Streptomyces peucetius M1 and Streptomyces lavendulae M3 Soil Isolates as a Promising Source for Antimicrobials Discovery

Vikas Jha a*, Tisha Jain b, Divya Nikumb a, Yukta Gharat a, Joshua Koli a, Namrata Jadhav a, Janavi Gaikwad b, Pratiksha Dubey c, Divya Dhopeshwarkar c, Shruti Narvekar c and Agraj Bhargava a

a National Facility for Biopharmaceuticals, Guru Nanak Khalsa College of Arts, Science & Commerce, Mumbai-19, Maharashtra, India.
b Department of Five Years Integrated Course in Bioanalytical Sciences, GNIRD, G.N. Khalsa College, Matunga-19, Mumbai, Maharashtra, India.
c Department of Biotechnology, Guru Nanak Khalsa College of Arts, Science & Commerce, Mumbai-19, Maharashtra, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2022/v34i50B36438

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/91968

Received 08 July 2022
Accepted 15 September 2022
Published 17 September 2022

ABSTRACT

The ever-increasing fatality due to the surge of drug resistance has demanded the development of therapeutic metabolites with novel modes of mechanism. Despite the discovery of new antimicrobials, antibiotic resistance is increasing at an alarming rate. The emergence of novel molecules is necessary for targeting the Multidrug (MDR) and Pan-Drug resistant (PDR) pathogens which are the principal cause of life-threatening infections. Streptomyces strains commonly found in the soil produce secondary metabolites which have outstanding potential for being an antifungal and antibacterial agent. This study aims to isolate, identify, and characterize Streptomyces strains isolated from soil and extract their crude metabolites to determine their hidden therapeutic property. Out of four isolates identified, Streptomyces peucetius and Streptomyces lavendulae have shown significant antimicrobial activity against test organisms. To further determine the activity of their extracts GC-MS analysis, and MIC, as well as radical scavenging activity, were determined. GC-
INTRODUCTION

Drug-resistant illnesses are a serious health hazard responsible for 17 million deaths annually [1]. Given the swiftly diminishing arsenal of commercial drugs against major pathogens and steadily expanding drug resistance, the discovery and development of novel therapeutics are imperative, ideally naturally occurring ones with novel modes of action. New therapeutic drugs have entered the clinical field in recent years; however, they are accompanied by unpleasant negative effects [2]. Thus, there is an exclusive demand for novel therapeutic medications to combat the Multi- and Pan-drug resistant pathogens that are the main cause of life-threatening illnesses. The need for alternative antibiotics grows, particularly to combat super-infections, secondary infections, and nosocomial infections [3]. Control of these drug-resistant pathogens can be achieved by implementing another group of microorganisms, as the majority of antibacterial drugs are either natural products of microbial origin or analogues [4]. There are numerous sources where microorganisms capable of pharmaceutical and industrial application exist. Soil, in particular, is a heavily exploited ecological niche whose occupants generate a wide range of beneficial biologically active natural metabolites, including therapeutically relevant antibiotics [5].

Streptomyces are among the most abundant microorganisms that can be found in soil and aquatic environments. They produce secondary metabolites that have a variety of potential bioactive properties, including antibiotic, antifungal, and antiviral activity against a variety of microorganisms [6]. More than 70% of economically significant antibiotics are produced by the genus Streptomyces, which also produces a large range of bioactive substances with pharmacological and agricultural applications [7]. Natural manufacturers of bioactive compounds, Streptomyces are abundant in nature and are commonly used in the pharmaceutical sector owing to their seemingly limitless ability to produce secondary metabolites with different chemical structures and biological activity [8]. They are a vital source of secondary metabolites like antibiotics, biopesticide agents, plant growth hormones, antitumor compounds, antiviral agents, pharmacological compounds, pigments, enzymes, enzyme inhibitors, and anti-inflammatory compounds [9][10]. Streptomyces sp. VITBRK2 produced secondary metabolites which can be used to control several multi-drug resistance bacteria according to Rajan et al.[11]. Streptomyces anulatus NEAE-94's ethyl acetate extract exhibited strong biological activity against Staphylococcus aureus, Multidrug-resistant S. aureus, and Bacillus subtilis[12]. Kerase is an enzyme synthesized from Streptomyces fradiae while S. griseus secretes pronase is utilized to make hydrolysate proteins from various protein sources for application in biotechnology products [13]. Streptomyces can break down complex polymers.
and play a significant part in recycling organic carbon [14]. Ivermectin is produced by *Streptomyces avermitilis* and is effective against *Wuchereria bancroftii* thus demonstrating the ability of *Streptomyces* species to produce high nematicidal compounds [15]. A crucial step in the manufacture of a wide range of structurally different bioactive chemicals, such as antibiotics, anticancer drugs, antiviral medications, and immunosuppressants, is fermentation.

The current research demonstrates the isolation, identification, and molecular characterization of the *Streptomyces* species from the soil along with the fermentation of their secondary metabolic extract. The results reveal the bioactive potential of the extracts along with the constituent compounds present in the extracts. The results impose the need for further investigation of the biologically significant extract.

2. MATERIALS AND METHODS

2.1 Isolation of *Streptomyces* Strain and Preliminary Antimicrobial Screening of Isolated Strains

Soil samples from Kerala were acquired, sealed in sterile Ziploc bags, and transported to the laboratory. They were air-dried and suspended in sterile distilled water (1 g/100 mL), homogenized by vortexing, and 0.1 mL of the serially diluted sample of 10^{-5} dilution was pour plated on the International Streptomyces Project 4 (ISP-4) agar for isolation of *Streptomyces* [16]. Post incubation, the antimicrobial activity of the isolate was recorded by observing the inhibition zone around the inoculated spot with the isolated strains. The isolated *Streptomyces* colonies were carefully picked and sub-cultured on ISP-4 agar for the isolation of a single colony [17].

2.2 Identification of *Streptomyces* Strains

Genomic DNA was isolated from 24h growing cultures using the Lysozyme-CTAB approach [18]. After qualitative examination of the isolated DNA using Agarose gel electrophoresis, the 16S rRNA gene was amplified using PCR. The isolates were then identified using 16S rRNA gene sequencing [19]. Using the BLAST Tool, the FASTA file obtained from the sequencing results was aligned with the nucleotide database. The sequences were then aligned using MUSCLE pairwise alignment, and the phylogenetic tree was built using MEGA 11 software’s Neighbor-joining method, the Bootstrap Phylogeny test with 1000 bootstrap replications, and the Tamura-Nei model. The gene sequences were submitted to GenBank. The isolates’ accession numbers are listed in Table 1.

2.3 Fermentation and Metabolite Extraction

Following the preliminary screening, the most potent strains M1 and M3 were taken for fermentation using a synthetic medium. Isolate M1 was grown in media containing Dextrose (60gm/L), Yeast extract (8gm/L), Malt extract (20gm/L), MOPS sodium salt (15gm/L), Sodium chloride (2gm/L), Magnesium chloride (0.1gm/L), Zinc sulphate (0.01gm/L), Ferrous sulphate (0.01gm/L). While Isolate M3 was fermented using media containing Dextrose (20gm/L), Fructose (20gm/L), Starch (10gm/L), Soybean meal (40gm/L), Sodium chloride (5gm/L), Calcium carbonate (3gm/L). The pH for the fermentation medium of both the isolate was maintained at 7.0 ± 0.2. 1% inoculum was added to flasks comprising 300 mL of production media made specifically for each strain, respectively [20]. For 5 days, the flasks were incubated at 180 rpm at 37°C in an orbital shaker. For extraction of metabolite, the culture supernatant was subjected to liquid-liquid extraction using ethyl acetate. The solvent was added to the supernatant in a 1:1 (v/v) ratio and vigorously agitated for 10 mn [21]. The metabolite comprising the ethyl acetate phase was separated from the aqueous phase using a separating funnel. The ethyl acetate layer was concentrated by evaporating the extract at room temperature, and the residue was reconstituted using methanol to obtain a yellowish-green extract [22]. The bioactive compounds were investigated for their antimicrobial property against pathogenic organisms.

SR No	Isolates	Organism name	Accession-ID
1	M1	*Streptomyces peucetius*	ON786999
2	M2	*Streptomyces fradiae*	ON787000
3	M3	*Streptomyces lavendulae*	ON787001
4	M4	*Streptomyces exfoliatus*	ON787002
2.4 Characterisation of Isolated Metabolic Extracts

2.4.1 Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis and Chemical Components Investigations

The volatile components from the metabolic extracts of isolate M1 and M3 were analyzed in the GC-MS system (Shimadzu GCMS-QP2010) [23][24]. The analysis was carried out on the Rtx-5MS column (30 m long, 0.25 m in diameter, and with a 0.25 m film thickness) having 5% diphenyl and 95% dimethylpolysiloxane chemistry. 1 µL of samples in a split ratio of 1:10 was analyzed using a helium carrier gas with a flow rate of 14 mL/min. To analyze the components of both the extracts, they were subjected to experimental conditions, which were regulated, including injector temperature, ion-source temperatures of 230°C and 220°C respectively, and oven temperature, which was programmed to vary in a gradient fashion from 60°C with the isothermal environment for 2 min, with a 10 °C/min increase to 280°C with 8.00 min isothermal condition. The program spanned 30 min in total to analyze the components present in the sample. The mass spectra were obtained in the region of 35 to 500 m/z. The components of the extracts were recognized by comparing their mass spectra to those present in the Wiley and NIST libraries [24].

2.5 Assessment of the Bioactive Potential of the Extracted Metabolites

2.5.1 Determination of Anti-microbial property by agar cup method

Petri plates with Mueller-Hinton and Sabouraud Dextrose (SDB) agar and a suspension of pathogenic bacteria with a final concentration of 10^7 CFU/mL were used to conduct the well diffusion procedure [25]. The crude metabolite extract of the isolates M1 and M3 were evaluated for antimicrobial activity against various pathogenic strains, such as Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Propionibacterium acnes, Escherichia coli, Propionibacterium acnes, Salmonella typhimurium, Pseudomonas aeruginosa, Vibrio cholerae, Vancomycin-resistant Enterococci (VRE), Methicillin-resistant Staphylococcus aureus (MRSA), Candida albicans and Aspergillus niger. The above test organisms were obtained from MTCC Chandigarh and the few microbial cultures were obtained from existing laboratory test isolates. As a positive control, 20 µg/mL concentrations of chloramphenicol and fluconazole were administered. As a negative control, DMSO was employed. The plates were then incubated at 37°C for 24 h.

2.5.2 Minimal inhibitory concentration

Minimum inhibitory concentration (MIC) determines the lowest concentration at which the crude metabolite extract inhibits complete growth [26]. The microdilution method was performed using 96 well microtiter plate, 100 µL of 1X Muller Hinton (MH), and Sabouraud Dextrose broth was dispensed in all the rows, except one row, to which 100 µL of 2X MH and Sabouraud Dextrose broth was added. Two-fold serial dilution was then performed from this row for five consecutive rows and 100 µL was discarded from the last row [27]. The extracted metabolites (10 mg) were suspended in 1 mL of DMSO (in the ratio of 1:10) and 100 µL was pipetted into each row [28]. The final optical density of the inoculum was adjusted according to the 0.5 McFarland standard and 10 µL was introduced into the respective wells. Kanamycin (20 µg/mL) and DMSO were used as positive and negative controls. The plate was incubated for 18-24 h at 37°C. After incubation, 5 µL resazurin was added to all the wells in the plate, incubated for 30 mn, and observed for colour change.

2.5.3 DPPH free radical scavenging activity

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method was used to assess the free radical scavenging activities of the extracts [29]. Streptomyces extract concentrations ranging from 10 µg/mL to 100 µg/mL were prepared. The entire reaction volume was maintained at 4 mL, which included the sample, methanol as a blank, and 2 mL of DPPH reagent in each tube. The absorbance of each solution was measured at 517 nm using a spectrophotometer after 30 minutes of incubation in the dark.

For each metabolite, the % inhibition of the DPPH radical was computed using the following equation:

\[
\% \text{Free Radical Scavenging Activity} = \frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \times 100
\]

Where \(A_{\text{blank}}\) is the absorbance of the control and \(A_{\text{sample}}\) is the absorbance of the test compound under study. \(IC_{50}\) was calculated from the graph plotted.
3. RESULTS AND DISCUSSION

3.1 Isolation and Preliminary Screening of *Streptomyces* Strain

Streptomyces strains were successfully isolated from the soil samples by obtaining pure culture through growth on the ISP-4 medium. The isolated strains exhibited a considerable zone of inhibition when pour-plated. Thus, it was selected further for experimental analysis.

3.2 Identification of *Streptomyces* Strains

At taxonomic levels, PCR-based molecular techniques like 16S rRNA and RAPD, etc. can be used [30]. Nevertheless, the most promising method for phylogenetic categorization of bacteria is the sequencing of genes encoding 16S rRNA. The 16S rRNA gene of *Streptomyces* strains was amplified in this study using the PCR method and universal primers. The PCR product was examined on agarose gel at a 1% concentration. The 16S rRNA sample that had been amplified underwent partial nucleotide sequencing. After performing a BLAST on the acquired nucleotide sequences for the *Streptomyces* strains, they were screened as *Streptomyces peucetius*, *Streptomyces fradiae*, *Streptomyces lavendulae*, and *Streptomyces erythraeus*. The evolutionary link between the microorganisms is determined by the phylogenetic analysis. As a result, a phylogenetic tree based on the 16S rRNA sequence of Streptomyces strains was built using the neighbor-joining method using MEGA 11. Isolates M1 and M4 showed 88% similarity while M2 and M3 exhibit 85% resemblance.

3.3 Characterisation of Isolated Metabolic Extract

3.3.1 GC-MS analysis to determine the components present in extracts

To comprehend the potential pharmacological capability of the M1 and M3 extracts, GC-MS analysis was carried out in order to evaluate the chemical composition. The investigation of M1 extract revealed 25 compounds, constituting the overall content of the extract, which is illustrated in Tables 2 and 3. The most abundant components of the M1 extract were Benzene, 1,3-dimethyl- (34.80%), 2,3-butandiol, [R-(R',R'')] (22.67%), pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- (22%) and L-lactic acid (11.77%). Furthermore, the analysis of the M3 extract disclosed its own potential major constituents, namely o-xylene (28.87%) and (3-methyl-oxiran-2-yl)-methanol (9.35%), both of which had different retention periods of 3.330 and 2.019, respectively. Both the extracts possess potential antimicrobial action owing to the presence of constituents like 2,3-butandiol [31], 1-methyl-2-pyrrolidone-4-carboxamide [32] [33], and L-lactic acid. Previous studies have indicated that bis (2-ethylhexyl) phthalate could be a possible agent, which can inhibit microbial strains and showcase cytotoxicity [34], 1-hexadecanol [35], squalene [36] and Caryophyllene [37] present in the extracts have previously been shown to possess antioxidant activity against free radicals. Owing to the presence above mentioned potential components in the microbial extracts, they could be developed as possible therapeutic agents.

3.4 Assessment of Bioactive Potential of Extracted Metabolites

3.4.1 Determination of anti-microbial property by agar cup method

Antimicrobial Resistance (AMR) of pathogenic bacteria emerges when the microorganisms acquire resistance to antibiotics, enabling them to no longer respond to antibiotics [38]. Crude extract from M1 and M3 isolates were screened for antibacterial activity against ten bacterial pathogens, and two fungus strains, using the agar well diffusion method [39]. Significant antimicrobial activity was observed in metabolite extracts obtained from the isolates *Streptomyces peucetius* (M1) and *Streptomyces lavendulae* (M3). Prominent activity against *Bacillus subtilis* (20 mm), and *Staphylococcus aureus* (19 mm), was shown by the extract of *Streptomyces peucetius*. Similarly, *Streptomyces lavendulae* extract, showed phenomenal activity against *Staphylococcus epidermidis* (19 mm) and minimal activity against *Pseudomonas aeruginosa* (6 mm). As previously known, fungal pathogens have been responsible for significant agricultural losses caused by the plant diseases they produce; they are also the origin of many medically related illnesses [40]. The highest anti-fungal activity was demonstrated by *Streptomyces peucetius* extract against *Aspergillus niger* (14 mm), and the extract from *Streptomyces lavendulae* displayed significant activity against *Candida albicans* (18 mm). M1 extract demonstrated appreciable activity against both Gram-positive and Gram-negative bacteria. The presence of antimicrobial compounds in the extracts, which had previously been confirmed by
GC-MS analysis, was most definitely linked to the activity that had been observed. Compounds such as bis(2-ethylhexyl) phthalate [41], 2,3-butanediol, [R- (R*, R*)]-[42], and L-lactic acid [43], have previously been reported to be potent antimicrobial and cytotoxic agent respectively. As aforementioned, the extracts work on the outer lipopolysaccharide cell membrane to transport them within and potentially change the inner cellular components and release intracellular components, asserting the extract's ability to kill microbial pathogens [44]. Thus, the extensive availability of antimicrobial compounds in the secondary metabolite produced by *Streptomyces* sp. revealed significant antimicrobial properties against the test pathogens [45].

![Phylogenetic tree of isolated strains](image)

Fig. 1. Phylogenetic tree of isolated strains obtained by Neighbour-joining (NJ) method using MEGA 11 software. The branch node number shows percent bootstrap support. The accession numbers of the organisms are included in parentheses.

Compound name	Molecular formula	Molecular weight	Retention Time
(3-Methyl-oxiran-2-yl)-methanol	C4H8O2	88.11	2.019
α-Xylene	C4H10	106.16	3.33
1-Dodecene	C12H24	168.32	8.045
Dodecane	C12H26	170.33	8.169
Dodecane, 4,6-dimethyl-	C14H30	198.39	9.381
Decane, 3,7-dimethyl-	C12H26	170.33	9.69
Cyclohexasiloxane, dodecamethyl-	C12H26O2Si6	444.92	9.806
Dodecane, 4,6-dimethyl-	C14H30	198.39	10.059
n-Tridecan-1-ol	C13H26O	200.36	11.004
Tetradecane	C14H30	198.39	11.1
Caryophyllene	C15H24	204.35	11.515
Tetradecane, 5-methyl-	C16H32	212.41	12.27
Decane, 5-propyl-	C13H28	184.36	12.44
Heptadecane	C17H36	240.5	12.5
Phenol, 2,4-bis(1,1-dimethylethyl)-	C14H22O	206.32	12.667
1-Decanol, 2-hexyl-	C18H34O	242.44	12.76
Eicosane	C20H42	282.5	12.96
1-Pentadecene	C15H30	210.4	13.611
Octadecane	C18H38	254.5	13.694
Table 3. Constituents present in crude metabolic extract M3 identified by GC-MS techniq

| Component name | Molecular formula | Molecular weight | Retention Time |
|---|-------------------|------------------|----------------|----------------|
| 2,3-Epoxybutane | C₄H₈O | 72.11 | 2.019 |
| 2,3-Butanediol, [R-(R*,R*)]- | C₆H₁₀O₂ | 90.12 | 2.113 |
| Silane, ethoxytriethyl | C₁₀H₁₀OSi | 160.33 | 2.494 |
| Benzene, 1,3-dimethyl- | C₆H₁₀ | 106.16 | 3.325 |
| L-lactic acid | C₅H₁₀O₃ | 90.08 | 3.441 |
| 1-Decene | C₁₀H₂₀ | 140.27 | 4.785 |
| Decane | C₁₀H₂₂ | 142.28 | 4.921 |
| 3-Tetradecene, (Z)- | C₁₄H₂₆ | 196.37 | 8.045 |
| Dodecane | C₁₂H₂₆ | 170.33 | 8.167 |
| 3-Hexadecene, (Z)- | C₁₆H₃₂ | 224.42 | 10.994 |
| Tetradecane | C₁₂H₃₀ | 198.39 | 11.096 |
| Phenol, 2,4-bis(1,1-dimethylethyl)- | C₁₂H₂₂O | 206.32 | 12.666 |
| 1-Pentadecene | C₁₅H₃₀ | 210.4 | 13.609 |
| Hexadecane | C₁₈H₃₄ | 226.44 | 13.693 |
| 1-Heptadecene | C₁₇H₃₈ | 238.5 | 15.948 |
| Octadecane | C₁₈H₃₈ | 254.5 | 16.018 |
| Pyrrolo[1,2-alpyrazone-1,4-dione, hexahydro-3-(2- | C₁₁H₁₈N₂O₂ | 210 | 16.398 |
| 1-Nondadecene | C₁₉H₃₈ | 266.5 | 18.064 |
| Octadecane | C₁₈H₃₈ | 254.5 | 18.12 |
| 1-He deceitosanol | C₂₁H₄₄O | 312.6 | 19.995 |
| Phenol, 2,4-bis(1-phenylethyl)- | C₂₂H₂₂O | 302.4 | 22.145 |
| **bis**(2-ethylhexyl) phthalate | C₂₅H₃₈O₄ | 390.6 | 23.129 |
3.4.2 Minimal inhibitory concentration

Using the microdilution technique, the antibacterial activity of the extracts M1 and M3 was examined against several pathogenic Gram-positive and Gram-negative bacteria along with two predominant nosocomial fungal pathogens. The investigated strains showed growth inhibition at various MIC levels, as shown in Fig. 3. The most susceptible fungi to both extracts were Candida albicans and Escherichia coli was the most vulnerable bacteria to M1 extract with a MIC value of 15.625 μg/mL whereas M3 extract restricted the growth of Staphylococcus aureus with a MIC value of 3.90 μg/mL. The M1 extract showed significant potency against all the test organisms most notably against Staphylococcus epidermidis, Propionibacterium acne, and Vibrio cholerae with respective MIC values of 15.62 μg/mL, 31.25 μg/mL, and 31.25 μg/mL. Additionally, M3 extract showed attributable antimicrobial nature against most test organisms notably against Staphylococcus epidermidis, Vancomycin-resistant Enterococci, and Aspergillus niger with respective MIC values of 31.25 μg/mL, 31.25 μg/mL, and 31.25 μg/mL. The data obtained through GC-MS revealed that the Streptomyces extract contains a range of compounds with known antimicrobial activity. Propionic acid is utilized as a preservative in several food products owing to its inhibitory effect on microorganisms especially fungi by inducing apoptotic cell death which can be further confirmed by our results [46]. 1-methyl-2-pyrrolidone-4-carboxamide belonging to the family of carboxamides are efflux pump inhibitors which make them excellent antibacterial agents against several pathogenic Gram-positive and Gram-negative bacteria [47],[48]. All this data implies that the Streptomyces extract has the potential to inhibit several pathogenic microorganisms. Further research must be dwelled upon to further purify and amplify its antimicrobial ability.

3.4.3 DPPH free radical scavenging activity

Antioxidant activity was determined using the DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging assay, which is one of the most widely accepted and efficient methods. DPPH has stable free radicals, which get reduced when a hydrogen donor is present i.e. free radical scavenging antioxidant [46]. When the reduction of the DPPH reagent takes place, the color changes from purple DPPH solution to yellow diphenylpicrylhydrazine [47]. Decolourization of DPPH by the metabolic extracts M1 and M3 indicated the scavenging ability of the extracts. The radical scavenging ability of M1 and M3 extracts, from concentrations ranging from 10 μg/mL to 100 μg/mL, are illustrated in the figure below. Ascorbic acid was used as a standard for this assay and had an IC$_{50}$ value of 60.01 μg/mL.
IC$_{50}$ values of metabolic extracts M1 and M3 were found to be 43.17 µg/mL and 22.65 µg/mL respectively. These values obtained were lower than the radical scavenging activity of standard ascorbic acid, but they are close to the standard IC$_{50}$ value. The free radical neutralizing capacity of the extracts could be attributed to components like 1-hexadecanol, squalene, and caryophyllene, which were verified by our GC-MS analysis. Therefore, the metabolic extracts display a good level of antioxidant activity as per the results.

![Fig. 3. MIC values of M1 and M3 extract against Test organisms](image)

Fig. 3. MIC values of M1 and M3 extract against Test organisms

(A) *Staphylococcus aureus*, (B) *Staphylococcus epidermidis*, (C) *Bacillus subtilis*, (D) Methicillin-resistant *Staphylococcus aureus*, (E) *Propionibacterium acne*, (F) *Escherichia coli*, (G) *Salmonella typhimurium*, (H) *Pseudomonas aeruginosa*, (I) Vancomycin-resistant Enterococci, (J) *Vibrio cholerae*, (K) *Candida albicans*, (L) *Aspergillus niger*

![Fig. 4. Percent Free DPPH Radical Scavenging activity by *Streptomyces* crude extracts M1 and M3](image)
4. CONCLUSION

Antimicrobial drugs are losing their curative effectiveness attributed to the prevalence of drug-resistant bacteria and a dramatic increase in infectious illnesses globally. There is a need to address these challenges by employing naturally accessible bioactive compounds. *Streptomyces* genus is responsible for their ability to produce active secondary metabolites, including antibiotic, antitumor, antimalarial and immunosuppressive agents. The objective of the current study was to isolate, characterize, and screen for the anti-microbial activity of different Streptomyces strains from the soil, ferment the secondary metabolic extracts and show the potential biological activity of the crude extract to further investigate the untapped potential of this significant therapeutic compound. During preliminary analysis, notable activity was shown by M1 and M3, later identified as *Streptomyces peucetius* and *Streptomyces lavendulae* therefore their secondary metabolites were chosen for further analysis. Both extracts showed appreciable biological activities due to the presence of therapeutic components. GC-MS revealed the presence of various compounds like L-lactic acid and bis(2-ethylhexyl) phthalate. The metabolic extract was efficacious against both bacterial and fungal strains, emphasizing the extracts’ potential antibacterial properties. Although the IC$_{50}$ value was less than the standard ascorbic acid’s ability to scavenge radicals, it was still relatively close to the amount. The aforementioned results are encouraging and unquestionably demonstrate the therapeutic ability of selected isolates. However, further analysis of secondary metabolites will be important to take into account for drug discovery.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

DATA AVAILABILITY STATEMENT

All data generated or analyzed during this study are included in this published article.

FUNDING

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Tenebro CP, et al. Multiple strain analysis of *Streptomyces* species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Sci Rep. 2021;11(1):17544, 123AD. DOI: 10.1038/s41598-021-96886-4
2. Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadav LP et al. Fermentation and extraction of antibacterial metabolite using *Streptomyces* spp. Isolated from Taplejung, Nepal. J Inst Sci Technol. 2021;26(1):8-15. DOI: 10.3126/jist.v26i1.37808
3. Maiti PK, Das S, Sahoo P, Mandal S. *Streptomyces* sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci Rep. 2020;10(1, Dec):10092. DOI: 10.1038/s41598-020-66984-w
4. Ganesan P, Reegan AD, David RHA, Gandhi MR, Paulraj MG, Al-Dhabi NA et al. Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alex J Med. Jun 2017;53(2):101-10. DOI: 10.1016/j.ajme.2016.03.004.
5. Saravana Kumar PS, Duraipandiyan V, Ignacimuthu S. Isolation, screening and partial purification of antimicrobial antibiotics from soil *Streptomyces* sp. SCA 7. Kaohsiung J Med Sci. 2014;30(9):435-46. DOI: 10.1016/j.kjms.2014.05.006
6. Nguyen HT, Pokhrel AR, Nguyen CT, Pham VTT, Dhakal D, Lim HN et al. *Streptomyces* sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci Rep. 2020;10(1):1756. DOI: 10.1038/s41598-020-58623-1
7. Tan LTH, Lee LH, Goh BH. Critical review of fermentation and extraction of anti-Vibrio compounds from *Streptomyces*. Prog Micobes Mol Biol. 2020;3(1). DOI: 10.36877/pmb.m.0000051.
8. Arasu MV, Duraipandiyan V, Agastian P, Ignacimuthu S. Antimicrobial activity of *Streptomyces* spp. ERI-26 recovered from
Western Ghats of Tamil Nadu. J Mycol Med. Sep 2008;18(3):147-53. DOI: 10.1016/j.jmycolmed.2008.07.004.

9. Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol. Dec 01, 2021;19(1), no. 1. Springer Science and Business Media Deutschland GmbH:72. DOI: 10.1186/s43141-021-00156-9

10. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol. 2018;67(3), no. 3:259-72. DOI: 10.21307/pjm-2018-048

11. Rajan BM, Kannabiran K. I IJ JM MC CM M extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. VITBRK2.

12. El-Naggar NEA, El-Bindary AAA, Abdel-Mogib M, Nour NS. In vitro activity, extraction, separation and structure elucidation of antibiotic produced by Streptomyces anulatus NEAE-94 active against multidrug-resistant Staphylococcus aureus. Biotechnol Biotechnol Equip. 2017;31(2):418-30. DOI: 10.1080/13102818.2016.1276412.

13. Hiramatsu A, Ouchi T. On the proteolytic enzymes from the commercial protease preparation of Streptomyces griseus (pronase P) [online]. J Biochem. 1963;54:462-4. DOI: 10.1093/oxfordjournals.jbchem.a127815

14. Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. Nov 2012;30(11):558-65. DOI: 10.1016/j.tibtech.2012.07.003

15. Schütze E, Klose M, Merten D, Nietzsche S, Senftleben D, Roth M et al. Growth of streptomycetes in soil and their impact on bioremediation. J Hazard Mater. Feb 2014;267:128-35. DOI: 10.1016/j.jhazmat.2013.12.055

16. Djebbah FZ, Belyagoubi L, Abdelouahid DE, Kherbouche F, Al-Dhabi NA, Arasu MV et al. Isolation and characterization of novel Streptomyces strain from Algeria and its in-vitro antimicrobial properties against microbial pathogens. J Infect Public Health. Nov 2021;14(11):1671-8. DOI: 10.1016/j.jiph.2021.09.019

17. Sudha A, Murty VS, Chandra TS. Standardization of metal-based herbal medicines. Am J Infect Dis. 2009;5(3):200-6. DOI: 10.3844/ajidsp.2009.200.206.

18. de Almeida IN, da Silva Carvalho W, Rossetti ML, Costa ERD, de Miranda SS. Evaluation of six different DNA extraction methods for detection of Mycobacterium tuberculosis by means of PCR-IS6110: preliminary study. BMC Res Notes. 2013 [online]:6(1). DOI: 10.1186/1756-5060-6-561.

19. Qureshi KA, Seroor M, Al-Masabi A, Saykhan MA, Mutairi YA, Elhassan GO et al. Bio-characterizations of some marine bacterial strains isolated from mangrove sediment samples of four major cities of Saudi Arabia. J Environ Biol. Sep 2020;41(5):1003-12. DOI: 10.22438/jeb/41/5/MRN-1317.

20. Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G. Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int. Mar 2014;2014:217030. DOI: 10.1155/2014/217030

21. Khattab AI, Babiker EH, Saeed HA. Streptomyces: isolation, optimization of culture conditions and extraction of secondary metabolites. Int Curr Pharm J. 2016 [online]:5(3):27-32. DOI: 10.3329/icpj.v5i3.26695.

22. Christopher GJ. Extraction and Characterization of antibiotic compounds produced by Streptomyces spp. VITGV01 against Selected Human Pathogens 2021. DOI: 10.21203/rs.3.rs-321054/v1.

23. Adams RP. Identification of Essential Oil Components by Gas chromatography/Quadrupole Mass Spectroscopy Mexican Cypresses View project Population genetics and evolutionary history of mountaineous plants View project [online]. Available:https://www.researchgate.net/publication/283650275.

24. Stein SE et al. NIST Standard Reference Database 1A NIST/EPA/NIH Mass Spectral Database (NIST 11) and NIST Mass Spectral Search Program (version 2.0g) for Use with Microsoft® Windows User’s Guide The NIST Mass Spectrometry Data Center; 1987.

25. Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadav LP et al. Fermentation and extraction of antibacterial metabolite
using Streptomyces spp. Isolated from Talejung, Nepal. J Inst Sci Technol. Jun 2021;26(1):8-15. DOI: 10.3126/jist.v26i1.37808.

26. Singh R, Dubey AK. Isolation and characterization of a new endophytic actinobacterium Streptomyces californicus strain adr1 as a promising source of antibacterial, anti-biofilm and antioxidant metabolites. Microorganisms. Jun 2020; 8(6):1-19. DOI: 10.3390/microorganisms8060929

27. Amorim EADF, Castro EJM, da Souza SV, Alves MS, Dias LRL, Melo MHF et al. Antimicrobial potential of Streptomyces anschomogenes (PB3) isolated from a plant native to the amazon against Pseudomonas aeruginosa. Front Microbiol. 2020;11(Oct):574693. DOI: 10.3389/fmicb.2020.574693

28. Al-Dhabi NA, Esmail GA, Duraipandiyan V, Valan Arasu M, Salem-Bekhit MM. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia. Extremophiles. Jan 2016;20(1):79-90. DOI: 10.1007/s00792-015-0799-1

29. Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH et al. Presence of antioxidative agent, pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol. 2015;6, no. AUG: 854. DOI: 10.3389/fmicb.2015.00854

30. Bo AB, Kim JD, Kim YS, Sin HT, Kim HJ, Khaitov B et al. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. PLOS ONE. 2019;14(9, Sep):e0222933. DOI: 10.1371/journal.pone.0222933

31. Yi HS et al. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol. 2016;7, no. JUN:993. DOI: 10.3389/fmicb.2016.00993

32. Mane YD, Sarnikar YP, Surwase SM, Biradar DO, Gorepatil PB, Shinde VS et al. Design, synthesis, and antimicrobial activity of novel 5-substituted indole-2-carboxamide derivatives. Res Chem Intermed. Feb 2017;43(2):1253-75. DOI: 10.1007/s11164-016-2696-3.

33. Stanojević-Nikolić S, Dimić G, Mojović L, Pejin J, Djukić-Vuković A, Kocić-Tanackov S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J Food Process Preserv. Oct 2016;40(5):990-8. DOI: 10.1111/jfpp.12679.

34. Lotfy MM, Hassan HM, Hetta MH, Eld-Gendy AO, Mohammed R. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni Suef Univ J Basic Appl Sci. Sep 2018;7(3):263-9. DOI: 10.1016/j.bjbas.2018.02.002.

35. Amudha P, Jayalakshmi M, Pushpabharathi N, Vanitha V. Identification of bioactive components in Enhalus acoroides seagrass extract by gas chromatography-mass spectrometry. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(10):313-5..

36. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. Jan 2009;14(1):540-54. DOI: 10.3390/molecules14010540

37. Daham SS, Tabana YM, Ilobal MA, Ahamed MB, Ezzat MO, Majid AS et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassa. Molecules. Jul 2015;20(7):11808-29. DOI: 10.3390/molecules200711808

38. Hamed AA, Eskander DM, Badawy MSEM. Isolation of secondary metabolites from marine Streptomyces sparsus ASD203 and evaluation its bioactivity. Egypt J Chem, Mar. 2022;65(3):531-9. DOI: 10.21608/egychem.2021.95284.4489.

39. Sholkamy EN, Muthukrishnan P, Abdel-Raouf N, Nandhini X, Ibraheem IBM, Mostafa AA. Antimicrobial and antinematicidal metabolites from Streptomyces cuspidosporus strain SA4 against selected pathogenic bacteria, fungi and nematode. Saudi J Biol Sci. Dec 2020; 27(12):3208-20. DOI: 10.1016/j.sjbs.2020.08.043

40. Said JI, Shaaban KA, Hasnain S. Identification, isolation and optimization of antifungal metabolites from the Streptomyces malachitofuscus CTF9. Braz J Microbiol. 2011;42(2):592-604.
41. Lotfy MM, Hassan HM, Hetta MH, El-Gendy AO, Mohammed R. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni Suef Univ J Basic Appl Sci. Sep 2018;7(3):263-9. DOI: 10.1016/j.bjbas.2018.02.002.

42. Yi HS et al. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol. 2016;7, no. JUN:993. DOI: 10.3389/fmicb.2016.00993

43. Stanojević-Nikolić S, Dimić G, Mojović L, Pejin J, Djukić-Vuković A, Kocić-Tanackov S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J Food Process Preserv. 2016;40(5):990-8. DOI: 10.1111/jfpp.12679.

44. Al-Dhabi NA, Mohammed Ghilan AKM, Esmail GA, Valan Arasu M, Duraipandiyar V, Ponmurugan K. Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and it’s in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. J Infect Public Health. Jul 2019;12(4):549-56. DOI: 10.1016/j.jiph.2019.01.065

45. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A et al. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep. 2019; 9(1):7488. DOI: 10.1038/s41598-019-43960-7

46. Yun J, Lee DG. “A Novel Fungal Killing Mechanism of Propionic Acid Downloaded From;”; 2016 [online]. Available: http://femsyr.oxfordjournals.org/.

47. Mane YD, Sarnikar YP, Surwase SM, Biradar DO, Gorepatil PB, Shinde VS et al. Design, synthesis, and antimicrobial activity of novel 5-substituted indole-2-carboxamide derivatives. Res Chem Intermed. 2017;43(2):1253-75. DOI: 10.1007/s11164-016-2696-3.

48. Yuan Y, Rosado-Lugo JD, Zhang Y, Datta P, Sun Y, Cao Y et al. Evaluation of heterocyclic carboxamides as potential efflux pump inhibitors in Pseudomonas aeruginosa. Antibiotics (Basel). 2021; 11(1). DOI: 10.3390/antibiotics11010030

© 2022 Jha et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/91968