Enhanced activity of Ni/SiO₂ catalyst in dry reforming of CH₄ via a modified impregnation method

Chao Li¹, Chenyin Yang¹, Yan Xu¹ * and Xihua Du¹ *

¹ School of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China

*Corresponding author’s e-mail: xuyan8787@163.com, 12dxh@sina.com

Abstract. A modified impregnation method with the addition of NH₄NO₃ was employed to prepare the supported Ni catalyst (denoted as Ni/SiO₂-N). And the obtained catalyst exhibited an improved catalytic activity and stability in DRM at 800°C with GHSV of 48 L·gcat⁻¹·h⁻¹ and CH₄/CO₂/N₂=9/9/2. The XRD and H₂-TPR results showed that the Ni/SiO₂-N catalyst was possessed with smaller Ni particles and stronger metal-support interaction than Ni/SiO₂ catalyst prepared by the common impregnation method, leading to the better catalytic performance. It is the decomposition of NH₄NO₃ which can generate extra heat in a short time during the catalyst preparation process that make the change in structure and performance of catalyst.

1. Introduction
Dry reforming of CH₄ with CO₂ (DRM, CH₄ + CO₂ = 2H₂ + 2CO) to syngas can make good use of CH₄ and CO₂ which are both “greenhouse gases”. The obtained syngas consisting of H₂ and CO is an important chemical, which can be further converted to methanol, dimethyl ether, liquid fuels and other chemical products via methanol rout and Fischer-Tropsch synthesis (FTS)[1-4]. So, the DRM reaction not only can contribute to the carbon cycling but also can relieve the environmental and energy crisis.

Various catalysts have been studied for DRM. Compared with the noble metal catalyst (such as Ru, Pt, Rh and so on), Ni-based catalyst has been considered as the best candidate for the industrial application of DRM due to its lower price and better catalytic activity[5-7]. As DRM is a strongly endothermic reaction, it is usually operated at high temperature between 700~900°C. However, for the Ni-based catalyst, it is easy to be deactivated because of sintering and carbon deposits which can wrap the Ni particles and block the reactant molecules from the active site. It is reported that the size of Ni particles has a close relationship to the generation of deposited carbon, for more Ni atoms are needed to promote the side reaction (CH₄ = C + 2H₂) at high temperature. Thus, the catalyst with better Ni dispersion, smaller Ni particle size and stronger Ni-support interaction is benefit for the DRM[8].

It is known that the preparation method plays an important role in the textural, structural and physicochemical characteristics of catalyst, which can ultimately influence the performance of catalyst[9-11]. Sukonket et al prepared a series of ceria-zirconia support by a surfactant-assisted route and a coprecipitation route, and found that the supported Ni catalyst with support prepared by the surfactant-assisted route showed better performance in DRM[12]. Goula et al. reported that the Ni-Al catalyst prepared by the slightly modified Equilibrium Deposition Filtration (EDF) technique exhibited the quite different catalytic behavior, in comparison to the catalyst prepared by the conventional incipient wetness and wet impregnation methods[13].
The wetness impregnation method is the most commonly used catalyst preparation method because of its simplicity and convenience. However, for the supported catalyst prepared by this method, the interaction between metal and support is generally weak, and the metal particles are usually large, which is unfavorable. In this work, the Ni/SiO₂ catalyst was prepared by the modified wetness impregnation method with the addition of NH₄NO₃. And its catalytic activity was evaluated and compared with the reference catalyst prepared by the common impregnation method. XRD and H₂-TPR were used to analyze its microstructure.

2. Experimental

2.1. Preparation of Ni/SiO₂ catalyst
Ni/SiO₂ catalyst was prepared by the modified incipient impregnation method and noted as Ni/SiO₂-N with Ni loading of 10 wt.%. An aqueous solution containing the desired amounts of Ni(NO₃)₂·6H₂O and NH₄NO₃ (the molar ratio of NH₄NO₃/Ni = 1) was added to the support and then dried slowly in a rotary evaporator under vacuum at 80°C for 2 h followed by drying at 120°C in an oven overnight and calcining in air at 550°C for 3 h. Then, the calcined catalyst was crushed and sieved to 40-60 mesh size for catalytic tests. And the common impregnation method without NH₄NO₃ was also used to prepare the reference catalyst noted as Ni/SiO₂.

2.2. Evaluation of catalyst
The DRM reaction was performed in a fixed bed reactor with i.d. of 9 mm at atmospheric pressure. 0.2 g of catalyst (40-60 mesh) was placed at the center of the reactor. Before the reaction, the catalyst was reduced at 750 °C for 2 h by pure H₂ with the flow rate of 60 mL/min. Then the temperature was raised to 800°C and a flow of gas mixture with CH₄/CO₂/N₂ molar ratio of 9/9/2 was fed into the reactor at a flow rate of 160 mL·min⁻¹. Gaseous products were analyzed online by gas chromatography (Agilent GC 7820A with a TCD detector and a Porapak Q column and a 5Å molecular sieve column). The conversions of CH₄ and CO₂ were calculated with the following formulas:

\[
X_{\text{CH}_4} = \frac{F_{\text{CH}_4,\text{in}} - F_{\text{CH}_4,\text{out}}}{F_{\text{CH}_4,\text{in}}} \times 100\% \\
X_{\text{CO}_2} = \frac{F_{\text{CO}_2,\text{in}} - F_{\text{CO}_2,\text{out}}}{F_{\text{CO}_2,\text{in}}} \times 100\%
\]

where X and F were conversion and gas flow rate of \(i\) in the feed or the effluent, respectively.

2.3. Characterization of catalyst
The powder X-ray diffraction (XRD) patterns of reduced and spent catalysts were recorded on a Bruker AXS D8 Advance diffractometer using Cu Kα radiation (\(λ = 1.5406 \text{ Å}\)) over a 20 range of 5-90° at a scanning rate of 6 °/min. H₂ temperature programmed reduction (H₂-TPR) experiments of catalysts were conducted in an auto-controlled flow reactor system (TP-5076, Tianjin Xianquan Instrument, Co., Ltd., China) equipped with a thermal conductivity detector (TCD). 50 mg of catalyst sample was charged in a quartz-tube reactor and pretreated in a N₂ stream at 473 K for 1 h and then cooled down to 303 K. After that, the sample was heated to 950 °C in a 30 mL/min flow of 5%H₂/N₂ at a rate of 10 °C/min to obtain the H₂-TPR pattern.

3. Results and discussion

3.1. Evaluation results
Figure 1 shows the catalytic performances of Ni/SiO₂-N and Ni/SiO₂ catalysts in DRM reaction at 800 °C with GHSV of 48 L·gcat⁻¹·h⁻¹ and CH₄/CO₂/N₂=9/9/2. It can be seen clearly that, the CH₄ and CO₂ conversions over Ni/SiO₂ catalyst drop from 78% and 85% to 53% and 67% during 10 hours. In contrast, Ni/SiO₂-N catalyst displays a relatively stable catalytic performance over the whole reaction period. The CH₄ and CO₂ conversions are 80% and 86% at the first hour, and slightly decrease to 70 and 81% after 10 hours. Moreover, CO₂ conversion is higher than CH₄ conversion for
both catalysts, which is caused by the reverse water gas shift (RWGS) reaction \((\text{CO}_2 + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{CO})\) \([14-16]\). It is worth noting that the gap between \(\text{CH}_4\) conversion and \(\text{CO}_2\) conversion over \(\text{Ni/SiO}_2\) catalyst increases from 7% to 14%, and it increases from 6% to 11% over \(\text{Ni/SiO}_2\)-\(\text{N}\) catalyst. The increase in gap indicates the increase in RWGS reaction.

3.2. Characterization of catalyst

Figure 2 shows the XRD patterns of different samples. It can been seen clearly from Figure 2(a) that there are five visible peaks at 2\(\theta\) values of 37.3°, 43.3°, 62.9°, 75.4° and 79.4°, corresponding to the metal oxide of \(\text{NiO}\) (JCPDS 22-1189). And after reduction, there are three peaks at 44.6°, 51.9° and 76.8°, corresponding to metallic \(\text{Ni}\) (JCPDS 1-1260). It can been seen clearly that the \(\text{Ni}\) and \(\text{NiO}\) peaks of \(\text{Ni/SiO}_2\) catalyst are more sharper than that of \(\text{Ni/SiO}_2\)-\(\text{N}\) catalyst, indicating the better crystallinity and the larger particles. It is generally believed that small \(\text{Ni}\) particles and stronger metal-support interaction are benefit to the catalytic activity and stability \([17-19]\), which agree well with our experimental results.

![XRD patterns of different samples](image)

Figure 2. XRD patterns of different samples: (a) fresh catalysts; (b) reduced catalysts.

Figure 3 exhibits the reduction behavior of the fresh catalysts to clarify the interaction between \(\text{Ni}\) and support. The \(\text{Ni/SiO}_2\) catalyst shows a sharp reduction peak at 390 °C, and two shoulder peaks at 350 °C and 480 °C, respectively. Generally, the peaks at the low temperature zone (400 ~ 500 °C) are assigned to the reduction of \(\text{NiO}\) species which have weak interaction with support, while the peaks in the intermediate temperature zone (500 ~ 600 °C) are assigned to the reduction of \(\text{NiO}\) species having medium strength interaction with support. The peaks in the high temperature zone (> 600 °C) are
attributed to the reduction of NiO species with strong chemical interaction with support[20, 21]. Obviously, the interaction between Ni and SiO₂ support is weak, there is no chemical interaction between Ni and SiO₂. However, the peak at 350°C over Ni/SiO₂-N catalyst is smaller than that of Ni/SiO₂ catalyst, indicating the stronger metal-support interaction of Ni/SiO₂-N catalyst. The increased metal-support interaction can effectively inhibit the sintering and agglomeration of Ni particles, bring in the better catalytic stability.

![Figure 3. H₂-TPR patterns of different catalysts.](image)

4. Conclusions

The Ni/SiO₂-N catalyst was prepared by a modified impregnation method with the addition of NH₄NO₃, and the prepared catalyst was possessed with smaller Ni particles and stronger metal-support interaction, leading to the better catalytic performance in DRM. According to the XRD and H₂-TPR results, it can be deduced that the decomposition of NH₄NO₃ during the catalyst preparation process (calcination process) may release some heat in a very short time, leading to the formation of smaller Ni particles and stronger metal-support interaction.

Acknowledgments

This work is supported by the innovation and entrepreneurship training program of college student of Jiangsu Province (xcx2018059), National Natural Science foundation of China (21703194), the Natural Science Foundation of Jiangsu Province (BK20171168, BK20171169), Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJB530010, 17KJB150038 and 18KJA430015), Key Research Project of Social Development of Xuzhou (KC17154) and Research Project of Xuzhou University of Technology (XKY2017217).

References

[1] James O O, Mesubi A M, Ako T C, et al. (2010). Increasing carbon utilization in Fischer-Tropsch synthesis using H₂-deficient or CO₂-rich syngas feeds. Fuel Processing Technology, 91, 136-144.

[2] Yao Y, Liu X, Hildebrandt D, et al. (2012). Fischer-Tropsch synthesis using H₂/CO/CO₂, syngas mixtures: A comparison of paraffin to olefin ratios for iron and cobalt based catalysts[J]. Applied Catalysis A General, 433-434, 58-68.

[3] Liu Y, Murata K, Inaba M, et al. (2013). Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis. Fuel Processing Technology, 110, 206-213.

[4] Brachi P, Chiron R, Miccio F, et al. (2014). Fluidized bed co-gasification of biomass and polymeric wastes for a flexible end-use of the syngas: Focus on bio-methanol. Fuel, 128, 88-98.
[5] Li D, Nakagawa Y, Tomishige K. (2011). Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A General, 408, 1-24.

[6] Pakhare D, Spivey J. (2014). A review of dry (CO₂) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43, 7813-7837.

[7] Usman M, Daud W M A W, Abbas H F. (2015). Dry reforming of methane: Influence of process parameters—A review. Renewable & Sustainable Energy Reviews, 45, 710-744.

[8] Han J W, Kim C, Park J S, et al. (2014). Highly Coke-Resistant Ni Nanoparticle Catalysts with Minimal Sintering in Dry Reforming of Methane. Chemsuschem, 7, 451-456.

[9] Rane V H, Chaudhari S T, Choudhary V R. (2010). Oxidative coupling of methane over La-promoted CaO catalysts: Influence of precursors and catalytic preparation method. Journal of Energy Chemistry, 19, 25-30.

[10] Infantes-Molina A, Moreno-León C, Pawelec B, et al. (2012). Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO₂ catalysts: Effect of catalyst preparation method. Applied Catalysis B Environmental, 113-114, 87-99.

[11] Pujanavaraphan C, Luengnaruemitchai A, Gulari E. (2013). Effect of catalyst preparation on Au/Ce₁₋₀Zr₂O₅ and Au–Cu/Ce₁₋₀Zr₂O₅ for steam reforming of methanol. International Journal of Hydrogen Energy, 38, 1348-1362.

[12] Sukonket T, Khan A, Saha B, et al. (2011). Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO₂ Reforming of CH₄ over 5Ni/Co₀.₆Zr₀.₄O₂ Catalysts. Energy & Fuels, 25, 864-877.

[13] Goulia M A, Charisiou N D, Papageridis K N, et al. (2015). Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. International Journal of Hydrogen Energy, 40, 9185-9200.

[14] Mo W, Ma F, Liu Y, et al. (2015). Preparation of porous Al₂O₃ by template method and its application in Ni-based catalyst for CH₄/CO₂ reforming to produce syngas. International Journal of Hydrogen Energy, 40, 16147-16158.

[15] Jeong M G, Kim S Y, Kim D H, et al. (2016). High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO₂ reforming of methane (CRM). Applied Catalysis A General, 515, 45-50.

[16] Al-Fatesh A S, Arafat Y, Atia H, et al. (2017). CO₂-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: Effect of support modifiers (Mg, La and Sc) on catalytic stability[J]. Journal of CO₂ Utilization, 21, 395-404.

[17] Baudouin D, Rodemerck U, Krumeich F, et al. (2013). Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles[J]. Journal of Catalysis, 297, 27-34.

[18] Gonzalezdelacruz V M, Pereñiguez R, Tenero F, et al. (2013). Modifying the Size of Nickel Metallic Particles by H₂/CO Treatment in Ni/ZrO₂ Methane Dry Reforming Catalysts[J]. ACS Catalysis, 1, 82-88.

[19] Chai Y, Fu Y, Feng H, et al. (2018). Ni-based Perovskite Catalyst with a Bimodal Size Distribution of Ni Particles for Dry Reforming of Methane[J]. Chemcatchem, 10, 2078-2086.

[20] Sun G B, Hidajat K, Wu X S, et al. (2008). A crucial role of surface oxygen mobility on nanocrystalline Y₃O₅ support for oxidative steam reforming of ethanol to hydrogen over Ni/Y₃O₅ catalysts. Applied Catalysis B Environmental, 81, 303-312.

[21] Oemar U, Kathiraser Y, Mo L, et al. (2016). CO₂ reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modelling[J]. Catalysis Science & Technology, 6, 1173-1186.