Data mining, dashboard and statistical analysis: a powerful framework for the chemical design of molecular nanomagnets

Yan Duan1,2, Joana T. Coutinho1,3, Lorena E. Rosaleny1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño1

1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain
2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
3 CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal

Abstract

Two decades of intensive research in lanthanide-based molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. In the pursuit of new derivatives with improved operational temperatures, several “rational” strategies have been proposed and applied through a fluid transfer of knowledge between theoreticians and experimentalists. These have mainly focused on the choice of the magnetic ion and the design of an adequate coordination environment, both in terms of magnetic anisotropy and molecular vibrations. However, much of the progress has been achieved by serendipity, oversimplified theories and chemical intuition. In order to draw conclusions on the chemical design key parameters that govern the physical behavior of molecular nanomagnets in terms of magnetic memory, we apply here a state-of-the-art inferential statistical analysis to a body of over a thousand published experiments. Our analysis shows that the effective barrier derived from an Arrhenius equation displays an excellent correlation with the magnetic memory, and that there are only two promising strategies between all alternatives proposed so far, namely terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes. In addition, we provide an interactive dashboard for visualizing the collected data, which contains all the reported cases.
between 2003 and 2019. This meta-study aims to dispel widespread theoretical misconceptions and will allow researchers in the field to avoid experimental blind alleys.

With the goal of facilitating the chemical design of lanthanide single-ion magnets (SIMs), herein we mined experimental data from over 1400 samples from the first 17 years of SIM research and applied data visualization tools followed by state-of-the-art statistical analysis. This allowed us to obtain a robust data-driven guide on the **key factors governing slow relaxation of the magnetization**. We created a dataset and a dashboard: a freely accessible online interactive app that allows any user to perform qualitative analyses as well as browsing the database. This statistical study represents the first quantitative and data-supported verification/refutation of several widely held "chemical intuitions" in the field of molecular magnetism.

A brief history of SIMs

The history of molecular nanomagnets starts at the beginning of the 1990s, when a polynuclear magnetic complex with strong magnetic coupling between *d*-transition ions was reported to display magnetic hysteresis similar to that of hard bulk magnets, but evidencing a quantum tunneling mechanism for the relaxation of the magnetization.\(^1\)\(^2\) This groundbreaking discovery was a great source of motivation for coordination chemists working in molecular magnetism, and the release of an intensified interdisciplinary collaboration with physicists and materials scientists in what nowadays is considered the hottest topic in the field. The collective magnetic behaviour of each of these single-molecule magnets (SMMs) could be approximated to that of an effective anisotropic spin arising from exchange interactions between the spins of each of the individual metal ions. The reversal of this giant anisotropic spin can occur by populating excited spin states and overcoming an energy barrier through a mechanism that was thought to be analogous to chemical reactions. Hence, it was equally described by an Arrhenius equation, an effective potential barrier \((U_{\text{eff}})\) and a pre-exponential factor \((\tau_0)\).\(^3\) Both parameters were not extracted directly from the hysteresis loop, but rather from the combined frequency- and temperature-dependence of the characteristic maxima in the so-called out-of-phase ac susceptibility \((\chi''\))\(^3\)\(^4\). The experimental fact that magnetic hysteresis was observed only at, or near, liquid-helium temperatures was rationalized mainly by a low value for this barrier \(U_{\text{eff}}\); alarmingly little attention was paid to the pre-exponential factor \(\tau_0\) in the Arrhenius equation.\(^5\) Initial models based on effective spin Hamiltonians obtained the relation \(U_{\text{eff}} = D S_z^2\) and concluded that the best strategy to raise \(U_{\text{eff}}\) and therefore improve the hysteresis temperature \((T_{\text{hys}})\) is to maximize the total effective spin \((S)\), rather than the magnetic anisotropy \((D)\), since the latter is a less straightforward target for the synthetic chemist.\(^6\) Despite great effort toward the synthesis of such systems and an abundance of molecules with ever increasing values of \(S\), very little progress was made in the first decade in terms of increasing \(U_{\text{eff}}\) or \(T_{\text{hys}}\).\(^7\)

In the 2000s, a second generation of molecular nanomagnets emerged.\(^8\) This type of single-molecule magnets, commonly known as SIMs, are based on mononuclear complexes containing a single magnetic ion embedded in a coordination environment. These magnetic entities represent the smallest imaginable nanomagnets, with enhanced magnetic anisotropy with respect to the first generation of SMMs, as a result of a strong spin-orbit coupling combined with the
crystal-field interaction with surrounding ligands. The same kind of modelling, based on the Arrhenius equation, resulted in effective energy barriers \(U_{\text{eff}} \) found in SIMs based on rare-earth ions routinely being up to an order of magnitude higher than those of polymeric metal complexes of the \(d \)-block. Same as \(U_{\text{eff}} \), the characteristic maxima in the out-of-phase ac susceptibility \(\chi'' \) moved to higher temperatures, but in contrast the hysteresis temperature \(T_{\text{hys}} \) did not increase significantly in the first years.

Box 1: main physical concepts we employ in the analysis SIMs are mononuclear metal complexes exhibiting slow relaxation of the magnetization below a certain blocking temperature. Experimentally, this is often manifested in a frequency-dependent out-of-phase ac magnetic susceptibility \(\chi'' \), which may present a maximum above 2K (left), where we define \(T_{B(2K)} \) as the blocking temperature at 10\(^3\) Hz (in presence of a magnetic field). This relaxation dynamics has most often been modelled as an Orbach processes and fitted using the same Arrhenius equation that is employed to describe chemical reaction rates, parameterized by the effective energy barrier \(U_{\text{eff}} \) analogous to the activation energy in chemical reactions, and \(\tau_{o} \), the inverse of the relaxation rate at the high temperature limit. A “full fit” considering other processes in addition to Orbach, such as a direct relaxation, a Raman process or a quantum tunneling of the magnetization, often result in more accurate values \(U_{\text{eff},0} \) \(\tau_{0} \). The best metric for slow relaxation is \(T_{\text{hys}} \), the highest temperature at which the system presents magnetic hysteresis, meaning the highest temperature at which its magnetization depends on the history of the applied magnetic field. Often, the hysteresis curve is “pinched”, signaling a fast relaxation at zero magnetic field.

After the germinal terbium bis-phthalocyaninato sandwich, different chemical families such as polyoxometalates\(^9\) and metalloccenes\(^10\) were synthesized and characterized, also exhibiting slow relaxation of the magnetization of purely molecular origin. The fact that lanthanide SIMs were not restricted to a single chemical strategy, allowing very different kinds of coordination environments, inspired a large community of chemists all over the world to explore many paths in parallel. This has resulted in the reporting of SMM behavior in over 600 complexes and magnetic hysteresis in over 200 complexes, in less than 15 years. A few strategies, derived from seemingly promising results, have been especially prolific. First, phthalocyaninato (Pc) complexes, especially the ones where one of the phthalocyaninato ligands is oxidized and displays an \(S = 1/2 \) radical, have presented good properties\(^11\), inspiring many works centered on Pc and/or radical ligands. Similarly, the introduction of a diamagnetic transition metal ion in the vicinity of the lanthanide was attributed a role in early successes\(^12\) and has been pursued extensively. Later on, the same has happened with metalloccene complexes of type LnCp\(_2\) sandwiches, where Cp = cyclopentadienyl
dianion, which have given rise to a series of world records.13–15 However, besides other approaches that have also been paradigmatic (e.g. the use of radicals,16,17 and diketonates18), no single chemical strategy has dominated the field in terms of reported examples. Indeed, as we will see below, the vast majority of published SIMs result from molecules that are either a combination of chemically distinct ligands in the same complex or are part of a large variety of individually less frequent ligands.

![Figure 1: Molecular structures of some lanthanide-based SIMs from different representative chemical strategies: a) LnPc \(_2\) \((T_{hys} = 31\) K19, b) LnCp \(_2\) \((T_{hys} = 60\) K13, c) a “mixed ligands” complex \((T_{hys} = 30\) K20 and d) effective origin of the “neighbouring diamagnetic TM” family \((T_{hys} = 11\) K12.](image) Indeed, so many studies pursuing independent inspirations have been reported that it is hard for any single scientist to have a proper perspective of what really has been proven to work, despite recent efforts in that direction.21–23 Any review of the literature will conclude that both the theoretically-driven design strategies and the free exploration have produced impressive leaps forward, but the fact is that the field risks dedicating valuable time and effort to the exploration of blind alleys due to unverified preconceptions or misunderstandings. This is an opportunity for employing the modern techniques of data analysis and visualization to remedy this knowledge gap. The procedure is labour intensive, since it involves systematically selecting, then reviewing, hundreds of articles and manually extracting from each one the information that is easiest to process, following a consistent protocol. However, after this stage, the data can be analysed with an extensive array of standard statistical and computational tools.
From the point of view of the theory, a common working hypothesis is that one or more of the parameters arising from the theoretical fits of the ac magnetometry, such as the effective barrier U_{eff} are well correlated with the experimental values for the properties of interest, such as the hysteresis temperature T_{hys}. In other words, a generally unspoken assumption in the field is that there is a simple relation between our theoretical parameterization and the physical properties we want to optimize to make the systems. This however has not been proven, and has actually been challenged in different ways. Over the years, different theoretical approaches have put the focus on the role of different physical processes and therefore different parameters. Thus, here we also aim to evaluate the relation between different physical parameters, and in particular the accord between the fitted parameters and the experimentally determined properties.

Our goal is to produce data-driven guidelines for the chemical design of SIMs, with a secondary goal being understanding the relation between physical variables themselves. We aim to do that by a statistical analysis that quantifies the relationship -or lack thereof- between a series of chemical variables that can be used to describe different lanthanide SIMs and a series of physical variables that have been experimentally determined on the same systems.
Results

An interactive dashboard for lanthanide SIMs

Dashboards are intuitive graphical software applications for data visualization and information management which recently gained widespread popularity thanks to the web-based dashboards to track COVID-19 in real time, starting with the one hosted by the Johns Hopkins University. In this work, we have developed a user-friendly dashboard-style web application named SIMDAVIS (Single Ion Magnet Data VISualization) to host the full set of the most relevant chemical and physical properties of 1405 SIM samples gathered from 453 scientific articles published between 2003 and 2019. SIMDAVIS will allow the chemical community to interact with and visualize the key relationships between chemical structures and physical parameters in SIMs. Our interactive dashboard can be directly invoked by accessing the internet site where it is located. It is organized in 5 tabs: “ScatterPlots”, “BoxPlots”, “Histograms”, “Data” (with 2 subsections: “View Data” & “Download Data”) and “Variables” as we can observe in the tab menu in Fig. 2.

![SIMDAVIS App](image)

Figure 2: Screenshot of the SIMDAVIS dashboard showing a set of selected options offered by the online app to represent the data.

In the SIMDAVIS dashboard, the most versatile source of information is the “ScatterPlots” tab, where the user can represent 9 quantitative physical properties versus one another in a logarithmic scale. It contains a checkbox that allows the user to add a linear regression and it offers the possibility to click on any data point to identify its sample ID, compound and article DOI, facilitating further analysis. In this tab, one can choose between 2 quantitative physical properties to be plotted with respect to each other, as well as a chemical qualitative variable from a dropdown menu, which contains 12 qualitative categorization possibilities. This permits the exploration of hundreds of potential correlations between measured experimental values (such as T_{axis} or T_{f}) and the magnetic parameters fitted from physical measurements (such as U_{eff}, U_{eff}, f or r_0), which can be plotted interactively and downloaded as a vectorial PDF file. For example, one can plot the blocking
temperature versus the effective barrier, and every data point will be identified by a color, showing to which chemical family it belongs to. This visual estimate on the relation between descriptors of the magnetic behaviour may uncover trends for specific qualitative variables. For each qualitative variable, each of its categories may be shown or hidden checking their corresponding boxes. For instance, if the categorical variable is of chemical nature, such as the chemical family used to encapsulate the lanthanide, a user may choose to only show SIM samples belonging to the LnPc\textsubscript{2} and the LnCp\textsubscript{2} families.

The next two tabs display the data in complementary ways. The “BoxPlots” tab allows to examine the distribution of each SIMs quantitative property vs a categorization criterion, e.g. we can see the distribution of U_{eff} values as a function of the elements in the coordination sphere. The boxplot for each category is shown, including the median, the interquartile range (IQR) and the whiskers (1.5xIQR). The “Histogram” tab explores the frequency of different qualitative variables in our dataset. Because of the use of stacked bar graphs the simultaneous analysis of two qualitative variables is available, e.g. we can display, for each chemical family, the number of samples which present magnetic hysteresis. The “Data” tab is a powerful interface to browse the dataset, featuring the possibility to choose the data columns to show, ordering in ascending or descending order and filtering by arbitrary keywords; it also permits downloading all data. Finally, the “Variables” tab gives the user information about the variables contained in the dataset.

Data-driven chemical design of SIMs: what works and what doesn’t?
The goal is now to determine which chemical variables optimize the physical properties. In other words, to perform a main component analysis: what are the main variables the synthetic chemist needs to consider to obtain the desired physical properties? We will first be doing this qualitatively, by analyzing a series of boxplots (see SI section S1)

Let us initially focus on U_{eff} together with T_{B3}, the focus of theoretical and experimental studies respectively. For either parameter, boxplot representations show that the only chemical family with a clearly distinct behavior is the LnPc\textsubscript{2}. The statistical correlation is more important than in the case of the Ln ion, where Dy and Tb are somewhat better than the others, but not as markedly. Similarly, oblate is better than prolate for both properties, whereas non-Kramers ions presents higher T_{B3} but similar U_{eff} values compared with Kramers ions; here we are in part seeing the influence of the radical phthalocyaninato Tb systems, where the relaxation is slowed down by the spin $\frac{1}{2}$ killing the quantum tunneling but with no significant change in U_{eff}. Other parameters, such as the number or elements of the coordinating donor atoms or the number of coordinated molecules have no significant statistical influence on U_{eff}; however, complexes with 2 ligands and complexes coordinated by nitrogen present consistently higher T_{B3} due to the influence of the LnPc\textsubscript{2} family.

Let us now analyze T_{hyst}, a magnitude that has been much less studied despite being the main justification for this whole field. Here the results change in interesting ways. Here the only ligand family with a distinct positive behavior is the LnCp\textsubscript{2} family, and similarly carbon is the only markedly good element for the coordination sphere. More surprisingly, Erbium has distinctly high hysteresis temperatures, markedly better -on average- than Dy or Tb; this is in sharp contrast with
their relative T_{B3} values, which are consistently much lower in the case of Er. This can also be an indication that searching for equatorial environments, precisely the ones that favour good magnetic properties in Er,26 often results in more rigid ligands, and this indicates an underexplored territory. It is certainly possible that certain modifications of [Er(COT)$_2$]$^-$ (or other Er record-bearing complexes) designed to optimize the detrimental effect of molecular vibrations may achieve records that are competitive with DyCp$_2$. Kramers vs non-Kramers is again shown to be irrelevant, but prolate is consistently better than oblate, again in contrast with the opposite behavior which is observed for T_{B3} and U_{eff} and possibly again due to the influence of Er complexes with their more rigid equatorial environments. Finally, both the coordination number and the number of ligands do have an influence on the statistically expected hysteresis temperature, with the best ones being 2 and 7 in the case of the coordination number and just 7 for the number of ligands. As we will discuss below, there are chemical insights to be gained from this.

Further insight is provided by histograms representing the reported presence of magnetic hysteresis, whether full or pinched, as a function of the kind of complex (Fig. 3). Note that we are limited by the minority of the samples where hysteresis or its absence is reported; in the vast majority of the cases this information is lacking. Nevertheless, here it is apparent that certain families such as LnPc$_2$ (and LnCp$_2$) tend to display (pinched) hysteresis.
The “effective barrier”: oversimplified, yet meaningful

A key question is how much the analyses in this field have been affected by the simplified assumption that SIMs relax via an Orbach mechanism. Let’s start by examining the dependency between τ_0 and U_{eff}, the two variables characterizing this process. It has been pointed out that often as U_{eff} is increased, τ_0 decreases in parallel, leaving τ essentially constant.\(^5\) We can now check whether the values of τ_0 and U_{eff} found in the bibliography follow this approximate law indicated for the two-phonon Orbach process in the classical text of Abragam and Bleaney, equation (1).\(^{30}\)
\[\frac{1}{\tau_0} = C \cdot U_{\text{eff}}^3 \quad \text{with} \quad 10^3 \text{K}^3\text{s}^{-1} < C < 10^5 \text{K}^3\text{s}^{-1} \quad (1) \]

Plotting \(\tau_0 \) vs \(U_{\text{eff}} \) reveals an approximate law \(1/\tau_0 = C \cdot U_{\text{eff}}^n \) with \(n \) between 2 and 3. Moreover, the data dispersion extends well beyond the expected range, and is skewed towards \(10 \text{K}^3\text{s}^{-1} < C < 10^5 \text{K}^3\text{s}^{-1} \) (see full analysis in the SI section S5.3). These discrepancies between the experimentally recorded data and the expected equation serve as an independent evaluation of the limitations of a simple Orbach model. The limited (<100) data points in the case of \(\tau_{0,ff} \) and \(U_{\text{eff},ff} \), seem to indicate a somewhat better agreement with equation (1), with \(n = 3, C = 10^2 \). Indeed, \(U_{\text{eff}} \) resulting from an oversimplified model is expected to be less physically meaningful compared with \(U_{\text{eff},ff} \).

Given that \(U_{\text{eff}} \) and the Orbach description seem to be only partially validated in practice, and since we know them to be oversimplifications in theory, a crucial issue that remains is to quantify up to what level the value of \(U_{\text{eff}} \) (or \(\tau_0 \)) are well correlated with the slow relaxation of the magnetization, and whether one needs to employ \(U_{\text{eff},ff} \) instead. Let us proceed in increasing order of complexity. A visual inspection in SIMDAVIS shows that, in the few cases where there is simultaneous information on \(U_{\text{eff}} \) and \(U_{\text{eff},ff} \) their values are very similar (Fig 4a). Furthermore, this partial information is corroborated by the very similar dependencies of \(T_{B3} \) or \(T_{\text{hys}} \) vs either \(U_{\text{eff}} \) or \(U_{\text{eff},ff} \) as well as in the numerical correlations (see SI section S5.1). A categorical analysis (Figs 4b, 4c) shows that the data dispersion is large, meaning it is impossible to predict the experimental behavior for an individual sample merely from its \(U_{\text{eff}} \) value. However, it also demonstrates that a qualitative grouping of samples depending on whether they present a maximum in the out-of-phase susceptibility \(\chi'' \), or hysteresis, pinched or not, has a clear reflection on their \(U_{\text{eff}} \) values. A more thorough numerical analysis (see SI section S6) confirms these trends.

An in-depth statistical analysis of all physical parameters (see SI sections S4, S5, S6) concludes that \(U_{\text{eff}} \) derived from a simple Arrhenius plot is currently the best single predictor for the physical behavior. This means that, whether we are discussing in terms of the presence of maximum in out-of-phase ac susceptibility or the temperature of said maximum, \(U_{\text{eff}} \) is a better predictor than \(\tau_0 \) or, when it appears, \(U_{\text{eff}} \) of a second Orbach process. The number of studies deriving \(U_{\text{eff}} \) from a full fit considering the other physical processes is so low, and the correlation of this “true” \(U_{\text{eff},ff} \) with the “effective” \(U_{\text{eff}} \) is so high, that the data do not support the qualitative observation that \(U_{\text{eff},ff} \) from a full fit is a better predictor for the hysteresis temperature. This does not contradict previous studies which demonstrated that a variation in the Orbach barrier does not fully explain the differences in retention of magnetisation. 21
Figure 4: Main dependencies between the physical variables (see complete analysis in SI sections S5.1 and S6). (a) dependence between U_{eff} and $U_{\text{eff}, ff}$, (b) distribution of U_{eff} for samples depending on their qualitative behavior in terms of magnetic hysteresis, (c) distribution of U_{eff} for samples depending on their qualitative behavior in terms of T_{B3} or, in its absence, of a frequency-dependent out of phase signal χ''.
Conclusions

We performed a statistical meta-analysis of the first 17 years of the field of lanthanide-based SIMs. We have systematically collected information from over 500 articles and over 1400 samples and built a user-friendly tool for the visualization of all the collected data. Moreover, we carried out an in-depth statistical analysis that allowed grouping the data in clusters based on their chemical and physical properties. From this study, we can highlight two main pieces of information.

In the first place, from the point of view of parametric characterization, the simple Arrhenius fit assuming an Orbach process has been proven to be surprisingly useful. This means that, in general, it is worth it to perform this oversimplified theoretical fit, with the confidence that the effective barrier \(U_{\text{eff}} \) has been proven to present a very good correlation with SMM behavior. Crucially, we have also proven the very different nature of short term magnetic memory in form of the blocking temperature at 100 Hz \(T_{\text{bg}} \) and its long term counterpart in the form of hysteresis temperature \(T_{\text{hys}} \). Strategies that optimize the former are not necessarily best for the latter.

Indeed, in the second place, the chemical roadmap for the preparation of lanthanide coordination complexes with higher \(T_{\text{hys}} \) is now a little more clear: there are, so far, two highly valuable and well-established chemical families, namely bisphthalocyanine terbium complexes and dysprosium metalloccenes. There is therefore value in the optimization within these two families. For example it is now well established that while including a radical in the coordination sphere is not useful by itself, LnPc\(_2\) complexes featuring a radical Pc display enhanced properties.\(^{31}\) Furthermore, the first studies have been made of reduced (divalent) analogues of DyCp\(_2\).\(^{32}\) We find comparatively little value in further pursuing chemical strategies that have been amply explored and never yielded hysteresis above 10 K. On the other hand, we also evidence that there is, of course, value in chemical ingenuity and exploration, in the quest for a third useful family, which according to our results might well be based on equatorial erbium complexes, since these display consistently high \(T_{\text{hys}} \) values. Note that a few complexes included in our data fall into ill-defined families such as “Mixed ligands” or “Other families”, and yet present excellent hysteresis temperatures. It is entirely possible that the next family of record-setters is related to one of promising candidates such as

\[
\text{[Ln(THF)]_5}^3+ \quad (L = \text{BuPO(NHPr)}_2)\] \(^{20}\) (Fig. 1c), \[
\text{[Dy(Cy_3PO)(H_2O)]_3}^{13+} \quad (\text{Cy}_3\text{PO} = \text{tricyclohexylphosphine oxide})\] \(^{33}\) \[
\text{Dy}_4(\text{bzhdep}-2\text{H})(\text{H}_2\text{O})_4(\text{NO}_3)_4 \quad (\text{bzhdep} = \text{pyrazine-2,5-diyl-bis(ethan-1-yl-1-ylidene)-di-(benzohydrazide)})\] \(^{34}\) \[
\text{[Ln(BIPM}^{\text{TMPS}}\text{)]}^3+ \quad (\text{BIPM}^{\text{TMPS}} = \{\text{C(PPh}_2\text{NSiMe}_3\text{)}_2\}_{2}\}^{35}\) \[
\text{Dy(bbpen)}X \quad (X = \text{Cl or Br}) \quad \text{H}_2\text{bbpen} = \text{N,N'}-\text{bis}(2\text{-hydroxybenzyl})-\text{N,N'}-\text{bis}(2\text{-methylpyridyl})\text{ethylenediamine})\] \(^{36}\) \[
(\text{NN}^{\text{TMPS}}\text{DyI(THF)})_2 \quad (\text{NN}^{\text{TMPS}} = \text{fc(NHSi'BuMe}_2\text{)}_2, \text{fc} = 1,1'-\text{ferrocenediyl}, \text{37}) \quad \text{and} \quad \text{[DyLz}_2\text{(o-vanilin)}]_3^+ \quad (\text{Lz} = 6\text{-pyridin-2-yl-[1,3,5]triazine-2,4-diamine})\] \(^{38}\) (Fig. 5). For example, two axial phosphine oxide ligands with very bulky substituents seem to function in a similar way as LnCp\(_2\) despite the five equatorial H\(_2\)O molecules. This strategy does not seem to be restricted to phosphine oxides and deserves to be explored further: as we have seen, complexes with 7 ligands have median values of \(T_{\text{hys}} \) close to 10 K, as high as those with 2 ligands.
At the same time, here we offer SIMDAVIS, a dashboard that allows interactive navigation of SIM data. This kind of tool was utterly missing in the field of molecular nanomagnets and paves the way for further studies much beyond the current work. Perhaps more importantly in the wider perspective of design of new materials39 and new molecules,40 the data mined in this work may serve in the future as annotated training data set for the development of new web scraping systems to retrieve chemical data41,42 or even word embeddings43 from the scientific literature.

\textbf{Figure 5:} Promising systems for development of new high-T_{hys} SIMs, chemically distinct from each other and from the TbPc$_2$ and DyCp$_2$ categories.33–38 See also Fig. 1c.20 (Color scheme for atoms: green, P; cyan, Dy; gray, C; blue, N; yellow, Si; orange, Fe; red, O; magenta, Cl or Br; purple, I. Hydrogen atoms are not shown for clarity.)
Methods

Data gathering. The process started by the collection and organisation of data. We employed the following search criterion for the manuscript: the articles are searched via Web of Science, employing this code:

\[\text{TOPIC: TS=([lanthan* OR 4f OR "rare$earth") AND ((single NEAR/1 magnet*) OR "slow relaxation")}} \]

Timespan: 2003-2019

Similarly, we employed consistent criteria to decide whether an article was included in the study or not: it needed to include certain data on at least one compound with certain requirements, defined as follows. The compound needs to (a) contain one isolated trivalent lanthanide element from the set \(\text{Ln} = \{ \text{Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb}\} \) and (b) contain no other paramagnetic entity, with the only accepted exception being the presence of a single radical in the coordination sphere and (c) present no strong Ln-Ln interaction, in particular meaning the Ln-Ln separation needs to be larger than 5 Angstrom and larger than 3 bridging atoms between neighbouring Ln centres, and there cannot be a radical in the bridge. The data about this compound needs to include at least one of the following experimental determinations:

(a) \(\chi'' \) vs \(T \) with at least one frequency \(f \) in the window \(0.9 \text{ kHz} \leq f \leq 1.1 \text{kHz} \) and at a field \(B \) in the window \(0 \leq B \leq 2 \text{T} \) and/or

(b) \(U_{\text{eff}} \) and/or

(c) \(T_{\text{relax}} \) at sweep speeds \(v \) in the window \(0.05 \text{T/s} \leq v \leq 0.3 \text{T/s} \).

Further details including the classification in chemical families and the criteria for data extraction are provided in SI.

Shiny App. The dashboard was programmed employing shiny, an open source R package.\(^{44}\) A Shiny-based GUI suitable for non-R users is available as a dashboard-style web application at \(\text{https://go.uv.es/rosaleny/SIMDAVIS} \). The R packages \texttt{readr},\(^{45}\) \texttt{dplyr},\(^{46}\) \texttt{DT},\(^{47}\) \texttt{ggplot2}\(^{48}\) and \texttt{rcrossref}\(^{49}\) were also employed in the development of the app. This interface allows for parameters in the analysis and subsets of the data to be adjusted and chosen in real time.

Statistical analysis. The statistical analysis was also based on R and included Multiple Correspondence Analysis (Gifi system,\(^{50}\) R homals package,\(^{51}\) details in SI section S4.1), clustering studies (FactoMineR,\(^{52}\) details in SI section S4.2), lognormal modelling (Poisson’s distribution, S4.3), factorial analysis of mixed data (FactoMineR\(^{52}\) and factoextra,\(^{53}\) details in SI section S6) as well as simple linear correlations among pairs of parameters (details in SI section S5.1).

References

1. Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Single-Molecule Magnets. \textit{MRS Bull.} \textbf{25}, 66–71 (2000).

2. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. \textit{Nature} \textbf{365}, 141–143 (1993).
3. Villain, J., Hartman-Boutron, F., Sessoli, R. & Rettori, A. Magnetic Relaxation in Big Magnetic Molecules. *Europhys. Lett.* **27**, 159–164 (1994).

4. Novak, M. A., Sessoli, R., Caneschi, A. & Gatteschi, D. Magnetic properties of a Mn cluster organic compound. *J. Magn. Magn. Mater.* **146**, 211–213 (1995).

5. Benelli, C. & Gatteschi, D. *Introduction to Molecular Magnetism. From Transition Metals to Lanthanides.* (Wiley-VCH, 2015).

6. Gatteschi, D. & Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. *Angew. Chem. Int. Ed.* **42**, 268–297 (2003).

7. Milios, C. J. *et al.* A Record Anisotropy Barrier for a Single-Molecule Magnet. *J. Am. Chem. Soc.* **129**, 2754–2755 (2007).

8. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. *J. Am. Chem. Soc.* **125**, 8694–8695 (2003).

9. AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates. *J. Am. Chem. Soc.* **130**, 8874–8875 (2008).

10. Jiang, S.-D., Wang, B.-W., Sun, H.-L., Wang, Z.-M. & Gao, S. An Organometallic Single-Ion Magnet. *J. Am. Chem. Soc.* **133**, 4730–4733 (2011).

11. Ishikawa, N. *et al.* Upward Temperature Shift of the Intrinsic Phase Lag of the Magnetization of Bis(phthalocyaninato)terbium by Ligand Oxidation Creating an S = 1/2 Spin. *Inorg. Chem.* **43**, 5498–5500 (2004).

12. Liu, J.-L. *et al.* Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. *Chem. Sci.* **4**, 3310–3316 (2013).

13. Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. *Nature* **548**, 439–442 (2017).

14. Guo, F.-S. *et al.* Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. *Science* **362**, 1400–1403 (2018).

15. McClain, K. R. *et al.* High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets. *Chem. Sci.* **9**, 8492–8503 (2018).

16. Poneti, G. *et al.* A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium–nitronyl-nitroxide radical complex. *Chem. Commun.* 1807–1809 (2007).

17. Demir, S., Jeon, I.-R., Long, J. R. & Harris, T. D. Radical ligand-containing single-molecule magnets. *Coord. Chem. Rev.* **289–290**, 149–176 (2015).
18. Sun, W.-B. et al. The slow magnetic relaxation regulated by ligand conformation of a lanthanide single-ion magnet [Hex4N][Dy(DBM)4]. Inorg. Chem. Front. 1, 503–509 (2014).

19. Horii, Y., Katoh, K., Breedlove, B. K. & Yamashita, M. Elongation of magnetic relaxation times in a single-molecule magnet through intermetallic interactions: a clamshell-type dinuclear terbium(III)-phthalocynaninato quadruple-decker complex. Chem. Commun. 53, 8561–8564 (2017).

20. Gupta, S. K., Rajeshkumar, T., Rajaraman, G. & Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 7, 5181–5191 (2016).

21. Giansiracusa, M. J., Kostopoulos, A. K., Collison, D., Winpenny, R. E. P. & Chilton, N. F. Correlating blocking temperatures with relaxation mechanisms in monometallic single-molecule magnets with high energy barriers (\(U_{\text{eff}} > 600 \text{ K}\)). Chem. Commun. 55, 7025–7028 (2019).

22. McAdams, S. G., Ariciu, A.-M., Kostopoulos, A. K., Walsh, J. P. S. & Tuna, F. Molecular single-ion magnets based on lanthanides and actinides: Design considerations and new advances in the context of quantum technologies. Coord. Chem. Rev. 346, 216–239 (2017).

23. Dey, A., Kalita, P. & Chandrasekhar, V. Lanthanide(III)-Based Single-Ion Magnets. ACS Omega 3, 9462–9475 (2018).

24. Escalera-Moreno, L., Baldoví, J. J., Gaita-Ariño, A. & Coronado, E. Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem. Sci. 9, 3265–3275 (2018).

25. Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 8, 14620 (2017).

26. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011).

27. Baldoví, J. J. et al. Rational Design of Single-Ion Magnets and Spin Qubits Based on Mononuclear Lanthanoid Complexes. Inorg. Chem. 51, 12565–12574 (2012).

28. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

29. SIM DAtaset VISualization. https://go.uv.es/rosaleny/SIMDAVIS.

30. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. (Oxford University Press, 2012).

31. Komijani, D. et al. Radical-lanthanide ferromagnetic interaction in a Tb(III) bis-phthalocyaninato complex. Phys. Rev. Mater. 2, 024405 (2018).

32. Gould, C. A. et al. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and
33. Chen, Y.-C. et al. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. *J. Am. Chem. Soc.* **138**, 2829–2837 (2016).

34. Huang, W. et al. Metallogrid Single-Molecule Magnet: Solvent-Induced Nuclearity Transformation and Magnetic Hysteresis at 16 K. *Inorg. Chem.* **55**, 5476–5484 (2016).

35. Gregson, M. et al. A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. *Chem. Sci.* **7**, 155–165 (2015).

36. Liu, J. et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. *J. Am. Chem. Soc.* **138**, 5441–5450 (2016).

37. Harriman, K. L. M., Brosmer, J. L., Ungur, L., Diaconescu, P. L. & Murugesu, M. Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated DyIII Single-Molecule Magnets. *J. Am. Chem. Soc.* **139**, 1420–1423 (2017).

38. Wu, J. et al. Cis–trans isomerism modulates the magnetic relaxation of dysprosium single-molecule magnets. *Chem. Sci.* **7**, 3632–3639 (2016).

39. de Pablo, J. J. et al. New frontiers for the materials genome initiative. *Npj Comput. Mater.* **5**, 1–23 (2019).

40. Duros, V. et al. Intuition-Enabled Machine Learning Beats the Competition When Joint Human-Robot Teams Perform Inorganic Chemical Experiments. *J. Chem. Inf. Model.* **59**, 2664–2671 (2019).

41. Swain, M. C. & Cole, J. M. ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature. *J. Chem. Inf. Model.* **56**, 1894–1904 (2016).

42. Krallinger, M., Rabal, O., Lourenço, A., Oyarzabal, J. & Valencia, A. Information Retrieval and Text Mining Technologies for Chemistry. *Chem. Rev.* **117**, 7673–7761 (2017).

43. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. *Nature* **571**, 95–98 (2019).

44. Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: *Web Application Framework for R.*

 https://CRAN.R-project.org/package=shiny (2018).

45. Wickham, H. et al. *readr: Read Rectangular Text Data.* https://CRAN.R-project.org/package=readr (2020).

46. Wickham, H., François, R., Henry, L. & Müller, K. *dplyr: A Grammar of Data Manipulation.*

 https://CRAN.R-project.org/package=dplyr (2018).

47. Xie, Y. et al. *DT: A Wrapper of the JavaScript Library ‘DataTables’.* https://CRAN.R-project.org/package=DT (2021).
48. Wickham, H. et al. *ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*.

 https://CRAN.R-project.org/package=ggplot2 (2020).

49. Chamberlain, S., Zhu, H., Jahn, N., Boettiger, C. & Ram, K. *rcrossref: Client for Various 'CrossRef' APIs*.

 https://CRAN.R-project.org/package=rcrossref (2020).

50. Gifi, Albert. *Nonlinear Multivariate Analysis*. (Wiley, New York, 1991).

51. Mair, P. & Leeuw, J. D. *homals: Gifi Methods for Optimal Scaling*. https://CRAN.R-project.org/package=homals (2021).

52. Husson, F., Josse, J., Le, S. & Mazet, J. *FactoMineR: Multivariate Exploratory Data Analysis and Data Mining*.

 https://CRAN.R-project.org/package=FactoMineR (2020).

53. Kassambara, A. & Mundt, F. *factoextra: Extract and Visualize the Results of Multivariate Data Analyses*.

 https://CRAN.R-project.org/package=factoextra (2020).

Acknowledgements

This work has been supported by the COST Action MolSpin on Molecular Spintronics (Project 15128), H2020 (FATMOLS project) and QUANTERA (SUMO project), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647301 for CoG “DECRESIM”), the Spanish MINECO (grants MAT2017-89993-R and CTQ2017-89528-P cofinanced by FEDER and Excellence Unit María de Maeztu MDM-2015-0538), and the Generalitat Valenciana (Prometeo Program of Excellence and CDEIGENT/2019/022). The statistical analysis was performed by Raquel Gavidia Josa with the Statistical Section of the S.C.S.I.E. (Universitat de València).

Author contributions

A.G.A, J.J.B. and S.C.S. proposed the SIMs study.

J.C. and Y.D. designed the whole procedure for raw data extraction and classification. Y.D., J.C., A.G.A., J.J.B. and S.C.S. did the manual data-mining. Y.D., J.C., A.G.A., L.E.R. and S.C.S. double-checked the raw data.

L.E.R. and A.G.A. cleaned and organized the raw data into a tidy dataset, conceived and supervised the statistical data analysis.

L.E.R. conceived and programmed the dashboard-style interactive web application for data visualization and analysis.

All authors contributed to the preparation of the manuscript.

Competing interests

The authors declare no competing interests.
Annex: articles included in the study

1. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. 2003 Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society 125, 8694–8695. (doi:10.1021/ja029629n)

2. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. 2004 Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level. The Journal of Physical Chemistry B 108, 11265–11271. (doi:10.1021/jp0376065)

3. Ishikawa, N., Sugita, M., Tanaka, N., Ishikawa, T., Koshihara, S. & Kaizu, Y. 2004 Upward Temperature Shift of the Intrinsic Phase Lag of the Magnetization of Bis(phthalocyaninato)terbium by Ligand Oxidation Creating an S=1/2 Spin. Inorganic Chemistry 43, 5498–5500. (doi:10.1021/ic049348b)

4. Ishikawa, N., Otsuka, S. & Kaizu, Y. 2005 The Effect of the f-f Interaction on the Dynamic Magnetism of a Coupled 4f System in a Dinuclear Terbium Complex with Phthalocyanines. Angewandte Chemie International Edition 44, 731–733. (doi:10.1002/anie.200461546)

5. Ishikawa, N., Sugita, M. & Wernsdorfer, W. 2005 Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet: Bis[phthalocyaninato]holmium Anion. Journal of the American Chemical Society 127, 3650–3651. (doi:10.1021/ja0428661)

6. Ishikawa, N., Sugita, M. & Wernsdorfer, W. 2005 Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. Angewandte Chemie International Edition 44, 2931–2935. (doi:10.1002/anie.200462638)

7. Ueki, S., Nogami, T., Ishida, T. & Tamura, M. 2006 ET and TTF Salts with Lanthanide Complex Ions Showing Frequency-Dependent ac Magnetic Susceptibility. Molecular Crystals and Liquid Crystals 455, 129–134. (doi:10.1080/15421400600698287)

8. Sugita, M., Ishikawa, N., Ishikawa, T., Koshihara, S. & Kaizu, Y. 2006 Static Magnetic-Field-Induced Phase Lag in the Magnetization Response of Tris(dipicolinato)lanthanides. Inorganic Chemistry 45, 1299–1304. (doi:10.1021/ic051089i)

9. Zhang, W., Zhao, F., Liu, T. & Gao, S. 2007 Syntheses, structures and magnetic properties of a family of one-dimensional M(II)-lanthanide(III) [M = Ni(II) and Zn(II)] coordination polymers. Science in China Series B: Chemistry 50, 308–317. (doi:10.1007/s11426-007-0076-y)

10. Takamatsu, S., Ishikawa, T., Koshihara, S. & Ishikawa, N. 2007 Significant Increase of the Barrier Energy for Magnetization Reversal of a Single-4f-Ionic Single-Molecule Magnet by a Longitudinal Contraction of the Coordination Space. Inorganic Chemistry 46, 7250–7252. (doi:10.1021/ic700954t)

11. Poneti, G., Bernot, K., Bogani, L., Caneschi, A., Sessoli, R., Wernsdorfer, W. & Gatteschi, D. 2007 A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium–nitronyl-nitroxide radical complex. Chem. Commun., 1807–1809. (doi:10.1039/b617898g)

12. AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. 2008 Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates. Journal of the American Chemical Society 130, 8874–8875. (doi:10.1021/ja0801659m)

13. Ishikawa, N., Mizuno, Y., Takamatsu, S., Ishikawa, T. & Koshihara, S. 2008 Effects of Chemically Induced Contraction of a Coordination Polyhedron on the Dynamical Magnetism of Bis[phthalocyaninato]disprosium, a Single-4f-Ionic Single-Molecule Magnet with a Kramers Ground State. Inorganic Chemistry 47, 10217–10219. (doi:10.1021/ic8014892)

14. AlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Martí-Gastaldo, C., Luis, F. & Montero, O. 2009 Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]9− and [Ln(β 2-SiW11O39)2]13− (LnIII= Tb, Dy, Ho, Er, Tm, and Yb). Inorganic Chemistry 48, 3467–3479. (doi:10.1021/ic801630z)

15. Li, D.-P., Wang, T.-W., Li, C.-H., Liu, D.-S., Li, Y.-Z. & You, X.-Z. 2010 Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chemical Communications 46, 2929. (doi:10.1039/b924547b)
16. Wang, Y., Li, X.-L., Wang, T.-W., Song, Y. & You, X.-Z. 2010 Slow Relaxation Processes and Single-Ion Magnetic Behaviors in Dysprosium-Containing Complexes. Inorganic Chemistry 49, 969–976. (doi:10.1021/ic901720a)
17. Wang, X.-L., Li, L.-C. & Liao, D.-Z. 2010 Slow Magnetic Relaxation in Lanthane Complexes with Chelating Nitronyl Nitroxide Radical. Inorganic Chemistry 49, 4735–4737. (doi:10.1021/ic100088g)
18. Gonièdec, M., Luis, F., Vílchez, À., Esquena, J., Amabilino, D. B. & Veciana, J. 2010 A Liquid-Crystalline Single-Molecule Magnet with Variable Magnetic Properties. Angewandte Chemie International Edition 49, 1623–1626. (doi:10.1002/anie.200905007)
19. Yamashita, A., Watanabe, A., Akine, S., Nabeshima, T., Nakano, M., Yamamura, T. & Kajiwara, T. 2011 Wheel-Shaped ErIIIZnII3Single-Molecule Magnet: A Macrocyclic Approach to Designing Magnetic Anisotropy. Angewandte Chemie International Edition 50, 4016–4019. (doi:10.1002/anie.201008180)
20. Melhais, K. R., Rinehart, J. D. & Long, J. R. 2011 Dilution-Induced Slow Magnetic Relaxation and Anomalous Hysteresis in Trigonal Prismatic Dysprosium(III) and Uranium(III) Complexes. Inorganic Chemistry 50, 8484–8489. (doi:10.1021/ic201078r)
21. Li, D.-P., Zhang, X.-P., Wang, T.-W., Ma, B.-B., Li, C.-H., Li, Y.-Z. & You, X.-Z. 2011 Distinct magnetic dynamic behavior for two polymorphs of the same Dy(iii) complex. Chemical Communications 47, 6867. (doi:10.1039/c1cc11659b)
22. Okazawa, A., Nojiri, H., Ishida, T. & Kojima, N. 2011 Single-molecule magnet behavior enhanced by magnetic coupling between 4f and 3d spins. Polyhedron 30, 3140–3144. (doi:10.1016/j.poly.2011.03.020)
23. Chen, G.-J., Gao, C.-Y., Tian, J.-L., Tang, J., Gu, W., Liu, X., Yan, S.-P., Liao, D.-Z. & Cheng, P. 2011 Coordination-perturbed single-molecule magnet behaviour of nonnuclear dysprosium complexes. Dalton Transactions 40, 5579. (doi:10.1039/c1dt10050e)
24. Watanabe, A., Yamashita, A., Nakano, M., Yamamura, T. & Kajiwara, T. 2011 Multi-Path Magnetic Relaxation of Mono-Dysprosium(III) Single-Molecule Magnet with Extremely High Barrier. Chemistry - A European Journal 17, 7428–7432. (doi:10.1002/chem.201003538)
25. Jiang, S.-D., Wang, B.-W., Sun, H.-L., Wang, Z.-M. & Gao, S. 2011 An Organometallic Single-Ion Magnet. Journal of the American Chemical Society 133, 4730–4733. (doi:10.1021/ja20199bv)
26. Feltham, H. L. C., Lan, Y., Klöwer, F., Ungur, L., Chibotaru, L. F., Powell, A. K. & Brooker, S. 2011 A Non-sandwiched Macrocyclic Monolanthane Single-Molecule Magnet: The Key Role of Axiality. Chemistry – A European Journal 17, 4362–4365. (doi:10.1002/chem.201100438)
27. Feltham, H. L. C., Klöwer, F., Cameron, S. A., Larsen, D. S., Lan, Y., Tropiano, M., Faulkner, S., Powell, A. K. & Brooker, S. 2011 A family of 13 tetranuclear zinc(ii)-lanthanide(iii) complexes of a [3 + 3] Schiff-base macrocycle derived from 1,4-diformyl-2,3-dihydroxybenzene. Dalton Transactions 40, 11425. (doi:10.1039/c1dt11038a)
28. Bi, Y., Guo, Y.-N., Zhao, L., Guo, Y., Lin, S.-Y., Jiang, S.-D., Tang, J., Wang, B.-W. & Gao, S. 2011 Capping Ligand Perturbed Slow Magnetic Relaxation in Dysprosium Single-Ion Magnets. Chemistry - A European Journal 17, 12476–12481. (doi:10.1002/chem.201101838)
29. Wang, X.-L., Tian, H.-X., Ma, Y., Yang, P.-P., Li, L.-C. & Liao, D.-Z. 2011 Slow magnetic relaxation in lanthanide complexes with chelating imino nitroxide radicals. Inorganic Chemistry 50, 8484–8489. (doi:10.1021/ic201078r)
34. Jiang, S.-D., Liu, S.-S., Zhou, L.-N., Wang, B.-W., Wang, Z.-M. & Gao, S. 2012 Series of Lanthanide Organometallic Single-Ion Magnets. Inorganic Chemistry 51, 3079–3087. (doi:10.1021/ic202511n)
35. Rinehart, J. D. & Long, J. R. 2012 Slow magnetic relaxation in homoleptic trispyrazolylborate complexes of neodymium(iii) and uranium(iii). Dalton Transactions 41, 13572. (doi:10.1039/c2dt31352a)
36. Wang, H., Liu, T., Wang, K., Duan, C. & Jiang, J. 2012 Tetraakis(phthalocyaninato) Rare-Earth-Cadmium-Rare-Earth Quadraple-Decker Sandwich SMMs: Suppression of QTM by Long-Distance f-f Interactions. Chemistry - A European Journal 18, 7691–7694. (doi:10.1002/chem.201200552)
37. Mei, X.-L., Ma, Y., Li, L.-C. & Liao, D.-Z. 2012 Ligand field-tuned single-molecule magnet behaviour of 2p–4f complexes. Dalton Trans. 41, 505–511. (doi:10.1039/c1dt11795e)
38. Mei, X.-L., Liu, R.-N., Wang, C., Yang, P.-P., Li, L.-C. & Liao, D.-Z. 2012 Modulating spin dynamics of cyclic LnIII-radical complexes (LnIII = Tb, Dy) by using phenyltrifluoroacetylacetonate coligand. Dalton Transactions 41, 2904. (doi:10.1039/c2dt31226c)
39. Lin, P.-H., Korobkov, I., Burchell, T. J. & Murugesu, M. 2012 Connecting single-ion magnets through ligand dimerisation. Dalton Transactions 41, 13649. (doi:10.1039/c2dt31226c)
40. Yao, M.-X., Zheng, Q., Gao, F., Li, Y.-Z., Song, Y. & Zuo, J.-L. 2012 Field-induced slow magnetic relaxation in chiral seven-coordinated mononuclear lanthanide complexes. Dalton Transactions 41, 13682. (doi:10.1039/c2dt31203d)
41. Hu, P., Zhu, M., Mei, X., Tian, H., Ma, Y., Li, L. & Liao, D. 2012 Single-molecule magnets based on rare earth complexes with chelating benzimidazole-substituted nitronyl nitroxide radicals. Dalton Transactions 41, 14651. (doi:10.1039/c2dt31806g)
42. Bhunia, A. et al. 2012 From a Dy(III) Single Molecule Magnet (SMM) to a Ferromagnetic [Mn(II)Dy(III)Mn(II)] Trinuclear Complex. Inorganic Chemistry 51, 9589–9597. (doi:10.1021/ic300065x)
43. Katoh, K., Umetsu, K., Breedlove Brian, K. & Yamashita, M. 2012 Magnetic relaxation behavior of a spatially closed dysprosium(iii) phthalocyaninato double-decker complex. Science China Chemistry 55, 918–925. (doi:10.1007/s11426-012-4615-9)
44. Habib, F., Long, J., Lin, P.-H., Korobkov, I., Ungur, L., Wernsdorfer, W., Chibotaru, L. F. & Murugesu, M. 2012 Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chemical Science 3, 2158. (doi:10.1039/c2sc01029a)
45. Katoh, K., Horii, Y., Yasuda, N., Wernsdorfer, W., Toriumi, K., Breedlove, B. K. & Yamashita, M. 2012 Multiple-decker phthalocyaninato dinuclear lanthanoid(iii) single-molecule magnets with dual-magnetic relaxation processes. Dalton Transactions 41, 13582. (doi:10.1039/c2dt31400b)
46. Pointillart, F., Bernot, K., Poneti, G. & Sessoli, R. 2012 Crystal Packing Effects on the Magnetic Slow Relaxation of Tb(III)-Nitronyl Nitroxide Radical Cyclic Dinuclear Clusters. Inorganic Chemistry 51, 12218–12229. (doi:10.1021/ic301394x)
47. Williams, U. J., Mahoney, B. D., DeGregorio, P. T., Carroll, P. J., Nakamaru-Ogiso, E., Kikkaawa, J. M. & Schelter, E. J. 2012 A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets. Chemical Communications 48, 5593. (doi:10.1039/c2cc31227a)
48. Ruiz, J., Mota, A. J., Rodríguez-Diéguez, A., Titos, S., Herrera, J. M., Ruiz, E., Cremones, E., Costes, J. P. & Colacio, E. 2012 Field and dilution effects on the slow relaxation of a luminescent DyO9 low-symmetry single-ion magnet. Chemical Communications 48, 7916. (doi:10.1039/c2cc32518g)
49. Li, X.-L., Chen, C.-L., Gao, Y.-L., Liu, C.-M., Feng, X.-L., Gui, Y.-H. & Fang, S.-M. 2012 Modulation of Homochiral DyIIIComplexes: Single-Molecule Magnets with Ferroelectric Properties. Chemistry - A European Journal 18, 14632–14637. (doi:10.1002/chem.201201190)
50. Wang, C., Wang, Y.-L., Ma, Y., Wang, Q.-L., Li, L.-C. & Liao, D.-Z. 2012 Two new lanthanide–radical complexes: synthesis, structure, and magnetic properties. Journal of Coordination Chemistry 65, 2830–2838. (doi:10.1080/00958972.2012.705281)
51. Gonidec, M., Amabilino, D. B. & Veciana, J. 2012 Novel double-decker phthalocyaninato terbium(iii) single molecule magnets with stabilised redox states. Dalton Transactions 41, 13632. (doi:10.1039/c2dt31171b)
52. Liu, Q.-Y., Wang, W.-F., Wang, Y.-L., Shan, Z.-M., Wang, M.-S. & Tang, J. 2012 Diversity of Lanthanide(III)--Organic Extended Frameworks with a 4,8-Disulfonoyl-2,6-naphthalenedicarboxylic Acid Ligand: Syntheses, Structures, and Magnetic and Luminescent Properties. Inorganic Chemistry 51, 2381–2392. (doi:10.1021/ic2023727)
53. Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Camón, A., Evangelisti, M., Luis, F., Martínez-Pérez, M. J. & Sesé, J. 2012 Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-fold Symmetry: The Series [LnP5W30O110]12– (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). Journal of the American Chemical Society 134, 14982–14990. (doi:10.1021/ja305163t)

54. Boulon, M.-E., Cucinotta, G., Luzon, J., Degl’Innocenti, C., Perfetti, M., Bernot, K., Calvez, G., Caneschi, A. & Sessoli, R. 2012 Magnetic Anisotropy and Spin-Parity Effect Along the Series of Lanthanide Complexes with DOTA. Angewandte Chemie International Edition 52, 350–354. (doi:10.1002/anie.201205938)

55. Li, Y.-Y., Gao, F., Beves, J. E., Li, Y.-Z. & Zuo, J.-L. 2013 A giant metallo-supramolecular cage encapsulating a single-molecule magnet. Chemical Communications 49, 3658. (doi:10.1039/c3cc41237g)

56. Chilton, N. F., Langley, S. K., Moubaraki, B., Soncini, A., Batten, S. R. & Murray, K. S. 2013 Single molecule magnetism in a family of mononuclear β-diketonate lanthanide(iii) complexes: rationalization of magnetic anisotropy in complexes of low symmetry. Chemical Science 4, 1719. (doi:10.1039/c3sc22300k)

57. Liu, J.-L., Chen, Y.-C., Zheng, Y.-Z., Lin, W.-Q., Ungur, L., Wernsdorfer, W., Chibotaru, L. F. & Tong, M.-L. 2013 Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chemical Science 4, 3310. (doi:10.1039/c3sc20843a)

58. Wu, S.-Q., Xie, Q.-W., An, G.-Y., Chen, X., Liu, C.-M., Cui, A.-L. & Kou, H.-Z. 2013 Supramolecular lanthanide metallogrids exhibiting field-induced single-ion magnetic behavior. Dalton Transactions 42, 4369. (doi:10.1039/c3dt50265a)

59. Anwar, M. U., Dawe, L. N., Tandon, S. S., Bunge, S. D. & Thompson, L. K. 2013 Polynuclear lanthanide (Ln) complexes of a tri-functional hydrazone ligand – mononuclear (Dy), dinuclear (Yb, Tm), tetranuclear (Gd), and hexanuclear (Gd, Dy, Tb) examples. Dalton Transactions 42, 7781. (doi:10.1039/c3dt32732a)

60. Bartolomé, E., Bartolomé, J., Melnic, S., Prodius, D., Shova, S., Arauzo, A., Luzón, J., Luis, F. & Turta, C. 2013 {Dy(α-fur)3}n: from double relaxation single-ion magnet behavior to 3D ordering. Dalton Transactions 42, 10153. (doi:10.1039/c3dt51080h)

61. Li, Q.-W., Liu, J.-L., Jia, J.-H., Leng, J.-D., Lin, W.-Q., Chen, Y.-C. & Tong, M.-L. 2013 Fluorescent single-ion magnets: molecular hybrid [HNEt3][Dy(xy)1-x(bpyda)2] (x = 0.135–1). Dalton Transactions 42, 11262. (doi:10.1039/c3dt51220g)

62. Cao, D.-K., Gu, Y.-W., Feng, J.-Q., Cai, Z.-S. & Ward, M. D. 2013 Mononuclear lanthanide complexes incorporating an anthracene group: structural modification, slow magnetic relaxation and multicomponent fluorescence emissions in Dy compounds. Dalton Transactions 42, 11436. (doi:10.1039/c3dt51176f)

63. Völcker, F., Lan, Y., Powell, A. K. & Roesky, P. W. 2013 Slow magnetic relaxation in tris(diphosphanylamido) and tetra(phosphanoamido) dysprosium complexes. Dalton Transactions 42, 11471. (doi:10.1039/c3dt51078f)

64. Fortea-Pérez, F. R., Vallejo, J., Julve, M., Lloret, F., De Munno, G., Armentano, D. & Pardo, E. 2013 Slow Magnetic Relaxation in a Hydrogen-Bonded 2D Array of Mononuclear Dysprosium(III) Oxamates. Inorganic Chemistry 52, 4777–4779. (doi:10.1021/ic4005517)

65. Campbell, V. E., Guillot, R., Riviere, E., Brun, P.-T., Wernsdorfer, W. & Mallah, T. 2013 Subcomponent Self-Assembly of Rare-Earth Single-Molecule Magnets. Inorganic Chemistry 52, 5194–5200. (doi:10.1021/ic400098c)

66. Le Roy, J. J., Jeletic, M., Gorelsky, S. I., Korobkov, L., Ungur, L., Chibotaru, L. F. & Murugesu, M. 2013 An Organometallic Building Block Approach To Produce a Multidecker 4f Single-Molecule Magnet. Journal of the American Chemical Society 135, 3502–3510. (doi:10.1021/ja310642h)

67. Cameron, J. M., Newton, G. N., Busche, C., Long, D.-L., Oshio, H. & Cronin, L. 2013 Synthesis and characterisation of a lanthanide-capped dodecavanadate cage. Chemical Communications 49, 3395. (doi:10.1039/c3cc40912k)

68. Cosquer, G., Pointillart, F., Golhen, S., Cador, O. & Ouahab, L. 2013 Slow Magnetic Relaxation in Condensed versus Dispersed Dysprosium(III) Mononuclear Complexes. Chemistry - A European Journal 19, 7895–7903. (doi:10.1002/chem.201300397)

69. Xu, W., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. 2013 Crystal Structure, Multiplex Photoluminescence, and Magnetic Properties of a Series of Lanthaneide Coordination Polymers Based on Quinoline Carboxylate Ligand. Crystal Growth & Design 13, 5420–5432. (doi:10.1021/cg401391b)

70. Sato, R., Suzuki, K., Sugawa, M. & Mizuno, N. 2013 Heterodinuclear Lanthanoid-Containing Polyoxometalates: Stepwise Synthesis and Single-Molecule Magnet Behavior. Chemistry - A European Journal 19, 12982–12990. (doi:10.1002/chem.201302596)
71. Goswami, S., Adhikary, A., Jena, H. S. & Konar, S. 2013 Lanthanide based coordination polymers chill, relax under magnetic field and also fluorescence. Dalton Transactions 42, 9813. (doi:10.1039/c3dt51195b)
72. Li, X.-L., Chen, C.-L., Xiao, H.-P., Wang, A.-L., Liu, C.-M., Zheng, X., Gao, L.-J., Yang, X.-G. & Fang, S.-M. 2013 Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions. Dalton Transactions 42, 15317. (doi:10.1039/c3dt51743h)
73. Pointillart, F., Le Guennic, B., Cauchy, T., Golhen, S., Cador, O., Maury, O. & Ouahab, L. 2013 A Series of Tetraphthalvalene-Based Lanthanide Complexes Displaying Either Single Molecule Magnet or Luminescence—Direct Magnetic and Photo-Physical Correlations in the Ytterbium Analogue. Inorganic Chemistry 52, 5978–5990. (doi:10.1021/ic400253m)
74. Gao, F., Yao, M.-X., Li, Y.-Y., Li, Y.-Z., Song, Y. & Zuo, J.-L. 2013 Syntheses, Structures, and Magnetic Properties of seven-coordinate Lanthanide Porphyrinate or Phthalocyaninate Complexes with Klü et al.’s Tripodal Ligand. Inorganic Chemistry 52, 6407–6416. (doi:10.1021/ic400245n)
75. Wang, Y.-L., Ma, Y., Yang, X., Tang, J., Cheng, P., Wang, Q.-L., Li, L.-C. & Liao, D.-Z. 2013 Syntheses, Structures, and Magnetic and Luminescence Properties of a New DyIII-Based Single-Ion Magnet. Inorganic Chemistry 52, 7380–7386. (doi:10.1021/ic400006n)
76. Kan, J., Wang, H., Sun, W., Cao, W., Tao, J. & Jiang, J. 2013 Sandwich-Type Mixed Tetrapyrrrole Rare-Earth Triple-Decker Compounds. Effect of the Coordination Geometry on the Single-Molecule-Magnet Nature. Inorganic Chemistry 52, 8505–8510. (doi:10.1021/ic400485y)
77. Zhu, J., Song, H.-F., Yan, P.-F., Hou, G.-F. & Li, G.-M. 2013 Slow relaxation processes of salen type Dy2 complex and 1D ionic spiral Dyn coordination polymer. CrystEngComm 15, 1747. (doi:10.1039/c2ce26680f)
78. Zhou, W., Feng, X., Ke, H., Li, Y., Tang, J. & Wang, E. 2013 New polyoxometalate-based mononuclear lanthanide complexes with slow relaxation of magnetization. Inorganica Chimica Acta 394, 770–775. (doi:10.1016/j.inca.2012.10.001)
79. Meihaus, K. R. & Long, J. R. 2013 Magnetic Blocking at 10 K and a Dipolar-Mediated Avalanche in Salts of the Bis(η8-cyclooctatetraenide) Complex [Er(COT)2]−. Journal of the American Chemical Society 135, 17952–17957. (doi:10.1021/ja4094814)
80. Fukuda, T., Matsumura, K. & Ishikawa, N. 2013 Influence of Intramolecular f-f Interactions on Nuclear Spin Driven Quantum Tunneling of Magnetizations in Quadruple-Decker Phthalocyanine Complexes Containing Two Terbium or Dysprosium Magnetic Centers. The Journal of Physical Chemistry A 117, 10447–10454. (doi:10.1021/jp406009m)
81. Blagg, R. J. et al. 2013 Magnetic relaxation pathways in lanthanide single-molecule magnets. Nature Chemistry 5, 673–678. (doi:10.1038/nchem.1707)
82. Meng, Y., Liu, J.-L., Zhang, Z.-M., Lin, W.-Q., Lin, Z.-J. & Tong, M.-L. 2013 Ionothermal synthesis of two oxalate-bridged lanthanide(iii) chains with slow magnetization relaxation by using a deep eutectic solvent. Dalton Transactions 42, 12853. (doi:10.1039/c3dt51816g)
83. Chandrasekhar, V., Chakraborty, A. & Sañudo, E. C. 2013 Ferrocene-based compartmental ligand for the assembly of neutral ZnII/LnIII heterometallic complexes. Dalton Transactions 42, 13436. (doi:10.1039/c3dt51432c)
84. Feltham, H. L. C., Clérac, R., Ungur, L., Chibotaru, L. F., Powell, A. K. & Brooker, S. 2013 By Design: A Macrocyclic 3d–4f Single-Molecule Magnet with Quantifiable Zero-Field Slow Relaxation of Magnetization. Inorganic Chemistry 52, 3236–3240. (doi:10.1021/ic302735j)
85. Gonidec, M., Krivokapic, I., Vidal-Gancedo, J., Davies, E. S., McMaster, J., Gorun, S. M. & Veciana, J. 2013 Highly Reduced Double-Decker Single-Molecule Magnets Exhibiting Slow Magnetic Relaxation. Inorganic Chemistry 52, 4464–4471. (doi:10.1021/ic3027418)
86. Zhang, P., Zhang, L., Lin, S.-Y. & Tang, J. 2013 Tetranuclear [Mdy]2 Compounds and Their Dinuclear [Mdy] (M = Zn/Cu) Building Units: Their Assembly, Structures, and Magnetic Properties. Inorganic Chemistry 52, 6595–6602. (doi:10.1021/ic400620j)
87. Gao, F., Cui, L., Liu, W., Hu, L., Zhong, Y.-W., Li, Y.-Z. & Zuo, J.-L. 2013 Seven-Coordinate Lanthanide Sandwich-Type Complexes with a Tetraphthalvalene-Fused Schiff Base Ligand. Inorganic Chemistry 52, 11614–11772. (doi:10.1021/ic401421h)
88. Murakami, R., Ishida, T., Yoshii, S. & Nojiri, H. 2013 Single-molecule magnet [Tb(hfac)3][2pyNO)] (2pyNO = t-butyl 2-pyridyl nitroxide) with a relatively high barrier of magnetization reversal. Dalton Transactions 42, 13968. (doi:10.1039/c3dt51784e)
89. Na, B., Wang, Y.-X., Han, T., Shi, W. & Cheng, P. 2013 A rare one-dimensional Dy(III) complex exhibiting slow magnetic relaxation. Inorganic Chemistry Communications 35, 19–21. (doi:10.1016/j.inoche.2013.05.007)

90. Liu, R. N., Zhao, S. P. & Xiong, C. X. 2013 Syntheses, crystal structures, and magnetic properties of two monometallic tri-spin complexes involving nitronyl nitroxide radicals-lanthanide ions. Russian Journal of Coordination Chemistry 39, 808–812. (doi:10.1134/s1070328413100035)

91. Wang, Y.-L., Gao, Y.-Y., Ma, Y., Wang, Q.-L., Li, L.-C. & Liao, D.-Z. 2013 Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical. Journal of Solid State Chemistry 202, 276–281. (doi:10.1016/j.jssc.2013.03.052)

92. Wang, K., Qi, D., Wang, H., Cao, W., Li, W., Liu, T., Duan, C. & Jiang, J. 2013 Binuclear Phthalocyanine-Based Sandwich-Type Rare Earth Complexes: Unprecedented Two π-Bridged Biradical-Metal Integrated SMMs. Chemistry - A European Journal 19, 11162–11166. (doi:10.1002/chem.201301101)

93. Hu, P., Zhang, C., Gao, Y., Li, Y., Ma, Y., Li, L. & Liao, D. 2013 Lanthanide–radical linear chain compounds based on 2,4,4,5,5-pentamethylimidazoline-1-oxyl-3-oxide: Structure and magnetic properties. Inorganica Chimica Acta 398, 136–140. (doi:10.1016/j.jica.2012.12.025)

94. Vrábel, P. et al. 2013 Slow spin relaxation induced by magnetic field in $[\text{NdCo(bpdo)}(\text{H}_2\text{O})_4(\text{CN})_6]\cdot 3\text{H}_2\text{O}$. Journal of Physics: Condensed Matter 25, 186003. (doi:10.1088/0953-8984/25/18/186003)

95. Ungur, L., Le Roy, J. J., Korobkov, I., Murugesu, M. & Chibotaru, L. F. 2014 Fine-tuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single-Ion Magnet. Angewandte Chemie International Edition 53, 4413–4417. (doi:10.1002/anie.201310451)

96. Zeng, D., Ren, M., Bao, S.-S., Li, L. & Zheng, L.-M. 2014 A luminescent heptanuclear DyIr6 complex showing field-induced slow magnetization relaxation. Chemical Communications 50, 8356. (doi:10.1039/c4cc02951h)

97. Upadhyay, A., Singh, S. K., Das, C., Mondol, R., Langley, S. K., Murray, K. S., Rajaraman, G. & Shanmugam, M. 2014 Enhancing the effective energy barrier of a Dy(iii) SMM using a bridged diamagnetic Zn(ii) ion. Chem. Commun. 50, 8838–8841. (doi:10.1039/c4cc02094d)

98. Liu, S.-S., Ziller, J. W., Zhang, Y.-Q., Wang, B.-W., Evans, W. J. & Gao, S. 2014 A half-sandwich organometallic single-ion magnet with hexamethylenbenzene coordinated to the Dy(iii) ion. Chem. Commun. 50, 11418–11420. (doi:10.1039/c4cc04262j)

99. Liu, C.-M., Zhang, D.-Q., Hao, X. & Zhu, D.-B. 2014 Trinuclear [CoIII2-LnIII] (Ln=Tb, Dy) Single-Ion Magnets with Mixed 6-Chloro-2-Hydroxypyridine and Schiff Base Ligands. Chemistry - An Asian Journal 9, 1847–1853. (doi:10.1002/asia.201402001)

100. Yi, X. et al. 2014 Unraveling the Crystal Structure of Lanthanide-Murexide Complexes: Use of an Ancient Complexometry Indicator as a Near-Infrared-Emitting Single-Ion Magnet. Chemistry - A European Journal 20, 1569–1576. (doi:10.1002/chem.201303833)

101. Demir, S., Zadrozny, J. M. & Long, J. R. 2014 Large Spin-Relaxation Barriers for the Low-Symmetry Organolanthanide Complexes [Cp*2Ln(BPh4)] [(Cp*=pentamethylcyclopentadienyl; Ln=Tb, Dy)]. Chemistry - A European Journal 20, 9524–9529. (doi:10.1002/chem.201403751)

102. Na, B., Zhang, X.-J., Shi, W., Zhang, Y.-Q., Wang, B.-W., Gao, C., Gao, S. & Cheng, P. 2014 Six-Coordinate Lanthanide Complexes: Slow Relaxation of Magnetization in the Dysprosium(III) Complex. Chemistry - A European Journal 20, 15975–15980. (doi:10.1002/chem.201404573)

103. Pedersen, K. S. et al. 2014 Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation. Chem. Sci. 5, 1650–1660. (doi:10.1039/c3sc53044b)

104. Lucaccini, E., Sorace, L., Perfetti, M., Costes, J.-P. & Sessoli, R. 2014 Beyond the anisotropy barrier: slow relaxation of the magnetization in both easy-axis and easy-plane Ln(trensals) complexes. Chem. Commun. 50, 1648–1651. (doi:10.1039/c3cc48866g)

105. Xiong, G., Qin, X.-Y., Shi, P.-F., Hou, Y.-L., Cui, J.-Z. & Zhao, B. 2014 New strategy to construct single-ion magnets: a unique Dy@Zn6 cluster exhibiting slow magnetic relaxation. Chem. Commun. 50, 4255–4257. (doi:10.1039/c3cc49342c)

106. Liu, Q.-Y., Li, Y.-L., Xiong, W.-L., Wang, Y.-L., Luo, F., Liu, C.-M. & Chen, L.-L. 2014 Urothermal synthesis of mononuclear lanthanide compounds: slow magnetization relaxation observed in Dy analogue. CrystEngComm 16, 585–590. (doi:10.1039/c3ce41762j)
107. Guo, Y.-N., Ungur, L., Granroth, G. E., Powell, A. K., Wu, C., Nagler, S. E., Tang, J., Chibotaru, L. F. & Cui, D. 2014 An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Scientific Reports 4. (doi:10.1038/srep05471)

108. Girginova, P. I., Pereira, L. C. J., Coutinho, J. T., Santos, I. C. & Almeida, M. 2014 Slow magnetic relaxation in lanthanide ladder type coordination polymers. Dalton Trans. 43, 1897–1905. (doi:10.1039/c3dt52748d)

109. Hu, P., Wang, X., Ma, Y., Wang, Q., Li, L. & Liao, D. 2014 A new family of Ln-radical chains (Ln = Nd, Sm, Gd, Tb and Dy): synthesis, structure, and magnetic properties. Dalton Trans. 43, 2234–2243. (doi:10.1039/c3dt52959b)

110. König, S. N., Chilton, N. F., Maichle-Mössmer, C., Pineda, E. M., Pugh, T., Anwander, R. & Layfield, R. A. 2014 Fast magnetic relaxation in an octahedral dysprosium tetrathymethyl-aluminate complex. Dalton Trans. 43, 3035–3038. (doi:10.1039/c3dt52337c)

111. Silva, M. R., Martín-Ramos, P., Coutinho, J. T., Pereira, L. C. J. & Martín-Gil, J. 2014 Effect of the capping ligand on luminescent erbium(iii) β-diketonate single-ion magnets. Dalton Trans. 43, 6752. (doi:10.1039/c4dt00168k)

112. Katoh, K., Asano, R., Miura, A., Horii, Y., Morita, T., Breedlove, B. K. & Yamashita, M. 2014 Effect of f–f interactions on quantum tunnelling of the magnetization: mono- and dinuclear Dy(iii) phthalocyaninato triple-decker single-molecule magnets with the same octacoordination environment. Dalton Trans. 43, 7716. (doi:10.1039/c4dt00042k)

113. Xie, Q.-W., Wu, S.-Q., Shi, W.-B., Liu, C.-M., Cui, A.-L. & Kou, H.-Z. 2014 Heterodinuclear MII–LnIII single molecule magnets constructed from exchange-coupled single ion magnets. Dalton Transactions 43, 11309. (doi:10.1039/c4dt00740a)

114. Baldovi, J. J., Coronado, E., Gaita-Ariño, A., Gamer, C., Giménez-Marqués, M. & Mínguez Espallargas, G. 2014 A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities. Chemistry - A European Journal 20, 10695–10702. (doi:10.1002/chem.201402255)

115. Dreiser, J., Westerström, R., Zhang, Y., Popov, A. A., Dunsch, L., Krämer, K., Liu, S., Decurtins, S. & Greber, T. 2014 The Metallofullerene Field-Induced Single-Ion Magnet HoSc$_2$N@C$_{80}$. Chemistry – A European Journal 20, 13536–13540. (doi:10.1002/chem.201403042)

116. Nayak, S., Novitchi, G., Hołyńska, M. & Dehnen, S. 2014 Two Heterometallic Ionic Compounds with Isolated [3d] and [4f] Complex Units: Field-Induced Single-Ion Magnet (SIM) Behavior Observed from a Mononuclear Dysprosium(III) Complex. European Journal of Inorganic Chemistry 2014, 3065–3071. (doi:10.1002/ejic.201402114)

117. Jung, J. et al. 2014 Magnetic Studies of Redox-Active Tetrathiafulvalene-Based Complexes: Dysprosium vs. Ytterbium Analogues. European Journal of Inorganic Chemistry 2014, 3888–3894. (doi:10.1002/ejic.201400121)

118. Gao, F., Cui, L., Song, Y., Li, Y.-Z. & Zuo, J.-L. 2013 Calix[4]arene-Supported Mononuclear Lanthanide Single-Molecule Magnet. Inorganic Chemistry 53, 562–567. (doi:10.1021/ic4026624)

119. Zeng, D., Ren, M., Bao, S.-S. & Zheng, L.-M. 2014 Tuning the Coordination Geometries and Magnetic Dynamics of [Ln(hfac)4]– through Alkali Metal Counterions. Inorganic Chemistry 53, 795–801. (doi:10.1021/ic402111v)

120. Palacios, M. A., Titos-Padilla, S., Ruiz, J., Herrera, J. M., Pope, S. J. A., Brechin, E. K. & Colacio, E. 2013 Bisfunctional ZnIILnIII Dinuclear Complexes Combining Field Induced SMM Behavior and Luminescence: Enhanced NIR Lanthanide Emission by 9-Anthracene Carboxylate Bridging Ligands. Inorganic Chemistry 53, 1465–1474. (doi:10.1021/ic402597s)

121. Campbell, V. E., Bolvin, H., Rivière, R., Guillot, R., Wernsdorfer, W. & Mallah, T. 2014 Structural and Electronic Dependence of the Single-Molecule-Magnet Behavior of Dysprosium(III) Complexes. Inorganic Chemistry 53, 2598–2605. (doi:10.1021/ic402950j)

122. Maxim, C., Branzea, D. G., Tiseanu, C., Rouzières, M., Clérac, R., Andruh, M. & Avarvari, N. 2014 Cyanomethylene-bis(phosphonate)-Based Lanthanide Complexes: Structural, Photophysical, and Magnetic Investigations. Inorganic Chemistry 53, 2708–2717. (doi:10.1021/ic403104y)

123. Meihaus, K. R., Corbey, J. F., Fang, M., Ziller, J. W., Long, J. R. & Evans, W. J. 2014 Influence of an Inner-Sphere K+ Ion on the Magnetic Behavior of N23– Radical-Bridged Din lanthanide Complexes Isolated Using an External Magnetic Field. Inorganic Chemistry 53, 3099–3107. (doi:10.1021/ic4030102)

124. Sun, W.-B., Yan, B., Zhang, Y.-Q., Wang, B.-W., Wang, Z.-M., Jia, J.-H. & Gao, S. 2014 The slow magnetic relaxation regulated by ligand conformation of a lanthanide single-ion magnet [Hex4N][Dy(DBM)4]. Inorg. Chem. Front. 1, 503–509. (doi:10.1039/c4qi00057a)
125. Yamauchi, S. et al. 2014 Synthesis, Structure, Luminescence, and Magnetic Properties of a Single-Ion Magnet ‘mer’-[Tris(N-[[imidazol-4-yl]-methylidene]-dl-phenylalaninato)terbium(III)] and Related ‘fac’-dl-Alaninato Derivative. Inorganic Chemistry 53, 5961–5971. (doi:10.1021/ic5001599)

126. Martín-Ramos, P., Ramos Silva, M., Coutinho, J. T., Pereira, L. C. J., Chamorro-Posada, P. & Martín-Gil, J. 2013 Single-Ion Magnetism in a Luminescent Er3+ β-Diketonato Complex with Multiple Relaxation Mechanisms. European Journal of Inorganic Chemistry 2014, 511–517. (doi:10.1002/ejic.201301076)

127. Zhu, J., Wang, C., Luan, F., Liu, T., Yan, P. & Li, G. 2014 Local Coordination Geometry Perturbed β-Diketone Dysprosium Single-Ion Magnets. Inorganic Chemistry 53, 8895–8901. (doi:10.1021/ic500501r)

128. Fukuda, T., Shigeyoshi, N., Yamamura, T. & Ishikawa, N. 2014 Magnetic Relaxations Arising from Spin–Phonon Interactions in the Nonthermally Activated Temperature Range for a Double-Decker Terbium Phthalocyanine Single Molecule Magnet. Inorganic Chemistry 53, 9080–9086. (doi:10.1021/ic501028f)

129. Lannes, A., Intissar, M., Suffren, Y., Reber, C. & Luneau, D. 2014 Terbium(III) and Yttrium(III) Complexes with Pyridine-Substituted Nitronyl Nitroxide Radical and Different β-Diketonate Ligands. Crystal Structures and Magnetic and Luminescence Properties. Inorganic Chemistry 53, 9548–9560. (doi:10.1021/ic500779y)

130. Klyatskaya, S., Eichhöfer, A. & Wernsdorfer, W. 2014 X-ray Crystallographic Analysis of a Tailor-Made Bis(phthalocyaninato)-TbIIISingle-Molecule Magnet as a Fundamental Unit for Supramolecular Spintronics Devices. European Journal of Inorganic Chemistry 2014, 4179–4185. (doi:10.1002/ejic.201402421)

131. Baldoví, J. J., Clemente-Juan, J. M., Coronado, E., Duan, Y., Gaita-Ariño, A. & Giménez-Saiz, C. 2014 Construction of a General Library for the Rational Design of Nanomagnets and Spin Qubits Based on Mononuclear f-Block Complexes. The Polyoxometalate Case. Inorganic Chemistry 53, 10359–10369. (doi:10.1021/ic501453h)

132. Zhang, P., Zhang, L., Wang, C., Xue, S., Lin, S.-Y. & Tang, J. 2014 Equatorially Coordinated Lanthanide Single Ion Magnets. Journal of the American Chemical Society 136, 4484–4487. (doi:10.1021/ja100793x)

133. Meihaus, K. R., Minasian, S. G., Lukens, W. W., Kozimor, S. A., Shuh, D. K., Tyliszczak, T. & Long, J. R. 2014 Influence of Pyrazolate vs N-Heterocyclic Carbene Ligands on the Slow Magnetic Relaxation of Homoleptic Trischelate Lanthanide(III) and Uranium(III) Complexes. Journal of the American Chemical Society 136, 6056–6068. (doi:10.1021/ja501569t)

134. Shintoyo, S. et al. 2014 Crystal Field Splitting of the Ground State of Terbium(III) and Dysprosium(III) Complexes with a Triimidazolyl Tripod Ligand and an Acetate Determined by Magnetic Analysis and Luminescence. Inorganic Chemistry 53, 12817–12825. (doi:10.1021/cg502086g)

135. Bag, P., Chakraborty, A., Rouzières, M., Clérac, R., Butcher, R. J. & Chandrasekhar, V. 2014 Oxalato-Bridged Neutral Octanuclear Heterometallic Complexes [Ln4K4(L)4(µ-H2O)4(NO3)2(µ-Ox)] (Ln = Dy(III), Gd(III), Tb(III), Ho(III); LH3 = N(CH2CH2N═CH-C6H3-2-OH-3-OMe)3; Ox = (C2O4)2–): Synthesis, Structure, Magnetic and Luminescent Properties. Crystal Growth & Design 14, 4583–4592. (doi:10.1021/cg50677t)

136. Giménez-Agulló, N., de Pipaón, C. S., Adriaenssens, L., Filibian, M., Martínez-Belmonte, M., Escudero-Adán, E. C., Carretta, P., Ballester, P. & Galán-Mascarós, J. R. 2014 Single-Molecule-Magnet Behavior in the Family of [Ln(OETAP)2] Double-Decker Complexes (Ln=Lanthanide, OETAP=Octa(ethyl)tetraazaporphyrin). Chemistry - A European Journal 20, 12817–12825. (doi:10.1002/chem.201402869)

137. Hu, P., Sun, Z., Wang, X., Li, L., Liao, D. & Luneau, D. 2014 Magnetic relaxation in mononuclear Tb complex involving a nitronyl nitroxide ligand. New J. Chem. 38, 4716–4721. (doi:10.1039/c4nj00627e)

138. Zhao, J., Li, H., Li, Y., Li, C., Wang, Z. & Chen, L. 2014 Rectangle versus Square Oxalate-Connective Tetralanthanide Cluster Anchored in Lacunary Lindqvist Isopolytungstates: Syntheses, Structures, and Properties. Crystal Growth & Design 14, 5493–5505. (doi:10.1021/cg506755g)

139. Norel, L., Feng, M., Bernot, K., Roisnel, T., Guizouarn, T., Costuas, K. & Rigaut, S. 2014 Redox Modulation of Magnetic Slow Relaxation in a 4f-Based Single-Molecule Magnet with a 4d Carbon-Rich Ligand. Inorganic Chemistry 53, 2361–2363. (doi:10.1021/ic403081y)

140. Biswas, S., Jena, H. S., Adhikary, A. & Konar, S. 2014 Two Isostructural 3D Lanthanide Coordination Networks (Ln = Gd3+, Dy3+) with Squashed Cuboid-Type Nanoscopic Cages Showing Significant Cryogenic Magnetic Refrigeration and Slow Magnetic Relaxation. Inorganic Chemistry 53, 3926–3928. (doi:10.1021/ic4030316)

141. Liu, J.-F., Pan, F.-X., Yao, S., Min, X., Cui, D. & Sun, Z.-M. 2014 Syntheses, Structure, and Properties of Mixed Cp–Amidinate Rare-Earth-Metal(III) Complexes. Organometallics 33, 1374–1381. (doi:10.1021/om400856d)
142. Tretyakov, E. V., Fokin, S. V., Zueva, E. M., Romanenko, G. V., Bogomyakov, A. S., Larionov, S. V., Popov, S. A. & Ovcharenko, V. I. 2014 Complexes of lanthanides with spin-labeled pyrazoloquinoline. Russian Chemical Bulletin 63, 1459–1464. (doi:10.1007/s11172-014-0621-8)

143. Qiao, X.-M., Zhang, C.-X., Kong, Y.-K., Wang, Q.-L. & Zhang, Y.-Y. 2014 Two Mononuclear Tri-Spin Compounds based on the Lanthanide-Nitronyl Nitroxide Radicals: Synthesis, Crystal Structure, and Magnetic Properties. Zeitschrift für anorganische und allgemeine Chemie 640, 1684–1687. (doi:10.1002/zaac.201300655)

144. Long, J. et al. 2014 A High-Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Single-Ion-Magnet Behavior and Lanthanide Luminescence. Angewandte Chemie International Edition 54, 2236–2240. (doi:10.1002/anie.201410523)

145. Brown, A. J., Pinkowicz, D., Saber, M. R. & Dunbar, K. R. 2015 A Trigonal-Pyramidal Erbium(III) Single-Molecule Magnet. Angewandte Chemie 127, 5962–5966. (doi:10.1002/ange.201411190)

146. Zeng, D., Ren, M., Bao, S.-S., Feng, J.-S., Li, L. & Zheng, L.-M. 2015 pH-controlled polymorphism in a layered dysprosium phosphonate and its impact on the magnetization relaxation. Chemical Communications 51, 2649–2652. (doi:10.1039/c4cc09341k)

147. Das, C., Upadhyay, A., Vaidya, S., Singh, S. K., Rajaraman, G. & Shanmugam, M. 2015 Origin of SMM behaviour in an asymmetric Er(iii) Schiff base complex: a combined experimental and theoretical study. Chemical Communications 51, 6137–6140. (doi:10.1039/c4cc09523e)

148. Li, Q.-W., Liu, J.-L., Jia, J.-H., Chen, Y.-C., Liu, J., Wang, L.-F. & Tong, M.-L. 2015 ’Half-sandwich’ YbIII single-ion magnets with metallacrowns. Chemical Communications 51, 10291–10294. (doi:10.1039/c5cc03389f)

149. Costes, J. P., Titos-Padilla, S., Oyarzabal, I., Gupta, T., Duhayon, C., Rajaraman, G. & Colacio, E. 2015 Analysis of the Role of Peripheral Ligands Coordinated to ZnII in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets. Chemistry - A European Journal 21, 15785–15796. (doi:10.1002/chem.201501500)

150. Chien, Y.-L., Chang, M.-W., Tsai, Y.-C., Lee, G.-H., Sheu, W.-S. & Yang, E.-C. 2015 New salen-type dysprosium(III) double-decker and triple-decker complexes. Polyhedron 102, 8–15. (doi:10.1016/j.poly.2015.07.048)

151. Cao, W., Gao, C., Zhang, Y.-Q., Qi, D., Liu, T., Wang, K., Duan, C., Gao, S. & Jiang, J. 2015 Rational enhancement of the energy barrier of bis(tetrapyrrole) dysprosium SMMs via replacing atom of porphyrin core. Chemical Science 6, 5947–5954. (doi:10.1039/c5sc02314a)

152. Chen, P., Zhang, M., Sun, W., Li, H., Zhao, L. & Yan, P. 2015 Anion-dependent assembly of Dy complexes: structures and magnetic behaviors. CrystEngComm 17, 5066–5073. (doi:10.1039/c5ce00925a)

153. Chen, P., Li, H., Sun, W., Tang, J., Zhang, L. & Yan, P. 2015 Crystallization of triple- and quadruple-stranded dinuclear bis-β-diketonate-Dy(iii) helicates: single molecule magnetic behavior. CrystEngComm 17, 7227–7232. (doi:10.1039/c5ce01067e)

154. Lin, S.-Y., Wang, C., Zhao, L., Wu, J. & Tang, J. 2015 Chiral mononuclear lanthanide complexes and the field-induced single-ion magnet behaviour of a Dy analogue. Dalton Transactions 44, 223–229. (doi:10.1039/c4dt02889a)

155. Feng, H.-K., Huang, P.-J. & Tsai, H.-L. 2015 One-dimensional lanthanide coordination polymers: synthesis, structures, and single-ion magnetic behaviour. Dalton Transactions 44, 3764–3772. (doi:10.1039/c4dt03458a)

156. Zou, X., Yan, P., Dong, Y., Luan, F. & Li, G. 2015 Magnetic dynamics of two salen type Dy2 complexes modulated by coordination geometry. RSC Advances 5, 96573–96579. (doi:10.1039/c5ra18244a)

157. Mondal, A. K., Goswami, S. & Konar, S. 2015 Influence of the coordination environment on slow magnetic relaxation and photoluminescence behavior in two mononuclear dysprosium(iii) based single molecule magnets. Dalton Transactions 44, 5086–5094. (doi:10.1039/c4dt03620d)

158. Li, L.-L., Liu, S., Zhang, Y., Shi, W. & Cheng, P. 2015 Three new mononuclear tri-spin lanthanide-nitronyl nitroxide radical compounds: syntheses, structures and magnetic properties. Dalton Transactions 44, 6118–6125. (doi:10.1039/c4dt03941f)

159. Zhang, X.-J., Liu, K., Bing, Y., Xu, N., Shi, W. & Cheng, P. 2015 An unusual three-dimensional Dy–Cd2 framework exhibiting single-ion magnet behavior. Dalton Transactions 44, 7757–7760. (doi:10.1039/c5dt00721f)

160. Han, T., Leng, J.-D., Ding, Y.-S., Wang, Y., Zheng, Z. & Zheng, Y.-Z. 2015 Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(iii)-carboxylate chain built from chiral ligands. Dalton Transactions 44, 13480–13484. (doi:10.1039/c4dt03980g)
161. Wang, X., Zhu, M., Wang, J. & Li, L. 2015 Unusual Gd–nitronyl nitroxide antiferromagnetic coupling and slow magnetic relaxation in the corresponding Tb analogue. Dalton Transactions 44, 13890–13896. (doi:10.1039/c5dt01487e)
162. Takehara, C., Then, P. L., Kataoka, Y., Nakano, M., Yamamura, T. & Kajiwara, T. 2015 Slow magnetic relaxation of light lanthanide-based linear LnZn2 trinuclear complexes. Dalton Transactions 44, 18276–18283. (doi:10.1039/c5dt03148f)
163. Anastasiadis, N. C., Polyzou, C. D., Kostakis, G. E., Bekiari, V., Lan, Y., Perlepes, S. P., Konidaris, K. F. & Powell, A. K. 2015 Dinuclear lanthanide(iii)/zinc(ii) complexes with methyl 2-pyridyl ketone oxime. Dalton Transactions 44, 19791–19795. (doi:10.1039/c5dt03663a)
164. Yue, Y., Sun, J., Yan, P. & Li, G. 2015 Single molecule magnet of flexible Salen-type dysprosium coordination polymer with 1D ionic chain structure. Inorganic Chemistry Communications 51, 42–45. (doi:10.1016/j.inoche.2014.11.007)
165. Gavrilita, A., Claiser, N., Kuhn, P.-S., Novitchi, G., Tommasino, J. B., Iasco, O., Druta, V., Arion, V. B. & Luneau, D. 2015 Osmium-Nitrosyl Oxalato-Bridged Lanthanide-Centered Pentanuclear Complexes - Synthesis, Crystal Structures and Magnetic Properties. European Journal of Inorganic Chemistry 2015, 1616–1624. (doi:10.1002/ejic.201500023)
166. Feng, M., Pointillart, F., Lefuevre, B., Dorcet, V., Golhen, S., Cador, O. & Ouahab, L. 2015 Multiple Single-Molecule Magnet Behaviors in Dysprosium Dinuclear Complexes Involving a Multiple Functionalized Tetrathiafulvalene-Based Ligand. Inorganic Chemistry 54, 4021–4028. (doi:10.1021/acs.inorgchem.5b00272)
167. Zhang, Y. et al. 2015 Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d–4f Heterodinuclear Compounds. Inorganic Chemistry 54, 10316–10322. (doi:10.1021/acs.inorgchem.5b00441)
168. Han, S.-D., Wang, Q.-L., Xu, J. & Bu, X.-H. 2015 Anion-Triggered Modulation of Structure and Magnetic Properties of Copper(I)-Dysprosium(III) Complexes Derived from 1-Hydroxybenzotriazolate. European Journal of Inorganic Chemistry 2015, 5379–5386. (doi:10.1002/ejic.201500799)
169. Qian, K., Baldovi, J. J., Jiang, S.-D., Gaita-Ariño, A., Zhang, Y.-Q., Overgaard, J., Wang, B.-W., Coronado, E. & Gao, S. 2015 Does the thermal evolution of molecular structures critically affect the magnetic anisotropy? Chemical Science 6, 4587–4593. (doi:10.1039/c5sc01245g)
170. Wu, J., Zhao, L., Zhang, P., Zhang, L., Guo, M. & Tang, J. 2015 Linear 3d–4f compounds: synthesis, structure, and determination of the d–f magnetic interaction. Dalton Transactions 44, 11935–11942. (doi:10.1039/c5dt00960j)
171. Dolai, M., Ali, M., Titiš, J. & Boča, R. 2015 Cu(ii)–Dy(iii) and Co(iii)–Dy(iii) based single molecule magnets with multiple slow magnetic relaxation processes in the Cu(ii)–Dy(iii) complex. Dalton Transactions 44, 13242–13249. (doi:10.1039/c5dt00960j)
172. Hu, K.-Q., Jiang, X., Wu, S.-Q., Liu, C.-M., Cui, A.-L. & Kou, H.-Z. 2015 A trimetallic strategy towards ZnIl4DyIII2CrIII2 and ZnIl4DyIII2CoIII2 single-ion magnets. Dalton Transactions 44, 15413–15416. (doi:10.1039/c5dt02175h)
173. Gao, F., Yang, F.-L., Zhu, G.-Z. & Zhao, Y. 2015 Syntheses, structures, and magnetic properties of homodinuclear lanthanide complexes based on dinucleating Schiffs base ligands. Dalton Transactions 44, 20232–20241. (doi:10.1039/c5dt03580e)
174. Han, S.-D., Wang, Q.-L., Xu, J. & Bu, X.-H. 2015 Anion-Triggered Modulation of Structure and Magnetic Properties of Copper(I)-Dysprosium(III) Complexes Derived from 1-Hydroxybenzotriazolate. European Journal of Inorganic Chemistry 2015, 5379–5386. (doi:10.1002/ejic.201500799)
175. Horii, Y., Katoh, K., Yasuda, N., Breedlove, B. K. & Yamashita, M. 2015 Effects of f–f Interactions on the Single-Molecule Magnet Properties of Terbium(III)–Phthalocyaninato Quintuple-Decker Complexes. Inorganic Chemistry 54, 3297–3305. (doi:10.1021/ic502951t)
176. Liu, S.-S. et al. 2015 Half-Sandwich Complexes of DyIII: A Janus-Motif with Facile Tunability of Magnetism. Inorganic Chemistry 54, 5162–5168. (doi:10.1021/ic502734z)
177. Lannes, A. & Luneau, D. 2015 New Family of Lanthanide-Based Complexes with Different Scorpionate-Type Ligands: A Rare Case Where Dysprosium and Ytterbium Analogues Display Single-Ion-Magnet Behavior. Inorganic Chemistry 54, 6736–6743. (doi:10.1021/acs.inorgchem.5b00432)
178. Goura, J., Brambleby, J., Goddard, P. & Chandrasekhar, V. 2015 A Single-Ion Magnet Based on a Heterometallic CoII2DyIIIComplex. Chemistry - A European Journal 21, 4926–4930. (doi:10.1002/chem.201406021)
179. Das, S. et al. 2015 Amending the Anisotropy Barrier and Luminescence Behavior of Heterometallic Trinuclear Linear [MIIlnIII][lnII=Gd, Tb; MII=Mg/Zn] Complexes by Change from Divalent Paramagnetic to Diamagnetic Metal Ions. Chemistry - A European Journal 21, 6449–6464. (doi:10.1002/chem.201406666)
180. Ren, M., Bao, S.-S., Wang, B.-W., Ferreira, R. A. S., Zheng, L.-M. & Carlos, L. D. 2015 Lanthanide phosphonates with pseudo-D5h local symmetry exhibiting magnetic and luminescence bifunctional properties. Inorganic Chemistry Frontiers 2, 558–566. (doi:10.1039/c4qi00242c)

181. Dong, Y., Yan, P., Zou, X. & Li, G. 2015 Azacyclo-auxiliary ligand-tuned SMMs of dibenzoylmethane Dy(iii) complexes. Inorganic Chemistry Frontiers 2, 827–836. (doi:10.1039/c5qi00079c)

182. Duan, F., Liu, L., Qiao, C. & Yang, H. 2015 Self-assembly and magnetic behavior of 2-aldehyde-8-hydroxyquinolinate-based lanthanide complex. Inorganic Chemistry Communications 55, 120–122. (doi:10.1016/j.inoche.2015.03.029)

183. Li, L., Liu, S., Zhang, Y., Xu, N. & Cheng, P. 2015 Two new mononuclear tri-spin lanthanide–nitronyl nitroxide radical complexes: Syntheses, structure and magnetic properties. Inorganic Chemistry Communications 57, 51–53. (doi:10.1016/j.inoche.2015.05.004)

184. Pointillart, F., Speed, S., Lefevre, B., Riobé, F., Golhen, S., Le Guennic, B., Cador, O., Maury, O. & Ouahab, L. 2015 Magnetic and Photo-Physical Properties of Lanthanide Dinuclear Complexes Involving the 4,5-Bis(2-Pyridyl-N-Oxidemethylthio)-4′,5′-Dicarboxylic Acid-Tetrathiafulvalene-, Dimethyl Ester Ligand. Inorganics 3, 554–572. (doi:10.3390/inorganics3040054)

185. Meihaus, K. R., Fieser, M. E., Corbey, J. F., Evans, W. J. & Long, J. R. 2015 Record High Single-Ion Magnetic Moments Through 4fn5d1 Electron Configurations in the Divalent Lanthanide Complexes [(C5H4SiMe3)3Ln]−. Journal of the American Chemical Society 137, 9855–9860. (doi:10.1021/jacs.5b03710)

186. Reckemmer, Y. et al. 2015 Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet. Journal of the American Chemical Society 137, 13114–13120. (doi:10.1021/jacs.5b08344)

187. Dong, Y., Yan, P., Zou, X., Liu, T. & Li, G. 2015 Exploiting single-molecule magnets of β-diketone dysprosium complexes with C3v symmetry: suppression of quantum tunneling of magnetization. Journal of Materials Chemistry C 3, 4407–4415. (doi:10.1039/c5tc00321k)

188. Gavey, E. L., Al Hareri, M., Regier, J., Carlos, L. D., Ferreira, R. A. S., Razavi, F. S., Rawson, J. M. & Pilkington, M. 2015 Placing a crown on DyIII – a dual property LnIII crown ether complex displaying optical properties and SMM behaviour. Journal of Materials Chemistry C 3, 7738–7747. (doi:10.1039/c5tc01264c)

189. Zhang, C.-X., Qiao, X.-M., Kong, Y.-K., Wang, B., Zhang, Y.-Y. & Wang, Q.-L. 2015 Two Lanthanide–nitronyl nitroxide radicals compounds with slow magnetic relaxation behavior. Journal of Molecular Structure 1081, 348–354. (doi:10.1016/j.molstruc.2014.10.051)

190. Coutinho, J. T. et al. 2015 Field-induced single-ion magnetic behaviour in a highly luminescent Er3+ complex. Materials Chemistry and Physics 160, 429–434. (doi:10.1016/j.matchemphys.2015.04.059)

191. Shan, P.-Y., Li, H.-F., Chen, P., Tian, Y.-M., Sun, W.-B. & Yan, P.-F. 2015 Synthesis, Crystal Structure, and Single-Molecule Magnetic Properties of a Salen-type Zn-Dy-Zn Complex. Zeitschrift für anorganische und allgemeine Chemie 641, 1119–1124. (doi:10.1002/zaac.201406010)

192. Le Roy, J. J., Gorelsky, S. I., Korobkov, I. & Murugesu, M. 2015 Slow Magnetic Relaxation in Uranium(III) and Neodymium(III) Cyclooctatetraenyl Complexes. Organometallics 34, 1415–1418. (doi:10.1021/om501214c)

193. Jung, J. et al. 2015 Analysis of the electrostatics in DyIII single-molecule magnets: the case study of Dy(Murex)3. Dalton Transactions 44, 18270–18275. (doi:10.1039/c5dt03345d)

194. Zhou, S. Y., Li, X., Li, T., Tian, L., Liu, Z. Y. & Wang, X. G. 2015 A series of heterospin complexes based on lanthanides and pyridine biradicals: synthesis, structure and magnetic properties. RSC Advances 5, 17131–17139. (doi:10.1039/c4ra15074k)

195. Soussi, K. et al. 2015 Magnetic and photo-physical investigations into DyIII and YbIII complexes involving tetrathiafulvalene ligand. Inorganic Chemistry Frontiers 2, 1105–1117. (doi:10.1039/c5qi00087d)

196. Kanetomo, T., Yoshii, S., Nojiri, H. & Ishida, T. 2015 Single-molecule magnet involving strong exchange coupling in terbium(iii) complex with 2′-bipyridin-6-yl tert-butyl nitroxide. Inorganic Chemistry Frontiers 2, 860–866. (doi:10.1039/c5qi00098j)

197. Wu, J., Zhao, L., Guo, M. & Tang, J. 2015 Constructing supramolecular grids: from 4f square to 3d–4f grid. Chemical Communications 51, 17317–17320. (doi:10.1039/c5cc06960b)

198. Wu, J., Zhao, L., Zhang, L., Li, X.-L., Guo, M., Powell, A. K. & Tang, J. 2016 Macroscopic Hexagonal Tubes of 3d–4f Metallocycles. Angewandte Chemie International Edition 55, 15574–15578. (doi:10.1002/anie.201609539)
199. Lan, Y., Magri, A., Fuhr, O. & Ruben, M. 2016 Phenalenyl-based mononuclear dysprosium complexes. Beilstein Journal of Nanotechnology 7, 995–1009. (doi:10.3762/bjnano.7.92)

200. Jiang, Z.-X., Liu, J.-L., Chen, Y.-C., Liu, J., Jia, J.-H. & Tong, M.-L. 2016 Lanthanoid single-ion magnets with the LnN10 coordination geometry. Chemical Communications 52, 6261–6264. (doi:10.1039/c6cc01695b)

201. Chorazy, S., Wang, J. & Ohkoshi, S. 2016 Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged DyIII(4-hydroxypyridine)–CoIII layered material. Chemical Communications 52, 10795–10798. (doi:10.1039/c6cc05337h)

202. Chorazy, S., Rams, M., Nakabayashi, K., Sieklucka, B. & Ohkoshi, S. 2016 White Light Emissive DyIII Single-Molecule Magnets Sensitized by Diamagnetic [CoIII(CN)6]3− Linkers. Chemistry - A European Journal 22, 7371–7375. (doi:10.1002/chem.201601244)

203. Holmberg, R. J., Korobkov, I. & Murugesu, M. 2016 Enchaining EDTA-chelated lanthanide molecular magnets into ordered 1D networks. RSC Advances 6, 72510–72518. (doi:10.1039/c6ra09831b)

204. Sun, O., Chen, P., Li, H.-F., Gao, T., Sun, W.-B., Li, G.-M. & Yan, P.-F. 2016 A series of dinuclear lanthanide(iii) complexes constructed from Schiff base and β-diketonate ligands: synthesis, structure, luminescence and SMM behavior. CrystEngComm 18, 4627–4635. (doi:10.1039/c6ce00354k)

205. Jia, Y.-Q., Feng, S.-S., Shen, M.-L. & Lu, L.-P. 2016 Construction of multifunctional materials based on Tb3+ and croconic acid, directed by K+cations: synthesis, structures, fluorescence, magnetic and ferroelectric behaviors. CrystEngComm 18, 5344–5352. (doi:10.1039/c6ce00308g)

206. Reis, S. G. et al. 2016 First coordination compounds based on a bis(imino nitroxide) biradical and 4f metal ions: synthesis, crystal structures and magnetic properties. Dalton Transactions 45, 2936–2944. (doi:10.1039/c5dt04469c)

207. Li, H., Chen, P., Sun, W., Zhang, L. & Yan, P. 2016 Solvent triggered structural diversity of triple-stranded helicates: single molecular magnets. Dalton Transactions 45, 3175–3181. (doi:10.1039/c5dt04608d)

208. Goswami, S., Biswas, S., Tomar, K. & Konar, S. 2016 Tuning the Magnetoluminescence Behavior of Lanthanide Complexes Having Sphenocorona and Cubic Coordination Geometries. European Journal of Inorganic Chemistry 2016, 2774–2782. (doi:10.1002/ejic.201600152)

209. Klementyeva, S. V., Afonin, M. Y., Bogomyakov, A. S., Gamer, M. T., Roesky, P. W. & Konchenko, S. N. 2016 Mono- and Dinuclear Rare-Earth Chlorides Ligated by a Mesityl-Substituted β-Diketiminate. European Journal of Inorganic Chemistry 2016, 3666–3672. (doi:10.1002/ejic.201600488)

210. Long, J. et al. 2016 Study of the influence of magnetic dilution over relaxation processes in a Zn/Dy single-ion magnet by correlation between luminescence and magnetism. RSC Advances 6, 108810–108818. (doi:10.1039/c6ra24115h)

211. Huang, W. et al. 2016 Metallogrid Single-Molecule Magnet: Solvent-Induced Nuclearity Transformation and Magnetic Hysteresis at 16 K. Inorganic Chemistry 55, 5476–5484. (doi:10.1021/acs.inorgchem.6b00500)

212. Wu, J., Zhao, L., Zhang, L., Li, X.-L., Guo, M. & Tang, J. 2016 Metallosupramolecular Coordination Complexes: The Design of Heterometallic 3d–4f Gridlike Structures. Inorganic Chemistry 55, 5514–5519. (doi:10.1021/acs.inorgchem.6b00529)
219. Horii, Y., Katoh, K., Cosquer, G., Breedlove, B. K. & Yamashita, M. 2016 Weak DyIII–DyIII Interactions in DyIII–Phthalocyaninato Multiple-Decker Single-Molecule Magnets Effectively Suppress Magnetic Relaxation. Inorganic Chemistry 55, 11782–11790. (doi:10.1021/acs.inorgchem.6b01870)

220. Dickie, C. M. & Nippe, M. 2016 Magnetization dynamics of a heterometallic Dy-isocarbonyl complex. Inorganic Chemistry Frontiers 3, 97–103. (doi:10.1039/c5qi00224a)

221. Gao, Y., Wang, Y., Hu, P., Yang, M., Ma, Y., Wang, Q., Li, L. & Liao, D. 2013 A novel nitronyl nitroxide radical and its Gd(III), Tb(III), Dy(III) complexes: Synthesis, structure and magnetic properties. Inorganic Chemistry Communications 27, 31–35. (doi:10.1016/j.inoche.2012.10.006)

222. Zhang, J.-W., Jiang, Y., Xie, Y.-R., Chu, J. & Liu, B.-Q. 2016 Syntheses, structures, photoluminescence, and magnetism of a series of discrete heavy lanthanide complexes based on a tricarboxylic acid. Inorganica Chimica Acta 453, 257–262. (doi:10.1016/j.ica.2016.08.020)

223. Tang, X., Ye, W., Hua, J., Chen, M., Cheng, H., Ma, Y. & Yuan, R. 2016 Four CoII-GdIII mixed-metal phosphonate clusters as molecular magnetic refrigerants. Inorganica Chimica Acta 453, 142–148. (doi:10.1016/j.ica.2016.08.021)

224. Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E., Torralba, M. C. & González, V. 2016 Water inclusion mediated structural diversity and the role of H-bonds in molecular assemblies of manganese(III) bicompartimental Schiff-base complexes. Inorganica Chimica Acta 453, 169–178. (doi:10.1016/j.ica.2016.08.022)

225. Boadi, N. O., McNaughter, P. D., Helliwell, M., Malik, M. A., Awudza, J. A. M. & O’Brien, P. 2016 The deposition of PbS and PbSe thin films from lead dichalcogenoimidophosphinates by AACVD. Inorganica Chimica Acta 453, 439–442. (doi:10.1016/j.ica.2016.08.023)

226. Liu, D., Wu, J., Yang, Z., Kang, J., Gong, M. & Lü, X. 2016 Novel bincular manganese(III), cobalt(III) and chromium(III) complexes for the alternating ring-opening copolymerization of cyclohexene oxide and maleic anhydride. Inorganica Chimica Acta 453, 222–229. (doi:10.1016/j.ica.2016.08.024)

227. Guseva, E. V. & Buslaeva, T. M. 2017 Complexes of rhodium and platinum with 4,6-dinitro-5,7-dihydroxybenzo[1,2-c][1,2,5]oxadiazole 1-oxide. Inorganica Chimica Acta 455, 455–464. (doi:10.1016/j.ica.2016.08.025)

228. Ma, P., Hu, F., Wan, R., Huo, Y., Zhang, D., Niu, J. & Wang, J. 2016 Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. Journal of Materials Chemistry C 4, 5424–5433. (doi:10.1039/c6tc00960c)

229. Koroteev, P. S., Dobrokhotova, Z. V., Ilyukhin, A. B., Efimov, N. N. & Novotortsev, V. M. 2016 Synthesis, structure, and magnetic properties of lanthanide ferrocenoylacetonates with nitrate and 2,2’-bipyridine ligands. Journal of Coordination Chemistry 69, 2723–2735. (doi:10.1080/00958972.2016.1217409)

230. Liu, J. et al. 2016 A Stable Pentagonal Bipyrimal DyIII Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. Journal of the American Chemical Society 138, 5441–5450. (doi:10.1021/jacs.6b02638)

231. Chen, Y.-C. et al. 2016 Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyrimal DyIII Single-Ion Magnets. Journal of the American Chemical Society 138, 2829–2837. (doi:10.1021/jacs.5b13584)

232. Amjad, A., Figuerola, A., Caneschi, A. & Sorace, L. 2016 Multiple Magnetization Reversal Channels Observed in a 3d-4f Single Molecule Magnet. Magnetochemistry 2, 27. (doi:10.3390/magnetochemistry2020027)

233. Mondal, A., Parmar, V. & Konar, S. 2016 Modulating the Slow Relaxation Dynamics of Binuclear Dysprosium(III) Complexes through Coordination Geometry. Magnetochemistry 2, 35. (doi:10.3390/magnetochemistry2030035)

234. Mamontova, E., Long, J., Ferreira, R., Botas, A., Luneau, D., Guari, Y., Carlos, L. & Larionova, J. 2016 Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry 2, 41. (doi:10.3390/magnetochemistry2040041)

235. Wada, H., Ooka, S., Iwasawa, D., Hasegawa, M. & Kajiwara, T. 2016 Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand. Magnetochemistry 2, 43. (doi:10.3390/magnetochemistry2040043)

236. Sun, H., Liu, M. & Zhang, B. 2016 Two dysprosium complexes based on 8-hydroxyquinoline Schiff base: Structures, luminescence properties and single-molecule magnets behaviors. Inorganica Chimica Acta 453, 681–686. (doi:10.1016/j.ica.2016.09.026)

237. Hamada, D. et al. 2016 Luminescent DyIII single ion magnets with same N6O3 donor atoms but different donor atom arrangements, ‘fac’-[DyIII(HLDL-ala)3]·8H2O and ‘mer’-[DyIII(HLDL-phe)3]·7H2O. Polyhedron 109, 120–128. (doi:10.1016/j.poly.2016.01.048)
238. Wang, S., Ma, R., Chen, Z., Li, Y., Cao, T., Zhou, C. & Bai, J. 2016 Solvent- and metal-directed lanthanide-organic frameworks based on pamoic acid: observation of slow magnetization relaxation, magnetocaloric effect and luminescent sensing. Science China Chemistry 59, 948–958. (doi:10.1007/s11426-015-0537-6)

239. Janzen, D. E., Juchum, M., Presow, R. S., Ronson, T. K., Mohr, W., Clérac, R., Feltham, H. L. C. & Brooker, S. 2016 Trigonal (-3) symmetry octahedral lanthanide(III) complexes of zwitterionic tripodal ligands: luminescence and magnetism. Supramolecular Chemistry 28, 125–140. (doi:10.1080/10610278.2015.1102264)

240. Sun, L., Zhang, S., Qiao, C., Chen, S., Yin, B., Wang, W., Wei, Q., Xie, G. & Gao, S. 2016 Fine-Tuning of the Coordination Environment To Regulate the Magnetic Behavior in Solvent/Anion-Dependent DyIII Compounds: Synthesis, Structure, Magnetism, and Ab Initio Calculations. Inorganic Chemistry 55, 10587–10596. (doi:10.1021/acs.inorgchem.6b01803)

241. Li, Y., Zhang, C., Yu, J.-W., Yang, E.-C. & Zhao, X.-J. 2016 Transition metal ion-directed magnetic behaviors observed in an isostructural heterobinuclear system. Inorganic Chemistry Acta 445, 110–116. (doi:10.1016/j.ica.2016.02.035)

242. Meng, Y.-S., Wang, C.-H., Zhang, Y.-Q., Leng, X.-B., Wang, B.-W., Chen, Y.-F. & Gao, S. 2016 (Boratabenzene)(cyclooctatetraenyl) lanthanide complexes: a new type of organometallic single-ion magnet. Inorganic Chemistry Frontiers 3, 828–835. (doi:10.1039/c6qi00028b)

243. Gupta, S. K., Rajeshkumar, T., Rajaraman, G. & Murugavel, R. 2016 An unprecedented zero field neodymium(iii) single-ion magnet based on a phosphonic diamide. Chemical Communications 52, 7168–7171. (doi:10.1039/c6cc03066a)

244. Ou-Yang, J.-K. et al. 2016 Improved slow magnetic relaxation in optically pure helicene-based DyIII single molecule magnets. Chemical Communications 52, 14474–14477. (doi:10.1039/c6cc08638a)

245. Ding, Y.-S., Han, T., Hu, Y.-Q., Xu, M., Yang, S. & Zheng, Y.-Z. 2016 Syntheses, structures and magnetic properties of a series of mono- and di-nuclear dysprosium(iii)-crown-ether complexes: effects of a weak ligand-field and flexible cyclic coordination modes. Inorganic Chemistry Frontiers 3, 798–807. (doi:10.1039/c5qi00308c)

246. Meng, Y.-S., Qiao, Y.-S., Zhang, Y.-Q., Jiang, S.-D., Meng, Z.-S., Wang, B.-W., Wang, Z.-M. & Gao, S. 2016 Can Non-Kramers TmIII Mononuclear Molecules be Single-Molecule Magnets (SMMs)? Chemistry - A European Journal 22, 4704–4708. (doi:10.1002/chem.201600023)

247. Lucaccini, E., Briganti, M., Perfetti, M., Vendier, L., Costes, J.-P., Totti, F., Sessoli, R. & Sorace, L. 2016 Relaxation Dynamics and Magnetic Anisotropy in a Low-Symmetry DyIIIComplex. Chemistry - A European Journal 22, 5552–5562. (doi:10.1002/chem.201505211)

248. Amjad, A., Madalan, A. M., Andruh, M., Caneschi, A. & Sorace, L. 2016 Slow Relaxation of Magnetization in an Isostructural Series of Zinc-Lanthanide Complexes: An Integrated EPR and AC Susceptibility Study. Chemistry - A European Journal 22, 12849–12858. (doi:10.1002/chem.201601996)

249. Baldoví, J. J., Duan, Y., Morales, R., Gaita-Ariño, A., Ruiz, E. & Coronado, E. 2016 Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models. Chemistry - A European Journal 22, 13532–13539. (doi:10.1002/chem.201601741)

250. Jiménez, J.-R., Díaz-Ortega, I. F., Ruiz, E., Aravena, D., Pope, S. J. A., Colacio, E. & Herrera, J. M. 2016 Lanthanide Tetrazolate Complexes Combining Single-Molecule Magnet and Luminescence Properties: The Effect of the Replacement of Tetrazolate N3by β-Diketone Ligands on the Anisotropy Energy Barrier. Chemistry - A European Journal 22, 14548–14559. (doi:10.1002/chem.201601457)

251. Selvanathan, P. et al. 2016 Highly Axial Magnetic Anisotropy in a N3O5Dysprosium(III) Coordination Environment Generated by a Mercocyanine Ligand. Chemistry - A European Journal 22, 15222–15226. (doi:10.1002/chem.201603439)

252. Gregson, M. et al. 2016 A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. Chemical Science 7, 155–165. (doi:10.1039/c5sc03111g)

253. Sun, W.-B., Yan, P.-F., Jiang, S.-D., Wang, B.-W., Zhang, T.-Q., Li, H.-F., Chen, P., Wang, Z.-M. & Gao, S. 2016 High symmetry or low symmetry, that is the question – high performance Dy(iii) single-ion magnets by electrostatic potential design. Chemical Science 7, 684–691. (doi:10.1039/c5sc02986d)

254. Zhang, P., Jung, J., Zhang, L., Tang, J. & Le Guennic, B. 2016 Elucidating the Magnetic Anisotropy and Relaxation Dynamics of Low-Coordinate Lanthanide Compounds. Inorganic Chemistry 55, 1905–1911. (doi:10.1021/acs.inorgchem.5b02792)

255. Wu, J., Jung, J., Zhang, P., Zhang, H., Tang, J. & Le Guennic, B. 2016 Cis-trans isomerism modulates the magnetic relaxation of dysprosium single-molecule magnets. Chemical Science 7, 3632–3639. (doi:10.1039/c5sc04510j)
256. Bi, Y. et al. 2016 Thermostability and photoluminescence of Dy(iii) single-molecule magnets under a magnetic field. Chem. Sci. 7, 5020–5031. (doi:10.1039/c6sc01157h)
257. Gupta, S. K., Rajeshkumar, T., Rajaraman, G. & Murugavel, R. 2016 An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature. Chemical Science 7, 5181–5191. (doi:10.1039/c6sc00279j)
258. Karbowiak, M., Rudowicz, C., Nakamura, T., Murakami, R. & Ishida, T. 2016 Spectroscopic and magnetic studies of erbium(III)-TEMPO complex as a potential single-molecule magnet: Interplay of the crystal-field and exchange coupling effects. Chemical Physics Letters 662, 163–168. (doi:10.1016/j.cplett.2016.09.033)
259. Feng, M., Speed, S., Pointillart, F., Le Feuvre, B., Le Guennic, B., Golhen, S., Cador, O. & Ouahab, L. 2015 Dysprosium- and Ytterbium-Based Complexes Involving Tetrathiafulvalene Derivatives Functionalised with 2,2’-Bipyridine or 2,6-Di(pyrazol-1-yl)-4-pyridine. European Journal of Inorganic Chemistry 2016, 2039–2050. (doi:10.1002/ejic.201501145)
260. Lim, K. S., Baldoví, J. J., Lee, W. R., Song, J. H., Yoon, S. W., Suh, B. J., Coronado, E., Gaita-Ariño, A. & Hong, C. S. 2016 Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density. Inorganic Chemistry 55, 5398–5404. (doi:10.1021/acs.inorgchem.6b00410)
261. Li, C., Sun, J., Yang, M., Sun, G., Guo, J., Ma, Y. & Li, L. 2016 From Monomeric Species to One-Dimensional Chain: Enhancing Slow Magnetic Relaxation through Coupling Mononuclear Fragments in Ln-rad System. Crystal Growth & Design 16, 7155–7162. (doi:10.1021/cg6b01369)
262. Gao, C., Yang, Q., Wang, B.-W., Wang, Z.-M. & Gao, S. 2016 Evaporable lanthanide single-ion magnet. CrystEngComm 18, 4165–4171. (doi:10.1039/c5ce02571k)
263. Ren, M., Xu, Z.-L., Bao, S.-S., Wang, T.-T., Zheng, Z.-H., Ferreira, R. A. S., Zheng, L.-M. & Carlos, L. D. 2016 Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties. Dalton Transactions 45, 2974–2982. (doi:10.1039/c5dt03897a)
264. Zhang, S. et al. 2016 Magnetization Dynamics Changes of Dysprosium(III) Single-Ion Magnets Associated with Guest Molecules. Inorganic Chemistry 55, 3865–3871. (doi:10.1021/acs.inorgchem.5b02971)
265. Zhang, S. et al. 2016 Dysprosium(iii) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands. Dalton Transactions 45, 5310–5320. (doi:10.1039/c6dt00219f)
266. Koroteev, P. S., Dobrokhotova, Z. V., Ilyukhin, A. B., Efimov, N. N., Rouzières, M., Kiskin, M. A., Clérac, R. & Novotortsev, V. M. 2016 Synthesis, structure, and physical properties of new rare earth ferrocenoylacetonates. Dalton Transactions 45, 6405–6417. (doi:10.1039/c5dt04948b)
267. Liu, S.-S., Lang, K., Zhang, Y.-Q., Yang, Q., Wang, B.-W. & Gao, S. 2016 A distinct magnetic anisotropy enhancement in mononuclear dysprosium–sulfur complexes by controlling the Dy-ligand bond length. Dalton Transactions 45, 8149–8153. (doi:10.1039/c6dt01089b)
268. Dong, Y., Yan, P., Zou, X., Yao, X., Hou, G. & Li, G. 2016 Auxiliary ligand field dominated single-molecule magnets of a series of indole-derivative β-diketone mononuclear Dy(iii) complexes. Dalton Transactions 45, 9148–9157. (doi:10.1039/c6dt00442c)
269. Holmberg, R. J., Polovkova, M. A., Martynov, A. G., Gorbunova, Y. G. & Murugesu, M. 2016 Impact of the coordination environment on the magnetic properties of single-molecule magnets based on homo- and hetero-dinuclear terbium(iii) heteroleptic tris(crownphthalocyaninate). Dalton Transactions 45, 9320–9327. (doi:10.1039/c6dt00777e)
270. Antal, P., Drahoňa, B., Herchel, R. & Trávníček, Z. 2016 Muffin-like lanthanide complexes with an N502-donor macrocyclic ligand showing field-induced single-molecule magnet behaviour. Dalton Transactions 45, 15114–15121. (doi:10.1039/c6dt02537d)
271. Gao, R.-C., Guo, F.-S., Bai, N.-N., Wu, Y.-L., Yang, F., Liang, J.-Y., Li, Z.-J. & Wang, Y.-Y. 2016 Two 3D Isosstructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr2O72–. Inorganic Chemistry 55, 11323–11330. (doi:10.1021/acs.inorgchem.6b01899)
272. Mihalcea, I. et al. 2016 Spin Helicity in Chiral Lanthanide Chains. Inorganic Chemistry 55, 10068–10074. (doi:10.1021/acs.inorgchem.6b01010)
273. Yao, B., Gu, B., Su, M., Li, G., Ma, Y., Li, L., Wang, Q., Cheng, P. & Zhang, X. 2017 Single-molecule magnet behavior in a mononuclear dysprosium(iii) complex with 1-methylimidazole. RSC Advances 7, 2766–2772. (doi:10.1039/c6ra25038f)
274. Wada, H., Ooka, S., Yamamura, T. & Kajiwara, T. 2016 Light Lanthanide Complexes with Crown Ether and Its Aza Derivative Which Show Slow Magnetic Relaxation Behaviors. Inorganic Chemistry 56, 147–155. (doi:10.1021/acs.inorgchem.6b01764)

275. Zabala-Lekuona, A., Cepeda, J., Oyarzabal, I., Rodríguez-Diéguez, A., García, J. A., Seco, J. M. & Colacio, E. 2017 Rational design of triple-bridged dinuclear ZnIILnIII-based complexes: a structural, magnetic, and luminescence study. CrystEngComm 19, 256–264. (doi:10.1039/c6ce02240e)

276. Lim, K. S., Kang, D. W., Song, J. H., Lee, H. G., Yang, M. & Hong, C. S. 2017 Slow relaxation dynamics of a mononuclear Er(iii) complex surrounded by a ligand environment with anisotropic charge density. Dalton Transactions 46, 739–744. (doi:10.1039/c6dt04326g)

277. Wen, H.-R., Dong, P.-P., Liu, S.-J., Liao, J.-S., Liang, F.-Y. & Liu, C.-M. 2017 3d–4f heterometallic trinuclear complexes derived from amine-phenol tripod ligands exhibiting magnetic and luminescent properties. Dalton Transactions 46, 1153–1162. (doi:10.1039/c6dt04027f)

278. Gao, F., Yang, F.-L., Feng, X., Xu, H., Sun, W., Liu, H. & Li, X.-L. 2017 Half-sandwich lanthanide crown ether complexes with the slow relaxation of magnetization and photoluminescence behaviors. Dalton Transactions 46, 1317–1323. (doi:10.1039/c6dt04353d)

279. Harriman, K. L. M., Brosmer, J. L., Ungur, L., Diaconescu, P. L. & Murugesu, M. 2017 Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated DyIII Single-Molecule Magnets. Journal of the American Chemical Society 139, 1420–1423. (doi:10.1021/jacs.6b12374)

280. Dolinar, B. S., Gómez-Coca, S., Alexandropoulos, D. I. & Dunbar, K. R. 2017 An air stable radical-bridged dysprosium single molecule magnet and its neutral counterpart: redox switching of magnetic relaxation dynamics. Chemical Communications 53, 2283–2286. (doi:10.1039/c6cc09824j)

281. Li, X., Li, T., Shi, X. J. & Tian, L. 2017 A family of 2p–4f complexes based on indazole radical: Syntheses, structures and magnetic properties. Inorganica Chimica Acta 456, 216–223. (doi:10.1016/j.ica.2016.11.002)

282. Liu, L., Li, Y., Meng, S.-X. & Zhang, Y.-P. 2017 A dysprosium(III) complex based on Schiff-base ligand exhibiting two magnetic relaxation processes. Inorganica Chimica Acta 457, 1–6. (doi:10.1016/j.ica.2016.12.001)

283. Fernandez-Garcia, G. et al. 2016 Slow Magnetic Relaxation in Chiral Helicene-Based Coordination Complex of Dysprosium. Magazineehemistry 3, 2. (doi:10.3390/magnochemistry3010002)

284. Cen, P.-P., Zhang, S., Liu, X.-Y., Song, W.-M., Zhang, Y.-Q., Xie, G. & Chen, S.-P. 2017 Electrostatic Potential Determined Magnetic Dynamics Observed in Two Mononuclear β-Diketone Dysprosium(III) Single-Molecule Magnets. Inorganic Chemistry 56, 3644–3656. (doi:10.1021/acs.inorgchem.7b00057)

285. Amjad, A., Figueroa, A. & Sorace, L. 2017 Tm(iii) complexes undergoing slow relaxation of magnetization: exchange coupling and aging effects. Dalton Transactions 46, 3848–3856. (doi:10.1039/c6dt04691f)

286. Speed, S. et al. 2017 Lanthanide complexes involving multichelating TTF-based ligands. Inorganic Chemistry Frontiers 4, 604–617. (doi:10.1039/c6q00546b)

287. Ma, P., Hu, F., Huo, Y., Zhang, D., Zhang, C., Niu, J. & Wang, J. 2017 Magnetoluminescent Bifunctional Dysprosium-Based Phosphotungstates with Synthesis and Correlations between Structures and Properties. Crystal Growth & Design 17, 1947–1956. (doi:10.1021/acs.cgd.6b01895)

288. Harriman, K. L. M., Korobkov, I. & Murugesu, M. 2017 From a Piano Stool to a Sandwich: A Stepwise Route for Improving the Slow Magnetic Relaxation Properties of Thulium. Organometallics 36, 4515–4518. (doi:10.1021/acs.organomet.7b00449)

289. Upadhyay, A. et al. 2017 Role of the Diamagnetic Zinc(II) Ion in Determining the Electronic Structure of Lanthanide Single-Ion Magnets. Chemistry - A European Journal 23, 4903–4916. (doi:10.1002/chem.201700399)

290. Lucaccini, E., Baldoví, J. J., Chelazzi, L., Barra, A.-L., Grepión, F., Costes, J.-P. & Sorace, L. 2017 Electronic Structure and Magnetic Anisotropy in Lanthanoid Single-Ion Magnets with C3 Symmetry: The Ln(trenovan) Series. Inorganic Chemistry 56, 4728–4738. (doi:10.1021/acs.inorgchem.7b00413)

291. Chen, Y.-C. et al. 2017 Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet. Chemistry - A European Journal 23, 5708–5715. (doi:10.1002/chem.201606029)

292. Wen, H.-R., Liang, F.-Y., Zou, Z.-G., Liu, S.-J., Liao, J.-S. & Chen, J.-L. 2017 Mononuclear Dy(iii) complex based on bipyridyl-tetratozoate ligand with field-induced single-ion magnet behavior and luminescent properties. Inorganic Chemistry Communications 79, 41–45. (doi:10.1016/j.inoche.2017.03.016)
293. Boča, R., Stolárová, M., Falvello, L. R., Tomás, M., Titiš, J. & Černák, J. 2017 Slow magnetic relaxations in a ladder-type Dy(III) complex and its dinuclear analogue. Dalton Transactions 46, 5344–5351. (doi:10.1039/c7dt00069c)

294. Fondo, M., Corredoira-Vázquez, J., García-Deibe, A. M., Sanmartín-Matalobos, J., Herrera, J. M. & Colacio, E. 2017 Designing Ligands to Isolate ZnLn and Zn2Ln Complexes: Field-Induced Single-Ion Magnet Behavior of the ZnDy, Zn2Dy, and Zn2Er Analogues. Inorganic Chemistry 56, 5646–5656. (doi:10.1021/acs.inorgchem.7b00165)

295. Yamabayashi, T., Katoh, K., Breedlove, B. & Yamashita, M. 2017 Molecular Orientation of a Terbium(III)-Phthalocyaninato Double-Decker Complex for Effective Suppression of Quantum Tunneling of the Magnetization. Molecules 22, 999. (doi:10.3390/molecules22060999)

296. Goodwin, C. A. P., Reta, D., Ortu, F., Chilton, N. F. & Mills, D. P. 2017 Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations. Journal of the American Chemical Society 139, 18714–18724. (doi:10.1021/jacs.7b11535)

297. Kanetomo, T., Yasui, M. & Ishida, T. 2017 Exchange-coupled terbium-radical complex Tb-phNO showing slow reversal of magnetization. Polyhedron 136, 30–34. (doi:10.1016/j.poly.2017.02.031)

298. Yue, Y., Hou, G., Yao, X. & Li, G. 2017 Single molecular magnet of lanthanide coordination polymer with 1D helical-like chain based on flexible Salen-type ligand. Polyhedron 129, 157–163. (doi:10.1016/j.poly.2017.03.040)

299. Latendresse, T. P., Bhuvanesh, N. S. & Nippe, M. 2017 Slow Magnetic Relaxation in a Lanthanide-[1]Metalloacenophane Complex. Journal of the American Chemical Society 139, 8058–8061. (doi:10.1021/jacs.7b01499)

300. Ishitada, T. 2017 Spin-Parity Behavior in the Exchange-Coupled Lanthanoid-Nitroxide Molecular Magnets. IOP Conference Series: Materials Science and Engineering 202, 012001. (doi:10.1088/1757-899x/202/1/012001)

301. Liu, S.-S., Meng, Y.-S., Zhang, Y.-Q., Meng, Z.-S., Lang, K., Zhu, Z.-L., Shang, C.-F., Wang, B.-W. & Gao, S. 2017 A Six-Coordinate Dysprosium Single-Ion Magnet with Trigonal-Prismatic Geometry. Inorganic Chemistry 56, 7320–7323. (doi:10.1021/acs.inorgchem.7b00952)

302. Upadhyay, A., Vignesh, K. R., Das, C., Singh, S. K., Rajaraman, G. & Shanmugam, M. 2017 Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies. Inorganic Chemistry 56, 14260–14276. (doi:10.1021/acs.inorgchem.7b02357)

303. Demir, S., Boshart, M. D., Corbey, J. F., Woen, D. H., Gonzalez, M. I., Ziller, J. W., Meilhaus, K. R., Long, J. R. & Evans, W. J. 2017 Slow Magnetic Relaxation in a Dysprosium Ammonia Metallocene Complex. Inorganic Chemistry 56, 15049–15056. (doi:10.1021/acs.inorgchem.7b02390)

304. Gao, X., Li, H., Chen, P., Sun, W. & Yan, P. 2017 A series of triple-stranded lanthanide[III] helicates: Syntheses, structures and single molecular magnets. Polyhedron 126, 1–7. (doi:10.1016/j.poly.2017.01.011)

305. Jin, Z., Bai, J., Wei, T., Li, F., Song, C., Luo, X. & Xu, L. 2017 A new series of mononuclear lanthanide single molecule magnets based on sandwich-type germanomolybdates [Ln(GeMo11O39)2]13− (Ln = ErIII, GdIII, DyIII or TbIII). New Journal of Chemistry 41, 13490–13494. (doi:10.1039/c7nj02104f)

306. Biswas, S., Bejoyomohandas, K. S., Das, S., Kalita, P., Reddy, M. L. P., Oyarzabal, I., Colacio, E. & Chandrasekhar, V. 2017 Mononuclear Lanthanide Complexes: Energy-Barrier Enhancement by Ligand Substitution in Field-Induced DyIII SIMs. Inorganic Chemistry 56, 7985–7997. (doi:10.1021/acs.inorgchem.7b00689)

307. Lim, K. S. et al. 2017 Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets. Inorganic Chemistry 56, 4911–4917. (doi:10.1021/acs.inorgchem.6b03118)

308. Li, J., Yuan, C., Yang, L., Kong, M., Zhang, J., Ge, J.-Y., Zhang, Y.-Q. & Song, Y. 2017 Magnetic Anisotropy along a Series of Lanthanide Polyoxometalates with Pentagonal Bipyramidal Symmetry. Inorganic Chemistry 56, 7835–7841. (doi:10.1021/acs.inorgchem.7b00577)

309. Chen, Y. et al. 2017 A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. Inorganic Chemistry 56, 13889–13896. (doi:10.1021/acs.inorgchem.7b02010)

310. Petrov, S. P., Dobrokhotova, Z. V., Ilyukhin, A. B., Efimov, N. N., Gavrikov, A. V., Vasiliev, P. N. & Novotortsev, V. M. 2017 Mononuclear Dysprosium Thiocyanate Complexes with 2,2’-Bipyridine and 1,10-Phenanthroline: Synthesis, Crystal Structures, SIM Behavior, and Solid-Phase Transformations. European Journal of Inorganic Chemistry 2017, 3561–3569. (doi:10.1002/ejic.201700537)
311. Liang, Z., Damjanović, M., Kamila, M., Cosquer, G., Breedlove, B. K., Enders, M. & Yamashita, M. 2017 Proton Control of the Lanthanoid Single-Ion Magnet Behavior of a Double-Decker Complex with an Indolenine-Substituted Annulene Ligand. Inorganic Chemistry 56, 6512–6521. (doi:10.1021/acs.inorgchem.7b00626)
312. Marinho, M. V. et al. 2017 Photoluminescent and Slow Magnetic Relaxation Studies on Lanthanide(III)-2,5-pyrazinedicarboxylate Frameworks. Inorganic Chemistry 56, 2108–2123. (doi:10.1021/acs.inorgchem.6b02774)
313. Cen, P.-P., Zhang, S., Liu, X.-Y., Song, W.-M., Zhang, Y.-Q., Xie, G. & Chen, S.-P. 2017 Electrostatic Potential Determined Magnetic Dynamics Observed in Two Mononuclear β-Diketone Dysprosium(III) Single-Molecule Magnets. Inorganic Chemistry 56, 3644–3656. (doi:10.1021/acs.inorgchem.7b00057)
314. Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. 2017 Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442. (doi:10.1038/nature23447)
315. Wang, X., Liu, Y., Jin, M., Wu, Y., Chen, L. & Zhao, J.-W. 2017 Two Families of Rare-Earth-Substituted Dawson-type Monomeric and Dimeric Phosphotungstates Functionalized by Carboxylic Ligands. Crystal Growth & Design 17, 5295–5308. (doi:10.1021/acs.cgd.7b00823)
316. Hu, P., Xiao, F.-P., Li, Y., Cao, J.-F., Chen, Z.-S., Zhu, L.-L. & Huang, W.-P. 2017 One mononuclear single-molecule magnet derived from Dy(III) and dmbpy (dmbpy = 4,4′-dimethyl-2,2′-dipyridyl). Inorganic Chemistry Communications 84, 207–211. (doi:10.1016/j.inoche.2017.07.015)
317. Chen, Y. et al. 2017 Novel bis(phthalocyaninato) rare earth complexes with the bulky and strong electron-donating dibutylamino groups: synthesis, spectroscopy, and SMM properties. Inorganic Chemistry Frontiers 4, 1465–1471. (doi:10.1039/c7qi00332c)
318. Dong, Y., Li, W., Zou, X., Hou, G. & Li, G. 2017 Electron-donating effect dominated 5,6-dimethoxy-2-(2,2,2-trifluoroethyl)-1-indone dysprosium SMM. Inorganica Chimica Acta 466, 599–603. (doi:10.1016/j.ica.2017.06.019)
319. Lorenz, V. et al. 2017 Lanthanide(III) Sandwich and Half-Sandwich Complexes with Bulky Cyclooctatetraenyl Ligands: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry 2017, 4840–4849. (doi:10.1002/ejic.201700878)
320. Guo, F.-S., Day, B. M., Chen, Y.-C., Tong, M.-L., Mansikkamäki, A. & Layfield, R. A. 2017 A Dysprosium Metalallocene Single-Molecule Magnet Functioning at the Axial Limit. Angewandte Chemie International Edition 56, 11445–11449. (doi:10.1002/anie.201705426)
321. Wu, J., Cador, O., Li, X.-L., Zhao, L., Le Guennic, B. & Tang, J. 2017 Axial Ligand Field in D4d Coordination Symmetry: Magnetic Relaxation of Dy SMMs Perturbed by Counteranions. Inorganic Chemistry 56, 11211–11219. (doi:10.1021/acs.inorgchem.7b01582)
322. Speed, S. et al. 2017 Photophysical and Magnetic Properties in Complexes Containing 3d/4f Elements and Chiral Phenanthroline-Based Helicate-Like Ligands. European Journal of Inorganic Chemistry 2017, 2100–2111. (doi:10.1002/ejic.201610501)
323. Skvortsov, G. G., Tolpygin, A. O., Fukin, G. K., Long, J., Larionova, J., Cherkasov, A. V. & Trifonov, A. A. 2017 Rare-Earth Complexes Coordinated by ansa-Bis(amidinate) Ligands with m-Phenylene, 2,6-Pyridinediyl, and SiMe2 Linkers. European Journal of Inorganic Chemistry 2017, 4275–4284. (doi:10.1002/ejic.201700639)
324. Craze, A. R. et al. 2017 Synthesis and characterisation of new tripodal lanthanide complexes and investigation of their optical and magnetic properties. Dalton Transactions 46, 12177–12184. (doi:10.1039/c7dt02556d)
325. Chorazy, S., Rams, M., Wang, J., Siekucka, B. & Ohkoshi, S. 2017 Octahedral Yb(iii) complexes embedded in [CoII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Transactions 46, 13668–13672. (doi:10.1039/c7dt02239e)
326. Wu, D.-Q., Shao, D., Wei, X.-Q., Shen, F.-X., Shi, L., Zhang, Y.-Q. & Wang, X.-Y. 2017 Single-ion magnetism in seven-coordinate YbIII complexes with distorted D5h coordination geometry. Dalton Transactions 46, 12884–12892. (doi:10.1039/c7dt02461d)
327. Liu, M.-J., Yuan, J., Zhang, Y.-Q., Sun, H.-L., Liu, C.-M. & Kou, H.-Z. 2017 Chiral six-coordinate Dy(iii) and Tb(iii) complexes of an achiral ligand: structure, fluorescence, and magnetism. Dalton Transactions 46, 13035–13042. (doi:10.1039/c7dt02409f)
328. Fondo, M., Corredoira-Vázquez, J., Herrera-Lanzós, A., García-Deibe, A. M., Sanmartín-Matalobos, J., Herrera, J. M., Colacio, E. & Nuñez, C. 2017 Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet. Dalton Transactions 46, 17000–17009. (doi:10.1039/c7dt03438e)

329. Moilanen, J. O., Mansikkamäki, A., Lahtinen, M., Guo, F.-S., Kalenius, E., Layfield, R. A. & Chibotaru, L. F. 2017 Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes. Dalton Trans. 46, 13582–13589. (doi:10.1039/c7dt02565c)

330. Dunstan, M. A., Roussef, E., Boulon, M.-E., Gable, R. W., Sorce, L. & Boskovic, C. 2017 Slow magnetisation relaxation in tetraoxoleone-bridged rare earth complexes. Dalton Trans. 46, 13756–13767. (doi:10.1039/c7dt02932b)

331. Chen, L., Zhou, J., Yuan, A. & Song, Y. 2017 Slow magnetic relaxation in luminescent mononuclear dysprosium(iii) and erbium(iii) pentanitrate complexes with the same LnO10 coordination geometry. Dalton Transactions 46, 15812–15818. (doi:10.1039/c7dt02905e)

332. Vonci, M. et al. 2016 Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study. Inorganic Chemistry 56, 378–394. (doi:10.1021/acs.inorgchem.6b02312)

333. Griffiths, K., Mayans, J., Shipman, M. A., Tizzard, G. J., Coles, S. J., Blight, B. A., Escuer, A. & Kostakis, G. E. 2017 Four New Families of Polynuclear Zn-Ln Coordination Clusters. Synthetic, Topological, Magnetic, and Luminescent Aspects. Crystal Growth & Design 17, 1524–1538. (doi:10.1021/acs.cgd.7b00353)

334. Chen, Y.-C., Liu, J.-L., Wernsdorfer, W., Liu, D., Chibotaru, L. F., Chen, X.-M. & Tong, M.-L. 2017 Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet. Angewandte Chemie International Edition 56, 4996–5000. (doi:10.1002/anie.201701480)

335. Horii, Y., Katoh, K., Breedlove, B. K. & Yamashita, M. 2017 Elongation of magnetic relaxation times in a single-molecule magnet through intermetallic interactions: a clamshell-type dinuclear terbium(iii)-phthalocyaninato quadruple-decker complex. Chemical Communications 53, 8561–8564. (doi:10.1039/c7cc03553e)

336. Yoshida, T., Izougu, D. C., Hasegawa, M., Breedlove, B. K., Kosner, G., Wernsdorfer, W. & Yamashita, M. 2017 Multiple Magnetic Relaxation Pathways and Dual-Emission Modulated by a Heterometallic Tb-Pt Bonding Environment. Chemistry - A European Journal 23, 10527–10531. (doi:10.1002/chem.201702989)

337. Perfetti, M. et al. 2018 Magnetic Anisotropy Switch: Easy Axis to Easy Plane Conversion and Vice Versa. Advanced Functional Materials 28, 1801846. (doi:10.1002/adfm.201801846)

338. Huang, X.-D., Xu, Y., Fan, K., Bao, S.-S., Kurmoo, M. & Zheng, L.-M. 2018 Reversible SC-SC Transformation involving [4+4] Cycloaddition of Anthracene: A Single-Ion to Single-Molecule Magnet and Yellow-Green to Blue-White Emission. Angewandte Chemie 130, 8713–8717. (doi:10.1002/ange.201804102)

339. Norel, L., Darago, L. E., Le Guennic, B., Chakarawet, K., Gonzalez, M. I., Olshansky, J. H., Rigaut, S. & Long, J. R. 2018 A Terminal Fluoride Ligand Generates Axial Magnetic Anisotropy in Dysprosium Complexes. Angewandte Chemie 130, 1951–1956. (doi:10.1002/ange.201712139)

340. Meng, Y.-S., Xu, L., Xiong, J., Yuan, Q., Liu, T., Wang, B.-W. & Gao, S. 2018 Low-Coordinate Single-Ion Magnets by Intercalation of Lanthanides into a Phenol Matrix. Angewandte Chemie 130, 4763–4766. (doi:10.1002/ange.201801223)

341. Latendresse, T. P., Vieru, V., Wilkins, B. O., Bhuvanesh, N. S., Chibotaru, L. F. & Nippe, M. 2018 Magnetic Properties of a Terbium–[1] Ferrocenophane Complex: Analogies between Lanthanide–Ferrocenophane and Lanthanide–Bis-phthalocyanine Complexes. Angewandte Chemie 130, 8296–8301. (doi:10.1002/ange.201804075)

342. Bazzina, E. S., Bovkunova, A. A., Medved’ko, A. V., Varaksina, E. A., Taidakov, I. V., Efimov, N. N., Kiskin, M. A. & Eremenko, I. L. 2018 Lanthanide(III) (Eu, Gd, Tb, Dy) Complexes Derived from 4-(Pyridin-2-yl)methyleneamino-1,2,4-triazole: Crystal Structure, Magnetic Properties, and Photoluminescence. Chemistry - An Asian Journal 13, 2060–2068. (doi:10.1002/asia.201800511)

343. Canaj, A. B., Singh, M. K., Wilson, C., Rajaraman, G. & Murrie, M. 2018 Chemical and in-silico tuning of the magnetisation reversal barrier in pentagonal bipyramidal Dy(iii) single-ion magnets. Chemical Communications 54, 8273–8276. (doi:10.1039/c8cc03929a)

344. Goodwin, C. A. P., Reta, D., Ortu, F., Liu, J., Chilton, N. F. & Mills, D. P. 2018 Terbocenium: completing a heavy lanthanide metalloccenium cation family with an alternative anion abstraction strategy. Chemical Communications 54, 9182–9185. (doi:10.1039/c8cc05261a)
345. Alexandropoulos, D. I., Schulte, K. A., Vignesh, K. R. & Dunbar, K. R. 2018 Slow magnetic dynamics in a family of mononuclear lanthanide complexes exhibiting the rare cubic coordination geometry. Chemical Communications 54, 10136–10139. (doi:10.1039/c8cc04565h)

346. Wu, J., Guo, M., Li, X.-L., Zhao, L., Sun, Q.-F., Layfield, R. A. & Tang, J. 2018 From double-shelled grids to supramolecular frameworks. Chemical Communications 54, 12097–12100. (doi:10.1039/c8cc06411c)

347. Horii, Y., Kishiue, S., Damjanović, M., Katoh, K., Breedlove, B. K., Enders, M. & Yamashita, M. 2018 Supramolecular Approach for Enhancing Single-Molecule Magnet Properties of Terbium(III)-Phthalocyaninato Double-Decker Complexes with Crown Moieties. Chemistry - A European Journal 24, 4320–4327. (doi:10.1002/chem.201705378)

348. Chen, Y., Liu, C., Ma, F., Qi, D., Liu, Q., Sun, H.-L. & Jiang, J. 2018 Fabricating Bis(phthalocyaninato) Terbium SMM into Tetakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination. Chemistry - A European Journal 24, 8066–8070. (doi:10.1002/chem.201800408)

349. Lutter, J. C., Eliseeva, S. V., Kampf, J. W., Petoud, S. & Pecoraro, V. L. 2018 A Unique LnIII([3.3.1]GaIII Metallacryptate) Series That Possesses Properties of Slow Magnetic Relaxation and Visible/Near-Infrared Luminescence. Chemistry - A European Journal 24, 10773–10783. (doi:10.1002/chem.201801355)

350. Rousset, E., Piccardo, M., Boulon, M.-E., Gable, R. W., Soncini, A., Mansiikkamäki, A. & Layfield, R. A. 2018 Rare-Earth Cyclobutadienyl Sandwich Complexes: Synthesis, Structure and Dynamic Magnetic Properties. Chemistry - A European Journal 24, 16779–16782. (doi:10.1002/chem.201804776)

352. Miralles, S. G. et al. 2018 Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes. Chemical Science 9, 199–208. (doi:10.1039/c7sc03463f)

355. Chen, S.-M., Xiong, J., Zhang, Y.-Q., Yuan, Q., Wang, B.-W. & Gao, S. 2018 A soft phosphorus atom to ‘harden’ an erbium(iii) single-ion magnet. Chemical Science 9, 7204–7209. (doi:10.1039/c8sc01361f)

356. Xu, M.-X., Meng, Y.-S., Xiong, J., Wang, B.-W., Jiang, S.-D. & Gao, S. 2018 Magnetic anisotropy investigation on light lanthanide complexes. Dalton Transactions 47, 1966–1971. (doi:10.1039/c8dt04351a)

357. Selvanathan, P., Dorcet, V., Roisnel, T., Bernot, K., Huang, G., Le Guennic, B., Norel, L. & Rigaut, S. 2018 trans to cis photo-isomerization in merocyanine dysprosium and yttrium complexes. Dalton Transactions 47, 4139–4148. (doi:10.1039/c8dt00299a)

358. Long, J., Lyubov, D. M., Mahrova, T. V., Cherkasov, A. V., Fukin, G. K., Guari, Y., Larionova, J. & Trifonov, A. A. 2018 Synthesis, structure and magnetic properties of tris(pyrazolyl)methane lanthanide complexes: effect of the anion on the slow relaxation of magnetization. Dalton Transactions 47, 5153–5156. (doi:10.1039/c8dt00458g)

359. Chen, X.-X., Ma, F., Xu, M.-X., Bi, J.-C., Sun, H.-L., Wang, B.-W. & Gao, S. 2018 A neutral auxiliary ligand enhanced dysprosium(iii) single-ion molecule magnet. Dalton Transactions 47, 7395–7398. (doi:10.1039/c8dt01102h)

360. Chorazy, S., Charytanowicz, T., Wang, J., Ohkoshi, S. & Sielkucka, B. 2018 Hybrid organic–inorganic connectivity of NdIII(pyrazine-N,N’-dioxide)[CoII(CN)6]3− coordination chains for creating near-infrared emissive Nd(iii) showing field-induced slow magnetic relaxation. Dalton Transactions 47, 7870–7874. (doi:10.1039/c8dt01464g)

361. Xiao, Z.-X., Miao, H., Shao, D., Wei, H.-Y., Zhang, Y.-Q. & Wang, X.-Y. 2018 A family of lanthanide compounds with reduced nitronyl nitroxide diradical: syntheses, structures and magnetic properties. Dalton Transactions 47, 7925–7933. (doi:10.1039/c8dt01112e)

362. Sun, J., Yang, M., Xi, L., Ma, Y. & Li, L. 2018 Magnetic relaxation in [Ln(hfac)4]− anions with [Cu(hfac)-radical]n+ cation chains as counterions. Dalton Transactions 47, 8142–8148. (doi:10.1039/c8dt01651h)

363. Li, M., Wu, H., Wei, Q., Ke, H., Yin, B., Zhang, S., Lv, X., Xie, G. & Chen, S. 2018 Two [ZnII2DyIII] complexes supported by monophenoxido/dicarboxylate bridges with multiple relaxation processes: carboxylato ancillary ligand-controlled magnetic anisotropy in square antiprismatic DyIII species. Dalton Transactions 47, 9482–9491. (doi:10.1039/c8dt01842a)
364. Maniaki, D., Mylonas-Margaritis, I., Mayans, J., Savvidou, A., Raptopoulou, C. P., Bekiaris, V., Psycharis, V., Escuer, A. & Perlepes, S. P. 2018 Slow magnetic relaxation and luminescence properties in lanthanide(iii)/anil complexes. Dalton Transactions 47, 11859–11872. (doi:10.1039/c8dt01264d)

365. Zhang, S., Mo, W., Yin, B., Zhang, G., Yang, D., Lu, X. & Chen, S. 2018 The slow magnetic relaxation regulated by the coordination, configuration and intermolecular dipolar field in two mononuclear Dy(iii) single-molecule magnets (SMMs). Dalton Transactions 47, 12393–12405. (doi:10.1039/c8dt02361a)

366. Wang, H.-L., Ma, X.-F., Zou, H.-H., Wang, K., Li, B., Chen, Z.-L. & Liang, F.-P. 2018 Mixed chelating ligands used to regulate the luminescence of Ln(iii) complexes and single-ion magnet behavior in Dy-based analogues. Dalton Transactions 47, 15929–15940. (doi:10.1039/c8dt03133a)

367. Peng, G., Zhang, Y.-Y., Li, B., Sun, X.-F., Cai, H.-L., Di, D.-J., Gu, Z.-G. & Kostakis, G. E. 2018 Single molecule magnetic behaviour in lanthanide naphthalenesulfonate complexes. Dalton Transactions 47, 17349–17356. (doi:10.1039/c8dt03131f)

368. Guettas, D., Montigaud, V., Garcia, G. F., Larini, P., Cador, O., Le Guennic, B. & Pilet, G. 2017 Fine Control of the Metal Environment within Dysprosium-Based Mononuclear Single-Molecule Magnets. European Journal of Inorganic Chemistry 2018, 333–339. (doi:10.1002/ejic.201701106)

369. Kishi, Y. et al. 2017 Luminescence and Single-Molecule-Magnet Behaviour in Lanthanide Coordination Complexes Involving Benzothiazole-Based Tetrathiafulvalene Ligands. European Journal of Inorganic Chemistry 2018, 458–468. (doi:10.1002/ejic.201700893)

370. Yang, J.-W., Tian, Y.-M., Tao, J., Chen, P., Li, H.-F., Zhang, Y.-Q., Yan, P.-F. & Sun, W.-B. 2018 Modulation of the Coordination Environment around the Magnetic Easy Axis Leads to Significant Magnetic Relaxations in a Series of 3d-4f Schiff Complexes. Inorganic Chemistry 57, 8065–8077. (doi:10.1021/acs.inorgchem.8b00056)

371. Fondo, M., Corredoira-Vázquez, J., García-Deibe, A. M., Sanmartín-Matalobos, J., Herrera, J. M. & Colacio, E. 2018 Tb2, Dy2, and Zn2Dy4 Complexes Showing the Unusual Versatility of a Hydrazine Ligand toward Lanthanoid Ions: a Structural and Magnetic Study. Inorganic Chemistry 57, 10100–10110. (doi:10.1021/acs.inorgchem.8b01251)

372. Chen, Y.-C., Huang, X.-S., Liu, J.-L. & Tong, M.-L. 2018 Magnetic Dynamics of a Neodymium(III) Single-Ion Magnet. Inorganic Chemistry 57, 11782–11787. (doi:10.1021/acs.inorgchem.8b01957)

373. Guo, M., Zhang, Y.-Q., Zhu, Z. & Tang, J. 2018 Dysprosium Compounds with Hula-Hoop-like Geometries: The Influence of Magnetic Anisotropy and Magnetic Interactions on Magnetic Relaxation. Inorganic Chemistry 57, 12213–12221. (doi:10.1021/acs.inorgchem.8b01878)

374. Liu, W., Zeng, S., Chen, X., Pan, H., Qi, D., Wang, K., Dou, J. & Jiang, J. 2018 Hemiporphyrizine-Involved Sandwich Dysprosium Double-Decker Single-Ion Magnets. Inorganic Chemistry 57, 12347–12353. (doi:10.1021/acs.inorgchem.8b02068)

375. He, M. et al. 2018 Enantiopure Benzamidinate/Cyclooctatetraene Complexes of the Rare-Earth Elements: Synthesis, Structure, and Magnetism. Organometallics 37, 3708–3717. (doi:10.1021/acs.organomet.8b00412)

376. Maxwell, L., Amoza, M. & Ruiz, E. 2018 Mononuclear Lanthanide Complexes with 18-Crown-6 Ether: Synthesis, Characterization, Magnetic Properties, and Theoretical Studies. Inorganic Chemistry 57, 13225–13234. (doi:10.1021/acs.inorgchem.8b01688)

377. Cañon-Mancisidor, W., Miralles, S. G., Baldoví, J. J., Espallargas, G. M., Gaita-Arío, A. & Coronado, E. 2018 Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability. Inorganic Chemistry 57, 14170–14177. (doi:10.1021/acs.inorgchem.8b02080)

378. Shen, F.-X., Li, H.-Q., Miao, H., Shao, D., Wei, X.-Q., Shi, L., Zhang, Y.-Q. & Wang, X.-Y. 2018 Heterometallic MIILnIII (M = Co/Zn; Ln = Dy/Y) Complexes with Pentagonal Bipyramidal 3d Centers: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry 57, 15526–15536. (doi:10.1021/acs.inorgchem.8b02875)

379. Ji, C.-L., Jiang, Y.-X., Zhang, J.-C., Qi, Z.-Y., Kong, J.-J. & Huang, X.-C. 2018 Field-induced Slow Magnetic Relaxation Behavior in a Mononuclear Dy(III) Complex based on 8-Hydroxyquinoline Derivate Ligand. Zeitschrift für anorganische und allgemeine Chemie 644, 1635–1640. (doi:10.1002/zaac.201800310)

380. Long, Q.-Q., Hu, Z.-B., Wang, H.-S., Yin, C.-L., Chen, Y., Song, Y., Zhang, Z.-C., Xia, B.-T. & Pan, Z.-Q. 2018 Field-induced single molecule magnet behavior of a DyIII-Nal one-dimensional chain extended by acetate ions. Inorganic Chemistry Communications 98, 127–131. (doi:10.1016/j.inoche.2018.10.006)

39
381. Ishikawa, R., Michiwaki, S., Noda, T., Katoh, K., Yamashita, M., Matsubara, K. & Kawata, S. 2017 Field-Induced Slow Magnetic Relaxation of Mono- and Dinuclear Dysprosium(III) Complexes Coordinated by a Chloranilate with Different Resonance Forms. Inorganics 6, 7. (doi:10.3390/inorganics6010007)

382. Petrosyants, S. P., Ilyukhin, A. B., Efimov, N. N., Gavrikov, A. V. & Novotortsev, V. M. 2018 Self-assembly and SMM properties of lanthanide cyanocobaltate chain complexes with terpyridine as blocking ligand. Inorganica Chimica Acta 482, 813–820. (doi:10.1016/j.ica.2017.08.029)

383. Guo, M. & Tang, J. 2018 Six-Coordinate Ln(III) Complexes with Various Coordination Geometries Showing Distinct Magnetic Properties. Inorganics 6, 16. (doi:10.3390/inorganics6010016)

384. Xiong, X., Liu, Y., Li, S., Xue, A., Wang, J., Zhang, C., Zhu, W. & Sun, H. 2018 The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds. Inorganics 6, 36. (doi:10.3390/inorganics6020036)

385. Flores Gonzalez, J., Cador, O., Ouahab, L., Norkov, S., Kuropatov, V. & Pointillart, F. 2018 Field-Induced Dysprosium Single-Molecule Magnet Involving a Fused o-Semiquinone-Extended-Tetrathiafulvalene-o-Semiquinone Bridging Triad. Inorganics 6, 45. (doi:10.3390/inorganics6020045)

386. Taylor, R., Bonanno, N., Cibian, M., Yadav, J., Silverstein, H., Wiebe, C., Mauws, C., Lough, A. & Lemaire, M. 2018 Homoleptic Lanthanide Complexes Containing a Redox-Active Ligand and the Investigation of Their Electronic and Photophysical Properties. Inorganics 6, 56. (doi:10.3390/inorganics6020056)

387. Langley, S., Vignesh, K., Holton, K., Benjamin, S., Hix, G., Phonsri, W., Moubaraki, B., Murray, K. & Rajaraman, G. 2018 Mononuclear Dysprosium(III) Complexes with Triphenylphosphine Oxide Ligands: Controlling the Coordination Environment and Magnetic Anisotropy. Inorganics 6, 61. (doi:10.3390/inorganics6020061)

388. Øwre, A., Vinum, M., Kern, M., van Slageren, J., Bendix, J. & Perfetti, M. 2018 Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design. Inorganics 6, 72. (doi:10.3390/inorganics6030072)

389. Wang, Y.-X., Ma, Y., Chai, Y., Shi, W., Sun, Y. & Cheng, P. 2018 Observation of Magnetodielectric Effect in a Dysprosium-Based Single-Molecule Magnet. Journal of the American Chemical Society 140, 7795–7798. (doi:10.1021/jacs.8b04818)

390. Wang, J., Chorazy, S., Nakabayashi, K., Sieklucka, B. & Ohkoshi, S. 2018 Achieving white light emission and increased magnetic anisotropy by transition metal substitution in functional materials based on dinuclear DyIII(4-pyridone)[MIII(CN)6]3− (M = Co, Rh) molecules. Journal of Materials Chemistry C 6, 473–481. (doi:10.1039/c7tc03963h)

391. Jiang, Z., Sun, L., Yang, Q., Yin, B., Ke, H., Han, J., Wei, Q., Xie, G. & Chen, S. 2018 Excess axial electrostatic repulsion as a criterion for pentagonal bipyramidal DyIII single-ion magnets with high Ueff and TB. Journal of Materials Chemistry C 6, 4273–4280. (doi:10.1039/c7tc03953)

392. Guo, S., Lv, X.-C., Gao, X.-H., Li, C.-L. & Zhang, X.-F. 2018 Structures, Magnetic and Thermodynamic Properties of a 3d–4f Mixed Metal Cluster [ErZn6(3-μ3-O)3(3-μ3-C2H4NO2)6(H2O)9]+. Journal of Cluster Science 29, 975–980. (doi:10.1007/s10876-018-1407-1)

393. Demir, S., Meilhaus, K. R. & Long, J. R. 2018 Slow magnetic relaxation in a neodymium metalloocene tetraphenylborate complex. Journal of Organometallic Chemistry 857, 164–169. (doi:10.1016/j.jorganchem.2017.10.035)

394. Flores Gonzalez, J., Montigaud, V., Saleh, N., Cador, O., Crassous, J., le Guennic, B. & Pointillart, F. 2018 Slow Relaxation of the Magnetization in Bis-Decorated Chiral Helicene-Based Coordination Complexes of Lanthanides. Magnetochemistry 4, 45. (doi:10.3390/magnetochemistry40045)

395. Feltham, H. L. C., Clérac, R., Peng, Y., Moreno-Pineda, E., Powell, A. K. & Brooker, S. 2018 The Effect of Modifying the Macroyclic Ring Size on Zn3Ln(Ln= Dy, Er, and Yb) Single-Molecule Magnet Behavior. Zeitschrift für anorganische und allgemeine Chemie 644, 775–779. (doi:10.1002/zaac.201800155)

396. Huang, G., Calvez, G., Suffren, Y., Daiguebonne, C., Freslon, S., Guillou, O. & Bernot, K. 2018 Closing the Circle of the Lanthanide-Murexide Series: Single-Molecule Magnet Behavior and Near-Infrared Emission of the NdIII Derivative. Magnetochemistry 4, 22. (doi:10.3390/magnetochemistry40022)

397. Mylonas-Margaritis, I. et al. 2018 Mononuclear Lanthanide(III) Salicylideneaniline Complexes: Synthetic, Structural, Spectroscopic, and Magnetic Studies. Magnetochemistry 4, 45. (doi:10.3390/magnetochemistry40045)
398. Skvortsov, G. G., Cherkasov, A. V., Long, J., Larionova, J. & Trifonov, A. A. 2018 Synthesis, structure and magnetic properties of the dinuclear complex [1,3-C6H4(NCPh)N(SiMe3)]2Dy2 coordinated by ansa-bis(amidinate) ligands with a m-phenylene linker. Mendeleev Communications 28, 521–523. (doi:10.1016/j.mencom.2018.09.024)

399. Sasnovskaya, V. D., Kopotkov, V. A., Kazakova, A. V., Talantsev, A. D., Morgunov, R. B., Simonov, S. V., Zorina, L. V., Mironov, V. S. & Yagubskii, E. B. 2018 Slow magnetic relaxation in mononuclear complexes of Tb, Dy, Ho and Er with the pentadentate (N3O2) Schiff-base dapsc ligand. New Journal of Chemistry 42, 14883–14893. (doi:10.1039/c8nj01928b)

400. Li, X.-L., Li, J., Zhu, C., Han, B., Liu, Y., Yin, Z., Li, F. & Liu, C.-M. 2018 An intense luminescent Dy(iii) single-ion magnet with the acylpyrazolone ligand showing two slow magnetic relaxation processes. New Journal of Chemistry 42, 16992–16998. (doi:10.1039/c8nj03345e)

401. Ge, J.-Y., Chen, Z., Wang, H.-Y., Wang, H., Wang, P., Duan, X. & Huo, D. 2018 Thiacalix[4]arene-supported mononuclear lanthanide compounds: slow magnetic relaxation in dysprosium and erbium analogues. New Journal of Chemistry 42, 17968–17974. (doi:10.1039/c8nj04016h)

402. Yao, X., Yan, P., An, G., Li, Y., Li, W. & Li, G. 2018 Investigation of magneto-structural correlation based on a series of seven-coordinated β-diketone Dy(iii) single-ion magnets with C2v and C3v local symmetry. Dalton Transactions 47, 3976–3984. (doi:10.1039/c7dt04764a)

403. Béreau, V., Dhers, S., Costes, J.-P., Duhayon, C. & Sutter, J.-P. 2018 Syntheses, Structures, and Magnetic Properties of Symmetric and Dissymmetric Ester-Functionalized 3d-4f Schiff Base Complexes. European Journal of Inorganic Chemistry 2018, 66–73. (doi:10.1002/ejic.201701129)

404. Fondo, M., Corredoira-Vázquez, J., García-Deibe, A. M., Sanmartín-Matalobos, J., Herrera, J. M. & Colacio, E. 2018 Field-Induced Single Molecule Magnets of Phosphine- and Arsine-Oxides. Frontiers in Chemistry 6.

405. Morita, T. et al. 2018 Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement. Journal of the American Chemical Society 140, 2995–3007. (doi:10.1021/jacs.7b12667)

406. Bar, A. K., Kalita, P., Sutter, J.-P. & Chandrasekhar, V. 2018 Pentagonal-Bipyramid Ln(III) Complexes Exhibiting Single-Ion-Magnet Behavior: A Rational Synthetic Approach for a Rigid Equatorial Plane. Inorganic Chemistry 57, 2398–2401. (doi:10.1021/acs.inorgchem.8b00059)

407. Wen, H.-R., Yang, K., Liu, S.-J., Liang, F.-Y., Xie, X.-R., Liu, C.-M. & Li, Y.-W. 2018 Chiral mononuclear Dy(III) complex based on pyrrolidine-dithiocarboxylate S-donors with field-induced single-ion magnet behavior. Inorganica Chimica Acta 473, 145–151. (doi:10.1016/j.ica.2017.12.035)

408. Gorczyński, A., Marcinkowski, D., Kubicki, M., Löffler, M., Korabik, M., Karbowiak, M., Wiśniewski, P., Rudowicz, C. & Patroniak, V. 2018 New field-induced single ion magnets based on prolate Er(iii) and Yb(iii) ions: tuning the energy barrierUeffby the choice of counterions within an N3-tridentate Schiff-base scaffold. Inorganic Chemistry Frontiers 5, 605–618. (doi:10.1039/c7qi00727b)

409. Qiao, S., Zhang, J., Zhang, S., Yang, Q., Wei, Q., Yang, D. & Chen, S. 2018 Field-induced single molecule magnet (SMM) behavior of dinuclear DyIII system. Inorganica Chimica Acta 469, 57–65. (doi:10.1016/j.ica.2017.08.060)

410. Cañón-Mancisidor, W., Zapata-Lizama, M., Hermosilla-Ibáñez, P., Cruz, C., Venegas-Yazigi, D. & Mínguez Espallargas, G. 2019 Hybrid organic–inorganic mononuclear lanthanoid single ion magnets. Chemical Communications 55, 14992–14995. (doi:10.1039/c9cc07868a)

411. Long, J. et al. 2018 Dysprosium Single-Molecule Magnets with Bulky Schiff Base Ligands: Modification of the Slow Relaxation of the Magnetization by Substituent Change. Chemistry - A European Journal 25, 474–478. (doi:10.1002/chem.201804429)

412. Horii, Y., Katoh, K., Sugimoto, K., Nakanishi, R., Breedlove, B. K. & Yamashita, M. 2019 Detailed Analysis of the Crystal Structures and Magnetic Properties of a Dysprosium(III) Phthalocyaninato Sextuple-Decker Complex: Weak f-f Interactions Suppress Magnetic Relaxation. Chemistry – A European Journal (doi:10.1002/chem.201805368)

413. Cen, P., Liu, X., Ferrando-Soria, J., Zhang, Y., Xie, G., Chen, S. & Pardo, E. 2019 Capping N-Donor Ligands Modulate the Magnetic Dynamics of Dy III β-Diketonate Single-Ion Magnets with D4d Symmetry. Chemistry – A European Journal 25, 3884–3892. (doi:10.1002/chem.201805608)
414. Zakrzewski, J. J., Chorazy, S., Nakabayashi, K., Ohkoshi, S. & Sieklucka, B. 2019 Photoluminescent Lanthanide(III) Single-Molecule Magnets in Three-Dimensional Polycyanidocuprate(I)-Based Frameworks. Chemistry – A European Journal 25, 11820–11825. (doi:10.1002/chem.201902420)

415. Li, Z., Zhai, Y., Chen, W., Ding, Y. & Zheng. Y. 2019 Air-Stable Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets with Nearly Perfect Local Symmetry. Chemistry – A European Journal 25, 16219–16224. (doi:10.1002/chem.201904325)

416. Bhattacharya, S., Bala, S. & Mondal, R. 2019 Ln-MOFs using a compartmental ligand with a unique combination of hard–soft terminals and their magnetic, gas adsorption and luminescence properties. CrystEngComm 21, 5665–5672. (doi:10.1039/c9ce01026b)

417. Echenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. 2019 Effect of the change of the ancillary carboxylate bridging ligand on the SMM and luminescence properties of a series of carboxylate-diphenoxido triply bridged dinuclear ZnLn and tetranuclear Zn2Ln2 complexes (Ln = Dy, Er). Dalton Transactions 48, 190–201. (doi:10.1039/c8dt03679a)

418. Yin, C.-L., Hu, Z.-B., Long, Q.-Q., Wang, H.-S., Li, J., Song, Y., Zhang, Z.-C., Zhang, Y.-Q. & Pan, Z.-Q. 2019 Single molecule magnet behaviors of Zn4Ln2 (Ln = DyIII, TbIII) complexes with multidentate organic ligands formed by absorption of CO2 in air through in situ reactions. Dalton Transactions 48, 512–522. (doi:10.1039/c8dt03849j)

419. Mayans, J., Saez, Q., Font-Bardia, M. & Escuer, A. 2019 Enhancement of magnetic relaxation properties with 3d diamagnetic cations in [ZnIIINIII] and [NiIIINIII], LnIII= Kramers lanthanides. Dalton Transactions 48, 641–652. (doi:10.1039/c9dt00073a)

420. Li, L.-L., Su, H.-D., Liu, S., Xu, Y.-C. & Wang, W.-Z. 2019 A new air- and moisture-stable pentagonal-bipyramidal DyIII single-ion magnet based on the HMPA ligand. Dalton Transactions 48, 2213–2219. (doi:10.1039/c8dt03565b)

421. Zou, Q., Huang, X.-D., Liu, J.-C., Bao, S.-S. & Zheng, L.-M. 2019 Lanthanide anthracene complexes: slow magnetic relaxation and luminescence in DyIII, ErIII and YbIII based materials. Dalton Transactions 48, 2735–2740. (doi:10.1039/c9dt00073a)

422. Kalita, P., Malakar, A., Goura, J., Nayak, S., Herrera, J. M., Colacio, E. & Chandrasekhar, V. 2019 Mononuclear lanthanide complexes assembled from a tridentate NNO donor ligand: design of a DyIII single-ion magnet. Dalton Transactions 48, 4857–4866. (doi:10.1039/c9dt00504h)

423. Boulkedid, A.-L., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J. & Long, J. 2019 Synthesis, structure and magnetic properties of a series of dinuclear heteroleptic Zn2+/Ln3+ Schiff base complexes: effect of lanthanide ions on the slow relaxation of magnetization. Dalton Transactions 48, 11637–11641. (doi:10.1039/c9dt02228g)

424. Zhang, S., Mo, W., Zhang, Z., Gao, F., Wang, L., Hu, D. & Chen, S. 2019 Ligand ratio/solvent-influenced syntheses, crystal structures, and magnetic properties of polynitrobenzaldehyde Schiff base ligand-Dy(iii) compounds with β-diketonate ligands as co-ligands. Dalton Transactions 48, 12466–12481. (doi:10.1039/c9dt02618e)

425. Petrosyants, S. P., Babeshkin, K. A., Gavrikov, A. V., Ilyukhin, A. B., Belova, E. V. & Efimov, N. N. 2019 Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes. Dalton Transactions 48, 12644–12655. (doi:10.1039/c9dt02260k)

426. Kühne, I. A. et al. 2019 Comparison of two field-induced ErIII single ion magnets. Dalton Transactions 48, 15679–15686. (doi:10.1039/c9dt02434d)

427. Yu, S., Chen, Z., Hu, H., Li, B., Liang, Y., Liu, D., Zou, H., Yao, D. & Liang, F. 2019 Two mononuclear dysprosium(iii) complexes with their slow magnetic relaxation behaviors tuned by coordination geometry. Dalton Transactions 48, 16679–16686. (doi:10.1039/c9dt03253c)

428. Cheng, L.-W., Zhang, C.-L., Wei, J.-Y. & Lin, P.-H. 2019 Mononuclear and trinuclear DyIII SMMs with Schiff-base ligands modified by nitro-groups: first triangular complex with a N–N pathway. Dalton Transactions 48, 17331–17339. (doi:10.1039/c9dt02646k)

429. Zhi, Q., Ma, F., Wang, C., Chen, Y., Wang, H., Sun, H. & Jiang, J. 2019 Single-Ion Magnet Investigation of ABAB-Type Tetrachloro- and Tetraalkoxy-Substituted Bisdiphenylanthracenyl) Terbium Double-Decker with D 2 Symmetrical Ligand Field. European Journal of Inorganic Chemistry 2019, 1329–1334. (doi:10.1002/ejic.201900038)
430. Wen, H.-R., Zhang, J.-L., Liang, F.-Y., Yang, K., Liu, S.-J. & Liu, C.-M. 2019 Multifunctional Lanthanide Complexes Based on Tetraazaacyclolamidophenol Ligand with Field-Induced Slow Magnetic Relaxation, Luminescent and SHG Properties. European Journal of Inorganic Chemistry 2019, 1406–1412. (doi:10.1002/ejic.201801492)

431. Prytula-Kurkunova, A. Y., Pichon, C., Duhayon, C., Amirkhanov, V. M. & Sutter, J. 2019 Mononuclear Lanthanide Complexes Containing [O-O]-Chelating Sulfonylamidophosphate Type Ligands. European Journal of Inorganic Chemistry 2019, 4592–4596. (doi:10.1002/ejic.201900976)

432. Zou, H.-H., Meng, T., Chen, Q., Zhang, Y.-Q., Wang, H.-L., Li, B., Wang, K., Chen, Z.-L. & Liang, F. 2019 Bifunctional Mononuclear Dysprosium Complexes: Single-Ion Magnet Behaviors and Antitumor Activities. Inorganic Chemistry 58, 2286–2298. (doi:10.1021/acs.inorgchem.8b02250)

433. Xémard, M., Cordier, M., Molton, F., Duboc, C., Le Guennic, B., Maury, O., Cador, O. & Nocton, G. 2019 Divalent Thulium Crown Ether Complexes with Field-Induced Slow Magnetic Relaxation. Inorganic Chemistry 58, 2872–2880. (doi:10.1021/acs.inorgchem.8b03551)

434. Chorazy, S., Zychowicz, M., Ohkoshi, S. & Sieklucka, B. 2018 Wide-Range UV-to-Visible Excitation of Near-Infrared Emission and Slow Magnetic Relaxation in LnIII(4,4′-Azopyridine-1,1′-dioxide)[CoIII(CN)6]3– Layered Frameworks. Inorganic Chemistry 58, 165–179. (doi:10.1021/acs.inorgchem.8b02096)

435. Konarev, D. V. et al. 2019 Effect of One- and Two-Electron Reduction of Terbium(III) Double-Decker Phthalocyanine on Single-Ion Magnet Behavior and NIR Absorption. Inorganic Chemistry 58, 5058–5068. (doi:10.1021/acs.inorgchem.9b00131)

436. Zhang, S., Mo, W., Zhang, J., Zhang, Z., Yin, B., Hu, D. & Chen, S. 2019 Regulation of Substituent Effects on Configurations and Magnetic Performances of Mononuclear DyIII Single-Molecule Magnets. Inorganic Chemistry 58, 15330–15343. (doi:10.1021/acs.inorgchem.8b03222)

437. Bazhin, D. N., Kudyakova, Y. S., Bogomyakov, A. S., Slepukhin, P. A., Kim, G. A., Burgart, Y. V. & Saloutin, V. I. 2019 Dinuclear lanthanide–lithium complexes based on fluorinated β-diketonate with acetal group: magnetism and effect of crystal packing on mechanoluminescence. Inorganic Chemistry Frontiers 6, 40–49. (doi:10.1039/c8qi00772a)

438. Flores Gonzalez, J., Pointillart, F. & Cador, O. 2019 Hyperfine coupling and slow magnetic relaxation in isotopically enriched DyIII mononuclear single-molecule magnets. Inorganic Chemistry Frontiers 6, 1081–1086. (doi:10.1039/c8qi01209a)

439. Wang, H.-L., Ma, X.-F., Zhu, Z.-H., Zhang, Y.-Q., Zou, H.-H. & Liang, F.-P. 2019 A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet. Inorganic Chemistry Frontiers 6, 2906–2913. (doi:10.1039/c9qi00582j)

440. Lu, G., Wang, J., Zhang, C.-J., Bala, S., Chen, Y.-C., Huang, G.-Z., Ni, Z.-P. & Tong, M.-L. 2019 Single-ion magnet and luminescent properties in a Dy(III) triangular dodecahedral complex. Inorganic Chemistry Communications 102, 16–19. (doi:10.1016/j.inoche.2019.02.003)

441. Chen, Y.-C., Peng, Y.-Y., Liu, J.-L. & Tong, M.-L. 2019 Field-induced slow magnetic relaxation in a mononuclear Gd(III) complex. Inorganic Chemistry Communications 107, 107449. (doi:10.1016/j.inoche.2019.107449)

442. Anastasiadis, N. C., Lada, Z. G., Polyzou, C. D., Rapotopoulou, C. P., Psycharis, V., Konidaris, K. F. & Perlepes, S. P. 2019 Synthetic strategies to {CoIII2LnIII} complexes based on 2-pyridyl oximes (Ln = lanthanide). Inorganic Chemistry Communications 108, 107478. (doi:10.1016/j.inoche.2019.107478)

443. Petrosyants, S. P., Ilyukhin, A. B., Gavrikov, A. V., Mikhлина, Y. A., Puntus, L. N., Varaksina, E. A., Efimov, N. N. & Novotortsev, V. M. 2019 Luminescent and magnetic properties of mononuclear lanthanide thiocyanates with terpyridine as auxiliary ligand. Inorganica Chimica Acta 486, 499–505. (doi:10.1016/j.ica.2018.11.006)

444. Yang, H., Liu, S.-S., Meng, Y.-S., Zhang, Y.-Q., Pu, L. & Yu, X.-Q. 2019 Magnetic properties and theoretical calculations of mononuclear lanthanide complexes with a Schiff base coordinated to Ln(III) ion in a monodentate coordination mode. Inorganica Chimica Acta 494, 8–12. (doi:10.1016/j.ica.2019.04.051)

445. Gould, C. A., McClain, K. R., Yu, J. M., Groshens, T. J., Furche, F., Harvey, B. G. & Long, J. R. 2019 Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). Journal of the American Chemical Society 141, 12967–12973. (doi:10.1021/jacs.9b05816)

446. Evans, P., Reta, D., Whitehead, G. F. S., Chilton, N. F. & Mills, D. P. 2019 Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. Journal of the American Chemical Society 141, 19935–19940. (doi:10.1021/jacs.9b11515)
447. Zeng, D., Fan, K., Wang, L.-P., Bao, S.-S., Ren, M. & Zheng, L.-M. 2019 Octahedral erbium and ytterbium ion encapsulated in phosphorescent iridium complexes showing field-induced magnetization relaxation. Journal of Magnetism and Magnetic Materials 484, 139–145. (doi:10.1016/j.jmmm.2019.03.100)

448. Fang, Y., Xu, M.-X., Hui, Y.-C., Sun, H.-L., Yan, X. & Jiang, S.-D. 2019 Determination of the magnetic principal axes of a dysprosium complex with slow relaxation on a single crystal. Journal of Magnetism and Magnetic Materials 490, 165475. (doi:10.1016/j.jmmm.2019.165475)

449. Münzfeld, L., Schoo, C., Bestgen, S., Moreno-Pineda, E., Köppe, R., Ruben, M. & Roesky, P. W. 2019 Synthesis, structures and magnetic properties of \([(\eta^9\text{-C}_{9}H_{9})\text{Ln}(\eta^8\text{-C}_{8}H_{8})]\) super sandwich complexes. Nature Communications 10. (doi:10.1038/s41467-019-10976-6)

450. Wen, H.-R., Zhang, J.-L., Liang, F.-Y., Yang, K., Liu, S.-J., Liao, J.-S. & Liu, C.-M. 2019 TbIII/3d–TbIII clusters derived from a 1,4,7-triazacyclononane-based hexadentate ligand with field-induced slow magnetic relaxation and oxygen-sensitive luminescence. New Journal of Chemistry 43, 4067–4074. (doi:10.1039/c8nj05777j)

451. Han, M., Zhang, H., Wang, J., Feng, S. & Lu, L. 2019 Three chiral one-dimensional lanthanide–ditoluoyl-tartrate bifunctional polymers exhibiting luminescence and magnetic behaviors. RSC Advances 9, 32288–32295. (doi:10.1039/c9ra06920h)

452. Da Cunha, T. T., Barbosa, V. M. M., Oliveira, W. X. C., Pinheiro, C. B., Pedroso, E. F., Nunes, W. C. & Pereira, C. L. M. 2019 Slow magnetic relaxation in mononuclear gadolinium(III) and dysprosium(III) oxamato complexes. Polyhedron 169, 102–113. (doi:10.1016/j.poly.2019.04.056)

453. Mayans, J., Sorace, L., Font-Bardia, M. & Escuer, A. 2019 Chiral mononuclear lanthanide complexes derived from chiral Schiff bases: Structural and magnetic studies. Polyhedron 170, 264–270. (doi:10.1016/j.poly.2019.05.051)