Research Article

Rural adolescent health: Issues, behaviors and self-reported awareness

Molly Jacobs*
Health Sciences BLDG, Greenville, NC 27858, USA

Abstract

Purpose: The purpose of the study was to examine the health status of rural adolescents and young adults in the United States through a comprehensive review of detailed health information, behavior and health awareness. The disparity in health awareness between rural and non-rural residents compared and evaluated.

Methods: Rural-Urban Commuting Area (RUCA) codes were combined with respondent-level data from the Longitudinal Survey of Adolescent to Adult Health (Add Health) to classify individuals as rural/non-rural residents. Health characteristics and perceived health awareness was tested for statistically significant differences using ANOVA. Differences in weight perception accuracy was compared for systematic differences controlling for self-selection into rural areas using a two-stage logistic selection model.

Findings: Analysis revealed that rural residents have a higher incidence of major health conditions including epilepsy, high cholesterol, high blood pressure and diabetes. Additionally, they have a higher prevalence of unhealthy behaviors including drinking and drug use. Rural residents are less likely to be insured, but more likely to be overweight or obese. While rural adolescents are more likely to mis-classify their body weight, this misclassification is a result of the higher incidence of overweight rather than the residential location.

Conclusion: The higher prevalence of chronic conditions combined with the income and education levels suggests the rural environment is a unique and potentially challenging context for adolescent health. Improving rural adolescent health will require innovative solutions appropriate for rural environments and changes in individual health literacy. Solutions must be multisectoral, engaging education, economic development, and other community perspectives to establish key drivers for health equity.

Purpose

Since 2000, the rural population has grown less than urban and suburban, resulting a in smaller share of Americans living in rural counties [1]. A lower population base has led to a lack of health facilities [2]. Marginalized rural populations are particularly vulnerable to underrepresentation and policy neglect [3]. The difficulty in accessing quality health care combined with the rising cost of health care has put rural communities at risk for poor health outcomes [4]. A lack of information on the health status and risks of adolescent youth in rural areas undermines policymakers’ ability to justify budget expenditures for preventive care in rural areas. It is crucial to understand who they are and what contributes to health, chronic disease and conditions, to address the healthcare needs of rural communities.

Despite the difficulties faced by rural residents and evidence of disparate health, no comprehensive health assessments of rural adolescents and young adults in the US in recent decades [5]. This study will supplement existing literature by providing an assessment of adolescent/young adult health in the US. This study uses the National Longitudinal Study of Adolescent to Adult Health (Add Health)-a longitudinal study of adolescents in grades 7-12 during the 1994-95 school year followed into young adulthood with four in-home interviews. This unique dataset with comprehensive health, clinical and biological outcomes to focus on three dimensions of adolescent health-chronic disease, health behavior and health self-awareness-in order to provide an understanding of the health issues faced by rural adolescents and possible avenues to health solutions.

Rural adolescents, particularly among poor and minority youth, are susceptible to significant risk behaviors and
health concerns [3]. Studies have found that alcohol and drug use, pregnancy, and sexually transmitted disease rates are higher among rural adolescents [6,7]. Lack of employment, transportation, education, health services, and health insurance are associated with living in rural areas and increase rural health vulnerability [8]. Additionally, rural adolescents with substance abuse problems face the challenges of accessing adequate treatment and recovery [8].

One of the most frequently cited indicators of rural health is the disproportionately high rates of overweight and obesity rates. Rural adolescents have 26 percent greater odds of obesity, compared to urban adolescents (Johnson & Johnson, 2015). While most studies focus on those individual factors [3] that may contribute to obesity, but some examine associations with environmental characteristics such as food environment, physical changes, and social dynamics [10]. It is generally accepted that longer exposure to certain physical and social environments may contribute to differences in urban and rural obesity, but the mechanisms through which environmental aspects promote obesity warrants further study [11].

Rural areas suffer from a lack of physicians, specialists, nurses, and other healthcare practitioners, making it more difficult and cumbersome to obtain adequate preventative care [12]. Research estimates that an effective physician-to-population ratio is 1:1200 (Gale & Lambert, 2006), but the ratio is only 1:1910 in rural areas compared to 1:1300 in urban areas. National Rural Health Association reports that there are nearly 10 times more specialists per 100,000 urban residents compared to rural communities [13].

This study proceeds with a discussion of the data and methodology utilized, including the identification strategy and health outcomes selected, followed by a detailed outline of the primary significant differences between rural and non-rural youth and the most prevalent concerns among young adults in rural areas. Regression analysis attempts to explain some of these observed differences and most startling concerns. These ideas are then summarized with concluding remarks.

Methods

Identification

One primary explanation for variation in rural health outcomes research is the variable definition of rural. While the many definitions of the term rural seldom agree, the USDA Economic Research Service recommends that the choice of a rural definition be based on the purpose of the activity or the availability of information. This study utilizes the rural-urban commuting area (RUCA) codes which classify U.S. census tracts using measures of population density, urbanization, and daily commuting. RUCA codes are available in the data set used for this analysis. The most recent RUCA codes are based on data from the 2010 decennial census and the 2006-10 American Community Survey (ACS).

The Office of Management and Budget (OMB) uses RUCA codes to identify counties as metropolitan, micropolitan or neither. A metropolitan area contains a core urban area of 50,000 or more population while a micropolitan area contains an urban core of at least 10,000, but less than 50,000. All counties not part of a Metropolitan Statistical Area (MSA) are considered rural. Micropolitan counties are considered non-metropolitan or rural along with all counties not classified as metro or micro. After the 2010 Census, the non-metro counties contained 46.2 million people-15 percent of the US population and 72 percent of the land area of the country. This included all census tracts inside metropolitan counties with the codes 4-10 to be rural. Based on this assessment and review, this study classified respondents in areas with RUCA codes of 4-10 as rural aligning with OMB recommendations.

Data

Add Health Wave III data was collected when respondents were between 18 and 26 years old. Biological specimens, urine and saliva samples, were obtained from a subset of Wave III respondents for tests Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC), and other experimental STI testing. An oral mucosal transudate (OMT) specimen allowed for Human Immunodeficiency Virus Type-1 (HIV-1) testing along with other curable STDS. Saliva samples enabled DNA extraction, purification and subsequent genotyping of respondents.

In addition to biological and health outcomes data, Wave III contains information on parent-child and sibling relations, contact with friends from high school, the role of mentors and mentoring relationships, personal income, wealth and debt, civic and political participation, children and parenting, involvement with the criminal justice system, and religion and spirituality. Wave III also has extensive information on health and health related behavior including diet, physical activity, access and use of health services, sexual behavior, contraception, sexually transmitted infections, pregnancy and childbearing, suicidal intentions and thoughts, mental health and depression, substance use and abuse, injury, delinquency, and violence in addition to physical measurements of height and weight. Mean values for biological, demographic, social and behavioral characteristics are given in table 1.

Covariates-health related behaviors

A variety of behavioral patterns are included in the Add Health survey. As with all surveys, patterns of omission, valid skip, non-response and refusal can impact the robustness of response data. In order to capture behavioral impacts on health and provide robust estimates, exercise frequency, sleep sufficiency, television watching, cigarette smoking, alcohol consumption and marijuana and illegal drug use are examined. Illegal drugs include sedatives, tranquilizers, stimulants, pain killers and steroids used by respondents anytime during the five years prior to their interview. Additionally, this study examines frequency of marijuana use in the last 12 months and last 4 weeks.
Table 1: Covariate Descriptive Statistics

Covariate	Non-Rural	Rural				
	12875	1183				
	N	Mean	Std Error	N	Mean	Std Error
Race/Ethnicity						
White	6556	64.5822	3.0101	790	75.5688	5.611
Black	2487	14.6194	2.0185	316	19.2102	5.117
Hispanic	1028	5.5378	0.8731	11	0.7987	0.282
Indian	415	2.9525	0.4436	45	3.0867	0.859
Asian	1117	4.5415	0.9181	8	0.3829	0.205
Other	1250	7.7666	1.1086	13	0.9526	0.354
Age/Gender						
Age	9620	19.751	0.1279	948	19.8021	0.256
Male	6764	48.8644	0.6768	646	51.4848	1.532
Female	6099	51.1356	0.6768	537	48.5152	1.532
School Enrollment						
Not Enrolled in School	7908	63.1946	1.5119	896	74.5069	2.216
Enrolled in School	4941	36.8054	1.5119	287	25.4931	2.216
Highest Grade Completed	6	0.0441	0.0235			
7	10	0.1061	0.0437			
8	52	0.6961	0.1564	10	0.5262	0.249
9	195	2.1295	0.2659	27	2.5964	0.58
10	412	4.2883	0.3771	70	6.4159	0.981
11	823	5.553	0.4106	121	10.4783	1.438
12	4108	32.2841	1.3947	507	41.8246	1.929
13	1934	16.0101	0.9409	159	12.9007	1.247
14	1951	14.3438	0.6021	141	11.6303	1.351
15	1268	8.7915	0.6251	75	6.9965	1.304
16	1480	10.3058	0.9872	48	4.1176	1.093
17	371	2.4449	0.283	17	1.3558	0.381
18	123	0.992	0.153	3	0.3862	0.227
19	69	0.5286	0.083	2	0.293	0.275
20	49	0.377	0.082	2	0.335	0.255
21	8	0.066	0.0301			
22	3	0.043	0.0302	1	0.1635	0.167
Average Highest Grade Completed	12863	13.1308	0.0909	1183	12.5578	0.112
Household Circumstance						
Household size	9581	4.3294	0.0334	910	4.217	0.072
Lives with mother	8983	93.3223	0.4339	846	91.8895	1.043
Lives with father	7440	78.596	1.1292	664	75.2789	1.655
Income Parental/Earned/Household	9707	47.009	1.7918	911	33.967	1.725
Parental Income	8627	47.009	1.7918	911	33.967	1.725
Income from earnings	8708	12.941	0.4339	846	11.164	0.952
Household income	3059	62.142	2.3485	265	37.641	2.769
Current Health Insurance Situation						
You have no health insurance.	2915	24.1231	0.9156	333	28.721	1.982
You are covered by your parents' insurance.	3413	27.3756	1.603	218	20.4388	2.276
You are covered by your husband's or wife's insurance.	535	3.8294	0.3502	95	8.178	1.395
You get insurance through work.	4196	30.8677	1.2746	335	27.6841	1.767
You get insurance through a union.	77	0.5254	0.0908	5	0.5697	0.295
You get insurance through a union.	327	2.4399	0.3286	12	0.8619	0.273
You are covered because you are active-duty military.	198	1.5208	0.1562	9	0.5705	0.303
You buy private insurance yourself.	278	2.2642	0.251	34	3.3386	0.770
You are on Medicaid.	745	6.17	0.6812	126	8.9496	1.235
You are covered through the Indian Health Service.	26	0.2481	0.1708	2	0.0792	0.080
You don't know what your health insurance coverage is.	72	0.6359	0.113	9	0.8992	0.307

Months Covered by Health Insurance Last Year

| Months last year have health insurance | 12806 | 8.76413 | 0.114088 | 1173 | 8.21798 | 0.22062 |

BMI Classification

| Underweight | 359 | 2.8528 | 0.1741 | 29 | 2.4978 | 0.621 |

https://doi.org/10.29328/journal.jcmhs.1001001
https://www.heighpubs.org/jcmhs
Weight	Normal Weight	Overweight	Obese
Weight	5418	3726	3081
Height	43.0547	29.609	44.0356
Age	1.1497	0.5067	1.0642
Number of cases	440	312	380
Description	37.8984	26.8734	32.7304
Weight Perception (Self-Reported)			
Very Underweight	155	1148	440
Normal Weight	6135	47.9518	549
Slightly Overweight	4294	33.151	415
Very Overweight	822	5.8574	93
Weight Action (Self-Reported)			
Lose Weight	4349	32.1654	440
Gain Weight	2016	16.0536	155
Stay the same weight	1976	15.2615	147
Not trying to do anything	4500	36.5195	496
General Health Status (Self-Reported)			
Excellent	4242	32.388	379
Very Good	5238	41.1549	462
Good	2814	73.6075	952
Fair	524	4.2773	63
Poor	44	0.3827	8
Hours television watching weekly	12741	12.7835	1170
Times exercise in last week	12833	5.8752	1181
Gets enough Sleep	193	73.6075	952
Days drink in last 12 months	9835	2.93523	834
Days smoke in last month	4027	24.8003	479
Illegal Drugs			
Taken sedative last 5 years	12670	0.1139	1162
Taken tranquilizers last 5 years	12676	0.09118	1163
Taken stimulants last 5 years	12675	0.07965	1166
Taken pain killers last 5 years	12661	0.20137	1165
Taken steroids last 5 years	12680	0.0193	1166
Used marijuana last 5 years	12657	0.47693	1166
Used marijuana 1 last year	5702	0.71624	429
Frequency used marijuana last 30 days	3975	11.8377	296
Chronic Health Conditions			
Asthma	2168	16.907	163
Cancer/Leukemia	116	0.7617	10
Depression	1328	11.3926	137
Diabetes	120	0.9076	18
Epilepsy/Seizure Disorder	160	1.3949	23
High Cholesterol	582	4.4848	38
High Blood Pressure	677	5.4189	96
Glucose (MG/DL)	9889	107.27	960
Hemoglobin A1c (%)	10149	5.57889	989
Total Number of Medications Currently Using	4145	1.86364	429

Source: National Longitudinal Survey of Adolescent to Adult Health, Wave III, Restricted Use File
Alcohol consumption is measured as the number of days the respondent drank in the last 12 months, while smoking is measured as the number of days in the last month the respondents smoked. Binary indicators are added for having health insurance and receiving enough sleep, while variant terms measure the frequency of exercise and hours of television watching in an average week.

Covariates-health issues/indicators

Three measure of cardiovascular fitness are provided—Systolic Blood Pressure (SBP) Recovery, Pulse Rate Recovery (PRR) and Baroreflex Recovery. First, SBP recovery after exercise represents an important index of cardiovascular and autonomic nervous system response to physical stress and has been shown to be a clinical tool applied toward diagnosing cardiovascular abnormalities. Second, PRR is a pulse measurement taken immediately following intense exercise. PRR is used in some fitness tests to evaluate the heart’s ability to recover from exercise and is used to evaluate the heart’s ability to recover from exercise. Finally, the baroreflex acts as an effective buffer of short-term blood pressure fluctuations that accompany daily life. Studies suggest that a diminished baroreflex recovery is an independent risk factor for sudden death after myocardial infarction. In hypertensive humans and animals, the baroreflex control of heart rate is diminished.

In addition to SBP Recovery, PRR and Baroreflex recovery, thirteen additional clinical measures are reported for each respondent. These measures indicate the existence, persistence or maintenance of health issues. 1) High Sensitivity C-reactive Protein (hsCRP) is a protein that increases in the blood with inflammation and infection as well as following a heart attack, surgery, or trauma. Studies have suggested that a persistent low level of inflammation is often associated with cardiovascular disease (CVD). The hs-CRP test accurately measures low levels of CRP to identify low but persistent levels of inflammation and helps predict a person’s risk of developing CVD.

The 2) Epstein Barr Viral Capsid Antigen (EBV) indicates that a person has or has had the Epstein Barr Virus. EBV is a member of the herpes virus family and one of the most common viruses to infect people around the world. According to the Centers for Disease Control and Prevention (CDC) [14] most people will contract EBV at some point. In adolescents and adults, it causes an illness called infectious mononucleosis, or mono, in about 35 to 50 percent of cases (2011). Also known as “the kissing disease,” EBV is usually spread through saliva and rarely through blood or other bodily fluids.

Additionally, 3) Glucose level, 4) Hemoglobin A1c level, 5) Triglycerides Decile, 6) Total Cholesterol Decile, 7) HDL Cholesterol Decile and 8) LDL Cholesterol Decile are provided in addition to four summary measure. The first summary measure, 9) Count of Common Subclinical Symptoms numerates the sources of infection or inflammation that have the potential to confound hsCRP-based estimates of cardiovascular disease risk. High hsCRP concentrations trigger searches for non-cardiovascular (e.g. infectious or inflammatory) diseases which were counted and categorized.

The second summary measure, 10) Count of Infectious/Inflammatory Diseases, therefore, counts and categorizes these conditions to enable investigators to control for potential confounding in hsCRP analyses. The third summary measure, 11) Diabetes Joint Classification, classifies respondents as having diabetes if they had a fasting glucose ≥ 126 mg/dl, non-fasting glucose ≥ 200 mg/dl, HbA1c ≥ 6.5%, self-reported history of diabetes except during pregnancy or used anti-diabetic medication in the past four weeks. Finally, 12) Anti-Diabetic Medication Use, flags those who report using medications in the past four weeks associated with one or more of the following therapeutic classification codes: antidiabetic agents, sulfonylureas, non-sulfonylureas, insulin, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, miscellaneous antidiabetic agents, antidiabetic combinations, dipeptidyl peptidase 4 inhibitors, anumpin analogs or incretin mimetics. A final indicator, 13) Total Medications Currently using, captures drug use at the time of the survey.

In addition to these clinical measures, Add Health Respondents indicate whether they have ever been diagnosed by a doctor or nurse with any of the following conditions: asthma, cancer/leukemia, depression, diabetes, epilepsy/seizure disorder, high cholesterol, high blood pressure, bacterial vaginosis, cervicitis/ or mucopurulent cervicitis, chlamydia, genital herpes, genital warts, gonorrhea, hepatitis B, HIV/AIDS, human papilloma virus, pelvic inflammatory disease, syphilis, trichomoniasis, urethritis or vaginitis. For the purpose of this analysis, sexually transmitted diseases (STD) are collapsed into a single category indicating whether a respondent had been diagnosed with at least one STD.

Covariates-self-reported health awareness

The CDC categorizes weight as (i) Underweight, (ii) Normal Weight, (iii) Overweight, and (iv) Obese based on their BMI level. Compared to other measure of body fatness, BMI appears to be correlated with various metabolic and disease outcomes. Despite criticisms of this generic scale, in general, BMI is an inexpensive and easy-to-perform method of screening for weight category. This analysis examines whether one’s own body perception aligns with their BMI classification. Add Health respondents classify their weight status as (i) Very Underweight, (ii) Slightly Underweight, (iii) Right Weight, (iv) Slightly Overweight, and (v) Very Overweight. Assuming that these categories represent self-assessments of BMI, they are aligned with the CDC categories as outlined in table 1a.

Given the very small proportion of the sample classified as very underweight, both underweight categories are combined into a single underweight group. Analysis will compare individual’s assessment of their weight to the classification...
of their actual BMI to determine whether they systematically under, over or accurately estimate their body weight. The extent to which respondents over, under or accurately assess their weight is also examined and how mis-estimation varies by rural/urban status. These BMI classifications will also be compared to their reported intention to gain weight, lose weight, maintain weight or do nothing about their body weight, referred to as weight action. In addition to awareness of weight and necessary weight action, this study also examines individual assessment of their personal health which they classify as excellent, very good, food, fair or poor.

Statistical analysis

To accommodate the design of Add Health, statistical analysis needs to account for the sample weights, stratification and clustering. Failure to account for sampling weights affects the calculation of the point estimate while misspecification of the stratification or clustering impacts the calculation of the standard errors. Various procedures in SAS software package (SAS 9.4, Cary, NC) allow for correct estimation of variances/standard errors from complex samples. ANOVA tests for statistically significant differences between rural and non-rural samples.

Multinomial logit models evaluate the observed differences in weight and weight classification. Misclassification was identified as over (1), under (-1) or accurate (0) relative to the actual BMI classification (measured relative to their actual weight classification) and expressed as a function of age, BMI level, gender, income, general health, rural residence and school enrollment. Since individuals choose geographic location (urban, rural, suburban, etc.), residential self-selections could bias estimates by confounding observed differences. To ensure that estimates are robust to residential selection, a two-stage estimation selection procedure similar to the framework popularized by Heckman, [15] also estimates classification [16]. Stage one-selection-frames a binary indicator for rural residency as a function of age, adolescent school enrollment and income. Stage two-response-contains that misclassification is a function of age, gender, BMI and general health status. BMI serves as an explanatory variable to allow for variation in misclassification along the distribution.

Results

Demographic characteristics

Results of listed in table 2. Few demographic differences between rural and non-rural residents exist. They appear to have similar age, gender, household size and household composition profiles. Respondents in both groups are equally distributed male and females, live in 3-4 person households and are between 18 and 24 years old. Surprisingly, the proportion living with their biological mother and/or father does not significantly differ, however, they do present significantly different education and income. Three income measurements-parent’s income, own earned income and own household income-were examined and show statistically lower income for rural residents who also have statistically lower educational attainment and fewer individuals enrolled in school. The racial/ethnic composition of rural and non-rural populations also differ significantly. Rural populations appear to be less diverse than others consisting of over 75% whites, compared to 65% in other areas. Minorities have a smaller representation in rural areas compared to non-rural communities.

Health issues/indicators

There is a large difference in the health insurance status of the two groups. A higher percentage of rural residents have no health insurance, while less are covered by the insurance of a spouse or parent. They report that they held insurance for fewer months last year compared to non-rural young adults. While not directly related, it is likely that the lack of insurance coverage or full-year insurance coverage contributed to worse health outcomes by reducing the quantity and/or quality of care received [17]. Health disparities have also been linked to lack of preventative health services obtained [18].

One of the most unique aspects of the Add Health data is the large amount of medical diagnosis and clinical information available. Comparing diagnosis data between non-rural and rural adolescent and young adults show higher rates of asthma, epilepsy/seizure disorders, diabetes, high cholesterol, high cholesterol and high blood pressure in rural residents. Diabetes, high cholesterol and high blood pressure are known comorbidities of overweight and obesity and higher rates of excess weight among rural residents’ likely attributes to the higher rates of related comorbidities [19,20]. Additionally, rural adolescents have higher triglycerides and hs-CRP indicating high levels of these fatty particles in the blood and greater risk of heart disease. Rural residents also show statistically higher rates of seizure disorders—a condition that has been growing in prevalence over the last decade, according to the CDC. Studies attributed these higher rates to the increased prevalence of untreated traumatic head injuries (Engel et. al., 2003).

SBP Recover, PRR and BRS differ between rural and non-rural residents suggesting lower relative cardiac fitness, increased tendency towards cardiovascular disease (CVD) and higher likelihood of coronary issues or disorders. While detailed medical review of these factors lies outside the scope of this paper, they can be impacted by a variety of factors including our age, medical conditions, medications, diet, and fitness level.

Health related behaviors

There is no difference in exercise frequency, sleep or hours

Table 1a:

BMI Value	CDC Category	Add Health Perception
< = 18.49	Underweight	Underweight
18.50-24.99	Normal Weight	About the right weight
25.0-29.99	Overweight	Slightly Overweight
30.0+	Obese	Very Overweight

https://doi.org/10.29328/journal.jcmhs.1001001
Table 2: Test of Statistically Significant Rural, Non-Rural Differences

Race	Effect	F Value	Pr > F
Parameter			
Intercept			
Rural	5.84	<.0001	

Race	Estimate	Std Error
Intercept		
Black	-1.4261***	0.2043
Hispanic	-3.5031***	0.2242
Asian/Pacific Islander	-3.1422***	0.1879
American Indian/Alaskan Native	-3.9704***	0.3115
Other	-3.2465***	0.217

Gender	Effect	F Value	Pr > F
Parameter			
Intercept			
Rural	2.42	0.1223	

Gender	Estimate	Std Error
Intercept		
Male	-0.0072	0.0335

Age	Source	Sum of Squares	Mean Square	F Value
Parameter				
Intercept				
Model	3464	3464.069	0.79***	
Error	47582291	4401.104		
Intercept	0.04	0.8458		

Age	Effect	F Value	Pr > F
Parameter			
Intercept			
Rural	18.59***	<.0001	

Age	Enrolled in School	Effect	F Value	Pr > F
Parameter				
Intercept				
Rural		50.04	<.0001	

Highest Grad Completed	Effect	F Value	Pr > F
Parameter			
Intercept			
Rural	50.04	<.0001	

Highest Grad Completed	Estimate	Std Error
Intercept		
6	-5.7188***	0.672
7	-4.8401***	0.6499
8	1.9766**	0.6677
9	3.3337***	0.6355
10	4.1361***	0.615
11	4.5934***	0.6324
12	6.0828***	0.6226
13	5.144***	0.625
14	5.0372***	0.6183
15	4.5383***	0.6218
16	4.3527***	0.5977
17	3.0705***	0.6298
18	1.9991**	0.6813
19	1.5462*	0.7941
20	1.4442**	0.7082
21	-5.3777***	0.6581
Rural	5.7432***	0.6754
Rural	5.7432***	0.6488
Rural adolescent health: Issues, behaviors and self-reported awareness

Rural	8	0.8077	0.6694
Rural	9	0.5687	0.6345
Rural	10	0.4664	0.6265
Rural	11	0.4332	0.6324
Rural	12	0.5384	0.6301
Rural	13	0.7758	0.6301
Rural	14	0.7727	0.6257
Rural	15	0.7820	0.6415
Rural	16	1.1266	0.6326
Rural	17	0.9701	0.6422
Rural	18	1.1395	0.6754
Rural	19	0.9629	0.7894
Rural	20	0.7269	0.7201
Rural	21	5.7432	0.6645

Household Size	Source	Sum of Squares	Mean Square	F Value
Model	16125	16125.13	8.86***	
Error	19112564	1820.94		
Effect	F Value	Pr > F		
Model	2.21	0.1398		
Intercept	10703***	<.0001		
Rural	2.21	0.1398		

Lives with Biological Mother in Household	Effect	F Value	Pr > F
Rural	1.81	0.1812	
Parameter	Estimate	Std Error	
Intercept	-2.5325***	0.0774	
Rural Mother not Present	0.0000	0.0000	

Lives with Biological Father in Household	Effect	F Value	Pr > F
Rural	3.48*	0.0646	
Parameter	Estimate	Std Error	
Intercept	-1.2067***	0.0618	
Rural Father not present	0.0000	0.0000	

Parental Income	Source	Sum of Squares	Mean Square	F Value
Model	2.32E+08	2.32E+08	71.54***	
Error	3.45E+10	3246958		
Effect	F Value	Pr > F		
Model	29.72***	<.0001		
Intercept	971.15***	<.0001		
Rural	29.72***	<.0001		

Own Earned Income	Source	Sum of Squares	Mean Square	F Value
Model	3.88E+12	3.88E+12	12.96***	
Error	3.39E+15	3.22E+11		
Effect	F Value	Pr > F		
Model	3.44*	0.0658		
Intercept	457.54***	<.0001		
Rural	3.44*	0.0658		

Own Household Income	Source	Sum of Squares	Mean Square	F Value
Model	2.32E+14	2.32E+14	40.93***	
Error	1.88E+16	5.66E+12		
Effect	F Value	Pr > F		
Model	48.25***	<.0001		
Rural adolescent health: Issues, behaviors and self-reported awareness

Effect	F Value	Pr > F
Rural	5.78***	<.0001

Parameter	Current Health Insurance Situation	Estimate	Std Error
Intercept	You have no health insurance.	-2.516	0.2295
Intercept	You are covered by your parents' insurance.	-2.136	0.2015
Intercept	You are covered by your husband's or wife's insurance.	-1.681	0.2608
Intercept	You get insurance through work.	-1.121	0.2303
Intercept	You get insurance through a union.	-1.004	0.3369
Intercept	You get insurance through school.	-1.001	0.264
Intercept	You are covered because you are active-duty military.	1.162	0.3609
Intercept	You buy private insurance yourself.	1.267**	0.2283
Intercept	You are on Medicaid.	2.249***	0.2354
Intercept	You are covered through the Indian Health Service.	-1.708**	0.8653
Rural	You have no health insurance.	0.0638	0.2405
Rural	You are covered by your parents' insurance.	0.2963	0.2117
Rural	You are covered by your husband's or wife's insurance.	-0.2297	0.2551
Rural	You get insurance through work.	0.2052	0.2384
Rural	You get insurance through a union.	0.1092	0.3387
Rural	You get insurance through school.	0.6968	0.2609
Rural	You are covered because you are active-duty military.	0.6988	0.3766
Rural	You buy private insurance yourself.	-0.0444	0.2385
Rural	You are on Medicaid.	-0.06	0.2424
Rural	You are covered through the Indian Health Service.	0.7198**	0.3058

Source	Mean Square	F Value	Pr > F
Model	515404.1	14.16***	0.0002
Error	36394.6		
Effect	F Value	Pr > F	
Model	4.87**	0.0291	
Intercept	4561.49***	<.0001	
Rural	4.87**	0.0291	

Source	Sum of Squares	Mean Square	F Value
Model	2857920	2857920	49.06***
Error	7.74E+08	58252	
Effect	F Value	Pr > F	
Model	24.41***	<.0001	
Intercept	34220.7***	<.0001	
Rural	24.41***	<.0001	

Effect	F Value	Pr > F
Rural	3.3**	0.0131

Parameter	Weight Perception	Estimate	Std Error
Intercept	Very Underweight	-1.970***	0.2204
Intercept	Slightly Underweight	0.4432***	0.0897
Intercept	Normal Weight	1.9544***	0.0877
Intercept	Slightly Overweight	1.6665***	0.0821
Rural	Very Underweight	0.3611*	0.2131
Rural	Slightly Underweight	0.2623***	0.0857
Rural	Normal Weight	0.149*	0.0859
Rural	Slightly Overweight	0.0695	0.0823

Effect	F Value	Pr > F
Rural	3.68***	0.0139
Rural adolescent health: Issues, behaviors and self-reported awareness

Parameter	Weight Action	Estimate	Std Error
Intercept	Lose Weight	-0.1573**	0.0561
Intercept	Gain Weight	-0.9996***	0.0834
Intercept	Stay the Same Weight	-1.0107***	0.0791
Rural	Lose Weight	0.0326	0.0546
Rural	Gain Weight	0.177**	0.0783
Rural	Stay the Same Weight	0.1371*	0.0748

General Health Assessment

Effect	F Value	Pr > F	
Parameter	General Health Assessment	Estimate	Std Error
Intercept	Excellent	4.3212***	0.2905
Intercept	Very Good	4.5631***	0.288
Intercept	Good	3.9559***	0.287
Intercept	Fair	2.5152**	0.3054
Rural	Excellent	0.1186	0.3006
Rural	Very Good	0.1155	0.2936
Rural	Good	0.0885	0.2971
Rural	Fair	-0.0957	0.3109

Exercise Frequency

Source	Sum of Squares	Mean Square	F Value
Model	7596	7595	0.13
Error	8.27E+08	58982.97	
Effect	F Value	Pr > F	
Model	0.04	0.8334	
Intercept	1297.9***	<.0001	
Rural	0.04	0.8334	

Hours of Television Viewing

Source	Sum of Squares	Mean Square	F Value
Model	2483681	2483681	9.06***
Error	3.81E+09	274040	
Effect	F Value	Pr > F	
Model	2.04	0.1559	
Intercept	965.34***	<.0001	
Rural	2.04	0.1559	

Gets Enough Sleep

Effect	F Value	Pr > F
Rural	0.37	0.542

Parameter	Gets Enough Sleep	Estimate	Std Error
Intercept	0	-1.4537***	0.0625
Rural	0	-0.0352	0.0576

Frequency of Alcohol Consumption

Source	Sum of Squares	Mean Square	F Value
Model	152432	152432	45.97***
Error	35381341	3315.7	
Effect	F Value	Pr > F	
Model	16.79***	<.0001	
Intercept	3645.13***	<.0001	
Rural	16.79***	<.0001	

Cigarette Smoking Frequency

Source	Sum of Squares	Mean Square	F Value
Model	416658	416658.5	2.85***
Error	6.60E+08	148408.9	
Effect	F Value	Pr > F	
Model	2.04	0.1556	
Intercept	8126.33***	<.0001	
Rural adolescent health: Issues, behaviors and self-reported awareness

Used Sedatives in the Last 5 Years	Effect	F Value	Pr > F
Rural	0.94	0.3346	

Parameter	Sedative Use	Estimate	Std Error
Intercept	No Use	2.1148***	0.0746
Rural	No Use	-0.0633	0.0654

Used Tranquilizers in the Last 5 Years	Effect	F Value	Pr > F
Rural	0.03	0.8586	

Parameter	Tranquilizer Use	Estimate	Std Error
Intercept	No Use	2.3175***	0.1072
Rural	No Use	-0.0181	0.1016

Used Stimulants in the Last 5 Years	Effect	F Value	Pr > F
Rural	0.1	0.7547	

Parameter	Stimulant Use	Estimate	Std Error
Intercept	No Use	2.4227***	0.0829
Rural	No Use	0.0244	0.0779

Used Pain Killers in the Last 5 Years	Effect	F Value	Pr > F
Rural	0.83	0.3646	

Parameter	Pain Killer Use	Estimate	Std Error
Intercept	No Use	1.4236	0.0555
Rural	No Use	-0.0458	0.0504

Used Steroids in the Last 5 Years	Effect	F Value	Pr > F
Rural	0.75	0.3871	

Parameter	Steroid Use	Estimate	Std Error
Intercept	No Use	4.0581***	0.1421
Rural	No Use	-1.1298	0.1496

Used Marijuana in the Last 5 Years	Effect	F Value	Pr > F
Rural	18.71***	<.0001	

Parameter	Marijuana Use	Estimate	Std Error
Intercept	No Use	0.3277***	0.0594
Rural	No Use	-0.2353***	0.0544

Marijuana Use in the Last 1 Year	Effect	F Value	Pr > F
Rural	0.44	0.5087	

Parameter	Marijuana Use	Estimate	Std Error
Intercept	No Use	-0.8836***	0.069
Rural	No Use	-0.0422	0.0637

Frequency Used Marijuana in the Last 30 Days	Source	Sum of Squares	Mean Square	F Value
Model	1801777	1801777	1.63	
Error	4.71E+09	1102393		
Effect Parameter				
Intercept	3.64*	0.0586		
Rural Parameter	3.64*	0.0586		

Diagnosed with Asthma	Effect	F Value	Pr > F

https://doi.org/10.29328/journal.jcmhs.1001001
Diagnosed with Cancer/Leukemia

Effect	F Value	Pr > F
Rural	0.36	0.5506

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	4.7304***	0.2151
Rural	Not Diagnosed	0.1408	0.2353

Diagnosed with Depression

Effect	F Value	Pr > F
Rural	2.3	0.1321

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	1.9657***	0.0694
Rural	Not Diagnosed	0.0936	0.0631

Diagnosed with Diabetes

Effect	F Value	Pr > F
Rural	3.83**	0.0525

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	4.4107***	0.1565
Rural	Not Diagnosed	0.2838**	0.145

Diagnosed with Epilepsy/Seizure Disorder

Effect	F Value	Pr > F
Rural	5.46**	0.021

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	3.9734***	0.1285
Rural	Not Diagnosed	0.2685**	0.1226

Diagnosed with High Cholesterol

Effect	F Value	Pr > F
Rural	3.12*	0.0799

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	3.2283***	0.099
Rural	Not Diagnosed	-0.1597**	0.0905

Diagnosed with High Blood Pressure

Effect	F Value	Pr > F
Rural	11.66***	0.0009

Parameter	Estimate	Std Error	
Intercept	Not Diagnosed	2.6212***	0.0705
Rural	Not Diagnosed	0.24***	0.0703

Number of STD Diagnoses

Source	Sum of Squares	Mean Square	F Value
Model	1293	1292.614	2.06
Error	8767058	627.114	
Effect	1.73	0.1905	
Model	113.05***	<.0001	
Intercept	1.73	0.1905	

Baroreflex Sensitivity (ms/mmHg)

Source	Sum of Squares	Mean Square	F Value
Model	91940	91940.03	14.02***
Error	79087053	6558.34	
Effect	10.54***	0.0015	
Pulse Rate Recovery (beats/min)

Source	Sum of Squares	Mean Square	F Value
Model	84299	84298.78	15.09***
Error	67348012	5584.88	
Effect	F Value	Pr > F	
Model	12.45***	0.0006	
Intercept	849.5***	<.0001	
Rural	12.45***	0.0006	

Systolic Blood Pressure Recovery (mmHg)

Source	Sum of Squares	Mean Square	F Value
Model	171923	171923.2	19.53***
Error	1.06E+08	8804.6	
Effect	F Value	Pr > F	
Model	16.46***	0.0098	
Intercept	353.76***	<.0001	
Rural	16.46***	<.0001	

High Sensitivity C-RCTV Protein (hsCRP)(MG/L)

Source	Sum of Squares	Mean Square	F Value
Model	1318239	1318239	12.27***
Error	1.17E+11	107410	
Effect	F Value	Pr > F	
Model	6.87***	0.0098	
Intercept	727.41***	<.0001	
Rural	6.87***	0.0098	

Epstein Barr Viral Capsid Antigen (EBV)(AU/ML)

Source	Sum of Squares	Mean Square	F Value
Model	1156102	1156102	0.07
Error	1.72E+11	15717576	
Effect	F Value	Pr > F	
Model	0.05	0.8163	
Intercept	6086.19***	<.0001	
Rural	0.05	0.8163	

Count of Infectious/Inflammatory Diseases

Source	Sum of Squares	Mean Square	F Value
Model	593	592.9066	0.83
Error	8600782	713.2843	
Effect	F Value	Pr > F	
Model	0.43	0.5154	
Intercept	808.51***	<.0001	
Rural	0.43	0.5154	

Count of Subclinical Symptoms

Source	Sum of Squares	Mean Square	F Value
Model	100	100.1764	0.12
Error	10104300	837.9748	
Effect	F Value	Pr > F	
Model	0.06	0.8109	
Intercept	744.41***	<.0001	
Rural	0.06	0.8109	

Glucose (MG/DL)

Source	Sum of Squares	Mean Square	F Value
Model	6112566	6112566	4**
Error	1.66E+10	1529882	
Effect	F Value	Pr > F	
Hemoglobin A1c (%)

Source	Sum of Squares	Mean Square	F Value
Model	8851	8851.242	8.8***
Error	11205436	1006.235	
Effect	Pr > F		
Model	2.19	0.1416	
Intercept	43154.4***	<.0001	
Rural	2.19	0.1416	

Diabetes Joint Classification

Source	Sum of Squares	Mean Square	F Value
Model	228	227.5605	2.49
Error	1101430	91.3368	
Effect	Pr > F		
Model	0.82	0.3681	
Intercept	86.56***	<.0001	
Rural	0.82	0.3681	

Anti-Diabetic Medication Use

Source	Sum of Squares	Mean Square	F Value
Model	36.5	36.51253	1.83
Error	240789.2	19.96759	
Effect	Pr > F		
Model	0.73	0.3931	
Intercept	28.49***	<.0001	
Rural	0.73	0.3931	

Triglycerides Decile

Source	Sum of Squares	Mean Square	F Value
Model	158263	158263	12.61***
Error	1.33E+08	12800.42	
Effect	Pr > F		
Model	5.64**	0.019	
Intercept	5698.14***	<.0001	
Rural	5.64**	0.019	

Total Cholesterol Decile

Source	Sum of Squares	Mean Square	F Value
Model	2094.6	2094.6	0.16
Error	1.38E+08	12800.42	
Effect	Pr > F		
Model	0.07	0.792	
Intercept	5041.99***	<.0001	
Rural	0.07	0.792	

HDL Cholesterol Decile

Source	Sum of Squares	Mean Square	F Value
Model	2286.9	2286.95	0.18
Error	1.37E+08	12872.31	
Effect	Pr > F		
Model	0.06	0.8014	
Intercept	4022.53***	<.0001	
Rural	0.06	0.8014	

LDL Cholesterol Decile

Source	Sum of Squares	Mean Square	F Value
Model	30750.2	30750.18	2.41
Error	1.29E+08	12743.35	
Rural adolescent health: Issues, behaviors and self-reported awareness

Effect	F Value	Pr > F
Model	0.85	0.357
Intercept	4108.71***	<.0001
Rural	0.85	0.357

Source	Sum of Squares	Mean Square	F Value
Model	5775	5775.357	1.75
Error	15129349	3309.131	
Effect			
Model	0.76	0.3837	
Intercept	1469.12***	<.0001	
Rural	0.76	0.3837	

Total Number of Medications

of television. The proportions of those who reported having used sedatives, pain killers, stimulants, tranquilizers or steroids in the last five years do not differ significantly. Rural residents consume alcohol and marijuana more frequently. These trends are supported by literature showing large differences were exhibited in marijuana use, both across nonmetropolitan-metropolitan status and across youth from metropolitan and nonmetropolitan counties, but that rates of illicit drug use were essentially the same regardless of location [21,22].

Self-reported health awareness

Many of these health conditions are the result of excess body weight or obesity. Examination of BMI showed higher BMI among rural youth. While these BMI levels are highly unhealthy, it does not appear that rural respondents are aware of their situation or report an intention to change. Roughly equal proportions of both rural and non-rural residents report that they are overweight, despite a greater prevalence of overweight and obesity among rural residents. This indicates that either rural respondents are not aware of their BMI status or refuse to report themselves as such. Furthermore, they do not appear to be any more likely to report wanting to lose weight than their non-rural counterparts.

Finally, given the results presented above, rural and urban residents report similar self-assessments of their overall health. This lack of health awareness among rural residents has been found by other researchers as well [23]. The lack of awareness or refusal to accept their status is often perpetuated by the community at large and ignorance regarding the detrimental health effects of excess weight [24].

Misclassification selection model

Multinomial logit model estimates of weight misclassification show that misclassification type varies by age, gender, school enrollment, and general health status, but not by income or rural residency (Table 3). As individuals age and increase BMI they are less likely to underestimate and more likely to overestimate their weight. As adolescents leave school and experience health declines more likely to overestimate and less likely to underestimate their body weight. Blacks and females tend to overestimate weight. The multinomial showed that misclassification does not differ significantly for rural and non-rural residents when controlling for age, BMI, gender and other factors.

Multinomial odds ratio estimates suggest that BMI is the largest and most important driver of weight misclassification. Estimates suggest that the probability of overestimation increases as BMI increases with an odds ratio of 36.054. Estimates suggest that BMI is the primary driver of misclassification. A two-stage sample selection model tests the robustness of these results. This technique controls for self-selection into rural areas before estimating the misclassification model. Two-stage estimates (Table 4) suggest that those factors associated with weight misclassification are similar for rural and non-rural residents. Controlling for residential self-selection, model results show that BMI is the primary determinant of misclassification and misclassification type.

Conclusion

While demographically similar, rural and non-rural youth have vastly different health profiles, behaviors and self-awareness. This study utilizes RUCA codes to classify adolescents as rural based on the OMB county classifications. Adolescents within these non-metropolitan, rural areas have higher incidence of all major health conditions including epilepsy, high cholesterol, diabetes and high blood pressure. Not only are these health concerns more prevalent among rural individuals, but their health concerns extend beyond measurable conditions to include a higher prevalence of unhealthy behaviors including drinking and marijuana use.

Rural adolescents are more likely to be overweight or obese than urban. However, rural adolescents do not appear to be aware of the severity of their excess weight or the adverse health conditions that it causes—high cholesterol, high blood pressure and diabetes—which disproportionately impact rural youth. Disparate health outcomes could be partially attributed to the lack of preventative care. These findings that speak to the complexity of adolescent health. Rural areas have a higher prevalence of overweight compared to non-rural. Individuals in rural areas are also more likely to misclassify...
Table 3: Multinomial Logit Estimates of BMI Miscalculation

Criterion	Model Fit Statistics	Dependent Variable: Miscalculation
	AIC	Intercept, Covariates
	SC	016
	-2 Log L	20746018

Analysis of Maximum Likelihood Estimates

Parameter	Estimate	Std Err	95% Confidence Limits
Intercept | 9.6725***| 0.8929 | |
Intercept | -12.4379***| 0.8528 | |
Age | -0.0679** | 0.0205 | 0.934 |
Age | 0.012 | 0.0124 | 1.012 |
Female | -0.7809***| 0.1071 | 0.458 |
Female | 1.1303*** | 0.0969 | 3.097 |
Health | 0.155 | 0.0658 | 1.168 |
Health | -0.1931***| 0.0442 | 0.824 |
BMI | -3.2074***| 0.283 | 0.04 |
BMI | 3.6044*** | 0.252 | 36.759 |
School | 0.1894 | 0.1503 | 1.209 |
School | -0.214** | 0.1086 | 0.807 |
Income | -0.0205 | 0.0181 | 0.98 |
Income | -0.0164 | 0.0195 | 0.984 |
Black | 0.5646*** | 0.1123 | 0.74 |
Black | -0.3006** | 0.1427 | 1.759 |
Rural | 0.1349 | 0.0891 | 1.144 |
Rural | 0.0295 | 0.1267 | 1.03 |

Reference: 0=Accurately Estimate Weight; Dependent Variable: Miscalcification=-1=Underestimate, 0=Accurately Estimate, 1=Overestimate
Estimates are weighted to account for survey sampling.

Table 4: 2 Stage Residential Selection Model of Weight Miscalculation

Index	Value	Index	Value
N: Non-Rural	6114	N: Non-Rural	7040
N: Rural	2140	N: Rural	1894
Log Likelihood	-4649	Log Likelihood	-4566
AIC	9307	AIC	9142
Schwarz Criterion	9342	Schwarz Criterion	9178
Likelihood Ratio (R)	150.2	Likelihood Ratio (R)	98.185

Heckman First Stage Discrete Selection Response Profile

Parameter	Estimate	Std Err	Marginal Effect
Intercept | 0.706606***| 0.130202| 0.189208 |
Age | -0.049711***| 0.004796| -0.0090389 |
Income | -0.027847***| 0.006386| -0.008311 |
Highest Grade | 0.053768**| 0.016805| 0.0149391 |
School Enrollment | -0.410627***| 0.043737| -0.092755 |

Heckman Second Step Model Fit Summary

Parameter	Estimate	Std. Err	Marginal Effect
Intercept | -2.991752***| 0.12232 | -3.408589 |
Age | 0.01595*** | 0.002035| 0.023196 |
Female | 0.318344***| 0.014654| 0.3095502 |
BMI | 0.052695***| 0.0035012| 1.1461962 |
Black | 0.112400***| 0.017956| 0.1123999 |
General Health | -0.070355**| 0.008804| -0.0740746 |
Lambda | -0.160641***| 0.06013 | -0.380529 |
Sigma | 0.569997*** | 0.005155| 0.536512 |

Reference: 0=Accurately Estimate Weight; Dependent Variable: Miscalcification=-1=Underestimate, 0=Accurately Estimate, 1=Overestimate
Estimates are weighted to account for survey sampling.
their body weight. Regression analysis indicated that as BMI increases, individuals are more likely to underestimate their weight status. Results transcend self-selection into rural areas showing that BMI misclassification is primarily determined by BMI level irrespective of residential location.

These results reinforce the notion that rural areas are a unique area with distinct challenges related to health. While the most prevalent health conditions are not surprising, they are becoming more difficult to treat as the number of rural hospitals has decreased over recent decades and the number of accessible physicians has decreased. Given the lack of health infrastructure, geographic isolation, insufficient financial resources and lack of available services, conventional public health solutions would likely not be effective. In order to attain health equity, alternatives such as school-based or community driven healthcare should be explored.

While the limited access to care in rural areas is often cited as a reason for poor health, few studies have examined the differential health literacy among rural residents. Health literacy is the ability to obtain, read, understand, and use healthcare information in order to make appropriate health decisions and follow instructions for treatment. In addition to greater provision of care, programs that increase awareness of individuals health needs and proper preventative lifestyle measures could also assist in improving health in rural areas.

References

1. Parker K, Horowitz JM, Brown A, Fry R, Cohn D, et al. What Unites and Divides Urban, Suburban and Rural Communities. 2018. https://www.pewsocialtrends.org/2018/05/22/what-unites-and-divides-urban-suburban-and-rural-communities/
2. Rechel B, Džakula A, Duran A, Fattore G, Edwards N, et al. Hospitals in rural or remote areas: An exploratory review of policies in 8 high-income countries. Health Policy. 2015; 120: 758-769. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27312144
3. Curtis AC, Waters CM, Brindis C. Rural adolescent health: the importance of prevention services in the rural community. J Rural Health. 2011; 27: 60-71. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21204973
4. Levine SB, Coupey SM. Adolescent substance use, sexual behavior, and metropolitan status: is ‘urban’ a risk factor? J Adolescent Health. 2003; 32L 350-355. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12729984
5. Catalano RF, Fagan AA, Gavin LE, Greenberg MT, Irwin CE Jr, et al. Worldwide application of prevention science in adolescent health. Lancet. 2012; 379: 1653-1664. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22358180
6. Eaton DK, Kann L, Kinchen S, Shanklin S, Flint KH, et al. Youth risk behavior surveillance – United States, 2011. Morbidity and Mortality Weekly Report: Surveillance Summaries. 2012; 61: 1-62. PMid: 22673000
7. Raingruber B. Contemporary health promotion in nursing practice. Burlington, MA: Jones & Bartlett. 2016; PMid:27504500.
8. Santrock JW. A topical approach to life-span development. New York: McGraw-Hill Education. 2014.
9. Miller AS. CE FEATURE Adolescent Alcohol and Substance Abuse in Rural Areas: How TeleHealth Can Provide Treatment Solutions. J Addict Nurs. 2005; 16: 107-115.
10. Salois MJ. The built environment and obesity among low-income preschool children. Health Place. 2012; 18: 520–527.
11. Akinbami LJ, Ogden CL. Childhood overweight prevalence in the United States: The impact of parent reported height and weight. Obesity. 2009; 17: 1574–1580. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19629061
12. Rosenblatt RA, Chen FM, Lishner DM, Doesher MP. WWAMI Rural Health Center. The future of Family Medicine and Implications for Rural Primary Care Physician Supply. Grand Forks, ND. 2010.
13. Warshaw R. Health Disparities Affect Millions in Rural U.S. Communities. 2017. https://www.aamc.org/news-insights/health-disparities-affect-millions-rural-us-communities
14. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance. 2011. http://www.cdc.gov/std/stats11/iodal.htm
15. Heckman JJ. Sample Selection Bias as a Specification Error. Econometrica. 1979; 47: 153-161.
16. Borjas GJ, Sueyoshi GT. A two-stage estimator for probit models with structural group effects. J Econometrics. 1994; 64: 165-182.
17. Frenzen PD. Health insurance coverage in US urban and rural areas. J Rural Health. 1993; 9: 204-214. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10128159
18. Casey MM, Thiede Call K, Klingner JM. Are rural residents less likely to obtain recommended preventive healthcare services? Am J Prev Med. 2001; 21: 182-188. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11567838
19. Bennett KJ, Probst JC, Pumkam C. Obesity among working age adults: the role of county-level persistent poverty in rural disparities. Health Place. 2011; 17: 1174-1181. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21665515
20. Befort CA, Nazir N, Perri MG. Prevalence of obesity among adults from rural and urban areas of the United States: findings from NHANES (2005-2008). J Rural Health. 2012; 28: 392-397. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23083085
21. Cronk CE, Sarvela PD. Alcohol, tobacco, and other drug use among rural/small town and urban youth: a secondary analysis of the monitoring the future data set. Ame J Public Health. 1997; 87: 760-764. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9184502
22. Donnermeyer JF, Scheer SD. An analysis of substance use among adolescents from smaller places. J Rural Health. 2001; 17: 105-113. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11573460
23. Hartley D. Rural health disparities, population health, and rural culture. Ame J Public Health. 2004; 94: 1675-1678. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15451729
24. Jilcott SB, Laraia BA, Evenson KR, Ammerman AS. Perceptions of the community food environment and related influences on food choice among midlife women residing in rural and urban areas: a qualitative analysis. Women Health. 2009; 48: 164-180. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19533508
25. Agency for Healthcare Research and Quality. National Healthcare Quality and Disparities Report chartbook on rural health care. Rockville, MD: Agency for Healthcare Research and Quality. Rockville, MD: AHRQ. 2017.