ON FUNCTIONS OF FINITE BAIRE INDEX

F. CHAATIT*, V. MASCIONI** AND H. ROSENTHAL**

Abstract. It is proved that every function of finite Baire index on a separable metric space \(K \) is a \(D \)-function, i.e., a difference of bounded semi-continuous functions on \(K \). In fact it is a strong \(D \)-function, meaning it can be approximated arbitrarily closely in \(D \)-norm, by simple \(D \)-functions. It is shown that if the \(n \)th derived set of \(K \) is non-empty for all finite \(n \), there exist \(D \)-functions on \(K \) which are not strong \(D \)-functions. Further structural results for the classes of finite index functions and strong \(D \)-functions are also given.

1. Introduction

Throughout, let \(K \) be a separable metric space. A function \(f : K \to \mathbb{R} \) is called a difference of bounded semi-continuous functions if there exist bounded lower semi-continuous functions \(u \) and \(v \) on \(K \) with \(f = u - v \). We denote the class of all such functions by \(DBSC(K) \). We shall also refer to members of \(DBSC(K) \) as \(D \)-functions. A classical theorem of Baire (cf. [H, p.274]) yields that \(f \in DBSC(K) \) if and only if there exists a sequence \((\varphi_j) \) of continuous functions on \(K \) so that

\[
\sup_{k \in K} \sum |\varphi_j(k)| < \infty \quad \text{and} \quad f = \sum \varphi_j \text{ point-wise.}
\]

(1)

Now defining \(\|f\|_D = \inf \{ \sup_{k \in K} \sum |\varphi_j|(k) : (\varphi_j) \text{ is a sequence of continuous functions on } K \text{ satisfying } (1) \} \), it easily follows that \(DBSC(K) \) is a Banach algebra; and of course \(DBSC(K) \subset B_1(K) \) where \(B_1(K) \) denotes the (bounded) first Baire class of functions on \(K \); i.e., the space of all bounded functions on \(K \) which are the limit of a point-wise convergent sequence of continuous functions on \(K \).

\(DBSC(K) \) appears as a natural object in functional analysis. For example, if \(X \) is a separable Banach space and \(K \) is the unit ball of \(X^* \) in the weak*-topology, then \(X \) contains a subspace isomorphic to \(c_0 \) if and only if there is an \(f \) in \(X^{**} \sim X \)

1991 Mathematics Subject Classification. Primary 46B03.

* Some of the results given here forms part of the first named author’s Ph.D. thesis at The University of Texas at Austin, supervised by the third named author.

** Research partially supported by NSF DMS-8903197.
with $f | K$ in $DBSC(K)$ (cf. [HOR], [R1]). Natural invariants for $DBSC(K)$ are used in a fundamental way in [R1], to prove that c_0 embeds in X provided X is non-reflexive and Y^* is weakly sequentially complete for all subspaces Y of X.

We investigate here a special subclass of $DBSC(K)$, which we term $SD(K)$, and show that all functions of finite Baire index belong to this class.

To motivate the definitions of these objects we first recall the following class of functions. Define $B_{1/2}(K)$ to be the set of all uniform limits of functions in $DBSC(K)$. (The terminology follows that in [HOR].) Functions in $B_{1/2}(K)$ may be characterized in terms of an intrinsic oscillation behavior, which we now give.

For $f : K \to \mathbb{R}$ a given bounded function, let Uf denote the upper semi-continuous envelope of f; $Uf(x) = \liminf_{y \to x} f(y)$ for all $x \in K$. (We use non-exclusive lim sups; thus equivalently, $Uf(x) = \inf_U \sup_{y \in U} f(y)$, the inf over all open neighborhoods of x.) Now we define $\text{osc} f$, the lower oscillation of f, by

$$\text{osc} f(x) = \liminf_{y \to x} |f(y) - f(x)| \quad \text{for all } x \in K.$$

Finally, we define $\text{osc} f$, the oscillation of f, by

$$\text{osc} f = U\text{osc} f.$$

Now let $\varepsilon > 0$. We define the (finite) oscillation sets of f, $\text{os}_j(f, \varepsilon)$, as follows. Set $\text{os}_0(f, \varepsilon) = K$. Suppose $j \geq 0$ and $\text{os}_j(f, \varepsilon)$ has been defined. Let $\text{os}_{j+1}(f, \varepsilon) = \{x \in L : \text{osc} f | L(x) \geq \varepsilon\}$, where $L = \text{os}_j(f, \varepsilon)$.

We recall the following fact ([HOR]).

Proposition 1.1. Let $f : K \to \mathbb{R}$ be a given function. The following are equivalent:

1. $f \in B_{1/2}(K)$.
2. For all $\varepsilon > 0$, there is an n with $\text{os}_n(f, \varepsilon) = \emptyset$.

(The proof given in [HOR] for compact metric spaces works for arbitrary separable ones; cf. also [R2].)

Remark. Actually, the sets defined in [HOR] use what we term here the upper oscillation of f, defined by $\overline{\text{osc}} f(x) = \limsup_{y, z \to x} |f(y) - f(z)|$. It is easily seen that $\overline{\text{osc}} f$ is upper semi-continuous and

$$\frac{1}{2} \overline{\text{osc}} f \leq \text{osc} f \leq \overline{\text{osc}} f.$$

Now define \(K_j(f, \varepsilon) \) inductively by

\[
K_0(f, \varepsilon) = K \quad \text{and} \quad K_{j+1}(f, \varepsilon) = \{ x \in K_j : \overline{\text{osc}} f | K_j(x) \geq \varepsilon \}.
\]

We then have by (4) that

\[
K_j(f, 2\varepsilon) \subset \text{os}_j(f, \varepsilon) \subset K_j(f, \varepsilon) \quad \text{for all} \quad j.
\]

Thus \(f \) satisfies 2 of 1.1 if and only if for all \(\varepsilon > 0 \), there is an \(n \) with \(K_n(f, \varepsilon) = \emptyset \).

Proposition 1.1 suggests the following quantitative notion.

Definition 1. Let \(f : K \to \mathbb{R} \) be a given bounded function and \(\varepsilon > 0 \). We define \(i(f, \varepsilon) \), the \(\varepsilon \)-oscillation index of \(f \), to be \(\sup \{ n : \text{os}_n(f, \varepsilon) \neq \emptyset \} \).

Thus Proposition 1.1 says that \(f \in B_{1/2}(K) \) if and only if \(i(f, \varepsilon) < \infty \) for all \(\varepsilon > 0 \).

Definition 2. A bounded function \(f : K \to \mathbb{R} \) is said to be of finite Baire index if there is an \(n \) with \(\text{os}_n(f, \varepsilon) = \emptyset \) for all \(\varepsilon > 0 \). We then define \(i(f) \), the oscillation index of \(f \), by

\[
i(f) = \max_{\varepsilon > 0} i(f, \varepsilon).
\]

Evidently \(f \) is continuous if and only if \(i(f) = 0 \).

Remark. In [HOR], an index \(\beta(f) \) is defined as \(\beta(f) = \sup_{\varepsilon > 0} \min \{ j : K_j(f, \varepsilon) = \emptyset \} \). It follows from the remark following Proposition 1.1 that \(f \) is of finite index if and only if \(\beta(f) < \infty \), and then in fact \(\beta(f) = i(f) + 1 \).

In [HOR], it is proved that finite index functions belong to \(B_{1/4}(K) \), a class properly containing the \(D \)-functions. We obtain here that every function of finite Baire index belongs to \(DBSC(K) \). In fact, we show that it belongs to the following subclass:

Definition 3. A function \(f : K \to \mathbb{R} \) is said to be a strong \(D \)-function if there exists a sequence \((\varphi_n) \) of simple \(D \)-functions with \(\| f - \varphi_n \|_D \to 0 \). We denote the class of all strong \(D \)-functions by \(SD(K) \).

We may thus formulate one of our main results as follows:
Theorem 1.2. Let $f : K \to \mathbb{R}$ be a function of finite Baire index. Then f belongs to $SD(K)$.

As we show below it is easily seen that every simple D-function has finite Baire index. Thus Theorem 1.2 yields that $SD(K)$ equals the closure, in D-norm, of the functions of finite index on K. Our proof essentially proceeds from first principles. An alternate argument, using transfinite oscillations, is given in [R2].

An interesting special case of 1.2: Let $f : [0, 1] \to \mathbb{R}$ be bounded such that $\lim_{y \uparrow x} f(y), \lim_{y \downarrow x} f(y)$ exist for all x. Then f is in $SD[0, 1]$. The fact that such functions are in $DBSC[0, 1]$ was initially proved jointly by the first and third named authors, and precedes the work given here [C]. (It is a standard elementary result that if f has these properties, then $os_1(f, \varepsilon)$ is finite for all $\varepsilon > 0$, hence $i(f) = 1$.)

It is evident that the simple D-functions form an algebra, hence $SD(K)$ is a Banach algebra. It is proved in [R2] that $SD(K)$ is a lattice, i.e., $|f| \in SD(K)$ if $f \in SD(K)$. We prove here that the functions of finite index form an algebra and a lattice. This follows immediately from the following result.

Theorem 1.3. Let f, g be bounded real-valued functions on K, of finite index. Let h be any of the functions $f + g, f \cdot g, \max\{f, g\}, \min\{f, g\}$. Then

$$i(h) \leq i(f) + i(g).$$

It is evident that if f is of finite index, then for any non-zero scalar λ, $i(\lambda f) = i(f)$; also it is easy to show that $i(|f|) \leq i(f)$. However the assertions of Theorem 1.3 appear to lie below the surface. The quantitative result which does the job (Theorem 2.8 below), is then applied to yield a necessary condition for a function to be in $SD(K)$, which is also sufficient in the case of upper semi-continuous functions.

Theorem 1.4. Let $f : K \to \mathbb{R}$ be a given bounded function.

(a) If $f \in SD(K)$, then

$$\lim_{\varepsilon \to 0} \varepsilon i(f, \varepsilon) = 0$$

(b) If f is semi-continuous and satisfies (7), then $f \in SD(K)$.

It is proved in [R2] that every SD-function is a difference of strong D-semi-continuous functions. Evidently Theorem 1.4 yields an effective criterion for distinguishing the class of strong D-semi-continuous functions. However, one may
construct functions, e.g., on $K = \omega^\omega + 1$, which are not D-functions but satisfy (7), or which are D-functions but not SD-functions, and still satisfy (7). An effective intrinsic criterion involving the \(\omega \text{th oscillation} \), which does distinguish SD-functions from D-functions, is given in [R2].

We conclude the article by applying Theorem 1.4(a) to show that $DBSC(K) \sim SD(K)$ is non-empty for all interesting K.

Proposition 1.5. Assume that $K^{(j)}$, the jth derived set of K, is non-empty for all $j = 1, 2, \ldots$. There exists a function f on K which is in $DBSC(K)$ but not in $SD(K)$.

(An alternate proof of 1.5, using transfinite oscillations, is given in [R2].)

Recall that $K^{(j)}$ is defined inductively: For M a topological Hausdorff space, let M' denote the set of cluster points of M. Let $K^{(0)} = K$ and $K^{(j+1)} = (K^{(j)})'$ for all j. Now if K fails the hypotheses of 1.5 there is an integer n with $K^{(n+1)} = \emptyset$. Then every bounded function on K is of index at most n, hence belongs to $SD(K)$.

It can also be shown that if K satisfies the hypotheses of 1.5, there exists an $f \in B_{1/2}(K) \sim DBSC(K)$, and also an $f \in B_1(K) \sim B_{1/2}(K)$.

Section 2.

We begin with some preliminary results.

Lemma 2.1. Let f be a bounded non-negative lower semi-continuous function on K. Then $f \in DBSC(K)$ and $\|f\|_D = \|f\|_\infty$. Hence if f is bounded semi-continuous, $\|f\|_D \leq 3\|f\|_\infty$.

Proof. By a classical result of Baire (cf. [H]), there exists a sequence (φ_j) of continuous functions on K with $0 \leq \varphi_1 \leq \varphi_2 \leq \cdots$ and $\varphi_j \to f$ pointwise. Setting $u_1 = \varphi_1$, $u_j = \varphi_j - \varphi_{j-1}$ for $j > 1$, we have that $u_j \geq 0$ for all j and $\sum u_j = f$ point-wise. Thus $\|f\|_D \geq \|f\|_\infty$; the reverse inequality is trivial.

To see the last statement, let e.g., f be bounded upper semi-continuous, $\lambda = \|f\|_\infty$, and note that $\lambda - f$ is non-negative lower semi-continuous. Thus $\|\lambda - f\|_D = \|\lambda - f\|_\infty \leq 2\lambda$, so $\|f\|_D \leq \lambda + \|\lambda - f\|_D \leq 3\lambda$. \(\square \)

Remark. It thus follows that if f is a D-function, then $\|f\|_D = \inf \{\|u + v\|_\infty : u, v \geq 0 \text{ are bounded lower semi-continuous with } f = u - v\}$.

Of course it follows immediately from Lemma 2.1 that if U is an open non-empty subset of K, then $\|\chi_U\|_D = 1$, for χ_U is lower semi-continuous. In this case, the sequence (φ_j) mentioned above can be easily chosen, using Urysohn’s lemma. Indeed, if U is closed, this is trivial. Otherwise, let $\varepsilon_0 > 0$ be such that $\dist(x_0, \partial U) > \varepsilon_0$ for some $x_0 \in U$; set $F_n = \{x \in U : \dist(x, \partial U) \geq \frac{\varepsilon_0}{n}\}$. Then $U = \bigcup_{j=1}^{\infty} F_j$ and for all j, F_j is closed, $F_j \subset \text{Int} F_{j+1}$. Now choose $[0, 1]$-valued continuous functions (φ_j) on K so that for all j, $\varphi_j = 1$ on F_j and $\{x : \varphi_j(x) \neq 0\} \subset \text{Int} F_{j+1}$. Then $\varphi_j \to \chi_U$ pointwise.

Evidently it follows that if W is a closed subset of K, then $\|\chi_W\|_D \leq 2$. In fact, if W is a difference of closed sets; i.e., $W = W_1 \sim W_2$, with W_i closed for $i = 1, 2$, we again have that $\|\chi_W\|_D \leq 2$, for $\|\chi_W\|_D \leq \|\chi_{W_1}\|_D \|\chi_{W_2}\|_D \leq 2 \cdot 1 = 2$.

The following result shows that the simple D-functions are precisely those functions built up from the differences of closed sets.

Proposition 2.2. Let f be a simple real-valued function on K. The following are equivalent:

1) $f \in B_{1/2}(K)$;
2) f is of finite Baire index;
3) $f \in \text{DBSC}(K)$;
4) There exist disjoint differences of closed sets W_1, \ldots, W_m and scalars c_1, \ldots, c_m with

$$f = \sum_{i=1}^{m} c_i \chi_{W_i}.$$

Proof. Let us suppose f is non constant, let r_1, \ldots, r_k be the distinct values of f, and set $\varepsilon = \min\{|r_i - r_j| : i \neq j, 1 \leq i, j \leq k\}$. Now if W is a non-empty subset of K, $w \in W$, and $\text{osc} f \mid W(w) < \varepsilon$, then $f \mid W$ is continuous at w; in fact there is an open neighborhood U of w with $f(x) = f(w)$ for all $x \in U \cap W$.

Now suppose 1) holds, and let $n = i(f, \varepsilon)$. By Proposition 1.1, $n < \infty$. We then obtain that defining $K_0 = K$ and $K_{j+1} = \{x \in K_j : f|K_j$ is discontinuous at $x\}$, for $1 \leq j \leq n + 1$, then $K_{n+1} = \emptyset$ and if $0 < \varepsilon' \leq \varepsilon$, $\text{osc}_j(f, \varepsilon') = K_j$ for all $1 \leq j \leq n$. Hence in fact $i(f) = i(f, \varepsilon) = n$, so 2) is proved. Of course 2) implies 1) by Proposition 1.1.

It remains only to show that 1) \Rightarrow 4), for evidently 4) \Rightarrow 3) \Rightarrow 1). Now fixing $0 \leq i \leq n$, we have that f is continuous on $K_{i-1} \cap K_i$. Let then $\ell = \ell(i)$ and
Let $r_j^1, \ldots, r_j^{\ell}$ be the distinct values of f on $K_j \sim K_{j+1}$; let $W_i^j = \{x \in K_j \sim K_{j+1} : f(x) = r_i^j\}$. Then W_i^j is a clopen subset of $K_j \sim K_{j+1}$; it follows easily that in fact W_i^j is then again a difference of closed sets in K, for all i, $1 \leq i \leq \ell$, and thus

$$f = \sum_{j=0}^{n} \sum_{i=1}^{\ell(j)} r_i^j \chi_{W_i^j},$$

proving 4). \qed

Remark. The above proof yields that moreover if $W \subset K$, and χ_W is a D-function, then W is a (disjoint) finite union of differences of closed sets; the converse is again immediate. This condition is incidentally equivalent to the condition that W belongs to the algebra D of sets generated by the closed subsets of K.

We give some more preliminary results, before passing to the proof of Theorem 1.2. For $f : K \to \mathbb{R}$, we set $\text{supp} f = \{k \in K : f(k) \neq 0\}$. If $W \subset K$, we say that f is supported on W if $\text{supp} f \subset W$.

Lemma 2.3. Let U be a non-empty open subset of K, and f a bounded function on K, supported and continuous on U. Then $f \in SD(K)$ and $\|f\|_D = \|f\|_\infty$.

Proof. Let us first show the norm identity. Note that since f is bounded, if u is a continuous function on K with $u(x) = 0$ for all $x \notin U$, then $f \cdot u$ is continuous on K. Now choose u_1, u_2, \ldots continuous non-negative functions on K with $\chi_U = \sum u_j$ point-wise. But then $f = \sum f \cdot u_j$ point-wise, $f \cdot u_j$ is continuous on K for all j, and $\sum |fu_j| \leq \|f\|_\infty \sum u_j \leq \|f\|_\infty$, so $\|f\|_D \leq \|\sum |fu_j|\|_\infty \leq \|f\|_\infty$; the reverse inequality is trivial.

To see that f is a strong D-function, assume without loss of generality that $\|f\|_\infty = 1$. Now fix n a positive integer, and for each j, $-n \leq j \leq n$, define K_j^n by

$$(8) \quad K_j^n = \left\{x \in U : \frac{j}{n} \leq f(x) < \frac{j+1}{n} \right\}.$$

Finally, define φ_n by

$$\varphi_n = \sum_{j=-n}^{n} \frac{j}{n} \chi_{K_j^n}. \tag{9}$$

Then evidently by the continuity of f, K_j^n is a difference of closed sets in U, and hence in K, for all j, so φ_n is a simple D-function; moreover we have

$$0 \leq f - \varphi_n \leq \frac{1}{n}. \tag{10}$$
Thus to show that \(\|f - \varphi_n\|_D \to 0 \) as \(n \to \infty \), we need only show that \(f - \varphi_n \) is lower semi-continuous; for then \(\|f - \varphi_n\|_D \leq \frac{1}{n} \) by (10) and Lemma 2.1.

Let \(\psi = f - \varphi_n \), and suppose it were false that \(\psi \) is lower semi-continuous. We may then choose \(x \in K \) and \((x_m)\) a sequence in \(K \) with \(x_m \to x \) so that \(\psi(x_m) \) converges and

\[
\lim_{m \to \infty} \psi(x_m) < \psi(x). \tag{11}
\]

Evidently then \(x \in U \), since \(x \notin U \) implies \(\psi(x) = 0 \leq \psi(x_m) \) for all \(m \). By passing to a subsequence, we may then assume without loss of generality that there is a \(j \), \(-n \leq j \leq n \), with \(x_m \in K_j^n \) for all \(m \). But since \(f \) is continuous on \(U \), \(\lim_{m \to \infty} f(x_m) = f(x) \); if also \(x \in K_j^n \), then since \(\psi(x_m) = f(x_m) - \frac{j}{n} \) for all \(m \), we have that \(\lim_{m \to \infty} \psi(x_n) = f(x) - \frac{j}{n} = \psi(x) \), a contradiction. If \(x \notin K_j^n \), by continuity of \(f \) we must have that \(f(x) = \frac{j+1}{n} \). But then \(x \in K_{j+1}^n \), so \(\psi(x) = 0 < \frac{j+1}{n} - \frac{j}{n} = \lim_{m \to \infty} \psi(x_m) \) again contradicting (11). \(\Box \)

Our next preliminary result deals with extension issues. (For \(W \subset K \) and \(f : W \to \mathbb{R} \), \(f \cdot \chi_W \) denotes the function which is zero off \(W \) and agrees with \(f \) on \(W \).)

Lemma 2.4. Let \(W \subset K \) be a difference of closed sets and \(f \) in DBSC(\(W \)). Then \(f \cdot \chi_W \) is in DBSC(\(K \)) and

\[
\|f \cdot \chi_W\|_{D(K)} \leq 2\|f\|_{D(W)} ; \tag{12}
\]

if \(W \) is an open set, then

\[
\|f \cdot \chi_W\|_{D(K)} = \|f\|_{D(W)} . \tag{13}
\]

Moreover if \(f \in SD(W) \), then \(f\chi_W \in SD(K) \).

Proof. Suppose first that \(W \) is open, and let \((\varphi_j)\) in \(C(K) \) be such that the \(\varphi_j \)'s are non-negative and \(\sum \varphi_j = \chi_W \) point-wise. Let \(\varepsilon > 0 \) and choose \((\psi_j)\) in \(C(W) \) with \(\sum |\psi_j| < \|f\|_{D(W)} + \varepsilon \) and \(f = \sum \psi_j \) point-wise on \(W \). Now identifying \(\psi_j \) with \(\psi_j \cdot \chi_W \), \(\psi_j \cdot \varphi_i \) is continuous on \(K \) for all \(i \) and \(j \), and we have that \(\sum_{i,j} \psi_j \varphi_i \leq \|f\|_{D(W)} + \varepsilon \), with \(\sum_{i,j} \psi_j \varphi_i = f\chi_W \). Thus \(\|f\chi_W\|_{D(K)} \leq \|f\|_{D(W)} + \varepsilon \) for all \(\varepsilon > 0 \); so \(\|f\chi_W\|_{D(K)} \leq \|f\|_{D(W)} \). The reverse inequality is trivial, so (13) is established.
Next, suppose that W is closed, and again let $\varepsilon > 0$. As noted following Lemma 2.1, we may choose u, v non-negative lower semi-continuous on W with

$$f = u - v \quad \text{and} \quad \|u + v\|_\infty < \|f\|_{D(W)} + \varepsilon.$$

Now let $\lambda = \|u + v\|_\infty$ and let $\tilde{u} = \lambda \chi_{\sim W} + u \chi_W$, $\tilde{v} = \lambda \chi_{\sim W} + v \chi_W$. It follows easily that \tilde{u} and \tilde{v} are both non-negative lower semi-continuous on K and of course

$$f \chi_W = \tilde{u} - \tilde{v}, \quad \|\tilde{u} + \tilde{v}\|_\infty = 2\lambda.$$

Thus by the observation following Lemma 2.1, $\|f \chi_W\|_D \leq 2\lambda < 2\|f\|_{D(W)} + 2\varepsilon$.

Since $\varepsilon > 0$ is arbitrary, (12) is proved for closed W.

Now suppose W is a difference of closed sets. Choose U open, L closed with $W = U \cap L$. Then W is a relatively closed subset of U, so we have that $f \cdot \chi_L \mid U$ belongs to $DBSC(U)$ with $\|f \cdot \chi_L \mid U\|_{D(U)} \leq 2\|f\|_{D(W)}$. But then by (13), $f \cdot \chi_W = (f \cdot \chi_L) \mid U \cdot \chi_U$ belongs to $DBSC(K)$ and $\|f \cdot \chi_W\| \leq \|f \cdot \chi_L \mid U\|_{D(W)} \leq 2\|f\|_{D(W)}$, proving (12).

Finally, suppose $f \in SD(W)$. Then given $\varepsilon > 0$, choose g a simple D-function on W with

$$\|g - f\|_{D(W)} < \varepsilon.$$

By Proposition 2.2, there are disjoint differences of closed sets in W, W_1, \ldots, W_k, and scalars c_1, \ldots, c_k with $g = \sum_{i=1}^k c_i \chi_{W_i}$ on W. But then for all i, W_i is actually a difference of closed sets in K, and thus $g \cdot \chi_{W_i}$ is a simple D-function on K. Then by (12),

$$\|(g - f) \chi_W\| = \|g \chi_W - f \chi_W\| < 2\varepsilon.$$

Thus the final assertion of the Lemma is established. □

Remark. Using the comment following Proposition 2.2, we obtain that if $W \subset K$ is in \mathcal{D} (i.e., χ_W is a D-function), then for $f : W \to \mathbb{R}$ a bounded function, f is a D-function on W if and only if $f \chi_W$ is a D-function on K; moreover $f \in SD(W)$ if and only if $f \chi_W \in SD(K)$.

Before giving the proof of Theorem 1.2, we recall the following standard result.
Lemma 2.5. Let \(\varepsilon > 0 \), and suppose \(f : K \to \mathbb{R} \) is such that \(\text{osc} \, f \leq \varepsilon \) on \(K \). There exists \(\varphi : K \to \mathbb{R} \) continuous with \(|f - \varphi| \leq \varepsilon \) on \(K \).

Proof. Let \(Lf \) be the lower semi-continuous envelope of \(f \); \(Lf(x) = \lim_{y \to x} f(y) \) for all \(x \in X \). Then we have that

\[
\text{osc} \, f = Uf - Lf.
\]

Since \(\text{osc} \, f \leq 2 \text{osc} \, f \), \(\text{osc} \, f \leq 2\varepsilon \) on \(K \). Thus we have by assumption that

\[
Uf - \varepsilon \leq Lf + \varepsilon.
\]

By the Hahn interposition theorem (cf. [H], p.276), there exists \(\varphi \) continuous with

\[
Uf - \varepsilon \leq \varphi \leq Lf + \varepsilon.
\]

Since \(f \leq Uf \) and \(Lf \leq f \), \(\varphi \) satisfies the conclusion of the Lemma. \(\Box \)

We now treat the proof of Theorem 1.2. It is convenient to consider a larger class; for \(n \geq 0 \), let \(G_n \) denote the family of all bounded functions \(f : K \to \mathbb{R} \) so that there exists an open set \(U \) with \(f \) supported on \(U \) and \(i(f \mid U) \leq n \). The following quantitative result yields Theorem 1.2 immediately.

Theorem 2.6. Let \(n \geq 0 \) and \(f \in G_n \). Then \(f \in SD(K) \) and

\[
\|f\|_D \leq (2^{n+1} - 1)\|f\|_\infty.
\]

Remark. Of course it follows a-posteriori that if we prove the result just for functions \(f \) of index \(n \), then it holds immediately for functions in \(G_n \), by Lemma 2.4. The class \(G_n \) is needed for our proof, however. We also note that the argument given in [R2], using transfinite oscillations, gives the optimal estimate: if \(i(f) \leq n \), then \(\|f\|_D \leq (2n + 1)\|f\|_\infty \).

We prove 2.6 by induction on \(n \). The case \(n = 0 \) follows immediately from Lemma 2.3. Now let \(n > 0 \) and suppose 2.6 proved for \("n" = n - 1 \).

Lemma 2.7. Let \(f \in G_n \) and \(\varepsilon > 0 \). There exist functions \(g \) and \(h \) with \(f = g + h \), \(g \in G_n \), \(h \in SD(K) \), and

\[
\|h\|_D \leq (2^{n+1} - 1)\|f\|_\infty, \quad \|g\|_\infty \leq \varepsilon.
\]
Proof. Let \(\lambda_j = 2^{i+1} - 1 \) for \(j = 0, 1, 2, \ldots \). Let \(U \) be chosen with \(f \) supported in \(U \) and \(i(f \mid U) \leq n \). Let \(W = \{ x \in U : \text{osc} f(x) \geq \epsilon \} \). It follows that \(W \) is a relatively closed subset of \(U \) and

\[
(22) \quad \lambda(f \mid W) \leq n - 1.
\]

Thus by induction hypothesis and Lemma 2.4,

\[
(23) \quad f \cdot \chi_W \in SD(K) \quad \text{and} \quad \| f \cdot \chi_W \|_D \leq 2\lambda_{n-1} \| f \|_\infty.
\]

Now by Lemma 2.5, we may choose \(\varphi : U \sim W \rightarrow \mathbb{R} \), \(\varphi \) continuous on \(U \sim W \), with

\[
(24) \quad \| \varphi \|_\infty \leq \| f \|_\infty \quad \text{and} \quad | \varphi(x) - f(x) | \leq \epsilon \quad \text{for all} \quad x \in U \sim W,
\]

Indeed, 2.5 gives \(\tilde{\varphi} \) with \(\tilde{\varphi} \) continuous and \(| \tilde{\varphi} - f | \leq \epsilon \) on \(U \sim W \). But simply define \(\varphi(x) = \tilde{\varphi}(x) \) if \(| \tilde{\varphi}(x) | \leq \| f \|_\infty \), and \(\varphi(x) = \| f \|_\infty \text{sgn} f(x) \) otherwise.

Let \(g \) and \(h \) be defined by

\[
(25) \quad g = (f - \varphi)\chi_{U \sim W}, \quad h = f \cdot \chi_W + \varphi \cdot \chi_{U \sim W}.
\]

Now evidently \(\text{supp} g \subset U \sim W \); since \(\varphi \) is continuous on \(U \sim W \), it follows that \(i((f - \varphi) \mid U \sim W) \leq i(f \mid U) \leq n \); hence \(g \in \mathcal{G}_n \), and by (24), \(\| g \|_\infty \leq \epsilon \).

Evidently, \(f = g + h \); finally, by (23) and Lemma 2.3, \(h \in SD(K) \) and

\[
\| h \|_D \leq (2\lambda_{n-1} + 1) \| f \|_\infty = \lambda_n \| f \|_\infty.
\]

□

Proof of Theorem 2.6 for \(n \). Fix \(\epsilon > 0 \). We may choose by induction sequences \((h_j) \) and \((g_j) \) so that for all \(j \),

\[
(26i) \quad f = h_1 + \cdots + h_j + g_j
\]

\[
(26ii) \quad h_j \in SD(K), \quad g_j \in \mathcal{G}_n
\]

\[
(26iii) \quad \| h_1 \|_D \leq \lambda_n \| f \|_\infty, \quad \| h_j \|_D \leq \frac{\epsilon}{2^{j-1}} \quad \text{for} \quad j > 1
\]

\[
(26iv) \quad \| g_j \|_\infty \leq \frac{\epsilon}{\lambda_n 2^j}.
\]

Indeed, by Lemma 2.7, we may choose \(h_1 \in SD(K) \) and \(g_1 \in \mathcal{G}_n \) with \(f = h_1 + g_1 \),

\[
\| h_1 \|_D \leq \lambda_n \| f \|_\infty, \quad \| g_1 \|_\infty \leq \frac{\epsilon}{\lambda_n 2^1}.
\]
Now suppose \(j \geq 1 \) and \(h_1, \ldots, h_j, g_j \) chosen satisfying (26i)–(26iv). Since \(g_j \in G_n \), by Lemma 2.7 we may choose \(h_{j+1} \in SD(K) \) and \(g_{j+1} \in G_n \) with \(g_j = h_{j+1} + g_{j+1} \).

\[
\| h_{j+1} \|_D \leq \lambda_n \| g_j \|_\infty \quad \text{and} \quad \| g_{j+1} \|_\infty \leq \frac{\varepsilon}{\lambda_n 2^{j+1}}.
\]

Then (26i)–(26iv) hold at \(j + 1 \).

Since the \(D \)-norm is trivially larger than the sup-norm and \(\| g_j \|_\infty \to 0 \), it follows from (26i) and (26iii) that \(\sum h_i \) converges uniformly to \(f \). Since \(DBSC(K) \) is a Banach space, \(\sum \| h_j \|_D < \infty \), and \(h_j \in SD(K) \) for all \(j \), it follows that \(f \in SD(K) \).

Finally, we have by (26iii) that

\[
\| f \|_D \leq \lambda_n \| f \|_\infty + \sum_{j=2}^{\infty} \frac{\varepsilon}{2^{j-1}} = \lambda_n \| f \|_\infty + \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, Theorem 2.6 is proved. \(\square \)

We turn now to Theorem 1.3. This follows immediately from the following result.

Theorem 2.8. Let \(f, g \in B_{1/2}(K) \), and \(\varepsilon > 0 \). Then the following hold.

(a) \(i(f + g, \varepsilon) \leq i(f, \frac{\varepsilon}{2}) + i(g, \frac{\varepsilon}{2}) \).

(b) \(i(f \cdot g, \varepsilon) \leq i(f, \frac{\varepsilon}{2F}) + i(g, \frac{\varepsilon}{2G}) \) where \(F = \| f \|_\infty, G = \| g \|_\infty \), and it is assumed that \(F, G > 0 \).

(c) \(i(h, \varepsilon) \leq i(f, \varepsilon) + i(g, \varepsilon) \) where \(h = f \lor g \) or \(h = f \land g \).

We give the detailed proof of (a) (which is also needed later), and then indicate how (b), (c) follow by the same method.

We first note the following fact.

Lemma 2.9. Let \(W_1, \ldots, W_n \) be closed non-empty sets with \(K = \bigcup_{i=1}^{n} W_i \) and \(f : K \to \mathbb{R} \) a bounded function. Then

\[
\text{osc} f = \max_{1 \leq i \leq n} \left(\text{osc} f \mid W_i \right) \chi_{W_i}.
\]

Proof. We first note that

\[
\text{osc} f = \max_{1 \leq i \leq n} \left(\text{osc} f \mid W_i \right) \chi_{W_i}.
\]

For let \(x \in K \) and choose \((x_m) \) in \(K \) with \(x_m \to x \) and \(\text{osc} f(x) = \lim_{n \to \infty} |f(x_n) - f(x)| \). We may choose \(i \) and \(m_j < m_{j+1} \) with \(x_m \in W_i \) for all \(j \). But then
If \(x \in W_i \) and so \(\text{osc} f(x) \leq \text{osc} f \ | \ W_i(x) \leq \max_{i} \text{osc} f \ | \ W_i(x) \chi_{W_i}(x) \). The reverse inequality is trivial, so (30) follows.

Now again let \(x \in K \) and choose \((x_m) \) in \(K \) with \(x_m \to x \) and \(\text{osc} f(x) = \lim_{n \to \infty} \text{osc} f(x_m) \). By (30), we may again choose \(m_1 < m_2 < \cdots \) and \(i \) with \(\text{osc} f(x_{m_j}) = \text{osc} f \ | \ W_i \chi_{W_i}(x_{m_j}) \) for all \(j \). Now if \(f(x) = 0 \), (29) is trivial. Otherwise, without loss of generality, \(\text{osc} f(x_{m_j}) > 0 \) for all \(j \); hence then \(x_{m_j} \in W_i \) and so \(x \in W_i \), whence \(\text{osc} f(x) \leq \text{osc} f \ | \ W_i(x) \leq \max_{i} \text{osc} f \ | \ W_i \chi_{W_i}(x) \). Again the reverse inequality is trivial, so (29) holds. \(\square \)

Now let \(f, g \) be as in Theorem 2.8, and \(\varepsilon > 0 \) be given. For each \(n = 1, 2, \ldots \) and \(\theta = (\theta_1, \ldots, \theta_n) \) with \(\theta_i = 0 \) or 1 for all \(1 \leq i \leq n \), we define closed subsets \(L(\theta) \) of \(K \) as follows:

\[
(31) \quad L(0) = \left\{ x \in K : \text{osc} f(x) \geq \frac{\varepsilon}{2} \right\} ; \quad L(1) = \left\{ x \in K : \text{osc} g(x) \geq \frac{\varepsilon}{2} \right\}.
\]

If \(n \geq 1 \) and \(L(\theta) = L(\theta_1, \ldots, \theta_n) \) is defined, let

\[
(32) \quad \begin{cases}
L(\theta_1, \ldots, \theta_{n+1}) = \left\{ x \in L(\theta) : \text{osc} f \ | \ L(\theta) \geq \frac{\varepsilon}{2} \right\} & \text{if } \theta_{n+1} = 0 \\
L(\theta_1, \ldots, \theta_{n+1}) = \left\{ x \in L(\theta) : \text{osc} g \ | \ L(\theta) \geq \frac{\varepsilon}{2} \right\} & \text{if } \theta_{n+1} = 1.
\end{cases}
\]

These sets are closed, since \(\text{osc} f, \text{osc} g \) are upper semi-continuous functions. We then have for all \(n \) that

\[
(33) \quad \text{os}_n(f + g, \varepsilon) \subset \bigcup_{\theta \in \{0,1\}^n} L(\theta).
\]

We prove this by induction on \(n \). Now for \(n = 1 \), since it is easily seen that \(\text{osc}(f + g) \leq \text{osc} f + \text{osc} g \), we then have that \(\text{osc}(f + g)(x) \geq \varepsilon \) implies \(\text{osc} f(x) \geq \frac{\varepsilon}{2} \) or \(\text{osc} g(x) \geq \frac{\varepsilon}{2} \); this gives \(\text{os}_1(f + g, \varepsilon) \subset L(0) \cup L(1) \). Suppose (33) is proved for \(n \), and suppose \(K_n = \text{os}_n(f + g, \varepsilon) \) and \(x \in \text{os}_{n+1}(f + g, \varepsilon) \). Thus \(\text{osc}(f + g) \ | \ K_n(x) \geq \varepsilon \). By the preceding lemma and (33), we may then choose \(\theta \in \{0,1\}^n \) with \(x \in K_n \cap L(\theta) \) and

\[
\text{osc}(f + g) \ | \ K_n(x) = \text{osc}(f + g) \ | \ K_n \cap L(\theta)(x) \\
\leq \text{osc}(f + g) \ | \ L(\theta)(x) \\
\leq \text{osc} f \ | \ L(\theta)(x) + \text{osc} g \ | \ L(\theta)(x).
\]

It follows immediately that \(x \in L(\theta_1, \ldots, \theta_n, 0) \cup L(\theta_1, \ldots, \theta_n, 1) \); thus (32) holds at \(n + 1 \).
Next, fix \(n \) and \(\theta \in \{0, 1\}^n \). Let
\[
j = j(\theta) = \# \{1 \leq i \leq n : \theta_i = 0\}, \quad k = k(\theta) = \# \{1 \leq i \leq n : \theta_i = 1\}.
\]

Then we claim
\[
L(\theta) \subset \text{os}_j\left(f, \frac{\varepsilon}{2}\right) \cap \text{os}_k\left(g, \frac{\varepsilon}{2}\right).
\]

Again we prove this by induction on \(n \). The case \(n = 1 \) is trivial, by the definitions of \(L(0) \) and \(L(1) \). Now suppose (35) is proved for \(n \), and \((\theta_1, \ldots, \theta_{n+1})\) is given; let \(j = j(\theta_1, \ldots, \theta_n) \) and \(k = k(\theta_1, \ldots, \theta_n) \). Now if \(\theta_{n+1} = 0 \), then \(j(\theta_1, \ldots, \theta_{n+1}) = j + 1 \) and \(k(\theta_1, \ldots, \theta_{n+1}) = k \); then by (35), \(L(\theta_1, \ldots, \theta_{n+1}) \subset L(\theta_1, \ldots, \theta_n) \subset \text{os}_k(g, \frac{\varepsilon}{2}) \) and by definition and (35),
\[
L(\theta_1, \ldots, \theta_n) \subset \left\{x \in \text{os}_j\left(f, \frac{\varepsilon}{2}\right) : \text{osc} f | \text{os}_j\left(f, \frac{\varepsilon}{2}\right)(x) \geq \frac{\varepsilon}{2}\right\}
= \text{os}_{j+1}\left(f, \frac{\varepsilon}{2}\right).
\]

Of course if \(\theta_{n+1} = 1 \), we obtain by the same reasoning that \(L(\theta_1, \ldots, \theta_{n+1}) \subset \text{os}_j(f, \frac{\varepsilon}{2}) \cap \text{os}_{k+1}(g, \frac{\varepsilon}{2}) \) and \(j = j(\theta_1, \ldots, \theta_{n+1}), \ k + 1 = k(\theta_1, \ldots, \theta_{n+1}) \); thus (35) is proved for \(n + 1 \), and so established for all \(n \) by induction.

Now suppose, for a given \(n \), that \(\text{os}_n(f + g, \varepsilon) \neq \emptyset \). Then by (33), there is a \(\theta \in \{0, 1\}^n \) with \(L(\theta) \neq \emptyset \). Thus letting \(j \) and \(k \) be as in (34), we have by (35) that \(\text{os}_j(f, \frac{\varepsilon}{2}) \neq \emptyset \) and \(\text{os}_k(g, \frac{\varepsilon}{2}) \neq \emptyset \). But then \(n = j + k \leq i(f, \frac{\varepsilon}{2}) + i(g, \frac{\varepsilon}{2}) \).

Theorem 2.8(a) is thus established.

To see 2.8(b), note for any \(y \) and \(x \in K \) that
\[
|f(y)g(y) - f(x)g(x)| \leq G|f(y) - f(x)| + F|g(y) - g(x)|.
\]

Hence we have that fixing \(x \in K \), then \(\text{osc} f g(x) \leq G \text{osc} f(x) + F \text{osc} g(x) \), whence
\[
\text{osc} f g(x) \leq G \text{osc} f(x) + F \text{osc} g(x).
\]

Thus \(\text{osc} f g(x) \geq \varepsilon \) implies \(\text{osc} f(x) \geq \frac{\varepsilon}{2G} \) or \(\text{osc} g(x) \geq \frac{\varepsilon}{2F} \). We now prove (b) by defining the sets \(L(\theta) \) by \(L(0) = \text{os}_1(f, \frac{\varepsilon}{2G}), L(1) = \text{os}_1(g, \frac{\varepsilon}{2F}) \), and for \(\theta = (\theta_1, \ldots, \theta_{n+1}) \), \(L(\theta_1, \ldots, \theta_{n+1}) = \{x \in L(\theta) : \text{osc} f | L(\theta) \geq \frac{\varepsilon}{2G} \} \) if \(\theta_{n+1} = 0 \), and \(L(\theta_1, \ldots, \theta_{n+1}) = \{x \in L(\theta) : \text{osc} g | L(\theta) \geq \frac{\varepsilon}{2F} \} \) if \(\theta_{n+1} = 1 \). Then we proceed...
exactly as in case (a). Finally, for case (c), we note that if h is as in (c) and $x \in K$, then

\begin{equation}
\text{osc } h(x) \geq \varepsilon \text{ implies osc } f(x) \geq \varepsilon \text{ or osc } g \geq \varepsilon .
\end{equation}

Suppose this were false. Then we can choose $0 < \varepsilon' < \varepsilon$ and U an open neighborhood of x with

\begin{equation}
\text{osc } f(u) < \varepsilon' \text{ and osc } g(u) < \varepsilon' \text{ for all } u \in U.
\end{equation}

Now fix $u \in U$; we can then choose V an open neighborhood of u with $V \subset U$ and

\begin{equation}
|f(v) - f(u)| < \varepsilon' \text{ and } |g(v) - g(u)| < \varepsilon' \text{ for all } v \in V.
\end{equation}

Suppose e.g., $h = f \lor g$ and $v \in V$ with $(f \lor g)(v) = f(v)$, $(f \lor g)(u) = g(u)$. But then by (40) and the above,

\begin{equation}
f(v) \geq g(v) > g(u) - \varepsilon' \text{ so } f(v) - g(u) > -\varepsilon'
\end{equation}

and

\begin{equation}
f(v) < f(u) + \varepsilon' \leq g(u) + \varepsilon' \text{ so } f(v) - g(u) < \varepsilon'.
\end{equation}

It thus follows from (40)–(42) that

\begin{equation}
|h(v) - h(u)| < \varepsilon'.
\end{equation}

If e.g., $f \lor g(v) = f(v)$ and $f \lor g(u) = f(u)$, (43) follows immediately from (40), so (43) holds for all $v \in V$. Thus we obtain \(\text{osc } h(u) \leq \varepsilon'\); but since $u \in U$ is arbitrary, we also have \(\text{osc } h(x) \leq \varepsilon',\) a contradiction. The proof for $h = f \land g$ is the same.

Evidently (38) yields that $\text{os}_1(h, \varepsilon) \subset \text{os}_1(f, \varepsilon) \cup \text{os}_1(g, \varepsilon)$; we then proceed as in case (a), except that the sets $L(\theta_1, \ldots, \theta_n)$ are defined by replacing “ε” by \(\frac{\varepsilon}{2}\)” in (31), (32). □

We next treat Theorem 1.4. We first recall the following fact.

Lemma 2.9. Let $f \in D(K)$. Then $\varepsilon i(f, \varepsilon) \leq 4\|f\|_D$.

This follows immediately from the definitions, the fact that $\text{os}_j(f, \varepsilon) \subset K_j(f, \varepsilon)$ for all j, and Lemma 2.4 of [HOR]. (A direct proof of 2.9 is given in [R2] yielding the refinement that $\varepsilon i(f, \varepsilon) \leq \|f\|_D$.)
Proof of Theorem 1.4. Suppose first that \(f \in SD(K), \eta > 0 \), and choose \(g \) a simple \(D \)-function with \(\| f - g \|_D \leq \eta \). It then follows by Lemma 2.9 that

\[
\varepsilon_i(f - g, \varepsilon) \leq 4 \eta \quad \text{for all } \varepsilon > 0 \tag{44}
\]

Now since \(g \) is a simple \(D \)-function, \(g \) has finite index (by Proposition 2.2); say \(N = i(g) \). Then by Theorem 2.8(a) and (44), for any \(\varepsilon > 0 \),

\[
\varepsilon_i(f, \varepsilon) \leq \varepsilon_i(f - g, \varepsilon) + \varepsilon_i(g, \varepsilon) \leq 8 \eta + \varepsilon N .
\]

Hence \(\lim_{\varepsilon \to 0} \varepsilon_i(f, \varepsilon) \leq 8 \eta \). Since \(\eta > 0 \) is arbitrary, (7) is proved.

Finally, to prove (b) of Theorem 1.4, suppose without loss of generality that \(f \) is upper semi-continuous and satisfies (7), let \(\eta > 0 \), and choose \(0 < \varepsilon < \eta \) with

\[
\varepsilon_i(f, \varepsilon) < \eta \tag{45}
\]

Let then \(n = i(f, \varepsilon) \) and set \(K^j = \text{os}_j(f, \varepsilon) \) for all \(j \). Thus \(K^n \neq \emptyset \), \(K^{n+1} = \emptyset \), and for \(0 \leq j \leq n \), \(\text{osc}(f \mid K^j \sim K^{j+1}) < \varepsilon \). Thus for all \(j \), we may choose by Lemma 2.5 a continuous function \(\varphi_j \) on \(K^j \sim K^j+1 \) with

\[
|\varphi_j - f| \leq \varepsilon \quad \text{on } K^j \sim K^j+1 . \tag{46}
\]

Now set \(g = \sum_{j=0}^n \varphi_j \chi_{K^j \sim K^{j+1}} \). By Lemmas 2.3 and 2.4, \(g \in SD(K) \). Now fixing \(j \) and letting \(W = K^j \sim K^{j+1} \), then \((f - g) \mid W \) is upper semi-continuous, hence by Lemma 2.1 and (46),

\[
\| f - g \|_{D(W)} \leq 3\| f - g \|_\infty \leq 3 \varepsilon . \tag{47}
\]

Then by Lemma 2.4,

\[
\|(f - g)\chi_W\|_{D(K)} \leq 6 \varepsilon . \tag{48}
\]

Hence

\[
\| f - g \|_D = \sum_{j=0}^n \|(f - g)\chi_{K^j \sim K^{j+1}}\|_D \\
\leq \sum_{j=0}^n \|(f - g)\chi_{K^j \sim K^{j+1}}\|_D \\
\leq 6n\varepsilon + 6 \varepsilon \\
\leq 7 \varepsilon , \text{ by (45)}.
\]
Since \(\eta > 0 \) is arbitrary and \(SD(K) \) is closed in \(DBSC(K) \), we obtain that \(f \in SD(K) \), thus completing the proof of Theorem 1.4. \(\square \)

Remark. Define \(B_{1/2}^0(K) \) to be the family of all bounded functions \(f : K \to \mathbb{R} \) which satisfy (7). Evidently we have (by the preceding result) that \(SD(K) \subset B_{1/2}^0(K) \subset B_{1/2}(K) \). We have moreover that \(B_{1/2}^0(K) \) is an algebra and a lattice, by Theorem 2.8. As noted in the introduction, it can be shown that there are non-\(D \)-functions in \(B_{1/2}^0(K) \), and also \((DBSC(K) \sim SD(K)) \cap B_{1/2}^0(K) \neq \emptyset \) (for suitable \(K \)). It can be seen that \(B_{1/2}^0(K) \) is a complete linear topological space under the quasi-norm \(\|f\| = \sup_{\varepsilon > 0} \varepsilon i(f, \varepsilon) + \|f\|_{\infty} \).

We finally consider Proposition 1.5. The construction uses some preliminary results.

Lemma 2.10. Let \(n \geq 1 \) and \(K = K_0 \supset K_1 \supset \cdots \supset K_n \) be closed non-empty sets with \(K_i \) nowhere dense relative to \(K_{i-1} \) for all \(1 \leq i \leq n \). Also let \(K_{n+1} = \emptyset \). Let \(E = \bigcup_{0 \leq i \leq [n/2]} K_{2i} \sim K_{2i+1} \). Then

\[
i(\chi_E) = i(\chi_E, \varepsilon) = n \quad \text{for all} \quad 0 < \varepsilon \leq 1.
\]

Moreover \(\|\chi_E\|_D \leq n + 1 \).

Proof. Fix \(0 < \varepsilon \leq 1 \). We prove by induction on \(j \) that

\[
\text{osc}_j(\chi_E, \varepsilon) = K_j \quad \text{for all} \quad 0 \leq j \leq n.
\]

Then since \(\chi_E \) is constant on \(K_n \), \(\text{osc}_{n+1}(\chi_E, \varepsilon) = \emptyset \), yielding (49).

Now \(\chi_E \) is constant on \(K_0 \sim K_1 \), an open set; since \(K_1 \) is nowhere dense in \(K \), given \(x \in K_1 \), there exists a sequence \((x_m) \) in \(K_0 \sim K_1 \) with \(x_m \to x \). But then

\[
\text{osc}_E(x) = \lim_{m \to \infty} (\chi_E(x_m) - \chi_E(x)) = 1,
\]

hence (50) is proved for \(j = 0 \).

Suppose now (50) is proved for \(0 \leq j < n \). Again if \(x \in K_{j+1} \), since \(K_{j+1} \) is nowhere dense in \(K_j \), choose a sequence \((x_m) \) in \(K_j \) with \(x_m \to x \). Now by definition of \(E \), \(|\chi_E(x_m) - \chi_E(x)| = 1 \) for all \(m \). Thus \(\text{osc}_E | K_j(x) \geq 1 \), which proves that \(K_{j+1} \subset \text{osc}_{j+1}(\chi_E, \varepsilon) \). But \(\chi_E \) is constant on \(K_j \sim K_{j+1} \), whence \(K_{j+1} \supset \text{osc}_{j+1}(\chi_E, \varepsilon) \). Thus (50) holds.

To see the final inequality in 2.10, we have that \(\|\chi_E\|_\infty = 1 \) and...
∥χ_{K_{2i} \sim K_{2i+1}}∥_D ≤ 2 for all 1 ≤ i ≤ \lfloor n/2 \rfloor (by Lemma 2.4); hence
\[
\|\chi_E\|_D ≤ \sum_{i=0}^{\lfloor n/2 \rfloor} \|\chi_{K_{2i} \sim K_{2i+1}}\|_D ≤ 1 + 2\lfloor n/2 \rfloor ≤ n + 1 \quad \square
\]

Remark. Actually the final inequality in 2.10 follows from (49). In fact it is proved in [R2] that if \(E \subset K \) is such that \(i(\chi_E) = n \), then \(\|\chi_E\|_D = n \) or \(n + 1 \) (and both possibilities can occur).

Lemma 2.11. (a) Let \(n \geq 1 \) and suppose \(K^{(n)} \neq \emptyset \). There exist non-empty closed sets \(K_1, \ldots, K_n \) satisfying the hypotheses of Lemma 2.10.

(b) Suppose \(K^{(n)} \neq \emptyset \) for all \(n = 1, 2, \ldots \). There exist disjoint open subsets \(U_1, U_2, \ldots \) of \(K \) with \(U_n^{(n)} \neq \emptyset \) for all \(n \).

Proof.
(a) If \(K \) is perfect, it can be seen that there exists a closed perfect nowhere dense subset \(L \) of \(K \); we then easily obtain the desired sets \((K_j) \) with \(K_j \) a perfect nowhere dense result of \(K_{j-1} \). Evidently the same reasoning holds if \(K \) has a perfect non-empty subset. Otherwise, simply let \(K_j = K^{(j)}, 1 ≤ j ≤ n \). Alternatively, we may just observe that the hypotheses imply \(K \) has a closed subset homeomorphic to \(\omega^n + 1 \).

(b) First note that if \(x \in K^{(n)} \), then
\[
(51) \quad x \in U^{(n)} \quad \text{for all open neighborhoods } U \quad \text{of} \quad x .
\]

Next, note that the hypotheses imply that \(K^{(n)} \) is infinite for all \(n \). We may thus choose distinct points \(x_1, x_2, \ldots \), with \(x_n \in K^{(n)} \) for all \(n \). Now it follows that if \(U \) is an open set containing infinitely many of the \(x_j \)'s, there exists an \(n \) and an open neighborhood \(V \) of \(x_n \) with \(\bar{V} \subset U \) so that \(U \sim \bar{V} \) contains infinitely many of the \(x_j \)'s. We may then choose \(k_1 < k_2 < \cdots \) and \(U_1, U_2, \ldots \) open sets with \(\bar{U}_i \cap \bar{U}_j = \emptyset \) for all \(i \neq j \) and \(x_{k_n} \in U_n \) for all \(n \). (51) then yields that (b) holds. \(\square \)

We finally observe the following simple “localization” property for \(D \)-functions.

Lemma 2.12. Let \(U_1, U_2, \ldots \) be disjoint non-empty open subsets of \(K \), \(U = \bigcup_{j=1}^{\infty} U_j, \lambda < \infty \), and \(f : K \to \mathbb{R} \) a function supported on \(U \) with \(\|f | U_j\|_D ≤ \lambda \) for all \(j \). Then \(f \in DBSC(K) \) and \(\|f\|_D \leq \lambda \).
Proof. Let $\varepsilon > 0$. For each j, choose a sequence of continuous functions on K,
$(\varphi^j_i)_{i=1}^{\infty}$, with $0 \leq \varphi^j_i \leq 1$ for all i and $\chi_{U_j} = \sum_{i=1}^{\infty} \varphi^j_i$ pointwise. Also, choose
$(h^j_i)_{i=1}^{\infty}$ continuous functions on U_j, with $\sum |h^j_i| \leq \lambda + \varepsilon$ and $f \mid U_j = \sum h^j_i$ pointwise. Now let

$$f_{jk\ell} = \varphi^j_k h^j_\ell \chi_{U_j} \text{ for all } j, k, \ell.$$

Then $f_{jk\ell}$ is continuous on K since h^j_ℓ is bounded continuous on K and supported on U_j, and

$$\sum_{j,k,\ell} |\varphi^j_k h^j_\ell \chi_{U_j}| = \sum_j \sum_{\ell} |h^j_\ell| \chi_{U_j} \leq \lambda + \varepsilon,$$

$$\sum_j \sum_{\ell} \sum_k \varphi^j_k h^j_\ell \chi_{U_j} = \sum_j \sum_{\ell} h^j_\ell \chi_{U_j} = \sum_j f \chi_{U_j} = f.$$

Thus $\|f\|_D \leq \lambda + \varepsilon$; since $\varepsilon > 0$ is arbitrary, the result follows. □

We are now prepared for the

Proof of Proposition 1.5.

By Lemmas 2.10 and 2.11, we may choose disjoint non-empty open subsets U_1, U_2, \ldots of K, and for each n a subset E_n of U_n so that

$$i(\chi_{E_n}) = n = i(\chi_{E_n}, \varepsilon) \text{ for all } 0 < \varepsilon \leq 1,$$

and

$$\|\chi_{E_n}\|_{D(U_n)} \leq n + 1.$$

Now let $f = \sum_{n=1}^{\infty} \chi_{E_n} / n$ pointwise. Thus by Lemma 2.12 and (54), $f \in \text{DBSC}(K)$ (with $\|f\|_D \leq 2$). However fixing n and letting $\varepsilon = \frac{1}{n}$, then by (53),

$$i(\chi_{E_n}, 1) = n \left(= i\left(\frac{1}{n} \chi_{E_n}, \frac{1}{n}\right)\right) \text{ and so}$

$$\varepsilon i(f, \varepsilon) \geq \frac{1}{n} i\left(f \mid U_n, \frac{1}{n}\right) = 1.$$

Thus f fails (7), so $f \notin \text{SD}(K)$ by Theorem 1.4. □

References

[C] F. Chaatit, Some subclasses of Baire class 1 functions and uniform homeomorphisms, Thesis, University of Texas at Austin, 1993.

[H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.
[HOR] R. Haydon, E. Odell and H. Rosenthal, *On certain classes of Baire-1 functions with applications to Banach space theory*, Springer-Verlag LNM 1470 (1990), 1–35.

[R1] H. Rosenthal, *A characterization of Banach spaces containing c₀*, J. Amer. Math. Soc. (to appear).

[R2] H. Rosenthal, *Differences of bounded semi-continuous functions I*, in preparation.

Authors addresses:

F. Chaatit
Department of Mathematics
University of Texas at El Paso
El Paso, TX 79968-0514

V. Mascioni and H. Rosenthal
Department of Mathematics
University of Texas at Austin
Austin, TX 78712-1082