Factors associated with seizure and cognitive outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors in children

Ara Ko, MD¹, Joon Soo Lee, MD, PhD²

¹Division of Pediatric Neurology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University College of Medicine, Yangsan, Korea; ²Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea

Low-grade epilepsy-associated neuroepithelial tumors (LEATs) are responsible for drug-resistant chronic focal epilepsy, and are the second-most common reason for epilepsy surgery in children. LEATs are extremely responsive to surgical treatment, and therefore epilepsy surgery should be considered as a treatment option for LEATs. However, the optimal time for surgery remains controversial, and surgeries are often delayed. In this review, we reviewed published articles on the factors associated with seizure and cognitive outcomes after epilepsy surgery for LEATs in children to help clinicians in their decision whether to pursue epilepsy surgery for LEATs. The achievement of gross total resection may be the most important prognostic factor for seizure freedom. A shorter duration of epilepsy, a younger age at surgery, and extended resection of temporal lobe tumors have also been suggested as favorable prognostic factors in terms of seizure control. Poor cognitive function in children with LEATs is associated with a longer duration of epilepsy and a younger age at seizure onset.

Keywords: Low-grade epilepsy-associated tumors, Epilepsy surgery, Prognosis, Cognition

Introduction

Low-grade epilepsy-associated neuroepithelial tumors (LEATs) are responsible for drug-resistant chronic focal epilepsy, and are the second-most common reason for epilepsy surgery in children.¹ LEATs are extremely responsive to surgical treatment, and therefore epilepsy surgery should be considered as a treatment option for LEATs. However, the optimal time for surgery remains controversial, and surgeries are often delayed. In a study of brain specimens from 9,523 patients who underwent epilepsy surgery, the histopathologic etiology was identified as a tumor in 24% of all patients. LEATs comprised 82% of the tumors, and 84% of the LEATs were GGs or DNTs (Table 1). LEATs are extremely responsive to surgical treatment, and more than 80% of patients achieve seizure freedom after surgery.¹³⁻¹⁶ Therefore, epilepsy surgery should be considered a treatment option for LEATs. However, the optimal surgical timing remains controversial, and surgeries are often delayed (Table 1), mostly due to late referral after lengthy trials of antiepileptic drugs (AEDs), with a mean duration from seizure onset to surgery (i.e., duration of epilepsy) of more than 10 years.¹⁹

To help clinicians decide whether to pursue epilepsy surgery...
Table 1. Histopathological classification of 1,846 low-grade epilepsy-associated neuroepithelial tumors obtained from patients undergoing epilepsy surgery\(^\text{16}\)

Tumor diagnosis	No. (%)	Age at seizure onset (yr)	Duration of epilepsy (yr)
GG	986 (53.6)	12.1±10.3	11.4±10.4
DNT	565 (30.6)	14.4±10.9	12±10.7
Pilocytic astrocytoma	99 (5.4)	14±10.9	12.3±11.4
PXA	43 (2.3)	17±12.4	12.8±12.1
Isomorphic astrocytoma	17 (0.9)	16±14.3	11.4±10.5
Gangliocytoma	16 (0.9)	12±7.0	17±12.4
Angiocentric glioma	12 (0.7)	7.7±4.8	6.9±6.0
Low-grade tumor, not specified	108 (5.9)	14.6±13.2	11.5±10.1

Values are presented as number (%) or mean±standard deviation.
GG, ganglioglioma; DNT, dysembryoplastic neuroepithelial tumor; PXA, pleomorphic xanthoastrocytoma.

for LEATs, here we performed a systematic literature review of the factors associated with seizure and cognitive outcomes after epilepsy surgery for LEATs in children. Articles were extracted in July 2019 using PubMed searches of titles and abstracts with the following query terms: seizure or epilepsy; low-grade epilepsy-associated neuroepithelial tumor, long-term epilepsy-associated tumor, LEAT, ganglioglioma, dysembryoplastic neuroepithelial tumor, glioma, astrocytoma, xanthoastrocytoma, or tumor; surgery or resection; and child or pediatric. The inclusion criteria for the studies were: (1) epilepsy surgery in children with histopathologically confirmed LEATs, (2) seizure or epilepsy as the main symptom and reason for the surgery, and (3) mention of statistically significant predictive factors for seizure or cognitive outcomes. The exclusion criteria were: (1) inclusion of adults and children in the study and the reporting of data such that the child-specific data could not be distinguished from those for adults, (2) inclusion of high-grade tumors. Of 290 extracted articles, 86 were excluded after initial screening due to irrelevancy, while an additional 186 were excluded after full article review due to ineligibility. Ultimately, 18 studies were included; of them, 16 addressed factors associated with seizure outcome, and 6 addressed factors associated with cognitive outcome. All included studies were retrospective.

Epileptogenesis of LEATs

The reason why almost all GNTs, including GGs and DNTs, cause seizures is not entirely understood, and various epileptogenic mechanisms of LEAT-associated epilepsy have been suggested.\(^{17}\) The LEAT itself can be intrinsically epileptogenic due to the presence of hyperexcitable dysplastic neurons or a high neuronal density within the tumor as evidenced by various results from immunocytochemical studies, such as the high expression of glutamate receptor subtypes, downregulation of several gamma-aminobutyric acid (GABA) receptors, and deregulation of cation-chloride cotransporters.\(^{18-22}\)

LEATs can also invade normal tissues, altering neurotransmitter expression and inflammatory reactions.\(^{23}\) For example, the deregulation of glutamate uptake and release by glutamate receptors on glial cells, which results in increased extracellular glutamate concentrations and decreased glial glutamate transporter expressions, has been observed.\(^{19,20,24,25}\) LEATs have also been noted to activate the innate and adaptive immune systems.\(^{26,27}\) Proinflammatory molecules increase neuronal excitability by enhancing extracellular glutamate concentrations and modifying the functions of glutamate and GABA receptors.\(^{28}\) Immune system activation also causes upregulation of major histocompatibility complex class I molecules in neuronal cells and activates the mammalian target of rapamycin pathway.\(^{26,27,29}\)

Adjacent cortical areas can also undergo dysplastic reorganization, leading to hyperexcitability.\(^{30,31}\) Studies have shown that the afferentation of adjacent cortical regions can lead to generation hypersensitivity, modified synchronization of local networks, and overexpression of neurotransmitters in adjacent cortical areas.\(^{7,23,32}\)

Other suggested mechanisms for LEAT-related seizures include blood-brain barrier dysfunction, altered gap junction channels in glial cells, alterations in the surrounding neuronal network, altered regional metabolism and pH, regional hypoxic effects on the surrounding tissue, and an altered vascular supply.\(^{7,18,13-19}\) Genetic predispositions for tumor-associated seizures have also been studied.\(^{33,40}\) Therefore, the etiology of tumor-induced seizures is multifactorial and extends beyond the physical size of the tumor itself.\(^{41,42}\)

Factors associated with seizure outcomes after epilepsy surgery for LEATs

The following factors were mentioned at least once among the 16 studies that addressed seizure outcome as being predictive of seizure recurrence after surgery: younger age at seizure onset\(^{43}\); older age at surgery\(^{44,45}\); longer duration of epilepsy\(^{44,46}\); greater number of AEDs taken at the time of surgery\(^{47}\); presence of generalized seizure\(^{48}\); presence of generalized epileptiform discharges (EDs) in an electroencephalogram\(^{49}\); extratemporal or parietal location of the tumor\(^{43}\); presence of satellite lesions on a MRI scan\(^{50}\); lesionectomy of temporal tumors\(^{43}\); and subtotal tumor resection.\(^{15,45,46,51-55}\) The included studies that examined seizure outcome are summarized in Table 2, and more detailed information regarding the tumor types included, parameters for seizure outcome assessment, and factors irrelevant to seizure outcome are shown in Supplementary Table 1.

Degree of tumor resection

Gross total resection was the most frequently suggested favorable prognostic factor.\(^{15,45,46,49,55}\) Fig. 1 shows an example of successful gross total resection of a LEAT (ganglioglioma) in a 7-year-old boy performed due to uncontrolled seizures after
he took 3 AEDs for 1.3 years. Several studies that included large numbers of patients confirmed that gross total resection is among the strongest factors leading to seizure freedom after LEAT resection. However, some studies have stated otherwise. Gross total resection may not be possible if the tumor is located adjacent to eloquent areas or other functional cortical areas. Nevertheless, gross total resection should be the goal of surgery, and efforts should be made using multimodal approaches to maximize the extent of resection.

Duration of epilepsy

Two studies mentioned that a longer duration of epilepsy was a poor prognostic factor for seizure outcomes. The same has been demonstrated in previous systematic reviews that examined adults or both adults and children. Early seizures may promote progressive changes in synaptic plasticity and cerebral blood flow, with prolonged epilepsy making surrounding neurons more epileptic; thus, seizure control can become more difficult once a period of time has elapsed following seizure onset. However, 8 studies found that epilepsy duration is not predictive of seizure outcome, while 2 studies suggested otherwise. Thus, more studies are needed to draw a definitive conclusion.

Table 2. Summary of articles addressing factors associated with seizure outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors

Study	No. of patients	Seizure-free rate	Factors associated with poor seizure outcome
Babini et al. (2013)	30	86.7%	Younger age at seizure onset
			Tailored surgery (i.e., extended resection for epileptogenic foci) for temporal lobe tumors
Brahimaj et al. (2014)	18	44.4%	Greater number of AEDs tried before surgery
Daszkiewicz et al. (2018)	52	86.5%	Age of >6 yr at surgery
			Duration of epilepsy >1 yr
Ehrstedt et al. (2017)	25	64.0%	Subtotal resection
Faramand et al. (2018)	92	80.4%	Subtotal resection
Garcia-Fernandez et al. (2011)	21	85.7%	Subtotal resection
Khajavi et al. (1995)	15	66.7%	Subtotal resection
Khajavi et al. (1999)	34	73.5%	Older age at surgery
			Subtotal resection
Ko et al. (2019)	58	87.9%	Subtotal resection
Minkin et al. (2008)	24	83.3%	Presence of generalized seizure
Nolan et al. (2004)	26	84.6%	Subtotal resection
Ogwara et al. (2010)	30	90.0%	None
Packer et al. (1994)	50	72.0%	Parietal location of tumor
			Subtotal resection
			Duration of epilepsy >1 yr
Ramantani et al. (2014)	29	75.9%	Subtotal resection
Uliel-Sibony et al. (2011)	41	82.9%	Presence of generalized EDs in an EEG
Yang et al. (2019)	39	66.7%	Presence of satellite lesions on an MRI scan

AED, antiepileptic drug; ED, epileptiform discharge; EEG, electroencephalogram; MRI, magnetic resonance imaging.
Age at surgery

Two studies found that an older age at surgery is predictive for persistent seizures, whereas 9 studies found no association between age at surgery and seizure outcome. In an Italian nationwide study of epilepsy surgery for LEATs that included a total of 282 adults and children, older age at surgery was the most significant predictor of persistent seizures, with a 4% increase in the probability of an unfavorable outcome for every year waited. Since previous studies demonstrated no significant difference in surgical outcome between pediatric and adult patients with LEATs, the reason for the poor prognosis associated with older age at surgery may be the duration of epilepsy rather than the patient’s age itself.

Extent of resection

One article suggested that extended resection (i.e., removal of the tumor and surrounding epileptogenic zone) is helpful for achieving seizure freedom, whereas 6 other articles found no difference in seizure outcomes between lesionectomy alone and extended resection. Thus, the matter of surgical strategy remains controversial. The discordance among previous studies also raises an important question regarding the use of additional corticectomy or additional amygdalohippocampectomy for temporal lobe tumors. Extended resections are mainly performed for temporal tumors, while there is a lack of reports detailing outcomes for extratemporal tumors. One indicator that endorses the application of extended tailored resection is the presence of adjacent dual pathology, such as focal cortical dysplasia or hippocampal sclerosis, that can cause seizures after lesionectomy. Therefore, what can currently be said with confidence is that extended resection may be considered, particularly when treating temporal tumors with evidence of dual pathology.

Utilization of intraoperative electrocorticography

Intraoperative electrocorticography (ECoG) or 2-stage surgery is performed when delineation of the epileptogenic zone is needed due to the presence of multifocal epileptogenic foci or a tumor location adjacent to functional areas. All 3 studies that investigated the association between the utilization of intraoperative ECoG and seizure outcome found that it is not related to higher rates of seizure freedom. Other large reviews reported the same conclusion. However, caution must be taken when interpreting these results, as intraoperative ECoG is more likely to be used in more difficult cases that involve multifocal epileptogenic foci or tumors located near eloquent areas. Other studies advocate for the utilization of intraoperative ECoG during tailored surgery. Therefore, the use of intraoperative ECoG is advised when extended resection is anticipated.

Factors associated with cognitive outcome after epilepsy surgery for LEATs

Studies that addressed factors associated with preoperative full-scale intelligence quotient (FSIQ), longer duration of epilepsy, and younger age at seizure onset are universally mentioned as poor prognostic factors for preoperative FSIQ. An explanation of this finding is reduced brain plasticity and a limited degree of possible postoperative cognitive gains. The studies addressing cognitive outcome are summarized in Table 3, and more detailed information regarding the cognitive parameters is shown in Supplementary Table 2.

Postoperative cognitive function has been shown to significantly depend on preoperative cognitive function. García-Fernández et al. reported that none of the various cognitive domains of a postoperative neuropsychological test performed 1 year after resection showed significant decline; on the contrary, there were statistically significant improvements in several cognitive domains (Supplementary Table 2). Ramantani et al. also reported that, at the group level, there was significant intra-individual improvement in verbal intelligence quotient (IQ) and performance IQ as well as a trend toward FSIQ improvement after epilepsy surgery. Finally, a study by Faramand et al. showed that postoperative FSIQ improved in 61% of children, declined in 36.5% of children, and was unchanged in 2.5% of children. The study by García-Fernández et al. also mentioned above also showed poorer preoperative cognitive function in children with drug-resistant epilepsy, suggesting that it can be beneficial for surgery to occur before drug-resistant epilepsy develops.

Overall, earlier surgery can prevent low postoperative FSIQ in children, particularly young children, and that improved cognitive function can be expected following epilepsy surgery.

Conclusion

LEATs usually develop in children and young adults who present with seizures that are highly drug-resistant. Surgical treatment, however, is extremely effective, resulting in seizure freedom in approximately 70%–80% of cases. The achievement of gross total resection may be the most important prognostic factor for seizure freedom. Shorter duration of epilepsy, younger age at surgery, and extended resection of temporal lobe tumors have also been suggested as favorable prognostic factors for seizure control.

Poor cognitive function in children with LEATs is strongly associated with longer duration of epilepsy and younger age at seizure onset. Therefore, surgical treatment should be considered as an early option in children with LEATs prior to the diagnosis of drug-resistant epilepsy to protect the cognitive function.
function of LEAT patients by averting recurrent seizures and the administration of multiple AEDs.

Conflicts of interest
No potential conflict of interest relevant to this article was reported.

Supplementary materials
Supplementary Tables 1 and 2 can be found via https://doi.org/10.3345/kjp.2019.01151.

References
1. Holthausen H, Blümcke I. Epilepsy-associated tumours: what epileptologists should know about neuropathology, terminology, and classification systems. Epileptic Disord 2016;18:240-51.
2. Bauchet L, Rigau V, Mathieu-Daudé H, Fabbro-Peray P, Palenzuela G, Figarella-Branger D, et al. Clinical epidemiology for childhood primary central nervous system tumors. J Neurooncol 2009;92:87-98.
3. Koob M, Giraud N. Cerebral tumors: specific features in children. Diagn Interv Imaging 2014;95:965-83.
4. Porto L, Jurcoane A, Schwabe D, Hattingen E. Conventional magnetic resonance imaging in the differentiation between high and low-grade central nervous system tumors. J Neurosurg Pediatr 2014;13:165-74.
5. Chen DY, Chen CC, Crawford JR, Wang SG. Tumor-related epilepsy: epidemiology, pathogenesis and management. J Neurooncol 2018;139:13-21.
6. van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumors: epidemiology, mechanisms, and management. Lancet Neurol 2007;6:421-30.
7. Hildebrand J, Lecaille C, Perennes J, Delattre JY. Epileptic seizures during follow-up of treated patients for primary brain tumors. Neurology 2005;65:212-5.
8. Harvey AS, Cross JH, Shinnar S, Mat hern GW; ILAE Pediatric Epilepsy Surgery Taskforce. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 2008;49:146-55.
9. Blümcke I, Sprefací R, Hauker G, Coras R, Kobob K, Bieb CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 2017;377:1648-56.
10. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
11. Ulrich NJ, Pomeroy SL, Kapur K, Murray TF, Xue J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
12. Giulioni M, Marucci G, Pelliccia V, Gozzo F, Barba C, Didato G, et al. Epilepsy surgery of 'low grade epilepsy associated neuroepithelial tumors': a retrospective nationwide Italian study. Epilepsia 2017;58:1539-59.
13. Chan CH, Bittar RG, Davis GA, Kalnis RM, Fabini GC. Long-term seizure outcome following surgery for dysembryoplastic neuroepithelial tumor. J Neurosurg 2006;104:62-9.
14. Giulioni M, Gardella E, Rubboli G, Roncaroli F, Zacchelli M, Bernardi B, et al. Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci 2006;13:529-35.
15. Giulioni M, Marucci G, Pelliccia V, Gozzo F, Barba C, Didato G, et al. Epilepsy surgery of 'low grade epilepsy associated neuroepithelial tumors': a retrospective nationwide Italian study. Epilepsia 2017;58:1539-59.
16. Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014;11:251-68.
17. Wolf HK, Birkholz T, Wellmer J, Blümcke I, Petzsch T, Wiestler OD. Neurochemical profile of glioneuronal lesions from patients with pharmacoresistant focal epilepsy. J Neuropathol Exp Neurol 1995;54:689-97.
18. Wolf HK, Buslei R, Blümcke I, Wiestler OD, Petzsch T. Neural antigens in oligodendrogliomas and dysembryoplastic neuroepithelial tumors. Acta Neuropathol 1997;94:436-43.
19. Aronica E, Yankova B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA, et al. Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 2001;27:223-37.
20. Fassunke J, Majores M, Tresch A, Niehusmann B, Große A, Schoch S, et al. Younger age at seizure onset

Study	No. of patients	Parameters	Value	Factors associated with poor cognitive outcome
Faramand et al. (2018)[10]	22	Postoperative FSIQ	Seizure-free (n=14): 92.4 (range, 73-116)	Younger age at seizure onset
			Low seizure severity (n=5): 105.0 (range, 71-126)	Persistent seizure after surgery
			High seizure severity (n=3): 75.3 (range, 70-80)	High seizure severity after surgery
Faramand et al. (2018)[10]	90	Preoperative FSIQ	81 (IQ, 71-95)	Younger age at seizure onset
			86 (IQ, 71-100)	Longer duration of epilepsy
Garcia-Fernández et al. (2011)[11]	41	Postoperative FSIQ	85.2±21.9	Younger age at seizure onset
			91.7±21.6	Drug-resistant epilepsy before surgery
Giulioni et al. (2017)[10]	58	Preoperative FSIQ	78.9±27.1	Longer duration of epilepsy
Ko et al. (2019)[14]	42	Postoperative FSIQ	80.9±28.7	Low preoperative FSIQ
Ramantani et al. (2014)[15]	25	Preoperative FSIQ	93.0±21.8	Longer duration of epilepsy
			95.9±13.8	Low preoperative FSIQ
			101.2±15.5	Younger age at seizure onset
			91.7±21.6	Low preoperative FSIQ

Values are presented as mean (range), median (interquartile range), or mean±standard deviation.
FSIQ, full-scale intelligence quotient; NP, neuropsychological; VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient.

Table 3. Summary of articles addressing factors associated with cognitive outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors

www.e-cep.org

https://doi.org/10.3345/kjp.2019.01151

175
al. Array analysis of epilepsy-associated gangliogliomas reveals expression patterns related to aberrant development of neuronal precursors. Brain 2008;131(Pt 11):3034-50.

22. Aronica E, Boer K, Redeker S, Splitter WG, van Rijen PC, Troost D, et al. Differential expression patterns of chloride transporters, Na+/K+-2Cl--cotransporter and K+-Cl--cotransporter, in epilepsy-associated malformations of cortical development. Neuroscience 2007;145:183-96.

23. Zaghoul KA, Schramm J. Surgical management of glioneuronal tumors with drug-resistant epilepsy. Acta Neurochir (Wien) 2011;153:1551-9.

Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy. Brain Res Rev 2010;63:212-21.

25. Ye ZC, Rothstein JD, Sontheimer H. Compromised glutamate transport in human glial cells: reduction-mislocalization of sodium-dependent chloride transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 1999;19:10767-77.

26. Aronica E, Gorter JA, Redeker S, Ramkema M, Splitter WG, van Rijen PC, et al. Distribution, characterization and clinical significance of microglia in glioneuronal tumors from patients with chronic intractable epilepsy. Neuropathol Appl Neurobiol 2005;31:280-91.

27. Prabowo AS, Iyer AM, Anink JJ, Splitter WG, Aronica E. Differential expression of major histocompatibility class I in developmental glioneuronal lesions. J Neuroinflammation 2013;10:12.

28. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in seizures in children with dysembryoplastic neuroepithelial tumors. J Neurooncol 2012;107:365-72.

29. Boer K, Troost D, Timmermans W, van Rijen PC, Splitter WG, Aronica E. Pi3K-mTOR signaling and AMOG expression in epilepsy-associated glioneuronal tumors. Brain Pathol 2010;20:234-44.

30. Rajneesh KF, Binder DK. Tumour-associated epilepsy. Neurosurg Focus 2009;27:E4.

31. Badi R, Trevisan E, Soffetti R. Epilepsy and brain tumors. Curr Opin Oncol 2010;22:611-20.

32. Bartolomei F, Bosma I, Klein M, Baeyen JC, Reijnveld JC, Postma TJ, et al. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol 2006;59:128-38.

33. Steinhauser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002;447:227-37.

34. Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D. Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol 2001;101:449-59.

35. Schmitz AK, Grote A, Raabe A, Urbach H, Friedman A, von Lehe M, et al. Differential expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated glioneuronal tumors. J Neurooncol 2010;91:50-6.

36. Alkonyi B, Mittal S, Zitron I, Chugani DC, Kupsky WJ, Muzik O, et al. Distribution, characterization and clinical significance of microglia in glioneuronal tumors from patients with chronic intractable epilepsy. Neuropathol Appl Neurobiol 2005;31:280-91.

37. Prabowo AS, Iyer AM, Anink JJ, Splitter WG, Aronica E. Pi3K-mTOR signaling and AMOG expression in epilepsy-associated glioneuronal tumors. Brain Pathol 2010;20:234-44.

38. Rajneesh KF, Binder DK. Tumour-associated epilepsy. Neurosurg Focus 2009;27:E4.

39. Badi R, Trevisan E, Soffetti R. Epilepsy and brain tumors. Curr Opin Oncol 2010;22:611-20.

40. Bartolomei F, Bosma I, Klein M, Baeyen JC, Reijnveld JC, Postma TJ, et al. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol 2006;59:128-38.

41. Zaghloul KA, Schramm J. Surgical management of glioneuronal tumors. Brain Pathol 2010;20:234-44.

42. Ranger A, Diosy D. Seizures in children with dysembryoplastic neuroepithelial tumors. Neurosurg 2002;48:647-57.

43. Babini M, Giuliani M, Galassi E, Marucci G, Martinoni M, Rubboli G, et al. Seizure outcome of surgical treatment of focal epilepsy associated with low-grade tumors in children. J Neurosurg Pediatr 2013;11:214-23.

44. Daszkiewicz P, Kowalczyk P, Roszkowski M. Surgical treatment of neuronal-glia tumours of mesial-basal part of temporal lobe: Long term outcome and control of epilepsy in pediatric patients. Neurol Neurochir Pol 2018;52:2-8.

45. Packer RJ, Sutton LN, Patel KM, Duhaime AC, Schiff S, Weinstein SR, et al. Seizure control following tumor surgery for childhood cortical low-grade gliomas. J Neurosurg 1994;80:998-1003.

46. Khajavi K, Comair YG, Wylie E, Palmer J, Morris HH, Hahn JF. Surgical management of pediatric tumor-associated epilepsy. Child Neurol 1999;14:15-25.

47. Brahimi-Benabbad S, Greiner HM, Leahy JL, Horn PS, Stevenson CB, Miles L, et al. The surgical management of pediatric brain tumors causing epilepsy: consideration of the epileptogenic zone. Childs Nerv Syst 2014;30:1383-91.

48. Minkin K, Klein O, Mancini J, Lena G. Surgical strategies and seizure control in pediatric patients with dysembryoplastic neuroepithelial tumors: a single-institution experience. J Neurosurg Pediatr 2008;1:206-10.

49. Ullén-Sibony S, Kramer U, Fried I, Fatal-Valevski A, Constantin S. Pediatric temporal low-grade glial tumors: epilepsy outcome following resection in 48 children. Childs Nerv Syst 2011;27:1413-8.

50. Yang J, Kim SK, Kim KJ, Chae JH, Lim BC, Wang KC, et al. Satellite lesions of DNET: implications for seizure and tumor control after resection. J Neurooncol 2019;143:437-45.

51. Ehrstedt C, Moreira NC, Casar-Borota O, Strömberg B, Ablhast G. Glioneuronal tumors in childhood - Before and after surgery. A long-term follow-up study. Epilepsy Behav 2017;72:82-8.

52. García-Fernández M, Forner-Del Castillo C, Ugalde-Camiró A, Pérez-Jiménez Á, Álvarez-Linera J, De Prada-Vicente I, et al. Epilepsy surgery in children with developmental tumours. Seizure 2011;20:616-27.

53. Khajavi K, Comair YG, Prayson RA, Wylie E, Palmer J, Estes ML, et al. Childhood ganglioglioma and medically intractable epilepsy. A clinicopathological study of 15 patients and a review of the literature. Pediatr Neurosurg 1995;22:181-8.

54. Ko A, Kim SH, Kim SH, Park EK, Shim KW, Kang HC, et al. Epilepsy surgery for children with low-grade epilepsy-associated tumors: factors associated with seizure recurrence and cognitive function. Pediatr Neurosurg 2019;51:50-6.

55. Ramantani G, Kadish NE, Anastasopoulos C, Brandt A, Wagner K, Strobl K, et al. Epilepsy surgery for gliomomas in childhood: avoid loss of neurosurgery. Epilepsy 2014;74:648-57.

56. Englot DJ, Berger MS, Barbaro NM, Chang EF. Factors associated with seizure freedom in the surgical resection of gliomomas. Epilepsia 2012;53:51-7.

57. Englot DJ, Berger MS, Barbaro NM, Chang EF. Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J Neurosurg 2011;115:240-4.

58. Southwell DG, Garcia PA, Berger MS, Barbaro NM, Chang EF. Long-term seizure control outcomes after resection of gliomomas. Neurosurgery 2012;70:1406-13.

59. Kirkpatrick PJ, Honavar M, Janota I, Polkey CE. Control of temporal lobe epilepsy following en bloc resection of low-grade tumors. J Neurosurg 2012;116(5):1406-13.

60. Blumcke I, Wester OD. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 2002;61:575-84.

61. Yang I, Chang EF, Han SJ, Barry JJ, Fang S, Tihan T, et al. Early surgical intervention in adult patients with gliomomas is associated with improved clinical seizure outcomes. J Clin Neurosurg 2011;18:29-33.

62. Blume WT. The progression of epilepsy. Epilepsia 2006;47 Suppl 1:71-8.

63. Breier JJ, Mullani NA, Thomas AB, Wehess JW, Plenger PM, Gould KL, et al. Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology 1997;48:1047-53.

64. Ben-Ari Y, Dudek FE. Primary and secondary mechanisms of epileptogenesis in the temporal lobe: there is a before and an after. Epilepsy Curr 2010;10:118-25.

65. Hauser WA, Lee JR. Do seizures beget seizures? Prog Brain Res 2002;
66. Ogiwara H, Nordli DR, DiPatri AJ, Alden TD, Bowman RM, Tomita T. Pediatric epileptogenic gangliogliomas: seizure outcome and surgical results. J Neurosurg Pediatr 2010;5:271-6.

67. Giulioni M, Rubboli G, Marucci G, Martinoni M, Volpi L, Michelucci R, et al. Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg 2009;111:1275-82.

68. Pelliccia V, Dileo F, Gozzo F, Sartori I, Mai R, Cosu M, et al. Early and late epilepsy surgery in focal epilepsies associated with long-term epilepsy-associated tumors. J Neurosurg 2017;127:1147-52.

69. Cosu M, Fischillo D, Bramerio M, Galli C, Gozzo F, Pelliccia V, et al. Epilepsy surgery of focal cortical dysplasia-associated tumors. Epilepsia 2013;54 Suppl 9:115-22.

70. Giulioni M, Marucci G, Martinoni M, Volpi L, Riguzzi P, Marliani AF, et al. Seizure outcome in surgically treated drug-resistant mesial temporal lobe epilepsy based on the recent histopathological classifications. J Neurosurg 2013;119:37-47.

71. Bonney PA, Glenn CA, Ebeling PA, Conner AK, Boettcher LB, Cameron DM, et al. Seizure freedom rates and prognostic indicators after resection of gangliogliomas: a review. World Neurosurg 2015;84:1988-96.

72. Nolan MA, Sakuta R, Chuang N, Otsubo H, Rutka JT, Snead OC 3rd, et al. Dysembryoplastic neuroepithelial tumors in childhood: long-term outcome and prognostic features. Neurology 2004;62:2270-6.

73. Santos MV, de Oliveira RS, Machado HR. Approach to cortical dysplasia associated with glial and glioneuronal tumors (FCD type IIIb). Childs Nerv Syst 2014;30:1869-74.

74. Lombardi D, Marsh R, de Tribolet N. Low grade glioma in intractable epilepsy: lesionectomy versus epilepsy surgery. Acta Neurochir Suppl 1997;68:70-4.

75. Qiu B, Ou S, Song T, Hu J, You L, Wang Y, et al. Intraoperative electrocorticography-guided microsurgical management for patients with onset of supratentorial neoplasms manifesting as epilepsy: a review of 65 cases. Epileptic Disord 2014;16:175-84.

76. Sugano H, Shimizu H, Sunaga S. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal-lobe-mass lesions. Seizure 2007;16:120-7.

77. O'Leary DS, Lovell MR, Sackellares JC, Berent S, Giordani B, Seidenberg M, et al. Effects of age of onset of partial and generalized seizures on neuropsychological performance in children. J Nerv Ment Dis 1983;171:624-9.

78. Vendrame M, Alexopoulos AV, Boyer K, Gregas M, Haur J, Lineweaver T, et al. Longer duration of epilepsy and earlier age at epilepsy onset correlate with impaired cognitive development in infancy. Epilepsy Behav 2009;16:431-5.
Supplementary Table 1. Detailed summary of literatures on factors associated with seizure outcome in epilepsy surgery of low-grade epilepsy-associated neuroepithelial tumors

Study	No. of patients	Types of tumor (percent)	Parameters for seizure outcome	Factors associated with poor seizure outcome	Factors irrelevant to seizure outcome	
Babini et al. (2013)	30	GG (66.7%), DNT (17.3%), PKA (6.7%), Gangliocytoma (3.3%), Anaplastic glioma (2.9%), Papillary GNT (2.9%), Extraventricular neurocytoma (3.9%)	Good: Engel class I (n=26, 86.7%) Poor: Engel class III (n=4, 13.3%), at last f/u, f/u duration of mean 7.1 years (range, 1-17 years)	Younger age at sz onset 64-years at sz onset Tailored surgery in temporal lobe tumors	Age at surgery, duration of epilepsy, secondary generalization, sz frequency before surgery, location of tumor, side of tumor location	
Brahimg et al. (2014)	18	DNT (27.9%), PKA (16.7%), GG (11.1%), Demisomorphic GG (11.1%), Low-grade glioma (11.1%), Pilocytic astrocytoma (11.1%), Oligodendroglioma (5.6%), Fibrillary astrocytoma (5.6%)	Good: sz free (n=8, 44.4%) Poor: persistent sz (n=10, 55.6%), at last f/u, f/u duration of mean 39 months (minimum, 6 months)	Greater number of AEDs tried before surgery	Age at sz onset, age at surgery, gender, contralateral ED on EEG, extent of resection	
Daszkiewicz et al. (2018)	52	GG (92.3%), DNT (7.7%) (tumors located in mesial-basal part of the temporal lobe were included)	Good: Engel class I (n=46, 88.5%) Poor: Engel class III (n=6, 11.5%), at last f/u, f/u duration of mean 2.9 years (range, 1-7 years)	Age > 6 years at surgery Duration of epilepsy > 1 year	Extent of tumor, coexistence of cortical dysplasia, surgical approach, extent or resection	
Ehret et al. (2017)	25	GG, DNT, Infantile desmoplastic GG (proportions unknown)	Good: Engel class I (n=46, 88.5%) Poor: Engel class III (n=6, 11.5%), at last f/u, f/u duration of mean 2.9 years (range, 1-7 years)	Age at sz onset, gender, duration of epilepsy, drug-resistant epilepsy before surgery, tumor location	Extent of resection of epileptogenic foci utilizing EEG	
Farmand et al. (2017)	92	DNT, GG, Demoplastic GG, Anaplastic glioma (not specified, proportions unknown)	Good: Engel class I (n=74, 80.4%) Poor: Engel class III (n=18, 19.6%), at last f/u, f/u duration of ≥12 months	Age at sz onset, age at first assessment, age at surgery, gender, duration of epilepsy, secondary generalization, tumor location, side of tumor location, tumor type	Age at sz onset, age at surgery, duration of epilepsy, tumor location, side of tumor location, type of tumor, type of ECoG, extent of interictal epileptogenic foci on EEG, interictal ED on EEG, extent of resection, ECoG	
Garcia-Fernández et al. (2011)	21	GG (47.6%), DNT (42.9%), Gangliocytoma (9.5%)	Good: sz free (n=18, 85.7%) Poor: persistent sz (n=3, 14.3%), at last f/u, f/u duration of mean 4.68 years (SD, 2.13; minimum, 1 year)	STR	Age at sz onset, gender, duration of epilepsy, tumor location, type of tumor, GTR/STR, extent of resection, ECoG	
Khajavi et al. (1995)	15	GG (100%)	Good: sz free or ≥90% sz reduction (n=12, 80.0%) Poor: <90% sz reduction (n=3, 20.0%), at last f/u, f/u duration of 42 months (range, 18-107 months)	Age at sz onset, gender, duration of epilepsy, drug-resistant epilepsy before surgery, tumor location	Extended resection of epileptogenic foci utilizing EEG	
Khajavi et al. (1999)	34	GG (44.1%), DNT (20.6%), Low-grade astrocytoma (20.6%), Oligodendroglioma (11.8%), Mixed glioma (2.9%)	Good: sz free or ≥90% sz reduction (n=29, 85.3%) Poor: <90% sz reduction (n=5, 14.7%), at last f/u, f/u duration of 43 months (range, 18-126 months)	Older age at surgery	Duration of epilepsy, sz frequency before surgery, tumor type, location of tumor, GTR/STR, extent of resection, ECoG	
Ko et al. (2019)	58	GG (46.6%), DNT (46.8%), Pilocytic astrocytoma (3.4%), Papillary gliomevmet- ronal tumor (1.7%)	Good: sz free (n=51, 87.9%) Poor: persistent sz (n=6, 12.1%), at last f/u, f/u duration of median 5.6 years (GR, 3.2-10.0; minimum, 2 years)	Univariate: -Greater number of ictal episodes -Greater number of AEDs taken before surgery -STR -Temporal location of tumor Multivariate: -STR	Age at seizure onset, gender, f/u duration, sz frequency before surgery, tumor type, location of tumor, GTR/STR, extent of resection, ECoG	
Mckinna et al. (2008)	24	DNT (100%)	Good: Engel class I (n=20, 83.3%) Poor: Engel class II (n=4, 16.7%), at last f/u, f/u duration of mean 6.7 years (range, 1-16 years)	Age at sz onset, gender, age at surgery, GTR/SEEG, concordance, pathology (simple/complex/nonspecific), malformation of cortical development, f/u duration	Presence of generalizad sz	Age at sz onset, age at surgery, gender, GTR/seizure concordance, pathology (simple/complex/nonspecific), malformation of cortical development, f/u duration
Nolan et al. (2014)	26	DNT (100%)	Good: sz free (n=22, 84.6%) Poor: persistent sz (n=4, 15.4%), at 12 months after surgery	Duration of epilepsy > 2 years	Age at surgery > 10 years	Age at sz onset, gender, duration of developmental delay, presence of focal neurological deficit, sz semiology, MRI appearance of tumor (typical/atypical/enhanced), utilization of ECoG, pathologic classification of DNT (simple/complex/undifferentiated), presence of cortical dysplasia
Ogwara et al. (2010)	30	GG (100%)	Good: Engel class I (n=27, 90.0%) Poor: Engel class II (n=3, 10.0%), at last f/u, f/u duration of mean 3.4 years (range 1 month - 6 years)	None	Age at surgery, gender, tumor location, extent of resection, utilization of infratemporal ECoG	Age at surgery, gender, tumor location, extent of resection, utilization of infratemporal ECoG
Parker et al. (1994)	60 (11 sz before surgery)	GG (68.3%), Low-grade glioma (18.3%), PKA (6.7%), Intermediate-grade glioma (3.3%), Mixed low-grade glioma (3.3%)	Good: sz free or >75% sz reduction (n=47, 78.3%) Poor: <75% sz reduction (n=13, 21.7%), at 2 years after surgery	Panaretal location of tumor	Age at surgery, duration of epilepsy, sz semiology, sz frequency before surgery, tumor type	Age at surgery, duration of epilepsy, sz semiology, sz frequency before surgery, tumor type
Ramanantsoa et al. (2014)	29	GG (55.2%), DNT (44.8%)	Good: Engel class I (n=22, 75.9%) Poor: Engel class II (n=7, 24.1%), at last f/u, f/u duration of mean 7.3 years (SD, 3.0; range, 1.3-12.3 years)	STR	Age at onset, age at surgery, duration of epilepsy, tumor type, utilization of ECoG, type of tumor, type of ECoG, GTR/STR, extent of resection	Age at surgery, age at seizure onset, duration of epilepsy, tumor type, utilization of ECoG, GTR/STR, extent of resection, ECoG
Ullt-Simony et al. (2011)	41	Pilocytic astrocytoma (48.8%), GG (29.3%), Low-grade oligodendrogioma (14.6%), DNT (7.3%) (tumors located in temporal lobe were included)	Good: Engel class I (n=34, 82.9%) Poor: Engel class II (n=7, 17.1%), at last f/u, f/u duration of mean 5.3 years (range, 1-13 years)	Presence of generalized ED on EEG	Age at seizure onset, duration of epilepsy, semiology, tumor type, utilization of ECoG, type of tumor, type of ECoG, GTR/STR, extent of resection	Age at seizure onset, duration of epilepsy, semiology, tumor type, utilization of ECoG, GTR/STR, extent of resection
Yang et al. (2018)	39	DNT (100%)	Good: sz free (n=26, 66.7%) Poor: persistent sz (n=13, 33.3%), at last f/u, f/u duration of mean 92 months (range, 6-155 months)	Presence of satellite lesions on MR	Age at seizure onset, gender, duration of epilepsy, location of tumor, GTR/SEEG	Age at seizure onset, gender, duration of epilepsy, location of tumor, GTR/STR

GG, gangliocytoma; DNT, dysembryoplastic neuroepithelial tumor; PKA, pleomorphic xanthoastrocytoma; GNT, glioneuronal tumor; f/u, follow-up; sz, seizure; AED, antiepileptic drug; EEG, epileptiform discharge; EEG, electroencephalography; STR, subtotal resection; SD, standard deviation; EEG, invasive subdural electroencephalography; EEG, focal cortical dysplasia; IQ, interquartile range; MRI, magnetic resonance imaging; ECoG, electrocorticography; GTR, gross total resection.

See the end-reference list in main text for references of the Supplementary Table 1.
Supplementary Table 2. Detailed summary of literatures on factors associated with cognitive outcome in epilepsy surgery of low-grade epilepsy-associated neuroepithelial tumors

Study	No. of patients	Types of tumor (%)	Parameters for cognitive functions	Factors associated with poor cognitive outcome	Factors irrelevant to cognitive outcome
Faramand et al. (2017)	90	DNT, GG, Demoplastic GG, Angiocentric glioma, GNT not specified (proportions unknown)	Preoperative full-scale IQ	Longer duration of epilepsy	Age at surgery, tumor location
	41		Postoperative full-scale IQ, at 1 year after surgery	Younger age at sz onset	Low preoperative full-scale IQ
				Age at sz onset, duration of epilepsy, degree of resection	
Garcia-Fernández et al. (2011)	21	GG (47.6%), DNT (42.9%), Gangliocytoma (9.5%)	Preoperative full-scale IQ, performance IQ, motor function of dominant hand, motor function of non-dominant hand, verbal reasoning, auditory processing, vocabulary recognition, visual learning, arithmetic	Younger age at sz onset Drug-resistant epilepsy	Tumor location, side of tumor location
			Preoperative verbal IQ, verbal learning	Younger age at sz onset Drug-resistant epilepsy	Side of tumor location
			Preoperative vasomotor coordination, visuo-constructional praxis, spatial memory, concept formation		Drug-resistant epilepsy, tumor location, side of tumor location
			Preoperative delayed verbal recall, reading/understanding	Drug-resistant epilepsy Left hemispheric tumor	Age at sz onset, side of tumor location
			Preoperative visual perception, phonemic and semantic verbal fluency, sustained attention	Drug-resistant epilepsy	Age at sz onset, tumor location, side of tumor location
			Preoperative visual perception, phonemic and semantic verbal fluency, sustained attention	Extratemporal location of tumor	Age at sz onset, drug-resistant epilepsy, side of tumor location
			Postoperative improvement in visual attention, auditory processing, verbal comprehension, verbal delayed recall, spatial memory, executive function/ nonverbal fluency, at 1 year after surgery	Extended lesionectomy (compared to extended resection)	Not mentioned
Giulioni et al. (2017)	Not specified	GG, DNT, PXA, Pilocytic astrocytoma, Angiocentric glioma, GNT not specified, Low-grade glioma not specified, Mixed (proportions unknown)	Preoperative neuropsychological test (normal vs pathologic)	Longer duration of epilepsy	Not mentioned
Ko et al. (2019)	58	GG (46.6%), DNT (48.3%), Pilocytic astrocytoma (3.4%), Papillary glioneuronal tumor (1.7%)	Preoperative full-scale IQ	Univariate:	Age at seizure onset, gender, age at surgery, if u duration, sz frequency before surgery, sz semiology, drug-resistant epilepsy, duration of video EEG monitoring, generalized ED on EEG, side of tumor location, iEEG monitoring, tumor type, associated FCD
			Postoperative full-scale IQ, at median 21.0 months (IQR, 13.2–31.0 months) after surgery	Multivariate:	
				Longer duration of epilepsy	
Ramantani et al. (2014)	25	GG, DNT (proportions unknown)	Preoperative full-scale IQ	Longer duration of epilepsy	Age at sz onset, age at surgery, sz frequency before surgery, generalized sz
	24		Postoperative full-scale IQ	Low preoperative full-scale IQ	Not mentioned

GG, ganglioglioma; DNT, dysembryoplastic neuroepithelial tumor; IQ, intelligence quotient; sz, seizure; GNT, glioneuronal tumor; PXA, pleomorphic xanthoastrocytoma; ED, epileptiform discharge; iEEG, invasive subdural electroencephalography; FCD, focal cortical dysplasia; IQR, interquartile range.

See the end-reference list in main text for references of the Supplementary Table 2.