X-ray-induced chemistry of water and related molecules in low-mass protostellar envelopes

Shota Notsu1,2,⋆, Ewine F. van Dishoeck2,3, Catherine Walsh4, Arthur D. Bosman5, and Hideko Nomura6

1 Star and Planet Formation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
e-mail: shota.notsu@riken.jp
2 Leiden Observatory, Faculty of Science, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
3 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
4 School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
5 Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
6 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Received 26 February 2021 / Accepted 14 April 2021

ABSTRACT

Context. Water is a key molecule in star- and planet-forming regions. Recent water line observations toward several low-mass protostars suggest low water gas fractional abundances (\(<10^{-6}\) with respect to total hydrogen density) in the inner warm envelopes (\(<10^2\) au). Water destruction by X-rays is thought to influence the water abundances in these regions, but the detailed chemistry, including the nature of alternative oxygen carriers, is not yet understood.

Aims. Our aim is to understand the impact of X-rays on the composition of low-mass protostellar envelopes, focusing specifically on water and related oxygen-bearing species.

Methods. We computed the chemical composition of two proto-typical low-mass protostellar envelopes using a 1D gas-grain chemical reaction network. We varied the X-ray luminosities of the central protostars, and thus the X-ray ionization rates in the protostellar envelopes.

Results. The protostellar X-ray luminosity has a strong effect on the water gas abundances, both within and outside the H$_2$O snowline (\(T_{\text{gas}} \sim 10^2\) K, \(r \sim 10^2\) au). Outside, the water gas abundance increases with \(L_X\), from \(\sim 10^{-10}\) for low \(L_X\) to \(\sim 10^{-3}-10^{-7}\) at \(L_X \geq 10^{39}\) erg s$^{-1}$. Inside, water maintains a high abundance of \(\sim 10^{-4}\) for \(L_X \leq 10^{37}-10^{38}\) erg s$^{-1}$, with water and CO being the dominant oxygen carriers. For \(L_X \geq 10^{39}-10^{41}\) erg s$^{-1}$, the water gas abundances significantly decrease just inside the water snowline (down to \(\sim 10^{-6}-10^{-8}\)) and in the innermost regions with \(T_{\text{gas}} \gtrsim 250\) K (\(\sim 10^{-8}\)). For these cases, the fractional abundances of O$_2$ and O gas reach \(\sim 10^{-6}\) within the water snowline, and they become the dominant oxygen carriers. In addition, the fractional abundances of HCO$^+$ and CH$_3$OH, which have been used as tracers of the water snowline, significantly increase and decrease, respectively, within the water snowline as the X-ray fluxes become larger. The fractional abundances of some other dominant molecules, such as CO$_2$, OH, CH$_3$K, HCN, and NH$_3$, are also affected by strong X-ray fields, especially within their own snowlines. These X-ray effects are larger in lower-density envelope models.

Conclusions. X-ray-induced chemistry strongly affects the abundances of water and related molecules including O, O$_2$, HCO$^+$, and CH$_3$OH, and can explain the observed low water gas abundances in the inner protostellar envelopes. In the presence of strong X-ray fields, gas-phase water molecules within the water snowline are mainly destroyed with ion-molecule reactions and X-ray-induced photodissociation. Future observations of water and related molecules (using, e.g., ALMA and ngVLA) will access the regions around protostars where such X-ray-induced chemistry is effective.

Key words. astrochemistry – ISM: molecules – stars: formation – stars: protostars – protoplanetary disks

1. Introduction

Water is essential for habitability of planets, and it is a key molecule in star- and planet-forming regions. Water acts as a gas coolant (e.g., Neufeld et al. 1995), and efficient coagulation of dust grains covered by water ice is a key process in planetesimal and planet formation (e.g., Okuzumi et al. 2012; Okuzumi & Tazaki 2019; Wada et al. 2013; Schoonenberg & Ormel 2017; Arakawa & Krijt 2021).

In diffuse and dense clouds, water gas and ice are important oxygen carriers (Melnick et al. 2020; van Dishoeck et al. 2021). In diffuse and cold gas (gas temperature \(T_{\text{gas}} \lesssim 100\) K), water is mainly produced by ion-molecule reactions (Hollenbach et al. 2009). When such a cloud becomes opaque (extinction \(A_V > 3\) mag) and cool (\(T_{\text{gas}} \lesssim 20–30\) K) enough, water is also efficiently formed by hydrogenation of oxygen atoms sticking onto cold dust grain surfaces, where it forms an icy mantle (e.g., Cuppen et al. 2010). Water ice is a dominant oxygen carrier in dark clouds and pre-stellar cores (e.g., Öberg et al. 2011; Caselli et al. 2012; Marboeuf et al. 2014; Boogert et al. 2015; Taquet et al. 2016b; Melnick et al. 2020; van Dishoeck et al. 2021). In warm regions (\(T_{\text{gas}} > 100\) K), water ice sublimes from the dust-grain surfaces into the gas phase. At temperatures above 250 K, H$_2$O is largely produced by gas-phase reactions of O and OH with H$_2$ (Baulch et al. 1992; Oldenborg et al. 1992). This high-temperature chemistry route dominates the formation of water in shocks, in the inner envelopes around protostars, and in the warm surface layers of protoplanetary disks.

Recently, water vapor emission from the inner warm envelopes (\(T_{\text{gas}} > 100\) K) of low-mass Class 0 protostars has
been investigated using PdBI\(^1\) (e.g., Jørgensen & van Dishoeck 2010; Persson et al. 2012, 2014, 2016), ALMA\(^2\) (e.g., Bjerkeli et al. 2016; Jensen et al. 2019), and Herschel\(^3\)/HIFI (e.g., van Dishoeck et al. 2011, 2021; Visser et al. 2013). The interferometric observations using PdBI and ALMA targeted the para-18H\(_2\)O 203 GHz $3_{11}-2_{00}$ line (upper state energy $E_{\text{up}} = 203.7$ K), which is also considered to be a tracer of water emission in the inner warm regions and the position of the water snowline in Class II disks (Notsu et al. 2018, 2019). The velocity-resolved observations using Herschel/HIFI targeted several water lines, including the $3_{12}-3_{03}$ lines of ortho-18H\(_2\)O (1097 GHz, $E_{\text{up}} = 249.4$ K) and ortho-18H\(_2\)O (1096 GHz, $E_{\text{up}} = 248.7$ K), and were part of the key program Water In Star-forming regions with Herschel (WISH; van Dishoeck et al. 2011, 2021), which aimed to study the physics and chemistry of water during star formation across a range of masses and evolutionary stages. The water abundances in the outer cold envelopes were also investigated, using for example the ground-state ortho-18H\(_2\)O 557 GHz $1_{10}-1_{01}$ line ($E_{\text{up}} = 61.0$ K; e.g., Kristensen et al. 2010, 2012; van Dishoeck et al. 2011, 2021; Coutens et al. 2012, 2013; Mottram et al. 2013; Schmalzl et al. 2014).

According to Persson et al. (2012, 2014, 2016) and Visser et al. (2013), the water gas abundance is around 6×10^{-5} with respect to total H\(_2\) density in the inner warm envelope and the disk of NGC 1333-IRAS 2A, and this value is similar to the expected value ($\sim 10^{-4}$) if water molecules are mostly inherited from the water ice in dark clouds and pre-stellar cores (e.g., Boogert et al. 2015). In contrast, the water gas abundances in the inner envelopes and disks of NGC 1333 IRAS 4A and 4B are lower by 1–3 orders of magnitude than the value of NGC 1333-IRAS 2A. While some of this decrease can be accounted for if the detailed small-scale physical structure is considered, Persson et al. (2016) even found such low water gas abundances when using thin disk+envelope models. Questions on how the water abundance changes from dense clouds to protostellar envelopes and planet-forming disks, and the nature of the main oxygen carrier instead thus arise (van Dishoeck et al. 2021). Since ALMA has much higher sensitivity and higher spatial and spectral resolution compared with previous instruments, water gas line surveys toward more Class 0 (and also Class I) protostars are expected using ALMA. Recently, Jensen et al. (2019) reported ALMA detections of the para-18H\(_2\)O 203 GHz ($3_{11}-2_{00}$) line for the inner warm envelopes around three isolated low-mass Class 0 protostars (L483, B335, and BHR71-IRS1). The estimated 18H\(_2\)O column densities in the warm inner envelopes for the three objects are a few $\times 10^{15}$ cm\(^{-2}\) in a 0.4″ beam, which is similar to that of NGC 1333 IRAS 4B, and around ten times lower than that of NGC 1333 IRAS 2A (Persson et al. 2014). According to new observations by Harsono et al. (2020), water vapor is not abundant in the warm envelopes and disks around Class I protostars, and the upper limits of the water gas abundances averaged over the inner warm disks with $T_{\text{gas}} > 100$ K are $\sim 10^{-7}$–10^{-5} with respect to H\(_2\).

There is only limited information on other major oxygen carriers. In low-mass protostar observations, only one upper limit and a tentative detection are reported for O\(_3\) lines. This is partly because O\(_3\) does not possess electric dipole-allowed rotational transition lines. Yildiz et al. (2013) observed the O\(_3\) $3_1 - 2_0$ 487.2 GHz line ($E_{\text{up}} = 26.4$ K) and reported an upper limit O\(_3\) gas abundance with respect to H\(_2\) of 6×10^{-9} (3σ) toward the entire envelope of IRAS 4A using Herschel/HIFI, and they estimated that the observed O\(_3\) gas abundance cannot be more than 10^{-6} for the inner warm region ($\lesssim 10^2$ au). Taquet et al. (2018) reported the tentative detection (3σ) of the 16O\(_3\) 234 GHz $2_1 - 0_1$ line ($E_{\text{up}} = 11.2$ K) toward the inner envelope around a low-mass protostar IRAS 16293-2422 B with ALMA. Assuming that the 16O\(_3\) was not detected and using CH$_3$OH as a reference species, Taquet et al. (2018) obtained an O\(_2$/CH$_3$OH abundance ratio <2–5, which is 3–4 times lower than that in comet 67P/Churyumov-Gerasimenko.

The low water gas abundances derived for the inner regions of protostellar envelopes are unexpected because it is assumed that all water ice inherited from the molecular cloud phase would be sublimated in this warm region. In tandem, observations have failed to identify sufficiently abundant alternative oxygen carriers. What happened to the water? Stäuber et al. (2005, 2006) modeled the water gas chemistry including X-ray destruction processes, and suggested that water gas will be destroyed by strong X-ray fluxes in the inner warm envelopes of low-mass protostars on relatively short timescales (~ 5000 yr). In addition, they suggested that far-ultraviolet (FUV) photons from the central source are less effective in destroying water compared with X-ray photons due to extinction. However, the nature of the major oxygen carriers under these conditions is not yet understood. Moreover, it is important to investigate whether HCO$^+$ and CH$_3$OH are also affected by strong X-ray fluxes since they have been used as tracers of the water snowline (Visser et al. 2015; van ’t Hoff et al. 2018a,b; Leemker et al. 2021).

The chemical models that Stäuber et al. (2005, 2006) adopted were limited. Most notably, they did not include detailed gas-grain interactions and grain-surface chemistry (e.g., Walsh et al. 2015). These additional reactions will be important in considering the abundances of water and related molecules, since major oxygen-bearing molecules including H$_2$O, CO$_2$, and CH$_3$OH are efficiently formed on the grain surfaces.

In this study, we revisit the chemistry of water and related molecules in low-mass Class 0 protostellar envelopes, under various X-ray field strengths. We adopt a gas-grain chemical reaction network including X-ray-induced chemical processes. We simultaneously include gas-phase reactions, thermal and non-thermal gas-grain interactions, and grain-surface reactions. Through the calculations, we study the radial dependence of the abundances of water and related molecules on the strength of the X-ray field, and identify potential alternative oxygen carriers other than water. The outline of our model calculations are explained in Sect. 2. The results and discussion of our calculations are described in Sects. 3 and 4, respectively. The conclusions are presented in Sect. 5.

2. Protostellar envelope models

2.1. Physical structure models

2.1.1. Temperature and number density profiles of Class 0 protostellar envelopes

For the physical structures of low-mass Class 0 protostellar envelopes, we adopted the radial gas temperature T_{gas} and molecular hydrogen number density n_H_2 profiles for two sources: NGC 1333-IRAS 2A and NGC 1333-IRAS 4A\(^4\) from Kristensen et al. (2012) and Mottram et al. (2013). These are the best studied cases.

1. IRAM Plateau de Bure Interferometer, now NOEMA (NOrthern Extended Millimeter Array).
2. Atacama Large Millimeter/submillimeter Array.
3. Herschel Space Observatory.
4. In the remainder of this paper, we refer to NGC 1333-IRAS 2A and NGC 1333-IRAS 4A as “IRAS 2A” and “IRAS 4A”, respectively.
sources with well-determined inner and outer water abundances (e.g., Persson et al. 2012, 2014, 2016; Mottram et al. 2013; Visser et al. 2013; van Dishoeck et al. 2021). The H$_2$CO$^+$ gas abundance (a good tracer of the water snowline) toward the envelope around IRAS 2A (van ’t Hoff et al. 2018a) and an upper limit O$_2$ gas abundance toward the envelope around IRAS 4A (Yildiz et al. 2013) have been also reported. According to Jørgensen et al. (2007, 2009), the differences in luminosities L_{bol} and envelope masses M_{env} between these two objects are only a factor of 4–5 ($L_{bol} = 20 L_{\odot}$ and $M_{env} = 1.0 M_{\odot}$ for IRAS 2A, and 5.8 L_{\odot} and $M_{env} = 4.5 M_{\odot}$ for IRAS 4A). Thus, they are presumably in similar evolutionary stages of low-mass protostars. In addition, we used these two profiles in order to examine the effect of density differences on X-ray-induced chemistry. Kristensen et al. (2012) derived these T_{gas} and n_{H_2} profiles using the 1D spherically symmetric radiative transfer code DUSTY (Ivezic & Elitzur 1997). In this procedure, the free model parameters (the radial profile, size, and mass) were fitted to the spatial extent of the submillimeter continuum emission (440–850 μm) and the spectral energy distribution (SED). These source models are appropriate on scales from a few 104 to a few 103 au. Several recent studies (e.g., Persson et al. 2016; Kounpia et al. 2017; van ’t Hoff et al. 2018a) also adopted the same models to study the chemistry and line emission in these protostellar envelopes. In these models, the gas and dust temperatures are taken to be the same ($T_{gas} = T_{dust}$), and they are well mixed with a gas-to-dust mass ratio of 100:1.

Figure 1 shows the radial gas temperature and molecular hydrogen number density profiles for IRAS 2A and IRAS 4A. The radial temperature distributions are similar between these two models ($T_{gas} \sim 250$ K in the innermost region and $T_{gas} \sim 10$ K at the outer edge). At the same radii, the density in IRAS 4A is 3–6 times higher than that in IRAS 2A. The differences in densities between these two objects gradually increase as the radii decrease. In the inner edge at $T_{gas} = 250$ K ($r \sim 35$ au), n_{H_2} in IRAS 2A is 4.9×10^4 cm$^{-3}$ and n_{H_2} in IRAS 4A is 3.1×10^3 cm$^{-3}$. The effects of the small-scale structures such as disks are neglected, but they will lower the temperature for some fraction of the gas.

2.1.2. X-ray fields

The observed X-ray spectra from Young Stellar Objects (YSOs) are usually fitted with the emission spectrum of a thermal plasma (e.g., Hofner & Churchwell 1997; Stäuber et al. 2005; Bruderer et al. 2009). The thermal X-ray spectrum can be approximated with

$$ F_{X, in}(E, r) = F_0(r) \exp(-E/kT_X) \left(\text{photons s}^{-1} \text{ cm}^{-2} \text{ eV}^{-1} \right), $$

where r is the radius in the envelope from the central protostar, $F_{X, in}(E, r)$ is the incident X-ray flux per unit energy, k is the Boltzmann constant, and T_X is the temperature of the X-ray emitting plasma. The factor $F_0(r)$ can be calculated from the following equation,

$$ L_X = 4\pi r^2 \int_{E_{min}}^{E_{max}} F_{X, in}(E, r) E dE \ \text{(erg s}^{-1} \text{)}, $$

where L_X is the X-ray luminosity of the central protostar. The local (attenuated) X-ray flux $F_X(r)$ at radius r of the envelope is given by

$$ F_X(r, E) = F_{X, in}(E, r) \exp(-\tau(E, r)), $$

where $\tau(E, r)$ is the total optical depth from the central protostar position to r. The energy-integrated total attenuated X-ray flux $F_X(r)$ at radius r of the envelope is given by the following equation,

$$ F_X(r) = \int_{E_{min}}^{E_{max}} F_X(E, r) E dE \ \text{(erg s}^{-1} \text{ cm}^{-2} \text{)}, $$

and $\tau(E, r)$ is determined by

$$ \tau(E, r) = \tau_p(E, r) + \tau_c(E, r), $$

where $\tau_p(E, r)$ and $\tau_c(E, r)$ are the optical depths determined by photoabsorption and incoherent Compton scattering of hydrogen (Nomura et al. 2007). We note that the attenuation of the X-rays is mainly determined by photoabsorption especially at $E < 10$ keV, and the influence of Compton scattering of hydrogen on the chemistry is negligible (Stäuber et al. 2005; Bruderer et al. 2009).

Assuming that the photoabsorption cross section of an atom is equal to its photoionization cross section, $\tau_p(E, r)$ is obtained by the equation

$$ \tau_p(E, r) = N_H(r) \sigma_{\text{tot}, p}(E) = N_H(r) \sum_i x(i) \sigma_{i, p}(E), $$

where $N_H(r)$ is the total hydrogen column density from the central protostar position to r, and $\sigma_{\text{tot}, p}(E)$ is the total photoabsorption cross section given by the sum of the photoionization cross sections for each element $\sigma_{i, p}(E)$ multiplied by its fractional abundance $x(i)$. We calculate the values of $\sigma_{i, p}(E)$ using the analytical method in Verner et al. (1993), as done in Walsh et al. (2012). The value of $\tau_c(E, r)$ is obtained by the following equation,

$$ \tau_c(E, r) = N_H(r) \sigma_c(E), $$
where $\sigma_c(E)$ is the incoherent Compton scattering cross-section of hydrogen. We adopted the values of $\sigma_c(E)$ from the NIST/XCOM database (Berger et al. 1999).

In Class I and II protostars, the values of observed X-ray luminosities are typically around $L_X \sim 10^{28} - 10^{31} \text{erg s}^{-1}$ (Imanishi et al. 2001; Preibisch et al. 2005; Güdel & Nazé 2009). However, the values of L_X in low-mass Class 0 protostars have not yet been well determined (e.g., Hamaguchi et al. 2005; Forbrich et al. 2006; Giardino et al. 2007; Güdel 2005). The X-rays from the central Class 0 protostars are absorbed by their surrounding dense envelopes. Recently, Grosso et al. (2020) reported a powerful X-ray flare from the Class 0 protostar HOPS 383 with $L_X \sim 4 \times 10^{31} \text{erg s}^{-1}$ in the 2–8 keV energy band. Takasao et al. (2019) discussed from their simulations that protostar X-ray flares occur repeatedly (approximately every 10 days) even in Class 0 protostars without magnetospheres. These flares are thought to occur when a portion of the large-scale magnetic fields, which are transported by accretion, are removed from the protostar as a result of magnetic reconnection. Stäuber et al. (2007) discussed the X-ray strengths from CN, CO$^+$, and SO$^+$ abundances, and they estimated that values of L_X in Class 0 low-mass protostars are around $10^{29} - 10^{33} \text{erg s}^{-1}$, which are comparable to those in low-mass Class I protostars. However, Benz et al. (2016) discussed that the abundances of CN and CO$^+$ obtained by Herschel/HIFI observations can also be explained by FUV irradiation of outflow cavity walls (see also Bruderer et al. 2010), and suggested that the spatial resolution at scales of a few $\times 10^3$ au is not sufficient to detect molecular tracers of X-rays. Benz et al. (2016) also estimated the X-ray luminosities from the upper limits of H$_2$O$^+$ line fluxes obtained with Herschel/HIFI toward some low-mass protostars ($L_X < 10^{30} \text{erg s}^{-1}$ in the Class 0 object IRAS 16293-2422 and $L_X \geq 10^{31} \text{erg s}^{-1}$ in the Class I object TMC1).

In order to investigate the dependence of the chemical evolution on the strength of the X-ray field, we take values of $L_X = 0$, 10^{27}, 10^{28}, 10^{29}, 10^{30}, 10^{31}, and $10^{32} \text{erg s}^{-1}$. We adopt $kT_X = 2.6$ keV ($=3 \times 10^4 \text{K}$), which is similar to Stäuber et al. (2006), and is also consistent with typical Class I protostars (Imanishi et al. 2001; Preibisch et al. 2005). We set $E_{\text{min}} = 0.1$ keV and $E_{\text{max}} = 100$ keV to cover a sufficient range of X-rays in our calculations. According to Maloney et al. (1996), Stäuber et al. (2005), and Bruderer et al. (2009), the shape of the X-ray spectrum will vary for different values of kT_X, for example with $10^{-3} - 10^4 \text{K}$. However, they discussed that the calculated abundances differ by a factor of a few at most for the different X-ray temperatures, and that the influence of the X-ray luminosities on the chemistry is dominant. We note that we assumed a constant value of X-ray luminosity during 107 year since protostellar X-ray flares repeatedly occur, and as a first step we wanted to know the overall influence of X-ray fields on chemistry (see also Sect. 4.7).

In our calculations the FUV radiation field from the central protostar is neglected. According to Stäuber et al. (2007), X-rays are thought to be more effective for chemistry than FUV fields in the low-mass protostellar envelopes. Low-mass protostars ($L_{\text{bol}} \sim 10^{-2} - L_\odot$, $T_{\text{eff}} < 10^4 \text{K}$) emit far fewer UV photons than high-mass protostars ($L_{\text{bol}} \sim 10^{4+5} L_\odot$, $T_{\text{eff}} \geq 10^4 \text{K}$) due to their lower surface temperatures. Thus, FUV photons from the central source are not effective in destroying molecules in Class 0 protostellar envelopes (Stäuber et al. 2005, 2006). Some FUV radiation from the disk-star boundary can escape through outflow cavities, but only affects a narrow layer along the cavity walls (Visser et al. 2012).

The top panels of Fig. 2 show the radial profiles of $F_X(r)$ in the IRAS 2A and IRAS 4A envelope models. In both models the values of $F_X(r)$ in the innermost region are around $2 \times 10^{-4} \text{erg s}^{-1} \text{cm}^{-2}$ in the case of $L_X = 10^{27} \text{erg s}^{-1}$, and around

![Fig. 2. Radial profiles of the X-ray flux $F_X(r)$ (erg s$^{-1}$ cm$^{-2}$) (top panels) and the secondary X-ray ionization rate $\xi_X(r)$ (s$^{-1}$) (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models. In the bottom panels, the horizontal gray solid lines show the assumed constant cosmic-ray ionization rate $\xi_{\text{CR}}(r) = 1.0 \times 10^{-17} \text{~s}^{-1}$. In all panels the different line styles and colors in the radial $F_X(r)$ and $\xi_X(r)$ profiles denote models with different central star X-ray luminosities L_X.](image-url)
2.2. Calculations of chemical evolution

We calculated the chemical evolution of low-mass Class 0 protostellar envelopes using a detailed gas-grain chemical reaction network including X-ray-induced chemical processes (Walsh et al. 2012, 2015). We note that Stäuber et al. (2005, 2006) focused on gas-phase water chemistry only. In order to investigate the radial dependence of the abundances of both gas and ice molecules on X-ray fields, we included gas-phase reactions, thermal and non-thermal gas-grain interactions, and grain-surface reactions, simultaneously.

The chemical reaction network adopted in this work is based on the chemical model from Walsh et al. (2015), as also used in Eistrup et al. (2016, 2018), and Bosman et al. (2018b). The detailed background theories and procedures are also discussed in these papers and our previous works (e.g., Walsh et al. 2010, 2012, 2014a,b; Heinzeller et al. 2011; Notsu et al. 2016, 2017, 2018), although there are some differences between these studies and our paper. Here we provide a summary and describe an important update of our adopted chemical reaction network in this paper. Consistent with Stäuber et al. (2006), the chemical evolution in envelopes is run for 10^5 yr, which is the typical age of Class 0 protostars.

2.2.1. Gas-phase reactions

Our gas-phase chemistry is the complete network from the recent release of the UMIST Database for Astrochemistry (UDfA), called RATE12, and is publicly available\(^5\) (McElroy et al. 2013). RATE12 includes gas-phase two-body reactions, photodissociation and photoionization, direct cosmic-ray ionization, and cosmic-ray-induced photodissociation and photoionization. Since the FUV radiation fields from the central protostar are neglected in our calculations (see also Sect. 2.1.2), the photodissociation and photoionization by FUV radiation is not included. In contrast, we supplemented this gas-phase network with direct X-ray ionization reactions, and X-ray-induced photodissociation and photodissociation processes (see Walsh et al. 2012, 2015, and Sect. 2.2.4 in this paper). In these X-ray-induced photoreactions UV photons are generated internally via the interaction of secondary electrons (produced by X-rays; see also Sect. 2.2.4) with H\(_2\) molecules (Gredel et al. 1987, 1989). As in Walsh et al. (2015), we also added a set of three-body reactions and “hot” H\(_2\) chemistry, although they were not expected to be important at the densities and temperatures calculated in this study. Moreover, the gas phase chemical network is supplemented with reactions for important species, for example, the CH\(_3\)O radical, which are not included in RATE12. The gas-phase formation and destruction reactions for these species are from the Ohio State University (OSU) network (Garrod et al. 2008).

\(^5\) http://udfa.ajmarkwick.net

20 erg s\(^{-1}\) cm\(^{-2}\) in the case of $L_X = 10^{32}$ erg s\(^{-1}\). In the outer envelopes, the values of $F_X(r)$ reduce because of the increasing values of $N_H(r)$. Compared with the IRAS 2A model, $F_X(r)$ of the IRAS 4A model is lower in the outer regions due to higher densities (see also Fig. 1). The values of $F_X(r)$ at $r \sim 10^7$ au are $\sim \times 10^{-7}$ erg s\(^{-1}\) cm\(^{-2}\) (IRAS 2A) and $\times 6 \times 10^{-8}$ erg s\(^{-1}\) cm\(^{-2}\) (IRAS 4A) in the case of $L_X = 10^{22}$ erg s\(^{-1}\), and $\times 10^{-2}$ erg s\(^{-1}\) cm\(^{-2}\) (IRAS 2A) and $\times 6 \times 10^{-3}$ erg s\(^{-1}\) cm\(^{-2}\) (IRAS 4A) in the case of $L_X = 10^{32}$ erg s\(^{-1}\).

Table 1. UV photodesorption yields.

Species	$Y_{\text{des}}(j)$ (molecules photon\(^{-1}\))	References
H\(_2\)O	1.300×10^{-3} (\(s\))	(a)
CO	2.700×10^{-3}	(b,c)
CO\(_2\)	2.300×10^{-3}	(c,d)
N\(_2\)	1.800×10^{-4}	(c,e)
CH\(_3\)OH	2.475×10^{-4} (\(s\))	(e)
All other species	1.000×10^{-3}	(f,g)

Notes. For H\(_2\)O and CH\(_3\)OH, the values of $Y_{\text{des}}(j)$ are the sum of all of their fragmentation pathways (see texts in Sect. 2.2.2).

References. Öberg et al. (2009b); Öberg et al. (2007); Öberg et al. (2009a); Fillion et al. (2014); Bertin et al. (2016); Walsh et al. (2015); Cuppen et al. (2017).

2.2.2. Gas–grain interactions

In our calculations we consider the freezeout of gas-phase molecules on dust grains, and the thermal and non-thermal desorption of molecules from dust grains (Hasegawa et al. 1992; Walsh et al. 2010, 2012, 2014a, 2015; Notsu et al. 2016). The adopted non-thermal desorption mechanisms are cosmic-ray-induced (thermal) desorption (Leger et al. 1985; Hasegawa & Herbst 1993; Hollenbach et al. 2009), reactive desorption (see Sect. 2.2.3), and photodesorption. We note that the direct cosmic-ray-induced desorption has no significant impact on chemistry, since its reaction timescale is typically much longer ($\gg 10^7$ yr) than the age of protostars (Hollenbach et al. 2009).

We include photodesorption by both external X-ray photons and UV photons generated internally via the interaction of secondary electrons produced by cosmic rays with H\(_2\) molecules. Following Walsh et al. (2015), we assume compact spherical grains with a radius a of 0.1 \(\mu\)m and a fixed density of 10^{-12} relative to the gas number density. We adopt a value for the integrated cosmic-ray-induced UV photon flux as 10^4 photons cm\(^{-2}\) s\(^{-1}\) (Prasad & Tarafdar 1983; Walsh et al. 2014a). We scale the internal UV photon flux by the cosmic-ray ionization rate.

We use experimentally determined photodesorption yields, $Y_{\text{des}}(j)$, where available (e.g., Öberg et al. 2007, 2009a,b; Bertin et al. 2016; Cuppen et al. 2017). These experiments were conducted by using UV lamps that mimic well the FUV radiation field (100–200 nm) produced locally by H\(_2\) emission excited by cosmic-rays or X-rays. For all species without experimentally determined photodesorption yields, a value of 10^{-3} molecules photon\(^{-1}\) is used. The values of photodesorption yields adopted in our work are the same as those in Walsh et al. (2015), except the value of CH\(_3\)OH. Recent studies into methanol ice photodesorption showed that methanol does not desorb intact at low temperatures (e.g., Bertin et al. 2016; Cruz-Díaz et al. 2016), and the value of the intact photodesorption yield for CH\(_3\)OH is thought to be much lower ($\sim 10^{-6}$–10^{-5}) than that in the previous estimates ($\sim 10^{-5}$, Öberg et al. 2009). The values of photodesorption yields adopted in this work, $Y_{\text{des}}(j)$, are listed in Table 1. On the basis of Öberg et al. (2009b), Araña et al. (2010, 2015), Bertin et al. (2016), Cruz-Díaz et al. (2016), and Walsh et al. (2018), we include the fragmentation pathways for water ice (50% H\(_2\)O and 50% OH+H) and methanol photodesorption (e.g., 85.0% CO+H\(_2\)+H\(_2\), 61.0% CH\(_3\)OH, 4.85% H\(_3\)O+H\(_2\), 3.0% CH\(_3\)OH). The values of $Y_{\text{des}}(j)$ for H\(_2\)O and CH\(_3\)OH listed in Table 1 are the sum of all of these fragmentation...
Table 2. Initial abundances for dominant molecules in our protostellar envelope models and their binding energies.

Species \(j \)	\(n_{\text{igal}}/n_H \)	\(n_{\text{iice}}/n_H \)	\(E_{\text{des}}(j) \) (K)
H	\(3.807 \times 10^{-5} \)	\(4.458 \times 10^{-17} \)	650
H\(_2\)	\(4.997 \times 10^{-1} \)	\(4.140 \times 10^{-5} \)	430
H\(_2\)O	\(7.080 \times 10^{-7} \)	\(1.984 \times 10^{-4} \)	4880
O	0	\(2.073 \times 10^{-13} \)	1660
O\(_2\)	0	\(4.032 \times 10^{-12} \)	986
OH	\(5.164 \times 10^{-8} \)	\(6.019 \times 10^{-14} \)	3210
C	\(2.571 \times 10^{-8} \)	\(1.310 \times 10^{-16} \)	715
CO	\(7.532 \times 10^{-5} \)	\(2.946 \times 10^{-5} \)	855
CO\(_2\)	\(7.487 \times 10^{-7} \)	\(2.856 \times 10^{-7} \)	2267
HCO\(^+\)	\(3.553 \times 10^{-9} \)	–	–
CH\(_2\)OH	\(1.120 \times 10^{-6} \)	\(7.384 \times 10^{-6} \)	1252
H\(_2\)CO	\(3.558 \times 10^{-9} \)	\(6.027 \times 10^{-7} \)	3820
C\(_2\)H\(_4\)	\(1.108 \times 10^{-7} \)	\(8.437 \times 10^{-6} \)	3260
C\(_2\)H\(_2\)	\(1.776 \times 10^{-10} \)	\(5.537 \times 10^{-9} \)	1330
C\(_2\)H\(_3\)	\(7.440 \times 10^{-8} \)	\(3.291 \times 10^{-10} \)	2090
N\(_2\)	\(2.105 \times 10^{-5} \)	\(5.531 \times 10^{-14} \)	715
N\(_3\)	\(9.765 \times 10^{-6} \)	\(5.411 \times 10^{-14} \)	790
NH\(_3\)	\(2.933 \times 10^{-7} \)	\(1.327 \times 10^{-27} \)	2715
CN	\(3.016 \times 10^{-9} \)	\(1.406 \times 10^{-15} \)	1355
HCN	\(7.718 \times 10^{-8} \)	\(2.772 \times 10^{-16} \)	3610

2.2.3. Grain-surface reactions

For the grain-surface reactions we use the reactions included in the Ohio State University (OSU) network (Garrod et al. 2008). In addition to grain-surface two-body reactions and reactive desorptions, grain-surface cosmic-ray-induced and X-ray-induced photodissociations are also included in our calculations (Garrod et al. 2008; Walsh et al. 2014a, 2015). In these X-ray-induced photodissociation reactions, UV photons are generated internally via the interaction of secondary electrons (produced by X-rays; see also Sect. 2.2.4) with \(H_2 \) molecules (Gredel et al. 1987, 1989). In addition, as Walsh et al. (2018) adopted, we include an extended grain-surface chemistry network for methanol and its related compounds from Woods et al. (2013) and Chuang et al. (2016). Moreover, we have also added the hydrogenation abstraction pathway during hydrogenation from HNCO to H\(_2\)CHO (Noble et al. 2015). As in Walsh et al. (2015) and Bosman et al. (2018b), the additional water formation routes studied by Cuppen et al. (2010) and Lamberts et al. (2013) are also included. The grain-surface two-body reaction rates are calculated assuming the Langmuir-Hinselwood mechanism only, and using the rate equation method as described in Hasegawa et al. (1992). Only the top two monolayers of the ice mantle are chemically active. We assume that the size of the barrier to surface diffusion is 0.3 \(\times E_{\text{des}}(j) \) (Walsh et al. 2015). For the lightest reactants, H and \(H_2 \), we adopt either the classical diffusion rate or the quantum tunnelling rate depending on which is fastest (Hasegawa et al. 1992; Bosman et al. 2018b). For the quantum tunnelling rates, we adopt a rectangular barrier of width 1.0 Å (Hasegawa et al. 1992; Bosman et al. 2018b). As in Bosman et al. (2018b), reaction-diffusion competition for grain-surface reactions with a reaction barrier (Garrod & Pauly 2011) is not included.

We note that grain-surface reactions take place on finite grain surfaces, where the populations of certain chemical species can become very small (\(\ll 1 \)). If surface reactions occur very quickly in such a regime (the stochastic limit situation), the reaction rates might be overestimated compared with the actual values (Garrod 2008; Garrod & Pauly 2011; Cuppen et al. 2017). Such stochastic effects would be more important on the smaller dust grains (such as \(a \lesssim 0.1 \mu m \)), since the number of surface sites per grain is smaller (Barzel & Biham 2007; Garrod 2008). Stantcheva & Herbst (2004) and Vasyunin et al. (2009) showed that the stochastic effects are most important on chemical evolution in moderately warm regions (\(T_{\text{dust}} \sim 30 \text{ K} \)), and that the abundances of molecules such as H\(_2\)O and CO\(_2\) can differ by more than an order of magnitude. In contrast, they also showed that these effects are not important in the regions with low (\(T_{\text{dust}} \lesssim 10 \text{ K} \)) and high (\(T_{\text{dust}} \gtrsim 50 \text{ K} \)) temperatures (see also Caselli et al. 1998). Compared with the physical structures shown in Fig. 1, the molecular abundances just outside the water snowline (\(\sim (1-3) \times 10^{14} \text{ au} \)) will not be strongly influenced by such effects. In addition, the sizes of dust grains in protostellar envelopes are on average larger than 0.1 \(\mu m \) (Ormel et al. 2009; Miotello et al. 2014; Li et al. 2017), and thus the effects would be smaller than those in diffuse clouds. The micro- and macroscopic Monte Carlo techniques would be helpful for much more precise treatment of the grain-surface chemistry (e.g., Tielens & Hagen 1982; Vasyunin et al. 2009; Vasyunin & Herbst 2013; Garrod et al. 2009; Cuppen et al. 2017).

2.2.4. X-ray ionization rates

We include a set of gas-phase and grain-surface X-ray-induced reactions which we duplicate from the existing set of...
cosmic-ray-induced reactions contained in RATE12 (McElroy et al. 2013; Walsh et al. 2015). The reaction rates are estimated by scaling the cosmic-ray-induced reaction rates by the ratio of the local X-ray ionization rate $\xi_{\text{CR}}(r)$ and cosmic-ray ionization rate $\xi_{\text{CR}}(r)$.

In this study, we calculate the secondary X-ray ionization rate at each radius $\xi_{\text{r}}(r)$ via the following equation (see also Glassgold et al. 1997; Walsh et al. 2012),

$$\xi_{\text{r}}(r) = \sum_i \int_{E_{\text{max}}}^{E_{\text{min}}} x(i) \sigma_{\text{i}}(E) F_X(E, r) \left(\frac{E - E_i}{\Delta E} \right) dE \quad (s^{-1}), \quad (9)$$

where E_i is the ionization potential for each element i, and $x(i)$, σ_{i}, and $F_X(E, r)$ are determined as described in Sect. 2.1.2. The number of secondary ionizations per unit energy produced by primary photoelectrons is given by the expression $(E - E_i)/\Delta E$, where $\Delta E = 37$ eV is the mean energy required to make an ion pair. X-rays interact only with atoms, regardless of whether an atom is bound within a molecule or is free (Glassgold et al. 1997). According to Maloney et al. (1996), these secondary ionization rates $\xi_{\text{r}}(r)$ dominate the total ionization rates in X-ray dissociation regions. For atoms heavier than Li, inner-shell ionization is followed by the Auger effect, in which the excited, primary X-ray photon is absorbed by a nearby electron, and the energy is transferred to another electron, which is then ejected from the atom. The Auger effect is a major source of ionization in X-ray ionization regions.

In this study we adopt a constant value for the cosmic-ray ionization rate $\xi_{\text{CR}}(r) = 1.0 \times 10^{-17}$ s$^{-1}$ at all radii (Umebayashi & Nakano 2009). The bottom panels of Fig. 2 show the radial profiles of the X-ray ionization rate $\xi_{\text{r}}(r)$ in the IRAS 2A and IRAS 4A envelope models. In both models the values of $\xi_{\text{r}}(r)$ in the innermost region are around 10^{-17} s$^{-1}$ in the case of $L_X = 10^{27}$ erg s$^{-1}$, and around 10^{-15} s$^{-1}$ in the case of $L_X = 10^{25}$ erg s$^{-1}$. In the outer envelopes the values of $\xi_{\text{r}}(r)$ are reduced because of increasing values of N_H_2. Compared with the IRAS 2A model, $\xi_{\text{r}}(r)$ of the IRAS 4A model is lower in the outer regions due to higher densities (see also Fig. 1). The values of $\xi_{\text{r}}(r)$ at $r \sim 10^4$ au are 10^{-21} s$^{-1}$ (IRAS 2A) and 10^{-22} s$^{-1}$ (IRAS 4A) in the case of $L_X = 10^{27}$ erg s$^{-1}$, and 10^{-16} s$^{-1}$ (IRAS 2A) and 10^{-17} s$^{-1}$ (IRAS 4A) in the case of $L_X = 10^{25}$ erg s$^{-1}$. In regions with $\xi_{\text{r}}(r) > \xi_{\text{CR}}(r) = 1.0 \times 10^{-17}$ s$^{-1}$, X-ray-induced photodissociation and photodissociation processes are considered to be dominant compared with cosmic-ray-induced photionization and photodissociation processes. In the cases of $L_X \geq 10^{25}$ erg s$^{-1}$, the values of $\xi_{\text{r}}(r)$ are larger than that of $\xi_{\text{CR}}(r)$ at $r \leq 10^4$ au in the IRAS 2A model and $r \leq 5 \times 10^4$ au in the IRAS 4A model. Inside the water snowline ($r < 2 \times 10^4$ au), the values of $\xi_{\text{r}}(r)$ are larger than that of $\xi_{\text{CR}}(r)$ in the cases of $L_X > 10^{29}$ erg s$^{-1}$ for IRAS 2A and $L_X > 10^{30}$ erg s$^{-1}$ for IRAS 4A.

We also included the direct (primary) X-ray ionization of elements. The reaction rate $\xi_{\text{r}, \text{X}}(r)$ for each element i is given by the following equation (Verner et al. 1993; Walsh et al. 2012):

$$\xi_{\text{r}, \text{X}}(r) = \int_{E_i}^{E_{\text{max}}} \sigma_{\text{i}, \text{X}}(E) F_X(E, r) dE \quad (s^{-1}). \quad (10)$$

2.2.5. Initial abundances

To generate a set of initial abundances for input into protostellar envelope models, we run a dark cloud model ($T_{\text{gas}} = T_{\text{dust}} = 10$ K, $n_{\text{H}_2} = 10^4$ cm$^{-3}$, $\xi_{\text{CR}}(r) = 1.0 \times 10^{-17}$ s$^{-1}$). As Walsh et al. (2015) adopted, the values of volatile elemental abundances for O, C, and N are respectively 3.2×10^{-4}, 1.4×10^{-4}, and 7.5×10^{-5} relative to total hydrogen nuclei density. These values are based on diffuse cloud observations (Cardelli et al. 1991, 1996; Meyer et al. 1998). For other elements, we use the low-metallicity elemental abundances from Graedel et al. (1982). In this way we begin the envelope calculations with an ice reservoir on the grain mantle built up in the dark cloud and pre-stellar core phases. We use initial abundances at a time of 3.2×10^5 yr on the basis of Walsh et al. (2015) and Drozdovskaya et al. (2016), except for the values of O gas, O$_2$ gas, and H$_2$O ice, which we treat as free parameters in our study but such that elemental oxygen abundance is preserved at 3.2×10^5. This timescale of 3.2×10^5 yr is consistent with the observed pre-stellar core lifetime of $\sim 2-5 \times 10^4$ years (Enoch et al. 2008).

In the above calculation under the dark cloud condition, the abundances with respect to total hydrogen nuclei density of O gas, O$_2$ gas, and H$_2$O ice at a time of 3.2×10^5 yr are 8.5×10^{-5}, 2.2×10^{-5}, and 1.1×10^{-4}. If we consider longer time evolution ($\sim 10^6$ yr), however, the abundances of O gas and O$_2$ gas become much smaller (<10$^{-6}$, see also Yıldız et al. 2013; Taquet et al. 2018) and the abundance of H$_2$O ice becomes higher ($\sim 10^{-4}$, see also Schmalzl et al. 2014).

Previous chemical calculations (e.g., Walsh et al. 2015; Eistrup et al. 2016, 2018; Drozdovskaya et al. 2016) adopted a similarly high abundance for H$_2$O ice ($\sim 10^{-3}$), and low or zero abundances for O and O$_2$ gas as initial conditions. Thus, here we assume that all oxygen atoms in these three species are incorporated into H$_2$O ice ($\sim 1.98 \times 10^{-4}$).

Observations show that H$_2$O ice is indeed a major oxygen carrier in dark clouds and pre-stellar cores, although measured water ice abundances are consistently a factor of 2-4 below the expected value of 2×10^{-4} if all volatile oxygen that is not contained in CO is in water ice (Öberg et al. 2011; Boogert et al. 2015). Chemical modeling of Schmalzl et al. (2014) and Furuya et al. (2016) show that the water ice abundance in pre-stellar cores increases with pre-collapse time (see also van Dishoeck et al. 2021), and that such a low water ice abundance can only be obtained for a short pre-stellar period. At pre-collapse times of $t_{\text{pre}} < 10^4$ yr, a considerable amount of oxygen is also found in other oxygen-bearing species (mainly O in addition to CO). At $t_{\text{pre}} \geq 10^4$ yr, oxygen returns into the water network and water ice then becomes the dominant oxygen reservoir (up to $\sim 2 \times 10^{-4}$) with CO.

The observed low water ice abundances with respect to hydrogen nuclei of low-mass protostellar envelopes of $\sim (3-8) \times 10^{-5}$ would require short pre-collapse lifetimes of $t_{\text{pre}} \leq 10^4$ yr (Schmalzl et al. 2014), less than the observed pre-stellar core lifetimes of $\sim (2-5) \times 10^4$ yr (Enoch et al. 2008). In addition, this shorter pre-collapse phase is inconsistent with the discussions in Yıldız et al. (2013) who argued for a long pre-collapse phase of at least 10^5 yr to explain the lower upper limit of gas-phase cold O$_2$ abundances ($\ll 10^{-6}$) toward IRAS 4A (see also Taquet et al. 2018). Possible mitigations include the possibility that a fraction of water ice is locked up in larger (micron-sized) dust grains that do not contribute to the infrared water ice bands, or the presence of some amount of unidentified depleted oxygen (UDO), which has also been invoked to explain the oxygen budget in diffuse clouds (Whittet 2010; Schmalzl et al. 2014; van Dishoeck et al. 2021). Here we do not consider either of these two options.

The fractional abundances with respect to total hydrogen nuclei density for dominant and important molecules, which are
used as initial abundances in our protostellar envelope models, are listed in Table 2.

3. Results

3.1. Water fractional abundances

Figure 3 shows the radial profiles of the water gas fractional abundances with respect to total hydrogen nuclei densities n_{H_2}/n_{H_1} in IRAS 2A (left panels) and IRAS 4A (right panels) envelope models, for the various X-ray luminosities ($L_X = 0$, 10^{27}, 10^{28}, 10^{29}, 10^{30}, and 10^{32} erg s$^{-1}$). Figure 4 shows the radial profiles of water ice fractional abundances $n_{H_2O,ices}/n_{H_1}$ in the same models. In both models the water snowline positions are at $r \sim 10^4$ au, where T_{gas} is around 100 K.

For $L_X = 0$ erg s$^{-1}$, water gas abundances are around 2×10^{-4} inside the water snowline ($T_{gas} > 10^2$ K, $r < 10^2$ au), and sharply decrease to $\lesssim 10^{-10}$ just outside the water snowline ($T_{gas} < 10^2$ K, $r > 10^2$ au). The water gas abundances increase in the outer low-density envelopes ($n_{H_2}/n_{H_1} \sim 10^{-7}$ at $r \sim 10^6$ au) since in this region the water abundances are mainly determined by the balance between the freeze-out of water vapor and the cosmic-ray-induced photodesorption of water ice, which maintains an approximately constant number density of gas phase water (for more details, see Schmalzl et al. 2014).

Outside the water snowline, for $L_X \gtrsim 10^{10}$ erg s$^{-1}$, water gas abundances become higher (up to $n_{H_2}/n_{H_1} \sim 10^{-8}$) compared with the values ($n_{H_2}/n_{H_1} \sim 10^{-10}$) for $L_X \lesssim 10^{27}$ erg s$^{-1}$ in IRAS 2A and $L_X \lesssim 10^{28}$ erg s$^{-1}$ in IRAS 4A. In addition, water ice abundances (see Fig. 4) are around 2×10^{-4} outside the water snowline for $L_X \lesssim 10^{30}$ erg s$^{-1}$, and they become much lower (below to $n_{H_2}/n_{H_1} \sim 10^{-8}$ at a few 10^5 au) for $L_X \gtrsim 10^{31}$ erg s$^{-1}$. We conclude that photodesorption by external X-ray photons (e.g., Walsh et al. 2015; Cuppen et al. 2017; Dupuy et al. 2018) is important in this region (see also Sects. 4.2 and 4.3). This X-ray effect is stronger in the IRAS 2A model since it has around a 3–6 times lower density and thus higher X-ray fluxes (see Fig. 2) than the IRAS 4A model. The lower density in the IRAS 2A also decreases the efficacy of two-body ion-molecule reactions (see Appendix A where we demonstrate the effect of density only on the chemistry). Water gas abundances at $r \gtrsim 10^4$ au are also affected by strong X-ray fluxes, although $\xi_{H^+}(r)$ is smaller than $\xi_{H}(r)$ in these regions. This occurs because at $r \gtrsim 10^4$ au the rates of the X-ray-induced photodesorption of water ice are around 10^3 times higher than those of cosmic-ray-induced photodesorption, and much higher ($\gtrsim 10^{10}$ times) than that of thermal desorption and cosmic-ray-induced (thermal) desorption. The chemical model adopted by Stäuber et al. (2005, 2006) did not include non-thermal desorption processes, and thus they did not find this dependence of the gaseous water abundances on X-ray fluxes outside the water snowline.

Inside the water snowline ($T_{gas} > 10^2$ K, $r < 10^2$ au), for $L_X \lesssim 10^{29}$ erg s$^{-1}$ in IRAS 2A and $L_X \lesssim 10^{30}$ erg s$^{-1}$ in IRAS 4A, the gas maintains high water abundances of 10^{-8}, and H$_2$O is the dominant oxygen carrier along with CO. On the other hand, for $L_X \gtrsim 10^{30}$ erg s$^{-1}$ in IRAS 2A and $L_X \gtrsim 10^{31}$ erg s$^{-1}$ in IRAS 4A, water gas abundances become much lower just inside the water snowline ($T \sim 100$–250 K, below to $n_{H_2}/n_{H_1} \sim 10^{-8}$–10$^{-7}$) and in the innermost regions ($T \sim 250$ K, $n_{H_2}/n_{H_1} \sim 10^{-6}$).

Within the water snowline water sublimates from the dust-grain surfaces into the gas phase. According to Stäuber et al. (2005, 2006), van Dishoeck et al. (2013, 2014) and Walsh et al. (2015), in the presence of X-rays, gas-phase water in this region is mainly destroyed with X-ray-induced photodissociation (H+OH), and ion-molecule reactions (e.g., with HCO$^+$, H$^+$, H$_3^+$, and He$^+$). For $L_X \gtrsim 10^{30}$ erg s$^{-1}$ in IRAS 2A and $L_X \gtrsim 10^{36}$ erg s$^{-1}$ in IRAS 4A, the X-ray ionization rates $\xi_{H}(r)$ are higher than our adopted cosmic ray ionization rate $\xi_{CR}(r) = (1.0 \times 10^{-17}$ s$^{-1}$) within the water snowline (see Fig. 2). Thus, these processes are important to explain the dependence on X-ray fluxes and number densities within the water snowline. Stäuber et al. (2006) discussed that these ion-molecule reactions are more effective than X-ray-induced photodissociation, with resulting water gas abundances varying by less than 15% if they ignored the X-ray-induced photodissociation. In our calculations, we also confirm that the reaction rates of these ion-molecule reactions are higher than those of the X-ray-induced photodissociation leading to H+OH, and that the former reactions become more important compared with the latter reaction as the gas densities become higher (see also Appendix A).

At $r \sim 60$ au and for $L_X = 10^{32}$ erg s$^{-1}$ in the IRAS 2A model, the water gas abundance and n_{H_2}/n_{H_1} are 1.4×10^{-7} and 5.9×10^1 cm$^{-3}$ at $r = 6$ yr, respectively, and the HCO$^+$ gas abundance and n_{H_2O}/n_{H_1} are 9.8×10^{-9} and 4.0×10^7 cm$^{-3}$ at $r = 10^6$ yr, respectively. On the basis of these values, the rate coefficient of the ion-molecule reaction with H$_2$O+HCO$^+\rightarrow$CO+H$_2$O$^+$, k_1, is $\sim 3.7 \times 10^{-9}$ cm3 s$^{-1}$ (Adams et al. 1978), and the reaction rate, $R(1) = k_1 n_{H_2O} n_{HCO^+}$, is $\sim 8.7 \times 10^7$ cm$^{-3}$ s$^{-1}$. In contrast, the rate coefficient of X-ray-induced photodissociation leading to H+OH, k_2, is $\sim 6.6 \times 10^{-11}$ s$^{-1}$ (Grelet al. 1989), and the reaction rate, $R(2) = k_2 n_{H_2O}$, is $\sim 5.1 \times 10^9$ cm$^{-3}$ s$^{-1}$.

We note that for $L_X \gtrsim 10^{33}$ erg s$^{-1}$ the abundances of HCO$^+$ within the water snowline ($\lesssim 10^{-6}$, see Sect. 3.3) are higher than those of other molecular ions which are important to maintain water gas destruction such as He$^+$ (\lesssim 10$^{-6}$). This makes HCO$^+$ the most important destructor of H$_2$O in highly ionized regions.

In the innermost high-temperature region ($T_{gas} \sim 250$ K) the following two-body reaction with the reaction barrier of 1736 K (Oldenberg et al. 1992),

$$\text{OH} + \text{H}_2 \rightarrow \text{H} + \text{H}_2\text{O},$$

becomes more efficient, and thus water gas abundances become relatively high ($n_{H_2}/n_{H_1} \sim 10^{-5}$) even in the highest X-ray flux cases ($L_X = 10^{33}$ erg s$^{-1}$). As Stäuber et al. (2005, 2006) noted, X-ray destruction processes are more effective in lower-density models.

3.2. Molecular and atomic oxygen fractional abundances

Figure 5 presents the radial profiles of the fractional abundances of gaseous molecular oxygen n_{O_2}/n_{H_1} and atomic oxygen n_{O}/n_{H_1} in IRAS 2A and IRAS 4A envelope models, for the various X-ray luminosities. The figure shows that the O$_2$ abundances at $r \lesssim 10^4$ au (IRAS 2A) and $r \lesssim 6 \times 10^4$ au (IRAS 4A), and the O abundance at $r \lesssim 10^4$ au (within each snowline position) as X-ray luminosities increase. Both molecular and atomic oxygen are very volatile ($E_{des}(O) = 1660$ K and $E_{des}(O_2) = 898$ K) compared with H$_2$O ($E_{des}(H_2O) = 4880$ K), thus their snowline positions are located in the outer envelopes ($r > 5 \times 10^4$ au).

Inside the water snowline, both molecular and atomic oxygen abundances are much lower ($\lesssim 10^{-6}$) in the cases n_{HCO^+} is the number density of HCO$^+$, and we obtain the value in Sect. 3.3 and Fig. 6.
of low X-ray luminosities ($L_X \lesssim 10^{28} \text{ erg s}^{-1}$ in IRAS 2A and $L_X \lesssim 10^{29} \text{ erg s}^{-1}$ in IRAS 4A). In contrast, for moderate X-ray luminosities ($L_X \sim 10^{29} \text{ erg s}^{-1}$ in IRAS 2A and $L_X \sim 10^{30} \text{ erg s}^{-1}$ in IRAS 4A) and high X-ray luminosities ($L_X \gtrsim 10^{30} \text{ erg s}^{-1}$ in IRAS 2A and $L_X \gtrsim 10^{31} \text{ erg s}^{-1}$ in IRAS 4A), their abundances become larger, and reach about $\sim 5 \times 10^{-5} - 10^{-4}$ with $L_X \gtrsim 10^{31} \text{ erg s}^{-1}$. Compared with the water gas abundances, both molecular and atomic oxygen have
Fig. 5. Radial profiles of the gaseous fractional abundances of molecular oxygen $n_{\text{O}_2}/n_{\text{H}}$ (top panels) and atomic oxygen $n_{\text{O}}/n_{\text{H}}$ (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.

opposite dependence on X-ray fluxes. Thus, the identity of the main volatile oxygen carrier in the inner regions is very sensitive to the X-ray flux from the central protostar (see also Sect. 4.1). In Sects. 3.2–3.7 and 4.1, and Appendices C, D, and E, we adopted the same definition for the values of low, moderate, and high X-ray luminosities.

According to Woitke et al. (2009) and Walsh et al. (2015), in the presence of X-rays, atomic oxygen is mainly produced by X-ray-induced photodissociation of OH and CO. OH is efficiently produced by X-ray-induced photodissociation and fragmental photodesorption of H$_2$O (see Sect. 3.4), and thus the O abundance increases as X-ray fluxes become larger. In addition, as also discussed in Walsh et al. (2015) and Eistrup et al. (2016), molecular oxygen is formed in the gas-phase via the reaction

$$\text{O} + \text{OH} \rightarrow \text{O}_2 + \text{H},$$

(12)

and is destroyed via photodissociation and reactions with C and H to yield CO and OH, respectively. We note that reaction (12) is a barrierless neutral-neutral reaction and has a negligible temperature dependence (Carty et al. 2006; Taquet et al. 2016b). The O and OH gas abundances both increase as the X-ray fluxes become larger, and thus the O$_2$ gas abundances become higher, especially in the inner warm envelope where water is sublimated from dust grains.

3.3. HCO$^+$ fractional abundances

The top panels of Fig. 6 show the radial profiles of the HCO$^+$ fractional abundances $n_{\text{HCO}^+}/n_{\text{H}}$ in IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. According to our model, the HCO$^+$ abundances at $r \gtrsim 10^3$ au ($\sim 10^{-9}$–10^{-8} for IRAS 2A, and $\sim 10^{-10}$–10^{-9} for IRAS 4A) do not change with different X-ray luminosities. This is consistent with the input assumption that cosmic-ray ionization dominates at these radii (see Fig. 2 and Sect. 4.6).

The HCO$^+$ abundances at $r \lesssim 10^3$ au are affected by strong X-ray fluxes. For low X-ray luminosities, HCO$^+$ abundances drop in the inner envelope, and reach $\lesssim 10^{-11}$ within the water snowline, due to the efficient destruction by water (see below). In contrast, for high X-ray luminosities they become higher in the inner envelope, and reach more than 10^{-8} (for IRAS 2A) and 10^{-10} (for IRAS 4A) within water snowline. The overall HCO$^+$ abundances are higher and X-ray effects are also stronger in the IRAS 2A model, since it has around 3–6 times lower densities and thus higher X-ray fluxes than the IRAS 4A model has (see Figs. 1 and 2, and Appendix A).

The cation HCO$^+$ is considered to be a chemical tracer of the water snowline since its most abundant destroyer in warm dense gas is water via the following reaction (Jørgensen et al. 2013; Visser et al. 2015; van ’t Hoff et al. 2018a; Hsieh et al. 2019; Lee et al. 2020; Leemker et al. 2021):

$$\text{H}_2\text{O} + \text{HCO}^+ \rightarrow \text{CO} + \text{H}_3\text{O}^+. \quad (13)$$

Thus, a strong decline in HCO$^+$ (and its isotopologue H13CO$^+$) is expected within the water snowline. van ’t Hoff et al. (2018a) conducted spherically symmetric physical-chemical modeling using the same IRAS 2A temperature and number density model that we adopt (see Sect. 2.1.1 and Fig. 1). Their gas-grain chemical model included gas-phase cosmic-ray-induced reactions, but
Fig. 6. Radial profiles of the gaseous fractional abundances of HCO\(^+\) \(n_{\text{HCO}^+}/n_{\text{H}}\) (top panels) and OH \(n_{\text{OH}}/n_{\text{H}}\) (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.

3.4. OH fractional abundances

The bottom panels of Fig. 6 show the radial profiles of the OH gas fractional abundances \(n_{\text{OH}}/n_{\text{H}}\) in IRAS 2A (left panel) and IRAS 4A (right panel) envelope models, for the various X-ray luminosities. The OH gas abundances increase at \(r \lesssim 10^4\) au as values of X-ray luminosities become larger. For low X-ray luminosities, the OH gas abundances are around \(10^{-9} - 10^{-8}\) at \(r \gtrsim 10^5\) au, and become lower in the inner envelopes (\(\sim 10^{-10} - 10^{-9}\) at \(r \sim 10^2\) au, and \(\sim 10^{-12} - 10^{-11}\) at the inner edge). For moderate X-ray luminosities, the OH gas abundances become higher in the inner envelope, and reach more than \(10^{-8}\) within the water snowline. In addition, for high X-ray luminosities, the OH gas abundances are much higher at \(r \sim 10^2 - 10^4\) au (\(\lesssim 10^{-6}\)), and become a bit lower (\(\lesssim 10^{-8}\)) around and just inside the water snowline (\(\lesssim 10^2\) au).

OH is efficiently produced by X-ray-induced photodissociation of H\(_2\)O gas and fragmental photodesorption of H\(_2\)O ice (see also Sect. 2.2.2), thus the OH gas abundances increase as the X-ray flux increases (see Sect. 3.1 and Fig. 3). The former X-ray-induced photodissociation reaction is dominant within the water snowline, whereas the fragmental photodesorption reaction is dominant outside the water snowline where a large amount of water ice is present on the dust-grain surface. For example, at \(r \sim 480\) au and \(L_X \approx 10^{32}\) erg s\(^{-1}\) in the IRAS 2A model, the rate coefficient of the former X-ray-induced photodissociation reaction, \(k_3\), is \(\sim 5.6 \times 10^{-13}\) s\(^{-1}\) (Gredel et al. 1989; Heays et al. 2017), and the reaction rate, \(R(3) = k_3 n_{\text{H}_2\text{O}}\), is \(\sim 1 \times 10^{-17}\) cm\(^3\) s\(^{-1}\) at \(t = 10^5\) yr. In contrast, the rate coefficient of the latter photodesorption reaction, \(k_4\), is \(-1.9 \times 10^{-9}\)
Fig. 7. Radial profiles of methanol gas and ice fractional abundances $n_{\text{CH}_3\text{OH}}/n_{\text{H}}$ (top panels) and $n_{\text{CH}_3\text{OH,ice}}/n_{\text{H}}$ (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.

(Öberg et al. 2009b; Walsh et al. 2015, see also Sect. 2.2.2), and the reaction rate, $R(4) = k_4 n_{\text{H}_2\text{O,ice}}$, is $\sim 1 \times 10^{-9} \text{cm}^3 \text{s}^{-1}$ at $t = 10^3 \text{yr}$. As discussed in Sects. 3.1 and 3.2, atomic oxygen is mainly produced by X-ray-induced photodissociation of OH, and molecular oxygen is produced from OH in the gas phase (O+OH). Therefore, for high X-ray luminosities, the OH gas abundances decrease around and inside the water snowline where molecular and atomic oxygen abundances are high ($\sim 10^{-4}$).

3.5. CH_3OH fractional abundances

Figure 7 shows the radial profiles of the methanol gas fractional abundances $n_{\text{CH}_3\text{OH}}/n_{\text{H}}$ and ice fractional abundances $n_{\text{CH}_3\text{OH,ice}}/n_{\text{H}}$ in IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. According to Table 2, the binding energy of CH$_3$OH is somewhat lower than that of H$_2$O ($E_{\text{des}}(\text{CH}_3\text{OH}) = 3820 \text{ K}$ and $E_{\text{des}}(\text{H}_2\text{O}) = 4880 \text{ K}$), and the CH$_3$OH snowline position ($\sim 2 \times 10^2 \text{ au}$) is located outside the water snowline ($\sim 10^2 \text{ au}$). Thus, CH$_3$OH is thought to probe the $\gtrsim 100 \text{ K}$ region in hot cores (Nomura & Millar 2004; Garrod & Herbst 2006; Herbst & van Dishoeck 2009; Taquet et al. 2014), and it also provides an outer limit to the water snowline position in protostellar envelopes (e.g., Jørgensen et al. 2013; van’t Hoff et al. 2018b; Lee et al. 2019, 2020).

The CH$_3$OH abundances within $r \leq 200 \text{ au}$ decrease as the values of X-ray luminosities become larger. Outside the CH$_3$OH snowline the CH$_3$OH gas abundances are around 10^{-12}--10^{-9} with various X-ray fluxes. Within the CH$_3$OH and H$_2$O snowlines, for low X-ray luminosities, the CH$_3$OH gas abundances are around 10^{-7}--10^{-6}. In contrast, for high X-ray luminosities, the CH$_3$OH gas abundances decrease and reach below 10^{-16} inside the water snowline.

According to previous studies (e.g., Tielens & Hagen 1982; Watanabe & Kouchi 2002; Cuppen et al. 2009; Fuchs et al. 2009; Drozdovskaya et al. 2014; Furry & Aikawa 2014; Walsh et al. 2016, 2018; Bosman et al. 2018b; Aikawa et al. 2020), the main pathway to form methanol ice on or within icy mantles of dust grains is CO hydrogenation. Drozdovskaya et al. (2014) discussed the methanol related chemistry both in gas and ice phases, and gas-phase methanol is supplied by the desorption of CH$_3$OH ice. In our modeling, fragmental X-ray-induced photodesorption reactions are included (see Sect. 2.2.2 of this paper and, e.g., Bertin et al. 2016), and the photofragments of CH$_3$OH (e.g., CH$_3$, CH$_2$OH, CH$_3$O) will lead to larger and more complex molecules with grain-surface reactions (e.g., Chuang et al. 2016; Drozdovskaya et al. 2016). The gas-phase production via ion-molecule reactions is considered inefficient (Charnley et al. 1992; Garrod & Herbst 2006; Geppert et al. 2006). In the presence of X-rays, gas-phase CH$_3$OH and other complex organic molecules (COMs) are mainly destroyed by X-ray-induced photodissociation in the inner envelopes (e.g., Garrod & Herbst 2006; Öberg et al. 2009b; Drozdovskaya et al. 2014; Taquet et al. 2016a). Therefore, CH$_3$OH is not predicted to be an efficient tracer of the warm inner envelope and the water snowline position for moderate and high X-ray luminosities. The X-ray
ionization rates $\xi_X(r)$ where CH$_2$OH loses its efficacy as a water snowline tracer are $\geq 10^{-17}$ s$^{-1}$ (see Fig. 2).

3.6. IRAS 4A subgrid envelope models

In Appendix B, Fig. B.1 shows the radial profiles of H$_2$O, O$_2$, O, OH, HCO$^+$, and CH$_3$OH gas fractional abundances in the IRAS 4A envelope models, with X-ray luminosities between $L_X = 10^{28}$ and 10^{31} erg s$^{-1}$. We plot these subgrid model profiles since there is a large jump in abundances in this X-ray luminosity range (see Figs. 3–7). For the abundance profiles of H$_2$O, HCO$^+$, OH, and CH$_3$OH gas, between 10^{28} and 2×10^{30} erg s$^{-1}$ seems to be the clear boundary. In comparison, the abundance profiles of O$_2$ and O gas gradually increase in the inner region as the values of L_X increase from 10^{30} to 60×10^{30} erg s$^{-1}$.

3.7. Fractional abundances of other dominant oxygen-, carbon-, and nitrogen-bearing molecules

In Figs. C.1, C.2, D.1, and E.1 we show the radial fractional abundances of other dominant oxygen-, carbon-, and nitrogen-bearing molecules (CO$_2$, CO, CH$_4$, C$_2$H, HCN, NH$_3$, and N$_2$) for the various X-ray luminosities. According to these figures, as the X-ray flux increases, the fractional abundances of gas-phase CH$_4$, HCN, and NH$_3$ decrease within their own snowline positions. The gas-phase CO$_2$ abundances increase at $\geq 3 \times 10^2$ au (outside the CO$_2$ snowline) as the X-ray fluxes become larger. At $r \leq 3 \times 10^2$ au and for low and moderate X-ray luminosities the CO$_2$ gas abundance increases as the X-ray fluxes become larger, and they reach $\sim 10^{-3}$ for moderate X-ray luminosities. In contrast, they decrease for high X-ray luminosities ($<10^{-6}$). In addition, the radial CO and N$_2$ abundance profiles are constant for the various X-ray luminosities, and they are the dominant carbon and nitrogen carriers under the strong X-ray fields. The dependence of radial C$_2$H gas fractional abundances on X-ray fluxes are much smaller than other dominant molecules. In Appendices C, D, and E more details about the radial abundance profiles are described.

4. Discussion

4.1. Dominant oxygen carriers

Figure 8 shows the radial profiles of percentage contributions of the dominant oxygen-bearing molecules (CO, H$_2$O, O, O$_2$, and CO$_2$) to the total elemental oxygen abundance ($=3.2 \times 10^{-4}$) in the IRAS 2A envelope model and the IRAS 4A envelope model at the various assumed X-ray luminosities ($L_X = 10^{28}$, 10^{30}, and 10^{32} erg s$^{-1}$). Figure 9 shows the pie charts of the percentage contributions of the dominant oxygen-bearing molecules at $r = 60$ au ($T_{gas} \sim 150$ K, inside the water snowline) in the IRAS 2A and IRAS 4A envelope models. Table F.1 in Appendix F shows the fractional abundances of major oxygen-bearing molecules at $r = 60$ au in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities, and their percentage contributions. We note that O$_2$ and CO$_2$ include two oxygen atoms per molecule, and thus the percentage contributions are twice as high as those of CO, H$_2$O, and O when they have same fractional abundances with respect to hydrogen nuclei. On the basis of Figs. 8 and 9, and Table F.1, for low X-ray luminosities the H$_2$O and CO molecules are the dominant oxygen carriers (>90%), both in gas and ice. The percentage contributions of H$_2$O gas and
ice are $\gtrsim 60\%$, and that of CO gas and ice are $\gtrsim 30\%$ throughout the envelopes.

As the X-ray fluxes increase, the abundances of H$_2$O gas decrease at $r \lesssim 10^2$ au, and those of H$_2$O ice also decrease just outside the water snowline ($r \gtrsim 10^2$ au) where the X-ray-induced photodesorption is considered to be efficient (see also Sect. 3.1). Moreover, as the X-ray fluxes increase, the abundances of O$_2$ and O gas increase in the inner envelopes (inside and just outside the water snowline, see also Sect. 3.2). For high X-ray luminosities, the water gas abundances at $r \lesssim 10^2$ au become much smaller ($\gtrsim 10^{-6}$), and O$_2$ and O gas are the dominant oxygen carriers along with CO at $r \lesssim 10^2$ au. In these cases, the percentage contributions of O$_2$, O, and CO at these radii are $\approx 40\%$, $\leq 20\%$, and $\gtrsim 40\%$, respectively. In the outer envelopes where the X-ray-induced photodesorption of water is not efficient, H$_2$O ice and CO gas and ice molecules are still dominant oxygen carriers. In addition, the percentage contributions of CO$_2$ gas or ice are around 10–40\% for moderate X-ray luminosities and around 10–20\% for high X-ray luminosities in the regions where the contributions of O$_2$, O, and CO at these radii are similar. As discussed in Sect. 3.7 and Appendix C, CO$_2$ gas abundances at $r \lesssim 3 \times 10^2$ au are highest (up to $\sim 10^{-5}$–10^{-4}) for moderate X-ray luminosities. The outer edge of the region where X-ray-induced photodesorption of water is efficient spreads out from $r \sim 10^2$ au to a few $\times 10^2$ au as the values of L_X become larger.

On the basis of the our calculations and the discussion above, in order to estimate the total oxygen abundances in the inner envelopes of protostars under the various X-ray luminosities, not only CO and H$_2$O line observations, but also O$_2$ and O, and CO$_2$ line observations are important.

However, as discussed in Sect. 4.5, O$_2$ line observations are very different and only the 16O$_2$/18O lines can be observed with ALMA. The fine structure lines of O are available only at far-infrared wavelengths where dust opacity precludes probing the inner regions in the low-mass protostellar envelopes (see also Sect. 4.5).

In addition, because of the lack of a permanent dipole moment, CO$_2$ can only be observed using ro-vibrational absorption or emission lines in the near- and mid-infrared wavelengths (Boonman et al. 2003; Bosman et al. 2017). These lines are included in the wavelengths coverage of James Webb Space Telescope (JWST), and it is possible to probe the CO$_2$ abundances in the outer envelopes around low-mass protostars through these line observations with JWST, as done for high-mass protostellar envelopes using Infrared Space Observatory (ISO; van Dishoeck et al. 1996; Boonman et al. 2003). For low-mass protostellar envelopes, a hint of gas-phase CO$_2$ lines has been obtained using Spitzer (see, e.g., Poteet et al. 2013). We note that high dust opacities in these wavelengths make it difficult to probe the CO$_2$ gas abundances directly in the inner envelopes around low-mass protostars. In Appendix C the dependence of CO$_2$ abundances on X-rays in protostellar envelopes are discussed in detail.

4.2. Comparison with observations for IRAS 4A

In the left panel of Fig. 10 the observational best-fit $n_{\rm H_2}/n_{\rm H}$ profile in the IRAS 4A envelope, obtained from van Dishoeck et al. (2021), is overplotted on our model profiles (see also Sect. 3.1 and the top right panel of Fig. 3). This profile is based on analysis of Herschel/HIFI spectra which mainly trace the cold outer part (Mottram et al. 2013; Schmalzl et al. 2014), with the modification of the inner ($T_{\rm gas} > 100$ K) water gas abundance from 10^{-4} to 3×10^{-6} (Persson et al. 2012, 2014, 2016). In the cold outer part of the envelope ($T_{\rm gas} < 10^2$ K, $r > 10^2$ au) the best-fit profile is consistent with our model profiles for $L_X \lesssim 10^{23}$ erg s$^{-1}$. In contrast, in the inner warm envelopes ($T_{\rm gas} \gtrsim 150$ K, $r \lesssim 60$ au), the gaseous water abundance in the best-fit profile is 3×10^{-6} (Persson et al. 2016), which suggests the possibility of efficient X-ray-induced water destructions of gas-phase water molecules with $L_X \gtrsim 10^{25}$ erg s$^{-1}$ in these regions. The reason for this discrepancy between the inner and outer envelope is not clear.

In the cold outer part of the envelope, X-ray-induced photodesorption of water molecules controls the water gas abundance. Therefore, if the rates of X-ray-induced photodesorption of water are much lower (e.g., $Y_{\rm des}(\text{H}_2\text{O}) \lesssim 10^{-5}$ molecules photon$^{-1}$) than our adopted values, the water gas abundance profiles in the cold outer part of the envelope for $L_X \gtrsim 10^{20}$ erg s$^{-1}$ are expected to be more similar to the observational profile. In Sect. 4.3, we discuss the rates of X-ray-induced photodesorption in detail by conducting additional model calculations.

The 3σ upper limit O$_2$ gas abundance with respect to H$_2$ obtained by Yıldız et al. (2013) is $\lesssim 6 \times 10^{-9}$ toward the entire envelope of IRAS 4A using Herschel/HIFI. They estimated that the observed O$_2$ gas abundance cannot be more than 10^{-6} for the inner warm region ($r \lesssim 10^2$ au). In the right hand panel...
of Fig. 10, the three model abundance profiles calculated in Yildiz et al. (2013) are overplotted on our model profiles (see also Sect. 3.2 and the top right panel of Fig. 5). The black solid line shows the drop gaseous O$_2$ abundance profile obtained using the best-fit CO abundance profile produced from the observed C18O line emission (Yildiz et al. 2012) and assuming O$_2$ has the same snowline position as CO (i.e., a constant O$_2$/CO abundance ratio). The blue dashed and the green dotted lines show the gaseous O$_2$ abundance profiles via their gas-grain modeling with different pre-collapse lifetimes of $t_{\text{pre}} = 8 \times 10^5$ yr and $t_{\text{pre}} = 10^6$ yr, respectively. As the basis for their gas-grain chemical network (Yildiz et al. 2013), the Ohio State University (OSU) gas-grain network Garrod et al. (2008) is used, which also included gas phase reactions, grain surface reactions, and thermal and non-thermal gas-grain interactions. Although the X-ray-induced reactions were not contained, the cosmic-ray-induced reactions were included in their calculations.

These three model profiles are consistent with the above observational upper limit in Yildiz et al. (2013) (the peak temperatures of the models and the observation are similar), and within the values of our chemical modeling at $r \gtrsim 10^{16}$ au. At $r \sim 10^{15} - 6 \times 10^{16}$ au, the gaseous O$_2$ abundance limit in the drop model is 10^{-7}, which is similar to the values in our model profiles for $L_X \lesssim 10^{30}$ erg s$^{-1}$ within one order of magnitude. In contrast, at $r < 6 \times 10^{16}$ au, the gaseous O$_2$ abundance in their gas-grain modeling are much lower ($>10^{-10}$) than that in our model profiles and that in the drop model.

We note that L_X of IRAS 4A is thought to be $\gtrsim 10^{30}$ erg s$^{-1}$ by comparing the results of our model calculations and the observationally estimated inner water gas abundances toward IRAS 4A (see discussions above). Thus, on the basis of the discussions about H$_2$O and O$_2$ in this subsection, L_X of IRAS 4A is suggested to be around 10^{30} erg s$^{-1}$, although the discrepancy of suggested L_X between the inner and outer envelope discussed above remains (see also Sect. 4.3). Since probing the O and CO$_2$ gas abundances in the inner envelopes is also difficult (see Sects. 4.1 and 4.5, and Appendix C), observationally obtaining the abundance profiles of other tracers, especially HCO$^+$ and CH$_3$OH, is important to investigate the effects of X-ray-induced chemistry and confine the values of L_X (see Sect. 4.6).

4.3. Rates of X-ray-induced photodesorption

In our standard model calculations, we do not include the photodesorption by UV photons generated internally via the interaction of secondary electrons produced by X-rays with H$_2$ molecules, although we include X-ray-induced photodissociation on dust grains (see also Sects. 2.2.2 and 2.2.3). Our adopted rates of X-ray-induced photodesorption are an approximation based on the UV photodesorption rates (see also Sect. 2.2.2), since experimental constraints for X-ray-induced photodesorption are limited (e.g., Walsh et al. 2014a). Recently, Dupuy et al. (2018) experimentally investigated X-ray-induced photodesorption rates of H$_2$O, O$_2$, and other related molecules. According to their experiments, photodesorption yields of H$_2$O and O$_2$ at 0.55 keV for a compact amorphous solid water ice at 15 K are 3.4×10^{-3} and 4.0×10^{-4} molecules photon$^{-1}$. The differences between these values and our adopted values are within a factor of a few (see Table 1).

In addition, Dupuy et al. (2018) simply extrapolated X-ray photodesorption yields for higher X-ray photon energies using the absorption cross sections of water gas. They estimated that the yields of H$_2$O at 15 K would be $<10^{-4}$ at >3 keV, although further experimental studies will be needed to obtain accurate values. If we estimate the local average X-ray-induced photodesorption yields (by multiplying the energy-dependent photodesorption yields by the local X-ray spectrum) on the basis of their simply extrapolated results, the yields would become lower in the outer envelope with larger values of N_H, where softer X-rays are more attenuated.

Here we conduct the two types of additional calculations which focus on the rates of X-ray-induced photodesorption and their effect on the chemistry. In the first additional model (see
In the outer part of the envelope, the effects of X-ray-induced photodesorption are decreased relative to the previous case. In the case of O and OH (see Sect. 3.2). For other molecules (the secondary (indirect) X-ray-induced photodesorption, see Figs. G.1 and G.2), we also switch off the direct X-ray-induced photodesorption (see also Fig. G.3). In the top left panel, the observational best-fit H$_2$O gas abundance profile obtained in van Dishoeck et al. (2021) is overplotted with the black solid line (see also Fig. 10). In the bottom left panel, the three model O$_2$ gas abundance profiles obtained in Yildiz et al. (2013) are overplotted (see also Fig. 10).

Figs. G.1 and G.2), we include the photodesorption by UV photons generated internally via the interaction of secondary electrons produced by X-rays with H$_2$ molecules. We scale the cosmic-ray-induced photon flux (107 photons cm$^{-2}$ s$^{-1}$, Walsh et al. 2014a) by the total ionization rate (cosmic rays plus X-rays) relative to the cosmic-ray ionization rate only, and use the revised value in estimating the photodesorption rates. According to our calculations (see Figs. G.1 and G.2), the effects of additional secondary (indirect) X-ray-induced photodesorption is marginal (the abundances are changed by $<$1%). The direct photodesorption by X-ray photons is the dominant process in our calculations.

Next, in the second additional model (see Figs. 11 and G.3), we switch off the direct X-ray-induced photodesorption and include the secondary (indirect) X-ray-induced photodesorption only. Through this calculation, we can also investigate the impact when the rates of the direct X-ray-induced photodesorption are much smaller than our originally adopted values. As is seen in Figs. 11 and G.3, the effects of X-ray-induced photodesorption are decreased relative to the previous case. In the case of H$_2$O, the gas-phase abundances outside the water snowline for L$_X$ \geq 1030 erg s$^{-1}$ become around two orders of magnitude smaller than those in our standard model and the first additional model. In addition, in the outer part of the envelope, the observational best-fit profile of H$_2$O gas is now roughly consistent with the models with L$_X$ \leq 1028 erg s$^{-1}$. We note that in cases of our standard model calculations (see Sect. 4.2), the best-fit profile is consistent with model profiles for L$_X$ \leq 1028 erg s$^{-1}$ in the outer region, whereas with those for L$_X$ $> 10^{30}$ erg s$^{-1}$ in the inner region. Thus, lower rates (e.g., γ_{des}(H$_2$O) \leq 10$^{-3}$ molecules photon$^{-1}$) of direct X-ray-induced photodesorption bring the models more in line with the observed abundance profiles, which calls into question whether the direct X-ray-induced photodesorption rates are overestimated. We note that the OH gas abundances at $r \sim 10^{-2}$–10$^{-6}$ au for L$_X$ $> 10^{30}$ erg s$^{-1}$ become 1–2 orders of magnitude lower than those in our standard model and the first additional model, since OH is efficiently produced by X-ray-induced photodissociation of H$_2$O gas and fragmental photodesorption of H$_2$O ice (see also Sect. 3.4). In addition, O$_2$ gas abundances at $r \sim 10^{-2}$–10$^{-4}$ au for L$_X$ $> 10^{30}$ erg s$^{-1}$ are up to ten times lower since O$_2$ is formed in the gas-phase of O and OH (see Sect. 3.2). For other molecules shown in Fig. G.3, the differences in abundances between the standard model and the second additional model are much smaller than those in H$_2$O, OH, and O$_2$.

Future experimental and theoretical studies over a wider X-ray energy range are needed to understand how X-ray-induced photodesorption rates behave as a function of the X-ray
energy spectrum. X-ray-induced photodesorption yields are also expected to vary for different ice composition. Basalgé et al. (2021a,b) recently investigated the X-ray-induced photodesorption yields of CH$_3$OH experimentally, and they estimated that the intact yields for mixed methanol-water ices would be more than around two orders of magnitude smaller than those for pure methanol ices.

4.4. Model assumptions for chemistry

In our adopted chemical reaction network (see Sect. 2), the X-ray-induced and cosmic-ray-induced photodissociation of H$_2$O in both gas and ice is the following (McElroy et al. 2013):

\[
\text{H}_2\text{O} + h\nu \rightarrow \text{OH} + \text{H}. \tag{14}
\]

According to van Harrevelt & van Hemert (2008) and Heays et al. (2017), however, there is another route of photodissociation of H$_2$O:

\[
\text{H}_2\text{O} + h\nu \rightarrow \text{O} + \text{H}_2/\text{2H}. \tag{15}
\]

Heays et al. (2017) calculated the photodissociation branching ratio of H$_2$O using various radiation fields as OH/O \sim 3, although it depends on wavelength.

In order to investigate the impacts of this photodissociation branching ratio on the abundances of H$_2$O and related molecules, in Figs. 12 and H.1 (see Appendix H) we show the gas-phase abundance profiles of H$_2$O, O$_2$, O, and OH, which are calculated assuming the extreme case that the product of H$_2$O photodissociation is 100% atomic oxygen, unlike our standard model (100% OH) (see also Fig. H.1). The orange double-dashed dotted lines and brown dashed lines show those of our test calculations assuming that the product of H$_2$O photodissociation is 100% atomic oxygen, unlike our standard model (100% OH) (see also Fig. H.1). The orange double-dashed dotted lines and red dotted lines show those of our test calculations assuming the smaller $E_{\text{des}}(j)$ for atomic oxygen (=800 K) than that in our fiducial model (=1660 K) (see also Fig. H.2). In the top left panel, the observational best-fit H$_2$O gas abundance profile obtained in van Dishoeck et al. (2021) is overplotted with the black solid line (see also Fig. 10). In the top right panel the three model O$_2$ gas abundance profiles obtained in Yıldız et al. (2013) are overplotted (see also Fig. 10).
measurements (He et al. 2014; He & Vidali 2014), Taquet et al. (2016b) and Eistrup & Walsh (2019) adopted similar value of $E_{\text{diss}}(O)$. However, some of other recent chemical models (e.g., Eistrup et al. 2016; Bosman et al. 2018b) adopted the older estimated value of 800 K, which is around two times smaller than our adopted values. This value of 800 K has been widely used in many chemical models (e.g., Tielens & Hagen 1982; Hasegawa et al. 1992; Garrad & Pauly 2011), but He et al. (2014) pointed out that it has no strong theoretical derivation and no experimental confirmation.

In order to investigate the impacts of different binding energies of O on molecular abundances, in Figs. 12 and H.2 (see Appendix H) we show the gas-phase abundance profiles of H_2O, O_2, O, and OH, which are obtained from our test calculations assuming the lower $E_{\text{diss}}(O)$ (\approx800 K) than that in our fiducial model (\approx1660 K), and compare them with the profiles in our standard models (see also Figs. 3, 5, and 6). The O gas abundances increase by up to one order of magnitude at $r \sim (1 - 4) \times 10^5$ au than those in our standard model. In contrast, only for $L_X \lessapprox 10^{29}$ erg s$^{-1}$ the O$_2$ gas abundances decrease by factor of a few at $r \sim (1 - 4) \times 10^5$ au than those in our standard model. The OH and H$_2$O gas abundances are similar to those in our standard model.

4.5. H_2O, O_2, and O line observations for other protostars

On the basis of previous PdBI (NOEMA) and Herschel/HIFI observations (Persson et al. 2012, 2014; Visser et al. 2013), the water gas abundance is around 10^{-4} in the inner warm envelope and disk of IRAS 2A. In contrast, the water gas abundances in the inner envelopes and disks of IRAS 4A and 4B are lower by 1–3 orders of magnitude. Through recent ALMA observations, Jensen et al. (2019) estimated that the H_2O column densities in the warm inner envelopes around three isolated low-mass Class 0 protostars (L483, B335 and BHR71-IRSI) are a few $\times 10^{19}$ cm$^{-2}$, which is similar to that of IRAS 4B, and around ten times smaller than that of IRAS 2A (Persson et al. 2014). Compared with the results of our chemical modeling, the observational results of IRAS 2A are consistent with the profiles with $L_X \lessapprox 10^{29}$ erg s$^{-1}$. In contrast, the reported inner water gas abundances for IRAS 4A, IRAS 4B, and other objects (\sim10$^{-3}$ times lower than that for IRAS 2A) are close to the values of our chemical modeling with $L_X \gtrsim 10^{31}$ erg s$^{-1}$. Thus, X-ray-induced destruction processes can explain the lower water abundances in the inner envelopes of these objects.

Harsono et al. (2020) show that water vapor is not abundant in the warm envelopes and disks around Class I protostars, and upper limit values of the water gas abundance averaged over the inner warm disk with $T_{\text{gas}} > 100$ K are $\sim 10^{-7}$–10^{-5}. These lower water gas abundances might also be caused by efficient water gas destruction through X-ray-induced chemistry, in addition to locking up water in icy dust grains. Future detailed water line observations, for example using ALMA for more Class 0 and I objects with various X-ray luminosities, and chemical modeling with detailed physical structure models (e.g., disk+envelope, see also van Dishoeck et al. 2014, 2021; Furuya et al. 2017) will clarify the effects of X-ray-induced chemistry on water and other related molecules, and the water trail from protostellar envelopes to planet-forming regions in disks.

In low-mass protostar observations, only an upper limit and a tentative detection are reported for O_2 lines. This is partly because O_2 does not possess electric dipole-allowed rotational transition lines, and it possess only magnetic-allowed lines (Crownover et al. 1990). In addition to the report of an upper limit toward IRAS 4A using Herschel/HIFI (Yıldız et al. 2013) (see Sects. 1 and 4.2 of this paper), Taquet et al. (2018) recently performed a deep search for the ^{16}OH18O 234 GHz 2$_1$ – 0$_1$ line ($E_{\text{up}} = 11.2$ K) toward the inner envelope around a low-mass protostar IRAS 16293-2422 B with ALMA, and reported a residual emission at a 3σ level after subtraction of the contaminated two brighter transitions at ± 1 km s$^{-1}$. However, they considered the detection as tentative, since there is a velocity offset of 0.3–0.5 km s$^{-1}$ relative to the source velocity. Assuming that the ^{16}OH18O was not detected and using CH$_3$OH as a reference species, Taquet et al. (2018) obtained a [O$_2$]/[CH$_3$OH] abundance ratio $\lessapprox 2$, which is 3–4 times lower than that in comet 67P/Churyumov-Gerasimenko.

The strong far-infrared [O I] lines (such as the 3P$_1$–3P$_2$, 63.2 μm line) have been used as outflow and jet tracers in low-mass protostars (e.g., Karska et al. 2013; Nisini et al. 2015; Kristensen et al. 2017), but the inner regions in the protostellar envelopes cannot be probed using these lines because of high dust opacities at far-infrared wavelengths. Spectrally resolved [O I] lines profiles, which can be obtained using instruments such as SOFIA/GREAT, can probe the atomic oxygen abundances in the outer envelopes if the outflow can be properly disentangled (see also discussions in van Dishoeck et al. 2021).

4.6. HCO$^+$, CH$_3$OH, and other molecular line observations

On the basis of our chemical modeling for $L_X \gtrsim 10^{30}$–10^{31} erg s$^{-1}$, HCO$^+$ is not efficiently destroyed within the water snowline, and its abundances remain $\gtrsim 10^{-9}$ both inside and just outside the water snowline (see Sect. 3.3). In addition, CH$_3$OH is not thought to be an efficient tracer of the warm inner envelope and the water snowline position for $L_X \gtrsim 10^{30}$–10^{31} erg s$^{-1}$ (see Sect. 3.5). In these cases, the CH$_3$OH gas abundances are expected to be much lower (below 10^{-16}) than those with $L_X \lesssim 10^{29}$–10^{30} erg s$^{-1}$ ($\sim 10^{-17}$–10^{-16}). Thus, observationally obtaining the abundance profiles of HCO$^+$ (including its isotopologue H13CO$^+$) and CH$_3$OH is important to investigate the effects of X-ray-induced chemistry in protostellar envelopes.

van ’t Hoff et al. (2018a) observationally reported an increase in H13CO$^+$ emission just outside the water snowline in the IRAS 2A envelope. It is consistent with the profiles of our modeling with $L_X \lesssim 10^{29}$ erg s$^{-1}$ (see also Sect. 3.3). We note that observationally obtained inner water gas abundances are also consistent with our model profiles for $L_X \lesssim 10^{29}$ erg s$^{-1}$ (see Sect. 4.5).

van ’t Hoff et al. (2018b) and Lee et al. (2019) reported spatially resolved line images of CH$_3$OH and other COMs (complex organic molecules) with ALMA toward the disk around the embedded protostar V883 Ori, which is a well-known FU Orionis star (e.g., Cieza et al. 2016). They discussed that the radial extent of CH$_3$OH gas is around 100 au. In the FU Orionis type stars, sudden increases in the luminosity of the central star will quickly expand the snowline positions to larger radii, which provide good opportunities to study the abundances of COMs in the planet-forming materials (Lee et al. 2019).

Lee et al. (2020) obtained spatially resolved images of CH$_3$OH and H13CO$^+$ emission lines with ALMA toward the embedded protostar EC53, in which quasi-periodic emission was reported by the near-infrared monitoring observations (Hodapp et al. 2012) and the submillimeter James Clerk Maxwell Telescope (JCMT) monitoring survey (Herczeg et al. 2017; Yoo et al. 2017), which strongly suggests variable accretion rates. Its luminosities L_{bol} of 1.7–4.8 L_\odot (e.g., Evans et al. 2009) and envelope mass M_{env} of 0.86–1.25 (Lee et al. 2020) are similar to those in IRAS 2A and IRAS 4A (the differences are within a
factor of 4–5 times). This source is classified as Class I (Giardino et al. 2007), and \(L_X \) is around \(1 \times 10^{30} \) erg s\(^{-1}\), according to XMM-Newton X-ray observations (Preibisch 2003) and Chandra X-ray observations (Giardino et al. 2007). In this observation, the \(^{13} \)CO\(^+\) line emission is depleted near the continuum peak, where the CH\(_2\)OH line emission is present. The CH\(_2\)OH emission is more extended than the expected water snowline from the current luminosity of the central star, indicating previous outburst events. However, the derived CH\(_2\)OH gas abundance for EC 53 is two orders of magnitude lower than the CH\(_2\)OH abundance of \(\sim 10^{-5} \) for V883 Ori (Lee et al. 2019), despite the similar size of the methanol emitting region. Comparing with the profiles of our modeling, those observed profiles of \(^{13} \)CO\(^+\) and CH\(_2\)OH abundances for EC 53 can be explained if \(L_X \) is around \(3 \times 10^{30} – 10^{30} \) erg s\(^{-1}\), which is roughly consistent with the observed values of \(L_X \).

Hsieh et al. (2019) reported the detections of the HCO\(^+\) (3–2) line with ALMA toward the envelopes around 18 Class 0 and 11 Class I protostars in the Perseus molecular cloud, and also the detections of the CH\(_3\)OH 254.015 GHz (2_0,2 – 1,1_1) line toward six of the above sources in which the HCO\(^+\) line was detected. They discussed the four sources where the CH\(_3\)OH line was detected, and found that the measured HCO\(^+\) peak radii broadly agreed with the CH\(_3\)OH emission extents, except two Class 0 sources with very weak CH\(_3\)OH emission. In these two Class 0 objects (L1455-IRS4 and L1448-IRS2), both HCO\(^+\) and CH\(_3\)OH emissions have a similar peak position at the center. Our modeling would suggest that these two sources have strong X-ray emission, destroying H\(_2\)O and CH\(_3\)OH in the inner regions, leading to weak CH\(_3\)OH and strong HCO\(^+\) emission, while in the other sources the X-ray luminosities would be lower. This can be tested by independent determination of the X-ray luminosities for these sources, although observations of X-ray luminosities toward embedded Class 0 protostars are difficult (see Sect. 2.1.2).

CH\(_2\)OH and C\(_2\)H are the representative products of hot corino chemistry and warm carbon chain chemistry (WCCC) in star-forming cores, respectively (e.g., Sakai & Yamamoto 2013; Imai et al. 2016; Oya et al. 2016; Higuchi et al. 2018; Aikawa et al. 2020; Yang et al. 2021). As shown in Figs. 7 and D.1, the dependence of radial profiles of C\(_2\)H gas fractional abundances on X-ray fluxes are much smaller than those of CH\(_3\)OH gas fractional abundances, in the inner envelopes (\(r \leq 300 \) au). As the X-ray flux increases, the CH\(_3\)OH gas fractional abundances significantly decrease (from \(10^{-7} - 10^{-6} \) to \(< 10^{-15} \)) at \(r \leq 300 \) au, whereas the C\(_2\)H gas fractional abundances change within two orders of magnitude. Aikawa et al. (2020) investigated the physical conditions that affect the hot corino chemistry and WCCC, and described that the deficiency of COMs (including CH\(_3\)OH) in prototypical WCCC sources is hard to reproduce within their models. They discussed that the gas-phase destruction processes of CH\(_3\)OH and other COMs within several 10\(^3\) yr after sublimation from dust grains would be important (Charnley et al. 1992; Nomura et al. 2009; Taquet et al. 2016a). X-ray-induced destruction reactions discussed in this paper would help to destroy these molecules within the above timescale.

Recently, the line observations of CH\(_2\)OH and other molecules (including COMs and C\(_2\)H) with much higher spatial resolutions (\(\Delta r \approx \) several tens of au) have been conducted with ALMA and VLA toward disks and inner envelopes around Class 0 and I protostars (e.g., Sahu et al. 2019; Bianchi et al. 2020; De Simone et al. 2020, and FAUST\(^7\)). These detailed observations can also be used to constrain the effects of X-ray-induced chemistry on the abundance profiles of HCO\(^+\), CH\(_2\)OH, and other molecules. In addition, future molecular line observations (e.g., ngVLA\(^8\)) will also be helpful. They are expected to constrain the inner gas abundances of CH\(_2\)OH, other COMs (Oberg et al. 2018), HCO\(^+\), and NH\(_3\), which are also affected by X-ray-induced chemistry (see Appendix E and Zhang et al. 2018), creating a more complete picture of the oxygen chemistry and opening a window into the independent nitrogen chemistry. Moreover, since the dust opacities in the frequencies of ngVLA are smaller than those of ALMA (also see, e.g., De Simone et al. 2020), these observations will be useful to trace the inner gas abundances more precisely.

Particles are accelerated in shocks along the protostellar jets and on the protostellar surfaces, and they can enhance the cosmic-ray ionization rates in protostellar envelopes (e.g., Padovani et al. 2016). However, because of the differences in energies, they are much more transparent compared with X-rays, and they affect the ionization rates and thus the abundances of ion molecules (such as HCO\(^+\) and N\(_2\)H\(^+\)) not only in the inner regions, but also in the outermost regions, such as \(r > 10^3 \) au (Ceccarelli et al. 2014; Favve et al. 2017). Ceccarelli et al. (2014) reported a HCO\(^+\)/N\(_2\)H\(^+\) abundance ratio of approximately 3–4 in the outer envelopes (\(r > \) a few \(10^3 \) au) around the protostar OMC-2 FIR4 from Herschel observations, which was very low compared to that in other protostellar envelopes (\(\geq 10^2 \)). They suggested that the cosmic-ray ionization rate is around \(10^{-14} \) s\(^{-1}\), which is much higher than the average value in dense clouds (\(\sim 10^{-17} \) s\(^{-1}\), Umebayashi & Nakano 2009).

In addition, van ’t Hoff et al. (2018a) conducted a first-order approximation of the effect of cosmic-ray ionization rates on the HCO\(^+\) gas abundances in the outer envelopes by considering the main formation (CO+H\(_2\)) and destruction (HCO\(^+\) + e\(^-\)) reactions of HCO\(^+\) outside the water snowline. Assuming a steady state and similar abundances for HCO\(^+\) and electron (\(n_{\text{HCO}}/n_{\text{e}} \approx n_{\text{HCO}}/n_{\text{H}} \)), they obtained the following expression for the HCO\(^+\) gas densities \(n_{\text{HCO}} \) in the outer envelopes,

\[
 n_{\text{HCO}} = \sqrt{\frac{\xi_{\text{CR}} n_{\text{H}}}{k_{\text{s}}}},
\]

where \(k_{\text{s}} \) is the rate coefficient of the main destruction reaction of HCO\(^+\) + e\(^-\) (for more details, see Appendix B of van ’t Hoff et al. 2018a). Thus, with investigating the abundances of ion molecules such as HCO\(^+\) both the inner and outer regions, we could distinguish the effects of X-ray-induced ionization and cosmic-ray-induced ionization accelerated by protostellar jets, for example. According to our model calculations (\(\xi_{\text{CR}} = \) \(10^{-17} \) s\(^{-1}\)), the HCO\(^+\) abundances at \(r \geq 10^3 \) au are \(\sim 10^{-9} - 10^{-8} \) for IRAS 2A, and \(\sim 10^{-10} - 10^{-9} \) for IRAS 4A. Thus, if the HCO\(^+\) abundances at these radii are more than an order of magnitude higher, \(\xi_{\text{CR}} \) is estimated to be \(\geq 10^{-13} \) s\(^{-1}\).

We note that Bruderer et al. (2009) and Benz et al. (2016) offered an alternative explanation for enhanced HCO\(^+\), originating in the UV irradiated warm outflow cavity walls. Spatially resolved observations for HCO\(^+\) lines are needed to distinguish the scenarios.

4.7 Chemical evolution from envelopes to disks

In our chemical modeling we assume that the physical structures (especially the radial \(n_{\text{H}} \) and \(T_{\text{gas}} \) profiles) are constant throughout 10\(^3\) yr. However, the timescale of the main accretion phase

7 http://faust-alma.riken.jp
8 The next generation Very Large Array.
of protostars (Class 0-I) is around a few \(10^5\) yr (Dunham et al. 2014; Kristensen & Dunham 2018), and material in the envelopes moves inward (e.g., Visser et al. 2009, 2011; Harsono et al. 2015; Furuya et al. 2017). According to our calculations, for the highest \(X\)-ray luminosities of \(L_X \geq 10^{31}\) erg s\(^{-1}\), the \(X\)-ray-induced reactions in the inner envelopes proceed with shorter timescales of \(t < 10^3\) yr than the timescale of the main accretion phase, although the timescale of grain surface chemistry are longer \((t \gg 10^3\) yr, see also Yoneda et al. 2016). Aikawa et al. (2008, 2020) suggested that the infalling material passes through the region with \(T_{\text{gas}} \approx 10^{-10}\) K in several \(10^4\) yr, and fall into the central star and the disk \(\sim 10^2\) yr after they enter the region with \(T_{\text{gas}} > 10^4\) K. Therefore, the molecular abundances in the inner envelopes, especially in the innermost region, would be affected because of such inward accretion, unless they enter a rotating disk-like structure (Schöier et al. 2002).

In our chemical modeling of this paper, we assume that \(X\)-ray luminosities are constant throughout \(10^3\) yr. However, \(X\)-ray luminosities of central protostars and \(X\)-ray fluxes in surrounding envelopes are expected to change over time because protostar \(X\)-ray flares are the dominant \(X\)-ray source, and they occur repeatedly every 10 days (Takasao et al. 2019). In the presence of strong \(X\)-ray fluxes, water is considered to be efficiently destroyed on a very short timescale of \(t < 10^3\) yr (Stäuber et al. 2006) in the disks and the inner envelopes around protostars. Thus, repetition of sudden increase (and decrease) of \(X\)-ray luminosities would also affect molecular abundances in the disks and inner envelopes around Class 0 and I protostars.

Detailed chemical modeling with time-dependent physical structures of disks and envelopes around Class 0 and I protostars will be important in the future to understand the effects of \(X\)-ray-induced chemistry on the abundance profiles of water and related molecules in detail. We note that Cleeves et al. (2017) reported the time variation of the \(\text{H}^3\text{CO}^+\) \(J = 3–2\) line intensities in a Class II disk between three observational epochs, and they discussed that the enhancement of HCO\(^+\) abundance in the upper layer of the disk would be explained by \(X\)-ray driven chemistry during large \(X\)-ray flare events. Waggoner & Cleeves (2019) discussed that the day-scale impulsive increase and decrease in the \(\text{H}_2\text{O}\) gas abundances in the surfaces of Class II disks could be caused by the time dependent chemistry driven by \(X\)-ray flares.

According to our chemical modeling, \(X\)-ray-induced chemistry affects the abundances profiles of \(\text{H}_2\text{O}\) and other dominant molecules, such as O, O\(_2\), HCO\(^+\), CH\(_3\)OH, OH, CO\(_2\), CH\(_4\), HCN, and NH\(_3\). In the presence of strong \(X\)-ray fields (with \(L_X \geq 10^{30}–10^{31}\) erg s\(^{-1}\)), the abundances of \(\text{H}_2\text{O}\), CH\(_3\)OH, CH\(_4\), HCN, and NH\(_3\) significantly decrease in the inner envelopes around protostars, and CO, O\(_2\), O become the dominant oxygen carriers. In addition, on the basis of Figs. C.1–E.1, CO and N\(_2\) become the dominant carbon and nitrogen carriers under such strong \(X\)-ray fields. We note that the material in the protostellar envelopes accretes into disks, thus the molecular abundances in protostellar envelopes determine the initial abundances of chemical evolution in disks, where planet formation occurs (see also the recent review by Öberg & Bergin 2021). In many studies of chemical modeling in disks (e.g., Walsh et al. 2015; Bosman et al. 2018b), initial chemical abundances were assumed to be inherited from dark clouds, pre-stellar cores, and protostellar envelopes, and they are water rich, on the basis of previous observations (e.g., Visser et al. 2009, 2011; Boogert et al. 2015). However, whether the disk chemical evolution is started from initial abundance conditions of the chemical reset (by e.g., irradiation, accretion shocks) or the inheritance from the dark clouds and protostellar envelopes is an important question (e.g., Yoneda et al. 2016; Coutsou et al. 2020; Jørgensen et al. 2020; van’t Hoff et al. 2020; Öberg & Bergin 2021). Eistrup et al. (2016, 2018) and Notsu et al. (2020) discussed that the chemical abundances in Class II disks are strongly affected by ionization rates in disks and the adopted initial molecular abundances (inheritance or reset). In the presence of strong \(X\)-ray fields (with \(L_X \geq 10^{30}–10^{31}\) erg s\(^{-1}\)), the molecular abundances in protostellar envelopes are also altered from inheritance initial molecular abundances.

In future studies, the chemical modeling in disks with initial abundances which consider the effects of \(X\)-ray-induced chemistry discussed in this paper will be important to understand the chemical evolution history in disks and the chemical compositions of exoplanets (e.g., Notsu et al. 2020; Turrini et al. 2021).

5. Conclusions

We investigated the radial dependence of the abundances of water and related molecules on \(X\)-rays in Class 0 low-mass protostellar envelopes, and identify potential oxygen carriers other than water. We used a detailed gas-grain chemical reaction network including \(X\)-ray-induced chemical processes. Gas-phase reactions, thermal and non-thermal gas-grain interactions, and grain-surface reactions are included in our adopted chemical reaction network. For the physical structures of the Class 0 protostellar envelopes, we adopted two types of spherically symmetric radial gas temperature \(T_{\text{gas}}\) and molecular hydrogen number density \(n_H\) profiles for IRAS 2A and IRAS 4A in order to examine the effect of density differences on \(X\)-ray-induced chemistry. Our findings can be summarized as follows:

- Outside the water snowline (\(T_{\text{gas}} < 10^5\) K, \(r > 10^2\) au), if \(X\)-ray luminosities of the central protostars \(L_X\) are larger than \(10^{30}\) erg s\(^{-1}\), water gas fractional abundances are increased (up to \(n_{\text{H}_2}\text{O}/n_{\text{H}_2} \sim 10^{-8}–10^{-7}\)) compared with the values (\(n_{\text{H}_2}\text{O}/n_{\text{H}_2} \sim 10^{-10}\)) for \(L_X < 10^{30}\) erg s\(^{-1}\). In addition, water ice abundances are around \(2 \times 10^{-9}\) outside the water snowline for \(L_X \leq 10^{30}\) erg s\(^{-1}\), and they become much lower (below to \(n_{\text{H}_2}\text{O}\text{ice}/n_{\text{H}_2} \sim 10^{-8}\) at a few \(<10^2\) au) for \(L_X \geq 10^{30}\) erg s\(^{-1}\). \(X\)-ray-induced photodesorption of water ice affects this region. Since there are limited experimental constraints for \(X\)-ray-induced photodesorption rates, future theoretical and experimental studies for the \(X\)-ray-induced photodesorption over wider \(X\)-ray energy ranges are important.

- Inside the water snowline (\(T_{\text{gas}} > 10^2\) K, \(r < 10^2\) au), for \(L_X \leq 10^{29}–10^{30}\) erg s\(^{-1}\), water maintains a high abundance of \(\sim 10^{-4}\), and water and CO are the dominant oxygen carriers. For \(L_X \geq 10^{30}–10^{31}\) erg s\(^{-1}\), the water gas abundances significantly decrease just inside the water snowline (\(T_{\text{gas}} \sim 100–250\) K, down to \(n_{\text{H}_2}\text{O}/n_{\text{H}_2} \sim 10^{-8}–10^{-7}\)) and in the innermost regions (\(T_{\text{gas}} \sim 250\) K, \(n_{\text{H}_2}\text{O}/n_{\text{H}_2} \sim 10^{-6}\)). In the presence of strong \(X\)-ray fields, gas-phase water is mainly destroyed with the ion-molecule reactions and the \(X\)-ray-induced photodissociation. In our chemical modeling, the former ion-molecule reactions are dominant processes for the water gas destruction inside the water snowline. For \(L_X \geq 10^{29}–10^{30}\) erg s\(^{-1}\), the \(X\)-ray ionization rates \(\xi_X(r)\) are larger than our adopted cosmic ray ionization rate \(\xi_{\text{CR}}(r)\sim 1.0 \times 10^{-17}\) s\(^{-1}\) within the water snowline. In the innermost hot region water abundances become relatively high since the two-body water formation reaction (OH+H\(_2\)) becomes efficient.
As the X-ray fluxes become larger, the O$_2$ and O gas abundances become larger both inside and outside the water snowline. Inside the water snowline, the O$_2$ and O gas abundances are both much smaller ($<10^{-5}$) for $L_X \lesssim 10^{28}$–10^{29} erg s$^{-1}$. In contrast, for $L_X \gtrsim 10^{29}$$-10^{30}$ erg s$^{-1}$, their abundances become larger, and reach about 10^{-4} with $L_X \gtrsim 10^{31}$ erg s$^{-1}$. Compared with the water gas abundances, both O$_2$ and O gas abundances have opposite dependence on X-ray fluxes. For $L_X \gtrsim 10^{30}$$-10^{31}$ erg s$^{-1}$, O$_2$, O, and CO become the dominant oxygen carriers in the inner envelopes ($r \lesssim$ a few 10^2 au).

According to previous studies, the most abundant destroyer of HCO$^+$ in warm gas is water, and the radius of the CH$_3$OH snowline ($\sim 2\times 10^3$ au) is around two times larger than that of the water snowline ($\sim 10^2$ au). Thus, CH$_3$OH and HCO$^+$ (and also H3CO$^+$) gas lines have been used as good tracers of the water snowline. In our modeling, the HCO$^+$ and CH$_3$OH gas abundances respectively increase and decrease within the water snowline as the X-ray fluxes become larger. For $L_X \gtrsim 10^{30}$$-10^{31}$ erg s$^{-1}$, the HCO$^+$ abundances within the water snowline increase by four orders of magnitude, and reach more than $10^{-9}$$-10^{-10}$, which are similar to those outside the water snowline. In contrast, CH$_3$OH gas abundance in these radii decrease from $\sim 10^{-7}$$-10^{-6}$ to $\sim 10^{-16}$. Therefore, both HCO$^+$ and CH$_3$OH cannot be used as tracers of the water snowline position for $L_X \gtrsim 10^{30}$$-10^{31}$ erg s$^{-1}$. Observationally obtaining the abundance profiles of HCO$^+$, H3CO$^+$, and CH$_3$OH is important to investigate the effects of X-ray-induced chemistry in protostellar envelopes.

The gas-phase fractional abundances of OH and CO$_2$ increase in the outer envelope as the X-ray fluxes become larger. At $r <$ a few hundred au, for $L_X \lesssim 10^{29}$$-10^{30}$ erg s$^{-1}$, OH and CO$_2$ gas abundances increase as the X-ray fluxes become larger. CO$_2$ gas abundances are $\sim 10^{-5}$$-10^{-4}$ at $L_X \sim 10^{29}$$-10^{30}$ erg s$^{-1}$. In these cases CO$_2$ also becomes one of the dominant oxygen-bearing molecules, especially in the regions where the abundances of O$_2$ gas and H$_2$O are similar. However, OH and CO$_2$ gas abundances decrease for $L_X \gtrsim 10^{30}$$-10^{31}$ erg s$^{-1}$, and CO$_2$ gas abundances are $\lesssim 10^{-6}$ at $L_X \gtrsim 10^{31}$$-10^{32}$ erg s$^{-1}$.

As X-ray fluxes become large the fractional abundances of gas-phase CH$_3$, HCN, and NH$_3$ decrease within their own snowline positions. The radial CO and N$_2$ abundance profiles are constant for the various X-ray luminosities, and they are the dominant carbon and nitrogen carriers under the strong X-ray fields.

The effects of X-ray-induced chemistry are greater in the IRAS 2A model than those in the IRAS 4A model, which has 3–6 times higher densities.

Comparing the results of our modeling with the observationally obtained inner gas abundances of H$_2$O and H3CO$^+$, L_X of IRAS 2A is estimated to be $\lesssim 10^{29}$ erg s$^{-1}$. In addition, our models with $L_X \sim 10^{30}$ erg s$^{-1}$ would explain both the low inner water gas abundances and the upper limit values of O$_2$ gas abundances obtained by previous observations toward IRAS 4A. However, in the cold outer part of the envelope, the best-fit profile obtained from observations toward IRAS 4A is consistent with our model profiles for $L_X \lesssim 10^{28}$ erg s$^{-1}$. The discrepancy of suggested L_X between the inner and outer envelope remains unless the rates of direct X-ray-induced photodesorption of water are around two orders of magnitude lower than our adopted values. Since probing the O and CO$_2$ gas abundances in the inner envelopes is difficult, observationally obtaining the abundance profiles of other tracers, especially HCO$^+$ and CH$_3$OH, is important to investigate the effects of X-ray-induced chemistry and confine the values of L_X.

On the basis of our chemical modeling, X-ray-induced chemistry strongly affects the abundances of water and other related molecules (e.g., O$_2$, O, HCO$^+$, CH$_3$OH, CO$_2$, OH, CH$_3$, HCN, and NH$_3$) especially in the inner regions, and can explain the observed low water abundances in the inner protostellar envelopes. We find that gas-phase destruction of molecules by X-rays as well as X-ray-induced photodesorption processes are important. Future molecular line observations toward the disks and envelopes around low-mass protostars, for example using ALMA and ngVLA, will constrain the effects of X-ray-induced chemistry. In addition, it will be important to discuss how the X-ray-induced chemistry at protostar phases affect the initial abundances and chemical evolution in planet-forming disks.

Acknowledgements. We are grateful to Daniel Harsono, Umut A. Yıldız, Joseph C. Mottram, Merel L.R. van’t Hoff, and Lars E. Kristensen for giving us the data of temperature, number density, and water abundance profiles estimated from previous observations of Class 0 protostellar envelopes. We thank Shinzuke Takasao and Masanou M. Kitamoto for their important comments about X-ray fields in protostars. We are also grateful to Yuri Aikawa for her useful comments on chemical evolutions and to Nami Sakai for her comments on the possibility of future ngVLA observations. We thank the referee for important suggestions and comments. Our numerical studies were carried out on PC cluster at Center for Computational Astrophysics (CICA), National Astronomical Observatory of Japan (NAOJ), and on computer systems at Leiden Observatory, Leiden University. S.N. is grateful for support from JSPS (Japan Society for the Promotion of Science) Overseas Research Fellowships, RIKEN Special Postdoctoral Researcher Program (Fellowships), and MEXT/JSPS Grants-in-Aid for Scientific Research (KAKENHI) 20K22376, 20H05843, and 20H05847. C.W. acknowledges financial support from the University of Leeds and from the Science and Technology Facilities Council (grant numbers ST/R000549/1 and ST/000287/1). H.N. is supported by MEXT/JSPS Grants-in-Aid for Scientific Research (KAKENHI) 18H05441, 19K03910 and 20H01082, NAOJ ALMA Scientific Research grant No. 2018-10B, and FY2019 Leadership Program at NAOJ.

References

Aikawa, Y., Miyama, S. M., Nakano, T., & Umebayashi, T. 1996, ApJ, 467, 684
Aikawa, Y., Umebayashi, T., Nakano, T., et al. 1999, ApJ, 539, 705
Aikawa, Y., Wakelam, V., Garrod, R. T., et al. 2008, ApJ, 674, 984
Aikawa, Y., Wakelam, V., Hersant, F., et al. 2012, ApJL, 760, 40
Aikawa, Y., Furuya, K., Yamamoto, S., et al. 2020, ApJ, 897, 110
Al-Halabi, A., & van Dishoeck, E. F. 2007, MNRAS, 382, 1648
Andrade, D. P. P., Rocco, L. M. M., & Boechat-Roberty, H. M. 2010, MNRAS, 409, 1289
Andessl, M., Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46
Arasa, C., Andersson, S., Cuppen, H. M., et al. 2010, J. Chem. Phys., 132, 184510
Aikawa, Y., Conning, J., Kroes, G.-J., et al. 2015, A&A, 575, A12
Barzel, B., & Biham, O. 2007, ApJ, 658, L37
Baselmâste, R., Dupuy, R., Férait, G., et al. 2020, A&A, 647, A35
Baselmâste, R., Dupuy, R., Férait, G. et al. 2020, A&A, 647, A36
Baulch, D. L., Cobos, C. J., Cox, R. A., et al. 1992, J. Phys. Chem. Ref. Data, 21, 41
Benz, A. O., Bruderer, S., van Dishoeck, E. F., et al. 2016, A&A, 590, A105
Berger, M. J., Hubbell, J. H., Seltzer, S. M., Coursey, J. S., & Zuckerman, D. S. 1999, XCOM: Photon Cross Section Database (version 1.5), Online Available at https://www.nist.gov/pml/xcom-photon-cross-sections-database (National Institute of Standards and Technology, Gaithersburg, MD).
Bergner, J. B., Öberg, K. I., Bergin, E. A., et al. 2020, ApJ, 898, 97
Bertin, M., Romazin, C., Doronin, M., et al. 2016, ApJ, 817, L12
Bianchi, E., Chandler, C. J., Ceccarelli, C., et al. 2020, MNRAS, 498, L87
Bjerkeli, P., Jorgensen, K. E., Bergin, E. A., et al. 2016, A&A, 595, A39
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541
Boonman, A. M. S., van Dishoeck, E. F., Lahuis, F., et al. 2003, A&A, 399, 1063

S. Notsu et al.: X-ray-induced chemistry of water and related molecules in low-mass protostellar envelopes
Appendix A: Dependence of X-ray-induced chemistry on gas number density

In this section we investigate the dependence of X-ray-induced chemistry on the gas number density. The rates of formation or destruction for gas-phase species Y due to the X-ray-induced photoionization and photodissociation reactions are scaled with $\zeta_X(r) \times n_Y$, and these are first-order kinetic processes with regard to gas densities. In contrast, ion-molecule reactions and neutral-neutral reactions are second-order kinetic processes with regard to gas densities. Thus, given the same X-ray ionization rates $\zeta_X(r)$ and gas temperatures T_{gas}, the more important the second-order processes are, the less important the former first-order processes are as the gas density increases.

At $r \sim 60$ au (inside the water snowline), the gas density in IRAS 4A ($n_\text{H} = 1.1 \times 10^9 \text{ cm}^{-3}$) is around 5.5 times larger than that in IRAS 2A ($n_\text{HI} = 2.0 \times 10^8 \text{ cm}^{-3}$), whereas the gas temperatures are similar ($T_{\text{gas}} \sim 140 \text{ K}$ for IRAS 2A and $\sim 150 \text{ K}$ for IRAS 4A). For $L_X = 10^{33} \text{ erg s}^{-1}$, $\zeta_X(r)$ in IRAS 4A (2.0 $\times 10^{-14} \text{ s}^{-1}$) is around 4.4 times lower than that in IRAS 2A (8.8 $\times 10^{-14} \text{ s}^{-1}$). We conducted a test chemical calculation, in which we adopt the IRAS 4A physical structure (n_HI and T_{gas}) at $r \sim 60$ au and $L_X = 10^{32} \text{ erg s}^{-1}$, and rescale $\zeta_X(r)$ to the value at a similar radius in the IRAS 2A model. We compare the rates of reactions of this test calculation with those of the standard IRAS 2A model.

In this test calculation, at $t = 10^5 \text{ yr}$, the fractional abundance and absolute number density of water are 6.9×10^{-8} and $1.5 \times 10^2 \text{ cm}^{-3}$, respectively, and the same for HCO$^+$ are 4.2×10^{-9} and 9.4 cm^{-3}, respectively. On the basis of these values the rate coefficient of the ion-molecule reaction with $\text{H}_2\text{O} + \text{HCO}^+ \rightarrow \text{CO} + \text{H}_3\text{O}^+$, k_6, is $\sim 3.5 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ (Adams et al. 1978), and the reaction rate, $R(6) = k_6 n_{\text{H}_2\text{O}} n_{\text{HCO}^+}$, is $\sim 2.2 \times 10^{-5} \text{ cm}^{-3} \text{ s}^{-1}$ at $t = 10^3 \text{ yr}$. In contrast, the rate coefficient of X-ray-induced photodissociation leading to $\text{H} + \text{OH}$, k_7, is $\sim 8.6 \times 10^{-11} \text{ s}^{-1}$ (Gredel et al. 1989), and the reaction rate, $R(7) = k_7 n_{\text{H}_2\text{O}}$, is $\sim 1.3 \times 10^{-8} \text{ cm}^{-3} \text{ s}^{-1}$ at $t = 10^3 \text{ yr}$.

Comparing these reaction rates with those of the standard IRAS 2A model (see Sect. 3.1), the differences of the reaction rates are larger in the ion-molecule reaction ($R(6)/R(1) \sim 25$) than in the X-ray-induced photodissociation ($R(7)/R(2) \sim 2.5$) because the former reaction is the second-order process and the latter reaction is the first-order process. Thus, as the gas densities increase, the second-order processes, including ion-molecule reactions become much more dominant compared with the first-order processes including X-ray-induced photodissociation.

Appendix B: Subgrid calculations for the IRAS 4A envelope models

Figure B.1 shows the radial profiles of H$_2$O, O$_2$, O, OH, HCO$^+$, and CH$_3$OH gas fractional abundances in the IRAS 4A envelope models, with X-ray luminosities between $L_X = 10^{30}$ and $10^{33} \text{ erg s}^{-1}$. We plot these subgrid model profiles since there is a large jump in abundances in this X-ray luminosity range (see Figs. 3–7). For the abundance profiles of H$_2$O gas, between 10^{30} and $2 \times 10^{30} \text{ erg s}^{-1}$ seems to be the clear boundary, which decreases from $\sim 10^{-4}$ to $< 10^{-7}$ at $r \lesssim 10^2 \text{ au}$. For the abundance profiles of HCO$^+$, OH, and CH$_3$OH gas, between 10^{30} and $2 \times 10^{30} \text{ erg s}^{-1}$ also seems to be the clear boundary. In comparison, the abundance profiles of O$_2$ and O gas gradually increase in the inner region as the values of L_X increase from 10^{30} to $\sim 6 \times 10^{30} \text{ erg s}^{-1}$.
Appendix C: CO₂ and CO fractional abundances

Figure C.1 shows the radial profiles of CO₂ gas and ice fractional abundances n_{CO_2}/n_H in IRAS 2A (left panels) and IRAS 4A (right panels) envelope models, for the various X-ray luminosities. At $r \sim 3 \times 10^{-4} - 4 \times 10^{3}$ au (in the IRAS 2A model) and $r \sim 3 \times 10^{-2} - 2 \times 10^{4}$ au (in the IRAS 4A model), which are the regions between CO₂ and CO snowlines, CO₂ ice abundances are around 10^{-6} for $L_X \lesssim 10^{30}$ erg s⁻¹. In contrast, for $L_X \gtrsim 10^{31}$ erg s⁻¹, CO₂ ice abundances increase (up to 10^{-5}) in these regions. On the basis of Drozdovskaya et al. (2016), Eistrup et al. (2016, 2018), and Bosman et al. (2018b), in the presence of X-ray fluxes the X-ray-induced photodissociation of H₂O ice forms OH radicals within the ice mantle, which subsequently react with CO on grain surfaces to form CO₂ ice inside the CO snowline.

CO₂ gas abundances at $r \lesssim 10^{4}$ au in the IRAS 2A model and at $r \lesssim 6 \times 10^{3}$ au in the IRAS 4A model are affected by strong X-ray fluxes. For low and moderate X-ray luminosities⁹, CO₂ gas abundances decrease, and reach $\lesssim 10^{-6}$ at $r \sim 3 \times 10^{2} - 10^{3}$ au (outside the CO₂ snowline). In contrast, for high X-ray

⁹ For the definition of the values of low, moderate, and high X-ray luminosities, see Sect. 3.2.
luminosities, CO$_2$ gas abundances increase, and they reach around 10^{-6} (for IRAS 2A) and 10^{-3} (for IRAS 4A) at these radii for $L_X \sim 10^{32}$ erg s$^{-1}$. At $r \lesssim 3 \times 10^3$ au (inside CO$_2$ snowline), CO$_2$ abundances are around $10^{-6} - 10^{-5}$ for low X-ray luminosities. In addition, like OH, the CO$_2$ gas abundances increase as the X-ray fluxes become larger, and they reach $10^{-4} - 10^{-3}$ for moderate X-ray luminosities. However, they decrease for high X-ray luminosities. At $L_X \gtrsim 10^{31}$ erg s$^{-1}$ in the IRAS 2A model and $L_X \gtrsim 10^{32}$ erg s$^{-1}$ in the IRAS 4A model, the CO$_2$ gas abundances are around $3 \times 10^{-7} - 10^{-6}$.

Outside the CO$_2$ snowline, CO$_2$ gas is supplied by X-ray-induced photodesorption reaction of CO$_2$ ice. In the inner envelope, gas-phase CO$_2$ is mainly formed by two-body reactions of CO+OH (Bosman et al. 2017), and destroyed via X-ray-induced photodissociation. Therefore, CO$_2$ abundance profiles strongly depend on the radial profiles of X-ray fluxes and OH abundances.

The CO$_2$ abundances in the outer envelopes around low-mass protostars can be probed through the observations of CO$_2$ ro-vibrational lines with JWST (see also Sect. 4.1), as done for high-mass protostellar envelopes using ISO (van Dishoeck et al. 1996; Boonman et al. 2003). For low-mass protostellar envelopes, a hint of gas-phase CO$_2$ lines has been obtained using Spitzer (see, e.g., Poteet et al. 2013). We note that high dust opacities in the near and mid-infrared wavelengths make it difficult to probe the CO$_2$ gas abundances directly in the inner envelopes around low-mass protostars.

Boonman et al. (2003) and Bosman et al. (2018a) noted the disagreements of CO$_2$ gas abundances within the CO$_2$ snowline between models ($\sim 10^{-5}$) and observations ($\sim 10^{-7}$), both for high-mass protostar envelopes and Class II disks. Bosman et al. (2018a) discussed that the CO$_2$ should be destroyed within 10^4 yr after the sublimation of CO$_2$ ice. X-ray-induced destruction reactions discussed in this paper would help to destroy CO$_2$ molecules within the above timescale, assuming that CO$_2$ chemistry is similar among these source types.

Figure C.2 shows the radial profiles of CO gas and ice fractional abundances n_{CO}/n_H in the IRAS 2A and IRAS 4A envelope models, for the various X-ray luminosities. Unlike other dominant oxygen-bearing molecules (e.g., H$_2$O, O$_2$, CO$_2$), CO gas and ice abundances do not depend on X-ray fluxes. The CO gas fractional abundances are around 10^{-4} at $r < 3 \times 10^3$ au at IRAS 2A and $r < 10^3$ au at IRAS 4A (within the CO$_2$ snowline), and CO ice fractional abundances are around 10^{-4} at $r \gtrsim 4 \times 10^3$ au at IRAS 2A and $r \gtrsim 10^3$ au at IRAS 4A (outside the CO$_2$ snowline).

With an ISM level cosmic-ray ionization rate of $\xi_{CR}(r) = 1.0 \times 10^{-17}$ s$^{-1}$, longer timescale ($>10^8$ yr, the typical age of Class II disks) than that in our modeling (103 yr, the typical age of Class 0 protostars) is required to achieve a CO depletion by a factor of 10 and more (Bosman et al. 2018b; Eistrup et al. 2018; Schwarz et al. 2018). Moreover, in the inner envelopes where $\xi(r) > \xi_{CR}(r)$, efficient X-ray-induced destruction reactions of other dominant molecules, especially H$_2$O, supply more atomic oxygen, which reacts with C$^+$ and returns to CO. According to previous studies of chemical modeling on a timescale of $>10^8$ yr, CO is chemically processed and the carbon is sequestered into less volatile species such as CH$_3$OH, CH$_3$, and CO$_2$ (e.g., Furuya & Aikawa 2014; Yu et al. 2016; Bosman et al. 2018b; Schwarz et al. 2018, 2019; Krijt et al. 2020).

Fig. C.1. Radial profiles of CO$_2$ gas and ice fractional abundances n_{CO_2}/n_H (top panels) and $n_{CO_2,ice}/n_H$ (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.
According to recent observations (e.g., ALMA), CO gas abundances in the Class 0-1 disks with $<10^5$ yr are consistent with the ISM abundance ($\sim 10^{-4}$) within a factor of 2 (Harsono et al. 2014; van’t Hoff et al. 2020; Zhang et al. 2020), nearly one order of magnitude higher than the average value in 10^6–10^7 yr Class II disks (e.g., Ansdell et al. 2016; Long et al. 2017; Zhang et al. 2017; Zhang et al. 2019; Bergner et al. 2020).

Appendix D: CH$_4$, HCN, and C$_2$H fractional abundances

The top panels of Fig. D.1 show the radial profiles of CH$_4$ gas fractional abundances n_{CH_4}/n_H in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. For $L_X \lesssim 10^{28}$ erg s$^{-1}$, the CH$_4$ gas abundances are around $(3\pm8)\times10^{-8}$ at $r \lesssim 10^2$ au in the IRAS 2A model and at $r \lesssim 6\times10^2$ au in the IRAS 4A model (within the CH$_4$ snowline). As the X-ray flux becomes larger, the CH$_4$ gas abundances in these radii decrease. For $L_X \gtrsim 10^{31}$ erg s$^{-1}$, the CH$_4$ gas abundances are around 10^{-9}–10^{-8} at $r \lesssim 10^2$ au.

The X-ray-induced photodissociation and ion-molecule reactions (e.g., He$^+$, H$_3^+$) are considered the dominant destruction processes of CH$_4$ in the inner envelopes (e.g., Aikawa et al. 1999; Eistrup et al. 2016). We note that ion-molecule reactions of gas-phase CH$_4$ (e.g., with C$^+$ within the CH$_4$ snowline) are important to form unsaturated carbon chain molecules, such as C$_2$H, C$_3$H$_2$, and C$_4$H (WCCC; e.g., Hassel et al. 2008; Sakai et al. 2008; Sakai & Yamamoto 2013; Aikawa et al. 2012, 2020).

The middle panels of Fig. D.1 show the radial profiles of HCN gas fractional abundances n_{HCN}/n_H in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. The binding energy of HCN is somewhat smaller than that of H$_2$O, and is similar to that of CH$_3$OH ($E_{des}(HCN)=3610$ K, $E_{des}(H_2O)=4880$ K, $E_{des}(CH_3OH)=3820$ K, see Table 2), and the HCN snowline position ($\sim 2\times10^2$ au) exists outside the water snowline ($\sim 10^2$ au). For low X-ray luminosities, the HCN gas abundances are around $\sim 10^{-6}$–10^{-5} within the HCN snowline. As the X-ray flux increases, the HCN gas abundances in these radii decrease. For high X-ray luminosities, the HCN gas abundances are $\lesssim 10^{-9}$ within the HCN snowline. The X-ray-induced photodissociation and ion-molecule reactions (e.g., with He$^+$, H$_3^+$) are considered the dominant destruction processes of HCN in the inner envelopes (e.g., Huntress 1977; van Dishoeck et al. 2006; Walsh et al. 2015).

The bottom panels of Fig. D.1 show the radial profiles of C$_2$H gas fractional abundances n_{C_2H}/n_H in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. The C$_2$H gas fractional abundances are around 10^{-10}–10^{-9} at $r \gtrsim 10^3$ au, and decrease at the inner radii. Within 10^2 au, they are $\sim 10^{-16}$–10^{-13} at IRAS 2A and $\sim 10^{-17}$–10^{-14} at IRAS 2A. The dependence of X-ray fluxes are smaller (within two orders of magnitude) than other dominant carbon-bearing molecules such as CH$_3$OH, HCN, and CH$_4$. The molecule C$_2$H is the representative product of WCCC in star-forming cores (e.g., Sakai & Yamamoto 2013; Higuchi et al. 2018; Aikawa et al. 2020, see also Sect. 4.6), and it is mainly produced by the ion-molecule reaction of CH$_4$.

Fig. C.2 Radial profiles of CO gas and ice fractional abundances n_{CO}/n_H (top panels) and $n_{CO,ice}/n_H$ (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.
gas with C\(^+\) and the subsequent electron recombination reaction (Aikawa et al. 2012). C\(_2\)H also reacts with C\(^+\), which links to the formation of longer carbon chain molecules. Henning et al. (2010) found that in the atmospheres of Class II disks, the C\(_2\)H abundance is higher around Herbig Ae stars with stronger X-rays than in T Tauri stars.

Appendix E: NH\(_3\) and N\(_2\) fractional abundances

The top panels of Fig. E.1 show the radial profiles of NH\(_3\) \(n_{\text{NH}_3}/n_H\) (top panels), HCN \(n_{\text{HCN}}/n_H\) (middle panels), and C\(_2\)H \(n_{\text{C}_2\text{H}}/n_H\) (bottom panels) in NGC 1333-IRAS 2A (left) and NGC 1333-IRAS 4A (right) envelope models.

![Fig. D.1. Radial profiles of gaseous fractional abundances of CH\(_4\), HCN, and C\(_2\)H at various X-ray luminosities.](image)

According to Fig. E.1, for \(L_X \gtrsim 10^{31}\) erg s\(^{-1}\), the NH\(_3\) abundances increase (up to \(\sim 10^{-8}-10^{-7}\)) outside the NH\(_3\) snowline, compared with the values \((\sim 10^{-9}-10^{-8})\) in IRAS 2A and \(\sim 10^{-10}-10^{-9}\) in IRAS 4A) for \(L_X \lesssim 10^{30}\) erg s\(^{-1}\). The X-ray-induced photodesorption is considered important in this region. Inside the NH\(_3\) snowline, for low X-ray luminosities, the NH\(_3\)
snowline gas abundances are around \(\sim 10^{-5} \). As the X-ray fluxes increase, the \(\text{NH}_3 \) snowline gas abundances in these radii decrease. For \(L_X \gtrsim 10^{30} \text{ erg s}^{-1} \), the \(\text{NH}_3 \) gas abundances are \(\lesssim 10^{-8} \) within the \(\text{NH}_3 \) snowline. The X-ray-induced photodissociation and ion-molecule reactions are considered the dominant destruction processes of \(\text{NH}_3 \) in the inner envelopes (e.g., Gredel et al. 1989; Walsh et al. 2015; Eistrup et al. 2016). Thus, with a strong X-ray field, the \(\text{NH}_3 \) abundance is no longer the dominant nitrogen carrier. In addition, it cannot be used as the tracer of the water snowline position since \(\text{NH}_3 \) gas abundances are similar within and outside the \(\text{NH}_3 \) snowline.

The \(\text{NH}_3 \) line emission (e.g., the 23GHz (1,1), (2,2), and (3,3) lines) have been observed toward protostar disks and envelopes using VLA (e.g., Choi et al. 2007, 2010). However, the spatial resolutions of such VLA observations (\(\sim 1.0'' \)) were not sufficient to resolve the inner structures around the protostars at a few hundred pc. Future ngVLA observations of these \(\text{NH}_3 \) lines with much higher resolutions (\(\leq 0.3'' \) at around 23 GHz) will resolve the \(\text{NH}_3 \) gas emission within its snowline toward many protostars, and can also constrain the impact of X-rays on \(\text{NH}_3 \) gas abundances. In addition, such observations will be important to trace the chemical history of nitrogen-bearing molecules.

The bottom panels of Fig. E.1 show the radial profiles of \(\text{N}_2 \) gas fractional abundances \(n_{\text{N}_2}/n_{\text{H}} \) in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities. As for CO, the \(\text{N}_2 \) gas abundances do not depend on X-ray fluxes.

Appendix F: Fractional abundances and percentage contributions of major oxygen-bearing molecules

Table F.1 shows the fractional abundances of major oxygen-bearing molecules at \(r = 60 \text{ au} \) (\(T_{\text{gas}} \approx 150 \text{ K}, \) inside the water snowline) in the IRAS 2A and IRAS 4A envelope models for the various X-ray luminosities, and their percentage contributions (see also Figs. 8 and 9 in Sect. 4.1). The cutoff threshold is 0.01% for the contributions.
Appendix G: Additional model calculations for X-ray-induced photodesorption rates

In Fig. G.1 and Fig. 11 in Sect. 4.3 we show the radial profiles of gaseous fractional abundances of H$_2$O, O$_2$, and OH, and icy fractional abundances of H$_2$O in the IRAS 4A envelope models for our standard model calculations and additional model calculations. In Figs. G.2 and G.3 we show the radial profiles of gaseous fractional abundances of O, HCO$,^+$, and CH$_3$OH, and icy fractional abundances of CH$_3$OH in the IRAS 4A envelope models for our standard model calculations and the additional model calculations. For the additional model calculations in Figs. G.1 and G.2, we include the photodesorption by UV photons generated internally via the interaction of secondary electrons produced by X-rays with H$_2$ molecules. For the additional model calculations in Fig. G.3 and Fig. 11 in Sect. 4.3, we switch off the direct X-ray-induced photodesorption and include the secondary (indirect) X-ray-induced photodesorption only.

According to Figs. G.1 and G.2, the effects of such additional secondary (indirect) X-ray-induced photodesorption is marginal (the abundances are changed by \lesssim1%, see also Sect. 4.3). For molecules shown in Fig. G.3, the differences in abundances between the standard model and the second additional model are much smaller than those in H$_2$O, OH, and O$_2$ (see Fig. 11 in Sect. 4.3).

Table F.1. Fractional abundances of major oxygen-bearing molecules at $r = 60$ au ($T_{gas} \sim 150$ K, inside the water snowline) in the NGC 1333-IRAS 2A and NGC 1333-IRAS 4A envelope models for the various X-ray luminosities, and their percentage contributions relative to the total elemental oxygen abundance (3.2×10^{-7}).

L_X (erg s$^{-1}$)	H$_2$O gas	CO gas	O gas	O$_2$ gas
NGC 1333-IRAS 2A				
0	2.0×10^{-4}, 61%	1.1×10^{-4}, 34%	1.2×10^{-9}, $<10^{-2}$%	3.7×10^{-7}, 2.3×10^{-1}%
10^{27}	2.0×10^{-4}, 61%	1.1×10^{-4}, 33%	2.5×10^{-10}, $<10^{-2}$%	3.0×10^{-7}, 1.9×10^{-1}%
10^{28}	1.9×10^{-4}, 60%	1.1×10^{-4}, 33%	1.7×10^{-10}, $<10^{-2}$%	1.9×10^{-8}, 1.2×10^{-2}%
10^{29}	1.5×10^{-4}, 48%	8.1×10^{-5}, 25%	4.0×10^{-8}, 1.3×10^{-2}%	1.5×10^{-6}, 9.2×10^{-1}%
10^{30}	1.9×10^{-8}, $<10^{-2}$%	1.4×10^{-4}, 43%	5.8×10^{-5}, 18%	6.0×10^{-5}, 38%
10^{31}	5.3×10^{-8}, 1.6×10^{-2}%	1.4×10^{-4}, 44%	6.2×10^{-5}, 19%	5.9×10^{-5}, 37%
10^{32}	1.4×10^{-7}, 4.5×10^{-2}%	1.4×10^{-4}, 44%	6.5×10^{-5}, 20%	5.8×10^{-5}, 36%

NGC 1333-IRAS 4A				
0	2.0×10^{-4}, 62%	1.1×10^{-4}, 33%	1.1×10^{-10}, $<10^{-2}$%	1.0×10^{-9}, $<10^{-2}$%
10^{27}	2.0×10^{-4}, 62%	1.1×10^{-4}, 33%	1.1×10^{-10}, $<10^{-2}$%	1.0×10^{-9}, $<10^{-2}$%
10^{28}	2.0×10^{-4}, 62%	1.0×10^{-4}, 33%	1.2×10^{-10}, $<10^{-2}$%	1.0×10^{-9}, $<10^{-2}$%
10^{29}	1.9×10^{-4}, 60%	9.9×10^{-5}, 31%	2.6×10^{-10}, $<10^{-2}$%	1.5×10^{-9}, $<10^{-2}$%
10^{30}	7.0×10^{-5}, 22%	7.2×10^{-5}, 23%	2.0×10^{-7}, 6.3×10^{-2}%	2.6×10^{-5}, 16%
10^{31}	1.3×10^{-8}, $<10^{-2}$%	1.4×10^{-4}, 43%	5.3×10^{-5}, 17%	6.2×10^{-5}, 39%
10^{32}	3.7×10^{-8}, 1.1×10^{-2}%	1.4×10^{-4}, 43%	6.2×10^{-5}, 19%	5.9×10^{-5}, 37%
Fig. G.1. Radial profiles of gaseous fractional abundances of H$_2$O, O$_2$, and OH, and icy fractional abundances of H$_2$O in the NGC 1333-IRAS 4A envelope models. The light green solid lines, the cyan double-dashed dotted lines, and the blue dotted lines show the radial profiles of our standard model calculations, for values of central star X-ray luminosities $L_X=10^{28}$, 10^{30}, and 10^{32} erg s$^{-1}$, respectively (see also Figs. 3, 4, 5, 6). The yellow dashed double-dotted lines, the scarlet dashed dotted lines, and the brown dashed lines show the radial profiles of our additional model calculations for $L_X=10^{28}$, 10^{30}, and 10^{32} erg s$^{-1}$, respectively. Included in the additional model calculations is the photodesorption by UV photons generated internally via the interaction of secondary electrons produced by X-rays with H$_2$ molecules (see also Fig. G.2). In the top left panel the observational best-fit H$_2$O gas abundance profile obtained in van Dishoeck et al. (2021) is overplotted with the black solid line (see also Fig. 10). In the bottom left panel the three model O$_2$ gas abundance profiles obtained in Yildiz et al. (2013) are overplotted (see also Fig. 10).
Fig. G.2. Radial profiles of gaseous fractional abundances of O, HCO+, and CH$_3$OH, and icy fractional abundances of CH$_3$OH in the NGC 1333-IRAS 4A envelope models. The line types and color patterns for the radial profiles of our standard model calculations (see also Figs. 5, 6, and 7) and additional model calculations are the same as in Fig. G.1. In the additional model calculations, we include the secondary (indirect) X-ray-induced photodesorption (see also Fig. G.1).

Fig. G.3. Radial profiles of gaseous fractional abundances of O, HCO+, and CH$_3$OH, and icy fractional abundances of CH$_3$OH in the NGC 1333-IRAS 4A envelope models. The profiles are the same as in Fig. G.2, except in the additional model calculations the direct X-ray-induced photodesorption is switched off and only the secondary (indirect) X-ray-induced photodesorption is included (see also Fig. 11).
Appendix H: Impacts of the different photodissociation branching ratio and binding energies on the molecular abundances

Figure H.1 shows the gas-phase abundance profiles of H$_2$O, O$_2$, O, and OH, which are calculated assuming the extreme case that the product of H$_2$O photodissociation is 100% atomic oxygen (Reaction (15) only both in the gas and ice). Figure H.2 shows the gas-phase abundance profiles of H$_2$O, O$_2$, O, and OH, which are obtained from our test calculations assuming the smaller E_{des}(O) (=800 K) than that in our fiducial model (=1660 K).

We plot these figures in order to investigate the impacts of the different photodissociation branching ratio of H$_2$O and different binding energies of O on the abundances of H$_2$O and related molecules. In Sect. 4.4, we discuss these impacts in detail (see also Fig. 12).

Fig. H.1. Radial profiles of gaseous fractional abundances of H$_2$O, O$_2$, O, and OH in NGC 1333-IRAS 4A envelope models. These profiles are obtained from our test calculations assuming that the product of H$_2$O photodissociation is 100% atomic oxygen, unlike our fiducial model (100% OH). In the top left panel the observational best-fit H$_2$O gas abundance profile obtained in van Dishoeck et al. (2021) is overplotted with the black solid line (see also Fig. 10). In the top right panel the three model O$_2$ gas abundance profiles obtained in Yıldız et al. (2013) are overplotted (see also Fig. 10).
Fig. H.2. Radial profiles of gaseous fractional abundances of H$_2$O, O$_2$, O, and OH in NGC 1333-IRAS 4A envelope models. These profiles are obtained from our test calculations assuming the smaller $E_{\text{des}}(j)$ for atomic oxygen (=800 K) rather than that in our fiducial model (= 1660 K). In the top left panel the observational best-fit H$_2$O gas abundance profile obtained in van Dishoeck et al. (2021) is overplotted with the black solid line (see also Figs. 10 and H.1). In the top right panel the three model O$_2$ gas abundance profiles obtained in Yıldız et al. (2013) are overplotted (see also Figs. 10 and H.1).