Calculations of \(\eta \)-nuclear quasi-bound states in few-body systems

M. Schäfer\(^1,2\)\(^*\), N. Barnea\(^3\), E. Friedman\(^3\), A. Gal\(^3\), and J. Mareš\(^2\)

\(^1 \)Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague 1, Czech Republic
\(^2 \)Nuclear Physics Institute, Academy of Sciences of Czech Republic, 250 69 Řež, Czech Republic
\(^3 \)Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Abstract. We report on our Stochastic Variational Method (SVM) calculations of \(\eta \)-nuclear quasi-bound states in s-shell nuclei as well as the very recent calculation of the p-shell nucleus \(^6 \)Li. The \(\eta N \) potentials used were constructed from \(\eta N \) scattering amplitudes obtained within coupled-channel models that incorporate \(N^* (1535) \) resonance. We found that \(\eta^3 \)Li is bound in the \(\eta N \) interaction models that yield \(\text{Re} a_{\eta N} \geq 0.67 \) fm. Additional repulsion caused by the imaginary part of \(\eta N \) potentials shifts the onset of \(\eta \)-nuclear binding to \(\eta^4 \)He, yielding very likely no quasi-bound state in \(\eta^3 \)He.

1 Introduction

The current status of our theoretical studies of \(\eta \)-nuclear quasi-bound states, including discussion of the self-consistent treatment of the strong energy dependence of \(\eta N \) scattering amplitudes derived from coupled-channel meson-baryon interaction models have been discussed thoroughly in Refs. [1–3]. So far, few-body calculations of \(\eta \)-nuclear quasi-bound states have been restricted to s-shell nuclei up to \(\eta^4 \)He. In this contribution, we present our first SVM calculation of the \(\eta \)-nuclear quasi-bound state in the p-shell nuclear system \(\eta^6 \)Li, taking into account all possible spin-isospin configurations. Moreover, we focus on the effect of the imaginary part of the complex \(V_{\eta N} \) potential on the \(\eta \) binding energy \(B_\eta \). We show that the effect could be considerable in light \(\eta \)-nuclear systems and must be taken into account in the study of the onset of \(\eta \)-nuclear binding.

2 Theoretical approach

Properties of \(\eta \)-nuclear quasi-bound states are studied within the SVM with a correlated Gaussian basis [4]. This approach was successfully applied in our previous calculations of s-shell \(\eta \)-nuclei and proved itself as highly accurate method with straightforward extension to systems with the number of particles \(N \geq 5 \).

The wave function of an \(\eta \)-nuclear system with orbital momentum \(L = 0 \) is expanded as a linear combination of correlated Gaussians

\(* e-mail: m.schafer@ujf.cas.cz*
where χ^k_{SA} are corresponding spin (isospin) parts of a given spin (isospin) configuration. The matrix A_k is symmetric positive definite and includes $N(N - 1)/2$ variational parameters. The SVM optimizes the variational basis step-by-step in a random trial and error procedure (details can be found in Ref. [5]).

SVM calculations of η-nuclear quasi-bound states in p-shell nuclei represent a rather challenging task. First, the computational complexity scales with $N!$, second, the amount of different spin-isospin configurations starts to increase quite rapidly. Preliminary results [6] showed that taking into account only one configuration underestimated binding of the nuclear core ^6Li by approximately 1.8 MeV. This led to development of a new high-performance SVM code which was used in the very recent fully self-consistent calculation of $\eta^6\text{Li}$, taking into account all possible spin-isospin configurations.

In our study of η-nuclear quasi-bound states we use the Minnesota NN central potential [7] which reproduces well properties of the ground states of s-shell and light p-shell nuclei. The interaction of the η meson with nucleons is described by a complex two-body potential and is taken according to [1] as

$$V_{\eta N}(\delta \sqrt{s}, r) = -\frac{4\pi}{2\mu_{\eta N}} b(\delta \sqrt{s}) \rho_N(r), \quad \rho_N(r) = \left(\frac{\Lambda}{2} \sqrt{\pi}\right)^3 \exp\left(-\frac{\Lambda^2 r^2}{4}\right),$$

where $\mu_{\eta N}$ stands for the ηN reduced mass, $\delta \sqrt{s} = \sqrt{s} - \sqrt{s_{\eta}}$ is the energy shift with respect to the ηN threshold, Λ is a scale parameter which is inversely proportional to the range of $V_{\eta N}$, and $b(\delta \sqrt{s})$ is an energy dependent complex amplitude.

The value of Λ is connected to EFT momentum cut-off; its upper bound corresponds to vector-meson exchange $\Lambda \leq 3.9\text{ fm}^{-1}$ or more restrictively to $\Lambda \leq 3.0\text{ fm}^{-1}$ excluding ρN channel from dynamical generation of the $N^{*}(1535)$ resonance [3].

For given Λ, $b(\delta \sqrt{s})$ is fitted to the phase shifts derived from subthreshold $\delta \sqrt{s} < 0$ scattering amplitude of the corresponding ηN interaction model. See Ref. [3] for details.

The energy dependence of $V_{\eta N}$ is treated self-consistently: we search for a SVM solution that fulfills $\delta \sqrt{s_{\eta}} = \langle \delta \sqrt{s}\rangle$ where $\delta \sqrt{s}$ enters $V_{\eta N}$ and $\langle \delta \sqrt{s}\rangle$ is obtained from the SVM solution for a given value of $\delta \sqrt{s}$ [3]:

$$\langle \delta \sqrt{s}\rangle = -\frac{B}{A} - \xi_N \frac{1}{A} \langle T_N \rangle + \frac{A - 1}{A} E_{\eta} - \xi_A \xi_N \left(\frac{A - 1}{A}\right)^2 \langle T_{\eta}\rangle,$$

where B is the total binding energy, T_N (T_{η}) denotes the kinetic energy of nucleons (η), and A is the number of nucleons. The energy $E_{\eta} = \langle \psi|H - H_N|\psi\rangle$ where H_N is Hamiltonian of the nuclear core, $\xi_N = m_{N(\eta)}/(m_N + m_\eta)$, and $\xi_A = A m_N/(A m_N + m_\eta)$.

The imaginary part of $V_{\eta N}$ is significantly smaller than its real part. This allows to calculate the width Γ_{η} perturbatively [1]. The SVM η-nuclear calculations are thus performed only for the real part of the ηN potential and Γ_{η} is evaluated using the expression

$$\Gamma_{\eta} = -2 \langle \Psi_{g.s.}|\text{Im} V_{\eta N}|\Psi_{g.s.}\rangle,$$
where $|\Psi_{gs,\eta}\rangle$ is the SVM solution for the η-nuclear ground state corresponding to $\text{Re}V_{\eta N}$. Another possible way how to calculate Γ_η is to solve a generalized eigenvalue problem for complex Hamiltonian (including $\text{Im}V_{\eta N}$) using variationally determined SVM basis states for $\text{Re}V_{\eta N}$. This approach, already used in SVM calculations of kaonic nuclei [10], yields complex eigenenergy of the ground state $E = \text{Re}(E) + i\text{Im}(E)$ and consequently the width as $\Gamma_\eta = -2\text{Im}(E)$. This method takes into account the effect of the non-zero imaginary part of $V_{\eta N}$ on the η binding energy. Namely, $\text{Im}V_{\eta N}$ acts as repulsion and thus makes the η meson less bound in the nucleus.

3 Results

Results of our SVM calculations of the η binding energies B_η and widths Γ_η in $\eta^3\text{He}$, $\eta^4\text{He}$, and $\eta^6\text{Li}$ are summarized in Fig. 1. The calculations were performed using the GW and CS models and the parameter $\Lambda = 2$ and 4 fm^{-1}. In the GW model, $\eta^6\text{Li}$ is rather comfortably bound for both values of Λ. On the other hand, the CS model yields η-nuclear quasi-bound state only for $\Lambda = 4 \text{ fm}^{-1}$, with $B_\eta = 0.68 \text{ MeV}$.

![Figure 1](image_url)

Figure 1. SVM calculations of the binding energy B_η and width Γ_η in $\eta^3\text{He}$, $\eta^4\text{He}$, and $\eta^6\text{Li}$ using the Minnesota NN potential with Coulomb force included and two ηN interaction models - GW and CS.

$\eta^3\text{He}$	B_η [MeV]	Γ_η [MeV]	$\delta \sqrt{s_{nc}}$ [MeV]
$\Lambda = 2 \text{ fm}^{-1}$ (Eq. 4)	0.11	1.37	-9.23
$\Lambda = 2 \text{ fm}^{-1}$ (cmplx)	-0.25	1.32	-8.87
$\Lambda = 4 \text{ fm}^{-1}$ (Eq. 4)	1.01	3.32	-13.18
$\Lambda = 4 \text{ fm}^{-1}$ (cmplx)	0.36	3.44	-12.72

$\eta^4\text{He}$	B_η [MeV]	Γ_η [MeV]	$\delta \sqrt{s_{nc}}$ [MeV]
$\Lambda = 2 \text{ fm}^{-1}$ (Eq. 4)	0.97	2.17	-19.64
$\Lambda = 2 \text{ fm}^{-1}$ (cmplx)	0.77	2.22	-19.50
$\Lambda = 4 \text{ fm}^{-1}$ (Eq. 4)	4.62	4.38	-29.73
$\Lambda = 4 \text{ fm}^{-1}$ (cmplx)	4.40	4.41	-29.60
In Table 1, we compare two approaches to evaluation of the width Γ_η introduced in the previous section: the mean-value approach (Eq. 4) and the complex eigenvalue problem (cmplx) approach. Calculations of η^3He and η^4He were performed within the GW model with $\Lambda = 2$ and 4 fm$^{-1}$. It is apparent that the effect of the imaginary part of $V_{\eta N}$ on B_η, which is included in the cmplx approach, is quite significant in η^3He (with $\delta \sqrt{s}$ close to threshold) and decreases in η^4He with larger energy shift with respect to threshold. For the CS model (not shown in the table) the η^3He is not bound while in η^4He the effect of $\text{Im} V_{\eta N}$ is smaller (few tens of keV) due to the lower value of $\text{Im} V_{\eta N}$ than in the GW model. Table 1 illustrates that the size of the changes of B_η caused by $\text{Im} V_{\eta N}$ decreases with the magnitude of the subthreshold energy shift $\delta \sqrt{s}$. Namely, the strength of $\text{Im} V_{\eta N}$ has for both CS and GW interaction models maximum close to threshold and decreases with \sqrt{s}, as shown in Figure 2 of Ref. [3]. Moreover, the cmplx method confirms the estimate of Γ_η within the mean-value approach (Eq. 4), giving practically the same widths in all considered cases.

4 Summary

We performed few-body calculations of η-nuclear quasi-bound states in s-shell nuclei as well as in the p-shell nucleus 6Li within our newly developed high-performance SVM code. We considered the Minnesota NN potential and two ηN interaction models - GW and CS. Calculations of η^6Li within the GW model yield the binding energy B_η and corresponding width consistent with previous RMF calculations [11]. The CS model gives quasi-bound state only for $\Lambda = 4$ fm$^{-1}$. This suggests that to bind η^6Li, the real part of the ηN scattering length should be greater than $\text{Re} a_{\eta N} = 0.67$ fm, predicted by the CS model.

Next, we repeated our previous study of the onset of η-nuclear binding in He isotopes taking into account the effect of $\text{Im} V_{\eta N}$ on the binding energy B_{η}. We observed considerable decrease of B_{η} in $^3\eta$He and rather negligible effects in $^4\eta$He as well as in 6Li. The η meson is barely bound in $^3\eta$He even for the larger value of the cut-off parameter $\Lambda = 4$ fm$^{-1}$. This indicates that in order to study the η^3He system, one has to explore the resonance region as well, e.g., using the complex rotation method [12].

M. Schäfer acknowledges financial support from the CTU-SGS Grant No. SGS16/243/OHK4/3T/14 and from the organizers of the MESON2018 conference.

References

[1] N. Barnea, E. Friedman, A. Gal, Phys. Lett. B 747, 345 (2015)
[2] N. Barnea, B. Bazak, E. Friedman, A. Gal, Phys. Lett. B 771, 297 (2017); Erratum in Phys. Lett. B 775, 364 (2017)
[3] N. Barnea, E. Friedman, A. Gal, Nucl. Phys. A 968, 35 (2017)
[4] Y. Suzuki, K. Varga, Phys. Rev. C 52, 2885 (1995)
[5] Y. Suzuki, K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Heidelberg, 1998)
[6] A. Cieplý, et al., PoS Hadron2017, 203 (2017)
[7] D. R. Thompson, M. LeMere, Y. C. Tang, Nucl. Phys. A 286, 53 (1977)
[8] A. M. Green, S. Wycech, Phys. Rev. C 71, 014001 (2005)
[9] A. Cieplý, J. Smejkal, Nucl. Phys. A 919, 334 (2013)
[10] S. Ohnishi et al., Phys. Rev. C 95, 065202 (2017)
[11] A. Cieplý, E. Friedman, A. Gal, J. Mareš, Nucl. Phys. A 925, 126 (2014)
[12] J. Nutall, H. L. Cohen, Phys. Rev. 188, 1542 (1969)