The coincidence problem in holographic $f(R)$ gravity

Yousef Bisabr

Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788, Iran
E-mail: y-bisabr@srttu.edu

Received 25 April 2011
Accepted for publication 19 July 2011
Published 9 August 2011
Online at stacks.iop.org/PhysScr/84/035901

Abstract
It is well known that $f(R)$ gravity models formulated in the Einstein conformal frame are equivalent to Einstein gravity together with a minimally coupled scalar field. In this case, the scalar field couples with the matter sector and the coupling term is given by the conformal factor. We apply the holographic principle to such interacting models. In a spatially flat universe, we show that the Einstein frame representation of $f(R)$ models leads to a constant ratio of energy densities of dark matter to dark energy.

PACS number: 98.80.–k

1. Introduction

It is strongly believed that our universe is in a phase experiencing an accelerated expansion. The simplest candidate to produce this cosmic speed-up is the cosmological constant; the energy density associated with quantum vacuum. However, there are several problems in associating cosmic acceleration with the cosmological constant. Firstly, theoretical estimates on its value are many orders of magnitude larger than observations [1]. Secondly, it is simply a constant, namely that it is not diluted with expansion of the universe. This latter problem is specifically important in the sense that there is observational evidence [2] demonstrating that cosmic acceleration is a recent phenomenon and the universe must have passed through a deceleration phase in the early stages of its evolution. This deceleration phase is important for successful nucleosynthesis, as well as for structure formation. We therefore need a field to evolve during the expansion of the universe in such a way that its dynamics make the deceleration parameter have a signature flip from positive in the early stages of its evolution to negative in the present stage [3].

There is also another problem that is the focus of this study. It concerns the coincidence between the observed vacuum energy density and the current matter density. While these two energy components evolve differently as the universe expands, their contributions to the total energy density of the universe in the present epoch are the same order of magnitude.

As a different point of view, cosmic acceleration may be interpreted as evidence either for the existence of some exotic matter components or for modification of the gravitational theory. In the first route of interpretation, one can take a mysterious cosmic fluid with sufficiently large and negative pressure, dubbed dark energy. These models usually invoke a scalar field, which during its evolution takes negative pressure by rolling down a proper potential. In the second route, however, one attributes the accelerating expansion to a modification of general relativity. A particular class of models that has recently drawn a significant amount of attention is the so-called $f(R)$ gravity models [4]. These models propose a modification of the Einstein–Hilbert action so that the scalar curvature is replaced by some arbitrary function, $f(R)$.

Recently, different models inspired by the holographic principle have been proposed to explain the cosmic acceleration. The basic idea is that the number of degrees of freedom of a physical system scales with its bounding area rather than with its volume [5]. For an effective quantum field theory in a box of size L with an ultraviolet (UV) cutoff Λ, the entropy S scales extensively as $S \sim L^3 \Lambda^3$. However, the peculiar thermodynamics of black holes has led Bekenstein [6] to postulate that the maximum entropy in a box of volume L^3 behaves non-extensively, growing as the area of the box. In this sense there is a so-called Bekenstein entropy bound

$$ S = L^3 \Lambda^3 \lesssim S_{BH} \equiv \pi L^2 M_p^2, $$

where S_{BH} is the entropy of a black hole of radius L, and $M_p \equiv (8\pi G)^{-1/2}$ stands for the reduced Planck mass. It is important that in this relation the length scale L providing an infrared (IR) cutoff is determined by the UV cutoff Λ and cannot be chosen independently. However, such a non-extensive scaling
law seems to provide a breakthrough of quantum field theory at large scales. To reconcile this breakthrough with the success of local quantum field theory in describing observed particle phenomenology, Cohen et al [7] proposed a more restrictive bound. Since the maximal energy density in the effective theory is of the order $\rho_\Lambda = \Lambda^3$, requiring that the energy in a given volume should not exceed the energy of a black hole of the same size, results in the constraint
\begin{equation}
L^3 \rho_\Lambda \leq L M_p^2. \tag{2}
\end{equation}
If we take the largest value of the length scale L as the IR cutoff saturating the inequality (2), we then obtain the holographic dark-energy density
\begin{equation}
\rho_\Lambda = 3c^2 M_p^2 L^{-2} \tag{3}
\end{equation}
in which $3c^2$ is a numerical constant. It is interesting to note that if the length scale L is characterized by the size of the universe, the Hubble scale H^{-1}, then equation (3) gives a vacuum energy density of the right order of magnitude consistent with observations [7]. It is, however, pointed out that this yields a wrong equation of state parameter for dark energy, and other possible values for L should be chosen, such as the size of the future event horizon [8, 9]. Although this conclusion is based on the assumption that energy densities of dark energy and dark matter evolve independently, it is shown [10] that, if there is any interaction between these two components, the identification of L with H^{-1} is possible. In particular, the authors of [10] argued that such an identification necessarily implies a constant ratio of the energy densities of the two components regardless of the details of the interaction.

In this paper, we investigate the coincidence problem in the context of holographic $f(R)$ gravity models1. In $f(R)$ models the dynamical variable of the vacuum sector is the metric tensor and the corresponding field equations are fourth order. This dynamical variable can be replaced by a new pair, which consists of a conformally rescaled metric and a scalar partner. Moreover, in terms of the new set of variables, the field equations are those of general relativity. The original set of variables is commonly called the Jordan conformal frame, and the transformed set whose dynamics is described by Einstein field equations is called the Einstein conformal frame. The dynamical equivalence of Jordan and Einstein conformal frames does not generally imply that they are also physically equivalent. In fact, it is shown that some physical systems can be differently interpreted in different conformal frames [12, 13]. The physical status of the two conformal frames is an open question that we are not going to address here.

We will work in the Einstein conformal frame. The motivation is that in this frame there is a coupling between the scalar degree of freedom and the matter sector induced by the conformal transformation. In this context, we have already studied the coincidence problem without any use of the holographic principle [14]. We showed that the requirement of a constant ratio of energy densities of the two components puts some constraints on the functional form of the $f(R)$ function.

Here we apply the holographic principle to dark-energy density corresponding to the scalar degree of freedom. The IR cutoff is identified with the Hubble scale. We shall show that this interacting holographic dark energy leads to a stationary ratio of energy densities, corresponding to the dark energy and matter sector in a spatially flat universe regardless of the details of the interaction term. The distinguished feature of the present work is that the interaction term is given by a particular configuration of the $f(R)$ function. We use this fact to argue that the Einstein frame representation of any holographic $f(R)$ model may address the coincidence problem in a spatially flat universe.

2. The model

Let us start by introducing the action for an $f(R)$ gravity theory in the Jordan frame
\begin{equation}
S_{\text{EF}} = \frac{1}{2} \int d^4x \sqrt{-\bar{g}} \bar{M}_p^2 f(R) + S_m(g_{\mu\nu}, \bar{\psi}). \tag{4}
\end{equation}

where \bar{g} is the determinant of $g_{\mu\nu}$ and S_m is the action of (dark) matter that depends on the metric $g_{\mu\nu}$ and some (dark) matter field $\bar{\psi}$. Stability in the matter sector (the Dolgov–Kawasaki instability [15]) imposes some conditions on the functional form of $f(R)$ models. These conditions require that the first and second derivatives of $f(R)$ function with respect to the Ricci scalar R should be positive definite. The positivity of the first derivative ensures that the scalar degree of freedom is not tachyonic, and the positivity of the second derivative tells us that the graviton is not a ghost.

It is well known that $f(R)$ models are equivalent to models in which a scalar field minimally couples to gravity with an appropriate potential function. In fact, we may use a new set of variables
\begin{equation}
\bar{g}_{\mu\nu} = \Omega g_{\mu\nu}, \tag{5}
\end{equation}
\begin{equation}
\phi = \frac{M_p}{2\beta} \ln \Omega, \tag{6}
\end{equation}
where $\Omega \equiv \frac{df}{dR} = f'(R)$ and $\beta = \sqrt{\frac{1}{6}}$. This is indeed a confomal transformation that transforms the above action in the Jordan frame to the following action in the Einstein frame [12, 16]:
\begin{equation}
S_{\text{EF}} = \frac{1}{2} \int d^4x \sqrt{-\bar{g}} \left\{ \frac{1}{\bar{M}_p^2} \bar{R} - \bar{g}^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi - 2V(\phi) \right\} + S_m(\bar{g}_{\mu\nu} e^{2\phi/M_p^2}, \bar{\psi}). \tag{7}
\end{equation}

All indices are raised and lowered by $\bar{g}_{\mu\nu}$. In the Einstein frame, ϕ is a minimally coupled scalar field with a self-interacting potential, which is given by
\begin{equation}
V(\phi(R)) = \frac{M_p^2 (R'R(R) - f(R))}{2 f''(R)}. \tag{8}
\end{equation}

Note that the conformal transformation induces the coupling of the scalar field ϕ with the matter sector. The strength of this coupling β is fixed to be $\sqrt{\frac{1}{6}}$ and is the same for all types

1 The holographic principle has already been applied to different modified gravity models. See, for instance, [11].
of matter fields. In the action (7), we take $\tilde{g}^{\mu\nu}$ and ϕ as two independent field variables, and variations of the action yield the corresponding dynamical field equations. Variation with respect to the metric tensor $\tilde{g}^{\mu\nu}$, leads to

$$\tilde{G}_{\mu\nu} = M_p^{-2} \left(\tilde{T}^\phi_{\mu\nu} + \tilde{T}^m_{\mu\nu} \right),$$

where

$$\tilde{T}^\phi_{\mu\nu} = \nabla_{\mu}\phi \nabla_{\nu}\phi - \frac{1}{2} \tilde{g}_{\mu\nu} \nabla^\rho \phi \nabla_{\rho} \phi - V(\phi) \tilde{g}_{\mu\nu},$$

$$\tilde{T}^m_{\mu\nu} = \frac{2}{\sqrt{-\tilde{g}}} \frac{\delta S_m(\tilde{g}_{\mu\nu}, \bar{\psi})}{\delta \tilde{g}^{\mu\nu}},$$

are stress-tensors of the scalar field and the matter field system. The trace of (9) is

$$\nabla^\rho \phi \nabla_{\rho} \phi + 4V(\phi) - M_p^2 \ddot{R} = \tilde{T}^m,$$

which differentially relates the trace of the matter stress-tensor $\tilde{T}^m = \tilde{g}^{\mu\nu} \tilde{T}^m_{\mu\nu}$ to \ddot{R}. Variation of the action (7) with respect to the scalar field ϕ gives

$$\Box \phi - \frac{dV(\phi)}{d\phi} = -\frac{\beta}{M_p} \tilde{T}^m.$$ (13)

It is important to note that the two stress-tensors $\tilde{T}^m_{\mu\nu}$ and $\tilde{T}^\phi_{\mu\nu}$ are not separately conserved. Instead, they satisfy the following equations:

$$\tilde{\nabla}^\mu \tilde{T}^m_{\mu\nu} = -\tilde{\nabla}^\nu \tilde{T}^\phi_{\mu\nu} = \frac{\beta}{M_p} \nabla_{\nu} \phi \tilde{T}^m_{\mu\nu}.$$ (14)

We apply the field equations in a spatially flat homogeneous and isotropic cosmology described by the Friedmann–Robertson–Walker spacetime

$$ds^2 = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2),$$

where $a(t)$ is the scale factor. To do this we take $\tilde{T}^m_{\mu\nu}$ and $\tilde{T}^\phi_{\mu\nu}$ as the stress-tensors of a pressureless perfect fluid with energy density ρ_m, and a perfect fluid with energy density $\rho_\phi = \frac{1}{2} \dot{\phi}^2 + V(\phi)$ and pressure $p_\phi = \frac{1}{2} \dot{\phi}^2 - V(\phi)$, respectively. In this case, (9) and (13) take the form 2

$$3H^2 = M_p^{-2}(\rho_\phi + \rho_m),$$

$$2H + 3H^2 = -M_p^{-2} \omega_\phi \rho_\phi,$$ (17)

$$\dot{\phi}^2 + M_p^2 R - 4V(\phi) = \rho_m,$$ (19)

$$\dot{\rho}_m + 3H \rho_m = Q,$$ (20)

$$\rho_\phi + 3H (\omega_\phi + 1) \rho_\phi = -Q,$$ (21)

where

$$Q = \frac{\beta}{M_p} \phi \rho_m$$ (22)

is the interaction term. This term vanishes only for $\phi = \text{const}$, which due to (6) happens when $f(R)$ linearly depends on R. The direction of energy transfer depends on the sign of Q or ϕ. For $\phi > 0$, the energy transfer is from dark energy to dark matter and for $\phi < 0$ the reverse is true.3

Let us consider the time evolution of the ratio $r \equiv \rho_m/\rho_\phi$,

$$\dot{r} = \frac{\rho_m - \rho_\phi}{\rho_\phi},$$ (23)

If we combine the latter with the balance equations (20) and (21), we obtain

$$\dot{r} = 3Hr \left[\omega_\phi + \left(1 + \frac{1}{r} \right) \frac{\Gamma}{3H} \right].$$ (24)

where

$$\Gamma = \frac{Q}{\rho_\phi} = \frac{\beta}{M_p} r \phi$$ (25)

is the decay rate. Now we apply the holographic relation to dark-energy density ρ_ϕ with $L = H^{-1}$,

$$\rho_\phi = 3c^2 M_p^2 H^2,$$ (26)

where c^2 is a numerical constant introduced for convenience. This gives

$$\dot{\rho}_\phi = 6c^2 M_p^2 H \dot{H}.$$ (27)

We combine (26) with (17) to obtain

$$\dot{H} = -\frac{3}{2} H^2 \left(1 + \frac{\omega_\phi}{r + 1} \right) (r + 1)c^2.$$ (28)

One can easily check that

$$c^2 = \frac{1}{r + 1},$$ (29)

which reduces (28) to

$$\dot{\rho}_\phi = -9c^2 M_p^2 H^4 \left(1 + \frac{\omega_\phi}{r + 1} \right).$$ (31)

Substituting this into (27) gives

$$\dot{\rho}_\phi = -9c^2 M_p^2 H^4 \left(1 + \frac{\omega_\phi}{r + 1} \right).$$ (31)

When we put the latter together with the holographic relation (26) into the balance equation (21), we obtain

$$\omega_\phi = -\left(1 + \frac{1}{r} \right) \frac{\Gamma}{3H}.$$ (32)

This yields the equation of state parameter in terms of r and the decay rate Γ. Note that there is no non-interacting limit in our case since $\Gamma = 0$ corresponds to $\phi = \text{const}$, or equivalently, the (A-cold dark matter) ACDM model.3

2 Hereafter we will use unbarred characters in the Einstein frame.

3 Dark energy and dark matter are the most important energy/mass components contained in the universe. However, there is no experiment to show that these components interact with ordinary matter systems. It is quite possible that these components interact with each other while not being coupled to standard model particles.
From the expression (32), it is clear that when \(\frac{H}{\dot{r}} \ll 1 \) the equation of state of dark energy is closely related to that of the dust. This can also be seen from the balance equation (21). In the other limiting case, when \(\frac{H}{\dot{r}} \gg 1 \) one takes \(\omega_\rho \ll -1 \). This behavior corresponds to a signature flip of the deceleration parameter. To see this, we write the deceleration parameter as

\[
q = -1 - \frac{H}{\dot{r}}. \tag{33}
\]

This relation, together with (30) and (32), results in

\[
q = \frac{1}{2} \left(1 - \frac{\Gamma}{rH} \right), \tag{34}
\]

which in the above two limiting cases changes the sign from \(q > 0 \) to \(q < 0 \), respectively.

As our main observation, we remark that if one uses (32) in the relation (24), one then takes \(r = 0 \) or \(r = \text{constant} \). The reasoning is simple: from the holographic relation (26) one infers that \(\rho_\phi \) scales like the critical density \(\rho_c = 3M_p^2 H^2 \).

As a consequence, the density parameter corresponding to \(\phi \) must be a constant so that \(\Omega_\phi = \frac{\Omega_m}{M_p^2} = c^2 \). With this result, the Friedmann equation \(\Omega_\phi + \Omega_m = 1 \) results in \(\Omega_m = 1 - c^2 \).

Thus \(\rho_\phi \) has the same scaling as \(\rho_m \) and the ratio \(r \) is a constant. With respect to this result, firstly it is independent of the details of the decay rate \(\Gamma \) or the interaction \(Q \).

Since the interaction is given by the shape of the \(f(R) \) function we conclude that applying the holographic principle to the dark-energy density \(\rho_\phi = 3c^2 M_p^2 H^2 \) necessarily leads to a constant ratio of energy densities \(r = \rho_m/\rho_\phi \), irrespective of the form of the \(f(R) \) function. Secondly, it is a consequence of the identification \(L = H^{-1} \). If one takes other length scales such as the event horizon \(L_e \equiv a(t) \int_0^{r_e} \frac{dt}{a(t)} \), or particle horizon \(L_p \equiv a(t) \int_0^{\frac{\dot{r}}{a(t)}} \) as the IR cutoff, then scaling of \(\rho_\phi \) will be different from that of the critical density and the ratio \(r \) is no longer stationary. In contrast to the ratio \(r \), accelerating expansion requires particular configurations of \(f(R) \) functions. This is clear from the expression (34), which has the requirement that \(q < 0 \) automatically sets a constraint on the decay rate.

It is quite possible that the constancy of the ratio of energy densities \(r \) is a recent phenomenon. The two energy components can evolve differently as the universe expands until the present epoch, when their contributions to total energy density take a constant configuration and are of the same order of magnitude. To model this behavior, we assume that during the evolution of the universe the holographic relation holds as the unsaturated form \(\rho_\phi \leq M_p^2 H^2 \) and the saturated relation (26) is a recent phenomenon. This is equivalent to assuming that

\[
\rho_\phi = 3\alpha(t) M_p^2 H^2, \tag{35}
\]

where \(\alpha(t) \leq c^2 \) with \(\alpha(t) \) is a parameter that evolves with cosmic expansion. Note that the IR cutoff does not change

4 There are different constraints on the configuration of a viable \(f(R) \) function, such as constraints coming from Dolgov–Kawasaki instability issue [15] or constraints related to local gravity experiments [17]. However, resolution to the coincidence problem in our analysis does not put any constraint on the form of the \(f(R) \) function.

and remains \(L = H^{-1} \). In fact, variation of \(\alpha(t) \) in the relation (35) characterizes the degree of saturation in the holographic bound \(\rho_\phi \leq M_p^2 H^2 \). In this case, the relation (32) takes the form

\[
\omega_\phi = -\left(1 + \frac{1}{r} \right) \left(\frac{\Gamma}{3H^2} + \frac{\dot{\alpha}}{3H \alpha} \right). \tag{36}
\]

We may combine the latter with (24) to obtain

\[
\frac{\dot{\alpha}}{\alpha} = -\frac{\dot{r}}{r + 1}. \tag{37}
\]

This has a solution \(\alpha(t) = \frac{\dot{r}}{r + 1} \) that is compatible with (29) up to an integration constant. Since \(\dot{\alpha} > 0 \) by construction, \(r \) should be a decreasing function of time. This behavior allows \(\omega_\phi \) in (36) to be more negative compared with the case that \(\alpha = \text{constant} \).

3. Conclusion

We have considered the Einstein frame representation of a general \(f(R) \) gravity model and applied the holographic relation to the energy density \(\rho_\phi \), corresponding to the scalar degree of freedom of the metric tensor. Taking the Hubble radius as the IR cutoff, we observed that the ratio \(r = \rho_m/\rho_\phi \) takes a constant configuration for any \(f(R) \) function in a spatially flat universe. It should be noted that the \(L = H^{-1} \) choice attributes an energy density to \(\rho_\phi \), consistent with observations [7]. Thus the two different features of the cosmological constant problem, namely the fine tuning and cosmic coincidence problems, may be addressed in this context.

References

[1] Weinberg S 1989 Rev. Mod. Phys. 61 1
[2] Riess A G 2001 Astrophys. J. 560 49
[3] Bisabr Y and Salahi H 2002 Class. Quantum Grav. 19 2369
[4] Bisabr Y 2010 Gen. Rel. Grav. 42 1211
[5] Carroll S M, De Felice A, Duvvuri V, Easson D A, Trodden M and Turner M S 2004 Phys. Rev. D 71 063513
[6] Allemandi G, Browiec A and Francaviglia M 2004 Phys. Rev. D 70 103503
[7] Meng X and Wang P 2004 Class. Quantum Grav. 21 951
[8] Soussa M E and Woodard R P 2004 Gen. Rel. Grav. 36 855
[9] Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512
[10] 't Hooft G 1993 arXiv:gr-qc/9310026v2
[11] Susskind L 1995 J. Math. Phys. 36 6377
[12] Belkin J D 1973 Phys. Rev. D 7 2333
[13] Belkin J D 1974 Phys. Rev. D 9 3292
[14] Belkin J D 1981 Phys. Rev. D 23 287
[15] Belkin J D 1994 Phys. Rev. D 49 1912
[16] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett. 82 4971
[17] Hsu H D S 2004 Phys. Lett. B 594 13
[18] Li M 2004 Phys. Lett. B 603 1
[19] Nojiri S and Odintsov S D 2006 Gen. Rel. Grav. 38 1285
[20] Hu B and Ling Y 2006 Phys. Rev. D 73 123510
[21] Setare M R 2007 Eur. Phys. J. C 50 991
[22] Zhang X and Wu F 2007 Phys. Rev. D 76 023502
[23] Mohseni Sadjadi H and Jamil M 2011 Gen. Rel. Grav. 43 1759
[10] Pavon D and Zimdahl W 2005 Phys. Lett. B 628 206
 Pavon D and Zimdahl W 2007 Class. Quantum Grav. 24 5461
[11] Saaidi Kh Aghamohammadi A 2011 Phys. Scr. 83 025902
 Setare M R and Jamil M 2010 Europhys. Lett. 92 49003
 Setare M R and Jamil M 2011 Gen. Rel. Grav. 43 293
 Sheykhi A and Jamil M 2011 Phys. Lett. B 694 284
 Saridakis E N 2008 Phys. Lett. B 660 138
 Setare M R and Saridakis E N 2008 Phys. Lett. B 670 1
[12] Magnano G and Sokolowski L M 1994 Phys. Rev. D 50 5039
[13] Cho Y M 1997 Class. Quantum Grav. 14 2963
 Elizalde E, Nojiri S and Odintsov S D 2004 Phys. Rev. D 70 043539
 Nojiri S and Odintsov S D 2006 Phys. Rev. D 74 086005
 Capozziello S, Nojiri S, Odintsov S D and Troisi A 2006 Phys.
 Lett. B 639 135
[14] Bisabr Y 2010 Phys. Rev. D 82 124041
[15] Dolgov A D and Kawasaki M 2003 Phys. Lett. B 573 1
[16] Maeda K 1989 Phys. Rev. D 39 3159
 Wands D 1994 Class. Quantum Grav. 11 269
[17] Capozziello S and Tsujikawa S 2008 Phys. Rev. D 77 107501
 Bisabr Y 2010 Phys. Lett. B 683 96