Physical exercise—A toxin-free complement to cancer therapy

Kathrin Groeneveld

Correspondence: Kathrin Groeneveld, Experimentelle Nephrologie, Universitätsklinikum Jena, Nonnenplan 4, 07743 Jena, Germany.
Email: kathrin.groeneveld@med.uni-jena.de

Funding information
The author was funded by a project that was listed by the Free State of Thuringia under the number 2019 FGR 0083 and co-financed by funds from the European Union within the framework of the Social Fund (ESF), Grant/Award Number: FKZ: 2019 FGR 0083

Cancer is a heterogeneous disease which can influence many facets of the human physiology. Treatments and therapies of cancer are as diverse as the illness itself and often come with toxic side effects. In many reviews, researchers regularly summarize the newest results and try to untangle the complexity of cancer and cancer-related research. This review aims to connect recent research on the field of molecular biology of cancer with recent results from exercise physiology that were published in Acta Physiologica.

A sedentary lifestyle as it is led by modern society nowadays is a leading cause of diseases and disabilities. Physical activity and exercise are described as a potential prevention against a diversity of chronic conditions, including cancer. Exercise training was brought into focus lately as a toxin-free addition to promote a positive outcome of cancer treatments (surgery, chemo-, radiation-, hormonal therapy). Even Drosophila melanogaster was recruited as a new model for exercise research in order to enable large scale studies with broad sets of parameters. Physical exercise can counteract many cancer promoting factors, such as high inflammatory levels, high levels of adipose tissue, cachexia, cardiovascular diseases and a low mitochondrial capacity. Therefore, researchers are more and more eager to understand the molecular mechanisms that promote the manifold of effects that exercise can have on our physiology.

1 IMMUNE RESPONSE

The immune system plays a critical role when it comes to fighting cancer, as it recognizes and attacks non-native cells. Immunotherapy drugs are supposed to support the immune response. But physical exercise has also been shown to influence composition and activity of the innate immune system. A clinical study including 12 older healthy adults describes changes in the physiology of skeletal muscle macrophages following changes in their physical activity. William Evans discusses the possibility, that elevated blood flow-induced shear stress - ie due to exercise - may play a role in the recruitment of natural killer cells, which can target and kill cancerous cells. Bigley and his team had a group of 16 cyclists performing 30-min exercises at different lactate levels/intensities and took blood samples before, during and after practice. The samples 1h post-exercise were enriched of cytotoxic natural killer cell subsets. This means that exercise possibly influences not only the number of NK cells, but also their cytotoxicity.

2 LYMPHEDEMA

When surgical therapy includes the removal of lymph nodes, patients often suffer from a high risk for lymphedema. A systematic review on the effects of exercise on cancer-related...
lymphedema concludes, that resistance exercise training produces significant gain in muscular strength without provoking cancer-related lymphedema. Kwan confirms this outcome in another systematic review, stating that exercise of varying modalities is not associated with the development or exacerbation of breast cancer-related lymphedema and can be safely pursued with proper supervision. Another systematic review, which included 11 randomized controlled trials on women with breast cancer in aftercare even suggests that exercise can improve breast cancer related lymphedema parameters. Overall, even though studies differ in their conclusions if lymphedema symptoms can be reduced by physical exercises, they do come to the agreement, that under supervision it is safe for patients to engage in physical activities.

3 | CANCER CACHEXIA RELATED MUSCLE WASTING

Low skeletal muscle mass is associated with poor clinical outcomes especially in older patients. Looijard et al give a review regarding possible pathophysiological mechanisms behind this phenomenon. These mechanisms include systems similar to those that are supposed to be influenced by physical exercise, such as the inflammatory system, insulin-glucose metabolism, energy regulation of mitochondria and the body’s reaction to potentially aggressive cancer drugs. They propose physical exercise or exercise mimetics – the application of substances such as mitochondrial dysfunction seems to be one key player.

MUSCLE WASTING

The regulation of reactive oxygen species (ROS) and their roles as messengers and in oxidative stress is a complex topic itself. A certain level of mitochondrial respiration is necessary to ensure a healthy antioxidant defense in the cell, which again is an important anti-cancer propagation mechanism. Hubackova et al, give a review on the impact of oxidative phosphorylation (OXPHOS) on mitochondria-induced cell death of cancer versus senescent cells. One difference that they emphasize between proliferating and non-proliferating cells is their level of respiration. The increase in OXPHOS-generated ROS in proliferative tumor cells cannot properly be cleared, due to low rates of respiration. Such a reduction of respiration also might promote invasiveness and other physiologies of cancer.

A brief overview of the main signals that facilitate changes in maximal oxygen uptake of the human body ($V_{O2\max}$) due to endurance training is given by Lundby and Montero. Several groups described that exercise training can alter mitochondrial function. Cardinale et al elucidate the role of mitochondria in muscle oxidative capacity. Larsen et al examined the respiratory system of mitochondria isolated from the Vastus lateralis and Triceps brachii in 12 healthy volunteers and found that mitochondrial affinity for oxygen increased after a series of highly intensive sprint interval trainings. Axelrod et al found that a 12 weeks supervised aerobic program lead to changes in mitochondrial fusion and fission proteins, which promotes a more fused, tubular network and can contribute to improvements in substrate utilization after exercise. In addition, Arribat et al found that mitochondria from Vastus lateralis did adapt to high energy demands of a new exercise routine: 22 healthy, previously sedentary participants followed 4 months of supervised endurance exercise. Post-intervention mitochondrial content increased; so did biogenesis and fusion. Among other effects, OXPHOS capacity and O_2 turnover increased. Fiorenza’s group describes changes in the expression of markers of mitochondrial turnover, anti-oxidant protection and oxidative damage in Vastus lateralis after 6 weeks of high intensity interval training.

This review only gives an impression of the diversity of physical exercise research and its possibilities to develop cancer treatment-complementing therapies based on physical exercise. Especially in former sedentary patients, a shift towards a more active lifestyle can support their immune system during its fight against cancer. A physical exercise therapy could counteract muscle wasting and alter mitochondrial physiology.

CONFLICT OF INTEREST

The author declares no financial or other conflict of interest that might bias this article.

ORCID

Kathrin Groeneveld https://orcid.org/0000-0001-5790-8640
REFERENCES

1. Ackermann S, Mrowka R. Cancer - An ongoing fight searching for reasons and therapies. Acta Physiol (Oxf). 2019;226(1):e13275.

2. World Health Organization. Physical inactivity a leading cause of disease and disability, warns WHO. Departmental news. 2002. https://www.who.int/news/item/04-04-2002-physical-inactivity -a-leading-cause-of-disease-and-disability-warns-who

3. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143-1211.

4. Riddle NC. Drosophila melanogaster, a new model for exercise research. Acta Physiol (Oxf). 2019;227(3):e13352.

5. Hillmeister P, Tadic M, Ngare N, Pagonas N, Buschmann I. Exercise and cardiovascular diseases. Acta Physiol. 2020;229(2):e13476.

6. Du SF, Wang XL, Yeet CL, et al. Exercise training ameliorates bleomycin-induced epithelial mesenchymal transition and lung fibrosis through restoration of H2 S synthesis. Acta Physiol (Oxf). 2019;225(2):e13177.

7. Wernbom M, Aagaard P. Muscle fibre activation and fatigue with low-load blood flow restricted resistance exercise-An integrative physiology review. Acta Physiol (Oxf). 2020;228(1):e13302.

8. Brownstein CG, Millet GY, Thomas K. Neuromuscular responses to fatiguing locomotor exercise. Acta Physiol (Oxf). 2020;e13533.

9. Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle during exercise training: an old dog with new tricks? Acta Physiol (Oxf). 2020;231:e13522.

10. Cancer Treatment Centers Of America. How does the immune system work? When it comes to cancer, it's complicated. 2017. https://www.cancercenter.com/community/blog/2017/10/how-does-the-immune-system-work-when-it-comes-to-cancer-its-complicated

11. Reidy PT, Yonemura NM, Madsen JH, et al. An accumulation of muscle macrophages is accompanied by altered insulin sensitivity after reduced activity and recovery. Acta Physiol (Oxf). 2019;226(2):e13251.

12. Evans W. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health. Med Hypotheses. 2017;109:170-173.

13. Bigley AB, Rezvani K, Chew C, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160-171.

14. Nelson N. Breast cancer–related lymphedema and resistance exercise. J Strength Cond Res. 2016;30(9):2656-2665.

15. Kwan ML, et al. Exercise in patients with lymphedema: a systematic review of the contemporary literature. J Cancer Surviv. 2011;5(4):320-336.

16. Ammitzbøll G, Johansen C, Langc C, et al. Progressive resistance training to prevent arm lymphedema in the first year after breast cancer surgery: Results of a randomized controlled trial. Cancer. 2019;125(10):1683-1692.

17. Wirtz P, Baumann FT. Physical activity, exercise and breast cancer - what is the evidence for rehabilitation, aftercare, and survival? A Review. Breast Care (Basel). 2018;13(2):93-101.

18. Looijaard S, Lintel Hekkert ML, Wüst RCI, et al. Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass. Acta Physiol (Oxf). 2020;231(1):e13516.

19. Guerrieri D, Moon HY, van Praag H. Exercise in a pill: the latest on exercise-mimetics. Brain Plast. 2017;2(2):153-169.

20. Yoshoska K, Kitajima Y, Seko D, et al. The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiol (Oxf). 2020;231:e13553.

21. Christiansen D. Molecular stressors underlying exercise training-induced improvements in K(+)- regulation during exercise and Na(+). K(+)- ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf). 2019;225(3):e13196.

22. Hokken R, Laugesen S, Aagaard P, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf). 2020;e13561.

23. Rindom E, Herskind J, Blaauw B, et al. Concomitant excitation and tension development are required for myocellular gene expression and protein synthesis in rat skeletal muscle. Acta Physiol (Oxf). 2021;231:e13540.

24. Hiensch AE, Bolam KA, Mijwel S, et al. Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways. Acta Physiol (Oxf). 2020;229(2):e13400.

25. Huang MZ, Li JY. Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties. Acta Physiol (Oxf). 2020;228(1):e1351.

26. Hubackova S, Magalhaes Novais S, Davidova E, et al. Mitochondria-driven elimination of cancer and senescent cells. Biol Chem. 2019;400(2):141-148.

27. Lundby C, Montero D. You do know-why does maximal oxygen uptake increase in humans following endurance exercise training? Acta Physiol (Oxf). 2019;227(4):e13371.

28. Cerda A, Larsen FJ, Jensen-Urstad M, et al. Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity. Acta Physiol (Oxf). 2019;225(1):e13110.

29. Larsen FJ, Schiffer TA, Zinner C, et al. Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta Physiol (Oxf). 2020;229(3):e13463.

30. Axelrod CL, Fealy CE, Mulya A, et al. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (Oxf). 2019;225(4):e13216.

31. Arribat Y, Broskey NT, Greggio C, et al. Distinct patterns of skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (Oxf). 2019;225(4):e13216.

32. Fiorenza M, Gunnarsson TP, Ehlers TS, et al. High-intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension. Acta Physiol (Oxf). 2019;225(3):e13208.

How to cite this article: Groeneveld K. ExActa: Physical exercise—A toxin-free complement to cancer therapy. Acta Physiol. 2021;231:e13606. https://doi.org/10.1111/apha.13606