Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants
Kévin Royet, Nicolas Parisot, Agnès Rodrigue, Erwan Gueguen, Guy Condemine

To cite this version:
Kévin Royet, Nicolas Parisot, Agnès Rodrigue, Erwan Gueguen, Guy Condemine. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. Molecular Plant Pathology, Wiley, 2019, 20 (2), pp.287-306. 10.1111/mpp.12754. hal-01922287

HAL Id: hal-01922287
https://hal.archives-ouvertes.fr/hal-01922287
Submitted on 14 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants

Kévin Royet¹, Nicolas Parisot², Agnès Rodrigue¹, Erwan Gueguen¹*# and Guy Condemine¹*

* Both authors share co-last authorship

¹ Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France.
² Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France

Corresponding author: erwan.gueguen@univ-lyon1.fr

Running head: Dickeya dadantii genes important in planta

Keywords: Dickeya dadantii, phytopathogen, Tn-Seq; soft-rot disease; chicory; motility, glycosylation, metabolism

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/mpp.12754

This article is protected by copyright. All rights reserved.
Accession numbers. ENA database accession, PRJEB20574.

Author summary

Identification of the virulence factors of plant pathogenic bacteria has relied on the test of individual mutants on plants, a time-consuming process. Tn-seq is a very powerful method for identifying those genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of *Dickeya dadantii* in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most of them had no previously attributed role in plant-bacteria interaction. Following our screening, *in planta* competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway are essential to the survival of *Dickeya dadantii* in the plant since the mutants ΔcarA, ΔpurF, ΔpurL, ΔguaB and ΔpyrE are unable to survive in the plant in contrast to the WT bacterium. This study also demonstrates that the biosynthetic pathways of leucine, cysteine and lysine are essential for bacterial survival in the plant and that RsmC and GcpA are important in regulating the infection process since the mutants ΔrsmC and ΔgcpA are hypervirulent. Finally, our study shows that *D. dadantii* flagellin is glycosylated and that this modification confers fitness to the bacteria during plant infection. Assay by this method of large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.

Introduction

Dickeya are broad-host range phytopathogenic bacteria belonging to the Pectobacteriaceae family (Adeolu et al., 2016) that provoke the soft rot disease on many plant species. They are the cause of considerable losses of economically important crops such as...
potato, chicory and ornamentals. Studies and identification of the virulence factors of these bacteria have been mostly performed on the model strain *D. dadantii* 3937 and they have focused mainly on three aspects known to be important for disease development: plant cell wall degrading enzymes, the type III secretion system and iron metabolism (Charkowski et al., 2012). Secretion of plant cell wall degrading enzymes has long been identified as the main bacterial virulence factor. Many studies have focused on the identification and characterization of these secreted enzymes, mostly pectinases (Hugouvieux-Cotte-Pattat et al., 1996), of the regulators controlling their production (*kdgR, pecS, pecT, hns, gacA*), (Condemine and Robert-Baudouy, 1991; Reverchon et al., 1994; Surgey et al., 1996; Nasser et al., 2001; Lebeau et al., 2008) of the genes whose expression is coregulated with that of the secreted enzyme genes (Condemine et al., 1999; Reverchon et al., 2002), and of the mechanism of their secretion by the type II secretion system (Condemine et al., 1992).

Although of less importance for *Dickeya* virulence, the same type of approach has been used to identify type III secretion system regulators and effectors (Yang et al., 2002; Li et al., 2015; Yang et al., 2010). Moreover, the struggle for iron within the plant is strong. *D. dadantii* acquires this metal through the production of two siderophores, chrysobactin and achromobactin (Franza et al., 2005; Franza et al., 1999; Franza and Expert, 1991). Omics approaches have also been used to identify genes whose expression is induced during plant infection (Okinaka et al., 2002; Yang et al., 2004; Chapelle et al., 2015). These studies now provide a clearer picture of the complex network of factors required for *D. dadantii* virulence (Charkowski et al., 2012, Reverchon et al., 2016). However, these methods may have missed some important factors not targeted by the analyses such as the genes of metabolism constantly expressed at the same level but nevertheless essential to the survival of the bacterium in the plant. Libraries of transposon-induced mutants were tested on plants to find mutants showing reduced virulence with *Pectobacterium carotovorum* and *atrosepticum*, two
other soft rot enterobacteria (Hinton et al., 1989, Pirhonen et al., 1991, Lee et al., 2013). These studies identified pyrimidine, purine, leucine or serine auxotrophs and mutants defective in the production or secretion of exoenzymes and in motility. Other mutants with a more complex phenotype were not characterized at this time. Moreover, the number of tested mutants was limited by the necessity to test each mutant individually on the plant. This type of work has never been performed on Dickeya strains. To acquire a more complete view of the genes required for the virulence of Dickeya, we used a high-throughput sequencing of a saturated transposon library (Tn-seq) to screen tens of thousands of random insertion mutants of D. dadantii in a laboratory medium and during infection of chicory. Tn-Seq involves creating large transposon libraries, growing the mutants in a control and in a selective condition, sequencing the transposon insertion sites with next-generation sequencing, mapping sequence reads to a reference genome and comparing the number of read in each gene in the two conditions. Tn-seq has been extensively used to reveal the essential genes required for mouse colonization by human pathogens Vibrio cholerae (Fu et al., 2013), Pseudomonas aeruginosa (Skurnik et al., 2013) and Streptococcus pneumoniae (van Opijnen and Camilli, 2012), or plant root colonization by Pseudomonas simiae (Cole et al., 2017) and multiplication of Pantoea stewartii in corn xylem (Duong et al., 2018). This latter bacterium relies on the massive production of exopolysaccharides to block water transport and cause wilting. Thus, Tn-seq is a very powerful method for identifying the genes required for bacterial growth in their host. By applying this technique to screen a D. dadantii mutant library in chicory, we have identified metabolic pathways and bacterial genes required by a necrotrophic bacteria for growth in planta. Among them, we found a cluster of genes required for flagellin glycosylation, a modification known to be important for virulence in several plant pathogenic bacteria.
Results and discussion

Characterization of \textit{D. dadantii} 3937 Himar1 transposon library

Many tools are available for performing Tn-seq (van Opijnen and Camilli, 2013). For the Tn-seq experiment with \textit{D. dadantii} 3937, we used a Himar9 mariner transposon derivative carrying MmeI restriction sites in the inverted repeats (IR) and a kanamycin resistance cassette between the IRs (Wiles \textit{et al.}, 2013). We carried out a biparental mating between \textit{E. coli} and \textit{D. dadantii} on M63 agar medium without a carbon source and or amino acids. We obtained approximately 300 000 colonies that were then pooled. Subsequent DNA sequencing (see below) showed the presence of transposon insertions in amino acid, vitamin, purine or pyrimidine biosynthesis pathways, demonstrating that mating on M63 minimal medium does not prevent the obtention of auxotroph mutants. To identify the essential genes, mutants were grown in LB medium for 10 generations. Two DNA libraries were prepared from two cultures and subjected to high-throughput sequencing. The mariner transposon inserts into TA dinucleotides. The TPP software (DeJesus \textit{et al.}, 2015) was used to determine the number of reads at each TA site for each biological replicate. The \textit{D. dadantii} genome has 171,791 TA sites that can be targeted by the Himar9 transposase. Pairs of biological replicates were compared. 37,386 and 48,119 unique insertions in TAs were detected in each sample, which corresponds to 22 and 28\% density of insertion respectively (Table 1). The mean number of reads over non-zero TA sites was 406 and 268 respectively. The results were reproducible with a Pearson correlation coefficient of 72\% (Fig. 1A). The location of the unique insertions showed an even distribution around the chromosome (Fig. 1C). For each gene, we calculated a log\textsubscript{2} fold change (FC) corresponding to the ratio between the measured number of reads and the expected number of reads. The density plot (Fig. 1D) indicates that essential and non-essential genes are easily distinguishable, confirming the good quality of our Tn-seq libraries.

This article is protected by copyright. All rights reserved.
Next, gene essentiality of the Tn-seq input libraries was determined using the TRANSIT software (DeJesus et al., 2015). We decided to use the Hidden Markov Model (HMM) which predicts essentiality and non-essentiality for individual insertion sites since it has been shown to give good prediction in datasets with a density as low as 20% (DeJesus et al., 2015). The HMM analysis led to the identification of 665 genes essential for growth in LB (ES), representing 14% of the genes of *D. dadantii* 3937. Goodall et al. (Goodall et al., 2018) have shown that this technique overestimates the number of essential genes. Indeed, the transposon we used does not allow us to distinguish between either a direct effect of the insertion or a polar effect on the downstream genes. Because some essential genes (ES) could be in operon with non-essential genes (NE), some NE genes could be categorized ES. Thus 665 must be considered has a maximum over-estimated number of essential genes. 552 genes were categorized as Growth Defect genes (GD, i.e. mutations in these genes lead to a loss of fitness), 129 as growth advantage genes (GA, i.e mutations in these genes lead to a gain of fitness) and 3319 as non-essential genes (NE) (Fig. 1D and Table S1).

Genes necessary for chicory leaf maceration. We used chicory leaf infection as a model to identify the *D. dadantii* genes required for growth in plant tissues. Biological duplicates were performed to insure the reproducibility of the results. Each chicory plant was inoculated with \(10^7\) bacteria from the mutant pool and after 2 days more than \(10^{10}\) bacteria (which represents 10 generations) were collected from the rotten tissue. Sequencing transposon insertion sites in these bacteria followed by the TPP analysis indicated a density of unique insertion in TAs comparable to that of the input datasets (23-24%). Surprisingly, the results were more highly reproducible than in LB with a very high Pearson correlation coefficient of 98% (Fig. 1B). No bottleneck effect was observed since we observe a strong correlation between our biological duplicates. This can be explained by the fact that \(10^7\) bacteria are injected directly
into the injured tissue. Since we detected 37,386 and 48,119 unique insertions in TAs in LB, all the mutants should be present within the leaf at the beginning of the infection.

In order to test the statistical significance of the identified genes conferring to *D. dadantii* a loss or a gain of fitness *in planta*, we performed the RESAMPLING (permutation test) analysis of the TRANSIT software. The RESAMPLING method is a variation of the classical permutation test in statistics that sums the reads at all TA sites for each gene in each condition. It then calculates the difference of the sum of read-counts between the input (LB) and the output (chicory) datasets. The advantage of this statistical method is to attribute for each gene an adjusted p-value (q-value). Genes with a significant difference between total read-counts in LB and chicory achieve a q-value ≤ 0.05. The method also calculates a log2 fold-change (log2FC) for each gene based on the ratio of the sum of read counts in the output datasets (chicory) versus the sum of read counts in the input (LB) datasets (DeJesus *et al.*, 2015). Applied to our Tn-seq datasets and selecting only genes achieving a FDR adjusted p-value (q-value) ≤ 0.05, we identified 122 genes out of 4666 required for fitness *in planta*, as shown with the volcano plot of RESAMPLING results comparing the replicates grown in LB versus those *in planta* (Fig. S1). For these 122 genes, we applied an additional cutoff by removing 20 genes with a mean read count in LB <5 (less than 5 reads on average / TA). These 20 genes were categorized as ES or GD in LB. We also removed from the analysis 6 genes with a log2FC comprised between -2 and 2. By applying all these criteria, we retained only 96 genes for a further analysis (Table 2). 92 of them were identified as GD genes in the chicory (log2FC ≤2), and the remaining 4 as GA genes in the chicory (log2FC ≥2). A possible polar effect for genes constituting part of an operon was investigated (Table 2): if a GD gene is upstream of another GD gene in the same operon, a polar effect of insertions in the first gene on the second one cannot be excluded. Some of these genes, shown in bold in Table 2,
were already known to play a role in *D. dadantii* virulence, confirming the validity of the Tn-seq approach. Using the *Dickeya dadantii* 3937 Kyoto Encyclopedia of Genes and Genomes pathways database (KEGG) (Ogata *et al.*, 1999), we discovered that certain metabolic pathways and biological functions are very important for growth in chicory (Table S2). We highlighted some of these in the subsequent sections of this article.

Analysis of the genes of *D. dadantii* required for plant colonization.

(i) **Metabolism.** Chicory plants appear to provide conditions in which amino acids, nucleic acids and some vitamins (pyridoxal) are scarce. Of the 92 genes identified as GD genes in planta, 8 are involved in purine and 7 in pyrimidine metabolism (Table S2). In the purine metabolism pathway, the inosine monophosphate (IMP) biosynthesis pathway that produces IMP from L-glutamine and 5-phosphoribosyl diphosphate is particularly important for *D. dadantii* in planta since 5 out of the 10 genes of this pathway are significant GD genes in planta (Fig. 2). IMP is the precursor of adenine and guanine and IMP can be converted into xanthosine 5’-phosphate (XMP) by the IMP dehydrogenase GuaB. The *guaB* gene is also a GD gene in planta, with a strong log$_2$FC of -10.06 (Fig. 2). In pyrimidine synthesis, the uridine monophosphate (UMP) biosynthesis pathway that converts L-glutamine to UMP, a precursor of uracil, is very important in planta since *carAB, pyrB, pyrC* and *pyrE*, involved in this enzymatic pathway, are all required for growth in planta (Fig. 2). This pyrimidine biosynthesis pathway is specific to bacteria. It is noteworthy that in the human pathogen *S. pneumoniae*, mutants of this pathway have a fitness defect in the nasopharynx of infected mice (van Opijnen and Camilli, 2012). Hence, it seems that the pyrimidine biosynthesis pathway is particularly important for the multiplication of some bacterial species in the host.
Mutants in genes involved in the synthesis of sulfur-containing amino acids (cysIJQ, metB), lysine (lysA) and leucine (leuABC) are disadvantaged in chicory (Table 2 and Fig. S2). These amino acids are known to be present in low concentration in plant tissues (Azevedo et al., 1997). Other amino acids seem to be present in sufficient quantities for the growth of D. dadantii auxotrophs. A low level of certain amino acids probably induces a stringent response in the bacteria. Reduced growth in the plant of the relA mutant, unable to synthesize the alarmone ppGpp, supports this hypothesis. Glucose is one of the main sugar in plant tissue, present as a circulating sugar or a cellulose degradation product (Buysse & Merckx, 1993). Mutants in the PTS glucose transport system genes ptsI and ptsG showed a reduced growth in bacteria (Table 2) indicating their importance in planta.

Degradation of cell wall pectin by a battery of extracellular enzymes is the main determinant of Dickeya pathogenicity. Mutants unable to produce or to secrete these enzymes by the type II secretion system were not disadvantaged in chicory since these mutants could use for their growth the pectin degradation compounds produced by enzymes secreted by other bacteria. The redundancy of oligogalacturonate specific porins (KdgM and KdgN) and inner membrane transporters (TogT and TogMNABC) allows entry of these compounds into the bacteria even in a mutant in one of these transport systems. However, kduI mutants, blocked in the intracellular part of the pectin degradation pathway, have limited growth in planta, confirming the importance of the pectin degradation pathway in the disease progression.

(ii) Stress resistance. Plants are a hostile environment for the bacteria having to cope with antimicrobial peptides, ROS, toxic compounds and acidic pH (Reverchon and Nasser, 2013). We observed that the pump AcrABToIC, that can efflux a wide range of compounds (Ravirala et al., 2007), is important for survival in chicory (Fig. S2). Stress can lead to the accumulation of phospholipids in the outer membrane. This accumulation makes the bacteria
more sensitive to small toxic molecules (Malinverni and Silhavy, 2009). This phospholipid accumulation probably occurs when the bacteria infect chicory since mlaC and mlaF mutants, which are unable to transport phospholipid from the outer to the inner membrane, have a reduced growth in plant. The production of exopolysaccharides (EPS) has been shown to protect the bacteria during the first steps of infection (Condemine et al., 1999). We observed that rffG and wzx mutants unable to synthesize EPS have a growth defect in chicory. A set of genes required to repair or degrade altered proteins (clpA, degQ, trxB) is also important for survival in planta. No gene directly involved in the detoxification of ROS was detected in our analysis. However, ROS can create DNA damage. The two helicases involved in DNA repair, UvrD and HelD, give a growth advantage in plant. Osmoregulated periplasmic glycans (OPG) are polymers of glucose found in the periplasm of α, β and γ-proteobacteria. Their exact role is unknown but their absence leads to avirulence in certain bacteria such as D. dadantii (Page et al., 2001). This absence induces a membrane stress that is sensed and transduced by the Rcs envelope stress response system. This system controls the expression of many genes, including those involved in motility and those encoding plant cell wall degrading enzymes through the RsmA-RsmB system (Bouchart et al., 2010; Madec et al., 2014; Wu et al., 2014). Thus, mutants defective in OPG synthesis are expected to have reduced virulence. Indeed, in our experiment, mutants in the two genes involved in OPG synthesis, opgG and opgH were non competitive in chicory (Table 2).

(iii) Iron uptake. D. dadantii produces two types of siderophores, achromobactin and chrysobactin, that are required for the development of maceration symptoms in the iron-limited environment of plant hosts (Franza and Expert, 2013). Once the iron is loaded, the siderophores are imported into the bacteria. Import through the outer membrane requires a specific outer membrane channel and the energy transducing complex formed by TonB ExbB and ExbD. While the absence of synthesis of one of the siderophores can be compensated for
by the presence of siderophore secreted by other bacteria in the growth medium, mutants of the TonB complex are totally unable to acquire iron and thus are unable to grow in the plant. Consequently, \textit{tonB} was essential in chicory while the genes coding for siderophore synthesis or secretion were not. Similarly a mutant devoid of the iron-loaded chrysobactin transport gene (\textit{fct}) is non-competitive.

\textbf{(iv) Regulation.} Mutants in several genes controlling virulence factor production show a growth defect in the plant. The master regulator FlhDC acts as a regulator of both flagella and virulence factor synthesis in many bacteria such as \textit{Yersinia ruckeri}, \textit{Edwardsiella tarda} and \textit{Ralstonia solanacearum} (Tans-Kersten \textit{et al.}, 2004; Jozwick \textit{et al.}, 2016; Xu \textit{et al.}, 2014). In \textit{D. dadantii} FlhDC has recently been shown to control, in addition to flagellar motility, a type III secretion system and virulence factor synthesis through several pathways (Yuan \textit{et al.}, 2015). We observed that \textit{flhC} gives a certain growth advantage in chicory. In addition, we discovered that some genes regulating \textit{flhDC} in other bacteria regulate \textit{D. dadantii} virulence, probably by controlling \textit{flhDC} expression. \textit{rsmC} is a poorly characterized gene in \textit{D. dadantii} but it has been studied in \textit{Pectobacterium carotovorum}. It negatively controls motility and extracellular enzyme production through modulating the transcriptional activity of FlhCD (Chatterjee \textit{et al.}, 2009). HdfR is a poorly characterized LysR family regulator that controls the \textit{std} fimbrial operon in \textit{S. enterica} and FlhDC expression in \textit{E. coli} (Ko and Park, 2000). \textit{rsmC} mutants were overrepresented in the chicory (Fig. S2), indicating an increase in virulence for these mutants. \textit{hdfR} conferred fitness benefits during growth in chicory and could also act in \textit{D. dadantii} as activator of \textit{flhDC} expression.

The GGDEF proteins are c-di-GMP synthase and their genes are often located next to their cognate EAL diguanylate phosphodiesterase gene. \textit{ecpC (yhjH)} encodes an EAL protein that has been shown to activate virulence factor production in \textit{D. dadantii} (Yi \textit{et al.}, 2010). \textit{gcpA}, which is located next to \textit{ecpC} encodes a GGDEF protein. The role of \textit{gcpA} in \textit{D. dadantii}
Virulence has recently been described (Yuan et al., 2018). We observed that gcpA mutants (Dda_03858) were overrepresented in chicory (Table 2). This increased virulence, with an opposite phenotype to the one described for the ecpC mutants, indicates that overproduction of c-di-GMP could reduce D. dadantii virulence.

Of the eighteen regulators of the LacI family present in D. dadantii, four of them were found to be involved in plant infection (Van Gijssegem et al., 2008). One of those, LfcR, which has been found to play a major role in the infection of chicory, Saintpaulia and Arabidopsis, was seen to be important for chicory infection in our experiment. LfcR is a repressor of adjacent genes (Van Gijssegem et al., 2008). Surprisingly none of these genes appeared to play a role in chicory infection suggesting that there are other targets of LfcR that remain to be discovered.

Finally, it is worth mentioning that the ackA and pta genes are GD in planta. These genes constitute the reversible Pta-AckA pathway. The steady-state concentration of acetyl-phosphate (acetyl-P), a signaling molecule in bacteria, depends upon the rate of its formation catalyzed by Pta and of its degradation catalyzed by AckA (Wolfe, 2005). The GD phenotype of D. dadantii ackA and pta mutants during infection suggests that acetyl-P might play a crucial signaling role in the adaptation of D. dadantii to the plant tissue.

(v) Motility. Motility is an essential virulence factor of D. dadantii necessary for the bacteria to move across the surface of the leaf, to enter the wounds and to propagate within the plant tissue (Antunez-Lamas et al., 2009; Rio-Alvarez et al., 2015; Jahn et al., 2008). Accordingly, all the genes required for flagella synthesis, the flagella motor and the genes regulating their synthesis (flhC, flhD, fliA) (see above) are necessary for fitness during chicory infection (Fig. S2). All the genes responsible for the transduction of the chemotaxis signal (cheA, B, R, W, X,
... and Z) also confer benefits in planta (Table 2). No methyl-accepting chemoreceptor gene mutant was found. Like other environmental bacteria, D. dadantii encodes many such proteins (47). They probably have a certain some redundancy in the recognized signal which prevented their detection in our screen.

D. dadantii flagellin is modified by glycosylation

A group of six genes located between *fliA* and *fliC* retained our interest since insertions in one of these genes led to a growth defect in chicory (Fig. 3A). This effect does not result from insertions in the first gene of the group since they are not expressed in an operon (Jiang *et al.*, 2016). Dda3937_03424 encodes an O-linked N-acetylglucosamine transferase and Dda3937_03419 encodes a protein with a nucleotide diphospho sugar transferase predicted activity. The others could be involved in the modification of sugars (predicted function of Dda3937_03423: nucleotide sugar transaminase, Dda3937_03422: carbamoyl phosphate synthase, Dda3937_03421: oxidoreductase; Dda3937_03420: methyltransferase). Their location led us to suppose that this group of genes could be involved in flagellin glycosylation. Analysis by SDS-PAGE of FliC produced by the wild type, and mutants in the two glycosyltransferase genes Dda3937_03424 and Dda3937_03419, revealed that in the two latter strains the molecular weight of the protein diminished (Fig. 3B). The molecular weight determined by mass spectroscopy was 28,890 Da for FliC_{A4277}, 31,034 Da for FliC_{A3422} and 32170 Da for the WT FliC. Thus, the presence in the gene cluster of two glycosyltransferases suggests that in the wild type strain FliC is modified by multiple glycosylation with a disaccharide. The absence of any modification did not affect *D. dadantii* motility (data not shown). The flagellin of the plant pathogens *Pseudomonas syringae* pv *tabaci* and *Burkholderia cenocepacia* are also glycosylated and the absence of this modification lowered the ability of these bacteria to cause disease on tobacco and *Arabidopsis*, respectively.

This article is protected by copyright. All rights reserved.
Accordingly, in *D. dadantii*, FliC modification appears to be important for multiplication of the bacteria in the plant (Fig. 3C).

Validation of the Tn-seq results.

To validate the Tn-seq results, we performed coinoculation experiments in chicory leaves with the wild type strain and various mutants in GA genes (*gcpA* and *rsmC*) or GD genes (*hdfR, clpSA, metB, flhDC, purF, cysJ, degQ, pyrE, carA, leuA, guaB, purL, lysA*) in a 1/1 ratio. We calculated a competitive index (CI) by counting the number of each type of bacteria in the rotten tissue after 24 h. We confirmed the ability of the ∆*rsmC* and ∆*gcpA* to overgrow the wild type strain. On the other hand, the wild type strain overgrew the other in frame deletion mutants that were tested (Fig. 4). The lowest competitive indexes were observed with the mutants in biosynthetic pathways such as ∆*leuA*, ∆*guaB*, ∆*purL*, ∆*lysA*.

Amino acid auxotroph mutants (Cys⁺, Leu⁻, Met⁻ and Lys⁺) tested in coinoculation experiments could be phenotypically complemented *in planta*. Addition of both the non-synthetized amino acid and the auxotroph mutant to the wound totally or almost completely suppressed the growth defect of the auxotroph mutant *in planta* (Fig. 5) confirming the low availability of certain amino acids in chicory. These results confirmed that Tn-seq is a reliable technique to identify genes involved in plant colonization.

Conclusion

This Tn-seq experiment highlights some new factors required for *D. dadantii* the successful rotting of chicory by *D. dadantii*. Many genes known to be important for pathogenesis were not found in this screen because their products are secreted and can be shared with other strains in the community. This includes all the proteins secreted by the type II secretion system and small molecules such as siderophores and butanediol. Other categories of genes,
for example those involved in response to acidic or oxidative stresses were not found. Hence, chicory has been described as an inadequate model for studying the response of *D. dadantii* to oxidative stress (Santos *et al.*, 2001). Similarly, the type III *hrp* genes were not identified in our study. The Hrp system is not always required for *D. dadantii* virulence and in our experimental conditions (high inoculum on isolated chicory leaves) the necrotrophic capacities of *D. dadantii* (production of plant cell wall degrading enzymes) are probably sufficient on their own to provoke the disease. Our results also reveal some previously unknown aspects of the infection process. The struggle between plant and bacterial pathogens for iron supply has been well described. However, a competition for amino acids and nucleic acid also seems to occur in the plant. The level of nucleic acids and of the cysteine, leucine, methionine, threonine and isoleucine amino acids is too low in chicory to allow an efficient multiplication of bacteria defective in their biosynthesis. *Pectobacterium carotovorum* subsp. *carotovorum* Pcc21 appears to encounter almost the same conditions of nutrient deprivation when infecting Chinese cabbage (Hinton *et al.*, 1989; Pirhonen *et al.*, 1991; Lee *et al.*, 2013).

Some enzymatic steps involved in their synthesis are specific to bacteria and fungi. Thus, they could constitute good targets for the development of specific inhibitors (Thangavelu *et al.*, 2015) to prevent *D. dadantii* infections. Regulation of *D. dadantii* virulence has been extensively studied (Charkowski *et al.*, 2012; Reverchon *et al.*, 2016). However, new regulatory genes were also detected in this study. New members of the FlhDC regulation pathway were also detected. A few genes of unknown function remain to be studied.

D. dadantii can infect dozens of plants. In addition to chicory, *D. dadantii* virulence tests are usually performed on potato plants, tubers or slices, *Arabidopsis thaliana*, saintpaulia and celery. The metabolic status or reaction defenses of these model plants are all different and
the bacterial genes required for a successful infection will probably differ in each model. Testing several of them would reveal the full virulence repertoire of the bacterium.

While Tn-seq has been used to study genes required for the infection of animals, there has been no genome-wide study of the factors necessary for a necrotrophic plant pathogen to develop and provoke disease on a plant. In addition to the genes of known function described in the Results section, this study identified of several genes of unknown function required for chicory rotting. Repetition of these experiments with other strains and on other plants will clarified whether these genes encode strain or host-specific virulence factors.

Methods

Bacterial strains and growth conditions. Bacterial strains, phages, plasmids and oligonucleotides used in this study are described in Tables S3 to S5. D. dadantii and E. coli cells were grown at 30 and 37°C respectively in LB medium or M63 minimal medium supplemented with glycerol (2 g/L). When required antibiotics were added at the following concentration: ampicillin, 100 µg/L, kanamycin and chloramphenicol, 25 µg/L. Media were solidified with 1.5 g/L agar. Transduction with phage PhiEC2 was performed according to (Résibois et al., 1984).

Construction of the transposon library

Five mL of an overnight culture of D. dadantii strain A350 and of E. coli MFDpir/pSamEC were mixed and centrifuged for 2 min at 6000 g. The bacteria were resuspended in 1 mL of M63 medium and spread onto a 0.45 µm cellulose acetate filter placed on a M63 medium agar plate. After 8h, bacteria were resuspended in 1 mL M63 medium. An aliquot was diluted
and spread onto LB agar + kanamycin plates to estimate the efficiency of mutagenesis. The remaining culture was inoculated in 100 mL of LB medium + kanamycin and grown for 24 h at 30°C. To confirm that the bacteria that grew were *D. dadantii* strains with a transposon but without plasmid pSamEC, we checked that all the grown bacteria were kan^R, amp^S and diaminopimelate (DAP) prototrophs (MFDpir is DAP⁺). The bacteria were frozen in 40% glycerol at -80°C and they represent a library of about 300 000 mutants.

DNA preparation for high-throughput sequencing

An aliquot of the mutant library was grown overnight in LB medium + kanamycin. To identify the essential genes in LB, the culture was diluted 1000-fold in LB and grown for 6 h. To infect chicory, the overnight culture was centrifuged and resuspended at OD₆₀₀ = 1 in M63 medium. Chicories, bought at a local grocery store, were cut in half, inoculated with 10 µL of this bacterial suspension and incubated at 30°C with maximum moisture. After 60 h, the rotten tissue was collected and filtered through a cheese cloth. The bacteria were collected by centrifugation and washed twice in M63 medium. DNA was extracted from 1.5 mL aliquots of bacterial suspension adjusted to OD₆₀₀1.5 with the Promega Wizard Genomic DNA purification kit. The subsequent steps of the DNA preparation methods were adapted from Skurnik *et al.*, 2013. All DNA gel-extractions were performed onto a blue-light transilluminator of DNA stained with gel-green (Biotium) to avoid DNA mutation and double-stranded breaks. 50 µg of DNA samples were digested with 50 U MmeI in a total volume of 1.2 mL for one hour at 37°C according to the manufacturer’s instructions, then heat-inactivated for 20 minutes at 80°C, purified (QIAquick, PCR purification kit Qiagen) and concentrated using a vacuum concentrator to a final volume of 25 µL. Digested DNA samples were run on a 1% agarose gel, the 1.0–1.5 kb band containing the transposon and adjacent DNA was cut out and DNA was extracted from the gel according to the manufacturer’s instructions (Qiaquik Gel Extraction Kit, Qiagen). This allowed recovery of
all the fragments containing genomic DNA adjacent to the transposons (1201 bp of transposable element with 32-34 bp of genomic DNA). A pair of single-stranded complementary oligonucleotides containing a unique 5-nt barcode sequence (LIB_AdaptT and LIB_AdaptB) was mixed and heated to 100°C, then slowly cooled down in a water bath to obtain double-stranded adaptors with two-nucleotide overhangs. 1 µg DNA of each sample was ligated to the barcoded adaptors (0.44 mM) with 2000 U T4 DNA ligase in a final volume of 50 µL at 16°C overnight. Five identical PCR reactions from the ligation product were performed to amplify the transposon adjacent DNA. One reaction contained 100 ng of DNA, 1 unit of Q5 DNA polymerase (Biolabs), 1X Q5 Buffer, 0.2 mM dNTPs, 0.4 µM of the forward primer (LIB_PCR_5, which anneals to the P7 Illumina sequence of the transposon) and the reverse primer (LIB_PCR_3, which anneals to the P5 adaptor). Only 18 cycles were performed to keep a proportional amplification of the DNA. Samples were concentrated using a vacuum concentrator to a final volume of 25 µL. Amplified DNA was run on a 1.8% agarose gel, the 125 bp band was cut-out and gel extracted (QIAquick, PCR purification kit Qiagen). DNA was finally dialysed (MF-Millipore™ Membrane Filters) for 4 hours. Quality control of the Tn-seq DNA libraries (size of the fragments and concentration) and High-throughput sequencing on HiSeq 2500 (Illumina) was performed by MGX (CNRS sequencing service, Montpellier). After demultiplexing, the total number of reads was between 18 and 31 millions (Table 1).

Bioinformatics analysis:

Differences in sequencing yields between samples were normalized by randomly subsampling each sample (i.e. rarefaction) to the lowest sequencing yield (the chicory #1 sample with 18,748,028 reads). Raw reads from the fastQ files were first filtered using cutadapt v1.11 (Martin, 2011) and only reads containing the *mariner* inverted left repeat...
(ACAGGTGGATGATAAGTCCCCGCTT) were trimmed and considered *bona fide* transposon-disrupted genes. Trimmed reads were then analyzed using a modified version of the TPP script available from the TRANSIT software v2.0.2 (DeJesus *et al.*, 2015). The mapping step was modified to select only those reads mapping uniquely and without mismatch in the *D. dadantii* 3937 genome (Genbank CP002038.1). Then, the counting step was modified to accurately count the reads mapping to each TA site in the reference genome according to the Tn-seq protocol used in this study. Read counts per insertion were normalized using the LOESS method as described in Zomer *et al.*, 2012. Finally we used the TRANSIT software (version 2.0) to compare the Tn-seq datasets.

Strain construction. To construct the A4277 strain, gene Dda3937_03424 was amplified with the oligonucleotides 19732+ and 19732−. The resulting fragment was inserted into the pGEM-T plasmid (Promega). A *uidA*-kanR cassette (Bardonnet and Blanco, 1991) was inserted into the unique AgeI site of the fragment. The construct was recombined into the *D. dadantii* chromosome according to Roeder and Collmer, 1985. Recombination was checked by PCR. To construct the in-frame deletion mutants, the counter-selection method using the *sacB* gene was used (Link *et al.*, 1997). The suicide pRE112 plasmid containing 500 bp of upstream and downstream DNA of the gene to be deleted was transferred by conjugation from the *E. coli* MFDpir strain into *D. dadantii* 3937. Selection of the first event of recombination was performed on LB agar supplemented with chloramphenicol at 30 µg/L. Transconjugants were then spread on LB agar without NaCl and supplemented with 5% sucrose to allow the second event of recombination. In-frame deletions were checked by auxotrophy analysis and/or by PCR (Dreamtaq polymerase, Thermofisher). In order to discriminate mutants from the wild-type strain during coinoculation experiments, a *GmR* derivative of the WT strain was constructed by insertion of the mini-Tn7-Gm into the *attTn7*
site (close to the \textit{glmS} gene) (Zobel \textit{et al}., 2015). A 3937 GmR strain was made by coelectroporation of pTn7-M (Zobel \textit{et al}., 2015) and pTnS3 (Choi \textit{et al}., 2008) plasmids into the \textit{D. dadantii} 3937 strain. The mini-Tn7-Gm delivered by the pTn7-M vector (suicide plasmid in \textit{D. dadantii}) was inserted into the \textit{attTn7} site (close to the \textit{glmS} gene) of the recipient strain thanks to the pTnS3 plasmid encoding the Tn7 site-specific transposition pathway. The GmR strain obtained was then checked by PCR using \textit{attTn7-Dickeya3937-verif} and 3-Tn7L primers (Table S5).

\textbf{Protein techniques.} Flagella were prepared from cells grown overnight in LB. Bacteria were pelleted, resuspended in 1/10 volume of water and passed 20-fold through a needle on a syringe. Cells and cell debris were removed by centrifugation 5 min at 20 000 x g (Shevchik \textit{et al}., 1994). Proteins were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Molecular mass of flagellin was determined by MALDI-MS at the Biopark platform at Archamps.

\textbf{Celery inoculation experiments.} Celeries were bought at a local grocery store. The wild-type and A4277 (glycosylation) mutant were grown overnight in M63 + glycerol medium. Bacteria were washed in M63 medium and the OD\textsubscript{600} was adjusted to 1.0. Bacteria were diluted 10-fold in the same medium. 10 \mu L of the bacterial suspension were inoculated into a hole in the leaves that had been made with a pipet tip. The wound was covered with mineral oil and the leaves were incubated at 30°C at high humidity for 2 days (celery). The length or the rotten tissue was measured.
Coinoculation experiments. To determine the competitive index of the mutants, the wild type strain and the test mutant were grown overnight in M63 + glycerol medium. Bacteria were washed in M63 medium and the OD_{600} was adjusted to 1.0. Bacteria were mixed at a 1:1 ratio and diluted 10-fold. For complementation experiments *in planta*, the dilution was performed in M63 medium with 1mM of the required amino acid. 10 μL of the mixture were inoculated into chicory leaves. The wound was covered with mineral oil and the leaves were incubated at 30 °C at high humidity. After 24 h the rotten tissue was collected, homogenized, diluted in M63 and spread onto LB and LB + antibiotic plates. After 48 h at 30°C, the colonies were counted. The competitive index is the ratio (number of mutant bacteria/number of WT bacteria) in the rotten tissue / (number of mutant bacteria/number of WT bacteria) in the inoculum. For the genes whose absence confers a growth advantage in chicory according to the Tn-seq experiment, in-frame deletions were realized in a WT strain. The other mutants were constructed in the 3937 Gm strain. This allows an easy detection of clones of the underrepresented strain among those of the other strain.

Nucleotide sequence accession numbers. The transposon sequence reads we obtained have been submitted to the ENA database under accession number PRJEB20574.

Acknowledgments

This work was supported by the CNRS, INSA and funded by a grant from the University Lyon I to E.G. (BQR UCBL). K.R was supported by a PhD grant from the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation. We thank Geraldine Effantin, Veronique Utzinger, Matthias Schulz, Andrea Flipo, Leana Corneloup and Barbara Gbaguidi for their technical assistance, the members of the MTSB team and Xavier Charpentier for
their discussion, Nicole Cotte-Pattat and Sarah Bigot for their critical reading of the manuscript and James Paslesvert for his encouragements.

References

Adeolu, M., Alnajar, S., Naushad, S. & R, S. G. 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaeae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol, 66, 5575-99.

Antunez-Lamas, M., Cabrera-Ordonez, E., Lopez-Solanilla, E., Raposo, R., Trelles-Salazar, O., Rodriguez-Moreno, A. & Rodriguez-Palenzuela, P. 2009. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology, 155, 434-42.

Azevedo, R. A., Arruda, P., Turner, W. L. & Lea, P. J. 1997. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry, 46, 395-419.

Bardonnet, N. & Blanco, C. 1991. Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol Lett, 68, 97-102.

Bouchart, F., Boussemart, G., Prouvost, A. F., Coge, V., Madec, E., Vidal, O., Delrue, B., Bohin, J. P. & Lacroix, J. M. 2010. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol, 192, 3484-90.
Buysse, J. A. N., & Merckx, R. (1993) An improved colorimetric method to quantify sugar content of plant tissue. *Journal of Experimental Botany*, 44(10), 1627-1629.

Chapelle, E., Alunni, B., Malfatti, P., Solier, L., Pedron, J., Kraepiel, Y. & Van Gijsegem, F. 2015. A straightforward and reliable method for bacterial in planta transcriptomics: application to the *Dickeya dadantii/Arabidopsis thaliana* pathosystem. *Plant J*, 82, 352-62.

Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., Hayes, C., Hugouvieux-Cotte-Pattat, N., Lopez Solanilla, E., Low, D., Moleleki, L., Pirhonen, M., Pitman, A., Perna, N., Reverchon, S., Rodriguez Palenzuela, P., San Francisco, M., Toth, I., Tsuyumu, S., Van Der Walls, J., Van Der Wolf, J., Van Gijsegem, F., Yang, C. H. & Yedidia, I. 2012. The role of secretion systems and small molecules in soft-rot *Enterobacteriaceae* pathogenicity. *Annu Rev Phytopathol*, 50, 425-49.

Chatterjee, A., Cui, Y. & Chatterjee, A. K. 2009. RsmC of *Erwinia carotovora* subsp. *carotovora* negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. *J Bacteriol*, 191, 4582-93.

Choi, K. H., Mima, T., Casart, Y., Rholl, D., Kumar, A., Beacham, I. R. & Schweizer, H. P. 2008. Genetic tools for select-agent-compliant manipulation of *Burkholderia pseudomallei*. *Appl Environ Microbiol*, 74, 1064-75.

Cole, B. J., Feltcher, M. E., Waters, R. J., Wetmore, K. M., Mucyn, T. S., Ryan, E. M., Wang, G., Ul-Hasan, S., Mcdonald, M., Yoshikuni, Y., Malmstrom, R. R., Deutschbauer, A. M., Dangl, J. L. & Visel, A. 2017. Genome-wide identification of bacterial plant colonization genes. *PLoS Biol*, 15, e2002860.
Condemine, G., Castillo, A., Passeri, F. & Enard, C. 1999. The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi. Mol Plant Microbe Interact, 12, 45-52.

Condemine, G., Dorel, C., Hugouvieux-Cotte-Pattat, N. & Robert-Baudouy, J. 1992. Some of the out genes involved in the secretion of pectate lyases in Erwinia chrysanthemi are regulated by kdgR. Mol Microbiol, 6, 3199-211.

Condemine, G. & Robert-Baudouy, J. 1991. Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol, 5, 2191-202.

Dejesus, M. A., Ambadipudi, C., Baker, R., Sassetti, C. & Ioerger, T. R. 2015. TRANSIT--A Software Tool for Himar1 TnSeq Analysis. PLoS Comput Biol, 11, e1004401.

Duong, D. A., Jensen, R. V. & Stevens, A. M. 2018. Discovery of Pantoea stewartii ssp. stewartii genes important for survival in corn xylem through a Tn-Seq analysis. Mol Plant Pathol. in press. Available at doi: 10.1111/mpp.12669

Franza, T. & Expert, D. 1991. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol, 173, 6874-81.

Franza, T. & Expert, D. 2013. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'a la carte' menu. Mol Plant Pathol, 14, 429-38.

Franza, T., Mahe, B. & Expert, D. 2005. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol, 55, 261-75.
Franza, T., Sauvage, C. & Expert, D. 1999. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein. Mol Plant Microbe Interact, 12, 119-28.

Fu, Y., Waldor, M. K. & Mekalanos, J. J. 2013. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe, 14, 652-63.

Goodall, E. C. A., Robinson, A., Johnston, I. G., Jabbari, S., Turner, K. A., Cunningham, A. F., Lund, P. A., Cole, J. A. & Henderson, I. R. 2018. The Essential Genome of Escherichia coli K-12. MBio, 9 e02096-17.

Hinton, J. C., Sidebotham, J. M., Hyman, L. J., Perombelon, M. C. & Salmond, G. P. 1989. Isolation and characterisation of transposon-induced mutants of Erwinia carotovora subsp. atroseptica exhibiting reduced virulence. Mol Gen Genet, 217, 141-8.

Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W. & Reverchon, S. 1996. Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol, 50, 213-57.

Jahn, C. E., Willis, D. K. & Charkowski, A. O. 2008. The flagellar sigma factor fliA is required for Dickeya dadantii virulence. Mol Plant Microbe Interact, 21, 1431-42.

Jiang, X., Zghidi-Abouzid, O., Oger-Desfeux, C., Hommais, F., Greliche, N., Muskhelishvili, G., Nasser, W. & Reverchon, S. 2016. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environ Microbiol, 18, 3651-3672.

Jozwick, A. K., Graf, J. & Welch, T. J. 2016. The flagellar master operon flhDC is a pleiotropic regulator involved in motility and virulence of the fish pathogen Yersinia ruckeri. J Appl Microbiol, 122, 578-88.
Khodai-Kalaki, M., Andrade, A., Fathy Mohamed, Y. & Valvano, M. A. 2015. *Burkholderia cenocepacia* lipopolysaccharide modification and flagellin glycosylation affect virulence but not innate immune recognition in plants. *MBio*, 6, e00679.

Ko, M. & Park, C. 2000. H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. *J Bacteriol*, 182, 4670-2.

Lebeau, A., Reverchon, S., Gaubert, S., Kraepiel, Y., Simond-Cote, E., Nasser, W. & Van Gijsegem, F. 2008. The GacA global regulator is required for the appropriate expression of *Erwinia chrysanthemi* 3937 pathogenicity genes during plant infection. *Environ Microbiol*, 10, 545-59.

Lee, D. H., Lim, J. A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. & Heu, S. 2013. Characterization of genes required for the pathogenicity of *Pectobacterium carotovorum* subsp. *carotovorum* Pcc21 in Chinese cabbage. *Microbiology*, 159, 1487-96.

Li, Y., Hutchins, W., Wu, X., Liang, C., Zhang, C., Yuan, X., Khokhani, D., Chen, X., Che, Y., Wang, Q. & Yang, C. H. 2015. Derivative of plant phenolic compound inhibits the type III secretion system of *Dickeya dadantii* via HrpX/HrpY two-component signal transduction and Rsm systems. *Mol Plant Pathol*, 16, 150-63.

Link, A. J., Phillips, D. & Church, G. M. 1997. Methods for generating precise deletions and insertions in the genome of wild-type *Escherichia coli*: application to open reading frame characterization. *J Bacteriol*, 179, 6228-37.

Madec, E., Bontemps-Gallo, S. & Lacroix, J. M. 2014. Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of *Dickeya dadantii* devoid of
osmoregulated periplasmic glucans revealed by Phos-tag gel analysis. *Microbiology*, 160, 2763-70.

Malinverni, J. C. & Silhavy, T. J. 2009. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. *Proc Natl Acad Sci U S A*, 106, 8009-14.

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, 17, 10-12.

Nasser, W., Faelen, M., Hugouvieux-Cotte-Pattat, N. & Reverchon, S. 2001. Role of the nucleoid-associated protein H-NS in the synthesis of virulence factors in the phytopathogenic bacterium *Erwinia chrysanthemi*. *Mol Plant Microbe Interact*, 14, 10-20.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. & Kanehisa, M. 1999. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.*, 27, 29-34.

Okinaka, Y., Yang, C. H., Perna, N. T. & Keen, N. T. 2002. Microarray profiling of *Erwinia chrysanthemi* 3937 genes that are regulated during plant infection. *Mol Plant Microbe Interact*, 15, 619-29.

Page, F., Altabe, S., Hugouvieux-Cotte-Pattat, N., Lacroix, J. M., Robert-Baudouy, J. & Bohin, J. P. 2001. Osmoregulated periplasmic glucan synthesis is required for *Erwinia chrysanthemi* pathogenicity. *J Bacteriol*, 183, 3134-41.

Pirhonen, M., Saarilahti, H., Karlsson, M.-B. & Palva, E. T. 1991. Identification of pathogenicity determinants of *Erwinia carotovora* subsp. *carotovora* by transposon mutagenesis. *Molecular Plant-Microbe Interaction*, 4, 276-283.

This article is protected by copyright. All rights reserved.
Ravirala, R. S., Barabote, R. D., Wheeler, D. M., Reverchon, S., Tatum, O., Malouf, J., Liu, H., Pritchard, L., Hedley, P. E., Birch, P. R., Toth, I. K., Payton, P. & San Francisco, M. J. 2007. Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Mol Plant Microbe Interact, 20, 313-20.

Résibois, A., Colet, M., Faelen, M., Schoonejans, E. & Toussaint, A. 1984. phiEC2, a new generalized transducing phage of Erwinia chrysanthemi. Virology, 137, 102-12.

Reverchon, S., Muskhelisvili, G. & Nasser, W. 2016. Virulence program of a bacterial plant pathogen: the Dickeya model. Prog Mol Biol Transl Sci, 142, 51-92.

Reverchon, S. & Nasser, W. 2013. Dickeya ecology, environment sensing and regulation of virulence programme. Environ Microbiol Rep, 5, 622-36.

Reverchon, S., Nasser, W. & Robert-Baudouy, J. 1994. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol, 11, 1127-39.

Reverchon, S., Rouanet, C., Expert, D. & Nasser, W. 2002. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol, 184, 654-65.

Rio-Alvarez, I., Munoz-Gomez, C., Navas-Vasquez, M., Martinez-Garcia, P. M., Antunez-Lamas, M., Rodriguez-Palenzuela, P. & Lopez-Solanilla, E. 2015. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. Mol Plant Pathol, 16, 685-98.

Roeder, D. L. & Collmer, A. 1985. Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol, 164, 51-6.

This article is protected by copyright. All rights reserved.
Santos, R., Franza, T., Laporte, M. L., Sauvage, C., Touati, D. & Expert, D. 2001. Essential role of superoxide dismutase on the pathogenicity of *Erwinia chrysanthemi* strain 3937. *Mol Plant Microbe Interact*, 14, 758-67.

Shevchik, V. E., Condemine, G. & Robert-Baudouy, J. 1994. Characterization of DsbC, a periplasmic protein of *Erwinia chrysanthemi* and *Escherichia coli* with disulfide isomerase activity. *Embo J*, 13, 2007-12.

Skurnik, D., Roux, D., Aschard, H., Cattoir, V., Yoder-Himes, D., Lory, S. & Pier, G. B. 2013. A comprehensive analysis of *in vitro* and *in vivo* genetic fitness of *Pseudomonas aeruginosa* using high-throughput sequencing of transposon libraries. *PLoS Pathog*, 9, e1003582.

Surgey, N., Robert-Baudouy, J. & Condemine, G. 1996. The *Erwinia chrysanthemi* pecT gene regulates pectinase gene expression. *J Bacteriol*, 178, 1593-9.

Taguchi, F., Yamamoto, M., Ohnishi-Kameyama, M., Iwaki, M., Yoshida, M., Ishii, T., Konishi, T. & Ichinose, Y. 2010. Defects in flagellin glycosylation affect the virulence of *Pseudomonas syringae* pv. *tabaci* 6605. *Microbiology*, 156, 72-80.

Tans-Kersten, J., Brown, D. & Allen, C. 2004. Swimming motility, a virulence trait of *Ralstonia solanacearum*, is regulated by FlhDC and the plant host environment. *Mol Plant Microbe Interact*, 17, 686-95.

Thangavelu, B., Bhansali, P. & Viola, R. E. 2015. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors. *Bioorg Med Chem*, 23, 6622-31.

Van Gijsegem, F., Wlodarczyk, A., Cornu, A., Reverchon, S. & Hugouvieux-Cotte-Pattat, N. 2008. Analysis of the LacI family regulators of *Erwinia chrysanthemi* 3937,

This article is protected by copyright. All rights reserved.
involvement in the bacterial phytopathogenicity. *Mol Plant Microbe Interact*, 21, 1471-81.

Van Opijnen, T. & Camilli, A. 2012. A fine scale phenotype-genotype virulence map of a bacterial pathogen. *Genome Res*, 22, 2541-51.

Van Opijnen, T. & Camilli, A. 2013. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. *Nat Rev Microbiol*, 11, 435-42.

Wiles, T. J., Norton, J. P., Russell, C. W., Dalley, B. K., Fischer, K. F. & Mulvey, M. A. 2013. Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. *PLoS Genet*, 9, e1003716.

Wolfe, A. J. 2005. The acetate switch. *Microbiol Mol Biol Rev*, 69, 12-50.

Wu, X., Zeng, Q., Koestler, B. J., Waters, C. M., Sundin, G. W., Hutchins, W. & Yang, C. H. 2014. Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen *Dickeya dadantii*. *Mol Plant Microbe Interact*, 27, 1119-31.

Xu, T., Su, Y., Xu, Y., He, Y., Wang, B., Dong, X., Li, Y. & Zhang, X. H. 2014. Mutations of flagellar genes *fliC12, fliA* and *flhDC* of *Edwardsiella tarda* attenuated bacterial motility, biofilm formation and virulence to fish. *J Appl Microbiol*, 116, 236-44.

Yang, C. H., Gavilanes-Ruiz, M., Okinaka, Y., Vedel, R., Berthuy, I., Bocca, M., Chen, J. W., Perna, N. T. & Keen, N. T. 2002. *hrp* genes of *Erwinia chrysanthemi* 3937 are important virulence factors. *Mol Plant Microbe Interact*, 15, 472-80.

Yang, S., Peng, Q., Zhang, Q., Zou, L., Li, Y., Robert, C., Pritchard, L., Liu, H., Hovey, R., Wang, Q., Birch, P., Toth, I. K. & Yang, C. H. 2010. Genome-wide identification of
HrpL-regulated genes in the necrotrophic phytopathogen *Dickeya dadantii* 3937.

PLoS One, 5, e13472.

Yang, S., Perna, N. T., Cooksey, D. A., Okinaka, Y., Lindow, S. E., Ibeke, A. M., Keen, N. T. & Yang, C. H. 2004. Genome-wide identification of plant-upregulated genes of *Erwinia chrysanthemi* 3937 using a GFP-based IVET leaf array. *Mol Plant Microbe Interact*, 17, 999-1008.

Yi, X., Yamazaki, A., Biddle, E., Zeng, Q. & Yang, C. H. 2010. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in *Dickeya dadantii*. *Mol Microbiol*, 77, 787-800.

Yuan, X., Khokhani, D., Wu, X., Yang, F., Biener, G., Koestler, B. J., Raicu, V., He, C., Waters, C. M., Sundin, G. W., Tian, F. & Yang, C. H. 2015. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours. *Environ Microbiol*, 17, 4745-63.

Yuan, X., Tian, F., He, C., Severin, G. B., Waters, C. M., Zeng, Q., Liu, F. & Yang, C. H. 2018. The diguanylate cyclase GcpA inhibits the production of pectate lyases via the H-NS protein and RsmB regulatory RNA in *Dickeya dadantii*. *Mol Plant Pathol*. in press. Available at doi: 10.1111/mpp.12665

Zobel, S., Benedetti, I., Eisenbach, L., De Lorenzo, V., Wierckx, N. & Blank, L. M. 2015. Tn7-based device for calibrated heterologous gene expression in *Pseudomonas putida*. *ACS Synth Biol*, 4, 1341-51.

Zomer, A., Burghout, P., Bootsma, H. J., Hermans, P. W. & Van Hijum, S. A. 2012. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. *PLoS One*, 7, e43012.
Legend of figures

Fig. 1. Quality control of the Tn-seq *D. dadantii* 3937 libraries. (A and B) Biological reproducibility of the Tn-seq results. Pairs of Tn-seq assay results are compared, with the total number of reads per gene plotted. Analysis of DNA samples corresponding to two independent cultures of the mutant pool grown (A) in LB medium (correlation coefficient $R = 0.72$) and (B) in chicory (correlation coefficient $R = 0.98$). Values represent average numbers of reads per gene from the pairs of biological replicates. (C) Frequency and distribution of transposon sequence reads across the entire *D. dadantii* 3937 genome. The localization of transposon insertions shows no bias throughout the genome of *D. dadantii* 3937. (D) Density plot of log$_2$FC (measured reads/expected reads per gene).

Fig 2. Scheme of the purine and pyrimidine biosynthesis pathways in *D. dadantii* that produce XMP (purine metabolism) and UMP (pyrimidine metabolism) from L-glutamine. Pathways have been drawn based on the *Dickeya dadantii* 3937 KEGG database. The growth defect genes in chicory that pass the permutation test (q-value ≤ 0.05) are indicated in red. The genes for which the GD phenotype was tested and confirmed with in-frame deletion mutants are shown in bold. The log$_2$FC of read numbers between chicory and LB for each gene is indicated in brackets. Some genes do not pass the permutation test (in black) but have a strongly negative log$_2$FC. PRPP: 5-phosphoribosyl-1-pyrophosphate ; GAR: 5’-phosphoribosyl-1-glycinamide ; FGAM: 5’-phosphoribosyl-N-formylglycinamide ; AIR: 5’-phosphoribosyl-5-aminimidazole ; CAIR: 5’-phosphoribosyl-5-aminimidazole carboxylic acid ; SAICAR: 5’-phosphoribosyl-4-(N-succino-carboxamide)-5-aminimidazole ; AICAR: 5-aminimidazole-4-carboxamide ribonucleotide ; IMP: inosine monophosphate ; XMP: xanthine monophosphate ; UMP: uridine monophosphate.
Fig 3. Modification of FliC revealed by Tn-seq analysis and SDS-PAGE. (A) The importance of 6 genes located between flia and flic for growth in chicory. Log2FC are indicated in brackets. Dda3937_03425 and Dda3937_03426 are duplicated transposase genes that have been removed from the analysis. Black arrow: GD in chicory (q-value ≤ 0.05); white arrow: genes that do not pass the permutation test (q-value > 0.05). Small arrows indicate the presence of a promoter. (B) Analysis by SDS-PAGE of FliC produced by the wild type (lane 1), the A3422 (lane 2) and the A4277 (lane 3) strains. (C) Maceration of celery leaves by the Wild Type and the A4277 (glycosylation) mutant. Length of rotten tissue was measured 48 h post infection. Boxplot were generated by BoxPlotR from 9 data points. The calculated median value is 109 for the WT strain, 40 for the A4277 strain. Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Statistical analysis were performed with the Mann–Whitney U test.

Fig 4. Competitive Index (CI) of several mutant strains. CI values were determined in chicory leaves as described in Methods. Each value is the mean of 5 experiments. Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles and outliers are represented by dots. n = 5 sample points. Numbers above the boxes indicate the average competitive index in Log10. * indicates a significant difference relative to the WT (p<0.05). Statistical analysis were performed with the Mann–Whitney U test.
Fig 5. Complementation of auxotroph mutants in planta. Each leaf was inoculated with 10^6 bacteria. The length of rotten tissue was measured after 24h. Bacteria were injected into the wounded leaf with or without amino acid. Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles and outliers are represented by dots. n = 5 sample points. Numbers above the boxes indicate the average competitive index in Log_{10}. * indicates a significant difference relative to the WT (p<0.05). ** Indicates an absence of any significant difference relative to the WT (p>0.05). Statistical analysis were performed with the Mann–Whitney U test.

Supporting information legends

Fig S1. Volcano plot of resampling results comparing replicates grown in chicory versus in LB. Significant hits have q < 0.05 or −log_{10} q > 1.3. Growth defect (GD) or growth advantage (GA) genes are indicated by a red frame.

Fig S2. Examples of essential and important genes revealed by Tn-seq. Number of reads at each transposon location in the sample grown either in LB or in chicory. Data are averaged from biological replicates and normalized as described in the methods section. Four regions of the genome representative of the Tn-seq results are shown, with the predicted genes indicated at the bottom of each panel. Peaks represent the read number at TA sites. Black arrows represent genes that passed the permutation test (q-value ≤ 0.05). Small arrows indicate the presence of a promoter (A) dnaX which encodes both the tau and gamma
subunits of DNA polymerase is represented by a grey arrow. *dnaX* is an essential gene in LB. *acrAB* genes represented by dark arrows are GD in chicory (q-value ≤ 0.05). (B) Essentiality of leucine biosynthetic genes in chicory. (C) Importance of genes involved in motility for growth in chicory. (C) Insertions in the 5’ region of *rsmC* confer a growth advantage for the bacteria in chicory.

Table S1: raw data of the HMM and resampling analysis by transit
Table S2: number of genes implicated in the KEGG pathway
Table S3: bacterial strains used in this study
Table S4: plasmids used in this study
Table S5: oligonucleotides used in this study
TABLE 1 Tn-Seq analysis of *Dickeya dadantii* 3937

Mutant pool	Total no. of reads	No. of reads containing Tn end	No. of reads normalized\(a\)	No. of mapped reads to unique TA sites	No. of mapped reads to unique TA sites after LOESS correction	Density (\%)\(^b\)	Mean read count over non-zero TA \(^c\)
LB #1	23,152,186	22,647,343	18,748,028	13,166,770 (70 %)	12,904,900 (69 %)	28 %	268
LB #2	30,105,412	27,963,154	18,748,028	15,535,291 (83 %)	15,195,582 (81 %)	22 %	406
Chicory #1	18,925,029	18,748,028	18,748,028	17,535,146 (94 %)	14,906,888 (79 %)	24 %	362
Chicory #2	27,607,717	26,555,297	18,748,028	17,477,706 (93 %)	16,955,724 (90 %)	23 %	436

\(a\) The number of reads containing the sequence of a Tn end were normalized for each sample according to the number of reads for the sample Chicory #1.

\(b\) *Dickeya dadantii* 3937 genome has 171,791 TA sites. The density is the % of TAs for which mapped reads has been assigned by the TPP software.

\(c\) the mean value of mapped reads per TA with at least one insertion.
TABLE 2 Genes identified by Tn-seq exhibiting a growth variation from LB to chicory. Data obtained with TRANSIT software.

Locus	Gene^a	Function	HMM	RESAMPLING	In genes in operon^c (state)^b
Dda3937_00335	gplD	glycerol-3-phosphate dehydrogenase	GD	No. of LB	Mean reads^d
Dda3937_03379	purH	phosphoribosylformyl-glycinemide synthetase precursor	NE	No. of TAs^c	Mean reads^d
Dda3937_03564	opgG	Glucans biosynthesis protein G	GA	No. of LB	Mean reads^d
Dda3937_00244	purH	phosphoribosylaminomimidazolecarboxamide formyltransferase/IMP cyclohydrolase	NE	No. of TAs^c	Mean reads^d
Dda3937_00432	hyJK	FtsH protease regulator	GD	No. of LB	Mean reads^d
Dda3937_02515	purH	phosphoribosylaminomimidazole synthetase	NE	No. of TAs^c	Mean reads^d
Dda3937_02627	4-hydroxythreonine-4-phosphate dehydrogenase	NE	No. of TAs^c	Mean reads^d	
Dda3937_00004	purH	IMP dehydrogenase	NE	No. of LB	Mean reads^d
Dda3937_03563	opgH	Glucans biosynthesis glucosyltransferase H	GA	No. of LB	Mean reads^d
Dda3937_01284	pyrB	aspartate carbamoyltransferase	NE	No. of LB	Mean reads^d
Dda3937_03924	rffG	dTDP-glucose 4,6-dehydratase	NE	No. of LB	Mean reads^d

- GD: Growth detected, NE: No growth detected
- LB: Low biomass, TAs: Total active states
- Mean reads: Average number of reads per gene
- log2FC: Log2 fold change
- q-value: Adjusted p-value
- Y: Present, N: Absent

This article is protected by copyright. All rights reserved.
Genotype	Gene	Description	Expression (Z-score)	Direction	P-value (FDR)
Dda3937_01389	carB	carbamoyl-phosphate synthase large subunit	NE 48 249 0 -7.967 -9.23 0.00	N	
Dda3937_03299	acrA	MexF family multidrug efflux RND transporter peripheral adaptor subunit	NE 34 196 0 -5.860 -9.03 0.00	Y	
Dda3937_03300	acrB	multidrug efflux system protein	NE 89 422 1 -31.986 -8.90 0.00	Y	
Dda3937_03258	pyrE	orotate phosphoribosyltransferase	NE 14 175 0 -2.788 -8.81 0.00	N	
Dda3937_02336	nipB	lipoprotein	GD 33 27 0 -601.000 -8.69 0.00	N	
Dda3937_02506	nipB	outer membrane protein assembly factor BamC	NE 20 47 0 -841.000 -8.69 0.00	Y	
Dda3937_04018	pta	phosphate acetyltransferase	GD 36 579 2 -10.400 -8.59 0.02	N	
Dda3937_03554	pyrC	dihydro- orotase	NE 25 343 1 -7.534 -8.44 0.00	N	
Dda3937_04573	lpxM	acyl (myristate) transferase	NE 33 63 0 -1,764 -8.31 0.00	N	
Dda3937_01116	glmG	Nitrogen regulation protein NR(1), Two-component system	NE 26 39 0 -629.000 -8.22 0.00	Y	
Dda3937_02099	purF	amidophosphoribosyltransferase	NE 32 107 0 -2.779 -8.19 0.00	Y	
Dda3937_04019	ackA	acetoate kinase A and propionate kinase 2	NE 29 45 0 -1.063 -8.16 0.00	Y	
Dda3937_02189	yegM	Membrane-anchored periplasmic protein, alkaline phosphatase superfamily	GA 34 4160 15 -99.478 -8.08 0.00	Y	
Dda3937_01390	carA	carbamoyl-phosphate synthase small subunit	NE 21 69 0 -956.000 -8.05 0.00	N	
Dda3937_01426	ptsI	Phosphoenolpyruvate-protein phosphotransferase of PTS system	NE 33 45 0 -1.176 -7.85 0.00	Y	
Dda3937_00161	cystQ	E(2),5-bisphospho nucleotidase	NE 16 44 0 -434.000 -7.81 0.02	Y	
Dda3937_00210	cystI	sulfite reductase beta subunit	NE 40 252 1 -7.515 -7.65 0.00	Y	

Accepted Article

This article is protected by copyright. All rights reserved.
Gene ID	Description	Type	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Value 11	Value 12	Value 13
Dda3937_04075	lysR family transcriptional regulator	NE	13	2385	13	-18,976	-7.51	0.00	N						
Dda3937_02526	yadB conserved protein	NE	18	50	0	-591,000	-7.50	0.00	N						
Dda3937_03888	metB cystathionine gamma-synthase	NE	21	118	1	-1,881	-7.34	0.01	Y						
Dda3937_00195	relA (p)ppGpp synthetase I/GTP	NE	55	256	2	-11,683	-7.12	0.00	Y						
Dda3937_02532	fruR fructose repressor FruR, LacI family	NE	15	399	3	-4,756	-7.04	0.00	N						
Dda3937_02226	fltB flagellar M-ring protein fltB	NE	46	476	4	-18,898	-7.02	0.00	Y						
Dda3937_02206	flgE flagellar hook protein flgE	NE	50	597	5	-29,608	-7.00	0.00	Y						
Dda3937_04507	gnd phosphoglucomate dehydrogenase (NADP(+)...	GD	36	7	0	-190,000	-6.91	0.00	N						
Dda3937_00694	degQ Protease	NE	28	80	1	-956,000	-6.87	0.01	N						
Dda3937_03631	trxB thioredoxin-disulfide reductase	GD	25	16	0	-257,000	-6.85	0.03	N						
Dda3937_00361	yfgC intracellular growth attenuator protein	GD	38	22	0	-430,000	-6.78	0.03	N						
Dda3937_00588	cysB Transcriptional dual regulator, O-acetyl-L...	NE	29	90	1	-2,504	-6.75	0.00	N						
Dda3937_03783	pre carboxy-terminal protease for penicillin-b...	NE	46	243	2	-11,557	-6.71	0.00	Y						
Dda3937_00433	fflX predicted GTPase	GD	27	16	0	-187,000	-6.69	0.04	N						
Dda3937_03427	fltC flagellar filament structural protein (flagellin)	NE	33	96	1	-1,520	-6.61	0.03	Y						
Dda3937_02223	fltI flagellum-specific ATP synthase fltI	NE	42	236	3	-7,009	-6.56	0.00	Y						

Note: This article is protected by copyright. All rights reserved.
Strain	Protein (Gene)	Description	Location	Relative Expression	P-value	Directionality							
Dda3937_04419	fabF	DNA-binding transcriptional regulator	NE	29	-3.241	-6.34	0.00	N					
Dda3937_02009	cycL	sulftie reductase alpha subunit	NE	41	-6.746	-6.25	0.00	Y					
Dda3937_02209	flgH	Flagellar L-ring protein flgH	NE	23	-13.875	-6.22	0.01	Y					
Dda3937_02246	argD	beta-ketoacyl-[acyl-carrier-protein] synthase II	GID	41	-273,000	-6.15	0.00	N					
Dda3937_02301	purD	ATP-dependent DNA helicase UvrD/PcrA	NE	42	-678,000	-6.11	0.00	N					
Dda3937_02212	flgK	Flagellar hook-associated protein flgK	NE	63	-4,808	-6.07	0.00	Y					
Dda3937_04046	purU	Formyltetrahydrofolate deformylase	NE	28	-1,105	-5.84	0.00	N					
Dda3937_03965	flhA	predicted flagellar export pore protein	NE	49	-3,532	-5.80	0.00	Y					
Dda3937_02205	flgD	Flaggellar basal-body rod modification protein flgD	NE	22	4,905	5.73	0.01	Y					
Dda3937_01352	leuC	3-isopropylmalate dehydratase large subunit	NE	21	-2,457	-5.73	0.01	Y					
Dda3937_02784	flhC	Flagellar transcriptional activator flhC	NE	20	-11,222	-5.66	0.01	Y					
Dda3937_02782	motB	Flagellar motor rotation protein motB	NE	40	-4,067	-5.55	0.01	Y					
Strain	Gene	Function	Mutant	Wild-type	Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Effect	Remarks
----------------	----------	---	--------	-----------	------------	------------	------------	------------	------------	------------	------------	--------	------------------
Dda3937_02210	fgl1	Flagellar P-ring protein fgl1	NE	26 163 4	-3.191	-5.49	0.00	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fllj (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_02222	flj1	Flagellar protein flj1	NE	14 182 4	-2.486	-5.44	0.03	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_02219	fljM	Flagellar motor switch protein fljM	NE	27 143 3	-3.339	-5.40	0.00	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_02774	fbbH	Flagellar biosynthesis protein fbbH	NE	32 186 5	-4.712	-5.31	0.00	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_02777	cheE	Chemotaxis response regulator protein-glutamate methyltransferase CheE	NE	31 282 8	-7.682	-5.14	0.00	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_02783	motA	Flagellar motor rotation protein motA	NE	24 39 1	-834,000	-5.06	0.00	Y	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
Dda3937_00565	tonB	TonB protein	NE	14 106 3	-2.062	-5.00	0.05	N	fglH (-6.22) fgl (-5.49) fglj (7.16) fliF (-7.02) fliG (-4.26) fliH (-3.93) fliI (-6.56) fli (-5.44) fliK (-4.71) fliL (-4.17) fliM (-5.4) fliN (-4.78) fliO (-6.89) fliP (-4.78) fliQ (-3.12) fliR (-4.56) fliT (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) fliE (-0.89) fliA (-5.8) fliB (-5.31) Dda3937_04633 (-1) cheZ (-3.29) cheY (-4.52) cheB (-5.14) cheR (-4.67) cheE (-0.89) cheA (-5.06) cheB (-5.55) cheA (-4.89) cheW (-5.39)				
	Accession	Description	Species	Gene	Chromosome	Expression	Log2 Fold Change	p-Value					
-------	-----------	--	---------	------	------------	-----------	------------------	---------					
Dda3937_00427 flgC	fructose-bisphosphatase	GA	33	805	27	-28,026	-4.92	0.01					
Dda3937_0022205 cheR	Chemotaxis protein CheA	NE	50	151	5	-5,858	-4.89	0.00					
Dda3937_00322 Carboxylase synthase small subunit	NE	43	379	13	-11,713	-4.85	0.02						
Dda3937_00257 flgC	Diaminopimelate decarboxylase	NE	33	113	7	-3,989	-4.79	0.00					
Dda3937_0022075 flgF	Flagellar basal-body rod protein FlgF	NE	21	35	1	-671,000	-4.76	0.00					
Dda3937_00230 flfD	Flagellar hook-associated protein FlfD	NE	47	93	3	-2,506	-4.75	0.00					
Dda3937_00301 fltD	Flagellar hook-associated protein FltD	NE	36	35	1	-944,000	-4.69	0.02					
Dda3937_00278 cheR	Chemotaxis protein methyltransferase CheR	NE	30	462	18	-8,882	-4.67	0.05					
Dda3937_0022205 fltT	Flagellar biosynthesis protein FltT	GD	16	8	0	-95,000	-4.63	0.05					
Dda3937_004004 leuB	3-isopropylmalate dehydrogenase	NE	16	285	12	-3,835	-4.63	0.05					
Dda3937_00214 fltR	Flagellar biosynthesis protein FltR	NE	33	268	11	-5,653	-4.56	0.00					

This article is protected by copyright. All rights reserved.
Gene	Description	Effect	Fold Change	p-value	Regulation	
Dda3937_03727	4-deoxy-L-threo-5-hexosulose-uronate dehydratase	NE	26	70	3	-2.615 -4.54 0.03 N
Dda3937_03267	O-antigens, teichoic acid lipoteichoic acids export membrane protein	ES	107	89	4	-1.181 -4.33 0.05 Y
Dda3937_00415	D-erythro 4-phosphate dehydrogenase	NE	26	316	16	-4.793 -4.27 0.02 N
Dda3937_02337	Diphosphate phosphorolyase-polyadenylate synlase	GD	50	5	0	-105,000 -3.97 0.00 N
Dda3937_01683	N5-carboxyaminoimidazole ribonucleotide synthase	NE	16	90	0	-722,000 -3.49 0.01 Y
Dda3937_00689	predicted toluene transporter subunit	GA	9	1254	114	-15,962 -3.47 0.01 Y
Dda3937_02832	helD	NE	26	99	9	-1,803 -3.46 0.01 N
Dda3937_02252	ptsG	NE	37	81	8	-2,928 -3.38 0.03 N
Dda3937_00726	tolC	NE	34	184	0	-3,304 -3.35 0.00 N
Dda3937_02363	cipA	NE	44	64	8	-1,793 -3.02 0.03 Y
Dda3937_02470	corC	NE	13	159	21	-1,377 -2.90 0.02 Y
Dda3937_00692	yrbC	GA	23	740	106	-16,493 -2.81 0.01 Y

This article is protected by copyright. All rights reserved.
Dda3937_02045	enmC	murine hydrolase activator	NE	17 71 12	-825,000 -2.59 0.00	N	nuoN (-2.01) nuoM (-2.47)
Dda3937_01807	mohl	NADH-quinone oxidoreductase subunit M	NE	29 57 10	-1,130 -2.47 0.03	V	
Dda3937_03668	sufl	Fe-S cluster assembly protein	NE	32 116 21	-3,581 -2.44 0.00	V	sufl8 (-2.44) suflA (-1.47)
Dda3937_02080	trkH	Potassium uptake protein	NE	36 65 13	-1,047 -2.33 0.05	V	postQ (-0.21); yigZ (+0.1) trkH (-2.33) hems (+1.15)
Dda3937_03042	ferrichryso in outer membrane receptor	NE	80 244 51	-14,622 -2.25 0.01	N		
Dda3937_01287	argl	Ornithine carbamoyltransferase	NE	24 279 59	-4,383 -2.23 0.03	N	
Dda3937_02456	ranC	global regulatory protein	NE	10 116 221,705 2.659,867 10.90 0.028	N		
Dda3937_03848	ronC	hypothetical protein	GA	55 3728 140,136 9,002,975 5.23 0.00	N		
Dda3937_03971	smtD	outer membrane-bound lytic murein transglycosylase D	NE	46 276 10,885 445,590 5.30 0.00	N		
Dda3937_00363	mrcA	penicillin-binding protein 1A (PBP1A)	NE	53 85 468 16,879 2.47 0.021	N		

* Genes for which a role in *D. akodontii* virulence has been described before are in bold. Underlined genes have been deleted to study the mutants in further analysis.

* State of each gene in LB defined by the TRANSIT software using an Hidden Markov Model: NE, Non-Essential; GD, Growth-Defect; E, Essential; GA, Growth-Advantage.

* Mean reads per TA site for a gene in each growth condition

* Difference of reads between chicory and LB growth condition

* Ratio of reads between chicory and LB condition expressed in log2

* P-values adjusted for multiple comparisons using the Benjamini-Hochberg procedure (See Transit manual)

* Presence of the gene in an operon (Yes or No)

* Operon structure determined by analysis of *D. akodontii* RNA-seq datasets from Jiang X et al., Environ Microbiol. 2016 Nov;18(11):3651-3672. FC for each gene in operon are indicated in brackets, genes considered to be essential in chicory are indicated in bold (q-value < 0.05).
Figure 3

A

LB
Chicory
TA sites

03419 (-2.44)
03420 (-0.70)
03421 (-0.71)
03422 (-4.85)
03426 (-6.61)

diphospho sugar transferase

O-linked N-acetylgalactosamine transferase

B

kDa

25 -
35 -

WT
Ddb8937_03419::Mu-kan

C

Length of cut-off tissue (mm)

WT
Ddb8937_03424::uidA-kan
Figure 5

Competitive index (Log_{10})

WT ΔcysJ ΔcysJ + cysteine ΔmetB ΔmetB + methionine ΔeuA ΔeuA + leucine ΔlysA ΔlysA + lysine

-0.04 -0.92 -0.14 -0.62 -0.11 -0.28 -2.16 -2.46 -0.67