Design and tests of the hard X-ray polarimeter X-Calibur

M. Beilickea, M.G. Baringb, S. Barthelmyc, W.R. Binnsa, J. Buckleya, R. Cowsika, P. Dowkontta, A. Garsona, Q. Guoa, Y. Habad, M.H. Israela, H. Kuniedad, K. Leea, H. Matsumotod, T. Miyazawad, T. Okajimac, J. Schnittmanc, K. Tamurad, J. Tuellerc, and H. Krawczynskia

aDepartment of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO, USA; bRice University, TX, USA; cGoddard Space Flight Center, MD, USA; dNagoya University, Japan;

\textbf{ABSTRACT}

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter \textit{X-Calibur} to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. \textit{X-Calibur} combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 – 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. \textit{X-Calibur} achieves a high detection efficiency of order unity.

\textbf{Keywords:} X-rays, polarization, black hole, InFOCuS, X-Calibur