รายงานการวิจัยฉบับสมบูรณ์
เรื่อง การศึกษาต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน
ณ มหาวิทยาลัยพะเยา ประเทศไทย

ปรัชญา นานแก้ว¹
วงศ์ปัญญา นานแก้ว²
ขณะการ กันนิพงษ์³
ศิลป์ อิ่มวุฒิ⁴
ศิริชัย บุษหมั่น⁵

¹คณะเทคโนโลยีสารสนเทศและการสื่อสาร มหาวิทยาลัยพะเยา
²คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม
³คณะบริหารธุรกิจและเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชมงคลตะวันออก
⁴คณะบริหารธุรกิจ มหาวิทยาลัยยังยงชูลิตกุล
⁵คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏมหาสารคาม
สิงหาคม 2562
Full Research Report of
Students Model in Different Learning Styles of
Academic Achievement at the University of Phayao, Thailand

Pratya Nuankaew¹
Wongpanya Nuankaew²
Kanakarn Phanniphong³
Sasithon Imwut⁴
Sittichai Bussaman⁵

¹University of Phayao, Phayao, Thailand
²Rajabhat Mahasarakham University, Maha Sarakham, Thailand
³Rajamangala University of Technology Tawan-Ok, Chon Buri, Thailand
⁴Vongchavalitkul University, Nakhon Ratchasima, Thailand
⁵Rajabhat Mahasarakham University, Maha Sarakham, Thailand

August 2019
กิตติกรรมประกาศ

รายงานการวิจัย เรื่อง ต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย นี้สำเร็จลงได้ด้วยการสนับสนุนจากบุคลากรและหน่วยงานและมหาวิทยาลัยต่างๆ ประกอบด้วย รองศาสตราจารย์ ดร.ดิเรก ธีระภูธร อาจารย์ประจำคณะศึกษาศาสตร์ มหาวิทยาลัยนเรศวร รองศาสตราจารย์ ดร.สิทธิชัย บุษหมั่น อาจารย์ประจำคณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏมหาสารคาม ผู้จ่ายศาสตราจารย์ ดร.พรรณฤมล เต็มดี อาจารย์ประจำ สำนักวิชาเทคโนโลยีสารสนเทศ มหาวิทยาลัยแม่ฟ้าหลวง อาจารย์ ดร.ณัฐพงษ์ อาจารย์ประจำคณะบริหารธุรกิจและเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก อาจารย์ศศิธร อิ่มวุฒิ อาจารย์ประจำคณะบริหารธุรกิจ มหาวิทยาลัยราชภัฏมหาสารคาม อาจารย์วงษ์ชวลิต และอาจารย์วงษ์ปัญญา นางนงก้า อาจารย์ประจำคณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม ผู้คอยให้กำลังใจให้คำปรึกษาและคำแนะนำแก่ผู้วิจัยตลอดเวลา ผู้วิจัยขอขอบพระคุณอย่างสูงมาณโอกาสนี้

คุณค่าอันพึงมีจากงานวิจัยนี้ผู้วิจัยขออนุโมงค์เป็นเครื่องบูชาพระคุณบิดา มารดา คณาจารย์และผู้มีพระคุณทุกท่าน

คณะผู้วิจัย
12 สิงหาคม 2562
ชื่อเรื่อง: ต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
ชื่อผู้เขียน: ดร.ปรัชญา นวนแก้ว อาจารย์วงษ์ปัญญา นวนแก้ว ดร.ฆณการ ภัณณิพงส์ อาจารย์ศศิธร อิ่มวุฒิ และรองศาสตราจารย์ ดร.สิทธิชัย บุษหมั่น
ปีที่ทำวิจัย: พ.ศ. 2561 - 2562
หน่วยงาน: คณะเทคโนโลยีสารสนเทศและการสื่อสาร มหาวิทยาลัยพะเยา คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม คณะบริหารธุรกิจและเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชมงคลตะวันออก คณะบริหารธุรกิจ มหาวิทยาลัยวงษ์ชวลิตกุล คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏมหาสารคาม

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์ คือ 1) เพื่อศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา 2) เพื่อพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา และ 3) เพื่อหาประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

วิธีดำเนินการวิจัยประกอบด้วย 5 ขั้นตอน ได้แก่ ขั้นตอนที่ 1 การออกแบบกลุ่มเป้าหมาย ขั้นตอนที่ 2 การพัฒนาเครื่องมือการวิจัย ขั้นตอนที่ 3 การเลือกลุ่มเป้าหมายและการเก็บข้อมูล ขั้นตอนที่ 4 การเตรียมข้อมูลเพื่อพัฒนารูปแบบความสัมพันธ์ต้นแบบนิสิต และขั้นตอนที่ 5 การพัฒนารูปแบบความสัมพันธ์และการทดสอบประสิทธิภาพต้นแบบนิสิต

กลุ่มตัวอย่างที่ใช้ในการวิจัย คือ นิสิตระดับปริญญาตรีจำนวน 195 คน จาก 15 คณะและ 2 วิทยาลัย ซึ่งเป็นหน่วยงานในสังกัดของมหาวิทยาลัยพะเยา การกำหนดขนาดของกลุ่มตัวอย่าง (Sample Size Determination) ใช้สูตรการคำนวณกลุ่มตัวอย่างของ Taro Yamane โดยกำหนดระดับความเสี่ยงที่ยอมรับจะต้องมีอยู่ที่ 95 เครื่องมือที่ใช้ในการรวบรวมข้อมูลการวิจัยครั้งนี้ คือ แบบสอบถาม (Questionnaire) โดยแบ่งออกเป็น 2 ตอน ดังนี้ ตอนที่ 1 ข้อมูลส่วนตัวของผู้ตอบแบบสอบถาม และตอนที่ 2 ทศนิยมต่อรูปแบบการเรียนรู้ที่หลากหลายผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
เครื่องมือที่ใช้ในการวิเคราะห์ผลการวิจัยประกอบด้วยเครื่องมือทางสถิติ (Statistical Tools) ได้แก่ ค่าความถี่ (Frequency) ค่าเฉลี่ย (Mean) ค่าเบี่ยงเบนมาตรฐาน (Standard Deviation) ร้อยละ (Percentage) และเครื่องมือทางวิทยาการข้อมูล (Data Science Tools) ได้แก่ การคำนวณต้นไม้การตัดสินใจ (Decision Tree) การคำนวณเพื่อการจัดกลุ่ม (k-Means) การแบ่งข้อมูลเพื่อทดสอบ (Cross Validation) และการหาประสิทธิภาพการทายด้วย Confusion Matrix ผลการวิจัยสรุปได้ดังนี้

1. ผลการศึกษาปัจจัยต้นแบบนิสิต ในการวิจัยการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยาพบว่า ปัจจัยที่เกี่ยวข้องกับต้นแบบนิสิตประกอบด้วย จำนวน 7 ปัจจัย ได้แก่ ค่าถามข้อที่ 2 ค่าถามข้อที่ 8 ค่าถามข้อที่ 7 ค่าถามข้อที่ 5 ค่าถามข้อที่ 4 ค่าถามข้อที่ 1 และ ค่าถามข้อที่ 9 โดยเมื่อนำข้อมูลไปเปรียบเทียบในตารางที่ 3.1 ความสัมพันธ์ของค่าถามและเหตุการณ์การเรียนรู้พบว่าผลการวิจัยมีความสอดคล้องกับงานวิจัยทางด้านจิตวิทยาผู้วิจัยจึงสรุปได้ว่าผลการศึกษาปัจจัยต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสมเหตุสมผลในการวิจัยครั้งนี้

2. ผลการพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในการวิจัยการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยาพบว่า รูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยาซึ่งมีความสัมพันธ์กับปัจจัยต้นแบบนิสิต ได้แก่ ปลูกต้นต้นแบบนิสิต โดยเมื่อทดสอบต้นแบบพบว่า สามารถทำนายผลได้ถูกต้องตามขั้นตอนที่รวบรวมจำนวน 176 คน จากจำนวนทั้งสิ้น 195 คน หรือ ร้อยละ 90.26 ดังนั้นจึงสรุปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยามีความเหมาะสมและสอดคล้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ตัวยศเครื่องคอมพิวเตอร์

3. ผลการประเมินประสิทธิภาพต้นแบบนิสิตในการวิจัยการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนพบว่า การทดสอบประสิทธิภาพในกลุ่มย่อย ค่าความถูกต้องอยู่ในระดับปานกลางถึงระดับสูง ในขณะที่การทดสอบประสิทธิภาพในต้นแบบทุกขั้นตอนพบว่า ค่าความถูกต้องอยู่ในระดับสูงสุด (ร้อยละ 74.32) จึงสรุปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสอดคล้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ตัวยศเครื่องคอมพิวเตอร์

คำสำคัญ: ต้นแบบนิสิต รูปแบบการเรียนรู้ ผลสัมฤทธิ์ทางการเรียน ต้นแบบทางการศึกษา เหมือง
Title: Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand

Author: Pratya Nuankaew, Ph.D.
Wongpanya Nuankaew
Kanakarn Phanniphong, Ph.D.
Sasithon Imwut
Assoc. Prof. Sittichai Bussaman, Ph.D.

Years of Research: 2018 - 2019

Organization: • University of Phayao, Phayao, Thailand
• Rajabhat Mahasarakham University, Maha Sarakham, Thailand
• Rajamangala University of Technology Tawan-Ok, Chon Buri, Thailand
• Vongchavalitkul University, Nakhon Ratchasima, Thailand
• Rajabhat Mahasarakham University, Maha Sarakham, Thailand

ABSTRACT

The objectives of this research were 1) to study the factors of student model in different learning styles of academic achievement at the University of Phayao, Thailand 2) to construct of the relationship between the student model in different learning styles of academic achievement at the University of Phayao, Thailand and 3) to study the performance of the student model in different learning styles of academic achievement at the University of Phayao, Thailand

The research methodology in this research places great importance on the research process and conceptual framework. It consists of five important parts: (1) target group design, (2) tool development, (3) target group selection and data collection, (4) data preparation, and (5) model development and performance.

The research findings are as follows;
1. The study of the factors of student model in different learning styles of academic achievement at the University of Phayao found that factors related to student prototypes consisted of 7 factors which were consistent with psychological research. It is therefore concluded that the results of the student prototypes are appropriate and reasonable in this research.

2. The construct of the relationship between the factors of student model in different learning styles of academic achievement at the University of Phayao found that the model can accurately predict the results according to the data set collected from 176 people of 195 people or 90.26 percent. It is therefore concluded that the results of the student prototypes are appropriate and reasonable in this research.

3. The study the performance of the student model in different learning styles of academic achievement at the University of Phayao found that the performance tests in the subgroups were of medium to high accuracy. While the performance test in all data set prototype has the highest accuracy or 74.32 percent. It can therefore be concluded that the relationship model of the student prototype is appropriate and consistent with the statistical analysis and computer learning principles.

In future work, it will be applied with other universities in Thailand and also used in developing applications for providing a program recommended for appropriate educational programs.

Keywords: Student Model, Learning Styles, Academic Achievement, Education Model, Data Mining in Education
สารบัญ

กิตติกรรมประกาศ .. A
บทคัดย่อภาษาไทย ... B
บทคัดย่อภาษาอังกฤษ ... D
สารบัญ ... F
สารบัญตาราง ... H
สารบัญภาพ .. I

บทที่ 1 บทนำ .. 1
1.1 ความสำคัญ และที่มาของปัญหา 1
1.2 วัตถุประสงค์ของการวิจัย 3
1.3 ขอบเขตของการวิจัย .. 3
1.4 กรอบแนวความคิดการวิจัย 5
1.5 นิยามศัพท์เฉพาะ ... 6

บทที่ 2 วรรณกรรมและงานวิจัยที่เกี่ยวข้อง 8
2.1 ทฤษฎีการเรียนรู้และระบบการศึกษา 9
2.2 ทฤษฎีการเรียนรู้ด้วยเครื่องคอมพิวเตอร์ .. 24
2.3 งานวิจัยที่เกี่ยวข้อง 39

บทที่ 3 วิธีดำเนินการวิจัย 42
3.1 ขั้นตอนที่ 1 การออกแบบกลุ่มเป้าหมาย 43
3.2 ขั้นตอนที่ 2 การพัฒนาเครื่องมือการวิจัย 43
3.3 ขั้นตอนที่ 3 การเลือกกลุ่มเป้าหมายและการเก็บข้อมูล 47
3.4 ขั้นตอนที่ 4 การเตรียมข้อมูลเพื่อพัฒนารูปแบบความสัมพันธ์ต้นแบบนิสิต 48
3.5 ขั้นตอนที่ 5 การพัฒนารูปแบบความสัมพันธ์ และ การทดสอบประสิทธิภาพต้นแบบนิสิต 49
สารบัญ (ต่อ)

บทที่ 4 ผลการวิจัย
 4.1 ขั้นตอนที่ 1 การรายงานผลการรวบรวมข้อมูล 53
 4.2 ขั้นตอนที่ 2 การรายงานผลการวิเคราะห์ทางสถิติ 54
 4.3 ขั้นตอนที่ 3 การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสม 55
 4.4 ขั้นตอนที่ 4 การรายงานผลการคัดเลือกด้นแบบ 58
 จากการทดสอบประสิทธิภาพ
 4.5 ขั้นตอนที่ 5 การรายงานผลการพัฒนารูปแบบความสัมพันธ์ด้นแบบนิสิต 60
 4.6 สรุปผลการวิจัย 71

บทที่ 5 สรุปผลการวิจัย การอภิปราย และข้อเสนอแนะ 75
 5.1 ขั้นตอนที่ 1 การสรุปผลการวิจัยตามวัตถุประสงค์ของการวิจัย 76
 5.2 ขั้นตอนที่ 2 การอภิปรายผลจากการทดลอง 83
 5.3 ขั้นตอนที่ 3 การนำเสนอข้อเสนอแนะ 84

รายการอ้างอิง
 รายการอ้างอิงภาษาไทย 86
 รายการอ้างอิงภาษาต่างประเทศ 90

ภาคผนวก
 ภาคผนวก ก แบบสอบถามการวิจัย 98
 ภาคผนวก ข บัตรความวิจัย 100

ประวัติผู้เขียน 127
สารบัญตาราง

ตารางที่ หน้า
2.1 ข้อมูลเพื่อการท่านายสถานะผู้ให้ข้อมูล 29
2.2 กฎความสัมพันธ์จากโมเดลต้นไม้ไม่สามารถตัดสินใจเพื่อท่านายสถานะผู้ให้ข้อมูล 37
3.1 ความสัมพันธ์ของค่าถามและทรัพย์สินการเรียนรู้ 46
3.2 ข้อมูลกลุ่มเป้าหมาย และการเก็บข้อมูล 47
4.1 ข้อมูลคู่ตอบแบบสอบถามจำแนกตามพื้นแวร์และขั้นเป็ป 54
4.2 ข้อมูลคู่ตอบแบบสอบถามจำแนกตามหน่วยงาน 54
4.3 คำเลือยและส่วนเปลี่ยนแปลงฐานองค์ความรู้ความต้องการที่มีต่อปัจจัย 56
รูปแบบการเรียนรู้ที่หลากหลายของผลลัพธ์ทางการเรียน 58
4.4 ข้อมูลคู่ตอบแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK 58
4.5 การจัดกลุ่มโดยการจัดจำแนกตามผลการเรียนเฉลี่ย 60
4.6 ข้อมูลการจำแนกตามกลุ่มที่เหมาะสม รูปแบบการเรียน และผลการเรียนเฉลี่ย 60
4.7 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูลในกลุ่มที่ 1 61
4.8 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูลในกลุ่มที่ 1 62
4.9 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูลในกลุ่มที่ 2 62
4.10 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูลในกลุ่มที่ 2 62
4.11 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูลในกลุ่มที่ 3 63
4.12 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูลในกลุ่มที่ 3 63
4.13 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูลในกลุ่มที่ 4 63
4.14 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูลในกลุ่มที่ 4 64
4.15 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูลในกลุ่มที่ 5 64
4.16 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูลในกลุ่มที่ 5 65
4.17 การวิเคราะห์ต้นแบบจากพฤษฎ์ข้อมูล 68
4.18 การทดสอบประสิทธิภาพต้นแบบ จากพฤษฎ์ข้อมูล 68
4.19 กฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์พื้นฐานที่มาจากพฤษฎ์ข้อมูล 69
4.20 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม 73
5.1 ผลการศึกษาปัจจัยต้นแบบพื้นฐาน 76
5.2 กฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์พื้นฐานที่มาจากพฤษฎ์ข้อมูล 80
5.3 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม 82
สารบัญภาพ

ภาพที่ 1.1 กรอบแนวคิดการวิจัย 5
ภาพที่ 2.1 ทฤษฎีการเรียนรู้ของ Bloom’s (ฉบับปรับปรุง) 10
ภาพที่ 2.2 แสดงแนวคิดของกลุ่มเคยสตรัคเตอร์วิส์ฝังปัญญา 13
ภาพที่ 2.3 แสดงส่วนประกอบของปัญญาประดิษฐ์ 24
ภาพที่ 2.4 แสดงลักษณะและการเรียนรู้ด้วยเครื่องแบบฝังปัญญา 25
ภาพที่ 2.5 แสดงลักษณะและการเรียนรู้ด้วยเครื่องแบบเสริมก้าวที่ 27
ภาพที่ 2.6 การคำนวณหา Entropy (Parent) 30
ภาพที่ 2.7 การคำนวณหา IG ของทีคิดต่อความสามารถ (Ability) 30
ภาพที่ 2.8 การคำนวณหา Entropy (Ability) ที่มีค่าเป็น Have 31
ภาพที่ 2.9 การคำนวณหา Entropy (Ability) ที่มีค่าเป็น None 31
ภาพที่ 2.10 ผลการคำนวณหา IG ของทีคิดต่อความสามารถ (Ability) 31
ภาพที่ 2.11 การคำนวณหา IG ของทีคิดต่อทักษะ (Skill) 32
ภาพที่ 2.12 การคำนวณหา Entropy (Skill) ที่มีค่าเป็น Have 32
ภาพที่ 2.13 การคำนวณหา Entropy (Skill) ที่มีค่าเป็น None 32
ภาพที่ 2.14 ผลการคำนวณหา IG ของทีคิดต่อทักษะ (Skill) 33
ภาพที่ 2.15 การคำนวณหา IG ของทีคิดต่อความรู้ (Knowledge) 33
ภาพที่ 2.16 การคำนวณหา Entropy (Knowledge) ที่มีค่าเป็น Have 33
ภาพที่ 2.17 การคำนวณหา Entropy (Knowledge) ที่มีค่าเป็น Have 34
ภาพที่ 2.18 ผลการคำนวณหา IG ของทีคิดต่อความรู้ (Knowledge) 34
ภาพที่ 2.19 การคำนวณหา IG ของทีคิดต่อประสบการณ์ (Experience) 34
ภาพที่ 2.20 การคำนวณหา Entropy (Experience) ที่มีค่าเป็น Have 35
ภาพที่ 2.21 การคำนวณหา Entropy (Experience) ที่มีค่าเป็น None 35
ภาพที่ 2.22 ผลการคำนวณหา IG ของทีคิดต่อประสบการณ์ (Experience) 35
ภาพที่ 2.23 ได้ผลต้นไม้การตัดสินใจเพื่อทำนายสถานะผู้ให้ข้อมูล 36
ภาพที่ 2.24 ได้ผลต้นไม้การตัดสินใจเพื่อทำนายสถานะผู้ให้ข้อมูล ด้วย Rapidminer Studio 36
ภาพที่ 3.1 แบบสอบถามความคิดเห็นต่อรูปแบบการเรียนรู้ของนิสิต 45
ภาพที่ 3.2 แบบสอบถามความคิดเห็นต่อรูปแบบการเรียนรู้ของนิสิต 46
ภาพที่ 3.3 การพิจารณาคุณ 50
ภาพที่ 3.4 การตรวจสอบแบบข้าม 51

[i]
สารบัญภาพ (ต่อ)

ภาพที่	หน้า
ภาพที่ 3.5 การหาประสิทธิภาพจากการทำนาย ด้วย Confusion Matrix	52
ภาพที่ 4.1 จำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ k-Means	59
ภาพที่ 4.2 จำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ x-Means	59
ภาพที่ 4.3 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1	55
ภาพที่ 4.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2	56
ภาพที่ 4.5 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3	56
ภาพที่ 4.6 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4	57
ภาพที่ 4.7 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5	57
ภาพที่ 4.8 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล	58
ภาพที่ 5.1 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1	77
ภาพที่ 5.2 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2	78
ภาพที่ 5.3 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3	78
ภาพที่ 5.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4	79
ภาพที่ 5.5 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5	79
ภาพที่ 5.6 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล	80
ภาพที่ 5.7 แผนและขั้นตอนการดำเนินงานในอนาคต	85
บทที่ 1
บทนำ

1.1 ความสำคัญ และที่มาของปัญหา

ในยุคสมัยของการแข่งขันทางความรู้ การศึกษา คือ ส่วนหนึ่งของความคาดหวังในอนาคต กล่าวได้ว่า การแข่งขันปัญญาเป็นส่วนหนึ่งของความคาดหวังในยุคสมัยของการแข่งขัน (เกรียงศักดิ์เจริญวงศ์ศักดิ์, 2558; Apple, 2003; Marginson, 2010; Overberg, Broens, Günther, Stroth, Knecht, Golba, and Röbken, 2019; Kaeophanuek, Na-Songkhla, and Nilsook, 2019; and Zheng, Yang, Chai, Chen, and Zhang, 2019) นอกจากนี้ การศึกษายังส่งเสริมและสนับสนุนกระบวนการที่หลากหลาย เพื่อพัฒนาคุณภาพทางการศึกษา พัฒนาคุณภาพผู้เรียน และพัฒนาพื้นฐานทางสังคมโดยรวม (ชนกนารถ บุญวัฒนะกุล 2559; Kurilovas, 2018; and Overberg et al., 2019) ยิ่งไปกว่านั้น การศึกษาถูกใช้เพื่อขับเคลื่อนประเทศ ขับเคลื่อนเศรษฐกิจ เนื่องจากประเทศที่มีบุคลากรที่มีความรู้ความสามารถ จะสามารถแข่งขันกับประเทศกำลังพัฒนา และประเทศที่พัฒนาแล้วได้อย่างง่ายดาย อันจะนำไปสู่การพัฒนาที่สำคัญ โดยมีระบบการศึกษาเป็นบทบาทสำคัญในการขับเคลื่อนพื้นที่ต่าง ๆ ด้วย (Nuankaew and Temdee, 2015; Kurilovas, 2018; Kaeophanuek et al., 2019; Nuankaew and Temdee, 2019b; and Binyamin, Rutter, and Smith, 2019)

สำหรับประเทศไทย ระบบการศึกษาในอดีตมีการจัดการศึกษาของคนไทยเกิดขึ้นในวัด ครอบครัว และราชสำนัก มีเพียงผู้ชายเท่านั้นที่ได้รับการยอมรับและจ่ายเงินให้เข้าสู่ระบบการศึกษา เนื่องจากมีแต่ผู้ชายเท่านั้นที่สามารถรับราชการ และเพียงผู้ชายเท่านั้นที่สามารถบางคนได้รับราชการในวัดได้ จากสถานการณ์ดังกล่าวแสดงให้เห็นว่า การศึกษาถูกจำกัดอยู่ในวงแคบ และกลุ่มคนบางกลุ่มเท่านั้น ด้วยเหตุและผลดังกล่าว จึงเป็นเหตุการปฏิรูปิบทบาทการศึกษาไทย ให้มีความเท้าเท่า ครอบคลุม และเป็นสากล (เกรียงศักดิ์เจริญวงศ์ศักดิ์, 2558; ชนกนารถ บุญวัฒนะกุล 2559; Phanniphong, Nuankaew, Teeraputon, Nuankaew, Tanasirathum, and Bussaman, 2018)

กระทำปัจจุบัน ระบบการศึกษาของประเทศไทยได้มีการเปลี่ยนแปลงไปอย่างก้าวหน้าตามพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. ๒๕๔๒ และมีการปรับปรุงแก้ไข ในพระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๒) พ.ศ. ๒๕๔๕ พระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๓) พ.ศ. ๒๕๕๓ และพระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๔) พ.ศ. ๒๕๖๒ โดยมีการส่งเสริมการจัดการศึกษาเพื่อประชาชน ทุกคนต้องได้รับการศึกษาอย่างเท่าเทียม โดยที่ระบบการศึกษาของไทย ใน
ปัจจุบันแบ่งออกเป็น 2 ระดับ โดยแต่ การศึกษาขั้นพื้นฐาน และการศึกษาระดับอุดมศึกษา (พระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. ๒๕๔๒)

การศึกษาขั้นพื้นฐานประกอบด้วย การศึกษา ซึ่งจัดมีอยู่ตามสิบของปีก่อนระดับอุดมศึกษา แบ่งระดับและประเภทของการศึกษาขั้นพื้นฐานให้เป็นไปตามที่กำหนดในกฎกระทรวง โดยแต่ การระดับประถมศึกษา ระดับมัธยมศึกษาตอนต้น ระดับมัธยมศึกษาตอนปลายในขณะที่การศึกษาขั้นพื้นฐานแบ่งเป็นสองระดับ ได้แก่ ระดับต่ำกว่าปริญญา และระดับปริญญา โดยระบบการศึกษากำหนดให้มีการจัดการศึกษาในสามรูปแบบ คือ การศึกษาในระบบ การศึกษา

ประกอบกับสถานการณ์ปัจจุบันที่เทคโนโลยีมีการเปลี่ยนแปลงอย่างรวดเร็ว รูปแบบการเรียนรู้จากผู้สอนไปยังผู้เรียน ที่มีการจัดการเรียนการสอนอยู่ในห้องเรียนจึงไม่เพียงพออีกต่อไป ส่งผลให้กระบวนการค้นหาการเรียนรู้ของผู้เรียนตามศักยภาพและความเหมาะสมของผู้เรียน ได้รับความสนใจจากนักวิจัยและนักการศึกษาจับยอดมา หากจากนั้น แนวคิดการจัดการเรียนรู้ผู้เรียนกิจการจัดการencingระดับการศึกษาขั้นพื้นฐาน นำเสนอการเปลี่ยนแปลงรูปแบบการศึกษาไทย ในอนาคตไปอย่างสิ้นเชิง (สุริยะ พุ่มเฉลิม, 2558; ชนกนารถ บุญวัฒนะกุล, 2559; พันธิการ์ วัฒนกุล และ สุรศักดิ์ มังสิงห์, 2560; Apple, 2003; Marginson, 2010; Kurilovas, 2018; Overberg et al., 2019; Kaeophanuek et al., 2019; and Zheng et al., 2019)

ด้วยความสำคัญ ที่มีของปัญหา และเหตุผลต่าง ๆ เหล่านี้ ทำให้นักวิจัยเชื่อว่า การค้นหาสาระสำคัญของกระบวนการพัฒนาต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากการผลิตพฤติกรรมทางการเรียนของผู้เรียนย่อมสนับสนุนและส่งเสริมให้เกิดรูปแบบการเรียนรู้รูปแบบใหม่ อันเป็นมิติของวัตถุประสงค์ของการวิจัยง่ายมุ่ง คือ การศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากการผลิตพฤติกรรมทางการเรียนของนิสิตมหาวิทยาลัยเพาะกาย การพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากการผลิตพฤติกรรมทางการเรียนของนิสิตมหาวิทยาลัยเพาะกาย และการประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากการผลิตพฤติกรรมทางการเรียนของนิสิตมหาวิทยาลัยเพาะกาย และจากการสืบค้นเบื้องต้น ยังไม่พบว่ามีงานวิจัยใดที่ทำวิจัยเรื่องนี้ ผู้วิจัยจึงมีความสนใจที่จะศึกษาต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากการผลิตพฤติกรรมทางการเรียนของนิสิตมหาวิทยาลัยเพาะกาย อันจะส่งผลให้เกิดประโยชน์และการพัฒนาต่อผู้เรียนอย่างมีประสิทธิภาพ
1.2 วัตถุประสงค์ของการวิจัย

การวิจัยครั้งนี้ มีวัตถุประสงค์ของการวิจัย ใน 3 ประเด็นหลัก ดังนี้
1) เพื่อศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
2) เพื่อพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
3) เพื่อหาประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

1.3 ขอบเขตของการวิจัย

1.3.1 วิธีดำเนินการวิจัย

วิธีดำเนินการวิจัยนี้ ประกอบด้วย 3 ขั้นตอนหลัก ดังนี้
1) การศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
2) การพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
3) การหาประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

1.3.2 สถานที่เก็บรวบรวมข้อมูล

หน่วยงานในสังกัดมหาวิทยาลัยพะเยา จำนวน 15 คณะ และ 2 วิทยาลัยประกอบด้วย คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสารสนเทศและการสื่อสาร คณะแพทยศาสตร์ คณะเภสัชศาสตร์ คณะวิทยาศาสตร์ คณะวิศวกรรมศาสตร์ คณะสถาปัตยกรรมศาสตร์และศิลปศาสตร์ คณะศิลปศาสตร์ คณะสุนทรประดิษฐ ศึกษาการศึกษาพิเศษวิทยาลัยการจัดการ
1.3.3 กลุ่มประชากรและกลุ่มตัวอย่าง
กลุ่มตัวอย่าง คือ นิสิต จำนวน 195 คน จาก 15 คณะ 2 วิทยาลัย ในสังกัดของมหาวิทยาลัยพะเยา ประกอบด้วย

คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ จำนวน 6 คน
คณะเทคโนโลยีสารสนเทศและการสื่อสาร จำนวน 19 คน
คณะพยาบาลศาสตร์ จำนวน 1 คน
คณะนิติศาสตร์ จำนวน 12 คน
คณะแพทยศาสตร์ จำนวน 2 คน
คณะเภสัชศาสตร์ จำนวน 35 คน
คณะสังคมศาสตร์ จำนวน 7 คน
คณะวิทยาการจัดการและสารสนเทศศาสตร์ จำนวน 5 คน
คณะวิทยาศาสตร์ จำนวน 29 คน
คณะวิทยาศาสตร์การแพทย์ จำนวน 3 คน
คณะวิศวกรรมศาสตร์ จำนวน 12 คน
คณะศิลปศาสตร์ จำนวน 10 คน
คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์ จำนวน 6 คน
คณะสหเวชศาสตร์ จำนวน 6 คน
วิทยาลัยการศึกษา จำนวน 28 คน
วิทยาลัยพลังงานและสิ่งแวดล้อม จำนวน 2 คน
รวม จำนวน 195 คน

1.3.4 เครื่องมือในการวิจัย
เครื่องมือที่ใช้ในการวิจัยนี้แบ่งออกเป็น 2 ส่วน ดังนี้

1) เครื่องมือที่ใช้ในการรวบรวมข้อมูล คือ แบบสอบถาม (Questionnaire) แบ่งออกเป็น 2 ตอน ได้แก่ ตอนที่ 1 ข้อมูลทั่วไปของผู้ตอบแบบสอบถาม ตอนที่ 2 พื้นคิดคู่รูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน
2) เครื่องมือที่ใช้ในการวิเคราะห์ผลการวิจัย แบ่งออกเป็น 2 ส่วน ได้แก่เครื่องมือทางสถิติ (Statistical Tools) ได้แก่ ค่าความถี่ (Frequency) ค่าเฉลี่ย (Mean) ค่าเบี่ยงเบนมาตรฐาน (Standard Deviation) ร้อยละ (Percentage) และเครื่องมือทางวิทยาการข้อมูล (Data Science Tools) ได้แก่ การคำนวณต้นไม้การตัดสินใจ (Decision Tree) การจำแนกหมู่ (k-Means) การแบ่งข้อมูลเพื่อทดสอบ (Cross Validation) และการหาประสิทธิภาพจากการทำงานด้วย Confusion Matrix

1.4 กรอบแนวคิดการวิจัย

กรอบแนวคิดการวิจัย เรื่อง “การศึกษาด้านแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย” มีวัตถุประสงค์คือต้องการจัดการศึกษา การส่งเสริมการศึกษาตลอดชีวิต มาตรฐานการศึกษา และคุณภาพการศึกษา ตามพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. ๒๕๔๒ พระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๒) พ.ศ. ๒๕๔๔ พระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๓) พ.ศ. ๒๕๔๙ และพระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ ๔) พ.ศ. ๒๕๕๓ ดังแสดงในภาพที่ 1.1 กรอบแนวคิดการวิจัย

ตัวแปรต้น (Independent Variables)
- การรับรู้ต่อรูปแบบการเรียนรู้ของผู้เรียน
- การเห็นมาของคู่รูปแบบการเรียนรู้ของผู้เรียน

ตัวแปรตาม (Dependent Variables)
- ผลสัมฤทธิ์ทางการเรียนของผู้เรียน

ตัวแปรกลาง (Intervening Variables)
- เทค
- สิ่งแวดล้อมที่อยู่ภายใต้
- ข้อที่ทำให้สัมฤทธิ์

ตัวแปรสถิติในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย
- ปัจจัยค่าสถิติในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนของผู้เรียน
- รูปแบบความสัมพันธ์ของตัวแปรสถิติในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนของผู้เรียน
- ผลการประเมินประสิทธิภาพค่าสถิติในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนของผู้เรียน

ภาพที่ 1.1 กรอบแนวคิดการวิจัย
1.5 นิยามศัพท์เฉพาะ

1.5.1 ต้นแบบนิสิต
ต้นแบบนิสิต หรือ โมเดลนิสิต (Student Model) คือ ต้นแบบที่แสดงลักษณะเฉพาะของนิสิต เรียกว่า ลักษณะเฉพาะของผู้เรียน (Learner Styles) โดยมีคุณสมบัติเฉพาะตามรูปแบบการเรียนรู้ (Learning Styles) และรูปแบบการรับรู้ตามรูปแบบการเรียนรู้ที่แตกต่างกัน (Perceptions of Learning Styles) โดยต้นแบบนิสิตสามารถใช้เพื่อการพยากรณ์รูปแบบการเรียนรู้ที่เหมาะสมของผู้เรียนได้

1.5.2 รูปแบบการเรียนรู้
รูปแบบการเรียนรู้ (Learning Styles) คือ รูปแบบการรับรู้ ความสามารถพิเศษ ลักษณะเฉพาะ ขั้นตอนวิธีการเรียนรู้ และพฤติกรรมการเรียนรู้ของบุคคลโดยบุคคลหนึ่ง ตลอดจนความถนัดในการรับรู้ข้อมูล การสร้างความเข้าใจในเนื้อหา บทเรียน และกิจกรรมการเรียนรู้ โดยรูปแบบการเรียนรู้ในงานวิจัยนี้จัดัดเป็นรูปแบบการเรียนรู้ของผู้เรียน ใน 3 ลักษณะได้แก่ รูปแบบการเรียนรู้จากความเห็น (Visual Learning Style) รูปแบบการเรียนรู้จากความได้ยิน (Auditory Learning Style) และรูปแบบการเรียนรู้จากการสัมผัสหรือเคลื่อนไหวระหว่างกาย (Kinesthetic/Tactile Learning Style)

1.5.3 ผลสัมฤทธิ์ทางการเรียน
ผลสัมฤทธิ์ทางการเรียน (Academic Achievement) คือ ผลลัพธ์ทางการศึกษา เกณฑ์การสํารวจการศึกษา เกณฑ์การพิจารณาด้านผลการเรียน เกณฑ์การวัดและประเมินผลการศึกษา ตามพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. 2542 พระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ 2) พ.ศ. 2545 พระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ 3) พ.ศ. 2553 และพระราชบัญญัติการศึกษาแห่งชาติ (ฉบับที่ 4) พ.ศ. 2562 และตามข้อบังคับมหาวิทยาลัยพะเยา ว่าด้วย การศึกษาระดับปริญญาตรี พ.ศ. 2561

1.5.4 รูปแบบความสัมพันธ์และการพัฒนารูปแบบความสัมพันธ์
รูปแบบความสัมพันธ์ (Relationship patterns) หมายถึง แผนผังโครงสร้างที่แสดงแนวคิด วัตถุประสงค์ องค์ประกอบ กระบวนการและขั้นตอนการพัฒนา ขั้นตอนการประเมิน และขั้นตอนการนำไปใช้ประโยชน์ โดยได้รับการออกแบบและวิเคราะห์ไว้เป็นอย่างดี ตลอดจนแสดงถึงความสัมพันธ์ระหว่างสิ่งที่ศึกษาและวัตถุประสงค์ของการศึกษา
การพัฒนารูปแบบความสัมพันธ์ (Relationship patterns development)หมายถึงขั้นตอน วิธีการ และกระบวนการในการวิจัยที่แสดงถึงที่มาและความสำคัญของการศึกษา ระหว่างสิ่งที่ศึกษาและวัตถุประสงค์ของการศึกษา โดยที่การพัฒนารูปแบบความสัมพันธ์ยังต้องจากรอบการออกแบบ และกระบวนการวิจัย ได้แก่ การกำหนดวัตถุประสงค์ของการวิจัย กำหนดกลุ่มประชากรและกลุ่มตัวอย่าง การเลือกใช้เครื่องมือในการวิจัย การพัฒนารูปแบบความสัมพันธ์ และการทดสอบเพื่อหาประสิทธิภาพของรูปแบบความสัมพันธ์นั้น

1.5.5 เหมืองข้อมูลทางการศึกษา

เหมืองข้อมูลทางการศึกษา (Educational data mining) คือ กระบวนการวิจัยที่ให้ความสำคัญต่อการวิเคราะห์ข้อมูล โดยใช้เทคโนโลยีการวิเคราะห์เหมืองข้อมูล (Analysis of data mining techniques) ประกอบด้วย โปรแกรมประยุกต์ด้านการวิเคราะห์เหมืองข้อมูล (Application of data mining) การเรียนรู้ด้วยเครื่อง (Machine learning) และการวิเคราะห์ทางสถิติ (Statistical analysis) ในการวิเคราะห์ ออกแบบ และพัฒนาด้านแบบทางการศึกษา (Educational model) นอกจากนี้เหมืองข้อมูลทางการศึกษา ยังครอบคลุมถึงการประยุกต์ใช้ทฤษฎีทางการศึกษา (Educational theory) ผสมผสานกับกระบวนการ และพัฒนาการศึกษา (Learning sciences) ในการพัฒนาองค์ความรู้ใหม่

1.5.6 นิสิตมหาวิทยาลัยพะเยา

นิสิตมหาวิทยาลัยพะเยา หมายถึงบุคคลที่สำเร็จการศึกษา หรือบุคคลที่กำหนดศึกษาอยู่ในมหาวิทยาลัยพะเยา และมีผลการเรียน

**
บทที่ 2
วรรณกรรมและงานวิจัยที่เกี่ยวข้อง

งานวิจัย เรื่อง การศึกษาด้านแนวทฤษฎีในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย ครั้งนี้ ผู้วิจัยได้ศึกษาหลักการพื้นฐาน แนวความคิด และทฤษฎี ตลอดจนงานวิจัยที่เกี่ยวข้องตามลำดับ ดังนี้

2.1 ทฤษฎีการเรียนรู้และระบบการศึกษา
 2.1.1 ทฤษฎีการเรียนรู้ (Learning Theory)
 2.1.2 ระบบการศึกษา (Learning System)
 2.1.3 รูปแบบการเรียนรู้ (Learning Styles)

2.2 ทฤษฎีการเรียนรู้ด้วยเครื่องคอมพิวเตอร์
 2.2.1 นิยามการเรียนรู้ด้วยเครื่อง
 2.2.2 ประเภทปัญหาและงาน
 2.2.3 เครื่องมือสำหรับการเรียนรู้ด้วยเครื่อง
 2.2.4 การทดสอบและการประเมินโมเดลต้นแบบ

2.3 งานวิจัยที่เกี่ยวข้อง

**
2.1 ทฤษฎีการเรียนรู้และระบบการศึกษา

แนวคิดเกี่ยวกับทฤษฎีการเรียนรู้และระบบการศึกษานี้ แสดงความเกี่ยวโยงของขอบเขตเนื้อหาการวิจัย ซึ่งจักกับทฤษฎีการเรียนรู้ที่มุ่งเน้นกับการพัฒนาผู้เรียนเป็นสำคัญ เน้นการวิเคราะห์ผลลัพธ์เชิงสถิติ ตัวเลข แผนการระยะยาวในลักษณะนามธรรม นอกจากนี้เนื้อหาข้อที่อื่นๆ เช่นระบบการศึกษา แนวทางการจัดการศึกษา และมาตรฐานและคุณภาพการศึกษา จักกับขอบเขตแต่ภายในประเทศไทยเพียงเท่านั้น

2.1.1 ทฤษฎีการเรียนรู้ (Learning Theory)

ในหัวข้อทฤษฎีการเรียนรู้ได้นำเสนอแนวคิด หลักการ การปฏิบัติการ การประเมินผล และการตรวจสอบคุณภาพของผู้เรียนเป็นหลัก

2.1.1.1 นิยามของทฤษฎีการเรียนรู้

นักการศึกษาได้ให้ความหมายของทฤษฎีการเรียนรู้ไว้อย่างหลากหลายตามหลักการศึกษาและการวิจัยของตน จนแตกแขนงเป็นความเชื่อในการพัฒนาผู้เรียนสู่ความสำเร็จในกระบวนการที่แตกต่างกัน (Bloom, 1965; Krathwohl, 2002;) ในงานวิจัยนี้ จักกำหนดนิยามของทฤษฎีการเรียนรู้ ในมิติที่สามารถวัดและประเมินได้ มีตัวชี้วัดความสำเร็จของทฤษฎีการเรียนรู้และมีกระบวนการจัดการเรียนรู้ที่เป็นขั้นตอน

ทฤษฎีการเรียนรู้ คือ รูปแบบการเรียนรู้ หรือ กระบวนการการเรียนรู้ที่ทำให้คนเปลี่ยนแปลงพฤติกรรม และควบคุมความคิด ซึ่งสามารถพัฒนาได้จากการได้ทุน การสัมผัส การอ่าน การใช้เทคโนโลยี และการสื่อสาร โดยที่การเรียนรู้ของเด็กและผู้ใหญ่จะมีความแตกต่างกัน โดยส่วนใหญ่เด็กจะเรียนรู้ด้วยการเรียนในห้องเรียน ผ่านการจำและการควบคุม โดยครู อาจารย์ หรือผู้ปกครอง ในขณะที่ผู้ใหญ่มักเรียนรู้ด้วยประสบการณ์ที่มีอยู่ การเรียนรู้จากการแก้ปัญหา และการฝ้าทบทวนที่ไม่มีรูปแบบ เรียนได้เฉพาะการเรียนรู้ตามความสนใจ นอกจากนี้การเรียนรู้ยังสามารถเกิดขึ้นจากประสบการณ์ที่ผู้สอนนำเสนอและทำกับมี โดยมีปฏิสัมพันธ์ระหว่างผู้สอนและผู้เรียน ผู้สอนจะเป็นผู้ที่สร้างบรรยากาศทางจิตวิทยาที่เอื้ออำนวยต่อการเรียนรู้ การสร้างความเป็นกันเอง ความเข้าใจความรู้ การเรียนรู้วิจารณ์เป็นวิวัฒน์ สิ่งเหล่านี้ผู้สอนจะเป็นผู้สร้างเรื่องของและสถานการณ์เรียนรู้ให้กับผู้เรียน ดังนั้น ผู้สอนจะต้องพิจารณาเลือกรูปแบบการสอน รวมทั้งการสร้างปฏิสัมพันธ์ที่เหมาะสมกับผู้เรียน
2.1.1.2 การเรียนรู้ตามทฤษฎีของ Bloom (Bloom’s Taxonomy)

การเรียนรู้ตามทฤษฎีของ Bloom เป็นทฤษฎีการเรียนรู้แบบโครงสร้างจ่าย โดยแบ่งแยกรูปแบบการเรียนรู้ตามความเข้าใจเป็นระดับสู่ความเข้าใจเชิงลึกอย่างมีระบบตามแบบแผน (Bloom, 1965; Krathwohl, 2002) ดังแสดงในภาพที่ 2.1

ภาพที่ 2.1 ทฤษฎีการเรียนรู้ของ Bloom’s (ฉบับปรับปรุง)

ทฤษฎีของ Bloom ได้มีการแยกจุดมุ่งหมายการเรียนรู้ไว้ 3 ด้านประกอบด้วย พุทธิพิสัย ทักษะพิสัย และจิตพิสัย ซึ่งแต่ละด้านสามารถแยกออกดังนี้

ด้านพุทธิพิสัย (Cognitive Domain) หมายถึง พฤติกรรมที่เกี่ยวข้องกับสมอง สติปัญญา การเรียนรู้ ความคิด ความคิด การคิดค้นในสิ่งต่าง ๆ อย่างมีประสิทธิภาพ โดยสามารถแบ่งพุทธิพิสัยเหล่านี้ออกได้เป็น 6 ระดับ ได้แก่ ระดับที่ 1 การรับรู้ และการจดจำ (Remembering) ผู้เรียนสามารถเก็บรักษาความรู้ต่าง ๆ เอาไว้ และสามารถออกมาใช้งานได้ เมื่อเกิดความต้องการ ระดับที่ 2 ความเข้าใจ (Understanding) ผู้เรียนสามารถจับใจความในสิ่งต่าง ๆ รวมถึงสามารถแสดงสิ่งนั้นออกมาได้อย่างเข้าใจ ระดับที่ 3 การประยุกต์ (Applying) ผู้เรียนสามารถนําเอาความรู้ไปใช้ในการแก่ไขปัญหาที่เกิดขึ้นได้ ระดับที่ 4 การวิเคราะห์ (Analyzing) ผู้เรียนสามารถคิด จําแนก แยกแยะ เรียงรายออกเป็นส่วน ๆ และสามารถวินิจฉัยเหตุที่อย่างเข้าใจ ระดับที่ 5 การประเมินค่า (Evaluating) ผู้เรียนสามารถตัดสินใจ สรุปในคุณค่าของสิ่งต่าง ๆ ได้อย่างมีความเหมาะสมต่อกลุ่มเหตุผล และระดับที่ 6 การสร้างสรรค์ (Creating) ผู้เรียนสามารถสร้างสิ่งใหม่ หรือนําเสนอแนวความคิดใหม่

ด้านจิตพิสัย (Affective Domain) หมายถึง พฤติกรรมด้านจิตใจ ความรู้สึก ค่านิยม ทัศนคติส่วนตัว ความเชื่อ หรือสิ่งต่าง ๆ เกี่ยวกับจิตใจสำนึก อาจไม่ได้แสดง
ออกแบบทันที แต่สิ่งแวดล้อมรอบข้างสามารถหล่อหลอมสิ่งเหล่านี้ได้ ประกอบ ด้วยพฤติกรรมย่อย 5 ระดับ ระดับที่ 1 การรับรู้ (Receive) หมายถึง ความรู้สึกที่เกิดจากสิ่งแวดล้อมรอบข้าง โดยสามารถเข้าใจได้ว่าสิ่งที่เกิดขึ้นนั้นคืออะไร ระดับที่ 2 การตอบสนอง (Respond) หมายถึง การกระทำที่ถูกแสดงออกมาจากการได้รับ หรือการสะท้อนสิ่งต่าง ๆ รอบตัวอยู่ ระดับที่ 3 พัฒนาเป็นค่านิยม (Value) หมายถึง การเลือกทำในสิ่งที่สังคมยอมรับจนกลายเป็นความเชื่อ ระดับที่ 4 การจัดระบบ (Organize) หมายถึง การจัดระบบตามค่านิยมที่มีเกิดขึ้นด้วยความสัมพันธ์ที่ได้รับ และระดับที่ 5 บุคลิกภาพ (Characterize) หมายถึง การนำเอาค่านิยมที่ได้รับมากระทำและพัฒนาจนกลายเป็นความเคยชิน สามารถเริ่มต้นจากการสังเกตด้วยการจำลองข้างต้นกลายเป็นความคิดส่งต่อมายังการกระทำ

ด้านทักษะพิสัย (Psychomotor Domain) หมายถึง พฤติกรรมที่เกิดจากการใช้กล้ามเนื้อ ระบบประสาท และพฤติกรรมที่เกิดจากการทำสิ่งต่างๆ ซึ่งมีความสามารถด้านการเลือกที่จะดำเนินการ ประกอบไปด้วยพฤติกรรมย่อย 5 ระดับ ได้แก่ ระดับที่ 1 การรับรู้ (Imitation) หมายถึง ความสามารถในการรับรู้ถึงหลักการปฏิบัติได้อย่างถูกต้อง สามารถเลือกตัวอย่างที่น่าสนใจได้ ระดับที่ 2 ทำตามแบบ หรือการขี้ข่าย (Manipulation) หมายถึง พฤติกรรมที่กระทำตามบุคคลที่สนใจ การพยายามทำแบบเดิม เพื่อให้เกิดความเชื่อมโยงอย่างที่ต้องการ ระดับที่ 3 การค้นหาความถูกต้อง (Precision) หมายถึง พฤติกรรมที่สามารถทำได้ด้วยตนเอง ไม่ต้องการการแนะนำ เมื่อสำเร็จแล้วจะมีการพิจารณาสิ่งที่กระทำ ระดับที่ 4 การกระทาอย่างต่อเนื่อง (Articulation) หมายถึง พฤติกรรมที่เกิดหลังจากการตัดสินใจ หรือการเลือกสิ่งต่างๆ ทำได้ ซึ่งเป็นตัวอย่างที่มีการสิ่งที่ต้องการ โดยสามารถปฏิบัติได้เอง การค้นหาและกระทาอย่างสม่ำเสมอ และระดับที่ 5 การกระทาได้อย่างเป็นธรรมชาติ (Naturalization) หมายถึง พฤติกรรมที่ได้รับการฝึกฝนอย่างสม่ำเสมอต่อเนื่อง จนสามารถปฏิบัติได้อย่างคงแคล่วคล่องได้ว่าเป็นธรรมชาติ ซึ่งเป็นความสามารถในการปฏิบัติขั้นสูงสุด

ตามความเข้าใจของ Bloom และคณะ (Bloom, 1965) เมื่อบุคคลเกิดการเรียนรู้จะเกิดการเปลี่ยนแปลงพฤติกรรม ใน 3 มิติการเรียนรู้ ได้แก่ มิติที่ 1 การเปลี่ยนแปลงด้านความรู้ ความเข้าใจ และความคิด (Cognitive Domain) หมายถึง การเรียนรู้ที่เกิดขึ้นในสิ่งใหม่ หรือการรับรู้ ความรู้สึก ทักษะ ค่านิยม และพฤติกรรมที่เกิดขึ้นในสิ่งใหม่ ได้แก่ มิติที่ 2 การเปลี่ยนแปลงทางด้านอารมณ์ ความรู้สึก ทักษะ ค่านิยม (Affective Domain) หมายถึง เมื่อผู้เรียนได้เรียนรู้สิ่งใหม่ ความรู้สึกทางด้านจิตใจ ความชื่นมื่อ และความสนใจ และมิติที่ 3 การเปลี่ยนแปลงทางด้านความเชื่อง (Psychomotor Domain) หมายถึง การที่ผู้เรียนได้เกิดการเปลี่ยนรูปทั้งด้านความคิด ความเข้าใจ และมิติที่ 3 การเปลี่ยนแปลงทางด้านความเชื่อง ทักษะ ค่านิยม ความสามารถด้วยแล้ว ได้นำเอาสิ่งที่เรียนรู้ไปปฏิบัติ จึงทำให้เกิดความช้านมายามกันขึ้น
2.1.1.3 การเรียนรู้ตามทฤษฎีคอนสตรัคติวิสต์ (Constructivist Theory)

ทฤษฎีคอนสตรัคติวิสต์ (Constructivist Theory) คือ ทฤษฎีที่อธิบายรากฐานความสัมพันธ์ในการสร้างความรู้ เป็นทฤษฎีที่ว่าด้วยการสร้างความรู้ของผู้เรียน ทฤษฎีคอนสตรัคติวิสต์ เช่นว่า การเรียนรู้ หรือ การสร้างความรู้ เป็นกระบวนการที่เกิดขึ้นภายในของผู้เรียนผู้เรียนเป็นผู้สร้างความรู้ โดยการบันทึกประสบการณ์ หรือ สิ่งที่ค้นพบ หรือ สารสนเทศใหม่ที่ได้รับ มาเชื่อมโยงกับความรู้ความเข้าใจที่มีอยู่เดิม สร้างเป็นความเข้าใจของตนเอง เรียกว่า โครงสร้างทางปัญญา (Cognitive Structure) หรือ สกีมา (Schema) หรือ องค์ความรู้ (Knowledge) อย่างไรก็ตาม บุคคลอาจสร้างความหมายที่แตกต่างกัน เพราะแต่ละบุคคลมีประสบการณ์ หรือ ความรู้ความเข้าใจเดิมที่แตกต่างกัน

นอกจากนี้ กลุ่มนิยมของคอนสตรัคติวิสต์ (Constructivism) ยังเชื่อว่า การเรียนรู้เป็นกระบวนการสร้างมากกว่าการรับความรู้ ดังนั้น เป้าหมายของการจัดการเรียนการสอนจะสนับสนุนการสร้างมากกว่าความพยายามในการแยกรอยความรู้ โดยจะมุ่งเน้นการสร้างความรู้ใหม่ อย่างเหมาะสมของแต่ละบุคคล (Duffy and Cunningham, 1996) วิธีการที่นำมาใช้ในการจัดการเรียนการสอนมีหลักการที่สำคัญว่า การเรียนรู้ต้องมุ่งเน้นให้ผู้เรียนลงมือกระทำในการสร้างความรู้แบบเชิงรุก (Actively Construct) ที่เป็นการรับข้อมูลหรือสารสนเทศ แบบจำลองเพียงอย่างเดียว อย่างไรก็ตาม แนวคิดการสร้างการเรียนรู้ของกลุ่มคอนสตรัคติวิสต์ยังมีความแตกต่างกันจากทฤษฎีการพัฒนากระบวนการเรียนรู้ของ ดิวฟีและคัมมิ่ง (Cognitive Constructivism) และ กลุ่มนิยมของคอนสตรัคติวิสต์เชิงสังคม (Social Constructivism)

คอนสตรัคติวิสต์เชิงปัญญา (Cognitive Constructivism)

กลุ่มนิยมของคอนสตรัคติวิสต์เชิงปัญญา มีรากฐานทางปรัชญาของพิธีกรรมเกิดจากความพยายามที่จะเชื่อมโยงประสบการณ์เดิมกับประสบการณ์ใหม่ ด้วยกระบวนการพิสูจน์อย่างมีเหตุผล เป็นความรู้ที่เกิดจากการได้รับรู้ซึ่งถือเป็นปัญญาปฏิบัติธรรม ประกอบกับรากฐานทางจิตวิทยาการเรียนรู้ที่มีที่พ้นทางในทฤษฎีนิกายนี้

นักดั้มทางวิชาการสวิส Jean Piaget ได้นำเสนอทฤษฎี โดยแบ่งออกเป็น 2 ส่วน คือ ช่วงอายุ (Ages) และ ลำดับขั้น (Stages) ที่สอดคล้องกัน ทฤษฎีนี้จะทำนายความสามารถในการทำความเข้าใจ เมื่อมีช่วงอายุที่แตกต่างกัน ทฤษฎีได้ระบุว่า ผู้เรียนจะพัฒนาความสามารถทางการรู้คิด (Cognitive Abilities) ได้ต่อเนื่องในพื้นฐานเป็นหลัก นอกจากนี้จากการจัดการเรียนรู้นั้นมีแนวชาร์ตการสร้างความรู้ตัวตนของผู้เรียนทางประสบการณ์ ประสบการณ์เหล่านี้จะกระตุ้นให้
ผู้เรียนสร้างโครงสร้างทางปัญญา เรียกว่า สกีมา (Schemas) รูปแบบการทำความเข้าใจ (Mental Model) ในสมอง

สิ่งสำคัญของทฤษฎีของเพียเจต์ คือ บทบาทของครูผู้สอนในห้องเรียน การจัดเตรียมโครงสร้างตั้งแต่ที่ให้ผู้เรียนได้สDar ค้นหาความรู้จากประสบการณ์ที่ผ่านมา ที่จะกระตุ้นให้ผู้เรียนเป็นผู้สร้างความรู้ด้วยตนเอง การเรียนรู้จะเกิดขึ้นหลังจากการปรับเข้าสู่ความสมดุล (Equilibrium) ระหว่างอินทรีย์และสิ่งแวดล้อม โดยมีกระบวนการที่สำคัญ 2 ขั้นตอน ได้แก่ ขั้นตอนที่ 1 การดูดซึมโครงสร้างทางปัญญา (Assimilation) คือกระบวนการรับข้อมูลจากสิ่งแวดล้อม และขั้นตอนที่ 2 การปรับโครงสร้างทางปัญญา (Accommodation) คือกระบวนการปรับโครงสร้างทางปัญญาให้สอดคล้อง โดยการเข้าใจความรู้เดิม และความรู้ใหม่

ภาพที่ 2.2 แสดงแนวคิดของกลุ่มคอนสตรัคติวิสต์เชิงปัญญา

คอนสตรัคติวิสต์เชิงสังคม (Social Constructivism)

นักจิตวิทยาของกลุ่มพุทธิปัญญา (Kohlberg) (Lev Vygotsky) เชื่อว่าสังคมและวัฒนธรรมจะเป็นเครื่องมือของปัญญาที่สำคัญในการพัฒนารูปแบบและคุณภาพของปัญญา คอนสตรัคติวิสต์เชิงสังคมเชื่อว่า ผู้ที่มีประสบการณ์มาก่อน เช่น พ่อ แม่ ปู่ ย่า ตา ยาย คือตัวเชื่อมสร้างเครื่องมือทางสังคม วัฒนธรรม ภาษา เครื่องมือทางวัฒนธรรมอื่น ๆ

ตามแนวคิดของวีกอทสกี (Vygotsky) เชื่อว่า การพัฒนารูปแบบเกิดขึ้นในกลุ่มของสังคมที่จัดขึ้น ดังนั้น การใช้เทคโนโลยีที่เหมาะสมจะช่วยถูกต้องความสมเหตุผลระหว่างกันให้มากที่สุด ครูควรจะสร้างบริบทสำหรับการเรียนรู้ให้ผู้เรียนสามารถสร้างความสัมพันธ์ได้จากกิจกรรมที่น่าสนใจ การกระตุ้น และการอ่านการเรียนรู้ ครูควรทำหน้าที่เสนอแนว เมื่อผู้เรียนประสบปัญหา ควรกระตุ้นให้ผู้เรียนปฏิบัติงานในกลุ่ม สร้างกระบวนการคิด ประเด็นคำถาม แนะนำ ให้พวกเขาร้องขอ
กับปัญหา เพื่อสร้างความท้าทาย ซึ่งเป็นรากฐานของสถานการณ์ในจริงจัง สร้างความพึงพอใจในผลงานที่พวกเขาได้ผลเมื่อกระทำ ดังนั้นจะทำให้ผู้เรียนเกิดความเจริญทางด้านสติปัญญา และการเรียนรู้

สาระสำคัญเกี่ยวกับทฤษฎีคอนสตรัคติวิสต์

จากแนวคิดของทั้งกลุ่มแนวคิดคอนสตรัคติวิสต์เชิงปัญญา และกลุ่มแนวคิดคอนสตรัคติวิสต์เชิงสังคม สามารถสรุปเป็นสาระสำคัญได้ ดังนี้

สาระสำคัญที่ 1 ความรู้ของบุคคล คือ โครงสร้างทางปัญญาที่สร้างขึ้นจากประสบการณ์ ในการอธิบายสถานการณ์ที่เป็นปัญญา สามารถนำไปใช้เป็นฐาน ในการแก้ปัญหาสถานการณ์อื่น ๆ ได้

สาระสำคัญที่ 2 ผู้เรียนเป็นผู้สร้างความรู้ด้วยวิธีการที่แตกต่างกัน โดยอาศัยประสบการณ์และโครงสร้างทางปัญญาที่มีอยู่เดิม ความสนใจและแรงจูงใจในการตนเอง

สาระสำคัญที่ 3 ครูมีหน้าที่จัดวัตถุการเรียนรู้ ให้ผู้เรียนได้ปรับขอบครอบสร้างทางปัญญา เช่น การกำหนดสถานการณ์ที่เป็นปัญญาและปัจจัยพื้นฐานทางสังคมที่ก่อให้เกิดความขัดแย้งทางปัญญา กลายเป็นแรงจูงใจภายใน ทำให้เกิดกิจกรรมการไตร่ตรอง

เนื่องจากการเรียนรู้ตามแนวคิดของตามกลุ่มแนวคิดคอนสตรัคติวิสต์ (Constructivism) เกิดขึ้นได้ ประกอบด้วย กระบวนการปฏิบัติ (Active Process) ที่เกิดขึ้นในแต่ละบุคคล ความรู้จะถูกสร้างขึ้นด้วยคิดของผู้เรียนเอง การไปยังข้อมูลที่ได้รับใหม่รวมกับความรู้เดิม เพื่อสร้างความหมายในการเรียนรู้ การประยุกต์ใช้ความรู้และความเชื่อที่แตกต่างกันของแต่ละบุคคลจะขึ้นอยู่กับสิ่งแวดล้อม ซับqrst qrst pqrs qrst

2.1.1.4 การเรียนรู้ตามทฤษฎีและแนวคิดการกำหนดตนเอง

ทฤษฎีการเรียนรู้และแนวคิดการกำหนดตนเอง (Self-Regulated Learning: SRL) คือ แนวคิดทฤษฎีการเรียนรู้เพื่อพัฒนาปัญญาทางสังคม เป็นหนึ่งในทฤษฎีพัฒนาจิตรธรรมหรือพฤติกรรมของมนุษย์ โดยการเรียนรู้การกำหนดตนเองตามแนวคิดพื้นฐานของ Bandura (1991) มีความเข้าใจว่าพฤติกรรมของมนุษย์ไม่ได้เกิดขึ้นและเปลี่ยนแปลงไป เนื่องจากปัจจัยทางสภาพแวดล้อมแต่เพียงอย่างเดียว แต่ต้องมีปัจจัยส่วนบุคคลประกอบด้วย ส่วนรวมของปัจจัยส่วนบุคคลนั้นจะต้องร่วมกันในลักษณะสมบูรณ์ซึ่งกันและกันกับปัจจัยทางด้านพฤติกรรมและสภาพแวดล้อม
ดร. ธีระภูธร (2558) กล่าวถึงแนวคิดเกี่ยวกับการก้าวผ่านตัวเอง (Self-Regulation) ไว้ว่า การก้าวผ่านตัวเองในการเรียนเป็นความสามารถพื้นฐานอย่างหนึ่งของมนุษย์ที่มุ่งเน้นให้ควบคุมตนเองจากภายใน โดยอาศัยการฝึกฝนและพัฒนาตนเองตามกระบวนการ มีการก้าวผ่านสิ่งแวดล้อม ควบคุม และจัดการเกี่ยวกับแหล่งที่มาของความรู้ ซึ่งต้องอยู่บนพื้นฐานของปัจจัยด้านแรงจูงใจของผู้เรียน การคาดหวังในความสำเร็จและการเรียนรู้ทางปัญญา ทางการคิด ความรู้สึกกลุ่ม ตลอดจนพฤติกรรมที่สอดคล้องกับเป้าหมาย เพื่อส่งเสริมให้สภาพแวดล้อมการเรียนการสอนออนไลน์มีประสิทธิภาพ

นอกจากนี้ การเสริมแรงทำหน้าที่ปรับเปลี่ยนพฤติกรรมให้มีความเหมาะสมและสอดคล้องกับเป้าหมายที่ผู้เรียนกำหนด ซึ่งการเสริมแรงนั้นทำหน้าที่สำคัญ 3 ประการด้วยกัน คือ ประการที่ 1 การเสริมแรงทำหน้าที่เป็นข้อมูลให้บุคคลรับรู้ถึงสิ่งที่ควรกระทำ พฤติกรรมสภาพแวดล้อมและความคาดหวังในอนาคต ประการที่ 2 การเสริมแรงทำหน้าที่ยั้งใจ เช่นจากการประสบการณ์ในอดีตทำให้บุคคลเกิดความคาดหวังต่อการกระทำบางอย่าง สมเพื่อให้การเสริมแรง ต่อบุคคลที่คาดหวังว่าผลลัพธ์ที่คาดคาดเกิดขึ้นในอนาคต กลายเป็นแรงจูงใจต่อพฤติกรรมที่จะกระทำในปัจจุบันทำให้บุคคลมีโอกาสที่จะแสดงพฤติกรรมต่างก้าวหน้าในเวลาต่อ ๆ มา ความสำคัญของการเสริมแรงประการที่ 3 คือ การเพิ่มความเสี่ยงของพฤติกรรม ซึ่งบุคคลจะทะลุนั้นถือการที่จะได้รับการเสริมแรงยั้งใจ (สมโกสิน เนียบสุภาษิต, 2550)

จากแนวคิดของ Bandura (1977) พฤติกรรมของบุคคลเกิดขึ้นได้จาก การเรียนรู้โดยผ่านตัวแบบ ซึ่งบุคคลสังเกตจากการพิจารณาตัวแบบ การเรียนรู้จากตัวแบบมีกระบวนการ 4 กระบวนการที่สำคัญ คือ กระบวนการใส่ใจ (Attentional Process) กระบวนการเก็บจำ (Retention Process) กระบวนการแสดงออก (Motor Reproduction Process) และกระบวนการจูงใจ (Motivational Process) กระบวนการทั้ง 4 นี้จำเป็นต้องการเรียนรู้จากการสังเกต หรือการเรียนรู้จากตัวแบบ โดยทุกกระบวนการมีความสำคัญ ถ้าขาดกระบวนการใดเกินกว่าหนึ่งทำตามตัวแบบย่อมไม่สมบูรณ์ เนื่องจากการเรียนรู้จากการสังเกตหรือจากการเรียนรู้จากการกระบวนการทั้ง 4 นี้เกิดจากการที่กระตุ้นให้ผู้สังเกตใส่ใจกับตัวแบบอย่างแท้จริงสามารถจดจำและนำมาสร้างสัญลักษณ์ได้ ตลอดจนสามารถตัดแปลงสัญลักษณ์นั้นและนำออกมาใช้ในภายหลัง โดยมีกระบวนการสุ่มทำศึกษาคือ กระบวนการจูงใจที่ทำให้ผู้สังเกตแสดงการตอบสนองออกมา คือ การกระทำตามตัวแบบในที่สุด
2.1.2 ระบบการศึกษา (Education System)

การศึกษา ตามขอบเขตของการวิจัยในงานวิจัยนี้ หมายถึง รูปแบบ หรือกระบวนการ หรือขั้นตอนในการจัดการศึกษาที่กำหนดโดยพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. 2542 และที่ได้แก้ไขเพิ่มเติม (ฉบับที่ 2) พ.ศ. 2545 และ (ฉบับที่ 3) พ.ศ. 2553 และพระราชบัญญัติการศึกษาภาคบังคับ พ.ศ. 2545 ซึ่งกำหนดให้ระบบการจัดการศึกษามีรูปแบบ คือ การศึกษาในระบบ การศึกษานอกระบบ และการศึกษาตามอัธยาศัย งานวิจัยนี้ระบบการศึกษา จำกัดขอบเขตการศึกษาในระบบการศึกษาของประเทศไทย โดยขอบเขตการวิจัยกำหนดตามความต้องต้องในนี้

2.1.2.1 การจัดการศึกษา

การจัดการศึกษา ครอบคลุมถึงแนวคิดและกระบวนการ เพื่อออกแบบวิธีการจัดการศึกษา พัฒนารูปแบบการจัดการศึกษา ควบคุมโดยมีหลักการจัดการศึกษา โดยมีวัตถุประสงค์เพื่อการจัดการศึกษาเพื่อส่งเสริมและสร้างเสริมพัฒนาการทางด้านร่างกาย อารมณ์ สติปัญญา และสติปัญญา โดยมุ่งเน้นไปที่การพัฒนาความรู้ความสามารถของผู้เรียนตามพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. 2542 และที่ได้แก้ไขเพิ่มเติม (ฉบับที่ 2) พ.ศ. 2545 และ (ฉบับที่ 3) พ.ศ. 2553 และพระราชบัญญัติการศึกษาภาคบังคับ พ.ศ. 2545 ซึ่งกำหนดให้ระบบการจัดการศึกษาประกอบด้วย 3 รูปแบบ คือ การศึกษาในระบบ การศึกษานอกระบบ และการศึกษาตามอัธยาศัย

การศึกษาในระบบ

การศึกษาในระบบ (Formal Education) ตามพระราชบัญญัติการศึกษาแห่งชาติ พ.ศ. 2542 หมายถึง การศึกษาที่กำหนดจุดมุ่งหมาย วิธีการศึกษา หลักสูตร ระยะเวลาการศึกษา มีกระบวนการวัดและประเมินผลซึ่งเป็นเงื่อนไขการส่งเสริมการศึกษาที่แน่นอน (กระทรวงศึกษาธิการ, 2561)

นอกจากนั้น องค์การสหประชาชาติยังกำหนดความหมายของการศึกษาในระบบ หมายถึง การศึกษาที่มีการจัดตั้งขึ้น โดยเจตนารมณ์และวางแผนผ่านทางหน่วยงานภาครัฐและหน่วยงานเอกชนที่เป็นต้นยุทธศาสตร์ และมีการจัดการศึกษาที่เป็นทางการของประเทศ โปรแกรมการศึกษาทางการศึกษาจึงได้รับการยอมรับจากหน่วยงานการศึกษาแห่งชาติที่เกี่ยวข้องหรือที่เกี่ยวข้อง สถาบันอื่นใด สามารถร่วมมือกับเจ้าหน้าที่การศึกษาเขตภาคหรือระดับประเทศ การศึกษาอย่างเป็นทางการประกอบด้วยการศึกษาขั้นต้น การศึกษาขั้นอัธยาศัย การศึกษาขั้นต่ำการพิเศษและบางส่วนของการศึกษาผู้ใหญ่ ซึ่งมีการยอมรับรายวิชาเป็นส่วนหนึ่งของการศึกษาอย่างเป็นทางการ (United Nation, 2018) ดังนั้น การศึกษาในระบบ จึง
หมายความรวมถึง การจัดการศึกษาที่เป็นขั้นตอน มีกระบวนการ มีการตรวจสอบ ประกอบด้วยเกณฑ์ วัดประเมินผล สามารถใช้เป็นมาตรฐานในการยอมรับของทุกคน

การศึกษานอกระบบ

การศึกษานอกระบบ (Non-formal Education) ในบางโอกาสสามารถเรียกว่า “เป็นการศึกษาไร้รูปแบบ” เกิดขึ้นครั้งแรกในการประชุมของ UNESCO เรื่อง The World Educational Crisis โดยนิยามการศึกษานอกระบบ ครอบคลุมถึงการจัดการกิจกรรมการเรียนรู้อย่างเป็นระบบ แต่นอกกรอบของการจัดการศึกษาในระบบโรงเรียนปกติ โดยมุ่งบริการให้คนกลุ่มต่างๆ ของประชากร ทั้งที่เป็นผู้ใหญ่และเด็ก โดยเน้นการเรียนรู้

ว่าในปัจจุบันการศึกษานอกระบบ มีลักษณะเป็นกระบวนการจัดการพัฒนาประสบการณ์ของผู้เรียน ที่เป็นทักษะ ทักษะ และความรู้ ซึ่งสามารถทำได้อย่างหยุ่นฉ lineWidthการเรียน ในระบบโรงเรียนทั่วไป สมควรที่จะเห็นการศึกษานอกระบบมีตั้งแต่ทักษะในการเรียนรู้ด้วยตนเอง การทำงานเป็นกลุ่ม การแก้ไขข้อขัดข้อง การแลกเปลี่ยนวัฒนธรรม การเป็นผู้นำ การแก้ปัญหาร่วมกัน การสร้างความเชื่อมั่น ความรับผิดชอบและความมีวินัย การศึกษานอกระบบยุคใหม่จึงเน้นการเรียนรู้และสมรรถนะ (Learning and Competency) (จรวยพร ธรณินทร์, 2550)

การศึกษานอกระบบจึงเป็นแนวทางหนึ่งในการจัดการศึกษา ซึ่งเปิดโอกาสให้กับผู้ที่ไม่ได้เข้ารับการศึกษาในระบบโรงเรียนตามปกติ ได้มีโอกาสศึกษาทางความรู้ พัฒนาตนเอง ให้สามารถด้วยตนเองได้อย่างมีความสุข เป็น “การจัดการศึกษาในลักษณะอ่อนตัว” ให้ผู้เรียนมีความสะดวกเด็กเล็กเรียนได้ในเวลาที่สะดวกได้ให้เกิดประโยชน์ต่อผู้เรียนและสังคมอย่างยิ่ง การศึกษานอกระบบมีความหมายครอบคลุมถึงการประมวลประสบการณ์การเรียนรู้ทุกชนิดที่บุคคลได้รับจากการเรียนรู้ ไม่ว่าจะเป็นการเรียนรู้ตามธรรมชาติการเรียนรู้จากประสบการณ์การเรียนรู้ทุกชนิดที่บุคคลได้รับจากการเรียนรู้ ไม่ว่าจะเป็นการเรียนรู้ตามธรรมชาติการเรียนรู้จากสังคม และการเรียนรู้ที่ได้รับจากโปรแกรมการศึกษาที่จัดขึ้นนอกเหนือไปจากการศึกษาในโรงเรียนตามปกติ เป็นกิจกรรมที่จัดขึ้นเพื่อเปิดโอกาสให้บุคคลที่มีอยู่ในระบบโรงเรียนปกติ ได้มีโอกาสแสดงความรู้ทักษะที่มี จำกัดเพื่อมุ่งแก้ปัญหาในชีวิตประจำวัน ฝึกฝนอาชีพ หรือการพัฒนาความรู้เฉพาะเรื่องตามที่ตนสนใจ (อาชญญา รัตนอุบล, 2542)

งานด้านการศึกษานอกระบบครอบคลุมเรื่อง การจัดกิจกรรมการศึกษาที่จัดขึ้นนอกโรงเรียน โดยมีสูตรเป็นแบบผู้รับบริการและวัตถุประสงค์ในการเรียนรู้ชัดเจน กิจกรรมการศึกษาดังกล่าว มีทั้งที่จัดกิจกรรมโดยเอกเทศ และเป็นส่วนหนึ่งของกิจกรรมอื่น หน่วยงานที่จัดการศึกษานอกโรงเรียนนั้น เป็นทั้งหน่วยงานที่มีหน้าที่ทางการศึกษาขนาดระบบโรงเรียนโดยตรง และหน่วยงานอื่น ทั้งภาครัฐและภาคเอกชน ตลอดจนชุมชนที่อาศัย การศึกษาเป็น
เครื่องมือนำไปสู่วัตถุประสงค์ในการพัฒนาทรัพยากรมนุษย์และสังคม ในการพัฒนาทรัพยากรมนุษย์และสังคม ในการพัฒนาทรัพยากรมนุษย์และสังคม ในทางฤษฎีจึงได้นับเนื่องเอกนิยมการศึกษาในระบบโรงเรียนและการศึกษาตามอัธยาศัย เพื่อให้การศึกษาในระบบโรงเรียนเป็นความหวังของการศึกษาและเป็นกลไกที่สำคัญในการพัฒนาคุณภาพของคนส่วนใหญ่ในประเทศได้ (รณรงค์ เมฆานุวัฒน์, 2543) ด้วยเหตุนี้ การศึกษานอกระบบโรงเรียนจึงถือเป็นกระบวนการของการศึกษาตลอดชีวิต ซึ่งมีการกิจสำคัญที่จะต้องให้ประชาชนได้รับการศึกษาอย่างเสมอภาค โดยเฉพาะการศึกษาขั้นพื้นฐาน ซึ่งจำเป็นต่อการดำรงชีวิตตามมาตรฐานของสังคมที่เป็นสิทธิที่คนทุกคนพึงได้รับการศึกษา นอกจากนี้ยังจะต้องได้รับการศึกษาที่ต้องเนื่องจากการศึกษาขั้นพื้นฐานของชีวิต เพื่อนำความรู้ไปพัฒนาอาชีพของตน (ก่อส่งเสริมปฏิบัติการ, 2541 : 1)

ดังนั้น อาจกล่าวได้ว่า การศึกษานอกระบบ คือ กระบวนการทางการศึกษาที่จัดขึ้นเพื่อเพิ่มหรือพัฒนาศักยภาพให้แก่ประชาชน ทั้งในด้านความรู้ ความสามารถ หรืองานอดิเรกต่างๆ ผู้ที่สำเร็จการศึกษาอาจได้รับหรือไม่ได้รับเกียรติบัตรก็ได้ ซึ่งเกียรติบัตรนี้ไม่เกี่ยวข้องกับการปรับเทียบเงินเดือนหรือศักยภาพต่างๆ ที่มีการมอบวุฒิบัตรที่สามารถปรับเทียบเงินเดือนหรือศักยภาพต่างๆในระดับสูงขึ้นได้ การศึกษานอกระบบ จึงเป็นการศึกษาที่มีความยืดหยุ่นและหลากหลายรูปแบบ ไม่มีข้อจำกัดเรื่องอายุและสถานที่โดยมุ่งหมายให้เป็นการศึกษาเพื่อพัฒนา คุณภาพมนุษย์ มีการกำหนดจุดมุ่งหมาย หลักสูตร วิธีการเรียนการสอน สื่อ การวัดผลและประเมินผลที่สอดคล้องกับสภาพปัญหาและความต้องการของกลุ่มเป้าหมาย ซึ่งอาจแบ่งได้ 3 ประเภทใหญ่ๆ คือ ประเภทความรู้พื้นฐานสายสามัญประเภทความรู้และทักษะอาชีพ และประเภทข้อมูลความรู้ ทั้งนี้หลักการของการศึกษาชีวิตคือ การเน้นความเสมอภาคในโอกาสทางการศึกษาการกระจายโอกาสทางการศึกษาให้ครอบคลุมและทั่วถึง การส่งเสริมการจัดการศึกษาอย่างต่อเนื่องตลอดชีวิต มีความยืดหยุ่นในเรื่องภูมิภาค ระเบียบต่างๆ การจัดการศึกษาให้สอดคล้องความต้องการของกลุ่มเป้าหมายให้เรียนรู้ในสิ่งที่มั่นคงและกลายเป็นคู่มือการจัดการศึกษาหลากหลายรูปแบบ คำนึงถึงความแตกต่างระหว่างบุคคล ผู้สอนมีได้จำากัดเฉพาะครู อาจารย์เป็นผู้สอน ผู้เข้าร่วมจากหน่วยงานหรือจากท้องถิ่น

หลักการของการศึกษานอกระบบ คือ การเน้นความเสมอภาคในโอกาสทางการศึกษาการกระจายโอกาสทางการศึกษาให้ครอบคลุมและทั่วถึง การส่งเสริมการจัดการศึกษาอย่างต่อเนื่องตลอดชีวิต มีความยืดหยุ่นในเรื่องภูมิภาค ระเบียบต่างๆ การจัดการศึกษาให้สอดคล้องความต้องการของกลุ่มเป้าหมายให้เรียนรู้ในสิ่งที่มั่นคงและกลายเป็นคู่มือการจัดการศึกษาหลากหลายรูปแบบ คำนึงถึงความแตกต่างระหว่างบุคคล ผู้สอนมีได้จำากัดเฉพาะครู อาจารย์เป็นผู้สอน ผู้เข้าร่วมจากหน่วยงานหรือจากท้องถิ่น

อย่างไรก็ตาม อัญชลี ธรรมะวิธีกุล (2018) สรุปการศึกษานอกระบบ คือกระบวนการจัดการศึกษาให้ผู้พ้นสภาพการศึกษาจากระบบการศึกษาปกติ หรือผู้ต้องการพัฒนาตนเองได้รับการเรียนรู้ โดยเน้นการพัฒนาคุณภาพของผู้เรียน ตามกฎหมายว่าด้วยการศึกษาแห่งชาติตามบทบัญญัติแห่งรัฐธรรมนูญที่จะส่งเสริมและสนับสนุนให้ประชาชนทุกคนได้รับโอกาสทางการศึกษาขั้นพื้นฐาน ตามสิทธิมนุษยชนที่ทุกคนพึงได้รับต้องถาวร สมควรให้ประชาชนได้รับการศึกษาอย่างต่อเนื่อง
ตลอดชีวิตได้อย่างแท้จริง เกิดสังคมแห่งการเรียนรู้ที่กว้างขวางและเป็นไปในยั่งยืนที่จะเกิดขึ้น การที่จะส่งเสริมให้ประเทศมีศักยภาพที่จะพัฒนาอย่างต่อเนื่อง ด้านที่มีการพัฒนาที่อยู่ในชีวิตการเรียนรู้ที่มีคุณภาพอยู่ตลอดชีวิตและเป็นไปในอัตราที่รวดเร็ว โดยที่มีการพัฒนาที่มีคุณภาพอยู่ตลอดชีวิต การที่จะส่งเสริมให้ประเทศมีศักยภาพที่จะพัฒนาอย่างต่อเนื่อง ด้านที่มีการพัฒนาที่อยู่ในชีวิตการเรียนรู้ที่มีคุณภาพอยู่ตลอดชีวิต

กล่าวโดยสรุป การศึกษาอัธยาศัย (Informal Education) หมายถึง การศึกษาที่ผู้เรียนสามารถเรียนรู้ได้ด้วยตนเอง ตามความสนใจ ศักยภาพ ความพร้อม และโอกาส โดยศึกษาจากบุคคล ประสบการณ์ สังคม สิ่งแวดล้อม สื่อ หรือแหล่งการเรียนรู้อื่น นอกเหนือจากห้องเรียน (กระทรวงศึกษาธิการ, 2561) ดังนั้น การศึกษาตามอัธยาศัย จึงมีลักษณะของการจัดการศึกษาที่ไม่มีรูปแบบตายตัว ไม่มีหลักสูตรและระยะเวลาในการเรียนที่แน่นอน โดยการจัดการศึกษาในรูปแบบนี้เป็นการศึกษาตามความรู้ต่าง ๆ ผ่านประสบการณ์ตรงที่ได้ประสบในชีวิตประจำวัน โดยการศึกษาตามอัธยาศัยจะกลายเป็นรากฐานสำคัญของการศึกษาตลอดชีวิต

นอกจากนี้ วิศนี ศิลตระกูล และอมรา ปฐภิญโญบูรณ์ (2544) ยังได้ให้ความหมายของการศึกษาตามอัธยาศัยว่า หมายถึง วิธีการที่หลากหลายที่นำไปสู่การเรียนรู้ อาจเกิดขึ้นโดยการสัมผัสนิสัย ผ่านกระบวนการสอน ผ่านกระบวนการสอน สิ่งแวดล้อม การท้างาน และการพัฒนาประสบการณ์ โดยไม่อาจกำหนดล่วงหน้าได้ เป็นสิ่งที่เกิดขึ้นตามสภาวะของสถานการณ์

ขณะเดียวกัน กรมการศึกษาอิสระเรียน (2538) ได้ให้ความหมายของการศึกษาตามอัธยาศัย คือ การศึกษาที่เกิดขึ้นตามวิธีคิดตัวของคน เป็นการเรียนรู้จากประสบการณ์การท้างาน บุคคลครอบครัว ชุมชน และแหล่งความรู้ต่าง ๆ เพื่อพัฒนาความรู้ ทักษะ และคุณภาพชีวิต โดยไม่มีหลักสูตร ไม่มีเวลาเรียนที่แน่นอน ไม่จำกัดอายุ ไม่มีการจัดการเรียนการสอน ไม่มีการรับประกาศนียบัตร มีหรือไม่มีสถานที่ที่แน่นอน ลักษณะลูกที่อยู่เป็นการเรียนเพื่อความรู้และนันทนาการ สามารถเรียนได้ตลอดเวลาและเกิดขึ้นในทุกช่วงวัยตลอดชีวิต
นอกจากนี้ ศูนย์ส่งเสริมการศึกษาตามอัธยาศัย กรมการศึกษาขวัญ (2544) ให้ความหมาย การศึกษาตามอัธยาศัย คือ การจัดสภาพแวดล้อม สถานการณ์ ปัจจัยเกื้อกูล สื่อ แหล่งความรู้ และบุคคล เพื่อส่งเสริมให้บุคคลได้เรียนรู้ตามความสนใจ

ในมาตรา 15 ของพระราชบัญญัติการศึกษาแห่งชาติ ฉบับ พุทธศักราช 2542 นิยามว่า การศึกษาตามอัธยาศัย เป็นการศึกษาที่ให้ผู้เรียนได้เรียนรู้ด้วยตนเอง ตามความสนใจ ศักยภาพ ความพร้อมและโอกาส โดยศึกษาจากบุคคล ประสบการณ์ สังคม สภาพแวดล้อม สื่อ หรือแหล่งความรู้อื่น ๆ (พระราชบัญญัติการศึกษาแห่งชาติพุทธศักราช, 2542)

นอกจากนั้น การศึกษาตามอัธยาศัย ถือว่าเป็นส่วนหนึ่งของ การเรียนรู้ตลอดชีวิต (Lifelong learning) ที่เติมเต็มความต้องการของปัจเจกที่ต้องการเรียนรู้ประสบการณ์ต่าง ๆ นอกจากนี้การเรียนรู้ในระบบโรงเรียน โอกาสของการเรียนรู้ตามอัธยาศัยเกิดขึ้นในสถานที่ต่าง ๆ และจากสื่อต่าง ๆ ศึกษาตามอัธยาศัย ซึ่งมุ่งให้เกิดการเรียนรู้ตามอัธยาศัย (informal learning) โดยเกิดขึ้นเหนือผู้เรียนก้าวหน้าและเลือกทิศทางการเรียนรู้ ตามวัตถุประสงค์ของสถาบันหรือแหล่งความรู้นั้น ๆ ผู้เรียนสามารถเรียนได้ตลอดเวลา โดยมีเป้าหมายเพื่อทำให้บุคคลมีโอกาสแสวงหาและรับความรู้ ทักษะ ทัศนคติ ความเข้าใจ อันจะนำไปสู่การพัฒนาตนเอง ครอบครัว ชุมชน และสังคม

โดยสรุป การศึกษาตามอัธยาศัย เป็นการจัดศึกษาเพื่อให้คนได้เรียนรู้จากบุคคลครอบครัว ชุมชน สื่อ หรือแหล่งเรียนรู้ต่าง ๆ เพื่อเพิ่มพูนความรู้ ทักษะ ความสามารถและพัฒนาคุณภาพชีวิต โดยให้ความสอดคล้องอย่างมากในเรื่องเนื้อหา ระยะเวลาเรียนกลุ่มเป้าหมาย มุ่งให้เกิดการเรียนรู้ตลอดชีวิต นั่นเองจะนำไปสู่การเรียนรู้ตลอดชีวิต

2.1.3 รูปแบบการเรียนรู้ (Learning Styles)

เนื่องรูปแบบและทฤษฎีการเรียนรู้ที่หลากหลาย ทำให้จำเป็นต้องวิเคราะห์รูปแบบการเรียนรู้ของผู้เรียนที่มีความแตกต่างกันและส่งผลต่อการเรียน เนื่องจากบางทฤษฎีการเรียนรู้ไม่สามารถสนับสนุนและส่งเสริมการศึกษาได้ในบางสภาพความเชี่ยวชาญ ในทางตรงกันข้ามบางทฤษฎีสนับสนุนให้การเรียนรู้และผลลัพธ์ทางการเรียนเป็นไปอย่างก้าวกระโดด การวิเคราะห์จึงต้องมีพื้นฐานความรู้ พฤติกรรม ทัศนคติ ตลอดจนบริบทรอบข้างของผู้เรียน ซึ่งประกอบด้วยรูปแบบการเรียนรู้ และรูปแบบการคิด

รูปแบบการเรียนรู้ (Learning Styles) หมายถึง ลักษณะทางการเรียน ความคิด ความรู้สึกและการรับรู้ ที่บุคคลใช้ในการจับผิด้า การตอบสนอง และมีปฏิสัมพันธ์กับสภาพแวดล้อม ในงานวิจัยนี้สรุปรูปแบบการเรียนรู้ของผู้เรียนออกเป็น 2 ลักษณะสำคัญ ได้แก่ รูปแบบการเรียนรู้ที่เกิด
จากการมีปฏิสัมพันธ์ทางการเรียนรู้ (VAK Learning Styles) ประกอบด้วยการเรียนรู้ 3 ทาง คือ การเรียนรู้ทางการมองเห็น และการเรียนรู้ทางการได้ยิน และการเรียนรู้ทางการรับรู้เหตุการณ์โดยการเคลื่อนไหว

นอกจากนี้ลักษณะของรูปแบบการเรียนรู้ยังสามารถถูกจำแนกได้จากพฤติกรรมและทัศนคติของผู้เรียน ประกอบด้วย 4 กลุ่ม ได้แก่ การเรียนรู้แบบเอกลักษณ์ การเรียนรู้แบบคู่ เลย์ซิม การเรียนรู้แบบคิดกลุ่ม และการเรียนรู้แบบปรับปรุง โดยแต่ละส่วนได้นำเสนอในหัวข้อต่อไป

2.1.3.1 รูปแบบการเรียนรู้จากการมีปฏิสัมพันธ์ทางการเรียนรู้

รูปแบบการเรียนรู้จากการมีปฏิสัมพันธ์ทางการเรียนรู้ (VKA Learning Styles) ประกอบด้วยการเรียนรู้ 3 ทาง คือ การเรียนรู้ทางการมองเห็น การเรียนรู้ทางการได้ยิน และการเรียนรู้ทางการเคลื่อนไหว

1. ผู้เรียนจากการเรียนรู้ทางการมองเห็น (Visual Learner) คือ กลุ่มผู้เรียนที่สามารถเรียนรู้ได้ดีจากการรูปภาพ แผนภูมิ แผนผัง และจากเนื้อหาที่เขียนเป็นเรื่องราว เมื่อนักเรียนสามารถมองเห็นภาพแล้ว ทั้งนี้การแสดงภาพจะสะท้อนความคิดความเข้าใจจากภาพที่ได้เห็น ตัวอย่างเช่น เมื่อผู้เรียนดูภาพยนตร์ ผู้เรียนจะสร้างระบบความเข้าใจและจดจำจากภาพและเสียงของภาพยนตร์ และกิจกรรมที่เกิดขึ้น ผู้เรียนที่เรียนได้ดีทางการรับรู้ผ่านการมองเห็น มักประสบความสำเร็จในการเรียนด้านสถาปัตยกรรม ด้านการออกแบบ หรือการออกแบบพิมพ์ขนาดกว้าง มีเทคนิคการสอนแบบที่จะทำให้ผู้เรียนกลุ่มนี้มีโอกาสได้เรียนรู้ในเกณฑ์ 60-65% ของประชากรทั้งหมด

2. ผู้เรียนจากการเรียนรู้ทางการได้ยิน (Auditory Learner) คือ กลุ่มผู้เรียนที่เรียนรู้ได้ดีจากการได้ฟัง หรือได้ยิน มีความสนใจในการรูปภาพไม่ประสานภาพ และมักไม่สนใจ เรื่องราวที่มีรายละเอียดมากกับการเรียนรู้จากการมองเห็น มักชอบฟังเรื่องราวที่จะรู้จักกับผู้อื่นมากกว่า และจะชอบฟังเรื่องราวที่จะรู้จักกับผู้อื่นมากกว่า ผู้เรียนกลุ่มนี้จะมั่นใจในการเรียนรู้และได้ฟังที่จะรู้จักกับบุคคลอื่น ดังนั้นจึงสามารถแล้วยืนยันต่าง ๆ ได้อย่างละเอียดและรู้จักเลือกใช้คำพูด

ผู้เรียนในกลุ่มนี้จะจดจำความรู้ได้ดีถ้าครูเพียงได้ฟัง หากครูถามให้ตอบ จะสามารถตอบได้ทันที ในขณะที่ ถ้าครูถามให้ไปหาข้อมูลด้วยทั้งนั้นจะไม่ได้เรียนรู้ดีกว่าผู้เรียนที่รู้จักกับผู้อื่นที่ดี เมื่อทำหน้าที่สื่อสารก็ต้องสอบถามได้ทันที ครูสามารถช่วยเหลือผู้เรียนกลุ่มนี้ได้โดยใช้วิธีสอนแบบบูรณาการ เหมือนผู้เรียนทางโทรศัพท์เพราะอาจถูกกระตุ้นจากเสียงอื่น ๆ จนทำให้เกิดความ วอกแวก เสียสมาธิในการฟังได้ยาก เช่นกัน กลุ่มผู้เรียนประเภทนี้ จะพบประมาณ 30-35 % ของ
ประชากรทั้งหมด แล้วมักพบในกลุ่มที่เรียนด้านดนตรี นักกฎหมาย นักการเมือง ส่วนใหญ่จะประกอบอาชีพเป็นนักดนตรี พิธีกรทางวิทยุและโทรทัศน์ นักจัดรายการเพลง นักจิตวิทยา และนักการเมือง

3. ผู้ที่เรียนรู้จากการทำและความรู้สึก (Kinesthetic learner) คือ พวกที่เรียนโดยผ่านการรับรู้ทางความรู้สึก การเคลื่อนไหว และร่างกาย จึงสามารถจดจำสิ่งที่เรียนรู้ได้ดีหากได้มีการสัมผัสและเกิดความรู้สึกที่ได้ต่อสิ่งที่เรียน เวลานั่งในห้องเรียนจะนั่งแบบอยู่ไม่สุข นั่งไม่ติดที่ ไม่สนใจบทเรียน และไม่สามารถทำอะไรให้จดจำอยู่กับบทเรียนเป็นเวลาเลย ๆ มักจะพบในประชากรประมาณ 5-10% เท่านั้น สาขาที่เหมาะสมกับผู้เรียนกลุ่มนี้ได้แก่ วิชาการสร้างงาน วิชาพลศึกษา และควรประกอบอาชีพที่เกี่ยวกับงานสร้างสรรค์ หรืองานด้านกีฬา เช่น เป็นนักกีฬา หรือประเภทที่ต้องใช้ความคิดสร้างสรรค์ งานที่ต้องมีการเต้น การร้องและการเคลื่อนไหว

จากการแบ่งลีลาการเรียนรู้ออกเป็น 3 ประเภท คือ การแบ่งโดยพิจารณาจากช่องทางในการรับรู้ข้อมูล ซึ่งมีอยู่ 3 ช่องทาง ได้แก่ ทางตา ทางหู และทางร่างกาย แต่หากนับว่าการของบุคคลในขณะที่รับรู้ข้อมูลซึ่งมีอยู่ 3 สาขาคือ สาขาของจิตสัมพันธ์ (Conscious) จิตใต้สัมพันธ์ (Subconscious) และจิตไร้สัมพันธ์ (Unconscious) เข้าไปร่วมพิจารณาด้วย แล้วนักเรียนจะพบว่ามี ประเภท 2 ด้านคือ องค์ประกอบด้านช่องทางการรับข้อมูล (Perceptual pathways) กับองค์ประกอบด้านสภาพของบุคคลขณะที่รับรู้ข้อมูล (States of consciousness) มาเชื่อมโยงเข้าด้วยกัน จะสามารถแบ่งลีลาการเรียนรู้ออกไปได้ถึง 6 แบบ คือ

1. ประเภท V-A-K เป็นผู้ที่เรียนรู้ได้ดีที่สุดหากได้ยินและได้เล่าเรื่องต่าง ๆ ให้

2. ประเภท V-K-A เป็นผู้ที่เรียนรู้ได้ดีที่สุดหากได้เขียนอ่านซ้ำ ๆ ได้ตั้งคำถามไปเรื่อย ๆ โดยปกติจะชอบทำงานเป็นกลุ่ม

3. ประเภท A-K-V เป็นผู้ที่เรียนรู้ได้ดีที่สุดหากได้สอนคนอื่น ชอบขยายความเวลาเล่าเรื่อง แต่มักจะมีปัญหาที่เกี่ยวกับการอ่านและการเขียน

4. ประเภท A-V-K เป็นผู้ที่มีความสามารถในการเจรจาดีที่สุดสื่อสารกับคนอื่น พูดได้ชัด ยินยอม อยู่ในสถานที่ที่สูง ลึก ปัจจัยที่ต้องการ ชอบเรียนวิชาประวัติศาสตร์ และวิชาที่ต้องใช้ความคิดทุกประเภท เวลาเรียนจะพยายามทุ่มเทให้ตนเองเกิดความเข้าใจ ไม่ชอบเรียนเกี่ยวกับ

5. ประเภท K-V-A เป็นผู้ที่เรียนรู้ได้ดีที่สุดหากได้ทำงานที่ใช้ความสามารถในสถานที่เรียนง่าย สามารถทำงานที่ต้องใช้ก้าวกระโดดได้เป็นอย่างดีโดยไม่ต้องให้ครูคอยบอก พวกพิพัฒน์ขึ้น อยากเกิดความสัมพันธ์
6. ประเภท K-A-V เป็นผู้ที่เรียนได้ดีหากได้เคลื่อนไหวร่างกายไปด้วย เป็นพวกที่ไม่ชอบอยู่นิ่ง จึงถูกให้ฉายาว่าเป็นเด็กอยู่ไม่สุข มักมีปัญหาเกี่ยวกับการอ่านและการเขียน

ตัวอย่างเช่น ผู้ที่เป็น Visual learner (V) ในสภาวะของจิตสัมพันธ์ เป็น Kinesthetic learner (K) ในสภาวะของจิตสัมพันธ์ และเป็น Auditory learner (A) ในสภาวะของจิตสัมพันธ์ จะมีลีลาการเรียนรู้เป็นประเภท V-K-A เวลด den (Whelden) นักจิตวิทยาและผู้ให้คำปรึกษาในโรงเรียนกล่าวว่า สำหรับพวกทุกคนจะมีลีลาการเรียนรู้เฉพาะตัวเป็นแบบใดแบบหนึ่งในแบบนั้นเสมอ โดยลีลาการเรียนรู้เหล่านี้จะถูกกำหนดเป็นแบบแผนที่ตายตัวเมื่ออายุประมาณ 7 ขวบ แต่อาจเปลี่ยนแปลงได้ในเด็กบางคนซึ่งก็เกิดขึ้นไม่ป้องกัน

2.1.3.2 รูปแบบการเรียนรู้จากพฤติกรรมและทัศนคติ

รูปแบบการเรียนรู้จากพฤติกรรมและทัศนคติของผู้เรียน คือ รูปแบบการเรียนรู้ที่เป็นการผสมผสานระหว่างลักษณะพฤติกรรมเฉพาะของบุคคล รวมถึงทัศนคติที่มีต่อการเรียน โดยส่วนที่สำคัญในการพัฒนาความสามารถเรียนรู้ มักสังเกตุผู้เรียนเป็นส่วนใหญ่ ได้แก่

1. การเรียนรู้แบบอเนกนัย (Divergent Learning Style) ซึ่งผู้เรียนจะทำให้ความรู้สึกประสบการณ์ในการทำความเข้าใจกับประสบการณ์ใหม่ มีความสามารถในการรับรู้และสร้างจินตนาการต่าง ๆ ซึ่งเอง สามารถสร้างสรรค์ผลงานรองจอมองเป็นภาพรวม สามารถทำงานได้ดีในสถานการณ์ที่ต้องการความคิดต่างหลากหลาย

2. การเรียนรู้แบบดูดซึม (Assimilative Learning Style) ซึ่งผู้เรียนจะทำความเข้าใจกับข้อมูลทั้งหมด พิจารณาด้วยความเป็นเหตุผล มีความสามารถในการสรุปหลักการสนใจทฤษฎีต่าง ๆ มากกว่าการเรียนรู้ปฏิบัติ ไม่ค่อยสนใจการนำหลักปฏิบัติไปประยุกต์ใช้

3. การเรียนรู้แบบคิดโดยนัย (Convergent Learning Style) ซึ่งผู้เรียนจะมีความสามารถในการนำแนวคิดที่เป็นนามธรรมไปปฏิบัติ สามารถสรุปวิธีที่ถูกต้องที่สุดเพียงวิธีเดียวที่สามารถนำไปแก้ปัญหาได้ นิยมใช้เหตุผลมากกว่าการใช้การที่มีการเปลี่ยนแปลงเฉพาะกิจการที่ถูกต้อง มากมายการทำงานกับคนอื่น มักมีความสนใจที่เฉพาะเจาะจงในเรื่องใดเรื่องหนึ่งและมีความเชื่อมโยงในเรื่องนั้น ๆ

4. การเรียนรู้แบบปรับปรุง (Accommodative Learning Style) ผู้เรียนชอบลองมีปฏิบัติ ชอบทดลอง มักทำงานได้ดีในสถานการณ์ที่ต้องมีการปรับตัว มีแนวโน้มในการแก้ปัญหาด้วยวิธีการที่คิดคัดเลือก ชอบทดลองลงมือมากกว่าการคิดใครเห็นอยู่ศูนย์ ชอบทำงานร่วมกับคนอื่น เข้ากันง่าย แต่ว่ามักไม่ทน ใจร้อนและดึงดัน
2.2 ทฤษฎีการเรียนรู้ด้วยเครื่องคอมพิวเตอร์

2.2.1 นิยามการเรียนรู้ด้วยเครื่อง

การเรียนรู้ด้วยเครื่อง (Machine Learning) คือ ขั้นตอนในการพัฒนายานเทคโนโลยี เทคโนโลยี วิธีการสอน วิธีการเรียนรู้ รูปแบบการศึกษาและการตัดสินใจแบบจากข้อมูลที่จริงผ่านกระบวนการทางวิทยาศาสตร์ โดยเฉพาะอย่างยิ่งเทคโนโลยีทางคอมพิวเตอร์ให้สามารถเรียนรู้ได้ โดยกระบวนการเรียนรู้ของเครื่องเป็นการเรียนแบบการเรียนรู้ของสมองมนุษย์ ที่เรียกว่า ปัญญาประดิษฐ์ (Artificial Intelligence: AI)

การใช้ปัญญาประดิษฐ์ในการสอนเครื่องคอมพิวเตอร์เป็นในการสร้างความฉลาดจากการใช้เรียนรู้แบบที่เกิดจากการเรียนรู้ของปัญญาประดิษฐ์ ไม่ได้เกิดจากการเขียนโดยใช้มนุษย์ มนุษย์มีหน้าที่เขียนโปรแกรม ขั้นตอน และกำหนดผลลัพธ์ให้เครื่องคอมพิวเตอร์เรียนรู้จากข้อมูลตามวัตถุประสงค์ที่กำหนด

นอกจากนั้นการเรียนรู้ของเครื่อง จะมีการเรียนรู้จากสิ่งที่ถูกกระตุ้น และจำจำเอาไว้ โดยส่งผลต่อออกมาเป็นตัวเลข หรือ code ที่ส่งต่อไปแสดงผล ปัญญาประดิษฐ์สามารถนำมาใช้จ้างโปรแกรม หรือเรียกว่า Algorithm ที่มีหลากหลาย โดยมี Data Scientist เป็นผู้ออกแบบ หนึ่งใน Algorithm ที่ได้รับความนิยมสูง คือ Deep Learning ซึ่งถูกออกแบบมาให้ใช้งานได้ง่าย และประยุกต์ใช้ได้หลายลักษณะงาน อย่างไรก็ตาม ในการทำงานจริง Data Scientist จำเป็นต้องออกแบบตัวแปรต่างๆ ที่ในตัวของ Deep Learning เลย และต้องหา Algorithm อื่นๆ ที่เหมาะสมที่สุดในการใช้งานจริง

ภาพที่ 2.3 แสดงส่วนประกอบของปัญญาประดิษฐ์
2.2.2 ประเภทของปัญหาและงานการเรียนรู้ของเครื่อง

ลักษณะประเภทของปัญหาและงานการเรียนรู้ของเครื่อง สามารถจำแนกได้เป็น 3 ประเภท ตามประเภทของข้อมูลฝึก (Training Data) หรือ ข้อมูลขาเข้า (Input Data) ได้แก่ การเรียนรู้แบบมีผู้สอน (Supervised Learning) การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) และการเรียนรู้แบบเสริมก้าวล่าง (Reinforcement Learning)

2.2.2.1 การเรียนรู้แบบมีผู้สอน

การเรียนรู้แบบมีผู้สอน (Supervised Learning) เป็นลักษณะการสอนโดยการทำหน้าที่ของผู้สอน ทำการกำหนดข้อมูลตัวอย่างและผลลัพธ์ โดยผู้สอนต้องป้อนข้อมูลเข้าสู่เครื่องคอมพิวเตอร์เป็นหมายเลขเพื่อสร้างกฎสำหรับเชื่อมโยงข้อมูลกับผลลัพธ์ให้เครื่องคอมพิวเตอร์ระบบการเรียนรู้แบบมีผู้สอนโดยทั่วไป จะอยู่ในลักษณะการทํานายผลลัพธ์ เช่น การทํานายภาพ การทํานายภาพ การทํานายตัวอักษร หรือทํานายทางหลักที่สามารถเกิดขึ้นได้ ลักษณะการเรียนรู้แบบมีผู้สอน จึงมีลักษณะการฝึกและสร้างกฎจากข้อมูลที่กำหนดให้เรียกว่า ข้อมูลฝึก (Training Data) โดยที่ผู้สอนจะแยกประเภทและบอกผลลัพธ์ (Label) ที่ควรจะเป็นหรือผลลัพธ์ที่ถูกต้อง จากนั้นนำข้อมูลที่ใช้ฝึก (ที่มี Label) ไปผ่านอัลกอริทึมสำหรับสร้างโมเดลที่ไว้ทํานายผลลัพธ์

เมื่อได้โมเดลที่ไว้ที่สามารถทํานายผลลัพธ์แล้ว ก็จะมีการนำข้อมูลใหม่ที่ปัญญาประดิษฐ์นั้นไม่เคยถูกสอน กล่าวคือไม่ใช้ข้อมูลที่เคยถูกอธิบายกับข้อมูลฝึกทั้งหมด เพื่อให้ปัญญาประดิษฐ์เรียนรู้โดยเครื่องจะต้องทํานาย (Predict) ว่าคำตอบที่ได้ควรจะเป็นอะไร

![ภาพที่ 2.4 แสดงลักษณะการเรียนรู้ด้วยเครื่องแบบมีผู้สอน](image-url)
การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) นี้มีกระบวนการคล้ายกับการเรียนรู้แบบมีผู้สอนแต่แตกต่างกันตรงที่ไม่มีการกำหนดผลลัพธ์ให้กับเครื่อง หรือเรียกว่าไม่จำเป็นต้องมีคำตอบที่เฉพาะข้อมูลตัวอย่าง ดังนั้นในระหว่างการเรียนรู้ปัญญาประดิษฐ์จะได้รับข้อมูลกระตุ้นในรูปแบบต่าง ๆ และจะทำการจัดกลุ่มรูปแบบต่าง ๆ เหล่านั้น เนื่องตามความเหมือนและความต้องการเอง ผลลัพธ์ที่ได้จากการเรียนรู้แบบไม่มีผู้สอนนี้ จะเป็นการระบุกลุ่มของข้อมูลที่ใส่เข้าไป โดยจะอิงกับวิธีการจัดกลุ่มซึ่งได้เรียนรู้จากข้อมูลที่เคยมาเคยพบมาก

ตัวอย่างการเรียนรู้แบบนี้เป็นข้อมูลคือ การให้เด็กเล็ก ๆ จัดเก็บสิ่งของไว้บนชั้นวางของ ให้เป็นระบบที่เรียบร้อย สมบูรณ์ ได้เก็บหนังสือเก็บที่ชั้นบน ได้เก็บตุ๊กตาเก็บที่ชั้นล่าง ก็จะเก็บของต่าง ๆ ให้เป็นระบบ หลังจากนี้ หากเด็กคนนั้นซื้อตุ๊กตาใหม่ ก็จะนำตุ๊กตาไปใส่ที่ชั้นล่างอีก ผลลัพธ์ที่ได้จากการเรียนรู้แบบไม่มีผู้สอนนี้ จะไม่ต้องการผู้สอน แต่ต้องการแนวทางในการจัดกลุ่ม เช่น การจัดกลุ่มอาจจะจัดตามรูปทรง สี หรือวิธีการใช้งานของวัตถุต่าง ๆ ที่จะนำมาจัดเรียง ดังนั้น หากไม่มีการทำแนวทางที่ชัดเจนว่า การจัดกลุ่มควรเป็นไปตามคุณลักษณะใด การจัดกลุ่มอาจไม่ประสบความสำเร็จ

ในสำนักงานใช้งานจริง การให้เด็กจัดของไว้บนชั้นวางของนั้น เด็กอาจจะจัดตามใจชอบและไม่เป็นหมวดหมู่ ทำให้ไม่สะดวกต่อการนำไปใช้ใหม่ ๆ เช่นไปเก็บบัตรเด็กได้ การใช้งานปัญญาประดิษฐ์ที่ใช้การเรียนรู้แบบนี้ ซึ่งมักจะมีการดำเนินการปรับแต่งข้อมูล เพื่อให้เกิดการนั้นมาจะเกิดขึ้นตามคุณลักษณะสำหรับ การจัดกลุ่มจะจัดตามแนวคิดบางอย่างในกระบวนการเรียนรู้ เพื่อให้เกิดการจัดกลุ่มที่เหมาะสมได้ดังนั้น การเรียนรู้ในลักษณะนี้จึงมักจะมีการปรับแต่งข้อมูลที่มีอยู่ในข้อมูลตัวอย่าง ซึ่งการจัดกลุ่มนี้เกิดจากการที่ปัญญาประดิษฐ์ประเมินข้อมูลต่าง ๆ สิ่งที่กำหนดขึ้นไป ในระหว่างการเรียนรู้ จนสร้างเป็นวิธีการจัดกลุ่มขึ้นมาได้ ดังนั้น การเรียนรู้ในลักษณะนี้จะต้องการ การเรียนรู้แบบจัดตัวเอง (Self-organizing) ด้วย
2.2.2.3 การเรียนรู้แบบเสริมกำลัง

การเรียนรู้แบบเสริมกำลัง (Reinforcement Learning) คือการเรียนรู้แบบมีปฏิสัมพันธ์กับสิ่งแวดล้อมที่เปลี่ยนแปลงตลอดเวลา โดยคอมพิวเตอร์จะต้องทำงานบางอย่างด้วยตัวเองเพื่อให้ได้ผลลัพธ์ที่ดีที่สุดที่เกี่ยวข้องกับผลที่คาดหวังได้ โดยผู้สอนจะกำหนดขั้นตอนเพื่อให้คอมพิวเตอร์วิเคราะห์ข้อมูลและตัดสินใจว่าควรทำอย่างไร หน้าโดยผู้สอนจะกำหนดขั้นตอนเป็นภาษา ทางเลือก และปัญญาประดิษฐ์พิจารณาเอง การเรียนรู้ในลักษณะนี้เป็นการเรียนรู้ที่มีตัวแทน (Agent) ในการพิจารณาทางเลือก

![ภาพที่ 2.5 แสดงลักษณะการเรียนรู้ด้วยเครื่องแบบเสริมกำลัง](image)

นอกจากนี้ยังมีการแบ่งประเภทของการเรียนรู้จากการแยกข้อมูลหรือข้อมูลขาออกได้แก่ การแบ่งประเภทข้อมูล (Classification) การวิเคราะห์การถดถอย (Regression) การแบ่งกลุ่มข้อมูล (Clustering) การประมาณความหนาแน่น (Density Estimation)

2.2.2.4 การแบ่งประเภทข้อมูล (Classification)

การแบ่งประเภทข้อมูล (Classification) คือการแบ่งข้อมูลขาเข้าหรือผลลัพธ์ออกเป็นหลายประเภท (Class) และปัญญาประดิษฐ์จะต้องสร้างโมเดลที่สามารถจำแนกประเภทให้กับข้อมูลใหม่ที่ไม่เคยเห็นมาก่อนได้ โดยปกติแล้วจะทำโดยวิธีการเรียนรู้แบบมีผู้สอน

2.2.2.5 การวิเคราะห์การถดถอย (Regression)

การวิเคราะห์การถดถอย (Regression) ใช้หลักการเดียวกับการแบ่งประเภทข้อมูลแต่ข้อมูลขาออกเป็นลักษณะต่อเนื่องมากกว่าเป็นประเภทแยกกัน
2.2.2.6 การแบ่งกลุ่มข้อมูล (Clustering)

การแบ่งกลุ่มข้อมูล (Clustering) เป้าหมาย คือ การแบ่งข้อมูลเข้าเป็นกลุ่มๆ โดยก็หลักวิธีที่จะไปทราบกลุ่มดังกล่าวล่างหน้า กล่าวคือไม่เหมือนกับการแบ่งประเภทข้อมูลโดยปกติแล้วมักเป็นการเรียนรู้แบบไม่มีผู้สอน

2.2.3 เครื่องมือสำหรับการเรียนรู้ด้วยเครื่อง

วิธีการเรียนรู้ด้วยเครื่อง คือ กระบวนการสอนให้เครื่องคอมพิวเตอร์เข้าใจในรูปแบบ เข้าใจข้อมูล รวมถึงเข้าใจผลลัพธ์ที่ผู้ใช้งานพยายามสร้างให้เกิดขึ้น ด้วยอย่างของการเรียนรู้ด้วยเครื่องสามารถเป็นการเรียนรู้โดยไม่ต้องใช้ชุดข้อมูล (Decision Tree Learning) กฎความสัมพันธ์ (Association Rule Learning) โครงข่ายประสาทเทียม (Artificial Neural Networks) จัตุรัสพอดทวีตเตอร์แพชชั่น (Support Vector Machines) การแบ่งกลุ่มข้อมูล (Clustering) เครื่องจำลองแบบเบย์ (Bayesian Networks) การเรียนรู้ด้วยความคล้าย (Similarity and Metric Learning) และอื่นๆ อีกมากมาย

ในงานวิจัยนี้อธิบายเฉพาะเครื่องมือที่เกี่ยวข้องกับการพัฒนาไม่ตัดสินใจ เพื่อใช้ประกอบการศึกษาปัจจัยความสัมพันธ์ระหว่างบริบทผู้เรียนและหลักสูตร และเพื่อใช้ในการพัฒนารูปแบบความสัมพันธ์ระหว่างบริบทผู้เรียนและหลักสูตร ซึ่งเครื่องมือที่เกี่ยวข้องประกอบด้วยการเรียนรู้ด้วยไม่ตัดสินใจ (Decision Tree Learning) และกฎความสัมพันธ์ (Association Rule Learning)

2.2.3.1 การเรียนรู้ด้วยไม่ตัดสินใจ

การเรียนรู้ด้วยไม่ตัดสินใจ (Decision Tree Learning) คือ การประยุกต์ใช้โครงสร้างของต้นไม้เพื่อใช้อัยบายระบบการตัดสินใจ ในการสร้างรูปแบบที่สามารถแทนผลลัพธ์คือ ลักษณะของการเชื่อมโยงข้อมูลส่งผลต่อการตัดข้อผูกชัดเจนทาง นอกจากนี้การเรียนรู้ด้วยไม่ตัดสินใจยังเป็นโครงสร้างที่ใช้แสดงกฎที่เกิดจากเทคนิคการจำแนกประเภทข้อมูล โดยโครงสร้างดังกล่าวมีหัวหน้าที่เป็นโหนด (Node) และคุณสมบัติ (Attribute) ของโหนดที่ใช้ในการจำแนก เรียกว่า กิ่ง (Branch, Link) นอกจากนี้ ยังจะทำหน้าที่แสดงเหตุผลในการทดสอบหรือจำแนกข้อมูลตามกฎที่ถูกสร้างขึ้น

องค์ประกอบของการเรียนรู้ด้วยไม่ตัดสินใจประกอบด้วย โหนดภายใน (Internal Node) ซึ่งแสดงถึงคุณสมบัติต่างๆ ของข้อมูล โดยมีข้อมูลชุดใดต่อกลุ่มในหนึ่งต่างก็แล้วว่าจะใช้คุณสมบัติของตัวโหนดนั้นเพื่อตัดสินข้อมูลมาได้ผลลัพธ์เป็นจะจะหรือจะไปในทางตรง โหนดที่ทำหน้าที่เป็นโหนดแรก หรือจุดเริ่มต้นเรียกว่า โหนด(raiz (Root Node) องค์ประกอบที่ 2 คือ กิ่ง ซึ่งกั้น
ทำหน้าที่แบ่งคุณสมบัติภายนอกเพื่อดาทางเลือกข้อมูลที่คลุมมาในโหนดหนึ่ง องค์ประกอบสุดท้าย คือ โหนดใบ (Leaf Node) ทำหน้าที่แสดงผลลัพธ์ในการแยกแยะข้อมูล

ตัวอย่างในการพัฒนาต้นไม้การตัดสินใจ เพื่อทำงานสถานะสภาพผู้ให้ข้อมูล โดยข้อมูลประกอบด้วยทัศนคติต่อปัจจัย 4 ด้าน และสถานะผู้ให้ข้อมูล 1 สถานะ ได้แก่ ความสามารถ (Ability) ทักษะ (Skill) ความรู้ (Knowledge) ประสบการณ์ (Experience) และสถานะ (Class) รวม 14 ชุดข้อมูล ข้อมูลที่ใช้ประกอบด้วยข้อมูลผู้ให้คำปรึกษา 5 ชุด ผู้รับคำปรึกษา 9 ชุด โดยที่ระดับทัศนคติที่มีต่อปัจจัยนั้น แบ่งเป็น 2 ระดับ ได้แก่ ระดับที่ 1 None (0) หมายถึง ไม่มีความสำคัญหรือไม่จำเป็นสำหรับผู้ให้ข้อมูล และ ระดับที่ 2 Have (1) หมายถึง มีความสำคัญที่สุด หรือจำเป็นต้องมีสำหรับผู้ให้ข้อมูล ดังแสดงในตารางที่ 2.1

ตารางที่ 2.1 ข้อมูลเพื่อการทำงานสถานะผู้ให้ข้อมูล

No	Ability	Skill	Knowledge	Experience	Class
1	None (0)	Have (1)	Have (1)	None (0)	Mentee
2	Have (1)	None (0)	Have (1)	Have (1)	Mentee
3	Have (1)	None (0)	Have (1)	Have (1)	Mentee
4	Have (1)	Have (1)	None (0)	Have (1)	Mentor
5	Have (1)	None (0)	Have (1)	Have (1)	Mentee
6	Have (1)	None (0)	Have (1)	None (0)	Mentee
7	Have (1)	Have (1)	Have (1)	Have (1)	Mentor
8	None (0)	Have (1)	Have (1)	None (0)	Mentee
9	None (0)	Have (1)	None (0)	None (0)	Mentee
10	None (0)	None (0)	None (0)	None (0)	Mentee
11	Have (1)	Have (1)	None (0)	Have (1)	Mentor
12	None (0)	None (0)	Have (1)	None (0)	Mentee
13	Have (1)	Have (1)	None (0)	Have (1)	Mentor
14	Have (1)	Have (1)	None (0)	None (0)	Mentor

จากข้อมูลในตารางที่ 2.1 แสดงข้อมูลความคิดเห็นต่อปัจจัยที่มีต่อสถานะผู้ให้ข้อมูล ซึ่งข้อมูลประกอบด้วยทัศนคติต่อปัจจัย 4 ด้าน และสถานะผู้ให้ข้อมูล 1 สถานะ ได้แก่ ความสามารถ (Ability) ทักษะ (Skill) ความรู้ (Knowledge) ประสบการณ์ (Experience) และสถานะ (Class) ภายหลังจากการรวบรวมข้อมูลสามารถนำมาสร้างต้นไม้การตัดสินใจ ผ่านการ
คัดเลือกความสัมพันธ์ของปัจจัยแต่ละด้านต่อสถานะของผู้ให้ข้อมูล โดยการคำนวณหาค่า Information Gain (IG) จากสมการด้านล่าง และดำเนินการตามขั้นตอนที่ 1 ถึงขั้นตอนที่ 5 ดังนี้

\[IG(parent, child) = \text{entropy(parent)} - [p(c_1) \times \text{entropy}(c_1) + p(c_2) \times \text{entropy}(c_2) + \ldots] \]

โดยการคำนวณหาค่า entropy จากสมการ

\[\text{entropy}(c_i) = -p(c_i) \log_2(c_i) \] โดยที่ \(p(c_i) \) คือ ความน่าจะเป็นของ \(c_i \)

ขั้นตอนที่ 1 คำนวณหา Entropy (Parent) เพื่อใช้ในการคำนวณหาค่า IG ในแต่ละปัจจัย โดยวิธีการคำนวณ Entropy (Parent) ดังแสดงในภาพที่ 2.6

ภาพที่ 2.6 การคำนวณหา Entropy (Parent)

ขั้นตอนที่ 2 การคำนวณหาค่า IG ของทัศนคติต่อความสามารถ (Ability) การคำนวณสามารถอธิบายได้จาก ภาพที่ 2.7 ถึงภาพที่ 2.10

ภาพที่ 2.7 การคำนวณหาค่า IG ของทัศนคติต่อความสามารถ (Ability)
ภาพที่ 2.8 การคำนวณหาค่า Entropy (Ability) ที่มีค่าเป็น Have

ภาพที่ 2.9 การคำนวณหาค่า Entropy (Ability) ที่มีค่าเป็น None

ภาพที่ 2.10 ผลการคำนวณหาค่า IG ของพื้นคัดลอกความสามารถ (Ability)
ขั้นตอนที่ 3 การคำนวณหาค่า IG ของทัศนคติต่อทักษะ (Skill) การคำนวณสามารถอธิบายได้จาก ภาพที่ 2.11 ถึงภาพที่ 2.14

ภาพที่ 2.11 การคำนวณหาค่า IG ของทัศนคติต่อทักษะ (Skill)

ภาพที่ 2.12 การคำนวณหาค่า Entropy (Skill) ที่มีค่าเป็น Have

ภาพที่ 2.13 การคำนวณหาค่า Entropy (Skill) ที่มีค่าเป็น None
ภาพที่ 2.14 ผลการคำนวณหาค่า IG ของทัศนคติต่อทักษะ (Skill)

ขั้นตอนที่ 3 การคำนวณหาค่า IG ของทัศนคติต่อความรู้ (Knowledge)
การคำนวณสามารถอธิบายได้จาก ภาพที่ 2.15 ถึงภาพที่ 2.18

ภาพที่ 2.15 การคำนวณหาค่า IG ของทัศนคติต่อความรู้ (Knowledge)

ภาพที่ 2.16 การคำนวณหาค่า Entropy (Knowledge) ที่มีค่าเป็น Have
ภาพที่ 2.17 การคำนวณค่า Entropy (Knowledge) ที่มีค่าเป็น Have

ภาพที่ 2.18 ผลการคำนวณค่า IG ของทัศนคติต่อความรู้ (Knowledge)

ขั้นตอนที่ 4 การคำนวณค่า IG ของทัศนคติต่อประสบการณ์ (Experience) การคำนวณสามารถอธิบายได้จาก ภาพที่ 2.19 ถึงภาพที่ 2.22

ภาพที่ 2.19 การคำนวณค่า IG ของทัศนคติต่อประสบการณ์ (Experience)
ภาพที่ 2.20 การคำนวณหาค่า Entropy (Experience) ที่มีค่าเป็น Have

ภาพที่ 2.21 การคำนวณหาค่า Entropy (Experience) ที่มีค่าเป็น None

ภาพที่ 2.22 ผลการคำนวณหาค่า IG ของทัศนคติต่อประสบการณ์ (Experience)

ภาพหลังคำนวณค่า IG ครบถ้วนแล้ว ทำให้เห็นพบค่าในพื้นฐานซึ่งพอสร้างโมเดลต้นไม้การตัดสินใจ ซึ่งพบว่าปัจจัยที่มีค่า IG มากที่สุด คือ ปัจจัยด้านประสบการณ์ (Experience) โดยมีค่า IG (Experience) = 0.15 อันดับที่ 2 คือ ปัจจัยด้านทักษะ (Skill) โดยมีค่า IG (Skill) = 0.09 อันดับที่ 3 คือ ปัจจัยด้านความรู้ (Knowledge) โดยมีค่า IG (Knowledge) = 0.03 และอันดับสุดท้าย คือ ปัจจัยด้านความสามารถ (Ability) โดยมีค่า IG (Ability) = 0.02 โดยเนื่องน้อยมากสร้างโมเดลแล้วจะได้ดังภาพที่ 2.23 และภาพที่ 2.24
ภาพที่ 2.23 โมเดลต้นไม้การตัดสินใจเพื่อท่านายสถานะผู้ให้ข้อมูล

ภาพที่ 2.24 โมเดลต้นไม้การตัดสินใจเพื่อท่านายสถานะผู้ให้ข้อมูล ด้วย Rapidminer Studio

2.2.3.2 กฎความสัมพันธ์ (Association Rule Learning)

กฎความสัมพันธ์เป็นวิธีการหาความสัมพันธ์ที่น่าสนใจจากตัวแปรในฐานข้อมูลขนาดใหญ่ นอกจากนี้กฎความสัมพันธ์ยังเป็นเทคนิคหนึ่งที่สำคัญ และสามารถนำไปประยุกต์ใช้ได้จริงกับงานต่าง ๆ หลักการทำงานของจริงนี้คือ การค้นหาความสัมพันธ์ของข้อมูลจากข้อมูลขนาดใหญ่ที่มีอยู่เพื่อนำไปใช้ในการวิเคราะห์ หรือท่านายปรากฏการณ์ต่าง ๆ หรือทำการวิเคราะห์พฤติกรรม แต่ยังมีการเริ่มต้นจากการศึกษารูปแบบการซื้อสินค้าของลูกค้าเรียกว่า “Market Basket Analysis ” ซึ่งประเมินจากข้อมูลในตารางที่รวบรวมไว้ ผลการวิเคราะห์ที่ได้จะเป็นคำตอบของปัญหาซึ่งการวิเคราะห์แบบนี้เป็นการใช้ “กฎความสัมพันธ์” (Association Rule) เพื่อหาความสัมพันธ์ของข้อมูล
นอกจากนี้ การประยุกต์ใช้และสร้างกฎความสัมพันธ์ยังเกิดขึ้นได้จากโมเดลต้นไม้มิตรสัมพันธ์ (Decision Tree) ซึ่งเป็นการอธิบายลักษณะความสัมพันธ์ของปัจจัยที่อยู่ภายในโมเดลต้นไม้มิตรสัมพันธ์ ดังอย่างของการประยุกต์ใช้กฎความสัมพันธ์กับโมเดลต้นไม้มิตรสัมพันธ์ แสดงในภาพที่ 2.26 โมเดลต้นไม้มิตรสัมพันธ์เพื่อทำนายสถานะผู้ให้ข้อมูล ด้วย Rapidminer Studio และตารางที่ 2.2

ตารางที่ 2.2 กฎความสัมพันธ์จากโมเดลต้นไม้มิตรสัมพันธ์เพื่อทำนายสถานะผู้ให้ข้อมูล

Association Rule Model	Results
if Experience = Have and Knowledge = Have then Mentor	Mentor
if Experience = Have and Knowledge = None then Mentee	Mentee
if Experience = None then Mentee	Mentee

จากตารางที่ 2.2 จะเห็นได้ว่า ปัจจัยที่มีความสัมพันธ์กับโมเดลต้นไม้มิตรสัมพันธ์ประกอบด้วย 2 ปัจจัย ได้แก่ ปัจจัยด้านประสบการณ์ (Experience) และปัจจัยด้านความรู้ (Knowledge) ซึ่งตัวอย่างของการอธิบายกฎความสัมพันธ์ เช่น ถ้าผู้ให้ข้อมูลมีทัศนคติต่อปัจจัยด้านประสบการณ์ เป็น None กฏความสัมพันธ์สามารถทำนายได้ว่าบุคคลนั้น คือ Mentee แต่ถ้าผู้ให้ข้อมูลแสดงทัศนคติต่อปัจจัยด้านประสบการณ์ เป็น Have และมีทัศนคติต่อปัจจัยด้านความรู้เป็น Have กฏความสัมพันธ์สามารถทำนายได้ว่าบุคคลนั้น คือ Mentor

2.2.4 การทดสอบและประเมินผลโมเดลต้นไม้

การทดสอบและการประเมินผลการเรียนรู้ตัวเครื่องบันดาลเป็นสิ่งที่มีความสำคัญต่อการพัฒนารูปแบบ (Model) เป็นอย่างยิ่ง เนื่องจากคำว่าได้จากการทดสอบ มักถูกใช้ในการยืนยันถึงประสิทธิภาพของรูปแบบที่พัฒนาขึ้น ซึ่งเครื่องมือที่ถูกเลือกนั้นให้ในการทดสอบหรือประเมินประสิทธิภาพของรูปแบบด้วยเป้าหมายที่แตกต่างกัน วิธีการทดสอบที่ได้รับความนิยม คือ การแบ่งข้อมูลเพื่อนำไปทดสอบประสิทธิภาพของรูปแบบแบ่งออกเป็น 3 วิธีการใหม่ ได้แก่ วิธีการทดสอบความสอดคล้องของตนเอง (Self-Consistency Test), วิธีการทดสอบแยก (Split Test) และ วิธีการทดสอบตรวจสอบขั้น (Cross-Validation Test)

2.2.4.1 วิธีการทดสอบความสอดคล้องของตนเอง (Self-Consistency Test)

วิธีการทดสอบความสอดคล้องของตนเอง (Self-Consistency Test) บางครั้งเรียกว่า Use Training Set คือ การใช้ข้อมูลที่สร้างรูปแบบ (Model) เป็นข้อมูลที่ใช้ในการ
ทดสอบรูปแบบที่ได้ ผลลัพธ์ที่ได้จากการทดสอบด้วยวิธีการนี้จะมีค่าค่อนข้างสูงมาก เนื่องจากเป็นข้อมูลชุดเดียวกัน วิธีการนี้เหมาะสำหรับการนำไปใช้ในการทดสอบประสิทธิภาพเพื่อดูคุณค่าของรูปแบบที่สร้างขึ้น เนื่องจากผลที่ได้ค่านั้นที่น้อยแสดงว่ารูปแบบที่ได้เป็นเหมือนกับข้อมูล ไม่ควรนำไปทดสอบด้วยวิธีการแบ่งข้อมูลแบบอื่น

2.2.4.2 วิธีการทดสอบแบ่ง (Split Test)
วิธีการทดสอบแบ่ง (Split Test) มีวิธีการโดยการสุ่มแบ่งข้อมูลออกเป็น 2 ส่วน ได้แก่ 70:30 หรือ 80:20 หรือ 90:10 โดยใช้ข้อมูลส่วนที่หนึ่งในการสร้างรูปแบบ และใช้ข้อมูลส่วนที่เหลือในการทดสอบ ด้วยถ้าเช่น ชุดข้อมูลประกอบด้วยนักเรียนจำนวน 100 คน ซึ่งมีผลการเรียนที่แตกต่างกัน เมื่อครูอาจารย์ต้องการสร้างรูปแบบเพื่อใช้ในการทำนายผู้เรียนที่มีโอกาสสอบผ่านหรือสอบไม่ผ่าน ครูอาจารย์สามารถสุ่มเลือกนักเรียนส่วนหนึ่งเพื่อใช้ในการสร้างรูปแบบและใช้ผู้เรียนที่เหลือเพื่อทดสอบรูปแบบที่ได้ ในการสุ่มเลือกนักเรียนบางครั้งอาจสุ่มเลือกได้เฉพาะนักเรียนที่สอบผ่านทั้งหมด ทำให้รูปแบบที่สร้างขึ้นไม่สามารถทำนายรูปแบบผู้เรียนที่สอบไม่ผ่าน ดังนั้นจึงจำเป็นต้องสุ่มข้อมูลหลายๆครั้งเพื่อสร้างรูปแบบ ข้อดีของวิธีการนี้คือ ใช้เวลาในการสร้างรูปแบบน้อยจึงเหมาะสมกับชุดข้อมูลที่มีขนาดใหญ่

2.2.4.3 วิธีการทดสอบการตรวจสอบข้าม (Cross-Validation Test)
วิธีการทดสอบการตรวจสอบข้าม (Cross-Validation Test) เป็นวิธีที่ได้รับความนิยมเป็นอย่างมากในการวิจัย เนื่องจากรูปแบบ (Model) ที่ได้จะมีความน่าเชื่อถือและเป็นที่ยอมรับ ขั้นตอนในการทดสอบด้วยการตรวจสอบข้าม คือ การแบ่งข้อมูลออกเป็นส่วนๆ ขนาดเท่ากันในทางคอมพิวเตอร์นิยมนำเอาเป็นค่า k (k-Fold) เช่น แบ่งข้อมูลออกเป็น 5 ก้อน (5-Fold) แบ่งข้อมูลออกเป็น 10 ก้อน (10-Fold) จากนั้นเลือกข้อมูลออกไปหนึ่งส่วน เพื่อดำเนินไปใช้ในการทดสอบรูปแบบที่ได้ จากนั้นนำข้อมูลที่ทิ้งไว้ทั้งหมดสร้างรูปแบบและใช้ที่ดึงออกไปทดสอบ ทำนั้นซ้ำไปจนครบกุมข้อมูล ข้อดีของการทดสอบด้วยวิธีการนี้คือมีการใช้ข้อมูลเพื่อสร้างรูปแบบทุกชุดข้อมูลทำให้รูปแบบที่ได้มีความเทียบเคียงกันสูง ซึ่งทำให้เป็นที่ยอมรับ
2.3 งานวิจัยที่เกี่ยวข้อง

เนื่องจากรูปแบบการเรียนรู้เป็นกระบวนการสำคัญในการพัฒนาคุณภาพของมนุษย์ได้มีความรู้ความสามารถ โดยพึ่งพิงกับการพัฒนาองค์ความรู้ การค้นคว้าหาทฤษฎีการเรียนรู้และขั้นตอนการประเมินระดับความรู้ โดยทั่วไปที่สุดแล้วใช้เกณฑ์และมาตรฐาน เพื่อประเมินผลลัพธ์ทางการเรียนของผู้เรียน แนวทางดังกล่าวได้สร้างความสนใจให้กับนักวิจัยมากมาย ทั้งในประเทศและต่างประเทศ ส่งผลให้เกิดงานวิจัยที่เกี่ยวข้องกับการศึกษา ต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลลัพธ์ทางการเรียน ผลการวิจัยที่ได้มีส่วนร่วมในการพัฒนาคุณภาพการศึกษาอย่างหลากหลาย ตัวอย่างเช่น การวิจัยเรื่องการศึกษาเทคนิคพยากรณ์อาชีพสำหรับนักศึกษาระดับปริญญาตรีสาขาคอมพิวเตอร์โดยใช้เทคนิคเหมืองข้อมูล (สารานุ, วนนท์, อารีราษฎร์, และ จารุ, แสนราช, 2561) การวิจัยเรื่องการสังเคราะห์รูปแบบการเรียนรู้แบบผสมผสาน ตามลีลาการเรียนรู้แบบวีเอเคเลิร์นนิ่ง โดยใช้เทคนิคการเรียนรู้แบบโครงงานเพื่อส่งเสริมการคิดแบบมีวิจารณญาณ (อรอนุตร ธรรมจักร, ทรงศักดิ์, สองสนิท, และประวัติ, สิมมาทัน, 2560) และงานวิจัยอื่นๆ

สารานุ, วนนท์, อารีราษฎร์, และ จารุ, แสนราช (2561) ได้ศึกษาวิจัยเรื่องการศึกษาเทคนิคพยากรณ์อาชีพสำหรับนักศึกษาระดับปริญญาตรีสาขาคอมพิวเตอร์โดยใช้เทคนิคเหมืองข้อมูล โดยการวิจัยครั้งนี้มีวัตถุประสงค์ 1) เพื่อศึกษาเทคนิคพยากรณ์อาชีพสำหรับนักศึกษาระดับปริญญาตรีโดยใช้เทคนิคเหมืองข้อมูลที่เหมาะสม 2) เพื่อเปรียบเทียบผลการวิเคราะห์พยากรณ์อาชีพสำหรับนักศึกษาระดับปริญญาตรีโดยใช้เทคนิคเหมืองข้อมูลงานวิจัยนี้ได้นำข้อมูลภาวะการมีงานที่ของบัณฑิตและข้อมูลระเบียนประวัติของนิสิตระดับปริญญาตรีหลังสำเร็จการศึกษา จากสำนักงานคณะกรรมการการอุดมศึกษาอ่อนหลัง 5 ปี คือปี 2555 – 2559 จํานวน 65,335 ทะเบียนในสาขาวิชาที่ตําแหน่งคอมพิวเตอร์ และมีคุณลักษณะประกอบด้วย ผลการเรียน ความสามารถพิเศษอาชีพของบัณฑิตฯ รายได้ของบัณฑิตฯ เทศ ตําแหน่งงาน ความสอดคล้องสาขาวิชา ทดสอบวัดความแน่นอนด้วยเทคนิคการจำแนกข้อมูลด้วยวิธีดันไม่ตัดสินใจ เทคนิคการจำแนกข้อมูลด้วยวิธีเน้นกิจ ผลการวิจัยพบว่า ความแน่นอนในการจำแนกประเภทข้อมูลจาก 3 เทคนิค 1) เทคนิคการจำแนกข้อมูลด้วยวิธีดันไม่ตัดสินใจเท่ากับ 81.91% 2) เทคนิคการจำแนกข้อมูลด้วยวิธีเน้นกิจเท่ากับ 84.29% และ 3) เทคนิคการจำแนกข้อมูลด้วยวิธีเน้นกิจเท่ากับ 81.71% พบว่าเทคนิคเน้นกิจเร่งรัดให้ความถูกต้องในการจำแนกประเภทข้อมูลสูงที่สุด
อรอนุตร ธรรมจักร ทรงศักดิ์ สองสนิท และประวิทย์ สิมมาทัน (2560) ได้ศึกษาวิจัยในหัวข้อเรื่องการสังเคราะห์รูปแบบการเรียนรู้แบบผสมผสาน ตามลีลาการเรียนรู้แบบวีเอเคเลิร์นนิ่ง โดยใช้เทคนิคการเรียนรู้แบบโครงการเพื่อส่งเสริมการคิดแบบมีวิจารญาณ โดยการวิจัยนี้มีวัตถุประสงค์เพื่อสังเคราะห์และประเมินรูปแบบการเรียนรู้แบบผสมผสานตามลีลาการเรียนรู้แบบ VAK Learning โดยใช้เทคนิคการเรียนรู้แบบโครงการเป็นฐานในการส่งเสริมการคิดแบบมีวิจารญาณ สำหรับนักศึกษาระดับปริญญาตรี กลุ่มตัวอย่างคือผู้เข้ารายงานการเรียนการสอนแบบผสมผสานการเรียนแบบกิจวัตรศึกษาศาสตร์การสอน ด้านหลักสูตรการสอนโดยเน้นเทคนิคการสอนด้วยโครงการ สิ่งการเรียนรู้ของผู้เรียน และการพัฒนาการคิดแบบมีวิจารญาณ จำนวน 9 คน และผู้ทรงคุณวุฒิเพื่อดูพิจารณาและประเมินความเหมาะสมของรูปแบบจำนวน 5 คน วิธีการดำเนินงานวิจัย แบ่งออกเป็น 5 ขั้นตอน ได้แก่ 1) ศึกษาทฤษฎี เอกสาร งานวิจัย และบทความที่เกี่ยวข้อง 2) ก้าวต่างกระบวนการคิดเบื้องต้นของรูปแบบ 3) กำหนดกลุ่มผู้เข้ารายงาน 4) สร้างแบบสอบถามประเมินความเหมาะสมของการคิดแบบมี 5) ตรวจสอบปรับปรุงแก้ไขตามข้อเสนอแนะและจากการรับรองจากผู้ทรงคุณวุฒิผลการวิจัยปรากฏว่าโมเดลรูปแบบการเรียนการสอนที่ชื่อว่า VAK PJBLCT Model มีการประเมินรูปแบบที่สังเคราะห์ขึ้นจากผู้ทรงคุณวุฒิ 5 คน มีความเหมาะสมของการคิดตามรูปแบบที่สังเคราะห์ขึ้น ในระดับมากที่สุด มีค่าเฉลี่ยเท่ากับ 4.81 และค่าส่วนเบี่ยงเบนมาตรฐานเท่ากับ 0.47 แสดงว่าสามารถนำไปใช้ในการจัดการเรียนการสอนได้อย่างเหมาะสม

ศุภามณ จันทร์สกุล (2561) ได้ศึกษาวิจัยเรื่องเทคนิคเหมืองข้อมูลในการวิเคราะห์ข้อมูลทางการพยาบาล โดยมีวัตถุประสงค์ของบทความวิจัยเพื่อเป็นการศึกษาเกี่ยวกับเทคนิคเหมืองข้อมูลที่มีการเรียนรู้แบบมีการสอน โดยการวิจัยนี้เป็นการศึกษาเทคนิคเหมืองข้อมูลแบบมีการเรียนรู้แบบมีการสอน ประกอบด้วยเทคนิคเหมืองข้อมูลแบบเจาะจง (1) การจัดกลุ่มข้อมูลและการทำงานทางมีการเรียนรู้แบบมีการสอน และ (2) การจัดกลุ่มข้อมูลเพื่อการวิเคราะห์ข้อมูลเพื่อการจัดการเรียนรู้แบบมีการสอน เทคนิคเหมืองข้อมูล 3 เทคนิคที่ได้รับความนิยมได้แก่ การจัดประเภท (ต้นไม้ตัดสินใจ และเครือข่ายประสาท), การจัดกลุ่มข้อมูล และการลักษณะความสัมพันธ์ของข้อมูล ผลการวิเคราะห์ที่ได้จากการเหมืองข้อมูลสร้างองค์ความรู้ และเป็นข้อค้นพบที่เป็นประโยชน์ในการนำไปใช้เพื่อการตัดสินใจ

ธนาวุฒิ นิลม นิลม ดวงกมล โพธิ์นาค และ กรังิ สงขลานครกุล (2561) ได้ศึกษาวิจัยเรื่อง การจัดการรูปแบบการเรียนรู้ตามรูปแบบ VARK ของนักศึกษาสาขาวิชาวิศวกรรมคอมพิวเตอร์มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร โดยการวิจัยครั้งนี้มีวัตถุประสงค์เพื่อการจัดรูปแบบการเรียนรู้ตามรูปแบบ VARK ของนักศึกษาสาขาวิชาวิศวกรรมคอมพิวเตอร์มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร ทั้งหมดจำนวน 337 คน โดยใช้แบบสอบถามวิรูปแบบการเรียนรู้ของแต่ละบุคคล
ตาม VARK Learning style โดยลักษณะของคำถามในแบบสอบถามเป็นแบบสอบถามที่มีจำนวนทั้งสิ้น 16 ข้อ โดยผู้เรียนจะเลือกคำตอบที่ตีตูคุณที่สุดของผู้เรียน ผลการวิจัยพบว่า ผู้เรียนทั้งหมดมีรูปแบบการเรียนรู้ที่แตกต่างกัน โดยกลุ่มผู้เรียนที่มีความถนัดด้านการเรียนรู้ที่ผ่านตามเกณฑ์ที่กำหนด โดยทั่วไปแบบสอบถามมีข้อ 9 ข้อขึ้นไปแต่ละด้านความถนัดจำนวน 126 คน จะจำแนกผู้เรียนตามความถนัดจะแบ่งออกเป็น 2 กลุ่ม คือ ผู้เรียนที่มีความถนัดอย่างเดียว (Unimodal learner) จำนวน 68 คน คิดเป็นร้อยละ 54 และผู้เรียนที่มีความถนัดหลายอย่าง (Multimodal learner) จำนวน 58 คน คิดเป็นร้อยละ 46 โดยแสดงให้เห็นว่าผู้เรียนที่มีความถนัดอย่างเดียวอย่างหนึ่งมีจำนวนมากกว่าไม่มากนัก ผู้เรียนที่มีความถนัด 2 ด้าน (Bi-modal) มีจำนวน 36 คน คิดเป็นร้อยละ 62 ผู้เรียนที่มีความถนัด 3 ด้าน (Tri-modal) มีจำนวน 7 คน คิดเป็นร้อยละ 26 ผู้เรียนที่มีความถนัดทั้ง 4 ด้าน (Quad-modal) มีจำนวน 7 คน คิดเป็นร้อยละ 12 อย่างไรก็ตาม จากการจำแนกรูปแบบการเรียนรู้ในครั้งนี้ สามารถนำไปใช้ในการปรับและเพิ่มประสิทธิภาพการเรียนการสอนให้เหมาะสมกับผู้เรียนได้

จากการวิจัยที่เกี่ยวข้องสามารถสรุปประเด็นวัจัยใน 3 ลักษณะ คือ มีการศึกษาการประยุกต์ใช้เทคโนโลยีด้านการวิเคราะห์ข้อมูล การเรียนรู้ด้วยเครื่องและใช้พื้นฐานของทฤษฎีการเรียนรู้เพื่อพัฒนาศักยภาพของผู้เรียน โดยงานวิจัยต่างๆ เหล่านี้ได้สร้างแรงจูงใจให้ผู้วิจัยและผู้วิจัยได้พัฒนาขึ้นต่อนำมาเป็นชุดงานวิจัย และผลการวิจัยในหัวข้อ การศึกษาด้านแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนณ มหาวิทยาลัยพะเยา ปีการศึกษา 2558 นำไปใช้ประโยชน์ในการปรับและพัฒนา

บทที่ 3
วิธีดำเนินการวิจัย

การวิจัย เรื่อง การศึกษาด้านแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย ครั้งนี้ ผู้วิจัยได้แบ่งขั้นตอนการดำเนินการวิจัยออกเป็น 5 ขั้นตอน ดังนี้

ขั้นตอนที่ 1 การออกแบบกลุ่มเป้าหมาย
ขั้นตอนที่ 2 การพัฒนาเครื่องมือการวิจัย
ขั้นตอนที่ 3 การเลือกกลุ่มเป้าหมายและการเก็บข้อมูล
ขั้นตอนที่ 4 การเตรียมข้อมูลเพื่อพัฒนารูปแบบความสัมพันธ์แบบนิสิต
ขั้นตอนที่ 5 การพัฒนารูปแบบความสัมพันธ์และการทดสอบประสิทธิภาพด้านแบบนิสิต

**
3.1 ขั้นตอนที่ 1 การออกแบบกลุ่มเป้าหมาย

ในขั้นตอนที่ 1 ผู้วิจัยได้ดำเนินการศึกษาเกี่ยวกับกลุ่มเป้าหมายเพื่อใช้ในการวิเคราะห์การเก็บรวบรวมข้อมูล โดยการออกแบบกลุ่มเป้าหมายนี้ มีวัตถุประสงค์เพื่อให้สามารถแบ่งปันความรู้ในการพัฒนาศักยภาพและคุณภาพการศึกษาของผู้เรียน ซึ่งหมายถึงนิสิตในมหาวิทยาลัยพะเยา ดังนั้นประชากรและกลุ่มตัวอย่างจะต้องได้รับการออกแบบให้สอดคล้องกับบริบทโดยรวมของนิสิตที่มหาวิทยาลัยพะเยา นักวิจัยจึงดำเนินการในขั้นตอนที่ 1 เพื่อการเก็บรวบรวมข้อมูลจากคณะและวิทยาลัยทั้งหมดที่มหาวิทยาลัยพะเยา ประกอบด้วย คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสารสนเทศและการสื่อสาร คณะพยาบาลศาสตร์ คณะนิติศาสตร์ คณะ праваศาสตร์ คณะแพทยศาสตร์ คณะเภสัชศาสตร์ คณะทันตแพทยศาสตร์ คณะศิลปศาสตร์ คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์ คณะสหเวชศาสตร์ วิทยาลัยการศึกษา และ วิทยาลัยพลังงานและสิ่งแวดล้อม

อย่างไรก็ตามผู้วิจัยให้ความสำคัญวัตถุประสงค์ของการวิจัย จึงกำหนดคำถามการวิจัยที่ประกอบด้วย 2 ประเด็น

คำถามที่ 1: ระดับผลสัมฤทธิ์ทางการเรียนเท่าไหร่ที่ส่งผลกระทบต่อกลุ่มและรูปแบบการเรียนรู้ของนิสิตที่มหาวิทยาลัยพะเยา?

คำถามที่ 2: ระดับพยากรณ์การต่อรูปแบบการเรียนรู้มีความแตกต่างกันเพียงใดที่ส่งผลกระทบต่อกลุ่มและรูปแบบการเรียนรู้ของนิสิตที่มหาวิทยาลัยพะเยา

สำหรับการค้นหาคำตอบในคำถามการวิจัยนี้ ผู้วิจัยใช้เทคนิคทางสถิติพื้นฐาน และเทคนิคการทำเหมืองข้อมูล เพื่อหาคำตอบที่ดีที่สุดสำหรับวัตถุประสงค์การวิจัย

3.2 ขั้นตอนที่ 2 การพัฒนาเครื่องมือการวิจัย

ตามที่ผู้วิจัยได้ดำเนินการศึกษาแนวคิดและทฤษฎีที่เกี่ยวข้อง และนำเสนอในบทที่ 2แล้วนั้น ในขั้นตอนที่ 2 นี้ ได้ดำเนินการพัฒนาเครื่องมือในการวิจัย ซึ่งเป็นเครื่องมือที่ใช้ในการวิจัย คือแบบสอบถาม แบบสอบถามนี้ถูกออกแบบและพัฒนาเพื่อใช้รวบรวมทัศนคติและผลวิจัยต่าง ๆ ที่เกี่ยวข้องกับรูปแบบการเรียนรู้ของผู้เรียน นอกจากนี้ยังใช้เพื่อพัฒนาแบบรูปแบบความสัมพันธ์ของรูปแบบการเรียนรู้ที่แตกต่างกันสำหรับนิสิตแต่ละคณะที่มหาวิทยาลัยพะเยา แบบสอบถามนี้อยู่ในลักษณะการเลือกตอบ เพื่อให้ผู้ตอบแบบสอบถามสามารถให้ข้อมูลได้ง่ายขึ้น
แบบสอบถามประกอบด้วย 3 ส่วน ได้แก่ ส่วนที่ 1 คือ การอธิบายวัตถุประสงค์ของการรวบรวมข้อมูลสําหรับแบบสอบถามนี้ ส่วนที่ 2 คือ การเก็บรวบรวมข้อมูลทั่วไปของผู้ตอบแบบสอบถาม โดยมีวัตถุประสงค์เพื่อการสรุปการตอบกลับจากผู้ตอบแบบสอบถาม ส่วนที่ 3 คือการเก็บรวบรวมระดับทัศนคติโดยใช้แบบสอบถามที่แตกต่างกัน มันถูกใช้เพื่อวิเคราะห์ปัจจัยต่าง ๆ ที่เกี่ยวข้องกับทัศนคติของผู้เรียน นอกจากนี้ข้อมูลที่ได้รับจะถูกใช้ในการสร้างแบบจำลองความสัมพันธ์ของต้นแบบนิสิต และให้ข้อมูลต่าง ๆ เพื่อขับเคลื่อนประสิทธิภาพด้านแบบนิสิต

หลังจากเตรียมต้นแบบของแบบสอบถามแล้ว ผู้วิจัยจึงนำเครื่องมือนี้ไปให้ผู้เชี่ยวชาญสามคน เพื่อพิจารณาประสิทธิภาพของแบบสอบถาม โดยตัวอย่างแบบสอบถามแสดงในภาพด้านล่าง และในส่วนของภาคผนวก

ภำพที่ 3.1 แบบสอบถามความคิดเห็นต่อรูปแบบการเรียนรู้ของนิสิต มหาวิทยาลัยพะเยา
การพัฒนารูปแบบการเรียนรู้ของนิสิต มหาวิทยาลัยพะเยา

ในการออกแบบแบบสอบถาม ผู้วิจัยได้กำหนดคำถามของแบบสอบถามให้สัมพันธ์กับทฤษฎีของรูปแบบการเรียนรู้ โดยได้สรุปในตารางที่ 3.1 ความสัมพันธ์ของคำถามและทฤษฎีการเรียนรู้
ตารางที่ 3.1 ความสัมพันธ์ของคำถามและทฤษฎีการเรียนรู้

คำถามในแบบสอบถาม	รูปแบบการเรียนรู้
คำถามที่ 1	การรับรู้ทางการมองเห็น (Visual)
คำถามที่ 2	การรับรู้ทางการร่างกาย (Kinesthetic)
คำถามที่ 3	การรับรู้ทางการได้ยิน (Auditory)
คำถามที่ 4	การรับรู้ทางการมองเห็น (Visual)
คำถามที่ 5	การรับรู้ทางการได้ยิน (Auditory)
คำถามที่ 6	การรับรู้ทางร่างกาย (Kinesthetic)
คำถามที่ 7	การรับรู้ทางการได้ยิน (Auditory)
คำถามที่ 8	การรับรู้ทางการมองเห็น (Visual)
คำถามที่ 9	การรับรู้ทางร่างกาย (Kinesthetic)

ดำเนินการทดสอบกลุ่มเป้าหมาย และการเก็บข้อมูล จากนิสิตมหาวิทยาลัยพะเยา จำนวน 195 คน จากหน่วยงานและองค์กรต่างๆ จำนวน 15 คน และ 2 วิทยาลัย ได้แก่ คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสื่อสารมวลชนและการสื่อสาร คณะทัศนศิลปศาสตร์ คณะนิติศาสตร์ คณะพาณิชยศาสตร์และการจดทะเบียน คณะวิศวกรรมศาสตร์ คณะวิทยาศาสตร์ คณะวิทยาศาสตร์การแพทย์ คณะวิทยาศาสตร์การพยาบาล และคณะศิลปศาสตร์และศิลปกรรมศาสตร์ คณะสุขศาสตร์สุขภาพ การศึกษาและการพัฒนา วิทยาลัยการศึกษา วิทยาลัยการพัฒนาการศึกษา วิทยาลัยการสื่อสารและสิ่งแวดล้อม โดยข้อมูลที่รวบรวมแสดงในตารางที่ 3.1

การให้ระดับความคิดเห็นที่มีต่อแบบสอบถาม ใช้ลักษณะเป็นมาตรประมาณค่า (Rating Scale) แบบ Likert 5 ระดับ โดยมีเกณฑ์การพิจารณาดังนี้

- 5 หมายถึง มีระดับความเห็นต่อปัญหาที่ดีที่สุด
- 4 หมายถึง มีระดับความเห็นต่อปัญหาดีมาก
- 3 หมายถึง มีระดับความเห็นต่อปัญหาดี
- 2 หมายถึง มีระดับความเห็นต่อปัญษาเล็กน้อย
- 1 หมายถึง มีระดับความเห็นต่อปัญหาเล็กที่สุด
แปลผลข้อมูล โดยใช้เกณฑ์ ดังนี้
ช่วงคะแนน 4.50 – 5.00 หมายถึง ปัจจัยมีความสำคัญในระดับมากที่สุด
ช่วงคะแนน 3.50 – 4.49 หมายถึง ปัจจัยมีความสำคัญในระดับมากที่สุด
ช่วงคะแนน 2.50 – 3.49 หมายถึง ปัจจัยมีความสำคัญในระดับมากที่สุด
ช่วงคะแนน 1.50 – 2.49 หมายถึง ปัจจัยมีความสำคัญในระดับมากที่สุด
ช่วงคะแนน 1.00 – 1.49 หมายถึง ปัจจัยมีความสำคัญในระดับมากที่สุด

3.3 ขั้นตอนที่ 3 การเลือกกลุ่มเป้าหมาย และการเก็บข้อมูล

ในขั้นตอนที่ 3 ผู้วิจัยได้ดำเนินการกำหนดกลุ่มเป้าหมาย และการเก็บข้อมูล จากนั้นสิ่งต่อมาคือการจัดเตรียมและวิเคราะห์ข้อมูลที่ได้รับจากการวิจัยที่ผ่านมา

ตารางที่ 3.2 ข้อมูลกลุ่มเป้าหมาย และการเก็บข้อมูล

หน่วยงาน	จำนวนผู้ตอบแบบสอบถาม	ร้อยละของผู้ตอบแบบสอบถาม
คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ	6	3.08%
คณะเทคโนโลยีสารสนเทศและการสื่อสาร	19	9.74%
คณะทันตแพทยศาสตร์	1	0.51%
คณะนิติศาสตร์	12	6.15%
คณะภูมิศาสตร์	2	1.03%
คณะแพทยศาสตร์	35	17.95%
คณะเภสัชศาสตร์	7	3.59%
คณะวิทยาการจัดการและสารสนเทศศาสตร์	5	2.56%
คณะวิทยาศาสตร์	29	14.87%
หน่วยงาน	จำนวนผู้ตอบแบบสอบถาม	ร้อยละของผู้ตอบแบบสอบถาม
--	-------------------------	-----------------------------
คณะวิทยาศาสตร์	3	1.54%
คณะวิทยาศาสตร์การแพทย์	12	6.15%
คณะวิศวกรรมศาสตร์	12	6.15%
คณะศิลปศาสตร์	10	5.13%
คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์	6	3.08%
คณะสหเวชศาสตร์	6	3.08%
วิทยาลัยการศึกษา	28	14.36%
วิทยาลัยพลังงานและสิ่งแวดล้อม	2	1.03%
รวม	**195**	**100.00%**

จากตารางที่ 3.2 แสดงข้อมูลกลุ่มเป้าหมาย และการเก็บข้อมูลผู้ตอบแบบสอบถามซึ่งเป็นนิสิตในมหาวิทยาลัยพะเยา จำนวนทั้งหมด 195 คน โดยผู้ตอบแบบสอบถามส่วนใหญ่มาจากคณะแพทยศาสตร์ จำนวน 35 คน หรือ ร้อยละ 17.95 อันดับที่สอง คือ ผู้ตอบแบบสอบถามที่สังกัดคณะวิทยาการจัดการและสารสนเทศศาสตร์ จำนวน 29 คน หรือ ร้อยละ 14.87 อันดับที่สาม คือนิสิตจากวิทยาลัยการศึกษา จำนวน 28 คน หรือ ร้อยละ 14.36

3.4 ขั้นตอนที่ 4 การเตรียมข้อมูลเพื่อพัฒนารูปแบบความสัมพันธ์ด้านแบบนิสิต

เนื่องจากกระบวนการเตรียมข้อมูลเป็นขั้นตอนที่ใช้เวลานานสุด การวิเคราะห์ข้อมูลที่ดีจึงจำเป็นต้องเตรียมข้อมูลเพื่อใช้ในการวิเคราะห์ข้อมูลให้มีความสัมพันธ์ที่ดี

ในขั้นตอนที่ 4 ผู้วิจัยดำเนินการเตรียมข้อมูลเพื่อพัฒนารูปแบบความสัมพันธ์ด้านแบบนิสิตโดยการใช้ข้อมูลจากการกำหนดกลุ่มเป้าหมาย และการเก็บข้อมูล จากนิสิตมหาวิทยาลัยพะเยาจำนวน 195 คน จากหน่วยงานและองค์กรต่างๆ จำนวน 15 คณะ และ 2 วิทยาลัย ได้แก่ คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสารสนเทศและการสื่อสาร คณะวิศวกรรมศาสตร์ คณะวิทยาศาสตร์ คณะวิทยาการจัดการและสารสนเทศศาสตร์ คณะวิทยาศาสตร์ คณะวิทยาศาสตร์การแพทย์ คณะวิศวกรรมศาสตร์ คณะศิลปศาสตร์ คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์ คณะสหเวชศาสตร์ วิทยาลัยการศึกษา และ วิทยาลัยพลังงานและสิ่งแวดล้อม
การเตรียมข้อมูล ประกอบด้วย 3 ขั้นตอนย่อย: การเลือกข้อมูล การทำการสะอาดข้อมูล และการแปลงข้อมูล การเลือกข้อมูลเพื่อให้ได้ข้อมูลที่เกี่ยวข้อง ถูกต้อง ตรงกับการกำหนดเป้าหมาย ตรงกับวัตถุประสงค์ของการวิเคราะห์ และเพื่อจำกัดข้อมูลที่เกี่ยวข้องเท่านั้น การทำการสะอาดข้อมูล คือ กระบวนการของการคัดกรองข้อมูล โดยการแสดงข้อมูลที่ซ้ำซ้อน และแก้ไขข้อมูลที่ผิดพลาด ส่วนขั้นตอนสุดท้าย คือ การแปลงข้อมูล ซึ่งเป็นกระบวนการแปลงรูปแบบข้อมูลให้อยู่ในรูปแบบที่ถูกต้อง และสามารถใช้ข้อมูลในการวิเคราะห์ตามเป้าหมายได้

3.5 ขั้นตอนที่ 5 การพัฒนารูปแบบความสัมพันธ์และการทดสอบประสิทธิภาพต้นแบบนิสิต

ในขั้นตอนการพัฒนารูปแบบความสัมพันธ์และการทดสอบประสิทธิภาพต้นแบบนิสิต มันได้ถูกแบ่งออกเป็นขั้นตอนย่อย ได้แก่ การวิเคราะห์การจัดกลุ่ม การพิจารณาจำนวนกลุ่ม ภาระงานด้านแบบ และการทดสอบประสิทธิภาพต้นแบบ

3.5.1 การวิเคราะห์การจัดกลุ่ม

การวิเคราะห์การจัดกลุ่ม คือ กระบวนการวิเคราะห์สำหรับการจัดกลุ่มให้มีความเหมาะสม โดยพิจารณาจากความเหมาะสม เพื่อจัดส่งต่อข้อมูลในการจัดกลุ่มที่รวบรวม ข้อมูลที่ใช้ในการวิเคราะห์การจัดกลุ่ม คือ คะแนนเฉลี่ยของนิสิต (GPA) มันถูกใช้เพื่อแยกการประสิทธิภาพของนิสิต โดยยังต้องจัดกลุ่มเป็นตัวเลขที่ต้องการเรียงข้อมูลที่รวบรวมและเกี่ยวข้อง

เครื่องมือที่ได้ใช้สำหรับการวิเคราะห์เพื่อการจัดกลุ่ม คือ k-Means และ x-Means โดยที่ k-Means ถูกใช้เพื่อกำหนดจำนวนสมาชิกที่เหมาะสมที่สุดในแต่ละชุดข้อมูล ตัวอย่างเช่น GPA ขั้นต่ำในชุดข้อมูลเท่ากับ 1.90 สูงสุดในชุดข้อมูลเท่ากับ 3.90 และค่าเฉลี่ยของเกณฑ์ เลือกในชุดข้อมูลเท่ากับ 2.97 ค่าของมาตรฐานของเกณฑ์ในชุดข้อมูลเท่ากับ 2.90 จะเห็นได้ว่าค่าเฉลี่ยของเกณฑ์ในชุดข้อมูลที่เหมาะสมที่สุดคือ GPA ที่ 2.97

ในขณะที่การวิเคราะห์การจัดกลุ่มด้วย x-Means มีวัตถุประสงค์เพื่อการบริหารจัดการการเปลี่ยนแปลงของการจัดกลุ่มด้วย k-Means ซึ่งจัดการการจัดสรรของกลุ่ม โดยพยายามทำขั้นตอนด้าน และแยกผลลัพธ์ที่ได้ที่สุดจนกว่าจะถึงเกณฑ์ที่แน่นอน เป้าหมายคือ การกำหนดกลุ่มที่แท้จริงในชุดข้อมูลที่ไม่มีปัญหาเกิน หรือ ไม่มีลักษณะกลุ่ม
3.5.2 การพิจารณาจำนวนกลุ่ม

การพิจารณาจำนวนกลุ่ม คือ วิธีการเลือกกลุ่มที่เหมาะสม โดยวิธีการที่ใช้เพื่อพิจารณาจำนวนกลุ่มเพื่อตัดสินใจ ซึ่งกว่า k-optimization (Nuankaew and Temdee, 2019)

K-Optimization ขึ้นอยู่กับแนวคิดการตัดสินใจข้อศอก (elbow methods) สำหรับการเลือก k-value และ x-values การตัดสินใจเลือก k-value และ x-values เป็นการเลือกค่าที่ k และ x มีการเปลี่ยนแปลงอย่างรุนแรง ด้วยอย่าง เช่นการเปลี่ยนแปลงแนวตั้งเป็นแนวนอนอย่างค่อนข้างแสดงในภาพที่ 3.3

จากภาพที่ 3.3 จะเห็นว่าค่าของการเปลี่ยนแปลงค่า k ในแนวตั้งและแนวนอน มีแนวโน้มที่แตกต่างกัน โดยเมื่อจำนวนของกลุ่ม (cluster) แรกเริ่มจะมีลักษณะระยะห่าง (distance)ระหว่างกลุ่มที่สูง และเมื่อมีจำนวนของกลุ่มเพิ่มขึ้น ระยะห่างระหว่างกลุ่มเริ่มสั้นลง โดยตามหลักการข้อศอก (elbow methods) แล้ว จะเลือกจำนวนกลุ่มที่มีการเปลี่ยนแปลงจากแนวหนึ่งไปสู่อีกแนวหนึ่ง ด้วยอย่างเช่น เปลี่ยนแปลงจากแนวตั้งไปสู่แนวนอน หรือ เปลี่ยนแปลงจากแนวนอนไปสู่แนวด้าน
3.5.3 การพัฒนาต้นแบบ
การพัฒนาต้นแบบ คือ กระบวนการพัฒนาต้นแบบจากชุดข้อมูล เครื่องมือที่ใช้ในการสร้างแบบจำลอง คือ แผนผังการตัดสินใจ หรือ ต้นไม้การตัดสินใจ (decision tree) และกฎสัมพันธ์จากต้นแบบ ซึ่งกระบวนการต้นไม้การตัดสินใจ คือ เทคนิคของเหตุข้อมูลที่ใช้ในการค้นหาคุณลักษณะที่สำคัญโดยใช้การเลือกแอทริบิวต์จากโหนดในต้นแบบแผนผังการตัดสินใจ
นอกจากนั้นแผนภูมิต้นไม้การตัดสินใจที่จะถูกคัดเลือกจำเป็นต้องมีการทดสอบประสิทธิภาพ โดยผู้วิจัยดำเนินการจัดกลุ่มตามกระบวนการพิจารณากลุ่ม และพัฒนาต้นแบบนิสิตในแต่ละกลุ่ม เพื่อพิจารณาความแตกต่างของประสิทธิภาพของนิสิตมหาวิทยาลัยพยายามตามคุณภาพของผู้เรียน

3.5.4 การทดสอบประสิทธิภาพต้นแบบ
การทดสอบประสิทธิภาพต้นแบบ คือ กระบวนการในการค้นหาประสิทธิภาพของต้นแบบประกอบด้วย 2 ส่วน คือ วิธีการทดสอบต้นแบบ และวิธีการเลือกต้นแบบ วิธีการทดสอบต้นแบบใช้วิธีการตรวจสอบแบบข้าม (cross-validation methods) ในการประเมินรูปแบบ โดยการแบ่งข้อมูลที่รวบรวมเป็น 2 ชุด ประกอบด้วย ชุดข้อมูลการฝึกอบรม (training data set) และชุดข้อมูลการทดสอบ (testing data set) ดังแสดงในภาพที่ 3.4

![Set of the Data](image)

ภาพที่ 3.4 การตรวจสอบแบบข้าม

วิธีการทดสอบต้นแบบนี้ มี 2 ประเภท ได้แก่ การตรวจสอบแบบข้ามของ k-fold และการตรวจสอบแบบข้ามของ leaver-one-out ตามหลักการของการตรวจสอบแบบข้าม
ในส่วนของวิธีการเลือกต้นแบบนั้น ใช้วิธีการหาประสิทธิภาพจากการทำนายด้วย Confusion Matrix คือ การทำนายผลจากโมเดลด้วยตารางความสัมพันธ์ Confusion Matrix ตั้งแสดงในภาพที่ 3.xxxx โดยที่เครื่องมือที่ใช้ในการอธิบายประสิทธิภาพของโมเดล ประกอบด้วย 3 ตัวชี้วัด ได้แก่ Accuracy Precision และ Recall ดังแสดงสมการในภาพที่ 3.5 และ สมการ (1)

\[
\text{Accuracy} = \frac{TP+TN}{TP+FP+FN+TN}
\]

Predicted / Actual	True Condition	Precision	
	Positive	Negative	
Predicted Positive	True Positive (TP)	False Positive (FP)	Precision (Positive) = \(\frac{TP}{TP + FP}\)
Predicted Negative	False Negative (FN)	True Negative (TN)	Precision (Negative) = \(\frac{TN}{FP + TN}\)
Recall	Recall (Positive) = \(\frac{TP}{TP + FN}\)	Recall (Negative) = \(\frac{TN}{FP + TN}\)	

ภาพที่ 3.5 การหาประสิทธิภาพจากการทำนาย ด้วย Confusion Matrix

ในบทต่อไป ผู้วิจัยได้นำเสนอผลการวิจัย โดยสรุปสาระสำคัญตามขั้นตอนที่ได้ออกแบบไว้ ซึ่งประกอบ การรายงานผลการรวบรวมข้อมูล การวิเคราะห์ข้อมูลระดับความคิดเห็นต่อปัจจัยที่เกี่ยวข้อง การพิจารณากลุ่มที่เหมาะสมเพื่อใช้ในการพัฒนาต้นแบบ การพัฒนาต้นแบบบันทิค และสุดท้าย คือ การทดสอบเพื่อหาประสิทธิภาพของต้นแบบ

**
บทที่ 4
ผลการวิจัย

การวิจัยเรื่องการศึกษาต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียนณมหาวิทยาลัยพะเยาประเทศไทยครั้งนี้ผู้วิจัยได้แบ่งขั้นตอนผลการวิจัยออกเป็น 5ขั้นตอน ดังนี้

ขั้นตอนที่ 1 การรายงานผลการรวบรวมข้อมูล
ขั้นตอนที่ 2 การรายงานผลการวิเคราะห์ทางสถิติ
ขั้นตอนที่ 3 การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสม
ขั้นตอนที่ 4 การรายงานผลการคัดเลือกต้นแบบจากผลการสอบทดสอบประสิทธิภาพ
ขั้นตอนที่ 5 การรายงานผลการพัฒนารูปแบบความสัมพันธ์ต้นแบบนิสิต

ขั้นตอนที่ 1 การรายงานผลการรวบรวมข้อมูล

จากการรวบรวมข้อมูล ในส่วนนี้ได้รายงานการสำรวจและตอบแบบสอบถามประกอบด้วย ข้อมูลจาก 195 ตัวอย่างของนิสิตที่กำลังศึกษาอยู่ที่มหาวิทยาลัยพะเยา ซึ่งนิสิตที่ตอบแบบสอบถามมาจากคณะและวิทยาลัยในมหาวิทยาลัยพะเยา รวม 15 คณะ 2 วิทยาลัย ประกอบด้วย คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสารสนเทศและการสื่อสาร คณะวิทยาศาสตร์ คณะนิติศาสตร์ คณะนิติศาสตร์ คณะวิทยาศาสตร์ คณะเภสัชศาสตร์ คณะวิทยาศาสตร์ คณะสิ่งแวดล้อมศาสตร์ คณะศิลปศาสตร์ คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์ คณะสหเวชศาสตร์ วิทยาลัยการศึกษา และ วิทยาลัยพลังงานและสิ่งแวดล้อม โดยข้อมูลที่รวบรวมสรุปและจำแนกตามเพศและชั้นปี ดังแสดงในตารางที่ 4.1 และแสดงจำนวนผู้ตอบแบบสอบถามจำแนกตามหน่วยงาน ดังแสดงในตารางที่ 4.2

ตารางที่ 4.1 ข้อมูลผู้ตอบแบบสอบถามจำแนกตามเพศและชั้นปี

เพศ	จำนวนผู้ตอบแบบสอบถาม	ระดับปีการศึกษา	ชั้นปีที่ 1	ชั้นปีที่ 2	ชั้นปีที่ 3	ชั้นปีที่ 4	ชั้นปีที่ 5
ชาย	70 (35.90%)		8 (33.33%)	30 (56.60%)	31 (35.23%)	7 (30.43%)	1 (14.29%)
หญิง	125 (64.10%)		16 (66.67%)	23 (43.40%)	57 (64.77%)	16 (69.57%)	6 (85.71%)
รวม	195 (100%)		24 (12.31%)	53 (27.18%)	88 (45.13%)	23 (11.79%)	7 (3.59%)

จากตารางที่ 4.1 สรุปข้อมูลผู้ตอบแบบสอบถามจำแนกตามเพศและชั้นปี พบว่า ผู้ตอบแบบสอบถามมีจำนวนทั้งหมด 195 คน โดยกลุ่มผู้ตอบแบบสอบถามส่วนใหญ่เป็นเพศหญิง จำนวน 125 คน หรือ ร้อยละ 64 และเป็นเพศชาย 70 คน หรือ ร้อยละ 35.90% ในขณะที่ระดับปีการศึกษาของผู้ตอบแบบสอบถามส่วนใหญ่อยู่ในชั้นปีที่ 3 จำนวน 88 คน หรือ ร้อยละ 45.13

ตารางที่ 4.2 ข้อมูลผู้ตอบแบบสอบถามจำแนกตามหน่วยงาน

หน่วยงาน	จำนวนผู้ตอบแบบสอบถาม	ร้อยละของผู้ตอบแบบสอบถาม
คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ	6	3.08%
คณะเทคโนโลยีสารสนเทศและการสื่อสาร	19	9.74%
คณะมัธยมศึกษา	1	0.51%
หน่วยงาน	จำนวนผู้ตอบแบบสอบถาม	ร้อยละของผู้ตอบแบบสอบถาม
---	------------------------	-----------------------------
คณะนิติศาสตร์	12	6.15%
คณะพยาบาลศาสตร์	2	1.03%
คณะแพทยศาสตร์	35	17.95%
คณะเภสัชศาสตร์	7	3.59%
คณะรัฐศาสตร์และสังคมศาสตร์	5	2.56%
คณะวิทยาการจัดการและสารสนเทศศาสตร์	29	14.87%
คณะวิทยาศาสตร์	3	1.54%
คณะวิทยาศาสตร์การแพทย์	12	6.15%
คณะวิศวกรรมศาสตร์	12	6.15%
คณะศิลปศาสตร์	10	5.13%
คณะสถาปัตยกรรมศาสตร์และศิลปกรรมศาสตร์	6	3.08%
คณะสหเวชศาสตร์	6	3.08%
วิทยาลัยการศึกษา	28	14.36%
วิทยาลัยพลังงานและสิ่งแวดล้อม	2	1.03%
รวม	**195**	**100.00%**

จากตารางที่ 4.2 แสดงข้อมูลผู้ตอบแบบสอบถามจําแนกตามหน่วยงาน จำนวนทั้งหมด 195 คน โดยผู้ตอบแบบสอบถามส่วนใหญ่มาจากคณะแพทยศาสตร์ จำนวน 35 คน หรือ ร้อยละ 17.95 อันดับที่สอง คือ ผู้ตอบแบบสอบถามที่สังกัดคณะวิทยาการจัดการและสารสนเทศศาสตร์ จำนวน 29 คน หรือ ร้อยละ 14.87 อันดับที่สาม คือ นิสิตจากวิทยาลัยการศึกษา จำนวน 28 คน หรือ ร้อยละ 14.36

4.2 ขั้นตอนที่ 2 การรายงานผลการวิเคราะห์ทางสถิติ

ในขั้นตอนที่ 2 การรายงานผลการวิเคราะห์ทางสถิตินี้ คือ การสรุปผลลัพธ์ของทศนิยมต่อลำดับ จำนวน 9 ข้อ โดยการรายงานในส่วนนี้ ใช้เทคนิคทางสถิติ ได้แก่ ค่าเฉลี่ย ค่าและความถี่ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน (S.D.) และการตีความต่างแสดงในตารางที่ 4.3
ในขณะที่เกณฑ์การประเมิน ผู้วิจัยจะใช้หลักการแบ่งแบบอันตรภาคชั้น ซึ่งแบ่งคะแนนเป็น 5 ระดับ จากคะแนนเฉลี่ยที่ได้จากการทำแบบสอบถาม คะแนนที่สูงที่สุด คือ 5 คะแนน และคะแนนต่ำที่สุด คือ 1 คะแนน จากนั้นนำมาทำแกนกลางพิสัย โดยใช้สูตรการคำนวณช่วงกว้างของอันตรภาคชั้น ได้ดังนี้

\[
\text{ความกว้างของอันตรภาคชั้น} = \frac{\text{คะแนนสูงสุด} - \text{คะแนนต่ำสุด}}{\text{จำนวนชั้น}} = \frac{5 - 1}{5} = 0.8
\]

ดังนั้น ช่วงระยะท่าของแต่ละอันตรภาคชั้นเท่ากับ 0.8 ซึ่งสามารถกำหนดเกณฑ์การให้คะแนนค่าเฉลี่ยของระดับประเมินตนเองเพื่อศึกษาทันทีที่มีผลต่อรูปแบบการเรียนรู้ที่แตกต่างกันในแต่ละบุคคล ดังนี้

คะแนนเท่ากับ	หมายความว่า	ระดับมากที่สุด	ระดับมาก	ระดับปานกลาง	ระดับน้อย	ระดับน้อยที่สุด
4.21 – 5.00	หมายความว่า	ระดับมากที่สุด	ระดับมาก	ระดับปานกลาง	ระดับน้อย	ระดับน้อยที่สุด
3.41 – 4.20	หมายความว่า	ระดับมาก	ระดับปานกลาง	ระดับน้อย	ระดับน้อยที่สุด	
2.61 – 3.40	หมายความว่า	ระดับปานกลาง	ระดับน้อย	ระดับน้อยที่สุด		
1.81 – 2.60	หมายความว่า	ระดับน้อย	ระดับน้อยที่สุด			
1.00 – 1.80	หมายความว่า	ระดับน้อยที่สุด				

การวิเคราะห์ระดับปัจจัยที่ส่งผลทำให้รูปแบบการเรียนรู้ในแต่ละบุคคลแตกต่างกัน โดยคำนวณหาค่าเฉลี่ย (Mean) เพื่ออธิบายค่าเฉลี่ยของข้อมูลที่ได้จากแบบสอบถามตอนที่ 2 เพื่อศึกษาทันทีที่มีผลต่อรูปแบบการเรียนรู้ที่มีความแตกต่างกันในแต่ละบุคคล สำหรับแบบสอบถาม (Standard Deviation) เพื่อใช้อธิบายความแปรปรวนของข้อมูลที่ได้จากแบบสอบถามตอนที่ 2 เพื่อศึกษาทันทีที่มีผลต่อรูปแบบการเรียนรู้ที่มีความแตกต่างกันในแต่ละบุคคล

ตารางที่ 4.3 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานต่อระดับความคิดเห็นที่มีต่อปัจจัยรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน

ปัจจัยของการศึกษา	ระดับความคิดเห็น/การยอมรับ		
	Mean	S.D.	การแปลผล
1. นิสิตเรียนได้ดี โดยอ่านจากสไลด์ประกอบการสอนของอาจารย์	3.75	0.84	ยอมรับ
2. เมื่อนิสิตได้ลองนิยมทำด้วยตนเอง นิสิตสามารถทำได้ดี	4.02	0.83	ยอมรับ
3. นิสิตสามารถจ้างงานให้อ่านในชั้นเรียนได้ดีกว่าสัมมนาที่นิสิตได้อ่าน	3.75	0.81	ยอมรับ
ตารางที่ 4.3 แสดงค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานต่อระดับความคิดเห็นที่มีต่อปัจจัยรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน จากตารางที่ 4.3 พบว่าระดับทัศนคติของผู้ตอบแบบสอบถามต่อด้านที่ 2 มีค่าเฉลี่ย 4.02 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.87 โดยมีค่าเฉลี่ยขั้นต่ำที่ 3.65 และมีค่าเฉลี่ยขั้นสูงที่ 4.33 และระดับทัศนคติของผู้ตอบแบบสอบถามมีมีการกระจายตัวอยู่ในระดับยอมรับ โดยมีค่าเฉลี่ย 3.77 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.87 อย่างไรก็ตามผู้ตอบแบบสอบถามต่อด้านที่ 2 มีการกระจายตัวอยู่ในระดับยอมรับ โดยมีค่าเฉลี่ย 3.77 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.87 ดังนั้นเมื่อนำข้อมูลจากผู้ตอบแบบสอบถามมาคิดคำนวณรูปแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK พบว่า มีการกระจายการเรียนรู้ในทุกรูปแบบ ดังแสดงในตารางที่ 4.4 โดยที่การระบุผู้เรียนในแต่ละรูปแบบขึ้นอยู่กับผลการคำนวณ จากแต่ละระดับทัศนคติของคำถาม ด้วยการข้อมูลผู้ตอบแบบสอบถามให้คะแนนทัศนคติต่อประเด็นดังนี้: Q1 = 3, Q2 = 5, Q3 = 3, Q4 = 4, Q5 = 3, Q6 = 4, Q7 = 3, Q8 = 3, และ Q9 = 4 . การคำนวณเพื่อหาคะแนนรวมของการระบุทัศนคติของผู้ตอบแบบการเรียนรู้ ซึ่งแต่ละคำถามจะชี้ชัดถึงการรับรู้ของรูปแบบการเรียนรู้ดังนี้สัดส่วนการเรียนรู้ด้วยการมอง (Visual) มี Q1, Q4 และ Q8 รูปแบบการเรียนรู้การได้ยิน (Auditory) มี Q3, Q5 และ Q7 รูปแบบการเรียนรู้เกี่ยวกับการเคลื่อนไหวทางร่างกาย (Kinesthetic) มี Q2, Q6 และ Q9 ดังนั้นผลลัพธ์จากการคิดคำนวณจำกลุ่มตัวอย่างเท่ากับรูปแบบการเรียนรู้ด้วยการมอง (Visual) = 10 รูปแบบการเรียนรู้เกี่ยวกับการได้ยิน (Auditory) = 9 และรูปแบบการเรียนรู้เกี่ยวกับการเคลื่อนไหวทางร่างกาย (Kinesthetic) = 13 เมื่อเรียงลำดับคะแนนจะสามารถสรุปได้ว่าผู้ตอบแบบนี้อยู่ในรูปแบบ 4 (K-V-A)
ตารางที่ 4.4 ข้อมูลรูปแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK

รูปแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK	จำนวน	ร้อยละของผู้ตอบแบบสอบถาม
รูปแบบที่ 1: Auditory - Kinesthetic - Visual (A-K-V)	39	20.00
รูปแบบที่ 2: Auditory - Visual - Kinesthetic (A-V-K)	20	10.26
รูปแบบที่ 3: Kinesthetic - Auditory - Visual (K-A-V)	28	14.36
รูปแบบที่ 4: Kinesthetic - Visual - Auditory (K-V-A)	39	20.00
รูปแบบที่ 5: Visual - Auditory - Kinesthetic (V-A-K)	29	14.87
รูปแบบที่ 6: Visual - Kinesthetic - Auditory (V-K-A)	40	20.51
รวม	195	100

ตารางที่ 4.4 แสดงข้อมูลรูปแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK พบว่ารูปแบบของผู้ตอบแบบสอบถามมีลักษณะกระจายตัวในทุกรูปแบบ โดยที่รูปแบบการเรียนรู้ที่พบมากที่สุดที่ผู้ตอบแบบสอบถามให้ความสนใจ คือ รูปแบบที่ 6: Visual - Kinesthetic - Auditory (V-K-A) มีจำนวนผู้ตอบแบบสอบถาม 40 คน หรือ ร้อยละ 20.51 อันดับที่ 2 คือ รูปแบบที่ 1: Auditory - Kinesthetic - Visual (A-K-V) และรูปแบบที่ 4: Kinesthetic - Visual - Auditory (K-V-A) จำนวนรูปแบบละ 39 คน หรือ ร้อยละ 20 ในขณะที่อันดับสุดท้าย คือ รูปแบบที่ 2: Auditory - Visual - Kinesthetic (A-V-K) มีจำนวน 20 คน หรือ ร้อยละ 10.26

4.3 ขั้นตอนที่ 3 การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสม

ในขั้นตอนที่ 3 การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสมนั้น คือ ผลการวิเคราะห์จำนวนกลุ่มที่เหมาะสมที่จะใช้ในการพิจารณาตัดสินเพื่อการดำเนินการพัฒนาเกณฑ์ผลสัมฤทธิ์ทางการเรียนของผู้เรียนในอนาคต ข้อมูลที่ใช้ในการวิเคราะห์คือ เกรดเฉลี่ย (GPA) หลังจากได้รับจำนวนที่เหมาะสมแล้วก็จะต้องถึงกระบวนการพิจารณาตัดสินคัดคือรูปแบบการเรียนรู้ที่แตกต่างกันเพื่อสร้างขั้นตอนบนความสัมพันธ์เพื่อการตัดสินใจ

จากการวางแผนการดำเนินการวิจัยในขั้นตอนที่ 3 นั้น มีการวิเคราะห์คัดคือสุดท้ายจากผลการพิจารณาจำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ k-Means และจำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ x-Means ดังแสดงในภาพที่ 4.1 และภาพที่ 4.2
ภาพที่ 4.1 จำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ k-Means

ภาพที่ 4.1 แสดงให้เห็นว่า k-Optimization ของ k-Means เท่ากับจำนวน 5 กลุ่ม โดยพิจารณาจากทุกกลุ่มค่า k ที่เลือกในแนวตั้งและแนวนอน โดยการเปลี่ยนแปลงตามทฤษฎีการตัดสินใจข้อศอก (elbow method) โดยที่ค่า k ที่เท่ากับ 5 มีการเปลี่ยนแปลงฉับพลันในแนวตั้งและแนวนอน

ภาพที่ 4.2 จำนวนกลุ่มที่เหมาะสม (k-Optimization) สำหรับ x-Means

ภาพที่ 4.2 แสดงให้เห็นว่า k-Optimization ของ x-Means เท่ากับจำนวน 5 กลุ่ม โดยพิจารณาจากทุกกลุ่มค่า k ที่เลือกในแนวตั้งและแนวนอน โดยการเปลี่ยนแปลงตามทฤษฎีการตัดสินใจข้อศอก (elbow method) โดยที่ค่า k ที่เท่ากับ 5 มีการเปลี่ยนแปลงฉับพลันในแนวตั้งและแนวนอน
ภายหลังที่ได้จานวนกลุ่มที่มีความเหมาะสมแล้ว ผู้วิจัยได้ดำเนินการจัดกลุ่มให้กับกลุ่มตัวอย่างที่รวบรวม โดยพิจารณาจากการเรียงลำดับผลการเรียนเฉลี่ย (GPA) โดยแสดงผลการจัดกลุ่มในตารางที่ 4.5

ตารางที่ 4.5 การจัดกลุ่มโดยการจำแนกตามผลการเรียนเฉลี่ย

กลุ่มที่	จำนวนสมาชิก	ค่าเฉลี่ยระยะห่างระหว่างกลุ่ม	ค่าเฉลี่ยระยะห่างระหว่างจุดศูนย์กลาง
กลุ่มที่ 1	37 (18.97%)	0.104	3.59
กลุ่มที่ 2	47 (24.10%)	0.036	3.18
กลุ่มที่ 3	59 (30.26%)	0.045	2.87
กลุ่มที่ 4	40 (20.51%)	0.052	2.53
กลุ่มที่ 5	12 (6.15%)	0.099	2.13
รวม/ค่าเฉลี่ย	195 (100%)	0.059	2.86

ตารางที่ 4.5 แสดงจากการจัดกลุ่มโดยการจำแนกตามผลการเรียนเฉลี่ย พบว่า กลุ่มที่มีจำนวนสมาชิกมากที่สุด คือ กลุ่มที่ 3 มีจำนวนสมาชิก 59 คน หรือ ร้อยละ 30.26 อันดับที่ 2 คือ กลุ่มที่ 2 มีจำนวนสมาชิก 47 คน หรือ ร้อยละ 24.10 ในขณะที่อันดับสุดท้าย คือ กลุ่มที่ 5 มีจำนวนสมาชิก 12 คน หรือ ร้อยละ 6.15

4.4 ขั้นตอนที่ 4 การรายงานผลการคัดเลือกในแบบจากผลการสอบทดสอบประสิทธิภาพ

ในขั้นตอนที่ 4 การรายงานผลการคัดเลือกในแบบจากผลการสอบทดสอบประสิทธิภาพนี้ คือ การรายงานการวิเคราะห์รูปแบบทัศนคติความแตกต่างในผลลัพธ์ทางการเรียน โดยการวิเคราะห์จำแนกตามกลุ่มโดยกลุ่มที่ได้นั้นมาจากกลุ่มที่เหมาะสม และแบ่งกลุ่มตามระดับคะแนนเฉลี่ย (GPA) ของผู้ตอบแบบสอบถาม โดยแสดงรายละเอียดการจำแนกตาม ตารางที่ 4.6

ตารางที่ 4.6 ข้อมูลการจำแนกตามกลุ่มที่เหมาะสม รูปแบบการเรียนรู้ และผลการเรียนเฉลี่ย

กลุ่มที่	GPA	จำนวนสมาชิก	รูปแบบการเรียนรู้		
			Visual	Auditory	Kinesthetic
กลุ่มที่ 1	3.41 – 3.90	37 (18.97%)	15 (7.69%)	12 (6.15%)	10 (5.13%)
กลุ่มที่ 2	3.03 – 3.33	47 (24.10%)	14 (7.18%)	14 (7.18%)	19 (9.74%)
กลุ่มที่ 3	2.71 – 3.02	59 (30.26%)	23 (11.79%)	15 (7.69%)	21 (10.77%)
ตารางที่ 4.6 แสดงข้อมูลการจำแนกตามกลุ่มที่เหมาะสม รูปแบบการเรียนรู้ และผลการเรียนเฉลี่ย โดยที่การจำแนกกลุ่มตามผลการเรียนเฉลี่ยแบ่งออกเป็น 5 กลุ่ม ได้แก่ กลุ่มที่ 1 มีผลการเรียนเฉลี่ยระหว่าง 3.41 – 3.90 กลุ่มที่ 2 มีผลการเรียนเฉลี่ยระหว่าง 3.03 – 3.33 กลุ่มที่ 3 มีผลการเรียนเฉลี่ยระหว่าง 2.71 – 3.02 กลุ่มที่ 4 มีผลการเรียนเฉลี่ยระหว่าง 2.34 – 2.70 และ กลุ่มที่ 5 มีผลการเรียนเฉลี่ยระหว่าง 1.90 – 2.31 หลังจากการจำแนกข้อมูลแต่ละชุด ข้อมูลแต่ละชุดถูกนำไปวิเคราะห์ด้วยกระบวนการตัดสินใจและเทคนิคการตรวจสอบข้าม (cross-validation methods) ผลลัพธ์ของการวิเคราะห์ประสิทธิภาพของต้นไม้ได้แสดงในตารางที่ 4.7 ถึงตารางที่ 4.16

ตารางที่ 4.7 การวิเคราะห์ต้นแบบจากข้อมูลในกลุ่มที่ 1

ระดับความลึก / ความถูกต้อง	การตรวจสอบข้าม (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความเสถียรต่ำ 3	45.71%	35.83%	59.46%
ความเสถียรต่ำ 5*	43.21%	48.33%	67.57%*
ความเสถียรต่ำ 7	43.21%	48.33%	67.57%

ตารางที่ 4.7 แสดงการวิเคราะห์ต้นแบบจากข้อมูลในกลุ่มที่ 1 พบว่า ระดับความเสถียรที่เหมาะสมของต้นแบบจากข้อมูลในกลุ่มที่ 1 คือ ที่ความเสถียรต่ำ 5 โดยมีค่าความถูกต้อง (Accuracy) เท่ากับ 67.57% จากพื้นแบบพัฒนาสามารถแสดงรายละเอียดการทํานายประสิทธิภาพของต้นแบบจากการทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ตัวแสดงในตารางที่ 4.8
ตารางที่ 4.8 การทดสอบประสิทธิภาพต้นแบบ จากชุดข้อมูลในกลุ่มที่ 1

Predicted / Actual	True Condition	Precision		
	Kinesthetic	Visual	Auditory	
Pred. Kinesthetic	9	4	5	50.00%
Pred. Visual	1	10	1	83.33%
Pred. Auditory	0	1	6	85.71%
Recall	90.00%	66.67%	50.00%	

ตารางที่ 4.9 การวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 2

ระดับความลึก /ความลึกด้าน	การตรวจสอบข้าม (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความลึกระดับ 3*	46.89%	47.50%*	34.04%
ความลึกระดับ 5	46.89%	43.00%	34.04%
ความลึกระดับ 7	46.89%	43.00%	34.04%

ตารางที่ 4.9 แสดงการวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 2 พบรวมระดับความลึกที่เหมาะสมของต้นแบบจากชุดข้อมูลในกลุ่มที่ 2 คือ ที่ความลึกระดับ 3 โดยมีค่าความถูกต้อง (Accuracy) เท่ากับ 47.50% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการทดสอบประสิทธิภาพของต้นแบบ จากการทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ตั้งแสดงในตารางที่ 4.10

ตารางที่ 4.10 การทดสอบประสิทธิภาพต้นแบบ จากชุดข้อมูลในกลุ่มที่ 2

Predicted / Actual	True Condition	Precision		
	Kinesthetic	Visual	Auditory	
Pred. Kinesthetic	16	6	5	59.26%
Pred. Visual	3	6	9	33.33%
Pred. Auditory	0	2	0	0.00%
Recall	84.21%	42.86%	0.00%	
ตารางที่ 4.11 การวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 3

ระดับความลึก/ความถูกต้อง	การตรวจสอบข้าม (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความลึกระดับ 3	52.73%	41.67%	50.85%
ความลึกระดับ 5*	56.06%*	53.33%	50.85%
ความลึกระดับ 7	56.06%	53.33%	50.85%

ตารางที่ 4.11 แสดงว่าการวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 3 พบรากับระดับความลึกที่เหมาะสมของต้นแบบจากชุดข้อมูลในกลุ่มที่ 3 คือ ระดับความลึกระดับ 5 โดยมีค่าความถูกต้อง (Accuracy) ที่สูงสุด 56.06% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการทายความถูกต้องของต้นแบบจากการทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ดังแสดงในตารางที่ 4.12

ตารางที่ 4.12 การทดสอบประสิทธิภาพต้นแบบ จากชุดข้อมูลในกลุ่มที่ 3

Predicted / Actual	True Condition	Precision		
	Kinesthetic	Visual	Auditory	
Pred. Kinesthetic	3	2	2	42.86%
Pred. Visual	5	12	3	60.00%
Pred. Auditory	7	7	18	56.25%
Recall	20.00%	57.14%	78.26%	

ตารางที่ 4.13 การวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 4

ระดับความลึก/ความถูกต้อง	การตรวจสอบข้าม (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความลึกระดับ 3*	47.50%*	40.00%	45.00%
ความลึกระดับ 5	47.50%	42.50%	47.50%
ความลึกระดับ 7	47.50%	42.50%	47.50%
ตารางที่ 4.13 แสดงการวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 4 พยายามระดับความลึกที่เหมาะสมของต้นแบบจากชุดข้อมูลในกลุ่มที่ 4 คือ ระดับความลึกระดับ 3 โดยมีค่าความถูกต้อง (Accuracy) ที่เกินถึง 47.50% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการที่นายประสิทธิภาพของต้นแบบจากการทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ดังแสดงในตารางที่ 4.14

ตารางที่ 4.14 การทดสอบประสิทธิภาพต้นแบบจากชุดข้อมูลในกลุ่มที่ 4

Predicted / Actual	True Condition	Precision		
	Kinesthetic	Visual	Auditory	
Pred. Kinesthetic	6	5	2	46.15%
Pred. Visual	4	7	3	50.00%
Pred. Auditory	6	1	6	46.15%
Recall	37.50%	53.85%	54.55%	

ตารางที่ 4.15 การวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 5

ระดับความลึก / ความถูกต้อง	การตรวจสอบข้าม (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความลึกระดับ 3*	40.00% *	30.00%	33.33%
ความลึกระดับ 5	40.00%	30.00%	33.33%
ความลึกระดับ 7	40.00%	30.00%	33.33%

ตารางที่ 4.15 แสดงการวิเคราะห์ต้นแบบจากชุดข้อมูลในกลุ่มที่ 5 พยายามระดับความลึกที่เหมาะสมของต้นแบบจากชุดข้อมูลในกลุ่มที่ 5 คือ ระดับความลึกระดับ 3 โดยมีค่าความถูกต้อง (Accuracy) ที่เกินถึง 40.00% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการที่นายประสิทธิภาพของต้นแบบจากการทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ดังแสดงในตารางที่ 4.16
ตารางที่ 4.16 การทดสอบประสิทธิภาพด้านแบบ จากข้อมูลในกลุ่มที่ 5

Predicted / Actual	True Condition	Precision	
	Kinesthetic	Visual	Auditory
Pred. Kinesthetic	5	5	1
Pred. Visual	1	0	0
Pred. Auditory	0	0	0
Recall	83.33%	0.00%	0.00%

4.5 ขั้นตอนที่ 5 การรายงานผลการพัฒนารูปแบบความสัมพันธ์ด้านแบบนิสิต

ในขั้นตอนที่ 5 การรายงานผลการพัฒนารูปแบบความสัมพันธ์ด้านแบบนิสิตนี้ ผู้วิจัยต้องการนำเสนอและอภิปรายผลการทดสอบรูปแบบในแต่ละกลุ่ม จากตารางที่ 4.7 ถึง ตารางที่ 4.16 ผลลัพธ์แสดงว่ารูปแบบในแต่ละกลุ่มมีความสัมพันธ์ที่แตกต่างกัน โดยจากการทดสอบด้านแบบนี้ผู้วิจัยได้แสดงแบบจำลองในแต่ละกลุ่ม ดังแสดงในภาพที่ 4.3 ถึง ภาพที่ 4.7

ภาพที่ 4.3 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1

จากภาพที่ 4.3 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 1 ได้แก่ คำถามใน вопросыที่ 4 คำถามในข้อที่ 5 คำถามในข้อที่ 8 คำถามในข้อที่ 2 และ คำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 67.57% ดังแสดงในตารางที่ 4.7 และตารางที่ 4.8
ภาพที่ 4.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2

จาภาพที่ 4.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2 พานว่า ปัจจัยที่มีความสำคัญต่อด้านแบบนิสิตในกลุ่มที่ 2 ได้แก่ คำถามในข้อที่ 2 และ คำถามในข้อที่ 4 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuray = 47.50% ดังแสดงในตารางที่ 4.9 และตารางที่ 4.10

ภาพที่ 4.5 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3

จาภาพที่ 4.5 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3 พานว่า ปัจจัยที่มีความสำคัญต่อด้านแบบนิสิตในกลุ่มที่ 3 ได้แก่ คำถามในข้อที่ 1 คำถามในข้อที่ 8 คำถามในข้อที่ 9 คำถามในข้อที่ 2 คำถามในข้อที่ 3 และ คำถามในข้อที่ 5 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuray = 56.06% ดังแสดงในตารางที่ 4.11 และตารางที่ 4.12
ภาพที่ 4.6 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4

จากภาพที่ 4.6 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 4 ได้แก่ คำถามในข้อที่ 3 คำถามในข้อที่ 1 และคำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับปานกลาง โดยมีค่า Accuracy = 47.50% ดังแสดงในตารางที่ 4.13 และตารางที่ 4.14

ภาพที่ 4.7 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5

จากภาพที่ 4.7 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 5 ได้แก่ คำถามในข้อที่ 7 และคำถามในข้อที่ 2 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับปานกลาง โดยมีค่า Accuracy = 40.00% ดังแสดงในตารางที่ 4.15 และตารางที่ 4.16
ภาพที่ 4.3 ถึง ภาพที่ 4.7 มีการแสดงต้นแบบนิสิตในแต่ละกลุ่ม โดยแสดงความสัมพันธ์ระหว่างคำถามและทัศนคติที่มีต่อคำถามในแต่ละกลุ่ม และนำมาพัฒนาเป็นต้นแบบในการทำนายรูปแบบการเรียนที่เหมาะสมของผู้เรียน จากนั้น ผู้วิจัยนำข้อมูลทั้งหมดมาคำนวณการวิเคราะห์ต้นแบบการทำนายที่แสดงผลการคัดเลือกต้นแบบ และประสิทธิภาพของต้นแบบในตารางที่ 4.17 ตารางที่ 4.18 และแสดงต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูลในภาพที่ 4.8

ตารางที่ 4.17 การวิเคราะห์ต้นแบบจากทุกชุดข้อมูล

ระดับความลึก / ความถูกต้อง	การตรวจสอบขั้นตอน (cross-validation methods)		
	5-Fold	10-Fold	Leave-one-out
ความถูกต้องระดับ 3	60.51%	56.92%	58.46%
ความถูกต้องระดับ 5	72.31%	72.79%	69.74%
ความถูกต้องระดับ 7*	72.82%	74.32%*	71.28%

ตารางที่ 4.17 แสดงการวิเคราะห์ต้นแบบจากทุกชุดข้อมูล พบว่า ระดับความลึกที่เหมาะสมของต้นแบบ คือ ที่ความถูกต้องระดับ 7 โดยมีค่าความถูกต้อง (Accuracy) เท่ากับ 74.32% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการทำนายประสิทธิภาพของต้นแบบ จากการทำทดสอบประสิทธิภาพด้วย Confusion Matrix Methods ตัวแสดงในตารางที่ 4.18

ตารางที่ 4.18 การทดสอบประสิทธิภาพต้นแบบ จากทุกชุดข้อมูล

Predicted / Actual	True Condition	Precision		
	Kinesthetic	Visual	Auditory	
Pred. Kinesthetic	61	7	13	75.31%
Pred. Visual	3	43	15	70.49%
Pred. Auditory	3	9	41	77.36%
Recall	91.04%	72.88%	59.42%	

ภาพที่ 4.8 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล
จากภาพที่ 4.8 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิต ได้แก่ คำถามในข้อที่ 2 คำถามในข้อที่ 8 คำถามในข้อที่ 7 คำถามในข้อที่ 5 คำถามในข้อที่ 4 คำถามในข้อที่ 1 และ คำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 74.32% ตั้งแสดงในตารางที่ 4.13 และตารางที่ 4.14 นอกจากนั้น ต้นแบบนิสิตในภาพที่ 4.8 สามารถแสดงในรูปแบบของกฎต้นแบบ ดังแสดงในตารางที่ 4.19

ตารางที่ 4.19 กฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล

ลำดับ	กฎต้นแบบ	ผลลัพธ์
Rule 01	if Q2 = 2 then	Auditory
Rule 02	if Q2 = 3 and Q8 = 2 then	Auditory
Rule 03	if Q2 = 3 and Q8 = 3 and Q7 = 2 then	Auditory
Rule 04	if Q2 = 3 and Q8 = 3 and Q7 = 3 then	Visual
Rule 05	if Q2 = 3 and Q8 = 3 and Q7 = 4 then	Auditory
Rule 06	if Q2 = 3 and Q8 = 3 and Q7 = 5 then	Auditory
Rule 07	if Q2 = 3 and Q8 = 4 and Q7 = 2 then	Visual
Rule 08	if Q2 = 3 and Q8 = 4 and Q7 = 3 then	Visual
Rule 09	if Q2 = 3 and Q8 = 4 and Q7 = 4 then	Visual
Rule 10	if Q2 = 3 and Q8 = 4 and Q7 = 5 then	Auditory
Rule 11	if Q2 = 3 and Q8 = 5 then	Visual
Rule 12	if Q2 = 4 and Q5 = 2 and Q8 = 2 then	Kinesthetic
Rule 13	if Q2 = 4 and Q5 = 2 and Q8 = 3 then	Kinesthetic
Rule 14	if Q2 = 4 and Q5 = 2 and Q8 = 5 then	Visual
Rule 15	if Q2 = 4 and Q5 = 3 and Q8 = 3 then	Kinesthetic
Rule 16	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 3 then	Kinesthetic
Rule 17	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 3 then	Kinesthetic
Rule 18	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 4 then	Visual
Rule 19	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 5 then	Visual
Rule 20	if Q2 = 4 and Q5 = 3 and Q4 = 5 then	Visual
Rule 21	if Q2 = 4 and Q5 = 4 and Q8 = 2 then	Auditory
Rule 22	if Q2 = 4 and Q5 = 4 and Q8 = 3 then	Visual
Rule 23	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 3 then	Auditory
Rule 24	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 3 then	Auditory
Rule 25	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 4 then	Visual
ตารางที่ 4.19 แสดงกฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูลจำนวนทั้งสิ้น 42 กฎต้นแบบ โดยจากการทดสอบกฎต้นแบบดังกล่าว พบว่า สามารถทำนายผลได้ถูกต้องตามชุดข้อมูลทั้งร่วม คือ ถูกต้อง 176 คน จากจำนวนทั้งสิ้น 195 คน หรือ ร้อยละ 90.26

ลำดับ	กฎต้นแบบกฎต้นแบบ	ผลลัพธ์
Rule 26	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 5 then	Visual
Rule 27	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 5 then	Kinesthetic
Rule 28	if Q2 = 4 and Q5 = 4 and Q8 = 5 then	Visual
Rule 29	if Q2 = 4 and Q5 = 5 and Q4 = 3 then	Auditory
Rule 30	if Q2 = 4 and Q5 = 5 and Q4 = 4 then	Auditory
Rule 31	if Q2 = 4 and Q5 = 5 and Q4 = 5 then	Visual
Rule 32	if Q2 = 5 and Q9 = 2 then	Auditory
Rule 33	if Q2 = 5 and Q9 = 3 and Q1 = 3 then	Kinesthetic
Rule 34	if Q2 = 5 and Q9 = 3 and Q1 = 4 then	Visual
Rule 35	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 3 then	Kinesthetic
Rule 36	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 4 then	Visual
Rule 37	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 5 then	Visual
Rule 38	if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 3 then	Kinesthetic
Rule 39	if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 4 then	Auditory
Rule 40	if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 4 then	Kinesthetic
Rule 41	if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 5 then	Auditory
Rule 42	if Q2 = 5 and Q9 = 5 then	Kinesthetic

*** Correct: 176 out of 195 training examples.
4.6 สรุปผลการวิจัย

จากการดำเนินงานการวิจัยในบทที่ 3 และการรายงานผลการวิจัยในบทที่ 4 สามารถสรุปเป็นประเด็นสำคัญได้ ดังนี้

1. ขั้นตอนที่ 1 การรายงานผลการรวบรวมข้อมูล

ชุดข้อมูลที่ดำเนินการสำรวจ ประกอบด้วย ข้อมูลจาก 195 ตัวอย่างที่เกี่ยวกับศึกษาอยู่ที่มหาวิทยาลัยพะเยา ซึ่งนิสิตที่ตอบแบบสอบถามมาจากคณะและวิทยาลัยในมหาวิทยาลัยพะเยา รวม 15 คณะ 2 วิทยาลัย ประกอบด้วย คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ คณะเทคโนโลยีสารสนเทศและการสื่อสาร คณะทันตแพทยศาสตร์ คณะนิติศาสตร์ คณะพระกำษัตรศาสตร์ คณะแพทยศาสตร์ คณะศิลปศาสตร์และสารสนเทศศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา คณะวิทยาศาสตร์ คณะวิทยาศาสตร์การแพทย์ คณะวิทยาศาสตร์ คณะศึกษาศาสตร์ คณะสถาปัตยกรรมศาสตร์และศิลปศาสตร์ คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา คณะวิทยาศาสตร์ คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา чисลิกิจการศึกษา คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา คณะวิทยาศาสตร์ คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา คณะสังคมศาสตร์ คณะวิทยาศาสตร์ คณะสังคมศาสตร์ คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา คณะสังคมศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยีการศึกษา

ข้อมูลที่รวบรวมสรุปและจัดแยกตามเพศและตามชั้นปี ดังแสดงในตารางที่ 4.1 และแสดงจำนวนผู้ตอบแบบสอบถามจำแนกตามหน่วยงาน ดังแสดงในตารางที่ 4.2 จากตารางที่ 4.2 แสดงข้อมูลผู้ตอบแบบสอบถามจำแนกตามหน่วยงาน จำนวนทั้งหมด 195 คน โดยผู้ตอบแบบสอบถามส่วนใหญ่มาจากคณะแพทยศาสตร์ จำนวน 35 คน หรือร้อยละ 17.95 อันดับที่สอง คือ ผู้ตอบแบบสอบถามที่สังกัดคณะวิทยาศาสตร์การแพทย์และสารสนเทศศาสตร์ จำนวน 29 คน หรือร้อยละ 14.87 อันดับที่สาม คือ นิสิตจากวิทยาลัยการศึกษา ปริญญาตรี จำนวน 28 คน หรือร้อยละ 14.36

2. ขั้นตอนที่ 2 การรายงานผลการวิเคราะห์ทางสถิติ

การรายงานผลการวิเคราะห์ทางสถิตินี้ได้สรุปคุณคุณคิดต่อคำถามจำนวน 9 ข้อ โดยการรายงานในส่วนนี้ใช้เทคนิคทางสถิติ โดยนิสิต คำนวณค่าความน่าจะเป็น (S.D.) และการคิดค่าตัวแปรแสดงในตารางที่ 4.3

จากตารางที่ 4.3 แสดงค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานต่อระดับความคิดเห็นที่มีค่าป้องกันแบบการเรียนรู้ขั้นต่ำของผลสัมฤทธิ์ทางการเรียน พบว่า ระดับคุณคุณคิดต่อคำถามที่ 2 ต่างกันไม่มาก โดยมีค่าเฉลี่ยอยู่ที่ 4.02 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.83 ในขณะที่อันดับที่ 2 ที่มีค่าเฉลี่ยต่อคำถาม คือ ข้อที่ 4 และค่าเฉลี่ยของข้อที่ 9 โดยมี
ค่าเฉลี่ยอยู่ที่ 3.83 และอันดับสุดท้าย คือ ข้อที่ 7 โดยมีค่าเฉลี่ยอยู่ที่ 3.65 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.89 อย่างไรก็ตามในภาพรวมแล้วผู้ตอบแบบสอบถามมีทัศนคติต่อปัจจัยเหล่านี้อยู่ในระดับยอมรับ โดยมีค่าเฉลี่ยอยู่ที่ 3.77 และมีค่าเบี่ยงเบนมาตรฐานอยู่ที่ 0.87

หลังจากการวิเคราะห์ทางสถิติที่มีต่อคำถามแล้ว ผู้วิจัยได้สรุปรูปแบบการเรียนรู้ของผู้เรียน ตามลักษณะของผู้เรียนดังแสดงในตารางที่ 4.4 แสดงข้อมูลสรุปแบบการเรียนรู้ตามทฤษฎีการเรียนรู้ของ VAK พบว่า รูปแบบของผู้ตอบแบบสอบถามมีลักษณะกระจายตัวในทุกรูปแบบ โดยที่รูปแบบการเรียนรู้ที่พบมากที่สุดที่ผู้ตอบแบบสอบถามให้ความสนใจ คือ รูปแบบที่ 6: Visual - Kinesthetic - Auditory (V-K-A) มีจำนวนผู้ตอบแบบสอบถาม 40 คน หรือ ร้อยละ 20.51 อันดับที่ 2 คือ รูปแบบที่ 1: Auditory - Kinesthetic - Visual (A-K-V) และรูปแบบที่ 4: Kinesthetic - Visual - Auditory (K-V-A) จำนวนรูปแบบละ 39 คน หรือ ร้อยละ 20 ในขณะที่อันดับสุดท้าย คือ รูปแบบที่ 2: Auditory - Visual - Kinesthetic (A-V-K) มีจำนวน 20 คน หรือ ร้อยละ 10.26

3. ขั้นตอนที่ 3 การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสม

การรายงานผลการวิเคราะห์กลุ่มที่เหมาะสมนั้น มีวัตถุประสงค์เพื่อการวิเคราะห์จำนวนกลุ่มที่เหมาะสมที่จะใช้ในการพัฒนาดังนั้นเพื่อการทบทวนที่สอดคล้องกับผลลัพธ์จากการเรียนรู้ของผู้เรียนในอนาคต ข้อมูลที่ได้ในการวิเคราะห์ คือ เกรดเฉลี่ย (GPA) หลังจากได้รับจำนวนที่เหมาะสมแล้วก็จะเข้าถึงถึงระดับทัศนคติต่อรูปแบบการเรียนรู้ที่แตกต่างกันเพื่อสร้างด้านแบบความสัมพันธ์เพื่อการตัดสินใจ

จากการวิเคราะห์ พบว่า จำนวนกลุ่มที่มีความเหมาะสม คือ จำนวน 5 กลุ่ม จากนั้นผู้วิจัยได้ดำเนินการจัดกลุ่มให้กับกลุ่มตัวอย่างที่รวบรวม โดยพิจารณาจากผลการเรียนเฉลี่ย (GPA) โดยแสดงผลการจัดกลุ่มในตารางที่ 4.5

จากตารางที่ 4.5 การจัดกลุ่มโดยการจำแนกตามผลการเรียนเฉลี่ย พบว่า กลุ่มที่มีจำนวนสมาชิกมากที่สุด คือ กลุ่มที่ 3 มีจำนวนสมาชิก 59 คน หรือ ร้อยละ 30.26 อันดับที่ 2 คือกลุ่มที่ 2 มีจำนวนสมาชิก 47 คน หรือ ร้อยละ 24.10 ในขณะที่อันดับสุดท้าย คือ กลุ่มที่ 5 มีจำนวนสมาชิก 12 คน หรือ ร้อยละ 6.15
4. ขั้นตอนที่ 4 การรายงานผลการคัดเลือกต้นแบบจากผลการทดสอบประสิทธิภาพ

การรายงานผลการคัดเลือกต้นแบบจากผลการทดสอบประสิทธิภาพนั้นมีวัตถุประสงค์ เพื่อการรายงานการวิเคราะห์รูปแบบทัศนคติและความแตกต่างในผลสัมฤทธิ์ทางการเรียน โดยการวิเคราะห์จำแนกกลุ่ม โดยกลุ่มที่ได้นั้นมาจากกลุ่มที่เหมาะสม และแบ่งกลุ่มตามระดับคะแนนเฉลี่ย (GPA) ของผู้ตอบแบบสอบถาม โดยแสดงรายละเอียดการจำแนกตาม ตารางที่ 4.6

ตารางที่ 4.6 แสดงข้อมูลการจำแนกกลุ่มที่เหมาะสม รูปแบบการเรียนรู้ และผลการเรียนเฉลี่ย โดยที่การจำแนกกลุ่มตามผลการเรียนเฉลี่ยแบ่งออกเป็น 5 กลุ่ม ได้แก่ กลุ่มที่ 1 มีผลการเรียนเฉลี่ยระหว่าง 3.41 – 3.90 กลุ่มที่ 2 มีผลการเรียนเฉลี่ยระหว่าง 3.03 – 3.33 กลุ่มที่ 3 มีผลการเรียนเฉลี่ยระหว่าง 2.71 – 3.02 กลุ่มที่ 4 มีผลการเรียนเฉลี่ยระหว่าง 2.34 – 2.70 และ กลุ่มที่ 5 มีผลการเรียนเฉลี่ยระหว่าง 1.90 – 2.31

หลังจากการจำแนกข้อมูลแต่ละชุด ข้อมูลแต่ละชุดถูกนำไปวิเคราะห์ ด้วยกระบวนการตัดสินใจและเทคนิคการตรวจสอบข้าม (cross-validation methods) ผลลัพธ์ของการวิเคราะห์ประสิทธิภาพของต้นไม้ตัดสินใจ แสดงในตารางที่ 4.7 ถึงตารางที่ 4.16 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม แสดงในตารางที่ 4.20

ตารางที่ 4.20 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม

กลุ่มที่	ระดับความลึกที่เหมาะสม	ค่าความถูกต้อง
กลุ่มที่ 1	ระดับความลึกที่ 5	ร้อยละ 67.57
กลุ่มที่ 2	ระดับความลึกที่ 3	ร้อยละ 47.50
กลุ่มที่ 3	ระดับความลึกที่ 5	ร้อยละ 56.06
กลุ่มที่ 4	ระดับความลึกที่ 3	ร้อยละ 47.50
กลุ่มที่ 5	ระดับความลึกที่ 3	ร้อยละ 40.00
ทุกชุดข้อมูล	ระดับความลึกที่ 7	ร้อยละ 74.32

ตารางที่ 4.20 แสดงผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม พบว่า การทำสอบประสิทธิภาพในกลุ่มย่อย ค่าความถูกต้องอยู่ในระดับปานกลางถึงระดับสูง ขณะที่การทดสอบประสิทธิภาพในต้นแบบทุกชุดข้อมูล พบว่า ค่าความถูกต้องอยู่ในระดับสูงสุด (ร้อยละ 74.32) จึงสรุปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิต ในการวิเคราะห์ประสิทธิภาพของต้นแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและแสดงค่อนข้างถูกหลักการวิเคราะห์ทางสถิติและการเรียนรู้ด้วยเครื่องคอมพิวเตอร์
5. ขั้นตอนที่ 5 การรายงานผลการพัฒนารูปแบบความสัมพันธ์ด้านแบ่งแยก

การรายงานผลการพัฒนารูปแบบความสัมพันธ์ด้านแบ่งแยกนี้ มีวัตถุประสงค์เพื่อการนำเสนอและการอภิปรายผลการทดสอบรูปแบบในแต่ละกลุ่ม จากตารางที่ 4.7 ถึง ตารางที่ 4.16 ผลลัพธ์แสดงว่าต้นแบบในแต่ละกลุ่มมีความสัมพันธ์ที่แตกต่างกัน จากการแสดงผลในต้นแบบนี้ ผู้วิจัยได้แสดงแบบจำลองในแต่ละกลุ่ม ในภาพที่ 4.3 ถึง ภาพที่ 4.7 จากนั้น ผู้วิจัยนำเสนอข้อมูลทั้งหมดมาวิเคราะห์ในด้านการพยากรณ์ โดยแสดงผลการคัดเลือกและประสิทธิภาพ ในตารางที่ 4.17 ตารางที่ 4.18 และแสดงต้นแบบจากทุกชุดข้อมูลในภาพที่ 4.8

ตารางที่ 4.17 แสดงการวิเคราะห์ต้นแบบจากทุกชุดข้อมูล พบว่า ระดับความถี่ที่เหมาะสมของต้นแบบ คือ ที่ความถี่ระดับ 7 โดยมีค่าความถูกต้อง (Accuracy) เท่ากับ 74.32% จากต้นแบบดังกล่าวสามารถแสดงรายละเอียดการทบทวนประสิทธิภาพของต้นแบบ จากการแสดงผลในตารางที่ 4.16 ในขณะที่ ภาพที่ 4.7 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล พบว่า ปัจจัยที่มีความสัมพันธ์ต่อด้านแบ่งแยก ได้แก่ คำถามในข้อที่ 2 คำถามในข้อที่ 7 คำถามในข้อที่ 8 คำถามในข้อที่ 9 คำถามในข้อที่ 5 คำถามในข้อที่ 4 อีกทั้งคำถามในข้อที่ 1 และคำถามในข้อที่ 3 ซึ่งต้นแบบนี้มีความถูกต้องอยู่ในระดับประมาณกลาง โดยมีค่า Accuracy = 47.50% แสดงผลในตารางที่ 4.13 และตารางที่ 4.14 นอกจากนั้นต้นแบบมีค่าความถูกต้องในภาพที่ 4.7 สามารถแสดงในรูปแบบของกฎต้นแบบ (Rule Model) ดังแสดงในตารางที่ 4.19

จากตารางที่ 4.19 แสดงกฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล จำนวนทั้งสิ้น 42 กฎต้นแบบ โดยจากผลการทดสอบกฎต้นแบบดังกล่าว พบว่า สามารถทบทวนผลได้ถูกต้องตามชุดข้อมูลที่รวบรวมมา คือ ถูกต้อง 176 คน จากจำนวนทั้งสิ้น 195 คน หรือ ร้อยละ 90.26

จากขั้นตอนการดำเนินงานขั้นตอน 5 ข้อ ผู้วิจัยสามารถสรุปได้ว่าการวิจัยครั้งนี้เป็นไปตามวัตถุประสงค์ที่ได้กำหนดไว้ ซึ่งจะได้นำเสนอและอภิปรายในบทที่ 5 ต่อไป

บทที่ 5
การสรุปผลการวิจัย การอภิปราย และข้อเสนอแนะ

การวิจัย เรื่อง การศึกษาด้านแนวปฏิบัติการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย ครั้งนี้ ผู้วิจัยได้สรุปผลการวิจัย อภิปรายผล และนำเสนอข้อเสนอแนะ โดยแบ่งออกเป็น 3 ขั้นตอน ดังนี้

ขั้นตอนที่ 1 การสรุปผลการวิจัยตามวัตถุประสงค์ของการวิจัย

ขั้นตอนที่ 2 การอภิปรายผลจากผลสัมฤทธิ์

ขั้นตอนที่ 3 การนำเสนอข้อเสนอแนะ

**
5.1 ขั้นตอนที่ 1 การสรุปผลการวิจัยตามวัตถุประสงค์ของการวิจัย

ตามที่กำหนดวัตถุประสงค์ของการวิจัยไว้ 3 ประเด็นหลัก ดังนี้
1) เพื่อศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
2) เพื่อพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา
3) เพื่อหาประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

ดังนั้นในขั้นตอนที่ 1 การสรุปผลการวิจัยตามวัตถุประสงค์ของการวิจัย ผู้วิจัยจึงสรุปผลการวิจัยตามประเด็นของวัตถุประสงค์ของการวิจัยตามลำดับ ดังนี้

5.1.1 ผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

ผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ผู้วิจัยได้รายงานผลการดำเนินงานไว้ในบทที่ 4 โดยการสรุปขั้นตอนการจำแนกและแบ่งกลุ่มเพื่อศึกษาปัจจัยต้นแบบนิสิต โดยผลการวิจัยพบว่าจำนวนกลุ่มที่มีความเหมาะสมในการจำแนก คือ จำนวน 5 กลุ่ม ผลจากการศึกษาปัจจัยและแต่ละกลุ่มแสดงในตารางที่ 5.1

ตารางที่ 5.1 ผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

กลุ่มที่	ระดับความสิ้นที่ เหมาะสม	ค่าความถูกต้อง	ปัจจัยต้นแบบนิสิต	
กลุ่มที่ 1	ระดับ 5	ร้อยละ 67.57	5	4, 5, 8, 2 และ 9
กลุ่มที่ 2	ระดับ 3	ร้อยละ 47.50	2	2 และ 4
กลุ่มที่ 3	ระดับ 5	ร้อยละ 56.06	6	1, 8, 9, 2, 3 และ 5
กลุ่มที่ 4	ระดับ 3	ร้อยละ 47.50	3	3, 1 และ 9
กลุ่มที่ 5	ระดับ 3	ร้อยละ 40.00	2	7 และ 2
ทุกๆชุดข้อมูล	ระดับ 7	ร้อยละ 74.32	7	2, 8, 7, 5, 4, 1 และ 9
ตารางที่ 5.1 แสดงผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา จากการทดสอบและพัฒนาต้นแบบข้างต้น พบว่า ต้นแบบจากทุกชุดข้อมูลมีปัจจัยที่เกี่ยวข้องกับต้นแบบ จำนวน 7 ปัจจัย ได้แก่ คำถามข้อที่ 2 คำถามข้อที่ 8 คำถามข้อที่ 7 คำถามข้อที่ 5 คำถามข้อที่ 4 คำถามข้อที่ 1 และ คำถามข้อที่ 9 โดยเมื่อนำข้อมูลไปเปรียบเทียบในตารางที่ 3.1 ความสัมพันธ์ของคำถามและเหตุผลการเรียนรู้พบว่า คำถามและเหตุผลการเรียนรู้มีความสัมพันธ์กันตามการศึกษาของนักจิตวิทยา ตามที่ผู้วิจัยได้นำเสนอในบทที่ 2 ซึ่งพบว่า จำนวนของผู้เรียนที่มีรูปแบบการเรียนรู้ทางการมองเห็น (Visual Learner) เป็นหลัก มีประมาณ ร้อยละ 60 – 65 ของประชากร จำนวนของผู้เรียนที่มีรูปแบบการเรียนรู้ทางการได้ยิน (Auditory Learner) เป็นหลัก มีประมาณ ร้อยละ 30 – 35 ของประชากร และจำนวนของผู้เรียนที่มีรูปแบบการเรียนรู้ทางร่างกายและความรู้สึก (Kinesthetic learner) เป็นหลัก มีประมาณ ร้อยละ 5 – 10 ของประชากร

จากผลการวิจัยและความสอดคล้องกับวรรณกรรมที่ได้รวบรวมและศึกษา ผู้วิจัยจึงสรุปได้ว่า ผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยามีความเหมาะสมและสมเหตุสมผลในการวิจัยครั้งนี้

5.1.2 ผลการพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

จากการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ซึ่งมีความสัมพันธ์กับผลการพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ซึ่งผู้วิจัยได้สรุปผลการวิจัย ในบทที่ 4 โดยจำแนกตามกลุ่มของชุดข้อมูลต่างๆ ดังแสดงในภาพที่ 5.1 ถึง ภาพที่ 5.6

ภาพที่ 5.1 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1
จากภาพที่ 5.1 ด้านแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 1 พบว่า ปัจจัยที่มีความสำคัญต้นแบบนิสิตในกลุ่มที่ 1 ได้แก่ คำถามในข้อที่ 4 คำถามในข้อที่ 5 คำถามในข้อที่ 8 คำถามในข้อที่ 2 และคำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 67.57% ตั้งแสดงในตารางที่ 4.7 และตารางที่ 4.8

ภาพที่ 5.2 ด้านแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2

จากภาพที่ 5.2 ด้านแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 2 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 2 ได้แก่ คำถามในข้อที่ 2 และคำถามในข้อที่ 4 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 47.50% ตั้งแสดงในตารางที่ 4.9 และตารางที่ 4.10

ภาพที่ 5.3 ด้านแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3
จากภาพที่ 5.3 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 3 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 3 ได้แก่ คำถามในข้อที่ 1 คำถามในข้อที่ 8 คำถามในข้อที่ 9 คำถามในข้อที่ 2 คำถามในข้อที่ 3 และ คำถามในข้อที่ 5 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 56.06% ดังแสดงในตารางที่ 4.11 และตารางที่ 4.12

ภาพที่ 5.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4

จากภาพที่ 5.4 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 4 พบว่า ปัจจัยที่มีความสำคัญต่อต้นแบบนิสิตในกลุ่มที่ 4 ได้แก่ คำถามในข้อที่ 3 คำถามในข้อที่ 1 และ คำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับปานกลาง โดยมีค่า Accuracy = 47.50% ดังแสดงในตารางที่ 4.13 และตารางที่ 4.14

ภาพที่ 5.5 ต้นแบบรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5
จากภาพที่ 5.5 ด้านบนรูปแบบความสัมพันธ์นิสิตจากกลุ่มที่ 5 พบว่า ปัจจัยที่มีความสำคัญคือต้นแบบมีตัวเลขกลุ่มที่ 5 ได้แก่ คำถามในข้อที่ 7 และ คำถามในข้อที่ 2 ซึ่งต้นแบบนี้มีค่าความถูกต้องของอยู่ในระดับปานกลาง โดยมีค่า Accuracy = 40.00% ตั้งแสดงในตารางที่ 4.15 และตารางที่ 4.16

ภาพที่ 5.6 ด้านบนรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล

จากภาพที่ 5.6 ด้านบนรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล พบว่า ปัจจัยที่มีความสำคัญคือต้นแบบมีตัวเลข ได้แก่ คำถามในข้อที่ 2 คำถามในข้อที่ 8 คำถามในข้อที่ 7 คำถามในข้อที่ 5 คำถามในข้อที่ 4 คำถามในข้อที่ 1 และ คำถามในข้อที่ 9 ซึ่งต้นแบบนี้มีค่าความถูกต้องอยู่ในระดับสูง โดยมีค่า Accuracy = 74.32% ตั้งแสดงในตารางที่ 4.13 และตารางที่ 4.14 นอกจากนี้ ต้นแบบมีตัวเลขในภาพที่ 4.7 สามารถแสดงในรูปแบบของกฎต้นแบบ ตั้งแสดงในตารางที่ 5.2

ตารางที่ 5.2 กฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูล

ลำดับ	กฎต้นแบบกฎต้นแบบ	ผลลัพธ์
Rule 01	if Q2 = 2 then	Auditory
Rule 02	if Q2 = 3 and Q8 = 2 then	Auditory
Rule 03	if Q2 = 3 and Q8 = 3 and Q7 = 2 then	Auditory
Rule 04	if Q2 = 3 and Q8 = 3 and Q7 = 3 then	Visual
Rule 05	if Q2 = 3 and Q8 = 3 and Q7 = 4 then	Auditory
Rule 06	if Q2 = 3 and Q8 = 3 and Q7 = 5 then	Auditory
Rule 07	if Q2 = 3 and Q8 = 4 and Q7 = 2 then	Visual
Rule 08	if Q2 = 3 and Q8 = 4 and Q7 = 3 then	Visual
Rule 09	if Q2 = 3 and Q8 = 4 and Q7 = 4 then	Visual
Rule 10	if Q2 = 3 and Q8 = 4 and Q7 = 5 then	Auditory
Rule 11	if Q2 = 3 and Q8 = 5 then	Visual
Rule 12	if Q2 = 4 and Q5 = 2 and Q8 = 2 then	Kinesthetic
Rule 13	if Q2 = 4 and Q5 = 2 and Q8 = 3 then	Kinesthetic
ลำดับ	กฎต้นแบบกฎต้นแบบ	ผลลัพธ์
-------	--------------------	---------
Rule 14	if Q2 = 4 and Q5 = 2 and Q8 = 5 then	Visual
Rule 15	if Q2 = 4 and Q5 = 3 and Q4 = 3 then	Kinesthetic
Rule 16	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 3 then	Kinesthetic
Rule 17	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 3 then	Kinesthetic
Rule 18	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 4 then	Visual
Rule 19	if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 5 then	Visual
Rule 20	if Q2 = 4 and Q5 = 3 and Q4 = 5 then	Visual
Rule 21	if Q2 = 4 and Q5 = 4 and Q8 = 2 then	Auditory
Rule 22	if Q2 = 4 and Q5 = 4 and Q8 = 3 then	Visual
Rule 23	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 3 then	Auditory
Rule 24	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 3 then	Auditory
Rule 25	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 4 then	Visual
Rule 26	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 5 then	Visual
Rule 27	if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 5 then	Kinesthetic
Rule 28	if Q2 = 4 and Q5 = 4 and Q8 = 5 then	Visual
Rule 29	if Q2 = 4 and Q5 = 5 and Q4 = 3 then	Auditory
Rule 30	if Q2 = 4 and Q5 = 5 and Q4 = 4 then	Auditory
Rule 31	if Q2 = 4 and Q5 = 5 and Q4 = 5 then	Visual
Rule 32	if Q2 = 5 and Q9 = 2 then	Auditory
Rule 33	if Q2 = 5 and Q9 = 3 and Q1 = 3 then	Kinesthetic
Rule 34	if Q2 = 5 and Q9 = 3 and Q1 = 4 then	Visual
Rule 35	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 3 then	Kinesthetic
Rule 36	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 4 then	Visual
Rule 37	if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 5 then	Visual
Rule 38	if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 3 then	Kinesthetic
Rule 39	if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 4 then	Auditory
Rule 40	if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 4 then	Kinesthetic
Rule 41	if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 5 then	Auditory
Rule 42	if Q2 = 5 and Q9 = 5 then	Kinesthetic

*** Correct: 176 out of 195 training examples.***
ตารางที่ 5.2 แสดงกฎต้นแบบของต้นแบบรูปแบบความสัมพันธ์นิสิตจากทุกชุดข้อมูลจำนวนทั้งสิ้น 42 กฎต้นแบบ โดยจากผลการทดสอบกฎต้นแบบดังกล่าวพบว่า สามารถทำนายผลได้ถูกต้องตามชุดข้อมูลทั้งหมด คือ ถูกต้อง 176 คน จากจำนวนทั้งสิ้น 195 คน หรือ ร้อยละ 90.26

จากภาพที่ 5.1ถึงภาพที่ 5.5แสดงถึงความสัมพันธ์ระหว่างคำถามและหัวข้อที่มีต่อคำถามในแต่ละกลุ่ม และเมื่อนำมาพัฒนาเป็นต้นแบบในการทำนายรูปแบบการเรียนที่เหมาะสมของผู้เรียน ผู้วิจัยสามารถพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ได้รูปแบบการเรียนรู้หลากหลายจากผลลัพธ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ดังแสดงในภาพที่ 5.6 และสามารถสรุปรูปแบบของกฎต้นแบบ ดังแสดงในตารางที่ 5.2

ดังนั้นจากรูปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลลัพธ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและถูกต้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ด้วยเครื่องคอมพิวเตอร์

5.1.3 ผลการหาประสิทธิภาพรูปแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลลัพธ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

ผลการหาประสิทธิภาพรูปแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลลัพธ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ได้ถูกสรุปไว้ในตารางที่ 5.3 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม

ตารางที่ 5.3 ผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม

กลุ่มที่	ระดับความลึกที่เหมาะสม	ค่าความถูกต้อง
กลุ่มที่ 1	ระดับความลึกที่ 5	ร้อยละ 67.57
กลุ่มที่ 2	ระดับความลึกที่ 3	ร้อยละ 47.50
กลุ่มที่ 3	ระดับความลึกที่ 5	ร้อยละ 56.06
กลุ่มที่ 4	ระดับความลึกที่ 3	ร้อยละ 47.50
กลุ่มที่ 5	ระดับความลึกที่ 3	ร้อยละ 40.00
ทุกชุดข้อมูล	ระดับความลึกที่ 7	ร้อยละ 74.32

ตารางที่ 5.3 แสดงผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม พบว่า การทดสอบประสิทธิภาพในกลุ่มย่อย ค่าความถูกต้องอยู่ในระดับปานกลางถึงระดับสูง ในขณะที่การทดสอบประสิทธิภาพในต้นแบบทุกชุดข้อมูล พบว่า ค่าความถูกต้องอยู่ในระดับสูงสุด (ร้อยละ 74.32) จึงสรุปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิต ได้รูปแบบการเรียนรู้ที่หลากหลายจากผลลัพธ์
ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสอดคล้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ด้วยเครื่องคอมพิวเตอร์

5.2 ขั้นตอนที่ 2 การอภิปรายผลจากผลลัพธ์

ในขั้นตอนที่ 2 การอภิปรายผลจากผลลัพธ์นี้ ผู้วิจัยมุ่งอภิปรายใน 3 ประเด็น ตามวัตถุประสงค์ของการวิจัย

5.2.1 การอภิปรายผลการศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

จากการวิเคราะห์การศึกษาปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ผลลัพธ์มีความสอดคล้องกับผลการวิจัยในวรรณกรรมที่เกี่ยวข้อง ซึ่งความสอดคล้องนี้สะท้อนถึงแนวทางการศึกษาที่เป็นไปในทิศทางเดียวกัน แม้ว่าจะใช้เครื่องมือและเทคนิคที่แตกต่างกัน

ดังนั้นจึงสรุปได้ว่าปัจจัยต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสมเหตุสมผลในการวิจัยครั้งนี้

5.2.2 การอภิปรายผลการพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

จากการนำเสนอรูปแบบความสัมพันธ์ของนิสิตด้านแบบ ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา โดยการแบ่งจานตามกลุ่มย่อย และการวิเคราะห์ในภาพรวม พบว่า ต้นแบบรูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความหลากหลายและเหมาะสมในระดับที่แตกต่างกัน อย่างไรก็ตาม เมื่อนำข้อมูลทั้งหมดมาใช้เพื่อพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา พบว่า ต้นแบบดังกล่าวมีความถูกต้องในระดับสูง ดังแสดงในตารางที่ 5.3

ดังนั้นจึงสรุปได้ว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสมเหตุสมผลในการวิจัยครั้งนี้
5.2.3 การอภิปรายผลการหาประสิทธิภาพต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา

จากตารางที่ 5.3 แสดงผลการสรุปการวิเคราะห์ประสิทธิภาพในแต่ละกลุ่ม ซึ่งมีความสอดคล้องกับการพัฒนารูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา ดังแสดงใน ภาพที่ 5.1 ถึง ภาพที่ 5.6 พบว่า การทำสอบประสิทธิภาพในกลุ่มย่อย ค่าความถูกต้องอยู่ในระดับปานกลางถึงระดับสูง ในขณะที่การทำสอบประสิทธิภาพในต้นแบบทุกชุดข้อมูล พบว่า ค่าความถูกต้องอยู่ในระดับสูงสุด (ร้อยละ 74.32)

ดังนั้นจึงสรุปได้ว่า การหาประสิทธิภาพต้นแบบนิสิต และรูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสอดคล้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ด้วยเครื่องคอมพิวเตอร์

5.3 ขั้นตอนที่ 3 การนำเสนอข้อเสนอแนะ

จากผลการวิจัยที่ได้สรุปในประเด็นสำคัญทั้ง 3 ประเด็นตามวัตถุประสงค์การวิจัยนั้น ผู้วิจัยพบว่า รูปแบบความสัมพันธ์ของต้นแบบนิสิต ในรูปแบบการเรียนรู้ที่หลากหลายจากผลสัมฤทธิ์ทางการเรียนของนิสิตมหาวิทยาลัยพะเยา มีความเหมาะสมและสอดคล้องกับหลักการวิเคราะห์ทางสถิติและการเรียนรู้ด้วยเครื่องคอมพิวเตอร์เป็นอย่างยิ่ง ดังนั้น ผู้วิจัยจึงมีความเชื่อว่างานวิจัยและผลการวิจัยที่ศึกษาสามารถพัฒนาต่อยอดได้ในอนาคตอย่างแน่นอน โดยผู้วิจัยมีแผนและขั้นตอนดำเนินงานในอนาคต ต่างแสดงในภาพที่ 5.7
ภาพที่ 5.7 แผนและขั้นตอนการดำเนินงานในอนาคต

ภาพที่ 5.7 แสดงแผนและขั้นตอนการดำเนินงานในอนาคต โดยผู้วิจัยมีเป้าหมายและขั้นตอนที่ชัดเจนที่สามารถนำไปใช้ได้ในอนาคต ซึ่งผู้วิจัยต้องทำการขยายเครือข่ายและขอบเขตของการวิจัยเพื่อให้ครอบคลุมมหาวิทยาลัยต่าง ๆ ในประเทศไทย ตามเครือข่ายของผู้วิจัยในอนาคต

**
รายการอ้างอิง

รายการอ้างอิงภาษาไทย
กรรณิการ์ เนืองเฉลิม, อรรถพรฤทธิเกิด, และ ธนทนยา รัตนาภรณ์ (2558). การพัฒนาบทเรียนบนเครือข่ายอินเทอร์เน็ตโดยใช้ทฤษฎีคอนสตรัคติวิสต์ เรื่อง การประยุกต์ใช้ชุดโปรแกรมโอเพนออฟฟิศ. *Journal of Industrial Education*, 14(1), 56–62.

กัญญาวีร์ ชายเรียน, สุริศักดิ์ ประสานพันธ์, และ วาสินี แก้วอุไร (2559). การพัฒนารูปแบบการเรียนการสอนวิชาชีววิทยาโดยใช้ปัญหาเป็นฐานตามแนวทฤษฎีคอนสตรัคติวิสต์ เพื่อเสริมสร้างความสามารถในการคิดแก้ปัญหาสำหรับนักเรียนชั้นมัธยมศึกษาตอนปลาย. วารสารมหาวิทยาลัยราชภัฏลำปาง, 5(2), 18-32.

เกรียงศักดิ์ เจริญวงศ์ศักดิ์ (2558). การปฏิรูประบบวิจัยการศึกษาไทยในทศวรรษหน้า. *Silpakorn Educational Research Journal*, 7(2), 9–21.

คเณศจุลสุคนธ์, และ วิมล เหมือนคิด (2558). ความสัมพันธ์ระหว่างสัมพันธภาพระหว่างบุคคลและ การเป็นสมาชิกกลุ่มไม่เป็นทางการกับประสิทธิภาพในการทำงานของพนักงาน. วารสารวิจัยมหาสารคาม, 6(2), 52–65.

จักรวุฒิชนะพันธ์, กฤษดาผ่องพิทยา, วัลลภา อารีรัตน์, และมนสิชสิทธิสมบูรณ์ (2558). รูปแบบการส่งเสริมการเรียนรู้ตลอดชีวิตของสำนักงานส่งเสริมการศึกษาธิการและสำนักงานตามอัธยาศัยจังหวัดชัยภูมิ. วารสารบริหารการศึกษา, มหาวิทยาลัยขอนแก่น, 11(2), 157–165.

ชนกนาร์บุญวัฒนะกุล (2559). แนวทางการจัดการศึกษาการเรียนรู้ของนักเรียนในสังกัดสำนักงานเขตพื้นที่การศึกษาประถมศึกษาประจวบคีรีขันธ์เขต 2. *Veridian E-Journal, Silpakorn University (Humanities, Social Sciences and Arts)*, 9(3), 984–1004.

ชนิดายอดสาลี, และ กาญจนาบุญส่ง (2559). ปัจจัยที่ส่งผลต่อผลสัมพันธ์ทางการเรียนของนักเรียนในสังกัดสำนักงานเขตพื้นที่การศึกษาประถมศึกษาประจวบคีรีขันธ์เขต 12. *Veridian E-Journal, Silpakorn University (Humanities, Social Sciences and Arts)*, 9(1), 1208–1223.

ชบาเด็ดดวง (2549). การศึกษาการดำเนินการจัดกระบวนการเรียนรู้ตามสภาพจริงของโรงเรียนสุรศักดิ์มนตรี กรุงเทพมหานคร. วิทยานิพนธ์; มหาวิทยาลัยศรีนครินทรวิโรฒ, กรุงเทพมหานคร.
ณัฎติยาภรณ์ หยกอุบล. (2555). ปัจจัยที่ส่งผลต่อผลสัมฤทธิ์ทางการเรียนวิชาวิทยาศาสตร์ ของนักเรียนระดับชั้นประถมศึกษาปีที่ 6 โรงเรียนลาด็อกลัดสำนักงานคณะกรรมการการอุดมศึกษา กระทรวงศึกษาธิการ. วารสารการศึกษาและพัฒนาสังคมมหาวิทยาลัยบูรพา, 8(1), 85-102.

ทริราภัสส์ จันทึก, และ กัญญา ชื่นอารมณ์. (2554). ปัจจัยที่มีผลต่อผลสัมฤทธิ์ทางการเรียนในหมวดวิชาพื้นฐานวิชาชีฟของนักศึกษาพวกบาล คณะเภสัชศาสตร์ มหาวิทยาลัยปทุมธานี. วารสารวิชาการ มหาวิทยาลัยราชภัฏ..., 3(2), 33-42.

ธีระวัฒน์ จันทึก, ศิริภรณ์ ศิลปะวานิช, และน้ําฝน เสนางคนิกร. (2555). การจัดเรียนรู้ตามรูปแบบ VARK ของนักศึกษาสาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร. วารสารมหาวิทยาลัยราชภัฏ..., 11(2), 145-158.

นิภาพร ชนะมาร และ พรรณี สิทธิเดช. (2557). การวิเคราะห์ปัจจัยการเรียนรู้ด้วยการคัดเลือกคุณสมบัติและการพยากรณ์. วารสารมหาวิทยาลัยราชภัฏสกลนคร, 6(12), 31-45.

พันธิการ์ วัฒนกุล และสุรศักดิ์ มังสิงห์. (2560). ระบบประเมินห้องเรียนอัจฉริยะเสมือนสำหรับการศึกษาปี 4.0 (มิติทางเทคนิค). Journal of Industrial Technology Ubon Ratchathani Rajabhat University, 7(2), 160-175.

ราชกิจจานุเบกษา. (n.d.). Retrieved May 11, 2019, from http://www.mratc.hakitcha.soc.go.th
โรสนี จริยะมาการ, และ ชื่นใจ สุกป่าน. (2561). ปัจจัยที่มีอิทธิพลต่อผลสัมฤทธิ์ทางการเรียนวิชาคณิตศาสตร์ของนักศึกษามหาวิทยาลัยราชวิทยาลัยนครินทร์: การวิเคราะห์พหุระดับ. วารสารมหาวิทยาลัยราชวิทยาลัยนครินทร์ สาขาบุญญาศาสตร์และสังคมศาสตร์, 5(2), 26-40.

วรวงศ์ น่อมอินทร์. (2560). การจัดการข้อมูลในองค์กรสู่การจัดการเนื้อหาดิจิทัล. วารสารการอาชีวะและเทคนิคศึกษา, 7(2), 18-26.

วรพร กระรระ. (2560). การติดตามและประเมินผลการศึกษาตามแผนการศึกษาแห่งชาติ ฉบับปรับปรุง (พ.ศ. 2552 – 2559). วารสารวิจัย มนุษยศาสตร์และสังคมศาสตร์มหาวิทยาลัยรังสิต, 13(3), 1-21.

ศิรพร ดุษฎีบริบูรณ์. (2560). ปัจจัยที่ส่งผลต่อผลสัมฤทธิ์ทางการเรียนภาษาอังกฤษธุรกิจของนักศึกษาไทย: การศึกษาการวิจัยงานทางด้านการศึกษาธุรกิจ. วารสารมหาวิทยาลัยศิลปากร, 37(2), 289-308.

ศุภามณ จันทร์สกุล. (2561). เทคนิคเหมืองข้อมูลในการวิเคราะห์ข้อมูลทางการพยาบาล. วารสารวิชาการมหาวิทยาลัยศิลปากร, ฉบับวิทยาศาสตร์และเทคโนโลยี, 12(2), 83-96.

สุภัทร ถั่ว (2561). การพัฒนารูปแบบการเรียนรู้แบบโครงการร่วมกับเทคนิคเชิงสถิติผ่านคลาวด์เทคโนโลยี เพื่อส่งเสริมความสามารถสร้างสรรค์และการสร้างนวัตกรรม. วารสารการอาชีวะและเทคนิคศึกษา, 8(15), 63-76.

สุทิพ คำทิพย์, และ นิพนธ์ บุญสว่าง. (2561). การศึกษาเทคนิคพยากรณ์อาชีพสำหรับนักศึกษาระดับปริญญาตรีสาขาคอมพิวเตอร์โดยใช้เทคนิคเหมืองข้อมูล. วารสารวิชาการการจัดการเทคโนโลยีสารสนเทศและบัณฑิตวิทยาการ, 5(1), 164-171.

สิทธิชัย ลายชม. (2561). ระบบบริหารจัดการเรียนรู้ร่วมกันบัณฑิตศึกษาเพื่อส่งเสริมทักษะการทำงานร่วมกัน. วารสารการอาชีวะและเทคนิคศึกษา, 8(15), 25-31.

สุนันท์ คงศรี, และ นิราณ อุทัย. (2555). ปัจจัยที่ส่งผลต่อผลสัมฤทธิ์ทางการเรียนวิชาการพยาบาลศาสตร์ ทาราและพละศูนย์ 1 ของนักศึกษามหาวิทยาลัยราชภัฏสวนดุสิต. วารสารวิจัย มนุษยศาสตร์และสังคมศาสตร์มหาวิทยาลัยราชภัฏสวนดุสิต, 8(2), 77-89.

สุรัตน์ ฤทธิ์, ธิดาทิพย์, อัญชลี ทองเอม, และ ธัญธัช วิภัติภูมิประเทศ. (2560). การศึกษาปัจจัยที่ส่งผลต่อผลสัมฤทธิ์ทางการศึกษาของนักศึกษาระดับปัณฑิตศึกษา สาขาวิทยาศาสตร์ทางเศรษฐศาสตร์และ การสอนมหาวิทยาลัยธุรกิจบัณฑิต. วารสารบัณฑิตวิทยาลัยมหาวิทยาลัยธุรกิจบัณฑิต, 5(2), 847-861.
สุรีย์ พุ่มเฉลิม. (2558). การออกแบบรูปแบบระบบสารสนเทศเพื่อจัดการการศึกษาแบบบูรณาการ การเรียน กับการทำงานของสถาบันอุดมศึกษาเอกชนในประเทศไทย. FEU Academic Review, 9(2-4), 76-76.

เสาร์วลักษณ์ หนูสวัสดิ์. (2554). ความต้องการพัฒนาตนเองของพนักงานบริษัท เมดไลน์ จำกัด. วิทยานิพนธ์; มหาวิทยาลัยรามคำแหง, กรุงเทพมหานคร.

อรรถสิทธิ์ ตันติวิรัชกุล, อิมรอน มะลูลีม, นัยนา เกิดวิชัย, และ จรัญ มะลูลีม. (2555). สัมฤทธิผลของการนโยบายการปฏิรูปการศึกษาการศึกษาในกำกับของรัฐ. วารสารวิชาการมหาวิทยาลัยราชภัฏภูเก็ต, 8(2), 79-99.

อรอนุตร ธรรมจักร, ทรงศักดิ์ สองสนิท, และประวิทย์ สิมมาทัน, (2560). การสังเคราะห์รูปแบบการเรียนรู้แบบผสมผสาน ตามลีลาการเรียนรู้แบบวีเอเคเลิร์นนิ่ง โดยใช้เทคนิคการเรียนรู้แบบโครงการเพื่อส่งเสริมการคิดแบบมีวิจารณญาณ. Journal of Industrial Technology Ubon Ratchathani Rajabhat University, 7(2), 132-145.

อาคม โพธิ์สุวรรณ, และ สุภาภรณ์ วรอรุณ. (2549). ปัจจัยที่มีอิทธิพลต่อผลสัมฤทธิ์ทางการเรียนวิชาสารสนเทศทางการพยายามและการค้นหาของนักศึกษาพยาบาลศาสตร์. วิทยานิพนธ์; วิทยาลัยพยาบาลบรมราชชนนี สุพรรณบุรี.
รายการอ้างอิงภาษาต่างประเทศ

“Thailand - National Education Act, B.E. 2542 (1999).” [Online]. Available: http://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=82860&p_country=THA&p_count=441. [Accessed: 20-Feb-2019].

Abbas, A., Zhang, L., & Khan, S. U. (2015). A survey on context-aware recommender systems based on computational intelligence techniques. Computing, 97(7), 667–690. https://doi.org/10.1007/s00607-015-0448-7

Adenipekun, M., Ibiyemi, A., Adnan, Y. M., & Daud, M. N. (2015). Comparative analysis of sustainable facilities planning and users’ satisfaction in Nigerian universities—a standardised residuals approach. International Journal of Higher Education and Sustainability, 1(1), 40–65. https://doi.org/10.1504/IJHES.2015.073447

Aggarwal, C. C., & Zhai, C. (Eds.). (2012). Mining Text Data. Retrieved from https://www.springer.com/gp/book/9781461432227

Ahmad, H., and Ibrahim, B. (2015). Leadership and the Characteristic of Different Generational Cohort towards Job Satisfaction. Procedia Social and Behavioral Sciences, 204, 14–18. https://doi.org/10.1016/j.sbspro.2015.08.104

Alanbaei, H., Faisal, M. H., & Alsumait, A. A. (2018). VAK Personalized Learner-Sourced E-Notes. 2018 International Conference on Computing Sciences and Engineering (ICCSE), 1–5. https://doi.org/10.1109/ICCSE1.2018.8374226

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., ... Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives, abridged edition. White Plains, NY: Longman.

Apple, M. W. (2003). Competition, knowledge, and the loss of educational vision. Philosophy of Music Education Review, 11(1), 3–22.

Binyamin, S. S., Rutter, M. J., & Smith, S. (2019). Extending the Technology Acceptance Model to Understand Students’ use of Learning Management Systems in Saudi Higher Education. International Journal of Emerging Technologies in Learning, 14(3).

BLOOM’S, T. M. E. (1965). Bloom’s taxonomy of educational objectives. Longman.
Boccanfuso, D., Larouche, A., and Trandafir, M. (2015). Quality of Higher Education and the Labor Market in Developing Countries: Evidence from an Education Reform in Senegal. *World Development, 74*, 412–424. https://doi.org/10.1016/j.worlddev.2015.05.007

Boonchom, S., Nuchwana, L., and Amorn, M. (2012). The Development of Standards, Factors, and Indicators for Evaluating the Quality of Classroom Action Research. *Procedia - Social and Behavioral Sciences, 69*, 220–226. https://doi.org/10.1016/j.sbspro.2012.11.402

Cabral, A. P., and Huet, I. (2011). Research In Higher Education: The Role Of Teaching And Student Learning. *Procedia - Social and Behavioral Sciences, 29*, 91–97. https://doi.org/10.1016/j.sbspro.2011.11.211

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). *CRISP-DM 1.0 Step-by-step data mining guide*.

Connors, M. C. (2016). Creating cultures of learning: A theoretical model of effective early care and education policy. *Early Childhood Research Quarterly, 36*, 32–45. https://doi.org/10.1016/j.ecresq.2015.12.005

Crockett, K., Latham, A., & Whitton, N. (2017). On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees. *International Journal of Human-Computer Studies, 97*, 98–115. https://doi.org/10.1016/j.ijhcs.2016.08.005

Department of Curriculum and Instruction Development, Ministry of Education. (2001). Basic Education Curriculum B.E. 2544 (A.D. 2001). The Express Transportation Organization of Thailand, Bangkok.

Dieleman, H., & Juarez-Najera, M. (2015). Introducing a transdisciplinary curriculum to foster student citizenship: A challenge beyond curricula reform. *International Journal of Higher Education and Sustainability, 1*(1), 3–18. https://doi.org/10.1504/IHES.2015.073463

Dumitrașcu, O., & Șerban, A. (2013). Present State of Research Regarding University Choice and Attractiveness of the Study Area. *Procedia Economics and Finance, 6*, 252–258. https://doi.org/10.1016/S2212-5671(13)00138-X
Erdt, M., Fernández, A., & Rensing, C. (2015). Evaluating Recommender Systems for Technology Enhanced Learning: A Quantitative Survey. *IEEE Transactions on Learning Technologies, 8*(4), 326–344.
https://doi.org/10.1109/TLT.2015.2438867

Fong, S., Si, Y.-W., & Biuk-Aghai, R. P. (2009). Applying a hybrid model of neural network and decision tree classifier for predicting university admission. *2009 7th International Conference on Information, Communications and Signal Processing (ICICS)*, 1–5. IEEE.

Freund, Y., and Mason, L. (1999). The Alternating Decision Tree Learning Algorithm. In *Proceedings of the Sixteenth International Conference on Machine Learning* (pp. 124–133). Morgan Kaufmann Publishers Inc.

Gudeva, L. K., Dimova, V., Daskalovska, N., and Trajkova, F. (2012). Designing Descriptors of Learning Outcomes for Higher Education Qualification. *Procedia - Social and Behavioral Sciences, 46*, 1306–1311.
https://doi.org/10.1016/j.sbspro.2012.05.292

Gutlein, M., Frank, E., Hall, M., & Karwath, A. (2009). Large-scale attribute selection using wrappers. *2009 IEEE Symposium on Computational Intelligence and Data Mining*, 332–339.
https://doi.org/10.1109/CIDM.2009.4938668

Ho, D., Lee, M., and Teng, Y. (2016). Exploring the relationship between school-level teacher qualifications and teachers’ perceptions of school-based professional learning community practices. *Teaching and Teacher Education, 54*, 32–43.
https://doi.org/10.1016/j.tate.2015.11.005

Huet, I., Figueiredo, C., Abreu, O., Oliveira, J. M., Costa, N., Rafael, J. A., and Vieira, C. (2011). Linking a Research Dimension to an Internal Quality Assurance System to Enhance Teaching and Learning in Higher Education. *Procedia - Social and Behavioral Sciences, 29*, 947–956.
https://doi.org/10.1016/j.sbspro.2011.11.327

Kaeophanuek, S., Na-Songkhla, J., & Nilsook, P. (2019). A Learning Process Model to Enhance Digital Literacy using Critical Inquiry through Digital Storytelling (CIDST). *International Journal of Emerging Technologies in Learning, 14*(3).
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. *Artificial Intelligence, 97*(1–2), 273–324.

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. *Theory Into Practice, 41*(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2

Kurilovas, E. (2018). On data-driven decision-making for quality education. *Computers in Human Behavior*. https://doi.org/10.1016/j.chb.2018.11.003

Lee, K. W., Thang, S. M., Tan, C. K., Ng, S. I., Yoon, S. J., Chua, Y. W., and Nadin, S. S. (2014). Investigating the ICT Needs of ‘Digital Natives’ in the Learning of English in a Public University in East Malaysia. *Procedia - Social and Behavioral Sciences, 118*, 242–250. https://doi.org/10.1016/j.sbspro.2014.02.033

Maneerat, P., Malaivongs, K., and Khlaisang, J. (2015). The Comparison of Thai Qualification Framework for Higher Education and Capability Maturity Model Integration for Service. *Procedia - Social and Behavioral Sciences, 182*, 225–231. https://doi.org/10.1016/j.sbspro.2015.04.759

Marginson, S. (2010). Higher education in the global knowledge economy. *Procedia - Social and Behavioral Sciences, 2*(5), 6962–6980.

Nuankaew P., Nuankaew W., and Thamma T. (2016). The Recommended System for the Relationship between Educational Programs and Students’ Interests. International Conference on Digital Arts, Media and Technology. 2-3A.4:34.

Nuankaew, P., & Temdee, P. (2015a). Of online community: Identifying mentor and mentee with compatible different attributes and decision tree. 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1–6. IEEE.

Nuankaew, P., & Temdee, P. (2015b). Online mentoring model by using compatible different attributes. *Wireless Personal Communications, 85*(2), 565–584.

Nuankaew, P., & Temdee, P. (2019). Matching of compatible different attributes for compatibility of members and groups. *International Journal of Mobile Learning and Organisation, 13*(1), 4–29.
Nuankaew, P., & Temdee, P. (2019). Matching of compatible different attributes for compatibility of members and groups. *International Journal of Mobile Learning and Organisation, 13*(1), 4–29.

Nuankaew, P., and Temdee, P. (2015). Online Mentoring Model by Using Compatible Different Attributes. *Wireless Personal Communications, 85*(2), 565–584. https://doi.org/10.1007/s11277-015-2755-x

Nuankaew, P., Nuankaew, W., Phanniphong, K., & Bussaman, S. (2017). Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning. *International Conference on Interactive Collaborative Learning*, 400–412. Springer.

Nuankaew, P., Nuankaew, W., Phanniphong, K., &Bussaman, S. (2018). Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning. In M. E. Auer, D. Guralnick, & I. Simonics (Eds.), *Teaching and Learning in a Digital World* (pp. 400–412). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73204-6_45

Nuankaew, W., Nuankaew, P., Bussaman, S., &Tanasirathum, P. (2017). Hidden academic relationship between academic achievement and higher education institutions. In *2017 International Conference on Digital Arts, Media and Technology (ICDAMT)* (pp. 308–313). https://doi.org/10.1109/ICDAMT.2017.7904982

Nuchwana, L. (2012). How to Link Teaching and Research to Enhance Students’ Learning Outcomes: Thai University Experience. *Procedia - Social and Behavioral Sciences, 69*, 213–219. https://doi.org/10.1016/j.sbspro.2012.11.401

Office of the Higher Education Commission, Ministry of Education, Thailand. 2006. National Qualifications Framework for Higher Education in Thailand Implementation Handbook. Retrieved May 02, 2016 from http://www.mua.go.th/users/tqfhed/news/FilesNews/FilesNews8/NQF-HEd.pdf.
Office of the Higher Education Commission, Ministry of Education, Thailand. 2009. Thai Qualifications Framework for Higher Education. B.E. 2552. Retrieved May 02, 2016 from http://www.mua.go.th/users/tqf-hed/.

Office of the National Education Commission, Office of the Prime Minister. (1999). National Education Act B.E. 2542 (1999). Office of the National Education Commission, Bangkok.

Overberg, J., Broens, A., Günther, A., Stroth, C., Knecht, R., Golba, M., & Röbken, H. (2019). Internal quality management in competence-based higher education – An interdisciplinary pilot study conducted in a postgraduate programme in renewable energy. Solar Energy, 177, 337–346. https://doi.org/10.1016/j.solener.2018.11.009

Ozkan, M., and Solmaz, B. (2015). Mobile Addiction of Generation Z and its Effects on their Social Lifes: (An Application among University Students in the 18-23 Age Group). Procedia - Social and Behavioral Sciences, 205, 92–98. https://doi.org/10.1016/j.sbspro.2015.09.027

Pereira, D., Flores, M. A., Simão, A. M. V., and Barros, A. (2016). Effectiveness and relevance of feedback in Higher Education: A study of undergraduate students. Studies in Educational Evaluation, 49, 7–14. https://doi.org/10.1016/j.stueduc.2016.03.004

Phanniphong, K., Nuankaew, P., Teeraputon, D., Nuankaew, W., Tanasirathum, P., & Bussaman, S. (2018). The Distinction Learning Style in Learning Outcomes of the Secondary School Learner. 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-ICON), 1–5. https://doi.org/10.1109/TIMES-iCON.2018.8621778

Polat, S. (2012). The factors that students consider in university and department selection: a qualitative and quantitative study of Kocaeli University, Faculty of Education students. Procedia-Social and Behavioral Sciences, 47, 2140–2145.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation.
Provost, F., & Fawcett, T. (2013). *Data Science for Business: What you need to know about data mining and data-analytic thinking*. O’Reilly Media, Inc.

Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. *Procedia Computer Science, 72*, 414–422. https://doi.org/10.1016/j.procs.2015.12.157

World Education Forum. (2015). Education 2030: Incheon Declaration “Towards inclusive and equitable quality education and lifelong learning for all”. Retrieved May 02, 2016 from https://en.unesco.org/world-education-forum-2015/incheon-declaration.

Zheng, Y., Yang, Y., Chai, H., Chen, M., & Zhang, J. (2019). The Development and Performance Evaluation of Digital Museums Toward Second Classroom of Primary and Secondary School—Taking Zhejiang Education Technology Digital Museum as An Example. *International Journal of Emerging Technologies in Learning (IJET), 14*(2), 69–84.
ภาคผนวก
ภาคผนวก ก
แบบสอบถามการวิจัย

แบบสอบถามการวิจัย เรื่อง การศึกษาต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน ณ มหาวิทยาลัยพะเยา ประเทศไทย

แบบสอบถามการวิจัย
เรื่อง การศึกษาต้นแบบนิสิตในรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน
ณ มหาวิทยาลัยพะเยา ประเทศไทย

ส่วนที่ 1 ข้อมูลส่วนตัว
1. ชื่อ ...
2. อชิร ...
3. ชั้น ...
4. สาขาวิชา ...
5. คณะ ...

ส่วนที่ 2 ความคิดเห็นเกี่ยวกับรูปแบบการเรียนรู้ที่หลากหลายของผลสัมฤทธิ์ทางการเรียน

5. ความที่คิดเห็นที่ถูกต้องที่สุด

4. ผลการเรียนรู้ที่ดีที่สุด

3. ผลการเรียนรู้ที่ดี

2. ผลการเรียนรู้ที่ไม่ดี

1. ผลการเรียนรู้ที่ไม่ดีที่สุด
ตารางที่ 1 ระดับความดีคิดเป็นที่ได้ผลบังคับตามแผนการเรียนที่จัดทำตามแผนการเรียนในระดับใด

ปัจจัยของการเรียน	ระดับความดีคิดเป็นการเรียน	(1)	(2)	(3)	(4)	(5)
1. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
2. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
3. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
4. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
5. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
6. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
7. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
8. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	
9. คุณเลือกสิ่งเรียนที่มี "สิ่งเรียนใดติดโดย	ระดับใด	ระดับใด	ระดับใด	ระดับใด	ระดับใด	

ลงท้าย: ทับที่รับทราบแผนการเรียนและภารกิจที่ให้ยิ่งขึ้น
บทความวิจัย เรื่อง
Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand

ผู้แต่ง
Praty Naankaew, Wongpanya Nuankaew, Kanakarn Phanniphong, Sasithon Imwut, and Sittichai Bussaman
Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand

https://doi.org/10.3991/ijet.v14i12.10352

Praty Nuankaew
University of Phayao, Phayao, Thailand

Wongpanya Nuankaew\(^{(2)}\)
wongpanya.nu@rmu.ac.th

Kanakarn Phanniphong
Rajamangala University of Technology Tawan-Ok, Chon Buri, Thailand

Sasithon Imwut
Vongchavalitkul University, Nakhon Ratchasima, Thailand

Sittichai Bussaman
Rajabhat Mahasarakham University, Maha Sarakham, Thailand

Abstract—Attitudes and learning styles can affect academic achievement at different levels. While analyzing attitudes and learning styles can not only use basic statistics, using advanced tools to analyze the students' in-depth elements is discussed. Therefore, this research offers an appropriate method for clustering academic achievement (GPA) that support student’s attitudes and learning styles. At the same time, this research is aimed to study the level of attitudes towards learning styles in different academic achievement of students at the University of Phayao. The data collection was conducted from 195 students from 17 schools and colleges at the University of Phayao, Thailand. The results show that there is a variety of cluster in students’ attitudes and learning styles with a significant pattern (types of success) of the students’ model, while the model performance has a very high efficiency to the model.

In future work, it will be applied with other universities in Thailand and also used in developing applications for providing a program recommended for appropriate educational programs.

Keywords—Educational Data Mining, Students Model, Different Academic Achievement, Attitudes Data Mining

1 Introductions

In the age of knowledge competition, education is the expectation for the future. Everyone aims for a degree to be used as a competitive tool [1-3, 17-18]. It promotes various processes in improving the quality of education, improving student quality,
and developing the foundations of an advanced society [3-4]. In addition, it is also used to drive the country and the economy as people with knowledge that can be in competition with other developing or developed nations. The results lead to an education system that plays an important and significant role in all aspects [4-7, 17].

For Thailand, education has been developed for a long time. Originally, education in Thailand was conducted in the temples and families. Only men were accepted to undertake an educational learning process. Later, there was a systematic reconstruction of education [10]. Until now, the education system for Thai people is an Education for All [7, 9-10]. Educational management is systematically organized. It has divided the educational level into two stages. The first stage is basic education which begins with an early childhood level, then proceeding into the elementary level, lower secondary level, and finally at the upper secondary level. The secondary stage is higher education, which is an optional final stage of formal learning [7, 10].

From the current situation, where technology is changing rapidly, the pattern of learning from the instructor to the lecturer in front of the class is no longer sufficient [1-4]. Searching for learners' perceptions based on the potential and suitability of the learner has received attention from many researchers and educators [7]. Encouraging learners to recognize the process of finding information and knowledge is important [1-2]. These various reasons have convinced the researchers to find the essence of the process. Initially, the researchers found that most of the research was in psychology and educational development, which is often studied in abstract terms and general statistical comparisons [1-4].

In this research, the goal of the researchers is clearly different. One is an obvious difference; the researchers want to present some concrete results. The concrete results obtained must be able to measure and evaluate according to the scientific principles. The goal of the research is to conduct in accordance with the research framework shown in Figure 1. From Figure 1, it can be seen that the process and procedures of

![Fig. 1. Research Framework](http://www.i-jet.org)
the research has clear goals with clear results. It consists of three components. The first component is the environment which is the cause and importance of research problems. The second component is the research methodology by which researchers describe the operations, results analysis, and performance results. The third component is knowledge bases and future works, which discusses the results and determines future operations.

From the research framework, it emphasizes the importance of research objectives that need to find an appropriate method for clustering academic achievement (GPA) that support student’s attitudes and learning styles, which is the beginning of research solutions as shown in Figure 2.

![Research Goals and Research Processes](image)

Fig. 2. Research Goals and Research Processes

Picture 2 shows the goal of conducting research. In addition, this research is aimed towards studying the level of attitudes towards learning styles in different academic achievement of students at the University of Phayao. The data collection was conducted from 195 students from 17 schools and colleges at the University of Phayao, Thailand.

The order and outline of the paper are structured in a simple manner which is divided into six sections. The first section discusses the importance and origin of research. The second section summarizes the essentials and other research related to the student’s model and academic achievement. The third section describes the process and steps in research methodology. The fourth section is the research report. The fifth section is discussion of the research results. Finally, the sixth section is a summary of all important issues related to the research and future works.

2 Literature and Related Research

This section is a summary of important and relevant research related to the work of developing students model and analyzing learners’ awareness patterns. Topics in this section include student learning styles, and development of educational models.
2.1 Student learning styles

Student learning style refers to the characteristics of student learning behavior [5, 8, 11-13, 17]. It is a pattern of learning that responds to individual perceptions: examples are social learning, conceptualization of understanding, and creating interaction with what students want to learn.

Many researchers are trying to study and develop processes that promote perception and create learning patterns that are significant to academic achievement [9, 14-15]. Every research provides many results and benefits to the education system and learners. In addition, the learning styles that have been developed are also varied such as, Kolb’s learning styles model which describes the learning style based on the learner's experience [5, 8], Rancourt’s learning styles model which describes the learning style based on the learner's psycho-epistemological modes [11], Hemispheric dominance and learning styles model which describes the learning style based on the learner's hemispheric (brains) preference [11], and VAK’s learning styles model which describes the learning style based on the learner's perceptions [11-13]. Each learning style presented earlier is a reference based on the abilities, skills, preferences, and characteristics of each student. However, this research aims to find results that are influenced by the VAK’s learning styles.

The VAK’s learning style model has been developed by psychologists to identify how students perceive learning. VAK stands for visual (V), auditory (A), and kinesthetic (K), which is the process of getting information for human ways of receiving effective learning and development [12-13]. The specific characteristics of the perception are clearly different. Visual is a characteristic of students who are visually distinctive. They can absorb and retain information better when presented with pictures, diagrams and charts. Auditory is a characteristic of students who have an important role in listening. They will improve their learning in situations of lectures and group discussions. Kinesthetic is a characteristic of learners who like physical movement like physical experiences. They will do better when they act and respond to their activities and learning.

The essence and differences of the VAK’s learning styles are shown in Table 1.

	Visual	Auditory	Kinesthetic
These learners will respond to situations such as:	These learners will respond to situations such as:	These learners will respond to situations such as:	
I received a picture.	What song makes you feel calm. The noise caused me to learn nothing.	Body testing makes me feel self-improvement. Practice is the heart of the learning process.	
What do you see?			
What are the images in your mind?			
Key Points:	Key Points:	Key Points:	
Learners respond to picture, graphic, and object	Learners prefer verbal presentations	Learners prefer a physical, and hands-on approach	

Table 1 shows the importance and differences of VAK’s learning styles which the researchers will apply in the data collection process to analyze the relationship between students’ perceptions of academic achievement.
2.2 Development of educational models

The educational model in this research is limited to the prototype of describing the relationship between the learning process, student performance, and student achievement. Therefore, the educational model refers to the scientific process that the researchers focused on to find the facts. This kind of educational model is interesting because the results of that model can be studied further on in a step-by-step manner for application and concrete development of educational quality [5-9, 13].

A clear example of the research of learning styles and further development is the matching of compatible mentor and mentee [5], recommender system of educational programs that match the learner's learning style [7], and using tools to promote learning styles that are relevant to learners [6, 17]. Moreover, the use of advance technology that is directly related to the analysis of learner behavior can benefit the learners, schools, and the country in a wide range [15]. This tool is called Educational Data Mining (EDM).

Educational Data Mining (EDM) is a new trend of educational reform for the development of students' potential and finding knowledge in a series of overlapping information that focuses on finding useful features and patterns for the performance of the students [15]. Moreover, learning in the 21st century has changed vastly. For example, the role of the teacher changes as an educator who becomes a coach who gives advice. Changes are also in the role of the students who are waiting for knowledge from the instructor to becoming a self-seeking person. Changes in educational facilities in the building or in the classroom become a study from anywhere and anytime through the Internet. Changes in the patterns of teaching and learning of face-to-face is a study through avatars in a virtual classroom. From the example, it can be seen that the educational management model has completely changed [5-9, 13, 15, 18].

Although the educational management model has completely changed the criteria and processes for measuring the results of the students still use the old standard [10]. The assessment criteria still uses the average academic results, which is primarily known as the GPA: Grade Point Average. In Thailand, graduation at primary and secondary levels is determined only with any academic results and completing all activities designated by the school [10]. For the university, only a minimum GPA of 2.00 can be obtained for a bachelor's degree. When considering in-depth study results, it was found that many students graduated inappropriately. In contrast, many schools in Thailand provide high grades to students in order to facilitate learners to gain a competitive advantage in the university entrance examination. It can be seen that using the GPA can only assess the students' performance in general, but not effective in clearly identifying the specific aptitudes of the students. Therefore, this research offers an appropriate method for clustering academic achievement (GPA) that supports the student’s attitude and learning styles.

3 Research Methodology

The research methodology in this research places great importance on the research process and conceptual framework. It consists of five important parts:
1. Target group design
2. Tool development
3. Target group selection and data collection
4. Data preparation
5. Model development and performance, as shown in Figure 3.

3.1 Target group design

The target group design aims to be able to share the knowledge towards developing the students' potential and quality of education, which mainly refers to students at the University of Phayao. Thus, the population and sample groups need to be designed in accordance with the overall context of the students at the University of Phayao. The researchers therefore set the goal of collecting data from all schools and colleges at the University of Phayao.

However, the researchers give importance and attention to the research objectives and research questions, which consist of two issues; Question 1: How much does the academic achievement level affect the clusters and learning style of students at the University of Phayao? Question 2: How much of a difference in attitude levels toward the learning style affect the clusters and learning style of students at the University of Phayao?

For finding the answers in this research questions, the researchers used the basic statistical techniques and applied them to the data mining techniques to find the best solutions to the research objectives.

3.2 Tool development

The tool used in this research was the questionnaire. It is used to gather attitudes towards various factors. In addition, it is also used to develop the pattern of different learning styles for individual students at the University of Phayao. The questionnaire was in a multiple choice format to make it easier for respondents to provide the in-
formation. The questionnaire consisted of three sections: Section 1 is the explanation; the objective of section 1 is to explain the purpose of collecting data for this questionnaire. Section 2 is the general information of the respondents; the purpose of section 2 is to summarize the overall replies from the respondents. Section 3 is the level of attitude towards the different learning styles; it is used to analyze various factors related to the learners’ attitudes. In addition, the data and information obtained will be used to create and test the models.

After creating the prototype of the questionnaire, the researchers then brought the tool to three experts for consideration to find the efficiency of the questionnaire. The questions used in the questionnaire are in the Thai language, so that respondents were able to obtain a great deal of understanding.

The essence of the questionnaire is shown in Table 2 below.

Table 2. Essence of the Questionnaire
No.

1.
2.
3.
4.
5.
6.
7.
8.
9.

Table 2 shows the details of the questions in section 3, which consists of 9 questions. In addition, Table 2 also shows the types of perceptions and learning styles of each questions. In rating the attitude level to the question, the researchers used the Likert’s scale method, which consists of five levels. Setting the score and meaning of acceptance are displayed in Table 3:

Table 3. Score and Meaning
Score
1
2
3
4
5

3.3 Target group selection and data collection

In selecting the sample group, the researchers determined that it would be more comprehensive by requiring the sample group from all departments at the University of Phayao. The departments obtained from the University of Phayao consisted of 17
schools and colleges; College of Continuing Education, School of Agriculture and Natural Resources, School of Allied Health Sciences, School of Architecture and Fine Arts, School of Dentistry, School of Energy and Environment, School of Engineering, School of Information and Communication Technology, School of Law, School of Liberal Arts, School of Management and Information Sciences, School of Medical Sciences, School of Medicine, School of Nursing, School of Pharmaceutical Sciences, School of Political and Social Science, and School of Science.

Upon collecting data in the research from the students in the University of Phayao, the students who were studying in the academic year 2018 had been randomly selected.

3.4 Data preparation

The process of preparing data is the most time-consuming step. The best model can be obtained from a good data mining analysis, which needs to be prepared for data availability and accuracy. Therefore, the preparation of data for use in the analysis must be given special importance.

Data preparation consists of three sub-steps: data selection, data cleaning, and data transformation. Data selection is the information used to determine the goals and objectives of the analysis and used to select only relevant information. Data cleaning is the process of filtering data by removing redundant data and correcting data that is faulty. Data transformation is the process of converting the data format into the correct format and allowing the data to be used for analysis according to the process of data mining.

3.5 Model development and performance

Model development and performance are the processes of analyzing and designing a process for developing and testing a model which consists of four main steps:

1. Clustering analysis
2. Determining the number of clusters
3. Implementing model
4. Model performance

Clustering analysis: Clustering analysis is the analysis process for grouping the density to balance the data in data collection. The data used in grouping is the grade point average of students (GPA). It is used to separate student’s performance that refers to the academic achievement of a set of related data collection.

Tools used for analyzing cluster are k-Means and x-Means, where k-Means is used to determine the number of the optimal members in each data sets. For example, the minimum of GPA in data set is equal to 1.90, the maximum of GPA in data set is equal to 3.90, and the average of GPA in data set is equal to 2.97. The median of GPA in data set is equal to 2.90. It can be seen that the average of GPA is over than the median of GPA, which used k-Means to re-group the appropriate cluster in each data
series. X-Means clustering is the change management of k-Means clustering, which manages cluster allocations by trying to replicate partitions and separates the best results until a certain threshold is reached. The goal is determining the intrinsic group in a set of unlabeled data.

Determining the Number of Clusters: Determining the number of clusters is how to select the appropriate clusters. The method chosen to decide the number of clusters was called k-optimization [5]. K-Optimization is based on an elbow decision concept for selecting k-value and x-values. The decision of selecting k-value and x-values is selecting the value where k and x have an urgent change. For example, the vertical change is markedly horizontal, which is shown in Figure 4.

![k-Optimization](image)

Fig. 4. Determining the Number of Clusters

Implementing Model: Implementing model is the process of developing models from data sets. The tools used to create models are decision trees and association rules. Decision tree is a data mining technique that is used to find the significant attributes by applying attribute selection from the node in the decision tree model [7-8]. In addition, the decision tree develops the effectiveness of the clustering by applying the decision tree to be tested in each clusters. The association rules is a data mining technique that converts the decision tree model into a process to forecast future data sets.

Model Performance: Model performance is the process of finding the model's performance. It consists of two parts: data testing methods and model selection methods. Data testing methods use the cross-validation methods to evaluate model by separating the data collected into two sets that include a training dataset and testing dataset. Training dataset is used for building the model. The testing dataset is used for testing the model. The cross-validation methods in this paper are two types including k-fold cross-validation and leave-one-out cross-validation, as shown in Figure 5.
Model selection methods are considered to be based on an overview of the model results, which is reasonable considering the validity, effectiveness, model pattern, and applicability. The criteria of consideration are accuracy, precision, and recall [8].

Accuracy is the ability to choose the outcome of predictions, which is calculated from Equation (1), as from the confusion matrix [8] shown in Table 4. While, precision is a part of the prediction, which involves the retrieve instances. Finally, recall is the fraction of relevant instances that are retrieved.

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN} \tag{1}
\]

Predicted / Actual	True Condition	Precision
	Positive	
Predicted Positive	True Positive (TP)	Precision (Positive) = \(\frac{TP}{TP + FP} \)
	False Positive (FP)	
Predicted Negative	False Negative (FN)	Precision (Negative) = \(\frac{TP}{TP + FP} \)
	True Negative (TN)	

\[
\text{Recall (Positive)} = \frac{TP}{TP + FN} \quad \text{Recall (Negative)} = \frac{TN}{FP + TN}
\]

4 Research Results

The objective of the research results section is to report the performance related to this research, which consists of five issues:

1. Number of respondents
2. Attitudes towards perceived factors and learning styles
3. Appropriate cluster analysis results
4. Model development results
5. Model testing results discussions.

http://www.i-jet.org
4.1 Number of respondents

In this section, the survey report is summarized and the questionnaire has been answered. The researchers collected data from 195 questionnaires from the sample group of students who were studying at the University of Phayao. From the sample group, the analysis results are divided into two parts as follows: Table 5 shows the general information of respondents, and Table 6 shows the number and percentage of respondents classified by the schools and colleges.

Gender	Respondents	1st Year	2nd Year	3rd Year	4th Year	5th Year
Male	70 (35.90%)	8 (33.33%)	30 (56.60%)	51 (35.23%)	7 (30.43%)	1 (14.29%)
Female	125 (64.10%)	16 (66.67%)	23 (43.40%)	57 (64.77%)	16 (69.57%)	6 (85.71%)
Total	195 (100%)	24 (12.31%)	53 (27.18%)	88 (45.13%)	23 (11.79%)	7 (3.59%)

Table 5 shows that most respondents are female, which is equal to 125 (64.10%) respondents. While 70 (35.90%) male responded to the questionnaire. In addition, most respondents are studying in the third year with 88 (45.13%) respondents. While the year that provides the least questionnaire is the fifth year, which has 7 (3.59%) respondents.

Schools and Colleges	Respondents	Percentage
College of Continuing Education	28	14.36%
School of Agriculture and Natural Resources	6	3.08%
School of Allied Health Sciences	6	3.08%
School of Architecture and Fine Arts	6	3.08%
School of Dentistry*	1	0.51%
School of Energy and Environment	2	1.03%
School of Engineering	12	6.15%
School of Information and Communication Technology	19	9.74%
School of Law	12	6.15%
School of Liberal Arts	10	5.13%
School of Management and Information Sciences	29	14.87%
School of Medical Sciences	12	6.15%
School of Medicine*	35	17.95%
School of Nursing	2	1.03%
School of Pharmaceutical Sciences	7	3.59%
School of Political and Social Science	5	2.56%
School of Science	3	1.54%
Total	195	100%

Table 6 shows that the respondents were classified by schools and colleges. It displays that most respondents are in the School of Medicine with 35 (17.95%) respondents. The second school that provided information is the School of Management and
Information Sciences with 29 (14.87%) respondents. The third school that provided information is the College of Continuing Education with 28 (14.36%) respondents. While the school that provided the least information is the School of Dentistry with 1 (0.51%) respondents.

4.2 Attitudes towards perceived factors and learning styles

This section summarizes the results of the attitude towards 9 questions using statistical techniques including average (means), standard deviation (S.D.) and interpretation as shown in Table 7.

In the interpretation of the data, the researchers divided the distance of each class according to the rating level. The calculation process and result used the maximum score (equal to 5) minus the minimum score (equal to 1) divided by the number of class (equal to 5), as shown in equation (2).

\[
\text{Width of the class} = \frac{\text{Maximum score} - \text{Minimum score}}{\text{Number of class}} = \frac{5 - 1}{5} = 0.8
\]

From the result of the calculation in equation 2, the result is equal to 0.8. Thus, it can be used to define the rating criteria for use in the interpretation of the level of attitude on each question as shown in Table 7.

Class	Width of the class	Interpretation
1	In the range between 1.00-1.80	Strongly disagree
2	In the range between 1.81-2.60	Disagree
3	In the range between 2.61-3.40	Neither agree nor disagree
4	In the range between 3.41-4.20	Agree
5	In the range between 4.21-5.00	Strongly agree

Question No.	Learning Styles	Means	S.D.	Interpretation
Q1	Visual	3.75	0.84	Agree
Q2*	Kinesthetic	4.02	0.83	Agree
Q3	Auditory	3.75	0.81	Agree
Q4	Visual	3.83	0.89	Agree
Q5	Auditory	3.72	0.87	Agree
Q6	Kinesthetic	3.66	0.93	Agree
Q7*	Auditory	3.65	0.89	Agree
Q8	Visual	3.69	0.94	Agree
Q9	Kinesthetic	3.83	0.83	Agree
Summaries		3.77	0.87	Agree

http://www.i-jet.org
Table 8 shows that students at the University of Phayao gave opinions on the attitude level towards learning styles in same interpretations. From the survey, it was found that the respondents expressed their opinions on the most important learning styles of kinesthetic, which shows the average in question 2 (Mean = 4.02). On the other hand, respondents pay less attention to auditory, which shows the average value in question 7 (Mean = 3.65). However, the relationship of learning styles in different academic achievement of the students at the University of Phayao can be expressed in 6 patterns and summarizes the group of respondents by patterns as shown in Table 9.

Table 9. Learning Styles in Different Academic Achievement of Students

Patterns	Number of Students	Percentages
Pattern 1: Auditory - Kinesthetic - Visual (A-K-V)	39	20.00%
Pattern 2: Auditory - Visual - Kinesthetic (A-V-K)	20	10.26%
Pattern 3: Kinesthetic - Auditory - Visual (K-A-V)	28	14.36%
Pattern 4: Kinesthetic - Visual - Auditory (K-V-A)	39	20.00%
Pattern 5: Visual - Auditory - Kinesthetic (V-A-K)	29	14.87%
Pattern 6: Visual - Kinesthetic - Auditory (V-K-A)	40	20.51%
Total:	195	100%

Identifying students in each patterns were based on the calculation results from each attitude level of the question. For example, the respondents rated the attitude towards each question as follows: Q1 = 3, Q2 = 5, Q3 = 3, Q4 = 4, Q5 = 3, Q6 = 4, Q7 = 3, Q8 = 3, and Q9 = 4. The calculation is for using the total score of the attitude level towards the learning style in which each question is based on the perception of learning styles as follows: Visual learning style has Q1, Q4, and Q8. Auditory learning style has Q3, Q5, and Q7. Kinesthetic learning style has Q2, Q6, and Q9. So the result from the sample is equal to the visual learning style = 10, auditory learning style = 9, and kinesthetic learning style = 13. When sorting the score, it can be concluded that this respondent is in Pattern 4 (K-V-A).

4.3 Appropriate cluster analysis results

This section is the result of analyzing the appropriate number of clusters to be used to develop predictive models that are consistent with the academic achievement of future learners. The data used in the analysis are grade point average (GPA). After obtaining the appropriate number of clusters, it will be referenced to the level of attitude towards the different learning styles to create a decision tree model.

There are two optimal value results from determining the number of clusters process; k-Optimization for k-Means, and x-Means clustering summary from k-Optimization as shown in Figure 6 and Figure 7.

Figure 6 shows that k-Optimization of k-Means is equal to 5. From all groups, the k values selected vertically and horizontally change in the elbow decision concept. The k values are determined by the vertical and horizontal sudden changes.

Figure 7 shows that k-Optimization of x-Means is equal to 5. When considering Figure 6 and Figure 7, it is very consistent to select a cluster that is number 5 for k-
value. Therefore, when considered thoroughly, it is appropriate to use $k = 5$ which will be used in the development of the model. In addition, Table 10 shows the number of members and the average distance between clusters.

![Fig. 6. k-Optimization of k-Means](image1)

![Fig. 7. k-Optimization of x-Means](image2)

Table 10.	Members, Average within Cluster Distance, and Average within Centroid		
Cluster	Member, Average within Cluster Distance	Average within Centroid	
Cluster_0	37 (18.97%)	0.104	3.59
Cluster_1	47 (24.10%)	0.036	3.18
Cluster_2*	59 (30.26%)	0.045	2.87
Cluster_3*	40 (20.51%)	0.052	2.53
Cluster_4	12 (6.15%)	0.099	2.13
Total:	195 (100%)	0.059	2.86

http://www.i-jet.org
4.4 Model development results

After knowing the optimal number of clusters, this step is to report the analysis of attitude patterns to the difference in academic achievement by analyzing each cluster. From the appropriate cluster, the cluster can be divided according to the grade point average (GPA) of the respondents as shown in Table 11.

Table 11. Clusters, Grade Point Average (GPA), and Priorities Perceptions of Learning Styles

Cluster	GPA	Member	Priorities Perceptions of Learning Styles		
			Visual	Auditory	Kinesthetic
Cluster 0	3.41 – 3.90	37 (18.97%)	15 (7.69%)	12 (6.15%)	10 (5.13%)
Cluster 1	3.03 – 3.33	47 (24.10%)	14 (7.18%)	14 (7.18%)	19 (9.74%)
Cluster 2*	2.71 – 3.02	59 (30.26%)	23 (11.79%)	15 (7.69%)	21 (10.77%)
Cluster 3	2.34 – 2.70	40 (20.51%)	11 (5.64%)	13 (6.67%)	16 (8.21%)
Cluster 4	1.90 – 2.31	12 (6.15%)	6 (3.08%)	8 (4.04%)	4 (2.02%)
Total:	195 (100%)	69 (35.38%)	59 (30.26%)	67 (34.36%)	

*Maximum GPA = 3.90, Minimum GPA = 1.90

Table 11 shows members in each cluster based on the respondent’s data and priorities perceptions of learning styles. It showed that the cluster with the most members is Cluster_2 which has 59 (30.26%) members. The second is Cluster_1 with 47 (24.10%) members. The third is Cluster_3 with 40 (20.51%) members. The fourth is Cluster_0 with 37 (18.97%) members. Finally, the last is Cluster_4 with 12 (6.15%) members.

After that, the researchers separated each set of data and analyzed the numbers by the decision tree and cross-validation techniques. The results of the analysis of the decision tree’s performance is shown in Table 12 to Table 21.

Decision Tree’s Performance of Cluster_0. Table 12 shows that the model that is efficient and suitable for Cluster_0 is the decision tree model at depth 5 and used the Leave-one-out cross-validation method. After knowing the effective model of Cluster_0, Table 13 shows the results of the Cluster_0 model testing.

Table 12. Decision Tree’s Performance of Cluster_0

Depth of Model / Accuracy	Cross Validation		
	5-Fold	10-Fold	Leave-one-out
Depth 3	45.71%	35.83%	59.46%
Depth 5*	43.21%	48.33%	67.57%*
Depth 7	43.21%	48.33%	67.57%

Table 13. Cluster_0 Model Testing

Predicted / Actual	True Condition	Precision		
Pred. Kinesthetic	9	4	5	50.00%
Pred. Visual	1	10	1	83.33%
Pred. Auditory	0	1	6	85.71%
Recall	90.00%	66.67%	50.00%	
Decision Tree’s Performance of Cluster_1. Table 14 shows that the model that is efficient and suitable for Cluster_1 is the decision tree model at depth 3 and used the 10-Fold cross-validation method. While, Table 15 shows the results of the Cluster_1 model testing.

Depth of Model / Accuracy	Cross Validation	5-Fold	10-Fold	Leave-one-out
Depth 3*		46.89%	47.50%*	34.04%
Depth 5		46.89%	43.00%	34.04%
Depth 7		46.89%	43.00%	34.04%

Table 15. Cluster_1 Model Testing

Predicted / Actual	True Condition	Precision
Pred. Kinesthetic	16 6 5	59.26%
Pred. Visual	3 6 9	33.33%
Pred. Auditory	0 2 0	0.00%
Recall	84.21% 42.86% 0.00%	

Decision Tree’s Performance of Cluster_2. Table 16 shows that the model that is efficient and suitable for Cluster_2 is the decision tree model at depth 5 and used the 5-Fold cross-validation method. While, Table 17 shows the results of the Cluster_2 model testing.

Depth of Model / Accuracy	Cross Validation	5-Fold	10-Fold	Leave-one-out
Depth 3		52.73%	41.67%	50.85%
Depth 5*		56.06%*	33.33%	50.85%
Depth 7		56.06%	33.33%	50.85%

Table 17. Cluster_2 Model Testing

Predicted / Actual	True Condition	Precision
Pred. Kinesthetic	3 2 2	42.86%
Pred. Visual	5 12 3	60.00%
Pred. Auditory	7 7 18	56.25%
Recall	20.00% 57.14% 78.26%	

Decision Tree’s Performance of Cluster_3. Table 18 shows that the model that is efficient and suitable for Cluster_3 is the decision tree model at depth 3 and used the 5-Fold cross-validation method. While, Table 19 shows the results of the Cluster_3 model testing.
Table 18. Decision Tree’s Performance of Cluster_3

Depth of Model / Accuracy	Cross Validation		
	5-Fold	10-Fold	Leave-one-out
Depth 3*	47.50%*	40.00%	45.00%
Depth 5	47.50%	42.50%	47.50%
Depth 7	47.50%	42.50%	47.50%

Table 19. Cluster_3 Model Testing

Predicted / Actual	True Condition	Precision		
Kinesthetic	6	5	2	46.15%
Visual	4	7	3	50.00%
Auditory	6	1	6	46.15%

Table 20. Decision Tree’s Performance of Cluster_4

Depth of Model / Accuracy	Cross Validation		
	5-Fold	10-Fold	Leave-one-out
Depth 3*	40.00%*	30.00%	33.33%
Depth 5	40.00%	30.00%	33.33%
Depth 7	40.00%	30.00%	33.33%

Table 21. Cluster_4 Model Testing

Predicted / Actual	True Condition	Precision		
Kinesthetic	5	5	1	45.45%
Visual	1	0	0	0.00%
Auditory	0	0	0	0.00%

Recall 83.33% 0.00% 0.00%

4.5 Model Testing Results Discussions

In this section, the researchers wanted to present and discuss the results of the model testing in each cluster. From Table 12 to Table 21, the result shows that the models in each cluster have a distinct relationship. As a result of this model testing, the researchers showed the model in each cluster in Figure 8 to Figure 12.
Fig. 8. Decision Tree’s Model of Cluster_0

Fig. 9. Decision Tree’s Model of Cluster_1

Fig. 10. Decision Tree’s Model of Cluster_2
Figure 8 to Figure 12 show all models that have relationships in each cluster, which is an overview of the prediction model analysis shown in Table 22, Table 23 and Figure 13.

Table 22. Decision Tree’s Performance with Data Collection

Depth of Model / Accuracy	5-Fold	10-Fold	Leave-one-out
Depth 3	60.51%	56.92%	58.46%
Depth 5	72.31%	72.79%	69.74%
Depth 7*	72.82%	74.32%*	71.28%

Table 22 shows that the model that is efficient and suitable for data collection is the decision tree model at depth 7 and used the 10-Fold cross-validation method. After knowing the effective model for data collection, Table 23 shows the results of the decision tree’s performance and decision tree model as shown in Figure 13.
Table 23. Cluster 3 Model Testing

Predicted / Actual	True Condition	Precision
Pred. Kinesthetic	61 7 13	75.31%
Pred. Visual	3 43 15	70.49%
Pred. Auditory	3 9 41	77.36%
Recall	91.04% 72.88% 59.42%	

Figure 13. Decision Tree’s Model

Figure 13 shows the prediction model with the decision tree mode that has a relationship between different learning styles of student achievement at the University of Phayao, Thailand. In addition, this decision tree model can be applied in association rules as shown in Table 24.

Table 24. Association Rules

Rule Model	Results
if Q2 = 2 then	Auditory
if Q2 = 3 and Q8 = 2 then	Auditory
if Q2 = 3 and Q8 = 3 and Q7 = 2 then	Auditory
if Q2 = 3 and Q8 = 3 and Q7 = 3 then	Visual
if Q2 = 3 and Q8 = 3 and Q7 = 4 then	Auditory
if Q2 = 3 and Q8 = 3 and Q7 = 5 then	Auditory
if Q2 = 3 and Q8 = 4 and Q7 = 2 then	Visual
if Q2 = 3 and Q8 = 4 and Q7 = 3 then	Visual
if Q2 = 3 and Q8 = 4 and Q7 = 4 then	Visual
if Q2 = 3 and Q8 = 4 and Q7 = 5 then	Auditory
if Q2 = 3 and Q8 = 5 then	Visual
if Q2 = 4 and Q5 = 2 and Q8 = 2 then	Kinesthetic
if Q2 = 4 and Q5 = 2 and Q8 = 3 then	Kinesthetic
if Q2 = 4 and Q5 = 2 and Q8 = 5 then	Visual
if Q2 = 4 and Q5 = 3 and Q4 = 3 then	Kinesthetic
if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 3 then	Kinesthetic
if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 3 then	Kinesthetic
if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 4 and Q8 = 4 then	Visual
if Q2 = 4 and Q5 = 3 and Q4 = 4 and Q1 = 5 then	Visual
if Q2 = 4 and Q5 = 3 and Q4 = 5 then	Visual
if Q2 = 4 and Q5 = 4 and Q8 = 2 then	Auditory
if Q2 = 4 and Q5 = 4 and Q8 = 3 then	Visual
if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 3 then	Auditory
Rule Model Results
if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 3 then Auditory
if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 4 then Visual
if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 4 and Q1 = 5 then Visual
if Q2 = 4 and Q5 = 4 and Q8 = 4 and Q9 = 5 then Kinesthetic
if Q2 = 4 and Q5 = 4 and Q8 = 5 then Visual
if Q2 = 4 and Q5 = 5 and Q4 = 3 then Auditory
if Q2 = 4 and Q5 = 5 and Q4 = 4 then Auditory
if Q2 = 4 and Q5 = 5 and Q4 = 5 then Visual
if Q2 = 5 and Q9 = 2 then Auditory
if Q2 = 5 and Q9 = 3 and Q1 = 3 then Kinesthetic
if Q2 = 5 and Q9 = 3 and Q1 = 4 then Visual
if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 3 then Kinesthetic
if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 4 then Visual
if Q2 = 5 and Q9 = 4 and Q3 = 3 and Q8 = 5 then Visual
if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 3 then Kinesthetic
if Q2 = 5 and Q9 = 4 and Q3 = 4 and Q1 = 4 then Auditory
if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 4 then Kinesthetic
if Q2 = 5 and Q9 = 4 and Q3 = 5 and Q7 = 5 then Auditory
if Q2 = 5 and Q9 = 5 then Kinesthetic

Correct: 176 out of 195 training examples.

5 Research Discussions

There are three main issues that need to be discussed:

1. The sample collection
2. The perceived dimension to the data analysis in different tools
3. Utilization of research results.

5.1 Sample collection

As shown in Table 5 and Table 6, the data collection also has an uneven distribution. For example, Table 5 shows that students in each year are not consistent. However, the nature of data collection is random. If there is an ongoing research in the future, the number of data sets for each year should be increased.

In addition, the distribution of samples in all schools and colleges of the university needs to be considered more. However, this research is a model of studying relevant factors and affecting learning patterns. If there is ongoing research in the future, the researchers aim would be to create a cooperation with executives and related parties at all levels.
5.2 Perceived dimension to data analysis in different tools

The main purpose of using different data analysis tools is to compare the results in different dimensions. It can be seen that the overview of the analysis of the two tools is in the same direction, but the results are different in perception.

An important example is the statistical tools analyzed in an overview of all data. It shows that the majority of the respondents pay attention to the accepted level of all questions, as shown in Table 8, while k-Means and x-Means can illustrate the distribution in each cluster as shown in Figure 6, Figure 7, and Table 10. In addition, Table 12 to Table 22 and Figure 8 to Figure 13 show the significance of all the decision tree models.

The differences emphasize the direction and belief of the respondents. The two tools have proved that the respondents accepted the students model in different learning styles of academic achievement as concluded in the research results section.

5.3 Utilization of research results

The results of the research are divided into two dimensions: statistical results and results that are the prototype of the appropriate educational models (students model). From the statistics show that the respondents accept all three types of learning styles. While the model test results in each cluster are high level. Therefore, the researchers believe that the results of the research can be developed in the future. The researchers have plans and procedures as shown in Figure 14.

Fig. 14.Future Research

Figure 14 shows that the researchers have clear goals and steps that can be implemented in the future, which the researchers want to expand the network and scope of research to cover various universities in Thailand.

6 Conclusion

This research aims to answer two issues:

Question 1: How much does the academic achievement level affects the clusters and the learning style of students at the University of Phayao?
Question 2: How much of a difference in attitude levels toward the learning style affect the clusters and the learning style of students at the University of Phayao?

The first question can be explained as shown in Table 8 that all questions in the questionnaire are accepted at the agree level, which is the average of all questions equal to 3.77. The second question can be answered in data analysis using the data mining process as shown in Table 12 to Table 22 and Figure 8 to Figure 13, which can be concluded that the number of cluster that are significant to the difference learning styles of academic achievement is 5 clusters as shown in Figure 6, Figure 7, and Table 10. Therefore, it can be concluded that this research achieved its objectives.

In future work, it will be applied with other universities in Thailand and also used in developing applications for providing a program recommended for appropriate educational programs. In addition, the researchers tried to improve the defects as discussed in the research discussion section on the next research.

7 Acknowledgement

This research is supported by the University of Phayao, Rajabhat Mahasarakham University, Rajamangala University of Technology Tawan-Ok, and Vongchavalitkul University in Thailand. The authors would like to thank the advisor, lecturers, students, technicians, and all respondents for their entire support.

8 References

[1] M. W. Apple, “Competition, Knowledge, and the Loss of Educational Vision,” Philosophy of Music Education Review, vol. 11, no. 1, pp. 3–22, 2003.

[2] S. Marginson, “Higher Education in the Global Knowledge Economy,” Procedia - Social and Behavioral Sciences, vol. 2, no. 5, pp. 6962–6980, Jan. 2010. https://doi.org/10.1016/j.sbspro.2010.05.049

[3] J. Overberg et al., “Internal quality management in competence-based higher education – An interdisciplinary pilot study conducted in a postgraduate programme in renewable energy,” Solar Energy, vol. 177, pp. 337–346, Jan. 2019. https://doi.org/10.1016/j.solener.2018.11.009

[4] E. Kurilovas, “On data-driven decision-making for quality education,” Computers in Human Behavior, Nov. 2018.

[5] P. Nuankaew and P. Temdee, “Matching of compatible different attributes for compatibility of members and groups,” International Journal of Mobile Learning and Organisation, vol. 13, no. 1, p. 4, 2019. https://doi.org/10.1504/ijmlo.2019.10016604

[6] S. S. Binyamin, M. Rutter, and S. Smith, “Extending the Technology Acceptance Model to Understand Students’ Use of Learning Management Systems in Saudi Higher Education,” International Journal of Emerging Technologies in Learning (iJET), vol. 14, no. 03, pp. 4–21, Feb. 2019. https://doi.org/10.3991/ijet.v14i03.9732

[7] P. Nuankaew and P. Temdee, “Online Mentoring Model by Using Compatible Different Attributes,” Wireless Pers Commun, vol. 85, no. 2, pp. 565–584, Nov. 2015. https://doi.org/10.1007/s11277-015-2755-x
[8] P. Nuankaew, W. Nuankaew, K. Phanniphong, and S. Bussaman, “Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning,” in Teaching and Learning in a Digital World, 2018, pp. 400–412. https://doi.org/10.1007/978-3-319-73204-6_45

[9] P. Nuankaew and P. Temdee, “Of online community: Identifying mentor and mentee with compatible different attributes and decision tree,” in 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, pp. 1–6. https://doi.org/10.1109/ecticon.2015.7207130

[10] K. Phanniphong, P. Nuankaew, D. Teeraputon, W. Nuankaew, P. Tanasirathum, and S. Bussaman, “The Distinction Learning Style in Learning Outcomes of the Secondary School Learner,” in 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), 2018, pp. 1–5. https://doi.org/10.1109/times-icon.2018.8621778

[11] “Thailand - National Education Act, B.E. 2542 (1999),” [Online]. Available: http://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=82860&p_country=THA&p_count=441. [Accessed: 20-Feb-2019].

[12] U. Ocepek, Z. Bosnić, I. Nančovska Šerbec, and J. Rugelj, “Exploring the relation between learning style models and preferred multimedia types,” Computers & Education, vol. 69, pp. 343–355, Nov. 2013. https://doi.org/10.1016/j.compedu.2013.07.029

[13] H. Alnabaei, M. H. Faisal, and A. A. Alsumait, “VAK Personalized Learner-Sourced E-Notes,” in 2018 International Conference on Computing Sciences and Engineering (ICCSE), 2018, pp. 1–5. https://doi.org/10.1109/iccse1.2018.8374226

[14] K. Crockett, A. Latham, and N. Whitton, “On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees,” International Journal of Human-Computer Studies, vol. 97, pp. 98–115, Jan. 2017. https://doi.org/10.1016/j.ijhcs.2016.08.005

[15] W. Nuankaew, P. Nuankaew, S. Bussaman, and P. Tanasirathum, “Hidden academic relationship between academic achievement and higher education institutions,” in 2017 International Conference on Digital Arts, Media and Technology (ICDMAT), 2017, pp. 308–313. https://doi.org/10.1109/icdmat.2017.7904982

[16] A. M. Shahiri, W. Husain, and N. A. Rashid, “A Review on Predicting Student’s Performance Using Data Mining Techniques,” Procedia Computer Science, vol. 72, pp. 414–422, Jan. 2015. https://doi.org/10.1016/j.procs.2015.12.157

[17] S. Kaeophanuek, J. Na-Songkhla, and P. Nilsook, “A Learning Process Model to Enhance Digital Literacy using Critical Inquiry through Digital Storytelling (CIDST),” International Journal of Emerging Technologies in Learning (iJET), vol. 14, no. 03, pp. 22–37, Feb. 2019. https://doi.org/10.3991/ijet.v14i03.8326

[18] Y. Zheng, Y. Yang, H. Chai, M. Chen, and J. Zhang, “The Development and Performance Evaluation of Digital Museums Toward Second Classroom of Primary and Secondary School – Taking Zhejiang Education Technology Digital Museum as An Example,” International Journal of Emerging Technologies in Learning (iJET), vol. 14, no. 02, pp. 69–84, Jan. 2019. https://doi.org/10.3991/ijet.v14i02.7897

9 Authors

Pratya Nuankaew received a B.Ed. Degree in Educational Technology in 2001, M.Sc. degree in Information Technology in 2008 from Naresuan University, and a Ph.D. degree in Computer Engineering in 2018 from Mae Fah Luang University. He
is currently a lecturer at the School of Information and Communication Technology, University of Phayao, Phayao, Thailand. His research interests are in online mentoring model, mentoring relationships, social network analysis, ubiquitous computing, learning analytics, digital education, and educational data mining. (E-mail - pratya.nui@up.ac.th)

Wongpanya Nuankaew received a B.Sc. degree in Computer Science in 2004, and M.Sc. degree in Information Technology in 2007 from Naresuan University. She is currently a lecturer at the Faculty of Information Technology, Rajabhat Maha Sarakham University, Maha Sarakham, Thailand. Her research interests are in digital education, innovation and knowledge management, data science, and big data and information technology management.

Kanakarn Phanniphong received his B.B.A. degree in Information System in 2005 from Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand, M.B.A. degree Business Administration in 2008 and D.B.A. degree in Business in 2018 from Pathumthani University, Pathum Thani, Thailand. He is currently a lecturer at the Faculty of Business Administration and Information Technology, Rajamangala University of Technology Tawan-Ok, Bangkok, Thailand. His research interests are data science, accounting information system, innovation and knowledge management, self-service technologies, and management information system. (E-mail - kanakarn.p@cpc.ac.th)

Sasithon Imwut is a researcher at Vongchavalitkul University, Nakhon Ratchasima, Thailand. He is available on mail sasithon_imv@vu.ac.th

Sittichai Bussaman received his B.Sc. in Statistic in 1990 from Srinakharinwirot University, M.Sc. in Computer Science and Information Technology in 1997 from King Mongkut's Institute of Technology Ladkrabang and Ph.D. in Educational Technology and Communications in 2013 from Mahasarakham University. He is currently an Associate Professor at the Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, Thailand. His research interests are data mining in education, online learning, pattern recognition, and Artificial Intelligence. (Email - sittichai.bus@gmail.com)

Article submitted 2019-02-20. Resubmitted 2019-04-03. Final acceptance 2019-04-04. Final version published as submitted by the authors
ประวัติผู้เขียน
ประวัติผู้เขียน

ชื่อ-นามสกุล ดร.ปรัชญา นวนแก้ว
วันเดือนปีเกิด 30 ธันวาคม 2521
วุฒิการศึกษา ปีการศึกษา 2561:
ปรัชญาดุษฎีบัณฑิต (วิศวกรรมคอมพิวเตอร์)
มหาวิทยาลัยแม่ฟ้าหลวง
ต่ำแหน่ง อาจารย์
สาขาวิชาคอมพิวเตอร์ธุรกิจ
คณะเทคโนโลยีสารสนเทศและการสื่อสาร
มหาวิทยาลัยพะเยา
ทุนการศึกษา รุ่นLINK Project 2016-2018: Sustainable Green Economies through Learning, Innovation, Networking and Knowledge Exchange, Erasmus Mundus Program (552099-EM-1-2014-1-UK-ERA MUNDUS-EMA21) Erasmus Mundus Action 2 project, Budapest, Hungary.)

ผลงานทางวิชาการ

Nuankaew, P., Nuankaew, W., Phanniphong, K., Imwut, S., & Bussaman, S. (2019). Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand. International Journal of Emerging Technologies in Learning (IJET), 14(12), 133–157.
https://doi.org/10.3991/ijet.v14i12.10352

Nuankaew, W. S., Nuankaew, P., Teeraputon, D., Phanniphong, K., & Bussaman, S. (2019). Perception and Attitude Toward Self-Regulated Learning of Thailand’s Students in Educational Data Mining Perspective. International Journal of Emerging Technologies in Learning (IJET), 14(09), 34–49.
https://doi.org/10.3991/ijet.v14i09.10048
Nuankaew, P., Nuankaew, W., Bussaman, S., & Jedeejit, P. (2017). Education mining in the relationship between general knowledge and deep knowledge for lifelong learning. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 694–697). https://doi.org/10.1109/ECTICon.2017.8096333

Nuankaew P., Nuankaew W., Phanniphong K., Bussaman S. (2018) Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning. In: Auer M., Guralnick D., Simonics I. (eds) Teaching and Learning in a Digital World. ICL 2017. Advances in Intelligent Systems and Computing, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-73204-6_45

Nuankaew, P., & Temdee, P. (2015). Of online community: Identifying mentor and mentee with compatible different attributes and decision tree. 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1–6. https://doi.org/10.1109/ECTICon.2015.7207130

Nuankaew, P., & Temdee, P. (2019). Matching of compatible different attributes for compatibility of members and groups. International Journal of Mobile Learning and Organisation, 13(1), 4. https://doi.org/10.1504/IJMLO.2019.096469

Nuankaew, P., & Temdee, P. (2015). Online Mentoring Model by Using Compatible Different Attributes. Wireless Personal Communications, 85(2), 565–584. https://doi.org/10.1007/s11277-015-2755-x
ประสบการณ์ที่ทำงาน

ปี	หน้าที่	หน่วยงาน
2555	อ.อาจารย์	คณะเทคโนโลยีสารสนเทศและการสื่อสาร มหาวิทยาลัยพะเยา
2555	อ.อาจารย์	คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม
2551	อ.อาจารย์	คณะคอมพิวเตอร์และเทคโนโลยีสารสนเทศ มหาวิทยาลัยภาคตะวันออกเฉียงเหนือ
2545	น.วิทยาการโสตทัศนศึกษา	คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร
2544	เจ้าหน้าที่ระบบงานคอมพิวเตอร์	คณะศึกษาศาสตร์ มหาวิทยาลัยนเรศวร
ประวัติผู้เขียน

ชื่อ-นามสกุล อาจารย์วงษ์ปัญญา นวนแก้ว
วันเดือนปีเกิด 12 กรกฎาคม 2524
วุฒิการศึกษา ปีการศึกษา 2550: วิทยาศาสตรมหาบัณฑิต (เทคโนโลยีสารสนเทศ) มหาวิทยาลัยนเรศวร
ตำแหน่ง อาจารย์ สาขาวิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม

ผลงานทางวิชาการ

Nuankaew, P., Nuankaew, W., Phanniphong, K., Imwut, S., & Bussaman, S. (2019). Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand. *International Journal of Emerging Technologies in Learning (IJET)*, 14(12), 133–157. https://doi.org/10.3991/ijet.v14i12.10352

Nuankaew, W. S., Nuankaew, P., Teeraputon, D., Phanniphong, K., & Bussaman, S. (2019). Perception and Attitude Toward Self-Regulated Learning of Thailand’s Students in Educational Data Mining Perspective. *International Journal of Emerging Technologies in Learning (IJET)*, 14(09), 34–49. https://doi.org/10.3991/ijet.v14i09.10048

Nuankaew, W., Nuankaew, P., Phanniphong, K., & Bussaman, S. (2560). For Discovery: Significant Factors for the Promotion of Tourist Attractions based on Individual Behaviour through Data-mining Techniques. Chophayom Journal, 28(3), 88–102.
Nuankaew, W., Nuankaew, P., & Phanniphong, K. (2017). Lifelong Learning Application: Mobile Application to Promote Lifelong Learning and Introduce Educational Institutions. Advances in Science, Technology and Engineering Systems Journal, 2(3), 1556–1564. https://doi.org/10.25046/aj0203194

Phanniphong, K., Nuankaew, P., Teeraputon, D., Nuankaew, W., Boontonglek, M., & Bussaman, S. (2019). Clustering of Learners Performance based on Learning Outcomes for Finding Significant Courses. 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), 192–196. https://doi.org/10.1109/ECTI-NCON.2019.8692263

Nuankaew, P., Nuankaew, W., Bussaman, S., & Jedeeljit, P. (2017). Education mining in the relationship between general knowledge and deep knowledge for lifelong learning. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 694–697). https://doi.org/10.1109/ECTICon.2017.8096333

Nuankaew P., Nuankaew W., Phanniphong K., Bussaman S. (2018) Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning. In: Auer M., Guralnick D., Simonics I. (eds) Teaching and Learning in a Digital World. ICL 2017. Advances in Intelligent Systems and Computing, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-73204-6_45

ประสบการณ์ที่ทำงาน

2555 (อาจารย์) คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม

2550 (อาจารย์) คณะคอมพิวเตอร์และเทคโนโลยีสารสนเทศ มหาวิทยาลัยภาคตะวันออกเฉียงเหนือ
ประวัติผู้เขียน

ชื่อ-นามสกุล ดร.ฆณการ ภัณณิพงส์
ตำแหน่ง อาการย์
คณะบริหารธุรกิจและเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก

ผลงานทางวิชาการ

Nuankaew, P., Nuankaew, W., Phanniphong, K., Imwut, S., & Bussaman, S. (2019). Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand. *International Journal of Emerging Technologies in Learning (IJET)*, 14(12), 133–157. https://doi.org/10.3991/ijet.v14i12.10352

Nuankaew P., Nuankaew W., Phanniphong K., Bussaman S. (2018) Mobile Applications for the Prediction of Learning Outcomes for Learning Strategies and Learning Achievement in Lifelong Learning. In: Auer M., Guralnick D., Simonic I. (eds) *Teaching and Learning in a Digital World. ICL 2017. Advances in Intelligent Systems and Computing*, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-73204-6_45

Phanniphong, K., Nuankaew, P., Teeraputon, D., Nuankaew, W., Boontonglek, M., & Bussaman, S. (2019). Clustering of Learners Performance based on Learning Outcomes for Finding Significant Courses. 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), 192–196. https://doi.org/10.1109/ECTI-NCON.2019.8692263

Phanniphong, K., Nuankaew, P., Teeraputon, D., Nuankaew, W., Tanasirathum, P., & Bussaman, S. (2018). The Distinction Learning Style in Learning Outcomes of the Secondary School Learner. 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-ICON), 1–5. https://doi.org/10.1109/TIMES-ICON.2018.8621778
ประวัติผู้เขียน

ชื่อ-นามสกุล อาจารย์ศศิธร อิ่มวุฒิ
วันเดือนปีเกิด 25 กรกฎาคม 2515
ตำแหน่ง อาจารย์

ผลงานทางวิชาการ

Nuankaew, P., Nuankaew, W., Phanniphong, K., Imwut, S., & Bussaman, S. (2019). Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand. *International Journal of Emerging Technologies in Learning (IJET)*, 14(12), 133–157. https://doi.org/10.3991/ijet.v14i12.10352

ประสบการณ์การทำงาน

ปัจจุบัน (อาจารย์) อาจารย์ประจำ สาขาวิชาระบบสารสนเทศคอมพิวเตอร์ คณะบริหารธุรกิจ มหาวิทยาลัยวงษ์ชวลิตกุล
ประวัติผู้เขียน
ชื่อ-นามสกุล รองศาสตราจารย์ ดร.สิทธิชัย บุษหมั่น
tาแหน่ง อาจารย์

ผลงานทางวิชาการ

Nuankaew, P., Nuankaew, W., Phanniphong, K., Imwut, S., & Bussaman, S. (2019). Students Model in Different Learning Styles of Academic Achievement at the University of Phayao, Thailand. *International Journal of Emerging Technologies in Learning (IJET)*, *14*(12), 133–157.
https://doi.org/10.3991/ijet.v14i12.10352

Nuankaew, W. S., Nuankaew, P., Teeraputon, D., Phanniphong, K., & Bussaman, S. (2019). Perception and Attitude Toward Self-Regulated Learning of Thailand’s Students in Educational Data Mining Perspective. *International Journal of Emerging Technologies in Learning (IJET)*, *14*(09), 34–49.
https://doi.org/10.3991/ijet.v14i09.10048

Nuankaew, P., Nuankaew, W., Bussaman, S., & Jedeejit, P. (2017). Education mining in the relationship between general knowledge and deep knowledge for lifelong learning. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 694–697).
https://doi.org/10.1109/ECTICon.2017.8096333

ประสบการณ์ที่ทำงาน

ปัจจุบัน (อาจารย์) คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏมหาสารคาม