Light Scalar Mesons in the Improved Ladder QCD

Toru Umekawa,1 Kenichi Naito,2 Makoto Oka,1 and Makoto Takizawa3

1 Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 Japan
2 Meme Media Laboratory, Graduate school of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 Japan
3 Showa Pharmaceutical University, Machida, Tokyo 194-8543 Japan

(Dated: October 29, 2018)

The light scalar meson spectrum is studied using the improved ladder QCD with the $U_A(1)$ breaking Kobayashi-Maskawa-‘t Hooft interaction by solving the Schwinger-Dyson and Bethe-Salpeter equations. The dynamically generated momentum-dependent quark mass is large enough in the low momentum region to give rise to the spontaneous breaking of chiral symmetry. Due to the large dynamical quark mass, the scalar mesons become the $qar{q}$ bound states. Since the parameters have been all fixed to reproduce the light pseudoscalar meson masses and the decay constant, there is no free parameter in the calculation of the scalar mesons. We obtain $M_0 = 667$ MeV, $M_{a_0} = 942$ MeV and $M_{f_0} = 1336$ MeV. They are in good agreement with the observed masses of $\sigma(600)$, $a_0(980)$ and $f_0(1370)$, respectively. We therefore conclude that these states are the members of the light scalar meson nonet. The mass of K_0^* is obtained between that of a_0 and f_0 and the corresponding state is not observed experimentally. We also find that the strangeness content in the σ meson is about 5%.

PACS numbers: 11.10.St, 11.30.Rd, 12.38.-t, 12.40.Yx

I. INTRODUCTION

About three decades ago, quantum chromodynamics (QCD) was conceived as the microscopic theory of the strong interactions. Since then, many aspects of QCD have been studied and QCD is established as the fundamental theory of the strong interactions. Because of the nonperturbative nature of the low-energy QCD, understanding the low-lying hadron structures from the viewpoint of the quark and gluon degree of freedom is one of the most challenging problems.

The lightest excitation on the QCD vacuum is the pion which is considered as a quark and an antiquark bound state in the pseudoscalar channel. Its mass (about 140 MeV) is off-scale light compared with other hadrons such as the ρ-meson ($m_\rho \sim 770$ MeV), the spin-flip partner of the pion, and the nucleon ($m_N \sim 940$ MeV), the three-quark bound state. This can be understood by recognizing that the chiral symmetry is spontaneously broken in the QCD vacuum and the pion is the Nambu-Goldstone (NG) boson associated with the dynamical chiral symmetry breaking (DCSB). The DCSB is, therefore, among the most important aspects of low-energy hadron physics. It is believed to be responsible for a large part of the constituent quark masses, which are introduced in the many constituent quark models.

If QCD lagrangian has no explicit chiral-symmetry breaking term, the mass of the NG boson associated with the DCSB should be zero. In order to explain the observed mass of the pion, one needs small explicit chiral-symmetry breaking terms, namely, current quark mass terms. The NG boson nature of the pion was first studied by Nambu and Jona-Lasinio (NJL) using the schematic model with the four-fermion interaction [1]. Since then, low-energy hadron properties have been widely studied using the NJL-type models [2]. On the other hand, the effects of the explicit breaking of the chiral symmetry on the pion properties have been systematically studied using the effective lagrangian composed of the pion field. This approach is called the chiral perturbation theory (ChPT) [3]. The success of ChPT approach supports the importance of the DCSB in low-energy QCD.

When we start looking at the strange quark sector, we meet another problem. If one assumes that the up, down and strange quark masses are small compared with the scale of the DCSB, the number of the NG bosons is equal to the dimension of the coset space $U_L(3) \times U_R(3)/U_V(3)$, namely, nine. The ninth heavier pseudoscalar meson is η' and its mass is much heavier than the other octet pseudoscalar mesons. Weinberg showed that the mass of η' should be less than $\sqrt{3}m_\pi$ if $U_A(1)$ symmetry were not explicitly broken [4]. Thus the $U_A(1)$ symmetry must be broken. The key step to solve this $U_A(1)$ problem was to realize that there is an anomaly in the $U_A(1)$ channel. Namely the $U_A(1)$ symmetry in the classical theory, i.e., in the action, is broken by quantum effects. In the following year, ‘t Hooft pointed out the relation between $U_A(1)$ anomaly and topological gluon configurations of QCD and showed that the interaction of light quarks and instantons breaks the $U_A(1)$ symmetry [5]. He also showed that such an interaction can be represented by a local $2N_f$ quark vertex, which is antisymmetric under flavor exchanges, in the dilute instanton gas approximation.
The effects of the $U_A(1)$ anomaly on the low-energy QCD have been extensively studied in the $1/N_C$ expansion approach [9]. In the $N_C \to \infty$ limit, the $U_A(1)$ anomaly is turned off and then the η and η' mesons become the ideal mixing states. The flavor component of the η is $\frac{1}{2} (u \bar{u} + d \bar{d})$ with $m_\eta(N_C \to \infty) = m_\pi$ and the η' meson becomes a pure $s\bar{s}$ state with $m_{\eta'}^2(N_C \to \infty) \simeq 2m_K^2 - m_\pi^2 = (687\text{MeV})^2$ [7]. The higher order effects of the $1/N_C$ expansion give rise to the flavor mixing between the η and η' mesons and push up the η' mass. They were further discussed in the context of the ChPT [10] and the reasonable description of the nonet pseudoscalar mesons was obtained.

The $U_A(1)$ breaking $2N_f$ quark determinant interaction was introduced to the low-energy effective quark models of QCD. The low-lying meson properties have been studied using the three-flavor version of the NJL model with the Kobayashi-Maskawa-`t Hooft (KMT) determinant interaction [11, 12]. The radiative decays of the η meson have been studied in this approach [12, 13] and found that these decay widths are reproduced when the $U_A(1)$ breaking interaction is more than that of the quark condensates and $\langle \bar{q}q \rangle$ is not confirmed. This pattern cannot be explained as a naive $q\bar{q}$ nonet, because the $I = 1$ and $\bar{I} = 0$ states are almost degenerate with the second $I = 0$ state f_0, while the first $I = 0$ state σ is far below them. (2) The roles of the scalar mesons in chiral symmetry have been stressed in the context of high temperature hadronic matter [17]. Above the critical temperature, $T \sim 170$ MeV, the world is nearly chiral symmetric and we expect that hadrons belong to irreducible representations of chiral symmetry, if we neglect small mixing due to finite quark mass. The pion is not any more a Nambu-Goldstone boson, and has a finite mass and should be degenerate with a scalar meson, i.e., sigma. Another scenario was proposed recently. It is the vector manifestation where the rho meson becomes massless degenerate with pion as the chiral partner [18]. In order to make the situation clear, we consider that the light scalar mesons are the key particles.

We have studied the effects of the $U_A(1)$ breaking interaction on the low-lying nonet scalar mesons using the extended NJL model, in which the three-flavor NJL model is supplemented with the KMT determinant interaction [20]. Why is the $U_A(1)$ expected to be important in the scalar mesons? It is because the KMT interaction selects out the scalar sector as well as the pseudoscalar mesons and therefore the OZI rule may be broken significantly also in the scalar mesons [20]. We have found that the $U_A(1)$ breaking interaction gives rise to about 150 MeV mass difference between the σ and a_0 mesons. We have also found that the strong mass content in the σ meson is about 15%. The calculated mass of the $I = 1/2$ state (K^G_0) is about 200 MeV heavier than that of the $I = 1$ state (a_0).

The physics of the light scalar mesons seems to be directly related to the mechanism of the dynamical chiral symmetry breaking (DCSB). In the NJL model, the strong four-quark interaction gives rise to the DCSB and it leads the simple mass relation between the scalar meson mass (m_S) and the dynamical quark mass (M_q) in the mean-field approximation, i.e., $m_S = 2M_q$ in the chiral limit. In the case of the instanton liquid model, the DCSB is caused by the instanton induced interaction. The scalar meson masses are rather sensitive to the instanton-antiinstanton interaction. The results in the fully interacting instanton ensemble are $m_{\sigma} \simeq 0.58$ GeV and $m_{a_0} \simeq 2.05$ GeV [19].

In contrast with the instanton liquid model, the study of the QCD Schwinger-Dyson (SD) equation for the quark propagator in the improved ladder approximation (ILA) has shown that the spontaneous breaking of the chiral symmetry is explained by simply extrapolating the running coupling constant from the perturbative high-energy region to the low-energy region [20]. Then, the Bethe-Salpeter (BS) equation for the $J^{PC} = 0^{-+}$ quark channel has been solved in the ILA and the existence of the instanton liquid model, the DCSB is caused by the instanton induced interaction. The scalar mesons are massless degenerate with pion as the chiral partner [20]. In order to make the situation clear, we consider that the light scalar mesons are the key particles.

Then, the current quark mass term has been introduced in the studies of the BS amplitudes in the ILA [20] and the reasonable values of the pion mass, the pion decay constant and the quark condensate have been obtained. It has been also shown that the pion mass square and the pion decay constant are almost proportional to the current quark mass up to the strange quark mass region. The effect of the $U_A(1)$ anomaly is further introduced in the ILA approach by
the KMT interaction. The instanton size effects are taken into account by the form factor of the interaction vertices. It guarantees the right asymptotic behavior of the solutions of the SD and BS equations. The properties of the η and η′ mesons have been studied by solving the coupled channel BS equations and the reasonable values of m_π, m_η, $m_{\eta'}$, f_π and $\langle \bar{q}q \rangle_0$ with a relatively weak flavor mixing interaction (KMT interaction), for which the chiral symmetry breaking is dominantly induced by the soft-gluon exchange interaction \cite{32}.

The purpose of this paper is to study the properties of the light scalar meson nonet in the improved ladder approximation (ILA) of QCD with the $U_A(1)$ breaking Kobayashi-Maskawa-'t Hooft (KMT) 6-quark flavor determinant interaction. In this approach, the mechanism of the dynamical chiral symmetry breaking is different from the NJL model and instanton liquid model. It has been shown that the Wilsonian non-perturbative renormalization group equation gives the identical effective fermion mass with that obtained by solving the Schwinger-Dyson equation in the improved ladder approximation \cite{32}. We hope that the present study may shed light on the mechanism of the DCSB in the low-energy QCD. It should be noted here that the parameters have been all fixed in the pseudoscalar meson sector and therefore there is no free parameter in the present study.

There have been many studies of the pion BS amplitude using the effective models of QCD and /or the approximation schemes of QCD \cite{37,38}. The main differences among these studies are the form of the gluon propagator used in the SD and BS equations. Of course, the behavior of the gluon propagator in the asymptotic region is well established and there is no differences. However, that in the infrared region is not well known. The simple infrared cutoff is introduced in the ILA, while in the approach given in \cite{38}, the specific form of the infrared gluon propagator is assumed.

Recently, attempts have been made to evaluate enhancement of the gluon propagator (as well as the vertex factor) from quenched lattice QCD data of the quark propagator \cite{39,40}. They found that the gluon propagator is required to have strong enhancement in the soft momentum region so that chiral symmetry is dynamically broken. Although the enhancement patterns vary among the models and parametrizations, they tend to show similar behavior when the solution of the SD equation, i.e., the quark mass function, is concerned. Thus we expect that the results for the mesonic bound state in the BS equation with the effective quark mass function qualitatively agree among the models.

The paper is organized as follows. In Sec. II we explain the Lagrangian we use in the present study and derive the SD equation for the quark propagator and the BS equation for the scalar meson. Sec. III is devoted to the numerical results. Finally, summary and concluding remarks are given in Sec. IV.

\section*{II. FORMULATION}

In this section, we present the formulation of the improved ladder QCD with KMT interaction. The rainbow approximation is applied to the SD equation for the quark propagator and to the BS equation for the pseudoscalar and scalar mesons. Since the derivations of the SD equation and the BS equation for the pseudoscalar mesons have been given in the ref. \cite{32}, here, we present only the results.

\subsection*{A. Improved ladder QCD with KMT interaction}

The improved ladder QCD is based on the ladder approximation which is improved by replacing the coupling constant by the running coupling constant. We employ the rainbow approximation of the SD equation for the quark propagator and the ladder approximation of the BS equation for the quark-antiquark bound states. Improvement is made by the use of the running coupling constant according to the Higashijima-Miransky \cite{29,30,33} method.

Under this approximation, the gluon exchange interaction \mathcal{L}_{GE} becomes

$$
\mathcal{L}_{GE} = \frac{1}{2} \int_{pp'qq'} i\bar{g}^2 \left(\frac{p - q'}{2}, \frac{q - p'}{2} \right) D^{\mu\nu} \left(\frac{p + p' - q + q'}{2} \right) \times \bar{\psi}(p) \gamma_\mu T^a \psi(p') \bar{\psi}(q) \gamma_\nu T^a \psi(q') e^{-i(p + p' + q + q')x},
$$

(1)

where we use an abbreviation $\int_p = \int \frac{d^3p}{(2\pi)^3}$. For the gluon propagator we employ the Landau gauge,

$$
iD^{\mu\nu}(k) = \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{k^2} \right) \frac{-1}{k^2}
$$

(2)

and the Higashijima-Miransky type running coupling constant \tilde{g}^2 defined as follows \cite{29,30,33},

$$
\tilde{g}^2(p_E^2, q_E^2) = \theta(p_E^2 - q_E^2)g^2(p_E^2) + \theta(q_E^2 - p_E^2)g^2(q_E^2)
$$

(3)
The Schwinger-Dyson equation is given by

\[\mathcal{L}_{\text{KMT}} = -\frac{1}{3} G_{D} \epsilon_{f_{1}f_{2}f_{3}} \epsilon_{g_{1}g_{2}g_{3}} \int_{p_{1}+p_{2}+q_{1}+q_{2}+q_{3}} \epsilon(-p_{1}+p_{2}+q_{1}+q_{2}+q_{3}) w(p_{1}, p_{2}, q_{1}, q_{2}, q_{3}) \]

\[\times \left\{ \bar{\psi}_{g_{1}}(p_{1}) \psi_{f_{1}}(q_{1})[\bar{\psi}_{g_{2}}(p_{2}) \psi_{f_{2}}(q_{2})] \bar{\psi}_{g_{3}}(p_{3}) \psi_{f_{3}}(q_{3}) \right\} + 3 \left\{ \bar{\psi}_{g_{1}}(p_{1}) \psi_{f_{1}}(q_{1})[\bar{\psi}_{g_{2}}(p_{2}) \gamma_{5} \psi_{f_{2}}(q_{2})] \bar{\psi}_{g_{3}}(p_{3}) \gamma_{5} \psi_{f_{3}}(q_{3}) \right\} \]

for flavor indices, \(f_{1}, g_{1}, \ldots \) denotes the antisymmetric tensor with \(\epsilon^{uds} = 1 \). This interaction breaks the \(U_{A}(1) \) symmetry and also mixings quark flavors. We introduce a weight function

\[w(p_{1}, \ldots, q_{3}) = \exp(-\kappa(p_{1}^{2} + \cdots + q_{3}^{2})) \]

so that the KMT interaction is turned off at large momentum region. Then the asymptotic behavior of the ILA are kept consistent with the perturbative QCD. The parameter \(\kappa \) is taken as \(\kappa = 0.7 \) GeV\(^{-2} \). This value corresponds to the form factor of the instanton of the average size \(\rho \sim 1/3 \) [fm\(^{3} \)].

B. Schwinger-Dyson Equation

The SD equation in the momentum space is written as

\[i S_{F}^{-1}(q) - i S_{0}^{-1}(q) = -C_{F} \int_{p} g_{F}(-q^{2} - p^{2}) \gamma_{\mu} S_{F}(p) \gamma_{\mu} \]

\[-G_{D} \int_{p,k} w(-q^{2} - p^{2} - k^{2}) \text{tr}^{(DC)}[S_{F}(p)] \text{tr}^{(DC)}[S_{F}(k)] \]

\[+ \int_{p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}} \epsilon(-p_{1}+p_{2}+q_{1}+q_{2}+q_{3}) w(p_{1}, p_{2}, q_{1}, q_{2}, q_{3}) \]

where

\[g_{F}^{2}(p_{E}^{2}) = \begin{cases} \frac{\beta_{0}}{\beta_{0} + t} & \text{for } t_{1F} \leq t \\ \frac{3t_{1F}-t_{0}+2 - \frac{4(t_{1F}^{2} - t_{0}^{2})}{(1+t_{1F})^2}}{2\beta_{0}} & \text{for } t_{0} \leq t \leq t_{1F} \\ \frac{3t_{1F}-t_{0}+2}{2\beta_{0}} & \text{for } t \leq t_{0} \end{cases} \]

Here, \(p_{E} \) and \(q_{E} \) denote the Euclidian momenta defined by

\[p = (p_{0}, \vec{p}) \rightarrow p_{E} = (ip_{4}, \vec{p}) \]

\[p^{2} = p_{0}^{2} - \vec{p}^{2} \rightarrow p_{E}^{2} = -p^{2} = \vec{p}^{2} + p_{0}^{2} \]
where \(\text{tr}^{(\text{DC})} \) means the trace of the Dirac and color components and \(C_F = (N_C^2 - 1)/2N_C \). Here, the flavor antisymmetrization is assumed in the second term of the RHS. This equation is shown diagrammatically in Fig. 1.

Generally the quark propagator is parametrized as

\[
S_F(q) = \frac{i}{\not{q} A(q^2) - B(q^2)}. \tag{12}
\]

In the Landau gauge, it can be shown that the solution satisfies \(A(-q^2) = 1 \). Then the SD equation becomes the integral equation only of the mass function \(B(q^2) \). Our numerical results of the mass function are shown in Fig. 2.

The quark masses are renormalized as

\[
m_q = Z^{-1}_m m_q, \quad m_s = Z^{-1}_m m_s, \tag{13}
\]

where we take the renormalization condition as

\[
\left. \frac{\partial B_q(\mu^2)}{\partial m_q} \right|_{m_q = 0} = 1 \tag{14}
\]

\[
\left. \frac{\partial B_s(\mu^2)}{\partial m_s} \right|_{m_s = 0} = 1 \tag{15}
\]

We define the quark condensate as follows

\[
\langle \bar{\psi}(0) \psi(0) \rangle = - \int \text{tr}[S_R^F(p)] + \int \text{tr}[S_{F,F}^R(p)] \tag{16}
\]

where

\[
S_R^F(p) = \frac{i}{\not{p} - B(p^2)} \tag{17}
\]

\[
S_{F,F}^R(p) = \left. \frac{\partial S_R^F(p)}{\partial m_R} \right|_{m_R = 0} m_R \tag{18}
\]

FIG. 2: \(q^2_E \) dependencies of the mass function of the light (q) quark, \(B_q \), and the stranger (s) quark, \(B_s \), for \(G_D = 0 \) and \(75 \text{[GeV}^{-5}] \).
which is chosen as Λ_{UV} diagrammatically in Fig. 3.

The normalization condition of the BS amplitude is given by

\[
\gamma^R(k; P) = 1_C \frac{\lambda^2}{2} \left(\phi_5^a(k; P) + \phi_T^a(k; P) k + \phi_Q^a(k; P) P + \phi_P^a(k; P) \frac{1}{2}(P k - k P) \right).
\]

The normalization condition of the BS amplitude is given by

\[
i \int_{-q_{\text{UV}}^2 \leq k^2 \leq q_{\text{UV}}^2} \frac{d^4 q}{(2\pi)^2} \chi_{m_1 m_2}(q; P) \bar{\chi}_{m_2 m_1}(q; P) P^\mu \frac{\partial}{\partial P^\mu} \{ S^{-1}_{F_{m_1 m_2}}(q_{\text{UV}}) S^{-1}_{F_{m_2 m_1}}(q_{\text{UV}}) \} = -2 P^2,
\]

where the indices m_1, m_2, \ldots are combined indices in the color, flavor and Dirac spaces.

In the numerical computation, we solve the BS equation in the Euclidean momentum region. Then the physical solution, which corresponds to negative P_E^2, is obtained by extrapolation from the $P_E^2 > 0$ region. It can be done in the following way. First, we rewrite the Euclidean BS equation in the form

\[
\phi_A(q; P_E) = \int_{k_E} M_{AB}(q_E; k_E; P_E) \phi_B(k; P_E)
\]

where ϕ_A and ϕ_B denotes a set of amplitude. This equation should not have a solution at $P_E^2 > 0$ because, if there is one, it is a tachyon solution. Therefore we instead solve an eigenvalue equation

\[
\lambda(P_E^2) \phi_A(q_E; P_E) = \int_{k_E} M_{AB}(q_E; k_E; P_E) \phi_B(k_E; P_E)
\]

for a fixed $P_E^2 > 0$. Then we extrapolate the eigenvalue λ to $P_E^2 < 0$ as a function of P_E^2 and search for the on-shell point $\lambda(-M_E^2) = 1$. We employ the quadratic function of P_E^2 for the extrapolation.

III. NUMERICAL RESULTS

A. Parameters

In the present approach, there are seven input parameters: the bare quark mass m_{q_0} for the up and down quarks, in which we assume isospin symmetry $m_u = m_d$, the current quark mass m_{s_0} for the strange quark, the scale parameter.
TABLE I: The numerical results of the BS equation.

mass (MeV)	\(f_{\pi} = 95\text{[MeV]} \)
\(\pi \)	136
\(\eta \)	515
\(\eta' \)	982
\(K \)	517
\(\sigma \)	667
\(a_0 \)	942
\(f_0 \)	1336
\(K_0 \)	1115

of QCD running coupling constant \(\Lambda_{QCD} \), the infrared cutoff \(t_{IF} \), the smoothness parameter \(t_0 \), the strength parameter of the KMT \(G_D \) and the parameter of the weight function of the KMT \(\kappa \). We choose these parameters to reproduce the observables of the pseudoscalar mesons and then we apply them to the scalar mesons.

The quark masses \(m_{q_0}, m_{s_0} \) are chosen so that the renormalized masses at the momentum scale \(\mu = 2\text{[GeV]} \) become the \(m_{q_R} = 4.5\text{[MeV]} \) and \(m_{s_R} = 150\text{[MeV]} \), respectively. The \(\kappa \) parameter is taken as \(\kappa = 0.7\text{[GeV}^{-2}] \), which corresponds to the instanton of the average size \(1/3\text{[fm]} \). The other parameters \(\Lambda_{QCD}, t_{IF}, t_0, G_D \) are chosen as the pseudoscalar meson masses \(M_\pi, M_\eta, M_{\eta'} \) and the pion decay constant \(f_\pi \) are fitted to the experimental values. The parameters that we use are \(\Lambda_{QCD} = 600\text{[MeV]}, t_0 = -6.89, t_{IF} = 0.204 \) and \(G_D = 75\text{[GeV}^{-5}] \). These parameters give \(M_\pi = 136\text{[MeV]}, M_\eta = 515\text{[MeV]}, M_{\eta'} = 982\text{[MeV]} \) and \(f_\pi = 95\text{[MeV]} \). These are in agreement with experimental values in less than 6\% of deviation. Table II summarizes all the values of the parameters.

Although \(\Lambda_{QCD} \) is somewhat larger than the standard value \(\Lambda_{QCD} = 100 \sim 300\text{[MeV]} \), a large \(\Lambda_{QCD} \) is necessary in the ILA to generate the desired dynamical chiral symmetry breaking (D\(\chi \)SB). It is known that by using the running coupling constant obtained by the higher loop calculation, the smaller \(\Lambda_{QCD} \) gives rise to the correct size of the DCSB. On the other hand, the Wilsonian non-perturbative renormalization group analysis has shown that the effects beyond the ladder approximation also reduce \(\Lambda_{QCD} \) [41].

B. Solution of the SD equation

The numerical solutions of the SD equation are shown in Fig.2. The values of the quark condensates and mass function at \(P_E^2 = 0 \) are given in the Table III.

C. Solution of the BS equation for the Scalar mesons

As mentioned above, since the parameters of this approach have been chosen using the observables of the pseudoscalar mesons, the following numerical results of the scalar mesons are parameter free predictions.

Let us now start the discussion of the solutions of the BS equation. Our numerical results for the scalar mesons are summarized in Table I. The dependence of the mass spectra on the strength of the KMT interaction is shown in the Fig.4.

First, the dependencies of the masses of \(\sigma \) and \(a_0 \) on \(G_D \) look qualitatively same as the NJL results shown in [27]. In the NJL calculation, the parameters are chosen so as to reproduce the \(M_\pi \) and \(f_\pi \) at each \(G_D \). In contrast, in the

\(B_q(0) \)	\(B_s(0) \)	\(-\langle \bar{q}q \rangle^{1/3} \)
0.616[GeV]	0.778[GeV]	0.259[GeV]

TABLE III: The values of the mass function at \(P_E^2 = 0 \) and the quark condensates.
the Fig. 5 We therefore anticipate moderate ambiguity in the extracted masses especially when the mass is large.

follows. When G our picture. Further study is necessary to make the situation clearer.

The dependences of the scalar meson spectrum on the strength of the KMT interaction. To obtain the physical mass and mixing angle, we have to extrapolate the solution from the momentum region. To obtain the physical mass and mixing angle, we have to extrapolate the solution from the

Concerning the a_0 meson, we obtain $M_{a_0} = 942[\text{MeV}]$. This result is comparable to the experimental value $984.8 \pm 1.4[\text{MeV}]$. We obtain significant mass splitting between the σ and a_0, about 275[MeV]. We conclude that the observed $\sigma - a_0$ mass splitting can be explained as the $U_A(1)$ symmetry breaking effects. Recent study of the light flavor scalar mesons in the instanton liquid model showed similar result [43].

The obtained mass of f_0 is 1336 MeV. We therefore identify this state with $f_0(1370)$ whose T-matrix pole position is $(1200 - 1500) - i(150 - 250)$ MeV. The calculated mass of f_0 is about 400 MeV larger than that of a_0. The mixing angle of f_0 is -83.9° and it means that this state is close to the flavor octet state. In such a case, the effects of the KMT term on f_0 state is almost same as that on a_0 and therefore the origin of the mass difference between f_0 and a_0 is considered to be mostly the symmetry breaking effects by the strange quark mass.

The $f_0(980)$ state is observed between $\sigma(600)$ and $f_0(1370)$. From the present study, it seems unlikely that $f_0(980)$ is a simple $q\bar{q}$-bound state. Literatures have suggested that $f_0(980)$ may consist of q^2q^2 [44, 45, 46, 47] or may be a $K\bar{K}$ molecular state [48]. Those studies often indicate that the $a_0(980)$ is also a four-quark state. It conflicts with our picture. Further study is necessary to make the situation clearer.

The dependences of the scalar meson spectrum on the strength of $U_A(1)$ breaking interaction are understood as follows. When $G_D = 0$, σ meson is ideal mixing state $\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})$. As the G_D becomes large, the σ approaches the flavor singlet state $\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d} + s\bar{s})$. The σ meson mass seems to become large because of the increase of the strange component. On the other hand, the KMT interaction is attractive for the flavor singlet state, consequently the σ meson mass hardly change. In the case of a_0, since the KMT interaction dose not induce the flavor mixing, a_0 is fixed on the $\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})$ state. As G_D becomes large, the a_0 mass increase by the repulsive KMT interaction. As G_D becomes large, the f_0 changes from $s\bar{s}$ to $\frac{2}{\sqrt{2}}(u\bar{u} + d\bar{d} - 2s\bar{s})$. The decreasing of the strange component and the repulsive KMT interaction compete. At the small G_D, they are balanced and the f_0 mass increases at the large G_D where the flavor of the f_0 is sufficiently mixed.

There is a shortcoming in the present approach. The solution of the BS equation is obtained at the Euclidian momentum region. To obtain the physical mass and mixing angle, we have to extrapolate the solution from the space-like to the time-like region. This is carried out by extrapolating the eigenvalue function $\lambda(P_E^2)$ in Eq. (21) to negative P_E^2 until it hits $\lambda(P_E^2) = 1$. The graphs of the extrapolation about the masses of the a_0, σ, f_0 are shown in the Fig [1]. We therefore anticipate moderate ambiguity in the extracted masses especially when the mass is large.
Next, we consider the mixing angles. We introduce the matrix elements S^8 and S^0 which are defined by

$$S^a = \int d^4x \langle 0 | q(x) \frac{\lambda^a}{2} q(x) | \text{scalar meson state} \rangle$$

(24)

$$= \text{tr} \left[\chi^R(0; P) \frac{\lambda^a}{2} \right]$$

(25)

Since these S values extract the particular flavor component of ϕ_S which is the main component of the BS amplitude at the origin, we employ S^8 and S^0 to determine the ratio of the octet and the singlet components. Accordingly we define the mixing angles of the scalar mesons as

$$\tan \theta_\sigma = -\frac{S_0^\sigma}{S_8^\sigma}$$

(26)

$$\tan \theta_{f_0} = \frac{S_{f_0}^8}{S_{f_0}^0}$$

(27)

The results are summarized in Table I and Fig. 6.

As G_D increases, the mixing angle moves towards -90°, where σ becomes the purely flavor singlet state: $\frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$. The obtained angle at $G_D = 75[\text{GeV}^{-5}]$ is -68.0° and is slightly smaller than the result of the NJL model, -77.3°. This angle corresponds to about 5% mixing of the strangeness component in σ.

Fig. 5: Extrapolation of the eigenvalue λ with respect to P_E^2 for σ, a_0, and f_0 mesons. The solid line shows the extrapolation of the σ and the doted line shows the extrapolation of the a_0 and the dashed line shows the extrapolation of the f_0.

Fig. 6: Dependence of the mixing angle of the σ and f_0 meson on the strength of the KMT interaction.
D. Solution of the BS equation for the Strange meson

In this section, we discuss the strange scalar meson \(K_0^* \). Here we employ an approximation in order to avoid the technical difficulty coming from the ambiguity in defining the center of mass coordinate as this meson consists of the a strange quark and a nonstrange quark. Instead of treating the asymmetric BS equation, we solve the symmetric BS equation for the quarks of mass \(m_q + m_q = 677 \text{MeV} \). We apply this approximation to the kaon and obtained the reasonable kaon mass, \(m_K = 494 - 498 \text{MeV} \).

The results are summarized in Table II and Fig. 3. The obtained \(K_0^* \) mass is 1115 MeV, which is about 173 MeV larger than that of \(a_0 \) and about 221 MeV smaller than that of \(f_0 \). If all the \(a_0 \), \(K_0^* \) and \(f_0 \) states are assumed to be the flavor octet \(\bar{q}q \) states, the simple quark model calculation predicts the Gell-Mann-Okubo mass formula. Our results deviate from both the linear mass formula, \(3(M_{f_0} - M_{K_0^*}) = M_{K_0^*} - M_{a_0} \) and the quadratic mass formula, \(3(M_{f_0}^2 - M_{K_0^*}^2) = M_{K_0^*}^2 - M_{a_0}^2 \).

Unfortunately, the corresponding light \(I = 1/2 \) scalar meson is not observed. The observed mass of the \(K_0^*(1430) \) is 1412 ± 6 MeV and larger than our result of \(M_{f_0} \). It therefore seems to be rather difficult to identify \(K_0^*(1430) \) with our \(K_0^* \) state. We do not consider \(K_0^*(1430) \) as a member of the light scalar nonet states. We hope the re-analysis of the experimental data using the chiral effective model including the effects of the \(U_A(1) \) breaking interaction will shed light on the problem of the missing state in the \(I = 1/2 \) scalar channel.

IV. SUMMARY AND CONCLUSIONS

We have studied the spectrum of the light scalar nonet mesons using the improved ladder approximation (ILA) of QCD with the Kobayashi-Maskawa-‘t Hooft (KMT) \(U_A(1) \) breaking interaction. We choose parameters to reproduce the masses and decay constants of the pseudoscalar nonet mesons and apply those to the scalar nonet mesons.

The ILA of QCD is an approximation that is consistent with chiral symmetry and consists of the rainbow approximation of the Schwinger-Dyson equation and the ladder approximation of the Bethe-Salpeter equation. Using this approach, we analyze the scalar meson spectrum quantitatively.

We have obtained \(M_\sigma = 667 \text{MeV}, M_{a_0} = 942 \text{MeV} \) and \(M_{f_0} = 1336 \text{MeV} \). Considering the ambiguity due to the extrapolation from the Euclid momentum, they are in good agreement with the observed masses of \(\sigma (600), a_0 (980) \) and \(f_0 (1370) \), respectively. We therefore consider that these states are the members of the light scalar meson nonet. This identification is different from the conventional one. The key ingredient is the instanton-induced \(U_A(1) \) breaking interaction. It gives rise to the symmetry breaking and flavor mixing effects on the scalar mesons as well as the pseudoscalar mesons.

We have obtained the strangeness content in the \(\sigma \) meson of about 5%. This \(s\bar{s} \) mixing may be tested, for instance, by analyzing the \(\pi \pi \) decays of heavy mesons carefully.

The obtained \(K_0^* \) mass is 1115 MeV. The corresponding state is not observed. The observed \(K_0^*(1430) \) is heavier than our result of \(M_{f_0} \) and therefore we do not include \(K_0^*(1430) \) in the light scalar nonet.

It should be noted that the scalar isoscalar state can be mixed with the scalar glueball state. Such effect is not taken into account here. There is another important effect to be discussed. The light scalar nonet can be generally coupled to the intermediate states composed of two pseudoscalar mesons rather strongly. If the light \(q^2 \bar{q}^2 \) states exist, this coupling effects should be very important. The extension of the Bethe-Salpeter equation to the \(q^2 \bar{q}^2 \) system seems to be rather difficult. One way is to apply the bilocal bosonisation technique [16]. Another direction of the further study is the extension to the finite temperature and/or density [54]. In the present study, the mass of the \(I = 1/2 \) scalar meson is not reproduced well. In order to make the structure of the light scalar mesons clearer, the analysis of the experimental data using the framework including the \(U_A(1) \) breaking interaction is necessary.

Acknowledgment

This work is supported in part by the Grant-in-Aid for Scientific Research (B) 15340072 of the Ministry of Education, Science, Sports and Culture of Japan, and by the Cooperation Research Program of the Showa Pharmaceutical University.

[1] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 (1961).
[2] For a review, T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
