Continuing Medical Education among resident physicians in Abha, Saudi Arabia: Current Practice and Existing Gaps

Safar Alsalem (safar10abadi@hotmail.com)
King Khalid University
https://orcid.org/0000-0002-2248-8620

Najwa Almoalwi
Family medicine, MOH

Aesha Farheen Siddiqui.
King Khalid University

Mohammed A Alsalem
King Khalid University

Awad S Alsamghan
King Khalid University

Ahmed A Mahfouz
King Khalid University

Research article

Keywords: Continuing Medical Education; Resident physicians; Abha; southwestern Saudi Arabia.

DOI: https://doi.org/10.21203/rs.2.18686/v3

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Continuing Medical Education (CME) is concerned with the maintenance, improvement, and promotion of the health care and exhausts the physicians’ working life-span. Although international research is extensive, only a dearth of studies exists in Saudi Arabia and the Middle East. This study aims to explore CME practices of resident physicians in Abha City, south western Saudi Arabia and the existing gaps.

Method: A cross-sectional questionnaire-based descriptive study conducted on residents training in various health-care facilities in Abha city.

Results: Three-hundred resident physicians participated in the study (response rate of 75%). Out of them 79.7% (239) reported attending lectures and seminars for their CME needs followed by those who attended case presentations 39.7% (119). Electronic CMEs were used by a minority of residents (n = 24, 8%), and only 27.3% (n = 82,) attended journal clubs. Being busy was the main barrier against self-reading as reported by 70.7% (212) of participants, and by 51.7 % (155) for lectures and seminars, and 41.3% (124) for attending courses. There were no significant differences in satisfaction with CME activities by gender, nationality and training level (p = 0.982, 0.924, and 0.540, respectively). Satisfaction scores with CME activities were variable across different specialties (p = 0.039). The lowest satisfaction scores were among psychiatry residents and the highest was among the restorative dentistry and surgery residents. Workshops and courses were significantly perceived by residents as the most effective method in retention of knowledge, improving attitudes, improving clinical skills, improving managerial skills, and in proving practice behaviors. On the other hand, inter-departmental activities were significantly perceived by residents as most effective in improving academic skills and improving departmental image.

Conclusion: The participant physicians favoured contact CME activities. In consistence with global research findings, being busy was the main barrier against CME goals attainment. Participants affirmed that CME activities improved their clinical practice, clinical skills and academic skills. Promotion of online learning in Saudi Arabia. Support of residents with protected time for their CME activities. Encouragement of trainees into further advice about their preference in terms of CME forms to help boost their engagement.

Background

Medical practitioners need to continuously update the knowledge in their specific fields to keep up with the proliferating medical knowledge and dynamic treatment technology [1]. Almost sixty years ago, the first conference on medical education held by the College of General Practice of Canada in Toronto in the fall of 1962 produced the following consensus: “Continuing Medical Education is an essential feature of the practice of modern medicine, as it maintains the doctor’s ability to provide quality patient-care. This concept of ‘life-long learning’ must be actively developed in the under-graduate medical student and
sustained in the graduate doctor, both practitioner rand teacher”. This early introduction of the topic is still valid up till now.[2]

Medical professionals continuing their training throughout their careers is termed “Continuing Medical Education” (CME). Formal CME includes organized activities such as conferences, workshops, symposia, courses, and educational meetings. Personal efforts such as frequent/habitual reading and inquiries that help a person to remain up to date in his/her professional development are also included [3].

Although formal CME may be a recent phenomenon, the concept of continuing medical education is not new. Health professionals have been involved in some form of CME since the early twentieth century [4]. Currently, continuing medical education (CME) is shifting from a traditional passive model to a competency-based, self-directed learning model [5].

Continuing Medical Education (CME) is unending and lasts throughout the physician's working life. The primary purpose of continuing medical education is for professionals to remain up to date with the latest knowledge in their profession so as to facilitate competent practice and improve their patient care [4]. Continuing medical education helps to improve not only their knowledge and skills but also to build relationships that a physician may use to provide services for patients [6].

Without active learning, physicians are unable to remain competent for more than a few years after graduation. A review of recertification examination in the US reported that examinees who had been trained long before were less successful in the examination than those who were recently trained [7]. For physicians to stay fit to practice, it is thus a core professional responsibility if not an ethical and moral obligation to continue to learn throughout their career regardless of discipline, specialty, or type [8].

In 1995 a systematic review of the effect of continuing medical education strategies [9] including ninety-nine studies, evaluating 160 separate interventions (apart from placebo or non-intervention controls), concluded that physician performance may be altered by many educational interventions and, to a lesser extent, so may health care outcomes. Widely-used continuing medical education delivery methods, such as conferences, have little direct impact on improving professional practice. More effective methods such as systematic practice-based interventions and outreach visits are seldom used by continuing medical education providers.

There are diverse opinions as regards continuing medical education; elicited by research in different countries and different population groups. A research from Australia focused on GPs, physicians and surgeons. It reported that modern, technology-dependent forms of CME were less common but were believed by respondents to be the best mode of delivery. The studied groups showed difference in attitudes, with physicians finding CME more enjoyable than GPs [10]. Another study on users of British Medical Journals online CME reported that younger and more recently qualified doctors choose online CME, and their choice appears to be unrelated to workload and personal pressures [11]. The consistent finding across studies from UK, Australia and South Africa is that traditional CME activities such as
lectures, conferences and journal reading remain the most popular forms of CME used and all doctors found lack of time a barrier to CME activities. [10-12].

There are many issues facing health-related human resource development in the Kingdom of Saudi Arabia, and continuing medical education is not spared from these challenges. CME involves many actors such as providers, sponsors, participants, and regulators. Several challenges have been identified including a lack of transparency in the CME budget, which leads to a too close relationship between the pharmaceutical industry and physicians, as well as issues of coordination between providers, adequate assessment of needs and resources, effectiveness, and quality control [13].

In Saudi Arabia, the Saudi Commission for health specialties (SCFHS) is running different Postgraduate Programs for training of graduates in different health specialties. By the end of the training and passing the assessment modalities the candidate will get the Saudi Board certificate which is the highest professional certificate in general specialties awarded by the Commission. Each program will run for five years. Similarly, the SCFHS is running CME which is defined as educational activities, which aim to keep health practitioners abreast with the latest developments in their specialties and related fields.

In Saudi Arabia, the regulatory body that approves and accredits all CMEs, the Saudi Commission for Health Specialties (SCFHS), has ruled that all healthcare practitioners must acquire a set number of CME hours minimum 30 hours annually for successful licensing to practice as physician in the Kingdom. Resident physicians in different SCFHS post graduate training programs are exempted from CME activities for finalizing their training in the due programs. Yet, they need attending minimal CME hours to be licensed for their practice. Saudi candidates getting their postgraduate training outside the Kingdom are also required to have CME hours before licensing to practice in Saudi Arabia. CME activities are given to practicing physicians (residents, specialists and consultants) [3]

Essentially, this regulation presumes that attending CME events secures the improvement of attendees' knowledge and skills [3]. However, this regulatory approach is not sufficient to ensure effective learning. There is a need to give proper attention to principles of adult learning to enable learners to be active participants in developing training programs. It is also necessary to fashion the learning activities according to learners' goals [14]. In Saudi Arabia, there have been no substantial reports on such aspects of CME [3].

Previously, the related studies have focused on quality issues in CME rather than the needs assessment of physicians who are the major stakeholders [15, 16]. A key study has described the development, implementation, and evaluation of an educational program in family medicine for general practitioners in Saudi Arabia that trained about 20% of all GPs showed very promising results with significant improvement of knowledge [17]. However, there is dearth of information on the CME needs of the participants.

Up to the researcher's knowledge, no similar study has been conducted in Abha City, southwestern Saudi Arabia during the past decade to explore the needs and practices among resident physicians regarding
their continuing education or to clarify trainees’ views about different aspects of CME.

Aim of Study:

This study aims to explore CME practices of resident physicians in Abha City and the existing gaps.

Study Objectives

- To identify the current CME practices of resident physicians.
- To explore opinions of resident physicians regarding continuing medical education.

To identify barriers in CME practice among resident physicians.

Methods

Study design:

A cross-sectional survey study was conducted among male and female residents at governmental hospitals (Maternity and Children's Hospital and Aseer Central Hospital) in Abha City in 2018.

Target population and sampling:

With an anticipated proportion of CME training among residents of 50% [3] and an absolute precision of 6% at 95% confidence, the minimal sample size needed for the survey was calculated to be 267 residents [18]. To account for potential nonresponse, an overall sample size of 300 residents was initially planned for the study. A list of residents was obtained that yielded 400 currently enrolled residents from all departments. All residents were invited to participate in the study using an online questionnaire. A total of 313 residents returned filled questionnaires for a response rate of 75%. Thirteen incompletely filled questionnaires were discarded, leaving a final sample of 300 residents.

Survey tool:

This study used a self-administered questionnaire that was constructed by incorporating previous validated questionnaires obtained on request from their authors [3, 19]. Besides the personal characteristics of age, gender, nationality, marital status, specialty, position, qualification, and years of experience, the various aspects of continuing professional education were explored. The aspects of CME that were included were as follows. Current participation in CME activities: frequency of CME activity, type of activity (conference, seminar, self-reading), reasons for doing CME, satisfaction with current CME practices, preferred methods of instruction in different CME activities, and barriers to attending CME. Resident preferences for future CME activities (time of activity, duration, evaluation methods) were also elicited.

We analyzed the total satisfaction score by adding up the ordinal responses of trainees according to the satisfaction score between 0 and 4, where strongly disagree = 0 and strongly agree = 4. Cronbach’s alpha
for the 8 satisfaction questions was 0.85, which indicates very good reliability and internal consistency. Obtaining all the necessary official approvals and research ethical committees prior to conduct the study.

Data collection and analysis:

The study questionnaire was emailed to all residents working in the Asser region. Data were analyzed using the SPSS software package, version 22. Categorical data were summarized using frequencies, percent and presented using tables and bar graphs, while continuous data were summarized using median, range, arithmetic mean, and standard deviation (SD). Chi-square, student “t” test and ANOVA were used as tests of significance. The level of significance was set at \(p \leq 0.05 \).

Results

The present study included a total of 300 residents. Figure 1 shows the CME activities undertaken by the study participants in the previous year. During this period, 239 (79.7%) of the participants reported attending lectures and seminars for their CME needs. There were 102 who attended workshops (34%), whereas 89 (29.7%) reported attending group discussions and 119 (39.7%) reported attendance at case presentations. Electronic CMEs were used by a minority \(n = 24, \) 8%, and only 82 (27.3%) attended journal clubs. There were 131 (43.7%) who attended conferences. Residents usually engage in more than one modality of CME activities.

Table 1 shows that the study included 176 (58.7%) males and 124 (41.3%) females among the participating residents, most of whom were Saudis \(n = 289, \) 96.3%. Half of all residents were married. By specialty, 24.3% were residents in family medicine, 21.3% in internal medicine, and 12.7% in pediatrics. Other specialties, namely obstetrics and gynecology, ENT, and dermatology, made up approximately 5%, and orthopedics, preventive medicine, and general surgery about 4% of study participants each. Lower figures were shown for ophthalmology (3.7%), radiology (3.3%), and psychiatry (2%), while emergency medicine, restorative dentistry, and urology each made up less than 2% of the residents. By the level of residency, there were 89 residents (29.7%) in first year (R1); almost equal numbers of R2 and R3, 75 and 74 (25% and 24.7% respectively); 44 (14.7%) R4; and only 7 (2.3%) were R5.

Table 1 shows also the average total satisfaction scores. There were no significant differences between males and females regarding satisfaction with CME activities scores \(p = 0.9816 \). Similarly, no significant differences in scores were found by nationality and marital status. Satisfaction scores with CME activities were variable across specialties \(p = 0.039 \). The lowest satisfaction scores were among psychiatry residents and the highest was among the restorative dentistry and surgery residents. There were no significant differences in satisfaction scores by training level \(p = 0.54 \).

Table 1: Satisfaction score with CME activities among the study residents \(n=300 \) by characteristics
Characteristic	Frequency	Percentage (%)	Satisfaction score Mean ± SD	P-value
Gender				
Males	176	58.7%	21.017 ± 5.310	0.9816 a
Females	124	41.3%	21.032 ± 5.847	
Marital Status				
Married	151	50.3%	21.20±5.44	0.5882 a
Single	149	49.7%	20.85±5.65	
Nationality				
Saudi	289	96.3%	21.017±5.541	0.9236 a
Non-Saudi	11	3.7%	21.182±5.456	
Training Specialty				
Family Medicine	73	24.3%	21.88±5.19	
Internal Medicine	64	21.3%	22.41±5.35	
Paediatrics	38	12.7%	19.39±6.93	
Obstetrics and Gynaecology	17	5.7%	20.76±6.09	
ENT	15	5%	20.07±4.30	
Dermatology	14	4.7%	21.29±5.12	
Orthopaedics	14	4.7%	21.00±4.52	
Preventative Medicine	14	4.7%	19.21±3.33	
General Surgery	12	4%	18.83±6.71	
Ophthalmology	11	3.7%	19.09±6.71	
Radiology	10	3.3%	21.00±3.62	
Psychiatry	6	2%	16.00±5.37	
Emergency Medicine	4	1.3%	24.50±4.43	
Restorative Dentistry	4	1.3%	26.00±1.83	
Urology	4	1.3%	20.00±9.09	
Training Level				
R1	89	29.7%	20.27±4.85	0.5400 b
R2	75	25%	21.19±6.72	
R3	74	24.7%	21.47±5.14	
R4	44	14.7%	21.82±5.14	
R5	7	2.3%	21.29±5.59	
Table 2 describes the residents' beliefs about continuous medical education as assessed by their level of agreement with various statements. To the statement, "I believe that my CME needs are currently satisfied," 42.3% of the residents agreed, compared to 24.3% who disagreed. To the statement, "I believe that my medical school education encouraged me to be an independent self-learner," 49.4% agreed and 24.3% were neutral. More than two-thirds (68.7%) agreed that "I believe that CME activities should be organized on a national level." To the statement, "CME activities keep me up-to-date," a majority (65%) agreed and 8% disagreed. Some (68.7%) agreed that "CME activities help me to improve my practice," in contrast to 8.3% who disagreed. A majority (65%) agreed with the statement, "CME activities affect my professional confidence," compared to 26.7% who were neutral. As to the statement "CME activities offer new learning opportunities," 65.3% agreed and 7.7% disagreed or strongly disagreed, respectively. "CME activities provide sufficient scopes for questions and discussions" was agreed to by 57.7%, while 10.7% disagreed.

Statement	Agree N (%)	Neutral N (%)	Disagree N (%)
I believe that my CME needs are currently satisfied	127 (42.3)	100 (33.3)	73 (24.4)
I believe that my medical school education encouraged me to be independent self-learner	148 (49.4)	73 (24.3)	79 (26.3)
I believe that CME activities should be organized on a national level	206 (68.7)	66 (22.0)	28 (9.3)
CME activities keep me up to date	195 (65.0)	81 (27.0)	24 (8.0)
CME activities help me to improve my practice	203 (68.7)	72 (24.0)	25 (8.3)
CME activities affect my professional confidence	195 (65.0)	80 (26.7)	25 (8.3)
CME activities offer new learning opportunities	196 (65.3)	81 (27.0)	23 (7.7)
CME activities provide sufficient scope for questions and discussions	173 (57.6)	95 (31.7)	32 (10.7)

Table 3 describes the residents' perceptions of the effectiveness of different CME activities (Conferences/symposia, workshops/ courses, and interdepartmental activities). The table shows that...
workshops and courses were significantly most effective compared to the other two methods in retention of knowledge, improving attitudes, improving clinical skills, improving managerial skills, and in proving practice behaviors. On the other hand, inter-departmental activities were significantly most effective compared to the other two methods in improving academic skills and improving departmental image.

Table 3: Residents’ perceptions (n=300) of the effectiveness of different CME activities.

Benefit of CME Activity	CME method analyzed for effectiveness									
	Conference/Symposia N0. (%)	Workshop/courses N0. (%)	Inter-Departmental Activities N0. (%)	Pα						
Retention of knowledge	A (47 (15.7))	B (144 (48.0))	C (109 (36.3))	A (37 (12.3))	B (111 (37.0))	C (152 (50.7))	A (43 (14.3))	B (124 (41.3))	C (133 (44.4))	0.013
Improving attitude	A (55 (18.3))	B (132 (44.0))	C (113 (37.7))	A (36 (12.0))	B (117 (39.0))	C (147 (49.0))	A (40 (13.3))	B (116 (38.7))	C (144 (48.0))	0.025
Improving clinical skills	A (56 (18.7))	B (127 (42.3))	C (117 (39.0))	A (21 (7.0))	B (95 (31.7))	C (184 (61.3))	A (37 (12.3))	B (108 (36.0))	C (155 (51.7))	0.001
Improving clinical outcomes	A (42 (14.0))	B (117 (39.0))	C (141 (47.0))	A (28 (9.3))	B (101 (33.7))	C (171 (57.0))	A (32 (10.7))	B (110 (36.7))	C (158 (52.7))	0.129
Improving managerial skills	A (54 (18.0))	B (131 (43.7))	C (115 (38.3))	A (29 (9.7))	B (109 (36.3))	C (162 (54.0))	A (32 (10.7))	B (122 (40.7))	C (146 (48.6))	0.001
Improving academic skills	A (56 (18.7))	B (103 (34.3))	C (141 (47.0))	A (35 (11.7))	B (101 (33.7))	C (164 (53.3))	A (30 (10.0))	B (106 (35.3))	C (164 (54.7))	0.019
Improving communication skills	A (50 (16.7))	B (123 (41.0))	C (127 (42.3))	A (34 (11.3))	B (106 (35.3))	C (160 (53.4))	A (42 (14.0))	B (111 (37.0))	C (147 (49.0))	0.055
Improving practice behavior	A (50 (16.7))	B (123 (41.0))	C (127 (42.3))	A (30 (10.0))	B (100 (33.3))	C (170 (56.7))	A (39 (13.0))	B (115 (38.3))	C (146 (48.7))	0.008
Improving departmental image	A (54 (18.0))	B (131 (43.7))	C (115 (38.3))	A (40 (13.3))	B (113 (37.7))	C (147 (49.0))	A (35 (11.7))	B (111 (37.0))	C (154 (51.3))	0.012

A = Least Effective, B = No Opinion, C = Most Effective
α “using Chi square test”
Table 4 shows participants’ preferred methods of instruction in the CME activities during the past one year. The highest frequency of residents preferred that lectures should take place in the form of a conference/symposium (n = 111, 37%). For demonstration-type CME activities, residents preferred that it should take place in workshops (n = 119, 39.7%), while for hands-on practice, most residents preferred that it should take place in workshops (n = 162, 54%). Similarly, for small group CME seminar practice, the highest frequency of residents preferred workshops (n = 108, 36%). However, for live-case-presentation CMEs, residents equally preferred workshops and conferences (n = 88, 29.3%; 89, 29.7%, respectively), while for simulation CMEs, workshops were the preference of 40.7% (123) of the residents. For distance learning CMEs and electronic meeting CMEs, the highest frequency of residents preferred conferences (n = 119, 39.7%; n = 134, 44.7%, respectively).

Table 4: Residents’ preferred methods (n=300) of instruction in the CME activities during the past one year

CME methods	Conference /Symposium N (%)	Workshop N (%)	Courses N (%)	Inter- Departmental Activities N (%)
Lecturing	111 (37.0)	52 (17.3)	60 (20.0)	77 (25.7)
Demonstration	97 (32.3)	119 (39.7)	60 (20.0)	24 (8.0)
Hands-on practice	50 (16.7)	162 (54.0)	49 (16.3)	39 (13.0)
Small group seminar	52 (17.4)	108 (36.0)	68 (22.6)	72 (24.0)
Live case presentation	89 (29.7)	88 (29.3)	50 (16.7)	74 (24.7)
Simulations	57 (19.0)	123 (40.7)	55 (18.3)	66 (22.0)
Distant learning	119 (39.7)	70 (23.3)	84 (28.0)	27 (9.0)
Electronic conferencing	134 (44.7)	53 (17.7)	82 (27.3)	31 (10.3)

Table 5 shows the frequency distribution of respondents by their preferred CME resources, frequency of CME activity, and reasons for using different CME activities and barriers. The most prevalent self-reading method was reading medical books (n = 230, 76.7%), followed by online websites for self-reading (n = 196, 65.3%). One out of each five residents reported reading medical journals, which was lower than the 30.3% who reported using social media for self-reading purposes. When asked how often they read, the highest frequency of residents (n = 128, 42.7%) reported weekly self-reading, compared to 116 (38.7%) who reported daily self-reading. The reasons for using self-reading as a CME method were ease of time
management (n = 208, 69.3%), ease of place (n = 104, 34.7%), price (n = 54, 18%), subject (n = 86, 28.7%),
and reputation of provider (n = 13, 4.3%). Barriers to self-reading were reported as being busy (n = 212,
70.7%), lack of interest (n = 31, 10.3%), lack of provision (n = 26, 8.7%), lack of suitability (n = 15, 5%), and
high cost (n = 26, 8.7%).

Table 5: Distribution of residents by their preferred CME resources, frequency of CME activity, reasons to use
different CME activities and barriers to attending CME

Variable	Self-Reading N (%)	Attending Lectures & Seminars N (%)	Attending Courses N (%)
CME Resources			
Medical books:	230 (76.7%)	Conferences: 106 (35.3%)	Training courses: 186 (62%)
Medical journals:	63 (21%)	Live casts: 74 (24.7%)	Workshops: 115 (38.3%)
Online websites:	196 (65.3%)	Presentations: 195 (65.0%)	Group discussions: 83 (27.7%)
Social media:	91 (30.3%)	Distance learning: 19 (6.3%)	Others: 16 (5.3%)
Other methods:	13 (4.3%)	Other methods: 13 (4.3%)	
Frequency			
weekly	128 (42.7%)	130 (43.3%)	66 (22%)
daily	116 (38.7%)	46 (15.3%)	23 (7.7%)
monthly	37 (12.3%)	88 (29.3%)	81 (27%)
rarely	17 (5.7%)	57 (19%)	134 (44.7%)
Reason			
time	208 (69.3%)	125 (41.7%)	122 (40.7%)
place	104 (34.7%)	134 (44.7%)	112 (37.3%)
price	54 (18%)	37 (12.3%)	39 (13%)
subject	86 (28.7%)	49 (16.3%)	73 (24.3%)
speaker certification	13 (4.3%)	26 (8.7%)	36 (12%)
reputation of provider		14 (4.7%)	23 (7.7%)
Barriers			
being busy	212 (70.7%)	155 (51.7%)	124 (41.3%)
lack of interest	31 (10.3%)	50 (16.7%)	36 (12%)
lack of provision	26 (8.7%)	50 (16.7)	87 (29%)
lack of availability	NA	67 (22.3%)	101 (33.7%)
lack of suitability	15 (5.0%)	18 (6%)	15 (5%)
high cost	26 (8.7%)	37 (12.3%)	46 (15.3%)

Another method of CME was attending lectures and seminars, for which 106 residents (35.3%) reported
attendance at conferences, 74 (24.7%) live casts, 195 (65.0%) presentations, and 19 (6.3%) used distance
learning. In terms of the frequency of lectures and seminars for CME activities among residents, the
highest frequency of residents (n = 130, 43.3%) reported weekly attendance, compared to 46 (15.3%) who
reported daily use of lectures and seminars for CME needs. Also, 88 (29.3%) reported monthly attendance,
while 57 (19%) reported rarely attending lectures or seminars. As for why they chose lectures and
seminars as a CME method, time was reported by 125 residents (41.7%), place by 134 (44.7%), price by
37 (12.3%), subject by 49 (16.3%), speaker certification by 26 (8.7%), and the reputation of the provider by 14 (4.7%). Barriers to using lectures and seminars for CME activities as reported by residents were being busy by 155 (51.7%), lack of interest by 50 (16.7%), lack of provision by 50 (16.7%), lack of availability by 67 (22.3%), lack of suitability by 18 (6%), and high cost by 37 (12.3%).

Attending courses as a CME activity was reported by 186 (62%) residents, 115 (38.3%) residents reported attending workshops, while group discussions were reported by 83 (27.7%). In terms of the frequency of attending CME courses, the highest frequency of residents (n = 134, 44.7%) reported rare attendance, compared to 81 (27%) who reported monthly attending CME courses. However, 66 (22%) reported weekly attendance and 23 (7.7%) daily. In terms of the reason for choosing courses as a CME method, time was reported by 122 (40.7%), place by 112 (37.3%), price by 39 (13%), subject by 73 (24.3%), speaker certification by 36 (12%), and reputation of provider by 23 (7.7%). Barriers to attending courses were; being busy (n = 124, 41.3%), lack of interest (n = 36, 12%), lack of provision (n = 87, 29%), lack of availability (n = 101, 33.7%), lack of suitability (n = 15, 5%), and high cost (n = 46, 15.3%).

Figure 2 shows residents’ preferences regarding various aspects of CME activities. The preferred duration for CME activities for the majority of participating residents (n = 153, 51%) was one to two days, followed by 137 (45.7%) who preferred three to seven days. The majority (n = 194, 64.7%) preferred that CMEs should take place on a workday, compared to 106 (35.3%) who preferred a non-workday. Mornings were preferred by most participants (n = 216, 72%), with only 45 (15%) preferring afternoons and 43 (14.3%) evenings. Regarding method of evaluation, the highest frequency of residents (n = 135, 45%) preferred a questionnaire evaluation for CME activities, compared to 114 (38%) who preferred group discussion and 55 (18.3%) who preferred verbal assessment.

Discussion

CME, Continuing Medical Education, constitutes a wide range of educational activities that aim for the maintenance, development, and improvement of the knowledge, skills, and professional performance that enable practicing clinicians to provide safe and efficacious clinical services. Lifelong learning remains an indispensable element in enhancing clinical knowledge and professional behavior among practicing clinicians [20], as clinical experience over the years does not necessarily yield higher levels of skills, professional behavior, or knowledge [21, 22]. This study is unique in exploring various aspects of CME activities utilized by resident trainees in Abha City in Saudi Arabia, as well as their opinions of the effectiveness of CME activities and the barriers that hinder accessing them.

This study found that the most popular CME activity among the participating residents was lectures and seminars. Lectures are not just popular in our sample of trainees, but also remain the main source for CME. Around the world, studies exploring physicians’ CME preferences agreed with our study findings [6, 23]. Also, a recent exploratory study from Saudi Arabia confirmed that the majority of healthcare professionals preferred symposia and short courses [3]. Indeed, lectures are famous as one of the most common forms of dispensing knowledge among clinicians and have been found to have a positive
impact on knowledge and skills, though they have very little performance-improving effect [6]. The least popular CME activity was electronic activities. These are non-contact CME activities, which could be one of the reasons for their unpopularity among trainees [24]. Research has found that the more interaction there is between the adult learner and the educator, the greater the satisfaction with the learning method [23]. Electronic CME activities have certain sophisticated requirements, such as access to smart devices and software and the ability to afford extensive data connectivity costs [25]. Electronic CME activities have many advantages, such as flexibility and individualized learning format [24, 26], and trainees should be encouraged to make effective use of them. Notably, some studies did not find substantial differences between didactic lectures and online teaching methods in improving diagnostic skills among physicians [27, 28].

In the current study, the resident physicians did not show much inclination towards using live casts, or electronic conferencing, particularly for workshops, courses or inter departmental activities. This is an interesting finding, considering that internet penetration rate in KSA at 93.3%, is among the highest globally [29]. This highlights under-usage of an effective resource friendly learning method, which has shown to improve knowledge, attitude and practice of physicians [30]. This trend has been reported earlier by students from a university in Najran, Saudi Arabia, who reported that 97% of them have computer and internet access, yet 73% opted for conventional learning methods.[31]

One of the main findings of this study is that the main barrier against attending all forms of CME was being busy, although it was higher for self-reading than contact CME like attending lectures and seminar courses. Our findings are a stark reminder of the reality of how busy clinical services are nowadays. No matter how motivated a clinician is, time pressures can hamper their CME goals attainment. This finding has been confirmed across national and international studies [32], and indeed little has changed in the past two decades, as a study in the same region some 20 years ago revealed that physicians had little time allocated for CME practice [33]. Time constraints were the second most common reason for not attending CME activities in a Pakistani sample of physicians[34]. The problem of a lack of protected time, we suspect, must have increased in recent times. Contrary to our findings, a recent study from the Eastern Region of Saudi Arabia found that lack of postgraduate education and dissatisfaction with CME activities were the main reported barriers to physicians’ accessing CME activities [25]. Interestingly, that study found that high case load is an impetus for physicians to gain extra knowledge and skills and engage in CME more frequently [35].

Another reassuring finding in this paper that almost half of the participants affirmed that conferences improved their clinical practice and academic skills. Also, two out of every three residents confirmed that workshops and courses improved their clinical skills. This overall improvement in clinical skills as an effect of engaging in CME has been well established in several educational papers [36-39] and is consistent with the results of the current study. The results of our study are grounds for cautious optimism and point to improvements in physicians’ satisfaction with CMEs over that reported in the last decade[19].
This study did not establish any background factors exerting a significant impact on satisfaction with CMEs, which agrees with the results of another study [40]. It is reassuring that gender was not a determining factor in satisfaction with CME activities. Only few differences were observed between training specialties, and it was worrying that psychiatric trainees were the least satisfied among the participants. Many surveys indicate that dental health professionals are in general more satisfied with CME activities than other health-care workers[39]. This could explain the differences in satisfaction scores between trainees in restorative dentistry and other medical trainees.

This study provided some much-needed answers. While it was comprehensive in assessing the CME practices and needs of the residents, it is limited by the fact that the study concerns resident physicians of one region and its results are not generalizable to all of KSA. Other limit to our study was involved all resident physicians at governmental care hospitals in Abha City which trained hospitals and all residents were considered as trainees' physician.

Limitations of the study were mostly related to being performed in a local region of Saudi Arabia. Generalization of the present study should be performed with some caution.

Conclusions

In conclusion, resident physicians mostly attended conferences, lectures and seminars and to a lesser extent workshops and group discussions for their CME needs. Electronic CMEs were used by a minority of them. They reported workshops and courses most effective in retention of knowledge, improving attitudes, improving clinical skills, improving managerial skills, and in proving practice behaviors. The reported barriers to CME were being busy, lack of provision, lack of suitability and high cost. Based on the findings of this study, it is recommended that online learning be promoted as a CME format for trainees and practicing clinicians in Saudi Arabia. There should be support of residents and clinicians through provision of protected time for their CME activities outside their daily clinical commitments. Future research should focus on the effects of various forms of CME on clinical effectiveness as well as the professionalism and communication skills of physicians.

Abbreviations

Continuing Medical Education (CME), Number(n),Saudi Commission for Health Specialties (SCFHS),standard deviation (SD),Analysis of variance(ANOVA),statistical hypothesis test (t-test),The level of significance (p),King Khalid university (KKU),Research ethical committee (REC),Ear nose throat (ENT),Residents first level(R1)

Residents second (R2), Residents third (R3), Residents fourth(R4),Residents fifth (R5).

Declarations

Ethics approval and consent to participate:
Informed consent was obtained from all residents prior to data collection as written consent. All the selected respondents were given assurance of confidentiality that the information gathered will be used exclusively for research purposes. This study was approved by the Institutional Review Board of the College of Medicine; King Khalid university (KKU) (Reference #: REC: 2018/05/72).

All necessary official approvals to conduct this study were obtained.

Consent for publication: Not applicable.

Availability of data and materials:

The data that support the findings of the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests

Funding: None

Authors’ contributions

SA, NM and AM were the main authors of the manuscript. AF planned the study. NM and AF contributed to the data analysis and manuscript writing with assistant and supervision of SA. MA, AA and AM assisted in final analyses and writing the manuscript in final proof article. All authors approved submission of the final manuscript.

Acknowledgments:

The authors would like to thank all the resident physicians, who despite their tight schedules agreed to participate in this work. Without their contribution, this study would not have been possible. We also acknowledge the support of all those who facilitated this work.

References

1. Ahmed K, Ashrafian H: *Life-long learning for physicians*. Science 2009, 326(5950):227-227.
2. Marinopoulos SS, Dorman T, Ratanawongsa N, Wilson LM, Ashar BH, Magaziner JL, Miller RG, Thomas PA, Prokopowicz GP, Qayyum R: *Effectiveness of continuing medical education*. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. edn.: Centre for Reviews and Dissemination (UK); 2007.
3. Alkhazim MA, Althubaiti A: *Continuing medical education in Saudi Arabia: Experiences and perception of participants*. Journal of Health Specialties 2014, 2(1):13.
4. Balmer JT: *The transformation of continuing medical education (CME) in the United States*. Advances in medical education and practice 2013, 4:171.
5. Moja L, Kwag KH: Point of care information services: a platform for self-directed continuing medical education for front line decision makers. Postgraduate medical journal 2015, 91(1072):83-91.

6. VanNieuwenborg L, Goossens M, De Lepeleire J, Schoenmakers B: Continuing medical education for general practitioners: a practice format. Postgraduate medical journal 2016, 92(1086):217-222.

7. Buyske J: For the protection of the public and the good of the specialty: maintenance of certification. Archives of Surgery 2009, 144(2):101-103.

8. Sehlbach C, Farr A, Allen M, Guiral JG, Wielders PL, Stolz D, Rohde G: ERS Congress highlight: educational forum on continuing professional development. In.: Eur Respiratory Soc; 2018.

9. Davis DA, Thomson MA, Oxman AD, Haynes RB: Changing physician performance: a systematic review of the effect of continuing medical education strategies. Jama 1995, 274(9):700-705.

10. Stewart GD, Khadra MH: The continuing medical education activities and attitudes of Australian doctors working in different clinical specialties and practice locations. Australian Health Review 2009, 33(1):47-56.

11. Sandars J, Walsh K, Homer M: High users of online continuing medical education: A questionnaire survey of choice and approach to learning. Medical teacher 2010, 32(1):83-85.

12. Botes J, Bezuidenhout J, Steinberg WJ, Joubert G: The needs and preferences of general practitioners regarding their CPD learning: a Free State perspective. South African Family Practice 2016, 58(3):114-118.

13. Alghamdi AMS: Challenges of continuing medical education in Saudi Arabia's hospitals. Newcastle University; 2012.

14. Davis DA, Prescott J, Fordis Jr CM, Greenberg SB, Dewey CM, Brigham T, Lieberman SA, Rockhold RW, Lieff SJ, Tenner Jr TE: Rethinking CME: an imperative for academic medicine and faculty development. Academic Medicine 2011, 86(4):468-473.

15. Al-Shehri AM, Alhaqwi AI, Al-Sultan MA: Quality issues in continuing medical education in Saudi Arabia. Annals of Saudi medicine 2008, 28(5):378-381.

16. Alsabban W, Kitto S: Bridging Continuing Medical Education and Quality Improvement Efforts: A Qualitative Study on a Health Care System in the Kingdom of Saudi Arabia. Journal of Continuing Education in the Health Professions 2018, 38(4):255-261.

17. Alshammary SA, Ratnapalan S, Akturk Z: Continuing medical education as a national strategy to improve access to primary care in Saudi Arabia. Journal of Educational Evaluation for Health Professions 2013, 10.

18. Lwanga SK, Lemeshow S, Organization WH: Sample size determination in health studies: a practical manual: World Health Organization; 1991.

19. Al-Mosilhi AH, Kurashi NY: Current situation of continuing medical education for primary health care physicians in Al-Madinah Al-Munawarah province, Saudi Arabia. Journal of family & community medicine 2006, 13(2):75.
20. Veenstra GL, Ahaus K, Welker GA, Heineman E, van der Laan MJ, Muntinghe FL: Rethinking clinical governance: healthcare professionals’ views: a Delphi study. BMJ open 2017, 7(1):e012591.

21. Bower EA, English C, Choi D, Cedfeldt AS, Girard DE: Education to return nonpracticing physicians to clinical activity: a case study in physician reentry. Journal of Continuing Education in the Health Professions 2010, 30(2):89-94.

22. Finlayson AR, Dietrich MS, Neufeld R, Roback H, Martin PR: Restoring professionalism: the physician fitness-for-duty evaluation. General hospital psychiatry 2013, 35(6):659-663.

23. Yee M, Simpson-Young V, Paton R, Zuo Y: How do GPs want to learn in the digital era? Australian family physician 2014, 43(6):399.

24. Curran VR, Fleet LJ, Kirby F: A comparative evaluation of the effect of internet-based CME delivery format on satisfaction, knowledge and confidence. BMC medical education 2010, 10(1):10.

25. Hemmati N, Omrani S, Hemmati N: A comparison of internet-based learning and traditional classroom lecture to learn CPR for continuing medical education. Turkish Online Journal of Distance Education 2013, 14(1):256-265.

26. Pullen D: Doctors online: learning using an internet based content management system. International Journal of Education and Development using ICT 2013, 9(1):50-63.

27. McFadden P, Crim A: Comparison of the effectiveness of interactive didactic lecture versus online simulation-based CME programs directed at improving the diagnostic capabilities of primary care practitioners. Journal of Continuing Education in the Health Professions 2016, 36(1):32-37.

28. Pugh CM, Arafat FO, Kwan C, Cohen ER, Kurashima Y, Vassiliou MC, Fried GM: Development and evaluation of a simulation-based continuing medical education course: beyond lectures and credit hours. The American Journal of Surgery 2015, 210(4):603-609.

29. Sani OA: Effect of Internet, Money Supply and Volatility on Economic Growth in Indonesia. 2019.

30. Bonabi M, Mohebbi S, Martinez-Mier E, Thyvalikakath T, Khami M: Effectiveness of smart phone application use as continuing medical education method in pediatric oral health care: a randomized trial. BMC medical education 2019, 19(1):1-7.

31. Chanchary FH, Islam S: Is Saudi Arabia ready for e-Learning? A case study. In: The 12th International Arab Conference on Information Technology, Naif Arab University for Security Sciences, Saudi Arabia, retrieved: January: 2011; 2011: 2017.

32. Reed VA, Schifferdecker KE, Turco MG: Motivating learning and assessing outcomes in continuing medical education using a personal learning plan. Journal of Continuing Education in the Health Professions 2012, 32(4):287-294.

33. Alsharif AI, Al-Khaldi YM: Attitude, practice and needs for continuing medical education among primary health care doctors in Asir region. Journal of family & community medicine 2001, 8(3):37.

34. Ali SA, ul Fawwad SH, Ahmed G, Naz S, Waqar SA, Hareem A: Continuing medical education: A cross sectional study on a developing country’s perspective. Science and engineering ethics 2018, 24(1):251-260.
35. Fils J, Bhashyam AR, Pierre JBP, Meara JG, Dyer GS: Short-term performance improvement of a continuing medical education program in a low-income country. World journal of surgery 2015, 39(10):2407-2412.

36. Fleet LJ, Fox G, Kirby F, Whitton C, McIvor A: Evaluation outcomes resulting from an internet-based continuing professional development (CPD) asthma program: its impact on participants' knowledge and satisfaction. Journal of Asthma 2011, 48(4):400-404.

37. Gist DL, Bhushan R, Hamarstrom E, Sluka P, Presta CM, Thompson JS, Kirsner RS: Impact of a Performance Improvement CME activity on the care and treatment of patients with psoriasis. Journal of the American Academy of Dermatology 2015, 72(3):516-523.

38. Vakani F, Jafri W, Bhulani N, Sheerani M: Physician satisfaction survey on continuing medical education. 2012.

39. Bynum AB, Irwin CA, Cohen B: Satisfaction with a distance continuing education program for health professionals. Telemedicine and e-Health 2010, 16(7):776-786.

40. Abdullah A-H, Alramadan M, Aljasim M, Al Ramadhan B: Barriers to Practicing Continuous Medical Education among Primary Health Care Physicians in Alahsa, Kingdom of Saudi Arabia. Journal of Health Education Research & Development 2015:1-7.

Figures

![CME activities taken by residents in the previous year](image)

Figure 1

Distribution of CME activity taken by the residents in the previous year
Figure 2

Residents’ preferences regarding various aspects of CME activities

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- ISSMSTROBECheklistCME.pdf
- questionnairesurveytool.doc