Some Observations on the 3x+1 Problem

Dhananjay P. Mehendale
Sir Parashurambha College, Tilak Road, Pune-411030, India

Abstract
We present some interesting observations on the 3x+1 problem. We propose a new algorithm which eliminates certain steps while we check the action of 3x+1 procedure on a number. Also, we propose a reason why many numbers follow a similar pattern during execution of 3x+1 algorithm. We advocate towards the end (a heuristic argument) that the 3x+1 conjecture is more likely to be true than false.

1. Introduction: Perhaps the most fascinating problem in number theory is the so called 3x+1 problem. This problem is also known as Collatz’s problem, Kakutani’s problem, Syracuse problem, Ulam’s problem, and Hasse’s algorithm [1]. The problem can be stated as follows:

Let \(T : \mathbb{Z} \rightarrow \mathbb{Z} \) be defined by

\[
T(x) = \frac{x}{2^k} \quad \text{if} \quad x \equiv 0 \mod(2), \quad \text{and} \quad k \text{ is the largest power of 2 that divides } x.
\]

\[
T(x) = \frac{(3x + 1)}{2^k} \quad \text{if} \quad x \equiv 1 \mod(2), \quad \text{and} \quad k \text{ is the largest power of 2 that divides } (3x + 1).
\]

It is conjectured that if \(x \in \mathbb{N} \) then the trajectory \(x, T(x), T^2(x), \ldots \) eventually reaches (converges to) 1 in finitely many steps.

We now proceed to discuss

2. Some Interesting Observations:

Observation (1): (a) For an odd number \(x \) of type \((4k + 1)\) we have \(T(x) < x \).

(b) For an odd number \(x \) of type \((4k + 3)\) we have \(T(x) > x \).

Proof of (a): \(T(x) = \frac{3x + 1}{2^u} = \frac{12k + 4}{2^u} = \frac{4(3k + 1)}{2^u} \), hence divisible at least by 4 (i.e. \(u \) can be at least equal to 2).
Proof of (b): \(T(x) = \frac{3x + 1}{2^u} = \frac{12k + 10}{2^u} = \frac{2(6k + 5)}{2^u} \), hence divisible at most by 2 (i.e. \(u \) can be at most equal to 1).

Observation (2): Every odd integer \(y \) can be uniquely expressed as
\[y = 2^n x + 2^{(n-1)} - 1, \]
i.e. for every odd integer \(y \) there exist unique \(x, n \) such that the above equation holds.

Proof: Find the unique largest power of 2 that divides \((y+1)\), say \((n-1)\), and let \(\frac{(y+1)}{2^{(n-1)}} = 2x + 1 \). Hence etc.

Observation 3: There are numbers which rise \(n \) number of times where \(n \) is any arbitrary positive integer without a single fall under the action of \(3x + 1 \) algorithm.

Proof: Consider the following number
\[y = 2^{(n+2)} x + 2^{(n+1)} - 1, \]
then
\[T(y) = 2^{(n+1)}(3x + 1) + 2^n - 1, \]
\[T^2(y) = 2^n(3^2 x + 3^1 + 3^0) + 2^{(n-1)} - 1, \]
\[\vdots \]
\[T^n(y) = 2^2(3^n x + \frac{(3^n - 1)}{2}) + 2^1 - 1 = y_1. \]

After this stage we get
\[T^{(n+1)}(y) = T(y_1). \]

Note that \(T^j(y), j = 1, 2, (n - 1) \) is an odd number of type \((4k+3)\) while \(T^n(y) \) is an odd number of type \((4k+1)\). Therefore, it is clear that
\[y < T^1(y) < T^2(y) < \cdots < T^n(y), \]
while
\[T^{(n+1)}(y) < T^n(y). \]

This observation offers us a faster algorithm by which we can omit certain steps while we process a positive odd integer by \(3x + 1 \) algorithm as follows:

A Faster 3x + 1 Algorithm:
(1) Express the given positive odd integer \(y \) uniquely as
\[y = 2^n x + 2^{(n-1)} - 1 \]

(2) Find directly
\[T^{(n-2)}(y) = 2^2 \left(3^{(n-2)} x + \frac{3^{(n-2)} - 1}{2} \right) + 2^1 - 1 = y_1, \text{ say} \]

(3) Find \(T(y_1) = y_2 \), say and if \(y_2 \neq 1 \) then set \(y \leftarrow y_2 \) and go to step (1).

Example 1: Let \(y = 1023 \), then \(T^8(y) = y_1 = 39365 \) and \(T(y_1) = y_2 = 7381 \) (= a new \(y \) to start with). Thus, 8 executions are avoided!!

Observation 4: If \(y \rightarrow 1 \) then \(2^k y \rightarrow 1 \) for all \(k \geq 0 \).

Proof: Obvious.

Observation 5: If \(y \rightarrow 1 \) then \(z = 4^n y + \left(\frac{4^n - 1}{3} \right) \rightarrow 1 \)

for all \(n = 1, 2, \ldots \). More precisely, if \(T(y) = y_0 \) then \(T(z) = y_0 \).

Proof: We proceed by induction on \(n \).

Step (1): Let \(n = 1 \). Therefore, we have \(z = 4y + 1 \).

Now, \(T(y) = y_0 = \frac{(3y + 1)}{2^j} \) where \(j \) is the largest power of 2 that divides \((3y + 1) \). Also, \(3z + 1 = 3(4y + 1) + 1 = 4(3y + 1) \), therefore the largest power that divides \((3z + 1) \) will be \(2^{(j+2)} \) and
\[T(z) = y_0 = \frac{(3z + 1)}{2^{(j+2)}}. \]

Step (2): We assume by induction the result holds for \(n = k \) and proceed to show it for \(n = (k + 1) \). Let \(z = 4^k y + \left(\frac{4^k - 1}{3} \right) \) and
\[T(z) = y_0. \] We have to see that when \(z' = 4^{(k+1)} y + \left(\frac{4^{(k+1)} - 1}{3} \right) \) we still have \(T(z') = y_0 \). Note that \(z' = 4z + 1 \) and when \(T(z) = y_0 \) then also \(T(z') = y_0 \) by step (1).

We now proceed to see why many numbers follow a similar pattern during execution of \(3x+1 \) algorithm.
Numbers with Similar Pattern: From observations 4 and 5 suppose a number x_0 has the following sequence under the action of $3x + 1$ algorithm:

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_j \rightarrow \cdots \rightarrow x_n \rightarrow 1,$$

then

1. The numbers $2^k x_j$ will have same pattern for all k, j.

2. The numbers $4^k x_j + \left(\frac{4^k - 1}{3}\right)$ will have same pattern for all k, j.

Example 2: Count the numbers ≤ 1000 which have maximum value 9232.

Solution: Using (1) and (2) we count the numbers as follows:

1. Find the smallest number x_0^1 say such that $x_0^1 \leq 1000$.

 Let $x_0^1 \rightarrow x_1^1 \rightarrow \cdots \rightarrow x_j^1 \rightarrow \cdots \rightarrow x_k^1 \rightarrow 9232$.

2. Consider the set of numbers $\{2^m (4^n x_j^1 + \left(\frac{4^n - 1}{3}\right))\}$,

 for all nonnegative integers m, n and $0 \leq j \leq k$, such that all these numbers are ≤ 1000. It is clear that all these numbers when processed under $3x+1$ algorithm will have 9232 as maximum.

3. Find all the numbers $z \leq 1000$ which fall to x_j^1, $0 \leq j \leq k$, under the $3x + 1$ algorithm. Consider all distinct numbers z_i on the paths from z to x_j^1 and find as above their multiples $\{2^m (4^n z_i + \left(\frac{4^n - 1}{3}\right))\}$,

 for all nonnegative integers m, n and $0 \leq i \leq k$, such that all these numbers are ≤ 1000. Again, all these numbers when processed under $3x+1$ algorithm will have 9232 as maximum.

4. Consider next smallest number other than the numbers considered above having maximum 9232, say x_0^2, etc. etc. and go to (1).

5. Continue till all the numbers ≤ 1000 that go to 9232 are considered in some set.

One can easily check that there are in all 350 numbers ≤ 1000 having maximum 9232 under the $3x+1$ algorithm.
Observation 6: Solving the 3x+1 conjecture is equivalent to showing that every positive odd integer \(x \) has a representation as:

\[
x = \frac{2^{n(k+1)} - \left\{ 3^k 2^0 + 3^{(k-1)} 2^{n_1} + \cdots + 3^0 2^{n_k} \right\}}{3^{(k+1)}} \rightarrow (1)
\]

where the integral indices satisfy \(0 < n_1 < n_2 < \cdots < n_{(k+1)} \),

\(n_{(k+1)} \neq n_k + 2 \).

Proof: Simple.

Example 3: \(7 = \frac{2^{11} - \{3^4 2^0 + 3^3 2^1 + 3^2 2^2 + 3^1 2^4 + 3^0 2^7\}}{3^5} \)

Observation 7: If we consider all the solutions (integral as well as rational) of equation (1) we get all possible \(x \) that go to 1 in \((k+1)\) steps. Consider following sets of integral and rational solutions:

Let \(U_1 = \left\{ \frac{2^k - 3^0 2^0}{3^1}, k = 1, 2, \cdots \right\} \)

\(U_2 = \left\{ \frac{2^{k_2} - \{3^1 2^0 + 3^0 2^{k_1}\}}{3^2}, 0 < k_1 < k_2, k_1, k_2 = 1, 2, \cdots \right\}, \text{ etc.} \)

Observation 8: Solving 3x+1 conjecture is equivalent to showing that

\[
Z_{Odd} \subset \bigcup_{j=1}^{\infty} U_j
\]

Why 3x+1 conjecture is more likely to be true than false? Suppose a number \(x_0 \) requires \(k \) steps to become 1. One can see (by numerically tackling some examples) that if one finds closest possible \(x_1^i, x_2^i \) belonging to \(U_i, 1 \leq i \leq (k-1) \) such that \(x_1^i < x_0 < x_2^i \) then one observes that one moves closer and closer to \(x_0 \) as \(i \) is increased from 1 to \((k-1)\) (as one gets more parameters for maneuvering) and finally at \(k \)-th step one gets a solution in \(U_k \) which is equal to \(x_0 \).

References

1. Jeffrey. C. Lagarias, The 3x+1 Problem and its Generalizations, The American Mathematical Monthly, Vol. 92, No.1, pp. 3-23, 1985.