ON THE GROWTH OF THE ENERGY OF ENTIRE SOLUTIONS TO
THE VECTOR ALLEN-CAHN EQUATION

CHRISTOS SOURDIS

Abstract. We prove that the energy over balls of entire, nonconstant, bounded solutions to the vector Allen-Cahn equation grows faster than \((\ln R)^k R^{n-2}\) for any \(k > 0\), as the volume \(R^n\) of the ball tends to infinity. This improves the growth rate of order \(R^{n-2}\) that follows from the general weak monotonicity formula. Moreover, our estimate can be considered as an approximation to the corresponding rate of order \(R^{n-1}\) that is known to hold in the scalar case.

1. Introduction

Consider the semilinear elliptic system

\[
\Delta u = W(u) \text{ in } \mathbb{R}^n, \quad n \geq 2, \quad (1.1)
\]

where \(W : \mathbb{R}^m \to \mathbb{R}, \ m \geq 2,\) is sufficiently smooth and nonnegative. This system has variational structure, as solutions (in a smooth, bounded domain \(\Omega \subset \mathbb{R}^n\)) are critical points of the energy

\[
E(v; \Omega) = \int_{\Omega} \left\{ \frac{1}{2} |\nabla v|^2 + W(v) \right\} dy
\]

(subject to their own boundary conditions).

In the scalar case, namely \(m = 1,\) Modica [14] used the \(P\)-function technique [20] and intrinsically scalar arguments to show that every entire, bounded solution to (1.1) satisfies the pointwise gradient bound

\[
\frac{1}{2} |\nabla u|^2 \leq W(u) \text{ in } \mathbb{R}^n, \quad (1.2)
\]

(see also [7] and [10]). Using this, together with Pohozaev identities, it was shown in [15] that such solutions satisfy the following strong monotonicity formula:

\[
\frac{d}{dr} \left(\frac{1}{r^{n-1}} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy \right) \geq 0, \quad r > 0, \ x \in \mathbb{R}^n, \quad (1.3)
\]

where \(B(x,r)\) stands for the \(n\)-dimensional ball of radius \(r\) that is centered at \(x.\) In particular, it follows that each entire, bounded and nonconstant solution to the scalar problem satisfies

\[
\int_{B(x,r)} \left\{ \frac{1}{2} |\nabla v|^2 + W(v) \right\} dy \geq cr^{n-1}, \quad r > 0, \quad \text{for some } c > 0. \quad (1.4)
\]

In the vector case, that is \(m \geq 2,\) the analog of the gradient bound (1.2) does not hold in general. In passing, let us mention that if a solution \(u\) satisfied the analog of the gradient bound (1.2), then it would also satisfy the strong monotonicity formula (1.3) (see [1], [19]).
All is not lost, however, as using the fact that every solution to (1.1) satisfies the weak monotonicity formula

$$\frac{d}{dr} \left(\frac{1}{r^{n-2}} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy \right) \geq 0, \quad r > 0, \quad x \in \mathbb{R}^n,$$

(1.5)

and with some more work in the case $n = 2$, it follows readily that, given $x \in \mathbb{R}^n$, each nonconstant solution to the system (1.1) satisfies:

$$\int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy \geq \begin{cases} cr^{n-2} & \text{if } n \geq 3, \\ c \ln r & \text{if } n = 2, \end{cases}$$

(1.6)

for all $r > 1$ and some $c > 0$.

Let us mention that the above lower bound is sharp in the case $n = 2$. Indeed, for the Ginzburg-Landau system

$$\Delta u = (|u|^2 - 1) u, \quad u : \mathbb{R}^n \to \mathbb{R}^m, \quad \left(\text{here } W(u) = \frac{(1-|u|^2)^2}{4} \text{ vanishes on } \mathbb{S}^{m-1} \right),$$

(1.7)

arising in superconductivity, there are entire, bounded solutions with energy over $B(0, r)$ of order $\ln r$, as $r \to \infty$, if $n = m = 2$ (see [5] and the references therein).

In this note, we will specialize to the class of potentials that satisfy the following properties: $W \in C^2$ and there exist $N \in \mathbb{N}$ points $a_i \in \mathbb{R}^m$ such that

$$W(a_i) = 0, \quad W > 0 \quad \text{in } \mathbb{R}^m \setminus \{a_i\} \quad \text{and} \quad W_{uu}(a_i)\nu \cdot \nu > 0 \quad \forall \nu \in \mathbb{S}^{m-1}, \quad i = 1, \cdots, N,$$

(1.8)

where \cdot stands for the Euclidean inner product in \mathbb{R}^m. For this class of potentials, the system (1.1) is known as the vector Allen-Cahn equation and models multiphase transitions (see [3] [6]).

In this case, it was shown recently in [2], by extending the density estimates of [8] to this vector setting, that nonconstant bounded, minimal solutions satisfy

$$\liminf_{r \to \infty} \frac{1}{r^{n-1}} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy > 0, \quad \forall x \in \mathbb{R}^n.$$

(1.9)

For a simple proof of this result when $n = 2$, under weaker assumptions on W, we refer to [18]. In comparison, let us note that the solution mentioned in relation to (1.7) is minimal. On the other side, if u is a nonconstant solution which is periodic in each variable, as in [4] for the vector Allen-Cahn equation or [13] for (1.7), it is easy to see that

$$\liminf_{r \to \infty} \frac{1}{r^n} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy > 0, \quad \forall x \in \mathbb{R}^n.$$

It was shown recently in [18] that the above relation also holds for nonconstant radial solutions, as the ones in [12] for the scalar Allen-Cahn equation $\Delta u = u^3 - u$.

It is therefore natural to ask what can be said, besides of the lower bound (1.6), about arbitrary bounded solutions to the vector Allen-Cahn equation. Our main result is the following improvement of the lower bound (1.6) for this class of systems.

Theorem 1.1. Assume that $W \in C^2(\mathbb{R}^m; \mathbb{R})$, $m \geq 2$, satisfies (1.8). If $u \in C^2(\mathbb{R}^n; \mathbb{R}^m)$, $n \geq 2$, is a nonconstant, entire and bounded solution to the elliptic system (1.1), for any
ON THE GROWTH OF THE ENERGY OF ENTIRE SOLUTIONS

$x \in \mathbb{R}^n$ and $k > 0$, it holds that

$$\frac{1}{(\ln r)^k} \frac{1}{r^{n-2}} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy \to \infty, \text{ as } r \to \infty.$$ \hfill (1.10)

Our result implies that, in contrast to the Ginzburg-Landau system (1.7), the growth in the latter estimate cannot be achieved for any nonconstant bounded solution of the vector Allen-Cahn equation for any $n, m \geq 2$. Moreover, it can be considered as an approximation to the corresponding lower bound (1.4) that holds in the scalar case and to (1.9) in the case of minimal solutions.

Our proof of Theorem 1.1 will be based on the monotonicity formula (1.5) and the following lemma from [17]:

Lemma 1.2. Assume that $W \in C^1(\mathbb{R}^m; \mathbb{R})$, $m \geq 2$, and that $u \in C^2(\mathbb{R}^n; \mathbb{R}^m)$ satisfies (1.1). Then, for every $x \in \mathbb{R}^n$ and any positive numbers $R_0 < R_1$, there exists $r(x) \in (R_0, R_1)$ such that

$$r(x) \int_{\partial B(x,r(x))} \left| \frac{\partial u}{\partial \nu} \right|^2 dS(y) + 2 \int_{B(x,r(x))} W(u) dy \leq \frac{1}{\ln(R_1/R_0)} \ln \left(\frac{\tilde{E}(u,x,R_1)}{\tilde{E}(u,x,R_0)} \right) \int_{B(x,r(x))} e(u) dy,$$ \hfill (1.11)

where

$$e(u) \equiv \frac{1}{2} |\nabla u|^2 + W(u)$$

and

$$\tilde{E}(u,x,r) \equiv \frac{1}{r^{n-2}} \int_{B(x,r)} \left\{ \frac{1}{2} |\nabla u|^2 + W(u) \right\} dy.$$

This lemma was proven in [17] for the special case of the Ginzburg-Landau system (1.7) but the proof carries over verbatim to the general case. In particular, it is based on the identity

$$\frac{d}{dr} \left(\tilde{E}(u,x,r) \right) = \frac{1}{r^{n-2}} \int_{\partial B(x,r)} \left| \frac{\partial u}{\partial \nu} \right|^2 dS(y) + \frac{2}{r^{n-1}} \int_{B(x,r)} W(u) dy,$$ \hfill (1.12)

which implies at once the weak monotonicity formula (1.5) for nonnegative W and is a direct consequence of Pohozaev identities for systems (see [21] for the case of general W). Note also that, in contrast to [17], we have included the boundary integral in the left-hand side of (1.11) (we have also kept the factor 2).

The rest of this article is devoted to the proof of Theorem 1.1.

2. Proof of the main result

Proof of Theorem 1.1. Since the problem is translation invariant, without loss of generality, we may carry out the proof for $x = 0$.

For future reference, we note that by standard elliptic regularity theory (see [11]), there exists a constant $C_0 > 0$ such that

$$|u| + |\nabla u| \leq C_0 \text{ in } \mathbb{R}^n.$$ \hfill (2.1)

Suppose, to the contrary, that (1.10) does not hold. Then, there would exist constants $k, C_1 > 1$ and a sequence $R_j > 1$ with $R_j \to \infty$ such that

$$\tilde{E}(u,0,R_j) \leq C_1 (\ln R_j)^k, \quad j \geq 1.$$ \hfill (2.2)
On the other side, thanks to (1.6), we have that

\[\tilde{E}(u, 0, R_j^\frac{1}{2}) \geq C_2, \quad j \geq 1, \]

for some \(C_2 > 0 \) (\(C_2 < C_1 \) without loss of generality). In passing, we note that our motivation for the power 1/2 comes from the proof of the \(\eta \)-compactness lemma in [16]. By Lemma 1.2, we infer that there exist \(r_j \in (R_j^\frac{1}{2}, R_j) \) such that

\[
\begin{align*}
 r_j \int_{B(0,r_j)} |\frac{\partial u}{\partial y}|^2 dS(y) + 2 \int_{B(0,r_j)} W(u)dy &\leq \frac{2}{\ln R_j} \ln \left(\frac{C_1 (\ln R_j)^k}{C_2} \right) r_j^{n-2} \tilde{E}(u, 0, r_j) \\
 \text{using (1.5)} &\leq \frac{2}{\ln R_j} \ln \left(\frac{C_1 (\ln R_j)^k}{C_2} \right) C_1 r_j^{n-2} (\ln R_j)^k \\
 &\leq C_3 (\ln R_j)^{k-\frac{1}{2}} r_j^{n-2} \\
 &\leq C_4 (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2},
\end{align*}
\]

for some \(C_3, C_4 > 0 \) and all \(j \geq 1 \).

Let \(F \in C^\infty(\mathbb{R}^m; \mathbb{R}^m) \) be such that

\[F(v) = v - a_i \quad \text{if} \quad |v - a_i| \leq \delta, \quad i = 1, \ldots, N, \quad (2.4) \]

for some small \(\delta > 0 \) (so that the \(\delta \)-neighborhoods of the \(a_i \)'s are disjoint). We note that such a function can be constructed by first defining it in a \(\delta \)-neighborhood of each \(a_i \) and then extending it componentwise. For future reference, let us note at this point that, by virtue of (1.8) and (2.1), there exists a constant \(C_5 > 0 \) such that

\[|F(u) \cdot W_u(u)| \leq C_5 W(u), \quad x \in \mathbb{R}^n. \quad (2.5) \]

Taking the inner product of (1.1) with \(F(u) \) and integrating by parts the resulting identity over \(B(0, r_j) \) yields that

\[
\begin{align*}
 \int_{B(0,r_j)} F_u(u) \nabla u \cdot \nabla u dy &= \int_{B(0,r_j)} \frac{\partial}{\partial y} F(u) dS(y) - \int_{B(0,r_j)} F(u) \cdot W_u(u) dy \\
 \text{using (2.1), (2.5)} &\leq C_6 r_j^{n-1} \left(\int_{B(0,r_j)} |\frac{\partial u}{\partial y}|^2 dS(y) \right)^{\frac{1}{2}} + C_5 \int_{B(0,r_j)} W(u)dy \\
 \text{using (2.3)} &\leq C_7 (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2},
\end{align*}
\]

for some \(C_6, C_7 > 0 \) and all \(j \geq 1 \).

Let

\[A_j = \{ x \in B(0, r_j) : |u(x) - a_i| > \delta, \quad i = 1, \ldots, N \}. \]

It follows from the first part of (1.8), (2.1) and (2.3) that the \(n \)-dimensional Lebesgue measure of \(A_j \) satisfies

\[\mathcal{H}^n(A_j) \leq C_8 (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2}, \]

for some \(C_8 > 0 \) and all \(j \geq 1 \). Therefore, using once more (2.1), and (2.4), we obtain that

\[
\begin{align*}
 \int_{B(0,r_j)} F_u(u) \nabla u \cdot \nabla u dy &\geq \int_{B(0,r_j) \backslash A_j} |\nabla u|^2 dy - C_9 (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2} \\
 &\geq \int_{B(0,r_j)} |\nabla u|^2 dy - C_{10} (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2},
\end{align*}
\]
for some $C_9, C_{10} > 0$ and all $j \geq 1$. Hence, it follows from (2.6) that
\[
\int_{B(0,r_j)} |\nabla u|^2 \, dy \leq C_11 (\ln r_j)^{k-\frac{1}{2}} r_j^{n-2},
\]
for some $C_{11} > 0$ and all $j \geq 1$.

By combining the above relation with (2.3), we arrive at
\[
\tilde{E}(u,0,r_j) \leq C_{12} (\ln r_j)^{k-\frac{1}{2}},
\]
for some $C_{12} > 0$ and all $j \geq 1$.

We have therefore reduced the exponent in (2.2) by $1/2$ (for a different sequence $r_j \to \infty$). Iterating this scheme a finite number of times, we arrive at
\[
\tilde{E}(u,0,s_j) \to 0 \quad \text{as} \quad j \to \infty,
\]
for some sequence $s_j \to \infty$.

On the other hand, the weak monotonicity formula (1.5) (recall also (1.12)) implies that $u \equiv a_i$ for some $i \in \{1, \ldots, N\}$, which contradicts the assumption that u is nonconstant. □

Acknowledgements. Supported by the “Aristeia” program of the Greek Secretariat for Research and Technology.

References

[1] N. D. Alikakos, Some basic facts on the system $\Delta u - W_u(u) = 0$, Proc. Amer. Math. Soc. 139 (2011), 153-162.
[2] N.D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications, Arxiv preprint (2014), or arXiv:1403.7608.
[3] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990), 67-90.
[4] P.W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other symmetric structures, Preprint (2014).
[5] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics of the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432-520.
[6] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Archive for Rational Mechanics and Analysis 124 (1993), 355-379.
[7] L. Caffarelli N. Garofalo, and F. Segála, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), 1457-1473.
[8] L. Caffarelli and A. Córdoba, Uniform convergence of a singular perturbation problem, Comm. Pure Appl. Math. 48 (1995), 1-12.
[9] L. A. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal of AMS 21 (2008), 847-862.
[10] A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Rational Mech. Anal. 195 (2010) 1025-1058.
[11] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential equations of second order”, second ed., Springer-Verlag, New York, 1983.
[12] C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations, Methods Appl. Anal. 15 (2008), 285-296.
[13] P. Mironescu and V. Radulescu, Periodic solutions of the equation $-\Delta v = v(1 - |v|^2)$, Houston Math. Journal 20 (1994), 653-670.
[14] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38 (1985), 679-684.
[15] L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in Partial differential equations and the calculus of variations, Essays in honor of Ennio De Giorgi, Vol. 2, edited by F. Colombini, A. Marino, and L. Modica. Birkhauser, Boston, MA, 1989, 843-850.
[16] T. Riviére, *Asymptotic analysis for the Ginzburg–Landau equations*, Bollettino dell’Unione Matematica Italiana 2-B. 3 (1999), 537–575.

[17] D. Smets, *PDE analysis of concentrating energies for the Ginzburg-Landau equation*, in Topics on concentration phenomena and problems with multiple scales, 293-314, Lect. Notes Unione Mat. Ital. 2, Springer, Berlin, 2006.

[18] C. Sourdis, *Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn equation*, Arxiv preprint (2014), or arXiv:1402.3844v2.

[19] C. Sourdis, *A new monotonicity formula for solutions to the elliptic system \(\Delta u = \nabla W(u) \)*, Arxiv preprint (2014), or arXiv:1402.6237.

[20] R. Sperb, “Maximum principles and their applications”, Academic Press, New York, 1981.

[21] M. Zhao, *Pohozaev identity for system*, Unpublished preprint (2014), available at http://www.math.uconn.edu/~mingfeng/Talks%20and%20Notes/Phozaev.pdf

Department of Mathematics and Applied Mathematics, University of Crete.

E-mail address: csourdis@tem.uoc.gr