Improvement of the theoretical model for evaluating evaporative emissions in parking and refueling events of gasoline fleets based on thermodynamics

Genta Noumuraa,b, Hiroo Hatab,c, Hiroyuki Yamadad, and Kenichi Tonokuraa,*

a Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
b Tokyo Metropolitan Research Institute for Environmental Protection 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan
c Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
d Department of Mechanical Engineering, Tokyo Denki University, 5 Senju-Asahimachi, Adachi-ku, Tokyo 120-8551, Japan

*Corresponding author. E-mail: tonokura@k.u-tokyo.ac.jp; Tel: +81-4-7136-4706

Contents (44 pages, 18 Figures, and 17 Tables)

Text S1	Mechanism of evaporation from fuel tank and vapor reduction technologies
Figure S1	Overview of fuel system related to evaporative emissions from the breakthrough of DBL and RFL.
Text S2	Theoretical models to evaluate gasoline evaporation from the breakthrough of DBL and RFL proposed in the previous studies
Text S3	Calculation of vapor pressure for each component in gasoline liquid
Table S1	Fuel composition in previous study (Hata et al. 2018; Yamada et al. 2018)
Table S2	Experimental condition for RFL in previous study (Yamada et al. 2018)
Table S3	Composition of gasoline surveyed in January
Table S4	Composition of gasoline surveyed in February
Table S5	Composition of gasoline surveyed in March
Table S6	Composition of gasoline surveyed in April
Table S7	Composition of gasoline surveyed in May
Table S8	Composition of gasoline surveyed in June
Table S9	Composition of gasoline surveyed in July
Table S10	Composition of gasoline surveyed in August
Table	Description
S11	Composition of gasoline surveyed in September
S12	Composition of gasoline surveyed in October
S13	Composition of gasoline surveyed in November
S14	Composition of gasoline surveyed in December

Figure S2	Model validations to the experimental results of VOC composition for DBLb from parked vehicles part 1
Figure S3	Model validations to the experimental results of VOC composition for DBLb from parked vehicles part 2
Figure S4	Model validations to the experimental results of VOC composition for DBLb from parked vehicles part 3
Figure S5	Model validations to the experimental results of VOC composition for DBLb from parked vehicles part 4

Figure S6	Model validations to the experimental results of VOC composition for RFL from refueling process part 1
Figure S7	Model validations to the experimental results of VOC composition for RFL from refueling process part 2
Figure S8	Model validations to the experimental results of VOC composition for RFL from refueling process part 3
Figure S9	Model validations to the experimental results of VOC composition for RFL from refueling process part 4
Figure S10	Model validations to the experimental results of VOC composition for RFL from refueling process part 5
Figure S11	Model validations to the experimental results of VOC composition for RFL from refueling process part 6
Figure S12	Model validations to the experimental results of VOC composition for RFL from refueling process part 7

Figure S13	Sensitivity of average temperature and temperature change in a day to breakthrough emissions from parked vehicles
Figure S14	Sensitivity of average temperatures and temperature change in a day to VOC components from DBLb in summer gasoline
Figure S15	Sensitivity of average temperatures and temperature change in a day to VOC components from DBLb in summer gasoline

Text S4	Calculations of monthly emission of DBLb and RFL
S15	Emission amount of DBLb and RFL in Tokyo, 2015.
S16	Future estimation of the emission amount of DBLb, RFL, and PL
S17	Prediction of VOC emission amount from Japanese stationary sources
S18	Prediction of DBLb and RFL emission in Japan.

| Figure S18 | Model validations comparing calculation results with the experimental results of VOC composition from gasoline bubbling |
| Table S17 | Specification of vehicles used in previous and this study |
Text S1 *Mechanism of evaporation from a fuel tank and vapor reduction technologies*

Figure S1 shows an overview of a fuel system. Evaporative emissions from the breakthrough of diurnal breathing loss (DBLb) and refueling loss (RFL) originate from gasoline gas due to fuel evaporation inside the fuel tank. DBLb occurs when the pressure inside the fuel tank reaches the limit of the check valve and the evaporation is released to the outside. A canister is set between the check valve and atmosphere to trap evaporation from DBLb, but DBLb is directly emitted to the atmosphere when the canister loses its adsorption capacity in a long-time parking event. RFL occurs when refueling is conducted through a port. During refueling, gasoline gas inside the fuel tank is pushed out through the refueling port and directly emitted to the atmosphere; this is the mechanism of RFL.

Figure S1: Overview of the fuel system and evaporative emissions from the breakthrough of DBL and RFL.
To prevent RFL emission, two emission reduction technologies, so-called Stage II and onboard refueling vapor recovery (ORVR) technologies, have been introduced worldwide (mainly in developed countries including the United States, United Kingdom, countries in the European Union, South Korea, and China). Note that ORVR has only been introduced in California, United States. Japan introduced Stage II technology in 2019, but the rollout of this technology is still in process, and many service stations are still large emission sources of VOC in Japan. Stage II technology evacuates evaporative emissions using an evacuator attached to the refueling nozzle. The evacuated vapors are returned to the storeroom of the gasoline fuel at the service station. ORVR is a method of capturing evaporative emissions in the refueling process using a large canister attached to the vehicles. The adsorbed gas is sent to the engine system to burn out in driving.
Text S2 Theoretical models of evaluating gasoline evaporation from the breakthrough of DBL and RFL proposed in previous studies

Theoretical models to calculate the evaporative emissions from DBLb and RFL were formulated in previous studies using empirical and physical methods, as reviewed by Romagnuolo et al.3 We formulated models of DBL4 and RFL5 in our previous works. According to Hata et al.4, DBLb is emitted to the atmosphere through the expansion of evaporative gas inside a fuel tank in response to a diurnal temperature change in a parking event, and the total evaporation, Δw_{tank} (g/day), is calculated as

$$
\Delta w_{\text{tank}} = \frac{M V_{\text{tank}} P_{\text{exp}}}{\Delta H} \left[\exp \left\{ \frac{\Delta H}{R} \left(\frac{1}{T_r} - \frac{1}{T_{t+1}} \right) \right\} - \exp \left\{ \frac{\Delta H}{R} \left(\frac{1}{T_r} - \frac{1}{T_t} \right) \right\} \right], \quad (S1)
$$

where M is the molecular weight (g/mol), V_{tank} is the volume of the empty fuel tank (L), P_{exp} is a parameter related to the Reid vapor pressure (kPa), ΔH is the gasoline evaporation enthalpy (J/mol), R is the gas constant (8.314 J/(K mol)), T_r is the temperature in the definition of the Reid vapor pressure (311 K), and T_t is the environmental temperature at time t (K). P_{exp} has one regression parameter and is expressed as

$$
P_{\text{exp}} = P_r e^{a P_r}, \quad (S2)
$$

where P_r is the Reid vapor pressure (kPa) and a is a regression parameter to be fitted to the experimental results. The previous study4 did not concretely explain why the exponential form of vapor pressure in Equation (S2) is suitable for the prediction of the amount of evaporative emissions from the fuel tank. Furthermore, equation (S1) treats gasoline evaporation as a single component and cannot be used to predict the VOC composition in evaporative emission, which
is needed for the evaluation of ozone and PM$_{2.5}$ concentrations using the chemical transport model. According to Yamada et al.5, the RFL emission to the atmosphere is generated by the expansion of evaporative gas inside the fuel tank during the filling of the fuel tank with gasoline, and the total evaporation, Δw_{refuel} (g/day), is calculated as

$$\Delta w_{\text{refuel}} = \frac{P_r M V_{\text{tank}}}{R} \exp \left(\frac{\Delta H}{R} \left(\frac{1}{T_r} - \frac{1}{T_{\text{tank}}} \right) \right), \quad (S3)$$

where T_{tank} is the temperature in the fuel tank during refueling (K). Equation (S3), unlike equation (S1), has no unspecified fitting parameter, but it also assumes that gasoline is a single component and thus cannot be used to evaluate the VOC composition of evaporation. To account for the above deficiencies, more precise and affordable equations for evaluating the amount and composition of evaporative emissions from DBLb and RFL were formulated in the present study.
Text S3 Calculation of vapor pressure for each component from liquid gasoline

The new models for DBLb and RFL, expressed as eqs. (4) and (7) in the main article, require the vapor pressure of component \(i\), \(P_{\text{evap}}^i\), to calculate both the total amount and composition ratio of evaporations. In this study, \(P_{\text{evap}}^i\) was evaluated using the same methodology reported in a previous study for puff loss emissions\(^6\). This section provide a brief summary of the method. \(P_{\text{evap}}^i\) is calculated using Antoine’s equation, which formulates vapor pressure, \(P_{\text{evap}}^i\), with three regression parameters (Antoine parameters), \(A^i\), \(B^i\), and \(C^i\):

\[
\log_{10}P_{\text{evap}}^i = A^i - \frac{B^i}{T + C^i}.
\]

(S4)

Here, the parameters were obtained from the *NIST Chemistry Webbook*\(^7\), which holds a wide variety of thermodynamic parameters obtained from the experimental results of previous studies. Antoine’s parameters were not available for some species, in which case the Clausius–Clapeyron formula was applied instead:

\[
P_{\text{evap}}^i = P_r^i \exp\left\{\frac{\Delta H}{R} \left(\frac{1}{T_r} - \frac{1}{T}\right)\right\},
\]

(S5)

where \(P_r^i\) is the Reid vapor pressure of component \(i\) (kPa). The evaluated components were divided into five categories of the component type (alkanes, alkene, cycloalkanes, aromatics, and others including ethanol and ethyl-tertiary-butyl-ether (ETBE)) having 3 to 13 carbons. Further details are provided in both the main article and supplementary materials of the previous study\(^6\).
Table S1. Fuel composition in previous studies of Hata et al. (2018) and Yamada et al. (2018). All values in the table except RVP are expressed as a percentage of weight.

Label in this study	F1	F2	F3	F4	E10
Label in Yamada et al. (2018)	-	F3	F5	F6	FE10
RVP (kPa)	57^a	68^a	80^a	85^a	65
Alkanes	9.5	14.6	15.6	13.7	11.4
Iso-alkanes	40.2	37.9	30.7	35.7	24.2
Alkenes	17.2	1.5	13.4	16.2	11.8
Cycloalkanes	5.1	1.8	8.3	7.2	6.2
Aromatics	28	43.9	27.5	23	36.1
ETBE	-	-	4.1	3.8	0.4
Ethanol	-	-	-	-	9.1

^a: Taken from Hata et al. (2018)
Table S2. Experimental conditions for RFL in a previous study.

Label	EEH	E2H	E3H	E4H	EEL	E2L	E3L	E4L	BEH	B2H	B3H	B4H	BEL	B2L	B3L	B4L
Car	E	E	E	E	E	E	E	E	B	B	B	B	B	B	B	B
Fuel	E10	F2	F3	F4												
Temp. (K)	35	35	35	35	20	20	20	20	35	35	35	35	35	20	20	20
Refuel vol. (L)	50.3	50.0	50.3	32.1	50.3	50.1	50.3	50.5	22.4	22.3	22.5	23.9	22.4	20.6	22.5	24.5
Table S3. Composition of gasoline surveyed in January. All values in the table are expressed as a percentage of weight. This gasoline contains 4.50% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.026	-	0.003	0	-
4	3.004	2.896	1.675	0	-
5	4.075	8.89	4.826	0.605	-
6	3.653	9.833	3.306	2.073	0.665
7	1.771	7.141	2.477	2.18	9.377
8	0.814	3.031	0.894	1.416	5.294
9	0.203	1.907	0.428	0.604	6.426
10	0.112	0.989	0.183	0.142	2.455
11	0.057	0.654	0.048	0	0.612
12	0.03	0.179	0.023	0	0.171
13	0.009	0.043	0	0	0
Table S4. Composition of gasoline surveyed in February. All values in the table are expressed as a percentage of weight. This gasoline contains 5.27% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.04	-	0.00	0.00	-
4	4.29	2.37	1.69	0.00	-
5	3.89	8.02	5.47	0.57	-
6	3.75	10.20	3.70	2.16	0.63
7	1.55	7.64	2.70	2.14	7.41
8	0.68	2.82	1.12	1.62	5.12
9	0.19	1.98	0.52	0.62	5.72
10	0.12	1.06	0.27	0.13	2.42
11	0.06	0.61	0.07	0.00	0.59
12	0.03	0.16	0.02	0.00	0.16
13	0.01	0.04	0.00	0.00	0.00
Table S5. Composition of gasoline surveyed in March. All values in the table are expressed as a percentage of weight. This gasoline contains 5.01% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.04	-	0.00	0.00	-
4	3.88	2.74	1.26	0.00	-
5	4.46	7.91	5.07	0.69	-
6	3.96	10.30	3.49	2.54	0.68
7	1.73	7.57	2.71	2.29	6.99
8	0.57	2.66	1.12	1.58	4.34
9	0.16	1.95	0.48	0.63	6.09
10	0.11	1.07	0.23	0.19	2.81
11	0.08	0.70	0.13	0.00	0.84
12	0.04	0.25	0.03	0.00	0.25
13	0.01	0.07	0.00	0.00	0.00
Table S6. Composition of gasoline surveyed in April. All values in the table are expressed as a percentage of weight. This gasoline contains 5.80% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.05	-	0.00	0.00	-
4	4.52	2.01	0.89	0.00	-
5	3.65	7.16	5.15	0.68	-
6	4.01	8.83	3.70	2.35	0.58
7	1.80	8.45	2.27	2.25	6.56
8	0.62	2.91	2.62	1.21	4.14
9	0.19	1.67	0.62	0.77	6.62
10	0.13	1.13	0.25	0.19	3.25
11	0.08	0.61	0.19	0.06	1.29
12	0.05	0.09	0.07	0.00	0.31
13	0.02	0.05	0.00	0.00	0.00
Table S7. Composition of gasoline surveyed in May. All values in the table are expressed as a percentage of weight. This gasoline contains 6.10% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.01	-	0.00	0.00	-
4	1.82	0.55	0.69	0.00	-
5	5.44	8.24	4.77	0.74	-
6	4.25	8.88	3.40	2.14	0.73
7	1.55	6.34	2.37	2.13	10.16
8	0.63	3.07	1.39	1.17	4.48
9	0.17	1.58	0.58	0.73	8.61
10	0.11	1.03	0.27	0.17	3.12
11	0.08	0.50	0.17	0.05	1.12
12	0.04	0.08	0.06	0.00	0.27
13	0.02	0.02	0.00	0.00	0.00
Table S8. Composition of gasoline surveyed in June. All values in the table are expressed as a percentage of weight. This gasoline contains 6.55% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.01	-	0.00	0.00	-
4	1.93	0.74	0.62	0.00	-
5	5.08	7.18	3.98	0.57	-
6	4.17	7.91	3.02	2.17	0.69
7	1.87	6.23	2.38	2.17	11.10
8	0.89	3.17	1.43	1.21	5.31
9	0.23	1.65	0.61	0.78	9.05
10	0.11	0.98	0.28	0.17	3.13
11	0.07	0.51	0.18	0.05	1.15
12	0.05	0.08	0.05	0.00	0.27
13	0.02	0.02	0.00	0.00	0.00
Table S9. Composition of gasoline surveyed in July. All values in the table are expressed as a percentage of weight. This gasoline contains 6.65% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.02	-	0.00	0.00	-
4	1.71	0.78	0.59	0.00	-
5	4.90	7.96	3.19	0.41	-
6	4.20	10.06	2.65	2.14	0.56
7	1.44	6.89	2.34	1.97	9.28
8	0.63	3.09	1.78	1.09	7.83
9	0.17	1.57	0.61	0.73	6.97
10	0.11	1.01	0.27	0.18	3.24
11	0.07	0.65	0.24	0.07	1.25
12	0.05	0.08	0.06	0.00	0.30
13	0.02	0.02	0.00	0.00	0.00
Table S10. Composition of gasoline surveyed in August. All values in the table are expressed as a percentage of weight. This gasoline contains 6.21% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.01	-	0.00	0.00	-
4	0.68	0.75	1.37	0.00	-
5	4.21	8.57	4.99	0.43	-
6	4.28	10.60	3.97	2.50	0.70
7	1.20	7.04	2.42	2.21	5.45
8	0.62	2.93	3.06	1.32	6.43
9	0.19	1.78	0.71	0.85	5.99
10	0.13	1.21	0.32	0.21	3.49
11	0.09	0.62	0.20	0.07	1.37
12	0.06	0.09	0.07	0.00	0.35
13	0.02	0.02	0.00	0.00	0.00
Table S11. Composition of gasoline surveyed in September. All values in the table are expressed as a percentage of weight. This gasoline contains 6.24% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.01	-	0.00	0.00	-
4	1.32	0.54	0.70	0.00	-
5	4.41	8.54	5.24	0.63	-
6	4.27	10.66	3.81	2.47	0.63
7	1.39	7.49	2.23	2.08	7.87
8	0.61	2.89	2.67	1.20	5.48
9	0.17	1.62	0.60	0.77	6.07
10	0.12	1.07	0.28	0.18	3.02
11	0.08	0.59	0.17	0.07	1.12
12	0.04	0.08	0.06	0.00	0.27
13	0.02	0.02	0.00	0.00	0.00
Table S12. Composition of gasoline surveyed in October. All values in the table are expressed as a percentage of weight. This gasoline contains 4.55% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.02	-	0.00	0.00	-
4	1.47	0.69	0.93	0.00	-
5	4.85	8.64	4.40	0.52	-
6	3.14	9.53	3.00	1.89	0.63
7	1.76	6.35	2.14	2.13	11.55
8	0.79	4.13	2.36	1.27	5.09
9	0.22	1.72	0.68	0.80	7.09
10	0.14	1.05	0.30	0.21	3.43
11	0.09	0.40	0.24	0.06	1.10
12	0.05	0.08	0.05	0.00	0.28
13	0.02	0.02	0.00	0.00	0.00
Table S13. Composition of gasoline surveyed in November. All values in the table are expressed as a percentage of weight. This gasoline contains 4.65% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.04	-	0.00	0.00	-
4	3.30	2.76	1.26	0.00	-
5	4.23	7.26	4.58	0.68	-
6	4.19	9.35	3.19	2.35	0.72
7	1.48	6.60	1.93	2.20	10.07
8	0.77	3.10	2.33	1.26	4.34
9	0.20	1.69	0.56	0.80	7.27
10	0.11	0.99	0.25	0.16	3.11
11	0.07	0.31	0.15	0.05	1.09
12	0.04	0.07	0.05	0.00	0.25
13	0.02	0.01	0.00	0.00	0.00
Table S14. Composition of gasoline surveyed in December. All values in the table are expressed as a percentage of weight. This gasoline contains 5.04% ETBE in addition to the ingredients listed in the table.

Carbon number	Alkanes	Iso-alkanes	Alkenes	Cycloalkanes	Aromatics
3	0.04	-	0	0	-
4	3.49	2.65	1.58	0	-
5	3.68	8.49	5.01	0.64	-
6	3.89	9.86	3.46	2.04	0.62
7	1.67	7.42	2.63	2.09	7.6
8	0.35	3.17	0.93	2.04	4.35
9	0.18	1.93	0.39	0.58	6.84
10	0.11	0.95	0.19	0.15	3.07
11	0.07	0.73	0.05	0	0.95
12	0.04	0.23	0.03	0	0.31
13	0.01	0.07	0	0	0
Figure S2. Model validations comparing calculation results with the experimental results of the VOC composition for DBLb from parked vehicles. The left side presents experimental values from a previous study\(^4\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 300–305 K, vehicle W (minicar), and fuel F1 and (b) a temperature of 302–307 K, vehicle W (minicar), and fuel F1. The detailed conditions for each experiment and fuel are presented in Table 1 of Hata et al. (2018)\(^4\) and Table S1.
Figure S3. Model validations comparing calculation results with the experimental results of the VOC composition for DBLb from parked vehicles. The left side presents experimental values from a previous study4 and the right side presents calculations made in this study. The conditions are (a) a temperature of 293–308 K, vehicle W (minicar), and fuel F2 and (b) a temperature of 293–308 K, vehicle W (minicar), and fuel F3. The detailed conditions for each experiment and fuel are presented in Table 1 of Hata et al. (2018)4 and Table S1.
Figure S4. Model validations comparing calculation results with the experimental results of the VOC composition for DBLb from parked vehicles. The left side represents experimental values from a previous study\(^4\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 300–305 K, vehicle E (van), and fuel F1 and (b) a temperature of 302–307 K, vehicle E (van), and fuel F1. The detailed conditions for each experiment and fuel are presented in Table 1 of Hata et al. (2018)\(^4\) and Table S1.
Figure S5. Model validations comparing calculation results with the experimental results of the VOC composition for DBLb from parked vehicles. The left side presents experimental values from a previous study\(^4\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 293–308 K, vehicle E (van), and fuel F1 and (b) a temperature of 293–308 K, vehicle E (van), fuel F1, and a tank filling rate of 20%. The detailed conditions for each experiment and fuel are shown in Table 1 of Hata et al. (2018)\(^4\) and Table S1.
Figure S6. Model validations comparing calculation results with the experimental results of VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study and the right side presents calculations made in this study. The conditions are (a) a temperature of 293 K, vehicle B (compact car), and fuel E10 and (b) a temperature of 308 K, vehicle E (van), and fuel F3. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S7. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study5 and the right side presents calculations made in this study. The conditions are (a) a temperature of 293 K, vehicle E (van), and fuel F2 and (b) a temperature of 293 K, vehicle B (compact car), and fuel F2. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S8. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study\(^5\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 293 K, vehicle E (van), and fuel F3 and (b) a temperature of 293 K, vehicle B (compact car), and fuel F3. The detailed conditions for each experiment and fuel are shown in Tables S1 and S2.
Figure S9. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study\(^5\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 293 K, vehicle E (van), and fuel F3 and (b) a temperature of 293 K, vehicle B (compact car), and fuel F3. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S10. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study5 and the right side presents calculations made in this study. The conditions are (a) a temperature of 308 K, vehicle Car E (van), and fuel E10 and (b) a temperature of 308 K, vehicle B (compact car), and fuel E10. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S11. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study\(^5\) and the right side presents calculations made in this study. The conditions are (a) a temperature of 308 K, vehicle E (van), and fuel F2 and (b) a temperature of 308 K, vehicle B (compact car), and fuel F2. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S12. Model validations comparing calculation results with the experimental results of the VOC composition for RFL in the refueling process. The left side presents experimental values from a previous study5 and the right side presents calculations made in this study. The conditions are (a) a temperature of 308 K, vehicle E (van), and fuel F4 and (b) a temperature of 308 K, vehicle B (compact car), and fuel F4. The detailed conditions for each experiment and fuel are presented in Tables S1 and S2.
Figure S13: Sensitivity of DBLb emissions from parked vehicles to the average temperature and daily temperature change for (a) summer-type gasoline (in August) and (b) winter-type gasoline (in December).
Figure S14. Sensitivity of VOC components from DBLb to the average temperature and temperature change on a day for summer-type gasoline in August.
Figure S15. Sensitivity to of components from DBLb to the average temperature and temperature change on a day for winter-type gasoline in February.
Text S4 Calculations of monthly emissions of DBLb and RFL

Monthly DBLb and RFL emissions for the whole of Japan can be calculated as

Monthly emission of DBLb = \[\sum_j F_b(T_{\text{max},j,\text{month}}, T_{\text{min},j,\text{month}}, N_j, D_b) \] (S6)

Monthly emission of RFL = \[\sum_k F_R(T_{\text{ave},j,\text{month}}, V_{R,j,\text{month}}) \] (S7)

Monthly emission of PL = \[\sum_k F_P(T_{\text{ave},j,\text{month}}, V_{R,j,\text{month}}) \] (S8)

where \(F_b(T_{\text{max},j,\text{month}}, T_{\text{min},j,\text{month}}, N_k, D_b) \) is a function used to calculate the monthly DBLb emission with four variables and \(F_R(T_{\text{ave},j,\text{month}}, V_{R,j,\text{month}}) \) is a function used to calculate the monthly RFL emission with two variables. \(F_P(T_{\text{ave},j,\text{month}}, V_{R,j,\text{month}}) \) is a function used to calculate the monthly puff loss emission with two variables.\(^6\) \(T_{\text{max},j,\text{month}} \) is the monthly average of the highest temperature on a day in prefecture \(j \), \(T_{\text{min},j,\text{month}} \) is the monthly average of the lowest temperature on a day in prefecture \(j \), \(N_j \) is the number of vehicles in prefecture \(j \), \(D_b \) is the average number of days that breakthrough occurs in a month, \(T_{\text{ave},j,\text{month}} \) is the monthly average temperature in each prefecture, and \(V_{R,j,\text{month}} \) is the refueling volume in a month in prefecture \(j \). In the function \(F_R \) and \(F_P \), temperature in the fuel tank is calculated by MOVES equation.\(^8\)
Table S15. Estimated evaporative emission from DBLb and RFL in Tokyo, 2015.

Month	January	February	March	April	May	June
DBLb (t)	32.0	30.0	48.0	49.7	46.6	35.9
RFL (t)	176.0	181.1	210.4	227.0	212.1	212.9

Month	July	August	September	October	November	December
DBLb (t)	41.7	42.5	31.5	31.7	37.4	34.4
RFL (t)	245.9	254.6	218.8	190.8	224.7	199.8
Figure S16: Estimates of total evaporative emissions of DBLb, DBLp, RFL and PL in Japan. Emission of DBLb and RFL were calculated by this study model, PL was calculated by the model of previous study, DBLp was calculated by MOVES2014 equation. ZEV present refers to a scenario in which all vehicle sales until 2035 are the same as those in the current situation, with ZEVs accounting for 0.6% of vehicle sales, and ZEV 50% refers to a scenario in which half of the vehicles sold are gasoline vehicles and half are ZEVs until 2035. In both scenarios, all vehicles sold after 2035 are assumed to be ZEVs. The dotted line shows the total emissions of DBLb, DBLp, RFL and PL in 2020. Values are listed in Table S17.
Figure S17. Prediction of the VOC emission from Japanese stationary sources. The regression equation for prediction is $W = 776,100 \, e^{-0.021(Y - 2009)}$, where W is the emission amount and Y is the year. The VOC emissions inventory from 2010 to 2020 was cited from Official report of VOC emissions from stationary sources in Japan, 2021.\(^9\)
Table S16. Estimates of future DBLb, DBLp, RFL and PL emissions in Japan. Emissions of DBLb and RFL were calculated by the proposed study models, PL was calculated by the model reported by Hata et al. (2020)\(^6\), DBLp was calculated by MOVES2014 equation.\(^8\) ZEV present refers to the scenario in which all vehicle sales until 2035 are the same as those in the current situation, with ZEVs accounting for 0.6 % of vehicle sales. ZEV 50% refers to the scenario in which half of the vehicles sold are gasoline vehicles and half are ZEVs until 2035. In both scenarios, all vehicles sold after 2035 are assumed to be ZEVs.

	2020	2025	2030	2035	2040	2045	2050
	DBLb (t)	DBLp (t)	RFL (t)	PL (t)	Total (t)		
ZEV present							
	8900	4100	69700	5100	87800		
	8883	4092	69567	5090	87633		
	8872	4087	69477	5084	87520		
	8225	3789	64414	4713	81141		
	5660	2607	44323	3243	55833		
	3899	1796	30534	2234	38464		
	2688	1238	21052	1540	26519		
ZEV 50%							
	8900	4100	69700	5100	87800		
	7488	3450	58644	4291	73873		
	6532	3009	51155	3743	64439		
	5559	2561	43534	3185	54839		
	3825	1762	29956	2192	37735		
	2635	1214	20637	1510	25996		
	1817	837	14228	1041	17923		
Figure S18. Comparison of the additional experiments and the results of model calculation for (a) summer grade gasoline (RVP = 58.9 kPa), and (b) winter grade gasoline (RVP = 77.3 kPa). The comparisons were conducted only for C4 and C5 VOCs because of the analytical limitations (less sensitivity of FID to C6 and larger VOCs). The temperature of liquid gasoline was set to 298 K using a water bath.
Table S17. Specifications of vehicles used in previous and this study.

	W	E
Name	**W**	**E**
Manufacture	Suzuki	Honda
Category	Minicar	Mini van
Tank capacity (L)	27	70
Canister volume (L)	0.3	0.9
Displacement (L)	0.65	2.99
SI References

(1) Ministry of the Environment. http://www.env.go.jp/air/osen/voc/e-as/ (in Japanese, accessed July 31, 2021).

(2) Fung, F.; Maxwell, B.; Onboard Refueling Vapor Recovery: Evaluation of the ORVR Program in the United States. International Council on Clean Transportation 2011-2012, https://theicct.org/publications/onboard-refueling-vapor-recovery-evaluation-orvr-program-united-states

(3) Romagnuolo, L.; Yang, R.; Frosina, E.; Rizzoni, G.; Andreozzi, A.; Senatore, A. Physical modeling of evaporative emission control system in gasoline fueled automobiles: A review. Renew. Sust. Energ. Rev. 2019, 116, 109462.

(4) Hata, H.; Yamada, H.; Koukuryo, K.; Okada, M.; Funakubo, C.; Tonokura, K.; Estimation model for evaporative emissions from gasoline vehicles based on thermodynamics. Sci. Total Environ. 2018, 618, 1685-1691.

(5) Yamada, H.; Inomata, S.; Tanimoto, H.; Hata, H.; Tonokura, K.; Estimation of refueling emissions based on theoretical model and effects of E10 fuel on refueling and evaporative emissions from gasoline cars. Sci. Total Environ. 2018, 622-623, 467-473.

(6) Hata, H.; Tanaka, S.; Noumura, G.; Yamada, H.; Tonokura, K. Evaluation of gasoline evaporative emissions from fuel-cap removal after a real-world driving event. Atmosphere 2020, 11, 1110.

(7) NIST Chemistry Webbook, https://webbook.nist.gov/chemistry/ (accessed June 30, 2021)

(8) US EPA, Evaporative Emissions from Onroad Vehicles in MOVES3 (EPA-420-R-20-012, November 2020), https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1010M0C.pdf (accessed April 20, 2022)

(9) Official report of VOC emissions from stationary sources in Japan, 2021. The committee of VOC inventory in Japan (Ministry of the Environment, in Japanese).
https://www.env.go.jp/air/%20air/osen/voc/inventory/2_r2_main.pdf (in Japanese, accessed April 28, 2022).