Programmed Cell Death-1 Polymorphism rs11568821 is a predictor of Treatment Outcome in Chronic HCV Genotype 4 Infection

Abstract

Background & Aim: Recently, a single nucleotide polymorphism of Programmed Cell Death-1 (PD-1) gene has been reported to be associated with sustained virologic response (SVR) and to increase the predictive value of IL28B/CC genotype in chronic hepatitis C virus (HCV) genotype 1 and 3 infections. However, to date, there is no data concerning genotype 4. The aim of this study was to investigate the effect of PD-1.3 polymorphism on treatment outcome in patients with chronic HCV-4 infection.

Methods: 200 HCV-4 chronic infected patients were recruited and received PEG-IFN-α and ribavirin therapy. They were classified according to their response to treatment into SVR and Non-responders (NR) groups. PD-1.3 and IL28B rs12979860 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

Results: PD-1.3/GG genotype was over-represented in NR (79.8%) than in SVR patients (58.3%), \( P=0.001 \). PD-1.3/A allele was associated with SVR (\( P<0.001 \)). IL28B/CC genotype was recognized in 60.4% of SVR vs. 25.9% of NR patients (\( P<0.001 \)). The unfavorable TT genotype was revealed in 4.2% of SVR vs. 23.1% of NRs (\( P<0.001 \)). Using logistic regression analysis, IL28B/CC genotype showed a predictive value of 59% which increased to 62.8% in the presence of PD1.3/AA genotype.

Conclusions: PD-1.3 polymorphism is a new predictor of treatment outcome in chronic HCV genotype 4 infected patients and allele A associates with SVR. Genotyping of both IL28B rs12979860 and PD-1.3 is valuable in these patients for early prediction of the response to combined interferon and ribavirin therapy.

Keywords

Hepatitis C Virus; Genotype 4; Programmed Cell Death-1; Interferon

Abbreviations

HCV: Hepatitis C Virus; PEG-IFN: Pegylated Interferon; SVR: Sustained Virologic Response; CTL: Cytotoxic T Lymphocytes; PD-1: Programmed Cell Death-1; PD-L1: Programmed Cell Death-1 Ligand; DC: Dendritic Cells; SNP: Single Nucleotide Polymorphism; AST: Aspartate Aminotransferase; ALT: Alanine Aminotransferase; GGT: Gamma-Glutamyltranspeptidase; Alb: Albumin; PT: Prothrombin Time; RT-PCR: Reverse Transcriptase Polymerase Chain Reaction; RFLP: Restriction Fragment Length Polymorphism; NR: Non-Responders; BMI: Body Mass Index; OR: Odds Ratio; CI: Confidence Interval

Introduction

Chronic infection with hepatitis C virus (HCV) is a global health problem that affects more than 170 million people worldwide, with 3-4 million new cases each year [1]. It represents a major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma [2]. HCV genotype 4 (HCV-4) is the most common variant in the Middle East and Africa, particularly Egypt [3,4] which has the highest prevalence of HCV worldwide (15%) [5], and the highest prevalence of genotype 4 [6]. The current standard therapy for chronic HCV infection consists of subcutaneous injections of long-acting pegylated interferon-α (PEG-IFN) plus oral treatment with ribavirin [7]. However, sustained virologic response (SVR) is achieved in only 20-50% of HCV-4 infected patients [8]. Since a significant number of patients will fail to respond or will experience significant side-effects, plus the high cost of therapy, identification of host and viral factors predicting treatment outcome is of major interest. The chronicity of HCV infection is associated with impaired HCV-specific cytotoxic CD8+ T lymphocytes (CTLs) function [9]. CTLs express positive and negative co-stimulatory molecules [10,11], one of these negative regulatory molecules is the membrane-associated molecule Programmed Cell Death-1 (PDCD1, also known as PD-1 or CD279) [12].

PD-1 is a member of immunoglobulin gene super family receptors which is expressed on activated T and B lymphocytes as well as myeloid cells [13]. PD-1 strongly inhibits both proliferation and cytokine production by CD4 and CD8 T lymphocytes after interaction with its two ligands PD-L1 and PD-L2 [14,15]. PD-L1 is expressed in hematopoietic and non-hematopoietic cells, while PD-L2 is expressed on dendritic cells (DC) and macrophages [16,17]. Expression of PD-L1 on dendritic cells has been indicated to participate in T cell unresponsiveness [18]. PD1.3 is a single...
nullotide polymorphism (SNP) in intron 4 at position +7146 G/A (rs11568821) which is involved in the regulation of gene expression [19]. Recently, PD-1.3/A allele has been declared to be associated with SVR and notably increases the predictive value of IL28B/CC genotype in HCV-1 and 3 genotypes [20]. But, to date, there is no published report concerning genotype 4. The aim of this study was to investigate the association of PD-1.3 with the response to therapy in patients with chronic HCV-4 infection and its impact, in combination with IL28B SNP rs12979860, on treatment outcome.

Patients and Methods

The study is a cohort of 200 naive patients with chronic HCV genotype 4 infections. The diagnosis of chronic hepatitis C was based on elevated serum transaminases level for at least 6 months with consistent detection of HCV- RNA and anti-HCV antibodies. Genotyping of HCV was performed before treatment. The treatment protocol was a fixed weekly dose of 180 μg of 20 kD linear pegylated interferon α-2a (PEG-IFN) and ribavirin in adjusted doses of 600-1400 mg/day according to body weight. Sustained virologic response (SVR) was defined as undetectable HCV-RNA during the treatment and after 24 weeks of treatment completion. Null-response was defined as <2 log (10) reduction in HCV-RNA after 12 weeks treatment. The breakthrough response was defined when HCV-RNA rebounded and became detectable before treatment was completed. According to their response to combined therapy, our patients were divided into 2 groups: SVR and Non-Responders (NR). The later included null-responders and relapsers [20]. Informed consent was obtained from each patient included in the study and the study protocol conforms to the provisions of the Declaration of Helsinki 1975.

Biochemical Markers

Serum HCV antibodies were detected by EIA using Cobas Core immunoassay analyzer (Roche Diagnostics). Pre-treatment levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), GGT (gamma-glutamyltransferase) and albumin (Alb) were assayed in serum using Olympus Auto Analyzer AU400 (Olympus Diagnostica, Japan). Prothrombin time (PT) was measured on Helena C-II coagulometer (Helena Biosciences Europe, UK). Platelet counts were assayed using Abbott Cell-Dyn 1700 hematology analyzer (Abbott Laboratories, USA).

HCV genotyping and detection of HCV-RNA levels: Viral RNA was extracted from plasma using the QIAamp DNA extraction kit (Qiagen Hilden, Germany, Cat no. 51304) according to the manufacturer’s protocol. HCV-RNA was quantified during the treatment and the follow-up period (at 0, 4, 12, 24, 48, 72 weeks of starting treatment) by reverse transcriptase polymerase chain reaction (RT-PCR) using TaqMan HCV kit (Roche Molecular Systems Inc., Branchburg, N.J.) performed on the COBAS TaqMan 48 Analyzer (Roche Molecular Systems). HCV genotype was defined by the reverse line probe assay (Innolipa v.1.0, innogenetics, Ghent, Belgium) according to the manufacturer’s instructions.

Genotyping of PD-1 and IL28B: Genomic DNA was extracted from EDTA anti-coagulated blood using the QIAamp DNA extraction kit (Qiagen Hilden, Germany, Cat no. 51304) according to the manufacturer’s protocol.

Detection of PD-1.3 rs11568821 G/A polymorphism: The SNP PD-1.3 (rs11568821) was genotyped by PCR-restriction fragment length polymorphism (RFLP) analysis [21]. The oligonucleotide primers were 5’-CCCAGGCAGCAACCTCAAAT-3’ (Forward), and 5’-GACGGAGGCGGGCCATAT-3’ (Reverse). DNA amplification was performed on T-100 Thermal Cycler (Bio-Rad Laboratories Inc., USA). PCR reaction conditions (30 μL) were: initial denaturation at 95°C for 5 min, followed by 30 cycles of: denaturation at 95°C for 1 min, annealing at 62°C for 1 min, and extension at 72°C for 1 min. The PCR product was of 166 base pairs. To perform RFLP assay, 20 μL of amplicons were digested with 5U of PstI restriction endonuclease (New England Biolabs, MA, United States) at 37°C for 1 h. PstI digestion of allele G yields fragment of 166 base pairs, whereas DNA containing the allele A yields fragments of 116 and 50 base pairs (Figure 1A). Restriction digestion products were separated on 3% agarose gel stained with ethidium bromide for visualization on a UV transilluminator.

Detection of IL28B rs12979860 C/T Polymorphism: Genotyping for the rs12979860 SNP was performed by PCR-RFLP analysis [22]. The oligonucleotide primers were: 5’-AGG GCC CCT AAC CTC TGC ACA GTC T-3’ (Forward), and 5’-GCT GAG GGA CCG CTA CGT AAG TCA CC-3’ (Reverse). DNA amplification was performed on T-100 Thermal Cycler (Bio-Rad Laboratories Inc., USA), and the PCR reaction conditions (30 μL) were: initial denaturation at 95°C for 10 min, followed by 40 cycles of: denaturation at 95°C for 1 min, annealing at 58°C for 40s, and extension at 72°C for 1 min. The PCR product was of 403 base pairs. To perform RFLP assay, 20 μL of amplicons were digested with 5U of BstUI restriction endonuclease (New England Biolabs, MA, United States) at 60°C for 1 h. BstUI digestion of allele C yields fragments of 184, 105, 89 and 25 base pairs, whereas DNA containing the allele T yields fragments of 184, 130 and 60 base pairs (Figure 1B).
Table 1: Demographic and clinical characteristics of the studied patients.

| Parameters                        | SVR group (n = 96) | NR group (n = 104) |
|-----------------------------------|--------------------|--------------------|
| Age (Years)                       | 43.67±9.78         | 45.5±7.45          |
| Gender [n (%)]                    |                    |                    |
| Male                              | 77 (80)            | 81 (78)            |
| Female                            | 19 (20)            | 23 (22)            |
| BMI (kg/m²)                       | 23.2±4.6           | 24.1±3.2           |
| Pre-treatment viral load <400,000 IU/mL [n (%)] | 32 (26.7)*         | 21 (16.2)          |
| AST (U/L)                         | 82.87±27.92        | 78.27±15.25        |
| ALT (U/L)                         | 101.80±38.56       | 92.85±27.12        |
| GGT (U/L)                         | 35.2±11.4          | 31.3±9.1           |
| Platelets (x10^12/µL)             | 230±93.2           | 199±41.4           |
| Prothrombin time (sec)            | 12.87±0.74         | 13.04±1.11         |
| Serum albumin (gm/dl)             | 3.57±0.34          | 3.90±0.71          |

Data are expressed as mean ±SD.

NR: Non-Responders; SVR: Sustained Virological Responders; BMI: Body Mass Index; AST: Aspartate Aminotransferase; ALT: Alanine Aminotransferase; GGT: Gamma-Glutamyltransferase; *Significant (P<0.05).

89 base pairs (Figure 1B) Restriction digestion products were separated on 3% agarose gel stained with ethidium bromide for visualization on a UV trans-illuminator.

Statistical Analysis

Statistical calculations were done using Microsoft Excel version 7 (Chicago, IL, USA) and SPSS version 16 (Chicago, IL, USA). Quantitative data was presented as mean ± standard deviation (±SD). Qualitative data was expressed as frequency (absolute number and percent). Pearson chi-square (χ²) and Fisher’s exact tests were used to compare between independent variables. Comparison of more than two variables was done by ANOVA test. Binary logistic regression analysis was used for determination of predictor models. A probability value (P) less than 0.05 was considered statistically significant. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated to estimate the strength of the association when appropriate.

Results

According to the patients response to PEG-IFN and ribavirin therapy, 48% (n = 96) were classified as SVR and 52% (n = 104) were classified as NR. The demographic and clinical characteristics of patients are summarized in Table 1.

Analysis of PD-1.3 genotype distribution among the two groups of patients showed that GG genotype was over-represented (79.8%) in NR patients vs. 58.3% in SVR patients (P=0.001). Genotypes GA and AA were recognized in 41.7% of SVR patients vs. 20.2% in NRs. The frequency of allele A was significantly higher in SVR (24.5%) than in NR patients (12%), P <0.001 (Table 2). Genotyping results of IL28B showed that CC genotype was found in 60.4% of SVR patients vs. 25.9% of NR patients (P <0.001), while CT genotype was detected in 35.4% vs. 51%, respectively (p <0.05). Meanwhile, the unfavorable TT genotype was detected in 4.2% of SVR patients vs. 23.1% of NRs (P<0.001) (Table 2).

The impact of PD-1.3, in combination with IL28B rs12979860, on the treatment outcome was studied by a binary logistic regression analysis. In step 1, IL28B/CC genotype showed a predictive value of 58% (OR=7.588, 95% CI = 2.660-21.654). In step 2, a better prediction (62.8%) was obtained with PD1.3/AA genotype in the presence of IL28B/CC genotype (OR=8.8, 95% CI = 2.890-27.106) (Table 3).

Discussion

PD-1 is a good candidate marker which is involved in progression of HCV infection and the high expression on CD8+ T cells represents one of the mechanisms of HCV chronicity [17]. PD-1 was found to be expressed at high levels on HCV-specific CTL during the acute phase of infection and declines in self-limited infections, but remains high in patients with chronic infection [23]. Also, pretreatment level of PD-1 expression on HCV-specific infection was found to be associated with outcome of anti-viral therapy [18,19].

Table 2: Genotype distribution and allele frequency of PD-1.3 rs11568821 and IL28B rs12979860 in studied patients.

| Genotypes   | SVR group (n : 96) | NR group (n : 104) | P - value |
|-------------|--------------------|--------------------|-----------|
| PD-1.3      |                    |                    |           |
| G/G         | 56 (58.3%)         | 83 (79.8%)         | 0.001     |
| G/A         | 33 (34.4%)         | 17 (16.3%)         |           |
| A/A         | 7 (7.3%)           | 4 (3.9%)           |           |
| IL28B       |                    |                    |           |
| C/C         | 58 (60.4%)         | 27 (25.9%)         | 0.000     |
| C/T         | 34 (35.4%)         | 53 (51%)           |           |
| T/T         | 4 (4.2%)           | 24 (23.1%)         |           |
| Alleles     | SVR group (2n : 192) | NR group (2n : 208) | P - value |
| PD-1.3 /G   | 145 (75.5%)        | 183 (89%)          | <0.001    |
| PD-1.3 /A   | 47 (24.5%)         | 25 (12%)           |           |
| IL28B/C     | 150 (78%)          | 107 (51.4%)        |           |
| IL28B/T     | 42 (22%)           | 101 (48.6%)        |           |

Table 3: Logistic regression analysis of IL28B and PD1.3 genotypes as predictors of treatment outcome.

| Step 1  | P-value | OR   | 95% CI               |
|---------|---------|------|----------------------|
| IL-28B genotype |     |      |                      |
| CC      | 0.000   | 7.588| 6.545                |
| CT      | 0.000   | 2.660| 2.398-17.863         |
| Step 2  |         |      |                      |
| PD-1.3 genotype |     |      |                      |
| AA      | 0.030   | 4.438| 2.629                |
| GA      | 0.004   | 1.157| 1.368-5.050          |
| IL-28B genotype |     |      |                      |
| CC      | 0.000   | 8.850| 6.282                |
| CT      | 0.001   | 2.890-27.106                           |

OR: Odds Ratio; CI: Confidence Interval
Programmed Cell Death-1 Polymorphism rs11568821 is a predictor of Treatment Outcome in Chronic HCV Genotype 4 Infection

Citation: Radwan M, El-Lebedy D, Abdel-Hamid M (2015) Programmed Cell Death-1 Polymorphism rs11568821 is a predictor of Treatment Outcome in Chronic HCV Genotype 4 Infection. Gastroenterol Hepatol Open Access 1(5): 00026. DOI: 10.15406/ghoa.2015.01.00026

1. Georg ML (2013) Immune responses to hepatitis C virus (HCV) infection and the prospects for an effective HCV vaccine or immunotherapies. J Infect Dis 207(Suppl1): S7-S12
2. Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36(5 suppl 1): S21-S29.
3. World Health Organization (2014) Hepatitis C. WHO fact sheet 164.
4. Kamal SM, Naser IA (2008) Hepatitis C Genotype 4: what we know and what we don't yet know. Hepatology 47(4): 1371-1383.
5. Egyptian Ministry of Health (2007) Egyptian Ministry of Health Annual Report.
6. Nguyen MH, Keeffe EB (2005) Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin Gastroenterol Hepatol 3(Suppl 2): S97-S101.
7. McHutchison JG, Lawitz EJ, Shiffman ML, Muir AJ, Galler GW, et al. (2009) Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N Engl J Med 361(6): 580-593.
8. Kamal SM, Moustafa KN, Chen J, Fehr J, Monem AA, et al. (2006) Duration of peginterferon therapy in acute hepatitis C: a randomized trial. Hepatology 43(5): 923-931.
9. Haefelin NC, Timm J, Spangenberg HC, Wieschniowski N, Narazora N, et al. (2006) Virological and immunological determinants of intrahepatic virus-specific CD8+ T-cell failure in chronic hepatitis C virus infection. Hepatology 47(6): 1824-1836.
10. Greenwald RJ, Latchman YE, Sharpe AH (2002) Negative co-receptors on lymphocytes. Curr Op Immunol 14(3): 391-396.
11. Simone R, Piatti G, Saverino D (2009) The inhibitory co-receptors: a way to save from anergy the HIV-specific T cells. Curr HIV Res 7(3): 266-272.
12. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 18(3): 239-245.
13. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. J Exp Med 192(7): 1027-34.
14. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3): 261-266.
15. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, et al. (2002) PD-1: PD-1 inhibitory pathway affects both CD4 (+) and CD8 (+) T cells and is overcome by IL-2. Eur J Immunol 32(3): 634-643.
16. Boasso A, Hardy AW, Landay AL, Martinson JL, Anderson SA, et al. (2008) PD-L-1 upregulation on monocytes and T cells by HIV via type I interferon: restricted expression of type I interferon receptor by CRIS-expressing leukocytes. Clin Immunol 129(1): 152-164.
17. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19(7): 813-824.
18. Gebauer NS, Majdic O, Szekeres A, Hoffer G, Guthann E, et al. (2003) B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell energy. J Immunol 170(7): 3637-3644.
19. Prokunina L, Padyukov L, Bennett A, de Faire U, Wiman B, et al. (2004) Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 50(6): 1770-1773.
20. Castineira JRV, Vazquez AL, Arias RA, Garcia MMA, Cambor PM, et al.
Programmed Cell Death-1 Polymorphism rs11568821 is a predictor of Treatment Outcome in Chronic HCV Genotype 4 Infection

Citation: Radwan M, El-Lebedy D, Abdel-Hamid M (2015) Programmed Cell Death-1 Polymorphism rs11568821 is a predictor of Treatment Outcome in Chronic HCV Genotype 4 Infection. Gastroenterol Hepatol Open Access 1(5): 00026. DOI: 10.15406/ghoa.2015.01.00026

al (2012) A predictive model of treatment outcome in patients with chronic HCV infection using IL28B and PD-1 genotyping. J Hepatol 56(6): 1230-1238.

21. Karimi MH, Motazedian M, Geramizadeh B, Nikeghbalian S, Yaghobi R, et al. (2011) Association of the co-stimulatory molecules polymorphisms with CMV infection in liver transplant recipients. Int J Org Transplant Med 2(4): 171-177.

22. Venegas M, Villanueva RA, Gonzalez K, Brah J (2011) IL28B polymorphisms associated with therapy response in Chilean chronic hepatitis C patients. World J Gastroenterol 17(31): 3636-3639.

23. Urbani S, Amadei B, Tola D, Massari M, Schiavappa S, et al. (2006) PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 80(22): 11398-11403.

24. Mason LG, Klarquist J, Wahed AS, Rosen HR (2008) Cutting edge: programmed death-1 expression is increased on immunocytes in chronic hepatitis C virus and predicts failure of response to antiviral therapy: Race-dependent differences. J Immunol 180(6): 3637-3641.

25. Prokunina L, Lopez CC, Oberg F, Gunnarsson I, Berg L, et al. (2002) A regulatory polymorphism in PDC1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32(4): 666-229.

26. Kristjansdottir H, Steinsson K, Gunnarsson I, Grondal G, Erlandsson K, et al. (2010) Lower expression levels of the programmed death 1 receptor on CD4+CD25+ T cells and correlation with the PD-1.3A genotype in patients with systemic lupus erythematosus. Arthritis Rheum 62(6): 1702-1711.

27. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262): 399-401.

28. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, et al. (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461(7265): 798-801.

29. Mangia A, Thompson AJ, Santoro R, Piazzolla V, Tillmann HL, et al. (2010) IL28B polymorphism determines treatment response of hepatitis C virus genotype 2 or 3 patients who do not achieve a rapid virologic response. Gastroenterology 139(3): 821-827.

30. Asselah T, De Muynck S, Broeck P, Planchon JM, Blanluet M, et al. (2012) IL28B polymorphism is associated with treatment response in patients with genotype 4 chronic hepatitis C. J Hepatol 56(3): 527-532.

31. Hendy OM, Monemain EAE, Alkhafie MA, Sabawy M, Rady MA, et al. (2011) Role of IL28B Gene Polymorphisms in response to the standard of care treatment in Egyptian patients with chronic HCV genotype 4. Life Science J 8(4): 908-915.