A noncommutative model for a mini black hole

I Arraut, D Batic and M Nowakowski

1 Departamento de Fisica, Universidad de los Andes, Cra.1E No. 18A-10, Bogota, Colombia
2 Departamento de Matematica, Universidad de los Andes, Cra 1E, No. 18A-10, Bogota, Colombia

Received 6 April 2009, in final form 25 September 2009
Published 24 November 2009
Online at stacks.iop.org/CQG/26/245006

Abstract
We analyze the static and spherically symmetric perfect fluid solutions of Einstein field equations inspired by the noncommutative geometry. In the framework of the noncommutative geometry, this solution is interpreted as a mini black hole which has the Schwarzschild geometry outside the event horizon, but whose standard central singularity is replaced by a self-gravitating droplet. The energy–momentum tensor of the droplet is of the anisotropic fluid obeying a nonlocal equation of state. The radius of the droplet is finite and the pressure, which gives rise to the hydrostatic equilibrium, is positive definite in the interior.

PACS numbers: 02.40.Gh, 04.20.Jb, 04.40.-b

1. Introduction

In the last few decades, much effort has been invested in understanding the quantum effects in and of black holes. Beside the standard area of studying the Hawking radiation under different situations [1], the question regarding the final fate of a black hole, related to the problem of the central singularity and a possible black hole remnant, has attracted much attention [2–6]. One of the candidates of the mathematical framework for quantum gravity is the noncommutative geometry [7–14] based on the noncommutativity of the coordinates, \([x^\mu, x^\nu] = \theta^{\mu\nu}\), which is assumed to be important at Planckian scales. Due to the uncertainty relation \(\Delta x^\mu \Delta x^\nu \geq 1/2 |\theta^{\mu\nu}|\), the expectation value of the coordinates becomes smeared which effectively can be interpreted as a mass distribution \(\rho_\theta\). More precisely, the amplitude \(\langle z|x \rangle\) which in the standard quantum mechanical prescription is proportional to the Dirac delta function \(\delta(3)(z - x)\) can be calculated in the noncommutative geometry to give a Gaussian distribution i.e. \(\langle z|x \rangle = (1/2\pi\theta) \exp(-(z - x)^2/2\theta)\) [8]. Therefore, one obtains the important result: one of the effects of the noncommutative geometry in quantum mechanics is the replacement of a sharp distance by a smeared equivalent (given here by a Gaussian distribution). Although this does not need to be the only effect of noncommutative spacetime, it certainly has profound consequences as demonstrated in [7–14]. In this sense, the models based on
the concept of a smeared distance are not equivalent to the whole theory of noncommutative geometry, but inspired by it. For instance, in [12] an explicit model of a micro black hole has been constructed, based upon the fact that ρ_0 is given by a Gaussian distribution. In addition to that an equation of state (EOS) for the radial pressure was assumed to be of the form, $p_r = -\rho_0$. Insisting on a hydrostatical equilibrium, expressed through the Tolman–Oppenheimer–Volkov (TOV) equation, and an energy–momentum tensor of a perfect fluid such a system would be clearly over-determined as the density is already given by ρ_0 and the pressure by the EOS. The remedy offered in [12] is to assume an anisotropic fluid with an additional tangential pressure. The functional form of the latter is determined by the TOV equation. In this way, a self-gravitating droplet is constructed, however at the price that the radial and tangential pressures are always negative, a fact which is difficult to interpret. In this paper, we therefore set out to overcome this difficulty and attempt to construct a noncommutative mini black hole model in which the pressure is positive definite in the interior of the droplet. To this end, we have to choose an appropriate EOS and the energy–momentum tensor. One could also proceed without the EOS and use the TOV equation to determine the radial pressure. However, it is known that e.g. assuming the density to be constant, in such a case the radius R of the extension of the self-gravitating body comes out to be $R \geq (9/8)r_s$ where r_s is the Schwarzschild radius. This illustrates the difficulty of constructing a self-gravitating model with R being less than or equal to the Schwarzschild radius. Therefore, we adopt a nonlocal EOS used in a different context in relativistic astrophysics [15–17]. We then show that using a perfect fluid energy–momentum tensor and a special ansatz for the metric, the TOV equation is identically satisfied. This solves the problem that the system might be overdetermined. However, it can be shown that the interior metric cannot be matched to the exterior Schwarzschild geometry. This forces us to modify the perfect fluid energy–momentum tensor to allowing some anisotropy. The resulting energy–momentum tensor, which besides a radial pressure contains also a tangential one, is well known and used also in various situations [7, 18–22]. The whole model then proves successful in the following sense.

(i) A self-gravitating droplet exists with a finite radius equal to the Schwarzschild radius.
(ii) The interior metric can be matched to the Schwarzschild geometry outside.
(iii) The radial and tangential pressure are positive definite inside the object.

2. Solution with a nonlocal equation of state

According to [8, 9] noncommutativity turns point-like structures into smeared objects: this is achieved by replacing the position Dirac delta with a Gauss distribution of standard deviation $\sigma = \sqrt{2\theta}$. In particular, we consider a particle-like gravitational source whose mass density is static, spherically symmetric and it is given by [12]

$$\rho_0(r) = \frac{M}{(4\pi \theta)^{3/2}} e^{-r^2/(4\theta)},$$

where M denotes the total mass and θ is a positive parameter encoding noncommutativity. However, as pointed out in [7] noncommutativity plays a role on a scale $\sqrt{\theta} < 10^{-16}$ cm. This implies that the mass distribution of our object is described by a Gaussian with a very narrow peak. In the following, we investigate static, spherically symmetric solutions of Einstein equations where (1) describes the energy density of the system. Since the parameter θ is so tiny such solutions are to be considered as a sort of microscopic solutions. In particular, we model the source term by means of a spherically symmetric perfect fluid which by definition satisfies the pressure isotropy condition, that is the radial and angular directional pressures coincide. Moreover, we suppose that our fluid obeys the nonlocal equation of state [15–17]
(we refer the reader to these references for a more detailed discussion of the nonlocal EOS and its origin in the nonrelativistic continuum mechanics and hydrodynamics)

\[P(r) = \rho_0(r) - \frac{2\sqrt{\theta}}{r^3} \int_0^r u^2 \rho_0(u) \, du, \tag{2} \]

where \(P \) is the pressure and that the energy–momentum tensor is assigned through

\[T_{\mu\nu} = \text{diag}(\rho_\theta, -P, -P, -P). \tag{3} \]

We call, following [15–17], a nonlocal EOS a relation between the pressure \(P \) and the density \(\rho \) in which \(P \) is not only a function of \(\rho \), but also at the same time a functional of the density. It is not unimportant to note that the phrase ‘nonlocal’, as given by the above definition, does not imply any nonlocal physical effects. As the authors of [15–17] explain, the name ‘nonlocal’ comes from the functional dependence of density through an integral. The attempt to introduce a new EOS in astrophysics is rooted in the fact that, in principle, it is difficult to infer the EOS from observational data and there is nothing which prohibits the nonlocal version mentioned above. As we will see later the nonlocal EOS, applied to an anisotropic fluid, yields an acceptable picture of a mini black hole in noncommutative spacetime. We also note that the nonlocal EOS has already been successfully used in physics of star interiors [15, 16]. Therefore, we think that the present approach to mini black holes has certain advantages over an approach where the physical fluid has a negative pressure.

As is evident from (3), we assume that the spatial velocities \(u^i \) of the fluid with \(i = 1, 2, 3 \) vanish since we are interested in matter configurations at hydrostatic equilibrium. We can determine the extension \(R \) of the object by the condition \(P(R) = 0 \). The numerical value of \(R \) can be determined by plotting \(\theta P \) versus \(r^* = r/\sqrt{\theta} \). For this purpose, it is convenient to introduce the new radial variable \(r^* \) and the mass variable \(\mu = M/\sqrt{\theta} \) so that (2) becomes

\[\theta P(r^*) = \frac{\mu}{\pi^{3/2}} \left(\frac{e^{-r^2/4}}{8} - \frac{1}{r^3} \int_0^{r^2/4} s^{1/2} e^{-s} \, ds \right). \]

The value at which the positive definite pressure vanishes is calculated numerically to be \(R^* = R/\sqrt{\theta} \approx 1.269 \). Let us consider a line element of the form

\[g_{\mu\nu} = \text{diag}(e^{2\nu}, -e^{2\lambda}, -r^2, -r^2 \sin^2 \vartheta) \]

with \(\nu = \nu(r) \) and \(\lambda = \lambda(r) \). The energy–momentum tensor \(T^{\mu\nu} \) satisfies the conservation condition

\[0 = T^{\mu\nu}_{;\nu} = \partial_\nu T^{\mu\nu} + \Gamma^\mu_{\nu\lambda} T^{\lambda\nu} + \Gamma^\nu_{\nu\lambda} T^{\mu\lambda}. \]

If we take \(\mu = r \) in the above equation, a boring but straightforward computation gives

\[\partial_r T^r_{\nu} = -\frac{1}{2} g^{00} \partial_r g_{00} (T^r_{\nu} - T^0_{\nu}) - \frac{1}{2} g^{0\vartheta} \partial_r g_{0\vartheta} (T^r_{\nu} - T^0_{\nu}) + \]

\[-\frac{1}{2} g^{0\varphi} \partial_r g_{0\varphi} (T^r_{\nu} - T^{\varphi}_{\nu}). \tag{4} \]

In view of (3), equation (4) gives rise to the following first-order linear ODE for the pressure, namely

\[P' + \nu'(\rho_0 + P) = 0. \tag{5} \]

From the Einstein field equations, we obtain the following three equations (the fourth equation
coincides with the third one up to a multiplicative factor):

\[\frac{1}{r^2} + \frac{e^{-2\lambda}}{r} \left(2\lambda' - \frac{1}{r} \right) = 8\pi \rho_0, \]
(6)

\[\frac{1}{r^2} = \frac{e^{-2\lambda}}{r} \left(2\nu' + \frac{1}{r} \right) = -8\pi P, \]
(7)

\[e^{-2\lambda} \left(\frac{\lambda'}{r} - \frac{\nu'}{r} - \nu'' + \nu'\lambda' - \nu'\lambda'' \right) = -8\pi P. \]
(8)

From (6) we can compute the component \(g_{rr} \) of the metric. In fact, (6) can be rewritten as

\[\frac{d}{dr} \left(r e^{2\lambda} \right) = 1 - 8\pi \rho_0 r^2. \]
(9)

Integrating (9) we obtain

\[r e^{2\lambda} = r - 2M(r) + B \]
(10)

with \(B \) being the integration constant and

\[M(r) = 4\pi \int_0^r u^2 \rho_0(u) \, du = \frac{2M}{\sqrt{\pi \gamma}} \left(\frac{3}{2}, \frac{r^2}{4\theta} \right) \]
(11)

where \(\gamma \) denotes the lower incomplete gamma function. Finally, from (10) we have

\[e^{2\lambda} = \frac{1}{1 - \frac{2M(r)}{r^2} + \frac{B}{r}}. \]

The main difficulty is the computation of the component \(g_{\theta\theta} \) of the metric. Following [16] we introduce the new variables

\[e^{2\nu} = h(r) e^{4\beta(r)}, \quad e^{2\lambda} = \frac{1}{h(r)}. \]

As a consequence (6), (7) and (8) become

\[\frac{1}{r^2} - \frac{h}{r} - \frac{h'}{r} = 8\pi \rho_0, \]
(12)

\[\frac{1}{r^2} - \frac{h}{r} - \frac{h'}{r} + \frac{4h\beta'}{r} = 8\pi P, \]
(13)

\[\frac{h'}{r} + 2h\beta' + \frac{1}{2} \left(h'' + 4h\beta'' + 6h'\beta' + 8h\beta'' \right) = 8\pi P. \]
(14)

By rewriting (2) as an ODE, namely

\[\rho_0 - 3P + r (\rho_0' - P') = 0 \]
(15)

and employing (12) and (13) we obtain the following second-order linear ODE for \(\beta \) :

\[\frac{2}{r} (h' + 2h\beta') + h'' + 2h'\beta' + 2h\beta'' = 0 \]

whose general solution is

\[\beta(r) = -\frac{1}{2} \ln h + C_1 \int \frac{dr}{r^2 h} + C_2. \]
(16)
One of the integration constants can be fixed by requiring that the above solution be consistent with the nonlocal equation of state we are working with. In fact, if we rewrite (13) by means of (12) and we make use of (16), we obtain

\[P(r) = -\rho_0 + \frac{h\beta'}{2\pi r} = \rho_0 - \frac{2\sqrt{\theta}}{r^3} \int_0^r u^2 \rho_0(u) + \frac{C_1}{4\pi r^3}. \]

Thus, consistency with (2) requires that \(C_1 = 0 \). Therefore, we conclude that \(\varepsilon^\nu = A/h \) with a positive constant \(A = e^{4C_2} \) and we end up with the new line element

\[ds^2 = \frac{1}{h(r)} (A dt^2 - dr^2 - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2) \quad (17) \]

describing the manifold \(\mathbb{R} \times [0, R] \times S^2 \). At first sight, it is not clear if the chosen NLES is compatible with the Tolman–Oppenheimer–Volkov (TOV) equation for the problem under consideration. Taking into account that the corresponding TOV equation in the present case is

\[P' = -\left(\rho_0 + P\right) \frac{M(r) + 4\pi r^3 P}{r(r - 2M(r))}, \quad (18) \]

it is not difficult to verify that the nonlocal equation of state (2) is consistent with (18). For this purpose, it is convenient to rewrite (12), (13) and (14) in terms of the mass function \(M(r) \) as follows [17]:

\[\frac{M'}{r^2} = 4\pi \rho_0, \quad (19) \]

\[\frac{M'}{r^2} - \frac{2M}{r^3} = 4\pi P, \quad (20) \]

\[\frac{M''}{r} + \frac{2(M'r - M)}{r^3} \left(\frac{M'r - M}{r - 2M} - 1 \right) = 8\pi P. \quad (21) \]

Taking into account that in terms of \(M(r) \) equation (2) becomes

\[P = \rho_0 - \frac{M}{2\pi r^3} \quad (22) \]

we find that

\[P' = \frac{M''}{4\pi r^2} + \frac{3M}{2\pi r^4} - \frac{M'}{\pi r^3}, \quad (23) \]

where we used (19). On the other hand, by means of (19) and (20) the rhs of the TOV equation can be rewritten as

\[-\left(\rho_0 + P\right) \frac{M(r) + 4\pi r^2 P}{r(r - 2M(r))} = -\frac{(M'r - M)^2}{2\pi r^4(r - 2M)}. \quad (24) \]

The last step is to bring the rhs side of (23) to the form (24). What we need is to express the second-order derivative of \(M \) in terms of its lower order derivatives. This can be achieved by means of equations (20) and (21). In fact, if we consider the combination (21)-2(20), we obtain

\[\frac{M''}{r} = \frac{2M'}{r^2} - \frac{4M}{r^3} - \frac{2(M'r - M)}{r^3} \left(\frac{M'r - M}{r - 2M} - 1 \right). \]

Substitution of the above expression into (23) gives (18). Hence, the TOV equation is identically satisfied for the case under consideration. In spite of this and the positive definite
pressure, the model displays one defect. As shown below the interior metric cannot be matched to the Schwarzschild metric

$$ds^2 = \left(1 - \frac{2\hat{M}}{r}\right) dt^2 - \left(1 - \frac{2\hat{M}}{r}\right)^{-1} dr^2 - r^2(d\theta^2 + \sin^2 \theta d\varphi^2),$$ \hspace{1cm} (25)$$

with a total mass $\hat{M} = M(R)$. In fact, continuity at the Schwarzschild radius R requires that

$$A \frac{R}{R - 2\hat{M}} = 1 + \frac{B - 2M(R)}{R}, \quad h(R) = 1 - \frac{2\hat{M}}{R}.$$

The second condition implies that $B = 0$ whereas the first equation implies that $A = (1 - 2\hat{M}/R)^2$. However, there is a third condition [23] that it has to be satisfied, namely

$$A \frac{\sqrt{h(R)}}{R} \frac{d}{dr} \left(\frac{1}{h}\right) \bigg|_{r=R} = \frac{2\hat{M}}{R^2} \frac{1 - 2\hat{M}}{R}$$

which gives $A = -(1 - 2\hat{M}/R)^2$. Thus, we reached a contradiction. In the following section, we try to maintain the good features of the present model and extend it slightly such that the exterior Schwarzschild metric smoothly fits into the full solution.

3. Anisotropic fluid solution

We shall derive the complete solution of the gravitational field equations for a noncommutative geometry inspired anisotropic fluid described by a nonlocal equation of state. We consider again a spherically symmetric static distribution of matter ρ_θ but now the ansatz for the line element is

$$ds^2 = A^2(r) dt^2 - \frac{dr^2}{V(r)} - r^2(d\theta^2 + \sin^2 \theta d\varphi^2).$$ \hspace{1cm} (26)$$

The energy–momentum tensor inside the matter distribution is supposed to be

$$T_{\mu\nu} = (\rho_\theta + P_\perp) u^\mu u_\nu - P_\perp \delta^\mu_\nu + (P_r - P_\perp)n^\mu n_\nu,$$ \hspace{1cm} (27)$$

where u^μ is the velocity field of the fluid, $n^\mu = \sqrt{V} \delta^\mu_r$ is a unit space-like vector in the radial direction, P_r is the normal pressure, i.e. the pressure in the direction of n^μ and P_\perp is the so-called tangential pressure, i.e. the pressure orthogonal to n^μ. Since we consider a static matter distribution, we have to require that $u^i = 0$ for each $i = 1, 2, 3$. Moreover, from $g_{\mu\nu} u^\mu u^\nu = 1$ it follows that $u^0 = 1/A$. In this setting the energy–momentum tensor becomes

$$T_{\nu}^\mu = \text{diag}(\rho_\theta, -P_r, -P_\perp, -P_\perp).$$

We shall assume that $P_r \neq P_\perp$ otherwise we would have again the case of an isotropic fluid. Note that the quantity $\Delta = P_\perp - P_r$ called the anisotropic factor is an indicator of the fluid anisotropy. Einstein field equations $G_{\mu\nu} = -8\pi T_{\mu\nu}$ become

$$\frac{1 - V}{r^2} - \frac{V'}{r} = 8\pi \rho_\theta,$$ \hspace{1cm} (28)$$

$$\frac{2VA'}{Ar} + \frac{V - 1}{r^2} = 8\pi P_r,$$ \hspace{1cm} (29)$$

$$\frac{1}{2rA}(2VA' + AV' + 2r VA'' + r A' V') = 8\pi P_\perp.$$ \hspace{1cm} (30)$$

On the other side, the conservation equation $T^{\mu\nu,\nu} = 0$ with $\mu = r$ gives rise to the equation

$$P_r' + \frac{A'}{A}(P_r + \rho_\theta) = \frac{2}{r}(P_\perp - P_r).$$ \hspace{1cm} (31)$$

By means of equations (28) and (29) it is not difficult to verify that equations (30) and (31) are equivalent, i.e. they are the same equation. In what follows, we shall work with the system represented by (28), (29) and (31). Although such a system is under-determined since we have three equations for the four unknown functions A, V, P_r and P_\perp it can be closed by assuming an equation of state for matter. In what follows, we shall model the radial pressure by means of (2) for $r \in [0, R]$ such that $P_r(R) = 0$. According to the analysis performed in the previous section, R is the radius of the self-gravitating droplet. The nice feature is that the radial pressure is now positive inside the droplet. Outside the droplet we impose $P_r(r) = 0$ for $r \geq R$. We can interpret R as the finite extension of the object under consideration (indeed, the procedure we follow here is the same as applied to relativistic stars modeled by a constant density where $P_r(R) = 0$ defines the finite radius R of the object). We have therefore a compact support for the density which for $r \leq R$ is given by (1) and is zero for $r > R$. We use the freedom of the parameter θ to fix $R = r_s$. This allows a smooth transition to the exterior Schwarzschild metric. In figure 1, we plot θP_\perp versus $r^* = r/\sqrt{\theta}$ to explicitly demonstrate that the droplet has a finite extension.

The function $V(r)$ can be obtained from (28) and we have

$$V(r) = 1 - \frac{2M(r)}{r} + \frac{C_1}{r},$$

(32)

where C_1 is the integration constant and $M(r)$ is as given in (11). Moreover, integrating (29) we find that

$$A^2(r) = C_2 e^{\phi(r)}, \quad \phi(r) = \int_0^r \psi(u) du, \quad \psi(r) = \frac{1}{V(r)} \left(8\pi r P_r(r) + \frac{2M(r) - C_1}{r^2 V(r)}\right).$$

Thus, we have derived the line element

$$ds^2 = C_2 e^{\phi} dr^2 - \frac{dr^2}{V(r)} - r^2 (d\theta^2 + \sin^2 \theta d\psi^2)$$

(33)
Figure 2. The tangential pressure θP_\perp versus $r^* = r/\sqrt{\theta}$ for $\mu = 2.2$.

describing the manifold $\mathbb{R} \times [0, R] \times S^2$. Finally, the tangential pressure can be obtained from (31) and we have

$$P_\perp(r) = P_r(r) + \frac{r}{2} P'_r(r) + \frac{A'(r)}{A(r)}(P_r(r) + \rho_\theta(r)).$$

In figure 2, we plot this tangential pressure versus r^* to show that it is also positive definite. This part of the pressure is nonzero at the radius of the object (which is not a necessary physical requirement), but has there a local minimum.

We match (33) with a Schwarzschild metric (25) describing the outer region. In order to do so, we require that R being the radius of the self-gravitating droplet equal the Schwarzschild radius. The matching of the line element inside the droplet with the Schwarzschild metric at the boundary $r = R$ is done by requiring the continuity of A^2 and V at $r = R$. Thus, we find that

$$C_1 = 0, \quad C_2 = \left(1 - \frac{2M}{R}\right)e^{-\phi(R)}.$$

It is not difficult to verify that the line element we derived is flat at the center of the droplet. The successful matching of the interior and exterior metric completes the program of constructing a mini black hole solution inspired by noncommutative geometry. We will briefly discuss the main features of the present model in the following section.

4. Conclusions

The model for a mini black hole presented in this paper is based on the same basic physical principles as in [12]. As demonstrated in section 2, the anisotropic energy–momentum tensor seems to be an unavoidable ingredient in constructing self-gravitating droplets based on ρ_θ. The same anisotropic $T_{\mu\nu}$ has been used in [12]. However, we use a different equation of state (EOS), the so-called nonlocal EOS. The emerging self-gravitating droplet inspired by noncommutative geometry has then positive radial and tangential pressures in the interior, a
finite extension R and the interior solution can be matched at R with the exterior Schwarzschild geometry. This seems to offer an alternative to the micro black hole solution found in [12], where the radial and tangential pressures are negative and the droplet does not have a sharp finite radius.

References

[1] Page D N 2005 *New J. Phys.* **7** 203
[2] Adler R J, Chen P and Santiago D I 2001 *Gen. Rel. Grav.* **53** 2101
[3] Horowitz G T and Maldacena J 2004 *J. High Energy Phys.* JHEP02(2004)008
[4] Koch B, Bleicher M and Hossenfelder S 2005 *J. High Energy Phys.* JHEP10(2005)053
[5] Ahn D, Moon Y H and Mann R B 2008 *J. High Energy Phys.* JHEP02(2008)062
[6] Arraut I, Batic D and Nowakowski M 2009 Comparing two approaches to Hawking radiation of Schwarzschild de Sitter black holes *Class. Quantum Grav.* **26** 125006 (arXiv:0810.5156)
[7] Nicolini P 2008 Noncommutative black holes, the final appeal to quantum gravity: a review *Int. J. Mod. Phys.* A **24** 1229 (arXiv:hep-th/0807.1939)
[8] Smailagic A and Spallucci E 2003 *J. Phys. A: Math. Gen.* **36** 467
[9] Smailagic A and Spallucci E 2003 *J. Phys. A: Math. Gen.* **36** 517
[10] Nicolini P 2005 *J. Phys. A: Math. Gen.* **38** L631
[11] Rizzo T G 2006 *J. High Energy Phys.* JHEP021(2006)069
[12] Ansoldi S, Nicolini P, Smailagic A and Spallucci E 2006 *Phys. Lett.* B **645** 547
[13] Casadio R and Nicolini P 2008 *J. High Energy Phys.* JHEP072(2008)0811
[14] Spallucci E, Smailagic A and Nicolini P 2009 *Phys. Lett.* B **670** 449
[15] Hernandez H, Nunez L A and Percoco U 1999 *Class. Quantum Grav.* **16** 871
[16] Hernandez H and Nunez L A 2004 *Can. J. Phys.* **82** 29
[17] Abreu H, Hernandez H and Nunez L A 2007 *Class. Quantum Grav.* **24** 4631
[18] Stewart B W 1982 *J. Phys. A: Math. Gen.* **15** 2419
[19] Bayin S S 1982 *Phys. Rev.* D **26** 1262
[20] Madsen M S and Baillie G 1985 *Astrophys. Space Sci.* **114** 203
[21] Letelier P S and Alencar P S C 1986 *Phys. Rev.* D **34** 343
[22] Haggag S 1990 *Astrophys. Space Sci.* **173** 47
[23] Plebanski J and Krasinski A 2006 *An Introduction to General Relativity and Cosmology* (Cambridge: Cambridge University Press)