SCALE-AWARE MULTI-LEVEL GUIDANCE FOR INTERACTIVE INSTANCE SEGMENTATION

Soumajit Majumder
Institute of Computer Science II
University of Bonn
majumder@cs.uni-bonn.de

Angela Yao
School of Computing
National University of Singapore
yaoa@comp.nus.edu.sg

December 10, 2018

ABSTRACT

In interactive instance segmentation, users give feedback to iteratively refine segmentation masks. The user-provided clicks are transformed into guidance maps which provide the network with necessary cues on the whereabouts of the object of interest. Guidance maps used in current systems are purely distance-based and are either too localized or non-informative. We propose a novel transformation of user clicks to generate scale-aware guidance maps that leverage the hierarchical structural information present in an image. Using our guidance maps, even the most basic FCNs are able to outperform existing approaches that require state-of-the-art segmentation networks pre-trained on large scale segmentation datasets. We demonstrate the effectiveness of our proposed transformation strategy through comprehensive experimentation in which we significantly raise state-of-the-art on four standard interactive segmentation benchmarks.

1 Introduction

Interactive object selection and segmentation allows users to interactively select objects of interest down to the pixel level by providing inputs such as clicks, scribbles, or bounding boxes. The segmented results are useful for downstream applications such as image/video editing [1,2], image-based medical diagnosis [3,4], human-machine collaborative annotation [5], and so on. GrabCut [6] is a pioneering example of interactive segmentation which segments objects from a user-provided bounding box by iteratively updating a colour-based Gaussian mixture model. Other methods include Graph Cuts [7], Random Walk [8] and GeoS [9] though more recent methods [10,11,12,13,14] approach the problem with deep learning architectures such as convolutional neural networks (CNNs).

In standard, non-interactive instance segmentation [15,16,17,18,19], the RGB image is given as input and segmentation masks for each object instance are predicted. In an interactive setting, however, the input consists of the RGB image as well as ‘guidance’ maps based on user-provided supervision. The guidance map helps to select the specific instance to segment; when working in an iterative setting, it can also help correct errors from previous segmentations [1,11,10,14].

User feedback is typically given in the form of either clicks [10,11,12,13,20,21] or bounding boxes [15] and are then transformed into guidance signals fed as inputs into the CNN. By working with high-level representations encoded in pre-trained CNNs, the number of user interactions required to generate quality segments have been greatly reduced. However, there is still a large incongruence between the image encoding versus the guidance signal, as user interactions are transformed into simplistic primitives such as Euclidean [14,21,20] or Gaussian distance maps [1,11,12] (Fig. 1 second and third row respectively), the latter being the preferred choice in more recent works due to their ability to localize user clicks [11].

Our observation is that current guidance signals disregard even the most basic image consistencies present in the scene, such as colour, local contours, and textures. This of course also precludes even more sophisticated structures such as object hypotheses, all of which can be determined in an unsupervised way. As such, we are motivated to maximize
the information which can be harnessed from user-provided clicks and generate more meaningful guidance maps for interactive instance segmentation.

To that end, we propose a simple yet effective transformation of user clicks which enables us to leverage a hierarchy of image information, starting from low-level cues such as appearance and texture, based on superpixels, to more high-level information such as class-independent object hypotheses (see Fig. 3).

Ours is the first work to investigate the impact of guidance map generation for interactive segmentation. Our findings suggest that current Gaussian- and Euclidean distance based maps are too simple and do not fully leverage structures present in the image. A second and common drawback of current distance-based guidance maps is that they fail to account for the scale of the object during interaction. Object scale has a direct impact on the network performance when it comes to classification [22] or segmentation [23]. Gaussian- and Euclidean distance maps are primarily used for localizing the user clicks and do not account for the object scale. Our algorithm roughly estimate object scale based on the user-provided clicks and refines the guidance maps accordingly.

Our approach is extremely flexible in that the generated guidance map can be paired with any method which accepts guidance as a new input channel [14, 10, 11, 1]. We demonstrate via experimentation that providing scale-aware guidance by leveraging the structured information in an image leads to a significant improvement in performance when compared to the existing state-of-the-art, all the while using a simple, off-the-shelf, CNN architecture. The key contributions of our work are as follows:

- We propose a novel transformation of user-provided clicks which generates guidance maps by leveraging hierarchical information present in a scene.
- We propose a framework which can account for the scale of an object and generate the guidance map accordingly in a click-based user feedback scheme.
- We perform a systematic study of the impact of guidance maps on the interactive segmentation performance when generated based on features at different image hierarchy.
- We achieve state-of-the-art performance on the Grabcut, Berkeley, Pascal VOC 2012 and MS COCO datasets. Our proposed method significantly reduces the amount of user interaction required for accurate segmentation and uses the fewest number of average clicks per instance.

2 Related Works

Segmenting objects interactively using clicks, scribbles, or bounding boxes has always been a problem of interest in computer vision research, as it can solve some quality problems faced by fully-automated segmentation methods. Early variants of interactive image segmentation methods, such as the parametric active contour model [24] and intelligent scissors [25] mainly considered boundary properties when performing segmentation; as a result they tend to fare poorly on weak edges. More recent methods are based on graph cuts [7, 6, 26], geodesics [27], and or a combination of the two [28, 29]. However, all these algorithms try to estimate the foreground/background distributions from low-level
Figure 2: **Outline of our method.** Given an input image and user interactions, we transform the positive and negative clicks (denoted by the green and red dots respectively) into three separate channels (2 channel superpixel-based and 1 object proposal-based guidance map), which are concatenated (denoted as \oplus) with the 3-channel image input and is fed to our network. Additionally, we concatenate the euclidean distance transform of the predicted mask from the previous iteration as our final non-color channel. The solid green line indicates our estimate of the object scale based on the initial pair of positive and negative click. The output is the ground truth map of the selected object.

features such as color and texture, which are unfortunately insufficient in several instances, e.g. in images with similar foreground and background appearances, intricate textures, and poor illumination.

As with many other areas of computer vision, deep learning-based methods have become popular also in interactive segmentation in the past few years. In the initial work of \[14\], user-provided clicks are converted to Euclidean distance transform maps which are concatenated with the color channels and fed as input to a FCN \[30\]. Clicks are then added iteratively based on the errors of the previous prediction. On arrival of each new click, the Euclidean distance transform maps are updated and inference is performed. The process is repeated until satisfactory results is obtained. Subsequent works have focused primarily on making extensions with newer CNN architectures \[11, 1\] and iterative training procedures \[11, 10\]. In the majority of these works, user guidance has been provided in the form of point clicks \[14, 11, 10, 12, 21\] which are then transformed into a Euclidean-based distance map \[14, 21\]. One observation made in \[1, 11, 12\] was that encoding the clicks as Gaussians led to some performance improvement because it localizes the clicks better \[11\] and can encode both positive and negative click in a single channel \[1\]. In \[31\], the authors explore the use of superpixels to generate the guidance map. In contrast to \[31\], our guidance map is able to incorporate image features at different scales and without requiring an elaborate graph-based optimization for the generation of the guidance map. For the most part, there has been little attention paid to how user inputs should be incorporated as guidance; the main focus in interactive segmentation has been dedicated towards the training procedure and network architectures.

3 Proposed Approach

We follow previous interactive frameworks \[14, 10, 11, 1\] in which a user can provide both ‘positive’ and ‘negative’ clicks to indicate foreground and background/other objects respectively (as shown in Fig. 2). We denote the set of click positions as $\{p_0, p_1\}$ with subscripts 0 and 1 for positive and negative clicks respectively. To date, guidance maps have been generated by as a function of the distance between each pixel of the image grid to the point of interaction. More formally, for each pixel position p on the image grid, the pair of distance-based guidance maps for positive and negative clicks can be computed as

$$G^d_0(p) = \min_{c \in \{p_0\}} d(p, c)$$

$$G^d_1(p) = \min_{c \in \{p_1\}} d(p, c).$$ (1)

In the case of Euclidean guidance maps \[14\], the function $d(\cdot, \cdot)$ is simply the Euclidean distance; in Gaussian guidance maps, $d(\cdot, \cdot)$ is the value of a Gaussian with a standard deviation of 10 pixels that is centred on the click \[11, 1\]. Examples of such guidance maps can be found in Fig. 1

However, such guidance is image-agnostic and assumes that each pixel in the scene is independent. Our proposed approach eschews this assumption and proposes the generation of multiple guidance maps which align with both low-level and high-level image structures present in the scene. We represent low-level structures with super-pixels and
Figure 3: **Example of guidance maps.** We transform the user-provided positive (shown as green dots) and negative (shown as red dots) clicks into guidance maps for the instance segmentation network (columns 2 to 5). The second and third column correspond to the positive and negative superpixel based guidance map respectively. Examples of the object based guidance map and the scale-aware guidance map are shown in columns 4 and 5 respectively. For the clarity of visualization, we inverted the values of the object based guidance map and the scale-aware guidance map (Best viewed in color).

3.1 **Superpixel-based guidance map**

We first consider a form of guidance based on non-overlapping regions; in our implementation, we use superpixels. Superpixels group together locally similarly coloured pixels while respecting object boundaries [32] and were the standard working unit of pre-CNN-based segmentation algorithms [33, 34]. Previous works have shown that most, if not all, pixels in a superpixel belong to the same category [34, 33, 35]. Based on this observation, we propagate user-provided clicks which are marked on single pixels to the entire super-pixel. We then assign guidance values to each of the other super-pixels in the scene based on the minimum Euclidean distance from the centroid of each superpixel to the centroid of a user-selected super-pixel. One can think of the guidance as a discretized version of Eq. 1 based on low-level image structures.

More formally, let \(\{ S \} \) represent the set of superpixels partitioned from an image and \(f_{SP}(p) \) be a function which maps each pixel location \(p \) in the image to the corresponding superpixel in \(\{ S \} \). We further define a positive and negative superpixel set based on the positive and negative clicks, i.e. \(\{ s_0 = f_{SP}(p_0) \} \) and \(\{ s_1 = f_{SP}(p_1) \} \) respectively. Similar to the distance-based guidance maps in Eq. 1 we generate a pair of guidance maps. However, rather than treating each pixel individually, we propagate the distances between superpixel centers to all pixels within each superpixel, i.e.

\[
G_{SP}^t(p) = \min_{s \in \{ s_i \}} d_c(s, f_{SP}(p)), \quad \text{where} \ t = \{ 0, 1 \},
\]

and \(d_c(s_i, s_j) \) is the Euclidean distance between the centers \(s_i \) and \(s_j \) of superpixels \(s_i \) and \(s_j \) respectively, where \(s_i = (\sum x_i/|s_i|, \sum y_i/|s_i|) \) where \(|s_i| \) denotes the number of pixels within \(s_i \). To maintain consistency across training images, the guidance maps values are then scaled to lie between \([0, 255]\). In scenarios where the user provides no clicks, all pixel values are set to 255. Examples guidance maps are shown in the second and third column of Fig. 3 respectively.
3.2 Object-based guidance map

Super-pixels can be grouped together perceptually into category-independent object proposals. We also generate guidance maps from higher-level image structures, specifically region-based object proposals \[36-37, 38-39, 40\]. Such proposals have been used in the past as weak supervision for semantic segmentation \[41-42\] and allow us to incorporate a weak object-related prior to the guidance map, even if the instance is not explicitly specified by the user-provided clicks. To do so, we begin with a set of object proposals which have positive clicks its pixel support. For each pixel in the guidance map, we count the number of proposals from this set to which the pixel belongs. Pixels belonging to same object proposals are more likely to belong in the same object category and the number of proposals to which pixels belong incorporates a co-occurrence prior with respect to the current positive clicks.

More formally, let \(\{ \mathcal{L}_p \} \) be the set of object proposals for an image with support of pixel location \(p \). The object-based guidance map can be generated as follows:

\[
G^o(p) = \sum_{p' \in \{ \mathcal{L}_p \}} \sum_{\mathcal{L} \in \{ \mathcal{L}_{\nu} \}} 1[p \subset \mathcal{L}] \tag{3}
\]

where \(1[p \subset \mathcal{L}] \) is an indicator function which returns 1 if object proposal \(\mathcal{L} \) has in its support or contains pixel \(p \). Similar to the superpixel-base guidance map, the object-based guidance is also re-scaled to \([0, 255]\). In the absence of user-provided clicks, all pixels are set to the value of 0. Examples are shown in the third column of Fig. 3.

3.3 Scale-aware guidance

Within an image, object instances can exhibit a large variation in their spatial extent \[43\]. While deep CNNs are known for their ability to handle objects at different scales \[44\], specifying the scale explicitly leads to an improvement in performance \[22\]. Interactive instance segmentation methods \[12\] which isolate the object tend to have a superior performance. For segmenting object instances, it is thus desirable to construct guidance maps which exhibit spatial extents consistent with the object.

A common limitation of most click-based interactive approaches is that the provided guidance is non-informative about scaling of the intended object instance. The commonly used forms of guidance are either too localized \[11\] (guidance map values are clipped to 0 at a distance of 20 pixels from the clicks) or non-informative \[14\].

Suppose now that we have some rough estimate of an object’s scale in pixels, either in width or length. A convenient way to make our guidance maps scale-aware is to incorporate contributions of superpixels and object proposals which are in agreement with this scale. More specifically, we can apply this to the superpixel guidance map by truncating distances exceeding some factor \(f \) of our scale measure \(s \), i.e.

\[
G^{sp-sc}(p) = \max \left[G^s(p), fs \right]. \tag{4}
\]

We can apply similar constraints to the object-proposal based guidance by considering only the proposals within some accepted size range:

\[
G^{op-sc}(p) = \sum_{p' \in \{ \mathcal{L}_p \}} \sum_{\mathcal{L} \in \{ \mathcal{L}_{\nu} \}} 1[p \subset \mathcal{L}] \cdot 1[f_1 \leq |\mathcal{L}|/s \leq f_2]. \tag{5}
\]

In the above equation, the second indicator function returns 1 only if the number of pixels in proposal \(\mathcal{L} \) is bounded by some tolerance factors \(f_1 \) and \(f_2 \).

3.4 Simulating user interactions

Even when selecting the same object instance, it is unlikely that different users will provide the same interactions inputs. For the model to fully capture expected behaviour across different users, one would need significant amounts of interaction training data. Rather than obtaining these clicks from actual users for training, we simply simulate user clicks and generate guidance maps accordingly.

We follow the sampling strategies proposed in \[14\]. For each object instance, we sample \(N_{pos} \) positive clicks within the object maintaining a distance \(d_1^{in} \) pixels from the object boundary and \(d_2^{in} \) pixels from each other. For negative clicks, we test the first two of the three sampling strategies outlined in \[14\], one in which \(N_{neg} \) clicks are sampled randomly from the background, ensuring a distance of \(d_1^{out} \) pixels away from the object boundary and \(d_2^{out} \) pixels from each other and one in which \(N_{neg} \) clicks on each of the negative objects (objects not of interest). The above click-sampling strategy helps the network to understand notions such as negative objects and background but cannot train the network to identify and correct errors made during the prediction \[11\]. To this end, we also randomly
sample N_{iter} clicks based on the segmentation errors. After an initial prediction is obtained, positive or negative clicks are randomly sampled from the error. Existing set of clicks are then replaced with the newly sampled clicks with a probability of 0.3. To mimic a typical user’s behavior [11], the error-correction clicks are placed closest to the center of the largest misclassified region.

To estimate the scale measure s, we reserve the first two clicks, one positive and one negative, and assume that the Euclidean distance between the two is a roughly proportional measure; f, f_1 and f_2 are then set accordingly.

4 Experimental Validation

4.1 Datasets & Evaluation

We apply our proposed guidance maps and evaluate the resulting instance segmentations on four publicly available datasets: PASCAL VOC 2012 [45], GrabCut [6], Berkeley [46], and MS COCO [47].

PASCAL VOC 2012 consists of 1464 training images and 1449 validation images spread across 20 object classes.

GrabCut consists of 50 images with the corresponding ground truth segmentation masks and is used as a common benchmark for most interactive segmentation methods. Typically, the images have a very distinct foreground and background distribution.

Berkeley consists of 100 images with a single foreground object. The images in this dataset represent the various challenges encountered in an interactive segmentation setting such as low contrast between the foreground and the background, highly textured background etc.

MS COCO is a large-scale image segmentation dataset with 80 different object categories, 20 of which are from the Pascal VOC 2012 dataset. For fair comparison with [14],[10], we randomly sample 10 images per category for evaluation and splitting the evaluation for the 20 Pascal categories versus the 60 additional categories.

Evaluation Fully automated instance segmentation is usually evaluated with mean intersection over union ($mIoU$) between the ground truth and predicted segmentation mask. Interactive instance segmentation is differently evaluated because a user can always add more positive and negative clicks to improve the segmentation and thereby increase the $mIoU$. As such, the established way of evaluating an interactive system is according to the number of clicks required for each object instance to achieve a fixed $mIoU$. Like [14],[10],[11], we limit the maximum number of clicks per instance to 20. Note that unlike [14],[10], we do not apply any post-processing with a conditional random field and directly use the segmentation output from the FCN.

4.2 Implementation Details

Training As our base segmentation network, we adopt the FCN [30] pre-trained on PASCAL VOC 2012 dataset [48] as provided by MatConvNet [48]. The output layer is replaced with a two-class softmax layer to produce binary segmentations of the specified object instance. We fine-tune the network on the 1464 training images with instance-level segmentation masks of PASCAL VOC 2012 segmentation dataset [45] together with the 10582 masks of SBD [49].

We further augment the training samples with random scaling and flipping operations. We use zero initialization for the extra channels of the first convolutional layer ($conv_{1,1}$) with a probability of $1/40$, $1/20$, $1/10$, $1/5$, $1/3$, $1/2$, $1/1$. The randomness in the number of clicks and their relative distances prevents the network from over-fitting during training.

Click Sampling We generate training images with a variety of click numbers and locations; sometimes, clicks end up being sampled from the same superpixel, which reduces training data variation. To prevent this and also make the network more robust to the click number and location for training, we sample randomly from the following hyperparameters rather than fixing them to single values: $N_{pos} = \{2, 3, 4, 5\}$, $N_{neg}^1 = \{5, 10\}$, $N_{neg}^2 = \{3, 5\}$, $d_{min}^1 = \{15, 20, 40\}$, $d_{min}^2 = \{7, 10, 20\}$, $d_{out}^1 = \{15, 40, 60\}$, $d_{out}^2 = \{10, 15, 25\}$. The randomness in the number of clicks and their relative distances prevents the network from over-fitting during training.

Guidance Dropout Since the FCNs are pre-trained on PASCAL VOC 2012, we expect the network to return a good initial prediction when it encounters image with object instances from one of its 20 classes. Thus, during training, when the network receives images without any instance ambiguity (i.e. an image with single object), we zero the guidance maps (value of 0 for object guidance map and 255 for the super-pixel based guidance map) with a probability of 0.2 to
encourage good segmentations without any guidance. We further increase robustness by resetting either the positive or
negative super-pixel based guidance with a probability of 0.4.

Interaction Loop During evaluation, a user provides positive and negative clicks sequentially to segment the object
of interest. After each click is added, the guidance maps are recomputed; in addition the a distance transform of
predicted mask from the previous iteration is provided as an extra channel [11]. The newly generated guidance map is
concatenated with the image and given as input to the FCN-8s network which produces an updated segmentation map.

Superpixels & Object Proposals We use the implementation provided in [39] for generating superpixels; on average,
each frame has 500 – 1000 superpixels. For comparison, we also try other superpixelling variants e.g. SLIC [32]
and CTF [50]. Although several object proposal algorithms exist [40, 51, 39], we use only MCG [39] as it has been
shown to have higher quality proposals [42]. The final stage of MCG returns a ranking which we disregard. We use the
pre-computed object proposals for PASCAL VOC 2012 and MS COCO provided by the authors of [39]. For GrabCut
and Berkeley, we run MCG [39] on the ‘accurate’ setting to obtain our set of object proposals.

4.3 Impact of Structure-Based Guidance

We begin by looking at the impact of super-pixel based guidance. As a baseline, we compare with [14], which uses a
standard Euclidean distance-based guidance as given in Eq. 1 (see examples in second row of Fig. 1). Similar to [14],
we concatenate our positive and negative superpixel-based guidance maps with the three color channels and feed it as
an input to the FCN-8s [30]. We use the superpixels computed using MCG [39]. For a fair comparison, we train our
network non-iteratively, i.e., during training, we do not generate click samples based on the error in the prediction and
do not append the distance transform of the current predicted mask as an extra channel. Looking at Table. 1, we see that
our super-pixel based guidance maps significantly reduce the number of clicks required to reach the standard mIoU
threshold.

The object-based guidance provides the network with a weak localization prior of the object of interest. adding the
object-based guidance with the superpixel based guidance leads to further improvements in performance (see third row
of Table. 1). The impact is more prominent for datasets with a single distinct foreground object (e.g. 9.3% and 14%
relative improvement for the Berkeley and GrabCut dataset). Finally, by making the feedback iterative, i.e. based on
previous segmentation errors, we can further reduce the number of clicks. Overall, our structure-based guidance maps
can reduce the number of clicks by 35% to 47% and unequivocally proves that having structural information in the
guidance map is highly beneficial.

	GrabCut @90%	Berkeley @90%	VOC 2012 @85%
Euclidean ([14])	6.04	8.65	6.88
SP	4.44	6.67	4.23
SP + Obj.	3.82	6.05	4.02
SP + Obj. + Iter	**3.58**	**5.60**	**3.62**

Table 1: Clicks required for different types of guidance. Guidance maps leveraging structural information require
significantly less clicks than Euclidean distance-based guidance. SP refers to the super-pixel guidance maps and Obj
refers to the object based guidance map and Iter refers to iterative training.

4.4 Impact of Scale-Aware Guidance

Due to fixed-size receptive field, FCNs experience difficulty when segmenting small objects [23]. The benefits of our
scale-aware guidance map which is most pronounced for segmenting small objects; for large objects, it does not seem
to much effect. To highlight the impact of our guidance on small object instances, we pick the subset of 621 objects
(from PASCAL VOC 2012) which are smaller than 32 x 32; objects smaller than this size are harder to identify [43].

In the scale agnostic setting, we consider all object proposals which has the click in its pixel support for generating the
object-based guidance map, i.e. (as shown in Equation 3; note that this is equivalent to having $f_1 = 0$, $f_2 = \infty$). Since
the lower bound on scale has little effect, we set $f_1 = 0$. Looking at the average number of clicks required per instance
to reach 85% mIoU for the subset of small objects (see Fig. 5(a)), we find that having a soft scale estimate improves
the network performance when it comes to segmenting smaller objects. This is primarily because the guidance map
disregards object proposals which are not consistent in scale and can degrade the network performance by inducing a misleading co-occurrence prior.

When the scale s is based on ground truth (as the square root of the number of pixels in the mask foreground, see blue curve in Fig. 5(a)), the average clicks required per instance is consistently lower than the scale-agnostic case, even when as we relax f_2 up to 6, i.e. allowing for object proposals which are 6 times larger than the actual object scale. Estimating the scale from the clicks is of course much less accurate than when it is take from the ground truth masks (compare black curve vs blue curve in Fig. 5(a)). Nevertheless, even with such a coarse estimate, we find improvements in the number of clicks required as compared to the scale-agnostic scenario (compare red dashed line in Fig. 5(a)). When the scale s is based on the estimated scale (see blue curve in Fig. 5(a)), the average clicks required per instance is consistently lower than the scale-agnostic case, even when as we relax f_2 up to 6, i.e. allowing for object proposals which are 6 times larger than the estimated object scale. Given the first pair of positive and negative clicks, our estimated object scale is $\sqrt{\pi d}$ where d is the euclidean distance between the positive and the negative click. In our experiments, we observed that our estimated scale varies between 50−300% from the ground truth scale). The difficulty of segmenting small objects using CNNs have been reported in literature [23]. Based on our preliminary experiments, we also observed that segmenting smaller objects can be problematic. For objects smaller than 32×32 pixels from PASCAL VOC 2012 val set, we require an average of 4.33 clicks which is significantly higher than our dataset average of 3.62 clicks. At this point, we cannot compare to existing state-of-the-art interactive segmentation approaches as these approaches typically report the average number of clicks over the entire dataset and do not distinguish between smaller and larger objects.

4.5 Comparison to State of the Art

We compare the average number of clicks required reach some required mIoU (see Table 3) as well as mIoU vs. the number of clicks (see Fig. 4) against other methods reported in the literature. The methods vary in the base segmentation network from the basic FCNs to the highly sophisticated DeepLabV3 and also make use of additional CRF post-processing. We achieve the lowest number of clicks required for all datasets across the board, again proving the benefits of applying guidance maps based on existing image structures. We report results for our best trained SP+Obj+Iter network. In the initial stages of interaction on PASCAL VOC 2012 val set, our network outperforms the current state-of-the-art ITIS (as can be seen from Fig. 4(a)).

To reach the mIoU threshold of 90% on GrabCut and Berkeley, our full model needs the fewest number of clicks as shown in Table 3 with a relative improvement of 5.79% and 7.13% over the current benchmark. For PASCAL VOC 2012 val set, we observe a relative improvement of 4.7%.

For MS COCO, we observe a larger improvement for the 20 seen categories from PASCAL VOC 2012, as our networks were trained heavily on these object categories. Overall, we achieve an improvement of 9.7% and 5.28% over the 20 seen and 60 unseen object categories. We note that such an improvement is achieved despite the fact that our base network is the most primitive of the methods compared, i.e. an FCN-8, in comparison to the others who use much deeper (ResNet-101) and more complex (DeepLab) network.
Figure 5: (a) Scale-Aware Guidance. The figure shows the average number of clicks required for segmenting small object instances (smaller than \(32 \times 32\) pixels \[43\]) for varying degrees of tolerance till which we accept object proposals for generating our guidance map based on our estimated object scale and the ground truth object scale (computed as the square root of the number of pixels in the object mask). (b) Number of superpixels. The figure shows the average number of clicks required for segmenting object instances in PASCAL VOC 12 val set for different number of superpixels.

4.6 Superpixels

Type of Superpixels We consider two variants of superpixel, SLIC \[32\] and CTF \[50\] to study the impact of the type of superpixeling algorithm. For this study, we only consider the superpixel based guidance map and do not include the object based guidance map. On an average, MCG \[39\] generates \(500 - 1000\) superpixels for each image in its default setting. For a fair comparison, we generate \(500\) and \(1000\) superpixels using SLIC and CTF. We observe that using \(1000\) SLIC superpixels results in performance similar to the MCG. However, irrespective of the superpixeling method, we found an overall improvement when the guidance maps are generated based on superpixels instead of pixel-based distances.

#superpixels	SLIC \[32\]	CTF \[50\]	MCG \[39\]
500	4.45	4.82	4.23
1000	4.29	4.58	

Table 2: Choice of superpixel algorithm

Number of Superpixels In this section, we study the impact of the number of superpixels. For this study, we only consider the superpixel based map as user guidance. We use SLIC \[32\] as superpixel algorithm. In the extreme case, all superpixels will have one pixel in its support and the superpixel based guidance map degenerates to the Euclidean distance transform commonly used in existing interactive segmentation methods \[14\] \[21\]. We use the reported results in iFCN \[14\] on PASCAL VOC 2012 val set as our degenerate case (as shown by the red curve in Fig. 5(b)). In addition to the reported results for \(500\) and \(1000\) superpixels on PASCAL VOC 2012 val set (as shown in Table 4 of the paper), we generate \(2000\), \(5000\) and \(10000\) superpixels using SLIC \[32\].

We notice an initial gain in performance, but with increase in the number of superpixels, the performance drops as our network requires more and more clicks to segment the object of interest. As the number of superpixels increase, the benefits of local structure based grouping is lost as each superpixel is segmented into similar and redundant superpixels.
Table 3: The average number of clicks required to achieve a particular mIoU score on different datasets by various algorithms. The best results are indicated in **bold**.

Method	Base Network	GrabCut @90%	Berkeley @90%	PascalVOC12 @85%	MS-COCO seen@85%	MS-COCO unseen@85%
iFCN	FCN-8s [30]	6.04	8.65	6.88	8.31	7.82
RIS-Net	DeepLab [44]	5.00	6.03	5.12	5.98	6.44
ITIS	DeepLabV3+ [53]	5.60	-	3.80	-	-
DEXTR	DeepLab [44]	4.00	-	4.00	-	-
VOS-Wild	ResNet-101 [54]	3.80	-	5.60	-	-
FCTSFN	Custom	3.76	6.49	4.58	9.62	9.62
IIS-LD	CAN [55]	4.79	-	-	12.45	12.45
Ours	FCN-8s [30]	**3.58**	**5.60**	**3.62**	**5.40**	**6.10**

5 Qualitative Results

Zero Click Examples We show via some qualitative examples, the benefits of having the guidance dropout. In several instances, our network is able to produce high quality masks without any user guidance (as shown in Fig. 6).

Multiple Click Examples In Fig. 7, we show some examples where undesired objects and background was removed with only a few clicks resulting in a suitable object mask.

Failure Cases We show some examples from PASCAL VOC 2012 val set, where our network is unable to generate object masks with $\geq 85\%$ mIoU and exhausts the 20 click budget (see Fig. 8). These failure cases are representative of the problems faced by CNNs while segmenting objects from images such as, small objects [23], occlusion [52], motion blur and objects with very fine structures. In general, we observed that our network had difficulty in handling three object classes from PASCAL VOC 2012 - chair, bicycle and potted plant. This is primarily due to the inability of CNNs to produce very fine segmentations, most likely due to the loss of resolution from downsampling in the encoder.

6 Discussion & Conclusion

In this work, we investigated the impact of the guidance maps for interactive object segmentation. Conventional methods use distance transform based approaches for generating guidance maps which disregard the inherent image structure. We proposed a scale aware guidance map generated using hierarchical image information which leads to significant reduction in the average number of clicks required to obtain a desirable object mask.

During experimentation, we observed that the object instances within the datasets varied greatly in difficulty. For instance, on PASCAL VOC 2012, the base network, without any user guidance, is able to meet the $\geq 85\%$ mIoU criteria for 433 of the 697 instances. Similarly observations were made for GrabCut ($\geq 90\%$ mIoU, 13 out of 50) and Berkeley ($\geq 90\%$ mIoU, 15 out of 100). On the other hand, we encountered instances where our algorithm repeatedly exhausted the 20 click budget regardless of sampled click locations and iterative feedback based on prediction errors. This is especially true for objects with very fine detailing, such as spokes in bicycle wheels, partially occluded chairs, etc. Based on these two extreme cases, we conclude that interactive segmentation is perhaps not so relevant for single object instances featuring prominently at the center of the scene and should feature more challenging scenarios. On the other hand, we need to design better algorithms which can handle objects that are not contiguous in region, i.e. has holes and are able to handle scenarios of occlusion. Depending on the target application, dedicated base architectures may be necessary to efficiently handle these cases.

References

[1] Arnaud Benard and Michael Gygli. Interactive video object segmentation in the wild. *arXiv preprint arXiv:1801.00269*, 2017.

[2] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy snapping. In *ACM Transactions on Graphics (ToG)*, volume 23, pages 303–308. ACM, 2004.

[3] Guotai Wang, Wendi Li, Maria A Zuluaga, Rosalind Pratt, Premal A Patel, Michael Aertsen, Tom Doel, Anna L David, Jan Deprest, Sébastien Ourselin, et al. Interactive medical image segmentation using deep learning with image-specific fine-tuning. *IEEE Transactions on Medical Imaging*, 2018.
Figure 6: **Zero Click Examples.** Examples of high-quality object masks generated without any user guidance. In each example, there is only one foreground object and its appearance is very distinct from the background. Generated object boundaries are shown in green. Figure best viewed in colour.

[4] Guotai Wang, Maria A Zuluaga, Wenqi Li, Rosalind Pratt, Premal A Patel, Michael Aertsen, Tom Doel, Anna L Divid, Jan Deprest, Sébastien Ourselin, et al. Deepigeos: a deep interactive geodesic framework for medical image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

[5] Mykhaylo Andriluka, Jasper RR Uijlings, and Vittorio Ferrari. Fluid annotation: a human-machine collaboration interface for full image annotation. *arXiv preprint arXiv:1806.07527*, 2018.

[6] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In *ACM transactions on graphics (TOG)*, volume 23, pages 309–314. ACM, 2004.

[7] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In *Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on*, volume 1, pages 105–112. IEEE, 2001.

[8] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive organ segmentation in two and three dimensions: Implementation and validation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 773–780. Springer, 2005.

[9] Antonio Criminisi, Toby Sharp, and Andrew Blake. Geos: Geodesic image segmentation. In *European Conference on Computer Vision*, pages 99–112. Springer, 2008.

[10] JunHao Liew, Yunchao Wei, Wei Xiong, Sim-Heng Ong, and Jiashi Feng. Regional interactive image segmentation networks. In *2017 IEEE International Conference on Computer Vision (ICCV)*, pages 2746–2754. IEEE, 2017.

[11] Sabarinath Mahadevan, Paul Voigtlaender, and Bastian Leibe. Iteratively trained interactive segmentation. *arXiv preprint arXiv:1805.04398*, 2018.
Figure 7: **Multiple Click Examples.** With a few clicks, background and undesired object instances can be removed from the final prediction mask. Green dots indicate positive clicks and red dots indicate negative clicks. Ground truth object boundaries are shown in cyan and predicted object boundaries are shown in green. Figure best viewed in colour.

[12] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool. Deep extreme cut: From extreme points to object segmentation. *arXiv preprint arXiv:1711.09081*, 2017.

[13] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas Huang. Deep grabcut for object selection. *arXiv preprint arXiv:1707.00243*, 2017.

[14] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang. Deep interactive object selection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 373–381, 2016.

[15] Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation. In *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2858–2866. IEEE, 2017.

[16] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task network cascades. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3150–3158, 2016.

[17] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous detection and segmentation. In *European Conference on Computer Vision*, pages 297–312. Springer, 2014.

[18] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hypercolumns for object segmentation and fine-grained localization. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 447–456, 2015.
Figure 8: **Failure Examples.** Ground truth object boundaries are shown in cyan while generated object boundaries from the predicted mask are shown in green. In the *dog* example, the network has difficulty distinguishing the fur from the background. For the *car* example, it is either too small (1st row, 2nd column) or too occluded (2nd row, 1st column). For the *bicycle*, *chair* and *potted plant* example, the error in prediction is due to the inability of the network in handling very fine structures. Figure best viewed in colour.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Computer Vision (ICCV), 2017 IEEE International Conference on*, pages 2980–2988. IEEE, 2017.

[20] Yang Hu, Andrea Soltoggio, Russell Lock, and Steve Carter. A fully convolutional two-stream fusion network for interactive image segmentation. *Neural Networks*, 2018.

[21] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Interactive image segmentation with latent diversity.

[22] George Papandreou, Iasonas Kokkinos, and Pierre-André Savalle. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 390–399, 2015.

[23] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic segmentation. In *Proceedings of the IEEE international conference on computer vision*, pages 1520–1528, 2015.

[24] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. *International journal of computer vision*, 1(4):321–331, 1988.

[25] Eric N Mortensen and William A Barrett. Intelligent scissors for image composition. In *Proceedings of the 22nd annual conference on Computer graphics and interactive techniques*, pages 191–198. ACM, 1995.

[26] Vladimir Vezhnovets and Vadim Konouchine. Growcut: Interactive multi-label nd image segmentation by cellular automata. In *proc. of Graphicon*, volume 1, pages 150–156. Citeseer, 2005.

[27] Xue Bai and Guillermo Sapiro. Geodesic matting: A framework for fast interactive image and video segmentation and matting. *International journal of computer vision*, 82(2):113–132, 2009.

[28] Varun Gulshan, Carsten Rother, Antonio Criminisi, Andrew Blake, and Andrew Zisserman. Geodesic star convexity for interactive image segmentation. In *Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on*, pages 3129–3136. IEEE, 2010.
[29] Brian L. Price, Bryan Morse, and Scott Cohen. Geodesic graph cut for interactive image segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3161–3168. IEEE, 2010.
[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.
[31] Ding-Jie Chen, Jui-Ting Chien, Hwann-Tzong Chen, and Long-Wen Chang. Tap and shoot segmentation. 2018.
[32] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, Sabine Süsstrunk, et al. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11):2274–2282, 2012.
[33] Anestis Papazoglou and Vittorio Ferrari. Fast object segmentation in unconstrained video. In Proceedings of the IEEE International Conference on Computer Vision, pages 1777–1784, 2013.
[34] Alon Faktor and Michal Irani. Video segmentation by non-local consensus voting. In BMVC, 2014.
[35] Xuming He, Richard S Zemel, and Debajyoti Ray. Learning and incorporating top-down cues in image segmentation. In European conference on computer vision, pages 338–351. Springer, 2006.
[36] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5):898–916, 2011.
[37] Philipp Krähenbühl and Vladlen Koltun. Geodesic object proposals. In European conference on computer vision, pages 725–739. Springer, 2014.
[38] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, and Luc Van Gool. Convolutional oriented boundaries. In European Conference on Computer Vision, pages 580–596. Springer, 2016.
[39] Jordi Pont-Tuset, Pablo Arbeláez, Jonathan T Barron, Ferran Marques, and Jitendra Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE transactions on pattern analysis and machine intelligence, 39(1):128–140, 2017.
[40] Jasper R.R Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154–171, 2013.
[41] Anna Khoreva, Rodrigo Benenson, Jan Hendrik Hosang, Matthias Hein, and Bernt Schiele. Simple does it: Weaky supervised instance and semantic segmentation. In CVPR, volume 1, page 3, 2017.
[42] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, pages 1635–1643, 2015.
[43] Bharat Singh and Larry S Davis. An analysis of scale invariance in object detection–snip. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3578–3587, 2018.
[44] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2018.
[45] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303–338, 2010.
[46] Kevin McGuinness and Noel E O’connor. A comparative evaluation of interactive segmentation algorithms. Pattern Recognition, 43(2):434–444, 2010.
[47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer, 2014.
[48] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia, pages 689–692. ACM, 2015.
[49] Bharat Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Semantic contours from inverse detectors. 2011.
[50] Jian Yao, Marko Boben, Sanja Fidler, and Raquel Urtasun. Real-time coarse-to-fine topologically preserving segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2947–2955, 2015.
[51] Joao Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. IEEE Transactions on Pattern Analysis & Machine Intelligence, (7):1312–1328, 2011.
[52] Ke Li and Jitendra Malik. Amodal instance segmentation. In European Conference on Computer Vision, pages 677–693. Springer, 2016.
[53] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv preprint arXiv:1802.02611, 2018.
[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
[55] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.