Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, *Sogatella furcifera* (Hemiptera: Delphacidae)

Zhao Wang1,2, Hong Yang1,3, Cao Zhou1, Wen-Jia Yang4, Dao-Chao Jin1 & Gui-Yun Long1

Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (*SfCHS1*) from the white-backed planthopper, *Sogatella furcifera*. The full-length cDNA of the two variants (*SfCHS1a* and *SfCHS1b*) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in different developmental stages showed that expression of *SfCHS1* and *SfCHS1a* were highest just after molting, whereas *SfCHS1b* reached its highest expression level 2 days after molting. Further, *SfCHS1* and *SfCHS1a* were mainly expressed in the integument, whereas *SfCHS1b* was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in *S. furcifera* nymphs injected with double-stranded RNA of *SfCHS1*, *SfCHS1a*, and *SfCHS1b*, resulted in malformed phenotypes, and killed most of the treated nymphs. Our results indicate that *SfCHS1* may be a potential target gene for RNAi-based *S. furcifera* control.

Chitin, a linear homopolymer of *N*-acetylglucosamines (GlcNAc) linked by β-1,4 glycosidic bonds, is the second most abundant biological polysaccharide in nature after cellulose14. It is widely distributed in fungi, sponges, nematodes, mollusks, arthropods, fishes, amphibians and some algae2–5. In insects, chitin has been verified as a crucial structural constituent of the cuticle, alimentary canal, tracheal system, genital ducts, and ducts of various dermal glands6, and plays a major role in maintaining body shape and protecting from external mechanical disruption7,8. To allow growth and development, insects must periodically digest their old cuticle and produce a new and looser one during molting1. Chitin synthase (CHS; EC 2.4.1.16) is a vital enzyme involved in the final step of the chitin synthesis pathway. CHS is a highly conserved enzyme found in all chitin-containing organisms9,10. Insect CHSs are large transmembrane proteins that belong to family 2 glycosyltransferases2. To date, CHSs have been cloned and sequenced in various insect species from different orders, including Coleoptera11,12.
Lepidoptera13–15, Orthoptera16,17, Hemiptera10,18–20, and Diptera21–23. On the basis of their sequence similarity, distribution, and physiological functions, insect chitin synthases are categorized into two types: CHS1 and CHS224. CHS1 is primarily responsible for the formation of chitin utilized in the cuticle and tracheae, as well as in the linings of the foregut and hindgut, whereas CHS2 is dedicated to chitin synthesis in the peritrophic membrane (PM) of the midgut25. However, some reports have pointed out that hemipteran insects such as Aphis glycines, Rhodnius prolixus and Nilaparvata lugens lack PM. Instead, these insects have the perimicrovillar membrane (PMM), a similar structure to PM that covers the microvilli of midgut. This structure is important for digesting and protecting against attacks from microorganisms10,19,26,27. Additionally, it has also been reported that insect CHS1 contains alternative exons which results in the production of two alternative splicing variants, CHS1a and CHS1b. These results have indicated that CHS1 genes are essential for survival, ecdysis, fecundity, and egg hatching. Moreover, in D. melanogaster, histological analysis of the CHS-1 gene (also called krotzkofig verkehr) indicated that chitin formation and differentiation are crucial for procuticle integrity and for attachment of cuticle to the epidermal cells25. To sum up, chitin biosynthesis is pivotal for insect growth and development, and the CHS enzymes participating in chitin biosynthesis are promising targets for the design of novel strategies for the control of insect pests.

In this study, we cloned and characterized a full-length cDNA encoding chitin synthase 1 (\textit{SfCHS1}) from \textit{S. furcifera}, identified two alternative splicing variants (\textit{SfCHS1a} and \textit{SfCHS1b}) of \textit{SfCHS1}, and analyzed the expression patterns of \textit{SfCHS1} and the two alternative variants at different developmental stages and in different tissues. Moreover, we demonstrate that dsRNA-mediated gene-specific silencing resulted in a strong reduction in the transcript levels of the target genes and insect survival rates. We also describe lethal phenotypes of \textit{S. furcifera} induced by target gene silencing.

Results

Identification and characterization of \textit{SfCHS1}. The full-length cDNA sequence of \textit{SfCHS1} was obtained by multiple PCR amplifications and RACE. The full-length nucleotide and deduced amino acid sequences of \textit{SfCHS1} are shown in Fig. 1. The complete cDNA sequence of \textit{SfCHS1} is 6,408 bp in size. The ORF of \textit{SfCHS1} is 4,719 bp long and encodes a protein of 1,572 amino acid residues with a predicted molecular weight of 180.6 kDa and a pI of 6.72. The \textit{SfCHS1} cDNA includes a 5′ non-coding region of 283 bp and a 3′ non-coding region of 1,406 bp.

On the basis of the deduced amino acid sequence, 16 transmembrane helices (TMHs) were predicted using the TMHMM Server v.2.0, suggesting that \textit{SfCHS1} is a membrane-associated protein. Similar to other known insect CHS proteins, \textit{SfCHS1} has an N-terminal domain (domain A) containing nine TMHs; a central domain (domain B) that contains two signature motifs, EDR (852–854) and QRRRW (889–893), and two other motifs that are highly conserved in insect chitin synthases, CATMWHET (579–586) and QMFEY (790–794); and a C-terminal domain (domain C) that contains seven TMHs and another signature motif SWGTR (1071–1075) that may play a role in chitin translocation42. Using the 3DLigandSite Server43, a ligand-binding site was identified by target gene silencing.

Comparative analysis of alternative splicing exons of \textit{SfCHS1}. Analysis of the \textit{SfCHS1} cDNA sequence revealed two alternative splicing variants, named \textit{SfCHS1a} and \textit{SfCHS1b} (deposited in GenBank with accession numbers KY350143 and KY350144). The alternative exons are found in the same region (4115–4291) of the \textit{SfCHS1} cDNA (Fig. 1), and have 177 nucleotides that encode 59 amino acid residues (Fig. 2). Alignment of the deduced amino acid sequences indicated that the identity between \textit{SfCHS1a} and \textit{SfCHS1b} is 74.6%. Each exon codes for a highly conserved transmembrane helix, and the flanking sequences consist of an intracellular and an extracellular domain, respectively24,44.

Sequence alignment and phylogenetic analysis. Multiple sequence alignment of CHS1 proteins indicated a high degree of amino acid sequence homology among different insect species. For instance, the \textit{SfCHS1} protein shows 98% and 97% identity with that from the hemipteran L. striatellus (LaCHS1, AFC61179) and \textit{N. lugens} (NICH1S, AFC61181), respectively. It also shares identities of 81%, 73%, 71%, and 70% with the chitin...
Figure 1. Full-length nucleotide and deduced amino acid sequences of $SfCHS1a$ cDNA from S. furcifera (KY350143). The start codon (ATG) is highlighted in bold and the stop codon (TGA) in bold with asterisk. The 16 transmembrane helix regions predicted by TMHMM Server v2.0 are indicated in gray. The ligand-binding site predicted by 3DLigandSite is boxed, and the putative catalytic domain is highlighted in yellow. The six putative N-glycosylation sites predicted by NetNGlyc 1.0 Server are underlined in red. The chitin synthase signature motifs are highlighted in bold italic with a dotted line. Predicted coiled-coil regions are indicated by a green background. The primers of $SfCHS1$ for qPCR analysis are indicated by a black background, and the primers for dsRNA synthesis are highlighted in pink.
synthases of Anasa tristis (AtCHS1, AFM38193), A. glycines (AgCHS1, AFJ00066), Cnaphalocrocis medinalis (CmCHS1, AJG44538), and T. castaneum (TcCHS1, NP_001034491), respectively.

On the basis of the amino acid sequences of known insect CHSs, a phylogenetic tree was constructed using MEGA 6.06 based on the neighbor-joining method. The result indicated that the CHS1 and CHS2 genes originated from one ancestral gene and are closely related, but they clearly grouped into two different phylogenetic branches (Fig. 3). The result is consistent with the findings of the previous studies1,2,19,26. Further, all hemipteran chitin synthases appeared to have a common ancestor in the lineage as indicated by the high bootstrap values (82~100), but they seemed to have lost the CHS2 gene during subsequent evolution. The chitin synthase from S. furcifera, SfCHS1, is clustered into the CHS1 family in the tree, and the identity of SfCHS1 to CHS1s was markedly
higher than identity to CHS2s from other insects (Fig. 3A). Moreover, the two splicing variants, SfCHS1a and SfCHS1b, grouped into two different phylogenetic classes (Fig. 3B).

Developmental- and tissue-specific expression of SfCHS1 and its two alternative splicing variants. qPCR was used to analyze the expression profiles of SfCHS1 and its two alternative splicing variants at different developmental stages (Fig. 4). The results revealed that SfCHS1 and its alternative variants were constitutively expressed in the 18 examined developmental stages. The relative expression levels of SfCHS1 were higher than identity to CHS2s from other insects (Fig. 3A). Moreover, the two splicing variants, SfCHS1a and SfCHS1b, grouped into two different phylogenetic classes (Fig. 3B).
higher just after each molting and reached a peak 1 day after eclosion. Specifically, the lowest expression levels for SfCHS1 were observed in third-day adults. For SfCHS1a, the expression patterns appeared to be similar to those of SfCHS1, but the relative transcript levels were lower in second-day adults. In contrast, SfCHS1b showed a different expression pattern to SfCHS1 and/or SfCHS1a, with the highest expression level being recorded 2 days after each molt.

To investigate where SfCHS1 and its two alternative splicing variants are expressed, five different tissues from the integument, fat body, gut, ovary, and head were dissected for a tissue-specific expression experiment (Fig. 5). The results showed that SfCHS1 was mainly expressed in the integument, and that its expression was 75-, 11-, 42-, and 5-fold higher in the integument, fat body, ovary, and head than in the gut, respectively. SfCHS1a was also predominantly expressed in the integument, whereas SfCHS1b was primarily expressed in the gut and fat body.

RNAi response induced by injection of dsRNA. To verify whether RNAi is able to decrease target gene expression, sequence-specific dsRNAs for SfCHS1, SfCHS1a, and SfCHS1b were prepared in vitro and injected into first-day fifth-instar nymphs. Thereafter, qPCR was performed using total RNA isolated from dsRNA-injected insects as templates. The qPCR analysis indicated that the transcript levels of the target genes were markedly down-regulated at 72 h after dsRNA injection when compared with those of dsGFP-injected control insects (Fig. 6). More specifically, the expression of SfCHS1 was reduced by approximately 79% in the dsSfCHS1-injected nymphs. After RNAi of the SfCHS1a gene, there was no decrease in the level of SfCHS1b mRNA, even though...
SfCHS1a expression showed a 67% decrease. Similarly, after RNAi of SfCHS1b, the transcript level of SfCHS1b was reduced by approximately 64%, whereas SfCHS1a expression did not appear to be affected. Consequently, we assumed the dsRNA-mediated silencing to be gene specific.

After successful silencing of SfCHS1 and the two alternative splicing variants, mortality rates and lethal phenotypes of injected insects were recorded. It was clearly apparent that nymphs injected with 100 ng/head SfCHS1 dsRNA could not shed their old cuticle, and were trapped within the exuviae, leading to 100% mortality (Fig. 7).

Following SfCHS1a dsRNA injection, 42% of individuals died before reaching the adult stage. Nevertheless, 49% of individuals died after eclosion, among which 36% of nymphs were able to molt to become adults but exhibited a notably abnormal phenotype. Moreover, 13% failed to shed their appendages and eventually died (Fig. 7).

Following SfCHS1b dsRNA injection, only 15% of nymphs died before eclosion, whereas 85% of individuals successfully underwent molting to become adults. In contrast, 92% of individuals in the dsGFP-injected control group survived and had a normal phenotype (Fig. 7).

The fifth-instar nymphs of S. furcifera subjected to RNAi for the SfCHS1 gene displayed several distinct phenotypes. When injected with dsRNA of SfCHS1, three abnormal phenotypes were observed, and the insects eventually died: shrunken abdomen that was smaller than that of normal nymphs (I); the old cuticle only slightly split open on the head and thorax (II); and the old cuticle cracked to a certain level but the whole insect body was still encased (III) (Fig. 8). After injection with SfCHS1a dsRNA, three typical lethal phenotypes were present, which included: nymphs partially shed their old cuticle but the old cuticle could not be completely detached from the body, particularly from the tail (IV); nymphs were able to molt and become adults, but the adults were unable to extricate their appendages (V); and nymphs molted successfully but the new cuticle was crimped and the wings were malformed (VI) (Fig. 8). However, we found no obvious differences in visible phenotypes between individuals in the dsSfCHS1b- and dsGFP-injected groups (Fig. 8).
CHS1 of chitin. Similar phenomena have also been observed for the transcript patterns of N inter-molting phase and then increased again before the next molt, which may be associated with the requirement SfCHS1 peaked after molting, declined during each ically repeated at each molting cycle. The transcript level of CHS from the hemipteran insects, it was demonstrated that these species seem to lost one of the two CHS genes during evolution, and only one CHS gene exists18–20. This result is probably associated with the fact that Hemiptera insects lack the PM56. Our result also indicated that the SfCHS1 cDNA sequence is 6,408 bp in length and encodes a protein with a predicted pl of 6.72. The slightly acidic pl is conducive to its function in the cuticle. Similar to the CHS1 protein of other insects, SfCHS1 was predicted to be a 180.6-kDa membrane protein that contains 16 TMHs. The distribution and conserved number of these transmembrane segments in SfCHS1 allow the central catalytic domain (domain B) to face the cytoplasm, where the UDP-N-acetylglucosamine (UDP-GlcNAc) substrate is accessible. Its catalytic domain contains the highly conserved chitin synthase signature motifs CATMWHET, QMFY, EDR, and QRRRW, which have been implicated to be essential for the catalytic mechanism1,46,47. Among the 16 TMHs, five are located immediately adjacent to the catalytic domain, forming a topological feature named the five-transmembrane span (5-TMS) region. This topology is found in all insect chitin synthases18,19,23,24,46. Consistent with other insect CHS1 proteins, SfCHS1 was predicted to include a conserved coiled-coil region immediately following the 5-TMS region, which is orientated toward the extracellular space and is a potential region for protein–protein oligomerization, or functions as a signal for vesicular trafficking19,25,47–49.

Alternative splicing plays a vital role in regulating gene function by expanding the diversity of expressed mRNA transcripts46. Many previous studies have demonstrated that alternative splicing appears to occur in the CHS gene1,18,25. In the present study, we also detected the presence of two alternative splicing exons of 177 bp in SfCHS1. However, it is surprising that no alternative exons have been identified in the genome of the hemipteran insect A. glycines18. A similar absence of alternative exons has also been reported in the hemipteran Toxoptera citricidus20 and thus it appears that alternative exons of the CHS1 gene are present in S. furcifera but are absent in aphids. The relationship between the production and evolution of alternative splicing thus requires further investigation.

In the present study, we performed qPCR expression analysis of SfCHS1 and its two alternative exons at different developmental stages in S. furcifera. Our results indicated that the expression of SfCHS1 was period- ically repeated at each molting cycle. The transcript level of SfCHS1 peaked after molting, declined during each inter-molting phase and then increased again before the next molt, which may be associated with the requirement of chitin. Similar phenomena have also been observed for the transcript patterns of CHS1 in N. lugens18, M. sexta41, T. castaneum46 and Ostrinia furnacalis14. Indeed, previous studies have shown that CHS1 is essential for eggshell formation and egg hatching in T. castaneum46, and that CHS1a mRNA expression plays a vital role in chitin synthesis of the serosal cuticle in Aedes aegypti46. In the current study, we also observed a relatively high expression of SfCHS1 in S. furcifera eggs. These results indicate that constitutive expression of SfCHS1 might be necessary in S. furcifera. Furthermore, the developmental expression patterns of SfCHS1a were similar to those of SfCHS1, but differed from those of SfCHS1b. Similar results were obtained by Wang et al.19 in N. lugens and Yang et al.21 in B. dorsalis. These results accordingly indicate that SfCHS1a and SfCHS1b probably play different roles in the biosynthesis of chitin during insect growth and development.

Further, the expression profiles of SfCHS1 and its two alternative exons were also investigated in various tis- sues. The results showed that SfCHS1 was predominately expressed in the integument, and ovary, with the highest levels of expression being observed in the integument. This is consistent with the fact that CHS1 is responsible for chitin biosynthesis in the epidermis. However, SfCHS1 was expressed at very low levels in the gut. Although the hemipteran insects lack PM, chitin was also detected in the lining of the gut of Myzus persicae51. The trace amounts of SfCHS1 transcripts in the gut might be responsible for the chitin-containing structures. Additionally, the observed low expression of SfCHS1 mRNA in the gut might be alternatively explained by the fact that the tracheae are tightly integrated into gut tissues and thus it is very difficult to completely remove these from the gut due to small size of the body52. The weaker expression of CHS1 in the gut was also detected in L. migratoria16, N. lugens24 and Platella xylostella53 and these were believed to be due to contamination from the tracheal tissues.

Figure 8. Representative phenotypes of *S. furcifera* after injection of SfCHS1, SfCHS1a and SfCHS1b dsRNA.

Table 1. Percentage of Phenotypes after dsGFP, dsCHS1, dsCHS1a and dsCHS1b dsRNA injection into S. furcifera larvae.

Phenotypes	dsGFP	dsCHS1	dsCHS1a	dsCHS1b				
Normal phenotype	I	II	III	IV	V	VI		
Rate (%)	92%	18%	46%	36%	42%	13%	36%	85%

Discussion
Chitin synthases play important roles in chitin biosynthesis during insect growth and development. It is known that most insects usually possess both CHS1 and CHS2. CHS1 is primarily expressed in the exoskeleton structures and is crucial for the synthesis of chitin required for the cuticle and tracheae, whereas CHS2 is expressed in midgut epithelial cells for production of chitin in the PM25. In this study, we obtained the full-length cDNA encoding chitin synthase from the hemipteran S. furcifera. Alignment and phylogenetic analysis indicated that CHS from *S. furcifera* belongs to the CHS1 group. By searching of the genomes and transcriptomes of the hemip- teran insects, it was demonstrated that these species seem to lost one of the two CHS genes during evolution, and only one CHS gene exists18–20. This result is probably associated with the fact that Hemiptera insects lack the PM56. Our result also indicated that the SfCHS1 cDNA sequence is 6,408 bp in length and encodes a protein with a predicted pl of 6.72. The slightly acidic pl is conducive to its function in the cuticle. Similar to the CHS1 protein of other insects, SfCHS1 was predicted to be a 180.6-kDa membrane protein that contains 16 TMHs. The distribution and conserved number of these transmembrane segments in SfCHS1 allow the central catalytic domain (domain B) to face the cytoplasm, where the UDP-N-acetylglucosamine (UDP-GlcNAc) substrate is accessible. Its catalytic domain contains the highly conserved chitin synthase signature motifs CATMWHET, QMFY, EDR, and QRRRW, which have been implicated to be essential for the catalytic mechanism1,46,47. Among the 16 TMHs, five are located immediately adjacent to the catalytic domain, forming a topological feature named the five-transmembrane span (5-TMS) region. This topology is found in all insect chitin synthases18,19,23,24,46. Consistent with other insect CHS1 proteins, SfCHS1 was predicted to include a conserved coiled-coil region immediately following the 5-TMS region, which is orientated toward the extracellular space and is a potential region for protein–protein oligomerization, or functions as a signal for vesicular trafficking19,25,47–49.

Alternative splicing plays a vital role in regulating gene function by expanding the diversity of expressed mRNA transcripts46. Many previous studies have demonstrated that alternative splicing appears to occur in the CHS gene1,18,25. In the present study, we also detected the presence of two alternative splicing exons of 177 bp in SfCHS1. However, it is surprising that no alternative exons have been identified in the genome of the hemipteran insect A. glycines18. A similar absence of alternative exons has also been reported in the hemipteran Toxoptera citricidus20 and thus it appears that alternative exons of the CHS1 gene are present in *S. furcifera* but are absent in aphids. The relationship between the production and evolution of alternative splicing thus requires further investigation.

In the present study, we performed qPCR expression analysis of SfCHS1 and its two alternative exons at different developmental stages in *S. furcifera*. Our results indicated that the expression of SfCHS1 was period- ically repeated at each molting cycle. The transcript level of SfCHS1 peaked after molting, declined during each inter-molting phase and then increased again before the next molt, which may be associated with the requirement of chitin. Similar phenomena have also been observed for the transcript patterns of CHS1 in *N. lugens*18, *M. sexta*41, *T. castaneum*46 and *Ostrinia furnacalis*14. Indeed, previous studies have shown that CHS1 is essential for eggshell formation and egg hatching in *T. castaneum*46, and that CHS1a mRNA expression plays a vital role in chitin synthesis of the serosal cuticle in *Aedes aegypti*46. In the current study, we also observed a relatively high expression of SfCHS1 in *S. furcifera* eggs. These results indicate that constitutive expression of SfCHS1 might be necessary in *S. furcifera*. Furthermore, the developmental expression patterns of SfCHS1a were similar to those of SfCHS1, but differed from those of SfCHS1b. Similar results were obtained by Wang et al.19 in *N. lugens* and Yang et al.21 in *B. dorsalis*. These results accordingly indicate that SfCHS1a and SfCHS1b probably play different roles in the biosynthesis of chitin during insect growth and development.

Further, the expression profiles of SfCHS1 and its two alternative exons were also investigated in various tis- sues. The results showed that SfCHS1 was predominately expressed in the integument, and ovary, with the highest levels of expression being observed in the integument. This is consistent with the fact that CHS1 is responsible for chitin biosynthesis in the epidermis. However, SfCHS1 was expressed at very low levels in the gut. Although the hemipteran insects lack PM, chitin was also detected in the lining of the gut of *Myzus persicae*51. The trace amounts of SfCHS1 transcripts in the gut might be responsible for the chitin-containing structures. Additionally, the observed low expression of SfCHS1 mRNA in the gut might be alternatively explained by the fact that the tracheae are tightly integrated into gut tissues and thus it is very difficult to completely remove these from the gut due to small size of the body52. The weaker expression of CHS1 in the gut was also detected in *L. migratoria*16, *N. lugens*24 and *Platella xylostella*53 and these were believed to be due to contamination from the tracheal tissues.
Also, we had detected a relatively high level of expression in the ovary. Similar results have been observed in *Mytilus separatus*[^58], where *MsCHS1* was highly expressed in the ovary. A previous study using the fluoroescenently labeled lectin technique had also documented that chitin was present in A. aegypti ovaries as well as in the eggs and egg shells[^59], suggesting the importance of *CHS1* gene in insect reproduction. A low expression of *SfCHS1* in *S. furcifera* head was also observed. Similar results have also been observed in *P. xyllostella*[^60] and *Bombyx mori*[^61], where the *CHS1* gene was expressed in their head. Expression of *CHS1* is known to be integument-specific. Therefore, we speculated that expression in the head was probably due to the *CHS1* gene in the epidermis of the head. Moreover, we noted that the expression patterns of *SfCHS1a* were similar to those of *SfCHS1*, with the highest levels in the integument, whereas an exceedingly high expression of *SfCHS1b* was detected in the gut and fat body. However, a previous study on *Anopheles gambiae* has shown that *AgCHS1a* and *AgCHS1b* share the same transcript patterns and are expressed at considerable levels in the carcass (ie the insect body after its digestive canal is removed)^56. Future work will be needed to address how *CHS1a* and *CHS1b* are involved in the physiological function of the various tissues in different insect species.

Gene silencing through dsRNA feeding and dsRNA injection has been successfully used for studying the functions of essential genes in hemipteran insects[^10,19,20,29,37-40]. In the present study, to ascertain the functional diversity among *SfCHS1* and its two transcript variants, specific dsRNAs targeting *SfCHS1a*, *SfCHS1b*, and *SfCHS1b* were synthesized and injected into fifth-instar nymphs. When fifth-instar nymphs on day 1 were injected with *SfCHS1a* dsRNA, qPCR result showed that RNAi of *SfCHS1* strongly suppressed the expression of *SfCHS1*, thus new cuticle could not form normally due to the reduction of chitin. This result was supported by a similar study from *T. castaneum*.[^62] In this species, TcCHS1-specific RNAi reduced the cutin content of whole larvae. Indeed, the morphological observation indicated that all treated planthoppers were unable to shed their old cuticle and died before reaching the adult stage. Such altered phenotypes are similar to those of *B. dorsalis[^23]*, *Leptinotarsa decemlineata[^31]* and *L. migratoria[^24]* whose *CHS1* and/or UDP-N-acetylglucosamine pyrophosphorylases (UAP), two important components in chitin biosynthesis pathway, were silenced by RNAi. Further, in *L. migratoria*, knockdown of LmUAP1 or LmCHS1 led to synthesize the very thin new cuticle during their molting[^42]. These results suggest once again that UAPs and CHSs play crucial role during insect ecdisis and metamorphosis.

When *CHS1a* and *CHS1b* dsRNA of the two alternative variants was injected into fifth-instar nymphs, respectively, qPCR showed no cross-silencing between *SfCHS1a* and *SfCHS1b*. *SfCHS1a* dsRNA-mediated silencing affected the growth and development of treated insects, leading to lethal phenotypes. In contrast, dsRNA-mediated silencing of *SfCHS1b* caused no obviously phenotypic defects, although the mortality was slightly increased compared with the dsGFP-injected control group. Our result suggested that *SfCHS1a* was essential for insect molting and metamorphosis. Similar results have been observed in *N. lugens[^39]* and *B. dorsalis[^23]*, in which silencing of *SfCHS1a* expression by in vivo RNAi caused phenotypic defects in molting and resulted in mortality of the injected insects, whereas nymphs also injected with *CHS1b* dsRNA exhibited a normal phenotype. However, in *L. migratoria*, nymphs injected with *CHS1b* dsRNA exhibited a crimped cuticle phenotype, resulting in over 50% mortality[^36]. These results indicate that there is considerable variation in the efficiency of RNAi-mediated silencing of *CHS1b* in various insect orders.

S. furcifera is an important insect pests on rice in some Asia-Pacific countries. In recent years, destructive outbreaks of *S. furcifera* have been increasing in China, causing severe losses in rice yield. At present, control of planthoppers still relies upon spraying chemical insecticides. However, considering the adverse impact of insecticides on the ecological environment and on human health, new pest management strategies urgently need to be developed. A previous study demonstrated that feeding with the *trehalose phosphate synthase* (*TPS*) dsRNA in *N. lugens* led to reduction levels of *TPS* mRNA and disturbed the development of nymphs, suggesting that administering dsRNA corresponding to important genes by oral delivery may be a means for the control of phloem-sucking insects[^40]. In another study, when *N. lugens* nymphs were fed on the transgenic rice plants expressing dsRNAs of the hexose transporter gene, the carboxypeptidase gene and the trypsin-like serine protease gene, levels of expression of the target genes in the midgut were suppressed; nevertheless, lethal phenotypic effects after dsRNA feeding were not observed[^40], either because the amount of dsRNA-uptake by the insects was insufficient or because RNAi target genes were not sensitive in this species. Therefore, there is an urgent need to elucidate the physiological functions of vital candidate genes from different insect species. Overall, our results indicated that injecting dsRNA of *CHS1* into *S. furcifera* nymphs could lead to a significant mortality, suggesting that *SfCHS1* may be a candidate gene for use in *S. furcifera* control.

Conclusion

In conclusion, we successfully cloned and characterized two alternative splicing variants of the chitin synthase 1 gene (*SfCHS1*) from *S. furcifera*. Phylogenetic analysis demonstrated that these genes belong to the *CHS1* family gene. The genes were expressed at all developmental stages. Further, *SfCHS1* and *SfCHS1a* were mainly expressed in the integument, whereas *SfCHS1b* was predominately expressed in the gut and fat body. Our RNAi-based gene silencing inhibited the transcript levels of the corresponding variants, resulted in malformed phenotypes, and killed most of the treated nymphs. These results indicate that *SfCHS1* may be a potential target gene for RNAi-based *S. furcifera* control.

Materials and Methods

Insect rearing. The planthoppers used in the present study were originally collected from a rice paddy field in Huaxi District, Guiyang City, Guizhou Province, China. Insects were reared in the laboratory of Guizhou University on the susceptible rice variety Taichung Native-1 (TN1) under controlled conditions of temperature 25 ± 2°C, 70 ± 10% relative humidity (RH), and a 16 h:8 h (L:D) photoperiod. The developmental stages were synchronized at each egg incubation.

[^58]: M. separatus
[^59]: A. aegypti ovaries
[^60]: P. xyllostella
[^61]: B. mori
[^62]: T. castaneum
[^31]: L. decemlineata
[^24]: L. migratoria
The sequenced fragments were assembled using SeqMan software to obtain the full-length sequence of SfCHS1 cDNA. The nucleotide sequence was edited using DNAMAN 7.0 (Lynnon Biosoft, CA, USA). Homology searches were performed using the NCBI BLAST program (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The open reading frame (ORF) of SfCHS1 cDNA was identified using ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/). The ProtParam tool at ExPASy (https://www.expasy.org/) was used to compute the molecular weight and theoretical isoelectric point (pI) of the deduced protein sequence. N-glycosylation sites were analyzed using the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/), and the signal peptide was predicted using the SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/). The TMHMM v.2.0 program (http://www.cbs.dtu.dk/services/TMHMM/) was used to analyze the transmembrane helices. The putative coiled-coil regions were predicted using the Paircoil program.

Phylogenetic analysis of insect chitin synthases. Phylogenetic trees were constructed using MEGA 6.06 based on the neighbor-joining (NJ) method. Bootstrap analyses of 1000 replications were carried out. For Phylogenetic analysis, chitin synthases were included from Anasa tristis (At), Apis mellifera (Am), Laodelphax striatellus (Ls), Manduca sexta (Ms), Ostrinia furnacalis (Of), Phthorimaea operculella (Po), Plutella xylostella (Px), Spodoptera exigua (Se), Spodoptera frugiperda (Sf), Anopheles gambiae (Ag), Anopheles quadrinaculatus (Aq), Drosophila melanogaster (Dm), Drosophila simulans (Ds), Drosophila willistoni (Dw), Drosophila pseudoobscura (Dp), Drosophila erecta (Dr), Drosophila mojavensis (Dm), Drosophila yakuba (Dy), Drosophila virilis (Dv), Drosophila te VIDEO 1. Phylogenetic analysis of insect chitin synthases. Phylogenetic trees were constructed using MEGA 6.06 based on the neighbor-joining (NJ) method. Bootstrap analyses of 1000 replications were carried out. For Phylogenetic analysis, chitin synthases were included from Anasa tristis (At), Apis mellifera (Am), Laodelphax striatellus (Ls), Manduca sexta (Ms), Ostrinia furnacalis (Of), Phthorimaea operculella (Po), Plutella xylostella (Px), Spodoptera exigua (Se), Spodoptera frugiperda (Sf), Anopheles gambiae (Ag), Anopheles quadrinaculatus (Aq), Drosophila melanogaster (Dm), Drosophila simulans (Ds), Drosophila willistoni (Dw), Drosophila pseudoobscura (Dp), Drosophila erecta (Dr), Drosophila mojavensis (Dm), Drosophila yakuba (Dy), Drosophila virilis (Dv), Drosophila te
Experiments	Gene name	Primer name	Primer sequence (5'-3')	PCR product (bp)
qPCR analysis	SfCHS1	qCHS1-F	GATTGTCATTGGCTTCAGA	151
	qCHS1-R	GTAAGCTCTGCTGCCTAGC	156	
	qCHS1a-F	CTTGGAGTGTTGTTCTT	136	
	qCHS1a-R	TGGGTAACTCATCATAGGA	160	
	qCHS1b-F	GAGAAGGCGGAAATAGCA	103	
	qCHS1b-R	GCACGAAGACACGATTA	151	
18S RNA	q18S-F	CGGAAGATGTCACAGATTGAT	151	
	q18S-R	CAGCATGCTGATACCACATAC	150	
dsRNA synthesis	SfCHS1	dsCHS1-F	TAATAGACTCCTATAGGGCTGACGAAGCAAGACATTAC	491
	dsCHS1-R	TAATAGACTCCTATAGGGCCTATACGAGCCCTATATTAC	170	
	dsCHS1a-F	GAGAAGGCGAGAATAGCA	173	
	dsCHS1a-R	CTCTTGGGTAACTCATCATCATCA	160	
	dsCHS1b-F	TAATAGACTCCTATAGGGGAGAAGGCGAGAATAGCA	170	
	dsCHS1b-R	TAATAGACTCCTATAGGGTGACGTAACTGATATTG	151	
GFP	dsGFP-F	TAATAGACTCCTATAGGGAAAGGCGGAGGAGCTGTACC	707	
	dsGFP-R	TAATAGACTCCTATAGGGCAGCAGGAGCATGTGATCGCG	170	

Table 2. Primers used for qPCR analysis and dsRNA synthesis of SfCHS1 and its two alternative splicing variants.

Developmental- and tissue-specific expression of SfCHS1 and its two alternative splicing variants. S. furcifera at stages ranging from eggs to adults were sampled to determine the developmental stage expression profiles by quantitative real-time PCR (qPCR). Five different tissue samples from the integument, fat body, gut, ovary, and head were dissected from first-day fifth-instar nymphs and third-day adults to examine tissue-specific expression. Three biological replications were performed for each sample. Total RNA was isolated from the whole body of nymphs and adults at each stage from the different tissues using an HP Total RNA Kit (with gDNA removal columns; Omega bio-tek, Norcross, GA, USA). An AMV RT reagent Kit (Sangon Biotech) with an oligo-dT primer was used to synthesize first-strand cDNA. The most unique nucleotide regions of SfCHS1, SfCHS1a, and SfCHS1b were selected for expression analysis (the selected regions are shown in Figs 1 and 2), and the primers used for qPCR are listed in Table 2. The qPCR was performed in a CFX-96 real-time qPCR system (Bio-Rad, Hercules, CA, USA) with 20 μL reaction systems containing 10 μL FastStart Essential DNA Green Master (Roche Diagnostics, Shanghai, China), 1 μL cDNA (0.8 ng/μL), 1 μL (10 mM) of each primer, and 7 μL RNase-free water. Amplification conditions were as follows: an initial denaturation of 95 °C for 10 min and then 40 cycles of 95 °C for 15 s and 55 °C for 30 s. After the reaction, a melting-curve analysis from 65 to 95 °C was performed to confirm the specificity of the PCR. The data were normalized to the stable reference gene 18S ribosome RNA (GenBank accession no. HM017250) based on our previous evaluations.

Functional analysis of SfCHS1 and its two alternative splicing variants using RNAi. To further investigate the biological functions of SfCHS1 and its two alternative splicing variants, SfCHS1a and SfCHS1b, RNAi was carried out by injecting S. furcifera nymphs with sequence-specific dsRNA. The most unique nucleotide regions of SfCHS1, SfCHS1a, and SfCHS1b were selected for dsRNA synthesis (the synthesized regions are shown in Figs 1 and 2), and the primers added a T7 RNA polymerase promoter (Table 2) were used to synthesize dsRNA. Templates for in vitro transcription reactions were synthesized by PCR from the plasmid DNA of SfCHS1, SfCHS1a, and SfCHS1b using primers. The PCR products of SfCHS1, SfCHS1a, and SfCHS1b were subcloned and sequenced to determine the specificity. The expected fragments were then purified using an EasyPure® Quick Gel Extraction Kit (Transgen Biotech). The concentration of the purified products was determined using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific) and these products were then used for in vitro transcription reactions.
dsRNAs were synthesized using a MEGAscript® RNAi Kit (Ambion, Carlsbad, CA, USA) according to the user manual provided by the manufacturer. In vivo RNAi in S. furcifera nymphs was carried out as previously described19,70. First-day fifth-instar nymphs were anesthetized with carbon dioxide for approximately 30 s and subsequently used for microinjection. Each group included 50 nymphs and treatments were performed in triplicate. One hundred nanograms of dsRNA was injected into nymphs between the prothorax and mesothorax using a Nanoliter 2010 Injector (injection speed, 25 nL/s) (World Precision Instruments, FL, USA). Equivalent volumes of dsGFP were used for control injections. Injected nymphs were maintained on fresh rice under the conditions described above until eclosion, and thereafter phenotype and mortality were observed daily. Photographs were taken using a Keyence VH-Z20R stereoscopic microscope (Keyence, Osaka, Japan). Subsequent to injection, 10 nymphs were selected randomly from each replication for mRNA-level detection.

Statistical analysis. Statistical analysis of all data was performed using SPSS 13.0 software (IBM Inc., Chicago, IL, USA). Data values are represented as the mean ± SE of three replications. A one-way ANOVA and Duncan's multiple range test (P < 0.05) were used to calculate the relative expression of each sample. For RNAi experiments, significant differences in mRNA levels between each of the dsRNA-injected groups and the dsGFP group were analyzed using t-tests.

Data Availability

The data were deposited in GenBank with accession numbers KY350143 (SfCHS1a) and KY350144 (SfCHS1b).

References

1. Merzendorfer, H. & Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412 (2003).
2. Merzendorfer, H. Insect chitin synthases: a review. J. Comp. Physiol. B 176, 1–15 (2006).
3. Daimon, T. et al. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem. Mol. Biol. 33, 749–759 (2003).
4. Minamoto, T. et al. Saccharification of beta-chitin from squid pen by a fermentation method using recombinant chitinase-secreting Escherichia coli. Appl. Biochem. Biotechnol. 175, 3788–3799 (2015).
5. Yang, W. J., Fernandez, J. G., Sohn, J. J. & Ameniya, C. T. Chitin is endogenously produced in vertebrates. Curr. Biol. 25, 897–900 (2015).
6. Zhu, K. Y., Merzendorfer, H., Zhang, W. Q., Zhang, J. Z. & Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 61, 177–196 (2016).
7. Hegeduš, D., Erlanson, M., Gillott, C. & Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54, 285–302 (2009).
8. Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 40, 363–375 (2010).
9. Arakane, Y., Taira, T., Ohnuma, T. & Fukumizu, T. Chitin-related enzymes in agro-biosciences. Curr. Drug Targets 13, 442–470 (2012).
10. Alvaranga, E. S. L. et al. Chitin is a component of the Rhodnius prolixus midgut. Insect Biochem. Mol. Biol. 69, 61–70 (2016).
11. Shi, J. F., Mo, L. L., Chen, X., Guo, W. C. & Li, G. Q. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int. J. Biol. Sci. 12, 1319–1331 (2016).
12. Macedo, L. L. P. et al. Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. Biotechnol. Res. Innovat. 6, 1–15 (2017).
13. Ampasala, D. R. et al. An epidermis-specific chitin synthase cDNA in Coprisotneura fumiferana: cloning, characterization, developmental and hormonal-regulated expression. Arch. Insect Biochem. 76, 83–96 (2011).
14. Qu, M. B. & Yang, Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis - gene organization, expression pattern and physiological significance. Insect Biochem. Mol. Biol. 41, 923–931 (2011).
15. Zhuo, W. W. et al. Chitin synthase A: a novel epidermal development regulation gene in the larvae of Bombyx mori. Mol. Biol. Rep. 41, 4177–4186 (2014).
16. Zhang, J. Z. et al. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem. Mol. Biol. 40, 824–833 (2010).
17. Liu, X. J. et al. Characterization of a midgut-specific chitin synthase gene (LmChS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Insect Biochem. Mol. Biol. 42, 902–910 (2012).
18. Bansal, R., Miyan, M. A., Mittapalli, O. & Michel, A. P. Characterization of a chitin synthase encoding gene and its role in dihydrobenzonitrile resistance in soybean aphid, Aphis glycines. Int. J. Biol. Sci. 8, 1323–1334 (2012).
19. Wang, Y. et al. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Homoptera: Delphacidae). Insect Biochem. Mol. Biol. 42, 637–646 (2012).
20. Shang, F. et al. Identification, characterization and functional analysis of chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Mol. Biol. 25, 422–430 (2016).
21. Zhang, X., Zhang, J. Z., Park, Y. & Zhu, K. Y. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 42, 674–682 (2012).
22. Chen, L., Yang, W. J., Cong, L., Xu, K. K. & Wang, J. J. Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Int. J. Mol. Sci. 14, 17055–17072 (2013).
23. Yang, W. J., Xu, K. K., Cong, L. & Wang, J. J. Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, Bactrocera dorsalis. Int. J. Biol. Sci. 9, 331–342 (2013).
24. Merzendorfer, H. The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. Eur. J. Cell Biol. 90, 759–769 (2011).
25. Zimoch, L. & Merzendorfer, H. Immunolocalization of chitin synthase in the Tobacco hornworm. Cell Tissue Res. 308, 287–297 (2002).
26. Silva, C. P. et al. Occurrence of midgut perimicrovillar membranes in paraneoplastic insect orders with comments on their function and evolutionary significance. Arthropod Struct. Dev. 33, 139–148 (2004).
27. Albuquerque-Cunha, J. M. et al. Cytochemical characterization of microvillar and perimicrovillar membranes in the posterior midgut epithelium of Rhodnius prolixus. Arthropod Struct. Dev. 38, 31–44 (2009).
28. Shirk, P. D. et al. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths. Gene 574, 121–139 (2015).
29. Arakane, Y. et al. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol. Biol. 14, 453–463 (2005).

30. Arakane, Y., Specht, C. A., Kramer, K. J., Muthukrishnan, S. & Beeman, R. W. Chitin syntheses are required for survival, fecundity and egg hatch in the red flour beetle. Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 959–962 (2008).

31. Firmino, A. A. et al. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests. PLoS One 8, e85079 (2013).

32. Tian, H. G. et al. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4, e6225 (2009).

33. Moussian, B. et al. Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet. 11, e1004939 (2015).

34. Wang, Y., Zuber, R., Oehl, K., Norum, M. & Moussian, B. Report on Drosophila melanogaster larvae without functional tracheae. J. Zool. 296, 139–145 (2013).

35. Moussian, B., Schwarz, H., Bartoszewski, S. & Nüsslein-Volhard, C. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J. Morphol. 264, 117–130 (2005).

36. Hu, S. J. et al. Projecting distribution of the overwintering population of Sogatella furcifera (Hemiptera: Delphacidae), in Yunnan, China with analysis on key influencing climatic factors. J. Insect Sci. 15, 148 (2015).

37. Wang, Z., Zhou, C., Long, G. V., Yang, H. & Jin, D. C. Sublethal effects of buprofezin on the development, reproduction, and chitin synthase 1 gene (SCHS1) expression in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J. Asia-Pac. Entomol. 21, 585–591 (2018).

38. Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).

39. Chen, J. et al. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper. Nilaparvata lugens. Insect Mol. Biol. 19, 777–786 (2010).

40. Zha, W. J. et al. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6, e20504 (2011).

41. Zhu, Y. C. et al. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochem. Mol. Biol. 32, 1497–1506 (2002).

42. Cohen, E. Chitin synthesis and inhibition: a revisit. Trends Cell Biol. 19, 946–950 (2001).

43. Wass, M. N., Kelley, L. A. & Sternberg, M. J. E. 3D LigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, 469–473 (2010).

44. Rezende, G. L. et al. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev. Biol. 8, 82 (2008).

45. Tellam, R. L., Vuocolo, T., Johnson, S. E., Jarmey, J. & Pearson, R. D. Insect chitin synthase: cDNA sequence, gene organization and expression. Eur. J. Biochem. 267, 6025–6042 (2000).

46. Arakane, Y. et al. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon use in one of the genes during development. Insect Biochem. Mol. Biol. 34, 291–304 (2004).

47. Skelh, J. J. & Wiley, D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

48. Burkhard, P., Stießfeld, J. & Striekow, S. V. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82–88 (2001).

49. Melia, T. et al. Regulation of membrane fusion by the membrane-proximal coat of the T-SNARE during zipperping of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

50. Chen, X. F. et al. The class A chitin synthase gene of Spodoptera exigua: Molecular cloning and expression patterns. Insect Biochem. Mol. Biol. 37, 409–417 (2007).

51. Irving, P. & Fenton, B. Molecular and adaptive variation in aphid guts. Scott. Crop. Res. Inst. Annu. Rep. 1995, 154–155 (1996).

52. Hogenkamp, D. G. et al. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem. Mol. Biol. 35, 529–540 (2005).

53. Ashfaq, M., Sonoda, S. & Tsumuki, H. Developmental and tissue-specific expression of CHS1 from Platilia xylostella and its response to chlorhuzaron. Pestic. Biochem. Physiol. 89, 20–30 (2007).

54. Zhai, Y. et al. Identification and functional analysis of chitin synthase A in oriental armyworm. Mythimna separata. Proteomics 17, 1700165 (2017).

55. Moreira, M. F. et al. A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochem. Mol. Biol. 37, 1249–1261 (2007).

56. Zhang, X., Zhang, J. Z. & Zhu, K. Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 19, 683–693 (2010).

57. Jia, S., Wan, P. J., Zhou, L. T., Mu, L. L. & Li, G. Q. Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper, Sogatella furcifera. BMC Mol. Biol. 14, 19 (2013).

58. Zhao, L. N. et al. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Sci. Rep. UK. 6, 27841 (2016).

59. Chen, C., Yang, H., Tang, B., Yang, W. J. & Jin, D. C. Identification and functional analysis of chitinase 7 gene in the white-backed planthopper Sogatella furcifera. Comp. Biochem. Phys. B 208-209, 19–28 (2017).

60. Zhang, L. et al. Glycogen phosphorylase and glycogen synthase: gene cloning and expression analysis reveal their role in trehalose metabolism in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). J. Insect Sci. 17, 1–11 (2017).

61. Shi, J. E., Fu, J., Mu, L. L., Guo, W. C. & Li, G. Q. Two leptinotarsa uridine diphosphate N-acetylglucosamine pyrophosphorylases are specialized for chitin synthesis in larval epidermal cuticle and midgut peritrophic matrix. Insect Biochem. Mol. Biol. 68, 1-12 (2016).

62. Liu, X. et al. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria. Insect Sci. 25, 211–221 (2018).

63. Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides. Sci. Rep.-UK. 8, 8773 (2018).

64. Gasteiger, E. et al. Protein identification and analysis tools on the ExPaSy Server, (In)Walker, J. M. (Ed.): The proteomics protocols handbook, Humana Press, pp. 571–607 (2005).

65. Krogh, A., Larsson, B., Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

66. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations. Proc. Natl. Acad. Sci. 92, 8259–8263 (1995).

67. Tamura, K., Stecher, G., Peterson, D., Filipske, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

68. Yu, J. L., An, Z. F. & Liu, X. D. Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera. BMC Mol. Biol. 15, 20 (2014).

69. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

70. Liu, S., Ding, Z., Zhang, C., Yang, B. & Liu, Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 40, 666–671 (2010).
Acknowledgements
This study was funded by the Guizhou Excellent Graduate Program in Agricultural Insects and Pest Control (ZYRC [2013] 010), the National Natural Science Foundation of China (31560522), the Key Program of the Natural Science from Education Department of Guizhou Province, China (KY2014280), and the International Cooperation Base for Insect Evolutionary Biology and Pest Control (20165802).

Author Contributions
Z.W., H.Y. and D.C.J. conceived and designed the experiments. Z.W., C.Z. and G.Y.L. performed the experiments. Z.W. and W.J.Y. analyzed the data and wrote the paper. All authors have read and approved the manuscript for publication.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019