Lysosomal Acid Lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.

Lysosomal acid lipase (LAL,2 annotated as LIPA) exhibits hydrolytic activity at acidic pH and is known to hydrolyze cholesteryl esters (CEs) and triglycerides (TGs) (1, 2). The essential role of LAL in CE and TG catabolism is evident from the phenotype of LAL-deficient mice and humans (3–5). LAL-deficient mice exhibit a massive accumulation of CEs and TGs in multiple tissues, most prominently in the liver, spleen, and small intestine. Moreover, the severity of CE and TG accumulation progresses with age, and mice die at the age of 7–8 months (4). Humans carrying mutations in LIPA, which cause partial or complete inactivation of the protein, exhibit phenotypes known as CE storage disease or Wolman disease, respectively (3, 6). These patients also show massive accumulation of CEs and TGs in the liver and small intestine. In contrast to mice, however, complete inactivation of LAL in humans (patients suffering from Wolman disease) leads to an infantile-onset phenotype, and affected individuals usually die within the first month of life. Individuals with residual LAL activity (patients suffering from CE storage disease) show a milder phenotype (similar to that of LAL knockout mice), characterized by CE deposition in visceral tissues, hepatomegaly, and premature death in adulthood.

Despite the severe defect in CE and TG metabolism of LAL-deficient mice and humans, no defect in vitamin A metabolism has been reported. In fact, humans suffering from CE storage disease or Wolman disease show normal plasma retinol (ROH) levels (7). Because intestinal chylomicrons transport TGs, CEs, and also REs, one would expect that a defect in the lysosomal system would not only compromise cholesterol and fatty acid but also vitamin A metabolism.

In this study, we investigated whether REs per se are a substrate for LAL. We found that murine LAL (mLAL) hydrolyzes REs. Furthermore, pharmacological inhibition of LAL in the human hepatocyte cell line HepG2 led to an accumulation of REs in endosomal/lysosomal-enriched fractions, suggesting that LAL is limiting for the clearance of endocytosed REs. Unexpectedly, LAL-deficient mice showed decreased RE content in the liver but increased RE accumulation in the duodenum and jejunum. Furthermore, upon RE gavage, LAL-deficient mice exhibited reduced post-prandial RE levels in the circulation, indicating that LAL is required for efficient availability of nutritional vitamin A. Despite compromised vitamin A availability, LAL-deficient mice exhibited elevated circulating ROH levels, arguing against a vitamin A deficiency of these mice.

Experimental Procedures

Materials—Essentially fatty acid-free BSA was obtained from Sigma-Aldrich (St. Louis, MO). 1,2-diheptadecanoyl-sn-glycero-3-phosphatidylcholine, 1,2-dinonadecanoyl-sn-glycero-3-phosphatidylcholine, and retinyl acetate were obtained from

Received for publication, February 25, 2016, and in revised form, June 14, 2016. Published, JBC Papers in Press, June 27, 2016, DOI 10.1074/jbc.M116.724054

Lukas Grumet,1 Thomas O. Eichmann,1,‡ Ulrike Taschler,3 Kathrin A. Zierler,3 Christina Leopold,1 Tarek Moustafa,6 Branislav Radovic,5 Matthias Romaug,6 Cong Yan1, Hong Du1, Guenter Haemmerle1, Rudolf Zechner4, Peter Fickert4, Dagmar Kratky1, Robert Zimmermann1, and Achim Lass1,‡

From the 1Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria, the 2Institute of Molecular Biology and Biochemistry and 3Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria, the 4Department of Pathology and Laboratory Medicine and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, and **BioTechMed, Graz 8010, Austria

1 To whom correspondence should be addressed: Institute of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria. Tel.: 43-316-380-1900; Fax: 43-316-380-9016; E-mail: achim.lass@uni-graz.at.
2 The abbreviations used are: LAL, lysosomal acid lipase; CE, cholesteryl ester; TG, triglyceride; ROH, retinol; mLAL, murine lysosomal acid lipase; RP, retinyl palmitate; FD, fluorescence detection; PC, phosphatidylcholine; PI, phosphatidylinositol; BMP, sn-1,sn-3 bis(monoacylglycerol) phosphate; mHSL, murine hormone-sensitive lipase; LRAT, lecithin:retinol acyltransferase; RS, retinyl stearate; M/M, moles per moles.
3 This work was supported by Grants P25193 (to A. L.), P21296 (to R. Zimmermann), P20700 (to D. K.), DK Molecular Enzymology W901 (to R. Zimmermann and R. Zechner), DK Metabolic and Cardiovascular Disease W1226 (to D. K.), and F30 SB Lipotox (to R. Zechner), funded by the Austrian Science Fund (FWF). The authors declare that they have no conflicts of interest with the contents of this article.
4 This work was supported by the Austrian Science Fund (FWF). The authors declare that they have no conflicts of interest with the contents of this article.
Lysosomal Acid Lipase Hydrolyzes Retinyl Esters

Larodan Fine Chemicals AB (Stockholm, Sweden) and Sigma-Aldrich and used as internal standards. Retinyl palmitate (RP) and cholesteryl oleate were purchased from Sigma-Aldrich. Lalistat 2 was a kind gift from Dr. Paul Helquist (Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN).

Animals—LAL knockout mice were generated as described previously (4, 5). LAL knockout mice originated from a mixed 129Sv and C57Bl/6 mice for 10 generations. Mice were obtained from a heterozygous breeding stock. Littermates were genotyped by PCR method of the WT and targeted allele as described previously (5). WT and LAL-deficient mice were maintained on a regular light-dark cycle (12 h light, 12 h dark) and kept in a clean environment with ad libitum access to food (Altromin 1324, 4% fat and 19% protein, 15,000 IU vitamin A/kg (as retinyl acetate), Altromin Spezialfutter GmbH & Co. KG, Lage, Germany) and water. Age-matched, 3-, 6.5-, and 8-month-old male and female mice were used for all experiments. Mice were sacrificed by cervical dislocation. All experiments were approved by the Federal Ministry of Science, Research, and Economy and local ethic committees and were in accordance with the Council of Europe Conventions.

cDNA Cloning of Recombinant His-tagged Proteins—Poly(A)+ RNA was isolated from murine liver using the Oligoexcel mRNA mini kit from Qiagen GmbH (Hilden, Germany). Liver mRNA was transcribed into first-strand cDNA using the SuperScript® reverse transcriptase protocol (Invitrogen). Second-strand cDNA was obtained by addition of Escherichia coli DNA ligase buffer, E. coli DNA polymerase, E. coli DNA ligase (all chemicals from New England Biolabs, Inc., Beverly, MA), and deoxyribonucleotide triphosphates (Carl Roth GmbH, Karlsruhe, Germany) to the mixture and subsequent incubation at 16 °C for 3 h. Thereafter, T4 DNA polymerase (New England Biolabs, Frankfurt am Main, Germany) was added and further incubated for 20 min to give blunt-end cDNA. The coding sequences were amplified by PCR from liver cDNA using Phusion® DNA polymerase (New England Biolabs). Cloning of mHSL into the mammalian expression vector pcDNA4/HisMax C (Invitrogen) has been described previously (8). The mLAL coding sequence was subcloned into the pcDNA4/HisMax expression vector by overlap extension PCR to obtain a C-terminal His-tagged fusion protein instead of the N-terminal His tag of the vector. In brief, the upstream part of the vector backbone without the His tag and the mLAL coding sequence were PCR-amplified from the pcDNA4/HisMax C plasmid containing the mLAL coding sequence. Overlapping regions and the 3' end-located His tag were introduced by primers. The newly synthesized PCR fragment and the expression plasmid pcDNA4/HisMax C were digested with SacI/Xhol and ligated. The following primers were used: SP163fw (SacI), 5’ GCC GAG CTC TAA TAC GAC TCA CTA TAG GGA GAC 3’; SP163/LALrv, 5’ GAA CAC CAG GGC CTG GAG TTG CAT GGT TTC GGA GGC CGT CCG G 3’; SP163/LALfw, 5’ C CGG ACC GCC TCC GAA ACC ATG CAA CTC CAG GGC CTG GTG TCT TCC 3’; and LALrv (Xhol), 5’ CTC GAG TCA ATG ATG ATG ATG ATG GAG GTA TTT CCT CAT TAG ACT GAT 3’. A control pcDNA4/HisMax vector encoding ß-galactosidase (LacZ) was provided by the manufacturer (Invitrogen).

Measurement of in Vitro RE Hydrolyase Activity—For assessment of RE hydrolyase activity of recombinant proteins, 100 μl of COS-7 cell lysates (100 μg of cell protein) containing overexpressed recombinant proteins and 100 μl of substrate were incubated at 37 °C for 60 min. The reaction was terminated by addition of 100 μl of methanol containing 1.5 μM retinyl acetate as internal standard and 1 ml of hexane. Then the samples were vigorously vortexed and centrifuged at 5000 × g for 5 min at 4 °C. The upper hexane phase (800 μl) was collected and dried under nitrogen. Samples were dissolved in 200 μl of chloroform/methanol (2/1, v/v) and analyzed by HPLC fluorescence detection (FD) (see “Preparation of Tissue Homogenates and Quantification of Neutral Lipids by HPLC FD”). Blank incubation was performed with 100 μl of solution A under identical conditions and used for background correction. The RE substrate contained 600 μM retinyl palmitate and was emulsified by sonication (Virsonic 475, Virtis, Gardiner, NJ). Nuclei and unbroken cells were removed by centrifugation at 1000 × g and 4 °C for 5 min, and lysates were stored at −20 °C until further use. Expression of His-tagged proteins was assessed by Western blotting.

For the measurement of liver acid RE hydrolyase activity, perfused liver sections of ad libitum-fed mice, 3 months of age, were homogenized in solution A using an UltraTurrax (IKA, Janke & Kunkel, Germany) and adjusted to a protein concentration of 2 mg/ml. Then 75 μl of the prepared lysates (150 μg of protein) was delipidated, and proteins were precipitated by addition of 600 μl of ice-cold acetone. Thereafter, precipitated proteins were pelleted by centrifugation at 20,000 × g at 4 °C for 30 min. Pelleted proteins were dried under a stream of nitrogen gas and dissolved in 100 μl of solution A. For quantification of RE hydrolyase activity, 100 μl of substrate was added and incubated for 60 min at 37 °C. Blank incubations were performed with 100 μl of solution A under identical conditions and 100 μl of delipidated liver proteins with sodium acetate buffer (pH 4.5) without substrate to correct for residual endogenous ROH release. The substrate contained 600 μM retinyl palmitate and was emulsified...
feld (as above) in 100 mm sodium acetate buffer (pH 4.5) containing 300 μM PC/PI (3/1, M/M) and 300 μM BMP.

Measurement of in Vitro CE and TG Hydrolase Activity—The TG hydrolase activity assay was performed as described previously (8) with some modifications. In brief, 100 μl of COS-7 cell lysates (30 μg of cell protein) was incubated with 100 μl of substrate for 60 min at 37 °C. Blank incubation was performed with 100 μl of solution A under identical conditions and used for background correction. Reactions were terminated by addition of 3.25 ml of methanol/chloroform/n-heptane (10/9/7, v/v/v) and 1 ml 0.1 m potassium carbonate (pH 10.5). After vigorous mixing, phase separation was achieved by centrifugation at 1000 × g for 10 min. The radioactivity in 200 μl of the upper aqueous phase was determined by liquid scintillation counting. The TG substrate contained 1.67 mM triolein and 1.25 μCi [3H]triolein (per reaction) and was emulsified with 300 μM PC/PI (3/1, M/M) and 300 μM BMP in 100 mM potassium phosphate buffer (pH 7.4) or 100 mM sodium acetate buffer (pH 4.5), respectively.

The CE hydrolase activity assay was performed as described above for the TG hydrolase activity assay. The CE substrate contained 1 mM cholesterol oleate and 1.25 μCi [3H]cholesterol oleate (per reaction) and was emulsified with 90 μM PC/PI (3/1, M/M) and 90 μM BMP in 100 mM potassium phosphate buffer (pH 7.4) or 100 mM sodium acetate buffer (pH 4.5), respectively.

Preparation of RE-enriched Lipoproteins—Blood (200 ml) was collected from a 29-year-old healthy male volunteer, and EDTA (5 mm) plasma was prepared. Isolation of TG-rich lipoproteins was performed according to a standard protocol. In brief, plasma was adjusted to a density of d = 1.21 using potassium bromide and overlaid with a discontinuous salt gradient (sodium chloride) with densities of d = 1.063, d = 1.019, and d = 1.006. Samples were centrifuged for 24 h at 40,000 rpm and 4 °C using a Beckman Optima L-90K centrifuge and a SW41 rotor (Beckman Instruments Inc., Palo Alto, CA). After centrifugation, TG-rich lipoproteins mostly consisting of chylomicrons and chylomicron remnants were collected from the top of the tube and stored at −20 °C for further use. For RE enrichment, 300 μl of isolated lipoproteins was mixed with 40 μmol of retinyl palmitate (Sigma-Aldrich) and brought to a total volume of 2 ml using 10 μl phosphate-buffered saline. Then the mixture was sonicated three times for 30 s with an amplitude of 1.06 (Virsonic 475, Virtis).

Cultivation of HepG2 Cells and Loading with Human TG-rich Lipoproteins—HepG2 cells (ATCC, HB-8065TM) were seeded in Greiner CELLSTAR® 6-well cell culture plates (Sigma-Aldrich) and incubated with DMEM (Gibco, Invitrogen), supplemented with 10% fetal calf serum and antibiotics, under standard cell culture conditions. To inhibit LAL activity, cells were incubated with 10 μM LAL inhibitor Lalstat 2 for 2 h as described previously (11). As a control, cells were incubated with DMSO. Thereafter, RE-enriched lipoproteins were added to the incubation medium to give a final concentration of 10 μM RE, and cells were further incubated for 6 h. Cells were washed twice with Dulbecco’s phosphate-buffered saline and harvested using a cell scraper, and intracellular retinoid content was analyzed by HPLC FD as described below.

Isolation of LAMP1/RAB7-rich Fractions—HepG2 cells were harvested using a cell scraper and disrupted in buffer A containing 30% iodixanol (OptiPrep™, Axis-Shield PoC AS, Kjelsåsveien, Norway) using a standard Dounce homogenizer. Disrupted cells were transferred to a centrifugation tube and overlaid with a discontinuous iodixanol gradient (prepared in solution A) with densities of 20%, 15%, 10%, and 0% iodixanol. Samples were centrifuged for 2 h at 40,000 rpm and 4 °C using a Beckman Optima L-90K centrifuge and an SW41 rotor (Beckman Instruments Inc.). Bands were collected from the top of each density interphase (F1, 0–10%; F2, 10–15%; F3, 15–20%) and analyzed by Western blotting analysis using ras-associated protein 7 (Rab7)/lysosomal-associated membrane protein 1 (LAMP1) and protein disulfide isomerase as marker proteins for endosomes/lysosomes and the endoplasmic reticulum, respectively.

Preparation of Tissue Homogenates and Quantification of Neutral Lipids by HPLC FD—Various tissues (100–300 μg of protein) of ad libitum-fed LAL knockout mice and WT littermates were homogenized in solution A using an Ultra Turrax (IKA, Janke & Kunkel). Lipids were Folch-extracted. Briefly, lipids were extracted twice with chloroform/methanol (2/1, v/v) containing 1% acetic acid and 500 nm butylated hydroxyl toluene. Lipid extracts were dried under a stream of nitrogen and stored at −20 °C. Prior to analysis, dried lipids were dissolved in chloroform/methanol (2/1, v/v). TG, PC, free cholesterol, and CE were separated on a Betasil® diol column (100 × 4.6 mm, 5 μm, Thermo Fisher Scientific, Waltham, MA) using a ternary gradient solvent system and detected by an HPLC evaporative light scattering detector (16). The HPLC evaporative light scattering detector consisted of a precooled sample manager (at 4 °C), pump, injector, and column oven (at 40 °C), all of the 1100 series (Agilent, Santa Clara, CA), and were coupled to a Sedex 85 evaporative light scattering detector (Sedere, Alfortville, France). Data were analyzed using Chemstation software (B 04.01, Agilent). Neutral lipid standards were prepared as 1 mg/ml stock solutions in chloroform/methanol (2/1, v/v). Calibration curves were measured from 2.7–350 μg/ml.

For retinoid analyses, tissue homogenates were mixed with an equal amount of methanol containing 1.5 μM all-trans retinyl acetate (Sigma-Aldrich) as internal standard. Retinoids were extracted twice using hexane, as described previously (16). Organic phases were combined and dried under a stream of nitrogen and dissolved in chloroform/methanol (2/1, v/v). Retinoids were separated on a YMC-Pro C18 (150 × 4.6 mm, S-5 μm, 12 nm, YMC Europe GmbH, Dinslaken, Germany) using a gradient solvent system (flow, 1 ml/min; gradient, 1–5 min 100% methanol, 5–14 min 60%/40% methanol/toluene, and 14–18 min 100% methanol) and detected at excitation 325 nm/emission 450 nm. The HPLC consisted of a Waters e2695 separation module, including a column oven (at 25 °C) and a Waters 2475 fluorescence detector (Waters Corp., Milford, MA). Data were analyzed using Empower 3 chromatography data software (Waters Corp.).

Measurement of Plasma ROH and Retinol Binding Protein 4 (RBP4) levels—Blood of ad libitum-fed 8-month-old female mice was collected, and EDTA plasma was prepared. For determination of ROH levels, 40 μl of plasma was mixed with 100 μl
of methanol containing retinyl acetate (1.5 μM) as internal standard, extracted into hexane, and analyzed by HPLC FD (as above). Plasma RBP4 levels were assessed by Western blotting.

Administration of Oral RE Gavage and Measurements of Post-prandial Plasma Retinoid Levels—Female mice, 8 months of age, were weighed and received gavage of 300 IU of vitamin A equivalents (retinyl palmitate in olive oil) per gram of body weight using a standard gavage needle. Before and 2 h after gavage, blood samples were collected from the vena facialis, and EDTA plasma was prepared. For retinoid measurements, 40 μl of plasma was extracted into hexane and analyzed using HPLC FD (as above).

Analysis of mRNA Expression by Quantitative Real-time PCR—Total RNA of livers was extracted and reverse-transcribed into cDNA. Quantitative real-time PCR for lecithin-retinol acyltransferase (LRAT) was performed as described previously (8). Target gene expression was calculated by the ΔΔCt method using the ribosomal gene 36B4 as a housekeeping gene. The following primer pairs for detection of LRAT and 36B4 mRNA were used, respectively: LRAT-fw, 5’ CCG TCC TTA TGA AAT CAG CTC 3’; LRAT-rev, 5’ ATG GCC GAC ACG GTT TTC C 3’; 36B4-fw, 5’ GCT TCA TTG TGG GAG CAG ACA 3’; and 36B4-rev, 5’ CAT GGT GTT CTT GCC CAT CAG 3’.

Western Blotting Analysis—Proteins of cell extracts, tissue homogenates, and murine plasma (1/40 dilution) were separated by 10% SDS-PAGE and blotted onto polyvinylidene fluoride membranes (Carl Roth GmbH, Karlsruhe, Germany). The blotted membranes (Carl Roth GmbH, Karlsruhe, Germany) were incubated with primary antibodies, signals were visualized by ECL detection (ECL 2094S, respectively, Cambridge, UK). After binding of the secondary anti-mouse or anti-rabbit horseradish peroxidase-labeled antibody, bands were detected by autoradiography. Endosomal/lysosomal fractions were identified as LAMP1/RAB7-positive fractions by Western blotting (Fig. 3 inset). Retinoid analyses revealed that the LAMP1/RAB7-enriched fraction F1 showed a trend toward increased Res, whereas fraction F2 showed an ~3-fold increased RE content in cells treated with Lalistat 2 compared with control cells (DMSO) (Fig. 3B). In summary, these results suggest that LAL is required for efficient lysosomal clearance of REs.

LAL Is the Major Acid RE Hydrolase in Murine Liver—To assess to which extent LAL contributes to acid RE hydrolase activity in tissues, we precipitated and delipidated proteins of liver homogenates from WT and LAL-deficient mice using aceton. Then proteins were reconstituted in aqueous solution and incubated with RP as substrate. To assess LAL-dependent activity, we also added Lalistat 2 to the incubation mixture. We found that liver protein preparations of LAL-deficient mice exhibited 85% reduced acid RE hydrolase activity compared with liver preparations of WT mice (Fig. 4). Addition of Lalistat 2 to the assay mixtures completely inhibited acid RE hydrolase activity in liver preparations of WT mice, whereas no effect was observable in liver preparations of LAL-deficient mice (Fig. 4).
These results clearly indicate that LAL is responsible for the majority of acid RE hydrolase activity in the liver.

LAL-deficient Mice Exhibit Decreased RE Content in the Liver—To get first insights into the physiological role of LAL in RE turnover, we determined ROH and RE content in livers of 3-month-old WT and LAL-deficient mice. Against expectations, we found that livers of LAL-deficient mice exhibit ~70% decreased RE content compared with that of WT littermates, irrespective of being normalized to milligram of protein of tissue homogenate (Fig. 5, left half) or to gram of tissue weight (Fig. 5, right half). Decreased retinoid content in livers of LAL-deficient mice may be caused by decreased deposition of REs in the liver because of impaired vitamin A supply.

LAL-deficient Mice Accumulate REs in the Duodenum and Jejunum—The lipid phenotype of LAL-deficient mice is known to progress with age (4, 12). Because we speculated that this may also be the case for disturbances in vitamin A homeostasis, we measured neutral lipid (including RE) and phospholipid contents in various tissues of 6.5-month-old LAL-deficient mice and WT littermates. The contents of the main phospholipid class, PC, were comparable between WT and LAL-deficient mice in all investigated tissues (Fig. 6). More importantly, and in accordance with previous reports (4, 5, 12), CE content was increased manyfold (up to 50-fold) in all investigated tissues of LAL-deficient mice (Fig. 6, A–E). In contrast, free cholesterol concentration was virtually unchanged (Fig. 6, A–E). TG and

FIGURE 1. mLAL exhibits RE hydrolase activity, which is stimulated by BMP. COS-7 cells were transfected with pcDNA4/HisMax plasmids encoding mLAL and β-galactosidase (LacZ) as a control. After 48 h, cells were collected, and lysates (1000 × g supernatant) were prepared. prot, protein. A, expression of His-tagged proteins was verified by Western blotting using α-His antibody. B, lysates were incubated with RP emulsified with PC/PI in sodium acetate (pH 4.5). Lipids were extracted into hexane, and ROH content was quantified by HPLC. C, as in B, but increasing concentrations of BMP were added to the substrate. D and E, lysates were incubated for various times as indicated (D), or various amounts of lysates were incubated for 1 h with substrates as in A but containing 300 μM BMP (E). Then the ROH content was determined by HPLC FD, and the rates of hydrolysis were calculated. Data are mean ± S.D. of triplicate determination and are representative of three independent determinations. Statistically significant differences were determined in comparison with control LacZ by Student’s unpaired t test (two-tailed). *, p < 0.05.
RE contents were significantly increased in the duodenum and jejunum, whereas a trend toward increased TG and RE content was observed in the ileum (Fig. 6, A–C). Increased RE content in the duodenum of LAL-deficient mice was accompanied by decreased ROH levels (Fig. 6A). In the lung of LAL-deficient mice, CE content was increased whereas that of REs was decreased. All other lipid classes in the lung were comparable between both genotypes (Fig. 6D). In accordance with a previous report (4), we observed an enlarged mesenteric lymph node in LAL-deficient mice that contained 0.05 and 0.6 nmol/mg protein ROH and RP, respectively. Notably, the spleen of LAL-deficient mice contained largely increased RE content (93 ± 36 pmol/mg of protein versus 0.17 ± 0.15 pmol/mg of protein in LAL-deficient versus WT mice, respectively). Interestingly, and similar to what was already observed in 3-month-old LAL-deficient mice, 6.5-month-old LAL-deficient mice also exhibited reduced ROH and RE content in the liver (Fig. 6E). Because livers of LAL-deficient mice exhibited unchanged LRAT mRNA expression (Fig. 6F), decreased hepatic RE content was apparently not a consequence of a down-regulation of LRAT expression. Thus, decreased RE content in the liver and lung of LAL-deficient mice, which was accompanied by an accumulation of REs in the duodenum and jejunum, rather suggests that the nutritional supply with vitamin A in these mice might be compromised.

LAL-deficient Mice Exhibit Elevated Circulating ROH:RBP4 but Decreased Post-prandial RE Levels—To investigate whether accumulation of RE in the duodenum and jejunum affects circulating vitamin A availability, we measured ROH levels in the plasma of ad libitum-fed mice. Interestingly, we found that circulating ROH levels of LAL-deficient mice were 2.5-fold higher compared with those of WT mice (Fig. 7A). To examine whether increased plasma ROH levels were accompanied by increased levels of its specific transport protein, RBP4, we performed Western blotting analyses using an antibody specific against RBP4 (Fig. 7B). Loading equal amounts of protein, we found more intense bands in plasma samples of LAL-deficient mice at a molecular weight close to 25 kDa compared with that of control mice. An overlay of the Western blotting signal with the protein stain of the membrane showed that the RBP4 band located right below the intense protein band at 25 kDa, suggesting that the RBP4 signal was apparently due to a specific interaction with RBP4 protein (23 kDa). Densitometric quantitation revealed a 3-fold increase in the RBP4 signal of the Western blot, which is in line with increased ROH levels in the plasma of LAL-deficient mice.

To investigate whether LAL deficiency affects the nutritional availability of vitamin A, we performed gavage with an RP:olive oil bolus and measured post-prandial circulating retinoid levels. Interestingly, after 2 h of RP gavage (T2), LAL-deficient mice...
In this study, we show that LAL is the major acid RE hydrolase. This is evident from the complete inhibition of acid RE hydrolase activity in liver lysates upon addition of the LAL inhibitor Lalistat 2 (11), the largely reduced acid RE hydrolase activity in liver lysates of LAL-deficient mice, the accumulation of REs in endosomal/lysosomal-enriched fractions in the human hepatocyte-like HepG2 cells when incubated with Lalistat 2, and the increased RE accumulation in the duodenum and jejunum of LAL-deficient mice. Together, these findings indicate that LAL is the major acid RE hydrolase, required for efficient clearance of endocytosed REs and that, when absent (or inhibited), it cannot be compensated by other enzymes.

Discussion

This study was prompted by the following observations: endocytosed chylomicron REs are predominantly cleared in the early/late endosome and not in lysosomes (13, 14); two different enzymes are thought to be responsible for acid RE and CE hydrolase activity (15); and LAL-deficient mice accumulate TGs and CEs in various tissues, but RE levels have not been reported. Because it is conceivable that LAL might be involved in RE metabolism, we examined whether mLAL exhibits RE hydrolase activity, the LAL specific inhibitor Lalistat 2 affects cellular RE levels, and LAL-deficient mice exhibit any changes in retinoid levels.

In this study, we show that LAL is the major acid RE hydrolase.
Studies in the 1980s and 1990s characterized the acid hydrolytic activity in the liver and found activities against chylomicon-contained REs, CEs, and TGs, whereas rates for TG hydrolysis were found to be highest (15). Furthermore, increasing concentrations of CEs were not found to compete for acid RE hydrolysis. Acid CE but not acid RE hydrolase activity of liver lysates was sensitive to micromolar concentrations of typical ionic halides (e.g. CaCl₂) (15). These reports led to the conclusion that two distinct enzymes exist for the hydrolysis of CEs and REs in the liver. This view was further bolstered by studies of Blomhoff et al. (14) and Harrison et al. (13). The authors investigated the clearance of RE chylomicon by injecting ³H-labeled RE containing chylomicrons into rats. They found that ³H radioactivity co-migrated time-dependently with the early endosomal fraction as well as the endoplasmic reticulum but to a much lesser extent or not at all with late endosomal/lysosomal fractions in hepatocytes (13, 14). The authors concluded that endocytosed REs are transferred from the endosomes directly to the endoplasmic reticulum, thereby bypassing lysosomes and thus not requiring acid RE hydrolase activity. Similarly, when murine J774 macrophages were incubated with ³H-labeled chylomicron REs, the radioactivity was found predominantly in early endosomes, to a much lesser extend in late endosomes/lysosomes, and was time-dependently converted to ³Hretinol. These findings indicated that endocytosed REs are already hydrolyzed in early endosomes (17) and are barely transferred to lysosomes, and thus do not require acid hydrolysis in lysosomes (18). However, and in clear contrast to previous reports, the results of this study show that LAL-deficient mice exhibit increased RE accumulation in duodenum and jejunum, indicating that the clearance of REs also requires LAL activity. The observation that purified rabbit liver LAL hydro-

![Figure 6](image-url)
analyzes TGs and CEs at comparable rates (2) confirms our findings employing mLAL containing lysates. In addition, we show in vitro activity assays that LAL also hydrolyzes RE at a rate similar to TGs and CEs, suggesting that LAL does not exhibit a strong preference for any of the neutral lipid ester substrates.

Our study confirms previous observations that LAL-deficient mice exhibit largely increased CE content in multiple tissues (e.g. 42.5-fold in livers of 8-month-old LAL-deficient mice (4)). In comparison, we found that RE contents were significantly increased in the duodenum and jejunum but not in liver and lung, for example. In addition, the degree of RE accumulation was also much more moderate compared with that of CEs (e.g. 27-fold increased CE versus 2-fold increased RE content in duodenum of 6.5-month-old mice). This difference in the degree of CE versus RE accumulation in tissues of LAL-deficient mice is unlikely to reflect differences in the substrate preference of LAL because we found comparable rates in the hydrolysis of CE and RE. It is more feasible that RES are largely cleared in the circulation and early/late endosomes and that thus clearance of RE depends much less on the activity of LAL.

The observation that LAL-deficient mice exhibit increased RE levels in the duodenum (~2-fold) and jejunum (~7-fold) but not in the liver is, to a certain degree, unexpected. It is known that neutral lipid esters (including RES) are only taken up from the intestine (21), indicating that lipid esters are not endocytosed. Furthermore, Du et al. (4)
reported that, in LAL-deficient mice, neutral lipids accumulate in proliferating macrophages in the lamina propria of intestinal villi. This observation suggests that increased RE content in the intestine of LAL-deficient mice might not derive from REs trapped in lysosomes of enterocytes but in macrophages. Consequently, these REs originate rather from the basolateral side of the intestine, the blood stream, or the lymph and not from the intestinal lumen. In addition, it has been reported that the genetic ablation of sterol O-acyltransferase 2 reduces CE accumulation in the intestine of LAL-deficient mice (~50%) (22). This finding would be in line with the idea that neutral lipid esters, which accumulate in the intestine of LAL-deficient mice, derive from intracellular acyltransferase activity, are then cleared in lysosomes (e.g. hydrolysis of cytosolic lipid droplets via autophagy and requiring LAL (23)) and do not originate directly from endocytosed neutral lipids. Such an intracellular esterification process might be also valid for intestinal REs and may involve LRAT/acyl-CoA:retinol acyltransferase activity. The observation, however, that LAL-deficient mice exhibited reduced post-prandial circulating RE levels upon RE gavage suggests that LAL may also be required for the availability of nutritional neutral lipid esters absorbed from the luminal side of the intestine.

This finding that LAL-deficient mice exhibit reduced post-prandial circulating RE levels (upon RE bolus) might be rather interpreted as impaired fat absorption. In line, LAL-deficient mice have been reported to exert ~1.5-fold increased fecal neutral sterol excretion (12). In our study, we have attempted to measure retinoid excretion but were not able to detect any retinoids in the feces of either WT or LAL-deficient mice. To circumvent issues such as detection limit or instability of retinoids during gut transit, a more sophisticated technique such as the use of radiolabeled retinoids would be required. However, the fact that, in a recent study, 13% of human CE storage disease patients suffer from chronic diarrhea (24) could be also indicative of intestinal malabsorption.

An apparent difference in disturbed CE versus RE homeostasis of LAL-deficient mice is evident from the observation that CE accumulates in all tissues investigated, whereas RE levels are decreased by ~30% in the lung and liver (note that the total RE content of livers of LAL-deficient mice was increased compared to that of WT mice because the livers of LAL-deficient mice were 3.6-fold enlarged). Decreased RE content in the lung and liver might be explained by decreased nutritional availability of vitamin A, as evident from decreased post-prandial circulating REs. The observation, however, that CE accumulate manyfold in the liver and lung of LAL-deficient mice seemingly disproves this concept. In any case, it is apparent from the lipid phenotype of the LAL-deficient mouse that LAL is essential for CE but not for RE homeostasis. The reason for this discrepancy is unexplained.

In summary, we conclude that LAL is the major acid RE hydrolase. Deficiency of LAL results in RE accumulation in the intestine (duodenum and jejunum) and a reduced post-prandial circulating RE level, indicative of impaired nutritional availability of REs. Thus, LAL is required for functional vitamin A homeostasis but, when absent, does not provoke vitamin A deficiency.

Author Contributions—L. G. conducted most of the experiments. T. O. E. analyzed the lipid species by MS. U. T., K. A. Z., and C. L. contributed to the animal experiments. M. R. cloned the LAL construct. C. Y., H. D., and D. K. provided the LAL-deficient mice. L. G., U. T., and A. L. wrote the manuscript. T. M., B. R., G. H., R. Zechner, P. F., D. K., and R. Zimmermann discussed the manuscript. All authors contributed intellectually to the manuscript.

Acknowledgments—We thank Dr. Paul Helquist of the Department of Chemistry and Biochemistry as well as Dr. Olaf Wiest and Dr. Bruce Melancon of the Warren Family Center for Drug Discovery and Development (University of Notre Dame, Notre Dame, IN) for providing the inhibitor Lalstat 2.

References

1. Sheriff, S., Du, H., Grabowski, G. A. (1995) Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression. *J. Biol. Chem.* 270, 27766–27772.

2. Imanaka, T., Amanuma-Muto, K., Ohkuma, S., and Takano, T. (1984) Characterization of lysosomal acid lipase purified from rabbit liver. *J. Biochem.* 96, 1089–1101.

3. Porto, A. F. (2014) Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and cholesteryl ester storage diseases. *Pediatr. Endocrinol. Rev.* 12, 125–132.

4. Du, H., Heur, M., Duanmu, M., Grabowski, G. A., Hui, D. Y., Witte, D. P., and Mishra, J. (2001) Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. *J. Lipid Res.* 42, 489–500.

5. Du, H., Duanmu, M., Witte, D., and Grabowski, G. A. (1998) Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. *Hum. Mol. Genet.* 7, 1347–1354.

6. Fouchier, S. W., and Defesche, J. C. (2013) Lysosomal acid lipase A and the hypercholesterolaemic phenotype. *Curr. Opin. Lipidol.* 24, 332–338.

7. Hoeg, J. M., Demosky, S. J., Jr., Pescozitz, O. H., and Brewer, H. B. (1984) Cholesteryl ester storage disease and Wolman disease: phenotypic variants of lysosomal acid cholesterol esterase hydrolyase deficiency. *Am. J. Hum. Genet.* 36, 1190–1203.

8. Pollak, N. M., Schweiger, M., Jaeger, D., Kolb, D., Kumari, M., Schreiber, R., Kolleritsch, S., Markolin, P., Grabner, G. F., Heier, C., Zierler, K. A., Rülcke, T., Zimmermann, R., Lass, A., Zechner, R., and Haemmerle, G. (2013) Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. *J. Lipid Res.* 54, 1092–1102.

9. Ioutti, A., Vinio, P., Brotherus, J. R., Palafrau, F., and Kinnunen, P. K. (1981) The active site and the phospholipid activation of rat liver lysosomal lipase are not stereospecific. *Chem. Phys. Lipids.* 29, 235–239.

10. Ström, K., Gundersen, T. E., Hansson, O., Lucas, S., Fernandez, C., Blomhoff, R., and Holm, C. (2009) Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. *FASEB J.* 23, 2307–2316.

11. Hamilton, J., Jones, I., Srivastava, R., and Galloway, P. (2012) A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor Lalstat 2. *Clin. Chim. Acta* 413, 1207–1210.

12. Agu, A., Lopez, A. M., Posey, K. S., Taylor, A. M., Repa, J. J., Burns, D. K., and Turley, S. D. (2014) Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. *Am. J. Physiol. Gastrointest. Liver Physiol.* 307, G836–G847.

13. Harrison, E. H., Gad, M. Z., and Ross, A. C. (1995) Hepatic uptake and metabolism of chylomicron retinyl esters: probable role of plasma membrane/endosomal retinyl ester hydrolases. *J. Lipid Res.* 36, 1498–1506.

14. Blomhoff, R., Eskild, W., Kindberg, G. M., Prydz, K., and Berg, T. (1985) Intracellular transport of endocytosed chylomicron [³H]retinol ester in rat liver parenchymal cells. Evidence for translocation of a [³H]retinoid from
endosomes to endoplasmic reticulum. *J. Biol. Chem.* 260, 13566–13570

15. Mercier, M., Forget, A., Grolier, P., and Azais-Braesco, V. (1994) Hydrolysis of retinyl esters in rat liver: description of a lysosomal activity. *Biochim. Biophys. Acta* 1212, 176–182

16. Eichmann, T. O., Grumet, L., Taschler, U., Hartler, J., Heier, C., Woblistin, A., Pajed, L., Kollroser, M., Recherber, G., Thallinger, G. G., Zechner, R., Haemmerle, G., Zimmermann, R., and Lass, A. (2015) ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6. *J. Lipid Res.* 56, 1972–1984

17. Hagen, E., Myhre, A. M., Tjølle, T. E., Berg, T., and Norum, K. R. (1999) Retinyl esters are hydrolyzed in early endosomes of J774 macrophages. *J. Lipid Res.* 40, 309–317

18. Harrison, E. H. (1993) Enzymes catalyzing the hydrolysis of retinyl esters. *Biochim. Biophys. Acta* 1170, 99–108

19. Reboul, E. (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. *Nutrients* 5, 3563–3581

20. Iqbal, J., and Hussain, M. M. (2009) Intestinal lipid absorption. *Am. J. Physiol. Endocrinol. Metab.* 296, E1183–E1194

21. Weng, W., Li, L., van Bennekum, A. M., Potter, S. H., Harrison, E. H., Blaner, W. S., Breslow, J. L., and Fisher, E. A. (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. *Biochemistry* 38, 4143–4149

22. Lopez, A. M., Posey, K. S., and Turley, S. D. (2014) Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver. *Biochem. Biophys. Res. Commun.* 454, 162–166

23. Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y. L. (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. *Cell Metab.* 13, 655–667

24. Burton, B. K., Deegan, P. B., Enns, G. M., Guardamagna, O., Horslen, S., Hovingh, G. K., Lobritto, S. J., Malinova, V., McLin, V. A., Raiman, J., Di Rocco, M., Santra, S., Sharma, R., Sykut-Cegielska, J., Whitley, C. B., et al. (2015) Clinical features of lysosomal acid lipase deficiency. *J. Pediatr. Gastroenterol. Nutr.* 61, 619–625