Ultra-selective ligand-driven separation of strategic actinides

Gauthier J.-P. Deblonde¹, Abel Ricano¹ & Rebecca J. Abergel¹,²

Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. Nonetheless, operational conditions and performance are limited, imposing compromises between recovery, purity, and cost. Siderophore-inspired ligands show unprecedented charge-based selectivity and compatibility with harsh industry conditions, affording excellent separation efficiency, robustness and process control. Here, we successfully demonstrate a general separation strategy on three distinct systems, for Ac, Pu, and Bk purification. Separation factors (SF) obtained with model compound 3,4,3-LI(1,2-HOPO) are orders of magnitude higher than with any other ligand currently employed: 10⁶ between Ac and relevant metal impurities, and over 10⁸ for redox-free Pu purification against uranyl ions or trivalent actinides or fission products. Finally, a one-step separation method (SF > 3 × 10⁶ and radiopurity > 99.999%) enables the isolation of Bk from adjacent actinides and fission products. The proposed approach offers a paradigm change for the production of strategic elements.

¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ²Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA. Correspondence and requests for materials should be addressed to R.J.A. (email: abergel@berkeley.edu)
otope production has been the cornerstone of many research fields and applications throughout the last century\(^1\) and relies largely on separation science. Contemporary examples illustrating the primary importance of separations include radionuclide purification for use in radiopharmaceuticals\(^2\) or in radioactive thermoelectric generators that are vital to space exploration\(^3\). The development of efficient separation methods is also critical for forensics analysis, recycling of ageing weapon materials, fabrication of nuclear fuels\(^4\), production of radionuclides for research\(^5\), as well as manufacturing of high-purity actinide targets for the discovery of new elements\(^6\). Regardless of the application, product purity must be as high as possible, which requires highly efficient and cost-effective separation methods. Radionuclide production through either target irradiation (\(^{225}\)Ac, \(^{177}\)Lu, \(^{90/86}\)Y, \(^{89}\)Zr, \(^{47/44}\)Sc, \(^{138}\)Ba, \(^{246}\)Cm, \(^{249}\)Bk, \(^{249/252}\)Cf, etc.) or melification of long-lived sources (\(^{227}\)Ac→\(^{227}\)Th→\(^{227}\)Ra, \(^{241}\)Pu→\(^{241}\)Am, \(^{233}\)U→\(^{229}\)Th→\(^{229}\)Ra→\(^{229}\)Ac→\(^{232}\)Th→\(^{232}\)Pa→\(^{212}\)Pb, etc.) involves the handling of mixtures of metal ions where major impurities are often neighboring elements in the periodic table. In most cases, the ratio between the valuable element and impurities is extremely high (a few mg diluted in multi-g targets), rendering purification very challenging, albeit critical for the availability of the coveted isotopes.

Recent reports have highlighted the creative use of solid matrices, such as crystalline selenites or borates\(^8\), to quantitatively separate f-elements. However, most at-scale chemical purifications rely on chromatographic separations or liquid-liquid extraction methods or both, depending on the process scale and the desired specifications. These bi-phasic techniques are based on intrinsic interactions between metal ions and organic molecules dissolved in an organic diluent (liquid-liquid extraction) or grafted onto a solid matrix (chromatography). Ideally, these organic molecules (hereafter referred to as extractants) are amenable to transfer ions of interest from one phase to another in a selective manner relative to impurities. Extractant performance is typically not predictable and not always transposable from one separation system to another. In fact, predicting the efficiency and metal selectivity of a given process formulation (aqueous phase, diluent, and extractant) is a scientific challenge with numerous correlated variables\(^9,10\), such as metal speciation in the aqueous phase, metal-extractant compound speciation in the organic phase, free extractant speciation, influence of the diluent, loading capacity of the organic phase, etc. Most extractants currently used in hydrometallurgy can potentially co-extract multiple elements depending on chemical conditions (acidity, extractant concentration, phase ratio etc.)\(^11-13\). Selectivity is only achieved by finely tuning those chemical conditions and operational conditions for these processes are generally highly constrained, with many required steps to reach desired purities.

To overcome these challenges, a class of hydroxypyridinone (HOPO) chelators was investigated for its high metal-binding selectivity and applicability to separation needs. These molecules exhibit a unique combination of properties long sought in separation science: (i) water-solubility, (ii) structures consisting of solely H, C, N, and O atoms, (iii) ability to control metal oxidation states without additional redox-active species, (iv) extremely high charge-based selectivity, and (v) high metal-ligand complex stability even in strong acid (up to 10 M H\(^+\)). Using the model octadentate HOPO chelator, 3,4,3-LI(1,2-HOPO) (hereafter referred to as 343HOPO), and taking advantage of these unprecedented characteristics, highly efficient and robust chemical separation processes were developed for three strategic examples: the purification of \(^{225}\)Ac, Pu-isotopes, and \(^{249}\)Bk.

Results and Discussion

Choice of aqueous chelator as hold-back reagent

Numerous drug development studies\(^14-16\) have focused on synthetic siderophore-inspired compounds because of their ability to form stable, and sometimes luminescent, complexes with metal ions of interest for medical imaging, radionuclide decontamination, and cancer treatments. While this class of ligands, encompassing HOPO and catecholamide (CAM) derivatives, has been known for decades, it had never been studied in details for separation applications. In fact, a few exceptions aside, most of these chelators have only been studied with a single cation, such as Gd\(^3+\), Th\(^4+\), or Pu\(^4+\), impairing broader evaluation of their metal-metal selectivity. The chemistry of some HOPO ligands was recently extended across the periodic table, highlighting their outstanding selectivity, and large superiority over polyaminocarboxylate chelators (IDA, EDTA, DTPA, etc.), typically encountered in separations (Fig. 1). A comparison of metal complex formation constants for the octadentate 343HOPO shows striking differences between tetravalent species and corresponding divalent or trivalent ones. The observed selectivity seems mainly charge-based and only slightly dependent on the ionic radius of the elements (Supplementary Fig. 1), although some selectivity is noted across the trivalent lanthanide and actinide series. 343HOPO outperforms any known chelator in terms of charge-specific selectivity and, in particular, for the binding of tetravalent ions. As such, the Ce\(^4+/Ce\(^3+\) selectivity of 343HOPO is about 15 orders of magnitude higher than what could be expected from a carboxylate ligand. Extreme selectivity is also observed even for ions of similar size, such as in the Th\(^4+\)/Am\(^3+\), Th\(^4+\)/Gd\(^3+\), Ce\(^4+\)/Lu\(^3+\), or Th\(^4+\)/Cf\(^2+\) pairs (Fig. 1 and Supplementary Fig. 2).

As shown in Fig. 1, a handful of other molecules from the same family (octadentate 3,4,3-LI-CAM, Bis-TREN-3,2-HOPO, HOPO amidomacrocycle; tetradentate 5Li-M-3,2-HOPO, 5LiHOPO Me-3,2-HOPO; and bidentate PR-Me-3,2-HOPO)\(^17-20\) exhibit known solution thermodynamic properties that match those of 343HOPO but none of the chelators typically used for separation methods is nearly as selective. Many additional HOPO and CAM ligands have been designed\(^15\) and previously reported octadentate 1,2-HOPO\(^21\), mixed 3,4,3-LI(1,2-HOPO/Me-3,2-HOPO)\(^22\), and DFO/1,2-HOPO\(^23\) structures would certainly make excellent candidates for charge-based selectivity; however, their chelation properties have so far only been investigated with either Eu\(^3+\), Zr\(^4+\), or Pu\(^4+\). Due to its current kg-scale availability and established solution thermodynamics, 343HOPO was used here as a model case. It was not initially designed for separation applications and its performance should not be considered as the upper limit for a separation strategy that could be extended to an entire molecular family.

The selectivity of 343HOPO for tetravalent ions is so high that it is expected to form complexes even under very acidic conditions (experimentally observed\(^24\) in 3 M HCl for Sn\(^4+\)), whereas it should release trivalent\(^25\) and divalent\(^24-26\) ions completely below pH–2 (Fig. 1). To our knowledge, no other reported class of ligands exhibits such behavior. The clear metal discrimination afforded by 343HOPO (bound M\(^4+\) versus free M\(^3+\)/2-2\(^+/1+\)) can therefore be leveraged as a chemical switch to isolate charged ions, a needed tool when separating Ac\(^3+\)/Th\(^4+\) or Pu\(^4+\)/Am\(^3+\) mixtures. If such an ultra-selective complexant is present in the aqueous phase, overall process selectivity is expected to be decoupled from extractant selectivity, since a system containing 343HOPO in the aqueous phase and a completely non-selective extractant in the organic phase will still result in highly efficient separation. Such ligand-driven performance enables more flexible solvent formulation and operational process conditions. It will also spare the cumbersome
development of new extractants and can be applied to a variety of MX+/My+ pairs, as demonstrated below.

Actinium purification. While there is great interest in using 225Ac for targeted alpha therapy, the development of 225Ac-based pharmaceuticals is still hindered by low isotope availability relative to potential market needs. Furthermore, Ac chemistry is largely unexplored since (i) Ac3+ being the biggest trivalent ion of the periodic table, there is no adequate surrogate to study its chemistry, and (ii) its highly-radioactive longest-lived isotope (227Ac, t1/2 = 21.8 year) is available in only μg amounts. Both 227Ac decay and 225Ac production yield mixtures of Ac3+, Th4+, Ra2+, and trivalent lanthanides. The ratio between unwanted elements and Ac is typically very high and purification options are limited. 343HOPO exhibits very low affinity toward actinium complexes.

![Diagrams and graphs showing thermodynamic stabilities of metal-ligand complexes and selectivity comparisons for Ac3+ and Eu3+](image-url)
Ac\(^{3+}\) compared with other trivalent ions and has extremely high affinity for tetravalent ions, providing a straightforward tool to selectively isolate Ac. Figure 2 shows the Ac\(^{3+}\) and Pu\(^{4+}\) extraction yields by HDEHP (extractant widely used in hydrometallurgy, also known as D2EHPA\(^{31,32}\) in the presence of 343HOPO at different pH values. Full Ac\(^{3+}\) extraction in the organic layer was achieved, while scavenging Pu\(^{4+}\) (a surrogate for Th\(^{4+}\)) in the aqueous layer. Similar experiments in the presence of reference aqueous chelator DTPA, also used in the so-called TALSPEAK process\(^{31}\), showed partial extraction of both isotopes and no practical separation or recovery. After only a single step and despite a large initial Pu/Ac ratio (~10,000 mol/mol), SF\(_{\text{Ac/Pu}}\) values reached at least 1,000,000 in the presence of 343HOPO, combined with recovery yields of up to 99.70% for Ac in the organic phase and higher than 99.97% for Pu in the aqueous phase. In comparison, DTPA SF\(_{\text{Ac/Pu}}\) values were between 1 and 100, the typical selectivity range observed in hydrometallurgical processes, with less than 50% Ac recovery.

Separation of Ac from trivalent impurities was also investigated. Figure 3 displays Ac\(^{3+}\), Am\(^{3+}\), and Gd\(^{3+}\) extraction profiles in

Fig. 2 Separation of Ac from Pu. **a** Extraction yield of Ac\(^{3+}\) (stars) and Pu\(^{4+}\) (triangles) by 0.5 M HDEHP as a function of pH, in the presence of DTPA (dotted lines) or 343HOPO (solid lines). A logarithmic scale is used due to the low extraction yields of Pu\(^{4+}\). **b** Corresponding separation factors. Aqueous phase: 40 mM of chelator in sodium lactate/sodium nitrate buffer (I = 2 M). \(V_{\text{org}}/V_{\text{aq}} = 1\). \(T = 25 ^\circ\text{C}\). LoD = Limit of detection. Data points with arrows are lower limits.

Fig. 3 Separation of Ac from Gd and Am. Extraction yield of trivalent Ac (stars), Gd (squares), and Am (circles) by 0.5 M HDEHP as a function of pH, in the presence of DTPA (a) or 343HOPO (c). A logarithmic scale is used due to the low extraction yields of Pu\(^{4+}\). The corresponding separation factors in the presence of DTPA or 343HOPO are given in b and d, respectively. Aqueous phase: 40 mM of chelator in sodium lactate/sodium nitrate buffer (I = 2 M). \(V_{\text{org}}/V_{\text{aq}} = 1\), one contact. \(T = 25 ^\circ\text{C}\). Data points with arrows are lower limits.
both HDEHP/343HOPO-HNO₃ and HDEHP/DTPA-HNO₃ systems. Significant discrimination was observed for Ac⁴⁺ against Am³⁺ and Gd³⁺, with SF_{Ac/Am} and SF_{Gd/Ac} reaching 130,000 and 1,300,000, respectively. In the DTPA case, SF_{Am/AC} and SF_{Gd/Am} values were below 10 and 5300, respectively, and Ac recovery was low. A process flowsheet for ²³³Ac purification using the 343HOPO-HDEHP combination is proposed in Supplementary Fig. 3.

Plutonium purification. Since the 1940's, worldwide Pu inventory has evolved from almost 0 to ~2,500,000 kg due to anthropogenic activities³³,³⁴, and is estimated to increase by 70,000 kg/year³⁵ based on civilian nuclear power generation forecasts. Pu materials must be properly safeguarded throughout their lifespan, which necessitates advanced nuclear forensic controls and reprocessing activities. In this context, isolation of Pu from minor actinide and fission product impurities is essential. The standard PUREX (Plutonium Uranium Redox Extraction) liquid-liquid extraction process³⁶ allows recovering and separating Pu and U from minor actinides and fission products. PUREX operates in concentrated HNO₃ media and includes two critical steps: (i) UO₂²⁺ and Pu⁴⁺ co-extraction into the organic phase (50 % TBP in diluent) while leaving trivalent ions in the aqueous phase, and (ii) reductive back-extraction of Pu as Pu³⁺ while leaving UO₂²⁺ in the organic phase. The latter is indispensable for U/Pu separation because of TBP’s lack of selectivity between tetravalent and actinyl species. While reduction of Pu⁴⁺ to Pu³⁺ is achieved by addition of strong reducing agents into the liquid-liquid extraction batteries,³⁷ Pu³⁺ is inherently unstable, and this redox component creates constraints in the reactive TBP-nitric medium (reduction of HNO₃ to HNO₂ and formation of potentially explosive compounds such as HN₃).

A simple but effective modification of PUREX was investigated for non-reductive separation of Pu and U (Supplementary Fig. 4). Figure 4 shows that Pu⁴⁺ and UO₂²⁺ extraction behaviors under typical PUREX conditions are expectedly very similar, with quantitative extraction of both elements and SF_{Pu/U} values below 3. After co-extraction of U and Pu by TBP, the unprecedented chelation properties of 343HOPO at high acidity and its charge-based selectivity can be leveraged to selectively strip Pu⁴⁺ from the organic phase. Efficient U/Pu separation was observed in the presence of 343HOPO (Fig. 4) by selective chelation of Pu⁴⁺, without significant interactions with UO₂²⁺ over a broad range of acidity (up to 8 M HNO₃) and SF_{Pu/U} values as high as 5800. The use of 343HOPO-type chelators could afford straightforward and efficient separation methods for the purification of U and Pu, and so, without using any redox-active chemical or non-volatile contaminant. This method also leads to very flexible process control, as demonstrated by the broad acidity range under which 343HOPO selectively scavenges Pu⁴⁺.

Another route, using TODGA as extractant, was explored for the purification of Pu not only from divalent ions but also from trivalent metals. TODGA is from the diglycolamide family used for resins separations³⁸,³⁹, and is currently investigated for next-generation nuclear waste treatment processes, such as EUROGANEX¹¹,⁴⁰,⁴¹. TODGA is effective at extracting trivalent lanthanides and actinides from concentrated nitric media but its selectivity toward other ions, such as Pu⁴⁺, is very low. Very high yields were observed for the extraction of Gd³⁺, Lu³⁺, UO₂²⁺, Pu⁴⁺, and Cf³⁺ from HNO₃ (~99.5% if HNO₃ > 1 M), emphasizing the lack of potential for practical separation (Fig. 4). In the presence of 343HOPO, Pu⁴⁺ is selectively held back in the aqueous phase whereas the extraction behaviors of trivalent actinides, lanthanides, and uranyl are not impacted, offering a direct avenue for Pu recovery. SF values between the trivalent ions and Pu⁴⁺ are above 450,000,000 (LoD reached) whereas SF_{U/Pu} values are around 50,000. SF_{U/Pu} values are limited by the relatively low distribution factors of uranyl (D_{Pu} < 30) when using TODGA, as observed here and elsewhere¹¹. Combining the high affinity of TODGA for trivalent lanthanides and actinides with the high affinity of TBP for uranyl and the selectivity of 343HOPO for Pu, a redox-free process was devised for the flash-recovery and purification of Pu from materials containing Pu, uranyl, minor actinides, and fission products (Supplementary Fig. 5).

Berkelium purification. Bk and Cf are of particular interest due to their use as targets for the production of super-heavy elements, such as elements 117 (tennessine, named after a ²⁴⁹Bk target manufactured at Oak Ridge National Laboratory - ORNL, Tennessee)⁴² and 118 (ognesson, produced from ²⁴⁹Cf)⁴³. ²⁴²Cf is also a strategic isotope for oil and gas exploration as well as quality control of nuclear reactors. Bk and Cf are produced via prolonged neutron irradiation of Am/Cm targets, yielding mixtures of actinides from Am to Fm and some fission products. These transplutonium elements have traditionally displayed very similar chemistries as they exhibit the +III oxidation state in solution and have almost identical ionic radii⁴⁴. To separate Cf³⁺ from Bk³⁺, Bk³⁺ can eventually be oxidized to Bk⁴⁺ under harsh conditions (heating combined with excess NaBO₃ in 8 M HNO₃) but it is unstable, which adds another level of complications to the eventual separation scheme. Campaigns conducted at ORNL for the purification of mg amounts of ²⁴⁹Bk take several months,⁴⁵ and result in relatively limited purification factors. The Bk isolation process³⁷ comprises about 25 steps, with a purification factor for the entire procedure (product of SF values from all steps) of ~10⁷.

³⁴³HOPO was recently shown⁴⁶ to oxidize Bk³⁺ and stabilize Bk⁴⁺ in aqueous solution without addition of any redox-active species: a direct consequence of the ligand’s thermodynamic preference for tetravalent cations (vide supra). The separation strategy detailed above can therefore be applied to the isolation of Bk from all trivalent ions. Preliminary tests with extractant HDEHP at high acidity (0.1–6 M HNO₃) show a drastic influence of ³⁴³HOPO on the Bk extraction by HDEHP (Supplementary Fig. 6). Comparisons with Pu⁴⁺, Gd³⁺, and Cf³⁺ confirm that Bk exists as Bk³⁺ in nitric media without chelator but forms a Bk⁴⁺ complex with ³⁴³HOPO even under very acidic conditions (Supplementary Fig. 7). Thus, isolation of Bk from its trivalent neighbors and lanthanides was studied in the HDEHP-HNO₃-³⁴³HOPO system (Fig. 5). After a single step at room temperature, high extraction yields were observed for all tested trivalent ions, whereas Bk was selectively sequestered in the aqueous phase. SF_{Bk/Lu} values as high as 320,000 were obtained, and SF values between 3000 and 10,000 were reached between Bk and adjacent actinides Am³⁺, Cf³⁺, and Es³⁺. Similar tests in the presence of NTA, EDTA, CDTA, and DTPA showed no separation at all between Bk and Cf, (similar to what is observed without chelator) since this type of ligands is not strong enough to bind metal ions under acidic conditions and is not selective enough to oxidize Bk³⁺ to Bk⁴⁺. Importantly (Fig. 5 and Supplementary Fig. 8), the behavior of Bk in the presence of ³⁴³HOPO is completely decoupled from classic extraction parameters (extractant concentration, phase ratio), resulting in stable separation performance and robustness over a wide range of conditions. Given the system SF values, two consecutive steps would yield purification factors similar or higher than the current state-of-the-art process⁹.

Bk purification using TODGA as extractant was also investigated. TODGA is more relevant than HDEHP for the
production of heavy actinides since it is effective at high acidity and is therefore compatible with the post-irradiation metallic target dissolution step. The extraction behavior of Bk in a TODGA-based system has never been reported, but high extraction yields for Bk can be expected based on the behavior of Cf. In nitric solutions without chelator, quantitative co-extraction of Bk and Cf by TODGA was observed, leading to no practical separation between the metals (Fig. 5). In stark contrast, addition of HOPO drastically changes the Bk extraction profile: less than 1% Bk is extracted throughout the acidity range whereas Cf extraction remains undisturbed, due to the non-interaction between trivalent ions and the aqueous chelator at high acidity. The two adjacent actinides can be separated over a very broad acidity range (0.5–10 M HNO₃). Even if an unfavorable initial ratio Cf/Bk was used in those experiments (Cf/Bk~12,000), Bk samples completely exempt of Cf were obtained, notably so after only a single extraction. Experiments at various concentrations of extractant further confirmed the reliability of the TODGA-HNO₃–HOPO separation formulation (Supplementary Fig. 9) with SF > 1,000,000, regardless of the TODGA and HNO₃ concentrations. Additional separation experiments with Gd and Lu further evidenced the reliability of this system for purifying Bk (Supplementary Fig. 10). Finally, the separation method was tested at the mCi level. Legacy samples of Bk used in previous studies were gathered, evaporated, incinerated and reconstituted in 3 M HNO₃ solutions containing multiple mCi of Bk with a Cf/Bk ratio of ~3.4 mol/mol. The solution was split in five, 3HOPO was added, and an extraction step was performed using TODGA. As detailed in Table 1, after only a single step and regardless of

Fig. 4 Separation of Pu from U, Gd, Lu, and Cf. Extraction of Pu (triangles) and UO₂ (diamonds) under typical PUREX conditions (a) and back-extraction in the presence of 1 mM HOPO (b). Dotted lines: separation factor U/Pu. Organic phase: 30% TBP in kerosene. c and d show the extraction yields of Gd (squares), Lu (crosses), Cf (circles), UO₂, and Pu by TODGA in the absence or presence of 1 mM HOPO, respectively. Corresponding separation factors are given in e and f. Organic phase: 0.1 M TODGA in kerosene. Aqueous solvent: HNO₃, T = 25 °C. O/A = 1, one contact. Points with arrows are lower limits.
the conditions used, very efficient separation was observed with the recovery of essentially pure 249Bk in the aqueous phase (radio purity > 99.999%, chemical purity > 99.8%) and high-purity 249Cf in the organic phase (chemical purity > 99.5%). These results further confirm the proposed strategy could be used with high-activity samples, and scaled up to either produce high-purity Bk isotopes or to remove Bk traces during Cm, Cf, Es, or Fm production. Subsequent recovery of all isotopes would be facilitated by incineration and reconstitution in the desired matrix.

Noteworthy, the results presented above, although already providing better Cf/Bk separation than with any published method, do not represent optimum system performance since 343HOPO was not initially developed for separation applications and molecules with even higher selectivity could be designed. In addition, the three isotope purification examples examined in this work demonstrate the versatility of the proposed separation strategy, which could undoubtedly be transposed to other critical challenges4, such as those encountered with 177Lu4, 153Gd3, 243Am, 249Bk, 249Cf (circles) and 253Es (vertical crosses) by HDEHP as a function of the extractant concentration. Aqueous phase: 1 mM 343HOPO in 0.1 M HNO3 and 1.9 M NaNO3. Organic phase: HDEHP in kerosene.

Fig. 5 Separation of Bk, from Gd, Lu, Am, Cf, and Es. a Extraction of 177Lu (crosses), 153Gd (squares), 243Am (diamonds), 249Bk (triangles), 249Cf (circles) and 253Es (vertical crosses) by HDEHP as a function of the extractant concentration. Aqueous phase: 1 mM 343HOPO in 0.1 M HNO3 and 1.9 M NaNO3. Organic phase: HDEHP in kerosene. b Corresponding separation factors. A log scale is used for clarity. See Supplementary Fig. 8 for results as a function of the acidity and in the absence or presence of 1 mM 343HOPO, respectively. Aqueous phase: 0 or 1 mM 343HOPO in HNO3. Organic phase: 0.1 M TODGA (radiopurity > 99.999%, chemical purity > 99.8%) and high-purity 343HOPO was not initially developed for separation applications and molecules with even higher selectivity could be designed. In addition, the three isotope purification examples examined in this work demonstrate the versatility of the proposed separation strategy, which could undoubtedly be transposed to other critical challenges4, such as those encountered with 177Lu4, +/Hf4, 134La3, 134Ce4, or 117mSn4 purifications. We anticipate that the use of HOPO ligand derivatives as aqueous chelating hold-back reagents could pave the way to more reliable, flexible and efficient methodologies for metal cation separations.

Table 1 Separation of 249Bk and 249Cf at the mCi level using TODGA and 343HOPO

Conditions	Phase	Radiopurity	Chemical purity
Initial	Bk	99.13 % ± 0.13	Bk: 22.63 % ± 0.54
[343HOPO] = 1 mM	Organic Bk: 52.70 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Aqueous Bk: 64.85 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Organic Bk: 70.60 %	Bk: > 99.9 %	
[343HOPO] = 2 mM	Organic Bk: 79.72 %	Bk: > 99.9 %	
[343HOPO] = 5 mM	Aqueous Bk: 70.60 %	Bk: 64.85 %	
[343HOPO] = 10 mM	Organic Bk: 84.94 %	Bk: 70.60 %	
[343HOPO] = 25 mM	Aqueous Bk: 96.87 %	Bk: > 99.9 %	

Conditions	Phase	Radiopurity	Chemical purity
Initial	Bk	99.13 % ± 0.13	Bk: 22.63 % ± 0.54
[343HOPO] = 1 mM	Organic Bk: 52.70 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Aqueous Bk: 64.85 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Organic Bk: 70.60 %	Bk: > 99.9 %	
[343HOPO] = 2 mM	Organic Bk: 79.72 %	Bk: > 99.9 %	
[343HOPO] = 5 mM	Aqueous Bk: 70.60 %	Bk: > 99.9 %	
[343HOPO] = 10 mM	Organic Bk: 84.94 %	Bk: 70.60 %	
[343HOPO] = 25 mM	Aqueous Bk: 96.87 %	Bk: > 99.9 %	

Conditions	Phase	Radiopurity	Chemical purity
Initial	Bk	99.13 % ± 0.13	Bk: 22.63 % ± 0.54
[343HOPO] = 1 mM	Organic Bk: 52.70 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Aqueous Bk: 64.85 %	Bk: > 99.9 %	
[343HOPO] = 1 mM	Organic Bk: 70.60 %	Bk: > 99.9 %	
[343HOPO] = 2 mM	Organic Bk: 79.72 %	Bk: > 99.9 %	
[343HOPO] = 5 mM	Aqueous Bk: 70.60 %	Bk: > 99.9 %	
[343HOPO] = 10 mM	Organic Bk: 84.94 %	Bk: 70.60 %	
[343HOPO] = 25 mM	Aqueous Bk: 96.87 %	Bk: > 99.9 %	

Separation conditions: 0.1 M TODGA in kerosene; 343HOPO in 3 M HNO3. T = 25 °C. O/A = 1, one contact. Points with arrows are lower limits.

Methods

Caution. The following isotopes were used in this work: 153Gd (t1/2 = 240 days, 130 TBq/g), 177Lu (β−, t1/2 = 6.6 days, 4,100 TBq/g), 225Ac (α, t1/2 = 9.95 days, 2,100 TBq/g), 233U (α, t1/2 = 159200 years, 0.36 GBq/g), 241Pu (β−, t1/2 = 14.3 years, 3.8 TBq/g), 242Pu (α, t1/2 = 3.74 × 105 years, 0.15 GBq/g), 243Am (α, t1/2 = 7388 year, 7.4 GBq/g), 249Bk (β−, t1/2 = 0.9 year, 61 TBq/g), 249Cf (α, t1/2 = 352 year, 0.15 TBq/g), and 253Es (α, t1/2 = 20.5 days, 932 TBq/g). All are highly radioactive, presenting serious health risks, and were manipulated in facilities specially designed for safe handling of long-lived radioactive materials at the Lawrence Berkeley National Laboratory (LBNL).
Methods. pH measurements were performed with a glass electrode (Metrohm - Micro Comb - response to (H^+) calibrated at 25 °C using three NIST standards. Extraction samples were analyzed by liquid scintillation counting (LSC). The distribution coefficient, D(M), of a given metal, M, is defined in Eq. (1), where [M]_organic and [M]_aqueous are the respective total concentrations of M in the organic and aqueous layers, after extraction. Both concentrations are proportional to the volumetric activity (in Bq L^-1) determined by LSC. The separation factor, SF_{M1/M2}, between two metals, M_1 and M_2, and extraction yield were calculated according to Eqs. (2) and (3), respectively.

\[
D(M) = \frac{[M]_{\text{organic}}}{[M]_{\text{aqueous}}} \times \frac{\text{Activity}_{\text{organic}}}{\text{Activity}_{\text{aqueous}}}
\]

\[
SF_{M1/M2} = \frac{D(M_1)}{D(M_2)}
\]

\[
\%\text{Extraction} = \frac{\text{Activity}_{\text{organic}} \times V_{\text{organic}}}{\text{Activity}_{\text{aqueous}} \times V_{\text{aqueous}}} \times 100
\]

In a typical experiment, the solvent (extractant diluted in kerosene) was pre-conditioned by shaking one volume of solvent with three volumes of aqueous phase (typically HNO_3) at room temperature for 1 h, thrice. For radioisotope extractions, at least 400 µL aqueous phase (typically containing HNO_3, a chelator and a radioisotope) and solvent were placed in air-tight screw-capped plastic tubes, triply-activated, and shaken in a thermostat at 300 rpm, 25 °C, for at least 30 min. Samples were then centrifuged for 5 min at 3000 rpm and phases separated before analysis. LSC analyses were performed on a Packard Tri-Carb 4606 instrument (Perkin Elmer) after mixing sample aliquots or sample dilution aliquots (10–200 µL) with 10 mL of scintillation cocktail (UltimaGold LLC). Samples were counted for at least 6 min and results were background subtracted. The analytical samples contained between 80 and 800,000 CPM. Mixtures of 249Bk and 243Cf were analyzed using α/β discrimination and energy windows were set to 0–50 keV for low-energy β particles of 249Bk and 50–1000 keV for a particles of 243Cf. 243Am and 225Ac samples were counted at secular equilibrium.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary information files).

Received: 4 March 2019 Accepted: 25 April 2019
Published online: 04 June 2019

References
1. NSAC Isotopes Subcommittee. Meeting isotope needs and capturing opportunities for the future: the 2015 long range plan for the DOE-NP isotope program. 1–160 (US DOE and NSF Nuclear Science Advisory Committee, Argonne, IL, USA, 2015).
2. Hagemann, U. B. et al. In vitro and in vivo efficacy of a novel CD33-targeted thiorum-227 conjugate for the treatment of acute myeloid leukemia. Mol. Cancer Ther. 15, 2422–2431 (2016).
3. Witze, A. Nuclear power: desperately seeking plutonium. Nat. News 515, 484–486 (2014).
4. Velsksock-Carolan, J. Separation of actinides from spent nuclear fuel: a review. J. Hazard. Mater. 318, 266–281 (2016).
5. Roberto, J. B. et al. Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015).
6. Oganesian, Y. T. et al. Experimental studies of the 249Bk+34Ca reaction including decay properties and excitation function for isotopes of element 117.
7. Wang, Y. et al. Facile and efficient decontamination of thorium from rare earths based on selective selenite crystallization. Inorg. Chem. 57, 1880–1887 (2018).
8. Yin, X. et al. Rare earth separations by selective borate crystallization. Nat. Comm. 8, 14438 (2017).
9. Beltrami, D. et al. Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem. Rev. 114, 12002–12023 (2014).
10. Leydier, A. et al. Recovery of uranium (VI) from concentrated phosphoric acid using bifunctional reagents. Hydrometallurgy 171, 262–266 (2017).
11. Zhu, Z.-X., Sasaki, Y., Suzuki, H., Suzuki, S. & Kimura, T. Cumulative study on solvent extraction of elements by N,N,N′-tetracetyl-3-oxapentanediamine (TDODGA) from nitric acid into n-dodecane. Anal. Chim. Acta 527, 163–168 (2004).
12. Horwitz, E. P. & Bloomquist, C. A. Chemical separations for super-heavy element searches in irradiated uranium targets. J. Inorg. Nucl. Chem. 73, 425–434 (2011).
13. Cary, S. K. et al. Advancing understanding of the chemistry of neptunium and americium in solution: opportunities for the future: the 2015 long range plan for the DOE-NP isotope program. 343HOPO was from LBNL inventory. 225Ac(III), 249Bk(III), and 249Cf(III) were obtained as chlorides from Aldrich, NaNO_3 (>99%, ACS grade, VWR), sodium lactate (Sigma Aldrich), TODGA (>99%, Technocomm Ltd.), HDEHP (>95%, Merck), tributyl phosphate (TBP, >98%, Alpha Aesar), DTPTA (>98%, TCI), and Ultima Gold LLT (Perkin Elmer) were used as received. All solutions were prepared using deionized water purified by a Millipore Mill-Q reverse osmosis cartridge system. Stocks were stored at 8 °C in the dark between experiments.

Materials. 153Gd(III) chloride and 233U(VI) nitrate were purchased from Eckert & Ziegler Isotope Products (Valencia, CA), 177Lu(III) chloride was purchased from Perkin Elmer Health Sciences (Shelton, CT). A Pu(IV) chloride stock solution containing a 50/50 mixture (Bq/Bq) of 241Pu and 242Pu and a stock solution of 243Am(III), prepared by dissolution of 243AmO_3, in 1 M HNO_3 were from LBNL inventory. 225Ac(III), 249Bk(III), and 249Cf(III) were obtained as chlorides from ORNL. A 233Es(III) perchlorate solid sample was provided by Prof. J. Shafer (Colorado School of Mines). 343HOPO was from LBNL inventory. Standard solutions of 0.1 M and 6.0 M HNO_3, (BDH VWR Analytical), 70% HNO_3, (Sigma Aldrich), NaNO_3, (<99%, ACS grade, VWR), sodium lactate (Sigma Aldrich), TODGA (>99%, Technocomm Ltd.), HDEHP (>95%, Merck), tributyl phosphate (TBP, >98%, Alpha Aesar), DTPTA (>98%, TCI), and Ultima Gold LLT (Perkin Elmer) were used as received. All solutions were prepared using deionized water purified by a Millipore Mill-Q reverse osmosis cartridge system. Stocks were stored at 8 °C in the dark between experiments.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary information files).
33. Glaser, A. & Mian, Z. Fissile material stocks and production, 2008. Bull. At. Sci. 65, 45–47 (2009).
34. Zhao, P. et al. Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: redox transformations and surface precipitation. Environ. Sci. Technol. 50, 6948–6956 (2016).
35. Albright, D. & Kramer, K. Stockpiles still growing. Bull. At. Sci. 60, 14–16 (2004).
36. Oganessian, Y. T. et al. Results from the First249Cf 48Ca Experiment. in Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment (eds Nash, K. L. & Lumetta, G. J.) 141–175 (Woodhead Publishing, Cambridge, UK, 2011).
37. Paviet-Hartmann, P., Riddle, C., Campbell, K. & Mausolf, E. Overview of reductants utilized in nuclear fuel reprocessing/recycling. in Idaho National Laboratory Report INL/CON-12-28006, 79–86 (Idaho Falls, ID, USA, 2013).
38. Whittaker, D. et al. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solv. Extract. Ind. Extr. 36, 223–256 (2018).
39. Modolo, G., Asp, H., Schreinemachers, C. & Vijgen, H. Recovery of actinides and lanthanides from high-level liquid waste by extraction chromatography using TODGA + TBP impregnated resins. Radiochimica. Acta. 95, 391–397 (2007).
40. Carrott, M. et al. Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDHHEX in kerosene, and implications for the design of the ‘EURO-GANEX’ process. Hydrometallurgy 152, 139–148 (2015).
41. Modolo, G., Asp, H., Schreinemachers, C. & Vijgen, H. Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: batch extraction optimization studies and stability tests. Solv. Extract. Ind. Extr. 25, 703–721 (2007).
42. Deblonde, G. et al. Spectroscopic and computational characterization of diethyleneetriaminepentaacetic acid/plutonium chelates: evidencing heterogeneity in the heavy actinide(III) series. Angew. Chem. Int. Ed. 57, 4521–4526 (2018).
43. Du, M., Tan, R. & Boll, R. Applications of MP-1 anion exchange resin and Eichrom LN resin in berkelium-249 purification. J. Radio. Nucl. Chem. 318, 619–629 (2018).
44. Du, M., Tan, R. & Boll, R. Applications of MP-1 anion exchange resin and Eichrom LN resin in berkelium-249 purification. J. Radio. Nucl. Chem. 318, 619–629 (2018).
45. Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions and lanthanide numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Inorg. Chem., 55, 1229–1229 (2016).
46. Oganesian, Y. T. et al. Results from the First249Cf + 48Ca Experiment. in Lawrence Livermore National Laboratory Report 02/032003, 11 (Livermore, CA, USA, 2017).
47. Kelley, M. P. & al. Bond covalency and oxidation state of actinide ions and lanthanide numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Inorg. Chem., 55, 1229–1229 (2016).