Malaria in South America: a drug discovery perspective

Luiza R Cruz1,*, Thomas Spangenberg1, Marcus VG Lacerda2 and Timothy NC Wells1*

Abstract
The challenge of controlling and eventually eradicating malaria means that new tools are urgently needed. South America’s role in this fight spans both ends of the research and development spectrum: both as a continent capable of discovering and developing new medicines, and also as a continent with significant numbers of malaria patients. This article reviews the contribution of groups in the South American continent to the research and development of new medicines over the last decade. Therefore, the current situation of research targeting malaria control and eradication is discussed, including endemicity, geographical distribution, treatment, drug-resistance and diagnosis. This sets the scene for a review of efforts within South America to discover and optimize compounds with anti-malarial activity.

Keywords: South America, Malaria, Plasmodium, Plasmodium vivax, Treatment, Resistance, Drug discovery, Review

Background
Malaria is the tropical disease with the highest global mortality. In 2010, there were an estimated 216 million cases of malaria and 655,000 deaths worldwide, with children under five years and pregnant women the most vulnerable [1]. Over 81% of cases and 91% of deaths were in Africa, with the majority of the remaining being in India, Southeast Asia and South America.

South America includes 13 countries: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela and French Guiana. Most malaria cases are concentrated in the Amazon basin, with 580,000 reported in 2010, mainly in Brazil (281,586) [2] and Colombia (115,000) [3]. In 2010 only 240 deaths were registered, 0.085% of the global total. This low number reflected a combination of factors: the higher quality of healthcare, and the fact that the majority of cases are Plasmodium vivax rather than Plasmodium falciparum (estimated in 70%). Plasmodium vivax mortality is often assigned to sequelae, such as haemolysis or lung inflammation, rather than the parasite itself [4,5]. Other species of malaria have been reported. Suriname [6] and French Guiana [7] report 12% and 6% Plasmodium malariae infections respectively, although this may be an underestimate resulting from difficult diagnosis in thick-smear blood or rapid tests.

Malaria has been a long-term health issue in South America. Throughout the 20th Century, the continent underwent a rapid and disorganized development and settlement process, leading to a population migration. In the Amazon basin, with increased prospecting for minerals and agricultural projects [8,9], work opportunities surged. This led to an increase in malaria prevalence and incidence in the 1970s and 1980s [10], a trend that is only now starting to be reversed [11].

South America, with its large biodiversity, has also played a key role in the identification of new medicines to combat malaria. The active cinchona bark, which led to the purification of quinine was first identified in Peru [12], and lapachol, the forerunner of atovaquone, also came from the Amazon basin [13]. This raises the question as to whether there are other natural products that could be useful in malaria. In addition, South America has an excellent scientific and clinical base, which can continue to support the discovery and development of new therapeutics. This review provides an overview of malaria in South America, focusing on progress in drug discovery, and highlighting critical future areas where the continent can support the malaria eradication agenda.
Malaria in South America

The endemicity of malaria can be divided into three levels: high risk, if the annual parasite incidence (API) is higher than 1% of the inhabitants; medium risk, when it is 0.1 to 1% and low risk where it is less than 0.1% [11], (see Figure 1).

Of all the South American countries, Uruguay and Chile are malaria free, with no mosquito-transmitted infections. Argentina and Paraguay are progressing towards elimination [1]. The remainder of the continent shows a broad distribution of cases, with increasing frequency towards the tropics. Brazil, has an overall API of 0.16%, reaching 0.6 to 0.7% in Amazonas and Acre [2]. On the other hand, in Colombia and Suriname 15% of the population live in areas with high transmission, and this number reaches 85% in French Guiana and Guyana where APIs of 35% have been reported locally [7].

In the rainforest region, the primary vector species that transmits Plasmodium parasites is Anopheles darlingi [14-16], with other species such as Anopheles albitarsis, Anopheles albimanus, Anopheles aquarellis and Anopheles marajoara playing roles in transmission [17-19]. Anopheles gambiae was imported into South America from Africa in the transatlantic slave trade but was eliminated from the continent in the first half of the 20th Century [20,21]. Anopheles darlingi is an efficient vector, preferring humans over animals, and with a high susceptibility to Plasmodium infection [16]. Although nets are important, they are not sufficient, since many vectors have peak-biting hours before bedtime [22,23] and in addition not all families have appropriate numbers of bed nets.

The standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), as recommended by the World Health Organization (WHO) [24], outlined in Figure 2. Chloroquine (CQ) is still effective for P. vivax in many countries. However, the Amazon Network for the Surveillance of Antimalarial Drugs Resistance (RAVREDA, Red Amazónica de Vigilancia de la Resistencia a los Antimaláricos) reported 10% resistance to chloroquine in Amazonas, Brazil [25]. Primaquine is the standard therapy for preventing relapses of P. vivax, although there are issues with compliance to the 14-day regimen and a risk of haemolysis in G6PD-deficient subjects. Studies in Brazil showed that primaquine failed to prevent relapses in 24.5% of cases [26]. Whether this is true resistance to the drug or lack of compliance is not clear. It has been suggested that an increased dosage of primaquine is required for South America [27], and Brazil and Peru have recently shifted from 14 days of 0.25 mg/kg/day to seven days of 0.5 mg/kg/day. G6PD deficiency was observed in 0.7% of the population in Brazil [28].

![Figure 1 Incidence and risk of transmission of malaria. A: Risk of transmission of malaria, classified by country, in 2010. The dashed blue lines delimit the Amazon basin. B: Distribution of malaria cases in the Amazon basin, in 2010 (based on the WHO World Malaria Report 2011).](image-url)
detected at 3% prevalence in Manaus, Brazil [28] and was predominantly the mild A- form. In Buenaventura, Colombia, where a higher proportion of the population has African origins, prevalence of the mild A- form is 12% [29]. An improved version of primaquine, developed originally by the Walter Reed Army Institute of Research (WRAIR), called tafenoquine, is under clinical development as a single-dose anti-relapse agent, but this is not expected to be launched before 2017. For severe falciparum malaria, most countries use parenteral quinine, although data from Africa and Asia support a shift to artesunate for injection [30], which has already been pioneered by Brazil.

Search methodology
A literature search was conducted in February and March 2012 to identify studies regarding malaria research activities in South America. The sources for published data were SciFinder Scholar®, PubMed® and LILACS®. The date of publication considered spanned from January 2000 to February 2012. The following key words were used for the database search: malaria or anti-malarial. The search list was refined by country by means of the affiliation field. All papers describing any type of drug (based on medicinal chemistry, natural products or other approaches) were selected. Only research showing either in vitro or in vivo activities of molecules was considered. In addition, the database Thomson Pharma® was screened for clinical trials’ protocols conducted within the continent. Papers regarding drug discovery research were divided into two groups: those covering natural products (divided into plant extracts and isolated substances) and those covering studies of new synthetic drug compounds.
Results
Natural products
Pharmacognosy is the study of naturally occurring molecules with medicinal properties. Plant-derived compounds have been the backbone of the anti-malarial class of drugs over the last centuries, and two emerged from South America. Quinine is the active ingredient in cinchona tree bark in Peru and was purified in 1820, becoming the first disclosed compound with known antimalarial activity. Lapachol, belonging to the chemical class of naphthoquinones, was first isolated from Tabebuia avellanedae in 1882 and used to treat fever and malaria in the 19th Century in South America. A third natural product, artemisinin, was isolated by Chinese scientists from Artemisia annua. These natural products have served as starting points for medicinal chemistry optimization. Chloroquine was designed based on quinine, massively reducing the frequency of administration, and paving the way for a whole new generation of aminoquinolines and amino-alcohols. The chemical optimization from lapachol to atovaquone gave new molecules with more reliable oral bio-availability, allowing them to be used in prophylaxis. Modifying artemisinin to artesunate massively improved solubility, but has also led to the design of new improved endoperoxides such as OZ439 which is currently in Phase II trial to evaluate its efficacy and stability in malaria patients. These improved molecules have been used to treat hundreds of millions of patients over the last century.

South America has a long tradition of studies of natural products based on two approaches: the biological evaluation of traditional medicines and the identification of plants (or organisms) with differences in secondary metabolism. The natural products identified (pharmacognosy) are shown on Table 1. A cut-off of approximately EC$_{50}$ of 1 μg/mL (1 μM where the active ingredient is well characterized) was used based on the experience that almost 0.5% of chemical diversity is active at this level. The structures of molecules are shown in Figure 4.

Thus, only five purified compounds (Figure 4) have been identified from these efforts. Studies of Bowdichia virgilocides, a plant used by the Tacana indigenous group as a traditional medicine for the relief of high fever, produced alkaloid 1 (ormosanine), having an EC$_{50}$ = 5 μg/mL against F32. In vivo, the extract showed 51% suppression of parasites in mice at 100 mg/kg, but was toxic at 250 mg/kg. Baccharis dracunculifolia is broadly used in traditional medicine in Brazil, in inflammatory and gastrointestinal diseases. Although the total extract was inactive, the isolated triterpenoid 2 showed anti-malarial and anti-leishmanial activity. In vitro screening of substances isolated from the Brazilian folk medicines identified neosergeolide 3, from Picrolemma spruce, which inhibits K1 with an impressive EC$_{50}$ = 2 nM; and, the arylerin 4 from Holostylis reniformis, with an EC$_{50}$ = 20 nM; both are claimed to have good therapeutic window against hepatocytes. Further testing of these compounds would be needed to assess their strengths and weaknesses. The 4-nerolidylcatechol 5 was isolated from another traditional Amazonian treatment of malaria, Piper peltatum and shown to have an EC$_{50}$ between 50 and 830 ng/mL. Catechol 5 was also independently isolated from Pothomorphe peltata as shown in Table 1.

Medicinal chemistry
Medicinal chemistry approaches start from the knowledge of a structure combined with biological activity. Such starting points can be found from screening efforts (for example, pharmaceutical diversity or natural products against a biochemical target or whole cell), de novo design or from a published active, which can then act as a starting point for optimization. The molecules that have been identified from various sources against malaria with relevant endpoints and published within the South American
Compound	Authors	Plant with the lowest IC₅₀	Type	IC₅₀ (P. falciparum strain)
1	Bravo et al. [34]	Bowdichia virgiloides	Extracts	1.0 µg/mL
				Isolated substances 5 µg/mL (F32 and Indo)
2	da Silva Filho et al. [36]	Baccharis dracunculifolia	Extracts	13 µg/mL
				Isolated substances 0.8 µg/mL (W2 e D6)
3	de Andrade-Neto et al. [37]	Picrolema spruce	Extracts	0.002 µM (K1)
4	de Andrade-Neto et al. [38]	Holostylis reniformis	Isolated substances	0.20 µM (field isolate)
	Kayano et al. [39]	Caesalpinia pluviosa	Extracts	0.59 µg/mL (3D7)
5	de Andrade-Neto et al. [40]	Holostylis reniformis	Isolated substances	0.20 µM (field isolate)
				Isolated substances 0.05–2.11 µg/mL (M1)
	Pinto et al. [41]	Poathomorpe peltata	Extracts	0.67 µM (K1)
	Garavito et al. [42]	Remijia peruviana	Extracts	0.85 µg/mL (FcB2)
	Debenedetti et al. [43]	Buddleja globosa	Extracts	8.9 µg/mL (K1)
	Baelmans et al. [44]	Caesalpinia pluviosa	Extracts	8 µg/mL (D2)
	Flores et al. [45]	Caesalpinia pluviosa	Extracts	3.4 µg/mL
	Ibáñez-Calero et al. [46]	Rumex obtusifolius	Isolated substances	71 µg/mL
	Muñoz et al. [47]	Sparantanthelium amazonum	Extracts	2 µg/mL (F32)
	Muñoz et al. [48]	Swietenia macrophylla	Extracts	73%ⁱⁱ
	Muñoz et al. [49]	Tripodanthus acutifolis	Extracts	98%ⁱⁱⁱ
	Costa et al. [50]	Montrichardia linifera	Extracts	11.7 µg/mL (W2)
	da Silva Filho et al. [51]	Nectandra megapetamina	Extracts	28 µg/mL
	de Andrade-Neto et al. [52]	Bidens pilosa	Extracts	3.1 µg/mL (D6)
	de Andrade-Neto et al. [53]	Remijia ferruginea	Extracts	48%^{iv}
	de Mesquita et al. [54]	Matayba guianensis	Isolated substances	2.5 µg/mL (FcB1)
	Dolabella et al. [55]	Essenbeckia febrifuga	Extracts	15.5 µg/mL
				Isolated substances 75.3 µg/mL (W2)
	Estevam et al. [56]	Ouratea nitida	Extracts	51.04%^v
	Fischer et al. [57]	Xylopia emarginata	Extracts	3.3 µg/mL (PA)
	Morais et al. [58]	Pentacalia desiderabilis	Isolated substances	7.82 µg/mL (K1)
	Oliveira et al. [59]	Bidens pilosa	Extracts	38%^{vi}
	Sá et al. [60]	Physalis angulata	Isolated substances	2.2 µg/mL (W2)
	Uchôa et al. [61]	Cecropia pachystachya	Extracts	66%^{iv}
				Isolated substances 58%^{vii}
	Loyola et al. [62]	Azorella compacta	Isolated substances	60%^{viii}
	Pabón et al. [63]	Solanum nudum	Isolated substances	21 µM (FcF2)
	Céline et al. [64]	Siparana aspera	Extracts	6.4 µg/mL (FCR-3)
	Ruiz et al. [65]	Minquartia guianensis	Extracts	4.2 µg/mL (FCR-3)

ⁱ Inhibition of biocrystallization of ferriprotoporphyrin IX.
ⁱⁱ Percentage of inhibition of parasite growing (dose: 250 mg/kg).
ⁱⁱⁱ Percentage of inhibition of parasite growing (at 10 µg/mL).
^{iv} Reduction of parasitaemia (dose: 1000 mg/kg).
^v Activity tested against Plasmodium berghei in mice (dose: 1000 mg/kg).
^{vi} Activity tested against Plasmodium berghei in mice (dose: 1000 mg/kg).
^{vii} Reduction of parasitaemia at day 5 (dose: 250 mg/kg).
^{viii} Reduction of parasitaemia at day 5 (dose: 250 mg/kg).
^{ix} Reduction of parasitaemia at day 8 after malaria infection (doses: 250 and 15 mg/kg respectively).
^x Activity in mice measured by the growth of inhibition (dose: 10 mg/kg/day).
medicinal chemistry community are summarized in Table 2, and in addition, their structures are presented in Figure 5. Studies characterizing the spectroscopy of previously described molecules, or studies on marketed antimalarials have not been included.

Those compounds having EC\textsubscript{50} values less than 1 \(\mu\text{g/ml}\) (with a square box around) are discussed further as this is the typical potency cut-off required for “Validated Hits” – the starting points for drug discovery projects, as considered by the Medicines for Malaria Venture [98,99].

New pyrazolynaphthoquinones (heterocyclic naphthoquinones, building on the atovaquone template bearing 3-aminopyrazole rings) and 5-aminoisoxazole analogues showed activity against \textit{P. falciparum}, \textit{Trypanosoma cruzi} and \textit{Trypanosoma brucei}. The 5-aminoisoxazole analogue 6 showed an EC\textsubscript{50} of 110 ng/mL and an independent naphthoquinone, 7, demonstrated an EC\textsubscript{50} of 30 nM against FcB1. A novel piperazinyl/steroidal analogue, 11, also inhibited FcB1 with an EC\textsubscript{50} of 0.08 \(\mu\text{M}\). Pinheiro \textit{et al.} used a multivariate and quantum mechanical method to analyse 15 dihydroartemisinin derivatives and the most potent compound, 13, showed an EC\textsubscript{50} of 0.05 ng/mL, over 10-fold more potent than the reported values for dihydroartemisinin. Two papers describe chalcone derivatives: the electrophilic chloro-vinyl sulphone 21 showed an EC\textsubscript{50} of 0.025 \(\mu\text{M}\) against W2 and the sulphonamide chalcone 22 showed an EC\textsubscript{50} of 0.48 \(\mu\text{M}\). Finally, approaches to aminoquinolines identified the derivative 24 with an EC\textsubscript{50} of 48 nM, against the 3D7 strain; and new heterocyclic hybrids based on the chloroquine and thiazolidinone scaffolds such as 25 have an EC\textsubscript{50} of 0.25 \(\mu\text{M}\).

Discussion

In South America, the morbidity and mortality due to malaria is much less significant than in Africa. However, the continent has historically been the source of two of the major classes of drugs against malaria, and the combination of both biodiversity and skilled medicinal chemists could position the continent in a leading position in the search for the new medicines needed for malaria eradication. The current biggest threat in the fight against malaria is the emerging resistance to artemisinin derivatives [100,101]. Artemisinin derivatives within ACT are the most widely used anti-malarials. Even though there has been a concerted attempt to protect them against resistance by banning artesunate monotherapy for uncomplicated disease, the first signs of artemisinin resistance or insensitivity have been described in Cambodia [102] and more recently in Thailand [103]. There is a great need for new combination therapy, replacing the three days’ dosing of ACT with a single dose that also prevents transmission and relapse (in the case of \textit{P. vivax} or \textit{Plasmodium ovale}) [104].

Pharmacognosy has continued to identify new active structures [105]. However, the progress in bringing forward new medicines from these structures and extracts is extremely difficult. Where such molecules are reported to have interesting properties from observational studies, then it is important to confirm these observations in carefully controlled human clinical studies [106]. Also, it is possible that the active principle is a metabolite from the original extract, and so analysis of plasma samples is also important in understanding and identifying the active species [33]. Secondary metabolites are usually thought to play a key role in protection against predators, and therefore could be expected to be cytotoxic. Screening for activity in early safety assays is therefore of paramount concern here. Ultimately the goal of such experiments is to identify new starting points for medicines, similar to the way that quinine
and lapachol opened up new fields in previous centuries. Such approaches require long-term commitment, and hence the need to verify the original clinical observations.

The other approach to discover new drugs is to use medicinal chemistry, either with scaffolds already known to be effective against the parasite, or a target-based approach based on structural biology. The results of this

Compound	Authors	Target	Chemical class	Lowest IC50 (strain)
6	Sperandeo and Brun [66]	-	Pyrazolynaphthoquinones, 5-aminoisoxazole	0.11 μg/mL (K1)
7	Silva et al. [67]	-	1,4-naphthoquinones	0.03 μM (FcB1)
8	Chariris et al. [68]	β-haematin	Thiens(2,3-b)quinoline	74.42%
9	Cunico et al. [69]	Aspartyl protease	Hydroxethylpiperazone	4.6 μM (3D7)
10	Cunico et al. [70]	Aspartyl protease	Hydroxethylpiperazone	5.1 μg/mL (W2)
11	Gnoatto et al. [71]	β-haematin	Piperazine, 3-acetylsulphonic acid	0.08 μM (FcB1)
12	de Sá et al. [72]	-	Betulinic acid	5.99 μM (W2)
13	Pinheiro et al. [73]	-	Sesquiterpenes	0.05 mg/mL (P. falciparum mefloquine resistant)
14	Barbosa et al. [74]	-	Ozonides	13.6 μg/mL
15	Oliveira et al. [75]	Cysteine proteases	Semicarbazone, Thiosemicarbazone	7.2 μM (W2)
16	Camacho et al. [76]	β-haematin	Benzimidazole-5-carboxyhydrazides	8.43 μM
17	Corrales et al. [77]	Hypoxanthine-guanine phosphoribosyltransferase	6-thiopurine Steroids	82%
18	Barazarte et al. [78]	β-haematin	Pyrazolo and pyrimido benzothiazine dioxide	92.32%
19	Barazarte et al. [79]	β-haematin	Benzothiazines	78.17%
20	Vellasco Junior et al. [80]	Aspartyl protease	Thioetherhydroxethyl, Sulfonamides	15 μM (W2)
21	Domínguez et al. [81]	β-haematin	Chlorovinyl sulfones	0.025 μM (W2)
22	Domínguez et al. [82]	β-haematin	Sulfonamide chalcones	0.48 μM (W2)
23	León et al. [83]	β-haematin	Sulfurylureas	1.2 μM (W2)
24	Arancibia et al. [84]	β-haematin	Rhenium bioorganometallics, Aminquinoline	0.048 μM (3D7)
25	Rojas Ruiz et al. [85]	β-haematin	Aminoquinolines, thiazolidinone	0.25 μM (3D7)
26	Charris et al. [86]	β-haematin	E-2-quinolinylbenzo-cycloacanones	90%
27	Vashist et al. [87]	β-haematin	Quinolone, 6-thiopurine	inactive
28	de Souza et al. [88]	β-haematin	4-aminoquinolines, platinum (II) complexes	84%
29	Cunico et al. [89]	β-haematin	4-aminoquinolines	1.39 μg/mL (W2)
30	Rodrigues et al. [90]	β-haematin	Quinoline	Active
31	Domínguez et al. [91]	Cysteine protease falcipain	Quinolinyl chalcones	19 μM (FcB1)
32	Ferrer et al. [92]	β-haematin	Chloroquinolines	94.93%
33	Navarro et al. [93]	β-haematin	Gold-chloroquine complexes	1.76 μM
34	Domínguez et al. [94]	Cysteine protease β-haematin	Phenylurenyl chalcones	1.67 μM (W2)
35	de Andrade-Neto et al. [95]	-	Naphthoquinones, Phenazines	3.38 μM (W2)
36	Hilário et al. [96]	3-alkylpyridine alkaloids	<3.38 μM (W2)	
37	Rodrigues et al. [97]	β-haematin	Bisquinoline	56.76 %

1 Percentage of inhibition of parasite growth (P. berghei in mice) at day 9 (dose: 10 mg/kg).
2 Inhibition of globin proteolysis (IGP) expressed as percentage.
3 Inhibition of β-haematin synthesis (βH5) expressed as percentage.
4 Inhibition of parasite multiplication on days (dose: 25 mg/kg).
5 Activity expressed as IC50(CQDP)/IC50(complex)
survey show that molecules coming from South American programmes are able to demonstrate innovative and active new structures. However over the last five years, the bar has been raised and a new challenge has been set as a result of the success of phenotypic screening. With over 20,000 structures of compounds active against the parasite deposited in the public domain [107,108], it is important to benchmark the successes found in South America against these results. Clearly the prize no longer goes to compounds that simply kill the parasite in vitro, but to molecules that have good properties supporting excellent oral administration in patients, or perhaps equal artemisinins in speed of killing parasites [109], or have a very low propensity to resistance generation [110]. In the light of the malaria eradication agenda, it will be important also to know how these new molecules work in the different stages of the parasite lifecycle [111]. A molecule that could be shown to inhibit the dormant liver stages of *P. vivax* would clearly

\[\text{Figure 5} \] Structures of compounds with relevant endpoints. Compounds with the square brackets show activities (EC50) below 1 μM.
stand out from the crowd [112]. All of the tools are available to enable South American anti-malarial drug research to make these steps forward over the next five years, the challenge will be to put these together, and focus the agenda to the needs of the South American community.

Conclusion
Malaria continues to be a health issue, particularly *P. vivax* in the Amazon basin, and *P. falciparum* and mixed infections in northern countries. The natural diversity along with the indigenous folk medicines allows a great potential in the treatment and identification of new anti-malarial drugs, as happened with the South American compounds, lapachol and quinine. New molecules are being identified but their optimization for *in vivo* activity has been slow, arguing that more resource needs to be focused in these areas. In addition, the new assays for transmission and relapse of dormant liver stages need to be put into routine practice. If all of this is put together, then South America can again play a leading role in the discovery of the next generation of therapeutics against malaria.

Abbreviations
ACT: Artemisinin-based combinations therapy; API: Annual Parasite Incidence; G6PD: Glucose-6-phosphate dehydrogenase; RAVREDA: Amazon Network for the Surveillance of Antimalarial Drugs Resistance; WHO: World Health Organization; WRAIR: Walter Reed Army Institute of Research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LRC and TS conceived the review. LRC performed the bibliographical analysis from the perspective of international interaction and co-operation. All authors read and approved the final manuscript.

Acknowledgements
We acknowledge the Medicines for Malaria Venture, especially Jeremy Burrows for critical comments on the manuscript. The authors are also grateful to Carlos Morel and Simon Campbell. MVGL is a level 2 Fellow from the National Council for Scientific and Technological Development (CNPq).

Author details
1. Medicines for Malaria Venture, 20 route de Pré-Bois, Geneva CH 1215, Switzerland. 2. Fundação de Medicina Tropical Dr Héctor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas 69040-000, Brazil.

Received: 5 March 2013 Accepted: 15 May 2013 Published: 24 May 2013

References
1. WHO. World Malaria Report 2011. Geneva: World Health Organization; 2011.
2. Brazil. Ministry of Health: Portal da Saúde. 2012 [http://portalsaudae.saude.gov.br/portalasude/index.cfm]
3. Rodríguez JCP, Uribe GA, Araújo RM, Narváez PC, Valencia SH: Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz 2011, 106(1):114–122.
4. Anstey NM, Russell B, Yeo TW, Price RN: The pathophysiology of vivax malaria. Trends Parasitol 2009, 25:220–227.
5. Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhães BM, Siqueira AM, Ferreira LC, Araujo JR, Mourão MP, Ferrer M, Castillo P, Martin-Jaular L, Fernandez-Becerra C, del Pontillo H, Ordí J, Alonso PL, Bastar Q: Postmortem characterization of patients with clinical diagnosis of *Plasmodium vivax* malaria: to what extent does this parasite kill? Clin Infect Dis 2012, 55(6):e7–e47.
6. Peek R, VAN Gool T, Panchoe D, Greve S, Bus E, Resida L: Drug resistance and genetic diversity of *Plasmodium falciparum* parasites from Suriname. Am J Trop Med Hyg 2005, 73:83–838.
7. Stefaní A, Hanif M, Nacher M, Godí M, Carnevale P: Environmental, entomological, socioeconomic and behavioural risk factors for malaria attacks in Amurinidian children of Camopi, French Guiana. Malar J 2011, 10:246.
8. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Taui PL, Daniel-Ribeiro CT: Malaria in Brazil: an overview. Malar J 2010, 11:5.
9. Alvarez A: Malaria and the emergence of rural health in Argentina: an analysis from the perspective of international interaction and co-operation. Can Bull Med Hist 2008, 25:137–160.
10. Carter R, Mendis KN: Evolutionary and Historical Aspects of the Burden of Malaria. Clin Microbiol Rev 2002, 15:564–594.
11. Pan American Health Organization: Report on the situation of malaria in the Americas. 2008, Washington, D.C.: PAHO; 2010. http://www2.paho.org/hq/SDF/documents/2011/PAHO_ENG_Malaria_LR.pdf.
12. Achan J, Talkunsa AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal P, D’Alessandro U: Quinine, an old antimalarial drug in a modern world: role in the treatment of malaria. Malar J 2011, 10:144.
13. Hudson AT: Atovaquone – a novel broad-spectrum anti-infective drug. Parasitol Today 1993, 9:66–8.
14. Rutar T, Baldomar Salguero EJ, Maguire JH: Introduced *Plasmodium vivax* malaria in a Bolivian community at an elevation of 2,300 meters. Am J Trop Med Hyg 2004, 70:15–19.
15. Sutton PL, Neyra V, Henderson JN, Branch OH: *Plasmodium falciparum* and *Plasmodium vivax* infections in the Peruvian Amazon: propagation of complex, multiple allele-type infections without super-infection. Am J Trop Med Hyg 2009, 81:950–960.
16. Magris M, Rubio-Palis Y, Menares C, Villegas L: Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem Inst Oswaldo Cruz 2007, 102:303–311.
17. da Rocha JAM, de Oliveira SB, Póvoa WM, Moreira LA, Krettli AU: Malaria vectors in areas of *Plasmodium falciparum* epidemic transmission in the Amazon region, Brazil. Am J Trop Med Hyg 2008, 78:872–877.
18. Pinault LL, Hunter FF: New highland distribution records of multiple Anopheles species in the Ecuadorian Andes. Malar J 2011, 10:236.
19. Moreno JE, Rubio-Palis Y, Páez E, Pérez E, Sánchez V: Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol 2007, 21:339–349.
20. Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, Aubouy A, Balloix F, Besnard P, Bogreau H, Carnevale P, Díaz-Iglesias A, Ménard D, Musset L, Newton PN, Nkoghé D, Noya O, Ollomo B, Rogier C, Alecrim M, Ménard D, Mustet L, Newton PN, Nkoghé D, Noya O, Olombo B, Rogier C, Veron V, Wínde A, Zakeri S, Carne M, Legrand E, Chevillon C, Ayala FJ, Renaud F, Prugnolle F: Multiple independent introductions of *Plasmodium falciparum* in South America. Proc Natl Acad Sci USA 2012, 109:511–516.
21. Silva UHP, Oliveira VEG: The malaria challenge: the Brazilian case and what can be expected from progress in genomics. Ciência & Saúde Coletiva 2002, 7:49–63.
22. Magris M, Rubio-Palis Y, Alexander N, Ruiz B, Galván N, Frias D, Blanco M, Lines J: Community-randomized trial of lambdacyhalothrin-treated hammock nets for malaria control in Yanomami communities in the Amazon region of Venezuela. Trop Med Int Health 2007, 12:392–403.
23. Hili N, Lenglet A, Arméz AM, Camero I: Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon. BMJ 2007, 335:1023.
24. World Health Organization: Guidelines for the treatment of malaria. Second edition. World Health Organization: Geneva; 2010. http://wwqlbdoc.who.int/ publications/2010/9789241547925_eng.pdf.
25. Santana Filho F, Arcanjo A, Chehuan YM, Costa MR, Martinez-Espinosa FE, Vieira JL, Barbosa M, Alecrim WD, Alecrim M: Chloroquine-resistant *Plasmodium vivax*, Brazilian Amazon. Emerg Infect Dis 2007, 13:1125–1126.
26. Gama BE, Lacerda MVG, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF: Chemosresistance of *Plasmodium falciparum* and *Plasmodium vivax* parasites in Brazil: consequences on disease morbidity and control. Mem Inst Oswaldo Cruz 2011, 106:159–166.
27. Van den Eede P, Soto-Calle VE, Delgado C, Gamboa D, Grande T, Rodriguez H, Llanos-Cuentas A, Añéñ J, D’Alessandro U, Erhart A: Plasmodium vivax sub-patient infections after radical treatment are common in Peruvian patients: results of a 1-year prospective cohort study. PLoS One 2011, 6:e16257.

28. Santana MS, de Lacerda MRG, Barbosa MDGR, Alecrim WD, Alecrim MDGC: Glucose-6-phosphate dehydrogenase deficiency in an endemic area for malaria in Araruna: a cross-sectional survey in the Brazilian Amazon. PLoS One 2009, 4:e4554.

29. Moyano M, Méndez F: Defectos eritrocíticos y densidad de la parasitemia en pacientes con malaria por Plasmodium falciparum en Buenaventura, Colombia. Rev Panam Salud Publica 2005, 18:35–32.

30. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Defectos eritrocíticos y densidad de la parasitemia en pacientes con malaria por Plasmodium falciparum en Buenaventura, Colombia. Rev Panam Salud Publica 2005, 18:35–32.

31. Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ, Dong Y, Mattei H, Maurer M, Moritz J, Nguyen T, Papastorgianis P, Scheurer C, Shackleford DM, Srinivagan K, Stübelin T, Tang Y, Uwuloy H, Wang X, White KL, Wettlin S, Zhou L, Venneti SR: Synthetic coenzyme drug candidate OZ439 offers new hope for a single dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 2011, 108:4400–4405.

32. Bourdy G, Willcox ML, Ginsburg H, Rasoanaivo P, Graz B, Deharo E: Ethnopharmacology and malaria: new hypothetical leads or old efficient antimalarials? Int J Parasitol 2008, 38:53–41.

33. Wells TH: Natural products as starting points for future antimalarial therapies: going back to our roots? Malar J 2011, 10:53.

34. Bravo JA, Lavaud C, Bourdy G, Deharo E, Gimenez A, Sauvain M: Antimalarial activity of some Colombian medicinal plants. J Ethnopharmacol 2006, 98:87–99.

35. da Silva Filho AA, Resende DD, Fukui MJ, Santos FF, Paulotti PM, Cunha WR, Silva ML, Gregorião LE, Bastos JK, Nanayakkara NP: In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Bauchari dracunculifolia D. C. (Asteraceae). Rev Brasileira de Farmacognosia 2009, 19:834–838.

36. de Andrade-Neto VF, Brandão MG, Oliveira FG, Casali VW, Zalis MG, Oliveira LA, Krettli AU: Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 2004, 18:634–639.

37. Andrade-Neto VF, Brandão MG, Stehmann LA, Krettli A: Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 2003, 87:253–256.

38. de Menezes MN, Krettli AU, Wagner H, Póvoa MM, de Oliveira AB: In vitro antimalarial activity of extract and constituents from Eosenbeckia fedrufra, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine 2008, 15:367–372.

39. Fischer D, Guadalu N, Bachiega D: In vitro screening for antimalarial activity of isoquinoline alkaloids from Brazilian plant species. Acta Trop 2004, 92:261–266.

40. de Menezes MN, Krettli AU, Brandão MG: New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 2004, 93:39–42.

41. Sá MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R, de Azevedo WF Jr, Soares MB: Antimalarial activity of physonil B, D, F, and G. J Nat Prod 2011, 74:2269–2272.

42. Uchôa VT, da Paula JE, Espindola LS, Matile H, Maurer M, Morizzi J, Krettli AU: Anti-malarial, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae) cultivated in humus soil. Phytother Res 2004, 18:634–639.

43. Foglio MA, Eberlin MN, Mello JC, Costa FT: In vitro antileishmanial, antiplasmodial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 2003, 87:253–256.

44. de Andrade-Neto VF, Brandão MG, Oliveira FG, Casali VW, Zalis MG, Oliveira LA, Krettli AU: Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 2004, 18:634–639.

45. de Andrade-Neto VF, Brandão MG, Oliveira FG, Casali VW, Zalis MG, Oliveira LA, Krettli AU: Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 2004, 18:634–639.

46. Ibáñez-Calero SL, Jullian V, Sauvain M: A new anthraquinone isolated from Rumex obtusifolius. Revista Brasiliana de Química 2000, 26:449–56.

47. Muñoz V, Sauvain M, Bourdy G, Callapa J, Rojas I, Vargas L, Tae A, Deharo E: The search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part I. Evaluation of the antimalarial activity of plants used by the Chacocho Indians. J Ethnopharmacol 2000, 69:127–137.

48. Muñoz V, Sauvain M, Bourdy G, Callapa J, Rojas I, Vargas L, Tae A, Deharo E: The search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part II. Antimalarial activity of some plants used by Mosetene Indians. J Ethnopharmacol 2000, 69:139–155.

49. Muñoz V, Sauvain M, Bourdy G, Arizola S, Callapa J, Ruiz G, Choque J, Deharo E: A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part III. Evaluation of the antimalarial activity of plants used by Alteños Indians. J Ethnopharmacol 2000, 71:123–131.

50. Costa ESS, Dolabela MF, Povoa MM, Oliveira DJ, Müller AH: Estudos farmacognósticos, fitoquímicos, atividade antiplasmódica e toxicidade em Artemia salina de extrato etanólico de folhas de Montrichardia linifera (Arruda) Schott, Araceae. Revista Brasileira de Farmacognosia 2009, 19:834–838.

51. de Silva Filho AA, Costa ES, Cunha WR, e Silva ML, Nanayakkara NP, Bastos JK: In vitro antileishmanial and antimalarial activities of tetracyhydrofuran lignans isolated from Nectandra megapotamica (Laureaceae). Phytother Res 2008, 22:1307–1310.

52. Andrade-Neto VF, Brandão MG, Oliveira FG, Casali VW, Njrane B, Zalis MG, Oliveira LA, Krettli AU: Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytother Res 2004, 18:634–639.

53. de Andrade-Neto VF, Brandão MG, Stehmann LA, Krettli A: Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 2003, 87:253–256.

54. de Mesquita ML, Grellier P, Blond A, Baudrop JF, de Paula JE, Espindola LS, Marimbu L: New ether diglycosides from Matayba guianensis with antimalarial activity. Bioorg Med Chem 2005, 13:4499–4506.

55. Dolabela MF, Oliveira SG, Nascimento JM, Peres JM, Wagner H, Póvoa MM, de Oliveira AB: In vitro antimalarial activity of extract and constituents from Esenbeckia fedrufra, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine 2008, 15:367–372.

56. Estevam CS, Oliveira FM, Conserva LM, Lima LF, Barros ECP, Barros SCP, de Veiga BM, Andrade DL, Constituiçoes quimicos e avaliação preliminar em vivo da atividade antimalaríaca de Duratea nitida Aubl (Ochnaceae). Rev Bras Farmacogn 2005, 15:195–198.

57. Fischer D, Guadalu N, Bachiega D: In vitro screening for antimalarial activity of isoquinoline alkaloids from Brazilian plant species. Acta Trop 2004, 92:261–266.

58. Monais TR, Rorome WP, Faverio OA, Reimão JQ, Lourenço WC, Tempone AG, Hristov AD, Dianti SM, Lago JH, Santorrelli P, Ferreirra MI: Anti-malarial, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitol Res 2012, 110:95–101.

59. Oliveira FG, Andrade-Neto V, Krettli AU, Brandão MGL: New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol 2004, 93:39–42.
81. Dominguez JN, León C, Rodrigues J, Gamboa de Dominguez N, Gut J, Rosenthal PJ: Synthesis and antimalarial activity of sulfonamide chalcone derivatives. *Farmacno* 2005, 60:307–311.
82. León C, Rodrigues J, Gamboa de Dominguez N, Charris J, Gut J, Rosenthal PJ, Dominguez JN: Synthesis and evaluation of sulfonfurylurea derivatives as novel antimalarials. *Eur J Med Chem* 2007, 42:735–742.
83. Arancibia R, Dubar P, Pradasnes B, Forfar J, Díke D, Klahn AH, Biot C: Synthesis and antimalarial activities of rhodinum biorganoalumates based on the 4-aminoquinoline structure. *Bioorg Med Chem* 2010, 18:8085–8091.
84. Rojas Ruiz FA, García-Sánchez RN, Estupiñan PV, Gómez-Bartolomé A, Torres Armando DF, Pérez-Solórzano BM, Nogal-Ruiz JJ, Martínez-Fernández AR, Kousnetsov V: Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolideinone scaffolds. *Bioorg Med Chem* 2011, 19:4562–4573.
85. Charris J, Domínguez JN, Gamboa N, Rodrigues J, Ángel J: Synthesis and antimalarial activity of E-2-quinolinylbenzocycloalkanones. *Eur J Med Chem* 2005, 40:875–881.
86. Vashist U, Carvalhais R, D’Agosto M, da Silva AD: Antimalarial activity of the novel quinoline-6-thiophurine conjugate in Gallus gallus Linnaeus, infected experimentally by *Plasmodium* (Novello) juxtanuclare. *Chem Biol Drug Des* 2007, 74:433–437.
87. de Souza NB, Carbo AM, Lagatta DC, Alves MJ, Fonseca AP, Coimbra ES, da Silva AD, Abram C: 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents. *Biomed Pharmacother* 2011, 65:313–316.
88. Cunico W, Ceccinelli CA, Bonacorso HG, Martins WA, Zaranta N, de Souza MY, Freitas IQ, Soares RP, Krettli AL: Antimalarial activity of 4-(5- trifluoromethyl-1H-pyrrozol-1-yl)-chloroquine analogues. *Bioorg Med Chem Lett* 2006, 16:649–653.
89. Rodrigues J, Charris J, Domínguez J, Ángel J, Gamboa N: Modification of oxidative status in *Plasmodium berghei*-infected erythrocytes by E-2-chloro-8-methyl-3-(4-methoxy-1-indanoyl)-2-methyliden)-chloroquine compared to chloroquine. *Mem Inst Oswaldo Cruz* 2009, 104:865–870.
90. Dominguez JN, Charris JE, Lobo G, Gamboa de Domínguez N, Moreno MM, Rigojone F, Sanchez E, Olson J, Rosenthal PJ: Short communication. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. *Eur J Med Chem* 2001, 36:555–560.
91. Ferrer R, Lobor G, Gamboa N, Rodrigues J, Abramjuk C, Jung K, Lein M, Charris J, Synthesis of [7-chloroquinoline-4-y-laminol]-chalcones: potential antimalarial and anticanter agents. *Sci Pharm* 2009, 77:725–741.
92. Navarro M, Vásquez F, Sánchez-Delgado RA, Pérez H, Sino V, Schrével J: Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes. *J Med Chem* 2004, 47:5204–5209.
93. Dominguez JN, León C, Rodrigues J, Gamboa de Dominguez N, Gut J, Rosenthal PJ: Synthesis and evaluation of new antimalarial phenylurea chalcone derivatives. *J Med Chem* 2005, 48:3654–3658.
94. de Andrade-Neto VF, Goulart MO, da Silva Filho JF, da Silva MI, Pinto Mdo C, Pinto AV, Zalis MG, Carvalho LH, Krettli AU: Antimalarial activity of phenazines from lapacloto, betol-lapaclote and its derivatives against *Plasmodium falciparum* in vitro and *Plasmodium berghei* in vivo. *Bioorg Med Chem Lett* 2004, 14:1145–1149.
95. Hilário FF, de Paula RC, Silveira ML, Viana GH, Alves RB, Pereira JR, Silva LM, de Freitas RP, de Pilla Varetti F: Synthesis and evaluation of antimalarial activity of oxygenated 3-alkylpyridine marine alkaloid analogues. *Chem Biol Drug Des* 2011, 78:477–482.
96. Rodrigues J, Gamboa de Dominguez N: Plasmodium berghei: in vitro and in vivo activity of dequalinium. *Exp Parasitol* 2007, 115:19–24.
97. Bararzate A, Lobo G, Gamboa N, Rodrigues JR, Capparelli MV, Alvarez-Larena A, López SE, Charris JE: Synthesis and antimalarial activity of pyrazolo and pyrimido benzothiazine dioxide derivatives. *Eur J Med Chem* 2004, 39:1303–1310.
98. Bararzate A, Caschero WT, Guedes GP, Vasconcelos TR, Vas MG, da Souza MV, Krettli AL, Aguiar LG, Aguilar AC, Cunes CR, Cunico W: Synthesis and antimalarial activity of thioetherhydroxysulfonamides, potential antimaler protease inhibitors. Part 3. *Eur J Med Chem* 2011, 46:5888–5893.
99. Dominguez JN, León C, Rodríguez J, Gamboa de Dominguez N, Gut J, Rosenthal PJ: Synthesis of chlorovinyl sulfones as structural analogs of chalcones and their antiparasmidial activities. *Eur J Med Chem* 2009, 44:1457–1462.
102. Noedl H, Socheat D, Satimai W: Artemisinin-resistant malaria in Asia.
N Engl J Med 2009, 361:540–541.

103. Phyo AP, Nkhoma S, Stephniewska K, Ashley EA, Nair S, McGready R, Ler Moo
C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NP, White NJ,
Anderson Tj, Nosten F: Emergence of artemisinin-resistant malaria on the
western border of Thailand: a longitudinal study. Lancet 2012,
379:1960–1966.

104. The maeRA Consultative Group on Drugs: A research agenda for malaria
eradication. Drugs. PLoS Med 2011, 8:e1000402.

105. Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa
FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, Das Neves
Amorim RC, Niehues M, Ogungbe IV, Pohilt AM, Scotti MT, Setzer
WN, De NC Soeiro M, Steindel M, Tempone AG: The potential of secondary
metabolites from plants as drugs or leads against protozoan neglected
diseases - part II. Curr Med Chem 2012, 19:2128–2228.

106. Willcox ML, Graz B, Falquet J, Diakite C, Giani S, Diallo D: A “reverse
pharmacology” approach for developing an anti-malarial phytomedicine.
Malar J 2011, 10:88.

107. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall
DE, Green DV, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-
Bustos JF: Thousands of chemical starting points for antimalarial lead
identification. Nature 2010, 465:305–310.

108. Guiquemde WA, Shelat AA, Garcia-Bustos JF, Diagana TT, Gamo FJ, Guy RK:
Global phenotypic screening for antimalarials. Chem Biol 2012,
19:116–129.

109. Sanz LM, Crespo B, De-Cózar C, Ding XC, Llergo JL, Burrows JN, Garcia-
Bustos JF, Gamo FJ: Plasmodium falciparum in vitro killing rates allow to
discriminate between different antimalarial mode-of-action. PLoS One
2012, 7:e30949.

110. Ding XC, Jubbé D, Wells TNC: A framework for assessing the risk of
resistance for anti-malarials in development. Malar J 2012, 11:292.

111. Delves M, Plouffe D, Scheuerle C, Meister S, Wittlin S, Winzeler EA, Sinden RE,
Leroy D: The activities of current antimalarial drugs on the life cycle
stages of Plasmodium: a comparative study with human and rodent
parasites. PLoS Med 2012, 9:e1001169.

112. Dembele I, Gego A, Zeeman AM, Franetich JF, Silvie O, Rametti A, Le Grand
R, Dereudre-Bosquet N, Sauerwein R, van Gemert GD, Vaillant JC, Thomas
AW, Snounou G, Kochen CH, Mazda D: Towards an in vitro model of
Plasmodium hypnozoites suitable for drug discovery. PLoS One 2011,
6:e18162.

doi:10.1186/1475-2875-12-168
Cite this article as: Cruz et al.: Malaria in South America: a drug
discovery perspective. Malaria Journal 2013 12:168.

Submit your next manuscript to BioMed Central
and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit