Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

D.J. González*, L. E. González and J. M. López
Departamento de Física Teórica, Universidad de Valladolid, Valladolid, SPAIN

M. J. Stott
Department of Physics, Queen's University, Kingston, Ontario, CANADA
(Dated: January 11, 2022)

The static and dynamic structure of liquid Al is studied using the orbital free \textit{ab-initio} molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely $T = 943$ K and $1323$ K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our \textit{ab-initio} results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.

I. INTRODUCTION.

Molecular dynamics (MD) methods have a long tradition as a useful technique to study the properties of liquid systems, and the last fifteen years have witnessed a large spread on the application of \textit{ab-initio} molecular dynamics methods, based on the density functional theory (DFT). This theory allows calculation of the ground state electronic energy of a collection of atoms, for given nuclear positions, and also yields the forces on the nuclei via the Hellmann-Feynman theorem. It enables to perform molecular dynamics simulations where the nuclear positions evolve according to classical mechanics whereas the electronic subsystem follows adiabatically.

In this paper we present the results of an \textit{ab-initio} molecular dynamics simulation on the static and dynamic properties of liquid Al at thermodynamic conditions around the triple point. Liquid aluminium has usually been considered as a simple metal in which the core electrons forming the ion can be clearly distinguished from the valence electrons, and moreover the core electrons do not significantly overlap with those of neighbouring ions. Therefore, the system consists of a binary mixture of ions and valence electrons, where the former may be treated classically whereas the electrons must be treated quantum mechanically.

However, in wide regions of the density-temperature plane, the simple metals have usually been treated as an effective one-component fluid of ions interacting by means of density-dependent effective interionic pair potentials, derived from ionic pseudopotentials by applying second order perturbation theory. This approach, which will be referred to as the linear response theory (LRT), has often been used as the starting point for the study of the static and dynamic properties of the simple metals. It has also been the approach followed in most studies on the static structure of liquid aluminium. Among them, we mention the work of Dagens \textit{et al.} who obtained an effective interionic pair potential, derived from a non-local pseudopotential which was constructed from the valence charge density induced by an Al$^{+3}$ ion placed in an electron gas at the metallic density. From this potential, Jacucci \textit{et al.} calculated the static structure factor of liquid aluminium by means of MD simulations; their results showed fair agreement with experiment, with a main peak somewhat higher. Also Hafner and Janka have studied the liquid static structure of aluminium by means of an effective interionic pair potential derived from an \textit{ab-initio} pseudopotential originally developed by Harrison, whereas the corresponding liquid static structure was derived by means of MD simulations. In their calculation of the pseudopotential, the authors used the coefficient for the exchange-correlation potential between the core and valence electrons as a fitting parameter in order to obtain agreement with the experimental static structure factor.

Whereas the previous work dealt only with the static properties of liquid Al near melting, the work by Ebbajo \textit{et al.} also considered some dynamic properties. In fact, these authors performed MD simulations for three different interionic pair potentials, two of them based on non-local pseudopotentials and the other one based on the local Ashcroft’s pseudopotential, which showed rather different shape, specially outside the repulsive core. Despite those differences, all them gave fairly similar results for the liquid static structure which agreed well with the experimental data whereas the main discrepancies appeared in the dynamic structure.

A rather different approach has been followed by Chihara and coworkers. Their quantum hypernetted chain (QHNC) method treats the ions and electrons on basically equal footing by combining liquid state integral equations with the density functional formalism. Moreover, it does not rely on the pseudopotential ideas, gives rise to a self-consistent scheme to determine the liquid static structure and yields an effective interionic pair...
potential which depends on the particular liquid static structure.

Although the LRT approach has produced reasonable results for the liquid alkali metals, when the valence of the system is increased, its validity becomes more questionable. In addition, even for the alkali metals the LRT is less justifiable for thermodynamic states approaching the critical point, and it is certainly wrong near the critical point. This limitation of the “standard” theory has stimulated the use of first-principles molecular dynamics techniques, where the electronic density, total energy and forces are obtained by using the Kohn-Sham (KS) formulation of the density functional theory (DFT). However, the computational demands of these ab-initio methods, where KS orbitals are used to describe the electronic density and to compute exactly the electronic kinetic energy, grow very rapidly with system size, and their memory requirement is also quite large. These considerations have restricted the sizes of the systems studied so far, to about 60 atoms, and have limited simulation times to around 2-5 picoseconds in the cases of Rb, Cs and Hg, and 64-128 atoms, with simulation times of 0.15-0.85 picoseconds in the case of Na.

These limitations can be at least partly overcome if the “standard” theory is used in conjunction with experiment. The static structure factor of liquid Al has been measured by both neutron and X-ray diffraction. The dynamical structure of liquid Al near the triple point has also been investigated recently by Scopigno et al., using inelastic X-ray scattering (IXS). Note that the high value of the adiabatic sound speed for liquid Al (≈ 4800 m/s), prevents the use of the inelastic neutron scattering (INS) technique for investigating the collective excitations for small q-values (roughly, for q ≤ q_p, with q_p ≈ 2.70 Å⁻¹ being the main peak position of the static structure factor). Those IXS experiments have investigated the wavevector region 0.05q_p ≤ q ≤ 0.5q_p, obtaining several dynamical features previously observed in the liquid alkali metals, such as the existence of collective excitations up to q-values larger that 0.5q_p, which exhibit a positive dispersion in the sound velocity with respect to the hydrodynamic value.

The layout of the paper in as follows. In section II we briefly describe the theory used in the orbital-free ab-initio molecular dynamics (OF-AIMD) simulations, giving some technical details, and focusing on the two problematic issues, namely, the kinetic energy functional and the local pseudopotentials needed to characterize the ion-electron interaction. In section III we present and discuss the results of the ab-initio simulations; moreover they are compared with further classical molecular dynamics (CMD) simulations that we have performed based on LRT and the QHNC potentials, and with the available experimental data. Finally some conclusions are drawn and possible ideas for further improvements are suggested.

II. THEORY.

The total potential energy of a system of N classical ions enclosed in a volume V, and interacting with N_e = N/Z valence electrons through a local electron-ion potential v(r), is written, within the Born-Oppenheimer approximation, as the sum of the direct ion-ion coulombic interaction energy, and the ground state energy of the electronic system subject to the external potential created by the ions, V_{ext}(\vec{r}, \{\vec{R}_i\}) = \sum_{i=1}^{N} v(|\vec{r} - \vec{R}_i|),

\[ E(\{\vec{R}_i\}) = \sum_{i<j} \frac{Z^2}{|\vec{r}_i - \vec{r}_j|} + E_g(\rho_g(\vec{r}), V_{ext}(\vec{r}, \{\vec{R}_i\})], \]

(1)

where \rho_g(\vec{r}) is the ground state electronic density and \vec{R}_i are the ionic positions. According to LRT, the ground state electronic density is given, in reciprocal space, by

\[ \rho_g^{LRT}(q) = \left( \sum_j e^{i\vec{q} \vec{R}_j} \right) n^{LRT}(q) \equiv F(q) n^{LRT}(q) \]  

(2)

\[ n^{LRT}(q) = \chi(q, \rho_0) v(q) \]  

(3)

where \chi(q, \rho_0) is the response function of a uniform electron gas of density \rho_0 = N/Z/V. Accordingly, the ground state electronic density is a superposition of spherically symmetric pseudoatomic densities around each ion, i.e.,

\[ \rho_g^{LRT}(\vec{r}) = \sum_j n^{LRT}(\vec{r} - \vec{R}_j) \]  

(4)

and the electronic ground state energy is
\( E_g^{\text{LRT}} = E_v[\rho_0] + \sum_{i<j} \phi_{\text{ind}}(R_{ij}) \)  

(5)

\[ \phi_{\text{ind}}(q) = \chi(q, \rho_0)v^2(q) \]  

(6)

where \( E_v[\rho_0] \) is a structure-independent term. Within the LRT, the total potential energy can be written as a sum of a structure-independent term and a sum over pairs of an effective interionic pair potential \( \phi_{\text{eff}}(R) = \frac{Z^2}{R} + \phi_{\text{ind}}(R) \).

Alternatively, DFT shows that the ground state electronic density can be obtained by minimizing the energy functional \( E[\rho] \), and the minimum value of the functional gives the ground state energy of the electronic system. The energy functional can be written

\[ E[\rho(\vec{r})] = T_s[\rho] + E_{\text{ext}}[\rho] + E_H[\rho] + E_{\text{xc}}[\rho] \]  

(7)

where the terms represent, respectively, the electronic kinetic energy, \( T_s[\rho] \), of a non-interacting system of density \( \rho(\vec{r}) \), the energy of interaction with the external potential, \( E_{\text{ext}}[\rho] \), the classical electrostatic energy (Hartree term),

\[ E_H[\rho] = \frac{1}{2} \int d\vec{r} d\vec{s} \frac{\rho(\vec{r})\rho(\vec{s})}{|\vec{r} - \vec{s}|} \],

(9)

and the exchange-correlation energy, \( E_{\text{xc}}[\rho] \), for which we will adopt the local density approximation.

### A. Technical details

Given an explicit functional \( T_s[\rho] \), we can proceed to minimize \( E_g \) with respect to the \( \rho(\vec{r}) \), but in order to maintain \( \rho(\vec{r}) \geq 0 \) everywhere, we have used as our system variable, an effective orbital, \( \psi(\vec{r}) \), defined as \( \rho(\vec{r}) = \psi(\vec{r})^2 \), with real \( \psi(\vec{r}) \). We expand \( \psi(\vec{r}) \) in plane waves compatible with the simple cubic periodic boundary conditions of the simulation:

\[ \psi(\vec{r}) = \sum_{\vec{G}} c_{\vec{G}} e^{-i\vec{G} \cdot \vec{r}} \]  

(10)

\[ c_{\vec{G}} = \frac{1}{V} \int_V d\vec{r} \psi(\vec{r}) e^{i\vec{G} \cdot \vec{r}} \]  

(11)

\[ \vec{G} = \frac{2\pi}{L} (n_1, n_2, n_3) \]  

(12)

where \( L \) stands for the side of the cube. This expansion is truncated at wavevectors corresponding to a given cut-off energy, \( E_{\text{cut}} \), whose value is given in Table I. A real \( \psi \) implies that \( c_{-\vec{G}} = c_{\vec{G}}^* \), with a real \( c_0 \); consequently only the half-set \( \{c_{\vec{G}}\}'s \) need be treated as variables.

The energy functional must be minimized with the normalization constraint \( \mathcal{G}[\rho(\vec{r})] = \int_V d\vec{r} \rho(\vec{r}) = N_e \) which is imposed via the Lagrange multiplier \( \mu \), leading to the Euler-Lagrange equation

\[ \frac{\delta F}{\delta \rho(\vec{r})} = \frac{\delta [E - \mu \mathcal{G}]}{\delta \rho(\vec{r})} = \frac{\delta E}{\delta \rho(\vec{r})} - \mu = 0 \]  

(13)

for the ground state density. The minimization is performed with respect to the \( \{c_{\vec{G}}\}'s \), instead of the electronic density, leading to the equations:

\[ \frac{\partial F}{\partial c_0} = 2 \int_V d\vec{r} \mu(\vec{r})\psi(\vec{r}) - 2\mu V c_0 = 0 \]  

(14)

for the ground state density. The minimization of the functional is performed every time step of the simulation, using a simple quenching method: a fictitious “coefficients’ kinetic energy”, \( T = \frac{1}{2} M_e \sum |c_{\vec{G}}|^2 \), is introduced, where \( M_e \) is the "coefficients’ mass", and the dot denotes the derivative with respect to the fictitious “coefficients’ time”, \( t_c \). This kinetic energy, rewritten in terms of the set \( \{c_{\vec{G}}\} \), together with the “potential energy” \( F \), leads to the following “equations of motion” \( \{\psi c_{\vec{G}} \in \{c_{\vec{G}}\}\} \)

\[ M_e \ddot{c}_{\vec{G}} = -2 \int_V d\vec{r} \mu(\vec{r})\psi(\vec{r}) e^{i\vec{G} \cdot \vec{r}} + 2\mu V c_{\vec{G}} \]  

(15)

These equations are solved numerically using the Verlet leapfrog algorithm with an electronic timestep \( \Delta t_e \).

The velocities are quenched at every step until the minimum is reached within preset tolerances on \( T \) and the gradient of \( F \). The chemical potential \( \mu \) is not known in advance of the minimization, but replacing \( \mu \) in eqn. (15) by its stationary value \( \int d\vec{r} \mu(\vec{r})n(\vec{r}) / \int d\vec{r} n(\vec{r}) \) at each timestep, gives good convergence to the ground state. For the present simulations, we have used \( M_e = 1.85 \times 10^7 \) hartree \( \times \) (a.u.)\(^3\) and a \( \Delta t_e = 1 \times 10^{-4} \) ps.

The interatomic forces are obtained from the electronic ground state via the Hellman-Feynman theorem, \( \vec{F}_i = -\nabla_{\vec{R}_i} E_g[\rho(\vec{r}), \{\vec{R}_i\}] \), \( i = 1 \cdots N \) and Newton’s equations, \( d^2\vec{R}_i / dt^2 = \vec{F}_i / M_i \), are solved numerically for the motion of the ions using the Verlet leapfrog algorithm with a timestep \( \Delta t = 1.5 \times 10^{-3} \) ps.

### B. The kinetic energy functional

The kinetic energy functional, \( T_s \), is a critical ingredient of the energy functional. It is generally considered that the von Weizsäcker term,
is essential for a good description of the kinetic energy. It applies in the case of rapidly varying densities, and it is exact for one or two-electron systems. Further terms are usually added to the functional in order to reproduce correctly some exactly known limits. In the uniform density limit, the exact kinetic energy is given by the Thomas-Fermi functional,

\[ T_{\text{TF}}[\rho(\vec{r})] = \frac{3}{10} \int d\vec{r} [\nabla \rho(\vec{r})]^2 / \rho(\vec{r}), \]  

(17)

where \( k_F(\vec{r}) = (3\pi^2)^{1/3} \rho(\vec{r})^{1/3} \) is the local Fermi wavevector. In the limit of almost uniform density, LRT is correct, with a response function corresponding to a non-interacting uniform electron gas, given by the Lindhard function, \( \chi_L(q, \rho_0) \).

Stimulated by the advantages of the orbital-free \textit{ab initio} simulations, there has been a renewed interest in the development of accurate kinetic energy functionals. With Perrot’s work as the basis, Madden and coworkers \cite{Madden91, Madden92} have developed functionals which correctly recover the Thomas-Fermi and linear response limits and have also included the quadratic response. \cite{Madden91, Madden92}

Later, Carter and coworkers \cite{Carter94} investigated these functionals and proposed a linear combination of them as a suitable form for \( T_F \); more recently they have also derived another expression which includes density dependent kernels. Unfortunately, an undesirable feature of these functionals is that they are not positive definite, so that minimization of the energy functional can lead to an unphysical negative kinetic energy.

Chacón, Alvarellos and Tarazona \cite{Chacon95} have developed a different type of kinetic energy functional, which employs an “averaged density” and recovers the uniform and LRT limits. Their functional has been investigated and generalized by García-González et al. \cite{Garcia97}. These functionals have the merit of being positive definite, but they are somewhat complicated to apply and require order \( N \) more Fast Fourier Transforms (FFT’s) than simpler functionals, and this diminishes the advantage of the orbital free approach over the full Kohn-Sham method.

In this paper we use a simplification of the averaged density approach \cite{Chacon95} with the kinetic energy given by

\[ T_s = T_W[\rho] + T_\beta[\rho] \]  

(18)

\[ T_\beta[\rho] = \frac{3}{10} \int d\vec{r} [\nabla \rho(\vec{r})]^{5/3 - 2\beta} \tilde{k}(\vec{r})^2 \]  

(19)

\[ \tilde{k}(\vec{r}) = (2k_F^0)^3 \int d\vec{s} k(\vec{s}) w_\beta(2k_F^0 |\vec{r} - \vec{s}|) \]  

(20)

\[ k(\vec{r}) = (3\pi^2)^{1/3} / \rho(\vec{r})^{\beta} \]  

(21)

where \( k_F^0 \) is the Fermi wavevector corresponding to a mean electron density \( \rho_0 \), and \( w_\beta(x) \) is a weighting function, determined by requiring the correct recovery of the LRT and uniform density limits. Note that \( \tilde{k}(\vec{r}) \) appears as a convolution which can be performed rapidly by the usual FFT techniques. This functional is a generalization of one with \( \beta = 1/3 \), used earlier by us in a study of expanded liquid Cs. \cite{Garcia97}

The details of the functional are given in appendix A, and its main characteristics are as follows: (i) \( \beta \) is a real positive number whose maximum value leading to a mathematically well behaved weight function is \( \approx 0.6 \), (ii) the functional recovers the uniform and LRT limits, and is positive definite, (iii) when \( k_F^0 \to 0 \) because the mean electron density vanishes, e.g. for a finite system, the von Weizsäcker term is recovered if \( \beta = 4/9 \), whereas for other values of \( \beta \), the limit is \( T_W + C T_{\text{TF}} \), (iv) for values of \( \beta > 0.5 \) it is expected that \( \mu(\vec{r})\psi(\vec{r}) \), which is the driving force for the dynamic minimization of the energy, (see eqn. (15)) remains finite even for very small electronic densities \( \rho(\vec{r}) \).

Those two last properties will be important in the case of expanded liquid metals because of the appearance of large inhomogeneities in the atomic distribution, and therefore in the electron density, with regions where it becomes very small. Indeed, this situation has already been observed in the \textit{ab initio} simulations of expanded liquid Na \cite{Garcia97}. In systems for which the appearance of isolated atoms or clusters is likely the von Weizsäcker term would be appropriate, and a functional with a value of \( \beta \) as close as possible to \( 4/9 \) would be recommended.

In the present simulations we have used \( \beta = 0.51 \), which in the limit \( \rho_0 \to 0 \) gives \( C = 0.046 \) and guarantees, at least for the thermodynamic states considered, that \( \mu(\vec{r})\psi(\vec{r}) \) remains finite and not too large everywhere so that the energy minimization can be achieved.

C. Pseudopotentials

\textit{Ab initio} simulations using the full Kohn-Sham approach (KS-AIMD) usually employ nonlocal pseudopotentials obtained by fitting to properties of the free atom. In an orbital-free approach where the electronic density is the variable, such non-local pseudopotentials, which act differently on different angular momentum components of the orbitals, cannot be used. Instead, local pseudopotentials must be developed which include an accurate description of the electronic structure in the physical circumstances of interest.

When constructing a pseudopotential to be used for a liquid metal, it seems more appropriate to use a reference state which closely resembles the environment of an atom in the metal, which is quite different from free space. The pseudopotential used in this simulation has been obtained using the neutral pseudoatom (NPA) method \cite{Raghavachari90}, in which the reference state is an atom at the centre of a spherical cavity in the positive background of a uniform electron gas. The density of the gas is taken to be the mean valence electron density of the system of interest, in our case, the liquid metal in a specific ther-
modynamic state. The radius of the cavity is such that the total positive charge removed from the hole is equal to the valence of the atom. First, a full Kohn-Sham density functional (KS-DFT) calculation is performed to obtain the displaced valence electron density, \( n_{\text{ps}}(r) \), i.e., the change in the electron density induced by the atom and the cavity. After pseudizing the \( n_{\text{ps}}(r) \) by eliminating the core-orthogonality oscillations, an effective local pseudopotential is constructed which, when inserted into the uniform electron gas along with the cavity, reproduces the displaced valence electron density previously obtained.

Two approaches will be followed in this paper. The first uses LRT to reproduce the displaced valence electron density leading to a LRT-based local pseudopotential (LRT-PS) from which an effective interatomic pair potential is derived (see eqn. (22)) to be used in CMD simulations; for further details we refer to Ref. 43. The second approach uses the orbital-free density functional theory (OF-DFT) to reproduce the displaced electron density and it is suited for OF-AIMD simulations. The development proceeds as follows. When the functional derivatives of the energy functional are performed, the Euler equation, eqn. (23), for our pseudopotential in the jellium-vacancy system becomes

\[
\mu_s(r) + V_{\text{ext}}(r) + V_H(r) + V_{\text{xc}}(r) - \mu = 0, \tag{22}
\]

where each of the terms is the derivative of the corresponding term in eqn. (8), namely,

\[
\mu_s(r) = \mu_W(r) + \mu_\beta(r), \tag{23}
\]

with the expressions for the von-Weizsäcker term and the \( \beta \)-term given in appendix B.

\[
V_{\text{ext}}(r) = v_{\text{ps}}(r) + v_{\text{cav}}(r) + v_{\text{jell}}(r), \tag{24}
\]

\[
V_H(r) = \int d\vec{s} \rho(s)/|\vec{r} - \vec{s}|, \tag{25}
\]

with \( \rho(r) = \rho_0 + n(r) \), and \( V_{\text{xc}}(r) \) is the exchange-correlation potential, obtained from the functional derivative of \( E_{\text{xc}}[\rho] \) evaluated at \( \rho(r) \).

Due to the spherical symmetry of the system all the magnitudes depend just on \( r \). Given \( \rho(r) \), \( v_{\text{ps}}(r) \) can be obtained from eqn. (23), and the constant \( \mu \) is just an energy origin which is set so as to obtain a pseudopotential that decays to zero for large distances. The pseudopotential constructed in this way, will be referred to as the OF-DFT-based pseudopotential (OFDFT-PS).

### III. RESULTS AND DISCUSSION.

We have performed OF-AIMD simulations for liquid Al at two different thermodynamic states along the liquid-vapor coexistence line (943 K and 1323 K), for which X-ray and neutron diffraction data are available. Table II gives further details on the thermodynamic states and several simulation parameters. In addition, we have also carried out classical MD simulations, using effective interionic pair potentials derived from standard second order pseudopotential perturbation theory, with the LRT-PS’s constructed as previously described (see also Ref. 53 and with pair potentials derived from the QHNC.

In the OF-AIMD simulations 500 particles were treated in a cubic cell of the size appropriate to the density, whereas more particles were used for the CMD simulations (see Table III). In both sets of simulations, liquid static properties were evaluated (pair distribution functions and static structure factors) and several dynamic properties, both single-particle ones (velocity autocorrelations and mean square displacement) and collective (intermediate scattering functions, dynamic structure factors, longitudinal and transverse currents). The calculation of the collective dynamic properties required long simulation runs in order to accumulate reasonable statistics; for example the OF-AIMD simulations lasted for \( 2 \cdot 10^4 \) steps which correspond to 30 ps of simulation time. On the other hand, the CMD simulations run for \( 10^5 \) steps, amounting to 200 ps.

#### A. Pseudopotentials.

The local pseudopotentials described in section II C were constructed using a reference system mimicking the complex system to be studied. The pseudopotentials change with the thermodynamic state considered and therefore are not transferable to other states. Figure I shows the Fourier transforms of the non-covalent part of the pseudopotentials obtained from the LRT and OF-DFT approaches outlined above. The two schemes lead to similar pseudopotentials with the main differences being at low \( q \)-values and in the amplitude of the oscillations at large \( q \). Note that in both approaches the same pseudized displaced valence electronic density of an atom in a jellium-vacancy model is reproduced, although the OF-DFT was used in one case and the LRT in the other. Consequently the differences in the two pseudopotentials should reflect the importance of nonlinear effects which, according to the present results seem to be more important at small \( q \). The appearance of the oscillations can be traced back to the calculation of the pseudized displaced valence electronic density which has a discontinuous second derivative at a matching radius. However, these oscillations do not influence the final OF-AIMD results because they appear for \( q \)-values bigger than those corresponding to the \( E_{\text{Cut}} \).
FIG. 1: Non-coulombic part of the pseudopotential for Al at T = 943 K. The continuous line is the OFDFT-PS used in the OF-AIMD simulations, while the dashed line is stands for the LRT-PS used for the CMD simulations.

B. Static properties.

The static structure factors, $S(q)$, obtained from the simulations are shown in Figure 2, which also shows the corresponding experimental data measured by neutron and X-ray diffraction experiments. The experimental data show small differences in the region $2 \, \AA^{-1} \leq q \leq 5 \, \AA^{-1}$, with the neutron values being slightly bigger that the X-ray ones, whereas the OF-AIMD results stand remarkably well between both sets, although somewhat closer to the X-ray data. The insets of the figures show that the OF-AIMD results in the small $q$-region are also in good agreement with the experimental X-ray results. The figures also include the $S(q)$, obtained from the CMD simulations performed with the interatomic pair potential derived from the LRT-PS and from the QHNC method. Although these calculated $S(q)$ reasonably reproduce the experimental data the agreement with experiment is much better for OF-AIMD.

Extrapolation of $S(q)$ to $q \to 0$ allows the isothermal compressibility, $\kappa_T$, to be estimated from the relation $S(0) = \rho k_B T \kappa_T$. A least squares fit of $S(q) = s_0 + s_2 q^2$ to the calculated $S(q)$ for $q$-values up to $1 \, \AA^{-1}$ yields the result $\kappa_{T, \text{OF-AIMD}} = 2.37$ (in $10^{-11} \, \text{m}^2 \, \text{N}^{-1}$ units) for $T = 943 \, \text{K}$, which is close to the experimental value $\kappa_T = 2.43$. In contrast, both the LRT-PS and QHNC ionic pair potentials lead to much higher values, namely $\kappa_{T, \text{LRT-CMD}} = 6.5$ and $\kappa_{T, \text{QHNC-CMD}} = 7.4$ respectively.

The ionic and electronic static structure of liquid Al near melting has also been calculated by Anta et al. using the OF-AIMD method with a kinetic energy functional which describes the correct linear and quadratic response of the electron gas and a local ionic pseudopotential constructed from a non-local ionic pseudopotential. Their results for the static structure factor closely followed the experimental one.

C. Dynamic properties.

1. Single-particle dynamics.

The most complete information about the single-particle properties is provided by the self-intermediate scattering function, $F_s(q,t)$, which probes the single-particle dynamics over different length scales, ranging from the hydrodynamic limit ($q \to 0$) to the free-particle limit ($q \to \infty$). In the present simulations, this magnitude has been obtained by

$$F_s(q,t) = \frac{1}{N} \left( \sum_{j=1}^{N} e^{-i \mathbf{q} \cdot \mathbf{R}_j(t+t_0)} e^{i \mathbf{q} \cdot \mathbf{R}_j(t)} \right)$$

(26)
and in figure 3 we show the results obtained for several \( q \)-values at \( T = 943 \) K and 1343 K. It shows the typical monotonic decrease with time; moreover, the results are very similar to those of the LRT-CMD and QHNC-CMD simulations, although the latter ones show a slightly slower decay with time. An increase in temperature leads to increased rate of decay.

Closely related to the \( F_s(q, t) \) is the velocity autocorrelation function (VACF) of a tagged ion in the fluid, \( Z(t) \), which can be obtained as the \( q \rightarrow 0 \) limit of the first-order memory function of the \( F_s(q, t) \). However, in the present simulations it is more easily obtained from its definition

\[ Z(t) = \langle \vec{v}_1(t) \vec{v}_1(0) \rangle / \langle v_1^2 \rangle \]  

which stands for the normalized VACF. The results are shown in Figure 3 along with those derived from the LRT-CMD and QHNC-CMD simulations. The results display the typical backscattering behaviour, which is more marked for the OF-AIMD simulations, but the results of the three simulations are rather similar. The main features of the obtained \( Z(t) \) are comparable to those obtained for other simple metals near melting, namely: (i) a first minimum about 0.20 deep and (ii) a rather weak following maximum peaking close to zero.

The self-diffusion coefficient, \( D \), is readily obtained from either the time integral of \( Z(t) \) or from the slope of the mean square displacement \( \delta R^2(t) \equiv \langle |\vec{R}_1(t) - \vec{R}_1(0)|^2 \rangle \) of a tagged ion in the fluid, as follows

\[ D = \frac{1}{\beta m} \int_0^\infty Z(t)dt ; \quad D = \lim_{t \to \infty} \delta R^2(t)/6t \]  

and the results for \( D \) are given in Table 1. The two routes for \( D \) lead to practically the same value, namely \( D_{\text{OF-AIMD}} = 0.49 \; \text{Å}^2/\text{ps} \); which is somewhat smaller than the mean value of 0.55 \( \text{Å}^2/\text{ps} \) obtained in a previous OF-AIMD calculation with 205 particles. Unfortunately, to our knowledge, no experimental results are yet available for the diffusion coefficients of liquid Al at any thermodynamic state. However, we can compare with the results of a KS-DFT calculation performed for liquid Al near the triple point, using 64 particles and a non-local Bachelet-Hamann-Schluter type pseudopotential. This calculation lead to a value \( D_{\text{KS-DFT}} = 0.60 \; \text{Å}^2/\text{ps} \) derived from the slope of the corresponding mean square displacement. Recently, another KS-DFT calculation for liquid Al at 1000 K, using 64 particles and ultrasoft Vanderbilt pseudopotentials gave for \( D \) values within the range 0.52-0.68 \( \text{Å}^2/\text{ps} \), derived from the slope of the mean square displacement. Our OF-AIMD simulations, with a small number of particles and/or a small number of configurations, suggest that the self-diffusion coefficients obtained from the \( \delta R^2(t) \) tend to be greater than those obtained by integration of the \( Z(t) \), and as the number of particles and/or configurations is increased, the value for the self-diffusion coefficient is decreased. More extensive KS-DFT simulations would probably lead to a smaller value of \( D \) closer to that obtained in the present OF-AIMD simulations. The values obtained from LRT-CMD (0.58 \( \text{Å}^2/\text{ps} \) ) and QHNC-CMD (0.55 \( \text{Å}^2/\text{ps} \) ) simulations are also rather similar and slightly bigger than the OF-AIMD
The intermediate scattering function, $F(q, t)$, embodies the information concerning the collective dynamics of density fluctuations over both the length and time scales. It is defined as

$$F(q, t) = \frac{1}{N} \left\langle \left( \sum_{j=1}^{N} e^{-i\vec{q}\cdot\vec{R}_j(t+t_0)} \right) \left( \sum_{l=1}^{N} e^{i\vec{q}\cdot\vec{R}_l(t_0)} \right) \right\rangle$$

(29)

and in figures we show, the results from the present OF-AIMD simulations for several $q$-values. $F(q, t)$ exhibits oscillatory behaviour which persists up to $q \approx 3q_p/5$, with the amplitude of the oscillations being stronger for the smaller $q$-values. This is typical behaviour found for other simple liquid metals near melting, by either computer simulations or theory. Different behaviour is seen for the results in the same $q$-range obtained from the LRT-CMD and QHNC-CMD simulations, with $F(q, t)$’s whose contact values, given by $F(q, t=0) = S(q)$, are more than double and, more important, with a diffusive component playing a dominant role. The corresponding MD results of Ebbsjo et al. for the $F(q, t)$’s have better contact values but also display an important diffusive component.

Closely connected to the $F(q, t)$ is the dynamic structure factor, $S(q, \omega)$, which is obtained by a time Fourier transform of the $F(q, t)$ (with an appropriate window to smooth out truncation effects). Its importance lies in its direct connection to the inelastic neutron scattering or the IXS data. The results obtained for the $S(q, \omega)$ are shown in figures for a range of wavevectors up to $q \approx 2.5q_p$. The dynamic structure factor shows well defined sidepeaks, indicative of collective density excitations, up to $q \approx 1.6$ Å$^{-1}$ which amounts to $\approx 3q_p/5$. The results qualitatively reproduce the shape of the experimental IXS data with some small discrepancies in the heights and positions of the peaks. Similar results, but with a better description of the central peak at the lowest $q$-values, were also obtained in the CMD simulations of Ebbsjo et al. However, it must be stressed that their
Because of the large values of $s(q,t)$, given by this is because the side peaks are located at smaller positions, this is because the side peaks are located at smaller positions, given by $qc(q)$, where $c(q)$ is the generalized adiabatic sound velocity (see below), which is too small because of the large values of $S(q)$ at those $q$-values.

From the positions of the side peaks, $ω_m(q)$, the dispersion relation of the density fluctuations has been obtained and this is shown in figure 10 for the state at $T = 943$ K, along with $ω(q)$, which is the dispersion relation obtained from the maxima of the longitudinal current correlation function, $J_l(q,ω) = ω^2S(q,ω)$. Note that in the hydrodynamic region (small $q$), the slope of the dispersion relation curve is the adiabatic sound velocity, $c_s(q) = v_{th}\sqrt{2S(q)}$, with $v_{th} = (βm)^{-1/2}$ being the thermal velocity and $γ$ is the ratio of the specific heats. In the limit $q → 0$, $c_s(q)$ reduces to the bulk adiabatic sound velocity and determines the slope of the dispersion at $q → 0$. By extrapolating the OF-AIMD results for $S(q)$ and using the experimental values of $γ ≈ 1.25$, we obtain a value of $≈ 4850$ m/s for the bulk adiabatic sound velocity which compares reasonably well with the experimental value $65$ m/s near the triple point. Figure 6 shows a positive dispersion, i.e. an increase of $ω_l(q)$ with respect to the values predicted by the hydrodynamic adiabatic speed of sound, with a maximum located around $0.4$ Å$^{-1}$. Similar behaviour has also been obtained by Scopigno et al.$^{33}$ from their experimental IXS results for liquid Al at $T=1000$ K and has been observed in other liquid metals: Rb, Cs, Li and Na.$^{34}$

Another interesting dynamical magnitude is the transverse current time correlation function, $J_T(q,ω)$, which is not associated with any measurable quantity and can only be determined by means of MD simulations. It provides information on the shear modes and is defined as

$$J_T(q,ω) = \frac{1}{N} \langle j_x(q,0)j_x(q,ω) \rangle$$  \hspace{1cm} (30)$$

where $j_x(q,ω) = \sum_{i=1}^{N} v_i^x(t) e^{-i\vec{q}\cdot\vec{R}_i(t)}$ is the transverse current. The shape of $J_T(q,ω)$ evolves from a gaussian, in both $q$ and $ω$, for the free particle $q → ∞$ limit, towards a gaussian in $q$ and exponential in $ω$ for the hydrodynamic limit ($q → 0$), i.e.

$$J_T(q → 0,ω) = \frac{1}{βm} e^{-q^2η|ω|/mρ}$$  \hspace{1cm} (31)$$

where $η$ is the shear viscosity. For intermediate $q$-values, $J_T(q,ω)$ exhibits a more complicated behaviour, as shown in Figure 7 where OF-AIMD results for liquid Al near melting are shown. Note that for the smallest $q$-value reached by the simulation: $q = 0.29$ Å$^{-1}$, the corresponding $J_T(q,ω)$ takes on negative values, which by eqn. (31) means that it is already beyond the hydrodynamic regime. The associated spectrum, $J_T(q,ω)$, plotted in

![Diagram](image-url)
Figure 8 shows an inelastic peak which already exists at \( q = 0.29 \text{ Å}^{-1} \approx 0.11q_p \); as \( q \) increases the peak becomes better defined and it persists to \( q \) values around \( 3q_p \), although it has already disappeared for the largest \( q \)-value considered. Note that the associatted peak frequency increases with \( q \) up to a maximum value at \( q \approx q_p \), and then flattens at larger \( q \) as \( J(q,\omega) \) evolves towards a gaussian shape. This behaviour closely parallels that observed for the alkali metals where the inelastic peak appears for \( q \geq 0.07q_p \).

Similar results are also obtained by the LRT-CMD approach, but \( J(q,\omega) \) decays more slowly and the minima are less marked. This leads to a spectrum \( J(q,\omega) \) where the peaks are less marked and, in fact, there is no peak at \( q = 0.29 \text{ Å}^{-1} \).

From the results for \( J(q,t) \) we can readily obtain the shear viscosity coefficient, \( \eta \) as follows [46,68,69]. The memory function representation of the \( J(q,t) \):

\[
\tilde{J}(q,z) = \frac{1}{\beta m} \left[ z + \frac{q^2}{\rho m} \tilde{\eta}(q,z) \right]^{-1}
\]

where the tilde denotes the Laplace transform, introduces a generalized shear viscosity coefficient, \( \tilde{\eta}(q,z) \). The area under the normalized \( J(q,t) \), gives \( \beta m \tilde{J}(q,z=0) \) from which values for \( \tilde{\eta}(q,z=0) \) can be obtained when extrapolated to \( q = 0 \) give the usual shear viscosity coefficient, \( \eta \). Results for \( \eta \) presented in Table I compare favourably with the available experimental data [4]. For comparison, we note that the KS-DFT simulations of Alfe and Gillan [3] gave values in the range 1.4 - 2.2 GPa · ps.

**IV. CONCLUSIONS.**

Several dynamic properties of liquid aluminium have been calculated at two thermodynamic states close to the triple point. The simulations have been performed using the orbital free \( ab\text{-initio} \) molecular dynamics method, showing the feasibility of this technique to calculate several time correlation functions, allowing a comprehensive study of the dynamical properties. Furthermore, agreement with the available experimental data is quite satisfactory.
We have also presented a method for producing, from first principles, local pseudopotentials for use with the orbital free density functionals. While the ultimate goal of the method would be to use the atomic number of the atoms as the only input data, this has not yet been achieved as the present calculations also require the experimental number density of the system for calculating the local pseudopotential and for performing the simulations. However, we stress that starting from very basic information, the present scheme allows the determination of the static and dynamic properties of the system.

Finally, we emphasize that in the present scheme, the calculation of the pseudopotential is coupled to the particular functional adopted for the total potential energy calculation of the system. This means that different kinetic energy functionals would lead to different pseudopotentials. Consequently, this field is open to further improvements in the description of the kinetic energy and, therefore, also in the corresponding local pseudopotential.

Acknowledgements

This work has been supported by the Junta de Castilla y León (Project No. VA70/99), NATO (CRG971173) and the DGES (PB98-0641-C02-01). DJG acknowledges the UVA for the provision of financial support to visit the the Physics Dpt. of Queen’s University were part of this work was carried out. MJS acknowledges the support of the NSERC of Canada.

APPENDIX A: THE KINETIC ENERGY FUNCTIONAL

We consider the kinetic energy functional

$$T_s[\rho] = T_W[\rho] + T_\beta[\rho]$$

(A1)

where

$$T_\beta[\rho] = \frac{3}{10} \int d\vec{r} \rho(\vec{r})^{5/3 - 2\beta} \tilde{k}(\vec{r})^2$$

(A2)

$$k(\vec{r}) = (3\pi^2)^{1/3} \rho(\vec{r})^{\beta}$$

(A3)

In the limit of small deviations from a uniform system, we wish to recover the LRT result. Equating the Fourier transform (FT) of the second functional derivative of $T_s[\rho]$ with respect to $\rho(\vec{r})$ for $\rho(\vec{r}) = \rho_0$, to the inverse of the Lindhard response function, gives for the weight function

$$\left( 6\beta^2 - \frac{20}{3} \beta + \frac{10}{9} \right) + 4\beta \left( \frac{5}{3} - 2\beta \right) \pi_L(\eta) + 2\beta^2 \pi_\beta(\eta)^2 =$$

$$\frac{10}{9} \left( 1/\pi_L(\eta) - 3\eta^2 \right)$$

(A5)

where $\eta = q/2k_F$, $\pi_\beta$ is the FT of $\omega_\beta$ and

$$\pi_L(\eta) = \frac{1}{2} \left( 1 + \frac{1 - \eta^2}{2\eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| \right) .$$

(A6)

is the noninteracting homogeneous electron gas response function. Taking in eqn. (A3) the solution which satisfies the normalization condition $\pi_\beta(\eta = 0) = 1$, and with $\beta$ within the range $0 \leq \beta \leq 5/6$ so that the power of $\rho(\vec{r})$ in eqn. (A2) is positive, the weight function is given by
\[ \Omega(\eta) = 2 - \frac{5}{3\beta} + \frac{1}{3\beta} \sqrt{(5 - 3\beta)^2 + 5(\pi L^{-1}(\eta) - 1 - 3\eta^2)}. \]  

(A7)

Requiring \( \Omega(\eta) \) to be real places a stricter limit on \( \beta : \beta \leq 0.5991 \). With this choice of weight function, the functional recovers the LRT limit, and in the limit of uniform density it reduces to the Thomas-Fermi functional. In the limit \( \eta \to \infty \) we have

\[ \Omega(\eta) \to C_1 + A/\eta^2 + \cdots \]  

(A8)

where

\[ C_1 = 2 - \frac{5}{3\beta} + \frac{1}{3\beta} \sqrt{17 - 30\beta + 9\beta^2} \]  

(A9)

The constant \( C_1 \) gives rise to a Dirac delta function in the real space; therefore it is convenient to define a “modified” weight function

\[ \tilde{\omega}(\eta) = \omega(\eta) - C_1 \]  

(A10)

so that every convolution involving \( \omega(\eta) \), such as in eqn. \((A3)\), becomes

\[ G(\vec{r}) \ast \tilde{\omega}(2k_F^0 r) = C_1 G(\vec{r}) + G(\vec{r}) \ast \tilde{\omega}(2k_F^0 r). \]  

(A11)

An important limit is when the mean electron density, and therefore \( k_F^0 \), vanishes as for instance in a finite system. Now, the convolutions involving the “modified” weight function vanish because \( \eta = q/2k_F^0 \to \infty \) and \( \tilde{\omega}(\eta) \) vanishes. Consequently, \( k(\vec{r}) = C_1 k(\vec{r}) \), and the kinetic energy functional becomes \( T_K[\rho] = T_W[\rho] + C_1^2 T_{TF}[\rho] \), and when \( \beta = 4/9, C_1 = 0 \).

APPENDIX B: THE POSITION DEPENDENT CHEMICAL POTENTIAL.

The functional derivative of eqn. \((B1)\) gives

\[ \mu(\vec{r}) = \mu_W(\vec{r}) + \mu_\beta(\vec{r}) + V_{\text{ext}}(\vec{r}) + V_H(\vec{r}) + V_{xc}[\rho(\vec{r})]. \]  

(B1)

where

\[ \mu_W(\vec{r}) = \frac{1}{8} \left( \frac{\vec{\nabla} \rho(\vec{r})}{\rho(\vec{r})^2} \right)^2 - \frac{1}{4} \frac{\nabla^2 \rho(\vec{r})}{\rho(\vec{r})}, \]  

(B2)

\[ V_H(\vec{r}) = \int d\vec{s} \frac{\rho(\vec{s})}{|\vec{r} - \vec{s}|}, \]  

(B3)

and in terms of the modified weight function

\[ \mu_\beta(\vec{r}) = \frac{3}{10} \left[ (5/3 - 2\beta) \rho(\vec{r})^{2/3 - 2\beta} k(\vec{r})^2 + 2\beta(\pi^2)^{1/3} \rho(\vec{r})^{\beta - 1} h(\vec{r}) \right] \]  

(B4)

with

\[ h(\vec{r}) = f(\vec{r}) \ast \tilde{\omega}(2k_F^0 r) \]  

(B5)

where \( f(\vec{r}) = \tilde{k}(\vec{r}) \rho(\vec{r})^{5/3 - 2\beta} \). The product \( \mu(\vec{r}) \rho(\vec{r}) \), is the “driving force” for the dynamical minimization of the energy functional, see eqn. \((B3)\). If the various powers of the density appearing in \( \mu_\beta(\vec{r}) \rho(\vec{r}) \) are to remain positive so that this driving force is not to diverge in regions where the density vanishes, then \( 1/2 \leq \beta \leq 7/12 \). In practice we have found that for \( \beta = 0.51 \) the minimization has always proved possible.

APPENDIX C: CONSTRUCTING THE LOCAL PSEUDOPOTENTIAL FROM AN INFINITE SYSTEM

In an infinite system most of the previous expressions diverge, because the integrals extend to all space, and the integrands don’t vanish for large distances. Moreover, the normalization constraint must be redefined, because the total number of electrons is infinite.

To avoid these problems, one has to take into account the similar divergencies which appear in the “ionic” part of the total energy. This amounts to use the “difference” functions, which are obtained by subtracting from the total functions their corresponding limits for large distances, and redefining the chemical potential as the Lagrange multiplier associated to the normalization of the “displaced” density \( n(\vec{r}) = \rho(\vec{r}) - \rho_0 \). In this way we define the following functions:

- \( \Delta_\alpha(\vec{r}) = \rho(\vec{r})^\alpha - \rho_0^\alpha = (\rho_0 + n(\vec{r}))^\alpha - \rho_0^\alpha \) 
  In particular, for \( \alpha = 1 \), \( \Delta_1(\vec{r}) = n(\vec{r}) \), the displaced density.
- \( \chi(\vec{r}) = k(\vec{r}) - (3\pi^2)^{1/3} \rho_0^\beta \)
- \( \tilde{\chi}(\vec{r}) = \tilde{k}(\vec{r}) - (3\pi^2)^{1/3} \rho_0^\beta \)
- \( \phi(\vec{r}) = f(\vec{r}) - (3\pi^2)^{1/3} \rho_0^{5/3 - \beta} \)
- \( \eta_2(\vec{r}) = h(\vec{r}) - (1 - C_1)(3\pi^2)^{1/3} \rho_0^{5/3 - \beta} \)
- \( \tilde{\mu}_\beta(\vec{r}) = \mu_\beta(\vec{r}) - \frac{1}{2} \beta k_F^0 r \)
- \( v_{\text{ext}}(\vec{r}) = V_{\text{ext}}(\vec{r}) - v_{\text{jell}}(\vec{r}) \), where \( v_{\text{jell}}(\vec{r}) \) is the potential created by a uniform background of positive charge with density \( \rho_0 \).
- \( v_{xc}(\vec{r}) = V_{xc}[\rho_0 + n(\vec{r})] - V_{xc}[\rho_0] \)
In terms of these functions, the Euler equation now becomes:

\[
\begin{align*}
\nu_{\text{ext}}(\vec{r}) + \int d\vec{s} n(\vec{s})/|\vec{r} - \vec{s}| + \nu_{\text{xc}}(\vec{r}) + \frac{1}{8} \frac{\nabla^2 n(\vec{r})}{(\rho_0 + n(\vec{r}))^2} \\
- \frac{1}{4} \frac{\nabla^2 n(\vec{r})}{\rho_0 + n(\vec{r})} + \tilde{\mu}_\beta(\vec{r}) - \mu' = 0
\end{align*}
\] (C1)

with

\[
\tilde{\mu}_\beta(\vec{r}) = \frac{3}{10} \left[ \tilde{\mu}_A(\vec{r}) + \tilde{\mu}_B(\vec{r}) + \tilde{\mu}_C(\vec{r}) + \tilde{\mu}_D(\vec{r}) \right]
\] (C2)

where

\[
\tilde{\mu}_A(\vec{r}) = \left( \frac{5}{3} - 2\beta \right) \rho_0^{2/3 - 2\beta} \left[ 2(3\pi^2)^{1/3} \rho_0^\beta \tilde{\chi}(\vec{r}) + \tilde{\chi}(\vec{r})^2 \right]
\] (C3)

\[
\tilde{\mu}_B(\vec{r}) = \left( \frac{5}{3} - 2\beta \right) \Delta_{2/3 - 2\beta}(\vec{r}) \left[ (3\pi^2)^{1/3} \rho_0^\beta + \tilde{\chi}(\vec{r}) \right]^2
\] (C4)

\[
\tilde{\mu}_C(\vec{r}) = 2\beta C_1 (3\pi^2)^{1/3} \left[ \rho_0^{2/3 - 2\beta} \tilde{\chi}(\vec{r}) + (3\pi^2)^{1/3} \rho_0^\beta \Delta_{2/3 - 2\beta}(\vec{r}) \right] + \Delta_{2/3 - 2\beta}(\vec{r}) \tilde{\chi}(\vec{r})
\] (C5)

and

\[
\tilde{\mu}_D(\vec{r}) = 2\beta (1 - C_1)(3\pi^2)^{2/3} \rho_0^{5/3 - 2\beta} \Delta_{3 - 2\beta}(\vec{r}) + 2\beta (3\pi^2)^{1/3} \left[ \rho_0 + n(\vec{r}) \right]^{\beta - 1} \eta_2(\vec{r})
\] (C6)

In the last equation, \( \eta_2(\vec{r}) = \phi(\vec{r}) \ast \tilde{\omega}_\beta(2k_F^\beta r) \) and

\[
\phi(\vec{r}) = \rho_0^{5/3 - 2\beta} \chi(\vec{r}) + (3\pi^2)^{1/3} \rho_0^\beta \Delta_{3/3 - 2\beta}(\vec{r}) + \Delta_{3/3 - 2\beta}(r) \tilde{\chi}(\vec{r})
\] (C7)

Summarizing, to evaluate \( \tilde{\mu}_\beta(\vec{r}) \) from the displaced density \( n(\vec{r}) \) we take the following steps:

1. Compute \( \Delta_\alpha(\vec{r}) \) for \( \alpha = 5/3 - 2\beta, 2/3 - 2\beta, 2/3 - \beta, \) and \( \beta - 1 \)

2. Compute \( \chi(\vec{r}) \) and FT to obtain \( \chi(\vec{q}) \)

3. Compute \( \tilde{\chi}(\vec{q}) = C_1 \chi(\vec{q}) + \chi(\vec{q}) \tilde{\omega}_\beta(q/2k_F^\beta) \) and by inverse FT obtain \( \chi(\vec{r}) \)

4. Compute \( \phi(\vec{r}) \) according to eqn. (C7) and FT to obtain \( \phi(\vec{q}) \)

5. Compute \( \eta_2(\vec{q}) = \phi(\vec{q}) \tilde{\omega}_\beta(q/2k_F^\beta) \) and inverse FT to obtain \( \eta_2(\vec{r}) \)

6. Apply eqns. (C2-C6) to obtain \( \tilde{\mu}_\beta(\vec{r}) \)

When our system is 1 atom in a jellium-vacancy the external potential is given by

\[
\nu_{\text{ext}}(\vec{r}) = \nu_{\text{ps}}(r) + \nu_{\text{cav}}(r)
\]

i.e., the sum of the potential created by the cavity and the ionic pseudopotential. Substituting into eqn. (C1) we directly obtain \( \nu_{\text{ps}}(r) \) once we compute all the other terms, which are calculated from \( n(\vec{r}) \).

Note that all the functions have spherical symmetry, which leads to simple expressions for the gradient, the laplacian and also the Fourier transforms.

1. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964)
2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)
3. W. H. Young, Rep. Prog. Phys. 55, 1769 (1992)
4. D. J. González, D. A. Ng and M. Silbert, J. Non-Cryst. Solids 117/118, 469 (1990)
5. S. Kambayashi and G. Kahl, Phys. Rev. A 46, 3255 (1992)
6. M. Canales, L. E. González and J. A. Padró, Phys. Rev. E 50, 3656 (1994)
7. I. Ebbsjo, T. Kihell and J. Waller, J. Phys. C: Solid State Physics, 13 1865 (1980)
8. L. Dagens, M. Rasolt and R. Taylor, Phys. Rev. B 11, 2726 (1975)
9. G Jacucci, R. Taylor, A. Tenenbaum and N. van Doan, J. Phys. F: Metal Phys. 11 783 (1981)
10. J. L. Bretonnet and C. Regnaut, Phys. Rev. B 31, 5071 (1985)
11. J. Hafner and W. Jank, Phys. Rev. B 42, 11530 (1990)
12. W.A. Harrison, Pseudopotentials in the Theory of Metals, (New York: Benjamin, 1966)
13. N.W. Ashcroft, Phys. Lett. 23, 48 (1966)
14. J. Chihara and S. Kambayasi, J. Phys.: Cond. Matter 6, 10221 (1994)
15. J.A. Anta and A.A. Louis, Phys. Rev. B 61, 11400 (2000)
16. F. Shimojo, Y. Zempo, K. Hoshino and M. Watabe, Phys. Rev. B 52, 9320 (1995)
17. F. Shimojo, Y. Zempo, K. Hoshino and M. Watabe, J. Non-Cryst. Solids 205-207, 983 (1996)
18. B. J. Costa Cabral and J. L. Martins, Phys. Rev. B 51,
TABLE I: Thermodynamic states studied in this work, along with some simulation details.

| T(K)  | N   | ρ (Å$^{-3}$) | $E_{Cut}$ (Ryd) |
|-------|-----|--------------|-----------------|
| OF-AIMD 943 | 500 | 0.05290      | 30.25           |
| OF-AIMD 1323 | 500 | 0.05071      | 29.25           |
| LRT-CMD 943 | 600 | 0.05290      |                 |
| LRT-CMD 1323 | 500 | 0.05071      |                 |
| QHNC-CMD 933 | 800 | 0.05331      |                 |

TABLE II: Isothermal compressibility $\kappa_T$ (in $10^{-11}$ m$^2$ N$^{-1}$), self-diffusion coefficient $D$ (in Å$^2$/ps) and shear viscosity coefficient $\eta$ (in GPa·ps) of liquid Al at the thermodynamic states studied in this work.

| T(K)  | $\kappa_T$ | D   | $\eta$ |
|-------|-------------|-----|--------|
| OF-AIMD 943 | 2.37        | 0.49 | 1.38   |
| OF-AIMD 1323 | 2.38        | 1.05 | 0.85   |
| LRT-CMD 943 | 6.57        | 0.58 | 1.24   |
| LRT-CMD 1323 | 6.32        | 1.14 | -      |
| QHNC-CMD 933 | 7.45        | 0.55 | 1.36   |
| Experiment 933 | 2.43$^a$   | 1.26$^b$ |        |

$^a$Ref. 44
$^b$Ref. 70