INTRODUCTION

In Indonesia, the most common cause of death from a noncommunicable disease is stroke. The incidence of stroke increased from 8.3/1000 population, in 2007, to 12.1/1000 population, in 2013 [1]. Stroke can cause long-term disability [2], in 2014, 71.4% of the stroke patients admitted to the Neurology Department of Cipto Mangunkusumo General Hospital/RSCM (Rumah Sakit Cipto Mangunkusumo) experienced ischemic stroke [3]. Ischemic stroke is caused by sudden loss of blood circulation to the brain, spinal cord, or retina due to embolism, thrombosis, or perfusion abnormalities such as blood hyperviscosity [4]. Regions of cerebrovascular ischemia include two areas of injury, a core zone of cell death and an ischemic penumbra that can be salvaged [5]. Blood hyperviscosity is present in 40% of patients with acute ischemic stroke and contributes to the severity of clinical outcome [6]. Hematocrit, erythrocyte deformability, erythrocyte aggregation, and fibrinogen determine blood viscosity [7]. It is important to determine blood viscosity because hyperviscosity in the penumbra can decrease cerebral blood flow and lead to infarction [8]. In Indonesia, the measurement of blood viscosity in patients with acute ischemic stroke is not routine because until now it could be done in large laboratories only and the result could not be obtained right away. In this study, a novel digital microcapillary instrument was used to screen blood viscosity [9].

The Indonesian national health insurance values effective, efficient treatment. Since intravenous thrombolysis can only be administered to 10% of acute ischemic stroke patients due to the narrow time window [10], 90% of patients require an alternative therapy to protect the penumbra from infarction. Pentoxifylline, a methylxanthine derivative, inhibits cyclic adenosine monophosphate phosphodiesterase and cyclic guanosine monophosphate hydrolysis and blocks the adenosine transporter and the phospholipase. Methylxanthines inhibit platelet aggregation and thromboxane A2 synthesis, increase phagocytic activity, and increase the synthesis of prostacyclin from endoperoxidase. They lower blood viscosity by increasing erythrocyte stability, by reducing the aggregation of erythrocytes and plasma fibrinogen concentration, and may be neuroprotective by inhibiting glutamate release [11]. Pentoxifylline may improve cerebral blood flow and may suppress inflammation in acute stroke [12,13], but a marker of its efficacy is lacking. In this study, blood hyperviscosity was used as a marker of the effectiveness of pentoxifylline in acute stroke patients. The device used in this study is called “Digital Microcapillary” is a portable device to measure blood viscosity that has been patented in Indonesia since 2016 with patent number 0000431D8 from the Ministry of Law and Human Rights of Republic of Indonesia.

METHODS

Subjects

Adult acute ischemic stroke patients with blood hyperviscosity treated at the Cipto Mangunkusumo General and Prikash Hospital between September 1, 2016, and June 31, 2017, were recruited within 3 days of onset. Physical and neurologic examinations were performed by the doctor on duty. Ischemic stroke was diagnosed by cerebral computed tomography. Stroke symptoms were classified by the Bamford criteria; patients with posterior circulation infarct or total anterior cerebral infarct were excluded. Patients with dehydration (a urea/creatinine ratio >32 on admission), previous history of stroke or transient ischemic attack, previous intravenous or intra-arterial thrombolysis, or an estimated glomerular filtration rate of <30% were excluded.

Study design and procedures

In this single-blind controlled study, eligible patients were assigned by block randomization to receive pentoxifylline or control treatment.
The neurological deficit was assessed on admission (no pentoxifylline). All the subjects received the standard treatment for acute ischemic stroke, including an antithrombotic agent, statin, and other medications if indicated, such as antiepileptic agents for seizures or antibiotics for pneumonia or other infections. The study group received intravenous pentoxifylline 1200 mg/day for 5 consecutive days followed by oral pentoxifylline 800 mg in two divided doses for 33 days. The study protocol was approved by the Health Research Ethics Committee of the University of Indonesia and Cipto Mangunkusumo Hospital (HREC-FMUI/CMH) and was conducted following the ethical principles of the Declaration of Helsinki. All the participants gave written informed consent.

Blood viscosity was measured on the day of admission, day 7, and day 30 day using a digital microcapillary device previously described by Rasyid et al. [9]. The neurological deficit was assessed on admission and day 7 by the National Institutes of Health Stroke Scale (NIHSS) score. Significant improvement was defined as a 4-point change from the baseline score or a score of 0. Disability and functional outcome were assessed by the modified Rankin Scale (mRS) and Barthel index (BI) on day 30. A poor disability outcome was defined as an mRS score of >3, and a poor functional outcome was defined as a BI score of >60.

Statistical analysis

Numerical data were reported as means ± standard deviation if normally distributed or as median and range if not normally distributed. Categorical data were reported as frequencies and percentages. Statistical analysis was performed with SPSS version 20 (IBM Corp., Armonk, NY, USA). Independent test or Mann–Whitney U-tests was used to compare means; Chi-square or Fisher’s exact tests were used to compare percentages.

RESULTS AND DISCUSSION

A total of 44 patients met the eligibility criteria and were willing to participate; 42 were admitted to RSUPN Cipto Mangunkusumo and two were admitted to Prikasih Hospital. 22 patients received pentoxifylline; 22 received standard (control) treatment. One patient from the control group died on day 20 from a heart attack. Two patients in the study group did not return for the blood viscosity measurement, and seven (three in the control group and four subjects in the study group) were lost to follow-up. Intention to treat analysis was performed so that all randomized patients were included in the analysis. The patient selection, treatment, and disposition are shown in Fig. 1.

Most patients (68%) were 50–80 years of age. The median was 55 (range 19–70) years of age, 70% were men, 80% were hypertensive, 64% were current smokers, 50% had dyslipidemia, 30% had diabetes mellitus, and 23% had ischemic heart disease. Lacunar stroke was the most common stroke type (86%), and the main manifestation was motor paralysis. There were no statistically significant differences in baseline demographic, clinical, or laboratory characteristics in the study and control groups (Tables 1 and 2).

Blood viscosity

The baseline blood viscosities in the study (6.46, range 5.20–9.73 poise) and control (6.89 poise, range 5.57–14.10 poise) groups were not significantly different (p=0.105, Table 2). On day 7, the blood viscosity had decreased in both of the groups; however, the decrement was larger in the pentoxifylline group than in the control group (1.22

![Graph](image)

Fig. 1: Patients participating in this study

Variable	Study group (n=22)	Control group (n=22)	Total (n=44)	p
Demographic variable				
Age, y	18–49	6 (27%)	44 (100%)	
50–80	16 (73%)	14 (63%)		
Sex				
Male	14 (63%)	17 (77%)	31 (70%)	0.322
Female	8 (36%)	5 (23%)	13 (30%)	
Smoking				
Yes	16 (73%)	12 (54%)	28 (64%)	0.210
No	6 (27%)	10 (45%)	16 (36%)	
Clinical variable				
Hypertension				
Yes	18 (82%)	17 (77%)	35 (80%)	1.001
No	4 (18%)	5 (23%)	9 (20%)	
Diabetes mellitus				
Yes	9 (41%)	4 (18%)	13 (30%)	0.099
No	13 (59%)	18 (82%)	31 (70%)	
Ischemic heart disease				
Yes	5 (23%)	5 (23%)	10 (23%)	1.001
No	17 (77%)	17 (77%)	34 (77%)	
Dyslipidemia				
Yes	10 (45%)	12 (54%)	22 (50%)	0.546
No	12 (54%)	10 (45%)	22 (50%)	
Stroke symmetry				
PACI	3 (14%)	3 (14%)	6 (14%)	1.001
LACI	19 (86%)	19 (86%)	38 (86%)	
Onset				
<24 h	20 (91%)	17 (77%)	37 (86%)	0.412
24–72 h	2 (9%)	5 (23%)	7 (16%)	
NIHSS score	4.0 (1–11)	5.95±3.484	2.35±2.484	0.354

†Chi-square test; ‡Fisher’s exact test; *unpaired t test; **Mann–Whitney U-test, p<0.05; NIHSS: National Institutes of Health Stroke Scale

The 24th Physics and Technologies in Medicine and Dentistry Symposium (PTMDS), Universitas Indonesia. Depok, Indonesia
Blood viscosity analysis showed that pentoxifylline was effective in reducing blood viscosity and improving clinical outcomes in acute ischemic stroke patients. The pentoxifylline group had a lower blood viscosity compared to the control group, with a significant decrease observed on day 30. The clinical outcomes in the pentoxifylline group were also better, with a higher proportion of patients achieving NIHSS improvement and a better mRS score at the 1-month follow-up.

DISCUSSION

The hematocrit, erythrocyte deformability, erythrocyte aggregation, and fibrinogen levels determine blood viscosity, the thickness, and stickiness of blood [7]. Blood hyperviscosity is present in most patients with acute ischemic stroke [14] and patients with stroke risk factors such as smoking, diabetes mellitus, dyslipidemia, and heart disease [15]. There were no significant differences in the presence of stroke-risk factors in the study groups. Hypertension was present in 80% of the patients, consistent with the Indonesian demographic data that indicate hypertension as a principal risk factor for stroke [1]. Other risk factors present in this study population included smoking (64%), dyslipidemia (50%), diabetes mellitus (30%), and heart disease (23%). The incidence of stroke increased with age.

Pentoxifylline is a nonselective phosphodiesterase inhibitor used to treat intermittent claudication in patients with the peripheral arterial disease. Pentoxifylline significantly improves erythrocyte function, inhibits platelet aggregation, and decreases plasma fibrinogen, and blood viscosity in patients with cerebral vascular insufficiency [11]. The effectiveness of pentoxifylline was shown in this study by its effect on blood viscosity and association with the improvement of the clinical outcomes.

Mediators of inflammation such as tumor necrosis factor-α, interferon-β, interleukin (IL)-1β, and (IL-6) are released in the acute phase of stroke. Plasma fibrinogen also increases in the acute phase [16]. Blood viscosity increases in the acute stroke phase in response to inflammation and is also affected by coexisting stroke-risk factors [15]. Blood hyperviscosity contributes to stroke severity and outcome [14, 17-19].

Baseline blood viscosity was higher in control than in the pentoxifylline group; however, the difference (7.78 poise vs. 6.77 poise) was not significant. The blood viscosity had decreased from the baseline on both days 7 and 30. Blood hyperviscosity indicates a poor prognosis in patients with acute ischemic stroke. It leads to further loss of blood flow in the ischemic penumbra and can lead to the expansion of the infarct area and the worsening of the neurological deficit [5]. On day 7, the neurological deficit had improved in 32% of the patients in both groups (RR=1.00; 95% CI: 0.421–3.556; p=1.00, Table 3). On day 30, 67% of the pentoxifylline group and 68% of the control group had good clinical outcomes (RR=1.026; 95% CI: 0.656–1.605; p=0.909; Table 3). The similar clinical outcomes in both groups indicate that the standard acute stroke treatment that was given to all patients was adequate to improve the clinical outcome.

The study results differ from those reported by a double-blind, randomized trial of pentoxifylline in no hemorrhagic stroke patients. Intravenous pentoxifylline 1200 mg/day was given for 3 days and continued orally 400 mg t.i.d for the next 28 days. The neurological deficit improved but did not differ from the placebo control after the first few days. The improvements in the level of consciousness, motor function, and cranial nerve function were better in the study group than in the control group [20].

The study limitations include the small number of patients to assess the effect of pentoxifylline therapy for acute ischemic stroke and the loss of seven patients at the 1-month clinical evaluation.

CONCLUSION

A decrease in blood viscosity and improvement of clinical outcome was seen after pentoxifylline administration but was not significantly different from those seen in control patients with standard therapy after 7 days. The efficacy of pentoxifylline as an ischemic stroke therapy
warrants investigation in a large clinical trial with more specific inclusion criteria to confirm these results.

CONFLICTS OF INTEREST
All authors have none to declare.

REFERENCES
1. Ministry of Health. Basic Health Research. Agency of Health Research and Development the Republic of Indonesia. Jakarta: Ministry of Health Republic of Indonesia; 2013.
2. Rothwell PM, Coull AJ, Giles MF, Howard SC, Silver LE, Bull LM, et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford vascular study). Lancet 2004;363:1925-33.
3. Fadhli H, Meisadona G, Kurniawan M, Mesiano T. Stroke Patient Mortality in Cipto Mangunkusumo Hospital in 2014. Jakarta: Presented at the Jakarta Neurology Workshop Exhibition and Symposium (JAKNEWS); 2015.
4. Ott E, Fazekas F, Tschinkel M, Bertha G, Lechner H. Rheological aspects of cerebrovascular disease. Eur Neurol 1983;22 Suppl 1:35-7.
5. Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: The Edinburgh artery study. Br J Haematol 1997;96:168-73.
6. Thomas DJ. Whole blood viscosity and cerebral blood flow. Stroke 1983;14:1012-3.
7. Rasyid A, Misbach J, Purba JS, Timan IS, Sukrisman L, Mansyur M, et al. The role of a novel digital microcapillary instrument in detecting blood and plasma hyperviscosity. Acta Med Indones 2014;46:226-32.
8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American heart association/American stroke association. Stroke 2018;49:e46-e110.
9. Ward A, Clissold SP. Pentoxifylline: A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 1987;34:50-97.
10. Bowton DL, Stump DA, Prough DS, Toole JF, Lefkowitz DS, Coker L, et al. Pentoxifylline increases cerebral blood flow in patients with cerebrovascular disease. Stroke 1989;20:1662-6.
11. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 2011;1377:119-25.
12. Rasyid A. The Effectiveness of Digital Microcapillaries as a Measure of the Value of Blood Viscosity to Predict the Prognosis of Acute Ischemic Stroke. Dissertation. Jakarta: Faculty of Medicine Universitas Indonesia; 2014.
13. Ahmed HH, Shousha WG, Mezayen HA, Emara IA, Hassan ME. Clinical significance of procalcitonin and c-reactive protein in the prediction of cardiovascular complications in patients with Type 2 diabetes mellitus. Asian J Pharm Clin Res 2017;10:297-306.
14. Kristiyowati AD, Andrajati R, Bahtiar A. Comparison of clopidogrel and acetylsalicylic acid in the prevention of recurrent ischemic stroke at Dr. Moewardi regional general hospital. Asian J Pharm Clin Res 2017;10:145-50.
15. Coull BM, Beamer N, de Garmo P, Sexton G, Nordt F, Knox R, et al. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991;22:162-8.
16. Whiteley W, Jackson C, Lewis S, Lowe G, Rumley A, Sandercoc P, et al. Inflammatory markers and poor outcome after stroke: A prospective cohort study and systematic review of interleukin-6. PLoS Med 2009;6:e1000145.
17. Hsu CY, Norris JW, Hogan EL, Bladin P, Dinsdale HB, Yatsu FM, et al. Pentoxifylline in acute nonhemorrhagic stroke. A randomized, placebo-controlled double-blind trial. Stroke 1988;19:716-22.