Semi-mechanistic pharmacokinetic and pharmacodynamic modelling of piperaquine in a volunteer infection study with *Plasmodium falciparum* blood-stage malaria

Thanaporn Wattanakul a, Mark Baker b, Joerg Mohrle c, Brett McWhinney d, Richard M. Hoglund e, James S. McCarthy f, g, Joel Tarning a, c #

a Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

b Department of Clinical Pharmacology, ViiV Healthcare, Geneva, Switzerland

c Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland.

d Analytical Chemistry Unit, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia

e Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

f QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

g School of Medicine, The University of Queensland, Brisbane, QLD, Australia

Keywords: *P. falciparum* malaria, piperaquine, population pharmacokinetic-pharmacodynamic model, controlled human malaria infection, induced blood stage malaria

Running title:

Piperaquine PK/PD in induced blood stage malaria

#Address correspondence to Professor Joel Tarning, joel@tropmedres.ac
Abstract

Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for *Plasmodium falciparum* malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that could be used to optimize the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated 1,800 blood-stage *P. falciparum* parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by qPCR, and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modelling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. Pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semi-mechanistic parasite dynamics model was developed to explain maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with *falciparum* malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (E_max) function. Treatment simulations (i.e. 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥10^7 per life cycle (38.8 h) with a duration of action of ≥ 2 weeks. The semi-mechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool to assess and optimize current and new antimalarial drug combinations therapies containing piperaquine, and the impact of these therapies on killing multidrug resistant infections.
Introduction

Dihydroartemisinin-piperaquine is one of the recommended first-line artemisinin-based combination therapies (ACTs) for uncomplicated *Plasmodium falciparum* malaria. In this antimalarial combination therapy, dihydroartemisinin serves as the rapid acting component and piperaquine as a long acting partner drug. The ongoing emergence of resistance to both artemisinin and its partner drugs is threatening malaria control and eradication (1). The presence of resistance to artemisinin alone is considered as a partial resistance because parasites remain sensitive to the partner drug, resulting in cure. However, in this circumstance artemisinin resistance requires the partner drug to clear a higher residual parasite biomass, which risks the emergence of resistance to the partner drug. Therefore, artemisinin resistance contributes to the emergence of multidrug resistant parasites and to increased rates of treatment failure.

Resistance to artemisinin derivatives has been reported in the South-East Asia region, i.e. Cambodia, Lao People’s Democratic Republic, Thailand, Myanmar and Vietnam (1-3). Additionally, in 2016, a multisite prospective cohort study in Cambodia (4) demonstrated that patients with recrudescence presented with parasites with significantly decreased piperaquine susceptibility than patients without recrudescence (mean piperaquine 50% inhibitory concentration [IC_{50}] = 64.0 versus 21.4 ng/ml, *P* value = 0.0002). In a separate study, a genome-wide association analysis of *Plasmodium falciparum* isolates from Cambodia demonstrated that amplification of genetic markers of piperaquine resistance, such as *exo-E415G* SNP and *plasmepsin* 2–3, was significantly associated with decreased treatment efficacy (5). Therefore, artesunate plus mefloquine has been substituted as a new first-line ACT in some Cambodian provinces (5). To counteract the emergence of drug resistance, clinical trials have been undertaken (6) to assess the efficacy of triple ACTs, such as dihydroartemisinin-piperaquine plus mefloquine, artemether-lumefantrine plus amodiaquine, and arterolane-piperaquine plus
mefloquine. Additionally, a combination of the novel ozonide antimalarial artefenomel with piperaquine is under investigation (7).

Piperaquine is a 4-aminoquinoline antimalarial drug with whose clinical pharmacology is characterized by a long terminal elimination half-life (20–28 days), and a large between-patient variability in the pharmacokinetic profile in different subpopulations (8-11). Although its pharmacokinetic properties have been studied extensively, its pharmacodynamic properties in humans are less well studied, with available pharmacodynamic information (e.g., EC₅₀) being mostly extrapolated from in vitro data (5, 12, 13), which might not always represent the pharmacodynamic properties in humans. Pharmacodynamic models of piperaquine in patients have been published previously in P. vivax malaria (14) and in chemoprevention of seasonal malaria (15). Knowledge of its key pharmacodynamic parameters in humans (e.g., EC₅₀) would provide information to improve current treatments using ACTs, and assist dose selection in new antimalarial therapies (e.g. triple combinations).

The induced blood stage malaria (IBSM) model has been extensively used to investigate the activity in humans of antimalarial drugs, including piperaquine (16). In the IBSM model, healthy volunteers are inoculated with P. falciparum-infected erythrocytes; this allows the evaluation of the activity of antimalarial drugs against the asexual blood stages of the parasites. Moreover, the IBSM model allows the investigation of parasite dynamics both before and after the antimalarial drug treatment, something that is not possible with data from field studies where only parasite elimination can be studied.

The aim of this study was to develop a pharmacokinetic-pharmacodynamic model describing the parasite dynamics in healthy volunteers inoculated with blood stage P. falciparum parasites using the IBSM model. The pharmacokinetic-pharmacodynamic model that was developed was then
used to predict treatment failures in the presence of multidrug resistant infections, and characterize the ideal partner drug for triple-combination therapy for these infections.

Results

Population pharmacokinetic model of piperaquine

A total of 475 piperaquine plasma concentrations were collected from 24 participants from 4 cohorts (Fig. 1). The characteristics of participants are showed in Table 1. Piperaquine concentrations were measured to be above the lower limit of quantification in all plasma samples. The pharmacokinetic properties of piperaquine were best described by a three-compartment disposition model, characterizing the triphasic disposition of the drug (difference in objective function value; ΔOFV = −41.3; 2 degrees of freedom (df), compared to two-compartment disposition model). An additional disposition compartment for piperaquine did not improve the model fit (ΔOFV = 0). The absorption process was best described by two-transit compartments, resulting in a substantial improvement compared to a traditional first-order absorption model (ΔOFV = −230; 0 df). Inter-occasion variability (IOV) was evaluated on absorption parameters, i.e. relative bioavailability (F) and mean absorption transit time (MTT), which improved the model fit significantly (ΔOFV = −37.8; 2 df). An additive error model described the data accurately, and a combined additive and proportional error model did not improve the model fit (ΔOFV = 0.05). Implementation of body weight, using an allometric function, improved the model (ΔOFV = −4.44; 0 df). No additional significant covariates were found during the stepwise covariate search. The model evaluations indicated satisfactory results, with no obvious trends in the goodness of fit plots (Fig. S1 A–D). Similarly, the visual predictive check (Fig. S1 E) demonstrated a good predictive performance of the model. The numerical predictive check ($n = 2,000$) showed that 3.2% (95% confidence interval [CI]: 1.5–10.1%) of
piperacrine observations were below the simulated 90% prediction interval, and 5.1% (95% CI: 1.3–9.9%) were above. The bootstrap results demonstrated acceptable robustness of the piperacrine population pharmacokinetic model. The final pharmacokinetic parameter estimates of piperacrine, with precision and shrinkage are summarized in Table 2.

P. falciparum parasite growth model

A recently published pooled analysis of parasite growth data from malaria volunteer infection studies, performed using a larger dataset including results from this study, reported a parasite life cycle of 38.8 h (17). Thus, the parasite life cycle was fixed to 38.8 h in all growth models evaluated in the current study. A total of 8.82% of the observed parasite density values were below the lower limit of detection (LOD), and these data were successfully handled using the M3 method (15). Three parasite growth models were evaluated, as described below.

Log-linear growth model and sine-wave growth model

The parasite growth rate \(k_G \) estimated from a log-linear growth model was 0.066 h\(^{-1}\), equivalent to a parasite multiplication rate per life cycle \(\text{PMR}_{LC} \); parasite multiplication rate, equivalent to the number of new merozoites released from 1 schizont) of 12.9–fold (95% CI: 11.5–14.3).

Adding inter-individual variability on parasite life cycle improved the model fit \(\Delta \text{OFV} = -6.29; 1 \text{ df} \). Additional inter-individual variability on \(k_G \) did not improve the model fit further \(\Delta \text{OFV} = 0.002; 1 \text{ df} \). For the sine-wave growth model, parasite growth rate \(k_G \) was estimated at 0.065 h\(^{-1}\), equivalent to \(\text{PMR}_{LC} \) of 12.6–fold (95% CI: 11.1–14.0). The sine-wave growth model improved the model fit compared to the log-linear model \(\Delta \text{OFV} = -69.7, \text{ difference in Bayesian information criterion; } \Delta \text{BIC} = -59.5 \). Adding inter-individual variability on \(k_G \) improved the model fit \(\Delta \text{OFV} = -20.0; 1 \text{ df} \). Additional inter-individual variability on parasite life cycle did not improve the model fit further \(\Delta \text{OFV} = 0.03; 1 \text{ df} \). The final parameter estimates of the log-linear growth model and the sine-wave growth model are summarized in Table S1 and S2.
respectively. The goodness-of-fit of the growth phase data using log-linear and sine-wave growth models showed an acceptable overall goodness-of-fit with no obvious systematic model miss-specifications (Fig. S2).

Semi-mechanistic growth model

A semi-mechanistic growth model mimicking the natural *P. falciparum* malaria parasite life cycle was developed. The rate constant of parasite maturation (k_{MAT}) and the rate constant of schizont rupture (k_{RUP}) were fixed to an arbitrary high value of 2, in order to ensure that all parasites matured from being young rings to mature parasites and that schizont rupture took place at 38.8 h (resulting in parasite multiplication). The fraction of parasite sequestration (F_{SQ}) was not identifiable with the data available. A sensitivity analysis of F_{SQ} was performed by fixing this parameter, ranging from 40–90% with 10% increase each time. No alteration was observed in the OFV or in model goodness-of-fit diagnostics, suggesting identifiability issues of F_{SQ}. However, the observed growth phase data showed a recurring 10-fold drop in total circulating parasites (P_{CIR}), suggesting that the fraction of parasite sequestration should be approximately 90%. Thus, the F_{SQ} was fixed to 90% according to these observations. The onset of sequestration (T_{SQ}) was estimated to be at 29.1 h (95% CI: 27.7–29.7 h). Parasite growth rate was estimated to be $0.0710 \, h^{-1}$ (95% CI: 0.0682–0.0771 h^{-1}), equivalent to PMR$_{LC}$ of 15.7–fold (95% CI: 14.1–19.9). Adding inter-individual variability on parasite life cycle and PMR$_{LC}$ improved the model fit (ΔOFV = -48.6; 2 df).

The developed semi-mechanistic growth model described the observed data well and the goodness-of-fit of the semi-mechanistic growth model demonstrated a better model fit compared to the log-linear growth model (ΔOFV = -33.2, ΔBIC = -22.9), and also in terms of describing the net decrease in total circulating parasite number, a consequence of parasite sequestration (Fig. S2). The semi-mechanistic growth model did not result in a better model fit, in terms of...
ΔOFV and ΔBIC, compared to the sine-wave growth model (ΔOFV = 36.5, ΔBIC = 36.5), but demonstrated a similar goodness-of-fit. However, the semi-mechanistic growth model gave some advantages by describing the maturation of parasites, sequestration of mature parasites, synchronicity of infections (i.e., synchronous parasite maturation and multiplication resulting in periodic bursts of red blood cells and the release of young parasites), and multiplication of parasites, as described in natural infections with *P. falciparum*. These advantages provided additional flexibility to investigate drug effects on specific stages of parasite life cycle. Thus, the semi-mechanistic growth model was carried forward for further investigation. The final parameter estimates with precision and shrinkage of model parameters are presented in Table 3.

In vivo parasiticidal effect of piperaquine

The pharmacokinetic-pharmacodynamic model was developed to investigate *in vivo* parasiticidal effect of piperaquine. The schematic of the final pharmacokinetic-pharmacodynamic model is shown in Fig. 2. The parasiticidal effect of piperaquine (EFF) was added as a direct effect (Equation 14–15 in methods) to the mature parasite compartments (P2 and P3), describing the drug-dependent parasite elimination adequately. The model estimated the maximum parasite killing rate of piperaquine (E_{max}) to be 0.289 h$^{-1}$ (95% CI: 0.262–0.323 h$^{-1}$) with an estimated EC_{50} of 5.43 ng/ml (95% CI: 1.68–7.33 ng/ml), resulting in a median parasite reduction ratio per life cycle (PRR$_{LC}$) of 2.68×102, 2.89×102, 3.02×102 when piperaquine was given as a single dose of 480, 640, and 960 mg piperaquine phosphate, respectively. The median minimum inhibitory concentration (MIC) of piperaquine derived from the 24 healthy volunteers was 2.87 ng/ml (95% CI: 1.87–18.3 ng/ml). The goodness-of-fit diagnostics of the final pharmacokinetic-pharmacodynamic model are presented in Fig. S3, simulation-base diagnostics (i.e. visual predictive checks) are presented in Fig. 3, and individual plots of the final pharmacokinetic-
pharmacodynamic model are presented in Fig. S4. Parameter estimates from the final pharmacokinetic-pharmacodynamic model are presented in Table 3.

Simulations of clinical scenarios
In order to simulate treatment scenarios of drug resistant infections, dihydroartemisinin was used as a representative artemisinin derivative. The parasiticidal effect of dihydroartemisinin was adjusted based on the observed parasite clearance half-life from the Tracking Resistance to Artemisinin Collaboration (TRAC) study data (22). The adjusted dihydroartemisinin E_{max} values were 0.477 h$^{-1}$ and 0.216 h$^{-1}$ for sensitive and resistant infections, respectively (Fig. S5).

Varying degrees of piperaquine resistance were represented by doubling (10.9 ng/ml), tripling (16.3 ng/ml), and quadrupling (21.7 ng/ml) of the estimated EC$_{50}$ of sensitive parasites (5.43 ng/ml). In a symptomatic infection (initial total circulating parasites = 10^{10}), these simulations predicted a similar probability of treatment failure in piperaquine resistance alone compared to dihydroartemisinin resistance alone (2.58% versus 1.81%). The probability of treatment failure increased with multidrug resistant infections, resulting in 23.6% treatment failures in the presence of dihydroartemisinin resistance and high-degree of piperaquine resistance (EC$_{50}$ of 21.7 ng/ml). A similar trend of treatment failure was predicted in asymptomatic infections (initial total circulating parasites = 10^{6}). The summary of treatment failure probability of each drug resistant scenario is presented in Table 4. Additionally, simulations to inform on suitable pharmacokinetic-pharmacodynamic characteristics for candidate partner drugs used in triple-combination therapy demonstrated that the addition of a hypothetical drug with a PRR$_{EC}$ of $\geq 10^2$ and total therapeutic duration of ≥ 2 weeks had $> 99\%$ probability of successful treatment. The summary of treatment failure probability with simulated hypothetical partner drug activities against multidrug resistant infections are presented in Table 5.
Discussion

In the present study, a semi-mechanistic growth model describing *P. falciparum* parasite dynamics was successfully developed. The integration of piperaquine pharmacokinetics and parasite dynamics using data from a study conducted using the IBSM model allowed the estimation of the *in vivo* pharmacodynamic parameters of piperaquine.

The PMR_{LC} estimated from the log-linear growth model (12.9, 95% CI: 11.5–14.3), the sine-wave growth model (12.6, 95% CI: 11.1–14.0), and the semi-mechanistic growth model (15.7, 95% CI: 14.1–19.9) were all similar to those reported in a pooled analysis of growth data (16.4, 95% CI: 15.1–17.8) (17), and also similar to the approximately 10-fold multiplication rate reported in natural infections (18, 19). During parasite growth model development, the log-linear and cosine-wave models estimated F_{SUR} to be less than 1% with high relative standard error of 57% and 41%, respectively. The semi-mechanistic growth model estimated F_{SUR} to be 5.4% with a relative standard error of 19%. Pooling data from several QIMR studies, a separate pharmacokinetic/pharmacodynamic model estimated the fraction of survival for inoculated parasites to be 5%. In order to avoid bias when comparing parasite growth models and the difficulties in estimating this parameter from the available data, F_{SUR} was fixed to 5% based on our semi-mechanistic growth model and the unpublished model from QIMR.

In the semi-mechanistic growth model, the mean starting time point of parasite sequestration was estimated at 29.1 h. Sequestration is not likely to start at the exact same time in all individuals, but the estimated inter-individual variability in this parameter was large with low precision. This is most likely due to the limited number of measurements of parasitemia across the parasite.
lifecycle. Thus, inter-individual variability was only retained in the length of the parasite life cycle and parasite multiplication rate in the final semi-mechanistic growth model.

The parasiticidal effect of piperaquine on *P. falciparum* predominantly affects late stage parasites (trophozoites and schizonts) (20-22). Therefore, the parasiticidal effect of piperaquine was assumed to be against only the late stage parasites in the semi-mechanistic growth model, both in peripheral circulation and in the sequestered vascular compartment. The goodness-of-fits and individual fits demonstrated that the developed model described the observed data adequately both in recrudescent and non-recrudescent individuals. Simulation-based diagnostics of the final pharmacokinetic-pharmacodynamic model demonstrated a good predictive performance of cured individuals, but the simulated prediction intervals of individuals with recrudesce showed relatively large variability. This could be explained by the small proportion of recrudescent data available in this study.

The estimated in *vivo* EC$_{50}$ of 5.43 ng/ml (95% CI: 1.68–7.33 ng/ml) was similar to the mean IC$_{50}$ values of piperaquine against the 3D7 parasite strain, reported in two *in vitro* susceptibility studies (1.69–7.34 ng/ml) (23, 24). However, this estimated in *vivo* EC$_{50}$ was lower than the *in vitro* IC$_{50}$ value reported for sensitive infections in the field. The *in vitro* IC$_{50}$ of piperaquine reported in 2011 in three sites in Cambodia were 10.7 ng/ml (IQR: 7.34–15.5 ng/ml) in Ratanakiri, 10.3 ng/ml (IQR: 8.09–14.0 ng/ml) in Preah Vihear, and 10.5 ng/ml (IQR: 6.37–18.2 ng/ml) in Pursat (5). The lower estimated EC$_{50}$ in this study compared to IC$_{50}$ values reported in the field might be partially explained by the different genetic background of the parasites, i.e. the 3D7 strain used in the current study was originally isolated from Africa, and is sensitive to chloroquine and to several antimalarial drugs including piperaquine (23-25). The median PRR$_{LC}$ derived from the final pharmacodynamic model was 2.68×102–3.02×102 at standard therapeutic
doses. This is similar to the 48 h parasite reduction ratio (PRR_{48}) of 10^2–10^5 reported in literature (26, 27), which correspond to a PRRLC of approximately 4.14×10^1–1.10×10^4 when corrected for a shorter life cycle length. However, the reduction ratio reported in the present study is in the lower end of what has been reported in literature. This can be explained by several factors such as the synchronicity of the infection, potential differences between the laboratory strain used in this model and clinical isolates (e.g. parasite life cycle, parasite multiplication rate, and parasite susceptibility to piperaquine), and the difference in background immunity in malaria naïve volunteers versus patients from malaria endemic regions with pre-exposure to malaria.

Simulations of multidrug resistant scenarios predicted a probability of treatment failure that was somewhat lower than that reported in the clinical settings in Cambodia, especially in the scenario with an extremely resistant infection (i.e. 4-fold increase in EC50 as reported in Pursat). The rates of clinical recrudescence reported from this study in 2013 were 2%, 16%, and 46% in Ratanakiri, Preah Vihear, and Pursat. The in vitro IC50 of piperaquine in these 3 study sites was increased by approximately 2-, 3-, and 4-fold, respectively, in 2013 compared to the values reported in 2011 (4, 5). Assuming the same increase in EC50 in the present study resulted in simulated failure rates of 8.1%, 15.2%, and 23.6%. The difference in predicted proportion of treatment failures versus observed clinical failure rates could possibly be a result of difference in parasite dynamics as discussed above and/or the pharmacokinetic properties of piperaquine, which might differ between healthy volunteers and patients. Differences in treatment adherence could also partly explain the difference. Moreover, the assumption of the model with respect to dihydroartemisinin parasite killing effect (E_{max}), based on the parasite clearance half-life values associated with artesunate in sensitive and resistant infections from a previous study (28), might not be a perfect representation of dihydroartemisinin resistance occurring in the field. The simulations in the
current study enabled prediction of the probability of treatment failure when an additional partner drug was added to the conventional dihydroartemisinin-piperaquine regimen. This could help with the selection of new combination therapies and optimizing of dosing regimens. In all simulations of treatment failures, an additive drug effect was assumed for drugs included in the treatment. We believe this is the most conservative approach, considering the limited information available on drug synergisms/antagonisms of antimalarial drugs. However, applying a different drug interaction could yield different results. A previous study (29) showed that a model incorporating different magnitude of interactions between antimalarial drugs, using dihydroartemisinin-piperaquine plus mefloquine as an example, predicted a reduced probability of treatment cure when the level of antagonism between piperaquine and mefloquine was high.

Some limitations of the semi-mechanistic model developed in the current study include characterization of the fraction of sequestered parasite (F_SQ), and the relatively high uncertainty in estimation of the time to sequestration. These issues could be overcome by more frequent measurements of parasite densities during the growth phase. Furthermore, stage-specific parasite measurements could also enhance the robustness and reliability of the model. The semi-mechanistic growth model resulted in improved model fit compared to the log-linear model, but did not result in a better model fits, in terms of ∆OFV and ∆BIC, compared to the sine-wave growth model. Nevertheless, we believe that a semi-mechanistic growth model, based on observed biological processes in the parasite life cycle, is preferable to an empirical description of the data and a more useful tool for translational simulations. Especially since the developed semi-mechanistic model can be modified to include antimalarial drugs with different mechanism of action (i.e. drug effect can be incorporated at different stages in the parasite life-cycle depending on the mechanism of action). Another limitation is the potential differences between
the *P. falciparum* strain used in the IBSM model (3D7), and those in patients with clinical malaria. If the *P. falciparum* strain used in the IBSM model is more drug susceptible than the strains in clinical infections, this would lead to an over-estimation of the drug-mediated killing of parasites. However, the pharmacokinetic-pharmacodynamic model structure, incorporating a semi-mechanistic growth model, allows the flexibility to evaluate drug effects to a specific stage of the parasite life cycle. Furthermore, the model explained the processes described in natural *P. falciparum* malaria infections, including maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites. The implementation of this model structure to growth phase data from a large pool of malaria volunteer infection studies could further confirm the robustness of the model, and hopefully allow for all model parameters to be estimated.

In conclusion, an *in vivo* semi-mechanistic model of parasite growth and clearance was developed in participants inoculated with *P. falciparum* malaria, and model parameters (*E_{max}, EC_{50}, and PRR_{LC}) associated with piperaquine pharmacokinetic-pharmacodynamic effects were estimated. This semi-mechanistic parasite model provides important insights, and could be an important tool in the development of novel triple-combination therapies and for dose optimization of piperaquine and other antimalarial drugs.

Methods

Study design

Pharmacokinetic and pharmacodynamic data was collected from 24 healthy volunteers who participated in a previously described phase-Ib single center clinical trial (26). In brief, the study was conducted at the contract research organization Q-Pharm (Brisbane, Australia). Malaria-naïve subjects aged 18–50 years old who met all of the inclusion and none of the exclusion...
criteria were eligible to enroll in the study. The study protocol was approved by the QIMR Berghofer Human Research Ethics Committee and was registered in the Australian and New Zealand Clinical Trials Registry (ANZCTR12613000565741). Eligible participants were intravenously inoculated with approximately 1,800 viable *P. falciparum*-infected human erythrocytes (chloroquine-susceptible 3D7 strain) on day 0. A single dose of piperaquine was given to participants in four different cohorts. The doses of piperaquine phosphate were 960 mg (cohort 1), 640 mg (cohort 2), and 480 mg (cohorts 3a and 3b). Piperaquine was administered on day 7 (cohort 1 and 3b, *n* = 11) or day 8 (cohort 2 and 3a, *n* = 13) after inoculation. The parasite density in inoculated participants was quantified using a quantitative PCR (qPCR) that targets the *P. falciparum* 18S ribosomal RNA gene. Treatment for malaria recrudescence consisted of artemether-lumefantrine in cohorts 1 and 2 and a second dose of piperaquine (960 mg) in cohorts 3a and 3b. At the end of the study, artemether-lumefantrine was given to all participants as a curative malaria treatment. Plasma concentrations of piperaquine were measured using liquid chromatography and mass spectrometry. The plasma samples were collected before piperaquine administration and at 0.5, 1, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, 144 hours after piperaquine administration, and then 8, 11 and 14 days after treatment, and at the end of study (day 28 for cohorts 1 and 2, day 37 for cohort 3a, and day 35 for cohort 3b). For cohorts 3a and 3b, an additional sample was taken 18 days after piperaquine administration. The range of the assay was 0.5–1000 µg/l for piperaquine. The coefficient of variation across four different concentration levels was 1.2–4.4% (*n* = 10) for the intra-assay and 2.5–6.6% (*n* = 10) for the inter-assay comparisons. The accuracy of the assay was 97–104% (*n* = 10).

Pharmacometric analysis

The population pharmacokinetic and pharmacodynamic analysis was performed using nonlinear mixed-effects modelling in NONMEM, version 7.4 (Icon Development Solution, Ellicott City, Maryland).
MD). RStudio version 1.2.1335 (31), Xpose version 4.0, Pirana version 2.9.4 (32), and Pearl-speaks-NONMEM (PsN) version 4.7.0 (33) were used for model diagnostics and visualization of results. Piperaquine base plasma concentrations were transformed into their natural logarithms prior to pharmacokinetic model development. None of the samples had piperaquine concentrations measured to be below the lower limit of quantification. The first-order conditional estimation method with interaction (FOCE-I) was used throughout the pharmacokinetic model building process. The average parasite density from qPCR measurements (parasites/ml) were transformed into the total circulating parasites (P_{CR}; parasites) prior to pharmacodynamic model development (Equation 2). The calculated total circulating parasite densities were transformed into their natural logarithms prior to pharmacodynamic model development. qPCR measurements below LOD (1 parasite/ml) were treated as categorical data and were modelled simultaneously with the reported continuous parasite density data above LOD, using the M3 method (34). Pharmacodynamic parameters were estimated using the FOCE-I and the Laplacian method (35). The difference in objective function value (ΔOFV) was used as a statistical criterion for discrimination between nested models. The difference in Bayesian information criterion (ΔBIC) was used when comparing non-nested models (36).

The descriptive performance of the model was assessed by goodness-of-fit diagnostics, and the predictive performance of the model was evaluated by simulation-based diagnostics. Eta and epsilon shrinkages were used to evaluate the reliability of the individual estimates and the ability to detect model misspecification in the goodness-of-fit diagnostics (37). The predictive performance of the final model was illustrated by visual and numerical predictive checks (n = 2,000). The 5th, 50th, and 95th percentile of the observed concentrations was overlaid with the 95% CI of each simulated percentile to detect model bias. Model robustness and non-parametric CI were evaluated using a bootstrap methodology (n = 1,000).
Population pharmacokinetic model of piperaquine

Pharmacokinetic parameters were assumed to be log-normally distributed and inter-individual variability was therefore implemented with an exponential function. Inter-occasion variability, also implemented with an exponential function, was investigated to reflect the random variability between dosing occasions. An additive error model and a combined additive and proportional error model, both on the logarithmic scale, were evaluated. To evaluate the effect of body size on the pharmacokinetic properties of piperaquine, body weight was implemented as an allometric function on all clearance and volume of distribution parameters (Equation 1).

\[
\theta_i = \theta \times e^{\eta_i} \times \left(\frac{BW_i}{BW_{median}} \right)^n
\]

where \(\theta_i \) denotes individual clearance or individual volume of distribution parameter, \(\theta \) denotes the typical value (population mean) of clearance or volume parameters, \(BW_i \) denotes individual body weight, \(BW_{median} \) denotes median body weight of the participants, and \(n \) was set to be equal to 0.75 for clearance parameters and 1 for volume parameters. Additional covariate relationships including age, sex, and race were examined using a stepwise forward inclusion (\(P \) value < 0.05, \(\Delta \text{OFV} = -3.84 \)), followed by stepwise backward elimination (\(P \) value > 0.001, \(\Delta \text{OFV} = -10.83 \)) procedure.

P. falciparum parasite growth model

The initial total circulating parasites was fixed to 1,800 parasites (equivalent to the approximate number of viable inoculated parasites) for all investigated parasite growth models, and the fraction of parasite survival (\(F_{\text{SUR}} \)) after inoculation was fixed to 5\%, based on results from a pharmacokinetic/pharmacodynamic model using pooled induced blood stage malaria data at
QIMR (unpublished work). The parasite life cycle was fixed to 38.8 h (17). The average parasite density from qPCR measurements (parasites/ml) at each time point were transformed to the number of total circulating parasites (P_{CIR}) based on individual body weight multiplied by the average blood volume which was assume to be 80 ml/kg (Equation 2) (38).

$$P_{CIR} = \text{average parasite density (parasites/ml)} \times \text{body weight (kg)} \times 80 \text{ (ml/kg)} \quad (2).$$

The calculated number of total circulating parasites was transformed into natural logarithms for parasite dynamic model development. Initially, only the growth phase data was used to develop the parasite growth model (Fig. S5). Three different types of models were evaluated; log-linear growth model, sine-wave growth model, and a semi-mechanistic growth model. The parasite dynamic model that best described the observed data was carried forward to evaluate parasite dynamics after piperaquine administration. The details of each parasite growth model are described below.

Log-linear growth model and sine-wave growth model

The log-linear growth model used to describe parasite growth data was implemented using a differential equation to explain the change of parasite density with time (Equation 3).

$$\frac{dP_{CIR}}{dt} = P_{CIR} \times k_G \quad (3),$$

where P_{CIR} denotes the number of total circulating parasites (parasites) and k_G denotes parasite growth rate (h$^{-1}$). The sine-wave model used in the previously published pooled analysis of parasite growth data from volunteer infection studies (17) was implemented to describe parasite growth data in the current study (Equation 4).

$$\ln(P_{CIR}) = a + k_G \times \text{time} + C \times \sin\left(\frac{2\times R}{T_{PC}} \times \text{time} + k\right) \quad (4),$$
where, $\ln(P_{\text{CIR}})$ denotes the natural logarithm of total circulating parasites (parasites), a denotes y-intercept (i.e. the P_{CIR} at time zero), time denotes time after parasite inoculation (h), C denotes sine-wave amplitude, T_{PC} denotes duration of the parasite life cycle (fixed to 38.8 h), and k denotes sine-wave phase shift. The overall parasite multiplication rate per life cycle (PMR_{LC}) from the log-linear growth and sine-wave growth model was calculated using the estimated parasite growth rate and the duration of the parasite life cycle (Equation 5).

$$PMR_{\text{LC}} = e^{(T_{\text{PC}} \times k)}$$ (5).

Semi-mechanistic growth model

The semi-mechanistic model was developed based on prior knowledge of *P. falciparum* life cycle. Time windows corresponding to *P. falciparum* parasite stages were based on the microscopic observations previously reported (39). These time windows were corrected for a shorter life cycle length used in the current study (38.8h). The proposed model consisted of three parasite compartments (Fig. 4). The first parasite compartment (P1) represents the small rings that are circulating in the peripheral blood. The second parasite compartment (P2) represents the large rings, trophozoites, and schizonts that are also circulating in the blood. These two parasite compartments represent the total circulating parasites in the peripheral blood, which can be measured by qPCR and microscopy. However, the total parasite biomass also includes sequestered parasites, which attach to endothelial cells. The third parasite compartment (P3) represents the sequestered parasites. Thus, combining the parasite number in all parasite compartments (P1, P2, and P3) yield a total parasite biomass in the body.

Three square-wave functions were used to regulate the movement of the parasites between each compartment at specific time periods (REG1, REG2, and REG3). These square-wave functions were set to change from 0 to 1 (i.e. “on-and-off”) during certain time periods to move parasites...
between the different parasite compartments. These square-wave functions were described by the following equations (Equation 6-8).

\[S_1 = \sin \left(\frac{\pi \left(\frac{2\pi \times SH_1}{TPC} \right)}{2} \right) \]

(6),

\[S_2 = \sin \left(\frac{2\pi \times (time)}{TPC} + \left(\frac{\pi \left(\frac{2\pi \times SH_1}{TPC} + SH_2 \right)}{2} \right) \right) \]

(7),

\[REG = \sqrt{\frac{(S_2-S_1)^2 - (S_2-S_1)}{2\times\sqrt{(S_2-S_1)^2}}} \]

(8),

where \(S_1 \) denotes the first sine-wave function, \(S_2 \) denotes the second sine-wave function, \(SH_1 \) denotes time when the function remains in state 0 (h), \(SH_2 \) denotes the peak shift time from state 0 to 1, \(TPC \) denotes duration of the parasite life cycle (fixed to 38.8 h), and \(REG \) denotes the square-wave function regulating parasite movement. \(SH_1 \) and \(SH_2 \) values used to generate each square-wave function (\(REG_1 \) to \(REG_3 \)) for each parasite compartment were based on time windows corresponding to \(P. falciparum \) parasite stages (Silamut, 1999). Details on how these functions were implemented in the model are shown in the supplementary material (NONMEM code).

In the semi-mechanistic growth model, the parasite number in \(P_1 \) was initialized with 1,800 parasites according to approximate number of viable inoculated parasites. The parasites in \(P_1 \) mature over time and start moving to \(P_2 \) at 9.7–19.4 h (\(REG_1 \)), and at 19.4 h the entire parasite population in \(P_1 \) has moved to \(P_2 \). The parasites in \(P_2 \) continue to mature to schizonts, and either stay in \(P_2 \) or cytoadhere to the vascular endothelium and move to \(P_3 \) (sequestration). The sequestration of parasites was regulated (\(REG_2 \)) to occur during the latter half of the parasite lifecycle 19.4–38.8 h, since sequestration begins at the large ring stage (40, 41). At the end of the
parasite life cycle (38.8 h), the matured schizonts in P2 and P3 rupture and release new merozoites back to compartment P1 (REG_3). The PMR_LC associated with the rupture of schizonts was estimated. This semi-mechanistic growth model was described by the following differential equations system (Equation 9-11).

\[\frac{dP_1}{dt} = -P_1 \times k_{MAT} \times REG_1 + (P_2 + P_3) \times k_{RUP} \times REG_3 \times PMR_{LC} \] \hspace{1cm} (9),

\[\frac{dP_2}{dt} = P_1 \times k_{MAT} \times REG_1 - P_2 \times k_{SQ} \times REG_2 - P_2 \times k_{RUP} \times REG_3 \] \hspace{1cm} (10),

\[\frac{dP_3}{dt} = P_2 \times k_{SQ} \times REG_2 - P_3 \times k_{RUP} \times REG_3 \] \hspace{1cm} (11),

where \(k_{MAT} \) denotes the first-order rate constant for small rings to become mature parasites, \(k_{SQ} \) denotes the first-order rate constant for parasite sequestration, \(k_{RUP} \) denotes the first-order rate constant of schizont rupture, \(REG_1, REG_2, \) and \(REG_3 \) denote the square-wave functions regulating the time and duration of parasite movement in each parasite compartment. Details of the square-wave functions used to regulate parasite movement are presented in the Fig. 4. In order to describe the parasite sequestration in a quantitative manner, the parasite sequestration rate was parameterized as a fraction of sequestered parasites (Equation 12).

\[k_{SQ} = \frac{\ln\left(\frac{100}{(100-F_{SQ})}\right)}{T_{PC}-(T_{SQ})} \] \hspace{1cm} (12),

where \(F_{SQ} \) denotes the fraction of sequestered parasite (%) and \(T_{SQ} \) denotes the onset of parasite sequestration (restricted to be between 19.4–38.8 h).

In vivo parasiticidal effect of piperaquine

The model that best described the parasite growth dynamics was carried forward and linked to the pharmacokinetic model of piperaquine. The final parameter estimates from the best performed model was used to impute individual growth time-profiles. All total circulating parasite data, including the total circulating parasites after piperaquine administration was used
to estimate the parameters associated with the drug-dependent parasite elimination (Fig. S3). The parasiticidal effect of piperaquine was implemented as an E_{max} function (Equation 13).

$$EFF = \left(E_{\text{max}} \times \frac{C_P^\gamma}{C_P^\gamma + EC_{50}^\gamma} \right) \quad (13),$$

where EFF denotes the parasiticidal effect of piperaquine (h$^{-1}$), E_{max} denotes the maximum parasite killing rate of piperaquine (h$^{-1}$), C_P denotes piperaquine plasma concentration (ng/ml), EC$_{50}$ denotes the plasma concentration of piperaquine (ng/ml) associated with half of maximum parasite killing rate, and γ denotes the hill factor. Piperaquine was assumed to have an effect on the later stages of blood stage parasites (P2 and P3 compartment) based on previously published information (20, 21). The implementation of the drug effect was described by the following differential equations system (Equations 14–15). Cure was assumed to be achieved when the total parasite biomass (P1+P2+P3) was less than 1 parasite, triggering the PMR$_{LC}$ to be 1 (i.e. resulting in no parasite growth).

$$\frac{dP2}{dt} = P1 \times k_{MAT} \times REG_1 - P2 \times k_{SQ} \times REG_2 - P2 \times k_{RUP} \times REG_3 - P2 \times EFF \quad (14),$$

$$\frac{dP3}{dt} = P2 \times k_{SQ} \times REG_2 - P3 \times k_{RUP} \times REG_3 - P3 \times EFF \quad (15).$$

The simulation-based diagnostics (i.e. visual predictive checks) of the final pharmacokinetic-pharmacodynamic model was based on 1,000 simulations using the individual parameter estimates from the final pharmacokinetic model and the final parameter estimates from the pharmacokinetic-pharmacodynamic model. Frequent dummy time points were added to the dataset for simulations (every 5 h, from 0 h to 576 h). The visual predictive checks were stratified on the day of piperaquine treatment and the predicted treatment outcome (curative versus recrudescent infection). The observed data was overlaid with the 90% prediction interval from 1,000 simulations to evaluate the predictive performance of the model.
Clinical scenario simulations

The final pharmacokinetic-pharmacodynamic model describing the dynamic parasite growth and piperaquine in vivo parasitidal effects was used to perform population-based simulations of clinical scenarios in NONMEM. Simulations were performed to predict the probability of treatment failure at different levels of drug resistance. The total number of circulating parasites was initialized with \(10^6\) or \(10^{10}\) parasites in order to simulate asymptomatic and symptomatic infections, respectively. Six different clinical scenarios with resistant infections were simulated to predict the probability of treatment failure: (1) absence of artemisinin resistance and absence of piperaquine resistance; (2) presence of artemisinin resistance and absence of piperaquine resistance; (3) absence of artemisinin resistance and presence of piperaquine resistance (\(2 \times EC_{50}\) of piperaquine); and (4) to (6) presence of artemisinin resistance and presence of piperaquine resistance (\(2 \times EC_{50}\), \(3 \times EC_{50}\), and \(4 \times EC_{50}\) of piperaquine).

Dihydroartemisinin was used as a representative of the artemisinin derivative, and pharmacokinetic parameters of dihydroartemisinin were taken from a previously published population pharmacokinetic analysis (42). The parasitidal effect of dihydroartemisinin was adjusted based on the observed parasite clearance half-life from the Tracking Resistance to Artemisinin Collaboration (TRAC) study data (28). The reported mean parasite clearance half-life for sensitive (2.5 h) and resistant (6.2 h) infections from the TRAC study was used to calculate the parasite clearance slope and generate parasite clearance profiles, starting at an initial total circulating parasite density of \(10^{11}\) parasites (Fig. S5). Simulations were performed in Berkeley Madonna (43) using the developed semi-mechanistic growth model to adjust the \(E_{\text{max}}\) values of dihydroartemisinin to match the parasite clearance profiles generated from the parasite clearance half-life reported in the TRAC study. The derived adjusted \(E_{\text{max}}\) values, resulting in
equivalent residual total circulating parasites at 72 h as seen in the TRAC study, were used throughout the simulations.

The parasite killing effect of dihydroartemisinin was implemented in all parasite compartments (P1, P2, and P3) using an E_{max} function (Equation 13) because dihydroartemisinin has an effect on almost all stages of the parasite life cycle (44). Treatment failure was defined as predicted total parasite biomass of >1 parasites at 30 days after the first dose of piperaquine was given. Additionally, simulations were conducted to predict the probability of treatment failure when adding an additional hypothetical drug to the conventional dihydroartemisinin-piperaquine regimen. The effect of the hypothetical drug was implemented in the same manner as the parasite killing effect of piperaquine (added on P2 and P3 compartments). Different efficacy and duration of action of the hypothetical drug were investigated including drugs demonstrating a PRR$_{LC}$ of 10^1, 10^2, and 10^3 and a duration of action of 1 week, 2 weeks, 3 weeks, 4 weeks, and 5 weeks. The following differential equations described the drug effects for the simulations (Equation 16-18)

$$\frac{dP_1}{dt} = -P_1 \times k_{MAT} \times REG_1 + (P_2 + P_3) \times k_{RUP} \times REG_3 \times PMR_{LC} - P_1 \times EFF_1$$

$$\frac{dP_2}{dt} = P_1 \times k_{MAT} \times REG_1 - P_2 \times k_{SQ} \times REG_2 - P_2 \times k_{RUP} \times REG_3 - P_2 \times EFF_1 - P_2 \times EFF_2 - P_2 \times EFF_3$$

$$\frac{dP_3}{dt} = P_2 \times k_{SQ} \times REG_2 - P_3 \times k_{RUP} \times REG_3 - P_3 \times EFF_1 - P_3 \times EFF_2 - P_3 \times EFF_3$$

where EFF_1 denotes parasiticidal effect of dihydroartemisinin, EFF_2 denotes parasiticidal effect of piperaquine, and EFF_3 denotes parasiticidal effect of the third hypothetical drug.

Each simulation scenario consisted of 4,800 simulated patients including 48 individuals with varying time of first dose with 1 h difference among each simulated patient from 0–48 h (100 simulations). The variation mimics a real-life scenario where patients present to the clinic and
receive treatment at different stage of parasite life cycle. The standard 3-day dose of
dihydroartemisinin-piperaquine (120/960 mg) for a patient weighing 60 kg was used in all
simulations. A schematic illustration of the structural model used for simulations is presented in
the supplementary material (Fig. S7).

Acknowledgments

We thank the volunteers who consented to participate in this study. This study was supported by
the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme,
Medicines for Malaria Venture and the Bill & Melinda Gates Foundation.
References

1. World Health Organization. 2018. World Malaria Report 2018. World Health Organization, Geneva, Switzerland.

2. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455-67.

3. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, Ier Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NP, White NJ, Anderson TJ, Nosten F. 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379:1960-6.

4. Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, Sam B, Dek D, Try V, Amato R, Blessborn D, Song L, Tullo GS, Fay MP, Anderson JM, Tarning J, Fairhurst RM. 2016. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16:357-65.

5. Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, Almagro-Garcia J, Neal AT, Sreng S, Suon S, Drury E, Jyothi D, Stalker J, Kwiatkowski DP, Fairhurst RM. 2017. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 17:164-173.

6. van der Pluijm RW, Tripura R, Hoglund RM, Pyae Phyo A, Lek D, Ul Islam A, Anvikar AR, Satpathi P, Satpathi S, Behera PK, Tripura A, Baidya S, Onyamboko M, Chau NH, Sovann Y, Suon S, Sreng S, Mao S, Oun S, Yen S, Amaratunga C, Chutasmrit K, Saelow C, Runchareem R, Kaewmok W, Hoa NT, Thanh NV, Hanboonkunupakarn B, Callery J, Mohanty AK, Heaton J, Thant M, Gantait K, Ghosh T, Amato R, Pearson RD, Jacob CG, Goncalves S, Mukaka M, Waithira N, Woodrow CJ, Grobusch MP, van Vugt M, Fairhurst RM, Cheah PY, Peto TJ, von Seidlein L, Dhorda M, Maude RJ, Winterberg M, et al. 2020. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 395:1345-1360.
7. Macintyre F, Adoke Y, Tiono AB, Duong TT, Mombo-Ngoma G, Bouyou-Akotet M, Tinto H, Bassat Q, Issifou S, Adamy M, Demarest H, Duparc S, Leroy D, Laurijssens BE, Biguenet S, Kibuuka A, Tshefu AK, Smith M, Foster C, Leipoldt I, Kremsner PG, Phuc BQ, Ouedraogo A, Ramharter M, Group OZ-PS. 2017. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med 15:181.

8. Tarning J, Rijken MJ, McGready R, Phyo AP, Hanpithakpong W, Day NP, White NJ, Nosten F, Lindegardh N. 2012. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother 56:1997-2007.

9. Hoglund RM, Adam I, Hanpithakpong W, Ashton M, Lindegardh N, Day NP, White NJ, Nosten F, Tarning J. 2012. A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan. Malar J 11:398.

10. Tarning J, Zongo I, Some FA, Rouamba N, Parikh S, Rosenthal PJ, Hanpithakpong W, Jongrak N, Day NP, White NJ, Nosten F, Ouedraogo JB, Lindegardh N. 2012. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther 91:497-505.

11. Hoglund RM, Workman L, Edstein MD, Thanh NX, Quang NN, Zongo I, Ouedraogo JB, Borrmann S, Mwai L, Nsanzabana C, Price RN, Dahal P, Sambol NC, Parikh S, Nosten F, Ashley EA, Phyo AP, Lwin KM, McGready R, Day NP, Guerin PJ, White NJ, Barnes KI, Tarning J. 2017. Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis. PLoS Med 14:e1002212.

12. Liu H, Zhou H, Cai T, Yang A, Zang M, Xing J. 2018. Metabolism of Piperaquine to Its Antiplasmodial Metabolites and Their Pharmacokinetic Profiles in Healthy Volunteers.

13. Nguyen DV, Nguyen QP, Nguyen ND, Le TT, Nguyen TD, Dinh DN, Nguyen TX, Bui D, Chavchich M, Edstein MD. 2009. Pharmacokinetics and ex vivo pharmacodynamic antimalarial activity of dihydroartemisinin-piperaquine in patients with uncomplicated falciparum malaria in Vietnam. Antimicrob Agents Chemother 53:3534-7.
14. Tarning J, Thana P, Phyo AP, Lwin KM, Hanpithakpong W, Ashley EA, Day NP, Nosten F, White NJ. 2014. Population Pharmacokinetics and Antimalarial Pharmacodynamics of Piperaquine in Patients With Plasmodium vivax Malaria in Thailand. CPT Pharmacometrics Syst Pharmacol 3:e132.

15. Chotsiri P, Zongo I, Milligan P, Compaore YD, Some AF, Chandramohan D, Hanpithakpong W, Nosten F, Greenwood B, Rosenthal PJ, White NJ, Ouedraogo JB, Tarning J. 2019. Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children. Nat Commun 10:480.

16. McCarthy JS, Sekulski S, Griffin PM, Elliott S, Douglas N, Peatey C, Rockett R, O’Rourke P, Marquart L, Hermsen C, Duparc S, Mohrle J, Trenholme KR, Humberstone AJ. 2011. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS One 6:e21914.

17. Wockner LF, Hoffmann I, Webb L, Mordmuller B, Murphy SC, Kublin JG, O'Rourke P, McCarthy JS, Marquart L. 2019. Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data from Malaria Volunteer Infection Studies. J Infect Dis doi:10.1093/infdis/jiz557.

18. Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S, White NJ. 2000. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis 181:1206-9.

19. Simpson JA, Aarons L, Collins WE, Jeffery GM, White NJ. 2002. Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology 124:247-63.

20. Wilson DW, Langer C, Goodman CD, McFadden GI, Beeson JG. 2013. Defining the timing of action of antimalarial drugs against Plasmodium falciparum. Antimicrob Agents Chemother 57:1455-67.

21. Patel K, Batty KT, Moore BR, Gibbons PL, Kirkpatrick CM. 2014. Predicting the parasite killing effect of artemisinin combination therapy in a murine malaria model. J Antimicrob Chemother 69:2155-63.

22. Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, Sinden RE, Leroy D. 2012. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med 9:e1001169.
23. Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ, Kumpornsin K, Takala-Harrison S, Witkowski B, Fairhurst RM, Ariey F, Menard D, Fidock DA. 2018. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperazine. Nat Commun 9:3314.

24. Agarwal P, Anvikar AR, Pillai CR, Srivastava K. 2017. In vitro susceptibility of Indian Plasmodium falciparum isolates to different antimalarial drugs & antibiotics. Indian J Med Res 146:622-628.

25. Stanisic DI, Liu XQ, De SL, Batzloff MR, Forbes T, Davis CB, Sekuloski S, Chavchich M, Chung W, Trenholme K, McCarthy JS, Li T, Sim BK, Hoffman SL, Good MF. 2015. Development of cultured Plasmodium falciparum blood-stage malaria cell banks for early phase in vivo clinical trial assessment of anti-malaria drugs and vaccines. Malar J 14:143.

26. Pasay CJ, Rockett R, Sekuloski S, Griffin P, Marquart L, Peatey C, Wang CY, O’Rourke P, Elliott S, Baker M, Mohrle JJ, McCarthy JS. 2016. Piperaquine Monotherapy of Drug-Susceptible Plasmodium falciparum Infection Results in Rapid Clearance of Parasitemia but Is Followed by the Appearance of Gametocytemia. J Infect Dis 214:105-13.

27. White NJ. 1997. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41:1413-22.

28. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Srang S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khamthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, et al. 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411-23.

29. Dini S, Zaloumis S, Cao P, Price RN, Fowkes FJI, van der Pluijm RW, McCaw JM, Simpson JA. 2018. Investigating the Efficacy of Triple Artemisinin-Based Combination Therapies for Treating Plasmodium falciparum Malaria Patients Using Mathematical Modeling. Antimicrob Agents Chemother 62.
30. Marquart L, Baker M, O'Rourke P, McCarthy JS. 2015. Evaluating the pharmacodynamic effect of antimalarial drugs in clinical trials by quantitative PCR. Antimicrob Agents Chemother 59:4249-59.

31. RStudio Team (2018). RStudio: Integrated Development for R, RStudio, Inc., Boston, MA http://www.rstudio.com/.

32. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD. 2011. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed 101:72-9.

33. Lindbom L, Ribbing J, Jonsson EN. 2004. Perl-speaks-NONMEM (PsN)--a Perl module for NONMEM related programming. Comput Methods Programs Biomed 75:85-94.

34. Beal SL. 2001. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481-504.

35. Bergstrand M, Karlsson MO. 2009. Handling data below the limit of quantification in mixed effect models. AAPS J 11:371-80.

36. Mould DR, Upton RN. 2013. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2:e38.

37. Savic RM, Karlsson MO. 2009. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J 11:558-69.

38. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, Smithyman AM, White NJ, Day NP. 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2:e204.

39. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, Simpson JA, Hien TT, White NJ. 1999. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155:395-410.

40. White NJ. 2011. The parasite clearance curve. Malar J 10:278.

41. Udomsangpetch R, Pipitaporn B, Silamut K, Pinches R, Kyes S, Looareesuwan S, Newbold C, White NJ. 2002. Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 99:11825-9.
Chotsiri P, Wattanakul T, Hoglund R, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, Jittamala P, White NJ, Day NPJ, Tarning J. 2017. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol doi:10.1111/bcp.13372.

Macey R, Oster G, Zahley T. 2000. Berkeley Madonna, Berkely, CA. http://berkeleymadonna.com.

ter Kuile F, White NJ, Holloway P, Pasvol G, Krishna S. 1993. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 76:85-95.
Table 1 Participant characteristics

Characteristic	Median (Range)
Age (years)	22.5 (18–32)
BMI (kg/m\(^2\))	22.8 (18.3–27.9)
Height (cm)	173 (149–186)
Weight (kg)	69.3 (51.1–86.9)

Characteristic	n (%)
Sex	
Male	15 (62.5%)
Female	9 (37.5%)
Race	
Australian White	20 (83.3%)
Australian Asian	1 (4.17%)
Other	3 (12.5%)
Table 2. Population pharmacokinetic parameter estimates from the final pharmacokinetic model of piperaquine.

Parameter	Population Estimate \(^a\) (\% RSE) \(^b\)	95% CI \(^b\) \((\% \text{RSE})\)	IIV \(^a\), IOV* \(^a\) \((\% \text{RSE})\) \(^b\)	95% CI \(^b\)	Shrinkage (%)
F	1 fixed	43.7 (14.4), 19.0 (28.8) \(^*\)	28.1–56.0, 5.98–29.1 \(^*\)	6.22, 64.2*	
MTT (h)	3.05 (5.44)	2.66–3.31	39.4 (29.7) \(^*\)	12.3–64.5*	45.0*
CL/F (L/h)	52.4 (10.4)	42.2–63.4	39.2 (17.2)	22.6–50.8	15.3
Vc/F (L)	542 (22.1)	349–842			
Q1/F (L/h)	2.400 (41.1)	1.210–4.670	298 (18.7)	121–695	12.1
Vp1/F (L)	3.320 (12.7)	2.580–4.220	27.4 (34.0)	1.74–45.2	29.4
Q2/F (L/h)	152 (12.3)	122–196	20.7 (43.5)	0.561–38.1	53.3
Vp2/F (L)	13,500 (13.0)	10,500–17,300	18.8 (40.1)	0.412–30.4	51.4
\(\sigma\)	0.114 (5.04)	0.091–0.134			10.0

\(^a\) Population mean parameters estimated from NONMEM, based on a typical individual weighing 69.3 kg. Inter-individual variability (IIV) and inter-occasion variability (IOV) are presented as the coefficient of variation (%CV), calculated as \(100 \times \sqrt{\exp(\text{estimate})-1}\).

\(^b\) Based on nonparametric bootstrap diagnostics \((n = 1,000)\). Parameter precision is presented as relative standard deviation (%RSE), calculated as \(100 \times \frac{\text{standard deviation}}{\text{mean value}}\).

* Inter-occasion variability.

Abbreviations: F, relative bioavailability; MTT, mean transit time; CL/F, apparent oral clearance; Vc/F, apparent central volume of distribution; Q/F, apparent inter-compartmental clearance from central compartment to peripheral compartment; Vp/F, apparent peripheral volume of distribution; and \(\sigma\), residual unexplained variability.
Table 3 Population pharmacodynamic model parameter estimates

Parameter	Population estimate^a^b	95% CI^b (%)	IIV^a^b (%)	95% CI^b (%)	Shrinkage (%)
Semi-mechanistic growth model					
P1 (h)	0–9.7 fixed				
P2 (h)	9.7–38.8 fixed				
P3 (h)	29.1–38.8 fixed				
F_{sur} (%)	5 fixed				
T_{PC} (h)	38.8 fixed	6.00 (24.8)	5.11–8.50	34.5	
k_{MAT} (h⁻¹)	2 fixed				
T_{SQ} (h)	29.1 (4.84)	27.7–29.7			
F_{SQ} (%)	90 fixed				
k_{RUP} (h⁻¹)	2 fixed				
PMR_{LC}	15.7 (8.43)	14.1–19.9	18.3 (27.7)	15.4–33.3	14.6

In vivo parasiticidal effect of piperazine

Parameter	Population estimate^a	95% CI^b (%)	IIV^a (%)	95% CI^b (%)	Shrinkage (%)
E_{max} (h⁻¹)	0.289 (5.31)	0.262–0.321	23.6 (26.0)	5.20–30.0	18.7
EC₅₀ (ng/ml)	5.43 (29.4)	1.77–7.33	114 (38.6)	67.0–760	30.6
γ	2.8 fixed				
σ	4.69 (4.80)	3.81–5.55			7.69

^aPopulation mean parameters estimated from NONMEM, based on a typical individual weighting 69.3 kg. Inter-individual variability (IIV) and inter-occasion variability (IOV) are presented as the coefficient of variation (%CV), calculated as 100 × \(\sqrt{\exp(\text{estimate}) - 1} \).

^bBased on nonparametric bootstrap diagnostics (n = 1,000). Parameter precision is presented as relative standard deviation (%RSE), calculated as 100 × \(\frac{\text{standard deviation}}{\text{mean value}} \).

Abbreviations: P1, age of circulating small rings; P2, age of circulating large rings, trophozoites and schizonts; P3, age of sequestered trophozoites and schizonts; F_{sur}, fraction of parasite survival after inoculation; T_{PC}, duration of parasite life cycle; k_{MAT}, first-order rate constant for parasite maturation; T_{SQ}, onset of parasite sequestration; F_{SQ}, fraction of parasites sequestration; k_{RUP}, first-order rate constant of schizont rupture; PMR_{LC}, parasite multiplication rate given as fold increase per life cycle; E_{max}, maximum parasite killing rate.
of piperaquine; C_p, piperaquine plasma concentration; EC_{50}, plasma concentration of piperaquine associated with half of maximum parasite killing rate; γ, hill factor; and σ, residual unexplained variability.
Table 4: Predicted probability of treatment failure associated with different levels of drug resistance

Drug resistant scenario	Probability of treatment failure (%)	
	Asymptomatic infection \(^a\)	Symptomatic infection \(^b\)
1 DHA-sensitive (\(E_{max}=0.477\)), PQ-sensitive (EC\(_{50}\)=5.4 ng/ml)	< 1.00	< 1.00
2 DHA-resistant (\(E_{max}=0.216\)), PQ-sensitive (EC\(_{50}\)=5.4 ng/ml)	< 1.00	1.81
3 DHA-sensitive (\(E_{max}=0.477\)), PQ-resistant (EC\(_{50}\)=10.9 ng/ml)	< 1.00	2.58
4 DHA-resistant (\(E_{max}=0.216\)), PQ-resistant (EC\(_{50}\)=10.9 ng/ml)	2.44	8.06
5 DHA-resistant (\(E_{max}=0.216\)), PQ-resistant (EC\(_{50}\)=16.3 ng/ml)	7.10	15.2
6 DHA-resistant (\(E_{max}=0.216\)), PQ-resistant (EC\(_{50}\)=21.7 ng/ml)	10.6	23.6

\(^a\) Initial total circulating parasites for asymptomatic infection of \(10^6\) parasites.

\(^b\) Initial total circulating parasites for symptomatic infection of \(10^9\) parasites.

Abbreviations: DHA, dihydroartemisinin; PQ, piperaquine; \(E_{max}\), maximum parasite killing rate of dihydroartemisinin; and EC\(_{50}\), concentration of piperaquine associated with half of maximum parasite killing rate.
Table 5 Predicted probability of treatment failure associated with treating a symptomatic infection with hypothetical triple combination therapy

Drug resistant scenario	Probability of treatment failure (%)	Hypothetical drug characteristics					
	DHA + PQ *	PRR_{LC} Duration of action (weeks)					
		1	2	3	4	5	
1 DHA-resistant (E_{max} = 0.216) PQ-resistant (2 × EC₅₀ = 10.9 ng/ml)	8.1	10³	4.19	2.79	2.27	2.29	2.23
		10²	1.42	< 1.00	< 1.00	< 1.00	< 1.00
		10¹	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2 DHA-resistant (E_{max} = 0.216) PQ-resistant (3 × EC₅₀ = 16.3 ng/ml)	15.2	10³	9.35	5.60	5.31	5.46	5.46
		10²	3.65	< 1.00	< 1.00	< 1.00	< 1.00
		10¹	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3 DHA-resistant (E_{max} = 0.216) PQ-resistant (4 × EC₅₀ = 21.7 ng/ml)	23.6	10³	15.3	10.7	10.0	9.96	9.94
		10²	6.02	< 1.00	< 1.00	< 1.00	< 1.00
		10¹	1.25	< 1.00	< 1.00	< 1.00	< 1.00

a Initial total parasite biomass for symptomatic infection of 10¹⁰ parasites.

Abbreviations: DHA, dihydroartemisinin; PQ, piperaquine; E_{max}, maximum parasite killing rate of dihydroartemisinin; EC₅₀, concentration of piperaquine associated with half of maximum parasite killing rate; and PRR_{LC}, parasite reduction ratio per parasite life cycle (38.8 h)

The hypothetical drug was added to the standard 3-day dose of DHA-PQ (120/960 mg).
Figure 1 Cohort diagram
Figure 2 The schematic of final pharmacokinetic-pharmacodynamic model describing the semi-mechanistic model of *P. falciparum* malaria parasites and the final pharmacokinetic model of piperaquine. In the piperaquine pharmacokinetic model (left), F represents relative bioavailability, k_{tr} represents transit rate constant, CL/F represents apparent oral clearance, V_{C}/F represents apparent central volume of distribution (PK sampling compartment), Q/F represents inter-compartmental clearance from central compartment to peripheral compartment, and V_{P}/F represents apparent peripheral volume of distribution. In the parasite dynamic model (right), circulating parasites ($P_1 + P_2$) represent the observed parasitemia, k_{MAT} represents first-order rate constant of parasite maturation, k_{SQ} represents first-order rate constant of parasite sequestration, and k_{RUP} represents first-order rate constant of schizont rupture. The killing effect of piperaquine (EFF) was described by an E_{max} function, E_{max} represents the maximum parasite killing rate of piperaquine, C_P represents piperaquine plasma concentration, and EC_{50} represents plasma concentration of piperaquine associated with half of maximum parasite killing rate.
Figure 3 The simulated 90% prediction interval from the final pharmacokinetic-pharmacodynamic model (n = 1,000). The open circles represent the observed total circulating parasites. Solid red lines represent the 50th percentiles of the observations, and horizontal black lines represent the lower limit of parasite detection (LOD). The shaded areas represent the 90% prediction intervals of the simulation.
Figure 4 Semi-mechanistic growth model describing *P. falciparum* parasite dynamics. The left panel demonstrates the structure of the parasite growth model; (P1) represents small ring parasites that are circulating in the peripheral blood, (P2) represents the large rings, trophozoites, and schizonts that are circulating in the blood, (P3) represents the matured sequestered parasites, k_{MAT} represents first-order rate constant of parasite maturation (REG1×2(fixed)), k_{SQ} represents first-order rate constant of parasite sequestration (REG2×k_{SQ}), and k_{RUP} represents first-order rate constant of schizont rupture (REG3×2(fixed)). The right panel demonstrated the sine-wave function used to regulate the parasite dynamics in each compartment and the associated parasite number at each stage of parasite life cycle. The equations used to generate the sine-wave function are presented in the supplemental material (NONMEM code).
24 participants enrolled

Cohort 1
Piperaquine 960 mg single dose was given on day 7 after inoculation (n=5)
Recrudescence was treated with artemether-lumefantrine (n=0)

Cohort 2
Piperaquine 640 mg single dose was given on day 8 after inoculation (n=7)
Recrudescence was treated with artemether-lumefantrine (n=4)

Cohort 3A
Piperaquine 480 mg single dose was given on day 8 after inoculation (n=6)
Recrudescence was treated with the piperaquine 960 mg (n=0)

Cohort 3B
Piperaquine 480 mg single dose was given on day 8 after inoculation (n=6)
Recrudescence was treated with the piperaquine 960 mg (n=3)
Piperaquine pharmacokinetic model

Parasite dynamic model

EFF = Emax \times \frac{C}{\text{CP}}

.once

+ EC50

Circulating Parasites
Small rings
(P1)
0–9.7 h

Circulating Parasites
Large rings
Trophozoites
Schizonts
(P2)
9.7–38.8 h

Sequestered Parasites
Trophozoites
Schizonts
(P3)
29.1–38.8 h

Maturation
Sequestration
Multiplication
Multiplication

PQ-killing effect

k_{\text{MAT}}

k_{RUP}

k_{\text{SQ}}

Transit compartment 1

Dose compartment

Central compartment

Sampling compartment

(V_C/F)

Peripheral compartment 1

(V_{P1}/F)

Transit compartment 2

Peripheral compartment 2

(V_{P2}/F)

Q_2/V_C

Q_2/V_{P2}

Q_1/V_{P1}

Q_1/V_C

CL/F

Piperaquine pharmacokinetic model

Parasite dynamic model
Circulating Parasites

Small rings (P1)
0–9.7 h

Circulating Parasites

Large rings
Trophozoites
Schizonts (P2)
9.7–38.8 h

Sequestered Parasites

Trophozoites
Schizonts (P3)
29.1–38.8 h

Maturation

$\frac{d}{dt} k_{MAT}$

Multiplication

$\frac{d}{dt} k_{RUP}$

Sequestration

Total circulating parasites and total parasite biomass

Proportion contributed to total parasite biomass at each time point

Square-wave function for k_{MAT} (REG1)

Square-wave function for k_{RUP} (REG2)

Square-wave function for k_{SQ} (REG3)