Research article

Evaluation of adaptability and stability for iron, zinc and protein content in cowpea genotypes using GGE biplot approach

Maurício dos Santos Araújo a,b,* , Walter Frazão Lelis de Aragão b , Samíria Pinheiro dos Santos a , Thaise Kessiane Teixeira Freitas c , Verônica da Costa Saraiva a, Kaeisel Jackson Damasceno-Silva d , Luiz Antônio dos Santos Dias a, Maurisrael de Moura Rocha d

a Universidade Federal de Viçosa, Departamento de Agronomia, 36570-900, Viçosa, Minas Gerais, Brazil
b Universidade Federal do Piauí, Departamento de Fitotecnia, 64049-550, Teresina, Piauí, Brazil
c Universidade Federal do Piauí, Departamento do Centro de Ciências da Saúde, 64049-550, Teresina, Piauí, Brazil
d Empresa Brasileira de Pesquisa Agropecuária, (Embrapa Meio-Norte), 64008-780, Teresina, Piauí, Brazil

ARTICLE INFO

Keywords:
Vigna unguiculata
Genotype-by-environment interaction
GGE biplot Analysis
Nutritional quality

ABSTRACT

Cowpea is a widely cultivated crop in the world. Biofortification strategies aim to reduce mineral and protein deficiencies, especially among the poorest people. The aim of this study was to estimate adaptability and stability of cowpea genotypes for iron, zinc and protein contents, through GGE biplot analysis. Twenty cowpea genotypes were evaluated in the municipalities of Piauí Monsenhor Hipólito, Pio IX and São Miguel do Tapuio, under rainfed conditions. The experimental design was a randomized block design with four replications. The traits evaluated were grain yield, iron, zinc and protein contents in dry grains. Iron (Fe) and zinc (Zn) were determined by flame atomic absorption spectrophotometer, and protein contents by Kjeldahl methods. Adaptability and stability were evaluated by GGE biplot analyses. The means of the experiments were 1,209.1 kg ha\(^{-1}\), 51.1 mg kg\(^{-1}\), 46.8 mg kg\(^{-1}\) and 24.3% for grain yield, Fe, Zn and protein contents, respectively. The joint analysis of variance showed significant difference (\(p<0.05\)) for the effect of interaction genotypes by environments for Fe, Zn and protein contents. The lines G6 and G8 were the most promising for grain yield, mineral and protein content through adaptability and stability by GGE biplot approach.

1. Introduction

Cowpea [Vigna unguiculata (L.) Walp.] is a crop of African origin, cultivated in Africa, Asia, United States of America, and the Latin America, due to its wide genetic variability (Issoufa et al., 2020; Santos et al., 2020). Brazil is considered the third largest producer of cowpea in the world with the harvested area, production, and yield of 1,354.0 kg ha\(^{-1}\), 716.9 tonnes, and 528 kg ha\(^{-1}\), respectively, in the 2021/2022 year (Conab, 2021). Higher grain yield is obtained in the Northeast and North regions of Brazil due to cowpea adaptation in arid and semi-arid conditions (Okoth et al., 2017). The crop is a source of essential amino acids (Carvalho et al., 2012), proteins (Weng et al., 2019), minerals (Gondwe et al., 2019), vitamins (Dakora; Belane 2019), polyphenolic compounds and antioxidants, being an important food of the human diet (Khang et al., 2016; Moreira-Araújo et al., 2017; Alidu et al., 2020).

According to the World Health Organization (WHO) nutritional deficiency is a global health problem. Two billion people worldwide consume insufficient levels of micronutrients, protein and vitamins in daily diet (WHO, 2022). Women of reproductive age and children under five are more vulnerable to nutritional deficiency. Malnutrition is caused by lack of micronutrients and insufficient intake of Fe, Zn and vitamin A (Carvalho et al., 2015). The Fe and Zn participate in major biological functions such as in the composition of hemoglobin (Rouault, 2015), catalytic cofactor in various biochemical reactions (Hohenberger et al., 2012), nucleic acid metabolism, gene expression, growth and differentiation (Black et al., 2013; Roohani et al., 2013; Koop et al., 2018; Tardy et al., 2020). The lack of these minerals can cause severe damage to human homeostasis (Lonergan; Skaar, 2019).

Biofortification aims to increase mineral, protein and vitamin contents in a crop (López-Morales et al., 2020). This strategy is promising to
minimize human malnutrition (Kihara et al., 2020). HarvestPlus seeks to nutritionally improve agricultural crops to improve human nutrition. This global strategy occurs through partnerships between research institutions and executive agencies. It has allowed the development of cultivars with high vitamin and mineral contents, acting as a global leader. Thus, the institution has collaborated with the genetic improvement of the cowpea, especially in the northeast region of Brazil where it is an important ingredient in basic nutrition (HarvestPlus 2021). The increased bioavailability of nutrients in crops can be achieved through the genetic or agronomic way (Ullah et al., 2020). The genetic way applies breeding methods to increase mineral, protein and vitamin content (Bouis; Saltzman 2017). The agronomic approach uses fertilizer application on soil or leaf area to complement the micronutrient contents of main crops (Cakmak; Kutman 2017; Garg et al., 2018).

The main problem in recommending biofortified cultivar is the existence of genotype-by-environment interaction (GEI) (Naik et al., 2020). The GEI can mask the genotypic value due to the environmental influence (Cruz et al., 2014). The better way to exploit GEI is to perform adaptability and stability analyses. The adaptability and stability parameters are basically evaluated by regression models (Finlay; Wilkinson 1963; Eberhart; Russell 1966), segmented regression (Cruz et al., 1989), nonparametric analysis (Lin; Bins 1988), and multiplicative analyses such as GGE (Genotype main effect plus genotype-by-environment interaction) biplot (Yan et al., 2000; Yan; Yang 2014) and AMMI (additive main effect and multiplicative interaction) (Gauch, 2006). The AMMI approach combines the analysis of variance and the principal components analysis to adjust, respectively, the main effects (genotypes and environments) and the effects of the GEI. However, GGE biplot groups the additive effect of genotype components analysis (Yan et al., 2000; Yan, 2014).

Adaptability and stability studies for yield in cowpea is common in literature (Mohammed; Amsalu 2018; Abreu et al., 2019; Baraki et al., 2020), but for Fe, Zn and protein contents in the grain are scarce, due to be the main target traits in biofortification programmes for cowpea (Silva; Santos 2017; Cardona-Ayala et al., 2021), mainly using GGE biplot analysis (Oliveira et al., 2017). The selection of cowpea genotypes efficient in translocating these nutrients from the root to the grain and capable of tolerating water stress is important for the development of biofortified cultivars with adaptations to these edaphoclimatic conditions, enabling the recommendation to farmers. The aim of this study was to evaluate the adaptability and stability for Fe, Zn and protein contents in the grain of cowpea genotypes using the GGE biplot approach.

2. Material and methods

2.1. Genetic materials

The genetic material was composed of 17 inbred lines and three commercial cultivars (Table 1). These 20 genotypes are regular materials from the Cowpea Breeding Program of Embrapa Meio-Norte, in Teresina, Piauí state, Brazil, with genetic potential for biofortification of mineral and protein contents. However, they have already passed through preliminary, intermediate, and are in the Value for Cultivation and Use (VCU) trials. The trials were conducted in the 2019/2020 crop year. This last step aimed to evaluate grain yield stability in different environments before cultivar recommendation. These experiments are carried out in a collaborative network and are necessary for the registration of a cultivar with the Ministério da Agricultura, Pecuária e Abastecimento in Brazil.

2.2. Experimental design

The field trials were evaluated at three sites in the semi-arid zone of the state of Piauí, Brazil (Table 2). The environments present a tropical climate with dry winter, following the Köppen-Geiger classification (Alvares et al., 2013). The soil of all environments evaluated in this study was Red-Yellow Latosol with sandy texture.

The crop management followed Freire-Filho et al. (2012). Soil preparation in both trials consisted of plowing followed by harrowing. Crop treatments consisted of applying a pre-emergence herbicide based on s-metolachlor (1L ha$^{-1}$) and manual weeding between 20 and 30 days, respectively for weed control. After planting, insect control was performed at the beginning of the cycle (aphids), at flowering (thrips) and at the beginning of fruit formation (caterpillars and bed bugs), using insecticides based on dimethoate (1L ha$^{-1}$) and thiamethoxam (100 g ha$^{-1}$). The harvest was done manually around 70 days after planting.

Table 1. Description of cowpea genotypes evaluated in the semi-arid zone of northeastern Brazil.

Code	Genotype	Genealogy	Commercial1 subclass
G1	MNC11-1013E-33	MNC01-510F x Pingo-de-Ouro-1-2	ML
G2	MNC11-1013E-16	MNC01-510F x Pingo-de-Ouro-1-2	EG
G3	MNC11-1013E-15	MNC01-510F x Pingo-de-Ouro-1-2	ML
G4	MNC11-1013E-35	MNC01-510F x Pingo-de-Ouro-1-2	EG
G5	MNC11-1018E-17	MNC02677F-2-2 x MNC01-631-20-5 x Pingo de Ouro-1-2	EG
G6	MNC11-1019E-8	MNC01-631F11 x Canapuzinho-2 x MNC02-677F2-1	ML
G7	MNC11-1019E-12	MNC01-631F11 x Canapuzinho-2 x MNC02-677F2-1	ML
G8	MNC11-1019E-46	MNC01-631F11 x Canapuzinho-2 x MNC02-677F2-1	ML
G9	MNC11-1020E-16	MNC02-689F11 x MNC02-677F2-1	ML
G10	MNC11-1022E-58	MNC02-689F11 x MNC01-613F20-5 x MNC99-510F16-1	ML
G11	MNC11-1024E-1	MNC02-689F11 x MNC99-510F16-1 x Pingo de Ouro-1-2	ML
G12	MNC11-1026E-15	MNC02-689F11 x MNC01-631F11 x Canapuzinho-2	ML
G13	MNC11-1026E-19	MNC02-689F11 x MNC01-631F11 x Canapuzinho-2	ML
G14	MNC11-1031E-5	MNC02-689F11 x MNC02-680F1-2	EG
G15	MNC11-1031E-11	MNC02-689F11 x MNC02-680F1-2	ML
G16	MNC11-1034E-2	MNC01-631F20-5 x Pingo de Ouro-1-2 x MNC02-761F2-1	ML
G17	MNC11-1052E-3	Bico de Ouro-1-2-1 x MNC01-631F20-5 x MNC99-510F16-1	CN
G18	BRS Pajeú	CNCa0405-17F x TE94-268-3D	ML
G19	BRS Marataoá	Seridó x TxV 1836-013J	ML
G20	BRS Rouxinol	TE86-75-57E x TE1x-69E	EG

1. Mulate (ML), Evergreen (EG), and Canapu (CN).
The field trials were conducted in a randomized complete block design with four replications. The genotypes were arranged in four 5.0 m rows. The plants were spaced at 0.50 m × 0.25 m, with a useful area of 5 m² formed by the two central rows, which were used to measure the traits. The Red-Yellow Podzolic was common in the three locations evaluated. The tested environments were chosen due to being part of the cowpea evaluation network for the selection of a biofortified cultivar for the semi-arid zone of Piauí.

2.3. Traits

Grain yield (GY), zinc content (Zn), iron content (Fe), and protein content (Prot).

2.3.1. Grain yield

The GY was obtained by weighing the grains obtained in the useful area of the plot, and then converting it to kilograms per hectare (kg ha⁻¹), considering spacing and plot length (Ongom et al., 2021).

2.3.2. Laboratory analyses

The nutritional analyses were carried out in the Bromatology Laboratory at the Empresa Brasileira de Pesquisa Agropecuária, in the city of Teresina, Piauí, Brazil. Samples of grains of the genotypes randomly taken in the useful area of three repetitions of the multi-trials were used. The nutritional traits evaluated in the study were Prot, Fe and Zn contents. Two hundred grams of grains per genotype/environment were ground in a zirconium ball mill (MM 200, Germany) to obtain the extract. The solution was stirred (Vortex 0–3000 RPMs, USA), and samples were read using a flame atomic absorption spectrophotometer (iCE 3000 Series, Massachusetts).

2.3.2.1. Fe and Zn quantification

Fe and Zn contents analyses were performed with the nitroperchloric digestion of 0.2 g flour obtained of each genotype. A total of 20 mL distilled water was added to the digested extract. The solution was stirred (Vortex 0–3000 RPMs, USA), and samples were read using a flame atomic absorption spectrophotometer (iCE 3000 Series, Massachusetts).

2.3.2.2. Protein quantification

We use the Micro-Kjeldahl method to quantify the protein content of dry grains in cowpea (AOAC, 2005). Two hundred milligrams (mg) of flour were weighed. The protein digestion tube (Kjeldahl) was used to allocate the sample. The model was weighted with 2 g of the catalytic solution (96.5% K₂SO₄ and 3.5% CuSO₄) and 5 mL of sulfuric acid. Then, 10 mL of distilled water were added for distillation of Nitrogen/protein distiller (Te-0363-Agroads, São Paulo). Then we inserted 15 mL of 50% NaOH into the tube. The quantification of nitrogen was determined by Eq. (1):

\[
\text{Total nitrogen} = \frac{\text{VHAT} \times F \times 0.14}{W}
\]

Where: \(\text{VHAT}\) = is the volume total (mL) of HCl that was used in the titration for each sample; \(F\) = is the correction factor; \(W\) = sample weight.

The total protein content was corrected for dry matter, which was obtained after drying at 106 °C for 12h. The conversion factor of nitrogen in protein was 6.25 (Mariotti et al., 2008). The final measurement of the protein content (%) in the sample was obtained by Eq. (2).

\[
\text{PC} = \frac{\text{TN} \times 6.25}{\text{W}}
\]

Where: Protein content (PC); total nitrogen (TN).

2.4. Data analysis

Initially, we performed the individual analysis of variance for each environment. Then, joint analysis was performed with the three trials. The means were grouped by the Scott–Knott test (\(p<0.05\)). The effect of genotype was considered as fixed and environment, as random (Cruz et al., 2014). Individual analysis of variance for GY followed the statistical model of Eq. (3):

\[
Y_{ij} = \mu + G_i + B_j + \varepsilon_{ij}
\]

Where: \(Y_{ij}\) is the observed value for the response variable obtained for the i-th genotype in the j-th block; \(\mu\) is the overall mean; \(G_i\) is the effect of the genotype \(i\); \(B_j\) is the effect of the block \(j\); \(\varepsilon_{ij}\) is the error associated with the observation \(ij\).

The joint analysis of variance for GY followed the statistical of Eq. (4):

\[
Y_{ijk} = \mu + (B/E)_{jk} + G_i + GE_{ij} + \varepsilon_{ijk}
\]

Where: \(Y_{ijk}\) is the observed value of genotype \(i\) in the environment \(j\) and block \(k\); \(\mu\) is the overall mean; \((B/E)_{jk}\) is the interaction of block \(k\) within the environment \(j\); \(G_i\) is the effect of environment \(j\); \(GE_{ij}\) is the interaction between genotype \(i\) and environment \(j\); \(\varepsilon_{ijk}\) is the error associated with the observation \(ijk\).

For analysis of iron, zinc, and protein content in the grains, we used completely randomized design. In Eq. (5) the individual analysis of variance is reported:

\[
Y_{ij} = \mu + G_i + \varepsilon_{ij}
\]

Where: \(Y_{ij}\) is the observation of the genotype \(i\) in the repetition \(j\); \(\mu\) is the overall mean of observations; \(G_i\) is the effect of the genotype \(i\); \(\varepsilon_{ij}\) is the error associated with the observation \(ij\).

Eq. (6) describes the model for the joint analysis for iron, zinc and protein content:

\[
Y_{ijk} = \mu + G_i + E_j + GE_{ij} + \varepsilon_{ijk}
\]

Where: \(Y_{ijk}\) is the observed value of the genotype \(i\) in the environment \(j\); \(\mu\) is the overall mean; \(G_i\) is the effect of the genotype \(i\); \(E_j\) is the effect of the environment \(j\); \(GE_{ij}\) is the interaction between genotype \(i\) and environment \(j\); \(\varepsilon_{ijk}\) is the error associated with the observation \(ij\).

The grouping of means for nutritional traits in each environment was performed by the Scott and Knott (1974). The evaluation of the adaptability and stability was performed by the GGE biplot analysis, proposed by Yan (2014), according to Eq. (7).

\[
\text{Y}_{ij} - \mu - E_j = G_i + GE_{ij}
\]
Where: Y_{ij}: the expected yield of genotype i in environment j; μ: is the overall mean; β_j: is the main effect of the environment j; γ_i: is the main effect of genotype i; ϵ_{ij}: is the interaction between genotype i and environment j.

For the GGE biplot approach, the effects of G and $G \times E$ are the most important, and there is the joint presence of both multiplicative terms, as described in Eq. (8):

$$Y_{ij} - \mu - \beta_j = \gamma_i + \epsilon_{ij}$$ \hspace{1cm} (8)

Where: Y_{ij} is the expected yield of genotype i in the environment j; μ: the overall mean; β_j: is the main effect of the environment j; γ_i and ϵ_{ij}: is the secondary scores for genotype i and environment j, respectively; ϵ_i: is the error not explained by both effects. The graph is obtained by simple dispersion of g_i and g_j for genotypes and, e_i and e_j for environments, by the decompositional of the singular value Eq. (9):

$$Y_{ij} - \bar{Y}_j = \lambda_1 e_i \rho_{1j} + \lambda_2 e_i \rho_{2j} + \epsilon_{ij}$$ \hspace{1cm} (9)

Where: λ_1 and λ_2: is the highest eigenvalues of the first (PC1) and second (PC2) principal components, respectively; e_i and ρ_{1j}: the eigenvalues of genotype i for PC1 and PC2, respectively; e_j and ρ_{2j}: the eigenvalues of environment j for PC1 and PC2, respectively (Yan; Tinker 2006). All analyses were performed in R software (R Core Team 2022), using the packages "agricolae" (Mendiburu, 2021) and "Metan" (Olivoto; Lúcio, 2020).

3. Results

3.1. Analyses of variance

The mean square of the environment effect was significant ($p < 0.01$) by analysis of variance for trait GY. However, we did not identify any significant difference for the effects of G and GEI. The average GY per environment is presented in Table 3. In addition, mean values of Fe, Zn, Prot, and GY for each genotype per trial are presented in Table 4.

The effect of E and GEI were significant ($p < 0.01$) for all nutritional traits. However, only protein content exhibited variability for genotype effect by the pooled ANOVA. The overall average for minerals and protein is presented in Table 5.

3.2. GGE biplot analysis

Principal component analysis (PCA) integrates the GGE biplot approach, as it highlights through adaptability and stability the importance of superior genotypes in the evaluated environments. The two principal components together explained 93.84% of the total variation in the sum of squares (PC1 78.9%; PC2 14.94%), for the trait iron content, for example (Figure 1). The graph 'which-won-where' is divided by vectors arising from origin of the biplot (0.0) forming the sectors. The genotypes that are farthest from the origin of the biplot represent those with the highest GY and adaptation (Figures 1a, 2a and 3a).

The average environment coordinate (AEC) or average environment axes (AEA) is represented by two arrows antiparallel to the origin of the biplot. This highlights the greater effect of G and a lower stability. Therefore, the arrows differentiate the genotypes that are above or below the average. The 'average vs. stability' biplot, often stated as AEC and singular value partitioning (SVP), evaluates genotype performance based on average performance and stability in a set of environments (Figure 2). The two straight lines, (i) abcissa AEC (vertical) and (ii) ordinate AEC (horizontal) make up this biplot graph. The line in a single direction points to the highest average performance for each trait (Figures 1b, 2b and 3b). The discriminant and representative GGE biplot graph is used to evaluate the tested environments. The size of the vector is important to discriminate the superior genotypes (Figures 1d, 2d and 3d).

3.2.1. Iron content

High Fe contents were identified in G4, G8 and G17 in the SMT, MSH and PIX environments, respectively (Figure 1a). G8 > G6 > G9 > G12 > G7 > G10 > G2 > G3 > G4 were superior to the overall mean of the trials (51.1 mg kg$^{-1}$). G19 and G15 have high phenotypic stability, but low Fe contents. G4, G3 and G7 had specific adaptations for SMT (Figure 1b). G6 was the ideal ideotype and the MSH environment grouped the best genotypes for the trait (Figure 1c). The most discriminating environment was SMT and the most representative was MSH (Figure 1d).

3.2.2. Zinc content

G8, G6, G16, G18 and G11 were genotypes with the highest Zn contents. G11, G6 and G16 had specific adaptability to SMT, PIX and MSH, respectively (Figure 2a). The means of G8 > G6 > G2 > G10 > G11 > G12 > G3 > G13 > G4 were higher than the mean of the trials (46.8 mg kg$^{-1}$). Stability was observed for G9, G14, G7 and G1, however, with low Zn contents. G8, G2, G10 and G4 had high Zn contents and stability (Figure 2b). G8 was considered ideal, combining stability and high Zn content (Figure 2c). SMT was the most discriminant and PIX, the most representative (Figure 2d).

3.2.3. Protein content

G16, G8 and G18 were more adapted to PIX, SMT and MSH, respectively (Figure 3a). G8 had a performance higher than the overall mean of the experiments (24.3%) and than all genotypes. G3, G6 and G19 combined phenotypic stability and high protein contents (Figure 3b). G16 and G19 were the most adapted to the SMT (Figure 3c). MSH was the most discriminating and SMT, the most representative for the selection of superior genotypes for high protein contents in the semi-arid region of Piauí (Figure 3d).

4. Discussion

The genotypes evaluated in this research showed no genetic variability for GY, Fe and Zn by the F-test. However, this result was expected, since they are inbreeding lines from the Cowpea Breeding Program in the Northeast of Brazil, and have been submitted to several cycles of directional selections (preliminary, intermediate and final trials) with the objective of selecting genotypes with higher yields and nutritional quality, simultaneously (Freire Filho et al., 2011). Furthermore, genealogy of the parents that gave rise to the lines are common among them, favoring inbreeding (see Table 1), making the genetic base restricted. Cowpea is a highly endogamous crop (Kouam et al., 2012), and therefore, genetic variability over successive selection cycles may have reduced
Cowpea is a legume with great genetic variability for agronomic, culinary and nutritional traits. It is a promising species for the selection of superior genotypes (Gondwe et al., 2019; Dakora; Belane 2019; Alidu et al., 2020). In the germplasm of Genetic Breeding Program of Embrapa Meio-Norte, genotypes with wide variability for mineral and protein contents in dry grains were identified. This suggests that Brazilian genotypes are promising for genetic biofortification (Carvalho et al., 2012).

The environmental effect was significant due to the edaphoclimatic conditions inherent to the cultivation sites (Rocha et al., 2007). The performance of genotypes in multi-environment trials can be altered due to the decrease between genotype and phenotype. This problem hampers the selection of superior genotypes (Abate et al., 2015; Aramendiz et al., 2019).

The effect of GEI is due to physiological and biochemical factors inherent to the genotypes (Cruz et al., 2014). Understanding GEI behavior is very important in breeding programs. This parameter provides important information to assess stability of genotypes across environments, because it can form breeding zones by taking advantage of genotypes with adaptations to specific environments, and indicate genotypes for specific environments to maximize genetic gains (Dias et al., 2018). The GEI detection for nutritional traits reports the response of genotypes in the test environments. Therefore, the edaphoclimatic factors influenced more the response of genotypes in the environments (Santos et al., 2017). The interaction can affect the traits of interest and change the performance of genotypes in the face of environmental changes, making it difficult to recommend new cultivars (Silva et al., 2016; Silva; Santos 2017).

The GGE biplot approach enables several visual interpretations for genotype, environment, and GEI effects compared to the AMMI method (Mekonnen et al., 2022). Through the biplot, crossover interaction can be identified in the multi-environment context, and it is important to be identified when seeking a wide recommendation (Yan et al., 2007; Goa et al., 2021).

Table 5. Analysis of joint variance for minerals (iron and zinc) and protein in cowpea grains in the semi-arid zone of Piauí, Northeastern Brazil.

Source of variation	DF	Mean squares	Fe (mg kg⁻¹)	Zn (mg kg⁻¹)	Prot (%)
Genotypes (G)	19	350.17**	41.66**	7.03**	
Environments (E)	2	1205.55**	305.45**	16.32**	
GxE	38	292.60**	41.62**	1.99**	
Error	120	46.30	21.74	0.09	
Total	179				
Overall mean		51.10	46.87	24.37	
CV (%)		13.32	9.94	1.22	

*Significant at p < 0.05, **p < 0.01 (Snedecor’s F-test); Fe: iron content; Zn: zinc content; Prot: protein content; CV: coefficient of variation; ns: not significant.
Principal component analysis (PCA) integrates the GGE biplot approach. The first two principal components (PC) are used in Site Regression (SREG) model, where the first component is more correlated with genotype main effect, and assigns the proportion of the yield that is due to genotype characteristics only. The second component explains the variation in yield in presence of GEI (Yan; Holland 2010; Yan, 2011; Cruz et al., 2020). Therefore, this methodology is based on the singular value decomposition of the two PCs (Yan 2002; Yan; Rajcan, 2002).

The which-won-where biplot is efficient in showing the performance of the best genotypes in their respective environments, and can form target mega-environments for the crop. Genotypes G4 (SMT), G8 (MSH), G17 (PIX) for iron content; G11 (SMT), G16 (MSH), G6 (PIX) for zinc content; and G8 (SMT), G18 (MSH), G16 (PIX) for protein content were the winners in the which-won-where biplot, meaning they had higher mineral contents in their respective environments. The cumulative variation contributed by PC1 and PC2 were 93.84%, 83.63%, 88.72% for Fe, Zn, Prot, respectively. In this regard, size of the vector explains the magnitude of yield in the evaluated environments. Genotypes with smaller vector size within the polygon are considered less responsive to interaction with their test environments (Yan; Rajcan, 2002).

The environments were located in distinct sectors, suggesting that the genotypes had differential response in the environments, evidencing the existence of crossover GEI. In the presence of cross-over interaction it is possible to define target regions for cultivar recommendation by forming mega-environments (Yan; Rajcan, 2002). In addition, it enables the identification of genotypes with specific adaptations, such as G11 for SMT environment for the Zn content trait.

Figure 1. GGE biplot analysis for adaptability and stability in terms of iron content in 20 cowpea genotypes, evaluated in three environments of the Piauí State semi-arid, Brazil; (a) Which-Won-Where; (b) Average vs. Stability; (c) Ideal genotype; (d) Discriminant and representative environment.
The graph "average" versus "stability" is used for identifying genotypes with high stability and yield. In this biplot, when we have genotypes that are not linked to environments it suggests that they are "unfavorable" for the recommendation, as their performance are inferior to the others (Karimizadeh et al., 2013). Stability is measured by the length of the genotype vector. Those with greater projection imply less stability for the evaluated trait (Yan et al., 2007). The ideotype genotype is identified by the largest projection of the vector, which indicates the point in the center of the concentric circles of the biplot (Figures 1c, 2c and 3c), that use the first two principal components to define the rank of ideotypes (Yan; Rajcan 2002). Furthermore, through this approach, we can identify the behavior of the evaluated environment. Environments with long vectors are able to discriminate genotypes better, and those with short vectors are little discriminating (Yan, 2001). Therefore, Yan (2014) reports that in a genetic breeding program, the selection of the ideal test environment must consider it as discriminating, representative and it must present constant results over the years to select superior genotypes.

The mean Fe content of cowpea genotypes under Piauí semi-arid conditions varied between the evaluated environments. The difference in Fe contents are due to genetic variability and GEI (Silva et al., 2012; Steckling et al., 2017; Silva; Santos 2017; Cardona-Ayala et al., 2021). The existence of three distinct environments showed the presence of complex GEI, which hinders the recommendation of cultivars with broad stability (Eeuwijk et al., 2016). One way to minimize this adversity is to select cowpea genotypes with specific adaptations to the evaluated sites (Putto et al., 2008). G6 was ideal because it is located in the longest vector of the mean environment axis (EAM), where it points to high Fe contents (Horn et al., 2017). The definition of an optimal number of test environments is a relevant factor in genetic breeding programs to

Figure 2. GGE biplot analysis for adaptability and stability regarding zinc content in 20 cowpea genotypes, evaluated in three environments of the Piauí state semi-arid zone, Brazil; (a) Which-Won-Where; (b) Average vs. Stability; (c) Ideal genotype; (d) Discriminant and representative environment.
increase heritability and the gain with selection, this allows reducing environments with similar responses (Yan et al., 2015).

In a study developed by Silva and Santos (2017) under semi-arid conditions, they identified that the most yielding genotypes are those with greater instability, which makes a broad recommendation difficult. Oliveira et al. (2017) reported that the cultivar BRS Xiquexique was the ideal ideotype, as it presented high Zn contents and stability similar to this study. The genotypes evaluated in this study had 46.87 mg kg\(^{-1}\) of Zn in dry grains, a concentration higher than in the study developed by Cardona-Ayala et al. (2021) who found a concentration of 40.9 mg kg\(^{-1}\) in cowpea genotypes evaluated in a multi-environment context in Northeastern Colombia.

Genetic variability for protein content in cowpea genotypes was reported under rainfed conditions (Boukar et al., 2011). The variation in protein content between genotypes is related to the genetic factor inherent to the trait (Carvalho et al., 2012). Experimental essays carried by Embrapa Meio-Norte showed positive correlation (0.6354*) between protein and Fe content in dry grains of cowpea. This indicates the possibility of selection based on a set of traits of interest to the breeder during the stages of the breeding program (Moura et al., 2012). The crude protein contents found in this study confirm the values reported for the crop (Freire-Filho et al., 2012). The evaluated genotypes had higher protein contents than the ones observed by Dias-Barbosa et al. (2021; 22.14%). In that study, GEI can promote changes in behavior of genotypes against environmental variations. Strong GEI for protein content in cowpea lines cultivated in Brazilian semi-arid conditions was found due to environmental conditions (Silva et al., 2016). There is a need to select genotypes with high protein content, especially when one of the

![Figure 3. GGE biplot analysis for adaptability and stability regarding protein content in 20 cowpea genotypes, evaluated in three environments of the Piauí state semi-arid zone, Brazil; (a) Which-Won-Where; (b) Average vs. Stability; (c) Ideal genotype; (d) Discriminant and representative environment.](image-url)
strategies is to fight food and nutritional insecurity. It is estimated that more than 239 million individuals are affected by nutritional deficiency, specifically protein calorie (Andrea; Rose 2015).

5. Conclusion

The biofortification of cowpea has been developed to increase the mineral and protein contents in grains. The study reported that lines G6 and G8 were promising for iron and zinc, and for high protein contents, in addition to presenting adaptability and stability for the environments of the semiarid zone, Northeast Brazil. The results suggest that the lines have potential for biofortification due to the target minerals of the breeding program and/or use as parents for generation of new breeding populations. Therefore, biofortified crops have a very promising future, as they have the potential to minimize human malnutrition due to lack of micronutrients, especially in underdeveloped and/or developing countries.

Declarations

Author contribution statement

Maurício Araújo: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Walter Aragão: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Samíria Santos, Luiz Antônio Dias: Conceived and designed the experiments; Performed the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Verônica Saraiva: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Maurisrael Rocha: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

Maurício dos Santos Araújo was supported by Fundação de Amparo à Pesquisa do Estado do Piauí - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - FAPESP/CAPES [88887.200984/2018-00] and Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG.

Funding of Moura Rocha was supported by HarvestPlus [20.18.01.022.00.00].

Data availability statement

Data will be made available on request.

Declaration of interest’s statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abate, F., Mekbib, F., Denslaieig, Y., 2015. Association of different parametric and non-parametric stability models in durum wheat (Triticum turgidum Desf.) genotypes. Int. J. Plant Soil Sci. 7 (4), 192–201.

Abreu, H.K.A., Ceccon, G., Correa, A.M., Fachinelli, R., Yamamoto, E.L.M., Teodoro, P.E., 2019. Adaptability and stability of cowpea genotypes via REML/BLUP and GGE biplot. BioSci. J. 35 (4), 1071–1082.

Aldu, M.S., Asante, I.K., Mensah, H.K., 2020. Evaluation of nutritional and phytochemical variability of cowpea recombinant indel lines under contrasting soil moisture conditions in the Guinea and Sudan Savanna agro-ecologies. Helioy 6 (2), e03406, 1-10.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Morais, G., Leonardo, J., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22 (6), 711–728.

Andrea, F., Rose, M., 2015. Food insecurity and hunger: a review of FAO’s annual report on state of food insecurity in the world. Int. J. Adv. Multidiscip. Res. 2 (1), 1–5.

Aoa, A. Association of Official Analytical Chemists, 2005. Official Methods of Analysis. AOAC International, Washington, pp. 1–520.

Araribó, T.H., Miguel, E.C., Carlos, C.A., 2019. Adaptation and stability of cowpea (Vigna unguiculata (L.) Walp) bean cultivars in the tropical dry forest of Colombia. Aust. J. Crop. Sci. 13 (6), 1009–1016.

Barali, F., Gbogbor, G., Beboy, Y., Berthe, M., Ziebo, H., 2020. Genotype x environment interaction and yield stability analysis of mung bean (Vigna radiata (L.) Wilczek) genotypes in northern Ethiopia. Cogent Food Agric 6, e1729581.

Bastos, E.A., Nascimento, S.P., Silva, E.M., Freire Filho, F.R., Gomide, R.L., 2011. Identification of cowpea genotypes for drought tolerance. Rev. Genc. Agron. 42 (1), 100–107.

Black, R.E., Victora, C.G., Walker, S.P., Bhatia, Z.A., Christian, P., Onis, M., Ezzati, M., Grandham-McGregor, S., Katz, J., Martorell, R., Unan, Y., 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382 (9890), 427–451.

Bouis, H.E., Saltzman, A., 2017. Improving nutrition through biofortification: a review of evidence from HarvestPlus 2003 through 2016. Global Food Secur. 12 (1), 49–58.

Boulaz, O., Mansave, F., Muranaka, S., Fransco, J., Maziya-Dixon, B., Singh, B., Fatokun, C., 2011. Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Acta Horticulture 94 (4), 515–522.

Cakmak, I., Kutman, U.B., 2017. Agronomic biofortification of cereals with zinc: a review. Eur. J. Soil Sci. 69 (1), 172–180.

Cardona-Ayala, C.E., Araribó-Tattis, H., Camacho, M.M.E., 2021. Adaptability and stability for iron and zinc in cowpea by AMMI analysis. Rev. Caatinga 34 (3), 590–596.

Carvalho, A.F.U., Souza, M.N., Farías, D.F., Rocha-Rezerra, L.C.B., Silva, R.M.P., Viana, M.P., Govéria, S.T., Sampaio, S.S., Souza, M.B., Lima, G.P.G., Marois, S.M., Barros, C.C., Freire-Filho, F.R., 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26 (1), 81–88.

Carvalho, A.C., Fonseca, P.C.A., Priore, S.E., Franceschini, S.C.C., Novoa, J.F., 2015. Food consumption and nutritional adequacy in Brazilian children: a systematic review. Rev. Bras. Pediatr. 33 (2), 211–221.

Conab - Acompanhamento da safra brasileira de grãos Grãos, 2021. Safra 2021/22. Brasília: CONAB. https://www.conab.gov.br/component/k2/item/download/40129.0ec82309df1a06d3fc177588e37ac0c3.

Cruz, C.D., Torres, R.A.A., Vexovsky, R., 1989. An alternative approach to the stability analysis proposed by Silva and Barreto. Rev. Bras. Gen. 12 (3), 567–580.

Cruz, C.D., Carneiro, P.C.S.E., Regazji, A.J., 2014. Modelos Biometricos Aplicados Ao Melhoramento Genetico. Vígora: Editora UFV, pp. 210–234.

Cruz, D.P., Geraldo, G.A., Vivás, M., Estr intrinsic, G.C., Rocha, R.S., Jaeggi, M.E.P.C., Gravina, L.M., Pereira, L.M., Amaral Junior, A.T., Ramos, M., Oliveira, T.R.A., Daher, R.F., 2020. Analysis of the phenotypic adaptability and stability of strains of cowpea through the GGE biplot approach. Euphytica 216 (1), 1–11.

Da Silva, C., Tarcisi, M.J., Cardoso, M.J., Anoni, C.O., Carneiro, N.P., Portugual, A.F., Bastos, E.A., da Silva, E.M., Freire-Filho, F.R., 2015. Estimating genotype × environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Breed. Genet. 58 (1), 72–83.

Dias, K.O.G., Gezan, S., Guimarães, C.T., Parentoni, S.N., Guimarães, P.E.O., Carneiro, N.P., Portugal, A.F., Bastos, E.A., Cardoso, M.J., Anoni, C.O., Magalhães, J.V., Souza, J.C., Guimarães, M.M.F., 2018. Estimating genotype × environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Breed. Genet. 58 (1), 72–83.

Eberhart, S.A., Russell, W.A., 1966. Stability parameters for comparing varieties. Crop Sci. 6 (1), 36–40.

Eucnêia, F.A., Bustos-Korts, D.V., Malocovt, M., 2016. What should students in plant breeding know about the statistical aspects of genotype x environment interactions? Crop Sci. 56 (1), 2119–2140.

Finlay, K.W., Wilkinson, G.N., 1963. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14 (1), 742–754.

Freire-Filho, F.R., Ribeiro, V.Q., Rocha, M.M., Damasceno-Silva, K.J., Nogueira, M.S.R., Rodrigues, E.V., 2011. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Embrapa Meio-Norte, Teresina, p. 84.

Freire-Filho, F.R., Ribeiro, V.Q., Rocha, M.M., Silva, K.J.D., Nogueira, M.S.R., Rodrigues, E.V., 2012. Production, Breeding and Potential of Cowpea Crop in Brazil. Embrapa Mid-North, Teresina, p. 18.

Giordano, J.L., Lugrin, D., Romay, C., Lorenz, A., Buckler, E.S., Knappe, A., Alkhalfih, N., et al., 2017. The effect of artificial selection on phenotypic plasticity in maize. Nat. Commun. 8 (1348), 1–11.
Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., Arora, P., 2018. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of people around the world. Molecules 23 (5), 1–13.

Gauth, H.G., 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46 (1), 1488–1500.

Gerrano, A.S., Renshurg, W.S.J.V., Katus, F.R., 2019. Agronomic evaluation and identification of potential cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa. Acta Agric. Scand. B Soil Plant Sci. 69 (4), 295–303.

Gao, Y., Mohammad, H., Worku, W., Urage, E., 2022. Genotype by environment interaction and yield stability of cowpeas (Vigna unguiculata L.) genotypes in moisture limited areas of Southern Ethiopia. Helianthus 8 (3), e05913.

Gondwe, T.M., Alamu, E.O., Mdziniso, P., Dixon, B.M., 2019. Cowpeas (Vigna unguiculata (L.) Walp.) for food security: an evaluation of end-user traits of improved varieties in Malawi. J. Agric. Sci. 98, e159913.

Harvestplus, 2021. Hidden Hunger and Empty Calories. https://www.harvestplus.org/bi ofortification-nutrition-revolution-now.

Hedrick, P.W., Garcia-Durado, A., 2016. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31 (12), 940–952.

Hoberneger, J., Ray, K., Meyer, K., 2012. The biology and chemical history of iron-oxo and iron-nitride complexes. Nat. Commun. 3 (720), 1–13.

Horn, L., Shimelis, H., Saru, F., Mwadzigeni, L., Laing, D.M., 2017. Genotype-by-environment interaction for grain yield among novel cowpeas (Vigna unguiculata L.) selections derived by gamma irradiation. Crops J 6 (3), 306–313.

Issoufa, B.B., Ibrahim, A., Abaidoo, R.C., 2020. Agronomic and economic benefits of integrated nutrient management options for cowpea production. Exp. Agric. 56 (3), 440–452.

Kirimizadeh, R., Mohammadi, M., Sabaghi, N., Mahmoodi, A.A., Roustami, B., Seyyedi, F., Akbari, F., 2013. GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Nut. Sci. Biol. 6 (2), 256–262.

Kihara, J., Bolo, P., Kinyua, M., Piikki, K., 2020. Micronutrient deficiencies in african soils and the human nutrition agenda: opportunities with staple crops. Environ. Geochim. Health 42 (1), 3015–3033.

Koop, A.H., Mousa, O.Y., Pham, L.Y.E., Corral-Hurtado, J.E., Pugpapong, S., Khang, D.T., Dung, T.N., Elzaawely, A.A., Xuan, T.D., 2016. Phenolic pro

Nonaka, E., Sir

Ogrodzka, A., Olejarczyk, W., 2014. Heritability-adjusted GGE biplot method for test environment evaluation. Euphytica 197 (1), 1–18.

Ogrodzka, A., Olejarczyk, W., 2014. Heritability-adjusted GGE biplot method for test environment evaluation. Euphytica 197 (1), 1–18.

Putto, W., Patanothai, A., Jogloy, S., Hoogenboom, G., 2008. Determination of mega-environments for peanut breeding using the CSM-CROPGR0-peanut model. Crop Sci. 48 (4), 973–982.

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Rocha, M.D.M., Vieira-Filho, F.R., Ribeiro, V.Q., Carvalho, H.W.L., Belarmino-Filho, J., Raposo, J.A.A., Alcantara, J.P., Ramos, S.R.R., Machado, C., 2007. Adaptabilidade e estabilidade produtiva de genitopios de feijão-caupi de porte semi-ereto na região Nordeste do Brasil. Pesqui. Agropecu. Bras. 42 (9), 1283–1289.

Roohani, N., Hurrell, R., Kelishadi, R., Schulin, R., 2013. Zinc and its importance for human health: an integrative review. Res. J. Med. Sci. 18 (2), 144–157.

Rouault, J.A., 2015. Iron-sulfur proteins hiding in plain sight. Nat. Chem. Biol. 11 (7), 363–368.

Santos, A., Ceccon, G., Rodrigues, E.V., Teodoro, P.E., Correa, A.M., Torres, F.E., Alvarez, R.C.F., 2017. Selection of cowpea genotypes for Mato Grosso do Sul via GGE biplot and linear regression. J. Bioci. 33 (3), 631–638.

Santos, S.P., Damasceno-Silva, K.J., Aragão, W.P.L., Araújo, M.S., Rocha, M.M., 2020. Genetic control of traits related to maturity in cowpea. Crop Breed. Appl. Biotechnol. 20 (4), e03272049.

Scott, A.J., Knott, M., 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30 (3), 507–517.

Silva, D.O.M., Santos, C.A.F., 2017. Adaptability and stability parameters of iron and zinc concentrations and grain yield in cowpea lines in the Brazilian semiarid region. Crop Sci. 57 (1), 2927–2931.

Silva, C.A., Abreu, A.A.F.B., Ramalho, M.A.P., Correa, A.D., 2012. Interaction genotype by environment and its influence on the certification of beans with high content of zinc and iron. Bragantia 71 (3), 336–341.

Silva, D.O.M., Santos, C.A.F., Boiteux, L.S., 2016. Adaptability and stability parameters of total seed yield and protein content in cowpea (Vigna unguiculata) genotypes subjected to semi-arid conditions. Anais. J. Crop. Sci. 10 (8), 1164–1169.

Souza, T.J.F., Rocha, M.M., Damasceno-Silva, K.J., Bertini, C.H.C.M., Silveira, L.M., Souza, R.R., Sousa, J.L.M., 2019. Simultaneous selection for yield, adaptability, and genotype stability in immature cowpea using RML/BULP. Pesqui. Agropecu. Bras. 54, 601–624.

Sterckling, M.S., Ribeiro, N.D., Arns, F.D., Mezzomo, H.C., Possobom, M.T.D.F., 2017. Genetic diversity and selection of common bean lines based on technological quality and biofortification. Genet. Mol. Res. 16 (1), gmr1610527.

Tardy, A.L., Poente, E., Mazzini, D., Yilmaz, C., Scholay, A., 2020. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients 12 (1), 1–35.

Ullah, A., Al-Sadi, A.M., Al-Sobhi, M.A., Farooq, M., 2020. Characterization of chickpea genotypes of Pakistan origin for genetic diversity and zinc grain biofortification. J. Sci. Food Agric. 100 (11), 4139–4149.

Weng, Y., Qin, J., Eaton, S., Yang, Y., Ravelombala, W.S., Shi, A., 2019. Evaluation of seed protein content in USDA cowpea germplasm. HorticScience 54 (5), 814–817.

Who – World Health Organization, 2022. Micronutrients. https://www.who.int/health-topics/micronutrients#tab=tab-1. (Accessed 6 February 2022).

Yan, W., 2001. GGE biplot: a windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J. 93 (1), 111–118.

Yan, W., 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agron. J. 94 (5), 998–996.

Yan, W., 2011. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J. Indian Soc. Agric. Stat. 65 (2), 183–193.

Yan, W., 2014. Crop Variety Trials: Data Management and Analysis. Wiley, Chichester, p. 595.

Yan, W., 2016. Analysis and handling of GxE in a practical breeding program. Crop Sci. 56 (5), 2106–2118.

Yan, W., Holland, J.B., 2010. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 171 (1), 355–369.

Yan, W., Rajcan, I., 2002. Biometric methods for identifying test sites and traits related to soybean yield in Ontario. Crop Sci. 42 (1), 11–20.

Yan, W., Tinker, A., 2006. Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci. 86, 623–645.

Yan, W., Hunt, L.A., Sheng, Q., Jalalvand, Z., 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40 (3), 597–605.

Yan, W., Kang, M.S., Ma, B., Woods, S., Cornelius, P.L., 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 42 (7), 643–655.

Yan, W., Fregeau-Reid, J., Marin, R., Pageau, D., Mitchell-Fetch, J.W., 2015. How many test locations and replications are needed in crop variety trials in a target region? Euphytica 205 (2), 361–372.