No cross reactivity was observed with any of the malarial species tested. Babesia M01, Babesia duncani and all bacterial isolates tested were negative by the BMPCR. Intra-run, inter-run and day to day reproducibility of the assay was 100%.

Conclusion. The B. microti real time PCR assay developed by Northwell Health Laboratories is rapid, sensitive, specific and reproducible. With the sample to result turnaround time of 2.5 hours and hands on time on of only 5 minutes per sample, BMPCR can be used as screening assay for B. microti in clinical laboratories.

Disclosures. All authors: No reported disclosures.

2088. A Novel Diagnostic Method for Malaria Using Loop Mediated Isothermal Amplification (LAMP) and MiniION Nanopore Sequencer

Kazato Okayama, MD Ph.D.; Takahisa Tanumoto, MD Ph.D.; Takashi Murakami, MD Ph.D.; Shigefumi Maekai, MD Ph.D.; Yukata Suzuki, Ph.D.; Junya Yamagishi, Ph.D. and Takuya Maeda, MD Ph.D.; 1Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan; 2Center for Culture, Infection Control, Research and Education, Saitama Medical University, Saitama, Japan; 3Department of Internal Medicine, National Defense Medical College, Saitama, Japan; 4Department of Microbiology, Saitama Medical University, Saitama, Japan; 5Department of Medical Genome Sciences, University of Tokyo, Chiba, Japan; 6Global Station for Zoonosis Control, Hokkaido University, Hokkaido, Japan

Session: 237. Diagnostics - Novel Diagnostics
Saturday, October 7, 2017: 12:30 PM

Background. Simply and accurately diagnostic tool for Malaria is required for clinical diagnosis and epidemiological survey. We have developed a novel diagnostic tool for Malaria using loop mediated isothermal amplification (LAMP) with MiniION nanopore sequencer.

Methods. In this study, we have designed human Plasmodium parasites-specific LAMP primers targeting for the lesion of 18S rDNA gene, which were locating on the conserved sequences across all five Plasmodium species. Plasmodium falciparum, P. vivax, P. ovale (P. wallikeri and P. cruizai), P. knowlesi and P. malariae, containing each species-specific sequence within F1-B1 primer pairs. The sensitivities were evaluated using 10-4 dilution of enriched plasmodium harboring the sequences of 18S rDNA. We also applied our protocol to human blood samples collected and stored with FTA elite cards derived from 30 Malaria patients, who are clinically diagnosed as Malaria in Indonesia. Its analytical sensitivities and specificities were also evaluated while comparing the results of previously described nested PCR methods. Finally, we performed amplicon sequencing of our LAMP methods using MiniION nanopore sequencer to identify each Plasmodium species.

Results. Our LAMP method could amplify targeting 18S rDNA gene on constructed parasites. In our experiment, 100 copies (in 100 copies reaction respectively) of clinical samples, obtained LAMP results were completely consistent with the results of nested PCR. Additionally, identifications of Plasmodium species based on the sequence analysis with MiniON were also consistent with the sequence of each constructed plasmid and could consistently confirmed its Plasmodium species with the highest homology of reference Plasmodium parasite sequence.

Conclusion. Our innovative diagnostic technology with LAMP and MiniION could become a powerful tool for identification of Plasmodium parasites even in resource-limited situation.

Disclosures. All authors: No reported disclosures.

2089. Accelerating Time to Pathogen-adapted Antibiotic Treatment through Culture-independent Antimicrobial Susceptibility Testing in Patients Suffering from Sepsis

Matthias Karrasch, MD; Marco Bender, none; Jennifer Geraci, DiplBiol; Frank Brunkhorst, MD; Bettina Loerler, MD; 1University Laboratory, Jena University Hospital, Germany, Jena, Germany; 2Medical Microbiology, Jena University Hospital, Germany, Jena, Germany; 3Center of Sepsis Control and Care (CSCC), Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Germany, Jena, Germany

Session: 237. Diagnostics - Novel Diagnostics
Saturday, October 7, 2017: 12:30 PM

Background. Accurate and fast pathogen identification and consecutive antimicrobial susceptibility testing (AST) is of vital importance for patient outcome in patients suffering from sepsis.

Methods. The Accelerate Pheno® system is a new, fully automated, culture-independent diagnostic method for both pathogen identification (ID) and antimicrobial susceptibility testing (AST). We analyzed positive blood cultures from critically ill patients with new onset of sepsis according to the new sepsis guidelines, using both conventional standard methods (VITEK, MALDI-TOF) and Accelerate Pheno® system. ID/AST results of the Accelerate Pheno® system were not reported to treating physicians as part of our internal evaluation process.

Results. Accelerate Pheno® system correctly detected 74 pathogens [Gram-negative (GN) (n = 27), Gram-positive (GP) (n = 47)] straight out of 84 positive blood culture bottles. Gram-negative (GN) pathogens were identified as E. coli (n = 15; concordance 94.1%), K. pneumoniae MT+ (7; 71.4%), S. marcescens (n = 3; 100%), E. cloacae (n = 2; 50%), P. mirabilis (n = 1; 100%) and P. aeruginosa (n = 1; 33%). Gram-positive pathogens were identified as CNS (n = 24; 82.6%), S. aureus (n = 15; 88.2%), E. faecium (n = 6; 100%) and E. faecalis (n = 2; 100%). The Accelerate Pheno® system generated a GN-AST result in 70.4% (19 of 27 samples) and a GP-AST result in 61.7% (29 of 47 samples) when compared with routine AST. Growth control, analysis and mechanical failure led to reduced results in comparison to conventional ID/AST. Accelerate PhenoTM delivered correct MIC results for most of the panel antibiotics [e.g., meropenem: 83.3%, gentamicin: 88.9%, etrapenem: 100%].

Conclusion. The use of the Accelerate Pheno® system significantly improved time-to-ID/AST and would have led to a reduced time-to-treatment in patients suffering from sepsis if results would have been reported. The system currently lies in some weakness in the detection of polymicrobial and streptococcal infections but due to the short hands-on-time, culture-independence and fast generation of results, it represents a promising new diagnostic method for the consecutive antibiotic treatment of sep tic patients.

Disclosures. All authors: No reported disclosures.

2090. T-Cell Immunity Panel Measures CMV Specific CD4 and CD8 T-Cell Responses

Cory B. Lutgen, BS; Linda Flebbe-Rehwaldt, PhD; Steve Kleboeker, PhD. 1department of Infection Control, Research and Education, Saitama Medical University, Saitama, Japan; 2Clinical Diagnostics, Lee’s Summit, Missouri

Session: 237. Diagnostics - Novel Diagnostics
Saturday, October 7, 2017: 12:30 PM

Background. Infection and disease from human cytomegalovirus (CMV) is a major complicating factor for both solid organ and hematopoietic stem cell transplant recipients. Antiviral therapy is often used to control CMV infections, but presents problems of toxicity, antiviral resistance and excessive costs. Currently, treating physicians are limited in the information and data available to assess a patient’s ability to control a potential CMV infection post-transplant. Recent studies have shown that measuring a patient’s CMV specific T cell mediated immunity may provide valuable information for determining CMV infection/disease in transplant patients and may aid in determining which patients need antiviral therapy.

Methods. For this purpose, a flow cytometry assay was developed to determine the percentages of CD4+ and CD8+ T cells that respond to stimulation with CMV antigens. A panel of CMV antigens, which were based on the cellular activation surface marker CD69 in conjunction with IFNγ, TNFα, and IL-2 cytokine production. Three CMV antigens were used to assess patient immunity; a whole viral lysate, a peptide pool of p65, and a peptide pool of IE-1.

Results. Our data indicate that CD8 T cells respond primarily to the p65 and/or IE-1 peptide pools while the CD4 T cells respond primarily to the viral lysate. Detection of both CD4 and CD8 responding populations at levels above background, ≥ 0.2% of the parent population, indicates that a patient’s immune system has previously been exposed to CMV. Validation limits were set at 18.5 CMV seropositive samples demonstrating immune responses for all 23 samples above 0.2% for at least one of the three intra-cellular cytokines and at least one of the three CMV antigens. Validation of five CMV seronegative samples demonstrated immune responses below 0.2% (when excluding underlying, unrelated immune responses). Included for each sample is a positive (Staphylococcal Enterotoxin type B) control to assess patient’s overall ability to mount an immune response and negative (media) control to capture the presence of an underlying immune response.

Conclusion. This assay evaluates a patient’s pre-existing CMV specific T cell immunity and their global T cell function.

Disclosures. C. B. Lutgen, Viracor Eurofins Clinical Diagnostics: Employee, Salary; L. Flebbe-Rehwaldt, Viracor Eurofins Clinical Diagnostics: Employee, Salary; S. Kleboeker, Viracor Eurofins Laboratories: Employee, Salary; S. Kleboeker, Viracor Eurofins Clinical Diagnostics: Employee, Salary; J. Rodgers, Viracor Eurofins Clinical Diagnostics: Employer, Salary; K. Steffens, Viracor Eurofins Clinical Diagnostics: Employee, Salary; M. Altrich, Viracor Eurofins Laboratories: Employee, Salary

2091. Application of Laser Light Scattering Technology in Rapid Diagnosis of Urinary Tract Infections and Antimicrobial Susceptibility Testing in a Tertiary Children's Hospital

Tam Yan, PhD; Samia Naccache, PhD; Andrew Tomaras, PhD; Javier Mestas, PhD; and Jennifer Dren Baird, PhD. 1Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, 2BacterioScan, Inc., St. Louis, Missouri

Session: 237. Diagnostics - Novel Diagnostics
Saturday, October 7, 2017: 12:30 PM

Background. Timely and accurate microbiology testing is crucial in the diagnosis and management of urinary tract infections (UTIs). The ability to rapidly screen for potential UTIs can lead to early rule out and judicious use of antimicrobial therapy. This study examines the application of laser scattering for bacterial detection and antimicrobial susceptibility testing (AST) directly from urine.

Methods. Residual urine samples collected for routine culture were tested using the BacterioScan® 216Dx™ UTI System and 216R AST System. Continuous collection of Negative control patients generated growth results with no bacterial activity. Whether the sample was likely positive or negative for bacteria. Further culture analysis ruled out mixed flora at lower concentrations, and “qualified” samples were identified directly on MALDI-TOF MS. AST for ampicillin, cefazolin, ceftriaxone and ciprofloxacin was performed concurrently on the instrument. Samples were incubated for up to 16 hours with results available as early as 2 hours.