1. INTRODUCTION

Noncovalent interactions often facilitate chemical reactions through activating functional groups or stabilizing intermediates in many organic reactions. Many experimental and theoretical studies have been devoted to exploring the role of noncovalent interactions in organocatalysis, where small molecules are designed as catalysts or activators.1–5 Organocatalysis based on noncovalent interactions becomes a useful catalytic strategy because it is cheap, stable, environmentally friendly compared to metal-based catalysis.

Halogen bond, denoted as R−X···Y (R = substituent group, X = halogen atom, Y = nucleophilic group), is a kind of intermolecular interaction formed between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another one. Among various noncovalent interactions, XB has high directionality and broad tunability.6–8 The high directionality is a consequence of the σ-hole on the halogen atom X. The broad tunability arises from the fact that the binding strength would be greatly altered by surrounding environments, substituent groups, and so on.6,7,9–13 Considering these features, XB is useful in organocatalysis. The first XB-based organocatalysis was reported by Bolm et al. in 2008. They employed haloperfluoroalkanes as catalysts for the reduction of 2-phenylquinoline with Hantzsch ester.14 Since then, many works have been concentrated on the employments of XB in various chemical reactions.15–48

According to the literature,43–48 the formation of carboxation via the X abstraction process is a decisive step for the Ritter-type solvolysis reactions. Huber et al. reported that the XB donors can be successfully applied in the Br abstraction process, leading to the acceleration for the Ritter-type solvolysis of benzhydryl bromide (Scheme 1).15 In detail, they found that the background solvolysis is negligible after a reaction time of four days. The addition of cationic iodoimidazolium compounds leads to large product yields (from ~50 to ~80%). However, the addition of the cationic bis(imidazolium) compounds is unable to accelerate the reaction obviously.

The experimental findings highlight the importance of I atoms in the activators. Huber et al. stated in their review that “the poor performance of the noniodinated compounds seems surprising, since they may act as reasonably strong hydrogen bond donors”.49 Test calculations also indicate that the total binding reference is not the reason for the activation difference because the interaction energies in the XB donor–substrate and the HB donor–substrate are similar. We should pay attention to other noncovalent interactions in the reaction. Considering the functional groups (aromatic rings, C−H groups, and so on), we noticed that in the activator–substrate dimer, besides HB or XB, there exist lone pair···π, π···π stacking, C−H···π, and so on. From C13H11Br to C13H11···Br, these interactions will vary due to the charge redistribution. To understand the origin of the activation, these interaction variations should be clearly clarified.
The present work attempts to explore the role of noncovalent interactions in the Br abstraction of the Ritter reaction. Six activators, including cationic meta- and para-bidentate iodine donors (denoted as mdI and pdI in this paper; here, m denotes meta; p denotes para, d denotes double; and I denotes iodine atom, the same as below), cationic meta- and para-bidentate hydrogen donors (denoted as mdH and pdH, here H denotes hydrogen atom, the same as below), and cationic meta- and para−mono-dentate iodine donors (denoted as mHI and pHI), are chosen in our paper (Figure 1). To confirm the existence of noncovalent interactions, the quantum theory of atoms in molecules (QTAIM) was used.50 The solvent effects, which are very important for the Ritter-type solvolysis reaction, are considered by conductorlike polarizable continuum model (CPCM).51,52 The energy decomposition analysis (EDA) method is a quantitative analysis tool for intermolecular interactions. The generalized Kohn−Sham energy decomposition analysis (GKS-EDA) method presented by our group,53,54 which is able to take the solvent effects into account for intermolecular interactions, was used to explore the origin of the noncovalent interactions in the Ritter-type solvolysis reaction.

2. METHODOLOGY AND COMPUTATIONAL DETAILS

With the CPCM calculations for the reaction system, the total solvation free energy of the substrate−activator adduct (the reactant state for the Br abstraction process) is expressed as

$$
\Delta G_{r}^{\text{TOT}} = \Delta G_{r}^{\text{TOT}} - \Delta G_{r}^{\text{BG}}
$$

Here, the superscript AB denotes the substrate; A and B are the fragments of the substrate, while C is the activator. $\Delta G_{r}^{\text{TOT}}$ is the total dimer interaction energy between AB and C.

The total solvation free energy of the product is written as

$$
\Delta G_{p}^{\text{TOT}} = \Delta G_{p}^{\text{TOT}} - \Delta G_{p}^{\text{BG}}
$$

Thus, the reaction free energy in solution, ΔG_{rp}, can be expressed as

$$
\Delta G_{rp} = \Delta G_{r}^{\text{TOT}} - \Delta G_{p}^{\text{TOT}}
$$

where ΔG_{BG} is the geometrical relaxation of $\text{AB}−\text{C}$ ($\Delta G_{r}^{\text{TOT}} - \Delta G_{p}^{\text{TOT}}$) denotes the variation of the total interaction free energy.
from reaction state to product state. Similarly, the reaction barrier can be expressed as the geometrical relaxation and the variation of the interaction free energy.

Combined with implicit solvation model, GKS-EDA decomposes the total interaction energy into the following terms

$$
\Delta G_{\text{TOT}} = \Delta G_{\text{ele}} + \Delta G_{\text{exrep}} + \Delta G_{\text{pol}} + \Delta G_{\text{corr}} + \Delta G_{\text{disp}} + \Delta G_{\text{desol}}
$$

In eq 4, \(\Delta G_{\text{ele}} \) is the electrostatic interaction term, which is quasiclassical Coulombic interaction between monomers. This term is computed using frozen electron density distribution of monomers in the supermolecular geometry. \(\Delta G_{\text{exrep}} \) is the exchange-repulsion term, arising from the normalization and antisymmetrization of the wave function. \(\Delta G_{\text{pol}} \) is the polarization term, denoting the orbital relaxation energy caused by the variation of the Kohn–Sham orbitals in a SCF process. \(\Delta G_{\text{corr}} \) is the correlation term defined by the generalized Kohn–Sham theory. This term depends on the density functional theory (DFT) functionals and orbitals simultaneously. \(\Delta G_{\text{disp}} \) is the dispersion term when a dispersion-corrected DFT functional is applied. \(\Delta G_{\text{desol}} \) is the desolvation term, which is the free energy penalty by solvent environments. To consider the cavity superposition error for the implicit solvation model, the cavities of monomers and complex are constructed based on the interaction distance of monomers. Thus, \(\Delta G_{\text{desol}} \) is not equal to the difference of solvation free energy between the complex and the sum of monomers.

The geometrical optimizations, the change from electrostatic potentials (ChelpG)\(^{55-57} \) and intrinsic reaction coordinate (IRC) calculations were conducted by Gaussian 16 package.\(^{58} \) All minima were characterized by vibrational frequency analysis, and the transition states were confirmed to have one single imaginary frequency corresponding to the cleavage of the expected bonds. GKS-EDA calculations were performed with a modified version of GAMESS package.\(^{59} \) AIM analysis was carried out by Multiwfn program.\(^{50,60} \) All DFT calculations were executed with the M06-2X functional. The aug-cc-pVDZ-pp basis set was used for Br and I, while cc-pVDZ was used for the rest atoms. For the CPCM calculations, the dielectric constant was set as 37.5 to model the solvent of acetonitrile, and the UFF radii model scaled by a factor of 1.1 was employed.\(^ {59} \)

3. RESULTS AND DISCUSSIONS

3.1. Activation of the Br Abstraction. The six dimeric benzyhydryl bromide–activator adducts, which are denoted as A–X (X = mdI, pdI, mdH, pdH, mHI, and pHI, here A denotes adduct), are displayed in Figure 2. Among them, A-mdI/A-pdI and A-mHI/A-pHI are the XB adducts, A-mdH is the HB adduct, while A-pdH is the adduct formed between Br and the central benzene ring. Figure 2 collects the important geometrical parameters, ChelpG charges, and total dimer interaction free energies in A–X. The C–Br bond length ranges from 2.000 to 2.044 Å, slightly larger than that in benzyhydryl bromide. The ChelpG charges of Br and C_{13}H_{11} indicate that the polarity of the C–Br bond is somewhat changed to a certain degree when C_{13}H_{11}Br interacts with the activators. For example, the charge on Br is 0.020 in A-mdI, while that in benzhydryl bromide is −0.218. As for the total dimer interaction free energies, it is shown that those of bidentate adducts (A-mdI, A-pdI, and A-mdH) are strong, while the rest are weak. Among them, A-mdI is the largest, while A-pHI is the smallest.

![Figure 2](https://dx.doi.org/10.1021/acsomega.0c03000)
The transit states for all of the XB complexes, denoted as $T-X$ ($X = \text{mdI}, \text{pdI}, \text{mHI}, \text{and pHI}$, here T denotes transit state), are obtained. The IRC calculations confirm that these transit states undergo the reaction paths of the $C-Br$ breaking. The $T-X$ geometries shown in Figure S1 of the Supporting Information indicate the elongation of the $C-Br$ bond. However, no transit states for the $C-Br$ bond breaking are found for the complexes of bidentate hydrogen donors. It is shown that the large total dimer interaction energies do not always lead to successful activation. With the IRC calculations, the product complexes are obtained, which are denoted as $P-X$ ($X = \text{mdI}, \text{pdI}, \text{mHI}, \text{and pHI}$, here P denotes product) and shown in Figure 3. In the product complexes, the benzhydryl groups are quasiplanar, the $I-Br$ distances are shortened, and the $C-Br$ bonds are lengthened compared to that of the adducts. Their geometries are much close to those of $T-X$ shown in Figure S1. Furthermore, the $I-Br$ distances in $P-X$ are almost the same as those in the activator···Br$^-$ complexes shown in Figure S2. All of the numerical results verify that these $P-X$ complexes belong to the ion-pair complexes, in which $C_{13}H_{11}Br$ has been activated as $C_{13}H_{11}^+···Br^-$. As can be seen from Figure 3, the total dimer interaction energies in the ion-pair complexes, from -14.25 to -30.81 kcal/mol, are greatly larger than those of the corresponding adducts.

The potential energy profiles of the $C-Br$ bond activation (the energy unit is in kcal/mol, the data in brackets are corrected by zero point energy corrections): (a) $A-\text{mdI} \rightarrow P-\text{mdI}$; (b) $A-\text{pdI} \rightarrow P-\text{pdI}$; (c) $A-\text{mHI} \rightarrow P-\text{mHI}$; and (d) $A-\text{pHI} \rightarrow P-\text{pHI}$.

The transit states are very close to the ion-pair complexes. The small ΔG_{rp} means the small barrier ΔG^\neq. In the
Figure 5. GKS-EDA results for the total dimer interactions in the IRC pathways of (a) A-mdI → P-mdI and (b) A-mHI → P-mHI.

Figure 6. BCPs in the adducts: (a) A-mdI; (b) A-pdI; (c) A-mHI; (d) A-pHI; (e) A-mdH; and (f) A-pdH. The BCPs are indicated with red dots, with the corresponding bond path shown in gray.
profiles of mHI and phi, because of their smaller ΔG^TOT, the barriers are larger than those of mdl and pdl, in agreement with the experimental finding that the yields of mHI and phi (~50%) are smaller than those of mdl and pdl (~80%). The more stable the ion-pair complex is, the lower the barrier of the Br abstraction process has. The variation of the total free interaction energy in the process can be decomposed into the contributions of each interaction terms. Figure 5 demonstrates the curves of the GKS-EDA results for the total dimer interactions in the IRC pathways of mdl and mHI. It is found that the electrostatic, polarization, and correlation terms favor the total dimer interaction, while the rest terms do not. From A−X to P−X, the correlation term is not sensitive to the variation of the C−Br bond length. Electrostatic becomes more and more important, reaching to the most negative value when the substrate becomes C_{13}H_{11}⋯Br−.

3.2. Noncovalent Interactions in the XB Complexes.

Dividing the variation of the total dimer free interaction energy into the contributions of the noncovalent interactions can be helpful for us to understand the activation. The BCPs from the AIM analysis in Figure 6 illustrate various noncovalent interactions in the XB adducts. Besides the bidentate XBs, there are the lone pair⋯π interactions between the iodoimidazolium and the benzhydryl group, and the C−H⋯π interactions between C−H and aromatic rings. Table 1 collects the AIM results in A−X, including electron density ρ, Laplacian electron density ∇^2ρ, and the IV/G value in each BCP. The values of ρ, ∇^2ρ, and IV/G follow the order: XB > lone pair⋯π > C−H⋯π. It is noticed that in A−mdl and A−pdl, there are three BCPs for the lone pair⋯π interactions. The isosurface plots in Figure 7a−c demonstrate the molecular orbitals describing the I−Br XB and the lone pair⋯π interactions in A−X.

The BCPs in Figure 8 display all of the noncovalent interactions in the four ion-pair complexes. Besides the monodentate and bidentate I−Br−XB, there are the lone pair⋯π interactions and C−H⋯π interactions (π denotes the aromatic ring with the partial positive charge in the benzhydryl cation). From the AIM results shown in Table 2, the values of ρ, ∇^2ρ, IV/G for the lone pair⋯π and C−H⋯π interactions in the ion-pair complexes are similar to those in the XB adducts, while the IV/G values of the I−Br−XB are larger than the I−Br ones, suggesting the larger covalency of I−Br−XB. The orbitals are displayed in Figure 7d−f.

Given the variation in the charge distributions in C_{13}H_{11}−Br, it is impossible to compute these noncovalent interactions exactly in the activation process. Fortunately, we just need to know the difference in the noncovalent interaction energies between A−X and P−X. For P−X, the three noncovalent interactions can be easily computed because the C−Br bond is broken. In detail, the I−Br−XB can be computed as the activator−Br−interaction; lone pair⋯π can be modeled as the interaction between the iodoimidazolium cation (C_{2}H_{4}N_{2}I_{2}^+) and the C_{13}H_{11}−, while C−H⋯π interaction can be obtained from the interaction energy difference between (C_{2}H_{4}N_{2}I_{2}^+)⋯C_{13}H_{11}− and activator−C_{13}H_{11}−. The activator−Br− and (C_{2}H_{4}N_{2}I_{2}^+)⋯C_{13}H_{11}− are constructed from the geometries of the ion-pair complexes. Therefore, the total dimer interactions in P−X can be divided into the three contributions. For A−X, considering the partial polarity of the C−Br bond, the estimation of the noncovalent interactions requires the rational design of model molecules. To model the I−Br XB bond, Br is capped with a CH_{3} group, while the C_{13}H_{11} group is capped with the H atom

Table 1. AIM Analysis Results and Total Interaction Energies of the Noncovalent Interactions in the Adducts (lone pair⋯π is abbreviated as lp⋯π)
types
C−H⋯π(a)
C−H⋯π(b)
C−H⋯π(c)
XB(d)
XB(e)
lp⋯π(f)
lp⋯π(g)
lp⋯π(h)
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)
C−H⋯π(a)
C−H⋯π(b)
lp⋯π(d)
XB(e)
C−H⋯π(a)
C−H⋯π(b)
C−H⋯π(c)
lp⋯π(d)
lp⋯π(e)
lp⋯π(f)
lp⋯π(g)
lp⋯π(h)
(a)
(b)
(c)
(d)

(is if C_{13}H_{11} is capped with a CH_{3} group, additional C−H⋯I interactions would be introduced). Thus, the activator−CH_{3}−Br interaction is used to model the bidentate XB. The lone pair⋯π and C−H⋯π interactions can be computed using the (C_{2}H_{4}N_{2}I_{2}^+)⋯C_{13}H_{12} complex. All of the model
molecules, constructed from the adducts’ geometries, are displayed in Figures S3–S6. As shown in Tables S1–S4, the summations of the GKS-EDA results for the noncovalent interactions are very close to those of the total dimer interactions, showing the accuracy of the model approximation.

Figure 7. Isosurface plots of the molecular orbitals for XB and lone pair···π: (a) XB in A-mdI; (b) lone pair···π in A-mdI; (c) lone pair···π in A-mdI; (d) XB in P-mdI; (e) lone pair···π in P-mdI; and (f) lone pair···π in P-mdI (isovalue = 0.020).

Figure 8. Geometries and BCPs of the ion-pair complexes: (a) P-mdI; (b) P-pdI; (c) P-mHI; and (d) P-pHI.
Table 2. AIM Analysis Results and Total Interaction Energies of the Noncovalent Interactions in the Ion-Pair Complexes

types	ρ	V^r	W/G	ΔG^TOT/(kcal/mol)	
P-mdI	C−H⋯π(a)	0.0058	0.0180	0.7587	ΔG^TOT(C−H⋯π) = −0.50
	C−H⋯π(b)	0.0021	0.0067	0.6782	
	C−H⋯π(c)	0.0063	0.0183	0.8053	
	XB(d)	0.0192	0.0490	0.9231	ΔG^TOT(XB) = −24.80
	XB(e)	0.0186	0.0474	0.9199	
	lp−π(a)	0.0064	0.0163	0.8179	ΔG^TOT(lp−π) = −1.80
	lp−π(g)	0.0061	0.0153	0.8072	
	lp−π(h)	0.0058	0.0167	0.7607	
P-pdI	XB(a)	0.0187	0.0481	0.9163	ΔG^TOT(XB) = −29.23
	XB(b)	0.0179	0.0462	0.9114	
	C−H⋯π(c)	0.0049	0.0197	0.6853	ΔG^TOT(C−H⋯π) = −0.31
	C−H⋯π(d)	0.0035	0.0106	0.7286	
	lp−π(a)	0.0062	0.0154	0.8184	ΔG^TOT(lp−π) = −1.14
	lp−π(f)	0.0066	0.0172	0.8039	
	lp−π(g)	0.0039	0.0113	0.7222	
	lp−π(h)	0.0085	0.0240	0.8014	
P-mHI	XB(c)	0.0223	0.0547	0.9589	ΔG^TOT(XB) = −15.35
	C−H⋯π(d)	0.0035	0.0145	0.6001	ΔG^TOT(C−H⋯π) = −0.74
	lp−π(a)	0.0032	0.0079	0.7899	
P-pHI	C−H⋯π(a)	0.0037	0.0111	0.7380	ΔG^TOT(C−H⋯π) = −0.60
	C−H⋯π(b)	0.0021	0.0088	0.5528	
	lp−π(c)	0.0085	0.0238	0.8031	ΔG^TOT(lp−π) = −0.08
	XB(d)	0.0230	0.0559	0.9664	ΔG^TOT(XB) = −14.13

These noncovalent interaction energies are shown in the final columns of Tables 1 and 2. In general, it is apparent that the C−H⋯π interaction energies, ranging from −0.89 to −2.98 kcal/mol in the adducts and from −0.31 to −0.74 kcal/mol in the ion-pair complexes, decrease with the C−Br bond breaking. Due to the small interaction energy, C−H⋯π is not important for the activation process. Attention is paid to XB and lone pair⋯π/π’ interactions. In the XB adducts, both these interactions are important. XB and lone pair⋯π cover 44 and 45% of the total dimer interaction on average. In the ion-pair complexes, XB dominates the total dimer interactions, while lone pair⋯π’ is very small.

The GKS-EDA results of XB are shown in Table 3. In general, the XB’s in P−X are larger than those in A−X. The electrostatic terms dominate the XB interaction, while the polarization terms play a secondary role. In P−X, the I⋯Br− XB’s belong to the charge-assisted XB. The large attractive electrostatic and polarization terms are greatly counteracted by the large repulsive desolvation terms, leading to the moderate total dimer interactions. The I⋯Br− XB interaction energies are close to the corresponding activator⋯Br− interactions shown in Table S5. For example, the interaction energy of I⋯Br− XB in P-mdI is −24.80 kcal/mol, compared to that of Br−⋯mdI of −25.31 kcal/mol.

Table 3. GKS-EDA Results of the XB (kcal/mol)

types	ΔG^ele	ΔG^padi	ΔG^pol	ΔG^paul	ΔG^corr	ΔG^TOT
I⋯Br− XB	−10.86	13.50	−7.47	4.59	−6.98	−7.23
A−pHI	−11.86	14.02	−7.58	4.18	−7.11	−8.36
A−mHI	−4.56	4.46	−2.51	3.38	−2.66	−1.89
A−pHI	−5.31	5.53	−3.52	3.70	−3.30	−2.90
P-mdI	−138.32	38.09	−43.81	131.15	−11.91	−24.80
P-pdI	−139.49	37.89	−42.00	126.56	−12.19	−29.23
P-mHI	−125.56	24.98	−31.37	123.79	−7.19	−15.35
P-pHI	−115.04	25.95	−32.96	115.15	−7.22	−14.13

As can be seen from Table 4, the physical origins of the lone pair⋯π/π’ are different from XB’s. In agreement with the conclusions of several theoretical and experimental studies,63−65 for the lone pair⋯π, the correlation terms are largest, showing the importance of dynamic correlation. In A−mHI, the lone pair⋯π is quite strong because the iodimidazolium group almost parallels to the benzene ring in benzhydryl with the short distance (about 3.45 Å). As figured out by the BCP of (d) in Figure 6c, the lone pair⋯π in A−mHI contains the π⋯π stacking, which can be verified from its large correlation term (−8.94 kcal/mol). In the lone pair⋯π’ interactions, the polarization and correlation terms are similar to those of the lone pair⋯π. The largest stabilizing term for lone pair⋯π’ is not correlation but desolvation, showing the role of solvent effects in the cation−cation system. As illustrated by Figure 9, the lone pair⋯π’ between the iodimidazolium cation and the benzene group contains the like-charge repulsion (π’⋯π’) and the lone pair⋯π stabilization. The like-charge repulsion can be well interpreted from the large repulsive electrostatic interaction shown in Table 4. Compared to P-mdI and P-pdI, because of the single I atom, the lone pair⋯π stabilizations in P-mHI and P-pHI are weak, leading to almost zero interaction energies, +0.19 kcal/mol in P-
Table 5. GKS-EDA Results for the Noncovalent Interactions in the HB Complexes (kcal/mol)

	ΔG^pol	ΔG^p fav	ΔG^int	ΔG^non	ΔG^TOT		
A-mdH	bidentate HB	−10.19	7.99	−4.48	4.47	−4.29	−6.49
	π···π	−8.52	7.17	−7.41	7.74	−6.73	−7.76
A-pdH	lone pair···π	−5.67	5.70	−1.31	3.69	−5.15	−2.75
	π···π	−6.69	8.62	−6.75	5.49	−6.51	−5.85

mHI and −0.08 kcal/mol in P-pHI. The like-charge repulsion energy can be approximated as the interaction free energy difference between the lone pair···π and the lone pair···π by the same XB donor, ranging from +4.43 to +5.63 kcal/mol.

3.3. Why Do the Hydrogen Bond Donors not Activate the Br Abstraction? Different behaviors of the noncovalent interactions lead to the different activation results. Moreover, (∆G^TOT − ∆G^pol) can be expressed as the sum of the contributions from XB, lone pair···π, and C−H···π. Among them, the contribution of XB, ranging from −9.98 to −20.87 kcal/mol, is the most important. It is the reason why the bidentate bromine activator, where two I atoms are replaced by two Br atoms, is still capable of activating the reaction. The weaker halogen bond results in the smaller stabilization energy and a higher barrier. It is confirmed by the IRC calculation shown in Figure S7. As can be seen, the barrier of the bidentate bromine activator, 11.8 kcal/mol, is higher than that of the bidentate iodine one. It is well in agreement with the smaller yield in the experiment.

To answer the question why mdH/pdH is unable to activate the process, the various noncovalent interactions in A-mdH and A-pdH are analyzed. According to the BCPs in Figure 6e,f, in A-mdH, there are the bidentate C−H···Br HB, C−H···π, and π···π stacking; however, in A-pdH, besides C−H···π and π···π stacking, there is no C−H···Br HB but lone pair···π interaction between the Br atom and the benzene ring. Using the model molecules shown in Figures S8 and S9, the GKS-EDA results for the noncovalent interactions are shown in Table 5. It is found that the π···π stacking interaction energy, −7.76 kcal/mol in A-mdH and −5.85 kcal/mol in A-pdH, is the most important for the total dimer interactions. Different from typical π···π stacking that is dominated by the correlation term, in the π···π stacking interactions, electrostatic and polarization terms are larger than the correlation term.

It can be easily observed that if A-mdH/A-pdH could be activated, the π···π stacking would not exist, while the π···π repulsion would arise; furthermore, the interactions between Br− and mdH/pdH belong to the C−H···Br− HBs (Figure S2). As such, the total dimer interaction energies can be estimated by the summation of the interaction energies of the C−H···Br− HB and the π···π repulsion, +4.43 to +5.63 kcal/mol discussed above. Considering that the HB interaction energies in Table S5 are −21.45 kcal/mol for Br−···mdH and −13.33 kcal/mol for Br−···pdH, the summations (HB plus π···π repulsion) are close to the total dimer interaction energies in A-mdH/A-pdH. It means that there is no extra stabilization of the ion-pair complex compared to A-mdH/A-pdH. It leads to the large ΔG^pol answering the fact that mdH and pdH are incapable of activating the Br abstraction process. Thus, the failure of mdH/pdH can be attributed to the fact that the C−H···Br− HBs are unable to compensate the π···π repulsion when benzhydryl becomes positively charged. In contrast, for the XB activator, the lone pair···π interaction resists the π···π repulsion, thus the interaction between the iodoimidazolium cation and the benzene group is still attractive. Thereafter, the I−···Br− XB can be fully devoted to the stabilizations of the ion-pair complexes.

4. CONCLUSIONS

In this work, the activation of the Br abstraction process in the Ritter-type solvolysis of benzhydryl bromide by a series of cationic XB and HB activators were investigated theoretically. Our study is in good agreement with the experimental results, which show that the cationic XB donors have the capability to promote the process, while the HB ones do not. To understand the activation, the origins of noncovalent interactions XB, HB, lone pair···π, and C−H···π in a series of the activator···substrate complexes, are explored. We can conclude the following:

1. The variation of the dimer interaction free energy is the most important for the activation. The XB activators have large stabilization energies with the substrate in the ion-pair complexes, leading to the decrease of ΔG^pol while the HB activators could not.

2. The different stabilization energies can be contributed by the variation of the noncovalent interactions. For the XB activators, XBs are greatly enhanced from adducts to the ion-pair complex. The lone pair···π interaction, which overcomes the π···π repulsion, ensures that the I−···Br− XB mainly responds for the stability of the ion-pair complex.

3. For the HB activators, the HB interaction is incapable of compensating the energy loss from the π···π attraction to the π···π repulsion, resulting in the almost unchanged total dimer interaction. Thus, the HB activators are unable to provide the additional stabilization for the ion-pair complex.

Furthermore, this work dissects a collection of various intermolecular interactions in a single bond activation, in which the role of lone pair···π interaction has been exhaustively highlighted. Lone pair···π is dominated by the correlation term in adduct but the desolvation term in the ion-pair complex. It shows the importance of solvated environments in the tunability of lone pair···π. Such analysis will permit thoughtful and quantitative evaluation of rational catalyst or activator design in organocatalysis, a matter of continuing interest.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c03000. Important geometric parameters of the transit states; interacting geometries of Br with all the activators; the C-Br bond activation by the bidentate bromine activator; model molecules for the noncovalent interactions; and GKS-EDA results for noncovalent interactions and total dimer interactions in adducts (PDF)
ACKNOWLEDGMENTS

This project is supported by the National Natural Science Foundation of China (No. 21733008), the New Century Excellent Talents in Fujian Province University, and the Fundamental Research Funds for the Central Universities (No. 20720190046). P. Su thanks Professor Longwu Ye (Xiamen University) and Professor Xin Lu (Xiamen University) for helpful discussions.

REFERENCES

(1) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Exploiting non-covalent pi interactions for catalyst design. Nature 2017, 543, 637.
(2) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. Acc. Chem. Res. 2016, 49, 1061.
(3) Knowles, R. R.; Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl. Acad. U.S.A. 2010, 107, 20678.
(4) Maharramov, A. M.; Mahmudov, K. T.; Kopylovich, M. N.; Pompeiro, A. J. Non-covalent Interactions in the Synthesis and Design of New Compounds; John Wiley & Sons, 2016.
(5) Breugst, M.; von der Heiden, D.; Schmauck, J. Novel noncovalent interactions in catalysis: a focus on halogen, chalcogen, and anion–π bonding. Synthesis 2017, 49, 3224.
(6) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118.
(7) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Primagi, A.; Resinati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478.
(8) Metrangolo, P.; Resinati, G. Halogen Bonding; Springer, 2015.
(9) Shen, D.; Su, P.; Wu, W. What kind of neutral halogen bonds can be modulated by solvent effects? Phys. Chem. Chem. Phys. 2018, 20, 26126.
(10) Del Bene, J. E.; Alkorta, I.; Elguero, J. Do traditional, chlorine-shared, and iodine-pair halogen bonds exist? An ab initio investigation of FCI: CNX Complexes. J. Phys. Chem. A 2010, 114, 12958.
(11) Del Bene, J. E.; Alkorta, I.; Elguero, J. Do nitrogen bases form chlorine-shared and iodine-pair halogen bonds? Chem. Phys. Lett. 2011, 508, 6.
(12) Xu, H.; Cheng, J.; Li, Q.; Li, W. Some measures for making a traditional halogen bond be chlorine-shared or iodine-pair one in FCI•NH3 complex. Mol. Phys. 2016, 114, 3643.
(13) Riley, K. E.; Murray, J. S.; Fanfrlik, J.; Řezáč, J.; Solá, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P. Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J. Mol. Model. 2011, 17, 3309.
(14) Bruckmann, A.; Pena, M. A.; Bolm, C. Organocatalysis through halogen-bond activation. Synlett 2008, 2008, 909.
(15) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Halogen-Bond-Induced Activation of a Carbon–Heteroatom Bond. Angew. Chem., Int. Ed. 2011, 50, 7187.
(16) Gliese, J.-P.; Jungbauer, S. H.; Huber, S. M. A halogen-bonding catalyzed Michael addition reaction. Chem. Commun. 2017, 53, 12052.
(17) Heinz, N.; Dolg, M.; Berkessel, A. A theoretical study of imine hydrocyanation catalyzed by halogen-bonding. J. Comput. Chem. 2015, 36, 1812.
(18) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S. M. Activation of a carbonyl compound by halogen bonding. Chem. Commun. 2014, 50, 6281.
(19) Jungbauer, S. H.; Huber, S. M. Cationic multidentate halogen-bond donors in halide abstraction organocatalysis: Catalyst optimization by preorganization. J. Am. Chem. Soc. 2015, 137, 12110.
(20) Nagorny, P.; Sun, Z. New approaches to organocatalysis based on C–H and C–X bonding for electrophylic substrate activation. Beilstein J. Org. Chem. 2016, 12, 2834.
(21) Kee, C. W.; Wong, M. W. In silico design of halogen-bonding-based organocatalyst for diels–alder reaction, claisen rearrangement, and cope-type hydroamination. J. Org. Chem. 2016, 81, 7459.
(22) Nizzo, V. d. P. N.; Scheiner, S. Catalysis of the Aza-Diels–Alder Reaction by Hydrogen and Halogen Bonds. J. Org. Chem. 2016, 81, 2589.
(23) Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Electrophilic iodine (i) compounds induced semipinacol rearrangement via C–X bond cleavage. Chem. Commun. 2014, 50, 13691.
(24) Guo, S.; Sun, C.; Meng, L.; Zeng, Y. The mechanism of ring-opening polymerization of L-lactide by IC13 catalysts: Halogen bond catalysis or participating in reactions? J. Comput. Chem. 2019, 40, 2827.
(25) Wei, Y.; Liang, F.; Zhang, X. N-Bromomioide/DIBU Combination as a New Strategy for Intermolecular Allylic Amination. Org. Lett. 2013, 15, 5186.
(26) Sakakura, A.; Ukai, A.; Ishihara, K. Enantioselective halocyclization of polypropenoids induced by nucleophilic phosphoramidates. Nature 2007, 445, 900.
(27) Bergamaschi, G.; Lascialfari, L.; Pizzi, A.; Espinoza, M. I. M.; Demitri, N.; Milani, A.; Gori, A.; Metrangolo, P. A halogen bond donor in halogen-bond-assisted benzyl C–H functionalization. Angew. Chem. Int. Ed. 2016, 55, 17018.
(28) Saito, M.; Kobayashi, Y.; Tsuzuki, S.; Takemoto, Y. Electrophilic Activation of Iodonium Ylides by Halogen-Bond-Donor Catalysis for Cross-Enolate Coupling. Angew. Chem. Int. Ed. 2017, 56, 7653.
(29) Takagi, K.; Yamauchi, K.; Murakata, H. Halogen-Bonding-Mediated and Controlled Cationic Polymerization of Isobutyl Vinyl Ether: Expanding the Catalytic Scope of 2-Iodoimidazolium Salts. Chem. – Eur. J. 2017, 23, 9495.
(30) Araï, T.; Suzuki, T.; Inoue, T.; Kuwano, S. Chiral Bis(imidazolidine) iodobenzene (I-Bidine) Organocatalyst for Thiochro-mane Synthesis Using an Asymmetric Michael/Henry Reaction. Synlett 2016, 28, 122.
(31) von der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. Reaction mechanism of iodine-catalyzed michael additions. J. Org. Chem. 2017, 82, 4037.
(32) Yi, X.; Jiao, X.; Li, X. 2-Mediated 2 H-indazole synthesis via halogen-bond-assisted benzyl C–H functionalization. Org. Biomol. Chem. 2016, 14, 9912.
(33) Kazi, I.; Guha, S.; Sekar, G. CBr4 as a halogen bond donor catalyst for the selective activation of benzaldehydes to synthesis α,βunsaturated ketones. Org. Lett. 2017, 19, 1244.
(34) Combe, S. H.; Hosseini, A.; Song, L.; Hausmann, H.; Schreiner, P. R. Catalytic halogen bond activation in the benzylic C–H bond iodonination with iodohydantoinos. Org. Lett. 2017, 19, 6156.
(35) Matsuzawa, A.; Takeuchi, S.; Sugita, K. Iodoalkyne-Based Catalyst-Mediated Activation of Thioamides through Halogen Bonding. Chem. Asian J. 2016, 11, 2863.

(36) Kellett, C. W.; Kennepolh, P.; Berlinguette, C. P. π covalency in the halogen bond. Nat. Commun. 2020, 11, No. 3310.

(37) Simon, S. J.; Parlane, F. G.; Swords, W. B.; Kellett, C. W.; Du, C.; Lam, B.; Dean, R. K.; Hu, K.; Meyer, G. J.; Berlinguette, C. P. Halogen bonding promotes higher dye-sensitized solar cell photovoltages. J. Am. Chem. Soc. 2016, 138, 10406.

(38) Swords, W. B.; Simon, S. J.; Parlane, F. G.; Dean, R. K.; Kellett, C. W.; Hu, K.; Meyer, G. J.; Berlinguette, C. P. Evidence for interfacial halogen bonding. Angew. Chem. 2016, 128, 6060.

(39) Sutar, R. L.; Huber, S. M. Catalysis of organic reactions through halogen bonding. ACS Catal. 2019, 9, 9622.

(40) Tepper, R.; Schubert, U. S. Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis. Angew. Chem., Int. Ed. 2018, 57, 6004.

(41) Tepper, R.; Schulze, B.; Jäger, M.; Friebe, C.; Scharf, D. H.; Görls, H.; Schubert, U. S. Anion receptors based on halogen bonding with halo-1, 2, 3-triazoliums. J. Org. Chem. 2015, 80, 3139.

(42) Perera, M. D.; Aakero, M.; Aakero, C. B. Organocatalysis by a multidentate halogen-bond donor: An alternative to hydrogen-bond based catalysis. New J. Chem. 2019, 43, 8311.

(43) Zhou, F.; Ding, M.; Zhou, J. A catalytic metal-free Ritter reaction to 3-substituted 3-aminoxindoles. Org. Biomol. Chem. 2012, 10, 3178.

(44) Theethagiri, P.; Laliha, A.; Arunachalam, P. N. Iodine-catalyzed one-pot synthesis of amides from nitriles via Ritter reaction. Tetrahedron Lett. 2010, 51, 2813.

(45) Gawande, M. B.; Rathi, A. K.; Nogueira, I. D.; Varma, R. S.; Branco, P. S. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chem. 2013, 15, 1895.

(46) Jiang, D.; He, T.; Ma, L.; Wang, Z. Recent developments in Ritter reaction. RSC Adv. 2014, 4, 64936.

(47) Chang, S.-J. Scale Up of a Ritter Reaction. Org. Process Res. Dev. 1999, 3, 232.

(48) Sanz, R.; Martínez, A.; Guilarte, V.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. The Ritter reaction under truly catalytic Brønsted acid conditions. Eur. J. Org. Chem. 2007, 2007, 4642.

(49) Bullfield, D.; Huber, S. M. Halogen bonding in organic synthesis and organocatalysis. Chem. − Eur. J. 2016, 22, 14430.

(50) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1996.

(51) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999.

(52) Mennucci, B. Polarizable continuum model. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 386.

(53) Su, P.; Jiang, Z.; Chen, Z.; Wu, W. Energy decomposition scheme based on the generalized Kohn−Sham scheme. J. Phys. Chem. A 2014, 118, 2531.

(54) Su, P.; Tang, Z.; Wu, W. Generalized Kohn-Sham energy decomposition analysis and its applications. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2020, 10, No. e1460.

(55) Wiberg, K. B.; Rablen, P. R. Comparison of atomic charges derived via different procedures. J. Comput. Chem. 1993, 14, 1504.

(56) Oliveira, B.; Vasconcellos, M. Hydrogen bonds in alcohols: water complexes: A theoretical study about new intramolecular interactions via CHELPG and AIM calculations. J. Mol. Struct.: THEOCHEM 2006, 774, 83.

(57) Wiberg, K. B.; Rablen, P. R. Atomic Charges. J. Org. Chem. 2018, 83, 15463.

(58) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16. Gaussian, Inc. Wallingford, CT, 2016.

(59) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347.

(60) Lu, T.; Chen, F. Multifwn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.

(61) Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard, W. A., III; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024.

(62) Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 1955, 77, 334.

(63) Amicangelo, J. C.; Gung, B. W.; Irwin, D. G.; Romano, N. C. Ab initio study of substituent effects in the interactions of dimethyl ether with aromatic rings. Phys. Chem. Chem. Phys. 2008, 10, 2695.

(64) Ran, J.; Hobza, P. On the nature of bonding in lone pair...π-Electron complexes: ccisd (T)/Complete basis set limit calculations. J. Chem. Theory Comput. 2009, 5, 1180.

(65) Badri, Z.; Foroutan-Nejad, C.; Kozelka, J.; Marek, R. On the non-classical contribution in lone pair...−π interaction: IQA perspective. Phys. Chem. Chem. Phys. 2015, 17, 26183.