Original Research Article

Ectomycorrhizal Diversity in Zabarvan Forest Range of North Western Himalaya

P.A. Sheikh¹*, Baby Summuna¹, G.H. Dar¹, Sajad-Un-Nabi² and Khurshid Ahmad Mir³

Abstract

The aim of the present investigation was to prepare an inventory of ectomycorrhiza prevailing in Zabarvan forest range of Western Himalayas of Kashmir and assess their diversity index and species richness. Three forest sites viz., Dachigam, Shalimar and Shankaracharia hills were surveyed periodically for three consecutive years (2011-2013) for ectomycorrhiza. A total number of 67 species in 23 genera belonging to 21 families in 07 orders were recorded. The study revealed that mycorrhizal fungal species richness was more in autumn season (45 species) and less in summer (11 species). The Simpson diversity index of Dachigam, Shalimar and Shankaracharia hills was found to be 0.981, 0.910, 0.939 respectively, while Shannon’s diversity index of these sites was 4.03, 2.36, 2.903, respectively.

Keywords

Biodiversity index, Ectomycorrhiza, Kashmir Himalayas, Species Richness, Zabarvan forest

Introduction

Biological diversity is a central determinant of ecosystem function and also a key contributor to the portfolio of services provided by ecosystems to humans (Carlson *et al.*, 2007). India, one among 12 mega diversity countries across the globe, possesses more than 8% of the world's total biodiversity and its bio-geographic ecosystems is classified into ten zones which include Trans-Himalaya and Himalaya zones (Rodgers *et al.*, 2002). Mapping biological diversity of a region is a major goal to the global conservation community (Gaston, 2000). Forest and tree cover of India constitutes nearly 789,164 km², which constitute 24% of geographical area of the country (FSI, 2013). The country’s rich vegetation and diversity is undoubtedly due to the immense variety of climatic and altitudinal variations (Reddy *et al.*, 2013). The state of Jammu and Kashmir
lies in the North Western Himalayan mountainous range between 32°17’ and 37°05’ North latitude and 72°31’ and 80°20’ East longitude with geographic area of 101,387 km² of which 19.95% area is covered by forests alone (ES, 2013-14). Of the total forest area in J&K state, 40.2% area lies in Kashmir valley alone which harbours rich floristic diversity.

As per the conservative estimates, about 1.5 million fungal species are present worldwide (Hawksworth, 2004) with one-third existing in India alone. Hardly 50% of these fungi have been identified and characterized so far (Manoharachary et al., 2005). Ectomycorrhizal plants, while taxonomically more rare, are common within boreal and temperate forests (e.g. Pinaceae, Fagaceae, Betulaceae, Nothofagaceae and others) (Tedersoo and Smith, 2013).

Ectomycorrhiza play important role in rendering the unavailable organic forms of soil nutrients available to the plants through various mechanisms including the production of extracellular enzymes (Read and Perez-Moreno, 2003; Aucina et al., 2007). Enormous interest has recently generated in the use of ectomycorrhiza as inocula for successful forest nursery raising especially in degraded and degenerated forests. The present study was therefore, aimed to assess the mycorrhizal diversity of Zabarvan forest range in Kashmir Himalayas, prepare inventory and assess their diversity index and species richness.

Materials and Methods

Collection site

The Zabarvan forest range (Fig. 1) lies in the north of Srinagar city of Jammu & Kashmir State which lies in the heart of North Western Himalaya. It lies at 34°02 and 34°08N latitude and 74°44 and 74°55 E longitude and covers an area of 265 km². The sites selected for macrofungal survey were Dachigam, Shalimar and Shankaracharia hills which cover an area of 141, 69 and 55 km², respectively, with altitude ranging from 1676-4267, 1624-3385 and 1585-3352 m masl, respectively. These forests are mostly dominated by conifers viz., cedar, pine, spruce, fir, etc. growing upto 3657 m masl and above this altitude lie meadows which bloom with rhododendrons, honey suckle and dwarf willows.

The vegetative cover existing in these forests provide best suited habitat for fungal flora. The area has temperate climate with average temperature of 13.5°C, the highest monthly average temperature of 17.3°C, 29.3°C and 25.5°C in March-April, June-July and September-October, respectively. The average rainfall is 710mm.
Sporocarp survey and identification

The survey for the collection of ectomycorrhizal was carried out at monthly interval from March onwards during the years 2011 and 2013 in each potential growing season viz., spring, summer and fall (autumn). The efforts were made to establish the relation/association of sporocarps with plant root by careful digging of soil and tracing their connection with the host plant roots as per the method of Young (1940) and Zak (1969). The epigeous ectomycorrhiza of each fungal species were collected and wrapped in thin aluminum foil paper placed in polybags separately, brought to the laboratory and analyzed for their identity. Photographs were taken using digital Sony camera DSC-RX100. The spore prints were taken on paper or glass slides to study the colour of spores, shape of gills and pores, and attachment of gills to the stipe (Kuo, 2001; Kuo, 2004). The colour terminology followed was that of Kornerup and Wanscher (1978). Melzer’s reagent was used to investigate amyloidity of pores and various other tissues. Cresyl blue solution was used to study the meta-chromatic reactions of spores. Specimens were identified on comparison with relevant literature (Kirk et al., 2001; de Roman et al., 2005; Agerer, 2006) and the information available at various web resources viz., Determination of Ectomycorrhiza (DEEMY), http://www.deemy.de; www.Mushroom Expert.com; mycokey, www.mycokey.com; Mycorrhiza literature exchange, http://mycorrhiza.ag.utk.edu, etc.. The sporocarps were preserved in the herbarium of Mycology and Forestry Section, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar (J&K).

Data analysis

Simpson’s diversity index was assessed as per Simpson (1949)

\[D = \frac{\sum n (n - 1)}{N(N - 1)} \]

D = Simpson’s index, N = the total number of organisms of all species; n = the total number of organisms of a particular species

Shannon’s diversity index was estimated as per Margalef (2008).

\[H = - \sum \left(\frac{n}{N}\right) \log_e \left(\frac{n}{N}\right) \]

Where, H = the diversity index, N = the total number of individuals of all species; n = the total number of individuals of the individual species

With the help of the values of diversity index, the evenness of ectomycorrhiza was calculated as per Pielou (1996)

\[e = H / \log_e S \]

E = evenness, H = Shannon diversity index; S = the number of the species

Similarity of index was estimated as per Sorenson’s formula to assess the similarity in species occurrence (Odum, 1971). The similarity ranges from 0 to 1 (1 indicates very similar, 0 indicates no similarity)

\[S = 2C / (A + B) \]

Wherein S is the degree of similarity, A and B are the number of the species at two different sites and C is number of species common to both collections.

Results and Discussion

During three year survey of Zabarvan forest hills in Kashmir, sixty seven ectomycorrhizal species were collected from different locations and seasons (Table 1). These
Macrofungi were collected at an altitudinal range of 1825 to 2896 m masl. The hill range has predominantly coniferous forest stands either pure or mixed with broad-leaved plant species which support rich macrofungal flora. Conifer habitat provides congenial conditions for growth and sporulation of diverse macrofungi. Vishwakarma (2010) and Vishwakarma et al., (2011) have also noticed the presence of diverse macrofungi in conifer forests in Western Himalayas of Himachal Pradesh (India). These ectomycorrhiza have been collected from other forest ranges in Kashmir and described (Cooke, 1870; Murrill, 1924; Batra and Batra, 1963; Kaul and Kachroo, 1974; Watling and Gregory, 1980).

During survey, the ectomycorrhiza production was observed to be 16% higher in year 2012 and 2013 than year 2011. Higher sporocarp production in 2012 and 2013 may be ascribed to the favourable agro-climatic conditions especially higher and timely precipitation and congenial temperature from April to October. The year 2011 with mean precipitation of 210 mm and mean temperature of 24.2°C was comparatively drier and slightly warmer than 2012 and 2013 which probably may have affected the species diversity and ectomycorrhiza production by individual ectomycorrhiza species. The findings are in agreement with Mihali (1995) who during two year study in 1992 and 1993 observed 83 macromycetous species that produced 817 fruiting bodies in beech stand at Jalna, Slovak Republic.

The seasonal distribution of ectomycorrhiza across the Zabarvan forest range varied significantly with maximum ectomycorrhizal species witnessed in Dachigam followed by Shankaracharia and least in Shalimar hills. These variations may be attributed to varied latitude, vegetation, topography, etc. and their effects on temperature and precipitation across the wide geographic distances or along the elevational gradients. These findings are in conformity with Wood-Eggenschwiler and Barlocher (1985) and Ohenoja (1993) (Table 2).

A total number of 67 species in 23 genera of 21 families belonging to 05 orders of Basidiomycotina and 02 orders of Ascomycotina were considered for the ecological studies. They were identified up to species level. Agaricales dominated by 39% (8 families and 26 species in 09 genera) 25% of Boletales (07 families, 08 genera and 17 species) 21% Russulales (01 family, 02 genera and 14 species) Gomphales (01 family, 01 genera and 06 species) Thelephorales (02 families, 02 genera and 02 species) Mytilinidales (01 family, 01 genera and 01 species) Pezizales (01 family 01 genera and 01 species). Out of 21 families, Russulaceae dominated by 21% this is followed by Tricholomataceae 11%, 9% Gomphaceae and 7% Boletaceae, Inocybaceae and Suillaceae each. A list of ectomycorrhiza species family wise has been provided in Table 3.

Ectomycorrhiza collected in three collection sites of Zabarvan forest range namely Dachigam, Shalimar and Shankaracharia were analyzed for ectomycorrhizal richness. The number of species collected area-wise showed maximum 65 species in Dachigam, 25 species in Shankaracharia and 11 species in Shalimar. Species diversity, richness and evenness of ectomycorrhiza in zabarvan range is shown in Table 4.

Out of 62 species collected from Dachigam, Agaricus xanthoderma, Boletus aereus, B. cavipes, B. gigas, Cenoccoum geophyllum, Chroomphogus tomentosus, C. vinicolor, Hebeloma crustuliniforme, H. cylindorosum, Hydnellum aurantiacum, Lycoperdon pedicillatum, Paxillus involutus, Pisolithus tinctorius, Ramaria aurea, R. flava, R. formosa, R. invalli, Rhizopogan roseulus, R.
vulgaris, Russula atropurpurea, R. brevipes, R. delica, R. densifolia, R. emetica, R. lilacea, R. lutea, R. paludosa, R. sanguine, R. xerampelina, Russula sp., Scleroderma verrucosum, Suillus cavipes, S. granulates, S. luteus, S. placidus, Tricholoma album, T. malvacereum, T. portentosum, T. sejunctum and Tricholoma sp. were some of the species collected only from this site alone. The Simpson and Shannon’s diversity index was observed to be 0.981 and 4.03, respectively, while evenness and species richness was 2.248 and 0.55, respectively. This high diversity of ectomycorrhizal diversity in Dachigam appears due to less human interference in this area as well as to the more availability of degradable materials. It was also noticed that huge plant litter accumulated in Dachigam forest floor may have helped to build up fertility and replenish the nutrients back into the soil.

Table.1 The ectomyorrhiza species collected from Zabarvan forest range in 2011, 2012 and 2013

Ectomycorrhizal Species	Habitat	Season in which it noticed	Site of observation	Altitude at which collected (masl)
Agaricus xanthoderma	Mycorrhizal with Cedrus deodara/ Pinus wallachian	Spring	Dachigam	2354
Amanita ceciliae	Mycorrhizal with P. wallachian	Spring	Dachigam	2458
Amanita excelsa	Mycorrhizal with P. wallachian	Autumn	Shankaracharia	2015/2189
Amanita inaurtia	Mycorrhizal with P. wallachian	Autumn	Dachigam	2487
Boletus subtomentosus	Mycorrhizal with P. wallachian	Autumn	Shankaracharia	2095/2019
Boletus aereus	Mycorrhizal with P. wallachian	Autumn	Dachigam	2687
Boletus cavipes	Mycorrhizal with P. wallachian	Autumn	Dachigam	2596
Boletus gigas	Mycorrhizal with P. wallachian	Autumn	Dachigam	2658
Cenococcus geophyllum	Mycorrhizal with P. wallachian	Autumn	Dachigam	2654
Chromophogus tomentosus	Mycorrhizal with P. wallachian	Spring	Dachigam	2698
Chromophogus vinicolor	Mycorrhizal with P. wallachian	Spring	Dachigam	2586
Entoloma sinatum	Mycorrhizal with P. wallachian	Autumn	Dachigam	2478
Hebeloma	Mycorrhizal with P. wallachian	Autumn	Dachigam	2612
Species	Mycorrhizal with	Season	Location	Collection
------------------------------	--	------------	-----------------	------------
crustuliniforme	P. wallachiana			
Hebeloma cylinderosum	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam	2489
Hydnellum aurantiacum	Mycorrhizal with C. deodara/ P. wallachiana	Spring	Dachigam	2754
Inocybe appendiculata	Mycorrhizal with C. deodara/ P. wallachiana	Summer	Dachigam/Shankaracharia	2765/2345
Inocybe fastigata	Mycorrhizal with P. wallachiana	Spring, Summer	Shankaracharia/Shalimar	2142/1987
Inocybe geophylla	Mycorrhizal with C. deodara/ P. wallachiana	Spring	Dachigam/Shankaracharia	2698/2435
Inocybe maculata	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Shalimar	2147
Laccaria bicolor	Mycorrhizal with C. deodara/ P. wallachiana	Summer	Dachigam/Shankaracharia	2578/2256
Laccaria laccata	Mycorrhizal with C. deodara	Summer, Autumn	Dachigam/Shankaracharia	2494/1998
Lactarius controversus	Mycorrhizal with P. wallachiana	Autumn	Shankaracharia/Shalimar	1825/1894
Lactarius delicious	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shalimar	2365/2134
Lactarius pedicillatum	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shankaracharia	2398/2032
Lycoperdon pedicillatum	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shankaracharia	2475/2258
Lycoperdon perlatum	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shankaracharia	2457/2159
Lycoperdon saccatum	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shankaracharia	2467/2164
Lycoperdon pyriforme	Mycorrhizal with C. deodara/ P. wallachiana	Summer	Dachigam/Shalimar	2787/2145
Macrolepiota procera	Mycorrhizal with P. wallachiana	Autumn	Dachigam/Shalimar	2658/2147
Macrolepiota puellaris	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam/Shalimar	2475/2247
Paxillus involutus	Mycorrhizal with P. wallachiana	Autumn	Dachigam	2478
Pisolithus tinctorius	Mycorrhizal with P. wallachiana	Summer	Dachigam	2158
Ramaria aurea	Mycorrhizal with C. deodara/ P. wallachiana	Autumn	Dachigam	2245
Ramaria flaccid	Mycorrhizal with P. wallachiana	Autumn	Dachigam/Shankaracharia	2181/2097
Ramaria flava	Mycorrhizal with	Autumn	Dachigam	2215
Species	Mycorrhizal with	Season	Location	ID
-----------------------	---------------------------	----------	--------------	-------
Ramaria formosa	C. deodara/ P. wallachiana	Autumn	Dachigam	2104
Ramaria invalli	C. deodara/ P. wallachiana	Autumn	Dachigam	2369
Ramaria kuenzii	C. deodara/ P. wallachiana	Spring	Dachigam	2578
Rhizopogon roseulus	C. deodara/ P. wallachiana	Spring	Dachigam	2598
Rhizopogon vinicolor	C. deodara/ P. wallachiana	Autumn	Dachigam	2478
Rhizopogon vulgaris	C. deodara/ P. wallachiana	Autumn	Dachigam	2659
Russula atropurpurea	C. deodara/ P. wallachiana	Autumn	Dachigam	2548
Russula brevipes	C. deodara/ P. wallachiana	Autumn	Dachigam	2487
Russula delica	C. deodara/ P. wallachiana	Autumn	Dachigam	2587
Russula densifolia	C. deodara/ P. wallachiana	Autumn	Dachigam	2547
Russula emetica	C. deodara/ P. wallachiana	Autumn	Dachigam	2014
Russula lilacea	C. deodara/ P. wallachiana	Autumn	Dachigam	2016
Russula lutea	C. deodara/ P. wallachiana	Autumn	Dachigam	2314
Russula paludosa	C. deodara/ P. wallachiana	Autumn	Dachigam	2366
Russula sanguinea	C. deodara/ P. wallachiana	Autumn	Dachigam	2488
Russula sp.	C. deodara/ P. wallachiana	Autumn	Dachigam	2115
Russula xerampelina	C. deodara/ P. wallachiana	Autumn	Dachigam	2136
Scleroderma verrucosum	C. deodara/ P. wallachiana	Autumn	Dachigam	2147
Suillus cavipes	P. wallachiana	Summer, Autumn	Dachigam	2132
Suillus granulates	C. deodara/ P. wallachiana	Summer	Dachigam	2373
Suillus luteus	C. deodara/ P. wallachiana	Summer	Dachigam	2347
Suillus placidus	C. deodara/ P. wallachiana	Summer	Dachigam Shankaracharia	2365/2259
Thelephora terrestris	C. deodara/ P. wallachiana	Autumn	Dachigam	2345/2236
Location	Spring season	Summer season	Autumn season	Overall species noticed
-------------------	---------------	---------------	---------------	-------------------------
Dachigam	08	08	49	65
Shalimar	02	02	07	11
Shankaracharia	02	05	15	25
Total	09	11	45	67

Table.2 Seasonal distribution of ectomycorrhizal species (No.) observed in Zabarvan forest range (2011-2013)
Table 3 Species- and family-wise distribution of ectomycorrhizal fungi observed in Zabarvan forest range

S. No.	Family	Species	Total
01	Agaricaceae	Agaricus xanthoderma, Lycoperdon pedicillatum, L. perlatum, L. pyriforme, L. saccatum	5
02	Diplocystidiaceae	Astraeus hygometricus	1
03	Amanitaceae	Amanita ceciliae, A. excelsa, A. inauriae	3
04	Boletaceae	Boletus subtomentosus, B. aereus, B. cavipes, B. gigas	4
06	Gloniaceae	Cenococcus geophyllum	1
07	Gomphidiaceae	Chrooophagus tomentosus, C. vinicolor	2
08	Entolomataceae	Entoloma sinatum	1
09	Hymeogastraceae	Hebeloma crustuliniforme, H. cylindorosum	2
10	Bankeraceae	Hydnellum aurantiacum	1
11	Inocybaceae	Inocybe appendiculata, I. fastigata, I. geophylla, I. maculate	4
12	Hydnangiaceae	Laccaria bicolor, Laccaria laccata	2
13	Russulaceae	Lactarius controversus, L. delicius, L. pedicillatum, Russula atropurpurea, R. brevipes, R. delica, R. densifolia, R. emetica, R. lilacea, R. lutea, R. paludosa, R. sanguinea, R. xerampelina, Russula sp.	14
14	Lepiotaceae	Macrolepiota procera, M. puellaris	2
15	Paxillaceae	Paxillus involutus	1
16	Sclerodermataceae	Pisolithus tinctorius, Scleroderma verrucosum	2
18	Gomphaceae	Ramaria aurea, R. flaccid, R. flava, R. formosa, R. invalli, R. kuenzii	6
19	Rhizopogonaceae	Rhizopogon roseulus, R. vinicolor, R. vulgaris	3
20	Suillaceae	Suillus cavipes, S. granulates, S. luteus, S. placidus	4
21	Thelephoraceae	Thelephora terrestris	1
22	Tricholomataceae	Tricholoma terreum, T. album, T. malacereum, T. portentosum, T. sculpurattum, T. sejenctum, Tricholoma sp.	7
23	Tubaraceae	Tuber sp.	1

Table 4 Species diversity, richness and evenness of ectomycorrhiza in Zabarvan forest range of Kashmir

	Dachigam	Shalimar	Shankaracharia
No. of species	65	11	25
Total No. of individuals	1502	125	294
Simpson diversity index (1-D)	0.981	0.910	0.939
Shannon diversity index (H)	4.03	2.36	2.903
Evenness (En)	2.248	2.26	2.195
Species richness (s)	0.55	0.19	0.40
Amongst the 21 species collected from Shankaracharia forest area, *Astraeus hygometricus* and *Tuber* sp. were two species collected only at this site. The Simpson and Shannon’s diversity index was 0.939 and 2.903, respectively, similarly evenness and species richness and was found to be 2.195 and 0.40 respectively, was found low compared to Dachigam forest range. This may due to the anthropogenic activity. Similarly, 11 species were collected from Shalimar site. The Simpson and Shannon’s diversity index was 0.91 and 2.36, respectively, while evenness and species richness and was found to be 2.26 and 0.19 respectively, was found lowest compared to Dachigam forest range and shankaracharia forest range. This may due to the interference of human activities and more so various tourist places have come up in this area. These results are in partial conformity with Bhatt (1986) and Adhikari (1999), in Dachigam, diversity index was high because it is legally protected and has less anthropogenic activity. Season-wise more diverse fungi were observed in Dachigam and low diversity index in Shalimar region.

It can be concluded Since the mycorrhiza play an important role to maintain the health of forests besides their medicinal importance and nutritional value in most of the cases, therefore it becomes quite necessary to explore, document and conserve this natural wealth.

Acknowledgement

The authors are thankful to all the individuals directly and indirectly assisting in the sample collection and laboratory preparations throughout the study.

References

Adhikari, M.K., 1999. *Mushrooms of Nepal* (ed. Durrieu, G.)

Agerer, R., 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progress 5(2): 67-107.

Auc`ina, A., Rudawska, M., Leski, T., Skridaila, A., Riepsas, E and Iwanski, M. 2007. Growth and mycorrhizal community structure of *Pinus sylvestris* seedlings following the addition of forest. Applied and Environmental Microbiology 73: 4867–4873.

Batra, R. and Batra S.W.T. 1963. Indian Discomycetes. *University of Kansa Science Bulletin*, 44: 109-256.

Beig, M.A., Dar, G. H., Ganai N. A. and Qazi N. A. 2008. Some *hitherto* unreported macrofungi from India. Journal of Mycology and Plant Pathology 38: 208-210.

Bhatt, R.P., 1986. Systematics and ecobiology of some agaric family. Ph D thesis, Himachal Pradesh, University, Simla-India.

Carlson, K.M., Asner, G.P., Flint, H.R., Ostertag R. and Martin. R. E. 2007. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems10: 536–549.

Cooke, M.C., 1870. Answers to correspondents. Gardener’s Chronicle 15: 605.

Dar, G.H., Beig M. A. and Ganai. N. A. 2009. Diversity of ectomycorrhizal fungi of various forests in district Baramulla (Jammu & Kashmir). Indian Journal of Forestry 32: 137-140.

Deroman, M., Clavaria V. and Demiguel. A. M. 2005. A revision of the description of ectomycorrhiza published since 1961. Mycol Res 109: 1063-1104.

Engola, A.P.O., Eilu, G., Kabasa, J. D., Kisovi, L., Munishi P. K. T. and Olila. D. 2007. Ecology of edible indigenous mushrooms of the Lake Victoria basin (Uganda). Research Journal of Biological Sciences 2(1): 62-68.

Economic survey J & K. 2013 -14. Directorate of Economic & Statistics, page no: 242.

FSI, State of the forest report. 2013. Forest Survey of India, Ministry of Environment and Forests, Government
of India, Dehradun.

Gaston, K.J., 2000. Global patterns in biodiversity. Nature 405: 220–227.

Hawksworth, D.L., 2004. Fungal diversity and its implications for genetic resource collections. Studies in Mycology 50: 9-17.

Kaul, T.N., and Kachroo. J.L., 1974. Common edible mushrooms of Jammu and Kashmir. Journal of the Bombay Natural History Society71: 26-31.

Kaul, T.N., Kachroo J. L. and Raina, A. 1978. Common edible mushrooms of Jammu and Kashmir. Indian Mushroom Science 1: 517-529.

Kirk, P.M., Cannon, P. F., David J. C. and Stalpers. J. A. 2001. Ainsworth & Bisby’s Dictionary of the Fungi. 9th edn. CAB International Publishing, Kew, Surrey, Commonwealth Mycological Institute, UK, 655p.

Kornerup, A., and Wanscher, J., H. 1978. Methuen handbook of Colour. 3rd Ed. Methuen and Co., Ltd., London, pp: 243.

Kuo, M. 2001. Making Spore Prints (www.bluewillopages.com/mushroomexpert/herbarium.html).

Kuo, M., 2004. Agrocybe molesta (www.mushroomexpert.com/agrocybe_molesta.html).

Manoharachary, C., Sridhar, K., Singh, R. A., Suryanarayanan, T. S., Rawat S. and Johri. B. N. 2005. Fungal biodiversity: Distribution, conservation and prospecting of fungi from India. Current Science, 89: 58-71.

Margalef, R., 2008. Correspondence between the classic types of lakes and the structural and dynamic properties of their population. Verh. Int. Ver. Theor. Angew. Limnol., 15: 169-170.

Mihali, I., 1995. Abundancia a distribúcia plodníc húb[prebierkovej [Abundance and distribution of fruiting bodies of fungi in terms beech]. v podmienkach prebierkovej bucin. Forestry 41: 218–223.

Murrill, W.A., 1924. The Boletaceae of North America-1. Mycologia 1: 4-18.

Odum, E.P., 1971. Fundamentals of ecology, 3rd edition, WB Saunders, Philidelphia PA.

Ohennojo, E., 1993. Effect of Weather Condition on the Larger Fungi at Different Forest Sites in the Northern Finland in 1976-1988. Vol. A243. Acvta University, Oulu, Finland, p. 69.

Packham, J.M., May, T. M., Brown, M. J., Wardlaw T. J. and Mills. K. A. 2002. Macrofungual diversity and community ecology in mature and regrowth wet eucalypt forest in Tasmania: A multivariate study. Australian Ecology 27: 149-161.

Pielou, E.C., 1996. The measurement of diversity in different types of biological collections. J. Theor. Biol., 13: 131-144.

Read, D. J., Leake J. R. and Perez-Morno, J. 2003. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany82: 1243-1263.

Reddy, C., Dutta S. K. and Jha. C. S. 2013. Analysing the gross and net deforestation rates in India. Curr Sci105(11), 1492.

Rodgers, W.A., Panwar, H. S., Mathur, V. B. 2002. Wildlife Protected Area Network in India: A Review (Executive Summary). Wildlife Institute of India, Dehardun.

Samant, S.S. and Dhar, U. 1997. Diversity, endemism and economic potential of wild edible plants of Indian Himalayas. International Journal of Sustainable Development and Wild Ecology4: 179-191.

Simpson, E.H., 1949. Measurement of diversity. Nature 163, 688.cited in Magurran, A.E., 2004, Measuring biological diversity, Blackwell Publishing: Oxford, UK., pp: 256.

Sheikh, P.A., Dar, G. H., Beig M. A. and Kousar. S. 2014. Two hitherto unreported macrofungi from zabarvan range of Kashmir Himalaya, India. Caribbean Journal of Science and Technology 2: 399-404.
Tedersoo, L., and Smith, M.E., 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev., 27, 83–99.

Vishwakarma, M.P. 2010. Systematics and Ecological Studies on Agaricaceae and Coprinaceae of Garhwal Himalaya. M.Phil. thesis, HNB Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.

Vishwakarma, M.P., Bhatt, R. P and Gairola, S. 2011. Some medicinal mushrooms of Garhwal Himalaya, Uttarakhand, India. International Journal of Medicinal and Aromatic Plants.1: 33-40.

Walting, R., and Gregory, N.M. 1980. Larger fungi from Kashmir. Nova Hedwigia, 32: 494-564.

Watling, R., and Abraham. S.P. 1992. Ectomycorrhizal fungi of Kashmir forests. Mycorrhiza. 2: 81-87.

Wood-eggenschwiler, S. and Barlocher, F. 1985. Geographical distribution of Ingoldian fungi, Verhandlungen der international Vereinigung Limnologie, 22: 2780- 2785.

Young, H.E., 1940. Mycorrhiza and growth of Pinus and Araucaria: The influence of different species of mycorrhizae forming fungi on seedling growth. Journal of Australian Agriculture Science 6: 21-25.

Zak, J., 1969. Fungal communities of desert ecosystems: Links to climate change. p. 659-682. In: The Fungal Community (Eds. J. Dighton, J.F. White and P. Oudemans). Taylor and Francis, Boca Raton, USA.

How to cite this article:

Sheikh, P.A., Baby Summuna, G.H. Dar, Sajad-Un-Nabi and Khurshid Ahmad Mir. 2019. Ectomycorrhizal Diversity in Zabarvan Forest Range of North Western Himalaya. Int.J.Curr.Microbiol.App.Sci. 8(05): 2312-2323. doi: https://doi.org/10.20546/ijmas.2019.805.273