CD8⁺ T Cells Cause Disability and Axon Loss in a Mouse Model of Multiple Sclerosis

Chandra Deb¹,³, Reghann G. LaFrance-Corey¹,³, William F. Schmalstieg¹, Brian M. Sauer⁴, Huan Wang², Christopher L. German⁴, Anthony J. Windebank¹, Moses Rodriguez¹, Charles L. Howe¹,³,⁴

¹ Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America, ² Neurosurgery, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America, ³ Neuroscience, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America, ⁴ Neurobiology of Disease PhD Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America

Abstract

Background: The objective of this study was to test the hypothesis that CD8⁺ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8⁺ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice.

Methodology/Principal Findings: To determine if CD8⁺ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8⁺ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8⁺ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8⁺ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters.

Conclusions/Significance: In multiple sclerosis patients, CD8⁺ T cells outnumber CD4⁺ T cells in active lesions and the number of CD8⁺ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8⁺ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.

Introduction

The identification of cellular and molecular mediators of axon injury during chronic demyelination is critical to understanding and preventing or repairing the loss of function associated with multiple sclerosis (MS) and other demyelinating diseases of the central nervous system. At present, the MS field has defined the following possible mechanisms for axon injury [1]: 1) demyelination is the necessary and sufficient inciting pathology in MS, with axons lost as a direct consequence of failed glial support; 2) demyelination is necessary but not sufficient for axon injury – the loss of myelin exposes axons to a cytotoxic milieu; 3) demyelination is necessary but not sufficient for axon injury – the loss of myelin exposes axons to axopathic immune effectors such as T cells; 4) neurons and axons are the primary locus for the initiation of MS pathology, and demyelination follows the injury of axons. These mechanisms are not mutually exclusive and each is likely to play an overlapping role in some patients, in some lesions, and at some stage of disease evolution. Here we focus on the hypothesis that the loss of myelin is a necessary predisposing factor for axon injury in MS, but demyelination itself is insufficient to cause axon loss. Rather, loss of myelin renders the axolemma accessible to CNS infiltrating immune effectors such as CD8⁺ T cells [2–5].

CD8⁺ T cells are the most frequent T cell subset observed in MS lesions, outnumbering CD4⁺ T cells by up to 10-fold at sites of active inflammation [6,7]. The number of CD8⁺ T cells found within acute lesions correlates very well with the extent of ongoing axon injury exhibited by MS patients [8]. Unlike CD4⁺ T cells in MS lesions, CD8⁺ T cells exhibit clonal expansion, suggesting the recruitment and local proliferation of a distinct, epitope-specific repertoire in the brain [6,9–11]. Importantly, MHC class I is upregulated on axons within active MS lesions [12]. Finally, while anti-CD4 monoclonal antibody treatment failed to alter disease course in MS patients [13], treatment with alemtuzumab [14], a monoclonal antibody that depletes both CD8⁺ and CD4⁺ T cells, or treatment with natalizumab [15,16], which prevents both CD8⁺ and CD4⁺ T cell trafficking into the CNS, resulted in a reduction in relapse rate.
The cytotoxic mechanisms used by CD8$^+$ T cells include cytokine-mediated toxicity, FasL induction of target cell apoptosis, and target cell killing mediated by perforin and granzyme [17]. Recent evidence suggests that elevation of granzyme levels in the CSF may correlate with relapse in MS patients [18], and a considerable literature indicates that CD8$^+$ T cells mediate at least some aspects of axon injury in some animal models of MS via a perforin-dependent pathway [5]. Based on our previous observations that demyelinated axons and motor function are protected by the genetic deletion of perforin in the Th1er's murine encephalomyelitis virus (TMEV) model of MS [19–22], we have attempted to further define the role of CD8$^+$ T cells in the injury of demyelinated axons. Using the adoptive transfer of a population of spinal cord infiltrating, acute effector CD8$^+$ T cells that we have recently characterized [23], we now report that CD8$^+$ T cells are necessary and sufficient to injure demyelinated axons in vivo in a perforin- and MHC class I-dependent manner.

Results

Axons and motor function are preserved in demyelinated perforin-deficient mice

Perforin-competent and perforin-deficient mice on an MHC H-2d background (B10.Q) were infected with 2 \times 105 PFU TMEV by intracranial injection at 4–6 weeks of age to induce demyelinating disease. At 90 days postinfection (dpi), we found that demyelinated lesion load (Figure 1A) and lesion distribution (Figure 1B–C) were the same irrespective of perforin expression ($P = 0.645$ by t-test; Table S1 contains detailed statistical analysis for all measurements). Likewise, viral load in the spinal cord at 90 dpi did not differ between perforin-competent (5.45 ± 0.37 log$_{10}$ viral copies; all data are presented as mean\pm95% CI) and perforin-deficient mice (5.26 ± 0.49 log$_{10}$ copies; $P = 0.505$ by Mann-Whitney rank sum test). We also found that the number of CD4$^+$ and CD8$^+$ T cells present in a purified population of spinal cord-infiltrating leukocytes (SCILs) [23] collected at 90 dpi did not differ based on perforin expression (Figure 1D–F). SCILs from perforin-competent mice at 90 dpi contained 1492\pm122 CD4$^+$ and CD8$^+$ cells and 339\pm33 CD4$^+$ and CD8$^+$ cells, while SCILs from perforin-deficient mice at 90 dpi contained 1495\pm183 CD4$^+$ and CD8$^+$ cells ($P = 0.976$ by t-test) and 369\pm280 CD4$^+$ and CD8$^+$ cells ($P = 0.523$ by t-test) (Figure S1).

However, despite identical disease progression [19], motor function in perforin-deficient mice at 90 dpi was remarkably preserved relative to perforin-competent mice at the same time point. In fact, demyelinated perforin-deficient mice were indistinguishable from uninfected, normally myelinated age-matched controls by rotarod ($P = 0.104$) (Figure 1G), hanging wire test ($P = 0.942$) (Figure 1H), and footprint analysis ($P = 0.948$) (Figure 1I), whereas demyelinated perforin-competent mice under identical conditions were severely and significantly impaired ($P<0.001$ vs perforin-competent and vs uninfected for all measurements) (Figure 1J–L). Preservation of function in demyelinated perforin-competent mice, as compared to demyelinated perforin-competent mice, was apparent by stride length and footprint positioning (Figure 1J–L), by open-field video analysis (Movie S1), by runway video analysis (Movie S2), and by direct observation of posture (Figure S2).

Loss of function in perforin-competent mice and preservation in perforin-deficient mice was mirrored in the number of intact axons present in the thoracic spinal cord at 90 dpi [19–21]. We counted the absolute number of small- (1–4 μm), medium (4–10 μm), and large- (>10 μm) caliber axons in plastic-embedded ultrathin sections of thoracic spinal cord stained with 4% para-phenylene-diamine [19]. There was no significant difference in the number of medium- or large-caliber spinal axons between uninfected control mice and perforin-deficient mice at 90 dpi ($P = 0.994$ for medium axons; $P = 0.762$ for large axons) (Figure 1M–O). In contrast, in perforin-competent mice at 90 dpi the number of medium-caliber axons was reduced to 68% of perforin-deficient levels ($P<0.001$) and the number of large-caliber axons was reduced to 53% of perforin-deficient levels ($P<0.001$) (Figure 1M–O). At the same time, small-caliber axons were reduced to 73% of uninfected levels in perforin-competent mice ($P = 0.033$). However, despite the reduction of small axons in perforin-deficient mice, there was still relative preservation as compared to perforin-competent mice ($P = 0.031$). Thus, we conclude that the absence of perforin in B10.Q mice protects motor function and spinal axons at 90 dpi despite demyelinated lesion loads, viral loads, and a SCILs population that are indistinguishable from perforin-competent mice at the same time point.

MHC class I is expressed on axons in demyelinated lesions

Our observations in perforin-deficient B10.Q mice suggested a primary role for CD8$^+$ T cells in axon injury and loss of motor function. A critical component of any model involving CD8$^+$ T cells is expression of cognate MHC class I molecules on the target structure. Histological and immunohistochemical analyses revealed MHC class I expression on longitudinally transverse structures within demyelinated lesions of the spinal cord at 90 dpi (Figure 2). Demyelinated lesions identified by H&E (Figure 2A, 2I), Luxol fast blue (Figure 2B, 2J), and Bielschowsky (Figure 2C, 2K) staining were found to contain MHC class I- (Figure 2D, 2L) and MHC class II-positive (Figure 2E, 2M) structures. The MHC class I staining was suggestive of fibers while the MHC class II staining exhibited a predominantly cellular profile. Within the same lesions and in proximity to MHC class I- and II-positive structures, we observed CD68- (Figure 2F, 2N),
CD8\(^+\) T Cells Injure Axons
CD11b (Figure 2G, 2O), and CD11b-positive (Figure 2H, 2P) cells. Higher magnification analysis of a demyelinated lesion (Figure 2Q) revealed many MHC class I-positive fiber-like structures (Figure 2R) spatially associated with accumulations of the axon injury marker APP (Figure 2S) and in proximity to CD8-positive immune cells (Figure 2T). Finally, double-labeling immunofluorescence analysis of demyelinated lesions in the spinal cord provided evidence of MHC class I-positive (Figure 3A, 3C) neurofilament-containing fibers (Figure 3B) exhibiting structural characteristics consistent with injured axons. We conclude that demyelinated axons in the B10.Q spinal cord at 90 dpi have the requisite MHC class I expression necessary to interact with CD8+ T cells.

Adoptive transfer of perforin-competent SCILs ablates host axons and function

To directly test our hypothesis regarding the role of CD8+ T cells in the injury of demyelinated axons, we established an adoptive transfer strategy that allowed us to introduce perforin-competent SCILs into demyelinated but functionally preserved perforin-deficient mice (Figure 4A). Our goal was to transiently reconstitute perforin-deficient hosts with perforin-competent leukocytes that had homed to the spinal cord of demyelinated donor mice experiencing active axon injury. For these experiments, perforin-deficient hosts at 90 dpi received either a sham adoptive transfer (RPMI used to resuspend SCILs = “No AT”), perforin-competent SCILs collected from the spinal cord of donor perforin wildtype B10Q mice at 90 dpi (donor cohorts were infected at the same time as host cohorts and were assessed for motor function in parallel with the perforin-deficient hosts), or perforin-deficient SCILs collected from perforin knock-out hosts at 90 dpi. Donor SCILs were counted, phenotyped by flow cytometry, and injected into the tail vein of host perforin-deficient mice (10^5 SCILs per host for most experiments). As previously published [23], for every 10^5 cells adoptively transferred, approximately 10% were CD45RA+ and 5% were CD45RB+CD8α.

At 7 days post-transfer (dpt), we found that hosts that received perforin-competent SCILs showed a 50% reduction in aggregate stride length as compared to demyelinated perforin-deficient hosts that received sham adoptive transfer (P<0.001) (Figure 4B). In contrast, perforin-deficient hosts that received perforin-deficient SCILs were unimpaired (P=0.658 vs sham AT; P<0.001 vs perforin-competent AT) (Figure 4B). Moreover, using the hanging wire test we observed that adoptive transfer of perforin-competent SCILs into demyelinated perforin-deficient hosts ablated motor function by 24 hr post-transfer (Figure 4C). This loss of function persisted through 14 days (Figure 4C) and has never been seen to recover within the 2 months that we have followed mice after adoptive transfer. Loss of function following adoptive transfer of perforin-competent SCILs was also apparent by runway video analysis (Movie S3). Adoptive transfer of perforin-deficient SCILs did not cause loss of function in hosts at any time point. We conclude from these observations that demyelinated perforin-deficient hosts are susceptible to rapid and permanent loss of motor function following adoptive transfer of perforin-competent SCILs but not following transfer of perforin-deficient SCILs. This strongly suggests that other axopathic and cytotoxic effector mechanisms present in the leukocytes collected from 90 dpi perforin-deficient donors are unable to damage demyelinated axons and abrogate motor function in our model.

Adoptive transfer of perforin-competent SCILs into perforin-deficient hosts at 90 dpi did not alter viral load or demyelination. Perforin-deficient hosts at 7 days after sham adoptive transfer had 5.61±0.20 log_{10} viral copies, compared to 5.48±0.34 log_{10} viral copies following adoptive transfer of perforin-competent SCILs (P=0.532 by t-test). Perforin-deficient hosts at 7 days after adoptive transfer of perforin-deficient SCILs exhibited 29±4.4% spinal demyelination, compared to 27±6.1% spinal demyelination following adoptive transfer of perforin-competent SCILs (P=0.349 by t-test).

The adoptive transfer effect depended upon spinal cord demyelination, as transfer of perforin-competent SCILs into uninfected B10Q hosts did not alter aggregate stride length or hanging wire performance. Uninfected hosts receiving sham adoptive transfer had an aggregate stride of 81±1.9 mm and a time-to-fall of 118±3 sec, compared to a stride length of 83±3.4 mm and a time-to-fall of 120±2.0 sec in uninfected hosts receiving perforin-competent SCILs (footprint: P=0.303 by t-test; hanging wire: P=0.548 by Mann-Whitney rank sum test). Likewise, the adoptive transfer-induced loss of motor function only occurred when SCILs were used as effectors. Adoptive transfer of 10^5 splenocytes from 90 dpi perforin-competent B10Q donors or 10^5 lymphokine-activated perforin-competent killer cells (IL-2 stimulated in vitro) failed to affect motor function in demyelinated perforin-deficient hosts (P=0.675 by one-way ANOVA for splenocyte or LAK transfer vs control). Likewise, in agreement with our previous observations regarding the lack of anti-viral responses in the SCILs at 90 dpi [23], adoptive transfer of up to 10^6 splenocytes isolated from perforin-competent B10Q donors subcutaneously immunized with killed TMEV failed to alter motor function in demyelinated perforin-deficient hosts (P=0.869 by t-test for splenocytes vs control).

Using evoked motor potentials to assess spinal axon function, we found that adoptive transfer of perforin-competent SCILs into demyelinated perforin-deficient hosts resulted in striking disruption of spinal conduction from the high cervical cord (stimulation site) to the gastrocnemius muscle (recording site) (Figure 4D). Compared to perforin-deficient hosts at 90 dpi that received no adoptive transfer, hosts that received perforin-competent SCILs showed a 3-fold reduction in motor evoked potential (MEP) amplitude at 7 days post-transfer (no adoptive transfer vs SCILs transfer, P<0.001 by t-test) (Figure 4D, 4F). Longitudinal analysis of MEP failure rate (defined as the number of motor cortical stimulations that failed to elicit gastrocnemius muscle responses per the total number of stimulations) in the same perforin-deficient mice before adoptive transfer (26±16% failure) as compared to the failure rate after transfer of perforin-competent SCILs (75±16% failure) revealed that far fewer potentials were transmitted along the spinal cord (P<0.001 by paired t-test). Of those potentials that were stimulated, the transmission latency was increased from 5.4±0.3 msec (no adoptive transfer) to...
The transmission defect was restricted to the spinal cord, as peripheral compound motor action potentials (CMAP) from the sciatic notch to the gastrocnemius muscle did not differ with regard to latency (P = 0.260) (Figure 4G) or amplitude (P = 0.477) (Figure 4H) between controls and mice receiving perforin-competent SCILs.

Consistent with the observed defect in spinal axon conduction, we found that adoptive transfer of perforin-competent SCILs into perforin-deficient demyelinated hosts at 90 dpi led to a 22% reduction in small-caliber spinal axons (P < 0.001 vs no transfer) (Figure 4I), a 51% reduction in medium-caliber axons (P < 0.001 vs no transfer) (Figure 4J), and a 67% reduction in large-caliber axons (P < 0.001 vs no transfer) (Figure 4K). In contrast, adoptive transfer of perforin-deficient SCILs into perforin-deficient hosts at 90 dpi had no significant impact on either medium-caliber (P = 0.847 vs no transfer) or large-caliber axons (P = 0.859 vs no transfer). Despite the complete preservation of medium and large axons, there was a 14% reduction in small-caliber spinal axons following transfer of perforin-deficient SCILs (P = 0.008 vs no transfer). These observations suggest that medium- and large-caliber demyelinated axons are directly injured in a perforin-dependent manner by SCILs, whereas small-caliber axons may be injured by a perforin-independent mechanism.

Adoptively transferred SCILs home to the spinal cord but not to the cervical lymph nodes or the brain

To identify the primary locus of effect for the adoptively transferred SCILs we labeled the cells with CFSE prior to transfer and then recovered SCILs, brain-infiltrating lymphocytes, cervical lymph node cells, and peripheral blood mononuclear cells (PBMCs) at 1 hr post-transfer. Flow cytometry of the isolated cell preparations revealed that relative to sham transfer animals, adoptive transfer hosts had small populations of CFSE-labeled cells in the blood (Figure 5B, 5G, 5H) and in the SCILs (Figure 5C, 5E, 5F) but not in the cervical lymph nodes (Figure 5A) or the brain (Figure 5D). While further experiments are required to define the kinetics of infiltration into the CNS, we conclude that adoptively transferred SCILs are competent to enter the demyelinated spinal cord.

CD8+ T cells are necessary and sufficient to injure demyelinated axons

We next applied our adoptive transfer model to the identification of the primary effector leukocyte in the SCILs preparation. To do so, we prepared column-depleted perforin-competent SCILs preparations deficient in CD8+ cells, CD4+ cells, or NK1.1+ cells. In order to control for possible differences in total cell load, all depleted and non-depleted populations were adoptively transferred at 10^5 cells per host. As before, we found that adoptive transfer of the total perforin-competent SCILs (Figure 6B) into demyelinated perforin-deficient hosts at 90 dpi resulted in a rapid and persistent loss of motor function.
CD8+ T Cells Injure Axons

A
PFP+/+ donor

PFP-/- host

Demyelinated Axon Injury Functionally Impaired

90 dpi

Hanging Wire

Prepare SCILs

Transfer 10^5 SCILs by tail vein injection

Demyelinated Axonal Preservation Functionally Preserved

Hanging Wire

Measure Function

B

	+/+	-/-	No AT
Aggregate Stride Length (mm)	100	80	60

C

Hang Test - Time-to-fall (sec)

No AT vs +/+, P<0.001

No AT vs -/-, P=0.482

+/+ vs -/-, P<0.001

D

No AT

PFP+/+ SCILs

5 ms

1 mV

E

MEP Latency to Hindlimb (msec)

No AT +/+ No AT +/+ +/+ SCILs (dpt) - SCILs (dpt)

F

MEP Amplitude at Hindlimb (mV)

No AT +/+ No AT +/+ +/+ SCILs (dpt) - SCILs (dpt)

G

CMAP Latency to Hindlimb (msec)

No AT +/+ No AT +/+ +/+ SCILs (dpt) - SCILs (dpt)

H

CMAP Amplitude at Hindlimb (mV)

No AT +/+ No AT +/+ +/+ SCILs (dpt) - SCILs (dpt)

I

Sm. Axons (1-4 \(\mu m^2 \))

No AT +/+ -/-

J

Med. Axons (4-10 \(\mu m^2 \))

No AT +/+ -/-

K

Lg. Axons (>10 \(\mu m^2 \))

No AT +/+ -/-
Figure 4. Function and axons are lost following adoptive transfer of perforin-competent cells. Adoptive transfer of perforin-competent spinal cord infiltrating leukocytes (SCILs) into demyelinated but functionally preserved perforin-deficient hosts induces rapid and permanent (>1 mo) loss of motor function and spinal axons. All data are presented as mean ±95% CI. Statistical significance defined as *P <0.05, **P <0.01, ***P <0.001. Significance determined by one-way ANOVA with SNK pairwise posthoc analysis, except electrophysiology, which was analyzed by t-test, and the hanging wire test, which was analyzed by two-way ANOVA. All measurements made at 7 days post-transfer (dpt) unless otherwise indicated. No AT = no adoptive transfer controls; +/- = adoptive transfer of perforin-competent SCILs; --/-- = adoptive transfer of perforin-deficient SCILs. (A) Schematic representation of the adoptive transfer paradigm. (B) Adoptive transfer of perforin-competent SCILs into perforin-deficient hosts at 90 dpi results in significant loss of function as assessed by footprint analysis. In contrast, adoptive transfer of perforin-deficient SCILs into perforin-deficient hosts causes no loss of function. (C) Longitudinal analysis of motor function by the hanging wire test shows that adoptive transfer of perforin-competent SCILs into 90 dpi perforin-deficient hosts results in a very rapid loss of function that does not recover over the analyzed time frame. Each symbol represents an individual animal. (D) Representative motor evoked potentials (MEP) in perforin-deficient 90 dpi hosts receiving either no adoptive transfer or perforin-competent SCILs adoptive transfer. (E-H) Central motor conduction latency (E) and amplitude (F) were significantly altered by adoptive transfer of perforin-competent SCILs as compared to perforin-deficient mice at 90 dpi that received no adoptive transfer. In contrast, peripheral commound motor action potential (CMAP) latency (G) and amplitude (H) were unaffected by adoptive transfer. (I-K) Adoptive transfer of perforin-competent SCILs into 90 dpi perforin-deficient hosts resulted in significant loss of small- (I), medium- (J), and large- (K) caliber spinal axons as compared to perforin-deficient 90 dpi hosts that received no adoptive transfer. Transfer of perforin-deficient SCILs into perforin-deficient hosts caused no loss of medium- (J) or large- (K) caliber axons, but did induce a significant reduction in small- (I) caliber axons.

doi:10.1371/journal.pone.0012478.g004

SCILs injure axons of cultured cortical neurons in a perforin-dependent manner

Evidence from our adoptive transfer model strongly suggested that CD8+ T cells in the SCILs are directly axopathic. In order to further test this hypothesis we asked whether SCILs can injure the axons of primary cortical neurons in culture. We have previously proposed that demyelination is a form of axonal stress associated with trophic factor withdrawal [5]. Based on this, we cultured H-2d cortical neurons for one week in the presence of a growth factor cocktail containing BDNF and IGF-1. Withdrawal of BDNF from this cocktail for 24 hr triggered a stress response in the neurons that was marked by a variety of transcriptional responses, including upregulation of MHC class I (data not shown). Importantly, withdrawal alone was insufficient to cause apparent neurite injury (Figure 7A, 7B). Likewise, addition of SCILs collected from 90 dpi B10.Q mice to cortical neurons that did not experience trophic withdrawal stress did not induce any neurite damage after 120 min of co-incubation, despite the fact that the SCILs appeared to interact with the neurites (Figure 7C, 7D). In contrast, adoption of SCILs to cortical neurons experiencing trophic factor withdrawal stress triggered widespread neurite injury after 120 min co-incubation (Figure 7G, 7H). This injury was marked by neurite beading and disintegration. Of note, the evolution of this neurite injury required prolonged interaction, as 15 min co-incubation of SCILs and stressed neurons was insufficient to trigger observable neurite injury (Figure 7E, 7F).

Since lymphocytes and other cells present in the SCILs display a wide range of effector mechanisms we directly tested the role of perforin in the injury of axons in our in vitro system. As with our in vivo observations, we found that only perforin-competent SCILs were able to elicit axon injury as marked by beading and disintegration of neurofilaments (Figure 8B). The axons of cells incubated with perforin-deficient SCILs (Figure 8C) were indistinguishable from untreated axons (Figure 8A). We conclude that stressed axons are a direct target of perforin-mediated injury provoked by SCILs. Critically, because the cultured cortical neurons were not infected with TMEV, we conclude that the axopathic CD8+ T cells in the SCILs population are recognizing a neuron-derived epitope rather than a viral epitope on MHC class I. Further work is required to identify the relevant epitopes and the detailed mechanisms of perforin-mediated axon injury.

Therapeutic immunodepletion of CD8+ T cells protects function in demyelinated mice

The robust role of CD8+ T cells in our SCILs adoptive transfer model suggested that therapeutic abrogation of these effectors in wild type B10Q mice during the course of axon injury would preserve motor function. We have previously observed a temporal disconnection between demyelination (21–45 dpi) and axon injury (>45 dpi) in chronically infected B10Q mice [19]. Therefore, we initiated immunodepletion of CD8+ T cells via weekly intraperitoneal injections of 0.5 mg of the 2.43 anti-CD8 clone from 45 dpi to 90 dpi. Depletion efficiency was assessed at 52, 75, and 90 dpi by flow cytometry of tail vein blood (Figure 9B-E) and compared to B10Q mice treated with a control Ig (OKM1). Motor function, as measured by hanging wire, did not differ between control and anti-CD8-treated mice at 60 dpi, but function was clearly protected in the CD8+ immunodepleted mice at 90 dpi (P<0.001 control vs anti-CD8 at 90 dpi; P = 0.571 45 dpi anti-CD8 vs 90 dpi anti-CD8; P = 0.002 45 dpi control vs 90 dpi control) (Figure 9A). Despite

PLoS ONE | www.plosone.org 8 August 2010 | Volume 5 | Issue 8 | e12478

CD8+ T Cells Injure Axons

CD8 T Cells Injure Axons
Figure 5. Adoptively transferred SCILs enter the spinal cord. CFSE-labeled SCILs are recovered from the blood (PBMCs) and spinal cord (SCILs) 60 min after adoptive transfer via tail vein injection. (A) Cervical lymph nodes (CLNs) did not contain green CFSE-labeled cells. (B) Green cells were recovered in the blood. (C) Green cells were also recovered from the spinal cord after adoptive transfer. (D) No labeled cells were found in the brain after transfer. (A–D) Red histograms represent the number of cell events observed in hosts that received adoptive transfer of CFSE-labeled SCILs while blue histograms represent control populations collected from mice that did not receive adoptive transfer. (E–H) Representative flow plots showing green cells isolated from the spinal cord (F) and blood (H) of hosts receiving CFSE-labeled SCILs, as compared to control spinal cord (E) and blood (G). doi:10.1371/journal.pone.0012478.g005
the difference in function between the groups, viral load did not differ between control (5.7 ± 1.2 log_{10} viral copies) and anti-CD8-treated mice (5.7 ± 0.6 log_{10} viral copies) at 90 dpi (P = 0.948). Likewise, demyelinated lesion load did not differ between control (34% ± 14%) and anti-CD8-treated mice (35% ± 10%) (P = 0.880). We conclude that immunodepletion of CD8\(^+\) T cells may be a valuable tool for preventing axon injury in the demyelinating central nervous system.

Discussion

Keeping in mind the pathogenic, mechanistic, and pathological heterogeneity of MS, our findings suggest that CD8\(^+\) T cells, working via a perforin-dependent mechanism, are the primary effectors responsible for injury and loss of demyelinated axons. Although perforin-dependent CD8\(^+\) T cells are both necessary and sufficient to injure demyelinated axons and destroy motor function, this effector mechanism is irrelevant to demyelination in H-2\(^a\) MHC haplotype mice chronically infected with TMEV. Indeed, in the absence of perforin, the preservation of motor function to uninjected levels despite the presence of considerable spinal cord demyelination is reminiscent of a radiologically isolated demyelinating syndrome [25]. While our adoptive transfer experiments do not address the relevance of non-perforin CD8\(^+\) T cell effector mechanisms to demyelination, our observation that therapeutic depletion of CD8\(^+\) T cells during the chronic phase of disease protects motor function without altering demyelination argues that these cells are predominantly involved in direct injury of axons. Our findings also lend strong support to the idea that demyelination is necessary, but not sufficient, to damage axons and chronically disrupt motor function.

Although we have only just begun to explore the role of MHC class I in the injury of axons in our model, several observations suggest that class I expression is necessary for CD8\(^+\) T cell-mediated damage. First, adoptive transfer of perforin-competent CD8\(^+\) T cells collected from chronically demyelinated wildtype H-2\(^a\) mice into demyelinated but functionally preserved β2-microglobulin deficient H-2\(^b\) mice did not result in loss of motor function (Figure 6G). This suggests that surface expression of MHC class I is necessary for loss of motor function, even though these virus-independent events were never infected (Figures 7 and 8), suggesting that antiviral reactivity is not necessary for axon injury. Especially with regard to CD8\(^+\) T cell-mediated injury of demyelinated corticospinal motor axons, this virus independence is consistent with the absence of chronic infection in the brain at 90 dpi [19]. In ongoing experiments using non-viral models of demyelination we intend to directly determine whether CD8\(^+\) T cells isolated from the demyelinated spinal cord at 90 dpi are competent to damage demyelinated axons in uninjected hosts.

We recognize that CD8\(^+\) T cells may play a role via other effector mechanisms in myelin damage [27], immune regulation [28], or even in myelin repair [29]. We also acknowledge that the role of CD8\(^+\) T cells in axon injury may be complicated or reversed in some animal models of demyelinating disease [30]. However, our current findings provoke a cautious optimism that manipulation of CD8\(^+\) T cells may be therapeutically relevant to human MS. While the field has largely concentrated on therapeutic intervention in the function of CD4\(^+\) T cells in CNS, we suggest that explicitly targeting CD8\(^+\) T cells may be a viable option for preserving axons. A CD8\(^+\) T cell depleting or blocking therapy may permit considerable stabilization of disease progression, essentially preventing the conversion of relapsing-remitting patients to a secondary progressive phase. At the same time, a CD8-centric therapy may sidestep the complications of immunocompromise associated with therapeutic blockade of CNS infiltration by all lymphocytes [31].

Materials and Methods

Detailed methods are provided in File S1.
Ethics Statement
Animal use and care were in accordance with National Institutes of Health guidelines. All procedures were approved by the Mayo Clinic Institutional Animal Care and Use Committee (NIH OLAW assurance number A3291-01).

Mice
Perforin-deficient mice on an H-2^d background were previously described [19]. Homozygous beta-2 microglobulin (β2m)-deficient mice on an H-2^b background were obtained from the Whitehead Institute and were subsequently bred on an H-2^q background in our facility. Gender was mixed for all experimental groups.

Virus
The Daniel's strain of TMEV was used for all experiments. At 4–6 weeks of age, mice were inoculated intracerebrally with 2×10^5 PFU of TMEV in a total volume of 10 μL.

Preparation of cells and adoptive transfer
Spinal cord infiltrating leukocytes (SCILs), peripheral blood mononuclear cells, and splenocytes were prepared as previously described [23]. SCILs or other cell populations were resuspended in RPMI to a final concentration of 10^6 cells per mL. Each mouse received 100 μL of cell suspension via tail vein injection.

Histopathology of spinal cord tissue and axon analysis
Demyelination was measured by camera lucida drawing of 4% para-phenylenediamine-stained sections as previously described [19,21,24]. Axons at the T6 thoracic level were automatically analyzed at 60X magnification from each animal according to a sampling scheme previously developed [21]. Images were captured from regions containing no demyelination to ensure the measurement of only myelinated fibers. Each field measured 17,675 mm^2. A total of 2.16 mm^2 from sham-infected controls, 1.76 mm^2 from perforin-competent mice, and 1.34 mm^2 from perforin-deficient mice were collected at 90 dpi. A total of 0.74 mm^2 from perforin-deficient hosts receiving sham adoptive transfer, 0.53 mm^2 from perforin-deficient hosts receiving adoptive transfer of SCILs from perforin-competent donors, and 0.73 mm^2 from perforin-deficient hosts receiving adoptive transfer of SCILs from perforin-deficient donors were collected.

Behavioral analyses and electrophysiology
Behavioral measurements and electrophysiology methodology are described in detail in the supplemental methods.

In vivo immunodepletion of CD8^+ T cells.
Wildtype B10Q mice were immunodepleted of CD8^+ T cells via weekly intraperitoneal injections of 0.5 mg of the anti-CD8 2.43 clone (ATCC, No. TIB 210) from 45 dpi to 90 dpi. Control animals were treated in parallel with 0.5 mg of the control antibody OKM1 (ATCC, No. CRL 8026). Antibodies were prepared by ammonium sulfate precipitation from 2.43 and OKM1 hybridoma supernatants.

Statistics
All data are presented as mean±95% confidence interval (CI). Statistical tests for every analysis are described in detail in Table S1. Normality was used when appropriate to determine whether parametric or non-parametric tests were employed. All calculations were performed using SigmaPlot 11 (Systat Software, Chicago, IL). Every experiment was repeated a minimum of 3 times on separate animal cohorts.
Supporting Information

Figure S1 Absolute numbers of CD45hiCD8+ T cells and CD45hiCD4+ T cells do not differ in SCILs prepared from perforin competent and perforin deficient hosts at 90 dpi. No differences in the percentages of CD8+ cells and CD4+ cells (expressed as a percentage of CD45hi T cells) are seen in SCILs prepared from perforin competent versus perforin deficient hosts at 90 dpi. All data are expressed as mean ± 95% C.I. Significance was analyzed by t-test.

Figure S2 Motor function as assessed by direct observation of posture is impaired in perforin competent hosts (a), but is preserved in perforin deficient hosts (b).

File S1 Additional materials and methods.

Movie S1 Open field video analysis demonstrates preservation of motor function in perforin deficient mice and impairment of motor function in perforin competent mice at 90 dpi.

Movie S2 Runway video analysis demonstrates preservation of motor function in perforin deficient mice and impairment of motor function in perforin competent mice at 90 dpi.

Acknowledgments

We thank Louisa Papke for assistance with the immunostaining.

Author Contributions

Conceived and designed the experiments: CD CLH. Performed the experiments: CD RGLC WFS BMS HW CLG CLH. Analyzed the data: RGLC WFS AJW MR CLH. Contributed reagents/materials/analysis tools: MR CLH. Wrote the paper: CLH.

References

1. Weiner HL (2009) The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol 65: 239–248.
2. Frieß MA, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128: 1747–1763.
3. Frieß MA, Fugger L (2009) Pathogenic CD8+ T cells in multiple sclerosis. Ann Neurol 66: 132–141.
4. Goverman J, Perchellet A, Huseby ES (2005) The role of CD8+ T cells in multiple sclerosis and its animal models. Curr Drug Targets Inflamm Allergy 4: 239–245.
5. Hove CL (2008) Immunological aspects of axon injury in multiple sclerosis. Curr Top Microbiol Immunol 318: 93–131.
6. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, et al. (2000) Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple...
sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192: 393–404.
7. Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, et al. (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19: 578–587.
8. Kuhlmann T, Lingfeldt G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125: 2202–2212.
9. Jacobsen M, Cepok S, Quik F, Happe M, Gaber R, et al. (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125: 538–550.
10. Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, et al. (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A 101: 2428–2433.
11. Junker A, Ivanidze J, Malotka J, Eglmeier I, Lasmann H, et al. (2007) Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130: 2789–2799.
12. Hoftberger R, Aboul-Enein F, Bruck W, Lucchinetti C, Rodriguez M, et al. (2009) Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes. J Neuroimmunol 214: 33–42.
13. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9: 393–407.
14. Malmestrom C, Lycke J, Haghighi S, Andersen O, Carlsson L, et al. (2008) Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF. J Neuroimmunol 196: 159–165.
15. Bieber AJ, Kerr S, Rodriguez M (2003) Efficient central nervous system remyelination requires T cells. Ann Neurol 53: 680–684.
16. Begolka WS, Haynes LM, Olson JK, Padilla J, Neville KJ, et al. (2001) CD8-deficient SJL mice display enhanced susceptibility to Thiel's virus infection and increased demyelinating pathology. J Neurovirol 7: 409–420.