Seasonal measurement of serum total cholesterol and malondialdehyde in healthy subjects

Mohammad A Al-kataan*, Amani Ibraheem Younis*, Faris A Ahmed**

Departments of *Clinical Pharmacy, College of Pharmacy, **Department of Physiology, Ninevah College of Medicine, University of Mosul, Iraq

Received ٣٠.١.٢٠١٠
Accepted ٠١.١٠.٢٠١٠

ABSTRACT

Objective: To evaluate serum total cholesterol (TC) and malondialdehyde (MDA) in healthy subjects in winter and summer seasons.

Subjects and methods: This study was conducted at the college of Pharmacy, University of Mosul. Twenty healthy subjects, non-smokers, free from any medication were included in this study. Five mL of blood sample from each subject was taken in winter and other blood sample was taken from the same subject in summer and analysed for serum TC and MDA.

Results: No significant difference was noticed between winter and summer for serum TC (٤.٥٦±٠.٩٥ mmol/L versus ٤.٥٤±٠.٦٠ mmol/L). However, serum MDA in summer (١.٩١±٠.٢٢ µmole/L) was significantly higher (P < ٠.١٠) than in winter (٠.٦٩±٠.٦١ µmol/L).

Conclusion: Oxidative stress increases in hot weather. Seasonal serum lipid profile levels depend on life style of the people and their geographical location.

Numerous human physiological and pathophysiological processes have been reported to vary seasonally in both healthy volunteers and people with chronic diseases. Some of these include adrenaline, lipids, blood pressure and lipid peroxidation. Seasonal changes in lipid levels have been found in individuals irrespective of the country, and irrespective of the age, sex, ethnicity, and baseline lipid levels of the study subjects. However, there are contradictory results regarding the pattern of seasonal variation of serum lipid.

Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal redox state of tissues can cause toxic effects through the production of peroxides and free radicals that...
damage all components of the cell, including lipids causing lipid peroxidation. One of the most frequently used biomarkers providing an indication of the overall lipid peroxidation level is the plasma concentration of malondialdehyde. The seasonal changes for lipid peroxidation were documented but the studies were contradictory. This study was conducted to evaluate the seasonal variation of lipid peroxidation and serum lipid in healthy subjects.

Subjects and methods

This study was conducted at the College of Pharmacy, University of Mosul. Twenty apparently healthy subjects (10 males and 10 females) were included in this study. Their ages ranged between 22-42 years (mean±SD: 32±2.1 years). The studied subjects were apparently healthy, non-smokers and free from any medications. Fasting blood sample (5ml) was taken from each subject and analyzed for serum MDA and TC. The blood samples were taken from the same subjects in winter (January) and other blood samples were taken from the same subjects in summer (August). Determination of serum TC was performed by using enzymatic method. Serum MDA was analyzed by using Buege and Aust method. One ml of the reagent (0.8% thiobarbituric acid, and 1% trichloroacetic acid dissolved in 0.1 M HCl to make 1 ml) was added to 0.5 ml of serum. The mixture was mixed and heated in a water bath at 70°C for 1 hour and MDA was measured in the supernatant solution by spectrophotometer at 235 nm. MDA concentration was calculated by the following equation:

$$M_{DA} \text{ conc. (µmol/L)} = \frac{\text{absorbance of test} - \text{absorbance of blank}}{\text{MDA}} \times 1 \times 51 \times 10^{-6} \times 10^{-3}$$

\(\Sigma\text{MDA}\) is equal to molar extension coefficient of MDA=1.66×1.0 nmol/cm. Data are presented by mean±SD and were analyzed by using paired t-test. \(P < 0.05\) was considered significant.

Results

Table 1 shows that no significant difference was noticed between winter and summer for serum TC in healthy subjects. However, serum MDA in the summer (August) was significantly higher \(P < 0.01\) compared with that in the winter (January).

Seasons	Serum TC (mmol/L)	Serum MDA (µmol/L)
Winter	4.50±0.19	0.58±0.19
(January)		
Summer	4.50±0.19	1.19±0.24
(August)		

MDA: malondialdehyde; TC: total cholesterol, *\(P < 0.01\)
Discussion

In this study, serum TC did not change significantly between summer and winter. This result is in agreement with other workers. Many studies found serum lipid in winter is higher than in summer.

The insignificant change of the present study is not known. In monthly measurement of TC, Kelly showed lowest TC in July and started to increase in August. Therefore the monthly measurements of TC would give more information. The long daily time in summer and increase the activity supported the decrease of cholesterol. The cultural life for food intake and the geographical location may play important role for seasonal changes.

In this study, lipid peroxidation was higher in summer than in winter in the subjects. This study is in agreement with other workers. However, smolkova et al showed a clear pattern, with high level of plasma MDA in winter/spring and low levels in summer/autumn.

This study included only subjects which was small sample compared with other studies; however, this study could be considered as preliminary study for further investigation in the hospitals, since the seasonal changes of the biochemical parameters are not taken into the consideration.

Questions such as whether the level of TC in winter has the same risk association with cardiovascular endpoints as a similar value in summer, have not been assessed in research studies.

In conclusion, oxidative stress increases in hot weather. Seasonal serum lipid profile levels depend on life style of the people and their geographical location.

Acknowledgments

The study was supported by the College of Pharmacy, University of Mosul, Iraq.

References

1. Letllier G, Desjarlasis. Study of seasonal variations for eighteen biochemical parameters over a four-year period. Clin Bioch 1989;10:206-11.

2. Donahoo WT, Jensen DR, Shepard TY et al. Seasonal variation in lipoprotein lipase and plasma lipids in physically active, normal weight humans. JCEM 2002;58:5603-8.

3. Smolkova B, Dusinska M, Raslova K, et al. Seasonal changes in markers of oxidative damage to lipids and DNA; correlations with seasonal variation in diet. Mutat Res. 2002;31:155:531-44.

4. Kelly GS. Seasonal variations of selected cardiovascular risk factors. Alternative medicine review 2001;704-6.

5. Fuller JH. Grainger SL, Jarrett RJ, et al. Possible seasonal variation of plasma lipids in a healthy population. Clin Chim Acta 1994;20:79-81.

6. Hadaegh F, Harati H, Zavetian A, et al. Seasonal variability of serum lipids in adults: Tehran lipid and glucose study. Med J Malaysia 1996;21:334-8.

7. Halliwell B. The of oxygen radicals I human disease, with particular reference to the vascular system. Haemostasis 1993;27(suppl 1):118-28.

8. Gutteridge GMC. Lipid peroxidation as biomarkers in tissue damage. Clin chem. 1995;41:1876-88.

9. Gawel S, Wardas M, Niewozok E, et al. Malondialdehyde (MDA) as a
lipid preoxidation maker. Wiad Lek ١١٠٢;٤٠٠٣٦-٦.

١٠-Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol ١٩٧٨;٤٧٢:٢٠٣-١٠.

١١-Stein EA, Myers GL. Lipid, Apolipoproteins and lipoproteins. In; Burtis CA, Ashood ER. Teitz fundamentals of Clinical Chemistry. ٤th Ed. Philadelphia: Sauders ١٩٩٦:٥٧٣-٢٠٤.

١١-Woodhouse PR, Khaw KT, Plummer M. Seasonal variation of serum lipids in an elderly population. Age Aging ١٩٩٢;٢٢:٣٧٢-٨.

١١٢-Gordon DJ, Trost DC, Hyde J, et al. Seasonal cholesterol cycles: the Lipid Research Clinics Coronary Primary Prevention Trial placebo group. Circulation ١٩٨٧;٧٧:٤٢٢١-١٣.

١٤-Morera AL, Intxausti A, Abreu-Gonzalez P. Winter/summer seasonal changes in malondialdehyde formation as a source of variance in oxidative stress schizophrenia research. World J Biol Psych ١٩٩٩;١٠:١٢٧٦-ْ.