Development of Microsatellite Markers for the Hermatypic Coral Porites lutea

Li Fuyu 1*, Chen Dandan 2*, Li Yuanchao 2, Li Shiyou 1, Hou Jing 1, Wang Daoru 2, Wang Yan 1

1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
2 Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
* These authors contributed equally to this work

Corresponding author email: ywang@hainanu.edu.cn; wangdr6@vip.sina.com
International Journal of Marine Science, 2020, Vol. 10, No.3 doi: 10.5376/ijms.2020.10.0003
Received: 22 Apr., 2020
Accepted: 19 May, 2020
Published: 12 Jun., 2020
Copyright © 2020 Li et al., This article was first published in Genomics and Applied Biology in Chinese, and here was authorized to translate and publish the paper in English under the terms of Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Li F.Y., Chen D.D., Li Y.C., Hou J., Wang D.R., and Wang Y., 2020, Development of microsatellite markers for the hermatypic coral Porites lutea, International Journal of Marine Science, 10(3): 1-9 (doi: 10.5376/ijms.2020.10.0003)

Abstract By mining the EST and genomic microsatellite sequence resources of Porites species in GenBank, and using interspecific amplification and resequencing, we developed 20 microsatellite markers for the stony coral Porites lutea, meanwhile, validated and excluded 43 microsatellite markers of its symbiotic zooxanthella. These markers of P. lutea were genotyped in one wild population (n=16) from the southwest of Hainan Island fringing reefs. Nineteen of the 20 markers showed polymorphism. The number of alleles was 2~7 (mean 3.5±1.8), and the observed heterozygosity (Hs) and expected heterozygosity (He) were 0.06~0.94 (mean 0.34±0.29) and 0.18~0.83 (mean 0.57±0.20), respectively. Four markers remained deviated from the Hardy-Weinberg Equilibrium (HWE) after multiple comparison correction for Bonferroni (P_{HWE}<0.05). This is the first set of microsatellite markers of P. lutea. They should be useful for the research on the genetic diversity and connectivity of this species and the conservation of endangered coral reef ecosystems and reef-building coral communities in the Indo-Pacific region.

Keywords Porites lutea; Stony coral; Microsatellite; Genetic connectivity; Symbiotic zooxanthellae

Coral reef ecosystems contain the highest density of marine biodiversity (Carpenter et al., 2008) and are highly productive. Annual fishery production per square kilometer of healthy coral reef reaches 35 tons, accounting for 10% (Smith, 1978) of global fishery production, which is described as “tropical rain forest” in the ocean. Coral reefs in tropical oceans have been playing an important role in the global carbon cycle and are simultaneously involved in organic carbon metabolism (photosynthesis/respiratory action) and inorganic carbon metabolism (calcification/dissolution) processes (Yan et al., 2009). The growth of coral reefs can efficiently and stably precipitate carbonate (calcification), making it an important component of the global carbonate reservoir. The cumulative CaCO₃ amount accounts for 23%~26% worldwide (Suzuki and Kawahata, 2004), which is an important factor affecting atmospheric CO₂ concentrations. In addition, the complex reef structure formed by the reef-building corals not only provides habitats for a wide variety of reef organisms, but also has an important effect of wave protection, providing a safe ecological environment for seaweed, mangroves and humans (Moberg and Folke, 1999). Therefore, although coral reefs cover only 0.063% of the earth's surface, they have important effects on the shape of the earth's surface, the geographical distribution of organisms, ocean chemistry and the atmosphere (Birkeland, 2015). However, in recent years, due to persistent global warming (Hughes et al., 2017), pollution from human activities (Lapointe et al., 2019), ocean acidification and overexploitation, the species and number of corals have sharply decreased, resulting in a marked decline in the structure and function of coral reefs (Hoegh-Guldberg et al., 2007; Hughes et al., 2018). Global overall coral coverage has fallen by about 50% (Birkeland, 2015) in the last 30-40 years. China's situation is particularly acute, with the number of reef-building corals of the continent and Hainan Island having fallen by 80% (Hughes et al., 2013). Protection and restoration of coral reefs are imminent.

A reef-building coral remains in its adult form and changes the size and genetic structure of its aggregate populations by the migration of planktonic larvae along with the current (Polato et al., 2005). This brief diffusion period plays an important role in the maintenance of its population and the expansion of its habitat (Gaines and Bertness, 1992). Nowadays the preferred strategy for coral reef protection is to protect the original habitat and
genetic diversity of stony corals, and set up a network of marine protected areas to protect the diffusion path of larvae, waiting for their natural recovery (Barber et al., 2002; Almany et al., 2009). Whether it is to monitor the genetic diversity of reef-building corals, or to detect the diffusion path of reef-building coral larvae by analyzing the gene flow of representative coral aggregate populations and their genetic connectivity, molecular markers are needed, especially microsatellite markers with high diversity and convenient and accurate detection (Pritchard et al., 2000; Magalon et al., 2004).

Microsatellites, also known as simple sequence repeats (SSRs), are short (2–5 bp) tandem repeats widely distributed in the eukaryotic genome (Toth et al., 2000). Microsatellite markers are codominant markers with high polymorphism, which can be readily amplified by polymerase chain reaction (PCR) and can be accurately automated detected (e.g., using ABI genetic analyzer). They are the most commonly used molecular markers for analysis of non-model organism (Wang et al., 2010). The traditional strategy of developing microsatellite markers, which establishes microsatellite enrichment libraries by selective hybridization, is time-consuming (Zane et al., 2002; Wang et al., 2009). In addition, the content of microsatellites in coral genome is low so that the enrichment is difficult (Liu et al., 2005). With the rapid development of sequencing technology, more and more coral genome DNA sequences and expressed sequence tag (EST) have been accumulated in GenBank database. By mining microsatellite resources in these sequences, the time and material cost of development can be significantly reduced (Sharma et al., 2007; Qiu et al., 2013), meanwhile, microsatellite markers often have universal potential in genus related species (Cruz et al., 2007; Chu et al., 2010). Therefore, by mining of the GenBank sequence resources of the related species, there is a fast and efficient way for the development of microsatellite markers (Ringler, 2012). However, in reef-building coral cells, single-celled dinoflagellates (zooxanthellae) are commonly found (except for sperm and some types of eggs during sexual reproduction), which make it difficult to avoid zooxanthella DNA contamination in coral genome DNA and transcriptome sequence. Therefore, during the developing of reef-building coral microsatellite markers, it must identify the microsatellite markers and remove the microsatellite markers of zooxanthella (Chen et al., 2013). Magalon et al. (2004) established an exclusion strategy for reef coral microsatellite development: microsatellite markers were first enriched and separated by the DNA sequence library of coral symbionts, and then identified by pure zooxanthella DNA, which is the key step in this scheme.

The stony coral Poretis lutea (Milne Edwards and Haime, 1851), a large massive reef-building coral (Hirose et al., 2001) composed of small polyps, is gonochoristic and gametes-releasing. Widely distributed in Indo-Pacific, it is one of the dominant reef coral species in the South China Sea, and is also the most widely distributed reef coral species on the fringing reefs of Hainan Island (Wang et al., 2013), which makes it an ideal model to study the genetic connectivity of reef-building corals in the South China Sea and Hainan Island. In this study, using the EST and genomic microsatellite sequences of the Porites species in GenBank, 20 P. lutea and 43 zooxanthella microsatellite markers were developed, and confirmed by interspecific amplification and re-sequencing. These markers could be powerful tools for fine analysis of population genetic structure and connectivity of the species. The genetic diversity and larval migration path can be revealed, which can provide scientific basis for the development of the protection strategy of coral reefs.

1 Results
1.1 Identification of pure zooxanthella DNA
The results of amplification of 28S rDNA for Poretis lutea (PL) symbiont and its symbiotic zooxanthellae DNA are shown in Figure 1. Two bands (662 and 595) were obtained from PL symbionts, while only band 595 was shown for symbiotic zooxanthella (obtained from heat stress treatment), which confirmed the reference DNA was only derived from zooxanthellae and there is no coral DNA contamination.

1.2 Development and identification of microsatellite markers
183 microsatellite loci of Poretis species were amplified in 6 PL coral symbionts from different sites, and then confirmed by re-sequencing and pure zooxanthella DNA identification. Microsatellite loci of PL coral and its zooxanthellae were shown in Table 1. Of the 100 P. astreoides EST microsatellites, 35 (35%) were able to amplify
in PL symbionts and were identified as homologous microsatellite sequences by re-sequencing. Among them, 12 (12.0%) and 23 (23.0%) microsatellite markers were identified as PL coral and zooxanthella, respectively. Of the 83 *P. lobate* genomic microsatellites, 28 (33.7%) were able to amplify in PL symbionts, 8 (9.6%) and 20 (24.0%) microsatellite markers were identified as PL coral and zooxanthella, respectively. A total 20 PL coral microsatellite markers were therefore identified, with an output rate of 10.9% (Table 1); 43 zooxanthella microsatellite markers were identified, with an output rate of 23.4%, which was more than double that of PL corals. On the other hand, the proportion of Poreites species EST-SSR completely unamplified in PL symbionts was 23% (23/100), which was much lower than that of genomic-SSR 55.4% (46/83), indicating that EST sequences, which originate from mRNA, are more conserved than genomic sequences. Information and characteristics of 20 microsatellite loci in a wild *P. lutea* population were shown in Table 2.

![Figure 1 The capillary electrophoretogram (QIAxcel) of 28S rDNA fragment of *P. lutea* symbiont and its symbiotic zooxanthellae DNA](image)

The source Loci	Amplification/resequencing in *P. lutea* symbiont	Validated SSR marker			
	No/weak/multiple amplicon	No SSR sequence	SSR sequence	*P. lutea*	Zooxanthella
pasE001-100	23/12/22	8	35 (35.0%)	12 (12.0%)	23 (23.0%)
plo1-83	46/2/7	0	28 (33.7%)	8 (9.6%)	20 (24.1%)

1.3 Polymorphism of PL coral microsatellite sites

Of the 20 microsatellite markers of PL corals, 19 were polymorphic in BS populations (Table 2), with the allele number ranging from 2~7 and average of 3.5±1.8 alleles per marker. The observed heterozygosity (*H*o) and expected heterozygosity (*H*e) were 0.06–0.94 (mean 0.34±0.29) and 0.18–0.83 (mean 0.57±0.20), respectively. Six markers (*plo10, plo37, plo42, plo68, plo74, pasE042*) deviated to Hardy-Weinberg equilibrium (HWE), of which, 4 still remain deviated after Bonferroni correction (*p*<0.05), mainly due to the presence of null alleles, since all deviated loci showed evidences of null alleles (Table 2). These markers should be used with caution in population genetic structure analysis.

Of the 6 deviated markers, 5 were genomic-SSR sources, accounting for 62.5% (5/8) and 1 (1/12, 8.3%) from EST-SSR. Of the 4 markers who still remain deviated after Bonferroni correction, genomic-SSR and EST-SSR source markers were 3 (37.5%, 3/8) and 1 (8.3%, 1/12), respectively. The proportion of null alleles deviating from HWE in the marker of EST-SSR sources is significantly lower than that of the genomic-SSR sources.
Table 2 Information and characteristics of 20 microsatellite loci in a wild P. lutea population (n=16)

Locus	GenBank No.	Motif	Primer sequence (5’-3’)	Ta(°C)	Size (bp)	H0	He	P_{HWE}
plo7		(TTG)₆	F: acaacagtctgtaacaacgga	50	4	206-225 0.75	0.75	0.568
HQ435873-HQ435879	(TTTA)₆	R: tatgtagagaggttcttaaatgg	50	4	204-249 0.06	0.63	0.004	
plo10		(AT)₉	F: caagcataacgcatagactaccc	50	4	388-423 0.38	0.75	0.031
HQ435880-HQ435883	(AGA)₈	R: ttcgcttcttactaaagtgttg	55	6	500-574 0.13	0.83	0.000	
plo37		(ATG)₁₁	F: tcctttatcatacaaggaagg	55	6	186-202 0.19	0.72	0.002
HQ435922-HQ435924		(GAC)₄	F: taatagctgacagacagagt	55	2	0.38	*	0.001
plo42		(CAA)₃	F: atcctctgtgcgtggagttg	55	2	196-199 0.00	0.38	0.001
HQ435936-HQ435939	(TGA)₃	R: tttggtgtagctgtgtggtg	55	2	187-196 0.56	0.53	0.592	
plo66		(TG)₃	F: ttcctctctcaaccaaaat	55	7	354-433 0.13	0.83	0.000
HQ435976-HQ435980	(TCA)₈	R: ttcatttctaatcttcggtt	55	7	186-202 0.19	0.72	0.002	
plo68		(ATC)₆	F: cagcagatgacagagagagag	55	2	0.38	*	0.001
HQ435985	(CATC)₁₆	R: tcgccatactgctgaaaagagaa	55	5	115-124 0.81	0.56	0.074	
plo78		(AC)₆	F: acgatgtaataacgaagagga	50	3	202-204 0.48	0.48	1.000
GU137158	(AT)₆	R: gctcgttgaatctgtcttga	50	3	202-204 0.48	0.48	1.000	
paeE005	(AT)₆	F: tctgctctctctctctctctt	48	6	221-247 0.94	0.78	0.033	
KP407156	(CT)₁₀	R: gctctctctctctctctctct	48	3	220-235 0.38	0.66	0.212	
paeE016	(GA)₁₂	F: tctgctctctctctctctctt	48	6	220-235 0.38	0.66	0.212	
KP407157	(CA)₆	R: acgacgagacgacgacgacg	48	6	220-235 0.38	0.66	0.212	
paeE021	(AG)₆	F: aagcagagacgacgacgagag	48	6	220-235 0.38	0.66	0.212	
KP407158	(CT)₁₀	R: gctctctctctctctctctct	48	3	226-248 0.13	0.67	0.002	
paeE030	(CT)₁₀	F: gttcccaacgacgacgacg	50	1	195 0.00	0.18	- *	
KP407159	(GA)₆	R: gctctctctctctctctctct	50	1	195 0.00	0.18	- *	
paeE041	(AAACA)₄(AAC)₄	F: agtgctggctaacctccctctt	48	3	220-235 0.38	0.66	0.212	
KP407160	(TT)₁₂	R: atctctctctctctctctctctt	50	3	290-298 0.25	0.52	0.147	
paeE056	(CAT)₁₂	F: gctacagtctgtaacaagag	50	3	290-298 0.25	0.52	0.147	
KP407161-KP407162	(AT)₁₀	R: aaggagctagctgtctct	48	4	329-342 0.75	0.73	0.013	
paeE060	(CT)₁₀	F: gctacagtctgtaacaagag	50	7	272-298 0.50	0.81	0.012	
KP407163-KP407164	(AG)₆	R: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
paeE062	(AG)₆	F: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
KP407165-KP407166	(AT)₁₀	R: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
paeE065	(TTA)₄	F: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
KP407167-KP407168	(TTA)₄	R: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
paeE073	(AT)₆	F: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
KP407169-KP407170	(AAC)₄	R: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	
paeE099	(CA)₃	F: gctacagtctgtaacaagag	53	2	202-288 0.06	0.34	- *	

Average±SD across loci: 3.5±1.8, 0.34±0.29, 0.57±0.20

Note: Values in bold represent significant (P<0.05) deviation from HWE; * no enough allele information for HWE test; ‡ Loci showing evidences of null; † The P. lutea’s sequences resulted from amplification of primer pair Pl078 were too short to submit to GenBank and get an access number. GU137158 is the GenBank number of original P. lobata microsatellite sequence

2 Discussion

2.1 Genetic characteristics of microsatellite markers from different sources

Twenty microsatellite markers of PL corals were identified in this study, most of these markers showed high polymorphism. Six markers (4 corrected by multiple comparisons) deviate from the Hardy-Weinberg equilibrium.
due to the presence of null alleles, showing that PL microsatellite markers also had poor conservation on the flanking sequence, which resulted in the difficulty of binding primers during PCR amplification, and thus the occurrence of null alleles (Wang et al., 2010). The proportion of EST-SSR null allele deviated from Hardy-Weinberg equilibrium was significantly lower than that of genomic-SSR markers, which is consistent with the consensus that EST-SSR flanking sequence is more conservative than that of genomic-SSR due to the selective pressure from the mRNA source (Gadaleta et al., 2011; Qiu et al., 2014). In addition, in this study it was found that the proportion of related species EST-SSR completely unamplified in PL symbionts is much lower than that of genomic-SSR, which also support the above conclusion from another side. Null alleles, which can lead to underestimation of population genetic diversity and even deviation from the Hardy-Weinberg equilibrium (Carlton and Lippe, 2008; Wang et al., 2010), are common problems in microsatellite markers, especially in marine invertebrates such as marine shellfish (Hedgecock et al., 2004; Reece et al., 2004). Therefore, the relevant loci should be carefully used in population analysis.

2.2 Microsatellite markers for symbiotic organisms

The special intracellular symbiotic relationship between reef-building coral and its symbiotic algae (zooxanthella) constitutes the structural and nutritional basis of coral reef ecosystems (Davies, 1993). The genome information carried by zooxanthella is huge (Lin et al., 2015), accounting for more than 90% of the genetic material of the whole symbiont (Spector, 1984; Gregory, 2020). As a result, both genomic and transcriptome data of coral are inevitably mixed with zooxanthella information (Hou et al., 2018). In this study, a remarkable 23.4% of the microsatellite recall rate of the symbiotic zooxanthella was much higher than that of the PL coral (10.9%), indicating that the zooxanthella sequence contamination is quite widespread among those who were claims as the reef coral genetic sequences in GenBank database. For example, Concepcion et al. (2010) confirmed that, the microsatellite markers of four reef-building corals submitted to the GenBank by them, were not identified with pure zooxanthella DNA.

Because the symbiotic zooxanthella is haploid (Freudenthal 1962), different products amplified by co-dominant microsatellite markers represent different types (often more than two) of zooxanthellae, containing genetic differentiation in a coral individual. A data matrix of haploid genotypes can be used to analyze the diversity and genetic differentiation of zooxanthellae among coral geographic populations (Chen et al., 2013). But if mixed with microsatellite markers of coral, it will cause serious interference and wrong results during population detection (Magalon et al., 2004; Chen et al., 2013). Therefore, the exploitation (whether for coral or zooxanthella) of microsatellite markers with these resources, needs to be confirmed by pure DNA of either side of the symbionts. On the other hand, even using selective hybridization to enrich the microsatellite markers of PL corals, since PL coral eggs released during sexual reproduction contain maternal symbiotic algae (Hirose et al., 2001), unless one can obtain sperm that does not contain algae DNA, the microsatellite markers development must also be identified by “exclusion strategy”.

The key step of the exclusion strategy is to obtain pure in situ symbiotic algae to extract DNA without coral DNA contamination. But PL corals tend to secrete too much mucus at elevated temperatures, blocking the small mouth of the polyp, making it difficult for the discharge of zooxanthellae (Li, 2011). Therefore, the coral sample size needs to be relatively large and vigorous, and the heating must be very gentle and slow.

2.3 Interspecific versatility of reef-building coral microsatellites

In this study, the microsatellite markers of PL corals were developed using the genomic and EST-SSR sequences of related species, obtaining an overall yield of 10.9%. The versatility of EST-SSR (12.0%) was higher than that of genomic-SSR (9.6%), mainly due to the aforementioned conservatism of EST sequences. To test the interspecific versatility, we have amplified 20 pairs of these PL coral and 17 pairs of zooxanthella microsatellite markers in two populations (n=13 and 16) of stony coral Galaxea fascicularis in the same geographical region. The results showed that the microsatellite markers with universal properties were all belong to zooxanthella, none of PL coral microsatellite markers can be amplified. This indicates that the versatility of reef-building coral microsatellite markers is limited to closely related species. Using 5 universal zooxanthella microsatellite markers,
we analyzed the genetic differences in zooxanthellae of different *G. fascicularis* geographic populations. It was found that the differentiation was significantly lower than that of coral *G. fascicularis* (Chen et al., 2013). This observation is consistent with the results of Howells et al. (2016).

The effective technology scheme of microsatellite marker development is verified in this study. The PL coral microsatellite markers developed here, as well as the identified microsatellite markers of zooxanthella, are powerful tool for analysis of population genetic structure and connectivity of the species, which could provide scientific basis for the development of coral reef protection strategy.

3 Materials and Methods

3.1 Samples of PL coral populations and acquisition of symbiotic zooxanthella

PL coral population samples were collected from Basuo reefs in Dongfang City, southwest of Hainan Island (BS, 19°8’25.8” N; 108°39'33.0” E). A small health sample of each colony was collected from the upper part, with a minimum spacing of 5 m between two colonies. The method from Chen et al. (2013) was used to extract the zooxanthellae, in brief, the newly collected, energetic PL corals were put in a 2 L beaker. The seawater covered sample was filtered by 0.2 μm membrane and placed in a water bath pot 2°C above its natural environment. The beakers were slightly shook from time to time. The water samples were collected at 2, 4 and 6 hours, respectively, and filtered with 0.45 μm membrane and vacuum pump. Coral and zooxanthella samples were fixed with 95% alcohol.

3.2 DNA extraction and identification of PL coral and zooxanthella

DNA of each PL coral and zooxanthella sample was extracted using a UNIQ-10 column genomic DNA isolation kit (Shanghai Sangon Biotech) (Chen et al., 2013). The coral symbiont and zooxanthella DNA were examined using PCR amplification of 28S RNA universal primers and the amplified products were detected by QIAxcel capillary electrophoresis (Magalon et al., 2004).

3.3 Microsatellite mining and primer design

All 142 genomic microsatellite sequences of *Porites lobata* (Concepcion et al., 2010) and 11,516 EST of *Porites astreoides* (accessed January 12, 2014) were downloaded from NCBI databases, and then were checked for duplicates using Vector NTI Advance 11.0.0 (http://www.invitrogen.com) and screened for microsatellites (contains at least 6 di-, 5 tri-, 5 tetra-, 4 penta-, and 3 hexa-, hepta-, and octa-nucleotide repeats motifs) using MISA software (http://pgrc.ipk-gatersleben.de/misa/). 183 good sequences (83 from *P. lobata* genomic sequences, and 100 from *P. astreoides* ESTs) with sufficient flanking region were selected for primer design with Primer 3 (http://primer3.ut.ee/) (Wang et al., 2010).

3.4 Resequencing and elimination of the site

The primers of the above microsatellite regions were amplified by conventional PCR methods in 6 PL coral individuals from different sites. PCR was conducted in a 10 μL solution containing about 100 ng template DNA, and reagents as follows: Taq-HS PCR Master Mix(2×) 5 μL, 5 pmol forward primer and 5 pmol reverse primer. PCR was conducted with the following steps: 94°C for 4 min followed by 30 cycles of 94°C for 30 s, annealing (50/55°C) for 30 s, 72°C for 20 s, and a final extension at 72°C for 10 min. The annealing temperature was first amplified by 55°C, and the primers which could not be amplified were then annealed at 50°C. Amplified products were detected by 1.5% agarose gel electrophoresis, and the amplified products with clear bands and meeting the expected product size were sent to Shanghai Sangon Biotech for sequencing (using ABI 3730xl sequencer). By comparing the obtained sequences with the original sequences, those homologous microsatellite sequences are identified as PL symbiont microsatellite loci. The PL symbiont primers with M13 (−21) leading sequences were synthesized, that is, 18 bp M13 (−21) (5’-TGTAAAAACGACGCTCAGT) sequences were added to the 5’ end of each forward primer, which was used for the subsequent economical fluorescent PCR reactions (Schuelke, 2000). The PL symbiont DNA and its pure zooxanthella DNA were PCR amplified using the above confirmed conditions. The product was detected by 1.5% agarose electrophoresis. Primers capable of simultaneously amplifying in PL symbionts and zooxanthella are considered to be microsatellite sites of zooxanthella, whereas only PL symbiont DNA amplified sites were identified as microsatellite sites of PL corals, which were used for further population genotyping and analysis.
3.5 Genotyping and statistical analysis

The microsatellite loci identified as PL corals were PCR amplified and genetically characterized in a wild population (BS, 16 individuals). The amplification was performed using an economical semi-nested PCR fragment fluorescence labeling method (Schuelke, 2000). PCR was conducted in a 10 μL solution containing about <100 ng template DNA, and reagents as follows: Taq-HS PCR Master Mix (2×) [Mona (Wuhan) Biotechnology Co., Ltd.] 5 μL, 0.8 pmol M13 (-21) tailed primer labeled with fluorescent dyes (FAM, VIC, NED, or PET; Applied Biosystems, Foster City, CA, USA), 1.2 pmol reverse primer and 0.4 pmol forward primer. PCR was conducted with the following steps: 94°C for 5 min followed by 30 cycles of 94°C for 30 s, annealing (temperatures indicated in Table 2) for 30 s, 72°C for 20 s 15 cycles, denaturing at 94°C for 30 s, annealing at 53°C for 30 s, extending at 72°C for 45 s, and a final extension at 72°C for 15 min. Genotyping was performed using ABI 3130 gene analyzer and GeneMapper software 3.7 (Applied Biosystems).

GENEPOP on the web (http://genepop.curtin.edu.au/) was used to identify deviations from Hardy-Weinberg equilibrium (HWE) for each locus as well as for linkage disequilibrium (LD) between all pairs of loci (exact tests, 1000 iterations). The ARLEQUIN 3.0 software was used to calculate observed (H0) and expected (Hg) heterozygosity. The MICRO-CHECKER 2.2.1 software (van Oosterhout et al., 2004) was used for identifying possible null alleles (1000 randomizations).

Authors’ contributions

LF completed the data analysis and article writing of the paper; CD and HJ completed the experimental operation and data collection; LY and LS completed the sample collection and fixation; WD completed the implementation of the research; WY completed the experimental design and the revision and finalization of the paper. All authors read and approved the final manuscript.

Acknowledgements

This research was supported by the Hainan Provincial Key R & D (Grant No. ZDYF2018108) and the Natural Science Foundation of China (No. 41376174).

References

Almany G.R., Connolly S.R., Heath D.D., Hogan J.D., Jones G.P., Mccoook L.J., Mills M., Pressey R.L., and Williamson D.H., 2009, Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs, Coral Reefs, 28(2): 339-351
https://doi.org/10.1007/s00338-009-0484-x
Barber P.H., Palumbi S.R., Erdmann M.V., and Moosa M.K., 2002, Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences, Molecular Ecology, 11(4): 659-674
https://doi.org/10.1046/j.1365-294X.2002.01468.x
PMid:11972755
Birkeland C., 2015, Coral Reefs in the Anthropocene, In: Birkeland C. (ed.), Coral Reefs in the Anthropocene, Springer, Dordrecht, Netherlands, pp.1-15
https://doi.org/10.1007/978-94-017-7249-5_1
Carlton D.B., and Lippe C., 2008, Fifteen new microsatellite markers for the reef coral Favia fragum and a new Symbiodinium microsatellite, Mol Ecol Res, 8(4): 870-873
https://doi.org/10.1111/j.1471-8286.2008.02095.x
PMid:21585916
Carpenter K.E., Abrar M., Aeby G., Aronson R.B., Banks S., Bruckner A., Chiriboga A., Cortés J., Delbeck J.C., and DeVantier L., 2008, One-third of reef-building corals face elevated extinction risk from climate change and local impacts, Science, 321(5888): 560-563
https://doi.org/10.1126/science.1159196
PMid:18653892
Chen D.D., Wang D.R., Zhu J.T., Li Y.C., Wu X.X., and Wang Y., 2013, Identification and characterization of microsatellite markers for scleractinian coral Galaxea fascicularis and its symbiotic zooxanthellae, Conservation Genetics Resources, 5(3): 741-743
https://doi.org/10.1007/s12686-013-9895-7
Chu H.J., Yan J., Hu Y., Wang H.C., Li J.Q., 2010, Cross-species amplification of 92 microsatellites of Medicago truncatula, Molecular Ecology Resources, 10(1): 150-155
https://doi.org/10.1111/j.1755-0998.2009.02730.x
PMid:21560500
Concepcion G.T., Polato N.R., Baums I.B., and Toonen, R. J., 2010, Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata, Conservation Genetics Resources, 2(1): 11-15
https://doi.org/10.1007/s12686-009-9118-4
Cruz P.B., YÁÑEZ-JACOME B., Ibarra A.M., and Rangel-Becerril J., 2007, Isolation and characterization of microsatellite loci in the pacific pleasure oyster, Crassostrea cortezensis, and their cross-species amplification in four other oyster species, Molecular Ecology Resources, 7(3): 448-450
https://doi.org/10.1111/j.1471-8286.2006.01613.x

Davies P.S., 1993, Endosymbiosis in marine cnidarians, In: John D.M, Hawkins S.J, and Price J.H. (eds), Plant-Animal Interactions in the Marine Benthos, Clarendon, Oxford, UK, pp.511-540

Freudenthal H.D., 1962, Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthella: Taxonomy, Life Cycle, and Morphology. The Journal of Protozoology 9: 45-52
https://doi.org/10.1111/j.1550-7408.1962.tb02579.x

Gadaleta A., Giancaspro A., Zacheo S., Nigro D., Giove S.L., Colasuonno P., and Blanco A., 2011, Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat, Plant Genetic Resources, 9(2): 243-246
https://doi.org/10.1017/S147926211100030X

Gaines S.D., and Bertness M.D., 1992, Dispersal of juveniles and variable recruitment in sessile marine species, Nature, 360(6404): 579-580
https://doi.org/10.1038/360579a0

Hedgecock D., Li G., Hubert S., Bucklin K., and Ribes V., 2004, Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas, Journal of Shellfisheries Research, 23(2): 379-385

Hirose M., Kinzie R., and Hidaka M., 2001, Timing and process of entry of zooxanthellae into oocytes of hermatypic corals, Coral Reefs, 20(3): 273-280
https://doi.org/10.1007/s003380100171

Hoegh-Guldberg O., Muller-Parker G., Cook C.B., Gates R.D., Gladfelter E., Trench R.K., and Weis V.M., 2007, Len Muscatine (1932–2007) and his contributions to the understanding of algal-invertebrate endosymbiosis, Coral Reefs, 26(4): 731-739
https://doi.org/10.1007/s00338-007-0320-0

Hou J., Xu T., Su D.J., Wu Y., Cheng L., Wang J., Zhou Z., and Wang Y., RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis, Frontiers in Genetics, 9, 37
https://doi.org/10.3389/fgene.2018.00037
PMid:29487614 PMCid:PMC5816741

Howells E.J., Willis B.L., Bay L.K., and van Oppen M.J.H., 2016, Microsatellite allele sizes alone are insufficient to delineate species boundaries in Symbiodinium, Molecular Ecology, 25(12): 2719-2723
https://doi.org/10.1111/mec.13631
PMid:27192557

Hughes T.P., Anderson K.D., Connolly S.R., Heron S.F., Kerry J.T., Lough J.M., Baird A.H., Baum J.K., Berumen M.L., Bridge T.C., Claar D.C., Eakin C.M., Gilmour J.P., Graham N.A.J., Harrison H., Hobbs J.-P.A., Hoey A.S., Hoogenboom M., Lowe R.J., McCulloch M.T., Pandolfi J.M., Pratchett M., Snoepf V., Torda G. & Wilson S.K., 2018, Spatial and temporal patterns of mass bleaching of corals in the Anthropocene, Science, 359: 80-83
https://doi.org/10.1126/science.aan8048
PMid:29392011

Hughes T. P., Barnes M.L., Bellwood D.R., Cinner J.E., Cumming G.S., Jackson J.B.C., Kleypas J., van de Leemput I.A., Lough J.M., Palumbi S.R., van Nes E.H., and Scheffer M., 2017, Coral reefs in the Anthropocene, Nature, 546(7656): 82-90
https://doi.org/10.1038/nature22901
PMid:28569801

Hughes T.P., Huang H., Young M., 2013, The wicked problem of China's disappearing coral reefs, Conservation Biology, 27(2): 261-269
https://doi.org/10.1111/j.1523-1739.2012.01957.x
PMid:23140101

Lapointe B.E., Brewton R.A., Herren L.W., Porter J.W., and Hu C, 2019, Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study, Marine Biology, 166(8): 108.1-108.31
https://doi.org/10.1007/s00227-019-3538-9

Li J., Chen Q., Long J.J., Dong J.D., Yang J., and Zhang S., 2014, Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons, Scientific Reports, 4, 7320
https://doi.org/10.1038/srep07320
PMid:25475855 PMCid:PMC4256709

Li S., Yu K.F., Chen T.R., and Shi Q., 2011, Preliminary study of coral bleaching at cellular level under thermal stress, Redaihaiyang Xuebao (Journal of Tropical Oceanography), 30(2): 33-38 (in Chinese)

Lin S.J., Cheng S.F., Song B., Zhong X., Lin X., Li W.J., Li L., Zhang Y.Q., Zhang H., Ji Z.L., Cai M.C., Zhuang Y.Y., Shi X.G., Lin L.X., Wang L., Wang Z.B., Liu X., Yu S., Zeng P., Hao H., Zou Q., Chen C.X., Li Y.J., Wang Y., Xu C.Y., Meng S.S., Xu X., Wang J., Yang H.M., Campbell D.A., Sturin N.R., Dagenais-Bellefeuille S., Morse D., 2015, The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis, Science, 350(6261): 691-694
https://doi.org/10.1126/science.aad0408

Liu S.Y.V., Dai C.F., Fan T.Y., and Yu H.T., 2005, Cloning and characterization of microsatellite loci in a gorgonian coral, Junceella juncea (Anthozoa; Octocorallia; Ellisellidae) and its application in clonal genotyping, Marine Biotechnology, 7(1): 26-32
Magalon H., Samadi S., Richard M., Adjeroud M., and Veuille M., 2004, Development of coral and zooxanthella-specific microsatellites in three species of *Pocillopora* (Cnidaria, Scleractinia) from French Polynesia, Molecular Ecology Notes, 4(2): 206-208
https://doi.org/10.1007/s10722-004-0015-2

Moberg F., and Folke C., 1999, Ecological goods and services of coral reef ecosystems, Ecological Economics, 29(2): 215-233
https://doi.org/10.1016/S0921-8009(99)00009-9

Potato N.R., Concepcion G.T., Toonen R.J., and Baums I.B., 2005, Isolation by distance across the Hawaiian Archipelago in the reef-building coral *Porites lobate*, Mol. Ecol., 19(21): 4661-4677
https://doi.org/10.1111/j.1365-294X.2010.04836.x

PMid:20887361

Pritchard J.K, Stephens M, and Donnelly P., 2000, Inference of population structure using multilocus genotype data, Genetics, 155(2): 945-959

Qiu Y., Huang X.Z., Lu H., Shi Y.H., Wang A.M., and Wang Y., 2013, Development of EST-derived microsatellite markers in the pearl oyster *Pinctada martensis* (Dunker) for genetic resource monitoring, Conservation Genetics Resources, 5(2): 401-403
https://doi.org/10.1007/s12686-012-9813-4

Qiu Y., Lu H., Zhu J.T, Chen X.F., Wang A.M., and Wang Y., 2014, Characterization of novel EST-SSR markers and their correlations with growth and nacreous secretion traits in the pearl oyster *Pinctada martensis* (Dunker), Aquaculture, 420-421: S92-S97
https://doi.org/10.1016/j.aquaculture.2013.09.040

Rhee K.S., Reibeiro W.L., Gaffney P.M., Carnegie R.B., and Allen S.K.Jr., 2004, Microsatellite marker development and analysis in the eastern oyster (*Crassostrea virginica*): Confirmation of null alleles and non-Mendelian segregation ratios, J. Hered., 95(4): 346-352
https://doi.org/10.1093/jhered/es8058

PMid:15287315

Ringler E., 2012, The use of cross-species testing of microsatellite markers and sibship analysis in ex situ population management, Conservation Genetics Resources, 4(3): 815-819
https://doi.org/10.1007/s12686-012-9642-5

Schuelke M., 2000, An economic method for the fluorescent labeling of PCR fragments, Nature Biotechnology, 18(2): 233-234
https://doi.org/10.1038/72708

PMid:10657137

Sharma P.C., Grover A., and Kahl G., 2007, Mining microsatellites in eukaryotic genomes, Trends in Biotechnology, 25(11): 490-498
https://doi.org/10.1016/j.tibtech.2007.07.013

PMid:17945369

Smith S.V., 1978, Coral-reef area and the contributions of reefs to processes and resources of the world's oceans, Nature, 273(5659): 225-226
https://doi.org/10.1038/273225a0

Spector D.L, 1984, Dinoflagellate nuclei, In: Spector D.L. (ed.), Dinoflagellates, New York, US, pp.107-147
https://doi.org/10.1006/B978-0-12-656520-1.50008-0

Suzuki A., and Kawahata H., 2004, Reef Water CO2 System and Carbon Production of Coral Reefs: Topographic Control of System-Level Performance, In: Shiyoumi M, Kawahata H, Koizumi H, Tsuda A, and, Awaya Y. (eds.), Global Environmental Change in the Ocean and on Land, Tokyo, Japan, pp.229–248

Tang P.C., Wei N.Y., Chen C.W., Wallace C.C., and Chen C.A., 2010, Comparative study of genetic variability of AAT and CT/GT microsatellites in staghorn coral, *Acropora* (Scleractinia: Acroporidae), Zoological Studies, 49(5): 657-668

Toth G., Gaspari Z., Jurka J., 2000, Microsatellites in different eukaryotic genomes: Survey and analysis, Genome Research, 10(7): 967-981
https://doi.org/10.1101/gr.10.7.967

PMid:10899146 PMcid:PMC319025

van Oosterhout C., Hutchinson W.F., Wills D.P.M., and Shipley P., 2004, Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data, Molecular Ecology Resources, 4(3): 535-538
https://doi.org/10.1111/j.1462-2070.2003.00878.x

Wang D.R., ed., 2013, Tropical typical marine ecosystem research in Hainan province, China Ocean Press, Beijing, China, pp.22-50 (in Chinese)

Wang Y., Wang A.M., and Guo X.M., 2009, Development and characterization of 30 polymorphic microsatellite markers for the Atlantic surfclam, *Spisula solidissima* (Dillwyn, 1817), Molecular Ecology Resources, 9(4): 1264-1267
https://doi.org/10.1111/j.1755-0998.2009.02660.x

PMid:21564897

Wang Y., Wang A.M., and Guo X.M., 2010, Development and characterization of polymorphic microsatellite markers for the northern quahog *Mercenaria mercenaria* (Linnaeus, 1758), Journal of Shellfish Research, 29(1): 77-82
https://doi.org/10.2983/035.029.0130

Yan H.Q., Yu K.F., and Tan Y.H., 2009, Recent development in the research of carbon cycle in coral reef ecosystem, Shengtai Xuebao (Acta Ecologica Sinica), 29(11): 6207-6215 (in Chinese)

Zane L., Bargelloni L., and Patarnello T., 2002, Strategies for microsatellite isolation: a review, Molecular Ecology, 11(1): 1-16
https://doi.org/10.1046/j.0962-1083.2001.01418.x

PMid:11903900
