SURFACES AS GRAPHS OF FINITE TYPE IN $\mathbb{H}^2 \times \mathbb{R}$

AHMED AZZI1,*, ZOUBIR HANIFI2, MOHAMMED BEKKAR1

1Department of Mathematics, Faculty of Sciences, University of Oran 1, Ahmed Benbella Algeria
2Ecole Nationale Polytechnique d’Oran, Département de Mathématiques, et Informatique B.P 1523 El M’Naour, Oran, Algérie

*Corresponding author: azzi.mat@hotmail.fr

ABSTRACT. In this paper, we prove that $\Delta X = 2H$ where Δ is the Laplacian operator, $r = (x, y, z)$ the position vector field and H is the mean curvature vector field of a surface S in $\mathbb{H}^2 \times \mathbb{R}$ and we study surfaces as graphs in $\mathbb{H}^2 \times \mathbb{R}$ which has finite type immersion.

1. Introduction

The $\mathbb{H}^2 \times \mathbb{R}$ geometry is one of eight homogeneous Thurston 3-geometries

$$E^3, S^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, \widetilde{SL(2, \mathbb{R})}, Nil, Sol.$$

The Riemannian manifold (M,g) is called homogeneous if for any $x, y \in M$ there exists an isometry $\phi : M \to M$ such that $y = \phi(x)$. The two and three-dimensional homogeneous geometries are discussed in detail in [6].

A Euclidean submanifold is said to be of finite Chen-type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian [3]. B. Y. Chen posed the problem of classifying the finite type surfaces in the...
3-dimensional Euclidean space \(\mathbb{E}^3 \). Further, the notion of finite type can be extended to any smooth function on a submanifold of a Euclidean space or a pseudo-Euclidean space.

Let \(S \) be a 2-dimensional surface of the Euclidean 3-space \(\mathbb{E}^3 \). If we denote by \(r, H \) and \(\Delta \) the position vector field, the mean curvature vector field and the Laplace operator of \(S \) respectively, then it is well-known that [3]

\[
\Delta r = -2H.
\]

(1.1)

A well-known result due to Takahashi states that minimal surfaces and spheres are the only surfaces in \(\mathbb{E}^3 \) satisfying the condition \(\Delta r = \lambda r \) for a real constant \(\lambda \). From (1.1), we know that minimal surfaces and spheres also verify the condition

\[
\Delta H = \lambda H, \quad \lambda \in \mathbb{R}.
\]

(1.2)

Equation (1.1) shows that \(S \) is a minimal surface of \(\mathbb{E}^3 \) if and only if its coordinate functions are harmonic. In [9], D. W. Yoon studied surfaces invariant under the 1-parameter subgroup in \(Sol_3 \).

In 2012, M. Bekkar and B. Senoussi [1] studied the translation surfaces in the 3-dimensional Euclidean and Lorentz-Minkowski space under the condition

\[
\Delta^{III} r_i = \mu_i r_i, \quad \mu_i \in \mathbb{R},
\]

where \(\Delta^{III} \) denotes the Laplacian of the surface with respect to the third fundamental form \(III \).

A surface \(S \) in the Euclidean 3-space \(\mathbb{E}^3 \) is called minimal when locally each point on the surface has a neighborhood which is the surface of least area with respect to its boundary [5]. In 1775, J. B. Meusnier showed that the condition of minimality of a surface in \(\mathbb{E}^3 \) is equivalent with the vanishing of its mean curvature function, \(H = 0 \).

Let \(z = f(x,y) \) define a graph \(S \) in the Euclidean 3-space \(\mathbb{E}^3 \). If \(S \) is minimal, the function \(f \) satisfies

\[
(1 + (f_y)^2) f_{xx} - 2f_{xy}f_x f_y + (1 + (f_x)^2) f_{yy} = 0,
\]

which was obtained by J. L. Lagrange in 1760.

In 1835, H. F. Scherk studied translation surfaces in \(\mathbb{E}^3 \) and proved that, besides the planes, the only minimal translation surfaces are given by

\[
z(x, y) = \frac{1}{\lambda} \log |\cos(\lambda x)| - \frac{1}{\lambda} \log |\cos(\lambda y)|,
\]

where \(\lambda \) is a non-zero constant. In 1991, F. Dillen, L. Verstraelen and G. Zafindratafa [4] generalized this result to higher-dimensional Euclidean space.
In 2015, D. W. Yoon [8] studied translation surfaces in the product space \(\mathbb{H}^2 \times \mathbb{R} \) and classified translation surfaces with zero Gaussian curvature in \(\mathbb{H}^2 \times \mathbb{R} \).

In 2019, B. Senoussi, M. Bekkar [7] studied translation surfaces of finite type in \(H_3 \) and \(Sol_3 \) and the authors gave some theorems.

A surface \(S(\gamma_1, \gamma_2) \) in \(\mathbb{H}^2 \times \mathbb{R} \) is a surface parametrized by
\[
S : \Omega \subseteq \mathbb{R}^2 \rightarrow \mathbb{H}^2 \times \mathbb{R}, \quad X(s, t) = \gamma_1(s) \ast \gamma_2(t) \text{ or } X(s, t) = \gamma_2(t) \ast \gamma_1(s),
\]
where \(\gamma_1 \) and \(\gamma_2 \) are any generating curves in \(\mathbb{R}^3 \). Since the multiplication \(\ast \) is not commutative.

In this work we study the surfaces as graphs of functions \(\varphi = f(s, t) \) in \(\mathbb{H}^2 \times \mathbb{R} \) satisfy the condition
\[
(1.3) \quad \Delta x_i = \lambda_i x_i, \quad \lambda_i \in \mathbb{R}.
\]

2. Preliminaries

Let \(\mathbb{H}^2 \) be represented by the upper half-plane model \(\{(x, y) \in \mathbb{R} \mid y > 0\} \) equipped with the metric
\[
g_{\mathbb{H}} = \frac{(dx^2 + dy^2)}{y^2}.
\]
The space \(\mathbb{H}^2 \), with the group structure derived by the composition of proper affine maps, is a Lie group and the metric \(g_{\mathbb{H}} \) is left invariant.

Therefore, the product space \(\mathbb{H}^2 \times \mathbb{R} \) is a Lie group with the left invariant product metric
\[
g = \frac{(dx^2 + dy^2)}{y^2} + dz^2,
\]
we can define the multiplication law on \(\mathbb{H}^2 \times \mathbb{R} \) as follows
\[
(x, y, z) \ast (\bar{x}, \bar{y}, \bar{z}) = (y\bar{x} + x, y\bar{y} + y, z + \bar{z}).
\]
The left identity is \((0, 1, 0)\) and the inverse of \((x, y, z)\) is \((-\frac{x}{y}, \frac{1}{y}, -z)\), on \(\mathbb{H}^2 \times \mathbb{R} \) a left-invariant metric
\[
ds^2 = (\omega^1)^2 + (\omega^2)^2 + (\omega^3)^2,
\]
where
\[
\omega^1 = \frac{dx}{y}, \quad \omega^2 = \frac{dy}{y}, \quad \omega^3 = dz,
\]
is the orthonormal coframe associated with the orthonormal frame
\[
e_1 = y \frac{\partial}{\partial x}, \quad e_2 = y \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z},
\]
The corresponding Lie brackets are
\[
[e_1, e_2] = -e_1, \quad [e_i, e_i] = [e_3, e_1] = [e_2, e_3] = 0, \forall i = 1, 2, 3.
\]
The Levi-Civita connection ∇ of $H^2 \times \mathbb{R}$ is given by
\[
\begin{pmatrix}
\nabla_{e_1} e_1 \\
\nabla_{e_2} e_2 \\
\nabla_{e_3} e_3
\end{pmatrix} =
\begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2 \\
e_3
\end{pmatrix},
\nabla_{e_2} e_i = \nabla_{e_3} e_i = 0, \ \forall i = 1, 2, 3.
\]

Let S be an immersed surface in $H^2 \times \mathbb{R}$ given as the graph of the function $z = f(x, y)$. Hence, the position vector is described by $r(x, y) = (x, y, f(x, y))$ and the tangent vectors $r_x = \frac{\partial r}{\partial x}$ and $r_y = \frac{\partial r}{\partial y}$ in terms of the orthonormal frame (e_1, e_2, e_3) are described by
\[
\begin{align*}
 r_x &= \frac{\partial}{\partial x} + f_r \frac{\partial}{\partial z} = \frac{1}{y} e_1 + f_x e_3, \\
 r_y &= \frac{\partial}{\partial y} + f_y \frac{\partial}{\partial z} = \frac{1}{y} e_2 + f_y e_3.
\end{align*}
\]

Definition 2.1. [3] The immersion (S, r) is said to be of finite Chen-type k if the position vector X admits the following spectral decomposition
\[
 r = r_0 + \sum_{i=1}^{k} r_i,
\]
where r_i are \mathbb{E}^3-valued eigenfunctions of the Laplacian of $(S, r) : \Delta r_i = \lambda_i r_i, \ \lambda_i \in \mathbb{R}, i = 1, 2, \ldots, k$. If λ_i are different, then S is said to be of k-type.

For the matrix $G = (g_{ij})$ consisting of the components of the induced metric on S, we denote by $G^{-1} = (g^{ij})$ the inverse matrix of the determinant $D = \det(g_{ij})$ of the matrix (g_{ij}). The Laplacian Δ on S is, in turn, given by
\[
\Delta = \frac{-1}{\sqrt{|D|}} \sum_{ij} \frac{\partial}{\partial r^i} (\sqrt{|D|} g^{ij} \frac{\partial}{\partial r^j}).
\]

If $r = r(x, y) = (r_1 = r_1(x, y), r_2 = r_2(x, y), r_3 = r_3(x, y))$ is a function of class C^2 then we set
\[
\Delta r = (\Delta r_1, \Delta r_2, \Delta r_3).
\]

3. Surfaces as graphs of finite type in $H^2 \times \mathbb{R}$

Let S be a graph of a smooth function
\[
f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}.
\]

We consider the following parametrization of S
\[
r(x, y) = (x, y, f(x, y)), \ (x, y) \in \Omega.
\]
Theorem 3.1. A Beltrami formula in $\mathbb{H}^2 \times \mathbb{R}$ is given by the following:

$$\Delta r = 2H,$$

where Δ is the Laplacian of the surface and H is the mean curvature vector field of S.

Proof. A basis of the tangent space T_pS associated to this parametrization is given by

$$r_x = \frac{\partial}{\partial x} + f_x \frac{\partial}{\partial z} = \frac{1}{y} e_1 + f_x e_3,$$

$$r_y = \frac{\partial}{\partial y} + f_y \frac{\partial}{\partial z} = \frac{1}{y} e_2 + f_y e_3,$$

The coefficients of the first fundamental form of S are given by

$$E = g(r_x, r_x) = \frac{1}{y^2} + f_x^2,$$

$$F = g(r_x, r_y) = f_x f_y,$$

$$G = g(r_y, r_y) = \frac{1}{y^2} + f_y^2.$$

The unit normal vector field N on S is given by

$$N = \frac{1}{W} \left(-\frac{1}{y} f_x e_1 - \frac{1}{y} f_y e_2 + \frac{1}{y^2} e_3 \right),$$

where $W = \sqrt{\frac{1}{y^4} + \frac{1}{y^2} f_x^2 + \frac{1}{y^2} f_y^2}$.

To compute the second fundamental form of S, we have to calculate the following

$$r_{xx} = \nabla_{r_x} r_x = \frac{1}{y^2} e_2 + f_{xx} e_3,$$

$$r_{xy} = \nabla_{r_x} r_y = \nabla_{r_y} r_x = -\frac{1}{y^2} e_1 + f_{xy} e_3,$$

$$r_{yy} = \nabla_{r_y} r_y = -\frac{1}{y^2} e_2 + f_{yy} e_3.$$

So, the coefficients of the second fundamental form of S are given by

$$L = g(\nabla_{r_x} r_x, N) = \frac{1}{W y^2} \left(f_{xx} - \frac{1}{y} f_y \right),$$

$$M = g(\nabla_{r_x} r_y, N) = \frac{1}{W y^2} \left(f_{xy} + \frac{1}{y} f_x \right),$$

$$N = g(\nabla_{r_y} r_y, N) = \frac{1}{W y^2} \left(f_{yy} + \frac{1}{y} f_y \right),$$

where $W = \sqrt{\frac{1}{y^4} + \frac{1}{y^2} f_x^2 + \frac{1}{y^2} f_y^2}$.

Thus, the mean curvature H of S is given by

$$H = \frac{EN - 2FM + GL}{2W^2}.$$
By (2.3), the Laplacian operator Δ of r can be expressed as

$$
\Delta = -\frac{1}{W^4} \left[W^2 \left(G \frac{\partial^2}{\partial x^2} - 2F \frac{\partial^2}{\partial x \partial y} + E \frac{\partial^2}{\partial y^2} \right) + \Delta_1 \frac{\partial}{\partial x} + \Delta_2 \frac{\partial}{\partial y} \right],
$$

where

$$
\Delta_1 = \frac{2}{y^2} f_y f_x^2 f_{xy} - \frac{1}{y^4} f_x f_{xx} - \frac{1}{y^2} f_x f_y^2 f_{xy} - \frac{1}{y^4} f_x f_{yy} - \frac{1}{y^2} f_x f_{y}^3 f_{yy},
$$

and

$$
\Delta_2 = \frac{2}{y^2} f_y f_x^2 f_{xy} - \frac{1}{y^4} f_y f_{yy} - \frac{1}{y^2} f_y f_x f_{yy} - \frac{1}{y^4} f_y f_{xx} - \frac{1}{y^2} f_y f^3 f_{xx}
$$

$$
- \frac{1}{y^6} f_x^2 + \frac{1}{y^4} f_x^2 + \frac{1}{y^3} f_x^2 f_y^2.
$$

By a straightforward computation, the Laplacian operator Δ of r with the help of (3.1) and (3.2) turns out to be

$$
\Delta r = -\frac{1}{W^4} \left[\left(\frac{2}{y^3} f_x^2 f_y f_{xy} - \frac{1}{y^2} f_x f_{xx} - \frac{1}{y^2} f_x f_y f_{xy} - \frac{1}{y^4} f_x f_{yy} - \frac{1}{y^2} f_x f_{y}^3 f_{yy} \right) e_1 \right]
$$

$$
+ \left(\frac{2}{y^3} f_x f_y f_{xy} - \frac{1}{y^2} f_y f_{yy} - \frac{1}{y^2} f_x f_{yy} - \frac{1}{y^4} f_x f_{xx} + \frac{1}{y^2} f_x f_y^2 f_{yy} \right) e_2
$$

$$
+ \left(\frac{1}{W^2} \frac{f_x}{W y} \frac{1}{W^2} \frac{f_y}{W y} \frac{1}{y^2} (f_{xx} + f_{yy}) + \frac{f_x^2 f_{yy} + f_y^2 f_{xx}}{y^2} - \frac{1}{y} (f_x f_y^2 + f_y^3) - 2 f_x f_y f_{xy} \right) e_3
$$

$$
\Delta r = \frac{1}{W^3 y^2} \left[\frac{1}{y^2} (f_{xx} + f_{yy}) + \frac{f_x^2 f_{yy} + f_y^2 f_{xx}}{y^2} - \frac{1}{y} (f_x f_y^2 + f_y^3) - 2 f_x f_y f_{xy} \right] e_1
$$

$$
+ \frac{1}{W y^2} \left[\frac{1}{y^2} (f_{xx} + f_{yy}) + \frac{f_x^2 f_{yy} + f_y^2 f_{xx}}{y^2} - \frac{1}{y} (f_x f_y^2 + f_y^3) - 2 f_x f_y f_{xy} \right] e_2
$$

$$
+ \frac{1}{W^2 y^2} \left[\frac{1}{y^2} (f_{xx} + f_{yy}) + \frac{f_x^2 f_{yy} + f_y^2 f_{xx}}{y^2} - \frac{1}{y} (f_x f_y^2 + f_y^3) - 2 f_x f_y f_{xy} \right] e_3
$$

thus we get

$$
\Delta r = 2HN,
$$

$$
= 2H,
$$
where H is the mean curvature vector field of S.

S is a minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ if and only if its coordinate functions are harmonic.

4. Surfaces as graphs in $\mathbb{H}^2 \times \mathbb{R}$ satisfying $\triangle x_i = \lambda_i x_i$

Let S be an immersed surface in $\mathbb{H}^2 \times \mathbb{R}$ given as the graph of function $z = f(x,y)$. Hence, the vector position is described by $r(x,y) = (x,y,f(x,y))$.

We have

$$r_x = \frac{1}{y} e_1 + f_x e_3, \quad r_y = \frac{1}{y} e_2 + f_y e_3,$$

where $r_x = \frac{\partial r}{\partial x}$, $r_y = \frac{\partial r}{\partial y}$, and $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$.

From an earlier results the mean curvature H of S and the unit normal vector field N on S are given by

$$H = \frac{1}{2W^3y^2} \left[\frac{1}{y^2} (f_{xx} + f_{yy}) + (f_x^2 f_{yy} + f_y^2 f_{xx}) - \frac{1}{y} (f_x^2 f_y + f_y^2 f_x) - 2f_x f_y f_{xy} \right],$$

and

$$N = \frac{1}{W} \left(-\frac{1}{y} f_x e_1 - \frac{1}{y} f_y e_2 + \frac{1}{y^2} e_3 \right),$$

where $W = \sqrt{\frac{1}{y^4} + \frac{1}{y^2 f_x^2} + \frac{1}{y^2 f_y^2}}$.

If the vector position on the tangent space $T_p S$ is described by $r(x,y)$

$$r(x,y) = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + f(x,y) \frac{\partial}{\partial z},$$

then

$$r(x,y) = \frac{x}{y} e_1 + e_2 + f(x,y) e_3.$$

The equation (1.3) by means of (3.3), (4.1) and (4.2) gives rise to the following system of ordinary differential equations

$$\left(\frac{2H}{W} \right) f_x = -\lambda_1 x,$$

$$\left(\frac{2H}{W} \right) f_y = -\lambda_2 y,$$

$$\frac{2H}{W} = \lambda_3 y^2 f.$$
Therefore, the problem of classifying the surfaces S of (1.3) is reduced to the integration of this system of ordinary differential equations.

Next we study it according to the constants λ_1, λ_2 and λ_3.

Case 1. Let $\lambda_3 = 0$. In this case the system (4.3), (4.4) and (4.5) is reduced equivalently to

\[(4.6) \quad \left(\frac{2H}{W}\right) f_x = -\lambda_1 x,\]
\[(4.7) \quad \left(\frac{2H}{W}\right) f_y = -\lambda_2 y,\]
\[(4.8) \quad \frac{2H}{W} = 0.\]

The equation (4.8) implies that the mean curvature H is identically zero. Thus, the surface S is minimal; and we get also $\lambda_1 = \lambda_2 = 0$.

Case 2. Let $\lambda_3 \neq 0$. In this case we study the general system (4.3), (4.4) and (4.5).

2-i): If $\lambda_1 = \lambda_2 = 0$, then $H = 0$. From (4.5) we obtain $\lambda_3 = 0$, so we get a contradiction.

2-ii): If $\lambda_1 = 0$ and $\lambda_2 \neq 0$, from (4.3) we obtain $H f_x = 0$.

2-ii-a: If $H = 0$ (4.4), (4.5) implies that $\lambda_2 = \lambda_3 = 0$. So we get a contradiction.

2-ii-b: if $f_x = 0$, then $f(x, y) = \varphi(y)$, where φ is smooth function of y.

The mean curvature H turns to

\[(4.9) \quad H = \frac{1}{2W y^3} \left(\frac{1}{y} \varphi'' - \varphi'^2\right),\]

where $\varphi' = \frac{d\varphi}{dy}$.

Using (4.4) and (4.5) we obtain

$\varphi' = \frac{-\lambda_2}{\lambda_3 y \varphi},$

which leads to,

$\lambda_3 \varphi' \varphi = \frac{-\lambda_2}{y}.$

After integrating with respect to y, we obtain
\[\frac{\lambda_3}{2} \varphi^2(y) = -\lambda_2 \ln y + \phi(x); \quad y > 0, \]

where \(\phi \) is smooth function of \(x \), and hence

\[f(x, y) = \varphi(y) = \pm \sqrt{\frac{\lambda_2}{\lambda_3} \ln \frac{1}{y^2}} + \phi(x). \]

Using the condition \(f_x = 0 \) we get \(\phi(x) = a, \quad a \in \mathbb{R} \).

Thus,

\[f(x, y) = \varphi(y) = \pm \sqrt{\frac{\lambda_2}{\lambda_3} \ln \frac{1}{y^2} + c}; \quad c = \frac{2}{\lambda_3} a, \]

in this subcase, the surfaces \(S \) are given by

\[r(x, y) = \left(x, y, \pm \sqrt{\frac{\lambda_2}{\lambda_3} \ln \frac{1}{y^2} + c} \right); \quad \lambda_2 \neq 0, \lambda_3 \neq 0, \quad c \in \mathbb{R}. \]

2-iii): If \(\lambda_1 \neq 0 \) and \(\lambda_2 = 0 \), from (4.4) we obtain \(H f_y = 0 \).

2-iii-a: If \(H = 0 \), (4.3) and (4.5) implies that \(\lambda_2 = \lambda_3 = 0 \). So we get a contradiction.

2-iii-b: If \(f_y = 0 \), then \(f(x, y) = \psi(x) \), where \(\psi \) is smooth function of \(x \).

The mean curvature \(H \) turns to

\[(4.10) \quad H = \frac{1}{2W y^4} \psi'', \]

where \(\psi' = \frac{d\psi}{dx} \).

Using (4.3) and (4.5) we get

\[\psi' = -\frac{\lambda_1 x}{\lambda_3 y^2 \psi}, \]

so we can write

\[(4.11) \quad \lambda_3 y^2 + \lambda_1 \frac{x}{\psi \psi'} = 0, \]

A differentiation with respect to \(y \) gives

\[\lambda_3 y = 0, \]

this implies that \(\lambda_3 = 0 \) and from (4.8) we get the mean curvature \(H \) is identically zero. From (4.6) and (4.7) we obtain \(\lambda_1 = \lambda_2 = 0 \), which leads to a contradiction.
2-iv): If $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$ From (4.3), we have

\begin{equation}
(4.12) \quad \frac{2H}{W} = -\frac{\lambda_1 x}{\psi'}. \tag{4.12}
\end{equation}

Substituting (4.12) into (4.5), we get

\[-\frac{\lambda_1 x}{\psi'} = \lambda_3 y^2 \psi',\]

A differentiation with respect to x gives

\[-\lambda_1 \left(\frac{\psi - x\psi''}{\psi'^2} \right) = \lambda_3 y^2 \psi',\]

this equation gives

\begin{equation}
(4.13) \quad \lambda_1 \left(\frac{\psi' - x\psi''}{\psi'^3} \right) + \lambda_3 y^2 = 0. \tag{4.13}
\end{equation}

A differentiation with respect to y gives

\[\lambda_3 y = 0,\]

this implies that $\lambda_3 = 0$ and from (4.8) we get the mean curvature H is identically zero. From (4.6) and (4.7) we obtain $\lambda_1 = \lambda_2 = 0$, which leads to a contradiction.

Therefore, we have the following theorem,

Theorem 4.1. Let S be a surface as graph of function parametrized by $r(x, y) = (x, y, f(x, y))$ in $\mathbb{H}^2 \times \mathbb{R}$. Then, S satisfies the equation $\Delta r_i = \lambda_i r_i$, $\lambda_i \in \mathbb{R}$ if and only if S is minimal surfaces or parametrized as

\[S : r(x, y) = \left(x, y, \pm \sqrt{\frac{\lambda_2}{\lambda_3}} \ln \frac{1}{y^2} + c \right); \quad \lambda_2 \neq 0, \lambda_3 \neq 0, c \in \mathbb{R}.\]

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

[1] M. Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying $\Delta^{II} r_i = \mu_i r_i$, J. Geom. 103 (2012), 367-374.

[2] M. Bekkar, H, Zoubir, Surfaces of revolution in the 3-dimensional Lorentz Minkowski space satisfying $\Delta^{I} r_i = \mu_i r_i$, Int. J. Contemp. Math. Sci. 3 (2008), 1173-1185.

[3] B-Y. Chen, Total mean curvature and submanifolds of finite type, (2nd edition), World Scientific Publisher, Singapore, 1984.
[4] F. Dillen, L. Verstraelen, G. Zafindratafa, A generalization of the translation surfaces of Scherk. Differential Geometry in Honor of Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991), pp. 107–109.

[5] D. Hoffman, H. Matisse, The computer-aided discovery of new embedded minimal surfaces, Math. Intell. 9 (1987) 8–21.

[6] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487.

[7] B. Senoussi, M. Bekkar, Translation surfaces of finite type in H_3 and Sol_3, Anal. Univ. Orad. Fasc. Math. Tom, XXVI (1) (2019), 17-29.

[8] D.W. Yoon, On Translation surfaces with zero Gaussian curvature in $H^2 \times \mathbb{R}$, Int. J. Pure Appl. Math. 99 (3) 2015, 289-297.

[9] D.W. Yoon, Coordinate finite type invariante surfaces in Sol spaces, Bull. Iran. Math. Soc. 43 (2017), 649-658.