SU(2) Slave Fermion Solution of the Kitaev Honeycomb Lattice Model

F. J. Burnell1,2 and Chetan Nayak3,4

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
2All Souls College, Oxford, UK
3Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, CA 93106, USA
4Department of Physics, University of California, Santa Barbara, CA 93106, USA

We apply the SU(2) slave fermion formalism to the Kitaev honeycomb lattice model. We show that both the Toric Code phase (the A phase) and the gapless phase of this model (the B phase) can be identified with p-wave superconducting phases of the slave fermions, with nodal lines which, respectively, do not or do intersect the Fermi surface. The non-Abelian Ising anyon phase is a $p + ip$ superconducting phase which occurs when the B phase is subjected to a gap-opening magnetic field. We also discuss the transitions between these phases in this language.

I. INTRODUCTION.

In Ref. [1] Kitaev introduced the following remarkable model of $s = 1/2$ spins on a honeycomb lattice
\begin{equation}
H = -J_x \sum_{\text{z-links}} S_j^x S_j^x - J_y \sum_{\text{y-links}} S_j^y S_j^y - J_z \sum_{\text{z-links}} S_j^z S_j^z,
\end{equation}
where the z-links are the vertical links on the honeycomb lattice, and the x and y links are at angles $\pm \pi/3$ from the vertical. This model is exactly solvable and has a gapped Abelian topological phase (the ‘A phase’) which is equivalent to the Toric Code2. It also has a gapless phase (the ‘B phase’) which, when subjected to an appropriate time-reversal symmetry-breaking perturbation, becomes a gapped non-Abelian topological phase supporting Ising anyons.

This model is one of the rare instances of an exactly solvable model of a quantum magnet which does not order in its ground state and, instead, condenses into a topological phase. As such, it is a useful testing ground for theoretical techniques, such as slave fermion representations, which have been applied to approximately solve models of frustrated magnets which are not exactly solvable. Applying these techniques to Eq. [1] can shed light on the physics of this model and, conversely, on the applicability of these techniques.

Kitaev solved the Hamiltonian [1] by introducing a fermionization of the spins in terms of Majorana fermions. By expressing each spin operator as a product of two Majorana fermions, the spin model can be described exactly as a model of Majorana fermions coupled to a Z_2 gauge field. In this description the effect of the gauge field is particularly transparent: the physical correlators are captured exactly by the fermionic band structure, and the gauge field serves only to enforce the fact that only gauge-invariant observables (e.g. products of spins) are physical.

In this paper, we apply a different fermionization procedure, the SU(2) slave fermion formalism. This representation requires a different projection to eliminate redundancies in the Hilbert space compared to Kitaev’s representation in terms of Majorana fermions; therefore, it is interesting to see how the same low-energy degrees of freedom emerge. In the SU(2) slave fermion formalism, the spins are written in terms of standard, rather than Majorana, fermionic spinons. The Hamiltonian of Eq. [1] is then expanded about an RVB mean field state.
to investigate candidate ‘spin liquid’ ground states, in which the spins are strongly correlated but have no spatial order.

One important caveat in this formulation is that Eq. \(2\) gives a faithful representation of the Hilbert space only in the subspace of fermionic states for which each site is singly occupied. Thus at each site \((i)\), we must impose the 3 (redundant) constraints

\[
\begin{align*}
 n_{i\uparrow} + n_{i\downarrow} &= 1 \\
 f_{i\uparrow}^\dagger f_{i\uparrow} &= 0, \\
 f_{i\uparrow} f_{i\downarrow} &= 0.
\end{align*}
\]

As explained in Ref. \(4\), when the Hamiltonian preserves SU(2) spin rotation symmetry, the Lagrange multipliers of these constraints can be viewed as the temporal component of an SU(2) gauge field, leading to a theory of fermions coupled to a fluctuating gauge field. (The spatial components of this gauge field are given by the phases of the fermion kinetic terms, which here arise due to condensation of a bosonic field – see Appendix \(B\).) Projection would be enforced by integrating out the gauge fields. In practice, this is typically done approximately using perturbation theory in the fermion-gauge field coupling.

Thus the decoupling \(2\) leads to a description of the spin model as a theory of fermions (spinons) coupled to an SU(2) gauge field. For the Hamiltonian \(1\), we will find that the spinons are in a superconducting phase, such that this gauge symmetry is broken down to \(Z_2\), and in particular is fully gapped, such that the effect of dynamical gauge-field fluctuations on the fermion band structure is minimal. We will nonetheless find that this gauge theory is a useful tool to understand the origin of the various topologically ordered phases described in Ref. \(1\).

We begin our analysis with the mean-field description of the exact spin-liquid ground state of the Hamiltonian \(1\). In the case of spin-rotationally-invariant Hamiltonians, such as the Heisenberg model, the Hamiltonian simplifies considerably when written in terms of the fermions \(2\). In the absence of spin-rotational symmetry, as in Eq. \(1\) the Hamiltonian is more complicated. For instance, the Hamiltonian on \(x\)-links takes the form.

\[
\hat{S}_i^x \hat{S}_j^y = -\frac{1}{4} \left[f_{i\uparrow}^\dagger f_{j\downarrow} f_{i\downarrow} f_{j\uparrow} + f_{i\downarrow}^\dagger f_{j\uparrow} f_{i\uparrow} f_{j\downarrow} \right] + f_{i\uparrow}^\dagger f_{j\uparrow} f_{i\downarrow} f_{j\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow} f_{i\uparrow} f_{j\uparrow}
\]

with similar terms on the \(y\)-links, as detailed in Appendix \(B\). (This form is not unique; using the constraints, it can be rewritten in different forms which are equivalent in the constraint subspace.) In the Heisenberg model, by contrast, the Hamiltonian on each link can be written in the form:

\[
\hat{S}_i^x \hat{S}_j^y + \hat{S}_i^y \hat{S}_j^x + \hat{S}_i^z \hat{S}_j^z = -\frac{1}{2} f_{i\alpha}^\dagger f_{j\beta} f_{i\beta} f_{j\alpha} + \frac{1}{4} f_{i\alpha}^\dagger f_{i\beta} f_{j\alpha} f_{j\beta}
\]

As a result of the more complex form of the Hamiltonian, it is necessary to introduce four Hubbard-Stratonovich fields to decouple the four-fermi interactions. For example, the Lagrangian on the \(x\)-links can be written in the form:

\[
\mathcal{L}_x = -\frac{8(|\Phi_1|^2 + |\Phi_2|^2)}{J_x} - \frac{8(|\Theta_1|^2 + |\Theta_2|^2)}{J_x} + \Phi_1 \left(f_{i\uparrow}^\dagger f_{j\uparrow} + f_{i\downarrow}^\dagger f_{j\downarrow} \right) + i\Phi_2 \left(f_{i\uparrow}^\dagger f_{j\downarrow} - f_{i\downarrow}^\dagger f_{j\uparrow} \right) + h.c.
\]

\[
+ \Theta_1 \left(f_{i\alpha}^\dagger f_{j\beta} + f_{i\beta}^\dagger f_{j\alpha} \right) + i\Theta_2 \left(f_{i\alpha}^\dagger f_{j\beta} - f_{i\beta}^\dagger f_{j\alpha} \right) + h.c.
\]

where \(h.c.\) is the hermitian conjugate with all spin directions reversed. The Lagrangian can be decoupled in a similar manner on the \(y\)- and \(x\)-links as well, as detailed in Appendix \(B\).

Before proceeding, it will be helpful to pick a unit cell for the honeycomb lattice. We will label the two different sites with a unit cell by the index \(i = 1, 2\) and different unit cells by \(R = n_1 \hat{x} + n_2 \left(\frac{\sqrt{3}}{2} \hat{x} + \frac{\sqrt{3}}{2} \hat{y} \right)\). Then, we denote the fermion fields by \(f_{Ri\sigma}\). Their Fourier transforms are defined by:

\[
f_{q,i\sigma} = \frac{1}{\sqrt{N}} \sum_R e^{iR \cdot q} f_{Ri\sigma}
\]

where \(N\) is the total number of lattice sites.

To proceed, we assume that \(\Phi_i, \Theta_i\) acquire non-zero expectation values. We parametrize these expectation values by \(t_{ij,\alpha}, \Delta_{ij,\alpha}, \alpha = \uparrow, \downarrow\), as explained in Appendix \(B\). Unlike in the case of Heisenberg interactions, to describe the Kitaev model we must condense both hopping and superconducting order parameters or else the mean-field equations will not be satisfied (except in the special case \(J_x = J_y = 0\), \(J_z \neq 0\)), as shown below. (In the Heisenberg case, hopping and d-wave superconducting terms can be rotated into each other by a gauge transformation. This is not true for the \(p\)-wave superconducting case considered here.) Because SU(2) spin rotation invariance is explicitly broken on each link, the latter involve the spin-polarized superconducting terms \(\Delta_{x,\downarrow}, \Delta_{x,\uparrow}\). Thus, replacing the fields \(\Phi_i, \Theta_i\) by their expectation values, we obtain the mean-field Hamiltonian:

\[
H = \frac{1}{2} \sum_{q,\sigma} \psi_{q\sigma}^\dagger \begin{pmatrix} 0 & t_\sigma(q) & \Delta_\sigma(q) \\ t_\sigma(q)^* & 0 & -\Delta_\sigma(-q) \\ \Delta_\sigma(q)^* & -\Delta_\sigma(-q)^* & 0 \end{pmatrix} \psi_{q\sigma}
\]

\[
\psi_{q\sigma} = \begin{pmatrix} f_{q,1,\sigma}^\dagger & f_{q,2,\sigma}^\dagger & f_{-q,1,\sigma} & f_{-q,2,\sigma} \end{pmatrix}
\]

(Here the factor of \(\frac{1}{2}\) in the first line compensates for the fact that the expression \(6\) counts each term in the Hamiltonian twice. Alternatively, we could sum over half the Brillouin zone.) If we write \(\psi_{q}\) in components, it has three indices (in addition to momenta), \(\psi_{q,i\sigma}\), where \(i = 1, 2\) is a sublattice index, \(\sigma = \uparrow, \downarrow\) is a spin index, and \(a = \pm\) is a particle-hole index.

Since we will often be using Pauli matrices to act on these indices, we will, to avoid confusion, introduce three different notations for Pauli matrices. We will use \(\sigma^x_{a\beta}, \sigma^y_{a\beta}\) for Pauli matrices acting on spin indices; \(\tau^x_{a\beta\gamma}, \tau^y_{a\beta\gamma}\) for Pauli matrices acting on sublattice indices; and \(\tau^x_{a\beta\gamma\delta}, \tau^y_{a\beta\gamma\delta}\) for Pauli matrices acting on particle-hole indices. (Of course, it is precisely the same three matrices in all three cases.)
By requiring self-consistency of the expectation values, we can express $t_{ij,\alpha}, \Delta_{ij,\alpha}$ in terms of $J_{x,y,z}$, as shown in Eq. \[B7\] At the saddle point of interest, the relevant parameters are:

$$
t_{\uparrow}(q) = -\frac{i}{16} \left(e^{i\vec{q}\cdot\hat{\imath}_1} J_x + e^{i\vec{q}\cdot\hat{\imath}_2} J_y \right)
$$

$$
\Delta_{\uparrow}(q) = -\frac{i}{16} \left(e^{i\vec{q}\cdot\hat{\imath}_2} J_y - e^{i\vec{q}\cdot\hat{\imath}_1} J_x \right)
$$

$$
t_{\downarrow}(q) = -\frac{i}{16} \left(e^{i\vec{q}\cdot\hat{\imath}_1} J_x + e^{i\vec{q}\cdot\hat{\imath}_2} J_y + 2J_z \right)
$$

$$
\Delta_{\downarrow}(q) = \frac{i}{16} \left(e^{i\vec{q}\cdot\hat{\imath}_1} J_x + e^{i\vec{q}\cdot\hat{\imath}_2} J_y \right)
$$

\[7\]

where $\hat{\imath}_{1,2} = \sqrt{\frac{\pi}{2}} \hat{y} \pm \frac{i}{2} \hat{x}$ are the lattice vectors.

The band energies and eigenfunctions of H_{MF} reveal the correspondence between this picture and the Majorana fermion decoupling of Ref. \[1\]. The mean-field spectrum consists of 3 flat bands, with energies:

$$
\epsilon_{\uparrow x} = \pm \frac{J_x}{8}, \quad \epsilon_{\uparrow y} = \pm \frac{J_y}{8}, \quad \epsilon_{\downarrow z} = \pm \frac{J_z}{8}
$$

and one dispersing band, of energy

$$
\epsilon_{\downarrow}(q) = \pm \frac{1}{8} \left| J_x e^{i\vec{q}\cdot\hat{\imath}_1} + J_y e^{i\vec{q}\cdot\hat{\imath}_2} + J_z \right|.
$$

\[8\]

(Since we have included an explicit factor of $1/2$ in our definition of the spin operators \hat{S}_i, our $J_{x,y,z}$ are 4 times larger than Kitaev’s. There is an additional explicit factor of 4 in his definition of the spectrum in Eqs. 31 and 32 in Ref. \[1\]. This accounts for the factor 16 between our spectrums.) The corresponding eigenvectors are naturally expressed in terms of the Majorana fermions

$$
b_{q_i}^\uparrow = f_{q_i\uparrow}^f + f_{-q_i\uparrow}^f, \quad b_{q_i}^\downarrow = i \left(f_{q_i\uparrow}^f - f_{-q_i\uparrow}^f \right)
$$

$$
b_{q_i}^\downarrow = f_{q_i\downarrow}^f + f_{-q_i\downarrow}^f, \quad c_{q_i} = i \left(f_{q_i\downarrow}^f - f_{-q_i\downarrow}^f \right).
$$

\[10\]

We have used the same labels as Ref. \[1\] for these operators.

However, this is not a unique mapping. For instance, we could, instead, take $c = -(f_1^f + f_3^f)$, $b^x = i(f_3^f - f_4^f)$, $b^y = f_1^f + f_4^f$, $b^z = i(f_4^f - f_1^f)$. Furthermore, the mean-field Hamiltonian has a different expression in terms of these operators than in the mean-field theory of Ref. \[1\]. For example, the bilinears $b_{q_1}^b b_{q_2}^b$ do not commute with the mean-field Hamiltonian. The reason for this is that the spin operators are expressed in terms of the f, f^\dagger’s according to Eq. \[2\] and then the f, f^\dagger’s are written in terms of c, b^x, b^y, b^z, according to Eq. \[10\]; then we will not obtain the same representation as in Ref. \[1\]. Only after the constraints are imposed do the operators in Eq. \[10\] become equivalent to Kitaev’s. This is explained in more detail in Appendix A.

The eigenvectors corresponding to the eigenvalues \[8\] and \[9\] are given by:

$$
\alpha_{x,\pm}(q) = \frac{1}{2} \left(e^{i\vec{q}\cdot\hat{\imath}_1} b_{q,1}^x \pm e^{i\vec{q}\cdot\hat{\imath}_2} b_{q,2}^x \right)
$$

$$
\alpha_{y,\pm}(q) = \frac{1}{2} \left(e^{i\vec{q}\cdot\hat{\imath}_1} b_{q,1}^y \pm e^{i\vec{q}\cdot\hat{\imath}_2} b_{q,2}^y \right)
$$

$$
\alpha_{z,\pm}(q) = \frac{1}{2} \left(e^{i\vec{q}\cdot\hat{\imath}_1} b_{q,1}^z \pm e^{i\vec{q}\cdot\hat{\imath}_2} b_{q,2}^z \right)
$$

$$
\alpha_{0,\pm}(q) = \frac{1}{2} \left(e^{i\vec{q}\cdot\hat{\imath}_1} c_{q,1} \pm e^{i\vec{q}\cdot\hat{\imath}_2} c_{q,2} \right)
$$

\[11\]

where $\theta_q = Arg \left(J_x e^{i\vec{q}\cdot\hat{\imath}_1} + J_y e^{i\vec{q}\cdot\hat{\imath}_2} + J_z \right)$, and in all cases $+$ corresponds to the negative-energy solution. The $b_{q,\alpha}$ therefore lie in the 3 flat bands, and are localized on x, y, z links respectively, and c is the dispersing Majorana mode identified by Ref. \[1\].

Hence the saddle point \[7\] reproduces exactly the description of Ref. \[1\] with the precise mapping between the fermions $f_{q,\sigma,i}$ and Kitaev’s Majorana fermions given by Eq. \[10\]. The only difference is that Ref. \[1\] does not include the energy of the flat bands, so that b^x, b^y, b^z enter only in determining the band structure of the remaining Majorana mode c. The fermionic mean-field energy we obtain per unit cell at half-filling

$$
-\frac{1}{8} \left(J_x + J_y + J_z \right) - \frac{2}{n_{\text{sites}}} \sum_q \epsilon_q
$$

\[12\]

However, the first term is cancelled by the zero-point energy arising from terms of the form $\frac{\epsilon_q}{|J_{x,y,z}|} |\psi_q|^2$ in the Hubbard-Stratonovich Hamiltonian, so we are left with precisely the same energy as in Kitaev’s solution.

Superficially, we have obtained an 8-band mean-field theory from a model of spinful fermions on a lattice with a 2-site unit cell. Readers might thus justifiably be concerned that we have in fact obtained double the degrees of freedom that we would have expected. However, we have combined $f_{q\sigma\sigma}$ and $f_{q\sigma\bar{\sigma}}$ into the same spinor; consequently, we should restrict q to half the Brillouin zone to avoid double-counting.

\[\text{B. Slave Fermion Band Structure}\]

To understand the physics of this model, it is useful to focus on the band structure of the down-spin fermions. It suffices to consider the case $J_x = J_y = J$:

$$
\epsilon_{\downarrow}(q) = \pm \frac{J}{8} \left\{ \left(\frac{J}{J} + 2 \frac{q_x}{2} \cos \sqrt{3} q_y \right)^2 + 4 \left(\frac{q_x}{2} \sin \sqrt{3} q_y \right)^2 \right\}^{1/2}.
$$

\[13\]

This describes a pair of bands which cross at either 0 or 2 distinct points in the Brillouin zone. Following Ref. \[1\] we will call the former case, which occurs for $|J_z| > 2|J|$, the A phase. In the A phase, the spectrum is fully gapped. When $|J_z| < 2|J|$, there are two Majorana modes in the spectrum or, equivalently, a single Dirac cone. This is the B phase. Our objective here is to understand how this band structure arises in the slave fermion superconductor, and use this analogy to understand the transitions between these phases.
We begin with a more scrupulous analysis of the nature of the superconducting state. Since the character of the phase is determined by the dispersing fermion band, we will focus on the mean-field Hamiltonian for the down spins. If we combine the down-spin fermions on the two sublattices into the following spinor,

$$\Psi_q = \begin{pmatrix} f_{q1+} \\ f_{q2+} \end{pmatrix},$$ \hspace{1cm} (14)

then the Hamiltonian has the general form:

$$H_{\text{down}} = \Psi_q^\dagger \begin{pmatrix} \epsilon_q^{(x)} \mu_x + \epsilon_q^{(y)} \mu_y \\ \Delta_q^\dagger \mu_y + \Delta_q^\dagger \mu_x \end{pmatrix} \Psi_q + \frac{J}{8} \left(2 - \frac{J}{J_z} \right) \Psi_q \mu_y \Psi_q + h.c.$$

where we have taken $J_x = J_y = J$, and

$$\epsilon_q^{(x)} = \frac{J}{8} \cos \frac{q_y}{2} \sin \frac{\sqrt{3}q_y}{2},$$

$$\epsilon_q^{(y)} = \frac{J}{16} \left(1 + 2 \cos \frac{q_x}{2} \cos \frac{\sqrt{3}q_y}{2} \right)$$ \hspace{1cm} (15)

represent the kinetic energy for fermions hopping on the honeycomb lattice. The second line is a superconducting pairing term along the x- and y-links. Both

$$\Delta_q^{(s)} = \frac{J}{8} \cos \frac{\sqrt{3}q_y}{2} \cos \frac{q_x}{2},$$

$$\Delta_q^{(t)} = -\frac{J}{8} \sin \frac{\sqrt{3}q_y}{2} \cos \frac{q_x}{2}$$ \hspace{1cm} (17)

are non-vanishing in the mean-field state. The superscripts (s) and (t) refer to the fact that these are pseudospin-singlet and pseudospin-triplet superconducting order parameters.

If we linearize about the nodes (we work at the isotropic point, $J = J_z$, for simplicity), then the Hamiltonian for down-spins takes the form:

$$H_{\text{down}} = \Psi_p^\dagger \begin{pmatrix} -\frac{J\sqrt{3}}{32} p_x \mu_x + \frac{J\sqrt{3}}{32} p_x \mu_y - \frac{J}{16} \mu_y \\ -\frac{J}{16} \Psi_p \mu_y (\Psi_p^\dagger)^T + h.c. \\ + \frac{J\sqrt{3}}{32} \Psi_p \left[p_y \mu_x - p_x \mu_y \right] (\Psi_p^\dagger)^T + h.c. \end{pmatrix} \Psi_p$$

Here, \vec{p} is the distance from the node $(4\pi/3,0)$. This Hamiltonian has four eigenvalues, the two non-dispersing ones $\pm J_z/8$, and the two dispersing ones in Eq. (13).

It is helpful to isolate the dispersing band (unlike the Hamiltonian (15), which contains both the dispersing and non-dispersing down-spin bands). To this end, we form the Dirac fermion

$$\eta_q = e^{i\pi/4} \left(\epsilon_q^\downarrow \eta_q^x + \epsilon_q^\uparrow \eta_q^z \right)$$ \hspace{1cm} (19)

The mean-field Hamiltonian for η_q is (up to a constant):

$$\tilde{H} = \frac{1}{2} \sum_q \left(\epsilon_q^\downarrow \eta_q^x \eta_q^x + \Delta_q^\dagger \eta_q^z + h.c. \right)$$ \hspace{1cm} (20)

where

$$\epsilon_q^\downarrow = \frac{1}{8} \left(J_z + 2J \cos \frac{q_x}{2} \cos \frac{\sqrt{3}}{2} q_y \right)$$

$$\Delta_q^\dagger = \frac{1}{4} J \cos \frac{q_x}{2} \sin \frac{\sqrt{3}}{2} q_y$$ \hspace{1cm} (21)

To understand this Hamiltonian better, it is useful to momentarily imagine that $\Delta_q = 0$ and focus on ϵ_q. The Hamiltonian now describes spinless fermions on the honeycomb lattice with dispersion ϵ_q. First consider $J_z > 2J$. We see that there is no Fermi surface: ϵ_q is never equal to zero. Consider the minimum energy excitation, which occurs at $\tilde{q} = (0, 2\pi/\sqrt{3})$ and has energy $J_z - 2J$. Near the minimum the band is approximately quadratic. There are no excitations near zero energy because the effective ‘Fermi energy’ lies below the bottom of the band. Superconductivity does not change this picture very much, other than to break U(1) symmetry (which is very important when we go beyond mean-field). When superconductivity is turned back on, there are no nodes or nodal excitations because there is no Fermi surface.

For $J_z < 2J$, there is Fermi surface which surrounds the point $(0, 2\pi/\sqrt{3})$. Strictly speaking, for the usual Brillouin zone this point sits on its boundary, so half the Fermi surface encircles $(0, 2\pi/\sqrt{3})$ while the other half encircles the equivalent point $(0, -2\pi/\sqrt{3})$ which differs by a reciprocal lattice vector. Of course, we could take a different unit cell for the reciprocal lattice which only includes one of these two points; then the Fermi surface will surround this point. We now restore the superconducting gap Δ_q. This opens a gap on the Fermi surface, except at the points on the Fermi surface which intersect the nodal line $q_y = \frac{2\pi}{\sqrt{3}}$. (The nodal line $q_y = 0$ does not intersect the Fermi surface, except for the point $(4\pi/3,0)$, which is equivalent to $(2\pi/3,2\pi/\sqrt{3})$ under translation by a reciprocal lattice vector.) For $2 - J_z/J_z < 1$ small, the Fermi surface is approximately circular. Let us expand momenta about $(0, 2\pi/\sqrt{3})$, so that $(q_x,q_y) \approx (0, 2\pi/\sqrt{3}) + (2p_x, 2p_y/\sqrt{3})$. Then $\epsilon_p \approx J(p_x^2 + p_y^2) - \mu$, where the ‘Fermi energy’ μ is given by $\mu = 2J - J_z$, and $\Delta_p = p_y$. Thus, the Hamiltonian in the B phase looks like that of a p_y superconductor, which has nodes at $p_y = 0$. As J_z is decreased and the system moves towards the isotropic point, the nodes move towards the corners of the Brillouin zone, eventually reaching the graphene spectrum at the isotropic point.

III. MEAN-FIELD PHASE DIAGRAM IN THE ABSENCE OF TIME-REVERSAL SYMMETRY-BREAKING PERTURBATIONS

We will now apply the mean-field description outlined in the previous section to understanding the phase diagram of [1].
in terms of its fermionic band structure and superconducting gap. As we shall see, the principle advantage of the spinful mean-field decoupling is that it allows us to better understand the system’s behavior away from the exactly solvable point – both in terms of proximate phases, and the fate of physical quantities such as the spin-spin correlation functions as we perturb the Hamiltonian \(H \). At the end of this section we also describe at mean-field level the nature of the phase transition separating the gapped A phase and gapless B phase.

A. The A Phase

We begin by studying the A phase, for which \(J_z > 2J \) and the band structure \(\text{Eqs. (13)} \) is fully gapped. In this phase, superconductivity, which couples fermions along the \(x\)- and \(y\)-links, competes with dimerization along the \(z\)-links, as is evident from the 2-band Hamiltonian \(\text{Eqs. (15)} \). In the A phase the dimerization term dominates, leading to a fully gapped band structure. In the extreme limit \(J = 0 \), dimerization leads to a gap, even in the absence of superconductivity. Indeed, many fruitful explorations of the A phase treat it as an effective theory of such interacting dimers \(\text{Eqs. (11)}\). \(\text{Eqs. (13)} \).

As seen at the end of the previous section, we may view the A phase as a spin-polarized \(p\)-wave superconductor with chemical potential which lies below the conduction band. One amusing consequence of this is that the topological order of this phase is, as explained in Ref. \(\text{Eqs. (15)} \) that of a \(Z_2 \) gauge theory. Its topological nature stems from the fact that, in the condensed phase, the only remnant of the interactions between gauge fields and matter is a ‘statistical’ interaction due to the Berry’s phase of \(\pi \) accrued by a charge if it encircles a vortex of flux \(\frac{\nu}{2e} \). This provides an alternative perspective on the well-documented fact \(\text{Eqs. (16)} \) that the A phase is smoothly connected to the so-called Toric code \(\text{Eqs. (18)} \) – a model of Ising spins which realizes a topological \(Z_2 \) gauge theory with matter. In particular, this highlights that the topological order of the A phase is not restricted to the set of exactly solvable Hamiltonians described by \(\text{Eqs. (11)} \), but is that of a garden-variety \(s\)-wave superconductor.

If we only cared about the single-particle gap, then we could close the superconducting gap entirely without closing the total fermion gap. However, the gauge symmetry of the problem would not be broken down to \(Z_2 \) in this case, so there would be gapless gauge field fluctuations about the mean-field solution. (In the dimerized limit \(J_x = J_y = 0 \), though the \(U(1) \) gauge symmetry is unbroken these gapless modes are absent since the gauge field cannot propagate).

Because the A phase is fully gapped, it is stable to weak perturbations away from the soluble point discussed here. For instance, we could add a weak magnetic field and/ or Heisenberg interaction without changing the qualitative features of this phase. Since the system is fully-gapped, perturbation theory can be used, and the effect will be small, so long as the perturbation is weak. This is in contrast to the B phase which, as we will see, is unstable in the face of appropriately chosen perturbations.

B. The Nodal B Phase

We now briefly describe the B phase, for which \(J_z < 2J \). Now \(\text{Eqs. (20)} \) is the band structure of a \(p\)-wave superconductor whose nodes intersect the Fermi surface at two distinct points in the Brillouin zone.

To simplify the algebra, we will consider the symmetric point \(J_x = J_y = J_z \equiv J \). The energies of the dispersing Majorana bands are then exactly those of free fermions in a honeycomb lattice. The spectrum is gapless at the points \(\vec{q} = (\pm \frac{2\pi}{3}, \frac{2\pi}{3\sqrt{3}}) \) (and at the equivalent points \((\pm \frac{2\pi}{3}, 0), (\frac{2\pi}{3}, -\frac{2\pi}{3\sqrt{3}}) \), which differ from the first two by reciprocal lattice vectors). These nodes account for two distinct cones in the energy spectrum, as in graphene. However, unlike in graphene, the band structure \(\text{Eqs. (13)} \) is that of a pair of bands of dispersing Majorana fermions. In the vicinity of these nodal points, it is useful to rewrite the Hamiltonian \(\text{Eqs. (20)} \) in terms of the spinor

\[
\chi_q = \begin{pmatrix} \eta_q \\ \eta_{-q}^\dagger \end{pmatrix},
\]

where \(\vec{q} \) is restricted to lie in half of the Brillouin zone to avoid double-counting, e.g. over \(q_x > 0 \). In terms of this spinor, the Hamiltonian can be written in the form:

\[
H = \frac{1}{2} \sum_{q_x > 0, q_y} \chi_q^\dagger \left[\Delta_q \tau_x + \epsilon_q \tau_z \right] \chi_q \tag{24}
\]

In the vicinity of the nodes (at the isotropic point \(J_z = J \)), we can expand \(\vec{q} = (\frac{2\pi}{3x}, 0) + (p_x, p_y) \) and write

\[
\tilde{\chi}_p = \begin{pmatrix} \eta_{\frac{2\pi}{3}(x)}^\dagger & 0 \end{pmatrix} \begin{pmatrix} \eta_{\frac{2\pi}{3}(x)} & -\tilde{p} \end{pmatrix},
\]

where \(\tilde{p} \) now ranges unrestricted over small \(\tilde{p} \) (e.g. over \(|\tilde{p}| < \Lambda \), for some cutoff \(\Lambda \)), i.e. near the nodes. Expanding \(\epsilon = \frac{\sqrt{3}J}{16} p_y, \Delta = \frac{\sqrt{3}J}{16} p_x \), we can write:

\[
H = \sum_{\tilde{p}} \tilde{\chi}_p^\dagger \left[\frac{\sqrt{3}J}{32} p_y \tau_x + \frac{\sqrt{3}J}{32} p_x \tau_z \right] \tilde{\chi}_p
\]

\[
= v \int d^2 x \tilde{\chi}_p^\dagger \left[i\partial_y \tau_y + i\partial_x \tau_z \right] \tilde{\chi}_p \tag{26}
\]

with \(v = \frac{\sqrt{3}J}{32} \). Thus, these two Majorana fermions combine to form a single Dirac fermion. This Dirac cone is formed by combining the two nodes of a \(p_y \) superconductor. This single Dirac cone does not violate the usual fermion doubling arguments since the gauge symmetry is broken. We will see presently, however, that it is central to the non-Abelian statistics of the gapped B* phase.

We now consider some of the correlation functions of the B phase. Since there are gapless excitations, the energy-density will certainly have power-law correlations. How about the spin-spin correlation function? At the soluble point, this is short-ranged. Consider, for instance, the \(S^2 - S^2 \) correlation.
In terms of the slave fermions $S_i^\alpha = (f_i^\dagger \alpha f_i - f_i^\dagger \alpha f_i^\dagger)/2$. Since up and down-spins decouple,
\[
\langle S_i^x S_j^x \rangle = \frac{1}{4} \left(f_i^\dagger \alpha f_i^\dagger \beta f_i - f_i^\dagger \alpha f_i^\dagger \gamma f_i^\dagger \right) + \frac{1}{4} \left(f_i^\dagger \alpha f_i^\dagger \beta f_j + f_i^\dagger \alpha f_i^\dagger \gamma f_j^\dagger \right)
\]
(27)
The first term vanishes since it only involves b^\dagger and b, and these create/annihilate fermions in the up-spin flat bands. Here, b^\dagger and b are defined in terms of f_i^\dagger, f_i according to Eq. [10] (It is important to remember that, although they play the same role in our analysis as the operators with the same labels in Ref. [1], they are not identical, in spite of the obvious similarity.) Thus, we are left with
\[
\langle S_i^x S_j^x \rangle = \frac{1}{4} \left(f_i^\dagger \alpha f_i^\dagger f_j + f_i^\dagger \alpha f_j^\dagger f_i + f_i^\dagger \beta f_i^\dagger f_j + f_i^\dagger \beta f_j^\dagger f_i \right) / 4 = \langle (b_i^\dagger c_i + b^\dagger c_j) - (b_i^\dagger c_j + b^\dagger c_i) \rangle / 16 = 0
\]
(28)
At the mean-field level, this is a free fermion problem, so we can evaluate these correlation functions. The Hamiltonian does not mix b^\dagger with c, so $\langle b_i^\dagger c_i \rangle = 0$ and $\langle b_i^\dagger c_j b_j^\dagger c_j \rangle = \langle b_i^\dagger b_j^\dagger \rangle \langle c_i c_j \rangle$. Since b^\dagger creates a fermion in a flat, non-dispersing band, $\langle b_i^\dagger b_j^\dagger \rangle = 0$ unless i and j are the same or neighboring sites.

One of the appealing features of the formalism we use is that correlation functions in the presence of small perturbations to the Hamiltonian (1) can be calculated with relative ease. For instance, suppose we consider a weak magnetic field in the z-direction, as in Ref. [7]. This adds a perturbation to the Hamiltonian:
\[
H_{\text{pert}} = \frac{1}{2} h_z \sum_i \left(f_i^\dagger \alpha f_i^\dagger - f_i^\dagger \alpha f_i^\dagger \right)
\]
(29)
For small h_z, this perturbation does not spoil the basic structure of the spectrum: there are still three gapped bands and one gapless one. The up-spin gapped band will still be non-dispersing and will be at the same energy, but the corresponding eigenoperators will mix b^\dagger and b (unlike the eigenoperators (11) in the unperturbed Hamiltonian). The down-spin gapped band will now disperse weakly, but will remain gapped. However, the eigenoperators for the down-spin bands will now mix b^\dagger and c. Thus, when we compute the $\langle S_i^x S_j^x \rangle$ correlation function, b^\dagger will have a small amplitude, proportional to h_z for small h_z, to create a dispersing fermion. Thus, this correlation function will have power-law falloff.

To see this more precisely, we add the magnetic-field term to the down-spin Hamiltonian:
\[
H_{\text{down}} = \Psi_p^\dagger \left[\frac{-J \sqrt{3}}{32} p_y \mu_x + \frac{J \sqrt{3}}{32} p_x \mu_y - \frac{J}{16} \mu_y \right] \Psi_p^\dagger
+ \frac{J \sqrt{3}}{32} \Psi_p^\dagger \left[p_y \mu_x - p_x \mu_y \right] (\Psi_p^\dagger)^T + \text{h.c.}
- \frac{J}{16} \Psi_p^\dagger \left[\mu_y (\Psi_p^\dagger)^T + \text{h.c.} - \frac{1}{2} h_z \Psi_p^\dagger \Psi_p \right]
\]
(30)
When we diagonalize this Hamiltonian, we find a new set of eigenoperators $\tilde{\alpha}_{\pm \pm}, \tilde{\alpha}_{\pm 0}$. The eigenoperator $\tilde{\alpha}_{\pm +}$ creates a fermion in a weakly-dispersing gapped band and has short-ranged correlation functions. The eigenoperator $\tilde{\alpha}_{0 +}$ creates a fermion in a gapless band and has power-law correlation functions. For small h_z (and, for simplicity, small momentum k), we can express the fermions $\alpha_{\pm \pm} = (i b_{q,1}^\dagger \pm b_{q,2}^\dagger)/2$, $\alpha_{0 \pm} = (i e^{i \theta} c_{q,1} \pm c_{q,2})/2$, in terms of these new eigenoperators as:
\[
\alpha_{\pm \pm} = \bar{\alpha}_{\pm \pm} \pm \frac{h_z}{2} \bar{\alpha}_{0 \pm}
\]
\[
\alpha_{0 \pm} = \frac{h_z}{2} \bar{\alpha}_{0 \pm} + \bar{\alpha}_{0 \pm}
\]
(31)
Thus, we now have:
\[
\langle b_i^\dagger b_j^\dagger \rangle = -\langle (\alpha_{\pm \pm,i} + \alpha_{\pm \pm,j}) (\alpha_{\pm \pm,j} + \alpha_{\pm \pm,j}) \rangle = -\langle (\alpha_{\pm \pm,i} + \alpha_{\pm \pm,j} + h_z (\alpha_{0 \pm,i} - \alpha_{0 \pm,j})/2) \rangle \times (\alpha_{\pm \pm,i} + \alpha_{\pm \pm,j} + h_z (\alpha_{0 \pm,i} - \alpha_{0 \pm,j})/2) \rangle = \langle (\alpha_{\pm \pm,i} \alpha_{\pm \pm,j}) + (\alpha_{\pm \pm,i} \alpha_{\pm \pm,j}) \rangle + \frac{h_z^2}{4} \langle (\alpha_{0 \pm,0} \alpha_{0 \pm,0}) + (\alpha_{0 \pm,0} \alpha_{0 \pm,0}) \rangle
\]
(32)
Here, we have assumed, for the sake of concreteness and simplicity, that i and j are on the 1 sublattice. From the Hamiltonian (30), we have for large separation $|x - y|$ and to zeroeth order in h_z:
\[
\langle \tilde{\alpha}_{0,+,x} \tilde{\alpha}_{0,+,x} \rangle + \langle \tilde{\alpha}_{0,-,x} \tilde{\alpha}_{0,-,x} \rangle = \int \frac{d\omega}{2\pi} \frac{2\omega}{(2\pi)^2} \sqrt{\frac{J \sqrt{3}}{16}} (k_y + ik_x/2) e^{i k_y (x - y)}
\]
(33)
Therefore, at long distances,
\[
\langle \tilde{\alpha}_{0,+,x} \tilde{\alpha}_{0,+,x} \rangle \sim \frac{1}{|x - y|^2}
\]
(34)
Combined with the $\langle c_i c_j \rangle$, which has the same-power-law, this gives an $\langle S_i^x S_j^x \rangle$ correlation function which falls off as $1/r^4$ in the presence of a small magnetic field, in agreement with the results of Ref. [17].

In the face of perturbations that are not quadratic in the fermions, such explicit calculations are more difficult in general. However, as is frequently the case in spin-liquid model[2], the structure of the Fermi surface (here a pair of Dirac cones) is protected by symmetries of the mean-field state. Thus small perturbations which do not break any symmetries of the problem cannot open a gap in the spectrum.

C. Transition between A and B Phases

As we move within the gapless B phase, from the isotropic point $J_x = J_y = J_z$ towards the boundary to the A phase, the two nodal points move together and, at the phase transition point, merge. The nodes then annihilate as the phase boundary is crossed. In this section, we focus on the transition point.
As discussed in Section II, the dispersing spin-down band can be rewritten as a model of spinless fermions with p_y superconducting order, as in Eq. 20. At the boundary between A and B phases, the Fermi surface has shrunk to a point because the effective chemical potential is precisely at the bottom of the band. When the effective chemical potential is at the bottom of the band, the spectrum is quadratic in the absence of superconductivity. Superconductivity with p_y pairing symmetry leaves the spectrum gapless but makes the spectrum linear in one direction. We now examine this in more detail. Expanding about the bottom of the band $(q_x, q_y) \approx (0, 2p_y/\sqrt{3}) + (2p_x, 2p_y/\sqrt{3})$, we can write the Hamiltonian (20) in the form:

$$
\hat{H} = \frac{1}{2} \sum_p \left[\frac{J}{2p^2} \eta_p^{\dagger} \eta_{-p} - \frac{J}{4p_y} (\eta_p^{\dagger} \eta_{-p} - \eta_p \eta_{-p}) \right]
$$

$$
= \frac{1}{2} \sum_{p_x > 0, p_y} \chi_p^T \left[-\frac{J}{4p_y} I - \frac{J}{8p^2} i \tau_y \right] \chi_p
$$

(35)

where

$$
\chi_p = \left(\begin{array}{c} \eta_p \\ \eta_{-p} \end{array} \right), \quad \tau = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)
$$

If we go to a Majorana basis,

$$
\varphi_p = \frac{1}{\sqrt{2}} \left(\eta_p + \eta_{-p} \right)
$$

(36)

this can be re-written:

$$
H = \frac{1}{2} \sum_{p_x > 0, p_y} \varphi_p^T \left[-\frac{J}{4p_y} \tau_z - \frac{J}{8p^2} i \tau_y \right] \varphi_p
$$

$$
= \frac{1}{2} \int d^2 x \varphi^T \left[-\frac{J}{4} i \partial_y \tau_z - \frac{J}{8} \partial^2 \tau_x \right] \varphi
$$

(37)

Therefore, the low-energy theory can be called a single gapless Majorana fermion, albeit an anisotropic and non-relativistic one.

IV. BEYOND MEAN FIELD THEORY

Thus far, we have found a consistent mean-field solution of (1) using the fermionization (2) which reproduces exactly the Majorana fermion band structure and phase diagram of the exact solution proposed by Ref. 1. We next ask what can be said about its fate upon including fluctuations of the various bosonic fields. The answer is not obvious since, unlike the decoupling used by Ref. 1, the product $b^\dagger \sigma b^\dagger \sigma + 1$ on each link does not commute with the full unprojected fermion Hamiltonian (although it does commute with the quadratic Hamiltonian $H_{M,F}$). Here we first establish that these fluctuations do not alter the results of the previous sections. Second, we demonstrate that at long wavelengths these bosonic modes lead to precisely the \mathbb{Z}_2 gauge theory of Ref. 1. Together, these facts cement the equivalence between the fermionization (2) and Kitaev’s exact solution.

The underlying reason for this stability is that the unprojected mean-field wave functions we obtain can be mapped via Eq. (10) onto unprojected wave-functions in the Majorana fermionization of Ref. 1. Enforcing the $SU(2)$ gauge constraints to reduce the model back to the physical Hilbert space amounts to two things: first, it eliminates the distinction between different possible mappings between f, f^\dagger and b, b^\dagger. Second, it imposes a condition which is equivalent to the \mathbb{Z}_2 constraint required for the fermionization of Ref. 1. Thus when expressed in the Majorana basis given by (10), the effect of this projection will be to apply the projector relevant to Kitaev’s Majorana fermionization. In this way, both fermionizations lead to the same wave functions after projection.

A. Symmetries and robustness of the mean-field solution

First, we will show that for the solvable Hamiltonian (1), the model’s unusually large number of symmetries protect the exact fermionic band structure. The mean-field solution is thus exact, in that it correctly describes all correlators of the physical spin degrees of freedom, in spite of the apparent violence done to the wave-function by Gutzwiller projection.

We begin by listing the symmetries which are relevant to this discussion. The Hamiltonian (1) has the following discrete symmetries

$$
\hat{C} : S^{\pm, y, z}_i \rightarrow s_{x, y, z} S^{\pm, y, z}_i
$$

(39)

where the sign $s_{x, y, z} = \pm 1$ can be chosen independently for x, y, z spin operators. In the fermionic description, this leads to two discrete symmetries preserved by the mean-field Hamiltonian:

$$
\hat{C} : f_{q, \sigma i} \rightarrow f_{-q, \sigma i}, \quad \hat{S} : f_{q, 1(0)\sigma} \rightarrow f_{-q, 1(0)\sigma}
$$

(40)

Here, the ‘charge conjugation’ symmetry \hat{C} is unitary (it is simply $\psi_{q, \sigma i a} \rightarrow (\tau^z)_{ab} \psi_{q, \sigma b a}$) while the ‘sublattice’ symmetry \hat{S} is an anti-unitary symmetry. Thus, in the mean-field Hamiltonian, \hat{C} takes $\Delta_{ij}, t_{ij} \rightarrow \Delta_{ij}, t_{ij}$ while \hat{S} takes $\Delta_{ij}, t_{ij} \rightarrow \Delta^*_{ij}, t^*_{ij}$. Quadratic Hamiltonians invariant under \hat{C} have eigenstates which are diagonal in the Majorana basis (10). These symmetries impose an important restriction on t_{ij} and Δ_{ij}. \hat{C} is preserved as long as t_{ij}, Δ_{ij} are purely imaginary. \hat{S} is preserved so long as there are no terms directly coupling fermions on the same sublattice.

Time-reversal symmetry is also respected by the model and its mean-field solution:

$$
\hat{T} : f_{q, \uparrow} \rightarrow f_{-q, \downarrow}, \quad f_{q, \downarrow} \rightarrow -f_{-q, \uparrow}
$$

(41)

Single-spin terms (i.e., a magnetic field) and three-spin interactions break this symmetry. However, not all \hat{T}-breaking perturbations will open a gap in the B phase: only those perturbations which break \hat{S} will open a gap in the spectrum, as we will see below. For example, the magnetic field discussed
in Sect. III B breaks \hat{T} and \hat{C}, but not \hat{S}. As shown explicitly above, this does not gap the B phase and indeed results in power-law spin-spin correlations.

The relation between these symmetries is:

$$\hat{T} = S\hat{G}_x\hat{C}$$

(42)

where the symmetry \hat{G}_x is given by:

$$\hat{G}_x: f_{i\uparrow} \rightarrow f_{i\downarrow}^\dagger$$

$$t_{ij,\uparrow}, \Delta_{ij,\uparrow} \rightarrow t_{ij,\downarrow}, \Delta_{ij,\downarrow}$$

$$t_{ij,\downarrow}, \Delta_{ij,\downarrow} \rightarrow t_{ij,\uparrow}, \Delta_{ij,\uparrow}$$

(43)

which are a discrete subset of the off-diagonal $SU(2)$ rotations interchanging up and down spins. In the mean-field solution these are no longer local symmetries. However, they remain global symmetries of the theory, whose effect is to rotate between different possible mappings between the four Majorana fermions (c, b^z, b^{+y}, z), and the four self-adjoint combinations $f_{i\alpha}^\dagger + f_{i\alpha}$, $i (f_{i\alpha}^\dagger - f_{i\alpha})$ of the spinful fermions. Thus \hat{T} is a projective symmetry – a symmetry that maps the system to a different but gauge equivalent saddle point. Such projective symmetries are important to classifying the phases of spin-liquid systems[4].

![Diagram](image1)

FIG. 1: [Color Online] The product of spin operators conserved separately on each plaquette by the Kitaev Hamiltonian [1]. The Hamiltonian [1] distinguishes between three types of links on the honeycomb lattice, which we call x-, y-, and z- links (color-coded red, green, and blue respectively here). On x-links the spin-spin interaction term is $S_{i}^{(x)}S_{j}^{(x)}$, and similarly for y- and z- links. The product of spin operators shown here – a product around a plaquette of the spin variable associated with the ‘external’ edge at each vertex – commutes with the spin Hamiltonian.

Besides these more generic discrete symmetries, Eq. [1] represents a somewhat special point in a more extended space of similar spin Hamiltonians: there is a product of spin operators on each plaquette which commutes with H. This is:

$$\mathcal{P} = \prod_{i=1}^{6} S^{(i)}(i) = \pm \frac{1}{2^6}$$

(44)

where $\epsilon(i) = z$ for a vertex which sits between x and y links on the plaquette, y for a vertex which sits between x and z links on a plaquette, and x for a vertex which sits between y and z links on a plaquette (see Fig. 1). In the ground state, the value of this operator is positive on each plaquette.

In terms of the fermionic operators, \mathcal{P} can be written as

$$\mathcal{P}_f = P_0 \left(\prod_{i=1}^{6} b_{i}^{\alpha} b_{i+1}^{\alpha} \right) P_0$$

(45)

where P_0 denotes Gutzwiller projection onto singly occupied states, $\alpha = x, y, z$ on x, y, z-links respectively, and b^α_i are the Majorana fermions defined in Eq. (10). (Since the quantity in parentheses is not $SU(2)$ gauge invariant, the projection operator is necessary in this case). In the mean-field state, each species of Majorana fermion is localized on the appropriate links, with $\langle b^\alpha_i b^{\alpha_{i+1}} \rangle_{MF} = 1/2$. Terms annihilated by P_0 do not contribute, since $\langle f_{i\uparrow}^\dagger f_{i\downarrow} \rangle_{MF} = \langle f_{i\uparrow} f_{i\downarrow} \rangle_{MF} = 0$. Hence we find that the mean-field value

$$\mathcal{P}_f = \langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle = \frac{1}{2^6}$$

(46)

is precisely that of the exact solution.

We now show that, combined with the discrete symmetries mentioned above, conservation of \mathcal{P}_f prevents fluctuations about mean-field from altering the fermionic band structure in any way. We will first establish that the symmetries forbid any terms other than those in Eq. (46) from contributing to \mathcal{P}_f. If there can be no further contributions to \mathcal{P}_f induced by fluctuations, however, then also no spectral weight can be transferred from the equal-time correlation functions of the b^α_i; as otherwise we would not arrive at the correct value for \mathcal{P}_f. This means that all further-neighbor correlators must vanish exactly.

By Wick’s theorem, we need only consider the possibility of other pairings of the fermionic operators which give a non-zero contribution to \mathcal{P}_f. The only possibility allowed by \hat{C} and \hat{S} is to give a non-vanishing expectation value to terms of the form $\langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle, \langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle, etc.$ Thus we consider:

$$\langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle \langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle = 1/2^6$$

(47)

However, the interacting Hamiltonian for the up spins decouples exactly into separate Hamiltonians for each chain of $x - y$ links in the lattice. In particular, the full Hamiltonian contains no interaction term coupling b_{i}^{α} and b_{i}^{α}, as they lie on different chains. Hence interactions cannot shift the $\langle b_{i}^{\alpha} b_{i+1}^{\alpha} \rangle$ from its mean-field value of 0. As (47) is the only extra contribution to \mathcal{P}_f not explicitly forbidden by symmetry, we conclude that Eq. (46) must remain valid in the full solution, and that consequently no fermion bilinears can be shifted from their mean-field values.

B. Gauge theory of fluctuations about mean field

Thus far, we have shown how to reproduce Kitaev’s mean-field portrait of the exact spin-liquid ground state using the
fermionization (2), and argued that including fluctuations about mean-field will not change the fermionic band structure. Hence we have obtained an alternative mean-field description of the ground state of (1) which reproduces faithfully the spin correlators of the exact ground state.

Though the mean-field solutions describe identical physics, however, the fermionization (2) differs quite dramatically from that of Ref. 11 in the nature of the bosonic variables, and consequently, the theory of fluctuations about mean-field. After Hubbard-Stratonovich transforming the 4-fermion interactions, we obtain bosonic fields which condense to give both the hopping and superconducting order parameters, as well as the SU(2) gauge fields associated with the constraint (3). One might therefore wonder why these do not lead to significantly different physical theories after fluctuations about mean-field have been accounted for. Here we address this question, allowing us to posit that (6) describes a gapped spin-liquid phase which exists even away from the exactly solvable limit of the Hamiltonian (1).

The bosonic fluctuations about mean-field can be separated into the following degrees of freedom. There are three scalar fields describing fluctuations in the amplitudes of the various kinetic and superconducting terms. All of these are massive, and as we shall see two of them can be interpreted as Higgs fields for the broken SU(2) symmetry. In addition, there are three independent fields associated with phase fluctuations of the various link variables. These can be identified as an SU(2) gauge field (describing phase fluctuations of the spin-symmetric hopping term) and two ‘Goldstone bosons’ associated with the phases of the order parameters breaking the SU(2) symmetry. We will briefly discuss each type in turn; a more detailed analysis is presented in Appendix B.

We begin with the scalar fields describing fluctuations in the amplitude of the various bosonic order parameters that fix the mean-field fermionic band structure. The general form of the Hubbard-Stratonovich action ensures that all of the scalar fields are massive, with energy gaps of order \(\frac{1}{\Delta} \). Because of the massive gap, fluctuations in the amplitudes of the mean-field parameters are not generally expected to have an important effect on the fermions. The notable exception to this is in cases when they destabilize the spin liquid saddle point in favor of a ‘dimerized’ state with spins hopping predominantly on a subset of links in the lattice. As we discuss in Sect. III.A, an analogue of the dimerized phase does occur for anisotropic \(J_{x,y,z} \); in general we may therefore conjecture that away from the solvable point this phase boundary may be shifted, but that fluctuations of the mean-field hopping and superconducting amplitudes will not qualitatively alter the phase diagram.

Next, we consider the impact of phase fluctuations described by the SU(2) gauge theory. Naively, the gauge theory is strongly-fluctuating, since there is no small parameter in the problem. However, the ground state of (1) is a Higgs phase, so that the gauge field is massive. (Importantly, this explains why the gauge theory is not confined.)

To see that the model (1) is in a Higgs phase, we view the mean-field solution (1) as a condensate of two independent order parameters in the adjoint representation of SU(2). As explained in detail in Appendix B 3, the combination of superconducting and spin-antisymmetric hopping terms break the SU(2) gauge symmetry. This leaves only the residual \(Z_2 \) gauge symmetry group one normally finds in a superconductor:

\[
f_{i\sigma} \rightarrow -f_{i\sigma}, \quad -f_{i\sigma}^\dagger, \quad t_{ij,\sigma}, \Delta_{ij,\sigma} \rightarrow t_{ij,\sigma}, \Delta_{ij,\sigma}
\]

comprising the residual \(Z_2 \) symmetry of the \(U(1) \) subgroup broken by superconductivity. As a result of the Anderson-Higgs phenomenon, the dynamical fluctuations in the gauge field are suppressed at long wavelengths, so that gauge field fluctuations are not expected to substantially alter the fermionic band structure. (Here the gauge field results from the constraints of the purely 2 dimensional system, and consequently is fully gapped unlike the electromagnetic gauge field in thin-film superconductors.) However, the gauge field makes itself felt in the interesting topological structure of the spin-liquid phase.

An alternative route for a gauge field to acquire a mass is through the generation of a Chern-Simons term. We will return to this possibility when we consider perturbations breaking \(\hat{T} \) in Sect. IV where we shall see that it plays an important role in the topological nature of the theory.

In summary, we can understand the exact ground state of (1) – a phase whose propagating degrees of freedom consist of Majorana fermions coupled to a \(Z_2 \) gauge field – as a rather special incarnation of the \(Z_2 \) spin liquid: a spin-polarized p-wave superconductor. In this description, we arrive at Majorana fermions not by expressing the spins directly in a Majorana basis, but rather by starting with Dirac fermions coupled to an SU(2) gauge field and choosing a mean-field solution which breaks the gauge symmetry. The \(Z_2 \) flux is thus the superconducting vortex, while the \(Z_2 \) charge carried by the Majorana fermions reflects the fact that the superconducting state conserves charge modulo 2.

V. T-BREAKING PERTURBATIONS: THE GAPPED B* PHASE

In the previous section, we showed that one way to open a gap in the B phase – by merging the two nodes – can be understood as a transition between a nodal and nodeless superconductor. This drives the system into the A phase. There is, however, a second way to open a gap: we may add another pairing term to the effective Hamiltonian (15), which will fully gap the spectrum provided that the corresponding gap does not vanish at the Dirac points. Here we focus on this latter gapped phase, and discuss its topological properties.

As noted in Sect. IV.A, this second gapped phase necessarily breaks one of the two discrete symmetries of the mean-field solution – and hence the physical time-reversal symmetry of the spin model – since we must include couplings between sites on the same sublattice. Here we will focus on the case of broken S, as this can be realized by adding a 3-spin interaction which commutes with the Hamiltonian (1).
A. Mean-field theory with \(\hat{T} \)-breaking terms

In terms of the original spin degrees of freedom, the \(\hat{T} \)-breaking term we must add to enter the B\(^*\) phase is:

\[
\frac{J'}{2} \left(\sum_{\vec{r}_{ik}=\hat{x}} S^x_i S^x_j S^y_k + \sum_{\vec{r}_{ik}=\hat{y}} S^x_i S^y_j S^y_k + \sum_{\vec{r}_{ik}=\hat{z}} S^z_i S^y_j S^y_k \right) \tag{49}
\]
(see Figure 2). It is easy to see that this commutes with the plaquette product of spins \(\sigma_1 \sigma_2 \sigma_3 \), and hence preserves the \(Z_2 \) vorticity on each plaquette. Hence it also commutes with the full Hamiltonian– though not individually with the spin bilinear on each edge.

Expressing the spins in terms of Dirac fermions yields a 6-fermion interaction. Though we cannot perform the analogue of an exact Hubbard-Stratonovich transformation for the resulting action, which contains both 4 and 6 fermion terms, at small \(J' \) it is possible to evaluate its effect on the mean-field solution in a controlled way (see Appendix C). We find that consistent with the treatment of Ref. 1 the effect of such a term is to induce second neighbor hopping and superconducting terms, without altering the rest of the band structure (except for an overall rescaling of the bandwidth).

We therefore begin by studying the resulting mean-field Hamiltonian. The 3-spin interaction introduces the following quadratic fermion terms for the down spin band:

\[
H^{(1)}_{MF} = \frac{J'}{8} \left(- \sin q_x + \sin \vec{q} \cdot \hat{\mathbf{l}}_1 - \sin \vec{q} \cdot \hat{\mathbf{l}}_2 \right) \left[-\Psi_q^\dagger \mu_x \Psi_q^\dagger \Psi_q^\dagger (\Psi_{-q}^\dagger)^T + h.c. \right] \tag{50}
\]
where \(\Psi \) was defined in Eq. 14. As shown in Appendix C, the perturbation (49) does not alter the mean-field Hamiltonian of the up spins, which therefore maintain their flat band structure and remain localized on \(x \)- and \(y \)-links. In addition, the new couplings do not disrupt the pair of flat spin down bands. Thus the basic structure of the initial mean-field solution is preserved, and the only effect of the interaction (49) at mean-field is to alter the structure of the dispersing spin-down band.

The new effective mean-field Hamiltonian for the spin-down fermions therefore has the form:

\[
H_{down} = \Psi_q^\dagger \left[\epsilon^{(x)}_q \mu_x + \epsilon^{(y)}_q \mu_y + \epsilon^{(z)}_q \mu_z \right] \Psi_q^\dagger \Psi_q^\dagger (\Psi_{-q}^\dagger)^T + h.c.
\]

\[
+ \Psi_q^\dagger \left(\Delta^{(s)}_q \mu_y + \Delta^{(t)}_q \mu_x \right) (\Psi_{-q}^\dagger)^T + h.c.
\]

\[
+ \frac{J_z}{8} \left(2 - \frac{J_z}{J_z} \right) \Psi_p \mu_y \Psi_q^\dagger \Psi_q \tag{51}
\]

with \(\epsilon^{(s,p)}_q, \Delta^{(s,p)}_q \) given in Eqs (16–17), and

\[
\epsilon_z = \Delta^{(p)}_q = \frac{J'}{8} \left(- \sin q_x + 2 \sin \frac{q_x}{2} \cos \frac{\sqrt{3}q_y}{2} \right) . \tag{52}
\]

In the vicinity of the Dirac cone, for \(J_{x,y,z} \equiv J \), this gives:

\[
H_{down} = - \Psi_q^\dagger \left[\sqrt{\frac{3}{2}} J q_y \mu_x - \sqrt{\frac{3}{2}} J q_x \mu_y + \frac{J}{16} \mu_y \right.
\]

\[
+ \frac{3\sqrt{3}}{64} J' q^2 - \frac{3\sqrt{3}}{16} J' \mu_z \left. \right] \Psi_q^\dagger \Psi_q^\dagger (\Psi_{-q}^\dagger)^T + h.c.
\]

\[
+ \frac{J\sqrt{3}}{32} \Psi_p^\dagger (\Psi_{-q}^\dagger)^T + h.c.
\]

\[
+ \left(\frac{3}{16} \sqrt{3} J' q^2 + \frac{3\sqrt{3} J'}{2} \right) \Psi_p^\dagger (\Psi_{-q}^\dagger)^T + h.c. \tag{53}
\]

which we can view as a mixed s- and chiral p-wave superconductor. This term opens a gap at the Dirac cone, so that the system is now fully gapped. We discuss the consequences in the next subsection.

B. Topological features of the gapped B phase

Thus far, we have established that adding the spin interaction (49) has the effect, at mean-field, of breaking \(\hat{S} \) and opening a gap in the spectrum of the dispersing Majorana modes \((c)\), whilst leaving the band structure of the localized Majorana modes \((b_{x,y,z})\) unchanged. We will now see how this perturbation leads to a topological phase with 0-energy Majorana fermions bound to vortices, exactly as in the spinless \(p+iq \) superconductor of Read and Green.

The simplest way to identify the nature of the B\(^*\) phase is to consider the Hamiltonian (20), where the B phase is a \(p_y \), and...
superconductor. The perturbation modifies the Hamiltonian according to:

$$
\Delta_q \rightarrow \Delta_q - i \frac{J'}{4} \sin \frac{q_x}{2} \left(\cos \frac{\sqrt{3}}{2} q_y - \cos \frac{q_x}{2} \right)
$$

$$
\approx -i \text{sgn}(q_x) \frac{J'}{4} \left(1 + \frac{J'}{27} \right) \sqrt{1 - \left(\frac{J'}{27} \right)^2}
$$

(54)

In the second line, we have approximated Δ_q by its value in the vicinity of the nodes. From this expression, we see that this is an ip_x superconducting gap which opens up a gap at the nodes.

As noted previously, in the nodal B phase, the ‘chemical potential’ $\mu = 2J - J_z$ lies in the band. Thus, when the gap is opened, the system goes into the ‘weak-coupling’ $p + ip$ superconducting phase. As q ranges over the Brillouin zone, the vector $(\text{Re}\Delta_q, \text{Im}\Delta_q, \epsilon_q)/(\epsilon_q^2 + |\Delta_q|^2)^{1/2}$ remains in the northern hemisphere, and thus has winding number zero. Thus, this is the strong-pairing phase of the chiral p-wave superconductor. In other words, including a weak \tilde{S}-perturbation in the A phase leaves the system in the A phase.

Once we have identified the B^* phase with the weak-pairing phase of the chiral p-wave superconductor, we are faced with the following riddle: in its usual incarnation, the superconducting coherence length is assumed to be much larger than the lattice scale, so that vortices are well-modeled by a continuum theory. In particular, the vortex will have a core which exists in the northern hemisphere, and thus has winding number zero. This is the strong-pairing phase of the chiral p-wave superconductor. In other words, including a weak \tilde{S}-perturbation in the A phase leaves the system in the A phase.

Conversely, when the 3-spin interaction is included in the A phase, the chemical potential lies below the band. For sufficiently small J', $(\text{Re}\Delta_q, \text{Im}\Delta_q, \epsilon_q)/(\epsilon_q^2 + |\Delta_q|^2)^{1/2}$ remains in the northern hemisphere, and thus has winding number zero. Thus, this is the strong-pairing phase of the chiral p-wave superconductor. In the A phase, the vortices are well-modeled by a continuum theory. In particular, the vortex will have a core which is the usual topological order as the chiral p-wave superconductor, in which the existence of Ising anyons is due to the fact that these 0-energy Majorana fermions are bound to the vortex cores, we expect a similar phenomenon. In the lattice model at hand, however, a vortex exists on a single plaquette, and there is no vortex core. How, then, do the Majorana fermions become bound to these vortices?

One answer to this question comes from studying the long-wavelength gauge theory. First, we observe that the key effect of the \tilde{T}-breaking 3-spin interaction is that it induces a mass term $m_{\tilde{T}} = -m_{\frac{\pi}{2}} = -\frac{3\sqrt{3}}{4} J'$ at the two nodes in the Brillouin zone. As discussed perviously, the low-energy effective theory is that of a single species of massive Dirac fermion. If we integrate it out, then as shown explicitly in Appendix D, the 1-loop effective action for the gauge fields is precisely what we would expect from a single Dirac cone, except that, since $U(1)$ is broken down to Z_2, a Higgs mass is also generated:

$$
L_{g(1\text{ loop})} = \frac{1}{2} |\Phi|^2 A_\mu A^\mu - \frac{1}{4\pi m} F^{\mu\nu} F_{\mu\nu}
$$

$$
+ \frac{m}{|m|} 8\pi \epsilon_{\mu\nu\lambda} A^\mu \partial^\nu A^\lambda.
$$

(55)

In other words, we obtain the usual Higgs mass term, the field-strength tensor squared, and a Chern-Simons term with level $\frac{1}{2}$ (as usual from a single Dirac cone). The Higgs mass is proportional to the condensate fraction $|\Phi|^2$, and is crucial outside a vortex. However, in a vortex core, the condensate vanishes. We will assume that the Higgs mass can be neglected in the core. Thus, in a vortex core, we have

$$
\frac{\delta L}{\delta A_\mu} = m \frac{1}{|m|} \frac{8\pi}{\epsilon_{\mu\nu\lambda}} \partial^\nu A^\lambda + J_\mu
$$

(56)

where J_μ is the fermion current, and we have used $\partial^\nu F_{\mu\nu} = 0$. Taking $\mu = 0, m > 0$, we obtain the constraint:

$$
\frac{1}{4\pi} B_{\tilde{R}}^z = \rho_{\tilde{R}}
$$

(57)

where $\rho \equiv J_0$. In the case at hand, we have

$$
\rho_q = \sum_{i=1,2} \sum_k \left[f_{k,i} f_{k+q,i} + f_{-k,i} f_{-k+q,i} \right]
$$

(58)

(Here k is technically restricted to momenta near the Dirac cone; more generally, we sum over only half the Brillouin zone.) The rather counter-intuitive fact that holes at the left Dirac cone carry the same charge as particles at the right Dirac cone results from the fact that the two cones have opposite chirality.

The density ρ_q is a sum of the density of particles at the right Dirac cone, and holes at the left Dirac cone. The creation operator associated with this density is the Majorana fermion $c_q = i \left(f_{q+i} - f_{-q+i} \right)$, which simultaneously creates a particle at q and a hole at $-q$. Hence Eq. (57) tells us that there is a Majorana fermion bound to every half-flux quantum. These half-flux quanta are precisely the Z_2 vertices of the superconductor; hence we conclude that there is a Majorana fermion bound to each Z_2 vortex.

VI. SPIN-DENSITY WAVE STATES

As described in the previous section, a T-breaking 3-spin term opens up a gap which can be written as follows in terms of the $\tilde{\chi}$ fermions,

$$
\tilde{\chi}_p = \begin{pmatrix} \eta_{\tilde{Q}/2 + \tilde{p}} \\ \eta_{\tilde{Q}/2 - \tilde{p}} \end{pmatrix}.
$$

(59)

At the isotropic point, $J_x = J_y = J_z, \tilde{Q}/2 = (\frac{\pi}{2}, 0)$. The Hamiltonian in the B phase can be written in the form

$$
H = \sum_p \left[v y_p \tilde{\chi}_{\tilde{y}} + v z_p \tilde{\chi}_{\tilde{z}} \right]
$$

(60)
where \(v = \sqrt{\frac{J}{3J}} \) at the isotropic point. The Dirac mass term generated by the three-spin interaction is of the form:

\[
H_{D,M} = m \sum_{\mathbf{p}} \chi^\dagger_{\mathbf{p}} \tau_y \chi_{\mathbf{p}},
\]

where \(m = 3J'/2 \).

However, this is not the only possible term which can open a gap at the nodes of the B phase. The other possible term is \((W')^2\) a coupling which we introduce to parametrize the strength of this term:

\[
H_{\text{pair}} = W \sum_{\mathbf{p}} \chi^\dagger_{\mathbf{p}} \tau_y \chi_{\mathbf{p}} + \text{h.c.}
\]

\[
= 2W \sum_{\mathbf{p}} \eta_{-\mathbf{Q}/2+\mathbf{p}} \bar{\eta}_{\mathbf{Q}/2+\mathbf{p}} + \text{h.c.}
\]

\[
= 4W \sum_{\mathbf{p}} \left[c^\dagger_{\mathbf{Q}/2-\mathbf{p},1} c_{\mathbf{Q}/2+\mathbf{p},1} + (1 \rightarrow 2) \right]
\]

\[
+ ic_{\mathbf{Q}/2-\mathbf{p},1} c_{\mathbf{Q}/2+\mathbf{p},2} + (1 \leftrightarrow 2) \right] + \text{h.c.}
\]

\[
= -4W \sum_{\mathbf{p}} \left[f^\dagger_{\mathbf{Q}/2-\mathbf{p},1} f_{\mathbf{Q}/2+\mathbf{p},1} - f^\dagger_{\mathbf{Q}/2-\mathbf{p},1} f_{\mathbf{Q}/2+\mathbf{p},1} \right] + \cdots + \text{h.c.}
\]

Thus, such a mass term breaks translational symmetry. It includes terms which induce superconductivity at non-zero wavevector as well as terms which induce a spin-density wave at wavevector \(\mathbf{Q} \). We can imagine that a spin-spin interaction which is added to the Kitaev model as a perturbation will, upon decoupling, generate such a mass term. However, since the density-of-states at the nodes is zero, interactions will only generate such a term at O(1) coupling strength (not at infinitesimal coupling, as would the case for a Fermi surface instability). At O(1) coupling strength, there is no reason to focus on the the nodal regions, so many other instabilities could also occur. It is possible that, in a large-\(N \) version of this model, such a translational-symmetry-breaking instability will occur at weak-coupling.

Similar but distinct spin-density-wave states have recently been discussed in the context of a hybrid Kitaev-Heisenberg model in Refs. 21, 22.

VII. DISCUSSION

In describing the spin-liquid ground states of the various phases of Kitaev’s honeycomb model using the slave-fermion approach, we may learn several things about the nature of the phases of this model, their potential stability to perturbations away from the solvable point, and their precise relationship to other phases of matter which exhibit similar physics.

First, the fermionic mean-field theory allows us to relate the various phases of the Kitaev model to the ground states of different Bogoliubov-de-Gennes Hamiltonians. This can be done in two different ways: (1) in terms of the fermions \(f_{\uparrow,\downarrow} \) introduced in Eq. 2 and (2) in terms of the fermions \(\eta \) introduced in Eq. 19. The latter are formed from the propagating part of \(f_0 \). Each way has its conceptual and technical advantages, as we have seen.

The mean field phase diagram is summarized in Figure 3, which can be interpreted in terms of the \(\eta \) fermions as follows. The A phase, in which the nodes of the superconductor do not intersect the Fermi surface, is adiabatically connected to an s-wave superconductor. The B phase is a nodal \(p \)-wave superconductor. The B* phase is the weak-pairing phase of a chiral \(p \)-wave superconductor, with the consequent Ising topological order. The A* phase is the corresponding strong-pairing chiral \(p \)-wave superconductor phase. As a result of the strong-pairing nature of this phase, the topological order is, in fact, again that of an s-wave superconductor. The reason for this is that, at the mean-field level (i.e. when treated as a free fermion problem) the A and A* phases can be adiabatically deformed into each other, so the line between them in Figure 3 is a crossover line. On the other hand, the other transitions in Figure 3 are genuine phase boundaries which are essentially the same as the corresponding transitions in the superconductor. One important difference needs to be emphasized. In a two-dimensional superconductor with a three-dimensional electromagnetic field, there is a gapless plasmon. Thus, a thin superconducting film is not fully gapped, even though its fermionic spectrum is fully-gapped. However, in the Kitaev honeycomb lattice model, the gauge field is two-dimensional. Consequently, the plasmon is gapped and the system is fully-gapped.

![Figure 3: Schematic phase diagram of the Kitaev honeycomb model, and the corresponding superconducting phases. The phase is determined by the ratio \(J'/J_z \), and by whether the coefficient \(J' \) of the 3-spin interaction is non-vanishing.](attachment:image.png)

Although the SU(2) mean-field theory described here is clearly more complicated than Kitaev’s at the solvable point, it has the salient virtue that it is well-suited to perturbing away from the solvable point – particularly in the gapless B phase.

It is interesting to consider the fate of the phase diagram shown in Figure 3 when the spin Hamiltonian is deformed...
away from the exactly solvable point. The fully-gapped phases – the A and B* phases – will be robust against small perturbations by virtue of their energy gaps. So long as the gauge symmetry is broken to Z_2 by the saddle point solution, the gauge field is gapped, and we do not expect fluctuations to lead to confinement. Therefore, the model still admits effective spinon excitations, and the topological order of the spin liquid will be robust to gauge field fluctuations. Since the spinons are also gapped in these phases, they are stable against adding weak interactions between the fermions. The gapless B phase is a little trickier. Since the gauge field is fully gapped, we believe that the gauge field action is robust against small perturbations. The fermions, on the other hand, are gapless. However, since they have a single gapless Dirac point (rather than a Fermi surface), weak interactions between the fermions are irrelevant by power-counting. This is the reason that an SU(2)-invariant Heisenberg perturbation does not lead to a phase transition until the perturbation is sufficiently strong. Thus, we could say that the stability of the gapless B phase relies on phase space limitations. However, as we have seen, although the gapless B phase is stable against weak perturbations, some features of the soluble point are not generic to this phase. For instance, a magnetic field will make the spin-spin correlation functions have a power law, rather than short-ranged, form.

The fact that the bosonic fluctuations are all gapped does not, however, prevent the theory from acquiring a new lowest-energy saddle point if we deform far enough away from the soluble model. For instance, as we have discussed, the gapless B phase can acquire a gap by an alternative method: the development of a spin-density wave, as discussed in Section VI. Various perturbations of the Kitaev model, including a Heisenberg interaction, can lead to such an instability. Furthermore, it is well known that symmetric spin-liquid states are often prone to dimerization instabilities, in which the spins pair with neighbors in a valence-bond crystal which breaks a lattice symmetry. Away from the solvable limit, therefore, it is likely that the phase diagram will also include some such valence-bond crystal states. At the symmetric point, the model has a spin-orbit type 3-fold rotation symmetry (entailing a 3-fold lattice rotation about a vertex, coupled with a global spin rotation of the form (43)) which makes the saddle point perturbatively stable – though in principle lower-energy symmetry-breaking saddle points might exist. Away from the isotropic point $J_x = J_y = J_z$, such states need not break any symmetries of the Hamiltonian, so that symmetry does not prevent the saddle point from flowing to such a valence-bond crystal upon including fluctuations of the amplitudes of the mean-field hopping and superconducting terms.

The fact that the exact ground state of (1) can be correctly described in the slave-fermion mean-field approach used here is also interesting in its own right. As discussed above, since the mean-field state is a Higgs phase of the gauge field, the model is in a régime where the spin-liquid saddle point is most likely to be stable. Even in this case, however, examples of Hamiltonians where the exact ground state can be shown to be a spin liquid are rare. The Kitaev model is thus a potential testing ground for the slave-fermion approach, since we may begin with a Hamiltonian for which it is demonstrably valid, and consider the fate of the ground state under various perturbations. In particular, on general ground we expect that for small perturbations which do not close the gap in the spectrum, the slave-fermion mean-field theory will continue to capture the topological order of the gapped phases.

Another interesting prediction of the slave-fermion approach is that near the solvable point, the Kitaev model becomes a superconductor upon doping. Specifically, we imagine starting with a Mott insulator whose effective Hamiltonian at half-filling is given by (1). After doping away from half-filling we must account for the fermion hopping terms, leading to a $t - J$ model, with the spin Hamiltonian given by (1). Following the prescription used to study the cuprates, we may decompose the spin operators as in Eq. (2), and express the electron operator as

$$e_i^\dagger = f_i^\dagger b_i \sigma$$

with the constraint

$$f_i^\dagger f_i + b_i^\dagger b_i = 1$$

It follows that, at temperatures below the Bose condensation temperature of the bosons, and at sufficiently low dopings that the mean-field solution described above is a good approximation for the spinons ($f_i \sigma$), the superconducting order parameter is:

$$\Delta_{k;\sigma,\sigma'}^{phys} = \langle e_i^\dagger \epsilon_{k - q,\sigma}^\dagger \epsilon_{k + q,\sigma'}^\dagger f_i^\dagger f_i \rangle \langle b_{-q}\sigma b_{q}\sigma' \rangle$$

where ρ_s is the bosonic superfluid density. Thus the momentum dependence of the physical superconducting order parameter is set by that of the mean-field superconducting order parameter Δ for the fermionic spinons f. For the Hamiltonian (1), this predicts spin-triplet superconductivity (with equal spin pairing), with a mixed singlet and triplet pseudospin order parameter.

Finally, it is interesting to compare the mean-field ground state of the Kitaev model with existing proposals for generating the B* phase’s topological Majorana fermions in physical materials. The mean-field Hamiltonian of the B phase is manifestly equivalent to a $p + ip$ superconducting state of spin-polarized fermions. It also has an interesting relation to the the effective Hamiltonian of Fu and Kan for surface states of a topological insulator in the presence of induced s-wave superconductivity. In the absence of superconductivity, these surface states form a single Dirac fermion. This Dirac fermion is analogous to the Dirac fermion which we have in the gapless B phase. If a magnetic field is brought into contact with the topological insulator, and the magnetic moment is perpendicular to the interface, then the resulting term in the Hamiltonian is a Dirac mass term, which breaks time-reversal symmetry and opens a gap. This is analogous to the 3-spin term in the Kitaev model, which opens a gap and drives the system into the B* phase. Note that this term in the Kitaev model is not analogous to the term generated by an s-wave superconducting film on the surface of a topological insulator.
Instead, s-wave superconductivity on the surface of a topological insulator is analogous to a term \(\chi^T_P i \tau_0 \chi_P + \text{h.c.} \), which is a down-spin density wave at wavevector \((8\pi/3, 0)\) at the symmetric point \(J_x = J_y = J_z\).

In all cases, the essential ingredients for generating topological Majorana fermions are a 2-band model in which the band structure is that of a massive Dirac fermion, and with induced superconductivity. As we described in Sect. 5.B above, the massive Dirac fermion in all of these models is implicitly coupled to a gauge field, since it forms a superconducting state. The fermion mass therefore generates a Chern-Simons term in the effective gauge-field action, which has the effect of binding a half-quantum vortex to each charge, since there is only a single Dirac cone. The charge which is bound in the superconducting state is a Bogoliubov-de-Gennes quasiparticle, rather than a fermion – which, when the superconducting order parameter has a p-wave component, binds a Majorana fermion to the vortex.

Acknowledgments

We gratefully acknowledge the hospitality of the Aspen Center for Physics, where part of this work was completed. We thank John Chalker, John Cardy, and Simon Trebst for discussions. C.N. has been supported in part by the DARPA QuEST program.

Appendix A: Mapping between \(SU(2)\) and Majorana fermionizations

Here we explain in more detail the correspondence between the fermionization \((2)\) and the Majorana fermionization employed by Kitaev. We begin with the mean-field correspondence:

\[
\begin{align*}
\bar{b}_q^x &= i \left(f_{q\uparrow}^\dagger - \bar{f}_{q\uparrow} \right) \\
\bar{b}_q^y &= f_{q\uparrow}^\dagger + \bar{f}_{q\uparrow} \\
\bar{b}_q^z &= f_{q\downarrow}^\dagger + \bar{f}_{q\downarrow} \\
c_q &= i \left(f_{q\downarrow}^\dagger - \bar{f}_{q\downarrow} \right)
\end{align*}
\]

(A1)

which gives a mapping between unprojected spinful fermions and unprojected Majorana fermions. This mapping is not unique, as each Majorana fermion can be represented by any linear combination:

\[
c_q = f_{q\alpha}^\dagger e^{i\phi} + \text{h.c.}
\]

(A2)

and any choice of 4 such combinations which mutually anticommute could be associated with \(\{b^x, b^y, b^z, c\}\). However, this difference is not physical, as all such mappings are equivalent under \(SU(2)\) gauge transformations.

The mapping \((A1)\) does not preserve the form of the unprojected spin operators, however. Specifically, the fermionization \((2)\) gives

\[
\begin{align*}
S^x_i &= f_{i\uparrow}^\dagger f_{i\downarrow} + f_{i\downarrow}^\dagger f_{i\uparrow} \\
S^y_i &= -i \left(f_{i\uparrow}^\dagger f_{i\downarrow} + f_{i\downarrow}^\dagger f_{i\uparrow} \right) \\
S^z_i &= \left(f_{i\uparrow}^\dagger f_{i\uparrow} - f_{i\downarrow}^\dagger f_{i\downarrow} \right)
\end{align*}
\]

(A3)

while Kitaev’s Majorana fermionization stipulates:

\[
\begin{align*}
\tilde{S}^x_i &= ib^c_i \bar{c}_i = -i \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right) \\
\tilde{S}^y_i &= ib^c_i \bar{c}_i = - \left(f_{i\uparrow}^\dagger + f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right) \\
\tilde{S}^z_i &= ib^c_i \bar{c}_i = - \left(f_{i\uparrow}^\dagger + f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right)
\end{align*}
\]

(A4)

This gives:

\[
\begin{align*}
\tilde{S}^x_i &= -S^y_i - i \left(f_{i\uparrow}^\dagger f_{i\uparrow}^\dagger + f_{i\downarrow}^\dagger f_{i\downarrow}^\dagger \right) \\
\tilde{S}^y_i &= -S^x_i - \left(f_{i\uparrow}^\dagger f_{i\downarrow}^\dagger - f_{i\downarrow}^\dagger f_{i\uparrow}^\dagger \right) \\
\tilde{S}^z_i &= -S^z_i + \left(n_{i\uparrow} + n_{i\downarrow} - 1 \right)
\end{align*}
\]

(A5)

which, after a gauge transformation to rotate the spins and eliminate the extra phases, differs from the spin operators \((A4)\) by terms which vanish under projection onto the physical Hilbert space. It is these extra terms which lead to the fact that the mean-field Hamiltonian \((6)\) does not conserve \(b^x b^y\) on x-links (and similarly for \(y\) and \(z\)) so that it is not obvious that the mean-field theory captures the essentials of the spin-spin correlations, as it is in the Majorana description.

However, one way to view the equivalence of the two descriptions is via the wave functions that they produce after projection. The Majorana projector is:

\[
D_i \equiv b^c_i b^c_i \bar{c}_i = 1
\]

(A6)

\[
= - \left(f_{i\uparrow}^\dagger + f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger + f_{i\downarrow}^\dagger \right) \left(f_{i\uparrow}^\dagger - f_{i\downarrow}^\dagger \right)
\]

Expanding the constraint in terms of Dirac fermion operators, we obtain

\[
D_i = -(2n_{i\uparrow} - 1)(2n_{i\downarrow} - 1) = -2(n_{i\uparrow} + n_{i\downarrow} - 1)^2 + 1
\]

(A7)

Hence imposition of the diagonal \(SU(2)\) constraint

\[
n_{i\uparrow} + n_{i\downarrow} - 1 = 0
\]

(A8)

automatically imposes the Majorana constraint \(D_i = 1\).

Therefore, if we begin with a mean-field wave-function expressed in terms of the spinful fermions, and project onto the physical Hilbert space of singly occupied states, this is equivalent to studying the same mean-field wave function expressed in terms of Majorana fermions, and applying the projector \((A6)\) at each site. This gives an alternative perspective on why the mean-field theory is exact.
Appendix B: Mean-field theory of the quadratic spin model

Here we will review the detailed derivation of the mean-field Hamiltonian (7). We will first show how to derive the full effective action, and then present the self-consistent mean-field.

To decouple the 4-fermi interactions using Hubbard-Stratonovich fields, we take the Lagrangian:

\[
\mathcal{L}_x = -\frac{8(\Phi_1^2 + |\Phi_2|^2)}{J_x} + \Phi_1 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger f_{i\downarrow} f_{j\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger f_{i\uparrow} f_{j\uparrow}\right) + i\Phi_2 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger - f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger\right) + \hbar c. \tag{B1}
\]

where we have used \(n_{i\uparrow} = 1 - n_{i\downarrow}\) in the last expression.

To decouple the 4-fermi interactions, we can check that this decoupling gives back the original action by integrating out the bosonic fields. For example, completing the square for the first line of \(\mathcal{L}_x \) with all spin directions reversed.

In the Dirac fermion basis, the 3 different types of terms in the Hamiltonian (1) are:

1. Hubbard-Stratonovich decoupling of the Kitaev model

In the Dirac fermion basis, the 3 different types of terms in the Hamiltonian (1) are:

\[
\mathcal{L}_x = -\frac{8(\Phi_1^2 + |\Phi_2|^2)}{J_x} + \Phi_1 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger f_{i\downarrow} f_{j\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger f_{i\uparrow} f_{j\uparrow}\right) + i\Phi_2 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger - f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger\right) + \hbar c. \tag{B1}
\]

where the fields \(\Phi_i, \Theta_i \) are to be understood as being evaluated on the link in question, and the \(\hbar c. \) is the hermitian conjugate with all spin directions reversed. We can check that this decoupling gives back the original action by integrating out the bosonic fields. For example, completing the square for the first line of \(\mathcal{L}_x \) gives:

\[
\mathcal{L}_x = -\frac{8(\Phi_1^2 + |\Phi_2|^2)}{J_x} + \Phi_1 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger f_{i\downarrow} f_{j\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger f_{i\uparrow} f_{j\uparrow}\right) + i\Phi_2 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger - f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger\right) + \hbar c. \tag{B2}
\]

where the fields \(\Phi_i, \Theta_i \) are to be understood as being evaluated on the link in question, and the \(\hbar c. \) is the hermitian conjugate with all spin directions reversed. We can check that this decoupling gives back the original action by integrating out the bosonic fields. For example, completing the square for the first line of \(\mathcal{L}_x \) gives:

\[
\mathcal{L}_x = -\frac{8(\Phi_1^2 + |\Phi_2|^2)}{J_x} + \Phi_1 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger f_{i\downarrow} f_{j\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger f_{i\uparrow} f_{j\uparrow}\right) + i\Phi_2 \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger - f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger\right) + \hbar c. \tag{B2}
\]

Integrating out the factors involving \(\Phi_1 \) and \(\Phi_2 \) gives a constant; the sum of the remaining pieces gives:

\[
\frac{J_x}{4} \left(f_{i\uparrow}^\dagger f_{j\uparrow}^\dagger f_{j\downarrow} f_{i\downarrow} + f_{i\downarrow}^\dagger f_{j\downarrow}^\dagger f_{j\uparrow} f_{i\uparrow}\right) \tag{B3}
\]

as expected.

Now we proceed in the usual way for mean-field theories: namely, the fields \(\Theta_i \) and \(\Phi \) have gapped amplitude fluctuations, as well as phase fluctuations. We will thus begin with a mean-field solution \(\Theta_\sigma,ij(t) \equiv \Delta_\sigma,ij, \Phi_\sigma,ij(t) \equiv t_\sigma,ij \) which reproduces the quadratic fermionic spectrum of the exact solution. We then consider the fate of the fluctuations of both gapped amplitude modes and gapless phase modes about mean-field.

2. Mean-field solution

At mean-field level, the relevant information contained in Eq. (B2) is that on each link there are potentially 4 bosonic fields: \(t_\uparrow \) associated with hopping of up spins, \(t_\downarrow \) with hopping of down spins (which formally transforms in the opposite way under time reversal), and separate superconducting order parameters \(\Delta_\uparrow, \Delta_\downarrow \) for the spin up and spin down sectors. Formally, in terms of the fields of the previous section,
we take:

\[t_\uparrow = \langle \Phi_1 + i \Phi_2 \rangle \text{ on } x \text{ and } y \text{ links} \]
\[t_\uparrow = \langle \Phi_1 \rangle \text{ on } z \text{ links} \]
\[t_\downarrow = \langle \Phi_1 - i \Phi_2 \rangle \text{ on } x \text{ and } y \text{ links} \]
\[t_\downarrow = \langle \Phi_2 \rangle \text{ on } z \text{ links} \]
\[\Delta_\uparrow = \langle i \Theta_1 - \Theta_2 \rangle \text{ on } y \text{ links} \]
\[\Delta_\downarrow = \langle \Theta_1 + i \Theta_2 \rangle \text{ on } x \text{ links} \]
\[\Delta_\downarrow = \langle \Theta_2 \rangle \text{ on } z \text{ links} \]
\[\Delta_\uparrow = \langle i \Theta_1 - \Theta_2 \rangle \text{ on } z \text{ links} \]
\[\Delta_\downarrow = \langle \Theta_1 - i \Theta_2 \rangle \text{ on } x \text{ links} \]
\[\Delta_\downarrow = \langle \Theta_2 \rangle \text{ on } z \text{ links} \]

From the Lagrangian \([B2] \), the saddle-point equations are:

\[t^{(x,y)}_\uparrow = \frac{J_x}{4} \langle f_{j,x}^\dagger f_{j,y} \rangle \]
\[t^{(x,y)}_\downarrow = \frac{J_x}{4} \langle f_{j,y}^\dagger f_{j,x} \rangle \]
\[t^{(z)}_\uparrow = \frac{J_z}{4} \langle f_{j,z}^\dagger f_{j,z} \rangle \]
\[t^{(z)}_\downarrow = \frac{J_z}{4} \langle f_{j,z} f_{j,z} \rangle \]
\[\Delta^{(x)}_\uparrow = \frac{J_x}{4} \langle f_{j,x}^\dagger f_{j,x} \rangle \]
\[\Delta^{(x)}_\downarrow = \frac{J_x}{4} \langle f_{j,x} f_{j,x} \rangle \]
\[\Delta^{(y)}_\uparrow = \frac{J_y}{4} \langle f_{j,y}^\dagger f_{j,y} \rangle \]
\[\Delta^{(y)}_\downarrow = \frac{J_y}{4} \langle f_{j,y} f_{j,y} \rangle \]
\[\Delta^{(z)}_\uparrow = \frac{J_z}{4} \langle f_{j,z}^\dagger f_{j,z} \rangle \]
\[\Delta^{(z)}_\downarrow = \frac{J_z}{4} \langle f_{j,z} f_{j,z} \rangle \]. \quad (B6)

To satisfy the mean-field conditions \([B6] \), we take:

\[t_{ij,\downarrow} = \frac{-J_x}{16} \quad \text{on } x-\text{links} \]
\[t_{ij,\downarrow} = \frac{-J_y}{16} \quad \text{on } y-\text{links} \]
\[t_{ij,\uparrow} = \Delta_{ij,\uparrow} = 0 \quad \text{on } z-\text{links} \]
\[t_{ij,\uparrow} = \frac{iJ_x}{16} \quad \text{on } x-\text{links} \]
\[t_{ij,\uparrow} = \frac{iJ_y}{16} \quad \text{on } y-\text{links} \]
\[t_{ij,\downarrow} = \frac{iJ_z}{8} \quad \Delta_{ij,\downarrow} = 0 \quad \text{on } z-\text{links} \]. \quad (B7)

which gives the mean-field Hamiltonian \([7] \).

3. Theory of fluctuations about mean field

We now turn to the fluctuations about the mean-field solutions. Since symmetry dictates that these cannot change the fermionic band structure, our focus will be to describe the bosonic degrees of freedom in this theory, and demonstrate that the gauge field is in a Higgsed phase with a residual \(Z_2 \) symmetry group.

The Hubbard-Stratonovich decoupling introduces 4 bosonic fields: \(\Phi_{1,2} \), whose saddle-point expectation values are associated with fermion hopping terms; and \(\Theta_{1,2} \), associated with the spin-triplet superconductivity. We parametrize their fluctuations according to:

\[\Phi_{1ij} = \pm \left(\frac{i}{16} (J_x \delta_{ij,x} + J_y \delta_{ij,y} + 2J_z \delta_{ij,z}) e^{i \phi_{ij}} \right) \]
\[\Phi_{2ij} = \pm i \left(\frac{J_z}{8} \delta_{ij,z} e^{i \phi_{ij}} + \tilde{\rho}_{ij} \right) \]
\[\Theta_{1ij} = \pm i \left(\frac{J_y}{16} \delta_{ij,y} e^{i \phi_{ij}} + \rho_{ij} \right) \]
\[\Theta_{2ij} = \pm i \left(\frac{J_z}{16} \delta_{ij,z} e^{i \phi_{ij}} + \rho_{ij} \right) \]. \quad (B8)

where the functions \(\delta_{ij,x,y,z} \) have support on \(x, y, \) and \(z \) links respectively, and the top (bottom) sign is taken for edges oriented from sublattice \(1(2) \) to sublattice \(2(1) \).

The physical interpretation of these fields is as follows. \(\Phi_1 \) is associated with the spin-rotation invariant hopping terms familiar from spinon decompositions of the Heisenberg model\([3] \). The phase variables \(\alpha_{ij} \) are the spatial components of the gauge fields associated with the constraints \([3] \). Fluctuations in the amplitude of this hopping term are parametrized by the scalar \(\phi \).

The remaining terms parametrize fluctuations of a condensed superfluid which breaks the \(SU(2) \) gauge group down to \(Z_2 \). We combine the fields associated with \(\Theta_1 \) and \(\Theta_2 \), each of which is non-vanishing at mean-field either on \(x \) or \(y \)-links respectively, into a single pair of scalar fields \(\rho, \theta \) defined on all links in the lattice. Since at mean-field, \(\Theta \)'s expectation value generates a spinful superconducting pairing, \(\theta \) is the phase of a charged superfluid, and hence in the condensed phase becomes the longitudinal component of the corresponding gauge field. \(\rho \) parametrizes the (gapped) fluctuations in this superfluid density.

That \(\Phi_2 \), the hopping anti-symmetric in spin, is associated with a charged superfluid is less obvious. We will show shortly, however, that \(\langle \Phi_2 \rangle \) breaks the off-diagonal generators of \(SU(2) \). As these are not the same as the generator broken by the superconducting terms, we use a new field \(\tilde{\theta} \) to denote the phase fluctuations.

To find the residual symmetry group, we must evaluate the \(SU(2) \) flux through each lattice plaquette at mean-field\([3] \). It is enlightening to express the fermionic degrees of freedom in terms of the usual BCS spinors:

\[\chi_q = \left(\frac{f_{\uparrow,q}}{f_{\downarrow,q}} \right) \]
\[\chi_q \rightarrow e^{i \vec{\alpha} \cdot \vec{\sigma}} \chi_q \] \quad (B9)

which transform under gauge transformations by \(e^{i \vec{a} \cdot \vec{\sigma}} \) as

\[\chi_q \rightarrow e^{i \vec{a} \cdot \vec{\sigma}} \chi_q \] \quad (B10)

In this basis, the spin-symmetric and spin-antisymmetric hopping terms can be expressed

\[it_{\uparrow+\downarrow}(ij) \left(f_{\uparrow,i}^\dagger f_{\uparrow,j} + f_{\downarrow,i}^\dagger f_{\downarrow,j} - f_{\uparrow,j}^\dagger f_{\uparrow,i} - f_{\downarrow,j}^\dagger f_{\downarrow,i} \right) = \]
\[it_{\uparrow+\downarrow}(ij) \left(\chi_i^\dagger \chi_j - \chi_i^\dagger \chi_j \right) \]
\[it_{\uparrow-\downarrow}(ij) \left(f_{\uparrow,i}^\dagger f_{\downarrow,j} + f_{\downarrow,i}^\dagger f_{\uparrow,j} + f_{\uparrow,j}^\dagger f_{\downarrow,i} \right) = \]
\[it_{\uparrow-\downarrow}(ij) \left(\chi_i^\dagger \sigma_z \chi_j - \chi_i^\dagger \sigma_z \chi_j \right) \]. \quad (B11)
As promised, the first term is gauge invariant under all generators. The effect of a gauge transformation on the second term is to conjugate the matrix \(\sigma_z \) by \(e^{i\alpha} \). Hence this term is invariant under the \(U(1) \) subgroup comprised of rotations about the \(z \) axis, but not under rotations by the two generators \(\sigma_x \) and \(\sigma_y \). Fluctuations in \(\theta \) are therefore associated with the longitudinal modes of the broken generators \(a_{ij}^{(x,y)} \).

The remaining \(U(1) \) symmetry is broken by the superconducting terms. As the pairing occurs here in the spin triplet channel, these cannot naturally be expressed in the BCS basis; however, they are clearly charged under the residual \(U(1) \) symmetry \(f_{i\sigma} \Rightarrow e^{i\alpha} f_{i\sigma} \). Hence the \(U(1) \) symmetry is broken to the \(Z_2 \) subgroup \(f_{i\sigma} \Rightarrow \pm f_{i\sigma} \), which is the residual gauge symmetry of the Hamiltonian. (Indeed, the spin-triplet superconducting terms are certainly not gauge equivalent to the terms associated with \(t_{\alpha} \), guaranteeing that the \(SU(2) \) symmetry is fully broken to \(Z_2 \), rather than to a residual \(U(1) \) as might otherwise be the case). As usual the phase fluctuations \(\theta \) can be absorbed, by means of a gauge transformation, into the longitudinal modes of the broken \(U(1) \) generator.

As an aside: (Eq. (B8) reveals that the longitudinal modes of the broken generators are confined to \(x - y \) chains and \(z \) links in the lattice respectively. Since the corresponding gauge fluctuations are no longer purely transverse in the condensed phase, this means that only the residual \(Z_2 \) gauge field and the amplitude fluctuations are free to propagate in both dimensions of the lattice. This explains, to a large degree, why the effect of including these bosons in the theory is so innocuous.)

In summary, the fluctuations about mean-field are described by the real scalars \(\rho, \tilde{\rho} \), and \(\phi \), describing fluctuations in the amplitudes of the various condensed bosonic fields, and the \(SU(2) \) gauge field which is higgsed in a bi-adjoint representation to a residual symmetry group \(Z_2 \), which we may consider to have absorbed the remaining phase fluctuations as two Goldstone bosons.

Appendix C: Mean-field theory of the gapped B phase

Here we describe the mean-field theory in the presence of the 3-spin interaction which leads to the gapped topological B phase. We will show that the band structure discussed in Sect. [V] is, up to irrelevant operators, a saddle-point of an appropriate action, and thus constitutes at least a self-consistent mean-field solution to the fermion problem, if not a global minimum of the action.

We begin by re-writing the 3-spin interaction as a sum of products of 6-fermion interaction terms:

\[
S^i_k S^j_j S^k_k = \frac{i}{8} \left(f_{i \uparrow} \bar{f}_{j \uparrow} f_{j \downarrow} f_{i \downarrow} - f_{i \uparrow} f_{j \downarrow} \bar{f}_{j \uparrow} \bar{f}_{i \downarrow} \right) \left(2 f_{k \uparrow} \bar{f}_{k \downarrow} - 1 \right)
\]

where we have used \(n_{i\uparrow} = 1 - n_{i\downarrow} \) to express \(S_z \) in terms of down spins only. Of the possible fermion bilinears, only \((f_{i \uparrow} \bar{f}_{j \uparrow}) \), \((\bar{f}_{i \uparrow} f_{j \downarrow}) \), and \((\bar{f}_{i \downarrow} f_{j \uparrow}) \) (together with their analogues in the particle-particle and hole-hole channels) have non-vanishing expectation values at mean-field. (\(f_{k \uparrow} f_{k \downarrow} \) is the only term in the 3 fermion bilinears by their mean-field values. First, we may take:

\[
\frac{i}{8} \left((f_{i \uparrow} f_{j \downarrow}) (f_{j \uparrow} f_{k \downarrow} f_{k \downarrow} f_{i \uparrow}) - (f_{i \uparrow} f_{j \downarrow} f_{j \uparrow} f_{k \downarrow} f_{k \downarrow} f_{i \uparrow}) \left(2 f_{k \uparrow} \bar{f}_{k \downarrow} - 1 \right) \right)
\]

which vanishes in the mean-field solution relevant to the Kitaev model as the fermion bilinears are purely imaginary in position space. The only remaining possibility is:

\[
\frac{i}{8} \left((f_{i \uparrow} f_{j \downarrow}) (f_{j \uparrow} f_{k \downarrow} f_{k \downarrow} f_{i \uparrow}) - (f_{i \uparrow} f_{j \downarrow} f_{j \uparrow} f_{k \downarrow} f_{k \downarrow} f_{i \uparrow}) \left(2 f_{k \uparrow} \bar{f}_{k \downarrow} - 1 \right) \right)
\]

Taking \(<ij> \) to be an \(x \)-link and \(<jk> \) to be a \(z \)-link, and substituting in the mean-field values given in Eq. (B7), this becomes:

\[
\frac{i}{27} \left(f_{i \uparrow} \bar{f}_{i \downarrow} - f_{k \uparrow} \bar{f}_{k \downarrow} + f_{k \downarrow} \bar{f}_{i \downarrow} - f_{k \uparrow} \bar{f}_{k \downarrow} \right)
\]

In light of the correspondence (B9) between our Dirac fermions and the Majorana basis originally used to diagonalize the problem, this is exactly the term originally proposed by Ref. [11] to break \(\tilde{T} \) and open a gap in the B phase.

Before analyzing the resulting band structure, let us understand why we may simply replace the fermion bilinears by their mean-field values, as we have blithely done above. In fact, we can modify the Lagrangian (B2) to produce just such a term at mean-field level. To see why this is so, we consider the action:

\[
\mathcal{L}_F = \chi_1^\dagger \chi_1 + \chi_2^\dagger \chi_2 + i j' \chi_1^\dagger \chi_2 + h.c. \quad .
\]

We will show that \(\mathcal{L}_F \) is well-approximated by the Hubbard-Stratonovich-like action:

\[
\mathcal{L} = -|\Phi|^2 - |\Phi_2|^2 + \chi_1 \Phi_1 + \chi_2 \Phi_2 - i j' \left(\Phi_1 \Phi_2 - \chi_2^\dagger \Phi_1 - \chi_1^\dagger \Phi_2 \right) \chi_3^\dagger + h.c. \quad (C6)
\]

where \(\chi_{1,2,3} \) are fermion bilinears. (The Lagrangian (B2) is of the general form of the quadratic terms in Eq. (C6), albeit with more different scalar fields. This multiplicity of indices will not affect our qualitative result). The saddle-point equations are:

\[
\Phi_1 = \chi_1^\dagger - i j' \chi_3 (\Phi_2^\dagger - \chi_2) \\
\Phi_2 = \chi_2^\dagger - i j' \chi_3 (\Phi_1^\dagger - \chi_1)
\]

For \(J' = 0 \), the saddle-point equations specify that \(\Phi_1 = \chi_1^\dagger \). This is also the unique solution of the saddle-point equations
for \(J' \neq 0 \) (though in this case one might worry about instabilities which tend to drive \(\Phi_{1,2} \) towards \(\infty \) if \(\langle \chi_3 \rangle \neq 0 \)). Hence the extra term does not modify the structure of the mean-field equations, except inasmuch as \(\langle \chi_{1,2} \rangle \) might be modified by the new interaction.

As in the standard Hubbard-Stratonovich decoupling, we would like to integrate out \(\Phi_{1,2} \) to obtain \(L_x \). As the Lagrangian \((C6)\) is no longer quadratic in the variables \(\Phi_1, \chi \), we will not be able to perform the integral exactly; rather, we will obtain \(L_x \) as the lowest-order term in an expansion in \(J' \).

To see this, it is helpful to re-express \(L \) as:

\[
L = -|\hat{\Phi}_1|^2 - |\hat{\Phi}_2|^2 - iJ' \hat{\Phi}_1 \hat{\Phi}_2 \chi_3 + h.c. + L_x \quad (C8)
\]

where \(\hat{\Phi}_1 \equiv \Phi_1 - \chi_1 \). In the standard Hubbard-Stratonovich transformation there would be at this point no cross-terms coupling fermions to the scalar fields. We could therefore integrate out the latter exactly and this prove that \((C6)\) is exactly equivalent to \(L_x \). Here we are unable to eliminate the cross-term \(\hat{\Phi}_1 \hat{\Phi}_2 \chi_3 \) by further shifting the scalar fields, so that integrating out the \(\hat{\Phi} \) fields will not reproduce \(L_x \) exactly. If we take \(J' \) small, however, we may consider the effect of the cross-term perturbatively, and ask what the undesired additions to the fermionic action will be. The exact correction is given by evaluating the series:

\[
\delta L_x = \log \left\{ \int \left[D\hat{\Phi}_1 \right] [D\hat{\Phi}_2] e^{i \int |\hat{\Phi}_1|^2 + |\hat{\Phi}_2|^2} \sum_{n=0}^{\infty} \frac{(iJ')^n}{n!} \left(\hat{\Phi}_1 \hat{\Phi}_2 \chi_3 + h.c. \right)^n \right\} \quad . \quad (C9)
\]

Terms with \(n \) odd integrate to 0 since the action contains only even powers of \(\hat{\Phi}_1 \). Hence the leading correction is of order \(J'^2 \); to linear order in \(J' \), then, we have recovered exactly the fermionic action we wanted. Since the scalar-scalarResult:fermion bilinear interaction is decidedly irrelevant (all scalars here are massive), we may conclude that the difference between the action \((C6)\) and the true fermionic action \(L_x \) is unimportant at least for the low-energy physics. The general form of this correction is simple to understand. The leading-order correction in the series \((C9)\) is proportional to \((J')^2 \chi_3 \chi_3 \). If we take \(\chi_3 \) to have the form \(f_{ij} f_{kj} \), then we have \(\chi_3 \chi_3 = (\chi_3 \chi_3)'' = \delta_{ij} \delta_{kl} \) for all \(r \), and all terms in the series induce the same type of ‘extraneous’ interaction, which is to induce a second-neighbor ‘Coulomb repulsion’ term.

We conclude that at least the low-energy structure of the phase we are interested in can be obtained by studying the Lagrangian \((C6)\). We may now proceed as in Sect. B.2 obtaining a mean-field solution which satisfies:

\[
\langle \Phi_i \rangle = \langle \chi_i \rangle \quad (C10)
\]

As noted above, the mean-field consistency conditions are identical to those at \(J' = 0 \); the only new feature of this saddle point is that it now includes quadratic terms coupling fermions on the same sublattice, such as:

\[
J \langle \Phi_1 \rangle \langle \Phi_2 \rangle f_{ij}^f f_{kj}^f \quad . \quad (C11)
\]

This means that, to lowest order in \(J' \), the effect of the 3-spin interaction is, exactly as originally postulated by Ref. 11, to modify the band structure by adding next-nearest neighbor quadratic couplings. (We now also have to contend with the further fermion interactions; however, when the quadratic problem has no Fermi surface, we do not expect these to be associated with instabilities of the free fermion problem and hence we can safely drop them without altering the qualitative nature of the physics.)

1. Form of the mean-field Hamiltonian with 3 spin interactions

Here we will derive the expression \((50)\) for the terms induced by the set of all 3-spin interactions at mean-field. There are three distinct 3-spin interactions that we must consider:

\[
S^x_i S^y_j S^z_k \quad \text{if } r_{jk} = \hat{l}_1 \\
S^y_i S^z_j S^z_k \quad \text{if } r_{ik} = \hat{l}_2 \\
S^z_i S^z_j S^y_k \quad \text{if } r_{jk} = \hat{x} \quad . \quad (C12)
\]

The contributions to mean-field involve decoupling the resulting 6-fermion interactions into combinations of a pair of 2-point functions multiplying a fermion bilinear. First, we show that only contributions multiplying bilinears of the form \(f_{ir} f_{kr} f_{is} f_{ks} \), etc., are non-vanishing. The mean-field eigenfunctions imply that \(\langle S^x_i \rangle = 0 \) on each site. To show that \(\langle S^y_i S^z_j \rangle = 0 \) if \(\sigma \neq \sigma' \), we first note that if \(\sigma = x, y \) and \(\sigma' = z \), any grouping of the resulting 4-fermion interaction into pairs involves one term in each pair which contains both a spin up and spin down fermion. Since the 2-point functions of all terms involving spin flips are strictly 0, these terms consequently all vanish. If \(\sigma = x, \sigma' = y \), then we have:

\[
- i \left(f^f_{ij} f_{kj} + f^f_{ji} f_{j'i} \right) \left(f^f_{i'j} f_{j'i} - f^f_{ij} f_{j'i} \right) = i \left(f^f_{ij} f^f_{i'j'} + f^f_{j'i} f^f_{ij} \right) \left(f^f_{ij} f^f_{j'i} - h.c. \right) \quad (C13)
\]

which vanishes since the 2-point function on every link is purely imaginary, so that the products shown are purely real.

The only remaining possibility is terms in which the 2-point functions whose mean-field expectation we take involve fermion operators from all 3 sites. Since all 2-point functions between sites \(i \) and \(k \) vanish at mean-field (this is guaranteed by the discrete symmetries \(\hat{C} \) and \(\hat{T} \)), the only possibility is terms which multiply fermion bilinears which couple the sites \(i \) and \(k \).

Our next task is to understand the precise form of these terms. For \(r_{ij} = \hat{l}_{1,2} \), it is convenient to write \(S^z_i = f^f_{ij} f^f_{j'i} - f^f_{ij} f^f_{j'i} \); for \(r_{ij} = \hat{x} \), we write \(S^z_i = f^f_{ij} f^f_{j'i} - f^f_{ij} f^f_{j'i} \). The resulting expressions contain couplings only between the spin-down fermions on sites \(i \) and \(k \). Thus the 3-spin interaction does not modify the band structure of the spin-up fermions, which remain localized, at least at the mean-field level.
The quadratic couplings between the down spins induced by the 3-spin interactions can be expressed:

\[
S^+_i S^+_j S^-_k = \frac{i}{8} \left[\left(T^{(1)}_{ijk;\uparrow} + T^{(3)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(2)}_{ijk;\uparrow} - T^{(4)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(5)}_{ijk;\uparrow} + T^{(7)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k \right]
\]

\[
S^+_i S^-_j S^-_k = \frac{i}{8} \left[\left(T^{(1)}_{ijk;\uparrow} - T^{(3)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(2)}_{ijk;\uparrow} + T^{(4)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(5)}_{ijk;\uparrow} - T^{(7)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k \right]
\]

\[
S^-_i S^+_j S^-_k = \frac{i}{8} \left[\left(T^{(1)}_{ijk;\uparrow} - T^{(3)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(2)}_{ijk;\uparrow} + T^{(4)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k + \left(T^{(5)}_{ijk;\uparrow} - T^{(7)}_{ijk;\downarrow} \right) f^\dagger_i f^\dagger_j f^\dagger_k \right]
\]

\[\text{(C14)}\]

with

\[
T^{(1)}_{ijk;\sigma} = -\langle f^\dagger_i f^\dagger_j \rangle \langle f_{\sigma} f_{\kappa \alpha} \rangle = -\frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \Delta^{(j,k)}
\]

\[
T^{(2)}_{ijk;\sigma} = -\langle f^\dagger_i f^\dagger_j \rangle \langle f_{\kappa \sigma} f_{\alpha \sigma} \rangle = -\frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* t^{(j,k)}
\]

\[
T^{(3)}_{ijk;\sigma} = -\langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f^{\dagger}_{\kappa \sigma} \rangle = -\frac{16}{J_{ij} J_{jk}} \left(t^{(i,j)} \right)^* t^{(j,k)}
\]

\[
T^{(4)}_{ijk;\sigma} = \langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f_{\kappa \sigma} \rangle = \frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \left(\Delta^{(j,k)} \right)^*
\]

\[
T^{(5)}_{ijk;\sigma} = \langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f_{\kappa \sigma} \rangle = \frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \left(\Delta^{(j,k)} \right)^*
\]

\[
T^{(6)}_{ijk;\sigma} = \langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f_{\kappa \sigma} \rangle = \frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \left(\Delta^{(j,k)} \right)^*
\]

\[
T^{(7)}_{ijk;\sigma} = \langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f_{\kappa \sigma} \rangle = \frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \left(\Delta^{(j,k)} \right)^*
\]

\[
T^{(8)}_{ijk;\sigma} = \langle f^\dagger_i f^\dagger_j \rangle \langle f^{\dagger}_{\sigma} f_{\kappa \sigma} \rangle = \frac{16}{J_{ij} J_{jk}} \left(\Delta^{(i,j)} \right)^* \left(\Delta^{(j,k)} \right)^*
\]

\[\text{(C15)}\]

where we have used \(t^{(j,k)} = t^{(k,j)} \), \(\Delta^{(j,k)} = \Delta^{(k,j)} \). (Here we have defined \(\Delta^{(ab)} = \Delta^{(x,z)} \) on \(x \) and \(z \) links, and \(-\Delta^{(y)} \) on \(y \) links, in accordance with Eq. \[\text{(B9)}\].)

We next substitute in the mean-field values given in Eq. \[\text{(B7)}\] for \(\Delta \) on each link. We take \(t \) to be the hopping from sublattice 1 to sublattice 2 (\(t^{(i,j)} = \langle f^{\dagger}_{R_i \sigma} f_{R_j \sigma} \rangle \)), and similarly for \(\Delta \). Here we write the induced quadratic couplings between two sites on sublattice 1: the couplings between sites on sublattice 2 are the same, but with \(r_{ij} \rightarrow -r_{ij} \).

For \(r_{ij} = \hat{i}_1 \), the interaction is of the form \(J' S^+_i S^+_j S^-_k \), with \(ij \) an \(x \)-link and \(jk \) a \(z \)-link. We thus have \(\Delta^{(i,j)} = 0 \), giving an interaction of:

\[
2iJ' \left[-t^{(x)} \Delta^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k + \Delta^{(x)} t^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k \right.
\]

\[
+ \left. t^{(x)} \Delta^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k \right]
\]

\[\text{(C16)}\]

with

\[
\Delta^{(x)} = -i\frac{J_x}{16} \quad \Delta^{(y)} = i\frac{J_y}{16}
\]

\[\text{(C17)}\]

Similarly, for \(r_{ij} = \hat{i}_2 \), we have \(J' S^+_i S^-_j S^-_k \), with \(ij \) a \(y \)-link and \(jk \) a \(z \)-link. Hence again \(\Delta^{(i,j)} = 0 \), and the interaction

\[
2iJ' \left[t^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k + \Delta^{(y)} t^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k \right]
\]

\[\text{(C18)}\]

with

\[
\Delta^{(y)} = -i\frac{J_y}{16} \quad \Delta^{(y)} = -i\frac{J_y}{16}
\]

\[\text{(C19)}\]

For \(r_{ij} = \hat{i}_3 \), we have \(J' S^+_i S^+_j S^-_k \), with \(ij \) an \(x \)-link and \(jk \) a \(y \)-link. This gives the interaction:

\[
iJ' \left[\left(\Delta^{(x)} \Delta^{(y)} f^\dagger_i f^\dagger_j f^\dagger_k + \Delta^{(x)} t^{(y)} \right) f^\dagger_i f^\dagger_j f^\dagger_k \right.
\]

\[
+ \left. \Delta^{(x)} t^{(y)} \right] f^\dagger_i f^\dagger_j f^\dagger_k
\]

\[\text{(C20)}\]

with

\[
\Delta^{(x)} = -i\frac{J_x}{16} \quad \Delta^{(y)} = -i\frac{J_x}{16}
\]

\[\text{(C21)}\]

In all 3 cases, we obtain the mean-field interaction:

\[
\pm 2iJ' \left[f^\dagger_i f^\dagger_j \right. f^\dagger_k + f^\dagger_i f^\dagger_j f^\dagger_k - f^\dagger_i f^\dagger_j f^\dagger_k
\]

\[\text{(C22)}\]

We see that this induces a coupling only between Majorana modes in the dispersing band, leaving the band structure of the Majoranas localized on the \(z \)-links unaltered.

Hence, the net effect of adding the 3-spin interaction, at mean-field level, is exactly to add the next-nearest neighbor couplings to the dynamical Majorana modes, while leaving the localized modes unchanged.

Appendix D: Inducing Chern-Simons terms by integrating out fermions in the gapped B phase

Here we will consider the 1-loop perturbative correction to the effective \(U(1) \) gauge field propagator due to the low-energy fermions in the gapped phase. We demonstrate that
though the Dirac point is intrinsically a property of the band structure of the superconductor – such that the electron bubble has both particle- particle and particle -hole contributions – the matrix structure about the Dirac point is such that integrating out the low-energy fermions produces exactly the same Chern-Simons correction to the effective action as doing so for a normal Dirac cone.

Since the Dirac cone is in only one of the 4 fermion bands, and we are interested only in the long-wavelength theory, we will isolate the effect of the propagator of the dispersing Majorana band. The general form of the spin-down propagator in the gapped B phase is

\[
G_{\downarrow \downarrow} = \frac{1}{2} \left\{ \frac{1}{4m_q^2 + \omega^2 + |\Delta_q - t_q|^2} \right. \\
\left. \begin{array}{cccc}
-2m_q - i\omega & -i(\Delta_q - t_q) & 2m_q + i\omega & i(\Delta_q - t_q) \\
2m_q + i\omega & i(\Delta_q - t_q) & 2m_q - i\omega & -i(\Delta_q - t_q) \\
-i(\Delta_q - t_q^*) & i\omega - 2m_q & i(\Delta_q - t_q^*) & 2m_q - i\omega \\
i\omega - 2m_q & i(\Delta_q - t_q^*) & i\omega - 2m_q & -i(\Delta_q - t_q^*) \\
\end{array} \right\}
\]

\[\text{(D1)}\]

where we use the basis \(\psi = (c_{q1} \ c_{q2} \ c_{q1}^\dagger \ c_{q2}^\dagger)^T\).

Here we choose \(t_q = -2J_z - J_x e^{i\theta_1} - J_y e^{i\theta_2}, \Delta_q = J_x e^{i\theta_1} + J_y e^{i\theta_2}\). In this case the bottom line is the propagator of the flat band (energies given by \(\pm |t + \Delta| = \pm 2J_z\); the top line is the propagator of the dispersing band, which captures all of the low-energy physics near the Dirac cones. It is easy to check that cross-terms between the two spin down bands vanish in 1-loop order in the fermion correction, so that we will drop contributions of the flat gapped band entirely.

In the vicinity of the Dirac cone \(\vec{q} = (\frac{\pi}{3}, 0)\), at the isotropic point \(J_x = J_y = J_z\), we have

\[\Delta_q - t_q \approx \sqrt{3}J \quad m_q \approx \frac{3}{2} \sqrt{3}J'.\] \[\text{(D2)}\]

Near this point in the Brillouin zone, then, the part of the propagator that we are interested in can be expressed as:

\[
\begin{align*}
G_{c,q,\omega}^{(0)} &= \frac{1}{2} \left(G_{c,q,\omega}^{(0)} + G_{c,q,\omega}^{(sc)} \right) \\
G_{c,q,\omega}^{(0)} &= \frac{1}{4m_q^2 + \omega^2 + |\Delta_q - t_q|^2} (p^\mu \sigma_\mu + 2m\sigma_z) \otimes 1 \\
G_{c,q,\omega}^{(sc)} &= \frac{1}{4m_q^2 + \omega^2 + |\Delta_q - t_q|^2} (p^\mu \sigma_\mu + 2m\sigma_z) \otimes \sigma_x
\end{align*}
\]

with \(\sigma^\mu = (1 \ \sigma_y \ \sigma_x').\) In addition to the usual term \((G_{c,q,\omega}^{(0)}), the fermion propagator contains an anomalous term \((G_{c,q,\omega}^{(sc)}) due to the presence of superconductivity. The 2 \times 2 matrix structure of both of these terms is, however, the same.

In this long-wavelength limit, the interaction between fermions and the gauge field is

\[A^\mu_k \sum_k \psi_k^\dagger \gamma_\mu \psi_{k-q} - 2\delta_{\mu0} \delta_{q0} \quad \text{(D4)}\]
1. A. Kitaev, *Annals of Physics* 321, 2 (2006), ISSN 0003-4916.
2. A. Y. Kitaev, *Annals of Physics* 303, 2 (2003), ISSN 0003-4916.
3. J. B. Marston and I. Affleck, Phys. Rev. B 39, 11538 (1989).
4. X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
5. P. W. Anderson, Mat. Res. Bull. 8, 153 (1973).
6. P. W. Anderson, Science 235, 1196 (MAR 6 1987).
7. V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (Nov 2 1987).
8. R. B. Laughlin and Z. Zou, Phys. Rev. B 41, 664 (1989).
9. R. B. Laughlin and Z. Zou, Phys. Rev. B 42, 4073 (1990).
10. X.-G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (Jun 1 1989).
11. K. P. Schmidt, S. Dusuel, and J. Vidal, *Phys. Rev. Lett.* 100, 057208 (Feb 2008).
12. S. Dusuel, K. P. Schmidt, and J. Vidal, *Phys. Rev. Lett.* 100, 177204 (Apr 2008).
13. G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos, and J. Vala, *Phys. Rev. Lett.* 101, 240404 (Dec 2008).
14. J. Vidal, K. P. Schmidt, and S. Dusuel, *Phys. Rev. B* 78, 245121 (Dec 2008).
15. T. H. Hansson, V. Ogasayes, and S. L. Sondhi, *Annals of Physics* 313, 497 (Oct 2004).
16. M. de Wild Propitius, *Topological interactions in broken gauge theories*, PhD thesis, University of Amsterdam (1995).
17. K. S. Tikhonov, M. V. Feigel'man, and A. Y. Kitaev, arXiv:1008.4106.
18. D. S. Rokhsar, Phys. Rev. B 42, 2526 (1990).
19. G. Kells, J. K. Slingerland, and J. Vala, *Phys. Rev. B* 80, 125415 (Sep 2009).
20. N. Read and D. Green, *Phys. Rev. B* 61, 10267 (Apr 2000).
21. J. Chaloupka, G. Jackeli, and G. Khaliullin, Physical Review Letters 105, 027204 (Jul 2010).
22. H. Jiang, Z. Gu, X. Qi, and S. Trebst, arXiv:1101.1145.
23. S. Bravyi, M. B. Hastings, and F. Verstraete, *Phys. Rev. Lett.* 97, 050401 (Jul 2006).
24. P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (Sep 1992).
25. L. Fu and C. L. Kane, *Phys. Rev. Lett.* 100, 096407 (Mar 2008).
26. Usually this is done by introducing a fermion flavor index \(N \), and treating \(1 \) as a small parameter so that the perturbative expansion is controlled, as described in Ref. [5].