A MULTIPLICITY RESULT FOR ORTHOGONAL GEODESIC CHORDS IN FINSLER DISKS

DARIO CORONA
Università di Camerino
Scuola di Scienze e Tecnologie
Camerino (MC), Italy

(Communicated by Yanyan Li)

Abstract. In this paper, we study the existence and multiplicity problems for orthogonal Finsler geodesic chords in a manifold with boundary which is homeomorphic to a N-dimensional disk. Under a suitable assumption, which is weaker than convexity, we prove that, if the Finsler metric is reversible, then there are at least N orthogonal Finsler geodesic chords that are geometrically distinct. If the reversibility assumption does not hold, then there are at least two orthogonal Finsler geodesic chords with different values of the energy functional.

1. Introduction. Let $(\bar{\Omega}, F)$ be a compact Finsler manifold of class C^3 with boundary $\partial \Omega \subset C^2$ and homeomorphic to an N-dimensional disk in \mathbb{R}^N, with $N \geq 2$ (see Section 2.1 for more details about Finsler metric).

Definition 1.1. A curve $\gamma : [a, b] \to \bar{\Omega}$ is a Finsler geodesic chord if

- it is a geodesic with respect to the Finsler metric F, namely in local coordinates it satisfies the geodesic equations
 \begin{equation}
 \ddot{\gamma}^i + \Gamma^i_{jk}(\gamma, \dot{\gamma}) \dot{\gamma}^j \dot{\gamma}^k = 0,
 \end{equation}

 where Γ^i_{jk} are the components of the Chern connection;

- $\gamma(a), \gamma(b) \in \partial \Omega$ and $\gamma([a, b]) \subset \Omega$.

If γ is also such that $\dot{\gamma}(a)$ and $\dot{\gamma}(b)$ are orthogonal to $T_{\gamma(a)} \partial \Omega$ and $T_{\gamma(b)} \partial \Omega$ respectively, i.e.

\[
\left. \frac{d}{ds} \left[F^2(\gamma(t), \dot{\gamma}(t)) + s \xi \right] \right|_{s=0} = 0, \quad \forall \xi \in T_{\gamma(t)} \partial \Omega, \ t = a, b,
\]

then γ is an orthogonal Finsler geodesic chord (OFGC).

The aim of this article is to estimate the number of OFGCs in $\bar{\Omega}$. This question arises from the study of the brake orbits in a potential well for a Hamiltonian system of classical type (cf. [25]). Indeed, using a Legendre transform and the Maupertuis-Jacobi principle, every brake orbit of a Hamiltonian system of classical type corresponds to a geodesic in a disk with endpoints on the boundary, where

2020 Mathematics Subject Classification. Primary: 70G75, 70H03, 58E10, 53B40.
Key words and phrases. Hamiltonian systems, brake orbits, variational methods, Finsler metric, manifolds with boundary.

* Corresponding author: Dario Corona.
the disk is endowed with a reversible Jacobi-Finsler metric. When the Hamiltonian system is natural, namely is of the form

$$H(q,p) = \sum_{i,j=1}^{N} g_{ij}(q) p^i p^j + V(q),$$

then the associated Jacobi-Finsler metric turns out to be a Riemannian metric. Seifert conjectured in [23] that there are at least \(N\) brake orbits in an \(N\)-dimensional potential well of a natural Hamiltonian system. In [19], the Seifert’s conjecture is proved whenever the Hamiltonian function is even and convex with respect to both \(q\) and \(p\). The general version of Seifert’s conjecture has been recently proved in [14], exploiting also some partial results achieved by the same authors in different previous works (cf. [8, 9, 10, 11, 12, 13]). In particular, in [8] every brake orbit of a natural Hamiltonian system is associated with an orthogonal geodesic chord in a regular and strictly concave Riemannian manifold. Proving an equivalent result for a Hamiltonian system of classical type (cf. [7]), every brake orbit in a potential well for such a kind of system could be seen as an OFGC in a compact strictly concave Finsler manifold with boundary homeomorphic to an \(N\)-dimensional disk.

Our first step will be to determine a sufficient condition for the existence of OFGCs: the non existence of Finsler geodesic chords that start orthogonally and arrive tangentially to the boundary of \(\Omega\). More formally, we give the following definition.

Definition 1.2. A curve \(\gamma : [a,b] \to \overline{\Omega}\) is an orthogonal-tangent Finsler geodesic chord (OTFGC) if it is a Finsler geodesic chord, \(\dot{\gamma}(a)\) is orthogonal to \(\partial \Omega\) and \(\dot{\gamma}(b) \in T_{\gamma(b)} \partial \Omega\).

Now we are ready to state our main result.

Theorem 1.3. Let \(\overline{\Omega} \subset M\) be an \(N\)-disk and \(F : TM \to [0, +\infty)\) a Finsler metric on \(M\). Then at least one of the following statements holds:

- there exists an orthogonal-tangent Finsler geodesic chord;
- if \(F\) is a reversible Finsler metric, then there exist at least \(N\) geometrically distinct OFGCs; if \(F\) is not reversible, then there are at least two OFGCs with different values of the Finsler energy functional.

Remark 1. By Theorem 1.3, the absence of OTFGCs in \(\overline{\Omega}\) implies the multiplicity of OFGCs. The absence of OTFGCs is a weaker assumption than convexity, as can be seen from the constructions given in Example 8.1. Moreover, as stated and proved in [13] for the Riemannian case, the absence of OTFGCs in \(\overline{\Omega}\) is an open condition with respect to the \(C^1\)-topology in the set of Finsler metrics in \(\overline{\Omega}\). Indeed, if all the geodesics that start orthogonally to \(\partial \Omega\) with respect to a Finsler metric \(F\) do not arrive tangentially to \(\partial \Omega\), the same is true for all the Finsler metric \(F\) that can be obtained with a small perturbation of \(F\).

Remark 2. If the Finsler metric \(F\) is not reversible, then an OFGC is not necessarily linked to a brake orbit of a Hamiltonian system. Indeed, a non reversible Jacobi-Finsler metric derives from a Hamiltonian function which is not even with respect to \(p\) (cf. [25]). For this kind of systems, there is not in general a one-one correspondence between OFGCs and brake orbits (cf. [7]).
In order to prove Theorem 1.3, we will follow a variational approach, seeing the geodesics as critical points of the Finsler energy functional

\[J(\gamma) = \frac{1}{2} \int_0^1 F^2(\gamma, \dot{\gamma}) ds, \]

defined on the set of \(H^{1,2} \)-curves that lie on \(\overline{\Omega} \) and with endpoints in \(\partial \Omega \). Indeed, the critical curves of \(J \) that do not touch the boundary in \((0,1)\) are Finsler geodesic chords and their existence and multiplicity can be obtained exploiting a suitable Lusternik and Schnirelmann category. However, due to the presence of the boundary, we have to deal with critical curves of \(J \) touching the boundary and with their regularity. In the Riemannian case, the techniques presented in [20] could be applied to obtain the desired regularity (cf. [13]). The same techniques could be applied in the Finsler setting requiring that if \(\nu : \partial \Omega \to T M \) is a unit normal vector field along \(\partial \Omega \), then for all \(q \in \partial \Omega \)

\[d_v F^2(q, \xi)[\nu] = 0, \quad \forall \xi \in T_q \partial \Omega. \] (2)

Under this assumption, a result weaker than Theorem 1.3 has been obtained in [6]. However, (2) does not hold for the energy function of a general Finsler metric (see Example 3.1). Consequently, we shall use a penalization argument to prove the regularity of the Finsler geodesics in a manifold with boundary, following the approach presented in [3] in the convex case.

2. Framework setup and notation. For the sake of presentation, we suppose that \(\overline{\Omega} \) is embedded into a \(N \)-manifold \(M \) containing \(\Omega \). Using the Whitney embedding theorem, we can see \(M \) as a smooth \((C^3) \) submanifold of \(\mathbb{R}^{2N} \), endowed with the Riemannian structure of the euclidean scalar product \(\langle \cdot, \cdot \rangle \) of \(\mathbb{R}^{2N} \). A coordinate system \((q^i) = (q^1, \ldots, q^N)\) on \(M \) naturally induces a coordinate system \((q^i, v^i)\), \(i = 1, \ldots, N \) on the tangent bundle \(TM \). If \(f \) is a real-valued function defined on \(TM \), then \(d_q f \) and \(d_v f \) will denote the derivatives of \(f \) with respect to \(q \) and \(v \) respectively. In a local chart, the derivatives with respect to \(q^i \) and \(v^i \) will be denoted by \(\partial_{q^i} \) and \(\partial_{v^i} \). We will use the Einstein notation, implying summation over a set of indexed terms in a formula. The norm \(||\cdot|| : TM \to \mathbb{R} \) is that one induced by the euclidean product in \(\mathbb{R}^{2N} \), while we denote by \(||\cdot||_{L^p} \) the norm in a \(L^p \) space, for any \(1 \leq p \leq \infty \).

2.1. On Finsler metric. We consider a Finsler metric on \(M \), namely a function \(F : TM \to \mathbb{R} \) that satisfies the following properties:

- it is continuous on \(TM \) and \(C^3 \) on \(TM \setminus 0 \);
- it is fiberwise positively homogeneous of degree one, namely
 \[F(q, \lambda v) = \lambda F(q, v) \quad \forall \lambda > 0; \]
- it is strictly positive unless \(v \neq 0 \);
- for all \((q, v) \in TM \setminus 0\), the symmetric bilinear form \(g_v : T_q M \times T_q M \to \mathbb{R} \)
 \[g_v(\xi, \eta) := \frac{1}{2} \frac{\partial^2}{\partial s \partial t} [F^2(q, v + s \xi + t \eta)]_{s=t=0} \]
 is positive definite. In local coordinates, this means that the matrix
 \[g_{ij}(q, v) = \frac{1}{2} \frac{\partial^2}{\partial v^i \partial v^j} F^2(q, v) \] (3)
 is positive definite.
Moreover, if $F(q,v) = F(q,-v)$ for all $q \in \mathcal{M}$ and $v \in T_q\mathcal{M}$, we say that it is reversible. In the following we denote the function F^2 by G.

The interested reader can find more details about Finsler geometry in [24].

2.2. Geometry of Ω. There exists a function $\Phi : \mathcal{M} \to \mathbb{R}$ of class C^2 such that $\Omega = \Phi^{-1}(-\infty, 0]$, $\partial \Omega = \Phi^{-1}(0)$ and $d\Phi(q) \neq 0$ for every $q \in \partial \Omega$. For any $\delta > 0$, we set

$$\Omega_\delta = \Phi^{-1}([-\delta, \delta]).$$

By the C^2 regularity of Φ, there exists a $\delta_0 > 0$ such that

$$d\Phi(q) \neq 0, \quad \forall q \in \Phi^{-1}([-\delta_0, \delta_0]),$$

and such that Ω_{δ_0} is compact and $\Omega_{\delta_0} \subset \mathcal{M}$, for any $\delta \in [0, \delta_0]$. We also set

$$K_0 = \max_{q \in \Omega_{\delta_0}} \|\nabla \Phi(q)\|.$$ \hspace{1cm} (5)

Remark 3. Since Ω_{δ_0} is compact, there exists a constant $\ell > 0$ such that the following inequalities hold for every $q \in \Omega_{\delta_0}$ and $v \in T_q\mathcal{M}$:

$$\frac{1}{\ell} \|v\|^2 \leq G(q,v) \leq \ell \|v\|^2;$$

$$\|d_qG(q,v)\| \leq \ell \left(1 + \|v\|^2\right) \quad \text{and} \quad \|d_vG(q,v)\| \leq \ell \left(1 + \|v\|\right);$$

$$\|d^2_{vq}G(q,v)\| \leq \ell \left(1 + \|v\|^2\right) \quad \text{and} \quad \|d^2_{vv}G(q,v)\| \leq \ell \left(1 + \|v\|\right);$$

and if $v \neq 0$, then

$$\|d^2_{vv}G(q,v)\| \leq \ell.$$

Moreover, there exists a constant $\alpha > 0$ such that

$$d^2_{vv}G(q,v)[\xi, \xi] \geq \alpha \|\xi\|^2, \quad \forall q \in \Omega_{\delta_0}, \forall v \in T_q\mathcal{M} \setminus 0.$$ \hspace{1cm} (9)

Lemma 2.1. Set

$$\delta_m = \frac{\delta^2_0}{2\ell K_0^2}.$$ \hspace{1cm} (10)

If $x(0) \in \partial \Omega$ and $\mathcal{J}(x) \leq \delta_m$, then

$$\max_{s \in [0,1]} |\Phi(x(s))| \leq \delta_0,$$

where δ_0 was introduced in (4).

Proof. By (5) and (6) and using the Cauchy-Schwarz inequality, we have the following chain of inequalities

$$|\Phi(x(s))| = |\Phi(x(s)) - \Phi(x(0))| \leq \int_0^s |\langle \nabla \Phi(x), \dot{x} \rangle|ds \leq K_0 \int_0^s \|\dot{x}\|ds \leq K_0 \left(\int_0^1 \|\dot{x}\|^2ds \right)^{\frac{1}{2}} \leq K_0 \left(\ell \int_0^1 G(x, \dot{x})ds \right)^{\frac{1}{2}} \leq K_0 \sqrt{2\ell \mathcal{J}(x)} \leq \delta_0.$$

Definition 2.2. For every $q \in \mathcal{M}$ and $v \in T_q\mathcal{M} \setminus 0$, the Finsler Hessian of Φ at (q,v) is defined as

$$H_\Phi(q,v)[v,v] := \frac{d^2}{ds^2}(\Phi \circ \gamma)(0),$$

where γ is the geodesic of (\mathcal{M}, F) such that $\gamma(0) = q$ and $\gamma'(0) = v$.

Using the geodesic equations (1), in local coordinates \(H\Phi(q,v)[v,v] \) is given by
\[
(H\Phi)_{ij}(q,v)v^i v^j = \partial^2_{qq} \Phi(q)v^i v^j - \partial_{q^i} \Phi(q) \Gamma^k_{ij}(q,v) v^i v^j.
\] (11)

2.3. Sobolev and functional spaces. In the following, we consider the Sobolev spaces \(H^{1,2}([0,1], \mathbb{R}^{2N}) \) and
\[
H^1_0([0,1], \mathbb{R}^{2N}) = \{ V \in H^{1,2}([0,1], \mathbb{R}^{2N}) : V(0) = V(1) = 0 \}.
\]
For \(S \subset \mathcal{M} \), set
\[
H^{1,2}([0,1], S) = \{ x \in H^1([0,1], \mathbb{R}^{2N}) : x(s) \in S \text{ for all } s \in [0,1] \}.
\]
It is well known that \(H^{1,2}([0,1], \mathcal{M}) \) is a manifold of class \(C^2 \) and its tangent space at \(x \) is
\[
T_x \mathcal{M} = \{ \xi \in H^{1,2}([0,1], \mathbb{R}^{2N}) : \xi(s) \in T_{x(s)} \mathcal{M} \text{ for all } s \in [0,1] \}.
\]
Due to the presence of the boundary \(\partial \Omega \), not all the elements of \(T_x \mathcal{M} \) are always admissible variations, according to the subset of \(H^{1,2}([0,1], \mathcal{M}) \) we are considering. So we give the following definition.

Definition 2.3. Let \(Q \) be a non-empty subset of \(H^{1,2}([0,1], \mathcal{M}) \). Then \(\xi \in T_x \mathcal{M} \) is an *admissible infinitesimal variation of \(x \) in \(Q \)* if there exists an \(\epsilon > 0 \) and a differentiable function \(h : (-\epsilon, \epsilon) \times [0,1] \to \mathcal{M} \) such that
- \(h(0,s) = x(s) \);
- \(h(\tau,\cdot) \in Q \) for all \(\tau \in (-\epsilon, \epsilon) \);
- \(\frac{\partial h}{\partial \tau}(\tau,s)|_{\tau=0} = \xi(s) \).

The set of all admissible infinitesimal variation of \(x \) in \(Q \) is denoted by \(\mathcal{V}^- (x, Q) \).

Definition 2.4. Let \(Q \) be a non-empty subset of \(H^{1,2}([0,1], \mathcal{M}) \) and \(F \) a functional of class \(C^1 \) defined on \(Q \). A curve \(x \in Q \) is said \(\mathcal{V}^- \)-critical curve for \(F \) on \(Q \) if
\[
dF(x)[\xi] \geq 0, \quad \forall \xi \in \mathcal{V}^- (x, Q).
\]
The main functional space of our variational problem is
\[
\mathfrak{M} = \{ x \in H^{1,2}([0,1], \partial \Omega) : x(0), x(1) \in \partial \Omega \}.
\]
If \(x \in \mathfrak{M} \), then
\[
\mathcal{V}^- (x, \mathfrak{M}) = \left\{ \xi \in T_x \mathcal{M} : \langle \nabla \Phi(x(0)), \xi(0) \rangle = \langle \nabla \Phi(x(1)), \xi(1) \rangle = 0, \right.
\[
\left. \langle \nabla \Phi(x(s)), \xi(s) \rangle \leq 0 \text{ for any } s \in (0,1) \text{ such that } x(s) \in \partial \Omega \right\}.
\]
In other words, a vector field \(\xi \in T_x \mathcal{M} \) is in \(\mathcal{V}^- (x, \mathfrak{M}) \) if \(\xi(0) \) and \(\xi(1) \) are tangent to \(\partial \Omega \) and \(\xi(s) \) points inside \(\Omega \) whenever \(x(s) \in \partial \Omega \).

In \(H^{1,2}([0,1], \mathbb{R}^{2N}) \) we define the norm \(\| \cdot \|_{\ast} \) as
\[
\| \xi \|_{\ast} = \max \{ \| \xi(0) \|, \| \xi(1) \| \} + \left(\int_0^1 \| \dot{\xi} \|^2 ds \right)^{\frac{1}{2}},
\] (12)
while in \(H^{1,2}([0,1], \mathcal{M}) \) we define the distance function
\[
dist_{\ast}(x_1, x_2) = \max \{ \| x_1(0) - x_2(0) \|, \| x_1(1) - x_2(1) \| \}
\]
\[
+ \left(\int_0^1 \| \dot{x}_1(s) - \dot{x}_2(s) \|^2 ds \right)^{\frac{1}{2}}.
\] (13)
2.4. The Finsler energy functional. We consider on $H^{1,2}([0, 1], \mathcal{M})$ the Finsler energy functional

$$\mathcal{J}(\gamma) = \frac{1}{2} \int_{0}^{1} G(\gamma, \dot{\gamma}) ds.$$

The functional \mathcal{J} is of class C^1 and its differential is locally Lipschitz continuous [21, Theorem 4.1]. Its differential is

$$d\mathcal{J}(\gamma)[\xi] = \frac{1}{2} \int_{0}^{1} \left(d_q G(\gamma, \dot{\gamma})[\xi] + d_v G(\gamma, \dot{\gamma})[\dot{\xi}] \right) ds, \quad \forall \xi \in T_x \mathcal{M}. \quad (14)$$

For our purposes, in the following we will consider the restrictions of \mathcal{J} to some subsets of $H^{1,2}([0, 1], \mathcal{M})$, which will be denoted again with \mathcal{J}.

Set

$$\mathcal{C}(p, q, \mathcal{M}) = \{ x \in H^{1}([0, 1], \mathcal{M}) : x(0) = p, x(1) = q \} .$$

Then a curve $\gamma \in \mathcal{C}(p, q, \mathcal{M})$ is a Finsler geodesic parametrized with constant speed if and only if it is a critical point for \mathcal{J} on $\mathcal{C}(p, q, \mathcal{M})$. In local coordinates, a geodesic satisfies the equations

$$\dot{\gamma}^i + \frac{1}{2} g^{ij}(\gamma, \dot{\gamma}) \left(\partial_{q^2_{x\nu}} G(\gamma, \dot{\gamma}) \dot{\gamma}^k - \partial_{q^2} G(\gamma, \dot{\gamma}) \right) = 0,$$

where g^{ij} are the components of the inverse matrix of the fundamental tensor (3).

Denoting by Γ^i_{jk} the components of the Chern connection (see [24, Chapter 5]), the previous equations can be written as in (1).

2.5. Backward parametrization map. We define the backward parametrization map $\mathcal{R} : \mathcal{M} \to \mathcal{M}$ by

$$(\mathcal{R} x)(s) = x(1 - s), \quad \forall s \in [0, 1].$$

We say that $\mathcal{N} \subset \mathcal{M}$ is \mathcal{R}-invariant if $\mathcal{R}(\mathcal{N}) = \mathcal{N}$. On any \mathcal{R}-invariant set \mathcal{N}, the backward parametrization map \mathcal{R} induces an equivalence relation and we denote by $\overline{\mathcal{N}}$ the quotient space. Through this equivalence relation, we identify any element x of \mathcal{M} with its backward parametrization.

The map \mathcal{R} induces a map $\overline{\mathcal{R}} : \mathcal{V}^{-}(x, \mathcal{M}) \to \mathcal{V}^{-}(\mathcal{R} x, \mathcal{M})$ defined by

$$\overline{\mathcal{R}} \xi)(s) = \xi(1 - s).$$

Lemma 2.5. Let F be a reversible Finsler metric. If x is a \mathcal{V}^{-}-critical curve for \mathcal{J} on \mathcal{M}, then also $\mathcal{R} x$ is a \mathcal{V}^{-}-critical curve for \mathcal{J} on \mathcal{M}.

Proof. Set $y = \mathcal{R} x$ and for any $\zeta \in \mathcal{V}^{-}(y, \mathcal{M})$, set $\xi = \overline{\mathcal{R}} \zeta \in \mathcal{V}^{-}(x, \mathcal{M})$. Then, setting $t = 1 - s$, we obtain

$$d\mathcal{J}(x)[\xi] = \frac{1}{2} \int_{0}^{1} \left(d_q G(x, \dot{x})[\xi] + d_v G(x, \dot{x})[\dot{xi}] \right) ds$$

$$= \frac{1}{2} \int_{0}^{1} \left(d_q G(y, \dot{y})[\xi] + d_v G(y, \dot{y})[\dot{xi}] \right) dt$$

$$= \frac{1}{2} \int_{0}^{1} \left(d_q G(y, \dot{y})[\xi] + d_v G(y, \dot{y})[\dot{xi}] \right) dt = d\mathcal{J}(y)[\zeta].$$

Consequently, if $d\mathcal{J}(x)[\xi] \geq 0$ for all $\xi \in \mathcal{V}^{-}(x, \mathcal{M})$, then also $d\mathcal{J}(y)[\zeta] \geq 0$ for all $\zeta \in \mathcal{V}^{-}(y, \mathcal{M})$, so $y = \mathcal{R} x$ is a \mathcal{V}^{-}-critical curve for \mathcal{J} on \mathcal{M}. \qed
2.6. Ljusternik and Schnirelmann relative category.

Definition 2.6. Let X be a topological space and Y a closed subset of X. A closed subset F of X has relative category equal to $k \in \mathbb{N}$, $\text{cat}_{X,Y}(F) = k$, if k is the minimal positive integer such that $F \subset \bigcup_{i=0}^{k} A_i$, where $\{A_i\}_{i=0}^{k}$ is a family of open subset of X satisfying:

- $F \cap Y \subset A_0$;
- if $i \neq 0$, A_i is contractible in $X \setminus Y$;
- if $i = 0$, there exists $h_0 \in C_0([0,1] \times A_0, X)$ such that $h_0(1, A_0) \subset Y$ and $h_0([0,1], A_0 \cap Y) \subset Y$.

The following lemma describes an \mathcal{R}-invariant subset \mathcal{C} of \mathfrak{M} whose relative category will play a central role in the proof of our multiplicity result.

Lemma 2.7. There exists a continuous map $\gamma : \partial \Omega \times \partial \Omega \to \mathfrak{M}$ such that

- $\gamma(A, B)(0) = A, \gamma(A, B)(1) = B$;
- $A \neq B \implies \gamma(A, B)(s) \in \Omega, \forall s \in [0,1]$;
- $\gamma(A, A)(s) = A, \forall s \in [0,1]$;
- $R\gamma(A, B) = \gamma(B, A)$.

Proof. Since $\overline{\Omega}$ is a Riemannian N-disk, there exists an homeomorphism $\Psi : \overline{\Omega} \to \mathbb{D}^N$. We define $\tilde{\gamma}(A, B)(s) = \Psi^{-1}((1-s)\Psi(A) + s\Psi(B)) \forall A, B \in \partial \Omega$.

The construction above produces curves that are a priori only continuous. In order to produce curves with an $H^{1,2}$-regularity, it suffices to use a broken geodesic approximation argument.

After choosing a function $\gamma : \partial \Omega \times \partial \Omega \to \mathfrak{M}$ as in Lemma 2.7, we define

$\mathcal{C} = \{ \gamma(A, B) : A, B \in \partial \Omega \}$,

$\mathcal{C}_0 = \{ \gamma(A, A) : A \in \partial \Omega \}$.

In particular, \mathcal{C}_0 is the set of constant paths on the boundary $\partial \Omega$. The multiplicity of OFGCs for reversible Finsler metrics is based on the relative category

$$\text{cat}_{\mathcal{C},\mathcal{C}_0} \mathcal{C} \geq N,$$

while for the non-reversible case we exploit the following inequality

$$\text{cat}_{\mathcal{C},\mathcal{C}_0} \mathcal{C} \geq 2.$$ \hspace{1cm} (16)

The inequalities (15) and (16) have been proved in [10] and [12] respectively.

For our purposes, we need to define the following quantity

$$\delta_M = \max_{x \in \mathcal{C}} J(x).$$ \hspace{1cm} (17)

3. Regularity of the V^--critical curves for \mathcal{J} on \mathfrak{M}. The main goal of this section is to prove that either every non-constant V^--critical curve for \mathcal{J} on \mathfrak{M} is an OFGC or there exists an OTFGC. Towards this aim, we need to provide the following regularity result.
Proposition 1. Let $x \in \mathcal{M}$ be a \mathcal{V}^--critical curve for \mathcal{J} on \mathcal{M}. Then x has $H^{2,\infty}$-regularity, namely \dot{x} is absolutely continuous and $\dot{x} \in L^\infty([0,1],\mathbb{R}^N)$. Moreover, setting $C_x = \{s \in [0,1] : x(s) \in \partial \Omega\}$, there exists a function $\lambda \in L^\infty([0,1],\mathbb{R})$ such that
\[d_q G(x,\dot{x}) - \frac{d}{ds} d_v G(x,\dot{x}) = \lambda \nabla \Phi(x) \]
holds almost everywhere, $\lambda \leq 0$ a.e. in $[0,1]$, $\lambda(s) = 0$ if $s \notin C_x$ and
\[\lambda = \frac{H_\Phi(x,\dot{x})[\dot{z},\dot{x}]}{g^{ij}(x,\dot{x})\partial_q \Phi(x)\partial_q \Phi(x)}, \quad a.e. \text{ in } C_x. \]

The previous regularity result can be proved in the Riemannian case using the techniques introduced in [20]. That kind of proof relies on the existence of a non-zero vector field μ on $\partial \Omega$ such that $g(\xi,\mu) = 0$ for all $\xi \in T\partial \Omega$, where g is the Riemannian metric. However, that method cannot be exploited in the Finsler case, since the orthogonality condition between two vectors η, ξ is not symmetric. For this reason, there could not exist a vector field μ on $\partial \Omega$ such that $\mu(q) \neq 0$ and $d_v G(q,\xi)[\mu] = 0$ for all $q \in \partial \Omega$ and $\xi \in T_q \partial \Omega$, as shown by the following example.

Example 3.1. Let $\Omega = \{z \in \mathbb{R}^3 : \|z\| < 1\}$ and
\[F(z,v) = ((v^1)^p + (v^2)^p + (v^3)^p)^{\frac{1}{p}}, \]
for $p > 2$. In local coordinates, the orthogonality condition $d_v G(z,\xi)[\mu] = 0$ reads as
\[\frac{1}{2} d_v F^2(q,\eta)[\xi] = g_{\eta}(\eta,\xi) = 0, \]
is not symmetric. For this reason, there could not exist a vector field μ on $\partial \Omega$ such that $\mu(q) \neq 0$ and $d_v G(q,\xi)[\mu] = 0$ for all $q \in \partial \Omega$ and $\xi \in T_q \partial \Omega$, as shown by the following example.

Since we cannot use the techniques presented in [20], we should employ other methods to prove the regularity of the \mathcal{V}^--critical curves. In [4], the regularity of Euler-Lagrange orbits for a general Tonelli-Lagrangian of class C^2 in a compact manifold with boundary is achieved applying directly the definition of critical curve for a nonsmooth functional, which in our setting is equivalent to the definition of \mathcal{V}^--critical curve. Because of its technicality, we will not follow that approach and we will prove Proposition 1 using a penalization method. Since the critical curves of the penalized functional must lie in the interior of an open set, their regularity can be proved by a standard argument. Then, we can prove the regularity of the \mathcal{V}^--critical curves of the functional taking the limit to remove the penalization term. The penalization method in a manifold with boundary has been exploited, for instance, in [15], [16] and in [3] for the Riemannian, Lorentzian and Finsler case respectively. In particular, the regularity of Finsler geodesics in a domain with boundary is proved in [3] assuming the domain to be strictly convex. Since we do
not require this assumption, we will exploit the uniqueness of the local minimum of
the energy functional defined on the set of curves with fixed endpoints.
For any $[a, b] \subset [0, 1]$, we define the functional
\[
\mathcal{J}^{a,b} : H^{1,2}([0,1], \mathcal{M}) \to \mathbb{R}
\]
by
\[
\mathcal{J}^{a,b}(x) = \frac{1}{2} \int_a^b G(x, \dot{x}) \, ds
\]
and we set
\[
\mathcal{C}([a, b], p, q, \Omega_\delta) = \{ \gamma \in H^{1,2}([a, b], \Omega_\delta) : \gamma(a) = p, \gamma(b) = q \},
\]
for any $p, q \in \Omega$ and $\delta \leq \delta_0$, where δ_0 has been defined in (4). For the sake
of presentation, we denote $\mathcal{C}([a, b], p, q, \Omega_\delta)$ by \mathcal{C}_δ when we have fixed $[a, b]$ and
$p, q \in \Omega$ and no confusion may arise. We consider on $\mathcal{C}([a, b], p, q, \Omega_\delta)$ the penalized
functional
\[
\mathcal{J}_\delta(\gamma) = \mathcal{J}^{a,b}(\gamma) + \int_a^b \chi_\delta(\Phi(\gamma)) \, ds,
\]
where the function $\chi_\delta : (-\infty, \delta] \to \mathbb{R}$ is defined by
\[
\chi_\delta(t) = \begin{cases}
0, & \text{if } t \leq 0, \\
\frac{e^{\frac{t^2}{(\delta - t)^2}}}{(\delta - t)^2}, & \text{if } 0 \leq t < \delta.
\end{cases}
\]
By definition of χ_δ we have that
\[
\chi_\delta'(t) = \frac{2\delta}{t(\delta - t)} \chi_\delta(t).
\]
The following lemma, known as Gordon’s lemma (cf. [18]), stands at the core of the
penalization method, because it allows to prove that \mathcal{J}_δ attains its minimum on \mathcal{C}_δ.

Lemma 3.2 (Gordon’s lemma). Let $(\gamma_n)_n$ be a sequence in $\mathcal{C}([a, b], p, q, \Omega_\delta)$ such that
\[
\int_a^b G(\gamma_n, \dot{\gamma}_n) \, ds \leq k < +\infty, \quad \forall n \in \mathbb{N},
\]
for some $k > 0$. If there is a sequence $(s_n)_n$ in $[a, b]$ such that
\[
\lim_{n \to \infty} \Phi(\gamma_n(s_n)) = \delta,
\]
then
\[
\lim_{n \to \infty} \int_a^b \chi_\delta(\Phi(\gamma_n)) \, ds = +\infty.
\]

Proof. Recalling the definition of K_0 and ℓ in (5) and (6) respectively, for any
$s \in [a, s_n]$ we have
\[
\Phi(\gamma_n(s)) - \Phi(\gamma_n(s)) = \int_s^{s_n} \langle \nabla \Phi(\gamma_n(\sigma)), \dot{\gamma}_n(\sigma) \rangle d\sigma \leq \int_s^{s_n} K_0 \| \dot{\gamma}_n(\sigma) \| d\sigma
\]
\[
\leq K_0 (s_n - s)^{\frac{1}{2}} \left(\ell \int_s^{s_n} G(\gamma_n(\sigma), \dot{\gamma}_n(\sigma)) d\sigma \right)^{\frac{1}{2}} \leq C(s_n - s)^{\frac{1}{2}},
\]
for some strictly positive constant C that depends on ℓ, K_0 and k, but not on n. Then
\[
0 < \delta - \Phi(\gamma_n(s)) \leq C(s_n - s)^{\frac{1}{2}} + (\delta - \Phi(\gamma_n(s)))
\]
and
\[
\frac{1}{(\delta - \Phi(\gamma_n(s)))^2} \geq \frac{1}{2 \left(C^2 (s_n - s) + (\delta - \Phi(\gamma_n(s)))^2 \right)}.
\]
Since $\Phi(\gamma_n(s_n)) \to \delta > 0$, for n sufficiently large $\Phi(\gamma_n(s_n)) > \frac{2}{3}\delta$ and there exists a sequence $\bar{s}_n < s_n$ such that

$$\Phi(\gamma_n(\bar{s}_n)) = \frac{1}{3}\delta.$$

From (21) we get that

$$(s_n - \bar{s}_n)^2 \geq \frac{1}{3C}\delta > 0.$$

Clearly we can choose \bar{s}_n such that $\Phi(\gamma_n(s)) > \frac{1}{3}\delta$, $\forall s \in (\bar{s}_n, s_n)$.

Thus, integrating both hands sides of (22) we obtain

$$\int_{a}^{b} \chi_{\delta}(\gamma_n(s)) \, ds \geq \frac{1}{9} \int_{\bar{s}_n}^{s_n} \frac{\delta^2}{2(C^2(s_n - s) + (\delta - \Phi(\gamma_n(s_n))^2)} \, ds,$$

and passing to the limit we get the thesis.

\[\square \]

Lemma 3.3. For any $\delta \in (0, \delta_0)$, \mathcal{J}_{δ} has a minimum on \mathcal{C}_{δ}.

Proof. Since \mathcal{J}_{δ} is bounded from below, there exists a sequence $(\gamma_n)_n$ in \mathcal{C}_{δ} such that

$$\inf_{\gamma \in \mathcal{C}_{\delta}} \mathcal{J}_{\delta}(\gamma) = \lim_{n \to \infty} \mathcal{J}_{\delta}(\gamma_n).$$

As a consequence, there exists a constant k such that

$$\frac{1}{2} \int_{a}^{b} G(\gamma_n, \gamma_n) \, ds \leq \mathcal{J}_{\delta}(\gamma_n) \leq k,$$

for n sufficiently large. The bounds in (6) imply that

$$\|\dot{\gamma}_n\|_2^2 = \int_{a}^{b} \|\dot{\gamma}_n\|^2 \, ds \leq \ell \int_{a}^{b} G(\gamma_n, \gamma_n) \, ds \leq 2\ell k,$$

so we can apply the Ascoli-Arzelá theorem and obtain a subsequence, which we denote by (γ_n) again, that uniformly converges to a curve $\bar{\gamma}$ and such that $\dot{\gamma}_n$ weakly converges to $\dot{\bar{\gamma}}$. To conclude the proof, we will show that

$$\inf_{\gamma \in \mathcal{C}_{\delta}} \mathcal{J}_{\delta}(\gamma) \geq \mathcal{J}_{\delta}(\bar{\gamma}).$$

By Lemma 3.2 and (23), there exists a strictly positive constant c such that $\delta - \Phi(\gamma(s)) > c$ for any $s \in [a, b]$. Hence, $\bar{\gamma} \in \mathcal{C}_{\delta}$ and

$$\lim_{n \to \infty} \int_{a}^{b} \chi_{\delta}(\Phi(\gamma_n)) \, ds = \int_{a}^{b} \chi_{\delta}(\Phi(\bar{\gamma})) \, ds.$$

(24)

The uniform convergence of γ_n to γ leads to

$$\lim_{n \to \infty} \int_{a}^{b} G(\gamma_n, \gamma_n) \, ds = \lim_{n \to \infty} \int_{a}^{b} G(\gamma, \gamma_n) \, ds.$$

(25)

Moreover, since we are on a compact subset of \mathcal{M}

$$(\xi \in L^2([a, b], \mathbb{R}^N) \to \int_{a}^{b} G(\gamma(s), \xi(s)) \, ds)$$

for any $\xi \in L^2([a, b], \mathbb{R}^N)$, we have

$$\int_{a}^{b} G(\bar{\gamma}(s), \xi(s)) \, ds$$

(26)
is continuous with respect the strong topology of L^2. By the convexity of G, the above functional is convex. As a consequence, it is also lower semicontinuous with respect to the weak topology and since γ_n weakly converges to $\tilde{\gamma}$ we obtain that
\[
\liminf_{n \to \infty} \int_a^b G(\gamma_n, \dot{\gamma}_n) ds \geq \int_a^b G(\tilde{\gamma}, \dot{\tilde{\gamma}}) ds.
\] (26)

Finally, by (24), (25) and (26) we obtain
\[
\inf_{\gamma \in C^1} J_\delta(\gamma) = \lim_{n \to \infty} J_\delta(\gamma_n) = \lim_{n \to \infty} \left(\frac{1}{2} \int_a^b G(\gamma_n, \dot{\gamma}_n) ds + \int_a^b \chi_\delta(\Phi(\gamma_n)) ds \right)
= \liminf_{n \to \infty} \left(\frac{1}{2} \int_a^b G(\gamma, \dot{\gamma}) ds + \int_a^b \chi_\delta(\Phi(\gamma)) ds \right)
\geq \frac{1}{2} \int_a^b G(\tilde{\gamma}, \dot{\tilde{\gamma}}) ds + \int_a^b \chi_\delta(\Phi(\tilde{\gamma})) ds = J_\delta(\tilde{\gamma}).
\]

\[\square\]

Lemma 3.4. For any $\delta \in (0, \delta_0)$, let γ_δ be a critical point of J_δ in C_δ. Then γ_δ is C^1 and, for any $\bar{s} \in [a, b]$ such that $\dot{\gamma}_\delta(\bar{s}) \neq 0$, there exists a neighbourhood I of \bar{s} such that γ_δ is twice differentiable in I and there it satisfies the equations
\[
\begin{align*}
\dddot{\gamma}_\delta + \dot{\gamma}_k \dot{\gamma}_\delta & = \chi_\delta(\Phi(\gamma_\delta)) \partial_{q^k} \Phi(\gamma_\delta)g^{k1}(\gamma_\delta, \dot{\gamma}_\delta).
\end{align*}
\] (27)

Moreover, a constant $E_\delta \in \mathbb{R}$ exists such that
\[
E_\delta = \frac{1}{2} G(\gamma_\delta, \dot{\gamma}_\delta) - \chi_\delta(\Phi(\gamma_\delta)) \quad \text{on } [a, b].
\] (28)

The proof of this lemma can be found in [3, Lemma 4.1].

Lemma 3.5. For any $\delta \in (0, \delta_0)$, let γ_δ be a minimum of J_δ on C_δ. Then there exists a constant $k_1 > 0$ such that
\[
J_\delta(\gamma_\delta) \leq k_1 < +\infty, \quad \forall \delta \in (0, \delta_0),
\] (29)

and
\[
\frac{1}{2} G(\gamma_\delta(s), \dot{\gamma}_\delta(s)) \leq \frac{k_1}{b - a} + \chi_\delta(\Phi(\gamma_\delta(s))) \quad \text{for all } \delta \in (0, \delta_0) \text{ and } s \in [a, b].
\] (30)

Proof. Let $\tilde{\gamma}$ be a curve in $C([a, b], p, q, \Omega)$. Then $\tilde{\gamma}$ is in C_δ for any $\delta \in (0, \delta_0)$, being $\bar{\Omega} \subset \Omega_\delta$. Since $\Phi(\tilde{\gamma}(s)) \leq 0$ for any $s \in [a, b]$, we set
\[
k_1 = J_\delta(\tilde{\gamma}) = \frac{1}{2} \int_a^b G(\tilde{\gamma}, \dot{\tilde{\gamma}}) ds + \int_a^b \chi_\delta(\Phi(\tilde{\gamma})) ds = \frac{1}{2} \int_a^b G(\tilde{\gamma}, \dot{\tilde{\gamma}}) ds < +\infty,
\]
and (29) follows. Since γ_δ is a minimum point of J_δ, it is a critical point of J_δ and by Lemma 3.4 there exists a constant E_δ such that (28) holds. Using (29) we get
\[
\int_a^b E_\delta \ ds = \int_a^b \left(\frac{1}{2} G(\gamma_\delta, \dot{\gamma}_\delta) - \chi_\delta(\Phi(\gamma_\delta)) \right) \ ds
= J_\delta(\gamma_\delta) - \frac{1}{2} \int_a^b \chi_\delta(\Phi(\gamma_\delta)) \ ds \leq k_1 - 2 \int_a^b \chi_\delta(\Phi(\gamma_\delta)) \ ds \leq k_1.
\]
Thus
\[
E_\delta \leq \frac{k_1}{b - a}, \quad \text{for all } \delta \in (0, \delta_0).
\]
and (30) holds. \[\square\]
Lemma 3.6. Let \((\gamma_\delta)_{\delta \in (0, \delta_0)}\) be a family in \(H^{1,2}([a, b], \mathcal{M})\) such that, for any \(\delta \in (0, \delta_0)\), \(\gamma_\delta\) is a minimum of \(\mathcal{J}_\delta\) on \(\mathcal{C}([a, b], p, q, \Omega_\delta)\). For any \(\delta \in (0, \delta_0)\), set
\[
\lambda_\delta(s) = -\chi'_\delta(\Phi(\gamma_\delta(s))), \quad s \in [a, b].
\]
Then there exists \(\delta_1 \in (0, \delta_0)\) such that
\[
\sup_{\delta \in (0, \delta_1)} \|\lambda_\delta\|_\infty = \sup_{\delta \in (0, \delta_1)} \max_{s \in [a, b]} |\lambda_\delta(s)| < +\infty. \tag{31}
\]

Proof. For any \(\delta \in (0, \delta_0)\), set \(\rho_\delta(s) = \Phi(\gamma_\delta(s))\) and let \(s_\delta\) be a maximum point for \(\rho_\delta\). Since the derivative of \(\chi_\delta\) is non-decreasing and \(\chi'_\delta(t) = 0\) for any \(t \leq 0\), then
\[
0 \leq \chi'_\delta(\Phi(\gamma_\delta(s))) \leq \chi'_\delta(\Phi(\gamma_\delta(s_\delta))), \quad \forall s \in [a, b].
\]
Thus, it suffices to prove (31) assuming that
\[
\Phi(\gamma_\delta(s_\delta)) \in [0, \delta[.
\]
Due to the lack of regularity of \(G\) on the zero section, we must distinguish the two cases in which \(\gamma'_\delta(s_\delta)\) is equal to zero or not. In both cases, we will prove the existence of a constant \(L > 0\) such that
\[
\chi'_\delta(\Phi(\gamma_\delta(s))) \leq L \left(1 + \chi_\delta(\Phi(\gamma_\delta(s)))\right), \quad \text{for any} \ \delta \in (0, \delta_0), \tag{32}
\]
from which we infer the thesis. Indeed, by (20) we obtain
\[
\left(\frac{2\delta}{\Phi(\gamma_\delta(s_\delta))(\delta - \Phi(\gamma_\delta(s_\delta)))} - L\right) \chi_\delta(\Phi(\gamma_\delta(s))) \leq L.
\]
Since
\[
\inf_{t \in (0, \delta)} \frac{2\delta}{(\delta - t)} = \frac{8}{\delta},
\]
then setting \(\delta_1 = 8/L\) we obtain (31).

First case. Let \(s_\delta \in A_\delta = \{s \in [a, b] : \gamma_\delta(s) \neq 0\}\). By Lemma 3.4, \(\gamma_\delta\) is twice differentiable in a neighbourhood of \(s_\delta\), and being a maximum point of \(\rho_\delta\) we get that \(\rho_\delta(s_\delta) = 0\) and
\[
\tilde{\rho}_\delta(s_\delta) = \partial_{q^i q^j}^2 \Phi(\gamma_\delta(s_\delta) \gamma^i_\delta \gamma^j_\delta + \partial_{q^i} \Phi(\gamma_\delta(s_\delta)) \gamma^i_\delta(s_\delta) \leq 0.
\]

By (27) we obtain
\[
\partial^2_{q^i q^j} \Phi(\gamma_\delta) \gamma^i_\delta \gamma^j_\delta - \partial_{q^i} \Phi(\gamma_\delta) \Gamma^i_{jk}(\gamma_\delta, \gamma_\delta) \gamma^j_\delta \gamma^k_\delta + \chi'_\delta(\Phi(\gamma_\delta)) \partial_{q^i} \Phi(\gamma_\delta) \partial_{q^j} \Phi(\gamma_\delta) g^{ij}(\gamma_\delta, \gamma_\delta) \leq 0,
\]
having omitted the dependency on \(s_\delta\) for the sake of presentation. Since \(\Omega_\delta\) is a compact domain and the components of the Chern connection \(\Gamma^i_{jk}\) are fiberwise positively homogeneous of degree zero, there exists a constant \(c_1 > 0\) such that
\[
-c_1 G(\gamma_\delta, \gamma_\delta) \leq \partial^2_{q^i q^j} \Phi(\gamma_\delta) \gamma^i_\delta \gamma^j_\delta - \partial_{q^i} \Phi(\gamma_\delta) \Gamma^i_{jk}(\gamma_\delta, \gamma_\delta) \gamma^j_\delta \gamma^k_\delta.
\]
Moreover, since \(d\Phi(q) \neq 0\) for any \(q \in \Phi^{-1}([0, \delta])\) and the matrix \([g^{ij}(q, v)]\) is positive definite for any \(v \neq 0\), there exists a constant \(c_2 > 0\) such that
\[
c_2 < \partial_{q^i} \Phi(\gamma_\delta) \partial_{q^j} \Phi(\gamma_\delta) g^{ij}(\gamma_\delta, \gamma_\delta).
\]
Hence we obtain
\[
-c_1 G(\gamma_\delta, \gamma_\delta) + c_2 \chi'_\delta(\Phi(\gamma_\delta)) \leq 0,
\]
and by (30) we get the existence of a constant $L > 0$ such that (32) holds.

Second case. Let $s_δ ∈ B_δ = [a, b] \setminus A_δ$. Firstly, we show that the interior of $B_δ$ is empty. Arguing by contradiction, let $I(s_δ)$ a neighbourhood of $s_δ$ such that $I(s_δ) ⊂ B_δ$. Take a vector field $ξ ∈ T_{γ_δ}M$, with support in $I(s_δ)$, such that $dΦ(γ_δ(s)) [ξ(s_δ)] < 0$ and $dΦ(γ_δ(s)) [ξ(s)] ≤ 0$ for any $s ∈ I(s_δ)$. Since $γ_δ(s) = 0$ on $I(s_δ)$, then

$$d_q G(γ_δ(s), γ_δ(s)) = d_q G(γ_δ(s), γ_δ(s)) = 0, \quad \text{for any } s ∈ I(s_δ).$$

Moreover, we can choose the neighbourhood $I(s_δ)$ such that $Φ(γ_δ(s)) > 0$ for any $s ∈ I(s_δ)$, so $χ_δ(Φ(γ_δ)) > 0$ in $I_δ$. As a consequence, being $γ_δ$ a critical point for $J_δ$, we get

$$0 = dJ_δ(γ_δ)[ξ] = \frac{1}{2} \int_{I(s_δ)} \left(d_q G(γ_δ, γ_δ)[ξ] + d_q G(γ_δ, γ_δ)[ξ] \right) ds + \int_{I(s_δ)} \chi_δ(Φ(γ_δ)) dΦ(γ_δ)[ξ] ds = \int_{I(s_δ)} \chi_δ(Φ(γ_δ)) dΦ(γ_δ)[ξ] ds < 0,$$

which is an absurd. Now, since the interior of $B_δ$ is empty, we must distinguish two cases.

(i) $s_δ$ is an isolated point of $B_δ$. Then, recalling that $ρ_δ ∈ C^1$ and that $s_δ$ is a maximum point for $ρ_δ$, $ρ_δ(s_δ) = 0$. Moreover, there exists a neighbourhood $I_δ$ of $s_δ$ such that $I_δ ∩ B_δ = \{s_δ\}$ and, for any $s ∈ I_δ$, $ρ_δ(s) ≥ 0$ for $s < s_δ$. Applying the mean value theorem, we can construct a sequence $(s_{δ,n})_n$ that converges to $s_δ$ from below and such that $ρ_δ(s_{δ,n}) ≤ 0$. Following the same procedure as in first case, we obtain that

$$χ_δ(Φ(γ(s_{δ,n}))) ≤ L \left(1 + χ_δ(Φ(γ(s_{δ,n})))\right),$$

and passing to the limit we obtain (32) for $s_δ$.

(ii) $s_δ$ is an accumulation point of $B_δ$. In this case we can suppose, without loss of generality, that there exists a strictly increasing sequence $(s_{δ,n})_n$ in $B_δ$ that converges to $s_δ$ and such that $(s_{δ,n-1}, s_{δ,n}) ⊂ A_δ$. Since $γ_δ(s_{δ,n}) = 0$, $ρ_δ(s_{δ,n}) = 0$ for any n and we can apply the Rolle’s theorem to construct a sequence $(s_{δ,n})_n$ in $A_δ$ such that $s_{δ,n} ∈ (s_{δ,n-1}, s_{δ,n})$ and $ρ_δ(s_{δ,n}) = 0$. Then applying the same reasoning of the first case and passing to the limit as $s_{δ,n} → s_δ$, we obtain (32) for $s_δ$.

Lemma 3.7. Let $(γ_δ)_{δ ∈ (0, δ_0)}$ be a family in $H^{1,2}([a, b], M)$ such that, for any $δ ∈ (0, δ_0)$, $γ_δ$ is a minimum of $J_δ$ on $C([a, b], p, q, Ω_δ)$. Then there exists a subsequence $(δ_n)_n$ in $(0, δ_0)$ such that

1. $(γ_δ_n)_n$ strongly converges to a curve $γ ∈ C([a, b], p, q, Ω)$;
2. the sequence of functions $(λ_δ_n)_n$ weakly converges to a function $λ ∈ L^2([a, b], R)$;
3. if $p ≠ q$, the limit curve $γ$ is such that $γ(s) ≠ 0$ for all $s ∈ [a, b]$, it has $H^{2,2}$-regularity on $[a, b]$ and it satisfies a.e.

$$d_q G(γ, γ) - \frac{d}{ds} d_q G(γ, γ) = λ \nabla Φ(γ); \quad (33)$$

(4) the limit curve $γ$ is a minimum of $J^{a,b}$ on $C([a, b], p, q, Ω)$.

\[\Box\]
Proof. For any \(\delta \in (0, \delta_0) \), \(\gamma_\delta \) is a minimum of \(J_\delta \), so (29) holds and
\[
\int_a^b G(\gamma_\delta, \dot{\gamma}_\delta) \, ds \leq k_1, \quad \forall \delta \in (0, \delta_0).
\]

By (6) and the Ascoli-Arzelà theorem, we obtain a decreasing sequence \((\delta_n)_n \subset (0,1)\) that converges to 0 such that \(\gamma_{\delta_n} \) uniformly converges to a curve \(\gamma \) and \(\dot{\gamma}_{\delta_n} \) weakly converges to \(\dot{\gamma} \). Since \(\gamma_{\delta_n}(s) \subset \Omega_{\delta_n} \) for every \(n \in \mathbb{N} \) and \(\delta_n \to 0 \), the support of \(\gamma \) is in \(\Omega \). To prove the statement (1), it remains to show that \(\dot{\gamma}_{\delta_n} \) strongly converges to \(\dot{\gamma} \). Consider a smooth curve \(\omega \in C([a,b], \mathbb{R}) \) that approximates \(\gamma \) and set \(\xi_n(s) = \exp_{\omega(s)}^{-1}(\gamma_{\delta_n}(s)) \), where \(\exp \) is the exponential map of the Riemannian metric that is induced by the euclidean product. For every \(n, m \in \mathbb{N} \) we set
\[
V_{n,m} = \exp_{\omega}[\xi_m - \xi_n].
\]

As \((\gamma_{\delta_n})_n \) uniformly converges to \(\gamma \), also \(V_{n,m} \) uniformly converges to 0 as \(n, m \to +\infty \). Since \(\gamma_{\delta_n} \) is a critical point for \(J_{\delta_n} \), we obtain
\[
d_{J_{\delta_n}}(\gamma_{\delta_n})[V_{n,m}] = dJ^{a,b}(\gamma_{\delta_n})[V_{n,m}] - \int_a^b \lambda_{\delta_n}(\nabla \Phi(\gamma_{\delta_n}), V_{n,m}) \, ds = 0. \tag{34}
\]

By Lemma 3.6, if \(n \) is sufficiently large, then \(\lambda_{\delta_n} \) is bounded in \(L^\infty \). Since \(V_{n,m} \) uniformly converges to 0, this implies that the right-hand side of (34) goes to zero, and we obtain
\[
\lim_{m,n \to \infty} d_{J^{a,b}}(\gamma_{\delta_n})[V_{n,m}] = 0.
\]

From this last equality, we can obtain the strong convergence of \(\dot{\gamma}_{\delta_n} \) to \(\dot{\gamma} \), up to subsequences, following the same procedure exploited in the proof of [5, Theorem 3.1].

Statement (2) naturally derives from Lemma 3.6. Indeed, from the sequence \((\delta_n)_n \) obtained in the first statement we can select a subsequence, which we denote again by \((\delta_n)_n \), such that \(\lambda_{\delta_n} \) weakly converges in \(L^2([a,b]) \).

In order to prove the statement (3), firstly we use [3, Proposition 4.6] to obtain that \(\gamma \) is \(C^1 \) and, for any \(\bar{s} \in [a,b] \) such that \(\gamma(\bar{s}) \neq 0 \), said \((U,\varphi) \) a chart of \(M \) such that \(\gamma(\bar{s}) \in U, \gamma \) has \(H^{2,2} \)-regularity on an open subset of \(\gamma^{-1}(U) \) containing the point \(\bar{s} \) and there it satisfies (33) a.e.. Now set \(A = \{ s \in [a,b] : \gamma(s) \neq 0 \} \).

Since we are assuming that \(p \neq q \), the set \(A \) is not empty. Let \(s_0 \in A \) be such that \(\gamma(s_0) \in \Omega \). Then there exists a neighbourhood \(I \) of \(s_0 \) and a small number \(d > 0 \) such that \(|\Phi(\gamma_{\delta_n}(s))| > d \) for every \(s \in I \) and for \(n \) sufficiently large. As a consequence, \((\lambda_{\delta_n})_n\) uniformly converges to 0 in \(I \) and \(\lambda = 0 \) a.e. in \(I \). Now set \(B = \{ s \in A : \gamma(s) \in \partial \Omega \} \). Since \(\gamma \) is a \(C^1 \) function and \(\Phi(\gamma) = 0 \) in \(B \), then (cf. [17, Lemma 7.7])
\[
\langle \nabla \Phi(\gamma(s)), \gamma(s) \rangle = 0, \quad \forall s \in B.
\]

Contracting both terms of (33) with \(\dot{\gamma} \) leads to
\[
\left(d_s G(\gamma, \dot{\gamma}) - \frac{d}{ds} d_s G(\gamma, \dot{\gamma}) \right) [\dot{\gamma}] = \lambda \langle \nabla \Phi(\gamma(s)), \gamma(s) \rangle = 0.
\]

As a consequence,
\[
E(\gamma, \dot{\gamma}) = d_s G(\gamma, \dot{\gamma}) [\dot{\gamma}] - G(\gamma, \dot{\gamma})
\]
is constant on every connected component of \(A \). By Euler’s theorem on homogeneous functions, \(E(\gamma, \dot{\gamma}) = G(\gamma, \dot{\gamma}) \) and, being \(s \in [a,b] \rightarrow G(\gamma(s), \dot{\gamma}(s)) \) a continuous function, we conclude that \(G(\gamma, \dot{\gamma}) \) is a non zero constant on the whole \([a,b]\).

Consequently, \(A = [a,b] \) and (33) holds on the whole \([a,b]\).
Let us prove statement (4). Recalling (20), by Lemma 3.6 there exist a constant \(k > 0 \) such that
\[
\sup_{s \in [a,b]} |\chi_{\delta_n}(\Phi(\gamma_{\delta_n}(s)))| = \sup_{s \in [a,b]} \left| \chi_{\delta_n}(\Phi(\gamma_{\delta_n}(s))) \frac{\Phi(\gamma_{\delta_n}(s)) (\delta_n - \Phi(\gamma_{\delta_n}(s)))}{2\delta_n} \right| \\
\leq k \sup_{t \in (0,\delta_n)} \left| \frac{t(\delta_n - t)}{2\delta_n} \right| = \frac{k}{8} \delta_n \to 0.
\]
Consequently,
\[
\lim_{n \to \infty} \int_{a}^{b} \chi_{\delta_n}(\Phi(\gamma_{\delta_n}(s))) \, ds = 0,
\]
and since \(\mathcal{C}([a,b], p, q, \Omega) \subset \mathcal{C}([a,b], p, q, \Omega_\delta) \) for any \(\delta \), then
\[
\mathcal{J}_{\delta_n\gamma}(\gamma) = \lim_{n \to \infty} \mathcal{J}_{\delta_n}(\gamma_{\delta_n}) \leq \lim_{n \to \infty} \mathcal{J}_{\delta_n}(y) = \mathcal{J}_{\delta_n}(y), \quad \text{for all } y \in \mathcal{C}([a,b], p, q, \Omega).
\]

\(\square \)

Proof of Proposition 1. If \(x \) is a constant curve, i.e. \(x(s) = q \in \partial \Omega \) for any \(s \in [0,1] \), then it is obviously in \(H^{2,\infty} \) and (18) is trivially satisfied setting \(\lambda = 0 \). Let us assume that \(x \) is a non-constant curve. We need only to prove the regularity of \(x \) when it touches the boundary \(\partial \Omega \). In fact, \(x \) is a free geodesic when it lies on \(\Omega \), so it is \(C^2 \). Since the regularity is a local property, we can restrict our analysis on a single chart \((U, \varphi)\) in a neighbourhood of a point \(x(\ell) \in \partial \Omega \). Let \((a,b)\) be a neighbourhood of \(\ell \) such that \(x([a,b]) \subset U \) and \(x(a) \neq x(b) \). If \(\ell = 0 \), then set \(a = 0 \) and, similarly, if \(\ell = 1 \), then set \(b = 1 \). Notice that, for our purpose, we can choose \(a \) and \(b \) as close as we desire.

For any \(\delta \in (0,\delta_0) \), consider the functional \(\mathcal{J}_\delta \) defined on \(\mathcal{C}([a,b], x(a), x(b), \Omega_\delta) \). By Lemma 3.7, there exists a curve \(\gamma \in H^{2,2} \) that is a minimum of \(\mathcal{J}_{\delta\gamma} \) on \(\mathcal{C}([a,b], x(a), x(b), \Omega) \). As a first step, we prove that \(x \) has \(H^{2,2} \) regularity by showing that \(x = \gamma \).

Let us show that if \(a \) and \(b \) are sufficiently close, then \(\gamma([a,b]) \subset U \). Let \(y \) be a curve \(\mathcal{C}([a,b], x(a), x(b), \Omega) \) such that \(y([a,b]) \not\subset U \) and let \(\bar{s} \) be the first instant at which \(y(s) \not\in U \). Using the Cauchy-Schwarz inequality and (6) we obtain that
\[
\text{dist}(x(a), \partial U) \leq \int_{a}^{\bar{s}} \|\dot{y}(s)\| \, ds \leq \left(\frac{\ell(b-a)}{\mathcal{J}_{\delta\gamma}(y)} \right)^{\frac{1}{2}},
\]
so
\[
\mathcal{J}_{\delta\gamma}(y) \geq \frac{\text{dist}^2(x(a), \partial U)}{\ell(b-a)}. \tag{35}
\]
Now let \(\tilde{x} \) be the reparametrization of \(x \) such that \(\tilde{x}([a,b]) = x([a,b]) \) and \(G(\tilde{x}(s), \tilde{x}) = c_x \neq 0 \). Then
\[
\mathcal{J}_{\delta\gamma}(\gamma) = \int_{a}^{b} G(\gamma, \gamma) \, ds \leq \int_{a}^{b} G(\tilde{x}, \tilde{x}) \, ds = (b-a)c_x. \tag{36}
\]
As a consequence, choosing \(a \) and \(b \) such that
\[
b - a < \frac{\text{dist}(x(a), \partial U)}{\sqrt{\ell c_x}},
\]
from (35) and (36) we obtain that
\[
\mathcal{J}_{\delta\gamma}(\gamma) < \frac{\text{dist}^2(x(a), \partial U)}{\ell(b-a)},
\]
so it lies on U.

Now choose the map φ such that
\[d\varphi \left(\frac{\nabla \Phi(q)}{\|\nabla \Phi(q)\|} \right) \in \mathbb{R}^N \]
is constant on the chart. Then $\xi = \gamma - x$ is an admissible variation of x in $C([a,b], x(a), x(b), \bar{\Omega})$, since
\[\langle \xi(s), \nabla \Phi(x(s)) \rangle \leq 0, \quad \text{if } x(s) \in \partial \Omega. \]

Now define $f : [0,1] \to \mathbb{R}$ by
\[f(t) = J^{a,b}(x + t\xi). \]

Since γ is a minimum for $J^{a,b}$, we have that
\[f(1) - f(0) = J^{a,b}(\gamma) - J^{a,b}(x) \leq 0. \]

Setting $\xi(s) = 0$ for any $s \in [0,1] \setminus [a,b]$, we have that $\xi \in V^-(x, \mathcal{M})$. Since x is a V^--critical curve for J on \mathcal{M}, we obtain
\[f'(0) = dJ^{a,b}(x)[\xi] = dJ(x)[\xi] \geq 0. \]

In order to obtain a contradiction, we set $\gamma \neq x$ and show that if a and b are sufficiently close then
\[\int_0^1 (f'(t) - f'(0))dt > 0. \tag{37} \]

As a consequence,
\[0 \geq f(1) - f(0) = f'(0) + \int_0^1 (f'(t) - f'(0))dt \geq \int_0^1 (f'(t) - f'(0))dt > 0, \]
which is an absurd. By definition of f we have
\[f'(t) - f'(0) = \frac{1}{2} \int_a^b \left[\left(d_q G(x + t\xi, \dot{x} + t\dot{\xi})[\xi] - d_q G(x, \dot{x}) \right)[\dot{\xi}] \\
+ \left(d_v G(x + t\xi, \dot{x} + t\dot{\xi}) - d_v G(x, \dot{x}) \right)[\dot{\xi}] \right] ds. \]

Using the mean value theorem and the bounds in (8) and (9) we obtain
\[
\begin{align*}
 f'(t) - f'(0) &= \frac{t}{2} \int_a^b ds \int_0^1 \left(d_{qv}^2 G(x + \sigma t\xi, \dot{x} + \sigma t\dot{\xi})[\dot{\xi}][\dot{\xi}] \\
+ 2d_{qq}^2 G(x + \sigma t\xi, \dot{x} + \sigma t\dot{\xi})[\xi][\dot{\xi}] + d_{qq}^2 G(x + \sigma t\xi, \dot{x} + \sigma t\dot{\xi})[\xi][\dot{\xi}] \right) d\sigma \\
&\geq \frac{t}{2} \int_a^b ds \int_0^1 \left(\alpha \|\dot{\xi}\|^2 - 2\ell(1 + \|\dot{x} + \sigma t\dot{\xi}\|)\|\dot{\xi}\|\|\dot{\xi}\| \\
- \ell(1 + \|\dot{x} + \sigma t\dot{\xi}\|^2)\|\xi\|^2 \right) d\sigma. \tag{38}
\end{align*}
\]

Let us show that there exists a constant $c_1 > 0$, which depends only on x, such that
\[\int_a^b \|\dot{x} + \sigma t\dot{\xi}\|^2 ds \leq c_1. \]
Indeed, by the inequalities in (6) and since γ is a minimum for $\mathcal{J}^{a,b}$, we have the following chain of inequalities

\[
\int_a^b \|\dot{x} + \sigma t\|^2 ds \leq 2 \int_a^b \left(\|\dot{x}\|^2 + \|\sigma t\xi\|^2 \right) ds \leq 2 \int_a^b \left(\|\dot{x}\|^2 + \|\xi\|^2 \right) ds \\
\leq 2 \int_a^b \left(\|\dot{x}\|^2 + 2\|\xi\|^2 \right) ds \leq 6 \int_a^b \|\dot{x}\|^2 ds + 4\ell \int_a^b G(\gamma, \gamma) ds \\
\leq 6 \int_a^b \|\dot{x}\|^2 ds + 4\ell \int_a^b G(x, \dot{x}) ds \leq 6 \int_a^b \|\dot{x}\|^2 ds + 4\ell^2 \int_a^b \|\dot{x}\|^2 ds \\
\leq (6 + 4\ell^2) \int_0^1 \|\dot{x}\|^2 ds = c_1.
\]

As a consequence, there exists a strictly positive constant c_2 such that

\[
I_1 = \ell \int_a^b \left(\int_0^1 (1 + \|\dot{x} + \sigma t\xi\|)\|\xi\|\|\dot{\xi}\| ds \right) ds \\
= \ell \int_a^b \int_0^1 \left(\|\dot{x} + \sigma t\xi\| \|\xi\| \|\dot{\xi}\| ds \right) ds \\
\leq \ell \|\xi\|_{L^\infty} \|\dot{\xi}\|_{L^2} + \ell \|\xi\|_{L^\infty} \|\dot{\xi}\|_{L^2} \int_0^1 \left(\int_a^b \|\dot{x} + \sigma t\xi\|^2 ds \right)^{1/2} ds \\
\leq c_2 \|\xi\|_{L^\infty} \|\dot{\xi}\|_{L^2},
\]

where we applied the Tonelli’s theorem and the H"{o}lder inequality. Similarly, there exists a constant $c_3 > 0$ such that

\[
I_2 = \ell \int_a^b \left(\int_0^1 (1 + \|\dot{x} + \sigma t\xi\|^2) \|\xi\|^2 ds \right) ds \\
\leq \ell \|\xi\|_{L^\infty}^2 \int_0^1 \left(\int_a^b (1 + \|\dot{x} + \sigma t\xi\|^2) ds \right) ds \leq c_3 \|\xi\|_{L^\infty}^2.
\]

Then, by (38) we obtain

\[
f'(t) - f'(0) \geq \frac{t}{2} (\alpha \|\dot{\xi}\|_{L^2}^2 - c_2 \|\xi\|_{L^\infty} \|\dot{\xi}\|_{L^2} - c_3 \|\xi\|_{L^\infty}^2).
\]

Since $\xi(a) = 0$, we have

\[
\|\xi(s)\| = \left\|\xi(a) + \int_a^s \dot{\xi} ds\right\| \leq \int_a^s \|\dot{\xi}\| ds \leq \sqrt{s - a} \|\dot{\xi}\|_{L^2},
\]

therefore

\[
\|\xi\|_{L^\infty} \leq \sqrt{b - a} \|\dot{\xi}\|_{L^2}.
\]

By (39) we obtain

\[
f'(t) - f'(0) \geq \frac{t}{2} \|\dot{\xi}\|_{L^2}^2 \left(\alpha - c_2 \sqrt{b - a} - c_3 (b - a) \right),
\]

and, if $b - a$ is sufficiently small, then there exists a constant $c_4 > 0$ such that

\[
f'(t) - f'(0) \geq c_4 t.
\]

As a consequence, (37) holds so x and γ must coincide.

Since $x = \gamma$ in every chart, by Lemma 3.7 we obtain that $\dot{x}(s) \neq 0$ for all $x \in [0, 1]$. Moreover, (18) holds a.e. for a function $\lambda \in L^2([0, 1], \mathbb{R})$ such that
\(\lambda(s) = 0 \) for all \(s \notin C_x \) and \(\lambda \leq 0 \) a.e. Set \(\rho(s) = \Phi(x(s)) \). Since \(\rho(s) = 0 \) on \(C_x \) and \(\dot{\rho} \) is absolutely continuous, by [17, Lemma 7.7] we have \(\dot{\rho}(s) = 0 \) a.e. on \(C_x \).

Using (18) in local coordinates, we get that \(x \) satisfies the equations
\[
\ddot{x}^i + \Gamma^i_{jk}(x, \dot{x})\dot{\dot{x}}^j\dot{x}^k = -\lambda \partial_q^i \Phi(x)g^{ki}(x, \dot{x}),
\]
so we obtain
\[
0 = \ddot{\rho}(s) = \partial_{q^i}^2 \Phi(x)\ddot{x}^i - \partial_q \Phi(x) \Gamma^i_{jk}(x, \dot{x})\dot{\dot{x}}^j\dot{x}^k - \lambda \partial_q \Phi(x) \partial_q \Phi(x) g^{ik}(x, \dot{x}).
\]

Using (11), we obtain (19), and since \(\dot{x} \) is a continuous function, also \(\lambda \) is a continuous function in \([0, 1]\). Then \(\lambda \in L^\infty([0, 1], \mathbb{R}) \) and using (40) we obtain that \(\dot{x} \in L^\infty([0, 1], \mathbb{R}^N) \), so \(x \in H^{2, \infty}([0, 1], \Omega) \).

Remark 4. By a similar argument used in the proof of Proposition 1, one can prove that if \(q_1, q_2 \in \Omega \) are sufficiently close, then there exists a unique \(\mathcal{V} \)-critical curve for \(\mathcal{J} \) on \(\mathcal{M} \), i.e. a unique geodesic in a manifold with boundary, that connects \(q_1 \) and \(q_2 \). This has been done for the Riemannian case in [22].

Thanks to the \(H^{2, \infty} \)-regularity of the \(\mathcal{V} \)-critical curves for \(\mathcal{J} \) on \(\mathcal{M} \) given by Proposition 1, integration by parts of (14) becomes available. This allows to prove that every non-constant \(\mathcal{V} \)-critical curve for \(\mathcal{J} \) on \(\mathcal{M} \) either it is an orthogonal Finsler geodesic chord or it contains an orthogonal-tangent Finsler geodesic chord.

Lemma 3.8. If \(x \) is a non-constant \(\mathcal{V} \)-critical curve of \(\mathcal{J} \) in \(\mathcal{M} \), then \(\dot{x}(0) \) and \(\dot{x}(1) \) are orthogonal to \(\partial \Omega \).

Proof. Set \(C_x = \{ s \in [0, 1] : x(s) \in \partial \Omega \} \) and \(I_x = [0, 1] \setminus C_x \). Let \(\xi \in T_x \mathcal{M} \) be such that
\[
(\xi(s), \nabla \Phi(x(s))) = 0 \quad \text{on} \quad C_x.
\]
Then, both \(\xi \) and \(-\xi \) are admissible infinitesimal variations of \(x \) in \(\mathcal{M} \) and \(d \mathcal{J}(x)[\xi] = 0 \). As a consequence, partial integration and (18) lead to
\[
d \mathcal{J}(x)[\xi] = \frac{1}{2} \left(d_{\mathcal{J}} G(x(1), \dot{x}(1))[\xi(1)] - d_{\mathcal{J}} G(x(0), \dot{x}(0))[\xi(0)] \right)
\]
\[
+ \frac{1}{2} \int_0^1 \left(d_q G(x, \dot{x}) + \frac{d}{ds} d_v G(x, \dot{x}) \right)[\xi] ds.
\]
Since both \(\xi(0) \) and \(\xi(1) \) are arbitrary tangent vectors to \(\partial \Omega \), we infer that, with respect to the Finsler structure, both \(\dot{x}(0) \) and \(\dot{x}(1) \) are orthogonal to \(T_{x(0)} \partial \Omega \) and \(T_{x(1)} \partial \Omega \) respectively.

Proposition 2. Let \(x \) be a non-constant \(\mathcal{V} \)-critical curve for \(\mathcal{J} \) on \(\mathcal{M} \). Then either
- there exists \(\tilde{s} \in [0, 1] \) such that \(x|[0, \tilde{s}] \) is an orthogonal-tangent Finsler geodesic chord,

or
- \(x \) is an orthogonal Finsler geodesic chord.

Proof. Set \(C_x = \{ s \in [0, 1] : x(s) \in \partial \Omega \} \). Since \(x \) is a non-constant \(\mathcal{V} \)-critical curve for \(\mathcal{J} \) on \(\mathcal{M} \), \(\dot{x} \neq 0 \) everywhere. By Lemma 3.8, \(\dot{x}(0) \) points inside \(\Omega \). As a consequence, if \(C_x \neq \emptyset \), then \(\tilde{s} = \min C_x > 0 \). By Proposition 1, \(x \) is of class
C^1 and $\dot{x}(\bar{s})$ must be tangent to $\partial \Omega$. Then $x|_{[0,\bar{s}]}$ is an orthogonal-tangent Finsler geodesic chord. Otherwise, if $C_x = \emptyset$, Lemma 3.8 implies that x is an orthogonal Finsler geodesic chord.

Remark 5. Let Ω be a strictly convex domain, i.e. every Finsler geodesic that is tangent to $\partial \Omega$ locally remains outside Ω. Then every no-constant V^--critical curve for \mathcal{J} on \mathcal{M} is an OFGC. Indeed, if Ω is a strictly convex domain, then the Finsler Hessian $H_{\mathcal{J}}(q,v)[v,v] > 0$ for every $q \in \partial \Omega$ and $v \in T_q \partial \Omega \setminus 0$. As a consequence, from (19) we infer that if x is a non-constant V^--critical curve for \mathcal{J} on \mathcal{M}, λ should be non-negative whenever x touches the boundary $\partial \Omega$. Since $\lambda \leq 0$ for every $s \in [0,1]$, then $\lambda = 0$ and x is a free geodesics. Therefore, $x([0,1]) \subset \Omega$ and, by Lemma 3.8, x is an OFGC.

4. V^--Palais-Smale sequences. In this section we prove the so-called Palais-Smale condition for the functional \mathcal{J} in \mathcal{M}. Due to the presence of the boundary $\partial \Omega$, \mathcal{M} is not a smooth manifold and the definition of Palais-Smale sequence has to be modified accordingly.

Definition 4.1. A sequence $(x_n)_n \subset \mathcal{M}$ is a V^--Palais-Smale sequence for \mathcal{J} at level $c \in \mathbb{R}$ if $\lim_{n \to \infty} \mathcal{J}(x_n) = c$, and for all $V_n \in V^-(x_n)$ such that $\|V_n\|_s = 1$ (where the norm $\|\|_s$ has been defined in (12)) the following holds:

$$d\mathcal{J}(x_n)[V_n] \geq -\epsilon_n,$$

where $\epsilon_n \to 0^+$.

When the action of a general Tonelli-Lagrangian function L of class C^2 is considered, the Palais-Smale condition can be proved exploiting the fiberwise convexity of L by the mean value theorem on $d_x L$ (cf. [2, 6]). Since the energy function G is not regular on the zero section, we cannot apply the mean value theorem on $d_x G$. In [5], a proof of the Palais-Smale condition for the Finsler energy functional is given using a localization argument introduced in [1], which allows to work in an open subset of \mathbb{R}^n. Here we use the same procedure of [5] to deal with the lack of regularity of G on the zero section, but we work in local charts.

Proposition 3. Let $(x_n)_n \subset \mathcal{M}$ be a V^--Palais-Smale sequence for \mathcal{J} at level $c \in \mathbb{R}$. Then x_n is strongly H^1-convergent.

Proof. If $(x_n)_n$ is a V^--Palais-Smale sequence, then it admits a subsequence which is H^1-weakly convergent. In fact, by Remark 3, for n sufficiently large we have

$$\|\dot{x}_n\|^2_2 = \int_0^1 \|\dot{x}_n\|^2ds \leq \ell \int_0^1 G(x_n, \dot{x}_n)ds \leq 2\ell \mathcal{J}(x_n) \leq 2\ell(c + 1).$$

Applying the Ascoli-Arzelá theorem, there exists a subsequence, which we will denote again by (x_n), that converges uniformly to a curve $x \in \mathcal{M}$, so it is weakly H^1-convergent. Let us consider an auxiliary Riemannian metric \tilde{g} in Ω for which the boundary $\partial \Omega$ is totally geodesic, and let \exp denote the relative exponential map. For all n sufficiently large, we set

$$V_n(s) = (\exp_{x_n(s)})^{-1}(x(s)).$$

Since x_n converges to x uniformly, the vector field V_n is well defined and converges uniformly to 0. Also, $\|V_n\|_s$ is bounded, because $(x_n)_n$ is bounded in H^1. Moreover, $V_n \in V^-(x_n)$ for all n sufficiently large. In fact, if $x_n(s) \in \Omega$, then $V_n(s)$ can be any element of $T_{x_n(s)}\mathcal{M}$ and if $x_n(s) \in \partial \Omega$, we have two cases. If $x(s) \in \partial \Omega$,
then $V_n(s) \in T_{x_n(s)}\partial\Omega$, having used the fact that $\partial\Omega$ is totally geodesic relatively to \bar{g}. If $x(s) \in \Omega$, then $V_n(s)$ points inside Ω, since \exp locally defines a chart in a neighbourhood of $x_n(s)$. As a consequence, being $(x_n)_n$ a \mathcal{V}^--Palais-Smale sequence, we have that
\[
\liminf_{n \to \infty} dF(x_n)[V_n] = \liminf_{n \to \infty} \frac{1}{2} \int_0^1 \left(d_q G(x_n, \dot{x}_n)[V_n] + d_v G(x_n, \dot{x}_n)[\dot{V}_n] \right) ds \geq 0.
\]
By (7) and since $V_n \to 0$ uniformly,
\[
\lim_{n \to \infty} \int_0^1 d_q G(x_n, \dot{x}_n)[V_n] ds \leq \lim_{n \to \infty} \int_0^1 c_3(1 + \|x_n\|^2)\|V_n\| ds = 0,
\]
and, as a consequence,
\[
\liminf_{n \to \infty} \int_0^1 d_v G(x_n, \dot{x}_n)[\dot{V}_n] ds \geq 0. \tag{41}
\]
Let $[a, b] \subset [0, 1]$ be such that $x([a, b])$ is in a single chart (U, φ), with $U \subset \mathbb{R}^N$ and $\varphi : U \to \mathcal{M}$. If a is big enough, also $x_n([a, b]) \subset U$. Considering the restriction of x and x_n on $[a, b]$, we define $\xi(s) = \varphi^{-1}(x(s))$ and $\xi_n(s) = \varphi^{-1}(x_n(s))$. Using this local chart,
\[
\dot{V}_n = \dot{\xi} - \dot{\xi}_n + w_n,
\]
where w_n^i is L^2 convergent to 0. We define $\hat{G} : U \times \mathbb{R}^N \to \mathbb{R}$ as
\[
\hat{G}(\zeta, \eta) = G(\varphi(\zeta), d\varphi(\zeta)[\eta]).
\]
From (41) we infer
\[
\liminf_{n \to \infty} \int_a^b \partial_v \hat{G}(\xi_n, \dot{\xi}_n)[\dot{\xi} - \dot{\xi}_n + w_n^i] ds \geq 0,
\]
and by the L^2 convergence of w_n^i to zero we obtain
\[
\liminf_{n \to \infty} \int_a^b \partial_v \hat{G}(\xi_n, \dot{\xi}_n)[\dot{\xi} - \dot{\xi}_n] ds \geq 0.
\]
Since x_n weakly converges to x, then ξ_n weakly converges to ξ and we have
\[
\lim_{n \to \infty} \int_a^b \partial_v \hat{G}(\xi_n, \dot{\xi}_n)[\dot{\xi} - \dot{\xi}_n] ds = 0.
\]
As a consequence,
\[
\liminf_{n \to \infty} \int_a^b \left(\partial_v \hat{G}(\xi_n, \dot{\xi}_n) - \partial_v \hat{G}(\xi, \dot{\xi}) \right) [\dot{\xi} - \dot{\xi}_n] ds \geq 0. \tag{42}
\]
Due to the lack of regularity of G on the zero section, we cannot apply the mean value theorem on the whole interval $[a, b]$. Thus we define $\delta_n(s) = d\varphi(\xi_n(s))[\dot{\xi}_n(s)]$ and $\delta(s) = d\varphi(\xi(s))[\dot{\xi}(s)]$ (note that the differential is evaluated on $\xi_n(s)$ for both δ_n and δ). Let $A_n \subset [a, b]$ be the support of the L^2 function $\|\delta_n(s)\|$ and $A \subset [a, b]$ be the one of $\|\delta(s)\|$. Then set
\[
B_n = \left\{ s \in A_n \cap A : \frac{\delta_n}{\|\delta_n\|} = -\frac{\delta}{\|\delta\|} \text{ a.e.} \right\},
\]
\[
C_n = (A_n \cup A) \setminus B_n,
\]
\[
D_n = [a, b] \setminus (A_n \cup A).
\]
On C_n, the zero vector is not on the segment joining δ_n and δ, so we can use the mean value theorem and from (42) we obtain
\[
\liminf_{n \to \infty} \int_{C_n} \partial^2_{\nu_n} \bar{G}(\xi_n, \sigma \dot{\xi}_n + (1 - \sigma) \dot{\xi})(\xi_n - \xi, \xi_2 - \xi_n) ds \geq 0,
\]
where $\sigma : C_n \to [0, 1]$. The previous equation can be written as
\[
\limsup_{n \to \infty} \int_{C_n} \partial^2_{\nu_n} \bar{G}(\xi_n, \sigma \dot{\xi}_n + (1 - \sigma) \dot{\xi})(\xi_n - \xi, \xi_2 - \xi_n) ds \leq 0.
\]
Since \bar{G} is a strictly fiberwise convex function, there exists a positive constant K_1, which depends also on the local chart, such that
\[
\limsup_{n \to \infty} \int_{C_n} \|\dot{\xi}_2 - \dot{\xi}_n\|^2 ds
\leq K_1 \limsup_{n \to \infty} \int_{C_n} \partial^2_{\nu_n} \bar{G}(\xi_n, \sigma \dot{\xi}_n + (1 - \sigma) \dot{\xi})(\xi_n - \xi, \xi_2 - \xi_n) ds \leq 0,
\]
so
\[
\lim_{n \to \infty} \int_{C_n} \|\dot{\xi}_2 - \dot{\xi}_n\|^2 ds = 0. \tag{43}
\]
On B_n we can define a function λ_n such that $\delta = -\lambda_n \delta_n$. Recalling the definition of \bar{G}, from (42) we obtain
\[
\liminf_{n \to \infty} \int_{B_n} \left(d_v G(\varphi(\xi_n), d\varphi(\xi_n)[\dot{\xi}_n]) - d_v G(\varphi(\xi_n), d\varphi(\xi_n)[\dot{\xi}]) \right) [\delta - \delta_n] ds
= - \liminf_{n \to \infty} \int_{B_n} (1 + \lambda_n) d_v G(\varphi(\xi_n), \delta_n) [\delta_n] ds
- \liminf_{n \to \infty} \int_{B_n} \left(1 + \frac{1}{\lambda_n} \right) d_v G(\varphi(\xi_n), \delta) [\delta] ds \geq 0.
\]
Since G is fiberwise homogeneous of degree two, by Euler’s theorem on homogeneous functions the previous equation can be written as
\[
\limsup_{n \to \infty} \int_{B_n} \left(2(1 + \lambda_n) G(\varphi(\xi_n), \delta_n) + 2 \left(1 + \frac{1}{\lambda_n} \right) G(\varphi(\xi_n), \delta) \right) ds \leq 0.
\]
Using (6), there exists a positive constant K_2, which depends also on the local charts, such that
\[
\limsup_{n \to \infty} \int_{B_n} (\|\delta_n\|^2 + \|\delta\|^2) ds
\leq K_2 \limsup_{n \to \infty} \left(2(1 + \lambda_n) G(\varphi(\xi_n), \delta_n) + 2 \left(1 + \frac{1}{\lambda_n} \right) G(\varphi(\xi_n), \delta) \right) ds \leq 0,
\]
so
\[
\lim_{n \to \infty} \int_{B_n} (\|\delta_n\|^2 + \|\delta\|^2) ds = 0.
\]
Since φ is a diffeomorphism, there exists a positive constant K_3 such that
\[
\|\dot{\xi}_2 - \dot{\xi}_n\|^2 \leq K_3 \|d\varphi(\xi_n)[\dot{\xi}_n] - \dot{\xi}_n\|^2 = K_3 \|\delta - \delta_n\|^2.
\]
As a consequence,
\[\lim_{n \to \infty} \int_{B_n} \| \dot{\xi} - \dot{\xi}_n \|^2 \, ds \leq K_3 \lim_{n \to \infty} \int_{B_n} \| \delta - \delta_n \|^2 \, ds \leq K_3 \lim_{n \to \infty} \int_{B_n} (\| \delta_n \|^2 + \| \delta \|^2) \, ds = 0. \] (44)

Since both \(\delta \) and \(\delta_n \) are zero on \(D_n \), we have
\[\lim_{n \to \infty} \int_{D_n} \| \dot{\xi} - \dot{\xi}_n \|^2 \, ds \leq K_3 \lim_{n \to \infty} \int_{D_n} \| \delta - \delta_n \|^2 \, ds = 0. \] (45)

Summing up (43), (44) and (45) we obtain that
\[\lim_{n \to \infty} \int_a^b \| \dot{\xi} - \dot{\xi}_n \|^2 \, ds = 0, \]
and since this holds on every local chart, \(\dot{\xi}_n \) strongly converges to \(\dot{\xi} \) in \(L^2 \). As a consequence, \(x_n \) converges strongly to \(x \) in \(H^{1,2} \).

5. The pseudo-gradient vector field. In this section we prove the existence of a pseudo-gradient vector field for \(J \) on \(\mathcal{M} \) that is in \(V^- (x, \mathcal{M}) \) for all \(x \in \mathcal{M} \). Moreover, the flow of such a vector field defines homotopies for which the Lusternik and Schnirelmann relative category is invariant. In this way, we can prove the existence and multiplicity of OFGCs using a minimax argument.

We shall need the following notation: for all \(x \in \mathcal{M} \) and \(r > 0 \) we define
\[B_r (x) = \{ y \in \mathcal{M} : \text{dist}_* (x, y) \leq r \} \]
and
\[U_r (x) = B_r (x) \cup B_r (R x), \]
where \(\text{dist}_* \) has been defined in (13).

Definition 5.1. For a given \(x \in \mathcal{M} \) and a constant \(\mu > 0 \), we say that \(J \) has \(V^- \)-steepness greater or equal than \(\mu \) at \(x \) if there exists \(\xi \in V^- (x, \mathcal{M}) \) such that
\[\begin{align*}
&\text{i. } \| \xi \|_* = 1; \\
&\text{ii. } dJ (x)[\xi] \leq -\mu.
\end{align*} \]

In this case \(\xi \) is a direction of \(\mu \)-steep \(V^- \)-descent for \(J \) at \(x \).

We set
\[V^- (x, \mathcal{M}) = \{ \xi \in V^- (x, \mathcal{M}) : \langle \xi (s), \nabla \Phi (x (s)) \rangle < 0 \text{ if } \Phi (x (s)) = 0, s \in [0, 1] \}. \]

Proposition 4. Set \(\mu > 0 \). If \(J \) has \(V^- \)-steepness greater or equal than \(\mu \) at \(x \), then for any \(\epsilon > 0 \) there exists a \(\rho > 0 \) and a \(C^1 \) vector field \(V \) defined in \(B_\rho (x) \) such that:
\[\begin{align*}
&\text{(1) } \forall y \in W^- (y, \mathcal{M}), \\
&\text{(2) } \| V (y) \|_* = 1, \\
&\text{(3) } dJ (y)[V (y)] \leq -\mu + \epsilon,
\end{align*} \]
for all \(y \in B_\rho (x) \). Moreover, if \(F \) is reversible, then \(V \) can be defined in \(U_\rho (x) \) and it also satisfies
\[\text{(4) } \mathcal{R} V (y) = V (\mathcal{R} y) \]
for all \(y \in U_\rho (x) \).

The proof of this proposition can be found in [13, Proposition 4.3].
Proposition 5. Let $C \subset \mathcal{M}$ be a closed set that does not contain any \mathcal{V}^--critical curve for \mathcal{J} and such that $\mathcal{J}(C) \subset [\delta_m, \delta_M]$, where δ_m and δ_M are defined in (10) and (17) respectively. Then there exists a constant $\mu_C > 0$ and a locally Lipschitz continuous vector field W defined on C such that

1. $W(x) \in \mathcal{W}^-(x, \mathcal{M})$,
2. $\|W(x)\|_* \leq 1$,
3. $d\mathcal{J}(x)[W(x)] \leq -\mu_C$,

for all $x \in C$. Moreover, if F is reversible and C is \mathcal{R}-invariant, then W also satisfies

4. $\mathcal{R}W(x) = W(\mathcal{R}x)$.

Proof. There exists a constant $\mu_C > 0$ such that \mathcal{J} has \mathcal{V}^--steepness equal or greater than $2\mu_C$ at every $x \in C$. In fact, if such a constant does not exist, then there exists a Palais-Smale sequence $(x_n)_n \subset C$ at level $c \in [\delta_m, \delta_M]$. By Proposition 3, there exists a \mathcal{V}^--critical curve for \mathcal{J} in C, which is an absurd.

Then, setting $\epsilon = \mu_C$, for all $x \in C$ we can take ρ_x as in Proposition 4 and a vector field V_x defined in $B_{\rho_x}(x)$ satisfying (1)-(3) of Proposition 4, thus

$$d\mathcal{J}(y)[V(y)] \leq -\mu_C, \quad \text{for all } y \in B_{\rho_x}(x).$$

Consider the open covering $\{B_{\rho_x}(x)\}_{x \in C}$ of C. Because C is a metric space, it is paracompact and there exists a locally finite covering $\{B_{\rho_{x_i}}(x_i)\}_{i \in J}$ of C. For all $y \in C$ and $i \in J$, we define

$$\varrho_i(y) = \text{dist}_*(y, C \setminus B_{\rho_{x_i}}(x_i))$$
and

$$\beta_i(y) = \frac{\varrho_i(y)}{\sum_{i \in J} \varrho_i(y)}.$$

Then $\sum_{i \in J} \beta_i(y) = 1$ for all $y \in C$ and we define our desired vector field as

$$W(y) = \sum_{i \in J} \beta_i(y) V_x_i(y).$$

If F is reversible and C is \mathcal{R}-invariant, Proposition 4 ensures that for all $x \in C$ there exists $\rho_x > 0$ a vector field defined in $U_{\rho_x}(x)$ such that

$$d\mathcal{J}(y)[V(y)] \leq -\mu_C \quad \text{and} \quad \mathcal{R}V(y) = V(\mathcal{R}y), \quad \text{for all } y \in U_{\rho_x}(x).$$

Then we can consider a locally finite covering $\{U_{\rho_{x_i}}(x_i)\}_{i \in J}$ of C, and defining

$$\varrho_i(y) = \text{dist}_*(y, C \setminus U_{\rho_{x_i}}(x_i))$$
we obtain our desired vector field following the previous construction. \qed

6. Deformation Lemmas.

Definition 6.1. A number $c > 0$ is a \mathcal{V}^--critical value for \mathcal{J} on \mathcal{M} if there exists $x \in \mathcal{M}$ that is a \mathcal{V}^--critical curve for \mathcal{J} on \mathcal{M} such that $\mathcal{J}(x) = c$. Otherwise, c is said \mathcal{V}^--regular value for \mathcal{J} on \mathcal{M}.

For any $c > 0$, we set

$$\mathcal{J}^c = \{ x \in \mathcal{M} : \mathcal{J}(x) \leq c \}.$$

Definition 6.2. Let \mathcal{N} be a subset of \mathcal{M}. Then a continuous function $h : [0, 1] \times \mathcal{N} \to \mathcal{N}$ is said admissible homotopy if
Lemma 6.3. Let \(c > 0 \) be a \(\mathcal{V}^- \)-regular value for \(\mathcal{J} \) on \(\mathcal{M} \). Then there exists an \(\epsilon > 0 \) and an admissible homotopy \(h : [0, 1] \times \mathcal{J}^{c+\epsilon} \to \mathcal{J}^{c+\epsilon} \) such that

\[
h(1, \mathcal{J}^{c+\epsilon}) \subset \mathcal{J}^{c-\epsilon}.
\]

Proof. By the Proposition 3, there exists \(\bar{\epsilon} > 0 \) such that \(c - \bar{\epsilon} > 0 \) and there are no \(\mathcal{V}^- \)-critical curves on \(C = \mathcal{J}^{-1}((c - \bar{\epsilon}, c + \bar{\epsilon})) \). By Proposition 5, there exists a vector field \(W \) defined on \(C \) and a constant \(\mu_C > 0 \) such that

\[
d_{\mathcal{J}}(x)(W(x)) \leq -\mu_C, \quad \forall x \in C.
\]

Let \(\chi : \mathbb{R}^+ \to [0, 1] \) be the piecewise affine function such that

\[
\chi(t) = 0, \quad \text{if } t \leq c - \bar{\epsilon} \quad \text{and} \quad \chi(t) = 1, \quad \text{if } t \geq c - \frac{\bar{\epsilon}}{2}.
\]

Then we define our desired homotopy \(h \) as the solution of the Cauchy problem

\[
\begin{align*}
\frac{\partial h}{\partial \tau} (\tau, x) &= \chi (\mathcal{J}(h(\tau, x))) W(h(\tau, x)) \\
h(0, x) &= x
\end{align*}
\]

if \(\mathcal{J}(x) \in [c - \epsilon, c + \epsilon] \) and

\[
h(\tau, x) = x, \quad \forall \tau \in [0, 1] \quad \text{if } \mathcal{J}(x) \leq c - \bar{\epsilon}.
\]

We can ensure that \(h(1, \mathcal{J}^{c+\epsilon}) \subset \mathcal{J}^{c-\epsilon} \) setting \(\epsilon = \min\left(\frac{\bar{\epsilon}}{2}, \frac{\mu_C}{2}\right) \). Indeed, if \(\epsilon \leq \frac{\bar{\epsilon}}{2} \), then \(\chi(t) = 1 \) for any \(t \in [c - \epsilon, c + \epsilon] \). Consequently, if \(h(\tau, x) \in \mathcal{J}^{-1}([c - \epsilon, c + \epsilon]) \) then

\[
d_{\mathcal{J}}(h(\tau, x)) \left[\frac{\partial h}{\partial \tau} (\tau, x) \right] = d_{\mathcal{J}}(h(\tau, x))(W(h(\tau, x))) \leq \mu_C,
\]

hence

\[
\mathcal{J}(h(\tau, x)) \leq \mathcal{J}(h(0, x)) - \mu_C \tau \leq c + \epsilon - \mu \tau.
\]

From the last inequality we infer that if \(\epsilon \leq \frac{\mu_C}{2} \), then \(\mathcal{J}(h(1, x)) \leq c - \epsilon \) for all \(x \in \mathcal{J}^{-1}([c - \epsilon, c + \epsilon]) \).

The homotopy \(h : [0, 1] \times \mathcal{J}^{c+\epsilon} \to \mathcal{J}^{c+\epsilon} \) defined above is an admissible homotopy. In fact, \(h(0, x) = x \) for all \(x \in \mathcal{J}^{c+\epsilon} \) and, if \(x \in \mathcal{C}_0 \) then \(\mathcal{J}(x) = 0 \) and \(h(\tau, x) \in \mathcal{C}_0 \) for all \(\tau \in [0, 1] \). Furthermore, \(h \) does not move the curves in \(\mathcal{J}^{c-\epsilon} \), thus if \(x \notin \mathcal{J}^{c+\epsilon} \cap \mathcal{C}_0 \), then \(h(\tau, x) \notin \mathcal{J}^{c+\epsilon} \cap \mathcal{C}_0 \) for all \(\tau \in [0, 1] \). Finally, if \(F \) is a reversible Finsler metric, then \(\mathcal{J}^{c+\epsilon} \) is \(\mathcal{R} \)-invariant and \(h(\tau, R\mathcal{R}) = \mathcal{R}h(\tau, x) \) for all \(x \in \mathcal{J}^{c+\epsilon} \) and \(\tau \in [0, 1] \), since \(\mathcal{R}W(x) = W(\mathcal{R}x) \) for all \(x \in \mathcal{J}^{c+\epsilon} \subset \mathcal{M} \) by Proposition 5.

From now on, let us assume that the number of non-constant \(\mathcal{V}^- \)-critical curves for \(\mathcal{J} \) on \(\mathcal{M} \) is finite. Otherwise, by Proposition 2, Theorem 1.3 is trivially true.

Let us fix an \(r_\star > 0 \) such that

- \(U_{r_\star}(x_i) \cap U_{r_\star}(x_j) = \emptyset \) for every \(i \neq j \);
- any \(U_{r_\star}(x_i) \) is contractible in itself;
- any \(U_{r_\star}(x_i) \) does not contain constant curves.
Thus, we define
\[O^* = \bigcup_{i=1,...,k} U_r^*(x_i). \]

We remark that, if \(F \) is reversible, then \(O^* \) is \(R \)-invariant by Lemma 2.5.

Using the same procedure exploited in the proof of Lemma 6.3, we obtain the following result.

Lemma 6.4. Assume that the number of non-constant \(V^- \)-critical curves for \(J \) on \(M \) is finite and let \(c > 0 \) be a \(V^- \)-critical value for \(J \) on \(M \). Then there exists an \(\epsilon > 0 \) and an admissible homotopy \(h : [0,1] \times J^{c+\epsilon} \to J^{c+\epsilon} \) such that \(h(1, J^{c+\epsilon} \setminus O^*) \subset J^{c-\epsilon} \).

7. **The minimax principle.** In this section, we assume that \(F \) is a reversible Finsler metric. Otherwise, all the results can be applied with slight modifications that we will show later. Let \(D \) be the set of all closed \(R \)-invariant subsets of \(M \). By (15), we have that
\[\text{cat}_{\tilde{\mathcal{M}}, \tilde{\mathcal{C}}_0} M \geq \text{cat}_{\tilde{\mathcal{C}}_0} \tilde{\mathcal{C}}_0 \geq N, \]
so the sets
\[\Gamma_i = \left\{ D \in D : \text{cat}_{\tilde{\mathcal{M}}, \tilde{\mathcal{C}}_0} \tilde{D} \geq i \right\}, \quad i = 1,...,N \quad (46) \]
are all non-empty and the following quantity is well defined
\[c_i = \inf_{D \in \Gamma_i} \sup_{x \in D} J(x), \quad \text{for any } i = 1,...,N. \quad (47) \]

Lemma 7.1. The following statements hold:

1. \(c_1 \geq \delta_m \), where \(\delta_m \) is defined in (10);
2. for every \(i = 1,...,N \), \(c_i \) is a \(V^- \)-critical value for \(J \) on \(M \);
3. for every \(i = 1,...,N-1 \), \(c_i < c_{i+1} \).

Proof. By (4), there exists a \(C^1 \)-retraction
\[r : \Phi^{-1}([-\delta_0, \delta_0]) \to \partial \Omega \quad (48) \]
defined in terms of the flow of \(\nabla \Phi \). By Lemma 2.1, if \(x \in J^{\delta_m} \) then \(\Phi(x(s)) \in [-\delta_0, 0] \). Using the retraction (48), there exists a homotopy \(h \) such that \(h(1, x(s)) \in \partial \Omega \). Now define the homotopy
\[k(\tau, x)(s) = x((1-\tau)s + \frac{\tau}{2}), \]
so that \(k(1, x)(s) = x(1/2) \in \partial \Omega \) for every curve that lies in \(\partial \Omega \). Combining the two homotopies \(h \) and \(k \) we define
\[H(\tau, x) = \begin{cases} h(2\tau, x), & \text{if } \tau \in [0, \frac{1}{2}], \\ k(2\tau - 1, h(1, x)), & \text{if } \tau \in [\frac{1}{2}, 1], \end{cases} \]
which is an \(R \)-invariant homotopy such that
\[H(1, J^{\delta_m}) \subset \mathcal{C}_0 \]
and, consequently,
\[\text{cat}_{\tilde{\mathcal{M}}, \tilde{\mathcal{C}}_0} J^{\delta_m} = 0. \]
As a consequence, if \(\text{cat}_{\tilde{\mathcal{M}}, \tilde{\mathcal{C}}_0} \tilde{D} \geq 1 \), then \(D \not\subset J^{\delta_m} \) and there exists a \(x \in D \) such that \(J(x) > \delta_m \). By definition of \(c_1 \), we infer that \(c_1 \geq \delta_m \).
Let us prove statement (2). In order to obtain a contradiction, let c_i be a \mathcal{V}-regular value. By definition of c_i, for all $\epsilon > 0$ there exists a $D \in \Gamma_i$ such that
\[
\mathcal{J}(x) \leq c_i + \epsilon, \quad \forall x \in D.
\]
so $D \subset \mathcal{J}^{c_i+\epsilon}$. By Lemma 6.3, there exists an admissible homotopy $h : [0,1] \times \mathcal{J}^{c_i+\epsilon} \to \mathcal{J}^{c_i+\epsilon}$ such that $h(1,D) \subset \mathcal{J}^{c_i-\epsilon}$. Since the relative category is invariant by admissible homotopies,
\[
\text{cat}_{\mathcal{M},\tilde{c}_0} h(1,D) = \text{cat}_{\mathcal{M},\tilde{c}_0} D \geq i.
\]
Then
\[
c_i \leq \sup_{x \in D} \mathcal{J}(h(1,x)) \leq c_i - \epsilon,
\]
which is an absurd.

We also prove statement (3) arguing by contradiction. Let i be such that $c = c_i = c_{i+1}$. Since c is a \mathcal{V}-critical value, we can apply Lemma 6.4 and there exist an $\epsilon > 0$ and an admissible homotopy $h : [0,1] \times \mathcal{J}^{c_\epsilon} \to \mathcal{J}^{c_\epsilon}$ such that
\[
h(1,\mathcal{J}^{c_\epsilon} \setminus \tilde{\mathcal{O}}^*) \subset \mathcal{J}^{c_\epsilon},
\]
where $\tilde{\mathcal{O}}^*$ is a contractible set in $\mathcal{M} \setminus \tilde{c}_0$. Moreover, there exists a $D \in \Gamma_{i+1}$ such that $D \subset \mathcal{J}^{c_\epsilon}$, so
\[
i + 1 \leq \text{cat}_{\mathcal{M},\tilde{c}_0} \mathcal{J}^{c_\epsilon} \leq \text{cat}_{\mathcal{M},\tilde{c}_0} \left(\mathcal{J}^{c_\epsilon} \setminus \tilde{\mathcal{O}}^*\right) + \text{cat}_{\mathcal{M},\tilde{c}_0} \tilde{\mathcal{O}}^*
\]
\[
\leq \text{cat}_{\mathcal{M},\tilde{c}_0} \left(\mathcal{J}^{c_\epsilon} \setminus \tilde{\mathcal{O}}^*\right) + 1 \leq \text{cat}_{\mathcal{M},\tilde{c}_0} \left(\mathcal{J}^{c_\epsilon} \setminus \tilde{\mathcal{O}}^*\right) + 1 < i + 1,
\]
that is a contradiction. \qed

8. **Proof of the main theorem.** Now, we are ready to collect the previous results and give the proof of the main theorem.

Proof of Theorem 1.3. Let the number of \mathcal{V}-critical curves for \mathcal{J} on \mathcal{M} be finite, otherwise the theorem derives directly from Proposition 2. If F is a reversible Finsler metric, by Lemma 7.1 there are at least N \mathcal{V}-critical values that are strictly greater than zero, so they correspond to non-constant \mathcal{V}-critical curves. By Proposition 2, either exists an OTFGC or they are OFGCs. It remains to prove that two different \mathcal{V}-critical values have geometrically distinct \mathcal{V}-critical curves, and it is sufficient to prove that if x_1 and x_2 are non-constant \mathcal{V}-critical curves such that $x_1([0,1]) = x_2([0,1])$, then $\mathcal{J}(x_1) = \mathcal{J}(x_2)$. Since x_1 and x_2 are non-constant \mathcal{V}-critical curves, \dot{x}_1 and \dot{x}_2 are always different from zero and there exists a function $\theta : [0,1] \to [0,1]$ of class C^2 such that
\[
x_2(s) = x_1(\theta(s)),
\]
and $\dot{\theta}(s) \neq 0$ for any $s \in [0,1]$. Moreover, either $\theta(0) = 0$ and $\theta(1) = 1$ or $\theta(0) = 1$ and $\theta(1) = 0$. Recalling that both x_1 and x_2 satisfy the geodesics equations (1) and that the components $\Gamma_{j,k}^i$ of the Chern connection are fiberwise homogeneous of degree zero when the Finsler metric is reversible, we obtain that
\[
0 = \dddot{x}_2^j + \Gamma_{j,k}^i(x_2, \dot{x}_2) \dddot{x}_2^k \dot{x}_2^j
\]
\[
= \dddot{x}_1^j(\theta) + \dddot{\theta}^j \dddot{x}_1^j(\theta) + \dddot{\theta}^j \Gamma_{j,k}^i(\theta) \dddot{x}_1^j(\theta) \dddot{x}_2^k(\theta)
\]
\[
= \dddot{x}_1^j(\theta) + \dddot{\theta}^j \left(\dddot{x}_1^j(\theta) + \Gamma_{j,k}^i(\theta) \dddot{x}_1^j(\theta) \dddot{x}_2^k(\theta)\right) \dddot{x}_2^k(\theta)
\]
\[
= \dddot{x}_1^j(\theta),
\]
for every $i = 1, \ldots, N$. As a consequence, $\ddot{\theta}(s) = 0$ for all $s \in [0, 1]$, thus either $\theta(s) = s$ or $\theta(s) = 1 - s$. In both cases, we obtain that

$$\mathcal{J}(x_1) = \frac{1}{2} \int_0^1 G(x_1, \dot{x}_1) \, ds = \frac{1}{2} \int_0^1 G(x_2, \dot{x}_2) \, ds = \mathcal{J}(x_2).$$

If F is not reversible, we exploit the relative category

$$\text{cat}_{\mathfrak{M}, \varepsilon_0} \mathfrak{M} \geq \text{cat}_{\varepsilon, \varepsilon_0} \mathfrak{C} \geq 2,$$

and we replace the definition of Γ_i in (46) with

$$\Gamma_i = \{D \in \mathcal{D} : \text{cat}_{\mathfrak{M}, \varepsilon_0} D \geq i\}, \quad i = 1, 2.$$

Consequently, defining the numbers c_i as in (47), Lemma 7.1 holds and there are two non constant V-critical curves for \mathcal{J} on \mathfrak{M} with different values of the energy functional. By Proposition 2, either there exists an OTFGC or there are two OFGC with different values of the energy functional.

\textbf{Remark 6.} If F is not reversible, the geometrical distinction of two OFGCs with different values of the energy functional cannot be ensured in general. For example, set $\Omega = \{q \in \mathbb{R}^2 : \|q\| < 1/2\}$ and consider the Randers metric $F(q, v) = \|v\| + \beta |v|$, with $\beta \in (0, 1)$. Then

$$x_1(s) = \left(s - \frac{1}{2}, 0\right) \quad \text{and} \quad x_2(s) = \left(\frac{1}{2} - s, 0\right)$$

are both OFGCs and an easy computation shows that

$$\mathcal{J}(x_1) = (1 + \beta)^2 \neq (1 - \beta)^2 = \mathcal{J}(x_2).$$

However, x_1 and x_2 are not geometrically distinct.

In order to show that the absence of OTFGCs is a weaker assumption than convexity, in the following example we construct two compact Finsler manifolds with boundary that are not convex and do not admit any OTFGC.

\textbf{Example 8.1.} Let us consider the 2-dimensional unit sphere S^2, endowed with the Riemannian metric $R: T S^2 \to \mathbb{R}$ induced by the standard euclidean product in \mathbb{R}^3. Fixing $\delta \in (0, 1/2)$, we define $\overline{\Omega} = \{(q^1, q^2, q^3) \in S^2 : q^3 \leq 1 - \delta\}$. We notice that $(\overline{\Omega}, R)$ is a concave Riemannian manifold. Indeed, every geodesic that is tangent to a point in $\partial\Omega$ remains inside Ω in a neighbourhood of the tangent point. Moreover, every geodesic that starts orthogonally to a point in $\partial\Omega$ arrives orthogonally to $\partial\Omega$. As a consequence, there does not exist any geodesic that starts orthogonally and arrives tangentially to the boundary of $\overline{\Omega}$. Now, we are going to perturb this Riemannian metric to obtain two Finler metrics that preserve the behaviour of the orthogonal geodesic chords. Let us consider a function $\beta: \mathbb{R} \to \mathbb{R}$ of class C^∞ such that

$$\beta(x) = \begin{cases} 1, & \text{if } |x| \in \left[0, \frac{1}{4}\right], \\ 0, & \text{if } |x| \geq \frac{1}{2}, \end{cases}$$

and consider the Finsler metric

$$F(q, v) = R(q, v) + \beta(q^3) \sqrt{(v^1)^2 + (v^2)^2 + (v^3)^2}, \quad \forall q \in \overline{\Omega}, v \in T_q \overline{\Omega}.$$

Then, F is a reversible Finsler metric and it is not a Riemannian metric on a tubular neighbourhood of the equator $q^3 = 0$. Since $F = R$ in a neighbourhood of $\partial\Omega$, $(\overline{\Omega}, F)$ is concave, hence it is not convex. Moreover, the Riemannian geodesics
for R that start and arrive orthogonally to $\partial\Omega$ are, up to a time reparametrization, OFGCs with respect to F. As a consequence, there are not OTFGCs.

Setting

$$F(q, v) = R(q, v) + \epsilon \beta(q^3)v^3,$$

with ϵ sufficiently small, we obtain a Finsler metric on Ω which is not reversible. Indeed, F is actually a Randers metric, i.e. the sum of a Riemannian metric and a 1-form on Ω. As previously, the Finsler manifold (Ω, F) is not convex and does not admit any OTFGC.

REFERENCES

[1] A. Abbondandolo and A. Figalli, High action orbits for Tonelli Langrangians and superlinear Hamiltonians on compact configuration spaces, *J. Differential Equations*, 234 (2007), 626–653.

[2] L. Asselle, On the existence of Euler-Lagrange orbits satisfying the conormal boundary conditions, *J. Func. Anal.*, 271 (2016), 3513–3553.

[3] R. Bartolo, E. Caponio, A. V. Germinario and M. Sánchez, Convex domains of Finsler and Riemannian manifolds, *Calc. Var. Partial Differential Equations*, 40 (2011), 335–356.

[4] A. Canino, Periodic solutions of Lagrangian systems on manifolds with boundary, *Nonlinear Anal.*, 16 (1991), 567–586.

[5] E. Caponio, M. Á. Javaloyes and A. Masiello, On the energy functional on Finsler manifolds and applications to stationary spacetimes, *Math. Ann.*, 351 (2011), 365–392.

[6] D. Corona, A multiplicity result for Euler-Lagrange orbits satisfying the conormal boundary conditions, *J. Fixed Point Theory Appl.*, 22 (2020), 60, 32 pp.

[7] D. Corona and F. Giannoni, Brake orbits for Hamiltonian systems of classical type via Finsler geodesics, (to appear)

[8] R. Giambò, F. Giannoni and P. Piccione, Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds, *Adv. Differential Equations*, 10 (2005), 931–960. arXiv:math/0410391

[9] R. Giambó, F. Giannoni and P. Piccione, On the multiplicity of orthogonal geodesies in Riemannian manifold with concave boundary. Applications to brake orbits and homoclinics, *Adv. Nonlinear Stud.*, 9 (2009), 763–782.

[10] R. Giambó, F. Giannoni and P. Piccione, Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and Homeomorphic to the N-dimensional disk, *Nonlinear Anal.*, 73 (2010), 290–337.

[11] R. Giambó, F. Giannoni and P. Piccione, Multiple brake orbits and Homoclinics in Riemannian manifolds, *Arch. Ration. Mech. Anal.*, 200 (2011), 691–724.

[12] R. Giambó, F. Giannoni and P. Piccione, Multiple brake orbits in m-dimensional disks, *Calc. Var. Partial Differential Equations*, 54 (2015), 2553–2580.

[13] R. Giambó, F. Giannoni and P. Piccione, Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles, *Calc. Var. Partial Differential Equations*, 57 (2018), Paper No. 117, 26 pp.

[14] R. Giambó, F. Giannoni and P. Piccione, Multiple orthogonal geodesic chords and a proof of Seifert’s conjecture on brake orbits, arXiv:2002.09587

[15] F. Giannoni and P. Majer, On the effect of the domain on the number of orthogonal geodesic chords, *Differential Geom. Appl.*, 7 (1997), 341–364.

[16] F. Giannoni and A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, *J. Func. Anal.*, 101 (1991), 340–369.

[17] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin, 1983.

[18] W. B. Gordon, The existence of geodesics joining two given points, *J. Differential Geometry*, 9 (1974), 443–450.

[19] C. Liu and D. Zhang, Seifert conjecture in the even convex case, *Comm. Pure Appl. Math.*, 67 (2014), 1563–1604.

[20] A. Marino and D. Scolozzi, Geodetiche con ostacolo, *Boll. UMI B* (6), 2 (1983), 1–31.

[21] F. Mercuri, The critical points theory for the closed geodesics problem, *Math. Z.*, 156 (1977), 231–245.
[22] D. Scolozzi, A result of local uniqueness for geodesics on manifolds with boundary, Boll. Un. Mat. Ital., 5-B (1986), 309–327.
[23] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197–216.
[24] Z. Shen, Lectures on Finsler Geometry, World Scientific Publishing, 2001.
[25] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math., 108 (1978), 507–518.

Received August 2020; revised March 2021.
E-mail address: dario.corona@unicam.it