Log-Linear Modelling of Effect of Age and Gender on the Spread of Hepatitis B Virus Infection in Lagos State, Nigeria

Oluwole A. Odetunmibi1, Adebowale O. Adejumo2, Timothy A. Anake1

1Department of Mathematics, College of Science and Technology, Covenant University, Ota, Nigeria; 2Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria

Abstract

BACKGROUND: The effect of age and gender on the transmission of any infectious disease can be of great important because the age at which the host contact the disease may be a determinant on the rate at which the disease will spread.

AIM: The purpose of this research is to model the significant effect of age and gender on the spread of hepatitis B virus using data collected from Lagos State, Nigeria.

MATERIAL AND METHODS: The data that was used for this research is a ten years data covering the period of 2006 to 2015, which was collected from Nigeria Institute of Medical Research (NIMR). A log-linear modelling approach was employed using R programming language software. Akaike Information Criterion (AIC) method of model selection was used in selecting the best model.

RESULTS: It was discovered from the analysis that both factors (age and gender) have a significant effect on the spread of hepatitis B infection. This means that the age at which an individual is tested positive to hepatitis B virus will affect the spread of the disease. In choosing the best model among the four models that were developed, model AY: GY (age & year: gender and year) was found to be the best model.

CONCLUSION: Age and gender were found to act as a risk influencer that could have a great effect on the transmission of hepatitis B virus infections in Lagos state, Nigeria.

Introduction

The word hepatitis comes from the Ancient Greek word ἡπάρ (root word ἡπαί) meaning 'liver', and the Latin ἰλή meaning inflammation. Hepatitis, therefore, means injury to the liver with inflammation of the liver cells [1], [2].

According to the World Health Organization, “Hepatitis is an inflammation of the liver. The condition can be self-limiting or can progress to liver cancer. Hepatitis viruses are the most common cause of hepatitis in the world, but other infections, toxic substances (e.g. alcohol, certain drugs), and autoimmune diseases may also cause hepatitis”.

It has been discovered from the literature that there are various types of Hepatitis [3] classified these various types into five major categories, namely: A, B, C, D and E, respectively. These viruses are not related to each other. They differ in their structure, the way they spread among individual, the severity of symptoms they can cause, the way they are treated, and the outcome of the infection [3]. Among these categories, the most dangerous is Hepatitis B because it leads to chronic disease condition in hundreds of millions of people [4], [5], [6].

Hepatitis B has been described as one of the major infectious diseases in the world today because over 750,000 deaths are attributed to it annually [7], [8], [9]. Hepatitis B infection is a global healthcare problem with particularly high prevalence in developing countries in sub-Saharan Africa and South-East/Central Asia. Statistics shows that, about
350-400 million individuals worldwide suffer from chronic Hepatitis B virus infection which is a dominant cause of cirrhosis and hepatocellular carcinoma (HCC): [10], [11], [12], [13], [14], [15], [16], [17].

It has been discovered, that age and gender may be risk factors in the transmission of hepatitis B virus [18], [19], [20]. This study aimed to investigate the influence of age and gender on the prevalence of hepatitis B infections among the people of Lagos State, Nigeria. By clearly indicating the characteristics of hepatitis B and its associated risk factors, we intend to develop log-linear models and choose the best model among the developed models.

Material and Methods

The log-linear model which is used in the analysis of contingency tables is a generalised linear model for counted data, and the variety of associations and interaction terms in log-linear models can easily be described by the goodness of fit tests. The methodology of the log-linear model for the analysis of contingency tables is described in many articles and book such as [21], [22], [23], [24], [25].

Consider an I x J contingency table. The log-linear model is represented by:

\[\log(M_{ij}) = \lambda_0 + \lambda_i + \lambda_j + \lambda_{ij} \]

(1)

For all i and j, under the constraints of the \(\lambda \) term to sum to zero over any subscript such as:

\[\sum_{i} \lambda_i - \alpha \]

(2)

\[\sum_{j} \lambda_j - \beta \]

The log-linear model given above is called the saturated model or full model for the statistical dependency between \(Y_1 \) and \(Y_2 \).

By analogy with analysis of variance models, we define the overall mean by:

\[\lambda_0 = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \log(M_{ij}) \]

(3)

The main effects of \(Y_1 \) and \(Y_2 \) by

\[\lambda_i = \frac{1}{J} \sum_{j=1}^{J} \log(M_{ij}) - \lambda_0 \]

(4)

\[\lambda_j = \frac{1}{I} \sum_{i=1}^{I} \log(M_{ij}) - \lambda_0 \]

(5)

And the two-factor effect between \(Y_1 \) and \(Y_2 \) by

\[\lambda_{ij} = \log(M_{ij}) - (\lambda_i + \lambda_j) - \lambda_0 \]

(6)

Then the main and two-factor effects are determined by the odds and odds ratio, and can be written by:

\[\lambda_0 = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \log(M_{ij}) \]

(7)

\[\lambda_i^2 = \frac{1}{IJ} \sum_{j=1}^{J} \sum_{i=1}^{I} \log(M_{ij}) \]

(8)

And

\[\lambda_{ij}^{12} = \frac{1}{IJ} \sum_{j=1}^{J} \sum_{i=1}^{I} \log(M_{ij}) \]

(9)

For the independence model that \(Y_1 \) is statistically independent of \(Y_2 \), the cell probability \(M_{ij} \) can be factorised into the product of marginal probabilities \(M_{i.} \) and \(M_{.j} \), that is,

\[M_{ij} = M_{i.} + M_{.j} \]

Where

\[M_{i.} = \sum_{j=1}^{J} M_{ij} \]

and

\[M_{.j} = \sum_{i=1}^{I} M_{ij} \]

Then the two-factor effect is:

\[\lambda_{ij}^{12} = \frac{1}{IJ} \sum_{j=1}^{J} \sum_{i=1}^{I} \log(M_{ij}) \]

(10)

So that the log-linear model for the independence model is expressed by:

\[\log(M_{ij}) = \lambda_0 + \lambda_i + \lambda_j \]

for all i and j

(11)

For an I x J x K contingency table, the saturated log-linear model for the contingency table is:

\[\log(M_{ijk}) = \lambda_0 + \lambda_i + \lambda_j + \lambda_k + \lambda_{ij} + \lambda_{ik} + \lambda_{jk} + \lambda_{ijk} \]

(12)

for all i, j and k.

The \(\lambda \) terms satisfy the constraints:

\[\sum_{i=1}^{I} \lambda_i = \sum_{j=1}^{J} \lambda_j = \sum_{k=1}^{K} \lambda_k = 0 \]

(13)

\[\sum_{j=1}^{J} \lambda_{ij} = \sum_{k=1}^{K} \lambda_{ik} = \sum_{i=1}^{I} \lambda_{jk} = 0 \]

(14)

\[\sum_{i=1}^{I} \lambda_{ijk} = \sum_{j=1}^{J} \lambda_{ijk} = \sum_{k=1}^{K} \lambda_{ijk} = 0 \]

(15)

We define the \(\lambda \) terms as follows:

The overall mean is given by:

\[\lambda_0 = \frac{1}{IK} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \log(M_{ijk}) \]

(16)

The main effects of \(Y_1, Y_2, \) and \(Y_3 \) are:

\[\lambda_i = \frac{1}{IK} \sum_{j=1}^{J} \sum_{k=1}^{K} \log(M_{ijk}) - \lambda_0 \]

(17)

\[\lambda_j = \frac{1}{IK} \sum_{i=1}^{I} \sum_{k=1}^{K} \log(M_{ijk}) - \lambda_0 \]

(18)
\[
\lambda^2 = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \log M_{ij} - \lambda_0 \quad (19)
\]

Each interaction effect is given by:

\[
\lambda_{ij} = \frac{1}{K} \sum_{k=1}^{K} \log M_{ijk} - (\lambda_1^i + \lambda_2^j) - \lambda_0 \quad (20)
\]

\[
\lambda_{ij} = \frac{1}{K} \sum_{k=1}^{K} \log M_{ijk} - (\lambda_1^i + \lambda_2^j) - \lambda_0 \quad (21)
\]

\[
\lambda_{ij} = \frac{1}{K} \sum_{k=1}^{K} \log M_{ijk} - (\lambda_1^i + \lambda_2^j) - \lambda_0 \quad (22)
\]

and,

\[
\lambda_{ijk} = \log M_{ijk} - (\lambda_1^i + \lambda_2^j + \lambda_3^k) - (\lambda_1^i + \lambda_2^j + \lambda_3^k) - \lambda_0 \quad (23)
\]

Results

The summary of the data that was used for this research is presented in Table 1. The data covers the period of ten years (2006 – 2015) of those that are tested positive to hepatitis B virus in Lagos state, Nigeria.

Table 1: Classification of the data according to the attributes of age and gender of the patients and the year they were diagnosed with having the disease

Age	Gender	Year	Total
	Male		
	Female		
Less	4	2	6
than 20	8	6	14
21-30	7	5	12
Male	4	6	10
Female	9	2	11
31-40	2	5	7
Male	20	13	33
Female	50	12	62
41-50	18	15	33
Male	15	22	37
Female	331	52	383
51-60	30	8	38
Male	17	25	42
Female	173	235	408
61-70	8	15	23
Male	13	10	23
Female	31	9	40
71 and	3	4	7
Above	5	3	8
Total	1552	1568	3120

Log-Linear Fitted Models

The summary of the log-linear fitted models for the data presented in table 1 concerning the effect of age, gender and the year of being tested positive is presented below:

Table 2: Model 1: Age: Gender: Year (A: G: Y)

Statistics	\(X^2\)	df	\(P(> X^2)\)
Likelihood Ratio	235.8358	60	0.0034421
Pearson	298.4320	60	0.0110223

Model 1 presented in table 2 above considered when no association exists among the variables under consideration. The model is written mathematically as:

\[
\log(m_{ijk}) = \lambda + \lambda_1^A + \lambda_2^G + \lambda_3^Y (24)
\]

Table 3: Model 2: Age and Year: Gender and Year (AY: GY)

Statistics	\(X^2\)	df	\(P(> X^2)\)
Likelihood Ratio	247.5998	99	0.081745
Pearson	224.8027	99	0.034568

Model 2 presented in table 3 above considered two-way association between each variable with the year of being tested positive. The model is written mathematically as:

\[
\log(m_{ijk}) = \lambda + \lambda_1^A + \lambda_2^G + \lambda_3^Y (25)
\]

Table 4: Model 3: Age and Gender: Year (AG: Y)

Statistics	\(X^2\)	df	\(P(> X^2)\)
Likelihood Ratio	49.95058	54	0.0312744
Pearson	49.97675	54	0.0302744

Model 3 presented in table 4 above considered two-way association between the two variables together the year of being tested positive. The model is written mathematically as:

\[
\log(m_{ijk}) = \lambda + \lambda_1^A + \lambda_2^G + \lambda_3^Y + \lambda_4^{AY} + \lambda_5^{GY} (26)
\]

Table 5: Model 4: Age: Gender: Year (A: G: Y)

Statistics	\(X^2\)	df	\(P(> X^2)\)
Likelihood Ratio	232.8144	122	0.1981745
Pearson	236.63583	117	0.0034421

Model 4 presented in table 4 above considered three-way association among the variables. The model is written mathematically as:

\[
\log(m_{ijk}) = \lambda + \lambda_1^A + \lambda_2^G + \lambda_3^Y + \lambda_4^{AY} + \lambda_5^{GY} (27)
\]

Table 6: Aic Values for The Models

Model	G'	AIC	Value
Model 1	72.28144	122.05	0.1981745
Model 2	236.63583	117.37	0.0034421
Model 3	227.59983	122.67	0.081745
Model 4	49.95058	127.04	0.0312744

Discussion

Comparing the p-values of all the models with 0.05 level of significance; model 1, which is the model that represents no association among the variables under consideration, is the only model that is not significant. Model 2, 3 and 4 that established an interaction among the variables are all significant. Therefore, modelling the effect of age and gender on the spread of HBV virus infection in Lagos state for the period of ten years of 2006 to 2015 shows that, both variables (age and gender) have a significant effect on the spread of the disease (Table 2, 3, 4 and 5).

On the other hand, choosing the best model among various log-linear models developed model:
age and year: gender and years was discovered to be the best model since the AIC value (117.37) for the model are the lowest and the highest using likelihood ratio test (235.63583) (Table 6). This means that age and gender are not independent of the spread of the disease that is, the effect of age on the spread of the disease is not independent of the effect of gender on the spread of the disease.

Acknowledgement

The authors wish to appreciate the efforts and commitment of the anonymous reviewers toward this publication. The financial support from Covenant University, Nigeria, is also deeply appreciated.

References

1. Karthikeyan T. Analysis of classification algorithms applied to hepatitis patients. International Journal of Computer Applications. 2013; 62(15):2530. https://doi.org/10.5120/10157-5032
2. Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385:117-71. https://doi.org/10.1016/S0140-6736(14)61682-2
3. World Health Organization. Hepatitis B fact Sheet No. 204. 2014. http://www.who.int/mediacentre/factsheets/fs204/en/
4. Ikoba J, Okpara H, Elemi I, Ogarepe Y, Udoh E, Ekanem E. The prevalence of hepatitis B virus infection in Nigerian children prior to vaccine introduction into the National Programme on Immunization schedule. Pan African Medical Journal. 2016; 22(1):128. https://doi.org/10.11604/pamj.2016.22.128.8756
5. White OD, Fenner JF. Viruses of humans, medical virology (4th ed.) Academic Press Ltd., 1994.
6. Onuzulike N, Ogueri EO. Sero-prevalence of hepatitis B surface antigen (HBsAg) in pregnant women in Owerri, Imo State of Nigeria. Res J Biol Sci. 2007; 2:178-82. https://doi.org/10.4314/ijonas.v3i2.36178
7. Maraoel AE, Gentile I, Buonomo AR, Pincherla B, Borgia G. Current evidence on the management of hepatitis B in pregnancy. World Journal of Hepatology. 2018; 10(9):585-594. https://doi.org/10.4254/wjh.v10.i9.585
8. World Health Organization. (2009). Hepatitis B fact Sheet No. 204. http://www.who.int/mediacentre/factsheets/fs204/en/
9. WHO. Draft global health sector strategies. Viral hepatitis, 2016-2021. Report by the Secretariat, 2016. http://apps.who.int/ghb/ebswa/pdf_files/WHA69/A69_32-en.pdf?ua=1 (accessed 10 Oct 2016).
10. Lavanchy, D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. Journal of Clinical Virology. 2005; 34(1):S1-S3. https://doi.org/10.1016/S1386-8532(05)00384-7
11. Ola SO, Odaibo GN. Alpha-fetoprotein, HCV and HBV infections in Nigerian patients with PHCC. 2007; 51(3):33-35. https://doi.org/10.4314/nmp.v51i3.28903
12. Hebo HJ, Gemeda DH, Abdusemid KA. Hepatitis B and C Viral Infection: Prevalence, Knowledge, Attitude, Practice, and Occupational Exposure among Healthcare Workers of Jimma University Medical Center, Southwest Ethiopia. The Scientific World Journal. 2019:195-206. https://doi.org/10.1155/2019/9482607 PMCID:30853868
13. Ray G. Current Scenario of Hepatitis B and its Treatment in India. Journal of Clinical and Translational Hepatology. 2017; 5(3):277-296. https://doi.org/10.14218/JCTH.2017.00024
14. Zou L, Zhang W, Ruan S. Modeling the transmission dynamics and control of hepatitis B virus in China. Journal of Theor Bio. 2010; 262:330-338. https://doi.org/10.1016/j.jb.2009.09.035
15. Zhu J, Yang W, Yang F, Li C, Chen H, Zhu Q, Shen Z, Lan G, Chen Y, Tang Z, Xing H. Treatment effects of the differential first-line antiretroviral regimens among HIV/HBV coinfected patients in southwest China: an observational study. Scientific reports. 2019; 9(1):1006-1025. https://doi.org/10.1038/s41598-018-37148-8 PMid:30700732 PMCID:PMC6353888
16. Anahi EM. Prevalence and risk factors of hepatitis B virus infection in Bahrain, 2000 through 2010. PLOS One. 2014; 9:e87599. https://doi.org/10.1371/journal.pone.0087599
17. Ola SO, Odaibo GN, Olayeye OD, Ayoola EA. Hepatitis B and E viral infections among Nigerian healthcare workers. Afr J Med Sci. 2013; 42(4):387-391.
18. Adejumo AO, Ikoba NA, Suleiman EA, O appointment in Nigeria. Afr J Med Sci. 2013; 42(4):387-391.
19. Adejumo AO, Ikoba NA, Suleiman EA, O appointment in Nigeria. Afr J Med Sci. 2013; 42(4):387-391.
20. Yang S, Cheng D, Yuanxia C, Jie W, Chengbo Y, Ping C, Kaijin X, Min D, Yiping L, Juanjuan L, Pei Y, Wen R, Yan Q, Qing C, PMid:28795095 PMCID:PMC5537424
21. Adamu PI, Oguntunde PE, Okagbue HJ, Agboola OO. On the Epidemiology and Statistical Analysis of HIV/AIDS Patients in the Insurgency Affected States of Nigeria. Open Access Maced J Med Sci. 2018; 6(7):1315-1321. https://doi.org/10.3889/oamjms.2018.229 PMCID:30087744
22. Adejumo AO. Modelling Generalized Linear (Loglinear) Models for Raters Agreement measures. Peter Lang, Frankfurt am Main: Germany, 2005.
23. Agresti A. Categorical Data Analysis. John Wiley and Sons. 2nd Edition. New York, 2002. https://doi.org/10.1002/9780471496885
24. Everitt BS. The analysis of contingency tables. Chapman and Hall/CRC; 1992. https://doi.org/10.2307/2532373
25. Odetunmibi OA, Adejumo AO, Sanni OOM. Loglinear Modelling of Cancer Patients Cases in Nigeria: An Exploratory Study Approach. Open Science Journal of Statistics. 2013; 1(1):1-7.