Facial Measurements as Predictors of the Length of the Maxillary Central Incisor in a Cross Section of the Indian Population - A Clinical Study

Karunakar Shetty*, Mahesh Kumar1, Keerti Palagiri1, Susan Amanna1 and Shreya Shetty2

1 Department of Prosthodontics, Bangalore Institute of Dental Sciences and Post graduate Research, Bangalore, India
2 Department of Periodontics, Bangalore Institute of Dental Sciences and Post graduate Research, Karnataka, India

Abstract

Introduction: The maxillary central incisor in particular holds the key in creating a highly esthetic frontal profile and therefore appropriate selection of the tooth is of utmost importance in the restoration of the anterior segment of teeth in completely or partially edentulous patients. Although a number of studies have suggested various reference guides towards estimation of the width of central incisor, there have been no suitable guides to ascertain the length of the incisor in the absence of pre-extraction records.

Purpose of the study: The present study attempted to arrive at a correct proportion for determining as far as possible the correct length of the maxillary central incisor with the help of facial measurements in the absence of pre-extraction records in a small proportion of the subcontinent Indian population.

Materials and methods: The distance from the bridge of the nose to base was compared to the length (actual and calculated by regression) of the maxillary central incisor in 400 patients of both sexes between the age groups of 20-35 years.

Results: The length of the maxillary central incisor by calculated measurement ratios of facial measurements and regression equation showed variations between 0.2 to 0.4 mm in males and females respectively which was statistically significant (p<0.01).

Conclusion: The distance from the bridge of the nose to base of the nose may be used as a reference to estimate the length of the central incisor in the subcontinent Indian population, although regression equation may be more accurate.

Keywords: Maxillary central incisor; Length; Bridge of nose; Base of nose; Regression equation

Introduction

Facial esthetics, to a large extent depends on the esthetic appearance of the maxillary anterior teeth. The appropriate choice of artificial teeth for complete and removable partial dentures is indeed a challenging task for the prosthodontist. Selection of teeth with the help of pre-extraction records such as diagnostic casts, photographs, radiographs, observation of the teeth of close relatives, extracted teeth have been widely practiced. The selection of artificial teeth in the absence of pre-extraction records is a bigger challenge mainly because the acceptance and the success of the prosthesis both by the wearer and the viewer will greatly depend on it.

Lombardi [1] stated that the mold selected should have a pleasing proportion with facial anatomy and thereby harmonize with factors necessary to unify it with realism. Several anatomic measurements have been proposed to aid in the selection of the anterior teeth, some of which include the width of the mouth, interalar width, bizygomatic width, and interpupillary distance [2-26]. The bizygomatic width divided by sixteen has always been an important guideline to determine the width of the maxillary central incisor based on measurements in the Caucasian population.

However, the length of the maxillary central incisor also poses a challenge particularly in cases of partially or completely edentulous mouths [27-29] and also in cases of implant supported prostheses. Although this parameter is primarily dependent on the available interocclusal space, amount of the tooth that should be visible and that which should not be, are also an important aspect of aesthetic consideration.

With this objective in mind, it was proposed to conduct a study to:

1. Attempt to arrive at a guideline for the correct length of the maxillary central incisor based on the distance between the bridge of the nose to the base of the nose.
2. Correlate the above findings with the regression equation.

Materials and Methods

Following the written approval of the Ethical Committee, Bangalore Institute of Dental Sciences, Bangalore, 600 subjects were called for evaluation to select suitable candidates in this proposed study. Of these, 400 subjects (200 males and 200 females) were selected. The subjects included in the study were on the basis of following criteria:

1. Age group of 20 to 35 years, so that facial growth was essentially completed.
2. Class I occlusion.

*Corresponding author: Karunakar Shetty, Department of Prosthodontics, Bangalore Institute of Dental Sciences and Post graduate Research, Bangalore, Karnataka state, India, Tel: +91-9902197781; Fax: +91-80-26563973; E-mail: dr_karu@yahoo.com

Received April 08, 2013; Accepted June 07, 2013; Published June 13, 2013

Citation: Shetty K, Kumar M, Palagiri K, Amanna S, Shetty S (2013) Facial Measurements as Predictors of the Length of the Maxillary Central Incisor in a Cross Section of the Indian Population - A Clinical Study. Oral Hyg Health 1: 106. doi:10.4172/2332-0702.1000106

Copyright: © 2013 Shetty K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
3. No anterior dental restorations.
4. No crowding or spacing of maxillary anterior teeth.
5. No developmental anomalies.
6. Non-attrited maxillary teeth.
7. No history of orofacial surgery.
8. No pathological migration, traumatic occlusion of anterior teeth and periodontal involvement.

The 200 subjects, who were not approved for the study, were rejected on the basis of not fulfilling the above criteria. The selected subjects were further grouped into males and females. The subjects selected in this study were undergraduate students, post graduate students, staff members of Bangalore Institute of Dental Sciences, Bangalore and some adult patients, who visited the Dental Outpatient department during the period from June 2009 to October 2009. All the selected patients signed a written consent confirming their participation in the study.

Methods

The following sequences of measurements were recorded on examination of the subjects.

Distance from the bridge of the nose to base of the nose: This distance was measured using an IP54 digital vernier caliper (model – HZ-5554DCA-1, Hangzhou United Bridge Tools Co. Ltd, China). The subject was seated comfortably on a dental chair in a relaxed state looking forward in an upright position. A metallic scale was held in between the inner canthi of the eyes. Sticking plaster was placed in the area of the bridge of the nose and with the help of an indelible pencil and a point was marked in the middle of line joining inner canthus of both eyes. Then the distance was measured from this point to the undisplaced position of the base of the nose using the vernier caliper.

The cervico-incisal height of the maxillary right central incisor: The distance from the cemento-enamel junction to the incisal edge of the maxillary right central incisor was measured with the caliper.

In order to avoid bias, care was taken to measure accurately by repeating the readings three times and the average was recorded for all measurements.

The measurements of the distance from the bridge of the nose to the base of the nose and the cervico incisal height of the maxillary right central incisor formed the basic data for the study. Regression analysis was used to predict the length of the incisor from the distance from the bridge to the base of the nose (BrN–BaN). The results from the regression analysis were compared to those obtained by the ratio BrN–BaN/5. The analyses of these data have been tabulated (Tables 1-3).

The statistical analysis was done using the SPSS V13 software.

Results

Length of central incisor

The mean of the distance from the bridge of the nose to the base of the nose in males was 48.77 ± 5.082 and in females it was 48.29 ± 2.56. The actual measured height of the maxillary central incisor showed mean values of 10.15 ± 0.5709 in males and 9.843 ± 0.5095 in females (Table 1).

It was found that the calculated length of the maxillary central incisor was 10.145 mm in males and 9.84 mm in females. Based on the proposed formula arrived at by the authors, $\frac{\text{BrN} - \text{BaN}}{5}$.

The calculated length was 9.74 mm in males and 9.658 mm in females. Therefore the difference in values of calculated length of central incisor by the 2 methods was 0.40 in males and 0.182 in females which was statistically significant (p<0.01) (Tables 2 and 3).

Discussion

With respect to perception, the central incisors are the most dominant anterior teeth in the dental arch because they can be seen in their full size [30]. Therefore it is essential to estimate the exact size of the maxillary central incisor while fabricating prosthesis for the maxillary anterior segment.

The present study was undertaken primarily to determine as accurately as possible the length of the maxillary central incisors with the help of facial measurements of the distance from the bridge to the base of the nose in the absence of pre-extraction records in a subset of the Indian population. Although a wide number of ratios have been proposed for the width of the maxillary central incisor, the exact guide to estimate the length still remains elusive. The size and morphology of the maxillary anterior teeth have been widely studied in order to chart racial norms and gender characteristics [31-34]. In earlier studies, measurements were made using extracted teeth [31,33]. However, recent investigations attempted to measure the clinical tooth dimensions either on casts or using computer-based images or intraoral evaluations [33-42].
Pound [42] suggested that the bizygomatic width divided by 16 and the distance from the hairline to the lower edge of the bone of the chin, also divided by 16 provides the width and length of the maxillary central incisors respectively. In addition the outline form of the fingernail [12], incisive papilla [8], alae of the nose [44], patient photographs [45] have all been suggested as possible guides to the selection of maxillary central incisor. The golden proportion, when applied to the dentition, indicates that if the perceived width of each anterior tooth is approximately 62% the size of its adjacent anterior tooth, then it is considered aesthetically pleasing [46-48]. However, in an Internet based study by Rosenstiel et al. [48], it was reported that rather than concentrating on a single ratio such as the golden proportion, other ratios reflecting harmony among the tooth lengths should be considered when striving to produce a satisfactory appearance.

In addition, gender variations in the dimensions of the anterior teeth have been noted for most racial groups, with men exhibiting wider and longer anterior teeth than women [33-38] in both white and black populations. In general, the Indian population is genetically diverse due to its geographical location and historical background, giving rise to many dental and facial variations.

On an average, results showed that the distance from bridge of the nose to the base measured 48.77 ± 5.082 in males and 48.290 ± 2.56 in females. When these readings were compared with the actual measured length of the central incisor which averaged around 10.15 mm in males and 9.843 mm in females and with the length obtained by regression equation (10.145 mm in males and 9.843 mm in females), the author arrived at the following ratio:

Distance from the bridge of the nose to the base of the nose is 5:1.

Measured height of the maxillary right central incisor

When the actual measured length of the central incisor was compared to the 2 calculated lengths (CH1 by regression and CH2 by bridge of the nose to the base measurements), it was found that the results were statistically significant (p<0.01), the difference being 0.4 mm in males and 0.182 mm in females. As is evident, this difference is very slight and the ratio arrived at is nearly accurate.

In anthropometric studies carried out on cross section of populations of mixed races and origins, wide variations exist. In spite of this fact, the suggested ratio of BrN-BaN: height of maxillary central incisor (5:1) gave consistent results for both male and female individuals in the study.

Summary and Conclusion

Based on the measurements of the distance from bridge of the nose to the base and the height of the maxillary central incisor by measurement and regression equation, a ratio (5:1) was arrived at which may be suggested as a new reference guide for selection of the length of the maxillary central incisor.

These findings together with the results of earlier published reports [17,33,47,50,51] suggest that methods based on the relationship between the anterior teeth and certain facial measurements may be used as preliminary guides in estimating the size of the maxillary central incisors in the absence of pre-extraction records in order to ensure acceptable aesthetics.

However, these are preliminary findings and further studies on a larger cross section of the population are definitely suggested to further authenticate these results.

References

1. Lombardi RE (1973) The principles of visual perception and their clinical application to denture esthetics. J Prosthet Dent 29: 358-382.
2. Berry FH (1905) Is the theory of temperaments the foundation of the study of prosthetic art. Dentists Magazine. 1: 405-413.
3. Williams JL (1914) The temperamental selection of artificial teeth, a fallacy. Dental Digest. 20: 243-259.
4. Swissdent "900" esthetic procedure. Glendale, Calif, Swissdent Corp, 1972.
5. Silverman SI (1967) Physiologic factors in complete denture esthetics. Dent Clin North Am. 115-122.
6. Cesario VA Jr, Latta GH Jr (1984) Relationship between the mesiodistal width of the maxillary central incisor and interpupillary distance. J Prosthet Dent 52: 641-643.
7. Boucher CO (1970) Swenson’s complete dentures. 6th ed. St Louis: CV Mosby Co. 315-316.
8. Sears VH (1941) Selection of anterior teeth for artificial dentures. Journal of American Dental Association. 28: 929-935.
9. House MM (1950) Full denture technique. Notes from Study Club No.1, 1:17.
10. Wright WH (1936) Selection and arrangement of artificial teeth for complete prosthetic dentures. Journal of American Dental Association 23: 2291-2307.
11. Scott JE (1952) The Scott system of precision articulation in three-dimensional occlusion. Journal of Prosthetic Dentistry. 2: 363-380.
12. Young HA (1954) Selecting the anterior tooth mold. Journal of Prosthetic Dentistry 4: 748-760.
13. Kern BE (1967) Anthropometric parameters of tooth selection. J Prosthodont 17: 431-437.
14. Puri M, Bhalla LR, Khanna VK (1972) The relationship of intercanine distance with the distance between the alae of the nose. Journal of Indian Dental Association. 44: 46-50.
15. Smith BJ (1975) The value of the nose width as an esthetic guide in prosthodontics. J Prosthet Dent 34: 562-573.
16. Lee JH (1964) The appearance of artificial dentures. Australian Dental Journal. 9: 304-308.
17. Latta GH Jr, Weaver JR, Conkin JE (1991) The relationship between the width of the mouth, interalar width, bizygomatic width, and interpupillary distance in edentulous patients. J Prosthet Dent 65: 250-254.
18. Sellen PN, Jagger DC, Harrison A (1999) Methods used to select artificial anterior teeth for the edentulous patient: a historical overview. Int J Prosthodont 12: 51-58.
19. Petricevic N, Katunarić M, Mehulić K, Simeon P, Rener-Sitar K, et al. (2006) Selection of appropriate artificial frontal teeth size using dimensions of hard palate. Coll Antropol 30: 573-577.
20. Lindemann HB, Krauer C, Pfeiffer P (2004) Morphometric relationships between tooth and face shapes. J Oral Rehabil 31: 972-978.
21. Al Wazzan KA (2001) The relationship between intercanthral dimension and the widths of maxillary anterior teeth. J Prosthet Dent 86: 608-612.
22. Rufenacht CR (2000) Principals of Aesthetic Integration. Quintessence, IL, 12: 51-58.
23. Ahmad I (2005) Anterior dental aesthetics: dentofacial perspective. Br Dent J 199: 81-88.
24. Farias FO, Ennes JP, Zozzato JR, Boragto GB (2009) Relation between the Shapes of the Face and Permanent Upper Central Incisor. International Association of Dental Research general session.
25. Gomes VL, Gonçalves LC, do Prado CJ, Junior IL, de Lima Lucas B (2006) Correlation between facial measurements and the mesiodistal width of the maxillary anterior teeth. J Esthet Restor Dent 18: 196-205.
26. Celebic A, Knezovic-Zlaric D (2003) A comparison of patient’s satisfaction between complete and partial removable denture wearers. J Dent 31: 445-451.
27. Celebic A, Knezovic-Zlaric D, Papic M, Carek V, Bauic I, et al. (2003) Factors
related to patient satisfaction with complete denture therapy. J Gerontol A Biol Sci Med Sci 58: M948-953.

28. Davis DM, Fiske J, Scott B, Radford DR (2000) The emotional effects of tooth loss: a preliminary quantitative study. Br Dent J 188: 503-506.

29. Hasanreisoglu U, Berksun S, Aras K, Arslan I (2005) An analysis of maxillary anterior teeth: facial and dental proportions. J Prostheth Dent 94: 530-538.

30. Ash MM (1984) Wheeler’s atlas of tooth form. (5th edn) Philadelphia: Saunders.

31. Chiche GJ, Pinault A (1994) Esthetics of anterior fixed prosthodontics. Chicago: Quintessence. Pp: 61-65.

32. Gillen RJ, Schwartz RS, Hilton TJ, Evans DB (1994) An analysis of selected normative tooth proportions. Int J Prosthodont 7: 410-417.

33. Sterrett JD, Oliver T, Robinson F, Fortson W, Knaak B, et al. (1999) Width/length ratios of normal clinical crowns of the maxillary anterior dentition in man. J Clin Periodontol 26: 153-157.

34. Magne P, Belser U (2002) Bonded porcelain restorations in the anterior dentition: a biomimetic approach. Chicago: Quintessence 64-70.

35. Lavelle CL (1972) Maxillary and mandibular tooth size in different racial groups and in different occlusal categories. Am J Orthod 61: 29-37.

36. Richardson ER, Malhotra SK (1975) Mesiodistal crown dimension of the permanent dentition of American Negroes. Am J Orthod 68: 157-164.

37. Owens EG, Goodacre CJ, Loh PL, Hanke G, Okamura M, et al. (2002) A multicenter interracial study of facial appearance. Part 2: A comparison of intraracial parameters. Int J Prosthodont 15: 283-288.

38. 1AYcan MY, Kedici PS (2003) Sexual variation in bucco-lingual dimensions in Turkish dentition. Forensic Sci Int 137: 160-164.

39. Berksun S, Hasanreisoğlu U, Gökdeniz B (2002) Computer-based evaluation of gender identification and morphologic classification of tooth face and arch forms. J Prostheth Dent 88: 578-584.

40. Celebić A, Stilpetić J, Nola P, Petricević N, Papić M (2004) Use of digital photographs for artificial tooth selection. Coll Antropol 28: 857-863.

41. Ward DH (2001) Proportional smile design using the recurring esthetic dental (red) proportion. Dent Clin North Am 45: 143-154.

42. Pound E (1954) Lost fine arts in the fallacy of the ridges. Journal of Prosthetic Dentistry. 4: 6-16.

43. Maritato FR, Douglas JR (1964) A positive guide to anterior tooth selection. Journal of Prosthetic Dentistry. 14: 848-853.

44. Wehner PJ, Hickey JC, Boucher CO (1967) Selection of artificial teeth. J Prostheth Dent 18: 222-232.

45. Ricketts RM (1982) The biologic significance of the divine proportion and Fibonacci series. Am J Orthod 81: 351-370.

46. Marquardt SR (2002) Dr. Stephen R. Marquardt on the Golden Decagon and human facial beauty. Interview by Dr. Gottlieb. J Clin Orthod 36: 339-347.

47. Gurel G, editor (2003) The science and art of porcelain laminate veneers. London: Quintessence. Pp: 83-86.

48. Rosenstiel SF, Ward DH, Rashid RG (2000) Dentists’ preferences of anterior tooth proportion—a web-based study. J Prosthodont 9: 123-136.

49. Hoffman W Jr, Bomberg TJ, Hatch RA (1986) Interalar width as a guide in denture tooth selection. J Prosthodont 55: 219-221.

50. Abdullah MA (2002) Inner canthal distance and geometric progression as a predictor of maxillary central incisor width. J Prosthodont 88: 16-20.

51. McCord JF, Grant AA (2000) Registration: stage III—selection of teeth. Br Dent J 188: 660-666.