Couplings of Vector-Spinor Representation for SO(10) Model Building

Pran Nath and Raza M. Syed

Department of Physics, Northeastern University, Boston, MA 02115-5000, USA

Abstract

Higgs multiplet in the vector-spinor representations of $SO(10)$, i.e., the $144 + \overline{144}$ multiplet can break the $SO(10)$ gauge symmetry spontaneously in one step down to the Standard Model gauge group symmetry $SU(3)_C \times SU(2)_L \times U(1)_Y$ and a recent analysis has used such vector-spinors for building a new class of $SO(10)$ grand unification models (hep-ph/0506312). Here we discuss the techniques for the computation of several classes of vector-spinor couplings using the Basic Theorem on the $SO(2N)$ vertex expansion developed by the authors. The computations include the cubic couplings of the vector-spinor with $SO(10)$ tensors, quartic self-couplings of the vector-spinors, and couplings of the vector-spinors with spinor representations of $SO(10)$. The last set include couplings of vector-spinors with the 16-plets of quarks and lepton and with the 16 and $\overline{16}$ of Higgs. These couplings provide a crucial tool for further development of the $SO(10)$ grand unification using vector-spinor representations. These include study of quark-lepton masses, analysis of dimension five operators including baryon and lepton number violating operators, and study of neutrino masses and mixings. Illustrative examples are given for their computation using a sample of vector-spinor couplings.
1 Introduction

SO(10) is a favored group for the unification of the electro-weak and the strong interactions\cite{1, 2}. However, there is a wide array of possibilities for model building within the gauge group. Thus while the remarkable feature of \(\text{SO}(10)\) is that it unifies one generation of quarks and leptons within one irreducible representation, i.e., the 16 plet representation, the Higgs sector of the theory is largely unconstrained and thus there exist a wide variety of models which differ by the choice of the Higgs...
sector of the theory. In most models the Higgs sector is generally quite elaborate involving several Higgs multiplets necessary for the breaking of $SO(10)$ symmetry in steps down to the Standard Model gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$. An interesting recent proposal made by Babu, Gogoladze and the authors is to use a single pair of $144 + \overline{144}$ multiplet to break the $SO(10)$ gauge group in one step down to the Standard Model gauge symmetry\cite{3}. The couplings involving the 144 and $\overline{144}$ are rather intricate and not easily computable. However, significant progress has occurred recently in how one may compute couplings involving spinor and tensor representations of $SO(10)$\cite{5, 6}. An important result in such constructions is the so called Basic Theorem deduced in Ref.\cite{5} using oscillator techniques\cite{7, 8} which facilitates the computations of vertices involving spinor and tensor $SO(10)$ representations. Thus using the basic theorem, couplings of the type $16 \times 16 \times 10$, $16 \times 10 \times 120$, $16 \times 16 \times \overline{126}$ and $16^\dagger \times 16 \times 1$, $16^\dagger \times 16 \times 1$ were computed in Ref.\cite{5} and further applications of the technique were made in Ref.\cite{9}. Now the couplings of the 144 and $\overline{144}$ are more involved. This is so because of two factors: first we are dealing with a vector-spinor rather than just a spinor representation of $SO(10)$. Second the vector-spinor is constrained in order that it correspond to the irreducible 144 or $\overline{144}$ representation of $SO(10)$. Nonetheless, we will find that the techniques of Ref.\cite{5} appropriately adopted to this case will prove very useful in the analysis of $SO(10)$ vertices: cubic, quartic or of higher order. In this paper we will limit ourselves to the analysis of cubic and quartic interactions where the 144 and $\overline{144}$ are involved. The detailed knowledge of the couplings of a gauge group are useful in model building\cite{10}, and in extracting the implications of the models for spontaneous symmetry breaking, neutrino oscillations\cite{11} proton decay\cite{12, 13, 14}, computation of the mass spectra and a variety of other applications. This provides the motivation for a detailed analysis of the couplings discussed below.

The outline of the rest of the paper is as follows: In Sec.2 we give a brief summary of previous results which are essential for the developments of the succeeding sections. Here we discuss the generators of $SO(10)$ in the $SU(5) \times U(1)$ basis using the oscillator approach. We then state the so called Basic Theorem that significantly facilitates the computation of couplings for spinor and tensor representations in $SO(10)$. In Sec.3 we address the question of how one may treat the 144 irreducible representation through the use of a constrained vector-spinor. This is so because, the vector-spinor in $SO(10)$ has $16 \times 10 = 160$ components, and we need a constraint to eliminate sixteen components to get the irreducible
144-plet tensor. In this section we also decompose the 144 in representations of $SU(5) \times U(1)$ and define their normalizations. An analysis of the cubic couplings of 144 and $\overline{144}$ with the 10, 120 and $\overline{126}$ tensor representations is given in Sec.4. Here we also discuss the cubic couplings of $\overline{144}$ with 1, 45 and 210 tensor representations. The corresponding cubic couplings involving just the 144 plets can be gotten by from these in straightforward fashion and are not explicitly exhibited. In Sec.5 we discuss the self couplings of the vector-spinor representations. These couplings cannot be cubic and the allowed couplings must at least be quartic or higher. We compute the quartic couplings. These can be of several types. Thus $144 \times \overline{144}$ can couple with 144×144 by mediation by 1, 45 and 210. Additionally, there are couplings where 144×144 and $\overline{144} \times \overline{144}$ can couple with 144×144 and $\overline{144} \times \overline{144}$ either by mediation by 10, 120 or $126 + \overline{126}$. Thus there are a variety of quartic self-couplings involving spinors. In Sec.6 we discuss the couplings of vector-spinors with the 16-plet of matter. Here we consider couplings where 144×144 and $\overline{144} \times \overline{144}$ couple with 16×16 plets of quark-lepton matter multiplets via mediation by 10, 120 and $126 + \overline{126}$. In Sec.7 we discuss the gauge couplings of the 144 and $\overline{144}$ with the singlet gauge field and with a 45 plet of gauge field belonging to the adjoint representation of $SO(10)$. In Sec.8 we give some illustrative examples of how the vector-spinor couplings are to be used in model building. Conclusions are given in Sec.9. Some further details of the quartic couplings from 10-plet mediation are given in Appendix A, and similar details for 120-plet mediation are given in Appendix B, and from $126 + \overline{126}$ are given in Appendix C. Field normalizations for fields other than the 144-plet are given in Appendix D, and in Appendix E we discuss how one may limit to the case of one generation of 144 + $\overline{144}$-plet of vector-spinor fields. In Appendix F we illustrate to the reader, by means of an example, the technique used for the actual computation of a vector-spinor coupling.

2 Preliminaries

An efficient decomposition of the $SO(10)$ vertices is in the $SU(5) \times U(1)$ basis. In Sec.(2.1) we give the basic formulae for the decomposition of the $SO(10)$ generators in this basis and in Sec.(2.2) we give the Basis Theorem for the computation of the SO(10) vertices.
2.1 SO(10) generators in SU(5) × U(1) basis

We begin by defining the Clifford elements, \(\Gamma_\mu \) \((\mu = 1, 2, \ldots, 10)\) in terms of creation and destruction operators, \(b_i \) and \(b_i^\dagger \) \((i = 1, 2, \ldots, 5)\)[7, 8]

\[
\Gamma_{2i} = (b_i + b_i^\dagger); \quad \Gamma_{2i-1} = -i(b_i - b_i^\dagger)
\]

so that

\[
\{\Gamma_\mu, \Gamma_\nu\} = 2\delta_{\mu\nu}.
\]

(2)

where

\[
\{b_i, b_j^\dagger\} = \delta_i^j; \quad \{b_i, b_j\} = 0; \quad \{b_i^\dagger, b_j^\dagger\} = 0
\]

(3)

and that the SU(5) singlet state \(|0\rangle\) satisfies \(b_i|0\rangle = 0\).

The 45 generators of SO(10) in the spinor representation are

\[
\Sigma_{\rho\sigma} = \frac{1}{2i}[\Gamma_\rho, \Gamma_\sigma]
\]

(4)

In the analysis of SO(10) invariant interactions one also needs the equivalent of charge conjugation operator given by

\[
B = \prod_{\mu=\text{odd}}^5 \Gamma_\mu = -i \prod_{k=1}^5 (b_k - b_k^\dagger)
\]

(5)

The semi-spinors \(\Psi(\pm)\) \((\dot{a} = 1, 2, 3)\) transforms as a \(16(\overline{16})\)-dimensional irreducible representation of SO(10) and contains \(1 + \overline{5} + 10(1 + 5 + \overline{10})\) in its SU(5) decomposition. They are given by

\[
|\Psi(+)\rangle = |0 > M_{\dot{a}} + \frac{1}{2} b_i^\dagger b_j^\dagger |0 > M_{\dot{a}}^{ij} + \frac{1}{24} \epsilon_{ijklm} b_j^\dagger b_k^\dagger b_l^\dagger b_m^\dagger |0 > M_{\dot{a}}
\]

(6)

\[
|\Psi(-)\rangle = b_1^\dagger b_2^\dagger b_3^\dagger b_4^\dagger b_5^\dagger |0 > N_{\dot{a}} + \frac{1}{12} \epsilon_{ijklm} b_k^\dagger b_l^\dagger b_m^\dagger |0 > N_{\dot{a}}^{ijklm} + b_i^\dagger |0 > N_{\dot{a}}^i
\]

(7)

2.2 The Basic Theorem for computation of SO(10) vertices

We now review the recently developed technique[5] for the analysis of SO(2N) invariant couplings which allows a full exhibition of the SU(N) invariant content of the spinor and tensor representations. The technique utilizes a basis consisting of a specific set of reducible SU(N) tensors in terms of which the SO(2N) invariant couplings have a simple expansion. To that end, we note that the natural basis for the expansion of the SO(2N) vertex is in terms of a specific set of SU(N) reducible tensors, \(\Phi_{c_k}\) and \(\Phi_{e_k}\) which we define as \(A^k \equiv \Phi_{c_k} \equiv \Phi_{2k} + i\Phi_{2k-1}, \quad A^k \equiv \)
\[\Phi_{c_k} \equiv \Phi_{2k} - i\Phi_{2k-1}. \] This is extended immediately to define the quantity \(\Phi_{c_i c_j c_k...} \) with an arbitrary number of unbarred and barred indices where each \(c \) index can be expanded out so that \(A^i A^j A_k... = \Phi_{c_i c_j c_k...} = \Phi_{c_{2i} \bar{c}_{2j}...} + i\Phi_{c_{2i-1} c_{2j}...} \) etc.. Thus, for example, the quantity \(\Phi_{c_i c_j c_k... c_n} \) is a sum of \(2^N \) terms gotten by expanding all the \(c \) indices: \(\Phi_{c_i c_j c_k... c_n} = -\Phi_{c_k c_j c_i... c_n}. \) Further, \(\Phi^*_{c_i c_j c_k... c_n} = \Phi_{c_i c_j c_k... c_n} \) etc.. We now make the observation[6] that the object \(\Phi_{c_i c_j c_k... c_n} \) transforms like a reducible representation of \(SU(N) \). Thus if we are able to compute the \(SO(2N) \) invariant couplings in terms of these reducible tensors of \(SU(N) \) then there remains only the further step of decomposing the reducible tensors into their irreducible parts. These results are codified in the so called The Basic Theorem which we discuss next.

The vertex \(\Gamma^\mu \Gamma^\nu \Gamma^\lambda \Gamma^\sigma \Phi_{\mu \nu \lambda \sigma} \) where \(\Phi_{\mu \nu \lambda \sigma} \) is a Higgs tensor, appears often in \(SO(2N) \) invariant couplings and can be expanded in the following form

\[
\begin{align*}
\Gamma^\mu \Gamma^\nu \Gamma^\lambda \Gamma^\sigma \Phi_{\mu \nu \lambda \sigma} &= b_i^\dagger b_j^\dagger b_k^\dagger b_n^\dagger \Phi_{c_i c_j c_k... c_n} + \left(b_i b_j b_k^\dagger b_n^\dagger \Phi_{c_i c_j c_k... c_n} + \text{perms} \right) \\
&+ \left(b_i b_j b_k b_n \Phi_{c_i c_j c_k... c_n} + \text{perms} \right) + \ldots + \left(b_i b_j b_k b_{n-1} b_n \Phi_{c_i c_j c_k... c_{n-1} c_n} + \text{perms} \right) \\
&\quad \quad + b_i b_j b_k b_n \Phi_{c_i c_j c_k... c_n}
\end{align*}
\]

As mentioned above, the object \(\Phi_{c_i c_j c_k... c_n} \) transforms like a reducible representation of \(SU(N) \) which can be further decomposed in its irreducible parts.

3 144 and \(\overline{144} \) as Constrained Vector-Spinor Multiplets

In this section we discuss the \(SU(5) \) particle content of the 144 and \(\overline{144} \) vector-spinors and their expansion in terms of oscillator modes. We also normalize the fields in the decomposition of vector-spinors. Finally, we define the notation that is used in the paper.

3.1 Field content in \(SU(5) \times U(1) \) decomposition

We begin by discussing first the field content of the reducible vector-spinor 160 and \(\overline{160} \) multiplets[3]:

\[
|\Psi_{(+)}^{a\mu} >= |0 > P_{\dot{a}\mu} + \frac{1}{2} b_i^\dagger b_j^\dagger |0 > P^i_{\dot{a}\mu} + \frac{1}{24} \epsilon^{ijklm} b_j^\dagger b_k^\dagger b_l^\dagger b_m^\dagger |0 > P_{\dot{a}\mu} \]
\]
\[|\Psi_{(-)}\rangle = b_1^\dagger b_2^\dagger b_3^\dagger b_4^\dagger |0\rangle > Q_{bij} + \frac{1}{12} \epsilon^{ijklm} b_k^\dagger b_l^\dagger b_m^\dagger |0\rangle > Q_{beijm} + b_i^\dagger |0\rangle > Q_{bij} \]

(10)

where the lower case Latin letters \(i, j, k, l, m, \ldots\) are \(SU(5)\) indices, the lower case Greek letters \(\mu, \nu, \rho, \ldots\) represent \(SO(10)\) indices, while the lower case Latin letters with accent \(\acute{a}, \acute{b}, \acute{c}, \acute{d}\) are generation indices. The \(SU(5)\) field content of 160 + \(\overline{160}\) multiplet is

\[
\overline{160} \langle \Psi_{(+)} \rangle = 1(\hat{P}) + 5(\hat{P}_i) + 5(\hat{P}^i) + \overline{160}(P_{ij}) + \overline{160}(\hat{P}_{ij}) + \overline{160}(P_{ij}^{(S)}) + 24(P_{ij}) + 40(P_{ij}^{(S)}) + 45(P_{ij}^{\dagger}) \]

(11)

\[
160 \langle \Psi_{(-)} \rangle = 1(|\bar{Q}\rangle + 5(|\bar{Q}^i\rangle + 5(|\bar{Q}_i\rangle + 5(|\bar{Q}_{ij}\rangle + 10(|\bar{Q}_{ij}^{(S)}\rangle + 10(|\bar{Q}_{ij}^{(S)}\rangle + 15(|\bar{Q}_{ij}^{(S)}\rangle + 24(|\bar{Q}_{ij}^{(S)}\rangle + 40(|\bar{Q}_{ij}^{(S)}\rangle + \overline{45}(|\bar{Q}_{ij}^{(S)}\rangle \]

(12)

These \(SU(5)\) fields are extracted from the reducible fields appearing in Eqs.(9) and (10) as follows:

\[
\begin{align*}
100 &= \overline{50} + 50: \\
\overline{100} &= \overline{50} + 50: \\
\overline{50} &= 25 + 25: \\
\overline{50} &= 25 + 25: \\
\overline{50} &= 5 + 5: \\
\overline{10} &= 5 + 5: \\
50 &= 45 + 5: \\
\overline{50} &= 45 + 5: \\
\overline{50} &= 40 + \overline{10}: \\
50 &= 40 + 10: \\
25 &= 24 + 1: \\
25 &= 24 + 1: \\
\overline{25} &= \overline{10} + \overline{15}: \\
25 &= 10 + 15:
\end{align*}
\]

\[
\begin{align*}
\hat{P}_{ij} &= \hat{P}_{ij}^k \equiv \left(R_{ij}^k, R_{ij}^{(S)} \right) \\
\hat{P}_{ij}^k &= \left(\hat{Q}_{ij}^k, \hat{P}_{ij}^{(S)} \right) \\
\hat{Q}_{ij}^k &= \left(\hat{Q}_{ij}^k, \hat{Q}_{ij}^{(S)} \right) \\
\hat{P}_{ij}^{(S)} &= \left(\hat{P}_{ij}^{(S)}, \hat{P}_{ij}^{(S)} \right) \\
\hat{Q}_{ij}^{(S)} &= \left(\hat{Q}_{ij}^{(S)}, \hat{Q}_{ij}^{(S)} \right)
\end{align*}
\]

(13)
3.2 Oscillator mode expansion of irreducible 144 and $\overline{144}$ multiplets

The vector-spinor $|\Psi_{(+)}\rangle$ is unconstrained, has 160 components and is reducible. To see how the 160 plet can be reduced, we note that $\Gamma_\mu |\Psi_{(+)}\rangle$ is a 16 dimensional $SO(10)$ spinor. Thus one way to define an irreducible 144 ($\overline{144}$) dimensional vector-spinor is to impose the constraint

$$\Gamma_\mu |\Upsilon_{(\pm)}\rangle = 0$$ \hspace{1cm} (14)

We explore now the implication of the above constraint. The contraction of Γ_μ with the $160 + \overline{160}$ multiplet $|\Psi_{(\pm)}\rangle$ gives

$$\Gamma_\mu |\Psi_{(+)}\rangle = b_1^\dagger b_2^\dagger b_3^\dagger b_4^\dagger |0\rangle + \frac{1}{12} \epsilon^{ijklmn} b_k^\dagger b_l^\dagger b_m^\dagger |0\rangle > (P_{ij} + 6\hat{P}_{ij}) + b_i^\dagger |0\rangle > (P^i + \hat{P}^i)$$

$$\Gamma_\mu |\Psi_{(-)}\rangle = |0\rangle > \hat{P} + \frac{1}{2} b_i^\dagger b_j^\dagger |0\rangle > (Q^{ij} + 6\hat{Q}^{ij}) + \frac{1}{24} \epsilon^{ijklmn} b_j^\dagger b_k^\dagger b_i^\dagger b_m^\dagger |0\rangle > (Q_{ij} + \hat{Q}_{ij})$$ \hspace{1cm} (15)

Thus to get the 144 and $\overline{144}$ spinor, $|\Upsilon_{(\pm)}\rangle$, we need to impose the following conditions:

$$\hat{P} = 0, \quad \hat{P}^i = -P^i, \quad \hat{P}_{ij} = -\frac{1}{6} P_{ij}$$

$$\hat{Q} = 0, \quad \hat{Q}_i = -Q_i, \quad \hat{Q}^{ij} = -\frac{1}{6} Q^{ij}$$ \hspace{1cm} (16)

Hence, we have following relation

$$|\Upsilon_{(\pm)}\rangle = (|\Psi_{(\pm)}\rangle)_{\text{constraint of Eq.}(16)}$$ \hspace{1cm} (17)

The above implies that certain components of the 160 and $\overline{160}$ multiplets are either zero or are related thus reducing the number of independent components from 160 to 144. For completeness, we give the expansion of the constrained 144 and $\overline{144}$ vector-spinors in its oscillator modes

$$|\Upsilon_{(\pm)}\rangle = (|\Upsilon_{(\pm)}\rangle_{c_n}, |\Upsilon_{(\pm)}\rangle_{\overline{c}_n})$$

$$|\Upsilon_{(\pm)}\rangle_{c_n} = |0\rangle > P^n + \frac{1}{2} b_i^\dagger b_j^\dagger |0\rangle > \left[\epsilon^{ijklmn} P_{klm} - \frac{1}{6} \epsilon^{ijnlm} P_{lm} \right] + \frac{1}{24} \epsilon^{ijklmn} b_j^\dagger b_k^\dagger b_l^\dagger b_m^\dagger |0\rangle > P^n_{i}$$
\[|\Upsilon_{(+)}\rangle = |0 > P_n + \frac{1}{2} b_i^+ b_j^+ |0 > \left[P_{ij}^n + \frac{1}{4} \left(\delta_i^n P_j^i - \delta_j^n P_i^j\right)\right] + \frac{1}{24} \epsilon_{ijklm} b_j^+ b_k^+ b_l^+ b_m^+ |0 > \left[\frac{1}{2} P_{in} + \frac{1}{2} P_{in}^{(S)}\right] \]

\[|\Upsilon_{(-)}\rangle = b_i^+ b_2^+ b_3^+ b_5^+ |0 > Q^n + \frac{1}{12} \epsilon_{ijklm} b_k^+ b_l^+ b_m^+ |0 > \left[Q_{ij}^n + \frac{1}{4} \left(\delta_i^n Q_j^i - \delta_j^n Q_i^j\right)\right] + b_i^+ |0 > Q_j^n \] (18)

3.3 Normalization conditions and notation

To normalize the SU(5) fields contained in the tensor, |\Upsilon_{(\pm)}\rangle , we carry out a field redefinition

\[\{5\} : P_i = P_i^\mu, \quad \{5\} : P^i = \frac{2}{\sqrt{5}} P_i^\mu, \quad \{15\} : P_{ij}^{(S)} = \sqrt{2} P_{ij}^{(S)}, \quad \{24\} : P_j^i = P_j^i, \quad \{40\} : P_{ijk}^i = \frac{1}{6} P_{ijk}^i \]

\[\{5\} : Q^i = Q^i, \quad \{5\} : Q_i = \frac{2}{\sqrt{5}} Q_i, \quad \{10\} : Q_j^i = \frac{6}{5} Q_j^i \]

\[\{15\} : Q_{ij}^{(S)} = \sqrt{2} Q_{ij}^{(S)}, \quad \{24\} : Q_j = Q_j, \quad \{40\} : Q_{ijk}^{ij} = \frac{1}{6} Q_{ijk}^{ij} \]

\[\{\overline{15}\} : Q_{ij}^k = Q_{ij}^k \] (20)

In terms of the normalized fields, the kinetic energy of the 144 and \(\overline{144}\):

\[- < \partial_A \Upsilon_{(\pm)} | \partial^A \Upsilon_{(\pm)} > \text{ takes the form} \]

\[L_{kin}^{144} = -\partial_A P_i^i \partial^A P_i - \partial_A P_i^i \partial^A P_i - \frac{1}{2!} \partial_A P_{ij}^i \partial^A P_{ij} + \frac{1}{3!} \partial_A P_i^i \partial^A P_{ijk}^i \]

\[L_{kin}^{\overline{144}} = -\partial_A Q^i \partial^A Q_i - \partial_A Q_i^i \partial^A Q_i - \frac{1}{2!} \partial_A Q_{ij} \partial^A Q_{ij} + \frac{1}{3!} \partial_A Q_{ij} \partial^A Q_{ijk} \] (21)

\[L_{kin}^{144} = -\partial_A Q_{ij} \partial^A Q_{ij} - \partial_A Q_{ij} \partial^A Q_{ij} - \frac{1}{2!} \partial_A Q_{ij} \partial^A Q_{ij} \]

\[L_{kin}^{\overline{144}} = -\partial_A Q_{ij} \partial^A Q_{ij} - \partial_A Q_{ij} \partial^A Q_{ij} - \frac{1}{2!} \partial_A Q_{ij} \partial^A Q_{ij} \] (22)
where $A = 0, 1, 2, 3$ represents the Lorentz index.

For ease of reference we give below the notations that will be used in much of the paper.

1. The set of indices $(U, U') ...(Z, Z')$ run over several Higgs representations of the same kind

2. $\mathcal{M}^{(i)}$ represents mass matrices

3. $h^{(i)}, \bar{h}^{(i)}, f^{(i)}, \bar{f}^{(i)}, g^{(i)}, \bar{g}^{(i)}, k^{(i)}, \bar{k}^{(i)}, l^{(i)}, \bar{l}^{(i)}$ are constants

4. An antisymmetric product of four Γ’s for example, is represented by

$$\Gamma_{[\mu \nu \rho \lambda]} = \frac{1}{4!} \sum_{P} (-1)^{\delta P} \Gamma_{\mu P(1)} \Gamma_{\nu P(2)} \Gamma_{\rho P(3)} \Gamma_{\lambda P(4)}$$

with \sum_{P} denoting the sum over all permutations and δ_P takes on the value 0 and 1 for even and odd permutations respectively.

4 Higgs Sector Cubic Couplings

In this section we compute the cubic couplings in the superpotential involving two vector-spinors and one each of the tensors 1, 10, 45, 120, 210, and $\overline{126}$ plet of Higgs. We will discuss their $SU(5) \times U(1)$ decomposed form below.

4.1 The $(144 \times \overline{144} \times 1)$ couplings

The $(144 \times \overline{144} \times 1)$ coupling structure in the superpotential is

$$W^{(1)} = h_{ab}^{(1)} \langle \Upsilon_{(-)\mu}^* | B | \Upsilon_{(+)}^{\mu} \rangle \Phi$$

Where Φ is the 1-plet of Higgs field. The coupling structure in the $SU(5) \times U(1)$ decomposed form is

$$W^{(1)} = ih_{ab}^{(1)} \left[\frac{3}{5} Q_{al}^T P_{bi}^l + Q_{al}^T P_{bi} + \frac{1}{10} Q_{al}^T P_{bij} + \frac{1}{2} Q_{al}^T P_{bij}^{(s)} \right]$$

$$+ Q_{al}^T P_{bij} - \frac{1}{6} Q_{al}^T P_{bijk} - \frac{1}{2} Q_{al}^T P_{bijk}^{(s)} H$$
4.2 The \((144 \times 144 \times 45)\) couplings

The \((144 \times 144 \times 45)\) couplings in the superpotential is

\[
W^{(45)} = \frac{1}{21} h^{(45)}_{ab} < \Gamma^{*}_{(-)} a_{\mu} | B^S \Gamma_{\sigma}^T \Gamma_{\lambda}^T | \Gamma^{(+)} b_{\mu} > \Phi^{\rho}_{\sigma\lambda} \tag{26}
\]

where \(\Phi^{\rho}_{\sigma\lambda}\) represents the 45-plet of Higgs field. The couplings in their \(SU(5) \times U(1)\) decomposed form are given by

\[
W^{(45)} = h^{(45)}_{ab} \left\{ \left[\frac{3}{\sqrt{10}} Q_{aj}^T P_{bi}^{(j)} + \frac{11}{10 \sqrt{10}} Q_{aj}^T P_{bi}^{(S)} + \frac{3}{\sqrt{10}} Q_{aj}^T P_{bi}^{(j)} + \frac{1}{2 \sqrt{10}} Q_{aj}^T P_{bi}^{(S)} \right] H_{ij} \right.

+ \left[-\frac{1}{\sqrt{2}} Q_{al}^T P_{bl} + \frac{2}{\sqrt{15}} Q_{al}^T P_{bl} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right] \left[\frac{3}{\sqrt{3}} P_{an}^T P_{bn} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right]

+ \left[\frac{7}{20 \sqrt{3}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} - \frac{1}{\sqrt{10}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right] \left[\frac{3}{\sqrt{3}} P_{an}^T P_{bn} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right]

+ \left[\frac{7}{20 \sqrt{3}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} - \frac{1}{\sqrt{10}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right] \left[\frac{3}{\sqrt{3}} P_{an}^T P_{bn} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right]

+ \left[\frac{7}{20 \sqrt{3}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} - \frac{1}{\sqrt{10}} \epsilon_{ijklm} Q_{ai}^T P_{bjk} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right] \left[\frac{3}{\sqrt{3}} P_{an}^T P_{bn} + \frac{1}{\sqrt{2}} Q_{al}^T P_{bl} \right]

\right\} H_{lm}
\]

4.3 The \((144 \times 144 \times 210)\) couplings

The \((144 \times 144 \times 210)\) coupling structure is

\[
W^{(210)} = \frac{1}{4!} h^{(210)}_{ab} < \Gamma^{*}_{(-)} a_{\mu} | B^T \Gamma_{\mu} \Gamma_{\sigma} \Gamma_{\lambda} | \Gamma^{(+)} b_{\mu} > \Phi^{\nu}_{\sigma\lambda} \tag{28}
\]
where $\Phi_{\nu\rho\sigma\lambda}$ represents the 210-plet of Higgs field. The superpotential in the $SU(5) \times U(1)$ decomposed form is

$$
W^{(210)} = i h^{(210)}_{\tilde{a} \tilde{b}} \left\{ \frac{1}{2\sqrt{15}} Q^{ij}_{\alpha\beta} P^{ij}_{\alpha\beta} + \frac{1}{4\sqrt{15}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{\sqrt{15}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{4\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{7}{10} \sqrt{3} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{2} \sqrt{\frac{5}{3}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{12\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right\} H
$$

$$
+ \left[-\frac{1}{2\sqrt{2}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{2\sqrt{10}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{3\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} - \frac{1}{6\sqrt{2}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} - \frac{1}{24} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{2\sqrt{2}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{2\sqrt{10}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{3\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{6\sqrt{2}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{24} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{3\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} - \frac{1}{6\sqrt{10}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} - \frac{1}{20\sqrt{2}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} \right] H^m
$$

$$
+ \left[-\frac{1}{6\sqrt{2}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{6\sqrt{15}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{6\sqrt{10}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} - \frac{1}{6\sqrt{2}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{24} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{\sqrt{5}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{\sqrt{3}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{2\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{\sqrt{5}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{\sqrt{3}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{2\sqrt{15}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{2\sqrt{6}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{2\sqrt{30}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} - \frac{1}{2\sqrt{30}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{2\sqrt{6}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{3\sqrt{5}} Q^{ij}_{\alpha} P^{ij}_{\alpha} + \frac{1}{3\sqrt{5}} Q^{ij}_{(S)\alpha} P^{ij}_{(S)\alpha} + \frac{1}{15\sqrt{6}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
+ \left[-\frac{1}{6\sqrt{5}} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{6\sqrt{3}} \epsilon_{ijklm} Q^{ij}_{(S)\alpha \beta} P^{ij}_{(S)\alpha \beta} + \frac{1}{60} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
- \frac{1}{60} \epsilon_{ijklm} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} - \frac{1}{3\sqrt{6}} \epsilon_{ijklm} Q^{ij}_{(S)\alpha \beta} P^{ij}_{(S)\alpha \beta} + \frac{1}{3\sqrt{5}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} + \frac{1}{3\sqrt{5}} Q^{ij}_{\alpha \beta} P^{ij}_{\alpha \beta} \right] H^m
$$

$$
12$$
\[W^{(10)} = h_{ab}^{(10)} < \Upsilon_{(+)\alpha\mu}^* | B \Gamma_\nu | \Upsilon_{(+)\beta\mu} > \Phi_\nu \]

(30)

where \(\Phi_\nu \) represents the 10-plet of Higgs field. The superpotential in its \(SU(5) \times U(1) \) decomposed form is

\[
W^{(10)} = ih_{ab}^{(10)(+)} \left\{ \frac{1}{\sqrt{15}} \epsilon_{ijklm} P_{almn}^T P_{bik} + \frac{1}{3} \epsilon_{ijklm} P_{almn}^T P_{bik}^{(S)} - \frac{\sqrt{2}}{5} \epsilon_{ijklm} P_{almn}^T P_{bik} \right. \\
+ 2 \sqrt{2} P_{aj}^T P_{bik}^j - \sqrt{2} P_{aj}^T P_{bik}^j \\
\left. + 2 \sqrt{2} P_{aj}^T P_{bik}^{(S)} - 2 \sqrt{2} P_{aj}^T P_{bik}^{(S)} + \sqrt{2} P_{aj}^T P_{bik}^{(S)} + \frac{2}{\sqrt{15}} P_{aj}^T P_{bik}^j \right\} H_j \]

(31)

where we have defined

\[
h_{ab}^{(10)(+)} = \frac{1}{2} \left(h_{ab}^{(10)} + h_{ba}^{(10)} \right) \]

(32)

4.4 The \((144 \times 144 \times 10) \) couplings

The \((144 \times 144 \times 10) \) couplings in the superpotential are given by

\[
W^{(10)} = h_{ab}^{(10)} < \Upsilon_{(+)\alpha\mu}^* | B \Gamma_\nu | \Upsilon_{(+)\beta\mu} > \Phi_\nu \]

(30)

where \(\Phi_\nu \) represents the 10-plet of Higgs field. The superpotential in its \(SU(5) \times U(1) \) decomposed form is

\[
W^{(120)} = \frac{1}{3!} h_{ab}^{(120)} < \Upsilon_{(+)\alpha\mu}^* | B \Gamma_\nu | \Gamma_\rho | \Gamma_\lambda | \Upsilon_{(+)\beta\mu} > \Phi_{\nu\rho\lambda} \]

(33)

where \(\Phi_{\nu\rho\lambda} \) represents the 120-plet of Higgs field. The superpotential in its \(SU(5) \times U(1) \) decomposed form is

\[
W^{(120)} = ih_{ab}^{(120)(-)} \left\{ \frac{1}{3 \sqrt{10}} \epsilon_{ijklm} P_{almn}^T P_{bik} - \frac{1}{3 \sqrt{6}} \epsilon_{ijklm} P_{almn}^T P_{bik}^{(S)} + \frac{1}{5 \sqrt{3}} \epsilon_{ijklm} P_{almn}^T P_{bik} \right\}
\]
where we have defined
\[h^{(120)(-)}_{ab} = \frac{1}{2} \left(h^{(120)}_{ab} - h^{(120)}_{ba} \right) \] (35)

4.6 The $(144 \times 144 \times 126)$ couplings

The $(144 \times 144 \times 126)$ coupling in the superpotential is

\[W^{(126)} = \frac{1}{5} h^{(120)}_{ab} \langle Y^*_{+}\rangle_{ab} |B\Gamma_\rho \Gamma_\sigma \Gamma_\lambda \Gamma_\theta| Y_{(+)}_{\rho\mu} > \Phi_{\nu\rho\lambda\theta} \] (36)

where $\Phi_{\nu\rho\lambda\theta}$ represents the 126-plet of Higgs field. The superpotential in its $SU(5) \times U(1)$ decomposed form is

\[W^{(126)} = i h^{(120)(+)}_{ab} \left\{ \begin{array}{c} -\frac{8}{5 \sqrt{3}} P^{ij}_{ab} P^{k}_{bi} \ H_k \\
+ \left[\frac{\sqrt{2}}{5} P^{ij}_{ab} P^{k}_{bj} - \frac{1}{\sqrt{5}} P^{ij}_{ab} P^{k}_{bk} - \frac{2}{5} P^{ij}_{ab} P^{k}_{bj} \right] H^k \\
- \frac{1}{3 \sqrt{10}} P^{ij}_{ab} P^{k}_{bk} + \frac{1}{15 \sqrt{3}} P^{ij}_{ab} P^{k}_{bj} + \frac{1}{5 \sqrt{15}} P^{ij}_{ab} P^{k}_{bk} \right\} \]
\[
\begin{align*}
&+ \left[\frac{1}{30} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} - \frac{1}{6 \sqrt{15}} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} \right] H_{ij}^{k} \\
&- \frac{1}{15 \sqrt{2}} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} + \left[\frac{2}{15} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} + \frac{1}{5 \sqrt{3}} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} \right] H_{ij}^{k} \\
&+ \left[-\frac{1}{3 \sqrt{15}} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} - \frac{1}{15 \sqrt{3}} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} + \frac{\sqrt{2}}{15} \epsilon_{ijmn} \epsilon_{\alpha\beta mn} \epsilon_{ijkl} \right] H_{ij}^{k} \right] (37)
\end{align*}
\]

where we have defined
\[
h_{ij}^{(210)}(a) = \frac{1}{2} \left(h_{ij}^{(126)} + h_{ij}^{(126)} \right) (38)
\]

5 Higgs Sector Quartic Couplings

We discuss now the quartic couplings involving four vector-spinors. We will discuss specifically the quartic couplings that arise from the cubic couplings discussed in Sec.(4) by elimination of the 1, 45 and 210 fields assuming they are heavy in the 144 × 144 couplings and by elimination of 10, 120 and 126 + 126 assuming they are heavy for the 144 × 144 couplings. We first discuss the quartic couplings that arise from the elimination of 1, 10, 45. In this case we start with the superpotential

\[
W^{(1,45,210)} = h_{\alpha\beta}^{(1)} \langle \tilde{\Upsilon}^{*-\alpha} | B \tilde{\Upsilon}^{(+\beta)} \rangle > k_{\alpha}^{(1)} \Phi_{\alpha} + \frac{1}{2} \Phi_{\alpha} \mathcal{M}_{X^{(1)} \alpha} \Phi_{\alpha'} + \\
+ \frac{1}{2} h_{\alpha\beta}^{(45)} \langle \tilde{\Upsilon}^{*-\alpha} | B \Sigma_{\rho\sigma} \tilde{\Upsilon}^{(+\beta)} \rangle > k_{\alpha}^{(45)} \Phi_{\rho\sigma} \Phi_{\rho\sigma'} + \frac{1}{2} \Phi_{\rho\sigma} \mathcal{M}_{\rho\sigma}^{(45)} \Phi_{\rho\sigma'} + \\
+ \frac{1}{4} h_{\alpha\beta}^{(210)} \langle \tilde{\Upsilon}^{*-\alpha} | B \Gamma_{\nu\Gamma\sigma\delta} \tilde{\Upsilon}^{(+\beta)} \rangle > k_{\alpha}^{(210)} \Phi_{\nu\rho\sigma\lambda Z} + \frac{1}{2} \Phi_{\nu\rho\sigma\lambda Z} \mathcal{M}_{\nu\rho\sigma\lambda Z}^{(210)} \Phi_{\nu\rho\sigma\lambda Z'} (39)
\]

We then eliminate \(\Phi_{X}, \Phi_{\rho\sigma Y}, \Phi_{\nu\rho\sigma\lambda Z} \) assuming they are superheavy using the F-flatness conditions

\[
\frac{\partial W^{(1,45,210)}}{\partial \Phi_{X}} = 0, \quad \frac{\partial W^{(1,45,210)}}{\partial \Phi_{\rho\sigma Y}} = 0, \quad \frac{\partial W^{(1,45,210)}}{\partial \Phi_{\nu\rho\sigma\lambda Z}} = 0 (40)
\]

We discuss now the individual contribution arising from the elimination of 1, 45 and 210 separately.
5.1 The \((144 \times 144)_1\) \((144 \times 144)_1\) couplings

The \((144 \times 144)_1\) \((144 \times 144)_1\) couplings gotten by the singlet mediation are given by

\[
W^{(1)}_{\text{dim-5}} = 2 \lambda_{ab,cd}^{(1)} < \Upsilon_{(-)}^{*} | B | \Upsilon_{(+)} | \delta \lambda > < \Upsilon_{(-)}^{*} | B | \Upsilon_{(+)} | \delta \lambda >
\]

where

\[
< \Upsilon_{(-)}^{*} | B | \Upsilon_{(+)} | \delta \lambda > = \frac{1}{6} \left\{ \frac{3}{5} Q^T_{i} P^i_{b} + \frac{1}{5} Q^T_{a} P^j_{bi} + \frac{1}{10} Q^{(S)}_{(s) T} P^j_{bij} + \frac{1}{2} Q^{(S)}_{(s) T} P^j_{bij} + \frac{1}{6} Q^{(S)}_{(s) T} P^j_{bij} \right\}
\]

Explicit evaluation of the above quantities gives

\[
W^{(1)}_{\text{dim-5}} = \lambda_{ab,cd}^{(1)} \left\{ \frac{18}{25} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} - \frac{12}{5} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} - \frac{6}{25} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} - \frac{6}{5} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} - \frac{12}{5} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} - \frac{2}{5} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} + \frac{6}{5} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} + \frac{2}{3} Q^T_{a} P^j_{b} Q^T_{c} P^j_{d} \right\}
\]

\[
\lambda_{ab,cd}^{(1)} = h_{ab}^{(1)} h_{cd}^{(1)} k_{x}^{(1)} \left[\tilde{M}^{(1)} \left\{ \lambda_{ab,cd}^{(1)} \tilde{M}^{(1)} - 1 \right\} \right]_{x,X} k_{x}^{(1)}
\]

\[
\tilde{M}^{(1)} = \left[\lambda^{(1)} + (\lambda^{(1)})^{T} \right]^{-1}
\]

16
5.2 The \((144 \times 144)_{45} (144 \times 144)_{45}\) couplings

The \((144 \times 144)_{45} (144 \times 144)_{45}\) couplings gotten by the 45 plet mediation are given by

\[
W_{a_{(n-5)}}^{(45)} = \chi_{a_{(n-5)}}^{(45)} \left[-4 < Y_(-)^\mu_b B b_\mu | Y_{(+)} b_\mu > < Y_(-)^\mu_b | B b_\mu Y_{(+)} > \right. \\
+ 4 < Y_(-)^\mu_b B b_\mu | Y_{(+)} b_\mu > < Y_(-)^\mu_b | B y_{(+)} > \right. \\
- 4 < Y_(-)^\mu_b | B b_\mu Y_{(+)} b_\mu > < Y_(-)^\mu_b | B Y_{(+)} > \right. \\
+ 5 < Y_(-)^\mu_b | B Y_{(+)} b_\mu > < Y_(-)^\mu_b | B Y_{(+)} > \right]
\]

(45)

where the explicit evaluation in \(SU(5) \times U(1)\) decomposition gives

\[
< Y_(-)^\mu_b B b_\mu | Y_{(+)} b_\mu > = \left\{ -Q^T P^{ij}_{bk} - \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \sqrt{\frac{2}{15}} a^T P^i_{bk} \\
- \frac{2}{15} Q_{a b}^T P^i_{bk} + Q_{a b}^T P^i_{bl} + \frac{7}{10\sqrt{6}} \epsilon^{ijklm} Q_{a k}^T P^i_{blm} \\
- \frac{1}{3\sqrt{5}} \epsilon^{ijklm} Q_{a n}^T P^i_{bklm} + \frac{1}{2\sqrt{2}} \epsilon^{ijklm} Q_{a n}^T P^i_{bmn} \right\}
\]

(46)

\[
< Y_(-)^\mu_b B b_\mu | Y_{(+)} b_\mu > = \left\{ -Q_{a b}^T P^{ij}_{bk} - \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \sqrt{\frac{2}{15}} a^T P^i_{bkj} \\
- \frac{2}{15} Q_{a b}^T P^i_{bkj} + Q_{a b}^T P^i_{bik} + \frac{7}{10\sqrt{6}} \epsilon^{ijklm} Q_{a k}^T P^i_{bmn} \\
- \frac{1}{3\sqrt{5}} \epsilon^{ijklm} Q_{a n}^T P^i_{bklm} + \frac{1}{2\sqrt{2}} \epsilon^{ijklm} Q_{a n}^T P^i_{bmn} \right\}
\]

(47)

\[
< Y_(-)^\mu_b B b_\mu | Y_{(+)} b_\mu > = \left\{ Q_{a b}^T P^{ij}_{bk} - \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \frac{1}{2\sqrt{5}} Q_{a b}^T P^i_{b} + \frac{3}{20} Q_{a b}^T P^i_{bkj} \\
- \frac{1}{20} \delta^j_i Q_{a b}^T P^i_{bk} + \frac{1}{2} Q_{a b}^T P^i_{bkl} \\
- \frac{1}{6} \delta^j_i Q_{a b}^T P^i_{bkl} - \frac{3}{60} Q_{a b}^T P^i_{bkl} - \frac{1}{60} Q_{a b}^T P^i_{bkl} \\
+ \frac{1}{6} \delta^j_i Q_{a b}^T P^i_{bkl} - \frac{1}{2\sqrt{2}} Q_{a b}^T P^i_{bkl} \right\}
\]

(48)
We carry out now an \(\mathcal{W}_{\text{dim}=5}\) decomposition of these and get

\[
< \Upsilon_{(-)\dot{a}\mu}|Bb_i^\dagger b_i|\Upsilon_{(+)}\upsilon_{\mu} > = i \left\{ \sqrt{\frac{2}{15}}Q^{kT}_a P^{ij}_{b_i} - \sqrt{\frac{2}{15}} \delta^k_i \mathcal{M}^{(kT)} P^{ij}_{b_i} \right\} (51)
\]
\[\langle \gamma^-_\alpha \mid B b^i_j k b_i k_b | \gamma^+ d\rangle \rangle = i \left\{ \sqrt{\frac{2}{15}} Q^i_{\epsilon j} \mathcal{P}_{d k l} - \sqrt{\frac{2}{15}} Q^m_{\epsilon j} \left(\delta^i_k \mathcal{P}_{d m l} - \delta^i_l \mathcal{P}_{d m k} \right) \\
+ \sqrt{\frac{2}{15}} Q^i_{\epsilon l} \mathcal{P}_{d j k} - \sqrt{\frac{2}{15}} Q^m_{\epsilon l} \left(\delta^i_j \mathcal{P}_{d m k} - \delta^i_k \mathcal{P}_{d m j} \right) \\
+ \sqrt{\frac{2}{15}} Q^i_{\epsilon k} \mathcal{P}_{d i j} - \sqrt{\frac{2}{15}} Q^m_{\epsilon k} \left(\delta^i_j \mathcal{P}_{d m j} - \delta^i_j \mathcal{P}_{d m l} \right) \\
- Q^{i m}_{\epsilon n} \mathcal{P}^m_{d j k l} + Q^{m n}_{\epsilon n} \left(\delta^i_j \mathcal{P}^n_{d m k l} + \delta^i_k \mathcal{P}^n_{d m j l} + \delta^i_l \mathcal{P}^n_{d m j k} \right) \\
+ \sqrt{\frac{3}{10}} \epsilon_{j k l m n} Q^{m n}_{\epsilon n} \mathcal{P}^{m n}_{d i} + \frac{1}{\sqrt{2}} \epsilon_{j k l m n} Q^{m n}_{\epsilon n} \mathcal{P}^{m n}_{d i} \\
+ \frac{1}{10} \sqrt{\frac{3}{2}} \epsilon_{j k l m n} Q^{m n}_{\epsilon n} \mathcal{P}^{m n}_{d i} - \frac{1}{2 \sqrt{10}} \epsilon_{j k l m n} Q^{m n}_{\epsilon n} \mathcal{P}^{m n}_{d i} \right\} \]
\[-\frac{1}{\sqrt{30}} (\delta^k_j Q^{l mn T}_{\bar{a}_l} - \delta^k_i Q^{l mn T}_{\bar{a}_j} - \delta^l_j Q^{k mn T}_{\bar{a}_i} + \delta^l_i Q^{k mn T}_{\bar{a}_j}) P_{bmn} \]

\[- \frac{1}{2} \sqrt{15} Q^{l mn T}_{\bar{a}_l} P^k_{bmij} + \frac{2}{15} Q^{l mn T}_{\bar{a}_l} P^l_{bmij} \]

\[-\frac{1}{\sqrt{30}} Q^{mn T}_{\bar{a}_l} \left(\delta^l_i P^k_{bjmn} - \delta^l_j P^k_{bimn} - \delta^k_l P^l_{bjmn} + \delta^k_l P^l_{bimn} \right) + \frac{1}{2} \left(\delta^l_i Q^{km T}_{\bar{a}_l} - \delta^l_i Q^{lm T}_{\bar{a}_l} \right) \left(\frac{1}{3} P_{bmj} - \sqrt{\frac{3}{5}} P_{(s)bmj} \right) \]

\[+ \frac{1}{2} \left(\delta^l_j Q^{lm T}_{\bar{a}_l} - \delta^l_j Q^{km T}_{\bar{a}_l} \right) \left(\frac{1}{3} P_{bmi} - \sqrt{\frac{3}{5}} P_{(s)bmi} \right) \]

\[+ \frac{1}{2} \left(\delta^l_i Q^{km T}_{\bar{a}_l} - \delta^l_i Q^{lm T}_{\bar{a}_l} \right) \left(\frac{3}{5} P_{bmj} - P_{(s)bmj} \right) \]

\[+ \frac{1}{2} \left(\delta^l_j Q^{lm T}_{\bar{a}_l} - \delta^l_j Q^{km T}_{\bar{a}_l} \right) \left(\frac{3}{5} P_{bmi} - P_{(s)bmi} \right) \]

\[- (\delta^k_j Q^{T}_{\bar{a}_m} - \delta^k_i Q^{T}_{\bar{a}_m}) P^m_{hi} - (\delta^k_i Q^{T}_{\bar{a}_m} - \delta^k_j Q^{T}_{\bar{a}_m}) P^m_{bj} \]

\[+ \frac{2}{15} Q^{l T}_{\bar{a}_l} P^l_{bij} \] \[(54) \]

\[< \Upsilon^{*}_{(-)\delta \lambda} | B b_j b_k b_l | \Upsilon^{(+)\delta \mu} >= i \left\{ - \frac{3}{10} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{bmn} + \frac{1}{\sqrt{2}} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{bmn} \right\} \]

\[+ \frac{2}{\sqrt{5}} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{bmn} \] \[(55) \]

\[< \Upsilon^{*}_{(-)\delta \lambda} | B b_j b_k b_l | \Upsilon^{(+)\delta \lambda} >= i \left\{ \frac{3}{10} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{dbn} + \frac{1}{\sqrt{2}} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{dbn} \right\} \]

\[+ \frac{2}{\sqrt{5}} \epsilon_{ijklm} Q^{n T}_{\bar{a}_l} P_{dbn} \] \[(56) \]

\[< \Upsilon^{*}_{(-)\delta \lambda} | B b_j b_l b_n b_i | \Upsilon^{(+)\delta \lambda} >= i \left\{ Q^{T}_{\bar{a}_j} P^{k}_{di} - \frac{1}{2 \sqrt{5}} Q^{T}_{\bar{a}_j} P^{k}_{dij} + \frac{1}{2 \sqrt{5}} Q^{T}_{\bar{a}_j} P^{k}_{dij} \right\} \]

\[- \frac{3}{20} Q^{T}_{\bar{a}_j} P^{i}_{d} - \frac{1}{20} \delta^l_j Q^{T}_{\bar{a}_j} P^{k}_{d} + \frac{1}{2} Q^{k T}_{\bar{a}_j} P^{m}_{dijkl} \]

\[- \frac{1}{6} \delta^l_j Q^{k T}_{\bar{a}_n} P^{n}_{dlkm} - \frac{1}{\sqrt{30}} Q^{k T}_{\bar{a}_j} P^{k l}_{d} - \frac{1}{\sqrt{30}} Q^{k T}_{\bar{a}_j} P^{k l}_{d} \]

\[+ \frac{19}{30} Q^{k T}_{\bar{a}_j} P^{dkj}_{d} + \frac{23}{30} \delta^l_j Q^{k T}_{\bar{a}_j} P^{dkl}_{d} - \frac{3}{2} \sqrt{\frac{3}{5}} Q^{k T}_{\bar{a}_j} P^{(s)}_{dkj} \]} \[(57) \]
\[
+ \frac{3}{2} \sqrt{3} Q_{(S)c}^{ikT} P_{dkj} - \frac{3}{2} Q_{(S)c}^{i} P_{dkj}^{(S)} + \frac{3}{2} \delta_j^i Q_{(S)c}^{kT} P_{dkt}^{(S)} - 3 Q_{(S)c}^{T} P_{dj}^{k} + 3 \delta_j^i Q_{(S)c}^{T} P_{dil}^{k}\]

\[
< \Upsilon_{(-)}^{*} | B b_{i}^{\dagger} b_{j} b_{i} b_{j} | \Upsilon_{(+)}^{d \lambda} > = i \left\{ \sqrt{\frac{2}{15}} Q_{\epsilon}^{i} P_{dk}^{T} - \sqrt{\frac{2}{15}} Q_{\epsilon}^{i} P_{dk}^{S} + Q_{\epsilon}^{ikT} P_{dk}^{l} \right. \\
+ \frac{1}{10} \frac{3}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} + \frac{1}{10} \frac{3}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} + \frac{1}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} \\
+ \frac{1}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} \right\} (58)
\]

\[
< \Upsilon_{(-)}^{*} | B b_{i}^{\dagger} b_{j} b_{i} b_{j} | \Upsilon_{(+)}^{d \lambda} > = i \left\{ \sqrt{\frac{2}{15}} Q_{\epsilon}^{i} P_{dk}^{T} - \sqrt{\frac{2}{15}} Q_{\epsilon}^{i} P_{dk}^{S} + Q_{\epsilon}^{ikT} P_{dk}^{l} \right. \\
+ \frac{1}{10} \frac{3}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} + \frac{1}{10} \frac{3}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} + \frac{1}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} \\
+ \frac{1}{2} \epsilon_{ijklm} Q_{\epsilon}^{T} P_{m}^{i} \right\} (59)
\]

\[
< \Upsilon_{(-)}^{*} | B b_{i}^{\dagger} b_{j} b_{i} b_{j} | \Upsilon_{(+)}^{d \lambda} > = i \left\{ 12 Q_{\epsilon}^{i} P_{dk}^{T} + \frac{16}{5} Q_{\epsilon}^{i} P_{dk}^{S} + 6 Q_{\epsilon}^{ikT} P_{dk}^{l} \right. \\
- Q_{\epsilon}^{ikT} P_{dk}^{l} - \frac{2}{5} Q_{\epsilon}^{i} P_{dk}^{S} - \frac{1}{3} Q_{\epsilon}^{ikT} P_{dk}^{l} \right\} (60)
\]

where

\[
\lambda_{a,b,c,d}^{(210)} = h_{a,b}^{(210)} h_{c,d}^{(210)} h_{z}^{(210)} k_{z}^{(210)} \left[\tilde{M}^{(210)} \left(\mathcal{M}^{(210)} + \tilde{M}^{(210)} \right) - 1 \right]_{z z'} k_{z}^{(210)} \tilde{M}^{(210)} = \left[\mathcal{M}^{(210)} + \left(\mathcal{M}^{(210)} \right)^{T} \right]^{-1} (61)\]

5.4 The \((144 \times 144)^{10} (144 \times 144)^{10}\) couplings

Here we consider the quartic interactions that arise from mediation by the 10 plet of Higgs. We begin by considering the superpotential

\[
W^{(10)'} = \frac{1}{2} \Phi_{\nu \mu} \mathcal{M}_{\nu \mu}^{(10)} \Phi_{\nu \mu} + h_{a,b}^{(10)} < \Upsilon_{(+)}^{*} | B \Gamma_{\nu} | \Upsilon_{(+)}^{(10)} > k_{a,b}^{(10)} \Phi_{\nu \mu} \\
+ h_{a,b}^{(10)} < \Upsilon_{(-)}^{*} | B \Gamma_{\nu} | \Upsilon_{(-)}^{(10)} > k_{a,b}^{(10)} \Phi_{\nu \mu} (62)\]

21
Elimination of the $\Phi_{\nu\nu}$ as a superheavy field using the F-flatness condition

$$\frac{\partial W^{(10)'}}{\partial \Phi_{\nu\nu}} = 0 \quad (63)$$

leads to the quartic interaction generated by 10 mediation.

$$W_{\pm \mp \pm \mp} = 2\lambda_{ab,cd}^{(10)} < \Upsilon_{(+\mu\nu}\rho} Y_{(+\nu\mu)} > < \Upsilon_{(+\nu\mu)} Y_{(+\nu\mu)} >$$

$$= 8\lambda_{ab,cd}^{(10)} < \Upsilon_{(+\mu\nu}\rho} Y_{(+\nu\mu)} > < \Upsilon_{(+\nu\mu)} Y_{(+\nu\mu)} >$$

$$= 4\lambda_{ab,cd}^{(10)(+)} \left(8P_{\nu\mu}^T P_{\mu\nu}^T P_{\nu\mu}^T P_{\mu\nu}^T - \epsilon_{jklmn} P_{\nu\mu}^T P_{\mu\nu}^T P_{\mu\nu}^T P_{\mu\nu}^T \right) \quad (64)$$

where

$$\lambda_{ab,cd}^{(10)(+)} = \lambda_{ab}^{(10)+} \lambda_{cd}^{(10)+} \lambda_{\nu\mu}^{(10)} \left[\widetilde{M}^{(10)} \left\{ \mathcal{M}^{(10)} \mathcal{M}^{(10)} - 1 \right\} \right]_{\nu\mu} \lambda_{ab,cd}^{(10)} \quad (65)$$

and

$$\mathcal{M}^{(10)} = \left[\mathcal{M}^{(10)} + \left(\mathcal{M}^{(10)} \right)^T \right]^{-1} \quad (66)$$

5.5 The $(144 \times 144)^{10}_{\mp \mp \mp \mp}$ couplings

An analysis similar to the above gives in this case the following

$$W_{\pm \mp \pm \mp} = 2\lambda_{ab,cd}^{(10)} < \Upsilon_{(-\mu\nu}\rho} Y_{(-\nu\mu)} > < \Upsilon_{(-\mu\nu)} Y_{(-\mu\nu)} >$$

$$= 8\lambda_{ab,cd}^{(10)} < \Upsilon_{(-\mu\nu}\rho} Y_{(-\nu\mu)} > < \Upsilon_{(-\nu\mu)} Y_{(-\mu\nu)} >$$

$$= 4\lambda_{ab,cd}^{(10)(+)} \left(-8Q_{\nu\mu}^T Q_{\mu\nu}^T Q_{\mu\nu}^T Q_{\mu\nu}^T + \epsilon_{jklmn} Q_{\nu\mu}^T Q_{\mu\nu}^T Q_{\mu\nu}^T Q_{\mu\nu}^T \right) \quad (67)$$

where

$$\lambda_{ab,cd}^{(10)(+)} = \lambda_{ab}^{(10)+} \lambda_{cd}^{(10)+} \lambda_{\nu\mu}^{(10)} \left[\widetilde{M}^{(10)} \left\{ \mathcal{M}^{(10)} \mathcal{M}^{(10)} - 1 \right\} \right]_{\nu\mu} \lambda_{ab,cd}^{(10)} \quad (68)$$

5.6 The $(144 \times 144)^{10}_{\mp \mp \mp \mp}$ couplings

An analysis similar to above gives

$$W_{\pm \mp \pm \mp} = -2\theta_{ab,cd}^{(10)} < \Upsilon_{(+\mu\nu}\rho} Y_{(+\nu\mu)} > < \Upsilon_{(+\nu\mu)} Y_{(+\nu\mu)} >$$

$$= 4\theta_{ab,cd}^{(10)} \left[< \Upsilon_{(+\mu\nu}\rho} Y_{(+\nu\mu)} > < \Upsilon_{(+\nu\mu)} Y_{(+\nu\mu)} > \right.$$

$$\left. + < \Upsilon_{(+\mu\nu}\rho} Y_{(+\nu\mu)} > < \Upsilon_{(+\nu\mu)} Y_{(+\nu\mu)} > \right]$$

$$= 2\theta_{ab,cd}^{(10)(+)} \left(8P_{\nu\mu}^T P_{\mu\nu}^T Q_{\nu\mu}^T Q_{\mu\nu}^T - 8P_{\nu\mu}^T P_{\mu\nu}^T Q_{\nu\mu}^T Q_{\mu\nu}^T \right) \quad (69)$$
\[-\mathbf{P}^{ij}_\mu \mathbf{P}^{kl}_\nu Q^{\mu T}_c Q^{\nu T}_d \mathbf{Q}^{\mu}_{ij} + \mathbf{P}^{ij}_\mu \mathbf{P}^{kl}_\nu Q^{\mu T}_c Q^{\nu T}_d \mathbf{Q}^{\mu}_{ij} \]
\[+ \epsilon_{ijklm} \mathbf{P}^{ij}_\mu \mathbf{P}^{kl}_\nu Q^{\mu T}_c Q^{\nu T}_d \mathbf{Q}^{\mu}_{ij} \mathbf{Q}^{\mu}_{lm} \]
\((69) \)

where

\[\theta^{(10)}_{\alpha \beta \gamma \delta} = h^{(10)}_{\alpha \beta} h^{(10)}_{\gamma \delta} k^{(10)}_\iota \mathcal{M}^{(10)}_{\alpha \beta \gamma \delta \iota} k^{(10)}_\iota \]
\((70) \)

Further details of the decomposition of the couplings generated by 10 mediation are given in Appendix A.

5.7 The \((144 \times \overline{144})_{120} (144 \times \overline{144})_{120}\) Couplings

We begin by considering the superpotential

\[\mathcal{W}^{(120)'} = \frac{1}{2} \Phi_{\nu \rho \lambda \nu} \mathcal{M}^{(10)}_{\nu \rho \lambda \nu} \mathcal{M}^{(10)}_{\nu \rho \lambda \nu} + \frac{1}{3!} h^{(120)}_{\alpha \beta \gamma \delta} < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > k^{(120)}_{\nu} \Phi_{\nu \rho \lambda \nu} \]
\[+ \frac{1}{3!} h^{(120)}_{\alpha \beta} < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > k^{(120)}_{\nu} \Phi_{\nu \rho \lambda \nu} \]
\((71) \)

Eliminating \(\Phi_{\nu \rho \lambda \nu} \) using the F-flatness condition

\[\frac{\partial \mathcal{W}^{(120)'} \nu \rho \lambda \nu}{\partial \Phi_{\nu \rho \lambda \nu}} = 0 \]
\((72) \)

we obtain

\[\mathcal{W}^{(144 \times \overline{144})_{120} (144 \times \overline{144})_{120}} = \frac{1}{18} \lambda^{(120)}_{\alpha \beta \gamma \delta} \left< T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} \right> \]
\[= \frac{1}{18} \lambda^{(120)}_{\alpha \beta \gamma \delta} \left< T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} \right> \]
\[+ \frac{8}{9} \lambda^{(120)}_{\alpha \beta \gamma \delta} \left< T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} \right> \]
\[- 6 < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > \]
\[+ 3 < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > \]
\[+ 3 < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > \]
\[+ 3 < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > \]
\[+ 3 < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > < T_{\alpha}^{(120)} | B \Gamma_{\nu \rho \lambda \nu} | T_{\beta}^{(120)} > \]
\[= \frac{8}{3} \lambda^{(120)}_{\alpha \beta \gamma \delta} \left[-4 \mathbf{P}^{T}_{\alpha \mu} \mathbf{P}^{T}_{\beta \mu} \mathbf{P}^{T}_{\nu \nu} \mathbf{P}^{T}_{\beta \nu} + 4 \mathbf{P}^{T}_{\alpha \mu} \mathbf{P}^{T}_{\beta \mu} \mathbf{P}^{T}_{\nu \nu} \mathbf{P}^{T}_{\beta \nu} \right] \]
\[+ \epsilon_{ijklm} \mathbf{P}^{T}_{\alpha \mu} \mathbf{P}^{T}_{\beta \mu} \mathbf{P}^{T}_{\nu \nu} \mathbf{P}^{T}_{\beta \nu} \]
\((73) \)
where

\[
\lambda^{(120)}_{abcd} = \tilde{h}_{abcd} (-) \lambda^{(120)}_{abcd} (-) \bar{k}_V^{(120)} \left[\tilde{\mathcal{M}}^{(120)} \left\{ \mathcal{M}^{(120)} \tilde{\mathcal{M}}^{(120)} - 1 \right\} \right]_{VV'} \bar{k}_V^{(120)} \tag{74}
\]

and

\[
\tilde{\mathcal{M}}^{(120)} = \left[\mathcal{M}^{(120)} + (\mathcal{M}^{(120)})^T \right]^{-1}
\]

5.8 The \((144 \times 144)_{120} (144 \times 144)_{120}\) couplings

An analysis similar to the above gives

\[
\mathcal{W}^{(144 \times 144)_{120} (144 \times 144)_{120}} = \frac{1}{18} \bar{\lambda}^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

\[
= \frac{1}{18} \bar{\lambda}^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

\[
= \frac{8}{9} \bar{\lambda}^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

\[
= \frac{8}{3} \bar{\lambda}^{(120)}_{abcd} \left[4Q_{ai \mu}^{T} Q_{b \mu j}^{T} Q_{c \nu}^{T} Q_{d \nu}^{T} - 4Q_{ai \mu}^{T} Q_{b \mu j}^{T} Q_{c \nu}^{T} Q_{d \nu}^{T} - \epsilon_{ijklm} Q_{a \mu j}^{T} B_{b \nu k} Q_{c \nu}^{T} Q_{d \nu}^{T} \right] \tag{76}
\]

where

\[
\bar{\lambda}^{(120)}_{abcd} = \tilde{h}_{abcd} (-) \lambda^{(120)}_{abcd} (-) \bar{k}_V^{(120)} \left[\tilde{\mathcal{M}}^{(120)} \left\{ \mathcal{M}^{(120)} \tilde{\mathcal{M}}^{(120)} - 1 \right\} \right]_{VV'} \bar{k}_V^{(120)} \tag{77}
\]

5.9 The \((144 \times 144)_{120} (144 \times 144)_{120}\) couplings

Starting with cubic couplings involving the 120-plet of fields and following the same procedure as above one gets the following

\[
\mathcal{W}^{(144 \times 144)_{120} (144 \times 144)_{120}} = -\frac{1}{18} \theta^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

\[
= -\frac{1}{18} \theta^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

\[
= -\frac{1}{18} \theta^{(120)}_{abcd} \left[< \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > < \mathcal{Y}^{+}_{(-)} \mathcal{Y}^{+}_{(-)} > \right]
\]

24
Here we begin by considering the superpotential $SU(5)$. The (5×10) decomposition of the quartic couplings can be carried out using the results given in Appendix B.

5.10 The $(\mathbf{144} \times \mathbf{144})_{126}$ couplings

Here we begin by considering the superpotential

$$W^{(126,126)} = \frac{1}{2} \Phi_{\nu\rho\sigma\lambda\theta} \mathcal{M}^{(126,126)} + \frac{1}{5!} \tilde{h}^{(126)}_{\mu\nu} + \frac{1}{5!} \tilde{h}^{(126)}_{\mu\nu}$$

where

$$\tilde{h}^{(126)}_{\mu\nu} = \tilde{h}^{(126)}_{\mu\nu} - \tilde{h}^{(126)}_{\mu\nu}$$

The $SU(5)\times U(1)$ decomposition of the quartic couplings can be carried out using the results given in Appendix B.
Eliminating $\Phi_{\nu\rho\sigma\lambda}W$, $\Psi_{\nu\rho\sigma\lambda}W$ through the F flatness conditions
\[
\frac{\partial W^{(126,126)'}}{\partial \Phi_{\nu\rho\sigma\lambda}W} = 0, \quad \frac{\partial W^{(126,126)'}}{\partial \Psi_{\nu\rho\sigma\lambda}W} = 0
\]

(81)
gives the quartic interaction below

\[
W = \frac{1}{7200} (126,126) \left< \gamma_{(+)\mu} | B_{\nu\rho\sigma\lambda} | \gamma_{(+)\mu} > \times \left< \psi_{(-)\nu} | B_{\nu\rho\sigma\lambda} | \psi_{(-)\nu} > \right>
\]

\[
= \frac{2}{15} (126,126)^{(+)\nu} (126) (126)^{(+)\nu} \left[2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right.
\]

\[
\left. + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right]
\]

\[
(126,126) \left< \gamma_{(+)\mu} | B_{\nu\rho\sigma\lambda} | \gamma_{(+)\mu} > \times \left< \psi_{(-)\nu} | B_{\nu\rho\sigma\lambda} | \psi_{(-)\nu} > \right>
\]

\[
= \frac{2}{15} (126,126)^{(+)\nu} (126) (126)^{(+)\nu} \left[2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right.
\]

\[
\left. + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right]
\]

\[
(82)
\]

where

\[
(126,126)^{(+)\nu} (126) (126)^{(+)\nu} \left[2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right.
\]

\[
\left. + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right]
\]

\[
(84)
\]

5.11 The $(\mathbb{144} \times \mathbb{144})_{126} (\mathbb{16} \times \mathbb{16})_{126}$ couplings

The analysis here follows a very similar approach as above and one gets

\[
W = \frac{1}{7200} (126,126) \left< \gamma_{(+)\mu} | B_{\nu\rho\sigma\lambda} | \gamma_{(+)\mu} > \times \left< \psi_{(-)\nu} | B_{\nu\rho\sigma\lambda} | \psi_{(-)\nu} > \right>
\]

\[
= \frac{2}{15} (126,126)^{(+)\nu} (126) (126)^{(+)\nu} \left[2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right.
\]

\[
\left. + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} + 2P_{\nu}^{T} P_{\mu} N_{\alpha}^{T} N_{\beta}^{T} \right]
\]

\[
(85)
\]
where

\[\xi_{\hat{a}, \hat{c}, \hat{d}}^{(126, \overline{126})(+)} = h_{\hat{a}, \hat{b}}^{(126)(+)} f_{\hat{c}, \hat{d}}^{(126)(+)} l_w^{(126)} \tilde{M}^{(126, \overline{126})}_{W W} k_{\nu'}^{(126)} \]

Further decomposition in the $SU(5) \times U(1)$ basis can be carried out using the results in Appendix C.

6 Matter-Higgs Couplings

In this section we evaluate the quartic couplings involving two semi-spinors of matter fields, i.e., the 16 plats of matter fields and two vector-spinor fields. We will utilize the analysis of Sec.(4) to compute these quartic couplings. Thus the couplings would arise by mediation from 10, 120 and $126 + \overline{126}$ between the matter sector and the Higgs sector. We discuss now these computations in detail below.

6.1 The $(16 \times 16)_{10} (\overline{144} \times \overline{144})_{10}$ couplings

For the computation of the $(16 \times 16)_{10} (\overline{144} \times \overline{144})_{10}$ couplings arising from the 10 mediation we consider the superpotential

\[W^{(10)_{\nu}} = \frac{1}{2} \Phi_{\nu \mu} M_{\nu \mu}^{(10)} + h_{\hat{a}, \hat{b}}^{(10)} \Psi^{(+)\hat{a}} B \Gamma_{\nu} \mathcal{Y}^{(+)\hat{b}} + k_{\nu}^{(10)} \Phi_{\nu \mu} + f_{\hat{a}, \hat{b}}^{(10)} \Psi^{(+)\hat{a}} B \Gamma_{\nu} \mathcal{Y}^{(+)\hat{b}} + \bar{k}_{\nu}^{(10)} \Phi_{\nu \mu} \]

Eliminating $\Phi_{\nu \mu}$ using F flatness condition we get

\[W^{(16 \times 16)_{10} (\overline{144} \times \overline{144})_{10}} = -2 \xi_{\hat{a}, \hat{c}, \hat{d}}^{(10)} < \Psi^{(+)\hat{a}} | B \Gamma_{\rho} | \Psi^{(+)\hat{b}} > < \mathcal{Y}^{(+)\hat{c}} | B \Gamma_{\nu} | \mathcal{Y}^{(+)\hat{d}} >
\]

\[= -4 \xi_{\hat{a}, \hat{c}, \hat{d}}^{(10)} \left[< \Psi^{(+)\hat{a}} | B b_{\hat{b}}^\dagger | \Psi^{(+)\hat{b}} > < \mathcal{Y}^{(+)\hat{c}} | B b_{\hat{d}}^\dagger | \mathcal{Y}^{(+)\hat{d}} >
\]

\[+ < \Psi^{(+)\hat{a}} | B b_{\hat{b}}^\dagger | \mathcal{Y}^{(+)\hat{b}} > < \mathcal{Y}^{(+)\hat{c}} | B b_{\hat{d}}^\dagger | \mathcal{Y}^{(+)\hat{d}} > \right]
\]

\[= 2 \xi_{\hat{a}, \hat{c}, \hat{d}}^{(10)(+)} \left(\epsilon_{jklmn} M_{\hat{a}}^{T} M_{\hat{b}}^{T} P_{\hat{c}}^{T} P_{\hat{d}}^{T} - 8 M_{\hat{a}}^{T} M_{\hat{b}}^{T} P_{\hat{c}}^{T} P_{\hat{d}}^{T} \right) \quad (88) \]

where

\[\xi_{\hat{a}, \hat{c}, \hat{d}}^{(10)(+)} = f_{\hat{a}, \hat{b}}^{(10)(+)} h_{\hat{c}, \hat{d}}^{(10)(+)} l_{\nu}^{(10)} \tilde{M}_{W W} k_{\nu'}^{(10)} \]

and

\[\tilde{M}^{(10)} = \left[M^{(10)} + (M^{(10)})^{T} \right]^{-1} \quad (90) \]

27
6.2 The \((16 \times 16)_{10} (144 \times 144)_{10}\) couplings

An analysis similar to the above gives

\[
W^{(16\times 16)_{10}(144\times 144)_{10}} = -2\zeta^{(10)}_{ab,cd} < \Psi^{\ast}_{(+)}|B \Gamma_{\rho}|\Psi_{(+)}b > < \Upsilon^{\ast}_{(-)}|\Upsilon_{(-)}d > \\
- 4\zeta^{(10)}_{ab,cd} \left[< \Psi^{\ast}_{(+)}|B b_{i}|\Psi_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \\
+ < \Psi^{\ast}_{(+)}|B b_{i}d > < \Upsilon^{\ast}_{(-)}|\Upsilon_{(-)}d > \right] \\
= 2\zeta^{(10)(+)}_{ab,cd} \left(8M_{\rho}^{ij}b_{ij}^TT_{\rho\mu}Q_{\rho\mu} - 8M_{\rho}^{ij}b_{ij}^TT_{\rho\mu}Q_{\rho\mu} - M_{\rho}^{ij}b_{ij}^TT_{\rho\mu}Q_{\rho\mu} + \epsilon^{ijklm}M_{\rho}^{ij}b_{ij}^TT_{\rho\mu}Q_{\rho\mu} + \epsilon^{ijklm}M_{\rho}^{ij}b_{ij}^TT_{\rho\mu}Q_{\rho\mu} \right) (91)
\]

where

\[
\zeta^{(10)(+)}_{ab,cd} = f^{(10)(+)}_{ab} h^{(10)(+)}_{cd} f^{(10)}_{cd} H^{(10)}_{ab} (92)
\]

To obtain the reduction of the results of Secs. (6.1) and (6.2) in the \(SU(5) \times U(1)\) basis we use the results of Appendix A.

6.3 The \((16 \times 16)_{120} (144 \times 144)_{120}\) couplings

Here we begin by considering the superpotential

\[
W^{(120)\nu} = \frac{1}{2} \Phi_{\nu\rho\lambda\nu} M^{(120)}_{\nu\nu} \Phi_{\rho\nu\lambda\nu} + \frac{1}{3!} f^{(120)}_{ab} < \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > k^{(120)}_{\nu} \Phi_{\nu\rho\lambda\nu} \\
+ \frac{1}{3!} f^{(120)}_{ab} < \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > l^{(120)}_{\nu} \Phi_{\nu\rho\lambda\nu} \\
+ \frac{1}{3!} f^{(120)}_{ab} < \Psi^{\ast}_{(-)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(-)}b > k^{(120)}_{\nu} \Phi_{\nu\rho\lambda\nu} (93)
\]

Eliminating \(\Phi_{\nu\rho\lambda\nu}\) by the F flatness condition we get

\[
W^{(16\times 16)_{120}(144\times 144)_{120}} = -\frac{1}{18} \zeta^{(120)}_{ab,cd} < \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \\
- \frac{1}{18} \zeta^{(120)}_{ab,cd} \left[< \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \\
- 28 < \Psi^{\ast}_{(-)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \right] \\
= -\frac{4}{9} \zeta^{(120)}_{ab,cd} \left[< \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \\
- 6 < \Psi^{\ast}_{(+)}|B \Gamma_{\nu\rho\lambda\nu} \Upsilon_{(+)}b > < \Upsilon^{\ast}_{(+)}|\Upsilon_{(+)}d > \right] (94)
\]
\(+3 < \Psi_{(+)}^{\delta} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > \)
\(+3 < \Psi_{(+)}^{\delta} | B b_{i} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{i} | \Upsilon_{(+)}^\nu > \)
\(+3 < \Psi_{(+)}^{\delta} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > \)
\(+ < \Upsilon_{(+)}^{\delta} | B b_{ij} | \Upsilon_{(+)}^\nu > < \Psi_{(+)}^{\alpha} | B b_{ij} | \Psi_{(+)}^\nu > \)
\(= 4 \xi_{ab,cd}^{(120)(-)} \left[4M_{ab}^T P_{cd}^T P_{\nu \nu} + 4M_{ab}^T M_{cd}^T \right] \)
\(= 4 \xi_{ab,cd}^{(120)(-)} \left[-4M_{ab}^T M_{cd}^T P_{\nu \nu} - 4M_{ab}^T M_{cd}^T \right] \)
\(= 4 \xi_{ab,cd}^{(120)(-)} \left[-4M_{ab}^T M_{cd}^T P_{\nu \nu} - 4M_{ab}^T M_{cd}^T \right] \)

where
\(\xi_{ab,cd}^{(120)(-)} = f_{ab} h_{cd} l_{\nu \nu} \cdot \tilde{M}_{V V} \cdot \tilde{M}_{\nu \nu} \)

and
\(\tilde{M}_{(120)} = \left[M_{(120)} + (M_{(120)})^T \right]^{-1} \)

6.4 The \((16 \times 16)_{120} (144 \times 144)_{120}\) couplings

An analysis similar to the above gives

\(W_{(16 \times 16)(144 \times 144)}^{(120)(-)} = -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{i} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{i} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
\(= -1 \frac{\xi_{ab,cd}^{(120)} | B b_{ij} | \Psi_{(+)}^\nu > < \Upsilon_{(+)}^\alpha | B b_{ij} | \Upsilon_{(+)}^\nu > }{18} \)
+3 < \Upsilon^*_(-\bar{\alpha}\nu) | B b^+_i | \Upsilon^*_(-\bar{\nu}\bar{b}) > < \Psi^*_+ | b | \Psi^*_+ > > \\
+3 < \Upsilon^*_(-\bar{\alpha}\nu) | B b^+_i | \Upsilon^*_(-\bar{\nu}\bar{b}) > < \Psi^*_+ | b | \Psi^*_+ > > \\
+3 < \Upsilon^*_(-\bar{\alpha}\nu) | B b^+_i b_j | \Upsilon^*_(-\bar{\nu}\bar{b}) > < \Psi^*_+ | b_j | \Psi^*_+ > > \\

= \frac{4}{3} \zeta^{(120)}_{\alpha\beta\epsilon\xi} \left[4M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} - 4M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
- 4M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} - 8M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
+ \epsilon_{ijklm} M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} - 4\epsilon_{ijklm} M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
+ 8M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} + 4M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
- 4M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \right] \\

(97)

where

\zeta^{(120)}_{\alpha\beta\epsilon\xi} = \sum_{\alpha\beta\epsilon\xi} \frac{1}{h^{(120)}_{\alpha\beta\epsilon\xi}} h^{(120)}_{\alpha\beta\epsilon\xi} \tilde{M}_{\alpha\beta\epsilon\xi} K_{\alpha\beta\epsilon\xi} \\

(98)

Further reduction of the above to the SU(5) x U(1) basis can be achieved by using Appendix B.

6.5 The (16 x 16)\overline{126} (144 x 144)_{126} couplings

Finally we consider the matter-Higgs couplings via 126 + \overline{126} mediation. Here we begin by considering the superpotential

\mathcal{W}^{(126,\overline{126})'} = \frac{1}{2} \Phi_{\nu\rho\sigma\lambda\delta \mathcal{W}} \mathcal{M}_{\nu\rho\sigma\lambda\delta \mathcal{W}} \\
+ \frac{1}{3} f^{(126)}_{\alpha\beta} < \Psi^*_+ | B \Gamma [\nu \Gamma_\rho \Gamma_\sigma \Gamma_\lambda \Gamma_\varphi] | \Psi^*_+ > l^{(120)}_{\nu\rho\sigma\lambda\delta \mathcal{W}} \\
+ \frac{1}{3} h^{(126)}_{\alpha\beta} < \Psi^*_+ | B \Gamma [\nu \Gamma_\rho \Gamma_\sigma \Gamma_\lambda \Gamma_\varphi] | \Upsilon^*_(-\bar{\lambda}\mu) > k^{(120)}_{\nu\rho\sigma\lambda\delta \mathcal{W}} \\

(99)

Eliminating \Phi_{\nu\rho\sigma\lambda\delta \mathcal{W}}, \mathcal{M}_{\nu\rho\sigma\lambda\delta \mathcal{W}}, by use of F flatness gives

\mathcal{W}^{(16 x 16)\overline{(144 x 144)}_{126}} = \frac{1}{7200} \sum\frac{1}{15} \zeta^{(126,\overline{126})}_{\alpha\beta\epsilon\xi} \left[2M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} - 2M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
+ 2M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} + 48M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \\
- 2M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} + M^T_{\alpha i} M^T_{j\mu} Q^T_{\epsilon \mu} Q^T_{\epsilon \mu} \right] \\

30
\[+6M_{a}^{ij}T_{b}^{kl}Q_{cij\mu}^{T}Q_{d\mu} - 30M_{a}^{ij}T_{b}^{kl}Q_{cik\mu}^{T}Q_{djl\mu} + 9M_{a}^{ij}T_{b}^{kl}Q_{cij\mu}^{T}Q_{d\mu} + 2\epsilon_{ijklm}M_{a}^{ij}T_{b}^{kl}Q_{cij\mu}^{T}Q_{d\mu} - 2\epsilon_{ijklm}M_{a}^{ij}T_{b}^{kl}Q_{cij\mu}^{T}Q_{d\mu} \] (100)

where

\[\mathcal{M}_{ab,cd}^{(126,126)} = J_{ab}^{(126)}R_{cd}^{(126)} \hat{M}_{WWW}^{(126,126)}l_{WW}^{(126)} \] (101)

and

\[\hat{M}_{ab,cd}^{(126,126)} = \left(\mathcal{M}_{(126,126)}^{(126,126)} \right)^{-1} \left[\left(\mathcal{M}_{(126,126)}^{(126,126)} \right)^{T} \left(\mathcal{M}_{(126,126)}^{(126,126)} \right)^{-1} - 2 \cdot 1 \right] \] (102)

A further reduction of the quartic interactions to the SU(5) × U(1) basis can be achieved by use of Appendix C.

7 The Gauge Couplings of Vector-Spinors

In this section we compute the interactions of the 144 and 144 with gauge tensors 1 and 45.

7.1 The 144† × 144 × 1 couplings

These couplings are given by

\[L_{++}^{(1)} = g_{ab}^{(1)} \langle \Upsilon_{(+)}a_{\mu} | \gamma_{0}^{0} \gamma_{A}^{0} | \Upsilon_{(+)}b_{\mu} > \Phi_{A\rho\sigma} \] (103)

where \(\gamma_{A}^{0}(A, B = 0 - 3) \) spans the Clifford algebra associated with the Lorentz group. An explicit analysis in the SU(5) × U(1) basis gives

\[L_{++}^{(1)} = g_{ab}^{(1)} \left\{ \left[\mathcal{P}_{ij}^{A} \gamma_{A} \mathcal{P}_{bi} + \mathcal{P}_{ij}^{A} \gamma_{A} \mathcal{P}_{bij} + \frac{1}{2} \mathcal{P}_{ij}^{(S)} \gamma_{A} \mathcal{P}_{bij}^{(S)} + \frac{1}{2} \mathcal{P}_{ij}^{A} \gamma_{A} \mathcal{P}_{bij}^{A} \right] \gamma_{A} \mathcal{P}_{bij}^{A} \mathcal{G}_{A} \right\} (104) \]

7.2 The 144† × 144 × 1 couplings

These couplings are given by

\[L_{--}^{(1)} = g_{ab}^{(1)} \langle \Upsilon_{(-)}a_{\mu} | \gamma_{0}^{0} \gamma_{A}^{0} | \Upsilon_{(-)}b_{\mu} > \Phi_{A\rho\sigma} \] (105)

An explicit analysis in the SU(5) × U(1) basis gives

\[L_{--}^{(1)} = g_{ab}^{(1)} \left\{ \left[\mathcal{Q}_{ij}^{A} \gamma_{A} \mathcal{Q}_{bij}^{A} + \mathcal{Q}_{ij}^{A} \gamma_{A} \mathcal{Q}_{bij}^{A} + \frac{1}{2} \mathcal{Q}_{ij}^{(S)} \gamma_{A} \mathcal{Q}_{bij}^{(S)} + \frac{1}{2} \mathcal{Q}_{ij}^{A} \gamma_{A} \mathcal{Q}_{bij}^{A} \right] \gamma_{A} \mathcal{Q}_{bij}^{A} \mathcal{G}_{A} \right\} (106) \]
7.3 The $144^\dagger \times 144 \times 45$ couplings

These couplings are defined by

$$L^{(45)}_{++} = \frac{1}{2!} g_{ab}^{(45)} < \Upsilon_{(+)} \hat{\alpha}_\mu | \gamma^0 \gamma^A \Sigma_{\rho} | \Upsilon_{(+)} \hat{\beta}_\mu > \Phi_{A\rho}$$ \hspace{1cm} (107)

An expansion in the $SU(5) \times U(1)$ basis using the Basic Theorem gives

$$L^{(45)}_{++} = g_{ab}^{(45)} \left\{ \begin{array}{l}
-\frac{3}{\sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{ij} - \frac{7}{10 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} - \frac{3}{2 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} + \frac{2}{5 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} \\
+ \frac{21}{25 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} - \frac{21}{25 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} + \frac{1}{6 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} \\
+ \frac{1}{6 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} + \frac{1}{6 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} + \frac{1}{6 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij} + \frac{1}{6 \sqrt{5}} \bar{F}^{ij}_{ij} \gamma^A \gamma^B_{bij}
\end{array} \right\} G_A$$

The barred matter fields are defined so that $\bar{F}^{ij}_{ij} = \gamma^A \gamma^B_{ij}$, etc..

7.4 The $144^\dagger \times 144 \times 45$ couplings

These gauge couplings are defined by

$$L^{(45)}_{--} = \frac{1}{2!} g_{ab}^{(45)} < \Upsilon_{(-)} \hat{\alpha}_\mu | \gamma^0 \gamma^A \Sigma_{\rho} | \Upsilon_{(-)} \hat{\beta}_\mu > \Phi_{A\rho}$$ \hspace{1cm} (109)
An analysis in the $SU(5) \times U(1)$ basis using the Basic Theorem gives

$$L^{(45)}_{\alpha\beta} = g^{(45)}_{\alpha\beta} \left\{ \left[\frac{3}{\sqrt{5}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^i + \frac{7}{10 \sqrt{5}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^j + \frac{3}{2 \sqrt{5}} \bar{Q}_{\alpha}^{(S)} \gamma^A Q_{\beta}^{ij} - \frac{1}{2 \sqrt{5}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^{ik} \right]^2 - \frac{21}{5 \sqrt{5}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^a - \sqrt{5} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^b - \frac{1}{6 \sqrt{5}} \bar{Q}_{\alpha}^{(S)} \gamma^A Q_{\beta}^{ijk} \right\} G_{\alpha\beta}$$

$$+ \left[\frac{1}{\sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^k - \frac{1}{1 \sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^l + \frac{2}{15 \sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^m \right] \epsilon^{jkln} Q_{\alpha}^{(S)} \gamma^A Q_{\beta}^{n}_{(S)b} - \frac{1}{20 \sqrt{3}} \epsilon^{ijklm} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^l_{(S)b}$$

$$+ \left[- \frac{1}{\sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^j - \frac{1}{1 \sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^k + \frac{3}{10 \sqrt{2}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^l_{(S)b} - \frac{1}{\sqrt{15 \sqrt{2}}} \bar{Q}_{\alpha} \gamma^A Q_{\beta}^m_{(S)b} \right] G_{\alpha\beta}$$

(110)

The above concludes our analysis of the interactions of the vector-spinors with Higgs multiplets in tensor representations, self-couplings of the vector-spinors, and of the couplings of the vector-spinors with the matter in the spinor 16-plet representations. These couplings are of considerable value in the analysis of spontaneous breaking of the $SO(10)$ gauge symmetry, in the analysis of proton lifetime, and in the analysis of quark-lepton textures and in the study of neutrino masses. In the next section we give few illustrative examples of the utility of the couplings for these analyses.
8 Use of Vector-Spinor Couplings in Model Building

In this section we illustrate to the reader the use of vector-spinor couplings for further development of $SO(10)$ model building discussed in Ref.[3]. In particular, we discuss the breaking of $SO(10)$ group down to the Standard Model group, doublet-triplet splitting, mass growth of quarks and leptons, and baryon and lepton violating dimension five operators.

In Ref.[3] it was shown that breaking of $SO(10)$ to the Standard Model gauge group can be accomplished in one step. In the following we give a simpler illustration of how this comes about. This simpler example includes in super potential a masss term for 144×144 and interaction terms mediated by 45 and 210 and is given by

$$W = W^{(\bar{160}_H \times 144_H)} + W^{(\bar{160}_H \times 144_H)_{45} (\bar{160}_H \times 144_H)_{45}} + W^{(\bar{160}_H \times 144_H)_{210} (\bar{160}_H \times 144_H)_{210}}$$

(111)

Explicit forms of these couplings are

$$W^{(\bar{160}_H \times 144_H)} = M < \Upsilon^*_(-)_{\mu} |B| \Upsilon_{(+)}_{\mu} >$$

$$W^{(\bar{160}_H \times 144_H)_{45} (\bar{160}_H \times 144_H)_{45}} = \frac{\Lambda_{45}}{M'} < \Upsilon^*_(-)_{\mu} |B \Sigma_{\rho \lambda} | \Upsilon_{(+)}_{\mu} >$$

$$\cdot < \Upsilon^*_(-)_{\nu} |B \Sigma_{\rho \lambda} | \Upsilon_{(+)}_{\nu} >$$

$$W^{(\bar{160}_H \times 144_H)_{210} (\bar{160}_H \times 144_H)_{210}} = \frac{\Lambda_{210}}{M'} < \Upsilon^*_(-)_{\mu} |B \Gamma_{\rho \sigma \Gamma \lambda \Gamma \xi} | \Upsilon_{(+)}_{\mu} >$$

$$\cdot < \Upsilon^*_(-)_{\nu} |B \Gamma_{\rho \sigma \Gamma \lambda \Gamma \xi} | \Upsilon_{(+)}_{\nu} >$$

(112)

8.1 One step breaking of $SO(10)$ GUT symmetry

The terms that contribute to one step breaking of GUT symmetry: $SO(10) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ are

$$W_{GS} = M Q^i_j P^j_i + \alpha_1 Q^i_j P^j_i Q^k_l P^l_k + \alpha_2 Q^i_j P^j_i Q^k_l P^l_k$$

(113)

where

$$\alpha_1 = \frac{1}{M'} \left(-\Lambda_{45} + \frac{1}{6} \Lambda_{210}\right)$$

$$\alpha_2 = \frac{1}{M'} \left(-4 \Lambda_{45} - \Lambda_{210}\right)$$

(114)
For symmetry breaking we invoke the following vacuum expectation values (VEV's)

\[
< Q_i^j >= q \text{ diag}(2, 2, 2, -3, -3), \quad < P_i^j >= p \text{ diag}(2, 2, 2, -3, -3)
\]
(115)

and together with the minimization of \(W_{GS} \), we find

\[
\frac{M M'}{q p} = 116 \lambda_{45} + 4 \lambda_{210}
\]
(116)

The D-flatness condition \(< 144 >= < \bar{144} > \) gives \(q = p \). With the above VEV, spontaneous breaking of \(SO(10) \) occurs down to the Standard Model group.

8.2 Doublet triplet splitting

As discussed in Ref.[3] in the scenario with one step breaking of \(SO(10) \) both Higgs doublets and the Higgs triplets will be heavy. However, it is possible to get a pair of light Higgs doublets by fine tuning, a procedure which is justified in the context of landscape scenarios as discussed in Ref.[3]. Here we illustrate this explicitly for the case of the superpotential of Eq.(111). To this end we collect the relevant terms using mixed \(SO(10) \) and \(SU(5) \) indices:

\[
W_{DT} = M \left(Q_\mu P_\mu - \frac{1}{2} Q_{ij \mu} P_{ij}^\mu \right) + \frac{\Lambda_{45}}{M'} \left(8 Q_\mu^i P_{j \mu} Q_{k \nu} P_{j \nu}^{k} + Q_\mu^i P_{i \mu} Q_{j \nu} P_{j \nu}^k \right)
\]

\[
+ 6 Q_\mu P_\mu Q_\nu P_{i \nu}^\mu \right) + \frac{\Lambda_{210}}{M'} \left(-\frac{2}{3} Q_\mu^i P_{j \mu} Q_{k \nu} P_{j \nu}^k - \frac{1}{6} Q_\mu^i P_{i \mu} Q_{j \nu} P_{j \nu}^k \right.
\]

\[
- \frac{1}{3} Q_\mu P_\mu Q_\nu P_{i \nu}^\mu - \frac{8}{3} Q_\mu P_{i \mu} Q_\nu P_{j \nu}^k \right)
\]
(117)

when expanded in purely \(SU(5) \) indices, we get,

\[
W_{DT} = \left[M + \frac{1}{M'} \left(6 \Lambda_{45} - \frac{1}{3} \Lambda_{210} \right) < Q_\mu^m > < P_\mu^n > \right] \left[Q_i^i P_i^i + Q_i^i P_i^i \right]
\]

\[
- \frac{8}{3} \Lambda_{210} < Q_\mu^i m > < P_\mu^n > Q_i^j P_j^i
\]

\[
\left[-\frac{1}{2} M + \frac{1}{M'} \left(\Lambda_{45} - \frac{1}{6} \Lambda_{210} \right) < Q_\mu^m > < P_\mu^n > \right] \left[Q_{ij}^k P_{ij}^k - \frac{1}{4} \left(\delta_{ij}^k Q_k^j - \delta_{ij}^k Q_k^i \right) \right]
\]

\[
\times \left[P_{ij}^k - \frac{1}{4} \left(\delta_{ik}^j P_j^i - \delta_{ik}^j P_i^j \right) \right]
\]

\[
+ \left[\frac{1}{M'} \left(\Lambda_{45} - \frac{1}{6} \Lambda_{210} \right) < Q_\mu^m > < P_\mu^n > \right] \left[Q_{ij}^k P_{ij}^k - \frac{1}{4} \left(\delta_{ij}^k Q_k^j - \delta_{ij}^k Q_k^i \right) \right]
\]

\[
\times \left[P_{ij}^k - \frac{1}{4} \left(\delta_{ik}^j P_j^i - \delta_{ik}^j P_i^j \right) \right]
\]
(118)

Note that in addition to the pairs of doublets: \((Q_\alpha, P_\alpha) \), \((Q_\alpha, P_\alpha) \) \((\alpha, \beta, \gamma = 4, 5) \) and pairs of triplets: \((Q_\alpha, P_\alpha), (Q_\alpha, P_\alpha) \) \((a, b, c = 1, 2, 3) \) there are also pairs
of \(SU(2)\) doublets and \(SU(3)_C\) triplets and anti-triplets that reside in \(Q^i_j\) and \(P^i_j\). We denote them by \((\bar{Q}_a, P^a), (\bar{Q}_a, \tilde{P}^a), (Q^a, \bar{P}_a)\). These can be decomposed as follows

\[
\begin{align*}
Q^b_{\alpha} &= -Q^\beta_{\delta \alpha} = \bar{Q}_\alpha, \quad P^b_{\alpha} = -P^\beta_{\delta \alpha} = \tilde{P}^\alpha
\end{align*}
\]

\[
\begin{align*}
Q^a_{\delta \alpha} &= \bar{Q}_b + \frac{1}{3} \delta_b \bar{Q}_\alpha, \quad P^a_{\alpha} = \tilde{P}_b + \frac{1}{3} \delta^a \bar{P}_\alpha, \quad \bar{Q}_b = 0 = \tilde{P}_b
\end{align*}
\]

\[
\begin{align*}
Q^a_{\beta \delta} &= \bar{Q}_a - \frac{1}{2} \delta_a \bar{Q}_\delta, \quad P^a_{\alpha} = \tilde{P}_a - \frac{1}{2} \delta^a \bar{P}_\alpha, \quad \bar{Q}_a = 0 = \tilde{P}_a
\end{align*}
\]

\[
\begin{align*}
Q^a_{\delta \gamma} &= \bar{Q}_c + \frac{1}{2} (\delta^a \bar{Q}_c - \delta^a \bar{Q}_b), \quad P^a_{\alpha} = \tilde{P}_c + \frac{1}{2} (\delta^a \bar{P}_c - \delta^a \bar{P}_b), \quad \bar{Q}_c = 0 = \tilde{P}_c
\end{align*}
\]

The kinetic energy of the 45 and \(\bar{45}\) fields is given by

\[
-\partial_A Q^k_{ij} \partial^A Q^k_{ij} - \partial_A P^j_k \partial^A P^j_k = -\partial_A \bar{Q}_\alpha \partial^A \bar{Q}_\alpha - \partial_A \bar{Q}_a \partial^A \bar{Q}_a - \partial_A \bar{Q}_a \partial^A \bar{Q}_a
\]

so that the doublet and triplet fields are normalized according to

\[
\begin{align*}
\bar{Q}_\alpha &= \frac{1}{2} \sqrt{\frac{3}{2}} \bar{Q}_\alpha, \quad \bar{Q}_a &= \sqrt{\frac{2}{3}} \bar{Q}_a, \quad \bar{Q}^a &= \frac{1}{\sqrt{2}} \bar{Q}^a
\end{align*}
\]

\[
\begin{align*}
\bar{P}^a &= \frac{1}{2} \sqrt{\frac{3}{2}} \bar{P}^a, \quad \bar{P}_a &= \sqrt{\frac{2}{3}} \bar{P}_a, \quad \bar{P}_a &= \frac{1}{\sqrt{2}} \bar{P}_a
\end{align*}
\]

The mass matrix of the Higgs doublets is given by

\[
\begin{bmatrix}
\frac{3}{8} M + \frac{p^2}{4\sqrt{\pi}} (\frac{66}{3} \Lambda_{45} - \frac{73}{2} \Lambda_{210}) \\
\frac{1}{2} \sqrt{\frac{3}{2}} \frac{p^2}{\sqrt{4\pi}} (8 \Lambda_{45} - \frac{5}{2} \Lambda_{210}) \\
0 \\
0 \\
0
\end{bmatrix}
\]
It is clear from the above Higgs mass matrices that one needs to diagonalize in the Higgs doublet sub-sectors \((\tilde{Q}_\alpha, \tilde{P}_\alpha)\) and \((Q_\alpha, P_\alpha)\) and in the Higgs triplet subsectors \((\tilde{Q}_a, \tilde{P}_a)\) and \((Q_a, P_a)\). After, diagonalization we have the following pairs of doublets and triplets:

\[
\begin{align*}
D_1 & : (Q^\alpha, P^\alpha), & T_1 & : (Q^a, P^a) \\
D_2 & : (Q'^\alpha, P'^\alpha), & T_2 & : (Q'^a, P'^a) \\
D_3 & : (\tilde{Q}'^\alpha, \tilde{P}'^\alpha), & T_3 & : (\tilde{Q}'^a, \tilde{P}'^a) \\
T_4 & : (\tilde{Q}^a, \tilde{P}^a)
\end{align*}
\] (124)

The prime fields above are expressed in terms of the original ones through the following transformation matrices

\[
\begin{bmatrix}
(Q_a', P'^a) \\
(\tilde{Q}_a', \tilde{P}'^a)
\end{bmatrix} = \begin{bmatrix}
\cos \vartheta_T & \sin \vartheta_T \\
-\sin \vartheta_T & \cos \vartheta_T
\end{bmatrix}
\begin{bmatrix}
(Q_a, P^a) \\
(\tilde{Q}_a, \tilde{P}^a)
\end{bmatrix}
\] (125)

\[
\begin{bmatrix}
(Q_a', P'^a) \\
(\tilde{Q}_a', \tilde{P}'^a)
\end{bmatrix} = \begin{bmatrix}
\cos \vartheta_D & \sin \vartheta_D \\
-\sin \vartheta_D & \cos \vartheta_D
\end{bmatrix}
\begin{bmatrix}
(Q_a, P^a) \\
(\tilde{Q}_a, \tilde{P}^a)
\end{bmatrix}
\] (126)

where

\[
\tan \vartheta_T = \frac{1}{t_3} \left(t_2 + \sqrt{t_2^2 + t_3^2} \right), \quad \tan \vartheta_D = \frac{1}{d_3} \left(d_2 + \sqrt{d_2^2 + d_3^2} \right)
\] (127)

and that

\[
\begin{align*}
d_1 & = \frac{1}{10} M + \frac{p^2}{M'} \left(\frac{481}{5} \Lambda_{45} - \frac{1603}{60} \Lambda_{210} \right) \\
d_2 & = -\frac{11}{10} M + \frac{p^2}{M'} \left(-\frac{851}{5} \Lambda_{45} + \frac{1673}{60} \Lambda_{210} \right) \\
d_3 & = \sqrt{\frac{15}{2} \frac{p^2}{M'}} \left(8 \Lambda_{45} - \frac{2}{3} \Lambda_{210} \right) \\
t_1 & = -\frac{1}{15} M + \frac{p^2}{M'} \left(\frac{616}{5} \Lambda_{45} - \frac{287}{15} \Lambda_{210} \right) \\
t_2 & = -\frac{19}{15} M + \frac{p^2}{M'} \left(-\frac{776}{5} \Lambda_{45} + \frac{227}{15} \Lambda_{210} \right) \\
t_3 & = \sqrt{\frac{10}{3} \frac{p^2}{M'}} \left(8 \Lambda_{45} - \frac{2}{3} \Lambda_{210} \right)
\end{align*}
\] (128)

The mass eigenvalues are found to be

\[
\begin{align*}
M_{D_2,D_3} & = \frac{1}{2} \left(d_1 \pm \sqrt{d_2^2 + d_3^2} \right) \\
M_{T_2,T_3} & = \frac{1}{2} \left(t_1 \pm \sqrt{t_2^2 + t_3^2} \right)
\end{align*}
\] (129)
and of course

\[M_{D_1} = M_{T_1} = M + \frac{p^2}{M'} (180\Lambda_{45} - 10\Lambda_{210}) \]
\[M_{T_4} = -\frac{1}{2} M + \frac{p^2}{M'} (-42\Lambda_{45} + \Lambda_{210}) \]

(130)

As an illustration we discuss in further detail the implication of the masslessness condition for the doublet \(D_2 \). Here the condition \(M_{D_2} = 0 \) together with the symmetry breaking condition, Eq. (116) gives a relationship among the parameters \(\Lambda_{45} \) and \(\Lambda_{210} \)

\[
\left(\frac{539}{5} \Lambda_{45} - \frac{1579}{60} \Lambda_{210} \right)^2 = \left(-\frac{1489}{5} \Lambda_{45} + \frac{1409}{60} \Lambda_{210} \right)^2 + \frac{15}{8} \left(8\Lambda_{45} - \frac{2}{3} \Lambda_{210} \right)^2
\]

(131)

The two roots to the equations above are

\[\Lambda_{210} \approx 7.4\Lambda_{45}, \quad \Lambda_{210} \approx 37.2\Lambda_{45} \]

(132)

Using the roots above the full doublet-triplet Higgs mass spectrum can now be computed. The results are summarized in the Table below.

Massless Doublet D₂	\(\bar{M} \) and \(M_T \) are in units of \(\bar{M} \equiv \frac{p^2}{M} \Lambda_{45} \)
\(M_{D_1} \)	\(M_{T_1} \)
145.6	7.4
251.6	-87.0
251.6	99.8
127.9	92.6
-32.8	-37.2
519.0	1086
519.0	757.7
78.8	137.2

8.3 Quark, lepton and neutrino masses

As pointed out in Ref.[3] the quark, lepton and neutrino masses can arise from the quartic couplings involving two 16-plets of matter and two 144-plet of Higgs fields. Cubic Yukawa couplings arise when one of the two 144-plets is replaced by a VEV while mass terms arise when the remaining Higgs field in the cubic interaction develops a VEV. As an illustration of how this comes about in a concrete way we will consider the following quartic coupling for computing the masses of quarks and leptons: \((16 \times 16)_{120} (144 \times 144)_{120} \), \((16 \times 16)_{120} (144 \times 144)_{120} \), \((16 \times 16)_{120} (144 \times 144)_{126} \). However, this subsection is to be treated as an independent one. That is we do not make use of the results of the previous subsections here.

The relevant terms in Eqs. (94), (97) and (100) that gives mass growth to quarks and leptons are

\[
W^{(120)}_{\text{mass}} = \xi^{(120)(-)}_{ab,cd} \left[-\frac{4}{3} \epsilon_{ijklmn} M^T_{ij} M^{kn}_{b} \frac{4}{3} \partial^x \partial^m \partial^l \partial^k - \frac{4}{3 \sqrt{5}} \epsilon_{ijklmn} M^T_{ij} M^{kn}_{b} \partial^x \partial^m \partial^k \partial^l \right]
\]
Candidates for Dirac neutrinos and where α, β, γ are color indices and the superscript C denotes charge conjugation. We adopt the convention that all particles are left handed (L).

We now single out the terms that are candidates for Majorana and Dirac neutrinos, Type II see-saw mechanism, down-type and up-type quarks and charged leptons.

Candidates for **Majorana Neutrinos**:

$$M_\alpha M_\beta \left\{ \frac{16}{15\sqrt{5}} \epsilon^{(126,120)(+)}_{\alpha\beta}\right\} Q_\alpha Q_\beta$$

Candidates for **Dirac Neutrinos**:

$$M_\alpha M_\beta \left\{ \frac{8}{3\sqrt{5}} \epsilon^{(120)(-)}_{\alpha\beta\beta\gamma} P^{ij}_{\alpha\beta} \right\} P^{ij}_{\gamma\alpha} + \frac{16}{3} \epsilon^{(120)(-)}_{\alpha\beta\gamma\alpha} P^{ij}_{\gamma\alpha}$$

For completeness we identify the Standard Model particles as follows:

$$M_\alpha = \nu^C_{L\alpha}; \quad M_{\alpha a} = D^C_{L\alpha a}; \quad M_{\alpha a}^\beta = \epsilon^{\alpha\beta\gamma} U^C_{L\alpha \gamma}; \quad M_{\alpha 4} = E^C_{L\alpha},$$

$$M_{\alpha a}^\alpha = U^C_{L\alpha}; \quad M_{\alpha 5} = \nu_{L\alpha}; \quad M_{\alpha 5}^\alpha = D^C_{L\alpha}; \quad M_{\alpha 5}^5 = E^C_{L\alpha},$$

where $\alpha, \beta, \gamma = 1, 2, 3$ are color indices and the superscript C denotes charge conjugation. We adopt the convention that all particles are left handed (L).
Candidates for Type II See-Saw Mechanism:

\[M_{d_i} M_{b_j} \left\{ -\frac{32}{15} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{P}_{\tilde{c}i} \mathcal{P}_{\tilde{d}j} \]

Candidates for Down-type Quarks and Charged Leptons:

\[M_{d_i} M_{b_j} \left\{ -\frac{16}{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{P}_{\tilde{c}i} \mathcal{P}_{\tilde{d}k} + \frac{1}{15} \sqrt{5} \xi^{(120,126)(+)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} + \frac{2}{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{Q}_{\tilde{c}k} \mathcal{Q}_{\tilde{d}j} + \mathcal{Q}_{\tilde{c}k} \mathcal{Q}_{\tilde{d}i} \} + M_{a_i} M_{b_k} \left\{ \frac{4}{15} \sqrt{5} \xi^{(120,126)(+)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} + \frac{16}{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{Q}_{\tilde{c}j} \mathcal{Q}_{\tilde{d}k} \} + \mathcal{Q}_{\tilde{c}j} \mathcal{Q}_{\tilde{d}i} \} \]

Candidates for Up-type Quarks:

\[\epsilon_{ijkm} M_{a_i}^{lj} M_{b_j}^{kl} \left\{ \frac{4}{15} \xi^{(120,126)(+)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} + \frac{4}{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{Q}_{\tilde{c}n} \mathcal{Q}_{\tilde{d}m} + \epsilon_{ijkm} M_{a_i}^{ln} M_{b_j}^{jk} \left\{ \frac{4}{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} \right\} \mathcal{P}_{\tilde{c}n} \mathcal{P}_{\tilde{d}p} + \mathcal{P}_{\tilde{c}n} \mathcal{P}_{\tilde{d}m} \right\} \]

Next we identify the \(SU(3)_C \times U(1)_{em} \) conserving VEV’s:

\[\left(\langle Q_{\tilde{c}j}^k \rangle, \langle P_{\tilde{c}j}^5 \rangle \right) = \left(\frac{q_c}{p_c} \right) \text{diag}(2, 2, 2, -3, -3) \]

\[\langle Q_{\tilde{c}j5}^k \rangle = \frac{1}{2} \sqrt{\frac{3}{2}} < \tilde{Q}_{\tilde{c}5} > \left(\frac{1}{4} \delta_j^k - \delta_j^4 \delta_i^4 \right) \]

\[\langle P_{\tilde{c}j5}^5 \rangle = \frac{1}{2} \sqrt{\frac{3}{2}} < \tilde{P}_{\tilde{c}5} > \left(\frac{1}{4} \delta_i^k - \delta_i^4 \delta_k^4 \right) \]

To make further progress, we define the following mass parameters

\[a_{1\tilde{a}\tilde{b}}^{(120)(-)} = 13 \sqrt{\frac{3}{2}} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{Q}_{\tilde{c}5} > q_d \]

\[a_{2\tilde{a}\tilde{b}}^{(120)(-)} = -8 \sqrt{\frac{3}{2}} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{Q}_{\tilde{c}5} > q_d \]

\[a_{3\tilde{a}\tilde{b}}^{(120)(-)} = 11 \sqrt{\frac{3}{2}} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{Q}_{\tilde{c}5} > q_d \]

\[a_{1\tilde{a}\tilde{b}}^{(120)(-)} = -16 \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{Q}_{\tilde{c}5} > q_d \]

\[a_{2\tilde{a}\tilde{b}}^{(120)(-)} = -8 \sqrt{\frac{3}{2}} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{P}_{\tilde{c}5} > p_d \]

\[a_{3\tilde{a}\tilde{b}}^{(120)(-)} = 3 \sqrt{3} \xi^{(120)(-)}_{\tilde{a}\tilde{b},\tilde{c}\tilde{d}} < \tilde{P}_{\tilde{c}5} > p_d \]
We now compute the down quark (M_{down}), charged lepton (M_{electron}), up quark (M_{up}), Dirac neutrino ($M_{\text{Dirac} \nu}$), RR type neutrino (M_{RR}) and LL type neutrino (M_{LL}) mass matrices in terms of the mass parameters defined above.

\[
M_{\text{down}} = (A + B)_{\hat{a} \hat{b}} \\
M_{\text{electron}} = (A - 3B)_{\hat{a} \hat{b}}
\]

where

\[
A_{\hat{a} \hat{b}} = \left[\frac{59}{52} \alpha_1^{(120)} + \frac{7}{2} \alpha_2^{(120)} + \alpha_3^{(120)} + \frac{16}{11} \alpha_1^{(126)} + \frac{29}{22} \alpha_2^{(126)} \right]_{\hat{a} \hat{b}}
\]

\[
B_{\hat{a} \hat{b}} = \left[\frac{7}{52} \alpha_1^{(120)} + \frac{5}{2} \alpha_2^{(120)} + \frac{5}{11} \alpha_1^{(126)} + \frac{7}{22} \alpha_2^{(126)} \right]_{\hat{a} \hat{b}}
\]

and for the up quark and Dirac neutrino masses one has

\[
M_{\text{up}} = \left[a_1^{(120)} + a_2^{(120)} + a_3^{(120)} + a^{(126)} \right]_{\hat{a} \hat{b}}
\]

\[
M_{\text{Dirac} \nu} = \left[-a_1^{(120)} - a_2^{(120)} + \frac{5}{3} a_3^{(120)} + \frac{1}{3} a^{(126)} \right]_{\hat{a} \hat{b}}
\]

Majorana masses of RR and LL type for the neutrinos is given by

\[
M_{\text{RR}} = -\frac{16}{15} \sqrt{5} g_{\hat{a} \hat{b} , \hat{c} \hat{d}}^{(126,126)(+)} < Q_5 > < Q_{5\dagger} >
\]

\[
M_{\text{LL}} = \frac{32}{15} \xi_{\hat{a} \hat{b} , \hat{c} \hat{d}}^{(120)(-)} < P_5 > < P_{5\dagger} >
\]

For real model building one may now consider one at a time each of the doublets ($Q_{\alpha \dot{a}}, P_{\alpha}^{(a)}$), ($Q_a^{(a)}, P_{\alpha}^{(a)}$), ($\bar{Q}_{\alpha \dot{a}}, \bar{P}_{\alpha}^{(a)}$) massless and find the corresponding contribution to quark and lepton masses.

8.4 Baryon and lepton number violating dimension five operators

In supesymmetric theories with R parity the dominant proton decay arises from dimension five operators[12, 13, 14]. Here we look for baryon and lepton number violating dimension five operators in $^{1}(16 \times 16)_{10} (144 \times 144)_{10}, (16 \times 16)_{10} (\overline{144} \times 144)_{10}$

\footnote{For a complete analysis see Ref.[4].}
and $(16 \times 16)_{20} (144 \times 144)_{126}$. We first collect all the terms from the three quartic couplings which contribute to baryon and lepton violating interactions. These are

$$W = M^{ij}_{a} M_{b} \left[16 \xi^{(10)(+)}_{a b,cd} < P^{k}_{c} > P^{k}_{d} + \frac{1}{\sqrt{5}} \frac{(126,126)(+)_{ab,cd}}{\sqrt{5}} + \frac{8}{\sqrt{5}} \xi^{(10)(+)}_{a b,cd} \right] Q_{c k} < Q_{d j} > + \frac{2}{\sqrt{5}} \frac{(126,126)(+)_{ab,cd}}{\sqrt{5}} + \frac{16 \xi^{(10)(+)}_{a b,cd}}{\sqrt{5}} \right] Q_{c k} < Q_{d j} > + 4 \epsilon^{ijklm}_{a} M^{ij}_{a} M^{kl}_{b} \left[\frac{4}{\sqrt{5}} \frac{(126,126)(+)_{ab,cd}}{\sqrt{5}} + 2 \xi^{(10)(+)}_{a b,cd} \right] Q_{c j} < Q_{d i} > + \frac{4}{\sqrt{5}} \frac{(126,126)(+)_{ab,cd}}{\sqrt{5}} + 16 \xi^{(10)(+)}_{a b,cd} \right] Q_{c j} < Q_{d i} > + \epsilon^{ijklm}_{a} M^{ij}_{a} M^{kl}_{b} \left[\right] Q_{c i} < Q_{d}^{m} > + \frac{1}{\sqrt{5}} \xi^{(10)(+)}_{a b,cd} \right] < P^{m}_{c} > P^{m}_{d} \right) (149)$$

Expanding and collecting the relevant terms and inserting the triplet mass terms responsible for proton decay we find

$$W_{BLL} = J_{(1)a} P^{a} + K_{(1)a} Q_{a} + M_{(Qa,Pa)} Q_{a} P^{a} + J_{(2)a} \tilde{P}^{a} + K_{(2)a} \tilde{Q}_{a} + M_{(Qa,Pa)} \tilde{Q}_{a} \tilde{P}^{a} + J_{(3)a} P^{a} + K_{(3)a} Q^{a} + M_{(Qa,Pa)} Q^{a} P^{a} + K_{(4)a} Q^{a} + M_{(Qa,Pa)} \tilde{Q}^{a} \tilde{P}^{a} (150)$$

where we have defined

$$J_{(1)a} = \left[- \frac{2}{\sqrt{5}} p^{(10)(+)}_{a b} \right] \epsilon^{ijkl}_{a} M^{ij}_{a} M^{kl}_{b}$$

$$J_{(2)a} = \left[10 \sqrt{2} \frac{(126,126)(+)_{ab,cd}}{\sqrt{5}} \right] \epsilon^{ijkl}_{a} M^{ij}_{a} M^{kl}_{b}$$

$$J_{(3)a} = \left[- 32 p_{a b}^{(10)(+)} \right] M^{a}_{a b}$$

$$K_{(1)a} = \left[- \frac{16}{\sqrt{5}} q^{(10)(+)}_{a b} + \frac{2}{3 \sqrt{5}} q_{a b}^{(126,126)(+)_{ab,cd}} \right] M^{a}_{a b}$$

$$K_{(2)a} = \left[80 \frac{2}{\sqrt{3}} q^{(10)(+)}_{a b} - \frac{2}{15} \frac{(126,126)(+)_{ab,cd}}{\sqrt{3}} \right] M^{a}_{a b} + \left[80 \frac{2}{\sqrt{3}} q_{a b}^{(10)(+)} + \frac{2}{15} \frac{(126,126)(+)_{ab,cd}}{\sqrt{3}} \right] M^{b}_{a b}$$

$$K_{(3)a} = \left[4 q^{(10)(+)}_{a b} + \frac{8}{15} q_{a b}^{(126,126)(+)_{ab,cd}} \right] \epsilon^{ijkl}_{a} M^{ij}_{a} M^{kl}_{b}$$

42
Integrating out the Higgs triplet fields in Eq. (150) and expanding the results in Standard Model particle states, we get

\[W_{B&L}^{dim-5} = 128pq \left\{ \left(\frac{1}{5M(Q_a, P_a)} + \frac{50}{3M(\tilde{Q}_a, \tilde{P}_a)} \right) \xi_{ab} \xi_{cd} \right. \\
\left. - \frac{4}{M(Q_a, P_a)} \left(\frac{\theta_{a\bar{b}}^{(10)(+)} + \frac{2}{15} \theta_{a\bar{b}}^{(126, \overline{126})^{(+)}}}{\tilde{\theta}_{a\bar{d}}^{(10)(+)} \xi_{a\bar{b}}} \right) \right\} \\
\times \left[\epsilon_{abc} U^a_{Ld} D^b_{Lb} \left(E_{Lc} U^c_{Ld} + \nu_{Lc} D^c_{Ld} \right) + 2\epsilon_{abc} U^a_{Ld} D^c_{Lb} \right. \\
\left. - \frac{16}{3} pq \left\{ \left(\frac{1}{5M(Q_a, P_a)} + \frac{2}{3M(\tilde{Q}_a, \tilde{P}_a)} \right) \xi_{ab} \xi_{cd} \right. \\
\left. - 2\epsilon_{abc} U^a_{Ld} D^b_{Lb} \left(E_{Lc} U^c_{Ld} + \nu_{Lc} D^c_{Ld} \right) - 2\epsilon_{abc} U^c_{Ld} D^c_{Lb} \right\} \right] \]

(152)

9 Conclusions

In this paper we have given an analysis of the couplings of the 144 + \overline{144} multiplets. This multiplet is interesting since it allows for the breaking of \(SO(10) \) symmetry in a single step down to the Standard Model gauge group symmetry \(SU(3)_C \times SU(2)_L \times U(1)_Y \). The 144 multiplet is a vector-spinor representation of \(SO(10) \) with a constraint. The constraint is needed to reduce the components of the vector-spinor from 160 down to 144. These features make the analysis of the couplings of 144 and of \(\overline{144} \) more complex than the couplings of ordinary spinors and tensor representations of \(SO(10) \). In this paper we have utilized the techniques of the basic theorem to compute a variety of couplings involving the constrained vector-spinors: cubic couplings involving vector-spinors and tensors, self-couplings of the vector-spinors, and couplings of the vector-spinors with the 16 and 16 spinor representations of \(SO(10) \). These couplings all enter in model building involving the spinors. Of course, the full set of couplings involving the vector-spinors are even larger, but these can also be computed using the techniques discussed here.

We have also given illustrative examples of how Yukawa couplings, quark-lepton masses, and Dirac and Majorana neutrino masses arise from the couplings involving the 144 plet of Higgs. Finally we have exhibited how the baryon and lepton number violating interactions arise from the matter and 144 -plet couplings. It is hoped that the techniques and the results presented here will be helpful in further model building involving the vector-spinor representations.
ACKNOWLEDGEMENTS

The analysis of this paper was motivated by the work of Refs. [3, 4] with Kaladi S. Babu and Ilia Gogoladze on the vector-spinor multiplet. It is a pleasure to acknowledge fruitful and illuminating communications with them on many aspects of the vector-spinor multiplet and its application for SO(10) model building. The work is supported in part by NSF grant PHY-0546568.

10 Appendix A: Details of couplings from 10-plet mediation

In this Appendix we expand the SO(10) coupling structures that enter in 10-plet mediation in Secs.(4,5,6) in a SU(5) × U(1) basis. We list these structures below

\[h^{(10)(+)}_{cd} \bar{P}^T_{cij} \bar{P}^T_{d} = h^{(10)(+)}_{cd} \left[\frac{\sqrt{6}}{5} \bar{P}^T_{cjk} \bar{P}^T_{d} + \frac{2}{5} \bar{P}^T_{cjk} \bar{P}^T_{d} + \bar{P}^T_{cik} \bar{P}^T_{dk} \right] \] (153)

\[h^{(10)(+)}_{cd} \epsilon_{ijklm} \bar{P}^T_{cij} \bar{P}^T_{d} = h^{(10)(+)}_{cd} \left[4 \bar{P}^T_{cij} \bar{P}^T_{d} - 4 \bar{P}^T_{cij} \bar{P}^T_{d} - 4 \bar{P}^T_{cij} \bar{P}^T_{d} \right] \] (154)

\[h^{(10)(+)}_{ab} \bar{P}^T_{bij} \bar{P}^T_{k} = h^{(10)(+)}_{ab} \left[\frac{1}{12} \epsilon_{ijklm} \bar{P}^T_{cij} \bar{P}^T_{d} + \frac{1}{10} \epsilon_{ijklm} \bar{P}^T_{cij} \bar{P}^T_{d} \right] \] (155)

\[\bar{h}^{(10)(+)}_{ab} \bar{Q}^T_{bij} \bar{Q}^T_{k} = \bar{h}^{(10)(+)}_{ab} \left[-\frac{1}{2} \epsilon_{ijklm} \bar{Q}^T_{bij} \bar{Q}^T_{k} - \frac{1}{2} \epsilon_{ijklm} \bar{Q}^T_{bij} \bar{Q}^T_{k} \right] \] (156)
\[\tilde{h}_{cd}^{(10)(+)} Q_{c}^{T} Q_{d} = \tilde{h}_{cd}^{(10)(+)} \left[\frac{\sqrt{6}}{5} Q_{c}^{jk} Q_{d}^{kj} + \frac{2}{5} Q_{(S)c}^{jk} Q_{d}^{kj} + Q_{c}^{T} Q_{d}^{j} \right] \] (157)

\[\tilde{h}_{cd}^{(10)(+)} e^{jklmn} Q_{c}^{T} Q_{d} = \tilde{h}_{cd}^{(10)(+)} \left[4 Q_{c}^{T} Q_{d}^{pq} - 4 \sqrt{\frac{2}{15}} Q_{c}^{ij} Q_{d}^{ij} - \frac{4\sqrt{6}}{5} Q_{c}^{T} Q_{d}^{ij} \right] \] (158)

\[\tilde{h}_{cd}^{(10)(+)} Q_{c}^{T} Q_{d} = \tilde{h}_{cd}^{(10)(+)} \left[\frac{1}{6} e^{ijmpq} Q_{a}^{pq} Q_{b}^{ijklm} + \frac{1}{6} e_{klmpq} Q_{a}^{ij} Q_{b}^{ijkl} \right. \\
\left. - \frac{1}{12\sqrt{5}} e^{ijmpq} Q_{a}^{pq} Q_{b}^{ijkl} + \frac{1}{12\sqrt{5}} e_{klmpq} Q_{a}^{ij} Q_{b}^{ijkl} \right. \\
\left. + \frac{1}{10\sqrt{6}} e^{ijmpq} Q_{a}^{pq} Q_{b}^{ijkl} - \frac{1}{10\sqrt{6}} e_{klmpq} Q_{a}^{ij} Q_{b}^{ijkl} \right. \\
\left. - \frac{1}{\sqrt{30}} e^{ijmpq} Q_{a}^{pq} Q_{b}^{ijkl} - \frac{1}{\sqrt{30}} e_{klmpq} Q_{a}^{ij} Q_{b}^{ijkl} \right] \] (159)

11 Appendix B: Details of couplings from 120-plet mediation

In this Appendix we expand the SO(10) coupling structures that enter in 120-plet mediation in Secs.(4,5,6) in a SU(5) x U(1) basis. We list these structures below

\[h_{cd}^{(120)(-)} P_{c}^{T} P_{d} = h_{cd}^{(120)(-)} \left[\frac{1}{2\sqrt{30}} e^{ijklm} P_{c}^{T} P_{d}^{pq} - \frac{1}{10} e^{ijklm} P_{c}^{T} P_{d}^{pq} \right. \\
\left. + \frac{1}{6\sqrt{2}} e^{ijklm} P_{c}^{T} P_{d}^{pq} + \frac{1}{2\sqrt{15}} e^{ijklm} P_{c}^{T} P_{d}^{pq} \right. \\
\left. + P_{c}^{T} P_{d} - \frac{1}{2\sqrt{5}} P_{c}^{T} P_{d}^{m} - \frac{1}{2\sqrt{5}} P_{c}^{T} P_{d}^{l} \right] \] (160)

\[h_{cd}^{(120)(-)} P_{c}^{T} P_{d} = h_{cd}^{(120)(-)} \left[\frac{3}{10} P_{c}^{T} P_{d} + \frac{3}{10} P_{c}^{T} P_{d} \right. \\
\left. + \sqrt{2} P_{c}^{T} P_{d} + \sqrt{2} P_{c}^{T} P_{d} \right] \] (161)

\[h_{cd}^{(120)(-)} P_{c}^{T} P_{d} = h_{cd}^{(120)(-)} \left[\frac{2}{\sqrt{5}} P_{c}^{T} P_{d} + \frac{2}{5} P_{c}^{T} P_{d} \right. \\
\left. + \frac{1}{6} e^{ijklm} P_{c}^{T} P_{d} - \frac{1}{\sqrt{30}} e^{ijklm} P_{c}^{T} P_{d} \right] \] (162)
\[
\hat{h}_{ab}^{(120)(-)} p_{\hat{a} \mu}^{T} p_{\hat{b} \mu} = \hat{h}_{ab}^{(120)(-)} \left[\sqrt{\frac{6}{5}} p_{\hat{a} T}^{\mu} p_{\hat{b} j} + \sqrt{\frac{2}{5}} p_{\hat{a} T}^{j} p_{\hat{b} j} + p_{\hat{a} T}^{j} p_{\hat{b} j} \right]
\] (163)

\[
\hat{h}_{cd}^{(120)(-)} p_{\hat{c} \mu}^{T} p_{\hat{d} \mu} = \hat{h}_{cd}^{(120)(-)} \left[p_{\hat{c} T}^{i} p_{\hat{d} k} + \frac{1}{2 \sqrt{5}} p_{\hat{c} T}^{i} p_{\hat{d} j} + \frac{1}{6 \sqrt{2}} \epsilon_{ijklm} p_{\hat{c} T}^{j} p_{\hat{d} k} p_{\hat{d} k} + \frac{1}{10} \epsilon_{ijklm} p_{\hat{c} T}^{j} p_{\hat{d} k} p_{\hat{d} k} \right]
\] (164)

\[
\hat{h}_{ab}^{(120)(-)} \epsilon_{ijklm} q_{\hat{a} \hat{j} \mu}^{T} q_{\hat{a} \hat{k} \mu} = \hat{h}_{ab}^{(120)(-)} \left[4 q_{\hat{a} T}^{m} q_{\hat{b} m} + \frac{2}{\sqrt{5}} q_{\hat{a} T}^{m} q_{\hat{b} m} + \frac{2}{15} q_{\hat{a} T}^{m} q_{\hat{b} m} - 4 \sqrt{\frac{2}{5}} q_{\hat{a} T}^{m} q_{\hat{b} m} + \frac{2}{5} \delta_{\hat{a} \hat{b}} q_{\hat{a} \hat{b}}^{m} q_{\hat{b} m} + \frac{2}{15} \delta_{\hat{a} \hat{b}} q_{\hat{a} \hat{b}}^{m} q_{\hat{b} m} \right]
\] (165)

\[
\hat{h}_{cd}^{(120)(-)} q_{\hat{c} \mu}^{T} q_{\hat{d} \mu} = \hat{h}_{cd}^{(120)(-)} \left[\frac{1}{2 \sqrt{30}} \epsilon_{ijklm} q_{\hat{c} T}^{m} q_{\hat{d} k} - \frac{1}{10} \epsilon_{ijklm} q_{\hat{c} T}^{m} q_{\hat{d} k} + \frac{1}{6 \sqrt{2}} \epsilon_{ijklm} q_{\hat{c} T}^{m} q_{\hat{d} k} - \frac{1}{10} \epsilon_{ijklm} q_{\hat{c} T}^{m} q_{\hat{d} k} \right]
\] (166)

\[
\hat{h}_{ab}^{(120)(-)} q_{\hat{a} T}^{j} q_{\hat{b} \mu} = \hat{h}_{ab}^{(120)(-)} \left[\sqrt{\frac{3}{10}} q_{\hat{a} T}^{j} q_{\hat{b}}^{k} - \sqrt{\frac{3}{10}} q_{\hat{a} T}^{j} q_{\hat{b}}^{k} \right]
\] (167)

\[
\hat{h}_{cd}^{(120)(-)} q_{\hat{c} \hat{j} \mu} q_{\hat{d} \mu} = \hat{h}_{cd}^{(120)(-)} \left[\frac{2}{\sqrt{5}} q_{\hat{c} T}^{k} q_{\hat{d} k} + \frac{2}{5} q_{\hat{c} T}^{k} q_{\hat{d} k} + \frac{1}{6 \sqrt{2}} \epsilon_{ijklm} q_{\hat{c} T}^{m} q_{\hat{d} k} \right]
\] (168)
In this Appendix we expand the SO(10) coupling structures that enter in 126 + \(\overline{126} \)-plet mediation in Secs.(4,5,6) in a SU(5) × U(1) basis. We list these structures below

\[
f_{\alpha\beta}^{(120)(+)} P_{\alpha\mu}^T P_{\beta\mu} = f_{\alpha\beta}^{(120)(+)} \left[\frac{4}{\sqrt{5}} P_{\alpha}^T P_{\beta} \right]
\]

\[
f_{\alpha\beta}^{(120)(+)} P_{\alpha\mu}^T P_{\beta\mu} = f_{\alpha\beta}^{(120)(+)} \left[\frac{2}{\sqrt{5}} P_{\alpha}^T P_{\beta} + \frac{1}{6} \varepsilon_{ijklm} P_{\alpha}^T P_{bklm} \right] - \frac{1}{\sqrt{30}} \varepsilon_{ijklm} P_{\alpha}^T P_{bklm}
\]

\[
f_{\alpha\beta}^{(120)(+)} P_{\alpha\mu}^T P_{\beta\mu} = f_{\alpha\beta}^{(120)(+)} \left[\sqrt{\frac{3}{10}} P_{\alpha}^T P_{b\beta k} + \sqrt{\frac{3}{10}} P_{\alpha}^T P_{b\beta k} + \frac{1}{\sqrt{2}} P_{\alpha}^T P_{b\beta k} + \frac{1}{\sqrt{2}} P_{\alpha}^T P_{b\beta k} \right]
\]

\[
f_{\alpha\beta}^{(120)(+)} P_{\alpha\mu}^T P_{\beta\mu} = f_{\alpha\beta}^{(120)(+)} \left[\frac{\sqrt{6}}{5} P_{\alpha}^T P_{b\beta k} + \sqrt{\frac{2}{5}} P_{\alpha}^T P_{b\beta k} + \frac{1}{\sqrt{2}} P_{\alpha}^T P_{b\beta k} \right]
\]

\[
f_{\alpha\beta}^{(120)(+)} P_{\alpha\mu}^T P_{\beta\mu} = f_{\alpha\beta}^{(120)(+)} \left[\frac{1}{2\sqrt{30}} \varepsilon_{ijklp} P_{\alpha}^{ijp} P_{\beta}^{k} P_{bks} + \frac{1}{6\sqrt{2}} \varepsilon_{ijklp} P_{\alpha}^{ijp} P_{\beta}^{k} P_{bks} \right] - \frac{1}{\sqrt{15}} \varepsilon_{ijklp} P_{\alpha}^{ijp} P_{\beta}^{k} P_{bks} + \frac{1}{\sqrt{2}} P_{\alpha}^T P_{b\beta k} + \frac{1}{\sqrt{5}} P_{\alpha}^T P_{b\beta k} - \frac{1}{\sqrt{5}} P_{\alpha}^T P_{b\beta k}
\]

12 Appendix C: Details of couplings from 126 + \(\overline{126} \)-plet mediation

In this Appendix we expand the SO(10) coupling structures that enter in 126 + \(\overline{126} \)-plet mediation in Secs.(4,5,6) in a SU(5) × U(1) basis. We list these structures below
\[
f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} P_{\alpha \mu}^{T} P_{\beta \nu}^{kl} = f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} \left[\frac{1}{6} \epsilon_{ijpqr} P_{\alpha \mu}^{T} P_{\beta \nu}^{kl} + \frac{1}{6} \epsilon_{ijpqr} P_{\alpha \mu}^{T} P_{\beta \nu}^{kl} \right] + \frac{1}{2} \epsilon_{ijpqr} P_{\alpha \mu}^{T} P_{\beta \nu}^{kl} - \frac{1}{2} \epsilon_{ijpqr} P_{\alpha \mu}^{T} P_{\beta \nu}^{kl}
\]

\[
f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} = f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} \left[\frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} - \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} \right] + \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn}
\]

\[
f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} P_{\alpha \mu}^{T} P_{\beta \nu} = f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} \left[\frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} - \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} \right] + \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn}
\]

\[
f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} Q_{\alpha \nu}^{T} Q_{\beta \nu} = f_{\alpha \beta}^{\text{I}^{(2)}(+) \pm} \left[\frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} - \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn} \right] + \frac{1}{6} \epsilon_{ijklmn} P_{\alpha \mu}^{T} P_{\beta \nu}^{mn}
\]
\[f_{\tilde{c}\tilde{d}}^{(126)(+)} Q_{\tilde{c}ij\mu}^T Q_{\tilde{d}\nu}^f = f_{\tilde{c}\tilde{d}}^{(126)(+)} \left[\frac{1}{2\sqrt{30}} \epsilon_{ipqr} Q_{\tilde{c}s}^{pqr} T Q_{\tilde{d}}^{ks} + \frac{1}{6\sqrt{2}} \epsilon_{ipqr} Q_{\tilde{c}s}^{pqr} T Q_{\tilde{d}}^{ks}_{(S)d} \\ - \frac{1}{10} \epsilon_{ipqr} Q_{\tilde{c}}^{pq} T Q_{\tilde{d}}^{kr} - \frac{1}{2\sqrt{15}} \epsilon_{ipqr} Q_{\tilde{c}}^{pq} T Q_{\tilde{d}}^{kr}_{(S)d} \\ + Q_{\tilde{c}ij}^T Q_{\tilde{d}p}^k + \frac{1}{2\sqrt{5}} Q_{\tilde{c}ij}^T Q_{\tilde{d}p}^k \\ - \frac{1}{2\sqrt{5}} Q_{\tilde{c}j}^T Q_{\tilde{d}i}^k \right] \] (183)

\[f_{\tilde{c}\tilde{d}}^{(126)(+)} \epsilon^{ijklmn} Q_{\tilde{d}kl\nu}^T Q_{\tilde{d}mn\nu} = f_{\tilde{c}\tilde{d}}^{(126)(+)} \left[4 Q_{\tilde{c}ep}^{pq} Q_{\tilde{d}r}^{pq} - 4 \sqrt{\frac{2}{15}} Q_{\tilde{c}ep}^{pq} T Q_{\tilde{d}r}^{pq} \\ - \frac{4\sqrt{6}}{5} Q_{\tilde{c}ep}^{pq} Q_{\tilde{d}r}^{pq} \right] \] (184)

\[f_{\tilde{c}\tilde{d}}^{(126)(+)} Q_{\tilde{c}ij}^T Q_{\tilde{d}kl\nu} = f_{\tilde{c}\tilde{d}}^{(126)(+)} \left[\frac{1}{6} \epsilon_{ipqr} Q_{\tilde{c}s}^{pqr} T Q_{\tilde{d}}^{ps} + \frac{1}{6} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}js}^{pq} \\ + \frac{1}{12\sqrt{5}} \epsilon_{ipqr} Q_{\tilde{c}k}^{pq} T Q_{\tilde{d}lj}^{rs} - \frac{1}{12\sqrt{5}} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}lj}^{rs} \\ - \frac{1}{12\sqrt{5}} \epsilon_{ipqr} Q_{\tilde{c}d}^{pq} T Q_{\tilde{d}kl}^{rs} + \frac{1}{12\sqrt{5}} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}kl}^{rs} \\ + \frac{1}{10\sqrt{6}} \epsilon_{ipqr} Q_{\tilde{c}d}^{pq} T Q_{\tilde{d}ij}^{rs} - \frac{1}{10\sqrt{6}} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}ij}^{rs} \\ - \frac{1}{10\sqrt{6}} \epsilon_{ipqr} Q_{\tilde{c}d}^{pq} T Q_{\tilde{d}ij}^{rs} - \frac{1}{10\sqrt{6}} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}ij}^{rs} \\ - \frac{1}{\sqrt{30}} \epsilon_{ipqr} Q_{\tilde{c}d}^{pq} T Q_{\tilde{d}ij}^{rs} - \frac{1}{\sqrt{30}} \epsilon_{klpq} Q_{\tilde{c}ij}^T Q_{\tilde{d}ij}^{rs} \right] \] (185)

\[f_{\tilde{c}\tilde{d}}^{(126)(+)} Q_{\tilde{c}ij\mu}^T Q_{\tilde{d}l\nu}^j = f_{\tilde{c}\tilde{d}}^{(126)(+)} \left[-\frac{1}{2\sqrt{30}} \epsilon_{iklmn} Q_{\tilde{c}p}^{lmn} T Q_{\tilde{d}p}^{kp} + \frac{1}{6\sqrt{2}} \epsilon_{iklmn} Q_{\tilde{c}p}^{lmn} T Q_{\tilde{d}p}^{kp}_{(S)d} \\ + \frac{1}{10} \epsilon_{iklmn} Q_{\tilde{c}p}^{mn} T Q_{\tilde{d}p}^{kl} + Q_{\tilde{c}ij}^T Q_{\tilde{d}l}^j - \frac{1}{2\sqrt{5}} Q_{\tilde{c}j}^T Q_{\tilde{d}i}^k \right] \] (186)

13 Appendix D: Field normalizations

(a) **Normalization of SU(5) components in 45-plet of SO(10) Higgs**

The 45-plet of SO(10) Higgs $\Phi_{\mu\nu}$ can be decomposed in SU(5) multiplets as follows:

\[\Phi_{\epsilon\sigma} = h; \quad \Phi_{\epsilon\tau} = h_j^i + \frac{1}{5}\delta_j^i h; \quad \Phi_{\epsilon\epsilon} = h_{ij}; \quad \Phi_{\tau\tau} = h_{ij} \] (187)
where h, h^{ij}, h_{ij} and h_{ij} are the 1-plet, 10-plet, 10-plet, and 24-plet representations of $SU(5)$ respectively. To normalize these $SU(5)$ Higgs fields, we carry out a field redefinition,

$$h = \sqrt{10}H; \quad h_{ij} = \sqrt{2}H_{ij}; \quad h^{ij} = \sqrt{2}H^{ij}; \quad h^{ij} = \sqrt{2}H^{ij}.$$ \hspace{1cm} (188)

In terms of the normalized fields the kinetic energy of the 45-plet of Higgs $-\partial_A \Phi_{\mu\nu} \partial^A \Phi^{\dagger}_{\mu\nu}$ takes the form

$$L_{45-Higgs} = -\partial^A H \partial_A H^\dagger - \frac{1}{2!} \partial^A H_{ij} \partial_A H_{ij}^\dagger - \frac{1}{2!} \partial^A H^{ij} \partial_A H^{ij} + \partial_A H^{ij} \partial^A H^{ij}. \hspace{1cm} (189)$$

(b) Normalization of $SU(5)$ components in 45-plet of $SO(10)$ gauge fields.

The 45-plet of $SO(10)$ gauge fields $\Phi_{A\mu\nu}$ can be decomposed in $SU(5)$ multiplets as follows

$$\Phi_{Ac\mu\nu} = g_{Aij}; \quad \Phi_{Ai\mu\nu} = g_{Ai}; \quad \Phi_{Ai\mu\nu} = g_{Ai}; \quad \Phi_{Aij} = g_{Aij} \hspace{1cm} (190)$$

To normalize them we make the following redefinitions

$$g_{A} = 2\sqrt{3}G_{A}; \quad g_{Ai} = \sqrt{2}G_{Ai}; \quad g_{ij} = \sqrt{2}G_{ij}; \quad g_{Ai} = \sqrt{2}G_{Ai}. \hspace{1cm} (191)$$

In terms of the redefined fields the kinetic energy for the 45-plet which is given by $-\frac{1}{4} F^{AB}_{\mu\nu} F^{AB}_{\mu\nu}$ takes on the form

$$L_{45-gauge} = -\frac{1}{2} G^{AB} G^{AB} - \frac{1}{2!} \frac{1}{2} G^{ABij} G^{ABij} - \frac{1}{2!} \frac{1}{2} G^{ABij} G^{ABij} \hspace{1cm} (192)$$

where $F^{AB}_{\mu\nu}$ is the 45 of $SO(10)$ field strength tensor.

(c) Normalization of $SU(5)$ components in 210-plet of $SO(10)$

The 210-plet of $SO(10)$ $\Phi_{\mu\nu\rho\sigma}$ has the following decomposition in $SU(5)$ multiplets

$$\Phi_{cm\mu\nu\rho\sigma} = h; \quad \Phi_{cm\mu\nu\rho\sigma} = \frac{1}{24} \epsilon_{ijklm} h^{mn}; \quad \Phi_{cm\mu\nu\rho\sigma} = \frac{1}{24} \epsilon_{ijklm} h^{mn}. \hspace{1cm} 50$$
where \(h, h^i, h^{ij}, h'_{ij}, h'_{ijkl} \) and \(h^{'ij} \) are the 1-plet, 5-plet, 5-plet, 10-plet, 10-plet, 24-plet, 40-plet, and 75-plet representations of \(SU(5) \) respectively.

To normalize these fields we carry out a field redefinition

\[
\begin{align*}
 h & = 4\sqrt{\frac{5}{3}} H; \quad h^i = 8\sqrt{6} H^i; \\
 h^{ij} & = \sqrt{2} H^{ij}; \quad h'_{ij} = \sqrt{2} H'_{ij}; \\
 h'_{ijkl} & = \frac{2}{\sqrt{3}} H'_{ijkl}; \quad h^{'ij} = \frac{2}{\sqrt{3}} H^{'ij}.
\end{align*}
\]

(194)

Now the kinetic energy for the 210 dimensional Higgs field is

\[
L_{kin}^{210-Higgs} = -\partial_A \Phi_{\mu\nu\rho\lambda} \partial^A \Phi_{\mu\nu\rho\lambda}^\dagger
\]

which in terms of the redefined fields takes the form

\[
\begin{align*}
 L_{kin}^{210-Higgs} &= -\partial_A H^A H^\dagger - \partial_A H^i H^i \partial^A H^i \partial^A H_i^\dagger - \partial_A H_i \partial^A H_i^\dagger \\
 &- \frac{1}{2!} \partial_A H_{ij} \partial^A H_{ij}^\dagger - \frac{1}{2!} \partial_A H_{ij} H_{ij} \partial^A H_{ij} \partial^A H_{ij}^\dagger \\
 &- \frac{1}{3!} \partial_A H_{ij} \partial^A H_{jik} \partial^A H_{jik} - \frac{1}{3!} \partial A H_{ij} H_{ijkl} \partial^A H_{ijkl} - \frac{1}{2!} \partial A H_{ij} H^{ij} \partial^A H^{ij} \partial^A H_{ij}^\dagger \\
 &- \frac{1}{3!} \partial_A H_{ijkl} \partial^A H_{ijkl}^\dagger \\
\end{align*}
\]

(195)

(d) **Normalization of \(SU(5) \) components in 10-plet of \(SO(10) \)**

The 10-plet of \(SO(10) \) \(\Phi_\mu \) can be decomposed in \(SU(5) \) components as follows

\[
\Phi_{ci} = h_i; \quad \Phi_{ci} = h^i
\]

(196)

The tensors are already in their irreducible form and one can identify \(\Phi_{ci} \) with the 5 plet of Higgs and \(\Phi_{ci} \) with the \(\bar{5} \) plet of Higgs. To normalize the fields we define

\[
\begin{align*}
 h_i & = \frac{1}{\sqrt{2}} H_i; \quad h^i = \frac{1}{\sqrt{2}} H^i
\end{align*}
\]

(197)
Now the kinetic energy for the 10 dimensional Higgs field is \(-\partial_A \Phi_\mu \partial^A \Phi^\dagger_\mu\) which in terms of the redefined fields takes the form
\[L_{kin}^{10-Higgs} = -\partial_A H_i \partial^A H_i^\dagger - \partial_A H^\dagger H_i \partial^A H_i^\dagger. \]

(e) Normalization of \(SU(5)\) components in 120-plet of \(SO(10)\)

The 120-plet of \(SO(10)\) \(\Phi_{\mu \nu \rho}\) can be decomposed in \(SU(5)\) components as follows

\[
\begin{align*}
\Phi_{c_i c_j c_k} &= h^{ij} + \frac{1}{4} \left(\delta^i_k h^j - \delta^j_k h^i \right), \\
\Phi_{\bar{c}_i c_j c_k} &= h^{ij}, \\
\Phi_{c_i \bar{c}_j c_k} &= \epsilon^{ijklm} h_{lm}, \\
\Phi_{\bar{c}_i \bar{c}_j c_k} &= \epsilon^{ijklm} h_{lm}, \\
\Phi_{c_i \bar{c}_j \bar{c}_k} &= h^{ik}, \Phi_{c_i c_k \bar{c}_i} &= h_i
\end{align*}
\]

where \(h_i, h^i, h^{ij}, h^{ij}_k, h^{ij}_{jk}\) are the 5, 5, 10, 45 and 45 plet representations of \(SU(5)\). To normalize them we make the following redefinition of fields

\[
\begin{align*}
h_i &= \frac{4}{\sqrt{3}} H_i, \\
h^{ij} &= \frac{1}{\sqrt{3}} H^{ij}, \\
h^{ij}_k &= \frac{2}{\sqrt{3}} H^{ij}_k \\
h^{i}_{jk} &= \frac{2}{\sqrt{3}} H^{i}_{jk}
\end{align*}
\]

In terms of the redefined fields the kinetic energy term for the 120 multiplet which is given by \(-\partial_A \Phi_{\mu \nu \lambda} \partial^A \Phi^\dagger_{\mu \nu \lambda}\) takes on the form
\[
L_{kin}^{120-Higgs} = -\frac{1}{2!} \partial_A H^{ij} \partial^A H^{ij\dagger} - \frac{1}{2!} \partial_A H^{ij} \partial^A H^{ij\dagger} - \frac{1}{2!} \partial_A H^{ij}_k \partial^A H^{ij\dagger}_k \\
- \frac{1}{2!} \partial_A H^{i}_{jk} \partial^A H^{i\dagger}_{jk} - \partial_A H^\dagger H^\dagger - \partial_A H_i \partial^A H_i^\dagger
\]

(f) Normalization of \(SU(5)\) components in 126 and \(\overline{126}\)-plets of \(SO(10)\)

To deal with the 126 and \(\overline{126}\)-plets \(\Phi_{\mu \nu \rho \sigma}\) and \(\bar{\Phi}_{\mu \nu \rho \sigma}\), we first introduce the full 252-dimensional tensor, \(\Xi_{\mu \nu \lambda \rho \sigma}\) which can be be decomposed as \(\Xi_{\mu \nu \lambda \rho \sigma} = \bar{\Phi}_{\mu \nu \lambda \rho \sigma} + \Phi_{\mu \nu \lambda \rho \sigma}\), where

\[
\left(\begin{array}{c}
\bar{\Phi}_{\mu \nu \lambda \rho \sigma} \\
\Phi_{\mu \nu \lambda \rho \sigma}
\end{array} \right) = \frac{1}{2} \left(\delta_{\mu \alpha} \delta_{\nu \beta} \delta_{\rho \gamma} \delta_{\lambda \delta} \delta_{\sigma \theta} \pm \frac{i}{5!} \epsilon_{\mu \nu \rho \lambda \sigma \alpha \beta \gamma \delta \theta} \right) \Xi_{\alpha \beta \gamma \delta \theta}
\]

52
and where the $\Phi_{\mu\nu\lambda\rho}$ is the $\overline{126}$ plet and $\Phi_{\mu\nu\lambda\rho}$ is the 126 plet representation. The decomposition of these in $SU(5)$ components is then given by

$$
\Xi_{c_i c_j c_k c_l c_m} = h^{ijk}; \quad \Xi_{c_i c_j c_k c_l c_p} = h^i; \quad \Xi_{c_i c_n c_p c_p} = h_i
$$

The fields that appear above are not yet properly normalized. To normalize the fields we carry out a field redefinition so that

$$
\Xi_{c_i c_j c_k c_m c_n} = h^{ijkl} + \frac{1}{2} \left(\delta_i^j \delta^k \delta^l - \delta_i^k \delta^j \delta^l - \delta_i^l \delta^j \delta^k \right) + \frac{1}{12} \left(\delta_i^j \delta^k \delta^l - \delta_i^k \delta^l \delta^j - \delta_i^l \delta^j \delta^k - \delta_i^j \delta^k \delta^l \right)
$$

The kinetic energy for the 252 plet field $-\partial_A \Xi_{\mu\nu\lambda\rho} \partial^A \Xi_{\mu\nu\lambda\rho}$ in terms of the normalized fields is then given by

$$
L_{kin}^{252-Higgs} = -\partial_A \overline{H} \partial^A H - \partial_A \overline{H} \partial^A H^i - \partial_A H^i \partial^A H^i - \partial_A H^i \partial^A H^{ji}
$$

53
The analysis given in the paper is quite general allowing for an arbitrary number of such intermediate tensor set. The results, however, can be simplified if one assumes just a single tensor field for each term in the set listed above. In this case the couplings show a factorization. This case can be gotten from the analysis of the paper by the following simple algorithm of replacements

\[
\begin{align*}
\bar{\lambda}^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{1}{4} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \lambda^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{1}{4} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\zeta^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \xi^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\theta^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \kappa^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\phi^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \varsigma^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\end{align*}
\]

where \(\mathcal{M} \) and \(\mathcal{P} \) are the 1, 5, 5, 10, \(\overline{10}, \overline{15}, 15, 45, \overline{45}, 50, 50 \) plet representations of SU(5).

14 Appendix E: A Simplification of Quartic Couplings

The quartic couplings discussed in Secs. (5-6) are obtained by integrating out the intermediate fields which belong to the set of tensor representations 1, 45, 210, 10, 120, 126 + \(\overline{126} \). The analysis given in the paper is quite general allowing for an arbitrary number of such intermediate tensor set. The results, however, can be simplified if one assumes just a single tensor field for each term in the set listed above. In this case the couplings show a factorization. This case can be gotten from the analysis of the paper by the following simple algorithm of replacements

\[
\begin{align*}
\bar{\lambda}^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{1}{4} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \lambda^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{1}{4} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\zeta^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \xi^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\theta^{(\cdot)}_{ab,\bar{c}d} & \rightarrow \frac{1}{2} \frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \kappa^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{h^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\phi^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}}, & \varsigma^{(\cdot)}_{ab,\bar{c}d} & \rightarrow -\frac{f^{(\cdot)}_{ab} h^{(\cdot)}_{\bar{c}d}}{\mathcal{M}} \\
\end{align*}
\]

15 Appendix F: The Technique to Evaluate SO(10) Vector-Spinor Couplings

In this Appendix we illustrate the technique to evaluate SO(10) vector-spinor couplings. For that purpose, we choose a simple example of the matrix element \(< \Upsilon^*_{(+)} | B | \Upsilon_{(+)} > \). Using Eqs. (5), (9) and (10) one can write

\[
< \Upsilon^*_{(+)} | B | \Upsilon_{(+)} > = -i Q_\mu P_\mu < 0 | b_5 b_4 b_3 b_2 b_1 \prod_{s=1}^{5} (b_s - b_s^\dag) | 0 >
\]
\[-\frac{i}{24} \varepsilon_{ijklm} Q_{ij\mu} P_{pq}^{\mu} <0|b_m b_k b_s b_s^\dagger b_p b_q^\dagger|0> \]

\[-\frac{i}{24} \varepsilon_{ijklm} Q_{i\mu} P_{pq}^{\mu} <0|b_r b_s b_k b_k^\dagger b_l b_l^\dagger |0> \quad (207)\]

Simplifying we get,

\[< \Upsilon^* (+) \mu | B | \Upsilon (+) \mu >= i \left[Q_{ij\mu} P_{iq}^{\mu} - \frac{1}{2} Q_{ij\mu} P_{iq}^{\mu} + Q_{ij} P_{iq}^{\mu} \right] \quad (208)\]

Using the Basic Theorem we can expand the terms in Eq. (208) as

\[Q_{ij\mu} P_{iq}^{\mu} = Q_{ij} c^\dagger \bar{c}_i + Q_{ij} \bar{c}^\dagger c_i \]

\[Q_{ij} P_{iq}^{\mu} = Q_{ij} \bar{c}^\dagger c_i + Q_{ij} c^\dagger \bar{c}_i \]

\[Q_{ij\mu} P_{iq}^{\mu} = Q_{ij\mu} P_{iq}^{\mu} + Q_{ij\mu} P_{iq}^{\mu} \quad (209)\]

Further, using Eq. (13) directly or the third equation in Eq. (203)

\[Q_{ij\mu} P_{iq}^{\mu} = Q_{ij\mu} P_{iq}^{\mu} + Q_{ij\mu} P_{iq}^{\mu} \quad (210)\]

\[Q_{ij\mu} = S_{[ij]} = Q_{ij} + \frac{1}{4} (\delta_{i}^{k} \bar{Q}_{j} - \delta_{j}^{k} \bar{Q}_{i}) = Q_{ij} + \frac{1}{4} (\delta_{i}^{k} Q_{j} - \delta_{j}^{k} Q_{i}) \quad (211)\]

where in the last step we have used Eq. (16). Similarly,

\[P_{ij}^{\dagger} = P_{ij}^{\dagger} + \frac{1}{4} (\delta_{i}^{k} P_{j} - \delta_{j}^{k} P_{i}) \quad (212)\]

Thus we have

\[Q_{ij\mu} P_{iq}^{\mu} = Q_{ij\mu} P_{iq}^{\mu} + \frac{1}{2} Q_{ij\mu} P_{iq}^{\mu} \quad (213)\]

where we have used the fact that \(Q_{ij}^k\) and \(P_{ij}^k\) are traceless tensors. Again using Eq. (13) directly or the fourth equation in Eq. (203) we can write

\[Q_{ij\mu} = S_{[ij]k} = \epsilon_{ijklm} S_{k}^{lm} = \epsilon_{ijklm} \left[Q_{k}^{lm} + \frac{1}{3} (\delta_{k}^{m} \bar{Q}_{l}^{im} - \delta_{k}^{m} \bar{Q}_{l}^{im} + \delta_{k}^{m} \bar{Q}_{l}^{im}) \right] \]

\[= \epsilon_{ijklm} Q_{k}^{lm} + \epsilon_{ijklm} \bar{Q}_{l}^{im} = \epsilon_{ijklm} Q_{k}^{lm} - \frac{1}{6} \epsilon_{ijklm} Q_{lm} \quad (214)\]

where again in the last step we have used Eq. (16). Similarly,

\[P_{ij}^{\dagger} = \epsilon_{ijlmn} P_{k}^{lm} - \frac{1}{6} \epsilon_{ijklm} P_{lm} \quad (215)\]

Computing the product \(Q_{ij\mu} P_{iq}^{\mu}\) we get

\[Q_{ij\mu} P_{iq}^{\mu} = 12 Q_{k}^{lmn} P_{l}^{kn} + \frac{1}{3} Q_{lm}^{kn} P_{lm} \quad (216)\]
Here we have used the results:

\[
\varepsilon_{ijklm} \varepsilon_{ijklpq} Q_{km}^{ln} P_{pq} = 0 = \varepsilon_{ijklm} \varepsilon_{ijklpq} Q_{k}^{ln} P_{pq}^{r} Q_{lmn}^{k} P_{pq}^{r}
\]

\[
\varepsilon_{ijklm} \varepsilon_{ijklpq} Q_{km}^{ln} P_{pq} = 12 Q_{k}^{ln} P_{lmn}^{k}
\]

The first of these equations in Eq. (207) follow from the tracelessness of \(Q_{km}^{ln} \) and \(P_{pq}^{r} \). Further, on using Eq. (13)

\[
Q_{cij}^{i} = S^{ij} = \frac{1}{2} \left(S^{[ij]} + S^{(ij)} \right) = \frac{1}{2} \left(Q^{ij} + Q^{ij}_{(S)} \right)
\]

and similarly,

\[
P_{cij}^{i} = \frac{1}{2} \left(P^{ij} + P^{ij}_{(S)} \right)
\]

which gives,

\[
Q_{cij}^{i} P_{cij}^{i} = \frac{1}{4} Q^{ij} P^{ij} + \frac{1}{4} Q^{ij}_{(S)} P^{ij}_{(S)}
\]

Note that the cross terms do no couple in Eq. (220) as one is antisymmetric and the other is a symmetric tensor in the exchange of indices \(i \) and \(j \). Finally, on using Eq. (13) once again

\[
Q_{cij}^{i} P_{cij}^{i} = S^{ij} R^{ij}_{j} = \left(Q^{i}_{j} + \frac{1}{3} \delta^{i}_{j} Q \right) \left(P^{i}_{j} + \frac{1}{5} \delta^{i}_{j} P \right) = Q^{i}_{j} P^{j}_{i}
\]

In the last step we have used Eq. (16). Substituting Eqs. (210), (213), (216), (220) and (221) in Eq. (208) we get,

\[
< Y_{(+)}^{*} \mu | B | Y_{(+)}^{\mu} > = \frac{3i}{4} Q^{i} P_{i} + i Q^{i} P^{i}
\]

\[
+ \frac{i}{12} Q^{ij} P_{ij} + \frac{i}{4} Q^{ij}_{(S)} P^{ij}_{(S)}
\]

\[
+ i Q^{ij}_{(S)} P^{ij} - 6i Q^{ij}_{(S)} P^{ij}_{(S)}
\]

\[
- \frac{i}{2} Q^{ij}_{(S)} P^{ij}_{(S)}
\]

One can now use normalized fields exhibited in Eqs. (19) and (20).
References

[1] H. Georgi, in Particles and Fields (edited by C.E. Carlson), A.I.P., 1975; H. Fritzsch and P. Minkowski, Ann. Phys. 93(1975)193.

[2] H. Georgi and D.V. Nanopoulos, Nucl. Phys. B159(1979)16; J.A. Harvey, P. Ramond, and D.B. Reiss, Phys. Lett. B92(1980)309; J.A. Harvey, D.B. Reiss and P. Ramond, Nucl. Phys. B199(1982)223.

[3] K. S. Babu, I. Gogoladze, P. Nath and R. M. Syed, arXiv:hep-ph/0506312 (To appear in Phys. Rev. D.)

[4] K. S. Babu, I. Gogoladze, P. Nath and R. M. Syed, work in progress.

[5] P. Nath and R. M. Syed, Phys. Lett. B 506, 68 (2001) [arXiv:hep-ph/0103165].

[6] P. Nath and R. M. Syed, Nucl. Phys. B 618, 138 (2001) [arXiv:hep-th/0109116]; P. Nath and R. M. Syed, Nucl. Phys. B 676, 64 (2004) [arXiv:hep-th/0310178] R. M. Syed, in Themes in Unification, ed. by G. Alverson and M.T. Vaughn, (World Scientific, Singapore). arXiv: hep-ph/0411054; R. M. Syed, Ph.D. Thesis, Northeastern University. arXiv:hep-ph/0508153; For later works using different techniques see, T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, J. Math. Phys. 46, 033505 (2005) [arXiv:hep-ph/0405300]; C. S. Aulakh and A. Girdhar, Nucl. Phys. B 711, 275 (2005).

[7] R.N. Mohapatra and B. Sakita, Phys. Rev. D21, 1062 (1980).

[8] F. Wilczek and A. Zee, Phys. Rev. D25, 553 (1982).

[9] S. Wiesenfeldt, Phys. Rev. D 71, 075006 (2005) [arXiv:hep-ph/0501223].

[10] B. Garbrecht, T. Prokopec and M. G. Schmidt, arXiv:hep-ph/0509190; B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, arXiv:hep-ph/0510139; Q. Shafi and Z. Tavartkiladze, arXiv:hep-ph/0509237; C. S. Aulakh, Phys. Rev. D 72, 051702 (2005); arXiv:hep-ph/0501025; K. S. Babu and C. Macesanu, arXiv:hep-ph/0505200; H. S. Goh, R. N. Mohapatra and S. Nasri, Phys. Rev. D 70, 075022 (2004) [arXiv:hep-ph/0408139]; K. S. Babu, J. C. Pati and P. Rastogi, Phys. Lett. B 621 (2005).
160 [arXiv:hep-ph/0502152] ; T. Fukuyama, A. Ilakovac, T. Kikuchi and K. Matsuda, JHEP 0506, 016 (2005) [arXiv:hep-ph/0503114] ; A. Masiero, S. K. Vempati and O. Vives, New J. Phys. 6, 202 (2004) [arXiv:hep-ph/0407325]. ; B. Bajc, G. Senjanovic and F. Vissani, Phys. Rev. D 70, 093002 (2004) [arXiv:hep-ph/0402140]. ; H. S. Goh, R. N. Mohapatra, S. Nasri and S. P. Ng, Phys. Lett. B 587, 105 (2004) [arXiv:hep-ph/0311330]. ; M. C. Chen and K. T. Mahanthappa, Int. J. Mod. Phys. A 18, 5819 (2003) [arXiv:hep-ph/0305088] ; K. S. Babu and S. M. Barr, Phys. Rev. D 65, 095009 (2002) [arXiv:hep-ph/0201130] ; G. Senjanovic, arXiv:hep-ph/0501244.

[11] R. N. Mohapatra et al., arXiv:hep-ph/0510213.

[12] S. Weinberg, Phys. Rev. D26, 287 (1982); N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982); S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett. B112, 133 (1982); J. Ellis, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B202, 43 (1982).

[13] P. Nath, A. H. Chamseddine and R. Arnowitt, Phys. Rev. D 32, 2348 (1985); J. Hisano, H. Murayama and T. Yanagida, Nucl. Phys. B402, 46 (1993); T. Goto, T. Nihei and J. Arafune, Phys. Rev. D52, 505 (1995); K. S. Babu and S. M. Barr, Phys. Lett. B 381, 137 (1996); P. Nath and R. Arnowitt, Phys. Atom. Nucl. 61, 975 (1998); T. Goto and T. Nihei, Phys. Rev. D 59, 115009 (1999); B. Bajc, P. Fileviez Perez and G. Senjanovic, Phys. Rev. D 66, 075005 (2002); D. Emmanuel-Costa and S. Wiesenfeldt, Nucl. Phys. B 661 (2003) 62 [arXiv:hep-ph/0302272].

[14] V. Lucas and S. Raby, Phys. Rev. D 54, 2261 (1996); Phys. Rev. D 55, 6986 (1997); K.S. Babu, J.C. Pati and F. Wilczek, Nucl. Phys. B566 33 (2000); B. Dutta, Y. Mimura and R. N. Mohapatra, arXiv:hep-ph/0507319.