The Long and Winding Road for Symbiont and Yolk Protein to Host Oocyte

Takema Fukatsu

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

ABSTRACT Many insects are intimately associated with microbial symbionts, which are passed to developing oocytes in the maternal body for ensuring vertical transmission to the next generation. Previous studies uncovered that some symbionts utilize preexisting host’s molecular and cellular machineries for targeting oocytes. For example, the major yolk protein vitellogenin (Vg) is massively produced in fat body cells, processed and transported to ovaries, and incorporated into developing oocytes via Vg receptor (VgR)-mediated endocytosis, and some symbiotic bacteria were reported to interact with Vg and migrate to oocytes by hitchhiking the VgR-mediated endocytotic mechanism. In a recent study, Mao et al. (mBio 12:e01142-20, 2020, https://doi.org/10.1128/mBio.01142-20) reported that, in some leafhoppers, a considerable proportion of Vg is incorporated into symbiotic bacteria and translocated into oocytes by hitchhiking the symbiont’s vertical transmission mechanism, uncovering the host’s cooption of the symbiont’s oocyte-targeting machineries and highlighting complicated trajectories toward host-symbiont coevolution and integration.

KEYWORDS symbiosis, Nephotettix, leafhopper, Nasuia, Sulcia, vitellogenin, porin, endocytosis, vertical transmission, oocyte

Many insects are either obligatorily or facultatively associated with microbial symbionts, which affect growth, survival, and reproduction of their hosts in a variety of ways. In most cases, such symbionts are maintained in somatic cells and organs of their hosts and are transovarially passed to developing oocytes for ensuring vertical transmission to the next generation (1, 2). The continuous vertical transmission of the symbiont through host generations over evolutionary time facilitates the loss of genes that are not needed for the intrahost life, the depletion of horizontally acquired genes from environmental sources, and the accumulation of deleterious mutations due to strong population bottlenecks, which tend to end up with symbiont genome reduction and uncultivability, thereby skewing the evolutionary trajectories of the symbiotic associations in an idiosyncratic manner (3, 4).

Apparently, the intrahost microbial journey is not an easy task, where the symbiont escapes from the original host cells, manages to pass through structural barriers, targets host’s ovarian tissue, and finally gets entry into host’s oocyte. Accomplishing this must require elaborate molecular and cellular mechanisms, which are likely preexisting as host’s molecular machineries to be utilized by the symbiont. Previous studies have shown that a variety of symbionts target host’s specific cellular components, like ova- rial epithelia, germaria, nurse cells, follicle cells, germ/somatic stem cells, etc. (1, 5–8), by coopting the host’s molecular and cellular machineries, such as cytoskeletons, motor proteins, exo/endocytotic pathways, yolk transport systems, etc. (9–14).

Oogenesis requires much nutritional investment in the form of yolk, whose main component is the major yolk protein, called vitellogenin (Vg). Vg is synthesized in fat
body cells, processed into mature forms, secreted to hemolymph, transported into
growing oocytes via Vg receptor (VgR)-mediated endocytosis, and accumulated in the
yolk granules in the storage form called vitellin (15). In Spiroplasma-infected fruit flies
and Wolbachia-infected planthoppers, it was reported that the symbiotic bacteria are
associated with Vg and transported into developing oocytes via the VgR-mediated
yolk transport mechanism (12, 14). On account of the considerable size of bacterial
cells, it is conceivable, though speculative, that the endocytosis-mediated Vg transport
system is suitable for evolutionary cooption by the symbiotic bacteria for oocyte tar-
targeting and infection.

In this context, a totally unexpected phenomenon was recently reported by Mao et
al. (16) in the rice green leafhopper Nephotettix cincticeps. The insect is obligatorily
associated with dual genome-reduced endosymbiotic bacteria, Sulcia and Nasuia, in
paired bacteriomes in the abdomen (17). Sulcia and Nasuia jointly synthesize essential
amino acids for their leafhopper hosts and have cospeciated with them over evolution-
tary time, with Sulcia being more ancient than Nasuia (18). Using thorough histological,
biochemical, and molecular genetic approaches, Mao et al. (16) demonstrated that (i)
both Sulcia and Nasuia enter the posterior region of developing oocytes at the vitello-
genic stage, when Vg is actively taken up by the germarium and then transported to
the oocyte via a nutritive cord, (ii) in addition to the Vg localization spanning from ger-
marium through nutritive cord to ooplasm, a considerable amount of Vg is detected in
the posterior region of the oocytes, where Vg signals colocalize with Nasuia cells, (iii)
confocal imaging and immunoelectron microscopy confirm that, strikingly, Vg is pres-
et inside the oocyte-invading Nasuia cells, (iv) RNA interference knockdown of VgR
does not affect invasion of Nasuia-Vg complex into oocytes, uncovering that the
Nasuia-associated Vg incorporation into oocytes is independent of the conventional
VgR-mediated Vg transport mechanism, (v) yeast two-hybrid assay and glutathione S-
transferase pulldown assay showed interaction between Vg and Nasuia’s porin, the
major bacterial outer membrane channel protein, (vi) experimental suppression of
Nasuia infection to oocytes results in reduced ovarial Vg, (vii) blocking of Nasuia’s porin
by antibody injection causes reduced Vg titer in the oocytes and suppressed egg de-
velopment and hatching, (viii) the Nasuia-Vg colocalization is also observed in other
leafhopper species, and (ix) based on these results, it is proposed that the porin-medi-
atated incorporation of Vg into the oocyte-infecting Nasuia cells constitutes another Vg
transport system in addition to the conventional VgR-mediated Vg transport system in
the leafhoppers.

Mao et al.’s (16) finding is particularly intriguing in the following respects. First, this
study uncovers a previously unrecognized route of Vg transport to oocytes in insect
development. Second, while previous studies identified symbiont’s cooption and utili-
ization of host’s Vg transport mechanism for reaching oocytes (12, 14), this study sug-
gests that, in contrast, the host side has coopted the symbiont’s oocyte targeting
mechanism for Vg delivery to ooplasm. Here, the host’s pathway for Vg delivery for
oocyte maturation and the symbiont’s pathway for vertical transmission to developing
oocytes are intertwined in an evolutionary perspective. Considering that the VgR-medi-
ated Vg transport system is operating in all insects, including nonsymbiotic ones (19),
and that Nasuia is not found in all leafhoppers (18), the beginning of the Nasuia-associa-
ted Vg transport system, which must have been superfluous and not essential for the
host at least originally, is an enigma. A possible scenario is that incorporation of Vg
into Nasuia was beneficial for the symbiont rather than for the host at the beginning.
This possibility could be experimentally tested using the current Nephotettix-Nasuia
association. Whether Nasuia-allied endosymbiont lineages, such as Zinderia and Vidania
(18), also incorporate Vg or not should be inspected in future studies. Finally, I point out
that although Mao et al. (16) suggest that Vg-porin interaction activates the porin channel
to open and allow Vg to enter the Nasuia cytoplasm, this claim seems dubious on the
ground that porins have threshold sizes of transportable molecules, which are generally

Commentary

January/February 2021 Volume 12 Issue 1 e02997-20 mbio.asm.org 2

mbio.asm.org 2
no more than 600 Da (20). Since Vg in *Nephotettix* oocytes is 178 kDa in size, the idea of porin-mediated Vg transfer into *Nasua* cells should be critically reconsidered.

The comparative genomics of diverse insect-microbe symbiotic associations have revealed such evolutionary dynamics as recurrent degeneration, erosion, extinction, replacement, and renewal of the partnership (4, 21) as well as host-symbiont metabolic complementarity and functional fusion (3, 21). Mao et al.’s (16) finding highlights an additional layer of the complicated evolutionary dynamics regarding symbiosis as to how host and symbiont exploit mutual cellular and molecular mechanisms and establish an integrated biological system.

ACKNOWLEDGMENTS
I acknowledge support from the Japan Science and Technology Agency (JST) ERATO grant number JPMJER1902.

REFERENCES
1. Russell SL, Chappell L, Sullivan W. 2019. A symbiont’s guide to the germ-line. Curr Top Dev Biol 135:315–351. https://doi.org/10.1016/bs.ctdb.2019.04.007.
2. Perlmutter JI, Bordenstein SR. 2020. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol 18:97–111. https://doi.org/10.1038/s41579-019-0309-z.
3. McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Annu Rev Microbiol 65:163–185. https://doi.org/10.1146/annurev.micro.040809.103534.
4. McCutcheon JP, Boyd BM, Dale C. 2019. The life of an insect endosymbiont from the cradle to the grave. Curr Top Dev Biol 135:315–351. https://doi.org/10.1016/bs.ctdb.2019.04.007.
5. Frydman HM, Li JM, Robson DN, Wieschaus E. 2006. Somatic stem cell niche tropism in *Wolbachia*. Nature 441:509–512. https://doi.org/10.1038/nature04756.
6. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. 2008. The genetics and cell biology of *Wolbachia*-host interactions. Annu Rev Genet 42:683–707. https://doi.org/10.1146/annurev.genet.41.110306.130354.
7. Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM. 2011. *Wolbachia* enhance *Drosophila* stem cell proliferation and target the germline stem cell niche. Science 334:990–992. https://doi.org/10.1126/science.1209609.
8. Luan J, Sun X, Fei Z, Douglas AE. 2018. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte in the whitefly *Bemisia tabaci*. Curr Biol 28:459–465. https://doi.org/10.1016/j.cub.2017.12.041.
9. Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. 2005. *Wolbachia* utilizes host microtubules and dynein for anterior localization in the *Drosophila* oocyte. PLoS Pathog 1:e14. https://doi.org/10.1371/journal.ppat.0000104.
10. Serbus LR, Sullivan W. 2007. A cellular basis for *Wolbachia* recruitment to the host germline. PLoS Pathog 3:e190. https://doi.org/10.1371/journal.ppat.0030190.
11. Koga R, Tsuchida T, Meng XY, Fukatsu T. 2012. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc Natl Acad Sci U S A 109:E1230–E1237. https://doi.org/10.1073/pnas.1119212109.