Article

Synthesis and Characterization of Dihydrouracil Analogs Utilizing Biginelli Hybrids

Syed Nasir Abbas Bukhari 1,*, Hasan Ejaz 2, Mervat A. Elsherif 3 and Nenad Janković 4,*

1 Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
2 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; hetariq@ju.edu.sa
3 Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia; maelsherif@ju.edu.sa
4 Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
* Correspondence: sbukhari@ju.edu.sa (S.N.A.B.); nenad.jankovic@kg.ac.rs (N.J.)

Abstract: Dihydrouracil presents a crucial intermediate in the catabolism of uracil. The vital importance of uracil and its nucleoside, uridine, encourages scientists to synthesize novel dihydrouracils. In this paper, we present an innovative, fast, and effective method for the synthesis of dihydrouracils. Hence, under mild conditions, 3-chloroperbenzoic acid was used to cleave the carbon–sulfur bond of the Biginelli hybrids 5,6-dihydropyrimidin-4(3H)-ones. This approach led to thirteen novel dihydrouracils synthesized in moderate-to-high yields (32–99%).

Keywords: dihydrouracil; Biginelli hybrid; synthesis; tetrahydropyrimidine; m-chloroperbenzoic acid

1. Introduction

Uracil is one of the nucleobases, and it can be found in RNA and as a significant constituent of the DNA of certain bacterial viruses [1]. The well-known intermediate scaffold dihydrouracil is a key precursor in the catabolism of uracil, a critical building block of life [2]. Several methods have been reported for the preparation of dihydrouracil [3–9]. However, most of these methods have certain drawbacks such as complicated multi-step procedures [10,11], high energy consumption [12], and air-sensitive organometallic compounds [4]. For instance, preparing a dihydrouracil scaffold is based on the hydrolytic removal of the SCH3 or OCH3 group from the dihydropyrimidinone core, which is carried out in strongly acidic and/or basic conditions and at high temperatures [4]. Methods for the synthesis of DHU scaffolds include quite difficult reaction conditions. For instance, formic acids and hydrochloric acid [6] were used under heating conditions to synthesize 6-aryl-dihydrouracils. Considering a literature review, the most successful method for synthesis of 6-aryl-DHU was published by Pair et al. [5] 6-Phenyl-5,6-dihydrouracil (37%) was synthesized by applying formic acid, MsOH, and heated to reflux for 24 h.

Some representative uracil-based compounds are depicted in Figure 1. N1-methylpseduouridine is the most important uracil analog and a natural archaeal tRNA component [13,14]. Synthetic pyrimidine nucleoside is used for in vitro transcription and is also found in the SARS-CoV-2 mRNA vaccines tozinameran (Pfizer–BioNTech) and elasomeran (Moderna) [15]. Further, it is also used in vaccines against Zika [16], HIV-1 [17], and Ebola [18]. Dasabuvir, a potent non-nucleoside anti-HCV compound approved by the FDA in 2014, contains a uracil scaffold [19]. Furthermore, alkyl uracil derivatives show significant anti-HIV activity [20,21]. By considering the literature, uracil-based biological active compounds, such as 5-iodouridine [22], (S)-willardiine [23], and zidovudine [24], can also be found. Since 1957 to the present, the most helpful uracil molecule has been the well-known chemotherapeutic 5-fluorouracil [25]. Udayakumar et al. reported novel
dihydouracil derivatives with significant activities against A431 cancer cell lines [26]. Embrey et al. published a series of highly active DHU derivatives that contain naphthyridine scaffolds as HIV-1 integrase inhibitors at nanomolar levels [27]. The DHU analogues coupled with neomycin conjugates showed good activity against *E. coli* ATCC 25,922 and K12, even more potent compared to the control probe ciprofloxacin. In addition, few samples were more potent against *Klebsiella pneumoniae* than the control tetracycline [28]. Promising antimicrobial activity of selected N^3^-alkylated DHUs against *S. aureus* and *C. albicans* was described [29].

![Figure 1](image1.png)

Figure 1. Structures of several important compounds containing the uracil motif.

Considering the importance of DHU scaffolds [19], there is a reasonable trend towards development of novel routes to synthesize uracil-based compounds. In this report, Biginelli’s hybrids were chosen as starting materials for dihydrouracil (DHU) synthesis. Over the years, Biginelli chemistry has produced many valuable compounds that possess significant biological activities [30,31]. Given these facts, as well as our continual interest in heterocyclic compounds [32–35] and Biginelli chemistry [36–41], we decided to explore it to develop a novel and easier synthetic strategy for the synthesis of 6-aryl-dihydouraciles (DHUs).

2. Results and Discussion

In this paper, a simple, fast, and efficient method for the synthesis of DHUs (2) from different 6-aryl-5,6-dihydropyrimidin-4(3H)-ones (1a-s) is presented (Scheme 1). The starting materials required for this methodology, 1a-s, were synthesized as a racemic mixture following published method [41].

![Scheme 1](image2.png)

Scheme 1. General outline of the synthesis of DHUs [41].

The first goal of this project was to optimize the reaction conditions. Compound 1a was chosen as a model substrate for the study, and it was subjected to a variety of reagents, such as 6M HCl, sodium periodate, formic acid, and sodium hydroxide, in polar solvents (i.e., water, methanol, and THF) to synthesize 2a. Under these reagent and solvent
conditions, compound 1a was decomposed into an unidentifiable mixture of products. However, the use of phosphotungstic acid in absolute ethanol gave DHU 2a in lower yield (30%) after 24 h. Subsequent attempts to synthesize 2a from 1a were realized by applying m-chloroperbenzoic acid (mCPBA) as the reagent in different solvents (Table 1).

Table 1. Screening and optimization reaction conditions.

Entry	Conditions	Yields of 2a (%)
1	mCPBA/toluene	51
2	mCPBA/dioxane	32
3	mCPBA/water	-
4	mCPBA/CHCl₃	40
5	mCPBA/DCM	75
6	mCPBA/THF	29

*Anhydrous THF; reaction time 24 h.

The reaction was performed in six different solvents using an excess of mCPBA (2.2 eq.), and the desired product, 2a, was observed in five of those with DCM affording the maximum yield, 75% in 3 h (entry 5). To decipher the reasoning for the varying yields, we studied certain properties of these solvents such as the dielectric constants, polarity, and the index of the solvent dipolarity/polarizability. Water, DCM, THF, CHCl₃, toluene, and dioxane have dielectric constants of 80, 9.1, 7.6, 4.8, 2.4, and 2.3, respectively [42,43]. It has been shown that the higher polarity of a solvent affects the yield, but this effect is not alone; the hydrogen bond acceptor (HBA) ability of the solvent and the index of solvent dipolarity/polarizability π* can also influence the reaction. The HBA parameter describes the ability of the solvent to accept a proton in a solvent-to-solute hydrogen bond. Namely, THF, dioxane, and water have HBA numbers in the following order 0.52, 0.38, and 0.14, respectively (Table 2) [44,45]. We suspect that the yield of 2a was negatively affected by the presence of the HBA properties of water, dioxane, or THF. Toluene, DCM, and chloroform do not have HBA properties. Considering this, we proposed that the solvent molecule with HBA properties (i.e., dioxane, THF, and water) interacts with NH protons and, thus, make access of the reagent (mCPBA) to the reaction center (thioureide fragment; HN-(C-S-allyl)-N=) more difficult. This fact could be crucial for the such different (lower) yields achieved in a solvent with HBA (i.e., dioxane (32%), THF (29%), and water (-)) compared to the yield of 2a that was noted in solvents without HBA properties (i.e., toluene (51%), DCM (75%), and chloroform (40%)). In addition, the π* scale is an index that measures the ability of the solvent to stabilize a charge or a dipole by virtue of its dielectric effect. As can be seen from Table 2, among non-HBA solvents (i.e., toluene, DCM, and CHCl₃), chloroform has the highest π* index (Table 2). Reactions in chloroform and toluene gave 2a in similar yields (i.e., 40% and 51%, respectively). Both solvents do not have HBA properties (HBA = 0) and have a similar π* index (chloroform = 0.58 and toluene = 0.54; Table 2). The absence of HBA properties combined with a high π* index could be the reason for the highest yield for 2a achieved in a reaction carried out in DCM (HBA = 0 and π* index = 0.82) in comparison to toluene or chloroform.

Table 2. Solvent parameters (ε—dielectric constant; HBA—hydrogen bond acceptor number; π*—index of solvent dipolarity/polarizability) [45].

Solvent	ε	HBA	π*
Toluene	2.4	-	0.54
DCM	9.1	-	0.82
CHCl₃	4.8	-	0.58
Dioxane	2.3	0.37	0.55
Water	80	0.18	1.09
THF	7.6	0.55	0.58
To investigate the scope of the reaction (Scheme 1), the same reaction conditions were applied (2 mmol of I, 2.2 eq. of mCPBA and r.t., 3 h) to a series of 6-aryl-5,6-dihydropyrimidin-4(3H)-ones (1b-s). In all these reactions, the targeted DHUs crashed out from the solution, which were isolated and characterized using NMR and IR spectroscopy after simple work up. In one case, a nearly quantitative yield was noted (2b, 99%). In general, the transformation afforded good-to-excellent yields of the product, except in the case of compound 1e with an o-chlorophenyl substitution (2e, 32%). A total of 19 DHUs were prepared among which 13 were prepared for the first time. The structures and isolated yields of these derivatives are presented in Figure 2.

![Figure 2](image-url)

Figure 2. Structures and isolated yields of the DHUs.

The applied reaction conditions showed good tolerance to the substituents on the aromatic ring. As a result, substrates with both an electron donating and an electron withdrawing group at the para position on the aromatic ring provided similar yields. For example, 4'-fluoro, -chloro, -nitro, and -benzyloxy gave the corresponding DHUs at 55, 87, 64 and 67%, respectively. Considering yield outcomes, the presence of alkoxy function (methyl(2j)), ethoxy (2m), benzyloxy (2o), or 3'-methylbenzyloxy (2q), even acetoxyl group at para position (2s) also demonstrated good group tolerance. Interestingly, however, the aryl groups phenyl or antracen-10'-yl positioned at the C4 position, even though they possess similar electron-withdrawing behavior, realized different yields of DHU (75% of 2a and 99% of 2b).

Going forward, we followed the reaction between 1a and mCPBA using 1H NMR in CDCl$_3$ as a solvent (Figure 3). For this purpose, we prepared solutions of 1a (300 µL, 120 mM) and mCPBA (300 µL, 260 mM). Immediately after mixing, the first spectra were recorded. Six NMR spectra were then recorded every twelve hours.
work at room temperature. In addition, a simple work up process, good yields, and broad substrate scope could also be additional benefits of the presented method. After applying our method over existing ones is that we do not use metals, strong bases, or acids and contraction in dihydropyrimidine compounds has already been suggested [46].

As seen from stacked spectra in Figure 3, the amide proton originating from 1a nearly disappeared. The intensity of the amide protons in the products increased (2a, green shapes; Figure 3) and was followed by a decrease in amide proton intensity from 1a (blue shape; Figure 3). Furthermore, mCPBA did not react with the double bond or even with the benzylic position. Double-bond protons showed the same multiplets in the range 5.1–5.4 ppm (=CH2) and 5.7–6.1 ppm (=CH) (Figure 3; orange shapes).

The NMR experiments provided us with valuable information: (a) the double bond did not react with peracid, even though mCPBA can easily transform the double bond into an epoxide ring; (b) benzylic protons originating from a dihydropyrimidine core is also sensitive to the presence of oxidants [39], but the applied peracid had no significant effect on the chemical shifts of the benzylic protons, implying its stability under the applied conditions. Taking into account the data obtained from the NMR investigation, we proposed a plausible mechanism for the transformation (Figure 4). In the initial step, the sulfide group is oxidized into sulfoxide (II), which upon protonation forms intermediate III. Sulfoxide oxygen in intermediate III attacks C2, forming a C–O bond followed by cleavage of the C–S bond, and elimination of thiol can then give rise to the observed product 2a. A similar ring contraction in dihydropyrimidine compounds has already been suggested [46].

In summary, an elegant approach to novel dihydouracils has been developed. In most syntheses, moderate-to-high yields of target compounds were realized. The advantage of our method over existing ones is that we do not use metals, strong bases, or acids and work at room temperature. In addition, a simple work up process, good yields, and broad substrate scope could also be additional benefits of the presented method. After applying uracil’s derivative (N1-methyl-pseudouridine) into COVID-19 vaccines, we firmly believe that uracil analogs have a bright future. Furthermore, the crucial importance of developing new approaches for the synthesis of dihydouracil lies in the importance of these molecules, both in biological processes and in the development of new antiviral drugs.

Figure 3. Stacked NMR spectra of 1a and mCPBA in CDCl3. The blue and green shapes represent NH protons that originate from 1a and product 2a, respectively; the yellow shapes represent double bonds and benzylic protons.

As seen from stacked spectra in Figure 3, the amide proton originating from 1a nearly disappeared. The intensity of the amide protons in the products increased (2a, green shapes; Figure 3) and was followed by a decrease in amide proton intensity from 1a (blue shape; Figure 3). Furthermore, mCPBA did not react with the double bond or even with the benzylic position. Double-bond protons showed the same multiplets in the range 5.1–5.4 ppm (=CH2) and 5.7–6.1 ppm (=CH) (Figure 3; orange shapes).

The NMR experiments provided us with valuable information: (a) the double bond did not react with peracid, even though mCPBA can easily transform the double bond into an epoxide ring; (b) benzylic protons originating from a dihydropyrimidine core is also sensitive to the presence of oxidants [39], but the applied peracid had no significant effect on the chemical shifts of the benzylic protons, implying its stability under the applied conditions. Taking into account the data obtained from the NMR investigation, we proposed a plausible mechanism for the transformation (Figure 4). In the initial step, the sulfide group is oxidized into sulfoxide (II), which upon protonation forms intermediate III. Sulfoxide oxygen in intermediate III attacks C2, forming a C–O bond followed by cleavage of the C–S bond, and elimination of thiol can then give rise to the observed product 2a. A similar ring contraction in dihydropyrimidine compounds has already been suggested [46].

In summary, an elegant approach to novel dihydouracils has been developed. In most syntheses, moderate-to-high yields of target compounds were realized. The advantage of our method over existing ones is that we do not use metals, strong bases, or acids and work at room temperature. In addition, a simple work up process, good yields, and broad substrate scope could also be additional benefits of the presented method. After applying uracil’s derivative (N1-methyl-pseudouridine) into COVID-19 vaccines, we firmly believe that uracil analogs have a bright future. Furthermore, the crucial importance of developing new approaches for the synthesis of dihydouracil lies in the importance of these molecules, both in biological processes and in the development of new antiviral drugs.
3. Materials and Methods

The melting points (mp) were determined on a Mel-Temp apparatus and were uncorrected. The IR spectra were recorded using a Perkin–Elmer Spectrum One FT-IR spectrometer on a KBr pellet. The NMR spectra of compounds 2a-s were performed in DMSO-d$_6$ with TMS as the internal standard on a Varian Gemini 200 MHz NMR spectrometer (1H at 200 and 13C at 50 MHz). The abbreviations for the NMR signals that were used are s = singlet, d = doublet, t = triplet, m = multiplet, and b. s. = broad singlet. 1H and 13C spectra are given in the Supplementary Materials (Figures S1–S38).

Synthesis of DHUs (2): in a 25 mL round-bottomed flask, appropriate dihydropyrimidine 1a-s (2 mmol) was dissolved in 5 mL of dichloromethane. Then powder was treated with saturated sodium bicarbonate solution, then filtrated, washed with DCM, and dried in a vacuum. Dry powder was then applied to developing with DCM, and subjected a HPLC method. The reaction was monitored using thin-layer chromatography (TLC) with a Mobile phase of DCM.

6-Phenyl-dihydropyrimidine-2,4(1H,3H)-dione 2a: white powder; yield: 75%; Mp = 229 °C; IR (KBr) ν 3432, 3209, 1738, 1695, and 1452 cm$^{-1}$; 1H NMR (200 MHz, DMSO-d$_6$) δ 10.18 (s, 1H, NH), 8.01 (s, 1H, NH), 7.42–7.22 (m, 5H, Ar), 4.68 (td, $J = 6.4, 2.5$ Hz, 1H, CH), and 2.73 (dd, $J = 23.1, 16.3$, 6.3 Hz, 2H, CH$_2$) ppm; 13C NMR (50 MHz, DMSO-d$_6$) δ 170.0, 154.0, 141.4, 128.8, 127.8, 126.2, 50.3, and 38.4 ppm; Calcd. for C$_{14}$H$_{14}$N$_4$O$_4$: 55.63; H, 4.67; N, 18.53; Found: C 55.47, H 4.60, N 18.45 (%).

Dihydro-6-(3’-(hexahydro-2’,6’-dioxopyrimidin-4’-yl)phenyl)pyrimidine-2,4(1H,3H)-dione 2b: white powder; yield: 64%; Mp = 191 °C; IR (KBr) ν 3415, 3201, 1741, 1695, 1458, and 1300 cm$^{-1}$; 1H NMR (200 MHz, DMSO-d$_6$) δ 10.19 (s, 1H, NH), 7.99 (s, 1H, NH), 7.43–7.23 (m, 2H, Ar), 4.72–4.66 (m, 1H, CH), and 2.87–2.55 (m, 2H, CH$_2$) ppm; 13C NMR (50 MHz, DMSO-d$_6$) δ 169.7, 153.8, 141.6, 128.9, 125.3, 124.4, 50.4, and 38.5 ppm; Calcd. for C$_{13}$H$_{14}$N$_4$O$_5$: 55.63; H, 4.67; N, 18.53; Found: C 55.47, H 4.60, N 18.45 (%).

6-(anthracen-10’-yl)-dihydropyrimidine-2,4(1H,3H)-dione 2c Light yellow powder; Yield: 99%; Mp = 254 °C; IR (KBr) ν 3392, 3188, 1732, 1696, 1655, 1470, 1297 cm$^{-1}$; 1H NMR (200 MHz, DMSO-d$_6$) δ 10.39 (s, 1H, NH), 8.64 (m, 3H, NH + Ar), 8.13 (m, 1H, Ar), 7.90 (m, 2H, Ar), 7.69–7.48 (m, 4H, Ar), 6.41 (dd, $J = 13.3$, 4.6 Hz, 1H, CH), 3.45–3.30 (m, 1H, CH), 2.68–2.57 (m, 1H, CH) ppm; 13C NMR (50 MHz, DMSO-d$_6$) δ 170.1, 166.3, 153.9, 133.3, 132.3, 131.4, 130.5, 129.7, 129.4, 128.9, 128.7, 127.9, 126.1, 125.1, 46.5, 36.4 ppm; Before elemental analysis, 2c was recrystallized from acetone/water mixture; calcd. for C$_{18}$H$_{14}$N$_4$O$_2$: C 74.47, H 4.86, N 9.65; found: C 74.21, H 4.75, N 9.49 (%).

6-(4’-fluorophenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2d White powder; Yield: 55%; Mp = 260 °C; IR (KBr) ν 3205, 3085, 1738, 1695, 1516, 1443 cm$^{-1}$; 1H NMR (200 MHz, DMSO-d$_6$) δ 10.20 (s, 1H, NH), 8.01 (s, 1H, NH), 7.43–7.15 (m, 4H, Ar), 4.73–4.66 (m, 1H, CH), 2.95–2.57 (m, 2H, CH$_2$) ppm; 13C NMR (50 MHz, DMSO-d$_6$) δ 169.7, 164.0, 159.2, 153.8, 137.3, 137.3, 128.3, 128.2, 115.6, 115.2, 49.7, and 38.4 ppm; calcd. for C$_{10}$H$_9$FN$_2$O$_2$: C 57.69, H 4.36, and N 13.46; found: C 57.45, H 4.25, N 13.25 (%).
6-(2'-Chlorophenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2f: Light yellow powder; yield: 87%; Mp = 249 °C; IR (KBr) v 3432, 3089, 1710, 1514, and 1452 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.21 (s, 1H, NH), 8.02 (s, 1H, NH), 7.40 (dd, J = 20.0, 8.4 Hz, 4H, Ar), 4.71 (m, 1H, CH), 2.89–2.78 (dd, J = 16.4, 5.7 Hz, 1H, CH), and 2.67–2.56 (dd, J = 16.3, 7.1 Hz, 1H, CH) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.8, 140.2, 133.3, 128.6, 127.8, 127.1, 49.7, and 38.2 ppm; calcd. for C₁₀H₉ClN₂O₂: C 53.47, H 4.04, and N 15.78; found: C 53.35, H 3.95, and N 15.70 (%).

6-(4'-Nitrophenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2g: white powder; yield: 64%; Mp = 239 °C; IR (KBr) v 3432, 3089, 1710, 1514, and 1452 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.16 (s, 1H, NH), 7.95 (s, 1H, NH), 7.46–7.22 (m, 7H, Ar), 7.01 (d, J = 8.6 Hz, 2H, Ar), 5.10 (s, 2H, OCH₃), 4.61 (m, 1H, CH), and 2.83–2.54 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.3, 153.7, 148.8, 147.1, 127.6, 123.8, 49.9, and 37.9 ppm; calcd. for C₁₀H₆ClN₂O₃: C 51.07, H 3.86, and N 17.87; found: C 49.90, H 3.80, and N 17.81 (%).

6-(4'-Benzyloxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2h: white powder; yield: 67%; Mp = 209 °C; IR (KBr) v 3432, 3029, 1737, 1696, 1514, and 1452 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.16 (s, 1H, NH), 7.95 (s, 1H, NH), 7.46–7.22 (m, 7H, Ar), 7.01 (d, J = 8.6 Hz, 2H, Ar), 5.10 (s, 2H, OCH₃), 4.61 (m, 1H, CH), and 2.83–2.54 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 157.6, 153.8, 143.1, 133.3, 128.5, 127.8, 127.4, 114.9, 69.4, 49.8, and 38.5 ppm; calcd. for C₁₇H₁₆O₃N₂: C 68.91, H 5.44, and N 9.45; found: C 68.75, H 5.32, and N 9.40 (%).

6-(4'-4'-Bromobenzoylphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2i: white powder; yield: 45%; Mp = 246 °C; IR (KBr) v 3206, 3089, 1739, 1696, 1514, and 1456 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.16 (s, 1H, NH), 7.95 (s, 1H, NH), 7.59 (d, J = 8.3 Hz, 2H, Ar), 7.40 (d, J = 8.3 Hz, 2H, Ar), 7.25 (d, J = 8.6 Hz, 2H, Ar), 7.00 (d, J = 8.6 Hz, 2H, Ar), 5.08 (s, 2H, OCH₂), 4.65–4.57 (m, 1H, CH), 2.83–2.57 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 157.6, 153.8, 136.6, 133.5, 131.4, 129.8, 127.4, 121.0, 115.0, 68.6, 49.7, and 38.5 ppm; calcd. for C₁₇H₁₃BrN₂O₃: C 54.42, H 4.03, and N 7.47; found: C 54.10, H 3.95, and N 7.35 (%).

Dihydro-6-(4'-methoxyphenyl)pyrimidine-2,4(1H,3H)-dione 2j: white powder; yield: 53%; Mp = 220 °C; IR (KBr) v 3256, 1731, 1692, and 1510 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.14 (s, 1H, NH), 7.94 (s, 1H, NH), 7.24 (m, 2H, Ar), 6.93 (m, 2H, Ar), 4.65–4.57 (m, 1H, CH), 3.74 (s, 3H, OCH₃), and 2.83–2.57 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 158.8, 153.8, 133.1, 127.33, 114.1, 55.3, 49.7, and 38.5 ppm; calcd. for C₁₁H₁₂O₂N₂: C 59.99, H 5.49, and N 12.72; found: C 59.81, H 5.39, and N 12.65 (%).

6-(3',4',4'-dimethoxyphenyl)pyrimidine-2,4(1H,3H)-dione 2k: white powder; yield: 56%; Mp = 233 °C; IR (KBr) v 3292, 3230, 1725, 1700, 1521, and 1462 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.15 (s, 1H, NH), 7.93 (s, 1H, NH), 6.95–6.79 (m, 3H, Ar), 4.63–4.57 (m, 1H, CH), 3.74 (m, 6H, 2 × OCH₃), and 2.82–2.59 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 170.0, 153.9, 148.9, 134.4, 118.0, 111.8, 110.4, 55.7, 55.7, 50.1, and 38.5 ppm; calcd. for C₁₁H₁₄O₄N₂: C 57.59, H 5.64, and N 11.19; found: C 57.34, H 5.52, and N 11.05 (%).

Dihydro-6-(3',4',5'-trimethoxyphenyl)pyrimidine-2,4(1H,3H)-dione 2l: white powder; yield: 64%; Mp = 210 °C; IR (KBr) v 3292, 3230, 1725, 1700, 1521, and 1462 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.17 (s, 1H, NH), 7.93 (s, 1H, NH), 6.66 (s, 2H, Ar), 4.64–4.58 (m, 1H, CH), 3.77 (s, 6H, 2 × OCH₃), 3.64 (s, 3H, OCH₃), and 2.82–2.61 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.9, 152.9, 136.6, 103.8, 60.1, 56.1, 50.7, and 38.5 ppm; calcd. for C₁₃H₁₆N₂O₅: C 55.71, H 5.75, and N 9.99; found: C 55.59, H 5.65, and N 9.82 (%).
6-(4’-Ethoxy-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2m: white powder; yield: 68%; Mp = 221 °C; IR (KBr) ν 3233, 3078, 1699, 1523, 1478, and 1236 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.15 (s, 1H, NH), 7.93 (s, 1H, NH), 6.95–6.77 (m, 3H, Ar), 4.59 (s, 1H, CH), 3.98 (q, J = 6.8 Hz, 2H, OCH₂), 3.75 (s, 3H, OCH₃), 2.82–2.59 (m, 2H, CH₂), and 1.31 (t, J = 6.9 Hz, 3H, CH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 170.0, 153.8, 149.1, 147.6, 133.4, 118.0, 113.0, 110.5, 63.9, 55.6, 50.1, 38.5, and 14.9 ppm; calcd. for C₁₃H₁₈N₂O₄: C 59.08, H 6.10, and N 10.60; found: C 58.84, H 5.95, N 10.52 (％).

6-(4’-Propoxy-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2n: yellow powder; yield: 63%; Mp = 205 °C; IR (KBr) ν 3220, 3095, 1717, 1685, and 1520 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.15 (s, 1H, NH), 7.93 (s, 1H, NH), 6.92 (m, 2H, Ar), 6.79 (m, 1H, Ar), 4.59 (t, J = 6.4 Hz, 1H, CH), 3.88 (t, J = 6.6 Hz, 2H, OCH₂), 3.76 (s, 3H, OCH₃), 2.82–2.62 (m, 2H, CH₂), 1.79–1.62 (m, 2H, CH₂), and 0.96 (t, J = 7.4 Hz, 3H, CH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.8, 149.2, 147.8, 133.4, 118.1, 113.2, 110.7, 70.0, 55.8, 50.1, 38.5, 22.3, and 10.6 ppm; calcd. for C₁₄H₁₈N₂O₄: C 60.42, H 6.52, and N 10.07; found: C 60.25, H 6.45, and N 10.01 (％).

6-(4’-Butoxy-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2o: white powder; yield: 74%; Mp = 195 °C; IR (KBr) ν 3434, 3210, 1919, 1693, 1517, and 1451 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.14 (s, 1H, NH), 7.92 (s, 1H, NH), 6.95–6.76 (m, 3H, Ar), 4.59 (t, J = 5.3 Hz, 1H), 3.92 (t, J = 6.4 Hz, 2H, OCH₂), 3.75 (s, 3H, OCH₃), 2.82–2.58 (m, 2H, CH₂), 1.75–1.61 (m, 2H, CH₂), 1.51–1.32 (m, 2H, CH₂), and 0.92 (t, J = 7.3 Hz, 3H, CH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.8, 149.2, 147.8, 133.4, 118.1, 113.1, 110.6, 68.1, 55.7, 50.1, 38.5, 31.0, 18.9, and 13.8 ppm; calcd. for C₁₅H₂₀N₂O₄: C 61.63, H 6.90, and N 9.58; found: C 61.45, H 6.80, and N 9.51 (％).

6-(4’-Benzoyloxy-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2p: white powder; yield: 70%; Mp = 207 °C; IR (KBr) ν 3408, 3217, 1730, 1698, 1517, and 1460 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.14 (s, 1H, NH), 7.92 (s, 1H, NH), 7.42–7.22 (m, 5H, Ar), 7.01 (d, J = 8.5 Hz, 2H, Ar), 6.82 (d, J = 9.6 Hz, 1H, Ar), 5.07 (d, 2H, OCH₂), 4.64–4.57 (m, 1H, CH), 3.77 (s, 3H, OCH₃), and 2.82–2.59 (m, 2H, CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.8, 149.2, 147.3, 133.8, 128.5, 127.9, 127.8, 118.0, 113.5, 110.6, 70.2, 55.7, 50.1, 38.5, and 21.1 ppm; calcd. for C₁₅H₁₈N₂O₄: C 67.05, H 5.92, and N 8.23; found: C 66.90, H 5.85, and N 8.14 (％).

6-(4’-(3’-Methoxybenzyl)-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2q: white powder; yield: 65%; Mp = 209 °C; IR (KBr) ν 3395, 3201, 1729, 1695, and 1515 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.15 (s, 1H, NH), 7.94 (s, 1H, NH), 7.31–7.15 (m, 4H, Ar), 7.12–6.98 (m, 2H, Ar), 6.82–6.77 (m, 1H, Ar), 5.02 (s, 2H, OCH₂), 4.60 (t, J = 5.5 Hz, 1H, CH), 3.77 (s, 3H, OCH₃), 2.82–2.59 (m, 2H, CH₂), and 2.31 (s, 3H, CH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.9, 153.8, 149.3, 147.4, 137.5, 137.1, 133.8, 128.5, 128.3, 124.9, 118.0, 113.6, 110.6, 70.2, 55.7, 50.1, 38.5, and 20.9 ppm; calcd. for C₁₉H₂₀N₂O₄: C 67.05, H 5.92, and N 8.23; found: C 66.91, H 5.85, and N 8.19 (％).

6-(4’-Acetoxy-3’-methoxyphenyl)-dihydropyrimidine-2,4(1H,3H)-dione 2s: white powder; yield: 60%; Mp = 229 °C; IR (KBr) ν 3429, 3288, 1767, 1716, 1696, 1679, and 1453 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 10.20 (s, 1H, NH), 8.00 (s, 1H, NH), 7.12–7.06 (m, 2H, Ar), 6.89 (d, J = 8.1 Hz, 1H, Ar), 4.68 (t, J = 5.6 Hz, 1H, CH), 3.77 (s, 3H, OCH₃), 2.87–2.63 (m, 2H, CH₂),
and 2.25 (s, 3H, CH₃CO) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 169.8, 168.5, 153.8, 150.9, 139.9, 138.8, 122.8, 118.0, 111.1, 55.9, 50.3, 38.4, and 20.5 ppm; calcd. for C₁₃H₁₄N₂O₅: C 56.11, H 5.07, and N 10.07; found: C 55.91, H 4.89, and N 10.12 (%).

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27092939/s1, Figures S1–S38: NMR spectra.

Author Contributions: Conceptualization, writing—original draft preparation, and supervision, S.N.A.B. and N.J.; methodology and visualization, H.E. and M.A.E. All authors have read and agreed to the published version of the manuscript.

Funding: The authors work was supported through grant number “375213500” from the Deanship for Research and Innovation, Ministry of Education in Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship for Research and Innovation, Ministry of Education in Saudi Arabia, and the central laboratory at Jouf University for supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krokan, H.E.; Drabløs, F.; Slupphaug, G. Uracil in DNA—occurrence, consequences and repair. *Oncogene* 2002, 21, 8935–8948. [CrossRef]

2. Inada, M.; Hirao, Y.; Koga, T.; Itose, M.; Kunizaki, J.-i.; Shimizu, T.; Sato, H. Relationships among plasma [2-¹³C] uracil concentrations, breath ¹³CO₂ expiration, and dihydropyrimidine dehydrogenase (DPD) activity in the liver in normal and DPD-deficient dogs. *Drug Metab. Dispos.* 2005, 33, 381–387. [CrossRef]

3. Hollywood, F.; Suschitzky, H.; Hull, R. Chlorosulphonyl isocyanate addition to o-dialkylaminostyrenes: Preparation of 6-(O-dialkylaminophenyl)-uracils. *Synthesis* 1982, 8, 662–665. [CrossRef]

4. Strekowski, L.; Watson, R.A.; Michelle, F.A. A new route to 5, 6-dihydropyrimidin-4 (3H)-ones. *Synthesis* 1987, 6, 579–581. [CrossRef]

5. Pair, E.; Levacher, V.; Briere, J.-F. Modified multicomponent Biginelli–Atwal reaction towards a straightforward construction of 5,6-dihydropyrimidin-4-ones. *RSC Adv.* 2015, 5, 46267–46271. [CrossRef]

6. Schneider, N.; Hauer, B.; Ditrich, K.; O’Neill, M.; Turner, N. Preparation of Beta-Amino Acids. Patent WO 2011032990 A1, 24 March 2011.

7. O’Neill, M.; Hauer, B.; Schneider, N.; Turner, N.J. Enzyme-catalyzed enantioselective hydrolysis of dihydouracils as a route to enantiomerically pure β-Amino Acids. *ACS Catal.* 2011, 9, 1014–1016. [CrossRef]

8. Jones, K.A.; Weaver, D.F.; Tiedje, K.E. Dihydouracil Compounds as Anti-Ictogenic or Anti-Epileptogenic Agents. Patent WO 2004009559 A2, 29 January 2004.

9. Sun, G.; Fecko, C.J.; Nicewonger, R.B.; Webb, W.W.; Begley, T.P. DNA-protein cross-linking: Model systems for pyrimidine-aromatic acid cross-linking. *Org. Lett.* 2006, 8, 681–683. [CrossRef]

10. Wu, S.; Janusz, J.M. Solid-phase synthesis of 3-aminohydantoin, dihydouracil, trihydantoin and dihydriothiouracil derivatives. *Tetrahedron Lett.* 2000, 41, 1165–1169.

11. Blanco-Ania, D.; Valderas-Cortina, C.; Hermkens, P.H.H.; Sliedregt, L.A.J.M.; Scheeren, H.W.; Rutjes, F.P.J.T. Synthesis of dihydouracils spiro-fused to pyrrolidines: Druglike molecules based on the 2-arylethyl amine scaffold. *Molecules* 2015, 20, 2269–2301. [CrossRef]

12. Chang, K.L.; Jeung, Y.S. A Synthesis of 5,6-Dihydouracils in a Sealed-tube and Their Conformational Analysis. *Bull. Korean Chem. Soc.* 1991, 12, 343–347.

13. Wurm, J.P.; Griese, M.; Bahr, U.; Held, M.; Heckel, A.; Karas, M.; Soppa, J.; Wöhnert, J. Identification of the enzyme responsible for N₁-methylation of pseudouridine 54 in archaeal tRNAs. *RNA* 2012, 18, 412–420. [CrossRef] [PubMed]

14. Svitkin, Y.V.; Cheng, Y.M.; Chakraborty, T.; Presnyak, V.; John, M.; Sonenberg, N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. *Nucleic Acids Res.* 2017, 45, 6023–6036. [CrossRef] [PubMed]

15. Morais, P.; Adachi, H.; Yu, Y.-T. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. *Front. Cell Dev. Biol.* 2021, 9, 789427. [CrossRef]

16. Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA vaccines protect against Zika virus infection. *Cell* 2017, 168, 1114–1125. [CrossRef]
40. Milović, E.; Janković, N.; Bogdanović, G.; Petronijević, J.; Joksimović, N. On water synthesis of the novel 2-oxo-1,2,3,4-tetrahydropyrimidines. *Tetrahedron* 2021, 78, 131790. [CrossRef]

41. Janković, N.; Stefanović, S.; Petronijević, J.; Joksimović, N.; Novaković, S.B.; Bogdanović, G.A.; Muškinja, J.; Vraneš, M.; Ratković, Z.; Bugarski, Z. Water-Tuned Tautomer-Selective Tandem Synthesis of the 5,6-Dihydropyrimidin-4(3H)-ones, Driven under the Umbrella of Sustainable Chemistry. *ACS Sustain. Chem. Eng.* 2018, 6, 13358–13366. [CrossRef]

42. Mayer, U.; Gutmann, V.; Gerger, W. The acceptor number—A quantitative empirical parameter for the electrophilic properties of solvents. *Mon. Chem.* 1975, 106, 1235–1257. [CrossRef]

43. Hayamizu, K.; Aihara, Y.; Arai, S.; Martinez, C.G. Pulse-Gradient Spin-Echo 1H, 7Li, and 19F NMR Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO$_2$CF$_3$)$_2$. *J. Phys. Chem. B* 1999, 103, 519–524. [CrossRef]

44. Kamlet, M.J.; Taft, R.W. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. *J. Am. Chem. Soc.* 1976, 98, 377–383. [CrossRef]

45. Kamlet, M.J.; Abboud, J.-L.M.; Abraham, M.H.; Taft, R.W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π^*, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation. *J. Org. Chem.* 1983, 48, 2877–2887. [CrossRef]

46. Singh, S.; Schober, A.; Gebinog, M.; Groß, A. Facile conversion of Biginelli 3, 4-dihydropyrimidin-2(1H)-thiones to 2-(2-hydroxy-2-arylvinyl) dihydropyrimidines via Eschenmoser coupling. *Tetrahedron Lett.* 2009, 50, 1838–1843. [CrossRef]