Combined oral contraceptive use before the first birth and epithelial ovarian cancer risk

Linda S Cook*,1,2, Claire R Pestak3, Andy CY Leung4, Helen Steed5, Jill Nation6, Kenneth Swenerton7, Richard Gallagher4, Anthony Magliocco8, Martin Köbel9, Angela Brooks-Wilson10,11 and Nhu Le4

1Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico, MSC 10 5550, 1 UNM, Albuquerque, NM 87131, USA; 2University of Calgary, Department of Community Health Sciences, Alberta Health Services, Calgary, Alberta, Canada; 3UNM Comprehensive Cancer Center, University of New Mexico, MSC 07-4025, 1 UNM, Albuquerque, NM 87131, USA; 4Cancer Control Research, BC Cancer Research Centre, 675W. 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; 5Obstetrics and Gynecology, University of Alberta, 10240 Kingsway Avenue, Edmonton, Alberta T5J 3V9, Canada; 6Department of Oncology and Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, 1331 29th Street NW, Calgary, Alberta T2N 4N2, Canada; 7Medical Oncology, BC Cancer Agency, Vancouver Centre, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada; 8Department of Anatomic Pathology, H Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; 9Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 2AA-07, 3280 Hospital Dr NW, Calgary, Alberta T2N 2Z6, Canada; 10Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada and 11Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada

Background: Combined oral contraceptive (COC) use reduces epithelial ovarian cancer (EOC) risk. However, little is known about risk with COC use before the first full-term pregnancy (FFTP).

Methods: This Canadian population-based case–control study (2001–2012) included 854 invasive cases/2139 controls aged X 40 years who were parous and had information on COC use. We estimated odds ratios (aORs) and 95% confidence intervals (CI) adjusted for study site, age, parity, breastfeeding, age at FFTP, familial breast/ovarian cancer, tubal ligation, and body mass.

Results: Among parous women, per year of COC use exclusively before the FFTP was associated with a 9% risk reduction (95% CI = 0.86–0.96). Results were similar for high-grade serous and endometrioid/clear cell EOC. In contrast, per year of use exclusively after the FFTP was not associated with risk (aOR = 0.98, 95% CI = 0.95–1.02).

Conclusions: Combined oral contraceptive use before the FFTP may provide a risk reduction that remains for many years, informing possible prevention strategies.

*Correspondence: Professor LS Cook; E-mail: lcook@salud.unm.edu.

Received 20 July 2016; revised 31 October 2016; accepted 6 November 2016; published online 13 December 2016

Keywords: ovarian neoplasms; oral contraception; histotype; parity; risk factors; epidemiology

Combined oral contraceptive (COC) use is an established factor that consistently reduces the risk for epithelial ovarian cancer (EOC; Beral et al., 2008). Less is known about the association between EOC risk and COC use with respect to the timing of full-term births. Increasing parity reduces EOC risk (Hankinson and Danforth, 2006), but it is difficult to tease apart the independent effects of COC use and parity. The total number of ovulatory years between menarche and menopause has been used, but this does not address the timing of COC use with respect to full-term births. Studies of breast cancer (Schlesselman, 1989; Romieu et al, 1990; Kahlenborn et al, 2006) and endometrial cancer (Cook et al, 2014) have reported a long-term effect with the use of COCs before the
Table 1. Characteristics of invasive, epithelial ovarian cancer cases and controls, parous women only, OVAL-BC, 2002–2012

Characteristics	Cases, N = 854	Controls, N = 2139
Age (years)		
40–49	113 (13)	423 (20)
50–59	272 (32)	773 (36)
60–69	278 (33)	670 (31)
>70	191 (22)	273 (13)
Race		
White	711 (83)	1877 (88)
Chinese/Japanese	35 (4)	57 (3)
Other Asian	24 (3)	44 (2)
Others	54 (6)	96 (4)
Unknown	30 (4)	64 (3)
Education		
High school or less	357 (42)	755 (35)
Vocational school	216 (25)	573 (27)
University	280 (33)	809 (38)
Unknown	1 (1)	2 (1)
BMI (kg m\(^{-2}\))		
<25	406 (48)	1015 (47)
25–29.9	274 (32)	682 (32)
30–34.9	101 (12)	278 (13)
>35	73 (9)	161 (8)
Unknown	0 (0)	3 (<1)
Smoking		
Never	409 (48)	1046 (49)
Current	95 (11)	156 (7)
Former	350 (41)	937 (44)
Family history breast and/or ovarian cancer		
No	673 (79)	1767 (83)
Yes	163 (19)	328 (15)
Unknown	18 (2)	44 (2)
Menopausal status and HT		
Pre-menopausal	170 (20)	584 (27)
Peri, post-menopausal		
No HT	399 (47)	933 (44)
Oestrogen only	131 (15)	252 (12)
Oestrogen plus progesterone only	101 (12)	252 (12)
Other HT	53 (6)	114 (5)
Unknown	0 (0)	4 (<1)
COC		
No (never or <6 months)	452 (39)	506 (20)
Yes	692 (61)	2007 (80)
Duration breastfeeding (months)		
Never	229 (27)	424 (20)
>10	386 (45)	872 (41)
≥10	237 (28)	838 (39)
Unknown	2 (<1)	5 (<1)
Hysterectomy		
No	631 (74)	1683 (79)
Yes	221 (26)	454 (21)
Unknown	2 (<1)	2 (<1)
Tubal ligation		
No	582 (68)	1335 (62)
Yes	272 (32)	802 (37)
Unknown	0 (0)	2 (<1)

Abbreviations: BMI = body mass index; COC = combined oral contraceptives; FFTP = first full-term pregnancy; HT = hormone therapy.

Table 1. (Continued)

Characteristics	Cases, N = 854	Controls, N = 2139
Age at FFTP (years)		
<24	561 (65)	1417 (66)
25–29	91 (11)	299 (14)
>30	196 (23)	402 (19)
Unknown	6 (1)	21 (1)
Ever breastfed		
No	229 (27)	424 (20)
Yes	625 (73)	1714 (80)
Unknown	0 (0)	1 (<1)

first full-term pregnancy (FFTP) among parous women. We therefore investigated the EOC risk associated with COC use, focusing on COC use before the FFTP.

MATERIALS AND METHODS

This Canadian population-based case–control study has been previously described (Cook et al, 2016) including ethics approvals (Conjoint Health Research Ethics Board, Calgary, Alberta (AB) and Research Ethics Board, British Columbia (BC) Cancer Agency, Vancouver, BC) and written informed consent. Briefly, cases were identified from the population-based BC and AB cancer registries who were: age 20–79 years (40–79 in AB); diagnosed with first primary, incident, histologically confirmed EOC (invasive EOC in AB); and able to complete study in English. A total of 1505 cases (60% of 2522 eligible) completed the study. Eligible controls identified from provincial health rosters and a mammography screening program (Eheman et al, 2014) were: aged 20–79 years (40–79 in AB); able to complete study in English; and, had at least one ovary. A total of 2564 (53% of 4838 eligible) completed the study.

Risk factor information was ascertained through the diagnosis date (month/year) for cases and an assigned reference date (month/year) for controls based on an age-frequency match with cases. Respondents completed a self-administered questionnaire (BC before 2005) or a telephone interview (AB and BC after 2005). In additional to demographic, lifestyle, and medical/reproductive factors, women provided information on COC use, including dates or ages of use. Specific COC names were not ascertained. Histotypes were determined by re-review of haematoxylin and eosin slides according to contemporary criteria (Köbel et al, 2014) for 979 women (85.6%).

The analysis was restricted to those ≥40 years of age at diagnosis/reference date (1144 invasive cases and 2513 controls). Combined oral contraceptive use was evaluated as: non-use (never or <0.5 years) vs ever use (≥0.5 years); continuous duration (years, ever users only) and, as categorical duration (non-use, <0.5 years, 5–10, ≥10 years, and unknown). We used logistic regression to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs) in R software (R Development Team, 2015). All variables in Table 1 were evaluated as potential confounders. Final aORs included matching variables (Alberta, BC before 2005, BC
after 2005, and 40–49, 50–59, 60–69, ≥70 years of age), parity (0, 1, 2, ≥3 or 1, 2, ≥3 when restricted to parous women), age at FFTP (<24, 25–29, ≥30 years), breastfeeding (never, ever), first degree family female breast or ovarian cancer (no, yes), tubal ligation (no, yes), and BMI (<25, 25–29.9, 30–34.9, ≥35 kg m⁻²). Other variables did not alter the estimated ORs by more than 10%.

Histotype-specific analyses were restricted to high-grade serous and combined endometrioid/clear cell, due to few cases of other histotypes. Because COC use exclusively before and after the FFTP was mutually exclusive, they were modelled simultaneously, allowing direct comparisons of the two risk estimates using contrasts (Montgomery, 2012).

RESULTS

Characteristics of parous cases and controls are described in Table 1. Combined oral contraceptive use was common among parous women, reported by 61% of cases and 80% of controls. With respect to the timing of COC use (Table 2), use of COCs before first birth and ovarian cancer risk

COC use	All epithelial cancer	Histotype-specific		
	Controls N = 1574	Cases N = 720 OR* 95% CI	Cases N = 375 OR* 95% CI	Cases N = 113 OR* 95% CI
No	N %	N %	N %	N %
Yes, exclusive use				
Before and after FFTP				
Before FFTP				
After FFTP				
Yes, duration of use (years)				
Before and after FFTP				
S < 10				
≥10				
Unknown				
per year of use²				
Exclusively before FFTP				
S < 10				
≥10				
Unknown				
per year of use²				
Exclusively after FFTP				
S < 10				
≥10				
Unknown				
per year of use²				

Abbreviations: OR = odds ratio; 95% CI = 95% confidence interval.

a ORs adjusted for study site (Alberta, BC before 2005, BC after 2005), age (40–49, 50–59, 60–69, ≥70 years), parity (1,2, ≥3), age at FFTP (<24, 25–29, ≥30 years), breastfeeding (never, ever), first degree female family history of breast or ovarian cancer (no, yes), tubal ligation (no, yes), and BMI (<25, 25–29.9, 30–34.9, ≥35 kg m⁻²).

b P-value for difference in ORs, <0.01.

a Among COC users only.

When we stratified by age at FFTP, COC use before and after as well as exclusively before the FFTP was consistently associated with a reduction in EOC risk regardless of age at first birth, a consistency that was not seen with COC use exclusively after the FFTP (Figure 1), although some results were unstable. Similar results were noted when stratified by parity, although risk estimates were more similar for parity ≥3 (Figure 1).

The association of COC use and EOC risk for our entire study population (both parous and non-parous women combined) was consistent with the reported literature (Supplementary Tables 1–4). Any COC use was associated with a reduction in risk (aOR = 0.58, 95% CI = 0.49, 0.69). Among COC users, risk was most strongly reduced with longer durations of use overall, within more recent time since last use, and for younger ages at first use.
When we assessed the timing of COC use exclusively before the FFTP among parous women, we found a strong reduction in risk (~40%), which was almost as strong as the ~50% risk reduction seen with COC before and after the FFTP. Even for fairly short-term COC use (<5 years) before the FFTP there was a significant and substantial reduction in risk years later in parous women. This result is surprising, given that these women all experienced the reduction in risk associated with being parous, and given that the literature (Beral et al., 2008) and our own results for parous and non-parous women indicate that last use of COCs in the more distant past is associated with weaker reductions in risk. In contrast, the effect of such use after the FFTP was of lesser magnitude, despite the assumption that the cessation of ovulation in these women should have equivalent effects regardless of the timing of COCs.

When we assessed the timing of COC use exclusively before the FFTP among parous women, we found a strong reduction in risk (~40%), which was almost as strong as the ~50% risk reduction seen with COC before and after the FFTP. Even for fairly short-term COC use (<5 years) before the FFTP there was a significant and substantial reduction in risk years later in parous women. This result is surprising, given that these women all experienced the reduction in risk associated with being parous, and given that the literature (Beral et al., 2008) and our own results for parous and non-parous women indicate that last use of COCs in the more distant past is associated with weaker reductions in risk. In contrast, the effect of such use after the FFTP was of lesser magnitude, despite the assumption that the cessation of ovulation in these women should have equivalent effects regardless of the timing of COCs.

When we assessed the timing of COC use exclusively before the FFTP among parous women, we found a strong reduction in risk (~40%), which was almost as strong as the ~50% risk reduction seen with COC before and after the FFTP. Even for fairly short-term COC use (<5 years) before the FFTP there was a significant and substantial reduction in risk years later in parous women. This result is surprising, given that these women all experienced the reduction in risk associated with being parous, and given that the literature (Beral et al., 2008) and our own results for parous and non-parous women indicate that last use of COCs in the more distant past is associated with weaker reductions in risk. In contrast, the effect of such use after the FFTP was of lesser magnitude, despite the assumption that the cessation of ovulation in these women should have equivalent effects regardless of the timing of COCs.
among the control women; and, possible residual confounding. In addition, COC use in this study represents formulations of COC available in the past, and current formulations may not have the same long-term effects.

In summary, the significant reduction in EOC risk observed with COC use before the FFTP among parous women is a novel and requires replication. Despite the consistently reported risk reduction in EOC with COCs, questions remain about the timing of use and the underlying biological mechanisms of long-term effects to guide future EOC risk prediction (Pearce et al., 2015) and directed chemoprevention strategies for high-risk women (Walker et al., 2015).

ACKNOWLEDGEMENTS

This research was supported by two grants from the Canadian Institutes for Health Research and by a grant from WorkSafe BC (formerly, the Workers’ Compensation Board of British Columbia). LSC receives support from the UNM Comprehensive Cancer Center, a recipient of NCI Cancer Support Grant 2 P30 CA118100-11. This research was presented as an oral presentation at the March 2016 ASPO meeting in Columbus, Ohio and published in abstract form. (LSC, CR Pestak, ACY Leung, Le N (2016) Hormone contraception before the first birth and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 25: 561).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Beral V, Doll R, Hermon C, Peto R, Reeves G (2008) Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23 257 women with ovarian cancer and 87 303 controls. Lancet 371: 303–314.

Bosetti C, Negri E, Trichopoulos D, Franceschi S, Beral V, Tzonou A, Parazzini F, Greggi S, La Vecchia C (2002) Long-term effects of oral contraceptives on ovarian cancer risk. Int J Cancer 102: 262–265.

Chan M-F, Dowsett M, Folkerd E, Wareham N, Luben R, Welch A, Bingham S, Khaw KT (2007) Past oral contraceptive and hormone therapy use and endogenous hormone concentrations in postmenopausal women. Menopause 15: 332–339.

Cook LS, Dong Y, Round P, Huang X, Magliocco AM, Friedenreich CM (2014) Hormone contraception before the first birth and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 23: 356–361.

Cook LS, Leung ACY, Swenson K, Gallagher RP, Magliocco A, Steed H, Koebel M, Nation J, Eshragh S, Brooks-Wilson A, Le ND (2016) Adult lifetime alcohol consumption and invasive epithelial ovarian cancer risk in a population-based case-control study. Gynecol Oncol 140: 277–284.

Emam CR, Leadbetter S, Berard VB, Bhlyryerson A, Royalty JE, Blackman D, Pollack LA, Adams PW, Babcock F (2014) National breast and cervical cancer early detection program data validation project. Cancer 120(Suppl 16): 2597–2603.

Fathalla MF (1971) Incessant ovulation—a factor in ovarian neoplasia? Lancet 2: 163.

Hankinson SE, Danforth KN (2006) Ovarian Cancer. Oxford University Press: Oxford; New York.

Kahlenborn C, Modugno F, Potter DM, Severs WB (2006) Oral contraceptive use as a risk factor for premenopausal breast cancer: a meta-analysis. Mayo Clin Proc 81: 1290–1302.

Kobel M, Bak J, Bertelsen BI, Carpen O, Grove A, Hansen ES, Jakobsen AML, Lidang M, Masback A, Tolf A, Gilks CB, Carlson JW (2014) Ovarian carcinoma histotype determination is highly reproducible, and is improved through the use of immunohistochemistry. Histopathology 64: 1004–1013.

Kumle M, Weiderpass E, Braaten T, Adami HO, Lund E, Norwegian-Swedish Women’s L, Health Cohort S (2004) Risk for invasive and borderline epithelial ovarian neoplasias following use of hormonal contraceptives: the Norwegian-Swedish Women’s Lifestyle and Health Cohort Study. Br J Cancer 90: 1386–1391.

Lurie G, Wilkens LR, Thompson PJ, Mcduffie KE, Carney ME, Terada KY, Goodman MT (2008) Combined oral contraceptive use and epithelial ovarian cancer risk: time-related effects. Epidemiology (Cambridge, Mass) 19: 237–243.

Montgomery D (2012) Design and Analysis of Experiments. Wiley E-Text.

Ness RB, Grasso JA, Klapper J, Schlesselman JJ, Silberzweig S, Vergona R, Morgan M, Wheeler JE (2000) Risk of ovarian cancer in relation to Oestrogen and progesterin dose and use characteristics of oral contraceptives. SHARE Study Group. Steroid Hormones and Reproductions. Am J Epidemiol 152: 233–241.

Pearce CL, Stram DO, Ness RB, Stram DA, Roman LD, Templeman C, Lee AW, Monen U, Fasching PA, McAlpine JN, Doherty JA, Modugno F, Schildkraut JM, Rossing MA, Huntsman DG, Wu AH, Berchuck A, Pike MC, Pharoah PD (2015) Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol Biomarkers Prev 24: 671–676.

R Development Core Team (2015) R: A Language and Environment for Statistical Computing Vienna, Austria.

Romieu I, Berlin JA, Colditz G (1990) Oral contraceptives and breast cancer. Review and meta-analysis. Cancer 66: 2253–2263.

Schlesseleman JJ (1989) Cancer of the breast and reproductive tract in relation to use of oral contraceptives. Contraception 40: 1–38.

Walker JL, Powell CB, Chen LM, Carter J, Bae Jump VL, Parker LP, Borowsky ME, Gibb RK (2015) Society of gynecologic oncology recommendations for the prevention of ovarian cancer. Cancer 121: 2108–2120.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)