Effects of Profilin and Thymosin β₄ on the Critical Concentration of Actin Demonstrated in Vitro and in Cell Extracts with a Novel Direct Assay*

Elena G. Yarmola and Michael R. Bubb‡

The free actin concentration at steady state, A°, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure A° in any sample after the addition of a trace amount of labeled thymosin β₄ or thymosin β₃ peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on A°, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg²⁺-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on A° facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin β₁ on the steady state amount of F-actin are explained by the observed changes in A°. This assay has potential in vivo applications that complement those demonstrated in vitro.

Total cellular actin is equal to the sum of the concentration of free monomer (the critical concentration, A°), the concentration of unpolymerized actin sequestered by various actin-binding proteins, and the concentration of actin polymer or F-actin. Changes in A° induced by actin regulatory proteins influence actin polymer dynamics by an amplification mechanism that results in large changes in the amount of sequestered, unpolymerized actin. Quantitative evaluation of models of cytoskeletal function requires accurate knowledge of the value of A°. Unfortunately, A° has not yet been measured in cells and has only been estimated by very indirect methods in cell extracts (1). In vitro methods have been developed that allow for the measurement of F-actin using birefringence (2), viscosity (3), light scattering (4), centrifugation (5), binding of labeled phalloidin (6), or the fluorescence of pyrenyl-labeled actin (7).

*This work was supported by the Medical Research Service of the Department of Veterans Affairs, National Science Foundation Grant NSF-0018015 (to M. R. B.), and NIH MS, National Institutes of Health Grant 5R29AR048918 (to E. G. Y.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Box 100221, Dept. of Medicine, University of Florida, Gainesville, FL 32610. Tel.: 352-374-4681; Fax: 352-374-6170; E-mail: bubbmr@medicine.ufl.edu.

Received for publication, April 21, 2004, and in revised form, May 28, 2004
Published, JBC Papers in Press, June 7, 2004, DOI 10.1074/jbc.M404392200

Methods such as the DNase I binding assay yield the sum of A°, and an indeterminate fraction of sequestered actin monomer (8). Clever uses of combinations of data have in some cases allowed investigators to subtract F-actin content from total actin and then fractionate the contributions of A°, and monomer sequestration (9, 10), but the results have proven controversial (11, 12).

Based on theoretical considerations, the critical concentration is expected to be equal to the ratio of the rate constants of association and dissociation of actin subunits from actin filaments. Measurement of these rate constants using a method such as electron microscopy can be used to indirectly evaluate A°, assuming the applicability of the theory (13, 14). However, the participation of actin bound to monomer-sequestering proteins in filament growth, such as occurs with profilin-actin (15, 16), greatly complicates this analysis, because such addition alters the observed rate constants but, in theory, can occur with or without (17) a change in A°.

The observation that actin monomer-sequestering proteins such as profilin (9) and members of the actobindin family of multirepeated thymosin β₄-like sequences (18) may alter A° is controversial (11), and moreover, postulated mechanisms for this effect have been disputed (11, 12, 19). The participation of profilin (or of proteins in the actobindin family) in barbed end elongation is an independent observation that may occur with or without an effect on A°. Two basic mechanisms were suggested during the last decade (9, 20).

The hypothesis that profilin could lower A° by formation of a copolymer of actin monomer and actin in complex with profilin was first suggested in Ref. 20 when it was found that the cross-linked profilin-actin complex could be polymerized into filaments. According to this hypothesis, free actin and profilin-actin complex would both contribute a partial critical concentration driving polymer elongation. Although there is tantalizing crystallographic evidence that a copolymer is possible (21), experimental evidence for copolymerization is mutually exclusive with evidence of barbed end capping by profilin (12, 22, 23). Although incorporation of profilin into actin filaments would be a condition required for the copolymerization model (24), no significant incorporation of profilin into actin filaments was found experimentally when profilin was not covalently cross-linked to actin (20). Instead, there are data that suggest that covalent or other high affinity profilin-actin complexes interfere with actin polymerization (22, 23). The addition of the profilin molecule to the barbed end of the actin filament is often called “capping” because most of the literature agrees that the profilin molecule is bound to the barbed end blocks further elongation, that is, profilin must dissociate from the end before the next actin subunit (free, or in complex with profilin) can be added. There is a disagreement in the literature on whether the
effect of capping by profilin is significant. Some researchers assume that the affinity of profilin to the barbed end is very low and can be neglected in the modeling of actin polymerization process. Capping by profilin is very different from the capping by gelsolin or Cap Z, because unlike capping proteins that block both elongation and depolymerization, profilin blocks elongation but increases the rate of depolymerization (12, 25).

A hypothesis for coupling ATP hydrolysis to the profilin pathway (9) has been suggested as a possible explanation of profilin effect on actin critical concentration. It is suggested that barbed end elongation by profilin-actin could lower A_i if the free energy change upon the addition of an actin subunit to F-actin is different when monomer is directly added to the barbed end (9, 12). The thermodynamic difference does not have to be large (-2 kcal/mol) to explain the existing data but does require direct or indirect coupling of ATP hydrolysis to addition of the profilin-actin complex. Using a novel direct assay, we have obtained the first dose-response curve for the effect of profilin on actin critical concentration. That allowed us to evaluate the hypothesis of coupled ATP hydrolysis as well as an alternative hypothesis for the effect of profilin. We formulate a general description of actin polymerization in the presence of profilin. According to this mechanism, the main effect of profilin is the acceleration of actin polymerization dynamics.

EXPERIMENTAL PROCEDURES

*Proteins and Peptides—Pyrene-labeled and unlabeled rabbit skeletal muscle Ca$^{2+}$-actin, recombinant human profilin, and recombinant rat thymosin β_4 (identical in sequence to human) were purified as previously described (26). For labeling with tetramethylrhodamine-maleimide (T-6027; Molecular Probes Inc., Eugene, OR), the thymosin β_4 cDNA was modified by the addition of a C-terminal cysteine. A truncated e-amino rhodamine-labeled peptide (1–25 rhod-thβ_4 peptide) was produced synthetically with a sequence that corresponds to the N-terminal 25 residues of thymosin β_4, SDKPDMAIEKFKDKNKKT TETQEK-rhodamine. Human recombinant gelsolin was truncated to the N-terminal 25 residues of thymosin β_4 peptide

Measurements of Critical Concentration in Cell Extracts—Calf brain cell extracts prepared from 200 grams of frozen bovine brain cut into very thin slices and placed in 100 ml of ice-cold extraction buffer (20 mM HEPES, 0.2 mM CaCl$_2$, 0.5 mM ATP, 1 mM dithiothreitol, 0.1 mM EGTA, 10% glycerol, pH 7.8) was generated with vertically excited polarized light at 546 nm in an L or T format steady state fluorimeter. The KCl concentration was 8.0 mM for the depolymerization assay was started immediately after polymerization was complete. The initial depolymerization rate was calculated from the ADP-actin for muscle actin is more than 5 min (19), and the depolymerization experiment (see Fig. 5A) and vertical (4, 10). The thermodynamic difference does not have to be large (-2 kcal/mol) to explain the existing data but does require direct or indirect coupling of ATP hydrolysis to addition of the profilin-actin complex. Using a novel direct assay, we have obtained the first dose-response curve for the effect of profilin on actin critical concentration. That allowed us to evaluate the hypothesis of coupled ATP hydrolysis as well as an alternative hypothesis for the effect of profilin. We formulate a general description of actin polymerization in the presence of profilin. According to this mechanism, the main effect of profilin is the acceleration of actin polymerization dynamics.

The equilibrium dissociation constant of thymosin β_4, K_{d_0}, so the observed anisotropy r is calculated using

$$r = r_i + (r_o - r_i)(K_{rT} + A_i + T_o)$$

$$= r_i/((K_{rT} + A_i + T_o) + 1/2$$

$$= -r_i/((r_i - r_o)/(K_{rT} + A_i + T_o))$$

$$= -K_{rT}/((r_i - r_o)/(K_{rT} + A_i + T_o))$$

$$= -K_{rT}/((r_i - r_o)/(K_{rT} + A_i + T_o))$$

$$= -K_{rT}/((r_i - r_o)/(K_{rT} + A_i + T_o))$$

T_o is the total concentration of labeled thymosin β_4 peptide, and A_i is the total G-actin concentration for each value of r. Fitting parameters include only r_o, r_i, and K_{rT}. Calculation of the free actin concentration A_i at a sample at steady state is straightforward using the measured anisotropy value and other parameters defined by calibration with a standard curve. Based on the equation $[A] = T_o/[A]/(K_{rT} + [A])$ with r as defined above, $[A] = [\beta] + [\beta]_0/[r_i - r_o]$. For measurements at steady state, $A_i = [A]$. Assuming that thymosin β_4 and G-actin are at rapid equilibrium, the equations (and the assay) are also valid for calculation of [A] prior to steady state, for example, for determination of the free actin concentration as a function of time during actin polymerization (as in Fig. 3B).

Correlation for Possible Ternary Complexes of Profilin, Actin, and Thymosin β_4 in Calculation of A_i Based on Anisotropy Data—The equation for A_i when profilin, actin, and thymosin β_4 form a ternary complex

$$A_i = ([\beta] + [\beta]_0/[\beta]_0)^2 + ([\beta] + [\beta]_0/[\beta]_0)^2$$

$$= ([\beta] + [\beta]_0/[\beta]_0)^2 + ([\beta] + [\beta]_0/[\beta]_0)^2$$

We assume here, as supported by our previous data (26), that any ternary complex of actin, thymosin β_4, and another actin-binding protein, for example profilin (PAT), has the same value of r_o as for the actin-thymosin β_4 complex. Then in the presence of actin and profilin $T_o = [A] + [\beta]_0$ and $T_o = [T] + [\beta]_0$ at equilibrium or steady state conditions, [AT] and [PAT] are defined by A_i, total concentrations of thymosin β_4 and actin, and equilibrium dissociation constants K_{rT}, K_{T}, and K_{AT} for formation of ternary complexes β_4, β_4, and PAT, respectively. That means that r is completely defined by A_i, T_o, T_o, r_o, and equilibrium constants. At relatively low concentrations of thymosin β_4 ($T_o < K_{rT}$), which is always the case for our experiments with both profilin and thymosin β_4, the ternary complex T_o becomes independent of T_o. So, if $T_o > T_o$, and equilibrium constants are known, one can define A_i from anisotropy measurements. The values for r_o, r_i, and the equilibrium constants are already defined for several ionic conditions in our previous papers (and these parameters do not depend strongly on conditions), but they were independently verified by additional calibrations for each condition employed in the current manuscript.

Depolymerization Experiment—0.5 μM 10% pyrene-labeled Mg$^{2+}$-actin polymerized from spectrin seeds was diluted immediately upon reaching the saturation level of polymerization to 0.1 μM in the same polymerization buffer (5 mM Tris-HCl, pH 7.9, 0.1 mM CaCl$_2$, 0.125 mM EGTA, 2 mM MgCl$_2$, 40 mM KCl); the predicted free Ca$^{2+}$ concentration for this buffer is 44.5 nM) containing various concentrations of profilin. Depolymerizing actin filaments should contain predominantly ADP-ATP or ADP-P, actin at the barbed end because the t_o of phosphate release from ADP-actin for muscle actin is more than 5 min (19), and the depolymerization assay was started immediately after polymerization was complete. The initial depolymerization rate was calculated from the depolymerization time course and plotted against profilin concentration (see Fig. 5C).

Measurements of Critical Concentration in Cell Extracts—Calf brain cell extracts prepared from 200 grams of frozen bovine brain cut into very thin slices and placed in 100 ml of ice-cold extraction buffer (20 mM HEPES, 0.2 mM CaCl$_2$, 0.5 mM ATP, 1 mM dithiothreitol, 100 mM potassium acetate, 1 mM MgCl$_2$, 1 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, pH 7.5). A small amount of homogenizer (PESTLE B) was used to open the cells, and 0.6 mM diisopropyl fluorophosphate was added to the extract. The whole cell lysate was centrifuged at 35,000 × g for 1 h, and supernatant was frozen in liquid nitrogen. Fluorescence anisotropy was recorded as described above, except special attention was paid for control and correction of the effects of absorption and light scattering by the samples. To suppress the effect of light scattering, emission fluorescent was recorded at the wavelength of 575 nm rather than 568 nm. To control for light scattering, the base-line fluorescence of each sample was recorded before the addition of labeled thymosin β_4, and the initial reading was subtracted from the level of fluorescence in presence of thymosin β_4. Base-line fluorescence corresponded to 1–3% of the final sample reading. Fluorescence anisotropy was calculated for corrected and uncorrected fluorescence levels, and the results showed no significant difference. To control for the effect of light absorption in the samples, the G factor was separately recorded for each sample. Profilin was depleted from the extract by the addition of concentrated poly-
line beads equilibrated with the same extraction buffer used to prepare cell extracts. After incubation for 10 min, the beads were removed by low spin centrifugation. The dilution of the sample because of bead addition was calculated based on initial and final volumes, and the control sample was diluted by the same factor. Nonmuscle (platelet) actin was used for calibration of anisotropy measurements in cell extracts. The affinity of platelet actin to labeled thymosin β4 in cell extract buffer was two or three times higher than that of muscle actin.

Nonmuscle Actin—Lymphopilized platelet actin was purchased from Cytoskeleton (APHL99). 100 μl of H2O and 500 μl of G buffer were added to 1 mg of lymphopilized actin. After 30 min of incubation at room temperature 200 μl more of G buffer was added. Actin was centrifuged for 1 h at 4 °C and 65,000 rpm. 850 μl of supernatant was withdrawn, and the concentration was defined through optical density measurements at 290 nm with an extinction coefficient of 26 μg·cm⁻¹·cm⁻².

RESULTS AND DISCUSSION

Validation of the Anisotropy Assay for Measurement of the Free Actin Concentration—We and others have made frequent use of steady state fluorescence anisotropy measurements to determine the equilibrium binding kinetics of various fluorescently labeled actin-binding proteins to actin. Specifically, we have previously used this technique to assess binding of thymosin β4 to actin (26). The binding isotherm for this interaction, when plotted as anisotropy versus total actin for trace levels of rhodamine-labeled thymosin β4 (or synthetic 1–25 rhod-tβ4 peptide), provides a standard curve for determination of the free actin concentration in any sample in which the anisotropy is determined under the same standard conditions (Fig. 1, A and B). Full-length, recombinant thymosin β4 peptide interacts with actin with a K_d of 0.30 ± 0.04 μM, and the synthetic peptide 1–25 rhod-tβ4 binds with a K_d of 6.2 ± 0.5 μM. Because the assay is most accurate when the binding constant of the labeled thymosin β4 peptide is similar to the free actin concentration (or for A_o, when measuring at steady state), the use of 1–25 rhod-tβ4 peptide provides a standard curve with utility at higher free actin concentrations than does intact thymosin β4. We previously showed that thymosin β4 competes with rhodamine-labeled thymosin β4 in this anisotropy assay; with a dose response as expected if both have similar affinities for actin (26). Moreover, because labeled thymosin β4 also inhibits binding by profilin, either competitively (9) or noncompetitively (26), the use of thymosin β4 uniquely determines the free actin concentration in the presence of either or both of these actin monomer-sequestering proteins. Binding of 1–25 rhod-tβ4 peptide to actin is inhibited by profilin in a manner consistent with either competitive or noncompetitive inhibition, with the equilibrium dissociation constant for the ternary complex formation K_{DT} ≈ 80 μM (Fig. 1A, inset). If noncompetitive, then the binding of peptide to profilin-actin is so weak as to make a correction for ternary complex formation unnecessary for the data reported here. We confirm that the fraction of thymosin β4 bound to F-actin is insignificant at concentrations up to 30 μM (Fig. 1C), in agreement with prior data that implied that if such binding occurred, the K_a was several millimolar (10). This observation simplifies the analysis of the anisotropy data, because the anisotropy of labeled thymosin β4 will therefore only reflect binding to monomeric actin.

As expected based on polymer theory, (28), the critical concentration of rabbit muscle skeletal actin of 0.16 ± 0.03 μM is shown to be independent of total actin concentration (Fig. 2). Capping the barbed end of actin filaments with gelsolin increases the A_o value to 0.8 ± 0.2 μM, a value consistent with previous reports (29). Calcium actin in 100 mM KCl is shown to have A_o of 0.7 ± 0.2 μM, as previously reported (30). The actin-filament stabilizing drug jasplakinolide decreases A_o to 0.08 ± 0.02 μM as speculated by us based on indirect evidence (31). The monomer sequestering drug latrunculin A does not lower A_o either in the presence (1.0 ± 0.3 μM) or in the absence (0.22 ± 0.04 μM) of gelsolin, as expected for an agent that only sequesters monomeric actin (32).

Effects of Profilin on the Critical Concentration—Using the anisotropy assay, profilin is seen to lower A_o when the barbed ends of Mg²⁺-F-actin are free, but not when they are capped by

Fig. 1. Anisotropy assay measures concentration of free actin.

A, rhodamine-labeled thymosin β4 binds to Mg²⁺-actin. The buffer contains 40 mM KCl and 2 mM MgCl₂ with 0.1 μM labeled thymosin β4. Anisotropy was measured after conversion to Mg²⁺-actin but before polymerization occurred. Full-length thymosin β4 binds to actin (circles), with the line showing the best fit to $K_d = 0.30 ± 0.04 μM$. The 1–25 thymosin β4 fragment (1–25 rhod-tβ4) binds more weakly to actin (squares) ($K_d = 6.2 ± 0.5 μM$). Inset, profilin displaces 1–25 rhod-tβ4 fragment from actin (open triangles). The actin concentration is 5.0 μM, and the line is the best fit to the data using the same K_a (6.2 μM) for the fragment, $K_{DT} = 0.2 μM$ for profilin and actin, and $K_{DT} = 80 μM$ for the ternary complex of actin, profilin, and the fragment. B, linearization of data in A shows no systematic deviation (function B is defined under “Experimental Procedures”). C, the fraction of rhodamine-labeled thymosin β4 bound to F-actin is insignificant at concentrations up to 30 μM of F-actin. There is no significant variation in anisotropy of samples of varying F-actin concentration with 0.1 μM labeled thymosin β4 (closed circles, left axis), consistent with binding of labeled thymosin β4 only to free actin monomer. Similarly, a pelleting assay shows no dose-dependent decrease in the amount of thymosin β4 found in the supernatant fraction after pelleting of F-actin with increasing actin concentration (open circles, right axis). Moreover, pelleting of F-actin in the anisotropy samples had no effect on the observed anisotropy, confirming that the measured binding activity was to G-actin (data not shown). The error bars represent 2 σ.
Relative to sequestered actin, and when F-actin concentration is large (0.1 mM CaCl₂ and 100 mM KCl (open squares)), gelsolin segments 1–3 at a fixed ratio of 1:100, gelsolin segments 1–3 to actin (closed circles), and gelsolin as before with 1.5 μM latrunculin A (closed triangles). For calcium actin, A, was measured in 0.1 mM CaCl₂ and 100 mM KCl (open diamonds).

gelsolin (Fig. 3A). The free actin concentration, followed as a function of time, demonstrates a unique end point when steady state is approached from either G- or F-actin (Fig. 3B). Although both assays adequately track F-actin concentration (Fig. 3B, inset), relative to the measurement of F-actin by pyrenyl fluorescence, the anisotropy assay does not require labeled actin, yields data for A₀ and not the sum of A₀ and sequestered actin, and when F-actin concentration is large relative to A₀, does so more precisely. Only small amounts of profilin are necessary to alter A₀, and A₀ varies continuously as a function of profilin concentration (Fig. 4A). When barbed ends are capped by gelsolin, the assay does not reveal any change of A₀ at profilin concentrations up to 6 μM (Fig. 4B).

The Mechanism of the Effect of Profilin on Actin Critical Concentration—The data shown in Figs. 3 and 4A provide a basis for a quantitative test of theories regarding the mechanism by which profilin decreases A₀. A derivation of the equations for the effect of profilin on A₀ is provided in the "Appendix," and the results are as follows. The rate of change in the concentration of F-actin subunits, A₀, is,

\[dA₀/dt = f₀(k_p + w_0 h_0)([A] - A₀) \]

(Eq. 3)

where

\[A₀ = (k_p + w_0 h_0)(k_p + w_0 h_0) \]

(Eq. 4)

\[w = (1 + (k_p h_0)(P)K_{p0} + (1 + [P]K_{p0}) \]

(Eq. 5)

\[w_0 = (1 + (k_p h_0)(P)K_{p0} + (1 + [P]K_{p0}) \]

(Eq. 6)

At steady state, \(dA₀/dt = 0 \), and

\[[A] = A₀ \]

(Eq. 7)

In these equations, \(f₀ \) is the concentration of actin polymer (i.e. the concentration of filaments). The constants \(k_p, k_p, k_p, h_0, h_0, h_0 \) are the respective elongation and dissociation rate constants from the pointed and barbed ends of F-actin, respectively. The primed rate constants are for the addition of profilin-actin and the loss of profilin-actin occurring at the barbed end. The constants \(K_{p0} \) and \(K_{p0} \) are equilibrium dissociation constants for profilin for monomers and barbed ends, respectively, and \([A]\) and \([P]\) are the concentrations of free actin and free profilin. Parameters \(w_0 \) and \(w \) provide relative weighting factors for the barbed end off and on rates, respectively. Parameter \(R \), characterizing the misbalance of the apparent energy square, is defined in the "Appendix," and \(R = 1 \) when the energy square is balanced; in this case \(w_0 = w \). At saturation with profilin, \(w = w_{sat} = (k_p h_0 P)K_{p0} \) and equals \(-100 \) according to published values for the rate and equilibrium constants. The value of \(w_0 \) varies from 1 to \(w_{max} = w_{sat}/R \). Fig. 4A (inset) demonstrates the dependence of \(w \) on profilin concentration when the energy square is assumed to be balanced and when the rate constants are equal to those used in Fig. 4A in the fit to the data corrected for formation of ternary complex.

As can be seen from Equation 4, the measured values of \(A₀ \) yield a weighted average of the critical concentration at each end of an actin filament. Profilin, by accelerating the addition and removal of actin subunits from the barbed end, would be predicted to increase the effective weight of the barbed end, lowering \(A₀ \) (Fig. 5, A–C). Acceleration of removal is because of a difference in off rates for profilin-actin and actin (Refs. 12 and 25 and Fig. 5C), whereas the acceleration of addition is because of the increased abundance of profilin-actin relative to free actin, with similar on rates for both species (Ref. 16 and Fig. 5B). The data from the two independent experiments shown on Figs. 4A and 5C are fit with the same sets of parameters.

Critical Concentration Changes Induced by Profilin with a Balanced Energy Square—According to the published values of rates constants (33), the effect of pointed ends cannot be neglected in the absence of profilin, and either \(h_0 - h_0 \) or \(k_p - h_0 \). Then in the absence of profilin \(A₀ = (k_p - h_0)(k_p - h_0) \), the value intermediate between the pointed end critical concentration, \(A_{cp} = k_p - h_0 \), and the barbed end critical concentration, \(A_{cb} = k_p - h_0 \), is introduced by guest on July 18, 2018
critical concentration, $A_{cb} = k_{b\rightarrow h}k_{b}$. When the energy square is balanced, $w_g = w$, and the change of critical concentration with increasing profilin concentration occurs through the change of relative contributions of the barbed and pointed ends in polymerization and depolymerization events. In the absence of profilin $w = 1$ and $A_c > A_{cb}$. At saturating profilin concentration, w reaches 100, and $k_{b\rightarrow h} = \frac{w}{w_h}, k_{b\rightarrow p} = \frac{w}{w_p}$, and A_c decreases to A_{cb}. The data in Fig. 4A are fit with parameters: $R = 1$, $A_{sp} = 0.8 \mu M$, $k_{b\rightarrow h} = k_{b\rightarrow p} = 10 \mu M^{-1} s^{-1}$, $K_{pb} = 13.8 \mu M$, $k_{p\rightarrow p} = 2.24 \mu M^{-1} s^{-1}$, $A_{ob} = 0.02 \mu M$, and $K_{pb} = 0.15 \mu M$ for the data corrected for the formation of a ternary complex of actin, profilin, and thymosin β_4 (closed symbols), and $k_{p\rightarrow p} = 2.0 \mu M^{-1} s^{-1}$, $A_{ob} = 0.04 \mu M$, and $K_{pb} = 0.07 \mu M$ for the uncorrected data (open symbols). The range of predicted values for the critical concentration of the barbed end (0.02–0.04 μM) is very low, but previously reported experimental values have been in this range (9, 34).

Contribution of an Energy Imbalance to the Effect of Profilin on Critical Concentration—If the effect of pointed end dynamics on critical concentration is negligible, i.e. $k_{p\rightarrow b} \ll k_{b\rightarrow h}, k_{b\rightarrow p} \ll k_{b\rightarrow p}$, then $A_c = k_{h\rightarrow p}A_{ob}$, then saturating profilin concentrations $A_c = (w_R k_{b\rightarrow p})(w_k k_{b\rightarrow p}) = A_{cb}/R$. In this case profilin affects critical concentration only through the use of ATP hydrolysis coupled with the profilin pathway. A physical interpretation of this result is that profilin lowers A_c to that of a barbed end with terminal subunits containing ATP, and there is evidence that the nucleotide content of terminal subunits influences A_c (35). With a balanced energy square and insignificant contribution from pointed ends, $A_c = A_{cb}$. Importantly, this means that the fact that the profilin-actin complex can add to the barbed end, by itself, cannot explain the effect of profilin on critical concentration. The data in Fig. 4A can be fit indistinguishably from the pictured theoretical curve, assuming only energy imbalance with parameters, $k_{p\rightarrow b} = k_{b\rightarrow h} = 0$, $k_{b\rightarrow p} = k_{b\rightarrow p} = 10 \mu M^{-1} s^{-1}$, $A_{ob} = 0.16 \mu M$, $K_{pb} = 0.20 \mu M$, and $K_{pb} = 15.4 \mu M$, $R = 7.5$. The fit to the data in Fig. 4A is very sensitive to increasing R and becomes poor when R exceeds 7.5.

A “mixed mechanism” resulting from the combination of increased barbed end weighting and energy imbalance could explain the effect of profilin on critical concentration. When the contributions of the pointed ends are non-negligible and $R > 1$, then profilin may not only lower A_c to that of the barbed end but also further lower A_c to that of a barbed end with terminal subunits containing ATP. The data in Fig. 4A can also be well fit with these assumptions, with the best fit obtained with parameters of $k_{p\rightarrow b} = 1 \mu M^{-1} s^{-1}$, $A_{sp} = 0.8 \mu M$, $k_{b\rightarrow p} = k_{b\rightarrow p} = 10 \mu M^{-1} s^{-1}$, $A_{cb} = 0.1 \mu M$, $K_{pb} = 0.18 \mu M$, and $K_{pb} = 14.7 \mu M$, $R = 4.7$.

Increased Dynamics at the Barbed End—The steady state subunit flux on the barbed end increases with concentration of profilin (Fig. 5B). The on flux (Equation 8) and off flux (Equation 9) are as follows (see “Appendix”).

$$f(k_{b\rightarrow p}[A] + k_{b\rightarrow p}[PA]) - f w_h k_{b\rightarrow p}[A]$$

$$f w_h k_{b\rightarrow p}[k_{b\rightarrow p} + w_h k_{b\rightarrow p}]/(k_{b\rightarrow p} + w_h k_{b\rightarrow p}) - f w_h k_{b\rightarrow p}$$

The increase of the on flux occurs because both actin and profilin-actin complex add to the barbed end, and even if $[A]$ decreases with profilin concentration, the total sum of unpolymerized actin $[A] + [PA]$ still exceeds the critical concentration in the absence of profilin. The increase of the off flux is demonstrated in the experimental data shown in Fig. 5C. Note that the same sets of parameters used to fit the data on Fig. 4A also fit these depolymerization data. Fig. 5B shows the relative contributions from different terms at steady state conditions corresponding to that of Fig. 4A. The set of parameters corresponding to a mixed mechanism is demonstrated here, although any of the sets of parameters show that the barbed end dynamics at 10 μM profilin is greatly enhanced compared with the dynamics in the absence of profilin.

Importance of Depolymerization Term for Actin Polymerization Dynamics—Fig. 5D shows relative contributions from different terms at elongation conditions when the total actin concentration is 3 μM and the profilin concentration is 0 or 10 μM. It is clearly seen that the total depolymerization rate is about 35% of the total polymerization rate, and the term corresponding to profilin pathway contributes to about 80% of the net depolymerization. Although it is commonly assumed that this term is negligible and therefore ignored, this result shows that term should not be neglected in models describing actin polymerization.
polyproline-treated extracts, A_c is three times higher than the A_c in untreated extracts, and both are relatively low. The effect of profilin on A_c is consistent with predictions based on the assumption that cell extracts have limited amounts of capping protein. The inset to Fig. 6 shows the predicted dependence of critical concentration on profilin when 95% of the barbed ends are capped. The lines correspond to the parameter sets with R/H_{11005} 1 (dotted line), 4.7 (dashed line), and 7.5 (solid line) used to fit the data on Figs. 4A and 5C. At these conditions the predicted dependences of critical concentration on profilin differ significantly for different values of R. This is in contrast to the data in Figs. 4A and 5C, for which three sets of parameters were defined that fit all of those data equally well. The two data points (circles) correspond to the average values received in the two experiments shown on the main panel for the treated and untreated extracts and to our best estimate for the profilin concentration in these extracts.

The effect of profilin on A_c is consistent with predictions based on the assumption that cell extracts have limited amounts of capping protein. The inset to Fig. 6 shows the predicted dependence of critical concentration on profilin when 95% of the barbed ends are capped. The three different sets of parameters used to fit the data in Fig. 4A (with $R = 1, 4.7$, or 7.5) were used to generate the theoretical curves. Numerical computer simulation done in Ref. 36 with the set of parameters corresponding to R/H_{11005} 14 gives similar results. The two data points on the inset correspond to the average values received in polyproline-treated and untreated extracts and to our best estimate for the profilin concentration in these extracts.

First, note that in these conditions of subtotal capping, profilin now is expected to have a marked effect on A_c. Note that in contrast to the data in Fig. 4A, which do not distinguish between energy balance and imbalance because those data can be fit by a range of values for R, the dependence of A_c on profilin with partial capping should be highly sensitive to the value of R. Thus, the data obtained in cell extracts are consistent with the predictions of the kinetic parameters used to fit the data in Fig. 4A, which were determined in an earlier study. Because profilin alters the filament number by sequestration of actin monomer, the fraction of capped filaments will be different in samples that differ only in their

Fig. 5. Relative contributions of barbed and pointed ends to filament dynamics in presence and absence of profilin.

A, cartoon demonstrating the effect of profilin on the rates of elongation and dissociation at the barbed and pointed ends at steady state. The top diagram illustrates reactions at each end in the absence of profilin, and the bottom diagram illustrates reactions in the presence of profilin (P). The width of the arrow indicates the relative rate of the reaction at steady state. Saturation by profilin accelerates the dissociation of subunits from the barbed end (12, 25) and accelerates the association of subunits in proportion to the formation of profilin-actin complex and the fraction of filaments not capped by profilin. **B**, contribution of barbed ends and pointed ends to the rates of subunit addition and loss (as free monomer or as profilin-actin) in the absence and presence of profilin at steady state conditions. The inset to Fig. 5C demonstrates reactions at each end in the absence of profilin, and the bottom diagram illustrates reactions in the presence of profilin, at steady state conditions. The inset to Fig. 5C illustrates reactions at each end in the absence of profilin, and the bottom diagram illustrates reactions in the presence of profilin, at steady state conditions.
allow these complexes to polymerize, then thymosin β_4 may deplete gelsolin available for capping and lower A_c. But this hypothesis does not explain why thymosin β_2 also decreases critical concentration for uncapped filaments. Also, nucleotide exchange on G-actin seems to be irrelevant to the effect of thymosin β_4 on A_c because the presence of profilin in the experiment with thymosin β_2 and completely capped filaments does not change the A_c when compared with that determined for thymosin β_4 alone (data not shown).

Implications for Actin Dynamics—Rapid growth of actin filaments in local regions of a cell with dynamic filament assembly is assumed to occur through the addition of the profilin-actin complex to the barbed end (38). Profilin has relatively high affinity for globular actin (G-actin), and at moderate concentrations of profilin a large amount of un polymerized actin is present in a form of profilin-actin complex. The concentration of free actin, A_c, defines the concentration of profilin-actin complex in any given intracellular region in which other factors, such as VASP, may bind profilin so as to increase local profilin concentration (39). Thus, the ability to determine the effect of actin regulatory proteins on A_c is absolutely essential to predicting how these proteins work in cells. Toward this end, our preliminary data show that the anisotropy technique described here works well in cell extracts, yielding results within the limits of those previously reported (1) and consistent with theoretical predictions. Most promisingly, fluorescence anisotropy methods are suitable for microscopic applications in live cells, with measurements of both local and whole cell anisotropy being feasible (40).

The concentration of free actin is a critical parameter not only at steady state conditions but also during polymerization. As seen from Equation 3, the polymerization rate is proportional to the value of $(A_c - A_s)$, and this value may become very small under conditions when almost all unpolymerized actin is present in the form of complex with actin-binding proteins. With increasing concentration of profilin, the term $(k_{+} + w_{b,c})$ may become large, but the value of $(A_c - A_s)$ would decrease faster and at some conditions may even become negative, which would lead to fast depolymerization of actin. Acceleration of actin polymerization dynamics by profilin may play an important regulatory role in cells when rearrangements of the cytoskeleton occur within a short period of time. Also, in conditions in which temporal or spatial concentration of capping protein becomes insufficient to cap all of the barbed ends, changes in profilin concentration may switch actin filaments from depolymerization to fast polymerization, and fine regulation of actin polymerization by profilin in ensemble with capping proteins is possible.

The value of R depends on a combination of various factors that include, but are not limited to, the energy of ATP hydrolysis, the energy of the phosphate release, and the rate of the phosphate release. Also, in general, R may be a function of profilin concentration. The importance of phosphate release is supported by the fact that the critical concentration is very low in the presence of inorganic phosphate (35). Of interest, the observed difference in the values of R for muscle and nonmuscle actin correlates with the difference in the phosphate release rates. For muscle actin R varies between 1 and 14 (9, 11) and is as high as 33 for nonmuscle actin (12). Published data confirm that the rate of phosphate release for yeast actin is much faster than for muscle actin (41). The faster rate of release may lead to less energy dissipation and therefore to a larger potential difference in free energy between the pathways for addition of profilin-actin and actin alone. These differences may reflect differences in the physiological function of actin derived from various sources.

Fig. 7. Steady state effects of thymosin β_4 on gelsolin-capped Mg$^{2+}$-F-actin are explained by alteration of A_c. A, pyrenyl-actin assay for monomer sequestration by thymosin β_4 has a nonlinears dependence on thymosin β_4 so that the data cannot be explained with any single K_d (dashed lines). However, the data are well fit assuming a single K_d and a variable A_c determined by fluorescence anisotropy (solid lines). Samples from the left have 0 (squares), 1 (circles), 2 (triangles), 4 (inverted triangles), 8 (diamonds), 16 (leftward triangles), and 24 μM (rightward triangles) thymosin β_4. B, fluorescence anisotropy confirms that thymosin β_4 causes a dose-dependent decrease in A_c (closed circles). The line provides values for critical concentration as a function of thymosin β_4 that are used in A_c. Assuming a K_d of 0.12 μM, the best fit to the data in A for A_c for each concentration of thymosin β_4 (shown as open triangles) corresponds well to the experimental data in B.

Effects of Thymosin β_4 on the Critical Concentration—At high concentrations, thymosin β_4 has been observed to cause nonlinear effects on the steady state amount of F-actin (Ref. 10 and Fig. 7A). Proposed explanations have included the possible formation of copolymers of actin and thymosin β_4-actin complex or an effect on A_c (10). Here we demonstrate that thymosin β_4 decreases the A_c value of capped actin filaments (Fig. 7B). Thymosin β_4 has a very similar effect on A_c when filaments are uncapped (data not shown). The effect of dose response on A_c is much different for profilin and for thymosin β_4, and no detectable change in A_c is induced at low concentrations such as that used for rhodamine-labeled thymosin β_4 in the anisotropy assay. Steady state data for the fluorescence of pyrenyl-labeled actin cannot be fit by a single K_d, assuming constant A_c (Fig. 7A). However, using values for A_c as a function of thymosin β_4 as determined by a fit to the fluorescence anisotropy in Fig. 7B, the single K_d of 0.12 μM (determined as in Fig. 1) is shown to fit all of the data reasonably well. Similarly, assuming a single K_d of 0.12 μM, the critical concentrations required to explain the data in Fig. 7A are shown to correspond to the experimental values determined by anisotropy in Fig. 7B. Although the data are empirically consistent, we know of no satisfactory explanation that accurately predicts the dependence of A_c on thymosin β_4 concentration. An effect of thymosin β_4 caused by an interaction with F-actin is ruled out by the data in Fig. 1C. Thymosin β_4 may bind to the complex of gelsolin with actin dimers or small oligomers, thereby sequestering the gelsolin from solution. If thymosin β_4 binds to gelsolin-actin complexes with affinity of ~5–10 μM and does not
of F-actin subunits, the absence of profilin, the rate of change in the concentration of actin complex. Assumptions that equilibrium between free profilin and both G-actin and barbed ends establishes much faster than the net rate of polymerization were used here. These assumptions are consistent with the agreement in literature that the dissociation rate of profilin from the barbed end (which is the measure of the establishment of equilibrium) is very fast. Then

\[
d_A/\text{d}t = f_0(h_p + h_b, \lambda) \left(k_p + k_p^c \right) \text{d}P \left(\lambda \right) \text{d}A \]

where \(f_0 \) is the concentration of actin polymer (i.e. the concentration of filaments) and \(k_p^c \) and \(k_p^d \) are the elongation and dissociation rate constants from the pointed end of F-actin.

When profilin is present,

\[
d_A/\text{d}t = f_0(h_p, \lambda) \left(\frac{1}{k_d^\text{actin}} + \frac{1}{K_d^\text{GDP}} \right) \text{d}P \left(\lambda \right) \text{d}A \]

with

\[
A = (k_p + h_b) \left(h_p + h_b \right)
\]

APPENDIX

Thermodynamic Constraints—The thermodynamic energy square (9, 12) describes the interdependence of the binding and/or rate constants for two different pathways for filament elongation (Fig. 8). Without ATP hydrolysis involved, when all reactions are reversible, as for example, in the case for ADP actin, the two pathways are energetically identical and the ratio \(R = \left(\frac{k_b^+}{k_b^-} \right) \left(K_{d}^\text{actin} \right)^2 \left(\frac{k_b^d}{k_b^c} \right) \) is 1, where \(k_b^+ \) and \(k_b^- \) are the respective elongation and dissociation rate constants from the barbed end of F-actin, \(K_{d}^\text{actin} \) and \(K_d \) are the equilibrium dissociation constants of profilin for monomers and the barbed end, respectively, and the primed rate constants are for the addition of profilin-actin and the loss of profilin-actin occurring at the barbed end. \(R \) is the factor of misbalance that is equal to 1 if the energy level is satisfied.

In the case when ATP hydrolysis is involved, \(R \) may no longer be equal to 1, and, in general, a function of profilin concentration. According to data by different authors (9, 11, 12), \(R \) varies between 1 and 33. There is also evidence that hydrolysis of actin is not fast enough to be coupled with profilin dissociation (19), that implies that hydrolysis of ATP is not directly involved in the profilin pathway. A factor of 33 for \(R \) would correspond to free energy input of about 2 kcal/mol, corresponding approximately to the energy of ATP hydrolysis without dissociation of inorganic phosphate. At conditions existing in cells, the complete energy of ATP hydrolysis with the inorganic phosphate dissociation corresponds to 11.5 kcal/mol. That would correspond to \(R = 1.6 \times 10^8 \) if the total energy of ATP hydrolysis was utilized for polymerization. However, there is an agreement in the literature that the whole energy of ATP is not used for actin polymerization and that only a small part of it, if any, might be involved in the profilin pathway.

Equations for the Interaction of Actin and Profilin-Actin—In the absence of profilin, the rate of change in the concentration of F-actin subunits, \(A_\text{act} \) is

\[
d_A/\text{d}t = -d[A]/\text{d}t = f_0(h_p^\text{act} + h_b^\text{act}) \left(\frac{1}{k_d^\text{actin}} + \frac{1}{K_d^\text{GDP}} \right) \text{d}P \left(\lambda \right) \text{d}A \]

with

\[
A = (k_p + h_b) \left(h_p + h_b \right)
\]

REFERENCES

1. Devineni, N., Minamidate, L. S., Niu, M., Sauer, D., Verma, R., Bamberg, J. R., and Nachmias, V. T. (1999) Brain Res. 823, 129–140
2. Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Cell Biol. 86, 949–958
3. Nishida, E. (1981) J. Biochem. 90, 1177–1191
4. Wegner, A., and Engel, J. (1975) Biophys. Chem. 3, 215–223
5. Craig, S. W., and Powell, L. D. (1980) Cell 22, 739–746
6. Cano, M. L., Cassimeris, L., Frischke, M., and Zigmond, S. H. (1992) J. Cell Biol. 116, 1123–1134
7. Cooper, J. A., Walker, S. B., and Pullard, T. D. (1993) J. Muscle Res. Cell. Motil. 4, 253–262
8. Bliskotad, I. Markey, F., Carlsson, L., Persson, T., and Lindberg, U. (1978) Cell 15, 955–943
9. Pantalone, D., and Carlier, M. F. (1993) Cell 75, 1007–1014
10. Carlier, M. F., Didry, D., Erk, I., Lepault, J., van Troys, M. L., Vandekerckhove, J., Perrotino, I., Yin, H., Dey, Y., and Pantalone, D. (1996) J. Biol. Chem. 271, 9231–9239
11. Kinosian, H. J., Selden, L. A., Gerstein, L. C., and Estes, J. E. (2002) J. Biol. Chem. 274, 36963–36972
Biochemistry 41, 6734–6743

13. Pollard, T. D., and Mooseker, M. S. (1981) J. Cell Biol. 88, 654–659
14. Bonder, E. M., Fishkind, D. J., and Mooseker, M. S. (1983) Cell 34, 491–501
15. Tilney, L. G., Bonder, E. M., Coluccio, L. M., and Mooseker, M. S. (1983) J. Cell Biol. 97, 112–124
16. Pollard, T. D., and Cooper, J. A. (1984) Biochemistry 23, 6631–6641
17. Pring, M., Weber, A., and Bubb, M. R. (1992) Biochemistry 31, 1827–1836
18. Hertwig, M., Yarmola, E. G., Diory, D., Bubb, M. R., and Carlier, M. F. (2002) J. Biol. Chem. 277, 14786–14792
19. Blanchon, L., and Pollard, T. D. (2002) Biochemistry 41, 597–602
20. Gutsche-Perelroizen, I., Lepault, J., Ott, A., and Carlier, M. F. (1999) J. Biol. Chem. 274, 6234–6243
21. Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C., and Lindberg, U. (1995) Nature 363, 810–816
22. Nyman, T., Page, R., Schutt, C. E., Karlsson, R., and Lindberg, U. (2002) J. Biol. Chem. 277, 15828–15833
23. DiNubile, M. J., and Huang, S. (1997) Cell Motil. Cytoskeleton 37, 211–225
24. Oosawa, F., and Asakura, S. (1975) Thermodynamics of the Polymerization of Protein, pp. 109–118, Academic Press, New York
25. Bubb, M. R., Yarmola, E. G., Gibson, B. G., and Southwick F. S. (2003) J. Biol. Chem. 278, 24629–24635
26. Yarmola, E. G., Parikh, S., and Bubb, M. R. (2001) J. Biol. Chem. 276, 45555–45563
27. Selden, L. A., Kinosaur, H. J., Newman, J., Lincoln, B., Hurwitz, C., Gershman, L. C., and Estes, J. E. (1998) Biophys. J. 75, 3092–3100
28. Oosawa F., and Kasai M. (1962) J. Mol. Biol. 4, 10–21
29. Tellam, R., and Frieden, C. (1982) Biochemistry 21, 3207–3214
30. Carlier, M. F., Pantaloni, D., and Korn, E. D. (1987) J. Biol. Chem. 262, 3052–3059
31. Bubb, M. R., Sendarowicz, A. M. J., Duncan, K. L. K., and Korn, E. D. (1994) J. Biol. Chem. 269, 14869–14871
32. Yarmola, E. G., Somassendaram, T., Boring, T. A., Spector, I., and Bubb, M. R. (2000) J. Biol. Chem. 275, 28120–28127
33. Pollard, T. D. (1986) Cell Biol. 103, 2747–2754
34. Pollard, T. D., Goldberg, I., and Schwarz, W. H. (1992) J. Biol. Chem. 267, 20339–20345
35. Weber, A., Pennise, C. R., and Fowler, V. M. (1999) J. Biol. Chem. 274, 34637–34645
36. Tardif, M., Huang, S., Redmond, T., Safer, D., Pring, M., and Zigmund, S. H. (1995) J. Biol. Chem. 270, 28075–28083
37. Janmey, P. A., Peetermans, J., Zaner, K. S., Stossel, T. P., and Tanaka, T. (1986) J. Biol. Chem. 261, 8357–8362
38. Pollard, T. D., and Borisy, G. G. (2003) Cell 112, 453–465
39. Geese, M., Schluter, K., Rothkegel, M., Jockusch, B. M., Wehland, J., and Schi, A. S. (2000) J. Cell Sci. 113, 1415–1436
40. Clayton, A. H., Hardley, Q. S., Arndt-Jovin, D. J., Subramaniam, V., and Jovin, T. M. (2002) Biophys. J. 83, 1631–1649
41. Yao, X., and Rubenstein, P. A. (2001) J. Biol. Chem. 276, 25598–25604
Effects of Profilin and Thymosin β4 on the Critical Concentration of Actin Demonstrated in Vitro and in Cell Extracts with a Novel Direct Assay
Elena G. Yarmola and Michael R. Bubb

J. Biol. Chem. 2004, 279:33519-33527.
doi: 10.1074/jbc.M404392200 originally published online June 7, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M404392200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 38 references, 20 of which can be accessed free at http://www.jbc.org/content/279/32/33519.full.html#ref-list-1