Evaluation of Clinical Outcome and Mixed Chimerism Follow-up after Allogeneic Hematopoietic Stem Cell Transplantation in Hematological Malignancies

Hematolojik Malignitelerde Allojenik Hematopoetik Kök Hücre Transplantasyonu Sonrası Miks Kimerizmin Takibi ve Kliniğe Yansımlarının Değerlendirilmesi

Taha Bahsi¹, Tuğçe Nur Yiğenoğlu², Haktan Bağış Erdem¹, Merih Kızıl Çakar², Mehmet Sinan Dal², Fevzi Altuntaş²

¹Department of Medical Genetics, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
²Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey

ABSTRACT

Objective: The level of donor-recipient chimerism is an established method to document donor engraftment. Allogeneic stem cell transplantation (ASCT) may result in mixed hematopoietic chimerism (MC), especially after reduced intensity conditioning regimens. Increasing MC levels in the post ASCT period may indicate disease relapse, graft failure, or rejection. In this study we aimed to study clinical outcome of mixed chimerism after ASCT in patients with hematological diseases.

Methods: The data of 335 patients whose ASCT were performed at our center between 2009 and 2019 and survived more than three months after transplantation were analyzed retrospectively.

Results: During follow up period 127 (43%) of 293 patients in full chimeric (FC) group and 11 (26.1%) of 42 patients in MC group died. 11 patients received donor lymphocyte infusions (DLI) after MC detected, 4 of them converted into FC. 10 mix chimeric patients converted into FC spontaneously. During follow up period 127 (43%) of 293 patients in FC group and 11 (26.1%) of 42 patients in MC group died. 11 patients received donor lymphocyte infusions (DLI) after MC detected, 4 of them converted into FC. 10 mix chimeric patients converted into FC spontaneously.

Conclusion: ASCT may result in MC especially after RIC regimens. MC does not always related with relapse risk and mix chimeric patients with malignant or benign hematological diseases can stay in remission for a long time.

Key Words: Chimerism, stem cell transplantation, allogeneic

Received: 11.12.2019 Accepted: 12.05.2019

ÖZET

Amaç: Alıcının kimerizm düzeyinin takibi, donör engraftasyonunu tespit etmek için kullanılan bir yöntemdir. Allojenik kök hücre nakli (AKHN), özellikle düşük yoğunluklu hazırlıklardan sonra karışık tip kimerizme neden olabilir. AKHN sonrası karışık tip kimerizm seviyelerinin artması, hastalıktaki nüksü, greft yetmezliği veya reddini gösterebilir. Bu çalışmada, hematolojik malignite sebebiyle AKHN yapılan hastalarda, nakil sonrası karışık tip kimerizmin kliniğe yansımaları değerlendirilmiştir.

Yöntem: Merkezimizde 2009-2019 yılları arasında AKHN uygulanan ve transplantasyon sonrası sağkalımı üç ay üzerinde olan, 335 hastanın verileri retrospektif olarak incelendi.

Bulgular: Takipler sırasında, tam kimerik gruptan 293 hastanın 127’si (%43) ve karışık tip kimerizm grubundan ise 42 hastanın 11’i (%26.1) kaybedildi. Karışık tip kimerizm saptanan 11 hastaya donor lenfosit infüzyonu uygulandı, işlem sonrası 4 hasta tam kimerizme döndü. Yine karışık tip kimerizm tespit edilen 10 hasta ise kendiliğinden tam kimerizme dönüşmüştür. Takipler sırasında üç hastada donör ait hücre gözlenmedi (%0). Bu hastaların ikişi hala remisyonda takip edilmektedir. Karışık tip kimerizmde kalan 25’tir. Düşük yoğunluklu hazırlık 66 hastaya uygulandı ve bunların 10’unda (%15.1) karışık tip kimerizm tespit edildi. 269 hastaya miyelobaflatift kondisyon rejimi uygulandı ve bunların 32’sinin (%11.8) takiplerinde karışık tip kimerizm tespit edildi.

Sonuç: AKHN, özellikle düşük yoğunluklu hazırlıktan sonra karışık tip kimerizm ile sonuçlanabilir. Karışık tip kimerizm her zaman nüks riskiyle ilişkili değildir ve bu durumda uzun süre remisyonda kalabilirler.

Anahtar Sözcüklер: Kimerizm, kök hücre nakli, allojenik

Geliş Tarihi: 12.11.2019 Kabul Tarihi: 05.12.2019
INTRODUCTION

Allogeneic stem cell transplantation (ASCT) is a potentially curative treatment used in a variety of benign and malignant hematologic diseases, solid tumors, neurological disorders, autoimmune diseases and immunodeficiencies. Early after ASCT, infections and graft-versus-host disease (GVHD) are major causes of death (1). The outcome of ASCT in malignant hematological diseases depends mainly on the immunologic graft-versus-leukemia effect of donor cell reactivity against host malignant cells whereas in benign hematological diseases it depends mainly on the replacement of donor’s cells instead of recipient’s cells and recovery of hematopoeisis.

Conditioning regimens for ASCT have variable intensity, toxicity and have been termed as myeloablative, reduced intensity, and non-myeloablative regimens. Myeloablative conditioning (MAC) regimen results in a long-lasting pancytopenia that is irreversible unless hematopoiesis is restored by infusion of donor stem cells. A non-myeloablative (NMA) regimen cause minimal cytopenia and may not require stem cell support. Reduced intensity conditioning (RIC) regimens cause cytopenias, which may be prolonged and require hematopoietic stem cell support (2–5). RIC regimens could decrease toxicity and related mortality (6). The approach has extended the scope of ASCT in patients who are not eligible candidates for standard ASCT because of their advanced age and/or comorbidities (6–9). 100 days after ASCT, relapse is the major cause of death and its incidence and outcome have not significantly improved over the last decades (1). A randomized study compared RIC and MAC conditioning regimens and found that RIC was associated with more relapse (10). The risk of relapse after RIC is 25–60% (11–16), and the median time to disease relapse is 3–7 months (17–20), therefore evaluating patients to detect relapse early in the post-transplant period is very important especially in patients who received NMA or RIC regimens. If relaps can be detected early after ASCT, treatments that can potentially prevent disease recurrence and improve survival such as maintenance regimens or donor lymphocyte infusions (DLI) should be considered (21).

The level of donor-recipient chimerism is an established method to document donor engraftment (22). ASCT may result in mixed hematopoietic chimerism (MC), especially after RIC regimens and after T-cell depletion that was not repeatable were discarded. Mixtures were assessed using allele-specific amplification (ASA) in order to obtain a single profile and to account for allelic drop-ins. Alleles were accepted as statistically significant.

MATERIALS and METHOD

Sample Preparation

In this study, the data of ≥18 years old patients whose ASCT were performed at Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital Bone Marrow Transplantation Center between 2009-2019 were analyzed retrospectively. Patients died due to transplant related mortality in the first 100 days after ASCT were excluded from the study.

Disease relapse was defined as morphologic, cytogenetic or radiologic evidence of disease demonstrating pre-transplant characteristics. Bone marrow biopsies were routinely performed at day 30. Donor-recipient chimerism levels were measured in the peripheral blood on day 30, 60, 90, and then every 3 months in the first two years and on every six months between 2nd and 5th year and annually after 5 years. Chimerism testing was performed more frequently in those with persistent MC. MC was defined as persistence of 5% to 95% residual recipient hematopoietic cells.
Median follow up of all patients was 33 months. During follow up period 127 (43%) of 293 patients in FC group and 11 (26.1%) of 42 patients in MC group died. 11 patients received DLI after MC detected, 4 of them converted into FC. 10 mix chimeric patients converted into FC spontaneously. In 3 patients no donor cell was observed in time (0%). 2 of them are still in remission. 25 patients remained mix chimeric during follow up period.

In our study, 66 patients received RIC regimen and 10 (15.1%) of them had MC during follow up period. 3 of these 10 mix chimeric patients who received RIC regimen had relapse disease and 2 of them died. 269 patients received MAC regimen and 32 (11.8%) of them had MC during follow up period. 14 of these 10 mix chimeric patients who received MAC regimen had relapse disease and 9 of them died. Lowest level of donor chimerism, time of first MC, time of lowest level of MC, relaps and mortality ratio, PFS and OS of mix chimeric patients were given in Table 2.

DISCUSSION

The ability to detect relapse early in the post-transplant period is important to make treatment plan that can prevent disease recurrence and improve survival such as maintenance regimens or DLI. In addition determining chimerism may also be useful to monitor response to a DLI (29-31). There has been conflicting results regarding the correlation between disease relapse and chimerism levels after ASCT (31–34). In contrast to myeloablative transplants, RIC ASCT frequently results in varying degrees of MC (32, 33). Furthermore, MC may remain stable over time and may be together with prolonged remission, particularly in nonmalignant diseases, where MC may indicate a tolerant state associated with a low incidence of GvHD (36,37). Persisting MC was reported in 19 patients with hematological malignancies, with a median leukemia free survival of 12.5 years, and in patients with nonmalignant diseases, over a median period of 9.5 years after ASCT (38). In our study the mortality rate in MC patients was 26.1% and relapse rate was 40.4%. 59.5% of patients with MC is still in remission. The mortality rate in MC patients with hematological malignancy was 31.4 % and relapse rate was 45.7%. The relapse rate in MC patients with benign hematological diseases was 14.2% and no patient with benign hematological disease died. In the study conducted by Reshef et al, they found that early donor-recipient chimerism levels predicted relapse in ASCT recipients who received a peripheral blood stem-cell graft after a uniform RIC regimen. They found that the risk for relapse at 1 year in patients who have chimerism levels of 90, 95 and 100% are 52, 34 and 21% respectively (21). In our study, 66 patients received RIC regimen and 10 of them had MC during follow up period. 3 of these 10 mix chimeric patients had relapse disease and 2 of them died. In the study conducted by Levrat et al, MC remained stable in 72% (23/32) of mix chimeric patients alive at 10 years (25). In our study, 11 patients received DLI after MC detected, 4 of them converted into FC. 10 mix chimeric patients converted into FC spontaneously. In 3 patients no donor cell was observed in time (0%). 2 of them are still in remission. 25 patients remained mix chimeric during follow up period.

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Robert Zeiser, Luca Vago. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood. 2019; 133:1290-7
2. Khouri IF, Keating M, Körbling M, Przepiorka D, Anderlini P, Giralt SO et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998;16:2817
3. Champlin R, Khouri I, Shimoni A, Gajewski J, Kornblau S, Melldrem J et al. Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic
haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br J Haematol 2000;111:18
4. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2009;15:367
5. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V et al. Defining the intensity of conditioning regimes: working definitions. Biol Blood Marrow Transplant 2009; 15:1628
6. Wahid SF. Indications and outcomes of reduced-toxicity hematopoietic stem cell transplantation in adult patients with hematological malignancies. Int J Hematol 2013;97:581-98
7. Cornelissen JJ, Gratwah A, Schlenk RF, Sierra J, Bornhauser M, Jullusson G et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol 2012;9:579
8. Horwitz ME. Reduced intensity versus myeloablative allogeneic stem cell transplantation for the treatment of acute myeloid leukemia, myelodysplastic syndrome and acute lymphoid leukemia. Curr Opin Oncol 2011;23:197-202
9. Pidala J, Kim J, Anasetti C, Dabaja MAK, Nishihori T, Field T et al. Pharmacokinetic targeting of intravenous busulfan reduces conditioning regimen related toxicity following allogeneic hematopoietic cell transplantation for acute myelogenous leukemia. J Hematol Oncol 2010;3:36
10. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol 2017;35:1154-61
11. Schmid C, Labopin M, Nagler A, Niederwieser D, Castagna L, Tabrizi R et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood. 2012; 119:1599–606
12. Storb R, Gyurkoza B, Storer BE, Sorrall MR, Blume K, Niederwieser D et al. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2013; 31:1530-8
13. Chen YB, Coughlin E, Kennedy KF, Alyea PE, Armand P, Attar EC et al. Busulfan dose intensity and outcomes in reduced-intensity allogeneic peripheral blood stem cell transplantation for acute myeloid leukemia. Biol Blood Marrow Transplant. 2013; 19:981–7
14. Luger SM, Ringden O, Zhang MJ, Peres WZ, Bishop WR, Bornhauser M et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transpl. 2012; 47:203–11
15. Brunstein CG, Fuchs EJ, Carter SL et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–5
16. Sureda A, Robinson S, Canals C, Karanes C, Costa UJ, Wu J et al. Reduced-intensity conditioning compared with conventional allogeneic stem-cell transplantation in relapsed or refractory Hodgkin's lymphoma: an analysis from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2008; 26:455–62
17. Gyurkoza B, Storb R, Storer BE, Chauncey TR, Lange T, Shizuru JA et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010; 28:2859–67
18. Bethega WA, Storer BE, Maris MB, Flowers ME, Maloney DG, Chauncey TR et al. Relapse or progression after hematopoietic cell transplantation using nonmyeloablative conditioning: effect of interventions on outcome. Exp Hematol. 2003; 31:974–80
19. Tauro S, Craddock C, Peggs K, Begum G, Mahendra P, Cook G et al. Allogeneic stem-cell transplantation using a reduced-intensity conditioning regimen has the capacity to produce durable remissions and long-term disease-free survival in patients with high-risk acute myeloid leukemia and myelodysplasia. J Clin Oncol. 2003; 21:9387–93
20. Sureda A, Canals C, Arranz R, Caballero D, Ribera JM, Brunet B et al. Allogeneic stem cell transplantation after reduced intensity conditioning in patients with relapsed or refractory Hodgkin's lymphoma. Results of the HDR-ALLO study - a prospective clinical trial by the Grupo Espanol de Linfomas/Trasplante de Medula Osca (GE/TLAMO) and the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2012; 97:310–7
21. Reshef R, Henxer E, Loren A, Frey NV, Stadtmueller EA, Luger SM et al. Early donor chimerism levels predict relapse and survival after allogeneic stem-cell transplantation with reduced intensity conditioning. Biol Blood Marrow Transplant. 2014 November; 20: 1758–66
22. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2001; 7:743–85
23. Van Leeuwen J, E M, Van Tol J M, D, Joosten A M, Wijns J T, Verweij PJ, Khan PM et al. Persistence of host-type haemopoiesis after allogeneic bone marrow transplantation for leukemia is significantly related to the recipient's age and/or the conditioning regimen, but it is not associated with an increased risk of relapse. Blood. 1994;83:3059-67
24. Bretagne S, Vidal M, Kuentz M, Cordier R, Henri T, Vinci G et al. Mixed blood chimerism in T cell-depleted bone marrow transplant recipients: evaluation using DNA polymorphisms. Blood. 1987;10:16
25. Levent E, Rossean E, Masouidi S, Mohity A, Barsani M, Villard J et al. Very Long Term Stability of Mixed Chimerism after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Hematologic Malignancies. Bone Marrow Research. 2015. Article ID 903476
26. Bader P, Niethammer D,William A, Kreyenberg H, Klingebiel T et al. How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant. 2005;35:107-19
27. Rihn C, Cilley J, Naik P, Pedicano AV, Mehta J. Definition Of Myeloid Engraftment After Allogeneic Hematopoietic Stem Cell Transplantation. Haematologica January. 2004;89:763-4
28. Caragane T, Mikulasovic R, Tamariz J, Bajda E, Sebestyen J, Baum H et al. Validation of Testing and Interpretation Protocols for Low Template DNA Samples Using AmpFSTR® Identifier®. CMI. 2009;50:250-67
29. Dey RB, McAftee S, Colby C, Sackstein R, Saidman S, Tarbell N et al. Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biology of Blood and Marrow Transplantation. 2003;9:320-9
30. Rettinger E, Willasch AM, Kreyenberg H, Borkhardt A, Holter W, Kremens B et al. Preemptive immunotherapy in childhood acute myeloid leukemia for patients showing evidence of mixed chimerism after allogeneic stem cell transplantation.Blood. 2011;118:5681-8
31. Peggs KS, Kayani J, Edwards N, Kottaridis P, Goldstone AH, Hogh DCL et al. Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for Hodgkin's lymphoma. Journal of Clinical Oncology. 2011;29:97-11
32. Valcarcel D, Martino R, Caballero D, Mateos MV, Perez-Simon JA, Canals C et al. Chimerism analysis following allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning. Bone Marrow Transpl. 2003;31:387–92
33. Baron F, Baker JE, Storb R, Gooley TA, Maris MB, et al. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. 2004; 104:2254–62
34. Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood. 1999; 94:3234–41
35. Sato B, Fukuda T, Yokoyama H, Kurosawa S, Takahashi T, Fujii S et al. Impact of T cell chimerism on clinical outcome in 117 patients who underwent allogeneic stem cell transplantation with a busulfan-containing reduced-intensity conditioning regimen. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation. 2008;14:1148-55
36. Park M, Koh KN, Seo JJ, Im H. Clinical implications of chimerism after allogeneic hematopoietic stem cell transplantation in children with non-malignant diseases. Korean Journal of Hematology. 2011;46:258-64
37. Svenberg P, Mattsson J, Ringdén O, Uusen M. Allogeneic hematopoietic SCT in patients with non-malignant diseases, and importance of chimerism. Bone Marrow Transplantation. 2009;44:757-63
38. Stikvoort A, Gertov J, Sundin M, Remminger M, Mattsson J, Uhlin M. Chimerism patterns of long-term stable mixed chimeras post hematopoietic stem cell transplantation in patients with nonmalignant diseases: follow-up of long-term stable mixed chimerism patients. Biology of Blood and Marrow Transplantation. 2013;19:838-44