Investigating the relationship of serum levels of afamin and interleukin-10 with insulin resistance in infertile women with polycystic ovary syndrome

Tuğba Gürbüz 1, Oya Gökmen 1, Ergül Demircivi Bor 1, Aygül Ulusocak 1

1 Department of Gynecology & Obstetrics, Medistate Kavacık Hospital, Istanbul, Turkey
2 Department of Gynecology & Obstetrics, Istanbul Medeniyet University Goztepe Training and Research Hospital, Istanbul, Turkey
3 Department of Biochemistry Clinic, Medistate Kavacık Hospital, Istanbul, Turkey

Abstract

Background/Aim: The prevalence of Polycystic Ovary Syndrome (PCOS) is between 6-10% globally, and more than 50% of patients with PCOS are obese. The development of insulin resistance (IR) and hyperinsulinemia due to overweight can contribute to this syndrome’s clinical complications. This study aimed to investigate the relationship between serum levels of afamin and Interleukin-10 (IL-10) with IR in infertile women with PCOS.

Methods: Eighty-eight participants between the ages of 18 and 36 years, with at least one year of unsuccessful attempts to have children were included in this prospective case-control study. The PCOS and healthy controls were divided into two groups based on IR. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estradiol (E2), Prolactin, Thyroid Stimulating Hormone (TSH), Free T4, Anti-Mullerian Hormone (AMH), Hemogram, total cholesterol, LDL, HDL, Triglyceride, fasting blood glucose, fasting insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), afamin, IL-10 values were measured.

Results: The body mass indexes (BMIs) of the groups were significantly different (P<0.001); and the highest BMI was observed in the PCOS group with IR (HOMA-IR ≥2.5). Fasting insulin was significantly higher in the two groups with IR: 15.3 (6.09) in PCOS patients and 12.7 (2.8) in patients without PCOS (P=0.02). There was a weak positive correlation between BMI and Afamin (P=0.005), a strong negative correlation between BMI and IL-10 (P<0.001), a moderate negative correlation between Waist Hip Ratio (WHR) and IL-10 (P<0.001), a weak negative correlation between fasting insulin and IL-10 (P<0.001), and a weak positive correlation between monocyte and IL-10 (P=0.03).

Conclusion: Our results showed an increase in Afamin and a decrease of interleukin-10 in infertile women with polycystic ovary syndrome and insulin resistance.

Keywords: Polycystic ovary syndrome, Insulin resistance, Afamin, IL-10
Introduction

Polycystic ovary syndrome (PCOS) manifests in women of reproductive age and is the most important cause of infertility due to lack of ovulation [1]. It begins after puberty, and the maximum age of onset is 20 to 40 years [2]. The prevalence of this syndrome is about 6-10% [4]. More than 50% of patients with PCOS are obese [3, 4]. Body fat usually accumulates centrally and an increase in the waist-to-hip circumference ratio (WHR) increases the risk of cardiovascular diseases and diabetes mellitus (DM) [1-3].

Although obesity is not an essential feature or an inherent defect of PCOS [5], the development of hyperinsulinemia and Insulin Resistance (IR) due to overweight can contribute to the clinical complications of this syndrome [5-7]. About 50-70% of women with PCOS have IR to some degree [7, 8], which may result from obesity or associated with hyperandrogenism [9]. It has been suggested that IR can also play a significant role in the pathogenesis of PCOS [7-9].

Studies show that Afamin increase is correlated with metabolic syndrome in PCOS patients [10-12]. Afamin was first identified in 1994 as the fourth member of the human albumin gene family, including vitamin D binding protein, alphafetoprotein, and human serum albumin [11]. As an 87 kDa human plasma glycoprotein, afamin has 55% amino acid sequence similarity to albumin and includes 15% carbohydrate [12]. Studies have shown that elevated levels of the human afamin gene increase the body weight, glucose, and fat concentration in the bloodstream [13-15]. Some other studies have also shown an association between afamin, IR and metabolic syndrome [16-18].

Chronic inflammation in the body can be considered a stimulus for IR and type 2 DM [19]. Studies have shown that various adipose tissue hormones, such as interleukin-10 (IL-10), can significantly inhibit the expression and synthesis of proinflammatory cytokines [19-21]. IL-10 is an essential anti-inflammatory cytokine that can limit the inflammatory response caused by tissue damage [20]. IL-10 also prevents the exacerbation of inflammation by reducing inflammatory responses and suppresses the production of cytokines such as interleukin-6 and interleukin-1 [20, 21]. Studies have shown that exogenous use of IL-10 prevent IR due to fat accumulation [21, 22], and decreased serum levels of IL-10 have been associated with increased prevalence of metabolic syndrome and type 2 DM [23].

Although the role of afamin and IL-10 in IR and inflammation reduction has been studied separately, there is still limited and conflicting information about the role of PCOS on anti-inflammatory adipokines such as IL-10 and their mechanism of action. This study aimed to investigate the relationship between serum levels of afamin and IL-10 with IR in infertile women with PCOS.

Materials and methods

This prospective observational study was conducted on 88 patients admitted to Istanbul Medeniyet University Goztepe Training and Research Hospital Gynecology and Obstetrics Clinic and Private Medistate Kavacık Hospital Gynecology and Reproductive Medicine Clinic between December 2020 and February 2021. Patients underwent routine IVF clinic examinations, and no special procedures were performed in the examination, treatment, and follow-up processes.

The study was performed according to the regulations established by the Clinical Research and Ethics Committee and the Helsinki Declaration of the World Medical Association. The study was conducted with the permission of the Research Ethics Committee of Istanbul Medeniyet University Goztepe Training and Research Hospital (Permission granted/CAAE number: 02.12.2020, Decision no: 2020/0703). All patients signed informed consents.

The criteria for inclusion in the study were consenting to participate in the study, being aged between 18 and 36 years, and having unsuccessfully attempted conceiving for at least one year. Those who disagreed to participate, those with DM, endocrinopathy, or hypertension, patients who smoked, or used drugs that altered the metabolism of insulin, lipids, and hormones up to three months before the study, patients with a deficiency of vitamins B6 and B12 and those taking vitamin supplements up to 6 months before the study were excluded.

Participants were divided into study and control groups based on PCOS diagnosis. The PCOS group consisted of women aged 18-36 years, who were referred to an infertility clinic during the study period and diagnosed with PCOS according to the 2003 Rotterdam Consensus criteria [24]. Women referred to our clinic for infertility during the study period and not diagnosed with PCOS were included in the control group. The PCOS and control group participants were divided into two groups based on IR, which was identified with The Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index ≥2.5. Sample size calculation with G*Power 3.1 and assessment of the mean of two groups with ANOVA test revealed that with an effect size of 35%, df of 4, power of 70% and 0.05 type 1 error, at least 16 patients were required in each group. Therefore, twenty-two patients were included in each group. The control groups were divided into two groups as those with and without IR so that the exact effect of IR could be measured in patients with PCOS and to minimize the potential bias. The final groups were as follows: 1) PCOS non-IR (HOMA-IR <2.5), 2) PCOS+IR (HOMA-IR ≥2.5), 3) Control+non-IR (HOMA-IR <2.5), 4) Control+IR (HOMA-IR ≥2.5).

Body Mass Index (kg/m²) was calculated by measuring the height (m) and body weight (kg) obtained in the routine examination at the first visit. Waist circumference, hip circumference, and WHR were noted.

We examined the patients on the third day of their instrumentation after the examination. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estradiol (E2), Prolactin, Thyroid Stimulating Hormone (TSH), Free T4, Anti-Mullerian Hormone (AMH), Hemogram, total cholesterol, LDL, HDL, Triglyceride, fasting blood glucose, fasting insulin, and HOMA-IR values were measured.

Serum samples were obtained by centrifuging venous blood samples for 10 minutes at 4000 rpm after a 30-minute coagulation period. Serum samples collected for biochemical and hormonal evaluation were analyzed in Medistate Kavacık Hospital's biochemistry and hormone laboratory. Afamin and IL-10 measurement were performed with Human AFM Antibody
Enzyme-Linked Immunosorbent (ELISA) and IL-10 ELISA Kits (Reader Biotech ELx800). The plates provided by the manufacturer were pre-coated with Human AAFM/IL-10 antibody. AAFM/IL-10 in the samples were bound to antibodies coated on the wells. The biotinylated Human AAFM/IL-10 antibody was then added and bound to AAFM/IL-10 in the sample. Streptavidin-HRP was added and bound to the Biotinylated AAFM/IL-10 antibody. In between all steps and after the final incubation, the plates were washed. After final incubation, the substrate solution was added, which caused a color change proportional to the amount of Human AAFM/IL-10 in the initial sample. The reaction was terminated by the addition of acid-stopping solution, and absorbance evaluation was made at 450 nm. Quantification was performed by calculation of concentrations from absorbance values according to the slope of the calibration curve obtained with the respective standards included in each ELISA kit.

Statistical analysis

Data were analyzed using SPSS for Windows, Version 23.0 (Armonk, NY: IBM Corp). A two-way ANOVA test was used to evaluate the significant difference between the studied variables in the PCOS/Controls group with different IR. The normal study variables were converted to normal by standardization, after which the appropriate test was used. The correlation of variables with Afamin and IL-10 was examined with the Pearson correlation test. For all tests, a P-value <0.05 was considered statistically significant.

Results

The mean age and BMI of all participants were 26.8 (5.1) years (range: 18-36 years) and 25.3 (4.3) kg/m² (range: 18.6 to 41.1 kg/m²), respectively. The BMI, WHR, AMH and LG values significantly differed between the groups, which were all highest in PCOS patients with IR (HOMA-IR ≥2.5) (P<0.001 for all).

As expected, fasting insulin was significantly higher in the two groups with IR (P=0.02). The Hematocrit and mean corpuscular volume (MCV) values significantly differed between the groups (P=0.02 and P=0.03, respectively), both being highest in the PCOS-IR group. The complete two-way ANOVA results for all groups are given in Table 1.

The results of Pearson correlation for Afamin and IL-10 variables are shown in Table 2. Afamin weakly positively correlated with BMI (P=0.005), and Hematocrit (P=0.001), moderately positively correlated with AMH (P<0.001), LH (P<0.001), and fasting insulin (P<0.001), weakly positively correlated with fasting blood glucose (P=0.02), and LDL (P=0.002), and weakly negatively correlated with leukocyte (P=0.003), and neutrophil count (P=0.002).

IL-10 was strongly negatively correlated with BMI (P<0.001), moderately negatively correlated with waist circumference (P<0.001), hip circumference (P<0.001), WHR (P<0.001), AMH (P<0.001), and LH (P<0.001), weakly negatively correlated with fasting insulin (P=0.001), MPV (P=0.04), and MCV (P=0.05), weakly positively correlated with monocyte count (P=0.03), and very weakly negatively correlated with hematocrit (P=0.05).

Table 1: Results of two-way ANOVA comparisons between the groups

	PCOS-HOMA-IR	PCOS Controls	Controls-HOMA-IR	Controls	P-value
Afamin	39.2 (6.0)	32.8 (5.6)	31.1 (5.7)	32.1 (4.8)	0.01
IL-10	679.9 (119.9)	181.4 (32.2)	291.9 (83.5)	487.5 (116.9)	0.000
BMI	31.2 (2.0)	30.2 (2.3)	29.7 (2.1)	32.2 (2.4)	0.000
Waist circumference	57.5 (9.2)	57.0 (9.2)	78.5 (3.2)	75.5 (9.3)	0.000
Hip Circumference	95.7 (6.1)	117.1 (6.5)	105.5 (11.0)	97.3 (9.4)	0.000
WAIST HIP RATIO (WHR)	0.77 (0.06)	0.80 (0.1)	0.80 (0.07)	0.70 (0.05)	0.000

Table 2: The Pearson correlation of Afamin and IL-10

	Afamin	IL-10	Afamin	IL-10
Person	P-value	Person	P-value	
Age	0.2	-0.8	0.4	-0.08
BMI	0.005	-0.67	0.000	0.000
Waist circumference	0.12	-0.57	0.000	0.000
Hip Circumference	0.1	-0.51	0.000	0.000
Waist Hip Ratio (WHR)	-0.02	-0.3	0.000	0.000
Age	-0.08	0.09	0.03	0.3
AMH	0.4	-0.47	0.000	0.000
FSH	0.03	0.16	0.1	0.1
LH	0.42	-0.00	0.000	0.000
Estradiol	-0.08	-0.14	0.18	0.18
Free T4	-0.06	0.05	-0.058	0.15
TSH	-0.05	0.07	0.05	0.6
Prolactin	-0.04	0.05	0.05	0.6
Fasting blood glucose	0.24	0.02	0.05	0.6
Fasting insulin	0.35	-0.34	0.001	0.001
Total Cholesterol	-0.17	-0.18	0.002	0.000
LDL	0.32	0.002	-0.002	0.9
HDL	0.09	0.14	0.13	0.2
Triglyceride	-0.07	0.13	0.12	0.12
Leukocyte	-0.31	0.003	0.001	0.9
Neutrophil	-0.33	0.002	0.02	0.8
Basophil	0.12	0.2	-0.13	0.2
Lympocyte	-0.11	0.2	-0.045	0.6
Monocyte	0.007	0.9	0.22	0.03
Hemogloblin	0.18	0.09	0.000	0.9
Hematocrit	0.33	-0.03	0.2	0.02
Platelet	0.02	-0.12	0.12	0.12
PCT	-0.03	0.07	-0.10	0.3
RDW	-0.066	0.16	0.2	0.05
MPV	0.16	0.10	0.21	0.04
MCV	0.16	0.1	0.2	0.05
The different Afamin and IL-10 values in the four groups are presented in Figures 1 and 2, respectively.

Figure 1: Afamin values in the groups

Figure 2: IL-10 values in the groups

Discussion

IR is an incomplete response of glucose to a certain amount of insulin [4]. In many of these patients, circulating insulin levels increase to neutralize this deficiency and maintain stable glucose levels. It is correlated with a wide range of manifestations, including cardiovascular disease, hypertension, type 2 DM, and lipid disorders. IR is prevalent in patients with PCOS, particularly in obese patients [2, 3]. However, the relationship between IR and variables such as afamin and IL-10 is unclear. Our results showed that afamin levels significantly increase in patients with PCOS compared to healthy groups and with increasing BMI. These findings are consistent with previous findings [20-23]. Obesity has a prevalence of more than 50% in PCOS patients [6]. Although obesity is not an integral or inherent complication of PCOS [7, 8], the development of IR and hyperinsulinemia due to overweight can contribute to the clinical complications of this syndrome [5]. About 50-70% of women with PCOS have some degree of IR [10], which may result from obesity or independently, and is associated with hyperandrogenism [13]. It has been suggested that IR can also play a leading role in the pathogenesis of this disease [9].

The present study observed that the mean HOMA-IR was significantly higher among PCOS patients compared to the healthy group, consistent with various other studies [34-37]. Contrarily, some studies showed this difference only in obese women with PCOS [38, 39]. This may be because of the effect of obesity on IR, independent of PCOS.

In this study, serum IL-10 levels were significantly lower in PCOS patients than in healthy women. Panidis et al. also observed a significant difference between serum IL-10 levels in PCOS patients and normal-weight healthy women [40]. Ardawi et al. reported that IL-10 was lower in women with PCOS than in healthy women of similar weight [41]. While there was a significant difference in fasting insulin between the groups, no significant difference was observed in terms of fasting glucose. These findings were consistent with the findings of Tarkun et al., which found higher fasting insulin and similar fasting glucose levels among women with PCOS [42].

Limitations

One of the limitations of this study is the small number of samples. It is recommended that further studies be performed with a larger number of patients to investigate the different variables and the independent effect of each on IR in PCOS patients. Lack of information about the distribution of fat in the women studied is another limitation of the present study.
Therefore, a more detailed study with more variables is required to investigate changes in IL-10 and afamin levels and the effect of central fat mass on it. Whether IR results from obesity or PCOS should also be considered more carefully.

Conclusion

In this study, the effect of afamin and IL-10 on IR in patients with PCOS was investigated. Our results showed that afamin levels in PCOS patients with IR increased significantly, which could be a sign of oxidative stress, while that of IL-10 levels decreased, which can be attributed to obesity. Further studies are needed to determine the relationship between IR, obesity, and PCOS.

References

1. De Groot PC, Dekkers OM, Romijn JA, Derksen SW, Helmerhorst FM. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Human reproduction update. 2011;17(4):495-500.
2. Gambineri A, Pehlau C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovarian syndrome. International journal of obesity. 2002;26(7):883-96.
3. Lengyel E. Obesity and PCOS: implications for diagnosis and treatment. Seminars in reproductive medicine; 2012: NBI Public Access.
4. Li X, Shao R. PCOS and obesity: insulin resistance might be a common etiology for the development of type 1 endometrial carcinoma. American journal of cancer research. 2014;4(1):73.
5. Diamant-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovarian syndrome revisited: an update on mechanisms and implications. Endocrine reviews. 2012;33(6):981-1030.
6. Dunaif A, Book CB. Insulin resistance in the polycystic ovary syndrome. Clinical research in diabetes and obesity. 1997:249-74.
7. Haozawa J, Murakawa H, Suzuki M, Yamamoto Y, Korabayashi T, Tanaka K. Effect of troglitazone on endocrine and ovulatory performance in women with insulin resistance-related polycystic ovary syndrome. Fertility and sterility. 1999;71(2):323-7.
8. Kajimura R, Baker VM, D'Amore P, Gumpel T, Castracane VD. Polycystic ovarian syndrome and insulin resistance in white and Mexican American women: a comparison of two distinct populations. American journal of obstetrics and gynecology. 2002;187(5):1362-9.
9. Park K, Kim J, Ahn C, Song Y, Lim S, Lee H. Polycystic ovarian syndrome (PCOS) and insulin resistance. International Journal of Gynecology & Obstetrics. 2000;71(4):261-7.
10. Yang Y, Li N, Mu A, Dai F, Zheng Y, Hu X, et al. Identification of Potential Biomarkers of Polycystic Ovary Syndrome via Integrated Bioinformatics Analysis. Reproductive Sciences. 2020;1-9.
11. Seber B, Mostafell E, Langer F, Wild L, Dieplinger H. Afamin serum concentrations are associated with insulin resistance and metabolic syndrome in polycystic ovary syndrome. Reproductive Biology and Endocrinology. 2014;12(1):1-7.
12. Polkowska A, Pasirowicz IE, Pawlowska M, Pawluczak E, Dosowski A. Assessment of Serum Concentrations of Adiponectin, Mamin and Neburin in Children with Type 1 Diabetes. BioMed research international. 2019:2019.
13. Köninger A, Mathan A, Mach P, Frank M, Schmidt B, Schlesnoster E, et al. Is afamin a novel biomarker for gestational diabetes mellitus? A pilot study. Reproductive Biology and Endocrinology. 2018;16(1):111.
14. Köninger A, Iamaconae A, Hayer E, Frank M, Schmidt B, Schlesnoster E, et al. Afamin predicts gestational diabetes in polycystic ovary syndrome patients preconceptionally. Endocrine connections. 2019;8(5):616-24.
15. Köninger A, Enkeve A, Mach P, Andrikos D, Schmidt B, Frank M, et al. Afamin: an early predictor of preclampsia. Archives of gynecology and obstetrics. 2018;298(3):1009-16.
16. Köninger A, Alemi P, Kesh L, Enkeve A, Lamas C, Kasimir M, et al. Serum concentrations of afamin are elevated in patients with polycystic ovary syndrome. Endocrine connections. 2014;3(3):206.
17. Chen J, Guo Q, Pei Y-S, Ren Q-J, Li-Chi, Hu R-K, et al. Effect of a short-term vitamin E supplementation on oxidative stress in infertile PCOS women under ovulation induction: a retrospective cohort study. BMC women's health. 2020;20:1-9.
18. Amant RM. Potential use of durian fruit (Durio zibethinus Linnaeus) as an adjunct to treat infertility in polycystic ovarian syndrome. Journal of integrative medicine. 2016;14(1):22-8.
19. Xing G, Sun Y, Wang F, Gao G, Zhou X. Role of interleukin-10 polymorphisms and haplotypes in polycystic ovary syndrome risk. International journal of clinical and experimental pathology. 2017;10(7):7956.
20. Wu H, Yu K, Yang Z. Associations between TNF-α and interleukin gene polymorphisms with polycystic ovary syndrome risk: a systematic review and meta-analysis. Journal of assisted reproduction and genetics. 2015;32(4):625-34.
21. Vural P, Değermeçicioglu S, Saral NY, Akgül C. Tumor necrosis factor α (−308), interleukin-6 (−174) and interleukin-10 (−1028) gene polymorphisms in polycystic ovary syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2010;150(1):61-8.
22. Talata RM, Mohamed YA, Mohamed EH, Elsharkawy M, Gunis AA. Interleukin 10 (−1082G/A) and (−819 CT) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta gene. 2016;9:254-8.
23. Karadzeta M, Erdogman M, Zenge A, Tansel S, Bederli A, Saygli F, et al. Polymorphism of the interleukin-10 gene in polycystic ovary syndrome. International journal of immunogenetics. 2008;35(2):119-23.
24. ESHERE TR, Group A-SPC. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovarian syndrome. Fertility and sterility. 2004;81(1):19-25.
25. Serber B, Czech T, Buchner H, Kurrath R, Wild L, Dieplinger H. Afamin, a Vitamin E-binding protein elevated in Metabolic Syndrome, is significantly increased in women with polycystic ovarian syndrome, regardless of insulin resistance. Fertility and Sterility. 2008;90:S114-5.
26. Li L, Zhang J, Zeng J, Liao B, Peng X, Li T, et al. Proteomics analysis of potential serum biomarkers for insulin resistance in patients with polycystic ovary syndrome. International journal of molecular medicine. 2020;45(5):1409-16.
27. Yeon Lee J, Rau C-K, Gupta S, Aziz N, Agarwal A. Role of oxidative stress in polycystic ovary syndrome. Current women's health reviews. 2010;6(2):96-107.
28. Mazur D, Bijekic-Macur J, Savic-Radovic A. Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome. 2013;40:51-63.
29. Banniguda DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Archives of physiology and biochemistry. 2020;126(2):183-6.