A BRIEF OVERVIEW TO THEORY OF HEIGHTS

1. Introduction

In various parts of the world many kinds of height systems have been formulated and practically used in the past. Nowadays, orthometric heights and normal heights are widely used. The orthometric heights are the natural heights above sea level, that is, above the geoid. The definition of the orthometric heights required the knowledge of the topographical masses density distribution between the Earth’s surface and the geoid, at least theoretically. For this reason Molodensky in 1945 formed a theory of normal heights based on the principle that the heights can be evaluated without any hypothesis about the density distribution of topographical masses. Theoretical aspects of the definition of heights are described in this paper.

2. Geopotential number

H. Bruns (1878) described the geometry of the Earth’s gravity field by the equation [1]

\[dW(H, \Omega) = -g(H, \Omega) \, dH(\Omega) = \text{const}. \tag{2.1} \]

where geographic coordinates \(\varphi, \lambda \) are represented by solid angle \(\Omega = (\varphi, \lambda) \), and \(H \) is a height obtained from the levelling.
3. Ortometrická výška

Skutočná ortometrická výška $H^o(\Omega)$ je definovaná ako dĺžka ťažnice medzi geoidom a zemským povrchom (obr. 1). Podľa Brunsovo vztahu je rozdiel dvoch potenciálov konštantný a nezávislý od integrácie cesty.

Vzhľadom na to je integrácia pozdĺž ťažnice medzi geoidom a zemským povrchom rovná integrácii na zemskom povrchu od nulového výškového bodu $O(H = 0, \Omega')$ na geoid (maregraf) do bodu $P(H, \Omega')$.

Na prevod výsledkov nivelácie $C(H, \Omega') = \int_{O(H = 0, \Omega')}^{P(H, \Omega')} g(h, \Omega') dh(\Omega')$ o rozložení hustoty topografickej hmoty.
F. R. Helmert (1890) použil na definíciu ortometrických výšok Poincaré-Pray tiažový gradient [6]. Podľa tohto postupu hodnota tiaže potrebná na určenie výšky je získaná z meraného tiažového zrýchlenia na zemskom povrchu redukovaného do stredného bodu medzi geoidom a zemským povrchom.

Tiažová redukcia na stredný bod je počítaná tak, že terén je nahradený nekonečnou Bouguerovou doskou o konštantnej hustote $\rho_g = 2.67 \text{ g.cm}^{-3}$.

Helmertova ortometrická výška $H_0 (\varphi)$ je definovaná ako [10]

$$H_0 (\varphi) = \frac{\varphi}{H_2} \int_{\partial H = 0} g(H, \varphi') \, dH(\varphi').$$

Obr. 1. Ortometrická výška a geopotenciálna kóta

Fig. 1. The orthometric height and the geopotential number

Helmertova ortometrická výška $H_0 (\varphi)$ je definovaná ako [10]

$$H_0 (\varphi) = \frac{C(H, \varphi')}{g(H/2, \Omega)} = \frac{1}{g(H/2, \Omega)} \left(\frac{\varphi(H, \varphi')}{\partial H = 0} \right) g(H', \varphi') \, dH(\varphi').$$

Stredná hodnota tiaže [5]

$$-\frac{g(H/2, \Omega)}{g(H, \varphi)} = \frac{1}{2} \frac{\partial g(H, \varphi)}{\partial H(\Omega)} H_0 (\Omega) = \frac{1}{2} \left[\frac{\partial \gamma (H, \varphi)}{\partial H(\Omega)} + 4 \pi \rho_g \right] H_0 (\Omega).$$

Helmer’s gravity [5]

$$H_0 (\Omega) = \frac{1}{2} \frac{\partial \gamma (H, \varphi)}{\partial H(\Omega)} + 4 \pi \rho_0.$$ (3.5)

Helmer’s orthometric height $H_0 (\Omega)$ is defined as [10]

$$H_0 (\Omega) = \frac{1}{2} \frac{\partial \gamma (H, \varphi)}{\partial H(\Omega)} + 4 \pi \rho_0.$$ (3.6)

je definovaná aplikáciou Poincaré-Prey tiažového gradientu vyjadreného v hranatých závorách.

Podľa tejto teórie je vertikálny tiažový gradient uvažovaný ako konštantný pozdĺž tažnice medzi geoidom a zemským povrchom $g(H/2, \Omega)$ takže je počítaný priamo pre stredný bod na tažnici $H_0 (\Omega)/2$.

Z Poissonovej rovnice [5]

$$\Delta W(x, y, z) = \frac{\partial^2 W(x, y, z)}{\partial x^2} + \frac{\partial^2 W(x, y, z)}{\partial y^2} + \frac{\partial^2 W(x, y, z)}{\partial z^2} = 4 \pi \rho_0 + 2\alpha^2.$$ (3.7)

a z výrazu pre stredné zakrivenie hladinovej plochy $J(H, \Omega),$

$$J(H, \Omega) = \frac{1}{H_2} \frac{\partial^2 W(x, y, z)}{\partial x^2} + \frac{\partial^2 W(x, y, z)}{\partial y^2} + \frac{\partial^2 W(x, y, z)}{\partial z^2} = 4 \pi \rho_0 + 2\alpha^2.$$ (3.8)

and from the expression for the mean curvature $J(H, \Omega)$ of the equipotential surface...
Prehľady / Reviews

4. Normal ortometrická výška

Číselná hodnota geopotenciálového kóty $C(H, \Omega')$ je výsledkom nívoľácie kombinovanej s tiažovými meraniami.

Integrál v rovnici (2.2) môže byť nahradený konečným počtom výškových rozdielov $\Delta H(\Omega')$ z nívoľácie a konečným počtom tiažových údajov $g(H, \Omega')$ z tiažových meraní realizovaných v nívelačnom fahu.

4. Normal ortometric height

The numerical value of the geopotential number $C(H, \Omega')$ is a result of levelling combined with gravity measurements.

The integral in the equation (2.2) can be replaced by finite elements of the height differences $\Delta H(\Omega')$ from levelling and by finite discrete gravity values $g(H, \Omega')$ from gravity measurements realised in a levelling line.
5. Dynamická výška

Dynamická výška \(H^D(\Omega) \) je definovaná vzťahom

\[
H^D(\Omega) = \frac{C(H, \Omega')}{\gamma(H, \varphi)},
\]

kde \(\gamma(H, \varphi) \) je normálne tiažové zrychlenie na rotačnom hladienom elipsoide pre lubovoľnú \(\varphi \) zemepisnú šírku, obyčajne \(\varphi = \pi/4 \).

Dynamická výška sa odlišuje od geopotenciálnej kóty len v rozmeri a v jednotkách. Delenie geopotenciálnej kóty konštantnou hodnotou \(\gamma(H, \varphi) \) iba prevádza geopotenciálnu kótu na dĺžkovú jednotku.

5. Dynamic height

The dynamic height \(H^D(\Omega) \) is defined as

\[
H^D(\Omega) = \frac{C(H, \Omega')}{\gamma(H, \varphi)},
\]

where \(\gamma(H, \varphi) \) is the normal gravity on the level rotation ellipsoid for an arbitrary standard latitude, usually \(\varphi = \pi/4 \).

Obviously, the dynamic height differs from the geopotential number only in a scale and in a unit. The division of the geopotential number by the constant value \(\gamma(H, \varphi) \) just converts the geopotential number into a length.

6. Normal height

The determination of the heights from levelling and gravity measurements without any hypothesis about a density distribution of topographical masses is fundamental principle of Molodenský’s theory of the normal height \(H^N(\Omega) \), [9].

Replacing the mean value \(g(H, \Omega) \) of the gravity by the mean value of the normal gravity \(\gamma(H, \varphi) \) along the normal between the reference ellipsoid and the telluroid (Fig.2), we obtain the formula for the definition of the normal height \(H^N(\Omega) \) as

\[
H^N(\Omega) = \frac{C(H, \Omega')}{\gamma(H, \varphi)}.
\]

The mean value of the normal gravity \(\gamma(H, \varphi) \) is referred on the mid-point of the normal between the telluroid and the reference ellipsoid, so it can be expressed by Taylor series in the following form

\[
\gamma(H, \varphi) = \gamma(H, \varphi) - \left(\frac{\partial}{\partial \Omega} \gamma(H, \varphi) \right)_{H(\Omega)=0} H^N(\Omega) + ... = \\
= \frac{1}{2} \left(\frac{\partial^2}{\partial \Omega^2} \gamma(H, \varphi) \right)_{H(\Omega)=0} (H^N(\Omega))^2 + ...
\]

The first derivative \(\frac{\partial}{\partial \Omega} \gamma(H, \varphi) \) given by equation (3.10) can be rewritten as [5]
málneho tiažového zrýchlenia

stredná hodnota normálneho tiažového zrýchlenia je počítaná z normálneho tiažového zrýchlenia

Substitúciou rovníc (6.3) a (6.4) do (6.2) dostaneme vzťah na

Druhá derivácia \(\frac{\partial^2 \gamma(H, \varphi)}{\partial H^2} \) môže byť vyjadrená v sférickej aproximácii

Substitučiou rovník (6.3) a (6.4) do (6.2) dostaneme vztah na výpočet normálneho tiažového zrychlenia \(\gamma(H, \varphi) \) v nasledovnom tvare

kde \(GM \) je geocentrická gravitačná konštant a \(f \) je splošenie referenčného elipsoidu.

Teluroid je povrch, ktorého normálny tiažový potenciál \(U(H^N) \), \(\psi \) je rovný tiažovému potenciálu na zemskom povrchu. Kvázieoid (nie je ekvipotenciálnou plochou) je daný výškovými anomaliami \(\varsigma(\Omega) \) vzhľadom k referenčnému elipsoidu.

Poznámka: J. Vignal [12] navrhol podobný výškový systém, kde stredná hodnota normálneho tiažového zrychlenia je počítaná z normálneho tiažového zrychlenia \(\gamma(\varphi) \) na kladinovom rotačnom elipsoid. v zmysle aproximácie vertikálneho gradientu normálneho tiažového zrychlenia, príčom v tejto teórii je použitá iba prvá parcíálna derivácia Taylorovho rozvoja (6.2)

where \(GM \) is the geocentric gravitational constant, and \(f \) is the flattening of the reference ellipsoid.

The surface, whose normal gravity potential \(U(H^N, \varphi) \) is equal to the gravity potential on the Earth’s surface is the telluroid. The quasigeoid (which is not equipotential surface) is given by heights anomalies \(\varsigma(\Omega) \) referred on the reference ellipsoid.

Note: Vignal [12] proposed a similar system of heights, whereby the mean value of the normal gravity is evaluated from the normal gravity \(\gamma(\varphi) \) on the level rotation ellipsoid by means of approximate vertical gradient of normal gravity. In this theory only the first partial derivative of the Taylor series (6.2) is used in the form
Na definíciu vzťahu medzi Molodenského normálnou výškou a Helmertovou ortometrickou výškou vyjadríme elipsoidickú výšku
$h(\Omega)$ ako sumu normálnej výšky $H^N(\Omega)$ a výškovej anomálie $\chi(\Omega)$, podľa Molodenského teórie a ako sumu ortometrickej výšky $H^O(\Omega)$ a geoidickej výšky $\zeta(\Omega)$, (obr. 3)

$$h(\Omega) = H^N(\Omega) + \chi(\Omega) = H^O(\Omega) + \zeta(\Omega).$$ \hspace{1cm} (6.7)

Podľa W. H. Heiskanena a H. Moritza (1967) je rozdiel $\delta H(\Omega)$ medzi normálnou a ortometrickou výškou s dostatočnou presnosťou rovný [5]

$$\delta H(\Omega) = H^N(\Omega) - H^O(\Omega) = \frac{g(H, \Omega)}{\gamma(H, \Omega)} \left[\frac{\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)}{\gamma(H, \varphi)} \right] = H^O(\Omega) \frac{\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)}{\gamma(H, \varphi)}.$$ \hspace{1cm} (6.8)

Výraz $\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)$ je približne rovný jednoduchej Bouguerovej tlakové anomálie $\Delta g^B(H, \Omega)$ [8].

The term $\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)$ is approximately equal to the simple Bouguer gravity anomaly $\Delta g^B(H, \Omega)$ [8],

$$\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi) \approx g(H, \Omega) - \frac{1}{2} \frac{\partial \gamma(H, \varphi)}{\partial H(\Omega)} H^O(\Omega) - 2\pi G_p H^O(\Omega) - \gamma(H, \varphi) - \frac{1}{2} \frac{\partial \gamma(H, \varphi)}{\partial H(\Omega)} H^N(\Omega) \equiv$$

$$\approx g(H, \Omega) - \gamma(H, \varphi) - 2\pi G_p H^O(\Omega) = \Delta g^B(H, \Omega).$$ \hspace{1cm} (6.9)

Uvažujúc, že $g(H, \Omega) = \gamma(H, \varphi)$, môžeme nakoniec vyjadriť korekcii ortometrickej výšky na normálnu výšku v nasledovnom tvar:

$$\delta H(\Omega) = H^O(\Omega) \frac{\Delta g^B(H, \Omega)}{\gamma(H, \varphi)} \approx -2\pi G_p H^O(\Omega) \frac{H^O(\Omega)}{\gamma(H, \varphi)} = -2\pi G_p \frac{[H^O(\Omega)]^2}{\gamma(H, \varphi)}. \hspace{1cm} (6.10)$$

To define relation between the Molodensky’s normal height and Helmert’s orthometric height, we define the ellipsoidal height $h(\Omega)$ as a sum of the normal height $H^N(\Omega)$ and height anomaly $\chi(\Omega)$ according to Molodensky’s theory, and a sum of the orthometric height $H^O(\Omega)$ and geoidal height $\zeta(\Omega)$, respectively (Fig. 3)

$$h(\Omega) = H^N(\Omega) + \chi(\Omega) = H^O(\Omega) + \zeta(\Omega).$$ \hspace{1cm} (6.7)

According to Heiskanen and Moritz, (1967), the difference between the normal and orthometric height $\delta H(\Omega)$ is, with sufficient accuracy, equal to [5]

$$\delta H(\Omega) = H^N(\Omega) - H^O(\Omega) = \frac{g(H, \Omega)}{\gamma(H, \Omega)} \left[\frac{\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)}{\gamma(H, \varphi)} \right] = H^O(\Omega) \frac{\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)}{\gamma(H, \varphi)}.$$ \hspace{1cm} (6.8)

The term $\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi)$ is approximately equal to the simple Bouguer gravity anomaly $\Delta g^B(H, \Omega)$ [8],

$$\bar{g}(H, \Omega) - \bar{\gamma}(H, \varphi) \approx g(H, \Omega) - \frac{1}{2} \frac{\partial \gamma(H, \varphi)}{\partial H(\Omega)} H^O(\Omega) - 2\pi G_p H^O(\Omega) - \gamma(H, \varphi) - \frac{1}{2} \frac{\partial \gamma(H, \varphi)}{\partial H(\Omega)} H^N(\Omega) \equiv$$

$$\approx g(H, \Omega) - \gamma(H, \varphi) - 2\pi G_p H^O(\Omega) = \Delta g^B(H, \Omega).$$ \hspace{1cm} (6.9)

Assuming $g(H, \Omega) = \gamma(H, \varphi)$, we can finally describe the correction of the orthometric height to normal height in the following form

$$\delta H(\Omega) = H^O(\Omega) \frac{\Delta g^B(H, \Omega)}{\gamma(H, \varphi)} \approx -2\pi G_p H^O(\Omega) \frac{H^O(\Omega)}{\gamma(H, \varphi)} = -2\pi G_p \frac{[H^O(\Omega)]^2}{\gamma(H, \varphi)}. \hspace{1cm} (6.10)$$
7. Summary

By means of the geopotential number \((H, \Omega')\), we can describe different kinds of heights in a instructive form:

- orthometric height:
 \[H^2(\Omega) = \frac{C(H, \Omega')}{{\bar{g}}(H, \Omega)}. \]
 (7.1)

- normal height:
 \[H^N(\Omega) = \frac{C(H, \Omega')}{{\gamma}(H, \varphi)}. \]
 (7.2)

- dynamic height:
 \[H^D(\Omega) = \frac{C(H, \Omega')}{{\gamma}_e(\varphi)}. \]
 (7.3)

From this scheme it is clear that the above mentioned height systems can be obtained by dividing the geopotential number by the relevant value of the gravity.

Literatúra – References

[1] BRUNS, H., 1878: Die Figur der Erde. Berlin, Publ. Preuss. Geod. Inst.
[2] BESSEL, F. W., 1837: Ueber den Einfluss der Unregelmässigkeiten der Figur der Erde auf geodaetische Arbeiten und ihre Vergleichung mit den Astronomischen Bestimmungen. Astronomische Nachrichten, T.14., No. 269.
[3] BOMFORD, G., 1971: Geodesy. 3rd edition, Clarendon Press.
[4] GAUSS, C.F., 1828: Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am Ramsdensch Zenithsector. Vandernschoeck und Ruprecht, Göttingen.
[5] HEISKANEN, W. H., MORITZ, H., 1967: Physical geodesy. W.H. Freeman and Co., San Francisco.
[6] HELMERT, F. R., 1890: Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen. Veröff. Königl. Preuss. Geod. Inst., No.1.
[7] LISTING, J. B., 1873: Ueber unsere jetzige Kenntniss der Gestalt und Groesse der Erde. Nachrichten von der Königl. Göttingen VLG der Dietrichschen Buchhandlung.
[8] MARTINEC, Z., 1993: Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. Final report of contract DSS No. 23244-2-4356, Geodetic Survey of Canada, Ottawa.
[9] MOLODENSKY, M. S., 1945: Fundamental problems of Geodictric Gravimetry, (in Russian), TRUDY Ts NIIGAIK 42, Geodezizdat, Moscow.
[10] VANICEK, P., KRAKIWSKY, E., 1986: Geodesy, The concepts (second edition). Elsevier Science B.V., Amsterdam.
[11] VANICEK, P., KLEUBERGA, A., MARTINEC, Z., SUN, W., ONG, P., NAJAFI, M., VAJDA, P., FARRIE, L., TOMASEK, P., HORST, B., 1995: Compilation of a precise regional geoid. Final report on research done for the Geodetic Survey Division. Fredericton.
[12] VIGNAL, J. and KUKKAMÄKI, T. J., 1954: Comptes rendus des travaux de la section des nivellements de précision. Bull. Géod., supplement to Vol. 34.