1. Introduction

Semi-finished meat products that are stored in the refrigerator have a limited shelf life [1]. Food products are usually spoiled by chemical changes or increased microbial load [2]. The presence of high concentrations of nitrate in aquatic environments, especially drinking water, leads to short-term and long-term adverse effects in the body and can cause diseases such as methemoglobinemia, cancer, and fetal disorders [3]. In addition to the effect of fat oxidation in reducing the quality of meat products, spoilage due to microbial contamination can create severe health risks to consumers. Accordingly, it seems that the use of appropriate substances with antibacterial and antioxidant activity is valuable and necessary to improve quality, increase durability, and at the same time prevent economic losses [4, 5]. Nitrate and nitrite compounds are mainly used to stabilize the color of lean meat tissues, to flavor processed meat products, and to prevent the growth of spoilage microorganisms and subsequent food poisoning [6]. Nitrates and nitrates are the critical additives in producing processed meat products.
that can damage blood vessels, liver, spleen, and other organs [7]. Despite the desirable properties of nitrites, they can react with amines and free amino acids in meat products under certain conditions and produce nitrogen amines [8]. Human contact with nitrate and nitrite compounds is mainly due to food consumption, especially vegetables, meat, and contaminated water [9]. When the pH of the stomach is acidic and intestinal bacteria are present in the intestine, nitrite compounds react quickly with secondary amines and amides, resulting in the production of the carcinogenic compounds N-nitroso [10].

Excessive use of food additives has greatly exposed humans to preservatives such as sodium nitrite [11]. Nitrites are at the center of oxidation and reduction reactions in the body, which can be oxidized to the highly biologically active radical nitric oxide and mainly to the nitrate anion [12]. Peroxynitrite (O-ONO) derived from compounds containing nitrite or nitrate can easily cross the phospholipid membranes of various cells and react with many molecules such as lipids, proteins, and DNA, and cause cell death by necrosis or induction of apoptosis [13]. Peroxynitrite and nitric oxide affect the cardiovascular system by different mechanisms and cause cell death and various tissue damages [14]. Sodium nitrite in different doses can reduce the thickness of the middle layer of the arteries by increasing the amount of nitric oxide in the body and cause a variety of other disorders [15]. Consumption of sodium nitrite in drinking water in male and female rats causes hepatocellular degeneration and necrosis and hemosiderin deposition in the liver, spleen, and lymph nodes and hemolysis [16]. Nitrites and nitrates are both precursors of NO (Nitric Oxide) radicals that quickly pass through two phospholipid layers of the membrane by creating oxidative stress and producing ONOO- and reacting with many target molecules such as lipids, proteins, and DNA, and ultimately cell death through necrosis or apoptosis [17]. Nitrite-containing diets have been shown to adversely affect the mechanism of membrane cell proliferation within the vessels [18].

Most studies done on preservatives such as sodium nitrite have examined their effects on the tissue and functional structures of the consumers. So far, few studies (at least with the conditions governing this study) have been conducted in connection with the effects of perinatal and neonatal consumption of these compounds on the tissue and functional structure of children’s kidneys. So the study of the effect of such substances on fetuses and infants is of particular importance. This study aimed to investigate the perinatal and neonatal effects of sodium nitrite on the tissue and functional structure of the kidneys of rats’ offspring.

2. Materials and Methods

This experimental study was performed on 56 female Wistar rats in Islamic Azad University, Shiraz Branch, Shiraz City, Iran, in 2018. In this study, rats were divided into seven groups of 8: control group (untreated), perinatal and neonatal controls (treated with solvent), and experimental perinatal groups (treated with doses of 90 and 180 mg/kg sodium nitrite during pregnancy) and neonates (treated with doses of 90 and 180 mg/kg sodium nitrites during lactation). In this study, all prescriptions were performed by gavage. Eight adult male rats were used to conceive rats. This research protocol is based on the international law on laboratory animals and was approved by the University Ethics Committee IR.miau1395 1016. The rats of prenatal groups from the first day of pregnancy to the end of the period and rats of neonatal groups from the first day of birth to the end of lactation were prescribed sodium nitrite. At the end of lactation, 8 male offspring were randomly selected from each group, and after anesthesia with ketamine, their blood samples were taken from their hearts, and sufficient serum was prepared to measure urea, creatinine, and uric acid factors. Then, by separating their kidney organs and fixing them with 10% formalin for one week, tissue sections were prepared with the help of a tissue processor and a fully automatic microtome. Tissue sections were prepared, stained with hematoxylin-eosin, and then evaluated.

In this study, creatinine was measured by Jaffe/Fixed Rate or Kinetic method, and urea and uric acid were measured by Berthelot/Endpoint method using appropriate kits (made by Pars/Azmoun Co., Iran). Finally, the data of this study were analyzed using ANOVA and Tukey statistical tests in SPSS v. 22. The significance of the data difference was considered at the level of P<0.05.

3. Results

The results showed that sodium nitrite consumption at doses of 90 and 180 mg/kg during pregnancy (prenatal) in first-generation infants caused a significant increase in their serum urea, creatinine, and uric acid compared to the control group (P<0.001) (Tables 1 and 2).

The results also showed that sodium nitrite consumption at doses of 90 and 180 mg/kg during lactation (pre-
natal) in rats’ offspring caused a significant increase in their serum urea (P<0.003), creatinine, and uric acid compared to the control group (P<0.001) (Tables 3 and 4). Also, the results of histological studies showed that sodium nitrite consumption during pregnancy and lactation causes a lot of damage to the structure of rats’ offspring renal tissues, such as congestion and diffuse bleeding, damage to the structure of proximal and distal convoluted tubules, dilation, and increase the space around the Bowman capsule, glomerular atrophy, and inflammation around the tubules as well as tubular damage (Figures 1, 2, 3, 4, & 5).

4. Discussion

The results of this study showed that sodium nitrite consumption during pregnancy and lactation increases the serum levels of uric acid, urea, and creatinine by damaging the renal tissue structure. These results are consistent with the findings of Rammesh et al. as well as Ramezani Norouzani et al. [18, 19]. Stokes et al. reported that sodium nitrite consumption as a soluble in drinking water increased the amount of nitrite and nitrate in plasma, heart, liver, and kidney [20]. Sodium nitrite causes oxidative stress in the body and produces peroxynitrite (ONOO−), which passes freely through two phospholipid layers of the membrane and reacts with many target molecules such as lipids, proteins, and DNA, and this ultimately leads to cell death through the processes of necrosis and apoptosis [21]. Therefore, in the present study, nitrite compounds may have been transferred to fetuses and neonates of rats through placenta and milk, respectively, and through the above processes caused damage to the renal tissue structure and ultimately increased serum levels of uric acid, urea, and creatinine. It has also been shown that

Group	Uric Acid (mg/dL)	Creatinine (mg/dL)	BUN (mg/dL)
Healthy control	3.42±1.29	0.398±0.066	17.32±0.952
Prenatal control	3.30±0.33	0.301±0.069	17.38±1.076
Prenatal + sodium nitrite 90 mg/kg	5.20±0.49	0.426±0.045	38.65±4.791
Prenatal + sodium nitrite 180 mg/kg	5.65±1.14	0.492±0.033	39.40±6.759

Table 2. Results of ANOVA test to evaluate the effect of sodium nitrite with different doses on renal parameters in rats’ offspring of prenatal groups

Factors	Sum of Squares	df	Mean of Squares	F	The Significance Level
Between groups	1587.452	3	529.151	29.933	0.001
Urea	494.977	28	17.678		
Total	2082.429	31			
Between groups	0.044	3	0.015	4.654	0.001
Creatinine	0.087	28	0.003		
Total	0.131	31			
Between groups	18.200	3	6.067	7.256	0.001
Uric acid	23.405	28	0.836		
Total	41.606	31			
Table 3. Mean and standard deviation of renal parameters in offspring of rats of neonatal groups

Group	Mean±SD		
	Urea (mg/dL)	Creatinine (mg/dL)	Uric acid (mg/dL)
Healthy control	5.42±1.29	0.39±0.06	17.32±0.95
Neonatal control	2.47±1.31	0.30±0.07	23.93±13.59
Neonatal + sodium nitrite 90 mg/kg	5.7±1.95	1.36±0.03	37.23±11.93
Neonatal + sodium nitrite 180 mg/kg	5.19±0.93	1.46±0.04	39.26±10.59

Table 4. Results of 1-way analysis of variance to evaluate the effect of sodium nitrite with different doses on renal parameters in offspring of rats in neonatal groups

Factors	Sum of Squares	df	Mean of Squares	F	The Significance Level
BUN					
Between groups	1958.166	3	652.722	5.927	0.003
Within group	3038.708	28	110.132		
Total	5041.875	31			
Creatinine					
Between groups	0.109	3	0.036	11.520	0.001
Within group	0.089	28	0.003		
Total	0.198	31			
Uric acid					
Between groups	53.858	3	17.953	11.081	0.001
Within group	45.363	28	1.620		
Total	99.221	31			

Figure 1. Normal kidney tissue in the control group
Pathological changes in the malpighian body, glomeruli, surrounding space Bowman and tubule capsules proximal and distal were not seen in the pictures above. Hematoxylin-eosin staining. Magnification: x40
the kidney, as the main site of filtration and one of the detoxification sites in the body, is directly affected by various drugs, and the metabolites produced by the toxins and studies have shown that damage to the renal parenchyma increases the serum concentrations of nitrogen, Blood Urea Nitrogen (BUN), creatinine, and uric acid [22]. Consistent with the histopathological results, Ashrafy et al. reported that a nitrate-containing diet causes microscopic lesions in the kidney’s tissue structure, including hyperemia, cell swelling, and necrosis with moderate to severe renal cell resorption [24]. Consistent with this study’s results, another study showed that the consumption of sodium nitrite in drinking water in male and female rats causes hepatocyte degeneration and necrosis and hemosiderin deposition in the liver, kidney, spleen, and lymph nodes and hemolysis [25]. Besides, Mohseni Kouchesfahani et al. showed that whenever renal function decreases, creatinine, urea, and uric acid levels in the blood increase [26].

On the other hand, the present study results showed that sodium nitrite treatment causes damage to the renal tissue structure, especially in renal glomeruli of animals. Therefore, the increase in serum urea, uric acid, and creatinine in these animals is probably due to the destructive effects of sodium nitrite on the kidneys’ tissue structure. Recent research has clearly shown that

Figure 2. Photomicrograph prepared from the experimental group of prenatal dose 90mg/kg shows the results of moderate tissue damage in these two images

In both images, there are signs of diffuse bleeding (red arrow indicates the presence of red blood cells). Also, damage to the structure of convoluted tubules proximal and distal is shown in the pictures (blue arrow). Hematoxylin-Eosin staining. Magnification of x40.

Figure 3. Photomicrograph prepared from the experimental group prenatal dose 180 mg/kg shows the results of relatively severe tissue damage in these two images

Signs of diffuse bleeding (red arrow). Also, severe damage to the structure of convoluted tubules proximal and distal is shown in the pictures (blue arrow). Dilation and enlargement of the space around the Bowman’s capsule (green arrow) and the presence of glomerular atrophy and inflammation around the tubules were seen. Hematoxylin-Eosin staining. Magnification of x40.
Nitric oxide can be produced directly from nitrite and impair blood flow to muscles and a greater extent, to other tissues, including the kidneys [27]. One study showed that excess nitrate in drinking water causes disorders in developing various organs of the body, including the fetal liver during pregnancy [28]. The present study had limitations such as high mortality of pregnant rats and their offspring treated with sodium nitrite and their offspring.

5. Conclusion

The results of this study showed that sodium nitrite consumption during pregnancy and lactation causes bleeding and destruction of kidney tissues, cell death, and loss of renal nephrons and possibly increases the serum level of renal factors (creatinine, uric acid, and urea) in the offspring of rats.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Shiraz Branch, Islamic Azad University, Shiraz, (Code: IR.MIAU1395.1016). In this study, all the rights of laboratory animals for human use were observed according to the international protocols of care and use of laboratory animals and was approved by the University Ethics Committee under the number.
Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

Both authors contributed equally in all study procedures.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors of the article must appreciate and thank the esteemed colleagues of Vice Chancellors for Research of the Islamic Azad University, Shiraz Branch, who provided the necessary facilities for this research.
تیتر مقاله
بررسی اثرات پریناتال و نئوناتال نیتریت سدیم بر میزان سرمی اسید اوریک، اوره، کراتینین و ساختار بافتی اندام کلیه فرزندان موش های صحرایی

نویسنده
دکتر سید ابراهیم حسینی
گروه آموزشی زیست شناسی، دانشکده علوم، دانشگاه آزاد اسلامی، شیراز

شماره مبنا
1. شماره 27، دوره 1400، بهار، بروز، ماه می 1399
2. شماره 27، دوره 1400، بهار، بروز، ماه خرداد 1399
3. شماره 27، دوره 1400، بهار، بروز، ماه تیر 1399

مقدمه
فرآورده های نیمه آماده گوشتی که در شرایط یخچال نگهداری می شوند، عمر ماندگاری محدودی دارند. علت اصلی این محدودیت‌ها معمولاً در اثر بروز تغییرات شیمیایی یا افزایش تعداد و شدت نیتروژنیا و مواد سطحی مصرف شده در محیط ضایع می‌باشد. انتقال نیتروژنیا و مواد سطحی به محیط مصرف یا محیط سطحی، باعث آلودگی این محیط می‌شود. جلوگیری از تغییرات شیمیایی یا افزایش تعداد نیتروژنیا و مواد سطحی مصرف شده در محیط ضایع، با کمک افزودنی‌های ضد باکتریایی و ضد اکسیدانی ممکن است می‌باشد. از افزودنی‌های ضد اکسیدانی به‌عنوان اکسیداسیون چربی‌ها در فرآورده‌های گوشتی و کاهش کیفیت فرآورده‌های گوشتی استفاده می‌گردد.

کلیدواژه‌های مقاله
نیتریت سدیم، پریناتال، نئوناتال، اوره، کراتینین، اسید اوریک

واژه‌های پریناتال و نئوناتال نیتریت سدیم به‌عنوان میکرو‌کنترلرهای در این مطالعه استفاده شده است.

نتایج
نتایج نشان داد که تجویز پریناتال و نئوناتال دزهای یافته ها در فرزندان موش های صحرایی نسبت به گروه های کنترل P<0.001

نتیجه گیری
نتایج نشان داد که مصرف نیتریت سدیم در دوران بارداری و شیردهی با تغییر در ساختار بافتی کلیه فرزندان باعث افزایش میزان سرمی اوره، اسید اوریک و کراتینین در آنها می‌شود.

مقدمه
فرآورده‌های نیمه‌آماده گوشتی که در شرایط یخچال نگهداری می‌شوند، عمر ماندگاری محدودی دارند. علت اصلی این محدودیت‌ها معمولاً در اثر بروز تغییرات شیمیایی یا افزایش تعداد نیتروژنیا و مواد سطحی مصرف شده در محیط ضایع می‌باشد.

کلیدواژه‌های مقاله
نیتریت سدیم، پریناتال، نئوناتال، اوره، کراتینین

واژه‌های پریناتال و نئوناتال نیتریت سدیم به‌عنوان میکرو‌کنترلرهای در این مطالعه استفاده شده است.

نتایج
نتایج نشان داد که تجویز پریناتال و نئوناتال دزهای یافته ها در فرزندان موش های صحرایی نسبت به گروه های کنترل P<0.001

نتیجه گیری
نتایج نشان داد که مصرف نیتریت سدیم در دوران بارداری و شیردهی با تغییر در ساختار بافتی کلیه فرزندان باعث افزایش میزان سرمی اوره، اسید اوریک و کراتینین در آنها می‌شود.

مقدمه
فرآورده‌های نیمه‌آماده گوشتی که در شرایط یخچال نگهداری می‌شوند، عمر ماندگاری محدودی دارند. علت اصلی این محدودیت‌ها معمولاً در اثر بروز تغییرات شیمیایی یا افزایش تعداد نیتروژنیا و مواد سطحی مصرف شده در محیط ضایع می‌باشد.

کلیدواژه‌های مقاله
نیتریت سدیم، پریناتال، نئوناتال، اوره، کراتینین

واژه‌های پریناتال و نئوناتال نیتریت سدیم به‌عنوان میکرو‌کنترلرهای در این مطالعه استفاده شده است.

نتایج
نتایج نشان داد که تجویز پریناتال و نئوناتال دزهای یافته ها در فرزندان موش های صحرایی نسبت به گروه های کنترل P<0.001

نتیجه گیری
نتایج نشان داد که مصرف نیتریت سدیم در دوران بارداری و شیردهی با تغییر در ساختار بافتی کلیه فرزندان باعث افزایش میزان سرمی اوره، اسید اوریک و کراتینین در آنها می‌شود.

مقدمه
فرآورده‌های نیمه‌آماده گوشتی که در شرایط یخچال نگهداری می‌شوند، عمر ماندگاری محدودی دارند. علت اصلی این محدودیت‌ها معمولاً در اثر بروز تغییرات شیمیایی یا افزایش تعداد نیتروژنیا و مواد سطحی مصرف شده در محیط ضایع می‌باشد.

کلیدواژه‌های مقاله
نیتریت سدیم، پریناتال، نئوناتال، اوره، کراتینین

واژه‌های پریناتال و نئوناتال نیتریت سدیم به‌عنوان میکرو‌کنترلرهای در این مطالعه استفاده شده است.

نتایج
نتایج نشان داد که تجویز پریناتال و نئوناتال دزهای یافته ها در فرزندان موش های صحرایی نسبت به گروه های کنترل P<0.001

نتیجه گیری
نتایج نشان داد که مصرف نیتریت سدیم در دوران بارداری و شیردهی با تغییر در ساختار بافتی کلیه فرزندان باعث افزایش میزان سرمی اوره، اسید اوریک و کراتینین در آنها می‌شود.
مطالعه نیتریت سدیم در دوران بارداری و نوزادی به منظور تحقیق درباره اثرات این ترکیب بر جنین و نوزادان انجام شد. این مطالعه با هدف بررسی اثرات مصرف پریناتال و نئوناتال نیتریت سدیم بر میزان سرمی اسید اوریک، اوره و کراتینین در دوره شیردهی از هر گروه، هشت سر از فرزندان نر به صورت دوره شیردهی تحت تجویز داروی نیتریت سدیم قرار گرفتند. در تا پایان دوره حیوانات گروه‌های پریناتال از روز اول بارداری، حیوانات گروه‌های نئوناتال از روز اول تولد تا پایان...

مواد و روش‌ها

این مطالعه تجربی روی 66 گروه حیوانی انجام شد. هشت سر موش صحرایی نر بالغ از نژاد ویستار استفاده شد. پروتکل این تحقیق بر اساس قوانین مرکز جنین و نوزادان به بیماران نارس ایمنی‌شده مورد نظر است. در این مطالعه تمام تجویزها به صورت گاواژ انجام شد. جهت نیتریت سدیم در دوران بارداری (نیترات سدیم) و نئوناتال (حلال داروی) و گروه‌های تجربی پریناتال (تحت تیمار با دزهای کنترل (فاضل از تیمار)، کنترل پریناتال و نئوناتال (تحت تیمار با دزهای کنترل (فاضل از تیمار)) استفاده شد.

روش‌های بررسی

یکی از روشهای بررسی به هفت گروه هشت تایی شامل گروه‌های با توجه به راه اندازی فرآیند مرگ سلولی و آسیب های بیماری، تجزیه و تحلیل دیده شد. سایر روشهای بررسی شامل مطالعه طولانی‌مدت زمان‌های تولید ترکیبات سطح‌زایی نیترودیازوکسی، همکاری بالینی و احیا قرار گیری داروهای مزمن شده و اندازه‌گیری میزان سرمی اسید اوریک و اوره و کراتینین بود.

نتایج

به طور کلی، نیتریت سدیم در دوران بارداری و نوزادی به آسیب به عروق خونی، کبد، طحال و دیگر اندام‌های بدن برمی‌خورد. اندازه‌گیری میزان سرمی اسید اوریک، اوره و کراتینین...

انتقال قرار»

به طور کلی، نیتریت سدیم در دوران بارداری و نوزادی به آسیب به عروق خونی، کبد، طحال و دیگر اندام‌های بدن برمی‌خورد. اندازه‌گیری میزان سرمی اسید اوریک، اوره و کراتینین...

آزمون‌های آماری

برای آزمون‌های آماری استفاده شد. در این مطالعه هر گروه با دستگاه آنالیز اطلاعات SPSS به صورت آماری تحلیل شد. نتایج آزمون‌ها نشان داد که زیادی از تفاوت‌ها در میزان سرمی اسید اوریک، اوره و کراتینین بین گروه‌های تجربی و کنترل معنی‌دار بوده است.

بحث

نتایج این مطالعه نشان داد که نیتریت سدیم در دوران بارداری و نوزادی به آسیب به عروق خونی، کبد، طحال و دیگر اندام‌های بدن برمی‌خورد. همچنین زیادی از تفاوت‌ها در میزان سرمی اسید اوریک، اوره و کراتینین بین گروه‌های تجربی و کنترل معنی‌دار بوده است. این نتایج با توجه به آنکه بیشتر مطالعاتی که روی مواد تجربی انجام شده‌اند، از جمله نیتریت سدیم صورت گرفته است به مقایسه آن‌ها بر
نتایج این بررسی نشان داد که مصرف نیتریت سدیم در دوران بارداری (پریناتال)، در زاده‌های 180 و 90 mg/kg اول باعث افزایش معنادار میزان سرمی اوره، کراتینین و اوریک اسید می‌شود. نتایج نشان داد که مصرف نیتریت سدیم در دوران شیردهی (پریناتال)، در فرزندان 180 و 90 mg/kg باعث افزایش معنادار میزان سرمی اوره و کراتینین، اوریک اسید می‌شود.

همچنین نتایج حاصل از مطالعات بافت‌شناسی در این بررسی نشان داد که مصرف نیتریت سدیم در دوران بارداری و شیردهی باعث آسیب‌های متفاوتی در ساختار بافت‌های کلیوی فرزندان از قبیل احتقان و خونریزی‌های متعدد، اسید کلر و کبدی کم و ناشی از اطلاعات و افزایش فضای گردان، آتروفی گلomerولار و التهاب در اطراف توبول‌ها و نیز آسیب‌های پتی‌شنی در سطح 2 و 3 شماره 5 و 4، 3، 2، 1 نشان داده شد.

جهت بررسی اثر نیتریت سدیم با دزهای مختلف بر مقادیر سرمی اوره و کراتینین، ANOVA سطح معناداری F=18.67، Tol. 0.001، در این دو متغیر، این الگو گزارش شد که با افزایش قیمت، کاهش میزان سرمی اوره و کراتینین رخ می‌دهد.

جدول 1

گروه	میزان نیتریت سدیم (mg/kg)	نیتریت سدیم (mg/dl)	کراتینین (mg/dl)	اوره (mg/dl)
سالم کنترل	0/0/1	39/38	0/0/3	0/0/4
کنترل پریناتال	40/50/60	28/26	0/0/2	0/0/3
پریناتال + نیتریت 90	40/50/60	50/49	0/0/3	0/0/4
پریناتال + نیتریت 180	40/50/60	50/49	0/0/3	0/0/4

جدول 2

فاکتورها	F	سطح معناداری
کنترل سالم	0/0/1	0/0/2
کنترل پریناتال	0/0/2	0/0/3
پریناتال + نیتریت 90	0/0/3	0/0/4
پریناتال + نیتریت 180	0/0/4	0/0/5
از آنجا که نیتریت سدیم در بدن باعث ایجاد استرس اکسیداتیو و تولید پروکسی نیتریت (ONOO−) می‌شود و از طریق آزادانه از دو لایه فسفولیپیدی غشا عبور می‌کند و با مولکول‌های هدف واکنش می‌دهد و از DNA زیادی از قبیل لیپیدها، پروتئین‌ها و این طریق، درنهایت منجر به مرگ سلولی از طریق فرآیندهای نکروزیس و آپوپتوزیس می‌شود. بنابراین در مطالعه حاضر نیز احتمالاً ترکیبات نیتریتی از طریق جفت و شیر به ترتیب به جنین و نوزادان موش‌های صحرایی منتقل و از طریق فرآیندهای فوق باعث ایجاد استرس اکسیداتیو و آسیب به ساختار بافتی کلیه می‌شود که از طریق فرآیندهای جفت و شیر منتقل می‌شوند و به وسیله چراغ‌های نیتروژن اوره خون و سرمی کراتینین و اسید اوریک می‌شود. همچنین نشان داده شده که اندام کلیه به عنوان مکان اصلی فیلتراسیون و یکی از مکان‌های سم‌زدایی در بدن، به طور مستقیم تحت تأثیر نیتریتی مختلط قرار می‌گیرد و منفی‌ترین عامل حاصل از سموم، موجب اسید شدن سرمی کلیوئی و بر طبق مطالعات انجام شده است که بنابراین باعث افزایش غلظت سرمی نیتروژن اوره خون می‌شود. همچنین نشان داده شده که هرگاه کارکرد کلیه‌های کلیوئی کاهش یابد، میزان کراتینین به علاوه در مطالعات محققان که عنوان آنالیز واریانس یک راهه جهت بررسی اثرات گروه‌بندی گروه‌های نئوناتال می‌باشد و سطح معناداری Fبین گروه‌ها در مجموع مربعات (MS) 0.003 با داروهای مختلف قرار می‌گرفتند و متابولیت‌های سمی از سموم، موجب آسیب به سلول‌های کلیوئی می‌شود و بر طبق نتایج حاصل از این بررسی نیز نشان داده شد که رژیم غذایی محتوای نیتریت باید به ترتیب به جنین و نوزادان موش‌های صحرایی منتقل و از طریق فرآیندهای فوق باعث ایجاد استرس اکسیداتیو و آسیب به ساختار بافتی کلیه می‌شود که از طریق فرآیندهای جفت و شیر منتقل می‌شوند و به وسیله چراغ‌های نیتروژن اوره خون و سرمی کراتینین و اسید اوریک می‌شود. همچنین نشان داده شده که اندام کلیه به عنوان مکان اصلی فیلتراسیون و یکی از مکان‌های سم‌زدایی در بدن، به طور مستقیم تحت تأثیر نیتریتی مختلط قرار می‌گیرد و منفی‌ترین عامل حاصل از سموم، موجب اسید شدن سرمی کلیوئی و بر طبق مطالعات انجام شده است که بنابراین باعث افزایش غلظت سرمی نیتروژن اوره خون می‌شود. همچنین نشان داده شده که هرگاه کارکرد کلیه‌های کلیوئی کاهش یابد، میزان کراتینین به علاوه در مطالعات محققان که عنوان آنالیز واریانس یک راهه جهت بررسی اثرات گروه‌بندی گروه‌های نئوناتال می‌باشد و سطح معناداری Fبین گروه‌ها در مجموع مربعات (MS) 0.003 با داروهای مختلف قرار می‌گرفتند و متابولیت‌های سمی از سموم، موجب آسیب به سلول‌های کلیوئی می‌شود و بر طبق نتایج حاصل از این بررسی نیز نشان داده شد که رژیم غذایی محتوای نیتریت باید به ترتیب به جنین و نوزادان موش‌های صحرایی منتقل و از طریق فرآیندهای فوق باعث ایجاد استرس اکسیداتیو و آسیب به ساختار بافتی کلیه می‌شود که از طریق فرآیندهای جفت و شیر منتقل می‌شوند و به وسیله چراغ‌های نیتروژن اوره خون و سرمی کراتینین و اسید اوریک می‌شود. همچنین نشان داده شده که اندام کلیه به عنوان مکان اصلی فیلتراسیون و یکی از مکان‌های سم‌زدایی در بدن، به طور مستقیم تحت تأثیر نیتریتی مختلط قرار می‌گیرد و منفی‌ترین عامل حاصل از سموم، موجب اسید شدن سرمی کلیوئی و بر طبق
تصویر 1: نتایج آسیب بافتی متوسطی در این دو تصویر را نشان می‌دهد. به گونه‌ای که نشان‌هایی از خونریزی منتشر دیده می‌شود (پیکان قرمز رنگ و جذب گلوبول‌های قرمز رنگ در تصاویر). در تصاویر مشخص شده، انسداد و افزایش فضای اطراف کپسول بومن و حجم در تصاویر فوق دیده می‌شود. رنگآمیزی همافتی‌کومیکرگرافی این تصاویر X40.

تصویر 2: فتوسیکروگرافی تهیه شده از گروه کنترل در تصاویر فوق دیده نمی‌شود. رنگ آمیزی هماتوکسیلین-آئوزین.

تصویر 3: فتوسیکروگرافی تهیه شده از گروه تجربی پریناتال نیتریت سدیم در تصاویر فوق دیده می‌شود. انسداد و افزایش فضای اطراف کپسول بومن و حجم در تصاویر فوق دیده می‌شود. رنگ آمیزی هماتوکسیلین-آئوزین.

راسته سنجشی و سبب ایجاد خسایی، پروسی اثرات پریناتال و نئوناتال گردآوری و ارزیابی شده و با توجه به اثرات تیپولوژی شده شد. رنگ آمیزی هماتوکسیلین-آئوزین.
نتیجه‌گیری

نتایج این مطالعه نشان داد که مصرف نیتریت سدیم باعث خونریزی و افزایش میزان سرمی اسید اوریک، اوره و کراتینین در سلول‌های ریوپروتکسیونی این گروه می‌شود.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش در این پژوهش کلیه حقوق حیوانات آزمایشگاهی بر اساس اصول اخلاق پژوهش در بررسی‌های علمی انسانی و حیوانی تجربی مورد بهره‌برداری قرار گرفته است.
شرکت واکنش
صفحه دو از هفدهم بهار ۱۳۹۳

تصمیم رسیده است.

حامی مالی

این تحقیق هیچ گونه کمک مالی از سازمان‌های تأمین مالی در بخش‌های عمومی، تجاری و غیرانتفاعی دریافت نکرده است.

مشارکت نویسندگان

هر دو نویسنده مقاله حاضر در همه موارد با هم مشارکت کرده‌اند.

تعارض منافع

بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

تشکر و قدردانی

نویسندگان مقاله بر خود واجب می‌دانند تا از همکاران محترم حوزه مطالعات پزشکی طب اسلامی و اولین حزب که امکانات لازم حagt انجام این تحقیق را فراهم کرده، تقدیر و تشکر به عمل آورند.

راضیه سنجری و سید ابراهیم حسینی. بررسی اثرات پری ناتال و نئوناتال نیتریت سدیم بر میزان سرمی اسید اوریک، اوره و کراتینین.
This Page Intentionally Left Blank