Elevated trace elements in sediments and seagrasses at CO2 seeps

Mishra, AK

http://hdl.handle.net/10026.1/15273

10.1016/j.marenvres.2019.104810

Marine Environmental Research
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Elevated trace elements in sediments and seagrasses at CO$_2$ seeps

Mishra, A.K.1,2, Santos, R.1, Hall-Spencer, J.M.2,3

1Centre for Marine Sciences, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal

2School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL48AA, UK

3Shimoda Marine Research Centre, University of Tsukuba, Shizuoka, 415-0025, Japan

Corresponding author: amritkumarmishra@gmail.com

Abstract

Seagrasses often occur around shallow marine CO$_2$ seeps, allowing assessment of trace element accumulation. Here, we measured Cd, Cu, Hg, Ni, Pb and Zn levels at six CO$_2$ seeps and six reference sites in the Mediterranean. Some seep sediments had elevated metal concentrations; an extreme example was Cd which was 43x more concentrated at a seep than its reference. Three seeps had metal levels that were predicted to adversely affect marine biota, namely Vulcano (for Hg), Ischia (for Cu) and Paleochori (for Cd and Ni). There were higher-than-sediment levels of Zn and Ni in Posidonia oceanica and of Zn in Cymodocea nodosa, particularly in roots. High levels of Cu were found in Ischia seep sediments, yet seagrass was abundant, and the plants contained low levels of Cu. Differences in bioavailability and toxicity of trace elements helps explain why seagrasses can be abundant at some CO$_2$ seeps but not others.

Highlights:

- Sandy CO$_2$ seep sediments had higher concentration of trace elements than sandy reference sites.
- Metals can be more toxic in areas affected by CO$_2$ acidification, with adverse effects on the sediment associated biota
- Seagrasses element accumulation at CO$_2$ seeps was highest in the roots
Keywords: Bioaccumulation, bioavailability, ocean acidification, *Posidonia oceanica*, *Cymodocea nodosa*.
Introduction:

Around 30% of anthropogenic CO₂ emissions have dissolved into surface seawater causing the pH to fall in a process known as ‘ocean acidification’ (Caldeira and Wickett, 2003). Seawater acidification poses a threat to marine species and ecosystems, so one of the United Nations Sustainable Development Goals is to “Minimize and address the impacts of ocean acidification” (United Nations, 2015). Rising CO₂ levels are expected to reduce seascape complexity, alter trophic interactions (Nogueira et al., 2017; Milazzo et al., 2019) and reduce biodiversity (Sunday et al., 2016; Agostini et al. 2018) causing impacts on a range of ecosystem services (Lemasson et al., 2017).

Trace elements, as the term suggests, normally occur in very low concentrations. At low levels they are not toxic, and some are essential for cellular process that support life (Avelar et al., 2013). At higher concentrations, trace elements such as arsenic (As), copper (Cu), lead (Pb) and mercury (Hg) can be harmful to coastal biota (Stumm Morgan, 1995). Element toxicity depends on the chemical form. Arsenic, for example, is toxic in its metalloid form, Hg and Pb are toxic as free ions, and Cu is toxic when reduced to Cu (I) (Tchounwou et al., 2014). Ocean acidification is expected to exacerbate the harmful effects of metal pollution in coastal ecosystems (Ivanina et al., 2015; Lewis et al., 2016) because lower seawater pH can increase the bioavailability and toxicity of metals both in sediments (Roberts et al., 2013) and in the water column (Millero et at., 2009). Lower pH can release metals to water column that were previously bound to sediment (Atkinson et al., 2007). It can also alter the speciation of elements such as Cu, Ni and Zn resulting in increased toxicity (Lacoue-Labarthe et al., 2009; 2012; Zeng et al., 2015). However, levels of toxicity will depend on the rate of metal uptake by marine organisms (Batley et al., 2004). The uptake and availability of Cd, Co, Cu, Hg, Ni, Pb and Zn increase when seawater pH falls from 8.1 to 7.8, which is the change in surface seawater pH that is underway this century (Byrne et al., 1998; Richards et al., 2011). The seawater free ion concentration of Cu, for example, is expected to increase by 115% (Pascal et al., 2010; Richards et al., 2011) and Pb by 4.6% (Millero et al., 2009; Dong et al., 2016).

So far, tests on the risks posed by trace metals in ocean acidification conditions have been carried out in laboratory conditions (Besar et al., 2008; Richir & Gobert, 2013; Bravo et al., 2016), which over simplify the complex behaviour of these metals in the marine environment (Millero et al., 2009). Most submarine volcanic seeps have gradients in pH and trace elements, providing natural conditions to assess their uptake by marine biota (Renzi et
While relationships between organisms, environmental factors and trace elements have received much attention at deep-sea hydrothermal vents (Kadar et al., 2007; Cravo et al., 2007), those at coastal CO$_2$ seeps are little understood.

Here, we investigated the levels of metals in sediments and seagrasses at acidified volcanic seeps as well as reference sites. We chose seagrasses as they deliver important ecosystem services in coastal habitats (Nordlind et al., 2016). They are also predicted to benefit from rising CO$_2$ levels within their thermal limits (Koch et al., 2013; Brodie et al., 2014). Seagrass habitats provide food and nurseries for fish, turtles and mammals (Whitfield et al., 2017), are important carbon sinks (Fourqurean et al., 2012). The seagrasses also sequester contaminants such as excess nutrients (Constanza et al., 2014) and metals (Bonanno and Orlando-Bonaca, 2017) and so are used as bioindicators (Catsiki and Panayotidis, 1993). The plants take in trace elements via their roots, rhizomes or leaves and can translocate them between these tissue compartments (Ralph et al., 2006). This introduces trace elements into the food web via grazing and decomposition (Lewis and Devereux, 2009).

Seagrasses can be abundant at some shallow-water CO$_2$ seeps (Hall-Spencer et al., 2008; Russel et al., 2013) but are sparse or absent at other seeps (Vizzini et al., 2010, 2013). Studies have shown upregulation of stress-related antioxidant genes in the seagrass *Posidonia oceanica* at some CO$_2$ seeps (Lauritano et al., 2015) and work on the expression of genes involved in photosynthesis and growth of another common Mediterranean seagrass, *Cymodocea nodosa*, did not reveal beneficial effects of high CO$_2$ levels near a seep (Olivé et al., 2017). Under laboratory CO$_2$ enrichment there was significantly increased expression of *C. nodosa* transcripts associated with photosynthesis (Ruocco et al., 2017). So, even though seagrasses can be common at certain CO$_2$ seeps, toxins may cause stress and stunt their growth.

Laboratory studies have shown that, at elevated CO$_2$, Cu, Pb and Zn are toxic to the seagrasses *Zostera capricorni* (Ambo-Rappe et al., 2007) and *Halophila ovalis* (Ambo-Rappe et al., 2011). Many volcanic seeps around Greece and Italy have elevated levels of metals and are colonised by seagrass (Vizzini et al., 2010; Apostolaki et al., 2014) yet little is known about the accumulation of these metals in seagrass. Here, we expand on work undertaken by Vizzini et al., (2013) to quantify the concentrations of trace elements in sediments and seagrass at multiple seep sites around the Mediterranean. Our aim was to find out whether levels of trace
elements at volcanic seeps correlate with trace element accumulation in seagrass roots, rhizomes and leaves and whether seagrass are more tolerant of some metals than others.

Methods:

Study sites

We surveyed six locations, all of which had seagrasses (*Posidonia oceanica* or *Cymodocea nodosa*) growing on sand in the naturally high salinity and high alkalinity waters of the Mediterranean Sea (Table 1). At each site, a high CO$_2$ station and a reference station were sampled between May - July 2014. The annual temperature range was around 18-22°C for all six locations and the CO$_2$ seeps were at 0-10 m depth with a tidal range of 0.30-0.50 m.

Vulcano, Italy

We sampled Levante Bay (38.4 N, 15.0 E) off Vulcano island (Fig. 1A). The underwater gas emissions are 97-98% CO$_2$ with 2.2% hydrogen sulfide (H$_2$S) at the seep site, decreasing to <0.005% H$_2$S towards the north-eastern part of the bay (Capaccioni et al., 2001; Boatta et al., 2013; Milazzo et al., 2014). *Cymodocea nodosa* was absent near the main vents so we, collected it on the periphery of the CO$_2$ seeps at 1 m depth.

Ischia, Italy

At Castello Aragonese, off Ischia (40°43'50.4"N; 13°57'48.2"E), CO$_2$ bubbles up in shallow water seeps (Fig. 1A). Here the gas is 90–95% CO$_2$, 3–6% N$_2$, 0.6–0.8% O$_2$, 0.2–0.8% CH$_4$ and the seeps lack H$_2$S (Tedesco, 1996). Abundant *Posidonia oceanica* meadows were sampled at 0.5m depth from the seep area and from a reference site (Fig. 2a).

Panarea, Italy

Panarea island (38°38'12.2"N; 15°06'42.5"E) is part of the Aeolian Archipelago in the Southern Tyrrhenian Sea (Fig.1A). On the main island and on the surrounding seafloor, tectonic faults have many gas seeps (Gabianelli et al., 1990; Voltattorni et al., 2009). The underwater gas emissions around these seeps are 92-95%CO$_2$, 2.99-6.23% N$_2$, 0.69-1.2% O$_2$ and 0.65-3% H$_2$S (Caramanna et al., 2010). Here *P. oceanica* was sampled at 5 m depth.

Milos Islands, Greece

Adamas thermal springs (36.70 N, 24.46 E) and Paleochori Bay (36.67 N, 24.51 E) are situated on southwest and southeast part of Milos island respectively (Fig. 1B). Milos island has an extensive submarine venting area, from the intertidal to depths of more than 100 m
(Dando et al., 1999). The released gases are 92.5% CO₂ with some CH₄ and H₂ (Bayraktarov et al., 2013). The underwater gas seeps at Adamas thermal station and Paleochori Bay where *Cymodocea nodosa* meadows were studied are located at 2m and 4m depth, respectively (Fig. 2b).

Methana, Greece

The Methana peninsula (37.638428 N; 23.359730 E) is the westernmost volcanic system of the northern Aegean Volcanic Arc (Fig. 1B), derived from the subduction of the African tectonic plate beneath the Eurasian plate. We sampled the area described by Baggini et al. (2014) near Agios Nikolaos village on the NE part of the peninsula. The gases were 90% CO₂, with small amounts of nitrogen, carbon monoxide and methane (D’Alessandro et al., 2008). Here we sampled *Posidonia oceanica* meadows at 8-10 m depth.

Water sampling

Water samples (n=5) were collected at each CO₂ seeps and Reference station in 100 ml Winkler bottles and were fixed with 20 µl mercuric chloride and stored in dark cool- boxes for transport to the laboratory for total alkalinity (TA) analysis. The pHNBS (using pH meter, Titrino Methron, Thermo Scientific) and temperature of the water samples were measured in the field immediately after collection and then measured in the laboratory again during the TA analysis. In the laboratory 80 ml water samples were analysed for TA using a Lab Titrino analyser following methods given by Dickson et al., (2007). Sterilized sea water was used as reference materials (CRM Batch 129, accuracy-98.7%, Dickson, 2013) for TA analysis. Temperature, pHNBS and TA data were used to calculate pCO₂ using CO₂SyS program following methods given by Pierrot et al., (2006). Dissociation constants (K₁ and K₂) developed by Meherbach et al., (1973) and refitted by Dickson and Millero, (1987) and dissociated constant for boric acid (K_B) developed by Dickson et al., (2007) was used in pCO₂ calculation.
Sediment & seagrass sampling

Sediment samples (n=5) were collected 1 m apart from six CO₂ seeps and six Reference stations by SCUBA diving. A 10-cm long and 2 cm diameter syringe with the tip cut off was used to collect the upper 5 cm of sand. The sediment samples were stored in plastic bags in dark boxes and transferred to the laboratory. They were then dried at 40°C until a constant weight was achieved and then analysed for grain size following dry sieving at Half Phi intervals (Blott and Pye, 2001). After grain size analysis the fine and very fine sediment fractions (<180-63 µm) were collected and stored in plastic bottles for trace metal analysis.

Samples (n=5, whole plants) of *Cymodocea nodosa* (from Vulcano, Adamas and Paleochori islands) and of *Posidonia oceanica* (from Ischia, Panarea and Methana) were collected by SCUBA diving at each station. The plants were rinsed well to remove sediment, scraped to remove epiphytes and leaf scales were removed from rhizomes (*P. oceanica*) by hand and with soft tooth-brush and then washed with distilled water, air-dried and stored in polybags until analyses. Seagrass leaves, roots and rhizomes were oven dried at 40°C and powdered in a mortar and stored until further analysis.

Analytical Methods

Total trace element (Cd, Cu, Hg, Ni, Pb and Zn) concentrations were determined using Aqua Regia Soluble Total method (Modified by Laboratory of the Government Chemist (LGC) UK from ISO11466). Dried sediment (0.25 g) was put into digestion tubes (Tecator type). Cold and concentrated acids in the order: 4.5 mL Hydrochloric acid (HCl): 1.5 mL Nitric acid (HNO₃) was added to the tubes. The digestion tubes were left to pre-digest, for one hour then heated for 2 hours at 95 - 100°C. After cooling, the digest was filtered quantitatively into a volumetric flask and diluted using 2% HNO₃ (25 ml volume).

For dried seagrass (leaves, rhizomes and roots), 0.25g of sample was added to 6mL of HNO₃ following the same procedure as metals and the volume was made up to 25mL. Similarly, blanks and standards (LGC Reference Materials, UK, recovery-95%) used for sediments (LCG6156) and plants (LCG7162) were prepared using the same method. Analysis of Cd, Cu, Hg, Ni, Pb and Zn was performed using an ICP-MS (Thermo Scientific, iCAP 7000 Series) and an ICP-AES (Thermo Scientific, X Series-2) in triplicate with analytical detection precision of 99.5%.

All acids were analytical grade. Normal precautions for metal analysis were observed throughout the analytical procedures. HCL (37%w/w) and HNO₃ (69% w/w) were Ultrapure
type (Ultrapure, Fischer Chemicals, USA). All glassware was soaked overnight in 10% HNO₃ and washed with distilled water and oven dried before use.

Data Analysis

To assess the sediment quality of all six locations we used Sediment Quality Guidelines Quotient (SQG-Q, Long and MacDonald, 1998). Among the environmental quality indices in the literature, this was chosen for its simplicity, comparability and robustness as reported by Caeiro et al., (2005). The SQG-Q consists of two values: a threshold effects level (TEL) and a probable effect level (PEL) (MacDonald et al., 1996). The TEL represent concentrations below which adverse biological effects occur rarely, the PEL represent concentrations above which adverse biological effects occur frequently.

The SQG-Q was calculated as follows:

$$\text{SQG-Q} = \left(\sum_{i=1}^{n} \text{PEL}_i / Q_i \right) / n$$

Where PEL-Qᵢ = contaminant/PEL. The PEL-Qᵢ represents the probable effect level quotient (PEL-Q) of the i contaminant and n represents the total number of contaminants (trace metals).

Based on the SQG-Q index, the sediments were divided into three categories as established by MacDonald et al. (2000). SQG-Q < 0.1 - low potential for adverse biological effects; 0.1 < SQG-Q < 1 - moderate potential for adverse biological effects; SQG-Q ≥ 1 - high potential for adverse biological effects.

To assess bio-accumulation of elements from sediment, we calculated the Bio Sediment Accumulation Factor (BSAF), which is defined as the ratio between metal concentration in the plant and that in the sediment (Lau et al., 1998; Szefer et al., 1999), given by:

$$\text{BSAF} = \frac{M_p}{M_s}$$

Where M_p is the concentration of the element in the seagrass and M_s is the concentration of the element in the sediment (Fergusson, 1990). BSAF is a key factor in expressing the efficiency of seagrass species to absorb elements from sediments and concentrate specific element in its roots. Higher BSAF values (>1) indicate a greater capability of accumulation (EPA, 2007).

Statistics

A three-way ANOVA was used to test for significant differences in trace element concentration among locations (Ischia, Panarea and Methana for P. oceanica Adamas,
Paleochori and Vulcano for *C. nodosa*), compartments (sediment and leaves, rhizomes, roots) and stations (CO$_2$ seeps, Reference). All data were first checked for normality and homogeneity of variances. When variances were not homogenous, data were ln(x+1) transformed. When there were significant effects, the Holm-Sidak test was performed for a posteriori comparison among factor levels. Pearson’s correlation co-efficient was applied to identify correlation between trace element concentration in sediment and seagrass compartments, after testing for normality of distribution on raw or log transformed data. When normality was not achieved, non-parametric Spearman’s rank correlation coefficient was applied. All statistical tests were conducted with a significance level of $\alpha = 0.05$ and data were reported as mean ± standard error (SE).
Results

Dissolved CO$_2$ concentrations were highest (and pH lowest) at each of the seeps; reference sites had normal CO$_2$ and pH. Salinity, temperature and total alkalinity were not affected by the seeps (Table 1).

Grain size analysis showed that 99% of the sediment particles sampled at all locations were sand. Most sediment trace element levels were significantly higher at seeps than at reference stations, except at Ischia (Figs 3 and 4). Large differences were found for Ni (5.3-fold) and Zn (2.39-fold) at Panarea, Cd (42.6-fold) at Paleochori and Cu (8.9-fold) at Adamas seep sediments, compared to reference stations. Mercury was only observed at Italian CO$_2$ seeps, with 1.4-fold higher levels in the seeps sediments at Vulcano that at Ischia and Panarea.

Zinc sediment concentrations were similar at all locations but were 1.7-fold lower at Methana than at Ischia. However, Zn levels at the seeps of Panarea were 2.3-fold higher than at reference sites. The environmental quality of seep sediments for trace elements derived from the Sediment Quality Guidelines Quotient was mainly ‘Moderate’, although it was in the ‘Low’ to ‘Moderate’ range for reference stations. ‘Adverse’ biological effects were considered likely due to high levels of Hg at Vulcano, Cu at Ischia plus Ni and Cd at Paleochori (Table 2).

We were especially interested in results from Ischia as P. oceanica was abundant within the main CO$_2$ seep area (Fig.2a). The sediment at this seep has the highest Cu (32-fold), Zn (2-fold) and Pb (1.5-fold) concentrations than other two seep locations sampled for P. oceanica, but the seagrass tissues had low levels of these metals (Fig.3). On the other hand, P. oceanica at the Ischia seeps had higher concentration of Cd (19-fold), Zn (4-fold), Ni (3-fold) and Hg (1.2-fold) than the sediment (Fig.3). The concentrations of Ni at Paleochori, Pb at Vulcano and Zn at Adamas seeps were 18-fold, 4-fold and 3-fold higher in the sediment than in C. nodosa (Fig.4). Trace element levels were generally significantly higher in the roots than rhizomes and leaves of P. oceanica and C. nodosa at all seep locations (Figs. 3 and 4). Exceptions were Cd (8-fold) concentrations within the rhizomes, Zn (42-fold) and Cu (5-fold) within leaves of P. oceanica and Cd (6-fold), Pb (4-fold) and Hg (3-fold) within leaves of C. nodosa (Figs. 3 and 4).

Significant differences between the three sampling sites in the levels of trace elements in sediment and tissues were observed for P. oceanica (Table 3). Element concentrations measured in sediments and P. oceanica compartments differed significantly except for Cu (sediment-leaves) and Zn (sediment-roots), whereas within P. oceanica compartments all
elements, except Pb (roots-leaves) has significant differences at all three sites. The accumulation of elements in *P. oceanica* plant parts did not show consistent common patterns for the three sampling sites. Hg and Cu were generally higher in roots and leaves than in rhizomes in all reference and seep sites. Zn was much higher in the leaves than in other plant parts at Ischia and Panarea, indicating leaf uptake. On the other hand, Cd was higher in the rhizomes of *P. oceanica* in reference and seep sites of Ischia and Panarea indicating mobility and storage in this plant part (Fig. 3).

Significant variation was observed in trace element levels for *C. nodosa* between the three sites, except for Cu at Adamas vs Paleochori, Ni at Vulcano vs Adamas and Pb at Vulcano vs Paleochori (Table 4). Element levels measured in sediment and in *C. nodosa* compartments differed significantly, except for Cu (sediment vs rhizomes). The accumulation of elements in *C. nodosa* plant parts did not show highly consistent common patterns as in *P. oceanica* (Fig. 4). However, Cu was always much higher in roots than other plant parts and Hg was higher in both roots and leaves than in rhizomes.

Correlation between trace element content in sediments and those recorded in *P. oceanica* roots and rhizomes were significant and positive for Zn and Ni in rhizomes at Ischia and Panarea seeps respectively, where in roots Cd was observed with positive correlation only at Panarea seeps (Table 5). Correlations of trace element content in sediment and those observed in roots and rhizomes of *C. nodosa* were significant and negative for Pb in both roots and rhizomes and for Zn only in rhizomes at Vulcano seeps (Table 5).

The Bio-Sediment Accumulation Factor indicated that in *P. oceanica* there was high root accumulation of Cd at all three sites and of Cu at Panarea and Methana. In *C. nodosa*, there was high accumulation of Cu in the roots at all three sites (Table 6).
Fig. 1. Study areas in a) Italy and b) Greece, showing reference and CO$_2$ seep stations, which were all sampled between May - July 2014.
Fig. 2. a) *Posidonia oceanica* and b) *Cymodocea nodosa* meadows at CO$_2$ seeps off Ischia (Italy) and Paleochori (Greece).

Photo credits for a) *Posidonia oceanica*, and b) *Cymodocea nodosa* meadows at Italy and Greece: Jason Hall Spencer, University of Plymouth, UK and Thanos Dailianis of Hellenic Centre for Marine Research, Greece respectively.
Fig. 3. continued
Fig. 3. Element concentrations (mean ± SE, n=5) of Cd, Cu, Hg, Ni, Pb and Zn in Posidonia oceanica plant compartments and sediments at reference and CO$_2$ seep sites off Italy and Greece. Different letters indicate significant differences between reference and CO$_2$ seep stations.
Fig. 4. continued
Fig. 4. Element concentration (mean ± SE, n=5) of Cd, Cu, Hg, Ni, Pb and Zn for Cymodocea nodosa in plant compartments and sediments at reference and CO2 seeps off Italy and Greece. Different letters indicate significant differences between reference and CO2 seep stations.
Table 1: Seawater salinity, temperature, total alkalinity, pH and \(p\text{CO}_2 \) values (mean ± SE, n=5) at six Mediterranean CO\(_2\) seeps and Reference stations between May-July 2014.

Site	Salinity (psu)	Temp.(°C)	pH\(_\text{NBS}\)	TA (µmol Kg SW\(^{-1}\))	\(p\text{CO}_2 \) (µatm)
Vulcano					
Reference	35.8	21.6	8.17 ± 0.05	2439	427 ± 6.8
CO\(_2\) seep	35.8	22.4	7.98 ± 0.08	2432	1928 ± 15.8
Ischia					
Reference	35.6	17.7	8.19 ± 0.06	2596	428 ± 2.3
CO\(_2\) seep	35.7	17.8	7.78 ±0.05	2589	1653 ± 10.2
Panarea					
Reference	36.0	20.5	8.18 ±0.05	2507	420 ± 4.6
CO\(_2\) seep	36.0	22.3	7.47 ±0.04	2500	3370 ± 2.3
Adamas					
Reference	36.7	22.6	8.2 ± 0.03	2715	405.5 ± 1.6
CO\(_2\) seep	36.7	23.5	7.5 ± 0.04	2704	2457.9 ± 1.8
Paleochori					
Reference	36.0	22.6	8.2 ±0.01	2711	402.9 ± 1.1
CO\(_2\) seep	36.0	22.8	7.9 ±0.01	2706	1884.3 ± 3.0
Methana					
Reference	36.8	22.8	8.2±0.01	2715	460 ± 6.9
CO\(_2\) seep	36.8	23.0	7.8±0.02	2704	1980± 4.4
Table 2. Sediment Quality Guidelines-quotient (SQG-Q) of sediment calculated with Probable Effects Level for CO₂ seeps and Reference stations off Greece and Italy. SQG-Q <0.1 (low effect), <0.1 SQG-Q>1 (moderate effect), SQG-Q>1 (adverse biological effects). Numbers in bold indicate possible adverse effects of trace elements.

Location	Element	SQG-Q Reference	CO₂ seeps	Effects Reference	CO₂ seeps
Vulcano	Cu	0.08	0.33	Low	
	Hg	0.32	1.18	Moderate	Adverse
	Ni	0.13	0.21	Moderate	Moderate
	Zn	0.09	0.13	Low	
Ischia	Cu	0.93		Moderate	Adverse
	Hg	0.64	0.86	Moderate	Moderate
	Pb	0.11	0.13	Moderate	Moderate
	Zn	0.12	0.10	Moderate	Moderate
Panarea	Cd	0.10	0.16	Low	Moderate
	Cu	0.06	0.11	Low	Moderate
	Hg	0.79	0.84	Moderate	Moderate
	Ni	0.03	0.18	Low	Moderate
	Pb	0.09	0.57	Low	Moderate
	Zn	0.05	0.12	Low	Moderate
Adamas	Cd	0.21	0.21	Moderate	Moderate
	Ni	0.31	0.41	Moderate	Moderate
Paleochoiri	Cd	0.04	1.84	Low	Adverse
	Ni	0.71	1.01	Moderate	Adverse
Methana	Ni	0.11	0.16	Moderate	Moderate
	Pb	0.05	0.42	Low	Moderate
Three-way ANOVA differences in trace element levels between Location: 3 levels (Methana (M), Panarea (P) and Ischia (V)), Stations: 2 variables (CO\textsubscript{2} seeps, Reference) and compartments: 4 levels (Sediments (Sd), Rhizomes (Rh), Roots (R), Leaves (L)). Holm-Sidak significant test (p<0.05) is presented for locations, sediment and \textit{P. oceanica} compartments. Numbers in bold indicate differences that were not significant.

Element	Variation	p value	Location	Sediment vs Compartment	Compartment	R vs L			
			M vs P	Sd vs R	Sd vs Rh	Sd vs L	R vs Rh	Rh vs L	R vs L
Cd	Location	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Station	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Compt.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cu	Location	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Station	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Compt.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ni	Location	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Station	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Compt.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Pb	Location	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Station	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Compt.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zn	Location	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Station	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Compt.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

0.652

0.222
Table 4. Three-way ANOVA differences in Fe and trace element levels between Location: 3 levels (Adamas (A), Paleochori (P) and Vulcano (V)), Stations:2 variables (CO\(_2\) seeps, reference) and compartments: 4 levels (Sediments (Sd), Rhizomes (Rh), Roots (R), Leaves (L)). Holm-Sidak significant test (p<0.05) is presented for locations, sediment and \textit{C. nodosa} compartments. Numbers in bold indicate differences that were not significant.

Element	Variation	Location Variation	p value	Holm-Sidak p values	Sediment vs Compartment	Compartments Comparison
		Location A vs P			Sd vs R	R vs Rh
Cd	Location	<0.001	<0.001	<0.001	<0.001	<0.001 0.787 <0.001
	Station	<0.001			<0.001	0.621 <0.001 0.001
	Compt.	<0.001			<0.001	<0.001 <0.001 <0.001 0.001
Cu	Location	<0.001	0.626	<0.001	<0.001	<0.001 0.787 <0.001
	Station	<0.001			<0.001	0.621 <0.001 0.001
	Compt.	<0.001			<0.001	<0.001 <0.001 <0.001 0.001
Ni	Location	<0.001	<0.001	0.853	<0.001	<0.001 0.787 <0.001
	Station	<0.001			<0.001	0.853 <0.001 0.001
	Compt.	<0.001			<0.001	<0.001 <0.001 <0.001 0.001
Pb	Location	<0.001	<0.001	<0.001	<0.001	<0.001 0.787 <0.001
	Station	<0.001			<0.001	0.286 <0.001 0.001
	Compt.	<0.001			<0.001	<0.001 <0.001 <0.001 0.001
Zn	Location	<0.001	<0.001	<0.001	<0.001	<0.001 0.787 <0.001
	Station	<0.001			<0.001	0.910 <0.001 0.001
	Compt.	<0.001			<0.001	<0.001 <0.001 <0.001 0.001

23
Table 5. Results of correlation analysis between trace elements content in sediments and seagrass (*P. oceanica* and *C. nodosa*) roots and rhizomes at high CO$_2$ sites off Italy and Greek coast. r is the correlation co-efficient and significance level (p < 0.050). Bold letters indicate significant correlation. Trace elements only with significant co-relation are presented.

Seagrass	Location	Element	Sediment-roots	Sediment-rhizomes
P. oceanica	Ischia	Zn	-0.234 0.704	0.870 0.048
	Panarea	Cd	0.841 0.014	-0.910 0.032
		Ni	-0.358 0.554	0.884 0.046
C. nodosa	Vulcano	Pb	-0.881 0.048	-0.889 0.037
		Zn	-0.795 0.108	-0.966 0.007

Table 6. Bio-Sediment Accumulation Factor (BSAF) of trace metals in *P. oceanica* and *C. nodosa* roots at CO$_2$ seeps (seeps) and Reference (Ref.) stations off Italy and Greek coast. Sediment (Sd), Roots (Ro). Bold numbers indicate TF>1 value.

Location	Ischia	Panarea	Methana				
Seagrass	Elements BSAF(Ro/Sd)	BSAF(Ro/Sd)	BSAF(Ro/Sd)				
	Ref.	Ref.	Ref.	Seeps	Ref.	Seeps	
P. oceanica	Cd	1.9	3.0	0.08	2.71	2.12	1.28
	Cu	0.17	0.29	5.15	3.10	8.21	4.49
	Hg	0.47	0.43	1.95	0.13	-	-
	Ni	1.12	1.11	0.22	1.10	3.63	3.42
	Pb	1.42	1.21	0.75	0.74	0.61	0.75
	Zn	0.81	0.56	1.12	0.52	1.70	1.87
C. nodosa	Cd	1.71	2.23	0.45	0.52	1.03	0.03
	Cu	1.14	4.32	36.65	6.50	1.23	1.49
	Hg	1.97	0.51	-	-	-	-
	Ni	0.28	3.17	2.05	1.69	0.09	0.13
	Pb	0.07	0.11	0.76	1.28	0.97	0.65
	Zn	0.50	1.13	1.62	2.27	0.90	0.62
Table 7. Mean range concentration (mg/Kg) of trace elements in sediment and *P. oceanica* and *C. nodosa* tissues off the coast of Italy and Greece. Data collected from literature only included the pristine sites with seagrass meadows around Greece and Italy and seagrass meadows within contaminated sites and sediment samples taken from ship-based cores were excluded. Samples of CO$_2$ seeps off Italy and Greek coast are indicated in bold. Sediment (Sd), Leaves (L), Rhizomes (Rh), Roots (R).

Sample/Loc.	Study site	Sample	Cd	Cu	Hg	Ni	Pb	Zn	References				
Sediment													
Italy	Sicily	Sd	0.19-0.25	5.23-7.25	0.1-0.17	39.8-52.4	3.7-5.7	31.4-54.7	Bonanno and Raccuia, 2018				
	Sicily	Sd	0.24	1.6	-	-	1.77	7.5	Campanella et al. 2001				
	Sicily	Sd	0.15-0.30	0.18-0.6	-	4.31-7			Vizzini et al. 2013				
	Ionian Sea	Sd	0.06	2.03	-	-	4.57	31.75	Cozza et al. 2013				
	Taranto Gulf	Sd	0.12-0.17	8.0-22.3	0.1-1.79	-	14.2-29.1	35-68	Di Leo et al. 2013				
	Vendicari, Sicily	Sd	0.3	0.20	-	3.23	2.2	10.5	Bonanno and Martino, 2017				
	Vendicari, Sicily	Sd	0.15	3.04	-	5.4	6.22	11.4	Bonanno and Martino, 2016				
	Ischia	Sd	-	4.5	-	-	60		Renzi et al. 2011				
	Panarea	Sd	0.11-0.32	26.4-76.1	0.01-0.2	-	5.8-25.0	13.8-78.2	Vizzini et al., 2013				
	Vulcano	Sd	0.23-0.31	29.41-44.8	0.74-1.09	8-9.87	3.2-3.97	34.2-36.7	This study				
	Ischia	Sd	0.23-0.29	113-116	0.55-0.67	0.85-2.20	12.05-15.3	24.3-30.7	This study				
	Panarea	Sd	0.18-0.98	6.01-6.91	0.38-0.95	0.99-1.39	11.1-14.8	11.9-15.7	This study				
Greece													
	Hellenic Volcanic arc	Sd	-	18	-	-	20	43	Hodkinson et al. 1994				
	Adamas	Sd	0.76-0.97	2.3-2.7	-	-	10-17	2.76-3.72	31.2-35.8	This Study			
	Paleochori	Sd	0.14-0.28	4.8-5.6	-	35.2-48.1	2.27-2.74	14.7-28	This Study				
	Methana	Sd	0.30-0.38	3.05-3.75	-	5.6-8.9	9-10	11.5-18.7	This Study				
P. oceanica	Italy	L	0.4-1.76	0.01-0.04	0.4-1.96				Costantini et al. 1991				
Location	Species	Lm	Lw	Lh	Rh	Rm	Rw	Lm	Lw	Lh	Rh	Rm	Rw
----------------	---------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Ischia	L	-	-	0.01-0.18	-	-	-	Pergent and Pergent-Martini. 1999					
North Sardinia	L	0.6-2	6-17	-	-	5.2-11.2	-	Barolli et al. 2001					
	Rh	0.8-2.4	5.4-15.3	-	-	0.8-2.4	-						
Ustica Island	L	3.6-7.5	19.8-53.2	-	-	1.1-5	142-260	Conti et al. 2007					
	Rh	0.6-1.7	9.4-14.3	-	-	0.03-28	58						
Linosa Island,	L	0.95-5.49	3.12-17.7	-	-	0.59-13.8	16.5-156	Conti et al.2010					
Tyrrenian Sea	L	0.22-0.38	1.01-2.79	-	1.44-5.21	0.15-0.52	-	Bravo et al. 2016					
Sicily	L	1.45	10.5	-	9.5	2.1	55.7	Bonanno and Martino, 2017					
	Rh	0.89	7.12	-	2.34	1.14	32.5						
	R	1.8	14.6	-	5.12	2.56	44.3						
Ischia	L	0.51-0.62	6.16-6.89	0.42-0.60	1.8-2.8	1.69-2.39	84.21-115	This study					
	Rh	0.72-4.76	7.38-14.2	0.16-0.27	5.21-6.26	0.39-4.92	19.9-32.9						
	Ro	0.53-0.76	16.8-33.6	0.56-0.73	3.79-4.95	5.98-6.01	17.8-22.6						
Panarea	L	0.64-0.84	39.8-58.3	0.33-0.48	0.82-1.47	1.51-1.53	71.4-390	This study					
	Rh	2.48-3.03	5.92-8.6	0.10-0.25	3.1-3.97	0.48-0.70	9.37-17.6						
	Ro	0.55-1.21	37.2-34.3	0.32-0.38	6.9-7.9	0.93-1.65	15.6-16.7						
Greece	Aegean Sea,	L	1.99	-	21.2	-	-	Catsiki and Bei. 1992					
Aegean Sea	L	-	0.44-45.8	-	21.1-60.9	-	-	Catsiki and Panayotidis. 1993					
	Rh	0.41-58.6	-	3.34-46.2	-	-							
	R	0.25-36.1	-	3.34-46.2	-	-							
Methana	L	0.35-0.23	6.59-7.39	-	10.8-17.7	3.38-2.86	18.9-23.9	This study					
	Rh	0.33-0.24	5.08-6.30	-	10.9-19.9	3.08-4.45	34.5-46.9						
	Ro	0.53-0.45	13.9-5.78	-	21.6-24.79	3.48-7.03	23.0-27.4						
Italy	C. nodosa	Sicily	L	0.39-3.82	-	0.36-0.7	3.32-33.42	-	Vizzini et al. 2013				
Sicily	L	0.55	3.9	-	5.57	1.85	43.4	Bonanno and Martino. 2016					
	Rh	0.1	2.06	-	1.15	0.38	24.2						
	R	0.21	3.35	-	3.45	4.56	35.3						
Vulcano	L	0.45-1.61	-	-	2.86-8.26	-	Vizzini et al. 2013						

26
Location	L	0.12-0.86	4.52-12.6	0.35-0.64	0.81-9.41	0.14-3.29	11.3-30.9	This study
Vulcano	Rh	0.21-0.15	1.38-24.4	0.63-1.59	0.23-0.26	0.48-1.69	7.7-26.7	
	Ro	0.26-0.81	9.5-250.0	0.37-0.47	1.60-38.6	0.39-0.91	12.0-79.5	
Greece								
North Evvoikos	L	1.2	9.6	-	7.6	-	57.5	Nicolaidou and Nott, 1998
Gulf	Rh	2.1	7.7	-	1.2	-	23	
Aegean Sea	R	2.1	12.8	-	5.2	-	22.92	
	Rh	0.19-11.1	1.4-8.95	-	-	-	-	Catsiki and Panayotidis, 1993
	R	1.11-75.4	3.4-50	-	-	-	-	
Thessaloniki	L	-	-	-	2.33	-	-	Malea and Kevrekidis, 2013
Gulf	Rh	-	-	-	0.85	-	-	
	R	-	-	-	0.34-5.04	-	-	
Milos	L	0.14-0.15	4.74-6.63	-	2.56-2.76	0.23-1.98	23.1-24.2	This study
	Rh	0.55-0.56	4.95-3.43	-	2.61-23.0	2.34-3.88	21.6-26.8	
	Ro	0.65-1.13	9.78-16.3	-	2.33-3.49	6.35-9.02	7.02-9.72	
Paleochori	L	0.17-0.21	3.15-3.21	-	1.33-4.4	0.57-1.69	11.5-13.3	This study
	Rh	0.15-0.14	3.43-2.29	-	1.40-2.42	1.65-1.74	14.8-17.3	
	Ro	0.19-0.19	4.35-7.71	-	2.62-5.75	2.28-1.62	14.4-18.5	
Discussion

Shallow water CO₂ seeps have been used as natural analogues for future coastal ecosystems as they can have areas of seabed where entire communities of marine organisms are exposed to the shifts in carbonate chemistry that are expected due to continued anthropogenic CO₂ emissions (Hall-Spencer et al., 2008; Enochs et al., 2015; Connell et al., 2017). At such seeps, there are often elevated levels of trace elements and H₂S, so care is needed when using them to assess the effects of ocean acidification (Barry et al., 2010; Vizzini et al. 2010). This is done by mapping areas affected by volcanic fluid toxics and avoiding those areas when assessing the effects of increased pCO₂ in seawater (Boatta et al. 2013; Agostini et al. 2018). The six CO₂ seeps that we surveyed showed sediments were enriched with Cd, Cu, Hg, Ni, Pb and Zn. This was expected since hydrothermal seep sediments often have high levels of metals (Aiuppa et al., 2000; Sternbeck et al., 2001) due to continuous input from the subsea floor into the sediments (Dando et al., 2000). The calculated Sediment Quality Guidelines Quotient (Long et al., 1998; MacDonald et al., 2000) suggests Hg (at Vulcano), Cu (at Ischia) plus Cd and Ni (at Paleochori) were at high enough levels to have adverse impacts on marine biota. So, careful selection of study sites is needed to avoid the combined effects of various factors like trace metals and toxic gases while conducting ocean acidification research.

The trace element levels observed within CO₂ seep sediments were higher for Cd and Cu, were similar for Hg and lower for Ni, Pb and Zn than mean element levels observed around Mediterranean coast of Italy (Table 7). We think that this is because the sediments studied were sandy and lacked clay particles (<63µm) which bind more trace elements in finer sediments. Trace element levels observed at seep sediments off Vulcano, Italy, were in the same range for Cd, 5-fold higher for Hg and lower for Cu (1.7-fold), Pb (6-fold) and Zn (2-fold) from previously measurements by Vizzini et al. (2013). Levels of Hg and Pb measured at Panarea CO₂ seeps were 5-fold and 4-fold lower from those reported by Renzi et al. (2011), probably because Renzi et al. (2011) sampling was made just after a massive outgassing event with increased input of elements, whereas no such influx was observed during our sampling. Trace element levels in seep sediments of the Greece coast were 3-fold (Cu), 2-fold (Pb) and 1.2-fold (Zn) lower than previously reported by Hodkinson et al., (1994), whereas Cd and Ni are reported for the first time for this coast (Table7). These higher levels of elements could be in part due to weathering and land run-off on-land which makes their way to these shallow volcanic seeps along with hydrothermal inputs (Hodkinson et al., 1994). The difference in element levels within the CO₂ seep sediments of Italy and Greece coasts indicate the
heterogeneous patchiness in metal concentrations around seep systems, variation in influx of elements from CO$\textsubscript{2}$ seeps and the variable biogeochemical factors (such as variation in pH and sediment grain size) that influences the metal availability at the CO$\textsubscript{2}$ seeps. These variations of trace element levels in sediment between CO$\textsubscript{2}$ seeps and pristine sites off Greek and Italy coast were also reflected in the plant accumulation of trace elements in roots, rhizomes and leaves (Table 7).

Element levels were higher in seagrass compartments at the seep sites compared to reference sites. Seagrass element accumulation is more element and seagrass tissue-specific rather than species-specific (Bonanno and Bonaca, 2017) resulting in seagrass compartments acting as metal accumulators of their surrounding environment, especially of heavy metals (Govers et al., 2014). In our analyses most elements in both seagrasses were more concentrated in roots than rhizomes which had more metals than the leaves, which is typical for P. oceanica and C. nodosa (Bonanno and Bonaca, 2017). Higher element accumulation in roots and leaves than rhizomes were also observed for P. oceanica and C. nodosa from pristine sites off Italy and Greek coast (Table 7). Root accumulation is common in both terrestrial and aquatic plants where they store and sequester certain elements to avoid damage to photosynthetic apparatus. This root accumulation of elements is then internally regulated for elements like Cd, Ni and Pb from roots to rhizomes to leaves suggesting that seagrasses have different tolerance mechanisms for dealing with trace elements that either accumulate in the roots or are moved out through the leaves which are then shed, as observed in P. oceanica (Di Leo et al., 2013; Richir and Gobert, 2016) and in C. nodosa (Malea and Haritonoids, 1999; Bonanno and Di Martino, 2016). This transfer of trace elements from roots to leaves of P. oceanica and C. nodosa also promote the release of these elements into the food webs of coastal ecosystems or the water column. On the other hand, storage and sequestration of metals in the below ground tissues like roots also reduces metal burden of seagrasses as below ground tissues are permanently buried (Windham et al., 2001). Seagrasses accumulate some elements, such as Cd and Ni, that are essential micronutrients (Sanz-Lazaro et al., 2012) rather than Hg or Pb that are toxic (Kabata-Pendias and Mukherjee, 2007), similar preferences has been observed for accumulation of Zn over Pb in both P. oceanica (Sanchiz et al., 2001) and C. nodosa (Malea and Haritonidis, 1999; Llagostera et al., 2011). However, seagrasses also tend to store toxic elements like Hg and Pb in the vacuoles of cortical tissue of roots outside the endodermis or in cell walls, thereby preventing the uptake of these elements into rhizomes and leaves (Windham et al., 2001).
Significant positive correlation of trace elements between seagrass tissues and sediment suggest the bioindication potential of seagrass tissues for that trace element (Bonanno and Borg, 2018). For instance, positive correlation was found in *P. oceanica* for Cd through sediment-root pathway and for Zn and Ni through sediment-rhizome, which indicates that roots of *P. oceanica* are potential bioindicators of Cd and rhizomes of Zn and Ni at CO₂ seeps off Italy. In *C. nodosa* no positive correlation was found for any of the elements analysed, which indicates their low potential for being bioindicators of trace metals and this also suggests why *P. oceanica* is used as a bioindicator in most of trace metal accumulation studies in Mediterranean Sea (Bonanno et al., 2017). In *P. oceanica* significant negative correlation was found for Cd in sediment-rhizomes and in *C. nodosa* negative correlation was found for Pb between sediment -roots and Zn between sediment- rhizomes. Negative correlation suggests that the preferable route for Cd transfer in *P. oceanica* (Lafabrie et al., 2007; Di Leo et al., 2013) and Zn in *C. nodosa* (Malea et al., 1999) is through water column rather than the sediment-root pathways. Similarly, elements such as Pb with negative correlation in *C. nodosa*, suggests Pb being toxic is not uptake or stored within the seagrass compartments (Sanchiz et al., 2001).

Bio-Sediment Accumulation Factor analysis between elements in sediment and in seagrass roots indicate that the pathway of uptake/storage is not always the sediment-root, even though higher element concentrations were observed in the sediments at CO₂ seeps. Even though, in *P. oceanica* Cd and Ni, were found with BSAF>1 in roots at all three seep stations, which suggests that accumulation of elements like Cd and Ni are made through the sediment-root pathway, for elements like Cu, Hg, Pb and Zn a mixed response (higher at reference and lower at seep sites or vice versa) of BSAF>1 was found, which indicates that for these trace elements both sediment-root and water-root pathways may be used. BSAF >1 value observed for trace elements in *P. oceanica* at the CO₂ seeps of Italy and Greek coast are within the range of BSAF values observed for *P. oceanica* in Mediterranean Sea (Bravo et al., 2016). In *C. nodosa* Cu was the only element with BSAF>1 in roots found at all three seep stations, whereas other elements showed mixed response. Cu being an essential element is preferred for root accumulation through sediment-root pathway, whereas other elements can use a mixed accumulation from sediment-roots or water-roots or water-leaves pathway (Bonanno and Di Martino, 2016). However, it was observed for both *P. oceanica* at Ischia and Panarea and *C. nodosa* at Vulcano seeps, that Hg accumulation from sediment-roots pathway (BSAF>1) was
not higher than reference sites. This suggests Hg being toxic to the plant roots is not preferred for accumulation in seagrass (Bonanno and Di Martino, 2016).

At CO₂ seeps the low pH can alter the metal speciation and favour the release of metals from sediment (Simpson et al., 2004; Atkinson et al., 2007). The chemical form in which metals are present (e.g. whether they are bound to organic or inorganic compounds) is a key issue determining its bioavailability. Low pH of seawater near the CO₂ seeps tends to release the metals that are less strongly associated with sediments, increasing their potential bioavailability (Riba et al., 2004). Thus, low pH can increase the concentration of certain dissolved metals, which could affect the sediment-seagrass associated biota e.g., by increasing Cu, Cd and Zn bio-availability, their accumulation and possible toxic effects (Basallote et al., 2014).

In our research, all the CO₂ seeps had low pH (7.4-7.9) conditions, which are known to increase the availability of Cd, Cu, Ni, Pb and Zn in their free ion forms (Roberts et al., 2013). Low pH combined with increased availability can influence and increase seagrass uptake of trace elements (Yang and Ye, 2009) that can lead to higher accumulation and storage of trace elements in seagrass roots and leaves (Bonanno and Bonaca, 2017). Higher accumulation can lead to metal stress once threshold levels are reached and affect the seagrass physiological processes (Olive et al., 2017). However, it is difficult to measure toxic effects of metals on seagrass in in-situ conditions due to variable environmental settings, but a few ex-situ studies on metal toxicity have been conducted on Cymodocea serrulata (Prange and Dennison, 2000), Halophila ovalis and H. spinulosa (Prange and Dennison, 2000; Ambo-Rappe et al., 2011). Considering the observed results from these ex-situ metal toxicity studies, there is a possibility that elements such as Cu and Pb at the CO₂ seeps may affect P. oceanica and C. nodosa photosynthesis as well as root and leaf structures (Prange and Dennison, 2000; Ambo -Rapee et al., 2011). This may be why seagrasses are abundant at some seeps but not at others.

Conclusion:

We observed that Greek and Italian marine CO₂ seeps had elevated levels of trace elements in sediments compared to reference sites, and that this can be used to investigate interactions between seawater pH, element bioavailability and element accumulation within marine organisms. Care is needed when using volcanic CO₂ seeps as analogues for the effects of ocean acidification as increased levels of trace elements can be harmful to marine biota. In some cases, such as Ischia, high levels of Cu in the sediment were not accumulated in seagrass. At other sites low pH increased the accumulation of trace metals in seagrass, such as with Zn
off Vulcano, Panarea and Ischia. Our research shows that ocean acidification can affect the bioaccumulation of some trace elements, which is relevant to agencies responsible for monitoring the effects of contamination in the marine environment.
Acknowledgement:

This work was part of MARES “Future Oceans” project (MARES _12_14). MARES is a Joint Doctorate programme selected under Erasmus Mundus coordinated by Ghent University (FPA 2011-0016, see www.mares-eu.org). It was partially funded by the FCT strategic project UID/Multi/04326/2013 granted to CCMAR. We are grateful to Dr. Marco Milazzo for his support during the field work at Vulcano, Italy. Dr. Joao Silva and Dr. Irene Oliva for helping collect samples from Ischia and Panarea, Italy. We are grateful for the support of Thanos Dailianis, Julius Glampedakis in collection of samples from Greece and Dr. Eugenia Apostolaki for her support during the field work. We thank Andrew Tonkin and Robert Clough at the University of Plymouth, UK for help with trace metal analyses. We would like to thank Prof. Paul Dando and Prof. Francesco Parello for their constructive comments on an early draft.

References

Agostini, S., Harvey, B.P., Wada, S., Kon, K., et al., 2018. Ocean acidification drives community shift towards simplified non-calcified habitats in a subtropical-temperate transition zone. Sci. Reports. 8:11354. DOI:10.1038/s41598-018-29251-7

Aiuppa, A., Dongarrà, G., Capasso, G., Allard, P., 2000. Trace elements in the thermal ground waters of Vulcano Island (Sicily). J. of Volcanol. Geotherm. Res. 98:189-207

Ambo Rappe, R, Lajus, D.L, Schreider, M.J., 2007. Translational fluctuating asymmetry and leaf dimension in seagrass, Zostera capricorni Aschers in a gradient of heavy metals. Environ. Bioindic., 2: 99-116.

Ambo-Rappe, R., Lajus, D.L., Schreider, M.J., 2011. Heavy metal impact on growth and leaf asymmetry of seagrass Halophila ovalis. Jour. Of. Envir. Chem. and Ecotox. 6:145-149.

Apostolaki E.T., Vizzini, S., Hendriks, I.E., Olsen, Y.S., 2014. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99: 9–15

Atkinson, C.A., Jolley, D.F., Simpson, S.L., 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere. 9: 1428-1437

Avelar, M., Bonilla-Heredia, B., Merino-Ibarra, M., Herrera-Silveira, J.A., et al., 2013. Iron, cadmium, and chromium in seagrass (Thalassia testudinum) from a coastal nature reserve in karstic Yucatan. Environ. Monit. Assess. 185: 7591–7603.

Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., et al., 2014. Seasonality affects Macroalgal Community Response to Increase in pCO2. PLOS ONE. 9: 1-13.

Baroli, M., Cristini, A., Cossi, A., DeFalco, G., et al., 2001. Concentrations of trace metals in Posidonia oceanica seagrass of Liscia Bay, Sardinia (Italy), Chapter 13. In: Faranda, L., Guglielmo, G.S. (Eds.), Mediterranean Ecosystems: Structures and Processes. Spring- er-Verlag, Milan, Italy, pp. 95–99.

Barry, J.P., Hall-Spencer, J.M., Tyrrell, T., 2010. In situ perturbation experiments: natural venting site, spatial/temporal gradients in ocean pH, manipulative in situ pCO2...
perturbations. In: Riebesell, U., Fabry, V.J., Hansson, L., Gattuso, J.-P. (Eds.), Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 123-136.

Batley, G.E., Apte, S.C., Stauber, J.L., 2004. Speciation and bioavailability of trace metals in water: Progress since 1982. Australia. J. of Chem. 57: 903-919.

Bayraktarov, E., Price, R.E., Ferdelman, T.G., Finster, K., 2013. The pH and pCO$_2$ dependence of sulfate reduction in shallow-sea hydrothermal CO$_2$-venting sediments (Milos Island, Greece). Frontiers in Micro. 4: 1-10.

Besar, S.N.T., Shazili, N.A.M., Abdullah, S.A., Mamat, A.S., 2008. Experimental and field study on accumulation of heavy metals. J. of Sustain. And Manag. 3: 41-73.

Blott, S.J. and Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Sur. Pro. and Landfo. 26: 1237-1248.

Boatta, F., D’Alessandro, W., Gagliano, A.L., Liotta, et al., 2013. Geochemical survey of Levante bay, Vulcano island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73: 485-494.

Bonanno, G., Di Martino, V., 2016. Seagrass Cymodocea nodosa as a trace element bio monitor: Bioaccumulation patterns and biomonitoring uses. J. of Geochem. Explor. 169: 43-49.

Bonanno, G., Di Martino, V., 2017. Trace element compartmentation in the seagrass Posidonia oceanica and biomonitoring applications. Mar. Pollut. Bull. 116:196–203. https://doi.org/10.1016/j.marpolbul.2016.12.081

Bonanno, G., Orlando-Bonaca, M., 2017. Trace element in Mediterranean seagrasses: Accumulation, tolerance and biomonitoring. A review. Mar. Pollut. Bull. 125: 8-18.

Bonanno, G., Borg, J.A., Di Martino, V., 2017. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Sci. Total Environ. 576: 796–806.

Bonanno, G., Raccuia, S.A., 2018. Seagrass Halophila stipulacea: Capacity of accumulation and biomonitoring of trace elements. Sci. of the Total Environ. 633: 257-263.

Bravo, I., Focaracci, F., Cerfolli, F., Papetti, P., 2016. Relationships between trace elements in Posidonia oceanica shoots and in sediment fractions along Latium coasts (north-western Mediterranean Sea). Environ. Monit. Assess. 188: 157.

Brodie, J., Williamson, C., Smale, D.A., Kamenos, N.A., et al., 2014. The future of the northeast Atlantic benthic flora in a high CO$_2$ world. Ecol. Evol.13: 2787-2798.

Byrne, R. H., Kump, L., Cantrell, K., 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 25: 163–181.

Caeiro, S., Costa, M. H., Ramos, T. B., 2005. Assessing Heavy Metal Contamination in Sado Estuary Sediment: An Index Analysis Approach. Ecol. Indi. 5: 151–169.

Caldeira, K., Wickett, M.E. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature. 425: 365.
Campanella, L., Conti, M.E., Cubadda, F., Sucapane, C., 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Env. Pollut. 111:117-126.

Capaccioni, B., Tassi, F., Vaselli, O., 2001. Organic and inorganic geochemistry of low temperature gas discharges at the Baia di Levante beach, Vulcano Island, Italy. J. Volcanol. Geoth. Res. 108: 173–185

Caramanna, G., Espa, S., Bouche, V. 2010. Study of the environmental effects of submarine CO2-rich emissions by means of Scientific diving techniques (Panarea Island-Italy). Int. J. of the Society for Underwater Tech. 29: 79-85.

Catsiki VA, Bei F. 1992. Determination of trace metals in benthic organisms from an unpolluted area: Cyclades Islands (Aegean Sea). Fresenius. Environ. Bull. 1: 60–65

Catsiki, V. A. and Panayotidis, P., 1993. Copper, chromium and nickel in tissues of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa from Greek coastal areas. Chemosphere. 26:963–978.

Christophoridis, C.D., Desepsidis, D., Fytianos, H., 2009. Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, M. Greece. Assessment using pollution indicators. J Hazard Mater.168: 1082-91.

Connell, S.D., Doubleday, Z.A., Hamlyn, S.B., Foster, N.R., et al., 2017. How ocean acidification can benefit calcifiers. Cur. Bio.3:95-96.

Conti, M.E., Tacobucci, M., Cecchetti, G., 2007. A biomonitoring study: trace metals in seagrass, algae and molluscs in a marine reference ecosystem (Southern Tyrrhenian Sea). Int. J. Environ. Pollut. 29:308–332. https://doi.org/10.1504/IJEP.2007.012808

Conti, M.E., Bocca, B., Iacobucci, M., Finoia, M.G., MecoZZz, M., Pino, A., Alimonti, A., 2010. Baseline trace metals in seagrass, algae, and mollusks in a southern Tyrrhenian ecosystem (Linosa Island, Sicily). Arch. Environ. Contam. Toxicol. 58:79–95. https://doi.org/10.1007/s00244-009-9331

Costanza, R., Groot, de R., Sutton, P., Ploeg, S., et al., 2014. Changes in the global value of ecosystem services. Global Environ. Res. 26: 152-158.

Costantini, S., Giordano, R., Ciaralli, L., Beccaloni, E., 1991. Mercury, cadmium and lead evaluation in Posidonia oceanica and Codium tomentosum. Mar. Pollut. Bull. 22: 362–363

Cozza, R., Laquinta, A., Cozza, D., Ruffolo, L., 2013. Trace metals in Posidonia oceanica in a coastal area of the Ionian Sea (Calabria, Italy). Open Journal of Ecology. 3:102-108.

Cravo, A., Foster, P., Almeida, C., Company, R., et al., 2007. Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environ. Int. 33: 609- 615.

Dando, P. R., Stuben, D. & Varnavas, S. P., 1999. Hydrothermalism in the Mediterranean Sea. Prog. Oceanogr. 44:333–367
D’Alessandro, W., Brusca, L. Kyriakopouios, K., Michas, G. et al., 2008. Methana, the westernmost active volcanic system of the South Aegean Arc (Greece): Insights from fluids geochemistry. Jour. Of Volcano. And Geoth. Res. 178: 818-828

Dickson, A.G., Sabine, C.L., Christian, J.R., (Eds), 2007. Guide to best practices for ocean CO₂ measurements. PICES Special Publication, 3: 1-191.

Dickson, A.G., Millero, F.J., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34: 1733-1743.

Dickson, A.G., 2013. Certificate of Analysis. Reference Materials for oceanic CO₂ measurements. University of California, San Diego.

Di Leo, A., Annicchiarico, N., Cardellicchio, L., 2013. Trace metal distribution in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy). Med. Mar. Sci. 14: 204-213

Dong, Y., Rosenbaum, R.K., Hauschild, M.Z., 2016. Assessment of metal toxicity in marine ecosystems; comparative toxicity potentials for nine cationic metals in coastal water. Env. Sci. and Tech. 50: 269-278.

Enochs, I.C., Manzello, D.P., Donham, E.M., Kolodziej, G., et al. 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat. Cli. Ch. 5:1083-88.

EPA, 2007. Framework for Metal Risk Assessment. U.S Environmental Protection Agency. Office of the Science Advisor, Washington D.C

Fergusson, J.E., 1990. The heavy elements’ chemistry, Environmental impacts and Health effects. Pergamon Press, Oxford, UK.

Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marbà, N., et al., 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5: 505–509

Gabianelli, G., Gillot, P.Y., Lanzafame, G., Romagnoli, C. et al., 1990. Tectonic and volcanic evolution of Panarea (Aeolian Islands, Italy). Mar. Geo. 92: 313–326

Govers, L.L., Lamers, L.P.M., Bouma, T.J., Eygensteyn, J., 2014. Seagrasses as indicators for coastal trace metal pollution: a global meta-analysis serving as a benchmark, and a Caribbean case study. Environ. Pollut. 195: 210–217. http://dx.doi.org/10.1016/j.envpol.2014.08.028

Hall-Spencer, J.M., Rodolfo-Metalpa, R., Martin, S., Ransome, E. et al., 2008. Volcanic carbon dioxide seeps show ecosystem effects of ocean acidification. Nature 454:96-99

Hodkinson, R.A., Cronan, D.S., Varnavas, S., Perissoratis, C., 1994. Regional Geochemistry of Sediments from the Hellenic Volcanic Arc in Regard to Submarine Hydrothermal Activity. Mar. Georesources Geotechnol. 12: 83–129

Ivanina, A.V., Sokolova, I.M., 2015. Interactive effects of metal pollution and ocean acidification on physiology of marine organisms. Cur. Zool. 64: 653-668.

Kadar, E., Costa, V., Segonzac, M., 2007. Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal seeps of the Mid-Atlantic Ridge. Sci. Tot. Environ. 373: 464–472.
Kabata-Pendias, A., Pendias, H., 2001. Trace elements in soil and Plants. CRC Press, London.

Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace Elements from Soil to Human. Springer, Berlin, Heidelberg.

Kadar, E., Fisher, A., Stolpe, B., Harrison, R.M. et al., 2012. Metallic nanoparticle enrichment at low temperature, shallow CO$_2$ seeps in Southern Italy. Mar. Chem. 140: 24-32.

Kozanoglou, C., Catsiki, V.A., 1997. Impacts of products of a ferronickel smelting plant to the marine benthic life. Chemosphere: 34:2673-82

Koch, M., Bowes, G., Ross, C., Zhang, X., 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19:103-132.

Lacoue-Labarthe, T., Martin, S., Oberhansli, F., Teyssie, J.L. et al., 2009. Effects of increased pCO$_2$ and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis. Biogeosciences. 6: 2561–2573.

Lacoue-Labarthe, T., Martin, S., Oberhansli, F., Teyssie, J.L. et al., 2012. Temperature and pCO$_2$ effect on the bioaccumulation of radionuclides and trace elements in the eggs of the common cuttlefish, Sepia officinalis. J. of Exp. Mar. Bio. and Eco. 413:45–49

Lau, S., Mohamed, M., Tan Chi Yen, A., Suut, S., 1998. Accumulation of heavy metals in freshwater molluscs. Sci. Total Environ. 214:113–121.

Lauritano, C., Ruocco, M., Dattolo, E., Buia, M.C., et al., 2015. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeo. Discus. 12: 4947-4971

Lemasson, A.J., Fletcher, S., Hall-Spencer, J.M., Knights, A.M., 2017. Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. J. of Expt. Mar. Bio. and Ecol. 492:49-62

Llagostera, I., Pérez, M. & Romero, J. 2011. Trace metal content in the seagrass Cymodocea nodosa: Differential accumulation in plant organs. Aqua. Bot. 95: 124-128

Lewis, M.A., Devereux, R., 2009. Non-nutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ. Toxicol. Chem. 28: 644–661

Lewis, C., Ellis, R.P., Vernon, E., Elliot, K., et al., 2016. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses. Nature. 6: 1-10.

Long, E. R., and D. D. MacDonald., 1998. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum. and Ecol. Risk Assess. 4:1019-1039.

MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R, et al., 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology. 5:253-278
MacDonald, D.D., Lindskoog, R.A., Smorong, D.E., Greening, H., et al., 2000. Development of an Ecosystem-based Framework for Assessing and Managing Sediment Quality Conditions in Tampa Bay, Florida. Tampa Bay Estuary Pro- gram, Florida, USA.

Malea, O. and S. Haritonidis., 1999. *Cymodocea nodosa* (Ucria) Aschers. as a Bioindicator of Metals in Thermaikos Gulf, Greece, during Monthly Samplings. Bot. Mar. 42: 419-430

Malea, P., and Haritonidis, S., 1995. Local distribution and seasonal variation of Fe, Pb, Zn, Cu, Cd, Na, K, Ca and Mg concentrations in the seagrass *Cymodocea nodosa* (Ucria) Aschers. In the Antikyra Gulf, Greece. Marine Ecology. 16: 41-56.

Malea, P., Kevrekidis, T., 2013. Trace element (Al, As, B, Ba, Cr, Mo, Ni, Se, Sr, Ti, U and V) distribution and seasonality in compartments of the seagrass *Cymodocea nodosa*. Sci. Total Environ. 463: 611–623

Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M., 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897-907.

Milazzo, M., Rodolfo-Metalpa, R., Chan, V.B.S., Fine, M. et al., 2014. Ocean acidification impairs vermetid reef recruitment. Scienci. Rep. 4:4189.

Milazzo M., Alessia C., Quattrochi F., Chemello R., D'Agostaro R., Gil J., Vaccaro A.M., Mirto S., Gristina M., Badalamenti F., 2019. Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Science of the Total Environment 667: 41-48.

Millero, F.J., Woosley, R., DiTrolio, B., Waters, J., 2009. Effect of ocean acidification on the speciation of metals in seawater. Oceanography. 22:72–85.

Nicolaidou, A and Nott, J.A., 1998. Metals in sediment, seagrass and gastropods near a nickel smelter in Greece: Possible interactions. Mar. Pollut. Bull. 36:360-365

Nogueira, P., Gambi, M.C., Vizzini, S., Califano, G., et al., 2017. Altered epiphyte community and sea urchin diet in *Posidonia oceanica* meadows in the vicinity of submarine volcanic CO$_2$ vents. Mar. Environ. Res. 127:102-111.

Nordlund, M., Koch, E.W., Barbier, E.B., Creed, J.C., 2016. Seagrass ecosystem services and their variability across Genera and Geographical regions. PLoS ONE. 12: e016994

Olive, I., Silva, J., Lauritano, C., Costa, M.M., et al., 2017. Short term responses of seagrasses exposed to CO$_2$ in volcanic vents. Scientific Rep.7:42278

Pascal, P.Y., Fleeger, J.W., Galvez, F., Carman, K.R., 2010. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Mar. Pollut. Bull. 60: 2201–2208

Pergent, G., Pergent-Martini, C., 1999. Mercury levels and fluxes in Posidonia oceanica meadows. Environmental Pollution 106:33–37

Pierrot, D., Lewis, E. & Wallace, D. W. 2006. MS Excel Program Developed for CO$_2$ System Calculations Program developed for CO$_2$ system calculations. ORNL/CDIAC-
39

105a. (Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Department of Energy).

Prange, J. A, Dennison, W.C., 2000. Physiological responses of five seagrass species to trace metals. Mar. Pollut. Bull., 41: 327-336

Qingjie, G., Deng, J., Yunchuan, X., Qingfei, W., et al., 2008. Calculating pollution Indices by heavy metals in Ecological Geochemistry Assessment and a case study in parks of Beijing. J China University Geosciences. 19: 230-241.

Ralph, P.J., David, T., Kenneth, M., Stephanie, S. et al., 2006. Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In: Larkum, A.W.D., Orth, R.J., Duarte, C.M. (Eds.), Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, The Netherlands, pp. 567-593.

Renzi, M., Teresa, R., C, G., Guido, P., Italianod, S. E et al., 2011. Temporal trends and matrix-dependent behaviors of trace elements closed to a geothermal hot-spot source (Aeolian Archipelago, Italy). Proced. Earth and Planetary Sci. 4:10 – 28

Riba, I., Delvalls, T., Á.; Forja, J. M., Gómez-Parra, A., 2004. The influence of pH and salinity on the toxicity of heavy metals in sediment to the estuarine clam *Ruditapes philippinarum*. Environ. Toxicol. Chem. 23: 1100 − 1107

Richards, R., Chaloupka, M., Sano, M., Tomlinson, R., 2011. Modelling the effects of “coastal” acidification on copper speciation. Ecol. Model. 222: 3559−3567

Richir, J., Gobert, S., 2013. The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown *Mytilus galloprovincialis*. Ecol. Ind. 36: 33–47

Richir, J., Salivas-Decaux, M., Lafabrie, C., et al., 2015. Bioassessment of trace element contamination of Mediterranean coastal waters using the seagrass *Posidonia oceanica*. J Environ. Management. 151:486-499

Richir, J., Gobert, S., 2016. Trace elements in Marine Environment; Occurrence, Threats and Monitoring with Special Focus on the Coastal Mediterranean. Env. &Anal. Toxicol. 6:1-19

Roberts, D. A., Birchenough, S.R., Lewis, C., Sanders, M.B. et al., 2013. Ocean acidification increases the toxicity of contaminated sediments. Glo. Change Bio. 19: 340-351

Ruocco, M., Musacchia, F., Olive, I., Costa, M.M., et al., 2017.Genomewide transcriptional reprogramming in the seagrass *Cymodocea nodosa* under experimental ocean acidification. Mol. Ecol. 26: 1-19

Russell, B.D., Connell, S.D., Uthicke, S., Muehllehner, N. et al., 2013. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar. Pollut. Bull. 73:463-469
Sanchiz, C., García-Carrascosa, A.M., Pastor, A., 2001. Relationships between sediment physico-chemical characteristics and heavy metal bioaccumulation in Mediterranean soft-bottom macrophyte. Aquat. Bot. 69: 63–73

Sans-Lazaro, C., Malea, P., Apostolaki, E.T., Kalantzi, I., et al. 2012. The role of the seagrass Posidonia oceanica in the cycling of trace elements. Biogeosciences. 9: 2497-2507

Simpson, S.L., Angel, B.M., Jolley, D.F., 2004. Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 54: 597–609

Skordas, K., Lolas, A., Exadactylos, A., Vafidis, D. 2015. Heavy metal content in Cymodocea nodosa (Ucria) (Ascherson, 1870) and adjacent surface sediments in selected regions of the Aegean. https://doi: 10.13140/RG.2.1.5034.3840

Sternbeck J, Östlund P., 2001. Metals in sediments from the Stockholm region: Geographical pollution patterns and time trends. Water Air Soil Pollut. Focus. 1:151-165

Stumm, W., and Morgan, J.J., 1995. Aquatic chemistry: chemical equilibria and rate in natural waters, 3rd ed.

Sunday, J.M., Fabricius, K.E., Kroeker, K.J., Anderson, K.M. et al., 2016. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change. 7: 81-85

Szefer, P., Ali, A.A., Ba-Haroon, A.A., Rajeh, A.A., et al., 1999. Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ. Pollut. 106: 299–314

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2014. Heavy metals toxicity and the Environment. Mol., Clinical and Env. Toxicol. 101:133–164

Tedesco, D., 1996. Chemical and isotopic investigation of fumarolic gases from Ischia Island (Southern Italy): evidence of magmatic and crustal contribution. J. Vulcanol. Geother. Res. 74:233–242.

United Nations (2015), Transforming our World; The 2030 Agenda of Sustainable Development, United Nations Secretariat, New York, United States.

Voltattorni, N., Sciarrà, A., Caramanna, G., Cinti, D. et al., 2009. Gas geochemistry of natural analogues for the studies of geological CO₂ sequestration. Applied Geochem. 24:1339–1346

Vizzini, S, Di Leonardo, R., Costa, V., Tramati, C.D. et al., 2013. Trace element bias in the use of CO₂ seeps as analogues for low pH environments: Implications for contamination level in acidified oceans. Estuarine, coast. and Shelf Sci. 134:19-30.

Vizzini, S., Costa, V., Tramati, C., Gianguzza, P., et al., 2013. Trophic transfer of trace elements in an Isotopically Constructed Food Chain from a semi-enclosed Marine Coastal
Windham, L., Weis, J.S., Weis, P., 2001. Lead uptake, Distribution and effects in two dominant salt marsh Macrophytes, Spartina alterniflora (Cordgrass) and Phragmites australis (Common Reed). Mar. Pollut. Bull. 42: 811-816.

Whitfield, A.K., 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries (Review). Reviews in Fish Biology and Fisheries. 27: 75-110.

Yang, J., Ye, Z., 2009. Metal accumulation and tolerance in wetland plants. Front. Biol. China 4: 282–288. http://dx.doi.org/10.1007/s11515-009-0024-7

Zeng, X., Chen, X., 2015. The positive relation between ocean acidification and pollution. Mar. Poll. Bull. 91:14-21.