The role of chemical elements in melanoma

Angelo M. Facchianoa, Francesco Facchianob*, Antonio Facchianoc*

aNational Research Council, Institute of Food Science, Avellino, Italy
bDepartment of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
cIstituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy

*Corresponding authors
Dr. Antonio Facchiano
Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy
a.facchiano@idi.it; tel. 39-06-66462431; 39-06-89996620

Dr. Francesco Facchiano
Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
francesco.facchiano@iss.it; tel 39-06-49902059

Abstract
Publication of several studies attest the growing interest to investigate the real impact chemical elements and industrial pollution may play have on the human health. In the current study we present novel data referring to the occurrence of the name of all chemical elements taken from the Mendeleev table, in the title of PubMed indexed melanoma articles. Nine hundred fifty four manuscripts were found to have in the title field the “melanoma” word and at least one of the 117 chemical elements. The occurrence of each chemical element in melanoma articles was then compared to the occurrence in epithelioma articles and squamous cell carcinoma articles, unrevealing substantial quantitative differences. Manuscripts having “skin” in the title were used as control manuscripts. The 10 elements most studied in melanoma manuscripts were found to be iodine, oxygen, ruthenium, boron, calcium, carbon, sodium, zinc, iron and technetium, accounting for more than 50% of the 954 identified manuscripts. In all such cases, the occurrence in melanoma manuscripts was found to be largely different as compared to epithelioma articles, as well as squamous cell carcinoma articles. The role of each of these elements in melanoma is discussed.
Keywords
Human health, industrial pollution, melanoma, epithelioma, squamous cell carcinoma, chemical elements, iodine, oxygen, ruthenium, boron, calcium, carbon

Focal Points

Bedside
The ten most common elements identified to play key roles in melanoma are shown here to be different form the ten most common found in other control conditions, such as epithelioma or other skin cancers.

Benchside
New ways are necessary to organize the immense literature data currently available and to collect it in an ordered, systematic manner, easy to read and to interpret.

Industry
Systematic searches in PubMed –indexed literature leading to ordered outputs may facilitate the interpretation of published data. In the present study the role each chemical element plays in melanoma has been investigated by exhaustive searches in PubMed –indexed literature.

Governments
There is an increasing interest to investigate the impact chemical elements and industrial pollution have on the human health.

Introduction
The role metals and other chemical elements play in human medicine, animal medicine and biology is deeply investigated (Yoshihisa, 2012; Guy, 2005; Hostynek, 2003; Hostynek, 1993) given the increasing interest towards the effects chemical elements released from agricultural and industrial activities exert on human health and on the whole ecosystem. Such studies are of specific relevance in the investigation of skin diseases such as contact dermatitis, which are often related to direct allergens and chemical elements exposure, leading to metal-specific immune reactions, as recently pointed out (Shigematsu, 2014; Kobayash, 2013; Lansdown, 201; Strupp, 2011).
Several studies address the role of chemical elements as carcinogenic agents (Sun, 2014; Poirier, 2012; Caciari, 2010; Olszewski, 2006). We recently published the first study reporting a bibliometric analysis of melanoma manuscripts (D’Arcangelo, 2013); in the present study we use a
novel systematic approach to investigate the role chemical elements play in melanoma, based on a linguistic approach.

Material and Methods

In order to systematically address the role each chemical element plays in melanoma and other skin cancers, we collected a complete set of PubMed references by identifying articles indexed until May 15th 2014, containing in the “title” field the name of each of the 117 chemical elements (taken from the Mendeleev table) along with “melanoma” or “epithelioma” or “squamous cell carcinoma” or “skin” word. According to this procedure 954 melanoma manuscripts were identified, 74 epithelioma-manuscripts, 286 squamous cell carcinoma-manuscripts and 4395 skin-manuscripts, as reported in Table 1.

The occurrence of each chemical element in melanoma-, or epithelioma-, or squamous cell carcinoma- or skin- manuscripts was then calculated in absolute and percent terms, and reported in Table 1 and 2, respectively.

Results

The 5 chemical elements most present in the title of melanoma manuscripts were found to be the iodine (91 manuscripts), followed by oxygen (61 manuscripts), ruthenium (49 manuscripts), boron (46 manuscripts) and calcium (45 manuscripts). Carbon, sodium, zinc, iron and technetium are from the sixth to the tenth most present elements in melanoma manuscripts. The occurrence of each element in manuscripts having “epithelioma” or “squamous cell carcinoma” or “skin” in the title was also investigated. Table 1 reports side by side the number of manuscripts found in each category, for each chemical element in alphabetic order.

Such numbers were then expressed as percent of total manuscripts of each vertical category. Table 2 reports percent values in occurrence order, and shows that the chemical element mostly reported in melanoma field (i.e., iodine) is different from the element most studied in “epithelioma” field (i.e., radium) or in squamous cell carcinoma field (i.e., platinum) or in the skin field (i.e., sodium), highlighting biological differences in such categories.

Table 1 and 2 can be useful references to compare the role of chemical elements in different skin cancers and to highlight, at least to some extent, their relevant biological features. For instance, Table 2 shows that more than 50% of epithelioma articles contain the “radium” word in the title, while this element is absent in melanoma manuscripts.
Discussion

In the following discussion sections the attention is focused on the 10 chemical elements mostly studied in melanoma manuscripts (according to the rank reported in Table 2), accounting for more than 50% of all melanoma manuscripts (according to Table 1).

“Iodine” : first in the rank.
The word “iodine” occurs in 11% of melanoma-manuscripts (see Table 2), while Table 1 shows that only one epithelioma manuscript has “iodine” in the title.

According to the most recent literature, iodine is investigated in melanoma field mostly for its promising therapeutic effects as radioactive Iodine-125 in brachytherapy applications in uveal melanoma (McCannel, 2014; Perez, 2014; Badiyan, 2014; Mashayekhi, 2014; Quinlan-Davidson, 2013; Caminal, 2013; Collaborative Ocular Melanoma Study Group 2006; Caminal Mitjana, 2002), showing significantly better outcome as compared to uveal-melanoma patients treated with enucleation (Melia, 2006). However, in some cases local radiation-related toxic effects have been reported, such as retinopathy (Krema, 2011; Krema, 2013; Ahuja, 2012) macular oedema (Horgan, 2008), strabism (Kïratlï, 2007) or cataract (Collaborative Ocular Melanoma Study Group, 2007).

Two recent studies report iodine usage for imaging purposes in melanoma metastases (Uhrig, 2013; Cascini, 2009). Less recent literature reports Iodine-125 and Iodine-123 use to label benzamides for imaging purpose in melanoma (Moins, 2001; Brenner, 1999; Larish, 1998; Nicholl, 1997) and for other brachytherapy applications in eye-melanoma (Stannard, 2000).

“Oxygen” : second in the rank.
The word “oxygen” occurs 7.4% of melanoma-manuscripts while Table 1 shows that only two epithelioma manuscripts contain “oxygen” in the title.

According to the most recent literature, oxygen is most often mentioned as part of Reactive Oxygen Species (ROS), active in melanoma set-up. The antioxidant pattern has been found altered in experimental melanoma (Lazescu, 2013) and in simvastatin-treated melanoma cells undergoing a p53/p21 –mediated senescence (Guterres, 2013); the ROS pool can be produced by NADPH oxidase enzymes (NOX family), representing a promising target for melanoma treatment (Liu-Smith, 2014). ROS have been found to mediate the pro-angiogenic potential of melanoma cells (Schaafhausen, 2013; Vartanian, 2007); ROS mediate the in vitro apoptosis and growth inhibition of A375 human melanoma cells and other melanoma cells, induced by several different agents (Huang, 2014; Huang, 2012; Chakraborty, 2013; Ghosh, 2013; Mayola, 2011; Zhang, 2010; Morrison, 2010; Chou, 2009; Wang, 2008; Verhaegen, 2006) and of B16F10 mouse melanoma cells migration properties (Im, 2012). Blocking ROS production has been shown to reduce the anti-
melanoma activity of Cucurbitacin B (Zhang 2011) while decreasing ROS promotes melanoma growth (Huang 2010). An interesting study shows that the melanoma apoptosis induced by non-thermal atmospheric pressure dielectric barrier discharge (DBD) exposure is ROS-dependent (Sensenig, 2011), while another study suggests that the known low anti-oxidant enzymes expression in males may explain the known males dis-advantage in melanoma survival as compared to females (Joosse, 2010). Altogether, these studies suggest oxygen and ROS as relevant potential therapeutic targets in melanoma (Fruehauf, 2008; Fried, 2008; Tuma, 2008).

Less numerous studies investigate the effects of oxygen tension in melanoma; low-oxygen tension, a condition that can be found within tumors, may alter the expression of heat shock proteins (Shipp, 2012) and may promote melanoma development (Adams, 2006), while hyperbaric oxygen therapy is reported for choroidal melanoma treatment (Gall, 2007). Singlet oxygen generation has been shown to mediate the photodynamic-dependent impairment and the potential photodynamic therapy (PDT) of melanoma cells (Burguete, 2009).

“Ruthenium” : third in the rank.
The word “ruthenium” occurs in 5.9% of melanoma-manuscripts while Table 1 shows that “ruthenium” word does not occur in the title of any epithelioma manuscript.
According to the most recent literature, and similarly to iodine, ruthenium in melanoma is mostly mentioned for Ruthenium-106 -based brachytherapy in choroidal melanoma (Kwon, 2013; Perri, 2012; Razzaq, 2012; Marconi, 2013; Lee, 2012; Russo, 2012; Yarovov, 2012).

Other studies show potential therapeutic applications of non-radioactive ruthenium in melanoma field. In fact, ruthenium has been shown to exert nitric oxide-mediated tumoricidal action on melanoma (Carneiro, 2014) also in cooperation with nickel, copper and zinc (Sweigert, 2012); a ruthenium-porphirin complex shows toxic properties toward melanoma cells upon tungsten-lamp irradiation (Rani-Beeram, 2008) and a ruthenium-imidazolium complex inhibits melanoma metastases in an in vivo model (Gava, 2006).

“Boron” : fourth in the rank.
The word “boron” occurs in 5.6% of melanoma-manuscripts while Table 1 shows that “boron” word does not occur in the title of any epithelioma manuscript.
According to the most recent literature, boron is invariantly cited in melanoma manuscripts for the Boron Neutron Capture Therapy (BNCT), exploiting boron carriers accumulating within melanoma tissue and then irradiated with neutron beams. BNCT has shown to induce BCL2 and caspase-3 mediated apoptosis as well as cell-cycle arrest in mouse melanoma cells (Faiao-Flores, 2013a, Faiao-Flores, 2013b; Faiao-Flores, 2012) as well as oxidative stress, free radicals production and
growth inhibition in melanoma cells (Faiao-Flores, 2011), suggesting boron-containing complexes as potentially useful in melanoma treatment (Bonjoch, 2008; Morita, 2006, Meijer, 2005).

“Calcium” : fifth in the rank.
The word “calcium” occurs in 5.4% of melanoma-manuscripts, while Table 1 shows that only one epithelioma manuscript contains “calcium” in the title. According to the most recent literature, calcium is essential in a variety of melanoma cells reactions, including melanoma vasculogenic mimicry (Vartanian, 2011) and S100B- p90 ribosomal S6 kinase (RSK) complex formation, which affects cell viability, modulates MAPK signaling and prevents RSK action on nuclear targets (Hartman, 2014; Lin, 2010). Increased cytosolic calcium levels are required for the specific anti-melanoma activity of BIL, a snake venom derived lectin (Aranda-Souza, 2014) and gap-junction dependent calcium sequestration increases melanoma resistance to chemotherapy (Lin, 2010). Intra- and extra-cellular calcium levels have been shown to control melanoma growth, migration and response to therapy via Orai1 and STIM2 activity (Stanisz, 2014), or via matrix-metalloproteinase activity (Long, 2013), or via 1,3- dichloro-2-propanol (DCP) (Park, 2010), or via PKC phosphorylation (Dissanayake, 2008), or via honeybee-venom dependent melanoma apoptosis (Tu, 2008), or via phospholipase D and acidic sphingomyelinase pathways (Kato 2007). Further, TRPV1, TRPM8, TRPA1 and CB1 expression have been shown to control calcium transients and to act as potential drug targets in melanoma (Mergler, 2014). T-type calcium channels play a key role in melanoma progression and T-type channel blockers have been shown to arrest cell cycle, inhibit autophagy and induce cell-death (Das, 2013), suggesting T-type channels as potential therapeutic targets in melanoma (Das, 2012). Cholesterol-enriched membrane micro-domains (rafts) control melanoma growth in a calcium dependent way (Fedda-Medula, 2008) opening new hypotheses on lipid control in melanoma (Wang, 2013). On the other hand, the role of the enzyme transglutaminase type 2 (EC. 2.1.3.2.1.3, a calcium-dependent cross linking enzyme with several other enzymatic functions) in melanoma development and progression was reported both in vitro and in vivo (Yang, 2014, Facchiano 2013). Finally, calcium-supplementation, associated to vitamin D-supplementation, has been reported to reduce melanoma risk in women with non-melanoma skin cancer history (Tang, 2011).

“Carbon” : sixth in the rank.
The word “carbon” occurs in 4.5% of melanoma-manuscripts, while Table 1 shows that only one epithelioma manuscript has “carbon” in the title. According to the most recent literature, carbon mostly appears as a component in advanced technologies or materials used for melanoma therapies, such as carbon-ion radiotherapy application (Karasawa, 2014; Demizu, 2014; Toyama, 2013; Inubushi, 2013; Jingu, 2011), carbon-dioxide laser
in melanoma cutaneous metastases (Elfatoiki, 2014; Mc Leod, 2012; Oni, 2009), carbon nanotubes for diagnostic purpose or promising topical applications (Siu, 2014; Naderi, 2013; Chaudhuri, 2010) or carbon nanoparticles as promising novel cytotoxic vectors (Grudzinski, 2013).

“Sodium” : seventh in the rank.
The word “sodium” occurs in 3.9% of melanoma-manuscripts, while Table 1 shows that “sodium” word absents in the title of epithelioma manuscripts.
According to the most recent literature, sodium appears as a key component of several therapeutic agents formulation, such as the promising tasisulam sodium (Hamid, 2014; Kirkwood, 2011), dantrolene sodium as useful alternative in patients intolerant to meperidine (Azari, 2012), sodium arsenite showing antitumor action in both melanoma and neuroblastoma cells (Ivanov, 2011; McNeely, 2008). A more specific sodium action in melanoma biology has been shown in a study demonstrating that the alpha1-sodium-pump expression correlates with the Breslow index in melanoma patients, indicating this pump as a potential therapeutic target (Mathieu, 2009).

“Zinc” : eighth in the rank.
The word “zinc” occurs in 3.6% of melanoma-manuscripts, while Table 1 shows that “zinc” word appears in the title of only one epithelioma manuscript.
According to the most recent literature, zinc is a component of different molecules with strong anti-melanoma action, such as zinc nanoparticles (Alarifi, 2013; Bolfarini, 2012; Maduray, 2011) or zinc-porphyrins for photoinduced melanoma toxicity (Sweigert, 2012; Kolarova, 2005). Additionally, a zinc-finger structure has been observed in a number of melanoma-related molecules, such as zinc-finger protein 28 (Yajima, 2009) and promyelocytic leukemia zinc finger (PLZF) transcription factor (Felicetti, 2008; Shiraishi, 2007).

“Iron” : ninth in the rank.
The word “iron” occurs in 3.3% of melanoma-manuscripts while Table 1 shows that “iron” word appears in the title of only one epithelioma manuscript.
According to the most recent literature, iron appears as molecular component of melanoma-toxic iron-containing nanoparticles (Grudzinski, 2013; Cengelli, 2010; Balivada, 2010) or iron-containing molecules (Franke, 2010), able to induce iron-dependent oxidative damage of DNA (Corti, 2009). Interestingly, melanotransferrin, i.e. melanoma tumor antigen p97, is a iron-binding molecule playing a direct control on growth and tumorigenesis of melanoma cells (Suryo Rahmanto, 2007; Kang 2005).
“Technetium” : tenth in the rank.
The word “technetium” occurs in 3.2% of melanoma-manuscripts, while Table 1 shows that “technetium” word does is absent in epithelioma manuscripts.
According to the most recent literature, technetium is invariantly cited for its uptake at melanoma sites, shown to be related to Breslow thickness (Masiero, 2013), or to specific receptors (Yang, 2012; Yang, 2010).

Conclusion
In the present study we report that iodine, oxygen, ruthenium, boron and calcium are the 5 chemical elements mostly common in the title of melanoma manuscripts, highlighting the role such elements may play in the pathogenesis or diagnostic studies of melanoma.
Further, the chemical elements mostly present in melanoma- , epithelioma- or squamous cell carcinoma- manuscripts are all different (namely, iodine, radium and platinum), while sodium is the mostly present in “skin” manuscripts, highlighting different biological roles of such chemical elements.

Executive summary
Investigating the occurrence of chemical elements in the disease-specific manuscripts may help summarize the known biological functions of chemical elements, within the effort to investigate the impact chemical elements have on the human health.

The systematic approach followed in the present study represents a novel linguistics-based methodology to investigate biological functions of chemical elements and to collect literature data in an ordered, systematic manner.

Acknowledgments
The present study was supported in part by grant to AF (RC2014, line 3.4 from Ministry of Health; PON01_02433 from MIUR); to AMF (FLAGSHIP “InterOmics” project (PB.P05) by the Italian MIUR and CNR organizations); to FF (Italy-USA Oncoproteomics Program and by the Italian Health Ministry.) The support of the Proteomic Facility at Istituto Superiore di Sanità for Complex Protein Mixture (CPM) Analysis is also acknowledged.)
References

Adams, A.E., Chudnovsky, Y., Khavari, P.A. 2006. Oxygen deprivation provokes melanoma. Nat Med. 12, 168-9.

Ahuja, Y. et al. 2013. The effects of intraocular silicone oil placement prior to iodine 125 brachytherapy for uveal melanoma: a clinical case series. Eye (Lond). 26, 1487-9.

Alarifi, S. et al. 2013. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8, 83-93.

Aranda-Souza M.A. et al. 2014. A lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon. 82, 97-103.

Azari, L.M. et al. 2012 Dantrolene sodium for the treatment of aldesleukin-induced rigors in a melanoma patient. Ann Pharmacother. 46, :e11.

Badiyan, S.N. et al. 2014. Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy. Int J Radiat Oncol Biol Phys. 88, :801-5.

Balivada, S. et al. 2010. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer. 10, 119.

Bolfarini, G.C. et al. 2012. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B. 115, 1-4.

Bonjoch, J., et al. 2008. Synthesis and evaluation of novel boron-containing complexes of potential use for the selective treatment of malignant melanoma. J Med Chem. 51, 6604-8.

Brenner, W, et al. 1999. Limited sensitivity of iodine-123-2-hydroxy-3-iodo-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl] benzamide whole-body scintigraphy in patients with malignant melanoma: a comparison with thallium-201 imaging. Eur J Nucl Med. 26, 1567-71.

Burguete, M.I. et al. 2009. Singlet oxygen generation using a porous monolithic polymer supported photosensitizer: potential application to the photodynamic destruction of melanoma cells. Photochem Photobiol Sci. 8, 37-44.

Caciari, T., 2010. Radon risk and prevention. G Ital Med Lav Ergon. 32,240-4.

Caminal, J.M. et al. 2013. Endoresection versus iodine-125 plaque brachytherapy for the treatment of choroidal melanoma. Am J Ophthalmol. 156, 334-342.

Caminal Mitjana, J.M. et al. 2002. Quintana Casany M, Pera Fábregas J, Cinos Cope C, Guedea F. Results of Iodine-125 radiotherapy in the treatment of uveal melanoma. Arch Soc Esp Oftalmol. 77, 29-38.

Carneiro, Z.A. et al. 2014. Nitric oxide photorelease from a trinuclear ruthenium nitrosyl complex and its in vitro cytotoxicity against melanoma cells. J Inorg Biochem. 134, 36-8.
Cascini, G.L. et al. 2009. Unexpected detection of melanoma brain metastasis by PET with iodine-124 betaCIT. Clin Nucl Med. 34, 698-9.

Cengelli, F., Voinesco, F., Juillerat-Jeanneret, L. 2010. Interaction of cationic ultrasmall superparamagnetic iron oxide nanoparticles with human melanoma cells. Nanomedicine (Lond). 5, 1075-87.

Chaudhuri, P., Soni, S., Sengupta, S. 2010. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology. 21, 025102.

Collaborative Ocular Melanoma Study Group. 2007. Incidence of cataract and outcomes after cataract surgery in the first 5 years after iodine 125 brachytherapy in the Collaborative Ocular Melanoma Study: COMS Report No. 27. Ophthalmology. 114, 1363-71.

Collaborative Ocular Melanoma Study Group. 20. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelve-year mortality rates and prognostic factors: COMS report No. 28. Arch Ophthalmol. 124, 1684-93.

Chakraborty, D. et al. 2013. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway. Integr Cancer Ther. 12, 433-41.

Chou, D.S. et al. 2009. Baicalein induces proliferation inhibition in B16F10 melanoma cells by generating reactive oxygen species via 12-lipoxygenase. Free Radic Biol Med. 46, 1197-203.

Corti, A. et al. 2009. Membrane gamma-glutamyl transferase activity promotes iron-dependent oxidative DNA damage in melanoma cells. Mutat Res. 669, 112-21.

D'Arcangelo, D., et al. 2013. BAMM: a preliminary bibliometric analysis on melanoma manuscripts. Pigment Cell Melanoma Res. 26, 415-7.

Das, A. et al. 2012. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res. 25, 200-12.

Das, A. et al. 2013. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 26, 874-85.

Demizu, Y. et al. 2014. Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy. Strahlenther Onkol. 190, 186-91.

Dissanayake, S.K., Weeraratna, A.T. 2008. Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol Biol. 468, 157-72.

Elfatoiki, F.Z. et al. 2014. In-transit metastasis in melanoma: Efficacy of topical imiquimod combined with carbon dioxide laser or with electrocautery]. Ann Dermatol Venereol. 141, 106-10.

Facchiano, F. et al. 2013. Beninati S. Tissue transglutaminase activity protects from cutaneous melanoma metastatic dissemination: an in vivo study. Amino Acids. 44, 53-61.

Faião-Flores, F. et al. 2013a. Apoptosis through Bcl-2/Bax and cleaved caspase up-regulation in melanoma treated by boron neutron capture therapy. PLoS One. 8, e59639.
Faião-Flores, F. et al. 2013b. Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy Toxicol In Vitro. 27, 1196-204.

Faião-Flores, F. et al. 2012. Boron uptake in normal melanocytes and melanoma cells and boron biodistribution study in mice bearing B16F10 melanoma for boron neutron capture therapy. Radiat Environ Biophys. 51, 319-29.

Faião-Flores, F. et al. 2011. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy. Appl Radiat Isot. 69, 1748-51.

Fedida-Metula, S. et al. 2008. Targeting lipid rafts inhibits protein kinase B by disrupting calcium homeostasis and attenuates malignant properties of melanoma cells. Carcinogenesis. 29, 1546-54.

Felicetti, F. et al. 2008. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 68, 2745-54.

Franke, J.C. et al. 2010. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem Pharmacol. 79, 575-86.

Fried, L., Arbiser, J.L. 2008. The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res. 21, 117-22.

Fruehauf, J.P., Trapp, V. 2008. Reactive oxygen species: an Achilles' heel of melanoma? Expert Rev Anticancer Ther. 8, 1751-7.

Gall, N. et al. 2007. Severe radiation retinopathy and optic neuropathy after brachytherapy for choroidal melanoma, treated by hyperbaric oxygen. Eye (Lond). 21, 1010-2.

Gava, B. et al. 2006. Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther. 317, 284-91.

Ghosh, S. et al. 2013. Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase-mediated signaling via reactive oxygen species elevation. J Integr Med. 11, 116-24.

Grudzinski, I.P, et al. 2013. Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts. J Nanopart Res. 15, 1835.

Gutierrez, F.A. et al. 2013. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway. Exp Cell Res. 319, 2977-88.

Guy, R.H. et al. 2005. “Metals and the skin. Topical effects and systemic absorption” Taylor and Fracis e-Library, Marcel Dekker Inc. New York

Hamid, O. et al. 2014. A randomized, open-label clinical trial of tasisulam sodium versus paclitaxel as second-line treatment in patients with metastatic melanoma. Cancer. doi: 10.1002/cncr.28635. [Epub ahead of print]

Hartman, K.G. et al. 2014. Complex formation between S100B protein and the p90 ribosomal S6 kinase (RSK) in malignant melanoma is calcium-dependent and inhibits extracellular signal-regulated kinase (ERK)-mediated phosphorylation of RSK J Biol Chem. 289, 12886-95.
Horgan, N, et al. 2008 Periocular triamcinolone for prevention of macular edema after iodine 125 plaque radiotherapy of uveal melanoma. Retina. 28, 987-95.

Hostynek, J.J. et al. 1993. Metals and the skin. Crit Rev Toxicol. 23, 171-235.

Hostynek, J.J. 2003. Factors determining percutaneous metal absorption. Food Chem Toxicol. 41, 327-45.

Huang, S.H. et al. 2014. Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. 33, 270-83.

Huang, S.H. et al. 2012. Benzyl isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375.S2 cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptor-mediated multiple signaling pathways. J Agric Food Chem. 60, 665-75.

Huang, X. et al. 2010. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials. 31, 6142-53.

Im, Y.S., Ryu, Y.K., Moon, E.Y. 2012. Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition. Biomol Ther (Seoul). 20, 165-70.

Inubushi, M. et al. 2013. Predictive value of 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography/computed tomography for outcome of carbon ion radiotherapy in patients with head and neck mucosal malignant melanoma. Ann Nucl Med. 27, 1-10.

Ivanov, V.N., Hei, T.K. 2011. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy. Apoptosis. 16, 1268-84.

Jingu, K. et al. 2011. Malignant mucosal melanoma treated with carbon ion radiotherapy with concurrent chemotherapy: prognostic value of pretreatment apparent diffusion coefficient (ADC). Radiother Oncol. 98, 68-73.

Joosse, A. et al. 2010. Reactive oxygen species and melanoma: an explanation for gender differences in survival? Pigment Cell Melanoma Res. 23, 352-64.

Kang, J.S. et al. 2005. Sodium ascorbate (vitamin C) induces apoptosis in melanoma cells via the down-regulation of transferrin receptor dependent iron uptake. J Cell Physiol. 204, 192-7.

Karasawa, K. et al. 2014. Working Group for Gynecological Tumors. Clinical trial of carbon ion radiotherapy for gynecological melanoma. J Radiat Res. 55, 343-50.

Kato, Y. et al. 2007. Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J. 274, 3171-83.

Kıratlı, H., Yılmaz, P.T., Sargon, M. 2007. Ultrastructural alterations in extraocular muscles following iodine-125 brachytherapy for uveal melanoma. Strabismus. 15, 103-9.
Kirkwood, J.M. et al. 2011. A phase 2 study of tasisulam sodium (LY573636 sodium) as second-line treatment for patients with unresectable or metastatic melanoma. Cancer. 117, 4732-9.

Kobayashi, H. et al. 2013. Characterization of T cell receptors of Th1 cells infiltrating inflamed skin of a novel murine model of palladium-induced metal allergy. PLoS One. 8, e76385.

Kolarova, H. et al. 2005. Photodynamic therapy with zinc-tetra(p-sulfophenyl)porphyrin bound to cyclodextrin induces single strand breaks of cellular DNA in G361 melanoma cells. Toxicol In Vitro. 19, 971-4.

Krema, H. Et al. 2011. Factors predictive of radiation retinopathy post (125)Iodine brachytherapy for uveal melanoma. Can J Ophthalmol. 46, 158-63.

Krema, H. 2013. Dosimetric and late radiation toxicity comparison between iodine-125 brachytherapy and stereotactic radiation therapy for juxtapapillary choroidal melanoma. Int J Radiat Oncol Biol Phys. 86, 510-5.

Kwon, H.J. et al. 2013. Prognosis of choroidal melanoma and the result of ruthenium brachytherapy combined with transpupillary thermotherapy in Korean patients. Br J Ophthalmol. 97, 653-8.

Lansdown, A.B. 2011. Metal ions affecting the skin and eyes. Met Ions Life Sci. 8, 187-246.

Larisch, R. et al. 1998. Differential accumulation of iodine-123-iodobenzamide in melanotic and amelanotic melanoma metastases in vivo. J Nucl Med. 39, 996-1001.

Lazescu, A.V. et al. 2013. Monitoring the production of reactive oxygen species in experimental melanoma. J Med Life. 6, 235-9.

Lee, C.S. et al. 2012. Expression of 12 cytokines in aqueous humour of uveal melanoma before and after combined Ruthenium-106 brachytherapy and transpupillary thermotherapy. Acta Ophthalmol. 90, e314-20.

Liu-Smith, F., Dellinger, R., Meyskens, F.L. Jr. 2014. Updates of reactive oxygen species in melanoma etiology and progression. Arch Biochem Biophys. pii: S0003-9861(14)00138-6

Lin, Q. et al. 2010. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia. 12, 748-54

Lin, J., et al. 2010. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem. 285, 27487-98.

Long, T. et al. 2013. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells. Cancer Lett. 339, 93-101.

Maduray, K. et al. 2011. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy. J Photochem Photobiol B. 103, 98-104.

Marconi, D.G. et al. 2013. Tumor control, eye preservation, and visual outcomes of ruthenium plaque brachytherapy for choroidal melanoma. Brachytherapy. 12, 235-9.

Mashayekhi, A. Et al. 2014. Monthly intravitreal bevacizumab for macular edema after iodine-125 plaque radiotherapy of uveal melanoma. Eur J Ophthalmol. 24, 228-34.
Masiero, N. et al. 2013. Correlation between Breslow thickness and Technetium-99m-sestamibi uptake in cutaneous melanoma. Eur J Dermatol. 23, 467-70.

Mathieu, V. et al. 2009. The sodium pump alpha1 sub-unit: a disease progression-related target for metastatic melanoma treatment. J Cell Mol Med. 13, 3960-72.

Mayola, E. et al. 2011. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bel-2. Apoptosis. 16, 1014-27.

McCannel, T.A., McCannel, C.A. 2014. Iodine 125 Brachytherapy With Vitrectomy and Silicone Oil in the Treatment of Uveal Melanoma: 1-to-1 Matched Case-Control Series. Int J Radiat Oncol Biol Phys. 89, 347-52.

McLeod, M. et al. 2102. Use of carbon dioxide laser to treat lentigo maligna and malignant melanoma in situ, lentigo maligna type. Arch Facial Plast Surg. 14, 462.

McNeely, S.C., Taylor, B.F., States, J.C. 2008. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent. Toxicol Appl Pharmacol. 231, 61-7.

Melia, M. et al. 2006. Quality of life after iodine 125 brachytherapy vs enucleation for choroidal melanoma: 5-year results from the Collaborative Ocular Melanoma Study: COMS QOLS Report No. 3. Arch. Ophthalm. 124, 226-38

Meijer, A.E. et al. 2005. Dose and time dependent apoptotic response in a human melanoma cell line exposed to accelerated boron ions at four different LET. Int J Radiat Biol. 81, 261-72.

Mergler, S. et al. 2014. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal. 26, 56-69.

Moins, N. et al. 2001. Synthesis, characterization and comparative biodistribution study of a new series of p-iodine-125 benzamides as potential melanoma imaging agents. Nucl Med Biol. 28, 799-808.

Morita, N. et al. 2006. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene. Cancer Res. 66, 3747-53.

Morrison, B.W. et al. 2010. Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res. 20, 11-20.

Naderi, N. et al. 2013. Madani SY, Ferguson E, Mosahebi A, Seifalian AM. Carbon nanotubes in the diagnosis and treatment of malignant melanoma. Anticancer Agents Med Chem. 13, 171-85.

Nicholl, C. et al. 1997. Pharmacokinetics of iodine-123-IMBA for melanoma imaging. J Nucl Med. 38, 127-33.

Olszewski, J. et al. 2006. Comparative assessment of aluminum and lead concentrations in serum and tissue bioptates in patients with laryngeal papilloma or cancer. B-ENT. 2, 47-9.

Oni, G., Monk, B.M. 2009. Spontaneous regression of subcutaneous in-transit malignant melanoma deposits of the lower leg after treatment with the carbon dioxide laser. Clin Exp Dermatol. 34, e650-2.
Park, S.Y. et al. 2010. 1,3-Dichloro-2-propanol induces apoptosis via both calcium and ROS in mouse melanoma cells. Biotechnol Lett. 32, 45-51.

Perri, P. et al. 2012. Ruthenium-106 eye plaque brachytherapy in the conservative treatment of uveal melanoma: a mono-institutional experience. Eur Rev Med Pharmacol Sci. 16, 1919-24.

Perez, B.A. et al. 2014. Uveal melanoma treated with iodine-125 episcleral plaque: an analysis of dose on disease control and visual outcomes. Int J Radiat Oncol Biol Phys. 89, 127-36.

Poirier, M.C. 2012. Chemical-induced DNA damage and human cancer risk. Discov Med. 14, 283-8.

Quinlan-Davidson, S. et al. 2013. Intraoperative sonographically assisted radioactive iodine 125 plaque brachytherapy for choroidal melanoma: visual acuity outcome. J Ultrasound Med. 32, 995-1001.

Rani-Beeram, S. et al. 2008. A fluorinated ruthenium porphyrin as a potential photodynamic therapy agent: synthesis, characterization, DNA binding, and melanoma cell studies. Inorg Chem. 47, 11278-83.

Razzaq, L. et al. 2012. Corneal endothelial cell density after ruthenium plaque radiation therapy for iris melanoma patients. Acta Ophthalmol. 90, e577-9.

Russo, A., Laguardia, M., Damato, B. 2012. Eccentric ruthenium plaque radiotherapy of posterior choroidal melanoma. Graefes Arch Clin Exp Ophthalmol. 250, 1533-40.

Sweigert, P. et al. 2012. Nickel, copper, and zinc centered ruthenium-substituted porphyrins: effect of transition metals on photoinduced DNA cleavage and photoinduced melanoma cell toxicity. Dalton Trans. 41, 5201-8.

Schaafhausen, M.K. et al. 2013. Tumor angiogenesis is caused by single melanoma cells in a manner dependent on reactive oxygen species and NF-κB. J Cell Sci. 126, 3862-72.

Sensenig, R. et al. 2011. Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng. 39, 674-87.

Shigematsu, H. et al. 2014. Accumulation of metal-specific T cells in inflamed skin in a novel murine model of chromium-induced allergic contact dermatitis. PLoS One. 9, :e85983.

Shipp, C., Derhovanessian, E., Pawelec, G. 2012. Effect of culture at low oxygen tension on the expression of heat shock proteins in a panel of melanoma cell lines. PLoS One. 7, e37475.

Shiraishi, K. et al. 2007. Pre-B-cell leukemia transcription factor 1 is a major target of promyelocytic leukemia zinc-finger-mediated melanoma cell growth suppression. Oncogene. 26, 339-48.

Siu, K.S. et al. 2014. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 35, 3435-42.

Stanisz, H. et al. 2014. Inverse regulation of melanoma growth and migration by Orai1/STIM2-dependent calcium entry. Pigment Cell Melanoma Res. 27, 442-53.

Stannard, C.E. et al. 2000. Malignant melanoma of the eyelid and palpebral conjunctiva treated with iodine-125 brachytherapy. Ophthalmology. 107, 951-8.
Strupp, C. 2011. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye
effects, and genotoxicity. Ann Occup Hyg. 55, 30-42.

Sun, J. et al. 2014. Carcinogenic metalloid arsenic induces expression of mdig oncogene through
JNK and STAT3 activation. Cancer Lett. 346, 257-63.

Suryo Rahmanto, Y., Dunn, L.L., Richardson, D.R. 2007. The melanoma tumor antigen,
melanotransferrin (p97): a 25-year hallmark--from iron metabolism to tumorigenesis. Oncogene.
26, 6113-24.

Sweigert, P. et al. 2012. Nickel, copper, and zinc centered ruthenium-substituted porphyrins: effect
of transition metals on photoinduced DNA cleavage and photoinduced melanoma cell toxicity.
Dalton Trans. 41, 5201-8.

Tang, J.Y. et al. 2011. Calcium plus vitamin D supplementation and the risk of nonmelanoma and
melanoma skin cancer: post hoc analyses of the women's health initiative randomized controlled
trial. J Clin Oncol. 29, 3078-84.

Toyama, S. et al. 2013. Working Group for Ophthalmologic Tumors. Long-term results of carbon
ion radiation therapy for locally advanced or unfavorably located choroidal melanoma: usefulness
of CT-based 2-port orthogonal therapy for reducing the incidence of neovascular glaucoma. Int J
Radiat Oncol Biol Phys. 86, 270-6.

Tu, W.C. et al. 2008. Honeybee venom induces calcium-dependent but caspase-independent
apoptotic cell death in human melanoma A2058 cells. Toxicon. 52, 318-29.

Tuma, R.S. 2008. Reactive oxygen species may have antitumor activity in metastatic melanoma. J
Natl Cancer Inst. 100, 11-2.

Uhrig, M. Et al. 2013. Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST
plus supplementary functional information by quantifying iodine uptake of melanoma metastases.
Cancer Imaging. 13, 306-13.

Vartanian, A. et al. 2011. Melanoma vasculogenic mimicry capillary-like structure formation
depends on integrin and calcium signaling. Microcirculation. 18, 390-9.

Vartanian, A.A. et al. 2007. Melanoma vasculogenic mimicry is strongly related to reactive oxygen
species level. Melanoma Res. 17, 370-9.

Verhaegen, M. et al. 2006. A novel BH3 mimetic reveals a mitogen-activated protein kinase-
dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species.
Cancer Res. 66, 11348-59.

Wang, C.C. et al. 2008. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen
species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett. 259, 82-
98.

Wang, R. et al. 2013. Lipid rafts control human melanoma cell migration by regulating focal
adhesion disassembly. Biochim Biophys Acta. 1833, 3195-205.

Yajima, I. et al. 2009. Zinc finger protein 28 as a novel melanoma-related molecule. J Dermatol Sci.
55, 68-70.
Yang, L. et al. 2014. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res. 74, 1022-31.

Yang, J., Miao, Y. 2012 Substitution of Gly with Ala enhanced the melanoma uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide. Bioorg Med Chem Lett. 22, 1541-5.

Yang, J., Guo, H., Miao, Y. 2010. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol. 37, 873-83.

Yarovoy, A.A., Magaramov, D.A., Bulgakova, E.S. 2012. The comparison of ruthenium brachytherapy and simultaneous transpupillary thermotherapy of choroidal melanoma with brachytherapy alone. Brachytherapy. 11, 224-9.

Yoshihisa, Y., Shimizu, T. 2012. Metal Allergy and Systemic Contact Dermatitis: An Overview. Dermatology Research and Practice, Article ID 749561.

Zhang, Y. et al. 2011. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin (Shanghai). 43, 556-67.

Zhang, Y. et al. 2010. The role of endogenous reactive oxygen species in oxymatrine-induced caspase-3-dependent apoptosis in human melanoma A375 cells. Anticancer Drugs. 21, 494-501.
Tables

Table 1 Number of manuscripts having in title "melanoma" OR "epithelioma" OR "squamous cell carcinoma" OR "skin", AND each chemical element (in alphabetic order).
Vertical categories: melan (melanoma); epith (epithelioma); sq cell car (squamous cell carcinoma); skin (skin).

name	melanoma	epithelioma	squamous cell carcinoma	skin	name	melanoma	epithelioma	squamous cell carcinoma	skin																	
Actinium	0	0	0	60	Neodymium	0	0	2	14																	
Aluminiu(m)	0	0	1	20	Neon	1	0	0	17																	
Americiun(m)	0	0	0	1	Neptunium	0	0	0	0																	
Antimony	5	0	0	7	Nickel	1	0	1	87																	
Argon	10	0	2	32	Niobium	0	0	0	1																	
Arsenic	18	3	10	181	Nitrogen	13	6	3	115																	
Astatine	1	0	1	0	Nobelium	0	0	0	0																	
Barium	0	0	3	4	Osmium	1	0	0	8																	
Berkelium	0	0	0	0	Oxygen	61	2	25	493																	
Beryllium	0	1	0	27	Palladium	8	0	0	4																	
Bismuth	0	0	0	8	Phosphorus	70	0	0	47																	
Bohrium	0	0	0	71	Platinum	22	0	60	14																	
Boron	46	0	6	11	Plutonium	0	0	0	12																	
Bromine	0	0	0	9	Polonium	0	0	0	7																	
Cadmium	0	0	0	28	Potassium	74	11	0	5																	
Caesium(Cesium)	0	2	0	11	Praseodymium	0	0	0	0																	
Calcium	45	1	18	263	Promethium	0	0	0	1																	
Californium	0	0	1	3	Protactinium	0	0	0	0																	
Carbon	37	1	19	230	Radium	0	38	7	36																	
Cerium	0	0	0	2	Radon	2	3	0	20																	
Chlorine	0	0	1	14	Rhenium	9	0	0	0																	
Chromium	2	0	0	75	Rhodium	2	0	0	0																	
Cobalt	18	3	4	50	Roentgenium	0	0	0	0																	
Copper	18	1	7	91	Rubidium	1	0	0	4																	
Curium	0	0	0	84	Ruthenium	49	0	0	9																	
Darmstadtiurn	0	0	0	85	Rutherfordium	0	0	0	0																	
Dubinium	0	0	0	86	Samarium	1	0	0	0																	
Dysprosiurn	0	0	0	87	Scandium	0	0	0	0																	
Einsteinium	0	0	0	88	Seaborgium	0	0	0	0																	
Erbium	0	0	0	60	Selenium	14	1	9	52																	
Europium	0	0	0	2	Silicon	3	0	0	21																	
Fermium	0	0	0	91	Silver	7	0	6	105																	
Fluorine	10	0	5	3	Sodium	32	0	11	784																	
Francium	0	0	0	93	Strontium	7	1	4	16																	
Gadoliniurn	4	0	0	19	Sulfur(Sulphur)	16	1	0	149																	
Gallium	23	0	3	16	Tantalum	5	0	1	3																	
Germanium	0	0	0	96	Technetium	25	0	1	4																	
Element	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	Totals			
---------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----			
Gold	21	0	10	145	97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	827			
Hafnium	1	0	0	0	98	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	74			
Hassium	0	0	0	0	99	3	0	6	13	0	0	0	0	0	0	0	0	0	0	0	0	0	286			
Helium	21	0	0	25	100	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Holmium	0	0	0	1	101	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Hydrogen	12	0	2	87	102	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Indium	21	0	1	3	103	0	0	0	39	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Iodine	91	1	14	152	104	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Iridium	1	2	5	9	105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Krypton	0	0	0	4	107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Lanthanum	1	0	0	6	108	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Lawrencium	0	0	0	0	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Lead	14	1	0	68	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Lithium	5	0	0	35	111	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Lutetium	1	0	0	1	112	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Magnesium	4	0	2	36	113	4	0	0	29	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Manganese	5	0	7	25	114	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Meitnerium	0	0	0	0	115	5	0	2	20	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Mendelevium	0	0	0	0	116	30	1	14	180	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Mercury	3	0	0	70	117	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	4395			
Molybdenum	0	0	1	4																					827	
totals	827	74	286	4395																						
Table 2. Values expressed as percentage of total manuscripts in each vertical category and ranked in each vertical category.

Melanoma manuscripts	Epithelioma manuscripts	Squamous cell carcinoma manuscripts	Skin manuscripts								
Rank	**Name**	**% in melanoma manuscripts**	**Rank**	**Name**	**% in epithelioma manuscripts**	**Rank**	**Name**	**% in squamous cell carcinoma manuscripts**	**Rank**	**Name**	**% in skin manuscripts**
1st	Iodine	11.00	1st	Radium	51.35	1st	Platinum	20.98	1st	Sodium	17.84
2nd	Oxygen	7.38	2nd	Nitrogen	8.11	2nd	Oxygen	8.74	2nd	Oxygen	11.22
3rd	Ruthenium	5.93	3rd	Arsenic	4.05	3rd	Carbon	6.44	3rd	Calcium	5.98
4th	Boron	5.56	4th	Cobalt	4.05	4th	Calcium	6.29	4th	Calcium	5.23
5th	Calcium	5.44	5th	Radon	4.05	5th	Iodine	4.90	5th	Arsenic	4.12
6th	Carbon	4.47	6th	Thorium	4.05	6th	Zinc	4.90	6th	Zinc	4.10
7th	Sodium	3.87	7th	Caesium (Cesium)	2.70	7th	Sodium	3.85	7th	Iodine	3.46
8th	Zinc	3.63	8th	Iridium	2.70	8th	Arsenic	3.50	8th	Sulfur (Sulphur)	3.39
9th	Iron	3.26	9th	Oxygen	2.70	9th	Gold	3.50	9th	Gold	3.30
10th	Technetium	3.02	10th	Beryllium	1.35	10th	Selenium	3.15	10th	Nitrogen	2.62
11th	Phosphorus	2.90	11th	Carbon	1.35	11th	Copper	2.45	11th	Silver	2.39
12th	Gallium	2.78	12th	Calcium	1.35	12th	Manganese	2.45	12th	Potassium (Kalium)	2.34
13th	Platinum	2.66	13th	Copper	1.35	13th	Radium	2.45	13th	Iron	2.21
14th	Gold	2.54	14th	Iron	1.35	14th	Silver	2.10	14th	Copper	2.07
15th	Helium	2.54	15th	Iodine	1.35	15th	Boron	2.10	15th	Hydrogen	1.98
16th	Indium	2.54	16th	Phosphorus	1.35	16th	Thallium	2.10	16th	Nickel	1.98
17th	Arsenic	2.18	17th	Lead	1.35	17th	Fluorine	1.75	17th	Chromium	1.71
18th	Cobalt	2.18	18th	Sulfur (Sulphur)	1.35	18th	Iron	1.75	18th	Mercury	1.59
19th	Copper	2.18	19th	Selenium	1.35	19th	Iridium	1.75	19th	Lead	1.55
20th	Sulfur (Sulphur)	1.93	20th	Strontium	1.35	20th	Potassium (Kalium)	1.75	20th	Erbium	1.37
21st	Lead	1.69	21st	Zinc	1.35	21st	Cobalt	1.40	21st	Selenium	1.18
22nd	Selenium	1.69	22nd (22–117th)	all others	<0.01	22nd	Strontium	1.40	22nd	Cobalt	1.14
23rd	Nitrogen	1.57	23rd	Barium	1.05	23rd	Phosphorus	1.07			
24th	Hydrogen	1.45	24th	Gallium	1.05	24th	Titanium	0.89			
25th	Potassium (Kalium)	1.33	25th	Nitrogen	1.05	25th	Magnesium	0.82			
26th	Argon	1.21	26th	Argon	0.70	26th	Radium	0.82			
27th	Fluorine	1.21	27th	Hydrogen	0.70	27th	Lithium	0.80			
-------	----------	------	-------	----------	------	-------	---------	------			
28th	Rhenium	1.09	28th	Magnesium	0.70	28th	Argon	0.73			
29th	Palladium	0.97	29th	Neodymium	0.70	29th	Xenon	0.66			
30th	Silver	0.85	30th	Yttrium	0.70	30th	Cadmium	0.64			
31th	Strontium	0.85	31th	Aluminium (Aluminum)	0.35	31th	Beryllium	0.61			
32th	Lithium	0.60	32th	Astatine	0.35	32th	Helium	0.57			
33th	Manganese	0.60	33th	Californium	0.35	33th	Manganese	0.57			
34th	Neodymium	0.60	34th	Chlorine	0.35	34th	Silicon	0.48			
35th	Antimony	0.60	35th	Indium	0.35	35th	Thorium	0.48			
36th	Tantalum	0.60	36th	Molybdenum	0.35	36th	Aluminium (Aluminum)	0.46			
37th	Yttrium	0.60	37th	Nickel	0.35	37th	Radon	0.46			
38th	Gadolinium	0.48	38th	Tantalum	0.35	38th	Yttrium	0.46			
39th	Magnesium	0.48	39th	Terbium	0.35	39th	Gadolinium	0.43			
40th	Xenon	0.48	40th	Technetium	0.35	40th	Neon	0.39			
41–117th	all others	<0.40	41–117th	all others	<0.01	41–117th	all others	<0.39			