0)} > u \right\} ds = 0.
\]

Since further Lemma 3.2 holds, the claim follows by Theorem 3.1 in [5]. \(\square \)

As shown by Theorem 10 in [2], in order to derive the Gumbel limit theorem for the random process \(\zeta_{m,k} \) two additional conditions, which were first addressed by the seminal contributions [15, 16], need to be checked, namely the mixing Condition D and the Condition D’ therein. These two conditions will follow from Lemma 3.5 and Lemma 3.6 below; their proofs are displayed in the appendix.

Lemma 3.5. Let \(T \) and \(a \) be any given positive constants and \(M \in (0, T) \). If \(\{\zeta_{m,k}(t), t \geq 0\} \) is as in Theorem 2.1, then for any \(0 \leq s_1 < \cdots < s_p < t_1 < \cdots < t_p \) in \(\{aq_{\kappa,j} : j \in \mathbb{Z}, 0 \leq aq_{\kappa,j} \leq T\} \) such that \(t_1 - s_p \geq M \)

\[
\left| \mathbb{P} \left\{ \bigwedge_{i=1}^{p} \{ \zeta_{m,k}(s_i) \leq u \}, \bigwedge_{j=1}^{p'} \{ \zeta_{m,k}(t_j) \leq u \} \right\} - \frac{\lambda}{w_{\kappa}(u)} \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(t_j - s_i)} \right) \right|
\]

\[
\leq K u^\zeta \sum_{1 \leq i \leq p, 1 \leq j \leq p'} \tilde{r}(t_j - s_i) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(t_j - s_i)} \right)
\]

(3.9)

and

\[
\left| \mathbb{P} \left\{ \bigwedge_{i=1}^{p} \{ \zeta_{m,k}(s_i) > u \}, \bigwedge_{j=1}^{p'} \{ \zeta_{m,k}(t_j) > u \} \right\} - \frac{\lambda}{w_{\kappa}(u)} \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(t_j - s_i)} \right) \right|
\]

\[
\leq K u^\zeta \sum_{1 \leq i \leq p, 1 \leq j \leq p'} \tilde{r}(t_j - s_i) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(t_j - s_i)} \right)
\]

(3.10)

hold for all \(u > 0 \) and some \(K > 0 \) not depending on \(u \). Here \(\zeta = 2/\kappa (m - k(2/\kappa - 1) - 1 + \max(0, 2(1/\kappa - 1)) \) and \(\tilde{r}(t) := \max_{1 \leq t \leq m+k} |r_{\kappa}(t)|, t > 0 \).
Lemma 3.6. Under the assumptions of Theorem 2.3, for \(\zeta, \tilde{r}(\cdot) \) as in Lemma 3.5 and \(T_\kappa \) given by

\[
T_\kappa = T_\kappa(u) = \frac{1}{H^m_\kappa(C)} \mathbb{P} \left\{ \zeta^\kappa_m(0) > u \right\},
\]

we have, for any given constant \(\varepsilon \in (0, T_\kappa) \)

\[
u^\kappa \frac{T_\kappa}{q_\kappa} \sum_{\varepsilon \leq \varrho \kappa \leq T_\kappa} \tilde{r}(\varrho \kappa, \varrho) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(\varrho \kappa, \varrho)} \right) \to 0, \quad u \to \infty.
\]

(3.12)

Proof of Theorem 2.3. To establish Conditions D and D’ in [2], we shall make use of Lemma 3.5 with \(T = T_\kappa \) given by (3.11) and \(M = \varepsilon \in (0, T_\kappa) \), and Lemma 3.6. First note that the right-hand side of (3.9) is bounded from above by

\[
K u^\kappa \frac{T_\kappa}{q_\kappa} \sum_{\varepsilon \leq \varrho \kappa \leq T_\kappa} \tilde{r}(\varrho \kappa, \varrho) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(\varrho \kappa, \varrho)} \right),
\]

which by an application of (3.12) implies that the mixing Condition D in [2] holds for the random process \(\zeta^\kappa_m, \kappa \).

Next, we prove Condition D’ in [2], i.e., for any given positive constants \(a \) and \(\tilde{T} \)

\[
\limsup_{u \to \infty} \left[\varepsilon / \mathbb{P} \left\{ \zeta^\kappa_m(a \kappa, \kappa) > u \right\} \right] \sum_{j = [\tilde{T} / (a \kappa)]} \mathbb{P} \left\{ \zeta^\kappa_m(a \kappa, \kappa) > u \left| \zeta^\kappa_m(0) > u \right. \right\} \to 0, \quad \varepsilon \downarrow 0.
\]

(3.13)

Indeed, by (3.10) for some \(\tilde{M} > \tilde{T} \) and a positive constant \(K \)

\[
\mathbb{P} \left\{ \zeta^\kappa_m(a \kappa, \kappa) > u \left| \zeta^\kappa_m(0) > u \right. \right\} \leq \mathbb{P} \left\{ \zeta^\kappa_m(0) > u \right\} + K u^\kappa \frac{T_\kappa}{q_\kappa} \tilde{r}(\varrho \kappa, \varrho) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(\varrho \kappa, \varrho)} \right)
\]

holds for \(u > 0 \) and \(a \kappa, \kappa > \tilde{M} \). Consequently,

\[
\limsup_{u \to \infty} \left[\varepsilon / \mathbb{P} \left\{ \zeta^\kappa_m(0) > u \right\} \right] \sum_{j = [\tilde{T} / (a \kappa)]} \mathbb{P} \left\{ \zeta^\kappa_m(a \kappa, \kappa) > u \left| \zeta^\kappa_m(0) > u \right. \right\} \leq \limsup_{u \to \infty} \left[\varepsilon / \mathbb{P} \left\{ \zeta^\kappa_m(0) > u \right\} \right] \sum_{j = [\tilde{M} / (a \kappa)]} \mathbb{P} \left\{ \zeta^\kappa_m(a \kappa, \kappa) > u \left| \zeta^\kappa_m(0) > u \right. \right\} + \varepsilon
\]

\[
+ \limsup_{u \to \infty} K u^\kappa \frac{T_\kappa}{q_\kappa} \sum_{j = [\tilde{M} / (a \kappa)]} \tilde{r}(\varrho \kappa, \varrho) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(\varrho \kappa, \varrho)} \right)
\]

which equals \(\varepsilon \) by an application of Lemma 3.3 and (3.12), respectively. It follows then that (3.13) holds. Consequently, in view of Theorem 10 in [2] we have, for \(T_\kappa \) given by (3.11)

\[
\lim_{u \to \infty} \mathbb{P} \left\{ \sup_{t \in [u, T_\kappa]} \zeta^\kappa_m(t) \leq u + \frac{x}{w_\kappa(t)} \right\} = \exp \left(-e^{-x} \right), \quad x \in \mathbb{R}.
\]

Expressing \(u \) in terms of \(T_\kappa \) using (3.11) (see also (A.24)) we obtain the required claim with \(a^\kappa_T, b^\kappa_T \) given by (2.5) for any \(x \in \mathbb{R} \); the uniform convergence in \(x \) follows since all functions (with respect to \(x \)) are continuous, bounded and increasing. \(\square \)
APPENDIX A.

Proof of Lemma 3.4. By (1.1), for any small \(\epsilon \in (0, 1) \) there exists some positive constant \(B \) such that
\[
\frac{1}{2} \leq r_i(t) \leq Bt^\alpha, \quad \forall t \in (0, \epsilon], \quad 1 \leq i \leq m + k.
\]
Furthermore, for any positive \(t \) satisfying (recall \(\varpi = \alpha/2\Pi\{\kappa \geq 1\} + \alpha/2 \min(\kappa/(4(1 - \kappa)), 1)\Pi\{0 < \kappa < 1\}) \)
\[
0 < t^\varpi < \lambda < \lambda_0 := \min \left(\frac{1}{2\epsilon(4B^{\kappa/2} + 1)}, \epsilon \right)
\]
and any \(u > 2 \)
\[
u^{2\tau/\kappa}_\kappa(t) := 2^\kappa B t^\alpha \leq \frac{Kt^{1/2}}{16} \quad \text{with} \quad \theta_\kappa(t) := \frac{1}{1 + (r(q,t))^\kappa - 1}, \quad r(t) := \min_{1 \leq i \leq m + k} r_i(t).
\]
Let \((X_{1/r}(t), X_{2/r}(t)) := (X_1(t) - r_1^{-1}(t)X_1(0), \ldots, X_{m+k}(t) - r_{m+k}^{-1}(t)X_{m+k}(0)) \) which by definition is independent of \(\{\zeta_{m,k}(t), t \geq 0\} \). For \(j = 1, 2 \)
\[
P \left\{ |X^{(j)}_{1/r}(q,t)| > x \right\} \leq P \left\{ |X^{(j)}_{1/r}(0)| > \frac{x}{2\sqrt{2Bu - 2\tau/\kappa u}} \right\}, \quad u \theta_\kappa(t) \leq \frac{\lambda}{2w_\kappa(u)}.
\]
In the following, the cases \(\kappa = 1, \kappa \in (1, \infty) \) and \(\kappa \in (0, 1) \) will be considered in turn.

Case \(\kappa = 1 \). Note by the triangular inequality
\[
\zeta^{(1)}_{m,k}(q,t) \leq |X^{(1)}_{1/r}(q,t)| + |X^{(2)}_{1/r}(q,t)| + \frac{1}{r(q,t)} \zeta^{(1)}_{m,k}(0) + \theta_1(t)|X^{(2)}(0)|.
\]
Consequently, from (A.15) we get
\[
P \left\{ \zeta^{(1)}_{m, k}(q,t) > u + \frac{\lambda}{u} \zeta^{(1)}_{m, k}(0) \right\} \\
\leq P \left\{ |X^{(1)}_{1/r}(q,t)| + |X^{(2)}_{1/r}(q,t)| + \theta_1(t)|X^{(2)}(0)| > \frac{\lambda}{2u} \right\} \\
\leq P \left\{ |X^{(1)}_{1/r}(q,t)| + |X^{(2)}_{1/r}(q,t)| > \frac{\lambda}{3u} \right\} P \left\{ \zeta^{(1)}_{m, k}(q,t) > u \right\} + P \left\{ \theta_1(t)|X^{(2)}(0)| > \frac{\lambda}{6u} \right\} \\
eq: I_{1u} + I_{2u}.
\]
By (A.14) and (A.15), we have, for any \(p > 1 \)
\[
P \left\{ |X^{(1)}_{1/r}(q,t)| > \frac{\lambda}{6u} \right\} \leq P \left\{ |X^{(1)}(0)| > \frac{\lambda}{12\sqrt{2Bu^{\alpha/2}}} \right\} \leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-p}
\]
holds with some \(K > 0 \) (the values of \(p \) and \(K \) might change from line to line below). Similarly,
\[
P \left\{ |X^{(2)}_{1/r}(q,t)| > \frac{\lambda}{6u} \right\} \leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-p}
\]
and hence
\[
I_{1u} \leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-p} P \left\{ \zeta^{(1)}_{m, k}(0) > u \right\}.
\]
Moreover, in view of Lemma 3.1 and (A.14) we have for sufficiently large \(u \) that

\[
I_{2u} \leq \frac{\mathbb{P}\left\{ |X(2)(0)| > \frac{2\lambda u}{t^\varphi} \right\}}{\mathbb{P}\left\{ \zeta^{(1)}_{m,k}(0) > u \right\}} \mathbb{P}\left\{ \zeta^{(1)}_{m,k}(0) > u \right\} \leq K \left(\frac{\lambda}{t^\varphi} \right)^{-(p-k+2)} u^{-(p+m-2k)} \mathbb{P}\left\{ \zeta^{(1)}_{m,k}(0) > u \right\}. \tag{A.17}
\]

Hence, the claim for \(\kappa = 1 \) follows from (A.16) and (A.17) by choosing \(p > \max(4/\alpha + k, 2k) \).

Case \(\kappa \in (1, \infty) \). Denote below by \((Y^{(1)}(t), Y^{(2)}(t)) := (r^{-1}_1(t)X_1(0), \ldots, r^{-1}_{m+k}(t)X_{m+k}(0)) \). Note that \(|Y^{(1)}(t)| \leq |X^{(1)}(0)|/r(t)\) and \(|Y^{(2)}(t)| \leq |X^{(2)}(0)|/r(t)\) for all \(t < \varepsilon \), and for some constants \(K_1, K_2 > 0 \) whose values might change from line to line below

\[
|1 + x|^\kappa \geq 1 + \kappa x, \quad x \in \mathbb{R} \quad \text{and} \quad (1 + x)^\kappa \leq 1 + K_1 x + K_2 x^\kappa, \quad x \geq 0.
\]

We have further by the triangle inequality

\[
\zeta^{(\kappa)}_{m,k}(q_t t) \leq \left(|Y^{(1)}(q_t t)| + |X^{(1)}_{1/r}(q_t t)| \right)^\kappa - |Y^{(2)}(q_t t)| - |X^{(2)}_{1/r}(q_t t)|
\leq |Y^{(1)}(q_t t)|^\kappa + K_1 |X^{(1)}_{1/r}(q_t t)||Y^{(1)}(q_t t)|^{\kappa-1} + K_2 |X^{(1)}_{1/r}(q_t t)|^\kappa
\leq K_1 |X^{(1)}_{1/r}(q_t t)||X^{(1)}(0)|^{\kappa-1} + K_2 |X^{(1)}_{1/r}(q_t t)|^\kappa
\leq K_3 |X^{(1)}_{1/r}(q_t t)||X^{(2)}(0)|^{\kappa-1} + \frac{\zeta^{(\kappa)}_{m,k}(0)}{r(q_t t)^{\kappa}} + \theta_\kappa(t) |X^{(2)}(0)\kappa
\]

holds for \(q_t t \leq \varepsilon \) and some constant \(K_3 > 0 \). Therefore, with \(\mu = 1/(2(\kappa - 1)) \) and \(\varphi = \alpha/(4(\kappa - 1)) \),

\[
\mathbb{P}\left\{ \zeta^{(\kappa)}_{m,k}(q_t t) > u + \frac{\lambda}{w_\kappa(u)} \right\} \leq \mathbb{P}\left\{ |X^{(1)}(0)| > \frac{\lambda^{\mu} u^{1/\kappa}}{t^{\varphi}} \right\} + \mathbb{P}\left\{ |X^{(2)}(0)| > \frac{\lambda^{\mu} u^{1/\kappa}}{t^{\varphi}} \right\}
\leq K_1 |X^{(1)}_{1/r}(q_t t)| \left(\frac{\lambda^{\mu} u^{1/\kappa}}{t^{\varphi}} \right)^{\kappa-1} + K_2 |X^{(1)}_{1/r}(q_t t)|^\kappa + K_3 |X^{(2)}_{1/r}(q_t t)| \left(\frac{\lambda^{\mu} u^{1/\kappa}}{t^{\varphi}} \right)^{\kappa-1}
\leq \frac{\lambda}{2w_\kappa(u)} \zeta^{(\kappa)}_{m,k}(q_t t) > u \}
=: \tilde{I}_{1u} + \tilde{I}_{2u} + \tilde{I}_{3u}. \tag{A.18}
\]

Note by (A.14) that \(\lambda^{\mu}/t^{\varphi} > 1 \). Similar arguments as in (A.17) yield that

\[
\tilde{I}_{1u} \leq K \left(\frac{\lambda^{\mu}}{t^{\varphi}} \right)^{-(p-m+2)} u^{-(p-k(2(\kappa - 1))\kappa)/\kappa} \mathbb{P}\left\{ \zeta^{(\kappa)}_{m,k}(0) > u \right\}
\tilde{I}_{2u} \leq K \left(\frac{\lambda^{\mu}}{t^{\varphi}} \right)^{-(p-k+2)} u^{-(p-k+m-k(2(\kappa - 1))\kappa)/\kappa} \mathbb{P}\left\{ \zeta^{(\kappa)}_{m,k}(0) > u \right\}
\]

and
\[
\hat{I}_{3u} \leq \left(\mathbb{P} \left\{ K_1 |X^{(1)}_{1/r}(q_{r,t})| \left(\frac{\lambda u^{1/\kappa}}{t^p} \right)^{\kappa - 1} > \frac{\lambda}{8w_\kappa(u)} \right\} + \mathbb{P} \left\{ K_2 |X^{(1)}_{1/r}(q_{r,t})|^{\kappa} > \frac{\lambda}{8w_\kappa(u)} \right\} \right.
\]
\[
+ \mathbb{P} \left\{ K_3 |X^{(2)}_{1/r}(q_{r,t})| \left(\frac{\lambda u^{1/\kappa}}{t^p} \right)^{\kappa - 1} > \frac{\lambda}{8w_\kappa(u)} \right\} \mathbb{P} \left\{ \zeta_{m,k}(q_{r,t}) > u \right\} \]
\[
+ \mathbb{P} \left\{ \theta_{\kappa}(t)|X^{(2)}(0)|^{\kappa} > \frac{\lambda}{8w_\kappa(u)} \right\}
\]
\[
=: (II_{1u} + II_{2u} + II_{3u}) \mathbb{P} \left\{ \zeta_{m,k}(0) > u \right\} + II_{4u}.
\]

Furthermore,
\[
II_{1u} \leq \mathbb{P} \left\{ |X^{(1)}(0)| > K_1 \frac{\lambda^{1/2}u^{-1/\kappa}}{t^{-\alpha/4}(r^{-2}(q_{r,t}) - 1)^{1/2}} \right\}
\]
\[
\leq \mathbb{P} \left\{ |X^{(1)}(0)| > K_1 \frac{\lambda^{1/2}}{t^{-\alpha/4}} \right\} \leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-p/2}.
\]

Similarly,
\[
II_{2u} \leq K \left(\frac{\lambda u^{2(1-1/\kappa)}}{t^{\alpha/2}} \right)^{-p/\kappa}, \quad II_{3u} \leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-p/2}.
\]

Next, we deal with II_{4u}. We have by (A.14) that $2^{\kappa+1}Bt^{\alpha/2} \leq 1$. Hence as in the proof of (A.17), we have
\[
II_{4u} \leq \mathbb{P} \left\{ |X^{(2)}(0)|^{\kappa} > \frac{2\lambda u}{t^{\alpha/2}} \frac{1}{2^{\kappa+1}Bt^{\alpha/2}} \right\}
\]
\[
\leq K \left(\frac{\lambda}{t^{\alpha/2}} \right)^{-1} \lambda^{-2(p-k+2)/\kappa} u^{-(p-k+m-k(2/\kappa-1)/(\lambda \leq 2))} \mathbb{P} \left\{ \zeta_{m,k}(0) > u \right\}. \tag{A.19}
\]

Therefore, the claim for $\kappa \in (1, \infty)$ follows from (A.18) and the inequalities for $\hat{I}_{1u}, \hat{I}_{2u}$ and $II_{1u} - II_{4u}$ by choosing $p > \max(8(\kappa - 1)/\alpha + k + m, 2k)$.

Case $\kappa \in (0, 1)$. Note that
\[
(1 + x)^\kappa \leq 1 + x, \quad x \geq 0 \quad \text{and} \quad -|1 - x|^\kappa \leq -(1 - x), \quad x \in [0, \infty).
\]

We have further by the triangle inequality
\[
c^{(\kappa)}_{m,k}(q_{r,t}) \leq \left(|Y^{(1)}(q_{r,t})| + |X^{(1)}_{1/r}(q_{r,t})| \right)^\kappa - \left| Y^{(2)}(q_{r,t}) - |X^{(2)}_{1/r}(q_{r,t})| \right|^\kappa
\]
\[
\leq |Y^{(1)}(q_{r,t})|^\kappa + |X^{(1)}_{1/r}(q_{r,t})||X^{(1)}(0)|^{\kappa-1} - |Y^{(2)}(q_{r,t})|^\kappa + |X^{(2)}_{1/r}(q_{r,t})||Y^{(2)}(q_{r,t})|^\kappa - |X^{(2)}_{1/r}(q_{r,t})|X^{(2)}(0)|^{\kappa-1}
\]
\[
\leq \left| X^{(1)}(0) \right|^\kappa + \left| X^{(1)}_{1/r}(q_{r,t}) \right||X^{(1)}(0)|^{\kappa-1} - \left| X^{(2)}(0) \right|^\kappa + \left| X^{(2)}_{1/r}(q_{r,t}) \right||X^{(2)}(0)|^{\kappa-1}
\]
\[
= \frac{c^{(\kappa)}_{m,k}(0)}{(r(q_{r,t}))^\kappa} + \theta_{\kappa}(t)|X^{(2)}(0)|^{\kappa} + \left| X^{(1)}_{1/r}(q_{r,t}) \right||X^{(1)}(0)|^{\kappa-1} + \left| X^{(2)}_{1/r}(q_{r,t}) \right||X^{(2)}(0)|^{\kappa-1}.
\]
Therefore, we have by (A.15), with \(\psi = \alpha/(4(1 - \kappa)) \)
\[
\Pr \left\{ \zeta_{m,k}(q_t, t) > u + \frac{\lambda}{w_{\kappa}(u)} \zeta_{m,k}(0) \leq u \right\}
\leq \Pr \left\{ \theta_{\kappa}(t) |X(2)(0)|^\kappa + \frac{|X(1)(q_t)|}{(u - \tau/\kappa t)^{1-\kappa}} + \frac{|X(1)(q_t)|}{(u - \tau/\kappa t)^{1-\kappa}} > \frac{\lambda}{2w_{\kappa}(u)} \zeta_{m,k}(q_t) > u \right\}
\leq \Pr \left\{ \left|X^2(0)\right| \leq u^{-1/\kappa} \kappa_{m,k}(q_t) > u \right\} + \Pr \left\{ \left|X^2(0)\right| \leq u^{-1/\kappa} \kappa_{m,k}(0) > u, \zeta_{m,k}(q_t) > u + \frac{\lambda}{w_{\kappa}(u)} \right\}
= I_{1u}^* + I_{2u}^* + I_{3u}^*.
\]
Now we deal with the three terms one by one. Clearly, for any \(u > 2 \)
\[
I_{1u}^* \leq \Pr \left\{ \theta_{\kappa}(t) |X^2(0)|^\kappa > \frac{\lambda}{6w_{\kappa}(u)} \right\} + \Pr \left\{ \left|X^2(0)\right| > \frac{\lambda t^{\kappa/4}}{6u^{\kappa/\kappa}} \right\} \Pr \left\{ \zeta_{m,k}(q_t) > u \right\}
\leq \Pr \left\{ \left|X^2(0)\right| > \frac{\lambda t^{\kappa/4}}{6u^{\kappa/\kappa}} \right\} \Pr \left\{ \zeta_{m,k}(q_t) > u \right\},
\]
where the first term can be treated as for \(I_{4u}^* \), see (A.19). For the rest two terms, we have, by using (A.15)
\[
\Pr \left\{ \left|X^2(0)\right| > \frac{\lambda t^{\kappa/4}}{6u^{\kappa/\kappa}} \right\} \leq \Pr \left\{ \left|X^2(0)\right| > \frac{\kappa}{128 \sqrt{2} B t^{\kappa/2}} \right\} \leq K \left(\frac{t^{\kappa/4}}{4} \right)^{-p}, \quad j = 1, 2.
\]
In order to deal with \(I_{2u}^* \) and \(I_{3u}^* \), set below \((X^1_1(t), X^2_1(t)) := (X_1(0) - r_1(t), X_1(t), \ldots, X_{m+k}(0) - r_{m+k}(t), X_{m+k}(t))\) which by definition is independent of \(\{\zeta_{m,k}(t), t \geq 0\} \). For \(j = 1, 2 \)
\[
\Pr \left\{ \left|X^j_1(q_t)\right| > x \right\} \leq \Pr \left\{ \left|X^j(0)\right| > \frac{2\sqrt{x}}{u - 2\tau/\kappa t} \right\}.
\]
Using further the triangle inequality \(|X^1_1(q_t)|^\kappa \geq (r(q_t))^\kappa |X^1(0)|^\kappa - |X^1(0)|^\kappa \) and (A.14) (recalling \(|X^1(0)|^\kappa \geq \zeta_{m,k}(q_t, t > u) \), we have
\[
I_{2u}^* \leq \Pr \left\{ \left|X^1_1(q_t)\right|^\kappa > u \left((r(q_t))^\kappa - \frac{t^{\kappa/4}}{u^{1+\tau}} \right) \right\} \Pr \left\{ \zeta_{m,k}(q_t) > u \right\}
\leq \Pr \left\{ \left|X^1_1(q_t)\right|^\kappa > \frac{1 - 2^{-\kappa} u}{2^\kappa} \right\} \Pr \left\{ \zeta_{m,k}(0) > u \right\}
\leq \Pr \left\{ \left|X^1_1(0)\right| > (1 - 2^{-\kappa} u^{1/\kappa} \sqrt{\lambda}) \right\} \Pr \left\{ \zeta_{m,k}(0) > u \right\}
\leq K \left(\frac{\lambda}{t^{\kappa}} \right)^{-p/2} \Pr \left\{ \zeta_{m,k}(0) > u \right\}.
\]
For \(I_{3u}^* \), using \(|X^1(0)|^\kappa \geq u + \lambda/w_{\kappa}(u) \) and
\[
|X^1_1(0)|^\kappa = \zeta_{m,k}(0) + |X^2(0)|^\kappa \leq u \left(1 + \frac{t^{\kappa/4}}{u^{1+\tau}} \right)
\]
we have
\[
I_{3u}^* \leq \Pr \left\{ \left|X^1_1(q_t)\right|^\kappa > u \left((r(q_t))^\kappa \left(1 + \frac{\lambda}{w_{\kappa}(u)} \right) - \left(1 + \frac{t^{\kappa/4}}{u^{1+\tau}} \right) \right) \right\} \Pr \left\{ \zeta_{m,k}(q_t) > u \right\}
= \Pr \left\{ \left|X^1_1(q_t)\right|^\kappa > u^{-\tau} \left(\kappa \lambda (r(q_t))^\kappa - u^{1+\tau} \left(1 - (r(q_t))^\kappa \right) - t^{\kappa/4} \right) \right\} \Pr \left\{ \zeta_{m,k}(0) > u \right\},
\]
where by (A.14)

$$\lambda \kappa (r(q_k t))^{\kappa} - u^{1+\tau} (1 - (r(q_k t))^{\kappa}) - t^{\psi \kappa} \geq \frac{\lambda \kappa}{2^{k+1}} - t^{\psi \kappa} \geq \frac{\lambda \kappa}{2^{k+2}}.$$

Consequently, it follows further by (A.21) that

$$I_{3u}^* \leq P \left\{ \left| X^{(1)}(0) \right| > 2^{-2/\kappa} \kappa^{1/\kappa} \lambda^{1/\kappa+1/2} \right\} P \left\{ \zeta^{(\kappa)}_{m,k}(0) > u \right\}$$

$$\leq K \left(\frac{\lambda^{1/\kappa+1/2}}{t^{\alpha/2}} \right)^{-p} P \left\{ \zeta^{(\kappa)}_{m,k}(0) > u \right\},$$

which together with (A.19), (A.20) and (A.22) completes the proof for $\kappa \in (0,1)$ by taking $p > 4/\alpha + k$. Consequently, the desired claim of Lemma 3.4 follows. This completes the proof. \qed

Proof of Lemma 3.5. We give only the proof for (3.9) since (3.10) follows by similar arguments. Since the claims for $k = 0$ are already shown in [1], we only consider that $k \geq 1$ below. Define, for $j = 1, 2$, independent random vectors $\left(Y^{(j)}(s_1), \ldots, Y^{(j)}(s_p) \right)$ and $\left(\tilde{Y}^{(j)}(t_1), \ldots, \tilde{Y}^{(j)}(t_{p'}) \right)$, which are independent of the process $\zeta^{(\kappa)}_{m,k}$ and have the same distributions as those of $\left(X^{(j)}(s_1), \ldots, X^{(j)}(s_p) \right)$ and $\left(|X^{(j)}(t_1), \ldots, |X^{(j)}(t_{p'})| \right)$, respectively. Note that, for any $u > 0$, the left-hand side of (3.9) is clearly bounded from above by

$$\left| P \left\{ \bigcap_{i=1}^{p} \left| X^{(2)}(s_i) \right|^{\kappa} \leq \left| X^{(1)}(s_i) \right|^{\kappa} - u \right\} - P \left\{ \bigcap_{i=1}^{p} \left| Y^{(2)}(s_i) \right|^{\kappa} \geq \left| X^{(1)}(s_i) \right|^{\kappa} - u \right\} \right|$$

$$+ P \left\{ \bigcap_{i=1}^{p} \left| X^{(2)}(s_i) \right|^{\kappa} \leq \left| Y^{(2)}(s_i) \right|^{\kappa} + u \right\} - P \left\{ \bigcap_{i=1}^{p} \left| X^{(2)}(s_i) \right|^{\kappa} \geq \left| Y^{(2)}(s_i) \right|^{\kappa} + u \right\} \right|.$$

Next, note by Cauchy–Schwarz inequality that $u^2 + v^2 \leq (u^2 - 2ruv + v^2)/(1 - r^2)$ for all $r \in (-1,1)$ and $u, v \in \mathbb{R}$. It follows that, $f_{ij}(\cdot, \cdot)$, the joint density function of $\left(|X^{(1)}(s_i)|, |X^{(1)}(t_j)| \right)$, satisfies

$$f_{i,j}(x, y) = \frac{1}{2\pi} \frac{1}{1 - r_t^2(t_j - s_i)} \exp \left(-\frac{x^2 - 2rt_j s_i x y + y^2}{2(1 - r_t^2(t_j - s_i))} \right) dxdy$$

$$\leq \frac{1}{(2\pi)^{m}(1 - \bar{r}(t_j - s_i))^m/2} \int_{|x| = \pi} \prod_{i=1}^{m} \exp \left(-\frac{x^2 + y^2}{2(1 + \bar{r}(t_j - s_i))} \right) dxdy$$

$$\leq \frac{1}{(2\pi)^{m}(1 - \bar{r}(t_j - s_i))^m/2} \exp \left(-\frac{x^2 + y^2}{2(1 + \bar{r}(t_j - s_i))} \right) \int_{|x| = \pi} \frac{1}{2^{m-2}(\Gamma(m/2))^2(1 - \bar{r}(t_j - s_i))^m/2} \exp \left(-\frac{x^2 + y^2}{2(1 + \bar{r}(t_j - s_i))} \right) dxdy$$

$$= \frac{(xy)^{m-1}}{2^{m-2}(\Gamma(m/2))^2(1 - \bar{r}(t_j - s_i))^m/2} \exp \left(-\frac{x^2 + y^2}{2(1 + \bar{r}(t_j - s_i))} \right), \quad x, y > 0.$$
Therefore, in view of Lemma 2 in [1], with K a constant whose value might change from line to line, the first absolute value in (A.23) is bounded from above by

$$K \sum_{i=1}^{p} \sum_{j=1}^{p'} \int_{y^* > u} \int_{x^* > u} \tilde{r}(t_j - s_i) \left((x^* - u)(y^* - u) \right)^{(k-1)/\kappa} \exp \left(-\frac{(x^* - u)^{2/\kappa} + (y^* - u)^{2/\kappa}}{2(1 + \tilde{r}(t_j - s_i))} \right) f_{ij}(x, y) \, dx \, dy$$

where in the first inequality, we use first the bound $e^{-x} \leq 1, x \geq 0$ and then a change of variable $x' = x^*$, while the second inequality follows by a change of variable $x' = u^{2/\kappa - 1}(x - u)$ and Taylor’s expansion of $(u + x' / u^{2/\kappa - 1})^{2/\kappa} = u^{2/\kappa} + (2/\kappa) x' + O(u^{-2/\kappa})$ for large u and $x' \geq 0$. Similarly, denoting by $g(\cdot)$ the pdf of $|X^{(2)}(0)|$, we obtain that the second absolute value in (A.23) is bounded from above by

$$K \sum_{i=1}^{p} \sum_{j=1}^{p'} \tilde{r}(t_j - s_i) \left(\int_{x}^{\infty} (x + u)^{(m-1)/\kappa} x^{k-1} \exp \left(-\frac{(x^* + u)^{2/\kappa}}{2(1 + \tilde{r}(t_j - s_i))} \right) dx \right)^2$$

where the last step follows by a change of variable $x' = u^{2/\kappa - 1} x^\kappa$. Hence the proof of (3.9) is established since

$$(m - k(2/\kappa - 1) - 1) - (m - (k - 1)(2/\kappa - 1) - 2) = -2(1/\kappa - 1).$$

The desired result in Lemma 3.5 follows. \qed

Proof of Lemma 3.6. The proof follows by the same arguments as for Lemma 12.3.1 in [15], using alternatively the following asymptotic relation (recall (3.11) and Lem. 3.1)

$$u^{2/\kappa} = 2\ln T_\kappa + K_0 \ln \ln T_\kappa + \ln D_0(1 + o(1)), \quad T_\kappa \to \infty$$

with D_0, K_0 defined in Theorem 2.3. We split the sum in (3.12) at T_κ^β, where β is a constant such that $0 < \beta < (1-\delta)/(1+\delta)$ and $\delta = \sup\{\tilde{r}(t) : t \geq t\} < 1$ (see, e.g., Lem. 8.1.1 (i) in [15]). Below K is again a positive constant which value might change from line to line. From (A.24) we conclude that exp $\left(-u^{2/\kappa} / 2 \right) \leq K / T_\kappa$ and $u^{2/\kappa} = 2 \ln T_\kappa(1 + o(1))$. Further,

$$u^{\beta} T_\kappa \sum_{\varepsilon \leq a_{\varepsilon} \leq T_\kappa^\beta} \tilde{r}(a_{\varepsilon} j) \exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(a_{\varepsilon} j)} \right) \leq u^{\beta + \frac{\delta}{\kappa} T_\kappa^{\beta + 1}} \exp \left(-\frac{u^{2/\kappa}}{1 + \delta} \right) \leq K(\ln T_\kappa)^{\frac{\delta}{\kappa} + \frac{\beta}{\kappa} T_\kappa^{\beta + 1 - \frac{1}{\kappa}}},$$

which tends to 0 as $T_\kappa \to \infty$ since $\beta + 1 - 2/(1 + \delta) < 0$. For the remaining sum, denoting $\delta(t) = \sup\{|\tilde{r}(s)\ln s| : s \geq t\}, t > 0$, we have $\tilde{r}(t) \leq \delta(t) / \ln t$ as $t \to \infty$, and thus in view of (A.24) for $a_{\varepsilon} j \geq T_\kappa^\beta$

$$\exp \left(-\frac{u^{2/\kappa}}{1 + \tilde{r}(a_{\varepsilon} j)} \right) \leq \exp \left(-u^{2/\kappa} \left(1 - \frac{\delta(T_\kappa^\beta)}{\ln T_\kappa} \right) \right) \leq K \exp \left(-u^{2/\kappa} \right) \leq KT_\kappa^{-2}(\ln T_\kappa)^{-K_0}.$$ (A.25)
Consequently, with c given by Theorem 2.3 (recall $\tau = 2\max(1/\kappa - 1, 0) + 1$),
\[
\sum_{T_n^\kappa \leq a_{\kappa,j} \leq T_n} \hat{r}(a_{\kappa,j}) \exp \left(-\frac{u^{2/\kappa}}{1 + \hat{r}(a_{\kappa,j})}\right)
\leq K u^{(\frac{\tau}{\kappa})^2} T_n^{-2}(\ln T_n)^{-K_0} \frac{1}{T_n^\kappa/q_\kappa} \sum_{T_n^\kappa \leq a_{\kappa,j} \leq T_n} \hat{r}(a_{\kappa,j})(\ln(a_{\kappa,j}))^c
\leq K(\ln T_n)^{\frac{\tau}{\kappa} + \frac{\kappa}{\kappa} - K_0 - c} \frac{1}{T_n^\kappa/q_\kappa} \sum_{T_n^\kappa \leq a_{\kappa,j} \leq T_n} \hat{r}(a_{\kappa,j})(\ln(a_{\kappa,j}))^c. \tag{A.26}
\]
Since $K_0 = m - 2 + 2\tau/\alpha + k \min(1 - 2/\kappa, 0)$ and $\zeta := 2/\kappa(m - k(2/\kappa - 1) + \max(0, 2/(1/\kappa - 1)))$, we have $\kappa/2 + 2\tau/\alpha - K_0 - c = 0$ for all $\kappa > 0$. Noting further that the Berman-type condition $\lim_{t \to \infty} \hat{r}(t)(\ln t)^c = 0$ holds and $\beta < 1$, the right-hand side of (A.26) tends to 0 as $u \to \infty$. Thus the proof is complete.

\textit{Acknowledgements.} We would like to thank the associate editor and the two anonymous referees for their constructive suggestions and corrections which greatly improved the paper.

References

[1] J.M.P. Albin, \textit{On extremal theory for non differentiable stationary processes}. Ph.D. thesis, University of Lund, Sweden (1987).

[2] J.M.P. Albin, On extremal theory for stationary processes. \textit{Ann. Probab.} 18 (1990) 92–128.

[3] J.M.P. Albin and D. Jarušková, On a test statistic for linear trend. \textit{Extremes} 6 (2003) 247–258.

[4] A. Aue, L. Horváth and M. Hušková, Extreme value theory for stochastic integrals of Legendre polynomials. \textit{J. Multivariate Anal.} 100 (2009) 1029–1043.

[5] S.M. Berman, Sojourns and extremes of stationary processes. \textit{Ann. Probab.} 10 (1982) 1–46.

[6] S.M. Berman, Sojourns and extremes of stochastic processes. \textit{The Wadsworth and Brooks/Cole Statistics/Probability Series}. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA (1992).

[7] K. Dębicki, E. Hashorva and L. Ji, Gaussian approximation of perturbed chi-square risks. \textit{Stat. Interface} 7 (2014) 363–373.

[8] A.B. Dieker and B. Yakir, On asymptotic constants in the theory of Gaussian processes. \textit{Bernoulli} 20 (2014) 1600–1619.

[9] P. Embrechts, C. Klüppelberg and T. Mikosch, \textit{Modelling extremal events for insurance and finance}. Springer-Verlag, Berlin (1997).

[10] E. Hashorva and L. Ji, Piterbarg theorems for chi-processes with trend. \textit{Extremes} 18 (2015) 37–64.

[11] E. Hashorva, D. Korshunov and V.I. Piterbarg, Asymptotic expansion of Gaussian chaos via probabilistic approach. \textit{Extremes} 18 (2015) 315–347.

[12] J. Hüsler, V.I. Piterbarg and O. Seleznjev, On convergence of the uniform norms for Gaussian processes and linear approximation problems. \textit{Ann. Appl. Probab.} 13 (2003) 1615–1653.

[13] D. Jarušková, Detecting non-simultaneous changes in means of vectors. \textit{TEST} 24 (2015) 681–700.

[14] C. Klüppelberg and M.G. Rasmussen, Outcrossings of safe regions by generalized hyperbolic processes. \textit{Stat. Probab. Lett.} 83 (2013) 2197–2204.

[15] M.R. Leadbetter, G. Lindgren and H. Rootzén, Vol. 11 of \textit{Extremes and related properties of random sequences and processes}. Springer Verlag (1983).

[16] M.R. Leadbetter and H. Rootzén, Extreme value theory for continuous parameter stationary processes. \textit{Z. Wahrsch. Verw. Gebiete} 60 (1982) 1–20.

[17] G. Lindgren, Extreme values and crossings for the χ^2-process and other functions of multidimensional Gaussian processes, with reliability applications. \textit{Adv. Appl. Probab.} 12 (1980) 746–774.

[18] G. Lindgren, Extremal ranks and transformation of variables for extremes of functions of multivariate Gaussian processes. \textit{Stochastic Process. Appl.} 17 (1984) 285–312.

[19] G. Lindgren, Slepian models for χ^2-processes with dependent components with application to envelope upcrossings. \textit{J. Appl. Probab.} 26 (1989) 36–49.

[20] C. Ling and Z. Tan, On maxima of chi-processes over threshold dependent grids. \textit{Statistics} 50 (2016) 579–595.

[21] C. Ling and Z. Peng, Extremes of order statistics of self-similar processes (in Chinese). \textit{Sci. Sin. Math.} 46 (2016) 1–10. DOI: 10.1360/012016-15.

[22] V.I. Piterbarg, \textit{Asymptotic methods in the theory of Gaussian processes and fields}, Vol. 148. American Mathematical Society, Providence, RI (1996).
[23] V.I. Piterbarg and A. Zhdanov, On probability of high extremes for product of two independent Gaussian stationary processes. *Extremes* 18 (2015) 99–108.

[24] O. Seleznjev, Asymptotic behavior of mean uniform norms for sequences of Gaussian processes and fields. *Extremes* 8 (2006) 161–169 (2005).

[25] Z. Tan and E. Hashorva, Exact asymptotics and limit theorems for supremum of stationary χ-processes over a random interval. *Stochastic Process. Appl.* 123 (2013) 1983–2008.

[26] Z. Tan and E. Hashorva, Limit theorems for extremes of strongly dependent cyclo-stationary χ-processes. *Extremes* 16 (2013) 241–254.