Visual Analysis of ECG Sequences on Variant Maps

Zhihui Hou and Jeffery Zheng

Abstract This chapter presents the variant measurement based on the variant logic, which uses the ECG sequence as the signal source, and outputs the variant maps of ECG sequences. It provides a supplementary study for ECG detection. Samples of ECG signal are collected from the First People’s Hospital of Yunnan Province. Under variant maps, main parameters of various interval values are checked and corresponding maps are illustrated.

Keywords Arrhythmia · Visualization · ECG sequences · Variant map

1 Introduction

The world is concerned about the cardiovascular disease [1]. Mainly relying on the detection of ECG signals to promote research on related issues of cardiovascular diseases. The electrocardiogram represents cardiac function and graphic signals [2], which is an important means of diagnosing abnormal cardiac activity.

ECG signals are the product of a wide range of clinical ECG techniques. In recent years, research methods for ECG signals have made significant progress, such as using machine learning [3], neural network, clustering [4], partial fractal dimension [5], wavelet transform [6], and other methods to classify the detection of arrhythmia. The most typical representative of the emerging ECG research method is ECG scatter gram [7–9].

Project supported by the Key Project on Electric Information and Next Generation IT Technology of Yunnan (2018ZJ002), NSF of China (61362014), Yunnan Advanced Overseas Scholar Project.

Z. Hou
Yunnan University, Kunming, China
e-mail: 1660919714@qq.com

J. Zheng (✉)
Key Laboratory of Yunnan Software Engineering, Yunnan University, Kunming, China
e-mail: conjugatelogic@yahoo.com

© The Author(s) 2019
J. Zheng (ed.), Variant Construction from Theoretical Foundation to Applications,
https://doi.org/10.1007/978-981-13-2282-2_26
The variant method is an emerging technique for dealing with spatial changes in signal phase. Since the 1990s, the application of the variant method in processing binary image classification and transformation \([10, 11]\) had been proposed, and the variant method has been perfected until now \([12, 13]\). Variant method is applied to different data samples: quantum sequences \([14, 15]\), random sequences \([16]\), non-coding DNA \([17–19]\), bat echo signals \([20]\), and electrocardiographic signals \([21, 22]\), and effective research results have been obtained in these samples.

This chapter is a further study of the use of variant measurements in the detection of ECG sequences. The sample ECG signals are provided by the First People’s Hospital of Yunnan Province. In this chapter, two groups of signals are used: normal ECG signal and abnormal ECG signal groups. In the second part of this chapter, we describe variant map for ECG. Showing sample results and making a brief analysis in the third part, the last part is the summary of the chapter.

2 Variant Map for ECG

Variant map for ECG is composed of six parts: Input, Processing, Segmenting, Statistics, Mapping, and Output. Figure 1 is the overall structure of the variant map for ECG, which specific content about each part in the following description:

A. Input Part

Testing ECG signals are provided by the hospital as a data source. Let ECG signals be \(p\) with \(N\) elements.

\[
p = \{p_0, \ldots, p_{N-1}\}
\]

B. Processing Part

In processing part, a multivalve ECG signal sequence will be transformed into a four-valued pseudo-DNA sequence.

Input: the ECG sequence

\[
p = \{p_0, \ldots, p_{N-1}\}
\]

Parameters: \(W\) sliding window value; \(R\) interval value.

Output: a four-valued pseudo-DNA sequence
\[q = \{q_0, \ldots, q_{N-1}\} \]

Processing:
Let \(\bar{p}_i \) be an average value; \(r \) be a range value; \(t_i \) be a conversion value. Three values are calculated in the equations:

\[
\bar{p}_i = \frac{1}{N} \sum_{i=0}^{N-1} p_i
\]

\[p_{\text{max}} = \max\{p_i\}, 0 \leq i < N - 1 \]

\[p_{\text{min}} = \min\{p_i\}, 0 \leq i < N - 1 \]

\[r = (p_{\text{max}} - p_{\text{min}}) \cdot \frac{R}{2} \]

\[t_i = \frac{2(p_i - \bar{p}_i)}{r \cdot R} \]

Transforming rules: \(0 \leq i < N - 1 \)

if \(t_i > R > 0 \) : \(q_i = A \); if \(0 < t_i < R \) : \(q_i = G \);

if \(0 > t_i > -R \) : \(q_i = C \); if \(0 > -R > t_i \) : \(q_i = T \);

C. Segmenting Part
Input: \(q = \{q_0, \ldots, q_{N-1}\} \).
Parameters: \(m \) is a segment value.
Output: \(Q = \{Q_0, \ldots, Q_j, \ldots, Q_{M-1}\}, 0 \leq j < M \); \(M \) is segments and \(N = m \times M \).
Processing: the \(j \)-th element in \(Q = \{Q_0, \ldots, Q_j, \ldots, Q_{M-1}\} \);

\[Q_j = \{q_{jm+i}, \ldots, q_{jm+m-1}\}, 0 \leq i < m, 0 \leq j < M. \]

D. Statistics Part
Input: \(Q = \{Q_0, \ldots, Q_j, \ldots, Q_{M-1}\}, 0 \leq j < M \)
Output: \(S = \left\{S^A_j, S^C_j, S^G_j, S^T_j\right\}, 0 \leq j < M \)

\(S^A_j \) is value of the number of \(A \) element in \(Q_j \).
S^C_j is value of the number of C element in Q_j

S^G_j is value of the number of G element in Q_j

S^T_j is value of the number of T element in Q_j

E. Mapping Part

Selecting a pair of two elements in $S = \{S^A_j, S^C_j, S^G_j, S^T_j\}$, $0 \leq j < M$, as a mapping object. This chapter selects $\left(S^C_j, S^G_j \right)$. S^C_j is corresponding to the X-axis and S^G_j is corresponding to the Y-axis. All M pairs are mapping to the 2D map as output.

F. Output

The results of the mapping are output in the form of 2D variant maps.

3 Sample Results and Brief Analysis

Visualization results of ECG signal obtained by variant map for ECG show that the morphological features of ECG signals have regular changes. Sample results are illustrated and a brief analysis is described.

A. Data Source Description

The ECG signals in this chapter are provided by the First People Hospital of Yunnan Province. The ECG signals contain a total of 202,626 cases. There are 104,742 normal cases and 97,884 abnormal cases of records. For this experiment, 97,884 normal cases and 97,884 abnormal cases were selected.

Since ECG signals have multiple attributes, this chapter chooses the attributes of the P wave samples to be processed. Figure 2 is the sample of part of abnormal ECG data source.

B. Visualization Features

Using the variant map for ECG, multiple maps can be generated.

The interesting finding is that the changes of the parameters affect the spatial characteristics and phase changes of the maps.

Overall in Fig. 3, two 2D maps are illustrated for two normal/abnormal maps, parameters are $W = 24$, $R = 0.95$, $m = 50$. X and Y are $\left(S^C_j, S^G_j \right)$ $0 \leq j < M$, the ECG variant map shows the regular characteristics. In Fig. 3a, a normal map for P wave is an oval. In Fig. 3b, an abnormal map for P wave is a stick.

In Fig. 4, a list of normal maps for P wave on parameters $R = \{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2\}$. When the parameter R increases, the feature of relevant maps has a nonlinear displacement along the top right corner of the image.
Visual Analysis of ECG Sequences on Variant Maps

In Fig. 5, a list of abnormal maps for P wave on parameters $R = \{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2\}$. When the parameter R increases, the feature of relevant maps has a nonlinear displacement along the top right corner of the image.

Comparing with Figs. 4 and 5, differences between normal and abnormal map features.

4 Summary and Prospect

Electrocardiogram (ECG) detection is the key to clinical diagnosis of heart disease and has important clinical value. At present, the automatic analysis function of dynamic ECG detection is not satisfactory. There are also problems that the features of waveform lesions are small and cannot be marked, and even the characteristics of lesions are neglected. Therefore, excavating the effective information existing in the massive ECG signal can avoid the blind area of ECG analysis to some extent, which has certain application value.
This chapter presents a new scheme of statistical distribution, variant map for ECG. This method can process massive ECG data sequences as 2D maps with visual characteristics. The sample results show classification of arrhythmia characteristics.
Fig. 5 A list of abnormal maps for P wave on parameters $R = \{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2\}$; a-f maps on $R = \{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2\}$

to identify the normal ECG signals and abnormal ECG signals significantly different. Further explorations and more experiments are required.
Acknowledgements Thanks to the First People’s Hospital of Yunnan Province for ECG data sequences, to National Science Foundation of China NSFC (No. 61362014) and the Overseas Higher level Scholar Project of Yunnan Province, China (No. W8110305) for financial support to the project.

References

1. S.A. Sabab, Md. A.R. Munshi, A.I. Pritom, S. Shihabuzzaman, Cardiovascular disease prognosis using effective classification and feature selection technique, in *The International Conference on Medical Engineering, Health Informatics and Technology (MediTec)* (Dhaka, Bangladesh, 2016), pp. 1–6
2. B. Subramanian, K. Ramya, R. Asokan, Anatomizing electro cardiogram using fractal features and GUI based detection of P and T waves, in *International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)* (India, 2016), pp. 469–473
3. M.D. Skowronski, J.G. Harris, Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition. J. Acoust. Soc. Am. 119, 1817 (2006)
4. Y. Özbay, R. Ceylan, B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36(4), 376–388 (2006)
5. A.K. Mishra, S. Ragha, Local fractal dimension based ECG arrhythmia classification. Biomed. Sig. Process. Control 5(2), 114–123 (2010)
6. Y. Kutlu, D. Kuntalp, Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Programs Biomed. 105(3), 257–267 (2012)
7. W. Wang, Y. Wei, N. Guan, Y. Wang, The automatic detection and analysis of electrocardiogram based on Lorenz Plot, in *IEEE International Conference on Robotics and Biomimetics (ROBIO)* (Zhuhai, China, 2015), pp. 644–649
8. M.P.S. Chawla, Segment classification of ECG data and construction of scatter plots using principal component analysis. J. Mech. Med. Biol. 08(03), 421–458 (2008)
9. M. Brennan, M. Palaniswami, P. Kamen, Comparison of normal and arrhythmic electrocardiograms using scatter plots. IEEE Trans. Biomed Eng. 48(11), 1342–1347 (2001)
10. Z. Zheng, A.J. Maeder, *The conjugate classification of the kernel form of the hexagonal grid* (Springer, Tokyo, Japan, 1992)
11. Z.H. Zheng, Conjugate transformation of regular plan lattices for binary images, Ph.D. thesis, Monash University, 1994
12. J.Z.J. Zheng, C.H. Zheng, A framework to express variant and invariant functional spaces for binary logic. Front. Electr. Electron. Eng. China 5, 163 (2010)
13. J.Z.J. Zheng, C.H.H. Zheng, T.L. Kunii, *A Framework of Variant Logic Construction for Cellular Automata* (InTech, Shanghai, 2011)
14. J. Zheng, C. Zheng, Variant measures and visualized statistical distributions. Acta Photonica Sinica 40, 1397 (2011)
15. J. Zheng, C. Zheng, Variant simulation system using quaternion structures. J. Mod. Opt. 59, 484 (2012)
16. C. Wang, J. Zheng, in *Proceedings of the 14th Australian Information Warfare and Security Conference* (Perth, 2013)
17. J. Zheng, W. Zhang, J. Luo, W. Zhou, R. Shen, Variant map system to simulate complex properties of DNA interactions using binary sequences. Adv. Pure Math. 3, 5 (2013)
18. J. Zheng, J. Luo, J. Zhou, Pseudo DNA sequence generation of non-coding distributions using variant maps on cellular automata. Appl. Math. 5, 153 (2014)
J. Zheng, W. Zhang, J. Luo, W. Zhou, V. Liesaputra, Variant map construction to detect symmetric properties of genomes on 2D distributions. J. Data Mining Genomics Proteomics 5, 1 (2014)

D.M. Heim, O. Heim, P.A. Zeng, J. Zheng, Successful creation of regular patterns in variant maps from bat echolocation calls. Biol. Syst. Open Access 5, 166 (2016)

Y. Ji, J. Zheng, Y. Xie, T. Shou, Variant maps on normal and abnormal ECG data sequences. Biol. Med. Biol. Med. (Aligarh) 8(336) (2016)

Z. Hou, J. Zheng, Mapping ECG signals on variant maps, in ASONAM’17: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, July 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.