Influence of CTBN content on fracture toughness of PF particleboard

H Y Zhang, Yang He and Q Qu
College of Materials Science and Technolgy, Nanjing Forestry University, Nanjing, China

Corresponding author and e-mail: H Y Zhang, zhynjfu@njfu.edu.cn

Abstract. The study investigated whether the single-edge-notch bending method could be used in quantitative determining the fracture toughness of the particleboard. Also, carboxyl-terminated poly (butadiene-co-acrylonitrile) liquid rubber was chosen to improve the fracture toughness of the particleboard. Critical energy release rate G_{IC} and critical stress intensity factor K_{IC} were measured in different directions with sandwich structure and common specimens. The study shows that it is a feasible method to compare the fracture performance of different particleboard by the single-edge-notch bending. The liquid rubber can toughen the particleboard when the addition amount is less than 12% when PF resin was used. More addition can lead to dispersion problem which will decrease the ductility of particleboard.

1. Introduction
Phenolic resin (PF) has many excellent properties, such as adhesion performance, heat resistance, water tolerance, flame retardance, corrosion stability, relatively low price and so on [1-3]. So, it has been widely used in various industrial fields, especially in the wood based composites production. However, PF resin solidifies into a highly cross linked structure making it very brittleness [4-8]. The addition of rubber which has been studied by a lot of researchers can toughen many thermo-set and thermoplastics polymers owing to the crazing, yielding and interface de-bonding mechanism [9-18].

The objectives of this study were (1) to study the feasibility of using single-edge-notched bending to measure the fracture toughness of the particleboard, (2) to compare the varying liquid rubber contents in the resin on the tested fracture performance and (3) to explore the toughening mechanism of particleboard.

2. Materials and methods

2.1. Materials
The wood particles used for the particleboard production were manufactured from poplar (Populus sp.). The average thickness of the wood particles was 0.25 mm. The moisture content of the dried particleboard was 4%. The viscosity of phenolic resin which was made in the laboratory is 255 mPa·s with pH 10.1 (25°C). The solid content of the resin was 45.15%. Carboxyl-terminated poly (butadiene-co-acrylonitrile) (CTBN) was purchased from Jingjiang Tonggao chemical co.LTD.
2.2. **Particleboard manufacture**

Single factor experiment was designed to study the influence of the CTBN loading on the fracture toughness of the particleboard. The target density of the particleboard was 0.65 g/cm3. The resin content was 8%. The dispersion of PF adhesive on the wood particles was carried out by a spraying device combined with a blender. Prior to the adhesion spraying, the PF resin was mixed with different weight CTBN. The CTBN weight percentage of 4%, 8%, 12% and 16% was uniformly mixed with PF resin by a high speed mixing plant. The hot pressing temperature was 180°C and pressing time was 40 s/mm. The thickness of the particleboard was 10 mm controlled by two thickness gages between the hotpress boards.

2.3. **Fracture toughness test method**

A sandwich three point bend specimen was chosen for the fracture toughness test with the crack opening direction parallel to the board surface (P style). And also, the fracture performance with crack opening perpendicular to the board surface was also studied by the common three point bend specimen (C style) with pre-crack length a. The two crack opening directions are shown in Figure 1. The thin particleboard is sandwiched by two pine bars in the P style test (Figure 2). The test specimen width (W) is 60mm. The test specimen thickness (h) is 10mm. The total length of the sample is 300 mm with 240 mm span between rollers. A micro-band saw was used to machine the first 28 mm depth notch with 0.65 mm thickness band saw blade. The top-most 2 mm was made by a sharp razor to ensure the crack would be sharp enough so that an even sharper crack will not result in significantly lower values of the measured properties. So the total length of the pre-crack is 30 mm which is 50% of the specimen width. All the fracture toughness test procedure was operated according to ISO 13586-2018 with the single-edge-notch bending (SENB). Displacement corrections were also operated accordingly and then the three point bending displacements were corrected for indentation effects. The determination of the applied load at the initiation of crack growth was determined by the method shown in Figure 3 on the condition that the F_{max}/F_0 was less than 1.1. The energy W_B to break was calculated by the integral of force and displacement.

Figure 1. The two directions (C and P styles) of the crack opening on fracture toughness test.

Figure 2. The SENB test specimens of C and P styles under three point bending.
Figure 3. The load-displacement curve for the SENB test and the determination of F_Q and W_B. s is the original slope of the curve and another line with 95% of s is also drawn. F_Q is the intersection between the curve and the 0.95s line. When F_{max}/F_Q is less than 1.1, F_Q is valid.

2.4. Statistical analysis

Unpaired two sample t-tests and one-way analysis of variance (ANOVA) were conducted on Excel 2016 (Microsoft, USA). Factors influences were considered to be significant if the P value was less than 0.05.

3. Results and discussion

3.1. Effects of test directions on the fracture toughness

To compare the different fracture toughness by the sandwich and general three point bend specimen between the pre-crack surface parallel or perpendicular to the board surface in the opening mode (mode I), the results are shown in Table 1. K_{IC} ranged from 43 to 81 kPa $\cdot \sqrt{m}$ and G_{IC} ranged from 167 to 299 J/m2 when the particleboards were manufactured without CTBN. The measured fracture toughness expressed by K_{IC} and G_{IC} with SENB method was close to the results studied by Rathke et al. with DCB method [4-7]. The size criteria and cross check of the results were also done according to ISO 13586:2018. All the criteria were met and the results of the test were valid. So, the SENB test can be used to quantitatively characterize the particleboard toughness.

Table 1. The measured K_{IC} and G_{IC} in the two directions of particleboard with different amount of CTBN.

CTBN	Type	K_{IC} (kPa $\cdot \sqrt{m}$)	SD	G_{IC} (J/m2)	SD
0	C	68	7.6	267	32
	P	55	7.5	198	28
4	C	72	8.7	280	35
	P	61	7.5	223	28
8	C	80	7.6	316	35
	P	66	6.5	243	29
12	C	86	8.1	331	38
	P	70	8.2	265	34
16	C	82	7.3	325	31
	P	70	8.9	257	29
From Table 1 above, we can see that the fracture toughness of pre-crack opening perpendicular to the board surface under three point bending test was higher than parallel. There were significant differences in K_{IC} and G_{IC} between the two directions ($P > 0.05$) studied by t-test with independent samples, no matter CTBN was added or not. As we know, the density of the near surface of particleboard is higher than the middle. Because the wood particles size of the entire board were the same, the density improvement could contribute to the fracture toughness.

The variability of the test results were also calculated. It can be seen from the data in Table 1 that the dispersion of the K_{IC} and G_{IC} is very similar with variable coefficient located between 8.9% to 12.83%.

3.2. Effects of CTBN on the fracture toughness

In one-way ANOVA analysis result manifestation, the CTBN content in the PF resin in the range from 0 to 16% had significant influence on the final fracture toughness of particleboard in both the two test directions. Both K_{IC} and G_{IC} increase ratio compared to the control group without CTBN were shown in Figure 4 and 5. As you can see from Figure 4, the K_{IC} starts with an increase and then goes down. The maximum increase ratio reached 26% and 27% in the two direction respectively when the CTBN content was 12% in the PF resin. The relationship between the increase ratio and the CTBN content display the same pattern. The 16% loading content of CTBN in PF resin more or less would reduce the fracture toughness of the particleboard. When CTBN content was lower than 12%, the disperse was good making the fracture toughness improve. When CTBN content was higher than 12%, the disperse become worse and the aggregation had an adverse influence on the fracture toughness.

![Figure 4. Increase ratio of K_{IC} compared to the control group.](image)

![Figure 5. Increase ratio of G_{IC} compared to the control group.](image)

4. Conclusions

The single-edge-notch bending (SENB) with a sandwich structure is a useful way to measure the fracture toughness of the particleboard. The measured results of K_{IC} and G_{IC} by SENB are very close to DCB test. CTBN can significantly improve the fracture toughness of the particleboard in the two directions of the pre-crack opening. The optimized addition amount in the PF resin is about 12% and the fracture toughness can be improved by about 25%.

Acknowledgement

The authors are grateful for support from the Science and Technology Department of Jiangsu Province under Grant BK20150878, the Nanjing Forestry University under Grant cx201607.

References

[1] Sernek M and Kamke F A 2007 Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. *International journal of adhesion and adhesives,*
27(7), 562-567.

[2] Vick C B and Christiansen A W 2007 Cure of phenol-formaldehyde adhesive in the presence of CCA-treated wood by differential scanning calorimetry. Wood and Fiber Science, 25(1), 77-86.

[3] Zhang H, Liu J, Wang Z and Lu X 2013 Mechanical and thermal properties of small diameter original bamboo reinforced extruded particleboard. Materials Letters, 100, 204-206.

[4] Rathke J, Sinn G, Weigl M and Müller U 2012 Analysing orthotropy in the core layer of wood based panels by means of fracture mechanics. European Journal of Wood and Wood Products, 70(6), 851-856.

[5] Zhang H, Pizzi A, Zhou X, Lu X and Wang Z 2018 The study of linear vibrational welding of moso bamboo. Journal of Adhesion Science and Technology, 32(1), 1-10.

[6] Veigel S, Rathke J, Weigl M and Gindl-Altmutter W 2012 Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. Journal of Nanomaterials, 2012, 15.

[7] Rathke J, Riegler M, Weigl M, Müller U and Sinn G 2013 Analyzing Process Related, In-Plane Mechanical Variation of High Density Fiber Boards (HDF) Across the Feed Direction. BioResources, 8(3), 3982-3993.

[8] Zhang H, Pizzi A, Lu X and Wang Z 2017 Study of the end-grain butt joints obtained by friction welding of moso bamboo. BioResources, 12(3), 6446-6457.

[9] Feng Y, Fang Z and Gu A 2004 Toughening of cyanate ester resin by carboxyl terminated nitrile rubber. Polymers for advanced technologies, 15(10), 628-631.

[10] Jang J and Yang H 2000 Toughness improvement of carbon-fibre/polybenzoxazine composites by rubber modification. Composites Science and Technology, 60(3), 457-463.

[11] Zhang H, He Q, Lu X, Pizzi A, Mei C and Zhan X 2018 Energy Release Rate Measurement of Welded Bamboo Joints. Journal of Renewable Materials, 6(5): 450-456.

[12] Zhang H, Pizzi A, Lu X and Janin G 2014 Palmyra palm bonding by vibrational welding. European journal of wood and wood products, 72(5), 693-695.

[13] Zhang H, Luo H. and Lu X 2014 Reliability of compression strength of hennon bamboo-reinforced extruded tubular particleboard. BioResources, 9(2), 2696-2704.

[14] Zhang H and Lu X 2014 Modeling of the elastic properties of laminated strand lumber. Wood Research, 59(1), 1-10.

[15] Zhang H, Liu J and Lu X 2013 Reducing the formaldehyde emission of composite wood products by cold plasma treatment. Wood Research, 58(4), 607-616.

[16] Zhang H, Pizzi A, Lu X and Zhou X 2014 Optimization of tensile shear strength of linear mechanically welded outer-to-inner flattened moso bamboo (Phyllostachys pubescens). BioResources, 9(2), 2500-2508.

[17] Zhang H, Pizzi A, Zhou X, Lu X and Janin G 2014 The comparison of the linear vibration welded joints in three different directions of the wood tauari (Couratari oblongifilia), International Wood Products Journal, 5(4): 228-232.

[18] Zhang H and Lu X 2015 Elastic properties of the extruded tubular particleboard, Wood Material Science and Engineering, 10(2): 185-188.