Vertex and Edge Connectivity of the Zero Divisor graph $\Gamma[\mathbb{Z}_n]$

B.Surendranath Reddy, Rupali.S.Jain and N.Laxmikanth
surendra.phd@gmail.com, rupalisjain@gmail.com and laxmikanth.nandala@gmail.com

Abstract

The Zero divisor Graph of a commutative ring R, denoted by $\Gamma[R]$, is a graph whose vertices are non-zero zero divisors of R and two vertices are adjacent if their product is zero. In this paper we derive the Vertex and Edge Connectivity of the zero divisor graph $\Gamma[\mathbb{Z}_n]$, for any natural number n. We also discuss the minimum degree of the zero divisor graph $\Gamma[\mathbb{Z}_n]$.

Keywords: Zero divisor graph, Vertex connectivity, Edge connectivity, minimum degree.

1 Introduction

The concept of the Zero divisor graph of a ring R was first introduced by I.Beck[3] in 1988 and later on Anderson and Livingston[2], Akbari and Mohammadian[1] continued the study of zero divisor graph by considering only the non-zero zero divisors. Mohammad Reza and Reza Jahani[5] calculated the energy and Wiener index for the zero divisor graphs $\Gamma[\mathbb{Z}_n]$ for $n = p^2$ and $n = pq$ where p and q are prime numbers. B.Surendranath Reddy, et.al[6] considered the zero divisor graph $\Gamma[\mathbb{Z}_n]$ for $n = p^3$ and p^2q, where p and q are prime numbers and derived the standard form of adjacency matrix, spectrum, energy and Wiener index of. The concepts of the Edge and Vertex connectivity of a graph can be found in [4]. In this paper we extend the concepts of the Edge and Vertex connectivity to the zero divisor graph $\Gamma[\mathbb{Z}_n]$ for any natural number n.

In this article, section 2, is about the preliminaries and notations related to zero divisor graph of a commutative ring R, in section 3, we derive the
Vertex connectivity of a zero divisor graph $\Gamma[Z_n]$, and in section 4, we calculate the Edge connectivity of $\Gamma[Z_n]$. In this section, we also find the minimum degree of the zero divisor graph $\Gamma[Z_n]$.

2 Preliminaries and Notations

Definition 2.1. Zero divisor Graph

Let R be a commutative ring with unity and $Z[R]$ be the set of its zero divisors. Then the zero divisor graph of R denoted by $\Gamma[R]$, is the graph (undirected) with vertex set $Z^*[R] = Z[R] - \{0\}$, the non-zero zero divisors of R, such that two vertices $v, w \in Z^*[R]$ are adjacent if $vw = 0$.

Definition 2.2. Vertex connectivity of a graph

Let G be a simple graph. The Vertex connectivity of G, denoted by $\kappa(G)$, is the smallest number of vertices in G whose deletion from G leaves either a disconnected graph or K_1.

Definition 2.3. Edge connectivity of a graph

Let G be a simple graph. The Edge connectivity of G, denoted by $\kappa_e(G)$, is the smallest number of edges in G whose deletion from G leaves either a disconnected graph or an empty graph.

Definition 2.4. Minimum degree of a graph

Let G be a graph. The Minimum degree of G, denoted by $\delta(G)$, is the minimum degree of its vertices.

3 Vertex connectivity of of the zero divisor graph $\Gamma[Z_n]$

In this section we derive the vertex connectivity of $\Gamma[Z_n]$ for any natural number n. To start with we consider first the zero divisor graph $\Gamma[Z_n]$ for $n = p^2$.

Theorem 3.1. The vertex connectivity of $\Gamma[Z_{p^2}]$ is $p - 2$.

Proof. The vertex set of the zero divisor graph $\Gamma[Z_{p^2}]$ is $A = \{kp | k = 1, 2, 3, ..., p - 1\}$ and so $|A| = (p - 1)$.

As product of any two vertices is zero, they are adjacent and so the corresponding graph is a complete graph on $(p-1)$ vertices that is, $\Gamma[Z_{p^2}] = K_{p-1}$.

As the graph is complete, deletion of one or less than $p - 2$ vertices does not give a disconnected graph. If we delete $p - 2$ vertices then only one vertex
remains and that gives rise to a disconnected graph. Thus the minimum number of vertices to be deleted is \(p - 2 \).

Hence the vertex connectivity of \(\Gamma[Z_{p^2}] \) is \(p - 2 \).

Since \(\kappa(\Gamma[Z_{p^2}]) = p - 2 \), the zero divisor graph \(\Gamma[Z_{p^2}] \) is \(p - 2 \) connected.

Now we consider the case for \(n = p^3 \) in the following theorem.

Theorem 3.2. The vertex connectivity of \(\Gamma[Z_{p^3}] \) is \(p - 1 \).

Proof. consider the zero divisor graph \(\Gamma[Z_{p^3}] \).

Here, we divide the elements (vertices) of \(\Gamma[Z_{p^3}] \) into two disjoint sets namely multiples of \(p \) but not \(p^2 \); and the multiples of \(p^2 \) which are given by

\[
A = \{kp \mid k = 1, 2, 3, ..., p^2 - 1 \text{ and } p \nmid k\}
\]

\[
B = \{lp^2 \mid l = 1, 2, 3, ..., p - 1\}
\]

with cardinality \(|A| = p(p - 1) \) and \(|B| = (p - 1) \).

Here we note that no two elements of \(A \) are adjacent and every element of \(A \) is adjacent with every element of \(B \). Also every element of \(B \) is adjacent with every element of \(A \) and \(B \).

Now if we remove all the vertices of \(A \), the graph is still connected because the remaining vertices are from set \(B \) which are adjacent with each other. Whereas, if we remove all the vertices from \(B \), then the resulting graph with vertices from \(A \) is disconnected as no two elements of \(A \) are adjacent.

Also if we leave even one vertex from \(B \) and remove remaining, the graph is still connected as every element of \(B \) is adjacent with \(A \) and \(B \).

Therefore, the minimum number of vertices to be deleted from \(G \) is the number of vertices of \(B \).

Hence the vertex connectivity \(\kappa(\Gamma[Z_{p^3}]) = |B| = p - 1 \).

Since, \(\kappa(\Gamma[Z_{p^3}]) = p - 1 \), the zero divisor graph \(\Gamma[Z_{p^3}] \) is \(p - 1 \) connected.

With similar arguments, we prove the more general case in the following theorem.

Theorem 3.3. The vertex connectivity of \(\Gamma[Z_{p^n}] \) is \(p - 1 \) \(\forall \ n \geq 3 \).

Proof. We divide the elements (vertices) of \(\Gamma[Z_{p^n}] \) into \(n - 1 \) disjoint sets namely multiples of \(p \), multiples of \(p^2 \), ... multiples of \(p^{n-1} \), given by

\[
A_1 = \{k_1p \mid k_1 = 1, 2, 3, ..., p^{n-1} - 1 \text{ and } p \nmid k_1\}
\]

\[
A_2 = \{k_2p^2 \mid k_2 = 1, 2, 3, ..., p^{n-2} - 1 \text{ and } p \nmid k_2\}
\]

\[
A_i = \{k_ip^i \mid k_i = 1, 2, 3, ..., p^{n-i} - 1 \text{ and } p \nmid k_i\}
\]
Among the above, the smallest set is A_{n-1} of order $p-1$. Now if we leave, even one vertex from A_i for $i = 1, 2, \ldots, n-1$ and remove remaining, the graph is still connected because every element of A_i is adjacent with A_{n-1}.

Now if we delete all the vertices of A_{n-1}, we get a disconnected graph because the elements of A_1 are adjacent with only the elements of A_{n-1}, these vertices will become isolated. Therefore the minimum number of vertices to be deleted to make the graph disconnected is $|A_{n-1}| = p-1$.

Thus vertex connectivity of $\Gamma[Z_{p^n}]$ is $p-1$. Since, $\kappa(\Gamma[Z_{p^n}]) = p-1$, the zero divisor graph $\Gamma[Z_{p^n}]$ is $p-1$ connected.

Now before going to the vertex connectivity of $\Gamma[Z_n]$ for any $n \geq 1$, we first work into the vertex connectivity of $\Gamma[Z_m]$ where $m = p^\alpha q^\beta$.

Theorem 3.4. The vertex connectivity of $\Gamma[Z_{p^\alpha q^\beta}]$ is $\min\{p-1, q-1\}$.

Proof. Here, we divide the elements(vertices) of $\Gamma[Z_m]$ into disjoint sets namely multiples of p^i, multiples of q^j and multiples of $p^i q^j$ given by

\[
A_{p^i} = \{r_i p^i \mid r_i = 1, 2, 3, \ldots, p^i - 1 \text{ and } p \nmid r_i\}
\]

\[
A_{q^j} = \{s_j q^j \mid s_j = 1, 2, 3, \ldots, q^j - 1 \text{ and } q \nmid s_j\}
\]

\[
A_{p^i q^j} = \{t_{ij} p^i q^j \mid t_{ij} = 1, 2, 3, \ldots, p^i q^j - 1 \text{ and } p \nmid t_{ij} \text{ and } q \nmid t_{ij}\}
\]

The smallest set among the above is either $B = A_{p^\alpha q^\beta-1}$ or $C = A_{p^{\alpha-1} q^\beta}$.

Suppose $p < q$.

Here we note that every element of A_{p^i} is adjacent with each and every element of C.

So, if we delete all the elements of C then the graph becomes disconnected as the vertices of A_p becomes isolated.

Therefore the minimum number of vertices to be deleted to make the graph disconnected is $p-1$.

Similarly, we get that if $q < p$, then the minimum number of vertices to be deleted to make the graph disconnected is $q-1$.

Hence the vertex connectivity of $\Gamma[Z_m]$ is $\min\{p - 1, q - 1\}$.

In the next theorem we derive the vertex connectivity of $\Gamma[Z_n]$ for any natural number n.

Theorem 3.5. The vertex connectivity of $\Gamma[Z_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}$ is $\min\{p_1 - 1, p_2 - 1, \ldots, p_k - 1\}$.
Proof. consider a zero divisor graph $\Gamma[\mathbb{Z}_n]$ where $n = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}$.

Here, we divide the elements (vertices) of $\Gamma[\mathbb{Z}_n]$ into the corresponding disjoint sets of product of all possible powers of given primes like set of powers of p_j^j, set of product of powers of $p^i p^e$ and so on.

Among these sets, we consider the sets of the form $A_i = \{m(p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_i^{\alpha_i-1} \ldots p_k^{\alpha_k}) | m \not\divides p_j \text{ for all } j\}$ with $|A_i| = (p_i - 1)$.

Let $r = \min\{|A_1|, \ldots, |A_k|\} = \min\{p_1 - 1, \ldots, p_k - 1\}$.

Suppose $r = |A_j| = p_j - 1$, for some j.

Now consider the set $A_{tp_j} = \{tp_j | p_j \not\divides t\}$.

Since the elements of A_{tp_j} are adjacent only with the vertices of A_j, so deletion of all vertices of A_j leaves the elements of A_{tp_j} isolated.

Thus the graph is disconnected if we remove all the elements of A_j.

Therefore the minimum number of vertices to be deleted to make the graph disconnected is $r = |A_j|$.

Thus Vertex connectivity of $\Gamma[\mathbb{Z}_n]$ is $r = \min\{p_1 - 1, p_2 - 1, \ldots, p_k - 1\}$.

\section{Edge connectivity of the zero divisor graph $\Gamma[\mathbb{Z}_n]$}

In this section we discuss the edge connectivity of the zero divisor graph $\Gamma[\mathbb{Z}_n]$. To start with we consider $n = p^2$.

\textbf{Theorem 4.1.} The Edge connectivity of $\Gamma[\mathbb{Z}_{p^2}]$ is $p - 2$.

\textbf{Proof.} The vertex set of the zero divisor graph $\Gamma[\mathbb{Z}_{p^2}]$ is $A = \{kp | k = 1, 2, 3, \ldots, p - 1 \text{ and } k \not\divides p\}$ and so $|A| = (p - 1)$.

As the graph is complete, every vertex is incident with $(p - 2)$ edges.

so removing this $(p-2)$ edges with respect to a fixed vertex v, the graph becomes disconnected as v becomes isolated.

If we remove fewer than $(p - 2)$ edges say $(p - 3)$, then as the vertex v is incident with every edge, the vertex v is not isolated so that the graph is still connected.

Thus the minimum number of edges to be deleted is $p - 2$.

Hence the edge connectivity of $\Gamma[\mathbb{Z}_{p^2}]$ is $\kappa_e(\Gamma[\mathbb{Z}_{p^2}]) = p - 2$.

Since $\kappa_e(\Gamma[\mathbb{Z}_{p^2}]) = p - 2$, the zero divisor graph $\Gamma[\mathbb{Z}_{p^2}]$ is $(p - 2)$- edge connected.

\textbf{Theorem 4.2.} The Edge connectivity of $\Gamma[\mathbb{Z}_{p^n}]$ is $p - 1 \ \forall \ n \geq 3$.

\textbf{Proof.} We group the elements (vertices) of $\Gamma[\mathbb{Z}_{p^n}]$ into (n-1) disjoint sets namely multiples of p, multiples of p^2 and so on multiples of p^{n-1} given
by
\[A_{p^i} = \{ r_ip^i \mid r_i = 1, 2, 3, \ldots, p^i - 1 \text{ and } p \nmid r_i \} \]
\[A_{q^j} = \{ s_jq^j \mid s_j = 1, 2, 3, \ldots, q^j - 1 \text{ and } q \nmid s_j \} \]
\[A_{p^i,q^j} = \{ t_{ij}p^i q^j \mid t_{ij} = 1, 2, 3, \ldots, p^i q^j - 1 \text{ and } p \nmid t_{ij} \text{ and } q \nmid t_{ij} \}. \]

with cardinality \(|A_i| = (p^{\alpha - i} - 1) \) for \(i = 1, 2, \ldots, n - 1 \).
Clearly, the smallest set among the above is \(A_{n-1} \) of length \(p - 1 \).
Here \(A_1 \) is the only set in which there exists a vertex (in fact every vertex) which is incident with only \((p - 1) \) edges because any vertex in \(A_i \) is adjacent with the elements of the sets \(A_{n-i}, A_{n-i+1}, \ldots, A_{n-1} \) and so with \(p^i + p^{i-1} + \ldots + p - i \) edges.
Here our idea is to identify a set whose elements are having edges with only \(A_{n-1} \), and the set \(A_1 \) will do the work for us.
Thus if we remove all the edges incident with a vertex \(v \) in \(A_1 \), which are \((p - 1) \) in number as the vertices of \(A_1 \) are adjacent with only the elements of the set \(A_{n-1} \), giving rise to a disconnected graph.
If we remove fewer than \((p-1) \) edges say \((p-2) \) then the graph is still connected.
Therefore the minimum number of edges to be removed is \(p - 1 \).
Thus the edge connectivity of \(\Gamma[Z_{p^n}] \) is \(\kappa_e(\Gamma[Z_{p^n}]) = p - 1 \).
Since \(\kappa_e(\Gamma[Z_{p^n}]) = p - 1 \), the zero divisor graph \(\Gamma[Z_{p^n}] \) is \((p - 1) \)-edge connected.

Now we move to the general case: the Edge connectivity of \(\Gamma[Z_n] \) for \(n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_k^{\alpha_k} \)

Theorem 4.3. The Edge connectivity of \(\Gamma[Z_n] \) for \(n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_k^{\alpha_k} \) is \(r \).
That is \(r \)-edge connected where \(r = \min\{p_i - 1\} \) for \(i = 1, 2, \ldots, k \).

Proof. We group the vertex set and choose the suitable set \(A_j \) as in Theorem 3.5. Since the vertices of \(A_{p^i} \) are adjacent only with the vertices of \(A_j \), the deletion of all edges incident with the any vertex of \(A_{p^i} \) leaves that vertex isolated and hence the graph becomes disconnected. Also in all other possible combinations of \(A_{p^i} \) and \(A_j \) the graph is still connected.
Therefore, the minimum number of edges to be deleted to make the graph disconnected is \(r = |A_j| \).
Thus edge connectivity of \(\Gamma[Z_n] \) is \(\kappa_e(\Gamma[Z_n]) = r = \min\{p_1 - 1, p_2 - 1, \ldots, p_k - 1\} \).

Remark 4.4. By observing all the results from the sections 3 and 4, we conclude that vertex connectivity is same as the edge connectivity of the zero divisor graph \(\Gamma[Z_n] \), i.e. \(\kappa(\Gamma[Z_n]) = \kappa_e(\Gamma[Z_n]) \).
Theorem 4.5. The minimum degree of the zero divisor graph $\Gamma[Z_p^n]$ is equal its edge connectivity. Therefore $\kappa(\Gamma[Z_n]) = \kappa_e(\Gamma[Z_n]) = \delta(\Gamma[Z_n])$.

Proof. Let the edge connectivity of $\Gamma[Z_p^n]$ is r. Then the minimum number of edges that are incident to any arbitrary vertex in the graph is r. Also there exists a set (as proved in the previous results) in which degree of every vertex is r and hence the minimum degree of $\Gamma[Z_n]$ is $\delta(\Gamma[Z_n]) = r$. Hence $\kappa(\Gamma[Z_n]) = \kappa_e(\Gamma[Z_n]) = \delta(\Gamma[Z_n])$.

References

[1] S.Akbari, A.Mohammadian, On the Zero divisor graph of a commutative rings, J.Algebra.2004;274:847-855.

[2] D.F.Anderson and P.S.Livingston, The Zero divisor graph of Commutative ring, J.Algebra 217(1999),no.2,434-447.

[3] I.Beck, Coloring of Commutative rings, J.Algebra 116(1988), no.1.208-226.

[4] John Clark and Derek Allan Holton, A First Look at Graph theory, Allied Publishers Ltd.

[5] Mohammad Reza Ahmadi and Reza Jahani-Nezhad, Energy and Weiner Index of Zero divisor graphs, IJMC vol.2 no.1(2011), pp45-51.

[6] B.Surendranath Reddy, Rupali S Jain and Laxmikant Nandala, Spectrum and Wiener index of the zero divisor graph $\Gamma[Z_n]$, AKCE International Journal of Graphs and Combinatorics (communicated on 11 Dec 2017) Ref No: AKCEJ_2017_259.