IN SILICO STUDIES OF (S)-2-AMINO-4-(3,5-DICHLOROPHENYL) BUTANOIC ACID AGAINST LAT1 AS A RADIOTHERANOSTIC AGENT OF CANCER

HOLIS ABDUL HOLIK1*, FAISAL MAULANA IBRAHIM1, ABIB LATIFU FATAH1, ARIFUDIN ACHMAD2, ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA2

1Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia, 2Department of Nuclear Medicine, Faculty of Medicine/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia

Received: 18 Aug 2021, Revised and Accepted: 02 Oct 2021

INTRODUCTION

Cancer is the second-highest cause of death worldwide with 9.6 million mortalities in 2018 [1]. A complex mechanism of cancer pathogenesis led to a cause of difficulty in determining the right drug target for cancer. Nowadays, the development of cancer-related drugs in clinical trials still lacks succession (3.4%) due to its wrongly targeted pathway [2, 3]. So, developing a new method of intervention for cancer patients is urgently needed.

One of a prospective and valid target for cancer is the Large Amino Acid Transporter type 1 (LAT1) which is a Na+-independent amino acid transporter that can transport a large branched-chain and aromatic neutral amino acids (i.e. histidine, isoleucine, leucine, phenylalanine, tryptophan, tyrosine, methionine and valine) [4-6]. LAT1 and 4F2 cell-surface antigen heavy chain (4F2hc) is a heterodimeric protein complex bridged with a disulfide bond [5]. This target is overexpressed in various cancer cells including oral squamous cell carcinoma [7], esophageal carcinoma [8], gastric cancer [9], prostate cancer [10], non-small cell lung carcinoma [11], biliary tract cancer [12], pancreatic cancer [13], and breast cancer [14]. The overexpression of LAT1 in a cancer cell makes this protein a prospective target for radiotheranostic agents of cancer [15].

Radiopharmaceutical agent is a compound that can deliver radioactive atoms to a cell target (mostly tumor-associated cells). The differences with radiotherapy are the radiation is not given from the outside of the body, but instead is delivered through a systemic or locoregional way. The cytotoxic effect to the cancer cells comes from the α/β radiation of its radionuclide, which has already been vehicled through a certain carrier molecule that can interact specifically with a receptor within the target cells or tumor microenvironment. Besides that, diagnosis functionalities are also used for cancer imaging conducted by the delivery of γ-emitting radionuclide [16]. Currently, radiopharmaceutical agents have been developed to be a radiotheranostic agent (a substance that has a function to cure and diagnose a disease through the utilization of radionuclide emission) [17].

MATERIALS AND METHODS

Structure modification

ADPB modification was carried out by conjugating 68-Ga compatible BFCA on the amine group of ADPB. Modification of the structure centered on the amine group aims to form an amide bond with the radiometal in the kit of radiopharmaceuticals. This study aims to obtain the best radiopharmaceutical kit candidate using BFCA-conjugated ADPB through several stages of in silico research.
Preparation of the ligand and the target

The ligands used are six derivatives of ADPB that were conjugated with various chelators. The entire 2D structure of the ligands was built using ChemDraw which was then converted using Chem3D and optimized through the MM2 function. The target used is LAT1 complexed with 4F2hc and bound to the BCH ligand as a native inhibitor of LAT1 (PDB ID: 6IRT) downloaded from the Protein Data Bank (www.rcsb.org) [20]. The water molecules present in the protein are removed and the BCH ligand is separated from the receptor using the BIOVIA Discovery Studio Visualizer 2016 Client program. Hence, only the receptor without the ligand will be used in the molecular docking process.

Validation of molecular docking

The validation method of molecular docking was carried out through a re-docking procedure of the native ligand to the pocket of the target with a specific grid coordinate performed by AutoDock 4.3. The RMSD (Root Mean Square Deviation) of the ligand position after re-docking procedure must be lower than 2.0 Å [21, 22].

Molecular docking simulation

Ligands and LAT1 were prepared using AutoDock tools 1.5.6 prior to the molecular docking simulation. LAT1 is a macromolecule that is protonated and added to Kollman charges. Meanwhile, all ligands were protonated by adding hydrogen atoms and charged through the Gasteiger method. Best grid coordinates obtained from previous validation were used to determine the pocket that was addressed at (x=146,324; y=143,10; z=134,340). Docking parameter data is based on the Lamarckian Genetic Algorithm (LGA) with 1000 runs, 2,500,000 energy evaluation, 150 population size, 0.02 gene mutation rate, and 0.8 rates of crossover. Then, all of the docked ligands were visualized using Biovia Discovery Studio 2016. Molecular docking results were ranked based on the series of docking parameters i.e. Gibbs free energy, key amino acid interaction, number of clusters, and inhibition constant [20-22].

Ligand-based ADMET prediction

The computerized analysis of the pharmacokinetic properties of the ligands was obtained by using the pre-ADMET and vNN ADMET programs which were accessed online [22]. The analyzed pharmacokinetic parameters were absorption by looking at the value of Human Intestinal Absorption (HIA %), distribution performed by the value of Plasma Protein Binding (PPB %) and Blood-Brain Barrier (BBB), metabolism expressed by Human Liver Microsomes (HLM) and CYP inhibitors, as well as cardio and liver toxicity.

RESULTS

Table 1: Validation of molecular docking method, conducted through a re-docking process of the native ligand (BCH). It showed a good RMSD (1.825 Å) that fulfill the requirement (<2.0 Å) [21, 22].

Ligand	Grid coordinate (x,y,z)	ΔG (kcal/mol)	Kᵢ (μM)	RMSD (Å)	Hydrogen bond	Van der Waals
BCH (Native Ligand)	146.324, 143.10, 134.340	-5.25	142.14 μM	1.825	Phe252, Ser66, Ser338, Ala253, Ile63, Gly65, Gly67, Ile64	Tyr289, Ile68, Tyr254
Fig. 3: The visualization of molecular interaction of BCH (native ligand) against LAT1 (PDB ID: 6IRT). BCH interacts with the key amino acid residue of LAT1 Phe252 (2.78 Å) and supported by other residues i.e. Gly255 (2.5 Å), Ser66 (2.56 Å), Gly67 (1.73 Å) and Ile64 (2.84 Å) via hydrogen bonds.

Table 2: Molecular docking parameters of ADFV derivatives against LAT1 (PDB ID: 6IRT). ADPB-NOTA performed as the best docked molecules with $\Delta G=-5.25$ Kcal/mol, $K_i=142.14$ μM, and hydrogen bond interaction with gating residue-Phe252.

Ligands	ΔG (Kcal/Mol)	K_i (μM)	Interaction with LAT1 amino acid residue	Van Der Waals
BCH (Control)	-5.25	142.14	Phe252, Gly255, Ser66, Gly67, Ile64	Ser338, Ala253, Ile63, Gly65, Tyr289, Ile68, Tyr254
ADPB (Lead Compound)	-6.57	15.23	Phe252, Gly255, Ser66	Ser144, Ser338, Gly65, Ile64, Ile68, Tyr289, Ala253, Ile63, Tyr254, Gly256, Leu251, Asn404
ADPB-CTPA	-1.91	39.55	Gly255, Leu251, Lys204, Thr62, Ser338, Gly341, Gly337	Phe252, Tyr254, Thr205, Asn404, Asn258, Phe400, Gly256, Asn340, Glu197, Ser342, Gly61, Gly65, Ile63, Ser144
ADPB-DOTA	+2.58	-	Gly61(1.97), Tyr259(2.93), Thr62(3.02), Gly652(2.04), Ala253(2.44), Ser338(2.59)	Glu136, Asn404, Leu260, Ile63, Phe400, Gln145, Ser342, Ser144, Gly255, Phe252, Gly256, Ser66, Ile64, Ile68, Tyr259, Gly67, Val148
ADPB-H2CB-DO2A	-5.83	52.03	Thr62, Ser338, Gly255, Phe252, Leu251, Asn404	Gln197, Leu260, Gly61, Ile63, Gly341, Gly65, Val148, Ser66, Ser342, Ser144, Gly145, Glu136, Thr205, Asn405, Ala253, Tyr254, Gly256
ADPB-H2CB-TE2A	-5.40	109.58	Thr62, Thr345, Gln145, Ser342, Gly341, Ser338, Ser144	Val148, Gly255, Ile63, Gly256, Glu136, Asn404, Asn258, Gly65, Ser66, Phe252
ADPB-NOTA	-7.68	2.36	Ile64(2.25), Tyr259(2.42), Gly65(1.85), Ser342(3.09), Thr259(2.56), Asn404(1.98), Gly256(2.00), Asn258(2.24), Phe252(3.35)	Gly341, Ser338, Thr62, Ala253, Tyr254, Ile63, Gly67, Ser66, Gly255, Glu136, Asp116, Phe400, Ser144, Gly145, Val148
ADPB-TETA	7.35	-	Thr345, Ser342, Tyr259, Gly65, Ser338, Gly61, Gly255	Arg141, Ser144, Gly145, Val70, Val148, Phe252, Ile147, Gly67, Ser66, Lys204, Ile63, Ile64, Leu260, Gly337, Gln197, Gly256, Lys132, Glu136, Asn258, Asn404

Fig. 4: The visualization of ADPB-NOTA interaction against LAT1 (PDB ID: 6IRT). The hydrogen atom at the hydroxyl group of carboxylic site acts as a hydrogen donor to the key amino acid (Asn258).
Table 3: The ADMET parameters of ADPB derivatives. All ADPB derivatives have a good parameter of HIA, PPB, BBB, HLM, CYP inhibitor, and DILI (except ADPB-CTPA has BBB activity). Meanwhile, all ADPB derivatives have the potential to be cardiotoxic in the human body.

Ligands	Absorption (HIA+ (%))	Distribution (PPB+ (%))	Metabolism (HLM+ (Min))	CYP Inhibitor	Toxicity
ADPB-CTPA	93.45	41.49	Yes	>30	No
ADPB-DOTA	73.99	17.77	No	>30	No
ADPB-H2C2B-D02A	95.93	24.63	No	>30	No
ADPB-H3CB-T2E2A	95.90	16.28	No	>30	No
ADPB-NOTA	88.12	24.59	No	No	No
ADPB-TETA	78.85	12.25	No	No	No

Note: *H. A. Holik et al.*

DISCUSSION

In the validation process, the RMSD shows the deviation of the bond pose between the ligand that is docked with the reference bond pose (obtained from PDB). Table 1 showed that the validation process obtained 1.825 Å of RMSD that fulfilled the threshold (<2.0 Å) [21, 22].

In addition, BCH interacts with the key amino acid residue of LAT1 Phe252 (2.78 Å) and supported by other residues i.e. Gly255 (2.5 Å), Ser66 (2.56 Å), Gly67 (1.73 Å), and Ile64 (2.84 Å) via hydrogen bonds (fig. 3). In this study, BCH (as a native ligand) interacted with Ser66, Gly255, and Phe252 in the LAT-protein, the result is coherent with previous research conducted by Yan et al. [2019] [19]. This validation showed that the grid coordinates (x=146.324, y=143.105, z=134.340) which are performed during the re-docking process can be used to dock the testing ligands (ADPB derivatives).

The molecular docking results showed that of the six ADPB derivatives, ADPB-NOTA performed as the best docked ligand with (ΔG<7.68 Kcal/mol, K<2.36 μM) and can interact with the key amino acid residue that has a function as a gating agent of the active site of the LAT1 protein (Asn25) through a strong hydrogen bond interaction (r=2.24 Å) have the potency to be a stable ligand-receptor complex in the inhibition process.

Based on molecular docking parameters (table 3), ADPB-NOTA has a better characteristic compared to BCH as the control (ΔG<5.25 Kcal/mol, K<14.12 μM, hydrogen bond with gating residue-Phe252) as well as ADPB, which acts as the lead compound (ΔG<6.57 Kcal/mol, K<15.23 μM, hydrogen bond with gating residue-Phe252). Meanwhile, there are two compounds that have positive ΔG (ADPB-DOTA and ADPB-TETA) indicating that the ligands are unable to make a receptor-complex spontaneously (endothermic reaction) [20-22].

Prediction Absorption (HIA), distribution (PPB and BBB), metabolism (HLM and CYP Inhibitor), and toxicity (DILI and Cardiotoxicity) are important to avoid the pharmadkinetics and toxicity problem for human use. The absorption parameter was expressed as a percent of HIA which indicates drug absorption in the human intestine. This is important because it determines the amount of bioavailability and how much is absorbed in the human gut. All ADPB derivatives ranged at a well-absorbed molecule (table 3).

PPB and BBB reflect as the parameters of drug distribution. The PPB distribution profile determines the degree of drug binding to plasma proteins. Table 3 showed that the PPB value of all ADPB derivatives is less than 90% which indicates that all ADPB derivatives are weakly bound to plasma proteins so that the drug is easily partitioned in the blood to reach its target [23, 24]. Another distribution parameter is the Blood-Brain Barrier (BBB) which shows the distribution of the drug to the CNS. Drugs intended to interact with their molecular targets in the CNS must pass through the BBB to be used as therapeutic agents. Conversely, drugs that are not intended to enter the CNS should not pass through the BBB to avoid unwanted side effects [25]. This BBB prediction can give the information of drug distribution of the CNS which ADPB-CTPA can enter the CNS and the rest are unable.

Ligands	HLM+ (Min)	CYP Inhibitor	Toxicity	
1A2	3A4	2D6	2C9	2C19
ADPB-BFCA	Yes	No	Yes	
ADPB-BFCA	Yes	No	Yes	
ADPB-BFCA	Yes	Yes	Yes	
ADPB-BFCA	Yes	Yes	Yes	
ADPB-BFCA	Yes	Yes	Yes	
ADPB-BFCA	Yes	Yes	Yes	

Note: H. A. Holik et al. This research was funded by Hibah Riset Data Pustaka dan Daring (Grants for Literature and Online Research) (No.1959/UN6.31/JPT.00/2021) from the Directorate of Research, Community Service, Universitas Padjadjaran.

ACKNOWLEDGEMENT

The authors are thankful to the Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran.

FUNDING

This research was funded by Hibah Riset Data Pustaka dan Daring (Grants for Literature and Online Research) (No.1959/UN6.31/JPT.00/2021) from the Directorate of Research, Community Service, Universitas Padjadjaran.
AUTHORS CONTRIBUTIONS
All the authors contributed equally.

CONFLICT OF INTERESTS
Declared none.

REFERENCES
1. WHO [Internet]. Available from: https://www.who.int/dg/factsheets/cancers/39-All-cancers-factsheet.pdf. [Last accessed on 10 Jan 2021]
2. Wong CL, Shiu KW, Lam SH. Performance of clinical trial success rates and related parameter estimates. Biostatistics. 2019 Apr;20(2):273-86.
3. Lin A, Giuliani CJ, Palladino A, John KM, Abramowitz C, Yuan ML, Saussville EL, Lukow DA, Liu L, Chait AR, Galhizoo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019;11(509):eaaw8412. doi: 10.1126/scitranslmed.aaw8412. PMID 31511426.
4. Sguero G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. doi: 10.1038/s41573-020-0073-9 [published online 2019 Jul 1;589:1-6]. PMID 31521518.
5. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, Gambhir SS, Hricak H, Weissleder R. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2011;12(11):e429-39. doi: 10.1016/S1470-2045(11)70328-9. PMID 21945206.
6. Kadari A, Lestari S, Holik HA, Rahayu D, Bashar MI, Faried A, Kartamihardja AHS. Highly Specific L-Type Amino Acid Transporter 1 Inhibition by PHT203 as a Potential Pan-Cancer Treatment. Processes. 2021;9(7):1170. doi: 10.3390/pr9071170.
7. Ichinose M, Mikami T, Yoshiida T, Igawa I, Tsuruta T, Nakada N, Kanai Y, Endou H. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291-302. doi: 10.1016/S0005-2736(01)00384-4, PMID 11557028.
8. Hiroyuki K, Iwata K, Yoshihara K, Kanai Y, Endou H, Yoon H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273(27):3629-32. doi: 10.1074/jbc.273.27.3629, PMID 9726693.
9. Yanagida O, Kanai Y, Chaiungrod A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Takei Y, Uchino H, Hricak H, Weissleder R. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2011;12(11):e429-39. doi: 10.1016/S1470-2045(11)70328-9. PMID 21945206.
10. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takenoshita S, Kameda T, Hricak H, Weissleder R. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2011;12(11):e429-39. doi: 10.1016/S1470-2045(11)70328-9. PMID 21945206.
11. Ibrahim FM, Holik HA, Achmad A. In-silico studies of aminoflavone and its derivatives against sars-cov-2. Rasayan J Chem. 2021;14(3). doi: 10.3178/RJC2021.1436172.
12. Hidayat S, Ibrahim FM, Pratama FK, Mufchardi R. The interaction of alpha-mangostin and its derivatives against main protease enzyme in covid-19 using in silico methods. J Adv Pharm Technol Res. 2021;12(3):285-90. doi: 10.4103/japt.JAPT_299_20, PMID 34345609.
13. Onyese engineering research complex. Descript Pre-ADMET. 2017.
14. Xu D, Li Y, Xia YL, AI SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17(2):144. doi: 10.3390/ijms17020144, PMID 26821017.
15. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC/AUC) ratios. Drug Metab Dispos. 2004;32(11):1208-11. doi: 10.1124/dmd.104.000794, PMID 15304429.
16. Guengerich FP. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J. 2006;8(1):289-97. doi: 10.1208/s12248-006-0030-8, PMID 16426064.
17. Liu R, Schyma P, Wallqvist A. Critically assessing the predictive power of QSAR models for human liver microsomal stability. J Chem Inf Model. 2015;55(8):1566-75. doi: 10.1021/acs.jcim.5b00552, PMID 26170251.
18. Schyma P, Liu R, Wallqvist A. General purpose 2D and 3-D similarity approach to identify hERG blockers. J Chem Inf Model. 2016;56(1):213-22. doi: 10.1021/acs.jcim.5b00616, PMID 26718126.