FINITE UNIONS OF BALLS IN \mathbb{C}^n ARE RATIONALLY CONVEX

STEFAN NEMIROVSKI

– Is this a prologue, or the posy of a ring?
– 'Tis brief, my lord.

Hamlet, III:2

1. A compact set $K \subset \mathbb{C}^n$ is called polynomially convex if for any point $z \notin K$ there exists a polynomial P such that $|P(z)| > \max_{\xi \in K} |P(\xi)|$. Replacing polynomials by rational functions, one gets the definition of a rationally convex compact set. These notions are interesting, in particular, because any function holomorphic in a neighbourhood of a polynomially (respectively, rationally) convex set can be uniformly on this set approximated by polynomials (respectively, rational functions).

An old problem asks whether any finite union of disjoint closed balls in \mathbb{C}^n is polynomially convex. It is known only that the answer is positive for at most three balls [2]. In this note, we show that the rational convexity of any such union follows almost immediately from the results of Julien Duval and Nessim Sibony [1].

Theorem. Any union of finitely many disjoint closed balls in \mathbb{C}^n is rationally convex.

Note that it follows from the construction of the examples in [2] and [3] and the argument principle that this statement is false for polydiscs and complex ellipsoids in \mathbb{C}^3.

2. Let us first recall that according to Theorem 1.1 in [1], if ω is a non-negative d-closed $(1,1)$-form on \mathbb{C}^n such that $\mathbb{C}^n \setminus \text{supp} \omega$ is relatively compact in \mathbb{C}^n, then for any $s > 0$, the set $\{z \in \mathbb{C}^n \mid \text{dist}(z, \text{supp} \omega) \geq s\}$ is rationally convex. We shall need the following corollary of this result.

Proposition. Let φ be a strictly plurisubharmonic function on an open subset $U \subset \mathbb{C}^n$ such that its Levi form $dd^c \varphi$ extends to a positive d-closed $(1,1)$-form on the whole \mathbb{C}^n. If the set $K_\varphi = \{z \in U \mid \varphi(z) \leq 0\}$ is compact, then it is rationally convex.

Proof. Fix a small $\varepsilon > 0$ and consider a smooth convex non-decreasing function $f : \mathbb{R} \to \mathbb{R}$ such that $f'(t) \equiv 0$ for $t \leq \varepsilon$, $f'(t) > 0$ for $\varepsilon < t < 2\varepsilon$, and $f'(t) \equiv 1$ for $t \geq 2\varepsilon$. Note that

$$dd^c f(\varphi) = f'(\varphi) dd^c \varphi + f''(\varphi) d\varphi \wedge d^c \varphi \geq f'(\varphi) dd^c \varphi.$$

Hence, if we set

$$\omega_\varepsilon = \begin{cases} dd^c \varphi & \text{on } \mathbb{C}^n \setminus \{\varphi \leq 2\varepsilon\}, \\ dd^c f(\varphi) & \text{on } \{\varphi \leq 2\varepsilon\}, \end{cases}$$

then ω_ε satisfies the conditions of the Duval–Sibony theorem and its support $\text{supp} \omega_\varepsilon$ is precisely $\mathbb{C}^n \setminus \{\varphi < \varepsilon\}$. As ε and $s = s(\varepsilon)$ can be chosen arbitrarily close to zero, we see that K_φ is the intersection of rationally convex sets and hence rationally convex itself. □

The author was supported by the Russian Foundation for Basic Research (grant no. 05-01-00981), the programme “Leading Scientific Schools of Russia” (grant no. 9429.2006.1), the programme “Contemporary Problems of Theoretical Mathematics” of the Russian Academy of Sciences, and the project SFB/TR 12 of the Deutsche Forschungsgemeinschaft.
Remarks. 1° It follows from other results in [1] that any rationally convex compact set in \mathbb{C}^n has a fundamental system of neighbourhoods of the form $\{\varphi < 0\}$, where φ satisfies the assumptions of the proposition.

2° For comparison, note that a compact set $K \subset \mathbb{C}^n$ is polynomially convex if and only if it has a fundamental system of neighbourhoods of the form $\{\varphi < 0\}$, where now φ is an exhausting strictly plurisubharmonic function on the whole \mathbb{C}^n.

3. We can now prove the theorem. Let $\overline{B}(a_j, r_j) = \{z \in \mathbb{C}^n \mid \|z - a_j\|^2 \leq r_j^2\}$, $j = 1, \ldots, N$, be a collection of pairwise disjoint closed balls. In a neighbourhood of their union $\bigcup \overline{B}(a_j, r_j)$, consider the function φ that is equal to

$$\varphi_j(z) = \|z - a_j\|^2 - r_j^2$$

near each $\overline{B}(a_j, r_j)$. Then $K_{\varphi} = \bigcup \overline{B}(a_j, r_j)$ and

$$dd^c\varphi = \frac{i}{2} \sum_{k=1}^{n} dz_k \wedge d\overline{z}_k$$

is the standard flat Kähler form on \mathbb{C}^n. Hence, $\bigcup \overline{B}(a_j, r_j)$ is rationally convex by the proposition from §2. □

References

[1] J. Duval, N. Sibony, *Polynomial convexity, rational convexity, and currents*, Duke Math. J. **79** (1995), 487–513.

[2] E. Kallin, *Polynomial convexity: The three spheres problem*, Proceedings of the conference on complex analysis (Minneapolis, Minn., 1964), pp. 301–304, Springer, Berlin, 1965.

[3] A. M. Kytmanov, G. Khudaiberganov, *Example of a non-polynomially convex compactum consisting of three nonintersecting ellipsoids*, Sibirsk. Mat. Zh. **25**:5 (1984), 196–198.

Steklov Mathematical Institute; Ruhr-Universität Bochum
E-mail address: stefan@mi.ras.ru