On Well-Posedness of Some Constrained Variational Problems

Savin Treanţă

Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania; savin.treanta@upb.ro

Abstract: By considering the new forms of the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and monotonicity of the considered scalar multiple integral functional, in this paper we study the well-posedness of a new class of variational problems with variational inequality constraints. More specifically, by defining the set of approximating solutions for the class of variational problems under study, we establish several results on well-posedness.

Keywords: constrained variational problem; well-posedness; multiple integral functional

1. Introduction

The concept of well-posedness is a very useful mathematical tool in the study of optimization problems. Thus, beginning with the work of Tykhonov [1], many types of well-posedness associated with variational problems have been introduced (Levitin–Polyak well-posedness [2–5], α-well-posedness [6,7], extended well-posedness [8–16], L-well-posedness [17]). Additionally, this mathematical tool can be used to study some related problems: variational inequality problems [18–20], complementary problems [21], equilibrium problems [22,23], fixed point problems [24], hemivariational inequality problems [25], Nash equilibrium problems [26], and so on. The well-posedness of generalized variational inequalities and the corresponding optimization problems have been analyzed by Jayswal and Shalini [27]. Moreover, an interesting and important extension of variational inequality problem is the multidimensional variational inequality problem and the associated multi-time optimization problems (see [28–33]). Recently, Treanţă [30] investigated the well-posed isoperimetric-type constrained variational control problems. For other different but connected ideas, the reader is directed to Dridi and Djebabla [34] and Jana [35].

In this paper, motivated and inspired by the above research papers, we study the well-posedness property for new constrained variational problems, implying second-order multiple integral functionals and partial derivatives. In this regard, we formulate new forms of monotonicity, lower semicontinuity, hemicontinuity, and pseudomonotonicity for the considered multiple integral-type functional. Further, we introduce the set of approximating solutions for the constrained optimization problem under study and establish several theorems on well-posedness. The previous research works in this scientific area did not take into account the new form of the notions mentioned above. In essence, the results derived here can be considered as dynamic generalizations of the corresponding static results already existing in the literature. In this paper, the framework is based on function spaces of infinite-dimension and multiple integral-type functionals. This element is completely new for the well-posed optimization problems.

The present paper is structured as follows: In Section 2, we formulate the problem under study and introduce the new forms of monotonicity, lower semicontinuity, hemicontinuity, and pseudomonotonicity for the considered multiple integral-type functional. Additionally, an auxiliary lemma is provided. In Section 3, we study the well-posedness for the considered constrained variational problem. More precisely, we prove that well-posedness is equivalent with the existence and uniqueness of a solution in the aforesaid problem. Finally, Section 4 concludes the paper and provides further developments.
2. Preliminaries and Problem Formulation

In this paper, we consider the following notations and mathematical tools: denote by K a compact domain in \mathbb{R}^m and consider the point $K \ni \zeta = (\zeta^i), \alpha = 1, m$; let E denote the space of state functions of C^4-class $s : K \to \mathbb{R}^n$ and $s_\alpha := \frac{\partial s}{\partial \zeta^\alpha}$, $s_\beta\gamma := \frac{\partial^2 s}{\partial \zeta^\alpha \partial \zeta^\gamma}$ denote the partial speed and partial acceleration, respectively; consider $E \subseteq \mathcal{E}$ as a nonempty, closed and convex subset, with $s|_{\partial K} = \text{given}$, equipped with the inner product

$$\langle s, z \rangle = \int_K [s(\zeta) \cdot z(\zeta)] \, d\zeta = \int_K \left[\sum_{i=1}^n s^i(\zeta)z^i(\zeta) \right] \, d\zeta, \quad \forall s, z \in \mathcal{E}$$

and the induced norm, where $d\zeta = d\zeta^1 \cdots d\zeta^m$ is the element of volume on \mathbb{R}^m.

Let $f^2(\mathbb{R}^m, \mathbb{R}^n)$ be the second-order jet bundle for \mathbb{R}^m and \mathbb{R}^n. By using the real-valued continuously differentiable function $f : f^2(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}$, we define the multiple integral-type functional:

$$F : \mathcal{E} \to \mathbb{R}, \quad F(s) = \int_K f(\zeta, s(\zeta), s_\alpha(\zeta), s_\beta\gamma(\zeta)) \, d\zeta.$$

By using the above mathematical framework, we formulate the constrained variational problem (in short, CVP) (in short, CVP) $\min \int_K f(s(\zeta), s_\alpha(\zeta), s_\beta\gamma(\zeta)) \, d\zeta$ subject to $s \in \Omega$, where Ω stands for the set of solutions for the variational inequality problem (in short, VIP): find $s \in E$ such that

$$\text{(VIP)} \quad \int_K \left[\frac{\partial f}{\partial s_\alpha}(\pi s(\zeta))(z(\zeta) - s(\zeta)) + \frac{\partial f}{\partial s_\alpha}(\pi s(\zeta))D_\alpha(z(\zeta) - s(\zeta)) \right] \, d\zeta \geq 0, \quad \forall z \in E,$$

where $D_\beta\gamma := D_\beta(D_\gamma)$, and $n(\beta, \gamma)$ represents the multi-index notation (Saunders [36], Treantă [33]).

More precisely, the set of all feasible solutions of (VIP) is defined as

$$\Omega = \{ s \in E : \int_K \left[(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s_\alpha}(\pi s(\zeta)) + D_\alpha(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s_\alpha}(\pi s(\zeta)) \right] \, d\zeta \geq 0, \quad \forall z \in E \}.$$

Definition 1. The functional $F(s) = \int_K f(\pi s(\zeta)) \, d\zeta$ is monotone on E if the inequality holds:

$$\int_K \left[(s(\zeta) - z(\zeta)) \left(\frac{\partial f}{\partial s_\alpha}(\pi s(\zeta)) - \frac{\partial f}{\partial s_\alpha}(\pi z(\zeta)) \right) \right.$$

$$+ D_\alpha(s(\zeta) - z(\zeta)) \left(\frac{\partial f}{\partial s_\alpha}(\pi s(\zeta)) - \frac{\partial f}{\partial s_\alpha}(\pi z(\zeta)) \right)$$

$$+ \frac{1}{n(\beta, \gamma)} D_\beta\gamma(s(\zeta) - z(\zeta)) \left(\frac{\partial f}{\partial s_\alpha}(\pi s(\zeta)) - \frac{\partial f}{\partial s_\alpha}(\pi z(\zeta)) \right) \right] \, d\zeta \geq 0,$$

for $\forall s, z \in E$.

Definition 2. The functional $F(s) = \int_K f(\pi_s(\xi))d\xi$ is pseudomonotone on E if the implication holds:

$$
\int_K \left[(s(\xi) - z(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_a}(\pi_s(\xi))
+ \frac{1}{n(\beta, \gamma)} D^2_{\beta\gamma}(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_s(\xi)) \right] d\xi \geq 0
$$

$$
\Rightarrow \int_K \left[(s(\xi) - z(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_a}(\pi_s(\xi))
+ \frac{1}{n(\beta, \gamma)} D^2_{\beta\gamma}(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_s(\xi)) \right] d\xi \geq 0
$$

for $\forall s, z \in E$.

Example 1. Consider $m = 2$, $n = 1$, and $K = [0,3]^2$. Additionally, we define

$$
f(\pi_s(\xi)) = 2 \sin s(\xi) + s(\xi)e^{i(\xi)}.
$$

The functional $F(s) = \int_K f(\pi_s(\xi))d\xi$ is pseudomonotone on $E = C^4(K, [-1,1])$,

$$
\int_K \left[(s(\xi) - z(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_a}(\pi_s(\xi))
+ \frac{1}{n(\beta, \gamma)} D^2_{\beta\gamma}(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_s(\xi)) \right] d\xi
\geq 0
\quad \forall s, z \in E
$$

$$
\Rightarrow \int_K \left[(s(\xi) - z(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_a}(\pi_s(\xi))
+ \frac{1}{n(\beta, \gamma)} D^2_{\beta\gamma}(s(\xi) - z(\xi)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_s(\xi)) \right] d\xi
\geq 0
\quad \forall s, z \in E.
$$

By direct computation, we obtain

$$
\int_K \left[(s(\xi) - z(\xi)) \left(\frac{\partial f}{\partial s}(\pi_s(\xi)) - \frac{\partial f}{\partial s}(\pi_z(\xi))\right)
+ D_a(s(\xi) - z(\xi)) \left(\frac{\partial f}{\partial s_a}(\pi_s(\xi)) - \frac{\partial f}{\partial s_a}(\pi_z(\xi))\right)
+ \frac{1}{n(\beta, \gamma)} D^2_{\beta\gamma}(s(\xi) - z(\xi)) \left(\frac{\partial f}{\partial s_{\beta\gamma}}(\pi_s(\xi)) - \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_z(\xi))\right) \right] d\xi
\geq 0,
$$

$\forall s, z \in E,$
which implies that the functional \(F(s) = \int_K f(\pi_s(\zeta))d\zeta \) is not monotone on \(E \) (in the sense of Definition 1).

By considering the work of Usman and Khan [37], we provide the following definition.

Definition 3. The functional \(F(s) = \int_K f(\pi_s(\zeta))d\zeta \) is hemicontinuous on \(E \) if the application

\[\lambda \rightarrow \left(s(\zeta) - z(\zeta), \frac{\partial F}{\partial s}(\zeta) \right), \quad 0 \leq \lambda \leq 1 \]

is continuous at \(0^+ \), for \(\forall s, z \in E \), where

\[
\frac{\partial F}{\partial s}(\zeta) := \frac{\partial f}{\partial s}(\pi_s(\zeta)) - D_\alpha \frac{\partial f}{\partial s}(\pi_s(\zeta)) + \frac{1}{n(\beta, \gamma)} D^2_\beta \frac{\partial f}{\partial s}(\pi_s(\zeta)) \in E, \]

\(s_\lambda := \lambda s + (1 - \lambda)z \).

Lemma 1. Consider the functional \(F(s) = \int_K f(\pi_s(\zeta))d\zeta \) as hemicontinuous and pseudomonotone on \(E \). Then, the function \(s \in E \) solves (VIP) if and only if it solves the variational inequality

\[
\int_K \left[(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right]
\]

\[+ \frac{1}{n(\beta, \gamma)} D^2_\beta (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \] \(d\zeta \geq 0, \quad \forall z \in E. \)

Proof. Firstly, let us consider that the function \(s \in E \) solves (VIP). In consequence, it follows

\[
\int_K \left[(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right]
\]

\[+ \frac{1}{n(\beta, \gamma)} D^2_\beta (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \] \(d\zeta \geq 0, \quad \forall z \in E. \)

By using the pseudomonotonicity property of \(F(s) = \int_K f(\pi_s(\zeta))d\zeta \), the previous inequality involves

\[
\int_K \left[(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right]
\]

\[+ \frac{1}{n(\beta, \gamma)} D^2_\beta (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \] \(d\zeta \geq 0, \quad \forall z \in E. \)

Conversely, assume that

\[
\int_K \left[(z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right]
\]

\[+ \frac{1}{n(\beta, \gamma)} D^2_\beta (z(\zeta) - s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \] \(d\zeta \geq 0, \quad \forall z \in E. \)

For \(z \in E \) and \(\lambda \in (0, 1] \), we define

\[z_\lambda = (1 - \lambda)s + \lambda z \in E. \]
Therefore, the above inequality can be rewritten as follows
\[
\int_K \left[(z(\xi) - s(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right. \\
+ \left. \frac{1}{n(\beta, \gamma)} D_{\beta \gamma}^2(z(\xi) - s(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) \right] d\xi \geq 0, \quad \forall z \in E.
\]

By considering \(\lambda \to 0 \) (and the hemicontinuity property of \(F(s) = \int_K f(\pi_s(\xi)) d\xi \)), it results that
\[
\int_K \left[(z(\xi) - s(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right. \\
+ \left. \frac{1}{n(\beta, \gamma)} D_{\beta \gamma}^2(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right] d\xi \geq 0, \quad \forall z \in E,
\]
which shows that \(s \) is solution for (VIP). The proof of this lemma is now complete. \(\square \)

Definition 4. The functional \(F(s) = \int_K f(\pi_s(\xi)) d\xi \) is lower semicontinuous at \(s_0 \in E \) if
\[
\int_K f(\pi_{s_0}(\xi)) d\xi \leq \liminf_{s \to s_0} \int_K f(\pi_s(\xi)) d\xi.
\]

3. Well-Posedness Associated with (CVP)

In this section, we analyze the well-posedness property for the constrained variational problem (CVP). To this aim, we provide the following mathematical tools.

Let us denote by \(S \) the set of all solutions for (CVP), that is,
\[
S = \left\{ s \in E \mid \int_K f(\pi_s(\xi)) d\xi \leq \inf_{z \in \Omega} \int_K f(\pi_z(\xi)) d\xi \right\}
\]
and
\[
\int_K \left[(z(\xi) - s(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right. \\
+ \left. \frac{1}{n(\beta, \gamma)} D_{\beta \gamma}^2(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right] d\xi \geq 0, \quad \forall z \in E.
\]

Additionally, for \(\theta, \vartheta \geq 0 \), we define the set of approximating solutions for (CVP) as
\[
S(\theta, \vartheta) = \left\{ s \in E \mid \int_K f(\pi_s(\xi)) d\xi \leq \inf_{z \in \Omega} \int_K f(\pi_z(\xi)) d\xi + \theta \right\}
\]
and
\[
\int_K \left[(z(\xi) - s(\xi)) \frac{\partial f}{\partial s}(\pi_s(\xi)) + D_a(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right. \\
+ \left. \frac{1}{n(\beta, \gamma)} D_{\beta \gamma}^2(z(\xi) - s(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_s(\xi)) \right] d\xi + \theta \geq 0, \quad \forall z \in E
\].

Remark 1. For \((\theta, \vartheta) = (0, 0)\), we have \(S = S(\theta, \vartheta) \) and, for \((\theta, \vartheta) > (0, 0)\), we obtain \(S \subseteq S(\theta, \vartheta) \).

Definition 5. If there exists a sequence of positive real numbers \(\vartheta_n \to 0 \) as \(n \to \infty \), such that the following inequalities
\[
\limsup_{n \to \infty} \int_K f(\pi_{\vartheta_n}(\xi)) d\xi \leq \inf_{z \in \Omega} \int_K f(\pi_z(\xi)) d\xi
\]
and
\[
\int_K \left[(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial s}(\pi_{\vartheta_n}(\xi)) + D_a(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_{\vartheta_n}(\xi)) \right. \\
+ \left. \frac{1}{n(\beta, \gamma)} D_{\beta \gamma}^2(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \pi_s}(\pi_{\vartheta_n}(\xi)) \right] d\xi \geq 0, \quad \forall z \in E,
\]
are fulfilled, then the sequence \(\{ s_n \} \) is called an approximating sequence of (CVP).

Definition 6. The problem (CVP) is called well-posed if:

(i) It has a unique solution \(s_0 \);

(ii) Each approximating sequence of (CVP) will converge to this unique solution \(s_0 \).

Further, the symbol "diam B" stands for the diameter of B. Moreover, it is defined by

\[
\text{diam } B = \sup_{x,y \in B} \| x - y \|.
\]

Theorem 1. Consider the functional \(F(s) = \int_K f(\pi_s(z))dz \) as lower semicontinuous, hemicon

\[
tinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if \(S(\theta, \vartheta) \neq \emptyset, \forall \theta, \vartheta > 0 \) and diam \(S(\theta, \vartheta) \to 0 \) as \((\theta, \vartheta) \to (0,0) \).

Proof. Let us consider the case that (CVP) is well-posed. Therefore, it admits a unique solution \(\bar{s} \in S \). Since \(S \subseteq S(\theta, \vartheta), \forall \theta, \vartheta > 0 \), we obtain \(S(\theta, \vartheta) \neq \emptyset, \forall \theta, \vartheta > 0 \). Contrary to the result, let us suppose that diam \(S(\theta, \vartheta) \to 0 \) as \((\theta, \vartheta) \to (0,0) \). Then, there exists \(r > 0 \), a positive integer \(m, \theta_n, \vartheta_n > 0 \) with \(\theta_n, \vartheta_n \to 0 \), and \(s_n, s'_n \in S(\theta_n, \vartheta_n) \) such that

\[
\| s_n - s_n' \| > r, \quad \forall n \geq m.
\]

Since \(s_n, s'_n \in S(\theta_n, \vartheta_n) \), we obtain

\[
\int_K f(\pi_{s_n}(z))dz \leq \inf_{z \in \Omega} \int_K f(\pi_z(z))dz + \theta_n,
\]

\[
\int_K \left[(\pi_s(z) - s_n(z)) \frac{\partial f}{\partial s} (\pi_{s_n}(z)) + D_\alpha (\pi_s(z) - s_n(z)) \frac{\partial f}{\partial s} (\pi_{s_n}(z)) \right] d\zeta + \theta_n \geq 0, \quad \forall z \in E
\]

and

\[
\int_K f(\pi_{s'_n}(z))dz \leq \inf_{z \in \Omega} \int_K f(\pi_z(z))dz + \theta_n,
\]

\[
\int_K \left[(\pi_s(z) - s'_n(z)) \frac{\partial f}{\partial s} (\pi_{s'_n}(z)) + D_\alpha (\pi_s(z) - s'_n(z)) \frac{\partial f}{\partial s} (\pi_{s'_n}(z)) \right] d\zeta + \theta_n \geq 0, \quad \forall z \in E.
\]

It results that \(\{ s_n \} \) and \(\{ s'_n \} \) are approximating sequences of (CVP) which tend to \(\bar{s} \) (the problem (CVP) is well-posed, by hypothesis). By direct computation, it follows that

\[
\| s_n - s'_n \| = \| s_n - \bar{s} + \bar{s} - s'_n \| \leq \| s_n - \bar{s} \| + \| \bar{s} - s'_n \| \leq \theta,
\]

which contradicts (1) for some \(\theta = r \). In consequence, diam \(S(\theta, \vartheta) \to 0 \) as \((\theta, \vartheta) \to (0,0) \).

Conversely, let us consider that \(\{ s_n \} \) is an approximating sequence of (CVP). Then there exists a sequence of positive real numbers \(\theta_n \to 0 \) as \(n \to \infty \) such that the inequalities

\[
\lim_{n \to \infty} \sup \int_K f(\pi_{s_n}(z))dz \leq \inf_{z \in \Omega} \int_K f(\pi_z(z))dz,
\]
which implies that \(\bar{z} \) or, equivalently, to some \(\bar{z} \)
hold, including \(z_n \in S(\theta_n, \eta_n) \), for a sequence of positive real numbers \(\theta_n \to 0 \) as \(n \to \infty \).
Since \(\text{diam} \, S(\theta_n, \eta_n) \to 0 \) as \(\theta_n, \eta_n \to (0, 0) \), \(\{s_n\} \) is a Cauchy sequence which converges to some \(s \in E \) as \(E \) is a closed set.

By hypothesis, the multiple integral functional \(\int_E f(\pi_s(\zeta)) \) is monotone on \(E \). Therefore, by Definition 1, for \(s, z \in E \), we have

\[
\int_E \left[(s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D^2_{\bar{\beta} \gamma} (s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right] d\zeta \geq 0,
\]

or, equivalently,

\[
\int_E \left[(s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D^2_{\bar{\beta} \gamma} (s(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right] d\zeta \geq 0.
\]

Taking limit in inequality (3), we have

\[
\int_E \left[(\bar{s}(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (\bar{s}(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D^2_{\bar{\beta} \gamma} (\bar{s}(\zeta) - z(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right] d\zeta \leq 0.
\]

On combining (4) and (5), we obtain

\[
\int_E \left[(z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D^2_{\bar{\beta} \gamma} (z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right] d\zeta \geq 0.
\]

Further, taking into account Lemma 1, it follows that

\[
\int_E \left[(z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) + D_\alpha (z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D^2_{\bar{\beta} \gamma} (z(\zeta) - \bar{s}(\zeta)) \frac{\partial f}{\partial s}(\pi_s(\zeta)) \right] d\zeta \geq 0,
\]

which implies that \(\bar{s} \in \Omega \).
Since the functional $\int_K f(\pi_s(\zeta))d\zeta$ is lower semicontinuous, it results that
\[
\int_K f(\pi_s(\zeta))d\zeta \leq \liminf_{n \to \infty} \int_K f(\pi_{s_n}(\zeta))d\zeta \leq \limsup_{n \to \infty} \int_K f(\pi_{s_n}(\zeta))d\zeta.
\]
By using (2), the above inequality reduces to
\[
\int_K f(\pi_s(\zeta))d\zeta \leq \inf_{z \in \Omega} \int_K f(\pi_z(\zeta))d\zeta. \tag{7}
\]
Thus, from (6) and (7), we conclude that s solves (CVP).

Now, let us prove that s is the unique solution of (CVP). Suppose that s_1, s_2 are two distinct solutions of (CVP). Then,
\[
0 < \|s_1 - s_2\| \leq \text{diam } S(\theta, \theta) \to 0 \text{ as } (\theta, \theta) \to (0,0),
\]
and the proof is complete. \qed

Theorem 2. Consider the functional $F(s) = \int_K f(\pi_s(\zeta))d\zeta$ as lower semicontinuous, hemicontinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if it has a unique solution.

Proof. Let us consider that (CVP) is well-posed. Thus, it possesses a unique solution s_0. Conversely, let us consider that (CVP) has a unique solution s_0, that is,
\[
\int_K f(\pi_{s_0}(\zeta))d\zeta \leq \inf_{z \in \Omega} \int_K f(\pi_z(\zeta))d\zeta,
\]
and
\[
\int_K \left[(z(\zeta) - s_0(\zeta)) \frac{\partial f}{\partial s}(\pi_{s_0}(\zeta)) + D_a(z(\zeta) - s_0(\zeta)) \frac{\partial f}{\partial s}(\pi_{s_0}(\zeta))
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\zeta) - s_0(\zeta)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_{s_0}(\zeta)) \right]d\zeta \geq 0, \quad \forall z \in E, \tag{8}
\]
but it is not well-posed. Therefore, by Definition 6, there exists an approximating sequence $\{s_n\}$ of (CVP), which does not converge to s_0, such that the following inequalities
\[
\limsup_{n \to \infty} \int_K f(\pi_{s_n}(\zeta))d\zeta \leq \inf_{z \in \Omega} \int_K f(\pi_z(\zeta))d\zeta
\]
and
\[
\int_K \left[(z(\zeta) - s_n(\zeta)) \frac{\partial f}{\partial s}(\pi_{s_n}(\zeta)) + D_a(z(\zeta) - s_n(\zeta)) \frac{\partial f}{\partial s}(\pi_{s_n}(\zeta))
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\zeta) - s_n(\zeta)) \frac{\partial f}{\partial s_{\beta\gamma}}(\pi_{s_n}(\zeta)) \right]d\zeta + \theta_n \geq 0, \quad \forall z \in E \tag{9}
\]
are fulfilled. Further, we proceed by contradiction to prove the boundedness of $\{s_n\}$. Contrary to the result, we suppose that $\{s_n\}$ is not bounded; consequently, $\|s_n\| \to +\infty$ as $n \to +\infty$. We define $\delta_n = \frac{1}{\|s_n - s_0\|}$ and $s_n = s_0 + \delta_n[s_n - s_0]$. We observe that $\{s_n\}$ is bounded in E. Therefore, if necessary, passing to a subsequence, we may consider that $s_n \to s$ weakly in $E \neq (s_0)$.

It is not difficult to see that $s \neq s_0$ due to $\|\delta_n[s_n - s_0]\| = 1$, for all $n \in \mathbb{N}$. Since s_0 is a solution of (CVP), the inequalities (8) are verified. By using Lemma 1, it follows that
\[
\int_K f(\pi_{s_n}(\zeta))d\zeta \leq \inf_{z \in \Omega} \int_K f(\pi_z(\zeta))d\zeta,
\]
\[
\int_K \left[(z(\xi) - s_0(\xi)) \frac{df}{ds}(\pi_z(\xi)) + D_{a}(z(\xi) - s_0(\xi)) \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right] \, d\xi \\
+ \frac{1}{n(\beta, \gamma)} D_{\beta^2}(z(\xi) - s_0(\xi)) \frac{\partial f}{\partial \beta}(\pi_z(\xi)) \right] \, d\xi \geq 0, \; \forall \xi \in E. \tag{10}
\]

By considering the monotonicity property of the functional \(\int_K f(\pi_z(\xi)) \, d\xi \), for \(s_n, z \in E \), we obtain

\[
\int_K \left[(s_n(\xi) - z(\xi)) \left(\frac{df}{ds}(\pi_{s_n}(\xi)) - \frac{df}{ds}(\pi_z(\xi)) \right) + D_{a}(s_n(\xi) - z(\xi)) \left(\frac{\partial f}{\partial s_a}(\pi_{s_n}(\xi)) - \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right) \right] \, d\xi \geq 0,
\]

or, equivalently,

\[
\int_K \left[(z(\xi) - s_n(\xi)) \frac{df}{ds}(\pi_z(\xi)) + D_{a}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right]
+ \frac{1}{n(\beta, \gamma)} D_{\beta^2}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \beta}(\pi_z(\xi)) \right] \, d\xi \geq 0, \; \forall \xi \in E. \tag{11}
\]

Combining with (9) and (11), we have

\[
\int_K \left[(z(\xi) - s_n(\xi)) \frac{df}{ds}(\pi_z(\xi)) + D_{a}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right]
+ \frac{1}{n(\beta, \gamma)} D_{\beta^2}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \beta}(\pi_z(\xi)) \right] \, d\xi \geq 0, \; \forall \xi \in E.
\]

Next, we can take \(n_0 \in \mathbb{N} \) be large enough such that \(\delta_n < 1 \), for all \(n \geq n_0 \) (because of \(\delta_n \to 0 \) as \(n \to \infty \)). Multiplying the above inequality and (10) by \(\delta_n > 0 \) and \(1 - \delta_n > 0 \), respectively, we obtain

\[
\int_K \left[(z(\xi) - s_n(\xi)) \frac{df}{ds}(\pi_z(\xi)) + D_{a}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right]
+ \frac{1}{n(\beta, \gamma)} D_{\beta^2}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \beta}(\pi_z(\xi)) \right] \, d\xi \geq 0, \; \forall \xi \in E, \; \forall n \geq n_0.
\]

By using \(s_n \to s \neq s_0 \) and \(s_n = s_0 + s_n[s_n - s_0] \), we obtain

\[
\lim_{n \to \infty} \int_K \left[(z(\xi) - s_n(\xi)) \frac{df}{ds}(\pi_z(\xi)) + D_{a}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial s_a}(\pi_z(\xi)) \right]
+ \frac{1}{n(\beta, \gamma)} D_{\beta^2}(z(\xi) - s_n(\xi)) \frac{\partial f}{\partial \beta}(\pi_z(\xi)) \right] \, d\xi
\]
Taking into account Lemma 1 and by using the lower semicontinuity property, we obtain

\[
\int_K f(\tau_s(\xi))d\xi \leq \inf_{\xi \in \Omega} \int_K f(\tau_s(\xi))d\xi,
\]

\[
\int_K \left[(z(\xi) - s(\xi)) \frac{df}{ds}(\tau_s(\xi)) + D_\alpha(z(\xi) - s(\xi)) \frac{df}{d\alpha}(\tau_s(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s(\xi)) \frac{df}{d\beta\gamma}(\tau_s(\xi)) \big]d\xi \geq 0, \ \forall \xi \in E. \quad (12)
\]

This involves that \(s \) solves (CVP), contradiction with the uniqueness of \(s_0 \). Therefore, \(\{s_n\} \) is a bounded sequence having a convergent subsequence \(\{s_{n_k}\} \), which converges to \(\bar{s} \in E \) as \(k \to \infty \). Now, for \(s_{n_k}, \bar{s} \in E \), we obtain (see (11))

\[
\int_K \left[(z(\xi) - s_{n_k}(\xi)) \frac{df}{ds}(\tau_{s_{n_k}}(\xi)) + D_\alpha(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\alpha}(\tau_{s_{n_k}}(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\beta\gamma}(\tau_{s_{n_k}}(\xi)) \big]d\xi \\
\leq \int_K \left[(z(\xi) - s_{n_k}(\xi)) \frac{df}{ds}(\tau_s(\xi)) + D_\alpha(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\alpha}(\tau_s(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\beta\gamma}(\tau_s(\xi)) \big]d\xi. \quad (13)
\]

Additionally, by (9), we can write

\[
\lim_{k \to \infty} \int_K \left[(z(\xi) - s_{n_k}(\xi)) \frac{df}{ds}(\tau_{s_{n_k}}(\xi)) + D_\alpha(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\alpha}(\tau_{s_{n_k}}(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\beta\gamma}(\tau_{s_{n_k}}(\xi)) \big]d\xi \geq 0. \quad (14)
\]

By (13) and (14), we have

\[
\lim_{k \to \infty} \int_K \left[(z(\xi) - s_{n_k}(\xi)) \frac{df}{ds}(\tau_{s_{n_k}}(\xi)) + D_\alpha(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\alpha}(\tau_{s_{n_k}}(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s_{n_k}(\xi)) \frac{df}{d\beta\gamma}(\tau_{s_{n_k}}(\xi)) \big]d\xi \geq 0
\]

\[
\Rightarrow \int_K \left[(z(\xi) - s(\xi)) \frac{df}{ds}(\tau_s(\xi)) + D_\alpha(z(\xi) - s(\xi)) \frac{df}{d\alpha}(\tau_s(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s(\xi)) \frac{df}{d\beta\gamma}(\tau_s(\xi)) \big]d\xi \geq 0.
\]

Using Lemma 1 and the lower semicontinuity property of the considered functional, we obtain

\[
\int_K f(\tau_s(\xi))d\xi \leq \inf_{\xi \in \Omega} \int_K f(\tau_s(\xi))d\xi,
\]

\[
\int_K \left[(z(\xi) - s(\xi)) \frac{df}{ds}(\tau_s(\xi)) + D_\alpha(z(\xi) - s(\xi)) \frac{df}{d\alpha}(\tau_s(\xi))
\right.
\]

\[
+ \frac{1}{n(\beta, \gamma)} D_{\beta\gamma}^2(z(\xi) - s(\xi)) \frac{df}{d\beta\gamma}(\tau_s(\xi)) \big]d\xi \geq 0,
\]

which shows that \(\bar{s} \) is a solution of (CVP). Hence, \(s_{n_k} \to \bar{s} \), that is, \(s_{n_k} \to s_0 \), involving \(s_n \to s_0 \) and the proof is complete. \(\square \)
Example 2. We consider \(n = 1 \) and \(K = [0, 2]^2 = [0, 2] \times [0, 2] \). Let us minimize the mass of \(K \) having the density (that depends on the current point) \(f(\zeta, s(\zeta), s_\alpha(\zeta), s_\beta\gamma(\zeta)) = e^{s(\zeta)} - s(\zeta) \), such that the following behavior (positivity property)

\[
\iint_K (z(\zeta) - s(\zeta))(e^{s(\zeta)} - 1)d\zeta^1d\zeta^2 \geq 0,
\]

\(\forall z \in E = C^1(K, [-15, 15]), s|_{\partial K} = 0 \), is satisfied.

To solve the previous practical problem, we consider the following constrained optimization problem:

\begin{equation}
\text{(CVP1) Minimize } \iint_K [e^{s(\zeta)} - s(\zeta)]d\zeta^1d\zeta^2
\end{equation}

subject to \(s \in \Omega \), where \(\Omega \) is the solution set of the following inequality problem

\[
\iint_K (z(\zeta) - s(\zeta))(e^{s(\zeta)} - 1)d\zeta^1d\zeta^2 \geq 0,
\]

\(\forall z \in E = C^1(K, [-15, 15]), s|_{\partial K} = 0 \).

Clearly, \(S = \{0\} \) and the functional \(\int_K e^{s(\zeta)} - s(\zeta) \) is hemicontinuous, monotone and lower semicontinuous on \(E \). Thus, all the hypotheses of Theorem 2 hold and, in consequence, the problem (CVP1) is well-posed. Additionally, \(S(\theta, \vartheta) = \{0\} \) and, therefore, \(S(\theta, \vartheta) = \emptyset \) and \(\text{diam } S(\theta, \vartheta) \to 0 \) as \((\theta, \vartheta) \to (0, 0) \). In conclusion, by Theorem 1, the variational problem (CVP1) is well-posed.

4. Conclusions

In this paper, we have studied the well-posedness property of new constrained variational problems governed by second-order partial derivatives. More precisely, by using the concepts of lower semicontinuity, monotonicity, hemicontinuity and pseudomonotonicity of considered multiple integral-type functional, we have proved that the well-posedness property of the problem under study is described in terms of existence and uniqueness of solution.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Tykhonov, A.N. On the stability of the functional optimization problems. USSR Comput. Math. Math. Phys. 1966, 6, 631–634. [CrossRef]
2. Hu, R.; Fang, Y.P. Levitin-Polyak well-posedness by perturbations of inverse variational inequalities. Optim. Lett. 2013, 7, 343–359. [CrossRef]
3. Jiang, B.; Zhang, J.; Huang, X.X. Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints. Nonlinear Anal. Theory Methods Appl. 2009, 70, 1492–1503. [CrossRef]
4. Lalitha, C.S.; Bhatia, G. Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type. Positivity 2012, 16, 527–541. [CrossRef]
5. Levitin, E.S.; Polyak, B.T. Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 1996, 7, 764–767.
6. Lignola, M.B.; Morgan, J. Approximate Solutions and \(\alpha \)-Well-Posedness for Variational Inequalities and Nash Equilibria, Decision and Control in Management Science; Zaccour, G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 367–378.
7. Virmani, G.; Srivastava, M. On Levitin-Polyak α-well-posedness of perturbed variational-hemivariational inequality. Optimization 2015, 64, 1153–1172. [CrossRef]
8. Ćoban, M.M.; Kenderov, P.S.; Revalski, J.P. Generic well-posedness of optimization problems in topological spaces. Mathematika 1989, 36, 301–324. [CrossRef]
9. Dontchev, A.L.; Zolezzi, T. Well-posed Optimization Problems; Springer: Berlin, Germany, 1993.
10. Furi, M.; Vignoli, A. A characterization of well-posed minimum problems in a complete metric space. J. Optim. Theory Appl. 1970, 5, 452–461. [CrossRef]
11. Huang, X.X. Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res. 2001, 53, 101–116. [CrossRef]
12. Huang, X.X.; Yang, X.Q. Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 2006, 17, 243–258. [CrossRef]
13. Lignola, M.B.; Morgan, J. Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 2000, 16, 57–67. [CrossRef]
14. Lin, L.J.; Chuang, C.S. Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint. Nonlinear Anal. 2009, 70, 3609–3617. [CrossRef]
15. Lucchetti, R. Convexity and Well-Posed Problems; Springer: New York, NY, USA, 2006.
16. Zolezzi, T. Second-order PDE constrained controlled optimization problems. Axioms 2021, 10, 112. [CrossRef]