kLa as a predictor for probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors

Stéphanie Tissot, Dominique T Monteil, Lucia Baldi, David L Hacker, Florian M Wurm*

*Correspondence: florian.wurm@epfl.ch
Laboratory of Cellular Biotechnology, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Full list of author information is available at the end of the article

Background

Orbitally shaken flasks are commonly used at an early stage of bioprocess development with mammalian cells. In contrast to large-scale stirred-tank bioreactors, shaken flasks are usually operated in probe-independent bioprocesses, i.e. without strictly controlling the pH or dissolved oxygen concentration (DO). As a consequence, gas transfer issues are thought to limit the effectiveness of orbitally shaken flasks and bioreactors (OSRs). To define optimal operating conditions for probe-independent bioprocesses in OSRs, we tested the effects of the mass transfer coefficient of oxygen (k_{La}) on mammalian cell growth, recombinant protein production, and environmental conditions of the culture (pH, DO).

Materials and methods

The k_{La} was measured by the dynamic method described in [1] using non-invasive O2 sensors (PreSens, Regensburg, Germany). A recombinant CHO DG44-derived cell line expressing a human IgG monoclonal antibody (CHO-IgG) [3] was cultivated in suspension as described [4]. To investigate the effects of the k_{La} on cell growth, CHO-IgG cells were into 1-L cylindrical bottles with working volumes from 200 to 600 mL. The bottles were equipped with vented caps and orbitally shaken at 110 rpm in an incubator at 37°C with 5% CO2. To test the k_{La} as a scale-up factor, CHO-IgG cells were inoculated at 0.3 million cells/mL in a 200-L bioreactor (7 h$^{-1}$), and the bottles were agitated at 110 rpm.

Results

In a 1-L OSR the k_{La} decreased from 11 to 3 h$^{-1}$ as the working volume increased from 200 to 600 mL (Fig. 1a). As the working volume of the cultures increased in the 1-L OSR, the DO decreased (Fig. 1b). In all the cultures, the pH decreased with time of cultivation (Fig. 1c). At working volumes greater than 400 mL (k_{La} < 7 h$^{-1}$), the maximal cell density was about 40% less than in cultures of ≤ 400 mL (Fig. 1d).

To test the k_{La} as a scale-up factor for probe-independent bioprocesses, CHO-IgG were inoculated in a 200-L OSR. After overnight incubation, samples of the 100-L culture were used to inoculate satellite cultures in 1- and 5-L OSRs at volumes to give k_{La} values of 7 h$^{-1}$. The cell densities were similar in the 1-, 5- and 200-L OSRs and reached 3.5 million cells/mL after 90 h (data not shown). The recombinant IgG concentrations at this time were about 150 mg/L. The pH decreased from 7.25 to 6.7 in all the cultures (data not shown), and the glucose, glutamine, lactate and glutamate profiles were similar in all the cultures.

Conclusions

Our results indicate that the k_{La} is a good parameter to predict suitable conditions for cell cultures in probe-independent OSRs. Furthermore, our study demonstrates that cultures having different nominal scales but the same k_{La} also had the same cell growth.
recombinant protein production, and culture conditions (pH and DO). The minimal $k_L a$ required to avoid pH and DO limitations in OSRs was 7 h$^{-1}$ for CHO-IgG cells. Cell cultivation in a 200-L OSR without pH or DO controllers resulted in similar cell densities, recombinant protein titers and pH values as in 1- and 5-L OSRs when the three types of OSRs were operated at the same $k_L a$. These results suggest that large-scale bioprocesses can be operated without pH or DO controllers as long as a sufficient $k_L a$ is maintained through appropriate cultivation conditions (e.g. working volume, agitation rate, geometry of the vessel).

Acknowledgments

We thank Dr. Mattia Matasci for providing the CHO-IgG cell line. We gratefully acknowledge: Kühner AG, and Sartorius-Stedim Biotech, for the considerable support of equipment and material. This work has been supported by the CTI Innovation Promotion Agency of the Swiss Federal Department of Economic Affairs and by the Swiss National Science Foundation (SNSF).

Published: 22 November 2011

References

1. Gupta A, Rao G: A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 2003, 84:351-358.
2. Oberbek A, Matasci M, Hacker DL, Wurm FM: Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 2011, 108:600-610.
3. Matasci M, Baldi L, Hacker DL, Wurm FM: The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 2011, DOI: 10.1002/bit.23167.

4. Muller N, Girard P, Hacker DL, Jordan M, Wurm FM: Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 2005, 89:400-406.

doi:10.1186/1753-6561-5-S8-P36

Cite this article as: Tissot et al. kLa as a predictor for probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors. BMC Proceedings 2011 S(Suppl 8):P36.