GRADED BRAUER TREE ALGEBRAS

DUSKO BOGDANIC

Abstract. In this paper we construct non-negative gradings on a basic Brauer tree algebra \(A_\Gamma \) corresponding to an arbitrary Brauer tree \(\Gamma \) of type \((m, e)\). We do this by transferring gradings via derived equivalence from a basic Brauer tree algebra \(A_S \), whose tree is a star with the exceptional vertex in the middle, to \(A_\Gamma \). The grading on \(A_S \) comes from the tight grading given by the radical filtration. To transfer gradings via derived equivalence we use tilting complexes constructed by taking Green’s walk around \(\Gamma \) (cf. [13]). By computing endomorphism rings of these tilting complexes we get graded algebras.

We also compute \(\text{Out}^K(A_\Gamma) \), the group of outer automorphisms that fix isomorphism classes of simple \(A_\Gamma \)-modules, where \(\Gamma \) is an arbitrary Brauer tree, and we prove that there is unique grading on \(A_\Gamma \) up to graded Morita equivalence and rescaling.

1. Introduction

In this paper we transfer gradings between Brauer tree algebras via derived equivalences. Our work has been motivated by Theorem 6.4 in an unpublished paper [11] by Rouquier. This theorem says that gradings are compatible with derived equivalences. We show how this idea is used on the class of Brauer tree algebras. For an arbitrary Brauer tree \(\Gamma \) of type \((m, e)\), ie. for a Brauer tree with \(e \) edges and multiplicity of the exceptional vertex \(m \), we transfer tight grading from the basic Brauer tree algebra \(A_S \) corresponding to the Brauer star \(S \) of the same type \((m, e)\), to the Brauer tree algebra \(A_\Gamma \). In Section 4 we prove that the resulting grading on \(A_\Gamma \) is non-negative and we investigate its properties. In particular, this construction associates to each Brauer tree algebra \(A \), which is a symmetric algebra, a quasi-hereditary algebra \(A_0 \), the subalgebra of \(A \) consisting of the elements of \(A \) which have degree 0. We prove in Section 5 that the knowledge of the subalgebra \(A_0 \) and of the cyclic ordering of its components is sufficient to recover the whole algebra \(A \). In Sections 6 and 7 we give explicit formulae for the graded Cartan matrix and graded Cartan determinant of \(A_\Gamma \), and we prove that the graded Cartan determinant only depends on the type of the Brauer tree. Sections 9 and 10 deal respectively with the problem of shifting summands of a tilting complex and with the change of the exceptional vertex when the multiplicity of the exceptional vertex is 1. In the last section we compute \(\text{Out}^K(A_\Gamma) \), the group of outer automorphisms that fix isomorphism classes of simple \(A_\Gamma \)-modules, and we prove that it only
depends on the multiplicity of the exceptional vertex. We also classify all
gradings on an arbitrary Brauer tree algebra, and we prove that there is
unique grading up to graded Morita equivalence and rescaling.

2. Notation

Throughout this text \(k \) will be an algebraically closed field of positive
characteristic. All algebras will be finite dimensional algebras over \(k \) and all
multidimensional algebras will be left modules. The category of finite dimensional \(A \)–modules
will be denoted by \(\text{mod} A \) and the full subcategory of finite dimensional projective \(A \)–modules will be denoted by \(\text{proj} A \). The derived category of bounded complexes over \(\text{mod} A \) will be denoted by \(D^b(\text{mod} A) \) and the homotopy category of bounded complexes over \(\text{proj} A \) will be denoted by \(K^b(\text{proj} A) \).

Let \(A \) be a \(k \)–algebra. We say that \(A \) is a graded algebra if \(A \) is the
direct sum of subspaces \(A = \bigoplus_{i \in \mathbb{Z}} A_i \), such that \(A_i A_j \subseteq A_{i+j} \), \(i, j \in \mathbb{Z} \). If \(A_i = 0 \) for \(i < 0 \), we say that \(A \) is non-negatively graded. A \(\text{mod} A \)–module \(M \) is graded if it is the direct sum of its subspaces \(M = \bigoplus_{i \in \mathbb{Z}} M_i \), such
that \(A_i M_j \subseteq M_{i+j} \), for all \(i, j \in \mathbb{Z} \). If \(M \) is a graded \(\text{mod} A \)–module, then \(N = N(i) \) denotes the graded module given by \(N_j = M_{i+j} \), \(j \in \mathbb{Z} \). An \(\text{mod} A \)–module homomorphism \(f \) between two graded modules \(M \) and \(N \) is a
homomorphism of graded modules if \(f(M_i) \subseteq N_i \), for all \(i \in \mathbb{Z} \). For a graded algebra \(A \), we denote by \(\text{modgr} A \) the category of graded \(\text{mod} A \)–modules. This
category sits inside the category of graded vector spaces. Its objects are
graded \(\text{mod} A \)–modules and morphisms are given by

\[
\text{Homgr}_A(M, N) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_A(M, N(i)),
\]

where \(\text{Hom}_A(M, N(i)) \) denotes the space of all graded homomorphisms between \(M \) and \(N(i) \) (the space of homogeneous morphisms of degree \(i \)).

Let \(X = (X^i, d^i) \) be a complex of \(\text{mod} A \)–modules. We say that \(X \) is a complex of
graded \(\text{mod} A \)–modules, or just a graded complex, if for each \(i \in \mathbb{Z} \), \(X^i \) is a graded module and \(d^i \) is a homogeneous homomorphism of graded \(\text{mod} A \)–modules. If \(X \) is a graded complex, then \(X(j) \) denotes the complex of
graded \(\text{mod} A \)–modules given by \((X(j))^i := X^i(j) \) and \(d^i_{X(j)} := d^i \). Let \(X \) and \(Y \) be graded complexes. A homomorphism \(f = \{ f^i \}_{i \in \mathbb{Z}} \) between complexes \(X \) and \(Y \) is a homomorphism of graded complexes if for each \(i \in \mathbb{Z} \), \(f^i \) is a
homomorphism of graded modules.
The category of complexes of graded A–modules, denoted by $C_{gr}(A)$, is the category whose objects are complexes of graded A–modules and morphisms between two graded complexes X and Y are given by

$$\text{Hom}_{C_{gr}(A)}(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_A(X, Y \langle i \rangle),$$

where $\text{Hom}_A(X, Y \langle i \rangle)$ denotes the space of graded homomorphisms between X and $Y \langle i \rangle$ (the space of homogeneous morphisms of degree i).

Unless otherwise stated, for a graded algebra A, we will assume that the projective indecomposable A–modules are graded in such way that their tops are in degree 0. For an indecomposable bounded graded complex of projective A–modules, we will assume that the leftmost non-zero term is graded in such way that its top is in degree 0.

We say that two symmetric algebras A and B are derived equivalent if their derived categories of bounded complexes are equivalent. From Rickard’s theory we know that A and B are derived equivalent if and only if there exists a tilting complex T of projective A–modules such that $\text{End}_{K^b(A)}(P)_A(T) \cong B^{op}$.

For more details on derived categories and derived equivalences we recommend [7].

3. Brauer tree algebras

We now introduce Brauer tree algebras. For a general reference on Brauer tree algebras we refer reader to [1].

Let Γ be a finite connected tree with e edges. We say that Γ is a Brauer tree of type (m, e) if there is a cyclic ordering of the edges adjacent to a given vertex, and a distinguished vertex v, called the exceptional vertex, to whom we assign a positive integer m, called the multiplicity of the exceptional vertex.

Let A be a finite dimensional symmetric algebra and let Γ be a Brauer tree. We say that A is a Brauer tree algebra associated with Γ if the isomorphism classes of simple A–modules are in one-to-one correspondence with the edges of Γ, and if P_j denotes the projective cover of the simple A–module S_j corresponding to the edge j, the following condition is satisfied:

The heart $\text{rad} P_j/soc P_j$ is the direct sum of two uniserial modules U_v and U_w, one of which might be zero, where v and w are vertices of j. For $u \in \{v, w\}$, let $j = j_0, j_1, \ldots, j_r$ be the cyclic ordering of the $r + 1$ edges around u. The composition factors of U_u, starting from the top, are

$$S_{j_1}, S_{j_2}, \ldots, S_{j_r}, S_{j_0}, S_{j_1}, S_{j_2}, \ldots, S_{j_r}, S_{j_0}, \ldots, S_{j_1}, S_{j_2}, \ldots, S_{j_r},$$

where the number of composition factors is $m(r+1)−1$ if u is the exceptional vertex, and r otherwise.
If A is a Brauer tree algebra associated to a Brauer tree Γ of type (m, e), we say that A has type (m, e). We will usually label edges of a Brauer tree by the corresponding simple modules of a Brauer tree algebra associated to this tree. We will always assume that the cyclic ordering of the edges adjacent to a given vertex is given by the counter-clockwise direction in the given planar embedding of the tree.

Example 3.1. A very important Brauer tree of type (m, e) is the Brauer star, the Brauer tree with e edges adjacent to the exceptional vertex which has multiplicity m.

\[
\begin{array}{c}
\circ \quad S_1 \\
\circ \quad S_2 \\
\vdots \\
\circ \quad S_e
\end{array}
\]

The composition factors, starting from the top, of the projective indecomposable module P_j corresponding to the edge S_j are $S_j, S_{j+1}, \ldots, S_e, S_1, S_2, \ldots, S_{j-1}; \ldots; S_j, S_{j+1}, \ldots, S_e, S_1, S_2, \ldots, S_{j-1}; S_j$ where S_j appears $m + 1$ times and S_i appears m times, for $i \neq j$.

We see that a Brauer tree algebra corresponding to the Brauer star of type (m, e) is a uniserial algebra. This is very important because it is easy to do calculations with uniserial modules.

Any two Brauer tree algebras associated to the same Brauer tree Γ and defined over the same field k are Morita equivalent (cf. [4], Corollary 4.3.3).

A basic Brauer tree algebra corresponding to a Brauer tree Γ is isomorphic to the algebra kQ/I, where Q is a quiver and I is the ideal of relations. This algebra is constructed as follows (cf. [4], Section 5): We replace each edge of the Brauer tree by a vertex and for two adjacent edges, say j_1 and j_2, which come one after the other in the circular ordering, say j_2 comes after j_1, we have an arrow connecting the two corresponding vertices, starting at the vertex corresponding to j_2 and ending at the vertex corresponding to j_1. If there is only one edge adjacent to the exceptional vertex and $m > 1$, then we add a loop starting and ending at the vertex corresponding to the edge that is adjacent to the exceptional vertex. This will give us the quiver Q.

Notice that, for each vertex of Γ that has more than one edge adjacent to it, we get a cycle in the quiver Q. The cycle of Q corresponding to the exceptional vertex will be called the exceptional cycle. If we assume that Γ
is not the star, then the ideal I is generated by two types of relations. The relations of the first type are given by $ab = 0$, where arrows a and b belong to different cycles of Q. The second type relations are the relations of the form $\alpha = \beta$, for two cycles α and β starting and ending at the same vertex, neither of which is the exceptional cycle, and relations of the form $\alpha^m = \beta$, if α is the exceptional cycle. The basic algebra kQ/I constructed in this way will be denoted by A_Γ.

If Γ is the star, then the corresponding quiver has only one cycle and the ideal of relations is generated by all paths of length $me + 1$. This basic algebra corresponding to the Brauer star will be denoted by A_S.

4. Transfer of gradings

Let A and B be two symmetric algebras over a field k and let us assume that A is a graded algebra. The following theorem is due to Rouquier.

Theorem 4.1 ([11], Theorem 6.4). Let A and B be as above. Let T be a tilting complex of A-modules that induces derived equivalence between A and B. Then there exists a grading on B and a structure of a graded complex T' on T, such that T' induces an equivalence between the derived categories of graded A-modules and graded B-modules.

This theorem tells us that derived equivalences are compatible with gradings, that is, gradings can be transferred between symmetric algebras via derived equivalences.

We will now explain how the transfer of gradings via derived equivalences is done in our context of Brauer tree algebras. Brauer tree algebras are determined up to derived equivalence by the multiplicity of the exceptional vertex and the number of edges of the tree ([9], Theorem 4.2). We notice here that the basic Brauer tree algebra A_S, which corresponds to the Brauer star of type (m, e), is naturally graded by putting all arrows in degree 1. This grading is compatible with radical filtration, in other words, A_S is tightly graded. This means that A_S is isomorphic to the graded algebra associated with the radical filtration, i.e.

$$A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad } A_S)^i/(\text{rad } A_S)^{i+1}.$$

We will transfer this grading from the algebra A_S to the basic Brauer tree algebra A_Γ corresponding to an arbitrary Brauer tree Γ of type (m, e). In order to do that we will construct a tilting complex of A_S-modules which tilts from A_S to A_Γ. For a given tilting complex T of A_S-modules, which is a bounded complex of finitely generated projective A_S-modules, there exists
a structure of a complex of graded A_S–module T' on T. If T is a tilting complex that tilts from A_S to A_Γ, then $\text{End}_{K^b(P_{A_S})}(T) \cong A_\Gamma^{op}$. Viewing T as a graded complex T', and computing this endomorphism ring as a graded object, we get a graded algebra which is isomorphic to the opposite algebra of the basic Brauer tree algebra A_Γ corresponding to Γ. We notice here that the choice of a grading on T' is unique up to shifting the grading of each indecomposable summand of T'.

4.1. The tilting complex given by Green’s walk. In [13], the authors give a combinatorial construction of a tilting complex that tilts from the basic Brauer tree algebra A_S corresponding to the star of type (m, e), to the basic Brauer tree algebra A_Γ corresponding to an arbitrary Brauer tree of type (m, e). The tilting complexes considered in [13] are direct sums of indecomposable complexes which have no more than two non-zero terms, and a complete classification for all such tilting complexes is given in [13].

We will use only one special tilting complex that arises in this way. It is the complex constructed by taking Green’s walk (cf. [3]) around Γ. We construct it as follows:

Starting from the exceptional vertex of a Brauer tree Γ of type (m, e), we take Green’s walk around Γ and enumerate all the edges of Γ. We start this enumeration from an arbitrary edge adjacent to the exceptional vertex and walk around Γ in the counter-clockwise direction. We will eventually show that the resulting grading on A_Γ does not depend on where we start the enumeration. Define T, a tilting complex of A_S-modules, to be the direct sum of the complexes T_i, $1 \leq i \leq e$, which correspond to the edges of Γ, and which are defined by induction on the distance of an edge from the exceptional vertex in the following way:

(a) If i is an edge which is adjacent to the exceptional vertex, then T_i is defined to be the stalk complex

$$Q_i : 0 \longrightarrow P_i \longrightarrow 0$$

with P_i in degree 0;

(b) If i is not adjacent to the exceptional vertex and assuming that the shortest path connecting i to the exceptional vertex is j_1, j_2, \ldots, j_t, i, where $j_1 < j_2 < \cdots < j_t < i$ in the labelling from the Green’s walk, then T_i is defined to be the complex $Q_{j_{j,i}}[n_i]$, where $Q_{j_{j,i}}$ is the following complex with two non-zero entries in degrees 0 and 1

$$Q_{j_{j,i}} : 0 \longrightarrow P_{j_{j,i}} \overset{b_{j_{j,i}}}{\longrightarrow} P_i \longrightarrow 0,$$
where \(h_{ji} \) is a homomorphism of the highest possible rank, and \(n_i \) is the shift necessary to ensure that \(P_{ji} \) is in the same degree as \(P_{ji} \) in other summands of \(T \) which are previously determined.

For the convenience of the reader we include the following example.

Example 4.2. Let \(\Gamma \) be the following Brauer tree with multiplicity 1 and with edges numbered by taking Green’s walk:

```
S4 ─> S3 ─> S1 ─> S2 ─> S5 ─> S6
```

The tilting complex of \(A_S \)-modules, where \(S \) is the Brauer star with six edges and multiplicity 1, given by taking Green’s walk around \(\Gamma \) is the direct sum \(T = \bigoplus_{i=1}^{6} T_i \), where \(T_1, T_2 \) and \(T_3 \) are the stalk complexes \(P_1, P_2 \) and \(P_3 \) respectively, in degree 0, \(T_4 \) is \(P_3 \xrightarrow{h_{34}} P_4 \) with \(P_3 \) in degree 0, \(T_5 \) is \(P_3 \xrightarrow{h_{35}} P_5 \) with \(P_3 \) in degree 0, and \(T_6 \) is \(P_3 \xrightarrow{h_{36}} P_6 \) with \(P_3 \) in degree 1. This complex tilts from \(A_S \) to \(A_\Gamma \), i.e., \(\text{End}_{K^b(P_{AS})}(T) \cong A_\Gamma^{op} \).

4.2. Calculating \(\text{End}_{K^b(P_{A})}(T) \)

Let \(A_S \) be a basic Brauer tree algebra corresponding to the star of type \((m, e)\) and let \(A_\Gamma \) be a basic Brauer tree algebra corresponding to a given Brauer tree \(\Gamma \). Let \(T \) be the tilting complex of \(A_S \)-modules that tilts from \(A_S \) to \(A_\Gamma \), constructed as in the previous section, i.e., constructed by taking Green’s walk around \(\Gamma \). Viewing each summand \(T_i \) of \(T \) as a graded complex \(T'_i \), we have a structure of a graded complex \(T' \) on \(T \). By calculating \(\text{End}_{K^b(P_{AS})}(T') \cong A_\Gamma^{op} \) we get \(A_\Gamma \) as a graded algebra. We will choose \(T'_i \) to be \(T_i(r_i) \), where \(r_i \) will be the necessary shifts that will ensure that the resulting grading is non-negative.

We remind the reader that \(T_i \) is assumed to be graded in such way that its leftmost non-zero term has its top in degree 0.

We now state the main theorem of this section.

Theorem 4.3. Let \(\Gamma \) be an arbitrary Brauer tree with \(e \) edges and multiplicity \(m \) of the exceptional vertex and let \(A_\Gamma \) be the basic Brauer tree algebra determined by this tree. The algebra \(A_\Gamma \) can be non-negatively graded.

Proof. In order to grade \(A_\Gamma \), we need to calculate \(\text{Hom}_{K^b(P_{AS})}(T'_i, T'_j) \), as graded vector spaces, for those \(T'_i \) and \(T'_j \) which correspond to edges \(S_i \).
and S_j that are adjacent to the same vertex of Γ, and which come one after the other, i after j, in the circular ordering associated to that vertex. This is a consequence of the fact that when identifying $\text{End}_{K^b(\text{PAS})}(T)^{\text{op}}$ with A_{Γ}, elements corresponding to the vertices of the quiver of A_{Γ} are given by $\text{id}_{T_i} \in \text{End}_{K^b(\text{PAS})}(T_i)$, $i = 1, 2, \ldots, e$; and the subspace of A_{Γ} generated by all paths starting at the vertex of A_{Γ} corresponding to $\text{id}_{T_i} \in \text{End}_{K^b(\text{PAS})}(T_i)$ and finishing at the vertex corresponding to $\text{id}_{T_j} \in \text{End}_{K^b(\text{PAS})}(T_j)$, is given by $\text{Hom}_{K^b(\text{PAS})}(T_i, T_j)$. In fact, we only need to calculate the non-zero summand of $\text{Hom}_{K^b(\text{PAS})}(T_i', T_j')$ which is in the lowest degree. That will be degree of the unique arrow of the quiver of A_{Γ} pointing from the vertex corresponding to S_i to the vertex corresponding to S_j.

The dimension of $\text{Hom}_{K^b(\text{PAS})}(T_i, T_j)$

(1) is 0, if the vertices corresponding to id_{T_i} and id_{T_j} do not belong to the same cycle,
(2) (2.a) is m, if $i \neq j$ and the vertices corresponding to id_{T_i} and id_{T_j} belong to the exceptional cycle,
(2.b) is 1, if $i \neq j$ and the vertices corresponding to id_{T_i} and id_{T_j} belong to the same non-exceptional cycle,
(3) (3.a) is $m + 1$, if $i = j$ and the vertex corresponding to id_{T_i} belongs to the exceptional cycle,
(3.b) is 2, if $i = j$ and the vertex corresponding to id_{T_i} does not belong to the exceptional cycle.

Edges i and j of a Brauer tree Γ that are adjacent to the same vertex, say v, and that come one after the other in the circular ordering of v, can either be at the same distance from the exceptional vertex or the distance of one of them, say i, is one less than the distance of j. If the former holds, then a part of Γ is given by

![Diagram](attachment:image.png)

where v may or may not be the exceptional vertex.
If the latter holds, than a part of Γ is given by one of the following two diagrams

where the leftmost vertex of S_i may or may not be the exceptional vertex, and there may or may not be more edges, such as S_l, adjacent to v. In the case of the first diagram we have an arrow from S_i to S_j in the quiver of A_{Γ}, and in the case of the second diagram we have an arrow from S_j to S_i.

It follows that it is sufficient to consider the following four cases:

CASE 1 Edges S_i and S_j are adjacent to the exceptional vertex. The corresponding part of Γ is

In this case, the corresponding summands of the graded tilting complex T' are $T'_i := T_i$ and $T'_j := T_j$, where T_i and T_j are stalk complexes P_i and P_j concentrated in degree 0. If $i > j$, then $\text{Hom}_{gr}(T'_i, T'_j) \cong \text{Hom}_{gr}(P_i, P_j) \cong k(-(i-j)) \oplus M$, as graded vector spaces, where M is the sum of the summands that appear in higher degrees than $i-j$. In other words, $i-j$ is the degree of the corresponding arrow of the quiver of A_{Γ} whose source is S_i and whose target is S_j. If $i < j$, then the degree of the corresponding arrow of the quiver of A_{Γ} is $e-(j-i)$, where e is the number of edges of the tree.

If there is only one edge adjacent to the exceptional vertex and $m > 1$, then the corresponding loop will be in degree e.

CASE 2 Edges S_i and S_j are adjacent to a non-exceptional vertex v and one of them, say S_i, is adjacent to the exceptional vertex. Then we have
that a part of Γ is given by one of the following two diagrams

\[\begin{array}{c}
\bullet & S_i & \circ & \rightarrow & \bullet & v & \rightarrow & \bullet & S_j & \circ \\
\end{array} \]

where it could happen that there are more edges adjacent to v, such as S_l.

In this case, the summands of the tilting complex T' are $T'_i := Q_i$, the stalk complex with P_i in degree 0, and $T'_j := Q_{ij}$, where Q_{ij} is previously defined complex $P_i \xrightarrow{h_{ij}} P_j$, with P_i in degree 0.

Since $i < j$, we have that any map from Q_i to Q_{ij} has to map P_i to the kernel of the map h_{ij}. It follows that this map has to map top P_i to $\text{soc} \ P_i$. This means that the corresponding arrow of the quiver of A_Γ, whose source is S_i and whose target is S_j, is in degree me. This happens in case of the first diagram.

In case of the second diagram, there is an arrow from S_j to S_i in the quiver of A_Γ. The identity map on P_i will give us a morphism between graded complexes T'_j and T'_i and we conclude that the corresponding arrow from S_j to S_i is in degree 0.

CASE 3 Edges S_i and S_j, where $i < j$, are adjacent to a non-exceptional vertex v, S_i is closer to the exceptional vertex than S_j, and the leftmost vertex of S_i is non-exceptional. Then we have that a part of Γ is given by one of the following two diagrams

\[\begin{array}{c}
\bullet & S_i & \circ & \rightarrow & \bullet & v & \rightarrow & \bullet & S_j & \circ \\
\end{array} \]

where it could happen that there are more edges adjacent to v, such as S_f.

The leftmost vertex of S_l can be either exceptional or non-exceptional.

The summands T'_i and T'_j of the graded tilting complex T' corresponding to the edges S_i and S_j are defined to be graded complexes $(Q_{ii}[-r_{ii}])^{\langle r_{ii} \rangle}$ and $(Q_{ij}[-r_{ii} - 1])^{\langle r_{ii} + 1 \rangle}$, where we set r_{ii} to be the distance between the exceptional vertex and the leftmost vertex of S_l. The horizontal shifts $[-r_{ii}]$ and $[-r_{ii} - 1]$ are necessary to ensure that P_i appears in the same degree as P_i in all other previously defined summands of T. The vertical shifts $\langle r_{ii} \rangle$ and $\langle r_{ii} + 1 \rangle$ are necessary to ensure that top of the rightmost term of Q_{ii},
which is P_i, and top of the leftmost term of Q_{ij}, which is also P_i, are in the same degree. This way we avoid negative degrees.

If the first diagram occurs, then any morphism of graded complexes from $(Q_{li}[-r_{li}]r_{li})$ to $(Q_{ij}[-r_{li}-1])r_{li} + 1$ has to map top P_i to soc P_i. From this we conclude that the corresponding arrow of the quiver of $A_{Γ}$ that points from S_i to S_j is in degree me.

If the second diagram occurs, then the identity map on P_i gives us a map from $(Q_{ij}[-r_{li}])r_{li} + 1$ to $(Q_{li}[-r_{li}])r_{li}$ which is not homotopic to zero. From this we have that the arrow from S_j to S_i is in degree 0.

CASE 4 Edges S_i and S_j, where $j < i$, are adjacent to a non-exceptional vertex v, and the edge with minimal index among the edges adjacent to v, say S_l, comes before S_j in the circular ordering of v. Then we have that a part of $Γ$ is

\[
\begin{array}{c}
\bullet & \rightarrow & S_l \\
& & \uparrow \\
S_i & & v \\
& & \downarrow \\
& & S_j \\
\end{array}
\]

where the leftmost vertex of S_l can be either exceptional or non-exceptional. In each case, the summands T_i' and T_j' of the graded tilting complex T' corresponding to the edges S_i and S_j are $(Q_{li}[-r_{li}]r_{li})$ and $(Q_{lj}[-r_{li}])r_{li}$, where we again set r_{li} to be the distance between the exceptional vertex and the leftmost vertex of S_l. The map $(id_{P_l}; h_{ij})$, where h_{ij} is a map of the maximal rank, from $(Q_{li}[-r_{li}])r_{li} + 1$ to $(Q_{lj}[-r_{li}])r_{li}$ will give us a nonzero map in $\text{Hom}_{K^b(P_Γ)}(T_i', T_j')$ and this map is in degree 0. Therefore, the corresponding arrow from S_i to S_j is in degree 0.

These four cases cover all the possible local structures of a Brauer tree $Γ$ that we can encounter when putting a grading on the basic Brauer tree algebra $A_{Γ}$ that corresponds to this tree. We only need to walk around the Brauer tree $Γ$ and recognize which of the four cases occurs for the adjacent edges S_i and S_j. In each of the four cases above, we have that the corresponding arrows are in non-negative degrees. Hence, the resulting grading on $A_{Γ}$ is non-negative. ■

The grading on $A_{Γ}$ constructed in the proof of the previous theorem will be referred to as the grading constructed by taking Green’s walk around $Γ$.

Example 4.4. (a) Let $Γ$ be the Brauer tree from Example 4.2. We first construct the quiver of the basic Brauer tree algebra $A_{Γ}$ corresponding to this tree. Each edge is replaced by a vertex and for two adjacent edges,
which come one after the other in the circular ordering, we have an arrow connecting two corresponding vertices of the quiver in the opposite ordering of the circular ordering of edges, i.e. in the clockwise direction.

The degrees of the arrows between S_1 and S_3, S_3 and S_2, S_2 and S_1 are computed using the first case from the proof of the previous theorem. The degree of the arrow between S_3 and S_5 is 6 and is computed using the second case. Arrows between S_5 and S_4, and S_4 and S_3 are in degree 0 and these degrees are computed as in the fourth and the second case respectively. The degree of the arrow between S_5 and S_6 is 6 and the degree of the arrow between S_6 and S_5 is 0 and these are computed as in the third case.

(b) If the Brauer tree is the line with e edges and the exceptional vertex at the end, ie.

Then the basic Brauer tree algebra A_Γ is graded and its quiver has e vertices

If $m = 1$, then there is no loop in the above quiver.

Let Γ be an arbitrary Brauer tree. Each edge of Γ that is adjacent to the exceptional vertex determines a connected subtree of a Brauer tree Γ. We call these subtrees components of the Brauer tree.

Lemma 4.5. Let α be an arrow contained in the exceptional cycle of the quiver of A_Γ which starts at S_i and ends at S_j. If A_Γ is graded by taking Green’s walk around Γ, then the degree of α is equal to the number of edges in the component of Γ corresponding to S_j.

Proof. If $i > j$, then because of the way we enumerate edges by taking Green’s walk we have that $i = j + s$, where s is the number of edges in the component corresponding to S_j. Hence, α is in degree $i - j = s$.
If $i < j$, which only happens if $i = 1$, then α is in degree $e - (j - i) = e - j + 1$, and this number is equal to the number of edges of the component corresponding to S_j. ■

From this lemma it follows that the resulting grading of the exceptional cycle does not depend on from which edge adjacent to the exceptional vertex we start enumeration of edges. This leads us to the following proposition.

Proposition 4.6. Let A_Γ be the basic Brauer tree algebra whose tree is Γ and let us assume that A_Γ is graded by taking Green’s walk around Γ. The resulting grading does not depend on from which edge adjacent to the exceptional vertex we start Green’s walk.

Proof. Let us assume that we have done two walks around Γ starting at a different edge each time. Let us assume that the index of S, where S is one of the edges adjacent to the exceptional vertex, is 1 in the first walk, and that its index is $1 + l$ in the second walk. Let us assume that we got two tilting complexes T_1 and T_2 of A_S-modules by taking these two walks. These complexes are equal up to cyclic permutation of the vertices of the Brauer star A_S. In other words, each index of each term (which is a projective indecomposable A_S-module) of each summand of T_1 has been cyclically permuted by l to get the corresponding index of the corresponding term of the corresponding summand of T_2. These two tilting complexes will give us the same grading because of the ’cyclic’ structure of the Brauer star A_S. ■

Lemma 4.7. Let A_Γ be the basic Brauer tree algebra whose tree is Γ. Let Q be its quiver and let us assume that A_Γ is graded by taking Green’s walk around Γ. The only cycle of Q that does not contain any arrows that are in degree 0 is the exceptional cycle. For a non-exceptional cycle there is exactly one arrow that is not in degree 0. This arrow is in degree me and the index of its target is greater than the index of its source.

Proof. If α is an arbitrary arrow of the exceptional vertex, then α is in a positive degree. This follows from Lemma 4.5 since the number of edges in each component is strictly positive. For a non-exceptional cycle, from the last three cases from the proof of Theorem 4.3, we see that exactly one arrow is not in degree 0. This is the arrow whose source is the vertex of that cycle with the minimal index, and whose target is the vertex of that cycle with the maximal index. Its degree is me by the proof of Theorem 4.3. ■

For the arrows of the quiver of A_Γ that are in degree 0, we have that the index of their source is greater than the index of their target. We state this in the following lemma.
Lemma 4.8. Let α be an arrow of a non-exceptional cycle which is in degree 0. Then the index of the source of α is greater than the index of the target of α.

Lemma 4.9. Let A_{Γ}, Γ and Q be as above. The socle of A_{Γ} is in degree me.

Proof. For an arbitrary cycle, say γ, let $\alpha_1, \ldots, \alpha_r$ be the arrows of that cycle, appearing in that cyclic ordering. If γ is a non-exceptional cycle of the quiver Q, then paths of the form $\alpha_i\alpha_{i+1}\ldots\alpha_{i+r-1}$, where the addition in indices is modulo r, and $1 \leq i \leq r$, belong to the socle. If γ is the exceptional cycle, then the paths $(\alpha_i\alpha_{i+1}\ldots\alpha_{i+r-1})^m$ belong to the socle. These elements span the whole socle. For a non-exceptional cycle, the only arrow which is in a non-zero degree is the arrow whose source is the vertex of that cycle with the minimal index, and whose target is the vertex of that cycle with the maximal index. By the cases 2,3,4 from the proof of Theorem 4.3 that arrow is in degree me. It follows that the path $\alpha_i\alpha_{i+1}\ldots\alpha_{i+r-1}$, for all i, is in degree me. For the exceptional cycle, let us assume that the vertices contained in the exceptional cycle are $S_{l_1}, S_{l_2}, \ldots, S_{l_r}$, in that cyclic ordering, and that $l_1 > l_2 > \cdots > l_r = 1$. The sum of degrees of the arrows of the exceptional cycle is $\sum_{j=1}^{r-1}(l_j - l_{j+1}) + (e - (l_1 - l_r)) = e$. (This also follows from Lemma 4.5) Therefore, the mth power of $\alpha_i\alpha_{i+1}\ldots\alpha_{i+r-1}$, for all i, is in degree me. ■

5. The subalgebra A_0

Let Γ be a given Brauer tree and let A_{Γ} be a basic Brauer tree algebra associated with this tree. Let T be the tilting complex that we constructed by taking Green’s walk around Γ. If we assume that we have a graded algebra A_{Γ} by using this complex, then the subalgebra A_0 consisting of the elements that are in degree 0 has an interesting structure.

The quiver of the basic algebra A_{Γ} is the union of the cycles contained in it. From Lemma 4.7 it follows that the only cycle that does not contain any arrows that are in degree 0 is the exceptional cycle. If we assume that there are t edges that are adjacent to the exceptional vertex of Γ, we see immediately that the exceptional cycle divides the quiver of the subalgebra A_0 into t disjoint parts, each labelled by a vertex of the exceptional cycle corresponding to an edge adjacent to the exceptional vertex of Γ.

Proposition 5.1. Let A_{Γ} be a basic Brauer tree algebra associated with a given Brauer tree Γ and let T, A_0 and t be as above. The algebra A_0 is the direct product of t subalgebras.
Proof. The factors of A_0 are path algebras of t disjoint subquivers of the quiver of A_0.

Each of these factors in the previous proposition is labelled by the corresponding vertex which belongs to the exceptional cycle. Let A_v be the connected component of A_0 that corresponds to a vertex v of the exceptional cycle.

Lemma 5.2. In the quiver of the component A_v of A_0 there is at most one arrow with vertex v as its target. For any other vertex of the quiver of A_v, there are at most two arrows with that vertex as a target.

Proof. In the quiver Q of the basic Brauer tree algebra $A_Γ$, each vertex is contained in at most two cycles. Hence, for an arbitrary vertex v of Q, there are at most two arrows of Q whose target is v. If one of the cycles that contain v is the exceptional cycle, then one of those two arrows whose target is v is in a positive degree. Therefore, for a given vertex v of the exceptional cycle, there is at most one arrow which is in degree 0 that has v as its target. Also, for every other vertex in this component of the quiver of A_0, there are at most two arrows with that vertex as a target. From Lemma 4.8, we see that these arrows point from a vertex with a larger index to a vertex with a smaller index.

Lemma 5.3. Let w be a vertex of the quiver of A_v different from v. In the quiver of A_v there is exactly one arrow that has w as its source.

Proof. The vertex w belongs either to one or to two cycles of Q, depending on whether the corresponding edge of the Brauer tree is an end edge or not. Therefore, there are either one or two arrows that have w as its source. If there are two such cycles, then the corresponding edge is not an end edge. Then the arrow that has w as its source and that has vertex of a greater index than w as its target is in a positive degree by Lemma 4.8. The other arrow of Q that has w as its source and a vertex of a smaller index than the index of w as its target is in degree 0, by the same lemma.

Proposition 5.4. The quiver of A_v is a directed rooted tree with vertex v as its root, and with arrows pointing from higher levels of the tree to lower levels of the tree, with root v being in level 0.

Proof. From the previous two lemmas we conclude easily that the component of the quiver of A_0 does not have any cycles, because one arrow in each non-exceptional cycle of the quiver of $A_Γ$ is in a positive degree. Also, it follows that this component is a tree with at most two arrows having the same target, and at most one arrow having an arbitrary vertex as its source.
If we view this tree as a rooted tree with the vertex that belongs to the exceptional cycle as the root, then all arrows point from the higher levels to the lower levels by Lemma 4.8, with the root being in level 0.

Proposition 5.5. Each of the components of the subalgebra A_0 is the path algebra of a directed rooted tree with arrows pointing from higher levels towards lower levels. The only relations that occur in these components are of the form $\alpha \beta = 0$, where α and β are arrows that belong to different cycles of the quiver of A_Γ, such that the target of α is the source of β.

Proof. It is left to prove that we only have relations of type $\alpha \beta = 0$. These relations are inherited from the relations of the algebra A_Γ. The only other relations that appear in A_Γ are of type $\rho = \sigma$, where ρ and σ are two cycles having the same source and target. Since in the quiver of A_0 there are no cycles, these relations are not present.

Corollary 5.6. The subalgebra A_0 is tightly graded.

Proof. By the previous proposition, the ideal of relations of A_0 is generated by elements of the form $\alpha \beta$. If the arrows of the quiver of A_0 are in degree 1, then these generators are homogeneous of degree 2. The ideal of relations is homogeneous, hence the quotient algebra A_0 of the path algebra kQ is also graded with arrows in degree 1, i.e. it is tightly graded.

Example 5.7. If Γ is the following Brauer tree with multiplicity 1 and edges numbered by taking Green’s walk:

then the quiver of the graded basic Brauer tree algebra A_Γ associated with this tree is
The algebra A_0 is consisted of two components because there are two edges adjacent to the exceptional vertex. The quiver of the first component is

$$
\begin{array}{c}
 \bullet \\
 \overrightarrow{a_1} \\
 \overrightarrow{a_2} \\
\end{array}
$$

and the only relation is $a_1a_2 = 0$. The quiver of the second component is

$$
\begin{array}{c}
 \bullet \\
 \overleftarrow{b_0} \\
 \overleftarrow{b_1} \\
 \overrightarrow{b_2} \\
 \overleftarrow{b_3} \\
 \overrightarrow{b_4} \\
 \overleftarrow{b_5} \\
 \overrightarrow{b_6} \\
\end{array}
$$

and the relations are $b_2b_0 = 0$, $b_5b_2 = 0$ and $b_4b_1 = 0$.

5.1. Recovering the quiver of A_Γ from the quiver of A_0. The grading resulting from taking Green’s walk has some interesting properties. We will see in this section that the algebra A_0 carries a lot of information about the algebra A_Γ.

Let Γ, A_Γ and A_0 be as before. If we omit the arrows of the exceptional cycle of the quiver of A_Γ, we see that the resulting quiver consists of the connected components which correspond to the connected components of the quiver of A_0. If we look at the components of A_0 we see that it is
sufficient to know the quiver and relations of such component to recover the quiver of the corresponding component of \(A_\Gamma \). This is a consequence of Lemma 4.7, which says that in every non-exceptional cycle of the quiver of \(A_\Gamma \) there is only one arrow that is not in degree 0.

Let \(Q_v \) be one of the connected components of the quiver of \(A_0 \) and let \(Q_1 \) be the corresponding component of the quiver of \(A_\Gamma \). We have seen in the previous section that \(Q_v \) is a rooted tree with the root \(v \) belonging to the exceptional cycle. Starting from the root of this tree, we can recover the corresponding component \(Q_1 \) of the quiver \(Q \).

Proposition 5.8. Let \(Q_v \) be a connected component of the quiver of \(A_0 \) and let \(Q_1 \) be its corresponding connected component of the quiver of \(A_\Gamma \) when the exceptional cycle is omitted. From the quiver \(Q_v \) and its relations we can recover the quiver \(Q_1 \) and the relations of the corresponding component of the algebra \(A_\Gamma \).

Proof. Start from the root \(v \) of the rooted tree \(Q_v \). Take the longest non-zero path, say \(\rho \), ending at \(v \). Add an arrow pointing from \(v \) to the source vertex of \(\rho \). If there is no such path of length greater than 1, then add an arrow from \(v \) to the starting point of the only arrow ending at the root \(v \). In this way we recover the cycle of \(Q_1 \) which has root \(v \) as one of its vertices. The added arrow was an arrow of \(Q_1 \) that is in a non-zero degree. Now, we repeat the same step with an arbitrary vertex in the level 1 of the rooted tree instead of the root, but we only consider paths which do not contain arrows that belong to already recovered cycles. Repeat the same step for all other vertices in level 1 of the rooted tree \(Q_v \). Repeat the same steps for vertices in other levels of the rooted tree \(Q_v \) until every cycle is recovered. In this way we recovered the whole corresponding component \(Q_1 \) of the quiver of \(A_\Gamma \). As far as the relations are concerned, we get relations for the basic Brauer tree algebra corresponding to a given tree, i.e. for two successive arrows belonging to two different cycles we set their product to be zero and we set two cycles starting and ending at the same vertex to be equal. ■

Example 5.9. Let \(A_\Gamma \) be a basic Brauer tree algebra corresponding to the Brauer tree from Example 5.7. The algebra \(A_0 \) has two components. Let us recover the corresponding components of \(A_\Gamma \). The first component is given by the quiver

\[
\begin{array}{c}
 \bullet \\
 a_1 \rightarrow \rightarrow \bullet \\
 \bullet \rightarrow \rightarrow a_2 \\
\end{array}
\]

and the relation \(a_1a_2 = 0 \). Starting from the root we immediately recover the first cycle since there is no non-zero path of length greater than 1 whose
target is the root. Consequently, the second cycle is easily recovered and we get that the corresponding component of the quiver of A_Γ is

The quiver of the second component is

and the relations are $b_2b_0 = 0$, $b_5b_2 = 0$ and $b_4b_1 = 0$. The longest non-zero path ending at v_1 is $b_3b_1b_0$. Therefore we have to add an arrow from v_1 to v_5. This will give us the following partial quiver

We move on to the next level and conclude that we need to add an arrow from v_2 to v_4. We do not add an arrow from v_2 to v_5 because the arrow from v_3 to v_2 is already in a fully recovered cycle. For level two vertices we need to add an arrow from v_3 to v_6 and an arrow from v_4 to v_8. Finally, the
Theorem 5.10. Let A_Γ be a graded basic Brauer tree algebra whose grading is constructed by taking Green’s walk around Γ. From the quiver and relations of A_0 and the cyclic ordering of the components of A_0 we can recover the quiver and relations of A_Γ.

Proof. We have seen in the previous proposition that from the quiver and relations of A_0 we can recover each of the components of the quiver of A_Γ that we get when we omit the exceptional cycle. In order to completely recover the quiver of A_Γ, we are left to recover the exceptional cycle. The roots of the components of A_0 are the vertices of the exceptional cycle. From the cyclic ordering of the components we get the cyclic ordering of the vertices of the exceptional cycle. Thus, the exceptional cycle is recovered from the cyclic ordering of the components of A_0. ■

5.2. Quasi-hereditary structure on A_0. Let Q_v be the quiver of an arbitrary connected component of A_0. We have seen that Q_v is a rooted tree. We can enumerate the vertices of Q_v in a natural way by the levels of the rooted tree. We start with the root v, then we enumerate all vertices that are in level 1 of the rooted tree, for example, we enumerate them from left to right in the planar embedding of the tree. Once we have enumerated all vertices of an arbitrary level r, we move on to level $r+1$ and repeat the same procedure until we enumerate all vertices. Let P_i be the projective cover of the simple A_0-module S_i corresponding to the vertex v_i. Then P_i is spanned by paths of Q_v ending at v_i. Since Q_v is a rooted tree, we conclude that the only simple modules that occur as composition factors of P_i are the simple modules whose corresponding vertex has index greater than i. Also, S_i occurs only once as a composition factor of P_i. Hence, we obtain a quasi-hereditary structure on this component, by defining a partial order as
follows. Let v_j be the vertex of Q_v corresponding to the simple module S_j. Then we define $S_j < S_i$, for $i \neq j$, if there is a path from v_j to v_i, where S_i is the simple A_0-module corresponding to the vertex v_i. The standard modules with respect to this order are the projective indecomposable modules and the costandard modules are the simple modules. Therefore, (A_0, \leq) is a quasi-hereditary algebra as a product of quasi-hereditary algebras.

The Cartan matrix of the path algebra of Q_v is a lower triangular matrix with diagonal elements equal to 1. Since A_0 is the product of its components, we have that the following standard result for quasi-hereditary algebras holds for A_0 (cf. [6]).

Proposition 5.11. Let Γ be a Brauer tree of type (m, e) and let A_Γ be a graded basic Brauer tree algebra whose tree is Γ and whose grading is constructed by taking Green’s walk around Γ. If A_0 is the subalgebra of A_Γ consisted of elements in degree 0, then the Cartan matrix of A_0 is a lower triangular matrix with diagonal elements equal to 1 and with determinant equal to 1.

Quasi-hereditary algebras have finite global dimension (cf. [2]), hence, A_0 has a finite global dimension. We give an upper bound for the global dimension of a quasi-hereditary algebra A_0. Let Q_v be the quiver of a connected component of A_0 and let B be its path algebra. Let $l(Q_v)$ be the length of the rooted tree Q_v, i.e., the index of the last level of Q_v. The global dimension of B is at most $l(Q_v)$. This can be easily proved by looking at the projective dimensions of the simple B-modules. One starts at the bottom of the tree and works by induction on the distance of a vertex from the bottom of the tree.

Proposition 5.12. Let A_Γ, A_0 and Q_v be as above. Then,

$$\text{gl.dim. } A_0 \leq \max \{l(Q_v) | Q_v \text{ a component of the quiver of } A_0\}.$$

Note that the upper bound is achieved if the relations of A_0 are maximal possible in a sense that the product of every two arrows is equal to zero. For example, this happens in the case of a Brauer line where the subalgebra A_0 is given by the quiver

![Quiver Diagram](image)

and the relations are $a_ia_{i-1} = 0$, $i = 2, 3, \ldots, e - 1$. The other extreme is the case when there are no relations, that is when A_0 is hereditary. Then A_0 has global dimension ≤ 1, on the other hand $l(Q_v)$ can be arbitrarily large.
6. Graded Cartan matrix

Let $A_Γ$ be a basic Brauer tree algebra of type (m, e) given by the quiver Q and relations I. We have seen that $A_Γ$ is a graded algebra. Let S_1, S_2, \ldots, S_e be the simple $A_Γ$–modules corresponding to the vertices of the quiver Q. We assume that the simple modules are enumerated by taking Green’s walk around $Γ$. We define the graded Cartan matrix C of $A_Γ$ to be the $(e \times e)$-matrix with entries from the ring $\mathbb{Z}[q, q^{-1}]$ given by

$$c_{ij} = C(S_i, S_j) := \sum_{l \in \mathbb{Z}} q^l \dim \text{Hom}_{A_Γ}(P_{S_i}, P_{S_j}(|l|)),$$

where P_{S_i} is the projective cover of S_i.

Note that the coefficient of q^l is equal to the number of times that S_i appears in degree l as a composition factor of P_{S_j}.

Proposition 6.1. Let $A_Γ$ be a graded basic Brauer tree algebra whose tree is $Γ$ and with grading constructed by taking Green’s walk around $Γ$. Let S_i and S_j be simple modules corresponding to vertices v_i and v_j of the quiver Q of $A_Γ$. Then

(i) if S_i and S_j do not belong to the same cycle of Q, then $c_{ij} = 0$;

(ii) if S_i belongs to the exceptional cycle, we have that

$$c_{ii} = 1 + q^e + q^{2e} + \cdots + q^{me},$$

if S_i does not belong to the exceptional cycle, we have that

$$c_{ii} = 1 + q^{me}.$$

(iii) if $i \neq j$ and S_i and S_j belong to the same non-exceptional cycle, then

$$i > j \Rightarrow c_{ij} = 1,$$

$$i < j \Rightarrow c_{ij} = q^{me};$$

(iv) if $i \neq j$ and S_i and S_j belong to the exceptional cycle, then

$$i > j \Rightarrow c_{ij} = q^{i-j} + q^{i-j+e} + \cdots + q^{i-j+(m-1)e},$$

$$i < j \Rightarrow c_{ij} = q^{e-(j-i)} + q^{2e-(j-i)} + \cdots + q^{me-(j-i)}.$$

Proof. Since the projective cover of S_j is spanned by the paths ending at S_j, we conclude that the exponents of the non-zero terms of c_{ij} are exactly the degrees of the non-zero paths starting at S_i and ending at S_j. Case (i) is obvious, because P_{S_j} does not contain S_i as a composition factor. In case (ii) the degrees of the paths starting and ending at S_i are $0, e, 2e, \ldots, me$ when S_i belongs to the exceptional cycle, and are $0, me$ otherwise. In case (iii), if $i > j$, the only non-zero path from S_i to S_j has degree 0. Similarly, if $i < j$, the only non-zero path from S_i to S_j has degree me. In case (iv)
the same argument shows that, if $i > j$, then the degrees of the paths from S_i to S_j are $i - j, e + (i - j), \ldots, (m - 1)e + i - j$, and if $i < j$, they are $e - (j - i), 2e - (j - i), \ldots, me - (j - i)$. ■

7. Graded Cartan determinant

Proposition 7.1. Let A_Γ be a graded basic Brauer tree algebra whose tree Γ is of type (m, e) and whose grading is constructed by taking Green’s walk around Γ. If C_{A_Γ} is the graded Cartan matrix of A_Γ, then

$$\det C_{A_\Gamma} = 1 + q^e + q^{2e} + \cdots + q^{me^2}.$$

Proof. By [11], Proposition 5.17, the constant term of $\det C_A$ is equal to the determinant of the Cartan matrix of A_0. We have seen that the determinant of the Cartan matrix of A_0 is 1. By Proposition 6.6 in [11], we also have that if A and B are two graded Brauer tree algebras of the same type (m, e), with gradings constructed by taking Green’s walk, then $\det C_A$ is equal to $\pm q^l \det C_B$ for some integer l. Since the constant term is equal to 1, we conclude that $l = 0$, and that $\det C_A = \det C_B$. Therefore, it is enough to compute $\det C_B$ where B is the graded basic Brauer tree algebra whose tree is the Brauer line of type (m, e) with the exceptional vertex at one of the ends (see Example 4.4(b)).

If $|i - j| > 1$, then $c_{ij} = 0$, because the corresponding vertices belong to different cycles. Also, $c_{11} = 1 + q^e + q^{2e} + \cdots + q^{me}$, and if $i > 1$, then $c_{ii} = 1 + q^{me}$. Other entries are given by $c_{i+1,i} = q^{me}$ and $c_{i+1,i} = 1$. We are left to compute the following $e \times e$ determinant

$$\det C_B = \begin{vmatrix} \alpha & \beta \\ 1 & \gamma \\ 1 & \gamma \\ \ldots \\ 1 & \gamma \end{vmatrix}$$

where $\alpha = 1 + q^e + q^{2e} + \cdots + q^{me}$, $\beta = q^{me}$, $\gamma = 1 + q^{me}$ and the omitted entries are all equal to zero. If d_l is the determinant of the $l \times l$ block in the lower right corner, then from $d_0 = 1$, $d_1 = \gamma$ and the recursion

$$d_l = \gamma d_{l-1} - \beta d_{l-2},$$

it is easy to show that

$$d_l = 1 + q^{me} + \cdots + q^{lme}.$$
Expanding the determinant along the first column gives us the desired formula
\[
\det C_B = \alpha d_{e-1} - \beta d_{e-2} = 1 + q^e + q^{2e} + \cdots + q^{me^2}.
\]

8. BRAUER LINES AS TRIVIAL EXTENSION ALGEBRAS

Let Γ be the Brauer line with e edges and multiplicity of the exceptional vertex equal to 1. Let A_Γ be a basic Brauer tree algebra whose tree is Γ and let us assume that this algebra is graded by taking Green’s walk around Γ. We have seen in Example 4.4 (b) that with respect to such grading the graded quiver of A_Γ is given by

```
•   •   •   •   •
0  0  0  0  0
```

and we have that the only non-zero degree appearing in this grading is e. Therefore, we can divide every degree by e and we will still have a graded algebra whose graded quiver is

```
•   •   •   •   •
1  1  1  1  1
0  0  0  0  0
```

with arrows only in degrees 0 and 1. We call this procedure of dividing each degree by the same integer rescaling.

This algebra has an interesting connection with trivial extension algebras. Let B be a finite dimensional algebra over a field k. The trivial extension algebra of B, denoted $T(B)$, is the vector space $B \oplus B^*$ with multiplication defined by

\[
(x, f)(y, g) := (xy, xg + fy)
\]

where $x, y \in B$ and $f, g \in B^*$ and B^* is the B–bimodule $\text{Hom}_k(B, k)$. This algebra is always symmetric and the map $B \to T(B)$, given by $b \mapsto (b, 0)$, is an embedding of algebras. The algebra $T(B)$ is naturally graded by putting B in degree 0 and B^* in degree 1. This raises the question of whether the graded Brauer tree algebra A_Γ (with degrees normalized by dividing by e) is the trivial extension algebra of some algebra B? The obvious candidate would be its subalgebra A_0. The quiver of A_0 is given by

```
•   •   •   •   •
 v_1 v_2 v_3 v_4 \cdots v_{e-2} v_{e-1} v_e
```

and the following proposition says that the trivial extension algebra of A_0 is A_Γ.
Proposition 8.1. Let A_{Γ} and A_0 be as above. Then
\[T(A_0) = A_0 \oplus A^*_0 \cong A_{\Gamma}. \]

Proof. Let \{\(v^*_1, \ldots, v^*_e, a^*_1, \ldots, a^*_{e-1}\)\} be the basis of A^*_0 dual to the basis \{\(v_1, \ldots, v_e, a_1, \ldots, a_{e-1}\)\} of A_0 and let b_i, $i = 1, 2, \ldots, e - 1$, be the arrow of the quiver of A_{Γ} starting at the vertex v_i and ending at the vertex v_{i+1}. Each b_i is in degree 1. It is now easily verified that the map given by $a \mapsto (a, 0)$ for $a \in A_0$ and $b_i \mapsto (0, a^*_i)$, $i = 1, 2, \ldots, e - 1$, is an algebra isomorphism between A_{Γ} and $T(A_0)$.

9. Shifts of gradings

Let Γ be a Brauer tree of type (m, e) and let A_{Γ} be a basic Brauer tree algebra whose tree is Γ. We have seen that we can grade this algebra by computing the endomorphism ring of the graded complex $T' = \oplus_{i=1}^{e} T'_i$ which we constructed by taking Green’s walk around Γ. In other words, we got a structure of a graded algebra A'_{Γ} on A_{Γ}. Recall that this was a non-negative grading, i.e. a grading such that every homogeneous element is in a non-negative degree. Let \tilde{T} be the shifted graded complex $\oplus_{i=1}^{e} T'_i(n_i)$, where $n_i \in \mathbb{Z}$, $i = 1, 2, \ldots, e$. The endomorphism ring of the graded complex \tilde{T} is the graded algebra \tilde{A}_{Γ} which is graded Morita equivalent to A'_{Γ} (see Definition 11.1). The question is if we can choose non-zero integers n_i in such way that the resulting grading is positive, i.e. to get such a grading in which all homogeneous elements from the radical of A_{Γ} are in strictly positive degrees. The answer to this question is positive, and moreover, these integers n_i can be chosen to be positive integers.

Let S_i and S_j be vertices of the quiver of the algebra \tilde{A}_{Γ} which belong to the same cycle, and which correspond to the summands $T'_i(n_i)$ and $T'_j(n_j)$ of \tilde{T}. We need to compute the degree of the arrow α from S_i to S_j. Let d be the degree of this arrow for the graded algebra A'_{Γ}.

Proposition 9.1. Let α be the arrow connecting vertices S_i and S_j of the graded quiver of the graded algebra A_{Γ}. Then,
\[\deg(\alpha) = d + n_i - n_j, \]
where d is the degree of the same arrow of the quiver of the graded algebra A'_{Γ}, and n_i and n_j are the shifts of T'_i and T'_j respectively.

Proof. Since T'_i are complexes of uniserial modules, the top of the leftmost non-zero term of $T'_i(n_i)$ is in degree $d_1 - n_i$ after the shift, where d_1 is the degree of the top of the leftmost non-zero term of T'_i, i.e. the degree before the shift. Also, the top of the leftmost non-zero term of $T'_j(n_j)$ is in degree
$d_2 - n_j$, where d_2 is its degree before the shift. The degree of α after the shift is $(d_2 - n_j) - (d_1 - n_i) = d + n_i - n_j$. ■

Note that when we compare graded quivers of A'_Γ and \tilde{A}_Γ, the difference is that we added $n_i - n_j$ to the degree of the arrow from S_i to S_j. If this arrow is in degree 0, then its degree after the shift is $n_i - n_j$, where $i > j$. The source and the target of such an arrow belong to two consecutive levels of a rooted tree. The arrows that are not part of the exceptional cycle and whose degree was non-zero, are now in degree $me + n_i - n_j$ where $i < j$. Also, the degree of an arrow between two vertices S_i and S_j of the exceptional cycle is now $i - j + n_i - n_j$, if $i > j$, and if $i < j$, it is $e - (j - i) + n_i - n_j$.

We want to find integers $n_i, i = 1, 2, \ldots, e$, such that all these degrees are positive.

Proposition 9.2. Let Γ be a Brauer tree of type (m,e) and let $\tilde{T} := \oplus_{i=1}^e T_i'(n_i)$ be the shifted tilting complex constructed by taking Green’s walk around Γ. Let $\tilde{A}_\Gamma := \text{Endgr}_{K^b(P_{A_\Gamma})}(\tilde{T})^\text{op}$. There are positive integers $n_i, i = 1, 2, \ldots, e$, such that the graded algebra \tilde{A}_Γ is non-negatively graded with $\deg(a) > 0$ for all homogeneous elements $a \in \text{rad } \tilde{A}_\Gamma$.

Proof. Let Q_v be an arbitrary component of the quiver of A_0, where A_0 is as before the subalgebra of A'_Γ of degree 0 elements, and let S_i be a vertex of Q_v. If we choose n_i to be $1 + l_i$, where l_i is the level of the rooted tree Q_v to whom S_i belongs, we see that all arrows of the graded quiver Q_v are in degree 1 after the shift. Also, the arrows of Q, the quiver of A_Γ, that connect two vertices of Q_v and which were not in degree 0 are still in positive degrees after the shift because $n_j - n_i < e$ (the number of levels in each component of the quiver of A_0 is less than e) and consequently $me + n_i - n_j > 0$. The arrows of the exceptional cycle are in the same degrees as they used to be because we set $n_i := 1$ for each root S_i. Then for every homogeneous element $a \in \text{rad } \tilde{A}_\Gamma$ we have that $\deg(a) > 0$. ■

We note here that, in general, there are many choices for the integers $n_i, i = 1, 2, \ldots, e$.

Example 9.3. Let Γ be the tree from Example 5.7. With the notation from the previous proposition the graded quiver of the basic Brauer tree algebra...
\[\hat{A}_\Gamma = \text{Endgr}_{K^b(P_{A_S})} \left(\bigoplus_{i=1}^{11} T_i'(n_i) \right)^{op} \]

is given by

\[S_8 \cdot n_8 - n_6 \downarrow \downarrow S_{10} \cdot n_{10} - n_9 \]

\[11 + n_1 - n_8 \]

\[S_9 \cdot 8 + n_9 - n_1 \]

\[3 + n_1 - n_9 \]

\[S_1 \cdot n_2 - n_1 \]

\[S_6 \cdot 6 + n_6 - n_2 \]

\[n_7 - n_6 \]

\[S_7 \cdot 7 + n_7 - n_6 \]

\[n_10 - n_10 \]

\[n_11 - n_11 \]

If we set \(n_1 = n_9 = 1, \ n_2 = n_{10} = 2, \ n_3 = n_6 = n_{11} = 3, \ n_4 = n_7 = n_8 = 4 \) and \(n_5 = 5 \), then all arrows are in positive degrees.

Note that the change of shifts on the summands \(T_i' \) of the tilting complex \(T' \) is the same as the change of shifts on the projective indecomposable modules of \(A'_\Gamma \cong \text{Endgr}_{K^b(P_{A_S})} \left(\bigoplus_{i=1}^{e} T'_i(n_i) \right)^{op} \). Let \(\hat{A}_\Gamma \cong \text{Endgr}_{K^b(P_{A_S})} \left(\bigoplus_{i=1}^{e} T'_i(n_i) \right)^{op} \).

When we change the shifts, in general, we get a different grading on \(A_\Gamma \) and the resulting graded algebra \(\hat{A}_\Gamma \) is not isomorphic to \(A'_\Gamma \) as a graded algebra. But these two graded algebras are graded Morita equivalent, i.e. there is an equivalence \(A'_\Gamma \text{-grmod} \cong \hat{A}_\Gamma \text{-grmod} \) as we shall see in Section 11.

10. Change of the exceptional vertex

Let \(A_\Gamma \) be a basic Brauer tree algebra whose tree \(\Gamma \) has \(e \) edges and the multiplicity of the exceptional vertex equal to 1. If we change the exceptional vertex, the algebra \(A_\Gamma \) does not change. But when constructing the tilting complex that tilts from \(A_S \) to \(A_\Gamma \) by taking Green’s walk around \(\Gamma \) it is obvious that we start from a different vertex, and in general, the resulting tilting complex is different. Therefore, we get different gradings on \(A_\Gamma \).

Example 10.1. Let \(\Gamma \) be the following Brauer tree with multiplicity of the exceptional vertex equal to 1 and let \(A_\Gamma \) be the corresponding Brauer tree algebra.
If $T = \oplus_{i=1}^{4} T_i$ is the tilting complex constructed by taking Green’s walk around Γ, then the resulting graded quiver of A_{Γ} is given by

If we change the exceptional vertex, say we have Brauer tree Δ

then the basic Brauer tree algebra A_{Δ} whose tree is Δ, is the same as A_{Γ}. Thus, changing the exceptional vertex of Γ does not change A_{Γ}. The tilting complex D constructed by taking Green’s walk around Δ is different from T. Therefore, we get a new grading on $A_{\Delta} = A_{\Gamma} \cong \text{End}_{K^b(P_{A_{\Delta}})}(D)^{op}$, and the resulting graded quiver of the graded algebra A_{Δ}' is given by
If $\tilde{T} := \oplus_{i=1}^4 T_i(n_i)$ is a graded complex given by shifting summands of T', then from Proposition 9.1 we get another grading on $A_{\Gamma} \cong \text{End}_{K^b(P_{A_{\Gamma}})}(T)^{op}$ and the resulting graded quiver of the graded algebra \tilde{A}_{Γ} is given by

$$\begin{array}{c}
S_4 \quad 1+n_1-n_4 \\
S_2 \quad n_2-n_1 \\
S_3 \quad 2+n_3-n_1 \\
S_1 \quad 4+n_1-n_2
\end{array}$$

If we set $n_1 = 3$, $n_2 = 7$, $n_3 = 1$ and $n_4 = 0$, we see that the resulting grading on A_{Γ} is the same as the grading that we got by taking Green’s walk around Δ.

In the previous example we had two different gradings on A_{Γ}, but we were able, by changing shifts of the summands of the graded tilting complex T', to move from one grading to another via graded Morita equivalence (Definition 11.1). We will prove in the next section that this holds for all Brauer tree algebras, regardless of the multiplicity of the exceptional vertex.

11. Classification of gradings

In this section we classify, up to graded Morita equivalence and rescaling, all gradings on an arbitrary Brauer tree algebra with n edges and the multiplicity of the exceptional vertex equal to m.

For a finite dimensional k-algebra A, there is a correspondence between gradings on A and homomorphisms of algebraic groups from G_m to $\text{Aut}(A)$, where G_m is the multiplicative group k^* of a field k. For each grading $A = \oplus_{i \in \mathbb{Z}} A_i$ there is a homomorphism of algebraic groups $\pi : G_m \to \text{Aut}(A)$ where element $x \in k^*$ acts on A_i by multiplication by x^i (see [11], Section 5). If A is graded and π is the corresponding homomorphism, we will write (A, π) to denote that A is graded with grading π.

Definition 11.1. Let (A, π) and (A, π') be two gradings on a k-algebra A, and let P_1, P_2, \ldots, P_r be the isomorphism classes of the projective indecomposable A-modules. We say that (A, π) and (A, π') are graded Morita equivalent if there exist integers d_1, d_2, \ldots, d_r such that the graded algebras (A, π') and $\text{End}_{gr}(A, \pi)(\oplus_{i=1}^r P_i(d_i))^{op}$ are isomorphic.

Note that two graded algebras are graded Morita equivalent if and only if their categories of graded modules are equivalent.
The following proposition tells us how to classify all gradings on A up to graded Morita equivalence.

Proposition 11.2 (I]. Corollary 5.8). Two graded algebras (A, π) and (A, π') are graded Morita equivalent if and only if the corresponding cocharacters $\pi : G_m \to \text{Out}(A)$ and $\pi' : G_m \to \text{Out}(A)$ are conjugate.

From this proposition we see that in order to classify gradings on A up to graded Morita equivalence, we need to compute maximal tori in $\text{Out}(A)$. Let $\text{Out}^K(A)$ be the subgroup of $\text{Out}(A)$ of those automorphisms fixing the isomorphism classes of simple A-modules. Since $\text{Out}^K(A)$ contains $\text{Out}^0(A)$, the connected component of $\text{Out}(A)$ that contains the identity element, we have that maximal tori in $\text{Out}(A)$ are actually contained in $\text{Out}^K(A)$.

We start by computing $\text{Out}^K(A_{\Gamma})$ for a Brauer tree algebra A_{Γ} of type (m, n), where $m > 1$. We remark here that for the case $m = 1$, $\text{Out}^K(A_{\Gamma})$ has been computed in Lemma 4.3 in [12]. Although the proof of this Lemma in [12] seems to be incomplete, the result is correct if one assumes that the ground field k is an algebraically closed field. The same result, namely that $\text{Out}^K(A_{\Gamma}) \cong k^*$ when $m = 1$, follows directly from our computation below for $m > 1$, if we disregard the loop ρ which does not appear in the case $m = 1$.

Let A_{Γ} be a basic Brauer tree algebra whose tree Γ is of type (m, n) where $m > 1$. Since $\text{Out}^K(A_{\Gamma})$ is invariant under derived equivalence (cf. [9], Section 4), in order to compute this group for any Brauer tree algebra A_{Γ} whose tree is of type (m, n), it is sufficient to compute this group for the Brauer line of the same type.

Let A_{Γ} be a basic Brauer tree algebra of type (m, n) whose tree is the Brauer line with n edges and with the exceptional vertex at the end of the line. The quiver of A_{Γ} is given by

$\rho \begin{array}{cccccccc}
 \cdot & \bullet & a_1 & e_1 & a_2 & e_2 & \cdots & a_{n-3} & e_{n-3} & a_{n-2} & e_{n-2} & a_{n-1} & e_{n-1} & \bullet & \cdot \\
 \bullet & \cdot & b_1 & & b_2 & & & & b_{n-3} & & b_{n-2} & & b_{n-1} & & \\
 a_1 & e_1 & a_2 & e_2 & \cdots & a_{n-3} & e_{n-3} & a_{n-2} & e_{n-2} & a_{n-1} & e_{n-1} & a_n & e_n & b_n \\
\end{array}$

and relations are given by $a_i a_{i+1} = b_{i+1} b_i = 0 \ (i = 1, 2, \ldots, n-2)$, $\rho^m = a_1 b_1$ and $a_i b_i = b_{i-1} a_{i-1} \ (i = 2, 3, \ldots, n - 1)$.

In order to simplify calculation let us set $t_i := a_i + b_i$, $i = 1, 2, \ldots, n - 1$. Then, $a_i = e_i t_i$ and $b_i = e_{i+1} t_i$, for $i = 1, 2, \ldots, n - 1$. Then the relations become $t_i^3 = 0 \ (i = 1, 2, \ldots, n - 1)$, $e_1 t_i^2 = \rho^m$, $e_i t_i^2 = t_{i-1}^2 e_i \ (i = 2, 3, \ldots, n - 1)$. Also, we have that $e_i t_i = t_i e_{i+1}$ and $e_{i+1} t_i = t_i e_i$, $i = 1, 2, \ldots, n - 1$. Let us write $t_0^2 := \rho^m$.

Let φ be an arbitrary automorphism of A_Γ that fixes isomorphism classes of simple A_Γ-modules. We will compose this automorphism with suitably chosen inner automorphisms in order to get an automorphism ϕ, which represents the same element as φ in the group of outer automorphisms, but which is suitable for our computation.

If $\{e_1, e_2, \ldots, e_n\}$ is a complete set of orthogonal primitive idempotents, then $\{\varphi(e_1), \varphi(e_2), \ldots, \varphi(e_n)\}$ is also a complete set of orthogonal primitive idempotents. From classical ring theory (cf. [5], Theorem 3.10.2) we know that these two sets are conjugate. Hence, when we compose φ with a suitably chosen inner automorphism we get that $x^{-1}\varphi(e_i)x = e_{\pi(i)}$, for all i, where π is some permutation. Since φ fixes isomorphism classes of simple modules, we can assume that, for all i, $\varphi(e_i) = e_i$.

Since $\varphi(\text{rad } A_\Gamma) \subset \text{rad } A_\Gamma$ we have that

$$\varphi(t_i) = \sum_{j=1}^{n-1} A_{ij} e_j t_j + \sum_{j=1}^{n-1} B_{ij} e_j t_j + \sum_{j=0}^{n-1} C_{ij} e_j t_j^2 + \sum_{j=1}^{m-1} D_{ij} \rho^j,$$

where A_{ij}, B_{ij}, C_{ij} and D_{ij} are scalars. If $i > 1$, then from $e_1 t_i = 0$ we get that $D_{ij} = 0$ for $j = 1, 2, \ldots, m - 1$. If $i = 1$, then from $e_1 t_1 = t_1 e_2$ we get that $D_{ij} = 0$, $j = 1, 2, \ldots, m - 1$. In both cases we have that $D_{ij} = 0$ for all i and all j.

If $l \notin \{i, i + 1\}$, then $\varphi(e_i t_i) = 0$ and $\varphi(t_i e_l) = 0$. From the first equality we get that $A_{il} = B_{il-1} = 0$ and from the second equality we get that $B_{il} = A_{il-1} = 0$. Subsequently, we have that $C_{il} = 0$ for $l \notin \{i, i - 1\}$. Therefore, we must have that

$$\varphi(t_i) = A_{ii} e_i t_i + B_{ii} e_{i+1} t_i + C_{ii-1} e_{i+1} t_{i-1} + C_{ii} e_{i+1} t_i^2.$$

From $e_i t_i = t_i e_{i+1}$ it follows that $\varphi(e_i) \varphi(t_i) = \varphi(t_i) \varphi(e_{i+1})$, and we have

$$C_{ii-1} = C_{ii} = 0.$$

Also, $A_{ii} \neq 0$ and $B_{ii} \neq 0$. If one of them would be zero, then $\varphi(t_i^2) = 0$, which is in contradiction with φ being an automorphism.

Assume now that

$$\varphi(\rho) = \sum_{j=1}^{m-1} D_j \rho^j + \sum_{j=1}^{n-1} E_j e_j t_j + \sum_{j=1}^{n-1} F_j e_j t_j + \sum_{j=0}^{n-1} G_j e_j t_j^2,$$

for some scalars D_j, E_j, F_j and G_j.

For $l > 2$, from $e_1 \rho = 0$ we have that $\varphi(e_1) \varphi(\rho) = 0$ and it follows that $E_l = F_{l-1} = 0$, for $l = 2, 3, \ldots, m - 1$. Similarly, from $e_1 \varphi = 0$ we have that $F_l = E_{l-1} = 0$, for $l = 2, 3, \ldots, m - 1$ and consequently, we have that $G_j = 0$.
for all \(j \). Therefore, we get

\[
\varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j.
\]

Note that \(D_1 \neq 0 \), because if \(D_1 = 0 \), then \(\varphi(\rho^m) = 0 \), which again contradicts the fact that \(\varphi \) is an automorphism.

Gathering all the information we got, we conclude that, up to inner automorphism, an arbitrary automorphism that fixes isomorphism classes of simple \(A_\Gamma \)-modules has the following action on a set of generators \(\{ e_i, t_l, \rho \mid i = 1, 2, \ldots, n; l = 1, 2, \ldots, n - 1 \} \)

\[
\varphi(e_i) = e_i, \quad \varphi(t_l) = A_l e_l t_l + B_{ll} e_{l+1} t_l, \quad \varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j.
\]

To compute \(\text{Out}^K(A_\Gamma) \), for each automorphism \(\varphi \) we need to find an automorphism which is in the same class as \(\varphi \) in \(\text{Out}^K(A_\Gamma) \), and which acts by scalar multiplication on as many of the above generators as possible. In order to do that we will compose \(\varphi \) with suitably chosen inner automorphisms.

First of all, let us see how an arbitrary inner automorphism acts on our set of generators.

Let \(y \) be an arbitrary invertible element in \(A_\Gamma \). Then,

\[
y = \sum_{j=1}^{n} l_j e_j + \sum_{j=1}^{n-1} s_j e_j t_j + \sum_{j=1}^{n-1} r_j e_{j+1} t_j + \sum_{j=1}^{n-1} p_j e_{j+1} t_j^2 + \sum_{j=1}^{m} q_j \rho^j,
\]

where \(l_i \neq 0, i = 1, \ldots, n \). From \(yy^{-1} = 1 \), we easily compute scalars \(s_j', r_j', p_j', q_j' \), in

\[
y^{-1} = \sum_{j=1}^{n} l_j^{-1} e_j + \sum_{j=1}^{n-1} s_j' e_j t_j + \sum_{j=1}^{n-1} r_j' e_{j+1} t_j + \sum_{j=1}^{n-1} p_j' e_{j+1} t_j^2 + \sum_{j=1}^{m} q_j' \rho^j.
\]

The inner automorphism given by \(y \) has the following action on \(\rho \)

\[
f_y(\rho) := ypy^{-1} = (l_1 \rho + \sum_{j=1}^{m} q_j \rho^{j+1})y^{-1} = \rho + \sum_{j=1}^{m} l_1 q_j \rho^{j+1} + \sum_{j=1}^{m} l_1^{-1} q_j \rho^{j+1} + \sum_{j=1}^{m} q_j \rho^{j+1} \sum_{j=1}^{m} q_j' \rho^j = \rho + \rho \sum_{j=1}^{m} l_1 q_j' \rho^j + \sum_{j=1}^{m} l_1^{-1} q_j \rho^j + \sum_{j=1}^{m} q_j \rho^j \sum_{j=1}^{m} q_j' \rho^j + s_1 r_1 \rho^m = \rho.
\]
Therefore, an arbitrary inner automorphism fixes \(\rho \). From now on, we will use inner automorphisms given by elements of the form
\[
x = \sum_{j=1}^{n} l_j e_j.
\]
They will be enough to get a class representative of \(\varphi \) in \(\text{Out}^K(A_\Gamma) \) that is easy to work with.

If \(f_x \) is the inner automorphism given by an invertible element \(x \), then we easily get that
\[
f_x(t_i) = l_i l_{i+1}^{-1} e_i t_i + l_i^{-1} l_{i+1} e_{i+1} t_i.
\]
When we compose \(f_x \) and \(\varphi \) we get that
\[
f_x \circ \varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j,
\]
\[
f_x \circ \varphi(t_i) = A_i l_i l_{i+1}^{-1} e_i t_i + B_i l_i^{-1} l_{i+1} e_{i+1} t_i,
\]
for all \(i \), and
\[
f_x \circ \varphi(e_i) = e_i.
\]
We want to choose \(l_i \)'s so that we get
\[
A_i := A_i l_i l_{i+1}^{-1} = B_i l_i^{-1} l_{i+1}
\]
for \(i = 1, 2, \ldots, n - 1 \). To do this we need to choose \(l_i \)'s in such way that the following equality holds for all \(i \)
\[
A_i B_i^{-1} = l_i^{-2} l_{i+1}^2.
\]
We can choose \(l_1 = 1 \) and then inductively, assuming that we have chosen \(l_1, l_2, \ldots, l_i \), because we are working over an algebraically closed field, we get \(l_{i+1} \) from \(A_i B_i^{-1} l_i = l_{i+1}^2 \).

If we choose such \(x \), then the map \(\varphi_1 := f_x \circ \varphi \) has the following action on our generating set
\[
\varphi_1(e_i) = e_i, \quad \varphi_1(\rho) = \sum_{j=1}^{m} D_j \rho^j, \quad \varphi_1(t_i) = A_i t_i.
\]
From the relations \(e_i t_i l_{i-1}^2 = t_i^2 e_i \), for \(i = 2, 3, \ldots, n-1 \), we get that \(A_1^2 = A_2^2 = \cdots = A_{n-1}^2 \). We can assume that \(A_1 = A_2 = \cdots = A_{n-1} \), because if not, then by multiplying \(\varphi_1 \) by an inner automorphism given by \(x_1 = \sum_{i=1}^{n} r_i e_i \), where we set \(r_1 = 1 \) and then inductively, \(r_{i+1} = -r_i \) if \(A_{i+1} = -A_i \), and \(r_{i+1} = r_i \) if \(A_{i+1} = A_i \), we get a new automorphism \(\varphi_2 \) such that \(\varphi_2(t_i) = A_i t_i \), for all \(i \). Also from the relation \(\rho^m = e_i t_i^2 \) we get that \(A_1^2 = D_1^{m} \). This means that for a fixed \(D_1 \) we have two choices for \(A_1 \), since there are two square roots of \(D_1^{m} \). These two values of \(A_1 \) will give us two different automorphisms, but as before, we can assume that after multiplying by an appropriate inner
automorphism these two automorphisms represent the same automorphism in \(\text{Out}^K(A_\Gamma) \).

We started with an arbitrary automorphism \(\varphi \) that fixes the isomorphism classes of simple \(A_\Gamma \)-modules and we showed that in the group \(\text{Out}^K(A_\Gamma) \) it represents the same class as the element \(\phi \) whose action is given by

\[
\phi(e_i) = e_i, \quad \phi(\rho) = \sum_{j=1}^{m} D_j \rho^j, \quad \phi(t_s) = A_1 t_s,
\]

where \(A_1^2 = D_1^n, \ i = 1, \ldots, n, \) and \(s = 1, \ldots, n - 1 \).

Therefore, every element in \(\text{Out}^K(A_\Gamma) \) is uniquely determined by its action on \(\rho \), that is, it is uniquely determined by an \(m \)-tuple \((D_1, D_2, \ldots, D_m) \) where \(D_1 \neq 0 \). The map \(\theta \) that assigns to each \(m \)-tuple \(D = (D_1, D_2, \ldots, D_m) \) an isomorphism \(\phi_D \), where \(\phi_D(\rho) = \sum_{j=1}^{m} D_j \rho^j \), is an isomorphism of groups. But what is the group structure on the set \(k^* \times k \times k \times \cdots \times k \), where \(k^* \) denotes non-zero elements of \(k \)? If \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m) \) and \(\beta = (\beta_1, \beta_2, \ldots, \beta_m) \) are two \(m \)-tuples and \(\phi_\alpha \) and \(\phi_\beta \) are two corresponding automorphisms, then \(\phi_\beta \circ \phi_\alpha = \phi_{\beta \circ \alpha} \) gives us the definition of the group operation \(* \) on \(k^* \times k \times k \times \cdots \times k \). Computing \(\phi_\beta \circ \phi_\alpha \) gives us that

\[
\beta \ast \alpha := \left(\sum_{i=1}^{l} \alpha_i \left(\sum_{k_1 + \cdots + k_i = l \atop k_1, \ldots, k_i > 0} \beta_{k_1} \beta_{k_2} \cdots \beta_{k_i} \right) \right)^{m-1}
\]

(11.1)

Here are first few coordinates explicitly

\[
\beta \ast \alpha = (\alpha_1 \beta_1, \alpha_1 \beta_2 + \alpha_2 \beta_1^2, \alpha_1 \beta_3 + 2\alpha_2 \beta_1 \beta_2 + \alpha_3 \beta_1^3, \ldots).
\]

Definition 11.3. We define \(H_m \) to be the group \((k^* \times k \times k \times \cdots \times k; *, \ast) \), where the multiplication \(* \) is given by the above equation (11.1).

The identity element of \(H_m \) is \((1, 0, \ldots, 0) \), and this element corresponds to the class of inner automorphisms. The inverse element of an arbitrary \(m \)-tuple is easily computed inductively from the definition of \(* \). Associativity is verified after elementary, but tedious computation.

Lemma 11.4. The group \(H_m \) is isomorphic to the group of automorphisms of the polynomial algebra \(k[x]/(x^{m+1}) \).

Proof. An arbitrary automorphism \(f \) from \(\text{Aut}(k[x]/(x^{m+1})) \) is given by its action on \(x \). Since it has to be surjective, and \(f(x)^{m+1} = 0 \), we have that \(x \) has to be mapped to a polynomial \(d_1 x + d_2 x^2 + \cdots + d_m x^m \), where \(d_1 \neq 0 \). Therefore, every automorphism of \(\text{Aut}(k[x]/(x^{m+1})) \) is given by a
unique \(m \)-tuple \((d_1, d_2, \ldots, d_m)\) where \(d_1 \neq 0 \). The structure of a group on the set of all such \(m \)-tuples is the same as for the group \(H_m \).

Since the group \(\text{Out}^K(A) \) is invariant under derived equivalence and Brauer tree algebras of the same type are derived equivalent, we have the following theorem.

Theorem 11.5. Let \(\Gamma \) be a Brauer tree of type \((m, n)\) and let \(A_{\Gamma} \) be a basic Brauer tree algebra whose tree is \(\Gamma \). Then

\[
\text{Out}^K(A_{\Gamma}) \cong \text{Aut}(k[x]/(x^{m+1})) \cong H_m.
\]

We see that the group of outer automorphisms that fix isomorphism classes of simple modules of an arbitrary Brauer tree algebra depends only on the multiplicity \(m \) of the exceptional vertex and does not depend on the number of edges. If we take an arbitrary Brauer tree \(\Gamma \), and if \(\Gamma' \) is any connected Brauer subtree of \(\Gamma \) that contains the exceptional vertex, then the corresponding Brauer tree algebras \(A_{\Gamma} \) and \(A_{\Gamma'} \) have isomorphic groups of outer automorphisms that fix isomorphism classes of simple modules. If we take the subtree \(\Gamma' \) to be the exceptional vertex with one edge adjacent to it, we get \(A_{\Gamma'} = k[x]/(x^{m+1}) \).

Corollary 11.6. Let \(\Gamma \) be a Brauer tree of type \((m, n)\) and let \(\Gamma' \) be an arbitrary connected Brauer subtree of \(\Gamma \) that contains the exceptional vertex. If \(A_{\Gamma} \) and \(A_{\Gamma'} \) are two basic Brauer tree algebras whose trees are \(\Gamma \) and \(\Gamma' \) respectively, then

\[
\text{Out}^K(A_{\Gamma}) \cong \text{Out}^K(A_{\Gamma'}) \cong \text{Aut}(k[x]/(x^{m+1})).
\]

Let \(L \) be the subgroup of \(H_m \) consisting of the elements of the form \((1, \alpha_2, \ldots, \alpha_m)\) and let \(K \) be the subgroup of \(H_m \) consisting of the elements of the form \((\alpha_1, 0, \ldots, 0)\).

Proposition 11.7. The group \(H_m \) is a semidirect product of \(L \) and \(K \), where \(L \leq G \) is unipotent and the subgroup \(K \cong G_m \) is a maximal torus in \(H_m \).

We see that, regardless of the multiplicity of the exceptional vertex, \(T \cong G_m \) is a maximal torus in \(\text{Out}^K(A_{\Gamma}) \). From this we deduce the following theorem.

Theorem 11.8. Let \(\Gamma \) be an arbitrary Brauer tree and let \(A_{\Gamma} \) be a basic Brauer tree algebra whose tree is \(\Gamma \). Up to graded Morita equivalence and rescaling there is unique grading on \(A_{\Gamma} \).

Proof. By Proposition 11.2 homomorphisms of algebraic groups from \(G_m \) to \(G_m \) give us all gradings on \(A_{\Gamma} \) up to graded Morita equivalence. Since
the only homomorphisms from G_m to G_m are given by maps $x \mapsto x^r$, for $x \in G_m$ and $r \in \mathbb{Z}$, we have that there is unique grading on A_{Γ} up to rescaling (dividing each degree by the same integer) and graded Morita equivalence (shifting each summand of the tilting complex given by Green’s walk).

\section*{Acknowledgements}

I would like to thank Raphael Rouquier for suggesting the problem of transfer of gradings via derived equivalence, and for the constant support while I was writing this paper. Also, I would like to thank Karin Erdmann for careful reading of the manuscript and for many useful suggestions.

\section*{References}

[1] J. L. Alperin, \textit{Local representation theory}, Cambridge Studies in Advanced Mathematics 11, Cambridge Univ. Press, 1986.

[2] V. Dlab, C. M. Ringel, \textit{Quasi-hereditary algebras}, Illinois J. Math. 33(1989), 280-291.

[3] J. A. Green, \textit{Walking around the Brauer Tree}, J. Austral. Math. Soc. 17 (1974), 197213.

[4] T. Holm, \textit{Derived Categories, Derived Equivalences and Representation Theory}, Proceedings of the Summer School on "Representation theory of Algebras, Finite and Reductive Groups", "Babes-Bolyai" University Cluj, 1998, pp. 33–66.

[5] N. Jacobson, \textit{Structure of rings}, Colloquium publications v. 37, AMS, Providence, 1964.

[6] S. Koenig, C. Xi, \textit{When is a cellular algebra quasi-hereditary?}, Math. Ann. 315(1999), 281-293.

[7] S. König, A. Zimmermann, \textit{Derived equivalences for group rings}, With contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphael Rouquier, Lecture Notes in Mathematics No. 1685, Springer-Verlag, Berlin, 1998.

[8] M. Linckelmann, \textit{Stable equivalence of Morita type for self-injective algebras and p-groups}, Math. Z. 223, 1996, 87-100.

[9] J. Rickard, \textit{Derived categories and stable equivalence}, J. Pure Appl. Algebra 61, 1989, 303-317.

[10] J. Rickard, M. Schaps, \textit{Folded Tilting Complexes for Brauer Tree Algebras}, Advances in Mathematics 171, 2002, 169–182.

[11] R. Rouquier, \textit{Automorphismes, Graduations et Catégories Triangulées}, preprint, 2000. (http://people.maths.ox.ac.uk/~rouquier/papers/autograd.pdf)

[12] R. Rouquier, A. Zimmermann, \textit{Picard Groups for Derived Module Categories}, Proc. London Mathematical Society (3) 87, 2003, 197–225.

[13] M. Schaps, E. Zakay-Ilouz, \textit{Pointed Brauer Trees}, J. Algebra 246, 2001, 647–672.
GRADED BRAUER TREE ALGEBRAS

DUSKO BOGDANIC

Abstract. In this paper we construct non-negative gradings on a basic Brauer tree algebra A_Γ corresponding to an arbitrary Brauer tree Γ of type (m, e). We do this by transferring gradings via derived equivalence from a basic Brauer tree algebra A_S, whose tree is a star with the exceptional vertex in the middle, to A_Γ. The grading on A_S comes from the tight grading given by the radical filtration. To transfer gradings via derived equivalence we use tilting complexes constructed by taking Green’s walk around Γ (cf. [17]). By computing endomorphism rings of these tilting complexes we get graded algebras.

We also compute $\text{Out}^K(A_\Gamma)$, the group of outer automorphisms that fix the isomorphism classes of simple A_Γ-modules, where Γ is an arbitrary Brauer tree, and we prove that there is unique grading on A_Γ up to graded Morita equivalence and rescaling.

1. Introduction

In this paper we classify gradings on Brauer tree algebras. Gradings can be transferred via derived equivalences ([15], Theorem 6.3). We show how this idea is used on the class of Brauer tree algebras. For an arbitrary Brauer tree Γ of type (m, e), i.e. for a Brauer tree with e edges and multiplicity m of the exceptional vertex, we transfer the tight grading from the basic Brauer tree algebra A_S corresponding to the Brauer star S of the same type (m, e), to the Brauer tree algebra A_Γ. In Section 4 we prove that the resulting grading on A_Γ is non-negative and we investigate its properties. In particular, this construction associates with the Brauer tree algebra A_Γ, which is a symmetric algebra, a quasi-hereditary algebra A_0, the subalgebra of A_Γ consisting of elements of A_Γ which have degree 0. We prove in Section 5 that the knowledge of A_0 and of the cyclic ordering of its components is sufficient to recover the whole algebra A_Γ. In Sections 6 and 7 we give explicit formulae for the graded Cartan matrix and the graded Cartan determinant of A_Γ, and we prove that the graded Cartan determinant only depends on the type of the Brauer tree. Sections 9 and 10 deal with the problem of shifting the summands of a tilting complex and with the change of the exceptional vertex when the multiplicity of the exceptional vertex is 1. In the last section we compute $\text{Out}^K(A_\Gamma)$, the group of outer automorphisms that fix isomorphism classes of simple A_Γ-modules, and we prove that it only depends on the multiplicity of the exceptional vertex. We also classify all

Date: April 21, 2010.
gradings on an arbitrary Brauer tree algebra, and we prove that there is unique grading up to graded Morita equivalence and rescaling.

2. Notation

Throughout this text, \(k \) will be an algebraically closed field of positive characteristic. All algebras will be finite dimensional algebras over \(k \) and all modules will be left modules. The category of finite dimensional \(A \)-modules will be denoted by \(A\text{-mod} \) and the full subcategory of finite dimensional projective \(A \)-modules will be denoted by \(P_A \). The derived category of bounded complexes over \(A\text{-mod} \) will be denoted by \(D^b(A) \) and the homotopy category of bounded complexes over \(P_A \) will be denoted by \(K^b(P_A) \).

Let \(A \) be a \(k \)-algebra. We say that \(A \) is a graded algebra if \(A \) is the direct sum of subspaces \(A = \bigoplus_{i \in \mathbb{Z}} A_i \), such that \(A_i A_j \subseteq A_{i+j}, i, j \in \mathbb{Z} \). If \(A_i = 0 \) for \(i < 0 \), we say that \(A \) is non-negatively graded. An \(A \)-module \(M \) is graded if it is the direct sum of subspaces \(M = \bigoplus_{i \in \mathbb{Z}} M_i \), such that \(A_i M_j \subseteq M_{i+j} \), for all \(i, j \in \mathbb{Z} \). If \(M \) is a graded \(A \)-module, then \(N = M(\langle i \rangle) \) denotes the graded module given by \(N_j = M_{i+j}, j \in \mathbb{Z} \). An \(A \)-module homomorphism \(f \) between two graded modules \(M \) and \(N \) is a homomorphism of graded modules if \(f(M_i) \subseteq N_i \), for all \(i \in \mathbb{Z} \). For a graded algebra \(A \), we denote by \(A\text{-modgr} \) the category of graded finite dimensional \(A \)-modules. We set \(\text{Hom}_{A\text{-mod}}(M, N) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A\text{-gr}}(M, N(\langle i \rangle)) \), where \(\text{Hom}_{A\text{-gr}}(M, N(\langle i \rangle)) \) denotes the space of all graded homomorphisms between \(M \) and \(N(\langle i \rangle) \) (the space of homogeneous morphisms of degree \(i \)). There is an isomorphism of vector spaces \(\text{Hom}_A(M, N) \cong \text{Hom}_{A\text{-mod}}(M, N) \) that gives us a grading on \(\text{Hom}_A(M, N) \) (cf. [13], Corollary 2.4.4.).

Let \(X = (X^i, d^i) \) be a complex of \(A \)-modules. We say that \(X \) is a complex of graded \(A \)-modules, or just a graded complex, if for each \(i \in \mathbb{Z} \), \(X^i \) is a graded module and \(d^i \) is a homomorphism between graded \(A \)-modules. If \(X \) is a graded complex, then \(X(\langle j \rangle) \) denotes the complex of graded \(A \)-modules given by \((X(\langle j \rangle))^i := X^i(\langle j \rangle) \) and \(d^i_{X(\langle j \rangle)} := d^i \). Let \(X \) and \(Y \) be graded complexes. A homomorphism \(f = \{f^i\}_{i \in \mathbb{Z}} \) between complexes \(X \) and \(Y \) is a homomorphism of graded complexes if for each \(i \in \mathbb{Z} \), \(f^i \) is a homomorphism of graded modules. The category of complexes of graded \(A \)-modules will be denoted by \(C_{gr}(A) \). We set \(\text{Hom}_{C_{gr}}(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{C_{gr}(A)}(X, Y(\langle i \rangle)) \), where \(\text{Hom}_{C_{gr}(A)}(X, Y(\langle i \rangle)) \) denotes the space of graded homomorphisms between \(X \) and \(Y(\langle i \rangle) \) (the space of homogeneous morphisms of degree \(i \)). As for modules, we have an isomorphism of vector spaces \(\text{Hom}_{C_{gr}}(X, Y) \cong \text{Hom}_A(X, Y) \) that gives us a grading on \(\text{Hom}_A(X, Y) \). From this we get a grading on \(\text{Hom}_{K^b(A\text{-mod})}(X, Y) \), since the subspace of zero homotopic maps is homogeneous. We denote this graded space by \(\text{Hom}_{K^b(A\text{-mod})}(X, Y) \).
Unless otherwise stated, for a graded algebra \(A \), we will assume that the projective indecomposable \(A \)-modules are graded in such way that their tops are in degree 0. For an indecomposable bounded graded complex of projective \(A \)-modules whose leftmost non-zero term is indecomposable, we will assume that the leftmost non-zero term is graded in such way that its top is in degree 0.

We say that two symmetric algebras \(A \) and \(B \) are derived equivalent if their derived categories of bounded complexes are equivalent. From Rickard’s theory we know that \(A \) and \(B \) are derived equivalent if and only if there exists a tilting complex \(T \) of projective \(A \)-modules such that \(\text{End}_{\mathcal{K}^b(P_A)}(T) \cong B^{\text{op}} \).

For more details on derived categories and derived equivalences we recommend [11].

3. BRAUER TREE ALGEBRAS

As a good reference for Brauer tree algebras we recommend [1].

Let \(\Gamma \) be a Brauer tree of type \((m, e)\), that is, a tree with \(e \) edges and multiplicity \(m \) of the exceptional vertex. If \(A \) is a Brauer tree algebra associated with \(\Gamma \), we say that \(A \) has type \((m, e)\).

We will usually label the edges of a Brauer tree by the corresponding simple modules of a Brauer tree algebra associated with this tree. We will always assume that the cyclic ordering of the edges adjacent to a given vertex is given by the counter-clockwise direction in the given planar embedding of the tree.

Example 3.1. A very important Brauer tree of type \((m, e)\) is the Brauer star, the Brauer tree with \(e \) edges adjacent to the exceptional vertex which has multiplicity \(m \).

The composition factors, starting from the top, of the projective indecomposable module \(P_j \) corresponding to the edge \(S_j \) are

\(S_j, S_{j+1}, \ldots, S_e, S_1, S_2, \ldots, S_{j-1}, \ldots, S_j, S_{j+1}, \ldots, S_e, S_1, S_2, \ldots, S_{j-1}, S_j \)

where \(S_j \) appears \(m + 1 \) times and \(S_i \) appears \(m \) times, for \(i \neq j \).

Any two Brauer tree algebras associated with the same Brauer tree \(\Gamma \) and defined over the same field \(k \) are Morita equivalent (cf. [11], Corollary 4.3.3).
A basic Brauer tree algebra corresponding to a Brauer tree Γ is isomorphic to the algebra kQ/I, where Q is a quiver and I is the ideal of relations. To construct Q and I we do the following (cf. [8], Section 5): We replace each edge of the Brauer tree by a vertex (we use the same labelling for the vertices of the quiver as for the corresponding edges of the Brauer tree) and for two adjacent edges, say j_1 and j_2, which come one after the other in the circular ordering, say j_2 comes after j_1, we have an arrow connecting the two corresponding vertices, starting at the vertex corresponding to j_2 and ending at the vertex corresponding to j_1. If there is only one edge adjacent to the exceptional vertex and $m > 1$, then we add a loop starting and ending at the vertex corresponding to the edge that is adjacent to the exceptional vertex of Γ. This will give us the quiver Q.

Notice that, for each vertex of Γ that has more than one edge adjacent to it, we get a cycle in the quiver Q. The cycle of Q corresponding to the exceptional vertex will be called the exceptional cycle. If we assume that Γ is not the star, then the ideal I is generated by two types of relations. The relations of the first type are given by $ab = 0$, where arrows a and b belong to different cycles of Q. The second type relations are the relations of the form $\alpha = \beta$, for two cycles α and β starting and ending at the same vertex, neither of which is the exceptional cycle, and relations of the form $\alpha^m = \beta$, if α is the exceptional cycle. The basic algebra kQ/I constructed in this way will be denoted by A_Γ.

If Γ is the star, then the corresponding quiver has only one cycle and the ideal of relations is generated by all paths of length $me + 1$. This basic algebra corresponding to the Brauer star will be denoted by A_S.

4. Transfer of gradings

Let A and B be two symmetric algebras over a field k and let us assume that A is a graded algebra. The following theorem is due to Rouquier.

Theorem 4.1 ([15], Theorem 6.3). Let A and B be as above. Let T be a tilting complex of A-modules that induces derived equivalence between A and B. Then there exists a grading on B and a structure of a graded complex T' on T, such that T' induces an equivalence between the derived categories of graded A-modules and graded B-modules.

This theorem tells us that derived equivalences are compatible with gradings, that is, gradings can be transferred between symmetric algebras via derived equivalences.

We will now explain how the transfer of gradings via derived equivalences is done in our context of Brauer tree algebras. Brauer tree algebras are
determined up to derived equivalence by the multiplicity of the exceptional vertex and the number of edges of the tree (\cite{14}, Theorem 4.2). The basic Brauer tree algebra A_S, which corresponds to the Brauer star of type (m, e), is naturally graded by putting all arrows in degree 1, i.e. A_S is tightly graded (see \cite{5}, Section 4, Proposition 4.4). This means that A_S is isomorphic to the graded algebra associated with the radical filtration, i.e.

$$A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad} A_S)^i/(\text{rad} A_S)^{i+1}.$$

With respect to this grading the projective indecomposable A_S-modules are graded in such way that their ith radical layer is in degree $i-1$.

We will transfer this grading from A_S to the basic Brauer tree algebra A_Γ corresponding to an arbitrary Brauer tree Γ of type (m, e). We will see in the last section that all gradings on A_Γ can be obtained from this resulting grading via rescaling and shifting. In order to transfer the tight grading from A_S we will construct a tilting complex of A_S-modules which tilts from A_S to A_Γ. For a given tilting complex T of A_S-modules, which is a bounded complex of finitely generated projective A_S–modules, there exists a structure of a complex of graded A_S–modules T' on T. If T is a tilting complex that tilts from A_S to A_Γ, then $\text{End}_{K^n(P_{A_S})}(T) \cong A_\Gamma^{op}$. Viewing T as a graded complex T', and by computing its endomorphism ring as a graded object, we get a graded algebra which is isomorphic to the opposite algebra of the basic Brauer tree algebra A_Γ corresponding to Γ. We notice here that the choice of a grading on T' is unique up to shifting the grading of each indecomposable summand of T'. This follows from the fact that if we have two different gradings on an indecomposable module (bounded complex), then they differ only by a shift (cf. \cite{3}, Lemma 2.5.3).

4.1. The tilting complex given by Green’s walk. In \cite{17}, the authors give a combinatorial construction of a tilting complex that tilts from the basic Brauer tree algebra A_S corresponding to the star of type (m, e), to the basic Brauer tree algebra A_Γ corresponding to an arbitrary Brauer tree of type (m, e). The tilting complexes considered in \cite{17} are direct sums of indecomposable complexes which have no more than two non-zero terms, and a complete classification for all such tilting complexes is given in \cite{17}.

We will use only one special tilting complex that arises in this way. It is the complex constructed by taking Green’s walk (cf. \cite{4}) around Γ. We construct it as follows:

Starting from the exceptional vertex of a Brauer tree Γ of type (m, e), we take Green’s walk around Γ and enumerate all the edges of Γ. We start this enumeration from an arbitrary edge adjacent to the exceptional vertex and
walk around \(\Gamma \) in the counter-clockwise direction. We will eventually show that the resulting grading on \(A_{\Gamma} \) does not depend on where we start the enumeration. Define \(T \), a tilting complex of \(A_S \)-modules, to be the direct sum of the complexes \(T_i, 1 \leq i \leq e \), which correspond to the edges of \(\Gamma \), and which are defined by induction on the distance of an edge from the exceptional vertex in the following way:

(a) If \(i \) is an edge which is adjacent to the exceptional vertex, then \(T_i \) is defined to be the stalk complex

\[
Q_i : 0 \rightarrow P_i \rightarrow 0
\]

with \(P_i \) in degree 0;

(b) If \(i \) is not adjacent to the exceptional vertex and assuming that the shortest path connecting \(i \) to the exceptional vertex is \(j_1, j_2, \ldots, j_t, i \), where \(j_1 < j_2 < \cdots < j_t < i \) in the labelling from Green’s walk, then \(T_i \) is defined to be the complex \(Q_{jti}[n_i] \), where \(Q_{jti} \) is the following complex with two non-zero entries in degrees 0 and 1

\[
Q_{jti} : 0 \rightarrow P_{jti} \xrightarrow{h_{jti}} P_i \rightarrow 0,
\]

where \(h_{jti} \) is a homomorphism of the highest possible rank, and \(n_i \) is the shift necessary to ensure that \(P_{jti} \) is in the same degree as \(P_{jti} \) in other summands of \(T \) which are previously determined.

For the convenience of the reader we include the following example.

Example 4.2. Let \(\Gamma \) be the following Brauer tree with multiplicity 1 and with edges numbered by taking Green’s walk:

![Brauer Tree Diagram]

The tilting complex of \(A_S \)-modules, where \(S \) is the Brauer star with six edges and multiplicity 1, given by taking Green’s walk around \(\Gamma \) is the direct sum

\[
T = \bigoplus_{i=1}^6 T_i,
\]

where \(T_1, T_2 \) and \(T_3 \) are the stalk complexes \(P_1, P_2 \) and \(P_3 \) respectively, in degree 0, \(T_4 \) is \(P_3 \xrightarrow{h_{34}} P_4 \) with \(P_3 \) in degree 0, \(T_5 \) is \(P_3 \xrightarrow{h_{35}} P_5 \) with \(P_3 \) in degree 0, and \(T_6 \) is \(P_5 \xrightarrow{h_{56}} P_6 \) with \(P_5 \) in degree 1. This complex tilts from \(A_S \) to \(A_{\Gamma} \), i.e. \(\text{End}_{K^b(P_{A_S})}(T) \cong A_{\Gamma}^{op} \).
4.2. Calculating $\text{End}_{K^b(P_{A_S})}(T)$. Let A_S be a basic Brauer tree algebra corresponding to the star of type (m, e) and let A_Γ be a basic Brauer tree algebra corresponding to a given Brauer tree Γ of type (m, e). Let T be the tilting complex of A_S-modules that tilts from A_S to A_Γ, constructed as in the previous section, i.e. constructed by taking Green’s walk around Γ. Viewing each summand T_i of T as a graded complex T_i', we have a structure of a graded complex T' on T. By calculating $\text{End}_{K^b(P_{A_S})}(T') \cong A_\Gamma^{op}$ we get A_Γ as a graded algebra. We will choose T_i' to be $T_i \langle r_i \rangle$, where r_i will be the necessary shifts that will ensure that the resulting grading is non-negative.

We remind the reader that T_i is assumed to be graded in such way that its leftmost non-zero term has its top in degree 0.

We now state the main theorem of this section.

Theorem 4.3. Let Γ be an arbitrary Brauer tree with e edges and multiplicity m of the exceptional vertex and let A_Γ be a basic Brauer tree algebra determined by this tree. The algebra A_Γ can be non-negatively graded.

Proof. In order to grade A_Γ, we need to calculate $\text{Hom}_{K^b(P_{A_S})}(T'_i, T'_j)$, as graded vector spaces, for those T'_i and T'_j which correspond to edges S_i and S_j that are adjacent to the same vertex of Γ, and which come one after the other, i after j, in the circular ordering associated with that vertex. This is a consequence of the fact that when identifying $\text{End}_{K^b(P_{A_S})}(T)^{op}$ with A_Γ, elements corresponding to the vertices of the quiver of A_Γ are given by $\text{id}_{T_i} \in \text{End}_{K^b(P_{A_S})}(T_i)$, $i = 1, 2, \ldots, e$; and the subspace of A_Γ generated by all paths starting at the vertex of A_Γ corresponding to $\text{id}_{T_i} \in \text{End}_{K^b(P_{A_S})}(T_i)$ and finishing at the vertex corresponding to $\text{id}_{T_j} \in \text{End}_{K^b(P_{A_S})}(T_j)$, is given by $\text{Hom}_{K^b(P_{A_S})}(T_i, T_j)$. In fact, we only need to calculate the non-zero summand of $\text{Hom}_{K^b(P_{A_S})}(T'_i, T'_j)$ which is in the lowest degree. That will be the degree of the unique arrow of the quiver of A_Γ pointing from the vertex corresponding to S_i to the vertex corresponding to S_j.

The dimension of $\text{Hom}_{K^b(P_{A_S})}(T_i, T_j)$

(1) is 0, if the vertices corresponding to id_{T_i} and id_{T_j} do not belong to the same cycle,

(2)(a) is m, if $i \neq j$ and the vertices corresponding to id_{T_i} and id_{T_j} belong to the exceptional cycle,

(2.b) is 1, if $i \neq j$ and the vertices corresponding to id_{T_i} and id_{T_j} belong to the same non-exceptional cycle,

(3)(a) is $m + 1$, if $i = j$ and the vertex corresponding to id_{T_i} belongs to the exceptional cycle,

(3.b) is 2, if $i = j$ and the vertex corresponding to id_{T_i} does not belong to the exceptional cycle.
Edges i and j of a Brauer tree Γ that are adjacent to the same vertex, say v, and that come one after the other in the circular ordering of v, can either be at the same distance from the exceptional vertex or the distance of one of them, say i, is one less than the distance of j. If the former holds, then a part of Γ is given by

![Diagram 1](image1)

where v may or may not be the exceptional vertex.

If the latter holds, than a part of Γ is given by one of the following two diagrams

![Diagram 2](image2)

where the leftmost vertex of S_i may or may not be the exceptional vertex, and there may or may not be more edges, such as S_l, adjacent to v. In the case of the first diagram we have an arrow from S_i to S_j in the quiver of A_Γ, and in the case of the second diagram we have an arrow from S_j to S_i.

It follows that it is sufficient to consider the following four cases:

Case 1 Edges S_i and S_j are adjacent to the exceptional vertex. The corresponding part of Γ is

![Diagram 3](image3)

In this case, the corresponding summands of the graded tilting complex T' are $T'_i := T_i$ and $T'_j := T_j$, where T_i and T_j are stalk complexes P_i and P_j concentrated in degree 0. If $i > j$, then $\text{Hom}_{K^b(P_A)}(T'_i, T'_j) \cong \text{Hom}_{A^\beta}(P_i, P_j) \cong k\langle -(i - j) \rangle \oplus M$, as graded vector spaces, where M is the sum of the summands that appear in higher degrees than $i - j$. In other words, $i - j$ is the degree of the corresponding arrow of the quiver of A_Γ.
whose source is S_i and whose target is S_j. If $i < j$, then the degree of the corresponding arrow of the quiver of A_Γ is $e - (j - i)$, where e is the number of edges of the tree.

If there is only one edge adjacent to the exceptional vertex and $m > 1$, then the corresponding loop will be in degree e.

CASE 2 Edges S_i and S_j are adjacent to a non-exceptional vertex v and one of them, say S_i, is adjacent to the exceptional vertex. Then we have that a part of Γ is given by one of the following two diagrams

\[
\begin{array}{c}
\bullet \ S_i \swarrow v \ S_j \\
\end{array}
\]

where it could happen that there are more edges adjacent to v, such as S_l.

In this case, the summands of the tilting complex T' are $T'_i := Q_i$, the stalk complex with P_i in degree 0, and $T'_j := Q_{ij}$, where Q_{ij} is previously defined complex $P_i \xrightarrow{h_{ij}} P_j$, with P_i in degree 0.

In case of the first diagram, there is an arrow from S_i to S_j in the quiver of A_Γ. Since $i < j$, we have that any morphism from Q_i to Q_{ij} has to map P_i to the kernel of the map h_{ij}. It follows that this map has to map top P_i to $\text{soc} P_i$. Since $\text{soc} P_i$ is in degree me, it follows that the corresponding arrow of the quiver of A_Γ is in degree me.

In case of the second diagram, there is an arrow from S_j to S_i in the quiver of A_Γ. The identity map on P_i will give us a non-zero morphism between Q_{ij} and Q_i. It follows that the corresponding arrow is in degree 0.

CASE 3 Edges S_i and S_j, where $i < j$, are adjacent to a non-exceptional vertex v, S_i is closer to the exceptional vertex than S_j, and the leftmost vertex of S_i is non-exceptional. Then we have that a part of Γ is given by one of the following two diagrams

\[
\begin{array}{c}
\bullet \ S_i \searrow v \ S_j \\
\end{array}
\]

where it could happen that there are more edges adjacent to v, such as S_f.

The leftmost vertex of S_l can be either exceptional or non-exceptional.
The summands T'_i and T'_j of the graded tilting complex T' corresponding to the edges S_i and S_j are defined to be the graded complexes $(Q_{li}[n_i])\langle r_i\rangle$ and $(Q_{ij}[n_j])\langle r_i\rangle$, where the vertical shift $\langle r_i\rangle$ (respectively $\langle r_i\rangle$) is necessary to ensure that the top of the leftmost term of Q_{li} (respectively Q_{lj}), which is P_l (respectively P_i), is in the same degree as the top of P_l (respectively P_i) in other summands of T which have been previously defined. We remind the reader that $Q_{li}[n_i]$ has been previously defined at the beginning of this subsection. This way we avoid negative degrees.

If the first diagram occurs, then any morphism of graded complexes from $(Q_{li}[n_i])\langle r_l\rangle$ to $(Q_{ij}[n_j])\langle r_i\rangle$ has to map top P_i to soc P_l. From this we conclude that the corresponding arrow of the quiver of A_Γ that points from S_i to S_j is in degree me.

If the second diagram occurs, then the identity map on P_i gives us a morphism from $(Q_{ij}[n_j])\langle r_i\rangle$ to $(Q_{li}[n_i])\langle r_l\rangle$ which is not homotopic to zero. From this we have that the arrow from S_j to S_i is in degree 0.

CASE 4 Edges S_i and S_j, where $j < i$, are adjacent to a non-exceptional vertex v, and the edge with minimal index among the edges adjacent to v, say S_l, comes before S_j in the circular ordering of v. Then we have that a part of Γ is

![Diagram](image)

where the leftmost vertex of S_l can be either exceptional or non-exceptional. In each case, the summands T'_i and T'_j of the graded tilting complex T' corresponding to the edges S_i and S_j are defined to be $(Q_{li}[n_i])\langle r_l\rangle$ and $(Q_{ij}[n_j])\langle r_i\rangle$, where r_l is defined as in the previous case. The map $(id_{P_l}; h_{ij})$, where h_{ij} is a map of the maximal rank, from $(Q_{li}[n_i])\langle r_l\rangle$ to $(Q_{lj}[n_j])\langle r_l\rangle$ will give us a non-zero morphism in $\text{Hom}_{K^b(P_{A_\Gamma})}(T'_l, T'_j)$. This map is in degree 0 because id_{P_l} is a homogeneous map of degree zero. Therefore, the corresponding arrow from S_i to S_j is in degree 0.

These four cases cover all possible local structures of a Brauer tree Γ that we can encounter when putting a grading on the basic Brauer tree algebra A_Γ that corresponds to this tree. We only need to walk around the Brauer tree Γ and recognize which of the four cases occurs for the adjacent edges S_i and S_j. In each of the four cases above, we have that the corresponding arrows are in non-negative degrees. Hence, the resulting grading on A_Γ is non-negative. ■
The grading on \(A_\Gamma \) constructed in the proof of the previous theorem will be referred to as the grading constructed by taking Green’s walk around \(\Gamma \).

Example 4.4. (a) Let \(\Gamma \) be the Brauer tree from Example 4.2. We first construct the quiver of the basic Brauer tree algebra \(A_\Gamma \) corresponding to this tree. Each edge is replaced by a vertex and for two adjacent edges, which come one after the other in the circular ordering, we have an arrow connecting two corresponding vertices of the quiver in the opposite ordering of the circular ordering of edges, i.e. in the clockwise direction.

The degrees of the arrows between \(S_1 \) and \(S_3 \), \(S_3 \) and \(S_2 \), \(S_2 \) and \(S_1 \) are computed using the first case from the proof of the previous theorem. The degree of the arrow between \(S_3 \) and \(S_5 \) is 6 and is computed using the second case. The arrows between \(S_5 \) and \(S_4 \), and \(S_4 \) and \(S_3 \) are in degree 0 and these degrees are computed as in the fourth and the second case respectively. The degree of the arrow between \(S_6 \) and \(S_5 \) is 6 and the degree of the arrow between \(S_6 \) and \(S_5 \) is 0 and these are computed as in the third case.

(b) If the Brauer tree is the line with \(e \) edges and the exceptional vertex at one of the ends, i.e.

\[
\bullet \quad S_1 \quad 0 \quad S_2 \quad 0 \quad S_3 \quad 4 \quad S_4 \quad 0 \quad S_5 \quad 1 \quad S_6
\]

then the basic Brauer tree algebra \(A_\Gamma \) is graded and its quiver has \(e \) vertices

\[
\bullet \quad me \quad 0 \quad me \quad 0 \quad me \quad 0 \quad me \quad 0 \quad me \quad 0
\]

If \(m = 1 \), then there is no loop in the above quiver.

Let \(\Gamma \) be an arbitrary Brauer tree. Each edge of \(\Gamma \) that is adjacent to the exceptional vertex determines a connected subtree of \(\Gamma \) in the following way. Let \(E \) be an edge that is adjacent to the exceptional vertex. A connected subtree determined by \(E \) contains all edges of \(\Gamma \) which have property that the shortest path that connects them to the exceptional vertex contains \(E \). We call these subtrees components of the Brauer tree \(\Gamma \).
Lemma 4.5. Let α be an arrow of the exceptional cycle of the quiver of A_Γ which starts at S_i and ends at S_j. If A_Γ is graded by taking Green's walk around Γ, then the degree of α is equal to the number of edges in the component of Γ corresponding to S_j.

Proof. If $i > j$, then because of the way we enumerate edges by taking Green's walk we have that $i = j + s$, where s is the number of edges in the component corresponding to S_j. Hence, α is in degree $i - j = s$.

If $i < j$, which only happens if $i = 1$, then α is in degree $e - (j - i) = e - j + 1$, and this number is equal to the number of edges of the component corresponding to S_j. ■

From this lemma it follows that the resulting grading of the exceptional cycle does not depend on from which edge adjacent to the exceptional vertex we start enumeration of edges. This leads us to the following proposition.

Proposition 4.6. Let A_Γ be a basic Brauer tree algebra whose tree is Γ and let us assume that A_Γ is graded by taking Green's walk around Γ. The resulting grading does not depend on from which edge adjacent to the exceptional vertex we start Green's walk.

Proof. Let us assume that we have done two walks around Γ starting at a different edge each time. Let us assume that the index of S, where S is one of the edges adjacent to the exceptional vertex, is 1 in the first walk, and that its index is $1 + l$ in the second walk. Let us assume that we got two tilting complexes T_1 and T_2 of A_S-modules by taking these two walks. These complexes are equal up to cyclic permutation of indices of edges of the Brauer star S. In other words, each index of each term (which is a projective indecomposable A_S-module) of each summand of T_1 has been cyclically permuted by l to get the corresponding index of the corresponding term of the corresponding summand of T_2. These two tilting complexes will give us the same grading because of the cyclic structure of A_S. ■

The following two lemmas follow from the proof of Theorem 4.3.

Lemma 4.7. Let A_Γ be a basic Brauer tree algebra whose tree is Γ. Let Q be its quiver and let us assume that A_Γ is graded by taking Green's walk around Γ. The only cycle of Q that does not contain any arrows that are in degree 0 is the exceptional cycle. For a non-exceptional cycle there is exactly one arrow that is not in degree 0. This arrow is in degree me and the index of its target is greater than the index of its source.

Lemma 4.8. Let A_Γ and Q be as above. Let α be an arrow of a non-exceptional cycle of Q which is in degree 0. Then the index of the source of α is greater than the index of the target of α. ■
Lemma 4.9. Let A_Γ be graded as above. The socle of A_Γ is in degree m_e.

Proof. For an arbitrary cycle, say γ, let $\alpha_1, \ldots, \alpha_r$ be the arrows of that cycle, appearing in that cyclic ordering. If γ is a non-exceptional cycle, then paths of the form $\alpha_i\alpha_{i+1} \ldots \alpha_{i+r-1}$, where the addition in indices is modulo r, and $1 \leq i \leq r$, belong to the socle. If γ is the exceptional cycle, then the paths $(\alpha_i\alpha_{i+1} \ldots \alpha_{i+r-1})^m$ belong to the socle. These elements span the socle of A_Γ. For a non-exceptional cycle, the only arrow which is in a non-zero degree is the arrow whose source is the vertex of that cycle with the minimal index, and whose target is the vertex of that cycle with the maximal index. By the proof of Theorem 4.3, that arrow is in degree m_e. It follows that the path $\alpha_i\alpha_{i+1} \ldots \alpha_{i+r-1}$, for all i, is in degree m_e. For the exceptional cycle, the sum of degrees of the arrows of the exceptional cycle is e, by Lemma 4.5. Hence, $(\alpha_i\alpha_{i+1} \ldots \alpha_{i+r-1})^m$ is in degree m_e. ■

5. The subalgebra A_0

Let Γ be a given Brauer tree and let A_Γ be a basic Brauer tree algebra associated with this tree. Let us assume that A_Γ has been graded by taking Green’s walk around Γ. Then the subalgebra A_0 of A_Γ consisting of the elements that are in degree 0 has an interesting structure.

The quiver of the basic algebra A_Γ is the union of the cycles contained in it. From Lemma 4.7 it follows that the only cycle that does not contain any arrows that are in degree 0 is the exceptional cycle. If we assume that there are t edges that are adjacent to the exceptional vertex of Γ, we see immediately that the exceptional cycle divides the quiver of the subalgebra A_0 into t disjoint parts, each labelled by a vertex of the exceptional cycle corresponding to an edge adjacent to the exceptional vertex of Γ.

Proposition 5.1. Let A_Γ be a basic Brauer tree algebra associated with a given Brauer tree Γ and let A_0 and t be as above. The algebra A_0 is the direct product of t subalgebras.

Proof. The factors of A_0 are the quiver algebras of t disjoint subquivers of the quiver of A_0. ■

Each of these factors in the previous proposition is labelled by the corresponding vertex which belongs to the exceptional cycle. Let A_v be the connected component of A_0 that corresponds to a vertex v of the exceptional cycle.

Lemma 5.2. In the quiver of the component A_v of A_0 there is at most one arrow with vertex v as its target. For any other vertex of the quiver of A_v there are at most two arrows whose target is that vertex.
Proof. In the quiver Q of the basic Brauer tree algebra A_{Γ}, each vertex is contained in at most two cycles. Hence, for an arbitrary vertex w of Q, there are at most two arrows of Q whose target is w. By Lemma 4.5, if v belongs to the exceptional vertex, then one of those arrows is in a positive degree. ■

Lemma 5.3. Let w be a vertex of the quiver of A_v different from v. In the quiver of A_v there is exactly one arrow that has w as its source.

Proof. The vertex w belongs either to one or to two cycles of Q, depending on whether the corresponding edge of the Brauer tree is an end edge or not. Therefore, there are either one or two arrows that have w as its source. By Lemma 4.8 exactly one of those arrows is in degree 0. ■

Proposition 5.4. The quiver of A_v is a directed rooted tree with vertex v as its root, and with arrows pointing from higher levels of the tree to lower levels of the tree, with root v being in level 0.

Proof. The quiver of A_0 does not have any cycles, because one arrow in each non-exceptional cycle of the quiver of A_{Γ} is in a positive degree. It follows from the previous two lemmas that this component is a tree with at most two arrows having the same target, and at most one arrow having an arbitrary vertex as its source. If we view this tree as a rooted tree with the vertex that belongs to the exceptional cycle as the root, then all arrows point from the higher levels to the lower levels by Lemma 4.8 with the root being in level 0. ■

Proposition 5.5. Each of the components of the subalgebra A_0 is the path algebra of a directed rooted tree with arrows pointing from higher levels towards lower levels. The only relations that occur in these components are of the form $\alpha \beta = 0$, where α and β are arrows that belong to different cycles of the quiver of A_{Γ}, such that the target of α is the source of β.

Proof. It is left to prove that we only have relations of type $\alpha \beta = 0$. These relations are inherited from the relations of the algebra A_{Γ}. The only other relations that appear in A_{Γ} are of type $\rho = \sigma$, where ρ and σ are two cycles having the same source and the same target. Since in the quiver of A_0 there are no cycles, these relations are not present. ■

In the following Corollary we record another important property of A_0. We refer the reader to [2], Section 9.6 for details on gentle algebras.

Corollary 5.6. The subalgebra A_0 is a gentle algebra.

Proof. Follows from the previous two lemmas and two propositions, and the observation that for each arrow α of the quiver of A_0, there is at most
one arrow β and at most one arrow γ such that $\beta\alpha \in I$ and $\gamma\alpha \notin I$, where I is the ideal of relations of A_0.

Corollary 5.7. The subalgebra A_0 is tightly graded.

Proof. By the previous proposition, the ideal of relations of A_0 is generated by elements of the form $\alpha\beta$. These elements are homogeneous regardless of the degrees of the arrows.

Example 5.8. If Γ is the following Brauer tree with multiplicity 1 and edges numbered by taking Green’s walk:

then the quiver of the graded basic Brauer tree algebra A_Γ associated with this tree is

The algebra A_0 is consisted of two components because there are two edges adjacent to the exceptional vertex. The quiver of the first component is

\[\bullet \xrightarrow{a_1} \bullet \quad \bullet \xrightarrow{a_2} \bullet \]
and the only relation is $a_1 a_2 = 0$. The quiver of the second component is

![Quiver Diagram]

and the relations are $b_2 b_0 = 0$, $b_5 b_2 = 0$ and $b_4 b_1 = 0$.

5.1. **Recovering the quiver of A_Γ from the quiver of A_0.** The grading resulting from taking Green’s walk has some interesting properties. We will see in this section that the algebra A_0 carries a lot of information about A_Γ.

Let Γ, A_Γ and A_0 be as before. If we omit the arrows of the exceptional cycle of the quiver of A_Γ, the resulting quiver consists of the connected components which correspond to the connected components of the quiver of A_0. If we look at the components of A_0 we see that it is sufficient to know the quiver and relations of such a component to recover the quiver of the corresponding component of A_Γ. This is a consequence of Lemma 4.7, which says that in every non-exceptional cycle of the quiver of A_Γ there is only one arrow that is not in degree 0.

Proposition 5.9. Let A_v be a connected component of A_0 and let Q_v be its quiver. Let Q_1 be the corresponding connected component of the quiver of A_Γ when the exceptional cycle is omitted. From the quiver and relations of A_v we can recover the quiver Q_1 and the relations of A_Γ that involve only arrows of Q_1.

Proof. Start from the root v of the rooted tree Q_v. Let ρ be the longest non-zero path ending at v. Add an arrow pointing from v to the source vertex of ρ. If there is no such path of length greater than 1, then add an arrow from v to the starting point of the only arrow ending at the root v. In this way we recover the cycle of Q_1 which has root v as one of its vertices. The added arrow was an arrow of Q_1 that is in a non-zero degree. We repeat the same step with an arbitrary vertex in level 1 of the rooted tree instead of the root, but we only consider paths which do not contain arrows that belong to already recovered cycles. Repeat the same step for
all other vertices in level 1 of the rooted tree Q_v. Repeat the same steps for vertices in other levels of the rooted tree Q_v until every cycle is recovered. In this way we recover the whole corresponding component Q_1 of the quiver of A_Γ. As far as the relations are concerned, we get relations for the basic Brauer tree algebra corresponding to a given tree, i.e. for two successive arrows belonging to two different cycles we set their product to be zero and we set two cycles starting and ending at the same vertex to be equal. ■

Example 5.10. Let A_Γ be a basic Brauer tree algebra corresponding to the Brauer tree from Example 5.8. We have seen that A_0 has two components. Let us recover the corresponding components of the quiver of A_Γ.

Starting from the root of the first component we immediately recover the first cycle since there is no non-zero path of length greater than 1 whose target is the root. Consequently, the second cycle is easily recovered and we get that the corresponding component of the quiver of A_Γ is

\[
\begin{array}{c}
\bullet \quad \rightarrow \\
\downarrow \\
\bullet
\end{array}
\begin{array}{c}
\bullet \quad \rightarrow \\
\uparrow \\
\bullet
\end{array}
\]

In the second component, the longest non-zero path ending at v_1 is $b_3 b_1 b_0$. Therefore we have to add an arrow from v_1 to v_5. This will give us the following partial quiver

\[
\begin{array}{c}
v_1 \quad \rightarrow \\
\downarrow \\
v_2 \quad \rightarrow \\
\downarrow \\
v_3 \quad \rightarrow \\
\downarrow \\
v_4 \quad \rightarrow \\
\downarrow \\
v_5 \quad \rightarrow
\end{array}
\begin{array}{c}
v_6 \\
\downarrow \\
v_7 \\
\downarrow \\
v_8
\end{array}
\]

We move on to the next level and conclude that we need to add an arrow from v_2 to v_4. We do not add an arrow from v_2 to v_5 because the arrow from v_3 to v_2 is already in a fully recovered cycle. For level two vertices we need to add an arrow from v_3 to v_6 and an arrow from v_4 to v_8. Finally, the
Theorem 5.11. Let A_Γ be a graded basic Brauer tree algebra whose grading is constructed by taking Green’s walk around Γ. From the quiver and relations of A_0 and the cyclic ordering of the components of A_0 we can recover the quiver and relations of A_Γ.

Proof. We have seen in the previous proposition that from the quiver and relations of A_0 we can recover each of the components of the quiver of A_Γ that we get when we omit the exceptional cycle. In order to completely recover the quiver of A_Γ, we are left to recover the exceptional cycle. From the cyclic ordering of the components we get the cyclic ordering of the vertices of the exceptional cycle. Thus, the exceptional cycle is recovered.

5.2. Quasi-hereditary structure on A_0. Let Q_v be the quiver of an arbitrary connected component A_v of A_0. We have seen that Q_v is a rooted tree. We can enumerate the vertices of Q_v in a natural way by the levels of the rooted tree. We start with root v, then we enumerate all vertices that are in level 1 of the rooted tree, for example, we enumerate them from left to right in the planar embedding of the tree. Once we have enumerated all vertices of an arbitrary level r, we move on to level $r + 1$ and repeat the same procedure until we enumerate all vertices. Let P_i be the projective cover of the simple A_0-module S_i corresponding to the vertex v_i. Then P_i is spanned by paths of Q_v ending at v_i. Since Q_v is a rooted tree, we conclude that the only simple modules that can occur as composition factors of P_i are the simple modules whose corresponding vertex has index greater than i. Also, S_i occurs only once as a composition factor of P_i. Hence, we obtain a quasi-hereditary structure on this component, by defining a partial order as follows (see [5] or [6] for more details on quasi-hereditary algebras). Let v_j be the vertex of Q_v corresponding to the simple module S_j. Then we
define $S_j < S_i$, for $i \neq j$, if there is a path from v_j to v_i, where S_i is the simple A_0-module corresponding to the vertex v_i. The standard modules with respect to this order are the projective indecomposable modules and the costandard modules are the simple modules. Therefore, (A_0, \leq) is a quasi-hereditary algebra as a product of quasi-hereditary algebras.

The Cartan matrix of a component A_v of A_0 is a lower triangular matrix with diagonal elements equal to 1. Since A_0 is the product of its components, we have that the following standard result for quasi-hereditary algebras holds for A_0 (cf. [10]).

Proposition 5.12. Let Γ be a Brauer tree of type (m, e) and let A_Γ be a graded basic Brauer tree algebra whose tree is Γ and whose grading is constructed by taking Green’s walk around Γ. If A_0 is the subalgebra of A_Γ consisting of elements in degree 0, then the Cartan matrix of A_0 is a lower triangular matrix with diagonal elements equal to 1 and with determinant equal to 1.

Quasi-hereditary algebras have finite global dimension (cf. [3]), hence, A_0 has a finite global dimension. We give an upper bound for the global dimension of the quasi-hereditary algebra A_0. Let A_v be a connected component of A_0 and let Q_v be the quiver of A_v. Let $l(Q_v)$ be the length of the rooted tree Q_v, i.e. the index of the last level of Q_v. The global dimension of A_v is at most $l(Q_v)$. This can be easily proved by looking at the projective dimensions of the simple A_v-modules. One starts at the bottom of the tree and works by induction on the distance of a vertex from the bottom of the tree and uses the formula $p \cdot d \cdot S = 1 + p \cdot d \cdot \text{rad} P_S$, where S is a simple module and P_S its projective cover.

Proposition 5.13. Let A_Γ, A_0 and Q_v be as above. Then,

$$\text{gl.dim. } A_0 \leq \max \{ l(Q_v) \mid Q_v \text{ a component of the quiver of } A_0 \}.$$

Note that the upper bound is achieved if the relations of A_0 are maximal possible in the sense that the product of every two arrows is equal to zero. This happens in the case of a Brauer line where the subalgebra A_0 is given by the quiver

```
    v1 --(a1)--- v2 --(a2)--- v3 --(a3)--- ... --(a_{e-3})--- v_{e-2} --(a_{e-2})--- v_{e-1} --(a_{e-1})--- ve
```

and the relations are $a_i a_{i-1} = 0$, $i = 2, 3, \ldots, e - 1$. The other extreme is the case when there are no relations, that is when A_0 is hereditary. Then A_0 has global dimension ≤ 1, on the other hand $l(Q_v)$ can be arbitrarily large.
6. The Graded Cartan matrix

Let A_Γ be a basic Brauer tree algebra of type (m, e) given by the quiver Q and relations I. We have seen that A_Γ is a graded algebra. Let S_1, S_2, \ldots, S_e be the simple A_Γ–modules corresponding to the vertices of the quiver Q. We assume that the simple modules are enumerated by taking Green’s walk around Γ. We define the graded Cartan matrix C of A_Γ to be the $(e \times e)$-matrix with entries from the ring $\mathbb{Z}[q, q^{-1}]$ given by

$$c_{ij} = C(S_i, S_j) := \sum_{l \in \mathbb{Z}} q^l \dim \text{Hom}_{A_\Gamma - gr}(P_{S_i}, P_{S_j} \langle l \rangle),$$

where P_{S_i} is the projective cover of S_i.

Note that the coefficient of q^l is equal to the number of times that S_i appears in degree l as a composition factor of P_{S_j}.

Proposition 6.1. Let A_Γ be a graded basic Brauer tree algebra whose tree is Γ and with grading constructed by taking Green’s walk around Γ. Let S_i and S_j be simple modules corresponding to vertices v_i and v_j of the quiver Q of A_Γ. Then

(i) if S_i and S_j do not belong to the same cycle of Q, then $c_{ij} = 0$;

(ii) if S_i belongs to the exceptional cycle, then

$$c_{ii} = 1 + q^e + q^{2e} + \cdots + q^{me},$$

if S_i does not belong to the exceptional cycle, then

$$c_{ii} = 1 + q^{me}.$$

(iii) if $i \neq j$ and S_i and S_j belong to the same non-exceptional cycle, then

$$i > j \Rightarrow c_{ij} = 1,$$

$$i < j \Rightarrow c_{ij} = q^{me};$$

(iv) if $i \neq j$ and S_i and S_j belong to the exceptional cycle, then

$$i > j \Rightarrow c_{ij} = q^{i-j} + q^{i-j+e} + \cdots + q^{i-j+(m-1)e},$$

$$i < j \Rightarrow c_{ij} = q^{e-(j-i)} + q^{2e-(j-i)} + \cdots + q^{me-(j-i)}.$$

Proof. Since the projective cover of S_j is spanned by the paths ending at S_j, we conclude that the exponents of the non-zero terms of c_{ij} are exactly the degrees of the non-zero paths starting at S_i and ending at S_j. Case (i) is obvious, because P_{S_j} does not contain S_i as a composition factor. In case (ii), by Lemma 4.5, the degrees of the paths starting and ending at S_i are $0, e, 2e, \ldots, me$ when S_i belongs to the exceptional cycle, and are $0, me$ otherwise by Lemma 4.7. In case (iii), if $i > j$, by Lemma 4.7, the only non-zero path from S_i to S_j has degree 0. Similarly, if $i < j$, by
Lemma 4.7 the only non-zero path from S_i to S_j has degree me. In case (iv), again by Lemma 4.5, if $i > j$, then the degrees of the paths from S_i to S_j are $i - j, e + (i - j), \ldots, (m - 1)e + i - j$, and if $i < j$, they are $e - (j - i), 2e - (j - i), \ldots, me - (j - i)$. ■

7. The Graded Cartan determinant

Proposition 7.1. Let A_Γ be a graded basic Brauer tree algebra whose tree Γ is of type (m, e) and whose grading is constructed by taking Green’s walk around Γ. If C_{A_Γ} is the graded Cartan matrix of A_Γ, then

$$\det C_{A_\Gamma} = 1 + q^e + q^{2e} + \cdots + q^{me}. $$

Proof. By [15], Proposition 5.18, the constant term of $\det C_A$ is equal to the determinant of the Cartan matrix of A_0. We have seen that the determinant of the Cartan matrix of A_0 is 1. By Lemma 6.5 in [15], we also have that if A and B are two graded Brauer tree algebras of the same type (m, e), with gradings constructed by taking Green’s walk, then $\det C_A$ is equal to $\pm q^l \det C_B$ for some integer l. Since the constant term is equal to 1, we conclude that $l = 0$, and that $\det C_A = \det C_B$. Therefore, it is enough to compute $\det C_B$ where B is the graded basic Brauer tree algebra whose tree is the Brauer line of type (m, e) with the exceptional vertex at one of the ends (see Example 4.4(b)). We will use the same labelling of the simple B-modules as in Example 4.4(b).

If $|i - j| > 1$, then $c_{ij} = 0$, because the corresponding vertices belong to different cycles. Also, $c_{11} = 1 + q^e + q^{2e} + \cdots + q^{me}$, and if $i > 1$, then $c_{ii} = 1 + q^{me}$. Other entries are given by $c_{i,i+1} = q^{me}$ and $c_{i+1,i} = 1$. We are left to compute the following $e \times e$ determinant

$$\det C_B = \begin{vmatrix} \alpha & \beta \\ 1 & \gamma & \beta \\ 1 & \gamma & \beta \\ \vdots & \ddots & \ddots & \ddots \\ 1 & \gamma & \beta \\ 1 & \gamma \end{vmatrix}$$

where $\alpha = 1 + q^e + q^{2e} + \cdots + q^{me}$, $\beta = q^{me}$, $\gamma = 1 + q^{me}$ and the omitted entries are all equal to zero. If d_l is the determinant of the $l \times l$ block in the lower right corner, then from $d_0 = 1$, $d_1 = \gamma$ and the recursion

$$d_l = \gamma d_{l-1} - \beta d_{l-2},$$

it is easy to show that

$$d_l = 1 + q^{me} + \cdots + q^{lme}.$$
Expanding the determinant along the first column gives us the desired formula
\[
\det C_B = \alpha d_{e-1} - \beta d_{e-2} = 1 + q^e + q^{2e} + \cdots + q^{me^2}.
\]

8. Brauer lines as trivial extension algebras

Let Γ be the Brauer line with e edges and multiplicity of the exceptional vertex equal to 1. Let A_{Γ} be a basic Brauer tree algebra whose tree is Γ and let us assume that this algebra is graded by taking Green’s walk around Γ. We have seen in Example 4.4 (b) that with respect to such grading the graded quiver of A_{Γ} is given by

and we have that the only non-zero degree appearing in this grading is e. Therefore, we can divide every degree by e and we will still have a graded algebra whose graded quiver is

with arrows only in degrees 0 and 1. We call this procedure of dividing each degree by the same integer rescaling.

This algebra has an interesting connection with trivial extension algebras. Let B be a finite dimensional algebra over a field k. The trivial extension algebra of B, denoted $T(B)$, is the vector space $B \oplus B^*$ with multiplication defined by

\[(x, f)(y, g) := (xy, xg + fy)\]

where $x, y \in B$ and $f, g \in B^*$ and B^* is the B–bimodule $\text{Hom}_k(B, k)$. This algebra is always symmetric and the map $B \to T(B)$, given by $b \mapsto (b, 0)$, is an embedding of algebras. The algebra $T(B)$ is naturally graded by putting B in degree 0 and B^* in degree 1. This raises the question of whether the graded Brauer tree algebra A_{Γ} (with degrees rescaled by dividing by e) is the trivial extension algebra of some algebra B? The obvious candidate would be its subalgebra A_{0}. The quiver of A_{0} is given by

and the following proposition says that the trivial extension algebra of A_{0} is A_{Γ}.

Proposition 8.1. Let A_{Γ} and A_{0} be as above. Then

\[T(A_{0}) = A_{0} \oplus A_{0}^* \cong A_{\Gamma}.\]
Proof. Let \(\{v_1^*, \ldots, v_e^*, a_1^*, \ldots, a_{e-1}^*\} \) be the basis of \(A_0^* \) dual to the basis \(\{v_1, \ldots, v_e, a_1, \ldots, a_{e-1}\} \) of \(A_0 \) and let \(b_i, i = 1, 2, \ldots, e-1 \) be the arrow of the quiver of \(A_\Gamma \) starting at the vertex \(v_i \) and ending at the vertex \(v_{i+1} \). Each \(b_i \) is in degree 1. It is now easily verified that the map given by \(a \mapsto (a, 0) \) for \(a \in A_0 \) and \(b_i \mapsto (0, a_i^*) \), \(i = 1, 2, \ldots, e-1 \), is an algebra isomorphism between \(A_\Gamma \) and \(T(A_0) \).

When \(m > 1 \), we have a loop at one of the ends of the quiver of a Brauer line. This loop is in degree \(e \) and other arrows are in degrees 0 and \(me \) (see Example 4.4), hence, we have arrows in three different degrees. It follows that when \(m > 1 \) these algebras cannot be seen as trivial extension algebras of their degree zero subalgebra \(A_0 \) (unless \(m = 2 \) and \(e = 1 \)).

9. Shifts of gradings

Let \(\Gamma \) be a Brauer tree of type \((m, e)\) and let \(A_\Gamma \) be a basic Brauer tree algebra whose tree is \(\Gamma \). We have seen that we can grade this algebra by computing the endomorphism ring of the graded complex \(T' = \bigoplus_{i=1}^e T'_i \) which we constructed by taking Green’s walk around \(\Gamma \). In other words, we got a structure of a graded algebra \(A'_\Gamma \) on \(A_\Gamma \). Recall that this was a non-negative grading. Let \(\tilde{T} \) be the shifted graded complex \(\bigoplus_{i=1}^e T'_i\langle n_i \rangle \), where \(n_i \in \mathbb{Z} \), \(i = 1, 2, \ldots, e \). The endomorphism ring of the graded complex \(\tilde{T} \) is the graded algebra \(\tilde{A}_\Gamma \) which is graded Morita equivalent to \(A'_\Gamma \) (see Definition 11.1). The question is if we can choose non-zero integers \(n_i \) in such way that the resulting grading is positive, i.e. to get such a grading in which all arrows are in positive degrees.

Let \(S_i \) and \(S_j \) be vertices of the quiver of the algebra \(\tilde{A}_\Gamma \) which belong to the same cycle, and which correspond to the summands \(T'_i\langle n_i \rangle \) and \(T'_j\langle n_j \rangle \) of \(\tilde{T} \). We want to compute the degree of the arrow \(\alpha \) from \(S_i \) to \(S_j \). Let \(d \) be the degree of this arrow for the graded algebra \(A'_\Gamma \).

Proposition 9.1. Let \(\alpha \) be the arrow connecting vertices \(S_i \) and \(S_j \) of the graded quiver of the graded algebra \(A_\Gamma \). Then,

\[
\text{deg}(\alpha) = d + n_i - n_j,
\]

where \(d \) is the degree of the same arrow of the quiver of the graded algebra \(A'_\Gamma \), and \(n_i \) and \(n_j \) are the shifts of \(T'_i \) and \(T'_j \) respectively.

Proof. Let \(l \in \{i, j\} \). Since \(T'_l \) is a complex of uniserial modules, the top of the leftmost non-zero term of \(T'_l\langle n_i \rangle \) is in degree \(d_l - n_l \), where \(d_l \) is the degree of the top of the leftmost non-zero term of \(T'_l \), i.e. the degree before the shift. The degree of \(\alpha \) after the shift is \((d - n_j) - (-n_i))\).
Note that when we compare graded quivers of A_Γ' and \tilde{A}_Γ, the difference is that we added $n_i - n_j$ to the degree of the arrow from S_i to S_j. If this arrow is in degree 0, then its degree after the shift is $n_i - n_j$, where $i > j$ by Lemma 4.8. The source and the target of such an arrow belong to two consecutive levels of a rooted tree. The arrow of a non-exceptional cycle whose degree was me is now in degree $me + n_i - n_j$ where $i < j$ by Lemma 4.7. Also, the degree of an arrow between two vertices S_i and S_j of the exceptional cycle now is $i - j + n_i - n_j$, if $i > j$, and if $i < j$, it is $e - (j - i) + n_i - n_j$.

Proposition 9.2. Let Γ be a Brauer tree of type (m, e) and let $\tilde{T} := \oplus_{i=1}^e T'_i(n_i)$ be the shifted tilting complex constructed by taking Green’s walk around Γ. Let $\tilde{A}_\Gamma := \text{End}_{\text{gr}} K^b(P_{A_\Gamma})^{\text{op}}$. There are positive integers n_i, $i = 1, 2, \ldots, e$, such that the graded algebra \tilde{A}_Γ is non-negatively graded with $\deg(a) > 0$ for all homogeneous elements $a \in \text{rad} \tilde{A}_\Gamma$.

Proof. Let Q_v be an arbitrary component of the quiver of A_0, the subalgebra of A_Γ' of degree 0 elements, and let S_i be a vertex of Q_v. If we set $n_i := 1 + l_i$, where l_i is the level of the rooted tree Q_v to whom S_i belongs, then all arrows of the graded quiver Q_v are in degree 1 after the shift. The arrows of Q, the quiver of A_Γ, that connect two vertices of Q_v and which were not in degree 0 are still in positive degrees after the shift because $me + n_i - n_j > 0$. The arrows of the exceptional cycle are in the same degrees as they used to be because we set $n_i := 1$ for each root S_i. ■

Example 9.3. Let Γ be the tree from Example 5.8. With the notation from the previous proposition the graded quiver of the basic Brauer tree algebra $\tilde{A}_\Gamma = \text{End}_{\text{gr}} K^b(P_{A_\Gamma})^{\text{op}}\oplus_{i=1}^{11} T'_i(n_i)$ is given by

![Graph](graph.png)
If we set \(n_1 = n_9 = 1, n_2 = n_{10} = 2, n_3 = n_6 = n_{11} = 3, n_4 = n_7 = n_8 = 4 \)
and \(n_5 = 5 \), then all arrows are in positive degrees.

Note that the change of shifts on the summands \(T'_i \) of the tilting complex \(T' \)
is the same as the change of shifts on the projective indecomposable modules of \(A'_\Gamma \cong \text{End}_{grK}^{gr} (\Pi_{i=1}^e T'_i)_{op} \). Let \(\tilde{A}_\Gamma \cong \text{End}_{grK}^{gr} (\oplus_{i=1}^e T'_i(n_i))_{op} \).
When we change the shifts, in general, we get a different grading on \(A_\Gamma \) and the resulting graded algebra \(\tilde{A}_\Gamma \) is not isomorphic to \(A'_\Gamma \) as a graded algebra.
But these two graded algebras are graded Morita equivalent, i.e. there is an equivalence \(A'_\Gamma - \text{grmod} \cong \tilde{A}_\Gamma - \text{grmod} \) as we shall see in Section 11.

10. Change of the exceptional vertex

Let \(A_\Gamma \) be a basic Brauer tree algebra whose tree \(\Gamma \) has \(e \) edges and the multiplicity of the exceptional vertex equal to 1. When the multiplicity is 1, then the exceptional vertex is not uniquely defined. If we change the exceptional vertex, the algebra \(A_\Gamma \) does not change. But when constructing the tilting complex that tilts from \(A_S \) to \(A_\Gamma \) by taking Green’s walk around \(\Gamma \) we start from a different vertex, and in general, the resulting tilting complex is different. Therefore, we get different gradings on \(A_\Gamma \).

Example 10.1. Let \(\Gamma \) be the following Brauer tree with multiplicity 1 and let \(A_\Gamma \) be the corresponding Brauer tree algebra.

\[
\begin{array}{c}
\circ \quad S_2 \\
\circ \quad S_1 \\
\circ \quad S_3 \\
\circ \quad S_4
\end{array}
\]

If \(T = \oplus_{i=1}^4 T_i \) is the tilting complex constructed by taking Green’s walk around \(\Gamma \), then the resulting graded quiver of \(A'_\Gamma \) is given by

\[
\begin{array}{c}
S_2 \rightarrow 0 \\
S_4 \\
S_1 \rightarrow 1 \\
S_3
\end{array}
\]

If we change the exceptional vertex, say we have a Brauer tree \(\Delta \)
then the basic Brauer tree algebra A_Δ whose tree is Δ, is the same as A_Γ. The tilting complex D constructed by taking Green’s walk around Δ is different from T and it gives us a new grading on $A_\Delta = A_{\Gamma} \cong \text{End}_{Kb(P_{A_\Delta})}(D)^{op}$. The resulting graded quiver of the graded algebra A_Δ' is given above.

If $\check{T} := \oplus_{i=1}^{4} T'_i(n_i)$ is a graded complex given by shifting the summands of T', then from Proposition 9.1 we get a grading on $A_{\Gamma} \cong \text{End}_{Kb(P_{A_\Delta})}(T)^{op}$ and the resulting graded quiver of the graded algebra \check{A}_{Γ} is given by

If we set $n_1 = 3$, $n_2 = 7$, $n_3 = 1$ and $n_4 = 0$, we see that the resulting grading on A_{Γ} is the same as the grading that we got by taking Green’s walk around Δ.

In the previous example we had two different gradings on A_{Γ}, but we were able, by changing shifts of the summands of the graded tilting complex T', to move from one grading to another via graded Morita equivalence (Definition 11.1). We will prove in the next section that this holds for all Brauer tree algebras, regardless of the multiplicity of the exceptional vertex.

11. Classification of gradings

In this section we classify, up to graded Morita equivalence and rescaling, all gradings on an arbitrary Brauer tree algebra with n edges (we change the notation from e to n so we can use letter e for idempotents) and the multiplicity of the exceptional vertex equal to m.

For a finite dimensional k-algebra A, there is a correspondence between gradings on A and homomorphisms of algebraic groups from G_m to $\text{Aut}(A)$,
where G_m is the multiplicative group k^* of the field k. For each grading $A = \bigoplus_{i \in \mathbb{Z}} A_i$ there is a homomorphism of algebraic groups $\pi : G_m \to \text{Aut}(A)$ where an element $x \in k^*$ acts on A_i by multiplication by x^i (see [15], Section 5). If A is graded and π is the corresponding homomorphism, we will write (A, π) to denote that A is graded with grading π.

Definition 11.1. Let (A, π) and (A, π') be two gradings on a finite dimensional k-algebra A, and let P_1, P_2, \ldots, P_r be the isomorphism classes of the projective indecomposable A-modules. We say that (A, π) and (A, π') are graded Morita equivalent if there exist integers d_1, d_2, \ldots, d_r such that the graded algebras (A, π') and $\text{End}_{gr}(A,\pi)(\bigoplus_{i=1}^r n_i P_i(d_i))^{op}$ are isomorphic.

Note that two graded algebras are graded Morita equivalent if and only if their categories of graded modules are equivalent.

We now give some background on algebraic groups (more details can be found in [11]). An algebraic torus is a linear algebraic group isomorphic to $G_m^n = G_m \times \cdots \times G_m$ (n factors) for some $n \geq 1$. A maximal torus in an algebraic group G is a closed subgroup of G which is a torus but is not contained in any larger torus. Tori are contained in G^0, the connected component of G that contains the identity element. For a given torus T, a cocharacter of T is a homomorphism of algebraic groups from G_m to T. A cocharacter of an algebraic group G is a homomorphism of algebraic groups from G_m to T, where T is a maximal torus of G. We say that cocharacters π and π' of G are conjugate if there exists $g \in G$ such that $\pi'(x) = g \pi(x) g^{-1}$ for all $x \in G_m$. We see that a grading on a finite dimensional algebra A can be seen as a cocharacter $\pi : G_m \to \text{Aut}(A)$. We will use the same letter π to denote the corresponding cocharacter of $\text{Out}(A)$, which is given by composition of π and the canonical surjection.

The following proposition tells us how to classify all gradings on A up to graded Morita equivalence.

Proposition 11.2 ([15], Corollary 5.9). Two graded algebras (A, π) and (A, π') are graded Morita equivalent if and only if the corresponding cocharacters $\pi : G_m \to \text{Out}(A)$ and $\pi' : G_m \to \text{Out}(A)$ are conjugate.

From this proposition we see that in order to classify gradings on A up to graded Morita equivalence, we need to compute maximal tori in $\text{Out}(A)$. Let $\text{Out}^K(A)$ be the subgroup of $\text{Out}(A)$ of those automorphisms fixing the isomorphism classes of simple A-modules. Since $\text{Out}^K(A)$ contains $\text{Out}^0(A)$, the connected component of $\text{Out}(A)$ that contains the identity element, we have that maximal tori in $\text{Out}(A)$ are actually contained in $\text{Out}^K(A)$.
We start by computing $\text{Out}^K(A_\Gamma)$ for a Brauer algebra A_Γ of type (m,n), where $m > 1$. We remark here that for the case $m = 1$, $\text{Out}^K(A_\Gamma)$ has been computed in Lemma 4.3 in [16]. Although the proof of this Lemma in [16] seems to be incomplete, the result is correct if one assumes that the ground field k is an algebraically closed field. The same result, namely that $\text{Out}^K(A_\Gamma) \cong k^*$ when $m = 1$, follows directly from our computation below for $m > 1$, if we disregard the loop ρ which does not appear if $m = 1$.

Let A_Γ be a basic Brauer algebra whose tree Γ is of type (m,n) where $m > 1$. Since $\text{Out}^K(A_\Gamma)$ is invariant under derived equivalence (cf. [12], Section 4), in order to compute this group for any Brauer tree algebra A_Γ whose tree is of type (m,n), it is sufficient to compute this group for the Brauer line of the same type.

Let A_Γ be a basic Brauer tree algebra of type (m,n) whose tree is the Brauer line with n edges and with the exceptional vertex at the end of the line. The quiver of A_Γ is given by

\[
\rho \circ e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow \cdots \rightarrow a_{n-1} \rightarrow e_n
\]

and relations are given by $a_i e_{i+1} = b_{i+1} b_i = 0$ ($i = 1, 2, \ldots, n-2$), $\rho^m = a_1 b_1$, $\rho a_1 = b_1 \rho = 0$ and $a_i b_i = b_{i-1} a_{i-1}$ ($i = 2, 3, \ldots, n-1$).

In order to simplify calculation let us set $t_i := a_i + b_i$, $i = 1, 2, \ldots, n-1$. Then, $a_i = e_i t_i$ and $b_i = e_i + t_i$, for $i = 1, 2, \ldots, n-1$. Then the relations become $t_i e_{i+1} t_{i+1} = t_{i+1} e_{i+1} t_i = 0$ ($i = 1, 2, \ldots, n-2$), $t_i^3 = 0$ ($i = 1, 2, \ldots, n-1$), $\rho e_1 t_i = e_2 t_1 \rho = 0$, $e_1 t_i^2 = \rho^m$, $e_i t_i^2 = t_i t_{i-1} e_i$ ($i = 2, 3, \ldots, n-1$). Also, we have that $e_i t_i = t_i e_{i+1}$ and $e_{i+1} t_i = t_i e_i$, $i = 1, 2, \ldots, n-1$. Let us write $t_i^2 := \rho^m$.

Let φ be an arbitrary automorphism of A_Γ that fixes isomorphism classes of simple A_Γ-modules. We will compose this automorphism with suitably chosen inner automorphisms in order to get an automorphism ϕ, which represents the same element as φ in the group of outer automorphisms, but which is suitable for our computation.

If $\{e_1, e_2, \ldots, e_n\}$ is a complete set of orthogonal primitive idempotents, then $\{\varphi(e_1), \varphi(e_2), \ldots, \varphi(e_n)\}$ is also a complete set of orthogonal primitive idempotents. From classical ring theory (cf. [7], Theorem 3.10.2) we know that these two sets are conjugate. Hence, when we compose φ with a suitably chosen inner automorphism we get that $x^{-1} \varphi(e_i) x = e_{\sigma(i)}$, for all i, where σ is some permutation. Since φ fixes isomorphism classes of simple modules, we can assume that, for all i, $\varphi(e_i) = e_i$.
Since \(\varphi(\text{rad } A_{\Gamma}) \subset \text{rad } A_{\Gamma} \) we have that

\[
\varphi(t_i) = \sum_{j=1}^{n-1} A_{ij} e_j t_j + \sum_{j=1}^{n-1} B_{ij} e_{j+1} t_j + \sum_{j=1}^{n-1} C_{ij} e_{j+1} t_j^2 + \sum_{j=1}^{m-1} D_{ij} \rho^j,
\]

where \(A_{ij}, B_{ij}, C_{ij} \) and \(D_{ij} \) are scalars. If \(i > 1 \), then from \(e_1 t_i = 0 \) we get that \(D_{ij} = 0 \) for \(j = 1, 2, \ldots, m - 1 \). If \(i = 1 \), then from \(e_1 t_1 = t_1 e_2 \) we get that \(D_{ij} = 0, j = 1, 2, \ldots, m - 1 \). In both cases we have that \(D_{ij} = 0 \) for all \(i \) and all \(j \).

If \(l \notin \{i, i+1\} \), then \(\varphi(e_l t_i) = 0 \) and \(\varphi(t_i e_l) = 0 \). From the first equality we get that \(A_{il} = B_{i,l-1} = 0 \) and from the second equality we get that \(B_{il} = A_{i,l-1} = 0 \). Subsequently, we have that \(C_{il} = 0 \) for \(l \notin \{i, i-1\} \).

Therefore, we must have that

\[
\varphi(t_i) = A_{ii} e_i t_i + B_{ii} e_{i+1} t_i + C_{i,i-1} e_{i-1} t_{i-1}^2 + C_{ii} e_{i+1} t_i^2.
\]

From \(e_i t_i = t_i e_{i+1} \) it follows that \(\varphi(e_i) \varphi(t_i) = \varphi(t_i) \varphi(e_{i+1}) \), and we have

\[
C_{i,i-1} = C_{ii} = 0.
\]

Also, \(A_{ii} \neq 0 \) and \(B_{ii} \neq 0 \). If one of them would be zero, then \(\varphi(t_i^2) = 0 \), which is in contradiction with \(\varphi \) being an automorphism.

Assume now that

\[
\varphi(\rho) = \sum_{j=1}^{m-1} D_j \rho^j + \sum_{j=1}^{n-1} E_j e_j t_j + \sum_{j=1}^{n-1} F_j e_{j+1} t_j + \sum_{j=1}^{n-1} G_j e_{j+1} t_j^2,
\]

for some scalars \(D_j, E_j, F_j \) and \(G_j \).

For \(l > 2 \), from \(e_l \rho = 0 \) we have that \(\varphi(e_l) \varphi(\rho) = 0 \) and it follows that \(E_l = F_{l-1} = 0 \), for \(l = 2, 3, \ldots, m - 1 \). Similarly, from \(\rho e_l = 0 \) we have that \(F_l = E_{l-1} = 0 \), for \(l = 2, 3, \ldots, m - 1 \) and consequently, we have that \(G_j = 0 \) for all \(j \). Therefore, we get

\[
\varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j.
\]

Note that \(D_1 \neq 0 \), because if \(D_1 = 0 \), then \(\varphi(\rho^m) = 0 \), which again contradicts the fact that \(\varphi \) is an automorphism.

We note here that the remaining relations, such as \(\rho e_1 t_1 = 0 \), impose no further restrictions to the coefficients of \(\varphi \).

Gathering all the information we got, we conclude that, up to inner automorphism, an arbitrary automorphism that fixes isomorphism classes of simple \(A_{\Gamma} \)-modules has the following action on a set of generators \(\{e_i, t_i, \rho \mid i = 1, 2, \ldots, n; l = 1, 2, \ldots, n-1\} \)

\[
\varphi(e_i) = e_i, \quad \varphi(t_i) = A_{il} e_i t_i + B_{il} e_{i+1} t_i, \quad \varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j.
\]
To compute $\text{Out}^K(A_{\Gamma})$, for each automorphism φ we need to find an automorphism which is in the same class as φ in $\text{Out}^K(A_{\Gamma})$, and which acts by scalar multiplication on as many of the above generators as possible. In order to do that we will compose φ with suitably chosen inner automorphisms.

First of all, let us see how an arbitrary inner automorphism acts on our set of generators.

Let y be an arbitrary invertible element in A_{Γ}. Then,

$$y = \sum_{j=1}^{n} l_j e_j + \sum_{j=1}^{n-1} s_j e_j t_j + \sum_{j=1}^{n-1} r_j e_{j+1} t_j + \sum_{j=1}^{n-1} p_j e_j t_j^2 + \sum_{j=1}^{m} q_j \rho^j,$$

where $l_i \neq 0$, $i = 1, \ldots, n$. From $yy^{-1} = 1$, we easily compute scalars s_j', r_j', p_j', q_j' in

$$y^{-1} = \sum_{j=1}^{n} l_j^{-1} e_j + \sum_{j=1}^{n-1} s_j' e_j t_j + \sum_{j=1}^{n-1} r_j' e_{j+1} t_j + \sum_{j=1}^{n-1} p_j' e_j t_j^2 + \sum_{j=1}^{m} q_j' \rho^j.$$

The inner automorphism given by y has the following action on ρ

$$f_y(\rho) := y \rho y^{-1} = (l_1 \rho + \sum_{j=1}^{m} q_j \rho^{j+1}) y^{-1} =$$

$$= \rho + \sum_{j=1}^{m} l_1 q_j' \rho^{j+1} + \sum_{j=1}^{m} l_j^{-1} q_j \rho^{j+1} + \sum_{j=1}^{m} q_j \rho^{j+1} \sum_{i=1}^{m} q_i \rho^i =$$

$$= \rho + \rho (\sum_{j=1}^{m} l_1 q_j' \rho^i + \sum_{j=1}^{m} l_j^{-1} q_j \rho^i + \sum_{j=1}^{m} q_j \rho^i \sum_{i=1}^{m} q_i \rho^i + s_1 r_1 \rho^m) = \rho.$$

Therefore, an arbitrary inner automorphism fixes ρ. From now on, we will use inner automorphisms given by elements of the form

$$x = \sum_{j=1}^{n} l_j e_j.$$

They will be enough to get a class representative of φ in $\text{Out}^K(A_{\Gamma})$ that is easy to work with.

If f_x is the inner automorphism given by an invertible element x, then we easily get that

$$f_x(t_i) = l_i l_{i+1}^{-1} e_i t_i + l_{i+1}^{-1} l_i e_{i+1} t_i.$$

When we compose f_x and φ we get that

$$f_x \circ \varphi(\rho) = \sum_{j=1}^{m} D_j \rho^j,$$

$$f_x \circ \varphi(t_i) = A_i l_i l_{i+1}^{-1} e_i t_i + B_i l_{i+1}^{-1} l_i e_{i+1} t_i,$$
for all i, and

$$f_x \circ \varphi(e_i) = e_i.$$

We want to choose l_i’s so that we get

$$A_i := A_ii_l^{-1}l_{i+1}^{-1} = B_i l_i^{-1}l_{i+1}^{-1}$$

for $i = 1, 2, \ldots, n - 1$. To do this we need to choose l_i’s in such way that the following equality holds for all i

$$A_i B_i^{-1} = l_i^{-2} l_{i+1}^2.$$

We can choose $l_1 = 1$ and then inductively, assuming that we have chosen l_1, l_2, \ldots, l_i, because we are working over an algebraically closed field, we get l_{i+1} from $A_i l_i B_i^{-1} l_i^2 = l_i^2$.

If we choose such x, then the map $\varphi := f_x \circ \varphi$ has the following action on our generating set

$$\varphi_1(e_i) = e_i, \quad \varphi_1(\rho) = \sum_{j=1}^{m} D_j \rho^j, \quad \varphi_1(t_i) = A_i t_i.$$

From the relations $e_i l_i^2 = l_i^2 e_i$, for $i = 2, 3, \ldots, n - 1$, we get that $A_i^2 = A_i^2 = \cdots = A_n^2$. We can assume that $A_1 = A_2 = \cdots = A_n = 1$, because if not, then by multiplying φ_1 by an inner automorphism given by $x_1 = \sum_{i=1}^{n} r_i e_i$, where we set $r_n = r_{n-1} = 1$ and then for $i < n - 1$, we set $r_i = -r_{i+1}$ if $A_i = -A_{i+1}$, and $r_i = r_{i+1}$ if $A_i = A_{i+1}$. We get a new automorphism φ_2 such that $\varphi_2(t_i) = A_i t_i$, for all i. Also from the relation $\rho^m = e_1 t_i^2$ we get that $A_i^2 = D_i^m$. This means that for a fixed D_1 we have two choices for A_1, since there are two square roots of D_1^m. These two values of A_1 will give us two different automorphisms, but as before, we can assume that after multiplying by an appropriate inner automorphism these two automorphisms represent the same automorphism in $\text{Out}^K(A_1)$.

We started with an arbitrary automorphism φ that fixes the isomorphism classes of simple A_k-modules and we showed that in the group $\text{Out}^K(A_1)$ it represents the same class as the element ϕ whose action is given by

$$\phi(e_i) = e_i, \quad \phi(\rho) = \sum_{j=1}^{m} D_j \rho^j, \quad \phi(t_s) = A_1 t_s,$$

where $A_i^2 = D_i^m$, $i = 1, \ldots, n$, and $s = 1, \ldots, n - 1$.

Therefore, every element in $\text{Out}^K(A_1)$ is uniquely determined by its action on ρ, i.e. it is uniquely determined by an m-tuple (D_1, D_2, \ldots, D_m) where $D_1 \neq 0$. The map θ that assigns to each m-tuple $D = (D_1, D_2, \ldots, D_m)$ an isomorphism ϕ_D, where $\phi_D(\rho) = \sum_{j=1}^{m} D_j \rho^j$, is an isomorphism of groups. But what is the group structure on the set $k^s \times k \times k \times \cdots \times k$.
where k^* denotes non-zero elements of k. If $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$ and $\beta = (\beta_1, \beta_2, \ldots, \beta_m)$ are two m-tuples and ϕ_α and ϕ_β are the corresponding automorphisms, then $\phi_\beta \circ \phi_\alpha = \phi_{\beta \star \alpha}$ gives us the definition of the group operation \star on $k^* \times k \times k \times \cdots \times k$. Computing $\phi_\beta \circ \phi_\alpha$ gives us that

$$\beta \star \alpha := \left(\sum_{i=1}^{l} \alpha_i \left(\sum_{k_1 + \cdots + k_i = l \atop k_1, \ldots, k_i > 0} \beta_{k_1} \beta_{k_2} \cdots \beta_{k_i} \right) \right)_{l=1}^{m}$$

(11.1)

Here are first few coordinates explicitly

$$\beta \star \alpha = (\alpha_1 \beta_1, \alpha_1 \beta_2 + \alpha_2 \beta_1^2, \alpha_1 \beta_3 + 2 \alpha_2 \beta_1 \beta_2 + \alpha_3 \beta_1^3, \ldots).$$

Definition 11.3. We define H_m to be the group $(k^* \times k \times k \times \cdots \times k, \star)$, where the multiplication \star is given by the above equation (11.1).

The identity element of H_m is $(1, 0, \ldots, 0)$, and this element corresponds to the class of inner automorphisms. The inverse element of an arbitrary m-tuple is easily computed inductively from the definition of \star. Associativity is verified after elementary, but tedious computation.

Lemma 11.4. The group H_m is isomorphic to the group of automorphisms of the polynomial algebra $k[x]/(x^{m+1})$.

Proof. An arbitrary automorphism f from $\text{Aut}(k[x]/(x^{m+1}))$ is given by its action on x. Since it has to be surjective, and $f(x)^{m+1} = 0$, we have that x has to be mapped to a polynomial $d_1 x + d_2 x^2 + \cdots + d_m x^m$, where $d_1 \neq 0$. Therefore, every automorphism of $\text{Aut}(k[x]/(x^{m+1}))$ is given by a unique m-tuple (d_1, d_2, \ldots, d_m) where $d_1 \neq 0$. The structure of a group on the set of all such m-tuples is the same as for the group H_m. ■

Since the group $\text{Out}^K(A)$ is invariant under derived equivalence and Brauer tree algebras of the same type are derived equivalent, we have the following theorem.

Theorem 11.5. Let Γ be a Brauer tree of type (m, n) and let A_Γ be a basic Brauer tree algebra whose tree is Γ. Then

$$\text{Out}^K(A_\Gamma) \cong \text{Aut}(k[x]/(x^{m+1})) \cong H_m.$$
the corresponding Brauer tree algebras A_Γ and $A_{\Gamma'}$ have isomorphic groups of outer automorphisms that fix isomorphism classes of simple modules. If we take the subtree Γ' to be the exceptional vertex with one edge adjacent to it, we get $A_{\Gamma'} = k[x]/(x^{m+1})$.

Corollary 11.6. Let Γ be a Brauer tree of type (m,n) and let Γ' be an arbitrary connected Brauer subtree of Γ that contains the exceptional vertex. If A_Γ and $A_{\Gamma'}$ are basic Brauer tree algebras whose trees are Γ and Γ' respectively, then

$$\text{Out}^K(A_\Gamma) \cong \text{Out}^K(A_{\Gamma'}) \cong \text{Aut}(k[x]/(x^{m+1})).$$

Let L be the subgroup of H_m consisting of the elements of the form $(1, \alpha_2, \ldots, \alpha_m)$ and let K be the subgroup of H_m consisting of the elements of the form $(\alpha_1, 0, \ldots, 0)$.

Proposition 11.7. The group H_m is a semidirect product of L and K, where $L \leq G$ is unipotent and the subgroup $K \cong G_m$ is a maximal torus in H_m.

We see that, regardless of the multiplicity of the exceptional vertex, G_m is a maximal torus in $\text{Out}^K(A_\Gamma)$. It follows that the maximal tori in $\text{Out}(A_\Gamma)$ are isomorphic to G_m. From this we deduce the following theorem.

Theorem 11.8. Let Γ be an arbitrary Brauer tree and let A_Γ be a basic Brauer tree algebra whose tree is Γ. Up to graded Morita equivalence and rescaling there is unique grading on A_Γ.

Proof. By Proposition 11.2, cocharacters of $\text{Out}(A_\Gamma)$ give us all gradings on A_Γ up to graded Morita equivalence. Maximal tori in $\text{Out}(A_\Gamma)$ are isomorphic to G_m by the previous proposition. The only homomorphisms from G_m to G_m are given by maps $x \mapsto x^r$, for $x \in G_m$ and $r \in \mathbb{Z}$. No two of these cocharacters are conjugate, hence, all gradings on A_Γ up to graded Morita equivalence are parameterized by integers. Because we can move from one of these gradings to another by rescaling, we have that there is unique grading on A_Γ up to rescaling (dividing each degree by the same integer) and graded Morita equivalence (shifting each summand of the tilting complex given by Green’s walk).

Acknowledgements

I would like to thank Raphael Rouquier for suggesting the problem of transfer of gradings via derived equivalences, and for constant support while I was writing this paper. Also, I would like to thank Karin Erdmann for careful reading of the manuscript, for many useful suggestions and for her encouragement.
References

[1] J. L. Alperin, *Local representation theory*, Cambridge Studies in Advanced Mathematics 11, Cambridge Univ. Press, 1986.

[2] I. Assem, D. Simson and A. Skowronski, *Elements of the Representation Theory of Associative Algebras Vol. 1*, LMS Student Texts 65, Cambridge Univ. Press, 2006.

[3] A. Beilinson, V. Ginzburg and W. Soergel, *Koszul duality patterns in representation theory*, J. of Amer. Math. Soc. Volume 9, Number 2, April 1996.

[4] A. Borel, *Linear algebraic groups*, Second edition, Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.

[5] E. Cline, B. Parshall and L. Scott, *Integral and graded quasi-hereditary algebras*, J. Algebra 131 (1990), no. 1, 126-160.

[6] V. Diab and C. M. Ringel, *Quasi-hereditary algebras*, Illinois J. Math. 33(1989), 280-291.

[7] J. A. Green, *Walking around the Brauer Tree*, J. Austral. Math. Soc. 17 (1974), 197-213.

[8] T. Holm, *Derived Categories, Derived Equivalences and Representation Theory*, Proceedings of the Summer School on “Representation theory of Algebras, Finite and Reductive Groups”, "Babeș-Bolyai" University Cluj, 1998, pp. 33–66. (http://www.iazl.uni-hannover.de/~tholm/newcluj3.ps)

[9] N. Jacobson, *Structure of rings*, Colloquium publications v. 37, AMS, Providence, 1964.

[10] S. König and C. Xi, *When is a cellular algebra quasi-hereditary?*, Math. Ann. 315(1999), 281-293.

[11] S. König and A. Zimmermann, *Derived equivalences for group rings*, Lecture Notes in Mathematics No. 1685, Springer-Verlag, Berlin, 1998.

[12] M. Linckelmann, *Stable equivalence of Morita type for self-injective algebras and p-groups*, Math. Z. 223, 1996, 87-100.

[13] C. Nastasescu and F. Van Oystaeyen, *Methods of Graded Rings*, Lecture Notes in Math. 1836, Springer, 2004.

[14] J. Rickard, *Derived categories and stable equivalence*, J. Pure Appl. Algebra 61, 1989, 303-317.

[15] R. Rouquier, *Automorphismes, Graduations et Catégories Triangulées*, preprint, 2000. (http://people.maths.ox.ac.uk/~rouquier/papers/autograd.pdf)

[16] R. Rouquier and A. Zimmermann, *Picard Groups for Derived Module Categories*, Proc. London Mathematical Society (3) 87, 2003, 197–225.

[17] M. Schaps and E. Zakay-Illouz, *Pointed Brauer Trees*, J. Algebra 246, 2001, 647-672.

DUSKO BOGDANIC

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD,
24-29 ST GILES, OXFORD OX1 3LB, UNITED KINGDOM
E-mail address: bogdanic@maths.ox.ac.uk