Supplemental Material

Variation in coronary atherosclerosis severity related to a distinct LDL profile – findings from a familial hypercholesterolemia pig model

Ayla Hoogendoorn¹, Sandra den Hoedt², Eline M. J. Hartman¹, Ilona Krabbendam – Peters³, Maaike te Lintel Hekkert³, Leonie van der Zee – van Vark², Kim van Gaalen¹, Karen Th. Witberg⁴, Kristien Dorst², Jurgen M. R. Ligthart⁴, Ludovic Drouet⁵, Kim Van der Heiden¹, Jeanine Roeters van Lennep², Antonius F.W. van der Steen¹, Dirk J. Duncker³, Monique T. Mulder², Jolanda J. Wentzel¹

¹ Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
² Department of Internal Medicine, Laboratory of vascular medicine, Section Pharmacology & Vascular medicine, Erasmus MC, Rotterdam, The Netherlands
³ Department of Cardiology, Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands
⁴ Department of Cardiology, Interventional Cardiology, Erasmus MC, Rotterdam, The Netherlands
⁵ Department of Angiohematology, Hospital Lariboisiere, Paris, France
Supplemental Methods

Follow-up time on atherogenic diet
After baseline imaging (T1), the invasive imaging was repeated at 9 (T2) and 10-13 months (T3) after the start of the atherogenic diet. The timing of T3 was determined based on the size of the coronary plaques at T2. Because of the exponential growth pattern of the plaques and to prevent death due to a major cardiovascular event, pigs that displayed significant disease at T2 (n=2) were sacrificed within 1 month (T3 at 10 months). The other animals (n=8) were planned to be kept in experiment up to 12 months. Of these pigs, 1 pig died one day after the invasive imaging procedure at T2 due to an unknown, but acute cause of death during feeding. Another pig had to be sacrificed between T2 and T3 due to suspected thrombosis in one leg.

Coronary histology
Upon sacrifice at the last time point, the heart was excised, the coronary arteries were dissected out, and sliced in 3mm blocks, which were embedded in Tissue Tek, slowly frozen on dry ice-cooled 2-propanol and stored at -80 °C. The 3mm blocks were sectioned in 5µm slides (Leica 3050s cryostat) and used for histological and immunohistochemical staining. Haematoxylin and Eosin (HE), Resorcin-Fuchsin or Miller (collagen and elastin), Oil-red-O (ORO) (lipids) and Martius, Scarlet and Blue (MSB) (fibrin) stainings were performed. Immunohistochemical stains for CD68 (macrophages, primary antibody (Ab): Bio-Rad, MCA2317GA, mouse anti-pig, 1:1600; secondary antibody: ready-to-use EnVision™+ System/HRP, K4001, goat anti-mouse) and CD31 (endothelial cells, primary Ab: Bio-Rad, MCA1746GA, mouse anti-pig, 1:200; secondary Ab: DAKO, P0447, polyclonal goat anti-mouse, HRP labelled, 1:100) were used for further plaque characterization. A liquid DAB+ Substrate kit (DAKO, K3468) was used to detect the bound secondary antibodies.

To compare the plaque types found in the proximal versus the distal regions of the coronary arteries, the first half of the excised artery (up to 14 (LAD), 9 (LCX) and 16 (RCA) 3mm-blocks) were regarded as proximal and the other half distal. These numbers were determined based on a median split of the total number of blocks of the individual arteries. Furthermore, a 3mm region was marked as ‘around a side branch’ when a side branch was present in at least one of the slices derived from that respective block.

Positive staining for lipids and macrophages was quantified by using user-specified standard Hue-Saturation-Brightness values. Necrotic core was delineated manually as a lipid-rich area, scarce in nuclei and fibrous tissue with an overlying fibrous cap. Quantification of the average plaque area was based on all Oil-red-O, CD68 and Miller-stained sections and lipid, macrophage and necrotic core content were presented as an average percentage of the total plaque area. The presence of intraplaque haemorrhage was assessed on both HE and MSB stained sections as bright pink (HE) and red (MSB) stained areas. Neovascularisation in the plaque area could be detected using CD31 staining. The presence of calcifications was assessed on the Oil-red-O staining and calcifications were subdivided in micro (spotty appearance, <10μm/5% of plaque area) or macrocalcifications.

Imaging analysis
Before analysis, IVUS pullbacks were ECG-triggered by selecting the frame that was recorded 6 frames before the R-peak by in-house developed software. Hereby differences in lumen size were removed that were induced by movement of the catheter or because of cardiac contraction. The triggered IVUS pullbacks were analysed each frame by semi-automatic delineation (with manual correction) of the vessel wall and lumen contours. Based on these contours, total vessel area (VA), lumen area (LA) and plaque area (PA=VA-LA) (mm²) were quantified. Plaque burden (PB) was calculated as PA/VA*100%. For final analysis, data were averaged over 3mm in longitudinal direction to reduce the influence of manual drawing errors and to reduce statistical dependence amongst the data points. The plaque size was also assessed by classifying the maximal intima-media thickness (IMT) per 3mm-segment into 4 grades (<0.5mm, 0.5-0.7mm, 0.7-1.0mm and >1.0mm) according to the method of Chatzizisis.
et al. The percentage of the segments occupied by the respective grade was quantified per artery and averaged over all arteries. For the OCT analysis, frames with a poor flush were excluded. Lumen contours were automatically segmented and plaque type and component angles were indicated manually. Fibrous plaques were defined as homogeneous, signal-rich intimal thickening with an IMT>0.5mm. Lipid-rich plaques were defined as displaying an inhomogeneous, fading signal combined with an absent 3-layered structure. Lipid-pools were identified when a signal-low region with a diffuse border was present with an overlying signal-rich layer: the fibrous cap. Minimal, maximal and average fibrous cap thickness were determined automatically by the QCU-CMS software. Plaque classification was based on the most severe classification in that respective frame: fibrous, lipid-rich or fibrous-cap atheroma (FCA). The latter classification was given when a lipid-pool was present in the plaque.

Plasma analysis pigs

At the start of every imaging procedure, blood samples were drawn from the carotid sheath into EDTA and clotting tubes. Blood tubes were spun at 1460 g for 10 minutes (Thermo scientific Heraeus centrifuge 3 S-R) to isolate the plasma and serum, which was stored at -80°C. Standard plasma analysis was performed on fresh plasma by the internal clinical chemistry department to determine leucocyte count and levels of total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL).

Patient plasma collection

Blood was collected in EDTA tubes from three homozygous FH (hoFH) patients who were under treatment at the Erasmus MC, The Netherlands. EDTA-plasma was isolated from blood by centrifugation (3000 rpm, 10 min, 4 °C) and stored at -80 °C until analysis. The diagnosis of hoFH was based on an LDL plasma level >13 mmol/L and a genetic analysis. Human pool plasma, used as a reference, was a mixture of plasma of approximately 100 non-FH patients that was residual material remaining after diagnostic analyses from the department of clinical chemistry. No informed consent was needed for the use of this residual material.

Lipoprotein profiling

Density-gradient ultracentrifugation

A detailed lipoprotein profile was obtained using 1 mL of EDTA plasma or serum by density-gradient ultracentrifugation (DGUC) as previously reported by Versmissen et al. In short, potassium bromide (KBr) (0.35 g/mL plasma) was added to plasma to obtain a density of 1.26 g/mL. 1 mL of this mix was placed in an ultracentrifuge tube (331372, Beckmann Coulter) and 1.9 mL of 1.21, 1.10, 1.063, 1.04, and 1.02 g/mL KBr in physiological salt was layered on top, followed by 1 mL of water. Samples were centrifuged at 207,000 g for 18 h at 4 °C using a SW41 rotor in an Optima XPN-80 Beckman ultracentrifuge (Beckman Instruments, Indianapolis, IN, USA). Thereafter, DGUC-fractions were collected starting from the bottom of the tube.

Size exclusion chromatography (fast protein liquid chromatography)

A fast protein liquid chromatography (FPLC) profile was obtained from 200 µl plasma. Plasma was added to a Tricorn Superose200 10-300 GL column and a Tricorn Superdex 6 10-300 GL column with a flow rate of 0.5 ml/min. FPLC-fractions of 0.5 mL were collected.

Cholesterol and triglyceride content

Cholesterol and triglyceride content was determined in the fractions obtained by DGUC and FPLC using standard laboratory methods as previously described.

Sphingolipid content analysis by HPLC MS/MS

For the sphingolipid analysis, 10 µL plasma, or 50 µL FPLC-fraction was combined with 10 µl internal standard (2 µg/mL Cer(d18:1/17:0), 2 µg/mL Cer(d17:0/24:1), 0.2 µg/mL S1P-D7, and 10 µg/mL SM(d18:1/17:0) in methanol; Avanti Polar Lipids) and 10 µl 10 % TEA solution (triethylamine (10/90, v/v) in methanol/dichloromethane (DCM) (50/50, v/v)) and mixed thoroughly. Subsequently, 450 µl methanol/DCM (50/50, v/v) was added to this mixture. Samples were incubated under constant agitation for 30 minutes at 4°C. After incubation, samples were centrifuged (14000 rpm, 20 min, 4°C) and supernatant was transferred to a glass vial, freeze dried and reconstituted in methanol before high pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

An autosampler (Shimadzu, Kyoto, Japan) injected 5 µL lipid extracts into a Shimadzu HPLC system (Shimadzu) equipped with a Kinetex C8 column (50 x 2.1 mm, 2.6 µm, Phenomenex, Maarssen, the Netherlands) at 30 °C using a gradient, starting from 95% mobile phase A (H2O/MeOH (50/50, v/v) containing 1.5 mM ammonium formate and 0.1% formic acid) for 2 minutes and increased to 93% mobile phase B (100% MeOH containing 1 mM ammonium formate and 0.1% formic acid) at 5.5 minutes. After 10 minutes, the column was flushed with 99% mobile phase B for 2 minutes before a 2-minute re-equilibration. The flow rate was set at 0.25 ml/min and total run time was 14 minutes. The effluent was directed to a Sciex Qtrap 5500 quadruple mass spectrometer (AB Sciex Inc., Thornhill, Ontario, Canada) and analyzed in positive ion mode following electrospray ionization using multiple reaction monitoring (MRM). Detailed HPLC MS/MS settings are given in Supplemental table XII.

Nine-point calibration curves were constructed by plotting the analyte to the internal standard peak area ratios versus the corresponding analyte concentration for Cer(d18:1/14:0), Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), Cer(d18:1/24:0), Cer(d18:1/24:1), S1P(d18:1), SM(d18:1/16:0), SM(d18:1/18:0), SM(d18:1/18:1), SM(d18:1/20:0), SM(d18:1/22:0), SM(d18:1/24:0), and SM(d18:1/24:1) (Avanti polar lipids, Alabaster, AL, USA; SM(d18:1/20:0) and SM(d18:1/22:0) Matreya LLC, PA, USA). Obtained correlation coefficients (r^2) were >0.99. Sphingolipid concentrations were determined by fitting the identified sphingolipid species to these standard curves based on acyl-chain length. Instrument control and quantification of spectral data was performed using MultiQuant software (AB Sciex Inc.).
Supplemental Figures and Figure Legends

Supplemental figure I: Association between the anatomical location in the coronary artery and the histological plaque classification. Distribution of plaque in regions A) proximal versus the distal, B) Side branch (SB) versus no SB, C) LAD versus LCX versus RCA. The data are split on advanced diseased pigs (top figures) and mildly diseased pigs (bottom figures). P-values indicate overall significance. *z-score>1.96 for that respective plaque type compared to the other plaque types.
Supplemental figure II: Overview of the DGUC (density separation) and FPLC-derived (size separation) lipoprotein profiles from all pigs. The two top graphs demonstrate example profiles from human pool plasma for comparison. The other graphs indicate the DGUC and FPLC profiles for all individual advanced diseased pigs (ADs) and mildly diseased pigs (MDs). Both cholesterol levels (black line) and triglyceride levels (grey line) are indicated.
Supplemental Tables

Supplemental table I: General pig characteristics

	Advanced-diseased pigs	Mildly-diseased pigs	p-value				
	T_1	T_2	T_3	T_1	T_2	T_3	AD vs MD
Weight (kg)							0.33
(58-105)	77	92	93	86	87	93	
(68-106)							
(68-106)							
(69-90)							
(79-99)							
(78-106)							
Leukocytes (x10⁹/L)	6.8	6.7	6.2	7.6	6.3	6.2	0.93
(5.8-10.2)							
(5.1-10.2)							
(5.3-9.8)							
(6.5-9.0)							
(3.4-8.4)							
(5.3-9.1)							
Cholesterol (mmol/L)	11.0	11.0	9.1	12.8	10.7	8.8	0.65
(8.6-13.0)*	(10.0-23.5)	(8.5-21.0)	(9.6-17.1)	(9.2-12.4)	(7.8-10.9)		
LDL-C (mmol/L)	9.1	8.9	7.6	10.7	8.4	6.5	0.14
(7.1-28.6)	(8.1-20.5)	(6.7-20.7)	(7.6-14.3)	(6.7-10.7)	(5.8-9.3)		
HDL-C (mmol/L)	2.6	3.3	3.0	2.7	2.5	2.6	0.97
(1.9-4.5)	(2.3-4.5)	(2.9-3.2)	(2.5-4.6)	(2.4-5.0)	(2.2-5.1)		
LDL-C/HDL-C ratio	4.2	3.3	2.6	3.3	3.5	2.8	0.08
(2.7-6.4)	(2.1-4.6)	(2.3-6.6)	(1.7-4.5)	(1.3-4.3)	(1.1-3.8)		

Values expressed as median (range). * Value of 1 AD pig missing (with the highest LDL-C level).
Supplemental table II: Sphingolipid-ratios in ‘regular’ and ‘larger’ LDL at T1

Sphingolipid-ratio	Advanced diseased pigs	Mildly diseased pigs	p-value
Cer(d18:1/16:0)/Cer(d18:1/24:0) total plasma (x10⁻⁵)	0.3 (0.2 – 0.7)	0.3 (0.3 – 0.4)	0.84
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘regular’ LDL (x10⁻⁵)	1.1 (0.6 – 1.5)	1.0 (0.7 – 1.5)	0.84
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘larger’ LDL (x10⁻⁵)	1.1 (0.6 – 1.5)	0.8 (0.6 – 0.3)	0.84
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	1.0 (0.8 – 1.3)	1.2 (1.2 – 1.3)	0.10
Cer(d18:1/18:0)/Cer(d18:1/24:0) total plasma (x10⁻⁵)	0.1 (0.1 – 0.2)	0.1 (0.1 – 0.1)	0.84
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘regular’ LDL (x10⁻⁵)	0.4 (0.2 – 0.8)	0.4 (0.3 – 1.1)	0.55
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘larger’ LDL (x10⁻⁵)	0.5 (0.2 – 0.7)	0.3 (0.2 – 0.4)	0.15
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	0.9 (0.8 – 1.3)	1.3 (1.2 – 2.5)	0.032
Cer(d18:1/24:1)/Cer(d18:1/24:0) total plasma (x10⁻⁵)	1.0 (0.6 – 1.2)	1.0 (1.0 – 1.1)	0.55
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘regular’ LDL (x10⁻⁵)	1.0 (0.8 – 1.1)	1.0 (0.8 – 1.2)	0.69
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘larger’ LDL (x10⁻⁵)	0.9 (0.7 – 1.1)	0.9 (0.8 – 1.1)	0.69
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	1.2 (1.0 – 1.3)	1.1 (1.0 – 1.2)	0.69

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective peak. Data are presented as median (range). Significant values are indicated as italic and bold.
Supplemental table III: Cholesterol content of ‘regular’ and ‘larger’ LDL at T2 and T3

	Advanced-diseased pigs	Mildly-diseased pigs	p-value
T2			
Cholesterol ‘regular’ LDL	4.9 (4.7-13.3)	4.9 (3.8-5.9)	0.84
Cholesterol ‘larger’ LDL	2.1 (0.8-3.6)	2.1 (0.7-3.1)	0.69
Ratio cholesterol ‘regular’/‘larger’ LDL	3.7 (2.0-6.0)	2.5 (1.9-5.7)	0.42
T3			
Cholesterol ‘regular’ LDL	4.2 (4.0-11.7)	3.8 (2.3-5.3)	0.39
Cholesterol ‘larger’ LDL	2.0 (0.5-5.0)	1.4 (1.0-2.7)	0.79
Ratio cholesterol ‘regular’/‘larger’ LDL	2.3 (2.1-8.6)	2.4 (1.9-2.7)	1.0

Data presented as median (range) of the area under the curve. Significant values are indicated as italic and bold.
Supplemental table IV: S1P and Ceramide content of ‘regular’ and ‘larger’ LDL at T2

	Advanced-diseased pigs	Mildly-diseased pigs	p-value	
S1P(d18:1) total plasma (x10^-5)*	3.0 (1.6-4.0)	2.8 (2.3-3.8)	0.84	
S1P(d18:1) ‘regular’ LDL (x10^-5)*	0.0 (0-0.2)	0.2 (0-0.9)	0.19	
S1P(d18:1) ‘larger’ LDL (x10^-5)*	0.1 (0-0.2)	0.7 (0-2.2)	0.56	
S1P(d18:1) ‘regular’/’larger’ LDL	0.1 (0-0.2)	0.9 (0.1-1.2)	0.40	
Cer(d18:1/14:0) total plasma (x10^-5)	1.2 (1.0-1.8)	1.2 (1.1-1.6)	0.84	
Cer(d18:1/14:0) ‘regular’ LDL (x10^-5)	0.9 (0.7-1.4)	1.3 (0.8-1.9)	0.31	
Cer(d18:1/14:0) ‘larger’ LDL (x10^-5)	1.3 (1.0-1.5)	1.1 (0.6-2.1)	0.31	
Cer(d18:1/14:0) ‘regular’/’larger’ LDL ratio	0.7 (0.6-1.2)	1.3 (0.7-1.7)	0.15	
Cer(d18:1/16:0) total plasma (x10^-5)	8.2 (5.7-12.5)	6.1 (5.7-8.2)	0.55	
Cer(d18:1/16:0) ‘regular’ LDL (x10^-5)	7.8 (6.3-12.3)	8.5 (5.2-11.1)	1.0	
Cer(d18:1/16:0) ‘larger’ LDL (x10^-5)	8.7 (7.4-10.5)	8.6 (4.1-11.0)	0.84	
Cer(d18:1/16:0) ‘regular’/’larger’ LDL ratio	0.9 (0.7-1.4)	1.1 (0.8-1.3)	0.55	
Cer(d18:1/18:0) total plasma (x10^-5)	2.1 (1.3-2.9)	1.2 (0.8-1.3)	**0.016**	
Cer(d18:1/18:0) ‘regular’ LDL (x10^-5)	3.2 (1.6-5.9)	2.7 (1.4-6.1)	1.0	
Cer(d18:1/18:0) ‘larger’ LDL (x10^-5)	5.5 (2.0-6.4)	4.1 (1.2-10.5)	1.0	
Cer(d18:1/18:0) ‘regular’/’larger’ LDL ratio	0.7 (0.6-0.9)	0.7 (0.6-1.2)	1.0	
Cer(d18:1/20:0) total plasma (x10^-5)	8.6 (4.7-10.6)	6.4 (3.6-7.1)	0.15	
Cer(d18:1/20:0) ‘regular’ LDL (x10^-5)	4.3 (2.6-5.4)	3.8 (2.6-4.1)	0.31	
Cer(d18:1/20:0) ‘larger’ LDL (x10^-5)	3.6 (3.5-6.8)	3.5 (2.3-4.7)	0.42	
Cer(d18:1/20:0) ‘regular’/’larger’ LDL ratio	0.9 (0.7-1.4)	1.0 (0.8-1.2)	0.84	
Cer(d18:1/22:0) total plasma (x10^-5)	12.7 (7.2-15.4)	8.9 (5.9-10.2)	0.06	
Cer(d18:1/22:0) ‘regular’ LDL (x10^-5)	6.2 (5.3-7.7)	5.8 (3.9-6.4)	0.55	
Cer(d18:1/22:0) ‘larger’ LDL (x10^-5)	7.3 (5.3-10.0)	6.8 (3.4-11.1)	0.42	
Cer(d18:1/22:0) ‘regular’/’larger’ LDL ratio	0.8 (0.7-1.1)	0.9 (0.5-1.1)	0.55	
Cer(d18:1/24:0) total plasma (x10^-5)	18.7 (12.7-21.7)	11.9 (9.6-15.6)	**0.032**	
Cer(d18:1/24:0) ‘regular’ LDL (x10^-5)	12.8 (7.8-17.6)	10.9 (6.7-12.0)	0.15	
Cer(d18:1/24:0) ‘larger’ LDL (x10^-5)	12.9 (10.5-28.6)	12.7 (6.7-20.1)	0.42	
Cer(d18:1/24:0) ‘regular’/’larger’ LDL ratio	0.6 (0.5-1.2)	0.8 (0.6-1.1)	0.69	
Cer(d18:1/24:1) total plasma (x10^-5)	16.9 (10.9-21.5)	13.0 (7.2-14.2)	0.10	
Cer(d18:1/24:1) ‘regular’ LDL (x10^-5)	8.4 (6.5-10.5)	6.0 (5.5-9.0)	0.22	
Cer(d18:1/24:1) ‘larger’ LDL (x10^-5)	7.7 (4.5-12.2)	6.7 (5.0-9.6)	0.55	
	Cer(d18:1/24:1) ‘regular’/‘larger’ LDL ratio	0.9 (0.8-1.8)	1.0 (0.8-1.2)	1.0
--------------------------	---	---------------	---------------	-----
Cer Total total plasma (x10⁻⁵)	73.4 (44.1-82.3)	49.5 (34.1-57.4)	0.06	
Cer Total ‘regular’ LDL (x10⁻⁵)	44.0 (34.9-54.7)	40.4 (29.5-63.3)	0.31	
Cer Total ‘larger’ LDL (x10⁻⁵)	43.6 (40.2-74.9)	47.8 (23.4-63.3)	0.55	
Cer Total ‘regular’/‘larger’ LDL ratio	0.8 (0.7-1.3)	0.9 (0.6-1.3)	0.69	

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective LDL peak. Data are presented as median (range) of the area under the curve. *Values around the minimum detection level, unreliable. Significant values are indicated as italic and bold.
Supplemental table V: S1P and Ceramide content of ‘regular’ and ‘larger’ LDL at T3

	Advanced-diseased pigs	Mildly-diseased pigs	p-value		
S1P(d18:1) total plasma (x10^{-5})#	2.6 (1.7-3.5)*	3.1 (2.9-5.0)	0.39		
S1P(d18:1) ‘regular’ LDL (x10^{-5})#	0.0 (0.0-0.1)*	0.1 (0.0-0.6)	0.39		
S1P(d18:1) ‘larger’ LDL (x10^{-5})#	0.0 (0.0-0.1)*	0.0 (0.0-2.1)	0.79		
S1P(d18:1) ‘regular’/‘larger’ LDL	1.1 (1.1-1.1)*	0.5 (0.1-0.8)	0.67		
Cer(d18:1/14:0) total plasma (x10^{-5})	0.9 (0.8-1.6)*	1.2 (0.9-1.2)	0.79		
Cer(d18:1/14:0) ‘regular’ LDL (x10^{-5})	1.3 (0.5-1.6)*	1.2 (0.8-2.2)	0.79		
Cer(d18:1/14:0) ‘larger’ LDL (x10^{-5})	0.9 (0.8-1.3)*	1.2 (0.8-2.3)	0.57		
Cer(d18:1/14:0) ‘regular’/‘larger’ LDL ratio	1.2 (0.6-1.7)*	1.0 (0.8-1.5)	1.0		
Cer(d18:1/16:0) total plasma (x10^{-5})	4.6 (4.5-11.0)*	6.3 (5.1-9.1)	0.57		
Cer(d18:1/16:0) ‘regular’ LDL (x10^{-5})	5.5 (5.5-14.1)*	6.9 (5.8-8.5)	0.57		
Cer(d18:1/16:0) ‘larger’ LDL (x10^{-5})	8.3 (4.1-12.5)*	8.7 (6.7-9.9)	1.0		
Cer(d18:1/16:0) ‘regular’/‘larger’ LDL ratio	1.1 (0.7-1.3)*	0.9 (0.8-1.0)	0.57		
Cer(d18:1/18:0) total plasma (x10^{-5})	1.3 (1.3-2.5)*	1.4 (1.1-1.7)	0.79		
Cer(d18:1/18:0) ‘regular’ LDL (x10^{-5})	2.9 (1.3-5.9)*	2.3 (2.0-4.9)	1.0		
Cer(d18:1/18:0) ‘larger’ LDL (x10^{-5})	2.8 (2.2-9.1)*	4.0 (2.7-8.9)	0.77		
Cer(d18:1/18:0) ‘regular’/‘larger’ LDL ratio	0.6 (0.6-1.0)*	0.6 (0.5-0.8)	0.39		
Cer(d18:1/20:0) total plasma (x10^{-5})	6.0 (4.1-6.0)*	6.1 (4.8-8.4)	0.39		
Cer(d18:1/20:0) ‘regular’ LDL (x10^{-5})	3.4 (2.5-4.8)*	3.5 (3.4-4.4)	1.0		
Cer(d18:1/20:0) ‘larger’ LDL (x10^{-5})	4.5 (2.2-5.1)*	4.5 (3.3-5.0)	1.0		
Cer(d18:1/20:0) ‘regular’/‘larger’ LDL ratio	1.1 (0.7-1.1)*	0.8 (0.8-1.0)	0.57		
Cer(d18:1/22:0) total plasma (x10^{-5})	8.1 (6.8-10.3)*	7.2 (6.2-8.1)	0.39		
Cer(d18:1/22:0) ‘regular’ LDL (x10^{-5})	5.0 (3.8-8.1)*	6.0 (4.5-6.1)	1.0		
Cer(d18:1/22:0) ‘larger’ LDL (x10^{-5})	5.9 (4.8-12.9)*	6.7 (5.5-8.9)	0.79		
Cer(d18:1/22:0) ‘regular’/‘larger’ LDL ratio	0.7 (0.6-1.0)*	0.8 (0.7-0.9)	0.57		
Cer(d18:1/24:0) total plasma (x10^{-5})	11.1 (10.8-15.9)*	11.8 (9.6-13.4)	0.79		
Cer(d18:1/24:0) ‘regular’ LDL (x10^{-5})	9.8 (8.0-12.9)*	8.9 (6.9-12.4)	0.79		
Cer(d18:1/24:0) ‘larger’ LDL (x10^{-5})	12.7 (12.5-18.4)*	13.7 (8.6-24.6)	0.79		
Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	0.7 (0.6-0.8)*	0.7 (0.5-0.8)	1.0		
Cer(d18:1/24:1) total plasma (x10^{-5})	11.2 (9.9-11.4)*	11.3 (8.2-16.7)	1.0		
Cer(d18:1/24:1) ‘regular’ LDL (x10^{-5})	6.7 (5.9-8.1)*	6.7 (5.1-7.5)	0.57		
Cer(d18:1/24:1) ‘larger’ LDL (x10^{-5})	6.7 (5.4-9.3)*	7.0 (6.7-8.8)	0.79		
	Cer(d18:1/24:1) ‘regular’/'larger’ LDL ratio	Cer Total total plasma (x10⁻⁵)	Cer Total ‘regular’ LDL (x10⁻⁵)	Cer Total ‘larger’ LDL (x10⁻⁵)	Cer Total ‘regular’/'larger’ LDL ratio
--------------------------	---	-------------------------------	--------------------------------	-------------------------------	-------------------------------------
	1.1 (0.7-1.2)*	48.2 (38.3-53.7)*	35.1 (31.4-55.4)*	44.5 (32.7-65.3)*	0.8 (0.7-1.1)*
		0.9 (0.8-1.0)	36.8 (35.9-42.4)	48.4 (34.3-63.3)	0.8 (0.7-1.1)
					0.57

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective LDL peak. Data are presented as median (range) of the area under the curve.* n=3 pigs. *Values around the minimum detection level, unreliable. Significant values are indicated as italic and bold.
Supplemental table VI: Sphingolipid-ratios in ‘regular’ and ‘larger’ LDL at T2

Sphingolipid Ratio	Advanced Diseased Pigs (x10⁻⁵)	Mildly Diseased Pigs (x10⁻⁵)	p-value
Cer(d18:1/16:0)/Cer(d18:1/24:0) total plasma	0.5 (0.3-0.7)	0.5 (0.4-0.6)	0.42
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘regular’ LDL	0.6 (0.5-1.0)	0.8 (0.5-1.1)	0.55
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘larger’ LDL	0.6 (0.3-0.8)	0.6 (0.5-0.8)	0.69
Cer(d18:1/16:0)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	1.1 (1.1-1.9)	1.3 (1.0-1.5)	1.0
Cer(d18:1/18:0)/Cer(d18:1/24:0) total plasma	0.1 (0.1-0.2)	0.1 (0.1-0.1)	0.69
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘regular’ LDL	0.2 (0.1-0.5)	0.2 (0.2-0.6)	0.55
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘larger’ LDL	0.2 (0.2-0.6)	0.3 (0.2-0.8)	0.31
Cer(d18:1/18:0)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	0.9 (0.8-1.4)	0.9 (0.7-1.2)	0.69
Cer(d18:1/24:1)/Cer(d18:1/24:0) total plasma	0.9 (0.7-1.0)	0.9 (0.7-1.1)	0.69
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘regular’ LDL	0.7 (0.5-0.8)	0.6 (0.5-0.8)	1.0
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘larger’ LDL	0.4 (0.3-0.7)	0.7 (0.3-0.8)	0.42
Cer(d18:1/24:1)/Cer(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	1.4 (1.2-2.0)	1.2 (1.0-1.6)	0.22

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective peak. Data are presented as median (range). Significant values are indicated as italic and bold.
Supplemental table VII: Sphingolipid-ratios in ‘regular’ and ‘larger’ LDL at T3

Sphingolipid	Advanced diseased pigs	Mildly diseased pigs	p-value
Cer(d18:1/16:0)/Cer(d18:1/24:0)			
total plasma (x10⁻⁵)	0.4 (0.3-1.0)	0.5 (0.4-0.7)	0.57
‘regular’ LDL (x10⁻⁵)	0.7 (0.6-1.1)	0.7 (0.7-1.0)	0.79
‘larger’ LDL (x10⁻⁵)	0.7 (0.3-0.7)	0.6 (0.4-0.8)	0.79
‘regular’/‘larger’ LDL ratio	1.6 (1.0-1.7)	1.3 (1.0-1.8)	0.79

Sphingolipid			
Cer(d18:1/18:0)/Cer(d18:1/24:0)			
total plasma (x10⁻⁵)	0.1 (0.1-0.2)	0.1 (0.1-0.2)	1.0
‘regular’ LDL (x10⁻⁵)	0.3 (0.2-0.5)	0.3 (0.2-0.4)	1.0
‘larger’ LDL (x10⁻⁵)	0.2 (0.2-0.5)	0.3 (0.2-0.7)	0.39
‘regular’/‘larger’ LDL ratio	0.9 (0.9-1.3)	1.0 (0.6-1.3)	1.0

Sphingolipid			
Cer(d18:1/24:1)/Cer(d18:1/24:0)			
total plasma (x10⁻⁵)	0.9 (0.7-1.0)	0.9 (0.9-1.2)	0.79
‘regular’ LDL (x10⁻⁵)	0.6 (0.6-0.8)	0.8 (0.4-1.0)	1.0
‘larger’ LDL (x10⁻⁵)	0.4 (0.4-0.7)	0.6 (0.3-0.8)	0.79
‘regular’/‘larger’ LDL ratio	1.4 (1.2-1.7)	1.3 (1.1-1.5)	0.57

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective peak. Data are presented as median (range). *n=3 pigs. Significant values are indicated as italic and bold.
Supplemental table VIII: Sphingomyelin content of ‘regular’ and ‘larger’ LDL at T2

Sphingomyelin (SM) Composition	Advanced-diseased Pigs	Mildly-diseased Pigs	p-value
SM(d18:1/16:0) total plasma	29.4 (18.0-29.7)	30.7 (27.5-31.8)	0.10
SM(d18:1/16:0) ‘regular’ LDL	26.8 (16.5-29.4)	25.6 (21.6-31.2)	1.0
SM(d18:1/16:0) ‘larger’ LDL	24.5 (20.4-33.1)	26.2 (16.6-30.4)	1.0
SM(d18:1/16:0) ‘regular’/‘larger’ LDL ratio	1.0 (0.8-1.4)	1.0 (0.8-1.3)	0.84
SM(d18:1/18:0) total plasma	4.8 (2.9-5.5)	4.1 (4.0-5.2)	0.84
SM(d18:1/18:0) ‘regular’ LDL	4.4 (2.2-5.9)	4.2 (3.0-4.5)	0.69
SM(d18:1/18:0) ‘larger’ LDL	3.5 (2.9-6.4)	4.7 (2.4-5.9)	0.84
SM(d18:1/18:0) ‘regular’/‘larger’ LDL ratio	1.0 (0.7-1.5)	1.0 (0.7-1.2)	1.0
SM(d18:1/20:0) total plasma	15.8 (10.8-22.4)	20.2 (16.0-24.8)	0.22
SM(d18:1/20:0) ‘regular’ LDL	18.5 (7.2-22.4)	19.1 (13.9-24.6)	0.55
SM(d18:1/20:0) ‘larger’ LDL	16.8 (11.6-28.4)	23.2 (11.6-28.6)	0.69
SM(d18:1/20:0) ‘regular’/‘larger’ LDL ratio	1.0 (0.6-1.2)	0.9 (0.7-1.2)	0.84
SM(d18:1/22:0) total plasma	31.1 (25.8-39.4)	35.3 (30.6-38.2)	0.42
SM(d18:1/22:0) ‘regular’ LDL	15.2 (6.7-17.1)	13.8 (9.6-19.5)	1.0
SM(d18:1/22:0) ‘larger’ LDL	12.6 (7.1-18.7)	16.4 (7.6-20.3)	0.31
SM(d18:1/22:0) ‘regular’/‘larger’ LDL ratio	1.1 (0.8-1.9)	1.0 (0.7-1.3)	0.69
SM(d18:1/24:0) total plasma	6.2 (4.6-7.6)	6.3 (5.4-6.6)	1.0
SM(d18:1/24:0) ‘regular’ LDL	2.5 (1.0-3.3)	2.8 (1.5-3.2)	1.0
SM(d18:1/24:0) ‘larger’ LDL	2.0 (1.3-3.2)	3.0 (1.2-3.5)	0.69
SM(d18:1/24:0) ‘regular’/‘larger’ LDL ratio	1.0 (0.8-1.7)	1.0 (0.8-1.2)	1.0
SM(d18:1/24:1) total plasma	12.3 (10.9-14.8)	13.5 (11.8-15.0)	0.22
SM(d18:1/24:1) ‘regular’ LDL	5.4 (3.2-7.2)	6.6 (4.4-7.1)	0.84
SM(d18:1/24:1) ‘larger’ LDL	4.9 (3.5-6.5)	6.5 (3.5-7.7)	0.31
SM(d18:1/24:1) ‘regular’/‘larger’ LDL ratio	1.2 (0.8-1.5)	1.1 (0.8-1.2)	0.55
SM Total total plasma	102.6 (75.9-115.8)	112.2 (99.7-119.8)	0.31
SM Total ‘regular’ LDL	75.3 (39.0-84.1)	71.3 (54.4-88.8)	1.0
SM Total ‘larger’ LDL	66.0 (49.2-97.1)	78.1 (43.3-94.2)	0.94
SM Total ‘regular’/‘larger’ LDL ratio	1.1 (0.8-1.4)	0.9 (0.8-1.3)	1.0
All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective LDL peak. Data are presented as median (range) of the area under the curve. Significant values are indicated as italic and bold.
Supplemental table IX: Sphingomyelin content of ‘regular’ and ‘larger’ LDL at T3

Sphingomyelin	Advanced-diseased pigs	Mildly-diseased pigs	p-value
SM(d18:1/16:0) total plasma (x10⁻³)	31.1 (18.7-31.1)	31.7 (29.3-33.2)	0.39
SM(d18:1/16:0) ‘regular’ LDL (x10⁻³)	28.8 (22.7-35.2)	27.3 (23.6-32.6)	1.0
SM(d18:1/16:0) ‘larger’ LDL (x10⁻³)	31.4 (21.9-36.6)	31.7 (22.3-37.1)	0.79
SM(d18:1/16:0) ‘regular’/’larger’ LDL	1.0 (0.7-1.3)	0.9 (0.8-1.1)	1.0
SM(d18:1/18:0) total plasma (x10⁻³)	4.8 (3.2-5.6)	4.7 (4.6-5.4)	1.0
SM(d18:1/18:0) ‘regular’ LDL (x10⁻³)	5.5 (3.5-6.2)	4.5 (3.4-6.0)	0.57
SM(d18:1/18:0) ‘larger’ LDL (x10⁻³)	4.8 (4.7-5.2)	5.8 (3.2-7.8)	0.57
SM(d18:1/18:0) ‘regular’/’larger’ LDL ratio	1.2 (0.7-1.2)	0.8 (0.7-1.1)	0.39
SM(d18:1/18:1) total plasma (x10⁻³)	1.1 (0.8-1.1)	1.0 (1.0-1.4)	1.0
SM(d18:1/18:1) ‘regular’ LDL (x10⁻³)	0.8 (0.7-0.9)	0.7 (0.6-1.0)	0.25
SM(d18:1/18:1) ‘larger’ LDL (x10⁻³)	0.7 (0.5-1.0)	0.7 (0.5-1.1)	1.0
SM(d18:1/18:1) ‘regular’/’larger’ LDL ratio	1.3 (0.8-1.4)	1.0 (0.9-1.3)	0.79
SM(d18:1/20:0) total plasma (x10⁻³)	14.5 (12.0-18.7)	21.9 (19.1-25.0)	**0.04**
SM(d18:1/20:0) ‘regular’ LDL (x10⁻³)	22.1 (14.5-22.7)	24.5 (17.8-25.4)	0.39
SM(d18:1/20:0) ‘larger’ LDL (x10⁻³)	20.2 (20.1-20.4)	25.6 (17.1-34.7)	0.25
SM(d18:1/20:0) ‘regular’/’larger’ LDL ratio	1.1 (0.6-1.1)	0.9 (0.7-1.0)	0.57
SM(d18:1/22:0) total plasma (x10⁻³)	30.9 (27.4-37.8)	39.9 (29.1-44.0)	0.25
SM(d18:1/22:0) ‘regular’ LDL (x10⁻³)	13.5 (11.4-15.7)	15.5 (9.9-18.3)	0.57
SM(d18:1/22:0) ‘larger’ LDL (x10⁻³)	47.8 (14.3-15.7)	18.3 (9.1-22.4)	0.25
SM(d18:1/22:0) ‘regular’/’larger’ LDL ratio	0.9 (0.7-1.1)	0.9 (0.7-1.1)	1.0
SM(d18:1/24:0) total plasma (x10⁻³)	6.6 (4.2-7.5)	6.1 (5.3-8.2)	1.0
SM(d18:1/24:0) ‘regular’ LDL (x10⁻³)	2.6 (2.2-3.1)	2.6 (1.8-3.4)	1.0
SM(d18:1/24:0) ‘larger’ LDL (x10⁻³)	2.7 (2.1-2.8)	3.0 (1.8-4.5)	0.25
SM(d18:1/24:0) ‘regular’/’larger’ LDL ratio	1.1 (0.8-1.2)	0.8 (0.7-1.0)	0.25
SM(d18:1/24:1) total plasma (x10⁻³)	11.1 (11.0-15.0)	14.7 (13.0-17.4)	0.25
SM(d18:1/24:1) ‘regular’ LDL (x10⁻³)	6.4 (5.8-7.5)	6.1 (5.8-8.5)	1.0
SM(d18:1/24:1) ‘larger’ LDL (x10⁻³)	5.4 (5.2-7.8)	7.5 (4.8-9.2)	0.57
SM(d18:1/24:1) ‘regular’/’larger’ LDL ratio	1.2 (0.7-1.4)	0.9 (0.8-1.3)	0.79
SM Total total plasma (x10⁻³)	97.6 (79.8-116.6)	122.8 (104.6-131.6)	0.14
SM Total ‘regular’ LDL (x10⁻³)	82.9 (60.8-88.0)	81.0 (62.9-90.2)	0.79
SM Total ‘larger’ LDL (x10⁻³)	84.5 (70.0-87.5)	88.6 (59.5-115.7)	0.39
SM Total ‘regular’/‘larger’ LDL ratio	1.0 (0.7-1.2)	0.9 (0.8-1.1)	0.79

All sphingolipid data were expressed relative to the cholesterol concentration in total plasma or the respective LDL peak. Data are presented as median (range) of the area under the curve. Significant values are indicated as italic and bold.
Supplemental table X: Homozygous FH patient characteristics

	Patient 1	Patient 2	Patient 3
Age (years)	23	31	28
Sex (m/f)	m	m	m
BMI	27.2	23.0	18.7
Hypertension	no	no	no
Diabetes	no	no	no
Smoker	no	former	no
Statin	yes	yes	yes
Ezetimibe	yes	yes	yes
Other lipid lowering medication	Lomitapide	Lomitapide	Lomitapide
FH mutation	LDLR null/null, G352D, exon 8/2417insG, exon 17	LDLR null/null, 1685delACT, exon 11/1685delACT, exon 11	LDLR null/null, 4.4Kb dupl, exon 12/2.5Kb del exon 7 and 8
Highest cholesterol (mmol/L)	23.6	17.2	20.6
Cholesterol (mmol/L)	16.0	2.8	15.1
LDL (mmol/L)	14.5	1.7	14.6
HDL (mmol/L)	0.9	1.1	1.2
Triglycerides (mmol/L)	1.6	0.3	0.4
Supplemental table XI: Overview porcine studies of natural coronary atherosclerosis development with histological analysis

Reference	Breed	Sex	Age at start study (weeks)	Max. FU time (weeks)	Induction of atherosclerosis	Plaque size (PA unless otherwise indicated)	IMR	Plaque classification (% coverage of artery)	Used imaging technique												
Prescott 1991	Rapacz	Unknown	Mature	234	None	Occlusive	-	FCA	-												
Neeb 2010	Ossabaw (O)	Male	Unknown	40	Atherogenic diet	-	-	-	IVUS												
	Yucatan (Y)																				
Thim 2010	FBM minipig	Castrated male	39	18	Atherogenic diet	NP/IT/IX: 0.28 mm²*	-	-	VH-IVUS²												
						NP/IT/IX: 0.19*															
						PIT: 0.93 mm²*															
						PIT: 0.42*															
						FCA: 2.53 mm²*															
						FCA: 1.26*															
Al-Mashhadi 2013	Yucatan	Male(m) and	Unknown	46	Atherogenic diet	Male: 0.29 mm²†	-	-	-												
	PCSK9 mutation	female(f)				Female: 0.25 mm²†															
Davis et al. 2014	Yucatan	Female	22	6	Atherogenic diet	0.2 mm²	-	-	-												
	LDLR-/-	and castrated male																			
Pedrigi et al. 2015	Yucatan	Female	Unknown	34	Atherogenic diet	0.2 mm²	-	NP: 41%	OCT³												
	PCSK9 mutation							IT: 30%													
								IX: 5%													
								PIT: 24%													
Study (year)	Species	Sex	Age	Diet	Treatment	Average maximal PA*: 1.8 mm²	NP: 11%	IX: 60%	PIT: 18%	FCA: 11%	Average:	Stenosis degree: 86%†	Average: 1.4	FCA: 34%†	Stenosis degree: 0.55 – 1.3*†	IT: 18.3%*	IX/PIT: 39.4%*	FCA: 42.3%*			
-------------	---------	-----	-----	------	-----------	-----------------------------	--------	--------	---------	----------	-----------	--------------------------	-------------	----------	------------------------	-------------	----------------	----------------			
Poulsen et al. 2016	FBM minipig	Castrated female	29	38	Atherogenic diet	-	-	-	-	-	-	-	-	-	-	-					
Shim et al. 2017	Yucatan ApoE-/-	Unknown	8	44	Atherogenic diet	-	-	-	-	-	-	-	-	-	-	-					
Badin 2018	Ossabaw	Female	130 (young) or 458 (old)	48	Atherogenic diet	-	-	-	-	-	-	-	-	-	-	-					
Tharp 2019	Rapacz	Castrated male	60	26	Atherogenic diet	-	-	-	-	-	-	-	-	-	-	-					
Hoogendoorn 2019	FBM minipig	Castrated male	147	52	Atherogenic diet	IT: 0.9 mm²†§	IT: 0.6†§	NP: 4%†§	IT: 2%†§	IT: 2%†§	IT: 0.7†§	IT: 1.8†§	IT: 33%†§	IT: 27%†§	IT: 34%†§	Average: 2.0 mm²	Average: 1.4	FCA: 34%†§	-	-	-
Gerrity 2001	Yorkshire	Male	8-12	48	Atherogenic diet or Atherogenic diet + diabetes	Stenosis degree: 86%†	-	-	-	-	-	-	-	-	-	-	-	-			
Chatzizisis 2008	Yorkshire	Male	Unknown	30	Atherogenic diet + diabetes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Study	Location	Sex	Age Range	No.	Diet	Plaque Size	Classification	Method													
------------------	----------	--------------	-----------	-----	-----------------------------	-------------	----------------	--------													
Koskinas 2010/2013	Yorkshire	Male	12-14	36	Atherogenic diet + diabetes	Average: 1.6 – 2.7 mm²†	IT: 6%*	IVUS													
Patel 2013	Yorkshire	Male	Unknown	39	Atherogenic diet + diabetes	-	No plaque: 13%	IVUS													
Ludvigsen 2015	Göttingen	Castrated male	11	43	Atherogenic diet + diabetes	0.27 mm²†	IX: 33%	-													
Ditzhuijzen 2016	Yorkshire/Landrace	Male	11	65	Atherogenic diet or Atherogenic diet + diabetes	-	IT - FCA	OCT													

Plaque size and classification are based on histological data. Sizes based on imaging are mentioned in the text if the manuscript. Majority of the numbers are estimated from graphs. NP=no plaque, IT=intimal thickening, IX=intimal xanthoma, PIT=pathological intimal thickening, FCA=fibrous cap atheroma, IMR=intima-media ratio, *Only of the largest lesions, †Tissue not pressure fixed, ‡ Of all lesions, not of the whole artery, §Only of the advanced-diseased pigs, ‖No imaging results reported on spontaneous plaque development.
Supplemental table XII: HPLC MS/MS specifications

Component	MRM transition	CE (Volt)	Internal standard
Cer(d18:1/14:0)	510.6 → 264.2	30	Cer(d18:1/17:0)
Cer(d18:1/16:0)	538.6 → 264.2	30	Cer(d18:1/17:0)
Cer(d18:1/18:0)	566.6 → 264.2	30	Cer(d18:1/17:0)
Cer(d18:1/20:0)	594.6 → 264.2	30	Cer(d18:1/17:0)
Cer(d18:1/22:0)	622.6 → 264.2	35	Cer(d18:1/17:0)
Cer(d18:1/24:0)	650.6 → 264.2	40	Cer(d17:0/24:1)
Cer(d18:1/24:1)	648.6 → 264.2	40	Cer(d17:0/24:1)
S1P(d18:1)	380.4 → 264.2	20	S1P(d18:1)-D7
SM(d18:1/16:0)	706.6 → 186.2	40	SM(d18:1/17:0)
SM(d18:1/18:0)	734.6 → 186.2	40	SM(d18:1/17:0)
SM(d18:1/20:0)	762.6 → 186.2	40	SM(d18:1/17:0)
SM(d18:1/22:0)	790.6 → 186.2	40	SM(d18:1/17:0)
SM(d18:1/24:0)	818.6 → 186.2	47	SM(d18:1/17:0)
SM(d18:1/24:1)	816.6 → 186.2	47	SM(d18:1/17:0)
S1P(d18:1)-D7	387.4 → 271.2	20	-
Cer(d18:1/17:0)	552.6 → 264.2	30	-
Cer(d17:0/24:1)	634.6 → 250.2	35	-
SM(d18:1/17:0)	720.6 → 186.2	40	-
Major Resources Tables

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex
Familial hypercholesterolemia Bretonchelles Meishan Pigs (homozygous R84C LDLR mutation)	Department of Angiohematology, Hospital Lariboisiere, France	Rapacz x Chinese Meishan x Bretonchelles minipig	Castrated male

Antibodies

Target antigen	Vendor or Source	Catalog #	Working concentration
CD68	Bio-Rad	MCA2317GA	0.6 µg/mL
CD31	Bio-Rad	MCA1746GA	5 µg/mL
Secondary Ab for CD68 (EnVision™+ System/HRP)	Agilent	K4001	N/A (Ready-to-use)
Secondary Ab for CD31	DAKO	P0447	10 µg/mL
Supplemental References

1. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. *Arterioscler Thromb Vasc Biol*. 2000;20(5):1262-1275. doi:10.1161/01.ATV.20.5.1262

2. Mauriello A, Servadei F, Zoccai GB, et al. Coronary calcification identifies the vulnerable patient rather than the vulnerable Plaque. *Atherosclerosis*. 2013;229(1):124-129. doi:10.1016/j.atherosclerosis.2013.03.010

3. Chatzizisis YS, Jonas M, Coskun AU, et al. Prediction of the Localization of High-Risk Coronary Atherosclerotic Plaques on the Basis of Low Endothelial Shear Stress: An Intravascular Ultrasound and Histopathology Natural History Study. *Circulation*. 2008;117(8):993-1002. doi:10.1161/CIRCULATIONAHA.107.695254

4. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. *Eur Heart J*. 2014;35(32):2146-2157. doi:10.1093/eurheartj/ehu274

5. Yahya R, Favari E, Calabresi L, et al. Lomitapide affects HDL composition and function. *Atherosclerosis*. 2016;251:15-18. doi:10.1016/j.atherosclerosis.2016.05.005

6. Proudfoot JM, Barden AE, Loke WM, Croft KD, Puddey IB, Mori TA. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. *J Lipid Res*. 2009;50(4):716-722. doi:10.1194/jlr.M800607-JLR200

7. Versmissen J, Vongpromek R, Yahya R, et al. Familial hypercholesterolaemia: cholesterol efflux and coronary disease. *Eur J Clin Invest*. 2016;46(7):643-650. doi:10.1111/ect.12643

8. Bandaru VVR, Troncoso J, Wheeler D, et al. ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain. *Neurobiol Aging*. 2009;30(4):591-599. doi:10.1016/j.neurobiolaging.2007.07.024

9. de Wit NM, Snhkhchyan H, den Hoedt S, et al. Altered Sphingolipid Balance in Capillary Cerebral Amyloid Angiopathy. Mielke M, Martinez P, eds. *J Alzheimers Dis*. 2017;60(3):795-807. doi:10.3233/JAD-160551

10. Prescott MF, McBride CH, Hasler-Rapacz J, Von Linden J, Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B. *Am J Pathol*. 1991;139(1):139-147. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1886122&tool=pmcentrez&rendertype=abstract. Accessed June 16, 2015.

11. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. *Comp Med*. 2010;60(4):300-315. http://www.ncbi.nlm.nih.gov/pubmed/20819380. Accessed March 7, 2018.

12. Thim T, Hagensen MK, Drouet L, et al. Familial hypercholesterolaemic downsized pig with human-like coronary atherosclerosis: a model for preclinical studies. *EuroIntervention*. 2010;6(2):261-268. doi:EUV612A42 [pii]10.4244/

13. Al-Mashhadi RH, Sorensen CB, Kragh PM, et al. Familial Hypercholesterolemia and Atherosclerosis in Cloned Minipigs Created by DNA Transposition of a Human PCSK9 Gain-of-Function Mutant. *Sci Transl Med*. 2013;5(166):166ra1. doi:10.1126/scitranslmed.3004853

14. Davis BT, Wang X-J, Rohret JA, et al. Targeted Disruption of LDLR Causes Hypercholesterolemia and Atherosclerosis in Yucatan Miniature Pigs. *Zhang Y, ed. PLoS One*. 2014;9(4):e93457. doi:10.1371/journal.pone.0093457

15. Pedrigi RM, Poulsen CB, Mehta V V, et al. Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs. *Circulation*. 2015;132(11):1003-1012. doi:10.1161/CIRCULATIONAHA.115.016270

16. Poulsen CB, Al-Mashhadi AL, von Wachenfeldt K, et al. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. *Int J Cardiol*. 2016;215:506-515. doi:10.1016/j.ijcard.2016.03.222
17. Shim J, Poulsen CB, Hagensen MK, et al. Apolipoprotein E Deficiency Increases Remnant Lipoproteins and Accelerates Progressive Atherosclerosis, But Not Xanthoma Formation, in Gene-Modified Minipigs. JACC Basic to Transl Sci. 2017;2(5):591-600. doi:10.1016/J.JACBTS.2017.06.004

18. Gerrity RG, Natarajan R, Nadler JL, Kimsey T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes. 2001;50(7):1654-1665. http://www.ncbi.nlm.nih.gov/pubmed/11423488. Accessed March 7, 2018.

19. Chatzizisis YS, Jonas M, Coskun AU, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress-an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993-1002. doi:10.1161/CIRCULATIONAHA.107.695254

20. Koskinas KC, Chatzizisis YS, Papafaklis MI, et al. Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs. Int J Cardiol. 2013;169(6):394-401. doi:10.1016/j.ijcard.2013.10.021

21. Koskinas KC, Feldman CL, Chatzizisis YS, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: A serial, in vivo intravascular ultrasound study. Circulation. 2010;121(19):2092-2101. doi:10.1161/CIRCULATIONAHA.109.901678

22. Patel D, Hamamdzic D, Llano R, et al. Subsequent development of fibroatheromas with inflamed fibrous caps can be predicted by intracoronary near infrared spectroscopy. Arterioscler Thromb Vasc Biol. 2013;33(2):347-353. doi:10.1161/ATVBAHA.112.300710

23. Ludvigsen TP, Kirk RK, Christoffersen BØ, et al. Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J Transl Med. 2015;13(1):312. doi:10.1186/s12967-015-0670-2

24. van Ditzhuijzen NS, van den Heuvel M, Sorop O, et al. Serial Coronary Imaging of Early Atherosclerosis Development in Fast-Food-Fed Diabetic and Nondiabetic Swine. JACC Basic to Transl Sci. 2016;1(6):449-460. doi:10.1016/j.jacbts.2016.08.006