DOUBLE COSETS \(NgN \) OF NORMALIZERS OF MAXIMAL TORI OF SIMPLE ALGEBRAIC GROUPS AND ORBITS OF PARTIAL ACTIONS OF CREMONA SUBGROUPS

N. GORDEEV AND E. EGORCHENKOVA

Abstract. Let \(G \) be a simple algebraic group over an algebraically closed field \(K \) and let \(N = N_G(T) \) be the normalizer of a fixed maximal torus \(T \leq G \). Further, let \(U \) be the unipotent radical of a fixed Borel subgroup \(B \) that contains \(T \) and let \(U^- \) be the unipotent radical of the opposite Borel subgroup \(B^- \). The Bruhat decomposition implies the decomposition \(G = NU^-UN \). The Zariski closed subset \(U^-U \subset G \) is isomorphic to the affine space \(A_m K \) where \(m = \dim G - \dim T \) is the number of roots in the corresponding root system. Here we construct a subgroup \(N \leq C_m(K) \) that “acts partially” on \(A_m K \approx U \) and we show that there is one-to-one correspondence between the orbits of such a partial action and the set of double cosets \(\{NgN\} \). Here we also calculate the set \(\{g_\alpha\}_\alpha \subset U \) in the simplest case \(G = SL_2(C) \).

Introduction

Double cosets of transformation groups. Let \(G \) be a group which acts on a set \(X \). Further, let \(x_1, x_2 \in X \), \(H_1 = \text{St}_{x_1}, H_2 = \text{St}_{x_2} \) be stabilizers of \(x_1, x_2 \) and let \(O_{x_1}, O_{x_2} \) be orbits of \(x_1, x_2 \). Then there is one-to-one correspondence between the set of \(G \)-orbits of the natural action on \(O_{x_2} \times O_{x_1} \) and the set of double cosets \(\{H_1g_\alpha H_2\}_\alpha \) (it is a simple and well-known fact). Namely,

\[\{(g_\alpha(x_2), x_1)\}_\alpha \] is the minimal set of representations of \(G \)-orbits of \(O_{x_2} \times O_{x_1} \). (*)

The pairs of maximal tori of simple algebraic groups. In this paper we consider the case when \(G \) is a simple algebraic group over an algebraically closed field \(K \). The decomposition of a group \(G \) into the union of double cosets \(G = \bigcup g_iH_2g_iH_1 \) is a very important construction in the theory of algebraic groups, especially in the case when \(H_1, H_2 \) are parabolic subgroups. For these cases the decomposition is finite. Here we consider the case when \(H_1 = H_2 = N = N_G(T) \) is the normalizer of a fixed maximal torus \(T \). Now let \(X \) be the set of all maximal tori of \(G \). The group \(G \) acts on \(X \) by conjugation. Then \(X \) is just one \(G \)-orbit of \(T \in X \) and \(N := N_G(T) = \text{St}_T \). Thus, we have one-to-one correspondence between the set of \(G \)-orbits of the set \(X \times X \) and the set of double cosets \(\{Ng_{\alpha}N\}_\alpha \). Further, we have the decomposition

\[G = NU^-UN, \quad \text{where} \quad U = R_a(B), \quad U^- = R_a(B^-) \]
(here B is a fixed Borel subgroup that contains T, $B^- = w_0Bw_0$ is the opposite Borel subgroup, $R_u(B)$ is the unipotent radical of B). Note,

$$U := U^- U \approx A^m_K$$

where m is the number of roots in the corresponding root system and A^m_K is the m-dimensional affine space over K. Thus we have one-to-one correspondence between the set of G-orbits of $X \times X$ and the set of double cosets $\{NuN\}_{u \in U}$.

The group $N \leq \text{Cr}_m(K)$. To emphasize the minimal set of representatives $\{u_\alpha \in U\}$ of double cosets $\{NuN\}_{u \in U}$ we use the following construction. Using the multiplication of G by the elements of the group N on left-right sides we construct a subgroup $N \leq \text{Cr}_m(K)$ of the Cremona group $\text{Cr}_m(K)$ which acts partially (see, section 1) on $U \approx A^m_K$ and we get the following

Theorem 1. Elements $u_1, u_2 \in U$ belong to the same double coset NuN if and only if they are in the same N-orbit.

Hence we have

Corollary 1. There is one-to-one correspondence between the set of G-orbits of the pairs of maximal tori of G and the N-orbits of the subgroup $N \leq \text{Cr}_m(N)$ with respect to the partial action on A^m_K.

The definition of the group N depends on the group $W \times W$ but it is not unique. In particular, it depends on the choices of the preimages \dot{w} of elements of Weyl group $W = N/T$.

The problem of pair matrices. There is a reduction of the well-known “wild” problem of the classification of the pairs of matrices (A, B) up to conjugation by a single element of $\text{GL}_n(C)$, where $A, B \in M_n(C)$. Namely, we may change the description of all $\text{GL}_n(K)$-orbits of the action $(A, B) \to (gAg^{-1}, gBg^{-1})$ to the description of fibers

$$\pi : M_n(C) \times M_n(C) \to (M_n(C) \times M_n(C))/G$$

where π is the quotient map and $(M_n(C) \times M_n(C))/G$ is the corresponding algebraic factor (see, [VP], 9.5).

We also may formulate the following “subproblem”: to classify $\text{GL}_n(C)$-orbits on the set $C_A \times C_B$ where $C_A, C_B \subset M_n(C)$ are the $\text{GL}_n(K)$-orbits of A, B for given A, B. We also may give such a classification “up to an isomorphism of centralizers”. Say, if we take A, B to be regular semisimple unimodular matrices the classification of such pairs “up to an isomorphism of centralizers” is exactly the classification of the pairs of maximal tori of $\text{SL}_n(C)$.

Case $G = \text{SL}_2(C)$. Here we calculate the system of representatives of maximal tori for the simplest case $G = \text{SL}_2(C)$ (see, Corollary 4.7). Namely, let

$$g_\alpha := \begin{pmatrix} 1 & \alpha \\ 1 & 1 + \alpha \end{pmatrix} \in U \subset \text{SL}_2(C)$$

and let
\[
\mathcal{K} := \{ \alpha = a + bi \in \mathbb{C} \mid a \geq -\frac{1}{2} \} \setminus \{ \alpha = -\frac{1}{2} + bi \in \mathbb{C} \mid b < 0 \}.
\]

Theorem 2. The set of pairs
\[
(T, T) \cup (g_\alpha T g^{-1}_\alpha, T)_{\alpha \in \mathcal{K}}
\]
is a minimal set of representatives of the orbits of the pairs of tori of \(G \times G \) under conjugation by elements of \(G \).

Note, that \(\mathcal{K} \) is a subset of \(\mathbb{C} \) which is homeomorphic to \(\mathbb{C} \) in the standard topology (indeed, the map \(\varepsilon : \mathcal{K} \to \mathbb{C} \) which is given by the formula \(\varepsilon(z) = (z + \frac{1}{2})^2 \) defines the corresponding homeomorphism).

At the end of the paper we also consider the description of \(\text{SL}_2(\mathbb{C}) \)-orbits of pairs \((s, t)\) of non-central semisimple elements of \(\text{SL}_2(K) \).

Notation and terminology.
Here
- \(K \) is an algebraically closed field;
- \(\mathbb{C} \) is a complex number field;
- \(G \) is a simple algebraic group over \(K \) (here we identify \(G \) with the group of \(K \) points \(G(K) \)) that corresponds to the root system \(R \) of the rank \(r \), \(R = R^+ \cup R^- \) is the fixed decomposition into the union of positive and negative roots;
- we consider only Zariski topology on \(G \);
- \(T \) is a fixed maximal torus of \(G \), \(B \leq G \) is a fixed Borel subgroup that contains \(T \), \(B^- = w_0 B w_0 \) is the opposite Borel subgroup (here \(w_0 \) is the longest element of the Weyl group);
- \(U = R_u(B) \), \(U^- = R_u(B^-) \) are the unipotent radicals of \(B, B^- \);
- \(N = N_G(T) \) is the normalizer of \(T \);
- \(N/T = W \) is the Weyl group of \(G \);
- for \(w \in W \) by \(\dot{w} \in N \) we denote any preimage of \(w \).

1. Partial action of the Cremona subgroups

The partial action of the group is used in different cases (see, for instance, [A], [E]). Here we give the definition of the partial action in a little bit different form.

Definition 1.1. Let \(\Gamma \) be a group and let \(X \) be a set. We say that a partial action of \(\Gamma \) on \(X \) is defined if for every \(x \in X \) a subset \(\Gamma(x) \subset \Gamma \) is fixed and the following conditions hold:
- i. for every \(\sigma \in \Gamma(x) \) an element \(\sigma(x) \in X \) is defined;
- ii. the identity \(e \in \Gamma \) belongs to every \(\Gamma(x) \) and \(\epsilon(x) = x \);
- iii. if \(\tau \in \Gamma(\sigma(x)) \) then \(\tau \sigma \in \Gamma(x) \) and \(\tau(\sigma(x)) = \tau \sigma(x) \);
- iv. \(\sigma^{-1} \in \Gamma(\sigma(x)) \).

Orbits of partial action. For partial actions we may define orbits of such actions. Namely, we say that \(x, y \in X \) belong to the same \(\Gamma \)-orbit if and only if one can find an element
Let $\sigma \in \Gamma(x)$ such that $\sigma(x) = y$. Obviously, the conditions $i.$ – $iv.$ of the Definition can guarantee that the Γ-orbits are classes of equivalence under the equivalence
\[x \sim_{\Gamma} y \iff \sigma(x) = y \text{ for some } \sigma \in \Gamma(x). \]

The Cremona group action on the affine space. Here we consider the Cremona group $\text{Cr}_n(K)$ as the group of automorphisms of the field $K(x_1, \ldots, x_n)$ (see, for instance, [S]). Let
\[A^n_K = \{ a = (\alpha_1, \ldots, \alpha_n) \mid \alpha_i \in K \} \]
be the n-dimensional affine space. Every element $\sigma \in \text{Cr}_n(K)$ is presented by the sequence of rational functions
\[\sigma = \left(\frac{\varphi_1}{\psi_1}, \ldots, \frac{\varphi_n}{\psi_n} \right), \]
where $\varphi_i, \psi_i \in K[x_1, \ldots, x_n]$, $\psi_i \neq 0$, $(\varphi_i, \psi_i) = 1$, and we may define
\[\sigma(a) := \left(\frac{\varphi_1(a)}{\psi_1(a)}, \ldots, \frac{\varphi_n(a)}{\psi_n(a)} \right) \]
for every point $a \in A^n_K$ such that
\[a \in U_\sigma := \{ a' \in A^n_K \mid \psi_i(a') \neq 0 \text{ for every } i \}. \]
The set U_σ is an open subset of A^n_K where the rational map σ is regular.

Let
\[\tau = \left(\frac{\mu_1}{\nu_1}, \ldots, \frac{\mu_n}{\nu_n} \right) \in \text{Cr}_n(K). \]
If $\sigma(a) \in U_\tau := \{ a' \in A^n_K \mid \nu_i(a') \neq 0 \text{ for every } i \}$ then the image $\tau(\sigma(a))$ is defined and equal to $(\tau\sigma)(a)$ where
\[\tau\sigma = \left(\frac{\mu_1(\varphi_1, \varphi_2, \ldots, \varphi_n)}{\nu_1(\psi_1, \psi_2, \ldots, \psi_n)}, \ldots, \frac{\mu_n(\varphi_1, \varphi_2, \ldots, \varphi_n)}{\nu_n(\psi_1, \psi_2, \ldots, \psi_n)} \right). \]

Now let $\Gamma \leq \text{Cr}_n(K)$. For every $x \in A^n_K$ we put $\Gamma(x) := \{ \sigma \in \Gamma \mid x \in U_\sigma \}$. Obviously, conditions $i.$–iii. hold for Γ. However, the condition iv. does not necessarily hold. For instance, let $n = 2$ and $\Gamma = \langle \sigma = (x_1, \frac{x_1}{x_2}) \rangle$. Then $\sigma^{-1} = x$ and $\sigma^{-1} \notin \Gamma(\sigma((1, 1)))$.

Below we will consider some subgroups of Cremona group $\text{Cr}_n(K)$ which act partially on the affine space A^n_K.

2. The decomposition $G = NU^-UN$

We have the decomposition
\[G = NU^-UN. \tag{2.1} \]
Indeed, for every Bruhat cell BwB we have $BwB = U_w\dot{w}TU$ where U_w is the product (in any fixed order) of the root subgroups X_α such that $\alpha \in R^+$ and $w^{-1}(\alpha) \in R^-$. Hence $\dot{w}^{-1}U_w\dot{w} \leq U^-$ and we have
\[BwB \leq \dot{w}\dot{w}^{-1}U_w\dot{w}TU = w(U \dot{w}^{-1}U_w\dot{w})UT \leq \dot{w}U^-UT \leq \dot{w}TU^-UN \leq NU^-UN. \]

Put
\[\mathcal{U} = U^-U, \quad \mathcal{U}_G = U^-TU. \tag{2.2} \]
Then \mathcal{U}_G is the Big Gauss cell of G which corresponds to the Borel subgroup B and $\mathcal{U} \approx A^m_K$ where $m = \dim G - \dim T = |R|$

2.1. The equations which define $\mathcal{U} = U^r - U$.

For a dominant weight $\lambda : T \rightarrow K^*$ there is a regular function δ_λ on G such that the restriction of δ_λ on T coincides with λ (see, for instance, [EG]). We recall the construction of δ_λ. Let V_λ be the irreducible G-module with the highest weight λ. Further, let $\mathfrak{B} = \{e_1, \ldots, e_d\}$ be the basis which consists of weight vectors of T where e_1 corresponds to λ, and let $\rho_\lambda : G \rightarrow \text{GL}_n(K)$ be the matrix representation which corresponds to the basis \mathfrak{B}. The regular function $\delta_\lambda : G \rightarrow K$ which is defined by the formula $\delta_\lambda(g) := g_{11}$, where g_{11} is the $(1, 1)$-entry of the matrix $\rho_\lambda(g)$, satisfies the following condition:

$$\delta_\lambda(vtu) = \lambda(t) \quad \text{for every } t \in T \quad \text{and for every } v \in U^r, u \in U.$$

Further, let $\delta_{\lambda_1}, \ldots, \delta_{\lambda_r}$ be regular functions on G that correspond to the fundamental weights $\lambda_1, \ldots, \lambda_r$. Then the Big Gauss cell \mathcal{U}_G is defined by the inequalities

$$g \in \mathcal{U}_G \Leftrightarrow \delta_{\lambda_i}(g) \neq 0 \quad \text{for every } i = 1, \ldots, r. \quad (2.3)$$

The closed subset $\mathcal{U} \subset G$ is defined by equations

$$g \in \mathcal{U} \Leftrightarrow \delta_{\lambda_i}(g) = 1 \quad \text{for every } i = 1, \ldots, r. \quad (2.4)$$

Remark 2.1. Note, that in the case $G = \text{SL}_{r+1}(K)$ the value $\delta_{\lambda_i}(g)$ is the principal i^{th}-minor of the matrix $g \in \text{SL}_{r+1}(K)$.

2.2. The rational map $\delta^* : G \rightarrow T$.

Consider the regular map $\delta : G \rightarrow A^r_K$

which is defined by the formula

$$\delta(g) = (\delta_{\lambda_1}(g), \ldots, \delta_{\lambda_r}(g)).$$

The definition of δ implies that

$$\delta(vtu) = \delta(t) \quad \text{for every } v \in U^r, t \in T, u \in U \quad (2.5)$$

The restriction of the map δ on T gives us an isomorphism

$$T \overset{\delta}{\approx} (A^r_K)^* := \{(a_1, \ldots, a_r) \mid a_i \neq 0 \quad \text{for every } i\} \approx K^*.$$

We will identify the group G with the closed subgroup of $\text{SL}_n(K)$ for some n where the fixed torus T is a subgroup of the group of diagonal matrices of $\text{SL}_n(K)$. Thus, if $t \in T$ then

$$t = \text{diag}(t_1, t_2, \ldots, t_n) \quad \text{for some } t_i \in K.$$

Let

$$\kappa : (A^r_K)^* \rightarrow T$$

be the regular map such that

$$\kappa \circ \delta(t) = t \quad \text{for every } t \in T.$$
Since the restriction $\delta|_T : T \rightarrow (A^r)^*$ is a rational homomorphism of the torus T (recall, that $\delta(t) = (\delta_{\lambda_1}(t), \ldots, \delta_{\lambda_r}(t)) = (\lambda_1(t), \ldots, \lambda_r(t))$ for every $t \in T$), then κ is also a rational homomorphism of the torus $(A^r)^*$. Hence
\[
\kappa((a_1, \ldots, a_r)) = \left(\prod_{i=1}^{r} a_i^{z_{1i}}, \ldots, \prod_{i=1}^{r} a_i^{z_{ni}} \right)
\]
(2.6)
for some $z_{ij} \in \mathbb{Z}$. Since $\det \text{diag}(t_1, \ldots, t_n) = 1$ we have
\[
\sum_{j=1}^{n} z_{ji} = 0 \text{ for every } i = 1, \ldots, r.
\]
(2.7)
Thus we may consider the map κ as a rational map
\[
\kappa : A^r_K \rightarrow A^n_K
\]
which is defined by formula (2.6). Then the map κ is regular at the point (a_1, \ldots, a_r) if and only if $(a_1, \ldots, a_r) \in (A^r_K)^*$ (see, 2.7).

Example. Let $G = \text{SL}_{r+1}(K)$. Let $t = \text{diag}(t_1, \ldots, t_r, \frac{1}{t_1t_2 \cdots t_r}) \in T$. Then $\delta(t) = (t_1, t_1t_2, \ldots, t_1t_2 \cdots t_r)$ and therefore $\kappa((a_1, \ldots, a_r)) = (a_1, a_2, \ldots, a_r, 1, \frac{1}{a_r})$.

Now we define the rational map
\[
\delta^* = \kappa \circ \delta : G \rightarrow A^r_K.
\]
This map is regular only at points of the Big Gauss cell U_G and the image $\text{Im} \delta^*$ is isomorphic to T. We will identify $\text{Im} \delta^*$ with the torus T. It follows directly from the definition
\[
\delta^*(t) = t \text{ for every } t \in T.
\]
(2.8)
From (2.5) we get
\[
\delta^*(t_1vtut_2) = t_1tt_2 \text{ for every } t_1, t_2, t \in T, v \in U^-, u \in U.
\]
(2.9)

2.3. The rational map $w_{\tilde{w}_1, \tilde{w}_2} : \mathcal{U} \rightarrow \mathcal{U}$.

Let $\omega : G \rightarrow G$ be an isomorphism of the affine variety G. Recall, that the closed subset $\mathcal{U} = U^- U$ we consider also as the affine variety $A^m_K \approx A^m_L \times A^m_K$.

Consider the rational map $w_\omega : G \rightarrow G$ which is given by the formula
\[
w_\omega(g) = \left(\delta^*(\omega(g)) \right)^{-1} \omega(g).
\]
Let map w_ω be regular at a point $g \in \mathcal{U}$. Then the element $\omega(g)$ belongs to the Big Gauss cell $U_G \subset G$ and therefore $\omega(g) = vtu$ for some $v \in U^-, t \in T, u \in U$. Hence $\delta^*(\omega(g)) = t$ (see, 2.9) and therefore
\[
w_\omega(g) = t^{-1}vtu = (t^{-1}vt)t^{-1}tu = (t^{-1}vt)u \in \mathcal{U},
\]
Let
\[
\mathcal{U}_\omega := \{ u \in \mathcal{U} \mid w_\omega \text{ is regular at the point } u \}.
\]
Consider the restriction of w_ω on the closed subset U. If $U_\omega \neq \emptyset$ then we may and we will consider w_ω as a rational map $w_\omega : U \to U$. Since ω is an isomorphism of varieties we have from the definition of w_ω the equivalence
\[g \in U_\omega \Leftrightarrow \omega(g) \in U_G. \]
Hence
\[U_\omega = U \cap \omega^{-1}(U_G). \]
(2.10)

Now we consider the map $\omega : U \to U$ which is defined by left-right multiplication of elements from subgroup N. Namely, let $w_1, w_2 \in W$ and let $\dot{w}_1, \dot{w}_2 \in N$ be fixed preimages. Further, let $\omega : G \to G$ be the isomorphism (as a variety) which is given by the formula $\omega(g) = \dot{w}_1 g \dot{w}_2$. Then we put
\[w_{\dot{w}_1, \dot{w}_2} := w_\omega, \quad U_{w_1, w_2} := U_\omega. \]

The set $U_{w_1, w_2} = U \cap \dot{w}_1 U_G \dot{w}_2^{-1}$ is an intersection of a closed and an open subsets of G and therefore it is an open subset in U. Since $U_G = U^{-1} U$ the set $\dot{w}_1 U_G \dot{w}_2^{-1}$ does not depend on the choice of preimages \dot{w}_1, \dot{w}_2 of w_1, w_2. Hence the set U_{w_1, w_2} does not also depend on the choice of preimages w_1, \dot{w}_2.

Lemma 2.2.
\[U_{w_1, w_2} \neq \emptyset. \]

Proof. Since $U_G \neq \emptyset$ is an open subset in G we have $\dot{w}_1 U_G \dot{w}_2 \cap U_G \neq \emptyset$. Let
\[\dot{w}_1 v t u \dot{w}_2 = v' t' u' \in \dot{w}_1 U_G \dot{w}_2 \cap U_G \]
where $v, v' \in U^-, t, t' \in T, u, u' \in U$. Let $s = \dot{w}_1 t^{-1} \dot{w}_1^{-1}$. Then $s \in T$ and
\[s \dot{w}_1 v t u \dot{w}_2 = (\dot{w}_1 t^{-1} \dot{w}_1^{-1}) \dot{w}_1 v t u \dot{w}_2 = \dot{w}_1 \left(\underbrace{t^{-1} v t}_{\in U^-} \right) u \dot{w}_2 = \]
\[= s v' t' u' = \underbrace{(s v' s^{-1})}_{\in U^-} \underbrace{(s t')}_{\in T} u' \in U_G \Rightarrow U \cap \dot{w}_1 U_G \dot{w}_2^{-1} \neq \emptyset. \]
\[\square \]

Thus we have the rational map
\[w_{\dot{w}_1, \dot{w}_2} : U \to U \]
such that the set of points $u \in U$ where $w_{\dot{w}_1, \dot{w}_2}$ is regular coincides with a non-empty open subset $U_{w_1, w_2} = U \cap \dot{w}_1 U_G \dot{w}_2^{-1}$.

Proposition 2.3. The map
\[w_{\dot{w}_1, \dot{w}_2} : U_{w_1, w_2} \to w_{\dot{w}_1, \dot{w}_2}(U_{w_1, w_2}) \]
is an isomorphism of open subsets of U and $w_{\dot{w}_1, \dot{w}_2}(U_{w_1, w_2}) = U_{w_1, w_2}^{-1}$.

\[\square \]
Proof. Let \(u \in \mathcal{U}_{w_1, w_2} \). Further, let

\[
\dot{w}_1 u \dot{w}_2 = vtu
\]

for some \(v \in U^{-}, u \in U, t \in T \). Then

\[
u' = w_{\dot{w}_1, \dot{w}_2}(u) = t^{-1} vtu.
\]

Further,

\[
w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}}(u') = \left(\delta^* (\dot{w}_1^{-1} u' \dot{w}_2^{-1})\right)^{-1} \dot{w}_1^{-1} u' \dot{w}_2^{-1} = \left(\delta^* (\dot{w}_1^{-1} u' \dot{w}_2^{-1})\right)^{-1} \underbrace{(\dot{w}_1^{-1} t^{-1} \dot{w}_1)}_{:= s \in T} \underbrace{(\dot{w}_1^{-1} vtu \dot{w}_2^{-1})}_{:= u; \text{ see } (2.11)} = \left(\delta^* (su)\right)^{-1} su = u.
\]

Hence \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}}(u') = u \) and therefore

the map \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} \circ w_{\dot{w}_1, \dot{w}_2} : \mathcal{U}_{w_1, w_2} \to \mathcal{U}_{w_1, w_2} \) is the identity. \hspace{1cm} (2.12)

Since (2.12) holds for every pair of \(\dot{w}_1, \dot{w}_2 \) we have

\[
w_{\dot{w}_1, \dot{w}_2} \circ w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} : \mathcal{U}_{w_1^{-1}, w_2^{-1}} \to \mathcal{U}_{w_1^{-1}, w_2^{-1}} \text{ is the identity.} \hspace{1cm} (2.13)
\]

Since the map \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} \) is regular at every point \(u' = w_{\dot{w}_1, \dot{w}_2}(u) \) we have the inclusion

\[
w_{\dot{w}_1, \dot{w}_2}(\mathcal{U}_{w_1, w_2}) \subset \mathcal{U}_{w_1^{-1}, w_2^{-1}}. \hspace{1cm} (2.14)
\]

Then the inclusion (2.14) holds if we change \(w_1 \) for \(w_1^{-1} \)

\[
w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}}(\mathcal{U}_{w_1^{-1}, w_2^{-1}}) \subset \mathcal{U}_{w_1, w_2}. \hspace{1cm} (2.15)
\]

We may consider maps

\[
\mathcal{U}_{w_1, w_2} \xrightarrow{w_{\dot{w}_1, \dot{w}_2}} \mathcal{U}_{w_1^{-1}, w_2^{-1}} \xrightarrow{w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}}} \mathcal{U}_{w_1, w_2} \xrightarrow{w_{\dot{w}_1, \dot{w}_2}} \mathcal{U}_{w_1^{-1}, w_2^{-1}}.
\]

(see, (2.14) and (2.15). Thus, (2.12) and (2.13) imply that

\[
w_{\dot{w}_1, \dot{w}_2} : \mathcal{U}_{w_1, w_2} \to w_{\dot{w}_1, \dot{w}_2}(\mathcal{U}_{w_1, w_2})
\]

is an isomorphism of open subsets of \(\mathcal{U} \) and \(w_{\dot{w}_1, \dot{w}_2}(\mathcal{U}_{w_1, w_2}) = \mathcal{U}_{w_1^{-1}, w_2^{-1}}. \]

\[\square\]

Now we get

Corollary 2.4. \(w_{\dot{w}_1, \dot{w}_2} \in \text{Cr}_m(K) \) and \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}}^{-1} = w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} \).

Remark 2.5. Note, that \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} \) is the map that corresponds to \(\dot{w}_1^{-1}, \dot{w}_2^{-1} \), that is, we take here fixed preimages \(\dot{w}_1, \dot{w}_2 \) of \(w_1, w_2 \) and then take the inverse elements of these preimages. If we take other preimages \((w_1^{-1}), (w_2^{-1})\) we get the corresponding map \(w_{(w_1^{-1}), (w_2^{-1})} \) which differs from \(w_{\dot{w}_1^{-1}, \dot{w}_2^{-1}} \) on a multiplier from \(T \).
3. Definition of the group \mathcal{N}

Now we define some group $\mathcal{N} \leq Cr_m(K)$ which partially acts on $\mathcal{U} \approx A^m$.

Lemma 3.1. Let $u \in \mathcal{U}$ and let $t, s \in T$. Then
\[
\text{tus} \in \mathcal{U} \iff s = t^{-1}.
\]

Proof. Let $u = vu$ where $v \in U^-$, $u \in U$. Then
\[
\text{tus} = (tvt^{-1})s^{-1}us \in \mathcal{U} \iff ts = 1
\]
(recall, that the Gauss decomposition $g = vtu$ of every element $g \in \mathcal{U}_G$ is unique). \hfill \Box

For every $s \in T$ we define the transformation of
\[
t_s : \mathcal{U} \to \mathcal{U}
\]
that is defined by the formula
\[
t_s(u) = sus^{-1}.
\]

Let
\[
\mathcal{T} := \langle t_s \mid s \in T \rangle.
\]

Then we may consider \mathcal{T} as a subgroup of $Cr_m(K)$. Further, we assume that we have the set of fixed preimages $\{\tilde{w}\}_{w \in \mathcal{W}}$. Put
\[
\mathcal{N} = \langle \mathcal{T}, w_{\tilde{w}_1, \tilde{w}_2} \mid (w_1, w_2) \in W \times W \rangle \leq Cr_m(K).
\]

Note, that $\mathcal{N} \leq Cr_m(K)$ is a group that depends on the choice of preimages $\{\tilde{w}\}_{w \in \mathcal{W}}$. Moreover, the inverse elements $w_{\tilde{w}_1, \tilde{w}_2}^{-1}$ do not necessary coincide with $w_{(w_1^{-1}, (w_2^{-1})}$ (see, Remark 2.5). More precisely

Lemma 3.2. Let $\{\tilde{w}\}_{w \in \mathcal{W}}$ be a fixed set of preimages in N elements of the Weyl group. Further, let
\[
\omega_1 = w'_1w_1, \omega_2 = w_2w'_2
\]

Then there exists an element $t_s \in \mathcal{T}$ such that
\[
w_{\tilde{w}_1, \tilde{w}_2}w_{\tilde{w}_1, \tilde{w}_2} = t_s\tilde{w}_1\tilde{w}_2.
\]

Proof. We have
\[
tag_1\tilde{w}_1 = \tilde{w}_1', \tag_2\tilde{w}_2 = \tilde{w}_2'\text{ for some } t_1, t_2 \in T. \tag{3.1}
\]

Let
\[
u \in \mathcal{U}_{w_1, w_2} \cap w_1^{-1}_{\tilde{w}_1, \tilde{w}_2} \cap \mathcal{U}_{w_2^{-1}, w_2^{-1}}
\]
(note, that the intresections of non-empty open subsets of \mathcal{U} are non-empty open subsets).

Hence the map $w_{\tilde{w}_1, \tilde{w}_2}$ is regular at the point $w_{\tilde{w}_1, \tilde{w}_2}(u)$ and we have
\[
w_{\tilde{w}_1', \tilde{w}_2'}w_{\tilde{w}_1, \tilde{w}_2}(u) = w_{\tilde{w}_1', \tilde{w}_2'}(\left((\delta^*(\tilde{w}_1'\tilde{w}_2))^{-1}\tilde{w}_1\tilde{w}_2\right)_{t \in \mathcal{T}} =
\]
\[
= (\delta^*(\tilde{w}_1't\tilde{w}_1'^{-1})\tilde{w}_1'(\tilde{w}_1'\tilde{w}_2)\tilde{w}_2'))^{-1}(\tilde{w}_1't\tilde{w}_1'^{-1})\tilde{w}_1'(\tilde{w}_1'\tilde{w}_2)\tilde{w}_2' \tag{2.9}
\]
\[
= (\delta^*(\tilde{w}_1'(\tilde{w}_1'\tilde{w}_2)\tilde{w}_2'))^{-1}\tilde{w}_1'(\tilde{w}_1'\tilde{w}_2)\tilde{w}_2' \tag{3.1}
\]
\[
= (\delta^*(t_1\tilde{w}_1\tilde{w}_2)\tilde{w}_2)\tilde{w}_2' = (\delta^*(t_1\tilde{w}_1\tilde{w}_2)\tilde{w}_2)\tilde{w}_2' =
\]
\[
= (\delta^*(t_1\tilde{w}_1\tilde{w}_2)\tilde{w}_2)\tilde{w}_2' =
\]
2.9 \[t_2^{-1} (\delta^*(\hat{w}_1u\hat{w}_2))^{-1} \hat{w}_1u\hat{w}_2 t_2 = t_s w_{\hat{w}_1,\hat{w}_2} \] where \(s = t_2^{-1} \).
\\

Lemma 3.3. The subgroup \(T \) is normal in \(N \).

Proof. Let \(t_s \in T \), \(w_{\hat{w}_1,\hat{w}_2} \in N \) and let \(u \in U_{\hat{w}_1,\hat{w}_2} \). Then

\[
t_s w_{\hat{w}_1,\hat{w}_2}(u) = s \left((\delta^*(\hat{w}_1 u \hat{w}_2))^{-1}(\hat{w}_1 u \hat{w}_2) \right) s^{-1} = t(\hat{w}_1 u \hat{w}_2) s^{-1}. \]
\\

Then

\[
w_{\hat{w}_1,\hat{w}_2}^{-1} t_s w_{\hat{w}_1,\hat{w}_2}(u) = \left((\delta^*(\hat{w}_1^{-1} t(\hat{w}_1 u \hat{w}_2) s^{-1} \hat{w}_2^{-1}))^{-1}(\hat{w}_1^{-1} t(\hat{w}_1 u \hat{w}_2) s^{-1} \hat{w}_2^{-1}) \right) t_1 u t_2 \text{ Lem.} 3.1
\\

\[= t_2^{-1} u t_2 = t_s(u) \text{ where } s' = t_2^{-1}. \]
\\

Now we show that the group \(N \) acts partially on the affine space \(U \). For every \(u \) we define \(N(u) \) as the set of elements of \(N \) which are regular at the point \(u \). Then conditions i. - iii. of the Definition 1.1 obviously hold. From Proposition 2.3 and Corollary 2.4 we have condition iv:

\[n^{-1} \in N(n(u)) \text{ for every } n \in N(u). \]
\\

Now we may prove Theorem 1.

Proof. The implication \(\Leftarrow \) follows directly from the definition of double cosets.

Let \(u_1, u_2 \in U \). Then

\[u_1, u_2 \in NuN \overset{2.1}{\Leftrightarrow} n_1 u_1 n_2 = u_2 \text{ for some } n_1, n_2 \in N. \]
\\

Let \(n_1 u_1 n_2 = u_2 \). Then \(n_1 = t_1 \hat{w}_1, n_2 = \hat{w}_2 t_2 \) for some \(t_1, t_2 \in T \). Since \(u_1, u_2 \in U \) then \(u_1 \in U_{\hat{w}_1,\hat{w}_2} \). We have

\[
n_1 u_1 n_2 = t_1 \hat{w}_1 u_1 \hat{w}_2 t_2 = t_1 (\delta^*(\hat{w}_1 u \hat{w}_2)) w_{\hat{w}_1,\hat{w}_2}(u) t_2 = u_2 \in U \text{ Lem.} 3.1 \Rightarrow t_1' t_2 = 1 \Rightarrow
\\

\[
\Rightarrow u_2 = t_s w_{\hat{w}_1,\hat{w}_2}(u_1) \text{ where } s = t_2^{-1}. \]
\\

□
4. Example. Case $G = \text{SL}_2(\mathbb{C})$

4.1. Group \mathcal{N}.

Let $G = \text{SL}_2(K)$. Then

$$
\mathcal{U} = \left\{ \begin{pmatrix} 1 & \alpha \\ \beta & 1 + \alpha \beta \end{pmatrix} \mid \alpha, \beta \in K \right\}.
$$

Here $W = \{e, w\}$ is the group consisting of two elements – the identity e and the involution w. We take

$$
\dot{e} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \dot{w} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

Hence

$$
\begin{aligned}
\dot{w} \dot{e} \dot{w}^{-1} & = \begin{pmatrix} 1 & \alpha \\ \beta & 1 + \alpha \beta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ \beta & 1 + \alpha \beta \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -\beta^{-1}(1 + \alpha \beta) \\ -\beta & 1 + \alpha \beta \end{pmatrix}, \\
\dot{w} \dot{e} \dot{w}^{-1} & = \begin{pmatrix} 1 & -\alpha^{-1} \\ 0 & 1 + \alpha \beta \end{pmatrix} \begin{pmatrix} -\alpha^{-1} & 0 \\ 0 & 1 + \alpha \beta \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -\alpha^{-1} \\ 0 & 1 + \alpha \beta \end{pmatrix}, \\
\dot{w} \dot{w}^{-1} & = \begin{pmatrix} 1 & -\alpha \beta^{-1} \alpha^{-1} \\ 0 & 1 + \alpha \beta \end{pmatrix} = \begin{pmatrix} 1 & -\beta(1 + \alpha \beta)^{-1} \\ 0 & 1 + \alpha \beta \end{pmatrix}.
\end{aligned}
$$

It is easy to check

$$
\dot{w} \dot{e} \dot{w} = \dot{w} \dot{e} \dot{w} \dot{e} = \dot{e} \dot{w} \dot{e} \dot{w} = \dot{w} \dot{w} = \dot{w} \dot{e} \dot{w} = \dot{e} \dot{w} = \dot{e} = e
$$

(4.1)

(here e is the identity of $\text{Cr}_2(K)$). Put

$$
\mathbf{w}_t := \dot{w} \dot{e} \dot{w}, \quad \mathbf{w}_r := \dot{w} \dot{e} \dot{w}, \quad \mathbf{w}_d := \dot{w} \dot{w}.
$$

Thus, $\mathbf{w}_t, \mathbf{w}_r, \mathbf{w}_d \in \text{Cr}_2(K)$ are birational transformations of the affine plane

$$
A^2_K = \{ (\alpha, \beta) \mid \alpha, \beta \in K \}.
$$

Namely,

$$
\mathbf{w}_t((\alpha, \beta)) = (\beta^{-1}(1 + \alpha \beta), -\beta), \quad \mathbf{w}_r((\alpha, \beta)) = (-\alpha^{-1}, \alpha(1 + \alpha \beta)),
$$

$$
\mathbf{w}_d((\alpha, \beta)) = (-\beta(1 + \alpha \beta)^{-1}, -\alpha(1 + \alpha \beta)).
$$

The element $t_s \in \mathcal{T} \leq \text{Cr}_2(K)$ acts on A^2_K according to the following formula

$$
\mathbf{t}_s((\alpha, \beta)) = (s^2 \alpha, s^{-2} \beta).
$$

Also

$$
\mathbf{w}_t((\alpha, \beta)) \mathbf{t}_s \mathbf{w}_t((\alpha, \beta)) = \mathbf{w}_t(s^2 \alpha^{-1}, -s^{-2} \beta) = (s^2 \alpha, s^{-2} \beta) = \mathbf{t}_s((\alpha, \beta)),
$$

$$
\mathbf{w}_r((\alpha, \beta)) \mathbf{t}_s \mathbf{w}_r((\alpha, \beta)) = \mathbf{w}_r((-s^2 \alpha^{-1}, s^{-2} \alpha(1 + \alpha \beta))) = (s^2 \alpha, s^{-2} \beta) = \mathbf{t}_s^{-1}((\alpha, \beta)).
$$

Hence

$$
\mathcal{N} = \langle \mathcal{T}, \mathbf{w}_r \rangle \times \langle \mathbf{w}_t \rangle \approx D_\infty \times \mathbb{Z}_2
$$

(here D_∞ is the infinite dihedral group and $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ is the group of order 2).
Let
\[\mathcal{M} = \{ (\alpha, \beta) \mid \alpha \neq 0, \beta \neq 0, \alpha \beta \neq -1 \} \]

Lemma 4.1. Every element \(g \in \mathcal{N} \) stabilizes the open set \(\mathcal{M} \).

Proof. We have to check: if \((\alpha, \beta) \in \mathcal{M}\) then \(g((\alpha, \beta)) \in \mathcal{M} \) if \(g = t_s, w_l, w_r \). It is obvious for \(t_s \). Further,
\[w_l((\alpha, \beta)) = (\beta^{-1}(1 + \alpha \beta), -\beta), \quad w_r((\alpha, \beta)) = (-\alpha^{-1}, \alpha(1 + \alpha \beta)). \]

In both cases \(\alpha' \beta' = -(1 + \alpha \beta) \). Thus, \(1 + \alpha' \beta' = -\alpha \beta \neq 0 \) and therefore
\[w_l((\alpha, \beta)), w_r((\alpha, \beta)) \in \mathcal{M}. \]

\[\Box \]

Let
\[\mathcal{M}_{0,1} = \{ (0, \beta) \mid \beta \neq 0 \}, \mathcal{M}_{1,0} = \{ (0, \alpha) \mid \alpha \neq 0 \}, \mathcal{M}_{-1} = \{ (\alpha, \beta) \mid \alpha \beta = -1 \}. \]

From the definition of \(w_l, w_r, w_d \) we have the following formulas
\[w_l(M_{0,1}) = \{ (\beta^{-1}, -\beta) \mid \beta \neq 0 \} = \mathcal{M}_{-1}, \quad \tag{4.2} \]
\[w_l(M_{-1}) = \{ (\beta^{-1}(1 + \alpha \beta), -\beta) = (0, -\beta) \mid \beta \neq 0 \} = \mathcal{M}_{0,1}, \]
\[w_r(M_{1,0}) = \{ (-\alpha^{-1}, \alpha) \mid \alpha \neq 0 \} = \mathcal{M}_{-1}, \quad w_r(M_{-1}) = \{ (-\alpha^{-1}, 0) \mid \alpha \neq 0 \} = \mathcal{M}_{1,0}, \]
\[w_d(M_{1,0}) = \mathcal{M}_{0,1}, \quad w_d(M_{0,1}) = \mathcal{M}_{1,0}. \]

Lemma 4.2. The set
\[\tilde{\mathcal{M}} = \mathcal{M}_{0,1} \cup \mathcal{M}_{1,0} \cup \mathcal{M}_{-1} \]

is just one \(\mathcal{N} \)-orbit. The point \((0, 1)\) can be taken as a representative of this orbit.

Proof. Since \(K \) is an algebraically closed field the sets \(\mathcal{M}_{0,1}, \mathcal{M}_{0,1}, \mathcal{M}_{-1} \) are three \(\mathcal{T} \)-orbits of points \((0, 1), (1, 0), (1, -1)\) respectively. But these points are in the same \(\mathcal{N} \)-orbit (that follows from 4.2). \[\Box \]

4.3. The representatives of \(\mathcal{N} \)-orbits on \(A_K^2 = \mathcal{M} \cup \tilde{\mathcal{M}} \cup \{ (0, 0) \} \).

Put
\[\mathcal{M}^1 := \{ (\alpha, 1) \mid \alpha \neq 0, -1 \} \subset \mathcal{M}. \]

Lemma 4.3. If \((\alpha', \beta') \in \mathcal{M} \) then there is an element \((\alpha, 1) \in \mathcal{M}^1 \) which belongs to the same orbit as \((\alpha', \beta') \).

Proof. We have \(t_s((\alpha', \beta')) = (s^2 \alpha', s^{-2} \beta') \). Since \(K \) is an algebraically closed field we can find \(s \in K \) such that \(s^{-2} \beta' = 1 \). Hence in every \(\mathcal{N} \)-orbit of the set \(\mathcal{M} \) there is an element of the form \((\alpha', 1)\). \[\Box \]

Lemma 4.4. The elements \((\alpha, 1) \neq (\alpha', 1) \in \mathcal{M}^1 \) are in the same \(\mathcal{N} \)-orbit if and only if \(\alpha' = -1 - \alpha \).
Proof. The elements \((\alpha, 1), (\alpha', 1) \in M^1\) are in the same \(\mathcal{N}\)-orbit if and only if
\[
\mathbf{t}_s \mathbf{w}((\alpha, 1)) = (\alpha', 1) \quad \text{for some } s = s(\alpha, \mathbf{w}) \in K \quad \text{and where }
\]
\[
\mathbf{w} \quad \text{is one of the following elements: } \mathbf{e}, \mathbf{w}_l, \mathbf{w}_r, \mathbf{w}_d
\]
(it follows from Lemmas 3.2, 3.3, recall, \(e \in C_{r2}(K)\) is the identity). Let \(\mathbf{w} = \mathbf{e}\). Then
\[
\mathbf{t}_s \mathbf{e}((\alpha, 1)) = \mathbf{t}_s(((\alpha, 1)) \in M^1 \iff \mathbf{t}_s = \mathbf{e} \iff \alpha' = \alpha.
\]
We have
\[
w_l((\alpha, 1)) = ((1 + \alpha), -1), \quad w_r((\alpha, 1)) = (-\alpha^{-1}, \alpha(1 + \alpha)),
\]
\[
w_d((\alpha, 1)) = (-1 + \alpha)^{-1}, -\alpha(1 + \alpha)).
\]
For \(\mathbf{w} = \mathbf{w}_l\), or \(\mathbf{w} = \mathbf{w}_r\), or \(\mathbf{w} = \mathbf{w}_d\) and for the fixed \(\alpha\) there is only one element \(\mathbf{t}_s\) such that \(\mathbf{t}_s \mathbf{w}((\alpha, 1)) \in M^1\). From [4.3]
\[
s = \begin{cases} \sqrt{-1} \text{ for the case } \mathbf{w} = \mathbf{w}_l, \\ \sqrt{\alpha(1 + \alpha))} \text{ for the case } \mathbf{w} = \mathbf{w}_r, \\ \sqrt{-\alpha(1 + \alpha)} \text{ for the case } \mathbf{w} = \mathbf{w}_d
\end{cases}
\]
(recall, that \(\mathbf{t}_s((\alpha, \beta)) = (s^2\alpha, s^{-2}\beta)\)) and therefore \(t_{s_1} = t_{s_2}\) if and only if \(s_1 = \pm s_2\).
From [4.4, 4.5] for corresponding \(s\) we get
\[
\begin{cases}
\mathbf{t}_s \mathbf{w}_l((\alpha, 1)) = (-1 + \alpha), 1 \\
\mathbf{t}_s \mathbf{w}_r((\alpha, 1)) = (-1 + \alpha), 1) \\
\mathbf{t}_s \mathbf{w}_d((\alpha, 1)) = (\alpha, 1).
\end{cases}
\]
Now the statement of the Lemma follows from [4,3 and 4,6] \(\square\)

Let \(b : K \to K\) be the map which is given by the formula
\[
b(\alpha) = -1 - \alpha
\]
for every \(\alpha \in K\). Then \(b^2\) is the identity on \(K\) and there is only one element \(\alpha\) such that \(b(\alpha) = \alpha\), namely \(\alpha = -\frac{1}{2}\). Then we may decompose \(K = K^+ \cup K^-\) into the union of two disjoint subsets \(K^+, K^-\) where \(-\frac{1}{2}, 0 \in K^-\) and if \(-\frac{1}{2} \neq \alpha \in K^-\) then \(b(\alpha) \in K^-.\) Now let us fix such a decomposition \(K = K^- \cup K^+\). Put
\[
\Omega_K := \{(\alpha, 1)\}_{\alpha \in K^+} \cup \{(0, 0)\}.
\]

Theorem 4.5. The set \(\Omega_K\) is a smallest set of the representatives of the \(\mathcal{N}\)-orbits on \(A_K^2\), that is, for every \(\mathcal{N}\)-orbit there is only one its representative which is contained in \(\Omega_K\).

Proof. Let \((\alpha, \beta) \in A_K^2\) and let \(O_{\alpha, \beta}\) be the \(\mathcal{N}\)-orbit of \((\alpha, \beta)\). Suppose \((\alpha, \beta) \in M\). Then \(O_{\alpha, \beta} = O_{\alpha', 1}\) where \(\alpha' \in K^+_\sim\) (see, Lemmas [4.3, 4.4]). Moreover, the definition of \(K^\sim\) and Lemma [4.4] imply that such element \(\alpha' \in K^\sim\) is unique. Suppose \((\alpha, \beta) \in \tilde{M}\) then \(O_{\alpha, \beta} = \tilde{M}\) and we may take a representative \((0, 1) \in K^\sim\) of this orbit (Lemma [4.2]). Note, that only elements of the form \(\mathbf{t}_s\) and \(\mathbf{w}_d\) are regular at the point \((0, 0)\) and in these cases the point \((0, 0)\) is invariant. Hence the set \(\{(0, 0)\}\) is just one \(\mathcal{N}\)-orbit. \(\square\)
From Theorems 1 and 4.5 we get

Corollary 4.6.

\[
\text{SL}_2(K) = N \cup \left(\bigcup_{\alpha \in K} N \begin{pmatrix} 1 & \alpha \\ 1 & 1 + \alpha \end{pmatrix} N \right).
\]

Put

\[
g_\alpha := \begin{pmatrix} 1 & \alpha \\ 1 & 1 + \alpha \end{pmatrix}.
\]

From Corollary 4.6 and (*) (see, Introduction) we get

Corollary 4.7. The set of pairs

\[
(T, T) \cup (g_\alpha T g_\alpha^{-1}, T)_{\alpha \in K}
\]

is a minimal set of representatives of the orbits of pairs of tori of \(G \times G\) under conjugation by elements of \(G\).

4.4. Case \(K = \mathbb{C}\).

Lemma 4.8. Let

\[
\mathcal{K} = \{ z = a + bi \in \mathbb{C} \mid a \geq -\frac{1}{2} \} \setminus \{ z = -\frac{1}{2} + bi \in \mathbb{C} \mid b < 0 \}.
\]

Then we may take \(\mathcal{K}\) as the set \(\mathbb{C}_b\).

Proof. We have \(-\frac{1}{2}, 0 \in \mathcal{K}\). Let \(z = a + bi \in \mathcal{K}\). Suppose \(a \neq -\frac{1}{2}\). Then

\[
b(z) = (-1 - a) - bi \in \mathbb{C} \setminus \mathcal{K}.
\]

If \(a = -\frac{1}{2}\) then \(b \geq 0\) and therefore

\[
b(z) = -\frac{1}{2} - b < 0 \quad i \in \mathbb{C} \setminus \mathcal{K}.
\]

\[\quad \Box\]

4.5. Orbits of pairs of semisimple matrices.

Put

\[
U^w := \dot{w}U = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \mid \beta \in K \right\} = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & -\beta \end{pmatrix} \mid \beta \in K \right\}.
\]

We have

\[
G = \dot{w}G = \dot{w}B \cup \dot{w}B \dot{w}^{-1}B = T \dot{w}U \cup (\dot{w}U \dot{w}^{-1})UT = T(U^w \cup U)T.
\]

Obviously, for every \(v \in U^w\) and \(t_1, t_2 \in T\) the equality \(t_1 vt_2 \in U^w\) implies \(t_1 = t_2\). Thus only two \(T \times T\)-orbits intersect \(U^w\) – the orbit of matrix \(\dot{w} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\) and the orbit of \(\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}\).
By Lemma 3.1 for \(u \in \mathcal{U} \) we have the inclusion \(t_1ut_2 \in \mathcal{U} \) if and only if \(t_2 = t_1^{-1} \). Thus, the minimal set of the representatives of double cosets of \(TyT \) in the group \(G \) is

\[
\{g_0\} \in \mathbb{K} \cup \{(0 1 \mid -1 1), (0 1 \mid -1 0), (1 1 \mid 0 1), (1 0 \mid 0 1)\}. \tag{4.7}
\]

Let \(t = \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \). Then

\[
g_\alpha t g_\alpha^{-1} = \begin{pmatrix} s + \alpha(s - s^{-1}) & \alpha(s^{-1} - s) \\ (1 + \alpha)(s - s^{-1}) & s^{-1} + \alpha(s^{-1} - s) \end{pmatrix} = \begin{pmatrix} s + \alpha \Delta_t & -\alpha \Delta_t \\ (1 + \alpha) \Delta_t & s^{-1} - \alpha \Delta_t \end{pmatrix} \tag{4.8}
\]

where \(\Delta_t = s - s^{-1} \). Note, that the given \(\Delta \in K \) corresponds only to matrices \(t \) and \(\bar{t} = \begin{pmatrix} -s^{-1} & 0 \\ 0 & -s \end{pmatrix} \).

Now let \(t' = \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \). Suppose that \(s, r \neq \pm 1 \) then the centralizer of the matrix \(t \) and also the matrix \(t' \) is \(T \). From 4.7 a smallest set of representatives of \(G \)-orbits (under conjugation) of \(C_t \times C_{t'} \), where \(C_t, C_{t'} \) are conjugacy classes of \(t, t' \) respectively, consists of the following pairs:

\((g_\alpha t g_\alpha^{-1}, t')_{\alpha \in \mathbb{K}}, (\bar{w}(1)t \bar{w}(1)^{-1}, t'), (\bar{w}t \bar{w}^{-1}, t'), (u(1)tu(1)^{-1}, t'), (t, t') \).

Thus we have the following

Proposition 4.9. Let \(\pm \bar{e} \neq t, t' \in T \) and let \(C_t, C_{t'} \) be corresponding conjugacy classes. Then there are only the following \(G \)-orbits on \(C_t \times C_{t'} \):

\[
\mathcal{O}_\alpha := \{ A \left(\begin{pmatrix} s & \alpha \Delta_t \\ (1 + \alpha) \Delta_t & s^{-1} - \alpha \Delta_t \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) A^{-1} \mid \alpha \in \mathbb{K}, A \in \text{SL}_2(\mathbb{K}) \}
\]

(\text{the orbits of } (g_\alpha t g_\alpha^{-1}, t')_{\alpha \in \mathbb{K}});

\[
\mathcal{O}_U^+ := \{ A \left(\begin{pmatrix} s & 0 \\ 0 & \Delta_t \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) A^{-1} \mid A \in \text{SL}_2(\mathbb{K}) \}
\]

(\text{the orbit } (u(1)tu(1)^{-1}, t'));

\[
\mathcal{O}_V^- := \{ A \left(\begin{pmatrix} s^{-1} & 0 \\ \Delta_t & s \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) A^{-1} \mid A \in \text{SL}_2(\mathbb{K}) \}
\]

(\text{the orbit of } (\bar{w}(1)t \bar{w}(1)^{-1}, t'));

\[
\mathcal{O}_T^+ := \{ A \left(\begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) A^{-1} \mid A \in \text{SL}_2(\mathbb{K}) \}
\]

(\text{the orbit of } (t, t'));

\[
\mathcal{O}_T^- := \{ A \left(\begin{pmatrix} s^{-1} & 0 \\ 0 & s \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) A^{-1} \mid A \in \text{SL}_2(\mathbb{K}) \}
\]
(the orbit of \((\hat{w}t\hat{w}^{-1}, t')\)).

Adherence of orbits. Consider the adherence of \(G\)-orbits on \(C_t \times C_{t'}\). Note, that the invariant algebra of \(M_2(\mathbb{C}) \times M_2(\mathbb{C})\), which corresponds to the action by conjugation of \(SL_2(\mathbb{C})\), is generated by \(\text{tr}X, \text{tr}Y, \text{tr}XY\) where \((X, Y) \in M_2(\mathbb{C}) \times M_2(\mathbb{C})\) (see, for instance, [VP], 9.5). The algebraic factor \(\left(\frac{M_2(\mathbb{C}) \times M_2(\mathbb{C})}{SL_2(\mathbb{C})}\right)\) is isomorphic to \(A^3_\mathbb{C}\). Thus we have the quotient map \(\pi : M_2(\mathbb{C}) \times M_2(\mathbb{C}) \to A^3_\mathbb{C}\) where \(\pi : (X, Y) = (\text{tr}X, \text{tr}XY, \text{tr}Y)\).

In every fiber of this map there is only one closed orbit.

Now we consider the restriction of \(\pi_{t,t'}\) on the closed subset \(C_t \times C_{t'} \subset M_2(\mathbb{C}) \times M_2(\mathbb{C})\) (recall, that the conjugacy class of a semisimple element is a closed subset of \(M_2(\mathbb{C})\)). Since \(\text{tr}X, \text{tr}Y\) are constants on \(C_t \times C_{t'}\) we will consider the map \(\pi_{t,t'}\) as

\[
\pi_{t,t'} : C_t \times C_{t'} \to A^1_\mathbb{C} = \mathbb{C} \quad \text{where} \quad \pi_{t,t'}((X, Y)) = \text{tr}(XY).
\]

Every fiber of \(\pi_{t,t'}\) contains only one closed \(G\)-orbit in \(C_t \times C_{t'}\). Also, every fiber of \(\pi_{t,t'}\) has the dimension \(\geq 3\) (indeed, \(\dim C_t \times C_{t'} - \dim \text{Im} \pi_{t,t'} = 3\)).

Consider an orbit of the type \(O_\alpha\).

Let \((X_\alpha, Y) \in O_\alpha\) be the representative which is pointed out in Proposition 4.9.

Here

\[
\text{tr}(X_\alpha Y) = \text{tr}\left(\begin{pmatrix} s + \alpha \Delta_t & -\alpha \Delta_t \\ (1 + \alpha) \Delta_t & s^{-1} - \alpha \Delta_t \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right) = sr + s^{-1}r^{-1} + \alpha \Delta_t \Delta_{t'}.
\]

(4.9)

Further, let \(Y = \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix}\). Then for every \(a \in K\)

\[
\text{tr}(XY) = \begin{cases}
sr + s^{-1}r^{-1} & \text{if } X = \begin{pmatrix} s & a \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} s & 0 \\ a & s \end{pmatrix} \\
 s^{-1}r + sr^{-1} & \text{if } X = \begin{pmatrix} s^{-1} & a \\ 0 & s \end{pmatrix}, \begin{pmatrix} s^{-1} & 0 \\ a & s \end{pmatrix}.
\end{cases}
\]

(4.10)

Note,

\[
(sr + s^{-1}r^{-1}) - (s^{-1}r + sr^{-1}) = (s - s^{-1})(r - r^{-1}) = \Delta_t \Delta_{t'} \neq 0 \Rightarrow
\]

\[
sr + s^{-1}r^{-1} + (-1) \Delta_t \Delta_{t'} = (s^{-1}r + sr^{-1})
\]

(4.11)

Let \(\alpha \neq 0, -1\). From (4.9) (4.11) we get

\[
\text{tr}(X_\alpha Y) \neq sr + s^{-1}r^{-1}, \ s^{-1}r + sr^{-1}.
\]

(4.12)

Now (4.10) (4.12) imply that \(G\)-orbits \(O^+_t, O^-_t, O^+_T, O^-_T\) cannot be in the same fiber of \(\pi_{t,t'}\) that contains \((X_\alpha, Y)\). Since the stabilizer of \((X_\alpha, Y)\) is equal to \(\{\pm \hat{e}\}\), the dimension of \(G\)-orbit is equal to 3. Hence the orbit of \((X_\alpha, Y)\) is closed and coincides with the fiber of \(\pi_{t,t'}\) which contains \((X_\alpha, Y)\).
Consider the orbits $\mathcal{O}_0, \mathcal{O}_U^+$. Both orbits have dimension 3 and belong to the fiber $\pi^{-1}(sr + s^{-1}r^{-1})$ (see, [4,10]). Moreover, in the same fiber we have 2-dimensional closed orbit \mathcal{O}_T^+ and

$$\overline{\mathcal{O}_0} \setminus \mathcal{O}_0 = \overline{\mathcal{O}_U^+} \setminus \mathcal{O}_U^+ = \mathcal{O}_T^+.$$

Indeed, for any fixed $0 \neq a, b \in K$ we have

$$\{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \mid 0 \neq c \in K \} \setminus \{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \mid 0 \neq c \in K \} = \{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \}$$

(here \overline{X} is the closure in Zariski topology). The same equality hold for lower triangular matrices.

The analogical result we can get for $\mathcal{O}_{-1}, \mathcal{O}_V^+, \mathcal{O}_T^-$.

Now we summarize the facts on adherence of orbits

Proposition 4.10.

i. The orbits \mathcal{O}_α, where $\alpha \neq 0, -1$, are closed 3-dimensional G-orbits which coincide with fibers $\pi^{-1}_t(l_\alpha)$ for $l_\alpha = \text{tr}(X_\alpha Y) \neq sr + s^{-1}r^{-1}, s^{-1}r + sr^{-1}$.

ii. The fiber $\pi^{-1}_t(l_0)$ where $l_0 = \text{tr}(X_0 Y) = sr + s^{-1}r^{-1}$ consists of two 3-dimensional orbits

$$\mathcal{O}_0 = \{ A(\begin{pmatrix} s & 0 \\ \Delta_t & s^{-1} \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \},$$

$$\mathcal{O}_U^+ = \{ A(\begin{pmatrix} s & -\Delta_t \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \}$$

and the closed 2-dimensional orbit

$$\mathcal{O}_T^+ = \{ A(\begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \}$$

which coincides with $\overline{\mathcal{O}_0} \cap \overline{\mathcal{O}_U^+}$.

iii. The fiber $\pi^{-1}_{t,t'}(l_{-1})$ where $l_{-1} = \text{tr}(X_{-1} Y) = s^{-1}r + sr^{-1}$ consists of two 3-dimensional orbits

$$\mathcal{O}_{-1} = \{ A(\begin{pmatrix} s^{-1} & \Delta_t \\ 0 & s \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \},$$

$$\mathcal{O}_V^+ = \{ A(\begin{pmatrix} s^{-1} & 0 \\ \Delta_t & s \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \}$$

and the closed 2-dimensional orbit

$$\mathcal{O}_T^- = \{ A(\begin{pmatrix} s^{-1} & 0 \\ 0 & s \end{pmatrix}, \begin{pmatrix} r & 0 \\ 0 & r_1^{-1} \end{pmatrix}) A^{-1} \mid A \in \text{SL}_2(K) \}$$

which coincides with $\overline{\mathcal{O}_{-1}} \cap \overline{\mathcal{O}_V^+}$.
References

[A] F. Abadie, *Partial actions and groupoids*. Proceedings of the American Mathematical Society, V.132, N. 4, 1037–1047.

[EG] E. Ellers, N. Gordeev, *Intersection of Conjugacy Classes of Chevalley Groups with Gauss Cells*. Journal of Algebra, 220(1999), 591-611.

[E] R. Exel, *Partial actions of groups and actions of inverse semigroups*. Proceedings of the American Mathematical Society, Volume 126 (1998), N. 12, 3481–3494.

[S] Jean-Pierre Serre, *Le groupe de Cremona e ses sous-groupes finis*, Seminaire BOURBAKI 61, 2008-2009, no. 1000, 1-23.

[VP] Vinberg, E. B., Popov, V. L. Invariant theory. (Russian) Algebraic geometry, 4 (Russian), 137–315, Itogi Nauki i Tekhniki, Sovrem. Probl. Mat. Fund. Naprav., 55, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989.

Department of Mathematics, Russian State Pedagogical University, Moijka 48, St.Petersburg, 191-186, Russia

Email address: nickgordeev@mail.ru

Department of Mathematics, Herzen State Pedagogical University, 48 Moika Embankment, 191186, St.Petersburg, Russia

Email address: e-egorchenkova@mail.ru