Supercritical solvent extraction of lignite combustion products by water and HNO$_3$ – Rare Earth Elements recovery study

W Urbańczyk1 and M Lutyński2

1Cobant GROUP S.A., ul. Grzybowska 2/29, 00-131 Warszawa, Poland
2Silesian University of Technology, Faculty of Mining and Geology, ul. Akademicka 2, 44-100 Gliwice, Poland

E-mail: marcin.lutynski@polsl.pl, wu@cobant.eu

Abstract. Coal Combustion Products (CCPs) are anthropogenic materials generated during coal burning in coal-fired power plants and in case of lignite majority of these materials is disposed on land. CCPs contain various metals including Rare Earth Elements (REE). The purpose of this study was to assess if supercritical solvent extraction of CCPs, i.e. fly ash and bottom slag is effective to recover Rare Earth Elements. For that purpose two methods were compared: atmospheric and supercritical solvent extraction with the use of water and 10% HNO$_3$. Result show that extraction of REE is unjustified when considering efficiency of solvent extraction process and obtained REE concentrations.

1. Introduction
Coal Combustion Products (CCPs) are anthropogenic materials generated during coal burning in coal-fired power plants. These materials are categorized in the following groups: a) fly ash, b) bottom slag, c) bottom slag/fly ash mixtures, d) gypsum, e) fly ash and dry desulphurization product mixtures [1,2]. Since World’s energy generation is based mostly on fossil fuels where lignite and hard coal play a dominant role (according to International Energy Agency over 40% of secondary energy is produced from coal where 3.0% from lignite [3,4]) CCPs should be considered as a resource rather than a waste. For the case of Poland over 80% of hard coal CCPs is utilized for, e.g.: concrete or cement production, road foundation construction [5]. In contrary, 65% of lignite CCPs in Poland are considered as a waste and are mostly disposed on land. This is due to the relatively high carbon content of CCPs as a result of incomplete combustion. Hence, there is a limited use of those products in construction industry [7]. Large volumes of disposed CCPs from lignite have an adverse impact on the environment. Land where CCPs are disposed is degraded by the wet form of fly ash storage that prevents dust emission. Another problem is related to the fact that CCPs contain heavy metals such as Cr, As or Pb (that can be leached and migrate to groundwater) and, at low concentrations, Rare Earth Elements (REE) [8].

There were several attempts to use solvent extraction for recovery of metals from lignite fly ash. Authors focused on the use of solvents such as, e.g.: citric acid [9], sulfuric acid [10] or mixture of HCl and NaOH [11]. Since the share of lignite in overall electricity production is relatively low available information related to solvent extraction of lignite fly ash is scarce. Nevertheless, sulfuric acid was already used for extraction of lignite fly ash [12,13].
The purpose of this study was to assess if supercritical solvent extraction of CCPs, i.e. fly ash and bottom slag is effective to recover Rare Earth Elements. For that purpose two methods were compared atmospheric and supercritical solvent extraction with the use of neutral or “eco” solvents – water and 10% HNO₃. This approach is sustainable and in accordance with the rules of circular economy where every useful product can be recovered and reused.

2. Materials
For the purpose of the study commercially available lignite Coal Combustion Products were used i.e.: fly ash and bottom slag from one of the polish lignite power plants. Table 1 presents chemical composition of materials used in the study. In Figure 1 SEM images presenting surface morphology of materials are shown.

Table 1. Chemical composition of materials used in the study.

Parameter/Compound, (m/m)	fly ash	bottom slag
LOI, 5.47		48.74
B₂O₃, 1.32		0.99
F, 0.20		0.09
Na₂O, 0.108		0.097
MgO, 0.95		0.84
Al₂O₃, 24.00		23.80
SiO₂, 33.40		47.20
P₂O₅, 0.148		0.100
SO₃, 3.43		1.33
Cl, 0.01		0.01
K₂O, 0.16		0.22
CaO, 25.30		12.60
TiO₂, 0.97		1.32
V₂O₅, 0.06		0.04
Cr₂O₃, 0.03		0.03
MnO, 0.075		0.031
Fe₂O₃, 8.11		5.77
Co₂O₃, 0.00		0.00
NiO, 0.01		0.01
CuO, 0.01		0.01
ZnO, 0.02		0.01
Ga₂O₃, 0.00		0.00
As₂O₃, 0.01		0.00
SeO₂, 0.01		0.00
Br, 0.00		0.00
Rb₂O, 0.00		0.00
SrO, 0.07		0.05
Y₂O₃, 0.01		0.01
ZrO₂, 0.04		0.03
Nb₂O₃, 0.00		0.00
BaO, 0.09		0.06
HgO, 0.00		0.00
Figure 1. Surface morphology of a) fly ash, b) bottom slag

3. Methods
Supercritical solvent extraction and atmospheric extraction was carried out for both samples: fly ash and bottom slag. For each test the solid to solvent ratio was 1:2 (w/w). Minimum purity of solvents used in the experiments was 99.9%. In Figure 2 block diagram of experimental procedure is presented.

Figure 2. Block diagram of experimental procedure.

In the case of extraction under atmospheric pressure, experiments were carried out in a round bottom flask equipped with a reflux condenser at the temperature of 400°C for 5 hours. Supercritical solvent extraction of CCPs was carried out in interconnected Haas autoclaves presented in Figure 3 [14]. Connection between autoclaves partially eliminated the need for further filtration and as a consequence, lowered the loss of extracts and solid residue. Temperature of the process was kept constant at 400°C with pressure of 20-22 MPa. Duration of the experiments was the same as atmospheric extraction - 5 hours. Obtained extract were subjected for further analysis of metal content using ICP-OES method.
Figure 3. High pressure autoclaves used for the supercritical solvent extraction.

4. Results and Discussion
In Table 2 and 3 mass balance of lignite CCPs solvent extraction processes carried out in the study are presented. Extract yield (Y) was calculated with the following formula:

$$Y = \frac{m_{\text{extract}} - m_{\text{H2O}}}{m_{\text{fly ash}}} \times 100\%$$

Where m indicates masses of feed and products in grams.

Table 2. Mass balance of solvent extraction processes under atmospheric pressure of fly ash and bottom slag.

FEED	YIELDS				Y (%)	
Fly ash	– 10 g	Solid residue	– 9,4 g	Extract	– 20,5 g	Y = 3%
H2O	– 20 g	Loss	– 0,3 g			
Fly ash	– 10 g	Solid residue	– 9,1 g	Extract	– 20,6 g	Y = 6%
10% HNO3	– 20 g	Loss	– 0,3 g			
Fly ash	– 10 g	Solid residue	– 8,4 g	Extract	– 21,1 g	Y = 11%
H2O	– 20 g	Loss	– 0,5 g			
Fly ash	– 10 g	Solid residue	– 7,1 g	Extract	– 22,6 g	Y = 26%
10% HNO3	– 20 g	Loss	– 0,3 g			

Table 3. Mass balance of supercritical solvent extraction of fly ash and bottom slag.

FEED	YIELDS				Y (%)	
Fly ash	– 10 g	Solid residue	– 6,1 g	Extract	– 22,4 g	Y = 24%
10% HNO3	– 20 g	Loss	– 0,3 g			
Bottom slag	– 10 g	Solid residue	– 4,7 g	Extract	– 23,7 g	Y = 37%
10% HNO3	– 20 g	Loss	– 0,2 g			
Results show that a more efficient extraction was with 10% HNO₃ as a solvent for both materials – maximum yield was 37% (m/m). As expected better results were obtained for supercritical extraction under elevated pressure and temperature. Extracts were consequently subjected for further analyses of metal content using ICP-MS technique (see Fig. 4).

Table 4. Metal content of extracts.

	APE, H₂O FA	APE, H₂O BS	ATM, HNO₃ FA	ATM, HNO₃ BS	CSE, HNO₃ FA	CSE, HNO₃ BS
Ag	0,0063	0,0067	0,0070	0,0074	0,0078	0,0081
Al	13,6653	14,6396	15,6140	16,5883	17,5627	18,5371
As	0,0733	0,0701	0,0670	0,0638	0,0607	0,0575
B	4,3727	4,4097	4,4467	4,4836	4,5206	4,5576
Ba	0,0037	0,0037	0,0037	0,0037	0,0037	0,0037
Bi	0,0310	0,0347	0,0384	0,0421	0,0458	0,0495
Cd	0,0012	0,0012	0,0012	0,0011	0,0011	0,0010
Co	0,0011	0,0017	0,0024	0,0030	0,0036	0,0043
Cr	0,0112	0,0146	0,0181	0,0215	0,0249	0,0283
Cu	0,0652	0,0977	0,1303	0,1629	0,1954	0,2280
Eu	0,4414	0,4736	0,5057	0,5378	0,5700	0,6021
Fe	1,2641	1,3296	1,3950	1,4605	1,5260	1,5914
Ga	0,1370	0,1373	0,1377	0,1381	0,1384	0,1388
In	0,0077	0,0078	0,0079	0,0080	0,0081	0,0082
Ir	0,0019	0,0022	0,0026	0,0029	0,0033	0,0037
La	0,0519	0,0556	0,0593	0,0629	0,0666	0,0703
Li	1,1955	1,1991	1,2027	1,2063	1,2099	1,2136
Mg	7,0900	7,4114	7,7328	8,0542	8,3756	8,6970
Mn	0,0767	0,1004	0,1240	0,1477	0,1713	0,1950
Mo	0,0901	0,0938	0,0975	0,1012	0,1049	0,1085
Na	12,4947	12,9659	13,4371	13,9083	14,3795	14,8507
Nb	0,0096	0,0127	0,0159	0,0190	0,0221	0,0253
Ni	0,0328	0,0374	0,0420	0,0466	0,0511	0,0557
P	0,1777	0,1777	0,1778	0,1778	0,1778	0,1779
Pb	0,0375	0,0378	0,0381	0,0385	0,0388	0,0391
Rh	0,0198	0,0202	0,0206	0,0209	0,0213	0,0216
Si	16,6547	17,2025	17,7504	18,2983	18,8462	19,3941
Sm	0,0071	0,1052	0,2033	0,3014	0,3995	0,4976
Sr	0,5372	0,5436	0,5500	0,5564	0,5628	0,5692
Th	0,0484	0,0854	0,1224	0,1594	0,1964	0,2333
Ti	0,0107	0,0117	0,0127	0,0136	0,0146	0,0156
Tl	0,0059	0,0058	0,0057	0,0057	0,0056	0,0055
Tm	0,0005	0,0005	0,0005	0,0006	0,0006	0,0006
V	0,0250	0,0285	0,0320	0,0355	0,0390	0,0425
W	0,0281	0,0318	0,0355	0,0391	0,0428	0,0465
Yb	0,0011	0,0014	0,0018	0,0022	0,0025	0,0029
Zn	0,2710	0,2823	0,2935	0,3048	0,3161	0,3273
Zr	0,0222	0,0259	0,0295	0,0332	0,0369	0,0405

APE – atmospheric pressure extraction, CSE – critical solvent extraction, FA – fly ash, BS – bottom slag

Extracts have a form of a pulp with various metal content including Rare Earth Metals and alkaline metals. Calcium content is not included in the table since the concentration exceeded calibration curve.
This could be explained by the affinity of calcium toward solvents used and high content of calcium in the raw material. Higher yields were obtained in case of bottom slag which can be attributed to the grain morphology (large, porous grains). Content of Rare Earth Elements increases in case of supercritical solvent extraction, eg. Europium (Eu) concentration increased by 36.4%.

5. Conclusions
Results of this study show that recovery of REE is unjustified when considering efficiency of solvent extraction process and REE concentrations. Both fly ash and bottom slag do contain REE such as Samarium or Europium at very low concentrations and it might be difficult to upscale a complex process of solvent extraction to industrial scale. Cost of such process will most probably be higher than the income.

Other potential solutions would be using other solvents such as citric acid or sulfuric acid yet the environmental footprint of such process would be significant.

High LOI indicates high carbon content. Therefore, an alternative is to first separate unburned coal (UC) which is less prone to solvent extraction (it adsorbs solvent) by gravity separation or flotation and later use upgraded material for extraction process.

References
[1] Robl T, Oberlink A, Jones R 2017 Coal Combustion Products (CCPs) Characteristics, Utilization and Beneficiation (Elsevier)
[2] Heidrich C, Feuerborn HJ, Weir A 2013 Coal combustion products: a global perspective World of Coal Ash Conference
[3] International Energy Agency. Total Primary Energy Supply (TPES) by source
[4] Eurostat 2017 Generation of electricity by type of fuel, EU
[5] Knaś K, Szymanek A 2018 Potential of anthropogenic materials XXV International Conference FLY ASH FROM ENERGY
[6] PGE Mining and Conventional Power. Economy of coal combustion by-products
[7] European Environmental Agency. More from less — material resource efficiency in Europe
[8] Coal’s Poisonous Legacy. Groundwater Contaminated by Coal Ash Across the U.S.
[9] Yahya AA, Ali N, Mohd Kamal NL, Shahidan S, Beddu S, Nuruddin MF, Shafiq N 2017 Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment MATEC Web of Conferences
[10] Wu C, Yu H, Zhang H (2012) Extraction of aluminum by pressure acid-leaching method from coal fly ash Transactions of Nonferrous Metals Society of China 22(9):2282-2288
[11] King JF, Taagart RK, Smith RC, Hower JC, Hsu-Kim H 2018 Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash International Journal of Coal Geology 195(2):75-83
[12] Bojinova DY, Teodosieva R 2016 Extraction of elements from coal fly ash using thermo-hydrometallurgical method Journal of Chemical Technology and Metallurgy 51(5)577-587
[13] Valeeva D, Kunilovab I, Alpatovc A, Mikhailovad A, Goldberge M, Kondratiev A 2019 Complex utilisation of ekibastuz brown coal fly ash: iron & carbon separation and aluminum extraction Journal of Cleaner Production 218(5):192-201
[14] Majka M 2018 Tests of thermal and pressure process of coke pitch in the direction of increased yield of oil fractions Doctoral dissertation, Silesian University of Technology, Faculty of Chemistry