Transformation à la Foata pour des Vents Spéciaux de Descents et d’Excedances

Jean-Luc Baril et Sergey Kirgizov

LIB, Université Bourgogne Franche-Comté, B.P. 47 870, 21078 Dijon-Cedex, France
Email: barjl@u-bourgogne.fr, sergey.kirgizov@u-bourgogne.fr

Received: January 6, 2021, Accepted: March 17, 2021, Published: March 26, 2021

1. Introduction and notations

The distribution of the number of descents has been widely studied on several classes of combinatorial objects such as permutations [14], cycles [7, 8], and words [3, 10]. Many interpretations of this statistic appear in several fields as Coxeter groups [4, 11] or lattice path theory [12]. One of the most famous result involves the Foata fundamental transformation [9] to establish a one-to-one correspondence between descents and excedances on permutations. This bijection provides a more straightforward proof than those of MacMahon [14] for the equidistribution of these two Eulerian statistics.

In this paper, we present a bijection à la Foata on the symmetric group that exchanges pure descents and pure excedances of a special kind. As a byproduct, we prove that the popularity of pure excedances equals those of pure descents on permutations, while their distributions are different.

Keywords: Cycle; Descent; Distribution; Excedance; Permutation; Popularity; Statistic

2020 Mathematics Subject Classification: 05A05; 05A15; 05A19
patterns \(p_i, i \in [0, 2] \). We refer to Figure 1 for a graphical illustration. On the other hand, we define a pure excedance as an occurrence of an excedance, i.e., \(\pi_i > i \), with the additional restriction that there is no point \((j, \pi_j)\) such that \(1 \leq j \leq i - 1\) with \(i \leq \pi_j < \pi_i\). Although such a pattern (called \(p_{ex} \)) is not a mesh pattern, we can represent it graphically as shown in Figure 1.

\[
p_0 = \quad p_1 = \quad p_2 = \quad p_{ex} =
\]

Figure 1: Illustration of the mesh patterns \(p_0 \), \(p_1 \), \(p_2 \) and \(p_{ex} \); \(p_1 \) and \(p_{ex} \) correspond respectively to a pure descent and a pure excedance.

A statistic is an integer-valued function from a set \(A \) of \(n \)-length permutations (we use the boldface to denote statistics). For a pattern \(p \), we define the pattern statistic \(\mathbf{p} : A \to \mathbb{N} \) where the image \(\mathbf{p} \pi \) of \(\pi \in A \) by \(\mathbf{p} \) is the number of occurrences of \(p \) in \(\pi \). The popularity of \(p \) in \(A \) is the total number of occurrences of \(p \) over all objects of \(A \), that is \(\sum_{\pi \in A} \mathbf{p} \pi \) (see [5] for instance). Below, we present statistics that we use throughout the paper:

\[
\begin{align*}
\text{exc } \pi & = \text{number of excedances in } \pi, \\
\text{pex } \pi & = \text{number of pure excedances in } \pi, \\
\text{des } \pi & = \text{number of descents in } \pi, \\
\text{des}_i \pi & = \text{number of patterns } p_i \text{ in } \pi, \quad 0 \leq i \leq 2, \\
\text{fix } \pi & = \text{number of fixed points in } \pi, \\
\text{cyc } \pi & = \text{number of cycles in the decomposition of } \pi, \\
\text{pcyc } \pi & = \text{number of pure cycles (i.e. cycles of length at least two)} \text{ in } \pi, \\
& = \text{cyc } \pi - \text{fix } \pi
\end{align*}
\]

We organize the paper as follows. In Section 2, we focus on patterns \(p_i, 0 \leq i \leq 2 \). We prove that the statistics \(\text{des}_0 \) and \(\text{des}_1 \) are equidistributed by giving algebraic and bijective proofs. Next, we provide the bivariate exponential generating function for the distribution of \(p_2 \), and we deduce that \(p_2 \) has the same popularity as \(p_0 \) and \(p_1 \), without having the same distribution. In Section 3, we present a bijection on \(S_n \) that transports pure excedances into patterns \(p_2 \). Notice that the Foata’s first transformation [9] is not a candidate for such a bijection. As a consequence, pure descents and pure excedances are equipopular on \(S_n \), but they do not have the same distribution. Combining all these results, we deduce that patterns \(p_i, 0 \leq i \leq 2 \), and \(p_{ex} \) are equipopular on the symmetric group \(S_n \). Finally we present two conjectures about the equidistribution of \((\text{cyc}, \text{des}_2) \) and \((\text{cyc}, \text{pex}) \), and that of \((\text{des}, \text{des}_2) \) and \((\text{exc}, \text{pex}) \).

2. The statistics \(\text{des}_i, \ 0 \leq i \leq 2 \)

For \(0 \leq i \leq 2 \), let \(A_{n,k}^i \) be the set of \(n \)-length permutations having \(k \) occurrences of \(p_i \), and denote by \(a_{n,k}^i \) its cardinality. Let \(A^i(x, y) \) be the bivariate exponential generating function \(\sum_{n=0}^{\infty} \sum_{k=0}^{n-1} a_{n,k}^i x^n y^k \). In [2,13], it is proved that \(a_{n,k}^i \) equals the signless Stirling numbers of the first kind \(c(n, k + 1) \) (see Sequence A132393 in [15]). Indeed, a permutation \(\pi \in A_{n,k}^i \) can be uniquely obtained from an \((n-1) \)-length permutation \(\pi' \) by one of the two following constructions:

(i) if \(\pi \in A_{n-1,k-1}^i \), then we increase by one all values of \(\pi' \) greater than or equal to \(\pi_{n-1} \), and we add \(\pi_{n-1} \) at the end;

(ii) if \(\pi \in A_{n-1,k}^i \), then we increase by one all values of \(\pi' \) greater than or equal to a given value \(x \leq n \), \(x \neq \pi_{n-1} \) and we add \(x \) at the end.

Then, we deduce the recurrence relation \(a_{n,k}^i = a_{n-1,k-1}^i + (n-1)a_{n-1,k}^i \) with \(a_{n,0}^i = (n-1)! \) for \(n \geq 1 \), \(a_{0,0}^i = 1 \) and the bivariate exponential generating function is

\[
A^i(x, y) = \frac{1}{y(1-x)^x} = \frac{1}{y} + 1
\]

which proves that \(a_{n,k}^i = c(n, k + 1) \).

Below, we prove that \(a_{n,k}^i \) also counts \(n \)-length permutations having \(k \) occurrences of the pattern \(p_0 \).
Theorem 2.1. The number $a_{n,k}^{0}$ of n-length permutations having k occurrences of pattern p_0 equals $a_{n,k}^{1} = e(n, k + 1)$.

Proof. An n-length permutation $\sigma \in A_{n,k}^{0}$ can be uniquely obtained from an $(n - 1)$-length permutation π by one of the two following constructions:

(i) if $\pi \in A_{n-1,k-1}^{0}$, then we increase by one all values of π and we add 1 at the end;

(ii) if $\pi \in A_{n-1,k}^{0}$, then we increase by one all values of π greater than or equal to a given value x, $1 < x \leq n$, and we add x at the end.

We deduce the recurrence relation $a_{n,k}^{0} = a_{n-1,k-1}^{0} + (n - 1)a_{n-1,k}^{0}$ with the initial condition $a_{n,0}^{0} = (n - 1)!$, and then $a_{n,k}^{0} = a_{n,k}^{1} = c(n, k + 1)$. □

Now, we focus on the distribution of the pattern p_2. Table 1 provides exact values for small sizes.

Theorem 2.2. We have

$$A^{2}(x, y) = \frac{e^{(x-1)y}}{(1 - x)^{y}},$$

and the general term $a_{n,k}^{2}$ satisfies for $n \geq 2$ and $1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$

$$a_{n,k}^{2} = na_{n-1,k}^{2} + (n - 1)a_{n-2,k-1}^{2} - (n - 1)a_{n-2,k}^{2}$$

with the initial conditions $a_{n,0}^{2} = 1$ and $a_{n,k}^{2} = 0$ for $n \geq 0$ and $k > \left\lfloor \frac{n}{2} \right\rfloor$ (see Table 1 and Sequence A136394 in [15]).

Proof. Let $\sigma = \sigma_1\sigma_2 \ldots \sigma_n$ denote a permutation of length n having k occurrences of pattern p_2. Let $u_{n,k}$ (resp. $v_{n,k}$) be the number of such permutations satisfying $\sigma_n = n$ (resp. $\sigma_n < n$). Obviously, we have

$$a_{n,k}^{2} = u_{n,k} + v_{n,k}.$$

A permutation σ with $\sigma_n = n$ can be uniquely constructed from an $(n - 1)$-length permutation π as $\sigma = \pi_1\pi_2 \ldots \pi_{n-1}n$. No new occurrences of p_2 are created, and we obtain

$$u_{n,k} = a_{n-1,k}^{2}.$$

A permutation σ satisfying $\sigma_n < n$ can be uniquely obtained from an $(n - 1)$-length permutation π by adding a value $x < n$ on the right side of its one-line notation, after increasing by one all the values greater than or equal to x. This construction creates a new pattern p_2 if and only if π ends with $n - 1$. Thus, we deduce

$$v_{n,k} = (n - 1)u_{n-1,k-1} + (n - 1)v_{n-1,k}.$$

Combining the equations, we obtain for $n \geq 2$ and $k \geq 1$

$$a_{n,k}^{2} = na_{n-1,k}^{2} + (n - 1)a_{n-2,k-1}^{2} - (n - 1)a_{n-2,k}^{2},$$

which implies the following differential equation

$$\frac{\partial A^{2}(x, y)}{\partial x} = (y - 1)x A^{2}(x, y) + \frac{\partial (x A^{2}(x, y))}{\partial x},$$

where $A^{2}(x, 0) = 1$.

A simple calculation provides the claimed closed form for the generating function $A^{2}(x, y)$. □

Corollary 2.1. For $0 \leq i \leq 2$, the patterns p_i are equipopular on S_n. Their popularity is given by the generalized Stirling number $n! \cdot (H_n - 1)$ (see Sequence A001705 in [15]) where $H_n = \sum_{k=1}^{n} \frac{1}{k}$ is the nth harmonic number.

Proof. The generating function of the popularity is directly deduced from the bivariate generating function of pattern distribution by calculating

$$\frac{\partial A^{1}(x, y)}{\partial y} \bigg|_{y=1} = \frac{\partial A^{2}(x, y)}{\partial y} \bigg|_{y=1}.$$

□

The statistic des_2 has a different distribution from des_0 and des_1, but the three patterns p_0, p_1, p_2 have the same popularity. Below we present a bijection on S_n that transports the statistic des_2 to the statistics $\text{pcyc} = \text{cyc} - \text{fix}$.
There is a one-to-one correspondence \(\phi \) on \(S_n \) such that for any \(\pi \in S_n \), we have

\[
\text{des}_2 \pi = \text{pcyc} \phi(\pi).
\]

Proof. Let \(\pi \) be a permutation of length \(n \) having \(k \) occurrences of \(p_2 \). We decompose

\[
\pi = B_0 \pi_{i_1} A_1 B_1 \pi_{i_2} A_2 B_2 \pi_{i_3} \cdots \pi_{i_k} A_k B_k,
\]

where

- \(\pi_{i_1} < \pi_{i_2} < \cdots < \pi_{i_k} \) are the tops of the occurrences of \(p_2 \), i.e. values \(\pi_{i_j} > \pi_{i_{j+1}} \) such that there does not exist \(\ell < i_j \) such that \(\pi_{i_\ell} > \pi_{i_j} \),
- \(A_j \) is a maximal sequence such that all its values are lower than \(\pi_{i_j} \),
- for \(0 \leq j \leq k \), \(B_j \) is an increasing sequence such that \(\pi_{i_j} < \min B_j \) and \(\max B_j < \pi_{i_{j+1}} \).

Now we construct an \(n \)-length permutation \(\phi(\pi) \) with \(k \) pure cycles as follows:

\[
\phi(\pi) = (\pi_{i_1} A_1) \cdot (\pi_{i_2} A_2) \cdot \cdots \cdot (\pi_{i_k} A_k).
\]

For instance, if \(\pi = 125346879 \) then \(\phi(\pi) = (5,3,4) \cdot (8,7) \). The map \(\phi \) is clearly a bijection on \(S_n \) such that \(\text{des}_2 \pi \) equals the number of pure cycles in \(\phi(\pi) \).

Note that \(\phi^{-1} \) is closely related to the Foata fundamental transformation [9].

3. The statistic \(\text{pex} \) of pure excedances

In order to prove the equidistribution of \(\text{pex} \) and \(\text{des}_2 \), regarding Theorem 2.3, it suffices to construct a bijection on \(S_n \) that transports pure excedances to pure cycles. Here, we first exhibit a bijection on the set \(D_n \) of \(n \)-length derangements (permutations without fixed points), then we extend it to the set of all permutations \(S_n \).

Any permutation \(\pi \in S_n \) is uniquely decomposed as a product of transpositions of the following form:

\[
\pi = \langle t_1,1 \rangle \cdot \langle t_2,2 \rangle \cdots \langle t_n,n \rangle
\]

where \(t_i \) are integers such that \(1 \leq t_i \leq i \). The transposition array of \(\pi \) is defined by \(T(\pi) = t_1 t_2 \cdots t_n \), which induces a bijection \(\pi \mapsto T(\pi) \) from \(S_n \) to the product set \(T_n = [1] \times [2] \times \cdots \times [n] \). By Lemma 1 from [1], the number of cycles of a permutation \(\pi \) is given by the number of fixed points in \(T(\pi) \). Moreover, it is straightforward to check the two following properties:

- if \(t_i = i \), then \(\pi_i = i \) if and only if there is no number \(j > i \) such that \(t_j = t_i = i \);
- if \(t_i = i \) and \(\pi_i = i \), then \(i \) is the minimal element of a cycle of length at least two in \(\pi \).

So, we deduce the following lemma.

Lemma 3.1. The transposition array \(t_1 t_2 \cdots t_n \in T_n \) corresponds to a derangement if and only if: \(t_i = i \Rightarrow \) there is a \(j > i \) such that \(t_j = i \).

Given a derangement \(\pi = \pi_1 \pi_2 \cdots \pi_n \in D_n \) and its graphical representation \(\{ (i, \pi_i), i \in [n] \} \). We say that the square \((i,j) \in [n] \times [n] \) is free if all following conditions hold:

(i) Neither \(\pi_i \) nor \(i \) is a position of a pure excedance;
(ii) \((i,j) \) is not on the first diagonal, i.e. \(j \neq i \);
(iii) there does not exist \(k > i \) such that \(\pi_k = j \);
(iv) j is not a pure excedance such that $j < i$ and $\pi^{-1}(j) < i$;

(v) there does not exist $k < i$, with $\pi_k = j > i$ such that all values of the interval $[i, j - 1]$ appear on the right of π_i in π.

Whenever at least one of the statements above is not satisfied, we say that the square (i, j) is unfree. Notice that if i and π_i are not the positions of a pure excedance, then the square (i, π_i) is always free. So, for a column i of the graphical representation of π such that i and π_i are not the positions of a pure excedance, we label by j the jth free square from the bottom to the top. We refer to Figure 2 for an example of this labeling.

Now we define the map λ from D_n to the set T_n^* of transposition arrays of length n satisfying the property of Lemma 3.1.

For a permutation $\pi = \pi_1 \pi_2 \ldots \pi_n \in D_n$, we label its graphical representation as defined above, and $\lambda(\pi) = \lambda_1 \lambda_2 \ldots \lambda_n$ is obtained as follows:

- if i is a pure excedance in π, then we set $\lambda_i = i$ and $\lambda_{\pi^{-1}(i)} = i$;
- otherwise, λ_j is the sum of the label of the free square (i, π_i) with the number of pure excedances $k < i$ such that $\pi^{-1}(k) < i$.

For instance, if $\pi = 6 8 1 2 5 4 7 3 2 1 1 9 10$ then we obtain $\lambda(\pi) = 1 1 2 4 4 2 1 1 9 1 9 10$ (see Figure 2).

Figure 2: Illustration of the bijection λ for $\pi = 6 8 1 2 5 4 7 3 2 1 1 9 10$ and $\lambda(\pi) = 1 1 2 4 4 2 1 1 9 1 9 10$.

Theorem 3.1. The map λ from D_n to T_n^* is a bijection such that

\[\text{pex } \pi = \text{fix } \lambda(\pi). \]

Proof. Since the cardinality of T_n^* equals that of D_n, and the image of D_n by λ is contained in T_n^*, it suffices to prove the injectivity.

Let π and σ, $\pi \neq \sigma$, be two derangements in D_n. If π and σ do not have the same pure excedances, then, by construction, $\lambda(\pi)$ and $\lambda(\sigma)$ do not have the same fixed points, and thus $\lambda(\pi) \neq \lambda(\sigma)$.

Now, let us assume that π and σ have the same pure excedances. If there is a pure excedance i such that $\pi^{-1}(i) \neq \sigma^{-1}(i)$ then the definition implies $\lambda(\pi) \neq \lambda(\sigma)$. Otherwise the two permutations have the same pure excedances i, and for each of them we have $\pi^{-1}(i) = \sigma^{-1}(i)$. Let j be the greatest integer such that $\pi_j \neq \sigma_j$ (without loss of generality, we assume $\pi_j < \sigma_j$). In this case, j is not a pure excedance for the two permutations. Thus, $\lambda(\pi)_j$ (resp. $\lambda(\sigma)_j$) is the sum of the label of (j, π_j) (resp. (j, σ_j)) with the number of pure excedances
k < j such that \(\pi^{-1}(k) < j \) (resp. \(\sigma^{-1}(k) < j \)). Since we have \(\pi_j < \sigma_j \), the label of \((j, \pi_j)\) is less than the label of \((j, \sigma_j)\), and the number of pure excedances \(k < j \) such that \(\pi^{-1}(k) < j \) is less than or equal to the number of pure excedances \(k < j \) such that \(\sigma^{-1}(k) < j \). Then we have \(\lambda(\pi_j) < \lambda(\sigma_j) \). Then \(\lambda \) is an injective map, and thus a bijection.

Theorem 3.2. There is a one-to-one correspondence \(\psi \) on the set \(D_n \) of \(n \)-length derangements such that for any \(\pi \in D_n \),

\[
\text{pex} \ \pi = \text{cyc} \ \psi(\pi).
\]

Proof. Considering Theorem 2.3 and Theorem 3.1, we define for any \(\pi \in D_n \), \(\psi(\pi) = \phi(\sigma) \) where \(\sigma \) is the permutation having \(\lambda(\pi) \) as transposition array.

Theorem 3.3. The two bistatistics \((\text{pex, fix}) \) and \((\text{pcyc, fix}) \) are equidistributed on \(S_n \).

Proof. Considering Theorem 3.2, we define the map \(\bar{\psi} \) on \(S_n \). Let \(\bar{\pi} \) be the permutation obtained from \(\pi \) by deleting all fixed points and after rescaling as a permutation. Let \(I = \{i_1, i_2, \ldots, i_k\} \) be the set of fixed points of \(\pi \). Then, we set \(\pi'' = \bar{\psi}(\bar{\pi}) \). So, \(\sigma = \psi(\pi) \) is obtained from \(\pi'' \) by inserting fixed points \(i \in I \) after a shift of all other entries in order to produce a permutation in \(S_n \). By construction, we have \(\text{pex} \ \pi = \text{pcyc} \ \sigma \) and \(\text{fix} \ \pi = \text{fix} \ \sigma \) which completes the proof.

A byproduct of this theorem is

Corollary 3.1. The statistics \(\text{cyc} \) and \(\text{pex} + \text{fix} \) are equidistributed on \(S_n \).

Also, a direct consequence of Theorems 2.3 and 3.3 is

Theorem 3.4. The two statistics \(\text{pex} \) and \(\text{des}_2 \) are equidistributed on \(S_n \).

Notice that Foata’s first transformation is not a candidate for proving the equidistribution of \(\text{pex} \) and \(\text{des}_2 \), while it transports \(\text{exc} \) to \(\text{des} \). Combining Theorem 3.4 and Corollary 2.1 we have the following.

Corollary 3.2. For \(0 \leq i \leq 2 \), the patterns \(p_i \) and \(\text{pex} \) are equipopular on \(S_n \) (see Sequence A001705 in [15]).

Finally, we present two conjectures for future works.

Conjecture 3.1. The two bistatistics \((\text{des}_2, \text{cyc}) \) and \((\text{pex, cyc}) \) are equidistributed on \(S_n \).

Conjecture 3.2. The two bistatistics \((\text{des}_2, \text{des}) \) and \((\text{pex, exc}) \) are equidistributed on \(S_n \).

It is interesting to remark that \((\text{des}, \text{cyc}) \) and \((\text{exc, cyc}) \) are not equidistributed. Indeed, there are 3 permutations in \(S_3 \) having \(\text{exc} = 1 \) and \(\text{cyc} = 2 \), namely 132, 213, 321, but only 2 permutations with \(\text{des} = 1 \) and \(\text{cyc} = 2 \), videlicet 132 and 213. So, if the Conjectures 3.1 and 3.2 are true then their proofs are probably independent.

Acknowledgements

We would like to greatly thank Vincent Vajnovszki for having offered us Conjecture 3.2 and the anonymous referees for their helpful comments and suggestions.

References

[1] J.-L. Baril, Statistics-preserving bijections between classical and cycle permutations, Inform. Process. Lett. 113 (2013), 17–22.
[2] J.-L. Baril and S. Kirgizov, The pure descent statistic on permutations, Discrete Math. 340:10 (2017), 2250–2258.
[3] J.-L. Baril and V. Vajnovszki, Popularity of patterns over d-equivalence classes of words and permutations, Theoret. Comput. Sci. 814 (2020), 249–258.
[4] F. Bergeron, N. Bergeron, R. B. Howlett and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), 23–44.
[5] M. Bóna, Surprising symmetries in objects counted by Catalan numbers, Electron. J. Combin. 19:1 (2012), Article P62.
[6] P. Brändén and A. Claesson, *Mesh patterns and the expansion of permutation statistics as sums of permutation patterns*, Electron. J. Combin. 18:2 (2011), Article P5.

[7] S. Elizalde, *Descent sets of cyclic permutations*, Adv. in Appl. Math. 47:4 (2011), 688–709.

[8] S. Elizalde and J. M. Troyka, *The number of cycles with a given descent set*, Sémin. Lothar. Combin. 80 (2018) Article #8.

[9] D. Foata and M. P. Schützenberger, *Théorie Géométrique des Polynômes Euleriens*, Lecture Notes in Math. 138, Springer-Verlag, Berlin, 1970.

[10] D. Foata and G.-N. Han, *Decreases and descents in words*, Sémin. Lothar. Combin. 58 (2007), Article B58a.

[11] A. Garsia and C. Reutenauer, *A decomposition of Solomon’s descent algebra*, Adv. Math. 77 (1989), 189–262.

[12] I. Gessel and G. Viennot, *Binomial determinants, paths, and hook length formulae*, Adv. Math. 58 (1985), 300–321.

[13] S. Kitaev and P.B. Zhang, *Distributions of mesh patterns of short lengths*, Adv. in Appl. Math. 110 (2019), 1–32.

[14] P.A. MacMahon, *Combinatory Analysis*, Volumes 1 and 2, Cambridge Univ. Press, Cambridge, UK, 1915 (reprinted by Chelsea, New York, 1955).

[15] N.J.A. Sloane, *The On-line Encyclopedia of Integer Sequences*, available electronically at http://oeis.org.

[16] R.P. Stanley, *Enumerating Combinatorics*, Volume 2, Cambridge University Press, 1999.

[17] R.M. Wilson and J.H. van Lint, *A course in combinatorics*, Volume 1, Cambridge University Press, 2002.