ON THE UNIQUENESS OF THE LIMITING SOLUTION TO A STRONGLY COMPETING SYSTEM

AVETIK ARAKELYAN AND FARID BOZORGNIA*

Abstract. This work is devoted to prove uniqueness result for the positive solution to a strongly competing system of Lotka-Volterra type in the limiting configuration, when the competition rate tends to infinity. Based on properties of limiting solution an alternative proof to show uniqueness is given.

1. Introduction

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded, and connected domain with smooth boundary. We take m to be an integer number. The aim of this paper is to investigate the uniqueness of solution for a competition-diffusion system of Lotka-Volterra type, with Dirichlet boundary conditions as the competition rate tends to infinity. This model of strongly competing systems have been extensively studied from different point of views, see [3, 5, 7, 6, 8, 9] and references therein.

The model describes the steady state of m competing species coexisting in the same area Ω. Let $u_i(x)$ denote the population density of the i^{th} component. The following system shows the steady state of interaction between m components

$$
\begin{cases}
\Delta u_i^\varepsilon = \frac{1}{\varepsilon} u_i^\varepsilon \sum_{j \neq i} u_j^\varepsilon(x) & \text{in } \Omega, \\
u_i^\varepsilon \geq 0, & i = 1, \ldots, m \text{ in } \Omega, \\
u_i^\varepsilon(x) = \phi_i(x), & i = 1, \ldots, m \text{ on } \partial \Omega.
\end{cases}
$$

Here ϕ_i are non-negative C^1 functions with disjoint supports that is, $\phi_i \cdot \phi_j = 0$, almost everywhere on the boundary, and the term $\frac{1}{\varepsilon}$ is the competition rate.

This model is also called adjacent segregation, modeling when particles annihilate each other on contact. The system (1.1) has been generalized for nonlinear diffusion or long segregation, where species interact at a distance from each other see [4]. Also in [10] the

2000 Mathematics Subject Classification. 35J57, 35R35.
Key words and phrases. Spatial segregation, Free boundary problems, Maximum principle.

A. Arakelyan was partially supported by State Committee of Science MES RA, in frame of the research project No. 16YR-1A017 .

*The corresponding author, F. Bozorgnia was supported by the FCT post-doctoral fellowship SFRH/BPD/33962/2009 .
generalization of this problem has been considered for the extremal Pucci operator. The numerical treatment of the limiting case in system (1.1) is given in [2].

The limiting configuration (solution) of (1.1) as ε tends to zero, is related to a free boundary problem and the densities u_i satisfy the system of differential inequalities. The uniqueness of limiting solution is proven for the cases $m = 2$ in [5] and $m = 3$ in planar domain, see [7]. Later in [11] these uniqueness results have been generalized to arbitrary dimension and arbitrary number of species.

In this work we give original proof for uniqueness of the limiting configuration for arbitrary m competing densities by employing properties of limiting solution, which is different approach and straightforward.

The outline of the paper is as follows: We state the problem in Section 2 and provide mathematical background and known results, which will be used in our proof. In Section 3 we prove the uniqueness of the system (1.1) in the limiting case as ε tends to zero.

2. Known Results and Mathematical Background

In this section we mention some of known results for the solutions of the system (1.1), which play an important role in our study. Namely, we recall some estimates and compactness properties.

To start with, for each fixed ε, the system (1.1) has a unique solution, see [11]. The authors in [11] use the sub- and sup-solution method for nonlinear elliptic systems to construct iterative monotone sequences which leads to the uniqueness in case of system (1.1).

Let $U^\varepsilon = (u_1^\varepsilon, \cdots, u_m^\varepsilon)$ be the unique solution of the system (1.1) for fixed ε. Then u_i^ε for $i = 1, \cdots, m$, satisfies the following differential inequality:

$$-\Delta u_i^\varepsilon \leq 0 \quad \text{in} \quad \Omega. \quad (1.2)$$

Define $\widehat{u}_i^\varepsilon$ as

$$\widehat{u}_i^\varepsilon := u_i^\varepsilon - \sum_{j \neq i} u_j^\varepsilon,$$

then it is easy to verify the following property

$$-\Delta \widehat{u}_i^\varepsilon = \sum_{j \neq i} \sum_{h \neq j} u_j^\varepsilon u_h^\varepsilon \geq 0. \quad (1.3)$$

By constructing of sub and super solution to the system (1.1), we can show that $\frac{\partial u_i^\varepsilon}{\partial n}$ is bounded on $\partial \Omega$ (independent of ε). Then multiplying the inequality $-\Delta u_i^\varepsilon \leq 0$ by u_i^ε and integrating by part yields that u_i^ε is bounded in $H^1(\Omega)$ for each ε.

The above discussion show that the solution of the system (1.1) belongs to the following class F, see Lemma 2.1 in [5].

$$F = \{(u_1, \cdots, u_m) \in (H^1(\Omega))^m : u_i \geq 0, -\Delta u_i \leq 0, -\Delta \widehat{u}_i \geq 0, u_i = \phi_i \text{ on } \partial \Omega\},$$
where as in system (1.1) the boundary data \(\phi_i \in C^1(\partial \Omega) \), nonnegative functions and \(\phi_i \cdot \phi_j = 0 \), almost everywhere on the boundary.

The following result in [3, 5] shows the asymptotic behavior of the system as \(\varepsilon \to 0 \). Let \(U^\varepsilon = (u_1^\varepsilon, \ldots, u_m^\varepsilon) \) be the solution of system (1.1) for a fixed \(\varepsilon \). If \(\varepsilon \) tends to zero, then there exists \(U = (u_1, \ldots, u_m) \in (H^1(\Omega))^m \) such that for all \(i = 1, \ldots, m \):

1. up to a subsequences, \(u_i^\varepsilon \to u_i \) strongly in \(H^1(\Omega) \),
2. \(u_i \cdot u_j = 0 \) if \(i \neq j \) a.e in \(\Omega \),
3. \(\Delta u_i = 0 \) in the set \(\{ u_i > 0 \} \),
4. Let \(x \) belongs to the common interface of two components \(u_i \) and \(u_j \), then
 \[
 \lim_{y \to x} \nabla u_i(y) = -\lim_{y \to x} \nabla u_j(y).
 \]

From above the limiting solution, as \(\varepsilon \) tends to zero, belongs to the following class:

\[
S = \{(u_1, \ldots, u_m) \in F : u_i \cdot u_j = 0 \text{ for } i \neq j \}.
\]

Note that the inequalities in (1.2) and (1.3) hold as \(\varepsilon \) tends to zero. Also

\[
-\Delta \tilde{u}_i = 0 \text{ on } \{ x \in \Omega : u_i(x) > 0 \}.
\]

In this part we briefly review the known results about uniqueness of the limiting configuration of the system (1.1). In particular, for the case \(m = 2 \), the limiting solution and the rate of convergence are given (see Theorem 2.1 in [5]). For the sake of clarity we recall that result below.

Theorem 2.1. Let \(W \) be harmonic in \(\Omega \) with the boundary data \(\phi_1 - \phi_2 \). Let \(u_1 = W^+ \), \(u_2 = -W^- \), then the pair \((u_1, u_2) \) is the limit configuration of any sequences \((u_1^\varepsilon, u_2^\varepsilon) \) and:

\[
\| u_i^\varepsilon - u_i \|_{H^1(\Omega)} \leq C \cdot \varepsilon^{1/6} \text{ as } \varepsilon \to 0, \quad i = 1, 2.
\]

For the case \(m = 3 \), the uniqueness of the limiting configuration, as \(\varepsilon \) tends to zero, is shown in [7] on a planar domain, with appropriate boundary conditions. More precisely, the authors prove that the limiting configuration of the following system

\[
\begin{cases}
\Delta u_i^\varepsilon = \frac{u_i^\varepsilon(x)}{\varepsilon} \sum_{j \neq i}^3 u_j^\varepsilon(x) & \text{in } \Omega, \\
u_i^\varepsilon(x) = \phi_i(x) & \text{on } \partial \Omega,
\end{cases}
\]

minimizes the energy

\[
E(u_1, u_2, u_3) = \int_{\Omega} \sum_{i=1}^3 \frac{1}{2} |\nabla u_i|^2 dx,
\]

among all segregated states \(u_i \cdot u_j = 0 \), a.e. with the same boundary conditions.

Remark 1. The system (1.1) is not in a variational form. In [6] for a class of segregation states governed by a variational principle the proof of existence and uniqueness are shown under some suitable conditions.
In [11] the uniqueness of the limiting configuration and least energy property are generalized to arbitrary dimension and for arbitrary number of components. Following notations in [11], let \(\sum \) denote the metric space

\[
\{(u_1, u_2, \cdots, u_m) \in \mathbb{R}^m : u_i \geq 0, u_iu_j = 0 \quad \text{for} \quad i \neq j\}.
\]

The authors in [11] show that the solution of the limiting problem \((u_1, \cdots, u_m) \in \sum\) is a harmonic map into the space \(\sum\). The harmonic map is the critical point (in weak sense) of the following energy functional

\[
\int_\Omega \sum_{i=1}^m \frac{1}{2} |\nabla u_i|^2 \, dx,
\]

among all nonnegative segregated states \(u_i \cdot u_j = 0\), a.e. with the same boundary conditions, see Theorem 1.6 in [11].

Their proof is based on computing the derivative of the energy functional with respect to the geodesic homotopy between \(u\) and a comparison to an energy minimizing map \(v\) with same boundary values. This demands some procedures to avoid singularity of free boundary. Unlike their approach, our proof is more direct and based on properties of limiting solutions and doesn’t require results from regularity theory or harmonic maps.

3. Uniqueness

In this section we prove the uniqueness for the limiting case as \(\varepsilon\) tends to zero. Our approach is motivated from the recent work related to the numerical analysis of a certain class of the spatial segregation of reaction-diffusion systems (see [1]). We heavily use the following notation:

\[
\hat{w}_i(x) := w_i(x) - \sum_{p \neq i} w_p(x),
\]

for every \(1 \leq i \leq m\).

Lemma 3.1. Let two elements \((u_1, \cdots, u_m)\) and \((v_1, \cdots, v_m)\) belong to \(S\). Then the following equation for each \(1 \leq i \leq m\) holds:

\[
\max_{\Omega} (\hat{u}_i(x) - \hat{v}_i(x)) = \max_{\{u_i(x) \leq v_i(x)\}} (\hat{u}_i(x) - \hat{v}_i(x)).
\]

Proof. We argue by contradiction. Let there exists some \(i_0\) such that

\[
\max_{\Omega} \hat{u}_{i_0} - \hat{v}_{i_0} = \max_{\{u_{i_0} > v_{i_0}\}} (\hat{u}_{i_0} - \hat{v}_{i_0}) > \max_{\{u_{i_0} \leq v_{i_0}\}} (\hat{u}_{i_0} - \hat{v}_{i_0}).
\]

Assume \(D = \{x \in \Omega : u_{i_0}(x) > v_{i_0}(x)\}\), then in \(D\) we have

\[
\begin{cases}
-\Delta \hat{u}_{i_0}(x) = 0, \\
-\Delta \hat{v}_{i_0}(x) \geq 0,
\end{cases}
\]
which implies that
\[\Delta(\widehat{u}_{i_0}(x) - \widehat{v}_{i_0}(x)) \geq 0. \]

The weak maximum principle yields
\[\max_{\mathcal{D}} (\widehat{u}_{i_0} - \widehat{v}_{i_0}) \leq \max_{\partial\mathcal{D}} (\widehat{u}_{i_0} - \widehat{v}_{i_0}) \leq \max_{\{u_{i_0} = v_{i_0}\}} (\widehat{u}_{i_0} - \widehat{v}_{i_0}), \]
which is inconsistent with our assumption \([1.4]\). It is clear that we can interchange the role of \(\widehat{u}_i\) and \(\widehat{v}_i\). Thus, we also have
\[\max_{\Omega} (\widehat{u}_i(x) - \widehat{v}_i(x)) = \max_{\{u_i(x) \leq u_i(x)\}} (\widehat{v}_i(x) - \widehat{u}_i(x)), \]
for all \(1 \leq i \leq m\).

In view of Lemma \([3.1]\) we define the following quantities
\[P := \max_{1 \leq i \leq m} \left(\max_{\Omega} (\widehat{u}_i(x) - \widehat{v}_i(x)) \right) = \max_{1 \leq i \leq m} \left(\max_{\{u_i \leq v_i\}} (\widehat{u}_i(x) - \widehat{v}_i(x)) \right), \]
\[Q := \max_{1 \leq i \leq m} \left(\max_{\Omega} (\widehat{v}_i(x) - \widehat{u}_i(x)) \right) = \max_{1 \leq i \leq m} \left(\max_{\{v_i \leq u_i\}} (\widehat{v}_i(x) - \widehat{u}_i(x)) \right). \]

Lemma 3.2. Let two elements \((u_1, \ldots, u_m)\) and \((v_1, \ldots, v_m)\) belong to \(S\). We set \(P\) and \(Q\) as defined above. If \(P > 0\) is attained for some index \(1 \leq i_0 \leq m\), then we have \(P = Q > 0\). Moreover, there exist another index \(j_0 \neq i_0\) and a point \(x_0 \in \Omega\), such that:
\[P = Q = \max_{\{u_{i_0} \leq v_{i_0}\}} (\widehat{u}_{i_0} - \widehat{v}_{i_0}) = \max_{\{u_{i_0} = v_{i_0} = 0\}} (\widehat{u}_{i_0} - \widehat{v}_{i_0}) = v_{j_0}(x_0) - u_{j_0}(x_0). \]

Proof. Let the maximum \(P > 0\) be attained for the \(i_0\)th component. According to the previous lemma, we know that \((\widehat{u}_{i_0}(x) - \widehat{v}_{i_0}(x))\) attains its maximum on the set \(\{u_{i_0}(x) \leq v_{i_0}(x)\}\). Let that maximum point be \(x^* \in \{u_{i_0}(x) \leq v_{i_0}(x)\}\). It is easy to see that
\[\widehat{u}_{i_0}(x^*) - \widehat{v}_{i_0}(x^*) = P > 0, \]
implies \(u_{i_0}(x^*) = v_{i_0}(x^*) = 0\). Indeed, if \(u_{i_0}(x^*) = v_{i_0}(x^*) > 0\), then in the light of disjointness property of the components of \(u_i\) and \(v_i\) we get
\[P = \widehat{u}_{i_0}(x^*) - \widehat{v}_{i_0}(x^*) = u_{i_0}(x^*) - v_{i_0}(x^*) = 0 \]
which is a contradiction. If \(u_{i_0}(x^*) < v_{i_0}(x^*)\), then again due to the disjointness of the densities \(u_i, v_i\), we have
\[0 < P = \widehat{u}_{i_0}(x^*) - \widehat{v}_{i_0}(x^*) = \widehat{u}_{i_0}(x^*) - v_{i_0}(x^*) = u_{i_0}(x^*) - v_{i_0}(x^*) < 0. \]
This again leads to a contradiction. Therefore \(u_{i_0}(x^*) = v_{i_0}(x^*) = 0\).

Now assume by contradiction that \(Q \leq 0\). Then by definition of \(Q\) we should have
\[\widehat{v}_j(x) \leq \widehat{u}_j(x), \quad \forall x \in \Omega, \ j = 1, \ldots, m. \]
This apparently yields
\[v_j(x) \leq u_j(x), \quad \forall x \in \Omega, \ j = 1, \ldots, m. \]
Let $D_{i_0} = \{u_{i_0}(x) = v_{i_0}(x) = 0\}$, then we have

$$0 < P = \max_{D_{i_0}} (\hat{u}_{i_0}(x) - \hat{v}_{i_0}(x)) = \max_{D_{i_0}} \left(\sum_{j \neq i_0} (v_j(x) - u_j(x))\right) \leq 0.$$

This contradiction implies that $Q > 0$. By analogous proof, one can see that if P be non-positive then Q will be non-positive as well. Next, assume the maximum P is attained at a point $x_0 \in D_{i_0}$. Then, we get

$$0 < P = \hat{u}_{i_0}(x_0) - \hat{v}_{i_0}(x_0) = (u_{i_0}(x_0) - v_{i_0}(x_0)) + \sum_{j \neq i_0} (v_j(x_0) - u_j(x_0)) = \sum_{j \neq i_0} (v_j(x_0) - u_j(x_0)).$$

This shows that

$$\sum_{j \neq i_0} v_j(x_0) = \sum_{j \neq i_0} u_j(x_0) + P > 0.$$

Since $(v_1, \ldots, v_m) \in S$, then there exists $j_0 \neq i_0$ such that $v_{j_0}(x_0) > 0$. This implies

$$0 < P = \hat{u}_{i_0}(x_0) - \hat{v}_{i_0}(x_0) = v_{j_0}(x_0) - \sum_{j \neq i_0} u_j(x_0) \leq \hat{v}_{j_0}(x_0) - \hat{u}_{j_0}(x_0) \leq Q.$$

The same argument shows that $Q \leq P$ which yields $P = Q$. Hence, we can write

$$P = v_{j_0}(x_0) - \sum_{j \neq i_0} u_j(x_0) = \hat{v}_{j_0}(x_0) - \hat{u}_{j_0}(x_0) = Q.$$

This gives us $2 \sum_{j \neq j_0} u_j(x_0) = 0$, and therefore

$$u_j(x_0) = 0, \quad \forall j \neq j_0,$$

which completes the last statement of the proof. □

We are ready to prove the uniqueness of a limiting configuration.

Theorem 3.3. There exists a unique vector $(u_1, \ldots, u_m) \in S$, which satisfies the limiting solution of (1.1).

Proof. In order to show the uniqueness of the limiting configuration, we assume that two m-tuples (u_1, \ldots, u_m) and (v_1, \ldots, v_m) are the solutions of the system (1.1) as ε tends to zero. These two solutions belong to the class S. For them we set P and Q as above. Then, we consider two cases $P \leq 0$ and $P > 0$. If we assume that $P \leq 0$ then Lemma 3.2 implies that $Q \leq 0$. This leads to

$$0 \leq -Q \leq \hat{u}_i(x) - \hat{v}_i(x) \leq P \leq 0,$$

for every $1 \leq i \leq m$, and $x \in \Omega$. This provides that

$$\hat{u}_i(x) = \hat{v}_i(x) \quad i = 1, \ldots, m,$$
which in turn implies
\[u_i(x) = v_i(x). \]

Now, suppose \(P > 0 \). We show that this case leads to a contradiction. Let the value \(P \) is attained for some \(i_0 \), then due to Lemma 3.2 there exist \(x_0 \in \Omega \) and \(j_0 \neq i_0 \) such that:
\[0 < P = Q = \hat{u}_{i_0}(x_0) - \hat{v}_{i_0}(y_0) = \max_{\{u_i = v_i = 0\}} (\hat{u}_{i_0}(x) - \hat{v}_{i_0}(x)) = v_{j_0}(x_0) - u_{j_0}(x_0). \]

Let \(\Gamma \) be a fixed curve starting at \(x_0 \) and ending on the boundary of \(\Omega \). Since \(\Omega \) is connected, then one can always choose such a curve belonging to \(\overline{\Omega} \). By the disjointness and smoothness of \(v_{j_0} \) and \(u_{j_0} \) there exists a ball centered at \(x_0 \), and with radius \(r_0 \) (\(r_0 \) depends on \(x_0 \)) which we denote it \(B_{r_0}(x_0) \), such that
\[v_{j_0}(x) - u_{j_0}(x) > 0 \text{ in } B_{r_0}(x_0). \]

This yields
\[\Delta(\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x)) \geq 0 \text{ in } B_{r_0}(x_0). \]

The maximum principle implies that
\[\max_{B_{r_0}(x_0)} (\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x)) = \max_{\partial B_{r_0}(x_0)} (\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x)) \leq P. \]

One the other hand, in view of Lemma 3.2 we have
\[\hat{v}_{j_0}(x_0) - \hat{u}_{j_0}(x_0) = v_{j_0}(x_0) - u_{j_0}(x_0) = P, \]
which implies that \(P \) is attained at the interior point \(x_0 \in B_{r_0}(x_0) \). Thus,
\[\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x) \equiv P > 0 \text{ in } B_{r_0}(x_0). \]

Next let \(x_1 \in \Gamma \cap \partial B_{r_0}(x_0) \). We get \(\hat{v}_{j_0}(x_1) - \hat{u}_{j_0}(x_1) = P > 0 \), which leads to \(v_{j_0}(x_1) \geq u_{j_0}(x_1) \).

We proceed as follows: If \(v_{j_0}(x_1) > u_{j_0}(x_1) \), then as above \(v_{j_0}(x) > u_{j_0}(x) \) in \(B_{r_1}(x_1) \). This in turn implies
\[\Delta(\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x)) \geq 0 \text{ in } B_{r_1}(x_1). \]

Again following the maximum principle and recalling that \(\hat{v}_{j_0}(x_1) - \hat{u}_{j_0}(x_1) = P \) we conclude that
\[\hat{v}_{j_0}(x) - \hat{u}_{j_0}(x) \equiv P > 0 \text{ in } B_{r_1}(x_1). \]

If \(v_{j_0}(x_1) = u_{j_0}(x_1) \), then clearly the only possibility is \(v_{j_0}(x_1) = u_{j_0}(x_1) = 0 \). Thus,
\[0 < P = \hat{v}_{j_0}(x_1) - \hat{u}_{j_0}(x_1) = \sum_{j \neq j_0} (u_j(x_1) - v_j(x_1)). \]

Following the lines of the proof of Lemma 3.2 we find some \(k_0 \neq j_0 \), such that
\[P = u_{k_0}(x_1) - v_{k_0}(x_1) = \hat{u}_{k_0}(x_1) - \hat{v}_{k_0}(x_1). \]

It is easy to see that there exists a ball \(B_{r_1}(x_1) \) (without loss of generality one keeps the same notation)
\[\Delta(\hat{u}_{k_0}(x) - \hat{v}_{k_0}(x)) \geq 0 \text{ in } B_{r_1}(x_1). \]
In view of the maximum principle and above steps we obtain:
\[
\hat{u}_{k_0}(x) - \hat{v}_{k_0}(x) = P > 0 \text{ in } B_{r_1}(x_1).
\]

Then we take \(x_2 \in \Gamma \cap \partial B_{r_1}(x_1) \) such that \(x_1 \) stands between the points \(x_0 \) and \(x_2 \) along the given curve \(\Gamma \). According to the previous arguments for the point \(x_2 \) we will find an index \(l_0 \in \{1, \cdots, m\} \) and corresponding ball \(B_{r_2}(x_2) \), such that
\[
|\hat{u}_{l_0}(x) - \hat{v}_{l_0}(x)| = P \text{ in } B_{r_2}(x_2).
\]

We continue this way and obtain a sequence of points \(x_n \) along the curve \(\Gamma \), which are getting closer to the boundary of \(\Omega \). Since for all \(j = 1, \cdots, m \) and \(x \in \partial \Omega \) we have
\[
\hat{u}_j(x) - \hat{v}_j(x) = \hat{v}_j(x) - \hat{u}_j(x) = 0,
\]
then obviously after finite steps \(N \) we find the point \(x_N \), which will be very close to the \(\partial \Omega \) and for all \(j = 1, \cdots, m \)
\[
|\hat{u}_j(x_N) - \hat{v}_j(x_N)| < P/2.
\]

On the other hand, according to our construction for the point \(x_N \), there exists an index \(1 \leq j_N \leq m \) such that
\[
|\hat{u}_{j_N}(x_N) - \hat{v}_{j_N}(x_N)| = P,
\]
which is a contradiction. This completes the proof of the uniqueness.

\[\square\]

References

[1] Arakelyan, A., and Barkhudaryan, R. A numerical approach for a general class of the spatial segregation of reaction–diffusion systems arising in population dynamics. Computers & Mathematics with Applications 72, 11 (2016), 2823–2838.

[2] Bozorgnia, F. Numerical algorithm for spatial segregation of competitive systems. SIAM Journal on Scientific Computing 31, 5 (2009), 3946–3958.

[3] Caffarelli, L. A., and Lin, F.-H. Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. Journal of the American Mathematical Society 21, 3 (2008), 847–862.

[4] Caffarelli, L. A., Quitalo, V., and Patrizi, S. On a long range segregation model. arXiv preprint arXiv:1505.05433 (2015).

[5] Conti, M., Terracini, S., and Verzini, G. Asymptotic estimates for the spatial segregation of competitive systems. Advances in Mathematics 195, 2 (2005), 524–560.

[6] Conti, M., Terracini, S., and Verzini, G. A variational problem for the spatial segregation of reaction-diffusion systems. Indiana University Mathematics Journal 54, 3 (2005), 779–815.

[7] Conti, M., Terracini, S., and Verzini, G. Uniqueness and least energy property for solutions to strongly competing systems. Interfaces and Free Boundaries 8, 4 (2006), 437–446.

[8] Dancer, E. N., and Du, Y. H. Competing species equations with diffusion, large interactions, and jumping nonlinearities. Journal of Differential Equations 114, 2 (1994), 434–475.

[9] El, S.-I., and Yanagida, E. Dynamics of interfaces in competition–diffusion systems. SIAM Journal on Applied Mathematics 54, 5 (1994), 1355–1373.

[10] Quitalo, V. A free boundary problem arising from segregation of populations with high competition. Archive for Rational Mechanics and Analysis 210, 3 (2013), 857–908.

[11] Wang, K., and Zhang, Z. Some new results in competing systems with many species. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis (2010), vol. 27, Elsevier, pp. 739–761.
ON THE UNIQUENESS OF THE LIMITING SOLUTION TO A STRONGLY COMPETING SYSTEM

INSTITUTE OF MATHEMATICS, NAS OF ARMENIA, 0019 YEREVAN, ARMENIA

E-mail address: arakelyanavetik@gmail.com

DEPARTMENT OF MATHEMATICS, INST. SUPERIOR TÉCNICO, 1049-001 LISBON, PORTUGAL

E-mail address: bozorg@math.ist.utl.pt