Isobutanol production freed from biological limits using synthetic biochemistry

Saken Sherkhanov1, Tyler P. Korman1,2, Sum Chan1, Salem Faham3, Hongjiang Liu1, Michael R. Sawaya1, Wan-Ting Hsu1, Ellee Vikram1, Tiffany Cheng1 & James U. Bowie1

Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L\(^{-1}\) h\(^{-1}\), a titer of 275 g L\(^{-1}\) and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production.

1Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA. 2Invizyne Technologies, Inc., Monrovia, CA, USA. 3Vertex Pharmaceuticals, Boston, MA, USA. Email: bowie@mbi.ucla.edu
Due to increased energy consumption, climate change concerns, and the environmental impact of fossil fuels, there has been an increased demand for sustainable production of biofuels. Living microbes have been engineered to produce a diverse range of potential biofuels, yet it has been difficult to achieve commercially competitive production parameters with live cells. Sugar to ethanol conversion represents the current gold standard for biofuels with production metrics of ~2 g L$^{-1}$ h$^{-1}$, ~100 g L$^{-1}$ and ~90% yield, but most microbial engineering efforts to make other products have fallen far short of these parameters. The commodity chemicals 1,3-propanediol and 1,4-butanediol provide perhaps the most successful examples of microbial engineering to date, as they can be generated with similar or better productivity and titer to ethanol, but at yields that are considerably lower than ethanol. While the battle continues, the difficulties of fighting life processes in microbial chemical production are well known.

A cell-free approach in which the enzyme pathways are housed in reactors rather than maintained within cells, so-called synthetic biochemistry, could free us from biological constraints. Recent advances point to the potential of synthetic biochemistry to achieve remarkable productivities near theoretical yields, and titers that are well above cell toxicity limits. It has not yet been demonstrated, however, that the full set of production parameters (titer, productivity, yield) for the cell-free conversion of simple input biomass such as sugar into a next-generation biofuel can approach or surpass ethanol fermentation parameters.

Isobutanol is considered as the next-generation biofuel. It has great advantages over ethanol as a fuel, with lower hygroscopicity, lower volatility, and higher energy density. Moreover, isobutanol has fuel properties comparable to gasoline, current infrastructure is well-suited for its storage and transport, and it can also be converted into jet fuel. There have been numerous efforts to produce isobutanol in cells that are summarized in Supplementary Table 1. To our knowledge, the best-reported metrics for microbial isobutanol production are 22 g L$^{-1}$ titer, 0.7 g L$^{-1}$ h$^{-1}$ productivity and a yield of 86% in E. coli, although the overall titers can be increased to as high as 50 g L$^{-1}$ by in situ product removal.

We previously designed a cell-free system for the production of the next-generation biofuel isobutanol. The synthetic biochemistry system we designed is outlined in Fig. 1. As described earlier, the design extends the operational production lifetime by employing an ATP rheostat scheme. The rheostat allows the inevitable losses of ATP energy by hydrolysis to be tolerated (as described previously). The original system achieved 1.3 g L$^{-1}$ h$^{-1}$ maximum productivity and reached 24 g L$^{-1}$ in 2 days, with a yield of 91% of theoretical. These isobutanol production metrics already roughly match results reported for cell-based methods so far. While promising, we found that the reaction stopped after several days because two of the enzymes we used in the original effort became inactivated when the titer reached 24 g L$^{-1}$.

Here, we report a major step toward the long-term goal of cell-free chemical production. By improving the solvent tolerance of the enzymes and other process developments, we develop an enzyme system that can further improve isobutanol production from glucose.

**Results**

**Enzyme stabilization by genome mining.** Our goal in this effort was to obtain enzyme variants for each of the 16 steps in the pathway, that possess a half-life of a week or more in near saturating isobutanol (8%) at 25 °C. Achieving that goal would greatly mitigate any concerns of isobutanol inactivation limiting titers. We first evaluated the isobutanol tolerance of the 16 enzymes used in the prior work. Only one of the enzymes used...
earlier was sufficiently stable in 8% isobutanol: aldehyde reductase from *E. coli* (EcYahK)\(^{27}\). As shown in Fig. 2, the activity of YahK is little diminished after 5 days in 8% isobutanol.

For the remaining 15 enzymes, we first employed a genome mining approach, focusing largely on enzymes from thermophilic and hyperthermophilic organisms since thermostability and organic solvent tolerance can be correlated\(^{28}\). In addition, thermophilic enzymes are better suited for large scale purification and future industrial implementation, allowing the heat pretreatment of cell lysates to remove impurities\(^{29,30}\). In our synthetic biochemistry reactions, however, we employ low temperatures (≤30 °C) to preserve cofactor integrity, so we were concerned that thermophilic enzymes might not be sufficiently active. Thus, our screening criteria for natural isobutanol tolerant enzymes included (1) useable activity at room temperature; (2) high expression in *E. coli* (>10 mg L\(^{-1}\)); and (3) ~1 week or greater half-life in 8% isobutanol. To find candidate enzymes we used an ad hoc approach. We first searched for homologs, and then to narrow the search where possible, we combed the existing literature to find enzymes known to express in *E. coli*. The enzymes we selected for screening and their properties are listed in Supplementary Table 2. In this manner, we identified 13 additional isobutanol tolerant enzymes (see Table 1 and Fig. 2).

While our limited approach was efficient in finding stable and active homologs, it is likely that there are even better natural enzymes that could be discovered in a broader search. After the genome mining exercise, we were left with two enzymes, acetolactate synthase (AlsS) and α-ketoisovalerate decarboxylase (KivD) requiring stabilization. We also focused on a third enzyme, the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from *T. kodakarensis* (TkGapN) which was highly stable, but not NADP\(^+\) specific at low temperature.

**Stabilizing AlsS.** We chose the AlsS from *B. subtilis* to stabilize because it has a known crystal structure\(^{31}\) and unlike many other family members\(^{32}\), it is FAD independent and the oligomer is constructed from a single polypeptide chain. To stabilize AlsS from *B. subtilis*, we employed the PROSS stabilization design server\(^{33}\) keeping the subunit interface residues fixed (using PDB Code: 4RJK), again speculating that increased thermostability might also increase solvent stability. Indeed, this proved to be true. Based on the PROSS algorithm design suggestions, we prepared variants with 20 mutations plus 3 deletions, 37 mutations plus 3 deletions, and 71 mutations plus 3 deletions. We also prepared the same variants, but without the suggested deletions. Preliminary characterization revealed that the variant with 20 mutations and no deletions (BsAlsS-P) was much more active than the other constructs and was more isobutanol tolerant. As shown in Fig. 2, while the wild-type enzyme is nearly inactive in 8% isobutanol\(^{27}\), the BsAlsS-P retains ~80% activity over the course of 5 days in 8% isobutanol.
Stabilizing KivD. In the synthetic isobutanol pathway, KivD is used to decarboxylate ketoisovalerate to form isobutyraldehyde, the penultimate step in the pathway. While there are many homologous decarboxylases, we felt that the KivD enzyme was not a good candidate for the genome mining approach. Many of the homologous decarboxylases that decarboxylate ketoisovalerate will also act on pyruvate, which would derail isobutanol production. Moreover, there are few thermophilic candidates and the rate will also act on pyruvate, which would derail isobutanol production. While there are many thermophilic candidates, many of them do not have the penultimate step in the pathway. While there are many thermophilic candidates, many of them do not have the isobutanol tolerance of LlKivD. Prior directed evolution work had identified a thermostabilized variant of LlKivD (KivD-P2). Kiv-D-P2 no longer showed the unusual time-dependent inactivation, but retained thermal stability. Although KivD-P2, like LLM3, was rapidly inactivated in 8% isobutanol, we observed greatly improved stability in 4% isobutanol, indicating that Kiv-P2 had better solvent tolerance than the LLM3 starting point (Supplementary Fig. 1). Nevertheless, KivD-P2 was still not sufficiently tolerant.

To improve solvent tolerance further, we turned to directed evolution. In each round of evolution, we screened 1000-3000 mutants for 8% isobutanol tolerance (with each clone bearing on average 2 to 3 randomly introduced nucleotide changes). The structure was refined to 1.8 Å resolution with bound thiamine pyrophosphate (Rwork = 18.3, Rfree = 21.0, PDB ID: 6VGS). Details of the structure determination are described in “Methods” and Supplementary Table 3.

Based on the LLM3 crystal structure (chain A), we employed the PROSS algorithm, which suggested three variants, each bearing 21 to 32 designed mutations. We edited the designs to remove mutations we judged as possibly too near the active site. Two of the enzyme designs were inactive, but one bearing 20 mutations after editing was found to be active upon initial purification (KivD-P).

Initial work with KivD-P revealed a complication. KivD-P had the interesting and unusual property of being active upon initial purification, but it slowly became inactive after overnight incubation at 4 °C. The inactive protein could then be reactivated by heating for 15 min at 60 °C, but then became inactive again after overnight incubation. We don’t know the origin of this inactivation/reactivation behavior, but one possibility is that heat drives the protein into an active conformation, which then reverts to an inactive conformation in a slow process with a high activation barrier.

Because KivD-P was clearly more stable than LLM3, we decided to try and eliminate the time-dependent inactivation phenomenon. Starting with KivD-P, we changed each of the 20 mutations back to the wild-type side chain, one at a time, to identify the mutations that were responsible for the slow inactivation property. We found three positions (K64, E95 and S244) that showed slower inactivation when restored to the wild-type side chain so we combined them together to generate a KivD enzyme with 17 mutations (KivD-S). Kiv-D-S no longer showed the unusual time-dependent inactivation, but retained thermal stability. Although KivD-P2, like LLM3, was rapidly inactivated in 8% isobutanol, we observed greatly improved stability in 4% isobutanol, indicating that Kiv-P2 had better solvent tolerance than the LLM3 starting point (Supplementary Fig. 1). Nevertheless, KivD-P2 was still not sufficiently tolerant.

To improve solvent tolerance further, we turned to directed evolution. In each round of evolution, we screened 1000-3000 mutants for 8% isobutanol tolerance (with each clone bearing on average 2 to 3 randomly introduced nucleotide changes). The first round yielded a mutation T435S. KivD-P2-T435S had ~20% reduced specific activity, but had a slower inactivation rate in 8% isobutanol so it was carried forward into a second round of mutagenesis and screening (Supplementary Fig. 1). Prior to the second round of screening, we added mutation F542L which has been demonstrated to improve KivD activity with substrates larger than pyruvate. KivD-P2-T435S/F542L did not have an obviously improved inactivation rate, but it was more active in 4% and 8% isobutanol at time zero (Supplementary Fig. 1). The second round of screening added two mutations to make KivD-P2-T435S/F542L/384V/L434M (KivD-S). Kiv-D-S had greatly

### Table 1 Stable enzyme set.

| Enzyme                        | Organism   | Native/Mutant | Activity (units) | Half-life in 8% isobutanol (hours) |
|-------------------------------|------------|---------------|-----------------|-----------------------------------|
| TmHex Hexokinase              | T. maritima| Native        | 14.5 ± 0.3      | >>96                              |
| TmPgi Glucose-6-phosphate isomerase | T. maritima| Native        | 29.6 ± 1.1      | >>113                             |
| EcPfK Phosphofructokinase B   | E. coli    | Native        | 8.3 ± 0.1       | 55/123                           |
| TlFba Fructose-1,6-bisphosphate aldolase | T. thermophilus | Codon-optimized | 4.7 ± 0.10      | >>117                             |
| TmTpi Triosephosphate isomerase | T. maritima| Native        | 210 ± 0.7       | >>100                             |
| TlGapN Glyceraldehyde-3-phosphate dehydrogenase (non-phosphorylating) | T. kodakarenensis | Designed Codon-optimized | 7.6 ± 0.8      | >>117                             |
| AfGapDH Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) | A. fulgidus | Native        | 10.9 ± 0.6      | >>100                             |
| TmPkg Phosphoglycerate kinase | T. maritima| Native        | 8.4 ± 0.5       | >>100                             |
| Gs iPg1 Phosphoglycerate mutase (2,3-bisphosphoglycerate independent) | G. stearothermophilus | Native | 49.4 ± 2.2 | >>117                             |
| TtEno Pyrophosphorylpyruvate hydratase | T. thermophilus | Codon-optimized | 117 ± 5       | >>117                             |
| TtPyk Pyruvate kinase         | T. thermophilus | Codon-optimized | 23.8 ± 0.8      | >>139                             |
| BsAlsS-P Acetolactate synthase | B. subtilis | PROSS Codon-optimized | 4.9 ± 0.2      | >>115                             |
| GsllV Ketol-acid reductoisomerase | G. stearothermophilus | Native | 0.9 ± 0.1 | >>123                             |
| SmllVd Dihydroxyacid dehydratase | S. mutans | Native        | 2.7 ± 0.2       | 125                              |
| KvivD-S Alpha-ketoisovalerate decarboxylase | L. lactis | PROSS/DE Codon-optimized | 18.0 ± 1.6 | 123                              |
| EcYahK Aldehyde reductase     | E. coli    | Native        | 4.5 ± 0.4       | 138                              |

DE directed evolution.
+Enzyme from hyperthermophilic organism.
+Unit defined as mole product min⁻¹ mg⁻¹ enzyme.
+PROSS design algorithm.
+Biophase inactivation in 8% isobutanol.
improved solvent tolerance, retaining ~50% of its starting activity after 7 days at room temperature in 8% isobutanol (Fig. 2 and Supplementary Fig. 1).

**Altering specificity of TkGapN.** Although a highly specific GapN is not required in the current system since we only employed NADP+, we thought it would provide more flexibility in future pathway designs if we had an NADP+ specific GapN enzyme. For wild-type TKGapN at its optimal temperature of 70 °C, Vmax is comparable for both NAD+ and NADP+, yet the Km is much higher for NAD+. Thus, at low mM substrate concentrations and optimal temperature of 70 °C, the wild-type TKGapN shows clear preference for NADP+. We found, however, that at low temperature the preference is much smaller. In particular, at 2 mM concentration and 25 °C, the specific activity is only 2.6 ± 0.1-fold higher for NADP+ compared to NAD+. Since we run our system at ≤30 °C, we sought to enhance the NADP+ specificity of TkGapN using structure-guided design. The structure of TkGapN was first modeled using the Phyre2 prediction server. The predicted structure was then superimposed onto the mesophilic streptococcus mutants GapN (SmGapN, PDB accession: 2QE0), a mesophilic NADP+-specific enzyme with 35% sequence identity to TkGapN. Two residues in contact with the phosphate in the 2′ position of the ribose ring, S199 and S200, were different in SmGapN so we replaced them with the SmGapN residues to make the double mutant S199P/S200T (TkGapN'). TkGapN' did show improved specificity at room temperature with a 11.4 ± 0.1-fold preference for NADP+ at 2 mM substrate concentrations.

**Small scale reactions and possible thermodynamic hurdle.** With an isobutanol tolerant set of enzymes in hand (thermostability information also provided in Supplementary Fig. 2), we next set out to reconstitute the isobutanol production pathway at a small scale. After optimization in 200 µL scale reactions, we were able to approximately reproduce the original system 27 with the new enzymes, reaching a productivity of ~1.3 g L⁻¹ h⁻¹, a peak titer of 31.5 ± 1.5 g L⁻¹ of isobutanol in 25 h with a total enzyme loading of 5 mg mL⁻¹ (Fig. 3a). Although the titer with the stabilized enzyme system represents a ~30% increase from the original system (compared to 24 g L⁻¹), the improvement was rather
disappointing considering the effort we had expended to stabilize the enzymes.

Since all enzymes were isobutanol tolerant, we suspected that there may be another reason for our inability to push to higher isobutanol concentrations. We noticed that after achieving a peak titer, the isobutanol titer unexpectedly retreated to lower levels (Fig. 3a). Moreover, as the isobutanol concentration diminished, we found that the NADPH concentration rose (Fig. 3a). This finding suggested that we may be pushing up against an equilibrium barrier. In particular, the last step in isobutanol biosynthesis is the reduction of isobutyraldehyde:

\[
\text{Isobutyraldehyde} + \text{NADPH} = \text{isobutanol} + \text{NADP}^+ \quad (1)
\]

Although this is a highly favorable reaction thermodynamically under standard state conditions (\(\Delta G^\circ = -24.1 \text{ kJ mol}^{-1}\))\(^{41}\), as the isobutanol concentration increases, the forward reaction will become increasingly unfavorable (the peak titer of 31.5 g L\(^{-1}\) corresponds to 0.44 M). We tested the possibility that the final equilibrium might be limiting the titer, by first allowing the reaction reach approximately peak titer (25 h), and then adding a bolus of NADPH, NADP\(^+\), or additional isobutanol. As shown in Fig. 3b, increasing NADPH concentration boosts isobutanol titer, whereas added NADP\(^+\) reduces isobutanol titer. Added isobutanol causes an increase in NADPH levels, suggesting that the increased isobutanol pushes the reaction in reverse (Fig. 3c).

Adding an organic overlay. While it might be possible to drive the reaction forward by further optimization, we decided that it would become increasingly difficult to get to higher titers without a fundamental change in the system itself. We, therefore, chose to modify the process by introducing an organic overlay. We speculated that by using an organic overlay, isobutanol will partition preferentially into the organic layer as it is made, thereby keeping its concentration low enough in the aqueous phase to maintain a sufficient thermodynamic gradient for more isobutanol production. After screening a number of organic solvents, we found that phenetole was particularly effective for isobutanol extraction.

Following the introduction of an organic overlay, we significantly improved the system parameters by doubling the titer to 70.4 ± 2.7 g L\(^{-1}\) and increased the productivity in the first 24 hours to 2.5 g L\(^{-1}\) h\(^{-1}\) (Fig. 3d). The ATP levels after 40 hours of reaction were 2.4 ± 0.4 mM and 5.4 ± 1.1 mM for systems without and with overlay respectively. The NADPH levels were 2.3 ± 0.05 and 1.4 ± 0.1 mM for reactions without and with overlay respectively, indicating that the systems were effectively recycling cofactors. The facile introduction of an organic overlay without major concerns about cell toxicity or forming emulsions\(^{12}\) is a particular advantage of the synthetic biochemistry approach.

Moving to bioreactor and increasing scale. In small scale reactions, we noted that the pH drops rapidly due to CO\(_2\) release so we sought to improve production parameters further by moving to a bioreactor where we could control pH and temperature. Moving to a bioreactor also required increasing the reaction scale 75-fold to 15 mL. The ability to control pH dramatically improved isobutanol production. Without an organic overlay, the bioreactor system showed increased productivity to ~1.8 g L\(^{-1}\) h\(^{-1}\), achieving peak titers of 56 ± 1 g L\(^{-1}\) in 30 h (Fig. 4). The improved reaction conditions apparently allowed the system to push the apparent equilibrium to higher isobutanol levels. When we then added an organic overlay in the bioreactor, the peak productivity increased to ~5 g L\(^{-1}\) h\(^{-1}\) and the titers reached 124 ± 4 g L\(^{-1}\) in 24 h (Fig. 4). These results further indicate that the cell-free production system scales without difficulty.

Continuous product removal. To reduce the buildup of isobutanol that ultimately slows production even with an organic overlay, we next developed a process with continuous removal of the organic layer and collection of the product in a separate container (Fig. 5a). With this set-up, we were able to extend the production period to nearly 60 h with titers reaching 184 ± 7 g L\(^{-1}\) at a productivity of ~3.2 g L\(^{-1}\) h\(^{-1}\) and an overall yield of 91.8 ± 0.60% (Fig. 5b).

We next asked why the reaction stops at ~60 h. The residual enzyme activities at 70 hours are shown in Fig. 5c. Most of the enzymes maintain >50% of the starting activity with the exception of KivD and AlsS, which are nearly completely inactivated.

Since the system appeared to remain largely operational with the exception of two enzymes we attempted to extend the life of the system by simply adding a second bolus of KivD and AlsS (easy to do in a cell-free system). We set the system up as before, but this time included a second addition of KivD and AlsS at 33 hours. As shown in Fig. 5d, this approach greatly extended the life of the reaction to ~4.5 days (108 h). The system achieved a productivity of 4.1 g L\(^{-1}\) h\(^{-1}\) for the first 46 hours, a final titer of 275 ± 3 g L\(^{-1}\) and a yield of 95.4 ± 0.4% of theoretical.

To learn why the reactions stopped after ~4.5 days of operation, we again evaluated the enzyme activity and cofactor levels. As shown in Fig. 5d, the ATP levels after 89 h of isobutanol production were 2.6 ± 0.4 mM and NADPH levels when reaction stopped were 1.5 ± 0.1 mM indicating that the cofactors were not limiting isobutanol production. There was, however, considerable degradation in the activity of many enzymes, with GapDH, Pgk, Pgm, Eno, Pyk, AlsS, IlvD, and KivD dropping below 20% of their initial activities (Supplementary Fig. 3). We don't know why enzyme half-lives can be notably different in the bioreactor than expected based on isobutanol and thermal tolerance.
measurements for the isolated enzymes. Possibilities include enzyme inactivation at the water-phenetole interface, inactivation by toxic metabolites, or more altered inactivation at high concentrations. Thus, further work remains to learn how to stabilize enzymes under bioreactor conditions, which has the potential to allow the system to reach even higher levels.

Discussion
Our results show that cell-free systems can generate product continuously at high productivity and yields for many days, achieving production parameters that have so far eluded metabolic engineering despite massive efforts. Moreover, there is much room for improvement. In particular, further investigation of the cause of enzyme inactivation in the reactor could provide pathways to improve enzyme longevity and thereby system sustainability. It also seems possible to achieve even higher productivities by increasing enzyme loadings (currently 5 mg mL$^{-1}$ total). The ease with which we can identify problems (enzyme inactivation, thermodynamic limitations) in a cell-free system and the ability to flexibly overcome those obstacles (organic layer, enzyme additions) are notable advantages of the synthetic biochemistry approach.

Clearly considerable work still needs to be done before cell-free systems like this would be commercially applicable to such low-value products as biofuels. The major current cost drivers for cell-free biomanufacturing at this time are cofactors and enzymes (see14,43,44). It is possible to reduce cofactor costs by employing simpler cofactor analogs such as nicotinamide mononucleotide44,45, and it may be interesting to explore the use of crude cofactor mixes rather than purified cofactors to lower costs. Methods for cofactor reuse should also be explored. Industrial production of individual enzymes is well developed and, in some cases, can be reduced to a little as $10 per kg43. For complex enzyme systems described here, it may be interesting to explore methods for rapidly purifying an entire collection of enzyme activities at once. Highly stable enzyme would allow for extensive enzyme recycling and enzyme immobilization that could greatly

---

**Fig. 5 Bioreactor system with continuous extraction.** a Bioreactor set up for continuous product extraction. Phenetole in continuously added from a reservoir and simultaneously extracted at the same rate. The extracted layer is collected in a separate container. b Isobutanol titer over time using the continuous extraction system. c Residual activity of enzymes after 70 hours of incubation. d Isobutanol titer over time with the addition of a second bolus of KivD-S and BsAlsS-P at 33 h; the enzymes that become inactivated after 70 h. The ATP (green) and NADPH (blue) concentrations in the reaction are also shown as a function of time. Error bars in all panels are the standard deviation of technical triplicates. Open circles in panel c show the data points. Source data underlying Fig. 5b-d are provided as a Source data file.
reduce enzyme costs. While only high-value chemicals are currently commercially accessible using enzyme systems as complex as the one described here, as technical developments reduce costs, a wider range of chemicals will become viable. We believe there is considerable potential in the cell-free approach and continued research to explore that potential is warranted.

Methods

Materials. T4 DNA ligase and restriction endonuclease were obtained from New England Biolabs. DNA Polymerase Mastermix was from Denville Scientific. Ni-NTA Superflow, Ni-NTA Sepharose, and QIAquick gel extraction kits were purchased from Qiagen. All reagents and cofactors were from Sigma-Aldrich or Thermo Fisher Scientific. Oligonucleotide primers were synthesized by Valuegene and IDT. Gene sequencing and gene synthesis were performed by Genewiz and Twist Bioscience. Assembly master mix (AMM) used for cloning was prepared as outlined in12. All DNA and protein concentrations were measured with a Thermo Scientific Nanodrop 1000 Spectrophotometer. Vials for small scale reactions, for gas chromatography and 96-well plates were purchased from VWR. Viton tubing was purchased from Cole-Parmer Instrument Company. Colorimetric enzyme-coupled assays were performed in 96-well plates and measured with Molecular Devices SpectraMax M5 microplate reader. When performing large numbers of assays simultaneously, Integra Vifial and Integra Viallo instruments were used for reagent additions. Colonies for sequencing of mutant variants were selected automatically using a Molecular Devices Qpix 420 colony picker.

Cloning and purification of enzymes. The enzymes used in this study are listed in Table 1. In some cases, we used the natural DNA sequence and in others we employed optimization for E. coli expression using the IDT expression listed in Table 1. All enzymes were cloned into pET-28a+ (+) digested with NdeI/XhoI using the Gibson Assembly method and expressed in BL21(DE3) Gold strain.

DNA and protein sequences for each enzyme are provided in Supplementary Data 1 and 2.

The enzymes were purified using Ni-NTA affinity chromatography. 1 L of LB media containing 50 μg mL−1 kanamycin was inoculated with 1 mL of a saturated overnight culture and incubated at 37 °C. When the OD600 of the culture reached 0.5–0.7, isopropyl β-D-thiogalactoside (IPTG) was added to a final concentration of 0.5 mM. Strains expressing enzymes from hyperthermophilic organisms were incubated at 4 °C with shaking for 18 h (Table 1). The enzymes were dialyzed in 50 mM Tris-HCl [pH 7.5], 5 mM MgCl2, 10 mM KCl at 25 °C. Enzymes that consumed or produced NADP(H) or ATP. The enzyme assay conditions are listed on Supplementary Table 5.

Isobutanol quantification. Samples without the organic overlay were extracted with 3.33 volumes of phenetole. For reactions with the organic overlay, aliquots were removed directly from the phenetole layer. The samples were directly assayed from the phenetole organic layer by injecting 1 μL into a GC-FID (Thermo Scientific Trace 1300) equipped with TQ-Wax525 column (0.32 mm × 30 m × 0.25 μm). Helium carrier gas was employed at a flow rate of 30 mL min−1, then to 250 °C at 50 °C min−1 and held at 250 °C for 5 min. Both inlet and detector temperatures were kept at 250 °C. For both small scale and bioreactor reactions, a standard curve was prepared with known concentrations of isobutanol sampled to determine the amount of product produced. For reactions with continuous addition and removal of the phenetole layer, we took account of the dilution factor using the following equation:

$$C_{\text{expected}} = C_{\text{measured}} \times V_B \div (C_{\text{measured}} \times V_B + C_{\text{expected}} \times V_B)$$  \hspace{1cm} (2)

Where $C_{\text{expected}}$ is the concentration of isobutanol in the organic layer inside the bioreactor that would have been obtained without any dilution, $C_{\text{measured}}$ is the concentration of isobutanol actually measured inside the bioreactor, $V_B$ is the total volume of the phenetole layer, and the bioreactor Cimeasured [OUT] is the concentration of isobutanol actually measured in the phenetole layer removed from the organic layer and the volume removed.

KivD LLM3 crystallization and structure determination. KivD LLM3 was crystallized by hanging drop vapor diffusion. 1.4 μL of 11.8 mg mL−1 KivD LLM3 in 20 mM MES, pH 6.8, 2.5 mM MgSO4, 0.1 mM TFP, 1 mM DTT was mixed with 0.7 μL of crystallization reagent (20% w/v PEG 300, 0.2 M NaCl, 0.1 M HEPES-NaOH pH 7.5) and the drop inverted over the crystallization reagent. Crystals were cryo-stabilized in 25% glycerol/75% crystallization reagent and flash frozen in liquid nitrogen prior to data collection. Data was collected under a stream of liquid nitrogen at APS beamline 24-ID-C. The diffraction data were processed using DENZO and SCALEPACK. Initial phases were obtained by molecular replacement with Phaser, employing chain A of PDB entry 2VBF as a search model, with some high temperature factor moieties deleted. The structure was refined using REFMAC and COOT was used for model building.

Improving KivD directed evolution. Mutations were introduced using the GenMorph II Random Mutagenesis Kit (Agilent, catalog number: 200550), along with primers that align upstream and downstream of the KivD insert (DNA primer sequences: 5’-GTGCAGCGCGGCCGACCAT-3’, 5’-GGTGGTTGTTGCGTGCTCG AGTATA-3’), adjusting conditions so as to obtain 2 to 3 nucleotide changes per gene. Ten clones were sequenced to examine the mutation frequency. The product of the random mutagenic PCR reaction was used as the mega primer for a subsequent PCR reaction with the template plasmid using Phusion high-fidelity DNA polymerase, (NEB catalog number: M0530), to generate plasmids for transformation. The assembled plasmids were treated with DpnI endonuclease
Supplementary Information

6VGS. The source data underlying Figs. 2–4 are provided as a Source data supplementary information linked to this article.

5. Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D. & Martín del Campo, J. S. High-yield production of dihydrogen from 1,4-butanediol. Biochim. Biophys. Acta. 1855, 816–817 (2016).

14. Bowie, J. U. et al. Synthetic biochemistry: the bio-inspired cell-free approach. Biomass. Bioenergy 45, 454–459 (2003).

2. Lee, S. Y., Kim, H. M. & Cheon, S. Metabolic engineering for the production of isobutanol-untreated lysate resuspended in 95 µL of buffer containing 100 mM Tris pH 7.5, 0.5 mM NADPH, 1 mM TPP, 20 mM ketoisovalerate, 20 mM MgCl₂, 0.06 mg mL⁻¹ benzonase, and 0.05 µL mL⁻¹ 4-mercaptoethanol, and 0.05 µL mL⁻¹ Ready-Lyse (Lucigen catalog number: R1810M) high-activity lysozyme solution. The cell suspension was shaken at 800 rpm and 25 °C for 20 minutes. 166 µg mL⁻¹ Serratia marcescens benzonecule nuclease in 100 µL of a 40 m M Tris pH 7.5, 200 mM NaCl, 10 mM MgCl₂ was added to cell lysate. The lysate was further incubated at 700 rpm at 25 °C for 20 min, and the insoluble fraction pelleted by centrifugation at 3000 × g at 4 °C for 30 min.

3. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. A molecular rheostat for modulation of branched-chain enzyme activity in cell-free extract. Angew. Chem. Int. Ed. 52, 4587–4590 (2013).

12. You, C. et al. In vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol. Bioeng. 114, 1855–1864 (2017).

4. Beer, B., Pick, A. & Sieber, V. In vitro metabolic engineering for the production of n-butanol from glucose. Applied Microbiol. Biotechnol. 90, 1681–1690 (2011).

5. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. An in vitro synthetic biology platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017).

3. Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D. & Martin, H. G. Synthetic and systems biology for microbial production of commodity chemicals and biofuels. Curr. Opin. Biotechnol. 38, 766–778 (2020).

21. Martín del Campo, J. S. et al. High-yield production of dihydrogen from xylene by using a synthetic enzyme cascade in a cell-free system. Angew. Chem. Int. Ed. 52, 4587–4590 (2013).

15. You, C. et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol. Bioeng. 114, 1855–1864 (2017).

16. Zhang, Y.-H. F., Evans, B. R., Mielenz, J. R., Hopkins, R. C. & Adams, M. W. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 7, e4587 (2012).

4. Beer, B., Pick, A. & Sieber, V. In vitro metabolic engineering for the production of n-butanol from glucose. Applied Microbiol. Biotechnol. 90, 1681–1690 (2011).

17. You, C. et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol. Bioeng. 114, 1855–1864 (2017).

4. Beer, B., Pick, A. & Sieber, V. In vitro metabolic engineering for the production of n-butanol from glucose. Applied Microbiol. Biotechnol. 90, 1681–1690 (2011).

18. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. An in vitro synthetic biology platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017).

19. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat. Commun. 8, 15526 (2017).

20. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat. Chem. Biol. 13, 938–942 (2017).

22. Zhang, Y.-H. F., Evans, B. R., Mielenz, J. R., Hopkins, R. C. & Adams, M. W. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 7, e4587 (2012).

23. Valliere, M. A. et al. A cell-free platform for the prenylation of natural products and application to cannabinoids production. Nat. Commun. 10, 565 (2019).

24. Brownstein, A. M. Chapter 5 - Isobutanol. In Renewable Motor Fuels (ed. Brownstein, A. M.), 47–56 (Butterworth-Heinemann, 2015).

25. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

26. Baez, A., Cho, K.-M. & Liao, J. C. High-flux isobutanol production using engineered Escherichia coli: a bioentrepreneur study with in situ product removal. Appl. Microbiol. Biotechnol. 90, 1681–1690 (2011).

27. Opgenorth, P. H., Korman, T. P., Iancu, L. & Bowie, J. U. A microbial rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat. Chem. Biol. 13, 938–942 (2017).

28. Doukou, N. & Ogino, H. Organic solvent-tolerant enzymes. Biochemical Eng. J. 48, 270–282 (2010).

29. Ninin, P. H., Honda, K., Sakai, T., Okano, K. & Ohtake, H. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol. Bioeng. 112, 189–196 (2015).

30. Krutsakorn, B. et al. In vitro production of n-butanol from glucose. Metab. Eng. 20, 84–91 (2013).

31. Sommer, B. et al. Detailed structure-function correlations of Bacillus subtilis acetolactate synthase. ChemBiochem 16, 110–118 (2015).

32. Liu, Y., Li, Y. & Wang, X. Acetohydroxyacid synthase: evolution, structure, and function. Appl. Microbiol. Biotechnol. 100, 8633–8649 (2016).

33. Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63, 337–346 (2016).

34. Lin, P. P. et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab. Eng. 24, 1–8 (2014).

35. Soh, L. M. J. et al. Engineering a thermostable keto acid decarboxylase using directed evolution and computationally directed protein design. ACS Synth. Biol. 6, 610–618 (2017).

36. Xiong, M. et al. A Bio-catalytic approach to aliphatic ketones. Sci. Rep. 2, 1–7 (2012).

37. Matsubara, K., Yokooji, Y., Atomi, H. & Imanaka, T. Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarenensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Microbiol. Mol. Biol. Rev. 81, 1300–1312 (2011).

38. Brown, L. A., Merulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phye2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
39. D'Ambrosio, K. et al. The first crystal structure of a thioacryl/enzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis. Biochemistry 45, 2978–2986 (2006).
40. Boyd, D. A., Cvitkovitch, D. G. & Hamilton, I. R. Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J. Bacteriol. 177, 2622–2627 (1995).
41. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).
42. Malinowski, J. J. Two-phase partitioning bioreactors in fermentation technology. Biotechnol. Adv. 19, 525–538 (2001).
43. Zhang, Y.-H. P. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol. Adv. 33, 1467–1483 (2015).
44. A.Rollin, J., Kin Tam, T. & Percival Zhang, Y.-H. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green. Chem. 15, 1708–1719 (2013).
45. Black, W. B. et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat. Chem. Biol. 16, 87–94 (2020).

Acknowledgements
This work was supported by DOE grants DE-AR0000556 and DE-FC02-02ER63421 to JUB. The work was greatly supported by UCLA-DOE Institute Core Facilities.

Author contributions
S.S. designed, conducted, and analyzed the bulk of the experiments required to build and evaluate the full isobutanol production system. J.U.B. and T.P.K. developed the overall concept, analyzed data, provided advice, and helped with experimental design throughout. S.F. designed, performed, and analyzed initial systems with thermostable enzymes and pointed out the possibility of a thermodynamic barrier. T.P.K. performed the bulk of the genome mining efforts and S.C. performed all the efforts to prepare KivD-S and BsAlsS-P, with advice from T.P.K. M.R.S. provided key assistance to S.C. in determining the crystal structure of LLM3. L.L. designed and analyzed TkGapN'. W.T., E.V., and T.C. provided expert technical assistance. S.S. and J.U.B. wrote the bulk of the paper with contributions from all the authors.

Competing interests
J.U.B. and T.P.K. have founded a company Invizyne Technologies to develop cell-free production methods and S.S. is a shareholder. All other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18124-1.

Correspondence and requests for materials should be addressed to J.U.B.

Peer review information Nature Communications thanks Hiroyasu Ogino, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.