Random phase approximation and its extension for the quantum O(2) anharmonic oscillator

Zoheir Aouissat
Institut für Kernphysik, Technische Hochschule Darmstadt,
Schlossgarten 9, D-64289 Darmstadt, Germany *

Cécile Martin
Groupe de Physique Théorique,
Institut de Physique Nucléaire,
F-91406, Orsay Cedex, France †

Abstract

We apply the random phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPA approximations using the equation of motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPA approximations. Then we use a time-dependent approach where the standard RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogoliubov equation. We draw the parallel between the two approaches.

PACS numbers: 21.60.Jz Hartree-Fock and random-phase approximations, 24.10.Cn Many-body theory

*E-mail address: aouissat@crunch.ikp.physik.tu-darmstadt.de
†E-mail address: martinc@ipno.in2p3.fr
1 Introduction

Our understanding of the low-energy behaviour of Quantum Chromodynamics calls for the developement of non-perturbative methods for quantum field theories. Some succes has been obtained by adapting to relativistic quantum fields well-known non-perturbative methods used in the nuclear many-body problem. For instance, variational methods using Gaussian wave functionals (which are analogous to the Hartree- Fock-Bogoliubov (HFB) kind of approximations) have been applied to self-interacting bosonic field theory [1], and to gauge field theory [2]. One important question, which is currently intensely debated in the literature, is how do such non-perturbative approximations respect the symmetries of the theory.

In this regard, we would like in the present work to revisit this important question within the framework of yet another well known and equally successful method from the many-body theory, the random phase approximation (RPA) and its extension, the renormalized RPA [3, 4]. The first of these two has experienced in the past quite a number of applications in various fields either in condensed matter or the nuclear problem. The second one on the other hand has, since its first formulation by Rowe [5], attracted very little interest till very recently. Beside its use in the conventional nuclear problem, there has been indeed several attempts as of lately to extend its application to quantum field theoretic models as well [6, 7]. It is worth reminding that in the standard RPA approximation, two-body expectation values are evaluated in the HFB mean-field vacuum. In the renormalized RPA approximation, however, these two-body expectation values are determined using the true RPA vacuum, inferring to the renormalized RPA a self-consistent character.

Recently the quasi-particle RPA approach has been applied to the linear sigma model in order to obtain a correct description of the global chiral symmetry broken phase. The standard mean-field HFB approximation gives a finite mass to the pion. However, it has been shown that in the RPA approximation the pion is massless in accordance with Goldstone theorem [8, 9]. A careful study of the finite temperature chiral phase transition in this model reveal, however, that the HFB-RPA approximation leads to a first order phase transition. This clearly is an artefact of the approximation as it is well admitted that the chiral transition in this model is of second order. This problem can be traced back to the fact that the finite temperature induced transition does not happen in the RPA vacuum, but rather in the self-consistently built ground-state, namely the HFB state. The latter is clearly a wrong vacuum for the theory as it doesn’t possess a valley in the broken phase. The RPA fluctuations which were crucial in correcting for these shortcomings [8, 9] are of no use in the present situation since these are implemented perturbatively. Therefore, it is obvious that such an approach is bound to fail in describing the theory in
the vicinity of the phase transition. A possible solution to this problem might very well be in relaxing the quasi-boson approximation inherent in the standard RPA approach. This leads to a self-consistent version of the RPA very difficult to put in practice. Therefore, it is more convenient to consider rather the renormalized RPA variant. This is what we propose to study here.

The renormalized RPA approximation has been considered in [6] in the context of scalar $\lambda\phi^4$ field theory in $1+1$ dimensions. In this work, the formulation of the RPA equations was based on the Dyson equation approach. A preliminary work applies the renormalized RPA to O(N) field theory [7]. Here, we will focus on the two-dimensional quantum anharmonic oscillator with an O(2) symmetry. This purely quantum mechanical model allows to obtain analytical expressions without the problems of divergences occurring in quantum field theories. It shows the possibility to have a vacuum state with spontaneous broken symmetry. It has also the advantage that we can compare the results obtained with the standard and renormalized RPA approximations with exact numerical results. This numerical investigation shall be published in a future work. Here we will concentrate on the formal aspects of the theory. A crucial point is to check the existence of a zero excitation frequency above the vacuum state with broken symmetry in our non-perturbative approximations (this corresponds in quantum field theory to the Goldstone mode). Since these quantum mechanical systems are used for demonstrational purpose, we will disregard all problems related to the infrared divergences occurring due to the presence of this zero energy mode.

The paper is organized as follows. In the first part, we derive the renormalized RPA equations using the equation of motion method [5]. In the second part, we use a time-dependent approach. In this formalism, the standard RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogoliubov equation. Within this second approach, we are not able to go beyond the standard RPA approximation. However, it is interesting to draw the parallel between the two approaches.

2 Renormalized RPA equations from the equation of motion method

The Hamiltonian for the O(2) anharmonic oscillator reads:

\[
H = \frac{P_1^2}{2} + \frac{P_2^2}{2} + \frac{\mu}{2}[X_1^2 + (\tilde{X}_2 + <X_2>)^2] + g[X_1^2 + (\tilde{X}_2 + <X_2>)^2]^2 + \eta(\tilde{X}_2 + <X_2>) ,
\]

(2.1)

where we have considered an explicit ($\eta \neq 0$) symmetry breaking and a spontaneous ($<X_2> \neq 0$) symmetry breaking along the X_2 direction. In the $\mu < 0$ case, the potential
has a "Mexican hat" shape.

The case of two particles in a harmonic potential and coupled by a linear interaction, which is analytically solvable, has been considered by the authors of reference [10] to demonstrate that the RPA correlation formula works well.

Let us define creation and annihilation operators a_i^+ and a_i, $i = 1, 2$, according to:

$$X_1 = \frac{1}{\sqrt{2\omega}}(a_1 + a_1^+) \quad P_1 = i\sqrt{\frac{\omega}{2}}(a_1^+ - a_1), \quad (2.2)$$

$$\bar{X}_2 = \frac{1}{\sqrt{2\Omega}}(a_2 + a_2^+) \quad P_2 = i\sqrt{\frac{\Omega}{2}}(a_2^+ - a_2). \quad (2.3)$$

The transverse frequency ω, the radial frequency Ω and the condensate $<X_2>$ will be determined self-consistently. Using the analogy with the linear sigma model in quantum field theory, the X_1 and X_2 modes represent the pion and the sigma fields respectively. In terms of the operators a_i and a_i^+, the Hamiltonian reads:

$$H = \sum_{i=1,2} p_{i\alpha}a_i^+a_i + \sum_{i=1,2} p_{i0}(a_i^+a_i^+ + a_ia_i) + g_{11}(a_1^+ + a_1)^4 + g_{12}(a_1^+ + a_1)^2(a_2^+ + a_2)^2 + g_{22}(a_2^+ + a_2)^4,$$

$$+ h_{12}(a_1^+ + a_1)^2(a_2^+ + a_2) + h_{22}(a_2^+ + a_2)^3 + \tilde{\eta}(a_2^+ + a_2) + C \quad (2.4)$$

where C is the following constant:

$$C = \frac{\omega}{4} + \frac{\Omega}{4} + \frac{\mu}{4\omega} + \frac{\omega}{2} <X_2>^2 + \frac{3g}{\Omega} <X_2>^2 + \frac{g}{\omega} <X_2>^2 + \frac{g}{\omega} <X_2>^2 + \frac{\eta}{X_2}>. \quad (2.5)$$

We have defined the following quantities:

$$p_{11} = \frac{\omega}{2} + \frac{\mu}{2\omega} + \frac{2g}{\omega} <X_2>^2, \quad (2.6)$$

$$p_{22} = \frac{\Omega}{2} + \frac{\mu}{2\Omega} + \frac{6g}{\omega} <X_2>^2, \quad (2.7)$$

$$p_{10} = \frac{1}{2}(p_{11} - \omega), \quad p_{20} = \frac{1}{2}(p_{22} - \Omega), \quad (2.8)$$

$$g_{11} = \frac{g}{4\omega^2}, \quad g_{12} = \frac{g}{2\omega\Omega}, \quad g_{22} = \frac{g}{4\Omega^2}, \quad (2.9)$$

$$h_{12} = \frac{2g}{\omega\sqrt{2\Omega}} <X_2>, \quad h_{22} = \frac{2g}{\Omega\sqrt{2\Omega}} <X_2>, \quad (2.10)$$

$$\tilde{\eta} = \frac{1}{\sqrt{2\Omega}} \left(\eta + \mu <X_2> + 4g <X_2>^3 \right). \quad (2.11)$$
\section{2.1 Mean Field Equations}

Normal ordering with respect to a_i and a_i^+ gives the result:

\[H = \sum_{i=1,2} p_{ii}a_i^+a_i + \sum_{i=1,2} p_{ii}(a_i^+a_i^+ + a_ia_i) \]

\[+ g_{11} \{ a_1^{+4} + a_1^4 + 6a_1^{+4}a_1a_1 + 4a_1^{+4}a_1^{+4}a_1 + 4a_1^{+4}a_1a_1a_1 + 12a_1^{+4}a_1 + 6a_1^{+4}a_1 + 6a_1^4 \} \]

\[+ g_{22} \{ a_2^{+4} + a_2^4 + 6a_2^{+4}a_2a_2 + 4a_2^{+4}a_2^{+4}a_2 + 4a_2^{+4}a_2a_2a_2 + 12a_2^{+4}a_2 + 6a_2^{+4}a_2 + 6a_2^4 \} \]

\[+ g_{12} \{ a_1^{+2}a_2^{+2} + a_1^2a_2^{+2} + a_1^{+2}a_2^2 + a_1^2a_2^{+2} + a_1a_2^{+2} + a_1^2a_2^2 + a_1a_2^{+2} + a_1^2a_2^2 \} \]

\[+ h_{12} \{ a_1^{+2}a_2^2 + a_1^{+2}a_2 + a_1^2a_2^+ + a_1^2a_2 + a_1^{+2}a_1^2 + a_1^{+2}a_1^2 \} \]

\[+ (h_{12} + 3h_{22} + \tilde{\eta})(a_2 + a_2^+) + E_{\text{FB}} \]

(2.12)

where

\[E_{\text{FB}} = \frac{\omega}{4} + \frac{\Omega}{4} + \frac{\mu}{4} \omega + \frac{\mu}{4} \Omega + \frac{\mu}{2} \frac{3g}{\Omega} + \frac{g}{\omega} + g < X_2 >^2 < X_2 >^2 \]

(2.13)

is the mean field energy.

Minimization of E_{FB} with respect to $< X_2 >$ gives the equation for the condensate:

\[\tilde{\eta} + 3h_{22} + h_{12} = 0 \]

(2.14)

that is

\[\eta + < X_2 > \left[\mu + 4g < X_2 >^2 + \frac{6g}{\Omega} + \frac{2g}{\omega} \right] \]

(2.15)

Minimization of E_{FB} with respect to ω and Ω gives the two gap equations:

\[\omega^2 = \mu + 4g < X_2 >^2 + \frac{6g}{\Omega} + \frac{2g}{\omega} \]

(2.16)

\[\Omega^2 = \mu + 12g < X_2 >^2 + \frac{2g}{\omega} + \frac{6g}{\Omega} \]

(2.17)

We check that the coefficient of the linear term in the expression (2.12) gives the equation for the condensate (2.14).

Equations (2.15)-(2.17) coincide with those written by Stevenson in [12]. When there is no explicit symmetry breaking ($\eta = 0$), we have two solutions: one with $< X_2 > = 0$ and one where the symmetry is spontaneously broken $< X_2 > \neq 0$. For the symmetric solution, we have $\omega = \Omega$ and the gap equation is

\[\omega^3 - \mu \omega - 8g = 0 \]

(2.18)

We can compare the mean field results with exact numerical calculations [13]. For instance for $\mu = 1$ and $g = 1$, the energies of the ground state and the two first excited states...
are in the mean-field approximation: $E_0 = 1.74015, E_1 = 3.90645$ and $E_2 = 6.07275$ whereas exact numerical calculations give: $E_0 = 1.7242, E_1 = 3.8304$ and $E_2 = 6.214$. However, we are not aware of numerical calculations for the two-dimensional anharmonic oscillator in the case $<X_2> \neq 0$.

2.2 RPA equations from the equation of motion method

The symmetry generator, *i.e.* the angular momentum operator around the 3-axis, is given by:

$$L_3 = X_1 P_2 - (\bar{X}_2 + <X_2>) P_1,$$

(2.19)

or in terms of the creation and annihilation operators:

$$L_3 = i \left(\sqrt{\Omega} \omega + \sqrt{\omega} \Omega \right) (a_1 a_2^+ - a_1^+ a_2) - i \left(\sqrt{\Omega} \omega - \sqrt{\omega} \Omega \right) (a_1 a_2 - a_1^+ a_2^+) - i \frac{\omega}{2} <X_2>(a_1^+ - a_1).$$

(2.20)

To derive the RPA equations, we will first use the equation of motion method due to Rowe [5]. We assume that an exact eigenstate $|\nu>$ of the Hamiltonian can be created from the exact vacuum $|0>$ by an excitation operator Q^+_{ν}:

$$|\nu> = Q^+_{\nu}|0>, \quad Q_{\nu}|0>=0$$

(2.21)

Minimization of the energy $E_{\nu} = <\nu|H|\nu> / <\nu|\nu>$ with respect to a variation δQ_{ν} of the operator Q_{ν} leads to the following set of equations:

$$<0|\left[\delta Q_{\nu}, [H, Q^+_{\nu}]\right]|0> = \Omega_{\nu} <0|\left[\delta Q_{\nu}, Q^+_{\nu}\right]|0>, \quad (2.22)$$

where $\Omega_{\nu} = E_{\nu} - E_0$ is the excitation energy. One has also the supplementary condition:

$$<0|[H, Q_{\nu}]|0>=0,$$

(2.23)

which is equivalent to generalized mean field equations [11].

We will restrict our choice of excitation operators Q^+_{ν} to those which contain the same operators that appear in the symmetry generator (2.20), that is:

$$Q^+_{\nu} = U^{(1)}_{\nu} a_1^+ - V^{(1)}_{\nu} a_1 + U^{(2)}_{\nu} a_1^+ a_2^+ - V^{(2)}_{\nu} a_1 a_2 + U^{(3)}_{\nu} a_1 a_2^+ - V^{(3)}_{\nu} a_1^+ a_2.$$

(2.24)

The RPA ground state is defined by

$$Q_{\nu}|RPA>=0,$$

(2.25)
and the expectation values appearing in eqs. (2.20) and (2.23) are taken in the RPA ground state. RPA equations (2.20) become matrix equations which allow to determine the excitation energy Ω_ν and the amplitudes U_ν and V_ν:

$$
\begin{pmatrix}
A & B \\
-B & -A
\end{pmatrix}
\begin{pmatrix}
U_\nu \\
V_\nu
\end{pmatrix} = \Omega_\nu N
\begin{pmatrix}
U_\nu \\
V_\nu
\end{pmatrix},
$$
(2.26)

where we have defined the three-dimensional vectors:

$$
U_\nu = \begin{pmatrix}
U^{(1)}_\nu \\
U^{(2)}_\nu \\
U^{(3)}_\nu
\end{pmatrix}, \quad V_\nu = \begin{pmatrix}
V^{(1)}_\nu \\
V^{(2)}_\nu \\
V^{(3)}_\nu
\end{pmatrix}.
$$
(2.27)

The norm matrix is given by:

$$
N = \begin{pmatrix}
N_A & N_B \\
N_B & N_A
\end{pmatrix},
$$
(2.28)

where the 3×3 matrices N_A and N_B are:

$$
N_A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 + \tau_1 + \tau_2 & \kappa_1 \\
0 & \kappa_1 & \tau_1 - \tau_2
\end{pmatrix}, \quad N_B = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & -\kappa_2 \\
0 & \kappa_2 & 0
\end{pmatrix}.
$$
(2.29)

We have introduced the notations:

$$
\kappa_1 = <a_1^+ a_1^+> = <a_1 a_1>, \quad \kappa_2 = <a_2^+ a_2^+> = <a_2 a_2>,
$$
(2.30)

$$
\tau_1 = <a_1^+ a_1>, \quad \tau_2 = <a_2^+ a_2>.
$$
(2.31)

We have assumed that the previous quantities are real. We have also used by definition $<a_2^-> = <a_2> = 0$.

The RPA basis being complete, we have the following expression for any operator O in terms of the RPA excitation operators Q^+_ν and Q_ν:

$$
O = \sum_{\nu=1,3} Q^+_\nu \langle [Q_\nu, O] \rangle - Q_\nu \langle [Q^+_\nu, O] \rangle,
$$
(2.32)

where the expectation values are taken on the RPA ground state. We have therefore the expression of the operators a_1^+, $a_1^+ a_2^+$ and $a_1^+ a_2$ in terms of Q^+_ν and Q_ν and we deduce:

$$
<a_1^+> = <a_1^+ a_2^+> = <a_1^+ a_2> = 0.
$$
(2.33)

We will introduce the following quantities:

$$
\Gamma = \tau_1 + \kappa_1 + \tau_2 + \kappa_2 + 1,
$$
(2.34)

$$
\Delta = \tau_1 + \kappa_1 - \tau_2 - \kappa_2.
$$
(2.35)
An important condition to remember in the EOM approach for RPA equations is that the norm matrix \mathcal{N} has to be invertible in order to be able to write the normalization condition for the excited state $|\nu>$.

The matrix elements of A and B are defined according to:

$$A_{11} = <a_1, [H, a_1^+]> \quad (2.36)$$
$$A_{12} = <a_1, [H, a_1^+ a_2^+]> \quad (2.37)$$
$$A_{13} = <a_1, [H, a_1^+ a_2^+]> \quad (2.38)$$
$$B_{11} = -<a_1, [H, a_1]> \quad (2.39)$$
$$B_{12} = -<a_1, [H, a_1 a_2]> \quad (2.40)$$
$$B_{13} = -<a_1, [H, a_1^+ a_2]> \quad (2.41)$$

$$A_{21} = <a_1 a_2, [H, a_1^+]> \quad (2.42)$$
$$A_{22} = <a_1 a_2, [H, a_1^+ a_2^+]> \quad (2.43)$$
$$A_{23} = <a_1 a_2, [H, a_1^+ a_2^+]> \quad (2.44)$$
$$B_{21} = -<a_1 a_2, [H, a_1]> \quad (2.45)$$
$$B_{22} = -<a_1 a_2, [H, a_1 a_2]> \quad (2.46)$$
$$B_{23} = -<a_1 a_2, [H, a_1^+ a_2]> \quad (2.47)$$

$$A_{31} = <a_1^+ a_2, [H, a_1^+]> \quad (2.48)$$
$$A_{32} = <a_1^+ a_2, [H, a_1^+ a_2^+]> \quad (2.49)$$
$$A_{33} = <a_1^+ a_2, [H, a_1^+ a_2^+]> \quad (2.50)$$
$$B_{31} = -<a_1^+ a_2, [H, a_1]> \quad (2.51)$$
$$B_{32} = -<a_1^+ a_2, [H, a_1 a_2]> \quad (2.52)$$
$$B_{33} = -<a_1^+ a_2, [H, a_1^+ a_2]> \quad (2.53)$$

We need to calculate all these commutators. In the renormalized RPA approximation, when calculating the expectation values in the RPA ground state, one uses the following approximation:

$$<\alpha_i\alpha_j\alpha_k\alpha_l> \approx <\alpha_i\alpha_j> <\alpha_k\alpha_l> + <\alpha_i\alpha_k> <\alpha_j\alpha_l> + <\alpha_i\alpha_l> <\alpha_j\alpha_k> \quad (2.54)$$
where the α operators are either creation or annihilation operators of the bosons 1 and 2. The expectation values are calculated self-consistently whereas in standard RPA, they are calculated in the HFB ground state. We obtain the following expressions for the matrix elements of A and B :

\begin{align}
A_{11} &\equiv \mathcal{E}_\pi = p_{11} + 12g_{11}(\Gamma + \Delta) + 2g_{12}(\Gamma - \Delta) \quad (2.55) \\
A_{12} &= \tilde{\eta} + 3h_{22}(\Gamma - \Delta) + h_{12}(\Delta + 3\Gamma) \quad (2.56) \\
A_{13} &= 2h_{12}\Delta \quad (2.57) \\
A_{21} &= 2h_{12}\Gamma \quad (2.58) \\
A_{22} &= (\mathcal{E}_\pi + \mathcal{E}_\sigma)(\tau_1 + \tau_2 + 1) + \kappa_1\chi_\pi + \kappa_2\chi_\sigma + 4g_{12}\Gamma^2 \quad (2.59) \\
A_{23} &= -\kappa_1(\mathcal{E}_\pi - \mathcal{E}_\sigma) - (1 + \tau_1 + \tau_2)\chi_\pi + 4g_{12}\Gamma\Delta \quad (2.60) \\
A_{31} &= 2h_{12}\Delta \quad (2.61) \\
A_{32} &= \kappa_1(\mathcal{E}_\pi + \mathcal{E}_\sigma) + (\tau_1 - \tau_2)\chi_\pi + 4g_{12}\Gamma\Delta \quad (2.62) \\
A_{33} &= (\tau_2 - \tau_1)(\mathcal{E}_\pi - \mathcal{E}_\sigma) - \kappa_1\chi_\pi - \kappa_2\chi_\sigma + 4g_{12}\Delta^2 \quad (2.63)
\end{align}

\begin{align}
B_{11} &\equiv \chi_\pi = 2p_{10} + 2g_{11}(\Gamma + \Delta) + 2g_{12}(\Gamma - \Delta) \quad (2.64) \\
B_{12} &= 2h_{12}\Gamma \\
B_{13} &= \tilde{\eta} + h_{12}(\Gamma + 3\Delta) + 3h_{22}(\Gamma - \Delta) \quad (2.66) \\
B_{21} &= 2h_{12}\Gamma \quad (2.67) \\
B_{22} &= \kappa_1\chi_\sigma + \kappa_2\chi_\pi + 4g_{12}\Gamma^2 \quad (2.68) \\
B_{23} &= -\kappa_2(\mathcal{E}_\pi - \mathcal{E}_\sigma) + (1 + \tau_1 + \tau_2)\chi_\sigma + 4g_{12}\Gamma\Delta \quad (2.69) \\
B_{31} &= 2h_{12}\Delta \quad (2.70) \\
B_{32} &= -\kappa_2(\mathcal{E}_\pi + \mathcal{E}_\sigma) + (\tau_1 - \tau_2)\chi_\sigma + 4g_{12}\Gamma\Delta \quad (2.71) \\
B_{33} &= \kappa_2\chi_\pi + \kappa_1\chi_\sigma + 4g_{12}\Delta^2 \quad (2.72)
\end{align}

The quantities $\mathcal{E}_\pi, \mathcal{E}_\sigma, \chi_\pi$ and χ_σ are defined according to :

\begin{align}
\mathcal{E}_\pi &= <[a_1, [H, a_1^+]]> \\
\mathcal{E}_\sigma &= <[a_2, [H, a_2^+]]> \\
\chi_\pi &= -<[a_1, [H, a_1]]> \\
\chi_\sigma &= -<[a_2, [H, a_2]]>
\end{align}
The equations for $< X_2 >$ and the frequencies ω and Ω (or for \mathcal{E}_π and \mathcal{E}_σ) are respectively obtained by writing the generalized mean-field equations (2.23):

\begin{align}
< [H, a_2] > &= 0 \\
< [H, a_1^+ a_1^+] > &= 0 \\
< [H, a_2^+ a_2^+] > &= 0
\end{align}

(2.77) (2.78) (2.79)

They are equivalent to the minimization of the generalized mean-field energy $< H >$ with respect to $< X_2 >$, ω and Ω (see the expression of $< H >$ eq.(2.130) below). We obtain:

\begin{align}
\tilde{\eta} + 3h_{22}(\Gamma - \Delta) + h_{12}(\Gamma + \Delta) &= 0 \\
p_{11}\kappa_1 + p_{10}(2\tau_1 + 1) + 6g_{11}(\Gamma + \Delta)^2 + g_{12}(\Gamma + \Delta)(\Gamma - \Delta) &= 0 \\
p_{22}\kappa_2 + p_{20}(2\tau_2 + 1) + g_{12}(\Gamma + \Delta)(\Gamma - \Delta) + 6g_{22}(\Gamma - \Delta)^2 &= 0
\end{align}

(2.80) (2.81) (2.82)

By using the definitions of $p_{10}, p_{20}, \mathcal{E}_\pi$ and \mathcal{E}_σ, the two last equations, which we call the generalized gap equations, can be written as:

\begin{align}
\mathcal{E}_\pi(\Gamma + \Delta) &= \omega(2\tau_1 + 1) \\
\mathcal{E}_\sigma(\Gamma - \Delta) &= \Omega(2\tau_2 + 1)
\end{align}

(2.83) (2.84)

When using the generalized mean-field equations (2.80), (2.83) and (2.84), we check that the matrices \mathcal{A} and \mathcal{B} are symmetric.

2.3 Standard RPA approximation

In the standard RPA approximation, all expectation values are taken in the HFB ground state. We therefore have: $\tau_1 = \tau_2 = \kappa_1 = \kappa_2 = 0$ and $\Gamma = 1, \Delta = 0$. The generalized mean-field equations (2.80), (2.83) and (2.84) reduce to the mean-field equations given in subsection (2.1), eqs. (2.15), (2.16) and (2.17). We have: $\mathcal{E}_\pi = \omega, \mathcal{E}_\sigma = \Omega, \chi_\pi = \chi_\sigma = 0$. The matrices \mathcal{A} and \mathcal{B} become much simpler:

\begin{equation}
\mathcal{A} = \begin{pmatrix}
\omega & 2h_{12} & 0 \\
2h_{12} & \omega + \Omega + 4g_{12} & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \mathcal{B} = \begin{pmatrix}
0 & 2h_{12} & 0 \\
2h_{12} & 4g_{12} & 0 \\
0 & 0 & 0
\end{pmatrix},
\end{equation}

(2.85)

where we have used the equation for $< X_2 >$: $\tilde{\eta} + 3h_{22} + h_{12} = 0$. We note that

\begin{equation}
\mathcal{A} = \begin{pmatrix}
\omega & 0 & 0 \\
0 & \omega + \Omega & 0 \\
0 & 0 & 0
\end{pmatrix} + \mathcal{B}.
\end{equation}

(2.86)
The matrix \mathcal{N} is diagonal:

$$
\mathcal{N}_A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \mathcal{N}_B = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
$$

(2.87)

We see that the amplitudes $U^{(3)}_\nu$ and $V^{(3)}_\nu$ respectively in front of the operators $a_1 a_2^+$ and $a_1^+ a_2$ in the excitation operator Q^+_ν (2.24) decouple. In the symmetric phase, we have $L_3 = i(a_1 a_2^2 - a_1^+ a_2)$ and the operators which decouple are those which appear in the symmetry generator.

The standard RPA equations therefore reduce to a 4×4 system (instead of 6 by 6). Its dimension will be then divided by two and the RPA frequencies Ω_ν satisfy:

$$
\det \left((\mathcal{A} - \mathcal{B}) (\mathcal{A} + \mathcal{B}) - \Omega_\nu I \right) = 0,
$$

(2.88)

where now \mathcal{A} and \mathcal{B} are 2 by 2 matrices and I is the 2 by 2 unity matrix. This gives:

$$
\left(\omega^2 - \Omega^2_\nu \right) \left((\omega + \Omega) - \Omega^2_\nu + 8g_{12}(\omega + \Omega) \right) - 16h_{12}^2 \omega (\omega + \Omega) = 0.
$$

(2.89)

This equation is valid for the two solutions: $\langle X_2 \rangle = 0$ and $\langle X_2 \rangle \neq 0$.

Let us check the existence of a zero RPA frequency in the case of a ground state with broken symmetry (the analog of the Goldstone mode in the linear sigma model). (In the following, we have no explicit symmetry breaking: $\eta = 0$). By introducing the two following quantities (which correspond to loop integrals in quantum field theories):

$$
I_\pi = \frac{1}{2\omega}, \quad I_\sigma = \frac{1}{2\Omega},
$$

(2.90)

the two gap equations in the case $\langle X_2 \rangle \neq 0$ can be written as:

$$
\omega^2 = 8g(I_\pi - I_\sigma),
$$

(2.91)

$$
\Omega^2 = 8g \langle X_2 \rangle^2.
$$

(2.92)

We then introduce the following quantity (which is analogous to the self-energy in quantum field theories):

$$
\Sigma(\Omega^2_\nu) = \frac{\omega + \Omega}{2\omega\Omega} \cdot \frac{1}{\Omega^2_\nu - (\omega + \Omega)^2}.
$$

(2.93)

Equation (2.89) for the RPA frequencies can be rewritten as:

$$
\left(\Omega^2_\nu - \omega^2 \right) \left(1 - 4g\frac{\omega + \Omega}{\omega\Omega} \cdot \frac{1}{\Omega^2_\nu - (\omega + \Omega)^2} \right) - 32g^2 \langle X_2 \rangle^2 \frac{\omega + \Omega}{\omega\Omega} \cdot \frac{1}{\Omega^2_\nu - (\omega + \Omega)^2} = 0,
$$

(2.94)

or

$$
\Omega^2_\nu - \omega^2 = 64g^2 \langle X_2 \rangle^2 \frac{\Sigma(\Omega^2_\nu)}{1 - 8g\Sigma(\Omega^2_\nu)}.
$$

(2.95)
This equation is identical to eq. (28) of [6]. We also notice that:

\[\Sigma(\Omega, \nu = 0) = \frac{1}{2\omega\Omega(\omega + \Omega)} , \]

\[I_\pi - I_\sigma = \frac{\Omega^2 - \omega^2}{2\omega\Omega(\omega + \Omega)} . \]

Therefore:

\[\Sigma(\Omega, \nu = 0) = \frac{I_\pi - I_\sigma}{\omega^2 - \Omega^2} . \]

We then use the gap equation (2.92) to write the equation for the RPA frequencies (2.95) as:

\[\Omega^2_{\nu} = \omega^2 + 8g\Omega_0^2 \frac{\Sigma(\Omega^2_\nu)}{1 - 8g\Sigma(\Omega^2_\nu)} , \]

and then we use the first gap equation (2.91) to obtain:

\[\Omega^2_{\nu} = \frac{8g}{1 - 8g\Sigma(\Omega^2_\nu)} (\Omega^2 - \omega^2) \left(\Sigma(\Omega^2_\nu) - \Sigma(\Omega^2_{\nu} = 0) \right) . \]

It is clear now that there is a zero frequency in the RPA spectrum.

2.4 Renormalized RPA approximation

We see from eqs. (2.29) and (2.30) that if \(\kappa_1 \) or \(\kappa_2 \) are not vanishing, the norm matrix \(\mathcal{N} \) is not diagonal. In this case, it won’t always be possible to write normalization conditions for the excited states \(|\nu> \). We therefore impose the supplementary conditions:

\[<a_1^+a_1^+>=<a_1a_1>=0 \quad \text{and} \quad <a_2^+a_2^+>=<a_2a_2>=0, \]

that is \(\kappa_1 = 0 \) and \(\kappa_2 = 0 \), i.e. we neglect pair correlations. With these conditions, the matrix \(\mathcal{N} \) stays diagonal in the renormalized approximation:

\[\mathcal{N} = \begin{pmatrix} \mathcal{N}_A & 0 \\ 0 & \mathcal{N}_A \end{pmatrix} \quad \text{with} \quad \mathcal{N}_A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + \tau_1 + \tau_2 & 0 \\ 0 & 0 & \tau_1 - \tau_2 \end{pmatrix} . \]

The matrices \(\mathcal{A} \) and \(\mathcal{B} \) simplify:

\[\mathcal{A} = \begin{pmatrix} \omega & 0 & 0 \\ 0 & (\omega + \Omega)(1 + \tau_1 + \tau_2) & 0 \\ 0 & 0 & (\Omega - \omega)(\tau_1 - \tau_2) \end{pmatrix} + \mathcal{B} , \]

\[\mathcal{B} = \begin{pmatrix} 0 & 2h_{12}\Gamma & 2h_{12}\Delta \\ 2h_{12}\Gamma & 4h_{12}\Gamma^2 & 4h_{12}\Gamma\Delta \\ 2h_{12}\Delta & 4h_{12}\Gamma\Delta & 4h_{12}\Delta^2 \end{pmatrix} . \]
We notice that, contrary to what happen in standard RPA, the operators $a_1a_2^+$ and $a_1^+a_2$ don’t decouple: the RPA matrix remains 6 by 6. Its expression is very similar to standard RPA at finite temperature, τ_1 and τ_2 being the occupation numbers [9].

We defined new three-dimensional vectors \bar{U}_ν and \bar{V}_ν and a new RPA matrix \bar{R} by
\[
\begin{pmatrix}
\bar{U}_\nu \\
\bar{V}_\nu
\end{pmatrix}
= N^{1/2}
\begin{pmatrix}
U_\nu \\
V_\nu
\end{pmatrix},
\quad
\bar{R} = N^{-1/2}
\begin{pmatrix}
\mathcal{A} & \mathcal{B} \\
-\mathcal{B} & -\mathcal{A}
\end{pmatrix}N^{-1/2}.
\]
(2.104)

We have :
\[
\bar{R} = \begin{pmatrix}
\bar{\mathcal{A}} & \bar{\mathcal{B}} \\
-\bar{\mathcal{B}} & -\bar{\mathcal{A}}
\end{pmatrix},
\]
(2.105)
with : \(\bar{\mathcal{A}} = N_A^{-1/2} \mathcal{A} N_A^{-1/2} \) and \(\bar{\mathcal{B}} = N_A^{-1/2} \mathcal{B} N_A^{-1/2} \). The renormalized RPA equations then write :
\[
\begin{pmatrix}
\bar{\mathcal{A}} & \bar{\mathcal{B}} \\
-\bar{\mathcal{B}} & -\bar{\mathcal{A}}
\end{pmatrix}
\begin{pmatrix}
\bar{U}_\nu \\
\bar{V}_\nu
\end{pmatrix}
= \Omega_\nu
\begin{pmatrix}
\bar{U}_\nu \\
\bar{V}_\nu
\end{pmatrix},
\]
(2.106)
and the RPA frequencies are determined by :
\[
\det \left[\left(\bar{\mathcal{A}} - \bar{\mathcal{B}} \right) \left(\bar{\mathcal{A}} + \bar{\mathcal{B}} \right) - \Omega^2_\nu I \right] = 0,
\]
(2.107)
where \(I \) being the 3 by 3 unity matrix. The matrices \(\bar{\mathcal{A}} \) and \(\bar{\mathcal{B}} \) are given by :
\[
\bar{\mathcal{A}} = \begin{pmatrix}
\omega & 0 & 0 \\
0 & \omega + \Omega & 0 \\
0 & 0 & \Omega - \omega
\end{pmatrix} + \bar{\mathcal{B}},
\]
(2.108)
\[
\bar{\mathcal{B}} = \begin{pmatrix}
0 & 2h_{12}\sqrt{\Gamma} & 2h_{12}\sqrt{\Delta} \\
2h_{12}\sqrt{\Gamma} & 4g_{12}\Gamma & 4g_{12}\sqrt{\Gamma\Delta} \\
2h_{12}\sqrt{\Delta} & 4g_{12}\sqrt{\Gamma\Delta} & 4g_{12}\Delta
\end{pmatrix},
\]
(2.109)
where \(\Gamma = 1 + \tau_1 + \tau_2 \) and \(\Delta = \tau_1 - \tau_2 \).

The norm of the excited states
\[
\langle \nu | \nu \rangle = \langle 0 | Q_\nu Q_\nu^+ | 0 \rangle = \langle 0 | [Q_\nu, Q_\nu^+] | 0 \rangle,
\]
(2.110)
can be chosen to be equal to one. This corresponds to :
\[
\begin{pmatrix}
U_\nu \\
V_\nu
\end{pmatrix}
\begin{pmatrix}
N_A & 0 \\
0 & -N_A
\end{pmatrix}
\begin{pmatrix}
U_\nu \\
V_\nu
\end{pmatrix} = 1,
\]
(2.111)
or
\[
\begin{pmatrix}
\bar{U}_\nu \\
\bar{V}_\nu
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
0 & -I
\end{pmatrix}
\begin{pmatrix}
\bar{U}_\nu \\
\bar{V}_\nu
\end{pmatrix} = 1,
\]
(2.112)
i.e. :
\[
(\bar{U}_\nu^{(1)})^2 + (\bar{U}_\nu^{(2)})^2 + (\bar{U}_\nu^{(3)})^2 = (\bar{V}_\nu^{(1)})^2 + (\bar{V}_\nu^{(2)})^2 + (\bar{V}_\nu^{(3)})^2 = 1.
\]
(2.113)
By replacing the expressions for \(g_{12} \) and \(h_{12} \), equation (2.107) can be written in the form:

\[
(\omega^2 - \Omega^2) \left[1 - 4g \left(\frac{\omega + \Omega}{\omega \Omega} \frac{\Omega^2 - (\omega + \Omega)^2}{\Omega^2 - (\omega + \Omega)^2} \right) \right]
\]

\[
-32g^2 <X_2>^2 \left[\frac{\omega - \Omega}{\omega \Omega} \frac{\Delta}{\Omega^2 - (\omega - \Omega)^2} + \frac{\omega + \Omega}{\omega \Omega} \frac{\Gamma}{\Omega^2 - (\omega - \Omega)^2} \right]
\]

(2.114)

We introduce the quantity:

\[
\Sigma_r(\Omega^2) = \frac{\omega + \Omega}{2\omega \Omega} \frac{1 + \tau_1 + \tau_2}{\Omega^2 - (\omega + \Omega)^2} - \frac{\omega - \Omega}{2\omega \Omega} \frac{\tau_1 - \tau_2}{\Omega^2 - (\omega - \Omega)^2},
\]

(2.115)

which is formally similar to the self-energy operator in quantum field theories at finite temperature. Equation (2.114) then becomes:

\[
\Omega^2 = \omega^2 + 64g^2 <X_2>^2 \frac{\Sigma_r(\Omega^2)}{1 - 8g\Sigma_r(\Omega^2)}.
\]

(2.116)

This equation for the RPA frequencies \(\Omega^2 \) has the same form as in standard RPA (eq. (2.95)) but, in renormalized RPA, \(\Sigma_r \) contains the densities \(\tau_1 \) and \(\tau_2 \) which have to be determined self-consistently.

Proceeding in the same way as in standard RPA, let us check the existence of a zero frequency in renormalized RPA in the case \(<X_2> \neq 0 \). We first introduce \(I_\pi = (2\tau_1 + 1)/2\omega \) and \(I_\sigma = (2\tau_2 + 1)/2\Omega \). The equation for the condensate and the two generalized gap equations have then the same form as in standard RPA:

\[
\mu + 4g <X_2>^2 + 4gI_\pi + 12gI_\sigma = 0
\]

(2.117)

\[
\omega^2 = \mu + 4g <X_2>^2 + 12gI_\pi + 4gI_\sigma
\]

(2.118)

\[
\Omega^2 = \mu + 12g <X_2>^2 + 4gI_\pi + 12I_\sigma
\]

(2.119)

and we have again:

\[
\omega^2 = 8g(I_\pi - I_\sigma)
\]

(2.120)

\[
\Omega^2 = 8g <X_2>^2.
\]

(2.121)

We have:

\[
\Sigma_r(\Omega^2 = 0) = -\frac{1}{2\omega \Omega} \frac{1 + \tau_1 + \tau_2}{(\omega + \Omega)} + \frac{1}{2\omega \Omega} \frac{\tau_1 - \tau_2}{(\omega - \Omega)},
\]

(2.122)

or

\[
\Sigma_r(\Omega^2 = 0) = \frac{I_\pi - I_\sigma}{\omega^2 - \Omega^2}.
\]

(2.123)

Using the two equations (2.120) and (2.121), we obtain the same expression as in standard RPA with \(\Sigma \) replaced by \(\Sigma_r \):

\[
\Omega^2 = \frac{8g}{1 - 8g\Sigma_r(\Omega^2)} (\Omega^2 - \omega^2) \left(\Sigma_r(\Omega^2) - \Sigma_r(\Omega^2 = 0) \right).
\]

(2.124)
We have therefore proven the existence of a zero frequency in the RPA spectrum in the case where we have a broken symmetry in standard RPA as well as in renormalized RPA. This result is very encouraging to apply renormalized RPA in the linear sigma model.

The operator associated to the zero mode is hermitian and cannot be normalized according to (2.113). It is equal to the symmetry generator L_3. The amplitudes \bar{U}_0 and \bar{V}_0 for the zero mode are:

1. $\bar{U}_0^{(1)} = -i\sqrt{\frac{\omega}{2}} <X_2>$
2. $\bar{U}_0^{(2)} = i\left(\sqrt{\frac{\Omega}{\omega}} - \sqrt{\frac{\omega}{\Omega}}\right)\sqrt{\Gamma}$
3. $\bar{U}_0^{(3)} = i\left(\sqrt{\frac{\Omega}{\omega}} + \sqrt{\frac{\omega}{\Omega}}\right)\sqrt{\Delta}$

and $\bar{U}_0 = \bar{V}_0$.

In order to obtain a closing of the renormalized RPA eigenvalues problem, one needs the expressions of the expectation values τ_1 and τ_2 in terms of the RPA amplitudes. One uses the inversion formula (2.32) and the algebra of the sp(4) group:

$$a_1^+ a_1 = \frac{1}{2} \left([a_1, a_2] + [a_1^+, a_2^+] - 1 \right),$$

$$a_2^+ a_2 = \frac{1}{2} \left([a_1, a_2] - [a_1^+, a_2^+] - 1 \right).$$

This provides a set of supplementary equations and allows a closing of the renormalized RPA eigenvalues problem.

To be complete, we finally give the expression of the energy in the renormalized RPA approximation. From the expression of H with normal ordered product (2.12), we obtain:

$$< H >= p_{11}(\tau_1 + \kappa_1) + p_{22}(\tau_2 + \kappa_2) - \omega\kappa_1 - \Omega\kappa_2$$

$$+12g_{11}(\tau_1 + \kappa_1)(\tau_1 + \kappa_1 + 1) + 12g_{22}(\tau_2 + \kappa_2)(\tau_2 + \kappa_2 + 1)$$

$$+2g_{12}(2(\tau_1 + \kappa_1)(\tau_2 + \kappa_2) + \tau_1 + \kappa_1 + \tau_2 + \kappa_2) + E_{HB}.$$

We have checked that minimization of $< H >$ with respect to $<X_2>$, ω and Ω gives the equation (2.80) for $<X_2>$ and the two generalized gap equations (2.81) and (2.82).

2.5 Renormalized RPA for the symmetric solution

For the symmetric solution $<X_2> = 0$, we have $\omega = \Omega$, $\tau_1 = \tau_2$. We still use $\kappa_1 = \kappa_2 = 0$.

The matrix \mathcal{N} is diagonal with a vanishing matrix \mathcal{N}_B and:

$$\mathcal{N}_A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + 2\tau_1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (2.131)$$

The renormalised RPA matrix writes:

$$\tilde{\mathcal{A}} = \begin{pmatrix} \omega & 0 & 0 \\ 0 & 2\omega & 0 \\ 0 & 0 & 0 \end{pmatrix} + \tilde{\mathcal{B}} \quad \text{with} \quad \tilde{\mathcal{B}} = \begin{pmatrix} 0 & 2g & 0 \\ 0 & \frac{2g}{\omega}(1 + 2\tau_1) & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (2.132)$$

For the symmetric solution we therefore obtain a decoupling of the amplitudes in front of the operators $a_1a_2^+$ and $a_1^+a_2$ in renormalized RPA, contrary to what happens for the solution with broken symmetry.

The RPA frequencies are the solutions of:

$$\left(\Omega_{\nu} - \omega^2\right) \left[\Omega_{\nu}^2 - 4\omega^2 - \frac{8g}{\omega}(1 + 2\tau_1)\right] = 0 \quad (2.133)$$

and the generalized gap equation writes:

$$\omega^2 = \mu + \frac{8g}{\omega}(2\tau_1 + 1) \quad (2.134)$$

We have therefore the RPA frequencies: $\Omega_{\nu}^2 = \omega^2$ and $\Omega_2^2 = 5\omega^2 - \mu$.

3 RPA from the time-dependent formalism

In this second part of our paper, we will derive the RPA frequencies from the linearization of the time-dependent Hartree-Bogoliubov (TDHB) equations. This approach has been introduced in many-body non-relativistic theories [14]. It has also been used in $\lambda\Phi^4$ field theory in references [15], where small oscillations in the broken phase lead to one and two meson modes of the theory. In this formalism, the natural variables are $<X_i>$ and $<P_i>$ (or $\Phi(\vec{x})$ and $\Pi(\vec{x})$ in $\lambda\Phi^4$ field theory [15]). This formalism is well adapted to dynamical problems. Some people working on RPA approximations use the formalism with the creation and annihilation operators, others use the time-dependent variational approach. It is interesting to make a close comparison between the two approaches.

For a two-dimensional system, a Gaussian state at finite temperature can be described by a vector α^a and a matrix Ξ^{ab}, $a = 1, 2$:

$$\alpha^a = \begin{pmatrix} \bar{x}^a \\ -i\bar{p}^a \end{pmatrix}, \quad \Xi^{ab} = \begin{pmatrix} 2G^{ab} & -iT^{ab} \\ -iT^{ba} & 2S^{ab} \end{pmatrix} \quad (3.1)$$
\[\bar{x}^a = \langle X^a \rangle , \quad \bar{p}^a = \langle P^a \rangle \]
\[G^{ab} = \langle \bar{X}^a \bar{X}^b \rangle \]
\[S^{ab} = \langle \bar{P}^a \bar{P}^b \rangle \]
\[T^{ab} = \langle \bar{X}^a \bar{P}^b + \bar{P}^b \bar{X}^a \rangle \]

with \(\bar{X}^a = X^a - \langle X^a \rangle \) and \(\bar{P}^a = P^a - \langle P^a \rangle \). The matrices \(G \) and \(S \) are symmetric.

At zero temperature, we have only two independent matrices among \(G, T \) and \(S \). The state can be described by a Gaussian wave function parameterized by \(\vec{x}, \vec{p}, G \) and \(\Sigma \) :

\[\psi(X^1, X^2, t) = \frac{1}{\mathcal{N}} \exp \left(- \langle \vec{X} - \vec{x} | \frac{1}{4G} + i\Sigma| \vec{X} - \vec{x} > \right) \exp \left(i \langle \vec{p}| \vec{X} - \vec{x} > \right), \]

where the matrix \(\Sigma \) is related to the preceding matrices by :

\[T^{ab} = 2(G\Sigma + \Sigma G)_{ab} \]
\[S^{ab} = \frac{1}{4}(G^{-1})_{ab} + 4(\Sigma G\Sigma)_{ab} \]

If we work with the operators \(a_i, a_i^+ \), as it is more usual in many-body problems, one introduces the matrix \(\rho \) defined by :

\[(1 + 2\rho)^{ij} = \begin{pmatrix} < \bar{a}_i \bar{a}_j^+ + \bar{a}_j^+ \bar{a}_i > & -2 < \bar{a}_i \bar{a}_j > \\ 2 < \bar{a}_i^+ \bar{a}_j^+ > & - < \bar{a}_i^+ \bar{a}_j^+ + \bar{a}_j \bar{a}_i^+ > \end{pmatrix} \]

The link with the representation with operators \(a_i, a_i^+ \) and the representation with \(X_i, P_i \) is given by the matrix relation :

\[\Xi' = \frac{1}{2}(1 + \tau)(1 + 2\rho)(1 + \tau) \]

where

\[\tau = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \]

\(I \) being the 2 by 2 matrix and

\[\Xi' = \begin{pmatrix} 2\sqrt{\omega_i} < \bar{X}_i \bar{X}_j > \sqrt{\omega_j} & -i\sqrt{\omega_i} < \bar{X}_i \bar{P}_j + \bar{P}_j \bar{X}_i > \frac{1}{\sqrt{\omega_j}} \\ -i\sqrt{\omega_j} < \bar{X}_j \bar{P}_i + \bar{P}_i \bar{X}_j > \frac{1}{\sqrt{\omega_i}} & -2\frac{1}{\sqrt{\omega_i}} < \bar{P}_i \bar{P}_j > \frac{1}{\sqrt{\omega_j}} \end{pmatrix} \]

with \(\omega_1 = \omega \) and \(\omega_2 = \Omega \) (see eqs. (2.2),(2.3)).
3.1 The time-dependent Hartree-Bogoliubov equations

In this part of the paper, we will use the following notation for the Hamiltonian of two-dimensional quantum anharmonic oscillator:

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + g(X_1^2 + X_2^2 - a^2)^2.$$ \tag{3.13}

The time-dependent variational Hartree-Bogoliubov equations are obtained at zero temperature from the minimization of:

$$S = \int dt \langle \psi | i\partial_t - H | \psi \rangle,$$ \tag{3.14}

where $|\psi\rangle$ is the state corresponding to the variational wave function (3.6). At finite temperature, the TDHB equations are obtained by minimizing [16]

$$\mathcal{Z}(\mathcal{D}(t)) = tr(\mathcal{D}(t_1)) - \int_{t_0}^{t_1} dt \ tr \left(\frac{d\mathcal{D}(t)}{dt} + i[H, \mathcal{D}(t)] \right),$$ \tag{3.15}

where $\mathcal{D}(t)$ is a variational density matrix, chosen to be a Gaussian and therefore characterized by α and Ξ.

The TDHB equations can be written in the following compact form [17] :

$$i\dot{\alpha} = \tau w,$$ \tag{3.16}

$$i\dot{\Xi} = -[(\Xi + \tau) \mathcal{H} (\Xi - \tau) - (\Xi - \tau) \mathcal{H} (\Xi + \tau)],$$ \tag{3.17}

or

$$i\dot{\Xi} = 2[\Xi \mathcal{H} \tau - \tau \mathcal{H} \Xi].$$ \tag{3.18}

The vector w and the matrix \mathcal{H} are defined by :

$$\delta < H > = \tilde{w}^a_i \delta \alpha_i^a - \frac{1}{2} tr \left(\mathcal{H}^{ab}_{ij} \delta \Xi^b_{ji} \right).$$ \tag{3.19}

For the Hamiltonian (3.13), we have:

$$< H > = \frac{1}{2m} (p_1^2 + p_2^2 + tr S) + g G_{11} (6\bar{x}_1^2 + 2\bar{x}_2^2 - 2a^2 + 3G_{11} + G_{22}) + g G_{22} (2\bar{x}_1^2 + 6\bar{x}_2^2 - 2a^2 + G_{11} + 3G_{22}) + g G_{12} (8\bar{x}_1\bar{x}_2 + 4G_{12}) + g (\bar{x}_1^2 + \bar{x}_2^2 - a^2)^2.$$ \tag{3.20}

The vector w and the matrix \mathcal{H} are given by :

$$w_1 = \frac{i}{m} \bar{p}_1, \quad w_2 = \frac{i}{m} \bar{p}_2.$$ \tag{3.21}
\[w_1 = 4g\bar{x}_1 \left(\bar{x}_1^2 + \bar{x}_2^2 - a^2 \right) + 12g\bar{x}_1G^{11} + 4g\bar{x}_1G^{22} + 8g\bar{x}_2G^{12} \]
\[w_2 = 4g\bar{x}_2 \left(\bar{x}_1^2 + \bar{x}_2^2 - a^2 \right) + 12g\bar{x}_2G^{22} + 4g\bar{x}_2G^{22} + 8g\bar{x}_1G^{12} \]
(3.22)

\[H_{21}^{12} = -6g\bar{x}_1^2 - 2g\bar{x}_2^2 - 6gG^{11} - 2gG^{22} + 2ga^2 \]
(3.24)

\[H_{11}^{22} = -6g\bar{x}_2^2 - 2g\bar{x}_1^2 - 6gG^{22} - 2gG^{11} + 2ga^2 \]
(3.26)

\[H_{12}^{ab} \equiv \frac{\delta < H >}{\delta S^{ba}} = \frac{1}{2m} \delta^{ab} \]
(3.27)

\[H_{12}^{ab} \equiv 2i\frac{\delta < H >}{\delta T^{ab}} = 0 \quad , \quad H_{21}^{ab} \equiv 2i\frac{\delta < H >}{\delta T^{ba}} = 0 \]
(3.28)

3.2 Static solution of the TDHB equations

The static solution of the TDHB equations (3.16) and (3.18) is given by:

\[\bar{w} = 0 \]
(3.29)

\[\bar{\Omega} \mathcal{H}(\bar{\alpha}, \bar{\Xi}) \tau - \tau \mathcal{H}(\bar{\alpha}, \bar{\Xi}) \bar{\Xi} = 0 \]
(3.30)

Using the rotational invariance we can choose \(\bar{x}_1 = 0 \) and from \(\bar{w} = 0 \) we deduce also \(G^{12} = 0 \) (to simplify the notations we don’t use the bar on the matrix elements of \(\Xi \) for the HFB ground state). From \(\bar{w} = 0 \), we deduce the existence of two solutions. One solution is symmetric with \(\bar{x}_2 = 0 \). The other solution shows a broken symmetry with \(\bar{x}_2 \neq 0 \) and given by:

\[\bar{x}_2^2 = a^2 - G^{11} - 3G^{22} \]
(3.31)

\[T^{ab} = 0 \]
(3.32)

\[S^{12} = 0 \]
(3.33)

\[S^{11} = 4mgG^{11}(\bar{x}_2^2 - a^2 + 3G^{11} + G^{22}) \]
(3.34)

\[S^{22} = 4mgG^{22}(3\bar{x}_2^2 - a^2 + G^{11} + G^{22}) \]
(3.35)

For the symmetric solution, we have:

\[S^{11} = S^{22} = 4mg(4G^{11} - a^2) \]
(3.36)

For the solution with broken symmetry,

\[S^{11} = 8gm(G^{11} - G^{22})G^{11} \]
(3.37)
\[S^{22} = \frac{8}{m} G^{22} \bar{x}_2^2 \]

(3.38)

At zero temperature, we have for the static solution: \(T^{ab} = 0 \) and \(S^{11} = 1/4G^{11}, S^{22} = 1/4G^{22} \). Equations (3.34) and (3.35) give the two gap equations:

\[\frac{1}{8m} G_{11}^{-2} = 2g(\bar{x}_2^2 - a^2 + 3G_{11} + G_{22}) \]

(3.39)

\[\frac{1}{8m} G_{22}^{-2} = 2g(3\bar{x}_2^2 - a^2 + G_{11} + G_{22}) \]

(3.40)

By using the identification \(G^{11} = 1/2\omega \) and \(G^{22} = 1/2\Omega \), the previous equations are identical to the mean-field gap equations obtained in the first part of the paper (2.16) and (2.17).

At zero temperature, the symmetric phase is characterized by:

\[\bar{x}_2 = 0 \]

(3.41)

\[G_{11} = G_{22} \quad , \quad \frac{1}{8m} G_{11}^{-2} = 2g(4G_{11} - a^2) \]

(3.42)

The solution with broken symmetry at zero temperature is characterized by:

\[\bar{x}_2^2 = a^2 - G_{11} - 3G_{22} \]

(3.43)

\[\frac{1}{32m} G_{11}^{-2} = g(G_{11} - G_{22}) \]

(3.44)

\[\frac{1}{32m} G_{22}^{-2} = g\bar{x}_2^2 \]

(3.45)

3.3 Small oscillations around the static solution

The linearization of the TDHB equations (3.16) and (3.18) writes

\[i\delta \dot{\alpha} = \delta w \]

(3.46)

\[i\delta \dot{\Xi} = 2 \left[\delta \Xi \hat{\mathcal{H}} \tau - \tau \hat{\mathcal{H}} \delta \Xi + \tilde{\Xi} \delta \mathcal{H} \tau - \tau \delta \mathcal{H} \tilde{\Xi} \right] \]

(3.47)

where \(\hat{\mathcal{H}} \) is the matrix \(\mathcal{H} \) evaluated for the HFB static solution \(\bar{\alpha}, \Xi \).

Let us write more explicitly the linearization of the TDHB equations around the static HFB solution with broken symmetry characterized by \(\bar{x}_1 = 0, \bar{x}_2 \neq 0, G^{11}, G^{22}, S^{11}, S^{22}, \bar{p}_1 = \bar{p}_2 = 0, G^{12} = S^{12} = T^{ab} = 0 \). We obtain a differential system with 14 variables:

\[\delta x_1, \delta p_1, \delta x_2, \delta p_2, \delta G^{11}, \delta G^{12}, \delta G^{22}, \delta T^{11}, \delta T^{12}, \delta T^{21}, \delta T^{22}, \delta S^{11}, \delta S^{12}, \delta S^{22} : \]

\[\delta \dot{x}_1 = \frac{1}{m} \delta p_1 \]

(3.48)
\[\delta \dot{p}_1 = -8g(G^{11} - G^{22}) \delta x_1 = 8g\bar{x}_2 \delta G^{12} \quad (3.49) \]
\[\delta \dot{x}_2 = \frac{1}{m} \delta p_2 \quad (3.50) \]
\[\delta \dot{p}_2 = -8g\bar{x}_2^2 - 12g\bar{x}_2 \delta G^{22} \quad (3.51) \]
\[\delta \dot{G}^{11} = \frac{1}{m} \delta T^{11} \quad (3.52) \]
\[\delta \dot{G}^{12} = \frac{1}{2m} \delta T^{12} + \frac{1}{2m} \delta T^{21} \quad (3.53) \]
\[\delta \dot{G}^{22} = \frac{1}{m} \delta T^{22} \quad (3.54) \]
\[\delta \dot{T}^{11} = -16g(G^{11} - G^{22}) \delta G^{11} + \frac{2}{m} \delta S^{11} \quad (3.55) \]
\[\delta \dot{T}^{12} = -16gG^{11} \bar{x}_2 \delta x_1 - 16g(\bar{x}_2^2 + G^{11}) \delta G^{12} + \frac{2}{m} \delta S^{12} \quad (3.56) \]
\[\delta \dot{T}^{21} = -16gG^{22} \bar{x}_2 \delta x_1 - 16gG^{11} \delta G^{12} + \frac{2}{m} \delta S^{12} \quad (3.57) \]
\[\delta \dot{T}^{22} = -16g\bar{x}_2^2 \delta G^{22} + \frac{2}{m} \delta S^{22} \quad (3.58) \]
\[\delta \dot{S}^{11} = -8g(G^{11} - G^{22}) \delta T^{11} \quad (3.59) \]
\[\delta \dot{S}^{12} = -4g(G^{11} - G^{22}) \delta T^{12} - 4g\bar{x}_2^2 \delta T^{21} \quad (3.60) \]
\[\delta \dot{S}^{22} = -8g\bar{x}_2^2 \delta T^{22} \quad (3.61) \]

To write these equations, we have used the mean-field equations for the solution with broken symmetry.

From this differential system of first order, we obtain a 14 by 14 RPA matrix. Coming back to the operator representation, with the help of relation (3.10) and its inverse, this corresponds to the 14 operators we have to include in the most general form of the excitation operator \(Q^+ \) of the first part of this paper if we keep only bilinear operators : \(a_1, a_1^+, a_2, a_2^+, a_1 a_1, a_1^+ a_1^+, a_2 a_2, a_2^+ a_2^+, a_1 a_2, a_1^+ a_2^+, a_1^+ a_2, a_1 a_2^+ \) and \(a_1^+ a_1, a_2^+ a_2 \). The last two operators appear only at finite temperature (For the derivation of RPA equations at finite temperature, see reference [18]).

The operator \(L_3 \) allows to separate these operators in two sectors : the six operators \(a_1, a_1^+, a_2, a_2^+, a_1 a_1, a_1^+ a_1^+, a_2 a_2, a_2^+ a_2^+ \) corresponding to the “pion” sector and the 8 operators \(a_2, a_2^+, a_1 a_1, a_1^+ a_1^+, a_2 a_2, a_2^+ a_2^+, a_1 a_2, a_1^+ a_2^+, a_1^+ a_1, a_2^+ a_2 \) corresponding to the “sigma” sector. By using again the correspondence between the \(X_i, P_i \) representation and the \(a_i^+, a_i \) representation, we deduce that the variables in our first-order differential
system which correspond to the “pion” are: \(\delta \bar{x}_1, \delta \bar{p}_1, \delta G^{12}, \delta T^{12}, \delta T^{21}, \delta S^{12} \), the other corresponding to the “sigma” sector. We check indeed that the RPA matrix, which we call \(\mathcal{R} \), can be written in two blocks, one 6 by 6 corresponding to the “pion” and one 8 by 8 corresponding to the “sigma”, the two sectors being disconnected. We can write the first-order differential system in the form:

\[
\delta \dot{X} = \mathcal{R} \delta X ,
\]

where \(\delta \tilde{X} = (\delta \bar{x}_1, \delta \bar{p}_1, \delta G^{12}, \delta T^{12}, \delta S^{12}, \delta \bar{x}_2, \delta \bar{p}_2, \delta G^{11}, \delta G^{22}, \delta T^{11}, \delta T^{22}, \delta S^{11}, \delta S^{22}) \) and

\[
\mathcal{R} = \begin{pmatrix} \mathcal{M}_\pi & 0 \\ 0 & \mathcal{M}_\sigma \end{pmatrix}
\]

The 6 by 6 RPA matrix \(\mathcal{M}_\pi \) for the “pion” sector is equal to:

\[
\mathcal{M}_\pi = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
-8g(G^{11} - G^{22}) & 0 & -8g \bar{x}_2 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2m} & \frac{1}{2m} & 0 \\
-16gG^{11} \bar{x}_2 & 0 & -16g(\bar{x}_2^2 + G^{11}) & 0 & 0 & \frac{2}{m} \\
-16gG^{22} \bar{x}_2 & 0 & -16gG^{11} & 0 & 0 & \frac{2}{m} \\
0 & 0 & 0 & -4g(G^{11} - G^{22}) & -4g\bar{x}_2^2 & 0
\end{pmatrix}
\]

and the 8 by 8 RPA matrix \(\mathcal{M}_\sigma \) is equal to:

\[
\mathcal{M}_\sigma = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-8g\bar{x}_2^2 & 0 & 0 & -12g \bar{x}_2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{m} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{m} & 0 & 0 \\
0 & 0 & -16g(G^{11} - G^{22}) & 0 & 0 & 0 & \frac{2}{m} & 0 \\
0 & 0 & 0 & -16g\bar{x}_2^2 & 0 & 0 & 0 & \frac{2}{m} \\
0 & 0 & 0 & 0 & -8g(G^{11} - G^{22}) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -8g\bar{x}_2^2 & 0 & 0
\end{pmatrix}
\]

We have \(\det \mathcal{M}_\pi = 0 \). However, before to conclude about the existence of a zero mode associated to the spontaneously breakdown of the rotational symmetry, we have to eliminate the spurious modes corresponding to invariants of the TDHB evolution. At zero temperature, this will allow to reduce the \(\mathcal{M}_\pi \) matrix to a 4 by 4 matrix. This is also the dimension we have found in the first section in standard RPA.

At zero temperature, we have the following condition to be satisfied to have a pure state:

\[
\rho(\rho + I) = 0
\]

or

\[
-\Xi'\tau \Xi' = \tau ,
\]
where the matrices ρ and Ξ' are given by eqs. (3.9) and (3.12) and I is the 2 by 2 unity matrix. We linearize eq. (3.67) around the HFB static solution. This gives the following conditions:

\[\sum_k G^{ik} \delta T^{jk} - \delta T^{ik} G^{kj} = 0 \] \hspace{1cm} (3.68)
\[\sum_k \delta T^{ki} S^{kj} - S^{ik} \delta T^{kj} = 0 \] \hspace{1cm} (3.69)
\[\sum_k G^{ik} \delta S^{kj} + \delta G^{ik} S^{kj} = 0 \] \hspace{1cm} (3.70)

Equations (3.68) and (3.69) give respectively:

\[G^{11} \delta T^{21} - \delta T^{12} G^{22} = 0 \] \hspace{1cm} (3.71)
\[S^{22} \delta T^{21} - \delta T^{12} S^{11} = 0 \] \hspace{1cm} (3.72)

At the minimum at zero temperature, we have: \(S^{11} = \frac{1}{4} G^{11} \) and \(S^{22} = \frac{1}{4} G^{22} \). The two previous conditions are therefore equivalent. From eq. (3.70), we obtain:

\[\delta G^{12} + 4 G^{11} G^{22} \delta S^{12} = 0 \] \hspace{1cm} (3.73)
\[\delta G^{11} + 4 (G^{11})^2 \delta S^{11} = 0 \] \hspace{1cm} (3.74)
\[\delta G^{22} + 4 (G^{22})^2 \delta S^{22} = 0 \] \hspace{1cm} (3.75)

The first condition is for the “pion” sector and the last two conditions are for the “sigma” sector.

Coming back to the operator representation, we have:

\[2 \sqrt{\frac{\omega}{\Omega}} < \tilde{X}_1 \tilde{X}_2 > + \frac{2}{\sqrt{\omega \Omega}} < \tilde{P}_1 \tilde{P}_2 > = 2(< a_1 a_2^+ > + < a_1^+ a_2 >) \] \hspace{1cm} (3.76)
\[2 \sqrt{\frac{\omega}{\Omega}} < \tilde{X}_1 \tilde{P}_2 + \tilde{P}_2 \tilde{X}_1 > - 2 \sqrt{\frac{\Omega}{\omega}} < \tilde{X}_2 \tilde{P}_1 + \tilde{P}_1 \tilde{X}_2 > = 4(< a_1 a_2^+ > - < a_1^+ a_2 >) \] \hspace{1cm} (3.77)

By using \(G^{12} = < \tilde{X}_1 \tilde{X}_2 >, S^{12} = < \tilde{P}_1 \tilde{P}_2 >, T^{12} = 2 < \tilde{X}_1 \tilde{P}_2 >, T^{21} = 2 < \tilde{X}_2 \tilde{P}_1 > \), and \(G^{11} = \frac{1}{\omega}, G^{22} = \frac{1}{\Omega} \) for the static HFB solution, we see that conditions (3.71) and (3.73) correspond to the decoupling of the operators \(a_1 a_2^+, a_1^+ a_2 \) we have found in the first section in standard RPA.

For the pion sector, we will therefore consider the following new variables:

\[\delta \tilde{Y} = \begin{pmatrix} \delta x_1, \delta p_1, \delta C = -4 G^{11} G^{22} \delta G^{12} + \delta S^{12}, \delta D = G^{11} \delta T^{12} + G^{22} \delta T^{21}, \\
\delta E = \delta G^{12} + G^{22} \delta T^{12} - G^{11} \delta T^{21} + 4 G^{11} G^{22} \delta S^{12}, \\
\delta F = \delta G^{12} - G^{22} \delta T^{12} + G^{11} \delta T^{21} + 4 G^{11} G^{22} \delta S^{12} \end{pmatrix} \] \hspace{1cm} (3.78)

We have:

\[\delta \tilde{Y} = M'_\pi \delta Y \] \hspace{1cm} (3.79)
From the condition to remain in the variational space of pure Gaussian states we have: \(\delta E = 0, \delta F = 0 \). We therefore consider in \(\mathcal{M}_\pi' \) the 4 by 4 matrix corresponding to the four coordinates \(\delta x_1, \delta p_1, \delta C, \delta D \) (we notice that there are non-vanishing matrix elements in the fifth and sixth columns of \(\mathcal{M}_\pi' \)):

\[
\mathcal{M}'_\pi'' = \begin{pmatrix}
0 & \frac{1}{m} & 0 & 0 \\
-8g(G^{11} - G^{22}) & 0 & \frac{32G^{11}G^{22}g\bar{x}_2}{1+16(G^{11}G^{22})^2} & 0 \\
0 & 0 & 0 & N_1 \\
-16((G^{11})^2 + (G^{22})^2)g\bar{x}_2 & 0 & N_2 & 0
\end{pmatrix}
\] (3.80)

where

\[
N_1 = -\frac{2}{m((G^{11})^2 + (G^{22})^2)} \left[G^{11}G^{22}(G^{22} - 2gm) + (G^{11})^2(G^{22} + 2gm) + 2G^{22}g\bar{x}_2^2m \right]
\] (3.81)

\[
N_2 = -\frac{2}{m(1 + (G^{11}G^{22})^2)} \left[G^{11} + G^{22} + 32(G^{11})^3G^{22}gm + 32G^{11^2}G^{22}gm(G^{22} + \bar{x}_2^2) \right]
\] (3.82)

We then calculate \(\det \mathcal{M}_\pi'' \) and, by using the two gap equations (3.44) and (3.45) for the solution with broken symmetry, we obtain:

\[
\det \mathcal{M}_\pi'' = 0
\] (3.83)

At zero temperature, we have therefore checked the existence of a zero frequency for the solution with broken symmetry in the standard RPA.

At finite temperature, the condition (3.66) becomes:

\[
\rho(\rho + I) = \frac{1}{4}(C - 1)I
\] (3.84)

where \(C \) is called the Heisenberg invariant and is a quantity conserved by the TDHB evolution: \(\dot{C} = 0 \). In our O(2) model, \(C \) has two indices: \(C^{ab}, a, b = 1, 2 \). The Heisenberg invariant is equal to:

\[
C^{ab} = \sum_c 4 < \tilde{X}^a \tilde{X}^c > < \tilde{P}^c \tilde{P}^b > - < \tilde{X}^a \tilde{P}^c + \tilde{P}^c \tilde{X}^a > < \tilde{X}^c \tilde{P}^b + \tilde{P}^b \tilde{X}^c >
\] (3.85)

For the static solution at finite temperature, we have \(T^{ab} = 0 \) and:

\[
4G^{11}S^{11} = C^{11}, 4G^{22}S^{22} = C^{22}.
\] (3.86)

\(C^{11} \) and \(C^{22} \) are related to the occupation numbers for the bosons 1 and 2 according to:

\[
2n_a + 1 = \sqrt{C^{aa}}. \]

Similarly to the zero temperature case, we linearize the condition (3.84) around the static solution characterized by \(G^{11}, G^{22}, S^{11} \) and \(S^{22} \). It is then convenient to introduce new variables in the pion sector and we check the existence of the zero mode.
4 Conclusion

In this paper, we have applied the random phase approximation and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. The expression for the RPA matrix in renormalized RPA is formally very similar to the RPA matrix appearing in standard RPA at finite temperature. We focused on the existence of a zero mode among the RPA frequencies in the case where the ground state has a broken symmetry. This result is encouraging to apply renormalized RPA in the linear sigma model. We have compared also the approach with the creation and annihilation operators with the time-dependent approach and we identify the variables corresponding to the “pion” sector and those corresponding to the “sigma” sector. The numerical resolution of the self-consistent renormalized RPA equations will be the subject of a next paper, where Hartree-Bogoliubov mean-field results, standard RPA results and renormalized RPA results will be compared to exact numerical results for the vacuum energy and the energy of the first excited states in the cases of the symmetric solution and the solution with broken symmetry.

Acknowledgements

I am grateful to Peter Schuck for very helpful discussions.

References

[1] T. Barnes and G. I. Ghandour, Phys. Rev. D22 (1980),924 ; A. Kovner and B. Rosenstein, Ann. Phys. (N.Y.) 187 (1988), 449; A. K. Kerman, C. Martin and D. Vautherin, Phys. Rev. D47 (1993), 632.

[2] A. Kerman and D. Vautherin, Ann. Phys. (N. Y.) 192 (1989) 408; C. heinemann, E. Iancu, C. Martin and D. Vautherin, Phys. Rev. D61 (2000), 116008.

[3] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag), 1980.

[4] J. Dukelsky and P. Schuck, Phys. Lett. B387 (1996), 233.

[5] D. J. Rowe, Rev. Mod. Phys. 40 (1968) 153; Nuclear Collective Motion (Methuen, London,1970).

[6] H. Hansen, G. Chanfray, D. Davesne and P. Schuck Eur. Phys. J. A14 (2002) 397.
[7] G. Chanfray and H. Hansen, in preparation

[8] Z. Aouissat, G. Chanfray, P. Schuck, J. Wambach, Nucl. Phys. A603 (1996), 458; Z. Aouissat, P. Schuck, J. Wambach, Nucl. Phys. A618 (1997), 402.

[9] Z. Aouissat and M. Belkacem, Phys. Rev. C60 (1999) 065211.

[10] K. Hagino and G. F. Bertsch, Phys. Rev. C61 (2000) 024307.

[11] J. Dukelsky and P. Schuck, Nucl. Phys. A512 (1990) 466.

[12] P. M Stevenson, Phys. Rev D30 (1984), 1712.

[13] F. T. Hioe, Don MacMillen and E. W. Montroll, Phys. Rep. C43 (1978), 305.

[14] A. K.Kerman and S.E. Koonin, Ann. (N. Y.) 100 (1976) 332.

[15] A. K. Kerman and C. Y. Lin, Ann. of Phys. (N. Y.) 241 (1995) 185; A. K. Kerman and C. Y. Lin, Ann. of Phys. (N. Y.) 269 (1998) 55.

[16] R. Balian and M. Veneroni, Phys. Rev. Lett. 47 (1981) 1353.

[17] C. Martin, Ann. of Phys. (N. Y.) 271 (1999) 294.

[18] K. Tanabe and K. Sugawara-Tanabe, Prog. of Theor. Phys. 76 (1986) 356.