Reliability for Lindley Distribution with an Outlier

Hossein Jabbari Khamnei

Department of Statistics, Faculty of mathematical sciences, University of Tabriz, Tabriz, Iran

Keywords. Lindley Distribution, Maximum Likelihood Estimator, Newton-Raphson Method, Outlier.

Abstract. In this paper, we consider the problem of estimating \(R = P(Y < X) \), when \(Y \) has lindley distribution with parameter \(a \) and \(X \) has lindley distribution with presence of one outlier with parameters \(b \) and \(c \), such that \(X \) and \(Y \) are independent. The maximum likelihood estimator of \(R \) is derived and some results of simulation studies are presented.

1 Introduction

In reliability context inferences about \(R = P(Y < X) \), when \(X \) and \(Y \) are independently distributed, are a subject of interest. For example in mechanical reliability of a system if \(X \) is the strength of a component which is subject to stress \(Y \), then \(R \) is a measure of system performance. The system fails, if at any time the applied stress is greater than its strength. Stress-strength reliability has been discussed in Kapur and Lambersen (1977). Sathe and Dixit (2001) have done estimation of \(R \) in the negative binomial distribution. Baklizi and Dayyeh (2003) have done shrinkage estimation of \(R \) in exponential case, and recently Deiri (2011) has done estimation of \(R \) with presence of two outliers in the exponential and gamma cases, respectively. Jafari (2011) has obtained the moment, maximum likelihood and mixture estimators of \(R \) in Rayleigh distribution in the presence of one outlier and Jabbari, Abolhasani and Fathipour (2012) have discussed the estimation of \(R \) in the six parameter generalized Burr XII distribution with transformation method.

In this paper, we obtain the maximum likelihood estimator of \(R \) for lindley distribution with presence of one outlier generated from the same distribution.

The probability density function of the lindley distribution with parameter of \(a \) is given by:
\[
f(y; a) = \frac{a^2}{1+a} (1 + y) e^{-ay}, x > 0, a > 0.
\]

In this paper we assume that the random variables \((Y_1, Y_2, ..., Y_m)\) have lindley distribution with parameter \(a \) and the random variables \((X_1, X_2, ..., X_n)\) are such that one of them is from lindley distribution with parameter \(c \) and the remaining \((n-1)\) random variables are from lindley distribution with parameter \(b \).

The paper is organized as follows:

In section 2, we obtain the joint distribution of \((X_1, X_2, ..., X_n)\) in the presence of one outlier. Section 3 and section 4 discusses the method of maximum likelihood estimators of parameters and the MLE of \(R \) respectively. In section 5 simulation studies are presented and the results are summarized in section 6.

2 Joint distribution of \(X_1, X_2, ..., X_n\) in presence of an outlier

Assume \((X_1, X_2, ..., X_n)\) are such that one of them is distributed with p.d.f \(g(x; c) \) as lindley\((c)\) and remaining \((n-1)\) of them are distributed with p.d.f \(f(x; b) \) as lindley\((b)\). The joint distribution of \((X_1, X_2, ..., X_n)\) can be expressed as
\[
f(x_1, x_2, ..., x_n; b, c) = \frac{(n - 1)!}{n!} \prod_{i=1}^{n} f(x_i, b) \sum_{i=1}^{n} \frac{g(x_i; c)}{f(x_i; b)}
\]

SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/
\[
\frac{(n - 1)!}{n!} \frac{b^{2n}}{(1 + b)^n} \prod_{i=1}^{n} (1 + x_i)e^{-b\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} \frac{c^2}{b^2} \frac{(1 + x_i)e^{-bx_i}}{1 + b (1 + x_i)e^{-bx_i}} \\
= \frac{(n - 1)!}{n!} \frac{b^{2n-2}}{(1 + b)^{n-1}} \frac{c^2}{1 + c} \prod_{i=1}^{n} (1 + x_i)e^{-b\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} (1 + x_i)e^{x_i(b-c)}
\]

(1)

See Dixit (1989), Dixit and Nasiri (2001), and Nasiri and Pazira (2009). From (1), the marginal distribution of \(X\) is

\[
f(x; b, c) = \frac{c^2}{n+c} (1 + x)e^{-cx} + \frac{n-1}{n} \frac{b^2}{1+b} (1 + x)e^{-bx}, x, b, c > 0
\]

We will use (2) to obtain \(R = P(Y < X)\).

3 Maximum likelihood estimators of parameters

Let \((Y_1, Y_2, ..., Y_m)\) be a random sample for \(Y\) with pdf,

\[
f(y; a) = \frac{a^2}{1 + a} (1 + y)e^{-ay}, x, a > 0
\]

the log likelihood function is given by

\[
L(a) = 2mln a - mln(1 + a) + \sum_{i=1}^{m} ln(1 + y_i) - a \sum_{i=1}^{m} y_i
\]

Taking the derivative with respect to \(a\) and equating to \(0\), we obtain the MLE of \(a\) as

\[
\hat{a} = \frac{m \sum_{i=1}^{m} y_i \pm \sqrt{(\sum_{i=1}^{m} y_i - m)^2 + 8m \sum_{i=1}^{m} y_i}}{2 \sum_{i=1}^{m} y_i}
\]

(3)

Now let \((X_1, X_2, ..., X_n)\) be a random sample for \(X\) with presence of one outlier with pdf,

\[
f(x; b, c) = \frac{1}{n + 1 + c} \frac{c^2}{1+ c} (1 + x)e^{-cx} + \frac{n-1}{n} \frac{b^2}{1+b} (1 + x)e^{-bx}; x, b, c > 0.
\]

From (1), the log likelihood function is given by

\[
L(b, c) = \ln \left(\frac{(n - 1)!}{n!}\right) + (2n - 2)lnb - (n - 1)ln(1 + b) + 2ln c - ln(1 + c) + \sum_{i=1}^{n} ln(1 + x_i) - b \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} e^{x_i(b-c)}
\]

Taking the derivatives with respect to \(b\) and \(c\) and equating the results to \(0\), we obtain the normal equations as

\[
\frac{\partial L(b, c)}{\partial b} = \frac{2n - 2}{b} - \frac{n - 1}{1 + b} - \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]

(4)

\[
\frac{\partial L(b, c)}{\partial c} = \frac{2}{c} - \frac{1}{1 + c} - \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]

(5)

There is no closed-form solution to this system of equations, so we will solve for \(\hat{b}\) and \(\hat{c}\) iteratively, using the Newton-Raphson method. In our case we will estimate \(\hat{b} = (\hat{b}, \hat{c})\) iteratively:

\[
\hat{b}_{i+1} = \hat{b}_i - G^{-1}g
\]

(6)

where \(g\) is the vector of normal equations for which we want

\[
g = [g_1, g_2]
\]

With

\[
g_1 = \frac{2n-2}{b} - \frac{n-1}{1+b} - \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]

\[
g_2 = \frac{2}{c} - \frac{1}{1+c} - \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]

\[
g_1 = \frac{2n-2}{b} - \frac{n-1}{1+b} - \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]

\[
g_2 = \frac{2}{c} - \frac{1}{1+c} - \sum_{i=1}^{n} x_i e^{x_i(b-c)}
\]
and G is the matrix of second derivatives

$$G = \begin{bmatrix} \frac{dg_1}{db} & \frac{dg_1}{dc} \\ \frac{dg_2}{db} & \frac{dg_2}{dc} \end{bmatrix}$$

where

$$\frac{dg_1}{db} = \frac{2 - 2n}{b^2} + \frac{n - 1}{(1 + b)^2} + \frac{\sum_{i=1}^{n} x_i^2 e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}} - \left(\frac{\sum_{i=1}^{n} x_i e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}}\right)^2$$

$$\frac{dg_1}{dc} = -\frac{\sum_{i=1}^{n} x_i^2 e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}} + \left(\frac{\sum_{i=1}^{n} x_i e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}}\right)^2$$

$$\frac{dg_2}{db} = -2 + \frac{1}{(1 + c)^2} + \frac{\sum_{i=1}^{n} x_i^2 e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}} - \left(\frac{\sum_{i=1}^{n} x_i e^{x_i(b-c)}}{\sum_{i=1}^{n} e^{x_i(b-c)}}\right)^2$$

The Newton-Raphson algorithm converges, as our estimate of b and c change by less than a tolerated amount with each successive iteration, to \hat{b} and \hat{c}.

4 The maximum likelihood estimator of R

Let $Y \sim \text{lindley}(a)$ with pdf $h(y; a)$ and X be distributed with pdf $f(x; b, c)$ given in (2). The parameter R we want to estimate is

$$R = P(Y < X) = \int_{0}^{\infty} \int_{0}^{x} h(y; a) f(x; b, c) dy dx$$

$$= \frac{1}{b} \int_{0}^{\infty} \int_{0}^{x} \frac{a^2}{1 + a} (1 + y) e^{-ay} \frac{c^2}{1 + c} (1 + x) e^{-cx} dy dx$$

$$+ \frac{n - 1}{n} \int_{0}^{\infty} \int_{0}^{x} \frac{a^2}{1 + a} (1 + y) e^{-ay} \frac{b^2}{1 + b} (1 + x) e^{-bx} dy dx$$

$$= \frac{1}{n} \left[c^2 (1 + c) + (1 + c)(3 + c)a + (3 + 2c)a^2 + a^3 \right]$$

$$+ \frac{n - 1}{n} \left[b^2 (1 + b) + (1 + b)(3 + b)a + (3 + 2b)a^2 + a^3 \right]$$

Thus, by invariant property for MLEs, the MLE of R is

$$\hat{R} = \frac{1}{2} \left[\frac{\hat{c}^2 (\hat{c} + \hat{e}) + (1 + \hat{e})(3 + \hat{e})\hat{a} + (3 + 2\hat{e})\hat{a}^2 + \hat{a}^3)}{1 + \hat{e}(1 + \hat{a})(\hat{c} + \hat{a})} \right]$$

$$+ \frac{n - 1}{n} \left[\frac{\hat{b}^2 (1 + \hat{b}) + (1 + \hat{b})(3 + \hat{b})\hat{a} + (3 + 2\hat{b})\hat{a}^2 + \hat{a}^3)}{1 + \hat{b}(1 + \hat{a})(\hat{b} + \hat{a})} \right]$$

where \hat{a}, \hat{b}, and \hat{c} can be obtained from (3) and (6).

5 Simulation Study

In this section we generate random numbers from lindley distribution (with and without outlier) with accept-reject method by Maple software. Using these samples and the Newton-Raphson method we obtain the maximum likelihood estimators of parameters a, b and c. Then we use them to calculate the MLE of R. The values of biases and MSEs of these estimates are presented in table 1, for $a=1$, $b=2$ and $c=1.6,1.7,1.8,1.9,2.1,2.2,2.3,2.4,2.5,3,4$ and in table 2, for $a=1$, $b=2$, and the same values of c. All the results are based on 100 replications.

6 Conclusion

According to the results of simulation, when the value of parameters b and c are close to each other, the biases and MSEs are often around zero and when the difference between b and c is greater than 1, the biases and MSEs increase.
Table 1: Biases and (MSE)s of the MLEs of R, for $a=1$, $b=2$, and different values of c

(m,n)	$(10,10)$	$(20,10)$	$(30,10)$	$(40,10)$	$(50,10)$	$(60,10)$	$(10,20)$	$(20,20)$	$(30,20)$	$(40,20)$	$(50,20)$	$(60,20)$	$(10,100)$	$(20,100)$	$(30,100)$	$(40,100)$	$(50,100)$	$(60,100)$	
1.6	0.00160	0.00188	-0.00469	-0.00301	0.00715	-0.00418	-0.00499	-0.03139	0.00776	0.00425	0.08441	0.01131	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147	
1.7	0.00195	0.00293	0.00646	0.00757	0.00113	-0.00419	0.00658	0.01312	0.01178	0.00095	0.00579	0.00888	0.01131	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147
1.8	-0.00252	0.00266	0.00809	0.00716	0.00101	0.00799	0.01411	0.00685	0.00853	-0.00135	0.00652	0.00888	0.00911	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147
1.9	0.00359	0.00354	-0.00386	0.00863	0.00188	-0.00129	0.01297	0.00374	0.01019	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
2.1	-0.00002	-0.00219	-0.00800	0.00374	0.00254	0.00558	0.00854	0.01070	0.01078	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
2.2	0.00107	0.00135	0.00646	0.00394	0.00038	0.00446	0.00629	0.02297	0.00832	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
2.3	0.00096	0.00128	0.00646	0.00621	0.00616	0.00776	0.00888	0.00400	0.00726	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
2.4	0.00104	-0.00135	-0.00184	0.00477	0.00311	0.00795	0.01112	0.00688	0.00505	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
2.5	-0.00424	0.00229	0.11499	0.00711	0.04781	0.00599	0.00477	0.00516	0.00283	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
3	-0.00431	0.00290	0.00573	0.00960	0.12725	0.00251	0.00252	0.00608	0.00297	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				
4	-0.00150	0.00272	0.01788	0.00916	0.01984	0.00507	0.01143	0.00703	0.00401	0.000015	0.000036	0.000059	0.000085	0.000121	0.000147				

References

[1] Deiri, E., (2011). Estimation of $P(Y<X)$ for Exponential Distribution in the Presence of Two Outliers. *International Journal of Academic Research*, 3, 508-514.

[2] Deiri, E., (2011), Estimation of $P(Y<X)$ for Generalized Exponential Distribution in the Presence of Two Outliers when Scale Parameters is Known. *International Journal of Academic Research*, 3, 1179-1185.

[3] Deiri, E., (2011), Estimation of Parameters of the Gamma Distribution in the Presence of Two Outliers. *International Journal of Academic Research*, 3, 846-852.

[4] Dixit, U.J., (1989), Estimation of Parameters of the Gamma Distribution in the Presence of Outliers Generated from Uniform Distribution. *Metron*, 54, 201-211.

[5] Dixit, U.J., Moor, K.L.and Barnett, V. (1996), On the Estimation of the Power of the Scale Parameter in the Exponential Distribution in the Presence of Outlier Generated from Uniform Distribution. *Metron*, 54, 201-211.

[6] Dixit, U.J.and Nasiri, P.F. (2001), Estimation of Parameters of the Exponential Distribution with Presence of Outliers Generated from Uniform Distribution. *Metron*, 49(3-4), 187-198.

[7] Jabbari Khamnei, H., Abolhasani, A. and Fathipour, P. (2012), Reliability for Six Parameter Generalized Burr XII Distribution with Transformation Method, Accepted in the Journal of Advances and Applications in Statistics.

[8] Nasiri,P.F.and Pazira, H. (2010), Bayesian and Non-Bayesian Estimations on the Generalized Exponential Distribution in the Presence of Outliers, *Journal of Statistical Theory and Practice*, 4(3), 453-475.