Current trends in staging rectal cancer

Abdus Samee, Chelliah Ramachandran Selvasekar

Management of rectal cancer has evolved over the years. In this condition preoperative investigations assist in deciding the optimal treatment. The relation of the tumor edge to the circumferential margin (CRM) is an important factor in deciding the need for neoadjuvant treatment and determines the prognosis. Those with threatened or involved margins are offered long course chemoradiation to enable R0 surgical resection. Endoanal ultrasound (EUS) is useful for tumor (T) staging; hence EUS is a useful imaging modality for early rectal cancer. Magnetic resonance imaging (MRI) is useful for assessing the mesorectum and the mesorectal fascia which has useful prognostic significance and for early identification of local recurrence. Computerized tomography (CT) of the chest, abdomen and pelvis is used to rule out distant metastasis. Identification of the malignant nodes using EUS, CT and MRI is based on the size, morphology and internal characteristics but has drawbacks. Most of the common imaging techniques are suboptimal for imaging following chemoradiation as they struggle to differentiate fibrotic changes and tumor. In this situation, EUS and MRI may provide complementary information to decide further treatment. Functional imaging using positron emission tomography (PET) is useful, particularly PET/CT fusion scans to identify areas of the functionally hot spots. In the current state, imaging has enabled the multidisciplinary team of surgeons, oncologists, radiologists and pathologists to decide on the patient centered management of rectal cancer. In future, functional imaging may play an active role in identifying patients with lymph node metastasis and those with residual and recurrent disease following neoadjuvant chemoradiotherapy.

© 2011 Baishideng. All rights reserved.

Key words: Rectal cancer; Staging; Investigations; Magnetic resonance imaging; Ultrasound; Endoanal ultrasound; Positron emission tomography; Computerized tomography

INTRODUCTION

Nearly one million patients are diagnosed with colorectal cancers (CRC) annually in the world[1]. The incidence of CRC is highest in the western world where it is the second commonest cause of cancer death and fourth commonest cause of death from cancer worldwide[2]. In the western world there is a life time risk of CRC of 5%. Overall the 5 year survival has improved in the UK (55% in males and 51% in females) but to a lesser extent than in the USA and Europe[3].

Around 30%-40% of colorectal cancer is defined to arise from the rectum which is defined as the distal margin of tumor within 15 cm of the anal verge[4].

Colonoscopy and biopsy is considered as the gold
standard investigation to confirm the diagnosis of rectal cancer and to exclude synchronous lesions. Patients are then staged to assess the extent of local disease and to identify the distant spread.

Traditional rectal cancer surgery is associated with high rates of local recurrence of 5%-20%[1]. However, with the combination of high quality surgery using total mesorectal excision[2] along with use of neoadjuvant and adjuvant treatment there has been a significant reduction in local recurrence and improved survival[3]. The surgeon aims to achieve a microscopic tumor free (R0) resection. Despite this, there is a risk of local failure. Careful preoperative assessment of the pelvis identifies high risk patients in whom the resection margins are either involved or within 1 mm of the mesorectal fascia. Involvement or threatened CRM (tumors within 1 mm of the mesorectal fascia) have a reduced chance of obtaining complete clearance. Thus, the status of the CRM has become more important than the TNM staging. In Europe and the UK, patients with involved CRM/threatened CRM are considered for long course chemoradiation prior to surgery.

IMPORTANCE OF PREOPERATIVE STAGING IN RECTAL CANCER

Accurate pre-operative staging of rectal cancer is crucial in planning the surgical treatment and is the strongest predictor for recurrence[4]. The staging helps us to formulate a structured multidisciplinary management care plan and assess the prognosis. It is also used to compare the results of hospitals offering rectal cancer treatment and to define the role of different treatment modalities.

Preoperative staging of rectal cancer can be divided into either local or distant staging. Local staging incorporates the assessment of mural wall invasion, circumferential resection margin involvement, and the nodal status for metastasis. Distant staging assesses for evidence of metastatic disease.

Rectal cancer is palpable in 40%-80% of cases[5]. Digital rectal examination helps in documentation of the size, location, distance from the anal verge, and fixity. Lesions felt by digital rectal examination can be visualized using a rigid proctoscope. The procedure allows an accurate localization and assessment of the tumor including fixity. Biopsies can be carried out where necessary. Rectal examination using proctoscopy may be considered as an important tool for newly diagnosed rectal cancers. Painful local perineal and anal conditions such as fissures or abscesses can restrict the use of this excellent tool. A trial comparing the use of CT virtual proctoscopy with rectal ultrasound examination in determining the stage of rectal cancer is being conducted in the USA and its results are awaited (http://clinicaltrials.gov/ct2/show/NCT00585728).

Currently, several modalities exist for the preoperative staging of rectal cancer. A combination of modalities involving use of computed tomography (CT), magnetic resonance imaging (MRI), and/or endorectal ultrasonography (EUS) is used to precisely assess the extent of spread of rectal cancer. The choice of investigations performed, however, is influenced by local expertise, guidelines and availability. Imaging in rectal cancer plays a crucial role in optimizing radiotherapy target definition to avoid adjacent vital structures[6]. EUS and MRI of the pelvis are used to assess the local spread while CT is the main modality to assess systemic spread. PET is indicated when there is clinical, biochemical or radiological suspicion of local recurrence or systemic disease.

Computerized tomography and computerized tomography colonography or virtual colonoscopy

CT scan of the entire chest, abdomen and pelvis is used for the detection of metastatic disease. CT is widely available and has faster acquisition times. However, it is not considered as the investigation of choice when it comes to assessing the layers of the rectal wall; hence it is not useful for local staging in rectal cancer and certainly is poor at evaluating superficial rectal cancers. The accuracy of CT to assess the tumor has been reported to be between 80%-95% in patients with advanced local disease[7]. The accuracy, however, decreased to around 63% when a broader spectrum of tumor sizes was analyzed. Sensitivity to pick up nodal disease has been found to be between 55%-70%[8]. In a meta-analysis involving 5000 patients, CT showed an accuracy for T staging of 73% and for nodal staging of 22%-73%[9].

The use of contrast enhanced multidetector CT colonography has improved the staging accuracy[10], by achieving superior spatial resolution and visualizing pictures in a variety of planes. However, its role in staging remains to be determined and currently it is used mainly to assess the distant metastatic disease (Figure 1A and B).

Virtual colonoscopy or CT colonogram (CTC) has been reported to be safer than colonoscopy[11] while being more sensitive than barium enema, and appears to be more acceptable to patients than either of the other tests[12]. The procedure can be performed by technicians thus saving clinicians time. In principle the data could be analyzed by computer-assistance thus accelerating diagnosis time[13]. The results of the SIGGAR trial evaluating CTC versus colonoscopy or barium enema in symptomatic elderly patients are awaited[14]. CT is the best radiological imaging for assessing the colon and rectum and at the same time identifies nodal disease and distant metastasis. The diagnosis of rectal cancer still needs to be confirmed by colonoscopy and biopsy.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is routinely used for preoperative staging of rectal cancer as it provides an accurate assessment of the tumor and the surrounding mesorectal fascia. It identifies patients at risk of local recurrence and those likely to benefit from neoadjuvant therapy. When compared with CT and ultrasound, MRI is more reliable for the evaluation of the extent of locoregional disease, planning radiation therapy, assessing postoperative changes and pelvic recurrence. The evaluation of nodal metastases remains a challenge with MRI (Figure 2).

Earlier MRI studies used body coils which lacked the
resolution to differentiate the different layers of the rectal wall and added no advantage to conventional CT. Subsequent use of phased-array coils permitted reliable identification of the mesorectal fascia which is crucial in the management of rectal cancer. Initial studies suggested a histological clearance of at least 10 mm could be accurately predicted when the radiological clearance from the mesorectal fascia and critical structure was at least 5 mm. Subsequent single centre study showed 92% accuracy in prediction of CRM involvement when the CRM cutoff of 1 mm was used and this is now confirmed from the multicentre European MERCURY study. In Europe, MRI is now routinely used in the preoperative investigation for rectal cancer. Techniques for obtaining optimal MRI images are described in the literature. An axial picture enables identification of the distance of the CRM to the tumor. Coronal sections are useful in low rectal tumors to identify the relation to anal sphincter complex, pelvic floor, and pelvic side wall. High signal intensity of the tumor on T2 w images suggest the presence of mucinous carcinoma which has poor prognosis compared to non-mucinous carcinoma. The standard phased array MRI produces good quality images with good contrast resolution and a relatively large field of view. Routine use of intravenous contrast does not appear to improve the accuracy. MRI cannot differentiate between T2 and early T3 lesions; a nodular or rounded advancing margin at the interface between muscularis propria and perirectal fat is suggestive of T3. Sometimes spiculations in the perirectal fat are considered as T3 when in fact they are T2 with desmoplastic reaction. MRI certainly cannot differentiate between a T1 and T3 cancer. Another area of drawback is restaging following long course chemoradiotherapy. Studies by Chen and Hoffmann found T staging accuracy was 52% and 54% when compared to histology. This is due to the inability to distinguish fibrosis from tumor with MRI similar to EUS. In low anterior tumors where the mesorectal fascia is close to the muscularis propria early T3 can still infiltrate the mesorectal fascia. Extramural vascular invasion is known to be an independent predictor of local recurrence. The presence of a tubular structure in
proximity to a T3 tumor or nodules with an irregular margin probably represents vascular invasion\[31,32\]. Recently there has been interest in the use of functional imaging such as diffusion weighted MRI imaging (DWI) and CT/PET to distinguish fibrosis from tumor\[33\].

Magnetic resonance imaging (MRI) has been found to be of improved definition of the muscularis propria. MRI is useful in identifying bowel adhesions which can be a challenge when evaluating preoperative tumors. MRI is also useful in describing the extension of tumor into adjacent structures or organs. MRI is the most common PET tracer used. Due to increased metabolic activity, and change in the tumor biology, tumors preferentially show an increased uptake which results in radiolabelling\[34\]. Although selective, FDG accumulates in areas of infection, inflammation, in organs of increased metabolic activity such as brain, myocardium, liver or kidneys leading to false positive results\[35\].

FDG uptake is also influenced by the presence of mucin. PET is useful in identifying non-mucinous tumors compared to mucinous tumors. FDG/PET is mainly useful in the assessment of local recurrence and metastatic disease when conventional imaging is not helpful\[56,57\]. Currently it is not used as a primary staging modality in rectal cancers. Interpretation of PET without anatomic correlation poses difficulties hence PET-CT fusion scans where the pictures of both investigations are fused using software is used. This offers a detailed anatomical and functional imaging and is gaining rapid popularity and acceptance. The combination provides additional value to localize the hot spots. There are some technical limitations with this combination imaging and with the false positive rates due to other disease and physiological processes. The role of PET CT fusion scan has not changed compared to PET scans.

However, a recent study has found preoperative PET
changed the management in 17% of patients\cite{59} with improved staging accuracy in combination with CT\cite{60}. Another study carried by Gearhart in 37 patients reported an altered management plan for 27% of patients using FDG-PET/CT imaging modality for low rectal cancer\cite{59}.

Staging accuracy post-neoadjuvant therapy

With the increasing use of pre-operative neoadjuvant therapy, rectal tumor re-staging is increasingly performed prior to curative resection.

A reduction in staging accuracy has been noted which may be as a result of effects of neoadjuvant treatment due to post-radiation edema, inflammation, fibrosis, and necrosis\cite{61}.

A recent study of 29 patients undergoing neoadjuvant therapy and pretreatment and post-treatment staging with CT, MRI, and PET showed that PET was 100% sensitive in predicting response to therapy (compared with 54% for CT and 71% for MRI). Corresponding specificity for predicting tumor response to treatment was 60%, 80%, and 67% for PET, CT, and MRI, respectively\cite{56}, thus suggesting a further possible role of PET in predicting response to neoadjuvant therapy.

Tumor re-staging following post-neoadjuvant therapy remains problematic and it is hoped that a combination of imaging technique (CT, MRI, and EUS) and functional (PET) imaging may improve staging accuracy.

Suggested investigations for tumor staging of rectal cancer

On review of the literature, phased array MRI and EUS should be considered as the initial modalities to stage the local tumor. A fixed, locally advanced rectal cancer may be imaged better by MRI (Figure 5), whereas EUS is more appropriate for an early mobile rectal tumor (T1-T3 lesions). MRI has been shown to be highly accurate in predicting a clear circumferential resection margin in patients undergoing TME. Although both MRI and EUS provide a comparable overall T- and N-staging, use of these modalities is limited by issues such as availability, costs and technical expertise. CT scanning, although still the current standard for distant staging, may not be an effective tool to stage the local disease. A combination of CT and PET offering a detailed anatomical and functional imaging, however, seem to be promising and gaining popularity and acceptance for recurrent rectal cancers.

Suggested investigation for nodal staging of rectal cancer

The accuracy of MRI, CT and EUS for identifying malignant nodes is poor. Current criteria are based on size, shape and morphology. Any node of 1 cm and over is taken as significant\cite{35}. The enlarged lymph node can be as a result of the inflammatory process but normal size nodes can have micrometastases. Brown et al\cite{54} found 58% of positive malignant nodes were less than 5 mm. Morphological characteristics such as round shape, irregular borders and heterogenous signal intensity suggest nodal involvement\cite{54}.

Nodal accuracy has also been found to be variable, although use of superparamagnetic iron oxide particles (SPIO) seem to be promising as evidenced by studies in head, neck and urological cancers. The technique involves use of a contrast media containing SPIO which accumulates in normal lymph nodes, whereas due to defective phagocytosis, the uptake is poor or absent in malignant nodes. Hence by using T2 weighted imaging, these nodes can be identified. Initial studies are promising but further research is needed\cite{56}.

CHOOSING THE CORRECT MANAGEMENT BASED ON STAGING IN THE ELDERLY

Over the age of 80, there is 10% mortality with rectal cancer surgery\cite{64}. Studies from Brazil have shown a complete pathological response with chemoradiation\cite{65} and it is well known that the elderly respond better to radiotherapy. Hence in a selected group of patients, imaging with EUS and MRI can identify patients who can be treated with neoadjuvant treatment and those with a complete radiological response can be followed by active surveillance with an intensive imaging protocol to identify those who recur to be considered for standard salvage surgical treatment or for local excision, thereby avoiding the risks associated with major rectal cancer surgery and possibly avoiding the need for permanent stoma and enabling organ preservation. This is possible only with high quality imaging techniques to assess the loco-regional disease.
CONCLUSION

Imaging in rectal cancer helps in deciding the treatment and determining the prognosis. The newer techniques help in superior image resolution, three-dimensional viewing, with decreased image acquisition times, minimal bowel preparation, and sometimes with functional qualities. This may be important following neo-adjuvant treatment. The most accurate method of rectal wall staging of rectal cancer is endorectal ultrasound and MRI but accurate staging of mesorectal fascia and lymph nodes is by phased array MRI. The management of rectal cancer is based on the proximity of the tumor to the mesorectal fascia. Hence the phased array MRI is the best overall technique for local staging of rectal cancer. Neoadjuvant treatment is not without risks; hence careful staging is important in obtaining good oncological and functional results and improving patient experience in the management of rectal cancer. In symptomatic patients local excision is beneficial in only 5% and this is the group which benefits most from EUS. With the introduction of colorectal screening it is felt nearly 50% of cancers may be of early stage disease which can be identified by EUS and managed by organ preserving intervention. Hence the role of EUS is likely to increase as part of the staging investigations in future and all these investigations are complementary in the management of rectal cancer.

ACKNOWLEDGMENTS

The authors would like to thank Dr. M Tce, Consultant Radiologist, Mid Cheshire Hospitals NHS Foundation Trust for providing the images used in this manuscript.

REFERENCES

1. WHO. Cancer, fact sheet number 297, World Health Organization, Geneva. 2009
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 229-249
3. Cancer Research UK. By stage at diagnosis, Cancer Research UK, London. 2009
4. Hayne D, Brown RS, McCormack M, Quinn MJ, Payne HA, Babb P. Current trends in colorectal cancer: site, incidence, mortality and survival in England and Wales. Clin Oncol (R Coll Radiol) 2001; 13: 448-452
5. Salerno G, Daniels IR, Moran BJ, Wotherspoon A, Brown G. Clarifying margins in the multidisciplinary management of rectal cancer: the MERCURY experience. Clin Radiol 2006; 61: 916-923
6. Phillips RK, Hittinger R, Blesovsky L, Fry JS, Fielding LP. Local recurrence following 'curative' surgery for large bowel cancer: II. The rectum and rectosigmoid. Br J Surg 1984; 71: 17-20
7. Heald RJ. The 'Holy Plane' of rectal surgery. J R Soc Med 1988; 81: 503-508
8. Hoppers GA, Punt CJ, Tesselaar ME, Cats A, Havenga K, Leer JW, Marijnen CA, Jansen EP, Van Krieken HH, Wiggers T, Van de Velde CJ, Mulder NH. Preoperative chemoradiotherapy with capecitabine and oxaliplatin in locally advanced rectal cancer. A phase II-II multicenter study of the Dutch Colorectal Cancer Group. Ann Surg Oncol 2007; 14: 2773-2779
9. Smith N, Brown C. Preoperative staging of rectal cancer. Acta Oncol 2008; 47: 20-31
10. McSherry CK, Cornell GN, Glenn F. Carcinoma of the colon and rectum. Ann Surg 1969; 169: 502-509
11. Tho LM, Gleeg M, Paterson J, Yap C, MacLeod A, McCabe M, McDonald AC. Acute small bowel toxicity and preoperative chemoradiation therapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys 2006; 66: 505-513
12. Beets-Tan RG, Beets GL, Borstlap AC, Oei TK, Teune TM, van Meyenfeldt MF, van Engelslohn JM. Preoperative assessment of local tumor extent in advanced rectal cancer: CT or high-resolution MRI? Ablom Imaging 2000; 25: 533-541
13. Rifkin MD, Ehrlich SM, Marks G. Staging of rectal carcinoma: prospective comparison of endorectal US and CT. Radiol 1989; 170: 319-322
14. Kwok H, Bissett JP, Hill GL. Preoperative staging of rectal cancer. Int J Colorectal Dis 2000; 15: 9-20
15. Maizlin ZV, Brown JA, So G, Brown C, Phang TP, Walker ML, Kirby JM, Vora P, Tiwari P. Can CT replace MRI in preoperative assessment of the circumferential resection margin in rectal cancer? Clin Oncol 2008; 30: 308-314
16. Burling D. CT colonography standards. Clin Radiol 2010; 65: 474-480
17. Rosman AS, Korsten MA. Meta-analysis comparing CT colonography, air contrast barium enema, and colonoscopy. Am J Med 2007; 120: 203-210.e4
18. Taylor SA, Robinson C, Boone D, Honeyfield L, Halligan S, Polyp characteristics correctly annotated by computer-aided detection software but ignored by reporting radiologists during CT colonography. Radiology 2009; 253: 715-723
19. Halligan S, Lilford RJ, Wardle J, Morton D, Rogers P, Wooldrage K, Edwards R, Kanani R, Shah U, Atkin W. Design of a multicentre randomized trial to evaluate CT colonography versus colonoscopy or barium enema for diagnosis of colonic cancer in older symptomatic patients: the SKGAR study. Trials 2007; 8: 22
20. Guinet C, Buy JN, Ghossain MA, Sezeur A, Mallet A, Bigot JM, Vadrot D, Ecolifier J. Comparison of magnetic resonance imaging and computed tomography in the preoperative staging of rectal cancer. Arch Surg 1990; 125: 385-388
21. Brown G, Radcliffe AG, Newcombe RG, Dallimore NS, Bourne MW, Williams GT. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. Br J Surg 2003; 90: 355-364
22. Beets-Tan RG, Beets GL, Vliegen RF, Kessels AG, Van Boven H, De Bruine A, van Meyenfeldt MF, Baeten CG, van Engelslohn JM. Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 2001; 357: 497-501
23. Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ 2006; 333: 779
24. Brown G. Thin section MRI in multidisciplinary pre-operative decision making for patients with rectal cancer. Br J Radiol 2005; 78 Spec No 2: S117-S127
25. Taylor FG, Swift RI, Blomqvist L, Brown G. A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. AJR Am J Roentgenol 2008; 191: 1827-1835
26. Hussain SM, Outwater EK, Siegelman ES. Mucinous versus nonmucinous rectal carcinomas: differentiation with MR imaging. Radiology 1999; 213: 79-85
27. Vliegen RF, Beets GL, van Meyenfeldt MF, Kessels AG, Le- maire EE, van Engelslohn JM, Beets-Tan RG. Rectal cancer: MR imaging in local staging— is gadolinium-based contrast material helpful? Radiology 2005; 234: 179-188
28. Brown G, Richards CJ, Newcombe RG, Dallimore NS, Radcliffe AG, Carey DP, Bourne MW, Williams GT. Rectal carcinoma: thin-section MR imaging for staging in 28 patients. Radiology 1999; 211: 215-222
29. Chen CC, Lee RC, Lin JK, Wang LW, Yang SH. How accurate is magnetic resonance imaging in restaging rectal cancer in patients receiving preoperative combined chemoradiotherapy? Dis Colon Rectum 2005; 48: 722-728
30. Ross A, Rusnak C, Weinerman B, Kuechler P, Hayashi A, Samee A et al. Current trends in staging rectal cancer
MacLachlan G, Frew E, Dunlop W. Recurrence and survival after surgical management of rectal cancer. *Ann J Surg* 1999; 177: 392-395

31 Talbot CC, Ritchie S, Leighton MH, Hughes AO, Bussey HJ, Mosser BC. The clinical significance of invasion of veins by rectal cancer. *Br J Surg* 1980; 67: 439-442

32 Smith NJ, Shihab O, Arnaout A, Swift RJ, Brown G. MRI for detection of extramural vascular invasion in rectal cancer. *AJR Am J Roentgenol* 2008; 191: 1517-1522

33 Dzik-Jurasz A, Domenic G, George M, Wolber J, Padhani A, Brown G, Doran S. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. *Lancet* 2002; 360: 307-308

34 Hünerbein M, Pegios W, Rau B, Vogl TJ, Felix R, Schlag PM. Prospective comparison of endorectal ultrasound, three-dimensional endorectal ultrasound, and endorectal MRI in the preoperative evaluation of rectal tumors. Preliminary results. *Surg Endosc* 2000; 14: 1005-1009

35 Koh DM, Brown G, Temple L, Raja A, Toomey P, Bett N, Norman AR, Husband JE. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings-initial observations. *Radiology* 2004; 231: 91-99

36 Grace RH, Hale M, Mackie G, Marks CG, Bloomberg TJ, Walker WJ. Role of ultrasound in the diagnosis of liver metastases before surgery for large bowel cancer. *Br J Surg* 1987; 74: 480-481

37 Rafaeelsen SR, Kronborg O, Larsen C, Fenger C. Intraoperative ultrasoundography in detection of hepatic metastases from colorectal cancer. *Dis Col Rectum* 1995; 38: 355-360

38 Akasu T, Kondo H, Moriya Y, Sugihara K, Gotoda T, Fujita S, Muto T, Kakei T. Endorectal ultrasonography and treatment of early stage rectal cancer. *World J Surg* 2000; 24: 1061-1068

39 García-Aguilar J, Pollack J, Lee SH, Hernandez de Anda E, Mellgren A, Wong WD, Finne CO, Rothenberger DA, Madoff RD. Accuracy of endorectal ultrasonography in preoperative staging of rectal tumors. *Dis Col Rectum* 2002; 45: 10-15

40 Akasdi GF, Casciani E, Guadalaxara A, D'Orta C, Polettini E, d'Orta C, Fabbri L, Frassica D, Rosen R, Choti M, Schulick RD, Gearhart SL, Choti MA. Preoperative positron emission tomography to evaluate potentially resectable hepatic colorectal metastases. *Arch Surg* 2006; 141: 1220-1226; discussion 1227

41 Heriot AG, Hicks RJ, Drummond EG, Keck J, Mackay J, Chen F, Kalff V. Does positron emission tomography change management in primary rectal cancer? A prospective assessment. *Dis Col Rectum* 2004; 47: 451-458

42 Gearhart SL, Frassica D, Rosen R, Choti M, Schulick R, Wahl R. Improved staging with pretreatment positron emission tomography/computed tomography in low rectal cancer. *Ann Surg Oncol* 2006; 13: 397-404

43 Moa Y, Nadler M, Barshack I, Zmora O, Koller M, Kundel Y, Fidder H, Bar-Meir S, Avidan B. Endoscopic ultrasound staging of rectal cancer: diagnostic value before and following chemoradiation. *J Gastroenterol Hepatol* 2006; 21: 454-458

44 Denecke T, Rau B, Hoffmann KT, Hildebrandt B, Ruf J, Güterbert M, Hünerbein M, Felix R, Wust P, Amthauer H. Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? *Eur J Radiol* 2005; 57: 1658-1666

45 Kim JH, Beets GL, Kim MJ, Kessels AG, Beets-Tan RG. High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size? *Eur J Radiol* 2004; 52: 78-83

46 Brown G, Richards CJ, Bourne MW, Newcombe RG, Radcliffe AG, Dallimore NS, Williams GT. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. *Radiology* 2003; 227: 371-377

47 O'Neil BD, Brown G, Heald RJ, Cunningham D, Tait DM. Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. *Lancet Oncol* 2007; 8: 625-633

48 Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, Silva e Sousa AH Jr, Campos FG, Kiss DR, Cama-Rodrigues J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. *Ann Surg* 2004; 240: 711-717; discussion 717-718

Samee A et al. Current trends in staging rectal cancer