Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials

Bo Liu¹, Chaojun Tang²*, Jing Chen³,⁴,⁵*, Ningyan Xie³, Huang Tang¹, Xiaoqin Zhu¹ and Gun-sik Park⁴

Abstract

It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO₂ spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO₂ spacer or the distance between the Ag nanodisks. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.

Keywords: Light absorption, Monolayer graphene, Magnetic dipole resonances, Metamaterials, Plasmonics

Background

Graphene, a monolayer of carbon atoms tightly arranged in two-dimensional (2D) honeycomb lattice, was first separated from graphite experimentally in 2004 [1]. Since then, graphene has attracted enormous attentions in the scientific community, partly owing to its exceptional electronic and optical properties, including fast carrier velocity, tunable conductivity, and high optical transparency [2]. As one kind of 2D emerging materials, graphene has promising potentials in a wide variety of fields ranging from optoelectronics [3–6] to plasmonics [7–10], to metamaterials [11–15], etc. Due to its unique conical band structure of Dirac fermions, the suspended and undoped graphene exhibits a universal absorption of approximately 2.3% within the visible and near-infrared regions, which is related to the fine structure constant in a monolayer atomic sheet [16, 17]. The optical absorption efficiency is impressive, considering that graphene is only about 0.34 nm thick. However, it is still too low to be useful for optoelectronic devices such as photodetectors and solar cells, which need considerably higher absorption values for efficient operation.

To overcome this problem, various physical mechanisms [18–43] to enhance absorption of graphene in the visible region have been proposed, which include strong photon localization on the defect layer in one-dimensional (1D) photonic crystals [18, 28, 33, 38], total internal reflection [19, 20, 23, 27], surface plasmon resonances [21, 22, 30, 31, 33], evanescent diffraction orders of the arrays of metal nanoparticles [34], and critical coupling to guided mode resonances [25, 26, 32, 34, 35, 37, 39–41]. Besides
the absorption enhancement in graphene, achieving multi-band and broadband light absorption in graphene is also important for some graphene-based optoelectronic devices from a practical point of view. But, it is still a challenge, as pointed out in the very recent reports [44–46]. At present, different approaches have been proposed to broaden the bandwidth of graphene absorption in wide frequency range from THz [44–62] and infrared [63–65] to optical frequencies [19, 23, 29, 31, 34–36, 38–40, 43]. Especially, a multi-resonator approach was proven to be a very effective method to resolve the bandwidth limitation of graphene absorption in the THz and infrared regions [45, 46, 62, 63]. In the multi-resonator approach, deep-subwavelength multiple resonators with different sizes are closely packed, which could extend the absorption bandwidth when their resonance frequencies overlap with each other. However, to the best of our knowledge, up to now there are only a few reports on such a multi-resonator approach to obtain multiband and broadband light absorption of graphene in the visible region.

In this work, by employing similar multi-resonator approach, we will numerically demonstrate multiband and broadband absorption enhancement of monolayer graphene in the whole visible wavelength range, which arise from a set of magnetic dipole resonances in metamaterials. The unit cell of metamaterials consists of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO₂ spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into four-band absorption enhancement of monolayer graphene. When the magnetic dipole modes are tuned to be overlapped spectrally by changing the diameters of Ag nanodisks, a broadband absorption enhancement is achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO₂ spacer or the distance between the Ag nanodisks.

Methods/Experimental
The designed metamaterials for multiband and broadband absorption enhancement of graphene at optical frequencies are schematically shown in Fig. 1. The unit cell of the metamaterials consists of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO₂ spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into four-band absorption enhancement of monolayer graphene. When the magnetic dipole modes are tuned to be overlapped spectrally by changing the diameters of Ag nanodisks, a broadband absorption enhancement is achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO₂ spacer or the distance between the Ag nanodisks.

Experimental data [66]. Under the random-phase approximation, the complex surface conductivity σ of graphene is the sum of the intraband term σ_{intra} and the interband term σ_{inter} [67, 68], which are expressed as follows:

$$\begin{align*}
\sigma_{\text{intra}} &= -\frac{i e^2}{2 \pi \hbar} \ln \left(2 E_f^2 \left(\omega + i/\tau \right) \hbar \right), \\
\sigma_{\text{inter}} &= -\frac{i e^2}{2 \pi \hbar} \ln \left(2 E_f^2 \left(\omega + i/\tau \right) \hbar \right),
\end{align*}$$

where ω is the frequency of incident light, e is electron charge, \hbar is reduced Planck constant, E_f is Fermi energy (or chemical potential), τ is the relaxation time of electron-phonon, k_B is Boltzmann constant, T is temperature in K, and i is the imaginary unit. Graphene has an anisotropic relative permittivity tensor of ε_g expressed as

$$\varepsilon_g = \begin{pmatrix}
1 + i \sigma / (\omega \varepsilon_0 t_g) & 0 & 0 \\
0 & 1 + i \sigma / (\omega \varepsilon_0 t_g) & 0 \\
0 & 0 & 1
\end{pmatrix},$$

where ε_0 is the permittivity of the vacuum, and t_g is the thickness of graphene sheet.

Results and Discussion
Figure 2 shows the calculated absorption spectra of graphene, Ag, and total metamaterials at normal incidence.
One can clearly see four absorption peaks, whose resonance wavelengths are $\lambda_1 = 722.9$ nm, $\lambda_2 = 655.7$ nm, $\lambda_3 = 545.5$ nm, and $\lambda_4 = 468.8$ nm. At four absorption peaks, the light absorption in graphene can reach as high as 65.7, 61.2, 68.4, and 64.5%, respectively. Compared with a suspended monolayer graphene whose absorption efficiency is only 2.3% at optical frequencies [16, 17], the monolayer graphene in our designed metamaterials has an absorption enhancement of more than 26 times. It is also clearly seen in Fig. 2 that the absorbed light is mainly dissipated in graphene rather than in Ag. Moreover, the total absorption at the third peak exceeds 98.5%, very similar to much reported metamaterial electromagnetic wave perfect absorbers [69–75], which have many potential applications such as solar cells [76–81].

To find the physical origins of above four absorption peaks, Figs. 3 and 4 plot the distributions of electric and magnetic fields at the resonance wavelengths of λ_1, λ_2, λ_3, and λ_4. At the resonance wavelength of λ_1, the electric fields are mainly concentrated near the left and right edges of the first Ag nanodisk with a diameter of d_1 (see Fig. 3a), and the magnetic fields are highly confined within the SiO$_2$ region under the first Ag nanodisk (see Fig. 4a). Such field distributions correspond to the excitation of a magnetic dipole mode [82–86], which steps from the near-field plasmon hybridization between the first Ag nanodisk and the Ag substrate. At the resonance wavelengths of λ_2, λ_3, and λ_4, the electromagnetic fields have the same distribution properties, but are localized in the vicinity of the second, third, and fourth Ag nanodisks with diameters of d_2, d_3, and d_4, respectively. In short, the excitations of four independent magnetic dipole modes lead to the appearance of four absorption peaks in Fig. 2.

![Fig. 2 Normal-incidence absorption spectra of monolayer graphene (red circle), Ag (green triangle), and total metamaterials (black square) in the wavelength range from 450 to 800 nm. Geometrical and physical parameters: $p_x = p_y = 400$ nm, $d_1 = 140$ nm, $d_2 = 110$ nm, $d_3 = 80$ nm, $d_4 = 50$ nm, $h = 50$ nm, $t = 30$ nm, $E_f = 0.50$ eV, $\tau = 0.50$ ps, $T = 300$ K, $t_g = 0.35$ nm](image1)

![Fig. 3 (a–d) Corresponding normalized electric field intensity (E/E_{in}) on the xoz plane across the center of the SiO spacer for the resonance wavelengths of λ_1, λ_2, λ_3, and λ_4 labeled in Fig. 2. Red arrows represent the field direction, and colors show the field strength](image2)
In our designed metamaterials, the near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene in the visible wavelength range from 450 to 800 nm, with an average absorption efficiency exceeding 50% (please see Fig. 2). The resonance wavelength of each magnetic dipole mode can be conveniently tuned by changing the diameter of the corresponding Ag nanodisk. If the diameters of the Ag nanodisks are varied for the absorption peaks in Fig. 2 to approach one another, a broad high-absorption band of monolayer graphene will be formed. To demonstrate this, Fig. 5 presents the normal-incidence absorption spectra of monolayer graphene, when the diameters of four Ag nanodisks are equal to 110, 90, 70, and 50 nm, respectively. In this case, a broadband absorption enhancement in the wavelength range from 450 to 650 nm is achieved by the spectral design on the overlapped absorption peaks, with the lowest (highest) absorption efficiency more than 50% (73%). For the diameters of the Ag nanodisks to be increased gradually, this broad high-absorption band is red-shifted, as shown in Fig. 5b, c.

Besides the diameters of the Ag nanodisks, we can tune the position of the absorption band in monolayer graphene by changing the thickness t of the SiO$_2$ spacer. Figure 6 shows the normal-incidence absorption spectra in monolayer graphene, for t to be increased from 25 to 45 nm. With the increasing t, the absorption band in monolayer
graphene will have an obvious blue-shift, because the near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate become weaker and thus magnetic dipole modes are blue-shifted [83].

In the above calculations, the coordinate points of four Ag nanodisks are \((\pm px/4, \pm py/4) \), so the center distance \(l \) between the nearest-neighbor Ag nanodisks is 200 nm. By varying \(l \), we can also tune the position of the absorption band in monolayer graphene. Figure 7 gives the normal-incidence absorption spectra in monolayer graphene, for \(l \) to be decreased from 220 to 160 nm. With the decreasing \(l \), the absorption band in monolayer graphene is slightly blue-shifted, owing to the plasmon interactions among the Ag nanodisks.

Conclusions

In this work, we have numerically investigated multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials consists of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2 spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene in the visible wavelength range. When the magnetic dipole modes are tuned to be overlapped spectrally by changing the diameters of Ag nanodisks, a broadband absorption enhancement is achieved. The position of the absorption band in monolayer graphene can be also controlled, by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. The numerical results may have some potential applications in optoelectronic devices, such as photodetectors.

Abbreviations

1D: One-dimensional; 2D: Two-dimensional; FDTD: Finite difference time domain

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11304159 and 11104136, the Natural Science Foundation of Zhejiang Province under Grant No. LY14A040004, the Natural Science Foundation of Jiangsu Province under Grant No. BK20161512, the Qing Lan Project of Jiangsu Province, the Open Project of State Key Laboratory of Millimeter Waves under Grant No. K201821, and the NUPTSF under Grant Nos. NY217045 and NY218022. J. Chen also acknowledges partial support from the National Research Foundation of Korea under "Young Scientist Exchange Program between the Republic of Korea and the People's Republic of China".

Availability of Data and Materials

All data are fully available without restriction.

Authors' Contributions

BL, CT, and JC contributed equally to this work. BL, CT, and JC performed the design, analyzed the data, and drafted the manuscript. CT, JC, and GP guided the idea and the simulations, and checked the figures. All authors read and approved the final manuscript.

Ethics Approval and Consent to Participate

We declare that there are no concerning data of human and animals.

Competing Interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China. 2Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China. 3College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and
Telecommunications, Nanjing 210023, China. 1Department of Biomedical Systems, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea. 2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China.

Received: 12 March 2018 Accepted: 8 May 2018 Published online: 16 May 2018

References

1. Novoselov KS, Geim AK, Morozov SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
2. Ferrari AC et al. (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nano 7:4598–4810
3. Ye Y, Dai L, Gan L, Meng H, Dai Y, Guo XF, Qin GG (2012) Novel optoelectronic devices based on single semiconductor nanowires (nanobelts). Nanoscale Res Lett 7:218
4. Lin F, Tong X, Wang YN, Bao JM, Wang ZM (2011) Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display. Nanoscale Res Lett 10:435
5. Bao QL, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694
6. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Graphene plasmonics for tunable terahertz absorption by monolayer graphene. Opt Lett 38:4342–4345
7. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Graphene plasmonics for tunable terahertz absorption by monolayer graphene. Opt Lett 38:4342–4345
8. Zou JF, Liu QH, Lin C (2013) Manipulating light absorption of graphene using plasmonic nanoparticles. Nano 5:7785–7789
9. Zhao WS, Shi KF, Lu ZL (2013) Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt Lett 38:4342–4345
10. Zou JF, Liu QH, Lin C (2013) Manipulating light absorption of graphene using plasmonic nanoparticles. Nano 5:7785–7789
11. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294
12. Chen PY, Aku A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855–5863
13. Zhu JF, Liu QH, Lin C (2013) Manipulating light absorption of graphene using plasmonic nanoparticles. Nano 5:7785–7789
14. Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin X, Choi GG, Choi SY, Zhang X, Min B (2012) Switching terahertz waves with controlled active graphene metamaterials. Nat Mater 11:3365–3377
15. Takin S, Koschny T, Kafeschi M, Soukoulis CM (2012) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photonics 6:259–264
16. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of atomically thin carbon films. Science 306:666–669
17. Dawlaty JM, Shivarame S, Strait J, George P, Chandrashekhar M, Rana F, Spencer MG, Veksler D, Chen YQ (2008) Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 93:139105
18. Liu JT, Liu NH, Li J, Liu XJ, Huang JH (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101:052104
19. Pirincu G, Moreno LM, Lozano G, Rivas JG (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7:4810–4817
20. Ye Q, Wang J, Liu ZB, Deng ZC, Kong XT, Xing F, Chen XD, Zhou YW, Zhang CP, Tian JG (2013) Polarization-dependent optical absorption of graphene under total internal reflection. Appl Phys Lett 102:021912
21. Hashemi M, Farhat M, Baghi S (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21:29938–29948
22. Mathieu C, Benramdane N (2014) Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal. Opt Commun 337:129–137
23. Dong B, Wang P, Liu ZB, Chen XD, Jiang WS, Xin W, Xing F, Tian JG (2014) Large tunable optical absorption of CVD graphene under total internal reflection by strain engineering. Nanotechnology 25:455707
24. Grande M, Vincenti MA, Stomeo T, de Ceglia D, Petruzzelli V, De Vittorio M, Scalia M, D’Orazio A (2014) Absorption and losses in one-dimensional photonic-crystal-based absorbers incorporating graphene. IEEE Photonics J 6:0600808
25. Miloua R, Kebbab Z, Chiker F, Khadraoui M, Sahraoui K, Bouzidi A, Meddies L, Mathieu C, Bertrand M (2014) Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal. Opt Commun 330:135–139
26. Cai YJ, Zhu JF, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106:043105
27. Liu J, Luo M, Zhu JF, Liu QH (2015) Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method. Opt Express 23:4539–4551
28. Grande M, Vincenti MA, Stomeo T, Bianco GV, de Ceglia D, Aközbe N, Petruzzelli V, Bruno G, De Vittorio M, Scalia M, D’Orazio A (2015) Graphene-based perfect optical absorbers harnessing guided mode resonances. Opt Express 23:21032–21042
29. Deng XH, Liu JT, Yuan JR, Liao QH, Liu NH (2015) A new transfer matrix method to calculate the optical absorption of graphene at any position in stratified media. EPL 109:27002
30. Zheng GG, Zhang HJ, Xu YH, Liu YZ (2016) Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range. Opt Lett 41:2274–2277
31. Long YB, Shen L, Xu HT, Deng HD, Li YX (2016) Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals. Sci Rep 6:33212
32. Lee YC, Lin KT, Chen HL (2016) Ultra-broadband and omnidirectional enhanced absorption of graphene in a simple nanocavity structure. Carbon 108:253–261
33. Long YB, Li YX, Shen L, Jiang WY, Deng HD, Xu HT (2016) Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors. J Phys D Appl Phys 49:32LT01
34. Liu YJ, Xie X, Xie L, Yang ZK, Yang HW (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127:5945–5948
35. Zheng G, Cong JW, Chen YY, Xu LH, Xiao SR (2017) Angularly dense comb-like enhanced absorption of graphene monolayer with attenuated-total-reflection configuration. Opt Lett 42:2984–2987
36. Wang N, Bu LB, Chen YY, Zheng GG, Zou XJ, Xu LH, Wang JC (2017) Multiband enhanced absorption of monolayer graphene with attenuated total reflectance configuration and sensing application. Appl Phys Express 10:015102
37. Guo J, Wu LM, Dai YX, Xiang YJ, Fan DY (2017) Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv 7:025101
38. Wan Y, Deng LG (2017) Modulation and enhancement of optical absorption of graphene-loaded plasmonic hybrid nanostructures in visible and near-infrared regions. J Appl Phys 121:163102
39. Huang FJ, Fu YQ (2017) Theoretical T circuit modeling of graphene-based metamaterial broadband absorber. Plasmonics 12:571–575
40. Amiri M, Farhat M, Baghi S (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21:29938–29948
41. Yi YY, Zhou M, Shi X, Gan QQ, Z J, Yu ZF (2015) A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene. Opt Express 23:10081–10090
42. Shi X, Ge LX, Wen WX, Han DH, Yang YP (2016) Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale. Opt Express 24:26357–26362
43. He SL, Chen T (2013) Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE Trans Terahertz Sci Technol 3:757–763
44. Ning RX, Liu SB, Zhang HF, Bian BR, Kong XK (2014) A wide-angle broadband absorber in graphene-based hyperbolic metamaterials. Eur Phys J Appl Phys 68:20401
