Chandan Sarkar¹, Sarmin Jamadder¹, Milon Mondal¹, Abul Bashar Ripon Khalipa¹, Muhammad Torequl Islam¹,* and Mohammad S. Mubarak²;*

¹Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; ²Department of Chemistry, The University of Jordan, Amman 11942, Jordan

ABSTRACT: Background: The coronavirus disease 2019 (COVID-19) is a life-threatening viral infection caused by a positive-strand RNA virus belonging to the Coronaviridae family called severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2). This virus has infected millions of people and caused hundreds of thousands of deaths around the world. Unfortunately, to date, there is no specific cure for SARS-CoV-2 infection, although researchers are working tirelessly to come up with a drug against this virus. Recently, the main viral protease has been discovered and is regarded as an appropriate target for antiviral agents in the search for the treatment of SARS-CoV-2 infection due to its role in polyproteins processing coronavirus replication.

Materials and Methods: This investigation (an in silico study) explores the effectiveness of 16 natural compounds from a literature survey against the protease of SARS-CoV-2 in an attempt to identify a promising antiviral agent through a molecular docking study.

Results: Among the 16 compounds studied, apigenin, alpha-hederin, and asiatic acid exhibited significant docking performance and interacted with several amino acid residues of the main protease of SARS-CoV-2.

Conclusion: In summary, apigenin, alpha-hederin, and asiatic acid protease inhibitors may be effective potential antiviral agents against the main viral protease (Mpro) to combat SARS-CoV-2.

Keywords: SARS-CoV-2, COVID-19, protease inhibitors, natural products, in silico screening, apigenin.

1. INTRODUCTION

Since December 2019, an outbreak of pneumonia of initially unknown causes was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel beta-coronavirus, named novel coronavirus 2019 (also called the severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2)). This virus, belonging to the family Coronaviridae and the order Nidovirales, has led to a severe epidemic in China and more than 200 other countries, resulting in a worldwide concern. It is transmitted through direct contact with respiratory droplets of an infected person (generated through coughing and sneezing), fecal-oral, body fluid routes, or touching surfaces contaminated with the virus [1-3]. Coronaviruses (CoVs) are cross-species viruses containing an enveloped positive-stranded RNA genome (Length: 26-32 kb) like pleomorphic particles with crown-like spikes of glycoproteins projecting from their viral envelopes. These envelopes exhibit a corona or halo-like appearance. CoVs include four common cold human coronaviruses [229E (alpha coronavirus), NL63 (alpha coronavirus), OC43 (beta coronavirus), and HKU1 (beta coronavirus)], and two other types [severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome coronavirus (MERS-CoV)], which cause severe infections [2, 4, 5].

In late December 2019, this unidentified disease was later named coronavirus disease 2019 (COVID-19), where ‘CO’ stands for corona, ‘VI’ for the virus, and ‘D’ for the disease. Patients with COVID-19 reveal insidious onset with fever, cough, and myalgia-with or without diarrhea or shortness of breath, or both [6]. As of Aug 4, 2020, the number of confirmed cases was 18,142,718 and 691,013 deaths around the world [7]. All types of human coronaviruses (hCoVs) encode an enzyme chymotrypsin-like protease (3CLPro), which is also named the main protease (Mpro); thanks to playing a pivotal role in the proteolytic process during the virus multiplication [8]. Proteolytic processing (processing of replicase polyproteins) is one of the crucial steps in the life cycle of many positive-stranded RNA viruses, including coronaviruses. The non-structural protein Mpro generally cuts two replicase polyproteins and also causes some matured proteins that are essential for viral replication and transcription [9]. Thus, the Mpro of SARS-CoV-2 has been considered as an important molecular target for anti-SARS-CoV-2 drug discovery and development.

ARTICLE HISTORY

Received: May 27, 2020
Revised: August 09, 2020
Accepted: August 27, 2020

DOI: 10.2174/2666796701999201116124851
Natural products and their derivatives have been used for years in folk medicine to treat several diseases, including viral infections [10], and the scope of herbal medicines in the context of the nutraceuticals market is vast [11]. In addition, the acceptability of plant-based drugs is increasing on a daily basis. Along this line, *Nigella sativa* demonstrated its inhibitory activity against the hepatitis C virus [12]. Furthermore, some natural products exhibit antiviral activity through the inhibition of viral replication [13, 14]. On the other hand, several marine natural products [15], and biotechnologically produced compounds [16] have also been shown to exert antiviral effects against different viruses. There is a vast library of compounds derived from natural sources that could turn into drug leads for the treatment of various ailments, including viral diseases [17]. However, there is a lack of adequate research on the development of anti-CoV agents from such natural products. Such agents are not only important to combat CoV but also play an important role in preventing viral attack. In addition, despite the ongoing research on the development of specific therapies or vaccines against protease of SARS-CoV-2, there is currently no effective prophylaxis or therapy for SARS-CoV-2, which hinders the treatment or control of the viral infection. In this study, we designed an *in silico* study to determine the inhibitory activities of selected natural anti-viral compounds against the protease of SARS-CoV-2 in an attempt to identify the stronger binding affinities. Results of this study could highlight the importance of some natural products as potential drugs for SARS-CoV-2.

2. METHODOLOGY

2.1. Molecular Docking Study

With the aid of Auto Dock vina (version 4; The Scripps Research Institute, La Jolla, CA, USA) in the PyRx platform, molecular docking was performed to elucidate the binding mode of ligands and target structures. For this reason, the atomic coordinate of the protein (PDB ID: 6LU7) was downloaded from Protein Data Bank (PDB). Using Discovery studio visualizer (version 16.1.0.15350; Biovia, San Diego, CA, USA), visualization of the respective protein-ligand complexes, along with non-covalent interactions, were performed. We introduced an updated server called Computed Atlas of Surface Topography of proteins (CASTp 3.0) for the purpose of detecting and characterizing cavities, pockets, and channels of this protein structure.

2.2. Ligand Preparation

After reviewing the literature on different anti-viral drugs, we identified 16 natural bioactive compounds that act on several viral infections in order to predict their inhibitory activities against the protease of SARS-CoV-2 (6LU7) to eventually describe candidate drugs that may exhibit antiviral activity against SARS-CoV-2. We downloaded the 3D structure of each compound in Structure-data file (SDF) format with the aid of the PubChem database.

2.3. Protein Preparation

All information about the proteins has been collected from the Uniprot (http://www.uniprot.org/). The crystal structure of the SARS-CoV-2 main protease in complex with a peptidomimetic inhibitor (PDB ID: 6LU7) was downloaded from the RCSB protein data bank (http://www.rcsb.org) [18]. We used PYMOL (version 1.7.4.5), a magnificent software, to visualize the protein and remove all water molecules from the protein structure (Fig. 1). Void atomic spaces and crystallographic disturbances were corrected through energy minimization using the Swiss PDB viewer v4.1.0. As a final point, optimized protein structure was saved in “.pdb” format [19].

2.4. Binding Pockets Identification of Protein Structure (PDB ID: 6LU7)

Geometric and topological features such as pockets, cavities, and channels were shown with the help of the CASTp 3.0 server thorough the representation of surface atoms participating in their formation (e.g. the stick model shown in Fig. 2 and the sequence panels shown in Fig. 3). In the beginning, the protein structure in the “.pdb” format was uploaded in the CASTp server and a probe radius as input for topographic computation. A default probe radius of 1.4 Å, which is considered as the standard value for computing solvent accessible surface area for obtaining pre-computed results, was used. Finally, all surface pockets or amino acid residues in a protein structure were identified and provided a detailed delineation of all atoms participating in their formation. The final output file was directly downloaded from the CASTp server, which is visualized using the PyMOL plugin.

2.5. Molecular Docking and Binding Site Prediction

In an *in silico* molecular docking study, the appropriate binding orientations and conformations of the ligands with the targeted protein and the preferred orientations of the ligand with maximum binding affinities for the active sites of the protein associated with structural pockets were performed using the AutoDock vina in PyRx platform. Shown in Table 1 is a visualization of the binding of compounds...
with specific amino acid residues, performed by using BIO-VIA Discovery studio visualizer v16.1.0.15350 (Fig. 4), including binding energies (kcal/mol) acquired from PyRx for selected compound-protein complexes.

3. RESULTS

Listed in Table 1 are the results obtained for the determination of the ligand-protein binding affinity and binding pockets. These results indicate that all compounds exhibit typical docking scores with protein and interacting residues against SARS-CoV-2’s Mpro (PDB code 6LU7). The binding pockets of SARS-CoV-2’s Mpro were identified with the following amino acid residues: THR24, THR25, THR26, LEU27, HIS41, THR45, SER46, MET49, PHE140, LEU141, ASN142, GLY143, SER144, CYS145, HIS163, MET165, GLU166, and HIS172 as shown in (Fig. 1) and Table 1.

Results revealed that alpha-hederin shows better effect than other conventional antiviral compounds due to its lowest docking score (-8.5 kcal/mol) compared with other drugs. However, there was no interaction with pockets of the SARS-CoV-2’s Mpro. Additionally, other compounds exhibited effective inhibition such as asiatic acid (-8.2 kcal/mol), apigenin (-7.7 kcal/mol), auricularic acid (-7.3 kcal/mol), sinularin (-7.1 kcal/mol), curcumin (-6.9 kcal/mol), and andrographolide (-6.9 kcal/mol). In this investigation, only apigenin, the inhibitor of swine fever virus infection, interacted with a maximum of 7 amino acid residues (LEU141, GLY143, GLU166, ASN142, LEU141, ASN142, MET165). On the other hand, alpha-hederin, asiatic acid, auricularic acid, and sinularin displayed high binding affinity, although the amino acid residues were not involved in the binding of protease. Therefore, further research is needed to explain the more crystal structure of protease.

4. DISCUSSION

The ability of a virus to engross its cellular receptor, enter the cell, and replicate is a complex process that affords many opportunities for the development of antiviral strate-

![Fig. (2). The pocket panel of protein (PDB ID: 6LU7) through CASTp 3.0 server. (A higher resolution / colour version of this figure is available in the electronic copy of the article).](image1)

![Fig. (3). The sequence panels of protein (PDB ID: 6LU7) through CASTp 3.0 server. (A higher resolution / colour version of this figure is available in the electronic copy of the article).](image2)
Table 1. Comparative docking scores of compounds with protein and interacting residues of selected compounds against 6LU7.

CASTp predicted amino acid residues of protein structure (PDB ID: 6LU7)	THR24, THR25, THR26, LEU27, HIS41, THR45, SER46, MET49, PHE140, LEU141, ASN142, GLY143, SER144, CYS145, HIS163, MET165, GLU166, HIS172, VAL3, LEU4		
PubChem CID	Anti-viral compounds	Binding affinity (kcal/mol)	Interacting amino acids
-------------	---------------------	-----------------------------	------------------------
5280443	Apigenin	-7.7	LEU141, GLY143, GLU166, ASN142, MET165, CYS145, MET49
5318517	Andrographolide	-6.9	SER144, CYS145, GLN189, HIS163
73296	Alpha-Hederin	-8.5	TYR239, LEU272, ASP289, ASN238, LEU287, LEU286, MET276, ASN277, GLY278, ARG131, THR199, ALA285
119034	Asiatic acid	-8.2	LEU272, LYS137, LEU271, GLY275, LEU287, LEU287, LEU272, TYR237, TYR239
365764	Auricular acid	-7.3	ASP153, ILE106, VAL104, PHE294
54670067	Ascorbic acid	-5.4	LEU141, GLY143, GLU166, MET165
969516	Curcumin	-6.9	GLU166, HIS41, CYS145, LEU141, ASN142, MET165
54680783	Citrinin	-6.5	ASP153, SER158, ILE106, VAL104
10082188	Hispolon	-6.3	GLU166, HIS163, SER144, CYS145
643820	Nerol	-4.8	ASP295, H17, THR111, VAL104, PHE8, PHE294
5280435	Phytol	-4.6	THR111, GLN110, OTHR111, ASN151, ILE106, VAL104, PHE294
5280531	Retinol palmitate	-5.2	ASN151, VAL297, ILE249, PRO293, PRO252, VAL297, PHE294
163263	Sclareol	-6.1	LEU271, LEU272, LEU286, LEU287
6438436	Sinularin	-7.1	LEU271, MET276, LEU287, TYR237
6989	Thymol	-5.0	TRP218, LEU220, PHE219, LEU271, PHE223
10281	Thymoquinone	-5.2	GLN110, ASP153, PHE294

gies. The first human cases of SARS-CoV-2 were identified in the Chinese city of Wuhan in December 2019, and spread progressively to more than 200 countries outside China [20]. Worldwide, the number of people who have been infected with the coronavirus is more than 53.7 million [7]. Since the outbreak began in December, more than 1.3 million have died in some 220 locations including China [7]. At present, there are no approved treatments for diseases caused by coronaviruses; however, there are drugs and compounds used to treat HIV and other different types of viruses that are being rapidly tested against the new coronavirus. In this study, we used 16 natural compounds from 60 related articles and analyzed their inhibitory activities through an in silico study against the crystal structure of SARS-CoV-2 main protease (PDB ID: 6LU7), which is obtained from the RCSB protein data bank (http://www.rcsb.org) [18].

Depending on the proteolytic processing events on the polyproteins, maturation of CoVs is performed by a three-domain (I, II, and III) chymotrypsin-fold proteinase, called Mpro or 3CLpro [21]. The structure of the main protease of novel human coronavirus (HCoV) shows two Mpro molecules form an active homodimer. This homodimer plays a significant role in the proteolytic activity when positioned at the interface between domains I and II, where the 2 conserved residues His41 and Cys145 form the catalytic dyad of Mpro [22]. Mpro has recognized as an applicable target for viral inhibitor development toward SARS-CoV-2 treatment due to its pivotal role in virus maturation [23]. According to the chemical structures, the significant inhibitors of Mpro can be classified into two classes — one makes a covalent bond with Cys145 amino acid residue of the catalytic site of that enzyme [24], and the other prevents a substrate entrance.
(Fig. 4) contd….
into the active site cavity through bindings to that enzyme [25].

Nature provides massive sources of natural products and their derivatives to develop and explore drugs against numerous ailments including viral diseases [17]. Apart from plant-based compounds [26], several marine natural products [15] along with various biotechnologically produced chemicals [16] are also cited for their antiviral effects against numerous viral infections. In addition, some natural products have been found to provide significant evidence of their ac-

Fig. (4). Nonbonding interaction of selected compounds with Mpro of SARS-CoV-2 through Discovery studio visualizer v16.1.0.15350. Here, we only presented nonbonding interaction for comparatively high binding scored ligand-protein complexes (≥ -6.9 kcal/mol). (A higher resolution / colour version of this figure is available in the electronic copy of the article).
tivity against hCoVs through inhibition of M\(^{\text{po}}\) [27]. Moreover, among the natural products and their derivatives that inhibit M\(^{\text{po}}\) are apigenin [28], amentoflavone [28], aloe emodin [29], beta-sitosterol [29], betulinic acid [30], curcumin [30], honokiol [30], hesperetin [29], indigotin [29], 3-isothecafavimin-3-gallate [31], luteolin [28], myricetin [32], niacinamide [30], quercetin [28], sinigrin [28], scutellarein [32], and tannic acid [31].

Our findings indicate that the inhibitor of African swine fever virus infection [33], apigenin exhibits significant docking performance (-7.7 kcal/mol) and interacts with LEU141, GLY143, GLU166, ASN142, MET165, CYS145, and MET49 amino acid residues of the main protease of nCoV-19. Other inhibitors of the negative-sense RNA viruses (Influenza viruses), namely alpha-hederin exhibited the highest binding energy (-8.5 kcal/mol) and interacted with TYR239, LEU272, ASP289, ASN238, LEU287, LEU286, MET276, ASN277, GLY278, ARG131, THR199, and ALA285 that are totally different from predicted amino acid residues of the main protease through CASTp server [34]. Similarly, asiatic acid, an inhibitor of lentiviruses [35], also showed potent binding affinity (-8.2 kcal/mol) that targets different binding pockets (LEU272, LYS137, LEU271, GLY275, LEU287, LEU287, LEU272, TYR237, and TYR239) of the selected protein. In a similar fashion, the potent West Nile virus NS3 protease inhibitor [36] similarin interacts with LEU271, MET276, LEU287, and TYR237 amino acid residues of M\(^{\text{po}}\) of SARS-CoV-2 that are also mismatched from predicted pockets and showed good docking performance (-7.1 kcal/mol), whereas curcumin, an inhibitor of dengue, hepatitis C, zika, chikungunya, HIV, and ebolaviruses [37, 38] showed less docking performance (-6.9 kcal/mol) than singular in interacting with GLU166, HIS41, CYS145, LEU141, ASN142, and MET165 pockets. On the other hand, andrographolide, an influenza virus inhibitor, displayed a similar effect (-6.9 kcal/mol) compared to curcumin related with 3 amino acid pockets (SER144, CYS145, and HIS163) [39]. Other compounds exhibited moderate performance in this in silico study. However, widespread clinical studies are necessary for protease inhibitors to explain the efficiency against SARS-CoV-2.

CONCLUSION

The complete methodology described in this study highlights the prediction of ligand-protein binding affinity and its binding pockets. In agreement with the results from in silico docking of the constituents against the diverse receptor (PDB code 6LU7), findings showed that several natural products exhibit significant antiviral activity, particularly apigenin, alpha-hederin, and asiatic acid. These compounds could be promising leads in the development of antiviral drugs. However, much more work is required that could involve animal models and perhaps human subjects. In short, information obtained from this investigation could be valuable for future vaccine and drug development.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are base of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The data supporting the findings of the study is available within the article.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. http://dx.doi.org/10.1016/S0140-6736(20)30183-5 PMID: 31986264

[2] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92. http://dx.doi.org/10.1038/s41579-018-0118-9 PMID: 30531947

[3] Centers for Disease Control and Prevention. 2019 Novel Coronavirus (2019-nCoV) 2020. Available from: https://www.cdc.gov/Coronavirus/2019-ncov/index.html

[4] Dham A, Pawiya R, Chakraborty S, Tiwari RMS, Verma A. Coronavirus infection in equines: A review. Asian J Anim Vet Adv 2014; 9: 164-76. http://dx.doi.org/10.3923/ajava.2014.164.176

[5] Hegyi A, Frieba A, Grableanya AE, Ziebhr J. Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 2002; 83(Pt 3): 581-93. http://dx.doi.org/10.1099/0022-1317-83-3-581 PMID: 11842253

[6] UNICEF. COVID-19: What you should know and how to protect yourself. Available from: https://www.unicef.org/indonesia/novel-coronavirus-covid-19-outbreak-what-you-should-know

[7] WHO. WHO weekly epidemiological update - 17 November 2020. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update--17-november-2020

[8] Anand K, Ziebhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main protease (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003; 300(5626): 1763-7.

[9] Joshi T, Joshi T, Sharma P, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci 2020; 24(8): 4529-36. PMID: 32573991

[10] Gagnhui RK, Mugdal PP, Maity H, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease 2015; 26(4): 225-36. http://dx.doi.org/10.1007/s13337-015-0276-6 PMID: 26645032

[11] Williamson EM, Liu X, Izzo AA. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br J Pharmacol 2020; 177(6): 1227-40. http://dx.doi.org/10.1111/bph.14943 PMID: 31799702
[12] Oyero OG, Toyama M, Mitsuhiro N, et al. Selective inhibition of hepatitis C virus replication by alpha-zam, a Nigella sativased formulation. Afr J Tradit Complement Altern Med 2016; 13(6): 144-8. http://dx.doi.org/10.2101/ajtcam/v13i6.20 PMID: 28480371

[13] Moghadamtousi SZM, Nikzad S, Kadier HA, Abubakar S, Zandi K. Potential antiviral agents from marine fungi: Aa overview. Mar Drugs 2015; 13(7): 4520-38. http://dx.doi.org/10.3390/md13074520 PMID: 26204947

[14] Oliveira AFCS, Teixeira RR, Oliveira AS, Souza AP, Silva ML, Paula SO. Potential antivirals: Natural products targeting replication enzymes of dengue and chikungunya viruses. Molecules 2017; 22(3): 50C. http://dx.doi.org/10.3390/molecules22030505 PMID: 28327521

[15] Wang SX, Zhang XS, Guan HS, Wang W. Potential anti-HIV and related cancer agents from marine resources: an overview. Mar Drugs 2014; 12(4): 2019-35. http://dx.doi.org/10.3390/md12042019 PMID: 24705500

[16] Neumann H, Neumann-Staubitz P. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology. Appl Microbiol Biotechnol 2010; 87(1): 75-86. http://dx.doi.org/10.1007/s00253-010-2578-3 PMID: 19561563

[17] Denaro M, Smeriglio A, Barreca D, et al. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2020; 34(4): 742-68. http://dx.doi.org/10.1002/ptr.6575 PMID: 31858645

[18] Liu X, Zhang B, Jin Z, Yang H, Rao Z. The crystal structure of 2019-nCoV mainprotease in complex with an inhibitor N3. PDB code: 6lu7. Available from: https://www.rcsb.org/structure/6lu7

[19] Mishra A, Jain A, Arora N. Mapping B-cell epitopes of major and minor peanut allergens and identifying residues contributing to IgE binding. J Sci Food Agric 2016; 96(2): 539-47. http://dx.doi.org/10.1002/jsfa.7121 PMID: 25652191

[20] Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23. http://dx.doi.org/10.1016/S0140-6736(20)30154-9 PMID: 31986261

[21] Fan K, Wei P, Feng Q, et al. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like protease. J Biol Chem 2004; 279(3): 1637-42. http://dx.doi.org/10.1074/jbc.M310875200 PMID: 14561748

[22] Fan K, Ma L, Han X, et al. The substrate specificity of SARS coronavirus 3C-like protease. Biochem Biophys Res Commun 2005; 329(3): 934-40. http://dx.doi.org/10.1016/j.bbrc.2005.02.061 PMID: 15752746

[23] Berry M, Fielding BC, Gamieldien J. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study. Viruses 2015; 7(12): 6642-60. http://dx.doi.org/10.3390/v7122963 PMID: 26694449

[24] Dayer MR, Taleb-Gassabi S, Dayer MS. Lopinavir; A Potent drug against coronavirus infection: Insight from molecular docking study. Arch Clin Infect Dis 2017; 12(4):13823 http://dx.doi.org/10.5812/archid.13823

[25] Prior AM, Kim Y, Weerasekara S, et al. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors. Bioorg Med Chem Lett 2013; 23(23): 6317-20. http://dx.doi.org/10.1016/j.bmcl.2013.09.070 PMID: 24125888

[26] Jardim ACG, Shimizu JF, Rahal P, Harris M. Plant-derived antivirals against hepatitis C virus infection. Virol J 2018; 15(1): 34. http://dx.doi.org/10.1186/s12985-018-0945-3 PMID: 29439720

[27] Islam MT, Sarkar C, El-Kersh DM, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res 2019; 33(4): 507-27. http://dx.doi.org/10.1002/ptr.6700 PMID: 32248575

[28] Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7. http://dx.doi.org/10.1016/j.bmc.2010.09.035 PMID: 20934345

[29] Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatia indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42. http://dx.doi.org/10.1016/j.antiviral.2005.07.002 PMID: 16115693

[30] Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95. http://dx.doi.org/10.1021/jm070295s PMID: 17663539

[31] Chen CN, Lin CP, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3’-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15. http://dx.doi.org/10.1093/ecam/neh081 PMID: 15937562

[32] Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54. http://dx.doi.org/10.1016/j.bml.2012.04.081 PMID: 22578462

[33] Hakobyan A, Arabyan E, Avestisyant A, Abroyan L, Hakobyan L, Zakaryan H. Apigenin inhibits African swine fever virus infection in vitro. Arch Virol 2016; 161(12): 3445-53. http://dx.doi.org/10.1007/s00705-016-1061-y PMID: 27638776

[34] Hong EH, Song JH, Shim A, et al. Extract enabled mice to overcome insufficient protection against influenza A/PR/8 virus infection under seasonal treatment with oseltamivir. PLoS One 2015; 10(6): e0131089 http://dx.doi.org/10.1371/journal.pone.0131089 PMID: 26098681

[35] Chen JY, Xu QW, Xu H, Huang ZH. Asiat ic acid promotes p21 (WAF1/CIP1) protein stability through attenuation of NDR1/2 dependent phosphorylation of p21 (WAF1/CIP1) in HepG2 human hepatoma cells. Asian Pac J Cancer Prev 2014; 15(2): 963-7. http://dx.doi.org/10.7314/ajpcp.2014.15.2.963

[36] O’Rourke A, Krehn S, Duggan BM, et al. Identification of a 3-alkylpyridinium compound from the Red Sea sponge amphimedon chloros with in vitro inhibitory activity against the West Nile virusNS3 protease. Molecules 2018; 23(6): 1472. http://dx.doi.org/10.3390/molecules23061472 PMID: 29912151

[37] Mounce BC, Cesaro T, CArrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57. http://dx.doi.org/10.1016/j.antiviral.2017.03.014 PMID: 28343845

[38] Barthelensy L, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol 1998; 149(1): 43-52. http://dx.doi.org/10.1002/1099-0012(199801)149:1<43::AID-JCV1>3.0.CO;2-X PMID: 9561563

[39] Chen JX, Xue HJ, Ye WC, et al. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull 2009; 32(8): 1385-91. http://dx.doi.org/10.1248/bpb.32.1385 PMID: 19652378