MIXABLE SHUFFLES, QUASI-SHUFFLES AND HOPF ALGEBRAS

KURUSCH EBRAHIMI-FARD AND LI GUO

Abstract. The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota-Baxter algebras.

1. Introduction

This paper studies the relationship between the mixable shuffle product and the quasi-shuffle product, both generalizations of the shuffle product.

Mixable shuffles arise from the study of Rota-Baxter algebras. Let k be a commutative ring and let $\lambda \in k$ be fixed. A Rota-Baxter k-algebra of weight λ (previously called a Baxter algebra) is a pair (R, P) in which R is a k-algebra and $P : R \rightarrow R$ is a k-linear map, such that

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy), \quad \forall x, y \in R.$$ (1)

Rota-Baxter algebra was introduced by the mathematician Glen Baxter [3] in 1960 to study the theory of fluctuations in probability. Rota greatly contributed to the study of the Rota-Baxter algebra by his pioneer work in the late 1960s and early 1970s [36, 37, 38] and by his survey articles in late 1990s [39, 40]. Unaware of these works, in the early 1980s the school around Faddeev, especially Semenov-Tian-Shansky [41], developed a whole theory for the Lie algebraic version of equation (1), which is nowadays well-known in the realm of the theory of integrable systems under the name of (modified) classical Yang-Baxter equation. In recent years, Rota-Baxter algebras have found applications in quantum field theory [8, 9, 15, 16, 17], dendriform algebras [1, 10, 13, 31], number theory [22], Hopf algebras [2] and combinatorics [21].

Key to much of these applications is the realization of the free objects in which the product is defined by mixable shuffles [23, 24] as a generalization of the shuffle product. The shuffle product is a natural generalization of the integration by parts formula and its construction can be traced back to Chen’s path integrals [7] in 1950s. It has been defined and studied in many areas of mathematics, such as Lie and Hopf algebras, algebraic K-theory, algebraic topology and combinatorics. Its applications can also be found in chemistry and biology. It naturally carries the notion of a Rota-Baxter operator of weight zero.
Another paper on a generalization of the shuffle product was published in the same year as the papers on mixable shuffle products. It was on the quasi-shuffle product by Hoffman. Hoffman’s quasi-shuffle product plays a prominent role in the recent studies of harmonic functions, quasi-symmetric functions, multiple zeta values (where in special cases it is also called stuffle product or harmonic product) and q-multiple zeta values.

Despite the extensive works on the two generalizations of shuffle products, it appears that they were carried out without being aware of each other. In particular, the relation of quasi-shuffles with Rota-Baxter algebras seems unnoticed. For example, in the numerous applications of quasi-shuffles in multiple zeta values in the current literature, no connections with Rota-Baxter algebras and mixable shuffles have been mentioned. In fact, concepts and results on Rota-Baxter algebras were rediscovered in the study of multiple zeta values. For instance, the construction of the stuffle product in follows easily from the construction of free Rota-Baxter algebras in, while the generalized shuffle product in is the same as the mixable shuffle product in and .

The situation is similar in the theory of dendriform algebras. Even though both quasi-shuffles and Rota-Baxter algebras have been used to give examples of dendriform algebras, no connection of the two have been made. Also, in the work of Kreimer, and Connes and Kreimer on renormalization theory in perturbative quantum field theory, both the shuffle and its generalization in terms of the quasi-shuffle, and Rota-Baxter algebras appeared, under different contexts.

It was noted in that the two constructions should be related. Our first goal of this paper is to make this connection precise. We show that the recursive formula for the quasi-shuffle product has its explicit form in the mixable shuffle product. Both can be derived from the Baxter relation that defines a Rota-Baxter algebra of weight 1. We further show that the quasi-shuffle algebra on a locally finite set is a subalgebra of a mixable shuffle algebra on the corresponding locally finite algebra. With this connection, the concept of quasi-shuffle algebras can be defined for a larger class of algebras.

This connection allows us to use the Hopf algebra structure on quasi-shuffle algebras to obtain Hopf algebra structures on free Rota-Baxter algebras, generalizing a previous work on this topic. In the other direction, considering the critical rôle played by the quasi-shuffle (stuffle) product in the recent studies of multiple zeta values and quasi-symmetric functions, this connection should allow us to use the theory of Rota-Baxter algebras in the studies of these exciting areas.

The paper is organized as follows. In the next section, we recall the concepts of shuffles, quasi-shuffles and mixable shuffles, and describe their relations (Theorem). In Section 4, we use these connections to obtain Hopf algebra structures on free Rota-Baxter algebras (Theorem).
2.1. **Shuffle product.** The shuffle product can be defined in two ways, one recursively, one explicitly. We will see that Hoffman’s quasi-shuffle product is a generalization of the recursive definition and the mixable shuffle product is a generalization of the explicit definition.

Let k be a commutative ring with identity 1_k. Let V be a k-module. Consider the k-module

$$T(V) = \bigoplus_{n \geq 0} V^\otimes n.$$

Here the tensor products are taken over k and we take $V^\otimes 0 = k$.

Usually the shuffle product on $T(V)$ starts with the shuffles of permutations $\{35, 42\}$. For $m, n \in \mathbb{N}_+$, define the set of (m, n)-*shuffles* by

$$S(m, n) = \left\{ \sigma \in S_{m+n} \left| \begin{array}{c} \sigma^{-1}(1) < \sigma^{-1}(2) < \ldots < \sigma^{-1}(m), \\
\sigma^{-1}(m+1) < \sigma^{-1}(m+2) < \ldots < \sigma^{-1}(m+n) \end{array} \right. \right\}.$$

Here S_{m+n} is the symmetric group on $m + n$ letters.

For $a = a_1 \otimes \ldots \otimes a_m \in V^{\otimes m}$, $b = b_1 \otimes \ldots \otimes b_n \in V^{\otimes n}$ and $\sigma \in S(m, n)$, the element

$$\sigma(a \otimes b) = u_{\sigma(1)} \otimes u_{\sigma(2)} \otimes \ldots \otimes u_{\sigma(m+n)} \in V^{\otimes (m+n)},$$

where

$$u_k = \begin{cases} a_k, & 1 \leq k \leq m, \\
b_{k-m}, & m + 1 \leq k \leq m + n, \end{cases}$$

is called a *shuffle* of a and b. The sum

$$a \, \text{III} \, b := \sum_{\sigma \in S(m, n)} \sigma(a \otimes b)$$

is called the *shuffle product* of a and b. Also, by convention, $a \, \text{III} \, b$ is the scalar product if either $m = 0$ or $n = 0$. The operation III extends to a commutative and associative binary operation on $T(V)$, making $T(V)$ into a commutative algebra with identity, called the shuffle product algebra generated by V.

The shuffle product on $T(V)$ can also be recursively defined as follows. As above we choose two elements $a_1 \otimes \ldots \otimes a_m \in V^{\otimes m}$ and $b_1 \otimes \ldots \otimes b_n \in V^{\otimes n}$, and define

$$a_0 \text{III} (b_1 \otimes b_2 \otimes \ldots \otimes b_n) = a_0 b_1 \otimes b_2 \otimes \ldots \otimes b_n,$$

$$(a_1 \otimes a_2 \otimes \ldots \otimes a_m) \text{III} b_0 = b_0 a_1 \otimes a_2 \otimes \ldots \otimes a_m, \quad a_0, b_0 \in V^{\otimes 0} = k,$$

and

$$(a_1 \otimes \ldots \otimes a_m) \text{III} (b_1 \otimes \ldots \otimes b_n)$$

$$= a_1 \otimes ([a_2 \otimes \ldots \otimes a_m] \text{III} (b_1 \otimes \ldots \otimes b_n))$$

$$+ b_1 \otimes ((a_1 \otimes \ldots \otimes a_m) \text{III} (b_2 \otimes \ldots \otimes b_n)), \quad a_i, b_j \in V.$$

Lemma 2.1. For every element $v \in V$, the k-linear map $P_v : (T(V), \text{III}) \rightarrow (T(V), \text{III})$, $P_v(a) := v \otimes a$ is a Rota-Baxter operator of weight zero.

Proof. This is evident from the recursive definition of the shuffle product. \qed
2.2. Quasi-shuffle product. We recall the construction of quasi-shuffle algebras [26]. Let X be a locally finite set, that is, X is the disjoint union of finite sets X_n, $n \geq 1$. The elements of X_n are defined to have degree n. Elements in X are called letters and monomials in the letters are called words. Even though the original paper [26] only considered k to be a subfield of \mathbb{C}, much of the construction goes through for any commutative ring k. So we will work in this generality whenever possible. Consider the k-module underlying the noncommutative polynomial algebra $A = k\langle X \rangle$, that is, the free k-algebra generated by X. The identity 1 of A is called the empty word. Define $\bar{X} = X \cup \{0\}$. Suppose that there is a pairing

$\langle \cdot, \cdot \rangle : \bar{X} \times \bar{X} \to \bar{X}$

with the properties

S0. $\langle a, 0 \rangle = 0$ for all $a \in \bar{X}$;
S1. $\langle a, b \rangle = \langle b, a \rangle$ for all $a, b \in \bar{X}$;
S2. $\langle \langle a, b \rangle, c \rangle = \langle a, \langle b, c \rangle \rangle$ for all $a, b, c \in \bar{X}$;
S3. either $\langle a, b \rangle = 0$ for all $a, b \in \bar{X}$, or $\deg(\langle a, b \rangle) = \deg(a) + \deg(b)$ for all $a, b \in \bar{X}$.

We define a Hoffman set to be a locally finite set X with a pairing (4) that satisfies conditions S0-S3.

Definition 2.2. Let k be a commutative ring and let X be a Hoffman set. The quasi-shuffle product \ast on A is defined recursively by

\ast w = $w \ast 1 = w$ for any word w;
$\ast (aw_1)(bw_2) = a(w_1 \ast (bw_2)) + b((aw_1) \ast w_2) + \langle a, b \rangle(w_1 \ast w_2)$, for any words w_1, w_2 and letters a, b.

When $\langle \cdot, \cdot \rangle$ is identically zero, \ast is the usual shuffle product III defined in Eq. (3).

Theorem 2.3 ((Hoffman) [26]).

1. (A, \ast) is a commutative graded k-algebra.
2. When $\langle \cdot, \cdot \rangle \equiv 0$, (A, \ast) is the shuffle product algebra $(T(V), \text{III})$, where V is the vector space generated by X.
3. Suppose further k is subfield of \mathbb{C}. Together with the concatenation co-multiplication

$\Delta : A \to A \otimes A, w \mapsto \sum_{uv = w} u \otimes v$

where uv is the concatenation of words, and counit

$\epsilon : A \to k, w \mapsto \delta_{w, 1},$

(A, \ast) becomes a graded, connected bialgebra, in fact a Hopf algebra.

2.3. Mixable shuffle product. We next turn to the construction of mixable shuffle algebras and their properties [23]. The adjective mixable suggests that certain elements in the shuffles can be mixed or merged. We first give an explicit formula of the product before giving a recursive definition which, under proper restrictions, will be seen to be equivalent to Hoffman’s quasi-shuffle product.

Intuitively, to form the shuffle product, one starts with two decks of cards and puts together all possible shuffles of the two decks. Suppose a shuffle of the two decks is taken and suppose a card from the first deck is followed immediately by a card from the second deck, we allow the option to merge the two cards and call
the result a mixable shuffle. To get the mixable shuffle product of the two decks of cards, one puts together all possible mixable shuffles.

Given an \((m,n)\)-shuffle \(\sigma \in S(m,n)\), a pair of indices \((k,k+1)\), \(1 \leq k < m + n\), is called an admissible pair for \(\sigma\) if \(\sigma(k) \leq m < \sigma(k+1)\). Denote \(T^\sigma\) for the set of admissible pairs for \(\sigma\). For a subset \(T\) of \(T^\sigma\), call the pair \((\sigma,T)\) a mixable \((m,n)\)-shuffle. Let \(|T|\) be the cardinality of \(T\). By convention, \((\sigma,T) = \sigma\) if \(T = \emptyset\). Denote

\[
S(m,n) = \{ (\sigma,T) \mid \sigma \in S(m,n), T \subset T^\sigma \}
\]

for the set of mixable \((m,n)\)-shuffles.

Let \(A\) be a commutative \(k\)-algebra not necessarily having an identity. For \(a = a_1 \otimes \ldots \otimes a_m \in A^{\otimes m}\), \(b = b_1 \otimes \ldots \otimes b_n \in A^{\otimes n}\) and \((\sigma,T) \in S(m,n)\), the element

\[
\sigma(a \otimes b; T) = u_{\sigma(1)} \hat{\otimes} u_{\sigma(2)} \hat{\otimes} \ldots \hat{\otimes} u_{\sigma(m+n)} \in A^{\otimes (m+n-|T|)},
\]

where for each pair \((k,k+1), 1 \leq k < m + n\),

\[
u_{\sigma(k)} \hat{\otimes} u_{\sigma(k+1)} = \begin{cases} u_{\sigma(k)} u_{\sigma(k+1)}, & (k,k+1) \in T \\ u_{\sigma(k)} \otimes u_{\sigma(k+1)}, & (k,k+1) \notin T, \end{cases}
\]

is called a mixable shuffle of the words \(a\) and \(b\).

Now fix \(\lambda \in k\). Define, for \(a\) and \(b\) as above, the mixable shuffle product

\[
a \circ^+ b := a \circ^+_\lambda b = \sum_{(\sigma,T) \in S(m,n)} \lambda^{|T|} \sigma(a \otimes b; T) \in \bigoplus_{k \leq m+n} A^{\otimes k}.
\]

As in the case of the shuffle product, the operation \(\circ^+\) extends to a commutative and associative binary operation on

\[
\bigoplus_{k\geq 1} A^{\otimes k} = A \oplus A^{\otimes 2} \oplus \ldots.
\]

Making it a commutative algebra without identity. Note that this is so even when \(A\) has an identity \(1_A\). In any case, we extend the product to

\[
\text{III}^+(A) := \text{III}^+_{k,\lambda}(A) := \bigoplus_{k \in \mathbb{N}} A^{\otimes k} = k \oplus A \oplus A^{\otimes 2} \oplus \ldots,
\]

making \(\text{III}^+(A)\) a commutative algebra with identity \(1 \in k\) [28].

Suppose \(A\) has an identity \(1_A\). Define

\[
\text{III}(A) := \text{III}_{k,\lambda}(A) := A \otimes \text{III}^+_{k,\lambda}(A)
\]

to be the tensor product algebra, i.e., the augmented mixable shuffle product \(\circ\) on \(\text{III}(A)\) is defined by:

\[
(a_0 \otimes a) \circ (b_0 \otimes b) := (a_0 b_0) \otimes (a \circ^+ b), \quad a_0, b_0 \in A, \quad a, b \in \text{III}^+(A).
\]

Thus we have the algebra isomorphism (embedding of the second tensor factor)

\[
\alpha : (\text{III}^+(A), \circ^+) \to (1_A \otimes \text{III}^+(A), \circ).
\]

Define the \(k\)-linear endomorphism \(P_A\) on \(\text{III}_k(A)\) by assigning

\[
P_A(a_0 \otimes a) = 1_A \otimes a_0 \otimes a, \quad a \in A^{\otimes n}, \quad n \geq 1,
\]

\[
P_A(a_0 \otimes c) = 1_A \otimes c a_0, \quad c \in A^{\otimes 0} = k
\]

and extending by additivity. Let \(j_A : A \to \text{III}_k(A)\) be the canonical inclusion map. Call \((\text{III}_k(A), P_A)\) the (mixable) shuffle Rota-Baxter \(k\)-algebra on \(A\) of weight \(\lambda\). The following theorem was proved in [29].
Theorem 2.4. The shuffle Rota-Baxter algebra \(\mathfrak{III}_k(A) \), together with the natural embedding \(j_A \), is a free Rota-Baxter \(k \)-algebra on \(A \) of weight \(\lambda \). More precisely, for any Rota-Baxter \(k \)-algebra \((R, P) \) of weight \(\lambda \) and algebra homomorphism \(f : A \to R \), there is a Rota-Baxter \(k \)-algebra homomorphism \(\bar{f} : (\mathfrak{III}_k(A), P_A) \to (R, P) \) such that \(f = \bar{f} \circ j_A \).

We will suppress \(k \) and \(\lambda \) from \(\mathfrak{III}_k(\lambda)(A) \) when there is no danger of confusion.

2.4. The connection. We now establish the connection between quasi-shuffle product and mixable shuffle product.

Let \(A \) be a commutative ring with identity. Let \(X = \cup_{n \geq 1} X_n \) be a Hoffman set. Then the pairing \([\cdot, \cdot]\) in \(\mathfrak{H} \) extends by \(k \)-linearity to a binary operation on the free \(k \)-module \(A = k\{X\} \) on \(X \), making \(A \) into a commutative \(k \)-algebra without identity, with grading \(A_n = k\{X_n\} \), the free \(k \)-module generated by \(X_n \).

Let \(\hat{A} = k \oplus A \) be the unitary \(k \)-algebra spanned by \(A \). Then \(\hat{A} = k\{\hat{X}\} \) where \(\hat{X} = \{1\} \cup X \) with \(1_{\hat{A}} := (1_k, 0) \) the identity of \(\hat{A} \). Here and in the rest of the paper, we will use \(1_A \) (instead of \(1_{\hat{A}} \)) to denote this identity of \(\hat{A} \). We will call \(A \) (resp. \(\hat{A} \)) the algebra (resp. unitary algebra) generated by \(X \).

With the notations in Eq. (7) and (8), we have embeddings

\[
\begin{align*}
\beta : \mathfrak{III}^+(A) &\to \mathfrak{III}^+(\hat{A}) \to \mathfrak{III}(\hat{A}), \\
\alpha &\mapsto \alpha \mapsto 1_A \otimes \alpha.
\end{align*}
\]

of \(k \)-algebras. Here the first embedding is induced by the embedding \(A \to \hat{A} \) and the second embedding is the natural one, \(\mathfrak{III}^+(\hat{A}) \to \mathfrak{III}(\hat{A}) := \hat{A} \otimes \mathfrak{III}^+(\hat{A}) \).

Theorem 2.5. For a Hoffman set \(X \), the quasi-shuffle algebra \(\mathfrak{A} = k\{X\} \) is isomorphic to the algebra \(\mathfrak{III}^+(A) \) and thus to the subalgebra \(1_A \otimes \mathfrak{III}^+(A) \) of \(\mathfrak{III}(\hat{A}) \) where the weight \(\lambda \) is 1.

Proof. We define

\[
f : X \to X \subseteq A = A^{\otimes 1} \subseteq \mathfrak{III}^+(A)
\]

to be the canonical embedding. We note that both \(\mathfrak{A} \), with the concatenation product, and \(\mathfrak{III}^+(A) \), with the tensor concatenation, are the free unitary non-commutative \(k \)-algebra on \(X \). Thus \(\bar{f} \) extends uniquely to a bijective map \(\bar{f} : \mathfrak{A} \to \mathfrak{III}^+(A) \) such that for any letters \(a_1, \ldots, a_n \in X \), we have

\[
\bar{f}(a_1 \cdots a_n) = a_1 \otimes \cdots \otimes a_n \in A^{\otimes n}.
\]

To distinguish elements, we will use \(a = a_1 \cdots a_n \) for an element in \(\mathfrak{A} \) and use \(a^{\otimes} := a_1 \otimes \cdots \otimes a_n \) for an element in \(\mathfrak{III}^+(A) \) in the rest of the proof.

To prove that \(\bar{f} \) is also an isomorphism between \(\mathfrak{A} \), with the quasi-shuffle product \(* \), and \(\mathfrak{III}^+(A) \), with the mixable shuffle product \(o^{\dagger} \), we just need to show that both products satisfy the same recursive relations. We first note that the recursive relation of \(* \) in Definition 2.2 can be rewritten as follows. For any \(m, n \geq 1 \) and \(a := a_1 \cdots a_m, b := b_1 \cdots b_n \) with \(a_i, b_j \in X, 1 \leq i \leq m, 1 \leq j \leq n \), then
Similarly, by \cite[p. 137]{23}, for any \(\lambda \in \mathbb{k} \),

\[
\sum_{(\sigma, T) \in \bar{S}_{1,0}(m, n)} \lambda^{\sigma[T]} \sigma(a^\otimes b^\otimes) = \begin{cases}
0, & \text{if } m, n = 1; \\
\sum_{(\sigma, T) \in \bar{S}_{m-1,n}} \lambda^{\sigma[T]} \sigma((a_2 \otimes \ldots \otimes a_m) \otimes b^\otimes; T), & \text{otherwise},
\end{cases}
\]

Further, by \cite[p. 137]{23}, for any \(\lambda \in \mathbb{k} \),

\[
\sum_{(\sigma, T) \in \bar{S}_{0,1}(m, n)} \lambda^{\sigma[T]} \sigma(a^\otimes b^\otimes) = \begin{cases}
0, & \text{if } m, n = 1; \\
\sum_{(\sigma, T) \in \bar{S}_{m,n-1}} \lambda^{\sigma[T]} \sigma(a^\otimes (b_2 \otimes \ldots \otimes b_n); T), & \text{otherwise},
\end{cases}
\]

and

\[
\sum_{(\sigma, T) \in \bar{S}_{1,1}(m, n)} \lambda^{\sigma[T]} \sigma(a^\otimes b^\otimes; T) = \begin{cases}
\sum_{(\sigma, T) \in \bar{S}_{m-1,n-1}} \lambda[\sigma, T] \sigma((a_2 \otimes \ldots \otimes a_m) \otimes (b_2 \otimes \ldots \otimes b_n); T), & \text{otherwise},
\end{cases}
\]
Since
\[a^\otimes \circ^+ b^\otimes := \sum_{(\sigma, T) \in \hat{S}(m, n)} \lambda^{T|\sigma}(a^\otimes \otimes b^\otimes) \]
we get
\[
\begin{align*}
(1) \quad a^\otimes \circ^+ b^\otimes &= a_1 \otimes b_1 + b_1 \otimes a_1 + \lambda[a_1, b_1], \quad \text{when } m, n = 1, \\
(2) \quad a^\otimes \circ^+ b^\otimes &= a_1 \otimes b_1 \otimes \cdots \otimes b_n + b_1 \otimes (a_2 \otimes \cdots \otimes b_n) + \lambda[a_1, b_1] \otimes b_1 \otimes \cdots \otimes b_n, \quad \text{when } m = 1, n \geq 2, \\
(3) \quad a^\otimes \circ^+ b^\otimes &= a_1 \otimes ((a_2 \otimes \cdots \otimes a_m) \circ^+ b_1) + a_1 \otimes \cdots \otimes a_m \otimes b_1 + \lambda[a_1, b_1] \otimes a_2 \otimes \cdots \otimes a_m, \quad \text{when } m \geq 2, n = 1, \\
(4) \quad a^\otimes \circ^+ b^\otimes &= a_1 \otimes ((a_2 \otimes \cdots \otimes a_m) \circ^+ (b_2 \otimes \cdots \otimes b_n)) + b_1 \otimes ((a_1 \otimes \cdots \otimes a_m) \circ^+ (b_2 \otimes \cdots \otimes b_n)) + \lambda[a_1, b_1] \otimes ((a_2 \otimes \cdots \otimes a_m) \circ^+ (b_2 \otimes \cdots \otimes b_n)), \quad \text{when } m, n \geq 2.
\end{align*}
\]

Thus when \(\lambda = 1 \), we have \(\bar{f}(a \ast b) = a^\otimes \circ^+ b^\otimes \) for all words \(a \) and \(b \) with \(m, n \geq 1 \), and hence for all \(a \) and \(b \) with \(m, n \geq 0 \) since when \(m = 0 \) or \(n = 0 \), we have \(a = 1 \) or \(b = 1 \) and the multiplications through \(\ast \) and \(\circ^+ \) are both given by the identity. This proves the first isomorphism. The second one then follows from Eq. (13).

Corollary 2.6. Under the same assumptions of Theorem 2.5 and the additional assumption that \(\mathbb{k} \) is a subfield of \(\mathbb{C} \), for any \(\lambda \in \mathbb{k} \), the subalgebra \(\Pi^+(A) \) of \(\Pi^+(\hat{A}) \) and the subalgebra \(\mathbf{1}_A \otimes \Pi^+(A) \) of \(\Pi(\hat{A}) \) are Hopf algebras.

In the next section, we will address the question on whether this Hopf algebra can be extended to a larger Hopf algebra in \(\Pi(\hat{A}) \).

Proof. Because of the isomorphism (13), we only need to prove the first part of the statement. When \(\lambda = 1 \), this follows from Theorem 2.5 and Theorem 2.6. When \(\lambda = 0 \), this is well-known (see [20], for example).

Now assume \(\lambda \neq 1, 0 \). We define a map
\[g : \Pi^+_1(A) \to \Pi^+_1(A) \]
by \(g(a_1 \otimes \cdots \otimes a_n) = \lambda^n a_1 \otimes \cdots \otimes a_n, n \geq 1 \) and \(g(1_k) = 1_k \). Then by the first equation in (13), we have
\[g(a_1 \circ^+_1 b_1) = g(a_1 \otimes b_1 + b_1 \otimes a_1 + \lambda[a_1, b_1]) = \lambda^2(a_1 \otimes b_1 + b_1 \otimes a_1 + [a_1, b_1]) = \lambda^2(a_1 \circ^+_1 b_1) \]
which is just \(g(a_1) \circ^+_1 g(b_1) \). Using the other three equations in (13) and the induction on \(m + n \), we verify that
\[g((a_1 \otimes \cdots \otimes a_m) \circ^+_1 (b_1 \otimes \cdots \otimes b_n)) = g(a_1 \otimes \cdots \otimes a_m) \circ^+_1 g(b_1 \otimes \cdots \otimes b_n) \]
for all \(m, n \geq 1 \). Thus we have \(\Pi^+_1(A) \) is isomorphic to \(\Pi^+_1(A) \) and thus carries a Hopf algebra structure. \(\square \)
3. Hopf algebras in Rota-Baxter algebras

We first recall the following theorem from [2].

Theorem 3.1 (Andrews-Guo-Keigher-Ono). For any commutative ring \(k \) with identity and for any \(\lambda \in k \), the free Rota-Baxter algebra \(\Pi_\lambda(k) \) is a Hopf \(k \)-algebra.

As shown in [2], when \(\lambda = 0 \), we have the divided power Hopf algebra.

We now extend this result to \(\Pi(A) \) for a \(k \)-algebra \(A \) coming from a Hoffman set \(X \). To avoid confusion, we will use \(1_k \) for the identity of \(k \) and \(1_A \) for the identity of \(A \) even though they are often identified under the structure map \(k \to A \) of the unitary \(k \)-algebra \(A \).

Fix a \(\lambda \in k \). First note that, as a \(k \)-module, \(\Pi^+(k) = \bigoplus_{n \geq 0} k^{\otimes n} = k \oplus k \oplus k^{\otimes 2} + \cdots \).

There are two copies of \(k \) in the sum since \(k^{\otimes 0} = k = k^{\otimes 1} \). The identity of \(\Pi^+(k) \) is the identity in the first copy, which we denote by \(1_k \otimes 0 \) as we did in (7).

Thus we have \(\Pi^+(k) = k1 \oplus k1_k \oplus k1_k^{\otimes 2} + \cdots = \bigoplus_{n \geq 0} k1_k^{\otimes n} \).

Then \(\Pi(k) = k \otimes \Pi^+(k) = \bigoplus_{n \geq 0} k(1_k \otimes 1_k^{\otimes n}) \)

with the identity \(1_k \otimes 1 \). Since \(k \) is the base ring, the algebra homomorphism (11) gives

\[\beta : (\Pi^+(k), \diamond^+) \cong (\Pi(k), \diamond) \]

Thus, by Theorem 3.1 we get

Lemma 3.2. For any \(\lambda \in k \), \((\Pi^+(k), \diamond^+) \) is a Hopf algebra.

For now let \(\hat{A} \) be any unitary \(k \)-algebra with unit \(1_A \). Then

\[\Pi^+(\hat{A}) = \bigoplus_{n \geq 0} \hat{A}^{\otimes n} = k1 \oplus \hat{A} \oplus \hat{A}^{\otimes 2} \oplus \cdots \]

and

\[\Pi(\hat{A}) = \hat{A} \otimes \Pi^+(\hat{A}) = (\hat{A} \otimes k1) \oplus \hat{A}^{\otimes 2} \oplus \hat{A}^{\otimes 3} \cdots . \]

Since \(\Pi(\hat{A}) \) is an \(\hat{A} \)-algebra, and hence a \(k \)-algebra, we have the structure map \(\gamma : k \to \Pi(\hat{A}) \) given by \(\gamma(c) = c1_A \otimes 1 \). By the universal property of the free \(k \)-Rota-Baxter algebra \(\Pi(k) \), we have an induced homomorphism \(\gamma : \Pi(k) \to \Pi(\hat{A}) \) of Rota-Baxter algebras. It is given by (23)

\[\gamma(1_k \otimes 1_k^{\otimes n}) = 1_A \otimes 1_A^{\otimes n}, \quad n \geq 0. \]

Let

\[\gamma^+ : \Pi^+(k) \to \Pi^+(\hat{A}), \quad 1_k^{\otimes n} \mapsto 1_A^{\otimes n}, \quad n \geq 0. \]

We have the following commutative diagram

\[\begin{array}{ccc}
\Pi^+(k) & \xrightarrow{\gamma^+} & \Pi^+(\hat{A}) \\
\downarrow & & \downarrow \\
\Pi(k) = k \otimes \Pi^+(k) & \xrightarrow{\gamma} & \Pi(\hat{A}) = \hat{A} \otimes \Pi^+(\hat{A})
\end{array} \]
where the vertical arrow are the injective maps to the second tensor factors.

Theorem 3.3. Let \(k \subseteq \mathbb{C} \) be a field. Let \(X \) be a Hoffman set and let the algebras \(A \) and \(\hat{A} \) be the algebra and unitary algebra generated by \(X \) (as defined before Theorem 2.5). Let \(\lambda \in k \).

1. The algebra product of \(\gamma^+(\III^+(k)) \) and \(\III^+(A) \) in \(\III^+(\hat{A}) \) has a Hopf algebra structure that expands the Hopf algebra structures on \(\gamma^+(\III^+(k)) \) (see Lemma 3.5) and \(\III^+(A) \) (see Corollary 2.6).

2. The algebra product of \(\gamma(\III(k)) \) and \(1_A \otimes \III^+(A) \) in \(\III(\hat{A}) \) has a Hopf algebra structure that expands the Hopf algebra structures on \(\gamma(\III(k)) \) (see Theorem 3.1) and \(1_A \otimes \III^+(A) \) (see Corollary 2.6).

See Theorem 3.3 for a characterization of the elements in these Hopf algebras.

Proof. Since the restriction of the isomorphism \(\alpha : \III^+(\hat{A}) \to 1_A \otimes \III^+(\hat{A}) \) in (11) restricts to isomorphisms \(\gamma^+(\III^+(k)) \to \gamma(\III(k)) \) and \(\III^+(A) \to 1_A \otimes \III^+(A) \), we only need to prove the first statement. Since the tensor product of two commutative, cocommutative Hopf algebras is a Hopf algebra [32, 33], assuming Proposition 3.3 which is stated and proved below, we see that \(\gamma^+(\III^+(k)) \circ^+ (1 \otimes \III^+(A)) \) is a Hopf algebra for any \(\lambda \in k \) by Theorem 3.3 and Corollary 2.6.

Proposition 3.4. For any weight \(\lambda \in k \), let \(\circ^+ \) be the mixable shuffle product of weight \(\lambda \). The two subalgebras \(\gamma^+(\III^+(k)) \) and \(\III^+(A) \) of \(\III^+(\hat{A}) \) are linearly disjoint. Therefore, \(\gamma^+(\III^+(k)) \circ^+ \III^+(A) \) is isomorphic to the tensor product \(\gamma(\III(k)) \otimes (1_A \otimes \III^+(A)) \).

Proof. Let \(k \subseteq \mathbb{C}, X, \hat{X}, A \) and \(\hat{A} \) be as in Theorem 3.3. Since \(X \) is locally finite, it is countable. So we can write \(X = \{ y_n \mid n \geq 1 \} \). Also denote \(y_0 = 1_A \), the unit of \(\hat{A} \). Thus \(\hat{X} = \{ y_n \mid n \in \mathbb{N} \} \) and \(\hat{A} = \bigoplus_{n \geq 0} ky_n \). For \(r \geq 1 \) and \(I = (i_1, \cdots, i_r) \in \mathbb{N}^r \), denote \(y^r_I = y_{i_1} \otimes \cdots \otimes y_{i_r} \). Then

\[
A^{\otimes r} = \bigoplus_{I \in \mathbb{N}_0^r} k y^r_I, \quad \hat{A}^{\otimes r} = \bigoplus_{I \in \mathbb{N}_0^r} k y^r_I.
\]

By convention, we define \(\mathbb{N}^0 = \mathbb{N}_{>0}^0 = \{0\} \), and \(y_{\otimes \emptyset} = 1 \). Let \(J = \bigcup_{r \geq 0} \mathbb{N}_0^r \) and \(\hat{J} = \bigcup_{r \geq 0} \mathbb{N}_0^r \). We then have

\[
\III^+(A) = \bigoplus_{I \in \bar{J}} k y^r_I, \quad \III^+(\hat{A}) = \bigoplus_{I \in \hat{J}} k y^r_I.
\]

Recall that

\[
\gamma^+(\III^+(k)) = \bigoplus_{n \geq 0} k 1_A^{\otimes n}.
\]

So to prove that \(\bigoplus_{n \geq 0} k 1_A^{\otimes n} \) and \(\III^+(A) \) are linearly disjoint under the product \(\circ^+ \), we only need to prove

Claim 3.1. The set \(\{1_A^{\otimes n} \circ^+ y_{\otimes I} \mid n \geq 0, I \in \bar{J}\} \) is linearly independent.

Before proceeding further, we give a formula for the product \(1_A^{\otimes n} \circ^+ y_{\otimes I} \) which expresses a mixable shuffle product as a sum of shuffle products in Eq. (2).

Lemma 3.5. For any \(m \geq 0 \) and \(I \in \bar{J} \), we have

\[
1_A^{\otimes m} \circ^+ y_{\otimes I} = \sum_{i=0}^{m} \lambda_i \binom{n}{i} 1_A^{\otimes (m-i)} \III y_{\otimes I}.
\]
Proof. Define the length of \(I \in \mathbb{N}^r \) to be \(\ell(I) = r \). We will prove by induction on \(w = m + \ell(I) \). When \(w = 0 \), we have \(m = \ell(I) = 0 \). Then \(1_A^{\otimes m} \) and \(y_{\otimes I} \) are both 1, so the lemma is clear, as is if either \(m = 0 \) or \(\ell(I) = 0 \). Suppose it holds for all \(1_A^{\otimes m} \circ^+ y_{\otimes I} \) with \(m + \ell < w \). For given \(1_A^{\otimes m} \) and \(y_{\otimes I} = y_{i_1} \otimes \cdots \otimes y_{i_r} \), with \(m \geq 1 \), \(r \geq 1 \) and \(m + r = w \), let \(y' = y_{i_2} \otimes \cdots \otimes y_{i_r} \) if \(r > 1 \) and \(y' = 1 \) if \(r = 1 \). Applying the recursive relation of \(\circ^+ \) in Eq. (19), the induction hypothesis, the Pascal equality and the recursive relation of \(III \) in Eq. (3), we have

\[
1_A^{\otimes m} \circ^+ y_{\otimes I} = 1_A \otimes \left(1_A^{\otimes (m-1)} \circ^+ y_{\otimes I} \right) + y_{i_1} \otimes \left(1_A^{\otimes m} \circ^+ y' + \lambda y_{i_1} \otimes \left(1_A^{\otimes (m-1)} \circ^+ y' \right) \right)
\]

\[
= 1_A \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n}{i} 1_A^{\otimes (m-1-i)} III y_{\otimes I} \right) + y_{i_1} \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n-1}{i} 1_A^{\otimes (m-1-i)} III y' \right)
\]

\[
+ \lambda y_{i_1} \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n-1}{i} 1_A^{\otimes (m-1-i)} III y' \right)
\]

\[
= 1_A \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n}{i} 1_A^{\otimes (m-1-i)} III y_{\otimes I} \right) + y_{i_1} \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n-1}{i} 1_A^{\otimes (m-1-i)} III y' \right)
\]

\[
+ y_{i_1} \otimes \left(\sum_{i=1}^{m-1} \lambda^i \binom{n-1}{i-1} 1_A^{\otimes (m-i)} III y' \right)
\]

\[
= 1_A \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n}{i} 1_A^{\otimes (m-1-i)} III y_{\otimes I} \right) + y_{i_1} \otimes \left(\sum_{i=0}^{m-1} \lambda^i \binom{n}{i} 1_A^{\otimes (m-1-i)} III y' \right)
\]

\[
= \sum_{i=0}^{m-1} \lambda^i \binom{n}{i} 1_A^{\otimes (m-i)} III y_{\otimes I} + \lambda y_{i_1} \otimes \left(\sum_{i=0}^{m} \lambda^i \binom{n}{i} 1_A^{\otimes (m-i)} III y' \right)
\]

Since \(y_{i_1} \otimes (1 III y') = y_{i_1} \otimes y = y = 1_A^{\otimes 0} III y \), we get exactly what we want. \(\square \)

We continue with the proof of Proposition 3.2. For \(r \geq 1 \), let \([r] = \{1, \cdots, r\} \). For a sequence \(I = (i_1, \cdots, i_r) \in \mathbb{N}^r \), denote \(SSupp(I) \) (called sequential support) for the subsequence (with ordering) of \(I \) of non-zero entries. For an all zero sequence \(I = (0, \cdots, 0) \) and the empty sequence \(\emptyset \), we define \(SSupp(I) = \emptyset \). We then get a map

\[
SSupp : \mathcal{J} \to \mathcal{J}.
\]

Clearly, \(\mathcal{J} = \{ I \in \mathcal{J} \mid SSupp(I) = I \} \). So

\[
\mathcal{J} = \bigcup_{I \in \mathcal{J}} SSupp^{-1}(I).
\]

For each \(I \in \mathcal{J} \), consider the subset \(\mathcal{O}_I = \{ y_{\otimes J} \mid J \in SSupp^{-1}(I) \} \). Then we have

\[
\{ y_{\otimes I} \mid I \in \mathcal{J} \} = \bigcup_{I \in \mathcal{J}} \mathcal{O}_I.
\]

So \(\mathcal{O}_I \) span linearly independent subspaces of \(III(\mathcal{A}) \).

By Lemma 3.3 \(1_A^{\otimes n} \circ^+ y_{\otimes I} \), \(n \geq 0 \), is in the linear span of \(\mathcal{O}_I \). Thus to prove Claim 3.4 and hence Proposition 3.4, we only need to prove that, for a fix \(I \in \mathcal{J} \), the subset \(\{ 1_A^{\otimes n} \circ^+ y_{\otimes I} \mid n \geq 0 \} \) is linearly independent.

Suppose the contrary. Then there are integers \(n_1 > n_2 > \cdots > n_r \geq 0 \) and \(c_1 \neq 0 \) in \(k \) such that \(\sum_{i=1}^{r} c_i 1_A^{\otimes n_i} \circ^+ y_I = 0 \). Express this sum as a linear combination in
terms of the basis O_I. By Lemma 3.6, the coefficient of $1_A^{\otimes n_1} \otimes y_I$ is c_1, so we must have $c_1 = 0$, a contradiction.

It is desirable to characterize the elements in the Hopf algebra $\gamma^+(\Pi^+(k)) \circ^+ \Pi^+(A)$. This is our last goal in this article. Recall that the length of $y_{\otimes I}$ with $I \in \mathbb{N}^r$, $r \geq 0$, is defined to be $\ell(y_{\otimes r}) = \ell(I) = r$. For a given $I \in \mathbb{N}^n$, the sum $\sum y_{\otimes J}$ over $J \in \mathbb{N}^n$ with $SSupp(J) = SSupp(I)$, is called the one-shuffled element of $y_{\otimes I}$, denoted by $O(y_{\otimes I})$. So $O(y_{\otimes I})$ is the subset of O_I consisting of elements of length $\ell(I)$. For example, if $I = (2, 0, 1)$, then the corresponding one-shuffle element of $y_{\otimes I} = y_2 \otimes 1_A \otimes y_1$ is $O(y_{\otimes I}) = y_2 \otimes 1_A \otimes y_1 + 1_A \otimes y_2 \otimes y_1 + y_2 \otimes y_1 \otimes 1_A$. On the other hand, $O(y_{\otimes I})$ is itself if I is either an all zero sequence or an all non-zero sequence. It is so named because the sum can be obtained from shuffling the subsequence of $y_{\otimes I}$ of the 1_A-entries with the subsequence of I of the non-1_A entries (from $SSupp(I)$). To put it in another way, define a relation \sim on J by $I_1 \sim I_2$ if $\ell(I_1) = \ell(I_2)$ and $SSupp(I_1) = SSupp(I_2)$. Then it is easy to check that \sim is an equivalence relation and a one-shuffled element is of the form $\sum y_{\otimes J}$ where the sum is taken over all J in an equivalence class.

We now give another version of Theorem 3.3

Theorem 3.6. Under the hypotheses of Theorem 3.3, the subspace of $\Pi^+(\hat{A})$ spanned by one-shuffled elements form a Hopf algebra that contains the Hopf algebras $\gamma^+(\Pi^+(k))$ and $\Pi^+(A)$.

By Theorem 3.3 we only need to prove the following lemma.

Lemma 3.7. The product of $\gamma^+(\Pi^+(k))$ and $\Pi^+(A)$ in $\Pi^+(\hat{A})$ is given by the subspace generated by one-shuffled elements.

Proof. To prove the proposition, let U be the product of $\gamma^+(\Pi^+(k))$ and $\Pi^+(A)$ in $\Pi^+(\hat{A})$, and let V be the subspace of one-shuffled elements of $\Pi^+(\hat{A})$. Then by Lemma 3.6 and the comments before the theorem, we have $U \subseteq V$. To prove $V \subseteq U$, we only need to show that, for each $k \geq 0$ and $I \in (\mathbb{N}^n)^n$, $n \geq 0$, the one-shuffled element $1_A^{\otimes k} \Pi x_{\otimes I}$ is in U. When $n = 0$, $x_{\otimes I} = 1$. So $1_A^{\otimes k} \Pi x_{\otimes I} = 1_A^{\otimes k}$ which is in $\gamma^+(\Pi^+(k))$ and hence in U. When $n \geq 1$, we use induction on k. When $k = 0$, $1_A^{\otimes k} \Pi x_{\otimes I} = x_{\otimes I}$ which is in $\Pi^+(A)$, hence is in U. Assume that it is true for $1_A^{\otimes k}$, $k < m$ and consider $1_A^{\otimes m} \Pi x_{\otimes I}$. By Lemma 3.6 we have

$$1_A^{\otimes m} \circ^+ y_{\otimes I} = \sum_{i=0}^{m} \lambda^i \binom{n}{i} 1_A^{\otimes (m-i)} \Pi y_{\otimes I}.$$

The left hand side of the equation is in U and, by induction, every term on the right hand side except the first one (with $i = 0$) is also in U. Thus the first term, which is $1_A^{\otimes m} \Pi y_{\otimes I}$, is also in U. This completes the induction. \square

Acknowledgements. We thank Zongzhu Lin for helpful discussions. The first author thanks the I.H.É.S. for the its warm hospitality, and the Ev. Studienwerk for financial support.

References

[1] M. Aguiar and J.-L. Loday, Quadri-algebras, *J. Pure Applied Algebra*, 191 (2004), 205-221, ArXiv:math.QA/0309017.

[2] G. E. Andrews, L. Guo, W. Keigher and K. Ono, Baxter algebras and Hopf algebras, *Trans. AMS*, 355 (2003), no. 11, 4639-4656.
[3] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, *Pacific J. Math.*, 10, (1960), 731-742.

[4] D. Bowman and D. M. Bradley, The algebra and combinatorics of shuffles and multiple zeta values, *J. Combinatorial Theory, Ser. A*, 97, (2002), no. 1, 43-61. preprint: ArXiv:math.CO/0310082

[5] D. M. Bradley, Multiple q-zeta values, *J. Algebra*, 283, (2005), 752 - 798. ArXiv:math.QA/0402093

[6] P. Cartier, On the structure of free Baxter algebras, *Adv. in Math.*, 9, (1972), 253-265.

[7] K.T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, *Ann. of Math.*, 65, (1957), 163-178.

[8] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, *Comm. Math. Phys.*, 210, (2000), no. 1, 249-273.

[9] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group, *Comm. Math. Phys.*, 216, (2001), no. 1, 215-241.

[10] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, *Letters in Mathematical Physics*, 61, no. 2, (2002), 139-147.

[11] K. Ebrahimi-Fard, On the associative Nijenhuis algebras, *The Electronic Journal of Combinatorics*, Volume 11(1), R38, (2004), ArXiv:math-ph/0302062

[12] K. Ebrahimi-Fard and L. Guo, On products and duality of binary, quadratic regular operads, *J. Pure Applied Algebra*, 200,(2005), 293-317. ArXiv:math.RA/0407162

[13] K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras and dendriform algebras, preprint, ArXiv:math.RA/0503647

[14] K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras and multiple zeta values, in preparation.

[15] K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable Renormalization I: the ladder case, *J. Math. Phys.*, 45 (2004), 3758 - 3769. ArXiv:hep-th/0403118

[16] K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable Renormalization II: the general case, *Annales Henri Poincare* 6 (2005), 369-395, ArXiv:hep-th/0402095

[17] K. Ebrahimi-Fard, L. Guo and D. Kreimer, Spitzer’s Identity and the Algebraic Birkhoff Decomposition in pQFT, *J. Phys. A: Math. Gen.* 37 (2004) 11037-11052, ArXiv:hep-th/0407082

[18] F. Fares, Quelques constructions d’algèbres et de coalgèbres’, Thesis, Université du Québec à Montréal.

[19] A. B. Goncharov, Periods and mixed motives, ArXiv:math.AG/0202154

[20] L. Guo, Baxter algebra and differential algebra, in: Differential Algebra and Related Topics, World Scientific Publishing Company, (2002), 281-305.

[21] L. Guo, Baxter algebras and the umbral calculus, *Adv. in Appl. Math.*, 27, (2001), no. 2-3, 405-426.

[22] L. Guo, Baxter algebras, Stirling numbers and partitions, to appear in *J. Algebra and Its Appl.*

[23] L. Guo and W. Keigher, Free Baxter algebras and shuffle products, *Adv. in Math.*, 150, (2000), 117-149.

[24] L. Guo and W. Keigher, On Baxter algebras: completions and the internal construction, *Adv. in Math.*, 151, (2000), 101-127.

[25] M. E. Hoffman, The algebra of multiple harmonic series, *J. Algebra*, 194, no. 2, (1997), 477-495.

[26] M. E. Hoffman, Quasi-shuffle products, *J. Algebraic Combin.*, 11, no. 1, (2000), 49-68.

[27] M. E. Hoffman, Algebraic aspects of multiple zeta values, to appear in *Zeta functions, topology and quantum physics*, Springer-Verlag, 2005. ArXiv:math.QA/0309425

[28] M. E. Hoffman, Y. Ohno, Relations of multiple zeta values and their algebraic expression, *J. Algebra*, 262, (2003), 332-347.

[29] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, *Adv. Theor. Math. Phys.*, 2, (1998), 303-334.

[30] D. Kreimer, Chen’s iterated integral represents the operator product expansion, *Adv. Theor. Math. Phys.*, 3, (1999), 627-670.

[31] P. Leroux, Ennea-algebras, *J. Algebra*, 281 (2004), 287-302. ArXiv:math.QA/0309213

[32] Z. Lin and D. Nakano, Representations of Hopf algebras arising from Lie algebras of Cartan type, *J. Algebra* 189 (1997), 529-567.
[33] J.-L. Loday and M. Ronco, Trialgebras and families of polytopes, in "Homotopy Theory:
Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory" Contemporary Mathematics 346 (2004), 369–398, ArXiv:math.AT/0205043.

[34] S. Montgomery, Hopf Algebras and Their Actions on Rings, American Mathematical Society, Providence, 1993.

[35] C. Reutenauer, Free Lie Algebras, Oxford University Press, Oxford, 1993.

[36] G.-C. Rota, Baxter algebras and combinatorial identities I, Bull. Amer. Math. Soc., 75, (1969), 325-329.

[37] G.-C. Rota, Baxter algebras and combinatorial identities II, Bull. Amer. Math. Soc., 75, (1969), 330-334.

[38] G.-C. Rota and D. A. Smith, Fluctuation theory and Baxter algebras, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilit, INDAM, Rome, 1971), pp. 179-201. Academic Press, London, (1972).

[39] G.-C. Rota, Baxter operators, an introduction, In: Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Joseph P.S. Kung, Editor, Birkhäuser, Boston, 1995.

[40] G.-C. Rota, Ten mathematics problems I will never solve, Invited address at the joint meeting of the American Mathematical Society and the Mexican Mathematical Society, Oaxaca, Mexico, December 6, 1997. DMV Mitteilungen Heft 2, 1998, 45-52.

[41] M. A. Semenov-Tian-Shansky, Classical r-matrices, Lax equations, Poisson Lie groups and dressing transformations, In: Field theory, quantum gravity and strings, II (Meudon/Paris, 1985/1986), 174-214, Lecture Notes in Phys., 280, Springer, Berlin, (1987).

[42] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Universität Bonn - Physikalisches Institut, Nussallee 12, D-53115 Bonn, Germany
E-mail address: kurusch@ihes.fr

Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA
E-mail address: liguo@newark.rutgers.edu