An integrated multi-criteria decision-making methodology for conveyor system selection

Pairat Jiamruangjarus1 and Thanakorn Naenna1*

Abstract: Material handling equipment (MHE) is important for every industry because it has an effect on the productivity of manufacturing. Conveyor systems are presently one popular type of MHE. This paper presents an integration of the analytic network process (ANP) with the benefits, opportunities, costs and risk (BOCR) model in order to select the best conveyor system. The proposed model established a network with four merits, six strategies criteria, and twenty six sub-criteria with four alternatives (present, roller conveyor, chain conveyor, and monorail). The ANP is to determine the relative weights of an evaluative criteria and decision alternatives. Therefore, the final ranking of the alternatives are calculated by synthesizing the score of each alternative under BOCR. The results showed that the best alternative under all five methods is the chain conveyor. These research results can be easily applied, adapted and used to improve performance of selecting the conveyor system in small and medium enterprises through large industries.

1. Introduction
Although we are not particularly interested in the practice of material handling, in everyday life material handling equipment (MHE) can be found almost anywhere, especially in trade and industry. In fact, in modern life, it is not rare for materials handling to be used for such purposes as lifting, moving, storage and other activities. The study on metal processing industries has been a
discontinuous process; it was found that only five percent of total production time is spent working on a machine, and the other ninety-five percent is spent on waiting and movement (Srisom & Sriuthai, 2004). It was also found that in each industry, the cost of material handling will account for approximately 30–70% or more of the total cost of production, depending on the type of industry (Dongre & Mohite, 2015). The initial cost of manufacturing operation can be reduced by 15–30% by efficient management of material handling (Sule, 1994; Kulak, 2005; Sujono & Lashkari, 2007; Tuzkaya, Gülsün, Kahraman, & Özgen, 2010).

An investment analysis in choosing a material handling system (MHS) is extremely complex, and there are multiple solutions for particular situations (Swaminathan, Matson, & Mellichamp, 1992). The material handling selection problem is important (Chan, Ip, & Lau, 2001), and there are many factors concerned that should be considered. It may be significantly affected by constraints or other factors such as product size, the characteristics of the product that is to be handled, space and time required, etc. (Marcello, Gab brielli, & Miconi, 2001). These main factors consist of MHE, manufacturing type, working area, product appearance, environment, functional equipment, material handling methods, and other factors. Many times, investors will only consider the benefits of investment and investment cost, which makes the mistake of considering the major two factors: the opportunities and risks arising from the investment.

This research focuses on the investment conveyor system. The complexity of conveyor equipment selection is a problem for many manufacturers (Fonseca, Uppal, & Greene, 2004). There are several factors and limitations involved in conveyor equipment selection. A conveyor system is a part of the mechanical handling equipment that is used to move materials from one location to another (Tompkins, White, Bozer, & Tanchoco, 2002). The types of conveyors can be categorized in several ways. For example, a belt conveyor can be used for bulk and unit loads, so it can be located overhead or on the floor. Bulk materials such as grain, dry chemicals and saw dust can be conveyed using a chute, belt, bucket or vibrating conveyors. Unit materials such as castings, machined parts, and materials can be placed on pallets and cartons or tote boxes, and can be conveyed using chute, belt, roller, wheel, or tow conveyors. Materials can be conveyed on belt, roller, wheel, vibrating, pneumatic or tow conveyors.

This paper describes a tool to support decision-making in the problem of conveyor system selection. For this problem, this paper used the analytic network process (ANP) with the benefits, opportunities, costs and risk (BOCR) as a development tool. The ANP, as one of widely used multiple criteria decision-making (MCDM) method, is often implemented in BOCR analysis to improve the performance of decision analysis (Chen, Lee, & Kang, 2010; Cho, Kim, & Heo, 2015; Erdogmus, Kapanoglu, & Koc, 2005; Jaafari, Najafi, & Melón, 2015; Krishna Mohan, Reformat, & Pedrycz, 2013; Lee, Chang, & Lin, 2009; Malimir, Hamzehi, & Farsijani, 2013; Mili, 2014; Saatya & Sagir, 2015; Sakthivela, Ilangkumaranb, & Gaikwada, 2015; Tornjanski, Marinković, & Lalić, 2014; Ustun & Demirtas, 2008; Wang, Lee, Peng, & Wud, 2013; Wiratanaya, Darmawan, Kolopaking, & Windia, 2015; Wijnmalen, 2007; Yazgan, Boran, & Goztepe, 2010). The rest of this paper is organized as follows. Section 2 describes the MHS, the ANP and presents the five methods of BOCR. Section 3 describes the methodology and algorithm for the ANP model with BOCR. In Section 4, selected examples are presented to apply the model in real cases. The final section provides concluding remarks.

2. Literature review

2.1. Material handling system

Material handling is defined by American Society of Mechanical Engineers as the art and science involving the moving, packaging, and storing of substances in a form. Although the best solution to the problem of materials handling is no handling, or the simplest solution to the handling of materials being no movement no cost. Both solutions are hardly possible for a complete manufacturing process. A MHS is a system for improving the performance of a manufacturing system, such as
reducing work-in-process (WIP) by delivering the right amount of materials, to the right place, at the right time, and at the lowest cost (Kulak, 2005).

In a manufacturing system, MHE is the most important part, and it plays an increasingly important role in the productivity of manufacturing. The selection of an MHE system is complex, and there is a considerable amount of capital investment required. As handling activities account for 30–40% of production costs (Tompkins & White, 1984), an appropriate MHE should be selected by aiming to reduce production costs and increase profit. For these reasons, researchers have to find solutions by using various methods such as expert systems, mathematical models, MCDM method, etc. For this study, the researcher has placed an emphasis on MCDM methods. Types of MHE have been divided into seven main groups: conveyors, overhead conveyors, cranes, industrial trucks, automated guided vehicles (AGVs), robots, and storage/retrieval systems.

The complexity of conveyor equipment selection is a problem for many manufacturers (Fonseca et al., 2004). There are several factors and limitations involved in conveyor equipment selection. A conveyor system is a part of mechanical handling equipment that is used to move materials from one location to another (Tompkins et al., 2002).

2.2. Analytic network process

The ANP was introduced by T. L. Saaty, as a generalization of the analytic hierarchy process (AHP) (Saaty, 2004a). The ANP is an improved model of the AHP. The AHP was proposed in 1980 by Thomas L. Saaty as a decision-making method. The ANP permits mutual dependence and feedback among criteria, therefore the ANP is different from the AHP (Liang & Li, 2008).

The AHP is designed for solving the independence problem among alternatives or criteria problems, while the ANP is designed for solving the dependence problem among alternatives or criteria problems (Lee & Kim, 2000). Therefore, the AHP would not be appropriate for complex relationships, because the structure is linear from top-to-bottom. The ANP allows for complex interrelationships among clusters or elements, by replacing hierarchies with networks as shown in Figure 1.

- Step 1: Model construction and problem structuring: The problem should begin distinctly and decomposed into a rational system as a network. This network structure can be obtained through the opinion of decision-makers, through brainstorming or other appropriate methods (Chung, Lee, & Pearn, 2005).
- Step 2: Pairwise comparison matrices and priorities: At each cluster, all pairs of the decision elements are compared with respect to the importance of the elements toward their control criteria. The clusters are also compared pairwise themselves, with respect to their contribution to the purpose. An expert who acts as a decision-maker is asked to determine the relative importance of each criterion on a scale of 1 to 9 (Wijnmalen, 2007).

![Figure 1. Structural difference between (a) hierarchy and (b) network.](source: Chung et al. (2005))
Reversing the comparison between already compared elements, a reciprocal value is assigned to the reverse comparison; that is, $a_{ij} = 1/a_{ji}$ (Lee et al., 2009) and then, a pairwise comparison matrix was developed and solved by the following equation (1):

$$A \times w = \lambda_{\text{max}} \times w,$$

where A is the matrix of pairwise comparison, w is the eigenvector, and λ_{max} is the largest eigenvalue according to an approximation of w from several algorithms by Saaty (Lee et al., 2009).

• Step 3: Supermatrix formation: The supermatrix concept resembles the Markov chain process (Yazgan et al., 2010). The local priority vectors are entered into the appropriate column of a matrix, known as a supermatrix, by aiming to obtain global priorities in a system with interdependent influences. As a result, a supermatrix is actually a partitioned matrix, where each matrix segment represents a relationship between two nodes in a system (Wijnmalen, 2007). Let the clusters of a decision system be C_k, $k = 1, 2, \ldots, N$, and each cluster k has n_k elements, denoted by $e_{k1}, e_{k2}, \ldots, e_{kn_k}$. The value obtained in the previous steps are clustered and placed in the appropriate positions in a supermatrix, based on the influence flow from one cluster to another, or from a cluster to itself, as in a loop. A standard form for a supermatrix is as in formulate (2) (Yazgan et al., 2010):

$$W = \begin{bmatrix}
e_{11} & e_{12} & \cdots & e_{1m1} & e_{1k1} & \cdots & e_{1k2} & \cdots & e_{1kmk} & \cdots & e_{1n1} & e_{1n2} & \cdots & e_{1mn}
c_1 & e_{21} & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & c_n
\end{bmatrix}$$

As an example, the representation of the supermatrix for a hierarchy with three levels (Yazgan et al., 2010):

$$W = \begin{bmatrix}0 & 0 & 0 \\
W_{21} & 0 & 0 \\
0 & W_{32} & I
\end{bmatrix},$$

where W_{21} is a vector that represents the effect of the objective on the criteria, W_{32} is a matrix that represents the effect of the criteria on each of the alternatives, I is the identity matrix, and all of the zeros correspond to those elements that have no influence. For the previous example, if the criteria are interrelated among themselves, the hierarchy is replaced by a network as shown in Equation (2). The presence of the matrix element W_{22} of the supermatrix W, can be represented by the interdependency that the supermatrix would present (Yazgan et al., 2010):

$$W_n = \begin{bmatrix}0 & 0 & 0 \\
W_{21} & W_{22} & 0 \\
0 & W_{32} & I
\end{bmatrix}.$$
If there is an interrelationship of elements within a cluster or between two clusters, then any zero value in the supermatrix can be replaced by a matrix. As there is usually interdependence among clusters in a network, the columns of a supermatrix may sum to more than one. However, the supermatrix must be modified so that each column of the matrix sums to a unified value. Saaty (Yazgan et al., 2010) has recommended the approach of determining the relative importance of the cluster as the controlling component (Wijnmalen, 2007). Raising a matrix to powers gives the long-term influences of the elements relative to each other. To obtain a convergence on the importance of weights, the weighted supermatrix is raised to the power of $2k + 1$, where k is an arbitrarily large number, and forms a new matrix that is called the limit supermatrix (Yazgan et al., 2010). The limit supermatrix form is similar to the weighted supermatrix, except that all of the columns of the limit supermatrix are the same. The normalizing of each cluster of this supermatrix can be reached with the final priorities of all elements in the matrix.

- Step 4: Selection of the best alternatives: The final priorities can be obtained by normalizing each alternative’s column in the limit supermatrix.

The ANP is a technique which is similar to the AHP. The characteristic between criteria and sub-criteria of the ANP is a network, while AHP is a hierarchy. In addition, the ANP is also similar to other techniques as well. For example, the multi-attribute utility technique (MUAT), cross-impact analysis and cost-consequences analysis (CCA), these are categorized as alternative selection analyses, as well as the AHP or the ANP. Saaty has proposed one of the general theories of the ANP (Saaty, 2004a), which is the BOCR or benefits, opportunities, costs, and risks in a decision-making process (Chen et al., 2010). The BOCR is a combination of the score of each alternative by five methods.

1. Additive: $P_i = bB_i + oO_i + c(1/C_i)^{Normalized} + r(1/R_i)^{Normalized}$

2. Probabilistic additive: $P_i = bB_i + oO_i + c(1 - C_i) + r(1 - R_i)$

3. Subtractive: $P_i = bB_i - oO_i - cC_i - rR_i$

4. Multiplicative priority powers: $P_i = B_i^{O_i}[1/(C_i)^{Normalized}]^{I}[1/(R_i)^{Normalized}]^{I}$

5. Multiplicative: $P_i = B_iO_i/C_iR_i$

An example of recent research using BOCR is the Disney decision. Examining the construction of a new theme park in greater China, this research uses an integration of BOCR models. It has an objective of searching for new market areas. An area for a new Disney park will require a minimal investment, mostly on returns through royalties, licensing and income streams. The final result for this project is Hong Kong as the first site to get into China, although Shanghai is a more costly option with a higher potential future market than Hong Kong. Another research paper on the topic is about the model of the buyer–supplier relationship. It has integrated the ANP and BOCR concepts. The result of the research provides advice to select the most suitable form of relationship between supplier and manufacturer.

3. Methodology and algorithm
The adoption of the BOCR concept, the ANP model with BOCR is suggested in this segment to select a solution to the conveyor system problem. The steps are shown as follows:

Step 1. Define the problem, set criteria, and set definition criteria by experts through brainstorming or other appropriate methods.
Step 2. Set a control network for the problem by specifying strategic criteria and the four merits, benefits, opportunities, costs, and risks (Saaty, 2004b, 2004c) as shown in Figure 2. The four merits in the control network are used to rate the B, O, C, and R.

Step 3. Create a questionnaire with a nine-point scale as outlined by Saaty, as a comparison in determining the pairwise strategic criteria.

Step 4. Use a five-step scale that can evaluate the importance of BOCR as each strategic criterion. Values and wording of five-scale 0.42, 0.26, 0.16, 0.10, and 0.06, of very high, high, medium, low, and very low, respectively. (Erdogmus et al., 2005; Erdogmus, Aras, & Koc, 2006; Saaty, 2004b, 2004c). The panelist opinions are aggregated by the geometric mean method.

Step 5. Calculate the score of each strategic criterion from Step 4, and the respective strategic criteria from Step 3. The value of B, O, C, and R came from the normalized priorities of BOCRs, respectively.

Step 6. Set criteria and sub criteria according to the merit of each and organization for all four merits. Based on brainstorming or other appropriate methods, a network is constructed in the form as shown in Figure 3. The goal must be connected with the four merits, benefits (B), opportunities (O), costs (C), risks (R).

Step 7. Prepare a questionnaire established on a pairwise comparison of elements at each level. The questionnaire used in this section is the nine-point-scale questionnaire.

Step 8. After all experts have filled out the questionnaire, create an aggregate of opinions by the geometric mean method. After that, calculate the unweighted supermatrix, weighted supermatrix, and limit supermatrix for each merit.

Step 9. Calculate each alternative by using the five ways, additive, probabilistic additive, subtractive, multiplicative priority powers, and multiplicative.

Figure 2. The network of the decision problem (control network).
4. Experimental results

A committee should be formed composed of three experts, including a manager, senior manager from the company logistics department, and a manager from the design department from the conveyor system company.

In Figure 4, the strategic criteria for the conveyor selection system is shown. The company wants to select a conveyor system, and the strategic criteria are flexibility, manufacturing, future plans, productivity, safety, and quality. Flexibility is related with the quality of being adaptable or variable. Manufacturing is related with reputation and relationships. Future plans are related with capacity plans and process plans. Productivity is related with the quality of being productive or having the power to produce. Safety is related with safety device design at an ergonomics design level. Quality is related with fulfilling the customer’s requirements and expectations, at all times. In the third level, there are four merits: benefits (B), opportunities (O), costs (C), risks (R). For example, an expert’s opinion of a questionnaire with a nine-point scale is shown in Table 1. A proportion of 5:1 between flexibility and manufacturing implies that flexibility is five times more important than manufacturing.

The eigenvalue method is used for calculating eigenvector and eigenvalue. Calculating the consistency index (CI) and consistency ratio (CR) value is used for checking consistency of comparison (Saaty, 1980).

\[
W_{S1} = \begin{bmatrix}
\text{flexibility} & 0.3169 \\
\text{manufacture} & 0.0975 \\
\text{future plan} & 0.0723 \\
\text{productivity} & 0.1739 \\
\text{safety} & 0.0973 \\
\text{quality} & 0.2419
\end{bmatrix}
\quad \text{and} \quad \lambda_{\text{max}} = 6.3827
\]
If the value of CR is less than 0.1, the mean comparison is consistent (Ergu, Kou, Shi, & Shi, 2014). A combination of opinions from all experts is used as a geometric mean method. For example, the pairwise comparison between flexibility and manufacturing from all respondents are (5:1), (3:1), and (5:1). Therefore, putting the value in the geometric mean method is \((5 \times 3 \times 5)^{1/3} = 4.2172\).

\[
CI = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{6.3827 - 6}{6 - 1} = 0.0765
\]

(11)

\[
CR = \frac{CI}{RI} = \frac{0.0765}{1.25} = 0.0612
\]

(12)

If the value of CR is less than 0.1, the mean comparison is consistent (Ergu, Kou, Shi, & Shi, 2014). A combination of opinions from all experts is used as a geometric mean method. For example, the pairwise comparison between flexibility and manufacturing from all respondents are (5:1), (3:1), and (5:1). Therefore, putting the value in the geometric mean method is \((5 \times 3 \times 5)^{1/3} = 4.2172\). For the six
strategic criteria calculated shown in Table 2, the synthesized priorities of strategic criteria are as follows:

\[
W_s = \begin{bmatrix}
\text{flexibility} & 0.2934 \\
\text{manufacture} & 0.1415 \\
\text{future plan} & 0.1025 \\
\text{productivity} & 0.1662 \\
\text{quality} & 0.2037
\end{bmatrix}
\]

(13)

For BOCR, each expert will be asked to answer according to a five-step scale. According to Step 4 in the methodology and algorithm section, the values according to the five-scale were 0.42, 0.26, 0.16, 0.10, and 0.06, of very high, high, medium, low, and very low, respectively. The final value after brainstorming all the expert opinions is shown in Tables 3 and 4. The final criteria in the BOCR network came from experts through the Delphi method as shown in Figure 5. For example, calculations will show the network of benefits/used subnet as shown in Figure 6.

After calculating all of the comparisons, the unweighted supermatrix and the weighted supermatrix for benefits/used are formed as presented in Tables 5 and 6. And after that, they are transformed to the limit supermatrix. The final decision for used/benefits subnet is shown in the limit supermatrix, and the highest final score is alternative 4.

Table 2. Pairwise comparison
Absolute
9:1
Flexibility
Flexibility
Flexibility
Flexibility
Flexibility
Manufacture
Manufacture
Manufacture
Manufacture
Manufacture
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
Future plan
The alternative’s final ranking is a combination of scores under the B, O, C, and R of each alternative by using the five methods for combining scores. The final ranking of the alternatives are as shown in Table 6. For example, alternative 1 (As-Is: Present) is calculated by the five methods.

Additive:

\[P_1 = b_{B1} + o_{O1} + c\left(\frac{1}{C_1}\right)_{\text{Normalized}} + r\left(\frac{1}{R_1}\right)_{\text{Normalized}} \]
\[= 0.2977 \times 0.1018 + 0.2932 \times 0.0999 + 0.1547 \times 0.5480 + 0.2544 \times 0.5618 \]
\[= 0.2873 \]

Probabilistic additive:

\[P_1 = b_{B1} + o_{O1} + c(1 - C_1) + r(1 - R_1) \]
\[= 0.2977 \times 0.1018 + 0.2932 \times 0.0999 + 0.1547 \times (1 - 0.0742) + 0.2544 \times (1 - 0.0747) \]
\[= 0.4375 \]

Subtractive:

\[P_1 = b_{B1} + o_{O1} - cC_1 - rR_1 \]
\[= 0.2977 \times 0.1018 + 0.2932 \times 0.0999 - 0.1547 \times 0.0792 - 0.2544 \times 0.0747 \]
\[= 0.0283 \]

Multiplicative priority powers:

\[P1 = B_{1}^{0}O_{1}^{0}\left(\frac{1}{C1}\right)_{\text{Normalized}}^{0}\left(\frac{1}{R1}\right)_{\text{Normalized}}^{0} \]
\[= (0.1018^{0.2977})(0.0999^{0.2932})(0.5480^{0.1547})(0.5618^{0.2544}) \]
\[= 0.2029 \]

Multiplicative:

\[P_1 = B_{1}O_{1}/C_1R_1 \]
\[= 0.1018 \times 0.0999 / 0.0792 \times 0.0747 \]
\[= 1.7194 \]
Under the benefits and opportunities merits in Table 7, to-be: Monorail is the best with 0.3654, 0.3918, respectively. Nevertheless, under the costs and risks merits, as-is: Present has the best cost and the least risky alternative, with normalized reciprocals of 0.5480 and 0.5618, respectively.

The final calculation of alternatives uses the five methods under B, O, C, and R. The results of ranking the alternatives are shown in Table 8. From final result, first priority of the best alternative under all five methods is the chain conveyor. While roller conveyor always stay, respectively, as the third and the last.
system. Under probabilistic additive (0.4771), subtractive (0.0680), and the multiplicative priority powers (0.2326), chain conveyor is the first best, and monorail is the second. In addition, the ranking under multiplicative method is not the same as other, major reason is that the method does not take into account the priorities B, O, C, and R. Nevertheless, with the objective of selecting two systems, the first and second select chain conveyor and monorail, respectively, under all five methods.
Table 6. The Limit supermatrix under benefits/used subnet

Alternatives	Benefits/Used
As-Is: present (I)	
To-be: roller conveyor (II)	0.0426
To-be: chain conveyor (III)	0.1254
To-be: monorail (IV)	0.1477
Save costs (B2–01)	0.1843
Stability (B2–02)	0.1433
Reduce mistake & defect (B2–03)	0.0581
Space utilization (B2–04)	0.0759
Reducing activities (B2–05)	0.0336
Image (B2–06)	0.0297
Distance of transport (B2–07)	0.0612

Table 7. Priorities of alternatives under four merits

Merits	Benefits (0.2977)	Opportunities (0.2932)
	Normalized	Normalized
Alternative		
As-Is: present	0.1018	0.0999
To-be: roller conveyor	0.2482	0.2258
To-be: chain conveyor	0.2846	0.2824
To-be: monorail	0.3654	0.3918

	Costs (0.1547)	Risks (0.2544)				
	Normalized	Reciprocal	Normalized	Reciprocal	Normalized reciprocal	
Alternative						
As-Is: PRESENT	0.0792	12.6228	0.5480	0.0747	13.3890	0.5618
To-be: roller conveyor	0.2440	4.0985	0.1779	0.2549	3.9230	0.1646
To-be: chain conveyor	0.2528	3.9555	0.1717	0.2375	4.2112	0.1767
To-be: monorail	0.4240	2.3586	0.1024	0.4329	2.3098	0.0969
5. Conclusions

In the industrialized world from past to present, one very important aspect to every industry is materials handling. For an investment analysis in choosing a MHS, the process is extremely complex and there are multiple solutions for any particular situation. Therefore, this paper differs from previous studies of the conveyor selection system problem by using decision-making techniques to select the best conveyor system for a company.

In this research, a model, which performs an analysis using the ANP with benefits-opportunities-costs-risks (BOCR), is used to evaluate conveyor system selection. The model in this paper can help perform a stable evaluation of the various types of conveyor systems. The multi-criteria decision-making techniques used by the ANP are the same as the AHP, but the ANP has been featured for its relationship between alternatives on the criteria. The suggested model not only considers the cost and benefit factors, similar to other decision-making investment models, but this paper also takes into account opportunity and risk factors. Therefore, the proposed model can be used to properly evaluate any conveyor system in any industry, to help select the best form of conveyor system.

This research suggests key factors which used for a decision to help consider and investment in material handling conveyor system. Moreover, this research provides the conveyor selection model that aimed to support decision-making of executive or plant manager who are interested for conveyor system investment analysis while this model is also useful as to increase reliability for manufacturers of conveyor and to encourage clients to be more participated in conveyor system selection.

The criteria in the model are not fixed, but may differ across the type of situation. Therefore, the criteria should be removed or added conditional upon the development of the model. This model can also be profitable for use in future research.

Table 8. Final synthesis of priorities of alternatives

Alternatives	Synthesizing methods									
		Additive	Probabilistic additive	Subtractive	Multiplication priority powers	Multiplicative				
	Priority	Rank								
As-Is: present	0.2873	1	0.4375	4	0.0283	4	0.2029	4	1.7194	1
To-be: roller conveyor	0.2095	4	0.4466	3	0.0375	3	0.2065	3	0.9010	3
To-be: chain conveyor	0.2390	3	0.4771	1	0.0680	1	0.2326	1	1.3389	2
To-be: monorail	0.2642	2	0.4570	2	0.0479	2	0.2186	2	0.7801	4

Funding
The authors received no direct funding for this research.

Author details
Pairat Jiamruangjarus¹
E-mail: paijiam@hotmail.com
Thanakorn Naenna¹
E-mail: thanakorn.nae@mahidol.ac.th
¹ Faculty of Engineering, Department of Industrial Engineering, Mahidol University, Nakhonpathom 73170, Thailand.

Citation information
Cite this article as: An integrated multi-criteria decision-making methodology for conveyor system selection, Pairat Jiamruangjarus & Thanakorn Naenna, Cogent Engineering (2016), 3: 1158515.

References
Chan, F. T. S., Ip, R. W. L., & Lau, H. (2001). Integration of expert system with analytic hierarchy process for the design of material handling equipment selection system. Journal of material processing technology, 116, 137–145. doi:10.1016/S0924-0136(01)01038-X
Chen, H. H., Lee, A. H. I., & Kang, H. Y. (2010). A model for strategic selection of feeder management systems: A case study. International journal of Electrical power and energy systems, 32, 421–427. doi:10.1016/j.ijepes.2009.09.023
Cho, S., Kim, J., & Heo, H. (2015). Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors. Renewable and Sustainable Energy Reviews, 49, 1075–1083. doi:10.1016/j.rser.2015.04.105
Chung, S. H., Lee, A. H. I., & Pearn, W. L. (2005). Analytic network process (ANP) approach for product mix
planning in semiconductor fabricator. International Journal of production economics, 96, 15–36. doi:10.1016/j.ijpe.2004.02.006

Dongre, A., & Mohite, N. Y. (2015). Significance of selection of material handling system design in industry—A review. International Journal of Engineering Research and General Science, 3, 76–79.

Erdogmus, S., Kapanoglu, M., & Koc, E. (2005). Evaluating high tech alternatives by using analytic network process with BOCR and multifactors. Evaluation and Program Planning, 28, 391–395. doi:10.1016/j.evalprogplan.2005.07.003

Erdogmus, S., Aros, H., & Koc, E. (2006). Evaluation of alternative fuels for residential heating in Turkey using analytic network process (ANP) with group decision making. Renewable and Sustainable Energy Reviews, 10, 269–279. doi:10.1016/j.rser.2004.09.003

Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2014). Analytic network process in risk assessment and decision analysis. Computers & Operations Research, 42, 58–74. doi:10.1016/j.cor.2011.03.005

Fonseca, D. J., Uppal, G., & Greene, T. J. (2004). A knowledge-based system for conveyor equipment selection. Expert systems with applications, 26, 615–623. doi:10.1016/j.eswa.2003.12.011

Jaafari, A., Najafi, A., & Melónc, M. G. (2015). Decision-making for the selection of a best wood extraction method: An analytic network process approach. Forest Policy and Economics, 50, 200–209. doi:10.1016/j.forpol.2014.09.010

Krishna Mohan, K., Reformat, M. Z. & Pedrycz, W. (2013, June). Interval-based analysis of BOCR (benefits, opportunities, costs and risks) models evaluated by multiple experts. IEEE Conference Publications. doi:10.1109/IFSA-NAFIPS.2013.6608407

Kulak, O. (2005). A decision support system for fuzzy multi-attribute selection of material handling equipments. Expert systems with applications, 29, 310–319. doi:10.1016/j.eswa.2005.04.004

Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computer and operations research, 27, 367–382. doi:10.1016/S0305-0548(99)00057-X

Lee, A. H. J., Chang, H.-J., & Lin, C.-Y. (2009). An evaluation model of buyer-supplier relationships in high-tech industry—The case of an electronic components manufacturer in Taiwan. Computers & Industrial Engineering, 57, 1417–1430. doi:10.1016/j.cie.2009.07.012

Liang, C., & Li, Q. (2008). Enterprise information system project selection with regard to BOCR. International Journal of Project Management, 26, 810–820. doi:10.1016/j.ijproman.2007.11.001

Malmir, R., Hamzehi, E., & Farsijani, H. (2013). Multi stage decision making model to evaluate suppliers by using MOLP and ANP in a strategic approach. International Journal of Application or Innovation in Engineering & Management, 2, 563–577.

Marcella, C., Gabbrielli, R., & Miconi, D. (2001). Material handling device selection in cellular manufacturing. Journal of multi-criteria decision analysis, 10, 303–315. doi:10.1020/mcda.310

Mill, K. (2014). Six sigma approach for the straddled carrier routing problem. EWGT2013—16th Meeting of the EURO Working Group on Transportation. Procedia—Social and Behavioral Sciences, 111, 1195–1205. doi:10.1016/j.sbspro.2014.01.154

Saaty, T. L. (1980). The analytical hierarchy process: Planning. Priority setting, resource allocation (1st ed.). New York, NY: McGraw-Hill.

Saaty, T. L. (2004a). Decision making—The analytic hierarchy and network process (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35. doi:10.1007/s11158-006-0151-5

Saaty, T. L. (2004b). Fundamentals of the analytic network process—Dependence and feedback in decision-making with the analytic network process—Dependence and feedback in decision-making with the analytic network process approach. Systems Science and Systems Engineering, 73, 129–157. doi:10.1007/s11518-006-0158-y

Saaty, T. L. (2004). The analytic network process dependence and feedback in decision making (Part 1) theory and validation. In MEDM 2004. Whistler, BC.

Saaty, T. L., & Sagir, M. (2015). Choosing the best city of the future. Journal of Urban Management, 4, 2–23. doi:10.1016/j.jum.2015.06.003

Sakthivel, G., Ilango Kumarab, M., & Golikwada, A. (2015). A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Engineering Journal, 6, 239–256. doi:10.1016/j.asej.2014.08.003

Srisom, Y., & Sriuthai, P. (2004). Increasing the efficient of material handling. Mechanical Electrical Industrial, 21, 1–22.

Sujono, S., & Lashkarli, R. S. (2007). A multi-objective model of operation allocation and material handling system selection in FMS design. International Journal of Production Economics, 105, 116–133. doi:10.1016/j.ijpe.2005.07.007

Sule, D. R. (1994). Manufacturing facilities: Location, planning and design (2nd ed.). Boston, MA: PWS.

Swaminathan, S. R., Matson, J. O., & Mellichamp, J. M. (1992). EXCITE: Expert consultant for in-plant transportation equipment. International Journal of Production Research, 30, 1969–1983. doi:10.1080/00207549208941813

Tompkins, J. A., & White, J. A. (1984). Facilities planning. New York, NY: Wiley.

Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2002). Facilities planning. New York, NY: Wiley.

Toranjanski, V., Marinkovic, S. & Lolic, N. (2016, June). Application of ANP method based on a BOCR model for decision-making in banking. In XIV International Symposium. New Business Models and sustainable Competitiveness Symposium Proceeding. SYMORG. Zlatibor.

Tuzkaya, G., Gülsün, B., Kahraman, C., & Özgen, D. (2010). An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert systems with applications, 37, 2853–2863. doi:10.1016/j.eswa.2009.09.004

Ustun, D., & Derritras, E. A. (2008). Multi-period lot-sizing with supplier selection using achievement scoraling functions. Computers & Industrial Engineering, 54, 918–931. doi:10.1016/j.cie.2007.10.021

Wang, W. M., Lee, A. H. I., Peng, L. P., & Wud, Z. L. (2013). An integrated decision making model for district revitalization and regeneration project selection. Decision Support Systems, 54, 1092–1101. doi:10.1016/j.dss.2012.10.036

Wijnmalen, D. J. D. (2007). Analysis of benefits, opportunities, costs, and risks (BOCR) with the ANP-ANP: A critical validation. Mathematical and computer modelling, 46, 892–905. doi:10.1016/j.mcm.2007.03.020

Wratnaya, G. N., Darmawan, D. P., Kolapaking, L. M., & Windia, W. (2015). Selection of beef production systems in Bali: An analytical network with BOCR approach. Journal of Economics and Sustainable Development, 6, 45–59.

Yazgan, H. R., Boran, S., & Goztepe, K. (2010). Selection of the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Engineering Journal, 6, 239–256. doi:10.1016/j.asej.2014.08.003

Yezygy, H., & Goulet, K. (2010). Selection of dispatch rules in FMS: ANP model based on BOCR with choquet integral. The International Journal of Advanced Manufacturing Technology, 49, 785–801. doi:10.1007/s00170-009-2416-x
