Intracellular events regulating cross-presentation

Claudia S. Wagner1, Jeffrey E. Grotzke2 and Peter Cresswell*

Department of Immunobiology, Yale University Medical Center, New Haven, CT, USA

Cross-presentation plays a fundamental role in the induction of CD8+ T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteosomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation.

Keywords: dendritic cell, MHC class I, endocytosis, phagocytosis

Cross-presentation: an overview

In the broadest sense, cells contain two different antigen processing pathways that serve to present peptides to T lymphocytes. These pathways and the machinery required for them have distinct roles in the immune system and function to sample different environments for antigenic peptides. Major histocompatibility complex class I (MHC-I) molecules are loaded in the endoplasmic reticulum (ER) with peptides derived from degradation of cytosolic proteins by the proteasome, and these MHC-I-peptide complexes are then surface expressed and presented to CD8+ T cells. MHC-II molecules exit the ER in association with the invariant chain, which occupies their peptide binding groove. In the endocytic pathway proteolysis results in the degradation of the invariant chain leaving the residual CLIP fragment in the binding groove. In a process catalyzed by HLA-DM (in humans) CLIP is replaced by peptides derived by proteolysis from proteins resident or internalized into the endocytic pathway. After surface expression, these are presented to CD4+ T cells. Hence, MHC-I generally serves as a reporter of intracellular infection, while MHC-II senses the antigens present in the extracellular milieu.

We now know that in professional antigen presenting cells (APC), peptides derived from exogenously acquired antigens can be presented on MHC-I. This process is known as cross-presentation. Furthermore, CD8+ T cells can be primed to such antigens by dendritic cells (DCs), a process termed cross-priming. The term was originally introduced to describe CD8+ T cell sensitization to minor histocompatibility antigens in transplantation situations (Bevan, 1976). The importance of cross-priming for the generation of CD8+ T cell-mediated immunity in general is a topic of debate, but cross-priming certainly plays an important role during priming of anti-tumor CD8+ T cells as well as priming the CD38+ response to pathogens which do not directly infect DCs. Although various cell types, even including non-professional antigen-presenting cells like endothelial cells or modified 293T cells (Bagai et al., 2005; Giodini et al., 2009), are able to cross-present under certain conditions, DCs are the most important cross-presenting cells in vivo (Jung et al., 2002). In mice, several DC subsets are competent for cross-presentation, with the lymphoid-organ resident CD8α+ DC (Heath et al., 2004; Hildner et al., 2008) and dermal migratory CD103+ DCs (Bedoui et al., 2009; Herzen et al., 2010) defined as the main cross-presenting DCs. The search for human counterparts specialized in cross-presentation is ongoing, and considerable progress in characterization of human DC subsets has been made lately, including the discovery of a likely equivalent to the mouse CD8α+ DC subset (Villadangos and Shortman, 2010).

Cross-presentation of exogenous antigens raises interesting and important biochemical and cell biological questions. How do internalized proteins that are localized in the endocytic system gain access to the MHC-I processing and presentation machinery normally present in the ER? Over three decades these have been spent determining how this process occurs. In a seminal study, Rock and colleagues demonstrated that presentation of exogenously derived antigens required proteosomal degradation, and therefore access to the cytosol (Kovacsics-Bankowsky and Rock, 1995). Consistent with this the ribosomal inhibitor protein golulin was found to inhibit protein synthesis when added to cells, demonstrating that an intact protein can access the cytosol. An alternative mechanism, described by Harding and colleagues, involves endosomal...
processing of exogenous antigens and peptide binding to MHC-I in the endocytic system (Pfeifer et al., 1993). This is known as the vacuolar pathway. We now know that cross-presentation can occur through multiple pathways, including antigenic processing in the endocytic system and/or in the cytosol after translocation from endosomes or phagosomes. MHC-I binding after cytosolic processing may occur through several different mechanisms. After antigens reach the cytosol and are degraded by the proteasome, the resulting peptides can be transported into the ER or phagosomes via the transporter associated with antigen processing (TAP), where loading onto MHC-I can occur (Ackerman et al., 2003; Guermonprez et al., 2003; Houde et al., 2003; Groetzke et al., 2009). To complicate matters further, recent evidence suggests that peptide transport into phagosomes may involve an as yet unidentified, novel transporter (Merzougui et al., 2011).

Although the broad pathways by which cross-presentation occurs have been elucidated, only now are more definitive molecular studies emerging. Moreover, many questions are still unanswered. Which cytosolic pathway is most widely used by cells? What role, if any, do endocytic receptors play in cross-presentation? How do antigens reach the cytosol? What factors help achieve the exquisite efficiency of this process that must occur in vivo? Are pathogens able to specifically inhibit cross-presentation? How is cross-presentation regulated in DCs?

This review will focus on the known molecular mechanisms of cytosolic cross-presentation, while the other mechanisms will be covered by other authors. The second half of the review concentrates on the role of DC maturation in the context of cross-presentation.

ANTIGEN UPTAKE BY PROFESSIONAL APC

Early studies of cross-presentation demonstrated that the process is not simply a matter of extracellular processing and cell surface peptide loading (Pfeifer et al., 1993; Kovacsovics-Bankowski and Rock, 1995). For particulate antigens, phagocytosis is required for subsequent cross-presentation, and considerable evidence suggests that endocytosis is required for soluble antigens. The endocytic pathway ultimately leads to lysosomes and the phagocytic pathway progresses to phagolysosomes, but extensive proteolysis is incompatible with successful cross-presentation and a number of papers have implicated early endosomes and phagosomes in cross-presentation. A key question is whether different receptors deliver cargo preferentially to compartments that are capable of mediating cross-presentation. Several groups have shown that during and/or subsequent to phagocytosis, ER components are delivered to the phagosome (Ackerman et al., 2003; 2006; Guermonprez et al., 2003; Houde et al., 2003). A major focus has been on the role of this process in delivering the components necessary for translocation of antigens into the cytosol (see below), but in fact most or all of the components necessary for cross-presentation, including MHC-I and the peptide loading complex (PLC), as well as ER-derived retrotranslocation machinery, are recruited to the phagosome, creating a cross-presentation competent organelle. Whether delivery of ER components to the phagosome is required for cytosolic cross-presentation has been difficult to determine, but at least one study suggests that MyD88 signaling enhances delivery of ER components to endosomes and that this is required for cross-presentation of soluble ovovBUMIN (OVA; Burgdorf et al., 2008).

If phagocytosis of antigens results in the formation of a compartment that is competent for cross-presentation, is the ability to cross-present determined solely by the ability to phagocytose the antigen? It should be noted that an ER contribution to phagosomes occurs not only in DC, but also in cells that are much less efficient at cross-presentation, such as macrophages (Gagnon et al., 2002; Houde et al., 2003) and even a normally non-phagocytic cell line (Giodini et al., 2009). Furthermore, in Dictyostelium, not only are the ER proteins calnexin and calreticulin recruited to phagosomes, they appear to be required for phagocytosis (Müller-Taubenberger et al., 2001). This suggests that ER-recruitment is an evolutionarily conserved process and not restricted to cells that can cross-present. Consistent with this, introduction of a phagocytic receptor (FcγRIIa) into the non-cross-presenting cell line HEK293T leads to ER-recruitment to the phagosome and cross-presentation (Giodini et al., 2009). However, it is difficult to tease apart the role of receptor-specific effects and phagocytosis itself. Moreover, there is experimental evidence demonstrating that phagocytosis is not always sufficient to mediate cross-presentation, even in DC (Schnorrer et al., 2006).

Macrophages and DCs express a multitude of cell surface receptors that can mediate endocytosis and phagocytosis, but there is a dearth of data regarding the role that individual cell surface receptors and their associated intracellular trafficking and signaling pathways play in the process. Under certain conditions, specific receptors such as HCE-205 may induce cross-presentation more efficiently than other receptors such as DC-SIGN (Bozzacco et al., 2007), but the mechanisms that lead to this superiority have not been addressed. How could the internalizing receptor influence cross-presentation? First, certain receptors could traffic to a specific compartment that is highly competent for cross-presentation. Such a compartment may avoid the decreased pH and increased proteolysis detrimental for the process (Savina et al., 2006). Second, receptors could directly recruit additional components necessary for cross-presentation. Third, receptors and associated signaling adaptors could initiate a specialized signaling response that initiates cross-presentation. These receptor-specific responses could also serve to determine whether the cross-presented antigen promotes tolerance or an active CD8 response. The ability of a receptor to mediate cross-presentation and cross-priming in vivo is likely dependent on the antigen and its immunogenic potential, the delivery mechanism, co-stimulation, and the immune microenvironment.

The following receptors have been implicated in cross-presentation: Fc receptors (FcR), scavenger receptors (SR), DC-SIGN (Dendritic Cell-specific ICAM-3 Grabbing Non-integrin), MR (Mannose Receptor), DCE-205 (Dendritic and Epithelial Cells, 205 kDa), CLECA (C-type lectin domain family 9A), DCLR (DC ImmunoReceptor), and LOX-1 (Lectin-like Oxidized Low-density Lipoprotein Receptor 1). Regnault et al., 1999; Bonifaz et al., 2002; Delneste et al., 2002; Berrin et al., 2003; Shakhshiro et al., 2004; Tacken et al., 2005; Burgdorf et al., 2006; Bozzacco et al., 2007; Sancho et al., 2008, 2009; Kleebeisky et al., 2010). In the case of MR, which internalizes OVA due to mannose/lactosylation, cross-presentation is dependent on co-ligation of OVA with MR.
TLR4 from contaminating endotoxin and subsequent MyD88 signaling (Burgdorf et al., 2008). Thus, internalization alone is not necessarily sufficient for cross-presentation, even by professional APCs. Consistent with this, cross-presentation by CLEC9A, a receptor specifically expressed on the cross-presenting DC subset (Sancho et al., 2008), requires a hemITAM motif (containing only a single YxxL motif) in the cytoplasmic tail and subsequent syk signaling for efficient cross-presentation (Sancho et al., 2009). Notably, CLEC9A is required for recognition, but not uptake of its physiological ligand (necrotic cells). This suggests that cross-presentation may use one receptor for antigen uptake and a different receptor/adaptor protein to trigger the appropriate pathway in DCs.

The precise mechanisms by which receptor-induced signal- ing pathways initiate cross-presentation are poorly understood. In the case of CLEC9A-mediated cross-presentation, syk was found to associate with the hemITAM motif and be required for cross-presentation (Sancho et al., 2009). Similarly, cells deficient in FcγR or DAP12 adaptors, which signal through ITAM motifs, are deficient in cross-presentation of particulate antigens (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data), and mutation of the hemITAM motif in DC-SIGN does not affect cross-presentation of OVA bound to latex beads (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004). These cases suggest that ITAM or hemITAM phosphorylation and subsequent syk signaling may be an important pathway. However, an antigen bound to MR can be cross-presented even though MR lacks an ITAM motif or known association with an ITAM-containing adaptor (Burgdorf et al., 2006). Similarly, the scavenger receptor SR-A1 can mediate cross-presentation while lacking an ITAM or known association of an ITAM-containing adaptor (C. Wagner and P. Cresswell, unpublished data). Finally, DcR3 is able to cross-present targeted antigen even though it has an ITIM inhibitory motif (Klechevsky et al., 2010). These data suggest that there may be a general, unidentified signaling requirement for cross-presentation, FcR signaling is initiated by ITAM phosphorylation and syk recruitment (Swanson and Hoppe, 2004).
The process of ERAD is very similar to antigen translocation into the cytosol for cross-presentation. Initial studies demonstrated that one potential retrotranslocation channel, sec61, is localized to phagosomes and that ubiquitinated proteins and proteasomes are associated with phagosomes (Guerronprez et al., 2003; Houde et al., 2003). Furthermore, ERAD components such as sec61, p97, and Bip can be co-immunoprecipitated with exogenously added OVA and vice versa (Imai et al., 2005). Together, these data suggest that the factors necessary for retrotranslocation are accessible to internalized antigens, even if the nature of the retrotranslocation channel(s) is unclear. The presence of functional retrotranslocation machinery has been confirmed by our laboratory and others. After internalization of latex beads and luciferase by a DC-like cell line and subsequent phagosome-lysosome fusion, translocation of phagosomal luciferase across the membrane requires addition of cytosol or recombinant p97 (Ackerman et al., 2006), demonstrating that p97 can function in phagosomal translocation as well as ERAD. Moreover, knockdown of p97 function by either expression of a dominant negative mutant or by siRNA inhibits cross-presentation (Imai et al., 2005; Ackerman et al., 2006). In addition to p97, hsp90 has also been implicated in both retrotranslocation and cross-presentation. Cells deficient in Hsp90 or to cytosolic refolding of proteins after translocation (Giodini et al., 2009), suggesting that processing of the internalized protein or at least breakdown of immune complexes or apoptotic cells are required prior to translocation. Chaperones such as calnexin, calreticulin, Bip, and the ER enzyme protein disulfide isomerase (PDI), have all been shown to localize to phagosomes and may play a role in protein unfolding (Ackerman et al., 2003; Guerronprez et al., 2003; Houde et al., 2003; Imai et al., 2005). For the case of ERAD substrates containing disulfide bonds, several studies demonstrate that reduction is required for, or enhances, retrotranslocation (Molinari et al., 2002; Dong et al., 2008; Ushioda et al., 2008). Similarly, for cross-presented antigens with disulfide bonds, it is likely that reduction and unfolding is required for cytosolic access. The only known thiol reductase present in phagosomes and lysosomes prior to ER acquisition is γ-interferon inducible lysosomal thiol reductase (GILT). GILT-deficient DC are deficient in their ability to cross-present gB, a HSV-1 glycoprotein that contains five disulfide bonds, but showed no defect in cross-presentation of a protein that did not contain disulfide bonds (Singh and Cresswell, 2010). Furthermore, GILT-deficient mice showed a decrease in cross-priming anti-gB and anti-influenza-specific CD8+ T cells. These results underscore the importance of protein unfolding for cross-presentation, and demonstrate that further characterization of the mechanisms that aid protein unfolding while at the same time limiting lysosomal proteolysis are needed.

CROSS-PRESENTATION IN THE CONTEXT OF DC MATURATION

The ability to cross-present not only differs between various cell types or DC subsets, but the maturation state of the cross-presenting DCs also plays an important role. Microbial products, inflammatory cytokines or mediators of tissue damage induce a process of maturation in DCs that, besides changes in phenotype and motility, also involves changes in handling and presentation of antigens.
of antigens. These modifications significantly affect MHC-II-restricted presentation, but also influence cross-presentation. Maturation is a potentially attractive approach to dissecting the molecular mechanisms regulating cross-presentation. However, care needs to be taken to separate effects on T cells resulting from enhanced co-stimulation from a true effect on the formation of MHC-I-peptide complexes.

Depending on the timing there are different scenarios for how DC maturation may affect cross-presentation. One can ask how DC activation affects cross-presentation of antigens that are acquired together with or shortly prior to the maturation event, such as antigens acquired from virally infected cells. Experimentally this may be represented by the administration of a defined antigen followed by or combined with specific ligand for innate immune receptors, such as Toll-like receptors (TLRs). Alternatively one can ask if DCs are still able to cross-present antigens that they encounter in an already matured state. This would be important in a situation in which an individual encounters a pathogen while already undergoing a response to prior infection. We will discuss the latter situation first.

Cross-presentation in mature DCs

A rationale for cross-presentation being controlled through maturation comes from analogy to presentation on MHC-II. Both cross-presentation and MHC-II presentation serve to prime T cell responses, with antigens presented by either MHC-I to CD8+ T cells or to CD4+ T cells via MHC-II. MHC-II-restricted antigen presentation is tightly regulated during maturation at several levels, including alterations in endocytic proteolysis, re-distribution of peptide loaded MHC-II molecules to the cell surface, enhanced stability of surface complexes and reduction of MHC-II biosynthesis (Wilson and Villadangos, 2005). With few exceptions (Dtram and Trombetta, 2010; Platt et al., 2010), these maturation-induced changes generally prevent MHC-II presentation of antigens by mature DCs. The proposed benefit is preservation of the MHC-II peptide complexes derived from antigens acquired at the onset of maturation (Villadangos et al., 2005). A pathogenic-derived antigen that is acquired in the periphery by immature DCs will still be presented by mature DCs that have migrated to lymph nodes to prime CD4+ T cells.

For cross-presentation, the situation is more complex. There is a considerable overlap with pathways used simultaneously for endogenous MHC-I presentation, a process that is still operational in mature DCs (Gil-Torregrosa et al., 2004; Wilson et al., 2006). Supporting this notion, MHC-I synthesis and trafficking is not subjected to the same control during maturation as MHC-II. MHC-I synthesis is increased during maturation (Cella et al., 1997; Rescigno et al., 1998) and stability is not affected (Cella et al., 1997; Delamarre et al., 2003) or is only moderately affected (Ackerman and Cresswell, 2003). One could argue that cross-presentation should still be operational in mature DCs to allow initiation of responses toward secondary pathogens, although the relatively short lifespan of mature DCs and the constant renewal by fresh immature DCs could take care of that problem (Kamath et al., 2002). If cross-presentation is indeed regulated by maturation in order to focus or preserve certain antigens, what could be the mechanism? Exogenous material taken up at the onset of maturation may be retained intracellularly until the mature DC reaches the lymph node, creating a form of antigenic memory. In mouse DC-like cell lines and to some extent in bone marrow DCs, storage of soluble (Lutz et al., 1997) or immune complexed antigens (van Montfoort et al., 2009) in distinct compartments with reduced proteolytic activity has been observed, either in immature DCs (Lutz et al., 1997) or in mature DCs (van Montfoort et al., 2009). Whether specialized storage compartments for exogenous antigens exist in all cross-presenting DCs is unknown. Also unknown is how antigen deposition and release are regulated. In a human DC-like cell line trafficking of MHC-I molecules to the cell surface was delayed in an immature state, suggesting that intracellular retention of pre-formed MHC-I-peptide complexes may occur (Ackerman and Cresswell, 2003).

Regardless of theoretical considerations, published evidence does not clearly argue for or against regulation of cross-presentation during maturation. As often, the truth may lie somewhere in between: cross-presentation in mature DCs may be compromised under certain circumstances, depending on the maturation stimulus and the nature or the form of the antigen that is encountered. With a few exceptions, studies have employed the OVA antigen to study the effect of maturation on cross-presentation. It should be noted that bone marrow-derived DCs require an additional maturation stimulus during or shortly after antigen uptake to cross-present soluble OVA (Delamarre et al., 2005; Gil-Torregrosa et al., 2004). Depending on the study, pre-treatment of DCs with certain TLR ligands such as CpG, LPS, or poly I:C, either did not alter or enhanced cross-presentation of subsequently acquired antigens (Regnault et al., 1999; Machy et al., 2000; Datta et al., 2003; Henri et al., 2007; Weck et al., 2007; Durman and Trombetta, 2010; Platt et al., 2010). On the other hand, the ability to cross-present can also be lost after contact with TLR ligands, both after administration in vivo (Wilson et al., 2006) as well as after prolonged treatment of DCs in vitro (Gil-Torregrosa et al., 2004; Weck et al., 2007). We found that peptidoglycan, a common impurity in LPS preparations, can inhibit cross-presentation of viral antigens via signaling through cytoplasmic NOD receptors (Wagner and Cresswell, 2012).

Decreased antigen uptake (Gil-Torregrosa et al., 2004; Wilson et al., 2006; Weck et al., 2007) and a lack of transfer of antigen to the cytosol (Gil-Torregrosa et al., 2004) have been proposed to explain reduced cross-presentation by mature DCs. Decreased uptake is likely a contributing factor but cannot be the sole explanation, as mature DCs still take up considerable amounts of antigens, even if reduced compare to immature DCs (Datta et al., 2003; Durman and Trombetta, 2010; Platt et al., 2010; Wagner and Cresswell, 2012; C. Wagner and P. Cresswell, unpublished data). In vivo, antigen availability is certainly also a regulatory factor. For example, immature DCs residing in the periphery may have access to pathogen-derived antigens at a local site of infection, unlike mature DCs that have already migrated to the lymph node and never come in contact with the new antigen. Regarding inhibition of antigen transfer to the cytosol, it would be very interesting to understand exactly how this process is impaired in mature DCs. Are the antigens routed to different compartments that lack components of the still unidentified transport machinery? Are the
antigens degraded within endosomal/lysosomal compartments before they can be retrotranslocated? These are potential levels of regulation that are specific for cross-presentation and would not interfere with endogenous MHC-I peptide loading and presentation.

PHAGOSOME MATURATION AND ANTIGEN DEGRADATION

Major contributions to our understanding of cross-presentation came from a series of studies on the regulation of proteolysis and pH in DCs. DCs have a lower content of lysosomal proteases compared to macrophages (Delamarre et al., 2005) and the kinetics of acquisition of distinct proteases during phagosome maturation is slower in DCs than macrophages (Lennon-Dumenil et al., 2002). Amigorena and co-workers demonstrated that, unlike macrophages, DCs limit acidification in phagosomes and inhibit proteolysis, thus promoting cross-presentation (Savina et al., 2006). DCs maintain pH levels above pH 7 for several hours post-phagocytosis (Savina et al., 2006), in contrast to macrophages where the pH drops to pH 5 within 15 min (Yates et al., 2005).

The mechanism involves recruitment of the NADPH oxidase NOX2 to the phagosome, which drives alkalization of the phagosomal lumen and is recruited in a Rab27-dependent fashion (Savina et al., 2006; Janicic et al., 2007). In CD8α+ DC, the GTPase Rac2 is responsible for assembly of the NOX2 complex on phagosomes, while Rac1 directs NOX2 to the plasma membrane in CD8α− DC (Savina et al., 2009). A high pH would serve to limit proteolysis and thus favor cross-presentation. An elevated pH might also contribute in other ways to successful cross-presentation, such as influencing the conformation of proteins associated with translocation of antigens or proper assembly of the PLC. Although limited acidification may facilitate cross-presentation, a certain degree of proteolysis is necessary for pre-processing particulate antigens before translocation into the cytosol or for complete processing of antigens in case of the vacuolar pathway of cross-presentation. DCs may selectively use proteases active at a higher pH than most lysosomal proteases. One example is cathepsin S (Kirschke et al., 1989) which is enriched in DCs (Lennon-Dumenil et al., 2002) and has been shown to be involved in processing of antigens for the vacuolar pathway of cross-presentation (Shen et al., 2004).

Dendritic cell activation has been demonstrated to modify phagosome maturation and proteolysis. The assembly of the vacuolar proton pump in lysosomes is enhanced after activation with LPS, resulting in enhanced acidification and higher proteolytic activity in phagosomes (Lennon-Dumenil et al., 2002). This could mean that despite an overall enhancement of lysosomal activity after TLR4 triggering, proteolytic activity in phagosomes is actually reduced, potentially preserving antigens for cross-presentation. However, the latter study was based on a method using interiorized beads coated with probes specific for cysteine proteases, and LPS-treated DCs tend to be "sticky" and immobilize beads at the cell surface. Surface-bound beads could potentially lead to an overestimation of initial uptake compared to untreated DC and also result in a mixed population of phagosomes, due to slow internalization of the surface bound beads over time (C. Wagner and P. Cresswell, unpublished data). Two further reports link NOX2 activity to TLR signaling and efficient intracellular bacterial killing: in human DC, NOX2 activity was increased in TLR ligand matured DCs (Vulcano et al., 2004), and in macrophages, NOX2 assembly was regulated by MyD88, a central adaptor protein for TLR signaling (Laroux et al., 2003). Thus, TLR signaling appears to regulate cross-presentation by modulating NOX2 activity and phagosomal pH.

CROSS-PRESENTATION OF ANTIGENS COMBINED WITH MATURATION STIMULI

How does maturation that occurs simultaneously with or after antigen uptake relate to the ability to cross-present? CD8α+ cells, which are inferior to CD8α− DCs in terms of cross-presentation, can be activated through FcγR triggering and become competent for cross-presentation of immune complexes (den Haan and Bevan, 2002). Besides immune complexes (Regnault et al., 1999; den Haan and Bevan, 2002), cross-presentation can be induced by certain stimuli such as LPS (Gil-Torrérosa et al., 2004; West et al., 2004), disruption of cell contacts, or CD40L stimulation (Delamarre et al., 2003), but not by CpG (Datta et al., 2003; Delamarre et al., 2003), low-dose LPS, Poly (I:C), or TNFα (Delamarre et al., 2003). This means that OVA cross-presentation is induced by only a subset of maturation conditions that stimulate MHC-II presentation. Cross-presentation of physiological relevant antigens, such as viral proteins from infected cells, may have different requirements for maturation stimuli. These antigens are already delivered in a complex mix of activating signals, such as pathogen-derived TLR ligands and signals from dying cells. Under experimental settings, no additional external maturation stimuli are needed to induce cross-presentation.

What mechanisms are responsible for maturation-induced changes in cross-presentation? Early after activation, DCs transiently sequester endogenous ubiquitinated proteins in cytosolic aggregates, termed DALIS by Pierre and colleagues, a phenomenon proposed to favor the processing of internalized exogenous antigens for cross-presentation (Lehoux et al., 2004). It has been proposed that cross-presentation involves early endosomal compartments (Burgdorf et al., 2008; Di Puccio et al., 2008; Belizaire and Unanue, 2009). During maturation, changes in phagosomal/endosomal routing could potentially alter the fate of antigens. Blander and Medzhitov (2006b) proposed that the presence of a TLR ligand with an antigen in a phagosome favors MHC-II processing. Only antigens from phagosomes with TLR triggering are efficiently routed to lysosomes where invariant chain processing occurs. This offers a solution to the problem how an antigen-presenting cell would not interfere with endogenous MHC-I peptide loading and presentation.
CONCLUDING REMARKS

Understanding how maturation affects cross-presentation in vitro and in vivo is important for vaccination strategies and other immunotherapies, where the induction of maturation is a prerequisite for eliciting an effective T cell response. In addition, dissecting which factors influence the ability to cross-present during maturation will advance our understanding of the molecular process of cross-presentation. Studying maturation in vitro allows one to work with one cell type under defined conditions, where the modification of a single parameter, such as the addition of a TLR ligand, changes the outcome of cross-presentation. However, any advances obtained from in vitro systems need to be verified in more complex in vivo settings, a step where knockout animals have proven to be an invaluable tool. Models using infectious agents that can subvert antigen processing pathways will also contribute to our understanding. Last but not least, having the necessary reagents and readouts to follow antigen others than OVA is a major requirement for further progress.
compartment in dendritic cells. Nat Rev Immunol 12, 397–402.

Houde, M., Bertholet, S., Gagnon, E., and Leserman, L. (2007). Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. Eur J Immunol 37, 1184–1193.

Holleter, K., Edfors, B., Putha, W. E., Diamond, M., Matsushita, K., Molony, A., Barden, S., Barden, B. U., Unemori, E. R., Diamond, M. S., Schreiber, K. D., Murphy, T. L., and Murphy, K. M. (2006). Rab31 catalyzes a critical role for CHMP2B–dendritic cell cross-presentation by dendritic cell-autonomous degradation (ERAD) in cytoplasmic reticulum–associated degradation (ERAD) substrates. J Biol Chem 281, 243–246.

Hori, Y., Kamata, T., Kamada, M., Musashi, K., Nakamura, T., and Umeda, H. (2008). Essential role of endogenous host heat shock protein 90 in cross-presentation of antigens by dendritic cells. Immunity 29, 189–206.

Ishiguro, T., Imai, T., Kajiwara, C., Minokamo, S., Nakamura, T., and Umeda, H. (2011). Essential role of endogenous host heat shock protein 90 in cross-presentation of antigens by dendritic cells. Immunity 29, 189–206.

Ishiguro, T., Imai, T., Kajiwara, C., Minokamo, S., Nakamura, T., and Umeda, H. (2011). Essential role of endogenous host heat shock protein 90 in cross-presentation of antigens by dendritic cells. Immunity 29, 189–206.

Jancic, C., Sestas, A., Wamnier, C., Telmachov, T., El-Benna, J., Drag, P. M., Paoletti, S., Geraud-Precalvez, M. A., Raymond, G., Sebra, M. C., and Amigorena, S. (2007). Robust regulation of phospho-arginine and NADPH oxidase activity in dendritic cells. J Biol Chem 282, 3677–3678.

Jewell, E., Turco, C., Volkovis, C., Bolda, J., Finley, D., Wolf, D. H., and Sommer, T. (2002). Protein selection from the ER requires polyubiquitination and the AAA-ATPase Vma6p. Nat Cell Biol 4, 154–159.

Jung, S., Unmune, D., Wong, P., Sano, G., De Los Santos, K., Sparautes, T., Wu, S., Vithoven, S., Ko, E., Zarafa, F., Parer, E. G., Littman, D. R., and Lang, R. A. (2002). In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. J Immunol 171, 211–220.

Kamath, A. T., Heers, S., Batten, F., Tough, D. F., and Shortman, K. (2002). Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1736–1741.

Kichikawa, H., Wunderlenders, B., Brossmer, D., and Bierer, B. E. (1995). Cathpsisin S from bovine spleen. Purification, purification, intracellular localization and action on proteins. Biochem J 298, 467–473.

Kliempt, K., Harnik, A., Li, Gao, Y., Blanck, J. P., Liu, M., O’Barr, A., Agoune-Dalet, O., Klicare, P., Thompson-Aires, L., Zarrak, Z., Reiter, Y., Palucka, A. K., Zarrouk, G., and Rauch, U. (2013). Cross-primer CD8+ T cells by targeting antigens to human dendritic cells through DCBi. Blood 116, 1685–1697.

Koepfmann, J. O., Allgöwer, J., Haier, E., Bulbuc, N., Sipp, P., Norfin, J., Hammed, G. J., and Momberg, E. (2000). Exogenous antigen is not required for dendritic cell cross-presentation by dendritic cell-autonomous degradation (ERAD) substrates. J Biol Chem 275, 7166–7173.

Lara, M. R., Buus, P., Kleijmeer, M. J., Boungue, M., Aarsman, C. M., Urich, V. M., Geuze, H. J., Trieu, J., Demondion, D., Douhet, J., and Reginato-Castagnini, P. (1997). Intracellular routes and selective retention of antigens in mildly acidic cathepsin D by human epithelial cell-associated membranes of microsomal origin. J Biol Chem 272, 5727–5736.

Macphie, P., Serra, K., and Leserman, L. (2003). XRCC1-mediated cross-presentation of exogenous antigen is acquired by Fcgamma receptor-mediated endocytosis in dendritic cells. Nat Immunol 4, 848–857.
Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 113, 6075–6080.

Russell, D. G., and Yates, R. M. (2005). Toll-like receptors and phagosome maturation. Proc. Natl. Acad. Sci. U.S.A. 102, 1275–1276.

Molmedin, M., Galli, C., Piccaluga, V., Ponten, M., and Pingue, P. (2012). Sequential assistance of molecular chaperones and transkit formation of corelated components during protein degradation from the ER. J. Euk. Biol. Chem. 59, 258–267.

Morraki, C., Conforti, L., Cossuoli, J., Wildy, A. L., and Coleman, M. F. (2009). Evolutionary divergence of valosin-containing protein/cytoplasmic dynein cryo protein 46 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J. 276, 1208–1220.

Muller-Tidowbergen, A., Lupas, A. N., Li, H., Erie, S., Summet, E., and Geimch, G. (2001). Calbucin and calcinin in the endoplasmic reticulum are important for phagocytosis. EMBO J. 20, 6772–6782.

Pfeifer, J. D., Wick, M. J., Roberts, R. M., Conforti, L., Coadwell, J. M., Molinari, M., Galli, C., Piccaluga, V., Amigone, S. (1999a). Fcgamma a cytosolic chaperone required for histocompatibility complex class I-receptor-mediated induction of den- deguration proteins. Nature 398, 899–903.

Sanchez, D., Mosier-Sau, S., D’Onofrio, P., Schulte, O., Rogers, N. C., Pannemang, D. J., Carle, J. R., and Russ a, C. (2006). Identification of a dendritic cell receptor that couples sensing of nucleic to immunity. Nature 458, 155–165.

Singh, B., and Crosson, P. (2010). Defective de novo vaccination of viral antigens in ILT4-def mice. Science 329, 1594–1598.

Swanson, J. A., and Hepp, A. D. (2014). The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Bio. 100, 1105–1110.

Tacken, P. J., De Vries, J. L., Gij in, K., Josten, B. W., Doh, R., Rotn, J. F., Sau, S. J., Come, P. C., To, W., and Trim, E. S., and Figdor, C. G. (2005). Effective induction of naive and recoc T-cell responses by targeting antigen to human dendritic cells via a humanized anti-CD40 antibody. Blood 106, 1278–1285.

Tefor, M., Navarro-Gaia, F., Huerta, J., Burro, H., Moro, J., Isve, K., and Seto, K. (2016). Hepp is required for transfer of the choler toxin A1 subunit from the endoplas- micum reticulum to the cytosol. J. Biol. Chem. 290, 31621–31627.

Trombeta, E. S., Ebersold, M., Garrett, W., Pippadi, M., and Mallin, L. (2003). Activation of immunofunctional dysfuction during dendritic cell maturation. Science 299, 1400–1403.

Ushio, K., Holst, I., Araki, J., Janun, G., Thomas, D. V., and Nagata, K. (2008). Efril is required as a dea- sile chaperone for degradation of matified proteins in the ER. Science 323, 560–562.

Van Montfoort, N., Camps, M. G., Khem, S., Frit, P. V., Wes, S. J., and Wolf, J. J., Griffith, J. M., Gou, H., Van Hall, T., Verbois, J. S., Meke, C. J., and Onsen, B. (2005). Antigen storage compartments in mature dendritic cells facilitate prolonged cytokine: T lymphocyte cross-priming capacity. Proc. Natl. Acad. Sci. U.S.A. 102, 6770–6775.

Vesale, S. S., and Brandt, J. L. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell. Bio. 9, 944–957.

Villadangos, J. A., Schnei, F. R., and Heath, B. W., and Villadangos, J. A. (2004). Systemic activation of dendritic cells by Toll-like receptor ligands or malari infection impairs Th1 T-cell response and presentation and antimalarial immunity. Nat. Immuni. 7, 165–172.

Wagner, C. S., and Crosson, P. (2012). TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate antigen presentation. J. Immunol. 188, 560–568.

Wick, M. M., Grancalz, F., D swept, M., Stearn, C., Reiszner, M., and Brossart, P. (2007). TLR ligands differentially affect uptake and pre- sentation of cellular antigens. Blood 100, 3893–3894.

Wolfs, H. W., Santer, R. G., Zira, Z., Ljungmen, H. G., Pugno, A. R., and Warts, C. (2005). Enhanced den- dritic cell antigen capture via toll-like receptor-inithed actin remodeling. Science 303, 157–157.
A. (2005). Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. U.S.A. 102, 14132–14138.
Zehnder, M., Chasan, A. I., Schuette, V., Embgenbroich, M., Quast, T., Kolanus, W., and Burgdorf, S. (2011). Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. Proc. Natl. Acad. Sci. U.S.A. 108, 9933–9938.
Zhong, X., Shen, Y., Ballar, P., Aposhian, A., Agami, R., and Fang, S. (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J. Biol. Chem. 279, 43676–43684.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 March 2012; accepted: 14 May 2012; published online: 04 June 2012.

Copyright © 2012 Wagner, Grotzke and Cresswell. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

This article was submitted to Antigens in Antigen Presenting Cell Biology, a specialty of Frontiers in Immunology.