Automorphisms of Non-Singular Nilpotent Lie Algebras

Aroldo Kaplan and Alejandro Tiraboschi

Communicated by D. Müller

Abstract. For a real, non-singular, 2-step nilpotent Lie algebra \(n \), the group \(\text{Aut}(n)/\text{Aut}_0(n) \), where \(\text{Aut}_0(n) \) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphism groups of \(n \) follows and is related to how close is \(n \) to being of Heisenberg type. For example, at least when the dimension of the center is two, \(\dim \text{Aut}(n) \) is maximal if and only if \(n \) is of Heisenberg type. The connection with fat distributions is discussed.

Mathematics Subject Classification 2010: 17B30, 16W25.

Key Words and Phrases: Lie groups, Lie algebras, Heisenberg type groups.

1. Introduction

A 2-step nilpotent real Lie algebra \(n \) with center \(z \) is called non-singular [E], or said to satisfy hypothesis \((H) \) [M], or be the Lie algebra of a Métivier group [MS], if \(\text{ad} \, x : n \to z \) is onto for any \(x \not\in z \). Equivalently, the bracket defines a vector-valued antisymmetric form

\[
[,] : v \times v \to z,
\]

\(v = n/z \), such that the 2-forms \(\lambda([u, v]) \) on \(v \) are non-degenerate for all \(\lambda \in z^* \), \(\lambda \neq 0 \). Here we shall call such algebras fat for short, since they are the symbols of fat distributions (as opposite to ”flat”, or integrable, ones [Mo]), which motivate the questions.

Let \(m = \dim(z) \). While for \(m = 1 \) there is only one fat algebra up to isomorphisms, for \(m \geq 2 \) there is an uncountable number of isomorphism classes and for \(m \geq 3 \) they form a wild set.

In this paper we study the size of groups of automorphisms of \(n \). \(\text{Aut}(n) \) itself is the semidirect product of the group \(G(n) \) of graded automorphisms of \(n = v \oplus z \) with the abelian group \(\text{Hom}(v, z) \), times the group of dilations \((t, t^2)\). Hence, we concentrate on \(G = G(n) \).

We prove that there is an exact sequence

\[
1 \to G_0 \to G \to O(m)
\]
where G_0 is the subgroup of G of elements that act trivially on the center. In other words, there are positive-definite inner products on \mathfrak{z} which are invariant under all of $\text{Aut}(\mathfrak{n})$.

If a metric g is also given on \mathfrak{v}, as in the case of the nilpotentization of a subriemannian structure, we also consider the subgroups K_0, K, of graded automorphisms that leave g invariant, which define a compatible exact sequence

$$1 \to K_0 \to K \to O(m).$$

Next, we compute the terms in this sequence and the images G/G_0 and K/K_0, proving that the exactness of

$$1 \to \text{Lie}(K_0) \to \text{Lie}(K) \to \mathfrak{so}(m) \to 1$$

is equivalent to \mathfrak{n} being of Heisenberg type, while the exactness of

$$1 \to \text{Lie}(G_0) \to \text{Lie}(G) \to \mathfrak{so}(m) \to 1$$

is strictly more general. As to $G_0(\mathfrak{n})$, we describe it in detail for the case $m = 2$, leading a proof that, at least in that case, $\dim \text{Aut}(\mathfrak{n})$ is maximal if and only if \mathfrak{n} is of Heisenberg type.

In the last section we explain the connection with the Equivalence Problem for fat subriemannian distributions.

Algebras of Heisenberg type are defined as follows [K]. If \mathfrak{v} is a real unitary module over the Clifford algebra $\text{Cl}(\mathfrak{z})$ associated to a quadratic form on \mathfrak{z}, the identity

$$<z, [u, v]>_{\mathfrak{z}} = <z \cdot u, v>_{\mathfrak{v}}$$

with $z \in \mathfrak{z} \subset \text{Cl}(\mathfrak{z})$, $u, v \in \mathfrak{v}$, defines a fat $[\cdot, \cdot] : \mathfrak{v} \times \mathfrak{v} \to \mathfrak{z}$. Alternatively, they are characterized by possessing a positive-definite metric such that the operator $z \cdot$ defined by the above equation satisfies $z \cdot (z \cdot v) = -|z|^2 v$.

It follows from Adam’s theorem on frames on spheres [H] that for any fat algebra there is an Heisenberg type algebra with the same $\dim \mathfrak{z}$ and $\dim \mathfrak{v}$. That these were, in some sense, the most symmetric, was expected from the properties of their sublaplacians [BTV] [CGN] [GV] [K], but we found no explicit statements in this regard.

Related properties of the automorphism groups of nilpotent Lie groups are studied in [P] and [MS].

2. Automorphisms of fat algebras

Let \mathfrak{n} be a 2-step Lie algebra with center \mathfrak{z} and let $\mathfrak{v} = \mathfrak{n}/\mathfrak{z}$, so that

$$\mathfrak{n} \cong \mathfrak{v} \oplus \mathfrak{z}$$

and the Lie algebra structure is encoded into the map

$$[\cdot, \cdot] : \Lambda^2 \mathfrak{v} \to \mathfrak{z}.$$
Let $n = \dim \mathfrak{v}$ and $m = \dim \mathfrak{z}$. Relative to a basis compatible with (1), the bracket becomes an \mathbb{R}^m-valued antisymmetric form on \mathbb{R}^n and an automorphism is a matrix of the form
\[
\begin{pmatrix}
a & 0 \\
c & b
\end{pmatrix}, \quad a \in \text{GL}(n), \ b \in \text{GL}(m), \ c \in \mathbb{R}^{n \times m}
\]
such that
\[b([u, v]) = [au, av].\]
\text{Aut}(\mathfrak{n})\] always contains the normal subgroup $\mathfrak{D}(\mathfrak{n})$ of dilations and translations
\[
\begin{pmatrix}
tI_n & 0 \\
c & t^2I_m
\end{pmatrix}, \quad t \in \mathbb{R}^*, \ c \in \mathbb{R}^{n \times m}.
\]
Let

$$
G = G(\mathfrak{n}) = \begin{cases}
\begin{pmatrix}a & 0 \\
0 & b
\end{pmatrix}, & a \in \text{SL}(n), \ b \in \text{GL}(m), \ b([u, v]) = [au, av].
\end{cases}
$$

Then $\text{Aut}(\mathfrak{n})$ is the semidirect product of $G(\mathfrak{n})$ with $\mathfrak{D}(\mathfrak{n})$. Let

$$
G_0 = G_0(\mathfrak{n}) = \begin{cases}
\begin{pmatrix}a & 0 \\
0 & I_m
\end{pmatrix}, & a \in \text{SL}(n), \ [au, av] = [u, v],
\end{cases}
$$

the subgroup of automorphisms that act trivially on the center. These are Lie groups, G_0 is normal in G, and the quotient group

$$
G/G_0
$$

can be identified with the group of $b \in \text{GL}(\mathfrak{z})$ such that $b([u, v]) = [au, av]$ for some $a \in \text{SL}(\mathfrak{v})$. Obviously,

$$
\dim \text{Aut}(\mathfrak{n}) = nm + 1 + \dim(G/G_0) + \dim(G_0).
$$

\textbf{Theorem 2.1.} Let \mathfrak{n} be a fat algebra with center \mathfrak{z}. Then there is a positive definite metric on \mathfrak{z} invariant under $G(\mathfrak{n})$.

\textbf{Proof.} Fix arbitrary positive inner products on \mathfrak{v} and \mathfrak{z}. For $z \in \mathfrak{z}$, $u, v \in \mathfrak{v}$

$$
(T_z u, v)_{\mathfrak{v}} = (z, [u, v])_{\mathfrak{z}}
$$

defines a linear map $z \mapsto T_z$ from \mathfrak{z} to $\text{End}(\mathfrak{v})$. Clearly,

$$
\mathfrak{n} \text{ fat } \iff T_z \in \text{GL}(\mathfrak{v}) \ \forall z \neq 0.
$$

Hence the hypothesis insures that the Pfaffian

$$
P(z) = \det(T_z)
$$
is non-zero on $\mathfrak{z} \setminus \{0\}$. This is a homogeneous polynomial of degree n, so it satisfies

$$
k\|z\|^n \leq |P(z)| \leq K\|z\|^n
$$

(3)
where k, K are the minimum and maximum values of $|P|$ on the unit sphere, which are positive.

Let now $g_{a,b} := \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in \text{Aut}(n)$. Then

$$T_{b^*z} = a^*T_za$$

because $(T_{b^*z}u, v)_v = (b^*z, [u, v])_z = (z, b([u, v]))_z = (T_zau, av)_v = (a^*T_zau, v)_v$. Consequently

$$P(b^*z) = (\det a)^2P(z).$$

In particular, if $g \in G$ then $P(b^*z) = P(z)$. This implies

$$k\|b^*z\|^n \leq |P(b^*z)| = |P(z)| \leq K\|z\|^n$$

for all z, therefore $\|b\| \leq \sqrt{K/k}$. The group of $b \in \text{GL}(\mathfrak{z})$ such that $g_{a,b} \in \text{Aut}(n)$ for some $a \in \text{SL}(\mathfrak{v})$, is therefore bounded in $\text{End}(\mathbb{R}^m)$. Its closure is a compact Lie subgroup of $\text{GL}(\mathfrak{z})$, necessarily contained in $\text{O}(\mathfrak{z})$ for some positive definite metric.

From now on \mathfrak{z} will be assumed endowed with such invariant metric. If a metric g on \mathfrak{v} is also fixed, as in the case of the nilpotentization of a subriemannian structure, define the groups

$$K = K(n, g) = \{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a \in \text{SO}(\mathfrak{v}), b \in \text{O}(\mathfrak{z}), [au, av] = b[u, v] \}$$

$$K_0 = K_0(n, g) = \{ \begin{pmatrix} a & 0 \\ 0 & I \end{pmatrix}, a \in \text{SO}(\mathfrak{v}), [au, av] = [u, v] \}.$$

Let $\mathfrak{g}, \mathfrak{g}_0, \mathfrak{k}, \mathfrak{k}_0$ be the Lie algebras of G, G_0, K, K_0 respectively. Then there is the commutative diagram with exact rows

$$
\begin{array}{c}
0 \rightarrow \mathfrak{g}_0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{so}(m) \\
\uparrow \quad \uparrow \quad \uparrow \\
0 \rightarrow \mathfrak{k}_0 \rightarrow \mathfrak{k} \rightarrow \mathfrak{so}(m)
\end{array}
$$

where the vertical arrows are the inclusions. Below we prove that the bottom sequence extends to

$$0 \rightarrow \mathfrak{k}_0 \rightarrow \mathfrak{k} \rightarrow \mathfrak{so}(m) \rightarrow 0$$

if and only if \mathfrak{n} is of Heisenberg type. This is not the case for the top one: the condition that

$$0 \rightarrow \mathfrak{g}_0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{so}(m) \rightarrow 0$$

is exact defines a class of fat algebras strictly larger than Heisenberg type algebras. We describe it in the next section for $m = 2$.

Proposition 2.2. Let $\mathfrak{n} = \mathfrak{v} + \mathfrak{z}$ be an algebra of Heisenberg type. There is a metric on \mathfrak{z} such that $\mathfrak{g}/\mathfrak{g}_0 \cong \mathfrak{so}(m)$.

Proof. There is an inner product in \(\mathfrak{v} \) such that the \(J_i = T_i \)'s satisfy the Canonical Anticommutation Relations
\[
J_w J_z + J_z J_w = -2 < z, w > I.
\]
For \(\|z\| = 1 \) let \(r_z \in O(\mathfrak{z}) \) be the reflection through the hyperplane orthogonal to \(z \) and \(J_z \in \text{SL}(\mathfrak{v}) \) be as above. Then
\[
g(J_z, -r_z) = \begin{pmatrix} J_z & 0 \\ 0 & -r_z \end{pmatrix} \in \text{Aut}(\mathfrak{n}).
\]
Indeed,
\[
(w, [J_z u, J_z v]) = (J_w, J_z u, J_z v) = (-J_z J_w u - 2(z, w)u, J_z v)
\]
\[
= -(J_z J_w u, J_z v) - 2(z, w)(u, J_z v) = (J_w u, J_z J_z v) + 2(z, w)(J_z u, v)
\]
\[
= -(J_w u, v) + 2(z, w)(J_z u, v) = (J_{-w + 2(z, w)z} u, v)
\]
\[
= (-w + 2(z, w)z, [u, v]) = (-r_z(u), [u, v])
\]
\[
= (w, -r_z([u, v])),
\]
so that
\[
-r_z([u, v]) = [J_z u, J_z v].
\]
The Lie group generated by the \(-r_z\) has finite index in \(O(\mathfrak{z}) \). \(\blacksquare \)

Corollary 2.3. Let \(\mathfrak{n} \) be a fat algebra with center of dimension \(m \). Then
\[
\dim(K/K_0) \leq \dim(G/G_0) \leq m(m - 1)/2
\]
with equality achieved for any Heisenberg type algebra of the same dimension with center of the same dimension.

Since \(\text{Aut}(\mathfrak{n})/\text{Aut}_0(\mathfrak{n}) = (G/G_0) \times (\text{dilations}) \), one obtains

Corollary 2.4. Let \(\mathfrak{n} \) be a fat algebra with center of dimension \(m \). Then
\[
\dim(\text{Aut}(\mathfrak{n})/\text{Aut}_0(\mathfrak{n})) \leq 1 + m(m - 1)/2,
\]
with equality achieved for any Heisenberg type algebra of the same dimension and with center of the same dimension.

A converse for Corollary 2.3 is

Theorem 2.5. If \(\mathfrak{n} \) is fat with center of dimension \(m \) and
\[
\dim(K/K_0) = m(m - 1)/2
\]
for some metric on \(\mathfrak{v} \), then \(\mathfrak{n} \) is of Heisenberg type.
Proof. The hypothesis implies that $\mathfrak{k}/\mathfrak{k}_0 = \mathfrak{g}/\mathfrak{g}_0 \cong \mathfrak{so}(m)$, so that K/K_0 acts transitively among the $|z| = 1$. For $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ in this group, $-T_{bz} = aT_z a^{-1}$, hence $T_{bz}^2 = aT_z^2 a^{-1}$. Since T_z is invertible, we can choose the metric such that $T_{z0}^2 = -I$ for any given z_0. Therefore $T_z^2 = -I$ for all $|z| = 1$, which implies the assertion.

Maximal dimension means there are isomorphisms

$$\text{Lie}(K/K_0) = \text{Lie}(G/G_0) \cong \mathfrak{so}(m).$$

Therefore the simply connected covers are isomorphic: $\text{Spin}(m) \cong (G/G_0)e$. The induced homomorphism

$$\text{Spin}(m) \to (G/G_0)e$$

may or may not extend to a homomorphism

$$\text{Pin}(m) \to G/G_0.$$

If it does extend, it may or may not be injective, in which case it is an isomorphism. Therefore, among the algebras for which $\dim(G/G_0)$ is maximal, those for which $\text{Pin}(m) \cong G/G_0$ can be regarded as the most symmetric.

Theorem 2.6. Suppose \mathfrak{n} is a 2-step graded algebra such that $\text{Aut}(\mathfrak{n})$ contains a copy of $\text{Pin}(m)$ inducing the standard action on \mathfrak{z}. Then \mathfrak{n} is of Heisenberg type.

Proof. The assumption implies that there is a linear map $\mathfrak{z} \to \text{End}(\mathfrak{v})$, denoted by $z \mapsto J_z$ such that $J_z^2 = -|z|^2 I$ for all z and

$$[J_z u, J_z v] = r_z([u, v])$$

for $u, v \in \mathfrak{v}$, $z \in \mathfrak{z}$, $|z| = 1$, where r_z is the reflection in \mathfrak{z} with respect of the line spanned by z. $\text{Pin}(m)$ is the group generated by the J_z’s with $||z|| = 1$, which acts linearly on \mathfrak{v} and is compact. Fix a metric on \mathfrak{v} invariant under it.

We get, as in the proof of Theorem 2.1, that if $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in \text{Aut}(\mathfrak{n})$, then

$$T_{b^* z} = a^* T_z a.$$

In particular:

$$T_{r_z(z)} = J_z J_x.$$

If $x = z$, we get $T_z = -J_z T_z J_z$, thus $T_z J_z = -J_z^{-1} T_z = J_z T_z$. If $x \perp z$, we get $T_z = J_x T_z J_x$, thus $T_z J_x = J_x^{-1} T_z = -J_x T_z$. It follows that T_z^2 commutes with J_z and with J_w, $w \perp z$.

Now, let $z \in \mathfrak{z}$ and $w \perp z$. Let $R_w(t)$ the $2t$-rotation from z towards w. Then $R_w(t) = r_z r_{w(t)}$, with $w(t) = \cos(t)z + \sin(t)w$. It follows that

$$
\begin{pmatrix}
 J_z J_{w(t)} & 0 \\
 0 & R_w(t)
\end{pmatrix}
$$

is an orthogonal automorphism and, therefore, satisfies

$$T_{R_w(t)z} = (J_z J_{w(t)})^t T_z (J_z J_{w(t)}).$$

Since $(J_z J_{w(t)})^t = (J_z J_{w(t)})^{-1}$,

$$T_{R_w(t)z}^2 = (J_z J_{w(t)})^t T_z^2 (J_z J_{w(t)}) = J_{w(t)} J_z T_z^2 J_z J_{w(t)}.$$

Since T_z^2 commutes with J_z and J_w,

$$T_{R_w(t)z}^2 = T_z^2 J_{w(t)} J_z J_{w(t)} = -T_z^2 J_{w(t)} J_{w(t)}.$$

But $J_{w(t)}^2 = -I$, so that (4) implies that

$$T_{R_w(t)z}^2 = T_z^2.$$

For all $z' \in \mathfrak{z}$ we can choose $w \in \mathfrak{z}$, $t \in \mathbb{R}$ such that $R_w(t)z = z'$, so we get

$$T_{z'}^2 = T_z^2,$$

for all $z' \in \mathfrak{z}$, $|z'| = 1$.

The antisymmetry of the bracket implies that T_z is skew-symmetric. Rescaling the scalar product on \mathfrak{v} we obtain that $T_z^2 = -I$, so $T_{z'}^2 = -I$ for all $z' \in \mathfrak{z}$, $|z'| = 1$. Therefore \mathfrak{n} is of Heisenberg type. \hfill \blacksquare

3. The case of center of dimension 2

In this section we compute the groups $G, G_0, G/G_0$ in the case $m = 2$. The various types are parametrized by pairs

$$(c, r) \in (\mathbb{U}^\ell / \text{SL}(2, \mathbb{R})) \times \mathbb{Z}_+^\ell$$

where \mathbb{U} is the upper-half plane and $2\ell = 2 \sum r_j = \dim \mathfrak{m} - 2$. As a corollary we conclude that $\text{Aut}(\mathfrak{n})$ is maximal if and only if \mathfrak{n} is of Heisenberg type. These are complex Heisenberg algebras of various dimensions regarded as real Lie algebras.

First we recall the normal form for fat algebras with $m = 2$ deduced from [LT]. Given $c = a + bi \in \mathbb{C}$, let

$$Z(c) = \begin{pmatrix}
 a & b \\
 -b & a
\end{pmatrix}.$$

If $r \in \mathbb{Z}_+$, set

$$A(c, r) = \begin{pmatrix}
 Z(c) & Z(c) & \cdots \\
 I_2 & Z(c) & \cdots \\
 \vdots & \vdots & \ddots \\
 I_2 & Z(c)
\end{pmatrix}$$

Kaplan and Tiraboschi 1091
a $2r \times 2r$-matrix. If $c = (c_1, \ldots, c_\ell) \in \mathbb{C}^\ell$ and $r = (r_1, \ldots, r_\ell) \in \mathbb{N}_+^\ell$, set

$$A(c, r) = \begin{pmatrix} A(c_1, r_1) & A(c_2, r_2) & \cdots & A(c_\ell, r_\ell) \\ A(c_2, r_2) & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ A(c_\ell, r_\ell) & \cdots & A(c_1, r_1) & \end{pmatrix}$$

which is a $2s \times 2s$ matrix, $s = r_1 + \ldots + r_\ell$.

Let now $\phi, \psi(c, r)$ be the 2-forms on \mathbb{R}^{4s} whose matrices in the standard basis are

$$[\phi] = \begin{pmatrix} 0 & -I_{2s} \\ I_{2s} & 0 \end{pmatrix}, \quad [\psi(c, r)] = \begin{pmatrix} 0 & A(c, r) \\ -A^t(c, r) & 0 \end{pmatrix}.$$

Then

$$[u, v](c, r) = (\phi(u, v), \psi(c, r)(u, v)) = <u, [\phi]v > e_1 + <u, [\psi(c, r)]v > e_2$$

is an \mathbb{R}^2-valued antisymmetric 2-form on \mathbb{R}^{4s}. Let

$$n_{(c, r)} = \mathbb{R}^{4s} \oplus \mathbb{R}^2$$

be the corresponding Lie algebra.

Define $M_{(c, r)} \in \text{End}(v)$ by

$$\phi(M_{(c, r)}u, v) = \psi_{(c, r)}(u, v),$$

whose matrix is

$$[M_{(c, r)}] = \begin{pmatrix} -A^t_{(c, r)} & 0 \\ 0 & -A_{(c, r)} \end{pmatrix}.$$

then we have

$$[u, v]_{(c, r)} = \phi(u, v)e_1 + \phi(M_{(c, r)}u, v)e_2, \quad \text{for } u, v \in \mathbb{R}^{4s}. \quad \text{(6)}$$

One can deduce [LT]

Proposition 3.1.

(a) Every fat algebra with center of dimension 2 is isomorphic to some $n_{(c, r)}$ with $c \in U^\ell$.

(b) Two of these are isomorphic if and only if the r’s coincide up to permutations and the c’s differ by some M"obius transformation acting componentwise.

(c) $n_{(c, r)}$ is of Heisenberg type if and only if $c = (c, \ldots, c)$ and $r = (1, \ldots, 1)$

Let now

$$\hat{n} = n_{(c, r)}$$

be fat and let $G = G(n)$, etc. We denote \hat{n} the algebra obtained by replacing the matrices $A(c, r)$ by their semisimple parts and setting all $c_j = \sqrt{-1}$. The resulting $\hat{A}(c, r)$ consists of blocks $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ along the diagonal and \hat{n} is isomorphic to the Heisenberg type algebra $n_{((i, \ldots, i), (1, \ldots, 1))}$. The correspondence

$$n \mapsto \hat{n}$$

is functorial and seems extendable inductively to fat algebras of any dimension, although here we will maintain the assumption $m = 2$.

Lemma 3.2. \(G_0(n) \subseteq G_0(\hat{n}) \) and \(\dim \text{Aut}(n) \leq \dim \text{Aut}(\hat{n}) \).

Proof. Let \(\phi, \psi, M_{c,r} \in \text{End}(v) \) be as above, so that
\[
\phi(M_{c,r}u, v) = \psi_{(c,r)}(u, v).
\]
By formula (6), \(g \in G_0(n_{c,r}) \) if and only if
\[
\phi(u, v) = \phi(gu, gv), \quad \phi(M_{c,r}u, v) = \phi(M_{c,r}gu, gv) = \phi(g^{-1}M_{c,r}gu, v),
\]
i.e., if and only if \(g \in \text{Sp}(\phi) \) and commutes with \(M_{c,r} \). In particular it commutes with the semisimple part \(M_{c,r} \). This is conjugate to a matrix having blocks
\[
Z(c) = \begin{pmatrix}
\Re(c) & \Im(c) \\
-\Im(c) & \Re(c)
\end{pmatrix}
\]
for various \(c \in \mathbb{C} \) along the diagonal, and zeros elsewhere. Every matrix commuting with such a matrix will surely commute with that having all \(c = 1 \). It follows that \(g \) also preserves \(\phi(M_{c,r}u, v) \) and, therefore, it is an automorphism of \(\hat{n} \) as well. Thus,
\[
G_0(n) \subseteq G_0(\hat{n}).
\]

From Corollary 2.3, \(\dim(G(n)/G_0(n)) \leq \dim(G(\hat{n})/G_0(\hat{n})) \), and therefore
\[
\dim G(n) = \dim(G(n)/G_0(n)) + \dim G_0(n) \leq \dim(G(\hat{n})/G_0(\hat{n})) + \dim G_0(\hat{n}) = \dim G(\hat{n}).
\]
Formula (2) implies \(\dim \text{Aut}(n) \leq \dim \text{Aut}(\hat{n}) \), as claimed. \(\blacksquare \)

Next we will describe \(g_0(n_{c,r}) \) for \(c \in U \) and \(r \in N_+ \), i.e., the case when the matrices \(A \) consist of a single block. Since \(c \) is \(\text{SL}(2, \mathbb{C}) \)-conjugate to \(i \), it is enough to take \(c = i \). Define the \(2 \times 2 \)-matrices
\[
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},
\]
and let \(M_r(\mathbb{R}(1,i)) \) and \(M_r(\mathbb{R}(x,y)) \) denote the real vector spaces of \(r \times r \) matrices with coefficients in the span of \(1, i \) and \(x, y \) respectively. Then the vector space
\[
\mathcal{R}(r) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} : A, D \in M_r(\mathbb{R}(1,i)), B, C \in M_r(\mathbb{R}(x,y)) \right\},
\]
is a actually a matrix algebra.

Note that
\[
1^t = 1, \quad i^t = -i, \quad x^t = x, \quad y^t = y.
\]
Letting \(A^t \) denote the transpose or an \(\mathbb{R} \)-matrix and \(A^t \), \(A^* \) the transpose and conjugate transpose of \(\mathbb{R}[i, x, y] \)-matrices, one obtains
\[
A^t = A^*
\]
for \(A \in M_r(\mathbb{R}(1,i)) \) while
\[
A^t = A^t
\]
for \(A \in M_r(\mathbb{R}(x,y)) \).
With the notation

\[J_1 = [\phi] \quad J_2 = [\psi(i,\ldots,i),(1,\ldots,1)] , \]

\[g_0(\hat{n}) = \{ X \in \mathbb{R}^{4r \times 4r} : J_1 X + X^t J_1 = 0, J_2 X + X^t J_2 = 0 \} . \]

From [S] we know that

\[g_0(\hat{n}) \cong \mathfrak{sp}(r, \mathbb{C})^\mathbb{R} \]

Changing basis,

\[g_0(\hat{n}) = \{ X \in \mathcal{R}(r) : J_1 X + X^t J_1 = 0, J_2 X + X^t J_2 = 0 \} \]

where

\[J_1 = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix} , \quad J_2 = \begin{pmatrix} 0 & iI_r \\ iI_r & 0 \end{pmatrix} . \]

This gives an alternative description of this algebra:

\[g_0(\hat{n}) = \left\{ \begin{pmatrix} A & B \\ C & -A^* \end{pmatrix} : A \in M_r(\mathbb{R}(1,i)), B,C \in M_r(\mathbb{R}(x,y)), B^t = B, C^t = C \right\} \]

We now restrict our attention to matrices \(\begin{pmatrix} A & B \\ C & -A^* \end{pmatrix} \) in \(g_0(\hat{n}) \) where \(A, B, C \) have the respective forms

\[
\begin{pmatrix} a_1 & a_2 & \cdots & a_r \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ 0 & \cdots & 0 & a_1 \end{pmatrix} = \begin{pmatrix} b_1 & \cdots & b_{r-1} & b_r \\ \vdots & \ddots & \ddots & 0 \\ b_{r-1} & \cdots & \ddots & \vdots \\ b_r & 0 & \cdots & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & \cdots & 0 & c_1 \\ \vdots & \ddots & \ddots & c_2 \\ c_1 & c_2 & \cdots & c_r \end{pmatrix}
\]

with coefficients in \(\mathbb{R}^{2 \times 2} \). Let \(A_k = \begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix} \) having \(a_k = 1 \) and zero otherwise and \(A_k' \) the matrix of the same form but with \(a_k = i \) and zeros elsewhere. Similarly, let \(B_k \) (resp. \(C_k \)) the matrix \(\begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \) (resp., \(\begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \)) with \(b_k \) (resp. \(c_k \)) equal to \(x \) and zeros elsewhere, and \(B_k' \) (resp. \(C_k' \)) with \(b_k \) (resp. \(c_k \)) equal to \(y \) and zeros elsewhere.

Theorem 3.3. Let \(n = n_{(c,r)} \), \((c,r) \in \mathbb{U} \times \mathbb{N} \), and regard \(g_0(\hat{n}) \) as a subalgebra of \(\mathfrak{gl}(n) \). Then,

1. \(g_0(\hat{n}) \) is the \(\mathbb{R} \)-span of \(A_i, A_i', B_i, B_i', C_i, C_i' \) for \(1 \leq i \leq r \).
2. The semisimple part of \(g_0(\hat{n}) \) is the span of \(A_1, A_1', B_1, B_1', C_1, C_1' \).
3. The solvable radical is the span of \(A_i, A_i', B_i, B_i', C_i, C_i' \) with \(1 < i \leq r \).

In particular, the \(\mathbb{R} \)-dimension the \(g_0(\hat{n}) \) is equal to \(6r \) and the semisimple part of \(g_0(\hat{n}) \) is isomorphic to \(\mathfrak{sp}(1,\mathbb{C}) \).
Proof. It is enough to consider the case \(n = n_{(i,r)} \). Let \(T_2 = [\psi_{(i,r)}] \) and write \(T_2 = J_2 + N_2 \) where

\[
N_2 = \begin{pmatrix}
0 & N' \\
-N^t & 0
\end{pmatrix}, \quad \text{with } N = \begin{pmatrix}
0 & \cdots & 0 & 0 \\
1 & \ddots & 0 & 0 \\
& \ddots & \ddots & \ddots \\
0 & \cdots & 1 & 0
\end{pmatrix}.
\]

From Lemma 3.2, \(g_0(n) = \{ X \in g_0(\hat{n}) : T_2X + X^tT_2 = 0 \} \). As \(g_0(n) \subset g_0(\hat{n}) \) one obtains

\[
g_0(n) = \{ X \in g_0(\hat{n}) : N_2X + X^tN_2 = 0 \}.
\]

The conditions on \(\begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in g_0(n) \) are, explicitly,

\[
\begin{alignat}{2}
0 &= NC - C^tN^t = NC - (NC)^t \quad & & \quad \text{(7)} \\
0 &= N^tA - AN^t \quad & & \quad \text{(8)} \\
0 &= N^tB - B^tN = N^tB - (N^tB)^t \quad & & \quad \text{(9)}
\end{alignat}
\]

For the first equation, note that \(NC \) symmetric if and only if \(c_{i,j+1} = c_{j,i+1} \) and \(c_{1,j} = 0 \) for \(i, j < n \). Since \(C \) is symmetric, \(c_{i,j+1} = c_{j,i+1} = c_{i+1,j} \) and \(c_{1,j} = 0 \) for \(i, j < n \). We conclude:

If \(i + j = k \leq r \), \(c_{i,j} = c_{i,k-i} = c_{i-1,k-i+1} = \cdots = c_{1,k-1} = 0 \)

If \(i + j = k > r \), \(c_{i,j} = c_{i,k-i} = c_{i+1,k-i-1} = \cdots = c_{r,k-i-r} = 0 \)

Thus, the strict upper antidiagonals are zero and each lower antidiagonal have all its elements equal.

For the second equation, note that \(N^t \) and \(A \) commute. This is equivalent to \(c_{i,j} = c_{i,s} \) when \(j - i = s - t \) and \(c_{1,1} = 0 \) for \(i > 1 \). The first condition implies that each diagonal have all its elements equal, while the second implies that the strict lower diagonals are zero.

Equation (9) is analogous to equation (7): the condition \(N^tB \) symmetric is equivalent to each antidiagonal have all its elements equal and that the strict lower antidiagonals are zero.

From all this we conclude that the span of \(A_i, A'_i, B_i, B'_i, C_i, C'_i \) with \(1 \leq i \leq r \) is \(g_0(n) \) and (1) follows.

(2) and (3) follow from (1) and the explicit presentation of the matrices \(A_i, A'_i, B_i, B'_i, C_i, C'_i \).

\[\blacksquare \]

Corollary 3.4. (of the proof) Let \(n \) be fat. Then \(\dim(g_0(n)) \) is maximal if and only if \(n \) is of Heisenberg type.

Proof. Let \((c, r) = ((c_1, \ldots, c_l), (r_1, \ldots, r_l)) \) be such that \(n = n_{(c,r)} \). We know that \(g_0(n) \subset g_0(\hat{n}) \). If \(c_i \neq c_j \) for some \(i, j \), then there is not intertwining operator between the blocks corresponding to these invariants, so \(g_0(n) \neq g_0(\hat{n}) \).
When \(c_1 = c_2 = \cdots = c_l\) we can consider \(c_j = i\) for all \(j\). Let \(r = \sum r_i\).

In this case if \((A,B,C) \in g_0(n)\) must satisfy the equations (7), (8), (9) but with \(N\) such that coefficients \(n_{j+1,j}\) are 0 or 1. Suppose now that \(g_0(n)\) is not of Heisenberg type, then some \(n_{j+1,j}\) is equal to 1. We assume that \(n_{21} = 1\) and let \(A \in M_r(\mathbb{R}(1,i))\) such that \(a_{12} = 1\) and 0 otherwise, then

\[X = \begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix}\]

belongs to \(g_0(\hat{n})\) but is not in \(g_0(n)\).

It can be shown in general that the semisimple part of \(g_0(n)\) is isomorphic to \(\oplus_i sp(m_i, \mathbb{C})\), where \(m_i\) is the multiplicity of the pair \((c_i, r_i)\) in \((c, r)\).

In the case \(m = 2\), \(g/g_0\) is either 0 or isomorphic to \(so(2)\).

Theorem 3.5. \(g(n)/g_0(n) \cong so(2)\) if \(c_1 = \cdots = c_l\), and 0 otherwise.

Proof. \(g/g_0\) is a compact subalgebra of \(gl(2)\), hence of the form \(gs\) for some \(g \in SL(2, \mathbb{R})\) and it is nonzero if and only if there exists \(X \in sl(v)\) such that, in the notation of the proof of Theorem 3.3,

\[
\begin{pmatrix} X & 0 \\ 0 & g^{-1} \end{pmatrix}
\]

is a derivation of \(n\). For \(g = 1\), if \(T_1, T_2\) correspond to the standard basis of \(\mathfrak{z}\), the equations for \(X\) become

\[(a) \quad T_1 X + X^t T_1 = T_2, \quad (b) \quad T_2 X + X^t T_2 = -T_1 \]

In normal form, and for a single block \(A_{(i,r)}\),

\[T_1 = J_1 = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix}, \quad T_2 = \begin{pmatrix} 0 & iI_r + N \\ iI_r - N^t & 0 \end{pmatrix}.\]

We decompose

\[T_2 = J_2 + N_2, \quad \text{with} \quad J_2 = \begin{pmatrix} 0 & iI_r \\ iI_r & 0 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 0 & N \\ -N^t & 0 \end{pmatrix}\]

and regard \(J_1, J_2, T_1, T_2, N_2\) as matrices with coefficients in \(\mathbb{R}^{2 \times 2}\). Note that \(J_1, J_2\) correspond to \(\hat{n}\), of Heisenberg type. Let

\[Y_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & s & 0 \\ 0 & 2i & 0 & 0 & 0 & s & 0 \\ 0 & 1 & 4i & 0 & 0 & s & 0 \\ 0 & 0 & 2i & 6i & 0 & s & 0 \\ 0 & 0 & 0 & 31 & 8i & s & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & \ddots & 0 & (n-2)1 \\ 0 & 0 & 0 & \ddots & \ddots & \ddots & 2(n-1)i \end{pmatrix}.\]
A straightforward calculation shows that

\[X_0 = \begin{pmatrix} -Y^*_0 & 0 \\ 0 & -Y^*_0 + iI_r + N \end{pmatrix} \]

is a solution of (a), (b). We conclude that

\[\begin{pmatrix} X_0 & 0 \\ 0 & i \end{pmatrix} \]

is a derivation of \(\mathfrak{n}_{(i,r)} \), which lies in \(\mathfrak{g}(\mathfrak{n}_{(i,r)}) \) but not in \(\mathfrak{g}_0(\mathfrak{n}_{(i,r)}) \).

For any \(c \in U \), \(\mathfrak{n}_{(c,r)} \cong \mathfrak{n}_{(i,r)} \), hence they have the same \(\mathfrak{g}/\mathfrak{g}_0 \) up to isomorphisms. In fact, for any \(g \in \text{SL}(2, \mathbb{R}) \), the algebra \(\mathfrak{n}_{(g_i,r)} \) has a derivation of the form

\[\begin{pmatrix} X & 0 \\ 0 & gi^g \end{pmatrix}. \]

For a fixed \(g \), these \(X \) are unique modulo \(\mathfrak{g}_0 \) and come in normal form. Clearly, \(c \) determines the \(2 \times 2 \) matrix \(gi^g \) and the complex number \(g \cdot i \).

In the case of an arbitrary fat \(\mathfrak{n}_{(c,r)} \), each block \((c_k, r_k) \) determines a corresponding \(X_k \) such that

\[\begin{pmatrix} X_k & 0 \\ 0 & gi^g_k \end{pmatrix} \]

is a derivation of \(\mathfrak{n}_{(c_k, r_k)} \). If \(n_{(c,r)} \) has a derivation in \(\mathfrak{g} \) that is not in \(\mathfrak{g}_0 \), then its must have one which is combination of such, acting on \(v \) as \(X_1 + X_2 + \cdots \). This forces all the \(gi^g_k \) to be the same and all the \(c_i \) to be the same. The reciprocal is clear.

In particular, all algebras \(\mathfrak{n}_{(c,r)} \) with \(c_1 = \ldots = c_\ell \) and \(r_1 > 1 \) maximize the dimension of \(\mathfrak{g}/\mathfrak{g}_0 \), but they are not Heisenberg type.

Lauret had pointed out to us that there were non Heisenberg type algebras such that \(\mathfrak{g}(\mathfrak{n})/\mathfrak{g}_0(\mathfrak{n}) \neq 0 \). Independently, Oscari proved that this holds whenever the \(c_i \)'s all agree.

4. Fat distributions

Let \(D \) be a smooth vector distribution on a smooth manifold \(M \), i.e., a subbundle of the tangent bundle \(T(M) \). Its nilpotentization, or symbol, is the bundle on \(M \) with fiber

\[N^D(M)_p = \bigoplus_j D_p^{(j)} / D_p^{(j-1)} \]

where \(D_p^{(1)} = D_p \) and \(D_p^{(j+1)} = D_p^{(j)} + [\Gamma(D), \Gamma(D^j)]_p \). The Lie bracket in \(\Gamma(T(M)) \) induces a graded nilpotent Lie algebra structure on each fiber of \(N^D(M) \). If \(D^{(j)} = T(M) \) for some \(j \), \(D \) is called completely non-integrable. If \(D^{(2)} = T(M) \), the nilpotentization is 2-step, which in the notation of the previous section, is

\[\mathfrak{n}_p = N^D(M)_p = D_p \oplus \frac{D_p + [\Gamma(D), \Gamma(D)]_p}{D_p} = \mathfrak{v}_p + 3_p, \]
It is also easy to see that D is fat in the sense of Weinstein [Mo] if and only if $n_p = v + \mathfrak{z}$ is non-singular, i.e., fat in the sense defined in the section 1.

A subriemannian metric g defined on D determines a metric on v. On \mathfrak{z} we put a metric σ invariant under G. Let \{$\phi_1, ..., \phi_m; \psi_1, ..., \psi_n$\} be a coframe on M such that
\[D = \cap \ker \phi_i, \]
with \{\$\phi_1, ..., \phi_m$\} and \{\$\psi_1, ..., \psi_n$\} orthonormal with respect to $g + \sigma$. Define $T_z \in \text{End}(D)$ as before, by
\[\sigma(z, [u, v]) = g(T_z u, v). \]

Then D is fat if and only if T_z is invertible for all non-zero $z \in \mathfrak{z}$. The structure equations for the coframe can be written
\[d\phi_k \equiv \sum_i (T_k \psi_i) \wedge \psi_i \mod(\phi_\ell) \]
with the T_k's having the property that any non-zero linear combination of them is invertible. This is deduced from the fact that if $u, v \in v$, then $d\phi[u, v] = -\phi([u, v])$, since $u(\phi(v)) = u(0) = 0$. The $d\psi$'s are essentially arbitrary.

Let now M be a the simply connected Lie group with a fat Lie algebra n, D the left-invariant distribution on M such that $D_e = v$. For a left-invariant coframe, the structure equations take the form
\[d\phi_k = \sum_i (J_k \psi_i) \wedge \psi_i, \quad d\psi_i = 0 \]
where $J_1, ..., J_m$ are anticommuting complex structures on D.

The results from the previous sections lead to consider fat distributions satisfying
\begin{equation}
(4.1)
\[d\phi_k = \sum_i (J_k \psi_i) \wedge \psi_i \mod(\phi_\ell) \]
\end{equation}
where the J_k are sections of $\text{End}(T(M)^*)$ satisfying the Canonical Commutation Relations
\[J_i J_j + J_j J_i = -2\delta_{ij}. \]

The Equivalence Problem for these systems has been discussed for distributions with growth vector $(2n, 2n + 1), (4n, 4n + 3)$ and $(8, 15)$. In these cases n is parabolic, i.e., isomorphic to the Iwasawa subalgebra of a real semisimple Lie algebra \mathfrak{g} of real rank one. The Tanaka [T] subriemannian prolongation of such algebra is \mathfrak{g}, while in the non-parabolic case is just
\[n + \mathfrak{r}(n) + \mathfrak{a}(n) \]
where $\mathfrak{a}(n)$ the 1-dimensional Lie algebra of dilations [Su]. In this case, Tanaka’s theorem implies that, in the notation of [Z], the first pseudo G-structure P^0 already carries a canonical frame.
As this paper was being written, E. van Erp pointed out to us his article [Er], where fat distributions are called polycontact and those satisfying (4.1) arise by imposing a compatible conformal structure.

Acknowledgments. We wish to thank Professor J. Vargas for helpful discussions and M. Subils for pointing out a mistake in a previous version of this paper.

References

[BTV] Berndt, J., F. Tricerri and L. Vanhecke, “Generalized Hesienberg groups and Damek-Ricci Harmonic spaces,” Springer Lecture Notes **1598**, Berlin, 1995.

[CGN] Capogna, L., N. Garofalo, and D. M. Nhieu, *Properties of harmonic measures in the Dirichlet Problem for Lie groups of Heisenberg type*, Amer. J. Math **124** (2002), 273–306.

[DG] de Graaf, W., “Lie algebras: theory and algorithms,” North Holland Math. Library **56** Elsevier, 2000.

[E] Eberlein, P., *Geometry of 2-step nilpotent groups with a left-invariant metric*, Annales Scientifiques de l’E.N.S. (4)**27** (1994), 611–660.

[Er] van Erp, E., *Contact structures of arbitrary codimension and idempotents in the Heisenberg algebra*, arXiv:1001.5426v1 [math.DG] (2010)

[GV] Garofalo, N., and D. Vassiliev, *Symmetry properties of solutions of Yamabe’s equation on groups of Heisenberg type*, Duke Math. J. **106** (2001), 411–448.

[H] Husemoller, D., “Fibre Bundles,” Graduate texts in mathematics **20**, Springer-Verlag, New York, 1994.

[K] Kaplan, A., *Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms*, Trans. Amer. Math. Soc. **258** (1980), 147–153.

[LT] Levstein, F., and A. Tiraboschi, *Classes of 2-step nilpotent Lie algebras*, Comm. in Algebra **27** (1999), 2425–2440.

[M] Métivier, G., *Hypoellipticite analytique sur des groupes nilpotents de rang 2*, Duke Math. J. **47** (1980), 195–221.

[Mo] Montgomery, R., *A tour of subriemannian geometries, their geodesics and applications*, Amer. Math. Soc. Mathematical Surveys and Monographs , Providence, R. I., 2002.

[MS] Müller, D. and A. Seeger, *Singular spherical maximal operators on a class of two step nilpotent Lie groups*, Israel J. Math. **141** (2004), 315–390.
[P] Pansu, P., *Métriques de Carnot-Carathodory et quasiisométries des espaces symétriques de rang un*, Ann. of Math. **129** (1989), 1–60.

[S] Saal, L., *The automorphism group of a Lie algebra of Heisenberg type*, Rend. Sem. Mat. Univ. Pol. Torino **54** (1996), 101–113.

[Su] Subils, M., Personal communication.

[T] Tanaka, N., *On differential systems, graded Lie algebras and pseudogroups* J. Math. Kyoto. Univ. **10** (1970), 1–82.

[Z] Zelenko, I., *On Tanaka’s prolongation procedure for filtered structures of constant type* SIGMA **5** (2009), Paper 094, 21pp.