Seek protein which can interact with hepatitis B virus X protein from human liver cDNA library by yeast two-hybrid system

Xiao-Zhong Wang, Xiang-Rong Jiang, Xiao-Chun Chen, Zhi-Xing Chen, Dan Li, Jian-Yin Lin, Qi-Min Tao

INTRODUCTION

Modern biological investigations indicate many proteins have relationship with the development of hepatocellular carcinoma[1-8]. At a molecular level, several endogenous genes critical for cell proliferation or apoptosis and the inflammatory response seemed interacted with HBx, such as c-Fos, c-Jun, CREB, CD44, TNF-α, p21 and p53[9-13]. In addition, DNA transfection approaches have clearly demonstrated that pX is a transactivator of a wide variety of viral and cellular promoters[12-20], but the underlying mechanism of transactivation is currently obscure. Since HBx has no ability to bind DNA, protein-protein interaction seems to be crucial for HBx transactivation[21-24]. One most direct way to identify the mechanism of HBx transactivation is to find out host proteins that interact specifically with HBx. We use the yeast two-hybrid system, a genetic approach to search the clone genes that interact with a protein of interest by in vivo complementation in yeast cells, to seek XAP from normal human liver cDNA library.

METHODS

The X region of the HBV gene was amplified by PCR and cloned into the eukaryotic expression vector pAS2-1X. The recombined plasmid pAS2-1X was transformed into the yeast cells and the expression of X protein (pX) was confirmed by Western blot analysis. Yeast cells were cotransformed with pAS2-1X and the normal human liver cDNA library and were grown in selective SC-trp-leu-his-ade medium, 5 scored positive for β-gal activity, and only 2 remaining clones passed through the segregation analysis and mating experiment. Sequence analysis identified that two clones contained similar cDNA fragment: GAACTTGCG.

RESULTS

Reconstituted plasmid pAS2-1X including the anticipated fragment of X gene was proved by auto-sequencing assay. Western blot analysis showed that reconstituted plasmid pAS2-1X expressed BD-X fusion protein in yeast cells. Of 5×10⁶ transformed colonies screened, 65 grew in the selective SC-trp-leu-his-ade medium, 5 scored positive for β-gal activity, and only 2 remaining clones passed through the segregation analysis and mating experiment. Sequence analysis identified that two clones contained similar cDNA fragment: GAACTTGCG.

CONCLUSION

The short peptide (glutacid-leucine-alanine) is a possible required site for XAP binding to pX. Normal human liver cDNA library has difficulties in expressing the integrated XAP on yeast cells.

Wang XZ, Jiang XR, Chen XC, Chen ZX, Li D, Lin JY, Tao QM. Seek protein which can interact with hepatitis B virus X protein from human liver cDNA library by yeast two-hybrid system. World J Gastroenterol 2002;8(1):95-98

SCREENING OF THE LIVER CELL cDNA LIBRARY BY YEAST TWO-HYBRID SYSTEM

The screening procedure used was a modification of the method published by Gietz et al[20] and was grown in selective SC-trp medium. Cells were collected by centrifugation and lysates were prepared according to Urea/SDS method. A part of protein exact were resolved on a 120g L⁻¹ SDS-polyacrylamide gel and transferred onto polyvinylidene difluoride membrane. After blocking with nonfat dried milk, the membrane was treated with 1:3000 diluted Gal4 DNA-BD monoclonal antibody(Clontech) followed by 1:1000 diluted alkaline phosphatase-conjugated goat anti-mouse IgG. Subsequently the blot was developed by 5-bromo-4-chloro-3-indoly1 phosphat and nitro blue tetrazolium. The untransformed yeast cells were used for negative control.

Abstract

AIM: To seek the X associated protein (XAP) with the constructed bait vector pAS2-1X from normal human liver cDNA library.

METHODS: The X region of the HBV gene was amplified by PCR and cloned into the eukaryotic expression vector pAS2-1. The reconstituted plasmid pAS2-1X was transformed into the yeast cells and the expression of X protein (pX) was confirmed by Western blot analysis. Yeast cells were cotransformed with pAS2-1X and the normal human liver cDNA library and were grown in selective SC-trp-leu-his-ade medium, 5 scored positive for β-gal activity, and only 2 remaining clones passed through the segregation analysis and mating experiment. Sequence analysis identified that two clones contained similar cDNA fragment: GAACTTGCG.

RESULTS: Reconstituted plasmid pAS2-1X including the anticipated fragment of X gene was proved by auto-sequencing assay. Western blot analysis showed that reconstituted plasmid pAS2-1X expressed BD-X fusion protein in yeast cells. Of 5×10⁶ transformed colonies screened, 65 grew in the selective SC-trp-leu-his-ade medium, 5 scored positive for β-gal activity, and only 2 remaining clones passed through the segregation analysis and mating experiment. Sequence analysis identified that two clones contained similar cDNA fragment: GAACTTGCG.

CONCLUSION: The short peptide (glutacid-leucine-alanine) is a possible required site for XAP binding to pX. Normal human liver cDNA library has difficulties in expressing the integrated XAP on yeast cells.

Wang XZ, Jiang XR, Chen XC, Chen ZX, Li D, Lin JY, Tao QM. Seek protein which can interact with hepatitis B virus X protein from human liver cDNA library by yeast two-hybrid system. World J Gastroenterol 2002;8(1):95-98
described by Gietz et al[29]. Yeast cells AH109 were transformed with pAS2-1X and pACT2-cDNA library (Clotech) by Liac-mediated transformation and were grown in selective SC/-trp-leu-his-ade medium for 7 days. After about 3 days at 30°C, the growing colonies were assayed for α-gal activity by replica plating the yeast transformants onto Whatman filter papers, incubated for 1-8h at 30°C in a buffer containing 5-bromo-4-chloro-3-indolyl-α-D-galactopyranoside (X-gal) solution. Positive interactions were detected by the appearance of blue colonies. Segregation analysis and mating experiment were done to exclude the type I, II, III false positive and true positive colonies were obtained.

Sequence analysis of pACT2-cDNA

The pACT2-cDNA plasmid genome was isolated following the standard protocol. Briefly, the true positive clones were grown in SC/-leu medium, cells were collected by centrifugation and resuspended in lysis buffer (20g·L^{-1} Triton 100, 10g·L^{-1}SDS, 10mmol L^{-1} NaCl, 10mmol·L^{-1} Tris-HCl pH8.0, 1mmol·L^{-1} Na 2EDTA) and phenol, chloroform and isomyl alcohol (volume fraction 25:24:1). After addition of acid-washed glass beads (Sigma), samples were centrifugated and plasmid DNA recovered. The pACT2-cDNA plasmid DNA was purified by CsCl gradient centrifugation to permit PCR using the Matchmaker AD LD-Insert Screening Amplimers (Clotech) which anneals to GAL4-AD. Auto-sequencing assay was performed in Shanghai Shenggong Biological Corporation.

RESULTS

Plasmid construction

The HBV X fragment was successfully generated by PCR (figure 1) and cloned into plasmid pAS2-1. Reconstituted plasmid pAS2-1X including the anticipated fragment of X gene was proved by digesting with resticted endonuclease and auto-sequencing assay as follows:

GACTGTATCGCCGGTTATGCATCAATCCACGCTTGAATTC
CGTTAATCATGCTGGCTGCTGCCGG
GCTTACAGGGACTGTGTTTTAATGCTGCCTCACTCG
CGTGCTGCTGCTGCTGGCTGCTGCCGG
GAACTTGCG

Westem Blot analysis

Westem Blot Analysis proved that yeast cells transformed with pAS2-1X have positive signal which can not be seen in the control, pAS2-1X can express BD:X fusion protein yeast cells (figure 2). Besides, The colony-lift assay showed that the reconstrusted plasmid could not active LacZ reporter gene in yeast. pAS2-1X can be used as bait vector in yeast two-hybrid system.

Screening of the liver cell cDNA library

Of 5×10^9 transformed colonies screened, 65 grew in the selective SC/-trp-leu-his-ade medium. Out of these HIS+ ADE+

prototrophs, 5 scored positive for β-gal activity, only 2 remaining clones passed through the segregation analysis and mating experiment.

Sequence analysis

PCR (Figure 3) and sequence analysis identified that two clones contained the same cDNA sequence: GAACCTCG, which encodes glutacid-leucine -alanine.

DISCUSSION

Persistent Hepatitis B virus infection is strongly associated with the development of hepatocellular carcinoma (HCC). The viral X gene encodes a 17-kd protein, termed pX, functions a transcriptional activator of a variety of viral and cellular genes, it is capable of interacting with a wide variety of cellular protein, including cell-cycle control and apoptosis protein. There are well documented that pX acts through apoptosis pathway involving Fas and caspase 3[30-33], it also
interacts with p53, a well-known tumor suppressor gene[43-46] and inhibits nucleotide excision repair[47-49]. However, ample evidences showed that pX may function by additional profound mechanisms in HCC[49-53].

Identification and characterization of proteins in a cell with which a given protein interacts is often helpful for understanding the function and mechanisms of action of that protein. The yeast two-hybrid system is a molecular genetic test for protein interaction, which is firstly established by Fields et al in 1989[54]. It's a powerful and sensitive technique for the identification of genes that code for proteins which interact in a biologically significant fashion with a protein of interest. The assay is performed in the yeast cells so as to reflect the real situations in vivo and has the potential to identify the weak and transient interaction between two protein. In addition, since the cDNA library can be constructed according to various type of tissues, organs and cells, many proteins interact with transcription factors, protein kinases, phosphatases, receptors, cytoskeletal proteins as well as proteins involved in cell cycle regulation and apoptosis can be study by this elegant approach. Although the yeast two-hybrid system has become a standard procedure for molecular biologists, it remains some deficiency. The most important problem is the existence of false positives, fortunately, they can be eliminated by other method such as segregation analysis and mating experiment[20,45].

Our study successfully constructed the bait vector pAS2-1X, HIS and ADE independent growth and blue -colony formation in the α-gal assay by yeast cells harboring both pAS2-1X and pACT2-cDNA recombinant plasmids and the behaviors of cells in false-positive elimination tests suggested the isolated clones can specifically interact with pX and the results were reliable.

It should be greatly concerned that XAPs studied by the yeast two-hybrid system in the past were different in size, structure and biological functions[46]; Lee et al[47] indentified an XAP1 that is a homolog of the monkey UV-damaged DNA-binding protein in 1995; Kuzhandaiavelu et al[48] discovered an XAP2 which is known as the p38 subunit of the aryl hydrocarbon receptor complex (ARa9) in 1996; Huang et al[49] reported an XAPC7 contained a polypeptide with high sequence homology to the PROS-28.1 subunit of proteasome of Drosophila melanogaster and the α proteasome subunit of Arabidopsis thaliana in 1996; Cong et al[50] isolated an XAP3 which is a human homolog of the rat protein kinase C-binding protein in 1997; Melegari et al[51] proved an XIP including two consensus phosphorylation sites for protein kinase C and Casein kinase II in 1998; Sun et al[52] discovered an XAP2 which is a human homolog of the protein kinase C-binding protein in 1999; Rahman et al[53] identified an HVDVC3 which is a third member of the family of human genes that encode the voltage-dependent anion channel. The reasonable explanation for these distinct results has not been obtained yet. Whether there exists different kinds of XAP or functional fragment interacting with pX or the repetitive results depend on the high transformation efficiency remains obscure. One of the possible mechanism may be a specific fragment can interact with pX specially and the proteins containing this fragment thus can bind to pX. Sequence analysis shown that both two true positive clones we isolated contained the sequence encodes glutacid-leuine -alnine, therefore, it’s rational to deduce this short peptide is a required site for XAP binding to pX.

The interaction of proteins shall locate at nucleus in yeast two-hybrid system. However, some proteins require modification such as glycosylation outside the nucleus after the expression, and others are only correctly folded and activated in the cooperation of some particular proteins which don’t exist in yeast cells, so not all proteins can obtain normal structure and biological function in yeast cells. The cDNA library used for seeking XAP in the past research including Epstein-Barr virus transformed human peripheral lymphocyte cDNA library, Hela λ gt11 cDNA library or senescent human liver cDNA library, were all library constituted from abnormal cells. Our study had not isolated integrated cDNA sequence of XAP partly owing to the difference between normal human liver cDNA library and abnormal cells cDNA library in protein’s expression, modification and activation.

In conclusion, the short peptide (glutacid-leuine-alanine) is a possibly required site for XAP binding to pX. Normal human liver cDNA library has difficulties in expressing the integrated XAP on yeast cells.

REFERENCES

1 Kong XB, Yang ZK, Liang LJ, Huang JF, Lin HL. Overexpression of P-glycoprotein in hepatocellular carcinoma and its clinical implication. World J Gastroenterol 2000;6:134-135

2 Sun JJ, Zhou XD, Liu YK, Zhou G. Phase tissue intercellular adhesion molecule-1 expression in nude mouse human liver cancer metastasis model. World J Gastroenterol 1998;4:314-316

3 Xiao CZ, Dai YM, Yu HY, Wang JJ, Ni CR. Relationship between expression of CD44v6 and nm23-H1 and tumor invasion and metastasis in hepatocellular carcinoma. World J Gastroenterol 1998;4:412-414

4 Feng T, Zeng ZC, Zhou L, Chen WY, Zuo YP. Detection of human liver-specific F antigen in serum and its preliminary application. World J Gastroenterol 1999;5:175-176

5 Lin CY, Shen ZL, Li CY, Ping XJ, Huang R. Immunohistochemical study on p53, H-ras21, c-erbB-2 protein and PCNA expression in HCC tissues of Han and minority ethnic patients. World J Gastroenterol 2000;6:234-238

6 Huang XF, Wang CM, Dai XW, Li ZJ, Fan BR, Y LB, Qian B, Fan L. Expressions of chromogranin A and calpeshpinD in human primary hepatocellular carcinoma. World J Gastroenterol 2000;6:693-698

7 Mei MH, Xu J, Shi QF, Yang JH, Chen Q, Qin LL. Clinical significance of serum intercellular adhesion molecule-1 detection in patients with hepatocellular carcinoma. World J Gastroenterol 2000;6:408-410

8 Zhao CY, Li YL, Li SG, Feng JY, Chang D. The and relevant cytokines in patients with hepatocellular carcinoma and their clinical significance. World J Gastroenterol 2000;6(Suppl 3):33

9 Yu DY, Moon HB, Son JK. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 1999;31:123-132

10 Zhu HZ, Cheng GX, Chen JQ, Kuang SY, Cheng Y, Zhang XL, Li HD, Xu SF, Shi JQ, Qian GS, Gu JR. Preliminary study on the production of transgenic mice harboring hepatitis B virus X gene. World J Gastroenterol 1998;4:536-539

11 Wang XZ, Tao QM. The relationship between HBV x gene and hepatocellular carcinoma. Shi jie Huaren Xiu hou Zhi 1999;7:1063-1064

12 Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H, Han YM, Lee CS, Park JS, Lee CH, Hyun BH, Murakami S, Lee KK. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 1999;31:123-132

13 Gao FG, Sun WS, Cao YL, Zhang LN, Song J, Li HF, Yan SK. HBsDNA probe preparation and its application in study of hepatocarcinogenesis. World J Gastroenterol 1998;4:320-322

14 Feitelson MA, Hepatitis B X antigen and P53 in the development of hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 1998;5:367-374

15 Qin LL, Su JJ, Li Y, Yang C, Ban KC, Yan RQ. Expression of IGF-¢ò, p53,p21 and HBsAg in precancerous events of hepatocarcinogenesis induced by AFB1 and / or HBV in vivo. World J Gastroenterol 2000;6:138-139

16 Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yanez-Mo M, Carretero M, Furthmayr H, Sanchez-Madrid R, Lopez-Cabrera M. The hepatitis B virus x protein induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 2001;33:1271-1281

17 Lin CY, Chen ZL, Lu CM, Li Y, Ping XJ, Huang R. Immunohistochemical study on p53, H-ras21, c-erbB-2 protein and PCNA expression in HCC tissues of Han and minority ethnic patients. World J Gastroenterol 2000;6:234-238

18 Sun BH, Zhang J, Wang BJ, Zhao XP, Wang YK, Yu ZQ, Yang DL, Hao LJ. Analysis of in vivo patterns of caspase 3 gene expression in primary hepatocellular carcinoma and its relationship to p21 expression and hepatic apoptosis. World J Gastroenterol 2000;6:356-360

19 Feng DY, Zheng H, Tan Y, Cheng RX. Effect of phosphorylation of MAPK and Stat3 and expression of ca2fos and ca2jun proteins on

Wang XZ, et al. Seek the X associated protein 97
hepatocarcinogenesis and their clinical significance. *World J Gastroenterol* 2001;7:33-36

20 Natoli G, Avantaggiati ML, Chirillo P, Puri PL, Ianni A, Balsamo C, Levreiro M. Ras- and raf-dependent activation of c-jun transactivation activity by the hepatitis B virus transactivator X. *Oncogene* 1994; 9: 2687-2693

21 Lara PE, Majano PL, Gomez GM, Garcia MC, Moreno OR, Levreiro M, Lopez CM. The hepatitis B virus X protein up-regulates tumor necrosis factor alpha gene expression in hepatocytes. *Hepatology* 1998; 28: 1013-1021

22 Caselmann WH. Trans-activation of cellular genes by hepatitis B virus proteins: a possible mechanism of hepatocarcinogenesis. *Adv Virus Res* 1996; 47:253-302

23 Hildt E, Hofschneider PH, Urban S. The role of hepatitis B virus (HBV) in the development of primary hepatocellular carcinoma. *Semin Virol* 1996; 7:337-347

24 Nomura T, Lin Y, Dorjsuren D, Ohno S, Yamashita T, Murakami S. Human hepatitis B virus X protein is detectable in nuclei of transformed cells, and is active for transactivation. *Biochem Biophys Acta* 1999; 1453:330-340

25 Hu Z, Zhang Z, Doo E, Coux O, Goldberg AL, Liang TJ. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. *J Virol* 1999; 73:7213-7240

26 Shintani Y, Yotsumaya H, Moriya K, Fujie H, Tsutsuji T, Kanegae Y, Kimura S, Saito I, Koike K. Induction of apoptosis after switch-on of the hepatitis B virus X gene mediated by the Cre/loxP recombination system. *J Gen Virol* 1999; 80(Pt 12): 3257-3265

27 Maguire H, FJ, P Hoffer, A Siddiqui. HBV X protein alters the DNA binding specificity of CREB ans ATF-2 by protein-protein interaction. *J Biol Chem* 1997; 272:16882-16889

28 Lara PE, Armesilla AL, Majano PL, Redondo JM, Lopez CM. The hepatitis B virus X protein activates nuclear factor of activated T cells (NF-AT) by a cyclosporin A-sensitive pathway. *EMBO J* 1998; 17:7086-7097

29 Gietz RD, Raine BT, Robbins A, Graham KC, Woods RA. Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. *Molecular Cellular Biochemistry* 1997; 172:67-69

30 Sun BH, Zhao XP, Wang BJ, Yang DL, Hao LJ. FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. *World J Gastroenterol* 2000;6:223-227

31 Wang XZ, Chen XC, Yang YH, Chen ZX, Huang YH, Tao QM. Relationship between HBxAg and Fas/FasL in patients with hepatocellular carcinoma. *World J Gastroenterol* 2000;6(suppl) 3:17

32 Shin EC, Shin JS, Park JH, Kim H, Kim SJ. Expression of fas ligand in human hepatoma cell lines: role of hepatitis-B virus X (HBX) in induction of Fas ligand. *Int J Cancer* 1999; 82: 587-591

33 Gottlob K, Fulco M, Levreiro M, Graessmann A. The hepatitis B virus HBx protein inhibits caspase 3 activity. *J Biol Chem* 1998; 273: 33347-33353

34 Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. *Oncogene* 2000; 19: 468-471

35 Lee H, Kim HT, Yun Y. Liver-specific enhancer II is the target for the p53-mediated inhibition of hepatitis B viral gene expression. *J Biol Chem* 1998; 273: 19786-19791

36 Prost S, Ford JM, Taylor C, Doig J, Harrison DJ. Hepatitis B x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes. *J Biol Chem* 1998; 273: 33327-33332

37 Grossman IJ, Koshy R, Henkler F, Groopman JD, Alasou-Jamali MA. Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. *Carcinogenesis* 1999; 20: 479-483

38 Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair. *Int J Cancer* 1999; 80: 875-879

39 Becker SA, Lee TH, Butel JS, Slagle BL. Hepatitis B virus X protein interferes with cellular DNA repair. *J Virol* 1998; 72: 266-272

40 Lin GY, Chen ZL, Lu CM, Li Y, Wang J, Ping XJ, Huang R. Immunohistochemical study on p53, p21, c-erbB-2 protein and PCNA expression in tumor tissues of Han and minority ethnic patients with primary hepatic carcinoma in Xinjiang. *World J Gastroenterol* 2000;6(suppl)53

41 Lee SW, Lee YM, Bae SK, Murakami S, Yun Y, Kim KW. Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenisis in hepatocarcinogenesis. *Biochem Biophys Res Comm* 2000; 268: 456-461

42 Lian Z, Liu J, Pan J, Satiroglu Tufan NL, Zhu M, Arbuthtop N, Kew M, Clayton MM, Feitelson MA. A cellular gene up-regulated by hepatitis B virus encoded X antigen promotes hepatocellular growth and survival. *Hepatology* 2001;34:146-157

43 Qin LL, Su JJ, Li Y, Yang C, Ban KC, Yian RQ. Expression of IGF-r and p53, p21 and HBxAg in precancerous events of hepatocarcinogenesis induced by AF81 and/or HBV in tree shrews. *World J Gastroenterol* 2000;6:138-139

44 Fields S, Song OK. A novel genetic system to detect protein-protein interactions. *Nature* 1989; 340:245-246

45 Bartel P, Chien CT, Sterngramlanz R. Elimination of false positives in the two hybrid system. *Biotechniques* 1995;14:920-924

46 Wang XZ, Tao QM. Advances on research of hepatitis B virus X associated Protein. *GanZang* 2000;5:55-56

47 Lee TH, Elledge SJ, Butel JS. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. *J Virol* 1999; 69:1107-1114

48 Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits hepatitis B virus X-associated protein that inhibits X transactivation. *Virology* 1998; 26:4741-4750

49 Hsu SW, J Kwong J, Sun ECY, Liang TJ. Proteasome complex as a potential cellular target of hepatitis B virus X protein. *J Virol* 1996; 70:5582-5591

50 Cong YS, Yao YL, Yang WM, Kuzhandaivelu N, Seto E. XAP2, a novel hepatitis B virus X-associated protein that inhibit viral replication. *J Biol Chem* 1997;272:16482-16489

51 Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a novel hepatitis B virus X binding protein that inhibit viral replication. *J Virol* 1998; 72:1737-1743

52 Sun BS, Zhu X, Clayton MM, Pan J, Feitelson MA. Identification of a protein isolated from senescent human cells that binds to hepatitis B virus x antigen. *Hepatol* 1998; 27:228-239

53 Rahman Z, C Maunoury, A Siddiqui. Isolation of a novel human voltage-dependent anion channel gene. *Eur J Hum Genet* 1998; 6:337-340

54 Rahman Z, K Huh, R Lashe. Hepatitis virus x protein colocalizes to mitochondrial with a human voltage-dependent anion channel protein. *Adv Exp Med Biol* 2000; 479:2840-2846

Edited by Wang JH and Xu XQ