First Record of *Ixodes affinis* Tick (Acari: Ixodidae) Infected with *Borrelia burgdorferi* Sensu Lato Collected from a Migratory Songbird in Canada

John D Scott¹, Kerry L Clark², Janet E Foley³, Lance A Durden⁴, Jodi M Manord² and Morgan L Smith²

¹Research Division, Lyme Ontario, 365 St. David Street South, Fergus, Ontario, Canada
²Epidemiology & Environmental Health, Department of Public Health, University of North Florida, Jacksonville, Florida 32224, USA
³Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
⁴Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, Georgia 30458, USA

Corresponding author: John D. Scott, Research Division, Lyme Ontario, 365 St. David Street South, Fergus, Ontario N1M 2L7, Canada, Tel: 519-843-3646; Fax: +1-650-618-1414; E-mail: jkscott@bserv.com

Received date: April 14, 2016; Accepted date: June 25, 2016; Published date: June 30, 2016

Copyright: © 2016 Scott JD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Migratory songbirds transport hard-bodied ticks (Acari: Ixodidae) into Canada during northward spring migration, and some of these bird-feeding ticks harbor a wide diversity of pathogenic microorganisms. In this study, we collected a nymphal *Ixodes affinis* Neumann from a Common Yellowthroat, *Geothlypis trichas* (Linnaeus), at Ste-Anne-de-Bellevue, Québec, and it was infected with the Lyme disease bacterium, *Borrelia burgdorferi* sensu lato (s.l.) Johnson, Schmid, Hyde, Steigerwalt & Brenner. Using PCR on this tick extract and DNA sequencing on the borrelial amplicons, we detected *B. burgdorferi* sensu stricto (s.s.), a genospecies that is pathogenic to people and certain domestic animals. In addition, we collected an *I. affinis* nymph from a Swainson’s Thrush, *Catharus ustulatus* (Nuttall), at Toronto, Ontario, and a co-feeding nymphal blacklegged tick, *Ixodes scapularis* Say, tested positive for *B. burgdorferi* s.s. These bird-tick findings constitute the first reports of *I. affinis* in Ontario and Québec and, simultaneously, the first report of a *B. burgdorferi* s.l.-infected *I. affinis* in Canada. Since Neotropical and southern temperate songbirds have a rapid flight pace, they are capable of transporting ticks infected with *B. burgdorferi* s.l. hundreds of kilometres to Canada. Healthcare professionals should be cognisant that migratory songbirds can transport diverse genotypes of *B. burgdorferi* s.l. into Canada from southern latitudes that may be missed by current Lyme disease serological tests.

Keywords: Tick; *Ixodes affinis*; *Borrelia burgdorferi*; Lyme disease; Migratory songbirds; Bird parasitism; Eastern Canada

Abbreviations:

PCR: Polymerase Chain Reaction

Introduction

Ixodes affinis Neumann (Acari: Ixodida: Ixodidae) is an obligate, blood-sucking ectoparasite that feeds on mammals and birds [1,2]. Biogeographically, this ixodid (hard-bodied) tick is native to Central and South America [3], and occurs in the United States from Florida to Virginia [2,4,5]. In the coastal plains of the Mid-Atlantic and southeastern United States, *I. affinis* parasitizes a wide array of mammals, including cotton mouse, *Peromyscus gossypinus* (LeConte); cotton rat, *Sigmodon hispidus* Say and Ord; marsh rice rat, *Oryzomys palustris* Harlan; southern short-tailed shrew, *Blarina usitulatus* (Nuttall), at Toronto, Ontario, and a co-feeding nymphal blacklegged tick, *Ixodes scapularis* Say, tested positive for *B. burgdorferi* s.s. These bird-tick findings constitute the first reports of *I. affinis* in Ontario and Québec and, simultaneously, the first report of a *B. burgdorferi* s.l.-infected *I. affinis* in Canada. Since Neotropical and southern temperate songbirds have a rapid flight pace, they are capable of transporting ticks infected with *B. burgdorferi* s.l. hundreds of kilometres to Canada. Healthcare professionals should be cognisant that migratory songbirds can transport diverse genotypes of *B. burgdorferi* s.l. into Canada from southern latitudes that may be missed by current Lyme disease serological tests.
I. affinis enhances the epidemiological cycle of B. burgdorferi s.l., especially within indigenous areas [7].

Songbirds (Passeriformes) are avian hosts of I. affinis and I. scapularis larvae and nymphs [1,5,8]. While en route to their breeding grounds, passerine migrants make landfall at Lyme disease endemic areas, and are often parasitized by host-seeking ticks. Since peak questing activity of I. scapularis and I. affinis nymphs coincides with peak northward songbird migration, ground-frequenting passerines are often parasitized by both of these nymphal species. In Canada, Scott et al. [8] reported I. affinis and I. scapularis on a Swainson’s Thrush, Catharus ustulatus (Nuttall), in south-central Manitoba during northward spring migration. In a recent study, Heller et al. [5] reported I. affinis immatures on 6 different passerine species in southeastern Virginia, and one songbird-derived nymph was infected with B. burgdorferi s.l.

Based on tick-host-pathogen studies in the southeastern United States, researchers found that I. affinis is a competent vector of the Lyme disease bacterium, B. burgdorferi s.l. [6,7]. Globally, the B. burgdorferi s.l. complex consists of at least 23 genospecies or genomospecies. In North America, at least nine B. burgdorferi s.l. genospecies are present, namely B. americana, B. andersonii, B. bissetti, B. burgdorferi sensu stricto (s.s.), B. californiensis, B. carolinensis, B. garinii, B. kutenbachii, and B. mayonii [9-16]. Of these genospecies, B. americana, B. andersonii, B. bissetti, B. burgdorferi s.s., B. garinii, and B. mayonii are known to be pathogenic to humans [16-20].

The aim of the present study was to expound on the movement of songbird-transported ticks in the Northern Hemisphere during northward spring migration, and report any novel tick-host associations in Canada. In addition, we wanted to determine whether any ticks on Neotropical and southern temperate songbirds are infected with B. burgdorferi s.l.

Materials and Methods

Tick collection

During spring migration, I. affinis and I. scapularis nymphs were collected from songbirds by bird banders at four different sites in eastern Canada. Nymphs were removed using fine-pointed, stainless steel forceps, and stored in polypropylene vials that were labelled with background information (i.e., bird species, collection date, geographic location, collector’s name). The vented vials were placed in a self-sealing, double-zippered plastic bag with slightly moistened paper towel. The ticks were promptly sent by express mail to the tick identification laboratory (J.D.S.). The nymphal ticks were tentatively identified using a taxonomic key [21]. After fully engorged nymphs moulted to adults, they were put in 94% ethyl alcohol, and sent by overnight courier for confirmation of identification (L.A.D.).

Spirochete detection

In phase 1, ticks were sent to a separate laboratory (K.L.C.) for B. burgdorferi s.l. testing and molecular analysis. DNA extraction, PCR testing, and DNA sequencing were performed as previously described [22].

In phase 2, four I. affinis nymphs, which were collected in 2016, were sent to another laboratory (J.E.F) for PCR testing and molecular analysis. The flagellin gene was used on these I. affinis ticks. The primers include:

External:
FlaLL: ACATATTCAGATGCAGACAGAGGT;
FlaRL: GCAATCATAGCCATTGCAGATTGT;

Internal:
FlaLS: AACAGCTGAAGAGCTTGGAATG;
FlaRS: CTTTGATCACTTATCATTCTAATAGC.

The methodology for DNA extraction, PCR testing, and DNA sequencing is outlined in the scientific articles [23-26].

Nucleotide sequence accession numbers

The DNA sequence of the 194-bp (base position 313 to 506), and the 206-bp (base position 532 to 737) amplicons of B. burgdorferi s.l. flagellin (flaB) gene, which were acquired from the I. affinis nymph (15-5A51) using PCR1 and PCR2 primer sets have been deposited in the GenBank data base with accession number: KX011447. In addition, B. burgdorferi s.l. amplicons from the I. scapularis nymph (15-5A47A) using PCR1 and PCR2 primer sets have been submitted to the GenBank database with accession number: KX011446.

Results

Six Ixodes nymphs were collected from five species of passerine birds at four different collection sites in eastern Canada (Figure 1). The vector-host-pathogen associations are listed in Table 1. A partially engorged I. scapularis nymph (15-5A47A) and a fully engorged I. affinis nymph (15-5A47B) were collected from a Swainson’s Thrush on 24 May 2015 at Toronto, Ontario.
Figure 1: Geographic locations in eastern Canada where ticks (*I. affinis, I. scapularis*) were collected from migratory songbirds: 1. McGill Bird Observatory, Ste-Anne-de-Bellevue, Québec, 45.43°N, 73.94°W; 2. Tommy Thompson Park Bird Research Station, Toronto, Ontario, 43.63°N, 79.33°W; 3. Long Point Bird Observatory, Tip of Long Point, Ontario, Canada, 42.55°N, 80.05°W; and 4. Ruthven Park National Historic Site Banding Station, Haldimand Bird Observatory, Cayuga (York), Ontario, 42.97°N, 79.87°W. Parenthesis indicates mailing address.

The *I. scapularis* nymph moulted to a female in 39 d, whereas the *I. affinis* nymph moulted to a female in 43 d. The *I. scapularis* nymph tested positive for *B. burgdorferi* s.l., and the *I. affinis* was negative. This bird parasitism is the first record of *I. affinis* in Ontario and, simultaneously, the first documentation of *I. affinis* on a bird in this province.

At Ste-Anne-de-Bellevue, Québec, a partially engorged *I. affinis* nymph (15-5A51) was collected from a Common Yellowthroat, *Geothlypis trichas* (Linnaeus), a southern temperate songbird, on 26 May 2015 (Figure 2). The nymph tested positive for *B. burgdorferi* s.l. and, based on DNA sequencing, was validated as *B. burgdorferi* s.s. The discovery of *I. affinis* nymphs in Québec constitutes a new extralimital distribution record for this tick species. As well, it is the first account of *I. affinis* on birds in Québec and, notably, the first report of a *B. burgdorferi* s.l.-infected *I. affinis* in Canada.

Upon DNA sequencing and molecular analysis, the three *B. burgdorferi* s.l. amplicons were determined to be *B. burgdorferi* s.s., a genospecies pathogenic to humans and certain domestic animals.

Table 1: Detection of *B. burgdorferi* s.l. in *Ixodes affinis* collected from passerine birds in eastern Canada, by province, 2015-2016.

Bird species	Site†	Date Collected	Life Stage	PCR	Genospecies
Ontario					
Swainson’s Thrush *Catharus ustulatus* (Nuttall)	2	24 May 2015	N†	neg.	—
Slate-colored Junco *Junco hyemalis* (Linnaeus)	3	17 Apr 2016	N	neg.	—
House Wren *Troglodytes aedon* (Vieillot)	4	28 Apr 2016	N	neg.	—
Swainson’s Thrush *Catharus ustulatus* (Nuttall)	2	21 May 2016	N	neg.	—
Quebec					
Common Yellowthroat *Geothlypis trichas* (L.)	1	26 May 2016	N	pos.	Bbss
Northern Waterthrush *Parkesia noveboracensis* (Gmelin)	1	10 May 2016	N	neg.	—

*See Figure 1 for locations.
†The host bird was co-infested with an *I. scapularis* nymph; N, nymph
Bbsl., *B. burgdorferi* sensu lato; Bbss, *B. burgdorferi* sensu stricto

Discussion

We document the first records of *I. affinis* in eastern Canada, and the first *B. burgdorferi* s.l.-infected *I. affinis* in Canada. Our vector-host-pathogen findings show that Neotropical and southern temperate songbirds transport *I. affinis* into Canada during northern spring migration from indigenous areas in Central and South America and the southern United States. Not only are migratory songbirds transporting ixodid ticks into Canada, they are importing *B. burgdorferi* s.l.-infected *I. affinis*.

Citation: Scott JD, Clark KL, Foley JE, Durden LA, Manord JM, et al. (2016) First Record of *Ixodes affinis* Tick (Acari: Ixodidae) Infected with *Borrelia burgdorferi* Sensu Lato Collected from a Migratory Songbird in Canada. *J Bacteriol Parasitol* 7: 281. doi: 10.4172/2155-9597.1000281
Ixodes affinis transported to Canada

In this study, a Common Yellowthroat, a southern temperate songbird, transported a B. burgdorferi s.s.-infected I. affinis nymph to Ste-Anne-de-Bellevue, Québec. At repletion, this fully engorged nymph could have moulted to a female in the wild and, subsequently, could have attached to a dog or cat or another suitable wild mammal, and transmitted Lyme disease spirochetes to the host. In a separate bird-tick association, a Swainson’s Thrush was parasitized by an I. affinis nymph that was co-feeding with the B. burgdorferi s.s.-infected I. scapularis nymph. If the Swainson’s Thrush became spirochetal during co-infection, the I. affinis nymph could also become infected with B. burgdorferi s.s. by the time of repletion. During the co-feeding process, the I. scapularis and the I. affinis nymphs imbibe, regurgitate, and share the host’s blood and, thus, the I. affinis nymph could have subsequently acquired Lyme disease spirochetes. After the I. scapularis nymph and the I. affinis nymph dropped from the Swainson’s Thrush, they would have instinctively descended into the cool, moist leaf litter, and later moulted to adults and, ultimately, parasitized vertebrate hosts, including humans.

Anderson and Magnerelli [27] cultured B. burgdorferi s.l. from a Common Yellowthroat, and revealed that this bird species is a reservoir-competent host. As well, tick researchers have collected B. burgdorferi s.l.-infected I. scapularis larvae from Common Yellowthroat which reinforces host competency of this bird species [27-29]. Since transovarial transmission of B. burgdorferi s.l. does not typically occur in I. scapularis [30], this tick species must acquire B. burgdorferi s.l. during a blood meal. Either the I. affinis nymph acquired B. burgdorferi s.s. directly from the Common Yellowthroat or, as a larva, acquired the infection while feeding on a spirochetal host.

Importation of B. burgdorferi s.l. into Canada

Migratory songbirds are a natural mode of transporting B. burgdorferi s.l.-infected ticks into Canada. In this study, passerine migrants transported B. burgdorferi s.s.-infected I. affinis and I. scapularis immatures into eastern Canada. Not only have B. bissettii and B. burgdorferi s.s. been isolated from both of these Ixodes species in the southeastern United States, B. carolinensis was detected in a Carolina Wren, Thryothorus ludovicianus Veillot [31], in the same region. Consequently, it would certainly be plausible for a passerine migrant to transport I. affinis immatures into Canada infected with B. bissettii, B. burgdorferi s.s., and B. carolinensis.

In Canada, Banerjee et al. [32] cultured B. burgdorferi s.l. (isolate BC93T1340) from Ixodes angustus Neumann detached from a wild deer mouse, Peromyscus maniculatus Gloger, collected at Squamish, British Columbia; this novel borrelial isolate was later delineated as B. bissettii (GenBank no. AY077830). Rudenko et al. [19] provided the first successful cultivation of live B. bissettii from a North American patient, and the first recovery of B. burgdorferi s.s. from residents in the southeastern United States. Notably, these symptomatic patients were seronegative for Lyme disease, and had undergone antibiotic treatment based on the suspicion of having Lyme disease. These findings could likewise explain why some Canadian patients are seronegative for Lyme disease. Biomedical researchers have found that B. bissettii can be missed by current Lyme disease serology and, because of this fact, members of the health-care profession have not recognized the presence of B. bissettii in patients in Canada. Commercial serological tests, which are based on immune response, yield unsatisfactory results for Lyme disease screening [33], especially in the advanced disease stage, and have a sensitivity of only 46-53% in patients who have gone beyond the early disseminated stage [34]. Our study underpins the fact that passerine migrants are transporting I. affinis ticks into Canada from southern latitudes that are infected with B. burgdorferi s.s. and, potentially, harbor B. bissettii and B. carolinensis that may be missed by current serological testing.

B. burgdorferi s.l. in patients associated with I. affinis

The isolation of motile B. bissettii-like strains from patients provides evidence that diverse Borrelia, other than B. burgdorferi s.s., could cause Lyme disease in humans across North America. Globally, B. bissettii has been isolated from patients in California and Europe [17,35,36] and, recently, obtained from local residents in the southeastern United States [20]. Because B. bissettii-like strains are present in rodents, birds, and Ixodes ticks (i.e., I. affinis, I. minor) in the southeastern United States, their presence signals the fact that this B. burgdorferi s.l. genospecies is circulating in a zoonotic disease cycle between wildlife hosts and people [7].

Since I. affinis and I. minor are transported into Canada by southern temperate and Neotropical songbirds during spring migration [8,37], Canadians will likely be subject to Lyme disease-causing B. bissettii, B. burgdorferi s.s., and B. carolinensis from the southeastern United States and, potentially, from Central and South America.
Epidemiological cycle of \textit{B. burgdorferi} s.l. in Canada

In the southeastern United States, \textit{I. affinis} plays a key role in perpetuating the epidemiological cycle of \textit{B. burgdorferi} s.l. in wildlife, and \textit{I. scapularis} acts as a bridge vector to humans [6,7]. Such avian and mammalian parasitisms could also occur in central and eastern Canada with suitable hosts. An analogous example is seen in far-western Canada where \textit{Ixodes spinipalpis} Hadwen & Nuttall is an enzootic vector of \textit{B. burgdorferi} s.l., and \textit{Ixodes pacificus} Cooley and Kohls acts as a bridge vector to humans [38]. When \textit{I. pacificus} ticks feed on reservoir hosts, they may subsequently bite and transmit Lyme disease spirochetes to humans and other vertebrates. When \textit{I. affinis} immatures are transported into Canada by passerine migrants, they encounter several new hosts; however, there are still many vertebrate species that are the same as those inhabiting southeastern U.S.A. Some of these similar mammalian hosts include: raccoons, Virginia opossum, white-tailed deer, American black bear, plus cats and dogs. In essence, \textit{I. affinis} can potentially transmit \textit{B. burgdorferi} s.l. to several reservoir hosts in Canada. Whenever any of these \textit{B. burgdorferi} s.l.-infected hosts are bitten by \textit{I. scapularis} immatures, they can subsequently transmit Lyme spirochetes to humans. Since migratory songbirds widely disperse Lyme vector ticks, people do not have to visit an endemic area to contract Lyme disease.

Flight pace of migratory songbirds

Many Neotropical and southern temperate songbirds have an extraordinary capability to fly long distances in a short period of time. Ogden et al. [39] conjectured that the maximum distance that songbirds can travel during a 5-day engorgement period is 425 km. However, the present study shows that the fully engorged \textit{B. burgdorferi} s.s.-infected \textit{I. affinis} nymph, which detached from the Common Yellowthroat at Ste-Anne-de-Bellevue, Québec, was transported much further than 425 km from its home range in the southeastern United States (Portsmouth, Virginia to Miami, Florida); the flight distance is estimated to be 670 km to 1700 km. Similarly, Scott et al. [8] reported four \textit{I. affinis} immatures (1 nymph, 3 larvae) on a Swainson’s Thrush, which is a Neotropical migrant, collected in south-central Manitoba; the estimated flight distance from the home range of these \textit{I. affinis} specimens was approximately 1720 km (Charleston, South Carolina to Delta Marsh, Manitoba). Since the Swainson’s Thrush also has a winter range from southern Mexico to South America, this passerine may have also transported \textit{I. affinis} nymphs several thousand kilometres from the Neotropics. Stutchbury et al. [40] used light-sensitive geolocators (nano-tags) to follow the daily flight of Neotropical songbirds, and discovered that certain passerine migrants have a flight pace of 750 km/d, or more, during northward spring migration. In addition, DeLuca et al. [41] tracked Blackpoll Warblers, \textit{Setophaga striata} (Forster), during fall migration, and discovered they flew an average distance of 2540 km (923 km/d) during a 62-h, non-stop flight over the Atlantic Ocean. Clearly, some passerine migrants, such as the Common Yellowthroat and Swainson’s Thrush, have the capacity to fly long distances much greater than 425 km during a 5-day engorgement period. The presence of Neotropical \textit{Amblyomma} and \textit{Ixodes} ticks on passerine migrants in Canada during spring migration provides irrefutable evidence that birds transport ticks thousands of kilometres, and disperse them widely across southern Canada [8,29,37,42-49]. When certain passerine migrants have warm temperatures, high energy diets, and southern winds, they can fly to Canada more than 10 times the distance that some researchers claim.

Recognition of \textit{I. affinis} in northern latitudes

Even though \textit{I. affinis} is not indigenous in Canada, this bird-transported tick is able to initiate \textit{B. burgdorferi} s.l. infections in Canada. After the moult, this tick species can infect suitable hosts, and start a Lyme disease focus. Not only have \textit{I. affinis} immatures been transported to Canada, other \textit{Ixodes} species (i.e., \textit{I. minor}) have been transported great distances from more southern latitudes [37]. Because \textit{I. affinis} is morphologically similar to \textit{I. scapularis}, it is likely that \textit{I. affinis} has been misidentified as \textit{I. scapularis}, especially in northern latitudes. Since \textit{I. affinis} is not indigenous to Canada, the presence of larval and nymphal \textit{I. affinis} on Neotropical and southern temperate songbirds during northbound spring migration provides confirmatory evidence that avifauna are importing \textit{I. affinis} into Canada.

Gene mixing and diversity of Lyme disease symptoms

As an enzootic vector, \textit{I. affinis} can directly transmit heterogeneous variants of \textit{B. burgdorferi} s.l. to dogs, cats, and certain wildlife animals. Since \textit{I. affinis} is transported by migratory songbirds, various strains of \textit{B. burgdorferi} s.l. can occur within an avian host and, subsequently, be transmitted to songbird-transported ticks to northern latitudes. Rudenko et al. [31] detected \textit{B. carolinensis} in a Carolina Wren and, likewise, in a bird-feeding \textit{I. minor}. Of note, Scott and Durden [37] discovered an \textit{I. minor} on a Common Yellowthroat in Canada during spring migration. Furthermore, Scott et al. [8] collected \textit{B. burgdorferi} s.l.-positive \textit{I. dentatus} larvae in Canada that
were collected from a Swainson’s Thrush during northward spring migration. In North America, larval and nymphal *I. scapularis* have been collected from at least 78 bird species [45], and *I. scapularis* is known to harbor *B. burgdorferi* s.s. and *B. bissetti* [6]. Any combination of four passerine-transported *Ixodes* species (i.e., *I. affinis*, *I. dentatus*, *I. minor*, *I. scapularis*), which are all enzootic vectors, could be directly involved in borrellial gene mixing of *B. burgdorferi* s.l. during a long-distance migratory host flight.

The presence of 2 or more ticks, which are infected with different *B. burgdorferi* s.l. genotypes on a passerine proliferates a platform for gene mixing and microbial diversity. In particular, Scott and Durden [50] reported several *B. burgdorferi* s.l. genotypes in songbird-derived ticks collected in the Long Point bioregion. Such borrellial variants can be missed by current Lyme disease serology. In fact, Rudenko et al. [19] isolated *B. burgdorferi* s.s. and *B. bissetti*-like spirochetes from symptomatic patients, which were previously treated with antibiotics, but were seronegative for Lyme disease. The isolation of a live *B. bissetti*-like strain from a patient provides substantive evidence that this *Borrelia* genotype, and other *Borrelia* genospecies causes Lyme disease in North America [19]. Based on previous serological screening worldwide, it stands to reason that gene mixing of *B. burgdorferi* s.l. could ultimately result in inaccurate or false negative Lyme disease serology [19,33]. On the clinical front, gene mixing in songbird-transported ticks and their avian hosts could also explain the variation of Lyme disease symptomology in dogs, cats, and humans [18].

Zoonotic and human implications

The importation of *I. affinis* on migratory songbirds reveals a unique interconnecting link between *B. burgdorferi* s.l., people, birds, ticks, domestic and wildlife hosts. *B. burgdorferi* s.s. causes a myriad of clinical manifestations in people of all ages, including profound fatigue, memory loss, inflammation, spinal or radicular pain, poor balance, sleep disturbance, head pressure, and cognitive impairment, especially in the advanced stage [51-53]. Chronic neurological Lyme disease patients often encounter tingling, numbness, burning sensations of the extremities [53]. *B. burgdorferi* s.l. lipoproteins, namely outer surface proteins and flagellin, are inducers of inflammatory cytokines. In vivo, *B. burgdorferi* s.l. has several pleomorphic forms (i.e., spirochetes, blebs, granules, round bodies) [54] and, collectively, these aggregates form gelatinous biofilm colonies [55,56]. Since *B. burgdorferi* s.l. has diverse forms, it may be recalcitrant to treatment, especially in the advanced tertiary stage. If left untreated or inadequately treated, *B. burgdorferi* s.l. can persist in deep-seated tissues, including bone [57,58], brain [59-61], eye [62], glial and neuronal cells [63,64], ligaments and tendons [65,66], muscles [67], and fibroblasts/scar tissue [68]. Because *B. burgdorferi* s.l. can outwit the immune system by evading the innate and adaptive immune responses of the body, it can hide in immune privileged sites [69]. Several researchers have documented persistence of *B. burgdorferi* s.l. in numerous mammalian hosts, including humans [18,70-73]. In addition, Lyme disease spirochetes spread to the central nervous system, and can persist in the body for years [74-77]. Pain can be so debilitating that some patients lose their ability to function in a meaningful and productive way. Often, patients are confined to their residence, and end up on disability, and are unable to work or attend school. As *B. burgdorferi* s.l. advances and prevails in tissues and organs, this spirochetosis can result in fatal outcomes [59,76]. Whenever *B. burgdorferi* s.s. and *B. bissetti* are isolated from seronegative patients, these cultures provide irrefutable evidence that these genospecies do, in fact, cause Lyme disease. Moreover, even though infected rhesus macaques had been treated with antibiotics, Embers et al. [70] have documented *B. burgdorferi* s.l. in these seronegative primates, and conclusively determined that Lyme disease can be persistent.

In conclusion, we provide compelling proof that migratory songbirds transport *I. affinis* into Canada during northward spring migration. We document the first record of a *B. burgdorferi* s.s.-positive *I. affinis* in Canada and, synchronously, provide new host and distribution records for this tick species. Furthermore, we provide new evidence that *I. affinis* can be added to the list of competent enzootic vectors of *B. burgdorferi* s.l. in Canada. After *I. affinis* immatures are dispersed in Canada, they can moult during the summer and, if infected, transmit Lyme disease spirochetes to suitable vertebrate hosts. Additionally, *I. scapularis* immatures can act as a bridge vector to people and certain domestic animals. It is an inescapable fact that migratory songbirds are transporting ticks into Canada during northward spring migration, and some of these engorged ticks are infected with *B. burgdorferi* s.s., which is pathogenic to humans and certain domestic animals. Ultimately, it is firmly established that people do not have to frequent an endemic area to contract Lyme disease. Medical professionals, veterinarians, biomedical scientists, and public health officials should be vigilant that diverse variants of *B. burgdorferi* s.l. are introduced by songbird-
transported *Ixodes* ticks, and pose a country-wide public health risk.

Acknowledgments

We thank Simon Duval, Charlotte England, and Nigel Shaw for collecting ticks from migratory songbirds. We are indebted to Kenny Lou for technical assistance. We pay special tribute to the late Bronwyn Dalziel for her outstanding ornithology work. We are grateful to John Ward for computer graphics. Funding support was provided in part by Lyme Ontario.

References

1. Oliver JH Jr, Keirans JE, Lavender DR, Hutcheson HJ (1987) *Ixodes affinis* Neumann (Acari: Ixodidae): new host and distribution records, description of immatures, seasonal activities in Georgia, and laboratory rearing. *J Parasitol* 73: 646-652.

2. Harrison BA, Rayburn W Jr, Toliver M, Powell EE, Engber BR, et al. (2010) Recent discovery of widespread *Ixodes affinis* (Acari: Ixodidae) distribution in North Carolina with implications for Lyme disease studies. *J Vect Ecol* 35: 174-179.

3. Kohls GM, Rogers AJ (1953) Note on the occurrence of the tick *Ixodes affinis* Neumann in the United States. *J Parasitol* 39: 669.

4. Nadolny RM, Wright CL, Hynes WL, Sonenshine DE, Gaff HD (2011) *Ixodes affinis* (Acari: Ixodidae) in southeastern Virginia and implications for the spread of *Borrelia burgdorferi*, the agent of Lyme disease. *J Vector Ecol* 36: 464-467.

5. Heller EL, Wright CL, Nadolny RM, Hynes WL, Gaff HD, et al. (2016) New records of *Ixodes affinis* (Acari: Ixodidae) parasitizing avian hosts in southeastern Virginia. *J Med Entomol* 53: 441-445.

6. Oliver JH Jr, Lin T, Gao L, Clark KL, Banks CW, et al. (2003) An enzootic transmission cycle of Lyme borreliosis spirochetes in the southeastern United States. *Proc Natl Acad Sci USA* 100: 11642-11645.

7. Oliver JH Jr (1996) Lyme borreliosis in the southern United States: a review. *J Parasitol* 82: 926-935.

8. Scott JD, Anderson JF, Durden LA (2012) Widespread dispersal of *Borrelia burgdorferi*-infected ticks collected from songbirds across Canada. *J Parasitol* 98: 49-59.

9. Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, et al. (2009) Delineation of a new species of the *Borrelia burgdorferi* sensu lato complex, *Borrelia americana* sp. nov. *J Clin Microbiol* 47: 3875-3880.

10. Marconi RT, Liveris D, Schwartz I (1995) Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in *Borrelia japonica* sp. nov. and genomic group 21038 (*Borrelia andersonii* sp. nov.) isolates. *J Clin Microbiol* 33: 2427-2434.

11. Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, et al. (1992) Delineation of *Borrelia burgdorferi* sensu stricto, *Borrelia garinii* sp. nov. and group VS461 associated with Lyme borreliosis. *Int J Syst Bacteriol* 42: 378-383.

12. Postic D, Marti Ras N, Lane RS, Henderson M, Baranton G (1998) Expanded diversity among Californian *Borrelia* isolates and description of *Borrelia bissettii* sp. nov. (formerly *Borrelia group DN127*). *J Clin Microbiol* 36: 3497-3504.

13. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr (2009) *Borrelia carolinensis* sp. nov., a new (14th) member of the *Borrelia burgdorferi* sensu lato complex from the southeastern region of the United States. *J Clin Microbiol* 47: 134-141.

14. Margos G, Hojgaard A, Lane RS, Cornet M, Fingerle V, et al. (2010) Multilocus sequence analysis of *Borrelia bissettii* strains from North America reveals a new *Borrelia* species, *Borrelia kurtenbachii*. Ticks Tick Borne Dis 1: 151-158.

15. Smith RP, Muzaffar SB, Lavers J, Lacombe EH, Cahill BK, et al. (2006) *Borrelia garinii* in seabird ticks (*Ixodes uriae*), Atlantic coast, North America. *Emerg Infect Dis* 12: 1909-1912.

16. Pritt BS, Mead PS, Hoang Johnson DK, Neitzel DF, Respicio-Kingry LB, et al. (2016) Identification of a novel pathogenic *Borrelia* species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. *Lancet Infect Dis* 16: 556-564.

17. Girard YA, Fedorova N, Lane RS (2011) Genetic diversity of *Borrelia burgdorferi* and detection of *B. bissettii*-like DNA in serum of north-coastal California residents. *J Clin Microbiol* 49: 945-954.

18. Clark KL, Leydet B, Hartman S (2013) Lyme borreliosis in human patients in Florida and Georgia, USA. *Int J Med Sci* 10: 915-931.

19. Rudenko N, Golovchenko M, Vancova M, Clark K, Grubhoffer L, et al. (2016) Isolation of live *Borrelia burgdorferi* sensu lato spirochetes from patients with undefined disorders and symptoms not typical of Lyme disease. *Clin Microbiol Infect* 22: 267 e9-267 e15.
20. Golovchenko M, Vancová M, Clark K, Oliver JH Jr, Grubhoffer L, et al. (2016) A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as *Borrelia bissettii*. Parasit Vectors 9: 68.

21. Durden LA, Keirans JE (1996) Nymphs of the genus *Ixodes* (Acari: *Ixodidae*) of the United States: taxonomy, identification key, distribution, hosts, and medical/veterinary importance. Monographs, Thomas Say Publications in Entomology. Entomological Society of America, Lanham, Maryland, U.S.A.

22. Scott JD, Anderson JF, Durden LA, Smith ML, Manord JM, et al. (2016) Ticks parasitizing gallinaceous birds in Canada and first record of *Borrelia burgdorferi*-infected *Ixodes pacificus* (Acari: *Ixodidae*) from California Quail. Syst Appl Acarol 21: 1–12.

23. Foley J, Piovia-Scott J (2014) Vector biodiversity did not associate with tick-borne pathogen prevalence in small mammal communities in northern and central California. Ticks Tick-borne Dis 5: 299-304.

24. Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, et al. (2009) Niche partitioning of *Borrelia burgdorferi* and *Borrelia miyamotoi* in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 81: 1120-1131.

25. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr (2011) *Borrelia carolinensis* sp. nov., a novel species of the *Borrelia burgdorferi* sensu lato complex isolated from rodents and a tick from the southeastern USA. Int J Syst Evol Microbiol 61: 381-383.

26. Scott JD, Foley JE (2016) Detection of *Borrelia americana* in the avian coastal tick, *Ixodes auritulus* (Acari: *Ixodidae*), collected from bird captured in Canada. Open J An Sci 6: 207-216.

27. Anderson JF, Magnarelli LA (1984) Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale J Biol Med 57: 627–641.

28. Anderson JF, Johnson RC, Magnarelli LA, Hyde FW (1986) Involvement of birds in the epidemiology of the Lyme disease agent *Borrelia burgdorferi*. Infect Immun 51: 394–396.

29. Scott JD, Lee MK, Fernando K, Durden LA, Jorgensen DR, et al. (2010) Detection of Lyme disease spirochete, *Borrelia burgdorferi* sensu lato, including three novel genotypes in ticks (Acari: *Ixodidae*) collected from songbirds (Passeriformes) across Canada. J Vect Ecol 35: 124-139.

30. Rollend L, Fish D, Childs JE (2013) Transovarial transmission of *Borrelia* spirochetes by *Ixodes scapularis*: a summary of the literature and recent observations. Ticks Tick Borne Dis 4: 46-51.

31. Rudenko N, Golovchenko M, Belfiore MN, Grubhoffer L, Oliver JH Jr (2014) Divergence of *Borrelia burgdorferi* sensu lato spirochetes could be driven by the host: diversity of *Borrelia* strains isolated from ticks feeding on a single bird. Parasit Vectors 7: 4.

32. Banerjee SN, Banerjee M, Smith JA, Fernando K (1994) Lyme disease in British Columbia — an update. 88 p. In Proceedings of the VII Annual Lyme Disease Foundation International Conference Stamford, Connecticut.

33. Sperling JH, Middelvenn MJ, Klein D, Sperling FAH (2012) Evolving perspectives on Lyme borreliosis in Canada. Open Neurol J 6: 94-103.

34. Stricker RB, Johnson L (2014) Lyme disease: call for a “Manhattan Project” to combat the epidemic. PLoS Pathogens 10: e1003796.

35. Rudenko N, Golovchenko M, Mokracek A, Piskunova, Ruzek D, et al. (2008) Detection of *Borrelia bissettii* in cardiac valve tissue of patient with endocarditis and aortic valve stenosis in the Czech Republic. J Clin Microbiol 46: 3540-3543.

36. Rudenko N, Golovchenko M, Růžek D, Piskunova N, Mallátová N, et al. (2009) Molecular detection of *Borrelia bissettii* DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol Lett 292: 381-383.

37. Scott JD, Durden LA (2015) Songbird-transported tick *Ixodes minor* (Ixodida: *Ixodidae*) discovered in Canada. Can Entomol 147: 46-50.

38. Scott JD, Durden LA, Anderson JF (2015) Infection prevalence of *Borrelia burgdorferi* in ticks collected from songbirds in far-western Canada. Open J An Sci 5: 232-241.

39. Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, et al. (2008) Risk maps for range expansion of the Lyme disease vector, *Ixodes scapularis*, in Canada now and with climate change. Int J Health Geographics 7: 24.

40. Stutchbury BJM, Taraf SA, Done T, Gow E, Kramer PM, et al. (2009) Tracking long-distance songbird migration by using geolocators. Science 323: 896.

41. DeLuca WV, Woodworth BK, Rimmer CC, Marra PP, Taylor PD, et al. (2015) Transoceanic migration by a 12 g songbird. Biol Lett 11: 20141045.
42. Scott JD, Fernando K, Banerjee SN, Durden LA, Byrne SK, et al. (2001) Bird disperse ixodid (Acari: Ixodidae) and Borrelia burgdorferi-infected ticks in Canada. J Med Entomol 38: 493-500.

43. Morshed MG, Scott JD, Fernando K, Beati L, Mazerolette DF, et al. (2005) Migratory songbirds disperse ticks across Canada, and first isolation of Lyme disease spirochete, Borrelia burgdorferi, from the avian tick, Ixodes auritulus. J Parasitol 91: 780-790.

44. Odgen NH, Lindsay LR, Hanincová K, Barker IK, Bigras-Poulin M, et al. (2008) Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl Environ Microbiol 74: 1780-1790.

45. Scott JD (2015) Birds widely disperse pathogen-infected ticks. In: Mahala G. (Ed). Seabirds and Lyme disease: the clinical management of known tick bites, with trans-synaptic spread of infection and neurofibrillary tangles derived from intraneuronal spirochetes. Med Hypotheses 68: 822-825.

46. Scott JD, Durden LA (2015) New records of the Lyme disease bacterium in ticks collected from songbirds in central and eastern Canada. Int J Acarol 41: 241-249.

47. Scott JD, Durden LA (2015) First record of Amblyomma rotundatum tick (Acari: Ixodidae) parasitizing a bird collected in Canada. Syst Appl Acarol 20: 155-161.

48. Scott JD, Durden LA (2015) Amblyomma dissimile Koch (Acari: Ixodidae) parasitizes bird captured in Canada. Syst Appl Acarol 20: 854-860.

49. Scott JD (2016) Studies abound on how far north Ixodes scapularis ticks are transported by birds. Ticks Tick Borne Dis 7: 327-328.

50. Scott JD, Durden LA (2009) First isolation of Lyme disease spirochete, Borrelia burgdorferi, from ticks collected from songbirds in Ontario, Canada. North Am Bird Band 34: 97-101.

51. Cameron DJ, Johnson LB (2014) Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans and persistent disease. Expert Rev Anti Infect Ther 12: 1103-1135.

52. Horowitz RI (2013) Why can’t I get better? Solving the mystery of Lyme & chronic disease. (1st edn.). St. Martin's Press, New York.

53. Liegner KB (2015) In the crucible of chronic Lyme disease. Xliberis.

54. Meriläinen L, Herranen A, Schwarzbach A, Gilbert L (2015) Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiol 161: 516-527.

55. Sapi E, Kaur N, Anyanwu S, Luecke DF, Datar A, et al. (2011) Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 4: 97-113.

56. Sapi E, Bastian SL, Mpoy CM, Scott S, Rattelle A, et al. (2012) Characterization of biofilm formation by Borrelia burgdorferi. PLoS ONE 7: e48277.

57. Oksi J, Mertsola J, Reunanen M, Marjamäki M, Viljanen MK (1994) Subacute multiple-site osteomyelitis cause by Borrelia burgdorferi. Clin Infect Dis 19: 891-896.

58. Fein L, Tilton RC (1997) Bone marrow as a source of Borrelia burgdorferi DNA. J Spor Tick-Borne Dis 4: 58-60.

59. Oksi J, Kalimo H, Marttila RJ, Marjamäki M, Sonninen P, et al. (1996) Inflammatory brain changes in Lyme borreliosis: a report on three patients and review of literature. Brain 119: 2143-2154.

60. MacDonald AB (2007) Alzheimer's neuroborreliosis with trans-synaptic spread of infection and neurofibrillary tangles derived from intraneuronal spirochetes. Med Hypotheses 68: 822-825.

61. Miklossy J (2011) Alzheimer's disease—a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria. J Neuroinflammation 8: 90.

62. Preac-Mursic V, Pfister HW, Spiegel H, Burk R, Wilske B, et al. (1993) First isolation of Borrelia burgdorferi from an iris biopsy. J Clin Neuroophthalmol 13: 155-161.

63. Ramesh G, Borda JT, Dufour J, Kaushal D, Ramamoorthy R, et al. (2008) Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am J Pathol 173: 1415-1427.

64. Ramesh G, Santana-Gould L, Inglis FM, England JD, Philipp MT (2013) The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia. J Neuroinflammation 10: 88.

65. Häupl T, Hahn G, Rittig M, Krause A, Schoerner C, et al. (1993) Persistence of Borrelia burgdorferi in ligamentous tissue from a patient with chronic Lyme borreliosis. Arthritis Rheum 36: 1621-1626.

66. Müller KE (2012) Damage of collagen and elastic fibres by Borrelia burgdorferi-known and new
clinical histopathological aspects. Open Neurol J 6: 179-186.

67. Frey M, Jaulhac B, Piemont Y, Marcellin L, Boohs PM, et al. (1998) Detection of Borrelia burgdorferi DNA in muscle of patients with chronic myalgia related to Lyme disease. Am J Med 104: 591-594.

68. Klempner MS, Noring R, Rogers RA (1993) Invasion of human skin fibroblasts by the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis 167: 1074-1081.

69. Hodzic E, Feng S, Freet KJ, Barthold SW (2003) Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun 71: 5042-5055.

70. Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, et al. (2012) Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE 7: e29914.

71. Hodzic E, Feng S, Holden K, Freet JK, Barthold SW (2008) Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52: 1728-1736.

72. Hodzic E, Imai D, Feng S, Barthold SW (2014) Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS ONE 9: e86907.

73. Straubinger RK, Straubinger AF, Summers BA, Jacobson RH (2000) Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: an experimental study. J Infect Dis 181: 1069-1081.

74. Luft BJ, Steinman CR, Neimark HC, Muralidhar B, Rush T, et al. (1992) Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA 267: 1364-1367.

75. Garco-Monco JC, Villar BF, Alen JC, Benach JL (1990) Borrelia burgdorferi in the central nervous system: experimental and clinical evidence for early invasion. J Infect Dis 161: 1187-1193.

76. Liegner KB, Duray P, Agricola M, Rosenkilde C, Yannuzzi LA, et al. (1997) Lyme disease and the clinical spectrum of antibiotic responsive chronic meningoencephalomyelitides. J Spir Tick-borne Dis 4: 61-73.

77. Miklossy J, Kasas S, Zurn AD, McCall S, Yu S, et al. (2008) Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5: 40.