ABSTRACT. We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Padé approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e. away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.

1. Introduction and statement of the main results

1.1. Context. Since their introduction in the late 1970s [Lin75, EM77a, EM77b, EM79, BT80, BGT82], absorbing/artificial/non-reflecting boundary conditions have become standard tools in the numerical simulation of waves propagating in unbounded domains; see, e.g., the reviews [Giv91, Hag97, Tsy98, Hag99, Giv04], [Ihl98, §3.3], and the references therein.

There exist error estimates on the accuracy of these boundary conditions

- in the time domain [EM79, Theorem 1(b)], [BT80, Theorem 3.2], [HR87, §5], [DJ05, Theorem 2.4], and
- in the frequency domain for fixed frequency [BGT82, Theorems 4.1 and 4.2], [Gol82, Theorem 3.1],

where, in both cases, the estimates describe how the accuracy of the boundary condition depends on the position of the artificial boundary.

However, to our knowledge, there do not yet exist error estimates in the frequency domain when the artificial boundary is fixed and the frequency is arbitrarily high, despite (i) this situation being
a ubiquitous model problem for numerical methods applied to the the Helmholtz equation (see §1.8 and references therein), and (ii) the decades-long interest in absorbing boundary conditions.

The present paper proves such estimates for the Helmholtz exterior Dirichlet problem with boundary data coming from plane-wave incidence and when an artificial boundary condition coming from a Padé approximation of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that this popular class of boundary conditions was introduced in [EM77a, EM77b, EM79] in the time-dependent setting).

1.2. Overview of the main results in the simplest-possible setting. In this section, we present a selection of our bounds on the error in their simplest-possible setting when an impedance boundary condition is imposed on the truncation boundary. Our upper and lower bounds on the error when the artificial boundary condition comes from a general Padé approximation of the Dirichlet-to-Neumann map are given in §1.5 and 1.6, with results on the well-posedness of this problem in §1.4.

Let \(\Omega_- \subset \mathbb{R}^d, d \geq 2, \) be a bounded open set such that the open complement \(\Omega_+ := \mathbb{R}^d \setminus \overline{\Omega_-} \) is connected, and let \(\Gamma_D := \partial \Omega_- \) be \(C^\infty \). Given \(k > 0 \) and \(a \in \mathbb{R}^d \) with \(|a| = 1 \), let \(u \in H^1_{\text{loc}}(\Omega_+) \) be the solution to the Helmholtz equation in \(\Omega_+ \)

\[
(\Delta + k^2)u = 0 \quad \text{in} \quad \Omega_+,
\]

(1.1a)

with the Dirichlet boundary condition

\[
u = \exp(ikx \cdot a) \quad \text{on} \quad \Gamma_D
\]

and satisfying the Sommerfeld radiation condition

\[
\frac{\partial u}{\partial r} - i ku = o \left(\frac{1}{r^{(d-1)/2}} \right)
\]

as \(r := |x| \to \infty \), uniformly in \(\tilde{x} := x/r \). (The technical reason we only consider Dirichlet boundary conditions on \(\Gamma_D \), and not also Neumann boundary conditions, is discussed in Remark 5.2 below.)

The physical interpretation of (1.1) is that \(u \) is minus the scattered wave for the plane-wave scattering problem with sound-soft boundary conditions; i.e., \(\exp(ikx \cdot a) - u \) is the total field for the sound-soft scattering problem.

We assume throughout that the obstacle \(\Omega_- \) is nontrapping, i.e. all billiard trajectories in a neighbourhood of the convex hull of \(\Omega_- \) escape that neighbourhood after some uniform time.

Let \(v \) be the solution of the analogous exterior Dirichlet problem, but with the exterior domain \(\Omega_+ \) truncated, and an impedance boundary condition prescribed on the truncation boundary. More precisely, let \(\overline{\Omega}_R \) be such that \(\overline{\Omega}_R \subset B(0, MR) \) for some \(M > 0 \), \(\Gamma_{\text{tr},R} := \partial \overline{\Omega}_R \) is \(C^\infty \) and \(\Omega_- \subset \overline{\Omega}_R \), where \(\subset \) denotes compact containment. The subscripts \(R \) on \(\overline{\Omega}_R \) and \(\Gamma_{\text{tr},R} \) emphasise that both have characteristic length scale \(R \), and the subscript \(\text{tr} \) on \(\Gamma_{\text{tr},R} \) emphasises that this is the truncation boundary. We assume that the family \(\{ \Gamma_{\text{tr},R} \}_{R \in (1,\infty)} \) is continuous in \(R \) and is such that the limit \(\Gamma_{\text{tr}} := \lim_{R \to \infty} (\Gamma_{\text{tr},R}/R) \) exists. Let \(\Omega_{\text{R}} := \overline{\Omega}_R \setminus \overline{\Omega}_- \), and let \(v \in H^1(\Omega_{\text{R}}) \) be the solution of

\[
(\Delta + k^2)v = 0 \quad \text{in} \quad \Omega_{\text{R}},
\]

(1.2a)

\[
v = \exp(ikx \cdot a) \quad \text{on} \quad \Gamma_D,
\]

(1.2b)

\[
\partial_n v - i kv = 0 \quad \text{on} \quad \Gamma_{\text{tr},R}.
\]

(1.2c)

Theorem 1.1 (Lower and upper bounds when \(\Gamma_{\text{tr},R} = \partial B(0,R) \)). Suppose that \(\Omega_- \) is nontrapping, \(\Omega_- \subset B(0,1) \), and \(\Gamma_{\text{tr},R} = \partial B(0,R) \) with \(R \geq 1 \). Then there exists \(C_j = C_j(\Omega_-) > 0, j = 1,2 \), such that for any \(R \geq 1 \), there exists \(k_0(R,\Omega_-) > 0 \) such that, for any direction \(a \), the solutions, \(u, \) to (1.1) and, \(v, \) to (1.2) satisfy

\[
\frac{C_1}{R^2} \leq \frac{\|u - v\|_{L^2(\Omega_{\text{R}})}}{\|u\|_{L^2(\Omega_{\text{R}})}} \leq \frac{C_2}{R^2}, \quad \text{for all} \ k \geq k_0.
\]

(1.3)
Furthermore, there exists $C_3 = C_3(\Omega_-) > 0$ such that for any $R \geq 2$, there exists $k_1 = k_1(R, \Omega_-) > 0$ such that, for any direction a,
\begin{equation}
\frac{\|u - v\|_{L^2(B(0,2) \setminus \Omega_-)}}{\|u\|_{L^2(B(0,2) \setminus \Omega_-)}} \geq \frac{C_3}{R^2} \quad \text{for all } k \geq k_0.
\end{equation}

Theorem 1.1 shows that the error is proportional to R^{-2} in both the whole domain Ω_R (1.3) and a neighbourhood of the obstacle (1.4).

We make two comments: (i) The reason that k_0 and k_1 depends on R is discussed below Theorem 1.7 (the more-general version of Theorem 1.1). (ii) When the impedance boundary condition is replaced by the more-general boundary condition corresponding to Padé approximation, the only changes in (1.3) and (1.4) are in the powers of R.

The following theorem shows that when Γ^∞_{tr} is not a sphere centred at the origin, the relative error between u and v does not decrease with R.

Theorem 1.2 (Lower bound for generic $\Gamma_{tr,R}$). Suppose that Ω_- is nontrapping, $\Omega_- \subset B(0,1)$, and there exists $M > 0$ such that
\begin{equation}
B(0, M^{-1}R) \subset \bar{\Omega}_R \subset B(0, MR).
\end{equation}
Assume that $\Gamma_{tr,R}$ is smooth and convex and (i) Γ^∞_{tr} is not a sphere centred at the origin, and (ii) the convergence $\Gamma_{tr,R} / R \to \Gamma^\infty_{tr}$ is in $C^{0,1}$ globally and in $C^{1,\varepsilon}$ (for some $\varepsilon > 0$) away from any corners of Γ^∞_{tr}.

Then there exists $C = C(\Omega_-, \{\Gamma_{tr,R}\}_{R \in [1,\infty)}) > 0$ such that for all $R \geq 1$, there exists $k_0 = k_0(\Omega_-, \{\Gamma_{tr,R}\}_{R \in [1,\infty)}) > 0$ such that, for any direction a, the solutions, u, to (1.1) and, v, to (1.2) satisfy
\begin{equation}
\frac{\|u - v\|_{L^2(\Omega_R)}}{\|u\|_{L^2(\Omega_R)}} \geq C \quad \text{for all } k \geq k_0.
\end{equation}

Remark 1.3. We highlight that the constant C in Theorem 1.2 depends on the family $\{\Gamma_{tr,R}\}_{R \in [1,\infty)}$ (indexed by R), but is independent of the variable R itself. This also applies in Theorems 1.5, 1.8, and 1.9 below.

We make four comments: (i) Even under the more-general boundary condition corresponding to Padé approximation, the lower bound analogous to (1.5) is still independent of R; see Theorem 1.8 below. (ii) The numerical experiments in §1.7 indicate that k_0 in Theorem 1.2 is independent of R, and in fact a lower bound holds uniformly in k and R; see Tables 1.3 and 1.4. (iii) Under further smoothness assumption on Γ^∞_{tr}, Theorem 1.9 proves an upper bound on the relative error. (iv) The reason why the error decreases with R when $\Gamma_{tr,R} = \partial B(0, R)$, but is independent of R for generic $\Gamma_{tr,R}$ is explained below Theorem 1.9.

1.3. Definitions of the boundary conditions corresponding to Padé approximation of the Dirichlet-to-Neumann map.

We now consider a more-general truncated problem than (1.2). With Ω_-, Ω_R, and Ω_R as in §1.2, let $v \in H^1(\Omega_R)$ be the solution of
\begin{align}
(\Delta + k^2)v &= 0 \quad \text{in } \Omega_R, \\
v &= \exp(ik x \cdot a) \quad \text{on } \Gamma_D, \quad \text{and} \\
N(k^{-1} \partial_n v) - iD(v) &= 0 \quad \text{on } \Gamma_{tr,R},
\end{align}
where $\mathcal{N} \in \Psi^{2M}(\Gamma_{tr,R})$, $\mathcal{D} \in \Psi^{2M}(\Gamma_{tr,R})$ (i.e. \mathcal{N} and \mathcal{D} are semiclassical pseudodifferential operators on $\Gamma_{tr,R}$ of order $2N$ and $2M$ respectively) and both have real-valued principal symbols (see §A for background material on semiclassical pseudodifferential operators).

While most of our analysis applies to much more general choices of \mathcal{N} and \mathcal{D}, we focus on \mathcal{N} and \mathcal{D} corresponding to a Padé approximation (up to terms that are lower order both in k^{-1} and differentiation order) of the principal symbol of the Dirichlet-to-Neumann map; this class of \mathcal{N}
and \mathcal{D} was introduced in [EM77a, EM77b, EM79] in the time-dependent setting. In the following assumption, Diff^m denotes the set of operators of the form

$$A(x, k^{-1}D) = \sum_{j=0}^{m} a_j(x)(k^{-1}D)^j,$$

with $a_j \in C^\infty$, $D = -i\partial$. Furthermore, we use Fermi normal coordinates $x = (x_1, x')$, $\xi = (\xi_1, \xi')$, with $\Gamma_{tr,R} = \{x_1 = 0\}$, x_1 the signed distance to $\Gamma_{tr,R}$, ∂_{x_1}, and ∂_{x_1} orthogonal. We also let $r(x', \xi')$ denote the symbol of the tangential Laplacian on $\Gamma_{tr,R}$, i.e.

$$(1.7) \quad r(x', \xi') := 1 - |\xi'|_g^2$$

where $| \cdot |_g$ is the norm induced on the co-tangent space (i.e. the space of the Fourier variables ξ' corresponding to the tangential variables x') of $\Gamma_{tr,R}$ from \mathbb{R}^d; see §2.3 for more details.

Let the coefficients $(p^j_{M,N})_{j=0}^M$ and $(q^j_{M,N})_{j=1}^N$ be defined so that $p(t)/q(t)$ is the Padé approximant of type $[M, N]$ at $t = 0$ to $1/t$, where

$$(1.8) \quad p(t) = \sum_{j=0}^{M} p^j_{M,N} t^j \quad \text{and} \quad q(t) = \sum_{j=0}^{N} q^j_{M,N} t^j$$

with $q^0_{M,N} = 1$ and $p^M_{M,N}, q^N_{M,N} \neq 0$. This definition implies that

$$(1.9) \quad \sqrt{1 - t} - \left(\sum_{j=0}^{M} p^j_{M,N} t^j \right) \left(1 + \sum_{j=1}^{N} q^j_{M,N} t^j \right)^{-1} = O(t^{m_{\text{ord}}}) \quad \text{as} \ t \to 0$$

where

$$m_{\text{ord}} \geq M + N + 1.$$

Assumption 1.4 (Boundary condition corresponding to Padé approximation). We assume that

$$\mathcal{D} - \mathcal{P}_{M,N}(x', k^{-1}D_{x'}) \in k^{-1} \text{Diff}^{2M-1}, \quad \mathcal{N} - \mathcal{Q}_{M,N}(x', k^{-1}D_{x'}) \in k^{-1} \text{Diff}^{2N-1},$$

where

$$\mathcal{P}_{M,N}(x', \xi') := \sum_{j=0}^{M} p^j_{M,N} (1 - r(x', \xi'))^j \quad \text{and} \quad \mathcal{Q}_{M,N}(x', \xi') := 1 + \sum_{j=1}^{N} q^j_{M,N} (1 - r(x', \xi'))^j.$$

By (1.7), $\mathcal{P}_{M,N}$ and $\mathcal{Q}_{M,N}$ involve powers of $|\xi'|_g^2$. Since $|\xi'|_g^2$ is a quadratic form in the variables ξ', the boundary condition (1.6c) involves differential operators, and is thus local.

Recall that the rationale behind these particular \mathcal{D} and \mathcal{N} consists of the following three points.

(i) The ideal condition to impose on $\Gamma_{tr,R}$ is that the Neumann trace, $\partial_n v$, equals the Dirichlet-to-Neumann map for the exterior of $\tilde{\Omega}_R$ under the Sommerfeld radiation condition (1.1c) applied to the Dirichlet trace, v (see §2.7 and the references therein).

(ii) When $\tilde{\Omega}_R$ is convex, the principal symbol of this Dirichlet-to-Neumann map (as a semi-classical pseudodifferential operator), away from glancing rays, i.e. rays that are tangent to the boundary, equals $\sqrt{r(x', \xi')}$; see Remark 2.1 for more details.

(iii) The definitions of $p(t)$ and $q(t)$ (1.8) imply that if \mathcal{D} and \mathcal{N} satisfy Assumption 1.4, then the boundary condition (1.6c) corresponds to approximating $\sqrt{r(x', \xi')}$ by the Padé approximant of type $[M, N]$ at $|\xi'|_g^2 = 0$, i.e. at rays that are normal to the boundary.

The polynomials $p(t)$ and $q(t)$ are constructed based on their properties at $t = 0$. However, the quantity $q(t)\sqrt{1 - t} - p(t)$ can have other zeros in $t \in (0, 1]$, which corresponds to the boundary condition (1.6c) not reflecting certain non-normal rays. We record for later use notation for these other zeros. Given M, N, let $\{t_j\}_{j=1}^{m_{\text{mult}}}$ be the zeros of $q(t)\sqrt{1 - t} - p(t)$ in $t \in (0, 1]$ where $p(t)$ and $q(t)$ are defined by (1.8). Then $m_{\text{vanish}} < \infty$ since $q(t)\sqrt{1 - t} - p(t)$ is analytic on $(-1, 1)$, continuous at 1, and $p(1) \neq 0$ (see Lemma 4.4 below). Let m_{mult} be the highest multiplicity of the zeros $\{t_j\}_{j=1}^{m_{\text{mult}}}$.
When $\mathcal{N} = \mathcal{D} = I$, (1.6c) is the impedance boundary condition
\begin{equation}
\partial_n v - ikv = 0,
\end{equation}
and is covered by Assumption 1.4 with $M = N = 0$, i.e. $p(t) = q(t) = 1$. In this case, $m_{\text{vanish}} = 0$, since $\sqrt{1-t} - 1$ has no zeros for $t \in (0, 1]$.

1.4. Wellposedness of the truncated problem and k-explicit bound on its solution.

Theorem 1.5. Let $\Omega_{tr} \subseteq B(0,1)$ be a non-trapping obstacle, $M \geq 0$, $\Omega_R \subset B(0,M R)$ be convex with smooth boundary $\Gamma_{tr,R}$ that is nowhere flat to infinite order and such that $\Gamma_{tr,R} / R \rightarrow \Gamma_{tr}^\infty$ in C^∞. Let \mathcal{N} and \mathcal{D} satisfy Assumption 1.4 with either $M = N$ or $M = N + 1$.

There exists $C > 0$ such that given $R \geq 1$, there exists $k_0 = k_0(R) > 0$ such that, given $f \in L^2(\Omega_R)$, $g_D \in H^1(\Gamma_D)$, and $g_I \in L^2(\Gamma_{tr,R})$, if $k \geq k_0$, then the solution $v \in H^1(\Omega_R)$ of
\begin{align}
(\Delta + k^2)v &= f \quad \text{in } \Omega_R, \\
v &= g_D \quad \text{on } \Gamma_D, \quad \text{and} \\
\mathcal{N}(k^{-1}\partial_n v) - i\mathcal{D}(v) &= g_I \quad \text{on } \Gamma_{tr,R}
\end{align}
exists, is unique, and satisfies
\begin{equation}
\|\nabla v\|_{L^2(\Omega_R)} + k \|v\|_{L^2(\Omega_R)} \leq C(R \|f\|_{L^2(\Omega_R)} + R^{1/2}(\|\nabla_{\Gamma_D} g_D\|_{L^2(\Gamma_D)} + k \|g_D\|_{L^2(\Gamma_D)}) + R^{1/2}k \|g_I\|_{L^2(\Gamma_{tr,R})}).
\end{equation}

Note that results analogous to the wellposedness statement in Theorem 1.5 in the time domain are given in [TH86, Theorem 4], [EM79, Theorem 1] for problems where the spatial domain is a half-plane.

Because of the importance of the truncated problem in numerical analysis, proving bounds analogous to (1.12) when v satisfies the impedance boundary condition
\begin{equation}
\partial_n v - ikv = g_I \quad \text{on } \Gamma_{tr,R}
\end{equation}
has been the subject of many investigations in the literature, including [Mel95, §8.1], [CF06, Het07, BYZ12, LMS13], [MS14, Remark 4.7], [CF15, §2.1], [BY16, BSW16], [CFN18, Appendix B], [ST18], [GPS19, Appendix A], [GS20]. Indeed, the bound (1.12) under the boundary condition (1.13) and various assumptions on $\Omega_{- and }$ Ω and Ω_R and sometimes with $\Omega_{- and }$ Ω_R in [Mel95, Proposition 8.1.4], [CF06, Theorem 1], [Het07, Proposition 3.3], [BSW16, Theorem 1.8], [CF15, §2.1.5], [ST18, Theorem 22], [GPS19, §A.2], [GS20, Theorems 3.2 and 5.10] (with the last four references considering the variable-coefficient Helmholtz equation).

To our knowledge, the bound (1.12), however, is the first k-explicit bound for a truncated Helmholtz problem where a local absorbing boundary condition is posed other than the impedance boundary condition (1.13).

1.5. Bounds on the relative error in Ω_R. All the results in this section proved under the assumption that \mathcal{N} and \mathcal{D} satisfy Assumption 2.2 with either $M = N$ or $M = N + 1$, so the the truncated problem is wellposed by Theorem 1.5.

Theorem 1.6 (Lower bound for general convex $\Gamma_{tr,R}$). If $\Omega_{- and }$ $\Gamma_{tr,R}$ is convex, then there exists $C = C(\Omega_R, M, N) > 0$ that depends continuously on R and $k_0 = k_0(R, \Omega_R, M, N) > 0$, such that, for any direction a,
\begin{equation}
\frac{\|u - v\|_{L^2(\Omega_R)}}{\|v\|_{L^2(\Omega_R)}} \geq C \quad \text{for all } k \geq k_0.
\end{equation}

The following three results prove bounds on the relative error that are explicit in R. Theorem 1.7 considers the case $\Gamma_{tr,R} = \partial B(0, R)$, and Theorems 1.8 and 1.9 consider the case when $\Gamma_{tr,R} / R$ tends to a limiting object that is not a sphere.
Theorem 1.7 (Quantitative lower and upper bounds when $\Gamma_{tr,R} = \partial B(0,R)$). Suppose that Ω_- is nontrapping, $\Omega_- \subset B(0,1)$, and $\Gamma_{tr,R} = \partial B(0,R)$ with $R \geq 1$. Then, there exists $C_j = C_j(\Omega_-, M, N) > 0, j = 1, 2$, such that for any $R \geq 1$, there exists $k_0(R, \Omega_-, M, N) > 0$ such that, for any direction a,

$$\frac{C_1}{R^{2m_{ord}}} \leq \frac{\|u - v\|_{L^2(\Omega_R)}}{\|u\|_{L^2(\Omega_R)}} \leq \frac{C_2}{R^{2m_{ord}}}, \quad \text{for all } k \geq k_0. \tag{1.14}$$

The reason that k_0 in Theorem 1.7 depends on R is because of the difference between the limits $k \to \infty$ with R fixed and $R \to \infty$ with k fixed. To illustrate this difference, consider the boundary conditions

$$\partial_n - ik)v = 0 \quad \text{and} \quad \left(\partial_n - ik + \frac{d - 1}{2r}\right)v = 0. \tag{1.15}$$

Both satisfy Assumption 1.4 with $M = N = 0$, with, respectively $\mathcal{N} = 1, D = 1$ and $\mathcal{N} = 1, D = 1 - k^{-1}(d + 1)/(2r)$. Therefore, in both cases the error $\|u - v\|_{L^2(\Omega_R)}/\|u\|_{L^2(\Omega_R)} \sim R^{-2}$ for fixed R as $k \to \infty$ by Theorem 1.7. However, for fixed k as $r := |x| \to \infty$,

$$\left(\partial_n - ik\right)(u - v)(x) = \left(\partial_n - ik\right)u(x) = O\left(r^{-(d + 1)/2}\right)\quad \text{and} \quad \left(\partial_n - ik + \frac{d - 1}{2r}\right)(u - v)(x) = \left(\partial_n - ik + \frac{d - 1}{2r}\right)u(x) = O\left(r^{-(d + 3)/2}\right). \tag{1.16}$$

The fact that the right-hand sides of (1.16) and (1.17) are different shows that, while the behaviour as $R \to \infty$ with R fixed by Theorem 1.7, the behaviour as $R \to \infty$ with k fixed is different. We expect that the bounds in this paper – for the limit $k \to \infty$ with R fixed – in fact hold uniformly when $R \ll k^\gamma$ for some $\gamma < 1$ (i.e., when the large parameter R is smaller than the large parameter k).

When the limiting object Γ^∞_{tr} is not a sphere, the lower and upper bounds are given separately in Theorems 1.8 and 1.9, respectively. This is because the lower bound allows the limiting object to, e.g., have corners, whereas the upper bound requires the limiting object to be smooth.

Theorem 1.8 (Quantitative lower bound for generic $\Gamma_{tr,R}$). Suppose that Ω_- is nontrapping, $\Omega_- \subset B(0,1)$, and there exists $M > 0$ such that

$$B(0, M^{-1}R) \subset \tilde{\Omega}_R \subset B(0, MR). \tag{1.18}$$

Assume that $\Gamma_{tr,R}$ is smooth and convex and such that (i) Γ^∞_{tr} is not a sphere centred at the origin, and (ii) the convergence $\Gamma_{tr,R}/R \to \Gamma^\infty_{tr}$ is in $C^{0,1}$ globally and in $C^{1,\varepsilon}$ (for some $\varepsilon > 0$) away from any corners of Γ^∞_{tr}.

Then there exists $C = C(\Omega_-, M, N, \{\Gamma_{tr,R}\}_{R \in [1, \infty)}) > 0$ such that for all $R \geq 1$, there exists $k_0 = k_0(R, \Omega_-, M, N, \{\Gamma_{tr,R}\}_{R \in [1, \infty)}) > 0$ such that, for any direction a,

$$\frac{\|u - v\|_{L^2(\Omega_R)}}{\|u\|_{L^2(\Omega_R)}} \geq C \quad \text{for all } k \geq k_0. \tag{1.19}$$

Theorem 1.9 (Quantitative upper bound for generic $\Gamma_{tr,R}$). Suppose that Ω_- is nontrapping with $\Omega_- \subset B(0,1)$. Suppose that, for every $R \geq 1$, $\tilde{\Omega}_R \subset B(0, MR)$, $\Gamma_{tr,R}$ is smooth, convex, and nowhere flat to infinite order, and $(\Gamma_{tr,R}/R) \to \Gamma^\infty_{tr}$ in C^{∞} as $R \to \infty$. Then there exists $C = C(\Omega_-, M, N, \{\Gamma_{tr,R}\}_{R \in [1, \infty)}) > 0$ such that for any $R \geq 1$, there exists $k_0 = k_0(R, \Omega_-, M, N, \{\Gamma_{tr,R}\}_{R \in [1, \infty)}) > 0$ such that for any $a \in \mathbb{R}^d$,

$$\frac{\|u - v\|_{L^2(\Omega_R)}}{\|u\|_{L^2(\Omega_R)}} \leq C \quad \text{for all } k \geq k_0. \tag{1.20}$$

We now explain why the constants in the upper and lower bounds in Theorems 1.6-1.9 decrease with R when $\Gamma_{tr,R} = \partial B(0,R)$, but are independent of R for generic $\Gamma_{tr,R}$. Recall from §1.3 that the boundary condition (1.6c) corresponds to approximating $\sqrt{r(x', \xi)}$ by a Padé approximant in $|\xi|^2$, with this approximation valid to order m_{ord} in $|\xi|^2$ at $\xi' = 0$ (i.e., rays hitting $\Gamma_{tr,R}$
in the normal direction) by (1.9); recall also that there exists finitely-many other values of $|\xi'|^2$ such that $Q_{M,N}(x',\xi')\sqrt{r(x',\xi')} - P_{M,N}(x',\xi') = 0$, which corresponds to there being finitely-many non-normal angles such that rays hitting $\Gamma_{tr,R}$ at these angles are not reflected by $\Gamma_{tr,R}$. When $\Gamma_{tr,R} = \partial B(0,R)$ and R is large, the rays originating from Ω_- hit $\Gamma_{tr,R}$ in a direction whose angle with the normal decreases with increasing R (in fact the angle $< R^{-1}$; see Lemma 5.14 below). Thus, if R is sufficiently large, the finitely-many special non-normal angles are avoided, and the error for large k decreases with R, with the accuracy depending on m_{ord}; see Theorem 1.7. When $\Gamma_{tr,R}^\infty$ is not a sphere centred at the origin, for every incident direction there exist rays hitting $\Gamma_{tr,R}^\infty$ at a fixed, non-normal angle that is also not one of the finitely-many special non-normal angles (see Lemma 5.12 below). Since the Dirichlet-to-Neumann map is not approximated by the boundary condition (1.6c) at such an angle, the error is therefore independent of R and m_{ord}; see Theorems 1.8 and 1.9.

1.6. Bounds on the relative error in subsets of Ω_R. Given the upper and lower bounds on the error in Theorems 1.6-1.9, a natural question is: is the error any smaller in a neighbourhood of the obstacle (i.e. away from the artificial boundary)\

We focus on the case when either $\Gamma_{tr,R} = \partial B(0,R)$ or $\Gamma_{tr,R}$ is the boundary of a hypercube with smoothed corners. We do this because the artificial boundaries most commonly used in applications are $\Gamma_{tr,R} = \partial B(0,R)$ and $\Gamma_{tr,R}$ is a hypercube, but in the latter case we need to smooth the corners for technical reasons.

Theorem 1.10 (Quantitative lower bound on subset of Ω_R when $\Gamma_{tr,R} = \partial B(0,R)$). Suppose that Ω_- is nontrapping, $\Omega_- \subset B(0,1)$, and $\Gamma_{tr,R} = \partial B(0,R)$ with $R \geq 1$. Then, there exists $C = C(\Omega_-,M,N) > 0$ and $R_0 = R_0(M,N) \geq 2$ such that for any $R \geq R_0$, there exists $k_0 = k_0(R,\Omega_-,M,N) > 0$ such that, for any direction a,

$$\frac{\|u - v\|_{L^2(B(0,2))}}{\|u\|_{L^2(B(0,2))}} \geq \frac{C}{R^{2m_{\text{ord}}}} \quad \text{for all } k \geq k_0.$$

Furthermore, if $M = N = 0$, then $R_0 = 2$.

That is, when $\Gamma_{tr,R} = \partial B(0,R)$, the error in $B(0,2)$ is bounded below, independently of k, and the lower bound has the same dependence on R as for the error in Ω_R (see Theorem 1.7). The fact that we have explicit information about R_0 when $M = N = 0$ is because in this case $m_{\text{vanish}} = 0$, i.e. there are no non-normal angles for which the reflection coefficient vanishes, and the proof is simpler.

Theorem 1.11. (Quantitative lower bound on subset of Ω_R when $\Gamma_{tr,R}$ is the boundary of a smoothed hypercube.) Suppose that Ω_- is nontrapping and $\Omega_- \subset B(0,1)$. Let \mathcal{E} be the set of corners of $[-R/2,R/2]^d$ and, given $\epsilon > 0$, let

$$\mathcal{E}_\epsilon := \bigcup_{x \in \mathcal{E}} B(x,\epsilon);$$

i.e. \mathcal{E}_ϵ is a neighbourhood of the corners. Then, there exists $C = C(\Omega_-,M,N) > 0$, and $\epsilon_0 = \epsilon_0(\Omega_-)$ such that, for any $R \geq 4$, if $\Gamma_{tr,R}$ is smooth and

$$\Gamma_{tr,R} \setminus \mathcal{E}_\epsilon = \left[-\frac{R}{2},\frac{R}{2}\right]^d \setminus \mathcal{E}_\epsilon \quad \text{for } 0 < \epsilon \leq \epsilon_0,$$

then there exists $k_0 = k_0(R,\Omega_-,M,N) > 0$ such that, for any direction a,

$$\frac{\|u - v\|_{L^2(B(0,2))}}{\|u\|_{L^2(B(0,2))}} \geq \frac{C}{R^{(d-4)/2}} \quad \text{for all } k \geq k_0.$$

That is, when $\Gamma_{tr,R}$ is a smoothed hypercube, the error in $B(0,2)$ is bounded below independently of k, in a similar way to the error in Ω_R (see Theorem 1.8). However, whereas the lower bound in Theorem 1.8 is independent of R, Theorem 1.11 allows for the possibility that the large-k-limit of the error in $B(0,2)$ decreases with R.
Remark 1.12 (Smoothness of boundaries). Theorems 1.6, 1.7, 1.8, 1.9, and 1.5 are proved under the assumptions that Γ_D and $\Gamma_{1,R}$ are C^∞, with Theorem 1.5 also assuming that $\Gamma_{1,R}'$ is C^∞. In all these proofs one actually requires that these boundaries are C^m for some unspecified m. One could in principle go through the arguments in the present paper, and those in [Mil00] about defect measures on the boundary (which we adapt in \S 2), to determine the smallest m such that the results hold, but we have not done this.

1.7. Numerical experiments in 2-d illustrating some of the main results. These numerical experiments all consider the simplest boundary condition satisfying Assumption 1.4, i.e. the impedance boundary condition $\partial_n v - ikv = 0$, which is covered by Assumption 1.4 with $\mathcal{N} = D = 1$.

We first describe the set up common to Experiments 1.13, 1.14, and 1.15. The set up for

Experiments 1.16 and 1.17 is slightly different, and is described at the beginning of Experiment 1.16.

- $d = 2$, $\mathcal{N} = D = 1$ in (1.6c); therefore $M = N = 0$, $m_{\text{ord}} = 1$, and $m_{\text{vanish}} = 0$.
- $\Gamma_{1,R} = \partial B(0, R)$, for some specified $R > 0$.
- As a proxy for the solution u to (1.1), we use u_{pml} defined to be the solution of the boundary value problem analogous to (1.1) but truncated with a radial PML in an annular region $B(0, R_{\text{pml}}) \setminus B(0, R)$, with $R_{\text{pml}} > R$, as described in, e.g. [CM98, Section 3]. In sequences of computations with increasing k, the width of the PML, $R_{\text{pml}} - R$ is chosen as a constant independent of k (specified in each experiment) which is always larger than the largest wavelength considered. At least in the case when there is no obstacle, this condition ensures that $\|u - u_{\text{pml}}\|_{H^1(\Omega_n)}$ is uniformly bounded as k increases by [CX13, Lemma 3.4], [LW19, Theorem 3.7]. (Note that, although there exist bounds on the error of PML in the case of obstacle scattering; see, [LS98, Theorem 2.1], [LS01, Theorem A], [HSZ03, Theorem 5.8], [BP07, Theorem 3.4], the dependence of all the constants on k in these bounds is not given explicitly.)

- The boundary value problems for u_{pml} and v are discretised using the finite element method with P2 elements (i.e. conforming piecewise polynomials of degree 2) and implemented in FreeFEM++ [Hec12]. The linear systems are solved using preconditioned GMRES, using the package “ffddm” with tolerance 10^{-6} and the preconditioner ORAS (Optimized Restricted Additive Schwarz), as described in [Fre20]. The computations were performed on 128 cores of the University of Bath HPC facility “Balena”.
- In sequences of computations with increasing k, the meshwidth h_{FEM} is chosen as $h_{\text{FEM}} = Ck^{-1-1/(2p)}$ (for some $C > 0$, independent of all parameters) where p is the polynomial degree; i.e. $h_{\text{FEM}} = Ck^{-1-1/4}$, since $p = 2$ in our computations. Choosing h_{FEM} in this way ensures that, at least for the impedance solution, the H^1 error in the finite-element solution is uniformly bounded in terms of the data as k increases by [DW15, Corollary 4.2]. (Once expects that the same is true for the PML solution, but the analogous results for this problem have only been obtained for $p = 1$; see [LW19, Theorem 4.4].)
- The finite-element approximations to u_{pml} and v are denoted by $u_{\text{pml},h_{\text{FEM}}}$ and $v_{\text{pml},h_{\text{FEM}}}$ respectively. We compute the relative error

$$\frac{\|u_{\text{pml},h_{\text{FEM}}} - v_{\text{FEM}}\|_{L^2(\Omega_n)}}{\|u_{\text{pml},h_{\text{FEM}}}\|_{L^2(\Omega_n)}}.$$

In the figures we plot the total fields corresponding to $u_{\text{pml},h_{\text{FEM}}}$ and $v_{\text{pml},h_{\text{FEM}}}$, i.e. $\exp(ikx \cdot a) - u_{\text{pml},h_{\text{FEM}}}$ and $\exp(ikx \cdot a) - v_{\text{pml},h_{\text{FEM}}}$ respectively; this is because the total field is easier to interpret than the scattered fields.

Experiment 1.13 (Scattering by ball, verifying Theorems 1.1/1.7). We choose $\Gamma_D = \partial B(0,1)$, $R = 2$, $R_{\text{pml}} = 2 + 0.5$, and $a = (1,0)$ (i.e. the plane wave is incident from the left). Figure 1.1 shows the real parts of the total fields

$$\Re(\exp(ikx \cdot a) - u_{\text{pml},h_{\text{FEM}}}), \quad \Re(\exp(ikx \cdot a) - v_{\text{pml},h_{\text{FEM}}}), \quad \text{and} \quad \Re(u_{\text{pml},h_{\text{FEM}}} - v_{\text{pml},h_{\text{FEM}}}),$$

at $k = 40$, computed with $p = 2$ and $h_{\text{FEM}} = (2\pi/10)k^{-1-1/4}$. We see the error is largest in the shadow of the scatterer near Γ_D.
Table 1.1 then shows the relative error (defined by (1.19)) for increasing \(k \) for \(R = 2, 4, 8 \). These results were computed with \(p = 2 \) and now \(h_{\text{FEM}} = (2\pi/5)k^{-1-1/4} \); the change in \(h \) compared to that used in Figure 1.1 is so that the linear systems do not get too large (when \(k = 160 \) and \(R = 2 \), the number of degrees of freedom in the PML system is \(14 \times 10^6 \)). Even so the \(k = 160 \) run for \(R = 4 \) failed to complete.

The errors in Table 1.1 are constant for \(R \) fixed as \(k \) increases, in agreement with Theorems 1.1/1.7. The limiting value of the error as \(k \to \infty \) for \(R = 4 \) is approximately five times smaller than the limiting value for \(R = 2 \). Since \(m_{\text{ord}} = 1 \), the factor \(R^{-2m_{\text{ord}}} = R^{-2} \) in the bound (1.14) means that we expect the error for \(R = 4 \) to be four times smaller than that for \(R = 2 \), at least when \(k \geq k_0(R) \) (with \(k_0(R) \) the unspecified constant in Theorems 1.1/1.7).

\(k \)	Relative error for ball \(R = 2 \)	Relative error for ball \(R = 4 \)	Relative error for ball \(R = 8 \)
20	0.0484546	0.00972861	0.00216756
40	0.0489765	0.0105276	0.00219439
80	0.0496579	0.0107677	
160	0.0489148		

Table 1.1. The relative error (1.19) against \(k \) for scattering by a ball (described in Experiment 1.13) for two different values of \(R \).

Experiment 1.14 (Scattering by a butterfly-shaped obstacle, verifying Theorems 1.1/1.7). We choose \(\Gamma_D \) to be the curve defined in polar coordinates by

\[
\Gamma_D := \left\{(r, \theta) : r = (0.3 + \sin^2(\theta))(1.4 \cos(2\theta) + 1.5), \theta \in [0, 2\pi]\right\}
\]
$R = 2$, and $R_{\text{pml}} = 2 + 0.5$. We consider the two different incident plane waves corresponding to $a = (\cos(7\pi/16), \sin(7\pi/16))$ and $a = (\cos(\pi/16), \sin(\pi/16))$.

Figure 1.2 shows the real parts of the total fields (1.20) at $k = 40$ with $a = (\cos(7\pi/16), \sin(7\pi/16))$, computed with $p = 2$ and $h_{\text{FEM}} = (2\pi/5)k^{-1-1/4}$. In this case, the error is large in the shadow of the scatterer not only near Γ_D, but also away from the obstacle. The choice $a = (\cos(\pi/16), \sin(\pi/16))$ gives a qualitatively similar picture.

Table 1.2 shows the relative error (defined by (1.19)) for this set up for increasing k and the two different incident plane waves (again all computations were done with $p = 2$ and $h_{\text{FEM}} = (2\pi/5)k^{-1-1/4}$). For each a, the error is constant as k increases, again in agreement with Theorems 1.1/1.7. While the errors depend on a, the results are consistent with the statement in Theorems 1.1/1.7 that the error can be bounded, from above and below, uniformly in a.

k	Relative error, incident angle $7\pi/16$	Relative error, incident angle $\pi/16$
20	0.0623217	0.0570241
40	0.0624238	0.0587955
80	0.0627993	0.0583194

Table 1.2. The relative error (1.19) against k for scattering by a butterfly-shaped obstacle (described in Experiment 1.14) and two different incident plane waves.

Experiment 1.15 (Trapping created by the impedance boundary). We choose $R = 2$, $R_{\text{pml}} = 1.125 + 0.5$, $k = 50$, $a = (10/\sqrt{104}, 2/\sqrt{104})$, and Ω_- the polygon connecting the points $(0.5, 0.125), (0.125, 0.5)$.
(a) Real part of total field corresponding to \(u_{pml,FEM} \)

(b) Real part of total field corresponding to \(v_{h,FEM} \)

(c) Real part of error \(u_{pml,FEM} - v_{h,FEM} \)

Figure 1.3. Scattering by a trapping obstacle for \(k = 50 \) (as described in Experiment 1.15)

(0.5, 0.5), (−0.5, 0.5), (−0.5, −0.5), (0.8, −0.5), (0.8, −0.125), (0.55, −0.125), (0.55, −0.375), (−0.375, −0.375), (−0.375, 0.375), (0.25, 0.375), (0.25, 0.125). We discretise with \(p = 2 \) and \(h_{FEM} = \left(\frac{2\pi}{10} \right)^{k^{-1}-1/4} \), and the total fields are plotted in Figure 1.3.

This set up is not included in Theorems 1.1/1.7, since \(\Omega_- \) is trapping. However we include this experiment to show that artificial reflections from the impedance boundary \(\Gamma_I \) can excite trapped waves not present in the PML solution (as long as the incident angle is chosen in a careful way depending on \(\Omega_- \), \(k \), and the position of \(\Gamma_I \)).

Experiment 1.16 (Square \(\Gamma_I \), investigating accuracy for increasing \(k \) with \(\Gamma_I \) fixed). Both this experiment and Experiment 1.17 investigate the effect of a non-circular impedance boundary. \(\Gamma_I \) is the square of side length \(2R_{square} \) centred at the origin. We still compute our proxy for \(u \) using a radial PML, posing the boundary-value problem for \(u_{pml} \) on \(B(0,3R_{square}/2) \), with the PML region being \(B(0,3R_{square}/2 + 1/2) \setminus B(0,3R_{square}/2) \). Observe that \(\Gamma_I \subset B(0,3R_{square}/2) \), and so \(\Gamma_I \) is a fixed distance away from the PML region. We choose \(\Omega_- = B(0,1) \), \(R_{square} = 2, 4, 8 \) (observe that \(\Gamma_D \) is then inside \(\Gamma_I \) – as required), and incident direction \(a = (\cos \pi/8, \sin \pi/8) \). Table 1.3 then shows the relative error for increasing \(k \).

When \(\Gamma_{tr,R} = \partial B(0,R) \), Table 1.1 showed the error decreasing by roughly a factor of 5 as \(R \) doubled. In Table 1.3 we see very different behaviour: going from \(R_{square} = 2 \) to \(R_{square} = 4 \) the error decreases by less than a factor of 2, and going from \(R_{square} = 4 \) to \(R_{square} = 8 \) the error does not decrease. Although this experiment is not covered by Theorems 1.2/1.8, since the theorem requires \(\Gamma_{tr,R} \) to be smooth, the behaviour of the error is consistent with the main result of Theorems...
1.2/1.8, namely that when \(\Gamma^\infty_{tr} := \lim_{R \to \infty} (\Gamma_{tr,R}/R) \) is not a ball centred at the origin, the relative error is bounded above and below, independent of \(R \), as \(k \) increases.

\(k \)	Relative error for \(R_{\text{square}} = 2 \)	Relative error for \(R_{\text{square}} = 4 \)	Relative error for \(R_{\text{square}} = 8 \)
20	0.0832785	0.0587430	0.0661221
40	0.0802873	0.0578503	0.0528049
80	0.0772161		

Table 1.3. The relative error (1.19) against \(k \) for scattering by the ball of radius 1 with \(\Gamma_I \) a square of side length \(2R_{\text{square}} \) centred at the origin and incident angle \(\pi/8 \) (described in Experiment 1.16).

Experiment 1.17 (Square \(\Gamma_{tr,R} \), investigating accuracy for increasing dist\((\Gamma_I, 0) \) with \(k \) fixed).

We now investigate the error when \(\Gamma_{tr,R} \) is a square as \(R_{\text{square}} \) increases with \(k \) fixed. This situation is not covered by any of Theorems 1.6-1.9. However, we include this experiment since its results, along with those in Experiment 1.16, indicate that the lower bound in Theorems 1.2/1.8 holds uniformly in \(R \) and \(k \).

To investigate the case when \(R_{\text{square}} \) increases with \(k \) fixed, we consider an equivalent problem when \(R_{\text{square}} \) is fixed, \(k \) increases, and the obstacle diameter decreases like \(1/k \). The set up is as in Experiment 1.16 with \(R_{\text{square}} = 1 \) (so the PML region is \(B(0, 2) \setminus B(0, 1.5) \)), \(\Omega_- = B(0, 10/k) \) (so that we need \(k > 10 \) for \(\Gamma_D \) to be inside \(\Gamma_I \)), and the incident direction \(a = \pi/8 \). Figure 1.4 plots the relative error for this set up with \(k = 60 \), and Table 1.4 displays the relative error (1.19) for \(k = 20, 40, 80, 160 \). This set up is equivalent to \(\Omega_- = B(0, 1) \), \(k = 10 \), and \(R_{\text{square}} = 2, 4, 8, 16 \), and Table 1.4 is labelled with these parameters.

The fact that the last three entries of Table 1.4 and the last entries in the second and third columns of Table 1.3 are around 0.5 suggests that some value near 0.5 is a lower bound on the relative error in both the limit \(k \to \infty \) with \(R_{\text{square}} \) fixed and the limit \(R_{\text{square}} \to \infty \) with \(k \) fixed.

\(R_{\text{square}} \)	Relative error
2	0.0862636
4	0.0593898
8	0.0532693
16	0.0515193

Table 1.4. The relative error (1.19) against \(R_{\text{square}} \) for scattering by the ball of radius 1 with \(\Gamma_I \) a square of side length \(2R_{\text{square}} \) centred at the origin, \(k = 10 \), and incident direction \(a = (\cos(\pi/8), \sin(\pi/8)) \) (described in Experiment 1.17).

1.8. Implications of the main results for the \(k \)-explicit numerical analysis of the Helmholtz equation. A large number of numerical-analysis papers use as a model Helmholtz problem either the BVP (1.6) with \(N = D = 1 \), i.e. the impedance boundary condition on \(\Gamma_{tr,R} \), or its analogue with variable coefficients in the PDE. Indeed, the following papers analyse numerical methods applied to these problems (sometimes with \(\Omega_- = \emptyset \)), with the analyses valid in the limit \(k \to \infty \) with the domain fixed:

- conforming FEMs (including continuous interior-penalty methods) [SW05, HH08, MS11, EM12, ZW13, Wu14, EM14, DW15, ZD15, DZ16, CFW18, BNO19, DMS19, CF19, GS20, MST20, CFN20, DWZ20],
- least-squares methods [DGMZ12, CQ17, BM19, HS20, SL20],
- DG methods based on piece-wise polynomials [FW09, FW11, DGMZ12, FX13, HS13, MPS13, CZ13, CLX13, MWY14, ZD15, SZ15, WWZZ18, ZW20, CW20],
- plane-wave/Trefftz-DG methods [ADF09, HMP11, HMP14, ACD + 14, HMP16, HY18, MPP19, YH20, HZ20],
- multiscale finite-element methods [GP15, BGP17, Pet17, BCFG17, OY18, CFV20, PV20].
• preconditioning methods [GGS15, GSV17, GSZ20, GGS20, LXSdH20, RN20],
• uncertainty-quantification methods [FLL15, LWZ18, GKS20].

Two reasons the problem (1.6) with an impedance boundary condition on $\Gamma_{tr,R}$ is used as a model problem are that (i) it is well-posed for all $k > 0$, and (ii) when Ω_- is nontrapping, the bounds on the solution v in terms of the data have the same k-dependence as the bounds on the solution u of (1.1) – see the references underneath Theorem 1.5.

The results of Theorems 1.6-1.9, however, confirm rigorously the computationally-observable fact that, when Ω_R is fixed, the high-frequency behaviour of the solutions of (1.1) and (1.6) are genuinely different.

Another important use of local absorbing boundary conditions in numerical analysis of the Helmholtz equation is in domain-decomposition (DD) methods. This large interest began with the use of impedance boundary conditions for non-overlapping DD methods in [Des91, BD97] (following the use of Robin boundary conditions in a non-overlapping DD method for the Laplace equation in [Lio90]) and the connection between absorbing boundary conditions and the optimal subdomain boundary conditions (involving the Dirichlet-to-Neumann map) in the non-overlapping case was highlighted in [NRdS94, EZ98]. Recent methods based on impedance boundary conditions include [KS07, GSZ20, GGS20], and recent methods based on Padé approximations of the Dirichlet-to-Neumann map include [BAG12, BM18, MGA20, MRAG20]; see also the literature review in [GZ19, §4].

Despite the large current interest in Helmholtz DD methods, there are no rigorous k-explicit convergence proofs for any practical DD method for the high-frequency Helmholtz equation, partly due to a lack of k-explicit bounds on the error when absorbing boundary conditions are used to approximate the Dirichlet-to-Neumann map. We therefore expect the results and techniques in the present paper to be relevant for the k-explicit analysis of DD methods for the Helmholtz equation, and this will be investigated in future work.

1.9. **Comparison to the results of [HR87].** Out of the existing results on absorbing boundary conditions in the literature, the closest to those in the present paper are in [HR87]. Indeed, [HR87] used microlocal methods to study the time-domain analogue of the problems (1.1)/(1.6) when $\Omega_- = \emptyset$ (i.e., no obstacle), and proved a bound on the error between the solutions of the analogues of (1.1)/(1.6) at an arbitrary time.

While the results of the present paper also use microlocal methods (using defect measures instead of propagation of singularities used in [HR87]), differences between the results of the present paper and the results of [HR87] are the following.

• The constants in the main error bound in [HR87] ([HR87, Equation 5.1]) depend in an unspecified way on time. The results of the present paper hold uniformly for high-frequency
in the frequency domain, which is analogous to proving results for arbitrarily-long times in the time domain.

- The constants in the main error bound in [HR87] are not explicit in the distance of the artificial boundary from the origin. In contrast, the error bounds in Theorems 1.8-1.11 are explicit in R.

- [HR87] does not have to deal with glancing rays because it assumes that (i) $\Omega_\sim = \emptyset$ and (ii) the data is supported away from the artificial boundary. In contrast, (i) we allow the obstacle Ω_\sim to be non-empty and have tangent points, and so have to deal with glancing here, and (ii) we allow f in (1.11a) to have support up to the boundary $\Gamma_{tr,R}$ (as is needed to use the bound (1.12) in, e.g., the analysis of finite-element methods); therefore a large part of the analysis in §4 takes place at glancing.

1.10. Outline of paper. §2 contains results about semiclassical defect measures of Helmholtz solutions, with these results used in proofs of both the upper and lower bounds in Theorems 1.6-1.11. Recall that these measures describe where the mass of Helmholtz solutions in phase space (i.e. the set of positions x and momenta ξ) is concentrated in the high-frequency limit (for an informal discussion of Helmholtz defect measures, see [LSW19, §9.1]). In particular, §2.6 extends the results from [Mil00] about defect measures on the boundary to the case when the right-hand side of the Helmholtz equation is non-zero.

§3 proves three results about outgoing solutions of the Helmholtz equation (i.e., solutions satisfying the Sommerfeld radiation condition (1.1c)), Lemmas 3.1, 3.2, and 3.3, with the first used in the proof of the lower bounds, and the last two used in the proof of the upper bounds.

§4 proves Theorem 1.5 (the wellposedness result). Important ingredients for this proof are the trace bounds of Theorem 4.1; since the proofs of these are long and technical, they are postponed to §6.

§5 proves Theorems 1.6-1.11. The upper bounds follow immediately from Theorem 1.5 and Lemma 3.2. However, the lower bounds require showing that there exist rays, created by the incident plane wave, that reflect off Γ_D and hit $\Gamma_{tr,R}$ at an angle for which the reflection coefficient is not zero. Furthermore, to prove the qualitative bounds Theorems 1.7-1.11 we need to control various properties of these rays explicitly in R. §5.3 outlines the ideas used to construct these rays.

Acknowledgements. The authors thank Shihua Gong (University of Bath) and Pierre-Henri Tournier (Sorbonne Université, CNRS) for their help in performing the numerical experiments in §1.7. We thank Théophile Chaumont-Frelet (INRIA, Nice) and Ivan Graham (University of Bath) for commenting on an early draft of the introduction; in particular we thank TCF for asking us about the error in subsets of Ω_R, prompting us to prove the results in §1.6. EAS and DL were supported by EPSRC grant EP/R005591/1. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath.

2. Results about defect measures of solutions of the Helmholtz equation

2.1. Restatement of the boundary-value problems in semiclassical notation. While we anticipate the vast majority of “end users” of Theorems 1.6, 1.7, 1.8, and 1.9 will use the Helmholtz equation in the form (1.1) with frequency k (and be interested in the limit $k \to \infty$), the tools and existing results from semiclassical-analysis that we use to prove these results are more convenient to write using the semiclassical parameter $\hbar = k^{-1}$ (and the corresponding limit $\hbar \to 0$).

The boundary-value problem (1.1) therefore becomes,

\begin{align}
(-\hbar^2 \Delta - 1)u &= 0 \quad \text{in } \Omega_+,
\end{align}

\begin{align}
 u &= \exp(\imath x \cdot a / \hbar) \quad \text{on } \Gamma_D, \quad \text{and}
\end{align}

\begin{align}
 \hbar \frac{\partial u}{\partial r} - \imath u &= o\left(\frac{1}{r^{(d-1)/2}}\right) \quad \text{as } r \to \infty,
\end{align}
and the boundary-value problem (1.6) becomes,
\[(2.2a) \quad (-h^2 \Delta - 1)v = 0 \quad \text{in } \Omega_R,\]
\[(2.2b) \quad v = \exp(ix \cdot a/h) \quad \text{on } \Gamma_d,\]
\[(2.2c) \quad Nh\partial_n v - iDv = 0 \quad \text{on } \Gamma_{tr, R}.\]

In the rest of the paper, we use the "h-notation" instead of the "\(k\)-notation".

Appendix A recaps semiclassical pseudodifferential operators and associated notation.

2.2. The Helmholtz equation posed a Riemannian manifold \(M\). While the main results of this paper concern the Helmholtz equation posed in \(\Omega_R \subset \mathbb{R}^d\), in the rest of this section (§2), in §4, and in §6, unless specifically indicated otherwise, we consider the Helmholtz equation posed on a Riemannian manifold \(M\) with smooth boundary \(\partial M\) and such that there exists a smooth extension \(\tilde{M}\) of \(M\). The reason we do this is that we expect the intermediary results of Theorems 2.15 and 4.1 to be of interest in this manifold setting, independent of their application in proving the main results (Theorems 1.6-1.11). This manifold setting involves the operator \(P := -h^2 \Delta_g - 1\), where \(\Delta_g\) is the metric Laplacian. Nevertheless, for the reader unfamiliar with this setup, we highlight that \(M\) can be replaced by \(\Omega_R, \tilde{M}\) replaced by \(\mathbb{R}^d\), and \(\Delta\) replaced by \(\Delta_g\), and all the statements and proofs remain unchanged.

2.3. The local geometry and the flow. Near the boundary \(\partial M\), we use Riemannian/Fermi normal coordinates \((x_1, x')\), in which \(\Gamma\) is given by \(\{x_1 = 0\}\) and \(\Omega_R = \{x_1 > 0\}\). The conormal and cotangent variables are given by \((\xi_1, \xi')\). In these coordinates,
\[(2.3) \quad P := -h^2 \Delta_g - 1 = (hD_{x_1})^2 - R(x_1, x', hD_{x'}) + h(a_1(x)hD_{x_{1}} + a_0(x, hD_{x'}))\]
where \(a_1 \in C^\infty, a_0\) and \(R\) are tangential pseudodifferential operators (in sense of §A.3), with \(a_0\) of order 1, and \(R\) of order 2 with \(h\)-symbol \(r(x_1, x', \xi')\), with \(r(0, x', \xi') = 1 - \xi'^2_g\) (where the metric \(g_r\) is the norm that is induced by the boundary). That is, \(r(0, x', \xi')\) is the symbol of the tangential Laplacian; in what follows, we often abbreviate \(r(0, x', \xi')\) to \(r(x', \xi')\).

The fact that \(P\) is self adjoint implies that \(R\) is self adjoint, \(a_1 = \overline{a_1}\), and \([hD_{x_1}, a_1] = a_0 - (a_0)^*\) (with the latter two conditions obtained by integration by parts in the \(x_1\) variable near \(\Gamma\)). In a classical way (see, e.g., [Hör85, §24.2 Page 423]), the cotangent bundle to the boundary \(T^*\partial M\) is divided in three regions, corresponding to the number of solutions of the second order polynomial equation \(p(\xi_1) = 0\):

- the elliptic region \(\mathcal{E} := \{(x', \xi') \in T^*\partial M, \ r(x', \xi') < 0\}\), where this equation has no solution,
- the hyperbolic region \(\mathcal{H} := \{(x', \xi') \in T^*\partial M, \ r(x', \xi') > 0\}\), where it has two distinct solutions
\[(2.4) \quad \xi_1^\text{in} = -\sqrt{r(x', \xi')} \quad \text{and} \quad \xi_1^\text{out} = \sqrt{r(x', \xi')},\]
- the glancing region \(\mathcal{G} := \{(x', \xi') \in T^*\partial M, \ r(x', \xi') = 0\}\), where it has exactly one solution, \(\xi_1 = 0\).

The hyperbolic region plays a crucial role in obtaining the lower bounds in the main results, while we perform analysis near glancing to obtain the upper bounds.

Let \(p\) denote the semiclassical principal symbol of \(P := -h^2 \Delta_g - 1\), i.e. \(p = |\xi'|_g^2 - 1\). The Hamiltonian vector field of \(p\) is defined for compactly supported \(a\) by
\[H_p a := \{p, a\},\]
where \(\{\cdot, \cdot\}\) denotes the Poisson bracket. Let \(H^*_p\) denote the formal adjoint of \(H_p\), and let \(\varphi_\ell(\rho)\) denote the generalised bicharacteristic flow in \(\tilde{M}\) (see [Hör85, §24.3]), defined such that
\[(2.5) \quad (t, \rho) \in \mathbb{R} \times S^*_M \tilde{M} \rightarrow \varphi_\ell(\rho) \in S^*_M \tilde{M}.\]

In particular, when \(M = \Omega_R\) and \(\tilde{M} = \mathbb{R}^d\), \(\varphi_\ell(\rho) \in S^*_M \mathbb{R}^d := \{(x, \xi) \in S^* \mathbb{R}^d, x \in \overline{\Omega_R}\} = \{x \in \overline{\Omega_R}, \xi \in \mathbb{R}^d\text{ with }|\xi| = 1\}\). By Hamilton’s equations, away from the boundary of \(M\), this flow
satisfies \(\dot{x}_i = 2\xi_i \) and \(\dot{\xi}_i = 0 \), so that it has speed 2 (since \(|\xi| = 1 \)). Recall that the projection of the flow on the spatial variables are the rays.

We now defined some projection maps. Let \(\pi_M : T^\ast \tilde{M} \to \tilde{M} \) be defined by \(\pi_{\mathbb{R}^d}(x, \xi) = x \). Let \(\pi_{\partial M} : T_{\partial M} \tilde{M} \cap \{ p = 0 \} \to T^\ast \partial M \) be defined by

\[
(2.6) \quad \pi_{\partial M}(0, x', \xi_1, \xi') = (x', \xi').
\]

Let \(\pi_{\partial M, \text{in}} := \pi_{\partial M}|_{\xi_1 < 0} \) and let \(\pi_{\partial M, \text{out}} := \pi_{\partial M}|_{\xi_1 > 0} \).

Remark 2.1 (The Dirichlet-to-Neumann map away from glancing in local coordinates). In the notation above, locally on \(\Gamma_{\text{ir}}, R \), the map \(u \mapsto hD_{x_i}u = -\partial_i u/i \) has semicircular principal symbol \(-\sqrt{R(\xi')} \). The minus sign in front of the square root is chosen since, when \(\xi' = 0 \) (i.e. \(u \) corresponds to a normally-incident wave), the outgoing condition is that \(hD_{x_i}u = -u \) (i.e. \(\partial_n u = -iku \)), as opposed to \(hD_{x_i}u = u \) (i.e. \(\partial_n u = -iku \)).

2.4. Existence and basic properties of defect measures.

We first assume that \(u \in L^2_{\text{loc}}(\mathbb{R}^d) \) is a solution to

\[
(2.7) \quad Pu := (-h^2\Delta_u - 1)u = hf, \quad u|_{\partial \Gamma} = 0,
\]

where \(U \subset \mathbb{R}^d \) is open with smooth boundary \(\Gamma \) and \(f \in L^2_{\text{comp}}(\mathbb{R}^d) \). When taking traces of \(u \), we always do so from \(U \) rather than from \(\mathbb{R}^d \setminus U \). To define the defect measures associated with \(u \) we need the following boundedness assumption.

Assumption 2.2. Given \(\chi \in C_c^\infty(\mathbb{R}^d) \), there exists \(C > 0 \) and \(h_0 > 0 \) such that for any \(0 < h \leq h_0 \)

\[
\|u\|_{L^2(U)} + ||u||_{L^2(\Gamma)} + \|h\partial_u u\|_{L^2(\Gamma)} \leq C.
\]

Theorem 2.3 (Existence of defect measures). Suppose that \(u_{h_k} \) solves (2.7) and satisfies Assumption 2.2. Then there exists a subsequence \(h_k \to 0 \) and non-negative Radon measures \(\mu \) and \(\mu' \) on \(T^\ast \tilde{M}, \nu_\alpha, \nu_n, \nu_j \) on \(T^\ast \partial M \) such that for any symbol \(b \in C_c^\infty(T^\ast \tilde{M}) \) and tangential symbol \(a \in C_c^\infty(T^\ast \partial M) \), as \(\ell \to \infty \)

\[
\begin{align*}
(2.8) \quad & \langle b(x, h_k D_x) u, u \rangle \to \int b(x, \xi) \; d\mu, \\
& \langle a(x', h_k D_{x'}) u, f \rangle \to \int a(x', \xi') \; d\mu', \\
& \langle a(x', h_k D_{x'}) u, h_{k_i} D_{x_i} u, u \rangle_{\Gamma} \to \int a(x', \xi') \; d\nu_n, \\
& \langle a(x', h_k D_{x'}) h_{k_i} D_{x_i} u, h_{k_i} D_{x_i} u \rangle_{\Gamma} \to \int a(x', \xi') \; d\nu_n.
\end{align*}
\]

References for the proof. See [Zwo12, Theorem 5.2].

Remark 2.4 (The measure \(\nu_j \)). The joint measure \(\nu_j \) also describes pairings with the Neumann and Dirichlet traces swapped, since, by (A.2),

\[
\langle a(x', h_k D_{x'}) u, h_{k_i} D_{x_i} u \rangle_{\Gamma} = \langle a(x', h_k D_{x'})^* h_{k_i} D_{x_i} u, u \rangle_{\Gamma} \to \int \pi \; d\nu_j = \int a \; d\nu_j.
\]

We use the notation that \(\mu(a) := \int a \; d\mu \) for the pairing of a function and a measure. We also use the notation that \(\mu(f) := \int f \; \,d\mu \), where \(b \in L^\infty(d\mu) \) and \(f \in L^1(d\mu) \).

We now recall the following two fundamental results.

Lemma 2.5 (Invariance and support of defect measures). Let \(u \) satisfy (2.7) and let \(\mu \) be a defect measure of \(u \).

(i) In the interior of \(U \),

\[
(2.9) \quad \mu(H_p a) = -2\zeta \mu^j(a)
\]

for all \(a \in C_c^\infty(T^\ast U) \); in particular, if \(f = o(1) \) as \(h \to 0 \), then \(\mu \) is invariant under the flow.

(ii) \(\mu \) is supported in the characteristic set:

\[
(2.10) \quad \text{supp} \mu \cap T^\ast U \subset \Sigma_p := \{ p = 0 \}.
\]
References for the proof. (2.9) was originally proved in [G91]; see also [Zwo12, Theorem 5.4], [DZ19, Theorem E.44]. (2.10) was proved in the framework with boundary by [Mil00, Lemma 1.3]; see also [GSW20, Lemma 4.2].

Part (ii) of Lemma 2.5 implies that \(\mu \) is only supported on \(|\xi| = 1 \); this is the reason why we only consider the flow (2.5) defined on \(S^\pi_\pi \).

2.5. Evolution of defect measures under the flow.

Lemma 2.6 (Integration by parts). Let \(B_i \in C^\infty(\{-2\delta, 2\delta\} \times \Psi^L(\mathbb{R}^{d-1})) \), \(i = 1, 2 \), and let \(B = B_0 + B_1hD_{x_i} \). If
\[
(2.11)
\]
then, for all \(u \in C^\infty(M) \),
\[
\frac{i}{\hbar} \langle \{P_iB_i \}u, u \rangle_{L^2(M)} = -\frac{2}{\hbar} \Im \langle Bu, Pu \rangle_{L^2(M)} - \frac{1}{\hbar} \langle Bu, hD_{x_i} u \rangle_{L^2(\partial M)} + \langle hD_{x_1} Bu, u \rangle_{L^2(\partial M)} - \langle hD_{x_1} B_1 - h(B_1a_1 - \overline{\pi}B_1) \rangle_{L^2(\partial M)}.
\]

Corollary 2.7. Let \(u \) satisfy Assumption 2.2 and thus have defect measures as in Theorem 2.3. Given \(a \in C^\infty_c(T^*M) \), let
\[
a_{\text{even}}(x, \xi, \xi') := \frac{a(x, \xi, \xi') + a(x, -\xi, \xi')}{2}, \quad a_{\text{odd}}(x, \xi, \xi') := \frac{a(x, \xi, \xi') - a(x, -\xi, \xi')}{2\xi_1},
\]
so that \(a(x, \xi, \xi') = a_{\text{even}}(x, \xi, \xi') + \xi_1a_{\text{odd}}(x, \xi, \xi') \). Then
\[
(2.12)
\]
Proof of Lemma 2.6. First recall that \(R \) is self adjoint, \(a_1 = \overline{\pi} \), and \([hD_{x_1}, a_1] = a_0 - (a_0)^* \); see §2.3. By integration by parts,
\[
\langle (hD_{x_1})^2 Bu, u \rangle_{L^2(M)} = \langle Bu, (hD_{x_1})^2 u \rangle_{L^2(M)} = -\frac{1}{\hbar} \left[\langle hD_{x_1} Bu, u \rangle_{L^2(\partial M)} + \langle Bu, hD_{x_1} u \rangle_{L^2(\partial M)} \right],
\]
and
\[
\langle a_1 hD_{x_1} Bu, u \rangle_{L^2(M)} = \langle Bu, (a_1 hD_{x_1} + hD_{x_1}, a_1) u \rangle_{L^2(M)} = -\frac{1}{\hbar} \langle Bu, a_1 u \rangle_{L^2(\partial M)}.
\]
Using these two identities, the expression for \(P \) (2.3), the self-adjointness of \(R \), and the fact that \([hD_{x_1}, a_1] = a_0 - (a_0)^* \), we obtain that
\[
(2.13)
\]
Definition of \(B \) and the form of \(P \) in (2.3) imply that
\[
(2.14)
\]
Therefore, using (2.14) and (2.15), we have
\[
(2.15)
\]
Using the fact that \(u \) is a solution to (2.3), we obtain
\[
(2.16)
\]
Next, using the definition of B, integration by parts, and (2.11), we find that, for any v, u,
\[
\langle Bu, u \rangle_{L^2(M)} = -\frac{h}{i} \langle v, B_1^* u \rangle_{L^2(\partial M)} + \langle v, B_0^* u + hD_x(B_1^* u) \rangle_{L^2(M)}
\]
(2.17)
\[
= -\frac{h}{i} \langle v, B_1 u \rangle_{L^2(\partial M)} + \langle v, Bu \rangle_{L^2(M)}
\]
Letting $v = Pu$, combining (2.16) and (2.17), and using the fact that $B_1 = B_1^*$, we obtain
\[
\frac{i}{h} \langle [P, B]u, u \rangle_{L^2(M)} = \frac{i}{h} \langle Bu, Pu \rangle_{L^2(M)} - \frac{i}{h} \langle Pu, Bu \rangle_{L^2(M)}
\]
\[
- \langle B_1 hD_x u, hD_x u \rangle_{L^2(\partial M)} - \langle (B_0 + h(D_x B_1) - h(B_1 a_1 - \overline{\nu} B_1) hD_x u, u \rangle_{L^2(\partial M)}
\]
\[
- \langle B_0 u, hD_x u \rangle_{L^2(\partial M)} - \langle [h(D_x B_0) + B_1 (R - h a_0) + h\overline{\nu} B_0] u, u \rangle_{L^2(\partial M)},
\]
which is (2.12). \hfill \Box

Proof of Corollary 2.7. Letting $h \to 0$ in (2.12), using the third equation in (A.2) and the definitions of the measures in Theorem 2.3, we have
(2.18) \[
\mu(H_p b) = -2\Re \mu^l(b) - \nu_\sigma(b_1) - 2\Re \nu_j(b_1),
\]
where $b = \sigma(B)$, $b_1 = \sigma(B_1)$. The idea of the proof is to construct a B satisfying the assumptions of Lemma 2.6 with $\sigma(B_0) = a_{\text{odd}}$ and $\sigma(B_1) = a_{\text{even}}$ (and thus $\sigma(B) = a$). Since (2.13) is linear in a, without loss of generality, we assume that a is real. Since a_{even} and a_{odd} are both smooth, even functions of ξ_1, abusing notation slightly, we can write
(2.19) \[
a_{\text{even/odd}}(x, \xi_1, \xi') = a_{\text{even/odd}}(x, \xi_1^2, \xi').
\]
Let
(2.20) \[
\tilde{a}_{\text{even}}(x, \xi') = a_{\text{even}}(x, r(x_1, x', \xi'), \xi'), \quad \tilde{a}_{\text{odd}}(x, \xi') = a_{\text{odd}}(x, r(x_1, x', \xi'), \xi'),
\]
and
\[
\tilde{a}(x, \xi') = \tilde{a}_{\text{even}}(x, \xi') + \xi_1 \tilde{a}_{\text{odd}}(x, \xi').
\]
Since $S^* \tilde{M} = \{\xi_1^2 - r(x_1, x', \xi') = 0\}$ and $H_p(\xi_1^2 - r(x_1, x', \xi')) = 0$ (by (2.3)),
\[
\tilde{a}|_{S^* \tilde{M}} = a|_{S^* \tilde{M}} \quad \text{and} \quad H_p a|_{S^* \tilde{M}} = H_p(\tilde{a}|_{S^* \tilde{M}});
\]
therefore
\[
H_p a|_{S^* \tilde{M}} = H_p(\tilde{a}|_{S^* \tilde{M}}).
\]
Since μ is supported on $\{p = 0\}$ by (2.10),
(2.21) \[
\mu(H_p a) = \mu(H_p \tilde{a}).
\]
Let
\[
B_0(x, hD_x') := \frac{\tilde{a}_{\text{even}}(x, hD_x') + (\tilde{a}_{\text{even}}(x, hD_x'))^*}{2} + \frac{1}{2} \left[hD_x, \frac{\tilde{a}_{\text{odd}}(x, hD_x') + (\tilde{a}_{\text{odd}}(x, hD_x'))^*}{2} \right]
\]
and
\[
B_1(x, hD_x') := \frac{\tilde{a}_{\text{odd}}(x, hD_x') + (\tilde{a}_{\text{odd}}(x, hD_x'))^*}{2}.
\]
Then (2.11) is satisfied and, by (A.2), (2.20), and (2.19),
\[
\sigma(B_0)(x, \xi') = \tilde{a}_{\text{even}}(x, \xi') = a_{\text{even}}(x, \xi_1^2, \xi') \quad \text{on} \quad S^* \tilde{M}.
\]
Similarly, $\sigma(B_0)(x, \xi') = a_{\text{odd}}(x, \xi_1^2, \xi')$, and thus $\sigma(B) = a(x, \xi_1, \xi')$ on $S^* \tilde{M}$. The result (2.13) then follows from (2.18) and (2.21). \hfill \Box
2.6. Properties of defect measures on the boundary. In this subsection we review the calculations from [Mil00], adapting them to the case when the right-hand side of the PDE is non-zero.

Remark 2.8 (Notation in [Mil00]). Since our results rely heavily on the results of [Mil00], we record here the correspondence between the notation in [Mil00] (on the left) and our notation (on the right):

\[\Delta_p = 4r, \quad k^{in/out} = \xi^{in/out}, \quad \sigma = \xi_1, \quad s = x_1, \quad \nu^N = 4\nu_n, \quad \nu^{in} = 2\nu_j. \]

Recall that \(u \) has defect measure \(\mu \), trace measures \(\nu_d, \nu_n, \) and \(\nu_j, \) and \(f \) and \(u \) have joint defect measure \(\mu^j \). By [GSW20, Lemma 3.3], \(\mu^j(a) \) is absolutely continuous with respect to \(\mu \), and \(\mu^j = \beta d\mu \) for some \(\beta \in L^1(d\mu) \); hence (2.13) becomes

\[(2.22) \quad \mu(H_p a + 2\beta_\alpha) = -\nu_n(a_{odd}) - 2\text{Re}\nu_j(a_{even}) - \nu_d(ra_{odd}). \]

For convenience, we define the differential operator

\[L := H_p + 2\beta. \]

Lemma 2.9. There is a distribution \(\mu^0 \) on \(T^*_\partial M \) supported in \(\partial^* \partial M \) such that

\[(2.23) \quad L^*(\mu 1_{x_1 > 0}) = \delta(x_1) \otimes \mu^0, \]

where \(\otimes \) denotes tensor product of distributions. Furthermore, on \(\pi^{-1}_\partial M(H) \),

\[(2.24) \quad \mu^0 := \delta(\xi_1 - \xi^{in}) \otimes \mu^{in} - \delta(\xi_1 - \xi^{out}) \otimes \mu^{out} \]

where \(\mu^{in/out} \) are positive measures on \(T^* \partial M \) supported in \(H \), and \(\xi^{in/out} \) are defined by (2.4).

Proof. The proof follows [Mil00, Proposition 1.7], replacing \(H_p \) at every step by \(L \). In particular, by (2.22), \(L^*(\mu 1_{x_1 > 0}) \) is supported in \([x_1 = 0] \) and hence is of the form \(\sum_{\ell=0}^{\ell=0} \delta(k)(x_1) \otimes \mu_k \) where each \(\mu_k \) is a distribution on \(T^*_\partial M \). But, letting \(\chi \in C^\infty_c(\mathbb{R}) \) with \(\chi(0) = 1 \), for \(k \leq \ell \) and applying (2.22) to \(a_\ell = \epsilon^\ell \chi(\epsilon^{\ell-1}x_1)b(x', \xi) \), we have for \(\ell \geq 1 \),

\[\sum_{k=0}^{\ell} \epsilon^{\ell-k} \mu_k(b) = \mu(1_{x_1 > 0} L a_\ell) = \mu \left(1_{x_1 > 0} (\epsilon^{\ell-1} H_p \chi + \epsilon^\ell \chi H_p b - 2\beta_\alpha) \right) \to 0 \text{ as } \epsilon \to 0. \]

In particular, \(\mu_k = 0 \) for \(k \geq 1 \), and (2.23) follows.

The result (2.24) about the structure of \(\mu^0 \) in the hyperbolic set follows by considering a small neighbourhood \(\mathcal{V} \) in \(T^* \partial M \) of a point \(\rho \in \mathcal{H} \) and \(\delta > 0 \) such that each geodesic trajectory of length \(2\delta \) centered in \(\pi^{-1}_\partial M(\mathcal{V}) \) intersects the boundary exactly once. We may then use

\[(-\delta, \delta) \times \pi^{-1}_\partial M(\mathcal{V}) \ni (t, \rho) \to \varphi_t(\rho) \in \mathcal{V}_\delta \subset T^* \partial M \]

as coordinates on an open neighbourhood, \(\mathcal{V}_\delta \) of \(\pi^{-1}_\partial M(\mathcal{V}) \). In these coordinates, writing \(\tilde{\mu} \) for the pull-back of \(1_{x_1 > 0} \mu \) under \(\varphi_t \), we obtain

\[(\partial_t + 2\beta_\alpha) \tilde{\mu} = \delta(t) \otimes \mu^0. \]

In particular, \(\tilde{\mu} \) is null \(\mathcal{V}_0 \) for any \(t_0 \in (-\delta, \delta) \), and testing by \(\epsilon \chi(\epsilon^{-1}t)b \) with \(0 < b \in C^\infty_c(\Gamma_\partial M(\mathcal{V})) \), and \(\chi \in C^\infty_c(-\delta, \delta) \) with \(t \chi'(t) < 0 \) on \(|t| > 0 \), \(\chi(0) = 1 \), we have

\[\tilde{\mu}(\epsilon \chi' \epsilon^{-1}t)b - 2\epsilon \beta_\alpha \chi(\epsilon^{-1}t)b = \mu^0(b). \]

Now \(\tilde{\mu} \) is identically zero on \(\pi^{-1}_\Gamma(\mathcal{V}) \times [0, \infty) \) and on \(\pi^{-1}_\partial M(\mathcal{V}) \times (-\infty, 0) \). Therefore, for \(b \) supported in \(\pi^{-1}_\partial M(\mathcal{V}) \)

\[\mu^0(b) = \lim_{\epsilon \to 0} \tilde{\mu} \left(\epsilon \chi' \epsilon^{-1}t)b - 2\epsilon \beta_\alpha \chi(\epsilon^{-1}t)b \right) \leq 0. \]

Similarly, for \(b \) supported in \(\pi^{-1}_\Gamma(\mathcal{V}) \), \(\mu^0(b) \geq 0 \). In particular, \(\mu^0 \) is a positive distribution on \(\pi^{-1}_\Gamma(\mathcal{H}) \) and a negative distribution of \(\pi^{-1}_\partial M(\mathcal{H}) \), and the result follows.

Next, we decompose \(\mu \) into its interior and boundary components, with the following lemma the analogue of [Mil00, Proposition 1.8].
Lemma 2.10. There is a positive measure μ^0 on $\mathcal{G} \subset T^*_M \mathring{M}$ such that
\[\mu = 1_{x_1 > 0} \mu + \delta(x_1) \otimes \delta(H_p x_1) \otimes \mu^0. \]

Proof. Let $\chi \in C^\infty_c(\mathbb{R})$ with $\chi(0) = \chi'(0) = 1$ and $b \in C^\infty_c(\mathbb{R} \times T^* \mathbb{R}^{n-1})$. Then, with $a_\epsilon = \epsilon \chi(x_1 \epsilon^{-1})b(x, \xi')$, (2.22) implies that
\[\mu(L a_\epsilon) = -2\epsilon \Re \nu_j(b) \]
Now,
\[L a_\epsilon = 2\chi'(x_1 \epsilon^{-1})H_p x_1 b + O(\epsilon). \]
Therefore, by the dominated convergence theorem,
\[\mu(L a_\epsilon) \to \mu(1_{x_1 = 0} b H_p x_1) \]
and, since $|\nu_j(b)| < \infty$,
\[\mu(1_{x_1 = 0} b H_p x_1) = 0. \]
Since b was arbitrary, μ decomposes as claimed. \square

The following lemma is the analogue of [Mil00, Lemma 1.9].

Lemma 2.11. On \mathcal{E} (i.e. $r < 0$), $\Re \nu_j = 0$ and $\nu_n = -r \nu_d$.

Proof. Let $\chi \in C^\infty_c(\mathbb{R})$ with $\chi \equiv 1$ on $(-\infty, -1]$ and $\chi \subset (-\infty, 0)$. Let $b = b(x, \xi') \in C^\infty_c$ and define $b_\epsilon = \chi(\epsilon^{-1}r)b$. Then, by (2.22) together with the fact that $\supp \mu \subset S^* M$,
\[0 = \mu(H_p b_\epsilon + 2\beta b_\epsilon) = -2\Re \nu_j(b_\epsilon) \]
Sending $\epsilon \to 0^+$, we obtain
\[0 = 2\Re \nu_j(b 1_{r < 0}). \]
Since b was arbitrary, $\nu_j 1_{r < 0} = 0$. Replacing b by $b(x, \xi')\xi_1$ and applying the same argument, we obtain
\[\nu_n 1_{r < 0} = -r \nu_d 1_{r < 0}. \] \square

Next, we prove the analogue of [Mil00, Proposition 1.10]

Lemma 2.12. On the hyperbolic set \mathcal{H},

(i) \[(2.25) \quad 2 \mu^\text{out} = \sqrt{r(x', \xi')} \nu_d + 2 \Re \nu_j + \frac{1}{\sqrt{r(x', \xi')}} \nu_n, \quad 2 \mu^\text{in} = \sqrt{r(x', \xi')} \nu_d - 2 \Re \nu_j + \frac{1}{\sqrt{r(x', \xi')}} \nu_n. \]

(ii) If $\mu^\text{in} = 0$ on some Borel set $\mathcal{B} \subset \mathcal{H}$, then
\[(2.26) \quad \mu^\text{out} = 2 \Re \nu_j = 2 \sqrt{r(x', \xi')} \nu_d = \frac{2}{\sqrt{r(x', \xi')}} \nu_n. \]

(iii) If
\[(2.27) \quad -2 \Re \nu_j = (\Re \alpha) \nu_d = 4(\Re \alpha)|\alpha|^{-2} \nu_n \]
on some Borel set $\mathcal{B} \subset \mathcal{H}$ for α a complex valued function such that $\alpha + 2 \sqrt{r(x', \xi')}$ is never zero on \mathcal{B} then
\[(2.28) \quad \mu^\text{out} = \alpha^\text{ref} \mu^\text{in}, \]
where
\[(2.29) \quad \alpha^\text{ref} := \frac{2 \sqrt{r(x', \xi')} - \alpha}{2 \sqrt{r(x', \xi') + \alpha}} \text{ on } \mathcal{B}, \]
where the superscript “ref” stands for “reflected”. If instead, $\alpha - 2 \sqrt{r}$ is never zero, then
\[(\alpha^\text{ref})^{-1} \mu^\text{out} = \mu^\text{in}. \]
Lemma 3.3, Using (2.22), we have

However, for both (2.33) and (2.34) to hold, we must have

By (2.24),

Therefore, by the dominated convergence theorem,

Similarly, since \(a, \xi_1\) is an odd function of \(\xi_1\), (2.30) and (2.22) imply that

By (2.24),

Therefore, by the dominated convergence theorem,

The result (2.25) now follows from solving (2.31) and (2.32) for \(\mu^{in}\) and \(\mu^{out}\).

(ii) By the Cauchy–Schwarz inequality and similar reasoning used in the proof of [GSW20, Lemma 3.3],

By (2.25), when \(\mu^{in} = 0\),

However, for both (2.33) and (2.34) to hold, we must have \(\sqrt{\nu_d} = \nu_n / \sqrt{\tau}\), and (2.28) follows.

(iii) The equation (2.28) follows from using (2.27) in (2.25).

Lemma 2.13.

In particular, \(\mu^0\) is supported in \(H^2_p x_1 \leq 0\) and \(\nu_n 1_G\) does not charge \(H^2_p x_1 \geq 0\).

Proof. We follow [GSW20, Lemma 4.7]. Since \(H_p x_1 = 2 \xi_1\),

Now, put \(a_\epsilon = \chi(\epsilon^{-1} x_1) \chi(\epsilon^{-1} r(x, \xi_1)) 2a \xi_1\) where \(\chi \in C^\infty_c(\mathbb{R})\) has \(\chi \equiv 1\) near 0. Then,

where we have used that on \(S^* M\), \(H_p r = -H_p \xi_1^2 = O(\xi_1)\). Then, by the dominated convergence theorem,

Using (2.22), we have

Using the dominated convergence theorem again, using that \(\xi_1 = O(\sqrt{\tau})\) on \(S^* M\), we have

and hence

as claimed.
Lemma 2.14. Let \(q = q(x_1, x_1\xi_1, x', \xi) \in C^\infty_c(T^*\hat{M}) \). Then,
\[
\mu(H_p q) = -2\delta^i\mu(q) + (\mu^{in} - \mu^{out})(q|_{x_1=0}) + \frac{1}{2}\mu^0((\mathcal{R}(\hat{v}^i))^2x_1q|_{x_1=0}),
\]
where \(\hat{v}^i\nu_a = \nu_j \).

Proof. By Lemma 2.12,
\[
\mu(Lq) = -2\Re v_j(q|_{x_1=0}) = (\mu^{in} - \mu^{out})(q|_{x_1=0}) - 2\Re v_j(1_q|_{x_1=0}).
\]
Now, since \(\nu_j \ll \nu_a \) we may write \(\nu_j = \hat{v}^i\nu_a \) and use Lemma 2.13 to obtain
\[
-2\Re v_j(1_q|_{x_1=0}) = -2\Re v_a(\hat{v}^i, 1_q|_{x_1=0}) = \frac{1}{2}\mu^0((\mathcal{R}(\hat{v}^i))^2x_1q|_{x_1=0}),
\]
and the claim follows. \(\square \)

Theorem 2.15. Suppose that \(\partial M \) is nowhere tangent to \(H_p \) to infinite order. Then, for \(q \in C^\infty_c(b^*T^*M) \)
\[
\pi_*\mu(q \circ \varphi_1) - \pi_*\mu(q) = \int_0^t (-23\pi_*\mu^i + \delta(x_1) \otimes (\mu^{in} - \mu^{out}) + \frac{1}{2}(\mathcal{R}(\hat{v}^i))^2x_11_q|_{x_1=0})(q \circ \varphi^s)ds,
\]
where \(b^*T^*M \) denotes the \(b \)-cotangent bundle to \(M \) and \(\pi : T^*M \to b^*T^*M \) is defined by \(\pi(x_1, x', \xi_1, \xi') := (x_1, x', x_1\xi_1, \xi') \) (see [GSW20, Section 4.2]).

Proof. This result is analogous to [GSW20, Lemma 4.8], except that [GSW20, Lemma 4.8] only considers zero Dirichlet boundary conditions, and thus only \(-23\pi_*\mu^i\) appears on the right-hand side of [GSW20, Equation 4.3] compared to (2.35) (note that [GSW20] defines the joint measure \(\mu^i \) differently to (2.8), with the result that the signs of \(\mu^i \) are changed here compared to in [GSW20] – compare the definitions [GSW20, Equation 3.1] and (2.8), and then the sign change in the propagation statements [GSW20, Lemma 4.4 and (2.13)].

Examination of the proof of [GSW20, Lemma 4.8] shows that the only time absolute continuity of the measure \(\mu_1 \) in that proof is used is in the higher-order glancing set. Therefore, since Lemma 2.14 shows that \(\mu(H_p q) = \mu_1(q) \) for some measure that is absolutely continuous with respect to \(\mu \) on the glancing set, the result (2.35) follows in exactly the same way as in [GSW20, Equation 4.3 and Lemma 4.8]. \(\square \)

2.7. Linking Lemma 2.12 to concepts in the applied literature. The summary is that \(\alpha^{ref} \) in (2.29) is the square of the reflection coefficient describing how plane waves interact with the boundary condition
\[
hD_{x_1}v(0, x') = -\frac{\alpha(x', hD_{x'})}{2}v(0, x'),
\]
where \(\alpha \) is a semiclassical pseudodifferential operator. Indeed, when \(\alpha = 2 \), the boundary condition (2.36) corresponds to the first-order impedance boundary condition \((hD_{x_1} + 1)v = 0 \) at \(x_1 = 0 \), i.e. \((-\partial_{x_1} - ik)v = 0\) (since \(h = k^{-1}\)). The Helmholtz solution
\[
v(x) = \exp(ik(\xi' \cdot x' - \sqrt{1 - |\xi'|^2} x_1)) + R\exp(ik(\xi' \cdot x' + \sqrt{1 - |\xi'|^2} x_1)),
\]
in the half-plane \(x_1 > 0 \), corresponds to an incoming plane wave with unit amplitude, and an outgoing plane wave with amplitude \(R \). Imposing the boundary condition \((\partial_{x_1} - ik)v = 0 \) at \(x_1 = 0 \), we obtain that
\[
R = \sqrt{\frac{1 - |\xi'|^2 - 1}{1 - |\xi'|^2 + 1}}
\]
which equals \(\sqrt{\alpha^{ref}} \) when \(\alpha = 2 \) (since \(r(x', \xi) = \sqrt{1 - |\xi'|^2} \) when \(\Gamma \) is flat).

The interpretation of \(\sqrt{\alpha^{ref}} \) as the reflection coefficient is consistent with the relation \(\mu^{out} = \alpha^{ref} \mu^{in} \) in (2.28). Indeed, the defect measure of the solution \(v \) of (1.6) records where the mass of the solution is concentrated in phase space \((x, \xi) \) in the high-frequency limit \(h \to 0 \) (see, e.g., the discussion and references in [LSW19, §9.1]). The relation \(\mu^{out} = \alpha^{ref} \mu^{in} \) therefore describes how much mass of \(|v|^2\) (since the defect measure is quadratic in \(v \)) is reflected from \(\Gamma_{tr,R}\).
The expression for α_{ref} in (2.29) shows that, to minimise reflection from $\Gamma_{u,\mathcal{R}}$ (i.e. to make α_{ref} small), $\alpha/2$ must approximate the symbol of the Dirichlet-to-Neumann map $\sqrt{r(x',\xi')}$; recall the discussion in §1.3 and see, e.g. [Hi98, §3.3.2] for similar discussion in this frequency-domain setting, and, e.g., [EM77b, Pages 631-632], [EM79, Equation 1.12], [Tsy98, §2.2], and [Giv04, §3] for analogous discussion in the time domain.

2.8. Relationship between boundary measures and the measure in the interior. The goal of this subsection is to prove Lemma 2.16 relating the measures μ^in and μ^out to the measure $\mu_{\mid T^*U}$. We first introduce some notation.

Recall that $\pi_{\partial M}$ is defined by (2.6); let

$$p^\text{out/in} : \mathcal{H} \to \pi_{\partial M}^{-1} \mathcal{H} \cap \{\xi_1 = \xi_{\text{out/in}}\} \subset T_{\pi_{\partial M}} M$$

be defined by

$$p^\text{out/in}(x',\xi') := (0, x', \xi_{\text{out/in}}(x',\xi'), \xi')$$

(i.e., $p^\text{out/in}$ takes a point in \mathcal{H} and gives it outgoing/incoming normal momentum).

For $q \in \mathcal{H}$, let

$$t^\text{out}(q) = \sup \left\{ t > 0 : \pi_M \varphi_t(p^\text{out}(q)) \cap (\Gamma \setminus \{\pi_M(q)\}) = \emptyset \right\};$$

i.e., $t^\text{out}(q)$ is the positive time at which the flow starting at $t = 0$ from $p^\text{out}(q)$ hits Γ again. Similarly, let

$$t^\text{in}(q) = \inf \left\{ t < 0 : \pi_M \varphi_t(p^\text{in}(q)) \cap (\Gamma \setminus \{\pi_M(q)\}) = \emptyset \right\};$$

i.e., $t^\text{in}(q)$ is the negative time at which the flow starting at $t = 0$ from $p^\text{in}(q)$ hits Γ again.

Given $\mathcal{V} \subset \mathcal{H}$, let $\mathcal{B}^\text{out}(\mathcal{V}), \mathcal{B}^\text{in}(\mathcal{V}) \subset T^*U$ be defined by

$$\mathcal{B}^\text{out}(\mathcal{V}) := \bigcup_{q \in \mathcal{V}} \varphi_t(p^\text{out}(q)), \ 0 < t < t^\text{out}(q), \ \text{and}$$

$$\mathcal{B}^\text{in}(\mathcal{V}) := \bigcup_{q \in \mathcal{V}} \varphi_t(p^\text{in}(q)), \ t^\text{in}(q) < t < 0,$$

i.e. $\mathcal{B}^\text{out}(\mathcal{V})$ is the union of the outgoing flows from points in \mathcal{V} up to their times t^out and i.e. $\mathcal{B}^\text{in}(\mathcal{V})$ is the union of the incoming flows from points in \mathcal{V} up to their (negative) times t^in.

The whole point of these definitions is that in $\mathcal{B}^\text{out}(\mathcal{V})$ we can work in geodesic coordinates

$$(\rho, t) \in (\pi_{\partial M}^{-1} \mathcal{V} \cap \{\xi_1 = \xi_{\text{out}}\}) \times \mathbb{R}^+ = p^\text{out}(\mathcal{V}) \times \mathbb{R}^+,$$

defined for $(x, \xi) \in \mathcal{B}$ by $(x, \xi) = \varphi_t(\rho)$ (in a similar way to in the proof of Lemma 2.9). Similarly, in $\mathcal{B}^\text{in}(\mathcal{V})$ we work in geodesic coordinates

$$(\rho, t) \in (\pi_{\partial M}^{-1} \mathcal{V} \cap \{\xi_1 = \xi_{\text{in}}\}) \times \mathbb{R}^- = p^\text{in}(\mathcal{V}) \times \mathbb{R}^-.$$

In the following lemma, recall that the pushforward measure $f_\ast \mu$ is defined by $(f_\ast \mu)(\mathcal{B}) = \mu(f^{-1}(\mathcal{B}))$.

Lemma 2.16 (Relationship between boundary measures and the measure in the interior). Let u satisfy (2.7) with $f = o(1)$ as $h \to 0$, and let μ be a defect measure of u. Let $\mu^\text{out}, \mu^\text{in}$ be defined by Lemma 2.9. Then, in the geodesic coordinates described above,

$$\mu = \left(p_\ast^\text{out}(2\sqrt{\mu^\text{out}})\right) \otimes dt \text{ on } \mathcal{B}^\text{out}(\mathcal{V}) \quad \text{and} \quad \mu = \left(p_\ast^\text{in}(2\sqrt{\mu^\text{in}})\right) \otimes dt \text{ on } \mathcal{B}^\text{in}(\mathcal{V}),$$

where dt denotes Lebesgue measure in t and \otimes denotes product measure.

Proof. We prove the result for $\mathcal{B}^\text{out}(\mathcal{V})$; the proof for $\mathcal{B}^\text{in}(\mathcal{V})$ is similar. By Part (i) of Lemma 2.5, μ is invariant away from the boundary, therefore μ is invariant on $\pm t > 0$ (away from Γ). Since the flow is generated by ∂_t in geodesic coordinates, and, in these coordinates, $\mathcal{B}^\text{out} \subset \{t > 0\}$,

$$\mu = \mu(\rho, t) = \mu_1(\rho) \otimes 1_{t > 0} dt,$$

for some μ_1. Since $\mu_{\mid x_1 < 0} = 0$,

$$\mu_1 = \mu_1 1_{x_1 > 0},$$
and thus, on \mathcal{B}^{out}
\begin{equation}
\mu = \mu_1(\rho)1_{\xi_1>0} \otimes 1_{\tau>0} dt,
\end{equation}
from which
\begin{equation}
\partial_t \mu = \mu_1(\rho)1_{\xi_1>0} \otimes \delta(t).
\end{equation}
On the other hand, since $x_1 = 0$ is $t = 0$ in geodesic coordinates, Lemma 2.9 implies that
\begin{equation}
H_{\mu}^* \mu = L^* \mu = (2\sqrt{r})(\delta(t) \otimes \delta(\xi_1 - \xi_1^{\text{in}})) \otimes \mu^{\text{in}} - (2\sqrt{r})(\delta(t) \otimes \delta(\xi_1 - \xi_1^{\text{out}})) \otimes \mu^{\text{out}},
\end{equation}
where the factors of $2\sqrt{r}$ arise because $|\partial x_1/\partial t| = 2|x_1| = 2\sqrt{r}$.

Therefore, since $\mathcal{B}^{\text{out}}(\mathcal{V}) \subset \pi_{\partial \mathcal{M}}^{-1} \mathcal{V} \cap \{\xi_1 = \xi_1^{\text{out}}\}$ and $\partial_t \mu = -H_{\mu}^* \mu$, comparing (2.40) and (2.41), we find that $\mu_1 = p_{\mu}^{\text{out}}(2\sqrt{r} \mu^{\text{out}})$ in \mathcal{B}^{out} (note that p_{μ}^{out} appears because $\rho = p_{\mu}^{\text{out}}(q)$ for $q \in \mathcal{V}$ and μ^{out} acts on \mathcal{V}). The result then follows from (2.39). □

The following corollary of Lemma 2.16 is an essential ingredient of our proofs of the lower bounds in Theorems 1.6, 1.7, 1.8, 1.10, and 1.11.

Corollary 2.17. (Relationships between incoming boundary measures, outgoing boundary measures, and measures in the interior.) Let u be a solution of (2.7), and let μ be any defect measure of u.

(i) (Between two pieces of the boundary.) Let $\mathcal{V}_1 \subset \mathcal{H}$. Assume that $\sup_{q \in \mathcal{V}_1} f^{\text{out}}(q) < \infty$, and that $\pi_{\partial \mathcal{M}}(\varphi^{\text{out}}(q)(p^{\text{out}}(q))) \in \mathcal{H}$ for all $q \in \mathcal{V}_1$. Let
\begin{equation}
\mathcal{V}_2 := \bigcup_{q \in \mathcal{V}_1} \pi_{\partial \mathcal{M}}(\varphi^{\text{out}}(q)(p^{\text{out}}(q))) \subset \mathcal{H}
\end{equation}
(i.e. \mathcal{V}_2 is the union of the outgoing flows from points in \mathcal{V}_1, projected into $T^*\partial \mathcal{M}$). Then
\begin{equation}
(2\sqrt{r} \mu^{\text{in}})(\mathcal{V}_2) = (2\sqrt{r} \mu^{\text{out}})(\mathcal{V}_1).
\end{equation}

(ii) (Between the boundary and the interior.) Let $\mathcal{V} \subset \mathcal{H}$ and $A \subset T^*\mathcal{U}$. Then
\begin{equation}
\mu(A) \geq \left(\inf_{q \in \mathcal{V}} \int_0^{t^{\text{out}}(q)} 1_A(\varphi_t(p^{\text{out}}(q))) dt \right) (2\sqrt{r} \mu^{\text{out}})(\mathcal{V})
\end{equation}
and
\begin{equation}
\mu(A) \geq \left(\inf_{q \in \mathcal{V}} \int_0^{t^{\text{in}}(q)} 1_A(\varphi_t(p^{\text{in}}(q))) dt \right) (2\sqrt{r} \mu^{\text{in}})(\mathcal{V}).
\end{equation}

The integrals on the right-hand sides of (2.43) and (2.44) are the shortest times that elements of \mathcal{V} spend in A under, respectively, the outgoing forward flow and the incoming backward flow, with the flows considered until they hit Γ again.

Proof of Corollary 2.17. (i) The definition of \mathcal{V}_2 implies that
$\mathcal{B}^{\text{out}}(\mathcal{V}_1) = \mathcal{B}^{\text{in}}(\mathcal{V}_2)$; let \mathcal{B} denote this set. In \mathcal{B}, we work in both sets of geodesic coordinates:
\begin{equation}
(\rho_1, t_1) \in p^{\text{out}}(\mathcal{V}_1) \times \mathbb{R}_+ \quad \text{and} \quad (\rho_2, t_2) \in p^{\text{in}}(\mathcal{V}_2) \times \mathbb{R}_-
\end{equation}
as defined above. The coordinates $((\rho_j(q), t_j(q)), j = 1, 2)$, of $q \in \mathcal{B}$ satisfy
\begin{equation}
t_1 = t_+(p^{\text{out}}(\rho_1)) + t_2 \quad \text{and} \quad \rho_2 = \varphi_{\tau(\rho_1)}(\rho_1) =: \Phi^{1 \rightarrow 2}(\rho_1).
\end{equation}
The first equation in (2.45) implies that $dt_1 = dt_2$. By Lemma 2.16, in \mathcal{B},
\begin{equation}
\mu = (p_{\mu}^{\text{out}}(2\sqrt{r} \mu^{\text{out}}))_{\mathcal{V}_1}(\rho_1) \otimes dt_1 = (p_{\mu}^{\text{in}}(2\sqrt{r} \mu^{\text{in}}))_{\mathcal{V}_2}(\rho_2) \otimes dt_2,
\end{equation}
where the subscripts \mathcal{V}_1 and \mathcal{V}_2 show on which neighbourhood of \mathcal{H} p^{out}, p^{in}, μ^{out}, and μ^{in} are considered. This last equality and the second equation in (2.45) imply that
\begin{equation}
(p_{\mu}^{\text{in}}(2\sqrt{r} \mu^{\text{in}}))_{\mathcal{V}_2} = \Phi^{1 \rightarrow 2}_{\mathcal{V}_1}(p_{\mu}^{\text{out}}(2\sqrt{r} \mu^{\text{out}}))_{\mathcal{V}_1}.
\end{equation}
Then
\[(2\sqrt{\tau} \mu_{\text{in}})(V_2) = (p_{\text{in}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{in}}))_{\nu_{\text{in}}}(\nu_{\text{in}}(V_2)), \]
\[= (p_{\text{in}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{in}}))_{\nu_{\text{in}}}(\pi_{\partial M}^{-1}V_2 \cap \{\xi_1 = \xi_{\text{in}}\}), \]
\[= \Phi_{\text{in}}^{-2}(p_{\text{in}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{in}}))_{\nu_{\text{in}}}(\pi_{\partial M}^{-1}V_2 \cap \{\xi_1 = \xi_{\text{in}}\}), \]
\[= (p_{\text{in}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{in}}))_{\nu_{\text{in}}}(\pi_{\partial M}^{-1}V_2 \cap \{\xi_1 = \xi_{\text{in}}\}), \]
\[= (p_{\text{out}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}))_{\nu_{\text{in}}}((\Phi_{\text{in}}^{-2})^{-1}(\pi_{\partial M}^{-1}V_2 \cap \{\xi_1 = \xi_{\text{in}}\})), \]
\[= (p_{\text{out}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}))_{\nu_{\text{in}}}(\pi_{\partial M}^{-1}V_1 \cap \{\xi_1 = \xi_{\text{out}}\}), \]
\[= (p_{\text{out}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}))_{\nu_{\text{in}}}(\nu_{\text{out}}(V_1)), \]
\[= (2\sqrt{\tau} \mu_{\text{out}})(V_1). \]

(ii) We prove (2.43); the proof of (2.44) is similar. Using Lemma 2.16 along with the definitions
of \(B_{\text{out}}, t_{\text{out}}, \) and the geodesic coordinates, we have
\[\mu(B_{\text{out}}(V) \cap A) = \left(p_{\text{out}}^{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}) \right) \left(B_{\text{out}}(V) \cap A \right), \]
\[= \int_{B_{\text{out}}(V)} \int_{0}^{t_{\text{out}}(\pi_{\partial M}(\rho))} 1_A(\rho, t) \, d(\nu_{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}))(\rho), \]
\[= \int_{B_{\text{out}}(V)} \int_{0}^{t_{\text{out}}(\pi_{\partial M}(\rho))} 1_A(\varphi_t(\rho)) \, d(\nu_{\text{out}}(2\sqrt{\tau} \mu_{\text{out}}))(\rho), \]
where we have used the fact that the point represented in geodesic coordinates by \((\rho, t)\) is in \(A \) if
\(\varphi_t(\rho) \in A \). Using the change of variables \(\rho = p_{\text{out}}^{\text{out}}(q) \), for \(q \in V \), and then Fubini’s theorem, we
then have that
\[\mu(A) \geq \int_{V} \int_{0}^{t_{\text{out}}(q)} 1_A(\varphi_t(p_{\text{out}}^{\text{out}}(q))) \, dt \, d(2\sqrt{\tau} \mu_{\text{out}})(q), \]
\[\geq \left(\inf_{q \in V} \int_{0}^{t_{\text{out}}(q)} 1_A(\varphi_t(p_{\text{out}}^{\text{out}}(q))) \, dt \right) (2\sqrt{\tau} \mu_{\text{out}})(V), \]
as required. \(\square \)

2.9. The reflection coefficient on \(\Gamma_{\text{tr}, R} \). To understand how the defect measures of the solution
\(v \) of the truncated problem (1.6) are affected by the artificial boundary \(\Gamma_{\text{tr}, R} \), we now show that
the hypotheses of Part (iii) of Lemma 2.12 are satisfied, and get expressions for the numerator and
denominator in the reflection coefficient \(\alpha_{\text{ref}} \) in (2.29).

Lemma 2.18. If \(v \) is the solution to (1.6) and
\[\alpha(x', \xi') = \frac{2 \sigma(D)(x', \xi')}{\sigma(N)(x', \xi')} \]
then, in the hyperbolic set \(H \) of \(\Gamma_{\text{tr}, R} \)
\[29 \nu_j = (\Re \alpha)_{\nu_j} = 4(\Re \alpha)|\alpha|^{-2} \nu_j. \]

Combining (2.46), (2.47), (2.28), and (2.29), we obtain the following corollary.

Corollary 2.19. Let \(v \) be the solution of (1.6), and let \(\mu \) be a defect measure of \(v \). Then, in the
hyperbolic set \(H \) on \(\Gamma_{\text{tr}, R} \), (2.28) holds with
\[\alpha_{\text{ref}} \]
\[= \frac{\sqrt{\tau} - \sigma(D)/\sigma(N)}{\sqrt{\tau} + \sigma(D)/\sigma(N)} \]

Proof of Lemma 2.18. We prove that
\[\sigma(D)(x', \xi')d\nu_{\text{tr}} = -\sigma(N)(x', \xi')d\nu_{\text{tr}}. \]
and
\[(\sigma(D)(x', \xi'))^2 d\nu_{\text{tr}} = (\sigma(N)(x', \xi'))^2 d\nu_{\text{tr}}. \]
The result then follows from Part (iii) of Lemma 2.12, since (2.49) and (2.50) imply that (2.27) is satisfied.

For $a \in C_{c}^{\infty}(T^{*}\Gamma_{1,r,k})$, if the traces of v have associated defect measures, then, as $h \to 0$,
\begin{equation}
\langle a(x', hD_{x'})N(hD_{x_{1}}v), v \rangle \to a(x', \xi')\sigma(N')(x', \xi')\,dv^{tr}_{x'}.
\end{equation}
On the other hand, in local coordinates, the boundary condition (2.2c) is satisfied.

The result then follows from Part (iii) of Lemma 2.12, since (2.49) and (2.50) imply that (2.27) is satisfied.

Comparing (2.51) and (2.53), we obtain (2.49).

We now use a similar, but slightly more involved, argument to obtain (2.50). First observe that if $\sigma(B)$ is real and the trace of w has an associated defect measure $d\mu$, then
\begin{equation}
\langle a(x', hD_{x'})Bw, Bw \rangle = \langle B^*a(x', hD_{x'})Bw, w \rangle
= \langle a(x', hD_{x'})B^2 + a(x', hD_{x'})(B^* - B)B + [B, a(x', hD_{x'})]Bw, w \rangle
\end{equation}
\begin{equation}
= \int a(x', hD_{x'})(\sigma(B)(x', \xi'))^2
d\mu,
\end{equation}
as $h \to 0$, since both $B^* - B$ and $[B, a(x', hD_{x'})]$ are $O(h)$ (see (A.2) and [DZ19, Proposition E.17]). Therefore, (2.54) with $B = N$ and $w = hD_{x_{1}}v$ implies that
\begin{equation}
\langle a(x', hD_{x'})N(hD_{x_{1}}v), N(hD_{x_{1}}v) \rangle \to \int a(x', \xi')(\sigma(N')(x', \xi'))^2
dv^{tr}_{x'}.
\end{equation}
On the other hand by (2.52) and (2.54) (with $B = D$ and $w = v$),
\begin{equation}
\langle a(x', hD_{x'})N(hD_{x_{1}}v), N(hD_{x_{1}}v) \rangle = \langle a(x', hD_{x'})Dv, Dh \rangle
\end{equation}
\begin{equation}
= \int a(x', \xi')(\sigma(D)(x', \xi'))^2
dv^{tr}_{x'}.
\end{equation}
Comparing (2.55) and (2.56), we find (2.50).

\subsection*{2.10. The mass produced by the Dirichlet boundary data on Γ_{D}.}

\textbf{Lemma 2.20.} Suppose that $h_{\ell} \to 0$ and $a_{\ell} \to a$, then the defect measure of
\begin{equation}
e^{-\gamma|x'/h_{\ell}|\Gamma_{D}}
\end{equation}
is given by
\begin{equation}
dvol_{\Gamma_{D}} \otimes d\gamma_{(a_{\ell}(x'))}\gamma,
\end{equation}
where $dvol_{\Gamma_{D}}$ denotes Lebesgue measure on Γ_{D}, $a_{\Gamma(x')} := a - (a \cdot n(x'))n(x')$ is the tangential component of the direction a at the point x', $\gamma_{(\cdot)}$ denotes the lowering map $TT_{\Gamma_{D}} \to T^*\Gamma_{D}$ given by the metric, and δ denotes Dirac measure.

\textbf{Proof.} By using a partition of unity argument, it is sufficient to work locally in a neighbourhood of a point $x_{0} \in \Gamma_{D}$. We work in Euclidean coordinates x such that in a neighbourhood of x_{0},
\begin{equation}
\Gamma_{D} = \{(\gamma(x'), x')\}.
\end{equation}
If $a_{\ell} = (a_{1}, a')$, then, since $n(x') = (1, -\nabla \gamma(x'))/\sqrt{1 + |\nabla \gamma(x')|^{2}}$,
\begin{equation}
a - (a \cdot n(x'))n(x') = \frac{(a_{1} \nabla \gamma(x'))^{2} + (a', \nabla \gamma(x'))}{1 + |\nabla \gamma(x')|^{2}}, a' - \frac{(a', \nabla \gamma(x')) - a_{1}}{1 + |\nabla \gamma(x')|^{2}} \nabla \gamma(x'),
\end{equation}
and the metric on Γ_{D} in the x' coordinates is
\begin{equation}
g_{ij}(x') = \delta_{ij} + \partial_{x_{i}}\gamma(x')\partial_{x_{j}}\gamma(x'), \quad i, j = 2, \ldots, n.
\end{equation}
Therefore, since we identify the tangent space of Γ_D with ∂_x_i, $i = 2, \ldots n$

\[
(a^T)^{h} = a' - \left(\frac{(a', \nabla \gamma(x')) - a_1 \nabla \gamma(x')} {1 + |\nabla \gamma(x')|^2}\right) \nabla \gamma(x')
\]

\[
= a' + \left(\frac{a_1 - (a', \nabla \gamma(x'))} {1 + |\nabla \gamma(x')|^2}\right) \nabla \gamma(x') + \left(\frac{|\nabla \gamma(x')|^2} {1 + |\nabla \gamma(x')|^2}(a_1 - (a', \nabla \gamma(x')))\right) \nabla \gamma(x')
\]

Let $u_\ell = e^{i(a^T x)/\hbar}|_{\Gamma_D}$; the previous calculation implies that $u_\ell(x') = \exp((i/\hbar)(a'_1 \cdot x' + a_{1,1} \gamma(x')))$. By change of variable for the semiclassical quantisation (see, e.g., [Zwo12, Theorem 9.3, p. 203],

\[
\langle b(x', h_\ell D_x)u_\ell, u_\ell \rangle_{\Gamma_D} = \int_{\Gamma_D} (b(x', h_\ell D_x)u_\ell)(x') u_\ell(x') dx' \leq \int_{\Gamma_D} (b(x', h_\ell D_x)u_\ell)(x') u_\ell(x') \sqrt{1 + |\nabla \gamma(x')|^2} dx' + O(h_\ell)
\]

\[
= (2\pi h_\ell)^{-n+1} \int_{\Gamma_D} \int_{\mathbb{R}^{n-1}} e^{\frac{i}{\hbar}(x'-\gamma')(\ell, \xi')} b(x', \xi') \times e^{\frac{i}{\hbar}(\gamma(x') + a_{1,1}(\gamma(x')))} \sqrt{1 + |\nabla \gamma(x')|^2} d\xi' dy' dx' + O(h_\ell).
\]

Observe that for x' fixed, the phase

\[
\Phi(y', \xi') = (x' - y') \cdot \xi' + a'_1 \cdot y' + a_{1,1} \gamma(y') - a'_1 \cdot x' - a_{1,1} \gamma(x'),
\]

\[
= (x' - y') \cdot (\xi' + a'_1) + a_{1,1}(\gamma(y') - \gamma(x'))
\]

is stationary (i.e. $\partial_y \Phi = \partial_{\xi'} \Phi = 0$) if and only if

\[
(y', \xi') = (x', a'_1 + \nabla \gamma(x') a_{1,1}),
\]

where it is additionally non-degenerate. Consequently, by stationary phase (see, e.g., [Zwo12, §3.5])

\[
\langle b(x', h_\ell D_x)u_\ell, u_\ell \rangle_{\Gamma_D} = \int_{\Gamma_D} b(x', a'_1 + \nabla \gamma(x') a_{1,1}) \sqrt{1 + |\nabla \gamma(x')|^2} dx' + O(h_\ell)
\]

\[
= \int_{\Gamma_D} b(x', (a^T)^{h}(x')) \sqrt{1 + |\nabla \gamma(x')|^2} dx' + O(h_\ell).
\]

The result follows by letting $\ell \to \infty$. \hfill \Box

3. Properties of Outgoing Solutions of the Helmholtz Equation

The goal of this section is to prove three lemmas (Lemmas 3.1, 3.2, and 3.3), the first two of which concern the solution to the exterior Dirichlet problem:

\[
\begin{cases}
-h^2 \Delta - 1)u = 0 & \text{in } \Omega_+, \\
u = g & \text{on } \Gamma_D, \\
h \partial_{\nu} u - iu = o(r^{1-d}/2) & \text{as } r \to \infty;
\end{cases}
\]

(3.1)

observe that the problem (2.1) is a special case of (3.1) with $g = e^{i \alpha \cdot x}/\hbar$.

Lemma 3.1. Suppose that $\Omega_+ \subset B(0,1)$ is non-trapping. Then there is $C_0 > 0$ such that for all $R \geq 1$ there is $h_0 > 0$ such that for u_\hbar solving (3.1)

\[
\|u_\hbar\|_{H^1_0(B(0,R)) \cap \overline{\Omega_+}} \leq C_0 R^{1/2} \|g\|_{H^1_0(\Gamma_D)}, \quad 0 < h < h_0.
\]

Lemma 3.2. There exists $C > 0$ such that for any $R > 1$ there exists $h_0(R) > 0$ such that for $0 < h \leq h_0(R)$ the solution u of (3.1) satisfies

\[
\|((\nabla h D_n - D)u\|_{L^2(\Gamma_D, R)} \leq C \frac{Y(R)}{R^{1/2}} \|u\|_{L^2(\Omega)}.
\]

where \(n(x) \) is the normal vector field to \(\Gamma_{tr,R} \), and
\[
\Upsilon(R) := \sup \left\{ |\sigma(N)(x',\xi) n(x) \cdot \xi - \sigma(D)(x',\xi)| + |H_p(\sigma(N)(x',\xi) n(x) \cdot \xi - \sigma(D)(x',\xi))| \right\}
\]
(3.2)
\[: x \in \Gamma_{tr,R}, \left| \xi \cdot \frac{x}{|x|} - 1 \right| \leq \frac{C}{|x|^2}, \left| \xi \right| = 1 \right\}.\]

Lemma 3.3 (Bounds on \(\Upsilon(R) \)). If \(N \) and \(D \) satisfy Assumption 1.4, then the following hold.
(i) There exists \(C_1 > 0 \), independent of \(R \), such that if \(\Gamma_{tr,R} = \partial B(0,R) \), then \(\Upsilon(R) \leq C_1 R^{-2m_{ord}} \).
(ii) There exists \(C_2 > 0 \), independent of \(R \), such that if \(\Gamma_{tr,R} \) is \(C^2 \) uniformly in \(R \), then \(\Upsilon(R) \leq C_2 \).

Regarding Lemma 3.1: this result gives us a lower bound on \(1/\|u\|_{L^2(\Omega_R)} \), and we use this in proving the \(R \)-explicit lower bounds on the relative error in Theorems 1.7, 1.8, 1.9. The analogue of this result without the explicit dependence of the constant on \(R \) was proved in [BSW16, Theorem 3.5].

Regarding Lemmas 3.2 and 3.3: the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from applying Theorem 1.5 to \(u - v \) and then using these two lemmas.

3.1. Proof of Lemma 3.1.
We define the directly-coming set \(I \) by
\[
I := \left\{ \rho \in S^*\Omega_R, \text{s.t.} \pi_{R^d}(\bigcup_{t \geq 0} \varphi_{-t}(\rho)) \cap \Omega_- = \emptyset \right\},
\]
(3.3)
where recall that \(\pi_{R^d} \) denotes projection in the \(x \) variable. The following lemma reflects the fact that \(u \) is an outgoing solution.

Lemma 3.4. If \(u \) solves (3.1) with \(\|g\|_{H^1_0} \leq C \), then
\[
WF_h(u) \cap I = \emptyset.
\]

In particular, there exists \(C > 0 \), sufficiently large, such that
\[
WF_h(u) \cap \{|x| > C\} \subset \left\{ \left| \xi - \frac{x}{|x|} \right| \leq \frac{C}{|x|^2}, \left| \xi \cdot \frac{x}{|x|} - 1 \right| \leq \frac{C}{|x|^2} \right\}.
\]

Proof. Let \(R_D \) be the outgoing resolvent for
\[
(-h^2\Delta - 1)w = f, \quad w|_{\Gamma_D} = 0,
\]
i.e., \(w = R_D f \). Fix \(0 < R_1 < R_2 \) such that \(\Omega_- \subset B(0,R_1) \), and let \(\chi_i \in C^\infty_c(B(0,R_2)) \), \(i = 0, 1, 2 \), with \(\chi_1 \equiv 1 \) on \(B(0,R_1) \), \(\text{supp} \chi_i \subset \{ \chi_{i+1} \equiv 1 \} \). We now extend the Dirichlet boundary data off \(\Gamma_D \) by letting \(\tilde{g} \) be the solution of
\[
(-h^2\Delta - 1)\tilde{g} = 0 \quad \text{in } \Omega_+ \cap B(0,R_1),
\]
\[
\tilde{g} = g \quad \text{on } \Gamma_D,
\]
\[
(hD_n - 1)\tilde{g} = 0 \quad \text{on } \partial B(0,R_1).
\]
We now show that \(u \) can be expressed as outgoing resolvent plus a function with compact support. To this end, let
\[
u := u - \chi_0 \tilde{g} - R_D(-h^2\Delta,\chi_0[\tilde{g}]),
\]
and observe that \((-h^2\Delta - 1)v = 0 \). Since the Dirichlet Laplacian is a black box Hamiltonian in the sense of [DZ19, Chapter 4], by [DZ19, Theorem 4.17], the radiation condition for \(u \) implies that \(w = 0 \) and hence \(u = \chi_0 \tilde{g} + R_D(-h^2\Delta,\chi_0[\tilde{g}]) \). Now, by, e.g., [DZ19, Theorem 4.4], the range of \((1 - \chi_2)R_D \) lies in the range of \(R_0\chi_1 \) where \(R_0 \) denotes the free resolvent. In particular, by the outgoing property of \(R_0 \) (see e.g. [DZ19, Theorem 3.37])
\[
WF_h(u) \cap \{|x| > R_2 + 1\} \subset \bigcup_{t \geq 0} \varphi_t(S_{B(0,R_2)}^*\mathbb{R}^d).
\]

Now, suppose that \(A \subset I \), where \(I \) is as in (3.3). Then, for \(t_0 \geq 0 \) large enough,
\[
\varphi_{-t_0}(A) \subset \{|x| > R_2 + 1\}
\]
In particular, so that
\[\bigcup_{t \leq -t_0} \varphi_t(A) \cap S^*_R(u, R_1) = \emptyset. \]
Therefore, by (3.4), \(\varphi_{-t_0}(A) \cap \mathcal{W}_h(u) = \emptyset \). Now, since \((h^2 \Delta + 1)u = 0 \), and
\[\bigcup_{-t_0 \leq t \leq 0} \varphi_t(A) \cap S^*_R \mathbb{R}^d = \emptyset, \]
by propagation of singularities (see e.g. [DZ19, Appendix E.4]), \(A \cap \mathcal{W}_h(u) = \emptyset \).

Now, suppose \((x, \xi) \in \mathcal{W}_h(u) \cap \{|x| \geq R\} \). Then, \((x, \xi) \notin \mathcal{I} \) and, in particular, there is \(t \geq 0 \) such that \(\varphi_{-t}(x, \xi) \in S^*_R \mathbb{R}^d \). Let
\[t_0 = \inf \{ t \geq 0 : \varphi_{-t}(x, \xi) \in S^*_R \mathbb{R}^d \} \]
and \((x_0, \xi_0) = \varphi_{-t_0}(x, \xi) \). Then, \(|x_0| \leq R_1, t_0 \geq \frac{R - R_0}{h}, \xi = \xi_0, \) and
\[x = x_0 + 2t_0 \xi_0. \]
Observe that
\[|x_0 + 2t_0 \xi_0| = \sqrt{|x_0|^2 + 4t(x_0, \xi_0) + 4t^2} = 2t \sqrt{1 + |x_0|^2 + 2t^{-1}(x_0, \xi_0)} = 2t + O(t^{-1}|x_0|^2). \]
Then consider
\[\left| \frac{x}{|x|} - \xi \right| = \left| \frac{x_0 + 2t_0 \xi_0}{|x_0 + 2t_0 \xi_0|} - \xi_0 \right| = \left| \frac{x_0 + t_0 O(t^{-1}|x_0|^2)}{|x_0 + 2t_0 \xi_0|} \right| = O(t^{-1}|x_0|) = O \left(\frac{R_1}{|x| - R_1} \right). \]
In particular, if \(R \geq 2R_1, |x| - R_1 \geq \frac{1}{2} |x| \).

Next, observe that
\[\frac{\xi \cdot x}{|x|} = \frac{x_0 \xi_0 + 2t}{|x_0 + 2t_0 \xi_0|}, \quad |x_0 + 2t_0 \xi_0|^2 = |x_0|^2 + 4t + 4tx_0 \cdot \xi_0 \]
so that
\[\frac{1}{|x_0 + 2t_0 \xi_0|} = \frac{1}{2t} \left(1 - \frac{x_0 \cdot \xi_0}{2t} + O(R_1^2 t^{-2}) \right). \]
In particular,
\[\frac{x_0 \cdot \xi_0 + 2t}{|x_0 + 2t_0 \xi_0|} = 1 + \frac{x_0 \cdot \xi_0}{2t} - \frac{x_0 \cdot \xi_0}{2t} + O(R_1^2 t^{-2}) = 1 + O(R_1^2 t^{-2}) = 1 + O \left(\frac{R_1^2}{(|x| - R_1)^2} \right). \]
Taking \(|x| \geq 2R_1 \) completes the proof. \(\square \)

Corollary 3.5. There exists \(t_0 > 0, r_0 > 0 \) such that, if \(u \) solves (3.1) and has defect measure \(\mu \), then for any \(r \geq r_0 \), if \((x, \xi) \in \text{supp} \mu \) with \(|x| = r \), then, for \(0 \leq t \leq r - t_0 \),
\[|x(\varphi_{-t}(x, \xi))|^2 = |x - 2t\xi|^2 = (r - 2t)^2 + O(t^{-1}). \]

Proof. This follows from Lemma 3.4 by observing that, by the definition of defect measures, \(\text{supp} \mu \subset \mathcal{W}_h(u) \); then, if \(|x| = r \) and \(|\xi| = 1 \) with \(|\xi \cdot \frac{x}{|x|} - 1| < \frac{C}{R} \), then \(x \cdot \xi \geq r - \frac{1}{2} \). \(\square \)

By the definitions of \(\mathcal{W}_h(u) \) and \(\mathcal{I} \), another corollary of Lemma 3.4 is the following lemma, originally proved in [Bur02, Proposition 3.5] (see also [GSW20, Lemma 3.4]).

Lemma 3.6. Suppose that \(u \) solves (3.1) and has defect measure \(\mu \). Then \(\mu(\mathcal{I}) = 0 \).

We now prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that the lemma fails. Then there exist \(R \geq 1, \epsilon > 0, (h_\ell, g_\ell) \) such that \(h_\ell \to 0 \) as \(\ell \to \infty \) and such that
\[\|h_\ell\|_{H^1(B(0, R_\ell))} = 1 \quad \text{and} \quad \|g_\ell\|_{H^1(B)} \leq \frac{1}{R^{1/2}(C_0 + \epsilon)}. \]
Let \(w_\ell \) solve
\[(-h_\ell^2 \Delta + 1)w_\ell = 0, \quad w_\ell|_{\Gamma_\ell} = g_\ell, \quad (hD_\ell - 1)w_\ell|_{\partial B(0,1)} = 0. \]
Since Lemma 3.1 is not used in the proof of Theorem 1.5, the upper bound in this latter result implies that there exists a $C_1 > 0$ such that
\[\|u_{\ell}\|_{H^1_{b,\ell}(B(0,1)\setminus \Gamma_D)} \leq C_1 \|g\|_{H^1_{b,\ell}(\Gamma_D)}. \]

Let $\chi \in C_c^\infty(B(0,1))$ with $\chi \equiv 1$ near Γ_D and put $v_\ell = u_\ell - \chi w_\ell$ so that
\[
\begin{align*}
(-h_\ell^2 \Delta - 1)v_\ell &= -(h_\ell^2 \Delta - 1)\chi w_\ell =: h_\ell f_\ell \\
v_\ell|_{\Gamma_D} &= 0
\end{align*}
\]
and $\|f_\ell\|_{L^2} \leq C_2 \|w_\ell\|_{H^1_{b,\ell}} \leq C_2 C_1 \|g\|_{H^1_{b,\ell}(\Gamma_D)}; \text{ supp } f_\ell \subset B(0,1)$. In particular, by e.g. [GSW20, Theorem 1] there is $C_3 > 0$ such that for any $\psi \in C_c^\infty$ with $\psi \equiv 1$ on $B(0,1)$ and supp $\psi \subset B(0, R_0)$, and any h_ℓ small enough,
\[\|\psi v_\ell\|_{H^1_{b,\ell}} \leq C_3 R_0 \|f_\ell\|_{L^2} \leq R_0 C_1 C_2 C_3 \|g\|_{H^1_{b,\ell}(\Gamma_D)}. \]

Now, taking $C_0 \geq C_1 (3 C_2 C_3 + 1)$ the proof is complete for $1 \leq R \leq 2$. To see this, observe that using (3.6) with $R_0 = 3$ and $\psi \equiv 1$ on $B(0, 2)$
\[\|u_{h_\ell}\|_{H^1_{b,\ell}(B(0,2)\setminus \Gamma_D)} \leq \|\psi(v_\ell + \chi w_\ell)\|_{H^1_{b,\ell}} \leq \|\psi v_\ell\|_{H^1_{b,\ell}} + \|\chi w_\ell\|_{H^1_{b,\ell}} \leq C_1 (3 C_2 C_3 + 1) R^{1/2} \|g\|_{H^1_{b,\ell}} < 1 \]
which contradicts (3.5).

Now, for $R \geq 2$, we can pass to a subsequence in ℓ, and assume that v_ℓ has defect measure μ. By Lemma 3.6, $\mu(I \cap T^* \tilde{M} \setminus \text{ supp } f) = 0$ and
\[\mu(H_{\ell}a) = 0, \quad a \in C_c^\infty(T^* \tilde{M} \setminus \text{ supp } f). \]

Therefore, since $\text{ supp } f \subset B(0, 1)$
\[\text{ supp } \mu \cap T^* \tilde{M} \setminus B(0, 2) \subset \bigcup_{t \geq 0} \varphi_t \left(\{ (x, \xi) : |x| = 2, \exists s > 0 \text{ s.t. } \varphi_s(x, \xi) \in T^* B(0, 1) \} \right). \]

In particular, since μ is invariant under φ_t on $T^*(\mathbb{R}^d \setminus B(0, 1))$,
\[\mu(T^* B(0, R) \setminus B(0, 2)) \leq \mu \left(\bigcup_{0 \leq t \leq \sqrt{R^2 - 1}} \varphi_t \left(\{ (x, \xi) : |x| = 2, \exists s > 0 \text{ s.t. } \varphi_s(x, \xi) \in T^* B(0, 1) \} \right) \right) \]
\[\leq \sqrt{R^2 - 4} \lim_{\ell \to \infty} \|v_\ell\|_{L^2(B(0,2)-B(0,1))} \]
\[\leq 9 C_2^2 C_3 \sqrt{R^2 - 4} \lim_{\ell \to \infty} \|g\|_{H^1_{b,\ell}(\Gamma_D)} \]
\[\leq \frac{3 C_1 C_2 C_3 \sqrt{R^2 - 4}}{R(C_0 + \epsilon)^2}. \]

By [GSW20, Lemma 4.2]
\[\mu \left(|\xi|^2 T^* B(0,R) \setminus B(0,2) \right) \geq \limsup_{\ell \to \infty} \|v_\ell\|_{H^1_{b,\ell}(B(0,5/2))} \]

Therefore, using (3.6) with $R_0 = 3, \psi \equiv 1$ on $B(0, 5/2)$,
\[\limsup_{\ell \to \infty} \|v_\ell\|_{H^1_{b,\ell}(B(0,2))} \leq \frac{9 C_2^2 C_3 (1 + \sqrt{R^2 - 4})}{R(C_0 + \epsilon)^2}. \]

Hence, letting
\[C_0 = C_1 \max \left(3 C_2 C_3 + 1, \sup_{R \geq 2} \frac{3 C_2 C_3 \sqrt{1 + \sqrt{R^2 - 4}} + 1}{R^{1/2}} \right), \]
we have
\[\limsup_{\ell \to \infty} \|u_{h_\ell}\|_{H^1_{b,\ell}(B(0,2))} \leq \frac{3 C_2 C_1 \sqrt{1 + \sqrt{R^2 - 4}} + C_1}{R^{1/2}(C_0 + \epsilon)} < 1, \]
which contradicts (3.5).
3.2. Proof of Lemmas 3.2 and 3.3. In the next lemma, we identify \(S^* \Gamma_{tr,R} \) with a subset of \(S^* \mathbb{R}^d \).

Lemma 3.7. Suppose that \(A \in \Psi^m(\mathbb{R}^d) \) and \(\WF^*_h(A) \cap S^* \Gamma_{tr,R} = \emptyset \). Then there is \(C > 0 \) such that
\[
\|Au\|_{L^2(\TR)} \leq C\|Au\|_{L^2} + Ch^{-1}\|PAu\|_{L^2} + O(h^\infty)\|u\|_{L^2}.
\]

Proof. First, note that for \(B \in \Psi^0 \) with \(\WF^*_h(B) \) supported away from \(S^* \mathbb{R}^d \), we can write using the elliptic parametrix construction (Lemma A.2) that there is \(E \in \Psi^{-2} \) such that
\[
BAu = EPAu + O(h^\infty)_{q-\infty}.
\]
In particular, by the Sobolev embedding as in [Gal19a, Lemma 5.1] see also [Zwo12, Lemma 7.10],
\[
\|BAu\|_{L^2(\TR)} \leq C\|hB\|_{H^1}\|PAu\|_{H^1} + O(h^\infty)\|u\|_{L^2} \leq Ch^{-1}\|PAu\|_{L^2} + O(h^\infty)\|u\|_{L^2}.
\]
Therefore, we can assume that
\[
\WF^*_h(A) \subset \{1 - \delta \leq |\xi|^2 \leq 1 + \delta\}
\]
for any \(\delta > 0 \). Next, if \(\WF^*_h(A) \cap S^* \Gamma_{tr,R} = \emptyset \), then there is \(\chi \in C^\infty_c(\mathbb{R}^d) \) with \(\chi \equiv 1 \) in a neighbourhood of \(\Gamma_{tr,R} \) such that
\[
\chi A = O(h^\infty)_{q-\infty}.
\]
By using a partition of unity, we can work locally, assuming that \(\Gamma_{tr,R} = \{x_1 = 0\} \) as in §2.3. We can then assume that \(\WF^*_h(A) \subset \{|x_1| < \delta\} \). Write \(A = a(x,hD) \) where \(d(\text{supp } a, \{r(x,\xi) = 0\}) > \epsilon > 0 \) and \(\text{supp } a \subset \{|x_1| < \delta\} \) for some \(\epsilon > 0 \). Then, choosing \(\delta > 0 \) small enough, we have \(|x_1| > 0 \) on \(\text{supp } a \) and hence there is \(e \in C^\infty_c(T^*\mathbb{R}^d) \) with \(|e| > 0 \) on \(\text{supp } a \) and such that
\[
e(x,\xi)(\xi_1 - b(x,\xi'))a(x,\xi') = (-\xi_1^2 + r(x,\xi'))a(x,\xi).
\]
Therefore,
\[
\|(hD_{x_1} - b(x,hD_{x'}))Au\|_{L^2} \leq C\|PAu\|_{L^2} + O(h)\|Au\|_{L^2};
\]
the result then follows by applying [Zwo12, Lemma 7.11]. \(\square \)

Lemma 3.8. Let \(u \) be the solution to (3.1). For any \(\eta > 0 \), there exists \(R_0 > 0 \) such that, for \(R \geq R_0 \) and \(h \) small enough (depending on \(R \))
\[
(3.7) \quad \|u\|_{L^2(B(0,R+\eta) \setminus B(0,R-\eta))} \leq \left(\sqrt{2} + \eta\right)R^{-\frac{1}{2}}\|u\|_{L^2(B(0,R))}.
\]

Proof. We define \(A_{\eta,R_1} := \mathcal{B}(B(0,R_0)) \setminus B(0,R_1) \). First, observe that it is sufficient to prove that there exists \(R_1(\eta) > 0 \) such that, for any \(R \geq R_1 \) and any \(u \) solving (3.1) with \(g = g_0 \) and some \(R \geq R_1(\eta) \),
\[
(3.8) \quad \mu(T^* A_{R_1+R_1,R}) < \frac{(\sqrt{2} + \eta)^2}{R} \mu(T^* B(0,R)).
\]
Indeed, if (3.7) fails, then there exists \(\eta > 0 \) and \(h_n \to 0 \) and \(g_n \in H^1_0(\Gamma_D) \) such that, for \(u(h_n) \) solving (3.1) with \(g = g_n \) and some \(R \geq R_1(\eta) \),
\[
(3.9) \quad \|u(h_n)\|_{L^2(A_{R_1+R_1,R})} > \frac{\sqrt{2} + \eta}{R^{1/2}}\|u(h_n)\|_{L^2(B(0,R))}, \quad \|u(h_n)\|_{L^2(B(0,R))} = 1.
\]
Then, passing to a subsequence, we can assume that \(u(h_n) \) has defect measure \(\mu \). Let \(\epsilon > 0 \) be arbitrary. Take \(\chi^0 \) equal to one in \(A_{R_1+\epsilon,R_1-\epsilon} \) and supported in \(A_{R_1+\epsilon,R_1-\epsilon} \) and \(\chi^1 \) supported in \(B(\theta,R) \) and equal to one in \(B(\theta,R-\epsilon) \). The estimate (3.9) implies
\[
\|\chi^0 u(h_n)\|_{L^2} > \frac{\sqrt{2} + \eta}{R^{1/2}}\|\chi^0 u(h_n)\|_{L^2},
\]
passing to the limit \(h_n \to 0 \) and using e.g. [GSW20, Lemma 4.2] we obtain
\[
\mu((\chi^0)^2) \geq \frac{(\sqrt{2} + \eta)^2}{R} \mu((\chi^0)^2),
\]
which in turn implies, by the support properties of $\chi_{0,1}$,

$$\mu(T^*A_{R+1+\epsilon,R-1-\epsilon}) \geq \frac{(\sqrt{2} + \eta)^2}{R} \mu(T^*B_{R-\epsilon}).$$

In particular, sending $\epsilon \to 0^+$, and using monotonicity of measures

$$\mu(T^*A_{R+1,R-1}) \geq \frac{(\sqrt{2} + \eta)^2}{R} \mu(T^*B_{R}),$$

which contradicts (3.8).

We therefore only need to prove (3.8). The definition of defect measures implies $\text{supp } \mu \subseteq \text{WF}_N(u)$, thus, by Lemma 3.4,

$$\text{supp } \mu \cap \{|x| > C\} \subseteq \left\{ \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{C}{|x|^2} \right\}.$$

Now, invariance of defect measures away from the obstacle combined with the above imply that, for $r_0 > C + 2$, so that $\Omega_- \subseteq B(0, r_0 - 2)$, and $0 \leq t \leq 1$,

$$\mu(T^*A_{r_1,r_0}) = \mu\left(\varphi_{-t}\left(T^*A_{r_1,r_0} \cap \left\{ |\xi| = 1, \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{C}{|x|^2} \right\}\right)\right).$$

By Corollary 3.5, there exist $C_0, C_1, C_2 > 0$ such that

$$\varphi_{-\frac{1}{2}C_0R^{-2}}(T^*A_{R+1+1R-1} \cap \sup \mu) \cap T^*\left\{ |x| \geq R \right\} = \emptyset,$$

$$\varphi_{-1-C_0R^{-2}}(T^*A_{R+1+1R-1} \cap \sup \mu) \subset T^*\left\{ |x| < R - 1 \right\}.$$

Fix $r_0 > 0$ such that $\Omega_- \subseteq B(0, r_0)$. Then, for $0 \leq 2t \leq R - 1 - r_0$, we have $\varphi_{-t}(S^*A_{R+1+1R-1}) \cap B(0, r_0) = \emptyset$. Therefore, using the fact that $(x, \xi) > 0$ on $\sup \mu \cap T^*A_{R+1+1R-1}$, we have

$$(3.10) \varphi_{-t}(T^*A_{R+1+1R-1} \cap \sup \mu) \cap T^*A_{R+1+1R-1} \cap \sup \mu = \emptyset \text{ for } t \in \left[1 + C_0R^{-2}, \frac{R - 1 - r_0}{2} \right].$$

Now, let $T_{1,R} := (R - 1 - r_0)/2$ and $T_{0,R} := 1 + C_0R^{-2}$ and consider

$$f_{T,R}(x,\xi) := \int_{T_{0,R}}^{T_{1,R}} 1_{T^*A_{R+1+1R-1} \cap \sup \mu} \circ \varphi_t(x,\xi)dt.$$

We claim that $0 \leq f_{T,R} \leq T_{0,R}$; to see this, suppose that $\varphi_t(x,\xi) \in T^*A_{R+1+1R-1} \cap \sup \mu$ and $\varphi_s(x,\xi) \in T^*A_{R+1+1R-1} \cap \sup \mu$ with $T_{0,R} \leq s \leq t \leq T_{1,R}$ and $t \leq T_{1,R}$. Then,

$$\varphi_ {-(t-s)}(x,\xi) \in T^*A_{R+1+1R-1} \cap \sup \mu, \quad (x,\xi) \in T^*A_{R+1+1R-1} \cap \sup \mu$$

and $T_{0,R} \leq t - s \leq T_{1,R}$, contradicting (3.10).

Now, since μ is φ_1 invariant,

$$(T_{1,R} - T_{0,R}) \mu(1_{T^*A_{R+1+1R-1}}) = \mu(f_{T,R}(x,\xi)) \leq T_{0,R} \mu(B(0, R)).$$

In particular,

$$\mu(1_{T^*A_{R+1+1R-1}}) \leq \frac{T_{0,R}}{T_{1,R} - T_{0,R}} \mu(B(0, R)) \leq \frac{2}{R} \mu(B(0, R)).$$

Choosing $R > 0$ large enough yields (3.8), and the proof is complete.

We now prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let \tilde{n} be a smooth extension of the normal vector field to $\Gamma_{t, R}$, $n_R(x)$ and $C_0 > 0$ so that the conclusions of Lemma 3.4 hold, and, \tilde{N}, \tilde{D} smooth extensions of N and D. Next, fix $\epsilon > 0$ such that

$$\text{sup} \left\{ |\tilde{N}hD_R - \tilde{D}| + |H \mu(\tilde{N}hD_R - \tilde{D})| : \text{dist}(x, \Gamma_{t, R}) < \epsilon, \left| \xi \cdot \frac{x}{|x|} - 1 \right| \leq \frac{C_0}{|x|^2}, \left| \xi \right| - 1 \leq \epsilon \right\} \leq 2\Upsilon(R),$$

and let χ be smooth, supported in

$$\Gamma_\epsilon := \{ x : \text{dist}(x, \Gamma_{t, R}) < \epsilon \},$$

and
and equal to one near \(\Gamma_{tr,R} \). By Lemma 3.4, we can find \(Z \in \Psi(\mathbb{R}^d) \) with \(WF^c_h(Z) \cap I = \emptyset \) such that

\[
\chi u = \chi Z u + O_{C^\infty}(h^\infty \|u\|_{L^2}).
\]

Now, since \(\tilde{\Omega} \) is convex, and \(\Omega_\circ \subset \tilde{\Omega} \), \(S^* \Gamma_{tr,R} \subset I \). In particular, by Lemma 3.7,

\[
\|(\mathcal{N}hD_n - D)u\|_{L^2(\Gamma_{tr,R})} = \|(\mathcal{N}hD_n - D)\chi Z u\|_{L^2(\Gamma_{tr,R})} + O(h^\infty)\|u\|_{L^2}
\]

\[
\leq C\|((\mathcal{N}hD_n - \tilde{D})\chi Z u\|_{L^2} + Ch^{-1}(-h^2\Delta - 1)((\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + O(h^\infty)\|u\|_{L^2}
\]

\[
= C\|((\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + Ch^{-1}(-h^2\Delta - 1)((\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + O(h^\infty)\|u\|_{L^2}
\]

\[
\leq C\|((\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + Ch^{-1}((-h^2\Delta - 1)\chi u\|_{L^2}
\]

\[
+ Ch^{-1}([-h^2\Delta - 1, \mathcal{N}hD_n - \tilde{D}]\chi u\|_{L^2} + O(h^\infty)\|u\|_{L^2},
\]

and, using the fact that \((-h^2\Delta - 1)u = 0,\)

\[
\|(\mathcal{N}hD_n - \tilde{D})u\|_{L^2(\Gamma_{tr,R})} \leq \|(\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + h^{-1}\|(\mathcal{N}hD_n - \tilde{D})[h^2\Delta + 1, \chi]u\|_{L^2}
\]

(3.11)

\[
+ h^{-1}([-h^2\Delta - 1, \mathcal{N}hD_n - \tilde{D}]\chi u\|_{L^2}.
\]

Let

\[
R_1 := \sup \{ R : \Gamma_{tr,R} \cap B(0, C_0 + 1) \neq \emptyset \}.
\]

Then, for \(1 \leq R \leq R_1 \), the proof is completed, since \(\|Bu\|_{H^1} + h^{-1}\|B(-h^2\Delta - 1)u\|_{L^2} \leq C_B\|u\|_{L^2} \) for any \(B \in \Psi^\infty \). We now consider the case \(R \geq C_0 \).

Observe that, by Lemma 3.4,

\[
WF_h(\chi u) \subset \text{supp} \chi \cap WF_h(u) \subset \left\{ \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{C}{|x|^2}, x \in \Gamma, |\xi| = 1 \right\}.
\]

Now, let \(\tilde{\chi} \in C^\infty_c(\mathbb{R}^d) \) with \(\tilde{\chi} \equiv 1 \) on \(\text{supp} \chi \cap \text{supp} \tilde{\chi} \subset \Gamma_\circ \), and \(\psi \in C^\infty_c(T^*\mathbb{R}^d) \) with

\[
\text{supp} \psi \subset \left\{ \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{2C}{|x|^2}, |\xi| - 1 < \epsilon \right\},
\]

with \(\psi \equiv 1 \) on

\[
\left\{ \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{C}{|x|^2}, |\xi| = 1 \right\}.
\]

and \(\Psi := \text{Op}_h(\psi \tilde{\chi}) \). By (3.12)

\[
\|(\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} = \|(\tilde{\chi} \Psi(\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} + O(h^\infty)\|\chi u\|_{L^2},
\]

where \(\Psi(\mathcal{N}hD_n - \tilde{D}) \) has principal h-symbol

\[
\Lambda(x, \xi) := \psi \tilde{\chi}(\mathcal{N}hD_n - \tilde{D})\chi(x, \xi),
\]

and thus \(\Psi(\mathcal{N}hD_n - \tilde{D}) = \text{Op}_h(\Lambda) + O(h)|L^2|L^2\), and then, by [Zwo12, Theorem 5.1],

\[
\|\Psi \chi u\|_{L^2} \leq \left(\sup |\Lambda(x, \xi)| + O(h^{1/2}) \right) \|\chi u\|_{L^2}.
\]

However, by the support properties of \(\tilde{\chi} \) and \(\psi \) and the definition (3.13) of \(\Lambda \),

\[
\sup |\Lambda(x, \xi)| \leq \mathcal{T}(R),
\]

and it follows that, given \(R > 0 \), there exists \(h_0(R) > 0 \) such that, for \(0 < h \leq h_0 \),

\[
\|(\mathcal{N}hD_n - \tilde{D})\chi u\|_{L^2} \leq \mathcal{Y}(R)\|\chi u\|_{L^2}.
\]

On the other hand, by Lemma 3.4,

\[
WF_h([-h^2\Delta - 1, \chi]u) \subset \left\{ \left| \xi \cdot \frac{x}{|x|} - 1 \right| < \frac{C}{|x|^2}, x \in \Gamma, |\xi| = 1 \right\};
\]

we obtain in the same way as before, reducing \(h_0 \) if necessary, that for \(0 < h \leq h_0 \)

\[
\|(\mathcal{N}hD_n - \tilde{D})[-h^2\Delta - 1, \chi]u\|_{L^2} \leq \mathcal{Y}(R)\|[-h^2\Delta - 1, \chi]u\|_{L^2} \leq \mathcal{Y}(R)h\|\chi u\|_{H^1}.
\]
where \(\chi_0 \) is supported in the support of \(\tilde{\chi} \) and equal to one on the support of \(\chi \). But, since
\((-h^2\Delta - 1)u = 0\), \(u \) has \(h \)-wavefront set in \(\{ |\xi|^2 = 1 \} \), thus so does \(\tilde{\chi}u \), and it follows that, taking \(\eta \) compactly supported near one

\begin{equation}
\| \chi_0 u \|_{H^s_k} = \| \text{Op}_h(\eta(|\xi|^2))\chi_0 \tilde{\chi}u \|_{H^s_k} + O(h^{\infty})\| \tilde{\chi}u \|_{L^2} \\
= \| \text{Op}_h(\eta(|\xi|^2)\xi \chi_0)\tilde{\chi}u \|_{H^s_k} + O(h)\| \tilde{\chi}u \|_{L^2} \lesssim \| \tilde{\chi}u \|_{L^2}. \tag{3.16}
\end{equation}

Hence, by (3.15), for \(0 < h \leq h_0 \),

\begin{equation}
-h^{-1}\big\| (\tilde{\chi}hD_n - \tilde{\mathcal{D}}) [-h^2\Delta - 1, \chi] u \big\|_{L^2} \lesssim \Upsilon(R)\| \tilde{\chi}u \|_{L^2}. \tag{3.17}
\end{equation}

Finally, observe that \(h^{-1}[-h^2\Delta - 1, \tilde{\chi}hD_n - \tilde{\mathcal{D}}] \) has principal \(h \)-symbol

\[
\sigma \left(h^{-1}[-h^2\Delta - 1, (\tilde{\chi}hD_n - \tilde{\mathcal{D}})] \right) = \frac{1}{h} \left\{ |\xi|^2 - 1, \tilde{\chi} \right\} \right\} \tilde{\chi} \cdot \tilde{\mathcal{D}}(x, \xi)
\]

therefore, using Lemma 3.4 in the same way as before, we obtain

\begin{equation}
-h^{-1}\big\| [h^2\Delta + 1, \tilde{\chi}hD_n - \tilde{\mathcal{D}}] \chi u \big\|_{L^2} \lesssim \sup \| \psi \mathcal{H}_p \left(\tilde{\chi} \cdot \tilde{\mathcal{D}}(x, \xi) \right) \| \chi u \|_{L^2} \lesssim \Upsilon(R). \tag{3.18}
\end{equation}

Reducing \(h_0 > 0 \) depending on \(R \) if necessary, we obtain that for \(0 < h \leq h_0 \)

\begin{equation}
-h^{-1}\big\| [-h^2\Delta - 1, \tilde{\chi} \cdot \tilde{\mathcal{D}}(x, \xi)] \chi u \big\|_{L^2} \lesssim \Upsilon(R)\| \tilde{\chi}u \|_{L^2}, \tag{3.19}
\end{equation}

Combining (3.11) with (3.14), (3.17), and (3.18), we have, for \(0 < h \leq h_0(R), \)

\[
\| (\mathcal{N}hD_n - \mathcal{D}) u \|_{L^2(T_{\Gamma_{tr}, R})} \lesssim \Upsilon(R)\| \tilde{\chi}u \|_{L^2},
\]

and then Lemma 3.8 implies that

\[
\| (\mathcal{N}hD_n - \mathcal{D}) u \|_{L^2(T_{\Gamma_{tr}, R})} \leq C \Upsilon(R) \| \tilde{\chi}u \|_{L^2}. \tag{3.20}
\]

To obtain the bound on \(Au \), we observe that, by Lemma 3.4, \(S^*\Gamma_{tr,R} \subset \mathcal{I} \), and, by Lemma 3.7,

\[
\| Au \|_{L^2(T_{\Gamma_{tr}, R})} \lesssim \| A\chi u \|_{L^2} + h^{-1}\| (-h^2\Delta - 1)A\chi u \|_{L^2} + O(h^{\infty})\| \chi u \|_{L^2}. \tag{3.21}
\]

However, in the same way as we obtained (3.16), the fact that \(u \) has \(h \)-wavefront set in \(\{ |\xi|^2 = 1 \} \) implies that

\[
\| A\chi u \|_{L^2} + h^{-1}\| (-h^2\Delta - 1)A\chi u \|_{L^2} \lesssim \| \tilde{\chi}u \|_{L^2},
\]

and the bound on \(Au \) follows by reducing \(h_0(R) > 0 \) again if necessary. \(\square \)

Proof of Lemma 3.3.

Proof of (i). First observe that if \(\Gamma_{tr,R} = \partial B(0,R) \), then for \(x \in \Gamma_{tr,R}, n(x) = x/|x| \). Therefore, on

\[
\mathcal{O} := \left\{ (x, \xi) : x \in \Gamma_{tr,R}, \left| \xi \cdot \frac{x}{|x|} - 1 \right| \leq \frac{C}{R^2}, | \xi | = 1 \right\}
\]

since \(n(x) \cdot \xi = \sqrt{1 - |\xi|^2} \), we have

\[
|\xi|^2 - 1 - |n(x) \cdot \xi|^2 \leq \frac{C}{R^2}. \tag{3.19}
\]

We now claim that

\[
\sigma(\mathcal{N})(x', \xi')n(x) \cdot \xi - \sigma(\mathcal{D})(x', \xi') = e(x', \xi')|\xi'|^{2m_{ord}} \quad \text{on } \mathcal{O},
\]

where \(e(x', \xi') \) is smooth on \(\mathcal{O} \). Indeed, the existence of \(e(x', \xi') \) follows from the definition of \(m_{ord} \)

\[
(1.8)
\]

and that \(n(x) \cdot \xi = \sqrt{1 - |\xi|^2} \) on \(\mathcal{O} \).
Therefore
\begin{equation}
\sup \sigma(N)(x',\xi')n(x)\cdot \xi - \sigma(D)(x',\xi') \leq C|\xi|^2_{g|2^{m_{\text{ord}}}} \leq CR^{-2^{m_{\text{ord}}}}.
\end{equation}

Next, we bound the terms in $\mathcal{Y}(R)$ (3.2) involving the Hamiltonian vector field $H_p = 2\xi(x,\partial_x)$. First, using again that $\xi = (n(x) \cdot \xi)n(x) + \xi'$ (where we abuse notation slightly to identify vectors and covectors), we have $H_p = 2n(x) \cdot \xi \partial_n + 2(\xi',\partial_{\xi'})$. Thus, on Ω,
\begin{equation}
H_p \left(\sigma(N)n(x) \cdot \xi - \sigma(D) \right) = \sigma(N)2 \left(\frac{x}{|x|} \cdot \xi \right) \left(\frac{x}{|x|} \cdot \partial_x \right) \left(\frac{x}{|x|} \cdot \xi \right) + 2(\xi',\partial_{\xi'}) \left(\sigma(N)n(x) \cdot \xi - \sigma(D) \right)
\end{equation}
where we have used that $\partial_{\xi'}$ is tangent to Γ and $\{ |\xi| = 1 \}$ to write $n(x) \cdot \xi = \sqrt{1 - |\xi|^2_{g}}$ in the last line. Now, by (3.19),
\begin{equation}
\partial_{\xi'} \left(\sigma(N) \sqrt{1 - |\xi|^2_{g}} - \sigma(D) \right) = O(|\xi|^2_{g|2^{m_{\text{ord}}}}).
\end{equation}

In particular,
\begin{equation}
2(\xi',\partial_{\xi'}) \left(\sigma(N) \sqrt{1 - |\xi|^2_{g}} - \sigma(D) \right) = O(|\xi|^2_{g|2^{m_{\text{ord}}+1}}) = O(R^{-2^{m_{\text{ord}}-1}}).
\end{equation}
The required bound on $\mathcal{Y}(R)$ follows by combining (3.20), (3.21), and (3.22).

Proof of (ii). This follows from the fact that $\sigma(N)$ and $\sigma(D)$ have uniformly bounded C^1 norms in R. \qed

4. Proof of wellposedness of the truncated problem (Theorem 1.5)

4.1. Trace bounds for higher order boundary conditions

In this section, we consider the solution to
\begin{equation}
\begin{cases}
(-h^2\Delta_g - 1)u = hf & \text{in } M, \\
N_i h D_{\partial M} u - D_i u = g_i & \text{on } \Gamma_i \subset \partial M,
\end{cases}
\end{equation}
where (M, g) is a Riemannian manifold with smooth boundary $\partial M = \cup_{i=1}^{N} \Gamma_i$ such that Γ_i are the connected components of ∂M, and $N_i \in \Psi^{m_{i}1} (\Gamma_i)$, and $D_i \in \Psi^{m_{i}0} (\Gamma_i)$ have real-valued principal symbols. We further assume that for all $i = 1, \ldots, N,$
\begin{equation}
|\sigma(N_i)|^2 |\xi'|^{-2m_{i}1} + |\sigma(D_i)|^2 |\xi'|^{-2m_{i}0} \geq c > 0 \quad \text{on } T^* \Gamma_i,
\end{equation}
and for each i one of the following holds:
\begin{equation}
m_{0,i} = m_{1,i} + 1, \quad \text{or}
\end{equation}
\begin{equation}
|m_{0,i}| \leq m_{1,i} + 1, \quad \text{or}
\end{equation}
\begin{equation}
|m_{0,i}| \leq m_{1,i} + 1 \leq m_{0,i} \quad \text{or}
\end{equation}

The first condition in (4.2) ensures non-degeneracy at infinity in ξ (with (4.3), (4.4) and (4.5) the different options for which term in the boundary condition is dominant), and the second condition in (4.2) ensures that the Dirichlet trace is bounded.

Theorem 4.1. Suppose that u solves (4.1) where $N_i \in \Psi^{m_{i}1} (\Gamma_i)$, and $D_i \in \Psi^{m_{i}0} (\Gamma_i)$ are real-valued principal symbols and satisfy (4.2) and one of (4.3)- (4.5). Then, there exist $C > 0$ and $h_0 > 0$ such that for $0 < h < h_0$, and i and all ℓ_i satisfying
\begin{equation}
m_{0,i} + m_{1,i} \leq \ell_i \leq \frac{2}{2} m_{0,i} + m_{1,i},
\end{equation}
and
\begin{equation}
\|u\|_{H^{\ell_i + m_{0,i}}(\Gamma_i)} + \|h D_{\ell_i} u\|_{H^{\ell_i + m_{1,i}}(\Gamma_i)} \leq C \left(\|u\|_{L^2(M)} + \|f\|_{H^{\ell_i + m_{0,i} - 1}(M)} + \|g_i\|_{H^{\ell_i}(\Gamma_i)} \right),
\end{equation}
(4.8) \[\|u\|_{H^k_0(M)} \leq C\left(\|u\|_{L^2(M)} + h\|f\|_{L^2(M)} + \sum_i \|g_i\|_{H^k_0(\Gamma_i)}\right), \]

and for \(s \leq 0, \)

(4.9) \[\|hD_s u\|_{H^k_0(\Gamma_i)} \leq C\left(\|u\|_{H^k_0(\Gamma_i)} + \|u\|_{L^2(M)} + \|f\|_{L^2(M)} + \sum_i \|g_i\|_{H^k_0(\Gamma_i)}\right). \]

The proof of Theorem 4.1 is postponed until Section 6. Here we proceed directly to its application.

4.1.1. Application of Theorem 4.1 with \(L^2 \) right hand sides.

Corollary 4.2. Suppose that

(4.10) \[m_0 \geq 0, \quad m_0 + m_1 \geq 0, \quad m_1 \leq m_0 + 1, \]

and either

(4.11) \[m_0 \leq m_1 + \min\{1, m_0 + m_1\}, \]

or

(4.12) \[m_0 \geq m_1 + 1 \quad \text{and} \quad m_0 \geq 1. \]

Then there exists \(C > 0 \) and \(h_0 > 0 \) such that, for \(0 < h \leq h_0 \), the solution to

\[\begin{cases}
(-h^2 \Delta - 1)u = hf & \text{in } \Omega, \\
(NhD_n - \mathcal{D})u = g & \text{on } \Gamma,
\end{cases} \]

with \(f \in L^2(\Omega) \) and \(g \in L^2(\Gamma) \) satisfies

(4.13) \[\|u\|_{L^2(\Gamma)} + \|hD_n u\|_{L^2(\Gamma)} + \|u\|_{H^k_0(\Omega_n)} \leq C\left(\|u\|_{L^2(\Omega_n)} + \|f\|_{L^2(\Omega_n)} + \|g\|_{L^2(\Gamma)}\right). \]

Proof. Let

\[\ell = r - \frac{m_0 + m_1}{2}. \]

If \(0 \leq r \leq \frac{1}{2} \), then Theorem 4.1 holds and (4.7) and (4.8) become

(4.14) \[\|u\|_{H^{r+ \frac{m_0 + m_1}{2}}_0(\Gamma)} + \|hD_s u\|_{H^{r+ \frac{m_1 + m_0}{2}}_0(\Gamma)} \leq C\left(\|u\|_{L^2(\Omega_n)} + \|f\|_{H^{r+ \frac{m_1 + m_0}{2}}_0(\Omega_n)} + \|g\|_{H^{r+ \frac{m_1 + m_0}{2}}_0(\Gamma)}\right) \]

and

(4.15) \[\|u\|_{H^k_0(M)} \leq C\left(\|u\|_{L^2(M)} + h\|f\|_{L^2(M)} + \|g\|_{H^{r+ \frac{m_1 + m_0}{2}}_0(\Gamma)}\right), \]

respectively. Focusing on (4.14), we therefore impose the conditions that

\[r \geq \frac{m_1 - m_0}{2}, \quad 0 \leq r \leq \frac{1}{2}, \quad r \leq \frac{m_1 + m_0}{2}, \]

i.e.,

\[\max\left(0, \frac{m_1 - m_0}{2}\right) \leq r \leq \min\left(1, \frac{m_1 + m_0}{2}\right) \]

(observe that this range of \(r \) is nonempty since \(m_0 \geq 0, m_1 - m_0 \leq 1, \) and \(m_1 + m_0 \geq 0 \)). Choosing \(r = \min\{1/2, (m_1 + m_0)/2\} \), we have

(4.16) \[\|u\|_{L^2(\Gamma)} + \|hD_s u\|_{H^k_0(\Gamma)} \leq C\left(\|u\|_{L^2(\Omega_n)} + \|f\|_{L^2(\Omega_n)} + \|g\|_{L^2(\Gamma)}\right), \]

where

\[s^* := \min\left(\frac{1}{2}, \frac{m_1 + m_0}{2}\right) + \frac{m_1 - m_0}{2}. \]

If \(s^* \geq 0 \), i.e., if (4.11) holds, then the result (4.13) follows from combining (4.16) with (4.15).

If (4.11) doesn’t hold, we seek control of \(\|hD_s u\|_{L^2(\Gamma)} \) via the bound (4.9) with \(s = 0 \), i.e.

\[\|hD_s u\|_{L^2(\Gamma)} \leq C\left(\|u\|_{H^k_0(\Gamma)} + \|u\|_{L^2(M)} + \|f\|_{L^2(M)} + \|g\|_{H^{r+ \frac{m_1 + m_0}{2}}_0(\Gamma)}\right). \]
To prove (4.13), therefore, we only need to bound \(\|u\|_{H^1_h(\Gamma)} \) in terms of the right-hand side of (4.13). This follows from (4.14) if
\[
\max \left(0, 1 + \frac{m_1 - m_0}{2} \right) \leq r \leq \min \left(1, \frac{m_1 + m_0}{2} \right),
\]
which is ensured if (4.12) holds. \(\square \)

4.1.2. Application of Theorem 4.1 to Dirichlet boundary conditions.

Corollary 4.3. There exist \(C > 0 \) and \(h_0 > 0 \) such that if \(0 \leq h \leq h_0 \), then the solution of
\[
\begin{cases}
(-h^2 \Delta - 1)u = hf & \text{in } \Omega \\
u = g & \text{on } \Gamma.
\end{cases}
\]
with \(f \in L^2(\Omega) \) and \(g \in H^1_h(\Gamma) \) satisfies
\[
\|u\|_{H^1_h(\Gamma)} + \|hD_n u\|_{L^2(\Gamma)} + \|u\|_{H^1_h(\Omega_n)} \leq C \left(\|u\|_{L^2(\Omega_n)} + \|f\|_{L^2(\Omega_n)} + \|g\|_{H^1_h(\Gamma)} \right)
\]

Proof of Lemma 3.3. The Dirichlet boundary condition corresponds to \(D = I, N = 0, \) and so satisfies the assumptions of Theorem 4.1 with \(m_0 = 0 \) and \(m_1 = -1 \), say. The result follows by choosing \(\ell = 1 \) and combining (4.7) and (4.8). \(\square \)

4.2. Recap of results of [TH86] about Padé approximants. We now recall results of [TH86] about Padé approximants. These results consider a larger class of approximants than covered in our Assumption 1.4; before stating these results, we explain this difference.

With \(p(t) \) and \(q(t) \) defined by (1.8), by Assumption 1.4,
\[
(4.17) \quad \sigma(D)(x', \xi') = \mathcal{P}_{M,N}(x', \xi') = p(\|\xi'\|^2_g) \quad \text{and} \quad \sigma(N)(x', \xi') = \mathcal{Q}_{M,N}(x', \xi') = q(\|\xi'\|^2_g).
\]
As described in §1.3, this choice of \(D \) and \(N \) is based on approximating \(\sqrt{1 - |\xi'|^2_g} \) with a rational function in \(|\xi'|^2_g \).

The boundary conditions in [TH86] are based on approximating \(\sqrt{1 - |\xi'|^2_g} \) with a rational function in \(|\xi'|^2_g \), i.e. [TH86] consider Padé approximants with polynomials \(\tilde{p}(s) \) and \(\tilde{q}(s) \), where the degrees \(\tilde{p}(s) \) and \(\tilde{q}(s) \) are allowed to be either even or odd. Our polynomials \(p, q \) fit into the framework of [TH86] with
\[
(4.18) \quad \tilde{p}(s) := p(s^2) \quad \text{and} \quad \tilde{q}(s) := q(s^2),
\]
and then \(\tilde{p} \) has degree \(2M \) and \(\tilde{q} \) has degree \(2N \). For \(d - 1 \geq 2 \) (i.e. when the boundary dimension is \(\geq 2 \)), polynomials with odd powers of \(|\xi'|_g \) do not lead to \(N \) and \(D \) being local differential operators, but for \(d - 1 = 1 \) (i.e. \(d = 2 \)) they do, since in this case \(\sqrt{1 - \xi'_{g}^2} = \sqrt{\theta(x')} \xi' \), i.e., a polynomial in \(\xi' \). Our arguments also apply to polynomials with odd powers of \(|\xi'|_g \) in \(d = 2 \), but we do not analyze them specifically, instead leaving this to the interested reader.

To state the results of [TH86], we let \(\tilde{p}(s) \) and \(\tilde{q}(s) \) be polynomials of degree \(m_0 \) and \(m_1 \) respectively; this notation is chosen so that, when we specialise the results to our case with (4.18), these \(m_0 \) and \(m_1 \) are the same as in Theorem 4.1/Corollary 4.2, i.e., \(m_0 = 2M \) and \(m_1 = 2N \). Finally, we let
\[
\tilde{r}(s) := \frac{\tilde{p}(s)}{\tilde{q}(s)}.
\]

Lemma 4.4. ([TH86, Theorems 2 and 4.]) If, and only if, \(m_0 = m_1 \) or \(m_0 = m_1 + 2 \), then
(a) \(\tilde{r}(s) > 0 \) for \(s \in [-1,1] \), and
(b) the zeros and poles of \(\tilde{r}(s)/s \) are real and simple and interlace along the real axis.

Corollary 4.5. If \(m_0 = m_1 \) or \(m_0 = m_1 + 2 \), then neither \(\tilde{p}(s) \) nor \(\tilde{q}(s) \) has any zeros in \([-1,1] \).
Proof. For \(\tilde{\rho}(s) \), this property follows directly from Part (a) of Lemma 4.4. For \(\tilde{q}(s) \), this property follows from Parts (a) and (b) of Lemma 4.4; indeed, if there were a zero of \(\tilde{q}(s) \) (i.e. a pole of \(\tilde{p}(s) \)) in \([-1, 1]\), since the zeros of \(\tilde{q}(s) \) are simple and interlace with the zeros of \(\tilde{p}(s) \) (by Part (b)), \(\tilde{p}(s) \) would change sign in \([-1, 1]\), contradicting Part (a). \(\square \)

4.3. Proof of Theorem 1.5. Throughout this section, we let \(\tilde{\Omega}_R \) be a smooth family of domains depending on \(R \) and assume that there is \(M > 0 \) such that

\[
B(0, 1) \subset \tilde{\Omega}_R \subset B(0, MR),
\]

(4.19)

\(\tilde{\Omega}_R \) is convex with smooth boundary, \(\Gamma_{tr, R} \), that is nowhere flat to infinite order

Furthermore, we assume that

\[
\tilde{\Omega}_R/R \to \Omega_\infty
\]

in the sense that \(\partial\tilde{\Omega}_R/R \to \partial\Omega_\infty \) in \(C^\infty \).

We prove below that Theorem 1.5 is a consequence of the following result, combined with the results from [TH86] in §4.2.

Theorem 4.6. Let \(\tilde{\Omega}_R \) be as in (4.19) and \(\Omega_- \subseteq B(0, 1) \) with \(\Omega_- \) non-trapping. Let \(N \in \Psi^{m_1}(\Gamma_{tr, R}), D \in \Psi^{m_0}(\Gamma_{tr, R}) \) have real-valued principal symbols and satisfy (4.2) and one of (4.3)-(4.5). Let \(m_0 \) and \(m_1 \) satisfy the assumptions of Corollary 4.2, and furthermore let \(\mathcal{N} \) and \(\mathcal{D} \) satisfy

\[
\sigma(\mathcal{N})\sigma(\mathcal{D}) > 0 \text{ on } \overline{B^*\Gamma_{tr, R}}.
\]

Let

\[
G^R_h: L^2(\Gamma_{tr, R}) \oplus H^1(\Gamma_D) \oplus L^2(\tilde{\Omega}_R \setminus \Omega_-) \to H^1(\tilde{\Omega}_R \setminus \Omega_-)
\]

satisfy

\[
\begin{align*}
(-h^2\Delta - 1)G^R_h(g_I, g_D, f) &= hf \quad \text{on } \tilde{\Omega}_R \setminus \Omega_- \\
(NhD - D)G^R_h(g_I, g_D, f) &= g_I \quad \text{on } \Gamma_{tr, R} \\
G^R_h(g_I, g_D, f) &= g_D \quad \text{on } \Gamma_D.
\end{align*}
\]

Then there exists \(C > 0 \) such that for \(R \geq 1 \), there is \(h_0 = h_0(R) > 0 \) such that for \(0 < h < h_0 \), \(G^R_h \) is well defined and satisfies

\[
\|G^R_h(g_I, g_D, f)\|_{H^1(\tilde{\Omega}_R \setminus \Omega_-)} \leq CR^{1/2} \left(\|g_I\|_{L^2(\Gamma_{tr, R})} + \|g_D\|_{H^1(\Gamma_D)} \right) + CR\|f\|_{L^2(\tilde{\Omega}_R \setminus \Omega_-)}.
\]

Proof of Theorem 1.5 using Theorem 4.6. Theorem 1.5 will follow from Theorem 4.6 (translating between the \(h \)- and \(k \)-notations using §2.1) if we can show that the boundary conditions in Assumption 1.4 with either \(M = N \) or \(M = N + 1 \), with \(M, N \geq 0 \), satisfy

(i) (4.2),

(ii) one of (4.3)-(4.5),

(iii) the assumptions of Corollary 4.2, and

(iv) (4.20),

where \(m_0 = 2M \) and \(m_1 = 2N \).

Regarding (iii): the first two inequalities in (4.10) are satisfied since \(m_0, m_1 \geq 0 \), and the third inequality is satisfied both when \(m_0 = m_1 \) and when \(m_0 = m_1 + 2 \). If \(m_0 = m_1 \), then (4.11) is satisfied, and if \(m_0 = m_1 + 2 \) then (4.12) is satisfied (since \(m_1 \geq 0 \) and thus \(m_0 \geq 2 \)).

Regarding (ii): if \(m_0 = m_1 \), then (4.4) holds since \(q^N_{M,N} \neq 0 \) by definition. If \(m_0 = m_1 + 2 \), then (4.5) holds since \(p^M_{M,N} \neq 0 \) by definition.

Regarding (i) and (iv): using (4.17), the conditions (4.2) and (4.20) become (with \(t = |\xi'|_g^2 \))

\[
|q(t)|^2 t^{-2N} + |p(t)|^2 t^{-2M} > 0 \quad \text{for all } t \quad \text{and} \quad |p(\pm 1)| > 0,
\]

and

\[
|p(t)q(t)| > 0 \quad \text{on } -1 \leq t \leq 1.
\]

(4.22)

(4.23)
respectivey
If $\tilde{p}(s)$ and $\tilde{q}(s)$ are defined by (4.18), then (4.22) and (4.23) become
\begin{equation}
|\tilde{q}(s)|^2 s^{-2m_1} + |\tilde{p}(s)|^2 s^{-2m_0} > 0 \text{ for all } s \quad \text{and} \quad |\tilde{p}(\pm 1)| > 0,
\end{equation}
and
\begin{equation}
|\tilde{p}(s)\tilde{q}(s)| > 0 \quad \text{on} \quad -1 \leq s \leq 1.
\end{equation}

The first condition in (4.24) holds since, by Part (a) of Lemma 4.4, $\tilde{p}(s)$ and $\tilde{q}(s)$ have no common zeros. Both the second condition in (4.24) and the condition in (4.25) hold by Corollary 4.5. \hfill \Box

We now prove Theorem 4.6. We first show that, for each $z \in \mathbb{C}$ and $s \geq 0$ the operator
\begin{equation}
\tilde{P}(z) : H^{2+s}((\tilde{\Omega}_R \setminus \Omega_-) \ni u \mapsto (-h^2\Delta - z, (\mathcal{N}hD_n - \mathcal{D})u|_{\Gamma_{tr,n}}, u|_{\Gamma_D})
\end{equation}
is Fredholm with $m = \max(m_0, m_1 + 1)$; we do this by checking the conditions of [Hör85, Theorem 20.1.8’, Page 249]. Observe that, for fixed z, e.g. [Eva98, Chapter 6]. In particular, the Dirichlet to Neumann map $u \mapsto \sigma(\mathcal{D})(x, \lambda\xi)$ has symbol $|\sigma(\mathcal{D})(x, \lambda\xi)|$. Therefore, in Fermi normal coordinates at $\Gamma_{tr,R}$, we need to check that the map
\[M_{x,\xi} : u \mapsto (b(x, (D_i, \xi'))(u(0)) \text{ is bijective, where } M_{x,\xi} \text{ denotes the solutions to } (D_i^2 + |\xi'|^2)u(t) = 0 \text{ with } u \text{ is bounded on } \mathbb{R}_+ \text{, and } b(x, \xi) = \lim_{\lambda \to \infty} \left(-\sigma(\mathcal{N})(x, \lambda\xi')\lambda \xi_1 - \sigma(\mathcal{D})(x, \lambda\xi') \right)\lambda^{-m}.
\]
Since $u = Ae^{-t|\xi'|x}$,
\[(b(x, (D_i, \xi'))(u(0)) = A \lim_{\lambda \to \infty} \left(-\sigma(\mathcal{N})(x, \lambda\xi')\lambda |\xi| - \sigma(\mathcal{D})(x, \lambda\xi') \right)\lambda^{-m},\]
and bijectivity follows if the limit on the right-hand side is non-zero. Since \mathcal{N} and \mathcal{D} are both real, this is ensured by (4.2) and any of (4.3)-(4.5).

Now, to see that \tilde{P} is invertible somewhere, consider $z = -1$. First, note that for $s \geq 0$ the map
\begin{equation}
P_D : (H^{2+s}((\tilde{\Omega}_R \setminus \Omega_-) \ni u \mapsto ((-h^2\Delta + 1)u, u|_{\Gamma_{tr,n}}, u|_{\Gamma_D}) \in H^s((\tilde{\Omega}_R \setminus \Omega_-) \oplus H^{s+\frac{1}{2}}((\Gamma_{tr,R}) \oplus H^{s+\frac{1}{2}}(\Gamma_D)
\end{equation}
is invertible with inverse $G_D : H^s((\tilde{\Omega}_R \setminus \Omega_-) \oplus H^{s+\frac{1}{2}}((\Gamma_{tr,R}) \oplus H^{s+\frac{1}{2}}(\Gamma_D) \to H^{2+s}((\tilde{\Omega}_R \setminus \Omega_-) \text{ (see e.g. [Eva98, Chapter 6]). In particular, the Dirichlet to Neumann map}
\[\Lambda : g_1 \mapsto hD_n u|_{\Gamma_R}, \quad \text{where} \quad \begin{cases} (-h^2\Delta + 1)u = 0 \quad \text{on } \tilde{\Omega}_R \setminus \Omega_-, \\ u = g_1 \quad \text{on } \Gamma_{tr,R}, \\ u = 0 \quad \text{on } \Gamma_D, \end{cases} \]
is well defined. Furthermore, $\Lambda \in \Psi(1(\Gamma_{tr,R})$ is a semiclassical pseudodifferential operator with symbol $\sigma(\Lambda) = -i\sqrt{|\xi'|^2 + 1}$ (see, e.g., [Gal19b, Proposition 4.1.1, Lemma 4.27]). In particular, by (4.2) and (4.3)-(4.5), $(-i\mathcal{N}\Lambda - \mathcal{D})^{-1}$ exists, and hence
\[[\tilde{P}(-1)]^{-1} = G_D(f, (-i\mathcal{N}\Lambda - \mathcal{D})^{-1}g_1, g_D).
\]

Therefore, since for $z = -1$, the operator is invertible, by the analytic Fredholm Theorem (see e.g. [DZ19, Theorem C.8]) the family $G_R(z)$ of operators solving
\[\begin{cases} (-h^2\Delta - z)G_R(z)(g_1, 0, f) = hf \quad \text{on } \tilde{\Omega}_R \setminus \Omega_-, \\ (N_hD_n - \mathcal{D})G_R(z)(g_1, 0, f) = g_1 \quad \text{on } \Gamma_{tr,R}, \\ G_R(z)(g_1, 0, f) = 0 \quad \text{on } \Gamma_D, \end{cases} \]
is a meromorphic family of operators with finite rank poles. To include the Dirichlet boundary values, we observe that by standard elliptic theory, the operator $\tilde{G}(z) : H^2(\Omega_0) \to H^{3/2}(B(0, 1) \setminus \Omega_0)$ solving
\[
\begin{cases}
(-h^2\Delta - z)\tilde{G}(z)g = 0 & \text{on } B(0, 1) \setminus \Omega_0 \\
\tilde{G}(z)g = g & \text{on } \Gamma_D \\
(hD_n - 1)\tilde{G}(z)g = 0 & \text{on } \partial B(0, 1)
\end{cases}
\]
is a meromorphic family of operators with finite rank poles. With $\chi \in C^\infty_0(B(0, 1))$ with $\chi \equiv 1$ near Ω_-,
\[
G^R_R(g_1, g_D, f) = G^R_R(g_1, 0, f - h^{-1}[h^{-2}\Delta, \chi]\tilde{G}_h g_D) + \chi\tilde{G}_h g_D,
\]
and thus the operator G^R_R is well defined.

We start by studying $G^R_R(0, 0, 0)$.

Lemma 4.7. Let $R > 0$ and assume that N and D satisfy the assumptions of Theorem 4.1. Then there exist $C, h_0 > 0$ such that $u = G^R_R(0, g, 0)$, the solution to
\[
\begin{cases}
(-h^2\Delta - 1)u = 0 & \text{in } \Omega_0 \\
u = g & \text{on } \Gamma_D \\
(NhD_\nu - D)u = 0 & \text{on } \Gamma_{tr,R},
\end{cases}
\]
satisfies
\[
\|u\|_{H^1(\Gamma_{\Omega_0})} \leq C\|g\|_{H^1(\Gamma_D)}
\]

Proof. Suppose the lemma fails. Then there exist (h_n, g_n) with $h_n \to 0$ such that $u_n = G^R_R(0, g_n, 0)$,
\[
\|u_n\|_{H^1_h(\Omega_0 \setminus \Omega_-)} = 1, \quad \|g_n\|_{H^1_h(\Gamma_D)} = n^{-1}
\]

Extracting subsequences, we can assume that u_n has defect measure μ. Moreover, by Corollaries 4.2 and 4.3, we can assume that the trace measures $\nu^{D/\text{tr}}_d, \nu^{D/\text{tr}}_j$, and $\nu^{D/\text{tr}}_n$ exist. In particular, since $g_n \to 0$ in $H^1_h, \nu^D = 0$. Let φ_t denote the billiard flow outside Ω_-, then by Lemma 2.12 together with [GSW20, Section 4],
\[
(4.26) \quad \mu(\varphi_t(A)) = \mu(A) \quad \text{if } \bigcup_{0 \leq t \leq T} \varphi_t(A) \cap \Gamma_{\text{tr,R}} = \emptyset,
\]
Furthermore, using again Corollaries 4.2 and 4.3, we find that
\[
1 = \limsup_n \|u_n\|^2_{H^1_h} \geq \mu(T^*\mathbb{R}^d) \geq \liminf_n \|v_n\|^2_{L^2} \geq \liminf_n \|\tilde{\nu}_n\|^2_{H^1} = c > 0.
\]
Note also that $\mu^{\text{in/out, tr}}, \nu^{\text{tr}}, \nu^{\text{tr}}$, and ν^{tr}_n satisfy the relations in Lemma 2.12. Next, by Lemma 2.18,
\[
(4.27) \quad \mu^{\text{out, tr}} = \alpha^{\text{ref}} \mu^{\text{in, tr}} \quad \text{where } \alpha^{\text{ref}} = \frac{\sqrt{\tau N - D}}{\sqrt{\tau N + D}} \in C^\infty(\{r > 0\})
\]
Here, we abuse notation slightly, since when $\sigma(N)\sigma(D) < 0$, $\sqrt{\tau N + D}$ may take the value 0. In that case, the first equation in (4.27) is replaced by $(\alpha^{\text{ref}})^{-1}\mu^{\text{out, tr}} = \mu^{\text{in, tr}}$.

Finally, these measures satisfy Theorem 2.15 with $\tilde{\nu} = -\sigma(N)/\sigma(D)$ which is well defined and satisfies $\tilde{\nu} \geq m > 0$ since $\pm\sigma(N)\sigma(D) > 0$ on $B^T_{\Gamma_{\text{tr,R}}}$.

The proof of Lemma 4.7 is completed by the following lemma.

Lemma 4.8. Suppose that Ω_- is non-trapping, and let $M > 0$. Then there exist $T_0, \delta_0 > 0$ such that the following holds for all $R \geq 1$. Suppose $\Omega_0 \subset B(0, 1) \subset \tilde{\Omega}_R \subset B(0, MR)$ has smooth boundary and is convex and that μ is a finite measure supported in $S^\perp_{\Omega_0 \setminus \Omega_-} \mathbb{R}^d$ satisfying (4.26), (4.27) and Theorem 2.15 with $\Re\tilde{\nu} = -\frac{\sigma(N)}{\sigma(D)}$ with $0 \leq \pm\sigma(N)\sigma(D) > 0$ on $B^T_{\Gamma_{\text{tr,R}}}$. Then, for all $A \subset S^\perp_{\Omega_0 \setminus \Omega_-} \mathbb{R}^d$,
\[
\mu(\varphi_{T_0R}(A)) \geq (1 + \delta_0)\mu(A).
\]
To see that Lemma 4.8 completes the proof of Lemma 4.7 observe that our defect measure \(\mu \) has \(\mu(T^*\mathbb{R}^d) \neq 0 \), is finite, and is supported in \(S^*_{\Omega_n} \mathbb{R}^d \). Therefore, there is \(A \subset S^*_{\Omega_n} \mathbb{R}^d \) such that \(\mu(A) > 0 \). But then
\[
\mu(\varphi_{-NTR_0}(A)) = (1 + \delta_0)^N \mu(A) \to \infty,
\]
which is a contradiction. \(\square \)

Proof of Lemma 4.8. We consider only the case where \(\sigma(N)\sigma(D) > 0 \). The other case follows from an identical argument but reversing the time direction.

By (4.26), \(\mu \) is invariant under \(\varphi_t \) away from \(\Gamma_{tr,R} \). We first study the glancing set, \(G = T^*\Gamma_{tr,R} \cap \{ r = 0 \} \). Note that since \(\Gamma_{tr,R} \) is convex, \(G \subset \{ H_{p}^2x_1 \leq 0 \} \) where \(x_1 \) is a boundary defining function for \(\Gamma_{tr,R} \). Note that for \(\rho \in G \), since \(\tilde{\Omega}_R(R) \) is convex and \(\tilde{\Omega}_R(R) \subset B(0,MR) \), there exist \(c > 0 \) and \(T_0 > 0 \) independent of \(R \) such that
\[
\int_{-T_0R}^0 -H_{p}^2x_1(\varphi_s(\rho))ds \geq c > 0
\]
In particular, since \(\sigma(N)\sigma(D) > m > 0 \) on \(S^*\Gamma_{tr,R} \) (by (4.20)), \(-\delta_h \geq m > 0\) and hence by Theorem 2.15, for \(A \subset G \),
\[
\mu(\varphi_{-T_{0}R}(A)) \geq e^{mc}\mu(A).
\]
Next, we study the case where \(A \subset S^*_{\Omega_n} \mathbb{R}^d \setminus G \). Let \(\beta^{-1} : B^*\Gamma_{tr,R} \to B^*\Gamma_{tr,R} \) be the reversed billiard ball map induced by \(\varphi_t \). That is, let \(\pi : S^*_{\tilde{\Omega}_R} \mathbb{R}^d \to B^*\Gamma_{tr,R} \) be the natural projection map and \(\pi^{-1} : B^*\Gamma_{tr,R} \to S^*_{\tilde{\Omega}_R} \mathbb{R}^d \) the inward- and outward-pointing inverse maps. Next, for \((x,\xi) \in S^*_{\tilde{\Omega}_R} \mathbb{R}^d \) define
\[
T_-(x,\xi) = \inf\{ t > 0 : \varphi_{-t}(x,\xi) \in S^*_{\tilde{\Omega}_R} \mathbb{R}^d \}.
\]
Since \(\Omega_+ \) is nontrapping, there is \(T_0 > 0 \) such that for all \((x,\xi) \in S^*_{\tilde{\Omega}_R} \mathbb{R}^d \), \(T_-(x,\xi) \leq T_0R \). In particular every trajectory intersects the boundary in time \(T_0R \).

The reversed billiard map is then given by
\[
\beta^{-1}(q) : \pi(\varphi_{-T_-(\pi^{-1}(q))(\pi^{-1}(q)))
\]
Since \(\Gamma_{tr,R} \) is convex \(\beta : B^*\Gamma_{tr,R} \to B^*\Gamma_{tr,R} \) is well defined and, since \(\mu \) is invariant under \(\varphi_t \), \(\beta_*\mu_{out,tr} = \mu_{in,tr} \). Then, using (4.27), we have
\[
\mu_{out,tr} = \alpha_{ref}\mu_{in,tr} = \alpha_{ref}\beta_*\mu_{out,tr}.
\]
Fix \(0 < c < 1 \) and for \(\rho \in B^*\Gamma_{tr,R} \), let
\[
N(\rho,c) := \inf \left\{ N \geq 0 : \sum_{j=0}^{N} \log(r(\beta^{-j}(\rho))) < -c \right\}
\]
We claim that there exist \(c_0, T_0 > 0 \) such that for all \(\rho \in B^*\Gamma_{tr,R} \)
\[
\sum_{j=0}^{N(\rho,c)} T_-(\beta^{-j}(\rho)) < T_0R
\]
Once we prove this claim, using (4.28) together with the definition of \(\mu_{out,tr} \) as the derivative along the flow of \(\mu \), we see that if \(A \subset S^*_{\Omega_n} \mathbb{R}^d \setminus G \), then
\[
\mu(\varphi_{-T_{0}R}(A)) \geq e^{-c_0}\mu(A).
\]
and hence the proof will be complete.

We now prove (4.29). If the claim fails then there is a sequence
\[
(R_n, \rho_n, M_n) \in [1, \infty) \times B^*\Gamma_{tr,R}(R_n) \times \mathbb{Z}
\]
such that

\[(4.30) \quad \sum_{j=0}^{M_n} \Delta(\beta^{-j}(\rho_n)) \geq nR_n, \quad \sum_{j=0}^{M_n} \log \alpha^{ref}(r(\beta^{-j}\rho_n)) > -\frac{1}{n}.\]

Without loss of generality, we can assume that \(R_n \to R_\infty \in [1, \infty]\). Note that

\[\log \alpha^{ref}(\rho) = -\frac{4\sigma(N)}{\sigma(D)} \sqrt{r(\rho)} + O(r(\rho)).\]

By (4.20), since \(\sigma(N)\sigma(D) > m > 0\) on \(S^*\Gamma_{tr, R}\),

\[(4.31) \quad \sum_{j=0}^{M_n} \sqrt{(r(\beta^{-j}\rho_n)}) \leq 1\]

and in particular,

\[(4.32) \quad \sup_{0 \leq j \leq M_n} r(\beta^{-j}\rho_n)) \leq \frac{1}{16m^2n^2}.\]

Now, let \(\pi_M : T^* M \to M\) and \(\rho \in B^* \partial \Omega_R\). We consider the angle between the two vectors

\[V_\pm(\rho) := d\pi_M(\partial_t \varphi_t(\pi^{-1}_\pm(\rho))) = 2\xi(\pi^{-1}_\pm(\rho)).\]

Note that \(V_\pm\) are the tangent vectors to the billiard trajectory just before \((-\) and after \((+\) reflection. We define the angle accumulated at \(\rho\), \(\Delta(\rho) \in [0, \pi]\) by

\[\langle V_+(\rho), V_-(\rho) \rangle = 4 \cos \Delta(\rho).\]

As can be seen, e.g., in Figure 4.1,

\[\sin(\Delta(\rho)/2) = \sqrt{r(\rho)}, \quad \cos(\Delta(\rho)/2) = \sqrt{1 - r(\rho)}.\]

In particular,

\[\sin(\Delta(\rho)) = 2 \sqrt{r(\rho)} \sqrt{1 - r(\rho)}.\]

Therefore,

\[\Delta(\rho) = 2 \sqrt{r(\rho)} + O(r(\rho)^{3/2}).\]

Now, note that if

\[\sum_{j=0}^{k} \Delta(\beta^{-j}(\rho)) < \frac{\pi}{4},\]

then

\[(4.33) \quad |\pi_M(\rho) - \pi_M(\beta^{-k}(\rho))| \geq \frac{1}{\sqrt{2}} \sum_{j=0}^{k} T_-(\beta^{-j}(\rho)).\]

By (4.31) and (4.32),

\[\sum_{j=0}^{M_n} \Delta(\beta^{-j}(\rho_n)) = \sum_{j=0}^{M_n} 2 \sqrt{r(\beta^{-j}(\rho_n))} + O(r(\beta^{-j}(\rho_n))^{3/2}) \leq \frac{1}{2mn} + O(n^{-3}) < \frac{\pi}{4}.\]
for n large enough. In particular, (4.30) and (4.33) imply that
\[
|\pi_M(\rho_n) - \pi_M(\beta^{-k}(\rho_n))| \geq \frac{1}{\sqrt{2}} \sum_{j=0}^{k} T_{\gamma}(\beta^{-j}(\rho_n)) \geq \frac{1}{\sqrt{2}} nR_n
\]
which, for n large enough, is impossible since $\tilde{U}_R \subset B(0, MR)$.

We now set up our contradiction argument to prove the bound (4.21). Suppose there is no constant $C > 0$ such that for all $R \geq 1$ the estimate fails. Then, there exists $\{R_\ell\}_{\ell=1}^{\infty} \subset [1, \infty)$, $\{h_{k,\ell}\}_{k,\ell=1}^{\infty}$, with $\lim_{k \to \infty} h_{k,\ell} = 0$, $u_{k,\ell}$, and $g_{k,\ell,\nu_D} f_{k,\ell}$ such that $\|u_{k,\ell}\|_{H^1_{\nu_D}(\tilde{U}_{R_\ell} \setminus \Omega_{-})} = 1$,
\[
(\|g_{k,\ell,I}\|_{L^2(\Gamma_{\nu_D}(R_{\ell})))} + \|g_{k,\ell,D}\|_{H^{-1}_{\nu_D}(\Gamma_D)}) \leq R_{\ell}^{-1/2} \ell^{-1}, \quad \|f_{k,\ell}\|_{L^2(\tilde{U}_{R_\ell} \setminus \Omega_{-})} \leq R_{\ell}^{-1} \ell^{-1},
\]
and such that
\[
\begin{cases}
(-h_{k,\ell}^2 \Delta - 1)u_{k,\ell} = h_{k,\ell} f_{k,\ell} & \text{on } \tilde{U}_{R_\ell} \setminus \Omega_{-}, \\
(\nu_{\ell} h_{k,\ell} D - D)u_{k,\ell} = g_{k,\ell,I} (x) & \text{on } \Gamma_{\nu_D}(R_{\ell}), \\
u_{\ell} u_{k,\ell} = g_{k,\ell,D} & \text{on } \Gamma_D.
\end{cases}
\]
Rescaling, we define
\[
\tilde{u}_{k,\ell}(x) = R_{\ell}^2 \nu_{\ell} u_{k,\ell}(x R_{\ell}), \quad \tilde{g}_{k,\ell,I}(x) = R_{\ell}^2 g_{k,\ell,I}(x R_{\ell}),
\]
\[
\tilde{f}_{k,\ell}(x) = R_{\ell}^{-2} f_{k,\ell}(x R_{\ell}), \quad \tilde{g}_{k,\ell,D} = R_{\ell}^2 g_{k,\ell,D}(x R_{\ell}).
\]
Then,
\[
\|\tilde{g}_{k,\ell,I}\|_{L^2(\Gamma_{\nu_D}(R_{\ell})))} + \|\tilde{g}_{k,\ell,D}\|_{L^2(\Gamma_D)} \leq \frac{1}{\ell}, \quad \|\tilde{u}_{k,\ell}\|_{H^1_{\nu_D}(\tilde{U}_{R_\ell})} \geq 1 - \frac{C}{R_{\ell}^{1/2}}, \quad \|\tilde{f}_{k,\ell}\|_{L^2} \leq \frac{1}{\ell},
\]
and, with $U_{\ell} = (\tilde{U}_{R_\ell}/R_{\ell}) \setminus (\Omega_{-}/R_{\ell})$, $\tilde{G}_{D,\ell} = \Gamma_{D}/R_{\ell}$, $\tilde{G}_{I,\ell} = \Gamma_{\nu_D}(R_{\ell})/R_{\ell}$,
\[
\begin{cases}
(-h_{k,\ell} R_{\ell}^{-1})^2 \Delta - 1)\tilde{u}_{k,\ell} = (h_{k,\ell} R_{\ell}^{-1}) \tilde{f}_{k,\ell} & \text{on } U_{\ell}, \\
(\nu_{\ell} h_{k,\ell} R_{\ell}^{-1} D - D)\tilde{u}_{k,\ell} = \tilde{g}_{k,\ell,I} & \text{on } \tilde{G}_{I,\ell}, \\
\tilde{u}_{k,\ell}|_{\tilde{G}_{D,\ell}} = \tilde{g}_{k,\ell,D}.
\end{cases}
\]
where, if a pseudodifferential operator B on Γ_{ν_D} is given by
\[
B = \text{Op}_b, \quad b \sim \sum_j \sqrt{h^j} b_j,
\]
then
\[
\tilde{B} = \text{Op}_{h R^{-1}}(\tilde{b}), \quad \tilde{b} \sim \sum_j (h R^{-1})^j R^j b_j.
\]
Putting $\tilde{h}_{k,\ell} = h_{k,\ell} R_{\ell}^{-1}$, we have $\tilde{h}_{k,\ell} \to 0$ hence, extracting subsequences if necessary, we can assume that $u_{k,\ell}$ ($k \to \infty$) has a defect measure μ_ℓ and by Corollaries 4.2 and 4.3 we can assume that the trace measures for $u_{k,\ell}$, $\nu_{\ell D}$, $\nu_{\ell D}$, and $\nu_{\ell D}$ exist. Moreover, μ_ℓ satisfies the relations from Proposition 2.12 where $\mu_{in/out}$. Finally, extracting even further subsequences, we can assume $\tilde{g}_{k,\ell,I,D}$ have defect measures $\omega_{\ell,D}$, $\tilde{f}_{k,\ell}$ has defect measure α_{ℓ}, and the joint measure of $\tilde{u}_{k,\ell}$ and $\tilde{f}_{k,\ell}$ is μ_{ℓ} with
\[
\omega_{\ell,D}(T^* \tilde{G}_{D,\ell}) \leq \frac{1}{\ell^2}, \quad \omega_{\ell,D}(T^* \tilde{G}_{D,\ell}) \leq \frac{1}{\ell^2}, \quad \alpha_{\ell}(T^* U_{\ell}) \leq \frac{1}{\ell^2},
\]
and $R_{\ell} \to R \in [1, \infty]$. Therefore, using e.g. [GSW20, Lemma 4.2] together with Corollaries 4.2 and 4.3 to estimate the $H^1_{\nu_D/\nu}$ norm of \tilde{u} by its L^2 norm,
\[
1 = \lim \sup_k \|\tilde{u}_{k,\ell}\|_{H^1_{\nu_D/\nu_{k,\ell}}} \geq \mu_\ell(T^* R_D) \geq \lim \inf_k \|\tilde{u}_{k,\ell}\|_{L^2} \geq c \lim \inf_k \|\tilde{u}_{k,\ell}\|_{H^1_{\nu_D/\nu_{k,\ell}}} \geq \frac{c}{2} > 0.
\]
Note that each μ_ℓ is a finite measure satisfying $\text{supp} \mu_\ell \subset S^*_B(0, M) \mathbb{R}^d$. Therefore, the sequence μ_ℓ is tight and bounded and hence by Prokhorov’s theorem (see, e.g., [Bil99, Theorem 5.1, Page 59]) we can assume that $\mu_\ell \rightharpoonup \mu$ for some measure μ. Moreover, $\text{supp} \mu \subset S^*_\omega \mathbb{R}^d$ and

\begin{equation}
1 \geq \mu(S^* \mathbb{R}^d) > c > 0.
\end{equation}

Lemma 4.9. The sequences of boundary measures $\nu^D_{d,\ell}$, $\nu^D_{n,\ell}$, and $\nu^\tau_{j,\ell}$, and $\nu^D_{n,\ell}$ are tight.

Proof. Since $\{r \geq 0\} \subset T^* \partial M_{1,\ell}$ is a compact set, we need only consider $r < 0$. By Lemma 2.11,

\begin{equation}
\Re \nu^D_{j,\ell} 1_{r < 0} = 0, \quad \nu^D_{n,\ell} 1_{r < 0} = -r \nu^D_{d,\ell} 1_{r < 0}.
\end{equation}

On the other hand, the boundary condition on $\Gamma_{1,\ell}$ gives for $a \in C^\infty_c(\{r < 0\})$, $\langle a(x, \tilde{h}) \hat{N} \tilde{h} D_n u, u \rangle = \langle a(x, \tilde{h}) \hat{D} u, u \rangle + O(\ell^{-1}) + o(1)_{\tilde{h} \to 0}$.

Sending $\tilde{h} \to 0$, we obtain

$$\nu^\tau_{j,\ell}(\sigma(N))a = \nu^\tau_{d,\ell}(\sigma(D)a) + O(\ell^{-1}).$$

In particular,

$$\|\nu^\tau_{j,\ell}(\sigma(N))1_{r < 0} - \nu^\tau_{d,\ell}(\sigma(D))1_{r < 0}\| = O(\ell^{-1}).$$

Now, since $\Re \nu^\tau_{j,\ell} = 0$ and $\nu^\tau_{d,\ell}$, $\sigma(D)$ are real,

$$\|\nu^\tau_{d,\ell}(\sigma(D))1_{r < 0}\| = O(\ell^{-1}).$$

Similarly, for $a \in C^\infty_c(\{r < 0\})$,

$$\langle a(x, \tilde{h}) \hat{h} D_n u, \hat{D} u \rangle = \langle a(x, \tilde{h}) u, \hat{N} \tilde{h} D_n u \rangle + O(\ell^{-1}) + o(1)_{\tilde{h} \to 0},$$

so that, since $\sigma(N)$ and $\sigma(D)$ are both real,

$$\|\nu^\tau_{n,\ell}(\sigma(N))1_{r < 0} - \nu^\tau_{d,\ell}(\sigma(N))1_{r < 0}\| = O(\ell^{-1}).$$

and hence

$$\|\nu^\tau_{n,\ell}(\sigma(D))1_{r < 0} + r \nu^\tau_{d,\ell}(\sigma(N))1_{r < 0}\| = O(\ell^{-1}),$$

which again implies

$$\|r \nu^\tau_{d,\ell}(\sigma(N))1_{r < 0}\| = O(\ell^{-1}).$$

We now claim that

\begin{equation}
\text{there exists } \epsilon > 0 \text{ such that } \{r |\sigma(N)| \leq \epsilon\} \cap \{\sigma(D) \leq \epsilon\} \text{ is compact},
\end{equation}

which then implies that $\nu^\tau_{d,\ell}$ is tight. We now show that (4.36) holds in each of the three cases: $m_0 > m_1 + 1$, $m_0 < m_1 + 1$, and $m_0 = m_1 + 1$. If $m_0 > m_1 + 1$, then $\{\sigma(D) \leq c/2\}$ is compact by (4.5) since $m_0 \geq 0$ by (4.10). If $m_0 < m_1 + 1$ and $m_1 \geq 2$ then $\{r |\sigma(N)| \leq c/2\}$ is compact by (4.4); observe that the inequality $m_1 \geq 2$ follows from $m_0 < m_1 + 1$ since $m_0 \geq 0$ by (4.10). We now show that if $m_0 = m_1 + 1$ then the first inequality in (4.2) implies that there exists $C > 0$ such that if $|\xi'| \geq C$ then the intersection (4.36) with $\epsilon = \sqrt{c/2}$ (with c the constant in (4.3) is empty (and hence compact). Indeed, since $m_0 \geq 0$ and $\langle \xi \rangle \geq 1$,

\begin{equation}
\text{if } |\sigma(D)| \leq (c/2) \text{ then } |\sigma(D)| \leq (c/2) \langle \xi \rangle^{2m_0}.
\end{equation}

Now, by the first inequality in (4.2)

\begin{equation}
\text{if } |\sigma(D)| \leq (c/2) \langle \xi \rangle^{2m_0} \text{ then } |\sigma(N)| \leq (c/2) \langle \xi \rangle^{2m_1}.
\end{equation}

If $|\sigma(N)| \leq (c/2) \langle \xi \rangle^{2m_1}$ then, since $m_1 > -2$, $r^2 |\sigma(N)| \geq c/2$ for sufficiently large ξ, and thus (4.36) indeed holds with $\epsilon = \sqrt{c/2}$.

The tightness of $\nu^\tau_{d,\ell}$ and (4.35) then imply that $\nu^\tau_{n,\ell}$ is tight and $|\nu^\tau_{n,\ell}| \leq \sqrt{\nu^\tau_{d,\ell} \nu^\tau_{n,\ell}}$ implies that $\nu^\tau_{n,\ell}$ is tight. Next, the boundary condition on Γ_D gives that

$$\nu^D_{d,\ell} = \omega_{\ell,D} \leq \frac{1}{\ell^2}.$$

Hence, $\nu^D_{n,\ell}$ and $\nu^D_{j,\ell}$ are tight as above. \qed
Since the boundary measures form tight sequences, extracting subsequences if necessary, we can assume \(\nu_{j,I/D} \rightarrow \nu_{j,I/D} \), \(\nu_{i,I/d} \rightarrow \nu_{i,I/d} \), and \(\nu_{j,I/d} \rightarrow \nu_{j,I/d} \) for some measures \(\nu_{j,I/D} \), \(\nu_{i,I/D} \), and a complex measure \(\nu_{j,I/D} \). Furthermore, \(\nu_{j,I/d} = \omega_{j,I/d} \rightarrow 0 \), and hence \(\nu_{j,I/d} \rightarrow 0 \). We also have \(\alpha_{D} \rightarrow 0 \).

Since these measures converge as distributions and \(\widehat{\eta}_{I,D} \rightarrow \Gamma_{I,D}^{\infty} \) in \(C^{\infty} \), the equations from Lemma 2.12 and Theorem 2.15 hold for the limiting measures on \(\Gamma_{I,D}^{\infty} \). (Here, we think of \(\widehat{\eta}_{I,D} \) as a \(C^{\infty} \) graph over \(\Gamma_{I,D}^{\infty} \).) In addition, since \(\alpha_{D} \rightarrow 0 \),

\[
\mu(H_{\alpha}) = \lim_{\alpha \rightarrow \infty} \mu(H_{\alpha}) = 0, \quad a \in C_{c}^{\infty}(T^{\ast}U_{\infty} \setminus B(0, R^{-1})).
\]

In addition, (4.27) holds by Lemma 2.12.

We now introduce notation for various billiard flows in the next section. First, let \(\varphi_{I}^{\infty} \) denote the billiard flow on \(\mathbb{R}^{d} \setminus (\Omega_{-}/R_{t}) \). Then, define

\[
\varphi_{I}^{\infty}(x, \xi) = \lim_{\ell \rightarrow \infty} \varphi_{I}^{\ell}(x, \xi), \quad (x, \xi) \in S^{*}(\mathbb{R}^{d} \setminus (\Omega_{-}/R)).
\]

Note that, the convergence to \(\varphi_{I}^{\infty} \) is uniform and, in the case \(R < \infty \), \(\varphi_{I}^{\infty}(x, \xi) \) agrees with the billiard flow on \(\mathbb{R}^{d} \setminus (\Omega_{-}/R) \) and we identify the two flows.

Proposition 4.10. Suppose that \(T < \infty \) and \(A \subset S_{U_{\infty}}^{*} \mathbb{R}^{d} \) with

\[
\bigcup_{0 \leq \ell \leq T} \varphi_{I}^{\ell}(A) \cap \Gamma_{I,T}^{\infty} = \emptyset.
\]

Then,

\[
\lim_{\ell \rightarrow \infty} \sup_{\ell \in [0, T]} |\mu_{\ell}(\varphi_{I}^{\ell}(A)) - \mu_{\ell}(A)| = 0
\]

Proof. This follow from Theorem 2.15 since

\[
\|\mu_{I,D}^{\ell} - \mu_{D}^{\ell} \|_{\ell^{2}} = 2\|\nu_{I,D}^{D}\| \leq C \sqrt{\|\omega_{D,I}^{D}\|} = O(\ell^{-1})
\]

and

\[
\|\mu_{I}^{\ell}\| \leq C \sqrt{\ell} = O(\ell^{-1}).
\]

Next, we show that \(\mu_{\infty} \) is invariant under \(\varphi_{I}^{\infty} \) when \(R < \infty \).

Lemma 4.11. Suppose that \(R < \infty \) and that \(A \subset S_{U_{\infty}}^{*} \mathbb{R}^{d} \) is closed and

\[
\bigcup_{0 \leq \ell \leq T} \varphi_{I}^{\infty}(A) \cap \Gamma_{I,T}^{\infty} = \emptyset.
\]

Then,

\[
\mu(\varphi_{I}^{\infty}(A)) = \mu(A).
\]

Proof. First, note that since the convergence of \(\varphi_{I}^{\ell} \) to \(\varphi_{I}^{\infty} \) is uniform,

\[
\lim_{\ell \rightarrow \infty} d(\varphi_{I}^{\ell}(A), \varphi_{I}^{\ell}(A)) = 0.
\]

Therefore, fixing \(\epsilon > 0 \), for \(\ell \) large enough,

\[
\varphi_{I}^{\ell}(A) \subset \{(x, \xi) : d(\varphi_{I}^{T}(A), (x, \xi)) < \epsilon\}
\]

and

\[
\varphi_{I}^{\ell,T}(\varphi_{I}^{\infty}A) \subset \{(x, \xi) : d(A, (x, \xi)) < \epsilon\}
\]

Now, for finite times \(T \), \(\mu_{\ell} \) is invariant under \(\varphi_{I}^{\ell} \) up to \(o(1)_{\ell \rightarrow \infty} \). Combining this with the fact that our assumption on \(A \) implies that, for \(\ell \) large enough, \(\varphi_{I}^{\ell} \) does not intersect \(\Gamma_{I,T,R} \) in \([0, T]\), we have

\[
\mu_{\ell}(\varphi_{I}^{\infty}(A)) = \mu_{\ell}(\varphi_{I}^{\ell,T}(\varphi_{I}^{\infty}(A))) + o(1)_{\ell \rightarrow \infty} \leq \mu_{\ell}(\{(x, \xi) : \text{dist} \ (x, \xi, A) < \epsilon\}) + o(1)_{\ell \rightarrow \infty}
\]

and

\[
\mu_{\ell}(A) = \mu_{\ell}(\varphi_{I}^{\ell}(A)) + o(1)_{\ell \rightarrow \infty} \leq \mu_{\ell}(\{(x, \xi) : \text{dist} \ (x, \xi, \varphi_{I}^{\infty}(A)) < \epsilon\}) + o(1)_{\ell \rightarrow \infty}.
\]
Sending $\ell \to \infty$ and then $\epsilon \to 0$, we obtain
\[\mu(A) = \mu(\varphi_\infty^\ell(A)) \]
as claimed. \hfill \Box

Remark. Note that when $R = \infty$, the analogue of Lemma 4.11 is obvious except on the sets \(\{ \xi = \pm \frac{\pi}{|\ell|} \} \) and \(\{ x = 0 \} \) since we can test μ against H_0 away from these sets.

In the case $R = \infty$, we use the following lemmas.

Lemma 4.12. If $R = \infty$, then $\mu(\{ x = 0 \}) = 0$.

Proof. Fix $\epsilon > 0$. Since Ω_- is nontrapping and $\Gamma_D \subset B(0,1)$, there is $T > 0$ and $c > 0$ such that
\[\bigcup_{\epsilon \geq 2TR^{-1}} \varphi_{\ell}^t(\{ |x| \leq 2R^{-1} \} \cap \{ |x| \leq 3R^{-1} \}) = \emptyset. \]
Thus, for ℓ large enough
\[\varphi_{\ell}^t(\{ |x| \leq \epsilon \}) \subset \{ 2\epsilon \leq |x| \leq 6\epsilon, \xi = \frac{\pi}{|\ell|} > c \}. \]
In particular, there is $c > 0$ such that for $j \neq k$, $0 \leq j < k < \alpha^{-1}$
\[\varphi_{\ell}^t(\{ |x| \leq \epsilon \}) \cap \varphi_{\ell}^t(\{ |x| \leq \epsilon \}) = \emptyset. \]
Since $\mu_\ell(T^*\mathbb{R}^d) \leq 1$, this implies that
\[\mu_\ell(\{ |x| \leq \epsilon \}) \leq C\epsilon + o_\ell \to \infty(1) \]
and hence, sending $\ell \to \infty$,
\[\mu(\{ |x| \leq \epsilon \}) \leq C\epsilon. \]
Finally, sending $\epsilon \to 0$ proves the claim. \hfill \Box

Lemma 4.13. If $R = \infty$ then μ_∞ is invariant under φ_∞^ℓ away from Γ_∞.

Proof. Let
\[A_\pm := \{ \pm \xi = \frac{\pi}{|\ell|} \} \cap \{ |x| = \frac{1}{2M} \}. \]
Note that μ_ℓ is invariant under φ_ℓ^t modulo $o_\ell \to \infty(1)$. Now, $\tilde{\Gamma}_D, t \subset B(0, R^{-1}_\ell)$. Since $R_\ell \to \infty$, and Ω_- is nontrapping for $(x, \xi) \in A_-$,
\[\lim_{\ell \to \infty} \sup_{(x, \xi) \in A_-} \text{dist}(\varphi_1^\ell(M, x, \xi), A_+) = 0. \]
Similarly,
\[\lim_{\ell \to \infty} \sup_{(x, \xi) \in A_+} \text{dist}(\varphi_{-1}^\ell(M, x, \xi), A_-) = 0. \]
Now, for $\delta > 0$ small enough, $-\delta \leq t \leq \delta$ and dist $(x, \xi, A_\pm) \leq \delta$, $\varphi_\ell^t(x, \xi) = \varphi_\infty^\ell(x, \xi)$. In particular, for $B_0 \subset A_-$,
\[\mu_\ell \left(\bigcup_{-\delta \leq l \leq \delta} \varphi_\infty^\ell(B_-) \right) = \mu_\ell \left(\bigcup_{-\delta \leq l \leq \delta} \varphi_\ell^t(B_-) \right) = \mu_\ell \left(\bigcup_{-\delta \leq l \leq \delta} \varphi_\ell^t(B_-) \right) + o_\ell \to \infty(1). \]
Fix $\epsilon > 0$. Then for ℓ large enough,
\[\bigcup_{1/\ell - \delta \leq l \leq 1/\ell + \delta} \varphi_\ell^t(B_-) \subset \bigcup_{-\delta \leq t \leq \delta} \varphi_\ell^t(\{ (x, \xi) : \text{dist}((x, \xi), \varphi_1^\ell(M, B_-)) \leq \epsilon \}). \]
In particular
\[\mu_\ell \left(\bigcup_{-\delta \leq t \leq \delta} \varphi_\infty^\ell(B_-) \right) \leq \mu_\ell \left(\bigcup_{-\delta \leq l \leq \delta} \varphi_\ell^t(\{ (x, \xi) : \text{dist}((x, \xi), \varphi_1^\ell(M, B_-)) \leq \epsilon \}) \right) + o(1) \ell \to \infty, \]
\[= \mu_\ell \left(\bigcup_{-\delta \leq l \leq \delta} \varphi_\infty^\ell(\{ (x, \xi) : \text{dist}((x, \xi), \varphi_1^\ell(M, B_-)) \leq \epsilon \}) \right) + o(1) \ell \to \infty, \]
where in the last line we use that \(\varphi_t^\infty = \varphi_t^\infty \) on the relevant set. Similarly, for \(\ell \) large enough (depending on \(\epsilon \)), and \(B_+ \subset A_+ \)

\[
\mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(B_+ \right) \right) \leq \mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(\{ (x, \xi) : \text{dist} \left((x, \xi), \varphi_{t+1/M}^- (B_+) \right) \leq \epsilon \} \right) \right) + o(1)_{t \to \infty}.
\]

Putting \(B_+ = \varphi_{t+1/M}^- (B_-) \), sending \(\ell \to \infty \) and then \(\epsilon \to 0 \), we obtain

\[
\mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(B_+ \right) \right) \leq \mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(B_- \right) \right)
\]

\[
\leq \mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(B_- \right) \right) = \mu\left(\bigcup_{-\delta \leq t \leq \delta} \varphi_t^- \left(B_+ \right) \right),
\]

and the claim then follows from the fact that

\[
\mu(H_p^d) = 0
\]

for all \(a \in C_c^{\infty}(T_{0,\infty}^d \setminus \{0\}^d) \).

We now derive our contradiction to prove the bound (4.21) and thus complete the proof of Theorem 4.6. By Lemmas 4.11, 4.12, and 4.13, \(\mu \) is invariant under \(\varphi_t^\infty \) away from \(\Gamma_{t+1}^- \). In particular, Lemma 4.8 applies and we obtain that \(\mu = 0 \), which is a contradiction to (4.34).

5. Proofs of the bounds on the relative error (Theorems 1.6-1.11)

As discussed in §3, the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from applying Theorem 1.5 to \(u - v \) and then using Lemma 3.2. It therefore remains to prove the lower bounds in Theorems 1.6, 1.7, 1.8, 1.10, and 1.11.

5.1. Existence of defect measures.

Lemma 5.1. If \(\Omega_- \) is nontrapping, then Assumption 2.2 holds for \(u \) and \(v \) the solutions of (2.1) and (2.2), respectively.

Proof. The bound on \(\| \nu \|_{L^2} \) follows from Lemma 3.1; the bound on \(\| hD_n u \|_{L^2(\Gamma_D)} \) follows from Corollary 4.3 and that on \(\| u \|_{L^2(\Gamma_D)} \) follows from the condition (2.1b) that \(u|_{\Gamma_D} = \exp(ix \cdot a/h) \). The bound on \(\| v \|_{L^2(\Omega_-)} \) follows from Theorem 1.5. The bounds on \(\| hD_n u \|_{L^2(\Gamma_D)} \) and \(\| hD_n v \|_{L^2(\Gamma_D)} \) follow from Corollary 4.2, and those for \(\| hD_n u \|_{L^2(\Gamma_D)} \) from Corollary 4.3. The bound on \(\| v \|_{L^2(\Gamma_D)} \) follows from the condition (2.2b) that \(v|_{\Gamma_D} = \exp(ix \cdot a/h) \).

Remark 5.2 (Neumann boundary conditions). We do not consider Neumann boundary conditions on \(\Gamma_D \) because, as far as we know, propagation of measures for Neumann boundary conditions is not available. Indeed, the Neumann boundary condition does not satisfy the uniform Lopatinski–Shapiro condition (see, e.g., [Hör85, Part (ii) of Definition 20.1.1, Page 233]) and, under Neumann boundary conditions, if \(u \) is normalised so that \(\| hD_n u \|_{L^2(\Gamma_D)} \) is bounded, then \(u \|_{L^2(\Gamma_D)} \) is typically not uniformly bounded as \(h \to 0 \) (for example, when \(\Gamma_D \) is the boundary of a ball; see, e.g., [Spe14, Equation 3.31]); therefore Assumption 2.2 does not hold.

5.2. Reduction to a lower bound on the measure of the incoming set.

Lemma 5.3. There exists \(C_1 > 0 \) such that if \(\{ u_\ell \} \subset_{\subset} \Omega_- \) and \(\{ v_\ell \} \subset_{\subset} \Omega_- \) are sequences of solutions to (2.1) and (2.2), respectively, such that \(u \) has a defect measure and \(v_\ell \) has defect measure \(\mu \), then

\[
\liminf_{\ell \to \infty} \frac{\| u_\ell - v_\ell \|_{L^2(\Omega_-)}}{\| u_\ell \|_{L^2(\Omega_-)}} \geq C_1 \sqrt{\frac{\mu(\mathcal{I})}{\mathcal{R}}},
\]

and

\[
\liminf_{\ell \to \infty} \frac{\| u_\ell - v_\ell \|_{L^2(B(0,2))}}{\| u_\ell \|_{L^2(B(0,2))}} \geq C_1 \sqrt{\mu(\mathcal{I} \cap (S^\infty_{B(0,3/2)} \setminus \mathbb{R}^d))},
\]

where \(\mathcal{I} \) is the directly-incoming set defined by (3.3).
Proof. Let \(b \in C_c^\infty(S^*\Omega_R) \) be supported in \(\mathcal{I} \) and such that
\[
\int |b|^2 \, d\mu \geq \mu(\mathcal{I})/2.
\]
If \(\tilde{\mu} \) is a defect measure of \(u \), then \(\tilde{\mu}(\mathcal{I}) = 0 \) by Lemma 3.6. By the definition of defect measures,
\[
limit_{\ell \to \infty} \langle b(x, h_\ell D)u_\ell, b(x, h_\ell D)u_\ell \rangle = 0,
\]
and therefore
\[
\mu(\mathcal{I})/2 \leq \lim_{\ell \to \infty} \langle b(x, h_\ell D)v_\ell, b(x, h_\ell D)v_\ell \rangle
\]
\[
= \lim_{\ell \to \infty} \left(\langle b(x, h_\ell D)v_\ell, b(x, h_\ell D)v_\ell \rangle + \langle b(x, h_\ell D)u_\ell, b(x, h_\ell D)u_\ell \rangle \right)
\]
\[
- 2 \lim_{\ell \to \infty} \Re \langle b(x, h_\ell D)u_\ell, b(x, h_\ell D)v_\ell \rangle
\]
\[
= \lim_{\ell \to \infty} \langle b(x, h_\ell D)(v_\ell - u_\ell), b(x, h_\ell D)(v_\ell - u_\ell) \rangle
\]
\[
\lesssim \|u_\ell - v_\ell\|^2_{L^2(\Omega_R)}
\]
(where the upper bound on \(b(x, h_\ell D) \) is independent of \(\mathcal{I} \) by [Zwo12, Theorem 5.1]). The bound (5.1) then follows from the upper bound on \(\|u_\ell\|_{L^2(\Omega_R)} \) in Lemma 3.1. The estimate (5.2) is proved in the same way by taking \(b \) supported in \(S^*_{B(0,3/2)} \mathbb{R}^d \) and such that \(\int |b|^2 \, d\mu \geq \mu(\mathcal{I} \cap S^*_{B(0,3/2)} \mathbb{R}^d)/2 \).

Corollary 5.4. Let \(\{v_\ell\}_{\ell=1}^\infty, \{h_\ell\}_{\ell=1}^\infty \), and \(\{a_\ell\}_{\ell=1}^\infty \) be sequences such that \(v_\ell \) satisfies (2.2) with \(a = a_\ell \) and \(\{v_\ell\}_{\ell=1}^\infty \) has defect measure \(\mu \).

(i) To prove Theorem 1.6 it is sufficient to prove that there exists \(c_0 > 0 \) that depends continuously on \(\Gamma_{tr,R} \) such that
\[
\mu(\mathcal{I}) \geq c_0.
\]

(ii) Having proved Theorem 1.6, to prove the lower bound in Theorem 1.7 it is sufficient to prove that there exists \(c_1 > 0 \) (independent of \(R \)) and \(R_0 \) such that, for all \(R \geq R_0 \),
\[
\mu(\mathcal{I}) \geq \frac{c_1}{R^{4|m_{ord}}-1}.
\]

(iii) Having proved Theorem 1.6, to prove Theorem 1.8 it is sufficient to prove that there exists \(c_2 > 0 \) and \(R_0 > 0 \) (independent of \(R \)) such that, for all \(R \geq R_0 \),
\[
\mu(\mathcal{I}) \geq c_2 R.
\]

(iv) To prove Theorem 1.10 it is sufficient to prove that there exists \(c_3 > 0 \) (independent of \(R \)) and \(R_0 \geq 2 \) such that, for all \(R \geq R_0 \),
\[
\mu(\mathcal{I} \cap (S^*_{B(0,3/2)} \mathbb{R}^d)) \geq \frac{c_3}{R^{4|m_{ord}}}.
\]

(v) To prove Theorem 1.11 it is sufficient to prove that there exists \(c_4 > 0 \) (independent of \(R \)) such that, for all \(R \geq 2 \),
\[
\mu(\mathcal{I} \cap (S^*_{B(0,3/2)} \mathbb{R}^d)) \geq \frac{c_4}{R^{d-1}}.
\]

Proof. We prove Part (ii), i.e. the lower bound in (1.14) in Theorem 1.7; the proofs of the other parts are essentially identical and/or simpler.

We first show that it is sufficient to prove that there exists \(\tilde{C}_1 = \tilde{C}_1(\Omega_-, M, N) \) and \(R_0 = R_0(\Omega_-, M, N) > 0 \) such that for any \(R \geq R_0 \), there exists \(\tilde{k}_0(R) > 0 \) such that, for any direction \(a \),
\[
\|u - v\|_{L^2(\Omega_R)} \geq \frac{\tilde{C}_1}{R^{2|m_{ord}}} \quad \text{for all } k \geq k_0.
\]

Indeed, having proved (5.7), we let
\[
C_1 := \min \left(\tilde{C}_1, \min_{1 \leq R \leq R_0} \frac{\|u - v\|_{L^2(\Omega_R)}}{\|u\|_{L^2(\Omega_R)}} \right).
\]
By Theorem 1.6 and the fact that the constant C in this theorem depends continuously on R, C_1 exists, is > 0, and is independent of k. With this definition of C_1, (5.1) implies that the lower bound in (1.14) holds with $k_0(R) := \tilde{k}_0(R)$ for $R \geq R_0$, and $k_0(R)$ equal to the respective k_0 from Theorem 1.6 for $1 \leq R \leq R_0$.

We now prove (5.7); seeking a contradiction, suppose that the converse of (5.7) is true; that is, given $C_0 > 0$, for any $\tilde{R}_0 > 0$ there exists $R \geq \tilde{R}_0$ and sequences $\{h_t\}_{t=1}^\infty$, $\{a_t\}_{t=1}^\infty$ with $h_t \to 0$, $|a_t| = 1$ such that the solutions u_t and v_t to (2.1) and (2.2) satisfy

$$\frac{\|u_t - v_t\|_{L^2(\Omega_R)}}{\|u_t\|_{L^2(\Omega_R)}} \leq \frac{C_0}{R^{2m_{\text{med}}}}. \tag{5.8}$$

By extracting subsequences, we can assume that u_t has defect measure $\tilde{\mu}$ and v_t has defect measure μ by Lemma 5.1.

Setting $\tilde{R}_0 := R_0$, with R_0 such that (5.3) holds for $R \geq R_0$, and using this lower bound on $\mu(I)$ in (5.1), we have

$$\liminf_{t \to \infty} \frac{\|u_t - v_t\|_{L^2(\Omega_R)}}{\|u_t\|_{L^2(\Omega_R)}} \geq \frac{C_1 \sqrt{C_1}}{R^{2m_{\text{med}}}}$$

for all $R \geq \tilde{R}_0$, which contradicts (5.8) for $C_0 < C_1 \sqrt{C_1}$, thus proving the lower bound in Theorem 1.7. □

5.3. Outline of the ideas behind rest of the proofs, and the structure of the rest of this section. By Corollary 5.4, we need to prove lower bounds on $\mu(I)$. We argue by contradiction and assume that $\mu(I)$ is small. The overall plan is to

(i) Show that, since $\mu(I)$ is small, mass is created when incoming rays reflect off Γ_D using Lemma 2.20 above.

(ii) Show that there exists a neighbourhood of rays starting from Γ_D that hit $\Gamma_{tr,R}$ directly (i.e. without hitting Γ_D in the meantime) and hit $\Gamma_{tr,R}$ at angles to the normal that are not zero, and not one of the special angles corresponding to the non-zero zeros $\{\tau_j\}_{j=1}^{\text{max}}$ of $q(t)\sqrt{1-t-p(t)}$ (these conditions are made more precise in Condition 5.9 below).

(iii) Propagate the mass created in Point (i) on the rays constructed in Point (ii) using Part (i) of Corollary 2.17 (to go from mass on Γ_D to mass on $\Gamma_{tr,R}$).

(iv) Show that mass is reflected on $\Gamma_{tr,R}$ using the expression for the reflection coefficient in Corollary 2.19 and the fact that the rays hit $\Gamma_{tr,R}$ away from angles where the reflection coefficient vanishes.

(v) Show that this reflected mass produces mass on I using Part (ii) of Corollary 2.17 (to go from mass on $\Gamma_{tr,R}$ to mass in Ω_R), contradicting the assumption that $\mu(I)$ is small.

For the quantitative (i.e. explicit-in-R) bounds the goal is to prove a lower bound on $\mu(I)$ that is explicit in R. Therefore, on top of the requirements on the rays in Point (ii) above, we need (a) the angles the rays hit $\Gamma_{tr,R}$ to have certain R-dependence (since this will affect the R-dependence of the reflection coefficient in Point (iv)), and (b) information about when the reflected rays next hit Γ_D.

For the bounds on the relative error in subsets of Ω_R (Theorems 1.10 and 1.11), we also require information about when the rays return to a neighbourhood of Ω_-, since we need information about the defect-measure mass here (more specifically, $\mu(I \cap S^*_0(0,3/2,R^4))$).

Outline of the rest of §5.

§5.4 contains preliminary results required for the ray arguments.

§5.5 states the condition the rays must satisfy (Condition 5.9) and results constructing rays satisfying this condition (Lemmas 5.10-5.13).

§5.6 proves Lemmas 5.10-5.13.

§5.7 bounds the reflection coefficient (2.48) for rays satisfying Condition 5.9.
§5.8 proves the qualitative (i.e. not explicit in R) lower bound in Theorem 1.6. The steps (i)-(v) above therefore appear in their simplest form in this proof.

§5.9 proves the quantitative (i.e. explicit in R) lower bounds in Theorem 1.7, 1.8, 1.10, 1.11.

5.4. Preliminary results required for the ray arguments. Recall that S^{d-1} denotes the d-dimensional unit sphere. Given $a \in \mathbb{R}^d$ with $|a| = 1$, let $\mathcal{R}_a: \Gamma_D \rightarrow S^{d-1}$ be defined by

$$\mathcal{R}_a(x') = \left(\xi_1 = \sqrt{r(x', (a_T(x'))^2)}, \xi' = (a_T(x'))^3 \right).$$

The definition of the local coordinates in §2.3 and the fact that $\xi_1 > 0$ imply that

$$(5.9) \quad \mathcal{R}_a(x') = \begin{cases} a - 2(n(x') \cdot a)n(x') & \text{if } a \cdot n(x') \leq 0, \\ a & \text{if } a \cdot n(x') \geq 0, \end{cases}$$

i.e., $\mathcal{R}_a(x')$ is the reflection of a from Γ_D if x' is in the illuminated part of Γ_D and $\mathcal{R}_a(x')$ is just a if x' is in the shadow part of Γ_D.

Definition 5.5. Given $x' \in \Gamma_D$ and $a \in \mathbb{R}^d$ with $|a| = 1$, the ray emanating from x' is the ray starting from $(x = x', \xi = \mathcal{R}_a(x'))$.

Definition 5.6. The ray emanating from $x' \in \Gamma_D$ is direct if the flow along the ray, starting at x', hits $\Gamma_{\mathcal{T}, R}$ before hitting Γ_D.

We now show that there are direct rays emanating from Γ_D in every direction.

Lemma 5.7. Given $a \in \mathbb{R}^d$ with $|a| = 1$. Let $\Gamma^+_D \subset \Gamma_D$ denote the set of points x' of Γ_D such that both $a \cdot n(x') \neq 0$ and the ray emanating from x' is direct. Then,

$$\mathcal{R}_a(\Gamma^+_D) = S^{d-1}.$$

Proof. We first prove that $a \in \mathcal{R}_a(\Gamma^+_D)$. Without loss of generality $a = (1, 0, \ldots, 0)$. Let $x'_0 \in \Gamma_D$ be the point with maximal x_1 coordinate. Then $\mathcal{R}_a(x'_0) = a$ by (5.9), $x'_0 \in \Gamma^+_D$ by the fact it has maximal x_1 coordinate, and so $a \in \mathcal{R}_a(\Gamma^+_D)$.

We now need to show that, given $\xi \in S^{d-1} \setminus \{a\}$, $\xi \in \mathcal{R}_a(\Gamma^+_D)$. Let \mathcal{P} be the plane defined by $\mathcal{P} := \text{Span}(a, \xi)$. Choose a cartesian system of coordinates in which $\mathcal{P} = \{x_3 = \cdots = x_n = 0\}$, $a = (1, 0, \cdots, 0)$, and (x_1, x_2) is right-handed oriented in \mathcal{P}. For $\xi \in S^{d-1}$, let $r_a(\xi) := a - 2(\xi \cdot a)\xi$; i.e. $r_a(\xi)$ is the reflection of a from a boundary with normal ξ. This definition implies that

$$r_a((\cos \omega, \sin \omega, 0, \cdots, 0)) = (\cos(2\omega - \pi), \sin(2\omega - \pi), 0, \cdots, 0),$$

where ω is the angle between a and ξ. The ray emanating from x_0 is just x_0. The ray emanating from $-x_0$ for $\xi = -a$ is the same as the ray emanating from x_0. Therefore, the ray emanating from x_0 is direct if and only if $\xi = -a$.

\[\text{Figure 5.1. Illustration of the proof of Lemma 5.7 in the two-dimensional case; i.e., construction of a ray reflecting from } \Gamma_D \text{ in an arbitrary direction } \zeta. \text{ The point } x' \text{ has maximal } y_1 \text{ coordinate, where the vector } \xi \text{ defines the } y_1 \text{ axis, and } \xi \text{ is defined by } \zeta = a - 2(\xi \cdot a)\xi.\]
so that
\[r_a(D) = (S^{d-1} \cap P) \setminus \{ a \}, \text{ where } D := \left\{ (\cos \omega, \sin \omega, 0, \ldots, 0), \omega \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \right\}. \]

Hence, there exists \(\xi \in D \) such that \(r_a(\xi) = \zeta \).

Finally, to show \(\zeta \in \mathcal{R}_a(\Gamma^+_{D, a}) \), we need to find \(x' \in \Gamma^+_{D, a} \) such that \(\mathcal{R}_a(x') = r_a(\xi) \). Let \((y_1, \ldots, y_d)\) be a cartesian system of coordinates such that \(\xi = (y_1 = 1, y_2 = 0, \ldots, y_d = 0) \); see Figure 5.1; let \(x' \) be a point of \(\Gamma_D \) with maximal \(y_1 \) coordinate. By definition, \(n(x') = \xi \), and, since \(\xi \in D, a \cdot n(x') < 0 \). Therefore, \(\mathcal{R}_a(x') = r_a(n(x')) = r_a(\xi) = \zeta \). Since \(x' \) has maximal \(y_1 \) coordinate in \(\Gamma_D, \) the ray emanating from \(x' \) only intersects \(\Gamma_D \) at \(x' \), and thus \(x' \in \Gamma^+_{D, a} \). \(\square \)

The following dilation property \(\mathcal{R}_a(x') \) is need for one of the proofs below (the proof of Lemma 5.13).

Lemma 5.8. Let \(0 < \delta < 1 \) and let \(\mathcal{C} \subset \Gamma^+_{D, a} \) be strictly convex (i.e. the second fundamental form is positive definite) and such that, for any \(x' \in \mathcal{C} \), \(\delta \leq |n(x') \cdot a| \leq 1 - \delta \). Then, there exists \(C_R > 0 \) and \(a_0 > 0 \) such that, for any \(x' \in \mathcal{C} \) and any \(0 < \alpha \leq a_0 \), if \(\partial B(x', \alpha) \cap \mathcal{C} \neq \emptyset \) and \(\partial B(x', \alpha) \cap \partial \mathcal{C} = \emptyset \), there exists \(y' \in \partial B(x', \alpha) \cap \mathcal{C} \) so that
\[|\mathcal{R}_a(x') - \mathcal{R}_a(y')| \geq C_R|x' - y'| = C_R\alpha. \]

Proof of Lemma 5.8. Let \((x_1, \ldots, x_d) := (x_1, x') \) be an Euclidean system of coordinates in which \(a = (1, 0, \ldots, 0) \). Since \(\mathcal{C} \) is included in \(\{ |n(x') \cdot a| \leq 1 - \delta \} \), there exists \(\gamma < \{ x_1 = 0 \} \) and a smooth map \(\gamma_C : x \to \mathbb{R} \) such that \(\mathcal{C} \) is given by, in this Euclidean system of coordinates
\[C = \{ (\gamma_C(x'), x') : x' \in \mathcal{C} \}. \]

First observe that, for \(x' = (\gamma_D(x'), x') \in \mathcal{C} \) and \(y' = (\gamma_D(y'), y') \in \mathcal{C} \)
\[|x' - y'| \leq |x' - y'| + |\gamma_D(x') - \gamma_D(y')| \leq (1 + \sup_x |\nabla \gamma_C|)|x' - y'|, \]
and hence
\[C_0|x' - y'| \leq |x' - y'| \leq |x' - y'|, \quad \text{where } C_0 := (1 + \sup_x |\nabla \gamma_D|)^{-1}. \]

By the definition of \(\mathcal{R}_a \) (5.9),
\[\mathcal{R}_a(x') - \mathcal{R}_a(y') = 2(H(x') - H(y')), \]
\[H(x') := (n(x') \cdot a) n(x') \quad \text{and} \quad n(x') := (1, -\nabla \gamma_D(x'))/\sqrt{1 + |\nabla \gamma_D(x')|^2}. \]

i.e., \(n(x') \) is the outward-pointing normal to \(\Gamma_D \) at \(x' = (\gamma_D(x'), x') \in \mathcal{C} \).

Given \(x' \), our plan is to use Taylor’s theorem on \(H \) to bound \(|\mathcal{R}_a(x') - \mathcal{R}_a(y')| \) below, and then choose \(y' \) appropriately so that this lower bound is \(\geq C_R|x' - y'| \). We first record that, since \(|n(x') \cdot a| \leq 1 - \delta \) and \(a = (1, 0, \ldots, 0) \),
\[|\nabla \gamma_C(x')| \geq (1 - \delta)^{-2} - 1 =: \beta > 0. \]

Let \(H_1 \) be the component of \(H \) in the \(x_1 \) direction (i.e., the direction of \(a \)), i.e.
\[H_1(x_1) = \frac{1}{1 + |\nabla \gamma_C(x')|^2}. \]

Then, using (5.11), Taylor’s theorem, (5.13), (5.10), and (5.12), we obtain
\[
\begin{align*}
\frac{1}{2} |\mathcal{R}_a(x') - \mathcal{R}_a(y')| &\geq \frac{1}{2} \left| H_1(x') - H_1(y') \right| \geq \left| \nabla H_1(x') \cdot (x' - y') \right| - \sup_x |\partial^2 H_1| |x' - y'|^2 \\
&= \frac{1}{2} \left| \frac{\partial^2 \gamma_C(x') \nabla \gamma_C(x')}{(1 + |\nabla \gamma_C(x')|^2)^2} \right| \left| x' - y' \right| - \sup_x |\partial^2 H_1| |x' - y'|^2 \\
&= \frac{1}{2} \left| \frac{\partial^2 \gamma_C(x') \nabla \gamma_C(x')}{(1 + |\nabla \gamma_C(x')|^2)^2} \right| \left| \frac{x' - y'}{|x' - y'|} \right| - \sup_x |\partial^2 H_1| |x' - y'|^2 \\
&\geq 2C_1 \beta C_0 Q \left(v, \frac{x' - y'}{|x' - y'|} \right) \left| x' - y' \right| - C_2 |x' - y'|^2,
\end{align*}
\]
where
\[v := \left(\partial^2 \gamma_C(x') \frac{\nabla \gamma_C(x')}{\nabla \gamma_C(x')} \right)^{-1} \]
and
\[C_1 := (1 + \sup_x |\nabla \gamma_C|^2)^{-2} > 0, \quad C_2 := \sup_x |\partial^2 H_1| < \infty, \quad Q_C := \inf_{x' \in \mathbb{R}^d} |\partial^2 \gamma_C(x')e| > 0, \]
where \(Q_C > 0 \) because \(C \) is strictly convex.

We now claim that, under the assumption that \(\partial B(x', \alpha) \cap C \neq \emptyset \) and \(\partial B(x', \alpha) \cap \partial C = \emptyset \), it is always possible to choose \(y' \in C \) so that
\[|x' - y'| = \alpha \quad \text{and} \quad \frac{x' - y'}{|x' - y'|} = v. \]
Indeed, for \(d \geq 3 \), the projection of \(\partial B(x', \alpha) \cap C \) on the hyperplane \(\{ x_1 = 0 \} \) is a closed hypersurface of \(\mathbb{R}^{d-1} \) (e.g., for \(d = 3 \) it is a closed curve). Since \(x' \) is in the geometrical interior of this hypersurface, for any \(v \in \mathbb{R}^{d-1} \), there exists \(y' \) satisfying (5.15). For \(d = 2 \), the projection of \(\partial B(x', \alpha) \cap C \) on the hyperplane \(\{ x_1 = 0 \} \) equals two points (one on either side of \(x' \)); since \(v = \pm 1 \) in this case, there exists \(y' \) satisfying (5.15).

For such a \(y' \in C \) satisfying (5.15), by (5.14),
\[|\mathbb{R}_a(x') - \mathbb{R}_a(y')| \geq \left(2C_1 \beta C_0 Q_C - C_2 \alpha \right) \alpha; \]
\[\text{taking } \alpha_0 := C_0 C_1 \beta Q_C / C_2 \text{ gives the result with } C_{\mathbb{R}} := C_0 C_1 \beta Q_C. \]

5.5. Statement of the lemmas constructing the rays.

Condition 5.9. Given \(\{ \psi_j \}_{j=1}^m \in (0, \pi/2] \), there exist \(c_{\text{ray,}j}, j = 1, \ldots, 5 \), such that, given \(a \in \mathbb{R}^d \) with \(|a| = 1 \), there exists \(V_D \subset \Gamma_D \) such that
(i) \(\text{vol}(V_D) \geq c_{\text{ray,}1} \).
(ii) \(|n(x') \cdot a| \geq c_{\text{ray,}2} \) for all \(x' \in V_D \).
(iii) the emanating rays from \(V_D \) hit \(\Gamma_{\text{tr},R} \) directly and, for each ray, the angle \(\theta \) the ray makes with the normal satisfies
\[\theta \geq c_{\text{ray,}3} \quad \text{and} \quad \min_{j=1, \ldots, m} |\theta - \psi_j| \geq c_{\text{ray,}4}, \]
(iv) after hitting \(\Gamma_{\text{tr},R} \), the rays travel a distance \(\geq c_{\text{ray,}5} \) before hitting either \(\Gamma_{\text{tr},R} \) or \(\Gamma_D \) again.

The \(\{ \psi_j \}_{j=1}^m \) in Condition 5.9 are arbitrary angles, but in the proofs below we choose them to be the angles at which the reflection coefficient on \(\Gamma_{\text{tr},R} \) (i.e. (2.48)) vanishes, i.e., the angles corresponding to the zeros of \(q(t) \sqrt{1 - t} - p(t) \) in \([0, 1] \). We set
\[\psi_j := \sin^{-1} \sqrt{t_j} \in (0, \pi/2], \quad j = 1, \ldots, m_{\text{vanish}}, \]
where \(\{ t_j \}_{j=1}^{m_{\text{vanish}}} \) are defined at the end of §1.3. Then, when \(|\xi'|_g = \sin \psi_j \) for some \(j = 1, \ldots, m_{\text{vanish}}, \sigma(N) \sqrt{t} - \sigma(D) = q(t_j) \sqrt{1 - t_j} - p(t_j) = 0. \)

We now state four lemmas constructing the rays used to prove the different lower bounds on \(\mu(\mathbb{I}) \) required by Corollary 5.4.

Lemma 5.10 (The rays for general convex \(\Gamma_{\text{tr},R} \)). Condition 5.9 holds with \(c_{\text{ray,}j} = c_{\text{ray,}j}(\Gamma_D, \Gamma_{\text{tr},R}) \) for \(j = 1, 3, 4, 5 \), and \(c_{\text{ray,}2} = c_{\text{ray,}2}(\Gamma_D) \). Furthermore \(c_{\text{ray,}j}, j = 1, 3, 4, 5 \), are continuous in \(R \).

Lemma 5.11 (The rays for \(\Gamma_{\text{tr},R} = \partial B(0, R) \)). If \(\Gamma_{\text{tr},R} = \partial B(0, R) \) then there exists \(R_0 > 0 \) such that Condition 5.9 holds for all \(R \geq R_0 \) with \(c_{\text{ray,}1}, c_{\text{ray,}2}, c_{\text{ray,}4} \) independent of \(R \), \(c_{\text{ray,}3} = c_3 / R \) and \(c_{\text{ray,}5} = c_5 R \) with \(c_3, c_5 > 0 \) independent of \(R \). Furthermore,
(iii) after their first reflection from \(\Gamma_{\text{tr},R} \), all of the rays hit \(B(0, 1) \).

Lemma 5.12 (The rays for generic \(\Gamma_{\text{tr},R} \)). If \(\Gamma_{\text{tr},R} \) satisfies the assumptions of Theorem 1.8, then Condition 5.9 holds for \(R \) sufficiently large with \(c_{\text{ray,}j}, j = 1, \ldots, 4 \), independent of \(R \) and \(c_{\text{ray,}5} = c_5 R \) with \(c_5 > 0 \) independent of \(R \).
Figure 5.2. The rays in Lemma 5.10 (i.e., for general convex $\Gamma_{tr,R}$). Neighbourhoods on Γ_D from which any of the blue rays emanate satisfy Condition 5.9.

Lemma 5.13 (The rays for when $\Gamma_{tr,R}$ is a smoothed hypercube). Let $\Gamma_{tr,R}$ coincide with the boundary of the hypercube $[-R/2,R/2]^d$ at distance more than ϵ from the corners (as described in the statement of Theorem 1.11).

There exists $\epsilon_0 > 0$ and $M \in \mathbb{Z}^+$ (both dependent on Γ_D but not on R) such that, if $0 < \epsilon \leq \epsilon_0$ and $R \geq 4$, then Condition 5.9 holds with $c_{\text{ray,2}}, c_{\text{ray,3}},$ and $c_{\text{ray,4}}$ independent of R, $c_{\text{ray,1}} = \bar{c}_{\text{ray,1}}/R^{d-1}$ and $c_{\text{ray,5}} = \bar{c}_5 R$ with $\bar{c}_1, \bar{c}_5 > 0$ independent of R, and

(v) the emanating rays from V_D hit $\Gamma_{tr,R}$ $N(R) \leq M$ times, each time with an angle θ to the normal satisfying (5.16) without hitting Γ_D in between, and then, after their $N(R)$th reflection, the rays intersect $B(0,3/2) \setminus B(0,5/4)$ before hitting either Γ_D or $\Gamma_{tr,R}$ again.

In the rest of this subsection, we outline the ideas used in the proofs of Lemmas 5.10-5.12, in the simplest possible case when $M = N = 0$ (i.e., the boundary condition on $\Gamma_{tr,R}$ is the impedance boundary condition (1.10)). In this case $m_{\text{vanish}} = 0$ and there are no non-zero angles ψ_j; when such angles exist, mass needs to be excluded in a careful way from the neighbourhoods described below so that the rays avoid these angles. The proof of Lemma 5.12 has a different character to the proofs of Lemmas 5.10-5.12, and so we postpone discussion of the ideas of that proof until the start of the proof itself.

The idea behind the ray construction for general convex $\Gamma_{tr,R}$ in Lemma 5.10 is as follows. We consider a point x_0 in Γ_D that is the extremum point on Γ_D in the direction of a. The rays emanating from a neighbourhood of this point are rays in the direction a, and thus hit $\Gamma_{tr,R}$ directly. Since $\Gamma_{tr,R}$ is convex, these rays cannot be normal to $\Gamma_{tr,R}$ at more than one point, see Figure 5.2, and thus the required neighbourhood exists.

For the proof of Lemma 5.11, we need in addition to quantify how far from the normal the ray described in the last paragraph hits $\Gamma_{tr,R}$. When $\Gamma_{tr,R} = \partial B(0,R)$, we show that a set of points of volume $c > 0$ can reach $\Gamma_{tr,R}$ with an angle $|\theta| \geq R^{-1}$; see Figure 5.3.

For the proof of Lemma 5.12, i.e. when $\Gamma_{tr} = : \lim_{R \to \infty} (\Gamma_{tr,R}/R)$ is not a sphere centred at zero, we recall from Lemma 5.7 that, given any direction, there exists a direct ray emanating from Γ_D in that direction. We need to show that at least one of these rays hits Γ_{tr} non-normally. Since Γ_{tr} is not a sphere centred at the origin, there exists $x_0^\infty \in \Gamma_{tr}$ with $n_{\Gamma_{tr}}(x_0^\infty) \neq x_0^\infty / |x_0^\infty|$. We use Lemma 5.7 to identify a point $x_0' \in \Gamma_D$ such that the ray emanating from x_0' is in the direction $x_0^\infty / |x_0^\infty|$ and does not hit Γ_D again. In the limit $R \to \infty$, the rescaled obstacle Ω_\perp/R shrinks to the origin; therefore the rays emanating from a neighbourhood of x_0' hit $\Gamma_{tr,R}$ with an angle close to the angle between $x_0^\infty / |x_0^\infty|$ and $n_{\Gamma_{tr}}(x_0')$; this angle is $\geq c > 0$, with c independent of R; see Figure 5.4.
Figure 5.3. The rays in Lemma 5.11 (i.e., for $\Gamma_{tr,R} = \partial B(0,R)$). Neighbourhoods on Γ_D from which any of the blue rays emanate satisfy Condition 5.9.

Figure 5.4. The rays in Lemma 5.12, i.e., when $\Gamma_{\infty tr}$ is not a ball centred at the origin. The figure shows the rescaled domain in the limit $R \to \infty$ (recall that in this limit the obstacle shrinks to the origin).

5.6. Proofs of Lemmas 5.10-5.13. In the proofs of these lemmas we use the notation that (b_1, b_2) is the angle between vectors b_1 and b_2; i.e.

$$\overrightarrow{(b_1, b_2)} := \cos^{-1} \left(b_1 \cdot b_2 \left/ |b_1||b_2| \right. \right),$$

where the range of \cos^{-1} is $[0, \pi]$.

Proof of Lemma 5.10.

Step 1. Construction of direct emanating rays in the direction of a.

Without loss of generality, we assume that $a = (1, 0, \ldots, 0)$. Let $x_0^a \in \Gamma_D$ be the point on Γ_D with maximal x_1 coordinate. By translating the obstacle Ω_-, we can assume that $x_0^a = 0$. Then, locally near 0, for any $0 < \epsilon \leq \epsilon_0(\Gamma_D)$, where ϵ_0 is small enough

$$\Gamma_D \cap B(0, \epsilon) \subset \{(\gamma_D(x'), x') : x' \in B(0, \epsilon) \subset \mathbb{R}^{d-1}\}$$

where $\gamma_D \in C^\infty(\mathbb{R}^{d-1})$ and $\partial \gamma_D(0) = 0$, and $\gamma_D(x') \leq 0$. Moreover, for $\epsilon_0 > 0$ small enough and $0 < \epsilon \leq \epsilon_0$

$$\Gamma_D \cap \{(x_1, x') : x_1 > \gamma_D(x') \text{ and } x' \in B(0, \epsilon)\} = \emptyset.$$
Indeed, if not then there exist \(x_n' \to 0, (y_n, x_n') \in \Gamma_D \) such that \(y_n > \gamma_D(x_n') \). But then, extracting subsequences if necessary, \((y_n, x_n') \to (y, 0) \in \Gamma_D \) and \(y > \gamma_D(0) \). In particular, by maximality of the \(x_1 \) coordinate at \(x_0' \), \(y = 0 \). But, near \(x_0' \) (5.18) holds and in particular, for \(n \) large enough, \(y_n = \gamma_D(x_n') \), which is a contradiction.

Observe that, shrinking \(\epsilon_0 > 0 \) if necessary, \(a \) is outward-pointing along \(\Gamma_D \cap B(0, \epsilon_0) \), and

\[
|n(x') \cdot a| \geq c_{ray, 2}(\epsilon_0), \quad \text{for all } x' \in B(0, \epsilon_0),
\]

where \(c_{ray, 2}(\epsilon_0) > 0 \) depends only on \(\epsilon_0 \) and hence \(\Gamma_D \). By (5.9), \(\mathcal{R}_n(x') = a \) for all \(x' \in \Gamma_D \cap B(0, \epsilon_0) \), and thus the rays emanating from \(\Gamma_D \cap B(0, \epsilon_0) \) are the rays in the \(x_1 \) direction; see Figure 5.2. By (5.19), these rays hit \(\Gamma_{\tau, R} \) before hitting \(\Gamma_D \) again. The neighbourhood \(V_D \) will be a subset of \(B(0, \epsilon_0) \), and thus Point (ii) in Condition 5.9 follows.

\(\star \) Step 2. Parametrisation of \(\Gamma_{\tau, R} \).

Let \(\gamma_{\tau} : B(0, \epsilon_0) \subset \mathbb{R}^{d-1} \to \mathbb{R}_+ \) be such that

\[
\Gamma_{\tau} \cap \{x_1 > 0, |x'| < \epsilon_0\} = \{(\gamma_{\tau}(x'), x') : |x'| < \epsilon_0\};
\]

since \(\Gamma_{\tau, R} \) is convex, this property holds without needing to reduce \(\epsilon_0 \) and thus \(\epsilon_0 \) still only depends on \(\Gamma_D \). The outward-pointing normal to \(\Gamma_{\tau, R} \) is given by

\[
m_{\tau}(x') := \frac{(1, -\nabla \gamma_{\tau}(x'))}{\sqrt{1 + |\nabla \gamma_{\tau}(x')|^2}}.
\]

For \(x' \in B(0, \epsilon_0) \subset \mathbb{R}^{d-1} \), let \(\theta(x') \in [0, \pi/2) \) be the angle between the ray emanating from \((\gamma_D(x'), x') \) and the normal to \(\Gamma_{\tau, R} \); since \(\cos \theta(x') = \langle 1, 0, \ldots, 0 \rangle \cdot m_{\tau}(x') \),

\[
\theta(x') = \cos^{-1}\left(\frac{1}{\sqrt{1 + |\nabla \gamma_{\tau}(x')|^2}}\right) \in [0, \pi/2).
\]

We use later the facts, obtained from (5.21) by direct calculation, that,

\[
\tan \theta(x') = |\nabla \gamma_{\tau}(x')|,
\]

and, in \(\{\nabla \gamma_{\tau}(x') \neq 0\} \),

\[
\nabla \theta(x') = \frac{1}{1 + |\nabla \gamma_{\tau}(x')|^2} \partial^2 \gamma_{\tau}(x') \frac{\nabla \gamma_{\tau}(x')}{|\nabla \gamma_{\tau}(x')|}.
\]

We also use the following quantities,

\[
Q := \inf_{x', |x'| = 1} |\partial^2 \gamma_{\tau}(x')v| \quad \text{and} \quad C_k := \sup_{x' \in \mathbb{R}^{d-1}} |\partial^k \gamma_{\tau}(x')|, \quad k = 1, 2, 3.
\]

\(\star \) Step 3. Avoiding the angle \(\psi_i = 0 \).

Recall that our goal is to construct \(V_D \subset \Gamma_D \cap B(0, \epsilon) \) so that

\[
\min_{i = 1, \ldots, m} \theta(x') - \psi_i \geq C > 0 \quad \text{for all } x' \in V_D,
\]

where \(\text{vol}(V_D) \) and \(C \) depend only on \(\Gamma_{\tau, R} \). Our plan is to exclude mass from \(B(0, \epsilon) \) for each \(i \), taking care that the volume is still bounded below to give Point (i) of Condition 5.9.

Avoiding the angle zero corresponds to obtaining a lower bound on \(|\theta(x')| \). By Taylor’s theorem,

\[
|\nabla \gamma_{\tau}(x')| \geq |\nabla \gamma_{\tau}(0) + \partial^2 \gamma_{\tau}(0)x' - \tilde{C}_d C_3|x'|^2|,
\]

where \(C_3 \) is defined by (5.24), and \(\tilde{C}_d \) depends only on \(d \). By the definition of \(Q \) in (5.24),

\[
|\nabla \gamma_{\tau}(0) + \partial^2 \gamma_{\tau}(0)x'| = \left|\partial^2 \gamma_{\tau}(0)\left((\partial^2 \gamma_{\tau}(0))^{-1}\nabla \gamma_{\tau}(0) + x'\right)\right| \geq Q\left((\partial^2 \gamma_{\tau}(0))^{-1}\nabla \gamma_{\tau}(0) + x'\right).
\]

Suppose that \(|(\partial^2 \gamma_{\tau}(0))^{-1}\nabla \gamma_{\tau}(0)| \leq \epsilon/3 \). Then

\[
|\nabla \gamma_{\tau}(x')| \geq \frac{Q\epsilon}{C_d} - \tilde{C}_d C_3 \epsilon^2 \quad \text{for } x' \in B(0, \epsilon) \setminus B(0, \epsilon/2).
\]

On the other hand, if \(|(\partial^2 \gamma_{\tau}(0))^{-1}\nabla \gamma_{\tau}(0)| \geq \epsilon/3 \), then

\[
|\nabla \gamma_{\tau}(x')| \geq \frac{Q\epsilon}{C_d} - \frac{\tilde{C}_d C_3 \epsilon^2}{36} \quad \text{for } x' \in B(0, \epsilon/6).
\]
Therefore, in both cases, if $\epsilon \leq Q/(12C_dC_3)$, then there exists a set W with
\[
\text{vol}(W) \leq \max(2^{-d}, 1 - 6^{-d}) \text{vol}(B(0, \epsilon)) = (1 - 6^{-d}) \text{vol}(B(0, \epsilon)).
\]
such that
\[
|\nabla \gamma_{tr}(x')| \geq \frac{Q\epsilon}{12} \quad \text{for all } x' \in B(0, \epsilon) \setminus W.
\]
Therefore, for $x' \in B(0, \epsilon) \setminus W$, by (5.21)
\[
1 - \frac{\theta(x')^2}{2} \leq \cos \theta(x') \leq 1 - \frac{|\nabla \gamma_{tr}(x')|^2}{2} \leq 1 - \frac{Q^2 \epsilon^2}{288},
\]
and we conclude that
\[
\frac{Q}{12} \leq |\nabla^2 \gamma_{tr}(x')| \quad \text{for all } x' \in B(0, \epsilon) \setminus W.
\]

Step 4. Avoiding the angles ψ_i.

Given ψ_i, let $x'_i \in B(0, \epsilon) \subseteq \mathbb{R}^{d-1}$ be such that
\[
|\theta(x'_i) - \psi_i| = \min_{x' \in B(0, \epsilon)} |\theta(x') - \psi_i|,
\]
i.e., x'_i is the point in $B(0, \epsilon)$ where $\theta(x')$ is closest to ψ_i. Let
\[
\psi_{\text{min}} := \min_{j=1, \ldots, m} \psi_j > 0,
\]
in the following we use the notation $[a, b]$ for the line segment between a and b, i.e.
\[
[a, b] := \{ta + (1 - t)b, \; t \in [0, 1]\},
\]
and (\cdot, \cdot) denotes the Euclidean inner product on \mathbb{R}^d.

The main idea of the rest of this step is the following: $|\theta(x') - \psi_i|$ is, by definition, smallest at x'_i, and will be smallest when the minimum in (5.28) is attained, i.e. $\theta(x'_i) = \psi_i$; in this case, the idea is for the size of the neighbourhood of x'_i that we exclude to be dictated by using Taylor’s theorem
\[
|\theta(x') - \theta(x'_i)| \geq |\nabla \theta(x'_i) \cdot (x' - x'_i)| - \sup_{y' \in [x', x'_i]} \max_{\|k\| = 2} |\partial^k \theta(y')| |x' - x'_i|^2
\]
\[
= \frac{1}{1 + |\nabla \gamma_{tr}(x'_i)|^2} \left| \frac{\partial^2 \gamma_{tr}(x'_i)}{|\nabla \gamma_{tr}(x'_i)|} \cdot (x' - x'_i) \right| - \sup_{y' \in [x', x'_i]} \max_{\|k\| = 2} |\partial^k \theta(y')| |x' - x'_i|^2,
\]
where the requirement that the right-hand side is bounded below determines the size of the excluded neighbourhood. The issues we then have to deal with are (a) $\theta(x'_i)$ is not necessarily equal to ψ_i, and (b) $|\gamma_{tr}(x'_i)| = \tan(\theta(x'_i))$ is zero when $\theta(x'_i) = 0$, and then the second-order term in (5.29) blows up.

To deal with Point (b), we first consider points in $B(0, \epsilon)$ where the second-order term in (5.29) does not blow up. Let
\[
Z_i := \left\{ x' \in B(0, \epsilon) : \theta(y') \geq \theta_0 \text{ for all } y' \in [x', x'_i] \right\}
\]
where θ_0 will be chosen later in the proof (when dealing with the points not in Z_i). By (5.22), for any $x' \in B(0, \epsilon) \cap Z_i$, $|\nabla \gamma_{tr}(y')| \geq \tan(\theta_0) > 0$ for $y' \in [x', x'_i]$. Recalling the definitions (5.24), and using (5.29) and (5.23), we have
\[
|\theta(x') - \theta(x'_i)| \geq D_1 Q \left| \frac{x' - x'_i}{|x' - x'_i|} \right| |x' - x'_i| - D_3 |x' - x'_i|^2,
\]
where
\[
D_1 := (1 + C_1^2)^{-1}, \quad D_3 := C_3 + C_4^2 + \frac{C_2^2}{\tan(\theta_0)},
\]
and the unit vector v_i is defined by
\[
v_i := \left(\frac{\partial^2 \gamma_{tr}(x'_i)}{\left| \nabla \gamma_{tr}(x'_i) \right|} \right) \left(\frac{\partial^2 \gamma_{tr}(x'_i)}{\left| \nabla \gamma_{tr}(x'_i) \right|} \right)^{-1}.
\]
Let

\[W_i(\eta, \delta) := B(x_i', \eta \epsilon) \cup \left\{ \left(\left| \frac{x' - x_i'}{|x' - x_i|} \right|, \nu_i \right) \right\} \leq \delta \}, \]

where \(\eta < 1 \); then (5.31) implies that

\[|\theta(x') - \theta(x'_i)| \geq (D_1 Q \delta \eta - 4 D_3 \epsilon) \quad \text{for all} \ x' \in (B(0, \epsilon) \cap Z_i) \setminus W_i. \]

We now deal with Point (a) above (i.e. that \(\theta(x'_i) \) is not necessarily equal to \(\psi_i \)). If \(|\theta(x'_i) - \psi_i| > \alpha \), for \(\alpha \) to be fixed later, then, by (5.27),

\[|\theta(x') - \psi_i| \geq |\theta(x'_i) - \psi_i| > \alpha \quad \text{for all} \ x' \in B(0, \epsilon). \]

If \(|\theta(x'_i) - \psi_i| \leq \alpha \), then

\[|\theta(x') - \psi_i| \geq |\theta(x') - \theta(x'_i)| - \alpha \]

and then

\[|\theta(x') - \psi_i| \geq |\theta(x') - \theta(x'_i)| - \alpha \]

Combining (5.34) and (5.35), we have

\[(\min_{i=1, \ldots, m} |\theta(x') - \psi_i|) \leq |\theta(x') - \psi_i| \geq |\theta(x') - \theta(x'_i)| - \alpha \]

Recall that we still have the freedom to choose \(\theta_0, \eta, \epsilon, \) and \(\alpha \).

We now deal with the case \(x' \in B(0, \epsilon) \setminus Z_i \); the idea here is the following: \(Z_i \) consists of points \(x' \) such that every point on \([x', x'_i] \) has \(\theta \geq \theta_0 \), i.e. \(\theta \) bounded below. If \(\theta(x') < \theta_0 \), and we chose \(\theta_0 \) appropriately, then \(|\theta(x')| \) can be small compared to \(|\psi_i| \), and thus \(|\theta(x') - \psi_i| \) can be bounded below. Indeed, let \(\theta_0 := \psi_{\min}/2 \); if \(\theta(x') < \psi_{\min}/2 \), then

\[(\min_{i=1, \ldots, m} |\theta(x') - \psi_i|) \leq |\theta(x') - \psi_i| \leq |\theta(x') - \psi_i| \leq \frac{\psi_{\min}}{2}. \]

We now need to consider \(x' \in B(0, \epsilon) \setminus Z_i \) with \(\theta(x') \geq \psi_{\min}/2 \). The sequence of ideas here is that (i) by the definition of \(Z_i \), there is a point, \(x'_i \), in \([x', x'_i] \) with \(\theta(x'_i) < \psi_{\min}/2 \), (ii) the argument in (5.37) applies at \(x'_i \), (iii) \(|x' - x'_i| \leq \epsilon \), which is small, (iv) \(x'_i \) can be chosen so that \(|\nabla \gamma_{tr}| \neq 0 \) on \([x', x'_i] \) and then \(|\theta(x') - \theta(x'_i)| \) can also be made small. The detail is as follows: let

\[t_i(x') := \inf\left\{ t \in [0, 1] : |\nabla \gamma_{tr}((1 - t)x' + tx'_i)| < |\tan(\psi_{\min}/2)| \right\}; \]

the set on the right-hand side is not empty by (5.22) and the definition of \(Z_i \), (5.30). Let \(x'_i := (1 - t_i(x'))x' + t_i(x')x'_i \). This definition implies that \(\nabla \gamma_{tr}(y') \neq 0 \) for \(y' \in [x', x'_i] \). Therefore, using the mean-value theorem and (5.23), we have

\[|\theta(x') - \theta(x'_i)| \leq \sup_{y' \in [x', x'_i]} |\nabla \theta(y')| |x' - x'_i| \leq 2C_2 \epsilon, \]

Using this together with (5.37), we obtain

\[(\min_{i=1, \ldots, m} |\theta(x') - \psi_i|) \leq |\theta(x') - \psi_i| \geq |\theta(x') - \theta(x'_i)| \geq \frac{1}{2} \psi_{\min} - 2C_2 \epsilon. \]

Collecting both cases (5.37) and (5.38), we obtain that

\[\text{if } 0 < \epsilon \leq \min\left\{ \frac{\psi_{\min}}{4C_2}, \epsilon_0 \right\}, \text{ then } |\theta(x') - \psi_i| \geq \frac{1}{4} \psi_{\min} \quad \text{for all} \ x' \in B(0, \epsilon) \setminus Z_i. \]

Putting (5.36) and (5.39) together, we find that if

\[\widetilde{V}_D := B(0, \epsilon) \setminus \bigcup_{i=1}^{m} W_i(\eta, \delta), \]

and

\[0 < \epsilon \leq \min\left\{ \frac{\psi_{\min}}{4C_2}, \epsilon_0 \right\}, \]

then

\[\min_{i=1, \ldots, m} |\theta(x') - \psi_i| \geq \min\left((D_1 Q \delta \eta - 4D_3 \epsilon - \alpha, \alpha, \frac{1}{4} \psi_{\min}) \right) \quad \text{for all} \ x' \in \widetilde{V}_D. \]
We then let
\[\text{vol}(\tilde{V}_D) \geq \text{vol}(B(0,\epsilon)) - \sum_{i=1}^{m} \left(\text{vol}(B(x'_i, \eta \epsilon)) + \text{vol}(C_i \cap B(0, \epsilon)) \right), \]
(5.42)
\[\geq \text{vol}(B(0,\epsilon)) - \sum_{i=1}^{m} \left(\text{vol}(B(x'_i, \eta \epsilon)) + \text{vol}(C_i \cap B(x'_i, 2\epsilon)) \right), \]
where
\[C_i := \left\{ x' : \left| \frac{x' - x'_i}{|x' - x'_i|}, v_i \right| \leq \delta \right\} = \left\{ x' : \cos^{-1} \delta \leq \left| \frac{x' - x'_i}{|x' - x'_i|}, v_i \right| \leq \pi - \cos^{-1} \right\}. \]

Observe that \(C_i \) is the complement of a double cone, rotationally symmetric around the axis \(v_i \) (recall that \(v_i \) defined by (5.33) depends on \(x'_i \) and not \(x' \)); therefore, \(\text{vol}(C_i) \) decreases as \(\delta \to 0 \). By integrating in hyperspherical coordinates centered at \(x_i \) with axis \(v_i \), and comparing \(\text{vol}(C_i \cap B(x'_i, 2\epsilon)) \) to \(\text{vol}(B(x'_i, 2\epsilon)) \), we have
\[\text{vol}(C_i \cap B(x'_i, 2\epsilon)) \leq \left(\frac{\pi - 2 \cos^{-1} \delta}{2\pi} \right) \text{vol}(B(x'_i, 2\epsilon)) = \frac{2^d}{\pi} \left(\frac{\pi}{2} - \cos^{-1} \delta \right) \text{vol}(B(0, \epsilon)). \]

Using this in (5.42), we have
\[\text{vol}(\tilde{V}_D) \geq \text{vol}(B(0,\epsilon)) - \sum_{i=1}^{m} \left(\text{vol}(B(x'_i, \eta \epsilon)) + \frac{2^d}{\pi} \left(\frac{\pi}{2} - \cos^{-1} \delta \right) \text{vol}(B(0, \epsilon)) \right) \]
(5.43)
\[\geq \left(1 - m\eta^d - m \frac{2^d}{\pi} \left(\frac{\pi}{2} - \cos^{-1} \delta \right) \right) \text{vol}(B(0, \epsilon)). \]

We now fix both \(\delta > 0 \) and \(\eta > 0 \) to be sufficiently small such that
\[0 < \frac{\pi}{2} - \cos^{-1} \delta \leq \frac{\pi}{2d^m}, \quad 0 < \eta^d \leq \frac{1}{m} \frac{10^{-d}}{2}; \]
then (5.43) implies that
\[\text{vol}(\tilde{V}_D) \geq \left(1 - 10^{-d} \right) \text{vol}(B(0, \epsilon)) > 0. \]

To conclude this step, we now restrict \(\epsilon \) so that \(0 < \epsilon \leq (D_1 Q \delta \eta)/(8D_3) \) and then set \(\alpha := D_1 Q \delta \eta /4 \); then (5.41) implies that if
\[0 < \epsilon \leq \min \left(\frac{D_1 Q \delta \eta}{8D_3}, \frac{\psi_{\min}}{4C_2}, \epsilon_0 \right) \]
(5.45)
then
\[\min_{i=1, \ldots, m} |\theta(x') - \psi_i| \geq \frac{1}{4} \min \left(D_1 Q \delta \eta /4, \psi_{\min} / 4 \right) \quad \text{for all } x' \in \tilde{V}_D. \]

Step 5. Conclusion.

Combining the result of Step 3 (5.26) and the result of Step 4 (5.45)-(5.46), we see that if
\[0 \leq \epsilon \leq \min \left(\frac{Q}{12C_d C_3}, \epsilon_0, \frac{D_1 Q \delta \eta}{8D_3}, \frac{\psi_{\min}}{4C_2} \right), \]
then
\[\theta(x') \geq \frac{Q \epsilon}{12} \quad \text{and} \quad \min_{i=1, \ldots, m} |\theta(x') - \psi_i| \geq \min \left(\frac{D_1 Q \delta \eta}{4}, \frac{\psi_{\min}}{4} \right) \quad \text{for all } x' \in \tilde{V}_D \setminus W. \]

We then let
\[\epsilon = \epsilon_1 := \min \left(\frac{D_1 Q \delta \eta}{8D_3}, \frac{Q}{12C_d C_3}, \frac{\psi_{\min}}{4C_2}, \epsilon_0 \right), \]
so that
\[\min_{i=1, \ldots, m} |\theta(x') - \psi_i| \geq Q^2 \times \min \left(\frac{D_1 \delta \eta}{4}, \frac{\psi_{\min}}{4Q \epsilon_0} \right) \times \min \left(\frac{D_1 \delta \eta}{8D_3}, \frac{1}{12C_d C_3}, \frac{\psi_{\min}}{4Q C_2}, \frac{\epsilon_0}{Q} \right), \]
for all \(x' \in \tilde{V}_D \setminus W \).
where, by (5.44) and (5.25)
\[
\text{vol}(\mathring{V}_D \setminus W) \geq (6^{-d} - 10^{-d}) \text{vol}(B(0, \epsilon_1)).
\]
Points (i) and (iii) in Condition 5.9 then hold with
\[
V_D := \mathring{V}_D \setminus W, \quad c_{\text{ray},1} := (6^{-d} - 10^{-d}) \text{vol}(B(0, \epsilon_1)),
\]
(5.48)
\[
c_{\text{ray},3} := \frac{Q}{12} \min \left(\frac{D_1 \delta \eta}{8D_3}, \frac{Q}{12C_dC_3}, \psi_{\min} \frac{\epsilon_0}{4C_2} \right),
\]
and
(5.49)
\[
c_{\text{ray},4} := Q^2 \times \min \left(\frac{D_1 \delta \eta}{8D_3}, \psi_{\min} \frac{\epsilon_0}{4Qc_0} \right) \times \min \left(\frac{D_1 \delta \eta}{8D_3}, \frac{1}{12C_dC_3}, \psi_{\min} \frac{\epsilon_0}{4QC_2} \right).
\]
Since \(Q, C_2, C_3, D_1\) and \(D_3\) (defined by (5.24) and (5.32)) all depend continuously on \(\gamma_{\text{tr}},\gamma_{\text{tr}}\) depends continuously on \(R, c_{\text{ray},1}, c_{\text{ray},3},\) and \(c_{\text{ray},4}\) depend continuously on \(R\). The constant \(c_{\text{ray},5}\) depends on \(c_{\text{ray},3}, c_{\text{ray},4}, \Gamma_{\text{tr},R},\) and \(\Gamma_D,\) and thus also depends continuously on \(R\).

Before proving Lemma 5.11, we prove the following simple lemma.

Lemma 5.14. If \(\Gamma_{\text{tr},R} = \partial B(0, R)\), then the emanating rays from \(\Gamma_D \cap \Gamma_{\text{tr},R}\) directly with an angle to the normal \(\theta\) satisfying \(\theta < R^{-1}\).

Proof. Since \(\Omega_- \subset B(0,1)\), any ray starting from \(\Omega_-\) hits \(\Gamma_{\text{tr},R} = \partial B(0, R)\) with an angle to the normal \(\theta\) satisfying \(\tan \theta \leq 1/R\). Since \(\theta < \tan \theta\), the result follows. \(\boxtimes\)

Proof of Lemma 5.11. We first observe that Point (iv)' follows from the same argument used to prove Lemma 5.14; this implies that \(c_{\text{ray},5} = \tilde{c}_5 R\) with \(\tilde{c}_5\) independent of \(R\).

The fact that \(c_{\text{ray},2}\) is independent of \(R\) follows from the proof of Lemma 5.10; see (5.20). By direct calculation from the definitions (5.24), (5.32)), using the fact that \(\gamma_{\text{tr}}(x') = \sqrt{R^2 - |x'|^2} + c\) where \(c\) is a constant, we obtain that
\[
Q \sim R^{-1}, \quad C_1 \sim 1, \quad C_2 \sim R^{-1}, \quad C_3 \sim R^{-2},
\]
and thus \(D_1 \sim 1, \quad D_3 \sim R^{-2}\).

Using these asymptotics in (5.47), (5.48), and (5.49), we find that \(c_{\text{ray},1}\) is independent of \(R\) and \(c_{\text{ray},3} \sim R^{-1}\) (observe that the first minimum in (5.49) \(\sim 1\) and the second minimum \(\sim R\)).

These arguments from the proof of Lemma 5.10 also show that \(c_{\text{ray},4} \sim R^{-1}\), but we now show that in fact \(c_{\text{ray},4} \sim 1\) for \(R\) sufficiently large. By Lemma 5.14, all the rays from \(V_D\) hit \(\Gamma_{\text{tr},R}\) with angles \(< 1/R\). Therefore, if \(R \geq 2/\psi_{\min}\), then \(|\theta - \psi_j| \geq \psi_{\min}/2\) for all \(j\).

Remark 5.15 (Lemma 5.11 when \(M = N = 0\)). *Recall that when \(M = N = 0,\) then \(m_{\text{vanish}} = 0,\) inspecting the proof of Lemma 5.11, we see that the result then holds with \(c_{\text{ray},4} = 0\) and \(R_0 = 1.\)

Proof of Lemma 5.12. For \(0 < \delta < 1,\) let \(\Psi = \{0, \psi_1, \ldots, \psi_m\}\) and
\[
V_{\text{tr}}^\infty(\delta) := \left\{ x^\infty \in \Gamma_{\text{tr}}^\infty : n(x^\infty) \text{ exists and } \min_{\psi \in \Psi} \left| n(x^\infty), \frac{x^\infty}{|x^\infty|} - \psi \right| > \delta \right\}.
\]
We now claim that there exists \(\delta_0 < 1\) such that \(V_{\text{tr}}^\infty(\delta_0)\) is non-empty. Indeed, first observe that the map
\[
\{ x \in \Gamma_{\text{tr}}^\infty : n(x) \text{ exists} \} \to \mathbb{R} \quad \text{given by} \quad x \mapsto \left(n(x), \frac{x}{|x|} \right) = \left(n(x), \frac{x}{|x|} \right)
\]
is continuous. The only way for this map to be constant is for \(\Gamma_{\text{tr}}^\infty\) to be a sphere centred at the origin, and this is ruled out by assumption. Since \(\Gamma_{\text{tr},R}/R \to \Gamma_{\text{tr}}^\infty\) in \(C^0\), \(\Gamma_{\text{tr}}^\infty\) is Lipschitz, and the set \(\{ x \in \Gamma_{\text{tr}}^\infty : n(x) \text{ exists} \}\) has full \((d-1)\)-dimensional (i.e. surface) measure. Therefore, the image of the map contains an interval, and the claim follows. We note for later that \(V_{\text{tr}}^\infty(\delta_0)\) is open in \(\Gamma_{\text{tr}}^\infty\).

Let \(x_0^\infty \in V_{\text{tr}}^\infty(\delta_0)\). By Lemma 5.7, there exists \(x'_0 \in \Gamma_D^+, d\) such that
\[
\mathcal{R}_u(x'_0) = \frac{x_0^\infty}{|x_0^\infty|};
\]
see Figure 5.5. For \(x' \in \Gamma_D \), let \(x'_R \in \Gamma_{tr.R} \) denote the point where the ray emanating from \(x' \) first hits \(\Gamma_{tr.R} \); we use later the fact that this definition implies that

\[
\frac{(x'_R)^R - x'_0}{|x'_R - x'_0|} = r_0^{-\infty}.
\]

(5.50)

The neighbourhood \(V_D \) in Condition 5.9 will be \(\Gamma_D \cap B(0, \epsilon) \) for \(\epsilon \) sufficiently small, independent of \(R \), and this ensures that Point (i) holds with \(r_{ray,1} \) independent of \(R \). Let \(\epsilon > 0 \) be small enough so that \(\Gamma_D \cap B(x'_0, \epsilon) \subset \Gamma^{+,+}_D \); this ensures that Point (ii) holds with \(r_{ray,2} \) independent of \(R \).

We now show that Point (iii) of Condition 5.9 holds with \(c_{ray,3} \) and \(c_{ray,4} \) independent of \(R \). Let \(W^{\infty}_{tr,c} \subset \Gamma^{\infty}_{tr} \) be defined by

\[
W^{\infty}_{tr,c} := \lim_{R \to \infty} \left\{ \frac{(x')^R}{R} : x' \in \Gamma_D \cap B(x'_0, \epsilon) \right\};
\]

(5.51)

this limit exists \(W^{\infty}_{tr,c} \) is the limit of subsets of \(\Gamma_{tr,R}/R \) and \(\Gamma_{tr,R}/R \to \Gamma^{\infty}_{tr} \) as \(R \to \infty \). We claim that it is sufficient to prove that \(W^{\infty}_{tr,c} \subset V^{\infty}_{tr}(d_0) \) for \(\epsilon \) sufficiently small (independent of \(R \)). This shows the analogue of Point (iii) in Condition 5.9 with \(\Gamma_{tr,R} \) replaced by \(\Gamma^{\infty}_{tr} \); i.e., that the emanating rays from points in \(V_D \) hit \(\Gamma^{\infty}_{tr} \) directly with an angle \(\theta \) to the normal satisfying (5.16) with \(c_{ray,3} \) and \(c_{ray,4} \) independent of \(R \). Point (iii) for \(\Gamma_{tr,R} \) with \(R \) sufficiently large then follows since \(W^{\infty}_{tr,c} \) is the limit of subsets of \(\Gamma_{tr,R}/R \), and \(\Gamma_{tr,R}/R \to \Gamma^{\infty}_{tr} \) as \(R \to \infty \).

We now claim that to prove that \(W^{\infty}_{tr,c} \subset V^{\infty}_{tr}(d_0) \) for \(\epsilon \) sufficiently small (independent of \(R \)) it is sufficient to show that \(x^{\infty}_0 \in W^{\infty}_{tr,c} \) for all \(\epsilon > 0 \). Indeed, if this is the case then \(\cap_{\epsilon>0} W^{\infty}_{tr,c} = \{ x^{\infty}_0 \} \). Then, since (i) \(V^{\infty}_{tr}(d_0) \) is open in \(\Gamma^{\infty}_{tr} \) and contains \(x^{\infty}_0 \), and (ii) \(W^{\infty}_{tr,c} \subset W^{\infty}_{tr,c} \) for \(c_1 \leq c_2 \), there exists \(\epsilon_0 > 0 \) such that \(W^{\infty}_{tr,c} \subset V^{\infty}_{tr}(d_0) \) for all \(\epsilon \leq \epsilon_0 \).

We now show that \(x^{\infty}_0 \in W^{\infty}_{tr,c} \) for all \(\epsilon > 0 \). We do this by showing that \((x'_0/R_k) \to x^{\infty}_0 \) for a sequence \(R_k \to \infty \), and then the result follows from (5.51). Observe that the inclusions (1.18) imply that \(|x'_R| \leq M R \), for any \(x' \in \Gamma_D \), and thus \((x'_0/R) \to x^{\infty}_0 \) as \(R \to \infty \). Therefore, there exists a sequence \(R_k \to \infty \) and a \(y \in \Gamma^{\infty}_{tr} \) such that \((x'_0/R_k) \to y \), and thus also

\[
\frac{(x'_0)_{R_k}}{|(x'_0)_{R_k}|} \to \frac{y}{|y|} \quad \text{as } R_k \to \infty.
\]

(5.52)
By simple geometry, as $R \to \infty$,

$$\left| \frac{(x_0')_R}{(x_0')_R} \right| = \frac{(x_0')_R - x_0'}{(x_0')_R - x_0'} + O(R^{-1}) = \frac{x_0^\infty}{|x_0^\infty|} + O(R^{-1}),$$

by (5.50). Comparing this to (5.52), and using the uniqueness of the limit, we see that $y/|y| = x_0^\infty/|x_0^\infty|$. Since Γ_{tr} is convex, and thus star-shaped, $y = x_0^\infty$, and the proof that $x_0^\infty \in W_{tr,e}^\infty$ for all $\epsilon > 0$ is complete; this completes the proof that Point (iii) of Condition 5.9 holds with $c_{ray,3}$ and $c_{ray,4}$ independent of R.

Finally, we show that Point (iv) of Condition 5.9 holds for R sufficiently large with $c_{ray,5} = \tilde{c}_5R$ with $\tilde{c}_5 > 0$ independent of Γ. Since $\Omega_- \subset B(0,1)$ and Ω_R satisfies the inclusions (1.18), after hitting $\Gamma_{tr,R}$, a ray must travel a distance $\sim R$ before hitting Γ_D. Therefore, we only need to show that, after hitting $\Gamma_{tr,R}$, a ray must travel a distance $\sim R$ before hitting $\Gamma_{tr,R}$ again. Since $\Gamma_{tr,R}/R$ tends to a limit as $R \to \infty$, this result follows if the rays first hit $\Gamma_{tr,R}$ with angle to the normal θ satisfying $|\theta - \pi/2| \geq \epsilon > 0$, with ϵ independent of R, which is the case because $\Omega_- \subset B(0,1)$ and Ω_R satisfies the inclusions (1.18).

Proof of Lemma 5.13. The overall plan is to select a ray emanating from Γ_D that returns to $B(0,1)$ after multiple reflections from the sides of the hypercube $[-R, R]^d$. We do this by identifying \mathbb{R}^d with $[-\frac{R}{2}, \frac{R}{2}]^d$ by reflection through the lines

$$(x)_j = \frac{R}{2} + nR \quad \text{for } n \in \mathbb{Z} \text{ and } j = 1, \ldots, d$$

(where $(x)_j$ denotes the jth component of the vector $x \in \mathbb{R}^d$); under this identification the corners of the hypercube correspond to points $(R/2 + R\mathbb{Z})^d$. Since $\Gamma_{tr,R}$ coincides with the boundary of the hypercube $[-R/2, R/2]^d$ only at distance more than ϵ from the corners, we need to make sure that the selected ray avoids these neighbourhoods of the corners.

Step 0: Preliminary notation and results. This argument involves three domains, and three associated flows. The first domain is Ω_R, with associated generalised bicharacteristic flow φ_t (as defined in §2.3). The second domain is $\tilde{\Omega}_R := [-R, R]^d \setminus \Omega_{\infty}$, and we denote the generalised bicharacteristic flow on $\tilde{\Omega}_R$ by $\tilde{\varphi}_t$. The third domain is the hypercube $[-\frac{R}{2}, \frac{R}{2}]^d$, and we denote the generalised bicharacteristic flow on $[-\frac{R}{2}, \frac{R}{2}]^d$ by $\varphi^{R,a}_t$.

By the definition (5.9) of \mathcal{R}_a, if both x' and y' are in the illuminated part of Γ_D (i.e., $a \cdot n(x') < 0$), then there exists $C_0 > 0$ (depending on the Lipschitz constant of n) such that

$$(5.53) \quad |\mathcal{R}_a(x') - \mathcal{R}_a(y')| \leq C_0|x' - y'|,$$

i.e. \mathcal{R}_a is Lipschitz.

We record for later use that, since $\Omega_- \subset B(0,1)$ and $R \geq 4$,

$$(5.54) \quad \text{dist} \left(\Gamma_D, \partial \left(\left[-\frac{R}{2}, \frac{R}{2} \right]^d \right) \right) \geq \frac{R}{2} - 1 \geq \frac{R}{4}.$$

Finally, let \mathcal{D} be a non-empty, strictly convex open subset of $\Gamma_D^{R,a}$ in which $n(x') \cdot a < 0$ (such a \mathcal{D} exists, since Lemma 5.7 implies that $\Gamma_D^{R,a} \cap \{ n(x') \cdot a < 0 \}$ is not everywhere flat). Shrinking \mathcal{D} if necessary, we can assume that

$$(5.55) \quad \text{there exists } 0 < \nu < 1 \text{ such that } \nu \leq |n(x') \cdot a| \leq 1 - \nu \quad \text{for all } x' \in \mathcal{D};$$

this implies that the first assumption of Lemma 5.8 holds with $C = \mathcal{D}$. The neighbourhood V_D we construct will be a subset of \mathcal{D}.

Step 1: Bounding the distance between projections of the flow on $[-\frac{R}{2}, \frac{R}{2}]^d$.

For $(x_j, \xi_j) \in S^n B(0,1)$, $j = 1, 2$, since $\varphi^{R,a}_t(x_j, \xi_j) = x_j + 2t\xi_j$,

$$(5.56) \quad \left| \pi_R \varphi^{R,a}_t(x, \xi) - \pi_R \varphi^{R,a}_t(x, \xi) \right| \leq |x_1 - x_2| + 2t|\xi_1 - \xi_2|.$$
We now show that the same inequality holds for the flow on $[-\frac{R}{2}, \frac{R}{2}]^d$; i.e., that for $(x_j, \xi_j) \in S^*B(0,1), j = 1, 2,$
\begin{equation}
|\pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_2, \xi_2)| \leq |x_1 - x_2| + 2t|\xi_1 - \xi_2|.
\end{equation}

To prove (5.57), we compare $|\pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_2, \xi_2)|$ with $|\pi_{\mathbb{R}^d} \varphi^R_t(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^R_t(x_2, \xi_2)|$ by using the relationship between the two flows φ^R_t and φ^ξ_t.

First, observe that, since
\begin{equation}
|\pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_2, \xi_2)| \leq \text{diam} \left[-\frac{R}{2}, \frac{R}{2} \right]^d = \sqrt{d}R,
\end{equation}
we can assume that
\begin{equation}
|x_1 - x_2| + 2t|\xi_1 - \xi_2| \leq \sqrt{d}R.
\end{equation}
Therefore, there exists $\ell = (\ell_1, \cdots, \ell_d) \in \mathbb{Z}^d$ and $i = (i_1, \cdots, i_d) \in \{-1, 0, 1\}^d$ such that
\begin{equation}
\begin{cases}
\pi_{\mathbb{R}^d} \varphi^\xi_t(x_1, \xi_1) \in \left[-\frac{R}{2}, \frac{R}{2} \right]^d + \ell R, \\
\pi_{\mathbb{R}^d} \varphi^R_t(x_2, \xi_2) \in \left[-\frac{R}{2}, \frac{R}{2} \right]^d + (\ell + i) R,
\end{cases}
\end{equation}
i.e., after time t, the free-space flows from (x_1, ξ_1) and (x_2, ξ_2) are either in the same hypercube or in hypercube squares. We use the following notation for the components of $\varphi^\xi_t(x_j, \xi_j), j = 1, 2$:
\begin{equation}
\pi_{\mathbb{R}^d} \varphi^\xi_t(x_j, \xi_j) := (z_1^j, \cdots, z_d^j) \in \mathbb{R}^d.
\end{equation}
Now, observe that by (5.58) and the relationship between $\varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d$ and φ^R_t,
\begin{equation}
\begin{cases}
\pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_1, \xi_1) = \left(\text{par}(\ell_1)(z_1^1 - \ell_1 R), \cdots, \text{par}(\ell_d)(z_d^1 - \ell_d R) \right), \\
\pi_{\mathbb{R}^d} \varphi^R_t[-\frac{R}{2}, \frac{R}{2}]^d(x_2, \xi_2) = \left(\text{par}(\ell_1 + i_1)(z_1^2 - (\ell_1 + i_1) R), \cdots, \text{par}(\ell_d + i_d)(z_d^2 - (\ell_d + i_d) R) \right),
\end{cases}
\end{equation}
where
\begin{equation}
\text{par}(\ell) := \begin{cases}
1 & \text{if } \ell \text{ is even}, \\
-1 & \text{if } \ell \text{ is odd}.
\end{cases}
\end{equation}
Let $i \in \{1, \cdots, d\}$. We first assume that $i_i = 1$; then
\begin{equation}
|\text{par}(\ell)(z_i^1 - \ell_i R) - \text{par}(\ell + i_i)(z_i^2 - (\ell_i + i_i) R)| = |(z_i^1 - \ell_i R) + (z_i^2 - \ell_i R)|.
\end{equation}
Since $\ell = 1, z_i^1 - \ell_i R \in \left[-\frac{R}{2}, \frac{R}{2} \right], z_i^2 - \ell_i R \in \left[\frac{3R}{2}, \frac{5R}{2} \right],$ and hence $z_i^2 \geq z_i^1$. Now, because $z_i^1 - \ell_i R \leq R/2$,
\begin{equation}
(z_i^1 - \ell_i R) + (z_i^2 - \ell_i R) - R \leq (z_i^2 - \ell_i R) - (z_i^1 - \ell_i R) = z_i^2 - z_i^1 = |z_i^1 - z_i^2|.
\end{equation}
Similarly, since $z_i^2 - \ell_i R \geq R/2$,
\begin{equation}
-(z_i^1 - \ell_i R) - (z_i^2 - \ell_i R) + R \leq (z_i^2 - \ell_i R) - (z_i^1 - \ell_i R) = z_i^2 - z_i^1 = |z_i^1 - z_i^2|.
\end{equation}
Then, combining (5.61), (5.62) and (5.63), we have that, for $i \in \{1, \cdots, d\}$ with $i_i = 1$,
\begin{equation}
|\text{par}(\ell)(z_i^1 - \ell_i R) - \text{par}(\ell + i_i)(z_i^2 - (\ell_i + i_i) R)| \leq |z_i^1 - z_i^2|.
\end{equation}
If $i_i = -1$, the proof of (5.64) follows in a very similar way: if $i_i = 0$, it is straightforward to check that (5.64) holds with equality. Hence (5.64) holds for any $i \in \{1, \cdots, d\}$. Recalling the notation (5.59), we therefore obtain from (5.60) and (5.64) that
\begin{equation}
|\pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^\xi_t[-\frac{R}{2}, \frac{R}{2}]^d(x_2, \xi_2)| \leq |\pi_{\mathbb{R}^d} \varphi^R_t(x_1, \xi_1) - \pi_{\mathbb{R}^d} \varphi^R_t(x_2, \xi_2)|,
\end{equation}
and (5.57) follows from (5.66).

Step 2: Selecting a periodic ray. Let \mathcal{G} be the finite set of unit vectors forming an angle belonging to Ψ to one of the elements $\pm e_i \eta_i, 1 \leq i \leq d$, where $(e_i)_{1 \leq i \leq d}$ denote the unit vectors in cartesian coordinates. With \mathcal{D} as in Step 0, $\mathcal{N}_a(\mathcal{D})$ contains a non-empty open subset of S^{d-1} by Lemma 5.7, and therefore contains a vector of the form
\begin{equation}
\xi_0 = \frac{(p_1, \cdots, p_d)}{|p|}, \quad p_i \in \mathbb{Z}, \quad \xi_0 \notin \mathcal{G}
\end{equation}
(since vectors of this form are dense in S^{d-1}). Let $x_0' \in D$ be such that $\Re_a(x_0') = \xi_0$.

We identify \mathbb{R}^d with $[-\frac{R}{2}, \frac{R}{2}]^d$ as described above. Then, given any $q_1, \ldots, q_d \in \mathbb{Z}$, \((x_1, \ldots, x_d) + 2R(q_1, \ldots, q_d) \equiv (x_1, \ldots, x_d); \)

the factor of two is because one reflection changes the parity.

The trajectory starting from (x_0', ξ_0) and evolving according to the flow $\varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}$ can be identified with the trajectory in \mathbb{R}^d \(x_0' + 2t \xi_0 = x_0' + 2t \frac{(p_1, \ldots, p_d)}{|p|}; \)

therefore, by (5.65), the former trajectory is periodic, with period at most π. Hence, by (5.65), the former trajectory is periodic, with period at most $R|p|$. Thus there exists $t > 0$ such that $\varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d} \in B(0, 11/8)$; let $T(R)$ be the infimum of such t. Therefore

\[T(R) \leq R|p|, \]

and

\[\pi_{\mathbb{R}^d}(\varphi_{T(R)}(x_0', \xi_0)) \in \partial B \left(0, \frac{11}{8} \right). \]

Since $\Omega_- \subset B(0, 1)$, the flows $\tilde{\varphi}_t$ and $\varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}$ acting on (x_0', ξ_0) agree up to (at least) time $T(R)$; i.e.

\[\tilde{\varphi}_t(x_0', \xi_0) = \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \xi_0) \quad \text{for all } 0 \leq t \leq T(R). \]

Furthermore, since $\xi_0 \notin \mathcal{S}$, the flows $\tilde{\varphi}_t$ and $\varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}$ acting on (x_0', ξ_0) never hit $\partial([-\frac{R}{2}, \frac{R}{2}]^d)$ at an angle belonging to Ψ.

Finally, observe that a length L of a ray can be reflected at most twice. Therefore, since the length of $\varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \xi_0)$ for $t \in [0, T(R)]$ is at most $2R|p|$, if $M := [4|p|]$, then the number of reflections of this ray for $t \in [0, T(R)]$, $N(R)$, is bounded by M, i.e.,

\[N(R) \leq [4|p|]. \]

Step 3: The neighbourhood V_D on Γ_D. The neighbourhood $V_D = V_D(R)$ is chosen later in the proof as a subset of

\[V_1(R) := \Gamma_D \cap B \left(x_0', \frac{\delta_1}{R} \right) \]

where $\delta_1 > 0$ (independent of R) is small enough so that, for all $R \geq 1$,

\[\begin{cases} & V_1(R) \subset D, \\
& \text{for all } x' \in V_1(R), \quad |n(x') \cdot a| \geq \frac{1}{2} |n(x_0') \cdot a|, \\
& \text{for all } x' \in V_1(R), \quad \min_{\xi \in \mathcal{S}} \Re_a(x') - \xi \geq \frac{1}{2} \min_{\xi \in \mathcal{S}} |\xi_0 - \xi|. \end{cases} \]

Since the neighbourhood V_D will be a subset of $V_1(R)$, the second condition in (5.71) implies that Part (ii) of Condition 5.9 holds with $c_{\text{ray}} := |n(x_0') \cdot a|/2$, which is positive since $x_0' \in D$, and the third condition in (5.71) implies that Part (iii) of Condition 5.9 holds with $c_{\text{ray}} > 0$.

By (5.57), the fact that $\xi_0 = \Re_a(x_0')$, (5.53), and (5.66), we have, for any $x' \in V_1(R)$ and any $0 \leq t \leq T(R)$

\[|\pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \xi_0) - \pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \Re_a(x'))| \leq |x_0' - x'| + 2T(R)|\Re_a(x_0') - \Re_a(x')|, \]

\[\leq (1 + 2R|p|)|x_0' - x'|, \]

\[\leq (1 + 2|p|C_0)|x_0' - x'|. \]

Therefore, if $\delta_1 \leq (16(1 + 2C_0|p|))^{-1}$, then

\[|\pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \xi_0) - \pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x', \Re_a(x'))| \leq \frac{1}{16} \]

\[\pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x_0', \xi_0) - \pi_{\mathbb{R}^d} \varphi_t^{[-\frac{R}{2}, \frac{R}{2}]^d}(x', \Re_a(x'))| \leq \frac{1}{16}. \]
for all \(x' \in V_1(R) \) and for all \(0 \leq t \leq T(R) \). Combining (5.73), (5.67), and (5.68), we have

\[
\pi_{R^d}(\hat{\varphi}_{T(R)}(x', \xi_0)) \in B \left(0, \frac{23}{16} \right) - B \left(0, \frac{21}{16} \right) \quad \text{for all } x' \in V_1(R);
\]

and

\[
\hat{\varphi}(x', \mathcal{R}_a(x')) = \varphi_i^{[-\frac{B}{2}, \frac{B}{2}]}(x', \mathcal{R}_a(x')) \quad \text{for all } x' \in V_1(R) \text{ and for all } 0 \leq t \leq T(R).
\]

Step 4: Avoiding the corners. Under the identification of \([-\frac{B}{2}, \frac{B}{2}]^d\) with \(\mathbb{R}^d \), the corners of the hypersquare correspond to \((R/2 + R\mathcal{Z})^d\). Given \(x' \in V_1(R) \), each point on the ray \(x' + 2t\mathcal{R}_a(x') \) for \(0 \leq t \leq T(R) \) has a corner that is closest; we let \(Q_a(x') \) denote the subset of these corners that are a distance \(\leq \alpha \) away. More precisely,

\[
Q_a(x') := \left\{ q \in (R/2 + R\mathcal{Z})^d : \text{there exists } 0 \leq t \leq T \text{ such that} \right\}
\]

\[
\text{dist} \left(x' + 2t\mathcal{R}_a(x'), (R/2 + R\mathcal{Z})^d \right) = \text{dist} \left(x' + 2t\mathcal{R}_a(x'), q \right) \leq \alpha.
\]

We then order the elements of \(Q_a(x') \) with the closest first; i.e., \(Q_a(x') = \{ q_1(x'), \ldots, q_m(x') \} \) with \(\text{dist}(x', q_i) \) non-decreasing with \(i \).

We now prove that if \(\delta_1 \leq (4(1 + 2|p|C_0))^{-1} \), then

\[
Q_{1/4}(x') \subseteq Q_{1/2}(x'_0) \quad \text{for all } x' \in V_1(R).
\]

To prove this, observe that, for \(0 \leq t \leq T(R) \), by (5.66) and (5.53) (in a similar way to as in (5.72)),

\[
\text{dist} \left(x' + 2t\mathcal{R}_a(x'), x'_0 \right) \leq |x' - x'_0| + 2t|\mathcal{R}_a(x') - \mathcal{R}_a(x'_0)|, \leq (1 + 2|p|C_0)R|x' - x'_0| \leq \delta_1(1 + 2|p|C_0)
\]

if \(x' \in V_1(R) \). Therefore, if \(\delta_1 \leq (4(1 + 2|p|C_0))^{-1} \), the distance between the rays is \(< 1/4 \). If \(q_i \in Q_{1/4}(x') \) then, since \(R \geq 1 \), \(q_i \) is at most distance \(1/2 \) away from a point on the ray \(x'_0 + 2t\mathcal{R}_a(x'_0) \), and thus \(q_i \in Q_{1/2}(x'_0) \).

It turns out that we will not need to restrict \(\delta_1 \) further in the proof; we therefore set

\[
\delta_1 := \frac{1}{16(1 + 2|p|C_0))}.
\]

and observe that this satisfies the requirements imposed on \(\delta_1 \) earlier in the proof (to ensure that (5.73) and (5.76) hold).

We now select one set of corners to work with for all \(x' \in V_1(R) \). Let \(Q := Q_{1/2}(x'_0) = \{ q_1, \ldots, q_m \} \). By (5.76),

\[
\left((R/2 + R\mathcal{Z})^d \setminus Q \right) \subseteq \left((R/2 + R\mathcal{Z})^d \setminus Q_{1/4}(x') \right)
\]

for all \(x' \in V_1(R) \), so that

\[
\text{dist} \left(x' + 2t\mathcal{R}_a(x'), (R/2 + R\mathcal{Z})^d \setminus Q \right) \geq 1/4 \quad \text{for all } x' \in V_1(R).
\]

Furthermore, since \(R \geq 4 \), the number of corners within distance \(1/2 \) of the ray is less than or equal to the number of reflections, i.e.,

\[
m \leq N(R).
\]

We now iteratively construct \(x'_i \in V_1(R), i = 1, \ldots, m \), such that the ray \(x'_i + 2t\mathcal{R}_a(x'_i) \) for \(0 \leq t \leq T(R) \) is at least a distance \(\eta_i \) from \(\{ q_1, \ldots, q_i \} \) where \(\eta_i > 0, i = 0, \ldots, m \), are defined below (see (5.86)) and, in particular, have the property that \(\eta_i > \eta_{i+1}, i = 0, \ldots, m - 1 \). Given \(x'_i \), if \(\text{dist}(x'_i + 2t\mathcal{R}_a(x'_i), q_{i+1}) \geq \eta_{i+1} \), we set \(x'_{i+1} := x'_i \). Otherwise, first observe that, for \(0 \leq t \leq R/16 \),

\[
\text{dist} \left(x' + 2t\mathcal{R}_a(x'), q_{i+1} \right) \geq R/8 \geq 1/2.
\]
by (5.54) and the fact that $R \geq 4$; we can therefore restrict attention to $t \geq R/16$. Let $\lambda_i > 0$, to be fixed later. We first assume that there exists $x_{l+1}' \in V_1(R)$ so that, with C_R the constant associated to D by Lemma 5.8,

\begin{equation}
(5.81) \quad |x_{l+1}' - x_i'| = \lambda_i \quad \text{and} \quad \Re_0(x_{l+1}') - \Re_0(x_i') \geq C_R \lambda_i;
\end{equation}

we later use Lemma 5.8 to show that such an x_{l+1}' exists once the value of λ_i has been fixed. By, respectively, the triangle inequality, the convexity of $V_1(R) \subset D$, (5.81), and the fact that we’re dealing with the case that $\text{dist}(x_i' + 2t\Re_0(x_i'), q_{l+1}) < \eta_{l+1}$, we have that, for $R/16 \leq t \leq T(R),
\begin{align*}
\text{dist}(x_{l+1}' + 2t\Re_0(x_i'), q_{l+1}) &\geq \text{dist}(x_{l+1}' + 2t\Re_0(x_{l+1}'), x_i' + 2t\Re_0(x_i')) - \text{dist}(x_i' + 2t\Re_0(x_i'), q_{l+1}) , \\
&\geq \text{dist}(x_{l+1}' + 2t\Re_0(x_{l+1}'), x_i' + 2t\Re_0(x_i')) - \text{dist}(x_i' + 2t\Re_0(x_i'), q_{l+1}) , \\
&= 2t|\Re_0(x_{l+1}') - \Re_0(x_i')| - \text{dist}(x_i' + 2t\Re_0(x_i'), q_{l+1}) , \\
&\geq 2tC_R \lambda_i - \eta_{l+1} , \\
&\geq C_R \frac{R}{8} \lambda_i - \eta_{l+1}.
\end{align*}

(5.82)

Having bounded the distance from the ray to q_{l+1}, we now bound the distance to q_j for $j = 0, \ldots, i$. By, respectively, the triangle inequality, (5.53), and (5.66), for $j = 0, \ldots, i$ and $0 \leq t \leq T(R),
\begin{align*}
\text{dist}(x_{l+1}' + 2t\Re_0(x_i'), q_j) &\geq \text{dist}(x_i' + 2t\Re_0(x_i'), q_j) - \text{dist}(x_i' + 2t\Re_0(x_i'), q_{l+1}) , \\
&\geq \eta_i - (1 + 2C_0)|x_i' - x_i|, \\
&\geq \eta_i - R(1 + 2C_0|p|)\lambda_i.
\end{align*}

(5.83)

The two inequalities (5.82) and (5.83) imply that if η_i and η_{l+1} satisfy

\begin{equation}
(5.84) \quad \frac{16\eta_{l+1}}{C_R} = \frac{\eta_i - \eta_{l+1}}{(1 + 2C_0|p|)},
\end{equation}

and λ_i is defined by

\begin{equation}
(5.85) \quad \lambda_i := \frac{16\eta_{l+1}}{RC_R} = \frac{\eta_i - \eta_{l+1}}{R(1 + 2C_0|p|)},
\end{equation}

then

\begin{align*}
\text{dist}(x_{l+1}' + 2t\Re_0(x_{l+1}'), q_{l+1}) &\geq \eta_{l+1} \quad \text{for all } R/16 \leq t \leq T(R) , \\
\text{dist}(x_{l+1}' + 2t\Re_0(x_{j+1}'), q_j) &\geq \eta_{j+1} \quad \text{for } j = 0, \ldots, i, \text{ and for all } 0 \leq t \leq T(R).
\end{align*}

This last two inequalities, combined with (5.80), imply that

\begin{align*}
\text{dist}(x_{l+1}' + 2t\Re_0(x_{j+1}'), q_j) &\geq \eta_{j+1} \quad \text{for } j = 0, \ldots, i + 1, \text{ and for all } 0 \leq t \leq T(R)
\end{align*}

as required. We observe for use later that (5.84) implies that

\begin{equation}
(5.86) \quad \eta_{j+1} = \frac{\eta_j}{1 + \frac{16}{C_R}(1 + 2C_0|p|)}, \quad \text{so that} \quad \eta_j := \eta_0 \left(\frac{1}{1 + \frac{16}{C_R}(1 + 2C_0|p|)} \right)^j, \quad j = 0, \ldots, m.
\end{equation}

Since the value of $\lambda_1 > 0$ has been fixed by (5.85), it remains to show that there exists $x_{l+1}' \in V_1(R)$ satisfying (5.81). We now use the freedom we have in choosing η_0 to ensure that the can use Lemma 5.8 to construct such an x_{l+1}'. Recall that we chose D so that the assumptions of Lemma 5.8 hold; let α_0 be the associated constant. We impose the condition that

\begin{equation}
(5.87) \quad \sum_{j=0}^{m-1} \lambda_j \leq \min \left(\frac{\delta_1}{2R}, \alpha_0 \right), \quad \text{i.e.,} \quad \eta_0 \frac{16}{C_R} \sum_{j=1}^{m-2} \left(\frac{1}{1 + \frac{16}{C_R}(1 + 2C_0|p|)} \right)^j \leq \min \left(\frac{\delta_1}{2}, 4\alpha_0 \right),
\end{equation}

where we have used the definitions of λ_j (5.85) and η_j (5.86) and the fact that $R \geq 4$. Observe that (5.87) is a condition that η_0 is sufficiently small (recall that δ_1 has been fixed by (5.77)).
The rationale behind imposing (5.87) is as follows; recalling the definition of \(V_1(R) \) (5.70), we see that \(\sum_{i=0}^{m-1} \lambda_j \leq \delta_1 / 2 \) implies that \(x_i' \in V_1(R) \) for \(i = 1, \ldots, m \). The first inequality in (5.87) implies that \(\lambda_i \leq \alpha_0 \), for all \(i \), and, since \(V_1(R) \subset \mathcal{D} \) (by (5.71)),

\[
\partial B(x_i', \lambda_i) \cap \mathcal{D} \neq \emptyset \quad \text{and} \quad \partial B(x_i', \lambda_i) \cap \partial \mathcal{D} = \emptyset.
\]

These relations combined with (5.55) imply that the assumptions of Lemma 5.8 are satisfied with \(\mathcal{D} = \mathcal{C} \). This lemma therefore implies that there exists \(x_{i+1}' \in \mathcal{D} \) satisfying (5.81), for all \(i = 1, \ldots, m \).

In summary, we have proved that the ray \(x'_m + t\Re \eta(x'_m), \) \(0 \leq t \leq T(R) \), is a distance at least \(\eta_m \) from any of the corners \(q_1, \ldots, q_m \), and a distance at least \(1/4 \) from any of the other corners by (5.78).

Let \(\eta_{[4|p|]} \) be defined by the second equation in (5.86) with \(j = [4|p|] \) and with \(\eta_0 \) fixed to satisfy (5.87). By (5.79) and (5.69), \(m \leq N(R) \leq [4|p|] \) so that \(\eta_m \geq \eta_{[4|p|]} \). Therefore, with

\[
\epsilon_0 := \frac{1}{2} \min \left(\eta_{[4|p|]}, \frac{1}{4} \right),
\]

the ray \(x'_m + t\Re \eta(x'_m), \) \(0 \leq t \leq T(R) \) is a distance at least \(2\epsilon_0 > 0 \) from any corner. By (5.86) and (5.87), \(\eta_{[4|p|]} \) (and hence \(\epsilon_0 \)) depends on \(C_0, C_R, \alpha_0 \), and \(|p| \), and hence only on \(\Gamma_D \).

Step 5: Putting everything together. By combining the results of Step 4 with the results (5.74) and (5.75) of Step 3, we have

\[
\begin{align*}
\begin{cases}
\tilde{\varphi}_t(x'_m, \Re \eta(x'_m)) = \varphi_t \left[\frac{-\tilde{\Delta} + \tilde{\Delta}}{4} \right]^d (x'_m, \Re \eta(x'_m)) & \text{for all } 0 \leq t \leq T(R), \\
\text{dist} \left(\tilde{\varphi}_t(x'_m, \Re \eta(x'_m)), (\frac{R}{2} + \tilde{\mathbb{R}}^d) \right) \geq 2\epsilon_0 & \text{for all } 0 \leq t \leq T(R), \\
\pi_{\Re^d} \left(\tilde{\varphi}_t(x'_m, \xi_0) \right) \in B \left(0, \frac{47}{2^5} \right) & \text{for all } 0 \leq t \leq T(R),
\end{cases}
\end{align*}
\]

We now define the neighbourhood \(V_D \) (the neighbourhood of rays in the statement of the lemma) as a neighbourhood of \(x'_m \). Indeed, we let

\[
\begin{align*}
V_D := \Gamma_D \cap B \left(x'_m, \frac{\delta}{R} \right)
\end{align*}
\]

with \(\delta > 0 \) chosen sufficiently small; if \(\delta > 0 \) is independent of \(R \), then this implies that \(\text{vol}(V_D) \geq \tilde{c}_{\text{ray}, 1}/R^{d-1} \) for some \(\tilde{c}_{\text{ray}, 1} > 0 \) independent of \(R \); i.e., that Point (i) of Condition 5.9 holds.

We first choose \(\delta > 0 \) sufficiently small so that \(V_D \subset V_1(R) \); since \(\delta_1 (5.77) \) is independent of \(R, \delta \) can be chosen to be independent of \(R \). As discussed below (5.71), the inclusion \(V_D \subset V_1(R) \) ensures that Points (ii) and (iii) of Condition 5.9 hold.

Point (iv) in the statement of the result will follow if we can show that, for all \(x' \in V_D \),

\[
\begin{align*}
\begin{cases}
\tilde{\varphi}_t(x_m, \Re \eta(x_m)) = \varphi_t \left[\frac{-\tilde{\Delta} + \tilde{\Delta}}{4} \right]^d (x', \Re \eta(x')) & \text{for all } 0 \leq t \leq T(R), \\
\text{dist} \left(\tilde{\varphi}_t(x', \Re \eta(x')), (\frac{R}{2} + \tilde{\mathbb{R}}^d) \right) \geq \epsilon_0 & \text{for all } 0 \leq t \leq T(R), \\
\pi_{\Re^d} \left(\tilde{\varphi}_t(x', \xi_0) \right) \in B \left(0, \frac{47}{2^5} \right) & \text{for all } 0 \leq t \leq T(R),
\end{cases}
\end{align*}
\]

Indeed, the second property in (5.89) (missing the corners) implies that all three flows are the same when applied to \((x_m, \Re \eta(x_m)) \) for \(0 \leq t \leq T(R) \), i.e.

\[
\varphi_t(x_m, \Re \eta(x_m)) = \tilde{\varphi}_t(x_m, \Re \eta(x_m)) = \varphi_t \left[\frac{-\tilde{\Delta} + \tilde{\Delta}}{4} \right]^d (x', \Re \eta(x')) \quad \text{for all } 0 \leq t \leq T(R).
\]

We now obtain (5.89) from (5.88). By (5.57), (5.53), and (5.66) (in a similar way to as in (5.72)), for any \(x' \in V(R) \) and any \(0 \leq t \leq T(R) \),

\[
\left| \pi_{\Re^d} \varphi_t \left[\frac{-\tilde{\Delta} + \tilde{\Delta}}{4} \right]^d (x'_m, \Re \eta(x'_m)) - \pi_{\Re^d} \varphi_t \left[\frac{-\tilde{\Delta} + \tilde{\Delta}}{4} \right]^d (x', \Re \eta(x')) \right| \leq (1 + 2C_0|p|) R |x'_m - x'|.
\]

so that (5.89) follows as long as

\[
\delta \leq \min \left(\frac{1}{32(1 + C_0|p|)}, \frac{\epsilon_0}{1 + 2C_0|p|} \right).
\]
Since \(\delta > 0 \) is independent of \(R \), Point (i) of Condition 5.9 holds with \(c_{\text{ray},1} = \tilde{c}_{\text{ray},1} / R \), with \(\tilde{c}_{\text{ray},1} \) independent of \(R \), and the proof is complete.

5.7. Bounding the reflection coefficient (2.48) for rays satisfying Condition 5.9. In the follow result, we use the subscripts \(D \) and \(\text{tr} \) on \(\mathcal{H} \) to denote the hyperbolic set on \(\Gamma_{D} \) and \(\Gamma_{\text{tr},R} \), respectively.

Lemma 5.16 (Lower bound on the reflection coefficient for general \(\Gamma_{\text{tr},R} \)). Let \(\mathcal{V}_{\text{tr}} \subset \mathcal{H}_{\text{tr}} \). Given \((x', \xi') \in \mathcal{V}_{\text{tr}}\), let

\[
\theta(x', \xi') := \sin^{-1} \left(|\xi'|_{\mathcal{G}} \right) \in [0, \pi/2);
\]

observe that \(\theta \) is well-defined since \(r(x', \xi') := 1 - |\xi'|_{\mathcal{G}}^{2} > 0 \) on \(\mathcal{H}_{\text{tr}} \).

Let \(\psi_{j} \}_{j=1}^{m_{\text{mult}}} \) be defined be (5.17). Suppose that

\[
\theta \geq c_{3} \quad \text{and} \quad \min_{j=1, \ldots, m_{\text{mult}}} |\theta - \psi_{j}| \geq c_{4},
\]

and \(\mathcal{N} \) and \(\mathcal{D} \) satisfy Assumption 1.4 with either \(M = N \) or \(M = N + 1 \). Then there exists \(C_{\text{ref}} = C_{\text{ref}}(M, N) > 0 \) such that

\[
\left| \frac{\sqrt{\sigma(\mathcal{N}) - \sigma(\mathcal{D})}}{\sqrt{\sigma(\mathcal{N}) + \sigma(\mathcal{D})}} \right| \geq C_{\text{ref}} \min \left(|c_{3}|^{2m_{\text{ord}},} |c_{4}|^{m_{\text{mult}}} \right) \quad \text{on} \quad \mathcal{V}_{\text{tr}}.
\]

We make three remarks.

- The rationale behind the definition of \(\theta \) (5.90) is that later we apply it to sets \(\mathcal{V}_{\text{tr}} \) whose elements are of the form \(\pi_{\Gamma_{\text{tr},R}}(x, \xi) \) where \((x, \xi) \in S_{\mathcal{G}}^{n} \mathbb{R}^{d} \) (so that \(|\xi| = 1 \)). In this case, \(\theta \) is the angle the vector \(\xi \) makes with the normal to \(\Gamma_{\text{tr},R} \).

- We have denoted the constants in (5.91) by \(c_{3} \) and \(c_{4} \) since we later apply this lemma with \(c_{3} = c_{\text{ray},a} \) and \(c_{4} = c_{\text{ray},a} \).

- We highlight that \(C_{\text{ref}} \) only depends on \(M \) and \(N \), and not on \(\Gamma_{\text{tr},R} \).

Proof of Lemma 5.16. By Assumption 1.4,

\[
\sigma(\mathcal{N})(x', \xi') \sqrt{r(x', \xi') - \sigma(\mathcal{D})(x', \xi')} = q(|\xi'|_{\mathcal{G}}^{2}) \sqrt{1 - |\xi'|_{\mathcal{G}}^{2}} - p(|\xi'|_{\mathcal{G}}^{2}).
\]

Since \(\mathcal{N} \) and \(\mathcal{D} \) satisfy Assumption 1.4 with either \(M = N \) or \(M = N + 1 \), Part (a) of Lemma 4.4 implies that there exists \(C_{1} = C_{1}(M, N) > 0 \) such that \(\sqrt{\sigma(\mathcal{N}) + \sigma(\mathcal{D})} \geq C_{1} \) on \(\mathcal{V}_{\text{tr}} \).

By the definitions in §1.3 of \(p(t), q(t), m_{\text{ord}}, t_{j}, \}_{j=1}^{m_{\text{mult}}} \), and \(m_{\text{mult}} \), there exists \(C_{2} = C_{2}(M, N) > 0 \) such that

\[
|q(t)\sqrt{1 - t - p(t)}| \geq C_{1} \min \left(t^{m_{\text{ord}},} \left(\min_{j=1, \ldots, m_{\text{mult}}} |t - t_{j}| \right)^{m_{\text{mult}}} \right) \quad \text{for all} \quad t \in [0, 1].
\]

Since \(\sin x \geq 2x/\pi \) for \(x \in [0, \pi/2] \) and there exists \(C_{2} = C_{2}(\psi_{\text{min}}) > 0 \) such that \(|\sin^{2}\theta - \sin^{2}\psi_{j}| \geq C_{2}[\theta - \psi_{j}] \) for \(j = 1, \ldots, m_{\text{mult}} \), the inequalities in (5.91) imply that

\[
|\xi'|_{\mathcal{G}}^{2} \geq \left(c_{3} \right)^{2} \left(\frac{2}{\pi} \right)^{2} \quad \text{and} \quad \min_{j=1, \ldots, m_{\text{mult}}} |t^{2} - t_{j}| \geq C_{2} c_{4}.
\]

The bound (5.92) then follows from combining these bounds with (5.93) and (5.94).

5.8. Proof of Theorem 1.6 (the qualitative lower bound). Similar to above, we use the subscripts \(D \) and \(\text{tr} \) on \(\mathcal{H} \) (and subsets of it) to denote the hyperbolic set on \(\Gamma_{D} \) and \(\Gamma_{\text{tr},R} \), respectively; we use analogous notation for boundary measures.

Proof of Theorem 1.6. By Part (i) of Corollary 5.4, we only need to show that \(\mu(\mathcal{I}) > 0 \). We now follow the steps outlined in §5.3; seeking a contradiction, we assume that \(\mu(\mathcal{I}) = 0 \). The inequality (2.44) from Point (ii) of Corollary 2.17 implies that \(\mu_{D}^{\text{out}} = 0 \). Therefore (2.26) implies that

\[
\mu_{D}^{\text{out}} = 2\sqrt{r(x', \xi') d\text{vol}(x') \otimes \delta_{\xi' = (a_{x}(x'))^{\epsilon}}.}
\]
Given M and N, let $\{\psi_j\}_{j=1}^{m_{\text{vanish}}}$ be defined by (5.17); i.e., $\{\psi_j\}_{j=1}^{m_{\text{vanish}}}$ is the set of non-zero angles at which the reflection coefficient (2.48) vanishes. Let the set $V_D \subset \Gamma_D$ be given by Lemma 5.10; i.e., the rays emanating from V_D are non-tangent to Γ_D and hit $\Gamma_{tr,R}$ directly and at angles bounded away from $\{0, \psi_1, \ldots, \psi_{m_{\text{vanish}}}\}$. Let
\[
V_D := \{(x', (a_{T(x')})'), x' \in V_D\} \subset H_D.
\]
By (5.95), $\mu_D^{\text{out}}(V_D) > 0$. Therefore, using the equality (2.42) from Point (i) of Corollary 2.17 and the fact that $r > 0$ on H, (5.96)
\[
(2\sqrt{\nu}\mu^{\text{in}})(V_{tr}) = (2\sqrt{\nu}\mu^{\text{out}})(V_D) > 0,
\]
where
\[
V_{tr} := \bigcup_{q \in V_D} \pi_{\Gamma_{tr,R}}(\varphi_{t^{\text{out}}(q)}(\mu^{\text{out}}(q))) \subset H_{tr},
\]
where t^{out} and μ^{out} are defined in (2.38) and (2.37) respectively, and $\pi_{\Gamma_{tr,R}}$ equals $\pi_{\partial M}$ restricted to $T_{\Gamma_{tr,R}} \mathbb{R}^d$; observe that $\sup_{q \in V_D} t^{\text{out}}(q) < \infty$ since $\Gamma_{tr,R}$ is convex.

Corollary 2.19 then implies that (2.43) in Point (ii) of Corollary 2.17, $\mu(I) > 0$, which is the desired contradiction.

Finally, the fact that C in Theorem 1.8 depends continuously on $\Gamma_{tr,R}$ follows from the fact that $c_{\text{ray},j}, j = 1, \ldots, 4$, depend continuously on $\Gamma_{tr,R}$, and C_{ref} is independent of $\Gamma_{tr,R}$.

5.9. Proof of the lower bounds in Theorem 1.7, Theorem 1.8, Theorem 1.9, Theorem 1.10, and Theorem 1.11. Recall from Corollary 5.4 that to prove the lower bounds in Theorems 1.7, 1.8, 1.10, and 1.11, we only need to bound $\mu(I)$ and $\mu(I \cap S^*_B(0, \ell/2))$ below; the following lemma provides the necessary lower bounds.

Lemma 5.17. Suppose Condition 5.9 holds for $R \geq R_0$ with $c_{\text{ray},2}$ independent of R and $c_{\text{ray},5} \geq c_5 R$ with $c_5 > 0$ independent of R. Then, there exists $C > 0$ such that, for all $R \geq R_0$,

(i) \[\mu(I) \geq CR \left(\min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 c_{\text{ray},1}.
\]

(ii) If, in addition, there exists $N_{\text{ref}} \geq 1$ such that, for the interior billiard flow in Ω_R, these rays are reflected on $\Gamma_{tr,R} N_{\text{ref}}$ times, without being reflected on Γ_D in between, and after their N_{ref}th reflection all of these rays intersect $B(0, 3\ell/2) \setminus B(0, 5\ell/4)$ without being reflected before, then
\[\mu(I \cap S^*_B(0, \ell/2)) \geq C \left(\min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 c_{\text{ray},1}.
\]

Proof.

Proof of (i). As in the proof of Theorem 1.6, we argue by contradiction and follow the steps in §5.3. Suppose that Condition 5.9 holds for $R \geq R_0$, but, for any $\epsilon > 0$, there exists $R \geq R_0$ such that (5.99)
\[\mu(I) \leq \epsilon R \left(\min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 c_{\text{ray},1}.
\]
Let
\[V_D := \left\{ (x', (a_{T(x')})') \in T^* \Gamma_D, x' \in V_D \right\} \subset H_D.
\]
We now claim that
\[(5.101) \quad \mu(\mathcal{I}) \geq \left(\frac{\delta}{M} \right) R(2\sqrt{\tau \mu^{\text{in}}})(\mathcal{V}_D) \quad \text{for all } R \geq 1. \]

Indeed, Part (ii) of Corollary 2.17 implies that
\[\mu(\mathcal{I}) \geq \text{dist}(\Gamma_{\text{tr}, R}, \Omega_-)(2\sqrt{\tau \mu^{\text{in}}})(\mathcal{V}_D),\]
and then to prove (5.101) we only need to show that
\[(5.102) \quad \text{dist}(\Gamma_{\text{tr}, R}, \Omega_-) \geq \left(\frac{\delta}{M} \right) R.\]

Let \(\delta = \text{dist}(\Omega_-, \partial B(0, 1))\). Then, since \(\Omega_R \supset B(0, M^{-1}R) \cup B(0, 1)\) and \(\Omega_- \subset B(0, 1)\), if \(R \geq M\),
\[\text{dist}(\Gamma_{\text{tr}, R}, \Omega_-) \geq (M^{-1}R - 1 + \delta) = \left(M^{-1} - \frac{(1 - \delta)}{R} \right) R \geq \left(\frac{\delta}{M} \right) R \]
and then (5.102) follows for \(R \geq M\). On the other hand, if \(R \leq M\), then
\[\text{dist}(\Gamma_{\text{tr}, R}, \Omega_-) \geq \delta \geq \left(\frac{\delta}{M} \right) R,\]
and then (5.102) follows for \(R \leq M\).

Combining (5.99) and (5.101), we have
\[(5.103) \quad (2\sqrt{\tau \mu^{\text{in}}})(\mathcal{V}_D) \leq \epsilon \frac{M}{\delta} \left(\min \left(|c_{\text{ray}, 3}|^{2 \text{mult}}, |c_{\text{ray}, 4}|^{\text{mult}} \right) \right)^{\frac{1}{2}} c_{\text{ray}, 1}.\]

We now use Lemmas 2.12 and 2.20 to obtain a lower bound on \(\mu^{\text{out}}(\mathcal{V}_D)\). The two equations in (2.25) imply that
\[(5.104) \quad \mu^{\text{out}} = \sqrt{\tau \nu_d} + \frac{1}{\sqrt{\tau}} \nu_n - \mu^{\text{in}}\]
(see (2.32)). By Lemma 2.20 and Part (i) of Condition 5.9,
\[(5.105) \quad \nu_d(\mathcal{V}_D) = \text{vol}(\mathcal{V}_D) \geq c_{\text{ray}, 1}.\]

By the assumption that Condition 5.9 holds (with \(c_{\text{ray}, 2}\) independent of \(R\), \(|n(x') \cdot a| \geq c_{\text{ray}, 2} > 0\) on \(\mathcal{V}_D\). By the definitions of \(\mathcal{V}_D\) (5.100) and \(\tau(x', \xi')\) (1.7), \(\tau(x', (a_{\Gamma(x)})) = |n(x') \cdot a|\) for \(x' \in \mathcal{V}_D\) and thus \(r \geq c_{\text{ray}, 2} > 0\) on \(\mathcal{V}_D\). Combining (5.104) with (5.105) and (5.103), and using the facts that \(\nu_n\) is nonnegative and \(c_{\text{ray}, 3}, c_{\text{ray}, 4} \leq \pi/2\), we have
\[\begin{align*}
(2\sqrt{\tau \mu^{\text{out}}})(\mathcal{V}_D) &\geq 2\nu_d(\mathcal{V}_D) - (2\sqrt{\tau \mu^{\text{in}}})(\mathcal{V}_D) \\
&\geq 2\sqrt{c_{\text{ray}, 2}} \left(\sqrt{c_{\text{ray}, 2}} - \frac{M}{\delta} \left(\frac{\pi}{2} \right)^{\text{max}(2 \text{mult}, 3 \text{mult})} \right) c_{\text{ray}, 1}. \quad \text{(5.106)}
\end{align*}\]

If
\[
(5.106) \quad \epsilon \leq \frac{\sqrt{c_{\text{ray}, 2}} \delta}{2} \left(\frac{2}{\pi} \right)^{\text{max}(2 \text{mult}, 3 \text{mult})}
\]
(observe that, since \(c_{\text{ray}, 2}\) is assumed independent of \(R\), this upper bound on \(\epsilon\) is independent of \(R\)), then
\[\begin{align*}
(2\sqrt{\tau \mu^{\text{out}}})(\mathcal{V}_D) &\geq c_{\text{ray}, 2} c_{\text{ray}, 1}.
\end{align*}\]

We now use Corollary 2.17 to propagate this lower bound on \(\mathcal{V}_D\) to a lower bound on \(\Gamma_{\text{tr}, R}\). Indeed, Part (i) of Corollary 2.17 then implies that
\[(5.107) \quad (2\sqrt{\tau \mu^{\text{in}}})(\mathcal{V}_\text{tr}) = (2\sqrt{\tau \mu^{\text{out}}})(\mathcal{V}_D) \geq c_{\text{ray}, 2} c_{\text{ray}, 1}.\]
where
\[\mathcal{V}_\text{tr} := \bigcup_{q \in \mathcal{V}_D} \pi_{\Gamma_{\text{tr}, R}} \left(\psi_{\text{tr}}(q) \left(\rho^{\text{out}}(q) \right) \right) \subset \mathcal{H}_{\text{tr}},\]
where \(\rho^{\text{out}}\) and \(\rho^{\text{out}}\) are defined in (2.38) and (2.37) respectively, and \(\pi_{\Gamma_{\text{tr}, R}}\) equals \(\pi_{\partial M}\) restricted to \(T^*_{\Gamma_{\text{tr}, R}} \mathbb{R}^d\).
Combining Corollary 2.19, Lemma 5.16, and Point (iii) of Condition 5.9, we have
\begin{equation}
\mu^{\text{out}}(V_{\text{tr}}) = \left(\frac{\sigma(N) - \sigma(D)}{\sqrt{\sigma(N)} + \sigma(D)}\right)^2 \mu^{\text{in}}(V_{\text{tr}}) \geq \left(C_{\text{ref}} \min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 \mu^{\text{in}}(V_{\text{tr}}).
\end{equation}

Finally, using Part (ii) of Corollary 2.17 with Point (iv) of Condition 5.9, and then using (5.108) and (5.107), we have,
\begin{equation}
\mu(\mathcal{I}) \geq \tilde{c}_3 R (2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}}) \geq \tilde{c}_3 R (2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}})
\end{equation}
\begin{equation}
\geq \tilde{c}_3 R \left(C_{\text{ref}} \min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 \epsilon_{\text{ray},2, \epsilon}^{c_{\text{ray},1}}.
\end{equation}
We now restrict \(\epsilon \) so that, in addition to satisfying (5.106), \(\epsilon \) satisfies
\begin{equation}
\epsilon < \tilde{c}_3 (C_{\text{ref}})^2 \epsilon_{\text{ray},2}
\end{equation}
(observe that, since \(\tilde{c}_3 \) and \(\epsilon_{\text{ray},2} \) are assumed independent of \(R \), this upper bound is independent of \(R \)). Thus \(\epsilon \) can be chosen sufficiently small (independent of \(R \)) such that (5.109) contradicts (5.99), which is the desired contradiction.

Proof of (ii). If the assumption of (ii) holds, then our contradiction argument also assumes that for all \(\epsilon > 0 \) there exists \(R \geq R_0 \) such that
\begin{equation}
\mu(\mathcal{I} \cap S_{B(0,3/2)}^{\text{ref}}) \leq \epsilon \left(\min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 \epsilon_{\text{ray},1}.
\end{equation}
Applying Part (i) of Corollary 2.17 \(N_{\text{ref}} - 1 \) more times and using (5.108), we construct \(V_{\text{tr}}^1, \ldots, V_{\text{tr}}^{N_{\text{ref}}} \subset T^*\Gamma_{\text{tr},R} \), satisfying
\begin{equation}
\begin{split}
V_{\text{tr}}^1 := V_{\text{tr}}, & \quad (2\sqrt{\tau} \mu^{\text{in}})(V_{\text{tr}}^{j+1}) = (2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}}^{j}), \\
(2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}}^{j}) \geq & \quad \left(C_{\text{ref}} \min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^2 (2\sqrt{\tau} \mu^{\text{in}})(V_{\text{tr}}^{j}),
\end{split}
\end{equation}
and so that for any \(q \in V_{\text{tr}}^{N_{\text{ref}}} \), \(\{ \varphi_{t}^{R_{\epsilon}}(\epsilon_{\text{ray}})(q) \}_{t \geq 0} \) intersects \(B(0, \frac{3}{2}) \setminus B(0, \frac{5}{4}) \) before hitting \(\partial B(0, R) \) or \(\Gamma_{\text{tr},R} \). Therefore, by (5.111) and (5.107)
\begin{equation}
(2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}}^{N_{\text{ref}}}) \geq \left(C_{\text{ref}} \min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^{2N_{\text{ref}}} \epsilon_{\text{ray},2, \epsilon}^{c_{\text{ray},1}}.
\end{equation}
Finally, since any ray entering \(B(0, \frac{3}{2}) \setminus B(0, \frac{5}{4}) \) spends a time at least \(\frac{1}{2} \left(\frac{1}{2} - \frac{5}{4} \right) = \frac{1}{8} \) in this annulus, Part (ii) of Corollary 2.17 implies that
\begin{equation}
\mu(\mathcal{I} \cap S_{B(0,3/2) \setminus B(0,5/4)}^{\text{ref}}) \geq \frac{1}{8} (2\sqrt{\tau} \mu^{\text{out}})(V_{\text{tr}}^{N_{\text{ref}}})
\end{equation}
\begin{equation}
\geq \left(\frac{1}{8} \left(C_{\text{ref}} \min \left(|c_{\text{ray},3}|^{2m_{\text{ord}}}, |c_{\text{ray},4}|^{m_{\text{mult}}} \right) \right)^{2N_{\text{ref}}} \epsilon_{\text{ray},2, \epsilon}^{c_{\text{ray},1}},
\end{equation}
where we have used (5.112). Therefore, if
\begin{equation}
\epsilon < (C_{\text{ref}})^{2N_{\text{ref}}} \epsilon_{\text{ray},2},
\end{equation}
then (5.113) contradicts (5.110), which is the desired contradiction. (Observe that, similar to in Part (i), the upper bound on \(\epsilon \) is independent of \(R \) since \(\epsilon_{\text{ray},2} \) and \(C_{\text{ref}} \) are independent of \(R \).)

Proof of the lower bounds in Theorems 1.7, 1.8, 1.10, and 1.11. The lower bounds will follow from combining Corollary 5.4, Lemma 5.17, and the ray constructions in Lemmas 5.10-5.13.

For Theorem 1.8 (for generic \(\Gamma_{\text{tr},R} \)), Lemma 5.12 implies that the assumptions of Part (i) of Lemma 5.17 are satisfied with \(c_{\text{ray},1}, c_{\text{ray},3}, c_{\text{ray},4} \) independent of \(R \), and \(R_0 \) sufficiently large; the required lower bound (5.4) on \(\mu(\mathcal{I}) \) then follows by inserting this (lack of) \(R \)-dependence into (5.97).

For the lower bound in Theorem 1.7 (for \(\Gamma_{\text{tr}} = \partial B(0, R) \)), Lemma 5.11 implies that the assumptions of Part (i) of Lemma 5.17 are satisfied with \(c_{\text{ray},1}, c_{\text{ray},4} \) independent of \(R \), \(c_{\text{ray},3} =...
\(\tilde{c}_3/R \) with \(\tilde{c}_3 > 0 \) independent of \(R \), and \(R_0 \) sufficiently large. The required lower bound \((5.3)\) \(\mu(I) \) then follows by inserting these \(R \)-dependences into \((5.97)\), and observing that
\[
\min \left(|c_{\text{ray}, 3}|^{2m_{\text{ord}}}, |c_{\text{ray}, 4}|^{m_{\text{mult}}} \right) = \frac{\tilde{c}_3}{R}^{2m_{\text{ord}}}
\]
for \(R \) sufficiently large.

For Theorem 1.10 (i.e. the local error for \(\Gamma_{t,R} = \partial B(0, R) \)), Point (iv)' in Lemma 5.11 implies that the assumptions of Part (ii) of Lemma 5.17 are satisfied \(N_{\text{ref}} = 1 \) and \(R_0 \) sufficiently large. The required lower bound on \(\mu(I \cap S^*_B(0,3/2,\mathbb{R}^d)) \) \((5.5)\) then follows from \((5.98)\) using \((5.114)\) and the fact that \(c_{\text{ray}, 1} \) is independent of \(R \). The fact that the result holds with \(R_0 = 2 \) when \(M = N = 0 \) follows from Remark 5.15.

Finally, for Theorem 1.11 (i.e. the local error for the hypercube), Lemma 5.13 implies that the assumptions of Part (ii) of Lemma 5.17 are satisfied with \(c_{\text{ray}, 3}, c_{\text{ray}, 4} \) independent of \(R \), \(c_{\text{ray}, 1} = \tilde{c}_1/R^{d-1} \) with \(\tilde{c}_1 \) independent of \(R \), and \(R_0 = 4 \). The required lower bound on \(\mu(I \cap S^*_B(0,3/2,\mathbb{R}^d)) \) \((5.6)\) then follows from \((5.98)\) by inserting these \(R \)-dependences. \(\square \)

6. PROOF OF THE TRACE BOUNDS (THEOREM 4.1)

6.1. Strategy of the proof. To illustrate some of the main ideas, consider the BVP \((4.1)\) with \(\mathcal{N} = \mathcal{D} = I \), \(\mathcal{M} \) compact, and the boundary condition imposed on the whole of \(\partial M \), i.e.,
\[
\begin{cases}
(-h^2 \Delta - 1)u = hf & \text{in } M \\
hD_{\Gamma} u - u = g & \text{on } \Gamma : = \partial M.
\end{cases}
\]

In the notation of Theorem 4.1, we have \(m_{0,i} = m_{1,i} = 0 \), and the bounds \((4.7)\) and \((4.8)\) in the case \(\ell_i = 0 \) are that
\[
\begin{align*}
\|u\|_{L^2(\Gamma)} + \|hD_{\Gamma} u\|_{L^2(\Gamma)} & \leq C \left(\|u\|_{L^2(M)} + \|f\|_{L^2(M)} + \|g\|_{L^2(\Gamma)} \right) \\
\|u\|_{H^1(M)} & \leq C \left(\|u\|_{L^2(M)} + \|f\|_{L^2(M)} + \|g\|_{L^2(\Gamma)} \right).
\end{align*}
\]

We now show how to obtain these bounds; pairing the PDE in \((6.1)\) with \(u \) and integrating by parts, we have
\[
h^2 \|\nabla u\|_{L^2(M)}^2 - \|u\|_{L^2(M)}^2 - h \langle f, u \rangle_{L^2(M)} = hi \|u\|_{L^2(\Gamma)}^2 + h\langle g, u \rangle_{L^2(\Gamma)}.
\]

Taking the imaginary part of \((6.4)\), we find that
\[
\|u\|_{L^2(\Gamma)}^2 \leq \|g\|_{L^2(\Gamma)}^2 + \|f\|_{L^2(M)}^2 + \|u\|_{L^2(M)}^2.
\]

Taking the real part of \((6.4)\) and adding \(2\|u\|_{L^2(M)}^2 \) to both sides of the resulting equation, we find that
\[
\|u\|_{H^1(M)}^2 \leq \frac{5}{2} \|u\|_{L^2(M)}^2 + \frac{h^2}{2} \|f\|_{L^2(M)}^2 + \frac{h^2}{2} \|u\|_{L^2(\Gamma)}^2 + \frac{1}{2} \|g\|_{L^2(\Gamma)}^2.
\]

Combining the inequality \((6.5)\) with the boundary condition in \((6.1)\), we obtain the first result \((6.2)\). Then, using \((6.5)\) in \((6.6)\), we obtain the second result \((6.3)\).

The proof of Theorem 4.1 follows similar steps; indeed, the two main ingredients are (i) bounds on the traces in terms of the data and \(H^1(M) \) norms of \(u \), and (ii) a bound the \(H^1(M) \) norm of \(u \) in terms of the traces and the data. The bound in (ii) is obtained by considering \(\Re((-h^2 \Delta_0 - 1)u, u)_{L^2(M)} \) and integrating by parts, similar to above, with the inequality \((6.19)\) the generalisation of the inequality \((6.6)\). The bounds in (i) are obtained by considering \(\Im((-h^2 \Delta_0 - 1)u, u)_{L^2(M)} \), similar to above, but also \(\Im((-h^2 \Delta_0 - 1)u, hD_{\Gamma} u)_{L^2(M)} \) (with Lemma 2.6 above considering a general commutator, and Lemma 6.1 specialising to the case of a normal derivative).

The additional complications for the bounds in (i) are because we need to consider the cases where \(\mathcal{D} \) and \(\mathcal{N} \) are both elliptic (Lemma 6.2), where \(\mathcal{D} \) is small and \(\mathcal{N} \) elliptic (Lemma 6.3), and where \(\mathcal{D} \) is elliptic and \(\mathcal{N} \) small (Lemma 6.4). These three cases are considered in §6.2, and then
in §6.3 we show that, under the assumptions (4.3)-(4.5), the bounds in these three cases cover all of $T\Gamma$.

6.2. A priori estimates. We begin by proving some a-priori estimates for (4.1). As usual, we work near Γ where M is locally given by $x_1 > 0$, as in §2.3. We repeated use the integration by parts result in Lemma 2.6.

Lemma 6.1. If u solves (4.1), then, for all $\epsilon > 0$ and for all ℓ,

$$
\|hD_\ell u\|_{H^\delta_\ell(M)} \leq C \left(\|u\|_{H^{\delta+1}_h(M)} + \|u\|_{H^{\delta+1}_h(M)} + \epsilon^{-1} \|f\|_{H^{\delta}_h(M)} + \epsilon \|u\|_{H^\delta_h(M)} \right).
$$

Proof. Let $\chi \in C_0^\infty((-2\delta, 2\delta); [0, 1])$ with $\chi \equiv 1$ on $[-\delta, \delta]$. Let

$$
B_1(x, hD_\ell u) := \chi(x)(hD_\ell u)^{2\ell} \quad \text{and} \quad B_0(x, hD_\ell u) := \frac{1}{2} hD_1 u = \frac{h}{2\ell} \chi(x)(hD_\ell u)^{2\ell}.
$$

Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since $B_0|_{x_1=0} = 0$, (2.12) implies that

$$
\int B(x, u, \nabla u, \ldots) \quad \text{and} \quad \int B_0(x, u, \nabla u, \ldots)
$$

result in Lemma 2.6. Therefore, and B_0 satisfies the assumption of Lemma 2.6; since $B_0|_{x_1=0} = 0$, (2.12) implies that

$$
\int B_1(x, hD_\ell u) \quad \text{and} \quad \int B_0(x, hD_\ell u)
$$

Now, observe that

$$
\|P, B\|_{H^\delta(M)} \leq C_h \left(\|P\|_{H^{\delta+2}_m(M)} + \|u\|_{H^{\delta+2}_h(M)} \right).
$$

Therefore,

$$
\left| \langle B_1(1 - R)u, u \rangle_{L_2(\Gamma)} + \langle B_1 hD_1 u, hD_1 u \rangle_{L_2(\Gamma)} \right| \leq C h \|u\|_{H^\delta_h(M)} + C \|u\|_{H^\delta_h(M)}^2 + C \epsilon^{-1} \|f\|_{H^\delta_h(M)} + \epsilon \|u\|_{H^\delta_h(M)}^2.
$$

and hence

$$
\|hD_\ell u\|_{H^\delta_h(M)} \leq C \|u\|_{H^{\delta+1}_h(M)} + C \|u\|_{H^\delta_h(M)}^2 + C \epsilon^{-1} \|f\|_{H^\delta_h(M)} + \epsilon \|u\|_{H^\delta_h(M)}^2.
$$

\[\square\]

Remark. When $\ell = 0$ the bound in Lemma 6.1 is valid for Lipschitz domains and goes back to Nečas; see [Neč67, §5.1.2], [McL00, Theorem 4.24 (i)].

We now show a bound where D and N are both elliptic.

Lemma 6.2. Suppose that $WF_h(E) \subset Ell(D) \cap Ell(N)$. Then for any $B' \in \Psi^0$ with

$$
WF_h(E) \cap WF_h(Id - B') = \emptyset, \quad WF_h(B') \subset Ell(N) \cap Ell(D)
$$

there exist $C > 0$ and $h_0 > 0$ such that for all $\epsilon > 0$, $0 < h < h_0$,

$$
\|Eu\|_{H^{\delta+\alpha}_h(\Gamma)} + \|Eu\|_{H^{\delta+\alpha}_h(\Gamma)} \leq C \left(\|u\|_{H^{\frac{\delta+\alpha+1}{2}}_h(\Gamma)} + \|f\|_{H^{\frac{\delta+\alpha+1}{2}}_h(\Gamma)} \right) + \epsilon \left(\|B'u\|_{H^{\delta+\alpha}_h(\Gamma)} + \|B'hD_1 u\|_{H^{\delta+\alpha}_h(\Gamma)} \right) + C \epsilon^{-1} \|B'g\|_{H^\delta_h(\Gamma)} + O\left(\|u\|_{H^\delta_h(\Gamma)} + \|hD_1 u\|_{H^{\delta}_h(\Gamma)} + \|g\|_{H^{\delta}_h(\Gamma)} \right).
$$
Proof. Let \(B_0 \in \Psi^0(\Gamma_1) \) self-adjoint with \(\text{WF}_h(\mathcal{B}_0(x', hD_x')) \subset \text{WF}_h(E) \). Let \(B' \in \Psi^0(\Gamma_i) \) with \(\text{WF}_h(E) \subset \text{Ell}(B') \subset \text{WF}_h(B') \subset \text{Ell}(\mathcal{N}) \cap \text{Ell}(\mathcal{D}) \).

We can assume without loss of generality that \(B' \) is microlocally the identity in a neighbourhood of \(\text{WF}_h(E) \). Next, let \(B_1 = 0 \) and \(\mathcal{N}^{-1} \) and \(D^{-1} \) denote microlocal inverses for \(\mathcal{N} \) and \(\mathcal{D} \) on \(\text{WF}_h(B') \). Then, by Lemma 2.6,

\[
\left| \langle B_0 hD_x, u \rangle_{L^2(\Gamma_i)} + (\hbar \pi \Pi B_0 u, u)_{L^2(\Gamma_i)} + \langle B_0 u, hD_x u \rangle_{L^2(\Gamma_i)} \right| \\
\leq |2(f, Bu)_{L^2(M)}| + h^{-1}|\langle [P, B]u, u \rangle_{L^2(M)}|
\]

First, note that

\[
[P, B] = h(\tilde{B}_1 hD_x + \tilde{B}_2)
\]

where \(\tilde{B}_1 \in C_0^\infty((\delta, 2\delta); \Psi^0(\Gamma_i)), \quad \tilde{B}_2 \in C_0^\infty((-2\delta, 2\delta); \Psi^0(\Gamma_i)) \).

In particular, by the standard elliptic parametrix construction, for all \(\sigma \in \mathbb{R} \),

\[
\| [P, B] \|_{H^s(M)} \leq C h \left(\| Pu \|_{H^{s+\theta-1}(M)} + \| u \|_{H^{s+\theta+1}(M)} + \| u \|_{L^2(M)} \right).
\]

Therefore,

\[
\left| \langle B_0 hD_x, u \rangle_{L^2(\Gamma_i)} + (\hbar \pi \Pi B_0 u, u)_{L^2(\Gamma_i)} + \langle B_0 u, hD_x u \rangle_{L^2(\Gamma_i)} \right| \\
\leq C \left(\left\| f \right\|_{H^{s+\theta-1}(M)} + \| u \|_{H^{s+\theta+1}(M)} + \| u \|_{L^2(M)} \right) \left(\left\| u \right\|_{H^{s+\theta+1}(M)} + \| u \|_{L^2(M)} \right).
\]

Now, using (4.1),

\[
\langle B_0 hD_x, u \rangle_{L^2(\Gamma_i)} = \langle B_0 \mathcal{N}^{-1}(Du + g_i), u \rangle_{L^2(\Gamma_i)} + O \left(\hbar^\infty \left(\| u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} + \| D_x u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} \right) \right)
\]

and

\[
\langle B_0 u, hD_x u \rangle_{L^2(\Gamma_i)} = \langle B_0 u, \mathcal{N}^{-1}(Du + g_i) \rangle_{L^2(\Gamma_i)} + O \left(\hbar^\infty \left(\| u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} + \| hD_x u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} \right) \right)
\]

In particular, letting \(B' \in \Psi^0 \) with \(\text{WF}_h(B_0) \subset \text{Ell}(B') \),

\[
\left| \left\langle (\mathcal{N}^{-1}D)^* B_0 + B_0 (\mathcal{N}^{-1}D) \right\rangle u, u \right\|_{L^2(\Gamma_i)} \\
\leq C \left(\| f \|_{H^{s+\theta-1}(M)} + \| u \|_{H^{s+\theta+1}(M)} + \| u \|_{L^2(M)} \right) \left(\left\| u \right\|_{H^{s+\theta+1}(M)} + \| u \|_{L^2(M)} \right) \\
+ O(\hbar) \| B' u \|^2_{H^{s, -\theta}(\Gamma_i)} + \epsilon \| B'u \|^2_{H^{s, -\theta}(\Gamma_i)} + C \epsilon^{-1} \| B' g_i \|^2_{H^{s, -\theta}(\Gamma_i)} \\
+ O \left(\hbar^\infty \left(\| u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} + \| hD_x u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} + \| g \|^2_{H^{s-\theta, -\theta}(\Gamma_i)} \right) \right)
\]

Now, choose \(b_0(x', hD_x) \in \Psi^{m_1-m_0+2\ell} \) self adjoint (i.e. \(\ell_0 = m_1 - m_0 + 2\ell \)) such that \(B_0 \) is elliptic on \(\text{WF}_h(E) \). Then, since \(\mathcal{D} \) and \(\mathcal{N} \) have real-valued symbols and \(-\mathcal{N}^{-1} \mathcal{D} \) is elliptic on \(\text{WF}_h(E) \),

\[
-\Re (B_0 \mathcal{N}^{-1} \mathcal{D} u, u) \geq C \| Eu \|^2_{H^{s, -\theta}(\Gamma_i)} + C h \| B' u \|^2_{H^{s, -\theta}(\Gamma_i)} - O(\hbar^\infty) \| u \|^2_{H^{s-\theta, -\theta}(\Gamma_i)},
\]

and

\[
\| Eu \|^2_{H^{s, -\theta}(\Gamma_i)} \leq C \left(\left\| f \right\|_{H^{s, -\theta}(\Gamma_i)} + \| u \|_{H^{s, -\theta}(\Gamma_i)} \right) \left(\left\| u \right\|_{H^{s, -\theta}(\Gamma_i)} + \| u \|_{L^2(\Gamma_i)} \right) \\
	imes \left(\left\| u \right\|_{H^{s, -\theta}(\Gamma_i)} + \| u \|_{L^2(\Gamma_i)} \right)
\]

(6.8)

Let \(E' \in \Psi^0 \) with \(\text{WF}_h(E) \cap \text{WF}_h(\text{Id} - E') = \emptyset, \quad \text{WF}_h(E') \subset \text{Ell}(B') \cap \text{Ell}(\mathcal{N}) \cap \text{Ell}(\mathcal{D}) \).
By (6.8),
\[\|E'u\|_{H^k_h(\Gamma_i)}^2 \leq C(\|u\|_{H^{2\ell_0+2\ell+1}_h(M)}^2 + \|u\|_{L^2(M)}^2 + C(\|f\|_{H^{m_1+m_2+2\ell+1}_h(M)}^2 + \|f\|_{L^2(M)}^2)
+ O(h)\|B'u\|_{H^{m_2+m_1}_h(\Gamma_i)}^2 + \epsilon\|B'u\|_{H^{m_1}_h(\Gamma_i)}^2 + C\epsilon^{-1}\|B'g\|_{H^{m_2-m_0}_h(\Gamma_i)}^2)
+ O(h^{\infty}(\|u\|_{H^\infty_{h}^0(\Gamma_i)}^2 + \|hD_{x_1}u\|_{H^\infty_{h}^0(\Gamma_i)}^2 + \|g\|_{H^\infty_{h}^0(\Gamma_i)}^2)). \]

Let \mathcal{N} denote a microlocal inverse for \mathcal{N} on $WF_h(B')$. Then,
\[EhD_{x_1}u = E(\mathcal{N}^{-1}(-D'E'u + B'g_i)) + O(h^{\infty}\|u\|_{H^\infty_{h}^0(\Gamma_i)}^2). \]
so
\[\|EhD_{x_1}u\|_{H^k_h(\Gamma_i)} \leq C\|E'u\|_{H^{m_1+m_2+2\ell+1}_h(M)} + \|B'g_i\|_{H^{m_1}_h(\Gamma_i)} + O(h^{\infty}\|u\|_{H^\infty_{h}^0(\Gamma_i)}^2). \]
In particular,
\[\|EhD_{x_1}u\|_{H^k_h} \leq C(\|u\|_{H^{2\ell_0+2\ell+1}_h(M)}^2 + \|u\|_{L^2(M)}^2 + \|f\|_{H^{m_1+m_2+2\ell+1}_h(M)}^2 + \|f\|_{L^2(M)}^2)
+ O(h)\|B'u\|_{H^{m_2+m_1}_h(\Gamma_i)}^2 + \epsilon\|B'hD_{x_1}u\|_{H^{m_1}_h(\Gamma_i)}^2 + C\epsilon^{-1}\|B'g_i\|_{H^{m_2-m_0}_h(\Gamma_i)}^2)
+ O(h^{\infty}(\|u\|_{H^\infty_{h}^0(\Gamma_i)}^2 + \|hD_{x_1}u\|_{H^\infty_{h}^0(\Gamma_i)}^2 + \|g\|_{H^\infty_{h}^0(\Gamma_i)}^2)). \]

We now consider D small and \mathcal{N} elliptic:

Lemma 6.3. Let $K \in T^*\Gamma_i$. Then for all $\eta > 0$ there is $\delta_0 > 0$ and $C > 0$ such that for all $0 < \delta < \delta_0$, $E \in \Psi^0$ with
\[WF_h(E) \subset K \cap Ell(\mathcal{N}) \cap \{|\sigma(D)| < \delta(\xi)^{m_0}\} \cap \{|R(x',\xi')| > \eta\}, \]
and $B' \in \Psi^0$ with
\[WF_h(E) \cap WF_h(Id - B') = \emptyset, \quad WF_h(B') \subset Ell(\mathcal{N}) \cap \{|\sigma(D)| < \delta(\xi)^{m_0}\}, \]
there is $h_0 > 0$ small enough such that for all $0 < h < h_0$ and $0 < \epsilon < 1$
\[\|Eu\|_{H^{m_1+m_0}_{h}(\Gamma_i)} + \|EhD_{x_1}u\|_{H^{m_1}_h(\Gamma_i)} \leq C(\epsilon + h)\|B'u\|_{H^{m_1+m_0}_{h}(\Gamma_i)} + C(\epsilon^{-1} + 1)\|B'g\|_{H^{m_1}_h(\Gamma_i)}
+ C\|u\|_{H^{m_1+m_0+1}_{h}(\Gamma_i)} + C\epsilon^{-1}\|f\|_{L^2(M)} + C\epsilon\|u\|_{H^0_h(M)}
+ O(h^{\infty}(\|u\|_{H^\infty_{h}^0(\Gamma_i)} + \|hD_{x_1}u\|_{H^\infty_{h}^0(\Gamma_i)} + \|g\|_{H^\infty_{h}^0(\Gamma_i)})). \]
Moreover, if $m_0 \leq m_1 + 1$ (6.10) holds with $K = T^*\Gamma_i$.

Proof. Throughout the proof, we take $b_1(x',hD_{x'}u)$ self-adjoint with $b_1 \in \Psi^{2(m_1+m_0-1)}$ if $m_0 \leq m_1 + 1$ and $b_1 \in \Psi^{\text{comp}}$ otherwise. We assume that
\[WF_h(E) \subset Ell(b_1(x',hD_{x'}u)) \subset WF_h(b_1(x',hD_{x'}u)) \subset Ell(\mathcal{N}) \cap \{|\sigma(D)| < \delta(\xi)^{m_0}\}, \]
As in Lemma 6.1, let $\chi \in C^\infty_c((-2\delta,2\delta);[0,1])$ with $\chi \equiv 1$ on $[-\delta,\delta]$. Let
\[B_1(x,hD_{x'}) := \chi(x_1)b_1(x',hD_{x'}u) \quad \text{and} \quad B_0(x',hD_{x'}) := \frac{1}{2}hD_{x_1}B_1. \]
Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since $B_0|_{x_1=0} = 0$, (2.12) implies that (6.7) holds.

Since \mathcal{N} is elliptic on $WF_h B'$, there exists $\mathcal{N}^{-1} \in \Psi^{-m_1}$ a microlocal inverse for \mathcal{N} on $WF_h(B')$; that is, for any \tilde{B} with $WF_h(\tilde{B}) \subset \{B' \equiv Id\}$,
\[\tilde{B}hD_{x_1}u = \tilde{B}N^{-1}(DB'u + B'g) + O(h^\infty_{\Psi}\approx g + O(h^\infty_{\Psi}\approx u + O(h^\infty_{\Psi}\approx hD_{x_1}u. \]
and hence, using the fact that we are working with compactly microlocalized operators on Γ to see that all $H^s_h(\Gamma_1)$ norms are equivalent up to h^∞ remainders, we have
\begin{equation}
\left| \langle B_1 Ru, u \rangle_{L^2(\Gamma_1)} + \langle B_1 hD_x u, hD_x u \rangle_{L^2(\Gamma_1)} \right| \\
\leq Ch \|B' u\|_{H^{s_{m_0}}(\Gamma_1)}^2 + Ch \|B' g\|_{H^{s}(\Gamma_1)}^2 + \left| ih^{-1} \langle [P, B] u, u \rangle_{L^2(M)} + 2\delta \langle f, Bu \rangle_{L^2(M)} \right| \\
+ O(h^\infty (\|u\|_{H^{s_{m_0}}(\Gamma_1)}^2 + \|hD_x u\|_{H^{s_{m_0}}(\Gamma_1)}^2 + \|g\|_{H^{s_{m_0}}(\Gamma_1)}^2)).
\end{equation}

(6.13)

Now, observe that
\[[P, B] = h(\tilde{B}_2(hD_x u)^2 + \tilde{B}_1 hD_x u + \tilde{B}_0) \]

where
\[\tilde{B}_2 \in C_c^{\infty}(\delta, 2\delta); \psi^{2(k+m_0-1)}(\Gamma_1), \quad \tilde{B}_1 \in C_c^{\infty}(\delta, 2\delta); \psi^{2(k+m_0-1)}(\Gamma_1), \]
\[\tilde{B}_0 \in C_c^{\infty}((-2\delta, 2\delta); \psi^{2(k+m_0)}(\Gamma_1)). \]

In particular, using the elliptic parametrix construction as before, we have
\[\| [P, B] u \|_{H_{s_{m_0}}(\Gamma)} \leq C h(\| Pu \|_{H^{s_{m_0}+2(k+m_0)}(\Gamma_1)} + \| u \|_{H^{s_{m_0}+2(k+m_0)}(\Gamma_1)} + \| u \|_{L^2(\Gamma)}), \]

so by (6.12) and (6.13),
\begin{equation}
\left| \langle B_1 Ru, u \rangle_{L^2(\Gamma_1)} + \langle B_1 N^{-1} Du, N^{-1} Du \rangle_{L^2(\Gamma_1)} \right| \\
\leq C(\epsilon + h) \|B' u\|_{H^{s_{m_0}}(\Gamma_1)}^2 + C(\epsilon^1 + 1) \|B' g\|_{H^s(\Gamma_1)}^2 \\
+ C \| u \|_{H^{s_{m_0}+2(k+m_0)}}^2 + C \epsilon^{-1} \| f \|_{H^{s_{m_0}+2(k+m_0)}}^2 + \| f \|_{L^2(M)}^2 + C \epsilon \| u \|_{H^s(M)}^2 \\
+ O(h^\infty (\| u \|_{H^{s_{m_0}}(\Gamma_1)}^2 + \| hD_x u \|_{H^{s_{m_0}}(\Gamma_1)}^2 + \| g \|_{H^{s_{m_0}}(\Gamma_1)}^2)).
\end{equation}

(6.14)

If $m_0 > m_1 + 1$, we assume that $b_1 \in S^{\text{comp}}$. Therefore, for all (m_0, m_1)
\[B_1 R + (N^{-1}D)^* B_1 N^{-1}D \in \Psi^{2(k+m_0)}(\Gamma_1), \]

for our choice of B_1. Next, since \mathcal{D} is elliptic on $\{ R = 0 \}$, for any $K \subset T^\ast \Gamma_1$ compact, there exists $\delta_0 > 0$ small enough such that
\[\inf \left\{ |\xi'|^{-2} \| \sigma(N^{-1}D)(\xi', \xi') \|^2 + R(x, \xi') \mid \sigma(\mathcal{D})(\xi', \xi') \leq \delta_0 \| \xi' \|_{m_0}, (\xi', \xi') \in K \right\} \geq c_K > 0. \]

Moreover, if $m_0 \leq m_1 + 1$, then there is $\delta_0 > 0$ small enough such that
\[\inf \left\{ |\xi'|^{-2} \| \sigma(N^{-1}D)(\xi', \xi') \|^2 + R(x, \xi') \mid \sigma(\mathcal{D})(\xi', \xi') \leq \delta_0 \| \xi' \|_{m_0}, (\xi', \xi') \in T^\ast \Gamma_1 \right\} \geq c > 0. \]

In particular, since R is real-valued, there is $B_1 \in \Psi^{2(k+m_0)}(\Gamma_1)$ self adjoint, elliptic on $WF_h(E)$, such that
\[\sigma(B_1 R + (N^{-1}D)^* B_1 N^{-1}D)(\xi', \xi') \geq c(\xi')^{2(k+m_0)}, \quad (\xi', \xi') \in WF_h(E). \]

In particular, then the sharp Gårding inequality [Zwo12, Theorem 9.11] gives
\[\| Eu \|_{H^{s_{m_0}}(\Gamma_1)}^2 \leq C \left(\| B_1 R + (N^{-1}D)^* B_1 N^{-1}D \| u \|_{L^2(\Gamma_1)} + Ch \| B' u \|_{H^{s_{m_0}+2(k+m_0)}} + O(h^\infty) \| u \|_{H^{s}} \right), \]

and we obtain from (6.14),
\[\| Eu \|_{H^{s_{m_0}}(\Gamma_1)}^2 \leq C(\epsilon + h) \| B' u \|_{H^{s_{m_0}}(\Gamma_1)}^2 + C(\epsilon^1 + 1) \| B' g \|_{H^s(\Gamma_1)}^2 \\
+ C \| u \|_{H^{s_{m_0}+2(k+m_0)}}^2 + C \epsilon^{-1} \| f \|_{H^{s_{m_0}+2(k+m_0)}}^2 + \| f \|_{L^2(M)}^2 + C \epsilon \| u \|_{H^s(M)}^2 \\
+ O(h^\infty (\| u \|_{H^{s_{m_0}}(\Gamma_1)}^2 + \| hD_x u \|_{H^{s_{m_0}}(\Gamma_1)}^2 + \| g \|_{H^{s_{m_0}}(\Gamma_1)}^2)). \]

Next, we write, as above,
\[EhD_x u = E N^{-1}(DE' u + E' g) + O(h^\infty) \psi \ast g + O(h^\infty) \psi \ast u + O(h^\infty) \psi \ast hD_x u \]

\[
\text{LOCAL ABSORBING BOUNDARY CONDITIONS FOR HIGH-FREQUENCY WAVES 75}
\]

\[
\text{LOCAL ABSORBING BOUNDARY CONDITIONS FOR HIGH-FREQUENCY WAVES 75}
\]
to obtain
\[\| E h D_x u \|_{H^{t+m}_h(\Gamma_1)}^2 \leq C \| E' u \|_{H^{t+m_0}_h(\Gamma_1)}^2 + C \| E' g \|_{H^t_h(\Gamma_1)}^2 \]
\[-+ O\left(h^{\infty}\left(\|u\|_{H^{-N}_h(\Gamma_1)} + \|h D_x u\|_{H^{-N}_h(\Gamma_1)} + \|g\|_{H^{-N}_h(\Gamma_1)}\right)\right),\]
and this finishes the proof. \qed

Finally, we consider the case D elliptic and N small.

Lemma 6.4. For all $K \in T^*\Gamma_i$, there is $\delta_0 > 0$ and $C > 0$ such that for all $0 < \delta < \delta_0$, $E \in \Psi^0$ with
\[(6.15) \quad \WFh(E) \subset K \cap \Ell(D) \cap \{|\sigma(N)| < \delta \langle \xi \rangle^{m_1}\}, \]
and $B' \in \Psi^0$ with
\[(6.16) \quad \WFh(E) \cap \WFh(I - B') = \emptyset, \quad \WFh(B') \subset \Ell(D) \cap \{|\sigma(N)| < \delta \langle \xi \rangle^{m_1}\}, \]
there is $h_0 > 0$ small enough such that for all $0 < h < h_0$ and $0 < \epsilon < 1$,
\[\| E h D_x u \|_{H^{t+m}_h(\Gamma_1)} + \| E u \|_{H^{t+m_0}_h(\Gamma_1)} \leq C\| B' h D_x u \|_{H^{t+m}_h(\Gamma_1)} + C\epsilon^{-1}\| B' g \|_{H^t_h(\Gamma_1)} \]
\[-+ C\|u\|_{H^{t+m_1+\delta}_h(\Gamma_1)} + C\epsilon^{-1}\left(\|f\|_{H^{t+m_1+\delta}_h(\Gamma_1)} + \|f\|_{H^t_h(\Gamma_1)}\right) + C\|u\|_{H^t_h(\Gamma_1)} \]
\[+ O\left(h^{\infty}\left(\|u\|_{H^{-N}_h(\Gamma_1)} + \|h D_x u\|_{H^{-N}_h(\Gamma_1)} + \|g\|_{H^{-N}_h(\Gamma_1)}\right)\right). \]
Moreover, if $m_1 + 1 \leq m_0$, then (6.16) holds with $K = T^*\Gamma_i$. \]

Proof. Throughout the proof, we take $b_1(x', h D_{x'})$ self-adjoint with $b_1 \in \Psi^{2(k+m_0)}$ if $m_1 + 1 < m_0$ and $b_1 \in \Psi^{\text{comp}}$ otherwise. We assume that
\[\WFh(E) \subset \Ell(b_1(x', h D_{x'})) \subset \WFh(b_1(x', h D_{x'})) \subset \Ell(D) \cap \{|\sigma(N)| < \delta \langle \xi \rangle^{m_1}\}. \]

Let B_1 and B_0 be defined by (6.11).

Since D is elliptic on $WF_h(B')$, there exists $D^{-1} \in \Psi^{-m_0}$ a microlocal inverse for D on $WF_h(B')$; that is, for any B with $WF_h(B) \subset \{B' : \Id\}$,
\[(6.17) \quad B u = - B D^{-1}(N h D_x, B' u - B' g) + O(h^{\infty}) \eta^{-\infty} g + O(h^{\infty}) \eta^{-\infty} u + O(h^{\infty}) \eta^{-\infty} h D_x u \]
Arguing as in the proof of Lemma 6.3, we obtain the analogue of (6.14) with $B_1 \in \Psi^{2(k+m_1)}(\Gamma_1)$, namely
\[\left| \langle B_1 R D^{-1} N h D_x, u, D^{-1} N h D_x, u \rangle_{L^2(\Gamma_1)} + \langle B_1 h D_x, u, h D_x, u \rangle_{L^2(\Gamma_1)} \right| \]
\[\leq C(\epsilon + \delta) \| B h D_x u \|_{H^{t+m}_h(\Gamma_1)}^2 + C(\epsilon^{-1} + 1) \| B' g \|_{H^t_h(\Gamma_1)}^2 \]
\[-+ C\|u\|_{H^{t+m_1+\delta}_h(\Gamma_1)}^2 + C\epsilon^{-1}\left(\|f\|_{H^{t+m_1+\delta}_h(\Gamma_1)} + \|f\|_{H^t_h(\Gamma_1)}\right) + C\|u\|_{H^t_h(\Gamma_1)}^2 \]
\[+ O\left(h^{\infty}\left(\|u\|_{H^{-N}_h(\Gamma_1)}^2 + \|h D_x u\|_{H^{-N}_h(\Gamma_1)}^2 + \|g\|_{H^{-N}_h(\Gamma_1)}^2\right)\right). \]

If $m_0 < m_1 + 1$, we assume that $b_1 \in S^{\text{comp}}$. Therefore, for all (m_0, m_1)
\[(D^{-1}N)^n B_1 (1 - R) D^{-1} N + B_1 \in \Psi^{2(t+m_1)} \]
for our choice of B_1. Now, any $K \subset T^*\Gamma_i$ compact, there is $\delta_0 > 0$ small enough such that
\[\inf \left\{ 1 + |\sigma(D^{-1}N)(x', \xi')|^2 \right\} \geq c_K > 0, \]
where $|\sigma(N)(x', \xi')| \leq 0 < \delta_0 \langle \xi \rangle^{m_1}$, $(x', \xi') \in K$. Moreover, if $m_0 \leq m_1 + 1$, then there is $\delta_0 > 0$ small enough such that
\[\inf \left\{ 1 + |\sigma(D^{-1}N)(x', \xi')|^2 \right\} \geq c > 0, \]
where $|\sigma(N)(x', \xi')| \leq 0 < \delta_0 \langle \xi \rangle^{m_1}$, $(x', \xi') \in T^*\Gamma_i$. \]
Therefore, choosing B_1 with non-negative symbol such that B_1 is elliptic on $\text{WF}_h(E)$, we have
\[\Re \sigma \left((\mathcal{D}_1^1)^* B_1 R \mathcal{D}_1^{-1} N + B_1 \right)(x', \xi') \geq c, \quad (x', \xi') \in \text{WF}_h(E). \]

In particular,
\[
\| E h D x_1 u \|^2_{H^{s+1}(\Gamma_i)} \leq C \left(\| (\mathcal{D}_1^1)^* B_1 R \mathcal{D}_1^{-1} N + B_1 \|_H \| h D x_1 u \|_{L^2(\Gamma_i)} \right.
+ C h \| B' u \|^2_{H^{s+1}_u(\Gamma_i)} + O(h^\infty) \| h D x_1 u \|^2_{H^{-N}_u(\Gamma_i)} \bigg).$

Therefore,
\[
\| E h D x_1 u \|^2_{H^{s+1}(\Gamma_i)} \leq C(\varepsilon + h) \| B' h D x_1 \|^2_{H^{s+1}_u(\Gamma_i)} + C(\varepsilon^{-1} + 1) \| B' g \|^2_{H^s(\Gamma_i)}
+ C \| u \|^2_{H^{s+m+n+1}_u(\varepsilon)} + C \varepsilon^{-1} \left(\| f \|^2_{H^{s+m+n-1}_u(\Gamma_i)} + \| f \|^2_{L^2(\varepsilon)} \right)
+ C \varepsilon \| u \|^2_{H^{s}_u(\varepsilon)} + O \left(h^\infty \| u \|^2_{H^{-N}_u(\Gamma_i)}\right) + \| h D x_1 u \|^2_{H^{-N}_u(\Gamma_i)} + \| g \|_{H^{-N}_u(\Gamma_i)} \bigg).$

Then, using (6.17) again the second claim follows. \(\square\)

6.3. Proof of Theorem 4.1. Throughout this section we assume that (4.2) holds. In particular, the union of the elliptic sets for $A_{0, i}$ and $A_{1, i}$ covers $T^* \Gamma_i$ and $A_{0, i}$ is elliptic on $S^* \Gamma_i$.

Proof. We start by briefly considering the conditions (4.3)–(4.5) separately. Suppose first that (4.3) holds. Then, fixing $\delta_0 > 0$, such that Lemmas 6.3 and 6.4 with $K = T^* \Gamma_i$, hold, there exist $E_0 \in \Psi^0$ satisfying (6.9) and $E_1 \in \Psi^0$ satisfying (6.15) (both with $K = T^* \Gamma_i$) such that
\[
\{ \sigma(\mathcal{D}) = 0 \} \subset \text{Ell}(E_0), \quad \{ \sigma(\mathcal{N}) = 0 \} \subset \text{Ell}(E_1), \quad T^* \Gamma_i \subset \text{Ell}(E_0) \cup \text{Ell}(E_1).
\]

Next, if (4.4) holds, there exists $K_2 \in T^* \Gamma_i$ such that
\[K_2 \cup \text{Ell}(\mathcal{N}) \supset T^* \Gamma_i. \]

Fixing $\delta_0 > 0$, such that Lemma 6.3 holds with $K = T^* \Gamma_i$ and 6.4 holds with $K = K_2$, there exist $E_0 \in \Psi^0$ satisfying (6.9) with $K = T^* \Gamma_i$ and $E_1 \in \Psi^{\text{comp}}$ satisfying (6.15) with $K = K_2$ such that
\[
\{ \sigma(\mathcal{D}) = 0 \} \subset \text{Ell}(E_0), \quad \{ \sigma(\mathcal{N}) = 0 \} \subset \text{Ell}(E_1), \quad T^* \Gamma_i \subset \text{Ell}(E_0) \cup \text{Ell}(E_1).
\]

Finally, if (4.5) holds, there exists $K_3 \subset T^* \Gamma_i$ such that
\[K_3 \cup \text{Ell}(\mathcal{D}) \supset T^* \Gamma_i. \]

Fixing $\delta_0 > 0$, such that Lemma 6.3 holds with $K = K_3$ and 6.4 holds with $K = T^* \Gamma_i$, there exist $E_0 \in \Psi^{\text{comp}}$ satisfying (6.9) with $K = K_3$ and $E_1 \in \Psi^0$ satisfying (6.15) with $K = T^* \Gamma_i$ such that
\[
\{ \sigma(\mathcal{D}) = 0 \} \subset \text{Ell}(E_0), \quad \{ \sigma(\mathcal{N}) = 0 \} \subset \text{Ell}(E_1), \quad T^* \Gamma_i \subset \text{Ell}(E_0) \cup \text{Ell}(E_1).
\]

In particular, in all cases, there exist $h_0 > 0$, $E_0, E_1, E_2 \in \Psi^0$ such that for $0 < h < h_0$, the estimates of Lemma 6.3 hold for $E_0^h E_0$, those for (6.4) hold for $E_1^h E_1$, and those of Lemma 6.2 hold for $E_2^h E_2$ such that
\[T^* \Gamma_i \subset \text{Ell}(E_0) \cup \text{Ell}(E_1) \cup \text{Ell}(E_2). \]

Therefore, by Lemma 6.3
\[
\| E_0^h E_0 u \|^2_{H^{s+m_0}} \leq C(\varepsilon + h) \| u \|^2_{H^{s+m_0}_u(\Gamma_i)} + C(\varepsilon^{-1} + 1) \| g \|_{H^{s}_u(\Gamma_i)}
+ C \| u \|^2_{H^{s+m+n+1}_u(\varepsilon)} + C \varepsilon^{-1} \left(\| f \|^2_{H^{s+m+n-1}_u(\Gamma_i)} + \| f \|^2_{L^2(\varepsilon)} \right) + C \varepsilon \| u \|^2_{H^{s}_u(\varepsilon)} + O \left(h^\infty \| u \|^2_{H^{-N}_u(\Gamma_i)} \right) + \| h D x_1 u \|^2_{H^{-N}_u(\Gamma_i)} + \| g \|_{H^{-N}_u(\Gamma_i)} \bigg).
\]
Similarly, by Lemma 6.4,
\[
\|E_1^*E_1 E_1 hD_{x_1}u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + \|E_1^*E_1 hD_{x_1}u\|_{H_h^{\frac{m_1}{2}}(\Gamma_i)} \\
\leq C \|hD_{x_1}u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + C\epsilon^{-1}\|g\|_{H_h^m(\Gamma_i)} \\
+ C\|u\|_{H_h^{\frac{m_0+1}{2}+\frac{m_1}{2}}(\Gamma_i)} + C\epsilon^{-1}\|f\|_{H_h^{\frac{m_0+1}{2}+\frac{m_1}{2}}(\Gamma_i)} + C\epsilon\|u\|_{H_h^m(\Gamma_i)} \\
+ O\left(h^{\infty}\left(\|u\|_{H_h^{-\nu}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{-\nu}(\Gamma_i)} + \|g\|_{H_h^{-\nu}(\Gamma_i)}\right)\right).
\]

Finally, using Lemma 6.2,
\[
\|E_2^*E_2 hD_{x_1}u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + \|E_2^*E_2 hD_{x_1}u\|_{H_h^{\frac{m_1}{2}}(\Gamma_i)} \\
\leq C \left(\|u\|_{H_h^{\frac{m_0+1}{2}}(\Gamma_i)} + \|u\|_{L^2(\Delta)} + \epsilon\|u\|_{H_h^m(\Delta)} + \|f\|_{H_h^{\frac{m_0+1}{2}}(\Gamma_i)} + \|f\|_{L^2(\Delta)}\right) \\
+ \epsilon\left(\|u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{\frac{m_1}{2}}(\Gamma_i)}\right) + C\epsilon^{-1}\|g\|_{H_h^m(\Gamma_i)} \\
+ O\left(h^{\infty}\left(\|u\|_{H_h^{-\nu}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{-\nu}(\Gamma_i)} + \|g\|_{H_h^{-\nu}(\Gamma_i)}\right)\right).
\]

Since
\[
T^*\Gamma_i \subset \text{Ell}(E_0^*E_0 + E_1^*E_1 + E_2^*E_2),
\]
we have all together
\[
\|u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{\frac{m_1}{2}}(\Gamma_i)} \\
\leq C \left(\|u\|_{H_h^{\frac{m_0+1}{2}}(\Gamma_i)} + \|u\|_{L^2(\Delta)} + \epsilon\|u\|_{H_h^m(\Delta)} + \|f\|_{H_h^{\frac{m_0+1}{2}}(\Gamma_i)} + \|f\|_{L^2(\Delta)}\right) \\
+ \epsilon\left(\|u\|_{H_h^{\frac{m_0}{2}}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{\frac{m_1}{2}}(\Gamma_i)}\right) + C\epsilon^{-1}\|g\|_{H_h^m(\Gamma_i)} \\
+ O\left(h^{\infty}\left(\|u\|_{H_h^{-\nu}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{-\nu}(\Gamma_i)} + \|g\|_{H_h^{-\nu}(\Gamma_i)}\right)\right).
\]

Finally, observe that
\[
\Re(-h^2\Delta u, u)_{L^2(\Delta)} = \|h\nabla u\|_{L^2(\Delta)}^2 + h\sum_i \Re(h\partial_i u, u)_{L^2(\Gamma_i)}.
\]

Letting \(\psi \in \Psi^\text{comp}\) with \(D\) elliptic on \(\text{WF}_h(\psi)\) and \(N\) elliptic on \(\text{supp} \text{WF}_h(\text{Id} - \psi)\), we have
\[
\left|\Re(h\partial_i u, u)_{L^2(\Gamma_i)}\right| = \left|\Re\left(h D_{x_i} u, \psi\right)_{L^2(\Gamma_i)} + \left((\text{Id} - \psi) h D_{x_i} u, u\right)_{L^2(\Gamma_i)}\right| \\
= \left|\Re\left(h D_{x_i} u, -\psi D^{-1}(N h D_{x_i} u - g)\right)_{L^2(\Gamma_i)} + \left((\text{Id} - \psi) N^{-1}(g + D u), u\right)_{L^2(\Gamma_i)}\right| \\
+ O(h^{\infty})\left(\|u\|_{H_h^{-\nu}(\Gamma_i)} + \|hD_{x_1}u\|_{H_h^{-\nu}(\Gamma_i)}^2\right) \\
\leq C h \|hD_{x_i}u\|_{H_h^{-\nu}(\Gamma_i)}^2 + h^2 \|g\|_{H_h^{-\nu}(\Gamma_i)}^2 + h \|u\|_{H_h^{m_0 - m_1 - 1}(\Gamma_i)}^2 + h \|u\|_{H_h^{-\nu}(\Gamma_i)}^2.
\]

Therefore, for any \(s\),
\[
\|u\|_{H_h^s(\Gamma_i)}^2 \leq \frac{1}{2} h^2 \|f\|_{L^2(\Delta)}^2 + \frac{1}{2} \|u\|_{L^2(\Delta)}^2 + C \left(\sum_i h^2 \|h D_{x_i} u\|_{H_h^{m_0 - m_1 - 1}(\Gamma_i)}^2 + h^2 \|u\|_{H_h^{m_0 - m_1 - 2}(\Gamma_i)}^2 + \|g\|_{H_h^{-\nu}(\Gamma_i)}^2\right).
\]

Using this in (6.18) and taking
\[
- \frac{m_0,i + m_1,i}{2} \leq \ell_i \leq \frac{1}{2} - \frac{m_0,i + m_1,i}{2}, \quad s_i = -\ell_i - m_1,i.
\]
we obtain
\[
\sum_i \|u\|_{H_k^{\ell+\varepsilon_0}((\Gamma_i))} + \|hDx u\|_{H_k^{\ell+\varepsilon_1}((\Gamma_i))} \\
\leq C\|u\|_{L^2(M)} + C(e^{-1} + \epsilon h)\|f\|_{L^2(M)} \\
+ \sum_i \epsilon^{-1}\|g\|_{H_k^{\ell+\varepsilon_0}((\Gamma_i))} + C\epsilon \left(\|u\|_{H_k^{\ell+\varepsilon_0}((\Gamma_i))} + \|hDx u\|_{H_k^{\ell+\varepsilon_1}((\Gamma_i))}\right) \\
+ \sum_i \left(h\|hD_n u\|_{H_k^{-\varepsilon}(\Gamma_i)} + h\|u\|_{H_k^{\max(-\varepsilon, \ell), \varepsilon'}}((\Gamma_i))\right).
\]
Shrinking \(\epsilon\) such that \(C\epsilon < 1/2\) and taking \(h_0\) small enough such that \(Ch_0 \leq \frac{1}{2}\), the proof is complete since the inequality (4.6) (i.e., the first inequality in (6.20)) implies that the terms on the right can be absorbed into the left.

The final inequality in Theorem 4.1 follows from combining the result of Lemma 6.1 (with \(\ell = -s\)) with (4.8).

Appendix A. Semiclassical pseudodifferential operators and notation

We review the notation and definitions for semiclassical pseudodifferential operators on \(\mathbb{R}^d\) and refer the reader to [DZ19, Appendix E], [Zwo12, Chapter 14] for details of how to adapt these definitions to manifolds.

Before we introduce these objects, we recall the notion of *semiclassical Sobolev spaces* \(H^s_k\). We say that \(u \in H^s_k(\mathbb{R}^d)\) if
\[
\|\langle \xi \rangle^s F_h(u)(\xi)\|_{L^2} < \infty, \quad \text{where} \quad \langle \xi \rangle := (1 + |\xi|^2)^{\frac{1}{2}}
\]
and
\[
F_h(u)(\xi) := \int e^{-\frac{1}{i}(\langle \xi \rangle \xi)} u(y) dy
\]
is the semiclassical Fourier transform.

We next introduce the notion of symbols. We say that \(a \in C^\infty(T^*\mathbb{R}^d)\) is a symbol of order \(m\) if
\[
|\partial_x^\alpha \partial_{\xi}^\beta a(x, \xi)| \leq C_{\alpha\beta} \langle \xi \rangle^m,
\]
and write \(a \in S^m(T^*\mathbb{R}^d)\). Throughout this section we fix \(\chi_0 \in C^\infty(\mathbb{R})\) to be identically 1 near 0. We then say that an operator \(A : C^\infty(\mathbb{R}^d) \to D'(\mathbb{R}^d)\) is a semiclassical pseudodifferential operator of order \(m\), and write \(A \in \Psi^m(\mathbb{R}^d)\), if \(A\) can be written as
\[
Au(x) = \frac{1}{(2\pi h)^d} \int e^{\frac{i}{h}(x-y,\xi)} a(x, \xi) \chi_0(|x-y|) u(y) dyd\xi + E
\]
where \(a \in S^m(T^*\mathbb{R}^d)\) and \(E = O(h^\infty)\) if for all \(N > 0\) there exists \(C_N > 0\) such that
\[
\|E\|_{H_k^{-\infty}(\mathbb{R}^d)} \to H_k^\infty(\mathbb{R}^d) \leq C_N h^N.
\]
We also define
\[
\Psi^{-\infty} := \bigcap_m \Psi^m, \quad S^{-\infty} := \bigcap_m S^m, \quad \Psi^\infty := \bigcup_m \Psi^m, \quad S^\infty := \bigcup_m S^m.
\]
We say that \(a \in S^{\text{comp}}\) if \(a \in S^{-\infty}\) and \(a\) is compactly supported, and we say that \(A \in \Psi^{\text{comp}}\) if \(A \in \Psi^{-\infty}\) and can be written in the form (A.1) with \(a \in S^{\text{comp}}\). We use the notation \(a(x, hD_x)\) for the operator \(A\) in (A.1) with \(E = 0\).

We recall that there exists a map
\[
\sigma_m : \Psi^m \to S^m/hS^{m-1}
\]
called the principal symbol map and such that the sequence
\[
0 \to hS^{m-1} \xrightarrow{\text{Op}_h(a)} \Psi^m \xrightarrow{\sigma} S^m/hS^{m-1} \to 0
\]
is exact where \(\text{Op}_h(a) = a(x, hD)\). Moreover,
\[
\sigma(AB) = \sigma(A)\sigma(B), \quad \sigma(A^*) = \overline{\sigma(A)}, \quad \sigma(-ih^{-1}[A, B]) = \{\sigma(A), \sigma(B)\}
\]
where \{\cdot, \cdot\} denotes the Poisson bracket; see [DZ19, Proposition E.17].

A.1. Wavefront sets and elliptic sets. To introduce a notion of wavefront set that respects both decay in \(h\) as well as smoothing properties of pseudodifferential operators, we introduce the set

\[
\mathcal{T}\mathcal{R}^d := \mathcal{T}\mathcal{R}^d \sqcup (\mathbb{R}^d \times S^{d-1})
\]

where \(\sqcup\) denotes disjoint union and we view \(\mathbb{R}^d \times S^{d-1}\) as the ‘sphere at infinity’ in each cotangent fiber (see also [DZ19, §E.1.3] for a more systematic approach where \(\mathcal{T}\mathcal{R}^d\) is introduced as the fiber-radial compactification of \(\mathcal{T}\mathcal{R}^d\)). We endow \(\mathcal{T}\mathcal{R}^d\) with the usual topology near points \((x_0, \xi_0) \in \mathcal{T}\mathcal{R}^d\) and define a system of neighbourhoods of a point \((x_0, \xi_0) \in \mathbb{R}^d \times S^{d-1}\) to be

\[
U_\epsilon := \left\{ (x, \xi) \in \mathcal{T}\mathcal{R}^d \mid |x - x_0| < \epsilon, |\xi| > \epsilon^{-1}, |\xi - \xi_0| < \epsilon \right\}
\]

\[
\cup \left\{ (x, \xi) \in \mathbb{R}^d \times S^{d-1} : |x - x_0| < \epsilon, |\xi - \xi_0| < \epsilon \right\}.
\]

We now say that a point \((x_0, \xi_0) \in \mathcal{T}\mathcal{R}^d\) is not in the wavefront set of an operator \(A \in \Psi^m\), if there exists a neighbourhood \(U\) of \((x_0, \xi_0)\) such that \(A\) can be written as in (A.1) with

\[
\sup_{(x,\xi)\in U} |\partial_x^\alpha \partial_\xi^\beta a(x,\xi)(\xi)^N| \leq C_{\alpha\beta} N h^N.
\]

We define the elliptic set of a pseudodifferential operator \(A \in \Psi^m\) as follows. We say that \((x_0, \xi_0) \in \mathcal{T}\mathcal{R}^d\) is in the elliptic set of \(A\), and write \((x_0, \xi_0) \in \text{Ell}(A)\), if there is a neighbourhood \(U\) of \((x_0, \xi_0)\) such that \(A\) can be written as in (A.1) with

\[
\inf_{(x,\xi)\in U} |a(x,\xi)(\xi)^{-m}| \geq c > 0.
\]

Next, we define the wavefront of a family of distributions \(u_h\) depending on \(h\). We say that \(u_h\) is tempered if for all \(\chi \in C^\infty_c(\mathbb{R}^d)\) there exists \(N > 0\) such that

\[
\|\chi u\|_{H^{-N}_h} < \infty.
\]

For a tempered family of functions, \(u_h\) we say that \((x_0, \xi_0) \in \mathcal{T}\mathcal{R}^d\) is not in the wavefront set of \(u_h\) and write \((x_0, \xi_0) \notin \text{WF}_h(u_h)\) if there exists \(A \in \Psi^0\) with \((x_0, \xi_0) \in \text{Ell}(A)\) such that for all \(N\) there is \(C_N > 0\) such that

\[
\|Au_h\|_{H^N_h} \leq C_N h^N.
\]

A.2. Bounds for pseudodifferential operators. We next review some bounds for pseudodifferential operators acting on Sobolev spaces.

Lemma A.1. ([DZ19, Propositions E.19 and E.24] [Zwo12, Theorem 8.10]) Suppose that \(A \in \Psi^m\). Then

\[
\|Au\|_{H^l_h} \leq C\|u\|_{H^{l+m}_h}.
\]

Moreover, if \(A = a(x, hD) \in \Psi^0\), then there exists \(C > 0\) such that

\[
\|A\|_{L^2 \to L^2} \leq \sup |a| + C h^{\frac{d}{2}}.
\]

Finally, we recall the elliptic parametrix construction (see e.g. [DZ19, Proposition E.32]).

Lemma A.2. Suppose that \(A \in \Psi^{m_1}\) and \(B \in \Psi^{m_2}\) with \(\text{WF}_h(A) \subset \text{Ell}(B)\). Then there exist \(E_1, E_2 \in \Psi^{m_1 - m_2}\) such that

\[
A = E_1 B + O(h^\infty)_{\Psi^{-\infty}}, \quad A = B E_2 + O(h^\infty)_{\Psi^{-\infty}}.
\]

A.3. Tangential pseudodifferential operators. It will sometimes be convenient to have families of pseudodifferential operators depending on one of the position variables. In this case, as in §2.3, we write \(x = (x_1, x') \in \mathbb{R}^d\) and \(\xi = (\xi_1, \xi')\) for the corresponding dual variables. We then consider families \(A \in C^\infty_c(I_{x_1}; \Psi^m(\mathbb{R}^{d-1}))\), that is, smooth functions in \(x_1\) valued in pseudodifferential operators of order \(m\) and write \(A = a(x, hD_{x'})\) for some \(a \in C^\infty_c(I_{x_1}; S^m(\mathbb{R}^{d-1}))\).
REFERENCES

[ACD+14] M. Amara, S. Chaudhry, J. Diaz, R. Djellouli, and S.L. Fiedler, A local wave tracking strategy for efficiently solving mid- and high-frequency helmholtz problems, Computer Methods in Applied Mechanics and Engineering 276 (2014), 473–508.

[ADF09] M. Amara, R. Djellouli, and C. Farhat, Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, SIAM J. Num. Anal. 47 (2009), no. 2, 1038–1066.

[BAG12] Y. Boubendir, X. Antoine, and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, Journal of Computational Physics 231 (2012), no. 2, 262–280.

[BCFG17] H. Barucq, T. Chaumont-Frelet, and C. Gout, Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation, Math. Comp. 86 (2017), no. 307, 2129–2157. MR 3647953

[BD97] J-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comp. Phys. 136 (1997), no. 1, 68–82.

[BGP17] D. L. Brown, D. Gallistl, and D. Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations, Meshfree Methods for Partial Differential Equations VIII, Springer, 2017, pp. 85–115.

[BGT82] P. Billingsley, Convergence of probability measures, second ed., John Wiley & Sons, 1999.

[BM18] Y. Boubendir and D. Midura, Non-overlapping domain decomposition algorithm based on modified transmission conditions for the Helmholtz equation, Computers & Mathematics with Applications 75 (2018), no. 6, 1900–1911.

[BM19] M. Bernkopf and D. Melenk, Analysis of the hp-version of a first order system least squares method for the Helmholtz equation, Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Springer International Publishing, 2019, pp. 57–84.

[BNO19] E. Burman, M. Nechita, and L. Oksanen, Unique continuation for the Helmholtz equation using stabilized finite element methods, J. Math. Pure. Appl. 129 (2019), 1–22.

[BP07] J. Bramble and J. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Mathematics of Computation 76 (2007), no. 258, 597–614.

[BWS16] D. Baskin, E. A. Spence, and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM Journal on Mathematical Analysis 48 (2016), no. 1, 229–267.

[BTS00] A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Communications on Pure and applied Mathematics 33 (1980), no. 6, 707–725.

[Bur02] N. Burq, Semi-classical estimates for the resolvent in nontrapping geometries, International Mathematics Research Notices 2002 (2002), no. 5, 221–241.

[BY16] X. Cai and D. Xu, Stability of the electromagnetic scattering from large cavities, Archive for Rational Mechanics and Analysis 220 (2016), no. 3, 1003–1044.

[BYZ12] X. Cai and D. Xu, Stability of the electromagnetic scattering from large cavities, Archive for Rational Mechanics and Analysis 220 (2016), no. 3, 1003–1044.

[CF06] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Mod. Meth. Appl. S. 16 (2006), no. 1, 139–160.

[CF15] T. Chaumont-Frelet, Approximation par éléments finis de problèmes d’ondes sismiques, Ph.D. thesis, Rouen, INSA, 2015.

[CF19] T. Chaumont-Frelet, Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, Calculo 56 (2019), no. 4, 49.

[CFN18] T. Chaumont-Frelet and S. Nicaisse, High-frequency behaviour of corner singularities in Helmholtz problems, ESAIM-Math. Model. Num. 52 (2018), no. 5, 1803 – 1845.

[CFN20] T. Chaumont-Frelet and S. Nicaisse, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problem, IMA Journal of Numerical Analysis 40 (2020), no. 2, 1503–1545.

[CFV20] T. Chaumont-Frelet and F. Valentin, A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains, SIAM Journal on Numerical Analysis 58 (2020), no. 2, 1029–1067.

[CLX13] T. Chaumont-Frelet and X. Xu, A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wavenumbers, SIAM J. Num. Anal. 51 (2013), no. 4, 2166–2188.

[CM98] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM Journal on Scientific Computing 19 (1998), no. 6, 2061–2090.

[CQ17] H. Chen and W. Qin, Analysis of HDG methods for the Helmholtz equation, Journal of Computational and Applied Mathematics 309 (2017), 145–162.

[CW20] H. Cao and H. Wu, IPDCGM and multiscale IPDPGM for the Helmholtz problem with large wave number, Journal of Computational and Applied Mathematics 369 (2020), 112590.

[CX13] Z. Chen and X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain, SIAM Journal on Numerical Analysis 51 (2013), no. 4, 2331–2356.

[CZ13] J. Cui and W. Zhang, An analysis of HDG methods for the Helmholtz equation, IMA Journal of Numerical Analysis 34 (2013), no. 1, 279–295.
Strongly elliptic systems and boundary integral equations

Jeffrey Galkowski, David Lafontaine, and Euan A. Spence

Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary.

Mil00 L. Miller, 2000

Mel95 J. M. Melenk, 1995

MGA20 A. Modave, C. Geuzaine, and X. Antoine, 2020

Mili00 L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl. (9) 79 (2000), no. 3, 227–269. MR 1750926

MPP19 L. Mascotto, I. Perugia, and A. Pichler, A nonconforming Trefftz virtual element method for the Helmholtz problem, Mathematical Models and Methods in Applied Sciences 29 (2019), no. 9, 1619–1656.

MPS13 J. M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz problems, Journal of Scientific Computing 57 (2013), no. 3, 536–581.

MRAG20 A. Modave, A. Royer, X. Antoine, and C. Geuzaine, A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems, Computer Methods in Applied Mechanics and Engineering 368 (2020), 113162.

MS11 J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal. 49 (2011), 1210–1243.

MS14 A. Moiola and E. A. Spence, Is the Helmholtz equation really sign-indefinite?, SIAM Review 56 (2014), no. 2, 274–312.

MST20 J.M. Melenk, S.A. Sauter, and C. Torres, Wavenumber Explicit Analysis for Galerkin Discretizations of Lossy Helmholtz Problems, SIAM J. Numer. Anal. 58 (2020), no. 4, 2119–2143.

MWY14 L. Mu, J. Wang, and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA Journal of Numerical Analysis 35 (2014), no. 3, 1228–1255.

Neč67 J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, 1967.

NRe67 J. Nečas, Optimal interface conditions for domain decomposition methods, technical report, CMAP Ecole Polytechnique (1994), no. 301.

OV18 M. Olshaver and B. Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast, Multiscale Model. Sim. 16 (2018), no. 1, 385–411. MR 3769687

Pet17 D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Mathematics of Computation 86 (2017), no. 305, 1005–1036.

PV20 D. Peterseim and B. Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, Mathematics of Computation 89 (2020), 2649–2674.

RN20 L.G. Ramos and R. Nabben, A two-level shifted Laplace Preconditioner for Helmholtz Problems: Field-of-values analysis and wavenumber-independent convergence, arXiv preprint arXiv:2006.08750 (2020).

SL20 N. Song and E. Lee, Dual system least squares finite element method for the Helmholtz equation, Results in Applied Mathematics 9 (2020), 100138.

Spe14 E. A. Spence, Wavenumber-explicit bounds in time-harmonic acoustic scattering, SIAM Journal on Mathematical Analysis 46 (2014), no. 4, 2987–3024.

ST18 S. Sauter and C. Torres, Stability estimate for the Helmholtz equation with rapidly jumping coefficients, Zeitschrift für Angewandte Mathematik und Physik 69 (2018), no. 6, 69:139. MR 3864702

SW05 J. Shen and L. Wang, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM journal on numerical analysis 43 (2005), no. 2, 623–644.

SZ15 S. Sauter and J. Zhang, A posteriori error estimation of hp-DG finite element methods for highly indefinite Helmholtz problems, SIAM J. Numer. Anal. 53 (2015), no. 5, 2414–2440.

TH86 L. N. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary conditions, Mathematics of computation 47 (1986), no. 176, 421–435.

Tsy98 S.V. Tsyngov, Numerical solution of problems on unbounded domains. a review, Applied Numerical Mathematics 27 (1998), no. 4, 465–532.

WWZZ18 R. Wang, XI. Wang, Q. Zhai, and K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numerical Methods for Partial Differential Equations 34 (2018), no. 3, 1009–1032.

YH20 L. Yuan and Q. Hu, Generalized plane wave discontinuous Galerkin methods for nonhomogeneous Helmholtz equations with variable wave numbers, International Journal of Computer Mathematics 97 (2020), no. 4, 920–941.

YD15 L. Zhu and Y. Du, Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number, Computers & Mathematics with Applications 70 (2015), no. 5, 917–933.

ZW13 L. Zhu and H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal. 51 (2013), no. 3, 1828–1852.

ZW20 B. Zhu and H. Wu, Hybridizable Discontinuous Galerkin Methods for Helmholtz Equation with High Wave Number. Part I: Linear case, arXiv preprint arXiv:2004.14553 (2020).

Zwo12 M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012. MR 2952218
Department of Mathematics, University College London, 25 Gordon Street, London, WC1H 0AY, UK

Email address: J.Galkowski@ucl.ac.uk

Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

Email address: D.Lafontaine@bath.ac.uk

Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

Email address: E.A.Spence@bath.ac.uk