Carbene Complexes of Neptunium

Conrad A. P. Goodwin,1,2 Ashley J. Woole,1 Jesse Murillo,2 Erli Lu,1 Josef T. Boronski,1 Brian L. Scott,3 Andrew J. Gaunt,2* and Stephen T. Liddle1*

1 Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
2 Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
3 Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (USA).

*To whom correspondence should be addressed: gaunt@lanl.gov; steve.liddle@manchester.ac.uk

Table of Contents

S1. Experimental details .. S2
S2. Selected photographs taken during the syntheses .. S17
S3. Crystallography ... S20
S4. Molecular structures .. S24
S5. UV-vis-NIR spectra .. S33
S6. NMR spectra .. S36
S7. ATR-IR spectra ... S49
S8. Magnetic moments determined by NMR spectroscopy (Evans method) S50
S9. Computational studies ... S50
S10. References .. S88
S1. Experimental details

General considerations

Caution! Compounds of 237Np radionuclide decay principally through α-emission ($Q_\alpha = 4.958$ MeV, $t_{1/2} = 2.144(7) \times 10^6$ years)\(^1\) with a relatively high specific-activity ($a = 26.04$ MBq g\(^{-1}\)) in comparison to 238U and 232Th requiring analyses of hazards and implementation of additional safety controls. 237Np establishes a secular equilibrium (asymptotical concentration at 34.6 ppb) with the potent β-emitter 233Pa ($t_{1/2} = 26.975(13)$ days, $a = 777$ TBq g\(^{-1}\)) and associated γ-ray emission (most significant γ-branching ratio for 233Pa is 39% for the 312 keV line). Hence, all studies that involved manipulation of 237Np material were conducted in a specialist transuranium radiological designated area equipped with high efficiency particulate in air (HEPA) filtered hoods and in negative pressure gloveboxes. Safety controls included continuous air monitoring for airborne α-emitting particles and use of hand-held radiation monitoring equipment. Entrance to the laboratory space was controlled with a hand and foot radiation monitoring instrument and a full body personal contamination monitoring station. The handling of free-flowing solids was restricted to be within negative pressure gloveboxes equipped with HEPA filters. In addition to standard laboratory PPE, aqueous solutions were handled using multiple layers of gloves (of a material compatible with the chemicals being handled) combined with DuPont™ Tyvek® 400 sleeves to provide overlapping coverage of the arms. Due to these radiological hazards, elemental analyses were not possible.

Unless otherwise described, all syntheses and manipulations were conducted under UHP argon (AirGas) or UHP helium (AirGas) with rigorous exclusion of oxygen and water using Schlenk line and glove box techniques (employing a negative-pressure, transuranium-capable, MBraun LabMaster, helium atmosphere glovebox where required). 4 Å molecular sieves were activated by heating for 36 hrs at 200 °C, 10^{-4} mbar. Anhydrous DME (Sigma Aldrich) was transferred onto activated 4 Å molecular sieves, stored for 1 week prior to use, and degassed before use. Anhydrous Et\(_2\)O containing BHT (100 ppm, Sigma Aldrich) was degassed, distilled from Na\(_2\)Ph\(_2\)CO, stored over
activated 4 Å molecular sieves for 1 week and degassed again before use. \(d_8\)-THF, \(d_6\)-benzene, anhydrous \(n\)-hexane and anhydrous toluene (Sigma Aldrich) were stored over activated 4 Å molecular sieves and degassed before use. All solvents were tested with a dilute THF solution of \(\text{Na}_2\text{Ph}_2\text{CO}\) (150 mg \(\text{Ph}_2\text{CO}\) in 20 mL of THF with an excess of Na metal) such that ethereal solvents (including \(d_8\)-THF) required 1 drop / mL to retain purple coloration and hydrocarbon solvents (including \(d_6\)-benzene) required 1 drop / 2 mL.

The compounds \([\text{Li}_2\{\text{C}(\text{PPh}_2\text{NSiMe}_3)_2\}\}_2\) \(([\text{Li}_2\text{BIPM}^{\text{TMS}}]_2)\), \(^2,^3\) \([\text{Rb}((\text{BIPM}^{\text{TMS}})_2)]\), \(^4\) \([\text{Np}^{IV}\text{Cl}_4(\text{DME})_2]\), \(^5\) \([\text{Np}^{III}\text{I}_3(\text{THF})_4]\), \(^6\) 1,3,4,5-tetramethylimidazol-2-thione \((\text{IMe}_4=S)\), \(^7\) 1,3,4,5-tetramethylimidazol-2-ylidene \((\text{IMe}_4)\), \(^8\) benzyl potassium, \(^9\) and \([(\text{BIPM}^{\text{TMS}})_2\text{UI}_2(\text{THF})]\) \(^10\) were prepared as previously described. \([\text{U}^{IV}\text{Cl}_4(\text{DME})_2]\) was prepared by dissolving \(\text{UCl}_4\) in DME prior to use. \([\text{CeI}_3(\text{THF})_4]\) was prepared \textit{in situ} by stirring \(\text{CeI}_3\) in THF prior to use.

The glovebox atmosphere was maintained with a standalone Vacuum Atmosphere Genesis™ oxygen and moisture removal system, and atmosphere suitability was verified using a dilute toluene solution of \([\text{Ti}(\text{Cp})_2(\mu-\text{Cl})]_2\) (200 mg of commercial \([\text{Ti}(\text{Cp})_2(\text{Cl})_2]\) reduced over an excess of Zn powder in 20 mL of toluene, and filtered) prior to any manipulations, such that the residue dried to a dark green color each time (a color change to yellow or orange indicates decomposition of the Ti test compound and that atmospheric \(\text{O}_2/\text{H}_2\text{O}\) levels are too high to be conducive to this chemistry, requiring removal to lower levels before performing reactions/exposing reagents to the glovebox atmosphere). All glassware, and glass-fiber filter discs, was stored in a vacuum oven \((>150 \, ^\circ\text{C})\) for 24 hrs prior to being brought into the glovebox, and FEP (fluorinated ethylene propylene) NMR tube liners were brought into the glovebox \textit{via} overnight or multi-hr vacuum cycles in the antechamber port.

Crystals for single-crystal X-ray diffraction studies were mounted either in Fomblin oil on a micromount \((2)\) or in Paratone-N or NVH oil inside 0.5 mm quartz capillaries (Charles Supper) \((1,\)
The quartz capillaries were inserted through silicone stoppers and placed inside test tubes to allow handling inside the transuranium glovebox while mounting crystals without contaminating the exterior surface of the capillary. The capillaries were then cut with nail clippers to appropriate size for mounting on a goniometer. The ends of the cut capillaries were sealed with hot capillary wax before being removed from the glovebox for coating with clear nail varnish (Hard as Nails™) to provide shatter-resilience. During the clipping and wax sealing steps, care must be taken to avoid the capillary touching any contaminated surfaces (this is achieved by the introduction of fresh petri dishes, forceps, clippers, and wax, as needed in conjunction with careful handling techniques to avoid contamination transfer). Following removal from the glovebox, the exterior surfaces of the capillaries were monitored with α-particle detection instruments prior to transport to the X-ray diffraction laboratory.

Solution phase electronic absorption spectra were collected at ambient temperature using a Varian Cary 6000i UV/vis/NIR spectrometer. The solution was contained in a low volume (1 mL) screw-capped quartz cuvette (1 cm path length) that was loaded in a transuranium glovebox using Parafilm™ to protect the exterior surface of the cuvette and cap from radioactive contamination (Parafilm™ is removed in a fume hood and exterior surfaces of the cuvettes were monitored with α-particle detection instruments prior to data acquisition). Data was collected from 40,000 to 6,250 cm⁻¹ (250 to 1,600 nm).

For NMR spectroscopy, a solution was loaded into a fresh FEP NMR tube liner that was protected from surface contamination with Parafilm™ while inside a transuranium glovebox. The liner was sealed with two PTFE plugs, brought out of the glovebox and verified to be free of surface contamination after the Parafilm™ was removed (using α-particle detection instruments and a Ludlum 3030E instrument to detect both α- and β-particles on smear surveys of the exterior surfaces) and the liner loaded into a J. Young tap appended 5 mm NMR tube. The headspace was then
evacuated and refilled with He to provide an inert atmosphere headspace above the sample and exterior NMR tube/cap surfaces surveyed to check for contamination before transport to the NMR laboratory. NMR data collection was performed on a 400 MHz Bruker Advance II at room temperature unless otherwise indicated. The spectra were referenced to internal solvent residuals (1H and 13C) or externally to 10% TMS in CDCl$_3$ (31P and 77Se) via Equation S1, which is the IUPAC recommended convention.

$$\Delta (Hz) = \frac{SR^{1H}}{SF^{1H}} \times SF^{NUC}$$

Equation S1. Where SR^{1H} is the spectrum reference frequency (in Hz) of a reference 1H NMR spectrum collected with TMS set to 0 ppm collected under the same experimental conditions; SF^{1H} is the spectrometer frequency (in MHz) for the 1H nucleus; SF^{NUC} is the spectrometer frequency (in MHz) of the nucleus in question. The answer is given in Hz.

Where ε values are reported for molecular complexes below there is a modest error due to the small quantities of weighed material, as is nearly always the case when these values are reported from synthetic chemistry (as opposed more rigorous and quality-assured analytical determination methods that are generally unfeasible to apply to non-aqueous synthetic chemistry). Nonetheless, the ε values we determine herein are still useful metrics that we determine based on weight of crystal dissolved and solvent weight, but should not be used as analytically to assay these compounds.

ATR-IR spectra of 4Ce and 6Ce were recorded on a Bruker Alpha spectrometer with a Platinum-ATR module in the glovebox.

CHN microanalyses on 4Ce and 6Ce were carried out by London Metropolitan University.
Synthesis of \([(\text{BIPM}^{\text{TMS}}\text{H})\text{Np}^{\text{III}}(\text{Cl})(\mu-\text{Cl})_2\text{Np}^{\text{III}}\{\mu-\text{Cl}\text{Li(DME)}(\text{OEt}_2)\}](\text{BIPM}^{\text{TMS}}\text{H})) (1)\)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, solid \([\text{Np}^{\text{IV}}\text{Cl}_4(\text{DME})_2]\) (37.0 mg, 66 \(\mu\)mol) was mixed with 0.5 equiv of solid \([\text{Li}_2(\text{BIPM}^{\text{TMS}})]_2\) (37.7 mg, 33 \(\mu\)mol) and cooled to \(-35^\circ\text{C}\) in the glovebox freezer. \(\text{Et}_2\text{O}\) (1.5 mL) and toluene (1.5 mL) were mixed together and also cooled to \(-35^\circ\text{C}\). Immediately upon removal from the freezer, the solvent mixture was added to the solid mixture and stirred for 1 minute. No color change was apparent and the mixture was placed back in the freezer at \(-35^\circ\text{C}\) for 15 minutes. The yellow suspension with visible chunks of undissolved materials was removed from the freezer and stirred for 2 minutes, then placed back in the freezer at \(-35^\circ\text{C}\) for 15 minutes. The yellow/brown suspension was removed from the freezer and stirred for 3 minutes (still with visible undissolved white-ish solid – presumed \([\text{Li}_2(\text{BIPM}^{\text{TMS}})]_2\) or possible LiCl salt elimination). The mixture was placed back in the freezer at \(-35^\circ\text{C}\) for 150 minutes. The resultant yellow/orange suspension was removed from the freezer and stirred for 20 minutes resulting in an orange suspension which was then allowed to stir further at room temperature overnight. Volatiles were removed \textit{in vacuo} from the orange solution over a solid yellow/off-white powder. The solids were extracted with toluene (3 mL) to separate from LiCl, filtered through Celite packed on top of a glass fiber filter circle in a glass pipette to afford a deep orange filtrate, that was then concentrated \textit{in vacuo} to \(~1\text{ mL}\) in volume. The solution was stored in the glovebox freezer at \(-35^\circ\text{C}\) overnight. A tiny wisp of powder was visible in the bottom of the vial, so the still deep orange solution was layered with \(\text{Et}_2\text{O}\) (2 mL) and stored in the glovebox freezer at \(-35^\circ\text{C}\) for 3 days. No further precipitate and no crystals were evident. Volatiles were removed \textit{in vacuo} and the resultant solid dissolved in \(\text{Et}_2\text{O}\) (1 mL) to afford a deep orange solution. After storage in the glovebox freezer at \(-35^\circ\text{C}\) for 3 days, several orange block-shaped crystals had deposited, which were determined by single-crystal X-ray diffraction to be \textbf{1}.

S6
Synthesis of [(BIPMTMS)UIV(µ-Cl)₆Li(DME)]₂ (2)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, Et₂O (1 ml) was added to [UIVCl₄(DME)]₂ (30 mg, 54 µmol) and stored at -35 °C for 1 hr. In a separate 20 mL glass scintillation vial with a PTFE-coated stirrer bar, toluene (1 ml) was added to [Li₂(BIPMTMS)]₂ (61.1 mg, 107 µmol) and stored at -35 °C for 1 hr. The toluene solution of [Li₂(BIPMTMS)]₂ was then added to the Et₂O solution of [UIVCl₄(DME)]₂ to afford a pale yellow suspension. This suspension was stood at room temperature without stirring for 72 hrs, after which time the brown crystals of 2 were deposited in the vial. The identity of 2 was confirmed by single-crystal X-ray diffraction studies. Yield: 22 mg, 36%. Since the sole purpose of this synthesis was to scope the analogous Np preparation no data other than the single-crystal X-ray diffraction molecular structure were collected.

Synthesis of [(BIPMTMSH)CeIII(I)₂(THF)] (3Ce)

Complex 3Ce was synthesized as previously reported,12 with some modifications. In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, CeI₃ (23 mg, 44 µmol) was stirred with THF (1.5 mL) at room temperature for 5 minutes which gave a turbid colorless solution with white solids. Solid [Rb(BIPMTMSH)] (28.3 mg, 44 µmol, 1 equiv.) was added in a 2 portions which caused the mixture to immediately turn pale yellow with concomitant dissolution of the white solids, followed by rapid precipitation of fine white solids (presumably RbI). The mixture was stirred for 10 minutes and then reduced to dryness in vacuo. The yellow solids were suspended in toluene (1 mL) and warmed gently (45 °C on a hot plate). Once cooled to room temperature, the mixture was centrifuged (5 minutes, 5,000 rpm) and filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette. The yellow solution was concentrated to the point of incipient crystallization, warmed gently (45 °C on a hot plate) and then stored at room temperature overnight (16 hrs). Several flaky colorless crystals grew and these were inspected by single-crystal X-ray diffraction and found to be 3Ce. Characterization data on this material matched the previously reported data.12 The poor quality of the crystals meant that this motif was not extended to studies with Np.
Synthesis of [(BIPMTMSH)CeII(I)2(PMe4)] (4Ce)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, CeI₃ (23 mg, 44 µmol) was stirred with THF (1.5 mL) at room temperature for 5 minutes which gave a turbid colorless solution with white solids. Solid [Rb(BIPMTMSH)] (28.3 mg, 44 µmol, 1 equiv.) was added in 2 portions which caused the mixture to immediately turn pale yellow with concomitant dissolution of the white solids, followed by rapid precipitation of fine white solids (presumably RbI). The mixture was stirred for 10 minutes and then reduced to dryness *in vacuo*. The yellow solids were suspended in toluene (1.5 mL) and warmed gently (45 °C on a hot plate). Once cooled to room temperature, the mixture was centrifuged (5 minutes, 5,000 rpm) and filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette. Solid PMe₄ (5.2 mg, 42 µmol, 0.95 equiv.) was added to the yellow solution, which upon gentle agitation became more intensely yellow as the PMe₄ dissolved. Manual agitation for 2 minutes resulted in the precipitation of a substantial quantity of pale yellow solids. The mixture was heated strongly (130 °C on a hot plate) and gently refluxed inside the vial for ~2 minutes which resulted in most of the solids redissolving. The yellow solution was then filtered into a fresh 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette while still warm and then stored at room temperature overnight (16 hrs). Large yellow blocks formed and these were inspected by single-crystal X-ray diffraction and found to be 4Ce. Anal. Calcd for C₃₈H₅₁Ce₂N₄P₂Si₂: C, 42.42; H, 4.78; N, 5.21%. Found: C, 42.79; H, 4.94; N, 5.08%. ¹H NMR (d₈-THF, 400.13 MHz, 298 K): δ 1.21 (br s, ν½ = 370 Hz), 3.23 (br s, ν½ = 47 Hz), 5.58 (br s, ν½ = 180 Hz), 6.69 (br s, ν½ = 29 Hz), 6.99 (br s, ν½ = 40 Hz). These resonances could not be assigned due to their broad natures and the presence of contaminant BIPMTMSH₂ (at −0.15 ppm) and toluene giving overlapping peaks. The low solubility of 4Ce precluded the measurement of its magnetic moment by the Evans’ method and ¹³C and ²⁹Si NMR measurements. ³¹P{¹H} NMR (d₈-THF, 161.94 MHz, 298 K): δ −17.94 (br) ppm. ATR-IR ν/cm⁻¹: 3057 (w), 2944 (2), 14.36 (s), 1372 (m), 1261 (m), 1143 (s), 1100 (m), 1066 (s), 999 (w), 936 (m), 833 (s), 782 (w), 762 (m), 742 (m), 723 (m), 695 (m), 659 (m), 612 (m), 591 (m), 549 (m), 509 (w), 466 (w), 440 (w).
Synthesis of \([(\text{BIPM}^\text{TMS})\text{Ce}^{\text{III}}(\text{I})(\text{DME})]\) (5Ce)

In a modification of the previously reported procedure, a 20 mL glass scintillation vial with a PTFE-coated stirrer bar and \(\text{CeI}_3\) (23 mg, 44 \(\mu\)mol) was stirred with THF (1.5 mL) at room temperature for 5 minutes which gave a turbid colorless solution with white solids. Solid \([\text{Rb(BIPM}^\text{TMS} \text{H})]\) (28.3 mg, 44 \(\mu\)mol, 1 equiv.) was added in a 2 portions which caused the mixture to immediately turn pale yellow with concomitant dissolution of the white solids, followed by rapid precipitation of fine white solids (presumably RbI). The mixture was stirred for 5 minutes and then dried \textit{in vacuo} to a pale yellow powder. DME (1.5 mL) was added, and then solid KBn (5.7 mg, 44 \(\mu\)mol, 1 equiv.) was added to the pale yellow suspension in several portions which caused the mixture to immediately turn from pale yellow to a slightly more intense yellow – the vivid orange color of the KBn discharged rapidly as each portion dissolved. The cloudy mixture was stirred for a further 5 minutes and then reduced to a yellow powder \textit{in vacuo}. Toluene (1.5 mL) and DME (3 drops) were added to the yellow solids, which was then warmed gently (45 °C on a hot plate). Once cooled to room temperature, the mixture was centrifuged (5 minutes, 5,000 rpm) and filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette. The yellow solution was concentrated to \(\sim 0.5 \text{ mL}\) which caused a large quantity of pale yellow solids to form on the vial walls. The mixture was heated strongly (130 °C on a hot plate) and gently refluxed inside the vial for \(\sim 2 \text{ minutes}\) which resulted in all of the solids redissolving. The yellow solution was stored at room temperature overnight (16 hrs). Large yellow blocks formed and these were inspected by single-crystal X-ray diffraction and found to be 5Ce. Characterization data on this material matched the previously reported data.

Synthesis of \([(\text{BIPM}^\text{TMS})\text{Ce}^{\text{III}}(\text{I})(\text{Me}_4^\text{I})_2]\) (6Ce)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, \(\text{CeI}_3\) (23 mg, 44 \(\mu\)mol) was stirred with THF (1.5 mL) at room temperature for 5 minutes which gave a turbid colorless solution with white solids. Solid \([\text{Rb(BIPM}^\text{TMS} \text{H})]\) (28.3 mg, 44 \(\mu\)mol, 1 equiv.) was added in a 2 portions which caused the mixture to immediately turn pale yellow with concomitant dissolution of the white solids,
followed by rapid precipitation of fine white solids (presumably RbI). The mixture was stirred for 10 minutes and then solid KBn (5.7 mg, 44 µmol, 1 equiv.) was added in several portions which caused the mixture to immediately turn from pale yellow to a slightly more intense yellow – the vivid orange color of the KBn discharged instantaneously as each portion dissolved. The cloudy mixture was stirred for a further 15 minutes and then reduced to a yellow powder in vacuo. The yellow solids were suspended in toluene (1.5 mL) and warmed gently (45 °C on a hot plate). Once cooled to room temperature, the mixture was centrifuged (5 minutes, 5,000 rpm) and filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette. Solid 1Me4 (10 mg, 78 µmol, 1.78 equiv.) was added to the yellow solution, which upon gentle agitation became more intensely yellow as the 1Me4 dissolved. Manual agitation for 2 minutes resulted in the precipitation of a substantial quantity of yellow solids. The mixture was heated strongly (130 °C on a hot plate) and gently refluxed inside the vial for ~2 minutes which resulted in all of the solids redissolving. The yellow solution was stored at room temperature overnight (16 hrs). Large yellow blocks formed and these were inspected by single-crystal X-ray diffraction and found to be 6Ce. Despite multiple attempts, satisfactory elemental analyses data could not be obtained, attributed to incomplete combustion due to the instrument temperature limit. 1H NMR (d8-THF, 400.13 MHz, 298 K): δ –3.78 (br s, ν½ = 310 Hz, 4 H, BIPM TMS Ar p–CH×4), 1.86 (br s, ν½ = 19 Hz, 18 H, BIPM TMS Si(CH3)3 × 2), 6.11 (br s, ν½ = 71 Hz, 8 H, BIPM TMS Ar o/m–CH × 8), 6.66 (br s, ν½ = 26 Hz, 8 H, BIPM TMS Ar o/m–CH × 4). The low solubility of 6Ce precluded the measurement of its magnetic moment by the Evans’ method and 13C and 29Si NMR measurements. 31P{1H} NMR (d8-THF, 161.94 MHz, 298 K): δ –37.04 (br) ppm. ATR-IR ν/cm–1: 3049 (w), 2947 (w), 1434 (m), 1368 (m), 1236 (s), 1102 (m), 1090 (m), 1062 (s), 826 (s), 763 (m), 750 (m), 731 (m), 698 (m), 649 (m), 601 (m), 548 (m), 509 (m), 467 (m), 435 (m).

Synthesis of [(BIPM TMSH)NpIII(I)2(1Me4)] (4Np)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, solid [Rb(BIPM TMSH)] (21 mg, 33 µmol, 1 equiv.) was added in 2 portions to a turbid orange suspension of [NpIII3(THF)4] (30 mg, 33
µmol) in THF (1.5 mL) at room temperature, which caused the mixture to immediately turn cloudy yellow with concomitant precipitation of fine white solids (presumably Rbi). The mixture was stirred for 30 minutes and then reduced to dryness in vacuo. The orange solids were washed with hexane (1 × 4 mL) and dried again to an orange powder. Toluene (3 mL) was added and the mixture was stirred for several minutes then filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette to give an orange solution. Solid 1Me4 (4.1 mg, 33 µmol, 1 equiv.) was added which caused the orange solution to rapidly turn red and somewhat cloudy as the solid 1Me4 dissolved with manual agitation. The mixture was concentrated to 2 mL which caused some colorless solids to precipitate, and the solution was filtered again as above into a 4 mL glass vial. Storage of this red solution at −35 °C for 48 hrs caused more colorless solids to form, and the solution was filtered again as above into a 4 mL glass vial. The solution was then concentrated to 0.5 mL and layered with hexane (0.5 mL). Storage of the layered solution for 15 minutes at room temperature resulted in large ruby-red planks of 4Np to form. The crystals were washed with hexane at room temperature (2 × 2 mL) to give 4Np as flowing red planks. Yield: 6.2 mg, 16%. 1H NMR (d6-benzene, 400.13 MHz, 298 K): δ −54.61 (br s, ν½ = 17 Hz, 1 H, BIPMTMSH ipso-C(H)), −4.79 (s, 18 H, BIPMTMSH Si(CH3)3 × 2), 1.82 (s, 6 H, 1Me4 C(CH3) × 2), 10.61 (s, 6 H, 1Me4 N(CH3) × 2). 13C{1H} NMR (d6-benzene, 100.62 MHz, 298 K): δ −27.69 (s, BIPMTMSH Si(CH3)3 × 2), 4.35 (t, J = 1.7 Hz, BIPMTMSH ipso-C), 11.80 (s, 1Me4 N(CH3) × 2) ppm. The triplet at 4.35 ppm is only tentatively assigned due to the unusual chemical shift. Peaks attributable to the 1Me4 C(CH3) and C(CH3) resonances could not be located, nor could peaks be assigned that were definitively due to complexed BIPMTMSH, rather than trace H2BIPMTMS. 31P{1H} NMR (d6-benzene, 161.94 MHz, 298 K): δ −488.05 ppm. UV-vis-NIR (toluene): λmax (cm⁻¹; ε) 363 (27,533, 1,490), 429 (23,310, 1,270), 568 (17,618, 210), 619 (16,150, 70), 674 (14,846, 40), 802 (12,466, 50), 868 (11,526, 50), 922 (10,844, 20), 946 (10,571, 20), 965 (10,361, 20), 1,001 (9,986, 30), 1,008 (9,921, 30), 1,031 (9,699, 20), 1,046 (9,564, 20), 1,144 (8,740, 10), 1,152 (8,678, 10), 1,210 (8,262, 10), 1,335 (7,490, 20), 1,352 (7,398, 30), 1,412 (7,084, 20) nm.
Synthesis of [(BIPM_{TMS})Np^{III}](1)(DME) (5Np)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, solid [Rb(BIPM^{TMS}H)] (28.3 mg, 44 µmol, 1 equiv.) was added in 2 portions to a turbid orange suspension of [Np^{III}]₃(THF)₄ (40 mg, 44 µmol) in THF (1.5 mL) at room temperature, which caused the mixture to immediately turn orange, and then cloudy and yellow with concomitant precipitation of fine white solids (presumably Rbl). The mixture was stirred for 5 minutes and then dried in vacuo to an orange powder. DME (1.5 mL) was added, and then solid KBn (5.7 mg, 44 µmol, 1 equiv.) was added to the orange suspension in several portions which caused the mixture to immediately turn from orange to red/purple – the vivid orange color of the KBn discharged instantaneously as each portion dissolved. The cloudy mixture was stirred for a further 5 minutes and then reduced to a red powder in vacuo. Toluene (1.5 mL) and DME (3 drops) were added to the orange solids and the mixture was stirred for 1 minute at room temperature. The mixture was filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette, then concentrated to ~0.3 mL in vacuo without agitation which caused a red/orange seed crystal to form at the solution surface. The solution was then left at room temperature for 20 minutes which caused a single large crop of orange parallelepiped-shaped plates of 5Np to grow. Yield: 17.4 mg, 37%.

¹H NMR (^d₆-benzene, 400.13 MHz, 298 K): δ −6.56 (br s, ν_½ = 34 Hz, 18 H, BIPM_{TMS}Si(CH₃)₃ × 2), 1.74 (br s, ν_½ = 98 Hz, 6 H, DME O(CH₃)₂ × 2) ppm. Broad features around 6.61 (ν_½ = 311 Hz), 9.43 (ν_½ = 488 Hz), and 14.56 (ν_½ = 575 Hz) ppm could be BIPM_{TMS}Ph peaks or the DME C₂H₄ peak, but we could not definitively assign these given the significant broadening which affects the reliability of integration. ¹³C¹H NMR (d₆-benzene, 100.62 MHz, 298 K): δ −26.59 (s, BIPM_{TMS}Si(CH₃)₃ × 2) ppm. No other peaks unattributed to BIPM_{TMS}H₂ or a BIPM_{TMS}H species could be definitively assigned. ³¹P¹H NMR (d₆-benzene, 161.94 MHz, 298 K): δ −789.02 ppm. UV-vis-NIR (toluene): λ_{max} (cm^{−1}; ε) 295 (33,921, 5,220), 409 (24,450, 1,570), 567 (17,649, 260), 609 (16,426, 180), 757 (13,210, 50), 798 (12,528, 70), 819 (12,216, 709), 834 (11,990, 50), 852 (11,740, 60), 865 (11,563, 70), 893 (11,193, 60), 982 (10,181, 50), 1,001 (9,990, 50), 1,332 (7,506, 30) nm.
Synthesis of [(BIPMTMS)Np(III)(I)(Me4)]2 (6Np)

In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, THF (1.5 mL) was added to solid [Rb(BIPMTMSH)] (28.3 mg, 44 µmol, 1 equiv.) and [Np(III)(THF)4] (40 mg, 44 µmol), which caused the mixture to immediately turn cloudy orange/yellow with precipitation of fine white solids (presumably Rbl). The mixture was stirred for 15 minutes and then solid KBn (5.7 mg, 44 µmol, 1 equiv.) was added in several portions which caused the mixture to immediately turn from orange to red and then purple/brown. The cloudy mixture was stirred for a further 15 minutes and then reduced to an oily solid in vacuo. Toluene (1 mL) was added and the mixture was stirred for 5 minutes then filtered into a 20 mL glass scintillation vial through two glass microfiber filter discs packed in a glass pipette, to give a clear red/purple solution. A PTFE-coated stirrer bar was added, and then solid IMe4 (10 mg, 78 µmol, 1.78 equiv.) was added in several portions to the stirred solution which caused a color change from red to purple as the IMe4 dissolved. Note: attempts to isolate 6Np have been unsuccessful when 2 equiv. of IMe4 have been used. Similar reactions have resulted in the isolation of imidazolinium iodide salts in our hands. The solution became slightly cloudy, but rapid stirring did not result in further precipitation unlike the synthesis of 6Ce. The mixture was heated to a gentle reflux (130 °C on a hot plate) for 1 minute and then filtered into a 4 mL glass vial through two glass microfiber filter discs packed in a glass pipette and stored overnight (16 hrs) at room temperature which caused a small crop of red/black blocks to form (see below for yields). The small quantity of red/purple solids that remained on the filter discs was extracted with THF (1 mL) into a fresh 4 mL glass vial and dried in vacuo to a red powder. This was then dissolved in toluene (1 mL) after 2 minutes of gentle refluxing (130 °C hot plate) and the hot solution was stored at room temperature overnight (16 hrs) – crystals of 6Np then grew from this aliquot once it was cooled (~35 °C) in the glovebox freezer and then again when stored again at room temperature for 20 minutes. The supernatants from both of these crops of crystals was decanted and layered with hexane (1 mL) and stored overnight (16 hrs) which caused a third crop of crystals of 6Np to form. All three crops were washed with hexane (2 × 1 mL) separately and dried in vacuo to a red/purple powder. Combined
yield: combined 15.7 mg, 32%. 1H NMR (d_6-benzene, 400.13 MHz, 298 K): δ −9.17 (br s, $v_1/2 = 50$ Hz, 18 H, BIPM$^{\text{TMS}}$ Si(CH$_3$)$_3$ \times 2) ppm. We tentatively assign this peak due to its intensity and position which is similar to that of 5Np. No other peak that could be definitively assigned to this complex rather than BIPM$^{\text{TMSH}_2}$, or a BIPM$^{\text{TMSH}}$ complex (like 4Np), could be identified. 13C{1H} NMR (d_6-benzene, 100.62 MHz, 298 K): Only peaks assignable to a BIPM$^{\text{TMSH}}$ complex (like 4Np) could be identified, presumably due to the very large number of scans needed, combined with the limitations of our sample sealing procedure. 31P{1H} NMR (d_6-benzene, 161.94 MHz, 298 K): δ −739.51 ppm. UV-vis-NIR (toluene): λ_{max} (cm$^{-1}$; ε) 306 (32,680, 4,530), 429 (23,310, 1,520), 496 (20,153, 1,290), 550 (18,188, 890), 584 (17,123, 610), 616 (16,234, 350), 644 (15,538, 210), 677 (14,775, 110), 777 (12,877, 40), 815 (12,273, 80), 833 (12,008, 70), 871 (11,478, 90), 889 (11,244, 90), 941 (10,632, 50), 991 (10,089, 50), 1,006 (9,936, 80), 1,013 (9,874, 80), 1,069 (9,353, 20), 1,152 (8,679, 10), 1,196 (8,361, 10), 1,251 (7,994, 10) nm.

Attempted Synthesis of [(BIPM$^{\text{TMS}}$)UIII(I)(DME)] (5U)

[(BIPM$^{\text{TMSH}}$)UI$_2$(THF)] was dissolved in DME (5 mL), stirred for several hrs, then all volatiles are removed in vacuo to give [(BIPM$^{\text{TMSH}}$)UI$_2$(DME)]. In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, [(BIPM$^{\text{TMSH}}$)UI$_2$(DME)] (55 mg, 49 µmol) was stirred in DME (5 mL) at room temperature for 5 minutes to give a dark blue solution. KBn (6.5 mg, 50 µmol, 1 equiv.) was added portionwise upon which a color change to brown was observed. The resulting mixture was stirred for 15 minutes after which time all the volatiles were removed in vacuo to afford a brown solid, which was extracted into toluene and filtered through a syringe filter to afford a pale brown solution. Attempts to prepare crystalline material was unsuccessful despite several attempts using different solvents and solvent ratios (Toluene, DME).
Attempted Synthesis of [(BIPM^{TMS})U^{III}(I)(I^{Me4})_2] (6U)

Attempt 1. In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, [(BIPM^{TMS}H)UI_2(THF)] (36 mg, 33 µmol) was stirred with toluene (3 mL) at room temperature for 5 minutes to give a dark blue solution. Solid I^{Me4} (4.2 mg, 33 µmol, 1 equiv.) was added and the resulting mixture stirred for 5 minutes to afford a dark blue/purple solution. KBn (4.3 mg, 33 µmol, 1 equiv.) was added and the resulting mixture stirred for 5 minutes after which all the KBn appeared to be consumed and the solution changed to a dark brown color with a colorless precipitate. The mixture was filtered through a syringe filter to afford a pale brown solution. Attempts to prepare crystalline material was unsuccessful despite several attempts using different solvents and solvent ratios (Toluene, Et_2O, THF).

Attempt 2. In a 20 mL glass scintillation vial with a PTFE-coated stirrer bar, [(BIPM^{TMS}H)UI_2(THF)] (36 mg, 33 µmol) was stirred with toluene (5 mL) at room temperature for 5 minutes to give a dark blue solution. Solid I^{Me4} (8.4 mg, 66 µmol, 2 equiv.) was added and the resulting mixture stirred for 30 minutes to afford a dark blue/purple solution. The solution was then stored at −30 °C for 30 minutes. KBn (4.3 mg, 33 µmol, 1 equiv.) was added and the resulting mixture stirred for 20 minutes after which time all the KBn appeared to be consumed, affording a dark blue/brown solution with precipitation of a pale solid. Volatiles were removed from the solution to afford a sticky brown solid, which was extracted into toluene and filtered through a syringe filter to afford a pale brown solution. Attempts to prepare crystalline material was unsuccessful despite several attempts using different solvents and solvent ratios (Toluene, Et_2O, THF).
Reaction of 5Np with PhCHO to give PhC(H)=C(PPh\textsubscript{2}NSiMe\textsubscript{3})\textsubscript{2} (7)

In a 5 mL glass scintillation vial with a glass stirrer bar, 5Np (10.0 mg, 9.36 µmol) was dissolved 1.0 mL of d\textsubscript{6}-benzene, forming a red solution. To this, a solution of PhCHO (1.0 mg (9.32 µmol) in 1.0 mL of d\textsubscript{6}-benzene) was added dropwise while stirring at room temperature. The reaction was left to stir for 72 hrs. The solution was then filtered through a glass microfiber filter disk packed in a glass pipette to give a clear brown/red filtrate. The filtrate was concentrated to approximately 0.5 mL *in vacuo* and used as-eluted for NMR experiments. 1H NMR (d\textsubscript{6}-benzene, 400.13 MHz, 298 K): \(\delta\) 0.37 (s, 9 H, NSi(CH\textsubscript{3})\textsubscript{3}), 0.39 (s, 9 H, NSi(CH\textsubscript{3})\textsubscript{3}), 6.78 (br, 2 H, m-Ph-CH\textsubscript{2}), 6.89 (br, 6 H, p-Ph-CH\textsubscript{2} and o-Ph-CH\textsubscript{2}), 7.02 (br, 8 H, m-Ph-CH\textsubscript{2}), 7.39 (br, 1 H, p-Ph-CH\textsubscript{2}), 7.78 (m, 8 H, o-Ph-CH\textsubscript{2}), 8.04 (dd, \(^3J_{PH} = 28.4\) and 28.3 Hz, 1 H, PhH\textsubscript{C}═CP\textsubscript{2}). 31P NMR (d\textsubscript{6}-benzene, 161.94 MHz, 298 K): \(\delta\) -6.75 (d, \(^2J_{pp} = 35.2\) Hz), -7.79 (d, \(^2J_{pp} = 35.3\) Hz). Analysis of the unpurified reaction mixture by NMR (\(^1\)H and \(^{31}\)P) matches that of the previously reported alkene13 revealing the formation of PhC(H)=C(PPh\textsubscript{2}NSiMe\textsubscript{3})\textsubscript{2} (7), along with minor paramagnetic species that are presumed to be Np byproducts. Further characterization of the reaction products was impractical given the scarce nature of neptunium precursors.
S2. Selected photographs taken during the syntheses

Figure S1. From left to right: 1) Crystals of 5Ce under toluene; 2) Crystals of 6Ce under toluene.

Figure S2. From left to right: 1) Solution of putative 3Np in toluene, prior to addition of solid 1Me4; 2) The same material as on the left, but after addition of 1Me4. The pale precipitate can be clearly seen. More of this same material formed after subsequent concentration and storage at –35 °C. Only once all of this material was removed could crystals of 4Np be isolated.
Figure S3. Crystals of 4Np under hexane during the washing procedure.

Figure S4. From left to right: 1) Suspension of putative 3Np in THF, prior to addition of KBn; 2) The same material as on the left, but after addition of KBn.

Figure S5. From left to right: 1) Suspension of putative 3Np (from Figure S4) in toluene, prior to addition of solid IMe4 to form 6Np; 2) The same material as on the left, but after addition of IMe4 to form 6Np. The small quantity of precipitated material can be seen on the vial walls.
Figure S6. From left to right: 1) Crystals of 5Np under NVH oil, viewed through a microscope; 2) Crystals of 6Np prior to washing and drying.

Figure S7. Solutions of 4Np (orange, left in both images) and 6Np (orange/red, right in both images) in toluene for UV-vis-NIR spectroscopy.
S3. Crystallography

General considerations

The crystal data for all complexes are compiled in Table S1 to Table S3. All crystals were examined with either a Bruker Apex II diffractometer equipped with an Apex II CCD detector and using mirror-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å); a Bruker D8 Quest diffractometer equipped with a Photon II CPAD detector and using mirror-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å) operating in shutterless mode; a Bruker microsource diffractometer equipped with a Photon III CPAD detector and using mirror-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å); or a Rigaku FR-X diffractometer equipped with a HyPix 6000HE photon counting pixel array detector with mirror-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). APEX II, APEX III or CryAlisPro software were used for control and solving the unit cells prior to data collection.14,15 Intensities were integrated from data recorded on 0.5° frames by ω rotation with 0.5s (2), 4s (5Ce), 10s (4Ce, 4Np, 5Np), 20s (1, 6Ce) or 30s (3Ce) exposures; or by both ω and ϕ rotation (0.5°) with 10s (6Np) frame exposures. CrysAlisPro14 was used for final unit cell determination and parameters were refined from the observed positions of all strong reflections in each data set. Analytical absorption corrections were applied to 1 and 3-6, and face indexed absorption corrections were applied to 2.15 The Olex216 GUI was used for structure solution and refinement utilizing the ShelX software packages.17,18 The structures were solved using ShelXT17; the datasets were refined by ShelXL18 using full-matrix least-squares on all unique F^2 values, with anisotropic displacement parameters for all non-hydrogen atoms, and with constrained riding hydrogen geometries; $U_{iso}(H)$ was set at 1.2 (1.5 for methyl groups if applicable) times U_{eq} of the parent atom. The largest features in final difference syntheses were close to heavy atoms and were of no chemical significance. Ortep and PovRay were employed for molecular graphics.19,20 The CCDC deposits contain the supplementary crystal data for this article. 2125323 (1), 2125324 (2), 2125325 (3Ce), 2125326 (4Ce), 2125327 (4Np), 2125328 (5Ce), 2125329 (5Np), 2125330 (6Ce), and 2125331 (6Np). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
	1	2	3Ce
CCDC ref code	2125323	2125324	2125325
Formula	C_{78}H_{118}Li_{6}N_{4}P_{2}O_{5}P_{4}Si_{2}	C_{88}H_{122}Li_{2}N_{4}O_{5}P_{4}Si_{4}	C_{38.5}H_{51}Ce_{2}N_{2}OP_{2}Si_{2}
Fw	2086.19	2254.77	1069.85
Crystal syst	Monoclinic	Triclinic	Triclinic
Space group	P_{2}1/c	P-1	P-1
a, Å	11.9971(2)	12.4707(2)	9.7913(7)
b, Å	17.7775(3)	14.1981(2)	11.9571(8)
c, Å	43.6609(7)	14.6654(2)	19.1734(12)
α, °	89.2160(10)	77.161(5)	77.102(5)
β, °	97.229(2)	73.7920(10)	83.627(5)
γ, °	87.5900(10)	83.627(5)	
V, Å³	9237.9(3)	2491.24(6)	2128.9(3)
Z	4	1	2
ρ_{calcd}, g cm^{-3}	1.500	1.503	1.669
μ, mm^{-1}	2.550	3.568	2.682
F(000)	4176	1126	1052
Cryst size, mm	0.24 × 0.12 × 0.08	0.339 x 0.295 x 0.23	0.10 x 0.10 x 0.10
Temperature, K	100(2)	150(2)	100(2)
K			
no. reflections (unique)	95472 (18839)	35124 (10117)	19776 (8599)
R_{int}	0.054	0.0339	0.0811
R_{I}(wR^2) (F^2 > 2σ(F^2)^[a])	0.0361 (0.0771)	0.0242, 0.0615	0.0642, 0.1307
S^[a]	1.01	1.081	1.016
min./max. diff. map, Å^{-3}	-0.90, 1.23	-1.153, 1.375	-1.828, 2.219

^[a] R = \sum||F_o| - |F_c||/\sum|F_o|; R_W = [\sum w(F_o^2 - F_c^2)^2/\sum w(F_o^2)^2]^{0.5}; S = [\sum w(F_o^2 - F_c^2)^2/(no. data - no. params)]^{0.5} for all data.
Table S2. Crystallographic data for 3Np, 4Ce, and 4Np.

	4Ce	4Np	5Ce
CCDC ref code	2125326	2125327	2125328
Formula	C_{38}H_{51}Ce_{2}N_{4}P_{2}Si_{2}	C_{38}H_{51}I_{2}Np_{2}P_{2}Si_{2}	C_{38.5}H_{52}CeI_{2}O_{2}Np_{2}P_{2}Si_{2}
Fw	1075.86	1172.74	959.96
Crystal syst	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	C2/c	P2_1/n
a, Å	19.7305(5)	19.7438(5)	9.6163(5)
b, Å	11.8965(3)	11.8689(3)	22.1127(12)
c, Å	36.6720(9)	36.4644(8)	20.7529(11)
α, °	90	90	90
β, °	98.893(2)	98.841(2)	99.555(5)
γ, °	90	90	90
V, Å³	8504.3(4)	8443.4(4)	4351.7(4)
Z	8	8	4
ρcalc., g cm⁻³	1.681	1.845	1.465
µ, mm⁻¹	2.685	4.088	1.916
F(000)	4232	4512	1928
Cryst size, mm	0.20 x 0.05 x 0.05	0.15 x 0.10 x 0.01	0.20 x 0.20 x 0.05
Temperature, K	100(2)	100(2)	120(2)
no. reflections (unique)	38348 (10051)	35797 (8638)	86241 (13220)
R_{int}	0.1183	0.0644	0.0416
R₁(wR₂) (F² > 2σ(F²))[a]	0.0636, 0.1457	0.0476, 0.1145	0.0268, 0.0623
S[a]	1.124	1.033	1.048
min./max. diff map, Å⁻³	-1.603, 1.996	-2.290, 1.940	-0.964, 2.380

[a] R = \sum||F₀| - |F_C||/\sum|F₀|; R_w = [\sum w(F_0^2 - F_C^2)^2/\sum w(F_0^2)^2]^{0.5}; S = [\sum w(F_0^2 - F_C^2)^2/(\text{no. data} - \text{no. params})]^{0.5} for all data.
Table S3. Crystallographic data for 5Ce, 5Np, and 6.

	5Np	6Ce	6Np
CCDC ref code	2125329	2125330	2125331
Formula	C_{38.5}H_{52}IN_{2}NpO_{2}P_{2}Si_{2}	C_{48.5}H_{66}CeIN_{6}P_{2}Si_{2}	C_{48.5}H_{66}IN_{6}NpP_{2}Si_{2}
Fw	1056.84	1118.21	1215.09
Crystal syst	monoclinic	monoclinic	monoclinic
Space group	P2_1/n	P2_1/n	P2_1/n
a, Å	9.5530(2)	15.7692(2)	15.7683(4)
b, Å	21.8585(6)	20.5022(2)	20.4116(4)
c, Å	20.4993(5)	16.3718(2)	16.3581(4)
α, °	90	90	90
β, °	99.295(2)	100.4870(10)	100.497(2)
γ, °	90	90	90
V, Å³	4224.34(18)	5204.64(11)	5176.8(2)
Z	4	4	4
ρ_{calcd}, g cm⁻³	1.662	1.427	1.559
μ, mm⁻¹	3.357	1.613	2.750
F(000)	2068	2272	2412
Cryst size, mm	0.20 x 0.20 x 0.05	0.20 x 0.20 x 0.05	0.20 x 0.20 x 0.05
Temperature, K	100(2)	100(2)	120(2)
no. reflections (unique)	62482 (7686)	68943 (15874)	84005 (10520)
R_{int}	0.1790	0.0978	0.1256
R_{1}(wR_2) (F^2 > 2σ(F^2))[^a]	0.0643, 0.1679	0.0426, 0.1025	0.0486, 0.0971
S[^a]	1.051	1.040	1.126
min./max. diff map, Å⁻³	-4.414, 4.772	-1.808, 2.465	-1.029, 2.087

[^a] R = Σ||F_0|| – |F_C||/Σ|F_0|; R_w = [Σw(F_0^2 – F_C^2)^2]/Σw(F_0^2)^2]^{0.5}; S = [Σw(F_0^2 – F_C^2)^2]/(no. data – no. params)]^{0.5} for all data.

\[esd3 = \sqrt{(esd1)^2 + (esd2)^2} \]

Equation S2. The combined standard uncertainty from two individual metrics that have their own associated uncertainties can be calculated as the root of the sum of the square of each error. This is not strictly appropriate for combining more than two individual errors.21
S4. Molecular structures

Complex 1

![Molecular Structure Diagram](image)

Figure S8. Solid state molecular structure of complex 1 at 100K. Displacement ellipsoids are set at 30% probability and non-methanide hydrogen atoms, disordered components and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Np1-Cl1 2.7325(12), Np1-Cl2 2.8675(11), Np1-Cl3 2.9473(11), Np1-Cl4 2.8423(11), Np1-N1 2.451(4), Np1-N2 2.473(4), Np1-C1 2.831(4), Np2-Cl2 2.8344(12), Np2-Cl3 2.7972(11), Np2-Cl4 2.9223(11), Np2-Cl5 2.8092(13), Np2-N3 2.452(3), Np2-N4 2.467(3), Np2-C32 2.838(4), P1-C1 1.745(5), P2-C1 1.730(4), P3-C32 1.736(4), P4-C32 1.738(4), P1-C1-Np1 85.53(17), P2-C1-Np1 86.40(16), P1-C1-P2 130.2(3), P3-C32-Np2 85.35(16), P3-C32-P4 129.4(3), P4-C32-Np2 86.59(15), N1-Np1-N2 106.45(12), N3-Np2-N4 104.02(12), Np2-Cl2-Np1 92.88(3), Np2-Cl3-Np1 91.95(3), Np1-Cl4-Np2 91.56(3), Li1-Cl5-Np2 140.9(2).
Figure S9. Solid state molecular structure of complex 2 at 150K. Displacement ellipsoids are set at 30% probability and hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: U1-Cl1 2.7309(7), U1-Cl2 2.8840(6), U1-Cl3 2.7080(6), U1-N1 2.443(2), U1-N2 2.396(2), U1-C1 2.314(3), P1-N1 1.631(2), P1-C1 1.680(3), P2-N2 1.627(2), P2-C1 1.664(3), Cl1-U1-Cl2A 81.36(2), Cl1-U1-Cl2 75.933(19), Cl2-U1-Cl2A 71.85(2), Cl3A-U1-Cl1 158.79(2), Cl3A-U1-Cl2 101.99(2), Cl3A-U1-Cl2 78.015(19), N1-U1-Cl1 112.38(5), N1-U1-Cl2A 142.34(5), N1-U1-Cl2 77.74(5), N1-U1-Cl3A 87.31(5), N2-U1-Cl1 89.45(6), N2-U1-Cl2A 87.00(5), N2-U1-Cl2 155.69(6), N2-U1-Cl3A 84.60(5), N2-U1-N1 126.28(7), C1-U1-Cl1 89.15(7), C1-U1-Cl2A 151.63(7), C1-U1-Cl2 131.60(7), C1-U1-Cl3A 106.81(7), C1-U1-N1 65.88(8), C1-U1-N2 66.12(8).
Complex 3Ce

Figure S10. Solid state molecular structure of complex 3Ce at 100K. Displacement ellipsoids are set at 50% probability and non-methanide hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ce1-I1 3.1504(7), Ce1-I2 3.1714(8), Ce1-O1 2.605(6), Ce1-N1 2.437(7), Ce1-N2 2.383(6), Ce1-C1 2.806(9), P1-N1 1.616(7), P1-C1 1.737(8), P2-N2 1.608(7), P2-C1 1.737(8), C1-Ce1-I1 117.48(17), C1-Ce1-I2 80.40(17), O1-Ce1-C1 159.1(2), P1-C1-P2 135.3(5).
Complex 4Ce

Figure S11. Solid state molecular structure of complex 4Ce at 100K. Displacement ellipsoids are set at 50% probability and non-methanide hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ce1-I1 3.1111(6), Ce1-I2 3.2092(6), Ce1-N1 2.493(6), Ce1-N2 2.448(6), Ce1-C1 2.768(6), Ce1-C32 2.731(8), P1-N1 1.608(6), P1-C1 1.731(7), P2-N2 1.612(6), P2-C1 1.761(7), I1-Ce1-I2 135.964(19), N1-Ce1-I1 91.19(13), N1-Ce1-I2 131.69(13), N1-Ce1-C1 61.26(18), N1-Ce1-C32 110.1(2), N2-Ce1-I1 94.16(13), N2-Ce1-I2 84.80(13), N2-Ce1-N1 104.94(18), N2-Ce1-C1 62.87(19), N2-Ce1-C32 144.9(2), C1-Ce1-I1 134.05(13), C1-Ce1-I2 84.01(13), C32-Ce1-I1 87.70(16), C32-Ce1-I2 70.22(16), C32-Ce1-C1 134.5(2), P1-C1-P2 128.4(4)
Complex 5Ce

Figure S12. Solid state molecular structure of complex 5Ce at 120K. Displacement ellipsoids are set at 50% probability and hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ce1-I1 3.1753(2), Ce1-N1 2.4585(17), Ce1-N2 2.4557(16), Ce1-O3 2.5697(15), Ce1-O4 2.6763(15), Ce1-C1 2.4772(19), P1-N1 1.6375(17), P1-C1 1.655(2), P2-N2 1.6244(17), P2-C1 1.657(2), N1-Ce1-I1 94.91(4), N1-Ce1-O3 101.98(6), N1-Ce1-O4 101.90(5), N1-Ce1-C1 64.56(6), N2-Ce1-I1 104.67(4), N2-Ce1-N1 128.35(5), N2-Ce1-O3 80.64(6), N2-Ce1-O4 122.82(5), N2-Ce1-C1 63.87(6), O3-Ce1-I1 153.47(4), O3-Ce1-O4 61.82(5), O4-Ce1-I1 94.92(3), C1-Ce1-I1 110.00(5), C1-Ce1-O3 95.77(6), C1-Ce1-O4 152.05(6), P1-C1-P2 171.57(14).
Complex 6Ce

Figure S13. Solid state molecular structure of complex 6Ce at 100K. Displacement ellipsoids are set at 50% probability and hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ce1-I1 3.2054(2), Ce1-N1 2.510(2), Ce1-N2 2.494(2), Ce1-C1 2.519(2), Ce1-C32 2.737(3), Ce1-C39 2.806(2), P1-N1 1.624(2), P1-C1 1.667(3), P2-N2 1.622(2), P2-C1 1.679(2), P1-C1 1.62(2), N1-Ce1-C1 63.75(7), N1-Ce1-C32 132.22(7), N1-Ce1-C39 81.24(7), N2-Ce1-I1 98.36(5), N1-Ce1-C1 63.75(7), N1-Ce1-C32 132.22(7), N1-Ce1-C39 81.24(7), N2-Ce1-C1 63.76(7), N2-Ce1-C32 81.69(7), N2-Ce1-C39 154.07(8), C1-Ce1-I1 128.10(6), C1-Ce1-C32 99.50(8), C1-Ce1-C39 124.47(7), C32-Ce1-I1 123.70(5), C32-Ce1-C39 72.82(7), C39-Ce1-I1 97.02(5), P1-C1-P2 137.37(16).
Complex 4Np

Figure S14. Solid state molecular structure of complex 4Np at 100K. Displacement ellipsoids are set at 50% probability and non-methanide hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Np1-I1 3.0727(6), Np1-I2 3.1798(6), Np1-N1 2.423(6), Np1-N2 2.458(6), Np1-C1 2.753(7), Np1-C32 2.676(8), P1-N1 1.612(6), P1-C1 1.749(7), P2-N2 1.618(6), P2-C1 1.723(7), I1-Np1-I2 135.874(19), N1-Np1-I1 93.13(14), N1-Np1-I2 84.69(14), N1-Np1-N2 105.8(2), N1-Np1-C1 63.3(2), N1-Np1-C32 144.1(2), N2-Np1-I1 91.10(13), N2-Np1-I2 131.94(13), N2-Np1-C1 62.0(2), N2-Np1-C32 110.0(2), C1-Np1-I1 133.83(14), C1-Np1-I2 83.80(14), C32-Np1-I1 88.22(16), C32-Np1-I2 70.04(17), C32-Np1-C1 134.6(2), P1-C1-P2 128.6(4).
Complex 5Np

Figure S15. Solid state molecular structure of complex 5Np at 100K. Displacement ellipsoids are set at 50% probability and hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Np1-I1 3.1065(5), Np1-O1 2.524(5), Np1-O2 2.636(5), Np1-N1 2.431(6), Np1-N2 2.414(6), Np1-C1 2.425(7), P1-N1 1.602(6), P1-C1 1.627(7), P2-N2 1.631(6), P2-C1 1.652(7), O1-Np1-I1 153.90(12), O1-Np1-O2 61.84(16), O2-Np1-I1 95.27(10), N1-Np1-I1 103.57(13), N1-Np1-O1 81.28(18), N1-Np1-O2 122.42(17), N2-Np1-I1 95.23(12), N2-Np1-O1 101.53(18), N2-Np1-O2 102.19(17), N2-Np1-N1 128.81(18), N2-Np1-C1 65.2(2), C1-Np1-I1 109.31(17), C1-Np1-O1 95.9(2), C1-Np1-O2 152.9(2), C1-Np1-N1 63.6(2), P1-C1-P2 170.4(5).
Figure S16. Solid state molecular structure of complex 6Np at 120K. Displacement ellipsoids are set at 50% probability and hydrogen atoms and lattice solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Np1-I1 3.1571(4), Np1-N1 2.485(4), Np1-N2 2.492(5), Np1-C1 2.490(6), Np1-C32 2.677(5), Np1-C39 2.751(6), P1-N1 1.620(5), P1-C1 1.675(6), P2-N2 1.614(5), P2-C1 1.671(5), N1-Np1-I1 91.83(10), N1-Np1-N2 120.88(15), N1-Np1-C1 64.04(17), N1-Np1-C32 81.36(16), N1-Np1-C39 154.19(15), N2-Np1-I1 98.08(10), N2-Np1-C32 132.67(17), N2-Np1-C39 81.04(16), C1-Np1-I1 127.54(12), C1-Np1-N2 64.08(16), C1-Np1-C32 98.69(17), C1-Np1-C39 123.63(17), C32-Np1-I1 124.26(13), C32-Np1-C39 73.21(17), C39-Np1-I1 98.69(11), P1-C1-P2 136.5(3).
S5. UV-vis-NIR spectra

Figure S17. Solution UV-vis-NIR spectrum of 4Np (0.49 mM) in toluene shown between 7,000–35,000 cm⁻¹ (1,429–286 nm) at ambient temperature.

Figure S18. Solution UV-vis-NIR spectrum of 5Np (0.51 mM) in toluene shown between 7,000–35,000 cm⁻¹ (1,429–286 nm) at ambient temperature.
Figure S19. Solution UV-vis-NIR spectrum of 6Np (0.58 mM) in toluene shown between 7,000–35,000 cm$^{-1}$ (1,429–286 nm) at ambient temperature.

Figure S20. Comparison of solution UV-vis-NIR spectra of 4Np (black line, 0.49 mM), 5Np (blue line, 0.51 mM), and 6Np (red line, 0.58 mM), all in toluene shown between 7,000–35,000 cm$^{-1}$ (1,429–286 nm) at ambient temperature.
Figure S21. The same spectra as Figure S20 (4Np black line, 5Np blue line, and 6Np red line), but shown in the region between 7,400–18,000 cm⁻¹ (1,351–556 nm) – the region typically associated with f→f transitions (5f→5f here).

Figure S22. Comprison of solution UV-vis-NIR spectra of 5Np (black line, 0.51 mM) and 6Np (red line, 0.58 mM) – the two (BIPM_{TMS})²⁻ complexes, all in toluene shown between 7,000–35,000 cm⁻¹ (1,429–286 nm) at ambient temperature.
Figure S23. The same spectra as Figure S22 (5Np black line and 6Np red line), but shown in the region between 7,400–16,500 cm$^{-1}$ (1,351–606 nm) – the region typically associated with $f\rightarrow f$ transitions ($5f\rightarrow 5f$ here).

S6. NMR spectra

Figure S24. 1H NMR spectrum of 4Ce in d_8-THF.
Figure S25. 31P{1H} NMR spectrum of 4Ce in d_8-THF. The BIPMTMSH$_2$ peak is from a small amount of decomposition during sample preparation.

Figure S26. 1H NMR spectrum of 6Ce in d_8-THF.
Figure S27. $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 6Ce in d_8-THF.

Figure S28. ^1H NMR spectrum of 4Np in d_6-benzene.
Figure S29. 1H NMR spectrum of 4Np in d_6-benzene, showing the full spectral window collected.

Figure S30. 13C\{1H} NMR spectrum of 4Np in d_6-benzene.
Figure S31. $^{13}\text{C}^{1}\text{H}$ NMR spectrum of 4Np in d_6-benzene, showing the full spectral window collected.

Figure S32. $^{31}\text{P}^{1}\text{H}$ NMR spectrum of 4Np in d_6-benzene. The BIPM$^{\text{TMS}}\text{H}_2$ peak is likely from a small amount of decomposition given the limitations of our sample containment procedure.
Figure S33. 31P NMR spectrum of 4Np in d_6-benzene. The BIPM$^\text{TMS}H_2$ peak is likely from a small amount of decomposition given the limitations of our sample containment procedure.

Figure S34. 1H NMR spectrum of 5Np in d_6-benzene. The BIPM$^\text{TMS}H_2$ peak (✳️) is likely from a small amount of decomposition given the limitations of our sample containment procedure.
Figure S35. 1H NMR spectrum of 5Np in d_6-benzene, showing the full spectral window collected.

Figure S36. 13C{1H} NMR spectrum of 5Np in d_6-benzene. No peaks readily attributable to the ipso-C on the {BIPMTMS}$_2^-$ ligand could be located, or any other peaks not due to solvents or BIPMTMSH$_2$.
Figure S37. 13C{1H} NMR spectrum of 5Np in d_6-benzene, showing the full spectral window collected.

Figure S38. 31P{1H} NMR spectrum of 5Np in d_6-benzene. The H$_2$BIPMTMS peak is likely from a small amount of decomposition given the limitations of our sample containment procedure.
Figure S39. 31P NMR spectrum of 5Np in d_6-benzene. The BIPM$^{TMS}H_2$ peak is likely from a small amount of decomposition given the limitations of our sample containment procedure.

Figure S40. 1H NMR spectrum of 6Np in d_8-THF. The BIPM$^{TMS}H_2$ and BIPM^{TMS}H peaks (see below) are likely from a small amount of decomposition given the limitations of our sample containment procedure combined with the need to heat the sample of 6Np strongly to dissolve it in d_8-THF – the complex is essentially insoluble in d_6-benzene.
Figure S41. 1H NMR spectrum of 6Np in d_8-THF, showing the full spectral window collected.

Figure S42. 13C{1H} NMR spectrum of 6Np in d_8-THF. No peaks definitively assignable to 6Np could be identified.
Figure S43. $^{13}\text{C} \{^1\text{H}\}$ NMR spectrum of 6Np in d_8-THF, showing the full spectral window collected.

Figure S44. $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum of 6Np in d_8-THF.
Figure S45. 31P NMR spectrum of 6Np in d_8-THF.

Figure S46. 1H NMR spectrum of in situ generated 7 in d_6-benzene.
Figure S47. 1H NMR spectrum of *in situ* generated 7 in d_6-benzene, showing the full spectral window collected.

Figure S48. 31P NMR spectrum of *in situ* generated 7 in d_6-benzene.
S7. ATR-IR Spectra

Figure S49. ATR-IR spectrum of 4Ce.

Figure S50. ATR-IR spectrum of 6Ce.
S8. Magnetic moments determined by NMR spectroscopy (Evans method)

Table S4. Data for the determination of the magnetic moments of complexes 5Np and 6Np.

Sample / peak	\(\mu_{\text{eff}} / \text{B.M mol}^{-1}\)	\(^a\) sample mass / g	solvent mass / g	\(M_r / \text{g mol}^{-1}\)	\(^b\) \(\Delta\) peak / Hz
5Np	1.36	0.0097	0.3704	718.203	98.16
6Np	1.46	0.0060	0.4019	908.20	2.84

\(^a\) The small masses engender large errors in this methodology, the results should be cautiously interpreted along with other data. \(^b\) Spectrometer frequency 400.130 MHz. Simple diamagnetic correction of \(M_r / -2,000,000\) applied. \(\rho_{d_6}\)-benzene = 0.950 g mL\(^{-1}\); \(\rho_{d_8}\)-THF = 0.985 g mL\(^{-1}\).

We were unable to obtain magnetic susceptibility measurements for complex 4Np due to the very limited sample quantity combined with difficulty fully solubilizing the sample in \(d_6\)-benene at room temperature (for example, it crystallizes overnight from \(d_6\)-benzene solutions in NMR tubes). As our sample sealing procedure makes it impractical to safely bring the sample back into the glovebox without decomposition, we were unable to add additional solvent (e.g. some \(d_8\)-THF) to ensure complete dissolution of the sample, and we did not have enough material to gather new NMR spectra in a different solvent.

S9. Computational studies

Geometry optimizations for 4Np-6Np were performed using coordinates derived from their crystal structures as the starting points. No constraints were imposed on the structures during the geometry optimizations. The calculations were performed using the Amsterdam Density Functional (ADF) suite version 2017 with standard convergence criteria, Tables S5-S19.\(^{22,23}\) The DFT geometry optimizations employed Slater type orbital (STO) triple-\(\zeta^\ast\)-plus polarization all-electron basis sets (from the Dirac and ZORA/TZP database of the ADF suite). Scalar relativistic approaches (spin-orbit neglected) were used within the ZORA Hamiltonian\(^{24-26}\) for the inclusion of relativistic effects and the local density approximation (LDA) with the correlation potential due to Vosko et al was used in.
all of the calculations. Generalized gradient approximation corrections were performed using the functionals of Becke and Perdew. Natural Bond Order (NBO) analyses were carried out with NBO 6.0.19. The Quantum Theory of Atoms in Molecules analysis was carried out within the ADF program, and those data were checked by comparing to values computed with Xaim-1.033 using WFN files generated by ADF. The ADF-GUI (ADFview) was used to prepare the three-dimensional plots of the electron density. In all cases, Aubau formulations were found with the appropriate spin formulations (5f\(^{4}\) Np(III), quintet; 5f\(^{6}\) U(III), quarted, 4f\(^{5}\) Ce(III), doublet, 4f\(^{6}\) Pm(III), quintet).

Table S5. Computed bond, indices, charges, and spin densities of 4M-6M (M = Np, U, Ce, Pm).

Cmpd	Bond	M-C bond lengths and indices	MDC\(_q\) charges	MDC\(_m\) spin density				
		Expt.	Calc.	BI\(^a\)	M	C	M	C
4Np	Np-CH\(_{\text{BIPM}}\)	2.753(7)	2.7437	0.59	1.51	-1.64	4.21	-0.01
	Np<-C\(_{\text{NHC}}\)	2.676(8)	2.6805	0.83	-0.43	-0.02		
5Np	Np=C\(_{\text{BIPM}}\)	2.425(7)	2.3899	1.40	1.54	-1.96	4.36	-0.07
6Np	Np=C\(_{\text{BIPM}}\)	2.490(6)	2.4700	1.20	1.51	-1.64	4.22	-0.05
	Np<-C\(_{\text{NHC}}\)	2.751(6)	2.7321	0.65	-0.44	-0.03		
	Np<-C\(_{\text{NHC}}\)	2.677(5)	2.6719	0.69	-0.46	-0.03		
4U	U-CH\(_{\text{BIPM}}\)	-	2.7492	0.58	1.58	-1.65	3.09	-0.01
	U<-C\(_{\text{NHC}}\)	-	2.6738	0.82	-0.45	-0.02		
5U	U=C\(_{\text{BIPM}}\)	-	2.4232	1.28	1.57	-2.00	3.28	-0.04
6U	U=C\(_{\text{BIPM}}\)	-	2.4618	1.17	1.62	-1.67	3.08	-0.04
	U<-C\(_{\text{NHC}}\)	-	2.7153	0.77	-0.50	-0.03		
	U<-C\(_{\text{NHC}}\)	-	2.6538	0.81	-0.48	-0.03		
4Ce	Ce-CH\(_{\text{BIPM}}\)	2.768(6)	2.7717	0.46	1.20	-1.54	1.04	-0.01
	Ce<-C\(_{\text{NHC}}\)	2.731(8)	2.7492	0.60	-0.31	-0.01		
5Ce	Ce=C\(_{\text{BIPM}}\)	2.4772(19)	2.4402	1.05	1.32	-1.82	1.07	-0.01
6Ce	Ce=C\(_{\text{BIPM}}\)	2.519(2)	2.4880	0.96	1.29	-1.53	1.01	-0.01
	Ce<-C\(_{\text{NHC}}\)	2.737(3)	2.7576	0.52	-0.38	-0.01		
	Ce<-C\(_{\text{NHC}}\)	2.806(2)	2.8207	0.58	-0.36	-0.01		
4Pm	Pm-CH\(_{\text{BIPM}}\)	-	2.7674	0.31	1.06	-1.47	4.38	-0.04
	Pm<-C\(_{\text{NHC}}\)	-	2.7061	0.39	-0.26	-0.05		
5Pm	Pm=C\(_{\text{BIPM}}\)	-	2.4077	0.94	1.26	-1.76	4.40	-0.02
6Pm	Pm=C\(_{\text{BIPM}}\)	-	2.4809	0.76	1.11	-1.48	4.39	-0.02
	Pm<-C\(_{\text{NHC}}\)	-	2.8097	0.28	-0.31	-0.02		
	Pm<-C\(_{\text{NHC}}\)	-	2.7385	0.33	-0.29	-0.02		

\(^a\) Nalewajski-Mrozek bond indices.
Table S6. Computed NBO data for 4M-6M (M = Np, U, Ce, Pm).

Cmpd	Bond	M-C σ-bond (%)	M-C π-bond (%)							
		M	C	M s/p/d/f	C s/p	M	C	M s/p/d/f	C s/p	
4Np	Np-CHBIPM	9	91	9/0/45/46	9/91					
	Np-CNHC	0	100			45/55				
5Np	Np=CNHC	17	83	4/1/32/63	13/87	14	86	0/0/38/62	0/100	
6Np	Np=CNHC	15	85	9/1/39/51	22/78	10	90	0/0/43/56	1/99	
	Np-CNHC	0	100			46/54				
	Np-CNHC	0	100			46/54				
4U	U-CHBIPM	9	91	8/0/47/45	8/92					
	U-CNHC	0	100			44/56				
5U	U=CNHC	14	86	4/1/42/53	14/86	13	87	0/0/40/60	0/100	
6U	U=CNHC	14	86	10/1/46/43	24/76	10	90	0/0/50/49	1/99	
	U-CNHC	0	100			46/54				
	U-CNHC	0	100			46/54				
4Ce	Ce-CHBIPM	0	100							
	Ce-CNHC	0	100			45/55				
5Ce	Ce=CNHC	10	90	1/1/61/37	8/92	8	92	0/0/65/35	0/100	
6Ce	Ce=CNHC	9	91	7/1/65/27	20/80	7	93	2/1/60/37	2/98	
	Ce-CNHC	0	100			46/54				
	Ce-CNHC	0	100			46/54				
4Pm	Pm-CHBIPM	10	90	5/0/32/63	6/97					
	Pm-CNHC	0	100			45/55				
5Pm	Pm=CNHC	18	82	1/0/24/75	7/93	19	81	0/0/20/80	0/100	
6Pm	Pm=CNHC	15	85	5/1/31/63	17/83	14	86	1/0/24/75	2/98	
	Pm-CNHC	0	100			44/56				
	Pm-CNHC	0	100			43/57				

* The NBO cut-off is 5%, so M% = 0 means only that the M contribution to that bond is <5%.

Table S7. Computed QTAIM data for 4M-6M (M = Np, U, Ce, Pm).

Cmpd	Bond	ρ^a	∇^bρ^c	H^d	ϕ^e
4Np	Np-CHBIPM	0.04	0.09	-0.07	0.05
	Np-CNHC	0.05	0.11	-0.01	0.01
5Np	Np-CNHC	0.08	0.13	-0.04	0.21
6Np	Np-CNHC	0.08	0.12	-0.03	0.18
	Np-CNHC	0.04	0.11	-0.01	0.03
4U	U-CNHC	0.05	0.01	-0.01	0.01
5U	U-CNHC	0.08	0.12	-0.03	0.20
6U	U-CNHC	0.08	0.11	-0.03	0.17
	U-CNHC	0.05	0.10	-0.01	0.03
	U-CNHC	0.05	0.11	-0.01	0.03
4Ce	Ce-CNHC	0.04	0.08	-0.01	0.05
5Ce	Ce-CNHC	0.07	0.12	-0.03	0.22
6Ce	Ce-CNHC	0.07	0.10	-0.02	0.19
	Ce-CNHC	0.04	0.08	-0.01	0.03
4Pm	Pm-CNHC	0.04	0.08	-0.01	0.05
5Pm	Pm-CNHC	0.07	0.12	-0.03	0.16
6Pm	Pm-CNHC	0.06	0.11	-0.02	0.13

* Topological electron density. ∇^b Laplacian. ∇^c Electronic energy density. ϕ^d Bond ellipticity.
Figure S51. Selected frontier Kohn Sham molecular orbitals of 4Np. a) HOMO (284a, –2.792 eV), b) HOMO–1 (283a, –2.802 eV), c) HOMO–2 (282a, –2.848 eV), d) HOMO–3 (281a, –2.864 eV), e) HOMO–5 (279a, –5.060 eV), f) HOMO–23 (261a, –6.663 eV). Hydrogen atoms are omitted for clarity.

Figure S52. Selected frontier Kohn Sham molecular orbitals of 5Np. a) HOMO (248a, –2.363 eV), b) HOMO–1 (247a, –2.503 eV), c) HOMO–2 (246a, –2.533 eV), d) HOMO–3 (245a, –2.565 eV), e) HOMO–4 (244a, –4.515 eV), f) HOMO–5 (243a, –4.951 eV). Hydrogen atoms are omitted for clarity.
Figure S53. Selected frontier Kohn Sham molecular orbitals of 6Np. a) HOMO (291a, −2.195 eV), b) HOMO–1 (290a, −2.243 eV), c) HOMO–2 (289a, −2.319 eV), d) HOMO–3 (288a, −2.392 eV), e) HOMO–4 (287a, −4.297 eV), f) HOMO–5 (286a, −4.521 eV), g) HOMO–19 (272a, −6.141 eV). Hydrogen atoms are omitted for clarity.

Figure S54. Selected frontier Kohn Sham molecular orbitals of 4U. a) HOMO (283a, −2.251 eV), b) HOMO–1 (282a, −2.268 eV), c) HOMO–2 (281a, −2.299 eV), d) HOMO–4 (279, −5.121 eV), e) HOMO–22 (261a, −6.424 eV). Hydrogen atoms are omitted for clarity.
Figure S55. Selected frontier Kohn Sham molecular orbitals of 5U. a) HOMO (247a, −1.941 eV), b) HOMO−1 (246a, −1.969 eV), c) HOMO−2 (245a, −1.999 eV), d) HOMO−3 (244a, −4.538 eV), e) HOMO−4 (243a, −4.983 eV). Hydrogen atoms are omitted for clarity.

Figure S56. Selected frontier Kohn Sham molecular orbitals of 6U. a) HOMO (290a, −1.844 eV), b) HOMO−1 (289a, −1.870 eV), c) HOMO−2 (288a, −1.989 eV), d) HOMO−3 (287a, −24.364 eV), e) HOMO−4 (286a, −4.627 eV), f) HOMO−18 (272a, −6.160 eV). Hydrogen atoms are omitted for clarity.
Figure S57. Selected frontier Kohn Sham molecular orbitals of 4Ce. a) HOMO (265a, –2.461 eV), b) HOMO–2 (263a, –5.032 eV), c) HOMO–19 (246a, –6.549 eV). Hydrogen atoms are omitted for clarity.

Figure S58. Selected frontier Kohn Sham molecular orbitals of 5Ce. a) HOMO (229a, –2.086 eV), b) HOMO–1 (228a, –4.406 eV), c) HOMO–2 (227a, –4.770 eV). Hydrogen atoms are omitted for clarity.

Figure S59. Selected frontier Kohn Sham molecular orbitals of 6Ce. a) HOMO (272a, –1.952 eV), b) HOMO–1 (271a, –4.240 eV), c) HOMO–2 (270a, –4.391 eV), d) HOMO–21 (251a, –6.457 eV). Hydrogen atoms are omitted for clarity.
Figure S60. Selected frontier Kohn Sham molecular orbitals of 4Pm. a) HOMO (268a, −4.231 eV), b) HOMO–1 (267a, −4.254 eV), c) HOMO–2 (266a, −4.294 eV), d) HOMO–3 (265a, −4.329 eV), e) HOMO–5 (263a, −5.042 eV), f) HOMO–22 (246a, −6.583 eV). Hydrogen atoms are omitted for clarity.

Figure S61. Selected frontier Kohn Sham molecular orbitals of 5Pm. a) HOMO (232a, −3.673 eV), b) HOMO–1 (231a, −3.776 eV), c) HOMO–2 (230a, −3.790 eV), d) HOMO–3 (229a, −3.822 eV), e) HOMO–4 (228a, −4.469 eV), f) HOMO–5 (227a, −4.872 eV). Hydrogen atoms are omitted for clarity.
Figure S62. Selected frontier Kohn Sham molecular orbitals of 6Pm. a) HOMO (275a, −3.477 eV), b) HOMO–1 (274a, −3.505 eV), c) HOMO–2 (273a, −3.551 eV), d) HOMO–3 (272a, −3.600 eV), e) HOMO–4 (271a, −4.259 eV), f) HOMO–5 (270a, −4.444 eV), g) HOMO–18 (257a, −5.995 eV). Hydrogen atoms are omitted for clarity.

Figure S63. Selected NBOs of 4Np. a) Np-C_{BIPM} σ-bond, b) Np-C_{NHC} σ-bond.
Figure S64. Selected NBOs of 5Np. a) Np-C\textsubscript{BIPM} \(\sigma\)-bond, b) Np-C\textsubscript{BIPM} \(\pi\)-bond.

Figure S65. Selected NBOs of 6Np. a) Np-C\textsubscript{BIPM} \(\sigma\)-bond, b) Np-C\textsubscript{BIPM} \(\pi\)-bond, c) Np-C\textsubscript{NHC} \(\sigma\)-bond, d) Np-C\textsubscript{NHC} \(\sigma\)-bond.

Figure S66. Selected NBOs of 4U. a) U-C\textsubscript{BIPM} \(\sigma\)-bond, b) U-C\textsubscript{NHC} \(\sigma\)-bond.
Figure S67. Selected NBOs of 5U. a) U-C_{BIPM} σ-bond, b) U-C_{BIPM} π-bond.

Figure S68. Selected NBOs of 6U. a) U-C_{BIPM} σ-bond, b) U-C_{BIPM} π-bond, c) U-C_{NHC} σ-bond, d) U-C_{NHC} σ-bond.

Figure S69. Selected NBOs of 4Ce. a) Ce-C_{BIPM} σ-bond, b) Ce-C_{NHC} σ-bond.
Figure S70. Selected NBOs of 5Ce. a) Ce-C_{BIPM} σ-bond, b) Ce-C_{BIPM} π-bond.

Figure S71. Selected NBOs of 6Ce. a) Ce-C_{BIPM} σ-bond, b) Ce-C_{BIPM} π-bond, c) Ce-C_{NHC} σ-bond, d) Ce-C_{NHC} σ-bond.

Figure S72. Selected NBOs of 4Pm. a) Pm-C_{BIPM} σ-bond, b) Pm-C_{NHC} σ-bond.
Figure S73. Selected NBOs of 5Pm. a) Pm-C$_{\text{BIPM}}$ σ-bond, b) Pm-C$_{\text{BIPM}}$ π-bond.

Figure S74. Selected NBOs of 6Pm. a) Pm-C$_{\text{BIPM}}$ σ-bond, b) Pm-C$_{\text{BIPM}}$ π-bond, c) Pm-C$_{\text{NHC}}$ σ-bond, d) Pm-C$_{\text{NHC}}$ σ-bond.

Table S8. Final coordinates and energy for a single point energy calculation of geometry optimized 4Np.

1.C	3.631314	-0.615213	-3.403553
2.C	3.111201	2.397281	-3.575070
3.C	2.162714	-4.116339	-3.106081
4.C	-3.667199	0.232367	-2.763600
5.C	2.038314	-7.083148	-2.472335
6.C	-0.601119	4.191248	-2.631498
7.C	0.071648	3.086050	-2.101225
8.C	1.201468	-6.045214	-1.800176
9.C	-3.201120	-2.679628	-1.911860
10.C	-0.872326	5.300246	-1.824976
---	---	---	---
11.C	0.408223	-3.932624	-1.355642
12.C	4.926269	1.194232	-1.392243
13.C	0.290173	-6.156532	-0.780960
14.C	0.470999	3.078183	-0.755071
15.C	-0.494670	5.291248	-0.476346
16.C	-0.184632	7.352221	0.024017
17.C	-4.731629	-0.813203	0.088794
18.C	-3.119016	2.422805	0.026706
19.C	-3.828150	3.614763	0.061404
20.C	0.160788	4.181978	0.061404
21.C	-0.494670	5.291248	-0.476346
22.C	-0.184632	7.352221	0.024017
23.C	-4.731629	-0.813203	0.088794
24.C	3.160907	3.534942	0.950868
25.C	2.679346	2.216096	0.996883
26.C	-3.786707	4.275121	1.438075
27.C	3.282647	1.296653	1.874821
28.C	4.199119	3.936754	1.797285
29.C	-2.314108	2.556027	2.305333
30.C	-3.020327	3.746516	2.485154
31.C	-1.767111	-0.638848	2.369959
32.C	4.321499	1.701371	2.714243
33.C	4.776331	3.024644	2.685649
34.C	-0.843713	-1.585593	2.848074
35.C	-3.012557	-0.521192	3.012451
36.C	-1.155192	-2.383449	3.952460
37.C	-3.323664	-1.324796	4.113219
38.C	-2.395107	-2.256240	4.588465
39.H	4.526569	-0.451169	-0.025997
40.H	2.276590	2.222665	-4.270050
41.H	4.026461	2.523331	-4.176521
42.H	2.794075	-0.857549	-4.072459
43.H	2.401936	-4.853270	-3.880043
44.H	1.817211	-7.160301	-3.548063
45.H	-4.197984	-0.346748	-3.535582
46.H	1.690022	-3.250613	-3.587040
47.H	-0.904215	4.184883	-3.693347
48.H	-2.753476	0.626696	-3.229722
49.H	3.842641	-1.481254	-2.756707
50.H	2.924040	3.346491	-3.050353
51.H	-4.318989	1.073480	-2.483010
52.H	3.112962	-6.870397	-2.365975
53.H	0.291577	2.223457	-2.729709
54.H	3.089835	-3.805716	-2.603124
55.H	-2.334107	-2.877568	-2.559715
56.H	-4.108163	-2.874668	-2.507240
57.H	1.850282	-8.066709	-2.026133
58.H	-1.382817	6.169976	-2.242900
59.H	5.776015	1.197889	-2.095187
60.H	-3.193751	-3.399853	-1.081319
61.H	-3.140123	1.924879	-0.939655
62.H	4.957254	2.134964	-0.823353
Table S9. Final coordinates and energy for a single point energy calculation of geometry optimized 5Np.

	x	y	z
63.H	-4.409490	4.026416	-0.618262
64.H	-5.642516	-1.117597	-0.631596
65.H	0.355923	-8.247262	-0.353973
66.H	5.078042	0.363239	-0.686603
67.H	-1.259118	-7.538609	-0.178763
68.H	-0.714301	6.149190	0.160389
69.H	-4.907157	0.199485	0.304130
70.H	-1.377149	-3.474002	0.442641
71.H	-1.998783	-5.142331	0.486489
72.H	2.729770	4.253657	0.254763
73.H	-4.608873	-1.497687	0.763953
74.H	-0.017092	-7.244527	1.058611
75.H	0.438727	4.179268	1.115621
76.H	-4.342459	5.203494	1.580963
77.H	-0.605992	-4.671556	1.511037
78.H	2.969207	0.250329	3.127620
79.H	0.773167	0.413736	1.888243
80.H	4.557295	4.966385	1.757714
81.H	0.125466	-1.711805	2.358459
82.H	-3.742989	0.205847	2.658222
83.H	-1.720893	2.152366	3.127620
84.H	-2.975658	4.261639	3.445870
85.H	4.781142	0.975227	3.386144
86.H	5.584839	3.340501	3.346985
87.H	-0.421044	-3.103994	4.315961
88.H	-4.292978	-1.216011	4.601611
89.H	-2.635818	-2.878716	5.452142
90.I	-0.190172	-0.996210	-4.175239
91.I	2.691841	-2.532431	0.816460
92.N	1.234846	-4.690505	-2.141137
93.N	1.908097	0.706462	-1.353878
94.N	-0.181553	-4.861526	-0.543743
95.N	-1.718709	-0.460507	-0.535008
96.Np	0.536569	-1.263146	-1.149496
97.P	1.353593	1.606171	-0.114823
98.P	-1.389040	0.331712	0.849304
99.Si	3.339953	0.946162	-2.384888
100.Si	-3.269856	-0.897820	-1.291322

Energy: \(-590.12253057\) eV
9.C	4.226375	-2.441306	-1.855803	
10.C	-1.460028	-3.719389	-1.795167	
11.C	-4.130923	3.020391	-1.669508	
12.C	-1.162809	-2.348048	-1.704838	
13.C	5.651709	0.985491	-1.023489	
14.C	2.392232	-4.698633	-0.927746	
15.C	-1.935100	2.225862	-0.983132	
16.C	-3.281237	2.498633	-0.864032	
17.C	2.817819	-4.227318	-0.365291	
18.C	-0.047036	5.322945	-0.162568	
19.C	-0.234919	-0.034298	-0.103806	
20.C	-0.378450	-2.741080	1.042390	
21.C	5.144054	0.837718	1.310045	
22.C	-1.687763	-3.088554	1.422320	
23.C	0.690792	-3.164364	1.846982	
24.C	-1.691533	1.662731	1.826566	
25.C	1.460922	4.374799	2.348619	
26.C	4.193256	0.183986	2.285420	
27.C	-1.950654	2.906391	1.427144	
28.C	-2.192380	0.501198	2.431909	
29.C	-1.916605	-3.842113	2.578159	
30.C	0.463903	-3.913967	3.005427	
31.C	1.934899	0.362598	3.075816	
32.C	-0.841989	-4.255624	3.374615	
33.C	-2.944894	0.577236	3.609135	
34.C	-2.692193	2.984794	3.608923	
35.C	-3.195734	1.818954	4.200589	
36.H	-3.453261	-3.685907	4.564980	
37.H	-2.927924	-1.250859	4.414902	
38.H	2.490519	-3.807063	4.114143	
39.H	-1.924850	3.170580	4.267180	
40.H	1.761707	-2.181802	4.028853	
41.H	-4.312091	3.676795	3.721718	
42.H	0.796454	-3.615265	3.596723	
43.H	-2.512080	-5.262821	2.876458	
44.H	4.322857	-1.522984	2.456881	
45.H	4.824622	-3.221542	2.354017	
46.H	-1.479493	-0.401768	2.577658	
47.H	-0.417440	2.257578	2.531703	
48.H	5.177345	0.837726	1.999479	
49.H	2.924810	5.431766	1.555456	
50.H	-5.171836	3.234942	1.421143	
51.H	2.742538	4.040647	1.447565	
52.H	-0.230431	5.176248	1.237463	
53.H	-1.056414	-4.416649	1.060059	
54.H	6.568074	0.380823	0.943582	
55.H	4.668238	-2.259691	0.864032	
56.H	5.888366	2.052392	0.892432	
57.H	1.370548	-5.077186	-0.773617	
58.H	3.211226	5.246325	-0.218477	
59.H	0.378073	6.330523	-0.022970	
60.H	2.889002	-4.678792	0.054621	
Table S1. Final coordinates and energy for a single point energy calculation of geometry optimized 6Np.

Atom	x	y	z
1.C	-0.048534	0.121039	-5.264749
2.C	-3.695479	-2.792197	-4.247650
3.C	-3.239542	-3.000127	-4.031832
4.C	1.041495	2.668623	-3.991770
5.C	2.700376	0.120164	-4.001133
6.C	-4.326914	-1.683210	-3.676438
7.C	-3.084375	3.563983	-3.169775
8.C	-1.594290	-2.094475	-3.265405
9.C	-2.471923	2.311681	-3.070969
10.C	-3.593319	-0.779351	-2.902373
11.C	-2.214922	-0.967335	-2.702850
12.C	-3.333549	4.318289	-2.017780
13.C	6.100848	3.606504	-1.801743

Energy: \(-546.51288965\) eV
14.C	-2.104387	1.786284	-1.819341	
15.C	-2.599567	-5.447148	-1.363063	
16.C	3.342754	5.382348	-1.288176	
17.C	4.746025	3.190269	-1.336975	
18.C	5.353467	0.754143	-1.202150	
19.C	3.609165	3.924081	-1.121620	
20.C	-1.243305	-5.217395	-1.113421	
21.C	-3.553135	-4.525125	-0.918294	
22.C	-2.978101	3.804537	-0.766821	
23.C	3.100711	1.717025	-0.664324	
24.C	3.342754	5.382348	-1.288176	
25.C	4.746025	3.190269	-1.336975	
26.C	5.353467	0.754143	-1.202150	
27.C	3.609165	3.924081	-1.121620	
28.C	-1.243305	-5.217395	-1.113421	
29.C	-3.553135	-4.525125	-0.918294	
30.C	-2.978101	3.804537	-0.766821	
31.C	3.100711	1.717025	-0.664324	
32.C	3.342754	5.382348	-1.288176	
33.C	4.746025	3.190269	-1.336975	
34.C	5.353467	0.754143	-1.202150	
35.C	3.609165	3.924081	-1.121620	
36.C	-1.243305	-5.217395	-1.113421	
37.C	-3.553135	-4.525125	-0.918294	
38.C	-2.978101	3.804537	-0.766821	
39.C	3.100711	1.717025	-0.664324	
40.C	3.342754	5.382348	-1.288176	
41.C	4.746025	3.190269	-1.336975	
42.C	5.353467	0.754143	-1.202150	
43.C	3.609165	3.924081	-1.121620	
44.C	-1.243305	-5.217395	-1.113421	
45.C	-3.553135	-4.525125	-0.918294	
46.C	-2.978101	3.804537	-0.766821	
47.C	3.100711	1.717025	-0.664324	
48.C	3.342754	5.382348	-1.288176	
49.C	4.746025	3.190269	-1.336975	
50.C	5.353467	0.754143	-1.202150	
51.C	3.609165	3.924081	-1.121620	
52.C	-1.243305	-5.217395	-1.113421	
53.C	-3.553135	-4.525125	-0.918294	
54.C	-2.978101	3.804537	-0.766821	
55.C	3.100711	1.717025	-0.664324	
56.C	3.342754	5.382348	-1.288176	
57.C	4.746025	3.190269	-1.336975	
58.C	5.353467	0.754143	-1.202150	
59.C	3.609165	3.924081	-1.121620	
60.C	-1.243305	-5.217395	-1.113421	
61.C	-3.553135	-4.525125	-0.918294	
62.C	-2.978101	3.804537	-0.766821	
63.C	3.100711	1.717025	-0.664324	
64.C	3.342754	5.382348	-1.288176	
65.C	4.746025	3.190269	-1.336975	
66.C	5.353467	0.754143	-1.202150	
---	---	---	---	---
66.H	2.913622	-6.338459	-1.909349	
67.H	2.542578	5.567065	-2.021868	
68.H	4.243831	5.893459	-1.648516	
69.H	-0.491467	-5.926546	-1.465122	
70.H	-4.612555	-4.692365	-1.120970	
71.H	6.878923	3.389563	-1.053791	
72.H	4.825406	0.190568	-1.022072	
73.H	0.218170	3.896202	-0.220499	
74.H	0.218170	3.896202	-0.220499	
75.H	0.218170	3.896202	-0.220499	
76.H	0.218170	3.896202	-0.220499	
77.H	0.218170	3.896202	-0.220499	
78.H	0.218170	3.896202	-0.220499	
79.H	0.218170	3.896202	-0.220499	
80.H	0.218170	3.896202	-0.220499	
81.H	0.218170	3.896202	-0.220499	
82.H	0.218170	3.896202	-0.220499	
83.H	0.218170	3.896202	-0.220499	
84.H	0.218170	3.896202	-0.220499	
85.H	0.218170	3.896202	-0.220499	
86.H	0.218170	3.896202	-0.220499	
87.H	0.218170	3.896202	-0.220499	
88.H	0.218170	3.896202	-0.220499	
89.H	0.218170	3.896202	-0.220499	
90.H	0.218170	3.896202	-0.220499	
91.H	0.218170	3.896202	-0.220499	
92.H	0.218170	3.896202	-0.220499	
93.H	0.218170	3.896202	-0.220499	
94.H	0.218170	3.896202	-0.220499	
95.H	0.218170	3.896202	-0.220499	
96.H	0.218170	3.896202	-0.220499	
97.H	0.218170	3.896202	-0.220499	
98.H	0.218170	3.896202	-0.220499	
99.H	0.218170	3.896202	-0.220499	
100.H	0.218170	3.896202	-0.220499	
101.H	0.218170	3.896202	-0.220499	
102.H	0.218170	3.896202	-0.220499	
103.H	0.218170	3.896202	-0.220499	
104.H	0.218170	3.896202	-0.220499	
105.H	0.218170	3.896202	-0.220499	
106.H	0.218170	3.896202	-0.220499	
107.H	0.218170	3.896202	-0.220499	
108.H	0.218170	3.896202	-0.220499	
109.H	0.218170	3.896202	-0.220499	
110.H	0.218170	3.896202	-0.220499	
111.H	0.218170	3.896202	-0.220499	
112.H	0.218170	3.896202	-0.220499	
113.H	0.218170	3.896202	-0.220499	
114.H	0.218170	3.896202	-0.220499	
115.H	0.218170	3.896202	-0.220499	
116.H	0.218170	3.896202	-0.220499	
117.H	0.218170	3.896202	-0.220499	
Table S11. Final coordinates and energy for a single point energy calculation of geometry optimized 4U.

1.C	3.674010	-0.620054	-3.335940
2.C	3.147983	2.393310	-3.569636
3.C	2.183696	-4.147115	-3.130358
4.C	-3.674347	0.218353	-2.749594
5.C	2.020290	-7.105829	-2.480321
6.C	-0.593936	4.218591	-2.617204
7.C	0.089781	3.113471	-2.100694
8.C	1.197212	-6.057498	-1.811219
9.C	-3.167836	-2.683013	-1.906551
10.C	-0.899926	5.303141	-1.790593
11.C	0.432372	-3.929847	-1.374984
12.C	4.935931	1.259344	-1.340019
13.C	0.290549	-6.153592	-0.788523
14.C	0.465140	3.082904	-0.748763
15.C	-0.546828	5.270243	-0.436714
16.C	-0.190772	-7.338213	-0.020843
17.C	-4.741100	-0.833385	-0.079572
18.C	-3.097274	2.455659	0.032061
19.C	-3.803400	3.647934	0.222838
20.C	0.121428	4.162078	0.086664
21.C	-1.060983	-4.505331	0.541092
22.C	0.341530	0.574540	0.875018
23.C	-2.359984	1.890772	1.079947
24.C	3.155751	3.561728	0.955349
25.C	2.684786	2.239629	1.006521
26.C	-3.772353	4.291255	1.461942
27.C	3.299824	1.327006	1.883367
28.C	4.201365	3.971961	1.788843
29.C	-2.308118	2.560632	2.317067
30.C	-3.013984	3.749213	2.506811
31.C	-1.755474	-0.619669	2.387305
32.C	4.342548	1.741914	2.713639
33.C	4.791864	3.065895	2.673863
34.C	-0.825237	-1.554590	2.877139
35.C	-3.008111	-0.516255	3.017912
36.C	-1.138032	-2.351937	3.981595
37.C	-3.321211	-1.322674	4.115917
38.C	-2.386516	-2.240562	4.603120
39.H	4.572838	-0.491280	-3.959388
40.H	2.312060	2.204522	-4.258268
41.H	4.058831	2.514186	-4.176458
42.H	2.835185	-0.865904	-4.001298
43.H	2.373239	-4.873862	-3.928267
44.H	1.793125	-7.187377	-3.554481

Energy: -704.34159680 eV
45	H	-4.235879	-0.350841	-3.505775
46	H	1.738674	-3.248487	-3.576850
47	H	-0.879872	4.230913	-3.670161
48	H	-2.758264	0.580796	-3.234969
49	H	3.862060	-1.470149	-2.662364
50	H	2.959130	3.348442	-3.058669
51	H	-4.296096	1.079894	-2.465799
52	H	3.096889	-6.899868	-2.381492
53	H	0.333385	2.267005	-2.744241
54	H	3.132648	-3.888950	-2.638351
55	H	-2.293929	-2.846293	-2.553870
56	H	-4.064797	-2.903805	-2.506218
57	H	1.826828	-8.085309	-2.026706
58	H	-1.419553	6.172431	-2.197656
59	H	5.803802	1.268008	-2.018239
60	H	-3.136936	-3.407603	-1.081652
61	H	-3.111440	1.969669	-0.942262
62	H	4.931186	2.209913	-0.790988
63	H	-4.377292	4.073336	-0.601965
64	H	-5.652902	-1.139336	-0.616072
65	H	0.339242	-8.240779	-0.347895
66	H	5.084766	0.446767	-0.614614
67	H	-1.268069	-7.515913	-0.166124
68	H	-0.795074	6.109569	0.214827
69	H	-4.916179	0.179539	0.309607
70	H	-1.343709	-3.451908	0.444155
71	H	-1.970846	-5.119557	0.508225
72	H	2.712620	4.277271	0.262811
73	H	-4.614156	-1.513464	0.774438
74	H	-0.015281	-7.224191	1.059812
75	H	0.379960	4.139534	1.146035
76	H	-4.330140	5.217091	1.613804
77	H	-0.559702	-6.467063	1.508398
78	H	2.995869	0.276934	1.893378
79	H	0.800413	0.350402	1.839659
80	H	4.555917	5.002777	1.740885
81	H	0.149666	-1.676389	2.396035
82	H	-3.744569	0.201315	2.656422
83	H	-1.720086	2.146402	3.137983
84	H	-2.976916	4.252315	3.474866
85	H	4.811181	1.021449	3.385412
86	H	5.607415	3.387377	3.324003
87	H	-0.398189	-3.061373	4.355800
88	H	-4.297693	-1.227356	4.593489
89	H	-2.629423	-2.865880	5.463939
90	I	-0.175466	-1.024675	-4.192073
91	I	2.672709	-2.548243	0.801434
92	N	1.246887	-4.704332	-2.160216
93	N	1.945280	0.716529	-1.340441
94	N	-0.167496	-4.851966	-0.554914
95	N	-1.735361	-0.473124	-0.512606
96	U	0.516204	-1.266010	-1.159631
Table S12. Final coordinates and energy for a single point energy calculation of geometry optimized 5U.

1	C	-2.814376	-3.327769	-3.765774
2	C	-2.536224	-1.959980	-3.676505
3	C	1.798893	-3.166123	-3.523557
4	C	-2.310575	2.994329	-3.262276
5	C	-2.280285	-4.210389	-2.820916
6	C	-3.656935	3.245701	-2.970873
7	C	-1.726955	-1.474403	-2.646243
8	C	-1.462227	2.486764	-2.277069
9	C	4.210759	-2.448103	-1.811610
10	C	-1.466625	-3.726383	-1.792796
11	C	-4.149792	2.977003	-1.691628
12	C	-1.181191	-2.353319	-1.698516
13	C	5.676154	0.986805	-1.003525
14	C	2.367773	-4.713548	-0.925304
15	C	-1.947804	2.220168	-0.983626
16	C	-3.301850	2.464214	-0.703339
17	C	2.804097	4.216794	-0.335926
18	C	-0.053549	5.311617	-0.163833
19	C	-0.258333	-0.040057	-0.094695
20	C	-0.395235	-2.745713	1.056945
21	C	5.176740	0.789319	1.325088
22	C	-1.706167	-3.078782	1.441646
23	C	0.672487	-3.175473	1.860300
24	C	-1.708133	1.656866	1.843198
25	C	1.433407	4.361787	2.365395
26	C	4.202816	0.158782	2.291695
27	C	-1.999296	2.902968	2.425453
28	C	-2.152460	0.490682	2.483763
29	C	-1.939696	-3.822084	2.602596
30	C	0.440125	-3.914652	3.024695
31	C	1.940053	0.377925	3.049964
32	C	-0.867272	-4.239858	3.398996
33	C	-2.879922	0.565036	3.676331
34	C	-2.718603	2.979024	3.620744
35	C	-3.164995	1.808884	4.247132
36	H	-3.449762	-3.706189	-4.568561
37	H	-2.955256	-1.266953	-4.407913
38	H	2.472187	-3.827705	-4.091048
39	H	-1.916670	3.197100	-4.259656
40	H	1.794829	-2.182601	-4.015711
41	H	-4.317970	3.650127	-3.739580
42	H	0.784497	-3.582613	-3.587112

Energy: -589.14704475 eV
43.H	-2.499390	-5.277996	-2.882872	
44.H	4.315308	-1.520971	-2.395653	
45.H	4.820894	-3.216966	-2.310382	
46.H	-1.514450	-0.406976	-2.564699	
47.H	-0.412513	2.295794	-2.515882	
48.H	5.208509	0.858296	-1.985549	
49.H	2.909786	-5.439403	-1.551538	
50.H	-5.198601	3.168948	-1.456632	
51.H	2.741425	4.018445	-1.415874	
52.H	-0.211975	5.169605	-1.242133	
53.H	-1.058940	-4.21956	-1.057308	
54.H	6.591774	0.380882	-0.926506	
55.H	4.636656	-2.280590	-0.811473	
56.H	5.912010	2.050630	-0.847416	
57.H	1.345084	-5.093461	-0.790689	
58.H	3.182685	5.241873	-0.200331	
59.H	0.364058	5.134817	-0.010384	
60.H	2.849557	-4.703334	0.063644	
61.H	3.565864	3.540730	0.087083	
62.H	-1.042311	5.288711	0.317129	
63.H	-3.700119	2.260257	0.290834	
64.H	-2.550226	-2.765067	0.824164	
65.H	6.177746	0.346882	1.465464	
66.H	5.244022	1.878768	1.492022	
67.H	1.690715	-2.936294	1.548929	
68.H	-1.673656	3.823760	1.939252	
69.H	-1.921500	-0.447721	2.037160	
70.H	1.812440	5.385990	2.506692	
71.H	4.206321	-0.942029	2.204259	
72.H	2.188996	3.669349	2.766318	
73.H	-2.962178	-4.082756	2.882918	
74.H	0.526525	4.252218	2.976129	
75.H	0.975037	0.773202	2.720384	
76.H	4.484388	0.434347	3.322640	
77.H	1.860702	-0.707593	3.211526	
78.H	1.282131	-4.250008	3.633833	
79.H	2.262784	0.878869	3.975899	
80.H	-3.227165	-0.351486	4.156819	
81.H	-2.938005	3.953290	4.061449	
82.H	-1.050296	-4.825212	4.302054	
83.H	-3.735299	1.868932	5.175828	
84.I	2.501727	1.357519	-3.494981	
85.N	1.530067	-1.795556	-0.822574	
86.N	0.624849	2.367522	0.258128	
87.U	2.045354	0.560348	-0.546590	
88.O	4.710522	0.537946	-0.017328	
89.O	2.887498	0.666321	1.990015	
90.P	-0.062571	-1.663208	-0.407587	
91.P	-0.776553	1.506163	0.251501	
92.Si	2.403328	-3.005009	-1.744870	
93.Si	1.130818	4.011207	0.526577	

Energy: \(-545.42819150\) eV
Table S13. Final coordinates and energy for a single point energy calculation of geometry optimized 6U.

	x	y	z
1.C	-0.035049	0.153730	-5.272355
2.C	-3.693264	-2.780967	-4.261174
3.C	-2.325013	-2.990381	-4.060168
4.C	1.055577	2.690866	-3.982476
5.C	2.712799	0.135718	-4.020222
6.C	-4.319746	-1.677622	-3.674029
7.C	-3.090753	3.558141	-3.161642
8.C	-1.582515	-2.091584	-3.292167
9.C	-2.458389	2.315126	-3.072513
10.C	-3.578612	-0.779809	-2.900211
11.C	-2.198031	-0.969095	-2.715197
12.C	-3.372349	4.289588	-2.002257
13.C	6.080324	3.608369	-1.784171
14.C	-2.098410	1.777789	-1.823364
15.C	-2.608964	-5.489239	-1.312722
16.C	3.352558	5.414934	-1.239694
17.C	4.720476	3.203171	-1.323274
18.C	5.299818	0.761536	-1.214316
19.C	3.593584	3.949118	-1.101168
20.C	-1.250178	-5.251104	-1.083932
21.C	-3.559494	-4.562694	-0.871372
22.C	-3.025238	3.763613	-0.753844
23.C	3.046123	1.739865	-0.684051
24.C	-2.398427	2.516026	-0.669411
25.C	-0.843152	-4.098150	-0.406956
26.C	1.241185	3.427619	-0.363904
27.C	-3.154615	-3.411152	-0.191437
28.C	-1.791839	-3.171968	0.055791
29.C	-1.017297	-0.263085	-0.039897
30.C	4.525613	0.257499	2.317349
31.C	-2.510381	-1.441375	2.232113
32.C	2.107225	0.886909	2.190327
33.C	-3.023342	-0.166130	2.509691
34.C	2.687989	-3.004911	2.887665
35.C	-0.097249	1.891675	2.808917
36.C	-2.975365	-2.530445	2.990500
37.C	0.106130	-4.549098	3.104812
38.C	-3.942916	0.028456	3.545473
39.C	-3.895859	-2.341389	4.024195
40.C	3.276298	1.560724	4.069240
41.C	1.998746	2.037971	4.192769
42.C	-4.374791	-1.058316	4.312457
43.C	0.409870	-1.863784	4.557786
44.C	4.447815	1.667692	4.986026
45.C	1.354011	2.834011	5.276947
46.H	0.388857	0.575847	-6.197489
47.H	0.024458	-0.940631	-5.348578
48.H	-1.101482	0.416552	-5.247344
49.H	1.355906	2.954248	-5.009039
50.H	-4.270496	-3.479344	-4.869927
---	---	---	---
51. H	3.079626	0.392393	-5.026488
52. H	-1.832589	-3.857152	-4.504189
53. H	-3.367466	3.956102	-4.139797
54. H	-5.388675	-1.510983	-3.821132
55. H	2.753244	-0.956319	3.906416
56. H	-2.254527	1.755590	-3.986580
57. H	0.089807	3.175504	-3.781441
58. H	1.803689	3.116168	-3.298358
59. H	3.405876	0.570539	-3.288487
60. H	-0.514054	-2.253959	-3.141734
61. H	6.353540	3.118443	-2.731488
62. H	-4.077487	0.078748	-2.448151
63. H	-3.867821	5.259786	-2.072538
64. H	6.116648	4.691966	-1.950877
65. H	5.741660	0.767101	-2.219806
66. H	-2.927130	-6.391616	-1.837911
67. H	2.576859	5.630532	-1.990991
68. H	4.270980	5.921528	-1.559779
69. H	-0.500862	-5.964945	-1.431523
70. H	-4.621033	-4.736576	-1.056913
71. H	6.860433	3.358014	-1.048464
72. H	4.758435	-0.183575	-1.082377
73. H	0.866317	4.187545	-1.059691
74. H	6.110258	0.828617	-0.473892
75. H	3.031435	5.873051	-0.291717
76. H	0.590024	2.549769	-0.448022
77. H	0.218666	-3.912281	-0.232094
78. H	-3.254206	4.321855	0.156576
79. H	-3.905647	-2.696661	0.156153
80. H	-2.134720	2.082810	0.297049
81. H	1.199741	3.821348	0.661771
82. H	4.262366	-0.339320	1.436508
83. H	3.009137	-3.539135	1.983090
84. H	5.256432	1.026369	2.027337
85. H	-0.404286	1.362230	1.895593
86. H	0.181820	-5.104525	2.159716
87. H	-2.702363	0.668490	1.884869
88. H	-2.627670	-3.538066	2.761586
89. H	-0.270338	2.971009	2.685175
90. H	3.208062	-2.037896	2.906275
91. H	4.982601	-0.409340	3.059676
92. H	-0.945291	-4.565208	3.421806
93. H	3.022923	-3.578073	3.766304
94. H	0.680555	-5.102195	3.864611
95. H	-0.705737	1.525617	3.645928
96. H	-4.332569	1.028321	3.748003
97. H	-4.245176	-3.199226	4.601982
98. H	5.299449	2.182400	4.514442
99. H	0.921450	-0.889521	4.574845
100. H	-0.669187	-1.684082	4.666122
101. H	0.981551	3.803399	4.910232
102. H	-5.092892	-0.910162	5.121039
---	---	---	---
103.H	4.800732	0.677340	5.313623
104.H	0.745693	-2.435702	5.436886
105.H	0.500347	2.301033	5.723166
106.H	4.174064	2.233526	5.884631
107.H	2.073664	3.037144	6.079090
108.I	3.260680	-2.677005	-1.081559
109.N	0.344381	0.317221	-2.229544
110.N	4.365274	1.872050	-1.062827
111.N	2.599844	3.040961	-0.719732
112.N	0.279901	1.901169	1.551439
113.N	3.316535	0.870408	2.850997
114.N	1.313375	1.616743	3.046139
115.U	1.442512	-0.359441	-0.056351
116.P	-1.192186	0.163609	-1.666645
117.P	-1.212842	-1.648043	0.918473
118.Si	0.964970	0.803380	-3.795933
119.Si	0.814685	-2.795072	2.955922

Energy: -703.49454966 eV

Table S14. Final coordinates and energy for a single point energy calculation of geometry optimized 4Ce.

1.C	2.142813	1.961351	-4.079856
2.C	3.534023	2.033725	-3.966477
3.C	-0.270371	-2.540865	-3.881371
4.C	4.187693	-1.771723	-2.776384
5.C	1.345517	1.945069	-2.931115
6.C	4.130610	2.063128	-2.699577
7.C	-0.973479	4.519418	-2.658264
8.C	5.334630	-1.678475	-1.984337
9.C	2.921966	-1.643110	-2.194911
10.C	0.716559	-4.456146	-1.699854
11.C	-2.190907	3.603669	-1.769925
12.C	1.935780	1.992297	-1.658157
13.C	3.338858	2.028093	-1.550575
14.C	-3.31627	3.602510	-0.914001
15.C	5.212552	-1.440245	-0.608860
16.C	2.788797	-1.429661	-0.817877
17.C	3.949523	-1.311677	-0.029352
18.C	-5.660239	0.729631	-0.055249
19.C	-1.101880	5.186672	0.338864
20.C	-4.101115	-1.082973	0.591912
21.C	2.449463	4.138268	0.680918
22.C	0.836434	0.375372	0.616763
23.C	1.552164	3.118057	1.037131
24.C	-6.227661	-1.224989	1.451431
25.C	-7.652860	-0.857022	1.723143
26.C	2.039242	-3.463831	1.458479
27.C	1.253903	-2.297755	1.466125
28.C	2.936683	5.020550	1.650497
29.C	-3.124334	-3.050844	1.753917
---	-------	-------	-------
30. C	-5.512932	-2.286484	1.947670
31. C	1.117628	3.024346	2.372270
32. C	2.051271	-4.321026	2.562793
33. C	-5.963398	-3.374571	2.871732
34. C	0.472370	-2.014917	2.601297
35. C	2.522945	4.903263	2.980651
36. C	1.604201	3.909067	3.335824
37. C	1.279071	-4.026266	3.706121
38. C	0.490266	-2.870871	3.706121
39. H	1.671281	1.925356	-5.062779
40. H	4.156021	2.061644	-4.863051
41. H	-0.638901	-3.388772	-4.481827
42. H	-0.887608	-1.663816	-4.124757
43. H	0.760478	-2.339700	-4.205918
44. H	4.273035	-1.943003	-3.850303
45. H	-1.283677	3.834275	-3.461140
46. H	0.260152	1.897805	-3.016301
47. H	-1.466423	5.489296	-2.835142
48. H	6.322820	-1.784194	-2.435469
49. H	2.032383	-1.700930	-2.817134
50. H	5.216431	2.107936	-2.605400
51. H	0.438145	-5.282949	-2.374555
52. H	0.112395	4.677675	-2.745577
53. H	-2.435763	4.339588	-2.553019
54. H	1.778835	-4.230175	-1.876726
55. H	-2.944724	-2.802966	-1.830574
56. H	-3.679217	2.888572	-1.675578
57. H	-3.822188	4.569577	-1.114065
58. H	0.610961	-4.821013	-0.667088
59. H	-2.292556	-4.113126	-0.800702
60. H	-5.062700	0.791134	-0.974136
61. H	3.813115	2.035898	-0.568880
62. H	6.104081	-1.358233	0.014695
63. H	-3.665608	3.268722	0.081636
64. H	2.772694	4.249303	-0.353755
65. H	-6.719271	0.762291	-0.335248
66. H	-1.717538	6.070898	0.102967
67. H	-0.050731	5.508782	0.368437
68. H	-5.430472	1.581734	0.600659
69. H	2.652909	-3.703127	0.590204
70. H	3.864755	-1.126834	1.043110
71. H	-7.938062	0.075721	1.224594
72. H	-8.344835	-1.641644	1.381306
73. H	-2.260303	-2.788646	1.138391
74. H	-1.380934	4.842117	1.346334
75. H	3.640290	5.802330	1.361340
76. H	-3.376207	-4.100647	1.559328
77. H	1.092985	0.466815	1.673042
78. H	-6.771254	-3.975164	2.425808
79. H	-7.821211	-0.713369	2.801189
80. H	2.670990	-5.218429	2.540178
81. H	-0.159688	-1.123579	2.635206
82.H -2.853522 -2.924763 2.809963
83.H -5.144218 -4.059057 3.122186
84.H 0.368946 2.281693 2.657981
85.H -6.343688 -2.959134 3.817150
86.H 2.907404 5.589648 3.737067
87.H 1.256006 3.823245 4.366133
88.H 1.294424 -4.692182 4.555604
89.H -0.113445 -2.626238 4.581466
90.Ce -1.786697 0.140749 -0.247271
91.I -3.027644 0.308189 -3.137636
92.I -2.330884 0.982451 2.795835
93.N -0.115887 -1.586189 -0.998688
94.N -0.686012 2.29952 -0.610743
95.N -5.351768 -0.526612 0.616566
96.N -4.232850 -2.178616 1.401420
97.P 0.843758 1.952501 -0.189410
98.P 1.139034 -1.220515 -0.028419
99.Si -0.426487 -2.986272 2.049808
100.Si 3.859645 -0.954625

Energy: -588.15415491 eV

Table S15. Final coordinates and energy for a single point energy calculation of geometry optimized 5Ce.

1.C 0.697623 -1.035128 -5.036294
2.C 0.536350 3.429408 -4.151900
3.C 3.543276 -0.826166 -3.894586
4.C -0.407350 4.291654 -3.577575
5.C 0.985833 2.312408 -3.442861
6.C 1.801396 -3.303871 -3.354373
7.C -2.573587 -0.675027 -2.531001
8.C -2.343047 -4.349677 -2.229926
9.C -3.037101 -3.006284 -2.205045
10.C -0.903077 4.025295 -2.297696
11.C 0.491223 2.035721 -2.157536
12.C -0.458674 2.899834 -1.594671
13.C -0.841610 -5.727754 -0.980880
14.C 3.330461 2.372034 -0.959785
15.C 4.652991 2.675137 -0.615803
16.C 2.820835 1.078710 -0.760463
17.C 5.478274 1.692810 -0.060796
18.C 3.656921 0.983111 -0.194377
19.C 4.973523 0.403018 0.153150
20.C 0.136672 0.226863 0.143970
21.C -4.709107 1.275123 -1.013625
22.C -3.535136 0.525706 1.135429
23.C -4.685789 2.655307 -1.242394
24.C -2.321128 1.139683 1.481221
25.C -3.481148 3.278403 1.591330
26.C -2.307088 2.527841 -1.706506
27.C -1.910154 -4.222523 2.354357
28.C	1.476373	0.741334	3.057092
29.C	0.072992	0.734472	3.047075
30.C	-3.325502	-1.913149	3.763097
31.C	2.174668	1.139798	4.199993
32.C	-0.622552	1.141718	4.199068
33.C	-0.378330	-2.570483	4.380319
34.C	1.476624	1.545675	5.342446
35.C	0.076416	1.548744	5.339196
36.H	1.103273	-1.539280	5.929364
37.H	0.627879	0.039231	5.260168
38.H	0.924988	3.631537	5.151222
39.H	-0.326159	-1.407700	4.877733
40.H	3.920468	-1.314857	4.807887
41.H	2.231240	-3.769570	4.255868
42.H	-0.753297	5.168919	4.127661
43.H	3.601825	0.261488	4.052889
44.H	1.734750	1.659628	3.890754
45.H	-3.023095	-0.694499	3.536024
46.H	-3.675885	-2.917448	3.101861
47.H	-1.796240	-4.487740	3.180306
48.H	0.780280	-3.709872	3.248205
49.H	4.226421	-1.071894	3.068381
50.H	2.392611	-3.638367	2.487454
51.H	-3.097458	-5.151121	2.136660
52.H	-1.732888	0.024781	2.510532
53.H	-3.325402	-0.373137	1.786218
54.H	-0.345595	-6.037258	1.913570
55.H	-1.636487	4.693528	1.842626
56.H	-3.674106	-2.903524	1.307725
57.H	2.699079	3.149271	-1.392106
58.H	5.036064	3.682469	-0.786560
59.H	-1.625743	-6.452392	-0.712696
60.H	-0.848518	2.678883	-0.600301
61.H	-0.096356	-5.658766	-0.180968
62.H	6.510747	1.929118	0.202561
63.H	3.278678	-0.913355	-0.029158
64.H	5.607821	-0.371160	0.588164
65.H	-5.646433	0.779522	-0.753612
66.H	-3.547922	-0.554110	0.985866
67.H	-5.603182	3.240683	1.159291
68.H	-2.622769	-4.280543	1.517279
69.H	-3.458096	4.352508	1.782674
70.H	-0.948789	-4.652025	2.028182
71.H	-1.376539	3.022586	1.990091
72.H	2.015646	0.442006	2.157398
73.H	-2.290725	-4.865002	3.165099
74.H	-4.152587	-2.002421	3.041904
75.H	-3.303232	-0.870167	4.113330
76.H	0.593982	-2.880210	3.966007
77.H	3.265610	1.139463	4.192862
78.H	-1.713321	1.149732	4.206512
79.H	-3.569538	-2.548810	4.630085
Table S16. Final coordinates and energy for a single point energy calculation of geometry optimized 6Ce.

1.C	-0.580992	-0.703151	-4.771780	
2.C	2.154303	-1.923480	-4.466717	
3.C	-5.771553	-2.203170	-4.037133	
4.C	-4.217350	0.353048	-3.634161	
5.C	-0.281364	-3.458041	-3.508749	
6.C	-4.654304	-2.055414	-3.057947	
7.C	4.784613	0.626567	-2.827408	
8.C	5.905300	0.013656	-2.256488	
9.C	-4.091818	-2.963858	-2.198569	
10.C	3.502351	0.300690	-2.380078	
11.C	-4.406223	-4.404217	-1.961813	
12.C	-2.957756	-0.972587	-1.931220	
13.C	5.737372	-0.913762	-1.222387	
14.C	3.522629	4.051522	-1.162932	
15.C	3.321902	-0.644689	-1.357244	
16.C	4.833459	3.852316	-0.715998	
17.C	2.355177	-3.768435	-1.015396	
18.C	4.454504	-1.236194	-0.770155	
19.C	2.406210	-5.098903	-0.591874	
20.C	2.470132	3.333386	-0.589150	
21.C	-2.231076	-2.867170	-0.500540	
22.C	1.763504	-2.778601	-0.211277	
23.C	-4.804741	1.769186	-0.131206	
24.C	5.086865	2.924081	0.300192	
25.C	1.857614	-5.465717	0.643554	
26.C	2.713984	2.407660	0.439142	
27.C	-2.165859	4.423283	0.618874	
28.C	0.982654	-0.066744	0.466741	
29.C	4.035168	2.202610	0.872262	
30.C	1.230642	-3.156509	1.029303	
31.C	-3.006512	0.489776	1.029079	
32.C	1.269062	-4.489258	1.454587	

Energy: -544.683538 eV
33.C	0.470495	5.182727	1.884005
34.C	-4.982599	0.794332	2.179685
35.C	-6.366092	1.303841	2.413613
36.C	-1.800690	-0.812556	2.775505
37.C	-4.152027	0.057079	2.983303
38.C	1.719586	1.373586	2.930134
39.C	-1.473610	3.337988	3.369342
40.C	2.222505	2.489146	3.621814
41.C	1.494431	0.188183	3.644298
42.C	-4.355353	-0.493292	4.356025
43.C	2.458582	2.431261	4.997437
44.C	1.721190	0.126583	5.023632
45.C	2.195694	1.252450	5.706294
46.H	-0.575521	-1.180993	-5.765597
47.H	1.977909	-2.485980	-5.399152
48.H	-5.449602	-1.973693	-5.064572
49.H	-0.213426	0.328007	-4.882852
50.H	-4.161098	0.147843	-4.710877
51.H	2.592197	-0.953114	-4.742254
52.H	-0.177558	-3.947715	-4.491359
53.H	-6.146610	-3.233731	-4.031218
54.H	-1.625346	-0.647376	-4.431119
55.H	-6.618673	-1.539818	-3.800962
56.H	2.915342	-2.468813	-3.889754
57.H	-5.215940	0.747674	-3.400086
58.H	4.907745	1.357936	-3.627575
59.H	-3.457621	1.104681	-3.388446
60.H	-1.355940	-3.408160	-3.276756
61.H	-5.224068	-4.725926	-2.617918
62.H	6.906577	0.260107	-2.614948
63.H	0.205471	-4.100893	-2.759986
64.H	2.629848	0.769282	-2.835593
65.H	-3.540099	-5.050045	-2.173365
66.H	3.314876	4.770134	1.957444
67.H	2.790619	-3.497016	-1.976859
68.H	5.656350	4.416753	-1.159342
69.H	2.877439	-5.851207	-1.226721
70.H	-4.717569	-4.594366	0.922836
71.H	6.606859	-1.392659	-0.768374
72.H	1.447303	3.495382	0.932419
73.H	-4.016078	1.907001	-0.876851
74.H	-2.025179	-3.916672	-0.734997
75.H	-5.635561	1.214690	-0.588435
76.H	-1.269176	-2.341759	-0.482327
77.H	-1.844832	4.698170	-0.397090
78.H	4.335789	1.963332	0.034715
79.H	-5.160338	2.759331	0.181304
80.H	6.107483	2.758358	0.648809
81.H	-2.717271	-2.800977	0.482072
82.H	-2.987875	3.698529	0.523328
83.H	1.898900	-6.505168	0.974666
84.H	-2.573831	5.321477	1.110484
Table S17. Final coordinates and energy for a single point energy calculation of geometry optimized 4Pm.

	X	Y	Z	Energy: -702.46114925 eV														
1	2.158642	1.951814	-4.068778															
2	3.549251	2.028929	-3.951553															
3	-0.292632	-2.530232	-3.882126															
4	4.148356	-1.750601	-2.783419															
5	1.358639	1.931028	-2.922178															
6	4.142310	2.057618	-2.682966															
7	-0.927715	4.525101	-2.662732															
8	5.298054	-1.658769	-1.995325															
9	2.884690	-1.630036	-2.196192															
10	0.695321	-4.434328	-1.695053															
11	-2.216908	-3.609328	-1.790045															
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
12.C	1.944921	1.978153	-1.647130															
13.C	3.347682	2.017382	-1.536023															
14.C	-3.321702	3.613835	0.971906															
15.C	5.180281	-1.430312	-0.617925															
16.C	2.755322	-1.426995	-0.817302															
17.C	3.919000	-1.310530	-0.032709															
18.C	-5.566991	0.746832	0.002010															
19.C	-1.108812	5.164669	0.340056															
20.C	-4.024841	-1.095045	0.602256															
21.C	2.464223	4.115405	0.702781															
22.C	0.824254	0.372984	0.631085															
23.C	1.547865	3.107886	1.046173															
24.C	2.755322	-1.426995	-0.817302															
25.C	3.919000	-1.310530	-0.032709															
26.C	-5.566991	0.746832	0.002010															
27.C	-1.108812	5.164669	0.340056															
28.C	-4.024841	-1.095045	0.602256															
29.C	2.464223	4.115405	0.702781															
30.C	0.824254	0.372984	0.631085															
31.C	1.547865	3.107886	1.046173															
32.C	2.755322	-1.426995	-0.817302															
33.C	3.919000	-1.310530	-0.032709															
34.C	-5.566991	0.746832	0.002010															
35.C	-1.108812	5.164669	0.340056															
36.C	-4.024841	-1.095045	0.602256															
37.C	2.464223	4.115405	0.702781															
38.C	0.824254	0.372984	0.631085															
39.H	1.689820	1.915737	5.052960															
40.H	4.173499	2.060807	0.002010															
41.H	-0.644529	-3.388052	-4.478596															
42.H	-0.921843	-1.664713	-4.135586															
43.H	0.736546	-2.315146	-4.202824															
44.H	4.229858	-1.913736	-3.858804															
45.H	-1.228019	3.850673	-3.478353															
46.H	0.273793	1.881385	-3.009642															
47.H	-1.414534	5.498594	-2.835808															
48.H	6.284708	-1.756942	-2.451117															
49.H	1.993123	-1.685847	-2.815316															
50.H	5.227695	2.105630	-2.585950															
51.H	0.423712	-5.261765	-2.371814															
52.H	0.159905	4.679586	-2.730838															
53.H	-2.440936	-4.347554	-2.577134															
54.H	1.756919	-4.202677	-1.867653															
55.H	-2.977038	-2.816285	-1.857861															
56.H	-3.662703	2.891696	-1.727825															
57.H	-3.793246	4.584344	-1.199006															
58.H	0.587845	-4.801304	-0.663147															
59.H	-2.324697	-4.120897	-0.822971															
60.H	-5.018451	0.807716	-0.946388															
61.H	3.819523	2.024130	-0.553253															
62.H	6.073943	-1.348475	0.002608															
63.H	-3.682347	3.302189	0.021232															
	x	y	z															
---	-----	-----	-----	---	---	---												
64.H	2.800371	4.224398	-0.327720															
65.H	-6.636474	0.827976	-0.217168															
66.H	-1.720841	6.051036	0.103351															
67.H	-0.058430	5.485812	0.392160															
68.H	-5.268206	1.572324	0.663707															
69.H	2.653752	-3.689664	0.597092															
70.H	3.838229	-1.132518	1.041021															
71.H	-7.879829	0.032829	1.202327															
72.H	-8.265571	-1.683519	1.405920															
73.H	-2.186274	-2.800832	1.133698															
74.H	-3.302968	-4.126514	1.519419															
75.H	-7.879829	0.032829	1.202327															
76.H	-8.265571	-1.683519	1.405920															
77.H	-2.186274	-2.800832	1.133698															
78.H	-3.302968	-4.126514	1.519419															
79.H	-7.745385	-0.712474	2.798550															
80.H	2.692653	-5.200347	2.549693															
81.H	-0.209079	-1.155357	2.626562															
82.H	-2.794523	-2.975284	2.797458															
83.H	-5.088689	-4.118405	3.064802															
84.H	0.332955	2.287377	2.650672															
85.H	-6.266816	-3.017311	3.794412															
86.H	2.913504	5.549648	3.768457															
87.H	1.223393	3.811376	4.373227															
88.H	1.299804	4.695237	4.559441															
89.H	-0.145669	-2.655928	4.576136															
90.Pm	-1.789036	0.165254	-0.255490															
91.I	-3.031848	0.289144	-3.107415															
92.I	-2.352833	1.005847	2.767821															
93.N	-0.154350	-1.573805	-0.989930															
94.N	-0.679865	2.289979	-0.623327															
95.N	-5.273789	-0.533742	0.632971															
96.N	-4.160877	-2.202609	1.392512															
97.P	0.842991	1.942844	-0.184258															
98.P	1.105776	-1.223133	-0.024466															
99.Si	-0.457447	-2.970989	-2.048856															
100.Si	-1.447990	3.850977	-0.973680															

Energy: -589.23163282 eV

Table S18. Final coordinates and energy for a single point energy calculation of geometry optimized 5Pm.
	C	C	C	C	C	C
11	0.487061	2.037454	-2.147284			
12	-0.436294	2.917328	-1.565612			
13	-0.800681	-5.703569	-0.924632			
14	3.327725	2.351543	-0.966036			
15	4.654138	2.646989	-0.629864			
16	2.811064	1.062133	-0.758324			
17	5.474662	1.662576	-0.073345			
18	3.642497	0.079200	-0.190086			
19	4.962466	0.377834	0.151118			
20	0.126180	0.205806	0.133371			
21	-4.712236	1.243674	1.000350			
22	-3.535540	0.499144	1.119274			
23	-4.696281	2.621753	1.242901			
24	-2.326652	1.116394	4.166819			
25	-3.495951	3.247640	1.602161			
26	-2.318820	2.502069	1.714132			
27	-1.903460	-4.246624	2.380383			
28	1.486007	0.698764	3.032850			
29	0.082813	0.718077	3.031573			
30	-3.306246	-1.916084	3.774288			
31	2.198493	1.094940	4.166819			
32	-0.598545	1.145973	4.184411			
33	-0.351749	-2.563609	4.369465			
34	1.514977	1.522256	5.310418			
35	0.114975	1.549352	5.316235			
36	1.118283	-1.579036	-5.934690			
37	0.647766	0.008219	-5.282797			
38	0.902076	3.637570	-5.141798			
39	-0.315915	-1.430114	-4.891040			
40	3.933883	-1.324009	-4.795112			
41	2.251160	-3.795314	-4.234134			
42	-0.727599	5.201879	-4.084140			
43	3.601035	0.254042	-4.048311			
44	1.691099	1.642860	-3.903168			
45	-2.958279	-0.701711	-3.566692			
46	-3.602599	-2.920786	-3.116038			
47	-1.700758	-4.464191	-3.154896			
48	0.800859	-3.728798	-3.221700			
49	4.225349	-1.073375	-3.054269			
50	2.412006	-3.635521	-2.465983			
51	-3.013176	-5.141780	-2.135380			
52	-1.700827	0.043641	-2.520421			
53	-3.306331	-0.361271	-1.829179			
54	-0.290428	-6.025752	-1.845339			
55	-1.583834	4.733012	-1.788195			
56	-3.632179	-2.899203	-1.322888			
57	2.699441	3.130346	-1.400110			
58	5.043217	3.650632	-0.808963			
59	-1.597914	-6.417203	-0.665266			
60	-0.815379	2.701302	-0.565691			
61	-0.069473	-5.632002	-0.112494			
62	6.509834	1.892761	0.182726			
Table S19. Final coordinates and energy for a single point energy calculation of geometry optimized 6Pm.

Atom	X	Y	Z
1.C	-0.561028	-0.675175	-4.787529
2.C	2.164760	-1.926458	-4.471440
3.C	-5.749706	-2.187347	-4.039007
4.C	-4.183366	0.353381	-3.637742
5.C	-0.283647	-3.433086	-3.518109
6.C	-4.638922	-2.046106	-3.051526
7.C	4.808258	0.596617	-2.812938
8.C	5.920349	-0.018802	-2.228282
9.C	-4.090338	-2.954974	-2.184194
10.C	3.520478	0.283375	-2.372054
11.C	-4.419815	-4.391446	-1.944518
12.C	-2.936380	-0.973957	-1.923862
13.C	5.738558	-0.935530	-1.186842
14.C	3.525289	4.061369	-1.145863
15.C	3.326026	-0.652441	-1.342806
16.C	4.831404	3.872158	-0.681283

Energy: \(-545.84775623\) eV
17	2.335478	-3.776500	-1.015407	
18	4.450151	-1.245934	-0.741820	
19	2.387895	-5.103666	-0.581614	
20	2.471514	3.330546	-0.590791	
21	-2.227644	-2.872109	-0.488440	
22	1.751553	-2.779586	-0.214609	
23	-4.786335	1.766954	-0.162617	
24	5.079753	2.939648	0.332269	
25	1.850799	-5.459675	0.662119	
26	2.709991	2.402965	0.437187	
27	-2.170674	4.430847	0.597768	
28	0.977835	-0.074326	0.466991	
29	4.026984	2.205800	0.885901	
30	1.227490	-3.147637	1.032814	
31	-2.982669	0.511591	1.012168	
32	1.270095	-4.476268	1.470001	
33	0.473311	5.193949	1.838176	
34	-4.964949	0.801972	2.153195	
35	-6.353256	1.300814	2.381663	
36	-1.771330	-0.774325	2.765158	
37	-4.130530	0.075471	2.962683	
38	1.713769	1.361739	2.922591	
39	-1.458183	3.358437	3.349521	
40	2.196951	2.477208	3.627998	
41	1.522066	0.160780	3.619524	
42	-4.332473	-0.469779	4.337633	
43	2.447622	2.402357	5.000118	
44	1.764718	0.081274	4.995100	
45	2.220618	1.205994	5.691501	
46	-0.555437	-1.149847	-5.783022	
47	1.989056	-2.498366	-5.398186	
48	-5.412421	-1.981786	-5.066683	
49	-0.187520	0.354304	-4.893123	
50	-4.127168	0.141438	-4.713083	
51	2.615539	-0.964527	-4.755194	
52	-0.195503	-3.919696	-4.503644	
53	-6.147005	-3.209348	-4.020203	
54	-1.605528	-0.613437	-4.449546	
55	-6.584178	-1.501897	-3.823242	
56	2.916197	-2.473334	-3.882867	
57	-5.180477	0.753195	-3.407105	
58	4.942040	1.319178	-3.619268	
59	-3.421408	1.103354	-3.394389	
60	-1.354477	-3.378665	-3.270423	
61	-5.251256	-4.700748	-2.589250	
62	6.925968	0.216496	-2.582028	
63	0.209824	-4.081284	-2.778229	
64	2.654339	0.753217	-2.838236	
65	-3.565947	-5.048773	-2.169467	
66	3.322067	4.783378	-1.938480	
67	2.764199	-3.513679	-1.982227	
68	5.654621	4.448413	-1.108173	
---	---	---	---	---
69.H	2.851613	-5.862141	-1.214481	
70.H	-4.718962	-4.579227	-0.901939	
71.H	6.601277	-1.416274	-0.722136	
72.H	1.451858	3.485654	-0.946470	
73.H	-3.992743	1.914619	-0.901061	
74.H	-2.018153	-3.918711	-0.733175	
75.H	-5.604188	1.196529	-0.623222	
76.H	-1.270225	-2.341055	-0.461441	
77.H	-1.856666	4.70255	-0.420585	
78.H	4.320606	-1.965994	0.067661	
79.H	-5.161267	2.751314	0.144869	
80.H	6.096791	2.781682	0.694442	
81.H	-2.717325	-2.817916	0.493032	
82.H	-2.992569	3.705695	0.508715	
83.H	1.894841	-6.496243	1.001798	
84.H	-2.575123	5.330554	1.090872	
85.H	1.040369	5.395917	0.917565	
86.H	4.231237	1.485832	1.679988	
87.H	-7.065170	0.897109	1.645064	
88.H	0.796749	-2.362074	1.654851	
89.H	-0.100315	6.102772	2.086012	
90.H	-6.406037	2.399194	2.327664	
91.H	0.861540	-4.742955	2.446880	
92.H	-0.960306	-0.685670	2.029869	
93.H	1.196183	5.038830	2.651915	
94.H	2.393336	3.407847	3.096710	
95.H	-6.702965	1.003591	3.377616	
96.H	-1.994183	-1.835359	2.945962	
97.H	-2.282062	2.630844	3.270941	
98.H	1.199399	-0.714955	3.056318	
99.H	-1.440644	-0.309947	3.702259	
100.H	-1.862389	4.275713	3.809390	
101.H	-0.699883	2.944729	4.032196	
102.H	-4.244076	-1.567242	4.362016	
103.H	-5.332099	-0.211041	4.706602	
104.H	-3.599194	-0.062367	5.050157	
105.H	2.824369	3.278980	5.529694	
106.H	1.608897	-0.861639	5.523250	
107.H	2.412703	1.148068	6.764492	
108.Pm	-0.975669	0.721105	-0.839191	
109.I	-1.288116	2.971272	-2.992352	
110.N	-3.921976	-0.856322	-2.868541	
111.N	0.557274	-0.898063	-2.038357	
112.N	-3.064737	-2.274759	-1.518599	
113.N	-0.083148	2.323312	0.857540	
114.N	-4.241341	1.047449	0.979212	
115.N	-2.941091	-0.085171	2.242190	
116.P	1.609678	-1.022681	-0.791850	
117.P	1.281449	1.465198	1.123910	
118.Si	0.491353	-1.698920	-3.600231	
119.Si	-0.744468	3.748657	1.634760	

Energy: -703.54428584 eV
S10. References

1. NuDat 2.8, Chart of the Nuclides. https://www.nndc.bnl.gov/nudat2/.

2. Kasani, A.; Kamalesh, R. P.; McDonald, R.; Cavell, R. G. [Ph₂P(NSiMe₃)₂]₂CLi₂: A Dilithium Dianionic Methanide Salt with an Unusual Li₄C₂ Cluster Structure. Angew. Chem. Int. Ed. 1999, 38, 1483-1484.

3. Ong, C. M.; Stephan, D. W. Lithiations of Bis-diphenyl-N-trimethylsilylphosphiniminomethane: An X-ray Structure of a 1,1-Dilithiomethane Derivative. J. Am. Chem. Soc. 1999, 121, 2939-2940.

4. Wooles, A. J.; Gregson, M.; Cooper, O. J.; Middleton-Gear, A.; Mills, D. P.; Lewis, W.; Blake, A. J.; Liddle, S. T. Group 1 Bis(iminophosphorano)methanides, Part 1: N-Alkyl and Silyl Derivatives of the Sterically Demanding Methanes H₂C(PPh₂NR)₂ (R = Adamantyl and Trimethylsilyl). Organometallics 2011, 30, 5314-5325.

5. Reilly, S. D.; Brown, J. L.; Scott, B. L.; Gaunt, A. J. Synthesis and characterization of NpCl₄(DME)₂ and PuCl₄(DME)₂ neutral transuranic An(IV) starting materials. Dalton Trans. 2014, 43, 1498-1501.

6. Goodwin, C. A. P.; Gaunt, A. J.; Janicke, M. T.; Scott, B. L. [AnI₃(THF)₄] (An = Np, Pu) preparation bypassing An⁰ metal precursors: access to Np³⁺/Pu³⁺ nonaqueous and organometallic complexes. J. Am. Chem. Soc. 2021, 143, 20680-20696.

7. Talavera, G.; Pena, J.; Alcarazo, M. Dihalo(imidazolium)sulfuranes: A Versatile Platform for the Synthesis of New Electrophilic Group-Transfer Reagents. J. Am. Chem. Soc. 2015, 137, 8704-8707.

8. Ansell, M. B.; Roberts, D. E.; Cloke, F. G.; Navarro, O.; Spencer, J. Synthesis of an [(NHC)₂Pd(SiMe₃)₂] Complex and Catalytic cis-Bis(silyl)ations of Alkynes with Unactivated Disilanes. Angew. Chem. Int. Ed. 2015, 54, 5578-5582.

9. Bailey, P. J.; Coxall, R. A.; Dick, C. M.; Fabre, S.; Henderson, L. C.; Herber, C.; Liddle, S. T.; Loroño-González, D.; Parkin A.; Parsons, S. The first structural characterisation of a group
2 metal alkylperoxide complex: comments on the cleavage of dioxygen by magnesium alkyl complexes. *Chem. Eur. J.* **2003**, *9*, 4820-4828.

10. Mills, D. P.; Moro, F.; McMaster, J.; Van Slageren, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. A delocalized arene-bridged diuranium single-molecule magnet. *Nat. Chem.* **2011**, *3*, 454-460.

11. Scott, B. L. *Actinide Research Quarterly*; LA-UR-15-24862; Los Alamos National Laboratory: 2015; pp 6-9.

12. Gregson, M.; Lu, E.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. A cerium(IV)-carbon multiple bond. *Angew. Chem. Int. Ed.* **2013**, *52*, 13016-13019.

13. Mills, D. P.; Cooper, O. J.; Tuna, F.; McInnes, E. J. L.; Davies, E. S.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; Liddle, S. T. Synthesis of a Uranium(VI)-Carbene: Reductive Formation of Uranyl(V)-Methanides, Oxidative Preparation of a [R₂C=U=O]²⁺ Analogue of the [O=U=O]²⁺ Uranyl Ion (R = Ph₂PNSiMe₃), and Comparison of the Nature of U⁴⁺=C, U⁵⁺=C and U⁶⁺=C Double Bonds. *J. Am. Chem. Soc.* **2012**, *134*, 10047-10054.

14. Bruker (2012). *SMART APEX II and SMART APEX III*. Bruker AXS Inc., Madison, Wisconsin, USA.

15. *CrysAlisPro 39.27b, Oxford Diffraction / Agilent Technologies UK Ltd., Yarnton, U.K.*, Oxford Diffraction / Agilent Technologies UK Ltd: 2017.

16. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.

17. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* **2015**, *71*, 3-8.

18. Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **2015**, *71*, 3-8.

19. Farugia, L. J. *J. Appl. Cryst.* **2012**, *45*, 849-854.
20. Persistence of Vision (TM) Raytracer, Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia

21. Clegg, W.; Blake, A. J.; Cole, J. M.; Evans, J. S. O.; Main, P.; Parsons, S.; Watkin, D. J. *Crystal Structure Analysis*. Oxford University Press, 2009.

22. Fonseca Guerra, C.; Snijders, J. G.; Te Velde, G.; Baerends, E. J. Towards an order-N DFT Method. *Theor. Chem. Acc.* 1998, 99, 391-403.

23. Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* 2001, 22, 931-967.

24. Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component Hamiltonians. *J. Chem. Phys.* 1993, 99, 4597-4610.

25. Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular approximations. *J. Chem. Phys.* 1994, 101, 9783-9792.

26. Van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. Geometry optimization in the Zero Order Regular Approximation for relativistic effects. *J. Chem. Phys.* 1999, 110, 8943-8953.

27. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* 1980, 58, 1200-1211.

28. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behaviour. *Phys. Rev. A.* 1988, 38, 3098-3100.

29. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B.* 1986, 33, 8822-8824.

30. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/.

31. Bader, R. F. W. *Atoms in Molecules: A Quantum Theory*, Oxford University Press, New York, 1990.
32. Bader, R. F. W. A bond path: a universal indicator of bonded interactions. *J. Phys. Chem. A* **1998**, *102*, 7314-7323.

33. http://www.quimica.urv.es/XAIM.