Direct algebraic mapping transformation for decorated spin models

Onofre Rojas1 and S M de Souza

Departamento de Ciencias Exatas, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG, Brazil

E-mail: ors@dex.ufla.br

Received 10 February 2011, in final form 13 April 2011
Published 11 May 2011
Online at stacks.iop.org/JPhysA/44/245001

Abstract

In this paper, we propose a general transformation for decorated spin models. The advantage of this transformation is to perform a direct mapping of a decorated spin model onto another effective spin thus simplifying algebraic computations by avoiding the proliferation of unnecessary iterative transformations and parameters that might otherwise lead to transcendental equations. Direct mapping transformation is discussed in detail for decorated Ising spin models as well as for decorated Ising–Heisenberg spin models, with arbitrary coordination number and with some constrained Hamiltonian’s parameter for systems with coordination number larger than 4 (3) with (without) spin-inversion symmetry, respectively. In order to illustrate this transformation we give several examples of this mapping transformation, where most of them were not explored before.

PACS numbers: 05.50.+q, 75.10.−b, 75.10.Hk, 75.30.Jm, 75.40.Cx

1. Introduction

Exactly solvable models are one of the most challenging topics in statistical physics and mathematical physics. Statistical physics models in general cannot be solved analytically, but only numerically. For example, Ising models with spin-1/2 or higher under an external magnetic field are challenging current issues. Exact solutions were obtained only for very limited cases. After the Onsager solution for the two-dimensional Ising model [1], several attempts to solve other similar models were made, mainly the honeycomb lattices [2, 3]. The exact solution for the honeycomb lattice with an external magnetic field was also studied by Wu [4], and the Kagome lattice was also discussed in [5, 6]. Using the method proposed by Wu [7], Izmailian [8] obtained an exact solution for a spin-3/2 square lattice with only nearest neighbor and two-body spin interactions. Izmailian and Ananikian [8, 9] have also obtained

\footnote{1 Author to whom any correspondence should be addressed.}
an exact solution for a honeycomb lattice with spin-3/2. The Blume–Emery–Griffiths [10] model for the honeycomb lattice was also investigated by Horiguchi [2], Wu [11], Tucker [12] and Urumov [13] following the standard decoration transformation [14, 15] and satisfying the Horiguchi condition [2]. The Ising model on pentagonal lattice was investigated by Waldor et al [16] and Urumov [17]. Some exact results have been obtained with restricted parameters for the spin-1 Ising model by Mi and Yang [18] using a non-one-to-one transformation [3].

Some half-odd-integer spin-S Ising models were already discussed in the literature [19]. Following this line of thought, we have recently found a family of solutions for half-odd-integer spin [20], where by means of simple projections we obtain a family of results, a particular case of which recovers the previous results found in the literature [8, 9, 19].

Several decorated Ising models have been solved using the well-known decoration transformation presented in the 1950s by Fisher [14] and Syozi [15], which has been recently generalized in [21] for arbitrary spin and for any mechanical spin, such as the classical-quantum spin model. This transformation has been widely used in the literature and, in some cases, it has been applied in several steps that introduce a number of intermediate parameters such as those discussed in [13, 17, 22, 23]. The decoration transformation can also be applied to classical-quantum (hybrid) spin models, i.e. Ising–Heisenberg models. Several quasi-one-dimensional models such as the diamond-like chain have been widely investigated in the literature [24–30], as well as two-dimensional lattice spin models by using the decoration transformation approach [31, 32, 34–36], which has been successfully applied even to three-dimensional decorated systems [37]. Another interesting application of decoration transformation was also investigated in a work by Pereira et al [38] in which they considered a delocalized interstitial electrons on a diamond-like chain and also investigated the magnetocaloric effect in a kinetically frustrated diamond chain [39]. Meanwhile, Strecka et al [32] discussed the localized Ising spins and itinerant electrons in two-dimensional models, as well as two-dimensional spin–electron models with coulomb repulsion [33]. Recently, the decoration transformation approach has also been applied to spinless interacting particles, thus showing the possibility of application to interacting electron models [40]. Due to these important progresses, recently Strecka [41] discussed this transformation in more detail, following the approach presented in [21] for the case of hybrid models.

On the other hand, real materials such as heterotrimetallic [DyCuMoCu]∞ polymer [42] can be formulated as Ising–Heisenberg chain models [43], as well as Dy₂Cr₂ complex [44] as a decorated Ising ring. This work was also motivated due to several synthesized materials, with more involved complex structures, such as the following materials: Yb₃AuGeIn₁₃, an ordered variant of the YbAuIn structure exhibiting mixed-valent Yb behavior [45]; density functional theory analysis of the interplay between Jahn–Teller instability, uniaxial magnetism, spin arrangement, metal–metal interaction, and spin–orbit coupling in Ca₃CoMO₆ (M = Co, Rh, Ir) [46]; supramolecular Co(II)−[2×2] grids, metamagnetic behavior in a single molecule [47]; magnetic ordering in iron tricyanomethanide [48]; and spin frustration in MI[Co(CN)₃]₂ (M = V, Cr), magnetism and neutron diffraction study [49].

In this paper, we present a direct generalized transformation for a mixed or decorated spin model onto a uniform spin model, in which the main difference to the aforementioned generalized transformation [14, 21, 41] is that there is no step-by-step transformation. The seminal idea of decorated spin model transformation of star–star type was already emphasized and used in a particular case by Baxter [50], as well as by Fisher [53] to study the planar Ising model using the dimer solution. In order to introduce a direct transformation of the decorated spin model onto a uniform spin-1/2 model, we follow the basic idea used by Baxter [50]. In order to illustrate this transformation we consider the decoration transformation displayed in figure 1.
The Boltzmann factor for the decorated spin model or the mixed spin-(1/2, S) model (see figure 1) could be expressed by
\[w(s_1, s_2) = \sum_{\mu=-S}^{S} e^{J(s_1+s_2)\mu}, \]

in which S is any spin value larger than 1/2, whereas \(s_1 \) and \(s_2 \) are the spin values of the spin-1/2 particles. For simplicity, \(J \) represents the spin–spin coupling in units of \(-\beta = -1/kT\), in which \(k \) is Boltzmann’s constant while \(T \) is the absolute temperature. From now on we use this convenient notation for all parameters of the Hamiltonian.

The Boltzmann factor for the effective uniform spin-1/2 model, as displayed in figure 1, could be expressed by
\[\tilde{w}(s_1, s_2) = \sum_{s = \pm \frac{1}{2}} e^{K_0 + K(s_1+s_2)s}, \]

where \(K \) represents the spin–spin interaction parameter in units of \(-\beta\), whereas \(K_0 \) is a ‘constant’ shift energy in units of \(-\beta\). The term \(e^{K_0} \) could also be understood as the Z-invariant factor [50, 53]. In equations (1) and (2), we assume that the spin-inversion symmetry is satisfied, i.e. the system remains invariant under reversion of all spins.

In order that both spin models become equivalent, we impose the relation \(\tilde{w}(s_1, s_2) = w(s_1, s_2) \) for the Boltzmann factors of the effective spin model and of the decorated spin model. For the spin-1/2 case, we obtain two equations assuming that the spin-inversion symmetry is satisfied. We obtain
\[2 e^{K_0} \cosh \left(\frac{K}{2} \right) = \sum_{i=-S}^{S} \cosh (iJ) \]

for the configuration \(\uparrow \uparrow \), while for the configuration \(\uparrow \downarrow \) we have
\[2 e^{K_0} = 2S + 1. \]

Therefore, the constant \(K_0 \) is obtained easily from equation (4), whereas the parameter \(K \) can be obtained from equations (3) and (4).

This work aims at showing that this transformation could be easily extended for any \(q \)-leg decorated or mixed spin models, \(q \in \{3, 4, \ldots\} \), mapping it onto a uniform \(q \)-leg star spin-1/2 Ising models. It is organized as follows. In section 2, we present the generalized \(q \)-leg star–star transformation. In section 3, we discuss this transformation without the spin-inversion symmetry. In section 4, it is extended to higher values of spin. In section 5, we discuss the transformation for quantum-classical spin and in section 6 we present our conclusions.

2. The generalized \(q \)-leg star–star decoration transformation

Following the transformation proposed in the previous section, we can perform a transformation assuming a general coupling for the \(q \)-leg star spin model as illustrated in
The Hamiltonian for the \(q \)-leg star spin model in units of \(-\beta\) may be expressed as

\[
H = \sum_{j=1}^{[S]} \left(J_{2j-1} \mu^2 + \sum_{i=1}^{q} s_i + D_{2j} \mu^2 \right),
\]

where \([S]\) means the largest integer less than or equal to \(S \), \(J_j \) means the coupling coefficient of \(\mu^j s_i \), whereas \(D_j \) is the coupling coefficient of \(\mu^j \) with \(\mu = \{-S, \ldots, S\} \). Note that equation (5) is invariant under total spin inversion (\(\sum_{i=1}^{q} s_i \to -\sum_{i=1}^{q} s_i \) and \(\mu \to -\mu \)).

Therefore, the decorated \(q \)-leg star spin model Boltzmann factor could be written as

\[
w(\{s_i\}) = \sum_{\mu=-S}^{S} \exp \left(\sum_{j=1}^{[S]} \left(J_{2j-1} \mu^2 + \sum_{i=1}^{q} s_i + D_{2j} \mu^2 \right) \right),
\]

in which \(\{s_i\} \) means the set of \(\{s_1, s_2, \ldots, s_q\} \).

On the other hand, we conveniently consider the star spin-1/2 Ising model, since models involving spin-1/2 systems could be transformed onto exactly solvable models [51]. Therefore, the Boltzmann factor for the uniform spin-1/2 Ising model with a zero magnetic field is given by

\[
\tilde{w}(\{s_i\}) = \sum_{s=\pm 1/2} \exp \left(K_0 + K \left(\sum_{i=1}^{q} s_i \right) s \right).
\]

The spin legs interacting with the central spin depend only on \(\zeta = \sum_{i=1}^{q} s_i \); then the Boltzmann factor (6) is rewritten as

\[
w(\zeta) = \sum_{\mu=-S}^{S} \exp \left(\sum_{j=1}^{[S]} \left(J_{2j-1} \mu^2 + \sum_{i=1}^{q} s_i + D_{2j} \mu^2 \right) \right),
\]

and their respective Boltzmann factor (7) in the effective spin model becomes

\[
\tilde{w}(\zeta) = \sum_{s=\pm 1/2} e^{K_0 + K \zeta s}.
\]

Therefore, the Boltzmann factors are conveniently and simply denoted by \(w(\zeta) \) and \(\tilde{w}(\zeta) \). For higher spin, this notation is not valid anymore, so, in that case we will consider explicitly each spin contribution.
In general, we can rewrite the result presented in the introduction as a function of the Boltzmann factors of the decorated spin model, imposing the equivalence of both Boltzmann factors $\tilde{w}(s_1, s_2) = w(s_1, s_2)$, which in turn yields
\begin{align}
2 e^{K_0} &= w(0), \\
2 e^{K_0} \cosh(K/2) &= w(1).
\end{align} \tag{10, 11}

Note that $w(0)$ and $w(1)$ must be obtained from equation (8).

Then the solution of such an algebraic system equation is expressed by
\begin{align}
K_0 &= \ln \left(\frac{w(0)}{2} \right), \\
K &= 2 \ln \left(\frac{w(1)}{w(0)} \pm \sqrt{\left(\frac{w(1)}{w(0)} \right)^2 - 1} \right). \tag{12, 13}
\end{align}

This transformation is equivalent to a double decoration transformation [14, 21]. The advantage of the direct mapping in this case is to avoid the unnecessary intermediate parameters (see [14, 21]) introduced that would only make the calculation more cumbersome [17, 22] and, in some cases leading to an apparently transcendental equation.

2.1. Three-leg star–star transformation

In order to solve equations (8) and (9) for the case of the three-leg star spin model, we need to assume the spin-inversion symmetry; so, we have only two configurations $\uparrow\uparrow\uparrow$ and $\uparrow\uparrow\downarrow$, which correspond to $\zeta = 3/2$ and $\zeta = 1/2$, respectively. Once we have two algebraic equations with two unknown parameters K_0 and K, then we are able to solve the algebraic system equations; therefore, the transformation can be performed exactly for arbitrary parameter values of decorated spin models.

The unknown parameters in the effective uniform spin-1/2 model will be expressed in terms of all arbitrary parameters of the decorated spin model, assuming that both models are equivalent which means $\tilde{w}(\zeta) = w(\zeta)$; thus, we have
\begin{align}
2 e^{K_0} \cosh(K/4) &= w(1/2), \\
2 e^{K_0} \cosh(3K/4) &= w(3/2). \tag{14, 15}
\end{align}

Hence, the solution of the algebraic system equations can be written explicitly as
\begin{align}
K &= 2 \ln \left(\frac{w(3/2)}{w(1/2)} + 1 \pm \sqrt{\left(\frac{w(3/2)}{w(1/2)} + 1 \right)^2 - 4} \right) - 2 \ln(2), \tag{16}
K_0 &= \frac{1}{2} \ln \left(\frac{w(1/2)^3}{3w(1/2) + w(3/2)} \right). \tag{17}
\end{align}

Once again this transformation is equivalent to a double transformation (something like as star–triangle–star transformation). By using a star–star direct transformation [50], we avoid the introduction of unnecessary intermediate parameters (such as the intermediate parameters to represent the triangle structure system) customary in the literature (e.g. [17, 22]) making the mapping more easy to manipulate.
2.2. Four-leg star–star transformation

Another important transformation is the four-leg decorated spin model, in which there are three spin configurations for the legs: $\uparrow\uparrow\uparrow\uparrow$, $\uparrow\uparrow\uparrow\downarrow$ and $\uparrow\uparrow\downarrow\downarrow$. Under the total spin-inversion symmetry, any permutations and inversions of spin always fall into one of these three configurations. Using the notation $\varsigma = s_1 + s_2 + s_3 + s_4$, these three configurations correspond only to $\varsigma = 0$, 1 and 2, respectively. Assuming that both Boltzmann factors are equivalent $\tilde{w}(\varsigma) = w(\varsigma)$, the algebraic system of equations becomes

$$2e^{K_0} = w(0),$$
$$2e^{K_0} \cosh(K/2) = w(1),$$
$$2e^{K_0} \cosh(K) = w(2).$$

The first two equations (18) and (19) are identical to those found for the case of two-leg transformation which is given by equations (10) and (11), respectively. For the case of four-leg star–star transformation, we have one additional equation given by (20), but similar to the previous case, there are only two unknown parameters. In order to satisfy completely the algebraic system of equations we need to impose the following additional relation between the Boltzmann factors of the decorated spin model, yielded by the manipulation of equations (18)–(20):

$$w(0)w(2) + w(0)^2 = 2w(1)^2.$$

(21)

This means that, in general, at most two parameters of a decorated spin model could be constrained.

It is interesting to highlight that equation (21) was obtained using algebraic manipulation only in order to satisfy the algebraic system of equations given by (18)–(20). Surprisingly, relation (21) represents nothing but the special case of the free fermion condition of the eight-vertex model [51] formulated for four-leg star. The eight-vertex model configuration displayed in figure 3 can be compared with equation (21) by the following relations:

$\omega_1 = w(2)$, $\omega_2 = \omega_3 = \omega_4 = w(0)$ and $\omega_5 = \omega_6 = \omega_7 = \omega_8 = w(1)$.

In principle, some mixed spin with four-leg star and constrained parameters can be mapped onto an exactly solvable rectangular Ising model [51]. In what follows we discuss this mapping for some particular case.

For integer values of the central spin, such as spin-1, equation (21) leads only to a trivial solution ($J_1 = 0$). For spin-2, the Boltzmann weights are obtained from equation (8); then equation (21) reduces to

$$2t^{16}(y^3x - 1)^2(xy^7 - 1)^2(y^6x^2 + y^3x + 1)^2r^4 + r^{12}(xy^4 - 1)^4(x^2y^4 + 1)^4r^3 + x^2y^{14}(xy - 1)^4 = 0,$$

(22)

where $x = \exp(J_1)$, $y = \exp(J_3)$, $r = \exp(D_2)$ and $t = \exp(D_4)$. Thus we can verify that equation (22) becomes a quartic equation in relation to the variable r, and their coefficients are
all non-negatively defined; therefore, once again we obtain only a trivial solution for $J_1 = 0$ and $J_3 = 0$. We expect that this property should predominate for higher order integer spins, in accordance with those discussed in [20], where the integer spin cannot be mapped onto a spin-1/2 Ising model.

However for half-odd-integer central spin we obtain some non-trivial solutions.

- For spin-3/2, condition (21) becomes
 \[r^{10}(y^7x - 1)^2(xy^{13} + 1)^2(xy^{13} - 1)^2(y^5x + 1)^2(x^2y^{14} + 1)^2 = 0, \]
 (23)
 with $x = \exp(J_1/2)$, $y = \exp(J_3/8)$ and $r = \exp(D_2/4)$. From equation (23) we obtain non-trivial results, recovering the previous results obtained by a different approach; for more detail see [8, 20].

- For spin-5/2, equation (21) may be expressed in a similar way to the previous cases. After some tedious algebraic manipulation we have
 \[0 = r^{370}(x^4y^{76}z^{1684} - 1)^2(xy^{49}z^{1441} - 1)^2 + r^{374}(x^2y^{62}z^{1562} - 1)^2(x^3y^{63}z^{1563} - 1)^2 + x^2y^{98}z^{2882}(x^4y^{14}z^{122} - 1)^2(xy^{13}z^{121} - 1)^2, \]
 (24)
 where $x = \exp(J_1/2)$, $y = \exp(J_3/8)$, $z = \exp(J_5/32)$, $r = \exp(D_2/4)$ and $i = \exp(D_4/16)$. Equation (24) is a cubic equation in relation to the variable r and all coefficients of equation (24) are non-negative; therefore, there is no positive solution for r, unless all coefficients becomes simultaneously zero. In order to find the solutions of equation (24) we chose the following possibility. Let us assume that $x^4y^{76}z^{1441} = 1$ from the coefficient of term r^3 and $x^2y^{62}z^{1562} = 1$ from the coefficients of r^2; thus we have $y = z^{-30}$ and $x = y^{-31}z^{-781} = z^{149}$. Satisfying these conditions, equation (24) is identically zero. This expression in terms of Hamiltonian’s parameter becomes $J_3 = -\frac{15}{2}J_5$ and $J_1 = \frac{149}{120}J_5$; thus, the Boltzmann factor given by equation (8) reduces to
 \[w(\varsigma) = \sum_{\mu=-5/2}^{5/2} \exp\left(J_3 \left(\frac{149}{16} \mu - \frac{15}{2} \mu^3 + \mu^5 \right) \right) = \sum_{\mu=-5/2}^{5/2} e^{J_3 w(\mu) \varsigma}, \]
 (25)
 where $\sigma(\mu)$ is defined by
 \[\sigma(\mu) = \frac{149}{120} \mu - \mu^3 + \frac{2}{15} \mu^5, \]
 (26)
 with μ we represent the Ising spin-5/2. Note that $\sigma(\mu)$ only takes special values $\{1, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, -\frac{1}{16}\}$ when μ takes $\{5/2, 3/2, 1/2, -1/2, -3/2, -5/2\}$, respectively. Using a similar process for other combinations of constrained parameters, we obtain additional solutions from equation (24), recovering all the three solutions obtained previously in [20] using a different mapping (for detail see equation (25) of [20]).

Following the present mapping, we could recover the mapping for higher half-odd-integer spins obtained previously in [20], where a different approach was used; furthermore, we should probably obtain even additional results to those already found in [20], as was shown here for spin-5/2.

2.3. General condition for q-leg star–star transformation

For general q-leg Ising spin-star–star transformations with central spin S it is possible to obtain the solution for arbitrary q.
In order to satisfy the condition of star–star transformation, first we consider the case of even values of $q (q \geq 4)$. We have two unknown parameters and $q/2$ algebraic equations. Therefore we must have $(q/2 - 2)$ conditions to be satisfied for the decorated q-leg star spin model, which reads

$$2w\left(\frac{r}{4}\right)^2 = w(0)\left[w\left(\frac{r}{2}\right) + w(0)\right]; \quad \text{for} \quad \frac{r}{2} \text{: even},$$

$$2w\left(\frac{r}{4} - \frac{1}{2}\right)w\left(\frac{r}{4} + \frac{1}{2}\right) = w(0)\left[w\left(\frac{r}{2}\right) + w(1)\right]; \quad \text{for} \quad \frac{r}{2} \text{: odd},$$

with $r = \{4, 6, 8, \ldots, q\}$. It is worth noting that this condition depends on the even or odd character of $r/2$.

On the other hand, for the case of q odd (for $q \geq 5$), we still have two unknown parameters and $(\lfloor q/2 \rfloor - 2)$ algebraic system equations, so the parameters of the original q-leg star Ising spin model must satisfy the following conditions:

$$w\left(\frac{r}{2} - 1\right)\left[w\left(\frac{r}{2} - 1\right) + w\left(\frac{r}{2} - 3\right)\right] = w\left(\frac{r}{2} - 2\right)\left[w\left(\frac{r}{2}\right) + w\left(\frac{r}{2} - 2\right)\right],$$

where $r = \{5, 7, 9, \ldots, q\}$. For the case of q odd, we only have one kind of relation for a given odd r.

As we can see, the number of constrained parameters increases with the number of legs or the coordination number, whereas the maximum number of coupling parameters increases with the spin S. The conditions for any arbitrary q-leg spin are identical to those of the $(q - 2)$-leg decoration transformation plus one additional condition that only appears when q-leg spin is considered. In other words, all conditions on $(q - 2)$-leg are valid for q-leg star plus one new additional condition that involves $w\left(\frac{q}{2}\right)$ as displayed in equations (27)–(29).

This transformation should correspond to the double star–polygon–star transformation proposed in [21], where the polygons involve long-range interactions. However, the decoration transformation proposed in [14, 15, 21] leads to a cumbersome coupling, whereas the direct transformation proposed here just needs to satisfy conditions (27) and (28) for q even, and condition (29) must be satisfied for q odd.

3. Star–star transformation without the spin-inversion symmetry

The transformation previously discussed could be easily extended for the q-leg star spin model even without the spin-inversion symmetry. For a decorated or mixed spin model transformed onto a uniform spin-1/2 q-leg star Ising model with an external magnetic field, its decorated q-leg star Boltzmann factor can be written in a similar way as in equation (6), in which the spin legs interacting with decorated spin depend only on ($\varsigma = \sum_{i=1}^{q} s_i$) which we can denote for simplicity only by ς, thus yielding

$$w(\varsigma) = \sum_{\mu = -S}^{S} \exp\left(\sum_{j=1}^{2S}(J_j \mu_j \varsigma + D_j \mu_j) - B \varsigma/q\right),$$

where J_j and D_j are the coupling parameters, and B represents the external magnetic field on the legs. The effective Boltzmann factor for a uniform star Ising spin model is expressed by

$$\tilde{w}(\varsigma) = \sum_{s = \pm 1/2} e^{K s + K \varsigma s - h s/q - h_{0s}},$$
where K_0 is a constant energy, K is the coupling term, and h and h_0 are the external magnetic field for the legs and central spin, respectively.

A particular case of this transformation is the two-leg ($q = 2$) decoration transformation without spin inversion and with $h_0 = h$ in equation (31). Therefore assuming that the Boltzmann factor (30) is equivalent to (31), we have $\tilde{w}(\varsigma) = w(\varsigma)$. For this case, we have three equations and three unknown parameters that must satisfy the following relations:

$$a = \frac{w_0 c}{1 + e^2}, \quad (32)$$

$$b = \frac{c(w_{-1} - \sqrt{w_1 w_{-1} - w_0^2})}{w_0}, \quad (33)$$

$$c = \frac{w_0^2 \pm \delta \sqrt{-w_0^2 + w_1 w_{-1}}}{w_0^2 + w_{-1} \delta}, \quad (34)$$

in which, for simplicity, the Boltzmann factor is denoted by $w_\varsigma \equiv w(\varsigma)$, and $\delta = w_{-1} - w_1$.

Another transformation that we consider is the three-leg star–star transformation. For this case, we have four equations and four unknown parameters. This transformation is related to the eight-vertex model on the honeycomb lattice such as discussed by Lin and Wu [52]. The schematic representation of the eight-vertex model for the honeycomb lattice is given in figure 4.

Therefore, in a similar way to that of the honeycomb lattice we may express the solutions in terms of the Boltzmann factors as follows:

$$e^{-\frac{1}{2}h} = \frac{w_{3/2} w_{-1/2} - w_{1/2}^2}{w_{-3/2} w_{1/2} - w_{-1/2}^2}, \quad (35)$$

$$\cosh^2(K/2) = \frac{1}{4} \left(\frac{(w_{3/2} w_{-3/2} - w_{1/2} w_{-1/2})^2}{(w_{3/2} w_{-1/2} - w_{1/2}^2)(w_{-3/2} w_{1/2} - w_{-1/2}^2)} \right), \quad (36)$$

$$\sinh(h_0) = \frac{\text{sinh}(K/2) (w_{3/2} w_{-3/2} - w_{-1/2} w_{1/2})}{(w_{3/2} w_{-1/2} - w_{1/2}^2)(w_{-3/2} w_{1/2} - w_{-1/2}^2)}, \quad (37)$$

$$e^{4K_0} = \frac{(w_{3/2} w_{-1/2} - w_{1/2}^2)(w_{-3/2} w_{1/2} - w_{-1/2}^2)}{16 \sinh^4(K/2)}. \quad (38)$$

As we can verify, the effective spin model parameters always may be expressed in terms of Boltzmann factors. A particular case of this transformation could be the mixed spin-(1/2, S) Ising model on the honeycomb lattice, which can be transformed onto the spin-1/2 Ising model with an external magnetic field on honeycomb lattice, such as that considered by
Azaria–Giacomini [5] and Wu [4, 7, 11], where this model is related to the eight-vertex model as displayed in figure 4.

We consider a particular case of the decorated spin model with a uniform external magnetic field on the honeycomb lattice, i.e. \(h_0 = h \). This leads to constrained parameters, the constraints of which could be written as in previous cases, even though more involved.

Finally, the extension for the coordination number larger than 3 can be performed straightforwardly, although the conditions of Boltzmann factors will become more involved expressions.

4. Star–star transformation for higher spin

Another interesting case that is worth commenting is when the \(q \)-leg star–star transformation has spin larger than spin-1/2. Certainly, this kind of model can be extended in a similar way as in [21]; however, the decoration transformation is subject to more conditions (and thus more constrained parameters appear) for its validity.

The Hamiltonian for the decorated spin model with \(q \)-leg could have a similar treatment to that of section 2; thus, we may write

\[
H = \sum_{i=1}^{2S} \sum_{r=1}^{q} \left(\sum_{j=1}^{S_0} J_{i,j} \mu_i^j \mu_r^j \right) - \sum_{i=1}^{2S} B_i \mu_i^1,
\]

in which we use the notation \(J_{i,j} \) for the parameter of the Hamiltonian, which corresponds to the coupling coefficients of the term \(\mu_i^1 \mu_r^1 \), whereas by \(D_i \) we represent the coupling coefficient of term \(\mu_i^r \), and the last term \(B_i \) means the coupling coefficient of the term \(\mu_i^1 \), with \(\mu = \{-S, \ldots, S\} \).

Following the same process developed in section 2 and illustrated in figure 2, the Hamiltonian of the intermediate mixed spin model becomes

\[
H' = \sum_{i=1}^{2S} \sum_{r=1}^{q} \left(M_i \mu_i^r \sigma - \frac{1}{q} D_i' \mu_i^r \right) - h \sigma + M_0,
\]

in which \(M_i \) represents the parameter of \(\mu_i^r \sigma \), \(D_i' \) are the coefficients of the term \(\mu_i^r \), \(h \) is the external magnetic field strength and \(M_0 \) corresponds to constant energy terms. Using the direct decoration transformation we can map the system with the Hamiltonian (39) onto another effective system with the Hamiltonian (40).

It is worth noting that the Boltzmann factor of higher order spins depend not only on \(\varsigma = \sum_{i=1}^{q} \mu_i \), but also on each spin \(\mu_i \); consequently, we need to express explicitly the Boltzmann factor in terms of each spin \(\mu_i \).

As an illustrative example let us consider the uniform spin-1 (\(S = S_0 = 1 \)) with \(q = 3 \), as displayed in figure 5(a), transforming onto the effective model described on the left side of figure 5(b) (\(S = 1, \sigma = \pm 1/2 \)). Under the spin-inversion symmetry the Boltzmann factor of the decorated spin model becomes

\[
W(\mu_1, \mu_2, \mu_3) = \frac{1}{\sum_{\mu=-1}^{1}} \exp \left(J_{11}(\mu_1 + \mu_2 + \mu_3) + J_{22}(\mu_1^2 + \mu_2^2 + \mu_3^2) + J_{12}(\mu_1^2 + \mu_2^2 + \mu_3^2) + J_{13}(\mu_1^2 + \mu_2^2 + \mu_3^2) S^2 \right)
- \frac{D_2(\mu_1^2 + \mu_2^2 + \mu_3^2)}{3 - B_1 \mu^2},
\]

whereas the Boltzmann factor for effective spin models is given by

\[
W'(\mu_1, \mu_2, \mu_3) = \exp \left(M_0 - D_2(\mu_1^2 + \mu_2^2 + \mu_3^2)/3 \right) \sum_{i=\pm 1/2} e^{M_i(\mu_1 + \mu_2 + \mu_3)i}. \]

10
Using the Boltzmann factor of this elementary cell, we are able to reproduce, i.e. the honeycomb lattice Ising model with spin-1 and mixed spin-(1,1/2) as illustrated in figure 5(a) and (b), respectively. Imposing the relation \(W'(\mu_1, \mu_2, \mu_3) = W(\mu_1, \mu_2, \mu_3) \), we have six configurations and three unknown parameters to be determined for the effective spin-(1,1/2) star. In analogy with the previous case we must have three identities that must be satisfied by the Boltzmann factors:

\[
\begin{align*}
W(1, 1, 1)W(0, 0, 0) &= W(0, 1, 0)W(1, 0, -1), \\
2W(1, 1, 0)W(1, 0, 0) &= (W(1, 1, 1) + W(1, 1, -1))W(0, 0, 0), \\
2W(1, 0, 0)^2 &= (W(1, 1, 0) + W(1, -1, 0))W(0, 0, 0).
\end{align*}
\]

For the Hamiltonian (39), the previous equations (43)–(45) are all equivalent, leading just to one relation for the decoration transformation of the parameters of the Boltzmann factor which satisfy the following relation:

\[
\exp(J_{22}) = \cosh(J_{11}),
\]

which is also known as Horiguchi’s condition [2] obtained using the standard decoration transformation [14, 15].

For the dual lattice in figure 5(b) (right side), the Boltzmann factor is given by

\[
\tilde{w}'(s_1 + s_2 + s_3) = e^{M_0} \sum_{\mu = -1}^1 \exp(M_1(s_1 + s_2 + s_3)\mu - D'\mu^2),
\]

and it can be expressed in terms of (41) as

\[
\tilde{w}'(3/2) = \frac{1}{2} W(0, 0, 0) + W(1, 1, 1),
\]

\[
\tilde{w}'(1/2) = \frac{1}{2} W(0, 0, 0) + W(1, 1, -1).
\]

The Hamiltonian of the three-leg star effective spin model could be expressed as

\[
\tilde{H} = K_0 + K (s_1 + s_2 + s_3) s.
\]

Performing a further direct transformation \(\tilde{w}'(x) = \tilde{w}(x) \), as illustrated in figure 5, we obtain the results given by equations (16) and (17) for \(K \) and \(K_0 \), respectively.

Here we showed how the direct transformation could be applied in just two steps (see figure 5), rather than in five steps via the standard decoration transformation [13]; we verify that the constrained parameter given by equation (2) of [13] is identical to our equation (46).
5. Decoration transformation for classical-quantum spin models

The transformation presented in section 2 can also be extended for classical-quantum (hybrid) spin models such as Ising–Heisenberg models, following a similar approach proposed recently by Strecka [41]. Here, we show how this transformation can be used for a particular kind of lattice without losing its general properties.

5.1. Hybrid–star decoration transformation

As a first case let us consider the hybrid–star decoration transformation displayed in figure 6(a), in which solid thick lines represent a Heisenberg-like interaction whereas dashed and solid thin lines represent the Ising interaction. Thus the Boltzmann factor may be expressed by

\[
\begin{align*}
 w(s) &= \text{tr}(s) \exp(\mathcal{H}_{XXZ}(\sigma_1, \sigma_2) + \mathcal{J}_2(\sigma_1^z + \sigma_2^z)(s_1 + s_2 + \cdots + s_q)), \\
 &= 2e^{\mathcal{J}_2/4} \cosh(\mathcal{J}_2s) + 2e^{-\mathcal{J}_2/4} \cosh(\mathcal{J}_1/2).
\end{align*}
\]

where \(\mathcal{H}_{XXZ}(\sigma_1, \sigma_2) = \mathcal{J}_1(\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y) + \mathcal{J}_1^z \sigma_1^z \sigma_2^z\), and \(\mathcal{J}_1, \mathcal{J}_2\) and \(\mathcal{J}_1^z\) are interacting parameters of the Hamiltonian.

In order to calculate the trace in equation (51) first we diagonalize the Hamiltonian (51), and then we obtain the Boltzmann factor which reads

\[
 w(\varsigma) = 2e^{\mathcal{J}_2/4} \cosh(\mathcal{J}_2\varsigma) + 2e^{-\mathcal{J}_2/4} \cosh(\mathcal{J}_1/2).
\]

However, the effective Boltzmann factors are still expressed by equation (9). This transformation can be applied to several types of lattice, mainly in one- and two-dimensional models. The quasi-two-dimensional Ising–Heisenberg model represented in figure 6(b) can be transformed onto an exactly solvable two-dimensional Ising model using the second transformation illustrated in figure 6(a).

Now let us consider another example, a three-leg hybrid–star transformation, where the decoration consists of three spins forming a triangle, in which the internal interaction legs could be of either Ising type or Heisenberg interactions, whereas the external legs are necessarily of the Ising type. This transformation is displayed in figure 7. The limiting case of the
transformation illustrated in figure 7 (the Ising coupling) is also known as extended-reduced lattice [53].

The Boltzmann factors of the decorated hybrid spin model reads

$$w(|s\rangle) = \text{tr}_{(\sigma)} \exp \left(H^{XXZ}(\sigma_1, \sigma_2, \sigma_3) + J_z (\sigma_z^1 s_1 + \sigma_z^2 s_2 + \sigma_z^3 s_3) \right),$$

(53)

where $H^{XXZ}(\sigma_1, \sigma_2, \sigma_3) = \sum_{i=1}^3 \{ J_1 (\sigma_x^i \sigma_x^{i+1} + \sigma_y^i \sigma_y^{i+1}) + J_z \sigma_z^i \sigma_z^{i+1} \}$ with $\sigma_4 = \sigma_1$.

The triangle cell (decorated) could be expressed as the Heisenberg coupling, and as expected, we obtain two configurations for their legs, in correspondence to the configurations $\uparrow\uparrow\uparrow$ and $\uparrow\uparrow\downarrow$, so that, in terms of ζ we have $\zeta = 3/2$ and $1/2$, respectively. Therefore, we obtain the following Boltzmann factors:

$$w(1/2) = 2 (e^{J_z/4} + e^{-J_z/4}) \cosh \left(\frac{J_z}{4} \right) + 2 e^{J_z/2} \cosh \left(\frac{1}{2} \sqrt{J_z^2 + \frac{9}{4} J_1^2 + J_1 J_2} \right)$$

$$+ e^{J_z/2} \cosh \left(\frac{1}{2} \sqrt{J_z^2 - J_1 J_2} \right) \cosh \left(\frac{1}{2} \sqrt{J_z^2 + \frac{9}{4} J_1^2 - J_1 J_2} \right),$$

(54)

$$w(3/2) = 2 e^{J_z/2} \cosh \left(\frac{3 J_z}{4} \right) + 2 e^{-J_z/4} (e^{J_z} + 2 e^{-J_z}) \cosh \left(\frac{J_z}{4} \right).$$

(55)

This hybrid–star transformation could be applied to find the exact solution of Ising–Heisenberg-type models, i.e. the 3–9 (triangle–nonagon) lattice as displayed in figure 8(a), where in its triangle cell we have the Heisenberg interaction, whereas in its nonagon cell we have an alternating Ising–Ising–Heisenberg coupling. This lattice could be mapped onto
Figure 9. The alternative hybrid–star-like transformation onto its equivalent uniform spin-1/2 Ising model.

A honeycomb Ising model [4, 52]. In figure 8(b), we display the Ising–Heisenberg model on the 3–12 (triangle–dodecagon) lattice that can be solved exactly using the hybrid–star transformation, where once again we have the Heisenberg coupling on the triangle cell, and the dodecagon cell has the Ising–Ising–Heisenberg coupling. A detailed discussion about the thermodynamics properties of these lattices could be analyzed, but this issue is beyond the scope of this work.

A general expression for the hybrid decorated spin model can also be discussed, where the hybrid decoration particle interaction could be expressed in general by the Hamiltonian $H_c(\{\sigma\})$ (such as Heisenberg interactions), in which $\{\sigma\}$ stands for the set of spin operators that plays the role of central mechanical spin, while the interaction of central decorated spin with their legs could be given in general by $H_l(\{\sigma\}, \{s\})$, in which $\{s\}$ is the set of Ising spins on the legs. Therefore the general Boltzmann factor of the hybrid spin model could be expressed by

$$w(\{s\}) = \text{tr}_{\{\sigma\}} \exp(H_c(\{\sigma\}) + H_l(\{\sigma\}, \{s\})). \quad (56)$$

The hybrid–star transformation is equivalent to the hybrid–polygon–star transformation [21, 41]; certainly, the parameters acting on polygons could make the transformation an involving task.

Alternatively the star–star transform can be generalized even when the legs interact, as we can see in figure 10(b), where the transformation not necessarily involves star-like cells. This transformation could be useful to perform a direct transformation, such as the square–hexagonal (4–6) lattice [54], square–octogonal (4–8) lattice [55], and the pentagonal lattice [17].

The left-side Boltzmann’s factor in figure 9 may be written as

$$w(\{s\}) = \text{tr}_{\{\sigma\}} \exp(H^{XXZ}(\sigma_1, \sigma_2) + J[\sigma_1(s_1 + s_2) + \sigma_2(s_3 + s_4)]), \quad (57)$$

where σ_1 and σ_2 are the Pauli matrices.

On the other hand, the Boltzmann factor of transformed plaquette (right side of figure 9) is given by

$$\tilde{w}(\{s\}) = \sum_{\sigma = \pm 1/2} \exp(K_0 + K_1 \sigma (s_1 + s_2 + s_3 + s_4) + K_2(s_1s_2 + s_3s_4)), \quad (58)$$

where K_0 is a constant shift energy, whereas K_1 is the interaction parameter between the internal Ising spin σ and each spin $\{s\}$ and finally K_2 is the coupling term between $\{s\}$, with $\sigma = \pm 1/2$ and $s = \pm 1/2$.

Imposing the condition $w(\{\tau\}) = \tilde{w}(\{\tau\})$, for arbitrary $\{s\}$, we obtain only four non-equivalent configurations, namely $\{s_1, s_2, s_3, s_4\} = \{+, +, +, +\}, \{+, +, +, -\}, \{+, +, -, -\}$ and $\{+, -, +, -\}$. Any other permutation or spin inversion falls into one of these configurations. Thus the Boltzmann factors read...
Figure 10. (a) The hybrid–hybrid decorated transformation onto its equivalent hybrid system. (b) Example of hybrid–hybrid decoration transformation.

\[\omega_1 = w(\sigma_1, \sigma_1, \sigma_2, \sigma_2) = 2e^{K_0} \cosh(K_1), \]
\[\omega_2 = w(\sigma_1, \sigma_1, \sigma_2, \sigma_2) = 2e^{K_0} \cosh(K_1), \]
\[\omega_3 = w(\sigma_1, \sigma_1, \sigma_2, \sigma_2) = 2e^{K_0} \cosh(K_1), \]
\[\omega_5 = w(\sigma_1, \sigma_1, \sigma_2, \sigma_2) = 2e^{K_0} \cosh(K_1). \]

In order to solve the above equation consistently, the algebraic equation must satisfy the following relation:

\[2\omega_5^2 = (\omega_1 + \omega_3)\omega_2. \]

After performing some algebraic manipulation in equations (59)–(62), we obtain the magnitudes of the effective interactions:

\[e^{2K_0} = \frac{\omega_3\omega_2}{4}, \]
\[e^{K_1} = \frac{\omega_1}{\omega_3} \pm \sqrt{\left(\frac{\omega_1}{\omega_3}\right)^2 - 1}, \]
\[e^{K_2} = \frac{\omega_3}{\omega_2}. \]

These results are equivalent to that obtained by Urumov [17], using a standard decoration transformation, for more detail the reader is referred to [17], and it can be compared with our results, showing how the direct transformation avoids the intermediate transformation.

It is worth noting that relations (63)–(66) could be valid for any arbitrary spin-S1 and spin-S2 instead of \(\sigma_1 \) and \(\sigma_2 \), respectively, in equation (57), with a higher order coupling term on the hybrid system, such that satisfy the spin-inversion symmetry.

5.2. Hybrid–hybrid transformation

In general it is still possible to extend the decoration transformation to hybrid–hybrid transformation. This kind of transformation could be for the direct mapping of some hybrid model, such as given by the Hamiltonian (56) onto another hybrid model with different topological structures. Physically, this could help the understanding of the physical properties of two different hybrid models (see figure 10(a)). Thus the Boltzmann factor of the effective hybrid spin model may be expressed by

\[\tilde{w}(\{s\}) = \text{tr}_{\{\tau\}} \exp(K_0 + \tilde{H}_c(\{\tau\}) + \tilde{H}_l(\{\tau\}, \{s\})), \]

where \(\tilde{H}_c(\{\tau\}) \) is the Hamiltonian of the central mechanical spin, \(\{\tau\} \) are the spin operators of effective lattice that interacts inside the mechanical spin, while the Hamiltonian...
\(\hat{H}'(\tau, \{s\}) \) represents the interaction of the central mechanical spin and its legs with spins \(\{s\} \).

As an illustrative example that we consider, could be displayed in figure 10(b), the Boltzmann factor for the decorated spin model becomes

\[
\omega(\{s\}) = \text{tr}_{\{s\}}(e^{H^{n,n+n}(\sigma_1, \sigma_2) + J (\sigma_1^z \sigma_2^z)}),
\]

whereas the effective Boltzmann factor will be given by equation (52):

\[
\tilde{\omega}(\xi) = 2e^{K_2/4} \cosh(K_2 \xi) + 2e^{-K_2/4} \cosh(K_1/2).
\]

Imposing that equations (68) and (69) be equivalent we obtain the following relations:

\[
e^{K_2/4} = \frac{\omega(1) - \omega(0)}{2(\cosh(K_2) - 1)},
\]

\[
K_1 = 2\text{arcosh}\left(e^{K_2/4} \left(\frac{\omega(0)}{2} - e^{K_2/4} \right) \right).
\]

Note that the parameter \(K_2 \) is an independent parameter in this transformation.

The hybrid–hybrid transformation is equivalent to the standard hybrid–polygon–hybrid decoration transformation [21, 41]; clearly, the algebraic manipulations involved in the hybrid–hybrid transformation are much easier to perform.

6. Conclusions

In this paper, we have presented a direct transformation for a general decorated spin model. We have discussed that the advantage of this transformation is avoiding the proliferation of unnecessary intermediate parameter which only makes the algebraic calculation cumbersome. We have discussed the \(q \)-leg star–star transformation with any central mechanical spin and spin-1/2 particles on their legs, thus finding that the transformation will be possible for \(q \geq 4 \), only if the decorated spin model satisfy the conditions given in equations (27)–(29) and the spin-inversion symmetry. When the spin-inversion symmetry is not satisfied, these conditions become a more involving relation. The case of higher order spins has also been discussed, and we show that the expression of parameter constraints becomes more cumbersome. Finally, the extension of decoration transformation to classical-quantum (hybrid) spin models has been discussed as well, in which several decorated hybrid spin models could be mapped onto other hybrid spin models with different topology. All transformations discussed above are illustrated by several examples and most of these models were not explored yet; therefore, it could be interesting to discuss these models in order to study their thermodynamic properties.

Acknowledgments

The authors thank E V Corrêa Silva for his careful reading of their manuscript. This work was supported partially by CNPq and FAPEMIG.

References

[1] Onsager L 1944 Phys. Rev. 65 117
[2] Horiguchi T 1986 Phys. Lett. A 113 425
[3] Kolesik M and Samaj L 1992 Int. J. Mod. Phys. B 6 1529
