Growth of Turaev-Viro invariants and cabling

Renaud Detcherry

Abstract

The Chen-Yang volume conjecture [4] states that the growth rate of the Turaev-Viro invariants of a compact oriented 3-manifold determines its simplicial volume. In this paper we prove that the Chen-Yang conjecture is stable under \((2n + 1, 2)\) cabling.

1 Introduction

For \(M\) a 3-manifold that is either closed or with boundary, the Turaev-Viro invariants \(TV_r(M)\) are real valued topological invariants that can be computed using state sums over a triangulation of \(M\). They depend of the choice of an \(2r\)-th root of unity \(q\) whose square is a primitive \(r\)-th root; in this paper we will always choose \(q = e^{2\pi i/r}\) and assume \(r\) odd. Moreover, when \(M\) is a manifold with empty or toroidal boundary, the invariants \(TV_r(M)\) are always non-negative.

The geometric meaning of the Turaev-Viro invariants is hard to understand from their state sum definition. However, a conjecture of Chen and Yang [4] states that the asymptotics of the \(TV_r\) invariants at root \(q = e^{2\pi i/r}\) is related to hyperbolic volume:

Conjecture 1.1. [4] For any hyperbolic manifold \(M\) (closed or with boundary), we have

\[
\lim_{r \to \infty, \ r \text{ odd}} \frac{2\pi}{r} \log |TV_r(M, q = e^{2\pi i/r})| = \text{Vol}(M)
\]

where \(\text{Vol}(M)\) is the hyperbolic volume of \(M\).

Conjecture 1.1 is reminiscent of the Volume Conjecture of Kashaev and Murakami-Murakami [7][9] where the \(TV_r\) invariants are replaced with evaluations \(J_n(K, e^{2\pi i/n})\) of the normalized colored Jones polynomials of an hyperbolic knot.

In [6], Yang, Kalfagianni and the author gave a formula relating the Turaev-Viro invariants of a link complement to colored Jones polynomials, establishing a connection between the two conjectures. In the same paper, Conjecture 1.1 was proved for the complements of the figure-eight knot, the borromean link and knots of Gromov norm zero.

Let us define the growth rate of Turaev-Viro invariants by:

Definition 1.2. Let \(M\) be a 3-manifold, closed or with boundary. Then the Turaev-Viro growth rate is

\[
LTV(M) = \limsup_{r \to \infty, \ r \text{ odd}} \frac{2\pi}{r} \log |TV_r(M, q = e^{2\pi i/r})|.
\]

A way to restate Conjecture 1.1 for general 3-manifold (not necessarily hyperbolic), is the following:

Conjecture 1.3. For any compact oriented 3-manifold \(M\), we have

\[
LTV(M) = \text{Vol}(M),
\]

where \(\text{Vol}(M)\) is the simplicial volume of \(M\).
We recall that the simplicial volume of M can be thought either as the sum of the hyperbolic volumes of the hyperbolic pieces in the JSJ decomposition of M, or as $v_3 ||M||$ where $||M||$ is the Gromov norm of M. Note that the Turaev-Viro invariants sometimes vanish on lens spaces, thus replacing the limit by an upper limit is necessary.

In [5], Kalfagianni and the author investigated the growth rate of Turaev-Viro invariants. They showed that the growth rate of Turaev-Viro invariants satisfies properties similar to that of the simplicial volume:

Theorem 1.4. [5] Let M be a compact oriented 3-manifold, with empty or toroidal boundary.

1. If M is a Seifert manifold, then there exists constants $B > 0$ and N such that for any odd $r \geq 3$, we have $TV_r(M) \leq Br^N$ and $LTV(M) \leq 0$.
2. If M is a Dehn-filling of M', then $TV_r(M) \leq TV_r(M')$ and $LTV(M) \leq LTV(M')$.
3. If $M = M_1 \cup M_2$ is obtained by gluing two 3-manifolds M_1 and M_2 along a torus boundary component, then $TV_r(M) \leq TV_r(M_1)TV_r(M_2)$ and $LTV(M) \leq LTV(M_1) + LTV(M_2)$.

These properties are parallel to the properties of the simplicial volume: the simplicial volume of Seifert manifolds is 0, the simplicial volume decreases under Dehn-filling and is subadditive under gluing along tori [12].

Let p, q be coprime integers, the (p, q)-cabling space is the complement of a (p, q)-torus knot standardly embedded in a solid torus. A (p, q)-cabling of a manifold M with toroidal boundary is a manifold M' obtained by gluing a (p, q)-cabling space to a boundary component of M. In this paper, we will investigate the compatibility of Conjecture 1.1 with $(p, 2)$-cabling. We will show the following:

Theorem 1.5. Let M be a manifold with toroidal boundary and M' be obtained by gluing a $(p, 2)$-cabling space $C_{p,2}$ to a boundary component of M. Then there are constants $B > 0$ and $N > 0$ such that

$$
\frac{1}{Br^N} TV_r(M') \leq TV_r(M) \leq Br^N TV_r(M').
$$

In particular, this means that if Conjecture 1.1 is true for M then it is true for M'.

2 Preliminaries

2.1 Reshetikhin-Turaev SO_3-TQFTs and TQFT basis

We briefly sketch the properties of Reshetikhin-Turaev SO_3-TQFTs, defined by Reshetikhin and Turaev in [10]. We will introduce them in the skein-theoretic framework of Blanchet, Habegger, Masbaum and Vogel [3]. We refer to [2][3] for the details of these constructions.

For any odd integer $r \geq 3$, and primitive $2r$-th root of unity A, there is an associated TQFT functor RT_r, with the following properties:

- For Σ a closed compact oriented surface, $RT_r(\Sigma)$ is a finite dimensional \mathbb{C}-vector space, with a natural Hermitian form. Moreover for a disjoint union $\Sigma \bigsqcup \Sigma'$ one has $RT_r(\Sigma \bigsqcup \Sigma') = RT_r(\Sigma) \otimes RT_r(\Sigma')$.

- For M a compact oriented closed 3-manifold, $RT_r(M)$ is the SO_3 Reshetikhin-Turaev invariant, a complex valued topological invariant of 3-manifolds, and for M with boundary, $RT_r(M)$ is a vector in $RT_r(\partial M)$.
- If \((M, \Sigma_1, \Sigma_2)\) is a cobordism, \(RT_r(M) : RT_r(\Sigma_1) \rightarrow RT_r(\Sigma_2)\) is a linear map. Moreover, the composition of cobordisms is sent to the composition of linear maps, up to a power of \(A\).

Moreover, some basis of the TQFT spaces \(RT_r(\Sigma)\) of surfaces has been explicitly described in \([3]\). We recall that for \(\Sigma\) a surface, \(RT_r(\Sigma)\) is a quotient of the Kauffman module of a handlebody of the same genus.

In the case of a torus we get the following picture: the torus \(T^2\) is the boundary of a solid torus \(D^2 \times S^1\). One gets a family of elements of the Kauffman module of \(D^2 \times S^1\) by taking the core \(\{0\} \times S^1\) and coloring it by the \(i-1\)-th Jones-Wenzl idempotents, thus obtaining an element \(e_i \in RT_r(T^2)\). For a definition of Jones-Wenzl idempotents we refer to \([3]\). For \(r = 2m + 1\), and \(A\) a \(2r\)-th root of unity, only finitely many Jones-Wenzl idempotents can be defined, thus only the elements \(e_1, \ldots, e_{2m-1}\) are well defined (see \([3]\) [Lemma 3.2]).

As elements of the Kauffman module of the solid torus, the \(e_i\)'s can also be considered as elements of \(RT_r(T^2)\). One gets a basis of \(RT_r(T^2)\) consisting of elements \(e_i\):

Theorem 2.1. \([3]\) [Theorem 4.10] If \(r = 2m + 1 \geq 3\), then the family \(e_1, e_2, \ldots, e_m\) is an orthonormal basis of \(RT_r(T^2)\). Moreover one has \(e_{m-i} = e_{m+1+i}\) for \(0 \leq i \leq m-1\).

Note that the last part implies that the family \(e_1, e_3, \ldots, e_{2m-1}\) is the same basis of \(RT_r(T^2)\) as the family \(e_1, e_2, \ldots, e_m\), in a different order.

As a consequence of TQFTs axioms, the \(RT_r\) vectors associated to link complements can be tied to values of colored Jones polynomials. Indeed, if \(M = S^3 \setminus L\) is a link complement where \(L\) has \(n\) components, \(RT_r(M)\) will be a vector in \(RT_r(T^2)^{\otimes n}\) whose coefficient along \(e_{i_1} \otimes e_{i_2} \cdots \otimes e_{i_n}\) is obtained by gluing solid tori with cores colored by Jones-Wenzl idempotents to the boundary components of \(M\) and taking the Reshetikhin-Turaev invariant of that. Thus the coefficient we get is \(\eta_r J_i(L, A^4)\), where \(J_i(L, t)\) is the \(i\)-th unnormalized colored Jones polynomial of \(L\), \(i\) is a multi-index of colors, and

\[
\eta_r = RT_r(S^3) = \frac{A^2 - A^{-2}}{\sqrt{-r}}.
\]

2.2 Relationship with the Turaev-Viro invariants

While the Turaev-Viro invariants of compact oriented 3-manifolds \(M\) are defined as state sums over triangulations of \(M\) (see \([13]\)), we will only use a well-known identity relating the Turaev-Viro invariants and Reshetikhin-Turaev invariants. This property was first proved by Roberts \([11]\) in the case of closed 3-manifolds, and extended to manifolds with boundary by Benedetti and Petronio \([1]\). For simplicity we state it only in the case of manifolds with toroidal boundary:

Theorem 2.2. Let \(M\) be a compact oriented manifold with toroidal boundary, let \(r \geq 3\) be an odd integer and let \(A\) be a primitive \(2r\)-th root of unity. Then have

\[
TV_r(M, A^2) = ||RT_r(M, A)||^2
\]

where \(|| \cdot ||\) is the natural Hermitian norm on \(RT_r(\partial M)\).

For \(T^2\) a torus, the natural Hermitian form on \(RT_r(T^2)\) is definite positive for any \(A\), thus \(TV_r(M)\) is non-negative.
2.3 The cabling formula

For \(r = 2m + 1 \), it is convenient to extend the definition of vectors \(e_i \in RT_r(T^2) \) to all possible values of \(i \in \mathbb{Z} \) as follows: we formally set \(e_{-l} = -e_l \) for any \(l \geq 0 \) (and particular \(e_0 = 0 \)) and

\[
e_{l+kr} = (-1)^k e_l
\]

for any \(k \in \mathbb{Z} \). This is compatible with the above mentioned symmetry of the vectors \(e_i \)'s.

Recall that for \(p \) and \(q \) coprime integers with \(q > 0 \), the \((p, q)\)-cabling space \(C_{p,q} \) is the complement in a solid torus of a standardly embedded \((p, q)\)-torus knot. The cobordism \(C_{p,q} \) gives rise in TQFT to a linear map

\[
RT_r(C_{p,q}) : RT_r(T^2) \to RT_r(T^2).
\]

We now describe the action of this map on the basis \(\{e_i\}_{1 \leq i \leq m} \) of \(RT_r(T^2) \). By TQFT axioms, the map \(RT_r(C_{p,q}) \) sends the element \(e_i \) to the element of \(RT_r(T^2) \) corresponding to a \((p, q)\)-torus knot embedded in the solid torus and colored by the \(i - 1 \)-th Jones-Wenzl idempotent. Morton computed these elements using skein calculus, yielding the following formula:

Theorem 2.3. (Cabling formula)

For any odd \(r = 2m + 1 \geq 3 \), for any \(1 \leq i \leq m \), for any coprime integers \((p, q)\), one has:

\[
RT_r(C_{p,2})(e_i) = A^{pq(i^2-1)/2} \sum_{k \in S_i} A^{-2pk(qk+1)} e_{2qk+1}.
\]

where \(S_i \) is the set

\[
S_i = \{-\frac{i-1}{2}, -\frac{i-3}{2}, \ldots, \frac{i-3}{2}, \frac{i-1}{2}\}.
\]

3 Stability under \((p, 2)\)-cabling

In this section, we will let \(r = 2m + 1 \geq 3 \) be an odd integer and let \(A = e^{\frac{i\pi}{r}} \), which is a primitive \(2r \)-th root of unity.

Recall that a \((p, q)\)-cabling \(M' \) of a manifold \(M \) consist of gluing the exterior torus boundary component of \(C_{p,q} \) to a boundary component of \(M \). The JSJ decomposition of \(M' \) will consist of the pieces in the JSJ decomposition of \(M \), plus an extra piece that is the cabling space \(C_{p,q} \). As \(C_{p,q} \) is a Seifert manifold, \(M \) and \(M' \) have the same simplicial volume.

Theorem 3.1. Let \(M \) be a manifold with toroidal boundary, let \(p \) be an odd integer and let \(M' \) be a \((p, 2)\)-cabling of \(M \). Then there exists constants \(B \geq 0 \) and \(N \) such that

\[
\frac{r^{-N}}{B} TV_r(M) \leq TV_r(M') \leq Br^N TV_r(M).
\]

In particular, we have \(LT V(M) = LT V(M') \).

As \(M \) and \(M' \) in the theorem have the same volume, the conclusion implies that if Conjecture I.1 is true for \(M \) it is true for \(M' \).
Proof. First, M' is obtained by gluing $C_{p,2}$, which is Seifert and thus has volume 0, to M along a torus. We know by Theorem 1.4 that

$$TV_r(M') \leq TV_r(M)TV_r(C_{p,2}).$$

But as $C_{p,2}$ has volume 0, one has $TV_r(C_{p,2}) \leq Br^N$ for some constants $B > 0$ and N.

To prove the other inequality, we study the map induced by $C_{p,2}$ in the RT_r-TQFT. If T is the boundary component coming from the $(p,2)$-torus knot and T' is the exterior boundary component, then $C_{p,2}$ induces a map

$$RT_r(C_{p,2}) : RT_r(T) \to RT_r(T').$$

If M has only one boundary component, as RT_r is a TQFT, we have that $RT_r(M') = RT_r(C_{p,2})(RT_r(M))$. If M has other boundary components than the one used to glue $C_{p,2}$, then for any coloring i of the other boundary components of M, we have

$$RT_r(M', i) = RT_r(C_{p,2})(RT_r(M, i)).$$

In all cases, if $RT_r(C_{p,2})$ is invertible, we can write

$$||RT_r(M)|| \leq ||RT_r(C_{p,2})^{-1}|| : ||RT_r(M')||,$$

where $|| \cdot ||$ is the norm induced by the Hermitian form on $RT_r(\partial M)$ or $RT_r(\partial M')$ and $|| \cdot ||$ is the corresponding operator norm.

To conclude the proof of the theorem, we thus only need to prove that $RT_r(C_{p,2})$ is invertible, and that $||RT_r(C_{p,2})^{-1}||$ grows at most polynomially.

We can compute the matrix of $RT_r(C_{p,2})$ in the basis e_1, \ldots, e_m of $RT_r(T)$ by the cabling formula recalled above as Theorem 2.3.

For $q = 2$, the formula states:

$$RT_r(C_{p,2})(e_i) = Ap^{(i^2-1)} \sum_{k \in S_i} A^{-2pk(2k+1)}e_{4k+1}$$

The cabling formula implies that the image lies in the vector space spanned by $e_1, e_3, \ldots, e_{2m-1}$, but by the Symmetry Principle recalled in 2.1 $e_{m-i} = e_{m+1+i}$ for all $0 \leq i \leq m-1$. Thus $\{e_1, e_3, \ldots, e_{2m-1}\}$ is actually the basis $\{e_1, \ldots, e_m\}$ in a different order.

From the cabling formula we get that $RT_r(C_{p,2})(e_i)$ lies in $\text{Span}(e_1, e_3, \ldots, e_{2i-1})$ and that the coefficient in e_{2j-1} in $RT_r(C_{p,2})(e_i)$ is $Ap^{(i^2-1)}Ap^{(j^2-1)}$ if j has same parity as i, and $-Ap^{(i^2-1)}Ap^{(j^2-1)}$ else.

We can write $RT_r(C_{p,2})$ in the basis $\{e_1, \ldots, e_m\}$ and $\{e_1, e_3, \ldots, e_{2m-1}\}$ as a product of two diagonal matrices and a triangular matrix:

$$RT_r(C_{p,2}) = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & Ap^{(2-2^2)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & Ap^{(m-m^2)}
\end{pmatrix}
\begin{pmatrix}
1 & -1 & 1 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & Ap^{(2^2-1)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & Ap^{(m^2-1)}
\end{pmatrix}$$

And thus we have:

$$RT_r(C_{p,2})^{-1} = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & Ap^{(1-2^2)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & Ap^{(1-m^2)}
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & Ap^{(2^2-2)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & Ap^{(m^2-m)}
\end{pmatrix}$$
The two diagonal matrices are isometries and the middle matrix clearly has norm bounded by a polynomial in r, which concludes the proof of Theorem 3.1.

References

[1] R. Benedetti and C. Petronio, *On Roberts’ proof of the Turaev-Walker theorem*, J. Knot Theory Ramifications 5 (1996), no. 4, 427–439.

[2] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, *Remarks on the three-manifold invariants θ_p*, Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991), Res. Notes Math., vol. 5, A K Peters, Wellesley, MA, 1993, pp. 39–59.

[3] ________, *Topological quantum field theories derived from the Kauffman bracket*, Topology 34 (1995), no. 4, 883–927.

[4] Q. Chen and T. Yang, *Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants*, arXiv:1503.02547.

[5] R. Detcherry and E. Kalfagianni, *Gromov norm and Turaev-Viro invariants of 3-manifolds*, Arxiv 1705.09964.

[6] R. Detcherry, E. Kalfagianni, and T. Yang, *Turaev Viro knot invariants and the colored Jones polynomials*, Arxiv 1701.07818.

[7] R. M. Kashaev, *The hyperbolic volume of knots from the quantum dilogarithm*, Lett. Math. Phys. 39 (1997), no. 3, 269–275.

[8] Morton, H. R., *The coloured Jones function and Alexander polynomial for torus knots*, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 129–135.

[9] H. Murakami and J. Murakami, *The colored Jones polynomials and the simplicial volume of a knot*, Acta Math. 186 (2001), no. 1, 85–104.

[10] N. Reshetikhin and V. G. Turaev, *Invariants of 3-manifolds via link polynomials and quantum groups*, Invent. Math. 103 (1991), no. 3, 547–597.

[11] J. Roberts, *Skein theory and Turaev-Viro invariants*, Topology 34 (1995), no. 4, 771–787.

[12] W. P. Thurston, *The geometry and topology of three-manifolds*, Princeton Univ. Math. Dept. Notes, 1979.

[13] V. G. Turaev and O. Y. Viro, *State sum invariants of 3-manifolds and quantum 6j-symbols*, Topology 4 (1992), 865—902.

Renaud Detcherry
Department of Mathematics, Michigan State University
East Lansing, MI 48824
(detcherry@math.msu.edu)