Health Risks Related to the Water Quality in the Obili Fish Pond

Arnold Landry Fotseu Kouam¹, Paul Bertrand Sob Nangou¹, Cécile Rita Boudem Tsane¹, Eric Joselly Kouedeum Kueppo¹, Rodrigue Nanfack Dogmo¹, Jean Dzavi¹,²

¹Laboratory of Hydrobiology and Environment, Faculty of Sciences, University of Yaounde I, P.O Box 812 Yaounde, Cameroon
²Hydrological Research Centre, Institute of Geological and Mining Research, P.O Box 4110 Yaounde, Cameroon

Abstract: A study aimed at evaluating the health risks of the water used for fish farming in the Obili pond was carried out in January 2021. The variables retained for this work were measured according to standard protocols and are of meteorological order (brightness, air temperature and humidity); physicochemical (water temperature, pH, TDS, color, turbidity, suspended matter, dissolved oxygen, carbon dioxide, electrical conductivity, alkalinity, total hardness, nitrites, nitrates, ammonium, phosphates and potassium) and biological (bacteria, protozoa and helminths). The results obtained show acidic water, weakly saturated with oxygen, nutrients (nitrogen, phosphates and potassium) on one hand and on the other hand highly charged with solid particles. Mesophilic heterotrophic aerobic bacteria (92.5%) constitute the most abundant group of bacteria. Escherichia coli is found only at the entrance to the pond and contributes 1% of the bacterial density. The protozoan community is dominated by coccidia (43%) and amoeba (41%). Cryptosporidium parvum is the most dominant species of coccidia while Entamoeba histolytica dominates in amoeba with 370 oocysts / L and 244 cysts / L, respectively. Nematodes occupy 2/3 of the helminth community and are dominated by Ascaris (240 eggs / L). Diphyllolothrium latum shows the highest density in cestodes (572 eggs / L). The presence of these pathogenic organisms at densities above the standards constitutes a real health risk for the use of this water in fish farming. These parasites can directly infect fish farmers through skin penetration or concentrate on the integument and or flesh of fish and infect humans when consumed.

Keywords: Water Physico-Chemistry, Bacteria, Protozoa, Helminths, Health Risk, Obili Fish Pond

Introduction
The diseases that generally affect humans are partly linked to the quality of drainage and treatment of wastewater which is widely used in developing countries (Lalami et al., 2014, 2010). Wastewater is an important vehicle for biological (parasites, bacteria and viruses) and chemical pathogens resulting from human activities (Ajeagah Aghaindum and Fotseu Kouam, 2019). Pathogens can be transmitted to humans during direct contact with wastewater, or indirectly by the consumption of crops irrigated with this water, or even by products of animal origin (Aquaculture and Organization, 1989; Rorat et al., 2019). These poor quality waters therefore constitute a permanent threat to both human and animal health (Ajeagah Aghaindum et al., 2017; Kettani and Azzouzi, 2006; Talouizte et al., 2007).

The assessment of the health risk associated with water in a receptive milieu is done through multiple approaches associated with the complexity of aquatic ecosystems (Vanden Bossche and Usseglio-Polatera, 2005). The methods for assessing the quality of the water in an aquatic ecosystem can be physicochemical and or biological. Physico-chemical methods make it possible to determine the quality of the biotope (Kosmala, 1998), while biological methods highlight the health risks linked to biological agents in the environment. These health risks can be assessed by viral, parasitic and bacterial studies (Kettani and Azzouzi, 2006; Talouizte et al., 2007).

In Cameroon, several studies have reported the health risk associated with the use of wastewater. These are those of Ajeagah Aghaindum et al. (2007) on the evaluation of the abundance of resistance forms of two pathogenic protozoa in two aquatic biotopes in Yaoundé; (Kouam Kennogne et al., 2010) on the reuse of wastewater in urban market gardening in the Abiergue watershed; Tsafack et al. (2019) in urban wastewater watering vegetable crops in Dschang; Tchooungsi et al., (2020) on water supply and health risks in the upstream watershed of Abiergue in Yaoundé and Ajeagah Aghaindum et al. (2013) on ciliated protozoa and benthic invertebrates from Obili Pond. However, no data is available on the health...
Health Risks Related to the Water Quality in the Obili Fish Pond

risks associated with pathogens (bacteria, protozoa and helminths) in the water used in the Obili fish pond. That is why this study aims at assessing the health risks associated with the use of waters from Obili Fish Pond. Specifically, it is a question of (i) determining certain abiotic variables characteristic of the Obili fish pond, (ii) evaluating the diversity and density of bacteria, protozoa and intestinal helminths in this pond and (iii) putting highlights the risks associated with the presence of these pathogens on the health of fish farmers and fish consumers.

I. Material and methods

I.1. Study site

Created in 1948 by the colonial government on the Oléza stream downstream from the University Hospital Center, the Obili fish pond is located in Yaoundé III Sub Division, Mfoundi department, Center region and extends between 3° 30' and 3° 58' N and between 11° 20' and 11° 40' E with an average altitude of 720 m. It is about 60 m wide and 100 m long with a depth of 1.80 m upstream and 2.5 m downstream, for a volume of 15,000 m3 according to the initial data (Ajeagah Aghaindum et al., 2013). Since then, some of its descriptions have changed. Currently, the area and average volume correspond to 9745.84 m2 and 76105.92 m3 respectively. The current maximum depth is 7 m. The activities carried out around this pond concern, among other things, breeding and agriculture practiced upstream, the supply of fingerlings for fish farmers, the popularization of breeding methods and studies on the aquaculture ecosystem. The prevailing climate is equatorial type with four seasons and characterized by moderate precipitation (1633.33 mm / year on average) and an average temperature of 24.55 °C. The four seasons of unequal importance are divided into a long dry season (from mid-November to mid-March), a short rainy season (from mid-March to the end of June), a short dry season (from July to mid-August) and a long rainy season (from mid-August to mid-November) (Suchel, 1987). However, this distribution of seasons is disrupted with current climate change.

I.2. Sampling station

Figure 1 shows the Obili Pond and the three sampling stations. Station S1 located at the level of the outfall has the geographical coordinates of 3° 51' 30" N and 11° 29' 57", 40" E. At the level of this station, the vegetation is dense and consists mainly of the Poaceae of the genus Echinochloa. Station S2 is located in the middle of the pond with coordinates 3° 51' 21.04" N and 11° 29' 58.55" E. Station S3 is located at the outlet. This station has coordinates 3° 51' 13.03" N and 11° 29' 56.74" E and has rich vegetation mainly made up of the genera Echinochloa and Pistia.
I.3 Sampling and physicochemical analysis methodology
The measurements of the physico-chemical parameters took place both in the field and in the laboratory following the recommendations of APHA (1998) and Rodier et al. (2009). In the field, the geographical coordinates, the luminosity (Lux), the humidity rate (%), the air temperature (°C), the water temperature (°C) and the saturation rate in dissolved oxygen (%) were measured respectively using a Garmin Extre 20 brand GPS, a Testo 540 brand luxmeter, a Testo 610 brand thermo-hydrometer and a HACH brand oximeter HQ30d. Likewise, pH (UC), electrical conductivity (µS / cm) and total dissolved solids (mg / L) were measured using a HACH HQ 14d brand TDS conductivity meter. For physico-chemical parameters measured in the laboratory (SS, turbidity, color, sodium hypochlorite, NH₃, NO₂, NO₂, PO₄, alkalinity, oxidability, carbon dioxide, potassium and total hardness), the water samples were sampled without blowing bubbles at each station using 250 and 1000 mL double-capped polyethylene bottles and transported in a refrigerated enclosure to the Hydrobiology and Environment laboratory of the University of Yaoundé 1. The Suspended Solid, turbidity, sodium hypochlorite and water color were measured by colorimetry with the Hydrotest HT1000 spectrophotometer. While measurements of the contents of water in different forms of nitrogen (NH₃, NO₂, NO₂), phosphates (PO₄), potassium (K⁺) and total hardness (mg / L of CaCO₃) were made using the appropriate reagents and read on the Hydrotest HT1000 spectrophotometer. Alkalinity, carbon dioxide and oxidability were determined by volumetry using specific reagents.

I.4. Biological analyzes
I.4.1 Sampling
The water samples intended for the biological analyzes were taken at each station following the recommendations of Rodier et al. (2009). For the bacteriological analyzes, the water samples were taken using glass bottles of 100 mL previously sterilized in an autoclave at 120°C, filled to the brim and store in a refrigerated enclosure. As for the water samples intended for the analyzes of the forms of resistance of the intestinal parasites, after a slight agitation of the micro habitats to allow the suspension of the parasites, 1 L of water was taken using the sterile polystyrene vials, then fixed with 2 mL of 10% formalin. All of the samples were transported to the laboratory for analysis.

I.4.2 Identification techniques and enumeration of bacteria
In the laboratory, the bacteriological analysis of the water samples focused on the search for Mesophilic Aerobic Heterotrophic Bacteria (MHAB), Fecal Streptococci (FS), Total Coliforms (TC), Fecal Coliforms (FC) and *Escherichia coli* (*E. coli*). The method of analysis used is the plating technique on Mac Conkey agar culture medium, then poured into petri dishes 90 mm in diameter (Devane et al., 2020; Nola et al., 1998). A 1 mL sample of water was placed in a sterile, empty petri dish; then, the culture medium was poured and then maintained in super cooling at 45-50°C. The whole (sample) was left until completely solidified before incubation at the appropriate temperatures. After an incubation period of 24 hours at room temperature (25°C) of Plate Count Agar (PCA) medium for MHAB, 37°C on BEA medium for SF and Endo medium for TC and a temperature of 44°C on Endo medium for FC and *E. coli*, the growth of different colonies was observed. The quantitative analysis consisted of the enumeration of bacterial colonies. The results were expressed as the number of Colonial Forming Units per milliliter (CFU / mL). The count of the germs isolated was carried out by direct counting of all the colonies on a Petri dish. *E. coli* colonies are recognizable by their metallic sheen unlike CFs which gives red colonies with a metallic sheen.

I.4.3. Parasite concentration techniques
The sedimentation technique was used for the quantification of protozoa. The samples were previously allowed to sediment for 24 hours then the supernatant was poured in and the volume of the pellet was collected. In fact 5 mL of sample were taken and introduced into a test tube then, 1 mL of 10% formalin was added to ensure the fixation of the organisms at the end, 5 mL of distilled water and 2 drops of lugol were successively added. While the formalin-ether concentration technique was used for the quantification of helminth eggs and larvae, in fact 5 mL of the pellet was introduced into a test tube followed by 2 mL of 10% formalin and 3 mL of ether were added successively. The mixture obtained for each of these two techniques was brought to centrifugation at 1500 revolutions / min for 5 min. Subsequently, 2 drops of the pellet were taken and placed on a microscope slide and covered with a coverslip for identification.

I.4.4. Identification and enumeration
The observations were carried out thanks to the YVENEM microscope with 40X and 100X objectives and the identification was made using measurements taken with the help of an ocular micrometer and thanks to the of the WHO bench aid of 1994 (World Health Organization, 1994) and the identification keys of Cheikhrouhou (2010). The count was made using the formula proposed by (Ajeagah Aghandum et al., 2010) thus the number (X) of parasites in 1 L of sample was calculated using the following formula:

\[
X = \frac{N \times D}{V}
\]

where:
- \(N\): number of parasites counted,
- \(D\): dilution factor,
- \(V\): volume of sample.
Health Risks Related to the Water Quality in the Obili Fish Pond

I. Methods

I.1.1 Abiotic variables

In Obili Pond, the variables showed no significant difference at the 5% level between the sampling stations. Table 1 indicates that the percentage of humidity in the air varied from 50.1% to 66.6% with an average of 57.2 ± 8.3%. The air temperature fluctuated between 27.88°C and 36.33°C with an average of 32.6 ± 4.3°C while the water temperature presented values between 22.7°C and 26°C with an average of 24.2 ± 1.2°C. Oxygen saturation was low at stations S1 and S3, but high at station S2. These values were between 28.5% and 70.1% with an overall average of 45.5 ± 21.8%. The oxidability values were low (0.2 - 1.9 mg/L) with an average of 0.5 ± 0.3 mg/L of oxygen. The highest values of electrical conductivity, pH, TDS, color and turbidity were recorded at station S1. Overall, the waters turned out to be acidic with values less than or equal to 5.5 UC and carbon dioxide contents varying between 7.04 mg/L and 15.84 mg/L with an average of 10.5 ± 4.6 mg/L. The values of the electrical conductivity were high and varied from 1581 µS/cm and 1613 µS/cm with an average of 1592.6 ± 17.6 µS/cm. Alkalinity and total hardness showed values between 12 and 20 mg/L, 8 and 16 mg/L respectively. TDS and color have included values between 793 mg/L and 806 mg/L and 299 Pt,Co and 366 Pt,Co respectively. The nutrient levels in the water (nitrites, nitrates and phosphates) were low throughout the pond. The nitrite (NO₂⁻) concentrations varied between 0.07 mg/L and 0.25 mg/L with an average of 0.15 ± 0.09 mg/L. The nitrate values fluctuated between 0.01 mg/L to 0.05 mg/L with an average of 0.03 ± 0.02 mg/L. The phosphate values (PO₄³⁻) fluctuated between 0.47 mg/L and 0.78 mg/L with an average 0.63 ± 0.15 mg/L. The ammonium (NH₄⁺) contents presented values between 0.32 mg/L and 0.87 mg/L with an average of 0.67 ± 0.30 mg/L. The potassium contents were low with values between 3.4 mg/L and 3.8 mg/L with an average of 3.6 ± 0.2 mg/L.

I.1.2 Variation in microbiological parameters

I.1.2.1 Abundance of bacteria and intestinal parasites

Microbiological analysis identified the two groups of intestinal parasites and bacteria in varying proportions (Figure 2). The abundance of bacteria identified (83%) largely dominates that of resistance forms of protozoa (9%) and helminths (8%) (Figure 2A). Bacteriological analysis shows that MHAB bacteria have the highest density (92.5%), followed by TC (4%) and CF (2%), the lowest percentage was with FS (0.5%) (figure 2B). Parasitological analysis allowed the identification of three groups of protozoa with a dominance of coccidia, i.e. 43% represented by the species Cryptosporidium parvum, Cyclopsora cayetanensis and Isospora belli, followed by

[Table 1: summary of some abiotic data]

Parameters	S1	S2	S3	Min	Max	Mean ± SD
Air temperature (°C)	36.33	33.72	27.88	27.88	36.33	32.6 ± 4.3
Humidity (%)	50.1	55.8	66.6	50.1	66.6	57.2 ± 8.3
Luminosity (Lux)	26200	24350	22990	22990	26200	24513.3 ± 1611.2
Water temperature (°C)	26	24	22.7	22.7	26	24.2 ± 1.2
Dissolved oxygen O₂ (mg/L)	2.51	5.04	2.06	2.06	2.06	3.2 ± 1.6
Percentage of dissolved oxygen (%)	37.9	70.1	28.5	28.5	70.1	45.5 ± 21.8
pH (UC)	5.5	5.45	5.41	5.41	5.5	5.45 ± 0.04
Electrical conductivity (µS/Cm)	1613	1584	1581	1581	1613	1592.6 ± 17.6
TDS (mg/L)	806	793	795	793	806	798 ± 7
Turbidity (FAU)	34	20	21	20	34	25 ± 7.8
Color (Pt,Co)	366	299	309	299	366	324.6 ± 36.1
Suspended solids (mg/L)	104	106	102	102	104	104 ± 2
Nitrates (mg/L NO₃⁻)	0.01	0.03	0.05	0.01	0.05	0.03 ± 0.02
Nitrates (mg/L NO₂⁻)	0.25	0.14	0.07	0.07	0.25	0.15 ± 0.09
Phosphates (mg/L of PO₄³⁻)	0.66	0.78	0.47	0.47	0.78	0.63 ± 0.15
Ammonia (mg/L of NH₄⁺)	0.87	0.32	0.32	0.32	0.87	0.67 ± 0.30
Carbon dioxide (mg/L)	7.04	8.8	15.84	7.04	15.84	10.5 ± 4.6
Alkalinity (mg/L)	12	18	20	12	20	16.6 ± 4.16
Total hardness (mg/L of CaCO₃)	8	15	16	8	16	13 ± 4.3
Potassium (mg/L of K)	3.8	3.4	3.6	3.4	3.8	3.6 ± 0.2
Sodium hypochlorite (% NaOCl)	3.3	2.1	1.4	1.4	3.3	2.26 ± 0.96
Oxydability (mg/L)	1.19	0.2	0.4	0.2	1.19	0.5 ± 0.3
amoebae (41%) with the species Entamoeba histolytica, Entamoeba hartmanni, Iodamoeba butschili and Endolimax nana. The flagellates presented the lowest density; either 16% represented by the species Chilomastix mesnili, Enteromonas hominis and Giardia intestinalis (Figure 2C). On the other hand, only two groups of helminths were identified with a dominance of nematodes, either 65% represented by the species Strongyloides sp., Ascaris sp., Ankylostoma duodenale, Trichuris trichiura, Enterobius vermicularis, Trychostrongylus sp. and 35% of the cestodes represented by the species Diphylobothrium latum, Hymenolepis nana, no trematode eggs were observed (Figure 2D).

Figure 2: global relative abundance of pathogens (A), relative abundance of bacteria (B), relative abundance of protozoa (C) and relative abundance of helminths (D)

II.1.2.2 Spatial variation in the density of the bacteria identified
A study of the spatial variation of the groups of bacteria in the Obili fish pond revealed that E. coli is present only at the entrance to the fish pond while the other bacteria are present throughout the pond. The center of the Pond was the least exposed to bacteria with an abundance of 2570 CFU / mL against 2620 CFU / mL at the entrance and 34780 CFU / mL at the exit of the Pond. The densities of ST and MHAB increase from the inlet to the outlet of the pond waters. MHAB were the densest with an average of 12360 ± 18,810 CFU / mL unlike SF which were the least abundant with an average of 63.33 ± 58.59 CFU / mL. The TCs and FCs are homogeneously dispersed throughout the pond and the FCs made up almost one-third of the TCs present in the medium. The average FC / FS ratio is greater than 7 and reveals that the bacterial pollution of the Obili fish pond is mainly of human origin.

Figure 3: spatial distribution of different groups of bacteria in the Obili pond
II.1.2.3 Spatial variation in the density of resistance forms in protozoa

For all the protozoan species identified, the highest densities were obtained at station S1. As regards amoebae, *E. histolytica* presents the highest density, either 420 cysts/L, while the lowest densities (0 cysts/L) were obtained at stations S2 and S3. In Coccidia group, *C. parvum* presents the highest density, either 740 oocysts / L (S1), while the lowest densities (0 oocysts / L) were obtained at stations S2 and S3. Concerning flagellates, *E. hominis* has the highest density, either 350 cysts/L at the entrance to the Pond, while the lowest densities (0 cysts/L) were obtained at the exit of the Pond (*C. mesnili, E. hominis, G. intestinalis*) (Figure 4).

![Figure 4](image4.png)

Figure 4: spatial distribution of different groups of protozoa in the Obili pond

II.1.2.4 Spatial variation in the density of resistance forms of identified helminths

With the exception of *D. latrum* and *Trichostrongylus* sp., the highest densities of the helminths identified were obtained at the entrance to the Pond. As for nematodes, *Ascaris* has the highest density, 594 eggs / L (S1), followed by *Ankylostoma duodenale* 386 eggs / L (S1) while the lowest densities of nematodes (0 eggs / L) were obtained at stations S1 and S2 (*Trichostrongylus* sp., S3 (*A. duodenale*), S2 (*T. trichiura*), S2 and S3 (*E. vermicularis*). For cestodes *D. latrum* has the highest density, either 572 eggs / L (S2), while the lowest densities (120 eggs / L) were obtained at S3 stations (*D. latrum, H. nana*) (figure 5).

![Figure 5](image5.png)

Figure 5: spatial distribution of different groups of helminths in the Obili pond
II.1.2.5 Relationship between environmental variables and pathogens

Table 2 shows significant correlations obtained between certain variables. Significant and positive correlations were observed between the following abiotic variables: luminosity with water temperature (0.999*), pH (1.00*) and NaOCl (0.998*); the water temperature with pH (0.998*), nitrates (0.998*) and NaOCl (1.00*); TDS with color (1.00**) and oxidability (0.999*); color with oxidability (0.999*) and nitrates with NaOCl (0.999*). Likewise, significant and negative correlations were obtained between conductivity and hardness (-1.00*), and nitrates and pH (-0.998*).

Positive significant correlations were obtained between certain physicochemical and biological parameters. Thus the temperature is correlated with the density of *H. nana* eggs (p = 1.00*); dissolved oxygen to *D. latum* (0.999*); the pH at *G. intestinalis* (0.999*) and at *H. nana* (0.9970*); the conductivity to *C. parvum* (0.999*) and to *E. hominis* (0.998); turbidity at *I. butschili* (0.998*), *Ascaris* sp. (1.00**), *E. vermicularis* (0.998*) and *E. coli* (0.998*); nitrates are correlated with *E. hartmanni* (0.998*) and *H. nana* (0.999*); potassium correlates with *T. trichiura* eggs (0.998*); NaOCl is correlated with *H. nana* (1.00**). Total hardness is correlated with *C. parvum* (1.00*).

Negatively significant correlations were observed. Thus, alkalinity is correlated with *E. hartmanni* (-1.00*), *C. mesnili* (-1.00**) and *C. cayetanensis* (-1.00*); nitrates are correlated with *E. nana* (-0.999*) and *G. intestinalis* (-1.00**); nitrogen correlates with *Trychostrongylus* sp. (-0.999*); hardness is correlated with *E. hominis* (-1.00*).

Table 2: Correlations between some physico-chemical and biological variables. The significant values bear * or ** at 5 % or 1 % respectively

Genera	T	O₂	pH	Cond	Turb	Nitrates	Nitrites	Anom	Alkali	T hard	Pota	NaciO
E. hartmanni	0.99	-0.033	0.983	0.982	0.944	-0.969	0.998	0.288	-1.00	-0.988	0.699	0.955
I. butschili	0.920	-0.302	0.896	0.996	0.998	-0.866	0.945	0.536	-0.971	-0.993	0.866	0.931
E. nana	0.985	0.264	0.994	0.883	0.804	-0.999	0.971	0.008	-0.946	-0.897	0.456	0.980
C. parvum	0.962	-0.181	0.945	0.999	0.982	-0.922	0.978	0.427	-0.993	-1.00**	0.797	0.969
C. cayetanensis	0.991	-0.041	0.981	0.984	0.946	-0.967	0.998	0.296	-1.00	-0.989	0.704	0.994
C. mesnili	0.986	-0.070	0.975	0.989	0.955	-0.959	0.995	0.323	-1.00**	-0.993	0.725	0.991
E. hominis	0.967	-0.162	0.951	0.998	0.978	-0.929	0.982	0.410	-0.995	-1.00*	0.785	0.974
G. intestinalis	0.994	0.203	0.999	0.911	0.839	-1.00**	0.984	0.055	-0.964	-0.923	0.511	0.990
Ascaris sp.*	0.900	-0.349	0.873	0.991	1.00*	-0.840	0.927	0.578	-0.957	-0.986	0.890	0.912
T. trichiura	0.549	-0.780	0.500	0.782	0.866	-0.444	0.605	0.914	-0.675	-0.763	0.998	0.573
E. vermicularis	0.920	-0.302	0.896	0.996	0.998	-0.866	0.945	0.536	-0.971	-0.993	0.866	0.931
Trychostrongylus sp.	-0.122	0.977	-0.064	0.425	-0.554	0.000	-0.189	-0.999**	0.277	0.397	-0.866	-0.150
D. latum	0.054	0.999*	0.111	-0.260	-0.400	-0.175	-0.015	-0.976	0.105	0.231	-0.765	0.025
H. nana	1.00*	0.077	0.997	0.956	0.902	-0.990	0.999*	0.181	-0.990	-0.994	0.616	1.00**
E coli	0.920	-0.302	0.896	0.996	0.998*	-0.866	0.945	0.536	-0.971	-0.993	0.866	0.931

II.2. Discussion

Physico-chemical characterization of water

During this study, the physicochemical quality of the water did not vary significantly between the sampling stations. The recorded water and air temperature values decreased slightly from the outfall to the outfall as did the light intensity at the water surface. To this end, Garner et al. (2014) state that there is a linear relationship between water temperature and air temperature. Moreover, a positive and significant correlation (r = 0.999; p = 0.05) was obtained between water temperature and light.

The average SS value (104 ± 2 mg / L) was higher than that recommended (25-75 mg / L) by Rodier et al. (2009) for water used in fish farming. This could be explained by domestic and urban discharges in the Oleza watershed that feeds the Obili Pond. In this regard, Hébert and Légaré (2000) point out that the excess SS in water generally comes from municipal discharges. Moreover, the turbidity and the color show a similar variation profile from the entry to the exit of the pond as the SS.

The pH values recorded at the different stations (5.41-5.5 UC) show that the water in the pond is slightly acidic. This pH indicates that the water is more acidic than the pH of the water recommended by the Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements Climatiques (2014) for fish water (6-9 UC). Acidification is believed to be linked to the fermentation processes of decaying organic matter in the Pond. According to Gaudreau (1991), the acidity of a body of water can be caused by the presence of organic acids released during the decomposition process of vegetation and by the presence of carbon dioxide dissolved in water.

The percentage of dissolved oxygen saturation (45.5 ± 21.8%) is lower than the interval recommended by Schlumberger and Bouretz (2002) for aquaculture water (50 to 62.5%). This shows that the medium is weakly oxygenated. This could be explained by the
The wide distribution of *Cryptosporidium* oocysts is favored not only by their small size which allows them to disseminate quickly but also by their double wall allowing them to resist disinfection techniques. Similar observations were made by Tsomene Namekong and Ajeagah Agbaikindum (2020). *D. latrun* has the highest density of parasites found in the pond. This high density could be explained by the fact that this species has fish as an intermediate host and the piscicultural activity is generally more intense in the center of the pond (Dakwen et al., 2019, 2015; Towa et al., 2019). Pathogens that concentrate in the viscera of fish or infest their tissues can survive and in some cases reproduce until the fish are harvested and consumed (World Health Organization, 1994).

The fluctuations observed in certain bacterial groups would be linked to environmental conditions. The absence of *E. coli* at stations S2 and S3 is thought to be the result of their passive adhesion to organic (fish skin and plant walls) and inorganic substrates (Boutaleb, 2007; Noah Ewoti et al., 2011). This result could be justified by the fact that enteropathogenic strains carry specific genes in their plasmids which code for virulence factors (type IV pili, adhesins, toxins) and which play an important role in the process cellular adhesion. They allow the interconnection of bacteria in micro-colonies favoring their stabilization (Trabulsli et al., 2002). In addition, the acidic pH and high SS are stressors for microorganisms. The abundance and omnipresence of MHAB would reflect the high load of organic matter and favorable conditions for development. The ratio $R = FC / FS$ (faecal coliforms on faecal streptococci) is used as a first order element to determine the origin of faecal pollution. The average FC / FS ratio of the Obili Pond indicates that the bacteriological pollution of this pond comes mainly from human sources following the evacuation of the gun latrines and the discharge of domestic wastewater upstream of the pond (Saab et al., 2007). Since FC and FS are conditioned by certain abiotic variables such as pH and temperature, the latter can also influence the abundances of these bacteria in the best (Chigbu et al., 2004).

The use of untreated wastewater in fish farming is not without consequences on the health of fish farmers and consumers. In fact, certain species such as *D. latrun* also called *Tania* of fish, salmonella, TC and FC can infect fish and contaminate consumers (Gamane Kaffeine et al., 2018). In fact, the WHO recommends the use of water containing less than one helminth egg per liter (Jimenez, 2007). However, the high densities observed constitute an enormous health risk for fish farmers who can be infected by transcutaneous penetration of *Ankylostoma* and *Strongyloides* larvae. Indeed, studies carried out on
the viability of helminths have been able to demonstrate that helminth eggs can maintain their viability even after exposure to very high temperatures or to biocides (Fotsou Kouam and Ajeagah Aghaindum, 2020; Khalid and Fethi, 1995; Khalid et al., 2018). Similarly, Gamane Kaffine et al. (2018) demonstrated the presence of TC, CF and TS in the flesh of fish before and after smoking; because these germs can resist and even proliferate if the process of smoking and cooling the fish is not correctly applied.

The presence of these parasitic elements at high densities constitutes a real constraint linked to the reuse of this water in fish farming. The densities of bacterial and parasitic elements obtained are much higher than the standards recommended for the reuse of wastewater. Indeed, according to the Aquaculture and Organization (1989), Blumenthal et al. (2000) and World Health Organization (2006) for an optimal use of wastewater without risk of infections, the concentration of helminth eggs must be less than 1 egg / L, that of protozoa must be between 1 and 10 cysts / L and that of bacteria must be less than 10 CFU / mL, but the concentrations obtained in this study are much higher than those recommended. This constitutes a real danger for fish farmers and consumers. If wastewater heavily loaded with organic and faecal matter is continuously introduced into the Obili pond without prior treatment, this fish pond will become a source of contamination of the various species of fish reared and may constitute a factor in the resurgence of bacterial diseases and parasitic.

Conclusion
At the end of this study on the assessment of the health risks of the waters of the Obili piscicultural pond, it appears that the waters of this pond are slightly acidic, poorly oxygenated, but highly mineralized, rich in solid particles and nitrogen. Ammoniacal. Microbiological analysis identified 83% of bacteria (MHAB, TC, FC, FS and E. coli) 9% of protozoa (Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, Entamoeba histolytica, Entamoeba hartmanni, Iodamoeba batchli, Endolimax nana, Chilomastix mesnili, Enteromonas hominis, Giardia intestinalis) and 8% helminths (Strongyloides sp., Ascaris sp., Ankylostoma duodenale, Trichuris trichiura, Enterobius vermicularis, Trychostrongylus sp. Diphyllolothrium latrum, Hymenolepis nana). These bacterial and parasitic concentrations are well above the values prescribed by the WHO. Thus the waters of the Obili fish pond are of poor physico-chemical and biological quality and therefore not very suitable for fish farming activities and therefore constitute a danger not only for the health of fish farmers and consumers, but also for fish surrounding populations who use them for multiple purposes. To limit the spread of disease or any infection linked to the reuse of wastewater, it is essential to set up a treatment system for this water before it arrives in the pond.

Conflicts of interest: The authors declare no conflict of interest.

Acknowledgements: The authors would like to thank the Obili fish pond management team for their support during sampling and the Hydrobiology and Environment laboratory at the University of Yaoundé for the sample analyzes.

References
1. Ajeagah Aghaindum, G., Bikite, J.F., Longo, F., 2013. Qualité biocéologique d’un milieu lacustre hyper-eutrophisé en zone équatoriale (Afrique Centrale): peuplement de protozoaires ciliés et de macro invertébrés benthos-aquatiques. Afrique science 2, 50–66.
2. Ajeagah Aghaindum, G., Chumitchoua, A.L., Mboumoumbou, M., Foto Menbohan, S., 2017. Évaluation de l’abondance des kystes des protozoaires flagellés dans les eaux usées exploitées en agriculture maraîchère en zone urbaine: Cas de la ville de Yaoundé (Cameroun). Journal of Applied biosciences (Nairobi) 107, 10450. https://doi.org/10.4314/jab.v107i11.10
3. Ajeagah Aghaindum, G., Fotsou Kouam, A.L., 2019. Dissemination of the resistant forms of intestinal worms in the marshy areas of the city of Yaoundé (Cameroun): importance of some abiotic factors of the medium. Appl Water Sci 9, 19. https://doi.org/10.1007/s13201-019-0895-y
4. Ajeagah Aghaindum, G., Njine, T., Bilong Bilong, C.F., Foto Menbohan, S., Wouafo, N.M., Nola, M., Di, G.G., Huw, S., 2010. Seasonal distribution of enteric opportunistic Cryptosporidium spp. Oocysts and Giardia spp. Cysts in a tropical water basin, Cameroon water 44–57.
5. Ajeagah Aghaindum, G., Njine, T., Nola, M., Foto Menbohan, S., 2007. Evaluation de l’abondance des formes de résistance de deux protozoaires pathogènes [Giardia sp et Cryptosporidium sp dans deux biotopes aquatiques de Yaoundé (Cameroun)]: importance de quelques facteurs abiotiques. Revue d’Ecologie, Terre et Vie 72, 269–280.
6. Blumenthal, U.J., Mara, D.D., Peasey, A., Ruiz Arab, S., Arab, A., 2017. Effet de l’efficacité et de l’impact de la politique sur la distribution des flora en eaux usées. Revue d’Ecologie, Terre et Vie 72, 269–280.
7. Khalid and Fethi, 1995. Devenir des oeufs d’helminthes et des kystes de protozoaires dans un canal a ciel ouvert alimenté par les eaux usées d’un barrage hydroélectrique. Revue des sciences de l’eau 10, 217–232. https://doi.org/10.7202/705378ar
8. Blumenthal et al. (2000) 9% of bacteria (MHAB, TC, FC, FS and E. coli) 9% of protozoa (Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, Entamoeba histolytica, Entamoeba hartmanni, Iodamoeba batchli, Endolimax nana, Chilomastix mesnili, Enteromonas hominis, Giardia intestinalis) and 8% helminths (Strongyloides sp., Ascaris sp., Ankylostoma duodenale, Trichuris trichiura, Enterobius vermicularis, Trychostrongylus sp. Diphyllolothrium latrum, Hymenolepis nana).
9. Ajeagah Aghaindum, G., Bikite, J.F., Longo, F., 2013. Qualité biocéologique d’un milieu lacustre hyper-eutrophisé en zone équatoriale (Afrique Centrale): peuplement de protozoaires ciliés et de macro invertébrés benthos-aquatiques. Afrique science 2, 50–66.
10. Boutaleb, N., 2007. Etude de la formation des biofilms sur les surfaces de matériaux couramment utilisés dans les surfaces de matériaux couramment utilisés dans les canalisations d’eau potable (Thèse de Doctorat). Université de Bretagne-Sud, France.
11. Cheikhrouhou, F., 2010. Les amibes, laboratoire de parasitologie-mycologie faculté de médecine-Sfax. Sfax, Tunisie.
12. Chigbu, P., Gordon, S., Strange, T., 2004. Influence of inter-annual variations in climatic factors on fecal coliform levels in...
in Mississippi Sound. Water Res 38, 4341–4352. https://doi.org/10.1016/j.watres.2004.08.019

13. Dakwen, J.P., Togoouet, S.H.Z., Chinche, S.B., Ewoti, O.V.N., Tchonouakpe, M.K., Njime, T., 2019. Influence of the Quality of Maintenance of Fish Pond on the Biomass of Zooplankton in situ in Tropical Zone (Yaoundé-Cameroon-Central Africa). International Journal of Natural Resource Ecology and Management 4, 62. https://doi.org/10.11648/j.ijnrm.20190403.11

14. Dakwen, J.P., Zehazé, T.S.H., Tiekam, K.R.P., Djefua, H.C., Nzéliou, T.J.G., Foto, M.S., Njime, T., 2015. Physico-chemistry characterization and zooplankton specific diversity of two fishponds in Yaoundé (Cameroon, Central Africa). Journal of Biodiversity and Environmental Sciences (JBES) 6, 16–30.

15. Devane, M.L., Moriarty, E., Weaver, L., Cookson, A., Gilpin, B., 2020. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. Water Res, 185, 116204. https://doi.org/10.1016/j.watres.2020.116204

16. Dissolé, K., Mohammed, K., Khalid, K., Haloui, H.E., Haloui, B., 2001. Caractérisation parasitologique des eaux usées réutilisées enagriculture dans le Maroc Oriental (Oujda). Actes Inst. Agron. Vet. 21, 139–146.

17. El Shazly, A.M., Soliman, M., Nemr, H.E., El Moayyf, N., Abel Gawad, A.G.E., El Bendary, M., 2003. Nematodes and water pollution in eastern part of Nile Delta. J Egypt Soc Parasitol 33, 631–636.

18. Fontaine, P., 1994. Application de techniques aquaroligiques à la production d’alevins de truite arc-en-ciel, Oncorhynchus mykiss w., en circuit fermé : importance des facteurs alimentaires (Thèse de Doctorat). Biologieanimale. Institut National Polytechnique de Lorraine, Lorraine, France.

19. Fotseu Kouam, A.L., Ajeagah Agahindum, G., 2020. Effect of natural disinfectant (Morenga oleifera) and a chemical disinfectant (calcium hypochlorite) on nematode eggs: bioefficacy and impact of physico-chemical variables. Journal of Water, Sanitation and Hygiene for Development 10, 335–346. https://doi.org/10.2166/wsdev.2020.001

20. Gamane Kaffine, A., Tidjani, A., Micha, J.C., 2018. Qualité hygiénique du poisson transposé et commercialisé au Tchad. Tropicultura 36, 649–657. https://doi.org/10.25518/2295-8010.380

21. Gantzer, C., Gaspard, P., Galvez, L., Huard, A., Dumoulin, N., Schwartzbrod, J., 2001. Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research 35, 3770–3793.

22. Garner, G., Hannah, D.M., Sadler, J.P., Orr, H.G., 2014. River temperature regimes of England and Wales: spatial patterns, inter-annual variability and climatic sensitivity. Hydrological Processes 28, 5583–5598. https://doi.org/10.1002/hyp.9992

23. Gaudreau, D., 1991. Portrait synthèse de la problématique de l’eau de consommation de la Montérégie.

24. Hébert, S., Légaré, S., 2000. Suivi de la qualité des rivières et de l’eau de consommation de la Montérégie. Hydrological Processes 24, 493. https://doi.org/10.1002/hyp.9992

25. Jimenez, B., 2007. Helminth ova removal from wastewater for agriculture and aquaculture reuse. Water Sci Technol 55, 485–493. https://doi.org/10.2166/wst.2007.046

26. Kettani, S.E., Azzouzi, E.M., 2006. Prévalence des helminthes au sein d’une population rurale utilisant les eaux usées à des fins agricoles à Sétit (Maroc). Environnement, Risques & Santé 5, 99–106.

27. Khalid, K., Fethi, F., 1995. Viabilité des œufs d’Ascaris dans les boues résiduaires. Actes Inst. Agron. Veto 15, 15–19.

28. Khalid, S., Shahid, M., Natasha, Bibi, I., Sarwar, T., Shah, A.H., Niazi, N.K., 2018. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J Environ. Public Health 15, https://doi.org/10.3390/ijerph150508095

29. Kosmala, A., 1998. Evaluation écotoxicologique de l’impact des effluents de stations d’épuration sur lecours d’eau: intérêt d’une approche intégrée. Sciences de l’environnement. (Doctorat Toxicologie dell’environnement). Université de Metz, Metz, France.

30. Kouam Kennogne, G.R., Rosillon, F., Mpakam, H.G., Nonu, A., 2010. Enjeux sanitaires, socio-économiques et environnementaux liés à la réutilisation des eaux usées dans le maraichage urbain : cas du bassin versant de l’Abiergué (Yaoundé-Cameroon). Vertigo - la revue électronique en sciences de l’environnement 10, 0–0. https://doi.org/10.4000/vertigo.10323

31. Lalami, A.E.O., Merzouki, M., Hillali, O.E., Maniar, S., Korachi, S.I., 2010. Pollution des eaux de surface de la ville de Fès au Maroc: typologie, origine et conséquences. LARHYSS Journal P-ISSN 1112-3680 / E-ISSN 2521-9782 0, 55–72.

32. Lalami, A.E.O., Zanibou, Bekhti, K., Zerrouq, K., Merzouki, M., 2014. Contrôle de la qualité microbiologique des eaux usées domestiques et industrielles de la ville de Fès au Maroc (Microbiological Control wastewater domestic and industrial city of Fes Morocco). Journal of Materials and Environmental Science 5, 2325–2332.

33. Melaku Zigde, H., Endale Tsegaye, M., 2019. Analysis of Physico-chemical Characteristics of Water Collected from Different Sampling Sites of Lake Hawassa, Ethiopia. World Environment 9, 38–45. https://doi.org/10.5923/j.env.20190902.02

34. Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements Climatiques, 2014. Signification environnementale et méthode d’analyse des principaux paramètres de la qualité de l’eau. Journal of Fisheries and Aquatic Sciences 150–161.

35. Noah Ewoti, O.V., Nola, M., Moungang, L.M., Nougang, M.E., François, K., Nour-Eddine, C., 2011. Adhesion of Escherichia coli and Pseudomonas aeruginosa on Rock: surface in aquatic Microcosm: Assessment of the influence of Dissolved Magnesium Sulfate and Monosodium Phosphate. Research Journal of Environment and Earth Science 3, 364–374.

36. Nola, M., Njine, T., Monkidje A., Sikati Foko, V., Djikjom, E., 1998. Qualité bactériologique des eaux des sources et des puits de Yaoundé. Nola M., Njine T., Monkidje A., Sikati Foko V., et Djikjom E. Cahiers Santé 300–330.

37. Okoa Amougou, Ajeagah Agahindum, G., Arad, Q.A., 2021. Cosmopolitan Nature of the Egs of Ascaris lumbricoides Identified in Wells Water Destined for Domestic Usage in Sub-Urban Areas in the Center Region of Cameroon. International Journal of Sciences 10, 22–29. https://doi.org/10.18483/ijSci.2434

38. Rodier, J., Legube, B., Merlet, N., Brunet, R., Collaborateurs, 2009. L’analyse de l’eau, 9th ed. Dunod, Paris.

39. Rotar, A., Courtis, P., Vandenbulcke, F., Lemiere, S., 2019. Sanitary and environmental aspects of sewage sludge management. Industrial and Municipal Sludge 155–180. https://doi.org/10.1016/B978-0-12-815907-1.00008-8

40. Saab, H., Nassif, N., El Samrani, A., Daoud, R., Medawar, S., Ouattini, N., 2007. Suivi de la qualité bactériologique des eaux de surface (rivière Nah Ibrahim, Liban). reseau 20, 341–352. https://doi.org/10.7202/0169090ar

41. Schlumberger, O., Bouretz, N., 2002. Réseaux trophiques et production piscicole en étangs fertilisés (Dordogne, France), reseau 15, 177–192. https://doi.org/10.7202/705445ar

42. Stieglitz, T., Ridd, P.V., Hollins, S., 2000. A small sensor for detecting animal burrows and monitoring burrow water conductivity. Wetlands Ecology and Management 8, 1–7. https://doi.org/10.1023/A:10096002

43. Suchel, J.B., 1987. Les climats du Cameroun (Thèse de Doctorat d’Etat). Université de Bordeaux III, France.

44. Talouizte, H., Merzouki, M., Lalami, A.E.O., Bennani, L., Benlemih, M., 2007. Evolution de la charge microbienne de la laitue irriguée avec les eaux usées urbaines de la ville de Fès au Maroc. Tribune de l’eau 642.
45. Tchoungsi, E.K., Mougoue, B., Tagne, C.T., Touoyem, F.M., Bonganjam, N.S., 2020. Approvisionnement en eau et risques sanitaires dans le bassin versant amont de l’Abiergué à Yaoundé (Cameroun). European Scientific Journal, ESJ 16, 102–102. https://doi.org/10.19044/esj.2020.v16n8p102
46. Towa, A.N., Ewoukem, T.E., Togouet, S.H.Z., Fonkwa, G., Fonkou, T., Nguetsop, V., Zango, P., Tchoumboue, 2019. Influence of Types and Doses of Fertilizer on the Physicochemical Characteristics of Water, Composition and Structure of Zooplankton Populations in Ponds. Advances in Oceanography & Marine Biology 1, 1–11. https://doi.org/10.33552/AOMB.2019.01.000516
47. Trabulsi, L.R., Keller, R., Gomes, T.A.T., 2002. Typical and Atypical Enteropathogenic Escherichia coli. Emerg Infect Dis 8, 508–513. https://doi.org/10.3201/eid0805.010385
48. Tsafack, H.N., Tengoua, E., Njine, T., 2019. Persistance de E. coli, des œufs d’helminthes et des kystes de protozoaires contenus dans les eaux usées urbaines d’arrosage sur les cultures maraîchères à Dschang, Ouest-Cameroun. International Journal of Biological and Chemical Sciences 13, 81–90. https://doi.org/10.4314/ijbcs.v13i5.6S
49. Tsomene Namekong, P., Ajeagah Aghaidum, G., 2020. Bio Evaluation of the Quality of Underground Water by the Intestinal Protozoan in an Equatorial Zone (Yaounde, Cameroon). International Journal of Progressive Sciences and Technologies 23, 358–368.
50. Vanden Bossche, J.P., Usseglio-Polatera, P., 2005. Characterization, ecological status and type-specific reference conditions of surface water bodies in Wallonia (Belgium) using biocenotic metrics based on benthic invertebrates communities. Hydrobiologia 253–271.
51. World Health Organization, 2006. Guidelines for the safe use of wastewater, excreta and greywater: Volume 2: Wastewater use in agriculture.
52. World Health Organization, 1994. Boards for the diagnosis of the intestinal parasites. WHO, Geneva.
53. Youssef, E., Driss, B., 2007. Charge parasitaire des eaux usées brutes de la ville de Kénitra (Maroc). Afrique Science: Revue Internationale des Sciences et Technologie 8, 123–145.