Use of MALDI-TOF for identification and surveillance of gram-negative bacteria in captive wild psittacines

Y. M. Daviesa, L. S. Francoa, F. B. Barbosaa, C. L. Vaninb, V. T. M. Gomesc, L. Z. Morenoda, M. R. F. Barbosaa, M. I. Z. Sato, A. M. Morenoda and T. Knöbl*

aUniversidade de São Paulo - USP, Departamento de Patologia da Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil
bDepartamento de Fauna da Secretaria de Infraestrutura e Meio Ambiente do estado de São Paulo, São Paulo, SP, Brasil
cUniversidade de São Paulo - USP, Departamento de Medicina Veterinária Preventiva e Saúde Animal da Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil
dCompanhia Ambiental do Estado de São Paulo - CETESB, São Paulo, SP, Brasil

Abstract

Microbiological studies of the sanitary and health status of psittacine birds that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify bacteria than conventional microbiology methods. The aim of this study was to evaluate the health status of psittacines housed in captivity, by assessment of Gram-negative bacteria from fecal microbiota through MALDI-TOF MS identification. The results indicate high frequency of Gram-negative bacteria in feces (96.5%), especially from the Enterobacteriaceae family (88.7%). The most prevalent bacteria were Escherichia coli (39.0%), Proteus vulgaris (12.2%), Klebsiella spp. (12.1%) and Raoultella ornithinolytica (8.7%). Proteus hauseri, Citrobacter spp., Morganella morganni, Providencia rettgeri, Enterobacter spp. and Escherichia hermannii were isolated with lower frequency. All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans. These findings reinforce that MALDI-TOF MS proved to be a rapid and accurate method of identification of the microorganism and evaluation of the health status of psittacines, providing relevant data to assist decision-making regarding the sanitary protocols in wildlife centers, and possible future reintroduction of wild birds.

Keywords: parrots, psittacine birds, MALDI-TOF MS, enterobacteria, public health.

Resumo

Estudos microbiológicos da sanidade de psitacídeos que serão reintroduzidos são importantes para avaliar se esses animais atuam como portadores de agentes patogênicos para outros animais e humanos. A espectrometria de massa por ionização/dessorção de matriz assistida por laser/tempo de vôo (MALDI-TOF MS) é um método mais rápido e preciso para identificar bactérias na comparação com métodos convencionais de microbiologia. O objetivo deste estudo foi avaliar o estado de saúde de psitacídeos cativos, identificando bactérias Gram-negativas da microbiota fecal por MALDI-TOF MS. Os resultados indicaram alta frequência de bactérias Gram-negativas nas fezes (96,5%), principalmente da família Enterobacteriaceae (88,7%). As mais prevalentes foram Escherichia coli (39,0%), Proteus vulgaris (12,2%), Klebsiella spp. (12,1%) e Raoultella ornithinolytica (8,7%). Proteus hauseri, Citrobacter spp., Morganella morganni, Providencia rettgeri, Enterobacter spp. e Escherichia hermannii foram isolados com menor frequência. Todos esses agentes são potencialmente patogênicos para papagaios e podem causar infecções sistêmicas em outros animais e seres humanos. Esses achados reforçam que MALDI-TOF MS é um método rápido e preciso de identificação do microrganismo e avaliação do estado de saúde dos psitacídeos, fornecendo dados relevantes para auxiliar na tomada de decisões sobre os protocolos sanitários em centros de triagem de animais selvagens e sobre a possibilidade de reintrodução futura.

Palavras-chave: aves, psitacídeos, MALDI-TOF MS, enterobactérias, saúde pública.
1. Introduction

Brazil presents the greatest diversity of parrots in the world, but 25 of the 87 species recognized in Brazilian territories are critically endangered, under threat of extinction or vulnerable (Birdlife International, 2017). The ex situ maintenance and breeding of birds recovered from wildlife trade, followed by rehabilitation and release, represent an alternative for preservation of some species. However, when breeding in captivity, the intestinal and respiratory microbiota of birds may be modified, especially under poor sanitary management (Mates et al., 2005).

The gastrointestinal microbiome of psittacine free-living birds has been poorly understood, but the most of reports shows that the normal psittacine bird microbiota is composed by Gram-positive facultative bacteria, that is, aerobic and anaerobic, and producers of lactic acid (Gerlach, 1994; Xenoulis et al., 2010; Allegretti et al., 2014; Saidenberg et al, 2015). However, captive birds usually have a greater diversity of intestinal microbial community, including Gram negative bacteria (Hidasi et al., 2013; Sanches et al., 2017), probably due the influence of anthropogenic action, modified diet and use of antimicrobials (Mates et al., 2005; Davies et al., 2016a; Clavijo and Flórez, 2018; Pereira et al., 2019).

The high prevalence of Gram-negative opportunistic bacteria, such as Enterobacter spp., Escherichia coli, Klebsiella spp., Citrobacter spp. and Aeromonas spp., increase the health hazard, because these microorganisms can become pathogenic in stressful and adverse situations (Rupley, 1999; Sandmeier and Coutteel, 2006; Davies et al., 2016a). Therefore, a microbiological study of the sanitary and health status of animals that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans (Braconaro et al., 2015; Davies et al., 2016a; Gioia Di-Chiacchio et al., 2018), and can provide relevant data to assist zoo-sanitary protocols and the management of birds in wildlife centers (Dutra et al., 2016).

Clinical microbiology has developed continuously and there has been a constant search for new techniques for rapid and accurate identification of pathogens (Cherkauki et al., 2010; Stepien-Pysniak et al., 2017). In comparison with conventional biochemical or phenotypic tests, MALDI-TOF MS has been increasingly applied in veterinary microbiology diagnostics (Davies et al., 2018; Moreno et al., 2018; Van Driessche et al., 2019; Ulrich et al., 2020).

The MALDI-TOF MS system is used successfully for precise identification of bacteria isolated from various types of specimens (Stepien-Pysniak et al., 2017; Davies et al., 2016b; Cabral et al., 2020). Therefore, species identification would improve timeliness and reduce isolate identification costs in clinical bacteriology laboratories (Cherkauki et al., 2010).

The aim of this study was to evaluate the health status of psittacines housed in captivity in the state of São Paulo, Brazil by assessment of Gram-negative bacteria from fecal microbiota through MALDI-TOF MS identification, assist in the development of more effective sanitary maintenance protocols, and possible future reintroduction of wild birds.

2. Materials and Methods

The development of this project was approved by the Ethics Committee on Animal Use of the School of Veterinary Medicine and Animal Science of the University of São Paulo (USP-FMVZ), protocol number 5174111215 and has SISBIO license: 46561-2.

2.1. Animals

A total of 58 psittacines were evaluated, male and female (not sexed birds), of different ages, which were housed in captivity at the state of São Paulo, Brazil. The birds were fed with seeds and grains and drinking water ad libitum and were kept in individual enclosures. The birds have not received antibiotic treatment in the last six months prior to this study.

Among the animals collected in this period are blue-fronted Amazon parrot (Amazona aestiva) (n = 22), Mangrove parrot (Amazona amazonica) (n = 2), Galician parrot (Amazona xanthops) (n = 1), Blue macaw (Anodorhynchus hyacinthinus) (n = 2), Blue-and-yellow macaw (Ara ararauna) (n = 15), Scarlet macaw (Ara macao) (n = 12), and Red-and-green macaw (Ara chloropterus) (n = 4).

2.2. Microbiological evaluation

Stool samples were collected from individual birds. The material was identified, packed and kept refrigerated until referral to the Laboratory of Avian Medicine at the Department of Pathology of FMVZ-USP for microbiological culture and isolation. The individual samples were inoculated in 2 mL of BHI broth (brain heart infusion, Difco™) and incubated at 37°C for 24 h. The isolation was performed on MacConkey agar (Difco™) and incubated at 37°C for 24 h. Then, all different morphotypes were selected (one to three different bacteria species per bird) and maintained at -80°C in BHI with 30% of glycerol, for further identification by MALDI-TOF MS.

2.3. MALDI-TOF MS identification

For MALDI-TOF MS (Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) sample preparation, bacterial proteins were extracted using an ethanol/formic acid protocol (Kuhnert et al., 2012). The isolates were seeded on TSA (Tryptic Soy agar, Difco™) incubated at 37°C for 24 h. Then, one colony of each isolate was mixed in 300 µL of deionized water. Nine hundred microliters of absolute ethanol were added to each sample. The tubes were mixed by inversion and centrifuged for 3 min at 12,800 rpm. The supernatant was removed, and the samples are dried at room temperature. After, the pellet was resuspended in 35 µL of formic acid (70%) and then, 35 µL of acetonitrile were added. Samples were mixed by inversion and centrifuged at 12,800 g for 3 min. The supernatant (protein suspension) was removed.

Isolates were tested in duplicate. The protein suspension (1 µL) was transferred to a polished steel MALDI target plate (Bruker Daltonik) and allowed to dry at room temperature. The sample was overlaid with 1 µL of matrix (10 mg α-cyano-4-hydroxy-cinnamic acid mL⁻¹ in 50% acetonitrile/2.5% trifluoroacetic acid), and mass spectra
in the 2–20 kDa range were acquired using a Microflex™ mass spectrometer (Bruker Daltonik). For the MALDI-TOF MS analysis, the spectra were loaded into MALDI BioTyper™ 3.0 and compared with the manufacturer’s library, which resulted in the log (score) value. Standard Bruker interpretative criteria were applied; scores ≥ 2.0 were accepted for species assignment and scores ≥ 1.7 but ≤ 2.0 for genus identification.

3. Results

Table 1 shows the distribution of Gram-negative bacteria identified. A total of 115 colonies were selected and identified. Of these isolates, 102/115 (88.7%) were from Enterobacteriaceae family, and 13/115 (11.3%) were to the families Moraxellaceae (Acinetobacter johnsonii) (0.9%), Aeromonadaceae (Aeromonas spp.) (1.7%), Alcaligenaceae (Alcaligenes faecalis) (3.5%) and Pseudomonadaceae (Pseudomonas spp.) (1.7%). Among the Enterobacteriaceae, the most frequently isolated species was Escherichia coli (39.0%). Other genera of bacteria that were isolated less frequently were Proteus vulgaris (12.2%), Raoultella ornithinolytica (8.7%), Klebsiella oxytoca (7.8%), and Klebsiella pneumoniae (4.3%), Citrobacter spp. (4.3%), Proteus hauseri (4.3%), Morganella morgannii (3.5%), Providencia rettgeri (1.7%), Enterobacter spp. (1.7%) and Escherichia hermannii (0.9%).

All of the birds evaluated presented Gram negative bacteria in their fecal microbiota, except for two birds (2/58), an Amazona aestiva and an Ara ararauna. One to three different bacterial species per bird were isolated: 18.9% (11/58) of birds presented a single Gram-negative pathogen, while 81.1% (45/58) presented a mix culture, composed by two (31/58) and three (14/58) bacteria species. Escherichia coli stood out with the highest frequency (10/11), among single isolates. The mixed culture were further grouped in 24 distinct profiles, with predominance of Escherichia coli. The higher frequency mixed profiles were composed by Escherichia coli associated with Proteus spp. (7/56) and Escherichia coli associated with Raoultella ornithinolytica (4/56). These data were showed on Table 2.

4. Discussion

Routine identification of Gram-negative bacterial isolates from various sources is based on biochemical methods, and is most often confirmed by PCR using primers and conditions for different bacteria species. However, the use of species-specific PCR for identification is laborious and requires a large number of suitable species primers (Cunha et al., 2016; Stepien-Pysniak et al., 2017).

This study used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), based on the protein profile of microorganisms, which is a distinctive and unique molecular fingerprint of a species (Kwik et al., 2015; Santos et al., 2015; Davies et al., 2016b; Stepien-Pysniak et al., 2017; Davies et al., 2018). Here, MALDI-TOF MS was used as a rapid and accurate method for identification of 115 isolates collected from fecal samples of captive psittacine birds.

In terms of cost, Cherkoui et al. (2010) reported that using MALDI-TOF MS identification, the laboratory would have saved approximately US$5 per isolate in marginal costs and reduced average turnaround time by more than an 8-h shift, with no loss in accuracy. Seng et al. (2009) found similar results comparing phenotypic

Family	Bacteria Species	Feces (n)	Percentage (%)
Moraxellaceae	Acinetobacter johnsonii	1	0.9
Aeromonadaceae	Aeromonas caviae	4	3.5
	Aeromonas hydrophila	1	0.9
	Aeromonas salmonicida	1	0.9
Alcaligenaceae	Alcaligenes faecalis	4	3.5
Enterobacteriaceae	Citrobacter braakii	3	2.6
	Citrobacter freundii	2	1.7
	Enterobacter absuriae	1	0.9
	Enterobacter cloace	1	0.9
Escherichia coli		45	39.0
Escherichia hermannii		1	0.9
Klebsiella oxytoca		9	7.8
Klebsiella pneumoniae		5	4.3
Morganella morgannii		4	3.5
Proteus hauseri		5	4.3
Proteus vulgaris		14	12.2
Providencia rettgeri		2	1.7
Pseudomonadaceae	Pseudomonas putida	1	0.9
	Pseudomonas oleovorans	1	0.9
Enterobacteriaceae	Raoultella ornithinolytica	10	8.7
Total		115	100
Table 2. Profiles of Gram-negative bacteria isolated from captive parrots. São Paulo, Brazil.

Profiles	Birds (n=58)
Single Culture	
Escherichia coli	10
Klebsiella pneumoniae	1
Mix culture (2 species)	
Escherichia coli + *Proteus* spp.	7
Escherichia coli + *Raoultella ornithinolytica*	4
Escherichia coli + *Aeromonas* spp.	3
Escherichia coli + *Providencia rettgeri*	2
Escherichia coli + *Enterobacter* spp.	2
Escherichia coli + *Klebsiella oxytoca*	2
Escherichia coli + *Morganella morgani*	2
Klebsiella spp. + *Proteus vulgaris*	3
Escherichia coli + *Alcaligenes faecalis*	2
Escherichia coli + *Citrobacter braakii*	1
Acinetobacter johnsonii + *Proteus hauseri*	1
Citrobacter braakii + *Klebsiella oxytoca*	1
Raoultella ornithinolytica + *Proteus vulgaris*	1
Mix culture (3 species)	
Escherichia coli + *Klebsiella* spp. + *Proteus* spp.	3
Escherichia coli + *Raoultella ornithinolytica* + *Aeromonas* spp.	2
Escherichia coli + *Raoultella ornithinolytica* + *Klebsiella oxytoca*	1
Escherichia coli + *Raoultella ornithinolytica* + *Pseudomonas putida*	1
Escherichia coli + *Alcaligenes faecalis* + *Citrobacter freundii*	1
Escherichia coli + *Citrobacter braakii* + *Aeromonas caviae*	1
Escherichia coli + *Escherichia hermannii* + *Proteus vulgaris*	1
Escherichia coli + *Morganella morgani* + *Citrobacter freundii*	1
Escherichia coli + *Proteus vulgaris* + *Morganella morgani*	1
Klebsiella oxytoca + *Pseudomonas oleovorans* + *Proteus vulgaris*	1
Klebsiella oxytoca + *Raoultella ornithinolytica*	1
Alcaligenes faecalis	
Total	56/58

Two birds presented negative results for Gram negative bacteria.
capitation with adequate sanitary management (Mattes et al., 2005), they could act as asymptomatic carriers (Loiko et al., 2007; Sanches et al., 2017). This group of bacteria can colonize most tissues of birds, and is often considered a secondary pathogen, that is, it will only cause infections in adverse situations, such as immunosuppression or previous treatment with the use of antibiotics (Gerlach, 1994; Davies et al., 2016a). However, in some cases they can act as primary pathogens, since there are substantial differences in the virulence of enterobacteria and in the host's immune response (Gioia-Di-Chiacchio et al., 2018).

The data obtained in this study showed a predominance of some species of enterobacteria: Escherichia coli (39.0%), Proteus vulgaris (12.2%), Raoultella ornithinolytica (8.7%), Klebsiella oxytoca (7.8%), Klebsiella pneumoniae (4.3%), Citrobacter spp. (4.3%) and Proteus hauseri (4.3%) (Table 1). The identification of other genera such as Morganella morgannii (3.5%), Providencia rettgeri (1.7%), Enterobacter spp. (1.7%) and Escherichia hermannii (0.9%) were less frequently found.

These data are consistent with the results obtained by Davies et al. (2016b) and Cunha et al. (2016), who identified Klebsiella spp., E. coli, Proteus spp., and Citrobacter spp. in stool samples from several species of clinically healthy passerines. On the other hand, in parrot studies, Davies et al. (2016a) and Vaz et al. (2017) reported the presence of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Citrobacter freundii and E. coli associated with clinical manifestations.

Due to the opportunistic nature of the agent, isolation only of feces, cloaca or oropharynx is not enough to associate the presence of bacteria with the occurrence of disease. A more accurate assessment of the risk can be obtained with the aid of molecular techniques to search for genes related to bacterial virulence factors, such as the production of adhesins and toxins (Hidasi et al., 2013; Gioia-Di-Chiacchio et al., 2018). Also, the pathogenesis of infections by enterobacteria varies depends on the presence of virulence factors (Broberg et al., 2014), and can be aggravated due to resistance to antibiotics (El Fertas-Aissani et al., 2013).

These findings reinforce the accurate microorganism identification and evaluation of the health status of psittacines kept as companion pets, or those that will be reintroduced in the wild, providing relevant data to assist decision-making regarding the sanitary protocols and destination of birds (Dutra et al., 2016). The automated identification system MALDI-TOF MS proved to be a rapid and accurate method of identification of the bacterial isolates, and will serve as an important microbiological screening tool. Supplemental extraction strategies, as well as expanded databases including other bacterial groups of clinical importance, identifiers of resistance to antimicrobials, and genotype markers, will soon enhance the utility of MALDI-TOF MS (Cherkaoui et al., 2010).

5. Conclusion

Although the parrots analyzed were apparently in healthy clinical condition, the frequency of isolation of Gram-negative bacteria, especially enterobacteria, was high. All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans.

In summary, MALDI-TOF MS-based identification provides less expensive and faster bacterial species identification than conventional phenotypic identification methods. This is especially relevant for routine clinical microbiology, since most results can be reported earlier. Further studies would be necessary to determine the virulence and resistance of these strains and the possible risks regarding public health and biodiversity conservation.

Acknowledgements

CAPES and CNPq research grants are gratefully. This study was financed in part by The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES – Finance Code 001). T.K. is a CNPq fellow (306577/2017-8).

References

ALLEGRETTI, L., REVOLLEDO, L., ASTOLFI-FERREIRA, C.S., CHACÓN, J.L., MARTINS, L.M., SEIXAS, G.H.F. and FERREIRA, A.J.P., 2014. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil. Beneficial Microbes, vol. 5, no. 4, pp. 497-503. http://dx.doi.org/10.3920/BM2013.0082. PMid:25062609.

BIRDLIFE INTERNATIONAL, 2017 [viewed 10 December 2019]. State of the world’s birds: taking the pulse of the planet [online]. Available from: https://www.birdlife.org/sowb2018

BOSERET, G., LOSSON, B., MAININ, J.G., THiry, E. and SAEGERMAN, C., 2013. Zoonesia in pet birds: review and perspectives. Veterinary Research, vol. 44, no. 36, pp. 1-17. http://dx.doi.org/10.1186/1297-9716-44-36. PMid:23687940.

BRACONARO, P., SAIDENBERG, A.B.S., BENITES, N.R., ZUNIGA, E., DA SILVA, A.M., SANCHES, T.C., ZWARG, T., BRANDÃO, P.E. and MELVILLE, P.A., 2015. Detection of bacteria and fungi assessment of the molecular aspects and resistance of Escherichia coli isolated from confiscated passerines intended for reintroduction programs. Microbial Pathogenesis, vol. 88, pp. 65-72. http://dx.doi.org/10.1016/j.mpath.2015.08.006. PMid:26279195.

BRITTINGHAM, M.C., TEMPLE, S.A. and DUNCAN, R.M., 1988. A survey of the prevalence of selected bacteria on wild birds. Journal of Wildlife Diseases, vol. 24, no. 2, pp. 299-307. http://dx.doi.org/10.7589/0090-3558-24.2.299. PMid:3286907.

BROBERG, C.A., PALACIOS, M. and MILLER, V.L., 2014. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000prime Reports, vol. 6, no. August, pp. 64. http://dx.doi.org/10.12703/P6-64. PMid:25165563.

CABRAL, B.G., DAVIES, Y.M., MENÃO, M.C., SAIDENBERG, A., GOMES, V.T.M., MORENO, L.Z., SATO, M.I.Z., MORENO, A.M. and KNÖBL, T., 2020. Companion psittacine birds as reservoir of gentamicin and vancomycin-resistant Enterococcus spp. Pesquisa Veterinária Brasileira, vol. 40, no. 2, pp. 129-133. http://dx.doi.org/10.1590/1678-5150-pvb-6147.

CHERKAOUI, A., HIBBS, J., EMONET, S., TANGOMO, M., GIRARD, M., FRANCOIS, P. and SCHRENZEL, J., 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species.
Antibiotic-Resistance patterns of Gram-negative bacterial and Septicemia in an Adult Male Ostrich (Struthio camelus). 2009. Aeromonas Species Associated with Necrotizing Enteritis http://dx.doi.org/10.1016/j.patbio.2012.10.004

Klebsiella pneumoniae strains isolated from different clinical org/10.1016/j.beproc.2016.01.007

Carbapenem-resistant Acinetobacter baumannii ST294 harbouring the OXA-72 carbapenemase from a captive grey parrot. The Journal of Antimicrobial Chemotherapy, vol. 73, no. 4, pp. 1098–1100. http://dx.doi.org/10.1093/jac/dkkx490. PMid:29309610.

Identification of animal Pasteurelles by MALDI-TOF mass spectrometry. Journal of Microbiological Methods, vol. 89, no. 1, pp. 1–7. http://dx.doi.org/10.1016/j.jmimet.2012.02.001. PMid:22343217.

Development of a rapid and accurate identification method for Citrobacter species isolated from pork products using a matrix-assisted laser-desorption ionization time-offlight mass spectrometry (MALDI-TOF MS). Journal of Microbiology and Biotechnology, vol. 25, no. 9, pp. 1537–1541. http://dx.doi.org/10.4014/jmb.1503.03071. PMid:26017224.

Wild waterfowl as potential vectors of Vibrio cholerae and Aeromonas species. Tropical Medicine & International Health, vol. 23, no. 7, pp. 758–764. http://dx.doi.org/10.1111/tim.13069. PMid:29733476.

Identification da microbiota da orofaringe e cloaca em filhotes de arara-silvestres. Arquivos do Instituto Biológico, vol. 72, pp. 13–16.

Enterobacterial detection and prognostic factors in 356 cases. Respirology (Carlton, VIC.), 2015. Nosocomial Acinetobacter pneumonia: treatment and prognostic factors in 356 cases. Respiriology (Carlton, Vic.), vol. 21, no. 2, pp. 363–369. http://dx.doi.org/10.1111/resp12698. PMid:26633315.

Unusual disease conditions in pet and aviary birds. Petusevits-Milaneło, V.S. and Boldo, G.S. 2013. Acinetobacter baumannii in Localised Cutaneous infection. The Veterinary Quarterly, vol. 38, no. 6, pp. 29-35.
