Erratum: “Spiral Arms in Disks: Planets or Gravitational Instability?” (2018, ApJ, 862, 103)

Ruobing Dong1, Joan R. Najita2, and Sean Brittain2,3

1 Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721, USA; rdong@email.arizona.edu
2 National Optical Astronomical Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA; najita@noao.edu
3 Department of Physics & Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29634-0978, USA; sbritt@clemson.edu

Received 2021 October 19; published 2021 December 10

This Erratum is to clarify a potential confusion regarding Equation (2) in the Appendix B in Dong et al. (2018). The factor of 0.5 in 0.5 R_{mm} is an approximate correction factor meant to identify the radius where the dust temperature is the global average in a disk whose size is R_{mm}. This is to account for the fact that dust at different radii has different temperature. If the surface density follows a $\Sigma \sim 1/R$ radial profile and the disk extends from $R = 0$ to $R = R_{mm}$, 0.5 R_{mm} is the half-mass radius, i.e., the radius inside which half of the disk mass is enclosed. Equation (2) in the Appendix B is a fit to simulations to give the specific temperature at $R = 0.5R_{mm}$, not R_{mm}, in a disk; this temperature is considered as a proxy for the average dust temperature in a disk whose outer edge is at R_{mm}.

R.D. thanks Shijie Wang for helpful discussions.

ORCID iDs

Ruobing Dong © https://orcid.org/0000-0001-9290-7846
Sean Brittain © https://orcid.org/0000-0001-5638-1330

References

Dong, R., Najita, J. R., & Brittain, S. 2018, ApJ, 862, 103