Scientific Opinion on Flavouring Group Evaluation 210 Revision 2 (FGE.210Rev2):
Consideration of genotoxic potential for ,unsaturated alicyclic ketones and precursors
from chemical subgroup 2.4 of FGE.19

Beltoft, Vibe Meister; Nørby, Karin Kristiane; EFSA Journal

Link to article, DOI: 10.2903/j.efsa.2015.4172

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
EFSA Journal (2015). Scientific Opinion on Flavouring Group Evaluation 210 Revision 2 (FGE.210Rev2):
Consideration of genotoxic potential for ,unsaturated alicyclic ketones and precursors from chemical subgroup
2.4 of FGE.19. Parma, Italy: European Food Safety Authority. (The EFSA Journal; No. 4172, Vol. 13(7)). DOI:
10.2903/j.efsa.2015.4172
Scientific Opinion on Flavouring Group Evaluation 210 Revision 2 (FGE.210Rev2): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2.4 of FGE.19

EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

Abstract
The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 14 flavouring substances in Flavouring Group Evaluation 210 (FGE.210). In FGE.210, the Panel concluded that the genotoxic potential could not be ruled out for any of the flavouring substances. In FGE.210 Revision1, the Panel concluded that the concern for genotoxic potential is ruled out for eight substances [FL-no: 02.105, 07.007, 07.009, 07.011, 07.036, 07.088, 07.091 and 07.170] while for allyl α-ionone [FL-no: 07.061], for α-damascone [FL-no: 07.134] and four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231] the concern for genotoxicity remains and additional data were requested. The Flavour Industry has submitted additional genotoxicity data for allyl α-ionone [FL-no: 07.061], that are evaluated in the present revision of FGE.210 (Revision 2). Based on these new data the Panel concluded that the genotoxicity concern for allyl α-ionone [FL-no: 07.061] can be ruled out. For α-damascone [FL-no: 07.134] and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231] additional genotoxicity data are still required.

© European Food Safety Authority, 2015

Keywords: α,β-unsaturated alicyclic ketones, flavouring substances, safety evaluation, FGE.210, subgroup 2.4, FGE.19

Requestor: European Commission
Question number: EFSA-Q-2015-00060
Correspondence: fip@efsaeuropa.eu
Panel members: Claudia Bolognesi, Laurence Castle, Jean-Pierre Cravedi, Karl-Heinz Engel, Paul Fowler, Konrad Grob, Rainer Gürtler, Trine Husøy, Wim Mennes, Maria Rosaria Milana, André Penninks, Maria de Fátima Tavares Poças, Vittorio Silano, Andrew Smith, Christina Tlustos, Fidel Toldra, Detlef Wölflé and Holger Zorn.

Acknowledgements: The Panel wishes to thank the members of the Working Group on Genotoxicity: Mona-Lise Binderup, Claudia Bolognesi, Riccardo Crebelli, Rainer Gürtler, Natália Kováková, Francesca Marcon, Daniel Marzin and Pasquale Mosesso, for the preparatory work on this scientific output and the hearing experts: Vibe Beltsof and Karin Norby and EFSA staff members: Annamaria Rossi, Maria Carfi and Maria Anastasiadou for the support provided to this scientific output.

Suggested citation: EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific opinion on Flavouring Group Evaluation 210 Revision 2 (FGE.210Rev2): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2.4 of FGE.19. EFSA Journal 2015;13(7):4172, 33 pp. doi:10.2903/j.efsa.2015.4172

ISSN: 1831-4732

© European Food Safety Authority, 2015

Reproduction is authorised provided the source is acknowledged.
Summary

Following a request from the European Commission, the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) was asked to deliver a scientific opinion on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular, the Panel was asked to evaluate flavouring substances using the Procedure as referred to in the Commission Regulation (EC) No 1565/2000 (hereafter the ‘Procedure’).

The Flavouring Group Evaluation 210 (FGE.210) concerned 13 substances, belonging to subgroup 2.4 of FGE.19. Twelve of these substances are α,β-unsaturated alicyclic ketones (α-ionone [FL-no: 07.007], methyl-α-ionone [FL-no: 07.009], 4-(2,5,6,6-tetramethyl-2-cyclohexenyl)-3-buten-2-one [FL-no: 07.011], α-isomethyl ionone [FL-no: 07.036], allyl α-ionone [FL-no: 07.061], methyl-δ-ionone [FL-no: 07.088], γ-ionone [FL-no: 07.091], δ-damascone [FL-no: 07.130], α-damascone [FL-no: 07.134], β-ionone epoxide [FL-no: 07.170], tr-1-(2,6,6-trimethyl-2-cyclohexen-1-yl)but-2-en-1-one [FL-no: 07.226] and α-damascenone [FL-no: 07.231]) and one substance (4-(2,6,6-trimethyl-2-cyclohexenyl)but-3-en-2-ol (FL-no: 02.105)) is a precursor for such ketone. One of the substances (allyl α-ionone [FL-no: 07.061]) has a terminal double bond and one (β-ionone epoxide [FL-no: 07.170]) is an epoxide.

The genotoxicity concern with respect to the 13 α,β-unsaturated alicyclic ketones and precursors in FGE.210 could not be ruled out based on the genotoxicity data and (Quantitative) Structure-Activity Relationship ((Q)SAR) predictions available.

In revision 1 of FGE.210 (FGE.210Rev1), additional genotoxicity data submitted by the Industry on representative substances (α-ionone [FL-no: 07.007], allyl α-ionone [FL-no: 07.061], β-ionone epoxide [FL-no: 07.170] and α-damascone [FL-no: 07.134]) were evaluated by the Panel. In FGE.210Rev1, an additional substance was included, cis-1-(2,6,6-trimethyl-2-cyclohexen-1-yl)but-2-en-1-one [FL-no: 07.225].

Based on the data submitted for FGE.210Rev1, the Panel concluded that the concern for a genotoxic potential could be ruled out for eight of the substances [FL-no: 02.105, 07.007, 07.009, 07.011, 07.036, 07.088, 07.091 and 07.170]. These eight substances have subsequently been evaluated in their respective parent FGEs using the Procedure. For allyl α-ionone [FL-no: 07.061] and for α-damascone [FL-no: 07.134] and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231], the additional data were not adequate to rule out the concern with respect to genotoxicity and further genotoxicity data were requested.

The present revision of FGE.210, FGE.210Rev2, has been prepared in order to consider new data for the substance allyl α-ionone [FL-no: 07.061]. The new data provide missing information related to the previously submitted in vitro micronucleus assay, which was evaluated by the Panel in FGE.210Rev1.

Based on these new data the Panel concluded that the genotoxicity concern for allyl α-ionone [FL-no: 07.061] can be ruled out. For α-damascone [FL-no: 07.134] no new data are available, therefore the genotoxicity concern cannot be ruled out and additional data are still required. The same applies to the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231].
Table of contents

Abstract .. 1
Summary .. 3
1. Introduction ... 5
 1.1. Background and Terms of Reference as provided by the requestor ... 5
2. Data and Methodologies .. 6
 2.1. History of the evaluation of FGE.19 substances .. 6
 2.2. History of the evaluation of the substances belonging to FGE.210 .. 6
 2.3. Presentation of the substances in flavouring group evaluation 210Rev3 8
 2.3.1. Description .. 8
 2.4. Data evaluated by the Panel in FGE.210 ... 8
 2.4.1. (Q)SAR predictions .. 8
 2.4.2. Genotoxicity studies ... 8
 2.4.3. Carcinogenicity studies ... 8
 2.4.4. Conclusion on genotoxicity and carcinogenicity ... 9
 2.5. Conclusion based on the data available to the Panel in FGE.210 ... 9
 2.5.1. Additional genotoxicity data evaluated by the Panel in FGE.210Rev1 9
 2.5.2. In vitro data .. 9
 2.5.3. In Vivo data .. 14
 2.5.4. Conclusion based on the new data available to the Panel in FGE.210Rev1 14
3. Assessment ... 16
 3.1. Additional genotoxicity data evaluated by the Panel in FGE.210Rev2 16
 4. Conclusions ... 16
 5. Summary of safety evaluation applying the procedure (JECFA, 1999; JECFA, 2006) 19
 6. QSAR Predictions on mutagenicity in five models for 10 ketones from subgroup 2.4 21
 7. Genotoxicity data (in vitro) considered by the Panel in FGE.210 ... 23
 8. Genotoxicity data (in vivo) considered by the Panel in FGE.210 ... 24
 9. Genotoxicity data (in vitro) considered by the Panel in FGE.210Rev1 .. 25
 10. Genotoxicity data (in vivo) considered by the Panel in FGE.210Rev1 ... 29
 11. Genotoxicity data (in vitro) considered by the Panel in FGE.210Rev2 29
 12. Documentation provided to EFSA ... 30
 13. References ... 31
 14. Abbreviations ... 33
1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

The use of flavouring is regulated under Regulation (EC) No 1334/2008\(^1\) of the European Parliament and Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods. On the basis of article 9(a) of this Regulation an evaluation and approval are required for flavouring substances.

The Union List of flavourings and source materials was established by Commission Implementing Regulation (EC) No 872/2012.\(^2\) The list contains flavouring substances for which the scientific evaluation should be completed in accordance with Commission Regulation (EC) No 1565/2000.\(^3\)

On 30 January 2014, the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids adopted an opinion on Flavouring Group Evaluation 210, Revision 1 (FGE.210Rev1): Consideration of genotoxic potential for α,β-unsaturated acyclic ketones and precursors from chemical subgroup 2.4 of FGE.19.

The Panel concluded that, for allyl α-ionone [FL-no: 07.061] and for α-damascone [FL-no: 07.134] and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231], the Panel’s concern with respect to genotoxicity could not be ruled out and subsequently additional data are requested.

The applicant has submitted additional data on the representative substance allyl α-ionone [FL-no: 07.061] in response to this EFSA evaluation.

Terms of Reference as provided by the European Commission

The European Commission requests the European Food Safety Authority to carry out a safety assessment on the following flavouring substance: allyl α-ionone [FL-no: 07.061] in accordance with Commission Regulation (EC) No 1565/2000.

\(^1\) Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJ L 354, 31.12.2008, p. 34-50.

\(^2\) EC (European Commission), 2012. Commission implementing Regulation (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex 1 to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC. OJ L 267, 2.10.2012, p. 1-161.

\(^3\) Commission Regulation (EC) No 1565/2000 of 18 July 2000 laying down the measures necessary for the adoption of an evaluation programme in application of Regulation (EC) No 2232/96. OJ L 180, 19.7.2000, p. 8-16.
2. Data and Methodologies

2.1. History of the evaluation of FGE.19 substances

Flavouring Group Evaluation 19 (FGE.19) contains 360 flavouring substances from the EU Register being α,β-unsaturated aldehydes or ketones and precursors which could give rise to such carbonyl substances via hydrolysis and/or oxidation (EFSA, 2008a).

The α,β-unsaturated aldehyde and ketone structures are structural alerts for genotoxicity (EFSA, 2008a). The Panel noted that there were limited genotoxicity data on these flavouring substances but that positive genotoxicity studies were identified for some substances in the group.

The α,β-unsaturated carbonyls were subdivided into subgroups on the basis of structural similarity (EFSA, 2008a). In an attempt to decide which of the substances could go through the Procedure, a (quantitative) structure-activity relationship (Q)SAR prediction of the genotoxicity of these substances was undertaken considering a number of models (DEREKW, TOPKAT, DTU-NFI-MultiCASE Models and ISS-Local Models, (Gry et al., 2007)).

The Panel noted that for most of these models internal and external validation has been performed, but considered that the outcome of these validations was not always extensive enough to appreciate the validity of the predictions of these models for these α, β-unsaturated carbonyls. Therefore, the Panel considered it inappropriate to totally rely on (Q)SAR predictions at this point in time and decided not to take substances through the procedure based on negative (Q)SAR predictions only.

The Panel took note of the (Q)SAR predictions by using two ISS Local Models (Benigni and Netzeva, 2007a; Benigni and Netzeva, 2007b) and four DTU-NFI MultiCASE Models (Gry et al., 2007; Nikolov et al., 2007) and the fact that there are available data on genotoxicity, in vitro and in vivo, as well as data on carcinogenicity for several substances. Based on these data the Panel decided that 15 subgroups (1.1.1, 1.2.1, 1.2.2, 1.2.3, 2.1, 2.2, 2.3, 2.5, 3.2, 4.3, 4.5, 4.6, 5.1, 5.2 and 5.3) (EFSA, 2008b) could not be evaluated through the Procedure due to concern with respect to genotoxicity. Corresponding to these subgroups, 15 Flavouring Group Evaluations (FGEs) were established: FGE.200, 204, 205, 206, 207, 208, 209, 211, 215, 219, 221, 222, 223, 224 and 225.

For 11 subgroups the Panel decided, based on the available genotoxicity data and (Q)SAR predictions, that a further scrutiny of the data should take place before requesting additional data from the Flavouring Industry on genotoxicity. These subgroups were evaluated in FGE.201, 202, 203, 210, 212, 213, 214, 216, 217, 218 and 220. For the substances in FGE.202, 214 and 218 it was concluded that a genotoxic potential could be ruled out and accordingly these substances will be evaluated using the Procedure. For all or some of the substances in the remaining FGEs, FGE.201, 203, 210, 212, 213, 216, 217 and 220 the genotoxic potential could not be ruled out.

To ease the data retrieval of the large number of structurally related α,β-unsaturated substances in the different subgroups for which additional data are requested, EFSA worked out a list of representative substances for each subgroup (EFSA, 2008c). Likewise an EFSA genotoxicity expert group has worked out a test strategy to be followed in the data retrieval for these substances (EFSA, 2008b).

The Flavouring Industry has been requested to submit additional genotoxicity data according to the list of representative substances and test strategy for each subgroup.

The Flavouring industry has now submitted additional data and the present FGE concerns the evaluation of these data requested on genotoxicity.

2.2. History of the evaluation of the substances belonging to FGE.210

In FGE.210, EFSA considered 13 flavouring substances corresponding to subgroup 2.4 of FGE.19. Twelve of these substances are α,β-unsaturated alicyclic ketones [FL-no: 07.007, 07.009, 07.011, 07.036, 07.061, 07.088, 07.091, 07.130, 07.134, 07.170, 07.226 and 07.231] and one is a precursor for such ketones [FL-no: 02.105]. One of the substances has a terminal double bond (allyl α-ionone [FL-no: 07.061]) and one (β-ionone epoxide [FL-no: 07.170]) is an epoxide.
The genotoxicity concern with respect to the 13 α,β-unsaturated alicyclic ketones and precursors could not be ruled out based on the genotoxicity data and the (quantitative) structure-activity relationship (QSAR) predictions available. The Panel therefore concluded that additional data on genotoxicity on substances representative for this subgroup should be provided according to the Genotoxicity Test Strategy for Substances Belonging to Subgroups of FGE.19 (EFSA, 2008b).

Table 1: Representative substances for Subgroup 2.4 of FGE.19 (EFSA, 2008c)

Subgroup	FL-no	Register name for representatives	Structural formula
2.4a	07.007	α-Ionone	![Structure](image1)
	07.061	Allyl α-ionone	![Structure](image2)
	07.170	β-Ionone epoxide	![Structure](image3)
2.4b	07.134	α-Damascone	![Structure](image4)

In FGE.210Rev1 additional data submitted by Industry for the substances α-ionone [FL-no: 07.007], allyl α-ionone [FL-no: 07.061], δ-damascone [FL-no: 07.130], β-ionone epoxide [FL-no: 07.170] (IOFI, 2013a) and α-damascone [FL-no: 07.134] (IOFI, 2013b) were evaluated. In FGE.210Rev1, one additional substance was included in subgroup 2.4, cis-1-(2,6,6-trimethyl-2-cyclohexen-1-yl)but-2-en-1-one [FL-no: 07.225]. Based on the new data, the Panel concluded that the genotoxicity concern for α-ionone [FL-no: 07.007] and six structurally related substances [FL-no: 02.105, 07.009, 07.011, 07.036, 07.088 and 07.091] and for β-ionone epoxide [FL-no: 07.170] could be ruled out. These eight substances can accordingly be evaluated using the Procedure. For allyl α-ionone [FL-no: 07.061] and for α-damascone [FL-no: 07.134] and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231], the new submitted data could not rule out the concern with respect to genotoxicity and additional data were requested.

FGE	Adopted by EFSA	Link	No. of Substances
FGE.210	29 January 2009	http://www.efsa.europa.eu/en/efsaajournal/pub/1030.htm	13
FGE.210Rev1	30 January 2014	http://www.efsa.europa.eu/en/efsaajournal/pub/3587.htm	14
FGE.210Rev2	24 June 2015	http://www.efsa.europa.eu/en/efsaajournal/pub/4172.htm	14

The present revision of FGE.210, FGE.210Rev2, concerns the evaluation of additional data submitted on allyl α-ionone [FL-no: 07.061]. The data were requested by the Panel in FGE.210Rev1.

Section 2.4 reports the same information that was presented in FGE.210. Section 2.5 reports the data evaluated by the Panel in FGE.210Rev1 and section 3 presents the evaluation of the newly submitted information for allyl α-ionone [FL-no: 07.061].
2.3. Presentation of the substances in flavouring group evaluation 210Rev3

2.3.1. Description

The Flavouring Group Evaluation 210 (FGE.210) concerns 14 substances, corresponding to subgroup 2.4 of FGE.19 (see Table 2). Thirteen of these substances are α,β-unsaturated alicyclic ketones [FL-no: 07.007, 07.009, 07.011, 07.036, 07.061, 07.088, 07.091, 07.130, 07.134, 07.170, 07.225, 07.226 and 07.231] and one is a precursor for such ketones [FL-no: 02.105]. One of the substances has a terminal double bond [FL-no: 07.061] and one is an epoxide [FL-no: 07.170].

Eleven of the substances in the present FGE have previously been evaluated by the JECFA, a summary of their current evaluation status by JECFA is given in Table 3 (JECFA, 1999, 2006).

As the α,β-unsaturated ketone structure is considered to be structural alert for genotoxicity (EFSA, 2008a) the available data on genotoxic or carcinogenic activity for the 13 α,β-unsaturated ketones [FL-no: 07.007, 07.009, 07.011, 07.036, 07.061, 07.088, 07.091, 07.130, 07.134, 07.170, 07.225, 07.226 and 07.231] and a precursor for such ketones [FL-no: 02.105], will be considered in this FGE.

2.4. Data evaluated by the Panel in FGE.210

2.4.1. (Q)SAR predictions

The Panel has also taken into consideration the outcome of the predictions from five selected (Q)SAR models (Benigni & Netzeva, 2007a; Gry et al., 2007; Nikolov et al., 2007) on the ketones [FL-no: 07.007, 07.009, 07.011, 07.036, 07.061, 07.088, 07.091, 07.130, 07.134, 07.170, 07.226 and 07.231].

In Table 4 the outcomes of the (Q)SAR predictions for possible genotoxic activity in five in vitro (Q)SAR models (ISS-Local Model-Ames test, DTU-NFI MultiCASE-Ames test, -Chromosomal aberration test (CHO), -Chromosomal aberration test (CHL), and -Mouse lymphoma test) are presented.

For all of the substances the (Q)SAR models predict negative results in tests for gene mutations, with the restriction that about half of the substance predictions are out of domain for the Mouse lymphoma assay. It is noted that predictions for chromosomal aberrations (CA) are diverging in the sense that for CAs in Chinese hamster ovary cells the predictions are invariably negative (three are out of domain), while for the same endpoint in another but very similar cell type (Chinese hamster lung cells) only for one substance a negative response was predicted. For most of the remaining substances the predictions in the CA (CHL) test were equivocal and for four substances the predictions were out of domain (Table 4).

2.4.2. Genotoxicity studies

In subgroup 2.4 there are two in vitro studies on α-ionone [FL-no: 07.007], one in vitro study on methyl- α-ionone [FL-no: 07.009] and one in vitro study on methyl- δ-ionone [FL-no: 07.088]. Only one in vivo study for methyl- α-ionone [FL-no: 07.009] is available for this subgroup.

Study validation and results are presented in Tables 5 and 6.

The available in vitro bacterial gene mutation studies with limited validities do not indicate a concern for the tested substances from this group. One of the in vitro tests (Rec assay) is a system which has limited predictive validity for genotoxicity. An in vivo test with limited validity produced a negative result for gene mutations in Drosophila melanogaster. A limited in vitro test for structural chromosomal damage produced a positive response with α-ionone, but a limited in vivo mammalian test for the same endpoint with α-ionone gave a negative outcome.

2.4.3. Carcinogenicity studies

No carcinogenicity studies are available for the substances in subgroup 2.4.

4 The data presented in Section 2.4 are cited from the first version of FGE.210. These data are the basis for the conclusions in FGE.210 requesting additional genotoxicity data.
2.4.4. Conclusion on genotoxicity and carcinogenicity

The data ((Q)SAR and testing data) are not sufficient to rule out a concern for genotoxicity for these substances in subgroup 2.4.

2.4.5. Conclusion based on the data available to the Panel in FGE.210

The Panel concluded that a genotoxic potential of the 13 α,β-unsaturated alicyclic ketones and precursors in the present FGE.210 [FL-no: 02.105, 07.007, 07.009, 07.011, 07.036, 07.061, 07.088, 07.091, 07.130, 07.134, 07.170, 07.226 and 07.231] could not be ruled out based on the data available. Accordingly these 13 substances cannot be evaluated through the Procedure, presently. Additional data on genotoxicity for the representative substances of this subgroup should be provided according to the Genotoxicity Test Strategy for substances belonging to Subgroups of FGE.19 (EFSA, 2008b).

2.5. Additional genotoxicity data evaluated by the Panel in FGE.210 Rev15

2.5.1. Presentation of the additional data

The revision 1 of FGE.210 (FGE.210 Rev1), concerns the evaluation of additional data submitted by Industry for the representative substances α-ionone [FL-no: 07.007], allyl α-ionone [FL-no: 07.061], β-ionone epoxide [FL-no: 07.170] and α-damascone [FL-no: 07.134] for subgroup 2.4 (EFSA CEF Panel, 2014). Furthermore, data on genotoxicity of δ-damascone [FL-no: 07.130] have been submitted.

In response to the EFSA request in FGE.210 (EFSA, 2009) for additional genotoxicity data for subgroup 2.4 the Flavour Industry (IOFI, 2013a; IOFI, 2013b) has submitted genotoxicity data on:

Substance / study type	Bacterial Mutation	In vitro Micronucleus	In vivo Micronucleus
α-Ionone [FL-no: 07.007]	Bowen, 2011	Lloyd, 2013b	Krsmanovic and Huston, 2006
Allyl α-ionone [FL-no: 07.061]	Ballantyne, 2011	Lloyd, 2013a	
δ-Damascone [FL-no: 07.130]	Shinya, 2006		
α-Damascone [FL-no: 07.134]	Haddouk, 2001	Lloyd, 2012; Lloyd, 2013c; Whitwell, 2012	
β-Ionone epoxide [FL-no: 07.170]	Jones and Wilson, 1988; Kringstad, 2005	Flanders, 2006	

2.5.2. In vitro data

Bacterial reverse mutation assay

α-Ionone [FL-no: 07.007]

An Ames assay was conducted in S. typhimurium strains TA98, TA100, TA1535, TA1537, and TA102 to assess the mutagenicity of α-ionone, both in the absence and in the presence of metabolic activation by S9-mix (from livers of rats induced with Aroclor 1254), in three separate experiments (Bowen, 2011). This study was performed following GLP recommendations and according to OECD Guideline 471 (OECD, 1997a). An initial experiment was carried out in both the absence and presence of S9-mix activation in all five strains, using 0.3, 1.6, 8, 40, 200, 1000 and 5000 μg of α-ionone/plate, plus negative (solvent) and positive controls. Evidence of toxicity was observed at 1000 and/or 5000 μg/plate across all strains in the absence and presence of S9-mix with the exception of TA100 in

5 The data presented in Section 2.5 are cited from the FGE.210 Rev1. These data are the basis for the conclusions in FGE.210 Rev1 requesting additional genotoxicity data.
which no clear evidence of toxicity, in the presence of S9-mix, was observed at 5000 µg/plate (Table 7).

In a second experiment, the concentrations were changed lowering to 2500 µg/plate for all strains and conditions with the exception of TA98 in presence of S9-mix and for TA100 in presence and absence of S9-mix. In this second experiment the concentration intervals were narrowed, covering the ranges 156.3–5000 µg/plate or 78.1–2500 µg/plate in order to better detect possible concentration-dependent mutation. In addition, a pre-incubation step with S9-mix activation treatment was added to increase the chance of detecting a positive response. In this experiment, evidence of toxicity ranging from a diminution of the background bacterial lawn and/or a reduction in revertant numbers to a complete killing of the test bacteria was observed at 1250 µg/plate and above for strain TA98 in the presence of S9-mix, at 625 µg/plate in strains TA98 in the absence of S9-mix and TA100 with and without S9-mix. Toxicity was observed at 312.5 µg/plate and above in all remaining strains.

The third experiment was conducted using strains TA1535 and TA102 in the absence and presence of S9-mix activation and strain TA1537 in the presence of S9 activation. The maximum test concentration was 2500 µg/plate for TA1535 while was further reduced for TA102 (± S9) and for TA1537 to 1250 µg/plate. In addition, more narrow concentration intervals were used, covering either 39.06 to 2500 µg/plate or 19.53 to 1250 µg/plate. Evidence of toxicity was observed at the highest three or four concentrations across all strains in the absence or presence of S9-mix.

In all three experiments, no statistically significant increases in revertant numbers were observed at any concentration, in any of the strains, either in the presence or absence of S9-mix activation.

It was concluded that α-ionone did not induce mutations in five strains of *S. typhimurium*, when tested under the conditions of this study.

Allyl α-ionone [FL-no: 07.061]

An Ames assay was conducted in *S. typhimurium* strain TA102 to assess the mutagenicity of allyl α-ionone, both in the absence and in the presence of metabolic activation by S9-mix (from livers of rats induced with Aroclor 1254), in two separate experiments (Ballantyne, 2011). The study was performed following GLP principles and according to the OECD Guideline 471 (OECD, 1997a), except that only TA102 was used (Table 7). An initial experiment was carried out both in the absence and presence of S9-mix activation in the TA102 strain, using 1.6, 8, 40, 200, 1000 and 5000 µg of allyl α-ionone/plate plus vehicle and positive controls. In the second experiment, the highest concentration was retained but more narrow concentration intervals were used, starting at 51.2 µg/plate (51.2, 128, 320, 800, 2000 and 5000 µg/plate). The standard plate incorporation assay was used in the first experiment and a pre-incubation step with S9-mix activation treatment was added in the second experiment to increase the chance of detecting a positive response. No evidence of toxicity was observed under any of the conditions tested.

In both experiments, no statistically significant increases in revertant numbers were observed at any concentration in strain TA102, either in the presence or absence of S9-mix activation.

It was concluded that allyl α-ionone did not induce mutation in the histidine-requiring *S. typhimurium* strain TA102 when tested under the conditions of this study. The authors justified to test only TA102 strain because this study was intended to be complementary to a previous study from (Wild et al, 1983) where data on the other strains were provided.

δ-Damascone [FL-no: 07.130]

A modified Ames assay using the pre-incubation method was conducted in *S. typhimurium* strains TA98, TA100, TA1535, and TA1537 and *Escherichia coli* WP2uvRA to assess the mutagenicity of δ-damascone (purity: 93.8 %), both in the absence and in the presence of metabolic activation by S9-mix (from livers of rats induced with Aroclor 1254), in three separate experiments (Shinya, 2006). The assay was performed according to OECD Guideline 471 (OECD, 1997a) and according to GLP principles (Table 7).

An initial experiment was carried out both in the absence and presence of S9-mix activation in all five strains at 4.9, 19.5, 78.1, 313, 1250 and 5000 µg of δ-damascone/plate, plus negative (solvent) and positive controls. In the absence of S9-mix, toxicity (decrease of bacterial growth and/or of revertants) was reported at 78.1 µg/plate and above and in the presence of S9-mix, toxicity was
reported at 313 µg/plate and above. In the second experiment with tighter ranges of concentrations to reflect the toxicity observed in the previous experiment, δ-damascone was incubated with all five tester strains in the absence of S9-mix (2.4, 4.9, 9.8, 19.5, 39.1 or 78.1 µg of δ-damascone/plate) and in the presence of S9-mix (9.8, 19.5, 39.1, 78.1, 156 and 313 µg of δ-damascone/plate). Toxicity was observed in the absence of S9-mix at top concentration and in the presence of S9-mix at 156 µg/plate and above. In the third experiment, the same conditions as described for the second experiment were used. In all three experiments there were no significant increases in the number of revertants in the absence or presence of S9-mix. It was concluded that δ-damascone did not induce mutations in four strains of *S. typhimurium* or *E. coli* WP2uvrA under the conditions employed (Shinya, 2006).

δ-Damascone [FL-no: 07.134]

Ames assays were conducted in *S. typhimurium* strains TA1535, TA1537, TA98 and TA100 and *Escherichia coli* WP2uvrA to assess the mutagenicity of δ-damascone (purity: 96.9 %), both in the absence and in the presence of metabolic activation by S9-mix (from livers of rats induced with Aroclor 1254), in two separate experiments (Haddouk, 2001). The assay was performed according to OECD Guideline 471 (OECD, 1997a) and according to GLP principles (see Table 7).

An initial experiment to assess toxicity was carried out both in the absence and presence of S9-mix activation in the tester strains, using 10, 100, 500, 1000, 2500 and 5000 µg of δ-damascone/plate in strains TA98, TA100 and WP2 uvrA, plus vehicle and positive controls. Concentration levels greater than or equal to 2500 µg/plate showed evidence of an emulsion on the plates. In TA98, slight to marked toxicity was observed at concentrations greater than or equal to 100 µg/plate or 500 µg/plate in the absence and presence of S9-mix, respectively. In TA100, toxicity was observed at concentrations greater than or equal to 500 µg/plate in the absence and presence of S9-mix. In *E. coli* WP2 uvrA slight toxicity was observed at 2500 µg/plate and above without S9-mix but not with S9-mix. Based on the preliminary toxicity test, a standard Ames test using the plate incorporation method was conducted using 31.2, 62.5, 125, 250 and 500 µg of δ-damascone/plate for strains TA1535 and TA100 and 7.8, 15.6, 31.2, 62.5 and 125 µg of δ-damascone/plate for strains TA1537 and TA98 in the absence and presence of S9-mix. Additionally, δ-damascone (312.5, 625, 1250, 2500 and 5000 µg/plate) was tested in *E. coli* WP2 uvrA for reverse mutation in the absence and presence of S9-mix. In the second experiment, δ-damascone was tested in all *S. typhimurium* tester strains in the absence of S9-mix at the following concentrations: 15.6, 31.2, 62.5, 125 and 250 µg/plate. In the second experiment, the tests run the presence of S9-mix were performed with the pre-incubation (modified Ames) method at concentrations of 31.2, 62.5, 125, 250 and 500 µg of δ-damascone/plate for strains TA1535 and TA100 and at concentrations of 15.6, 31.2, 62.5, 125 and 250 µg of δ-damascone/plate for strains TA1537 and TA98. Additionally δ-damascone (312.5, 625, 1250, 2500 and 5000 µg/plate) was tested in *E. coli* WP2 uvrA for reverse mutation in the absence of S9-mix (with the plate incorporation method) and in the presence of S9-mix (with the pre-incubation method). Slight evidence of toxicity was observed under the conditions tested through thinning of the background bacterial lawn and/or a decrease in revertant count in *Salmonella* strains. In the *E. coli* strain, a slight toxicity was observed only at 5000 µg/plate in the absence of S9-mix.

In both experiments, no statistically significant increases in revertant numbers were observed at any concentration in any of the strains, either in the presence or absence of S9-mix activation.

It was concluded that δ-damascone did not show mutagenic activity towards *S. typhimurium* or *E. coli* in the bacterial reverse mutation test (Haddouk, 2001). The Panel agreed with the conclusion of the author.

β-Ionone epoxide [FL-no: 07.170]

β-Ionone epoxide was tested for mutagenicity in an Ames test including four strains of *S. typhimurium* (TA98, TA100, TA1535 and TA1537) at five concentrations (5, 15, 50, 150, 500 µg/plate) in the absence and in the presence of metabolic activation (S9-mix at two different concentrations, 3% and 10%) (Jones and Wilson, 1988). The study was performed under GLP and mainly compliant with OECD Guideline 471 (OECD, 1997a), except that only four strains were used (Table 7). Two independent experiments were performed and the top concentration was selected at 500 µg/plate based on toxicity in a prior range-finding test. At the concentration tested no significant toxicity was observed and no substantial increases in mutation were observed in all strains tested and in presence or absence of S9-mix.
A more recently reported Ames study on \(\beta \)-ionone epoxide included four strains of \textit{S. typhimurium} (TA97a, TA98, TA100, TA1535) plus one strain of \textit{E. coli} (WP2-uvrA-) (Kringstad, 2005). Following a range-finding assay, \(\beta \)-ionone was tested in three replicates at 501, 1582 and 5000 \(\mu \)g/plate in the absence of S9-mix metabolic activation and at 158, 501 and 1582 \(\mu \)g/plate in the presence of metabolic activation, in a single experiment using the plate incorporation method. The top concentration (5000 \(\mu \)g/plate) induced significant toxicity in strain TA97a in the absence of S9-mix and also reduced the background lawn in strain TA100 in the presence and absence of S9-mix and therefore the study complies with current recommendations for the choice of concentration. There was no evidence of mutagenicity. Since there are some deviations from the OECD Guideline 471 (OECD, 1997a) (only three concentrations of chemical were tested, in some cases only two concentrations could be analysed due to an excessive level of cytotoxicity and only a single experiment was performed) the test is considered of limited validity.

Mouse lymphoma thymidine kinase gene mutation assay

\(\beta \)-Ionone epoxide [FL-no: 07.170]

An assay for induction of \(tk \) mutations in mouse lymphoma cells (L5178Y T/K +/- 3.7.2c) was conducted on \(\beta \)-ionone-epoxide (Flanders, 2006). It included 4 hours treatment in the absence and presence of S9-mix and a 24 hours treatment in the absence of S9-mix. The concentrations were selected based on a preliminary toxicity test. The test groups included single replicates at 8 concentrations ranging from 200 to 900 \(\mu \)g/ml in the 4 hours treatment arm and from 4.1 to 520 \(\mu \)g/ml in the 24 hours treatment arm. The maximum concentration was limited by toxicity. The substance did not induce biologically or statistically significant increases in mutant frequency and therefore it was considered non-mutagenic in this assay. The study is compliant with OECD Guideline 476 (OECD, 1997c) (Table 7).

Micronucleus assays

\(\alpha \)-Ionone [FL-no: 07.007]

\(\alpha \)-ionone was evaluated in an \textit{in vitro} micronucleus assay in human peripheral blood lymphocytes for its ability to induce chromosomal damage or aneuploidy in the presence and absence of rat S9-mix fraction (Table 7). Information about the method used to induce lymphocyte cell division and the duration of the induction before the treatment was not provided. Cells were treated for 24 hours with 14 concentrations in a range from 15 to 120 \(\mu \)g/ml of \(\alpha \)-ionone in absence of S9-mix. In presence of S9-mix, cells were exposed for 3 hours followed by 21 hours recovery with 15 concentrations in a range from 30 to 200 \(\mu \)g/ml. Based on the toxicity induced by \(\alpha \)-ionone, three concentrations were selected for micronuclei assessment. In absence of S9-mix, cells were treated with 40, 50 and 65 \(\mu \)g/ml, while in presence of S9-mix the concentrations selected were 160, 170 and 180 \(\mu \)g/ml. The highest concentrations induced 51 \% and 56 \% reduction of replicative index (RI) in absence and presence of S9-mix, respectively. Micronuclei assessment was performed in a single experiment with duplicates and a total of 1000 binucleate cells per replicate were scored. No assay with 3 hours treatment + 21 hours recovery in absence of S9-mix was performed as recommended by OECD Guideline 487 (OECD, 2010). Treatment of cells with \(\alpha \)-ionone for 3 hours with a 21 hours recovery period in the presence of S9-mix or for 24 hours with no recovery period in the absence of S9-mix showed no increase in the frequency of MNBN cells at any concentration when compared to both concurrent and historical controls. It was concluded that \(\alpha \)-ionone did not induce micronuclei at up to the limit of toxicity when assayed in cultured human peripheral lymphocytes under the described exposure conditions (Lloyd, 2013b).

Due to the deviation from the OECD Guideline 487 (OECD, 2010) the study is considered of limited validity.

Allyl \(\alpha \)-ionone [FL-no: 07.061]

Allyl \(\alpha \)-ionone (purity of 88.5\%) was evaluated in an \textit{in vitro} micronucleus assay in human peripheral blood lymphocytes (Table 7). Information about the method used to induce lymphocytes cell division and the duration of the induction before the treatment was not provided. Cells were treated for 24 hours with 14 concentrations in a range from 5 to 50 \(\mu \)g/ml of allyl \(\alpha \)-ionone in absence of S9-mix. In presence of S9-mix cells were exposed for 3 hours followed by 21 hours recovery with 15
concentrations in a range from 25 to 200 μg/ml. Based on the toxicity induced by α-ionone three concentrations were selected for micronuclei assessment. In absence of S9-mix (24 hours treatment), cells were treated with 25, 33, 36 and 38 μg/ml, while in presence of S9-mix (3 hours treatment) the concentrations selected were 110, 140, 150 and 160 μg/ml. The highest concentrations induced 54 % and 63 % reduction of RI in absence and presence of S9-mix, respectively. Micronuclei assessment was performed in a single experiment with duplicates and a total of 2000 binucleate cells per replicate were scored in the experiment performed in absence of S9-mix, while 1000 binucleated cells were scored in presence of S9-mix. No assay with 3-hour treatment + 21-hour recovery in absence of S9-mix was performed as recommended by OECD Guideline 487 (OECD, 2010).

Treatment of cells with allyl α-ionone for 3 hours with a 21 hours recovery period in the presence of S9-mix or for 24 hours with no recovery period in the absence of S9-mix showed no increase in the frequency of MNBN cells at any concentration when compared to both concurrent and historical controls. It was concluded that allyl α-ionone did not induce micronuclei at concentration up to the limit of toxicity when assayed in cultured human peripheral lymphocytes in the described exposure conditions (Lloyd, 2013a).

Due to the deviation from the OECD Guideline 487 (OECD, 2010) the study is considered of limited validity.

α-Damascone [FL-no: 07.134]

Three in vitro micronucleus experiments have been performed in human peripheral blood lymphocytes to determine whether α-damascone is able to induce chromosomal damage or aneuploidy in the presence and absence of rat S9 fraction as an in vitro metabolising system (Table 7).

In all three experiments cells were stimulated for 48 hours with phytohaemaglutinin to produce exponentially growing cells.

A first experiment (Lloyd, 2012) was performed using standard conditions. Human peripheral blood lymphocytes where treated with α-damascone (purity 98.3 %) for 3 hours (followed by 21 hours recovery) with 9, 16, 18 or 22 μg/ml and 10, 12, 18, 20, 21 or 22 μg/ml of α-damascone in the absence and presence of S9-mix, respectively. The levels of cytotoxicity (reduction in replication index) at the top concentrations were 55 % and 56 %, respectively. In a parallel assay, cells were treated for 24 hours with 0, 5, 7, 9 and 10 μg/ml of α-damascone in the absence of S9-mix with no recovery period. The top concentration induced 57 % cytotoxicity. Levels of cytotoxicity were achieved at the top concentrations used in all parts of the study and are acceptable. There were 2 replicate cultures per treatment and 1000 binucleate cells per replicate were scored for micronuclei. The study design complies with OECD Guideline 487 and follows GLP principles. Treatment of cells with α-damascone for 3 hours with a 21 hour recovery period in the absence of S9-mix or for 24 hours with no recovery period in the absence of S9-mix showed no increase in the frequency of MNBN cells at any concentration when compared to both concurrent and historical controls. Treatment of cells with α-damascone for 3+21 hours in the presence of S9-mix resulted in frequencies of MNBN cells that were significantly higher (p < 0.001) when compared to concurrent controls at the two highest test concentrations with 1.40 % and 1.70 % MNBN at 21 and 22 μg/ml compared to 0.25 % MNBN in the concurrent control. It is noted that although the frequencies of MNBN cells exceed the 95th percentile of the historical controls (0.1 - 1.2 % MNBN) they are still within the normal range when considering extreme limits (0 - 2.0 % MNBN). An additional reading on 1000 BN cells scored per replicate confirmed the statistically significant increase with 1.03 and 1.0 % MNBN at 21 and 22 μg/ml; however, no additional reading was performed in the controls and coding slides. It was concluded that α-damascone showed weak induction of micronuclei when assayed in cultured human peripheral lymphocytes for 3 + 21 hours in the presence of S9-mix while in absence of S9-mix no induction of micronuclei were observed when tested up to toxic concentrations for 3 + 21 hours and 24 + 0 hours (Lloyd, 2012).

Since this study (Lloyd, 2012) showed a variable toxicity profile in the treatment for 3 hours with a 21 hours recovery period in the presence of S9-mix, a follow-up in vitro micronucleus assay was performed (Whitwell, 2012). α-Damascone was tested on human lymphocyte cultures using different methods of addition/mixing the test substance to the treatment medium, in order to assess and compare the cytotoxicity. A high variability in cytotoxicity was observed and it was concluded that where α-damascone is prepared for 100 % medium replacement and treated in a large volume vessel...
with vigorous mixing, a smoother and steeper toxicity curve is obtained as compared to using a standard method of addition to the test system. The micronucleus assay was performed using 3 different methods of adding/mixing \(\alpha \)-damascone to the treatment medium: standard treatment in larger volume vessel (experiment 1), standard treatment in standard vessel (experiment 2) and 100 % medium replacement in a larger volume vessel (experiment 3). The following concentrations were tested: 7.5 to 14 \(\mu \)g/ml (experiment 1 and 3), 14 to 20 \(\mu \)g/ml (experiment 2). Data indicated a positive induction of MNBN cells for at least one concentration for each experiment with a concentration-dependent effect.

Repetition of the experiments under slightly different conditions (with respect to the volume of vessel, mixing conditions and medium replacement) resulted in similar induction of micronuclei. The author of the repeated study concluded that \(\alpha \)-damascone did not induce consistent and biologically relevant increases in the frequency of micronuclei in cultured human peripheral blood lymphocytes when tested for 3+21 hours in the presence of 59-mix and for 24 + 0 hours in the absence of 59-mix (Lloyd, 2013c).

The Panel noted that statistically significant increases of MNBN cells were observed at concentrations that are above the limits of cytotoxicity recommended by the guideline and that the increases were higher than the 95th percentile of the historical control, but that the effects were observed only at the high concentrations at a cytotoxicity level higher than 55 %. Under these conditions, the Panel concluded that \(\alpha \)-damascone presents, in this study, an equivocal effect in the \textit{in vitro} micronucleus test.

The results of \textit{in vitro} micronucleus studies are summarised in Table 7.

2.5.3. \textit{In Vivo} data

Bone marrow micronucleus assay

\(\alpha \)-Ionone [FL-no: 07.007]

\(\alpha \)-Ionone was tested in a mouse bone marrow micronucleus assay (Krsmanovic and Huston, 2006). An initial extensive range-finding test established a maximum tolerated dose (MTD) of 1200 mg/kg. Animals were dosed by a single intraperitoneal injection, either with vehicle or with \(\alpha \)-ionone at 300, 600 or 1200 mg/kg. Groups of 5 male and 5 female mice from all treatment levels were sacrificed 24 hours after dosing, and additional 5 mice of each sex from top dose and vehicle control groups were also sacrificed at 48 hours after dosing (Table 8).

2000 Polychromatic (PCE) and normochromatic (NCE) erythrocytes per animal were scored for micronuclei. Reductions of 7 - 18 % in PCE were observed in treated males and females at 24 hours after dosing; a reduction of 21 % in PCE was observed in males at the top dose at 48 hours after dosing, indicating bone marrow toxicity. Systemic availability was confirmed by additional clinical signs in treated animals. There were no statistically or biologically significant increases in micronucleus frequency in treated animals. The study is compliant with OECD Guideline 474 (OECD, 1997b) and is sufficiently robust to contribute to the evaluation of clastogenic or aneugenic potential of \(\alpha \)-ionone.

2.5.4. Conclusion based on the new data available to the Panel in FGE.210Rev1

In the first evaluation of the available data on \(\alpha \beta \)-unsaturated alicyclic ketones and precursors in FGE.210 (subgroup 2.4 of FGE.19), it was concluded that additional data should be provided for the proper consideration of the genotoxic potential of these substances (EFSA, 2009).

New \textit{in vitro} data have been submitted for five substances of FGE.19 subgroup 2.4 (FGE.210), four representatives (\(\alpha \)-ionone [FL-no: 07.007], \(\alpha \)-damascone [FL-no: 07.134], allyl \(\alpha \)-ionone [FL-no: 07.061], \(\beta \)-ionone epoxide [FL-no: 07.170]), as requested, and one other substance, \(\delta \)-damascone [FL-no: 07.130]. Furthermore, new \textit{in vivo} data have been submitted for the representative \(\alpha \)-ionone [FL-no: 07.007].

\(\alpha \)-Ionone [FL-no: 07.007] did not induce gene mutation in \textit{S. typhimurium} nor structural or numerical chromosomal aberrations when tested with human peripheral lymphocytes. The latter study is of limited validity due to deviation to the OECD Guideline 487 (OECD, 2010) and it is not a GLP study. However, \(\alpha \)-ionone was tested in an \textit{in vivo} mouse bone marrow micronucleus assay in which no
statistically significant increase in the frequency of micronucleated cells was observed. There was an indication for bone marrow exposure, thus, the result is considered reliable.

The new data submitted for β-ionone epoxide [FL-no: 07.170] included two in vitro studies in bacteria and mammalian cells. β-Ionone epoxide did not induce any significant increase in bacterial mutation when evaluated in five different S. typhimurium strains and an E. coli strain, either in the presence or absence of S9 metabolic activation in two independent studies. β-Ionone epoxide also did not increase mutation frequencies when tested in a tk mutation assay using mouse lymphoma cells either in the presence or absence of S9 metabolic activation. No in vitro assay for chromosomal aberration is available, but the mouse lymphoma assay is a test that is able to detect the chemical potential to induce structural chromosomal aberrations. The lack of an in vitro micronucleus assay is not consistent with the current EFSA guideline (EFSA Scientific Committee, 2011), it is however consistent with the genotoxicity test strategy for substances belonging to subgroups of FGE.19 (EFSA, 2008a) applicable at the time when the scientific opinion on FGE.210 was adopted (EFSA, 2009). The Panel concluded that the data submitted for β-ionone epoxide are sufficient in the light of data available for structurally related substances.

Therefore, the Panel concluded that based on the current data on the representative substances α-ionone [FL-no: 07.007] and β-ionone epoxide [FL-no: 07.170], the concern with respect to genotoxicity could be ruled out for these two substances [FL-no: 07.007 and 07.170] as well as for the six substances structurally related to ionones [FL-no: 02.105, 07.009, 07.011, 07.036, 07.088 and 07.091]. Accordingly these eight substances can be evaluated through the Procedure.

Allyl α-ionone [FL-no: 07.061] is, due to a terminal double bond, not considered sufficiently structurally related to the other ionones. For allyl α-ionone [FL-no: 07.061], two in vitro studies were submitted, a bacterial reverse mutation assay and a micronucleus assay in human peripheral blood lymphocytes. The bacterial mutation assay has been performed only in TA102 strain of S. typhimurium, in the presence and absence of S9 metabolic activation, where no indication of mutation has been observed. A study was previously performed in the other four strains of S. typhimurium and there was no indication of mutation after treatment with allyl α-ionone. Allyl α-ionone did not induce chromosomal damage or aneuploidy when tested with human peripheral blood lymphocytes in the absence and presence of S9 metabolic activation. This study is of limited validity due to deviations from the OECD Guideline 487 (OECD, 2010). In fact, the treatment of cells for 3 hours (with 21 hours recovery) in the absence of S9-mix was not performed. Therefore an in vitro micronucleus assay with treatment for 3 hours (with 21 hours recovery) in the absence of S9-mix should be performed.

α-Damascone [FL-no: 07.134] did not induce any significant increase in bacterial mutation frequency when evaluated in four histidine-requiring strains (TA98, TA100, TA1535 and TA1537) of S. typhimurium and E. coli WP2uvrA in presence and absence of metabolic activation.

α-Damascone did induce statistically significant chromosomal damage or aneuploidy when tested in the in vitro micronucleus test with human peripheral lymphocytes in the absence and presence of S9 metabolic activation. However, the results with α-damascone were difficult to interpret due to the difficulty in assessing the cytotoxicity of the test substance to the peripheral blood human lymphocytes. The Panel concluded that the study result was equivocal.

The current data available for α-damascone [FL-no: 07.134] cannot be used to exclude a genotoxicity concern and accordingly the Panel requests additional data for this substance in order to conclude on the genotoxicity of this substance and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231].

Overall, the Panel concluded that the concern for genotoxicity is ruled out for eight of the substances [FL-no: 02.105, 07.007, 07.009, 07.011, 07.036, 07.088, 07.091 and 07.170]. These eight substances can accordingly be evaluated using the Procedure. For allyl α-ionone [FL-no: 07.061] and for α-damascone [FL-no: 07.134] and the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231], the new submitted data could not rule out the Panel concern with respect to genotoxicity and additional data are requested.
3. Assessment

3.1. Additional genotoxicity data evaluated by the Panel in FGE.210Rev2

The present revision of FGE.210 (FGE.210Rev2), concerns the evaluation of additional data submitted by Industry for the substance, allyl α-ionone [FL-no: 07.061], from subgroup 2.4 (EFSA, 2008a), as requested by the Panel in FGE.210Rev1.

The Industry has tested allyl α-ionone [FL-no: 07.061] in an in vitro micronucleus assay performed on human peripheral blood lymphocytes treated for 3 hours (plus 21 hours recovery) in the absence of metabolic activation (Lloyd, 2014). This test completes the in vitro micronucleus assay (Lloyd, 2013a), evaluated in FGE.210Rev1, where allyl α-ionone [FL-no: 07.061] was tested only for 3 + 21 hours in the presence of a rat liver metabolising system (S9-mix) and for 24 hours in the absence of S9-mix. In the previous screening study (Lloyd, 2013a), the micronucleus assay showed that MNBN cells frequencies were similar to those observed in concurrent vehicle controls at all concentrations analysed, no statistically significant differences were observed.

In the present study (Lloyd, 2014), the same batch of allyl α-ionone (purity of 88.5%) was used as in the previous study (Lloyd, 2013a).

Whole blood cultures were established using blood from two healthy male volunteers. Cells were cultured for 48 hours with phytohaemagglutinin (PHA).

Allyl α-ionone was diluted in dimethyl sulfoxide (DMSO) at a concentration of 5 mg/mL and tested in the micronucleus assay at a maximum concentration of 50 μg/mL. This highest concentration was determined in a preliminary cytotoxicity range-finder experiment.

Concurrent positive and negative (vehicle) controls were included in this study. Mitomycin C (MMC), at final concentration of 0.3 μg/mL, was employed as the clastogenic positive control chemical.

The human peripheral blood lymphocytes were treated for 3 hours with 21 hours recovery period in the absence of S9-mix. At the end of the treatment period, cell culture medium was replaced with fresh culture medium for the recovery period. Cytochalasin-B was added at 6 μg/mL per culture. All cultures were harvested 24 hours after the initiation of treatment. Cytotoxicity was assessed by calculating the replication index (RI) in test article-treated cultures, relative to the concurrent vehicle control values. In the micronucleus experiment, allyl α-ionone was evaluated over sixteen concentrations spanning a range from 2.5 to 50 μg/mL. Binucleate cells were analysed for micronuclei in cultures treated at 12.5, 20, 25 and 27.5 μg/mL. The highest concentration analysed for micronuclei, 27.5 μg/mL, induced 52 % cytotoxicity. Treatment of cells with allyl α-ionone in the absence of S9-mix resulted in frequencies of MNBN cells, which were similar to and not statistically significant higher than those observed in concurrent vehicle controls for all concentrations analysed. The MNBN cell frequency of all allyl α-ionone treated cultures fell within normal ranges.

Allyl α-ionone did not induce micronuclei in cultured human peripheral blood lymphocytes when tested up to the limit of cytotoxicity for 3 + 21 hours in the absence of metabolic activation (Table 9).

4. Conclusions

Based on these new data the Panel concluded that the concern for genotoxicity of allyl α-ionone [FL-no: 07.061] can be ruled out. For α-damascone [FL-no: 07.134] no new data are available, therefore the genotoxicity concern cannot be ruled out and additional data are still required. The same applies to the four structurally related substances [FL-no: 07.130, 07.225, 07.226 and 07.231].
FL-no	EU Register name	Structural formula	FEMA no	CoE no	CAS no	Mol.formula	Mol.weight	Solubility(a)	Melting point, °C(c)	Boiling point, °C(b)	Refrac. Index(d)	Spec.gravity(e)
02.105	4-(2,6,6-Trimethyl-2-cyclohexenyl)but-3-en-2-ol	![Chemical Structure](image1.png)	3624	25312-34-9				Insoluble	237	127 (20 hPa)	1.488-1.492	0.917-0.924
07.007	α-Ionone	![Chemical Structure](image2.png)	2594	141	127-41-3	Liquid C_{13}H_{22}O	192.30	1 ml in 3 ml 70% alcohol	237	IR 99 %	1.497-1.502	0.927-0.933
07.009	Methyl-α-ionone	![Chemical Structure](image3.png)	2711	143	7779-30-8	Liquid C_{13}H_{22}O	206.33	1 ml in 4 ml 70% alcohol	238	IR 90 %	1.498-1.503	0.921-0.930
07.011	4-(2,5,6,6-Tetramethyl-2-cyclohexenyl)-3-buten-2-one	![Chemical Structure](image4.png)	2597	145	79-69-6	Liquid C_{13}H_{22}O	206.33	1 ml in 4 ml 70% alcohol	238	IR 98 %	1.497-1.503	0.932-0.939
07.036	α-Isomethyl ionone	![Chemical Structure](image5.png)	2714	169	127-51-5	Liquid C_{13}H_{22}O	206.33	1 ml in 4 ml 70% alcohol	238	IR 85 %	1.498-1.503	0.925-0.934
07.061	Allyl α-ionone	![Chemical Structure](image6.png)	2033	2040	79-78-7	Liquid C_{13}H_{22}O	232.37	1 ml in 1 ml 90% alcohol	265	IR 88 %	1.502-1.507	0.926-0.935
07.088	Methyl-6-ionone	![Chemical Structure](image7.png)	2713	11852	7784-98-7	Liquid C_{13}H_{22}O	206.33	1 ml in 1 ml 90% alcohol	232	IR 95 %	1.493-1.499	0.931-0.938
07.091	γ-Ionone	![Chemical Structure](image8.png)	3175	79-76-5		Liquid C_{13}H_{22}O	192.30	125 (13 hPa)	NMR MS 95 %	1.496-1.502 (25°)	0.932-0.935	0.935-0.935
FL-no	EU Register name	Structural formula	FEMA no	CoE no CAS no	Phys.form Mol.formula Mol.weight	Solubility^(a) Solubility in ethanol^(b)	Boiling point, °C^(c) Melting point, °C	Refrac. Index^(d) Spec.gravity^(e)				
-------	------------------	-------------------	----------	--------------	-------------------------------	---------------------------------	-----------------	-----------------	-----------------			
07.130 386	6-Damascone	![Structure](image)	3622	57378-68-4	Liquid C₁₃H₂₀O 192.30	1 ml in 10 ml 95% alcohol IR 96.5 %	82 (3 hPa)	1.485-1.502 0.920 -0.940				
07.134 385	α-Damascone	![Structure](image)	3659	11053 43052-87-5	Liquid C₁₃H₂₂O 192.30		90-100 IR 98 %	1.492-1.499 0.928-0.938				
07.170 1571	β-Ionone epoxide^(f)	![Structure](image)	4144	11202 23267-57-4	Solid C₁₃H₂₂O₂ 208.30	Insoluble Soluble	48 NMR MS 95 %	n.a. n.a.				
07.225	cis-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)but-2-en-1-one	![Structure](image)	3659	11053 23726-94-5	Liquid C₁₃H₂₀O 192.3	Insoluble Soluble	MS 92 %	1.492-1.499 0.928-0.938				
07.226	tr-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)but-2-en-1-one	![Structure](image)	24720-09-0		Liquid C₁₃H₂₂O 192.30	Freely soluble	54 (0.1 hPa) 95 %	1.493-1.499 0.937-0.943				
07.231	α-Damascenone^(f)	![Structure](image)	35044-63-4		Liquid C₁₃H₁₈O 190.28	Practically insoluble or insoluble Freely soluble	51 (0.1 hPa) MS 95 %	1.502-1.508 1.015-1.021				

^(a): Solubility in water, if not otherwise stated.
^(b): Solubility in 95 % ethanol, if not otherwise stated.
^(c): At 1013.25 hPa, if not otherwise stated.
^(d): At 20°C, if not otherwise stated.
^(e): At 25°C, if not otherwise stated.
^(f): Stereoisomeric composition not specified.
na: not applicable
Summary of safety evaluation applying the procedure (JECFA, 1999; JECFA, 2006)

Table 3: Summary of safety evaluation applying the procedure (based on intakes calculated by the MSDI approach)

FL-no	JECFA-no	EU Register name	Structural formula	MSDI[^a] (µg/capita/day)	Class[^b] Evaluation procedure path[^c]	Outcome on the named compound[^d],[^e]
02.105	391	4-(2,6,6-Trimethyl-2-cyclohexenyl)but-3-en-2-ol	![Structure](image)	0.61 0.06	Class I A3: Intake below threshold	d
07.007	388	α-Ionone	![Structure](image)	270 150	Class I A3: Intake below threshold	d
07.009	398	Methyl-α-ionone	![Structure](image)	86 7	Class I A3: Intake below threshold	d
07.011	403	4-(2,5,6,6-Tetramethyl-2-cyclohexenyl)-3-buten-2-one	![Structure](image)	7.7 3	Class I A3: Intake below threshold	d
07.036	404	α-Isomethyl ionone	![Structure](image)	4.7 1	Class I A3: Intake below threshold	d
07.061	401	Allyl α-ionone	![Structure](image)	30 25	Class I A3: Intake below threshold	d
07.088	400	Methyl-δ-ionone	![Structure](image)	0.37 1	Class I A3: Intake below threshold	d
07.091	390	γ-Ionone	![Structure](image)	0.012 15	Class I B3: Intake below threshold, B4: Adequate NOAEL exists	d
07.130	386	δ-Damascone	![Structure](image)	0.049 0.6	Class I B3: Intake below threshold, B4: Adequate NOAEL exists	d
07.170	1571	β-Ionone epoxide	![Structure](image)	0.073 0.1	Class III A3: Intake below threshold	d
07.134	385	α-Damascone	![Structure](image)	6.9 0.4	Class I B3: Intake below threshold, B4: Adequate NOAEL exists	d
FL-no	JECFA-no	EU Register name	Structural formula	MSDI^(a) (µg/capita/day)	Class^(b) Evaluation procedure path^(c)	Outcome on the named compound^{(d), (e)}
-------	----------	---	--------------------	-----------------------------------	--	---
07.225		cis-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)but-2-en-1-one		24	Class I	No evaluation
07.226		tr-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)but-2-en-1-one		0.011	Class I	No evaluation
07.231		α-Damascenone		0.57	Class I	No evaluation

(a): EU MSDI: Amount added to food as flavour in (kg / year) x 10E9 / (0.1 x population in Europe (= 375 x 10E6) x 0.6 x 365) = µg/capita/day.
(b): Thresholds of concern: Class I = 1800 µg/person/day, Class II = 540 µg/person/day, Class III = 90 µg/person/day.
(c): Procedure path A substances can be predicted to be metabolised to innocuous products. Procedure path B substances cannot.
(d): No safety concern based on intake calculated by the MSDI approach of the named compound.
(e): Data must be available on the substance or closely related substances to perform a safety evaluation.
QSAR Predictions on mutagenicity in five models for 10 ketones from subgroup 2.4

FL-no	EU Register name	Structural formula (a)	ISS Local Model Ames Test TA100 (b)	MultiCASE Ames test (c)	MultiCASE Mouse lymphoma test (d)	MultiCASE Chromosomal aberration test in CHO (e)	MultiCASE Chromosomal aberration test in CHL (f)
07.007 388	α-Ionone		NEG	NEG	NEG	NEG	EQU
07.009 398	Methyl- α-ionone		NEG	NEG	OD	NEG	EQU
07.011 403	4-(2,5,6-Tetramethyl-2-cyclohexenyl)-3-buten-2-one		NEG	NEG	OD	NEG	EQU
07.036 404	α-Isomethyl ionone		NEG	NEG	NEG	NEG	NEG
07.061 401	Allyl α-ionone		NEG	NEG	OD	OD	EQU
07.088 400	Methyl- δ-ionone		NEG	NEG	OD	OD	EQU
07.091 390	γ-Ionone		NEG	NEG	NEG	NEG	EQU
07.130 386	δ-Damascone		NEG	NEG	NEG	NEG	EQU
07.134 385	α-Damascone		NEG	NEG	OD	NGE	OD
07.231	α-Damascenone		NEG	NEG	OD	OD	OD
FL-no	EU Register name	Structural formula (a)	ISS Local Model Ames Test TA100 (b)	MultiCASE Ames test (c)	MultiCASE Mouse lymphoma test (d)	MultiCASE Chromosomal aberration test in CHO (e)	MultiCASE Chromosomal aberration test in CHL(f)
-------	------------------	------------------------	-------------------------------------	------------------------	----------------------------------	---	---
07.170	β-Ionone epoxide	![Structure](image1.png)	NYA	NEG	OD	OD	OD
07.226	tr-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)but-2-en-1-one	![Structure](image2.png)	NYA	NEG	NEG	NEG	OD

(a): Structure group 4.4: α,β-unsaturated ketones.
(b): Local model on aldehydes and ketones, Ames TA100. (NEG: Negative; POS: Positive; OD*: out of domain).
(c): MultiCase Ames test (OD*: Out of domain; POS: Positive; NEG: Negative; EQU: Equivocal).
(d): MultiCase Mouse Lymphoma test (OD*: Out of domain; POS: Positive; NEG: Negative; EQU: Equivocal).
(e): MultiCase Chromosomal aberration in CHO (OD*: Out of domain; POS: Positive; NEG: Negative; EQU: Equivocal).
(f): MultiCase Chromosomal aberration in CHL (OD*: Out of domain; POS: Positive; NEG: Negative; EQU: Equivocal).

* OD*, out of applicability domain: not matching the range of conditions where a reliable prediction can be obtained in this model. These conditions may be physicochemical, structural, biological etc.
Genotoxicity data *(in vitro)* considered by the Panel in FGE.210

Table 5: Genotoxicity Data *(in vitro)*

Chemical Name [FL-no]	Test System	Test Object	Concentration	Reported Result	Reference	Comments *(c)*
α-Ionone [07.007]	Chromosomal aberration	Chinese hamster B241 cell line	25 nmol/L	Positive *(a)*	Kasamaki et al., 1982	Limited validity (limited documentation; results for only one test concentration reported; long incubation period of 24 hours; unusual cell line)
	Reverse mutation	*S. typhimurium* TA98, TA100	0.01 - 50 µg/plate	Negative *(a)*	Kasamaki et al., 1982	Limited validity (insufficiently reported. Only two strains).
	Rec assay	*B. subtilis* H17 & M45	19 mg/disc	Negative *(b)*	Oda et al., 1978	Insufficient validity. This bacterial DNA-repair test system is of low predictive value for genotoxicity
Methyl-α-ionone [07.009]	Reverse mutation	*S. typhimurium* TA1535, TA1537, TA1538, TA98, TA100	5 concentrations up to cytotoxicity or max 3600 µg/plate	Negative *(a)*	Wild et al., 1983	Limited validity (no TA102 or *E. Coli*)
Methyl-δ-ionone [07.088]	Reverse mutation	*S. typhimurium* TA1535, TA1537, TA1538, TA98, TA100	5 concentrations up to cytotoxicity or max 3600 µg/plate	Negative *(a)*	Wild et al., 1983	Limited validity (no TA102 or *E. Coli*)

*(a): With and without metabolic activation
(b): Activation status unknown
(c): Validity of genotoxicity studies:
 - Valid
 - Limited validity (e.g. if certain aspects are not in accordance with OECD Guidelines or current standards and / or limited documentation)
 - Insufficient validity (e.g. if main aspects are not in accordance with any recognised guidelines (e.g. OECD) or current standards and/or inappropriate test system)
 - Validity cannot be evaluated (e.g. insufficient documentation, short abstract only, too little experimental details provided).*
Genotoxicity data (*in vivo*) considered by the Panel in FGE.210

Table 6: Genotoxicity Data (*in vivo*)

Chemical Name	Test System	Test Object	Route	Dose	Reported Result	Reference	Comments
Methyl α-ionone [07.009]	Micronucleus formation	NMRI mice, male and female, bone marrow	I.P.	825 - 2063 mg/kg bw	Negative	Wild et al., 1983	Limited validity (only analysis at one time point; no PCE/NCE ratio reported)
	Sex-linked recessive lethals	Drosophila melanogaster	Feed	20 mM	Negative		Limited validity (limited reporting, test system considered of limited relevance)

(a): Validity of genotoxicity studies:
- Valid.
- Limited validity (e.g. if certain aspects are not in accordance with OECD Guidelines or current standards and/or limited documentation).
- Insufficient validity (e.g. if main aspects are not in accordance with any recognised guidelines (e.g. OECD) or current standards and/or inappropriate test system).
- Validity cannot be evaluated (e.g. insufficient documentation, short abstract only, too little experimental details provided).
Genotoxicity data (in vitro) considered by the Panel in FGE.210Rev1

Table 7: Additional Genotoxicity Data (in vitro)

Chemical Name FL-no	Test System in vitro	Test Object	Concentrations of Substance and Test Conditions	Result	Reference	Comments
α-Ionone [07.007]	Reverse Mutation	*S. typhimurium* TA98, TA100, TA1535, TA1537 and TA102	0.3 - 5000 μg/plate \([a,c]\)			
0.3 - 5000 μg/plate \([b,c]\)	Negative					
Negative	Bowen, 2011	Toxicity was observed at 1000 and/or 5000 μg/plate across all strains in the absence and presence of S9-mix; no clear evidence of toxicity in TA100 in the presence of S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix. Evidence of toxicity was observed at the highest three or four concentrations across all strains in the absence and presence of S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.				
		S. typhimurium TA98				
TA100	156.3 - 5000 μg/plate \([b,d]\)					
156.3 - 5000 μg/plate \([a,c]\) or \([b,d]\)	Negative					
Negative		Evidence of toxicity was observed at the highest three or four concentrations across all strains in the absence or presence of S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.				
		S. typhimurium TA98				
TA1535, TA1537 and TA102						
TA1535	78.1 – 2500 μg/plate \([a,c]\)					
78.1 – 2500 μg/plate \([a,c]\) or \([b,d]\)	Negative					
Negative		Evidence of toxicity was observed at the highest three or four concentrations across all strains in the absence or presence of S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.				
		S. typhimurium TA1535				
TA102	39.1 - 2500 μg/plate \([a,c]\) or \([b,d]\)					
19.5 - 1250 μg/plate \([a,c]\) or \([b,d]\)	Negative					
Negative		Evidence of toxicity was observed at the highest three or four concentrations across all strains in the absence or presence of S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.				
Micronucleus Induction	Human peripheral blood lymphocytes	160 - 180 μg/ml \([b,h]\)				
40 - 65 μg/ml \([a,i]\)	Negative					
Negative	Lloyd, 2013b	The MNBN cell frequencies in all treated cultures fell within the normal range. The study does not comply with OECD Guideline 487 therefore it has limited validity				
Allyl α-ionone [07.061]	Reverse Mutation	*S. typhimurium* TA102				
TA1537	1.6 - 5000 μg/plate \([a,c]\) or \([b,c]\)	Negative				
Ballantyne, 2011	No evidence of toxicity was observed at any concentration. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.					
Chemical Name	Test System	Test Object	Concentrations of Substance and Test Conditions	Result	Reference	Comments
---	---	---	---	---	---	---
FL-no	in vitro					
Reverse Mutation	S. typhimurium TA1535, TA100, TA1537, TA1538, TA98	Five concentrations up to cytotoxicity or max 3600 µg/plate [a,c]	Negative	Wild et al., 1983	No evidence of toxicity was observed at any concentration. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.	
Micronucleus Induction	Human peripheral blood lymphocytes	110 - 160 µg/ml [b,h] 25 - 38 µg/ml [a,i]	Negative	Lloyd, 2013a	Limited validity (no TA102 or E. Coli).	
ß-Damascone [07.130]	Reverse Mutation	S. typhimurium TA98, TA100, TA1535 and TA1537	4.9 - 5000 µg/plate [d,e]	Negative	Shinya, 2006	Evidence of toxicity was observed at the top three or four concentrations tested. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix. Evidence of toxicity was observed at the top concentration in all strains in the absence of S9-mix and at 156 µg/plate or above in the presence of S9-mix. The study complies with current recommendations for upper concentration limit inclusion. The study included 3 replicate plates per concentration, and was GLP compliant.
		S. typhimurium TA98, TA100, TA1535 and TA1537	2.4 - 78.1 µg/plate [a,d] 9.8 - 313 µg/plate [b,d]	Negative		
		E. coli WP2 uvrA	4.9 – 5000 µg/plate [e,d]	Negative		
		E. coli WP2 uvrA	2.4 - 78.1 µg/plate [a,d] 9.8 – 313 µg/plate [b,d]	Negative		Evidence of toxicity was observed at the highest concentration in the presence of S9-mix. The study complies with current recommendations for upper concentration limit inclusion. The study included 3 replicate plates per concentration, and was GLP compliant.
Chemical Name	Test System in vitro	Test Object	Concentrations of Substance and Test Conditions	Result	Reference	Comments
--------------	----------------------	-------------	---	--------	-----------	----------
α-Damascone [07.134]	Reverse mutation	*S. typhimurium* TA98 and TA100	10 – 5000 μg/plate [e,c]	Negative	Haddouk, 2001	In TA98, slight to marked toxicity was observed at concentrations ≥ 100 μg/plate or 500 μg/plate with and without S9-mix, respectively. In TA100, toxicity was observed at concentrations ≥ 500 μg/plate with and without S9-mix.
	S. typhimurium TA1537, TA98	7.8 – 125 μg/plate [e,c] 15.6 – 250 μg/plate [b,d]	Negative			Slight toxicity was observed in all strains. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.
	S. typhimurium TA100 and TA1535	31.2 – 500 μg/plate [e,c] 31.2 – 500 μg/plate [b,d]	Negative			Slight toxicity was observed in all strains. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.
	S. typhimurium TA1535, TA1537, TA98 and TA100	15.6 – 250 μg/plate [a,c]	Negative			Slight toxicity was observed in all strains. No statistically significant increase in revertant numbers was seen at any concentration
E. coli WP2uvrA	10 – 5000μg/plate [e,c]	Negative				Slight toxicity was observed at 2500 μg/plate and above without S9-mix.
E. coli WP2 uvrA	312.5 – 5000 μg/plate [e,c] 312.5 – 5000 μg/plate [a,c] or [b,d]	Negative				Slight toxicity was observed only at the highest concentration tested without S9-mix. No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.
Micronucleus Induction	Human peripheral blood lymphocytes	9 - 22 μg/ml [a,h] 12 - 22 μg/ml [b,h] 5 - 10 μg/ml [a,i]	Negative	Lloyd, 2012	Weakly positive	Weakly positive result was obtained only in the 3+21 hours treatment in the presence of S9-mix. Study design complies with OECD Guideline 487.
		7.5 - 14 μg/ml [b,h,j] 14 - 20 μg/ml [b,h,j] 7.5 - 14 μg/ml [b,h,j]	Positive	Whitwell, 2012		
		10 - 18 μg/ml [b,h] 7 - 14 μg/ml [a,i]	Positive at high toxic concentrations only	Lloyd, 2013c		Positive results were obtained only at high toxic concentrations in both test conditions. Study is robust and complies with GLP.
Chemical Name FL-no	Test System in vitro	Test Object	Concentrations of Substance and Test Conditions	Result	Reference	Comments
---------------------	----------------------	-------------	---	--------	-----------	----------
\(\beta \)-Tone epoxide [07.170]	Reverse Mutation	*S. typhimurium* TA98, TA100, TA1535, and TA1537	5 - 500 \(\mu \)g/plate [e,c]	Negative	Jones and Wilson, 1988	No statistically significant increase in revertant numbers was seen at any concentration, either in the presence or absence of S9-mix.
		S. typhimurium TA97a, TA98, TA100, TA1535	501, 1582 and 5000 \(\mu \)g/plate [a,c] 158, 501 and 1582 \(\mu \)g/plate [b,c]	Negative	Kringstad, 2005	Evidence of toxicity was observed at the highest concentration in strain TA97a in the absence of S9-mix and in TA100 in the absence and presence of S9-mix. The study therefore complies with current recommendations for upper concentration limit inclusion. The study included 3 replicate plates per concentration, and was GLP compliant.
E. coli WP2uvrA			501, 1582 and 5000 \(\mu \)g/plate [a,c] 158, 501 and 1582 \(\mu \)g/plate [b,c]	Negative		
t\(k \) Mutation Induction	Mouse Lymphoma L5178Y T/K +/- 3.7.2c cells		200 - 900 \(\mu \)g/ml [e,f] 4.1 - 520 \(\mu \)g/ml [a,g]	Negative	Flanders, 2006	A preliminary range-finder assay was conducted to establish maximum concentrations. Top concentrations in each arm of the study induced 77, 85, and 80% reductions in relative total growth. The study therefore complies with current recommendations.

[a] Without S9 metabolic activation.
[b] With S9 metabolic activation.
[c] Plate incorporation method.
[d] Pre-incubation with S9 method.
[e] With and without S9 metabolic activation.
[f] 4-hour treatment.
[g] 24-hour treatment.
[h] 3-hour treatment with 21-hour recovery.
[i] 24-hour treatment with 0-hour recovery.
[j] Standard treatment in larger-than-typical vessel.
Genotoxicity data (*in vivo*) considered by the Panel in FGE.210Rev1

Table 8: Additional Genotoxicity Data (*in vivo*)

Chemical Name [FL-no]	Test System	Test Object	Route	Dose	Reported Result	Reference	Comments
α-Ionone [07.009]	Micronucleus formation	Male and female mice	Gavage	300, 600 and 1200 mg/kg bw/day	Negative	Krismanovic and Huston, 2006	Compiles with draft OECD Guideline 474. Evidence of bone marrow toxicity as evidenced by reductions in polychromatic erythrocytes observed at 24 hours after dosing and in a satellite group at the top dose 48 hours after dosing.

Genotoxicity data (*in vitro*) considered by the Panel in FGE.210Rev2

Table 9: Additional Genotoxicity Data (*in vitro*)

Chemical Name FL-no	Test System *in vitro*	Test Object	Concentrations of Substance and Test Conditions	Result	Reference	Comments
Allyl α-ionone [07.061]	Micronucleus Induction	Human peripheral blood lymphocytes	12.50, 20.00, 25.00 and 27.50 μg/mL [a,b]	Negative	Lloyd, 2014	The MNBN cell frequencies in all treated cultures fell within the normal range. This study completes the study by Lloyd (2013a), (Table 7) and complies with OECD Guideline 487.

[a] Without S9 metabolic activation.
[b] 3-hour treatment with 21-hour recovery.
Documentation provided to EFSA

1. Ballantyne M, 2011. Reverse mutation in one histidine-requiring strain of *Salmonella typhimurium*. Allyl alpha-ionone. Covance Laboratories LTD. Study no. 8233104. May 2011. Unpublished report submitted by EFFA to FLAVIS Secretariat.

2. Benigni R and Netzeva T, 2007a. Report on a QSAR model for prediction of genotoxicity of α,β-unsaturated aldehydes in *S. typhimurium* TA100 and its application for predictions on α,β-unsaturated aldehydes in Flavouring Group Evaluation 19 (FGE.19). Unpublished report submitted by FLAVIS Secretariat to EFSA.

3. Benigni R and Netzeva T, 2007b. Report on a QSAR model for prediction of genotoxicity of α,β-unsaturated ketones in *S. typhimurium* TA100 and its application for predictions on α,β-unsaturated aldehydes in Flavouring Group Evaluation 19 (FGE.19). Unpublished report submitted by FLAVIS Secretariat to EFSA.

4. Bowen R, 2011. Reverse mutation in five histidine-requiring strains of *Salmonella typhimurium*. Alpha-Ionone. Covance Laboratories Ltd. Study no. 8233103. May 2011. Unpublished report submitted by EFFA to FLAVIS Secretariat.

5. Flanders L, 2006. Screening LS178Y TK +/- mutation assay. Beta-Ionone epoxide. Safe Pharm Laboratories. Project no. 1543/0154. September 6, 2006. Unpublished report submitted by Flavour Industry to FLAVIS Secretariat.

6. Gry J, Beltoft V, Benigni R, Binderup M-L, Carere A, Engel K-H, Gürtler R, Jensen GE, Hulsebos E, Larsen JC, Mennes W, Netzeva T, Niemelä J, Nikolov N, Nørby KK and Wedebye EB, 2007. Description and validation of QSAR genotoxicity models for use in evaluation of flavouring substances in Flavouring Group Evaluation 19 (FGE.19) on 360 α,β-unsaturated aldehydes and ketones and precursors for these. Unpublished report submitted by FLAVIS Secretariat to EFSA.

7. Haddouk H, 2001. Bacterial reverse mutation test. ST05CO1. CIT, Evreux, France. Study no. 21664 MMJ. 11 July 2001. Unpublished report submitted by EFFA to FLAVIS Secretariat.

8. IOFI (International Organization of the Flavor Industry), 2013a. Flavouring Group Evaluation 19 Subgroup 2.4a: 10 Flavouring Substances of the Chemical Group 3 (Annex I of 1565/2000/EC) Aliphatic α,β-unsaturated aldehydes, ketones and related substances with the alpha, beta-conjugation in the ring or in the side chain. Aliphatic ketones (alpha, beta-unsaturation in sidechain) Used as Flavouring Substances. 12/02-2013. FLAVIS/8.184.

9. IOFI (International Organization of the Flavor Industry), 2013b. Flavouring Group Evaluation 19 Subgroup 2.4/2.7, alpha-Damascone and beta-Damascone: 3 Flavouring Substances of the Chemical Group 3 (Annex I of 1565/2000/EC) Aliphatic α,β-unsaturated aldehydes, ketones and related substances with the α,β-conjugation in the ring or in the side chain. Aliphatic ketones (α,β-unsaturation in side chain) Used as Flavouring Substances. 19/04-2013. FLAVIS/8.198.

10. Jones E and Wilson LA, 1988. Ames metabolic activation test to assess the potential mutagenic effect of beta-jonone epoxide. Huntingdon Research Centre Ltd. Report no. ULR 220A/88986. 13 September 1988. Unpublished report submitted by EFFA to FLAVIS Secretariat.

11. Kringstad J, 2005. Bacterial mutagenicity test - ames assay. Beta ionone epoxide. AppTec Laboratory Services. Project no. 34051. August 22, 2005. Unpublished report submitted by EFFA to FLAVIS Secretariat.

12. Krsmmanovic L and Huston T, 2006. Mammalian erythrocyte micronucleus test. alpha-Ionone. BioReliance. Study no. AB23FJ123.BTL. 20 April 2006. Unpublished report submitted by EFFA to FLAVIS Secretariat.
13. Lloyd M, 2012. Induction of micronuclei in cultured human peripheral blood lymphocytes. alpha-Damascone. Covance Laboratories LTD. Study no. 8233102. July 2012. Unpublished report submitted by EFSA to FLAVIS Secretariat.

14. Lloyd M, 2013a. Induction of micronuclei in cultured human peripheral blood lymphocytes. Allyl alpha-ionone. Covance Laboratories LTD. Study no. 8272012. February 2013. Unpublished report submitted by EFSA to FLAVIS Secretariat.

15. Lloyd M, 2013b. Induction of micronuclei in cultured human peripheral blood lymphocytes. alpha-Ionone. Covance Laboratories LTD. Study no. 8272011. January 2013. Unpublished report submitted by EFSA to FLAVIS Secretariat.

16. Lloyd M, 2013c. Final summary report. Induction of micronuclei in cultured human peripheral blood lymphocytes. alpha-Damascone. Covance Laboratories LTD. Study no. 8272016. April 2013. Unpublished report submitted by EFSA to FLAVIS Secretariat.

17. Lloyd M, 2014. Allyl alpha-ionone: In Vitro Human Lymphocyte Micronucleus Assay. Covance Laboratories Ltd. Study No. 8302482. September 2014. Unpublished final report submitted by EFSA to EFSA.

18. Nikolov N, Jensen GE, Wedebye EB and Niemelä J, 2007. Report on QSAR predictions of 222 α,β-unsaturated aldehydes and ketones from Flavouring Group Evaluation 19 (FGE.19) on 360 α,β-unsaturated aldehydes and ketones and precursors for these. Unpublished report submitted by FLAVIS Secretariat to EFSA.

19. Shinya W, 2006. Mutagenicity test of D.Damascone using microorganisms. Hitotsubashi University, Japan. K01-3612. November 9, 2006. Unpublished report submitted by EFSA to FLAVIS Secretariat.

20. Whitwell J, 2012. Induction of micronuclei in cultured human peripheral blood lymphocytes. alpha-Damascone. Covance Laboratories Ltd, England. Study no.8263013. September 2012. Unpublished report submitted by EFSA to FLAVIS Secretariat.

References

EFSA (European Food Safety Authority), 2008a. Minutes of the 26th Plenary meeting of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, Held in Parma on 27–29 November 2007. Parma, 7 January 2008. [Online]. Available: http://www.efsa.europa.eu/efsajournal/26thplen_en.pdf.

EFSA (European Food Safety Authority), 2008b. Genotoxicity Test Strategy for Substances belonging to Subgroups of FGE.19 – Statement of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). The EFSA Journal (2008) 854, 1-5.

EFSA (European Food Safety Authority), 2008c. Scientific Opinion. List of alpha,beta-unsaturated aldehydes and ketones representative of FGE.19 substances for genotoxicity testing – Statement of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). The EFSA Journal (2008) 910, 1-5.

EFSA (European Food Safety Authority), 2009. Scientific Opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Flavouring Group Evaluation 210: alpha,beta-unsaturated alicyclic ketones and precursors from chemical subgroup 2.4 of FGE.19. The EFSA Journal 2009, 1030, 1-18.

EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 210 Revision 1 (FGE.210Rev1): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2.4 of FGE.19. EFSA Journal 2014;12(2):3587, 35 pp. doi:10.2903/j.efsa.2014.3587
JECFA (Joint FAO/WHO Expert Committee on Food Additives), 1998. Compendium of food additive specifications. Addendum 6. Joint FAO/WHO Expert Committee of Food Additives 51st session. Geneva, 9–18 June 1998. FAO Food and Nutrition paper 52 Add. 6.

JECFA (Joint FAO/WHO Expert Committee on Food Additives), 1999. Safety evaluation of certain food additives. Fifty-first Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series: 42. IPCS, WHO, Geneva.

JECFA (Joint FAO/WHO Expert Committee on Food Additives), 2005. Compendium of food additive specifications. Addendum 13. Joint FAO/WHO Expert Committee of Food Additives 65th session. Geneva, 7–16 June 2005. FAO Food and Nutrition paper 52 Add. 13.

JECFA (Joint FAO/WHO Expert Committee on Food Additives), 2006. Safety evaluation of certain food additives and contaminants. Sixty-fifth meeting of the Joint FAO/WHO Expert Committee on Food Additives, WHO Food Additives Series: 56. IPCS, WHO, Geneva.

Kasamaki A, Takahashi H, Tsumura N, Niwa J, Fujita T and Urasawa S, 1982. Genotoxicity of flavoring agents. Mutation Research 105, 387-392.

Oda Y, Hamono Y, Inoue K, Yamamoto H, Niihara T and Kunita N, 1978. [Mutagenicity of food flavors in bacteria]. Osaka-Furitsu Koshu Eisei Kenkyu Hokoku Shokuhin Eisei Hen 9, 177-181. (In Japanese)

OECD (Organisation for Economic Co-operation and Development), 1997a. Test No. 471: Bacterial reverse mutation test. OECD Guideline for testing of chemicals. Section 4. http://www.oecd.org/dataoecd/18/31/1948418.pdf.

OECD (Organisation for Economic Co-operation and Development), 1997b. Test No. 474: Mammalian erythrocyte micronucleus test. OECD Guideline for testing of chemicals. Section 4. http://www.oecd.org/dataoecd/18/34/1948442.pdf.

OECD (Organisation for Economic Co-operation and Development), 1997c. Test No. 476: In vitro Mammalian Cell Gene Mutation Test. OECD Guidelines for the Testing of Chemicals. Section 4. http://www.oecd.org/chemicalsafety/risk-assessment/1948426.pdf.

OECD (Organisation for Economic Co-operation and Development), 2010. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Guidelines for the Testing of Chemicals, Section 4.

Wild D, King MT, Gocke E and Eckhard K, 1983. Study of artificial flavouring substances for mutagenicity in the Salmonella/microsome, BASC and micronucleus tests. Food and Chemical Toxicology 21(6), 707-719.
Abbreviations

BN binucleated (cells)
BW body weight
CAS Chemical Abstract Service
CEF Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids
CHO Chinese hamster ovary (cells)
CHL Chinese hamster Lung (cells)
CoE Council of Europe
DMSO dimethyl sulphoxide
DNA deoxyribonucleic acid
EC European Commission
EFFA European Flavour and Fragrance Association
FAO Food and Agriculture Organization of the United Nations
FEMA Flavor and Extract Manufacturers Association
FGE Flavouring Group Evaluation
FLAVIS Flavour Information System (database)
GLP Good Laboratory Practice
ID identity
IOFI International Organization of the Flavour Industry
IR infrared spectroscopy
JECFA The Joint FAO/WHO Expert Committee on Food Additives
MMC mitomycin C
MNBN micronucleated binucleated (cells)
MS mass spectrometry
MSDI maximised survey-derived daily intake
MTD maximum tolerated dose
NCE normochromatic erythrocytes
No number
NOAEL No observed adverse effect level
PCE polychromatic erythrocytes
PHA phytohaemagglutinin
(Q)SAR (quantitative) structure-activity relationship
tk thymidine kinase
WHO World Health Organization