Supplementary Information

A chiral luminescent liquid crystal with a tolane unit

Zhihui Cheng, Ying Zang, Yi Li, Baozong Li, Chuanjiang Hu,

Hongkun Li* and Yonggang Yang*

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China

E-mail: hkli@suda.edu.cn; ygyang@suda.edu.cn.

Table of Contents

Experimental Section S2

Figure S1. Photographs of 1TC8* at 143 °C (a) and 135 °C (b) taken under UV illumination. S4

Figure S2. DSC curve of 1TC8* in the third heating and cooling process at the rate of 5.0 °C min⁻¹. S4
Experimental Section

General information

Tetrahydrofuran was distilled from sodium benzophenone ketyl in an atmosphere of nitrogen. 1,3-Dicyclohexylcarbodiimde (DCC) was purchased from Suzhou Highfine Biotech Co., Ltd. (China). 4-Dimethylaminopyridine (DMAP) and (R)-2-octanol were obtained from J & K Scientific Ltd. (China). All other chemicals were purchased from Sinopharm Group Chemical Reagent Co., Ltd. (China) and used as received without further purification.

FTIR spectroscopy was performed on a Nicolet 6700 spectrometer at 2 cm⁻¹ resolution by averaging over 32 scans. The ¹H NMR spectrum was taken on a Varian NMR (400 MHz) spectrometer in DMSO-d₆ solutions using tetramethylsilane (TMS) as an internal standard at room temperature. Elemental analysis was measured on an EA-1106 instrument. UV-Vis absorption spectra were recorded on an Agilent Cary 5000 UV-Vis-NIR spectrophotometer. Photoluminescence spectra were obtained on a F-2500 FL spectrophotometer. Fluorescence quantum yields (Φ_F) were determined by a comparative method and using quinine sulfate in 0.1 M H₂SO₄ (Φ_F = 54.6%) as the standard.[1] The absorbance of the solutions was maintained at 0.04–0.06 to avoid the internal filter effect. Differential scanning calorimetry (DSC) measurements were conducted on a TA-Q200 under nitrogen at 5.0 °C min⁻¹. Circular dichroism spectra were recorded in a 0.01-mm quartz cell on an AVIV-410 spectropolarimeter. For the crystalline structure of 1TC8*, all measurements were made on a Bruker APEX-II CCD X-ray diffractometer by using graphite monochromated Mo Ka (λ =0.071073 nm) at 273 K. The structure was solved in the space group P2₁2₁2₁ by direct methods and refined on F² using full matrix least-squares methods with SHELXTL version 2008.

Synthesis

(S)-4-(Octan-2-yloxy)phenol (1) and 4-[(4-methoxyphenyl)ethynyl]benzoic acid (2) shown in Scheme 1 were prepared according to the modified methods reported in our previous work.[2,3]
Synthesis of (S)-4-(octan-2-yloxy)phenyl 4-((4-methoxyphenyl)ethynyl)benzoate (1TC8*). 1.2 g (5.4 mmol) of 1 and 1.63 g (6.5 mmol) of 2 were added into a 500-mL round-bottom flask. Then, 200 mL of distilled tetrahydrofuran was injected under N₂ to dissolve the solid, followed by the addition of 1.3 g (6.5 mmol) of DCC and appropriate DMAP. The reaction mixture was stirred at 0°C for 3 h and room temperature for another 24 h under N₂. After filtration and solvent evaporation, the crude product was purified by a silica gel column using ethyl acetate/petroleum ether (1 : 20) as eluent and recrystallization from acetone/methanol. A white solid of 1TC8* was obtained in 30.0% (0.75 g).

FT-IR (KBr pellet): 3071 cm⁻¹ (C-H of the phenyl, stretching), 2956 cm⁻¹ (νasC-H₃), 2866 cm⁻¹ (νsC-H₃), 2923 cm⁻¹ (νasC-H₂), 2854 cm⁻¹ (νsC-H₂), 2206 cm⁻¹ (νC=C), 1730 cm⁻¹ (νC=O), 1599 cm⁻¹, 1509 cm⁻¹, 1468 cm⁻¹ (νPh).

¹H-NMR (400 MHz, DMSO-d₆, TMS, 25°C): δ = 0.86 (t, 3H, J = 6.8 Hz; CH₃CH₂), 1.22-1.69 [m, 13H; -CH₂CH₂CH₂CH₂CH₂CH(CH₃)-], 3.81 (s, 3H; -OCH₃), 4.39-4.47 (m, 1H; -CH₂CH₂), 6.98 (d, 2H, J = 8.8 Hz; 2,6-PhHOCH₃), 7.02 (d, 2H, J = 8.6 Hz; 3,5-PhHOCO), 7.19 (d, 2H, J = 8.8 Hz; 2,6-PhHOCO), 7.57 (d, 2H, J = 8.8 Hz; 3,5-PhHOCO), 7.73 (d, 2H, J = 8.4 Hz; 3,5-COOHCC), 8.13 (d, 2H, J = 8.4 Hz; 2,6-COOHCC). Elemental analysis calcd for C₃₀H₃₂O₄ (%): C, 78.30; H, 6.94. Found: C, 78.92; H, 7.06.

Scheme S1 Synthetic route to 1TC8*.
Figure S1. Photographs of 1TC8* at 143°C (a) and 135°C (b) taken under UV illumination.

Figure S2. DSC curve of 1TC8* in the third heating and cooling process at the rate of 5.0 °C min⁻¹.
References

[1] Yvon, H. J. A Guide to Recording Fluorescence Quantum Yields. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Fluorescence/quantumyieldstrad.pdf.

[2] Yang Y, Li H, Wen J. Synthesis and mesomorphic properties of chiral fluorinated liquid crystals. Liq Cryst. 2007;34:975–979.

[3] Yang Y, Li H, Wen J. Synthesis and mesomorphic properties of some chiral liquid crystals with semifluorinated chains. Mol Cryst Liq Cryst. 2007;469:51–58.