Current interruption in a low-pressure high-current pulsed discharge with hollow cathode

Y D Korolev\textsuperscript{1,2,3,*}, N V Landl\textsuperscript{1,2}, V G Geyman\textsuperscript{1}, O B Frants\textsuperscript{1,2}, A V Bolotov\textsuperscript{1}, V O Nekhoroshev\textsuperscript{1,2}, V S Kasyanov\textsuperscript{1,2}

\textsuperscript{1}Institute of High Current Electronics RAS, 634055 Tomsk, Russian Federation
\textsuperscript{2}Tomsk State University, 634050 Tomsk, Russian Federation
\textsuperscript{3}Tomsk Polytechnic University, 634050 Tomsk, Russian Federation

E-mail: korolev@lnp.hcei.tsc.ru

Abstract. This paper deals with the investigation of current interruption in the hollow-cathode discharge as applied to the electrode configuration of pseudospark switch. The phenomenon of interruption manifests itself at currents of several kiloamperes or higher and at a low gas pressure. It is demonstrated that the region of the hollow cathode is able to pass a high current density. The region that is responsible for the current interruption is the main gap of the switch, i.e., the positive column of discharge. The theoretical model of the positive column is proposed. The model implies that the gas ionization in the column is provided by the fast electrons which are accelerated in a double electric layer at the exit of cathode cavity. The estimates with a usage of the model are in agreement with the experimental data.

1. Introduction

This paper relates to investigations of the low-pressure pulsed glow discharges with hollow cathode. When we speak of the low pressure we imply that a neutral particle density is extremely small and electron free path for ionization exceeds a characteristic size of electrode system [1–4]. On the other hand, the neutral particles still play an essential role in forming gas-discharge plasma. Thus, the discharge regime keeps an intermediate position between the classical low-pressure discharge whose behavior is determined by electron avalanche ionization and the vacuum discharge that burns in cathode metal vapor [5–7].

There is a great variety of the gas-discharge devices functioning in the aforementioned regime. An illustrative example is the so-called pseudospark switch [1, 2, 8–13]. The electrode system of the switch typically consists of two cavities that communicate through axial bore holes. A bore hole diameter and a thickness of flat part of the cathode are comparable to the main gap spacing and amount to several millimeters. At a low gas pressure, the single electrons are not able to initiate the breakdown process in electrode system. A considerable prebreakdown electron flow is required for this purpose. Then a trigger unit, which is placed in the cathode cavity, is intended to provide a sufficient electron flow trough the bore hole into the main gap.

In some applications, the current densities in the pseudospark electrode geometry reach incredibly high values and a space of bore hole plays a role of hollow cathode [2, 14, 15]. A total discharge current from the cathode cavity can reach of several kiloamperes and higher. One of the phenomena, characteristic of the discharge with a high current and a deceased pressure, is the so-called current...
interruption or current quenching [15, 16]. This paper describes a model of current passage in the main
gap of pseudospark switch that has been developed. Based on this model an interpretation of current
interruption phenomenon is proposed.

2. Experimental arrangement and summary of experimental data
A schematic of experimental arrangement is shown in figure 1. The main interelectrode gap \( d = 4 \) mm
is formed by the electrodes 1 and 2 with a diameter of central bore hole \( D = 4 \) mm. A thickness of the
flat part of electrode 2 is \( h = 4 \) mm. The discharge is initiated due to the trigger system based on
flashover [15, 16]. For instant of triggering a capacitor bank \( C_0 \) is charged to a voltage \( V_0 \). A discharge
burning voltage \( V_d \) (i.e., the voltage between electrodes 1 and 2) and the discharge current were
recorded with a usage of resistive voltage dividers and a current shunt. Current measurements for the
fast electron beam are provided by the Faraday cup \( FC \) located in the anode cavity.

![Figure 1. Schematic arrangement for investigations of the current interruption and generation of electron beam at the discharge axis in the pseudospark electrode system.](image)

Typical waveforms for different gas pressures are shown in figure 2. At the stage of lag time to
breakdown, the voltage at the gap corresponds to \( V_0 \). Increase in the discharge current during
development of breakdown is accompanied by the sharp decreasing in the discharge burning voltage.
As shown in [2, 14–16], in the high-current stages the discharge burns in the regimes of the so-called
dense glow and superdense glow.

![Figure 2. Current and voltage waveforms for discharge in xenon. \( C_0 = 130 \) nF. Current interruption is
(a) absent and (b) available. (a) \( L_0 = 100 \) nH, \( p \approx 2 \times 10^{-2} \) Torr. (b) \( L_0 = 27 \) nH, \( p \approx 2 \times 10^{-3} \) Torr.](image)
We can see that for a pressure $p \approx 2 \times 10^{-2}$ Torr the current waveform has a smooth shape, while decreasing a pressure to $p \approx 2 \times 10^{-3}$ Torr results in a sharp current interruption starting an instant $t = 170$ ns. Simultaneously, the inductive voltage kick is applied to interelectrode gap. A general tendency is that the current interruption manifests itself at a low pressure, for an enhanced discharge current and for short pulse duration.

In some papers, the effect of current interruption is associated with the processes inside the bore hole [17]. However, it seems [3, 15, 16] that the main physical processes responsible for the effect occur in the plasma column of the main gap. Then the description of the model of plasma column is presented below.

3. Description of the model and interpretations
Schematic of the discharge regions and the potential distributions for the temporal stage of the dense glow discharge is shown in figure 3. The space inside the hollow cathode $C$ is filled with the negative glow plasma $NG$. Note that as applied to the pseudospark discharge a space of bore hole can play a role of the hollow cathode. The plasma is sustained due to gas ionization by the fast electrons which are emitted from a surface of hollow cathode and are accelerated in the cathode voltage drop region $l_c$.

![Figure 3. Schematic of the discharge regions and the potential distributions for electrode geometry of pseudospark discharge.](image)

At the exit of hollow cathode, a negative potential barrier $\Delta V_1$ is available. The role of the barrier is to restrict an electron current emitted from the negative glow plasma in anode direction. The emission current has to be approximately equal to a total discharge current so that the height of potential barrier is established self consistently to satisfy this condition. The negative glow region represents a potential trap for the fast electrons, and an efficient plasma generation in this region is provided due to the hollow-cathode effect.

The main gap $d$ is filled with the positive column plasma $PC$. The column is separated from the negative glow by a double electric layer $\Delta l_d$ [15]. The electrons those are able to overcome the potential barrier $\Delta V_1$ are accelerated by the voltage $\Delta V_2$ and provide the gas ionization in the positive column. Due to a balance between the rate of ionization and the rate of losses of the charged particles, a steady state plasma density in the column is established ($n_i \approx n_e$). Conceptually, a role of potential
drop $\Delta V_2$ is the same as a role of the cathode voltage drop $V_c$ in the hollow cathode. An electron current flows to the anode A from the positive column plasma. This current is controlled by a value of negative anode potential drop $\Delta V = (V_m - V_d)$. 

To simplify the description of the positive column plasma we suppose that a certain emission current $i_{em}$ enters into the column from a virtual cathode which is located in the plane $y = h$ (see figure 4). This current can be considered as an external current with respect to the main gap $d$. 

Formally, the region of positive column also represents a potential trap for the plasma electrons. However, the effect of electron oscillations is expressed not so distinctively as that in the hollow cathode. A gas pressure in the discharge under consideration is rather low and some of the electrons, accelerated in the layer $\Delta l_b$, will go to the anode without ionizing collisions. These electrons, jointly with the plasma electrons, contribute to the total electron current at the anode. On the other hand, as shown in [2, 3], the plasma in the main gap can be generated if only a neutral particle density exceeds a certain critical value $n_c = n_{cr}$. Otherwise, the region between the cathode $C$ and anode $A$ will represent not a plasma gap with a high conductivity but a vacuum diode with low ion neutralization. Such a diode has a high resistance and is able to withstand a voltage of several tens of kilovolts without plasma generation. Similar regime is used in the sources of electron beams with plasma cathode [6].

For the stage of lag time to breakdown, $n_{cr}$ is determined by the relation [3]:

$$n_{cr}\sigma_i d \left(\frac{M}{3m}\right)^{1/2} = \frac{d}{\lambda_i} \left(\frac{M}{3m}\right)^{1/2} = 1,$$

where $\sigma_i$ is the average cross for ionization of the neutral particles by the electrons accelerated in the layer $\Delta l_b$, $\lambda_i$ is the electron free path for ionization, $M/m$ is the ratio of the ion mass to the mass of electron.

According to the model, in order that the positive column plasma be sustained, the neutral particle density has to exceed the critical value. On the other hand, as distinct to classical glow discharge or a high-pressure pulsed volume discharge [18–20], the neutral particle density is still rather low so that the number of ionizations produced by a single electron at the length of column $d/\lambda_e < 1$.

Establishing of a steady state plasma density in the column is provided as a result of balance between the rate of gas ionization and the rate of outflow of the charged particles to electrodes. The ions originated to the left of the point of potential maximum $y_m$ travel to the cathode under the effect of potential difference $kT_e/2e$, thus providing the ion current $i_{ia}$. The ions originated to the right of the point $y_m$ provide the ion current $i_{ia}$ at the anode.

Ignoring the secondary processes at the cathode surface, we can write an expression for a total current at the cathode:

$$i = i(h) = i_{em} + i_{ic}.$$

The same current value should be provided at the anode. This current is added from the components entering to the following equation:

$$i = i_{eb} + i_{ep} - i_{ia} = i_{em} \left(1 - \frac{d}{\lambda_i}\right) + S \frac{1}{4} e n_e v_e \exp\left(\frac{e\Delta V}{kT_e}\right) - i_{ia},$$

where $i_{eb}$ is the current of a fast electron beam (i.e., the current of the electrons which did not collide with the atoms while going to anode), $i_{ep}$ is the current of the electrons from plasma that are able to overcome the potential barrier $e\Delta V$, $S$ is the discharge area at the anode, $v_e = (8kT_e/\pi m)^{1/2}$ is the average thermal velocity of electrons.

In the further consideration we suppose that $i_{ia} \approx 0$ that is the point $y_m$ is located near the anode. The positive column contains the plasma electrons and ions ($n_e \approx n_i$) and also the fast electrons of the electron beam whose density is $n_{eb}$. The rate of ionization can be written as
\[ \Psi = \frac{1}{e} \frac{i_{em}}{S} \sigma_i n_a = \frac{1}{e} \frac{i_{em}}{S} n_a \sigma_i . \]  

Taking into account that an average time of ion outflow from the gap \( T_i = d(M/kT_e)^{1/2} \), we readily obtain the equation for plasma density in the positive column:

\[ n_e = n_i = \Psi T_i = \frac{1}{e} \frac{i_{em}}{S} n_a \sigma_i \left( \frac{M}{kT_e} \right)^{1/2} . \]  

The region of positive column can be treated as an ionization chamber in which the originated ions go to the cathode. The same value of electron current has to flow to the anode via the potential barrier \( \Delta V \). Beside that, the fast electrons which appear in the column due to thermalization also have to leave the plasma column. Then for the current to the anode from plasma we obtain

\[ i_{ep} = 2i_{em} n_a \sigma_i d . \]  

A maximum possible current from plasma essentially exceeds \( i_{ep} \). Then it would be concluded that the plasma is always able to carry the necessary electron current to anode. However, this situation holds true if only the gap \( d \) actually represents a plasma filled diode with the cathode layer \( \Delta l_p \), but not a vacuum diode with a low ion neutralization. In other words, the plasma has to play important additional role that is to neutralize the excess space charge of electron beam. It means that the condition \( n_a >> n_{eb} \) has to be fulfilled.

At the exit of the double electric layer, the fast electrons has a velocity \( v_{eb} = (2eV_2/m)^{1/2} \), and then

\[ n_{eb} = \frac{j_{eb}}{e v_{eb}} = \frac{1}{e} \frac{i_{em}(1 - n_e \sigma_i d)}{S} \left( \frac{m}{2eV_2} \right)^{1/2} . \]  

To compare \( n_e \) and \( n_{eb} \) we can use the relation that allows interpreting different current regimes and the conditions of current interruption

\[ \frac{n_e}{n_{eb}} = \frac{n_a \sigma_i d}{1 - n_e \sigma_i d} \left( \frac{M}{3m} \right)^{1/2} \left( \frac{6eV_2}{kT_e} \right)^{1/2} . \]  

It is seen that with the condition \( n_a \approx n_{cr} \) the ratio \( n_e/n_{eb} \approx (6eV_2/kT_e)^{1/2} \) essentially exceeds unity only for high values of voltage \( V_2 = (10-20) \text{ kV} \). Such conditions are characteristic of the stage of lag time to breakdown. Transition to a high-current stage and low voltage \( V_2 \) is inevitably accompanied by the current interruption. Note that the regime with a high voltage at the double electric layer is used in the electron sources with plasma cathode [6] where \( n_a \approx n_{cr} \). To provide the high-current discharge at a voltage \( V_2 \) less than several hundred volts it is necessary to have \( n_a >> n_{cr} \).

The regimes in which the current interruption is absent are determined not only by neutral particle density but also by total discharge current and current risetime, i.e., by the pulse duration. Figure 2a shows that for discharge in xenon at a pressure \( p = 2 \times 10^{-2} \text{ Torr} \) \( n_e/n_{cr} \approx 50 \) the current waveform has a smooth shape. However, a decrease in pulse duration and an increase in current due to decreasing the inductance of electric lead to unstable regime of the current sustaining.

The illustrative example of current interruption is shown in figure 2b. Here, besides decreasing the pressure, the total discharge current has been increased to 20 kA. With such a current we have extremely high current density via bore hole, so that inside the hole the multicharged plasma is generated. Due to hollow cathode effect the plasma is able to be sustained and the bore hole region is able to pass the current. The effect of electron oscillations in the positive column is expressed not so distinctively as that in the cathode cavity. Correspondingly, a possibility of production of the multicharged ions in the positive column formally means that the ionization cross section in equation
(8) becomes much lower as compared to the regime of low current. In other words this is one more physical reason which encourages an increase in voltage $\Delta V_2$ that is the current interruption.

**Acknowledgments**
The work was supported by Russian Scientific Foundation under the grant # 14-19-00139.

**References**

[1] Frank K and Christiansen J 1989 The fundamentals of the pseudospark and its applications *IEEE Trans. Plasma Sci.* 17 748–53

[2] Korolev Y D and Frank K 1999 Discharge formation processes and glow-to-arc transition in pseudospark switch *IEEE Trans. Plasma Sci.* 27 1525–37.

[3] Kozyrev A V, Korolev Y D, Rabotkin V G and Shemyakin I A 1993 Processes in the prebreakdown stage of a low-pressure discharge and the mechanism of discharge initiation in pseudospark switches *J. Appl. Phys.* 74 5366–71.

[4] Lopatin I V, Schanin P M, Akhmadeev Y H, Kovalsky S S and Koval N N 2012 Self-sustained low pressure glow discharge with a hollow cathode at currents of tens of amperes *Plasma Physics Reports* 38 583–89.

[5] Kondrat’eva N P, Koval N N, Korolev Y D et al 1999 A spectroscopic investigation of the near-cathode regions in a low-pressure arc *J. Phys. D: Appl. Phys.* 32 699–705

[6] Koval N N, Oks E M, Schanin P M, Kreindel Y E and Gavrilov N V 1992 Broad beam electron sources with plasma cathodes *Nuclear Instr. Methods Phys. Res. A* 321 417–28

[7] Feng J H, Meng S J, Fu Y C et al 2014 Spatiotemporal distribution of hydrogenous electrode vacuum arc discharge plasma *Acta Physica Sinica* 63 145205

[8] Bochkov V D, Dyagilev V M, Ushich V G, Frants O B, Korolev Y D, Shemyakin I A and Frank K 2001 Sealed-off pseudospark switches for pulsed power applications (current status and prospects) *IEEE Trans. Plasma Sci.* 29 802–8

[9] Hu J and Rovey J L 2013 Experimental investigation of time-resolved electron beam energy distributions generated in a transient hollow cathode discharge *J. Appl. Phys.* 114 073301

[10] Larsson A 2012 Gas-discharge closing switches and their time jitter *IEEE Trans. Plasma Sci.* 40 2431–42

[11] Zhao H T and Kirkici H 2012 Carbon-nanotube-triggered pseudospark switch *IEEE Trans. Plasma Sci.* 40 2225–31

[12] Sozer E B, Gundersen M A and Jiang C Q 2012 Magnesium-based photocathodes for back-lighted thyratrons *IEEE Trans. Plasma Sci.* 40 1753–58

[13] Meena B L, Rai S K, Tyagi M S, Pal U N, Kumar M and Sharma A K 2010 Characterization of high power pseudospark plasma switch (PSS) *J. Phys. Conference Series* 208 012110

[14] Stetter M, Felsner P, Christiansen J, Frank K, Mehr T, Stenzenberger J and Tkotz R 1995 First experimental observation of the ignition of a “superdense glow” before the glow-to-arc transition in a pseudospark discharge *J. Appl. Phys.* 79, 631–36

[15] Korolev Y D, Frants O B, Landl N V et al 2013 High-current stages in a low-pressure glow discharge with hollow cathode *IEEE Trans. Plasma Sci.* 41 2087–96

[16] Korolev Y D, Frants O B, Geyman V G, Landl N V, Ivashov R V, Shemyakin I A, Bischoff R E and Frank K 2005 Temporal structure of the fast electron beam generated in the pseudospark discharge with external triggering *IEEE Trans. Plasma Sci.* 33 1648–53

[17] Mehr T, Tkotz R, Stenzenberger J, Hintz G, Christiansen J, Felsner P, Frank K and Stetter M 1995 The bottleneck in pseudospark discharges *J. Appl. Phys.* 79 625–30

[18] Kozhevnikov V Y, Kozyrev A V and Korolev Y D 2006 Drift model of the cathode region of a glow discharge *Plasma Phys. Rep.* 32 949–59

[19] Korolev Y D, Mesyats G A and Yarosh A M 1987 Film etching by particles produced by a pulsed bulk discharge in CF$_4$ *High Energy Chem.* 21 389–92
[20] Korolev Y D, Frants O B, Geyman V G, et al 2012 Transient processes during formation of a steady-state glow discharge in air *IEEE Trans. Plasma Sci.*, 40 2951–60