Minimal-invasive Chirurgie der vorderen Schädelbasis:
Transorbitale Zugänge

Minimally Invasive Surgery of the Anterior Skull Base: Transorbitale Approaches

H. G. Gassner1, K.-M. Schebesch2

1Universitätsklinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie der Universität Regensburg
(Direktor: Prof. Dr. med. J. Strutz)
2Universitätsklinik und Poliklinik für Neurochirurgie der Universität Regensburg (Direktor: Prof. Dr. med. A. Brawawsni)

Schlüsselwörter
- vordere Schädelbasis
- transorbital
- endoskopisch
- Zugang
- minimal invasiv
- TONES

Key words
- skull base
- transorbital
- endoscopic
- approach
- minimally invasive
- Tones

Inhaltsverzeichnis

Zusammenfassung S288
1. Einleitung S289
2. Anatomie S289
2.1 Lidapparat S289
2.2 Knöcherne Anatomie S289
2.2.1 Infrabasale Anatomie S289
2.2.2 Suprabasale Anatomie S289
3. Definitionen und Zielsetzung S290
3.1 Zugänge: Systematik S290
3.2 Eingrenzung des Themas S290
3.3 Zugänge: Chirurgische Technik S290
3.3.1 Der präkarankuläre Zugang S290
3.3.2 Der Oberlidzugang S291
3.3.3 Der laterale retrokanthale Zugang S293
3.3.4 Der transconjunktivale Zugang S293
3.3.4 Transorbitale Kraniotomie und Kraniektomie S293
4. Indikationen und Limitationen S294
4.1 Vorbemerkungen: Offenes vs. transorbitales Vorgehen – Neurochirurgische Perspektive S294
4.4 Komorbiditäten und andere patientenspezifische Faktoren S294
5. Diagnostik S294
5.1 Bildgebung S294
5.2 Feingewebliche Diagnose S295
6. Präoperatives Management S295
6.1 Interdisziplinäre Planung S295
7. Perioperatives Management S295
7.1 Lagerung S295
7.2 Neuronavigation S295
7.3 Intraoperative Bildgebung S296
7.4 Wechsel zum transkraniellen Vorgehen S296
7.4.1 Indikationen S296
7.4.2 Vorgehen S296
8. Postoperatives Management S297
8.1 Intensivmedizinische Überwachung S297
8.2 Kontrolluntersuchungen und -bildgebung S298
8.3 Rehabilitationmaßnahmen S298
9. Bisherige Ergebnisse S298
9.1 Studien: Simulationsstudien S298
9.1.1 Apex orbitae und mittlere Schädelgrube S298
9.1.2 Kombiniert transnasal-transorbitales Vorgehen S298
9.2 Klinische Studien S298
9.2.1 Sinogene Komplikationen S298
9.2.2 Tumore der Stirnhöhle S299
9.2.3 Versorgung von Duradefekten S299
9.2.4 Tumore der vorderen Schädelbasis S299
9.2.5 Aneurysmen der vorderen Zirkulation S300
9.2.6 Versorgung von Frakturen der vorderen Schädelbasis S300
10. Diskussion S300
11. Schlussfolgerung S302
Abstract S302
Literatur S303

Zusammenfassung

Minimal invasive Zugänge zur vorderen Schädelbasis haben in den letzten Jahrzehnten einen wichtigen Stellenwert erlangt. Für den HNO Bereich hat sich-in interdisziplinärer Kooperation-insbesondere das transnasal-endoskopische Vorgehen etabliert. Die jüngere Technik des transorbitalen-Vorgehens kann durch ein differierendes Spektrum an Zugangs- korridoren eine Ergänzung des etablierten transnasal-endoskopischen Vorgehens darstellen. Ziel der vorliegenden Arbeit war die Bewertung der transorbitalen-endoskopischen Zugänge anhand der aktuellen Literatur.

Diese Zugänge stellen eine wesentliche Erweiterung der minimal invasiven Zugänge zur vorderen Schädelbasis dar. Wichtige Strukturen insbesondere der lateralen Aspekte der vorderen Schädelbasis einschließlich der Stirnhöhlenhinterwand lassen sich exzellent erreichen. Aufgrund ihrer geringen Morbidität und der kosmetisch exzellenenten Ergebnisse ergänzen sie etablierte trans-
nasale, transfaziale und transkraniale Zugänge zur vorderen Schädelbasis. Ihre Durchführung erfordert spezialisierte Kenntnisse okuloplastischer Operationstechniken des interdisziplinären Teams.

1. Einleitung

In der Chirurgie der vorderen Schädelbasis ist seit Jahrzehnten ein deutlicher Trend hin zu minimal invasiven Zugängen zu beobachten. Technische Weiterentwicklungen und interdisziplinäre Kooperationen haben die Behandlung komplexer Pathologien ermöglicht. Hier sind beispielsweise die Verbesserungen der videoendoskopischen Bilddarstellung, die Entwicklung spezieller Instrumente, Verbesserungen der Bildgebung und das gemeinsame Operieren in der „4-Hand-Technik“ zu nennen.

Insbesondere Veröffentlichungen der Gruppen um Moe et al. und Boahene et al. haben dazu beigetragen, eine Systematik der Methode zu etablieren und ihre Indikationen zu erweitern. Die verwendeten Schnittführungen sind dabei im Prinzip lange etabliert, erfahren aber in einigen wichtigen Aspekten Modifikationen.

Zielsetzung der vorliegenden Arbeit ist es, die relative junge Methode zu etablieren und ihre Indikationen zu erweitern. Die verwendeten Schnittführungen sind dabei im Prinzip lange etabliert, erfahren aber in einigen wichtigen Aspekten Modifikationen.

Zielsetzung der vorliegenden Arbeit ist es, die relative junge Technik des transorbital-endoskopischen Vorgehens vorzustellen. Zielsetzung der vorliegenden Arbeit ist es, die relative junge Technik des transorbital-endoskopischen Vorgehens vorzustellen. Zielsetzung der vorliegenden Arbeit ist es, die relative junge Technik des transorbital-endoskopischen Vorgehens vorzustellen.

2.2 Knöcherne Anatomie

2.2.1 Infrabasale Anatomie

Die Orbita ist die nach vorne offene Augenhöhle. Ihre knöchernen Begrenzungen werden gebildet durch das Os frontale, das Os lacrimale, das Ethmoidal, das Os palatinum und das Os sphenoidale. Zum Dach der Augenhöhle, und damit zur vorderen Schädelbasis, tragen das Os frontale und zu einem kleineren Teil – im posterioren Bereich – die kleine Keilbeinflügel bei. Die Fovea trochlearis beherbergt die Trochlea, welche wesentliche Bedeutung für den transorbitalen Zugang zur Schädelbasis hat. Die Tränendrüse schmiegt sich der Fossa lacrimalis an. Die Augenlider bilden die Begrenzung der Augenhöhle nach vorne.

2.2.2 Suprabasale Anatomie

Die knorligen Schädelbasis gleicht einer ebene Fläche die die Rhinobasis mit der ventral gelegenen Christa galli getrennt wird. An der Christa galli inseriert intradural die Falx cerebelli mit dem Sinus sagittalis superior [11–13]. Da die Drainageleistung der in den Sinus sagittalis superior einmündenden Brückenvenen nicht sehr hoch ist [14, 15], kann der Sinus in seinem vorderen Drittel problemlos ligiert, durchtrennt und abgesetzt werden um die Rückfläche der Stirnhöhle und den Übergang in die Frontobasis zu exponieren [16]. Lateral geht die Frontobasis über in die Kalvaria der Konvexität, nach rostral hin begrenzt der konkav geschwungene Keilbeinflügel (Os sphenoidale ala minor) mit dem Processus clinoides anterior den Abschnitt der vorderen Schädelbasis [13]. Medial des Processus clinoides anterior findet sich symmetrisch beidseits der Canalis opticus mit dem Nervus opticus, der von der Arteria ophthalmica begleitet wird. Der intrakanalikuläre Verlauf des Nervus opticus beträgt ca. 10 mm. Der anteriore Anteil der Sella turcica geht schließlich ins Planum sphenoidale über, welches den medialen und rostralen Punkt der Frontobasis markiert.

In Höhe der Lamina cribrosa verlaufen die fadendünnen Riechfasern nach intradural, bilden hier den Nervus und Bulbus olfactorius, welcher über fast die gesamte Länge der Frontobasis hin zum Limbischen System zieht (Key and Rezius, 1875). Das Frontalhirn liegt der Frontobasis auf, in Höhe der Riechrinne befindet sich der Gyrus rectus. Das Gehirn ist gänzlich von Dura umhüllt welche stark adhärent an der knöchernen Basis anliegt. Die durale und knöcherne Blutversorgung stammt im Wesentlichen aus Ästen der Ethmoidalarterien, somit also aus Endästen der Arteria carotis externa. Das Hirn selbst, inklusive der Hirnanhangsgebilde (z.B. Hirnnerven und Hypophyse [17]), erhält seine Blutversorgung vornehmlich aus Ästen der Arteria carotis externa und media, also aus der Arteria carotis interna [13].
3. Definitionen und Zielsetzung

Der Begriff transorbitral impliziert ein Vorgehen durch die Orbita hindurch, also einen Zugang, der in die Orbita ein- und aus dieser wieder austritt, um das chirurgische Ziel zu erreichen. Ein solches Vorgehen kann prinzipiell durch eine Vielzahl lange etablierter Schnittführungen durchgeführt werden. So beschrieben Harris et al. bereits 1998 ihre 12-jährige Erfahrung in der lateralen Orbitotomie durch eine Oberlidinzision in 600 Fällen [18–20].

Die Publikationen der Gruppen von Moe et al. und Boahene et al. haben einen wesentlichen Beitrag zur Etablierung der minimal-invasiven transorbitalen Zugänge geleistet. Die Autoren integrieren minimal-invasive und endoskopische Methoden in eine Systematik der Schnittführungen. Da sich die Methode auf der Basis lange etablierter Techniken und Schnittführungen sukzessive entwickelt hat und wesentliche weitere Publikationen parallel entstanden sind, lässt sich eine Erstbeschreibung nicht exakt herauskristallisieren. Dies sei auch nicht Ziel der vorliegenden Arbeit [18, 19].

3.1 Zugänge: Systematik

Moe et al. beschreiben die Zugänge zu den 4 Quadranten der Orbita unter der Bezeichnung „TONES“, welches für „transorbital neuroendoscopic surgery“ steht. Da die von Moe beschriebene Systematik der Schnittführungen am besten geeignet ist, die transorbitalen Zugänge in strukturierter Weise zu analysieren, wird diese Systematik der vorliegenden Arbeit wie folgt zu Grunde gelegt [18, 19]. Wie in Abb. 1 dargestellt, werden die Zugänge nach Quadranten eingeteilt.

1. Zugang zum medialen Quadranten: Der präkarunkuläre Zugang
2. Zugang zum oberen Quadranten: Der Oberlidzugang
3. Zugang zum lateralen Quadranten: Der laterale retrokanthale Zugang
4. Zugang zum unteren Quadranten: Der transkonjunktivale Zugang

Die Lokalisation der Pathologie stellt ein wesentliches Kriterium für die Auswahl des Zugangs dar. Moe et al. unterscheiden den interoribitalen vom supraorbitalen Korridor, welcher durch die koronare Tangente durch den lateralen Äquator der knöchernen Orbita markiert wird. Chirurgische Ziele im supraorbitalen Korridor werden häufiger über einen Oberlidzugang, Ziele im interoribitalen Korridor über einen präkarunkulären Zugang behandelt.

3.2 Eingrenzung des Themas

Das Ziel der vorliegenden Arbeit ist es, transorbitale Zugänge, welche sich durch eine besonders kosmetische Schnittführung, minimale Weichteildissektion und geringe Manipulation des Knochens auszeichnen, zu analysieren. Verfahren, welche in der Regel mit äußerlich sichtbaren Narben vergesellschaftet sind, sind nicht Gegenstand der Diskussion. So sind nur Inzisionen eingeschlossen, welche transkonjunktival oder in der Haut des Oberlides platziert waren. Die laterale Exposition des Oberlides schnittes in die periorbitale Falte über dem Orbitarand ist in der Regel kosmetisch nicht sichtbar, kann diesen Zugang wesentlich erweitern und ist ins Thema inkludiert. Ausgeschlossen sind Erweiterungen, welche in der Studie von Aziz beschrieben sind. Hier wird die Inzision 2,5 cm lateral des lateralen Lidwinkels über den knöchernen Orbitarand hinaus geführt [21].

Ausgeschlossen sind ebenso eine transkutane laterale Kanthotomie sowie trans- und paralpebrale Inzisionen. Einschlusskriterien sind:

1. Die Inzision bleibt auf die Konjunktiva, die Haut des Oberlides beschränkt.
2. Die Kraniotomie erfolgt durch den dünnen Knochen des Orbitadaches und nicht durch die Kalotte.
3. Zum minimal invasiven Charakter dieser Zugänge trägt die Verwendung endoskopischer Optiken bei. Hierdurch können wichtige Strukturen durch die kleinen Zugangsorridore ausreichend illuminiert, visualisiert und mit speziellem Instrumentarium manipuliert werden. Auch zur operativen Ausbildung leistet die Video-Endoskopie einen wesentlichen Beitrag [18].

3.3 Zugänge: Chirurgische Technik

3.3.1 Der präkarunkuläre Zugang

Der präkarunkuläre Zugang eröffnet den medialen Quadranten und erlaubt Zugang zur Lamina papyracea, zur A. ethmoidalis anterior und posterior sowie zum interoribitalen Korridor der vorderen Schädelbasis. In der Technik nach Moe erfolgt der Zugang posterior und lateral zu den Tränengängen (Abb. 2). Nach dem Einsetzen eines Bulbusprotektors werden Tränengängen in beide Canaliculi eingeführt und erlauben so die bessere Darstellung, Retraktion und Schonung dieser Strukturen. Der
Bulbus wird durch einen Spatel sachte nach lateral gedrängt, die Karunkula mit einem feinen Pinzetten nach lateral retrahiert und mit der feinen monopolaren Nadel medial entlang der Haut – Karunkel – Grenze herausgelöst. Die Schnittführung wird in die Konjunktiva des Ober- und Unterlides verlängert und das mediale Lidbändchen wird dargestellt. In der von Raza und Boahene beschriebenen Technik wird die Schnittführung weiter kranialwärts gezogen. Posterior der Insertion des medialen Lidbändchens an der Crista lacrimalis kann nun die Inzision der Periorbita der Lamina papryracea erfolgen. Die Höhe des Daches der Rhinobasis wird durch die Arteria ethmoidalis anterior und posterior angezeigt. Nach dem Clipping der Ethmoidalarterien lässt sich durch endoskopisch kontrollierte Resektion oder Entrümmerung des medialen Orbitadaches die Dura der vorderen Schädelbasis darstellen (Abb. 3, 4).

3.3.2 Der Oberlidzugang
Der „Superior lid crease“ approach sei hier als Oberlidzugang tituliert. Moe et al. und Boahene et al. beschreiben die Hautinzision in der Supratarsalfalte. Die Autoren der vorliegenden Arbeit weisen darauf hin, dass sie eine Schnittführung ca. 7–12 mm oberhalb der Supratarsalfalte für besser geeignet halten. Diese supra-supratarsale Schnittführung bleibt in der dünnen Haut des Oberlides lokalisiert und meidet den in Textur und Kolorit deutlich unterschiedlichen Hauttyp der Augenbraue. Die höhere supra-supratarsale Schnittführung entspricht der oberen Schnittführung der Hautexcision bei der kosmetischen Blepharoplastik und bleibt, wie die supratarsale Schnittführung, in der Regel ohne sichtbare Narbe (Abb. 5). Der Zugangskorridor zur vorderen Schädelbasis ist durch diese Schnittführung größer, eine Erweiterung nach lateral in eine Falte der „Krähenfüße“ über dem lateralen Orbitarand bleibt weiterhin möglich. Der in der Regel sub-periostale Zugang zum Orbitadach wird medial durch die Trochlea und lateral durch das Lidbändchen limitiert [19,20]. Ein Auslösen der Trochlea ist bei technisch korrekter Durchführung mit guter chirurgischer Sicherheit möglich und erweitert den Zugang zur vorderen Schädelbasis insbesondere nach dem Clipping der Ethmoidalarterien beträchtlich. Die Rekonstruktion

Abb. 2 Die Präkarunkuläre Schnittführung erfolgt nach Intubation der Tränenkanälchen und Retraktion derselben durch Tränenwegssonden; die Karunkula wird durch eine Pinzette nach medial retrahiert, die Inzision erfolgt präkarunkulär durch eine feine monopolare Nadel.

Abb. 3 Präkarunkuläre Darstellung der Arteria ethmoidalis anterior. Die Arterie ist einfach geklipp, die Frakturlinie strahlt von posterior ins Foramen ethmoidale anterius ein.

Abb. 4 Darstellung des Duradefektes nach Entrümmerung des Frakturspaltes.

Abb. 5 „Klassische“ supratarsale Schnittführung (gestrichelte schwarze Linie); die von den Autoren bevorzugte supra-supratarsale Schnittführung (tatsächliche Inzisionslinie) erlaubt eine weitere Darstellung der vorderen Schädelbasis bei exzellenter und in der Regel nicht sichtbarer Narbenbildung.

Abb. 6 15-jährige Patientin mit einem symptomatischen Rezidiv einer monostotischen fibrösen Dysplasie bei Z.n. transkranialer Entfernung 3 Jahr zuvor. Die Patientin stellte sich mit zunehmender Diplopie und Cephalgien vor.
erfolgt durch simples Repositionieren, eine Fixierung durch Naht ist nicht notwendig. Dies berichten Haug et al. in einer retrospektiven Studie an 15 Patienten, bei denen die subperiostale ausgelöste Trochlea durch Reposition der orbitalen Weichteile rekonstruiert wurde. Bei allen Patienten war die Funktion der extraokulären Muskulatur unbeeinträchtigt [19]. Die Autoren der vorliegenden Arbeit haben dieselben Erfahrungen in 12 Patienten gemacht, bei denen die Trochlea für den supraorbitalen Zugang zur vorderen Schädelbasis ausgelöst und wieder repositioniert wurde [19]. Raza et al. berichten über einen Patienten, der nach Auslösungen der Trochlea eine Diplopie davontrug, welche sich als selbst limitierend darstellte. Diese Autoren vermeiden als Konsequenz dieser Beobachtung nun das subperiostale Auslösen der Trochlea [22].

Abb. 6–10 Illustrieren das Potenzial des Oberlidzugangs, wenn die Trochlea ausgelöst wird. Das in (Abb. 6) dargestellte Rezidiv einer 2 Jahre zuvor transkranial resezierten monostotischen fibrösen Dysplasie manifestierte sich durch zunehmende Diplopie und Bulbusverdrängung. Die Läsion umfasste die knöcherne Basis der Trochlea, die Fossa trochlearis. Wie an Abb. 7 dargestellt, wurde die Trochlea über einen Oberlidzugang ausgelöst und die Läsion reseziert. Nach Duraplastik (Abb. 9) zeigte sich eine Rhinoliquorrhoe, sodass am 1. postoperativen Tag eine Revisionsduraplastik über den gleichen Zugang durchgeführt wurde. Hierbei wurde eine Plombe autologen Bauchfetts durch Nähte von unten an die Duraplastik antamponiert. Die Haltefäden wurden durch Knochenanker in der Crista Galli und im lateralen Orbitadach fixiert (Abb. 6–10).

Lateral lässt sich durch Auslösungen des lateralen Lidbändchens der laterale Orbitaboden und die Orbitaspitze in der lateralen Semi-zirkulummerzen darstellen. Ein Auslösen des lateralen Lidbändchens erfolgt in der subperiostalen Schicht und erfordert keine laterale Kanthotomie. Die Rekonstruktion erfolgt durch eine Modifikation der von Moe beschriebenen Kanthoplastik. Dabei wird das laterale Lidbändchen mit Nahtmaterial angezügelt und über Bohrlöcher, welche die Sutura zygomaticofrontalis sagittal perforieren, fixiert [19, 20].

Die temporäre Entnahme von Stirnhöhlenvorderwand und -boden gewährt Zugang zur Stirnhöhlenhinterwand. Hierbei kann das zu entnehmende Segment auf Höhe des Foramen supraorbitale sagittal gespalten werden und so der Nervus supraorbitalis geschont werden (Abb. 11). Man erhält Zugang zu den posterioren Abschnitten des interorbitalen Korridors und

Abb. 7 Transorbitaler Oberlidzugang. Die Pathologie wurde nach Auslösungen der Trochlea und Clipping der A. ethmoidalis anterior in toto reseziert.

Abb. 8 Der resultierende Duradefekt wurde mit Tachosil gedeckt.

Abb. 9 Aufgrund einer klinisch evidenten Rhinoliquorrhoe wurde die Patientin am 2. postoperativen Tag revidiert. Mittels Knochenankern in der Crista Galli und im lateralen Orbitadach wurde Facia lata und Bauchfett von unten in den Defekt tamponiert.

Abb. 10 Die Patientin ist mit 2 Jahren Nachbeobachtung rezidivfrei, ihre Doppelbilder zeigten sich wesentlich regredient und sind im Alltag nicht mehr bemerkbar. Die Cephalgien persistierten und werden medikamentös kontrolliert.
wie im vorliegenden Fall zur Lamina cribrosa und Crista Galli. Auch eine Resektion des Stirnhöhlenseptums im Sinne einer Draf Typ 3 Operation kann so durchgeführt werden. Die anatomische Kontinuität der Wandungen der Stirnhöhle wird durch Osteosynthese mit Mikroplatten wieder hergestellt (Abb. 12). Abb. 13 illustriert das postoperative Ergebnis eines 16-jährigen Patienten ein Jahr nach Defektdurchtrennung der Lamina cribrosa. Funktion und Kosmetik sind ohne Defizit.

3.3.3 Der laterale retrokanthale Zugang
Hier erfolgt die Schnittführung in der Konjunktiva posterior zur Insertion des lateralen Lidbändchens am Whitnallschen Tuberkel (Abb. 14). Sie erlaubt z.B. die Osteosynthese einer Fraktur der Sutura zygomaticofrontalis ohne externe Hautinzision und die laterale Orbitadekompression [23]. Klinische Studien zur Relevanz dieser Schnittführung als Zugangsweg zur vorderen Schädelbasis sind bisher nicht publiziert. In einer kombiniert anatomisch- und computersimulierten Studie zeigten Bly et al., dass sich über diesen Zugang weiter zentral gelegene Areale wie der laterale Sinus cavernosus und die mittlere Schädelgrube erreichen lassen können.

3.3.4 Der transkonjunktivale Zugang
Der transkonjunktivale Zugang zum Orbitaboden wird von vielen Autoren einschließlich der Verfasser der vorliegenden Arbeit als exzellenter Zugang z.B. zur Versorgung von Orbitabodenfrakturen bevorzugt [20].

3.3.4 Transorbitale Kraniotomie und Kraniektomie
Als Kraniotomie wird ein Verfahren bezeichnet, bei dem ein der Dura aufliegender Knochendeckel temporär entnommen und nach dem Eingriff wieder eingesetzt wird. Als Kraniektomie wird ein Verfahren bezeichnet, bei dem der der Dura aufliegende Knochendeckel dauerhaft entfernt wird. Der Zugang zur Dura durch das Orbitadach erfolgt in der Regel als Kraniektomie, der resezierte Knochen wird also in den bisher publizierten Studien nicht wieder eingesetzt. Als mögliche Folge wird die Ausbildung eines pulsatilen Exophthalmus genannt. In den Studien, in denen über diese mögliche Konsequenz berichtet wird, stellte sich der pulsatile Exophthalmus als selbstlimitierend dar.

Andaluz et al. und Aziz et al. beschreiben die Resektion eines superolateralen Segments über einen Oberlidzugang, welcher 2,5 cm lateral des lateralen Lidwinkels über den Orbitarand geschwungen wird. Das Segment inkludiert den Orbitarand und die Sutura frontozygomatica und reicht bis zur Sutura frontosphenoidalis. Über diesen Zugang behandelten Andaluz et al. 5 Aneurysmen der anterioren Zirkulation und 3 Tumore der vorderen Schädelbasis, Aziz et al. 40 Patienten, davon 31 Patienten mit Aneurysma. Chu et al. und weitere Autoren beschreiben die Resektion eines Segments der Stirnhöhlenvorderwand. Komplikationen waren nicht zu beobachten, die kosmetischen Ergebnisse waren exzellent. Die knöchernen Segmente wurden nach Reposition durch Plattenosteosynthese fixiert. Eine Systematik der Größe und Position mit entsprechender Nomenklatur des zu entnehmenden knöchernen Segments wurde bisher nicht beschrieben. Die meisten Autoren berichten, dass der knöcherner Zugang individualisiert wird und von der jeweiligen Pathologie abhängt [21, 24].
4. Indikationen und Limitationen

4.1 Vorbemerkungen: Offenes vs. transorbitales Vorgehen – Neurochirurgische Perspektive

Die Indikation für ein offenes, neurochirurgisches (mikrochirurgisches) Vorgehen ist nicht zuletzt abhängig von der Expertise und der Zusammenarbeit zwischen den Disziplinen HNO und Neurochirurgie [25–27], von der Komorbidität und dem Patientenalter [28], sowie im Besonderen von den patho-anatomischen Gegebenheiten des Situs [11, 29, 30]. So beschrieben Marchal et al. in ihrem Review die von der Anatomie der Läsion abhängige Zugangsvariante in einem interdisziplinären Setting [25] und Zimmer et al. veranschaulichen die verschiedenen technischen und apparativen Möglichkeiten sowohl der minimal-invasiven, bzw. endoskopischen, als auch der offenen transskraniellen Zugänge zu Läsionen der vorderen Schädelbasis [27].

Hendryk et al. untersuchten das postoperative Outcome bei 15 Patienten mit Neoplasien der vorderen Schädelbasis die entweder transskranial oder transfazial operiert worden sind. In dieser Population fand sich als Resultat bei benignen Läsionen, die transskranial angegangen wurden, bei welchen zudem eine Rekonstruktion der Hirnhäute und der knöchernen Basis notwendig war, ein besseres funktionelles Ergebnis, wohingegen maligne Läsionen besser en bloc über einen transfazialen Zugang erreichbar waren und ein besseres funktionelles Ergebnis aufwiesen [29].

Insgesamt betonen aber alle Autoren, dass eine dogmatische Herangehensweise an komplexe Läsionen der vorderen Schädelbasis nicht sinnvoll ist. Diese Aussage ist wichtig vor dem Hintergrund unterschiedlicher operativer Expertise, fortschreitender apparativer Möglichkeiten und sich wandelnder Behandlungskonzepte [25–27, 29, 30], die die noch vor einigen Jahren postulierte Radikalität der Resektion um den Preis der Funktionalität in Frage stellen [31].

Die Autoren Zimmer et al., Rawal et al. und Husain et al. betonen in ihren aktuellen Arbeiten, dass grundsätzlich einem wesentlich weniger traumatisierenden transorbitalen bzw. transfazialen Zugang zur Resektion eines Tumors, Reposition einer Fraktur oder Deckung einer Fistel der Vorzug zu geben ist [27, 32–34].

Die Indikation für ein offenes, neurochirurgisches (mikrochirurgisches) Vorgehen ist nicht zuletzt abhängig von der Expositionalität in Frage stellen [31].

Die Autoren Zimmer et al., Rawal et al. und Husain et al. betonen in ihren aktuellen Arbeiten, dass grundsätzlich einem wesentlich weniger traumatisierenden transorbitalen bzw. transfazialen Zugang zur Resektion eines Tumors, Reposition einer Fraktur oder Deckung einer Fistel der Vorzug zu geben ist [27, 32–34]. Die Indikation zur operativen Revision der Schädelbasis, sollte in ihre aktuellen Arbeiten, dass grundsätzlich einem wesentlich weniger traumatisierenden transorbitalen bzw. transfazialen Zugang zur Resektion eines Tumors, Reposition einer Fraktur oder Deckung einer Fistel der Vorzug zu geben ist [27, 32–34].

Zusammengefasst wird jedoch, bezogen auf einen transorbitalen Zugang ohne direkte Manipulation am Hirnparenchym – im Rahmen eines transkraniellen Zugangs – in Erwägung gezogen werden, da diese Hirnareale als besonders iktores und vulnerabel für Manipulationen gelten [55, 57].

Zusammengefasst wird jedoch, bezogen auf einen transorbitalen Zugang ohne direkte Manipulation am Hirnparenchym – im Rahmen eines transkraniellen Zugangs – in Erwägung gezogen werden, da diese Hirnareale als besonders iktores und vulnerabel für Manipulationen gelten [55, 57].

5. Diagnostik

5.1 Bildgebung

Grundleitung der Operations- und Zugangsplanung ist die radiologische Bildgebung. Ihr kommt der größte Stellenwert bei der Entscheidung zu, ob ein transorbitales, endonasales, transfaziales und/oder transskranielles Vorgehen gewählt wird. Bei Patienten nach stattgebahntem Schädelhirntrauma, mit der Indikation zur operativen Revision der Schädelbasis, sollte in jedem Fall eine dünnschichtige, computertomografische Schnitt-
6. Präoperatives Management

6.1 Interdisziplinäre Planung

Interdisziplinäre Kooperation wird zunehmend zum Standard im Management komplexer Pathologien, welche aufwendige Diagnostik und multimodale Therapiestrategien erforderlich machen. So wird die Behandlung bösartiger Tumorerkrankungen zunehmend in interdisziplinären Tumorboards geplant und begleitet. Auch für die Behandlung von Erkrankungen der Schädelbasis gewinnt eine interdisziplinäre Herangehensweise an Bedeutung. Belastbare Daten zur Effektivität dieser interdisziplinären Kooperationen bezüglich der Chirurgie der Schädelbasis gibt es nur wenige. Lutterbach et al. analysierten 1516 Patienten, die über 15 Jahre in Freiburg in Rahmen der interdisziplinären Hirntumorkonferenz besprochen wurden. Etwa ein Drittel dieser Fälle betrafen Neoplasien der Schädelbasis. 91% der Therapieempfehlungen wurden in diesem Patientenkollektiv umgesetzt. Die Autoren ziehen die Schlussfolgerung, dass eine interdisziplinäre Therapieempfehlung besonders konsequent umgesetzt wird [63]. McLauglin et al. analysieren in einer Übersichtsarbeit die Vorteile interdisziplinärer Kooperationen und ziehen Rückschlüsse auf das Management von Erkrankungen der Schädelbasis. Diese Autoren argumentieren, dass eine interdisziplinäre Kooperation wichtige Vorteile bei allen Aspekten der Versorgung von Patienten mit Schädelbasiserkrankungen bietet, angefangen bei der klinischen Diagnostik über die Bildgebung, weitere Tests und invasive Diagnostik und besonders bei der Selektion und Durchführung der angezeigten Therapiemodalität(en). Die Autoren empfehlen einen strukturierten und formalisierten Prozess beim Aufbau und der Führung des interdisziplinären Teams [64]. Spezifische Daten zum Management minimal invasiver transorbitaler Zugänge gibt es bisher nicht.

7. Perioperatives Management

7.1 Lagerung

Hinsichtlich der Lagerung stellt sich die fundamentale Frage, ob ein Einspannen des Kopfes in eine Klemme nach Mayfield indiziert ist. In der Studie von Andaluz et al. wurden 5/5 Patienten entsprechend fixiert. Über negative oder positive Auswirkungen dieser Maßnahme wird in der Studie nicht eigens berichtet. Die Nachteile schließen das bekannte und recht sichere Risikoprofil dieser Maßnahme ein (Blutung, Infektion, Narbenbildung, Alopezie). Zudem kann der Zugang für das Instrumentarium gelegentlich erschwert sein, auch ist es schwieriger für das operative Team, eine ergonomische Körperhaltung beizubehalten. Die Vorteile manifestieren sich beim wesentlich einfacheren Wechsel zum offenen-transkranialen Verfahren. Insbesondere bei Pathologien, die einen schnellen Wechsel notwendig machen können, wie z. B. das Clipping von Aneurysmen der vorderen Zirkulation, ist ein Einspannen des Patienten sicher zu empfehlen.

7.2 Neuronavigation

Zur intraoperativen Lokalisierung der Raumforderungen, die Fraktur oder der Tumor ist die Neuronavigation ein zukunftsweisendes Hilfsmittel [65, 66]. Mit ihr gelingt es, minimal-invasive Zugänge so zu planen, dass man über den kürzesten oder am wenigsten traumatisierenden Weg zur Zielregion gelangt [67]. Gerade im Hinblick auf nicht parenchymatöse, sondern extra-axiale oder knöcherne Tumore der frontalen oder temporalen Schädelbasis, ist die Genauigkeit der Navigation während der gesamten Operation gegeben und wird laut einer aktuellen Studie, indiziert zu empfehlen. Die Autoren empfehlen einen strukturierten und formalisierten Ansatz [68]. Spezifische Daten zum Management minimal invasiver transorbitaler Zugänge gibt es bisher nicht. Ein weiterer Vorteil der Neuronavigation ist die Genauigkeit der Navigation während der gesamten Operation gegeben und wird laut einer aktuellen Studie, indiziert zu empfehlen. Die Autoren empfehlen einen strukturierten und formalisierten Ansatz [68]. Spezifische Daten zum Management minimal invasiver transorbitaler Zugänge gibt es bisher nicht.
ohne Fixierung an der Schädelklemme auskommen [74,75]. Kommt ein System mit Schädelklemmenfixierung zur Anwen-
dung, muss an ihr die Referenzierung fest angebracht werden
und die gesamte Operation hindurch für die Navigationskamera
sichtbar bleiben. Unter Umständen erschwert dieser Aufbau das
intraoperative Handling und die Instrumentenführung, insbe-
sondere wenn eine uni- oder bifrontale Zugangsvariante geplant
wird. Daher sollte vorher stets die Lagerung des Schädels,
verbunden mit der intraoperativen, nur sehr eingeschränkten
Möglichkeit der Lageänderung des Kopfes bedacht werden, ins-
besondere wenn ein alleiniges oder kombiniertes, endosko-
pisch-assistiertes, transorbitales/transkraniales Vorgehen ange-
strebt wird [76].

7.3 Intraoperative Bildgebung
In der operativen Neuroonkologie hat die intraoperative Bildge-
bung mittels MRT mit entsprechender Feldstärke (0,5–3,0 Tesla)
einen hohen Stellenwert erlangt [77]. Zahlreiche randomisierte
und prospektive Studien zur intraoperativen MRT-Bildgebung
belegen, dass die Radikalität der Resektion unter gleichzeitiger
Erhaltung der neuronalen Funktionalität signifikant gesteigert
werden konnte [78]. Nur wenige wissenschaftliche Arbeiten
evaluieren jedoch bislang die Anwendung der intraoperativen
MRT bei Prozessen der frontalén Schädelbasis, sodass hier keine
validen Daten herangezogen werden können [79,80].

Anders verhält es sich mit der intraoperativen CT. Diese
Untersuchungsform zeigt bekanntermaßen vornehmlich knö-
cherne Strukturen und wird daher erfolgreich in den Rahmen
von Zugängen zur, und Resektionen an der Schädelbasis eingesetzt
[81–83].

Eine intraoperative CT wäre naturgemäß auch bei Läsionen und
operativen Zugängen im Rahmen des TONES Approaches wün-
schenswert, allerdings fehlen auch hier Daten, die die Effektivi-
tät und Machbarkeit in diesem Setting evaluiert haben. Die
Etablierung eines intraoperativen, radiologischen Verfah-
rens ist jedoch an bauliche, logistische und natürlich an finanzi-
elle Gegebenheiten gebunden. Viele Kliniken können daher auch
zukünftig nicht auf derartige Hilfsmittel zurückgreifen.

Ein in der neuroonkologischen Neurochirurgie zunehmend be-
achtetes Verfahren ist die Fluoreszenz-gestützte Mikrochirurgie
[84,85]. Diese wird zwar vornehmlich zur verbesserten Resek-
tion bei hirneigenen Tumoren und Hirnmetastasen eingesetzt
[86,87], wurde aber auch bei Dura-infiltrierenden Tumoren der
Schädelbasis als effektiv evaluiert [88]. Auch im Rahmen der
hier diskutierten transorbitalen Zugänge zu Tumoren der Schä-
delbasis könnte sich die Fluoreszenz-gestützte Resektion mit
Natrium Fluoreszsin unter einem entsprechenden Lichtfilter
(YELLOW 560 nm, Carl ZEISS Meditec) als wichtiges technisches
Hilfsmittel erweisen.

7.4 Wechsel zum transkranialen Vorgehen
Intraoperativ kann es jederzeit nötig werden, von einem endos-
kopisch-assistierten, minimal-invasiven, transoritalen Vorge-
hen zu einem offenen, neurochirurgischen Zugang über eine
uni- oder bifrontale, oder sogar perionale (fronto-temporale)
Kraniotomie zu wechseln [89–93]. Entsprechend sollte die prä-
operative Planung stets in enger Absprache der beteiligten Diszi-
plinen HNO und Neurochirurgie erfolgen, wobei auch die Instru-
mentierung und das Pflegepersonal in die Überlegungen mitein-
bezogen werden sollten [93,94].

Ist ein offenes, transkraniales neurochirurgisches Vorgehen so-
gar wahrscheinlich, sollte bereits bei der Lagerung des Patien-
ten, insbesondere des Kopfes, der neurochirurgische Operateur
anzuwesend sein. Das Einspannen des Kopfes in die Schädelklem-
me sollte dann bereits vor der Abdeckung erfolgen, was z.B. bei
der Anwendung der Neuronavigation mittels Schädelklemmen-
fixierung immer notwendig ist.

7.4.1 Indikationen
Die Indikation zum Wechsel von einem transorbitalem zu einem
offenen neurochirurgischen Vorgehen kann notwendig werden
aus Gründen der Übersicht, aufgrund einer rigid en oder stark
vaskularisierten Konsistenz eines Tumors [93,95], bei größeren
Duradefekten und bei dem Verdacht auf manifeste, ggf. sogar
intradurale oder parenchymatóse (iatriogene) Blutung [96]. Bei
stark dislozierten und komplexen Frakturen der Rhino-/Orbita-
basis mit konsekutiver, großflächiger Zerreißung der basalen
Dura kann es notwendig sein, die knöcherne Basis nach erfolgter
Reposition von kranial her mit autologem oder allogenem Mate-
rial zu decken (siehe 7.4.2.) [97–100].

Grundsätzlich liegt es aber im Wesentlichen an der operativen
Expertise des Teams, inwieweit auch im Rahmen eines
TONES-Zugangs Blutungskomplikationen beherrscht werden
können und komplexe Tumore und Frakturen der Schädelbasis
als erreichbar eingeschätzt werden.

In der 2010 publizierten Evaluation des TONES Approach durch
die Arbeitsgruppe von Moe wurden bei 16 Patienten über 20
TONES Zugänge sowohl Liquorfisteln als auch komplexe Tumore
der Schädelbasis und Frakturen versorgt, ohne dass ein Umstei-
gen auf ein offenes neurochirurgisches Vorgehen notwendig
wurde. Allerdings betonen die Autoren, dass eine neurochirurgi-
sche Kraniotomie jederzeit sinnvoll werden könnte [36]. Auch
die Autoren der vorliegenden Arbeit mussten in 16 Fällen bisher
0/16 Mal intraoperativ auf ein transkraniales Vorgehen umstei-
gen. In 1/16 Fällen wurde ein 2-zeitiges transkraniales Vorgehen
notwendig, da die den Nervus opticus komprimierende Patholo-
gie nicht ausreichend erreicht werden konnte.

7.4.2 Vorgehen

Uni-/ bifrontale (subfrontale) Kraniotomie. Über eine bifron-
tale Kraniotomie kann die gesamte viszerale frontale Schädel-
basis visualisiert werden, über eine unifrontale Kraniotomie
wird die jeweilige Seite erreicht. Diese Zugangsvariante expo-
niert eine sehr große Fläche, ist aber naturgemäß relativ tra-
matisch und invasiv. Das Vorgehen kann extra- oder intradural
gewählt werden. Über die dargestellte Fläche der frontalén Basis
hat man Zugang zur Nasenhauptöhle, zum Ethmoidalkomplex,
zur Rhinobasis, sowie zum medialen, lateralen und superioren
Orbitainhalt.

Ein rein extraduraler Zugang empfiehlt sich meist bei Frakturen
der vorderen Schädelbasis, bei komplexen Frakturen der Stirn-
höhlenhinterwand und bei Tumoren, die die basale Dura nicht
infiltrieren [98].

Bei einem extraduralen Vorgehen kann das Frontalhirn jedoch
nicht in dem Maße wie beim intraduralen Zugang retrahiert
werden, entsprechend ist die anatomische Exposition und die
Möglichkeit zur Manipulation beschränkt. Bei zu kräftiger Re-
traktion besteht die Gefahr des Abreißens der Riechfasern in
Höhe der Lamina cribrosa.

Beim extraduralen Zugang erreicht man bei entsprechend lang-
samer Retraktion des Frontalhirns, nach konsekutivem Absau-
gen von Liquor, den Canalis opticus beidseits, beide Nervi optici,
das Chiasma opticum, den kranialen Hyphysensstiel, beide Ar-

Gassner HG, Schebesch K-M. Minimal-invasive Chirurgie... Laryngo-Rhino-Otol 2015; 94: S288–S305
teriae carotides internae, das Planum sphenoidale und beide Processus clinoides anteriores. Dieser Zugang bedarf einer sehr guten anatomischen Orientierung und einer großen operativen Erfahrung. Das Spektrum der Komplikationen ist groß und reicht von venösen Kongestionen über dramatische Liquorfisteln bis hin zu irreversiblen Schäden der frontobasalen Hirnnerven.

**Pterionale (fronto-temporale) Kraniotomie.** Wie die subfrontale Variante gehört die pterionale Kraniotomie zu den Standardzugängen in der kranialen Neurochirurgie. Über diesen Zugang wird von lateral her, bei entsprechend größer Kraniotomie und einseitiger Retraktion des ipsilateralen Frontalhorns fast die gesamte ipsilaterale Basis und große Teile der kontralateralen Basis exponiert, zudem gelangt man zum ipsilateralen Temporalpol und nach Eröffnung der Sylvischen Fissur (Sulcus frontotemporalis) zur supra- para- und retrosellären Region mit allen Gefäßen und Hirnnerven, inklusive Chiasma opticum, Tractus opticus und III.Ventrikel [101]. Dieser Zugang ist geeignet für Pathologien im Bereich des Sinus cavernosus, der lateralen Orbita und insbesondere für Zugänge zur Fissura orbitalis superior mit ihrem Inhalt (N.III, N.IV, N.V1, N.VI, Vena ophthal-mica).

**Deckung der Schädelbasis.** Wie oben beschrieben ist bei komplexen Frakturen der vorderen Schädelbasis häufig die Deckung des duralen Defektes von kranial her nötig [102]. Hierfür wird bei der Präparation des Haut/Galeallappens bereits auf die Erhaltung eines geeignet großen Periostlappens geachtet, der nach basal hin gestielt wird. Bei großflächiger und vorsichtiger Präparation reicht dieser gestielte Lappen tatsächlich bis zum Planum sphenoidale und überdeckt somit sogar das Dach der Keilbeinhöhle und das Dach der oberen Ethmoidalzellen. Der Lappen wird möglichst gestielt belassen, kann jedoch auch frei platziert werden. In jedem Fall ist die Fixierung an Rändern der Dura mit Mikronähten, Fibrinkleber und/oder Kollagenfaser-haltigem Material empfehlenswert. Sollte es nicht möglich sein eine Deckung mit autologem Material zu erreichen, so kann auf alloplastischen Deckung begünstigt.

**Lumbaldrainage.** Die Implantation einer lumbalen Dauerdrainage zur Verringerung des kranialen Liquordrucks verringert signifikant die Inzidenz postoperativer Liquorfisteln und sollte bei großflächigen Deckungen der Schädelbasis, bei welchen eine erhebliche Retraktion des Frontalhorns offensichtlich ist, bereits präoperativ implementiert werden, da durch das präoperative Ableiten von Liquor die Retraktion des Gehirns wesentlich erleichtert wird [104, 105]. In älteren Arbeiten wird jedoch die Implantation einer externen Liquorableitung kontrovers diskutiert, da einige Autoren die Meinung vertraten, dass gerade ein sich aufbauender Liquordruck den Verschluss einer Liquorfistel nach plastischer Deckung begünstigt. Zudem birgt eine Lumbaldrainage auch verschiedene Risiken, die zu erheblichen Komplikationen und Co-Morbiditäten führen können [105]. Mit zunehmender Liegedauer der Drainage erhöht sich das Risiko einer iatrogenen Meningitis und Enzephalitis [106, 107]. Zudem kann ein schmerzhaftes Liquorunterdrucksyndrom entstehen und es werden regelmäßig Fälle von intrakranieller Hypotension [108], sowie von subduralen Hygromen [109] und Hämatomen [110, 111] beschrieben, die durch die Dehnung und Zerreißung duraler Brückenvenen entstehen [112]. Eine absolute Kontraindikation für eine Lumbaldrainage oder Lumbalpunktion ist eine manifeste Ablussbehinderung im Aquaeductus cerebri, im IV. Ventrikel oder im Foramen magnum, da es zu einer letalen tentoriellen oder foraminalen Herniation kommen kann, wenn der spinale Liquorunterdruck die oberen Hirnanteile „ansaugt“ [105, 107]. Gerade bei Traumapatienten ist daher eine radiologische Diagnostik mit der Frage der Durchgängigkeit des Liquors nach spinal nahezu obligatorisch, bevor eine lumbale Liquorableitung etabliert wird [109].

**8. Postoperatives Management**

**8.1 Intensivmedizinische Überwachung**
Grundsätzlich besteht nach Kraniotomie ein erhöhter Überwachungsbedarf für 48 Stunden. Idealerweise werden die Patienten bereits im OP extubiert sodass die postoperative Überwachung am neurologisch beurteilbaren Patienten erfolgt. Die Überwachung muss nicht zwingend auf einer Intensivstation stattfinden, sollte aber unbedingt die engmaschige Kontrolle neurologischer Parameter wie des Hirnnervenstatus, der Vigilanze und der Motorik beinhalten [94]. Ein manifestes, präoperativ nicht dokumentiertes, oder durch das operative Vorgehen erklärbares, fokales neurologisches Defizit sollte stets eine umgehende Bildgebung, in aller Regel mittels CT, nach sich ziehen [113]. Als wesentliche Komplikationen in der Frühphase nach Kraniotomie gelten intra- und extrazerebrale Blutungen und Kontusionen [114], Liquorfisteln [115] und der druckaktive Pneumatocephalus [116]. Relevante Blutungskomplikationen treten in der neurochirurgischen Literatur mit einer Häufigkeit von 0,8–1,1% auf [114, 117]. Je nach Raumforderung ist im Gefolge des Nachweises einer postoperativen Blutung eine notfallmäßige Re-Kraniotomie mit Hämatomevakuation, ggf. die Implantation einer intrazerebralen Drucksonde und/oder einer Ventrikeldrainage, anzustreben.

**8.2 Kontrolluntersuchungen und -bildgebung**
Die engmaschige klinische Kontrolle neurologischer Parameter (Hirnnerven, Vigilanze, Sensibilität, Motorik), der Vitalparameter, der Wundheilung, der Fördermenge und des Inhaltes der Drainage(n), sowie mindestens eine postoperative laborchemische Kontrolle (CRP, BB, Elektrolyte) sind fester Bestandteil des erforderlichen Nachsorges im unmittelbaren postoperativen Intervall. Ggf. muss eine supportive und symptomatische analgetische und nutritive Therapie begonnen werden [118, 119].

Art und Frequenz der postoperativen, bildgebenden Kontrollen wird im Wesentlichen vorgegeben durch die biologische Aktivität des Tumors (WHO Grading, Histologie, Ki-67 Index), weitere suspekte Läsionen (z. B. Fernmetastasen) und die primär erreichte Radikalität der Resektion. In aller Regel bedient man sich der klassischen radiologischen Methoden wie CT und MRT, durchweg KM-gestützt [113]. In Ausnahmefällen werden diese ergänzt durch nuklearmedizinische (PET, SPECT) oder speziﬁ sche sonografische Varianten [120].

Bei benignen Prozessen der Schädelbasis, wie z. B. bei Meningeomen WHO I, die komplett reseziert werden konnten, erfolgt zunächst eine native CT-Kontrolle binnen 48 Stunden postoperativ zum Ausschluss einer relevanten Nachblutung, nach 12 Wochen eine KM-gestützte MRT zur Dokumentation der Resektionser-
folges, sowie weitere KM-gestützte MRT-Kontrollen in jährlichem Abstand über mindestens 5 Jahre. Hingegen empfiehlt es sich bei malignen Prozessen, wie z. B. bei Metastasen der Schädelbasis, selbst wenn vermeintlich eine Komplettresektion erzielt wurde, direkt postoperativ statt der nativen CT bereits eine KM-gestützte MRT-Untersuchung anzustreben, um den Beginn einer – vom Resttumorstatus abhängigen – adjuvanten Therapie (z. B. Radio-/Chemotherapie) nicht heraus zu zögern [120]. Die entsprechenden MRT-Kontrollen sollten dann in 3 bis 6-monatigem Abstand erfolgen.

8.3 Rehabilitationsmaßnahmen
Grundsätzlich ist die Indikation zur Rehabilitation nach einem operativen Eingriff an der Schädelbasis gegeben [121, 122]. Es sollte allerdings die Indikation zur stationären Rehabilitation in Abstimmung mit der persönlichen Situation des Patienten, vor allem aber mit der Indikation zur adjuvanten Therapie gestellt werden. Eine Verzögerung der Einleitung einer Radio- oder Chemotherapie bei malignen Tumoren gilt als negativer Prädiktor für das Outcome. Eine stationäre Rehabilitation sollte in diesem Fall im Anschluss an das adjuvante Vorgehen angeschlossen werden.

Die Rehabilitation sollte vornehmlich auf die mögliche Wieder­eingußerung des Patienten in das Alltags- und Berufsleben ab­zielen, eventuelle Funktionsverluste (z. B. Anosmie, Diplopie, Visusminderung, Frontalhirnsyndrom) verbessern oder diese zumindest weitgehend coupieren [123]. Die Dauer einer stationär­en neurologischen Rehabilitation beträgt in aller Regel 3 Wochen. Nach Meinung vieler Autoren ist eine Erholung fokaler neurologischer Ausfälle nach 24 Monaten nicht mehr zu erwarten. Während dieses Zeitraumes ist die neurologische Rehabili­tation indiziert, grundsätzlich aber gilt es, diese so früh wie möglich einzuleiten um den größten Benefit für die Patienten zu erzielen.

9. Bisherige Ergebnisse

9.1 Studien: Simulationsstudien
9.1.1 Apex orbitae und mittlere Schädelgrube
Bly et al. führten eine Simulation der transoritalen Zugänge zu verschiedenen anatomischen Marken durch. Die Simula­tion basierte auf einem 3-dimensionalen CT-Datensatz, der so­genannte virtuelle Endoskopie wurde mit iNtellect Kranial Navigation (Version 1.1–14, Stryker Corporation, Kalamazoo, MI, USA) durchgeführt. Getestet wurden alle 4 trans-orbitale Zugänge nach Moe, zudem der etablierte transnasale Zugang. Als Kriterien für die Bewertung der Zugänge zogen die Autoren heran:
1. Prinzipielle Durchführbarkeit
2. Abwesenheit neurovaskulärer Strukturen von vitaler Bedeutung im Zugangskorridor
3. Maximaler Winkel zwischen den manipulierenden Instrumenten 15°
4. Der Arbeitswinkel relativ zur Ebene der Schädelbasis oder zur Sagittalen unterscheidet sich um mehr als 15° vom etablierten transnasalen Zugang
5. Der Arbeitsabstand zum chirurgischen Ziel ist wesentlich geringer als der beim transnasalen Vorgehen
6. Beim kombinierten Vorgehen wird nur ein transoritaler Zugang verwendet.

Anhand dieser Kriterien wurden die folgenden chirurgischen Ziele analysiert: Chiasma opticum, Sinus cavernosus, Ganglion trigeminale, Fissura orbitalis superior, dritter Ventrikel, basale Zysterne, Clivus. Für das Chiasma opticum erfüllte der transnasa­lendoskopische Zugang die Kriterien bestmöglich, für alle an­deren Ziele waren es transorbitale Zugänge. Die Autoren zeigten dann exemplarisch an anatomischen Präparaten, dass die Zugänge zu diesen Strukturen durchführbar sind [124].

In einer weiteren Studie kalkulierten Bly et al. mittels Computersimulation einen Zugangsweg über den lateralen retrokan­thaltigen Zugang zum lateralen Sinus cavernosus, den Apex orbitae, das Ganglion trigeminale und die Basis der mittleren Schädel­grube. Diese Autoren testeten den simulierten Zugang dann ebenfalls an anatomischen Präparaten. Dabei blieb die Insertion des lateralen Lidbändchens erhalten, die Inzision erfolgte durch die Konjunktiva posterior des Whitnallschen Tuberkels. Die Limitationen dieser Studie schließen ein, dass wesentliche Parameter nicht simuliert bleiben, z. B. Blutungen, Weichteildruid, Differenzen zwischen den radiologischen und den tatsächlichen Grenzen einer Pathologie oder die Dynamik der Hirnretraktion. Eine klinische Anwendung dieses Zugangs zu diesen zentralen Strukturen ist bisher nicht publiziert [124].

9.1.2 Kombiniert transnasal-transorbitales Vorgehen
Ciporen et al. untersuchten die Möglichkeiten des kombiniert transnasal-transorbitalen Vorgehens an einem anatomischen Modell. Dabei wurden Arbeitswinkel und -entfernung zu wichti­gen anatomischen Landmarken untersucht: Hypophyse, Chiasma opticum und kavernöses Segment der ipsilateralen A. caro­tis. Die Autoren kommen zur Schlussfolgerung, dass sowohl die kürzere Arbeitsdistanz als auch die günstigeren Arbeitswinkel und das weitere chirurgische Feld einen Vorteil gegenüber dem transnasalen Vorgehen darstellen können, z. B. beim Zugang zu folgenden Strukturen: Hypophyse, supraselläre Region, Clivus, Sinus cavernosus. Die Autoren betonen, dass sich besondere Vor­teile durch eine Kombination des transnasalen mit dem trans­orbitalen Vorgehen z. B. in der 4-Hand-Technik ergeben können. Die Limitationen dieser Studie schließen die klassischen Einschränkungen von anatomischen Studien ein: die Alterationen des Weichteilmantels am Präparat, die Deflation des Bulbus, die Schrumpfung des Hirnbewachses der Augenhöhle eröffnet und drainiert. Bei 2/7 Patienten wurde eine simultane Dekompression des Nervus opticus aufgrund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.

Bei 2/13 Patienten wurden subperiosteale oder intraorbitale Abszesse der Augenhöhle eröffnet und drainiert. Bei 3/13 Patienten wurde eine simultane Dekompression des Nervus opticus auf­grund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.

Bei 7/13 Patienten wurden subperiosteale oder intraorbitale Abs­zesse der Augenhöhle eröffnet und drainiert. Bei 2/7 Patienten wurde eine simultane Dekompression des Nervus opticus aufgrund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.

9.2 Klinische Studien
9.2.1 Sinuogene Komplikationen
Das Management sinuogener Komplikationen über transorbitale Zugänge wurde von Lim et al. in einer retrospektiven Studie an 17 Patienten analysiert. Bei 13/17 Patienten wurde der Eingriff mittels Neuronavigation kontrolliert. Bei 7/13 Patienten wurden subperiosteale oder intraorbitale Abs­zesse der Augenhöhle eröffnet und drainiert. Bei 2/7 Patienten wurde eine simultane Dekompression des Nervus opticus aufgrund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.

Bei 7/13 Patienten wurden subperiosteale oder intraorbitale Abs­zesse der Augenhöhle eröffnet und drainiert. Bei 2/7 Patienten wurde eine simultane Dekompression des Nervus opticus aufgrund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.

Bei 7/13 Patienten wurden subperiosteale oder intraorbitale Abs­zesse der Augenhöhle eröffnet und drainiert. Bei 2/7 Patienten wurde eine simultane Dekompression des Nervus opticus aufgrund eines orbitalen Kompressionssyndroms über den präaka­ runkularären Zugang durchgeführt. Dabei wurde der Nervus opticus von medial her dekompimiert. 1/7 Patient litt an einer Thrombose des Sinus cavernosus.
Behandlung einer Muco(-pyo-)zele, bei 3/13 wurde das septum interfrontale durch den transoralen Zugang entfernt. Bei allen 13/13 wird ein kompletter Rückgang der klinischen Symptome beschrieben, CT-grafische Kontrollen zeigten Befunde, die mit der klinischen Besserung korrelierten. Einschränkungen dieser Studie schließen ein, dass exakte Angaben zum prä- und postoperativen Visus fehlen. Auch Messwerte des intraorbitalen Drucks werden nicht genannt, sodass die Indikationen und Konsequenzen der dekomprimierenden Techniken nicht exakt ablesbar sind. Auch exakte Kriterien für das endonasale-endoskopische Gegenoperieren und die Resektion des Septum interfrontale werden nicht genannt. So zeigt die Studie auf, dass Patienten mit sinugenen Komplikationen auf minimale invasive Weise, risikoarm und erfolgreich über transorbitalen Zugänge behandelt werden können. Aussagen über die exakten Indikationen und die Vor- und Nachteile gegenüber endonasalen und transkranialen Zugängen können aus dieser Studie nicht abgeleitet werden [35].

9.2.2 Tumore der Stirnhöhle
Kopelovich et al. beschreiben die Resektion eines invertierten Papillom und zweier Mukozen der Stirnhöhle durch eine Oberlidinzision. Hier wurde von endonasal endoskopisch gegenoperniert und das Infundibulum frontale im Sinne einer Draf 2 Operation eröffnet. Die Resektion der Pathologie gelang in 3/3 Fällen in toto, das funktionelle und kosmetische Ergebnis wird in 3/3 Fällen als exzellent beschrieben [126]. Auch Moe et al. beschreiben die Behandlung von Pathologien der Stirnhöhle über die transoritale Zugänge ohne relevante Morbidität. Die Autoren der vorliegenden Diskussion sehen im Zugang zur Stirnhöhle einen wesentlichen positiven Aspekt der transoralen Zugänge. So bleibt der Zugang zur Stirnhöhle beim transnasal-endoskopischen Vorgehen je nach individueller Anatomie auf die medialen und zentralen Aspekte der Stirnhöhle limitiert. Timperley et al. untersuchten die laterale Reichweite des transnasalen Vorgehens in einer anatomischen Studie. Diese Autoren führten zunächst eine Dissektion nach Draf Typ III durch und anschließend Messungen der lateralen Reichweite des transnasalen Vorgehens. Diese Autoren zeigten wichtige Limitationen des transnasalen Zugangs zu den lateralen Segmenten der Stirnhöhle, vor allem des Stirnhöhlenbodens- und daches auf [127]. Prozesse, welche in der lateral Stirnhöhle lokalisiert sind, werden daher häufig durch transcraulare oder koronare Zugänge exponiert, welche im Vergleich zum transoralen Vorgehen das invasivere Verfahren darstellen. Abb. 15 zeigt den Zugang zur Stirnhöhlenhinterwand nach temporärer Entnahme eines Segmentes der Stirnhöhlenwondervorderwand.

9.2.3 Versorgung von Duradefekten
Die Versorgung von Duraverletzungen wird von Moe et al. anhand von 2 retrospektiven Studien beschrieben. Hinsichtlich der Zugänge differenzieren die Autoren Läsionen des interorbitalen und des supraorbitalen Segments. Als Zugang zum interorbitalem Segment wählen die Autoren eine präkarunkuläre Inzision, als Zugang zum supraorbitalen Segment eine Oberlidinzision. Diese Autoren empfehlen das transorbitalen Vorgehen als Revisionsprozedur, wenn die Rhinoliquorrhoe nach korrekt durchgeführt transnasal-endoskopischem Vorgehen persistiert. Bei Defekten des interorbitalen Korridors verwenden die Autoren azeelluläre Dermis (Alloderm) oder autologe Faszie in 2 Lagen, fixiert mit Fibrinkleber und BioGlue® (CryoLife, Inc., Kennesaw, GA). Bei Defekten des supraorbitalen Korridors führen die Auto-
die mittlere Dauer des stationären Aufenthalts 3 Tage, auch hier traten keine Komplikationen auf und das kosmetische Ergebnis war exzellent [24].

9.2.5 Aneurysmen der vorderen Zirkulation
In der unter 9.2.4 zitierten Studie berichten Andaluz et al. über die Resektion von 5 nicht rupturierten Aneurysma der vorderen Zirkulation nach Resektion eines großen superolateralen Knochensegments über einen Oberlidzugang. Der mittlere Durchmesser der Aneurysma betrug 5 mm. Die mittlere Dauer des stationären Aufenthalts 2,2 Tage, Komplikationen traten keine auf. Das knöcherne Segment wurde durch Plattenosteosynthese repositioniert. Das kosmetische Ergebnis war 3 Monate postoperativ exzellent [24]. Aziz et al. berichten in einer Studie an 40 Patienten, bei 31/40 wurde ein Aneurysma der vorderen Zirkulation behandelt. Bei Aziz traten 4 Komplikationen auf, ein Hämatom des Augenlids, 2 Infektionen und eine Liquorrhoe. Alle Komplikationen waren reversibel. Wie oben diskutiert, über schreiten die Studien von Andaluz und insbesondere von Aziz die Eingrenzung des Themas knapp, da hier die Schnittführung nach lateral über den knöchernen Orbitarand hinaus gezogen wird. Der Vollständigkeit halber werden Sie aber hier aufgeführt, da sie das enorme Potenzial des transorbitalen Vorgehens exzellent illustrieren. Die Autoren der vorliegenden Studie haben über eine weniger weit nach lateral führende Inzision und nach Auslösosen des lateralen Lidbändchens sowie nach Resektion eines Segmentes der lateralen Orbitawand exzellente Erfahrungen mit dem Zugang zur gesamten lateralen Orbita und den lateralen Aspekten der Frontobasis gemacht. So konnte die retroorbitale Läsion in Abb. 16 bei einem 66-jährigen Patienten mit progredientem Exophthalmus und progredienter Diplopie über den Oberlidzugang mit temporärer Resektion einer Knochenspange in toto exstirpiert werden (Abb. 17). Der Patient wurde nicht intensivpflichtig, konnte bereits am OP Tag mobilisiert werden, Diplopie und Exophthalmus zeigten sich komplett regredient.

9.2.6 Versorgung von Frakturen der vorderen Schädelbasis
Moe et al. berichten in einer retrospektiven Studie über die Versorgung von 8 Patienten über einen transoralen Zugang. In der überwiegenden Zahl der Patienten ergab sich die Indikation zum Eingriff aus symptomatischen Frakturen des Orbitadaches, welche u.a. in Diplopie oder Dystopie resultierten. Bei 7/8 Patienten waren die pathologischen Veränderungen komplett regredient. Die Autoren der vorliegenden Arbeit machten in Einzelfällen exzellente Erfahrungen bei der Rekonstruktion komplex frakturiert er Augenhöhlen über die transor talen Zugänge. So kann der transkonjunktivale Zugang zum Orbitaboden in den later al-retrokran talen Zugang fortgeführt werden, wodurch der Zugang zur basalen und lateralen Zirkumferenz des Orbitatrichters sehr geräumig wird. Durch die Einlage einer ungekür zten PDS Folie lassen sich so auch größere Defekte der Orbitawandung überbrücken [36].

Strukturen kann nun erreicht werden. Snyderman et al. nennt als Grenzen des koronaren Operationskorridors das Orbitadach, die Basis der mittleren Schädelgrube und das Foramen jugulare. In der sagittalen reicht der Korridor von der Stirnhöhle bis zum zweiten Halswirbelkörper [129]. Einige wichtige Strukturen bleiben aber weiterhin für den transnasal-endoskopischen Zugang kaum erreichbar. Diese schließen wesentliche Anteile der Stirnhöhle ein. Die Reposition von Frakturen der Stirnhöhlenvorder- und -hinterwand ist Teil der Routineversorgung der Hals-Nasen-Ohrheilkunde/Kopf- und Hal schirurgie. Häufig werden diese Frakturen über einen Bügelschnitt versorgt [130]. Der Bügelschnitt stellt einen verlässlichen und komplikationsarmen Zugang dar. Er ist gut erlernbar und lässt sich von erfahrenen Operateuren in relativ kurzer Zeit durchführen. Zu den wichtigsten Risiken gehören die Verletzung des Ramus frontalis des Nervus facialis und die Entwicklung einer Alopiezie, ebenso die Ausbildung von Empfindungsstörungen. Viele Autoren platzieren eine aktive Drainage, der Zugang erfordert häufig eine stationäre Behandlung [131]. Weiter ist eine Vielzahl von Schnittführungen beschrieben, welche direkten transfazialen Zugang zur Stirnhöhlenvorderwand ermöglichen, z.B. der Augenbrauenrandchnitt, die modifizierte Inzision nach Lynch oder die Schnittführung nach Siebenmann. Diese Zugänge verlaufen in der Haut der Stirn oder der Nase.

10. Diskussion
Die Operationstechniken der Chirurgie der vorderen Schädel basis zeigten in den vergangenen 2 Jahrzehnten eine rasant e Entwicklung. Insbesondere die Einführung und Weiterentwicklung der transnasal-endoskopischen Techniken hat minimal invasiven Verfahren Vorschub geleistet. Ein erstaunliches Spektrum an die mittlere Dauer des stationären Aufenthalts 3 Tage, auch hier traten keine Komplikationen auf und das kosmetische Ergebnis war exzellent [24].

9.2.5 Aneurysmen der vorderen Zirkulation
In der unter 9.2.4 zitierten Studie berichten Andaluz et al. über die Resektion von 5 nicht rupturierten Aneurysma der vorderen Zirkulation nach Resektion eines großen superolateralen Knochensegments über einen Oberlidzugang. Der mittlere Durchmesser der Aneurysma betrug 5 mm. Die mittlere Dauer des stationären Aufenthalts 2,2 Tage, Komplikationen traten keine auf. Das knöcherne Segment wurde durch Plattenosteosynthese repositioniert. Das kosmetische Ergebnis war 3 Monate postoperativ exzellent [24]. Aziz et al. berichten in einer Studie an 40 Patienten, bei 31/40 wurde ein Aneurysma der vorderen Zirkulation behandelt. Bei Aziz traten 4 Komplikationen auf, ein Hämatom des Augenlids, 2 Infektionen und eine Liquorrhoe. Alle Komplikationen waren reversibel. Wie oben diskutiert, über schreiten die Studien von Andaluz und insbesondere von Aziz die Eingrenzung des Themas knapp, da hier die Schnittführung nach lateral über den knöchernen Orbitarand hinaus gezogen wird. Der Vollständigkeit halber werden Sie aber hier aufgeführt, da sie das enorme Potenzial des transorbitalen Vorgehens exzellent illustrieren. Die Autoren der vorliegenden Studie haben über eine weniger weit nach lateral führende Inzision und nach Auslösosen des lateralen Lidbändchens sowie nach Resektion eines Segmentes der lateralen Orbitawand exzellente Erfahrungen mit dem Zugang zur gesamten lateralen Orbita und den lateralen Aspekten der Frontobasis gemacht. So konnte die retroorbitale Läsion in Abb. 16 bei einem 66-jährigen Patienten mit progredientem Exophthalmus und progredienter Diplopie über den Oberlidzugang mit temporärer Resektion einer Knochenspange in toto exstirpiert werden (Abb. 17). Der Patient wurde nicht intensivpflichtig, konnte bereits am OP Tag mobilisiert werden, Diplopie und Exophthalmus zeigten sich komplett regredient.

9.2.6 Versorgung von Frakturen der vorderen Schädelbasis
Moe et al. berichten in einer retrospektiven Studie über die Versorgung von 8 Patienten über einen transoralen Zugang. In der überwiegenden Zahl der Patienten ergab sich die Indikation zum Eingriff aus symptomatischen Frakturen des Orbitadaches, welche u.a. in Diplopie oder Dystopie resultierten. Bei 7/8 Patienten waren die pathologischen Veränderungen komplett regredient. Die Autoren der vorliegenden Arbeit machten in Einzelfällen exzellente Erfahrungen bei der Rekonstruktion komplex frakturiert er Augenhöhlen über die transor talen Zugänge. So kann der transkonjunktivale Zugang zum Orbitaboden in den later al-retrokran talen Zugang fortgeführt werden, wodurch der Zugang zur basalen und lateralen Zirkumferenz des Orbitatrichters sehr geräumig wird. Durch die Einlage einer ungekür zten PDS Folie lassen sich so auch größere Defekte der Orbitawandung überbrücken [36].

Strukturen kann nun erreicht werden. Snyderman et al. nennt als Grenzen des koronaren Operationskorridors das Orbitadach, die Basis der mittleren Schädelgrube und das Foramen jugulare. In der sagittalen reicht der Korridor von der Stirnhöhle bis zum zweiten Halswirbelkörper [129]. Einige wichtige Strukturen bleiben aber weiterhin für den transnasal-endoskopischen Zugang kaum erreichbar. Diese schließen wesentliche Anteile der Stirnhöhle ein. Die Reposition von Frakturen der Stirnhöhlenvorder- und -hinterwand ist Teil der Routineversorgung der Hals-Nasen-Ohrheilkunde/Kopf- und Hal schirurgie. Häufig werden diese Frakturen über einen Bügelschnitt versorgt [130]. Der Bügelschnitt stellt einen verlässlichen und komplikationsarmen Zugang dar. Er ist gut erlernbar und lässt sich von erfahrenen Operateuren in relativ kurzer Zeit durchführen. Zu den wichtigsten Risiken gehören die Verletzung des Ramus frontalis des Nervus facialis und die Entwicklung einer Alopiezie, ebenso die Ausbildung von Empfindungsstörungen. Viele Autoren platzieren eine aktive Drainage, der Zugang erfordert häufig eine stationäre Behandlung [131]. Weiter ist eine Vielzahl von Schnittführungen beschrieben, welche direkten transfazialen Zugang zur Stirnhöhlenvorderwand ermöglichen, z.B. der Augenbrauenrandchnitt, die modifizierte Inzision nach Lynch oder die Schnittführung nach Siebenmann. Diese Zugänge verlaufen in der Haut der Stirn oder der Nase.
Diese anatomischen Einheiten zeichnen sich durch einen Hauttyp aus, der aufgrund seiner Textur zur Ausbildung sichtbarer Narben neigt. Eine Platzierung entlang oder innerhalb der Augenbraue ist ungünstig, da hier durch Haarverlust besonders auffällige Narben entstehen. Die Schnittführung innerhalb der Haut des Augenlids stellt den fundamentalen Unterschied zwischen den transfazialen Zugängen und den transorbitalen Zugängen dar. Wenn die Haut des Oberlides nicht verlassen wird, ist die resultierende Narbe bei korrekter mikrochirurgisch durchgeführter Operationstechnik in der Regel nicht sichtbar. Die Erweiterung nach lateral in eine periorbitale Falte bleibt in der Regel ebenso wenig sichtbar, wenn diese Schnittführung nicht über den knöchernen Orbitarand hinausgeführt wird. Die weitere Extension um etwa 1,5 cm resultiert in einer (in der Regel wenig) sichtbaren Narbe lateral des Orbitarandes. Eine solche Schnittführung wurde in den oben diskutierten Studien von Andaluz et al. und Aiziz et al. verwendet. Diese Studien überschritten die o.g. Einschlusskriterien für die transorbitalen Zugänge in 2 Aspekten: Zum einen reicht die Schnittführung in die Gesichtshaut mit konsequiv sichtbarer Narbenbildung, zum anderen wird die Kranioptome nicht nur in den dünnen Wandungen der Orbita, sondern im dicken Knochen der Kalotte durchgeführt. Diese Studien wurden aber trotzdem aufgeführt, weil sie das enorme Potenzial der transorbitalen Zugänge illustrieren. In diesen Studien wurde eine große Anzahl nicht rupturiertet Anervysma der vorderen Zirkulation, ebenso Tumoren der Schädelbasis mit besonders geringer Morbidität behandelt.

Die Schnittführung des Oberlidzugs entspricht der der kosmetischen Blepharoplastik. Die meisten Autoren empfehlen die supratarsale Schnittführung. Die Autoren der vorliegenden Arbeit haben die Schnittführung dahingehend verändert, dass sie die Inzision etwa dem oberen Rand der Exzision der kosmetischen Blepharoplastik folgen lassen. Diese supra-supratarsale Schnittführung hat 2 wichtige Vorteile: zum einen erweitert sie den Zugang nach oben und lateral, zum anderen bleibt die Supratarsalfalte in ihrer natürlichen Konfiguration erhalten. So bleiben geringe Ungenauigkeiten der Schnittführung unauffällig, was das „Teaching“ der Methode erleichtert.

Ohne Frage birgt der Oberlidzugang gewichtige Risiken. Strukturen, die häufig oder regelhaft dargestellt und geschont werden müssen, schließen das supraorbitale Gefäß-Nervenbündel, das laterale Lidbändchen und die Trochlea ein. Vor dem temporären Entnehmen eines Segments der Stirnhöhenvorderwand und -bodens muss der Nervus supraorbitalis mobilisiert werden. Ein Herauslöszen aus dem Foramen ist ofen notwendig. Eine Entnahme von 2 Segmenten, welche entlang des Verlaufes des Nerven gespalten werden, erlaubt die effektive Schonung dieses Nerven. Das Vorgehen und Risikoprofil im Umgang mit dem Nervus supraorbitalis sollte in etwa dem des koronaren und der transfazialen Zugänge entsprechen. Belastbare Daten, die einen Vergleich dieser Zugänge hinsichtlich der Morbidität des N. supraorbitalis erlauben würden, konnten nicht identifiziert werden. Maßnahmen zur Mobilisierung und Schonung des supratrochleären Gefäß-Nervenbündels sind selten notwendig, dieses kann in der Regel aus dem chirurgischen Feld herausgehalten werden.

Das Herauslöszen des lateralen Lidbändchens erweitert den chirurgischen Korridor nach lateral enorm. Moe et al. bevorzugen beim Zugang zum lateralen Quadranten die transkonjunktvale Schnittführung. Sie sparen dabei den Ursprung des lateralen Lidbändchens am Whitnallschen Tuberkel aus. Die Autoren der vorliegenden Arbeit bevorzugen demgegenüber das Auslöszen des lateralen Lidbändchens von endo-orbital her. Dadurch wird es z.B. möglich, sehr große Knochenspangen temporär zu entnehmen und Zugang zur gesamten lateralen vorderen Schädelbasis zu erhalten, ähnlich wie in den Studien von Andaluz und Aiziz beschrieben. Die Osteosyntheseplatten sollten angepasst werden, bevor die Osteotomien kompliiert werden, um einen passgenauen Reposition zu gewährleisten. Dieser Zugang erlaubt eine im Vergleich zur pteryonalen Kranioptome mindestens äquivalente Exposition. Die Rekonstruktion des lateralen Lidbändchens erfolgt in der von Moe beschriebenen Technik. Dabei wird das Lidbändchen über 2 Bohlöcher im Orbitarand etwa auf Höhe der Sutura zygomaticofrontalis angezügelt. Bei präziser Durchführung dieser Maßnahme wird der laterale Lidwinkel ohne erkennbare Deformität rekonstruiert. Risiken dieser Maßnahme schließen eine Eintrübung des Lidwinkels, eine Verschmälerung der Lidspalte, Ektropium, Entropium, Epiphora und Keratoconjunktivitis ein.

Das Management der Trochlea ist von übertragender Bedeutung für die Zugänge zum interorbitalen Korridor und zu den hinteren Abschnitten der vorderen Schädelbasis. Haug et al. zeigen auf, dass das subperiostale Auslösen der Trochlea mit geringem Risiko durchgeführt werden kann. Die Gruppe um Boahene beobachtete bei einem Patienten eine prothraierte, aber selbst limitierende postoperative Diplopie. Diese Autoren hatten die Trochlea über einen präkarunkulären und transkonjunktivalen Zugang von medial her ausgelöst. Beobachtungen der Autoren der vorliegenden Arbeit sowohl am anatomischen Präparat als auch intraoperativ suggerieren, dass das subperiostale Auslöszen von lateral nach medial verlässlicher gelingen kann als von medial nach lateral. Dies ist eine subjektive Beobachtung, die sich durch Daten bisher nicht erhärten lässt. Eine entsprechende Studie befindet sich in der Durchführung. Boahene et al. haben bei nachfolgenden Patienten von einem Auslöszen der Trochlea abgesehen. Es wird zu klären sein, ob das Herauslöszen von medial vs. lateral einen Unterschied im Risiko für die Entwicklung einer Diplopie ausmacht, was konsekutiv dem Oberlid- bzw. dem präkarunkulären Zugang den Vorzug geben würde. Die Autoren der vorliegenden Arbeit bevorzugen den Oberlidzugang mit Auslöszen von lateral nach medial. Sie messen dem Auslöszen der Trochlea übertragende Bedeutung, da diese Maßnahme den Zugang zur vorderen Schädelbasis sehr weit eröffnet und viele Vorteile der transorbitalen Zugänge durch dieses Manöver erst zum Tragen kommen. Hinsichtlich der Rekonstruktion der Trochlea nach atraumatischem Auslöszen gibt es keine differierenden Aussagen. In allen relevanten Arbeiten wird auf eine Fixierung verzichtet, sie wird mit den orbitalen Weichteilen reponiert.

Das risikoarme Management des Nervus supraorbitalis, des lateralen Lidbändchens und der Trochlea stellt eine weitere wichtige Voraussetzung für die Durchführung der transorbitalen Zugänge dar. Ein profoundes Training des durchführenden oder überwachten Operateurs in okuloplastischen, mikrochirurgischen Operationstechniken ist daher als wichtige Voraussetzung für die Methode zu nennen. Dies spiegelt sich auch in der Literatur zur Wertigkeit interdisziplinärer Kooperationen in der Schädelbasischirurgie wieder. Eine weitere Förderung spezialisiertener Ausbildungsprogramme, wie sie z.B. die Europäische Akademie für plastische Gesichtschirurgie (EAFPS.org) anbietet, kommt daher nur als zuträglich für ein optimales Outcome dieser Chirurgie gewertet werden.

Wichtige Limitationen des transnasal-endoskopischen Vorgehens betreffen die Technik der Duraplastiken. Zu den Faktoren, welche mit einer erfolgreichen Versorgung korrelieren, gehört...
die suprabasale Platzierung des Abdeckmaterials. Dies hat simple biomechanische Gründe: Das Abdeckmaterial wird durch die Dura und das Hirnparenchym von oben in den Defekt komprimiert und tamponiert diesen auf diese Weise. Hier ergibt sich ein wichtiger theoretischer Vorteil der transorbitalen Techniken. Aufgrund ihrer flacheren Arbeitswinkel zur Schädelbasis und der Möglichkeit, große Anteile der vorderen Schädelbasis zu kraniekтомieren, kann ein breiter Zugang für die suprabasale Einlage von Abdeckmaterial geschaffen werden. Nach dem Clippen der Ethmoidalarterie(n) und Resektion der Fovea ethmoidalis können z.B. Riechfasern einzeln durchtrennt werden und die Rhinobasis von an und über die Mittellinie angehoben werden. Auch über ein intradurales Vorgehen über den Bulbus olfactorius wurde berichtet, ebenso über ein Gegenoperieren von der anderen Seite. So wird es möglich, z.B. ein großes Stück Faszie über die gesamte Rhinobasis zu legen. Auch Areale, welche für die transnasal-endoskopische Technik schwer zugänglich sind, können so erreicht werden, z.B. der Übergang zur Stirnhöhlenhinterwand. Die bisher verfügbaren Daten lassen keinen belastbaren Rückschluss darauf zu, ob die transorbitalen Zugänge das Outcome von Duraplastiken tatsächlich verbessern können. Der größte Anteil von Duradefekten der vorderen Schädelbasis kann durch transnasale Techniken in exzellenter Weise versorgt werden. So sehen auch z.B. Moo et al. die Rolle der transorbitalen Zugänge vornehmlich als Revisionseingriff bei persistierender Liquorrhoe nach adäquat durchgeführter transnasaler Deckung oder als Alternative zur operativen Rhinotomie, wenn die Lokalisation des Defekts den transnasalen Zugang nicht zulässt. Als Alternative zur operativen Kranietomie weist das transorbitale Vorgehen wesentliche theoretische Vorteile auf: Der Zugang ist direkt, die Weichteildissektion geringer, die Knochenmanipulation weniger extensiv, ein Retraktion des Hirns ist nicht erforderlich und oft können die Riechfasern selektiver geschont werden. Ob diese theoretischen Vorteile das Outcome der Patienten im Vergleich zum offenen Vorgehen verbessern, lässt sich aus den bis jetzt verfügbaren Daten nicht ausreichend ableiten. Die beste verfügbare Evidenz lässt aber darauf schließen, dass ein transorbitales Vorgehen erwogen werden sollte, wenn es eine mögliche Alternative zur transkranialen Deckung eines Duradefektes darstellt.

Das Management von Tumoren der vorderen Schädelbasis folgt ähnlichen Überlegungen wie das von Durafisteln. Das transoritale Vorgehen bietet sich insbesondere an, wenn der transnasale Zugang Limitationen aufweist und die Morbidität des offenen transkranialen Vorgehens vermieden werden soll. Wie fast durchgehend in der Literatur unterliegt auch im vorliegenden Fall die Bewertung der Methode wichtigen Einschränkungen. Die verfügbaren Studien sind fast ausnahmslos retrospektiver Natur und fassen die Erfahrung einer einzelnen Operateurs zusammen. Die Qualität des Anwenders stellt einen wichtigen Parameter dar, der nicht in die Bewertung der Daten eingeht. Auch sind die bisher publizierten Fallzählungen gering. Einschätzungen, wie sich die Methode lehren lässt und wie sich die Lernkurve des Lernenden verhält, gibt es bisher noch nicht. Auch sind durchaus methodische Schwächen einiger Publikationen erkennbar. Computersimulationen und anatomischen Studien können die prinzipielle Machbarkeit von Zugängen und Techniken aufzeigen. Ihre klinische Anwendung und in der Folge der Vergleich mit etablierten Techniken anhand belastbarer Daten stehen für wichtige Fragestellungen noch aus. Die Ergebnisse der retrospektiven klinischen Studien zur Versorgung der Rhinolithorrhoe beruhen auf der klinischen Beobachtung, über die laborchemische Analyse z.B. mittels Beta-Transferrin wird nicht berichtet. Die Ergebnisse zur Dekompression von Orbita und Nervus opticus sind nicht präzise getrennt, wo es sich doch um 2 fundamentale unterschiedliche Entitäten handelt. Auch Langzeituntersuchungen bezüglich des möglichen Auftretens von Ablussstörungen der Stirnhöhle liegen derzeit noch keine vor. Hinsichtlich der diagnostischen, technischen und personellen Voraussetzungen gibt es ebenfalls noch keine belastbaren Daten, hier werden die Erfahrungen mit offenen und transnasalen Techniken extrapoliert. Ähnlich verhält es sich mit dem perioperativen Management und der Nachsorge.

Viele der o.g. Einschränkungen treffen allerdings auch auf die Literatur etablierterer Verfahren zu. So ist das Gros der Arbeiten z.B. zur transnasal-endoskopischen Schädelbasischirurgie ebenfalls retrospektiver Natur, fasst die Erfahrung einzelner Operateure zusammen und erlaubt selten einen belastbaren Vergleich mit anderen Methoden.

Neue operative Methoden entwickeln sich in der Regel basierend auf der publizierten Erfahrung weniger Exponenten. Sie gewinnen Beachtung und werden nach und nach implementiert, wenn ihre Vorteile einleuchten, umsetzbar sind und letztlich einen für Arzt und Patient greifbaren Vorteil bieten. Die Methode der transoritale Schädelbasischirurgie hat enormes Potenzial. Sie erlaubt in vielen Fällen Zugang zu Pathologien bei weitaus geringerer Weichteildissektion und minimaler Knochendissektion im Vergleich zu offenen Techniken. Die Patienten sind oft bereits am OP Tag wieder mobil, eine intensivmedizinsiche Überwachung ist nur in seltenen Fällen notwendig. Auch gegenüber dem transnasalen Vorgehen ergeben sich wichtige Vorteile vor allem hinsichtlich der Erreichbarkeit wichtiger Strukturen. Die beste verfügbare Evidenz rechtfertigt die wohlüberlegte Indikation der transoritalen Zugänge insbesondere als Alternative zum transkranialen Vorgehen. Interdisziplinäre Kooperation in großen Zentren und die Möglichkeit, auf ein offenes transkraniales Vorgehen umzusteigen, sollten als Voraussetzungen für die Durchführung angesehen werden.

11. Schlussfolgerung

Die transoritale Zugänge zur Schädelbasis stellen eine Ergänzung zum Armamentarium der Techniken der Chirurgie der vorderen Schädelbasis dar. Die bisherigen Daten geben Hinweise darauf, dass sich die Methode durch ein flaches Risikoprofil auszeichnet und dass wichtige Pathologien Vorteile gegenüber etablierten Methoden aufweist. Zu diesen Vorteilen gehören die Schonung des endonasalen Nasennebenhöhlensystems und seiner physiologischen Funktionen, die relativ geringe Weichteildissektion und die relativ kurze Operationszeit bis zum Erreichen der Zielpathologie. Ein interdisziplinäres Vorgehen trägt dazu bei, die Patienten über den gesamten Verlauf der Behandlung entlastet zu versorgen und bestmögliche Ergebnisse zu erzielen. Die beste verfügbare Evidenz rechtfertigt die wohlüberlegte Indikation der transoritonalen Zugänge insbesondere als Alternative zum transkranialen Vorgehen.

Abstract

Minimally invasive approaches are becoming increasingly popular to access the anterior skull base. With interdisciplinary cooperation, endonasal endoscopic in particular approaches
have seen an impressive expansion of indications over the past decades. The more recently described transorbital approaches represent minimally invasive alternatives with a differing spectrum of access corridors. The purpose of the present paper is to discuss transorbital approaches to the anterior skull base in the light of the current literature.

The transorbital approaches allow excellent exposure of difficult to reach areas like the anterior and posterior wall of the frontal sinus; working angles may be more favorable and the paranasal sinus system can be preserved while exposing the base of skull. Because of their minimal morbidity and the cosmetically excellent results, the transorbital approaches represent an important addition to established endonasal endoscopic and open approaches to the anterior skull base. Their execution requires an interdisciplinary team approach.

Literatur

1 Botti GM. Midface and neck aesthetic plastic surgery. Acta Medica Edizioni 2012
2 Prattla AD, K-M. Midface Lidchirurgie 2014
3 Haubner F, Jagie H, Nunes DP et al. Orbital compartment: effects of emergent canthotomy and cantholysis. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies 2014
4 Janfaza MN, Gall R, Fabian RL. Surgical anatomy of the head and neck. Lippincott Williams & Wilkins, 2001
5 Kang H, Takahashi Y, Ichinose A et al. Lateral canthal anatomy: a review. Orbit 2012; 31: 279–285
6 Parent AD, Das SK, Mallette RA, Haines DE. Significance of the lateral canthal tendon in craniofacial surgery. Pediatric neurosurgery 1993; 19: 73–77
7 Parent AD, Haines DE, Das SK. Neurosurgical considerations on the anatomy of the medial canthus in children. Pediatric neurosurgery 1995; 22: 57–64
8 Tyers AGCJ. Colour atlas of ophthalmic plastic surgery. Butterworth Heinemann Elsevier 2008
9 Yanoff MDJ. Ophthalmology. Mosby; Ch 12.1
10 HMS. Atlas of aesthetic eyelid and periorcular surgery. Philadelphia: WB Saunders 2004
11 Coulwdell WT. Surgery of the anterior skull base. Otolaryngologic clinics of North America 1993; 26: 673–693
12 Friede H. Normal development and growth of the human neurocranial and cranial base. Scand J Plast Reconstr Surg 1981; 15: 163–169
13 Rhoton AL Jr. The anterior and middle cranial base. Neurosurgery 2002; 51: S273–S302
14 Kilic T, Akinak A. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci 2008; 23: 4–15
15 McKinnon SG. Anatomy of the cerebral veins, dural sinuses, sella, meninges, and CSF spaces. Neuroimaging Clin N Am 1998; 8: 101–117
16 Famaey N, Ying Cui Z, Ummereh Misugi G et al. Structural and mechanical characterisation of bridging veins: A review. J Mech Behav Biom Mater 2014
17 Amar AP, Weiss MH. Pituitary anatomy and physiology. Neurosurg Clin N Am 2003; 14: 11–23 v
18 Kendrell JS, Maroon JC, Maiton ML. Surgical approaches to orbital tumors. Clinics in plastic surgery 1988; 15: 273–282
19 Osghoruthe JD. Surgical access to primary orbital tumors. Otolaryngologic clinics of North America 1988; 21: 135–153
20 Rosen HM. Treatment of malignant cranio-orbital tumors. Clinics in plastic surgery 1987; 14: 137–142
21 Abdel Aziz KM, Bhutat S, Tantawy MH et al. Minimally invasive transpalpebral “eyelid” approach to the anterior cranial base. Neurosurgery 2011; 69: ons195–ons206 discussion–7
22 Raza SM, Quinones-Hinojosa A, Lim M, Boheine KD. The transconjuantal transorbital approach: a keyhole approach to the midline anterior skull base. World neurosurgery 2013; 80: 864–871
23 Moe KS, Jothi S, Stern R, Gassner HG. Lateral retrocanthal orbitotomy: a minimally invasive, cantholysis-sparing approach. Archives of facial plastic surgery 2007; 9: 419–426
24 Andaluz N, Romano A, Reddy LV, Zuccarello M. Eyelid approach to the anterior cranial base. Journal of neurosurgery 2008; 109: 341–346
25 MarchalJC, Civit T. Neurosurgical concepts and approaches for orbital tumours. Adv Tech Stand Neurosurg 2006; 31: 73–117
26 Hatil DM, Brasnu DF, Shah JP et al. Is open surgery for head and neck cancers truly declining? European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies 2013; 270: 2793–2802
27 Zimmer LA, Theodosopoulos PV. Anterior skull base surgery: open versus endoscopic. Current opinion in otolaryngology & head and neck surgery 2009; 17: 75–78
28 Tsai EC, Santorenoes S, Rutka JT. Tumors of the skull base in children: review of tumor types and management strategies. Neurosurg Focus 2002; 12: e1
29 Haiduky S, Czecor E, Misoilek M, Namyslowski G, Mrowka R. Surgical strategies in the removal of malignant tumors and benign lesions of the anterior skull base. Neurosurg Rev 2004; 27: 205–213
30 Vrionis FD, Kienstra MA, Rivera M, Padhy TA. Malignant tumors of the anterior skull base. Cancer Control 2004; 11: 144–151
31 Schetzach J, Schebesch KM, Brawanski A, Proescholdt MA. Skull base meningiomas: neurological outcome after microsurgical resection. J Neurooncol 2014; 116: 381–386
32 Bumpous J, Janecka IP. Transorbital approaches to the cranial base. Clinics in plastic surgery 1995; 22: 461–481
33 Rawal RB, Gore MR, Harvey RJ, Zanation AM. Evidence-based practice: endoscopic skull base resection for malignancy. Otolaryngologic clinics of North America 2012; 45: 1127–1142
34 Husain Q, Kanumuri VV, Svider PF et al. Sinonasal adenoid cystic carcinoma: systematic review of survival and treatment strategies. Otolaryngology – head and neck surgery; official journal of American Academy of Otolaryngology – Head and Neck Surgery 2013; 148: 29–39
35 Jim JH, Sardesi MG, Ferreira M Jr, Moe KS. Transorbital neuroendoscopic management of sinonasal complications involving the frontal sinus, orbit, and anterior cranial fossa. Journal of neurological surgery Part B, Skull base 2012; 73: 394–400
36 Moe KS, Bergeron CM, Ellenbogen RG. Transorbital neuroendoscopic surgery. Neurosurgery 2010; 67: ons16–ons28
37 Moe KS, Kim LJ, Bergeron CM. Transorbital endoscopic repair of cerebrospinal fluid leaks. The Laryngoscope 2011; 121: 13–30
38 Khan MN, Hussein Q, Kanumuri VV et al. Management of sinonasal chondrosarcoma: a systematic review of 161 patients. Int Forum Allergy Rhinol 2013; 3: 670–677
39 Chamoun RB, DeMonte F. Management of skull base metastases. Neurosurg Clin N Am 2011; 22: 61–86 vii–2
40 Dolenc VV. A combined transorbital-transclinoid and transsylvian approach to carotid-ophthalmic aneurysms without retraction of the brain. Acta Neurochir Suppl 1999; 72: 89–97
41 D’Ambrosio AL, Bruce JN. Treatment of meningioma: an update. Curr Neurol Neurosci Rep 2003; 3: 206–214
42 Ow TJ, Bell D, Kupferman ME, Demonte F, Hanna Y. Esthesioneuroblastoma. Neurosurg Clin N Am 2013; 24: 51–65
43 de Leon-Casasola O. A review of the literature on multiple factors involved in postoperative pain course and duration. Postgrad Med 2014; 126: 42–52
44 Rotkun JD, Han SJ, Bloch O, Parsa AT. What clinical factors predict the incidence of deep venous thrombosis and pulmonary embolism in neurosurgical patients? Journal of neurosurgery 2014; 1–11
45 Salmoaggi A, Simonetti G, Trevisan E et al. Perioperative thromboprophylaxis in patients with craniotomy for brain tumours: a systematic review. J Neurooncol 2013; 113: 293–303
46 Chabanan MR, Woodworth BA. Complications of skull base reconstruction. Adv Otorhinolaryngol 2013; 74: 148–162
47 Harvey RJ, Smith JF, Wise SK, Patel SJ, Friedman BM, Schlasser RJ. Intracranial complications before and after endoscopic skull base re construction. Am J Rhinol 2008; 22: 516–521
48 Hosemann W. Comprehensive review on danger points, complications and medicol–legal aspects in endoscopic sinus surgery. Laryngorhinootologie 2013; 92 (Suppl 1): S88–S136
49 Forsyth LL, Liu–DeRyke X, Parker DJ, Roney DH. Role of hypertonic saline for the management of intracranial hypertension after surgery and traumatic brain injury. Pharmacotherapy 2008; 28: 469–484
50 Roth P, Regli L, Toender M, Weller M. Tumor-associated edema in brain cancer patients: pathogenesis and management. Expert Rev Anticancer Ther 2013; 13: 1319–1325
51 Weller M, van den Bent M, Hopkins K et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014; 15: e395–e403
52 Blomstedt GC. Craniootomy infections. Neurosurg Clin N Am 1992; 3: 375–385
