A 5.8 GHz RF Receiver Front-End With 77.6 dB Dynamic Range AGC for a DSRC Transceiver

REZA E. RAD1, (Graduate Student Member, IEEE), ARASH HEJAZI1, SUNGJIN KIM1, (Member, IEEE), YOUNGGUN PU1, (Member, IEEE), JOON TAE KIM2, KEUM CHEOL HWANG1, (Senior Member, IEEE), YOUNGOO YANG1, (Senior Member, IEEE), AND KANG-YOON LEE1, (Senior Member, IEEE)

1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
2Department of Electrical and Electronic Engineering, Konkuk University, Seoul 05029, South Korea

Corresponding author: Kang-Yoon Lee (klee@skku.edu)

This work was supported in part by the Ministry of Trade, Industry, and Energy (MOTIE) under Grant 10080622; in part by the Korea Semiconductor Research Consortium (KSRC) Support Program for the Development of the Future Semiconductor Device; and in part by the Korea Institute for Advancement of Technology (KIAT) Grant through the Korea Government, MOTIE (Competency Development Program for Industry Specialist) under Grant P0012451.

ABSTRACT This paper presents a 5.8 GHz highly sensitive, high-dynamic-range RF receiver front-end with Automatic-Gain Control (AGC) and a high image-rejection for a Dedicated Short-Range Communication (DSRC) application. It is formed by a transceiver common matching, a single to differential Low-Noise Amplifier (LNA), an active mixer with an Image Rejection Filter, and an AGC unit. The proposed AGC unit is composed of a power-detector over the intermediate-frequency signals of the downconverter mixer. The power detector produces a wide dynamic range response signal, which eases the controllability of the AGC unit. In addition, external components are minimized, and area occupation is optimized. The proposed RF-FE is fabricated and measured in a 130-nm RF CMOS process. Experimental results show an overall dynamic range of 77.6 dB while a high sensitivity performance to an input power level of -85 dBm is measured. An overall gain of 26.4 dB for the RF-FE is obtained. The input referred P1dB is measured to be around -28.3 dBm. The 2-stage RC poly-phase filter that is applied to reject the image signal results in a maximum image rejection ratio of 39 dB.

INDEX TERMS Automatic gain control, high dynamic range, dedicated short-range communication, image rejection, power detector, 5.8 GHz receiver.

I. INTRODUCTION Recently, Intelligent Transportation Systems (ITS) have been recognized as an essential research trend in Information and Communication Technology (ICT). Interesting applications such as vehicular safety, Electronic Toll Collections (ETC), and traffic control applications are the examples that motivate researchers to enhance new research and design across a wide range of new advances. Among these applications, traffic wireless communication is the target of recent research [1]. To obtain a high-speed secured direct communication between the vehicles and the surrounding infrastructure while any kind of wireless connectivity like cellular infrastructure is not involved, Dedicated Short Range Communication (DSRC) is proposed.

The DSRC is a wireless communication based on IEEE 802.11p [1], which is an amendment to the IEEE
FIGURE 2. The proposed architecture for the RF-FE with AGC.

802.11 standard. DSRC communication is shown in Fig. 1. It defines enhancements to support ITS applications [2]. The operating frequency of the DSRC is around 5.8 GHz. It must meet an implementation with direct, low latency in terms of information exchange between vehicles and the infrastructure. The DSRC operational band is 5.855–5.925 GHz, which is divided into seven channels, with 10 MHz channel spacing. The frequency band is characterized by a high anti-interference design. Recently, the new Electronic Toll Collection (ETC) system has also been switched to the 5.8 GHz band [3]–[8]. Using DSRC is a principal for an ETC system when it comes to two-way wireless communication between the Onboard Units (OBUs) and the Roadside Units (RSUs).

Nowadays, the mainstream of a DSRC band is 5.8 GHz band for ITS applications, which results in a challenging design with outstanding performance, inexpensive cost, and an optimized architecture requirement for the Receiver (RX) of the transceiver. The common issue with the DSRC transceivers is the momentary high power RF signal from the antenna, which occurs due to the close distance between the transmitters and the receivers. The high-power input RF signal can lead the receiver to saturation.

In [2], a Received Signal Strength Indicator (RSSI) block is placed after the downconverter mixer, which demands its own Analog to Digital Converter (ADC). The provided bits will be used in the digital of the baseband to have a control over the gain. The drawback of using the RSSI is the large area of occupation while its output detected levels are linear rather than the logarithmic output of the Power Detectors (PDs). In [3], an automatic gain control is performed over the Transimpedance Amplifiers (TIAs) which are located after the mixer.

The block-diagram of the proposed receiver is shown in Fig. 2. The PD is located after the mixer over the Intermediate Frequency (IF) signals. The benefit of this implementation is to avoid an additional matching network for the power detector. The cost of this implementation is that the PD is not located in the earlier stages after LNA which could provide a faster reaction to the input power. On the other hand, the proposed implementation does not need any matching network for the PD which results in a smaller area occupation. Also, it is satisfying the requirements for the reaction response which are required for the gain reconfiguration of the LNA. In compare with the RSSI, it is more area efficient.

II. PROPOSED RF FRONT END DESIGN ARCHITECTURE

The top block diagram of the proposed RF-FE for a DSRC transceiver is shown in Fig. 2. The architecture is a low-IF architecture rather than a zero-IF one due to its better noise performance and better DC offset performance [11], [12]. The architecture is formed by the sub-blocks such as a Single-Pole Double-Throw (SPDT), Low-Noise Amplifier (LNA), an active four-phase down-conversion mixer, and the Automatic Gain Control (AGC) unit.

The low-IF receiver provided a simpler implementation with a lower complexity in term of the hardware which results in a lower power consumption. In spite with the benefits, the image rejection is necessary to overcome the image problem in the low-IF receiver.

The image rejection and the complexity of the IF circuits in the Band-Pass Filter (BPF) are occurring because when IF is going to lower frequencies, the ripples of the PD’s output and its settling time will be too long. Also, image rejection becomes more challenging. Inversely, by increasing the IF, the Gain-Bandwidth (GBW) product of the BPF must be larger.

III. THE DESIGN OF THE COMPONENTS

A. LNA WITH TUNABLE LC LOAD STRUCTURE

To avoid an external passive balun, an active balun must be considered as the solution to provide a differential output for
the LNA. The LNA of the receiver is based on a buffered feedback topology [13], which is shown in Fig. 3. The topology, which is resistive shunt feedback, provides a wideband input impedance matching by negative feedback [14], [15]. The LNA implementation of the proposed receiver is shown in Fig. 4. In combination with the feedback loop, the AC-coupling through C3 to the gate of cascode M4 results in a smaller channel noise and non-linearity contribution than M3 [16]. The input transistors provide large transconductance to achieve a high gain with a low Noise Figure (NF). The L-C tank load provides adjustable band-pass characteristics in the desired frequency range using the tunable capacitance banks. The gain mode of the LNA is switched between the high and low gain modes through the M7 switch. Due to the high-quality factor of the LC-tank load, the open-loop gain of the LNA follows as below [13]:

\[A_v = g_{m1} R_L, f_r = g_{m1} 2\pi f_r L_1 (Q_1 + \frac{1}{Q_1}) \]

where \(L_1 \) and \(Q_1 \) are the load inductor value and quality factor at the frequency of \(f_r \) which is proportional to the \(C_{load} \)

\[f_r = \frac{1}{2\pi \sqrt{L_1 C_{load}}} \]

where the \(C_{load} \) is the total LNA load capacitance considering the parasitic capacitors. The tunability of the gain of the LNA is proportional to \(C_{load} \) which is tunable by the cap-banks at the load. The total noise factor at the input (\(F_{input} \)) follows (3):

\[F_{input} \approx 1 + \gamma \left(\frac{1}{g_{m1} R_S} \right) \left(1 + \frac{R_S}{R_F} \right)^2 + \frac{R_S}{R_F} \]

For higher \(g_{m1} \) and higher closed-loop voltage gains, the NF of the LNA will be smaller. Equations (2) and (3) are related to the resonance frequency and noise figure of the proposed LNA with the high gain mode of operation while M7 switch is turned off. The proposed LNA can be switched to low gain mode when M7 switch is turned on.

B. QUADRATURE I/Q MIXER

A quadrature down-conversion core stage and a Poly-Phase Filter (PPF) in a two-stage configuration form the image rejection mixer to generate a quadrature signal. The core of the mixer is an active architecture. The passive PPF provides the phase shift to perform the IF image rejection.

Due to the low IF implementation of the receiver, an active 4-phases down-converter mixer is used, which is shown in Fig. 5 and is formed by the Gilbert unit. The input RF transconductance stage is shared among the I and Q paths. Also, the input transistors have an important advantage from the noise influence. In the I/Q paths, the generated noise at the image frequency is correlated in the I/Q paths. Therefore, the noise of these two paths can be offset and the noise figure be lowered by 3 dB.

The PPF operates as a phase shifter to cancel the image signal tone, and the image signal is rejected by the gain and phase imbalance where there is a 90-degree phase difference in the I/Q paths. The two-stage image-rejection network is shown in Fig. 6. Since the frequency range is not wide, a two stage PPF can be utilized to attenuate the image signal sufficiently over the frequency range of 5.855 GHz to 5.925 GHz. The filter can discriminate between positive and negative image-tones, and the RC filter can distinguish between the relative phase sequences of I/Q signals. Therefore, the proposed mixer has the down conversion operation over the RF signal while rejecting the image components.

C. AUTOMATIC GAIN CONTROL (AGC)

AGC manages the gain-mode of the LNA when the power of the RF signal through the antenna is too large. The proposed AGC is formed by a PD, two comparators, and the control logic, which is shown in Fig. 7. The output of the AGC unit is connected to the LNA gain control. When the input power is larger than the input referred 1 dB compression point (P1dB) of the high-gain mode (LNA_GCTRL < 1:0 >= 11), the output of the PD, which is a voltage level corresponding to
the received power, will be compared with both lower and high reference voltages.

While the higher reference level is corresponding to the input referred P1dB the gain mode will switch to the low gain mode (LNA_GCTRL < 1:0 == 0). Consequently, this operation avoids the saturation of the LNA and results in a wider input dynamic range and guarantees the linearity of the receiver. Here, the input dynamic range is obtained by the minimum input signal power level, which is proportional to the sensitivity of the receiver, and the maximum input signal power level that maintains the front-end operating in linear region.

Fig. 8 illustrates the operation of the AGC unit. While gain modes are switching, the power of the received signal is varying and its corresponding voltage at the output of the PD is going more than or less than the Vref_High and Vref_Low, respectively. These references define the active operation window of the AGC unit.

FIGURE 8. AGC operation of the proposed RF-FE.

FIGURE 9. The proposed power detector.

FIGURE 10. PD’s response to a range of input powers.

FIGURE 11. The chip-micrograph of the RF-FE as a part of a DSRC transceiver chip property.

FIGURE 12. The chip-micrograph of the RF-FE as a part of a DSRC transceiver chip property.

D. INTERMEDIATE-FREQUENCY POWER DETECTOR (IF-PD)

To perform the ALC operation, an IF-PD is proposed which measures the power level of the quad-phase IF signals provided by the mixer. The superiority of the IF-PD is a wider output dynamic which eases the controllability of the active window which is set by the low and high voltage references. The other beneficial aspect is due to the lack of a matching network which is required for RF-PD ones [10]. In compare with the RSSI which is used in similar works the PD occupies a much smaller area.

The simulation results show a 3.5 dB NF for the LNA. The results are obtained while PAD and Single Pole Double Throw (SPDT) effects are considered. The mixer has a conversion gain of 5.56 dB and an input referred P1dB of −9.75 dBm. When AGC switches the LNA to low gain mode, it results in a higher dynamic input range and avoids the LNA operating with power over its input referred P1dB to enhance the overall linearity of the RF-FE. Finally, to suppress image signals caused by the low IF implementation, a two-stage poly-phase filter Image Rejection (IR) filter is used, which results in −38 dB Image Rejection Ratio (IRR) in the post-layout simulation.

IV. EXPERIMENTAL MEASUREMENT

The proposed RF-FE is fabricated in a 130-nm RF-CMOS process. The chip-micrograph of the proposed receiver is
shown in Fig. 11. The occupation areas of the LNA, Mixer, and IR Filter are 500 × 550, 300 × 250, 530 × 200, and 400 × 360 µm², respectively. The measurement setup is formed by a signal generator, a network analyzer, a power supply, and the test board, which are shown in Fig. 12.

The measured NF is obtained as 3.7 dB, which shows a 0.2 dB increase in comparison with the post-layout simulation results. The input referred P1dB is measured as −28.3 dBm. The sensitivity and dynamic range are measured. The measurement results show a maximum sensitivity of −85 dBm in the high-gain mode and a dynamic range of 49.5 dB is obtained, while the dynamic range is enhanced to 59.8 dB when the gain-mode of the LNA is switched to the low gain mode. The overall dynamic range of the receiver is 77.6 dB. Therefore, the receiver operates at an input power level of −81 dBm. The image rejection performance measurement result is displayed in Fig. 14. The IRR is obtained at around 39 dB with respect to a −50 dBm input power level, and the output power is −23.6 dBm, so that the gain of the total frontend is 26.4 dB. The maximum and minimum gain of the front-end are measured at 26.4 dB and 13.8 dB, respectively. To examine the AGC unit operation, the input power is gradually increased, and the output power level is recorded. The higher reference voltage is set to the input referred P1dB level. Therefore, the LNA’s gain mode switches to low and high gain modes when the detected power level reaches P1dB as in Fig. 15. Table 1. presents the performance comparison for the proposed RF-FE. The proposed receiver front-end has a higher performance in terms of sensitivity, which is −85 dBm, compared with references. A wider dynamic range is obtained at 77.6 dB. It also represents a better P1dB as −28.3 dBm for high gain mode while this value is enhanced up to −7.4 dBm for the low-gain mode.

Parameters	[1]	[17]	[18]	This Work
Technology	65 nm CMOS	130 nm CMOS	130 nm CMOS	130 nm CMOS
Frequency (GHz)	2-5.8	5.8	0.5-2.5	5.8
Supply Voltage (V)	1.2	1.5	0.9	1.2
Gain (dB)	22-23	45	29-35	26.4
Current Consumption (mA)	30-45	22	24.4-44.4*	13.8
Noise Figure (dB)	2.9	N/A	2.1-2.6	3.7
Input Referred P1dB (dBm)	-18-38	N/A	N/A	-28.3
RX Sensitivity (dBm)	N/A	-75	N/A	-85
RX Dynamic-Range (dB)	N/A	67	N/A	77.6

*The current consumption is obtained from the power consumption (mW) and a 0.9-V supply.
The current consumption also is kept in a lower value in a cost of a lower gain but higher input referred P1dB.

V. CONCLUSION

A 5.8 GHz image-rejection RF receiver front-end with AGC for a DSRC application is fabricated in a 130-nm RF CMOS process. The experimental result shows an overall dynamic range of 77.6 dB while a high sensitivity performance for an input power level of −85 dBm is measured. An overall gain of 26.4 dB for the RF-FE is obtained. The input referred P1dB is measured to be around −28.3 dBm. The 2-stage RC poly-phase filter that is applied to reject the image results in a maximum image rejection ratio of 39 dB.

REFERENCES

[1] L. Wu, A. W. L., Ng, S. Zheng, H. F. Leung, Y. Chau, A. Li, and H. C. Luang, “A 0.9–5.8-GHz software-defined receiver RF front-end with transformer-based-current-gain boosting and harmonic reduction calibration,” IEEE Trans. Very Large Scale Integ. (VLSI) Syst., vol. 25, no. 8, pp. 2371–2382, Aug. 2017.

[2] H. Liu, X. Qu, L. Cao, R. Liu, Y. Zhang, M. Zhang, X. Li, W. Wang, and C. Lu, “A 5.8 GHz DSRC digitally controlled CMOS RF-FoC transceiver for China ETC,” in Proc. 23rd Asia South Pacific Design Autom. Conf. (ASP-DAC), Jeju, South Korea, Jan. 2018, pp. 323–324, doi: 10.1109/ASP-DAC.2018.8297341.

[3] K. Kwon, J. Choi, J. Choi, Y. Hwang, K. Lee, and J. Ko, “A 5.8 GHz integrated CMOS dedicated short range communication transceiver for the Korea/Japan electronic toll collection system,” IEEE Trans. Microw. Theory Techn., early access, Oct. 14, 2010, doi:10.1109/MTT.2010.2079791.

[4] S. Haddadian and J. C. Scheytt, “Analysis, design and implementation of a fully integrated analog front-end for microwave RFIDs at 5.8 GHz,” in IEEE J. Radio Freq. Identificat., vol. 4, no. 4, pp. 476–490, Dec. 2020, doi: 10.1109/JRFID.2020.3009741.

[5] J. Im, H. Kim, and D. D. Wentzloff, “A 220-µW –83-dBM 5.8-GHz third-harmonic passive mixer-first LP-WUR for IEEE 802.11ba,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2537–2545, Jul. 2019.

[6] S. Maddin, A. Citronali, M. Passafiume, G. Collodi, and G. Manes, “Compact transponder front-end with enhanced gain for electronic toll collection at 5.8 GHz,” in Proc. Eur. Microw. Conf. (EuMC), Paris, France, Sep. 2015, pp. 518–521, doi: 10.1109/EuMC.2015.7345814.

[7] K. Cheng, X. Liu, and M. Je, “A 2.4/5.8 GHz 10 µW wake-up receiver with −65/−50 dBm sensitivity using direct active RF detection,” in Proc. IEEE Asian Solid State Circuits Conf. (A-SSCC), Kobe, Japan, Nov. 2012, pp. 337–340, doi: 10.1109/A-SSCC.2012.6522694.

[8] Z. Bai, S.-J. Kim, R. E. Rad, and K.-Y. Lee, “A 5.8 GHz adaptive CMOS image rejection mixer for DSRC transceiver,” in Proc. Int. Conf. Electron., Inf., Commun. (ICEIC), Barcelona, Spain, Jan. 2020, pp. 1–3, doi: 10.1109/ICEIC49074.2020.9051172.

[9] S. Qayyum and R. Negra, “0.16 mW, 7–70 GHz distributed power detector with 75 dB voltage sensitivity in 130 nm standard CMOS technology,” in Proc. 12th Eur. Microw. Integ. Circuits Conf. (EuMIC), Nuremberg, Germany, Oct. 2017, pp. 13–16, doi: 10.23919/EuMIC.2017.8250648.

[10] S. Shirnjo, K. Tsutsumi, K. Mori, H. Okada, M. Inoue, and N. Suematsu, “ASK and pi/4-QPSK dual mode SiGe-MMIC transceiver for 5.8 GHz DSRC terminals having stabilized amplifier chain,” in IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, USA, Jun. 2008, pp. 1071–1074, doi: 10.1109/MWSYM.2008.4635021.

[11] I. Nann, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, and K. Lee, “A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-µm CMOS for IEEE 802.15.4 WPAN applications,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 682–689, Apr. 2007, doi: 10.1109/TMTT.2007.893646.

[12] P. Choi, H. C. Park, S. Kim, S. Park, I. Nam, T. W. Kim, S. Park, S. Shin, M. S. Kim, K. Kang, and Y. Ku, “An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2258–2268, Dec. 2003, doi: 10.1109/JSSC.2003.819083.

[13] J. Sturm, S. Popuri, and X. Xiang, “CMOS noise canceling balun LNA with tunable bandpass from 4.6 Hz to 5.8 GHz,” in Proc. 21st IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2014, pp. 84–87, doi: 10.1109/ICECS.2014.7049927.

[14] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.

[15] J. Sturm, M. Groening, and X. Xiang, “Tunable balun low-noise amplifier in 65 nm CMOS technology,” Radioengineering, vol. 23, no. 1, pp. 319–327, Apr. 2014.

[16] X. Wang, W. Aichholzer, and J. Sturm, “A 0.1–4 GHz resistive feedback LNA with feedforward noise and distortion cancellation,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 406–409.

[17] L. Cao, R. Liu, Y. Zhang, M. Zhang, X. Li, W. Wang, H. Liu, and C. Lu, “A 5.8 GHz digitally controlled CMOS receiver with a wide dynamic range for Chinese ETC system,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 754–758, Jun. 2018, doi: 10.1109/TCSII.2017.2777410.

[18] I. Madadi, M. Tohidian, K. Cornelissen, P. Vandenauweele, and R. B. Staszewski, “A high IIP2 SAW-less superheterodyne receiver with multistage harmonic rejection,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 332–347, Feb. 2016, doi: 10.1109/JSSC.2015.2504441.

REZA E. RAD (Graduate Student Member, IEEE) was born in Qazvin, Iran, in 1984. He received the B.S. and M.S. degrees in electronics engineering from Qazvin Islamic Azad University (QAU), Qazvin, in 2009 and 2016, respectively, and the Ph.D. degree from Sungkyunkwan University, South Korea, in 2022. He continued his work as a freelancer by studying the main references and research and design on the pipeline ADCs. Then, he continued his research in South Korea and his research field was linear RF front-end circuits, including LNAs, RF-switches for AS applications, and power amplifiers, including WPT PAs and mobile communication PAs. He is currently working at SKAIChips Company, South Korea, as a Principal Engineer in the field of RFIC. His current career in design, research, and management are concentrated on the RF transceivers and the WPT transceivers, including their sub-blocks.

ARASH HEJAZI was born in Iran, in 1989. He received the Ph.D. degree in electrical and electronics engineering from Sungkyunkwan University (SKKU), South Korea, in 2021. Since 2020, he has been a Principal Engineer with the SKAIChips Company, South Korea. His research interests include design of radio frequency and millimeter-wave frequency synthesizers, phase-locked loops (PLLs), radio frequency antenna switches and low-noise amplifiers for mobile communication systems, and time-to-digital converters for time-of-flight applications.
SUNGJIN KIM (Member, IEEE) received the B.S. degree from the Department of Electronic Engineering, Inje University, Gimhae, South Korea, in 2014, and the M.S. and Ph.D. degrees in electrical and computer engineering from Sungkyunkwan University, Suwon, South Korea. His research interests include CMOS RF transceiver and wireless power transfer systems.

YOUNGGUN PU (Member, IEEE) received the B.S., M.S., and Ph.D. degrees from the Department of Electronic Engineering, Konkuk University, Seoul, South Korea, in 2006, 2008, and 2012, respectively. From 2012 to 2013, he was a Senior Engineer at the Modern RF Laboratory, DMC Research and Development Center, Samsung Electronics, South Korea. From 2013 to 2019, he worked as a Senior Engineer at WDT/Hivics, South Korea. He is currently a Research Professor with Sungkyunkwan University. His research interests are focused on high-speed interface, CMOS fully integrated frequency synthesizers, oscillators, and RF transceivers.

JOON TAE KIM was born in South Korea, in 1967. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Korea institute of Science and Technology, Taekyon, South Korea, in 1990, 1993, and 1998, respectively. From 1998 to 2003, he was a Senior Research Engineer at the DTV Research Center of LG Electronics, Seoul, where his work involved the development of ATSC DTV receiver ASIC including synchronization and equalization. Since 2003, he has been at the Electronic Engineering Department, Konkuk University, where he is currently a Professor. His research interests include digital communication, digital broadcasting systems, and ASIC design.

KEUM CHEOL HWANG (Senior Member, IEEE) received the B.S. degree in electronics engineering from Pusan National University, Busan, South Korea, in 2001, and the M.S. and Ph.D. degrees in electrical and electronic engineering from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in 2003 and 2006, respectively.

From 2006 to 2008, he was a Senior Research Engineer with Samsung Thales, Yongin, South Korea, where he was involved with the development of various antennas, including multiband fractal antennas for communication systems and the Cassegrain reflector antenna and slotted waveguide arrays for tracking radars. He was an Associate Professor with the Division of Electronics and Electrical Engineering, Dongguk University, Seoul, South Korea, from 2008 to 2014. In 2015, he joined the Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea, where he is currently an Associate Professor. His research interests include advanced electromagnetic scattering and radiation theory and applications, the design of multiband/broadband antennas and radar antennas, and optimization algorithms for electromagnetic applications.

Prof. Hwang is a Life Member of the Korean Institute of Electromagnetic Engineering and Science (KIEES) and a member of the Institute of Electronics, Information, and Communication Engineers (IEICE).

YOUNGOO YANG (Senior Member, IEEE) was born in Hamyang, South Korea, in 1969. He received the Ph.D. degree in electrical and electronic engineering from the Pohang University of Science and Technology, Pohang, South Korea, in 2002. From 2002 to 2005, he was with Skyworks Solutions, Inc., Newbury Park, CA, USA, where he designed power amplifiers for various cellular handsets. Since 2005, he has been with the School of Information and Communication Engineering, Sungkyunkwan University, Suwon, South Korea, where he is currently a Professor. His current research interests include RF/mm-wave power amplifiers, RF transmitters, and dc–dc converters.

KANG-YOON LEE (Senior Member, IEEE) received the B.S., M.S., and Ph.D. degrees from the School of Electrical Engineering, Seoul National University, Seoul, South Korea, in 1996, 1998, and 2003, respectively. From 2003 to 2005, he was with GCT Semiconductor Inc., San Jose, CA, USA, where he was the Manager of the Analog Division and worked on the design of CMOS frequency synthesizer for code division multiple access (CDMA)/personal communication service (PCS)/personal digital cellular (PDC) and single-chip CMOS RF chips for W-CDMA, WLAN, and personal handy-phone system (PHS). From 2005 to 2011, he was an Associate Professor with the Department of Electronics Engineering, Konkuk University, Seoul. Since 2012, he has been with the College of Information and Communication Engineering, Sungkyunkwan University, Suwon, South Korea, where he is currently a Professor. His research interests include the implementation of power integrated circuits, CMOS RF transceivers, analog integrated circuits, and analog/digital mixed-mode VLSI system design.