Promising new strategies for hepatocellular carcinoma

Yasunari Nakamoto

Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.

Key words: hepatocellular carcinoma, immunotherapy, molecular target

INTRODUCTION

Hepatocellular carcinoma (HCC) occurs primarily in individuals with chronic liver diseases related to hepatitis B (HBV) or hepatitis C (HCV) virus infections, defined as the hypercarcinogenic state.1,2 The current treatment options for HCC, ranging from locoregional treatments, surgical resection, radiofrequency ablation (RFA), and transarterial chemoembolization (TACE) to chemotherapies, effectively regulate a limited quantity of small nodules.3,4 In patients with advanced stage HCC, the molecular targeted agent, sorafenib, has been shown to significantly increase overall survival (OS) and time to tumor progression.5,6 However, the antitumor effects are insufficient for effectively controlling the large and numerous nodules of HCC and for preventing a high rate of tumor recurrence in the surrounding inflamed liver after treatment.7,8 To explore new potential strategies for inducing higher antitumor effects, recent molecular and immunological research focusing on future treatments for HCC are reviewed.

MOLECULAR TARGETS

Details of recent molecular studies of HCC treatment strategies are presented in Table 1.

AKT/mTOR and RAS/RAF/MAPK pathways

Sorafenib is a RAF inhibitor and the standard first-line, systemic drug for advanced HCC.9 It activates protein kinase B (AKT) and upregulates downstream factors in HCC cells;10,11 sorafenib-resistant HCC cells have increased expression of phosphorylated AKT (p-AKT).12 A recent paper reported potential strategies using a novel ATP-competitive, pan-AKT inhibitor as a second-line treatment after the failure of sorafenib-medicated molecular targeted therapy for advanced HCC, in which the inhibition of AKT reversed the acquired resistance to sorafenib by activating the autophagic pathway.13 Cross-talk occurs between the phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)
Activation of the AKT/mammalian target of rapamycin (mTOR) and RAS/MAPK cascades is frequently observed and associated with aggressive tumor phenotypes and poor prognosis in human HCC.15,16 In an animal model characterized by the co-expression of activated forms of AKT and RAS, concomitant activation of the AKT/mTOR and RAS/RAF/MAPK pathways is frequently observed and associated with aggressive tumor phenotypes and poor prognosis in human HCC.15,16
The data indicated that sorafenib enhanced the antiproliferative effect of proteasome inhibitors and that the combination of these agents could be an ideal molecular targeted therapy for HCC.

Wnt/β-catenin and glutamine synthetase

Aberrant activation of the Wnt/β-catenin pathway has been observed in at least one-third of HCCs; roughly 20% of HCCs have mutations in the β-catenin gene, and more than 50% of HCC tumors display nuclear accumulation of β-catenin.28,29 Recently, proliferation of liver cancer stem cells and HCC lines were inhibited by a Wnt/β-catenin inhibitor,30 and this correlated with a decrease in the percentage of cells in S phase. In addition, expression of two well-characterized targets of β-catenin, cyclin D1 and survivin, was reduced by the inhibitor.31 A subset of HCC was characterized not only by mutations of β-catenin, but also by overexpression of glutamine synthetase. In four human HCC lines, the enzyme L-asparaginase, a glutaminolytic drug, had a significant antiproliferative effect only in HepG2 cells expressing a mutated β-catenin. The enzyme severely depleted cellular glutamine, caused eIF2α phosphorylation, inhibited mTOR activity, and increased autophagy. The results suggested that glutamine deprivation constitutes a targeted therapy for β-catenin-mutated HCC cells addicted to the amino acid.32

Insulin-like growth factor pathway

The insulin-like growth factor (IGF) signaling pathway is an important regulatory mechanism for tumorigenesis and drug resistance in HCC and many cancers.28,33 The IGF-I receptor (IGF-IR) is an important therapeutic target in solid tumors, with currently about a dozen IGF-IR inhibitors under clinical investigation.34 Activation of the IGF receptor activation is stimulated by aflatoxin B1 (AFB1), a potent carcinogen that can induce HCC.35 The effects of AFB1 were investigated on key elements of the IGF-IR signaling pathway. Aflatoxin B1 induced phosphorylation of IGF-IR, AKT, and ERK1/2 in hepatoma cell lines, and in an immortalized human liver cell line, Chang liver. Treatment of the cells with IGF-IR inhibitor abrogated AFB1-induced phosphorylation.36 Potential synergistic effects between IGF receptor inhibition and the other molecular targeted agents, sorafenib and sunitinib, were explored in HCC cells. The cellular apoptosis induced by sunitinib, but not by sorafenib, was enhanced when IGF receptor signaling activity was inhibited by an inhibitor or by knockdown. The data indicated that combination therapy of IGF receptor inhibitors with other molecular targeted agents might improve the therapeutic efficacy for HCC.37 In another study, the inhibitory effects of two antibodies against IGF-IR were explored in tumor cells. Compared to the effects of the single antibodies, the combination of
two antibodies accelerated IGF-IR downregulation and inhibited IGF-IR activation, as well as downstream signaling, particularly AKT phosphorylation. In an HCC xenograft model, the combination reduced tumor growth to a greater degree than each single antibody. The results suggested that targeting multiple, distinct inhibitory epitopes of IGF-IR may be a more effective strategy for affecting the IGF-IR pathway in cancer.

Signal transducer and activator of transcription 3

Signal transducer and activator of transcription 3 (STAT3) has been implicated in signal transduction by different cytokines, growth factors, and oncogenes. Activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation, and angiogenesis. Recent findings showed that sorafenib inhibited tumor growth through RAF-MEK-MAPK-independent pathways, that STAT3 was a major kinase-independent target of sorafenib in HCC, and that sorafenib inhibited growth and metastasis of HCC by blocking STAT3. An antiplatelet agent, 3-(5’-hydroxy-methyl-2’-furyl)-1-benzyl indazole, induced cell cycle arrest and apoptosis by activating checkpoint kinases, and enhanced chemosensitivity in HCC. Recently, a combination of sorafenib and the antiplatelet agent inhibited SHP-1 activity and the expression of p-STAT3 (Y705) (S727), p-ERK1/2, cyclin D1, and survivin in HCC cells, suggesting that the combination can target the STAT3 signaling pathway to inhibit HCC tumor growth.

Nuclear factor-κB and hTERT

Nuclear factor-κB (NF-κB) has been the focus of the transcription and expression of multiple genes coding for cytokines, enzymes, and molecules involved in apoptosis, proliferation, and adhesion that are part of the inflammation–fibrosis–cancer axis of the liver. Previous reports have shown that NF-κB positively regulates human telomerase reverse transcriptase (hTERT) transcription by reinforcing hTERT promoter activity. Recently, NF-κB p65 was found to regulate hTERT at the mRNA and protein levels in stimulated HepG2 cells, and dexamethasone was shown to inhibit NF-κB-mediated hTERT expression. These findings suggested that inhibition of NF-κB is a new approach for the treatment of HCC by preventing hTERT-mediated cellular immortality.

Hepatocyte growth factor receptor

Hepatocyte growth factor receptor (c-Met) is overexpressed at the protein level in 25–100% of HCCs. Targeting the hepatocyte growth factor/c-MET pathway in HCCs has been reported, in which three oral small molecule c-MET tyrosine kinase inhibitors, foretinib, cabozaunitinib, and tivantinib have shown acceptable toxicity and modest clinical efficacy in phase II trials in advanced HCC. Antibodies against c-MET have been studied, including a human anti-c-Met Fab fragment and scFv fragment screening from a human naive Fab library. Researchers generated a novel conjugate of a human anti-c-Met Fab fragment (MetFab) with doxorubicin (DOX). The MetFab-DOX conjugate had an antitumor effect and reduced the side-effects of free DOX in mice. It can localize to tumor tissues, and the concentration of doxorubicin in the tumor was high after MetFab-DOX treatment. Collectively, MetFab-DOX can target c-Met expressing HCC cells effectively with decreased side effects in preclinical models of HCC.

Adenosine triphosphate

Adenosine triphosphate (ATP) is an abundant biochemical component of the tumor microenvironment and plays an important role in host–tumor interactions. Deletion of CD39, an ectonucleotidase that regulates extracellular nucleotide/nucleoside concentrations, resulted in higher concentration of extracellular ATP and promoted the development of liver cancer. Adenosine triphosphate is a physiological ligand for the P2Y2 nucleotide receptor (P2Y2R). In recent work, the expression of P2Y2R was upregulated in HCC cells, and P2Y2R mediated the action of ATP on the proliferation and migration of live cancer cells. As chronic hepatitis induced by HBV and HCV is a major cause of HCC, ATP can be released from inflammatory cells and promotes the development and progression of tumors. Therefore, P2Y2R may be a key player in the development and progression of chronic hepatitis-associated HCC.

Human homolog of Drosophila headcase

In Drosophila, headcase (HECA) is critical for adult morphogenesis. The human homolog (HECA homo) is abnormally expressed in pancreatic, colorectal, and oral squamous cell carcinoma. The silencing of HECA homo significantly increases cell division and markedly increases resistance to the chemotherapeutic cisplatin. Protein–protein interactions between HECA homo and cyclin-dependent kinase (CDK)2, CDK9, cyclin A, and cyclin K have been verified. In HCC, the levels of HECA homo protein are mostly downregulated, and the HECA homo protein can slow cell proliferation primarily by blocking the cell cycle. Hence, the HECA homo protein may act as a tumor suppressor in HCC, and might be a potential

© 2016 The Authors.
Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of The Japan Society of Hepatology
molecular marker for diagnostic classification and targeted therapy in HCC.

IMMUNOTHERAPEUTIC STRATEGIES

Details of recent immunological studies of treatment strategies for HCC are shown in Table 2.

Target identification

Alpha-fetoprotein (AFP) is an oncofetal protein during HCC development that may serve as a target for immunotherapy. CD4 (Th1) and CD8 (Tc1) T-cell responses to a panel of AFP-derived peptides were analyzed in patients with HCC using an intracellular cytokine assay for γ-interferon (IFN-γ). Anti-AFP Th1 responses were more likely to be present in patients who were in an early stage of disease (for both tumor stage and liver cirrhosis), whereas anti-AFP Tc1 responses were more likely to be present in patients with late-stage liver cirrhosis. Therefore, these data provided valuable information for the design of vaccination strategies against HCC. Glypican-3 (GPC3) is a tumor-associated antigen that is overexpressed in HCC and is only expressed in the placenta and embryonic liver. An HLA-A2-restricted GPC3(144–152) (FVGEFFTDV) peptide has been shown to induce GPC3-reactive cytotoxic T cells (CTLs) in HLA-A2 transgenic mice. A phase I clinical trial of an HLA-A2-restricted GPC3(144–152) peptide vaccine was carried out in 14 patients with advanced HCC. An increase in the peptide-specific CTL frequency was observed in 86% of the patients after vaccination, and several peptide-specific CTL clones were established from peripheral blood mononuclear cells (PBMCs) of the vaccinated patients. These results suggested that the GPC3(144–152) peptide vaccine can induce high avidity CTLs capable of killing HCC cells expressing GPC3. Aspartate-β-hydroxylase (ASPH) is a highly conserved transmembrane protein that is overexpressed in HCC and promotes a malignant phenotype. The epitope-specific components required for a peptide-based candidate vaccine were investigated. Both HLA class I- and class II-restricted peptides derived from ASPH induced T cell activation in HCC, indicating that ASPH protein and related peptides produce the type of cellular immune responses required to generate antitumor activity. Annexin A3 (ANXA3) is preferentially expressed in cancer stem-like cells/cancer-initiating cells (CSCs/CICs) derived from HCC cells. ANXA3-transfected dendritic cells (DCs) induced functionally active T cells, and these effector T cells can kill CD133+ HCC CSCs/CICs in vitro and in vivo. These findings suggested that ANXA3 represents a potential CSC/CIC-specific therapeutic target for improving the treatment of HCC.

Cancer/testis (CT) antigens are promising target molecules for immunotherapy. To identify potential CT antigens, a testis cDNA library was immunoscreened with sera from patients with HCC by serological analysis of recombinant cDNA expression libraries (SEREX). Two antigens, A-kinase anchoring protein 3 (AKAP3) and CT1p11, were isolated from the patients by phage plaque analysis; anti-AKAP3 antibody was detected in sera from 15 of 27 patients with HCC and 8 of 27 healthy donors, suggesting that AKAP3 may be an immunogenic tumor antigen. New York esophageal squamous cell carcinoma-1 (NY ESO 1) is one of the CT antigens. T cell response was evaluated following stimulation with DCs pulsed with recombinant NY ESO 1 protein (rESO) in patients with HCC. Recombinant ESO DCs significantly stimulated T cell proliferation. The specific lysis of T cells stimulated with rESO DCs was higher in the NY ESO 1-positive HCC cells. These data suggested that NY ESO 1 might be used as a potential target for immunotherapy in advanced HCC. HBx is an oncogenic tumor-associated antigen and is dominantly expressed in hepatitis and hepatoma tissues. A study was designed to test whether a replication-defective adenovirus vaccine expressing HBx antigen could be effectively used in the immunotherapy of HCC. The adenovirus vaccine expressing HBx antigen induced protective and therapeutic antitumor immunity in the hepatoma models in immune-competent mice. These findings supported the development of adenovirus vaccines based on HBx antigen for the treatment of HBV-associated HCC.

T cells and NK cells

Antigen-specific T cell therapy, or T cell receptor (TCR) gene therapy, is a promising immunotherapy for infectious diseases and cancers. An efficient cloning and functional evaluation system was used to determine the antigen specificity of TCR cDNAs derived from single antigen-specific human T cells within 10 days. Using the system, 210 HCC-specific TCRs were obtained, and the cytotoxic activity of CTLs carrying these TCRs was revealed against peptide-bearing cells. This system may provide a fast and powerful approach for TCR gene therapy for cancers, including HCC. In a recent study, TCR αβ chain genes of AFP-specific CTLs were cloned into a lentiviral vector and linked by 2 A peptide to form a full-length TCR coding sequence. Non-specific activated T cells were engineered by lentivirus infection. The number of IFN-γ-secreting T cells and the specific cytotoxicity toward HepG2 significantly increased in vitro and in tumor-bearing NOD/SCID mice. Hepatocellular carcinoma cells often have integrated HBV-DNA and can be targeted by HBV-specific T cells. The electroporation of mRNA
Table 2 Recent immunological studies of treatment strategies for hepatocellular carcinoma

Topics	Subjects	Years	References
Target identification			
> Anti-AFP peptide Th1/Tc1 responses	Human	2010	62
> HLA-A2-restricted GPC3 peptide vaccine	Human (phase I)	2011	63
> HLA class I/II-restricted ASPH peptides	Human	2015	65
> ANXA3 in CSCs/CICs	Cell, mouse, human	2015	66
> AKAP3 by SEREX	Human	2012	67
> DCs pulsed with NY ESO 1	Human	2013	68
> Adenovirus vaccine expressing HBx	Cell, mouse	2010	69
T cell and NK cell			
> Fast cloning of TCR cDNAs	Human	2013	70
> TCR αβ chain genes of AFP	Cell, mouse	2015	71
> Electroporation of anti-HBV TCR	Cell, mouse	2013	72
> HBsAg-specific TCR-modified T cells	Human	2015	73
> Vγ9Vδ2 T cells	Human	2010	74
> NK cell antitumor function by blocking STAT3	Cell	2013	76
> Allogeneic suicide gene-modified killer cells	Cell, mouse	2014	77
Dendritic cell preparation			
Tumor lysate			
> Total RNA, cell lysates, autophagosome, allogeneic fusion	Human (phase II)	2013	79
	Mouse, human	2014	80
	Cell	2010	81
	Cell, mouse	2014	82
	Mouse	2013	83
	Cell	2010	84
> + IL-12, + activated T cell	Cell, mouse	2014	85
	Human (phase II)	2012	86
	Human (phase II)	2014	87
AFP			
> rAAV, peptide, mannose receptor, TAAs	Cell	2015	88
	Cell, human	2011	89
	Cell, human	2015	90
	Human (phase I)	2012	91
> + IL-2, + HBsAg	Cell, mouse	2012	92
	Cell, mouse	2010	93
Other			
> GPC3, α-Gal, tumor stem cells and RNA	Cell, mouse	2015	94
	Human (phase II)	2011	95
	Human (phase I)	2015	96
	Cell, in vivo	2010	97
> + PMWA, + cryosurgery, + TAE	Human (phase I)	2011	98
	Human	2013	99
	Human	2014	100
	Human (phase II)	2011	101
	Mouse	2011	102
Natural killer T cell (CIK cell)			
> + RFA, TACE, hyperthermia	Human	2013	103
	Human (phase II)	2014	104
	Human	2013	105

(Continues)
encoding anti-HBV TCR was used. The TCR-electroporated T cells efficiently prevented tumor seeding and suppressed the growth of established tumors in a xenograft model of HCC, suggesting a practical approach to cell therapy for HCC.72 In a patient who had undergone liver transplantation for HBV-related HCC, the viral antigens were expressed in the metastases. Then, the autologous T cells were genetically modified to express a hepatitis B surface antigen (HBsAg)-specific TCR. Gene-modified T cells survived, expanded, mediated a reduction in HBsAg levels, and recognized tumor cells without exacerbating liver inflammation or other toxicity. These results suggested the feasibility of providing autologous TCR-redirected therapy against HCC in hepatitis B-associated malignancies.73

Vγ9Vδ2 T cells show efficient lytic activity against multiple human tumor cell lines. Vγ9Vδ2 T cell expansions were carried out by coculturing PBMCs with autologous DCs pretreated with aminobisphosphonate zoledronate. The cytocotoxicity of Vγ9Vδ2 T cells against autologous tumor cells was significantly increased by pretreatment of the tumor cells with zoledronate, suggesting that the method may be eligible for the adoptive immunotherapy of Vγ9Vδ2 T cells against HCC.74 Researchers found that blocking STAT3 in HCC cells enhanced NK cell antitumor function. In the case of STAT3-blocked HCC cells, NKG2D ligands were upregulated, transforming growth factor-β (TGF-β) and interleukin (IL)-10 expression was reduced, and type I IFN was induced, thus facilitating NK cell activation. These findings indicated that blocking STAT3 in HCC cells could initiate innate immunity in vivo.75,76 In a panel of HCC cell lines, human allogeneic suicide gene-modified killer cells showed an IL-2-dependent, and non-MHC class I-restricted cytotoxicity in vitro and in vivo, mainly mediated by NK and NK-like T cells.78

Dendritic cells

Dendritic cell preparation – tumor lysate

DENDRITIC CELLS CAN be pulsed with tumor-specific antigens that stimulate antitumor immune responses. The safety and efficacy of autologous DCs

Table 2. (Continued)

Topics	Subjects	Years	References	
Human (phase II)	2010	109		
Human (phase I)	2013	110		
Human (phase II)	2014	111		
Human (phase III)	2015	114		
Vaccine				
Peptides				
> HSP72/AFP, gp96/AFP, AFP nanoparticles	Mouse	2013	115	
	Mouse	2012	116	
	Mouse	2015	117	
	Mouse	2011	118	
> GPC3 cDNA and peptide	Mouse	2014	119	
	Human (phase I)	2012	120	
> MRP3, hTERT, TM4SF5	Human (phase I)	2015	121	
	Human (phase I)	2015	122	
	Mouse	2012	123	
Other	> GM-CSF + TGFβ, HLA class I, Listeria vaccine	Human (phase I)	2014	124
		Cell	2010	125
		Mouse	2015	126

AFP, α-fetoprotein; AKAP3, A-kinase anchoring protein 3; ANXA3, annexin A3; ASPH, aspartate-β-hydroxylase; CIC, cancer initiating cell; CIK, cytokine-induced killer; CSC, cancer stem-like cell; DC, dendritic cell; GM-CSF, granulocyte macrophage colony-stimulating factor; gp96, glycoprotein 96; GPC, glypican-3; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HSP, heat shock protein; hTERT, human telomerase reverse transcriptase; IL-12, interleukin-12; MRP3, multidrug resistance-associated protein 3; NK, natural killer; NY ESO 1, New York esophageal squamous cell carcinoma-1; PEG10, paternally expressed 10; PMWA, percutaneous microwave ablation; rAAV, recombinant adeno-associated virus carrying the AFP gene; RFA, radiofrequency ablation; SEREX, serological analysis of recombinant cDNA expression libraries; STAT3, signal transducer and activator of transcription 3; TAA, tumor-associated antigen; TACE, transarterial chemoembolization; TAE, transcatheter hepatic arterial embolization; TCR, T cell receptor; TGF-β, transforming growth factor-β; TM4SF5, transmembrane 4 superfamily member 5.
pulsed ex vivo with a liver tumor cell line HepG2 lysate were evaluated in patients with advanced HCC. Improvement in OS was observed. In another study, DCs were transfected with RNA extracted from HepG2 to induce the expression of specific antigens. Injection of T lymphocytes from patients with HCC and transfected DCs into SCID mice limited the growth of HepG2 tumors. These methods may have a therapeutic application in humans to reduce the recurrence of HCC. 80. Dendritic cells pulsed with HCC total RNA were compared with cell lysates to determine their ability to activate T cells. The total RNA-pulsed DCs induced effector T lymphocytes showed higher killing ability, as well as higher frequency of IFN-γ production by CD4+ and CD8+ T cells, suggesting that using total RNA may be a better choice for DC-based HCC immunotherapy. 81 Tumor lysate pulsed DCs were also transduced with IL-12-encoding adenoviruses. Intratumoral injections of IL-12-DC induced strong antitumor effects, causing complete regression in 75% of early stage tumors and in 33% of advanced tumors in murine s.c. HCC. These results suggested that additional DC stimulation with IL-12 is a promising approach for treating HCC. 82 A novel therapeutic cancer vaccine platform based on tumor cell-derived autophagosomes was developed for cancer immunotherapy. Autophagosome-pulsed DC immunization induced antitumor immunity in a humanized HCC mouse model generated by transplantation of HepG2 into BALB/c-nu mice, resulting in significant inhibition of tumor growth through a specific T cell response. 83 As autologous tumor lysate-pulsed DCs plus activated T cell transfer (ATVAC) was found to improve both postoperative recurrence-free survival (RFS) and OS in patients with intrahepatic cholangiocarcinoma, 84 ATVAC was tested in an adjuvant setting for postoperative treatment of HCC in a non-randomized controlled trial. The median RFS and OS were 24.5 months and 41.0 months, respectively, in the group receiving surgery alone (P = 0.029). These data suggested that a postoperative DC vaccine plus activated T cell transfer would be feasible and effective treatments for preventing recurrence in patients with HCC. 85 The specific antitumor responses of DCs fused with allogeneic HCC cell line were investigated in autologous tumor cells. Cytotoxic T lymphocytes induced by DC/allogeneic BEL7402 fusion cells were able to kill autologous HCC cells by HLA-A2 restricted mechanisms. These results suggested that the fusion of allogeneic HCC cells and autologous DCs may have applications in antitumor immunotherapy through cross-priming against shared tumor antigens. 86

Dendritic cell preparation – AFP

In a recent study, recombinant adeno-associated virus carrying the AFP gene (rAAV/AFP) and cancer cell lysates were used to pulse antigen-presenting DCs in order to stimulate a cytotoxic T lymphocyte (CTL) response in HCC. The rAAV/ AFP-pulsed DCs showed superiority in terms of inducing an AFP-specific MHC class I restricted CTL response. 87 Alpha-fetoprotein peptide-pulsed DCs were found to enhance NK cell activation and decrease the frequency of regulatory T cells in vaccinated HCC patients. Furthermore, recombinant adenovirus-transduced DCs, with or without maturation, were the most successful at inducing NK cell activation and regulatory T cell depletion. These results are relevant for designing DC-based vaccines in patients with HCC. 88 The AFP protein is endocytosed and trafficked in human DC using the mannose receptor (MR/CD206) as the primary uptake pathway for both normal cord blood-derived AFP and tumor-derived AFP proteins. In cells from patients with HCC, tumor-derived AFP was more immunogenic, and CD4+ T cell responses were not mannose receptor-dependent. These data allowed the correlation of antitumor immunity pathways in HCC patients with this secreted antigen. 89 Dendritic cells cotransfected with IL-2 and AFP enhanced the cytotoxicities of CTLs and increased the production of IL-2 and IFN-γ significantly, and induced antigen-specific antitumor efficacy in vivo. 90 Dendritic cells infected with the AFP gene or the HCC-related antigen (HBsAg) gene induced the cytotoxic activity of CTLs against the HBV-expressing cell line HepG2.2.15. Inhibition of tumor growth was most significant in the SCID mice model. These results suggested that a vaccination therapy using DCs co-infected with the two tumor-associated antigen genes is an effective strategy for immunotherapy. 91 To develop cancer vaccines for HCC capable of promoting potent tumor-specific T cell responses, adenovirally encoded synthetic AFP was tested. A multiple tumor-associated antigen-pulsed DC vaccine was prepared by pulsing DCs with cytoplasmic transduction peptide-attached AFP, GPC3, and MAGE-1 recombinant fusion proteins. In patients with advanced HCC, DCs were injected s.c. near the inguinal lymph nodes, followed by topical application of Toll-like receptor-7 agonists around the injection site. The feasibility, safety, and immune activity of DCs pulsed with tumor-associated antigens were confirmed in this study. 92

Dendritic cell preparation – other

Dendritic cells were transduced with the GPC3 gene (DCs GPC3) and cocultured with autologous cytokine-induced
killer cells (CIKs). It was reported that DCs GPC3 CIKs significantly enhanced the cytotoxic activity against GPC3-expressing HepG2 cells and showed significant inhibition of tumor growth in nude mice. An immunotherapy using both α-Gal epitope-pulsed DCs and CIK cells was evaluated. The therapy significantly prolonged the survival of treated patients when compared to that of the controls (17.1 months vs. 10.1 months, \(P = 0.00121 \)). Adoptive immunotherapy with DCs and effector cells prescribed after percutaneous microwave ablation for patients with HCC was safe and ameliorated the percentage of peripheral lymphocytes. To retrospectively assess the effect of comprehensive cryosurgery (ablation of intra- and extrahepatic tumors) plus DC-CIK immunotherapy in metastatic HCC, 45 patients were divided into cryo-immunotherapy, cryotherapy, immunotherapy, and untreated groups. Cryo-immunotherapy significantly increased OS in patients with metastatic HCC. These results provided a new insight into the design of personalizing adoptive immunotherapy for HCC.

In our studies, the procedures to induce DCs that efficiently function in HCV-related HCC were evaluated. The maturation of DCs with OK-432, a streptococcus-derived anticancer immunotherapeutic agent, boosted production of cytokines and chemokines, such as IL-2, IL-12p70, IFN-γ, tumor necrosis factor-α, IL-13, and macrophage inflammatory protein-1α, and restored T cell stimulatory activity of DCs in mixed lymphocyte reaction. Furthermore, OK432-stimulated DCs were infused into tumor tissues following transcatheter hepatic arterial embolization treatment in patients with HCC. Kaplan–Meier analysis indicated prolonged RFS of patients treated in this manner when compared to that of historical controls. The results suggest that a DC-based, active immunotherapeutic strategy, in combination with locoregional treatments, exerts beneficial antitumor effects against liver cancer.

The efficacy of intratumoral immunotherapy using IL12 gene therapy and DC injection was evaluated for the treatment of HCC under conditions of immunosuppression. The combined immunotherapy exerted effective antitumor effects on the immunosuppressed host, resulting in significant suppression of tumor growth and complete suppression of lung and liver metastasis. These results suggested that intratumoral neoadjuvant immunotherapy using IL12 and DC is a potent and effective strategy for controlling the recurrence of HCC in patients after liver transplantation. To suppress the recurrence of HCC after the treatments, establishing an immunotherapy to kill HCC stem cells is potentially a novel therapeutic strategy. Irradiated tumor stem cells (TSC) were incubated with autologous DC to create DC-TSC in hepatitis B-positive patients with HCC. After one course of TACE, three weekly s.c. injections of DC-TSC suspended in granulocyte macrophage colony-stimulating factor were administered. There was no increase in hepatic transaminases, hepatitis B antigens, or viral DNA, indicating that autologous DC-TSC did not exacerbate HBV in these patients with HCC.

In another study, researchers developed an immunotherapy to target CD133+ HCC stem cells. The results showed that: (i) CD133+ HCC cell RNA-loaded DCs induced special CD8+ CILs (CD133+ Huh7-CILs) in vitro; and (ii) Huh7 cell-induced tumor growth in vivo was effectively inhibited by CD133+ Huh7-CILs, indicating that HCC stem cell RNA-loaded DC vaccine may have potential in treating HCC recurrence.

Recent evidence indicated that paternally expressed 10 (PEG10) plays an essential role in hepatocarcinogenesis and development. Dendritic cells transduced with the PEG10 recombinant adenovirus effectively induced a specific CTL response against HCC, inhibited tumor growth and prolonged the life span of tumor-bearing mice, suggesting that the transduction of DCs with PEG10 provides a promising strategy for cancer immunotherapy of HCC.

Natural killer T cells

A subset of natural killer T lymphocytes, CIK cells, was generated in vitro by incubation of peripheral blood lymphocytes with anti-CD3 mAb, IL-2, IL-1α, and IFN-γ. The higher antitumor activity of CIK cells was mainly due to the higher proliferation rate of CD3+CD56+ cells. The biological characteristics of autologous CIK cells from patients with HCC were compared following different procedures for the separation of PBMCs. Apheresis is more effective at enhancing the antitumor efficacy of CIK cells than Ficoll lymphocyte separation. However, significant attention should be paid to the possibility of adverse reactions in apheresis donors.

In recent studies, patients with HCC were treated with CIK cells and other standard treatments. In combination with surgery, RFA, TACE, and local radiofrequency hyperthermia, CIK cell immunotherapy improved OS, PFS, or disease control rates. In addition, the application of CIK treatment was assessed using a nomogram of the benefit of adjuvant effects in patients with HCC, in which independent factors for OS were tumor size, capsule, pathological grades, total bilirubin, albumin, prothrombin time, AFP, and tumor number. More recently, a multicenter, randomized, open-label, phase III trial was carried out for the efficacy and safety of adjuvant immunotherapy with activated CIK cells. The study included 230 patients in Korea with HCC treated by surgical resection, RFA, or...
and measurable immune responses and antitumor efficacy of GPC3-derived peptide vaccination was well-tolerated, all survival was significantly longer in patients with high GPC3-specific CTL frequencies. The results indicated that GPC3-derived peptide vaccination was well-tolerated, and measurable immune responses and antitumor efficacy were noted. Multidrug resistance-associated protein 3 (MRP3) is a carrier-type transport protein belonging to the ABC transporter family. The safety and immunogenicity of an MRP3-derived peptide (MRP3765) as a vaccine were investigated. The vaccination induced MRP3-specific immunity in 72.7% of the patients. Among 12 HCC patients, one patient showed a partial response, nine showed a stable disease, and two showed a progressive disease. The median OS time was 14.0 months. Human telomerase reverse transcriptase is a catalytic enzyme required for telomere elongation. The safety and immunogenicity of an hTERT-derived peptide (hTERT461) as a vaccine were investigated. The vaccination induced hTERT-specific immunity in 71.4% of patients, and 57.1% of patients injected with hTERT461 peptide-specific T cells avoided HCC recurrence after vaccination. The results illustrated the potential of these peptides to provide clinical benefit in patients with HCC.

The transmembrane 4 superfamily member 5 protein (TM4SF5) induces uncontrolled growth of HCC cells through the loss of contact inhibition. To improve the efficacy of peptide vaccines, a peptide hTM4SF5R2–3 was formulated without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (lipoplex (O)). Pre-immunization with the complex had prophylactic effects against tumor formation of HCC cells implanted in a mouse tumor model, suggesting a novel prophylaxis measure as well as therapy for TM4SF5-positive HCC.

Other
A phase I trial of a novel autologous whole-cell tumor cell immunotherapy was carried out, which incorporates a dual granulocyte macrophage colony-stimulating factor expression/bifunctional small hairpin RNA interference vector. This DNA targets furin, which is a proconvertase of TGF-β1 and TGF-β2. Based on the long-term follow-up, treated patients had a survival ranging from 319 to over 1043 days. Characterization of recurrent HCC cells will facilitate the design of future therapeutic strategies for recurrent HCC. Two cell lines were established from primary and recurrent tumor tissues of the same patient with HCC. Although the HCC cell line from recurrent tissues downregulated HLA class I expression, pretreatment with cytokines (tumor necrosis factor-α and IFN-γ) increased the expression of HLA class I molecules, and rendered them more susceptible to CD8+ T cell-mediated recognition in vitro. This strategy may be an effective therapeutic approach for preventing HCC recurrence and for controlling recurrent HCC growth.

The ability of the attenuated HCC-specific Listeria vaccine was tested in a mouse model. Immunization with the vaccine caused a strong antitumor response, especially in mice reinfused with DCs. These results suggested that the

Vaccines
Peptides
By way of glutaraldehyde cross-linking with AFP protein, potential therapeutic protein vaccines, heat shock protein 72/AFP and glycoprotein 96/AFP, were constructed. The vaccines acted synergistically to significantly increase the AFP-specific CD8+ T cell responses and produced an impressive cytotoxic antitumor effect against AFP-expressing tumors. These data suggested that tumor vaccines by cross-linking tumor antigen and heat shock protein 72 and glycoprotein 96 are promising approaches to cancer therapy. Diethylnitrosamine injected into infant mice resulted in the development of multinodular HCC in which AFP is expressed. The animals received an antigen-specific immunization with a synthetic vector consisting of a low dose of AFP-encoding plasmid formulated with the amphiphilic block copolymer 704. The AFP-specific immunotherapy led to a significant (65%) reduction in tumor size. The results supported the use of an antitumor immunotherapy based on vaccination with nanoparticles consisting of low-dose antigen-encoding DNA formulated with a block copolymer. A GPC3 cDNA vaccine was constructed by using a recombinant plasmid encoding murine GPC3 cDNA for treatment of HCC in a mouse model. Specific immune responses were detected in vitro, and homogenous tumor growth and prolonged survival time were seen in vivo, indicating that the GPC3 DNA vaccine could elicit specific and effective cellular antitumor immunity against GPC3+ HCC. In a non-randomized, open-label, phase I clinical trial, the safety and efficacy of GPC3 peptide vaccination were analyzed in patients with advanced HCC. Thirty-three patients underwent GPC3 peptide vaccination. One patient showed a partial response, and 19 patients showed stable disease 2 months after the initiation of treatment. A GPC3-specific CTL response was seen in 30 patients. Overall survival was significantly longer in patients with high GPC3-specific CTL frequencies. The results indicated that GPC3-derived peptide vaccination was well-tolerated, and measurable immune responses and antitumor efficacy were noted. Multidrug resistance-associated protein 3 (MRP3) is a carrier-type transport protein belonging to the ABC transporter family. The safety and immunogenicity of an MRP3-derived peptide (MRP3765) as a vaccine were investigated. The vaccination induced MRP3-specific immunity in 72.7% of the patients. Among 12 HCC patients, one patient showed a partial response, nine showed a stable disease, and two showed a progressive disease. The median OS time was 14.0 months. Human telomerase reverse transcriptase is a catalytic enzyme required for telomere elongation. The safety and immunogenicity of an hTERT-derived peptide (hTERT461) as a vaccine were investigated. The vaccination induced hTERT-specific immunity in 71.4% of patients, and 57.1% of patients injected with hTERT461 peptide-specific T cells avoided HCC recurrence after vaccination. The results illustrated the potential of these peptides to provide clinical benefit in patients with HCC.

The transmembrane 4 superfamily member 5 protein (TM4SF5) induces uncontrolled growth of HCC cells through the loss of contact inhibition. To improve the efficacy of peptide vaccines, a peptide hTM4SF5R2–3 was formulated without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (lipoplex (O)). Pre-immunization with the complex had prophylactic effects against tumor formation of HCC cells implanted in a mouse tumor model, suggesting a novel prophylaxis measure as well as therapy for TM4SF5-positive HCC.

Other
A phase I trial of a novel autologous whole-cell tumor cell immunotherapy was carried out, which incorporates a dual granulocyte macrophage colony-stimulating factor expression/bifunctional small hairpin RNA interference vector. This DNA targets furin, which is a proconvertase of TGF-β1 and TGF-β2. Based on the long-term follow-up, treated patients had a survival ranging from 319 to over 1043 days. Characterization of recurrent HCC cells will facilitate the design of future therapeutic strategies for recurrent HCC. Two cell lines were established from primary and recurrent tumor tissues of the same patient with HCC. Although the HCC cell line from recurrent tissues downregulated HLA class I expression, pretreatment with cytokines (tumor necrosis factor-α and IFN-γ) increased the expression of HLA class I molecules, and rendered them more susceptible to CD8+ T cell-mediated recognition in vitro. This strategy may be an effective therapeutic approach for preventing HCC recurrence and for controlling recurrent HCC growth.

The ability of the attenuated HCC-specific Listeria vaccine was tested in a mouse model. Immunization with the vaccine caused a strong antitumor response, especially in mice reinfused with DCs. These results suggested that the

© 2016 The Authors.
Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of The Japan Society of Hepatology
HCC-specific Listeria vaccine is a feasible strategy for preventing HCC.126

CONCLUSIONS

RECENT MOLECULAR AND immunological studies of treatment strategies for HCC were reviewed. Many intracellular signaling molecules and immunomodulatory procedures have been tested for the ability to suppress tumor growth and to improve the tumor microenvironment. Most of these techniques are promising and are promoting the development of next-generation therapies. To increase their antitumor efficacy, a future direction for the development of clinically effective cancer treatments may be not only to modify the therapies, but also to combine them with each other, and probably with immune checkpoint inhibitors. Hepatocellular carcinoma is an aggressive and treatment-resistant malignancy worldwide. Further progress in translational and therapeutic research is urgently required to reduce the suffering of patients who have this cancer.

ACKNOWLEDGMENTS

THE AUTHOR THANKS Chieko Murata for assistance in preparation of the manuscript. This work was partially supported by the Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No. JP 25293171) and Grant-in-Aid for Challenging Exploratory Research (Grant No. JP 26670379), the Program on the Innovative Development and the Application of New Drugs for Hepatitis B (15fk0310011h0004), and the Research Program on Hepatitis (15fk0210019h0003) from the Japan Agency for Medical Research and Development.

REFERENCES

1 Hino O. Intentional delay of human hepatocarcinogenesis due to suppression of chronic hepatitis. *Intervirology* 2005; 48: 6–9.
2 Hiramatsu N, Oze T, Takehara T. Suppression of hepatocellular carcinoma development in hepatitis C patients given interferon-based antiviral therapy. *Hepatol Res* 2015; 45: 152–61.
3 Osaki Y, Nishikawa H. Treatment for hepatocellular carcinoma in Japan over the last three decades: our experience and published work review. *Hepatol Res* 2015; 45: 59–74.
4 Wang Y, Deng T, Zeng L, Chen W. Efficacy and safety of radiofrequency ablation and transcatheter arterial chemoembolization for treatment of hepatocellular carcinoma: a meta-analysis. *Hepatol Res* 2016; 46: 58–71.
5 Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med* 2008; 359: 378–90.
6 Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. *Nat Rev Clin Oncol* 2015; 12: 408–24.
7 Chuma M, Terashita K, Sakamoto N. New molecularly targeted therapies against advanced hepatocellular carcinoma: from molecular pathogenesis to clinical trials and future directions. *Hepatol Res* 2015; 45: E1–11.
8 Ikemoto T, Shimada M, Yamada S. Pathophysiology of recurrent hepatocellular carcinoma after radiofrequency ablation. *Hepatol Res* 2016. DOI:10.1111/hepr.12705.
9 Cheng AL, Kang YK, Chen Z et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol* 2009; 10: 25–34.
10 Huynh H, Ngo VC, Koong HN et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. *J Cell Mol Med* 2009; 13: 2673–83.
11 Gedaly R, Angulo P, Hundley J et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways. *Anticancer Res* 2010; 30: 4951–8.
12 Chen KF, Chen HL, Tai WT et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. *J Pharmacol Exp Ther* 2011; 337: 155–61.
13 Zhai B, Hu F, Jiang X et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. *Mol Cancer Ther* 2014; 13: 1589–98.
14 Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. *Trends Biochem Sci* 2011; 36: 320–8.
15 Calvisi DF, Ladu S, Gorden A et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. *Gastroenterology* 2006; 130: 1117–28.
16 Calvisi DF, Wang C, Ho C et al. Increased lipogenesis, induced by AKT-mTORC1-AMPK signaling, promotes development of human hepatocellular carcinoma. *Gastroenterology* 2011; 140: 1071–83.
17 Wang C, Cigliano A, Delogu S et al. Functional crosstalk between AKT/mTOR and Ras/Mapk pathways in hepatocarcinogenesis: implications for the treatment of human liver cancer. *Cell Cycle* 2013; 12: 1999–2010.
18 Forbes SA, Bindal N, Bamford S et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. *Nucleic Acids Res* 2011; 39: D945–950.
19 El-Serag HB. Hepatocellular carcinoma. *N Engl J Med* 2011; 365: 1118–27.
20 Janku F, Kaseb AO, Tsimeridou AM, Wolff RA, Kurzrock R. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. *Oncotarget* 2014; 5: 3012–22.

© 2016 The Authors. Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of The Japan Society of Hepatology
21 Masuda M, Shimomura M, Kobayashi K, Kojima S, Nakatsu T. Growth inhibition by NVP-BEZ235, a dual PI3K/mTOR inhibitor, in hepatocellular carcinoma cell lines. Oncol Rep 2011; 26: 1273–9.

22 Ezzeldin M, Borrego-Díaz E, Taha M et al. RalA signaling pathway as a therapeutic target in hepatocellular carcinoma (HCC). Mol Oncol 2010; 8: 1043–53.

23 Ocio EM, Mateos MV, Mairo P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 2008; 9: 1157–65.

24 Cao B, Li J, Mao X. Dissecting bortezomib: development, application, adverse effects and future direction. Curr Pharm Des 2013; 19: 3190–200.

25 Huang P, Zhuang B, Zhang H et al. Hepatitis B virus x protein (HBx) is responsible for resistance to targeted therapies in hepatocellular carcinoma: ex vivo culture evidence. Clin Cancer Res 2015; 21: 4420–30.

26 Chen KF, Yu HC, Liu TH, Lee SS, Chen PJ, Cheng AL. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol 2010; 52: 88–95.

27 Homma Y, Shimizu S, Takehara T, Harada M. Sorafenib enhances proteasome inhibitor-induced cell death via inactivation of Akt and stress-activated protein kinases. J Gastroenterol 2014; 49: 517–26.

28 Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48: 1312–27.

29 Nambotin SB, Wands JR, Kim M. Points of therapeutic intervention along the Wnt signaling pathway in hepatocellular carcinoma. Anticancer Agents Med Chem 2011; 11: 549–59.

30 Wachter J, Neureiter D, Alinger B et al. Influence of five potential anticancer drugs on wnt pathway and cell survival in human biliary tract cancer cells. Int J Biol Sci 2012; 8: 15–29.

31 Gedaly R, Galuppo R, Daily MF et al. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One 2014; 9: e99272.

32 Tartido S, Chiu M, Uggeri J et al. L-Asparaginase and inhibitors of glutamine synthetase disclose glutamine addiction of β-catenin-mutated human hepatocellular carcinoma cells. Curr Cancer Drug Targets 2011; 11: 929–43.

33 Tovar V, Alsinet C, Villanueva A et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockade. J Hepatol 2010; 52: 550–9.

34 Guallarbo A, Pollak M. Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future outcomes. Oncogene 2009; 28: 3009–21.

35 Ulbagai T, Kikuchi T, Fukusato T, Ono Y. Aflatoxin B1 modulates the insulin-like growth factor-2 dependent signaling axis. Toxicol In Vitro 2010; 24: 783–9.

36 Ma Y, Kong Q, Hua H, Luo T, Jiang Y. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration. PLoS One 2012; 7: e47961.

37 Ou DL, Lee BS, Chang YC et al. Potentiating the efficacy of molecular targeted therapy for hepatocellular carcinoma by inhibiting the insulin-like growth factor pathway. PLoS One 2013; 8: e66589.

38 Dong J, Demarest SJ, Sereno A et al. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 2010; 9: 2593–604.

39 Subramaniam A, Shanmugam MK, Perumal E et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta 1835; 2013: 46–60.

40 Tai WT, Cheng AL, Shiau CW et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 2011; 55: 1041–8.

41 Gu FM, Li QL, Gao Q et al. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol 2011; 17: 3922–32.

42 Yeo EJ, Ryu JH, Chun YS et al. YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases. Cancer Res 2006; 66: 6345–52.

43 Tung JN, Cheng YW, Hsu CH et al. Normoxically overexpressed hypoxia inducible factor 1-α is involved in arsenic trioxide resistance acquisition in hepatocellular carcinoma. Am Surg Oncol 2011; 18: 1492–500.

44 Kong J, Kong F, Gao J et al. YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma. Mol Cancer 2014; 13: 7.

45 Elsharkawy AM, Mann DA. Nuclear factor-xB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 2007; 46: 590–7.

46 Wang S, Liu Z, Wang L, Zhang X. NF-xB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 2009; 6: 327–34.

47 Sykorova E, Faikus J. Structure–function relationships in telomerase genes. Biol Cell 2009; 101: 375–92 .1 p following 392.

48 Zhao QP, Liu SK, Li ZJ et al. NF-κB p65 modulates the telomerase reverse transcriptase in the HepG2 hepatoma cell line. Eur J Pharmacol 2011; 672: 113–20.

49 Goyal I, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res 2013; 19: 2310–8.

50 Choueiri TK, Vaishampayan U, Rosenberg JE et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 2013; 31: 181–6.

51 Lee RJ, Smith MR. Targeting MET and vascular endothelial growth factor receptor signaling in castration-resistant prostate cancer. Cancer J 2013; 19: 90–8.

52 Feldman DR, Einhorn LH, Quinn DI et al. A phase 2 multicenter study of tivantinib (ARQ 197) monotherapy in

© 2016 The Authors.
Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of The Japan Society of Hepatology
patients with relapsed or refractory germ cell tumors. Invest New Drugs 2013; 31: 1016–22.

53 Jiao Y, Zhao P, Zhu J et al. Construction of human naive Fab library and characterization of anti-met Fab fragment generated from the library. Mol Biotechnol 2005; 31: 41–54.

54 Chen X, Ding G, Gao Q et al. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One 2013; 8: e63093.

55 Di Virgilio F. Purines, purinergic receptors, and cancer. Cancer Res 2012; 72: 5441–7.

56 Sun X, Han L, Seth P et al. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/ENTPD1 null mice. Hepatology 2013; 57: 205–16.

57 Xie R, Xu J, Wen G et al. The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 2014; 289: 19137–49.

58 Chiba T, Marusawa H, Ushijima T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 2012; 143: 550–63.

59 Weaver TA, White RA. Headcase, an imaginal specific gene required for adult morphogenesis in Drosophila melanogaster. Development 1995; 121: 4149–60.

60 Dowejko A, Bauer R, Bauer K, Muller-Richter UD, Reichert TE. The human HECA interacts with cyclins and CDKs to antagonize Wnt-mediated proliferation and chemoresistance of head and neck cancer cells. Exp Cell Res 2012; 318: 489–99.

61 Wang J, Gong L, Zhu S et al. The human homolog of Drosophila headcase acts as a tumor suppressor through its blocking effect on the cell cycle in hepatocellular carcinoma. PLoS One 2015; 10: e0137579.

62 Behboudi S, Alisa A, Boswell S, Anastassiou J, Pathan AA, Williams R. Expansion of anti-AFP Th1 and Tc1 responses in hepatocellular carcinoma occur in different stages of disease. Br J Cancer 2010; 102: 748–53.

63 Yoshikawa T, Nakatsugawa M, Suzuki S et al. HLA-A2-restricted glypican-3 peptide-specific CTL clones induced by peptide vaccine show high avidity and antigen-specific killing activity against tumor cells. Cancer Sci 2011; 102: 918–25.

64 Tada Y, Yoshikawa T, Shimomura M et al. Analysis of cytotoxic T lymphocytes from a patient with hepatocellular carcinoma who showed a clinical response to vaccination with a glypican3 derived peptide. Int J Oncol 2013; 43: 1019–26.

65 Tomimaru Y, Mishra S, Safran H et al. Aspartate-β-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine 2015; 33: 1256–66.

66 Pan QZ, Pan K, Wang QJ et al. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cells 2015; 33: 354–66.

67 Song MH, Choi KU, Shin DH, Lee CH, Lee SY. Identification of the cancer/testis antigens AKAP3 and CTIP11 by SEREX in hepatocellular carcinoma. Oncol Rep 2012; 28: 1792–8.

68 Chen Y, Huang A, Gao M, Yan Y, Zhang W. Potential therapeutic value of dendritic cells loaded with NYESO1 protein for the immunotherapy of advanced hepatocellular carcinoma. Int J Mol Med 2013; 32: 1366–72.

69 Li Y, Cheng P, Wen Y et al. T lymphocyte responses against hepatitis B virus-related hepatocellular carcinoma induced by adenovirus vaccine encoding HBx. Int J Mol Med 2010; 26: 869–76.

70 Kobayashi E, Mizukoshi E, Kishi H et al. A new cloning and expression system yields and validates TCRs from blood lymphocytes of patients with cancer within 10 days. Nat Med 2013; 19: 1542–6.

71 Sun L, Guo H, Jiang R, Lu L, Liu T, He X. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol 2016; 37: 799–806.

72 Koh S, Shimasaki N, Suwanarusk R et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol Ther Nucleic Acids 2013; 2: e114.

73 Qasim W, Brunetto M, Gehring AJ et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol 2015; 62: 486–91.

74 Cabillíe F, Toutiras O, Lavoue V et al. Aminobisphosphonate-pretreated dendritic cells trigger successful Vgamma9delta2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 2010; 59: 1611–9.

75 Tatsumi T, Takehara T. Impact of natural killer cells on chronic hepatitis C and hepatocellular carcinoma. Hepatol Res 2016; 46: 416–22.

76 Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 2013; 12: 2885–96.

77 Sui Q, Zhang J, Sun X, Zhang C, Han Q, Tian Z. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol 2014; 193: 2016–23.

78 Leboeuf C, Mailly L, Wu T et al. In vivo proof of concept of adoptive immunotherapy for hepatocellular carcinoma using allogeneic suicide gene-modified killer cells. Mol Ther 2014; 22: 634–44.

79 El Ansary M, Mogawer S, Elhamid SA et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J Cancer Res Clin Oncol 2013; 139: 39–48.

80 Xie BH, Yang JY, Li HP et al. Dendritic cells transfected with hepatocellular carcinoma (HCC) total RNA induce specific immune responses against HCC in vitro and in vivo. Clin Transl Oncol 2014; 16: 753–60.
81 Pan K, Zhao JI, Wang H et al. Comparative analysis of cytotoxic T lymphocyte response induced by dendritic cells loaded with hepatocellular carcinoma -derived RNA or cell lysate. _Int J Biol Sci_ 2010; 6: 639–48.

82 Vogt A, Sievers E, Lukacs-Kornek V et al. Improving immunotherapy of hepatocellular carcinoma (HCC) using dendritic cells (DC) engineered to express IL-12 _in vivo_. _Liver Int_ 2014; 34: 447–61.

83 Su S, Zhou H, Xue M et al. Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models. _Asian Pac J Cancer Prev_ 2013; 14: 3109–16.

84 Shimizu K, Kotera Y, Aruga A, Takasaki K, Yamamoto M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. _J Hepatobiliary Pancreat Sci_ 2012; 19: 171–8.

85 Shimizu K, Kotera Y, Aruga A et al. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. _Hum Vaccin Immunother_ 2014; 10: 970–6.

86 Yang JY, Cao DY, Ma LY, Liu WC. Dendritic cells fused with allogenic hepatocellular carcinoma cell line compared with fused autologous tumor cells as hepatocellular carcinoma vaccines. _Hepatol Res_ 2010; 40: 505–13.

87 Zhou J, Ma P, Li J, Song W. Comparative analysis of cytotoxic T lymphocyte response induced by dendritic cells pulsed with recombinant adeno-associated virus carrying α-fetoprotein gene or cancer cell lysate. _Mol Med Rep_ 2015; 11: 3174–80.

88 Bray SM, Vujanovic L, Butterfield LH. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. _Clin Dev Immunol_ 2011; 2011: 249281.

89 Pardee AD, Yano H, Weinstein AM et al. Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. _J Immunother Cancer_ 2015; 3: 32.

90 Yang JY, Li X, Gao L, Teng ZH, Liu WC. Co-transfection of dendritic cells with AFP and IL-2 genes enhances the induction of tumor antigen-specific antitumor immunity. _Exp Ther Med_ 2012; 4: 655–60.

91 Yang JY, Cao DY, Xue Y, Yu ZC, Liu WC. Improvement of dendritic-based vaccine efficacy against hepatitis B virus-related hepatocellular carcinoma by two tumor-associated antigen gene-infected dendritic cells. _Hum Immunol_ 2010; 71: 253–62.

92 Tada F, Abe M, Hirooka M et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. _Int J Oncol_ 2012; 41: 1601–9.

93 Wang Y, Wang Y, Mu H, Liu T, Chen X, Shen Z. Enhanced specific antitumor immunity of dendritic cells transfected with the glypican 3 gene and co-cultured with cytokine-induced killer cells against hepatocellular carcinoma cells. _Mol Med Rep_ 2015; 11: 3361–7.

94 Qiu Y, Xu MB, Yun MM et al. Hepatocellular carcinoma-specific immunotherapy with synthesized α,3-galactosyl epitope-pulsed dendritic cells and cytokine-induced killer cells. _World J Gastroenterol_ 2011; 17: 5260–6.

95 Zhou P, Liang P, Dong B, Yu X, Han Z, Xu Y. Phase I clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma. _Cancer Biol Ther_ 2011; 11: 450–6.

96 Niu LZ, Li JL, Zeng JY et al. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic hepatocellular cancer. _World J Gastroenterol_ 2013; 19: 3473–80.

97 Kitahara M, Mizukoshi E, Nakamoto Y, Mukaida N, Matsushima K, Kaneko S. Efficient generation of highly immunocompetent dendritic cells from peripheral blood of patients with hepatitis C virus-related hepatocellular carcinoma. _Int Immunopharmacol_ 2014; 21: 346–53.

98 Nakamoto Y, Mizukoshi E, Kitahara M et al. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization. _Clin Exp Immunol_ 2011; 163: 165–77.

99 Kayashima H, Toshima T, Okano S et al. Intratumoral neoadjuvant immunotherapy using IL-12 and dendritic cells is an effective strategy to control recurrence of murine hepatocellular carcinoma in immunosuppressed mice. _J Immunol_ 2010; 185: 698–708.

100 Chiba T, Iwama A, Yokosuka O. Cancer stem cells in hepatocellular carcinoma: therapeutic implications based on stem cell biology. _Hepatol Res_ 2016; 46: 50–7.

101 Wang X, Bayer ME, Chen X et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. _J Surg Oncol_ 2015; 111: 862–7.

102 Sun JC, Pan K, Chen MS et al. Dendritic cells-mediated CTLs targeting hepatocellular carcinoma stem cells. _Cancer Biol Ther_ 2010; 10: 368–75.

103 Peng W, Zhao G, Ma Y, Yu H, Wang X. Dendritic cells transfected with PEG10 recombinant adenovirus elicit antitumor immune response _in vitro_ and _in vivo_. _Vaccine_ 2011; 29: 3501–6.

104 Schmidt-Wolf IG, Finke S, Trojanek B et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. _Br J Cancer_ 1999; 81: 1099–16.

105 Liu H, Li J, Wang F et al. Comparative study of different procedures for the separation of peripheral blood mononuclear cells in cytokine-induced killer cell immunotherapy for hepatocarcinoma. _Tumour Biol_ 2015; 36: 2299–307.

106 Pan K, Li YQ, Wang W et al. The efficacy of cytokine-induced killer cell infusion as an adjuvant therapy for postoperative hepatocellular carcinoma patients. _Ann Surg Oncol_ 2013; 20: 4305–11.
107 Cui J, Wang N, Zhao H et al. Combination of radiofrequency ablation and sequential cellular immunotherapy improves progression-free survival for patients with hepatocellular carcinoma. *Int J Cancer* 2014; 134: 342–51.

108 Huang ZM, Li W, Li S et al. Cytokine-induced killer cells in combination with transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma patients. *J Immunother* 2013; 36: 287–93.

109 Hao MZ, Lin HL, Chen Q, Ye YB, Chen QZ, Chen MS. Efficacy of transcatheter arterial chemoembolization combined with cytokine-induced killer cell therapy on hepatocellular carcinoma: a comparative study. *Chin J Cancer* 2010; 29: 172–7.

110 Wang XP, Xu M, Gao HF, Zhao JF, Xu KC. Intraperitoneal perfusion of cytokine-induced killer cells with local hyperthermia for advanced hepatocellular carcinoma. *World J Gastroenterol* 2013; 19: 2956–62.

111 Yu X, Zhao H, Liu L et al. A randomized phase II study of autologous cytokine-induced killer cells in treatment of hepatocellular carcinoma. *J Clin Immunol* 2014; 34: 194–203.

112 Pan CC, Huang ZL, Li W et al. Serum α-fetoprotein measurement in predicting clinical outcome related to autologous cytokine-induced killer cells in patients with hepatocellular carcinoma undergone minimally invasive therapy. *Chin J Cancer* 2010; 29: 596–602.

113 Pan QZ, Wang QJ, Dan JQ et al. A nomogram for predicting the benefit of adjuvant cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma. *Sci Rep* 2015; 5: 9202.

114 Lee JH, Lee JH, Lim YS et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. *Gastroenterology* 2015; 148: 1383–91 .e6

115 Wang XP, Wang QX, Lin HP, Wang YL, Yang Y. Glycoprotein 96 and α-fetoprotein cross-linking complexes elicited specific antitumor immunity. *Cancer Biother Radiopharm* 2013; 28: 406–14.

116 Wang XP, Lin HP, Wang QX, Gu Y. Specific antitumor immunity induced by cross-linking complex heat shock protein 72 and α-fetoprotein. *Cancer Biother Radiopharm* 2012; 27: 189–97.

117 Li Z, Wang XP, Lin HP et al. Anti-tumor immunity elicited by cross-linking vaccine heat shock protein 72 and α-fetoprotein epitope peptide. *Neoplasma* 2015; 62: 713–21.

118 Cany J, Barteau B, Tran L et al. AFP-specific immunotherapy impairs growth of autochthonous hepatocellular carcinoma in mice. *J Hepatol* 2011; 54: 115–21.

119 Li SQ, Lin J, Qi CY et al. GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. *Hepatogastroenterology* 2014; 61: 278–84.

120 Sawada Y, Yoshikawa T, Nobuoka D et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. *Clin Cancer Res* 2012; 18: 3686–96.

121 Mizukoshi E, Nakagawa H, Kitahara M et al. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. *Cancer Lett* 2015; 369: 242–9.

122 Mizukoshi E, Nakagawa H, Kitahara M et al. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma. *Cancer Lett* 2015; 364: 98–105.

123 Kwon S, Kim D, Park BK et al. Prevention and therapy of hepatocellular carcinoma by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex without carriers. *PLoS One* 2012; 7: e33121.

124 Nemunaitis J, Barve M, Orr D et al. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG) in advanced cancer of the liver. *Oncology* 2014; 87: 21–9.

125 Xu X, Xing B, Hu M et al. Recurrent hepatocellular carcinoma cells with stem cell-like properties: possible targets for immunotherapy. *Cytotberapy* 2010; 12: 190–200.

126 Wan X, Cheng C, Lin Z et al. The attenuated hepatocellular carcinoma-specific Listeria vaccine Lmd-MPFG prevents tumor occurrence through immune regulation of dendritic cells. *Oncotarget* 2015; 6: 8822–38.