Dear Editor,

Crocin is a natural antioxidant and the main active carotenoid components of Crocus sativus line (saffron). The carotenoid family has a polyene backbone containing conjugated double bonds in their molecular structure that is responsible for their strong antioxidant properties (Hashemzaei et al., 2020). Viral infections could evoke “cytokine storm” that leads to lung capillary endothelial cell activation, neutrophil infiltration, subsequent inflammation, and increased oxidative stress which may lead to lung cells apoptosis (Wang et al., 2010). Crocin has been shown to have an antioxidant, anti-inflammatory, and antiapoptotic effects. It has been shown that crocin can modulate NF-κB and Mitogen-activated protein kinase (MAPK) pathways and control the expression of genes encoding the inflammatory cytokines (e.g., TNF-α, IL-1, IL-2, and IL-6) (Zeinali et al., 2019). It is believed that excess oxidative stress plays a key role in the pathogenesis of SARS-CoV-2 infection by unbalancing the immunological tolerance, increasing inflammatory mediators, and inducing apoptotic cell death (Delgado-Roche & Mesta, 2020). A recent study has shown that crocin could protect lung tissue against cigarette smoke-induced oxidative stress by nuclear erythroid-related factor 2 (Nrf2) modifications (Dianat et al., 2018). Furthermore, it has been reported that crocin ameliorates bleomycin-induced pulmonary fibrosis by its anti-inflammatory, antioxidant, and immunomodulatory properties (Zaghloul et al., 2019). Furthermore it
downregulates NF-κB activation in lung tissue and T cells (Du et al., 2018). The stimulation of Nr2 plays a key role in protecting lung from severe injury. It has been reported that, crocin induces the upregulation of Nr2 (Akbari et al., 2017). Since the NF-κB and Nr2 are involved in the CoV-induced acute lung injury (Cecchini & Cecchini, 2020), therefore, crocin may inhibit viral-induced inflammation by inhibiting NF-κB and enhance the capacity of the oxidative stress defense system of the body by the activation of Nr2. A recent study has indicated that Nr2 activation downregulates ACE2 expression, and its deficiency upregulates the ACE2 receptor (McCord et al., 2020). The entry of SARS-CoV-2 into human cells is facilitated by the interaction of a receptor-binding domain in its viral spike glycoprotein ectodomain with the ACE2 receptor, therefore, activation of Nr2 by crocin may reduce the expression of ACE2 which could be beneficial in preventing viral entry to host cells. Furthermore, since crocin represses the inflammatory process by reducing cytokine production and oxidative stress; it might play a similar role in protecting against lung injury associated with COVID-19 (Figure 1). In addition to directly causing an improvement in lung dynamics, crocin could significantly counteract the onset of the cytokine storm from resident macrophages. Therefore, crocin may potentially block acute effects of COVID-19, and its beneficial effects may extend to protecting other organs from the cytokine storm and reducing mortality. Another possible beneficial effect of crocin on COVID-19 could be related to the ability of this natural compound on upregulating of PPAR-γ expression. PPAR-γ acts on the transcription of the upstream inflammatory genes, thus preventing the cytokine over-production and becoming an attractive target for immunomodulatory (Esposito et al., 2020). It has been reported that stimulation of PPAR-γ can exert a regulatory role on the cytokine storm induced by viral infections. Reductions in PPAR-γ from SARS-CoV-2 may be an important effector of pulmonary inflammation and mechanistically involved in the pathogenesis of acute lung injury (Ciavarella et al., 2020). As such, use of crocin may serve a useful therapeutic role by helping to reverse the inflammatory changes induced by SARS-CoV-2. Overall, the well-documented anti-oxidative, anti-inflammatory, and immunomodulatory effects of crocin along with the anti-fibrotic and pulmono-protective effects of this phytochemical make it a potential herbal candidate as adjuvant therapy for patients with COVID-19. The importance of this letter is due to the fact that crocin is a nutraceutical that could be safely used in patients with COVID-19. Therefore, we suggest further clinical studies on the effects of crocin against SARS-Cov-2 infection.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS
Morteza Ghasemnejad-Berenji: Conceptualization; Writing-original draft.
REFERENCES

Akbari, G., Mard, S. A., Dianat, M., & Mansouri, E. (2017). The hepatoprotective and MicroRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxidative Medicine and Cellular Longevity, 2017(1-11). https://doi.org/10.1155/2017/1702967

Cecchini, R., & Cecchini, A. L. (2020). SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses, 143, 110102. https://doi.org/10.1016/j.mehy.2020.110102

Ciavarella, C., Motta, I., Valente, S., & Pasquinelli, G. (2020). Pharmacological (or synthetic) and nutritional agonists of PPAR-γ as candidates for cytokine storm modulation in COVID-19 disease. Molecules, 25(9), 2076. https://doi.org/10.3390/molecules25092076

Delgado-Roche, L., & Mesta, F. (2020). Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research, 51(5), 384–387. https://doi.org/10.1016/j.arcmed.2020.04.019

Dianat, M., Radan, M., Badavi, M., Mard, S. A., Bayati, V., & Ahmadizadeh, M. (2018). Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: The role of Nrf2 anti-oxidant system in preventing oxidative stress. Respiratory Research, 19(1), S8. https://doi.org/10.1186/s12931-018-0766-3

Du, J., Chi, Y., Song, Z., Di, Q., Mai, Z., Shi, J., & Li, M. (2018). Crocin reduces Aspergillus fumigatus-induced airway inflammation and NF-κB signal activation. Journal of Cellular Biochemistry, 119(2), 1746–1754.

Esposito, G., Pesce, M., Seguelia, L., Sanseverino, W., Lu, J., Corpetti, C., & Sarnelli, G. (2020). The potential of cannabidiol in the COVID-19 pandemic. British Journal of Pharmacology, 177(21), 4967–4970. https://doi.org/10.1111/bph.15157

Hashemzaei, M., Mamoulakis, C., Tsarouhas, K., Georgiadi, G., Lazopoulos, G., Tsatsakis, A., Shojaei Asrami, E., & Rezaee, R. (2020). Crocin: A fighter against inflammation and pain. Food and Chemical Toxicology, 143, 111521. https://doi.org/10.1016/j.fct.2020.111521

McCord, J. M., Hybertson, B. M., Cota-Gomez, A., Geraci, K. P., & Gao, B. (2020). Nrf2 activator PB125® as a potential therapeutic agent against COVID-19. Antioxidants, 9(6), 518. https://doi.org/10.3390/antiox9060518

Wang, S., Le, T. Q., Kurihara, N., Chida, J., Cisse, Y., Yano, M., & Kido, H. (2010). Influenza virus—cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. The Journal of Infectious Diseases, 202(7), 991–1001. https://doi.org/10.1086/656044

Zaghloul, M. S., Said, E., Suddek, G. M., & Salem, H. A. (2019). Crocin attenuates lung inflammation and pulmonary vascular dysfunction in a rat model of bleomycin-induced pulmonary fibrosis. Life Sciences, 235, 116794. https://doi.org/10.1016/j.lfs.2019.116794

Zeinali, M., Zirak, M. R., Rezaee, S. A., Karimi, G., & Hosseinizadhe, H. (2019). Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: A review. Iranian Journal of Basic Medical Sciences, 22(4), 334.