Neural Network Model of Pricing Health Care Insurance

Abstract – To pricing health insurance plan, statisticians use mathematical models to analysis customer’s future health condition. General Addictive Model (GAM) is a wide-accepted method for this problem, however, it have several limitations. To solve this problem, a new method named neural network model is implemented. Compare with GAM model, neural network provide a more accurate predicting result.

Keywords – General Addictive Model; neural network model; Health Care Insurance

1. Introduction

1.1 General information of health care insurance pricing problem

Health care insurance is a financial structure that against the risk of future medical expenses of individuals. By predicting the health care expenses of a certain group of people, an agency sets up a monthly payroll called premium. The insurance company will provide health care benefits to the individuals who pay the premium regularly. Benefits are specified by a contract between the insurance agency and its customer. Most Large companies provide health care insurance to their employee. And the government also supplies Medicare (a special health insurance) to the disables, aged people, and people who have no income.[1]

Pricing healthcare insurance is a complex procedure. It is important for a company to pricing each customer’s health insurance plan individually base on his/her life condition. Several factors, including gender, age, health condition, income, job status, and the living place, would be considered [1]. The variability of price of health care insurance plan for different people is high. For people who had a severe disease, the price of health care insurance will higher than average.

Healthcare industries have several principles for pricing health insurance products [2]. Firstly, premium amount need to be adequate. The price must low enough to attract consumers while providing a reasonable amount of profit to the company itself. Secondly, premium amounts need to match the coverage that the health insurance could provide and meet the requirement of customer. Few costumers will pay for low price insurance without enough benefit. If the company charges too much money for the coverage of the health care product, it will lose its costumers. Thirdly, the premium of health insurance product need to competitive compare with the amount charged by other health insurance companies for similar products. Few costumers wanted to spend a great deal of money just for a special reasonable benefits policy. In most cases, a better price won more costumers. Finally, the health insurance of every customer must keep equality. Some customer placed much more claims than other costumers. As a result, the price for each individual is expected to be different. Thus, the health care insurance industries need to design distinct insurance plan focus on different target customer group. For each plan, health insurance companies need to construct mathematical models, predicting the future health care expenditure base on customer’s health condition and other information. After consider future expenditure of customers and operation cost of company itself, statistician could set up a reasonable price and coverage of a health insurance plan. Several statistical methods were used to pricing health insurance plan [3].

1.2 Form History of mathematical modeling about pricing health care insurance

Many researchers have developed statistical models to estimate the future medical expenditure by analysis people’s previous health status. In early 1990s, most health industries used General Linear Model (GLM) to predict future health condition for customers. GLM is a flexible extension of linear regression for a single dependent variable. It contains several explanatory variables denoted as x_1, x_2, \cdots, x_m and one responsive variable $g(y)$. For health insurance pricing problem, statisticians choose gender, age, working status, income, and previous insurance claims of customers as explanatory variables. And the response variable $g(y)$ could be future medical expenditure or price of health insurance of customers. Then, statisticians estimate parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_m$ by a dataset of previous customers’ information. The model is shown as equation (1).

$$g(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m$$ (1)

After constructed the GLM model, health insurance companies could predict the future medial expenditure of a new customer and price his health insurance plan [3]. Recently, GLM model is still a wide-
accepted model for approximate estimate in some health insurance companies [4].

After 1995, General Additive Model (GAM) gradually entered people’s vision. GAM model is developed from blending of the key characters of generalized linear model and additive model. [7] In a typical GAM model, the explanatory variables \(x_1, x_2 \cdots x_m \) and parameters \(\beta_0, \beta_1, \beta_2, \cdots \beta_m \) in GLM is replaced by a series of more complex functions of explanatory variables denoted as \(f(x_1), f(x_2) \cdots f(x_m) \).

The function \(f(x) \) provides a better fitting for dataset than parameters in GLM model. It named smooth function. In the other hand, we use link function \(g(E(y)) \) instead of \(g(y) \) as response variable of the model. The model is shown as equation (2).

\[
g(E(y)) = \beta_0 + f(x_1) + f(x_2) + \cdots + f(x_m) \quad (2)
\]

To construct a GAM model, we have several steps. Firstly, assuming the data of customers is selected from a population with a specific distribution (usually normal distribution or binomial distribution). Then, we use a link function \(g(E(y)) \) to relating the expectation value \(E(y) \) of that distribution and several explanatory variables. Secondly, we need to collect the customer’s information in database of healthcare insurance company to construct the smooth function. This procedure called training. After training process, the established GAM model is well prepared for pricing the health insurance plan for a new customer. Now, GAM has become the most popular method among statistical models in the field of pricing health care insurance [5] [6].

1.3 Limitation of GAM model

GAM model provides a good fitting of most datasets. However, it suffers from four major limitations. Interaction of explanatory factors is the most important problem. Interaction means an effect of two or more factors to a certain result is not simply added. For example, regular smoking will increase the probability of a person to suffer from lung cancer. We denote the amount of increase as \(p_1 \). And drinking alcohol will also increase the probability of a person to have cancer. We denote the increase as \(p_2 \). Then, for a person who is always drinking and smoking, his chance to suffer from cancer is not only \(p_1 + p_2 \) but \(p_1 + p_2 + a \times p_1 \times p_2 \), where \(a \) is a constant index. In other words, existence of an interaction effect implies that the effect of one explanatory variable is a function of another explanatory variable. If variables \(x_1 \) and \(x_2 \) have interaction relationship, the original GAM model will be changed:

\[
g(E(y)) = \beta_0 + f(x_1) + f(x_2) + f(x_1) \times f(x_2) + \cdots + f(x_m) \quad (3)
\]

For a set of explanatory variables \(x_1, x_2, \cdots x_m \), we need to exam the interaction effect of these variables for \(\frac{m(m-1)}{2} \) times. To acquire a more accurate prediction of customer’s future health condition, statisticians need to select more than 20 explanatory variables to construct the GAM model. If so, re-constructing of GAM model with interaction effect will more than 200 times. Statisticians need to exam whether each of them is significant. If we include high order interaction (the interaction effect of more than 2 variables) effect in the analysis, the problem will be even more complex. In most cases, researchers spend a lot of time on interactions of explanatory variables. They adjust the model many times to make sure it is constructed correctly. To simplify this procedure, researcher might reduce the number of explanatory variables to improve predictive ability of this model. [6]

The second disadvantage of GAM model is collinear. Collinear is a term describing two or more variables have a correlation relationship. For example, a smoking customer has a higher probability to have respiratory disease. It is unfair to charge this customer for both reasons. To solve this problem, analyst need to use factor analysis method to combine the collinearly variables into one factor, and then fitting the regression model of several factors instead of explanatory variables. It will spend a lot of time and lose the accuracy of the model. [7]

Another limitation worth mentioning is over fitting. Over fitting occurs when a statistical model is excessively complicated. A over fitting model generally has a prefect fitting for its training data but has poor predicting result. It is not always good to pursue a better fitting result. Most statistical models have a threshold. When training the model, if the fitting accuracy increase higher than this threshold, the predicting accuracy will decrease while the training accuracy increase. For the GAM model in health insurance pricing problem, analysts used to control the fitting error of predicting expense not lower than 8% to avoid over fitting. As the number of smooth parameters increase, the over fitting problem will become more obvious [4].

Besides, GAM model is restricted by parametric assumption. To acquire an outcome of customer’s health condition, insurance companies need to assume that data is selected from a certain kind of distribution. However, the assumption might not exactly correct. The parametric model might suffer from the inaccurate assumption. It is difficult to estimate the parameters of model under this situation. [7]

2. Materials and methods

2.1 Neural network model

Neural network model (artificial neural network, ANN) was designed base on the structure of brain and neural system, attempting to simulate the process of human study and decision making based on a certain data set. It is a newly developed computational model in artificial intelligence field.
A neural network consists of several input variables, one or more output factors and a group of connected hidden points called inner neurons. Each input variable connects to all inner neuron in hidden layer. The value of an inner neuron is the sum of each input value multiple to a weight. The weight could be thought as the memory of human’s brain, it could be changed while training. And the output value of the model denote as the sum of each inner neuron value multiple to other weight. The weights between each two points are different. The model changes its weight when training information flowing through the network. After the model was constructed, it could be used to predict the future health care expense of a new customer and determine how much insurance fee should be paid base on his current health condition [7].

Figure 1. Human brain and nervous system modeled by computer system.

Compare with GAM model, neural network model have several advantages [16]. First of all, ANN is a nonparametric method. In other word, this model adapted sample dataset selected from population of all kinds of distributions. Therefore, statisticians could use ANN model directly without analysis the probability distribution of dataset. Secondly, because of its complex inner structure, the statisticians need not to consider interaction effect during analysis. Finally, in the training process, the changing of weight structure will automatically combine the collinear factors. In a word, by using ANN model, statisticians avoid spending time on interaction effect, collinear analysis, and assumption of population distribution. Thus, the process of constructing an artificial neural network is much simpler than GAM model and other regression model. ANN model has better performance than traditional statistical approaches on predicting of people’s health condition. [9]

Neural network have two different classifications: feed forward network (FF neural network) and back propagation network (BP neural network). The structure of these two kinds of networks has slightly different. In the first step, inner points of feed forward network could only accept inputting data. And points will output the data in next step. BP neural is a more popular model in recent years. In BP neural network, each inner point could input information and output information at the same time. Neurons of BP neural network could accept feedback of next layer. This model provides a more accurate predicting result than FF neural network. Thus, we use BP network to calculate the price of health care insurance in next paragraph.[14]

2.2 An example of pricing healthcare insurance by neural network model

To show how neural networks works on pricing healthcare insurance problem, we run a neural network model by a set of data of 200 customer’s personal information. This dataset is collected by Brocketti in a research project at 2009[8].

Table 1 the information of first 5 customers in the training data of the example. (COPD is chronic obstructive pulmonary disease).

No.	Gender	Age	Income (per year)	Smoke	Previous	Expenditure Claim
1	female	58	0	Yes	COPD	10,250$
2	male	32	83,000$	No	None	0
3	male	45	67,000$	Yes	Lung	148,765$
					Cancer	
4	female	24	45,000$	No	None	100$
5	female	37	30,000$	No	Diabetes	5,200$

We use neural network Toolbox of Matlab software to deal with this problem. We construct a BP neural network model with 6 input points, 8 inner points (1 layer), and 1 output point. And we use half of data as training sample and other half data to exam the predicting accuracy of this model.[13]

3. Result and Discussion

3.1 Comparison of the results of neural network model and GAM model

Table 2 the summary of accuracy of neural network model and GAM model

	Accuracy	Interaction analysis	Collinear analysis
ANN	94%~107%	None	None
GAM	90%~110%	Smoke	Smoke & Claim

From table 2, we could see that ANN has a better predicting accuracy than GAM model.
Table 3 the summary of over fitting of neural network model and GAM model

Distribution assumption	Error of Over fitting threshold	
ANN	None	6%
GAM	Normal	8%

3.2 Limitation of neural network model

The neural network model has an excellent predicting result on pricing health care insurance problem. However, it have not solved the over fitting problem entirely. It just reduce the over fitting threshold of the model. In a GAM model, analyst needs to control the error of predicting result close to 8%. And statisticians could reduce the over fitting threshold to 6% in ANN model [9].

3.3 Analysis improvement and development of neural network model of healthcare insurance problem

To improve the accuracy of predicting without over fitting, analyst could try to collect more customers information as training data. The over fitting threshold will decrease while training sample is large. [10,11]

References

[1]. Richard G. Frank, Karine Lamiraud, Choice, price competition and complexity in markets for health insurance, Journal of Economic Behavior & Organization, Volume 71, Issue 2, August 2009, Pages 55

[2]. Does health insurance reduce illness-related worker absenteeism? Xiao Xu, Gail A Jensen. Applied Economics. London:2012. Vol. 44, Iss. 35, p. 4591

[3]. More health care utilization with more insurance coverage? Evidence from a latent class model with German data Hendrik Schmitz. Applied Economics. London: 2012. Vol. 44, Iss. 34, p. 4455

[4]. Does patient trust promote better care? Debra Dwyer, Hong Liu, John A Rizzo. Applied Economics. London: 2012. Vol. 44, Iss. 18, p. 2283

[5]. The impact of clinical trial insurance coverage mandates on racial minorities and low income individuals Natalie Chun, Minjung Park. Applied Economics. London:2012. Vol. 44, Iss. 15, p. 1977

[6]. Does inequality in China affect health differently in high- versus low-income households? Hai Fang, John A Rizzo. Applied Economics. London:2012. Vol. 44, Iss. 9, p. 1081

[7]. A comparison of neural network, statistical methods, and variable. Brockett, Patrick L; Golden, Linda L; Jang, Jaeho; Yang, Chuanhou Journal of Risk and Insurance; Sep 2006: p.397

[8]. Fuzzy clustering and neural network applications in activity duration modeling Cao, Ling. Proquest Dissertations And Theses 2009. Section 0148, Part 0790 173 pages; [M.A.Sc. dissertation].Canada: The University of Regina (Canada); 2009. Publication Number: AAT MR55069.

[9]. Neural network for identification and control of stochastic systems Wang, Zhennong. Proquest Dissertations And Theses 1996. Section 0099, Part 0405 139 pages; [Ph.D. dissertation].United States -- Kansas: University of Kansas; 1996. Publication Number: AAT 9721781.

[10]Qixin Wang, Yang Liu, Xiaochuan Pan (2008), Atmosphere pollutants and mortality rate of respiratory diseases in Beijing. Science of the Total Environment, Vol.391 No.1, pp143–148.

[11]Does health insurance reduce illness-related worker absenteeism? Xiao Xu, Gail A Jensen. Applied Economics. London:2012. Vol. 44, Iss. 35, p. 4591

[12] Qixin Wang, Menghui Li, Hualong Zu, Mingyi Gao, Chenghua Cao, Li Charlie Xia(2013). A Quantitative Evaluation of Health Care System in US, China, and Sweden, HealthMED, Vol.7, No.4, PP. 1064-1074

[13] Qixin Wang, Menghui Li, Li Charlie Xia, Ge Wen, Hualong Zu, Mingyi Gao (2013), Genetic Analysis of Differentiation of T-helper lymphocytes, Genetics and Molecular Research, Vol.12, No.2, PP. 972 – 987

[14] Qixin Wang, Chenghua Cao, Menghui Li, Hualong Zu (2013) A New Model Based on Grey Theory and Neural Network Algorithm for Evaluation of AIDS Clinical Trial, Advances in Computational Mathematics and its Applications, Vol.2, No.3, PP. 292-297

[15] Qixin Wang, Menghui Li (2013) System Dynamic Modeling for Spread of AIDS in representative Countries, Advances in Computational Mathematics and its Applications, Vol.2, No.3, PP. 301-309

[16] Qixin Wang, Yang Liu, Lihong Mo (2007). The evaluation and prediction of the effect of AIDS therapy, Proceeding of IEEE International Conference on Complex Medical Engineering, pp1591-1596.

[17] Y. Han and A. T. Chronopoulos. Distributed Loop Scheduling Schemes for Cloud Systems. IEEE High-Performance Grid and Cloud Computing Workshop(HPGC'13) in conjunction with IPDPS 2013, Boston, MA, May 2013.

[18] Y. Han and A. T. Chronopoulos. Scalable Loop Self-Scheduling Schemes Implemented on Large-Scale Clusters IEEE Workshop on Large-Scale Parallel Processing(LSPP'13) in conjunction with IPDPS 2013, Boston, MA, May 2013.
[19] Y. Han and A. T. Chronopoulos. A Hierarchical Distributed Loop Self-Scheduling Scheme for Cloud Systems. The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

[20] Hangwei Qian, Qixin Wang (2013) Towards Proximity-aware Application Deployment in Geodistributed Clouds, Advances in Computer Science and its Applications, Vol 2, No 3

[21] Yunfeng Ling, etc., A Fanotype Interference Enhanced Quantum Dot Infrared Photodetector, Vasinajindakaw, Puminun… Applied Physics Letters, 2011.

[22] Yunfeng Ling, Nan Wu, etc., Thin Film Thickness Variation Measurement Using Dual LEDs and Reflectometric Interference Spectroscopy Model in Biosensor, Yunfeng Ling, Nan Wu, etc., SPIE Photonics West, San Francisco, 2010.

[23] Nan Wu, Wenhui Wang, Yunfeng Ling, etc., Label free Detection of Biomolecules Using LED Technology, SPIE Photonics West, San Francisco, 2010.

[24] Yunfeng Ling, etc., Design of Omnidirectional Vision Reflector based on VC and Matlab, Computer Applications and Software, China, 2008.

[25] Hangwei Qian, Elliot Miller, Wei Zhang, Michael Rabinovich, Craig E Wills. Agility in virtualized utility computing. Proceeding Workshop on Virtualization Technologies in Distributed Computing, 2007.

[26] Wei Zhang, Hangwei Qian, Craig E Wills, Michael Rabinovich. Agile resource management in a virtualized data center. Proceeding of the First Joint WOSP/SIPEW International Conference on Performance Engineering, 2010.