Growth and yield responses of forage sorghum ratoon to different inorganic fertilizers

F Wakano¹, B Nohong² and S Nompo²
¹Post Graduate Student, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
²Laboratory of Forage and Pasture Management, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia

Email: budiman_ek58@yahoo.com

Abstract. The purpose of this study was to determine effect of the level of NPK fertilizers on the growth and yield of sweet sorghum forage. Experiment was arranged in a completely randomized design consisting of five treatments and three replications. Each treatment was given a dose of NPK fertilizers (16:16:16) with different doses. The treatments were P1 by 100 kg N/ha (3,125 g NPK/polybag); P2 by 150 kg N/ha (4,625 g NPK/polybag); P3 by 200 kg N/ha (6,125 g NPK/polybag); P4 = 250 kg N/ha (7,625 g NPK/polybag) and P5 = 300 kg N/ha (9,125 g NPK/polybag). Parameters observed were growth and production of sorghum. Results showed that NPK fertilizer was a significantly (P <0.05) by plant height, internode length and leaf blade length, while stem diameter, leaf width and number of leaves per plant was no significantly (P>0.05). Application of NPK fertilizer was a significant (P<0.05) by production of leaf dry matter, stem dry matter and leaf/stem ratio. It was concluded that NPK fertilizer increased the growth and production of sorghum ratoon.

1. Introduction
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop grown in the world [1] that is widely adaptable and has great potential to be developed in Indonesia [2]. Sorghum also reported as a multi-purpose cereal, considered one of the most important crops for grain production for human consumption and livestock [3–5]. The advantage of the sorghum is can be harvested two to three times, including main and ratoon crops, so it can supply raw materials for carbohydrates, animal feed or bioethanol in a sustainable manner [6]. Ratooning practice was begun by cutting the stalks of sorghum to 1 inch high with a mower [8]. The main crop stumps should be left with at least 2–3 nodes for proper ratooning [7]. To achieve high yields, proper use of nutrients is an option. Fertilizers is a source of nutrients for plants. Due to the growth and production of plants require adequate supply and a balanced amount of all nutrients [11]. To maximize productivity by optimizing uptake of plant nutrients, adding fertilizers can increase forage production and grain yields for cereal crops [12]. The purpose of this study was to determine the effect of the level of NPK fertilizers application on the growth and production of ratoon sorghum. For this purpose, four levels of NPK fertilizer were used in this study.
2. Materials and methods

This research was conducted at the Faculty of Animal Science, Hasanuddin University Makassar, South Sulawesi. Research was carried out from March to June 2020 using Sorghum ratoon that was obtained from previous research. Each polybags were planted 2 plant. After the plants are harvested by cutting the stems, several new shoots (ratoon) would grow. New shoots (ratoon) are growing, each of which is selected 2 shoots, so that in one polybag there are 4 ratoons. Each stem has been cut in two buds (ratoon) so that in each polybag there are 4 shoots (ratoon) maintained for 45 days. The experiments were arranged in a completely randomized design (CRD) according to [13]. A total of 15 polybags pot filled with three shoots (ratoon) were divided into 5 treatments and each treatment was repeated 3 times. Each treatment was given a dose of NPK fertilizers (16:16:16) with different doses. The treatment were: P1 = 100 kg N/ha (3,125 g NPK/plastic pot); P2 = 150 kg N/ha (4,625 g NPK/polybag); P3 = 200 kg N/ha (6,125 g NPK/polybag); P4 = 250 kg N/ha (7,625 g NPK/polybag); P5 = 300 kg N/ha (9,125 g NPK/polybag). Fertilization is carried out singly around the stem of the plant. Plants are given sufficient water and maintained for 45 days, then measurements of plant growth and pruning are taken to determine forage production. The data obtained in this study was processed using SPSS 16, duncan test conducted against different treatment factors to show significant influence.

3. Results and discussion

3.1. Growth

Results of analysis of variance showed that application of NPK fertilizers was significantly (P<0.05) by plant height, internode length, leaf length, number of leaves per plant. While stem diameter and leaf width was no significantly (P>0.05) (table 1).

Parameters	Fertilizers level				
	P1	P2	P3	P4	P5
Plant height (cm)	155±18.61a	191±7.21b	192±8.08a	197±10.44a	198±18.68a
Stem diameter (cm)	1.13±0.7a	1.17±0.10b	1.32±0.14a	1.61±0.31a	1.47±0.42a
Internode length (cm)	14.89±2.07c	18.44±1.54b	21.78±1.35a	22.00±1.76a	22.28±0.94a
Leaf blade length (cm)	86.67±0.58b	95.00±4.58ab	96.33±4.72a	97.00±2.00a	97.00±7.94a
Leaf width (cm)	5.00±0.50a	5.83±0.29a	5.83±0.29a	6.17±0.29a	6.50±0.87a
Number of leaves/plant	8.00±0.00c	8.66±0.58bc	9.00±0.58ab	9.33±0.58ab	9.67±0.58a

a, b, c Different superscripts within the same row showed significant differences (P <0.05).

Based on analysis of variance showed that the plant heights given NPK fertilizers at the P2, P3 and P4 levels were significantly (P<0.05) higher than those in P1 (control), while the P2, P3 and P4 levels were not significantly different (P>0.05). The results of this study were in line with the reports of Hussein and Alva [20] that increasing the level of NPK fertilizers is increased the height of sorghum plants.

The internode length increased significantly (P<0.05) from P1 to P2 and significantly (P<0.01) from P1 to P3, P4 and P5. The effect of fertilization on internode length in sorghum has also been reported by Nohong dan Islamiyati (2014) [14]. The length of the blades increased not significantly (P>0.05) from P1 to P2, but increased significantly to P3, P4 and P5. The number of leaves per plant at P5 increased significantly (P<0.01) compared to P1 (control) and significantly (P<0.05) compared to P2, P3 and P4. This study showed that the fertilizer can slow the senescence of leaves. According to [15] that compound fertilizers can slow the senescence of leaves.

3.2. Production

The application of NPK fertilizers was significantly (P<0.05) by the production of stem dry matter, leaf dry matter and stem leaf ratio (table 2). Statistical analysis showed that the dry matter production at P2, P3 and P4 was significantly (P<0.05) higher than in P1 (control), while the P2, P3 and P4 levels were
not significantly different (P>0.05). The increase in dry matter production was closely related to the increase in leaf length, leaf width and number of leaves per plant (table 1). The production of stem dry matter showed that the application of NPK fertilizer at the P2, P3 and P4 levels was significantly (P<0.05) higher than the P1 level (control), while the P2, P3 and P4 levels were not significantly different (P>0.05). The increase of dry matter production was related to the increase in internode length and stem diameter which increased due to fertilization. The leaf stem ratio was decreased because the fast growing plants were followed by enlargement and stem elongation cause the leaf/stem ratio to decrease. Increased dry matter production of sorghum with NPK fertilization has also been reported by several researchers, namely [17–19].

Fertilizers level	P1	P2	P3	P4	P5
Replication	25.13±6.48^b	38.00±8.86^a	40.41±3.23^a	40.66±3.12^a	43.70±2.68^a
1	5.87±3.80^b	13.74±3.68^a	16.48±0.46^a	17.06±2.51^a	17.88±0.27^a
2	5.91±1.46^b	2.79±0.24^a	2.45±0.23^a	2.75±0.21^a	2.61±0.16^a

Different superscripts within the same row showed significant differences (P <0.05).

4. Conclusion
Based on the results and discussion, it can be concluded that NPK fertilizer increases the growth and production of forage sorghum.

References
[1] Reddy P S 2017 Pearl Millet, Pennisetum glaucum (L.) R. Br. In. Millets and Sorghum Biology and Genetic Improvement Ed. Patil J V (Oxford: Willey Blackwell)
[2] Efendi R, Fatmawati dan Buniyamin Z 2013 Prospek Pengelolaan Ratum Sorgum. Dalam: Sorgum Inovasi Teknologi dan Pengembangan Ed Sumarno, Damardjati D S eds (Jakarta: IAARD Press) pp 205 – 212
[3] Ratnavathi C V and Komala V V 2016 Sorghum Grain Quality In: Sorghum Biochemistry: An Industrial Perspective Ed Ratnavathi CV Patil J V and Chavan U D (London: Academic Press).
[4] Krupa K N, Ningaraj D, Shashidhar H E, Harinikumar K M, Manojkumar H B, Bharani S and Turairdor V 2017 Mechanisms of drought tolerance in sorghum: A Review Int. J. Pure App. Biosci. 5 221–37.
[5] Vijaylaxmi S K, Pahuja P, Kumari and Joshi U N 2019 Genetic divergence studies for agromorphological, insect pest and quality parameters in mini core collection of forage sorghum Forage Res. 44 237–41.
[6] Tsuchihashi N and Goto Y 2008 Year-round cultivation of sweet sorghum [Sorghum bicolor (L.) Moench] through a combination of seed and ratoon cropping in Indonesia savanna Plant Prod. Sci. 11 377–84.
[7] Jones D B, Snyder G H 1987 Seeding rate and row spacing effects on yield and yield components of ratoon rice Agronomy Journal 79 627–29.
[8] Livingston S D and Coffman C G 1997 Ratooning Grain Sorghum on the Texas Gulf Coast Agritlife Extention (Texas: A&M Sistem).
[9] Chauhan J S Vergara B S and Lopez S S F 1985 Rice ratooning (Manila, Philippines: IRRI Research Paper Series Number 102).
[10] Oad FC, Pompe S C, Memon N, Oad N L, Zia-Ul-Hassan 2002 Rice ratooning management Parkistan J. App. Sci. 2 29–35.
[11] Mengel K and Kirkby E A 1987 Principles of plant nutrition 4th Ed (Switzerland: International Potash Institute) p 687.
[12] Malakouti M J 2008 The effect of micronutrients in ensuring efficient use of macronutrients Turk J. Agric 32 215–20.
[13] Steel G D and Torrie J H 1993 *Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik* Edisi Kedua (Jakarta: PT. Gramedia Pustaka Utama).

[14] Nohong B and Islamiyati 2018 The effect of bio-slurry fertilization on growth, dry matter yield and quality of hybrid sudangrass and sorghum (*Sorghum bicolor*) Samurai-2 variety *Bulgarian J. Agric. Sci.* 24 592–98.

[15] Wang Y and Shi Y 2020 Effects of different fertilizer ratio on senescence of flag leaf in winter wheat *Bangladesh J. Bot.* 49 85–90.

[16] Usman M, Nangere M G and Musa I 2015 Effect of three levels of npk fertilizer on growth parameters and yield of maize-soybean intercrop *Int. J. Sci. Res. Public.* 5 1–6.

[17] Katayama K, Ito O and Adu-Gyamfi J J 1999 Effects of NPK fertilizer combinations on yield and nitrogen balance in sorghum or pigeonpea on a vertisol in the semi-arid tropics soil *Sci. Plant Nutr.* 45 143–50.

[18] Mbah E U, Muoneke C O and Okpara D A 2017 Effect of compound fertilizer on the yield and productivity of soybean and maize in soybean/maize intercrop in southeastern Nigeria *Tropical and Subtropical Agroecosystems* 7 87–95.

[19] Muhammad S Y, Sarki F A and Sani K 2018 Effects of poultry manure based compost and NPK fertilizer on the growth and yield of sorghum (*Sorghum bicolor* L. Moench) in Bauchi state Nigeria *GSC Biological and Pharmaceutical Sciences* 2 16–24.

[20] Hussein M M and Alva A K 2014 Growth, yield and water use efficiency of forage sorghum as affected by NPK fertilizer and deficit irrigation *Am. J. Plant Sci.* 5 2134–40.