Transcriptional down-regulation of suppressor of cytokine signaling (SOCS)-3 in chronic obstructive pulmonary disease

Jochen Springer¹,², Frank R Scholz³, Christian Peiser¹, Q Thai Dinh⁴, Axel Fischer¹, David Quarcoo⁵ and David A Groneberg⁵*

Abstract

Background: Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the transcriptional expression of SOCS-3 in COPD.

Methods: Real-time PCR was performed to assess quantitative changes in bronchial biopsies of COPD patients in comparison to unaffected controls.

Results: SOCS-3 was significantly down-regulated in COPD at the transcriptional level while SOCS-4 and SOCS-5 displayed no change.

Conclusions: It can be concluded that the presently observed inhibition of SOCS-3 mRNA expression may be related to the dysbalance of cytokine signaling observed in COPD.

Keywords: Chronic obstructive airway disease, Lung, SOCS, Cytokine, Airways

Introduction

Chronic obstructive pulmonary disease (COPD) is currently estimated to be the 3rd most common cause of death in 2020 [1]. The disease is characterized by an irreversible and progressive development of airflow limitation featuring cough, mucus hypersecretion, inflammatory changes and remodeling of the airway wall [2]. Next to bronchial asthma [3,4], asbestosis [5], or tuberculosis [6,7], COPD also plays a major role in the field of occupational and environmental respiratory diseases [8].

COPD is related to tobacco smoke [9,10] and a common feature in the underlying pathomechanisms may be a dysregulation of cytokine signaling [11]. Cytokine signaling events are accomplished by molecules such as SMADs (derived from the Drosophila homologue MAD and the C. elegans homologue SMA [12,13]) or suppressors of cytokine signaling (SOCS) [14]. SOCS molecules are a family of proteins that function as negative regulators of cytokine signaling pathways [14]. Next to the first members of the SOCS family, CIS-1 and SOCS-1, that were identified as negative feedback regulators of the signal transducer and activator of transcription (STAT)-5 pathway [15] and inhibitors Jak family tyrosine kinases, respectively [16], also the molecule SOCS-3 was identified as a potent suppressor of cytokine signaling mechanisms [17].

The expression of SOCS-3 can be induced transiently by a large number of both inflammatory and anti-inflammatory cytokines such as interleukin (IL)-3, IL-6, IL-10 interferon or interferon gamma (IFN-gamma) [18]. It has also been shown that SOCS molecules can potently inhibit the Jak/STAT pathway in various inflammatory
diseases including autoimmune arthritis [19] or experimental intestinal inflammation [20]. The inhibition of cytokine signaling via the action of SOCS may also play an important role in the pathophysiology of chronic obstructive airway diseases [21] and a study has shown that SOCS-3 regulates the onset and maintenance of T_h2-mediated responses in bronchial asthma.

Since there are no data available on the expression of this important cytokine signal inhibitor in COPD, the aim of the present study was to address the transcriptional expression level of SOCS-3 along with SOCS-4 and SOCS-5 in bronchial tissues of a previously characterized cohort of COPD patients [12,22].

Methods

Human biopsies

Transcriptional expression of SOCS-3, SOCS-4 and SOCS-5 was assessed in bronchial biopsies of a previously characterized cohort of nine COPD patients [12]. The patients’ mean age was 61 ranging from 52 to 77. All patients did not have atopic diseases but were smokers. COPD was characterized as level II according to the GOLD classification [23,24]. As control group, tissues were obtained from a previously described groups of subjects (n = 7, male and female) who were undergoing routine examinations for bronchial carcinoma without pathology [12]. The mean age was 67 ranging from 50 to 77. Their forced expiratory volume in 1 second (FEV1) was over 90% (mean: 102.1%, range: 94.6% to 113%). Bronchial mucosal biopsies were obtained by routine fiberoptic bronchoscopy as described previously [25]. All subjects were free of interstitial lung diseases, tuberculosis, diffuse malignant lung diseases and had not received radiation- or chemotherapy in the past. The study protocol was approved by the local Ethics Committee (Free University of Berlin).

Tissue morphology

The morphology of the tissues was assessed as previously described using routine histology [26,27]. The biopsies were cryopreserved and cut to cryostat sections using a routine protocol [28,29]. In brief, after an immersion-fixation in Zamboni-solution for 4 hours and consecutive washing steps in phosphate-buffered solution (PBS), cryoprotection using 18% saccharose (1604, Riedel-de Haen AG, D- Seelze) was carried out overnight. Afterwards the biopsies were frozen in liquid nitrogen-cooled isopentane and stored at −80°C. The tissues were then processed to 8–10 μm sections using a cryostat and stained with a routine hematoxylin protocol [30,31].

RNA isolation and reverse transcription

Total RNA was isolated from the bronchial biopsies as previously described [12]. In brief, the RNAzol (WAK-Chemie, Bad Soden, Germany) method was performed according to the manufacturer’s instructions and reverse transcription was performed with superscript RT after DNase I digestion (both Invitrogen, Karlsruhe, Germany) according to the manufacturers protocols.

Real-time quantitative PCR

The quantitative assessment of SOCS transcripts was conducted by the use of the ABI Prism 7700 Sequence Detection system and the Taqman PCR Reagent Kit (Applied Biosystems, Überlingen, Germany) according to the manufacturer’s protocols. For sequence-specific detection, established SOCS primer pairs were used (Table 1). An amplification of the human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was carried out as established internal standard. The primers were synthesized by Roth (Karlsruhe, Germany) and the probes by IBA (Göttingen, Germany). The following cycling conditions were used: 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. All results are presented as ΔΔ-Ct-values.

Statistics

All data was analyzed using Graph Pad PRISM program. The results are expressed as mean ± SEM and tested for significant differences using the one-way ANOVA and Bonferroni’s Multiple Comparison tests.

Results

Bronchial biopsies COPD

The biopsies of bronchial mucosal were obtained from nine patients with COPD. They were classified as class II severity according to the GOLD classification and had a FEV1 was below 80% of the norm (mean: 70.0%, range: 61.4% to 77.4%), and typical chronic symptoms including cough, dyspnea, and sputum production. The histology

Primer	Sequence
SOCS 3 forward	5´-GAGGGTITGGAGAAGACCTACC-3´
SOCS 3 reverse	5´-GGCATTTCGGTTACATGGG-3´
SOCS 3 probe	5´-ATGCATCAGGCCCTCCTACGTG-3´
SOCS 4 forward	5´-CTCGCTGAATCCCTACCTACT-3´
SOCS 4 reverse	5´-GGATGGAATGGCTGTAGTGG-3´
SOCS 4 probe	5´-CAGTCTCTACCTTGTTGTTGCC-3´
SOCS 5 forward	5´-ATCGTGCATGACAGACAGACA-3´
SOCS 5 reverse	5´-TACTGCCAGGCTGGACTTG-3´
SOCS 5 probe	5´-CAGCACTGGAATCCCTTCCAGC-3´
GAPDH forward	5´-AAGGGGAACCCCATACCATTCA-3´
GAPDH reverse	5´-CAAGATACCCACAGGAGAGA-3´
GAPDH probe	5´-TTCCAGGAGGAGATGCCCGTAAG-3´
revealed chronically inflamed tissues with typical signs of COPD-like lesions. In the submucosal layers, inflammatory cells were present which reached to submucosal glands (Figure 1). Also, single cell necrosis and a loss of ciliae were found.

Control

In contrast to the COPD sections, the tissues of seven control subjects were characterized by a regular histological pattern without any signs of inflammatory cell influx or airway remodeling (data not shown).

Transcriptional SOCS expression levels

The mRNA levels of the different SOCS-3, -4 and 5 that inhibit cytokine signaling were assessed in the COPD tissues and compared to controls. After the presence of all transcripts was shown by qualitative PCR (data not shown), quantitative online PCR was performed in the bronchial biopsies obtained from patients with COPD and healthy controls and significant differences in gene expression were found.

While online PCR for the two molecules SOCS-4 and SOCS-5 did not reveal a significant expression difference, the expression level of SOCS-3 significantly differed between the two groups of COPD and control tissues: In controls, the $\delta\delta$-Ct-values of SOCS-3 mRNA expression was -3.99325 ± 1.525749 indicating a high level of gene expression. By contrast, in COPD tissues, the $\delta\delta$-Ct-values were -0.6110268 ± 1.289377 with a p value of 0.0012 indicating a highly significant downregulation of transcriptional SOCS-3 expression (Figure 2).

Discussion

A large variety of mediators has been identified which may contribute to COPD pathogenesis [11]. As in allergic bronchial asthma or rhinitis, pro- and anti-inflammatory mediators of inflammation such as tachykinins [32], vasoactive intestinal polypeptide (VIP) [33], histamine [34], nitric oxide [35,36], leukotrienes [37], or opioids [38] and other cytokines [11] are likely to play a role in the regulation of basic pathophysiological mechanisms occurring in COPD. In the present studies, the transcriptional expression of the cytokine signaling inhibiting molecules SOCS-3, SOCS-4 and SOCS-5 was investigated using a established approach of real time quantitative RT-PCR [39] in bronchial mucosal wall biopsies from COPD patients. Transcriptional quantification with the highly sensitive real time RT-PCR was presently chosen and the protocol carried out as previously described. Since the biopsies’ protein contents were not sufficiently high for the performance of western blotting. Previous experiments have demonstrated that the transcriptional expression SOCS-3 is similar to its translational expression [40], indicating that quantitative online PCR represents a valid tool to assess the overall expression level [41].

We found that in COPD tissues, the SOCS-3 $\delta\delta$-Ct-values were significantly differing from control values indicating a down-regulation in the state of COPD.

Recently, a study has focused on the effects of Fluticasone propionate (FP) and Salmeterol (SAL) on SOCS expression since they are commonly used in combination therapy for patients with COPD [42]. They evaluated the effects of FP/SAL and tobacco smoke (TS) on SOCS-3 in bronchial airway epithelial cells (BAEPCs) which were exposed to TS and subsequently treated with FP or SAL alone or in combinations in the presence and absence of mitogen activated protein kinase (MAPK) inhibitors for either Erk1/Erk2, or p38 or PI3 kinase [42]. In BAEPCs, TS induced IL-6 expression via ERK1/ERK2 MAPK pathway and FP/SAL inhibited TS mediated IL-6 expression. Interestingly, TS downregulated the SOCS-3 expression [42]. This is parallel to our present findings in COPD tissues. The downregulation was mediated via the activation of Erk1/Erk2, and p38 MAPK signaling. When TS exposed BAEPCs were treated with FP/SAL SOCS-3 expression was normalized. Also, FP/SAL combinations induced significantly higher
expression of SOCS-3 in BAECs when compared to the
individual drugs [42].

This transcriptional down-regulation presently ob-
served for COPD might have an impact on the balance
cytokines that determine general immune responses
and the onset of Th1- and Th2-mediated effects. A hall-
mark study focused on the expression and function of
SOCS-3 in allergic bronchial asthma since the functional
relevance of SOCS-3 in the allergic, Th2-mediated im-
une response was not clear [43]. It was shown that
the expression level of SOCS-3 was increased in asthma and
correlated with the pathology of this Th2-mediated aller-
gic disease. Since the T cell-constitutive expression of
SOCS-3 in an animal model led to an increase in airway
hyperreactivity it was suggested that a Th2-specific ex-
pression of SOCS-3 plays an important role in the dis-
ease [43] and that SOCS-3 may not only be a marker for
allergic diseases but may also represent a novel thera-
petic target.

In contrast to the increased expression in bronchial
asthma, we here found a transcriptional down-regulation
of SOCS-3 in COPD. In this respect, there are major dif-
fences in the cellular inflammation between COPD
and asthma. While mast cells and eosinophils play a
prominent role in allergic asthma, the major inflamma-
tory cell types in COPD are macrophages and neutro-
phils [44-46] and an increased sputum neutrophilia is
related to an accelerated decrease in FEV1 and more
prevalent in COPD patients with chronic cough and
sputum production [47]. Lymphocytes are also involved
in inflammatory mechanisms underlying COPD [48,49]
but the lymphocyte repertoire differs to a large extend
if compared with asthma. Increased numbers of CD8-
positive T-lymphocytes are found in the airways of
COPD patients [44-46] and the degree of airflow ob-
struction correlates with their numbers [50] in contrast
to allergic asthma, which is characterized by increased
numbers of CD4-positive T-lymphocytes [51,52].

Similar to these differences in inflammatory cell popu-
lations that was demonstrated for asthma and COPD in
the past years, a different expression pattern of cytokines
and cytokine signaling inhibitors may be present in
asthma and COPD. To this extend, we here shown that
SOCS-3 is transcriptionally downregulated in COPD
and therefore shows an expression pattern in COPD re-
ciprocal to that in asthma, in which the molecule was
shown be upregulated [43].

A further allergic disease was also characterized to have
an expression level of SOCS-3 contrary to the presently
identified COPD profile [41]. It was shown elevated
mRNA levels of SOCS-3 and GATA-3 are present in
PBMC of patients with atopic dermatitis. In contrast to
GATA-3 mRNA levels which were normalized after a suc-
cessful therapy, the levels SOCS-3 did not change [41].

It would be interesting to study the functional role of
SOCS-3 using an animal model of experimental COPD
and different approaches to mimic COPD have been de-
veloped in the past but are limited in comparison to
models of allergic asthma since they usually do not
mimic all major features of human COPD.

Depending on the duration and intensity of exposure,
nosyous stimuli such as tobacco smoke, nitrogen dioxide,
or sulfur dioxide could be used to induce signs of chronic
inflammation and airway remodeling wile emphysema
could be achieved by combining such an exposure with the
instillation of tissue-degrading enzymes. However, this such
instillations can not be realized at the moment since mice either
constitutively expressing or lacking the SOCS-3 gene have
a defect in fetal liver erythropoiesis or placental function,
both leading to embryonic lethality [53,54]. In future, con-
ditionally gene-targeted systems may be of help to answer
the question of the functional role of SOCS-3 in COPD
and modern techniques such as laser-assisted single/oligo
cell analysis [55] may further dissect the impaired SOCS
signaling pathway on the cellular level. This should be com-
bined with molecular biology [55,56], histo-/cytochemistry
[57-59] and pharmacological [12,35,60] techniques.

In conclusion, the present studies revealed a direct link
between COPD and alterations in the transcriptional regu-
lation of SOCS-3 that was demonstrated to play a major
role in bronchial asthma. The present results indicate that
the regulation of SOCS may differ in COPD compared to
asthma and suggest that these cytokine signaling inhibitors
also play a role in pathomechanisms underlying the in-
flammatory changes in COPD.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JS, FS, CP, QT, DQ, DAG have made substantial contributions to the
conception and design of the study, acquisition of the data and
interpretation. They have been involved in drafting and revising the
manuscript. All authors have read and approved the final manuscript.

Author details
1 Allergy-Centre-Charité, Pneumology and Immunology, Charité –
Universitätsmedizin Berlin, Free University and Humboldt University, Berlin
D-13353, Germany. 2 Division of Applied Cachexia Research, Dept. of
Medicine, Charité – Universitätsmedizin Berlin, Free University and Humboldt-
University, Berlin D-13353, Germany. 3 Department of Hematology and
Oncology, Charité – Universitätsmedizin Berlin, Free University and Humboldt
University, Berlin D-13353, Germany. 4 Department of Respiratory Medicine,
Medical School of Hannover, Hannover D-30625, Germany. 5 Institute of
Occupational Medicine, Social Medicine and Environmental Medicine,
Goethe-University, Frankfurt 60590, Germany.

Received: 22 October 2012 Accepted: 10 October 2013
Published: 18 October 2013

References
1. Lopez AD, Murray CC: The global burden of disease, 1990–2020. Nat Med 1998, 4:1241–1243.
2. Welte T, Groneberg DA: Asthma and COPD. Exp Toxicol Pathol 2006, 57(Suppl 2):35–40.
decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 1996, 51:267–271.
48. Majo J, Ghezzo H, Cosio MG: Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001, 17:946–953.
49. Retamales J, Elliott WM, Meshi B, Coxson HO, Pare PD, Sculber FC, Rogers RM, Hayashi S, Hogg JC: Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med 2001, 164:469–473.
50. O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK: Inflammation in bronchial biopsies of subjects with chronic bronchitis: Inverse relationship of CD8 T lymphocytes with FEV1. Am J Respir Crit Care Med 1997, 155:852–857.
51. Sutherland ER, Martin RJ: Airway inflammation in chronic obstructive pulmonary disease*1: Comparisons with asthma. J Allergy Clin Immunol 2003, 112:819–827.
52. Fabbri LM, Romagnoli M, Corbetta L, Casoni G, Busjetic K, Turato G, Ligabue G, Ciaccia A, Saetta M, Pap A: Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003, 167:418–424.
53. Marine JC, McKay C, Wang D, Topham DJ, Pargas E, Nakajima H, Pendeville H, Yasukawa H, Sasaki A, Yoshimura A, Illei GJ: SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 1999, 98:617–627.
54. Roberts AW, Robb L, Rakar S, Hartley L, Cluse L, Nicola NA, Metcalf D, Hilton DJ, Alexander WS: Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc Natl Acad Sci U S A 2001, 98:9324–9329.
55. Peiser C, Springer J, Groneberg DA, McGreger GP, Fischer A, Lang R: Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus. Neurosci Lett 2002, 320:41–44.
56. Groneberg DA, Doring F, Nickolaus M, Daniel H, Fischer A: Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia. Neurosci Lett 2001, 304:181–184.
57. Groneberg DA, Eynott PR, Doring F, Dinh QT, Oates T, Barnes PJ, Chung KF, Daniel H, Fischer A: Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax 2002, 57:55–60.
58. Dinh QT, Groneberg DA, Peiser C, Mingomataj E, Joachim RA, Witt C, Arck PC, Klapp BF, Fischer A: Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol 2004, 144:15–24.
59. Rost B, Harf G, Ohnemus U, Otto-Knapp R, Groneberg DA, Kunkel G, Noga O: Monocytes of allergics and non-allergics produce, store and release the neurotrophins NGF, BDNF and NT-3. Regul Pept 2005, 124:19–25.
60. de Vries A, Engels F, Henricks PA, Leuzink-Muis T, McGreger GP, Braun A, Groneberg DA, Dessing MC, Nijkamp FP, Fischer A: Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P, a potential role for trkA. Clin Exp Allergy 2005, 36:1192–1200.

doi:10.1186/1745-6673-8-29
Cite this article as: Springer et al.: Transcriptional down-regulation of suppressor of cytokine signaling (SOCS)-3 in chronic obstructive pulmonary disease. Journal of Occupational Medicine and Toxicology 2013, 8:29.

Submit your next manuscript to BioMed Central and take full advantage of:

* Convenient online submission
* Thorough peer review
* No space constraints or color figure charges
* Immediate publication on acceptance
* Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit