Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition

Daichi Inoue1,2,12, Jacob T. Polaski3,12, Justin Taylor4,12, Pau Castel5, Sisi Chen2, Susumu Kobayashi6, Simon J. Hogg2, Yasutaka Hayashi1, Jose Mario Bello Pineda3,7,8, Ettab El Marabti2, Caroline Erickson2, Katherine Knorr2, Miki Fukumoto1, Hiromi Yamazaki1, Atsushi Tanaka19, Chie Fukui1, Sydney X. Lu2, Benjamin H. Durham2, Bo Liu2, Eric Wang2, Sanjoy Mehta10, Daniel Zakheim10, Ralph Garippa10, Alex Penson2, Guo-Liang Chew11, Frank McCormick5, Robert K. Bradley3,7,13 and Omar Abdel-Wahab2,13

Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypthesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiensis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.

Myelodysplastic syndromes (MDS) are clonal blood disorders characterized by impaired hematopoiesis, risk of transformation to acute myeloid leukemia (AML) and a paucity of effective treatments. More than 50% of patients with MDS carry a mutation affecting an RNA splicing factor1–3. Additionally, splicing factor mutations are common to all forms of myeloid malignancies, including AML and myeloproliferative neoplasms. Splicing factor mutations in leukemia are concentrated in four genes (SF3B1, SRSF2, U2AF1 and ZRSR2). SF3B1, SRSF2 and U2AF1 are subject to heterozygous, change-of-function4–6 missense mutations affecting specific residues4–6. By contrast, the X chromosome-encoded ZRSR2 is enriched in nonsense and frameshift mutations in male patients, consistent with loss of function1–3. For example, across 2,302 sequentially sequenced patients with myeloid neoplasm, 100% of patients with myeloid neoplasm (40 of 40) and somatic mutations in ZRSR2 were male, and there were no females with ZRSR2 mutations ($P<0.00001$, Fisher’s exact test; Extended Data Fig. 1a,b). By contrast, 57% of patients with wild-type (WT) ZRSR2 and myeloid neoplasms were male (1,285 of 2,262 total patients). Moreover, ZRSR2 (also known as U2AF35-related protein (Urp1)) is the only protein of the four frequently mutated splicing factors that primarily functions in the minor spliceosome4–6. While most introns are spliced by the major spliceosome (‘U2-type introns’), a small subset (<1%) of introns have distinct splice sites and branch-points that are recognized by a separate ribonucleoprotein complex, the minor spliceosome10–12. Although minor (‘U12-type’) introns are present in only 700–800 genes in humans, their sequences and positions are highly evolutionarily conserved, more so than their U2-type counterparts11.

The unusually high conservation of minor introns across eukaryotes suggests that they play key regulatory roles11. In some cases, molecular roles were elucidated. For example, minor introns are less efficiently excised from pre-mRNA than are major introns. It was therefore postulated that minor introns serve as ‘molecular switches’ to regulate the expression of their host genes, in which the rate of removal of a single minor intron within a gene regulates expression of the entire host mRNA14,15. However, relatively few specific functional roles have been elucidated for the minor spliceosome in regulating biological phenotypes.

Results

Zrsr2 loss promotes hematopoietic stem cell self-renewal. Given the recurrent nature of ZRSR2 mutations in leukemias, we hypothesized that minor intron splicing might be particularly important in the hematopoietic system. The relative rarity and exquisite conservation of minor introns offered a unique opportunity to
simultaneously investigate splicing factor mutations in malignant hematopoietic stem cell (HSC) disorders as well as to identify potential tissue-specific roles of the minor spliceosome. We therefore set out to understand the role of loss-of-function mutations in ZRSR2 as observed in myeloid HSC disorders by generating a mouse model permitting time- and tissue-specific deletion of Zrsr2 (Extended Data Fig. 1c,d; also encoded on the X chromosome in mice). Conditional Cre-mediated excision of exon 4 of Zrsr2, in a manner that results in an early frameshift, efficiently downregulated Zrsr2 mRNA in long-term HSCs (LT-HSCs; lineage-negative CD150–CD48–c-Kit+Sca-1+ cells) and Zrsr2 protein in the spleen (Fig. 1a and Extended Data Fig. 1e–h). This was accomplished by the generation of Mxl1-Cre;Zrsr2floxed and Mxl1-Cre;Zrsr2−/− mice, as Mxl1-Cre is a well-established system allowing for conditional, time-controlled and efficient deletion of genes in postnatal hematopoietic cells13–15. Exon 4 was chosen for deletion because deletion of this exon causes a frameshift when skipped and this exon is present in all sequences coding for annotated Zrsr2 isoforms and is highly conserved across species.

Prior work from several animal models of global deletion of core minor spliceosome components (including Rnpc3 in zebrafish and mice25,26 and small nuclear (sn)RNA species in Drosophila melanogaster14–16) identified that the minor spliceosome is required for development and survival. However, tissue-specific deletion of a minor spliceosome component has not been performed. In contrast to the loss of viability that results from pan-tissue deletion of core minor spliceosome components Rnpc3 (refs. 14,15) and the U11 snRNA25, we found that hematopoietic-specific Zrsr2 deletion in 6-week-old male and female mice enhanced proliferation as well as clonogenic capacity of Zrsr2-null HSCs in vitro (Fig. 1b,c and Extended Data Fig. 2a,b).

We therefore evaluated the in vivo self-renewal capacity of Zrsr2-null HSCs by performing bone marrow (BM) competitive transplantation assays, in which Zrsr2 was deleted following stable reconstitution of hematopoiesis with equal numbers of CD45.2+ Zrsr2-floxed and CD45.1+ WT hematopoietic cells in CD45.1 recipient mice (Extended Data Fig. 2c); in these experiments, Zrsr2 was deleted in recipient mice 4 weeks following transplantation via polyinosinic-polycytidylic acid (pIpC) administration to recipients). These assays revealed strikingly enhanced self-renewal of Zrsr2-deficient male and female hematopoietic cells, both in primary and secondary transplantation (Fig. 1d; such an effect was not observed in females with heterozygous deletion of Zrsr2 (Extended Data Fig. 2d,e)). This was associated with increased numbers of Zrsr2-null mature B cells and myeloid cells in the blood (Extended Data Fig. 2f) as well as LT-HSCs and lineage-negative Sca-1–c-Kit+ (LSK) cells in the BM 16 weeks following primary and secondary transplantation (Fig. 1e and Extended Data Fig. 2g,h). Similar effects were observed in primary, non-transplanted Mxl1-Cre;Zrsr2-knockout (KO) mice, in which deletion of Zrsr2 increased numbers of LT- and short-term HSCs as well as downstream progenitor populations (Extended Data Fig. 3a; deletion was induced at 6 weeks of age). Interestingly, Zrsr2 deletion was also associated with increased total BM mononuclear cells as well as LT-HSCs in the active phase of the cell cycle and undergoing apoptosis (Fig. 1f and Extended Data Fig. 3b,c). Given that these phenotypes are key features of human MDS, we also performed detailed morphological assessments of hematopoietic tissues from primary Zrsr2-KO mice, which revealed modest morphologic evidence of dysplasia (Extended Data Fig. 3d,e). Overall, Mxl1-Cre;Zrsr2-KO mice had numerically hastened death compared to littermate controls, but this did not reach statistical significance, and there were no significant differences in blood counts based on genotype (Extended Data Fig. 3f,g). Other than increased numbers of mature B220+ cells in the blood and BM, numbers of B cell and T cell subsets in the BM, spleens and thymi of Zrsr2-KO mice were unaltered (Extended Data Fig. 3h–m).

The above data, revealing enhanced self-renewal of Zrsr2-null HSCs, stand in stark contrast to recent work evaluating the effects of hotspot mutations in SF3B1, SRSF2 and U2AF1, all of which revealed a perplexing impairment in self-renewal when these mutations were induced in mice using similar transplantation methods24,25. We therefore repeated the above competitive transplantation assays using 6-week-old Mxl1-Cre;SF3B1K70E/wt mice and Mxl1-Cre;Srsf2P95H/wt mice alongside Mxl1-Cre;Zrsr2−/− mice (Extended Data Fig. 4a). We additionally included Mxl1-Cre;Tet2fl/fl mice, given the well-described effects of Tet2 loss on increasing self-renewal and numbers of HSCs in this system14. Similar to the effects of Tet2 deletion, Zrsr2 loss again resulted in increased competitive advantage in vivo (Fig. 1g). This advantage was observed in the numbers and percentages of BM hematopoietic stem and progenitor cells (HSPCs) (Extended Data Fig. 4b–d). Moreover, the effect of Zrsr2 loss was strikingly distinct from the effects of inducing leukemia-associated mutations in Sf3b1 and Srsf2, which were associated with near-complete loss of hematopoiesis (Fig. 1g and Extended Data Fig. 4b). Interestingly, deletion of Zrsr2 in the context of mutant Sf3b1 rescued the impaired clonogenic capacity of Sf3b1K70E/wt hematopoietic precursor cells (Extended Data Fig. 4e,f). These data are quite distinct from prior reports of the lethal phenotype of combined Sf3b1K70E/wt and Srsf2P95H mutations20 and may explain the occasional co-occurrence of SF3B1 and ZRSR2 mutations in patients with myeloid neoplasm27.

Global impairment in minor retention with ZRSR2 loss. We next sought to understand the mechanistic basis by which ZRSR2 loss causes aberrant HSC self-renewal and MD. We performed high-coverage RNA-seq on BM samples from patients with MDS and diverse ZRSR2 mutations (n = 8) and patients with MDS lacking any spliceosomal gene mutation (n = 10) and quantified transcriptome-wide splicing patterns (Extended Data Fig. 5a and Supplementary Tables 1 and 2). ZRSR2-mutant samples were characterized by widespread, dysfunctional recognition of U12-type introns, with over one-third of U12-type introns exhibiting significantly increased retention (Fig. 2a,b). All ZRSR2-mutant samples exhibited U12-type intron retention, indicating that the diverse ZRSR2-mutant lesions represented in our cohort converge on loss of function (Extended Data Fig. 5b–d). Aberrant intron retention was specific to the minor spliceosome: we observed no transcriptome-wide association between ZRSR2 mutations and levels of U2-type intron retention (Extended Data Fig. 5e,f). We confirmed the robustness of our results by reanalyzing data from a published cohort of MDS samples (Extended Data Fig. 5g and Supplementary Table 3)1. ZRSR2-mutant samples in this cohort were similarly characterized by transcriptome-wide U12-type intron retention (Fig. 2c,d and Extended Data Fig. 5h). However, in contrast to our cohort, U2-type introns were also frequently retained in most ZRSR2-mutant samples (Extended Data Fig. 5i,j). As the two patient cohorts represented different ZRSR2 mutational spectra, exhibited both similarities and differences in their splicing programs and were orthogonally collected, we hypothesized that convergently mis-spliced genes might be particularly important for disease pathogenesis. We observed a striking overlap in aberrantly spliced genes such as ATG3, TRAIP and PARP1 exhibited striking retention of a single U12-type intron, with adjacent U2-type introns normally spliced (Fig. 2g and Extended Data Fig. 5k). In each case, the U12-type intron was specifically retained in ZRSR2-mutant...
MDS, but not in MDS without spliceosomal mutations, relative to normal BM in both cohorts (Fig. 2h and Extended Data Fig. 5l). To further evaluate the specificity of minor intron splicing across leukemia-associated spliceosomal gene mutations, we quantified the number of retained U12-type introns across patients with bona fide deleterious mutations in ZRSR2 versus known hotspot mutations.
mutations in SF3B1, SRSF2 and U2AF1 in the 427 patients with AML from the Beat AML study19. This analysis revealed a striking enrichment for U12-type intron retention in patients with mutated ZRSR2 but no such enrichment for patients with SF3B1, SRSF2 or U2AF1 mutations (Fig. 2i). U12-type intron retention was generally associated with downregulated mRNA expression of U12-type intron-containing genes (Extended Data Fig. 5m).

Consistent with the effect of ZRSR2 mutations in MDS on splicing, hematopoietic precursors (lineage-negative c-Kit+ cells) from mice deficient for Zrsr2 exhibited global increases in U12-type intron retention without significant changes in U2-type splicing (Fig. 2a,j,k). RNA-seq analysis was performed 2 months following pLpC administration to 6-week-old Mxl-Cre;Zrsr2-/- and Mxl-Cre control mice). Moreover, a number of overlapping U12-type introns were similarly retained in the BM of Zsr2-ko mice but not in control mice, consistent with the high conservation of U12-type introns (Fig. 2a,l and Supplementary Table 4). These comparisons strongly suggest that U12-type intron retention is the central molecular phenotype of cells with ZRSR2 mutations and that U2-type intron retention is a sporadic occurrence that only characterizes a subset of cases of ZRSR2-mutant MDS.

Mapping direct RNA binding targets of ZRSR2. As the above data identify a strong functional link between ZRSR2 and minor introns, we next sought to understand the mechanistic basis for this relationship by identifying direct binding targets of ZRSR2 in RNA. We therefore performed anti-ZRSR2 eCLIP-seq28 (enhanced UV cross-linking immunoprecipitation followed by next-generation sequencing) in human myeloid leukemia (K562) cells (Extended Data Fig. 5n,o). This revealed that \~80% of ZRSR2-binding sites mapped to exons, with a highly significant enrichment for ZRSR2 binding to minor intron-containing genes, the minor introns of which were responsive versus unresponsive to ZRSR2 mutations (Fig. 3a,b and Extended Data Fig. 5p; \(P < 2.2 \times 10^{-16}\) with an odds ratio in the range (95% confidence interval) of 2.1–2.5). ZRSR2 binding was specifically enriched in minor introns, consistent with our analyses of the effects of ZRSR2 loss on minor intron retention (Fig. 3c). Finally, ZRSR2-bound mRNA was enriched for mRNA encoding RNA regulatory proteins as well as for that corresponding to genes with known involvement in leukemia and protein processing and translation (Fig. 3d). Overall, these analyses demonstrate that minor intron-containing genes with splicing regulated by ZRSR2 are direct binding targets of ZRSR2.

Both RNA-seq and eCLIP-seq analyses above identified that approximately only one-third of U12-type intron-containing genes are sensitive to loss of ZRSR2. To understand the specificity of ZRSR2 for regulating the splicing of minor introns and why only a portion of minor introns are regulated by ZRSR2, we next evaluated the sequence features of introns that were retained upon ZRSR2 loss.

Characteristics of ZRSR2-regulated introns. We previously reported that, while branchpoints within U2-type introns are highly constrained in their location, branchpoints within U12-type introns exhibit a bimodal distribution, such that half of U12-type introns have branchpoints similar in location to U2-type branchpoints, while half of U12-type branchpoints occur in closer proximity (within 20 nucleotides) to the 3′ splice site (3′ss)30 (Fig. 3e). To test whether this bimodality was relevant to ZRSR2 responsiveness, we augmented our previously published branchpoint annotation by querying available RNA-seq data from cohorts within the Cancer Genome Atlas (TCGA) to search for lariat-derived reads that span the 5′ splice site–branchpoint junction within minor introns. Such reads are extremely rare due to typically rapid lariat degradation (hence the need for an extremely large-scale analysis) but allow for inference of branchpoint location with nucleotide-level resolution. Using this large U12-type branchpoint annotation, we discovered that introns that responded to ZRSR2 loss had branchpoints that were significantly more proximal to the 3′ss than did unresponsive introns (two-sided Kolmogorov–Smirnov test, \(P < 2.2 \times 10^{-16}\); Fig. 3f). By contrast, unresponsive U12-type introns exhibited no such spatially restricted enrichment, suggesting that branchpoint location influences U12-type intron susceptibility to retention in the absence of ZRSR2 (ref. 31). We therefore examined the branchpoint more closely as a potential determinant of response to ZRSR2 loss. This revealed that ZRSR2-responsive introns preferred adenosine nucleotides as branchpoints (Fig. 3g; \(P = 1.5 \times 10^{-11}\) by two-sided binomial proportion test), had more branchpoints per intron than ZRSR2-unresponsive introns (Fig. 3h; \(P = 0.03\) by two-sided \(t\)-test) and had branchpoints that more closely matched the U12 snRNA consensus sequence (Fig. 3i; \(P = 5.2 \times 10^{-16}\) by Wilcoxon rank–sum test). ZRSR2-responsive minor introns additionally had less-defined polypyrimidine tracts and a reduced preference for G at the +1 position than unresponsive introns (Fig. 3j,k and Extended Data Fig. 5q). Overall, these data demonstrate that U12-type introns fall into two classes: those that are resistant to ZRSR2 loss and those that respond strongly to ZRSR2 loss. Responsive introns are typically characterized by a 3′ss-proximal, adenosine branchpoint that is surrounded by nucleotides that closely resemble the U12 snRNA consensus, as well as by having a weak or absent polypyrimidine tract.

Positive-enrichment screen of ZRSR2-regulated events. One major challenge with understanding how RNA splicing factor mutations cause disease is determining whether the observed phenotypes are causally linked to one or many aberrant splicing changes. Our transcriptomic analyses revealed that only a subset of

Fig. 2 | Widespread minor intron retention with ZRSR2 loss. **a**, Genome-wide quantification of differential splicing of U12-type introns from our patient cohort with key overlapping mis-spliced mRNA species in mouse hematopoietic precursors (green). Each point corresponds to a single intron and illustrates the percentage of mRNA in which the intron is spliced out. Blue or red dots indicate introns that exhibit significantly increased or decreased retention in ZRSR2-mutant versus -WT cells, defined as an absolute change in retention of \(\geq 10%\) or absolute log fold change of \(\geq 2\) with associated \(P \leq 0.05\). Green asterisks, minor introns differentially retained in both patients and mice; light green asterisks, minor introns in genes of particular interest (Parp1, Lztr1 and Atg3). **b**, P values were calculated by two-sided Mann–Whitney \(U\) tests without adjustment for multiple comparisons. **c**, Distribution of U12-type intron retention in ZRSR2-mutant samples (\(n = 8\) mutant and \(n = 10\) WT samples). Blue and red dashed lines, thresholds of \(-10%\) and \(10%\) for differential retention; gold line, median change in intron retention. **d**, As for **c** but for the Madan et al. cohort. **e**, As for **b** but for the Madan et al. cohort. **f**, As for **b** but for U2-type introns. **g**, RNA-seq coverage plots of U12-type intron retention but not U2-type intron retention in our patient cohort. Plots were averaged over all samples with the indicated genotypes. **h**, Box plots quantifying splicing efficiencies of introns illustrated in **g** relative to normal marrow (median of four normal samples from Madan et al.)18. **i**, P values were calculated by two-sided Mann–Whitney \(U\) tests. **j**, As for **c** but for the Madan et al. cohort. **k**, As for **c** but for U2-type introns. **l**, RNA-seq coverage plots of U12-type intron retention but not U2-type intron retention in our patient cohort. Plots were averaged over all samples with the indicated genotypes. **m**, Box plots quantifying splicing efficiencies of introns illustrated in **g** relative to normal marrow (median of four normal samples from Madan et al.)18. **n**, As for **c** but for the Madan et al. cohort.
minor spliceosome-dependent genes are recurrently and robustly mis-spliced, suggesting that not all U12-type introns are equally important for disease pathogenesis.

We therefore systematically evaluated the potential role of each U12-type intron retention event in cell transformation with a functional genomic screen. We mimicked the effects of nonsense-mediated
Fig. 3 | ZRSR2 RNA binding targets and features of ZRSR2-responsive introns. **a**, Genomic distribution of ZRSR2 eCLIP-seq peaks. **b**, Metaplot of ZRSR2 eCLIP sequencing reads at ZRSR2-regulated minor introns. **c**, Fisher’s exact test analysis evaluating the enrichment of ZRSR2 within responsive introns and each flanking exon by eCLIP-seq in genes with ZRSR2-responsive introns or those with ZRSR2 binding. **d**, Gene ontology analysis of ZRSR2-bound genes by eCLIP-seq. **e**, Histogram of the locations of branchpoints relative to the 3′ ss in U2- versus U12-type constitutive introns. **f**, Histogram of the locations of branchpoints relative to the 3′ ss for ZRSR2-unresponsive versus -responsive minor introns (P value was estimated by a two-sided Kolmogorov–Smirnov test). **g**, Branchpoint nucleotide preference for ZRSR2-unresponsive versus -responsive minor introns (P value was estimated with a two-sided binomial proportion test for a difference in the fraction of adenine branchpoints). **h**, Mean number of branchpoints within ZRSR2-unresponsive versus -responsive minor introns (P value was estimated by a two-sided t-test). Error bars represent ±1 s.e.m. (s.d. × (√n)−1). **i**, U12 snRNA binding energy for branchpoint motifs in ZRSR2-unresponsive versus -responsive minor introns (P value was estimated by a two-sided Mann–Whitney U test). **j**, Sequence logo plots of the 3′ ss of ZRSR2-responsive versus -unresponsive introns (upward arrow indicates site of the 3′ ss). As shown, ZRSR2-responsive introns have weaker or less-defined polypyrimidine tracts. **k**, G:A ratio at the +1 position (relative to the 3′ ss). Error bars represent ±1 s.d. estimated by bootstrapping (10,000 iterations). P value = 0 by two-sided Mann–Whitney U test.
Fig. 4 | Impaired LZTR1 minor intron excision confers competitive advantage. a, Schematic of a positive-enrichment custom CRISPR–Cas9 pooled lentiviral screen to identify functionally important ZRSR2-regulated minor intron splicing events. b, Venn diagram of genes targeted by sgRNA species in the screen in a across Ba/F3, 32D and TF-1 cells. Numbers of genes identified in the screen in each segment of the Venn diagram are displayed. c, Rank plot for the $-\log_{10}$ (false discovery rate (FDR)) associated with each sgRNA in the screen from a. sgRNA species targeting the positive control (Pten) and Lztr1 are highlighted. For the probe-level (per-sgRNA) analysis, we fitted a negative binomial generalized log-linear model and performed a likelihood-ratio test. False discovery rates were computed using the Benjamini–Hochberg method. d, Top, eCLIP-seq for FLAG immunoprecipitation (IP) from cells expressing FLAG empty vector or FLAG–ZRSR2 over the region of the minor intron of LZTR1. FPM, fragments per million mapped fragments. Biological duplicate immunoprecipitation data are overlaid. Bottom, RNA-seq coverage over the same locus in primary human MDS samples, with WT MDS data colored gray (top) and ZRSR2-mutant MDS data colored blue (bottom). e, RNA-seq coverage plots across the U12-type intron of LZTR1 for patients from Beat AML with the indicated genotypes. Each coverage plot represents an average across all samples with the indicated genotype, following normalization to the total number of reads mapped to the coding genes for each sample. PSI, fraction of spliced mRNA. f, Qualitative reverse transcriptase (RT)–PCR gel for LZTR1 minor intron excision (left) and LZTR1 protein levels (right) in representative samples from patients with MDS and WT or mutant ZRSR2 ($n=4$ distinct patient samples or genotypes for RT–PCR and $n=3$ distinct patient samples or genotypes for the western blot).
decay (NMD) caused by loss of minor intron splicing and subsequent open reading frame disruption in ZRSR2-mutant cells via CRISPR–Cas9-mediated gene KO. In this assay, the protein-coding region of each of the 601 genes, for which corresponding mRNA was identified as differentially spliced in ZRSR2-mutant MDS patient samples versus spliceosomal wild-type MDS patient samples.
and predicted to result in NMD (Supplementary Tables 2 and 3), was targeted by four single guide (sg)RNA species. This was performed as a positive-enrichment CRISPR screen using pools of lentiviral sgRNA species in cytokine-dependent mouse (32D, Ba/F3) and human (TF-1) hematopoietic cell lines stably expressing Cas9 (Fig. 4a and Supplementary Tables 5–9; similar to an approach we recently used to model mutant splicing factor (SF)3B1-induced aberrant splicing events23). Following stable infection with the sgRNA library, cytokines were depleted, and sgRNA representation was evaluated before and 7 d after cytokine removal.

This screen revealed several minor intron-containing genes, the downregulation of which conferred cytokine independence to one or more cell lines (Fig. 4b). Strikingly, only one gene was significantly enriched in all three cell lines (Fig. 4c), LZTR1, which encodes a cullin-3 adaptor regulating ubiquitin-mediated suppression of RAS-related GTPases24,25 and is subject to loss-of-function mutations in glioblastoma26, schwannomatosis27 and the RA Sopathy known as Noonan syndrome28 (of note, anti-PTEN sgRNA species were included here as a positive sgRNA control; although PTEN has a minor intron, its splicing did not consistently differ between ZRSR2-WT and -mutant cells). Inspection of transcriptomic data from primary patient samples confirmed the link between aberrant splicing of LZTR1 and MDS pathogenesis, as we identified retention of a U12-type intron in LZTR1 (intron 18) in samples harboring mutations in ZRSR2 (which was specific to ZRSR2-mutant MDS compared to BM samples from patients with WT ZRSR2 and MDS and unaffected individuals; Fig. 4d). Importantly, this same region is a direct binding target of ZRSR2, as revealed by eCLIP-seq in human myeloid leukemia cells (Fig. 4d). Moreover, this cis-splicing of LZTR1 was specific to patients with ZRSR2 mutations and AML versus those with other splicingosomal gene mutations (Fig. 4e). Consistent with intron retention causing NMD-inducing reading frame disruption, minor intron retention in LZTR1 correlated with reduced LZTR1 mRNA and LZTR1 protein levels in MDS and AML primary patient samples as well as in mouse hematopoietic precursors (Fig. 4f, Extended Data Fig. 6a–f and Supplementary Table 1). Moreover, blocking NMD by knockdown of UPF1, a core component of the NMD machinery or by pharmacologic inhibition of NMD in ZRSR2-KO cells increased the mRNA stability and expression of the minor intron-retained forms of LZTR1 and an additional ZRSR2-regulated intron in CHD4 (Extended Data Fig. 6g–j). These data formally confirm that these U12-type intron-containing isoforms are NMD substrates.

LZTR1 intron retention is transforming. Our functional screens revealed that LZTR1 KO was associated with a uniquely robust competitive advantage, but CRISPR-based gene KO is an imperfect model of LZTR1 loss due to impaired removal of its minor intron. To address this, we took advantage of a protospacer adjacent motif site deep within intron 18 of LZTR1, which is located adjacent to a highly conserved sequence matching the consensus motif for the minor intron branchpoint (Fig. 5a). Although recent work from our group identified that most introns use multiple branchpoints29, we analyzed intron lariat-derived reads from RNA-seq data and identified that this highly conserved sequence within intron 18 of LZTR1 contained only a single branchpoint nucleotide (Fig. 5b) located proximal to the 3’ss, consistent with our genomic analysis of minor introns that were vulnerable to ZRSR2 loss (Fig. 3e–f). To functionally evaluate the requirement for this putative branchpoint and the surrounding U12 consensus sequence for splicing of LZTR1, we generated a minigene of LZTR1’s minor intron and flanking exons from human cells and performed extensive mutagenesis reactions. This verified that LZTR1 is spliced less efficiently in ZRSR2-null cells than in WT cells and identified the conserved U12 intronic sequence as required for ZRSR2-dependent excision of the minor intron (Fig. 5c and Extended Data Fig. 6k–m).

Delivering sgRNA species targeting the intronic U12 consensus sequence of LZTR1 (which is ten nucleotides from the closest protein-coding region of LZTR1) induced robust LZTR1 intron 18 retention in polyclonal mouse and human cells (Fig. 5d). We therefore generated multiple clones of LZTR1 minor intron-mutant human K562 and Ba/F3 cells (Extended Data Fig. 6n,o) and compared the effects of impaired LZTR1 minor intron excision with deleterious mutations in the protein-coding sequence of LZTR1. This revealed that both direct disruption of the protein-coding sequence of LZTR1 and induction of minor intron retention virtually abolished LZTR1 protein expression, without generating a truncated LZTR1 protein product (Fig. 5e and Extended Data Fig. 6p). Similarly, inducing mutations within either the protein-coding region of LZTR1 or its minor intron resulted in dramatic accumulation of RAS proteins, including RIT1, a RAS GTPase recently identified as an endogenous substrate of LZTR1 (ref. 33), and its corresponding gene is known to undergo activating mutations in RASopathies and a variety of cancers34–36. Consistent with these convergent effects of protein-coding mutations and minor intron retention in LZTR1, both perturbations conferred cytokine independence to Ba/F3 cells.
as well as BCR–ABL inhibitor resistance to K562 cells (Fig. 5f,g; a phenotype originally used to identify LZTR1 as a regulator of mitogen-activated protein kinase signaling). In fact, mutagenesis of the exact branchpoint nucleotide within intron 18 of LZTR1 rendered K562 cells resistant to ATP-dependent or -independent ABL kinase inhibitors (imatinib or rebastinib, respectively (Fig. 5f and 25).
Extended Data Fig. 6q). Finally, we evaluated the impact of mutagenesis of Lztr1’s minor intron on the clonogenic capacity of mouse HSPCs. This was performed by generating HSC-specific conditional Cas9 knockin mice by crossing HSC-Scl-CreERT Zrsr2-WT or Zrsr2^{fl/fl} mice with Rosa26-Lox-STOP-Lox-Cas9-EGFP knockin mice. Infection of BM cells from these mice with sgRNA species targeting the conserved U12 sequence of Lztr1’s minor intron strongly promoted reaping capacity of Zrsr2-WT HSPCs but not that of Zrsr2-mutant HSPCs (Extended Data Fig. 7a,b). Conversely, restoring expression of LZTR1 in Zrsr2-KO HSPCs strongly impaired their reaping capacity as well as their self-renewal in vivo (which was not seen with expression of a version of LZTR1 lacking the major intron). Here, we uncover a heretofore unrecognized role of minor intron excision on clonogenic capacity. Of note, although RT1 was clearly upregulated upon LZTR1 downregulation, the effects of LZTR1 downregulation were not solely dependent on RT1 (Extended Data Fig. 7c,f). This latter point likely reflects the upregulation of multiple RAS proteins upon LZTR1 loss and underscores the need for future efforts to systematically identify LZTR1-regulated substrates in hematopoietic cells.

Impaired LZTR1 splicing in Noonan syndrome and cancer. Our finding that mutagenesis of deep intronic sequences within the minor intron of LZTR1 transformed cells, combined with the fact that LZTR1 is recurrently affected by protein-coding mutations in a variety of cancers^{13,14}, led us to search for aberrant LZTR1 minor intron excision beyond the context of ZRSR2 mutant MDS. We first studied cancer predisposition syndromes. Interestingly, in one reported family with autosomal recessive Noonan syndrome in which one child died of AML¹⁵, the mother and all four children carried an intronic mutation within the branchpoint-containing region that we identified within the minor intron of LZTR1 (⁵²2220–17C>A; Fig. 6a,b). This same sequence is also mutated in schwannomatosis¹⁶ (Fig. 6c). We established immortalized fibroblasts from each family member and unrelated controls and identified clear LZTR1 minor intron retention with consequently impaired LZTR1 protein expression and RT1 accumulation in individuals bearing the LZTR1 minor intron mutation (Fig. 6d and Extended Data Fig. 8a–d).

We next interrogated LZTR1 minor intron splicing across the diverse cancer types profiled by TCGA. The minor intron of LZTR1 was efficiently excised in all normal samples. However, a notable subset of tumors in almost all profiled cancer types exhibited significantly increased retention that was specific to the minor intron of LZTR1. The extent of LZTR1 intron retention varied between samples and across cancer types, with a total of 11.1% of all profiled cancer samples exhibiting LZTR1 minor intron retention exceeding that observed in any peritumoral control normal tissue (Fig. 6e). In some cases, this intron retention was comparable to that observed in ZRSR2-mutant MDS, even though ZRSR2 and other minor splicingom factors are not recurrently mutated in those cancers (Fig. 6f). Moreover, we performed systematic analysis of U12-type as well as U2-type intron retention across all alternative introns across cancers in TCGA datasets and evaluated the degree of LZTR1 U12-type intron retention in this context. This analysis revealed that the minor intron of LZTR1 is among the most frequently retained introns across cancer types (top 10% of retained minor introns across all cancers; Fig. 6g and Extended Data Fig. 9a).

Discussion

Since the discovery of a second, independent spliceosome in most metazoans over 20 years ago¹⁷, many questions regarding the role of minor introns in cellular physiology and disease have been enigmatic. Here, we uncover a heretofore unrecognized role of minor intron excision in regulating HSC self-renewal, a molecular link among ZRSR2 mutations and aberrant LZTR1 splicing and expression and frequent LZTR1 U12-type intron retention in diverse cancers and cancer predisposition syndromes.

Interestingly, the most common somatic mutation in LZTR1 reported to date affects a splice site¹⁸. Given the prevalence of LZTR1 deep intronic mutations in cancer predisposition syndromes, it is reasonable to hypothesize that the minor intron of LZTR1 may be similarly subject to somatic mutations not detected by whole-exome sequencing. Consistent with this concept, LZTR1 intron retention is not limited to the U12-type intron of LZTR1; several U2-type LZTR1 introns are also commonly retained in tumors relative to normal tissues (Extended Data Fig. 9b,c).

Overall, these analyses indicate that LZTR1 is frequently dysregulated via perturbed minor intron splicing, much more so than revealed by studying protein-coding mutations alone. Given our finding of frequent post-transcriptional disruption of LZTR1 in the absence of protein-coding mutations, our data motivate study of other cancer-associated minor intron-containing genes that may be dysregulated via similar and as-yet-undetected aberrant splicing.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41588-021-00828-9.

Received: 28 May 2020; Accepted: 24 February 2021; Published online: 12 April 2021

References

1. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. *Nature 478*, 64–69 (2011).
2. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. *Blood 122*, 3616–3627 (2013).
3. Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. *Leukemia 28*, 241–247 (2014).
4. Kim, E. et al. SR5F2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. *Cancer Cell 27*, 617–630 (2015).
5. Ilagan, J. O. et al. U2AF1 alterations alter splice site recognition in hematological malignancies. *Genome Res. 25*, 14–26 (2014).
6. Darman, R. B. et al. Cancer-associated S3F3I hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. *Cell Rep. 13*, 1033–1045 (2015).
7. Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. *Nat. Commun. 6*, 6042 (2015).
8. Guilt, C. M. et al. Aberrant splicing in mazie rough endoplasm reveals a conserved role for U12 splicing in eukaryotic multicellular development. *Proc. Natl Acad. Sci. USA 114*, E2195–E2204 (2017).
9. Tarn, W. Y. & Steitz, J. A. A novel spliceosome containing U11, U12, and U5 snRNPs excludes a minor class (AT–AC) intron in vitro. *Cell 84*, 801–811 (1996).
10. Hall, S. L. & Padgett, R. A. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. *J. Mol. Biol. 239*, 357–365 (1994).
11. Tarn, W. Y. & Steitz, J. A. Highly diverged U6atac snRNA required for splicing rare AT–AC introns. *Science 273*, 1824–1832 (1996).
12. Hall, S. L. & Padgett, R. A. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. *Science 271*, 1716–1718 (1996).
13. Burge, C. B., Padgett, R. A. & Sharp, P. A. Evolutionary fates and origins of U12-type introns. *Mol. Cell 2*, 773–785 (1998).
14. Patel, A. A., McCarthy, M. & Steitz, J. A. The splicing of U12-type introns can be a rate-limiting step in gene expression. *EMBO J. 21*, 3804–3815 (2002).
15. Younis, I. et al. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. *Cell 2*, e00780 (2013).
16. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. *Cancer Cell 20*, 11–24 (2011).
17. Challen, G. A. et al. Dnm3a is essential for hematopoietic stem cell differentiation. *Nat. Genet. 44*, 23–31 (2011).
18. Li, Q. et al. Hematopoiesis and leukemiaogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. *Blood 117*, 2022–2032 (2011).
19. Markmiller, S. et al. Minor class splicing shapes the zebrafish transcriptome during development. Proc. Natl Acad. Sci. USA 111, 3062–3067 (2014).
20. Doggett, K. et al. Early developmental arrest and impaired gastrointestinal homeostasis in U12-dependent splicing-defective Rrna3-deficient mice. RNA 24, 1856–1870 (2018).
21. Otake, L. R., Scamborova, P., Hashimoto, C. & Steitz, J. A. The divergent U12-type spliceosome is required for pre-mRNA splicing and is essential for development in Drosophila. Mol. Cell 9, 439–446 (2002).
22. Baumgartner, M. et al. Minor spliceosome inactivation causes microcephaly, owing to cell cycle defects and death of self-amplifying radial glial cells. Development 145, dev166322 (2018).
23. Obeng, E. A. et al. Physiologic expression of SF3b1Genex causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417 (2016).
24. Shirai, C. L. et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–43 (2015).
25. Lee, S. C. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241 (2018).
26. Taylor, J. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood 136, 1477–1486 (2020).
27. Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).
28. Van Nostrand, E. L. et al. Robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol. 1648, 177–200 (2017).
29. Pineda, J. M. B. & Bradley, R. K. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev. 32, 577–591 (2018).
30. Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019).
31. Bigenzahn, J. W. et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science 362, 1171–1177 (2018).
32. Castel, F. et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science 363, 1226–1230 (2019).
33. Steklov, M. et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science 362, 1177–1182 (2018).
34. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).
35. Piotrowski, A. et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat. Genet. 46, 182–187 (2014).
36. Johnston, J. J. et al. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet. Med. 20, 1175–1185 (2018).
37. Berger, A. H. et al. Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogene 33, 4418–4423 (2014).
38. Aoki, Y. et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am. J. Hum. Genet. 93, 173–180 (2013).
39. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).
40. Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucl. Acids Res. 43, D670–D681 (2015).
41. Pellagatti, A. et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 132, 1225–1240 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
Methods

Patient samples. Studies were approved by the institutional review boards of Memorial Sloan Kettering Cancer Center (MSKCC) and Fred Hutchinson Cancer Research Center and were conducted in accordance with the Declaration of Helsinki protocol. Informed consents were obtained from all human participants. Next-generation sequencing was performed on DNA extracted from BM mononuclear cells and matched normal samples from fingernails. Patient samples were sequenced with the MSK-IMPACT targeted sequencing panel, and somatic mutations (substitutions and small insertions and deletions), gene-level focal copy number alterations and structural rearrangements were detected with a clinically validated pipeline as previously described[6-8].

Animals. All animals were housed at MSKCC using a 12-h light–12-h dark cycle and with ambient temperature maintained at 22°C ± 2°C (−21.5°C ± 1°C) with 30–70% humidity. All animal procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSKCC. All mouse experiments were performed in accordance with a protocol approved by the MSKCC Institutional Animal Care and Use Committees (11-029).

Generation of Zrsr2-conditioned knockout mice. Please see the Supplementary Note for full details.

Genetically engineered mice other than Zrsr2-conditioned knockout mice. Sf3b1−conditional knockout mice. Zrsr2 mice were obtained from Jackson Laboratory and were previously described and generated[9,10], with the exception of Hsc–Scl-CreERT mice[11] (which were obtained from J.R. Göthert, University Hospital, West German Cancer Center (WTZ), University Duisburg-Essen).

Bone marrow transplantation. Please see full details in the Supplementary Note.

Coloncy-forming assays. LT-HSCs (lineage-negative CD150+CD48−c-Kit+Sca-1−DPAPI−) were sorted from flow cytometry by the BM of Msi1-Cre WT, Msi1-Cre-Zrsr2fl/+; Msi1-Cre-Zrsr2−/− mice and seeded at a density of 100 cells per replicate into cytokine-supplemented methylcellulose medium (MethoCult M3434, Stemcell Technologies). Colonies propagated in culture were scored at day 7. The remaining cells were resuspended and counted, and a portion was taken for replating (100 cells per replicate).

LZTR1 cDNA expression experiments. Please see full details in the Supplementary Note.

Development of a custom anti-mouse Zrsr2 antibody. The rabbit polyclonal antibody against Zrsr2 was generated by rabbit injections (Y enZym, Cys-C-Ahx-PEQEPPQQPSQPSQPSQPQPQSQPD-ape; cysteine (C) was assigned for single-point, site-directed conjugation to the carrier protein; Ahx was added as a linker or spacer), followed by affinity purification using standard protocols.

Antibodies, flow cytometry and western blot analysis. All antibodies for flow cytometry were purchased from BD Pharmingen, eBioscience or BioLegend. BM mononuclear cells were stained with a lineage cocktail composed of antibodies targeting CD3, CD4, CD8, B220, CD19, NK1.1, Gr-1, CD11b, Ter119 and IL-7Rα. Cells were also stained with antibodies against c-Kit, Sca-1, CD150 and CD48. Cell populations were analyzed using an LSRFortessa (Becton Dickinson) and sorted with a FACSAria II instrument (Becton Dickinson). We used the following antibodies: anti-B220-APC-Cy7 (clone RA3-6B2, BioLegend, 102049, 1:200), anti-CD44-APC (IM7, BioLegend, 103012, 1:200), anti-CD4-APC-Cy7 (GK1.5, BioLegend, 100413, 1:200), anti-CD25-BV711 (eBioscience, 25-0251-82, 1:500), anti-CD45.2-PE (104, eBioscience, 12-0454-82, 1:200), anti-CD45.2-Alexa 488 (A20, BioLegend, 560695, 1:50), anti-CD45-BV711 (53-6.7), anti-CD11b-APC-Cy7 (M1/70, BioLegend, 101226, 1:200), anti-CD48-PerCP-Cy5.5 (RA3-6B2), anti-CD48-BV605, anti-CD11b-APC-Cy7 (M1/70, BD Biosciences, 101206, 1:200), anti-CD3-APC-Cy7 (17A2, BioLegend, 100222, 1:200), anti-Gr-1-APC (RB6-8C5, eBioscience, 25-5931-82, 1:500), anti-CD11b-FITC (M1/70, BioLegend, 101214, 1:200), anti-CD3-PE-Cy7 (17A2, BioLegend, 102022, 1:200), anti-CD3-DX5-Alexa 488 (clone 53-6.7), FITC-labeled anti-CD23 (B3B4), c-Kit (2B8), Sca-1 (D7), CD127 (A7R34) and CD135 (A2F10).

The following antibodies were used for western blotting: anti-Zrsr2 (custom, YenZym, 1:1,000), anti-LZTR1 (sc-390166 or sc-390166 X, Santa Cruz Biotechnology, 1:1,000), anti-RT1 (ab53720, Abcam, 1:1,000), anti-pan-RAS antibody (Thermo Fisher Scientific, MA-012X, 1:1,000), anti-FLAG (F-1084, Sigma–Aldrich, 1:1,000), anti-UPF1 (ab109963, Abcam, 1:1,000) and anti-actin (A-5451, Sigma–Aldrich, 1:4,000).

Cell cycle and apoptosis analyses. Please see full details in the Supplementary Note.

Histological and peripheral blood analysis. Please see full details in the Supplementary Note.

Cell lines and tissue culture. HEK293T cells were cultured in ATCC and grown in DMEM with 10% FCS. Ba/F3 and 32Dcl3 cells were grown in RPMI with 10% FCS and 1 mg ml−1 murine IL-3 (ProTropic, 213-13) unless noted otherwise. All mouse experiments were performed in accordance with a protocol approved by the MSKCC Institutional Animal Care and Use Committees (11-029).

TF-1 cells were grown in RPMI with 10% FCS with 2 ng ml−1 recombinant human GM-CSF (R&D Systems, 215-GM) unless noted otherwise. K562 cells were cultured in RPMI with 10% FCS. Human fibroblast cells were from F. McCormick’s laboratory and were cultured in DMEM with 20% FCS. All cell culture media included penicillin (100 U ml−1) and streptomycin (100 μg ml−1).

Transformation of primary human fibroblasts. Please see full details in the Supplementary Note.

In vitro competition assay. Please see full details in the Supplementary Note.

CRISPR screening for ZRSR2-regulated U12-type introns. Ba/F3, 32D and TF-1 cells were transduced with LentiCas9-Bl (Addgene, 52962) and single-cell sorted into 96-well plates. Among these clones, we used a single clone with strong Cas9 expression. sgRNA libraries of NMD targets in LZTR1-mutated cells were amplified and packaged as lentiviruses. Functional viral titers were obtained by measuring puromycin (2 μg ml−1) resistance after transduction as previously published[18]. A titer resulting in 30% of cells surviving puromycin selection was used. For the NMD library screen, which included 2,600 sgRNA species, triplets transductions with 8.7 × 104 infected cells each were performed for a coverage of approximately 1,000 representations. Following transduction, we assessed for survival against each sgRNA species for each target gene (602 human genes for TF-1-Cas9 and 594 mouse genes for Ba/F3-Cas9 and 32D-Cas9), 100 control sgRNA species and positive control sgRNA species against Petn for Ba/F3-Cas9 and 32D-Cas9 cells and NF1 for TF-1-Cas9 cells. Cells were transduced with lentivirus carrying the sgRNA library produced by 293FT cells, and puromycin selection (2 μg ml−1) was performed in IL-3- or GM-CSF-containing medium for 7 d. Next, we washed out IL-3 or GM-CSF (day 0), and surviving cells were collected at 7 d after cytokine depletion (day 7). Cell pellets were lysed, and genomic DNA was extracted (Qiagen) and quantified by Qubit (Thermo Scientific). A quantity of gDNA covering a 1,000× representation of grna species was amplified by PCR using Q5 High-Fidelity Polymerase (New England BioLabs, M0493S) with modified adaptors and multiplexing barcodes. Amplions were quantified by Qubit and Bioanalyzer (Agilent) and sequenced on the Illumina HiSeq 2500. Sequencing reads were aligned to the screened library, and counts were obtained for each gRNA. We used standard methods from the R–Bioconductor package, and the specific package was edgeR. For the probe level analysis, we used the standard workflow with the glmLRT option for model fitting and statistical tests. For gene-level analysis, we used the camera analysis function, also from edgeR, as previously described[19-21].

CRISPR-directed mutations. Cas9-expressing K562 and Ba/F3 cells were transduced with the iLenti-guide-GFP vector targeting LZTR1 and Lztr1 exons and intronic sequences in which sgRNA expression was linked to GFP. CRISPR-directed mutations. Cas9-expressing K562 and Ba/F3 cells were transduced with the iLenti-guide-GFP vector targeting LZTR1 and Lztr1 exons and intronic sequences in which sgRNA expression was linked to GFP.
BD FACS Aria III cell sorter to generate single-clone-derived cells. The target sequences of sgRNA species used to induce LZTR1 protein-coding mutations as well as intron 18 mutations in LZTR1 and Lztr1 are located in Supplementary Table 1B for the CRISPR mutagenesis assay to evaluate the in vitro effect of LZTR1 intron 18 mutation, lineage-negative hematopoietic precursors from Sci-CreatuRosa26-Lox-STOP-Lox-Cas9-EgFP mice were transduced with the plKO RFP657 vector (Addgene, 57824) targeting intron 18 of Lztr1 using RetroNectin (T100A, Takara Bio) as described above. GFP-RFP657 double-positive cells were purified for plating using the BD FACS Aria III cell sorter, followed by serial replating in vitro. Transduced cells were seeded at a density of 1,000 cells per replicate into cytosine-supplemented methylcellulose medium (MethoCult M3434, Stemcell Technologies). Colonies propagated in culture were scored at day 7. The remaining cells were resuspended and counted, and a portion was taken for replating (1,000 cells per replicate).

RT–PCR and quantitative RT–PCR. Total RNA was isolated using RNeasy Mini or Micro kits (Qiagen). For cDNA synthesis, total RNA was reverse transcribed to cDNA with the Verso cDNA kit (Thermo Scientific). Resulting cDNA was diluted 10–20-fold before use. LZTR1 splice variants were detected via semiquantitative RT–PCR by a standard OneTag DNA Polymerase (New England Biolabs) PCR protocol: 95 °C for 2 min and then 35 cycles of 95 °C for 30 s, 60 °C for 30 s and 72 °C for 60 s, followed by 72 °C for 7 min. Bands were visualized by ethidium bromide staining.

Quantitative RT–PCR (RT–qPCR) was performed in 10-μl reactions with SYBR Green PCR Master Mix (Roche Life Science). The primers used in RT–PCR reactions are listed in Supplementary Table 10.

mRNA stability and isolation. Please see full details in the Supplementary Note. mRNA stability assays. For mRNA half-life measurement using RT–qPCR, K562 cells with LZTR1 intron 18 mutations were infected with anti-UPF1 siRNA (Thermo Scientific). Resulting cells were diluted 10–20-fold before use. LZTR1 splice variants were detected via semiquantitative RT–PCR by a standard OneTag DNA Polymerase (New England Biolabs) PCR protocol: 95 °C for 2 min and then 35 cycles of 95 °C for 30 s, 60 °C for 30 s and 72 °C for 60 s, followed by 72 °C for 7 min. Bands were visualized by ethidium bromide staining.

To quantify per-sample levels of intron retention in samples from patients with MDS (Extended Data Fig. 5), we calculated the ratio of the numbers of significantly retained introns (U12- or U2-type) to the numbers of introns that were removed more efficiently (U12- or U2-type) relative to the median over all samples lacking splicingomal mutations. A pseudocount proportional to the relative abundance of each intron class was added to the numerator and denominator to regularize the computation (avoiding division by zero).

RNA-seq read coverage plots. Read coverage plots were created using the ggplot2 package7 in R. Illustrated transcript annotations are from RefSeq8, downloaded from the UCSC Genome Browser9.

Branchpoint inference. Lariats arising from U12-type intron splicing were computationally inferred as previously described1. In brief, a split read alignment to a database of 5′ splice site and upstream 3′ss sequences was performed to identify reads thatspanned the lariat 2′–3′ linkage. High-confidence reads, defined as containing a single-nucleotide mismatch at the split read junction, were used to identify the branchpoint location. This genome-wide branchpoint annotation was expanded in this study through the inclusion of all available TCGA RNA-seq datasets from both normal and tumor samples, with a focus on identifying branchpoints within U12-type introns. This larger branchpoint annotation was used to identify sequence features correlated with response to ZRSR2-inactivating mutations.

Sequence logo analysis. Sequence logo plots summarizing the LZTR1 intron retention experiments and depicting the nucleotide consensus sequences for U12-type introns that did or did not exhibit significantly increased retention in samples from patients with WT versus mutant ZRSR2 were created by generating and illustrating position weight matrices using the seqlogo and ggseqlogo packages in Bioconductor10.

Data availability

Genome annotations for humans and mice were from NCBI GRC37/UCSC hg19 and NCBI GRCh38/UCSC mm10, respectively. Isoform annotations were from the MISO version 2.0 database13 and were merged with genome annotations from Ensembl release 71(14) and the UCSC knownGene track15. Consistently spliced intron exons were defined as those which exhibited no evidence of alternative splicing in the UCSC knownGene track15. Each intron was classified as U2- or U12-type by comparing its 5′ splice site to the U2- and U12-type consensus sequences obtained from ref. 16. This classification takes advantage of the highly stereotyped consensus of the U12-type 5′ splice site.

RNA-seq read mapping. RNA-seq reads were first mapped to the transcriptome annotations assembled as described above with RSEM version 1.2.4 (ref. 17), modified to invoke Bowtie version 1.0.0 (ref. 18) with the ‘-v 2’ option. Unmapped reads were then mapped to the genome as well as database of possible splice junctions, consisting of all possible combinations of 5′ splice sites and 3′ss annotated for each gene, using TopHat version 2.0.819. The resulting read alignments generated by TopHat were then merged with the output from RSEM. Reads were filtered to require that splice junction-spanning reads had a minimum overlap of six nucleotides.

Determining levels of intron retention in patient cohorts. To quantify per-sample levels of intron retention in samples from patients with MDS, we retained (the ‘isoform ratio’). Significantly retained introns were defined as those which (1) exhibited either an absolute change in retention of ≥10% or an absolute fold change in retention of ≥2 and (2) had an associated Bayes factor ≥5 (computed using Wagenmakers’ Bayesian framework20; relevant to single-sample comparisons for mouse data) or P ≤ 0.05 (computed using a two-sided Mann–Whitney U test; relevant for group comparisons for patient cohort data), and all comparisons were restricted to samples that had at least 20 informative reads (reads that distinguish between isoforms) for the intron under consideration.

Data availability

Genome annotations for humans and mice were from NCBI GRC37/UCSC hg19 and NCBI GRCh38/UCSC mm10, respectively. Isoform annotations were from the MISO version 2.0 database and were merged with genome annotations from Ensembl release 71 and the UCSC knownGene track. Consistently spliced intron exons were defined as those which exhibited no evidence of alternative splicing in the UCSC knownGene track. Each intron was classified as U2- or U12-type by comparing its 5′ splice site to the U2- and U12-type consensus sequences obtained from ref. 16. This classification takes advantage of the highly stereotyped consensus of the U12-type 5′ splice site.

RNA-seq read mapping. RNA-seq reads were first mapped to the transcriptome annotations assembled as described above with RSEM version 1.2.4, modified to invoke Bowtie version 1.0.0 with the ‘-v 2’ option. Unmapped reads were then mapped to the genome as well as database of possible splice junctions, consisting of all possible combinations of 5′ splice sites and 3′ss annotated for each gene, using TopHat version 2.0.8. The resulting read alignments generated by TopHat were then merged with the output from RSEM. Reads were filtered to require that splice junction-spanning reads had a minimum overlap of six nucleotides.
in the Gene Expression Omnibus (mouse data, accession GSE149455) and the human RNA-seq data were deposited in dbGaP (phs002212.v1.p1). Source data are provided with this paper.

References
42. Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).
43. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).
44. Goehrt, J. R. et al. In vivo fate-tracing studies using the Sc1 stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105, 2724–2732 (2005).
45. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
46. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
47. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
48. Martin, L. et al. Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 74, 3104–3113 (2014).
49. Dvinge, H. et al. Sample processing obscures cancer-specific alterations in leukemic transcriptomes. Proc. Natl Acad. Sci. USA 111, 16802–16807 (2014).
50. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).
51. Flieck, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).
52. Meyer, L. R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).
53. Sheth, N. et al. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967 (2006).
54. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
55. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
56. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).
57. Wagenmakers, E. J., Lodewyks, T., Kuriyal, H. & Grasman, R. Bayesian hypothesis testing for psychologists: a tutorial on the Savage–Dickey method. Cogn. Psychol. 60, 158–189 (2010).
58. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
59. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
60. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

61. Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33, 3645–3647 (2017).
62. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).
63. Rembom, O. & Ivanek, R. seqLogo: sequence logos for DNA sequence alignments. R package version 1.30.0.

Acknowledgements
This work was supported by the Conquer Cancer Foundation of the American Society of Clinical Oncology (J.T.), the American Association for Cancer Research (J.T.), the American Society of Hematology (D.I., J.T., K.K.), the Robert Wood Johnson Foundation (J.T.), the ARCS Foundation (I.M.B.P.), NIH grants IK08CA230319-01 (J.T.), T32 CA009657 (J.T.P.), RO1 DK103854 (R.K.B.), R01 HL151651 (R.K.B.), R01 HL128239 (R.K.B. and O.A.-W.), R01 CA251138 (R.K.B. and O.A.-W.), the Department of Defense Bone Marrow Failure Research Program (W81XWH-12-1-0041), R.K.B. and (O.A.-W.), the Leukemia & Lymphoma Society (D.I. and O.A.-W.), the Henry and Marilyn Taub Foundation (O.A.-W.), the Edward P. Evans MDS Foundation (J.T.P., J.T., O.A.-W. and R.K.B.) and the Blood Cancer Discoveries Grant program through the Leukemia & Lymphoma Society, the Mark Foundation for Cancer Research and the Paul G. Allen Frontier Group (8023-20, R.K.B.). D.I. is supported by AMED (IP19cm0106165 and JP20cm0106165), the Takeda Science Foundation, the MDS Foundation, the Yasuda Medical Foundation, the Kanaz Foundation for the Promotion of Medical Science, the MSD Life Science Foundation, the Bristol Myers Squibb Foundation, JSPS KAKENHI (IP20H00537 and JP 20H07717) and the Leukemia Research Foundation. R.K.B. is a scholar of the Leukemia & Lymphoma Society (1344-18). The results shown here are in part based upon data generated by TCGA Research Network (https://cancergenome.nih.gov/).

Author contributions
D.I., J.T.P., J.T., R.K.B. and O.A.-W. conceived the project and wrote the paper with editorial contributions from all authors; D.I., J.T., P.C., S.C., S.K., C.E., K.K., M.F., H.Y., A.T., C.F., S.X.L., B.H.D., B.L., E.W., S.M., D.Z. and R.G. performed experiments; D.I., J.T.P., J.T., A.P., G.-L.C. and R.K.B. analyzed data; and F.M., R.K.B. and O.A.-W. supervised the project.

Competing interests
O.A.-W. has served as a consultant for H3B Biomedicine, Foundation Medicine Inc., Merck, Prelude Therapeutics and Janssen and is on the scientific advisory board of Envisagenics Inc., AlChem and Pfizer Boulder; O.A.-W. received prior research funding from H3B Biomedicine and Loxo Oncology unrelated to the current manuscript. The remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41588-021-00828-9.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41588-021-00828-9.
Correspondence and requests for materials should be addressed to R.K.B. or O.A.-W.
Peer review information Nature Genetics thanks George Vassiliou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Generation and validation of Zrsr2 conditional knockout (cKO) mice. a, Punnett square enumerating male and female myeloid neoplasm patients wild-type versus mutant for ZRSR2 across 2,302 patients. b, Lollipop diagram of ZRSR2 mutations from (a). c, Schematic depiction of the targeting strategy to generate Zrsr2 cKO mice. The Zrsr2 allele was deleted by targeting exon 4 in a manner that results in a frameshift following excision. Two LoxP sites flanking exon 4 and an Frt-flanked neomycin selection cassette were inserted in the downstream intron. d, Verification of correct homologous recombination using Southern blots from targeted embryonic stem cells. The experiment was repeated twice with similar results. e, Verification of the presence of Mx1-cre and Zrsr2 floxed alleles as well as excision of Zrsr2 using genomic PCR. The experiment was repeated three times with similar results. f, Full-length Western blot of Zrsr2 protein in protein lysates from bone marrow mononuclear cells from Mx1-cre control or Mx1-cre Zrsr2fl/y mice. Black arrow indicates full-length Zrsr2 protein while grey arrows indicate non-specific bands. The experiment was repeated three times with similar results. g, Zrsr2 expression (relative to 18 s rRNA) in long-term hematopoietic stem cells (DAPI− lineage-negative c-Kit+ Sca-1− CD150+ CD48−) in Mx1-cre control, Mx1-cre Zrsr2fl/y, and Mx1-cre Zrsr2fl/fl mice 6-weeks following polyinosinic-polycytidylic acid (pIpC) administration. Mean values ± SD. P-values calculated relative to the control group by a two-sided t-test. n = 3 biologically independent experiments. h, RNA-seq coverage plots from lineage-negative c-Kit+ cells from mice in (g) illustrating excision of exon 4 of Zrsr2 following pIpC.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Zrsr2 loss enhances self-renewal of hematopoietic stem cells (HSCs). a, FACS of cells from 5th methylcellulose plating (see Fig. 1b) for live, LSK cells. Wild-type bone marrow (BM) from 6-week old mouse (left) as a staining control. b, Number of CFU-GM, CFU-GEMM, and BFU-E colonies from initial plating of LT-HSCs (lin- LSK CD150+ CD48+) from Mx1-cre control, Mx1-cre Zrsr2fl/+ and Mx1-cre Zrsr2fl/fl mice into methylcellulose. Mean ± SD, two-sided t-test. n = 4 biologically independent experiments. c, Schematic of competitive BM transplantation. d, Number of methylcellulose colonies from LT-HSCs from Mx1-cre control, Mx1-cre Zrsr2fl/+ and Mx1-cre Zrsr2fl/fl mice. Mean value ± SD, n = 3 biologically independent experiments. e, Box-and-whisker plots of percentage of peripheral blood CD45.2+ cells in competitive transplantation pre- and post-pIpC using CD45.2+ Mx1-cre control, Mx1-cre Zrsr2fl/+, Mx1-cre Zrsr2fl/+, and Mx1-cre Zrsr2fl/fl mice. For box and whiskers plots throughout, bar indicates median, box edges first and third quartile values, and whisker edges minimum and maximum values, two-sided t-test. Experiment repeated three times with similar results in (d) and (e). f, Percentage of CD45.2+ B220+ (left), CD45.2+ CD11b+ Gr1− (middle), and CD45.2+ CD3+ cells (right) in primary competitive transplantation. Mean ± SD. P values by two-sided t-test using the values at 16 weeks after transplant. P value relative to the control group at 16 weeks by a two-sided t-test. g, FACS analysis and gating strategy of BM cells from representative primary recipient mice in competitive transplantation. h, Box-and-whisker plots of numbers of ST-HSCs, CMPs, MEPs, and pDCs in BM of primary recipient mice in competitive transplantation. For box and whiskers plots throughout, bar indicates median, box edges first and third quartile values, and whisker edges minimum and maximum values. P value relative to control by a two-sided t-test.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Characterization of Zrsr2 conditional knockout (cKO) mice. a, Absolute number of LT-HSCs, ST-HSCs, MPPs, LSKs, CMPs, and GMPs in primary, non-transplanted 20-week-old Mx1-cre control (‘control’) and Mx1-cre Zrs2f/y mice. Mean ± SD. n = 5 animals. b, Absolute number of live, bone marrow (BM) mononuclear cells in 10-week old Mx1-cre control (‘control’) and Mx1-cre Zrs2f/y mice (‘Zrsr2 knockout’) 4-weeks following Zrsr2 excision. Mean ± SD. n = 5 animals. P-values relative to control by two-sided t-test and indicated in figures. c, Schematic of BrdU analysis of hematopoietic stem cells from mice in (b) and Fig. 1f. d, Hyposegmented, hypogranular neutrophils in peripheral blood of 10-week old Mx1-cre Zrs2f/y mice (yellow arrows). Bar: 10 mm. e, BM cytopsins indicating hyposegmented, hypogranular neutrophils (left panel) and dysplastic erythroid progenitors (middle and right panels, yellow arrows). Bar: 10 mm. Experiment repeated three times with similar results in (d) and (e). f, Peripheral blood white blood cell counts (WBC), platelet count, hemoglobin (Hb), and mean corpuscular volume (MCV) in primary Mx1-cre control (n = 9) and Mx1-cre Zrs2f/y (n = 10) mice (following Zrsr2 excision at 6 weeks age). Mean ± SD. g, Kaplan-Meier survival of primary control and Zrsr2 KO mice (following Zrsr2 excision at 6 weeks age). Absolute numbers of (h) bone marrow and (i) spleen B-cell subsets. j, Numbers of live, spleen (left) and thymic (right) mononuclear cells in mice from (h)-(i). Mean ± SD. Absolute numbers of live mature hematopoietic cells (k) in marrow and (l) spleen of 8-week-old Mx1-cre control (‘control’) and Mx1-cre Zrs2f/y (‘knockout’ or ‘KO’) mice (Zrsr2 excision at 4 weeks). m, Absolute numbers of T-cell subsets in thymus of mice from (k). Mean ± SD shown throughout. Mx1-cre control (n = 5) and Mx1-cre Zrs2f/y (n = 5) mice were used in (h) to (m). P-values relative to control by two-sided t-test and indicated in figures.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Comparison of the effects of Zrsr2 loss versus Tet2 knockout or Sf3b1K700E or Srsrf2P95H mutations on hematopoietic stem and progenitor cells.
a. Schema of competitive bone marrow (BM) transplantation assays.
b. Absolute number of CD45.2+ long-term HSCs (LT-HSCs), LSK, and MPPs in the bone marrow of CD45.1 recipient mice 16 weeks following pIpC (n = 8–10 each). For box and whiskers plots throughout, bar indicates median, box edges first and third quartile values, and whisker edges minimum and maximum values.
c. Percentage of CD45.2+ LT-HSCs, LSK, CMP, MEP, and GMP cells in the BM of CD45.1 recipient mice 16-weeks following pIpC (n = 8–10 per each). P value was calculated relative to the control group by a two-sided t-test.
d. Representative FACS plots of data in (c).
e. Number of methylcellulose colonies generated from 100 sorted LT-HSCs from mice with the indicated genotype. n = 3 biologically independent experiments. Error bars, mean values ± SEM. P-values by one-way ANOVA with Tukey’s multiple comparisons test.
f. Percentage of CD45.2+ cells in the blood of recipient mice from Zrsr2 knockout/Sf3b1K700E/WT double mutant cells and relevant controls pre- and post-pIpC administration to recipient mice (n = 10 each). P-values by two-way ANOVA with Tukey’s multiple comparisons test. Data in (b), (c), and (f) are shown as box-and-whisker plots where bar indicates median, box edges first and third quartile values, and whisker edges minimum and maximum values.
Extended Data Fig. 5 | Effect of ZRSR2 loss on minor intron splicing. **a,** ZRSR2 mutations in our cohort. ‘MDS 05–14’ are wild-type; ‘i-p’ are ZRSR2-mutant. VAF: variant allele frequency, fs: frameshift, ptc: premature termination codon, del: deletion, ins: insertion, ms: missense mutation. **b,** Comparison of U12-type intron retention in MDS samples vs. normal marrow. **c,** Differential splicing of U12-type introns. Each point corresponds to a single intron, illustrating percentage of mRNAs in which intron is spliced out. Blue/red dots: introns with significantly increased/decreased retention in ZRSR2-mutant vs. WT, with absolute change ≥10% or absolute log fold-change of ≥2 with p≤0.05 (two-sided Mann-Whitney U, without adjustments for multiple comparisons). **d,** Distribution of intron retention in samples with ZRSR2 mutations. Blue/red dashed lines: thresholds of −10% and 10% for differential retention; gold line: median change in intron retention. **e,** As (**b**), and (**f**) as (**d**), for U2-type introns. **g,** As (**a**), and (**h**) As (**b**), for Madan et al. (**i**) As (**h**), for U2-type introns. **j,** As (**f**), for Madan et al. (**k**) RNA-seq coverage plots of U12-type introns averaging samples with indicated genotypes. **l,** Splicing efficiencies of introns in (**k**) relative to normal marrow (median over n=4 normal samples). P-values: two-sided Mann-Whitney U. Middle line, hinges, notches, and whiskers: median, 25th/75th percentiles, 95% confidence interval and most extreme points within 1.5x interquartile range from hinge. **m,** Expression of genes with retained U12-type introns between ZRSR2-mutant vs. WT. **n,** Immunoblot in K562 cells used for eCLIP-seq (repeated twice with similar results). **o,** eCLIP of ZRSR2-binding sites. Input-normalized peak signals as log2 fold-change. Purple points: eCLIP-enriched ZRSR2 peaks in biological replicates. **p,** Overlap of genes bound by ZRSR2 vs. differentially spliced in ZRSR2-mutant versus WT (‘ZRSR2 responsive’). P-value: Fisher’s exact test. **q,** U2 snRNA binding energy within ZRSR2 non-responsive and responsive minor introns.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Consequences of ZRSR2 and LZTR1 dysregulation. **a**, RNA-seq of LZTR1's minor intron in normal and ZRSR2-mutant and WT MDS (n = 10 each) marrow. **b**, Ratio of intron retained (IR) to normal LZTR1 in MDS samples (n = 10 each). Mean ± SD. **c**, Data from (b) ± SD. P-value: two-sided t-test. **d**, Qualitative RT-PCR using primers amplifying exons 18-19 ('e18-e19') as well as specific to IR isoform. Splicing efficiencies of LZTR1 in patient samples (median over n = 4 normal samples; left) or mouse lineage-negative c-Kit+ cells (right). P-values: two-sided Mann-Whitney U. **e**, LZTR1 expression by level of minor intron retention ('Low': <10%; 'Mid': 10–20%; 'High-retention': >20%). P-values: one-sided Mann-Whitney U. In (e) and (f): middle line, hinges, notches, and whiskers indicate median, 25th/75th percentiles, 95% confidence interval, and most extreme points within 1.5x interquartile range from hinge. **g**, UPF1 immunoblot in K562 cells with mutation disrupting LZTR1s U12 sequence +/− anti-UPF1 shRNA. Expression of U12-retained LZTR1 following actinomycin D +/− anti-UPF1 shRNA. n = 3 biological replicates. Mean +/− SD. **i**, Immunoblot of K562 cells +/− ZRSR2-targeting sgRNA. **j**, Expression of LZTR1 (left) or CHD4 (right) isoforms in ZRSR2-null K562 cells with DMSO or NMD inhibitor (PMID 24662918). Mean +/− SD; P values: two-sided t-test. n = 3 biological replicates. **k**, LZTR1 minigene with mutations generated. **l**, RT-PCR of LZTR1 minigene and endogenous mRNA from WT or ZRSR2-KO K562 cells. **m**, RT-PCR of LZTR1 minigene and endogenous using native ('N') or mutant minigenes. **n**, Lztr1 minor intron with location of sgRNA, PAM site, 3' U12 consequence (blue text), and sequence in individual Ba/F3 cell clones (red dash: deleted nucleotides). **o**, As (n) in K562 cells. **p**, Immunoblot of Lztr1 in Ba/F3 single-cell clones +/− Lztr1 protein-coding or minor intron sgRNAs. **q**, Median relative percentage of GFP-labeled K562 cells following Rebastinib. Experiments in (d), (g), (i), and (l) were repeated twice with similar results.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Impaired Lztr1 minor intron splicing augments clonogenic capacity of hematopoietic precursors.

a, Schema of experiment whereby sgRNAs targeting the conserved U12 sequence in Lztr1’s minor intron are delivered to lineage-negative hematopoietic precursors from Scl-CreR1 Rosa26-Lox-STOP-Lox Cas9-EGFP Zrsr2y/y or Zrsr2 wild-type mice followed by serial replating in vitro. In this experiment, sgRNAs are encoded from an RFP657 expressing plasmid and GFP+/RFP657+ double-positive cells were purified for plating.

b, Mean number of colonies following Lztr1 minor intron mutagenesis versus control sgRNA treated bone marrow cells in Zrsr2 wild-type or knockout background from (a). Bars represent standard deviation. P-values calculated relative to the control group by a two-sided t-test. n = 3 biologically independent experiments. Error bars, mean values +/− SD.

c, Representative FACS plots of GFP\% in cells just before transplantation and in peripheral blood of recipient transplanted mice 4 weeks after transplantation from Fig. 5g.

d, Number of colonies in methylcellulose CFU assays from LT-HSCs from mice in (c). n = 3 biologically independent experiments. Error bars, mean values +/− SD. P-values by two-way ANOVA with Tukey’s multiple comparisons test.

e, Relative percentage of GFP-labeled K562 cells with knockout of RIT1 and/or mutagenesis of the minor intron in LZTR1 mixed with equal proportions of unlabeled cells to the BCR-ABL inhibitor imatinib.

f, Relative percentage of Ba/F3 cells treated with sgRNAs targeting Rit1 and/or the minor intron of Lztr1 following IL-3 withdrawal (median % relative to day 2 is plotted).
Extended Data Fig. 8 | LZTR1 minor intron retention in cancer predisposition syndromes. a, Sanger sequence electropherogram of the LZTR1 intron 18 retained isoform (from a representative affected family member in Fig. 6d; corresponds to the top band in the LZTR1 RT-PCR gel in Fig. 5d) and LZTR1 normal spliced isoform from a control fibroblast sample (corresponds to the bottom band in the LZTR1 RT-PCR gel in Fig. 6d). Red arrow indicates mutant nucleotide in the affected family members. b, RNA-seq coverage plots of LZTR1 in fibroblasts from Noonan syndrome family and controls. Zoom in magnifies the minor intron of LZTR1. c, As (b), but zoomed in on the region of mutation in the father. d, As (b), but zoomed in on the region of mutation within LZTR1’s minor intron.
Extended Data Fig. 9 | LZTR1 minor intron retention is pervasive in cancers.

a, Degree of major (U2-type) intron retention across normal (N) and tumor (T) samples in cancers from TCGA. Each point corresponds to a single U2-type intron and indicates the percentage of all tumor samples in which retention of that intron exceeds the maximum corresponding retention of that intron observed in normal samples. Red dot indicates the U12-type intron of LZTR1 for comparison.

b, Each point illustrates the frequency of retention of a single intron of LZTR1 (see inset for key) across all TCGA cohorts with matched normal samples. Values along the x axes represents the mean difference in intron retention in tumor versus normal samples within a cancer type, while the y axes represent the fraction of tumor samples with intron retention that exceeds that of the normal sample with the most intron retention within a cancer type. Points represent the mean value computed across all cancer types, while whiskers represent the interquartile range across cancer types.

c, As (**b**), but whiskers represent the entire range.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Publicly available software was used in this study. Specific programs are RSEM (v1.2.4), Bowtie (v1.0.0), TopHat (v2.0.8b), MISO (v2.0), Bioconductor (v3.7) within the R (v3.5.1) programming environment, seqLogo and ggseqlogo (PMID 29036507) packages in Bioconductor, the ggplot2 package (doi:10.1007/978-3-319-24277-4) in R (v3.5.1). Illustrated transcript annotations are from RefSeq, downloaded from the UCSC Genome Browser. Genome annotations were from Ensembl release 71. Flow cytometry data were analyzed using FlowJo v9.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Genome annotations for human and mouse were from NCBI GRCH37/UCSC hg19 and NCBI GRCm38/UCSC mm10 respectively. Isoform annotations were from the MISO v2.0 database50 and were merged with genome annotations from Ensembl release 7151 and the UCSC knownGene track52. RNA-seq reads for the human samples reported in Madan et al were downloaded from the Gene Expression Omnibus (accession number GSE63816). RNA-seq data generated by TCGA (dbGaP accession phs000178.v11.p8) and the Beat AML data (dbGaP accession phs001657.v1.p1) were downloaded from the National Cancer Institute Genomic Data Commons. Branchpoint-related data were obtained from a published study (PMID 29666160). RNA-seq data generated as part of this study have been deposited in
the Gene Expression Omnibus (mouse data: accession GSE149455) and the human RNA-seq data are being deposited in dbGaP phs002212.v1.p1 and available from the investigator’s upon request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[] Life sciences [] Behavioural & social sciences [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Sample size calculation was not performed. Sample sizes for mouse transplantation experiments were chosen based on published studies using similar assays and based on power calculations wherein with 10 mice in each group, we would have 80% power to detect a 20% difference in defined cell populations assuming an effect size (Δμ/σ) of 2.0 between groups at the 0.05 significance level. Sample sizes for RNA-seq and functional studies were performed based on standards in the field (Kim et al. Cancer Cell 2015; Inoue et al. Nature 2019; Yoshimi et al. Nature 2019) and is indicated in figure legends.

Data exclusions

No data were excluded.

Replication

Attempts at replication were successful. All key experiments were repeated two to six times independently, as indicated in figure legends.

Randomization

Animals were randomly assigned to experimental groups. Otherwise, all experiments were performed based on disease versus no disease or based on genotype and therefore randomization was not relevant.

Blinding

The data presented did not require the use of blinding as knowledge of disease state, genetic perturbation, or genotype was required in order to perform the analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology and archaeology
☑	Animals and other organisms
☑	Human research participants
☑	Clinical data
☑	Dual use research of concern

Methods

n/a	Involved in the study
☑	ChIP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging

Antibodies

The following antibodies were used for Western Blot analysis: Zrsr2 (custom, Yenzym, 1:1000), LZTR1 (sc-390166 or sc-390166 X, Santa Cruz Biotechnology, 1:1000), Rif1 (ab53720, Abcam, 1:1000), pan-RAS antibody (Thermo Fisher Scientific, MA1-012X, 1:1000), FLAG (F-1084, Sigma-Aldrich, 1:1000), UFPI (ab109363, Abcam, 1:1000), and Actin (A-5441, Sigma-Aldrich, 1:1000). The following antibodies were used for Flow Cytometry analysis: B220-APCCy7 (clone: RA3-682, Biolegend; catalog #: 103224; dilution: 1:200); B220-PerCPCy5.5 (RA3-682, Bioscience; 45-0452-82; 1:200); C3-DPEcy7 (17A2; Biolegend; 100220; 1:200); CD3-APCCy7 (17A2; BioLegend; 10022; 1:200); CD11b-APCCy7 (M1/70; BioLegend; 101226; 1:200); PK1.1-APCCy7 (PK136; BioLegend; 108724; 1:200); CD11b-APCCy7 (M1/70; BioLegend; 101226; 1:200); CD45.1-FITC (A20; BioLegend; 110714; 1:200); CD45.1-Bv605 (104; BioLegend; 109841; 1:200); CD45.1-Alexa700 (104; BioLegend; 109822; 1:200); CD48-PerCPCy5.5 (104; BioLegend; 109841; 1:200); CD24-BV605 (M1/69; BD Biosciences; 563060; 1:200); CD21-APC (11-0431-85, 1:100); 1L7Rα-APCCy7 (A7R34; BioLegend; 135040; 1:200); CD150-PE (9D1; eBioscience; 12-1501-82; 1:100); CD93-APC (AA4.1; eBioscience; 17-5892-82;
Validation

With the exception of the novel rabbit anti-mouse Zrsr2 antibody, all antibodies were validated by the supplier for human and/or mouse samples, and were checked in the lab by Western blotting on cell lysate and by comparing to the manufacturer's or in-house results. The use of each antibody for Western blot and/or flow cytometry for mouse and/or human cells are validated by the supplier based on information provided on their websites. Specificity of the newly reported rabbit anti-mouse Zrsr2 antibody was verified using lysates from mice with genetic knockout of Zrsr2.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) K562, Ba/F3, 32D, TF1, and HEK293T cells were obtained from the American Type Culture Collection (ATCC). Human primary fibroblasts were provided by the Frank McCormick laboratory.

Authentication An aliquot of each cell line were authenticated using ATCC fingerprinting. Otherwise, the cells were submitted for short tandem repeat (STR) profiling to confirm their authenticity.

Mycoplasma contamination All cell lines are frequently tested for mycoplasma contamination. Cell lines used in this study were verified to be mycoplasma negative before undertaking any experiments with them.

Commonly misidentified lines No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 6-8 week male and female Mx1-cre Zrsr2 floxed, Mx1-cre Sf3b1K700E/WT, Mx1-cre Srsf2P95H/WT, and Mx1-cre Tet2 floxed mice, all on a C57Bl/6 background were used for all experiments. The following mice were purchased from Jackson laboratory: Mx1-cre transgenic mice (stock #003556), Sf3b1K700E conditional knockin mice (stock #029766), Srsf2P95H conditional knockin mice (stock #028376), Tet2 floxed (stock #017573), and Rosa26-LSL-Cas9EGFP knockin mice (stock 026175).

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All animals were housed at Memorial Sloan Kettering Cancer Center (MSKCC). All animal procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSKCC. All mouse experiments were performed in accordance with a protocol approved by the MSKCC Institutional Animal Care and Use Committee (11-12-029).

Human research participants

Policy information about studies involving human research participants

Population characteristics Patients with myeloid neoplasms seen at Memorial Sloan Kettering Cancer Center who provided anonymized bone marrow mononuclear cells.

Recruitment Patients with myeloid neoplasms seen at Memorial Sloan Kettering Cancer Center (MSK) who consented to MSK IRB protocol 06-107 were eligible for inclusion regardless of race, gender, ethnicity or other characteristics. Participants are recruited from the diverse patient population served by MSK and there was no known selection bias.

Ethics oversight Studies were approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center and Fred Hutchinson Cancer Research Center and conducted in accordance to the Declaration of Helsinki protocol. Informed consents were obtained from all human subjects. Patients provided samples after their informed consent and primary human de-identified MDS/AML/MPN samples derived from bone marrow (BM) mononuclear cells (MNCs) were utilized. Genomic alterations in patient BM MNCs were analyzed using MSK IMPACT assay. Patient samples were anonymized by the Hematologic Oncology Tissue Bank of MSK.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Surface-marker staining of hematopoietic cells was performed by first lysing cells with ACK lysis buffer and washing cells with ice-cold PBS. Cells were stained with antibodies in PBS/2% BSA for 30 minutes on ice. For hematopoietic stem/progenitor staining, cells were stained with a lineage cocktail comprised of antibodies targeting CD3, CD4, CD8, B220, CD19, NK1.1, Gr-1, CD11b, Ter119, and IL-7RA. Cells were also stained with antibodies against c-Kit, Sca1, CD150, and CD48. Cell populations were analyzed using an LSR Fortessa (Becton Dickinson) and sorted with a FACSAria II instrument (Becton Dickinson). We used the following antibodies: c-Kit (2B8), Sca1 (D7), Mac-1/CD11b (M1/70), Gr-1 (RB6-8C5), NK1.1 (PK136), Ter119, IL-7RA (A7R34), CD4 (RM4-5), CD8 (53-6.7), CD45.1 (A20), CD45.2 (104), CD150 (9D1), CD48 (HM48-1), CD45ALL (30-F11), and CD45RB (C363-16A). The composition of immature and mature hematopoietic cell lineages in the bone marrow, spleen, and peripheral blood was assessed using a combination of antibodies against B220 (RA3-6B2), CD19 (1D3), CD3 (17A2), CD4 (GK1.5), CD8a (53-6.7), CD11b (M1/70), CD25 (PC61.5), CD44 (IM7), Gr-1, IgM (II/41), IgD (11-26C.2a), CD43 (S11), CD24 (M1/69), Ly-51 (BP-1), CD21/35 (4E3), CD93 (AA4.1), CD23 (B3B4), c-Kit (2B8), Sca-1 (D7), CD127 (A7R34) and CD135 (A2F10). For cell cycle analysis, the BrdU-APC kit was used (BD) according to the manufacturer’s protocol. For evaluation of apoptosis, the Annexin V FITC apoptosis detection kit (BD) was used according to manufacturer’s recommendations. DAPI was used in both BrdU and Annexin V experiments.

Instrument All the FACS sorting was performed on FACS Aria, and analysis was performed on an LSRII or LSR Fortessa (BD Biosciences).

Software FlowJo Ver.9 was used for analysis of flow cytometry data.

Cell population abundance To check the purity of GFP positivity in post-sort samples, the sorted samples were analyzed for GFP by FACS Aria (BD Biosciences), and samples with >99% purity were used for analyses.

Gating strategy The FSC/SSC gates of the starting cell population was set in order to include all the lineages of mouse hematopoietic cells such as granulocytes, monocytes, and lymphocytes. Then doublet cells were excluded by SSC-H vs SSC-W and FSC-H vs FSC-W gating. The boundaries between “positive” and “negative” staining cell population were defined by using unstained and single color-stained controls that were prepared by staining the whole BM mononuclear cells from B6 mice at 8-12 weeks with antibodies against mouse CD11b. “Positive” staining cell population was defined as CD11b+ population and “negative” staining cell population was defined by unstained control. The boundary for each fluorescence was set between these “positive” and “negative” staining cell populations.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.